

MÉTODOS CUANTITATIVOS PARA LA TOMA DE DECISIONES

Clase 03

Capítulo 3

Pronósticos

Contenido del capítulo

- 3.1 Tipos de pronósticos
- 3.2 Diagramas de dispersión y series de tiempo
- 3.3 Medidas de exactitud del pronóstico
- 3.4 Modelos de pronósticos de series de tiempo
- 3.5 Monitoreo y control de pronósticos
- 3.6 Uso de la computadora para pronosticar

Introducción

Los gerentes tratan siempre de reducir la incertidumbre e intentan hacer mejores estimaciones de lo que sucederá en el futuro.

- Lograr esto es el objetivo principal de la elaboración de los pronósticos.
- En muchas empresas (sobre todo las pequeñas), el proceso completo es subjetivo e incluye los métodos improvisados, la intuición y los años de experiencia.
- También hay varias técnicas cuantitativas, entre ellos:
 - Promedios móviles
 - Suavizamiento exponencial
 - Proyecciones de tendencias
 - Análisis de regresión por mínimos cuadrados.

Introducción

Ocho pasos para elaborar pronósticos:

- 1. Determinar el uso del pronóstico: ¿qué meta tratamos de alcanzar?
- 2. Seleccionar los artículos o las cantidades que se van a pronosticar.
- 3. Determinar el horizonte de tiempo del pronóstico
- 4. Elegir el modelo o los modelos de pronósticos.
- 5. Reunir los datos o la información necesaria para realizar el pronóstico.
- 6. Validar el modelo del pronóstico.
- 7. Efectuar el pronóstico.
- 8. Implementar los resultados.

Introducción

- Estos pasos indican de una manera sistemática cómo iniciar, diseñar e implementar un sistema de pronósticos.
- Cuando el sistema de pronósticos se usa para generar pronósticos periódicamente, los datos deben recolectarse por rutina, y los cálculos o procedimientos reales utilizados para hacer el pronóstico pueden hacerse de forma automática.
- Pocas veces existe un único método de pronósticos que sea superior.
 - Diferentes organizaciones pueden usar técnicas diferentes.
 - Cualquiera que sea la herramienta que funcione para una empresa, esa es la que debería usarse.

Modelos de pronósticos

Técnicas de pronóstico **Modelos** Métodos Métodos de **Causales** cualitativos series de tiempo Métodos **Promedios Análisis** Delphi móviles de regresión Jurado de Regresión Suavizamiento opinión ejecutiva Múltiple exponencial Compuesto de **Proyecciones** fuerza de ventas de tendencia Figura 5.1 **Encuesta al mercado** de consumidores Descomposición

Modelos cualitativos

- Los <u>modelos cualitativos</u> intentan incorporar factores subjetivos.
- Los modelos cualitativos son útiles sobre todo cuando se espera que los factores subjetivos sean muy importantes o cuando es difícil obtener datos cuantitativos precisos.
- Las técnicas cualitativas de pronósticos son:
 - Método Delphi
 - Jurado de opinión ejecutiva
 - Consulta a vendedores
 - Encuesta al mercado de consumidores

Modelos cualitativos

- Método Delphi Este proceso iterativo de grupo permite que expertos, quienes podrían encontrarse en diferentes lugares, hagan pronósticos; los encuestados brindan información a quienes toman las decisiones.
- □ Jurado de opinión Este método toma las opiniones de un pequeño grupo de gerentes de alto nivel, con frecuencia en combinación con modelos estadísticos para el análisis.
- □ Consulta a vendedores En este enfoque, cada persona de ventas estima las ventas en su región; tales datos después se combinan a niveles estatal y nacional.
- □ Encuesta al mercado de consumidores Este método solicita información a los consumidores o clientes potenciales respecto a sus planes de compra futuros.

Modelo de pronósticos de series de tiempo

- □ Los modelos de pronósticos de series de tiempo predicen valores futuros tan solo a partir de datos históricos de esa variable.
- Los modelos comunes de una series de tiempo son:
 - Promedios móviles
 - Suavizamiento exponencial
 - Proyecciones de tendencia
 - Descomposición
- ☐ El análisis de regresión se usa en las proyecciones de tendencia y en un tipo de modelo de descomposición.

