UNIVERSIDAD DEL VALLE DE GUATEMALA

MM2034 - 2 SEMESTRE - 2022

LICENCIATURA EN MATEMÁTICA APLICADA

Álgebra Moderna 2

Catedrático: Ricardo Barrientos

Estudiante: Rudik Roberto Rompich Cotzojay

Carné: 19857

Correo: rom19857@uvg.edu.gt

13 de octubre de 2022

Índice

1	Teoría de Anillos	1
2	Teoría de campos	38

1. Teoría de Anillos

Clase: 05/07/2022

Definición 1. Un conjunto no vacío R es un **anillo** si en R están definidas dos operaciones binarias denotadas por $+y \cdot$, tales que si $r_1, r_2, r_3 \in R$:

- 1. $r_1 + r_2 \in R$.
- 2. $(r_1 + r_2) + r_3 = r_1 + (r_2 + r_3)$
- 3. $\exists 0 \in R \ni 0 + r = r + 0 = r, \forall r \in R$
- 4. Si $r \in R \implies \exists -r \in R \ni r + (-r) = (-r) + r = 0$
- 5. $r_1 + r_2 = r_2 + r_2$
- 6. $r_1 \cdot r_2 \in R$
- 7. $r_1 \cdot (r_2 \cdot r_3) = (r_1 \cdot r_2) \cdot r_3$
- 8. $r_1(r_2+r_3) = r_1r_2 + r_1r_3$ (distributividad izquierda) y $(r_1+r_2)r_3 = r_1r_2 + r_1r_3$ (distributividad derecha)

NOTA. $(R, +, \cdot)$

Definición 2. Si $(R, +, \cdot)$ es un anillo en el que existe $1 \in R$ tal que $1 \cdot r = r \cdot 1 = r, \forall r \in R$, entonces R es un anillo con elemento neutro multiplicativo. Suele llamarse anillo con unidad en la literatura.

Definición 3. Si $(R, +, \cdot)$ es un anillo en el que si $r_1, r_2 \in R$ (arbitrario) entonces $r_1 \cdot r_2 = r_2 \cdot r_1$, entonces R es un anillo conmutativo.

Definición 4. Si $(R, +, \cdot)$ es un anillo tal que $(R - \{0\}, \cdot)$ es un grupo abeliano, entonces $(R, +, \cdot)$ es un campo.

Construcción de los números racionales.

Ejemplo 1. 1. $(\mathbb{Z}, +, \cdot)$ es un anillo conmutativo con elemento neutro multiplicativo.

- 2. $(2\mathbb{Z}, +, \cdot)$ es un anillo conmutativo, pero no tiene un elemento neutro multiplicativo.
- 3. $(\mathbb{Q}, +, \cdot)$ es un campo (jejercicio!). (Campo finito más pequeño)
- 4. $(\mathbb{Z}_7, +, \cdot)$ es un campo.
- 5. $(\mathbb{Z}_6, +, \cdot)$ es un anillo conmutativo con neutro multiplicativo.
- 6. $(\mathbb{Q}_{2\times 2},+,\cdot)$ es un anillo no conmutativo con neutro multiplicativo.

$$\left(\mathbb{Q}_{2\times 2} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Q} \right\} \right)$$

- 7. $(\mathbb{C}, +, \cdot, \mathbb{R})$ es campo.
- 8. Cuaterniones reales de Hamilton. Sea $Q = \{\alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k : \alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{R}\}$ con las operaciones y reglas siguientes:
 - a) $i^2 = j^2 = k^2 = -1; ij = -ji = k; jk = -kj; ki = -ik = j.$ Nótese que $(\{1, -1, i, j, k, -i, -j, -k\}, \cdot)$ es un grupo no abeliano de orden 8.
 - b) $(\alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k) + (\beta_0 + \beta_1 i + \beta_2 j + \beta_3 k) = (\alpha_0 + \beta_0) + (\alpha_1 + \beta_1)i + (\alpha_2 + \beta_2)j + (\alpha_3 + \alpha_3)k$
 - c) $\alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k = \beta_0 + \beta_1 i + \beta_2 j + \beta_3 k$, si y solo si $\alpha_0 = \beta_0, \alpha_1 = \beta_1, \alpha_2 = \beta_2$ y $\alpha_3 = \beta_3$.
 - d) $(\alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k)(\beta_0 + \beta_1 i + \beta_2 j + \beta_3 k) = \alpha_0 \beta_0 + \alpha_0 \beta_1 i + \alpha_0 \beta_2 j + \alpha_0 \beta_3 k + \alpha_1 \beta_0 i \alpha_1 \beta_1 + \alpha_1 \beta_2 i j + \dots = (a_0 \beta_0 + \alpha_1 \beta_1 \alpha_2 \beta_2 \alpha_2 \beta_2) + (\alpha_0 \beta_1 + \alpha_1 \beta_0 + \alpha_2 \beta_3 \alpha_3 \beta_2) i + (\alpha_0 \beta_2 \alpha_1 \beta_3 + \alpha_2 \beta_0 + \alpha_3 \beta_1) j + (\alpha_0 \beta_3 + \alpha_1 \beta_2 \alpha_2 \beta_1 + \alpha_3 \beta_0) k$

Los anillos no conmutativos, con neutro multiplicativo e inversos multiplicativos (de elementos no nulos), como los cuaterniones de Hamilton se llaman Anillos de División o Semicampos.

NOTA. Por simplicidad y cuando el contexto lo permita un anillo $(R, +, \cdot)$ se abreviará R.

Definición 5. Si R es un anillo, $r \in R - \{0\}$ es un Divisor de Cero si existe $a \in R - \{0\}$ o $b \in R - \{0\}$ tales que $r \cdot a = 0$ o $b \cdot r = 0$.

Definición 6. Si R es un anillo conmutativo que no tiene divisores de cero es un dominio entero.

Ejemplo 2. El anillo de los $(\mathbb{Z}, +, \cdot)$ es un dominio entero.

Clase: 12/07/2022

Lema 1 (3.1). Si R es un anillo, entonces para $r_1, r_2 \in R$.

