Clase # 8 de Análisis 3

Equipo clases a LATEX

20 de noviembre de 2020

Índice

 1. Definicion
 1

 2. Definicion
 2

 3. Teorema
 2

 4. Teorema
 2

 5. Teorema
 3

 6. Definicion
 3

 7. Ejercicios
 4

1. Definicion

Diferenciales para campos vectoriales:

Sea $\mathbf{f}:S\subset\mathbb{R}^n\to\mathbb{R}^m$, S abierto, $\mathbf{x}_0\in S$, $\mathbf{y}\in\mathbb{R}^n$. Entonces se le llama a:

$$\mathbf{f'}(\mathbf{x}_0, \mathbf{y}) = \lim_{h \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + h\mathbf{y}) - \mathbf{f}(\mathbf{x}_0)}{h}$$
 (Si el limite existe)

Derivada de \mathbf{f} en \mathbf{x}_0 respecto a \mathbf{y} . Atención: $\mathbf{f'}(\mathbf{x}_0, \mathbf{y}) \in \mathbb{R}^n$

Observación:

Notemos que:

$$\mathbf{f} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix}$$

Con $f_i: \mathbb{R}^n \to \mathbb{R}$, en consecuencia:

$$\mathbf{f'(y, x_0)} = egin{bmatrix} f_1'(\mathbf{x}_0, \mathbf{y}) \\ f_2'(\mathbf{x}_0, \mathbf{y}) \\ dots \\ f_n'(\mathbf{x}_0, \mathbf{y}) \end{bmatrix}$$

En otras palabras, Trabajando con los <u>campos escalares componentes</u>, se deducen las propiedades para el case de los campos vectoriales.

2. Definition

f es diferenciable en \mathbf{x}_0 si existe transformacion lineal $T_{\mathbf{x}_0}: \mathbb{R}^n \to \mathbb{R}^m$ tal que:

$$\mathbf{f}(\mathbf{x}_0 + \mathbf{w}) = \mathbf{f}(\mathbf{x}_0) + T_{\mathbf{x}_0}(\mathbf{w}) + ||\mathbf{w}||E(\mathbf{x}_0, \mathbf{w})$$

Donde $E(\mathbf{x}_0, \mathbf{w}) \to \mathbf{0}$ cuando $\mathbf{w} \to \mathbf{0}$

Se dira que $T_{\mathbf{x}_0}$ es la diferencial de \mathbf{f} en \mathbf{x}_0 .

3. Teorema

Supongamos que \mathbf{f} es diferenciable en \mathbf{x}_0 con diferencial $T_{\mathbf{x}_0}$, entonces existe la derivada $\mathbf{f}'(\mathbf{x}_0, \mathbf{y})$ para todo $\mathbf{y} \in \mathbb{R}^n$ y se cumple que:

$$T_{\mathbf{x}_0}(\mathbf{y}) = \mathbf{f}'(\mathbf{x}_0, \mathbf{y})$$

Mas aun: si $\mathbf{f} = (f_1, \dots, f_n)$ con $f_i : S \subset \mathbb{R}^n \to \mathbb{R}$ y si $\mathbf{y} = (y_1, \dots, y_n)'$ entonces:

$$T_{\mathbf{x}_0}(\mathbf{y}) = \begin{bmatrix} \nabla f_1(\mathbf{x}_0) \\ \nabla f_2(\mathbf{x}_0) \\ \vdots \\ \nabla f_n(\mathbf{x}_0) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

En forma matricial resulta $T_{\mathbf{x}_0}(\mathbf{y}) = Df(\mathbf{x}_0)\mathbf{y}$.

$$T_{\mathbf{x}_0}(\mathbf{y}) = \begin{bmatrix} D_1 f_1(\mathbf{x}_0) & D_2 f_1(\mathbf{x}_0) & \dots & D_n f_1(\mathbf{x}_0) \\ D_1 f_2(\mathbf{x}_0) & D_2 f_2(\mathbf{x}_0) & \dots & D_n f_2(\mathbf{x}_0) \\ \vdots & \vdots & \ddots & \vdots \\ D_1 f_m(\mathbf{x}_0) & D_1 f_m(\mathbf{x}_0) & \dots & D_n f_m(\mathbf{x}_0) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$= \underbrace{D\mathbf{f}(\mathbf{x}_0)}_{\text{Matrix Jacobiana}} \mathbf{y}$$

4. Teorema

Si un campo vectorial \mathbf{f} es diferenciable en \mathbf{x}_0 entonces es continuo en \mathbf{x}_0

5. Teorema

Regla de la cadena

Sean $\mathbf{f}: S \subset \mathbb{R}^n \to \mathbb{R}^m$ y $\mathbf{g}: T \subset \mathbb{R}^p \to \mathbb{R}^n$

S abierto en \mathbb{R}^n , T abierto en \mathbb{R}^p , $\mathbf{x}_0 \in T$, $\mathbf{w}_0 = \mathbf{g}(\mathbf{x}_0)$, $\mathbf{h} = \mathbf{f} \circ \mathbf{g}$ definida en un entorno de \mathbf{x}_0 .