Modelos causales

- ☐ Los modelos causales incorporan las variables o factores que pueden influir en la cantidad que se pronostica.
- □ El objetivo es desarrollar un modelo con la mejor relación estadística entre la variable que pronosticamos, y el conjunto de variables independientes.
- El modelo causal cuantitativo más común es el análisis de regresión.

Tabla 5.1

Diagrama de dispersión

Wacker Distributors necesita pronosticar las ventas para tres productos diferentes (en la tabla ventas anuales en unidades):

AÑO	TELEVISORES	RADIOS	REPRODUCTORES DE CD
1	250	300	110
2	250	310	100
3	250	320	120
4	250	330	140
5	250	340	170
6	250	350	150
7	250	360	160
8	250	370	190
9	250	380	200
10	250	390	190

Diagrama de dispersión para televisores

- Las ventas parecen constantes en el tiempo.
- ■Ventas = 250
- Una buena estimación de ventas en el año 11 es de 250 televisores.

Diagrama de dispersión para radios

Las ventas parecen aumentar a una tasa constante de 10 radios cada año.

ventas = 290 + 10(años)

Una estimación razonable de ventas de radios en el año 11 es de 400.

Figura 5.2b

Medidas de exactitud del pronóstico

Al comparar los valores pronosticados con los valores reales, se observa que tan bien funciona el modelo en comparación con otros.

Error de pronóstico = Valor real – valor pronosticado

Una medida de exactitud es la desviación media absoluta (DMA):

$$\mathbf{DMA} = \frac{\sum |\text{error del pronóstico}|}{\mathbf{DMA}}$$

Medidas de exactitud del pronóstico

Con un modelo de pronósticos sencillo calculamos la DMA:

AÑO	VENTAS REALES DE REPRODUCTORES DE CD	PRONÓSTICO DE VENTAS	VALOR ABSOLUTO DE LOS ERRORES (DESVIACIÓN) [REAL – PRONÓSTICO]
1	110	_	- 0.
2	100	110	100 – 110 = 10
3	120	100	120 – 110 = 20
4	140	120	140 – 120 = 20
5	170	140	170 – 140 = 30
6	150	170	150 – 170 = 20
7	160	150	160 – 150 = 10
8	190	160	190 – 160 = 30
9	200	190	200 – 190 = 10
10	190	200	190 – 200 = 10
11	_	190	

Tabla 5.2

Suma de |errores| = 160 DMA = 160/9 = 17.8

Medidas de exactitud del pronóstico

En ocasiones se emplean otras medidas de la exactitud al pronosticar.

El error cuadrado medio (ECM):

$$ECM = \frac{\sum (error)^2}{n}$$

El error medio absoluto porcentual (EMAP):

$$EMAP = \frac{\sum \left| \frac{error}{real} \right|}{n} 100\%$$

Y el sesgo es el error promedio.

Modelos de pronósticos de series de tiempo

- Una serie de tiempo se basa en una secuencia de datos igualmente espaciados.
- □ Pronosticar con datos de series de tiempo implica que se predicen valores futuros tan solo a partir de datos históricos de esa variable, y que se ignoran otras.

Componentes de una serie de tiempo

Cuatro componentes comunes de una serie de tiempo:

- □ Tendencia (7) es el movimiento gradual hacia arriba o hacia abajo de los datos en el tiempo.
- □ Estacionalidad (S) es el patrón de la fluctuación de la demanda arriba o abajo de la recta de tendencia, que se repite a intervalos regulares.
- □ Ciclos (C) son patrones en los datos anuales que ocurren cada cierto número de años.
- □ Variaciones aleatorias (R) son "saltos" en los datos ocasionados por el azar y por situaciones inusuales; no siguen un patrón discernible.

Descomposición de una serie de tiempo

Demanda de productos graficada para 4 años, con tendencia y estacionalidad.

Descomposición de una serie de tiempo

Existen dos formas generales de los modelos de series de tiempo :

Modelo multiplicativo:

Demanda = $T \times S \times C \times R$

Modelo aditivo:

Demanda = T + S + C + R

- Hay otros modelos que pueden ser una combinación de estos.
- Con frecuencia, quienes realizan pronósticos suponen que los errores se distribuyen normalmente con una media de cero.

Promedios móviles

- Los promedios móviles son útiles si suponemos que las demandas del mercado permanecerán bastante estables en el tiempo.
- Un pronóstico de promedio móvil de *n periodos, que sirve como estimación de la demanda del* siguiente periodo.
- Esto tiende a suavizar las irregularidades del corto plazo en la serie de datos.