1.
$$r_1 \cdot 0 = 0 \cdot r_1 = 0$$

2.
$$r_1 \cdot (-r_2) = (-r_1) \cdot (r_2) = -(r_1 \cdot r_2)$$

3. $(-r_1) \cdot (-r_2) = r_1 r_2$ Si además R tiene neutro multiplicativo 1, entonces:

4.
$$(-1) \cdot r_1 = r_1$$

5.
$$(-1)(-1) = 1$$

Demostración. 1. Usando la ley distributiva derecha, $r_1 \cdot 0 = r_1 \cdot (0+0) = r_1 \cdot 0 + r_1 \cdot 0 \implies$ Por la ley de cancelación en $(R, +), r_1 \cdot 0 = 0$. Ahora usando la ley de distributividad izquierda tenemos $0 \cdot r_1 = (0+0) \cdot r_1 = 0 \cdot r_1 + 0 \cdot r_1$, y de nuevo, por la ley de cancelación en el grupo $(R, +), 0 \cdot r_1 = 0$.

2. $r_1 \cdot r_2 + r_1 \cdot (-r_2) = r_1 \cdot (r_2 - r_2) = r_1 \cdot 0 = 0 \implies \text{por el (2) del lema 2.1,}$ unicidad de los inversos en los grupos, $r_1 \cdot (-r_2) = -r_1 \cdot r_2$. Un argumento similar verifica que $(-r_1) \cdot r_2 = -(r_1 \cdot r_2)$

3.
$$(-r_1) \cdot (-r_2) = -(r_1 \cdot (-r_2)) = -(-(r_1 \cdot r_2)) = r_1 \cdot r_2$$

- 4. Si $\exists 1 \in R$, neutro multiplicativo $\implies r_1 + (-1) \cdot r_1 = (1)r_1 + (-1)r_1 = (1-1)r_1 = 0 \cdot r_1 = 0 \implies \text{Lema 2.1, unicidad de inverso } (-1)r_1 = -r_1.$
- 5. Caso especial de (iv), haciendo $r_1 = -1 \implies (-1)(-1) = -(-1) = 1$.

NOTA (El principio de las casillas). Para $n, m \in \mathbb{Z}^+, n > m$, si n objetos se distribuyen en m casillas, entonces alguna casilla recibe 2 o más objetos. De manera equivalente, si n objetos se distribuyen en n casillas, de forma que ninguna casilla recibe más de un objeto, entonces todas las casillas reciben exactamente un objeto.

Lema 2 (3.2). Un dominio entero finito es un campo.

Demostración. Sea D un dominio entero finito y $D = \{x_1, \dots, x_n\}, n \in \mathbb{Z}^+$. Debemos encontrar: neutro multiplicativo e inversos multiplicativos. Sea $a \in D - \{0\}$ y considérese ax_a, \dots, ax_n . Si $ax_i = ax_j$ con $i \neq j \implies 0 = ax_i - ax_j = a(x_i - x_j) \implies$ Como $a \neq 0$ y D es un dominio entero, y por lo tanto, carece de divisores de $0. \implies x_i = x_j$ con $i \neq j(\rightarrow \leftarrow) \implies ax_1, \dots, ax_n$ son todos distintos y para el principio de las casillas $D = \{ax_a, \dots, ax_n\} \implies$ Como $a \in D \implies \exists i, 1 \leq i \leq n \ni a = ax_{i_0} = x_{i_0}a$. Si $d \in D \implies \exists i_d, 1 \leq i_d \leq n \ni d = ax_{i_d} \implies dx_{i_d} = (ax_{i_d})x_{i_d} = (x_{i_d}a)x_{i_d} = x_{i_d}(ax_{i_d}) = x_{i_d}a = ax_{i_d} = d \implies x_{i_d} = 1$ es neutro multiplicativo de D. Pero $1 \in D \implies \exists i_1, 1 \leq a = ax_i$

Corolario 2.1. Si p es un número primo, entonces $(\mathbb{Z}_p, +, \cdot)$ es un campo.

Demostración. Se sabe que $(\mathbb{Z}_n, +, \cdot)$ es un anillo conmutativo $\forall n \in \mathbb{Z}^+$. Si p es un número primo y $\bar{a}, \bar{b} \in \mathbb{Z}_p \ni \bar{a}\bar{b} = \bar{0} \implies ab \equiv 0 \mod p \implies p|ab \implies p|a$ o $p|b \implies a \equiv 0 \mod p$ o $b \equiv 0 \mod p \implies \bar{a} = \bar{0}$ o $\bar{b} = \bar{0} \implies \mathbb{Z}_p$ carece de divisores de $0 \implies \mathbb{Z}_p$ es un dominio entero \implies por el lema 3.2, \mathbb{Z}_p es un campo.

Definición 7. Si $(R, +, \cdot)$ y (R, \oplus, \odot) son anillos y $\phi : R \to R'$ es una función, entonces ϕ es un homomorfismo.

1.
$$\phi(r_1 + r_2) = \phi(r_1) \oplus \phi(r_2)$$

2.
$$\phi(r_1 \cdot r_2) = \phi(r_1) \odot \phi(r_2)$$

Lema 3 (3.3). Si R y R' son anillos y $\phi : R \to R'$ es un homomorfismo entonces:

1.
$$\phi(0) = 0'$$

2.
$$\phi(-r) = -\phi(r), \forall r \in R$$
.

Demostración. Se deduce directamente del hecho que (R, +) y (R', +) son grupos y del lema 2.14.

Ejemplo 3.
$$Si \phi : \mathbb{Z}_6 \to \mathbb{Z}_6 \ni \phi(\bar{a}) = \bar{0} \implies \phi(\bar{a}_1 + \bar{a}_2) = \bar{0} = \bar{0} + \bar{0} = \phi(\bar{a}_1) + \phi(\bar{a}_2)$$

 $y \phi(\bar{a}_1\bar{a}_2) = \phi(\bar{a}_1)\phi(\bar{a}_2)$

que la imagen homomórfica de un neutro multiplicativo no necesariamente es neutro multiplicativo.

Proposición 1. Si R es un anillo con elemento neutro multiplicativo 1, R' un dominio entero $y \phi : R \to R'$ es un homomorfismo tal que $k_{\phi} \neq R$, entonces $\phi(1)$ es neutro multiplicativo de R'.

Proposición 2. Si R es un anillo con elemento neutro 1, R' es un anillo $y \phi$: $R \to R'$ es un homomorfismo sobreyectivo, entonces $\phi(1)$ es neutro multiplicativo de R'

Demostración. Tarea.

Definición 8. Si R y R' son anillos y $\phi : R \to R'$ es un homomorfismo, entonces el kernel de ϕ es $k_{\phi} : \{r \in R : \phi(r) = 0\}$

Lema 4 (3.4). Si R y R' son anillos y $\phi : R \to R'$ es un homomorfismo, entonces:

- 1. $(K_{\theta}, +)$ es un subgrupo de (R, +)
- 2. Si $k \in \phi_{\theta}$ y $r \in R \implies kr, rk \in k_{\theta}$, es decir el núcleo de θ atrapa productos.