Supongamos \mathbf{g} diferenciable en \mathbf{x}_0 con diferencial $\mathbf{g}'(\mathbf{x}_0)$ y \mathbf{f} diferenciable en \mathbf{w}_0 . Con diferencial $\mathbf{f}'(\mathbf{w}_0)$

Entonces \mathbf{h} es diferenciable en \mathbf{x}_0 con diferencial:

$$\mathbf{h}'(\mathbf{x}_0) = \mathbf{f}'(\mathbf{w}_0) \circ \mathbf{g}'(\mathbf{x}_0)$$

En notación matricial:

$$D\mathbf{h}(\mathbf{x}_0) = \underbrace{D\mathbf{f}(\mathbf{w}_0)}_{n \times m} \underbrace{D\mathbf{g}(\mathbf{x}_0)}_{p \times n}$$

Puesto la composición de transformaciones lineales corresponde al producto de sus matrices correspondientes.

Notación alternativa

$$\frac{\partial h}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial h}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$$

6. Definicion

Derivación de funciones definidas implícitamente.

Sea $F:T\subset\mathbb{R}^3\to\mathbb{R}$ con F(x,y,z)=0 superficie de nivel.

Por ejemplo:
$$F(x, y, z) = x^2 + y^2 + z^2 - 1$$
, entonces $F(x, y, z) = 0$ es $x^2 + y^2 + z^2 = 1$

En la ecuación F(x,y,z)=0 se podría despejar una variable en función de las otras, por ejemplo z=f(x,y). Diremos que F(x,y,z)=0 define de manera implícita a z=f(x,y). Sin conocer implícitamente a f(x,y), podemos deducir propiedades de $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ usando la regla de la cadena.

Si existe la función f, dado que F(x,y,z)=0 entonces se debe cumplir que F(x,y,f(x,y))=0 con $(x,y)\in S$, S abierto en \mathbb{R}^2 . Hagamos $g:S\subset\mathbb{R}^2\to\mathbb{R}$, g(x,y)=F(x,y,f(x,y)). Entonces:

$$F(x,y,f(x,y)) = 0 \implies g(x,y) = 0$$
 en S

Y por lo tanto
$$\frac{\partial g}{\partial x} = 0$$
, $\frac{\partial g}{\partial y} = 0$

Hagamos:

$$g(x,y) = F(u_1(x,y), u_2(x,y), u_3(x,y))$$

Donde $u_1(x,y) = x$, $u_2(x,y) = y$ y $u_3(x,y) = f(x,y)$ Entonces:

$$\frac{\partial g}{\partial x} = D_1 F \underbrace{\frac{\partial u_1}{\partial x}}_{=1} + D_2 F \underbrace{\frac{\partial u_2}{\partial x}}_{=0} + D_3 F \underbrace{\frac{\partial u_3}{\partial x}}_{=f_x}$$

$$\frac{\partial g}{\partial x} = D_1 F \underbrace{\frac{\partial u_1}{\partial x}}_{=1} + D_2 F \underbrace{\frac{\partial u_2}{\partial x}}_{=0} + D_3 F \underbrace{\frac{\partial u_3}{\partial x}}_{=0}$$

$$\frac{\partial g}{\partial y} = D_1 F \underbrace{\frac{\partial u_1}{\partial y}}_{=0} + D_2 F \underbrace{\frac{\partial u_2}{\partial y}}_{=1} + D_3 F \underbrace{\frac{\partial u_3}{\partial y}}_{=f_y}$$

 D_1F y D_3F calculadas en (x, y, f(x, y)).

Entonces tendremos:

$$D_1F + D_3F\frac{\partial f}{\partial x} = 0 \implies \frac{\partial f}{\partial x} = -\frac{D_1F(x, y, f(x, y))}{D_3F(x, y, f(x, y))}$$

$$D_2F + D_3F\frac{\partial f}{\partial y} = 0n \implies \frac{\partial f}{\partial y} = -\frac{D_2F(x,y,f(x,y))}{D_3F(x,y,f(x,y))}$$

Valido en los puntos donde $D_3F(x,y,f(x,y)) \neq 0$

También se escribe:

$$\frac{\partial f}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial z}$$
 $\frac{\partial f}{\partial y} = -\frac{\partial f/\partial y}{\partial f/\partial z}$

7. Ejercicios

1. Sea f una función diferenciable de (u, v, w) y sea g una función de (x, y) definida por:

$$g(x,y) = f(x-y, x+y, 2x)$$

Calcular g_x y g_y en terminos de f_u , f_v y f_w .

2. Las dos ecuaciones $2x = v^2 - u^2$, y = uv definen u y v como funciones de (x,y). Hallar las formulas correspondientes a $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$

3. Las tres ecuaciones:

$$x^2 - y\cos(uv) + z^2 = 0$$

$$x^2 + y^2 - \sin(uv) + 2z^2 = 2$$

$$xy - \sin(u)\cos(v) + z = 0$$

 $Definen \ x,y,z \ como \ funciones \ de \ u \ y \ v.$

Calcular
$$\frac{\partial x}{\partial u}$$
 y $\frac{\partial x}{\partial v}$ en $x = y = 1$, $u = \pi/2$, $v = z = 0$

4. La ecuación f(y/x, z/x) = 0 define z implícitamente como función de (x, y), Supongamos que esa función es z = g(x, y). Demuestre que:

$$x\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial y} = g(x, y)$$

5. La ecuación $x + y + (y + z)^2 = 6$ define z como función implícita de (x, y). Calcular $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ y $\frac{\partial^2 f}{\partial x \partial y}$ en función de x, y, z.