Pronóstico de promedio móvil = $\frac{\text{suma de demandas de } n \text{ periodos anteriores}}{n}$

Promedios móviles

Matemáticamente:

$$F_{t+1} = \frac{Y_t + Y_{t-1} + \dots + Y_{t-n+1}}{n}$$

Donde:

 F_{t+1} = pronóstico para el periodo t + 1 Y_t = valor real en el periodo tn = número de periodos para promediar

- Suministros Wallace Garden quiere pronosticar la demanda para sus naves de almacenamiento.
- Se han recabado datos del año pasado.
- Están utilizando un promedio móvil de tres meses para pronosticar la demanda (n = 3).

MES	VENTAS REALES DE NAVES DE ALMACENAMIENTO	PROMEDIO MOVIL DE 3 MESES
Enero	10	
Febrero	12	
Marzo	13	
Abril	16	(10 + 12 + 13)/3 = 11.67
Mayo	19	(12 + 13 + 16)/3 = 13.67
Junio	23	(13 + 16 + 19)/3 = 16.00
Julio	26	(16 + 19 + 23)/3 = 19.33
Agosto	30	(19 + 23 + 26)/3 = 22.67
Septiembre	28	(23 + 26 + 30)/3 = 26.33
Octubre	18	(26 + 30 + 28)/3 = 28.00
Noviembre	16	(30 + 28 + 18)/3 = 25.33
Diciembre	14	(28 + 18 + 16)/3 = 20.67
Enero	_	(18 + 16 + 14)/3 = 16.00

Promedio móvil ponderado

- El promedio móvil ponderado permite asignar diferentes pesos a las observaciones previas.
- Se suele utilizar cuando surge una tendencia u otro patrón.

$$F_{t+1} = \frac{\sum (\text{peso del periodo } i)(\text{valor real del periodo})}{\sum (\text{peso})}$$

Matemáticamente:

$$F_{t+1} = \frac{w_1 Y_t + w_2 Y_{t-1} + \dots + w_n Y_{t-n+1}}{w_1 + w_2 + \dots + w_n}$$

donde

 w_i = peso para la $i^{\acute{e}sima}$ observación

- Wallace Garden decide usar un modelo de promedio móvil ponderado para pronosticar la demanda para su nave de almacenamiento.
- Lo cual se implementa como sigue:

	PESOS APLICADOS	PERIODO
	3	Último mes
	2	Hace 2 meses
	1	Hace 3 meses
3x venta del mes pasado +	· 2x ventas de hace 2 mese	es. 1) venta de hace 3 meses
	6	
		[►] Suma de los pesos

MES	VENTAS REALES DE NAVES DE ALMACENAMINIENTO	PROMEDIO MÓVIL DE 3 MESES
Enero	10 —	
Febrero	12 —	
Marzo	13 —	
Abril	16	$[(3 \times 13) + (2 \times 12) + (10)]/6 = 12.17$
Mayo	19	[(3 X 16) + (2 X 13) + (12)]/6 = 14.33
Junio	23	[(3 X 19) + (2 X 16) + (13)]/6 = 17.00
Julio	26	$[(3 \times 23) + (2 \times 19) + (16)]/6 = 20.50$
Agosto	30	$[(3 \times 26) + (2 \times 23) + (19)]/6 = 23.83$
Septiembre	28	[(3 X 30) + (2 X 26) + (23)]/6 = 27.50
Octubre	18	$[(3 \times 28) + (2 \times 30) + (26)]/6 = 28.33$
Noviembre	16	[(3 X 18) + (2 X 28) + (30)]/6 = 23.33
Diciembre	14	[(3 X 16) + (2 X 18) + (28)]/6 = 18.67
Enero	_	[(3 X 14) + (2 X 16) + (18)]/6 = 15.33

Selección del módulo de pronósticos en Excel QM

Ventana de inicio para el promedio móvil ponderado

Promedio móvil ponderado en Excel QM para Wallace Garden.

Suavizamiento exponencial

El suavizamiento exponencial es un tipo de promedio móvil de uso sencillo y que necesita llevar algún registro de datos pasados.