Demostración. 1. Lema 2.15

2. Si $k \in k_{\theta}$ y $r \in R \implies \theta(kr) = \theta(k)\theta(r) = 0' \cdot \theta(r) = 0' = \theta(r) \cdot 0' = \theta(r)\theta(k) = \theta(rk) \implies kr, rk \in K_{\theta}$

Ejemplo 4. 1. Si R es un anillo $y \phi : R \to R \ni \phi(r) = r \implies \phi$ es el homomorfismo identidad.

- 2. $Si \ \mathbb{Z}(\sqrt{2}) = \{m + n\sqrt{2} : m, n \in \mathbb{Z}\} \implies (\mathbb{Z}(\sqrt{2}), +, \cdot) \ con + y \cdot la \ suma \ y$ producto usuales de números reales, es un anilo (¡ejercicio!). $Si \ \phi : \mathbb{Z}(\sqrt{2}) \rightarrow \mathbb{Z}(\sqrt{2}) \ni \phi(m \cdot n\sqrt{2}) = m \cdot n\sqrt{2}$. $Si \ m_1 + n_1\sqrt{2}, m_2 + n_2\sqrt{2} \in \mathbb{Z}(\sqrt{2}) \implies \phi((m_1 + n_1\sqrt{2}) + (m_2 + n_2\sqrt{2})) = \cdots = \phi(m_1 + n_1\sqrt{2})\phi(m_2 + n_2\sqrt{2}) \implies \phi$ es homomorfismo $y \ k_\theta = \{m + n\sqrt{2} : \phi(m + n\sqrt{2}) = m n\sqrt{2} = 0 = 0 0\sqrt{2}\} = \{0\} \implies \phi \ es \ un \ homomorfismo \ inyectivo.$
- 3. $Si \ \theta : \mathbb{Z} \to \mathbb{Z}_n \ni \phi(a) = \bar{a}$. $Sean \ a,b \in \mathbb{Z} \implies \exists q_1,q_2 \in \mathbb{Z}, a = nq_1 + \bar{a}$ $y \ b = nq_2 + \bar{b} \ con \ 0 \le \bar{a} < n \ y \ 0 \le \bar{b} < n$. $Además, \ \exists q_3 \in \mathbb{Z} \ni a + b = q_3 + n + a + b$, $con \ a \le \overline{a + b} < n \ y \ \exists q_4 \in \mathbb{Z} \ni ab = q_4 n + \overline{ab} \ con \ 0 \le \overline{ab} < n$. Ahora bien, nótese lo siguiente: $(nq_1 + nq_2) + \bar{a} + \bar{b} = (nq_1 + \bar{a}) + (nq_2 + \bar{b}) = a + b = q_3 n + qb$. Eso quiere decir: $\overline{a + b} (\bar{a} \bar{b}) = nq_3 (nq_1 + nq_2) = n(q_3 q_1 q_2) \implies n|\overline{a + b} (\bar{a} + \bar{b}) \implies \overline{a + b} = \bar{a} + \bar{b} \mod n$. Además, $(n^2q_1q_2 + nq_1\bar{b} + nq_2\bar{a}) + \bar{a}\bar{b} = \cdots$. Por lo tanto, ϕ es homomorfismo, $y \in k_{\phi} = n\mathbb{Z}$.

Clase: 14/07/2022

Ejemplo 5. Sea $C([0,1]) = \{f : [0,1] \to \mathbb{R} \ni f \text{ es continua}\} \Longrightarrow (C([0,1]),+,\cdot),$ con $+ y \cdot la$ suma y producto usuales de funciones de variable real y valores reales, es un anillo (jejercicio!). Sea además, $\phi : (C([0,1]),+,\cdot) \to (\mathbb{R},+,\cdot) \ni \phi(f) = f(1/2) \Longrightarrow \phi$ si $f_1, f_2 \in C([0,1]) \Longrightarrow \phi(f_1+f_2) = (f_1+f_2)(1/2) = f_1(1/2) + f_2(1/2) = \phi(f_1) + \phi(f_2)$ $y \phi(f_1 \cdot f_2) = (f_1 \cdot f_2)(1/2) = f_1(1/2)f_2(1/2) = \phi(f_1)\phi(f_2) \Longrightarrow \phi$ es un homomorfismo. Si $\alpha \in \mathbb{R} \Longrightarrow sea f : [0,1] \to \mathbb{R} \ni f(x) = \alpha \Longrightarrow f \in C([0,1]) \ni f(1/2) = \alpha \Longrightarrow \phi(f) = \alpha \Longrightarrow \phi$ es sobreyectivo. Además $k_{\phi} = \{f \in C([0,1]) \ni f(1/2) = 0\}$.

NOTA. Obsérvese que estos cinco ejemplos, aunque ilustrativos, consideran únicamente anillos conmutativos.

Definición 9. Si R y R' son anillos, un homomorfismo $\phi: R \to R'$ biyectiva es un isomorfismo

Lema 5 (3.5). Un homomorfismo sobreyectivo de anillos es un isomorfismo, si y solo si, su núcleo es trivial.

Demostración. Se deduce directamente del lema 2.16.

Definición 10. Si R es un anillo, un subconjunto no vacío U de R es un **ideal** o **ideal bilateral** si:

- 1. (U,+) es un subgrupo de (R,+).
- 2. Para todos $u \in U$ y $r \in R$, $ur, ru \in U$ (i.e. U atrapa o absorbe productos.)

Lema 6 (3.6). Si R es un anillo y U es un ideal de R, entonces R/U es un anillo y es una imagen homomórfica de R.

Tenemos:

$$R/U = \{u + r : r \in R\},\$$

donde $\partial u + r$?:

1. (U,+) es un subgrupo normal de (R,+).

