Logic

September 5, 2019

1 Logic

1.1 Propositional Logic

A proposition is a declarative sentence. I.e. a statement that is either true (T) or false (F), but not both.

Connectives: \neg (not), \lor (disjunction), \land (conjunction), \Rightarrow (implication) and \Leftrightarrow (biconditional).

A compound expression that is always true is called a *tautology*.

A compound expression that is always false is called a *contradiction*.

Two compound propositions A and B are called *logically equivalent* if $A \Leftrightarrow B$ is a tautology. We then write $A \equiv B$.

Here are some very important tautologies that you must memorize:

- 1. $A \Leftrightarrow \neg \neg A$
- 2. $A \Leftrightarrow A \lor A$, $A \Leftrightarrow A \land A$,
- 3. $A \lor B \Leftrightarrow B \lor A$, $A \land B \Leftrightarrow B \land A$
- 4. $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C), (A \land B) \land C \Leftrightarrow A \land (B \land C)$
- 5. $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C), A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$
- 6. $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B, \neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
- 7. $A \lor (A \land B) \Leftrightarrow A$, $A \land (A \lor B) \Leftrightarrow A$
- 8. $A \lor T \Leftrightarrow T, A \land F \Leftrightarrow F$
- 9. $A \vee F \Leftrightarrow A, A \wedge T \Leftrightarrow A$
- 10. $A \lor \neg A \Leftrightarrow T$
- 11. $A \land \neg A \Leftrightarrow F$
- 12. $A \Rightarrow B \Leftrightarrow \neg A \lor B$
- 13. $(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow A))$

1.2 Exercises

- 1. Prove that $P \Rightarrow (Q \Rightarrow R) \equiv (P \land Q) \Rightarrow R$.
- 2. Simplify the compound expression $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R)$.
- 3. Prove that $((P \vee Q) \land \neg Q) \Rightarrow P$ is a tautology.
- 4. Prove that $(A \Rightarrow (B \Rightarrow C)) \Rightarrow (B \Rightarrow (A \Rightarrow C))$ is a tautology.

0P=>(Q=>R) =P=>(7QVR)						
= 7PV(7QVR)						
= (1000)VR						
=7(PAQ)VR = (PAQ)⇒R						
Q(¬PA(¬QAR))V(QAR)V(PAR)						
$= (7PA(7QAR)) \vee (RA(PVQ))$						
= (7P17Q)1R) V((PVQ)1R)						
= ((¬PΛ¬Q) V (PVQ)) ΛR						
= (7(PVQ) V(PVQ))/R = TAR = R						
3 ((PVQ) 17Q) ⇒P						
$\equiv ((P \land \neg Q) \lor (Q \land \neg Q)) \Rightarrow P$						
$\equiv (p \land 7 \land a) \Rightarrow p$						
=7(PA7Q)VP=(7PVQ)VP=(PVP)VQ=T						
= (7AV(7BVC)) => (7BV(7AVC))						
= (7AV7BVC) ⇒ (7AV7BVC)						
= P⇒P =T (P=7AV7BVC)						

1.3 Normal Form

A disjunctive normal form is a disjunction of clauses, where each clause is a conjunction of literals. (Like $\neg P \land (P \lor Q) \land (P \lor \neg Q \lor R)$)

A conjunctive normal form is a conjunction of clauses, where each clause is a disjunction of literals. (Like $P \lor (Q \land R) \lor (P \land \neg R)$)

Any compound proposition can be written as a disjunctive normal form and a conjunctive normal form.

1.4 Example

Find the (principal) disjunctive normal form and the (principal) conjunctive normal form for $A \Leftrightarrow B$.

The principal conjunctive normal form:

$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A) \equiv (\neg A \lor B) \land (\neg B \lor A) \equiv (\neg A \lor B) \land (A \lor \neg B)$$

and the principal disjunctive normal form

$$A \Leftrightarrow B \equiv (\neg A \lor B) \land (A \lor \neg B)$$

$$\equiv ((\neg A \lor B) \land A) \lor ((\neg A \lor B) \land \neg B)$$

$$\equiv ((\neg A \land A) \lor (B \land A)) \lor ((\neg A \land \neg B) \lor (B \land \neg B))$$

$$\equiv (A \land B) \lor (\neg A \land \neg B)$$

It is easy to verify that $A \Leftrightarrow B \equiv (\neg A \lor B) \land (A \lor \neg B)$ and $A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$ by the truth table.

1.5 Exercise

Find the (principal) disjunctive normal form and the (principal) conjunctive normal form for $((P \lor Q) \Rightarrow R) \Leftrightarrow P$.

We can find that $(P \wedge R) \vee (\neg P \wedge Q \wedge \neg R)$ is a disjunctive normal form for $((P \vee Q) \Rightarrow R) \Leftrightarrow P$, but it is not the principal disjunctive normal form.

The principal disjunctive normal form for $((P \lor Q) \Rightarrow R) \Leftrightarrow P$ is $(P \land Q \land R) \lor (P \land \neg Q \land R) \lor (\neg P \land Q \land \neg R)$. It can also be written as $m_{111} \lor m_{101} \lor m_{010}$ or $\sum (2, 5, 7)$.

The principal conjunctive normal form for $((P \vee Q) \Rightarrow R) \Leftrightarrow P$ can be easily got from its principal disjunctive normal form $\sum (2,5,7)$. The principal conjunctive normal form is $\prod (0,1,3,4,6)$ or $M_{000} \wedge M_{001} \wedge M_{011} \wedge M_{100} \wedge M_{110}$.

Or the principal conjunctive normal form can be written as

$$(P \lor Q \lor R) \land (P \lor Q \lor \neg R) \land (P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R)$$

.

((PVD)⇒R)≠P (AVDr)=9=(9=0)=9
= (((PVQ) => R) AP) V (7((PVQ)=R)(1P)
= ((7(PVQ)VR)AP)V(7(7(PVQ)VR)A7P)
= (((7PATQ)VR)AP) V(((PVQ)AAR)N7P)
$= (((7PA \neg Q) \land P) \lor (R \land P)) \lor ((P \land \neg R \land \neg P)) \lor (Q \land \neg R \land \neg P))$
= (PAR) V (PAQA7R) V (*) V (BAD) V (BAD) V (BAD)
= (PA(QV7Q)AR)V(PAQA))V((AADF)A9F)=
= (PAQAR) V (PAQAR) V (PAQADR) NOTAGO) =
E ((PPATE) V (PVR)) AR
= (T(PVG) V(PVG)) AR = TAR = R
90=(00000)

1.6 Truth Table and Normal Form

The principal disjunctive normal form and the principal conjunctive normal form for a compound expression can be easily got from the truth table.

Let
$$G = ((P \lor Q) \Rightarrow R) \Leftrightarrow P$$

P	Q	R	G	m (minimum)	M (maximum)
T	Τ	Т	Т	111	-
\mathbf{T}	${ m T}$	\mathbf{F}	\mathbf{F}	-	110
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	101	-
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	-	100
\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	-	011
\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	010	-
\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	-	001
F	F	F	F	-	000

Note that:

- 1. G = T, minimum (m) for disjunctive normal form, and m_{001} means $\neg P \land \neg Q \land R$.
- 2. G = T, maximum (M) for conjunctive normal form, and M_{001} means $P \vee Q \vee \neg R$.

1.7 Exercise

Find the principal disjunctive normal form of $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R)$, and prove that it is logically equivalent to R.

Answer: $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \equiv m_{001} \lor m_{011} \lor m_{101} \lor m_{111}$