Nuevo pronóstico = pronóstico del último periodo

+ α (demanda real del último periodo

pronóstico del último periodo)

donde α es un peso (o *constante de suavizamiento*) donde $0 \le \alpha \le 1$.

Suavizamiento exponencial

Matemáticamente:

$$F_{t+1} = F_t + \alpha (Y_t - F_t)$$

donde:

 F_{t+1} = nuevo pronóstico (para el periodo t + 1)

 F_t = pronóstico previo (para el periodo t)

 α = constante de suavizamiento (0 $\leq \alpha \leq$ 1)

 Y_t = demanda real para el periodo anterior

El concepto no es complejo: la última estimación es igual a la estimación previa más una fracción del error del último periodo.

UNIVERSIDAD DE COSTA RICA

Ejemplo de suavizamiento exponencial

- En enero, un distribuidor predijo una demanda de 142 automóviles de cierto modelo para febrero.
- La demanda real en febrero fue de 153 autos.
- Utilizando una constante de suavizamiento $\alpha = 0.20$, podemos pronosticar la demanda para marzo.

Pronóstico nuevo (para demanda de marzo) = 142 + 0.2(153 – 142) = 144.2 o 144 autos

Si la demanda real en marzo fue de 136 autos, el pronóstico para abril sería el siguiente:

Pronóstico nuevo (para demanda de abril) = 144.2 + 0.2(136 – 144.2) = 142.6 o 143 autos

Selección de la constante de suavizamiento

- Seleccionar el valor adecuado para α es clave para obtener un buen pronóstico.
- El propósito es obtener el pronóstico más exacto.
- El enfoque general consiste en desarrollar pronósticos de prueba con diferentes valores de α y seleccionar la que resulta en la menor DMA.

Suavizamiento exponencial con ajuste de tendencia

- □ Como todas las técnicas de promedio, el suavización exponencial no responde a las tendencias.
- ☐ Un modelo más complejo puede utilizarse para el ajuste de las tendencias.
- ☐ El enfoque básico es desarrollar un pronóstico de suavización exponencial y, luego, ajustarlo a la tendencia.

Pronóstico con tendencia (FIT_{t+1}) = pronóstico suavizamiento(F_{t+1}) + tendencia suavizada (T_{t+1})

Suavizamiento exponencial con ajuste de tendencia

- La ecuación para la tendencia de corrección utiliza una nueva constante de suavizamiento β .
- \Box T_t debe estimarse. T_{t+1} se calcula con la ecuación:

$$T_{t+1} = (1 - \beta)T_t + \beta(F_{t+1} - FIT_t)$$

donde

 T_t = tendencia suavizada para el periodo t

 F_t = pronóstico suavizamiento para el periodo t

 FIT_t = pronóstico incluyendo tendencia para el periodo t

 α = constante de suavizamiento para el pronóstico

 β = constante de suavizamiento para la tendencia

Selección de una constante de suavizamiento

- Al igual que con el suavizamiento exponencial, un valor grande de β hace que el pronóstico sea más susceptible ante los cambios en la tendencia.
- Un valor pequeño de β da menos peso a la tendencia reciente y suele alisar la tendencia.
- A menudo, los valores se eligen usando un enfoque de ensayo y error con base en el valor de la DMA para distintos valores de β .

Proyecciones de tendencia

- La proyección de tendencia ajusta una recta de tendencia a una serie de datos históricos.
- Proyecta la línea al futuro para obtener pronósticos a mediano y largo plazos.
- Existen varias ecuaciones de tendencia que se pueden desarrollar con los modelos exponencial y cuadrático.
- La más sencilla es un modelo lineal desarrollado mediante análisis de regresión.

Proyecciones de tendencia

La forma matemática es

$$\hat{Y} = b_0 + b_1 X$$

Donde

 $\hat{\mathbf{v}}$ = valor predicho

 b_0 = intersección

 b_1 = pendiente de la recta

X = periodo (es decir, X = 1, 2, 3, ..., n)

Variaciones estacionales

- □ Algunas veces las variaciones recurrentes en ciertas estaciones del año hacen necesario un ajuste estacional en el pronóstico de la recta de tendencia.
- Un índice estacional indica la comparación de una estación dada y una estación promedio.
- Cuando no hay una tendencia, el índice se determina dividiendo el valor promedio para una estación específica entre el promedio de todos los datos.