Demostración. (U,+) es subgrupo normal de $(R,+) \implies$ por el teorema 2C, (R/U, +) es grupo, donde $(u + r_1) + (u + r_2) = u + (r_1 + r_2)$. Defínase ahora : $R/U \to R/U \ni (u + r_1, u + r_2) = (u + r_1)(u + r_2) = u + r_1r_2$. Sean $r_1, r_2, r_3, r_4 \in R \ni u + r_1 = u + r_3 y u + r_2 = u + r_4 \implies r_1 \equiv r_3 \mod U y r_2 \equiv r_4$ mód $U \implies r_1 - r_3 \in U$ y $r_2 - r_4 \in U \implies$ dado que U atrapa productos, $r_1r_2 - r_3r_2 = (r_1 - r_3) \cdot r_2 \in U$ y además $r_3r_2 - r_3r_4 = r_3(r_2 - r_4) \in U \implies r_1r_2 - r_3r_4 = r_3(r_2 - r_4) \in U$ $r_3r_4 = r_1r_2 + 0 - r_3r_4 = r_1r_2 + (-r_3r_2 + r_3r_2) - r_3r_4 = (r_1r_2 - r_3r_2) + (r_3r_2 - r_3r_4) \in$ $U \implies r_1r_2 \equiv r_3r_4 \mod U \implies U + r_1r_2 = U + r_3r_4 \implies (U + r_1)(U + r_2) = U + r_2$ $U+r_1r_2=U+r_3r_4=(U+r_3)(U+r_4) \implies \text{el producto de clases laterales en } R/U$ es una función bien definida, y con lo cual, la cerradura está bien asegurada. Si $U+r_1, U+r_2, U+r_3 \in R/U \implies (U+r_1)+(U+r_2)(U+r_3)=(U+r_1r_2)(U+r_3)=(U+r_3)(U+r_3)=(U+r_3)(U+r_3)=(U+r_3)(U+r_3)=(U+r_3)(U+r_3)(U+r_3)=(U+r_3)(U+r_3)(U+r_3)=(U+r_3)(U+r_3)(U+r_3)=(U+r_3)(U+r_3)(U+r_3)=(U+r_3)(U+r_3)(U+r_3)(U+r_3)=(U+r_3)(U+r_3)(U+r_3)(U+r_3)(U+r_3)=(U+r_3)(U+r_3)(U+r_3)(U+r_3)(U+r_3)(U+r_3)(U+r_3)=(U+r_3)(U+r_4)(U+r_4)(U+r_5)(U+r_$ $U + (r_1 r_2) r_3 = U + r_1 (r_2 r_3) = (U + r_1) (U + r_2 r_3) = (U + r_1) ((U + r_2) (U + r_3)) \implies$ Además, $((U+r_1)+(U+r_2))(u+r_3)=(U+(r_1+r_2))(U+r_3)=U+(r_1+r_2)r_3=U+(r_1+r_2$ $U + (r_1r_3 + r_2r_3) = (U + r_1r_3)(U + r_2r_3) = (U + r_1)(U + r_3) + (U + r_2)(U + r_3)$ $V(U+r_1)((U+r_2)+(U+r_3))=(U+r_1)(U+(r_2+r_3))=U+r_1(r_2+r_3)=U+r_2(r_2+r_3)=U+r_3(r_3+r_3)=U+r_3(r_3+r_3)=U+$ $U + (r_1r_2 + r_1r_3) = (U + r_1r_2) + (U + r_1r_3) = (U + r_1)(U + r_2) + (U + r_1)(U + r_3) \implies$ se cumplen las distributividades izquierda y derecha $\implies (R/U, +, \cdot)$ es un anillo. Considérese $\sigma:(R,+)\to(R/U,+)\ni\sigma(r)=u+r$ canónico, el cual se sabe que es sobreyectivo, con lo cual (R/U, +) es una imagen homomórfica de (R, +). Pero $\sigma(r_1r_2) = U + r_1r_2 = (U + r_1)(U + r_2) = \sigma(r_1)\sigma(r_2) \implies \sigma: (R, +, \cdot) \to (R/U, +, \cdot)$ es un homomorfismo sobreyectivo y $(R/U, +, \cdot)$ es una imagen homomórfica de $(R,+,\cdot)$.

Definición 11. Si R es un anillo y U es un ideal de R, entonces R/U es el anillo cociente de R sobre U.

Teorema 7 (3A (primer teorema de isomorfismos)). Si R y R' son anillos y ϕ : $R \to R'$ es un homomorfismo sobreyectivo, entonces $R' \approx R/K_{\phi}$. Además, existe una correspondencia biyectiva entre el conjunto de ideales de R' y el conjunto de ideales de R que contienen a K_{ϕ} . Esta correspondencia biyectiva, puede obtenerse asociando a cada ideal U' de R' el ideal de R, $\phi^{-1}(U')$, con lo cual $R/\phi^{-1}(U) \approx R/U'$.

Demostración. Se deduce directamente del lema 2.17 y los teoremas 2D y 2B. ■

Lema 8 (3.7). Si R es un anillo conmutativo con elemento neutro multiplicativo cuyos únicos ideales son (0) y R, entonces R es un campo.

Demostración. Sea $a \in R - \{0\}$ y considérese $R_a = \{ra : r \in R\}$. Nótese que si $r_1a, r_2a \in Ra \implies r_1a - r_2a = (r_1 - r_2)a \in Ra$ ya que $r_1 - r_2 \in R \implies$ por el corolario al lema 2.3, (Ra, +) es un sugrupo de (R, +). Sea $x \in R, ra \in Ra \implies (ra)x = x(ra) = (xr)a \in Ra$ ya que $xr \in R \implies Ra$ atrapa productos en $R \implies Ra$ es un ideal de $R \implies Ra = (0)$ o Ra = R. Pero como $1 \in R$ y $a \neq 0 \implies a = 1 - a \in Ra \implies Ra \neq (0) \implies Ra = R$. Pero además, como

Definición 12 (Ideal maximal). Si R es un anillo, y M es un ideal de R, $M \neq R$, entonces M es un ideal maximal de R, siempre que si U es un ideal de R tal que $M \subseteq U \subseteq R$, entonces M = U o U = R.

Clase: 19/07/2022

Ejemplo 6. Sea U un ideal de $(\mathbb{Z}, +, \cdot)$. Como (U, +) es un subgrupo de $(\mathbb{Z}, +)$. \implies siendo $(\mathbb{Z}, +)$ cíclico e infinito, si $U \neq (0) \implies (U, +)$ es también cíclico e infinito $\implies \exists n_0 \in \mathbb{Z} \ni U = (n_0) = n_0\mathbb{Z}$. Efectivamente, $U = (n_0)$ es un ideal de \mathbb{Z} , ya que si $m \in \mathbb{Z}$ y $u \in U \implies \exists x \in \mathbb{Z} \ni u = xn_0 \implies mu = m(xn_0) = (mx)n_0 \in U$, ya que $mx \in \mathbb{Z}$, y efectivamente, U atrapa productos en \mathbb{Z} . ¿Para qué valores de n_0 , U es un ideal maximal de \mathbb{Z} ? Sea p un número primo y U un ideal de \mathbb{Z} $\ni (p) \subseteq U \subseteq \mathbb{Z}$. Ahora bien, $\exists u_0 \in \mathbb{Z} \ni U = (u_0) = u_0\mathbb{Z} \implies (p) \subseteq (u_0) \subseteq \mathbb{Z}$.

Recordatorio.

$$(p) = p\mathbb{Z} = \{px : x \in \mathbb{Z}\}\$$

Nótese que $p = p \cdot 1 \in p\mathbb{Z} = (p) \subseteq (u_0) = u_0\mathbb{Z} \implies u_0|p$.

Generados tamaños.

$$\underbrace{(a)}_{pequeo} \subseteq \underbrace{(b)}_{grande} \implies \underbrace{b}_{pequeo} \mid \underbrace{a}_{grande}$$

Como p es un número primo, $u_0 = 1$ o $u_0 = p \implies (u_0) = (1) = \mathbb{Z}$ o $(u_0) = (p) \implies (p)$ es un ideal maximal de \mathbb{Z} . Sea M un ideal maximal de \mathbb{Z} $\implies \exists m \in \mathbb{Z} \ni M = (m_0) = m_0 \mathbb{Z}$.

 $y \text{ además si } U \text{ es un ideal de } \mathbb{Z} \ni M \subseteq U \subseteq \mathbb{Z} \implies \exists u_0 \in \mathbb{Z} \ni U = (u_0) \implies (m_0) \subseteq (u_0) \subseteq (1) \implies (m_0) = (u_0) \text{ o } (u_0) = (1) \implies (m_0) \subseteq (u_0) \text{ y } (u_0) \subseteq (m_0) \text{ y } (1) \subseteq (u_0) \text{ y } (u_0) \subseteq (1) \implies m_0 |u_0| \text{ y } u_0 |m_0.$

 \implies $si \ a|m_0 \implies (m_0) \subseteq (a) \subseteq \mathbb{Z} \implies$ $siendo \ (m_0)$ un $ideal \ de \ \mathbb{Z} \implies (m_0) = (a) \ o \ (a) = \mathbb{Z} \implies a \in (a) \subseteq (m_0) \ o \ a = 1. \implies m_0|a \ o \ a = 1 \implies m_0 = a \ o$ $1 = a \implies m_0 \ es \ primo.$ En el $anillo \ (\mathbb{Z}, +, \cdot), (m) \ es \ un \ ideal \ maximal \ de \ \mathbb{Z}, \ si \ y \ solo \ si, \ m \ es \ primo.$

Ejemplo 7. Sea $M = \{f \in \mathcal{C}([0,1]) : f(1/2) = 0\}$ un ideal de $(\mathcal{C}[0,1], +, \cdot)$. Sea U un ideal de $\mathcal{C}([0,1]) \ni M \subset U \Longrightarrow \exists g \in U - M \Longrightarrow g : [0,1] \to \mathbb{R}$, continua $g = g(1/2) \neq 0$. Sea $g = g = g(1/2) \neq 0$. Sea $g = g = g(1/2) \neq 0$. Sea $g = g = g(1/2) \neq 0$. Sea g = g = g = g = g = g = g = g = g =

Teorema 9 (3B). Si R es un anillo conmutativo con elemento neutro multiplicativo y M es un ideal de R, entonces M es un ideal maximal de R, si y solo si, R/M es un campo.

Demostración. Sea

- homomorfismo canónico $\sigma: R \to R/M \ni \sigma(r) = M + r \text{ y } K_{\sigma} = M \Longrightarrow$ por el teorema 3A, existe una correspondencia biyectiva entre los ideales de R/M y los ideales de R que contienen a $K_{\sigma} = M \Longrightarrow$ Como M es ideal maximal, los únicos ideales de R que contienen a R son R y R son R tiene elemento neutro multiplicativo 1, R so el elemento neutro multiplicativo de R son R y R so campo.
- [\iff] Si $(R/M, +, \cdot)$ es un campo \implies (M) y R/M son los únicos ideales de R/M \implies aplicando de nuevo el teorema 3A al homomorfismo canónico, por la correspondencia biyectiva, los únicos ideales de R que contienen a M son R y M. \implies M es un ideal maximal de R.

Clase: 21/07/2022

Definición 13. Si R y R' son anillos y ϕ : $R \to R'$ es un homomorfismo inyectivo, entonces se dice que ϕ sumerge a R en R', o que ϕ es una inmersión de R en R' o que con la acción de ϕ , R puede sumergirse en R'. Si R puede sumergirse en R', entonces R' es un **Sobre Anillo** o una **Extensión** de R.

Teorema 10 (3C). Todo dominio entero puede sumergirse en un campo.

Demostración. Sea D un dominio entero y defínase en $D \times D - \{0\}$ la relación binaria $\sim \ni$ si $a, m \in D$ y $b, n \in D - \{0\} \implies (a, b) \sim (m, n)$ si y solo si, an = mb. Nótese que:

- $ab = ba \implies (a, b) \sim (a, b), \forall (a, b) \in D \times D \{0\} \implies \sim \text{ es reflexiva.}$
- Si $(a,b) \sim (m,n) \implies an = mb \implies mb = na \implies (m,n) \sim (a,b) \implies \sim$ es simétrica.

■ Si $(a_1,b_1) \sim (a_2,b_2)$ y $(a_2,b_2) \sim (a_3,b_3) \implies a_1b_2 = b_1a_2$ y $a_2b_3 = b_2a_3 \implies a_1b_2b_3 = b_1a_2b_3$ y $a_2b_3b_1 = b_2a_3b_1 \implies a_1b_3b_2 = a_2b_1b_3 = a_3b_1b_2 = (a_1b_3 - a_3b_1)b_2 \implies \text{como } b_2 \neq 0$ y D carece de divisores de cero $\implies a_1b_3 - a_3b_1 = 0 \implies a_1b_3 = b_1a_3 \implies (a_1,b_1) \sim (a_3,b_3) \implies \sim \text{es}$ transitiva. $\implies \sim \text{es}$ una relación de equivalencia, y para $(a,b) \in D \times D - \{0\}$, sea [(a,b)] la clase de equivalencia de (a,b) respecto a \sim , es decir $[(a,b)] \in D \times D - \{0\}/\sim$.