UNIVERSIDAD DE Variaciones estacionales COSTA RICA Variaciones estacionales con tendencia

- Cuando los dos componentes de tendencia y estacionales están presentes, la tarea de predicción es más compleja.
- Los índices estacionales deberían calcularse utilizando un enfoque de promedio móvil centrado (PMC).
- Pasos para determinar los índices estacionales basados en los PMC:
- 1. Calcular el PMC para cada observación (cuando sea posible).
- Calcular la razón estacional = observación/PMC para esa observación.
- 3. Promediar las razones estacionales para obtener los índices estacionales.
- 4. Si los índices estacionales no suman el número de estaciones, multiplicar cada índice por (número de estaciones)/(suma de índices).

Método de descomposición del pronóstico con componentes de tendencia y estacional

- Descomposición es el proceso de aislar los factores de tendencia lineal y estacional para desarrollar pronósticos más exactos.
- Hay cinco pasos para desarrollar un pronóstico con el método de descomposición:
 - Calcular los índices estacionales usando los PMC.
 - Eliminar la estacionalidad de los datos dividiendo cada número entre su índice estacional.
 - 3. Encontrar la ecuación de la recta de tendencia empleando los datos sin estacionalidad.
 - 4. Pronosticar para periodos futuros con la recta de tendencia.
 - 5. Multiplicar el pronóstico de la recta de tendencia por el índice estacional adecuado.

Uso de regresión con componentes de tendencia y estacional

- □ La regresión múltiple para pronosticar cuando las componentes de tendencia y estacional están presentes en una serie de tiempo.
 - Una variable independiente es el tiempo.
 - Otras variables independientes son variables artificiales para indicar la estación.
- □ El modelo básico es un modelo de descomposición aditivo y se expresa como:

$$\hat{Y} = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4$$

Donde

 X_1 = periodo de tiempo

 X_2 = 1 si es el trimestre 2, 0 o de otra manera

 $X_3 = 1$ si es el trimestre 3, 0 o de otra manera

 X_4 = 1 si es el trimestre 4, 0 o de otra manera

Monitoreo y control de los pronósticos

- La señal de rastreo se pueden utilizar para supervisar el rendimiento de un pronóstico.
- La señal de rastreo se calcula como la suma corriente de los errores de pronóstico (SCEP) dividida entre la desviación media absoluta:

Señal de rastreo =
$$\frac{\text{SCEP}}{\text{DMA}}$$

Donde

$$DMA = \frac{\sum |error \ del \ pronóstico|}{n}$$

Monitoreo y control de los pronósticos

- Las señales de rastreo positivas indican que la demanda es mayor que el pronóstico.
- Las señales negativas significan que la demanda es menor que el pronóstico.
- Una buena señal de rastreo tiene tantos errores positivos como negativos.
- Los problemas surgen cuando la señal llega más arriba o más abajo que los límites prestablecidos.
- Esto indica que ha habido una cantidad inaceptable de variación.
- Los límites deberían ser razonables y pueden variar de un artículo a otro.

COSTARICA Kimball's Bakery

Las ventas trimestrales de *croissants* (en miles):

PERIO- DO	PRONÓSTICO I DE DEMANDA	DEMANDA REAL	ERROR	SCEP	ERROR DEL PRONÓSTICO	ERROR ACUMULADO	DMA	SEÑAL DE RASTREO
1	100	90	-10	-10	10	10	10.0	-1
2	100	95	-5	-15	5	15	7.5	-2
3	100	115	+15	0	15	30	10.0	0
4	110	100	-10	-10	10	40	10.0	-1
5	110	125	+15	+5	15	55	11.0	+0.5
6	110	140	+30	+35	30	85	14.2	+2.5

$$DMA = \frac{\sum |\text{error de pronóstico}|}{n} = \frac{85}{6}$$

$$= 14.2$$
Señal de rastreo = $\frac{\text{SCEP}}{\text{DMA}} = \frac{35}{14.2}$

$$= 2.5 \text{ DMA}$$

Suavizamiento adaptable

- □ El suavizamiento adaptable es la supervisión por computadora de las señales de rastreo y autoajuste, cuando el límite se dispara.
- \Box En el suavizamiento exponencial, los coeficientes α y β se ajustan cuando la computadora detecta una señal de rastreo errante.

¿Preguntas o comentarios?

Muchas gracias!