Sea +:
$$D \times D - \{0\}/\sim \times D \times D - \{0\}/\sim \to D \times D - \{0\}/\sim \to$$

+ $([(a,b)],[(m,n)]) = [(a,b)] + [(m,n)] = [(an+bm,bn)]$

Si $a_1, a_2, m_1, m_2 \in D, b_1, b_2, n_1, n_2 \in D - \{0\} \ni [(a_1, b_1)] = [(a_1, b_1)] \text{ y } [(m_1, n_1)] = [(m_2, n_2)] \implies (a_1, b_1) \sim (a_2, b_2) \text{ y } (m_1, n_1) \sim (m_2, n_2) \implies a_1b_2 = b_1a_2$ y $m_1n_2 = n_1m_2$. Entonces $[(a_1, b_1)] + [(m_1, n_1)] = [(a_1n_1 + b_1m_1, b_1n_2)] \implies a_1b_2n_1n_2 = b_1a_2n_1n_2 \text{ y } m_1n_2b_1b_2 = n_1m_2b_1b_2 \implies a_1n_1b_2n_2 = b_1n_1a_2n_2 \text{ y } b_1m_1b_2n_2 = b_1n_1b_2m_2 \implies a_1n_1b_2n_2 + b_1m_1b_2n_2 = b_1n_1a_2n_2 + b_1n_1b_2m_2 \implies (a_1n_1 + b_1m_1)(b_2n_2) = (b_1n_1)(a_2n_2 + b_2m_2) \implies (a_1n_1 + b_1m_1, b_1n_1) \sim (a_2n_2 + b_2m_2, b_2n_2) \implies [(a_1, b_1)] + [(m_1, n_1)] = [(a_1n_1 + b_1m_1, b_1n_1)] = [(a_2m_2 + b_2m_2, b_2n_2)] = [(a_2, b_2)] + [(m_2, n_2)] \implies \text{las imágenes de + son invariantes a cambios en los representantes de las clases de equivalencia. <math>\implies$ + es una función bien definida. \implies $(D \times D - \{0\}/\sim, +)$ es cerrada.

Si
$$[(a,b)]$$
, $[(m,n)] \in D \times D - \{0\}/\sim \Longrightarrow [(a,b)] + [(m,n)] = [(an+bm,bn)] = [(mb+na,nb)] = [(m,n)] + [(a,b)] \Longrightarrow (D \times D - \{0\}/\sim, +)$ es conmutativa.

Si $[(a,b)], [(c,d)], [(e,f)] \in D \times D - \{0\}/\sim \implies ([(a,b)] + [(c,d)]) + [(e,f)] = [(ad+bc,bd)] + [(e,f)] = [(ad+bc)f + (bd)e, (bd)f] = [(adf+bcf+bde,bdf)] = [(adf+bcf+bde,bdf)] = [(adf+bcf+bde,bdf)] = [(a(df)+b(cf+de),b(df)] = [(a,b)] + [(cf+de,df)] = [(a,b)] + ([c,d]+[(d,f)]) \implies (D \times D - \{0\}/\sim, +) \text{ es asociativo.}$

Si $b \in D - \{0\}$, entonces $[(0,b)] \in D \times D - \{0\}/\sim y$ si $[(c,d)] \in D \times D - \{0\}/\sim \Longrightarrow [(0,b)] + [(c,d)] = [(0 \cdot +bc,bd)] = [(0+bc,bd)] = [(bc,bd)]$. Peor $(bc)d = (bd)c \Longrightarrow [(bc,db)] = [(c,a)] \Longrightarrow [(0,b)] + [(c,d)] = [(bc,bd)] = [(c,d)], \forall [(c,d)] \in D \times D - \{0\}/\sim \Longrightarrow [(0,b)]$ es neutro de $(D \times D - \{0\}/\sim, +)$.

Si $[(a,b)] \in D \times D - \{0\}/\sim \implies a \in D \text{ y } b \in D - \{0\} \implies -a \in D \implies [(-a,b)] \in D \times D - \{0\}/\sim \ni [(a,b)] + [(-a,b)] = [(ab+b(-a),bb)] = [(ab-ab,bb)] = [(0,bb)] = [(0,b)] \implies [(-a,b)] = -[(a,b)] \implies \text{todo elemento de } D \times D - \{0\}/\sim \text{tiene inverso aditivo.} \implies (D \times D - \{0\}/\sim, +) \text{ es grupo abeliano.}$

Sea ahora $: D \times D - \{0\}/\sim \times D \times D - \{0\}/\sim \to D \times D - \{0\}/\sim \to ([(a,b)],[(m,n)]) = [(a,b)] \cdot [(m,n)] = [(am,bn)].$ Sea $a_1,a_2,m_1,m_2 \in D, b_1,b_2,n_1,n_2 \in D - \{0\} \ni [(a_1,b_1)] = [(a_2,b_2)] \text{ y } [(m_1,n_1)] = [(m_2,n_2)] \Longrightarrow a_1b_2 = b_1a_2 \text{ y } m_1n_2 = n_1m_2 \Longrightarrow (a_1b_2)(m_1n_2) = (b_1a_2)(n_1m_2) \Longrightarrow (a_1m_1)(b_2n_2) = (b_1n_1)(a_2m_2) \Longrightarrow [(a_1m_1,b_1n_1)] = [(a_2m_2,b_2n_2)].$ Entonces, $[(a_1,b_1)][(m_1,n_1)] = [(a_1m_1,b_1n_1)] = [(a_2m_2,b_2n_2)] = [(a_2,b2)][(m_2,n_2)] \Longrightarrow \text{ las imágnes de } \cdot \text{ son invariantes a cambios en los representates de las clases de equivalencia <math>\Longrightarrow \cdot \text{ es una función bien definida } \Longrightarrow (D \times D - \{0\}/\sim -\{[0,b]\},\cdot)$ $(D \times D - \{0\}/\sim -\{[(0,b)]\},\cdot) \text{ es connmutativo.}$

Si $[(a,b)], [(c,d)], [(e,f)] \in D \times D - \{0\}/\sim \Longrightarrow ([(a,b)] \cdot [(c,d)]) \cdot ([(e,f)]) = [(ac,bd)][(e,f)] = [((ac)e,(bd)f)] = [a(ce),b(df)] = [(a,b)] \cdot [(ce,df)] = [(a,b)] \cdot ([(c,d)] \cdot [(e,f)]) \Longrightarrow (D \times D - \{0\}/\sim -\{[0,b]\},\cdot) \text{ es asociativo.}$

Si $b \in D - \{0\} \implies [(b,b)] \in D \times D - \{0\}/\sim y$ si $[(c,d)] \in D \times D - \{0\}/\sim y$ si $[(b,b)] \cdot [(c,d)] = [(bc,bd)] = [(c,d)] \implies [(b,b)]$ es neutro multiplicativo de $(D \times D - \{0\}/\sim -\{[(0,b)]\}, \cdot)$

Si $a, b \in D - \{0\} \implies [(a, b)] \in D \times D - \{0\} / \sim -\{[(0, b)]\} \implies [(b, a)] \in D \times D - \{0\} / \sim -\{[(0, b)]\} \ni [(a, b)] \cdot [(b, a)] = [(ab, ba)] = [(ab, ab)],$ el neutro multiplicativo de $D \times D - \{0\} / \sim -\{[(0, b)]\} \implies [(b, a)] = [(a, b)]^{-1} \implies$ todo elemento de $(D \times D - \{0\} / \sim -\{[(0, b)], \cdot\})$ tiene inverso. $\implies (D \times D - \{0\} / \sim -\{[(0, b)]\}, \cdot)$ es un grupo abeliano.

Si $[(a,b)], [(c,d)], [(e,f)] \in D \times D - \{0\}/\sim \implies ([(a,b)] + [(c,d)]) \cdot [(e,f)] = [(ade + cbe, bdf)] = [((ade + cbe)f, (b+f)f)] = [(ae)(df) + (bf)(ce), (bf)(df)] = [(ae,bf)] + [(ce,df)] \implies \text{Se cumplen las leyes distributivas en } (D \times D - \{0\}/\sim +, +, \cdot) \text{ se cumplen las leyes distributivas.}$

$$\implies (D \times D - \{0\}/\sim, +, \cdot)$$
 es un campo.

Si $b \in D - \{0\}$, sea $\phi : D \to D \times D - \{0\} / \sim \to \phi(d) = [(db, b)]$. Si $d_1, d_2 \in D \implies \phi(d_1 + d_2) = [((d_1 + d_2)b, b)] = [((d_1 + d_2)bb, bb)] = [((d_1b + d_2b, bb))] = [(d_1b, b)] + [(d_2b, b)] = \phi(d_1) + \phi(d_2)$. Además, $\phi(d_1d_2) = [((d_1d_2)b, b)] = [((d_1d_2)bb, bb)] = [((d_1b(d_2b)), bb)] = [((d_1b, b)][(d_2b, b)] = \phi(d_1)\phi(d_2) \implies \phi$ es homomorfismo.

Si $d \in K_{\phi} \implies \phi(d) = [(db,b)] = [(0,b)] \implies (db,b) \sim (0,b) \implies (db)b = 0 \cdot b = 0 \implies d(bb) = 0$. Como $b \neq 0 \implies$ y como D no tiene divisores de 0, entonces $bb \neq 0 \implies$ de nuevo, como D no tiene divisores de cero, $d = 0 \implies K_{\phi} = (0) \implies \phi$ es inyectivo. $\implies \phi$ es una inmersión. $\implies D$ está sumergido en el campo $D \times D - \{0\}/\sim$.

Definición 14. Si D es un dominio entero, el campo construido en la prueba del teorema 3C se llama **Campo de Cocientes** de D.

Ejemplo 8. $(\mathbb{Z}, +, \cdot)$ es un dominio entero $y(\mathbb{Q}, +, \cdot)$ es un campo de cocientes. Clase: 26/07/2022

Definición 15. Un dominio entero R es un **Anillo Euclideano** si existe una función $d: R - \{0\} \to \mathbb{Z}^+ \cup \{0\}$, llamada d-valor tal que si $a, b \in R - \{0\}$, entonces:

- $1. \ d(a) \le d(ab).$
- 2. $\exists q, r \in R \ni a = bq + r$, donde r = 0 o d(r) < d(b).

Ejemplo 9. $(\mathbb{Z}, +, \cdot)$ con d(n) = |n|, el valor absoluto de $n \in \mathbb{Z}$, es un anillo euclideano.

Teorema 11 (3D). Si R es un anillo euclideano y U es un ideal de R, entonce existe: $a_0 \in R$ tal que $U = \{a_0r : r \in R\} = (a_0)$.

Demostración. Si $U = \{0\} \implies \text{sea } a_0 = 0 \implies U = \{0\} = \{0 \cdot r : r \in R\} = (0).$

Si $U \neq \{0\} \implies \exists a \in U \ni a \neq 0$. Sea $a_0 \in U - \{0\} \ni d(a_0)$ es mínimo. Siendo R anillo euclideano existen $q, r \in R \ni u = aq + r$, con r = 0 o $d(r) < d(a_0)$. Si $r = 0 \implies u = aq \in (a)$. Pero $a \in U$ y U atrapa productos $\implies aq \in U \implies r = u - aq \in U$. Si $r \neq 0 \implies r \in U$ y $d(r) < d(a_0)$ no es mínimo en $U (\rightarrow \leftarrow)$. $\implies U \subseteq (a) \subseteq U \implies U = (a)$.

Corolario 11.1. Todo anillo euclideano tiene elemento neutro multiplicativo.

Demostración. Si R es un anillo euclideano $\implies R$ es ideal de $R \implies$ por el teorema 3D $\exists a_0 \in R \ni R = (a_0)$, ya que $R \neq (0) \implies r \in R \implies \exists x_1 \in R \ni r = a_0x_1$. En particular, $a_0 \in R \implies \exists x_0 \in R \ni a_0 = a_0x_0 \implies rx_0 = (x_ra_0)x_0 = x_r(a_0x_0) = x_ra_0 = a_0x_r = r \implies x_0$ es neutro multiplicativo de R.

Definición 16. Un dominio entero R con elemento neutro multiplicativo es un **Anillo de Ideales Principales** si para todo ideal A de R existe $a_0 \in R$ tal que $A = \{a : r \in R\}$

Corolario 11.2. Todo anillo euclideano es un anillo de ideales principales.

Definición 17. Si R es un anillo conmutativo, $r_1, r_2 \in R, r_1 \neq 0$, entonces r_1 divide a r_2 si existe $r_3 \in R$ tal que: $r_2 = r_1 r_3$, denotado por $r_1 | r_2$.

Proposición 3. Si R es un anillo conmutativo y $r_1, r_2, r_3 \in R - \{0\}$, entonces:

- 1. $Si r_1 | r_2 y r_2 | r_3 \implies r_1 | r_3$
- 2. $Si r_1 | r_2 y r_1 | r_3 \implies r_1 | (r_2 \pm r_3)$
- 3. Si $r_1|r_2 \implies r_1|r_2r_3$

Demostración. Tenemos:

- 1. Si $r_1|r_2 \ y \ r_2|r_3 \implies \exists x_1, x_2 \in R \ni r_2x_1r_1 \ y \ r_3 = x_2r_2 \implies r_3 = x_2(x_1r_1) = (x_2x_1)r_1 \implies r_1|r_3.$
- 2. $r_1|r_2 \ y \ r_1|r_3 \implies \exists x_1, x_2 \in R \ni r_2 = x_1r_1 \ y \ r_2 \pm r_3 = (x_1r_1) \pm (x_2r_1) = (x_1 \pm x_2)r_2 \implies r_1|(r_2 \pm r_3)$

3. Si $r_1|r_2 \implies \exists x \in R \ni r_2 = xr_1 \implies r_2r_3 = r_3r_2 = r_3(xr_3) = (r_3xr_1), x_3 \in R \implies r_1|r_2r_3.$

Clase: 28/07/2022

Definición 18. Si R es un anillo conmutativo y $r_1, r_2 \in R$, entonces $d \in R$ es **Máximo Común Divisor** de r_1 y r_2 si:

1. $d|r_1 \ y \ d|r_2 \ (d \ es \ divisor \ común \ de \ r_1 \ y \ r_2)$

2.
$$Si \ c|r_1 \ y \ c|r_2 \implies c|d$$

Lema 12 (3.8). Si R es un anillo euclideano y $r_1, r_2 \in R$, entonces un máximo común divisor $d \in R$ de r_1 y r_2 . Además, existen $\alpha, \beta \in R$ tales que:

$$d = \alpha r_1 + \beta r_2$$

Demostración. Sea $A = \{\delta r_1 + \gamma r_2 : \delta, \gamma \in R\}$. Sean $\delta_1, \delta_2, \alpha_1, \alpha_2 \in R \ni \delta_1 r_1 + \gamma_1 r_2, \delta_2 r_1 + \gamma_2 r_2 \in A$ y $(\delta_1 r_1 + \gamma_1 r_2) - (\delta_2 r_1 + \delta_2 r_2) = (\delta_1 \delta_2) r_1 + (\gamma_1 - \gamma_2) r_2 \in A$, ya que $\delta_1 - \delta_2, \gamma_1 - \gamma_2 \in R \implies$ por el corolario al lema 2.3 (A, +) es un subgrupo de (R, +). Además, si $\delta, \gamma, r \in R \implies \gamma r_1 + \gamma r_2 \in A$ y $(\delta r_1 + \delta r_2) r = (\delta r_1) r + (\delta r_2) r = (\delta r) r_1 + (\delta r) r_2 \in A$, ya que δr y $\gamma r \in R \implies A$ atrapa productos en $R \implies A$ es un ideal de R. Siendo R un anillo euclideano, por el teorema 3D, R es un anillo de ideales principales $\implies \exists a \in R \ni A = (a) \implies a | \delta r_1 + \gamma r_2, \forall \delta, \gamma \in R$. Además, por el corolario al teorema 3D, $\exists 1 \in R \ni 1$ es neutro multiplicativo de R. Entonces, en particular cuando $\delta = 1$ y $\gamma = 0 \implies a | 1 \cdot r_1 + 0 \cdot r_2 = r_1$ y cuando $\delta = 0$ y $\gamma = 1 \implies a | 0 \cdot r_1 + 1 \cdot r_2 = r_2 \implies a$ es divisor común de r_1 y r_2 . En particular, $a = a \cdot 1 \in A \implies \exists \delta_a, \gamma_a \in R \ni a = \delta_a r_1 + \delta_a r_2$. Si $c \in R \ni c | r_1$ y $c | r_2 \implies c | \gamma_a r_1$ y $c | \delta_a r_2 \implies c | \gamma_a r_1 + \gamma_a r_2 = a \implies a = \delta_a r_1 + \gamma_a r_2$ es máximo común divisor de r_1 y r_2 .

Definición 19. Sea R un anillo con elemento neutro multiplicativo 1, entonces $a \in R$ es una **Unidad** de R si existe $b \in R$ tal que ab = 1.

Lema 13 (3.9). Si R es un dominio entero con elemento neutro multiplicativo 1 $y r_1, r_2 \in R - \{0\}$ tales que $r_1|r_2$ y $r_2|r_1$, entonces existe $u \in R$, unidad de R, tal que $r_1 = ur_2$.

Demostración. Si $r_1|r_2 \implies \exists x_1 \in R \ni r_2 = x_1r_1$ y por otro lado $r_2|r_1 \implies \exists x_2 \ni r_1 = x_2r_2 \implies r_1 = x_2(x_1r_1) = (x_2x_1)r_1 \implies 0 = r_1 - (x_2x_1)r_1 = 1 \cdot r_1 - (x_2x_1)r_1 = (1 - x_1x_2) \cdot r_1 \implies \text{ siendo } R \text{ un dominio entero, y por ello carece de divisores de 0, y además <math>r_1 \neq 0 \implies 0 = 1 - x_1x_2 \implies x_1x_2 = 1 \implies x_1, x_2$ son unidades de R.

Definición 20. Si R es un anillo conmutativo con elemento neutro multiplicativo, $r_1, r_2 \in R$ y $u \in R$ es unidad de R tales que $r_1 = ur_2$, entonces r_1 y r_2 son elementos **asociados**.

Proposición 4. En un anillo conmutativo con elemento neutro multiplicativo la relación ser asociado de es de equivalencia.

Demostración. Sea R un anillo conmutativo con neutro multiplicativo 1. Entonces,

- 1. Si $r \in R \implies r = 1 \cdot r$, y como $1 \cdot 1 = 1$, i.e. es unidad de R, entonces r es asociado de r, $\forall r \in R$
- 2. Si r_1 es asociado a $r_2 \implies \exists u \in R$, unidad de $R \ni r_1 = ur_2 \implies u^{-1} \in R$ y también es unidad de $R \implies r_2 = u^{-1}r_1 \implies r_2$ es asociado a r_1 .
- 3. Si r_1 es asociado de r_2 y r_2 es asociado a $r_3 \implies \exists u_1, u_2 \in R$, unidades de $R \ni r_1 = u_1 r_2$ y $r_2 = u_2 r_3 \implies r_1 = u_1 (u_2 r_2) = (u_1 u_2) r_3$. Pero $u_2^{-1} u_1^{-1} \in R \ni \cdots u_1 u_2$ es unidad de $R \implies r_1$ es asociado a r_3 .

Proposición 5. Si R es un anillo conmutativo con el neutro multiplicativo 1, $r_1, r_2 \in R$ y $d_1, d_2 \in R$ son máximos comunes divisores de r_1 y r_2 entonces d_1 y d_2 son asociados.

Demostración. Si d_1 es máximo común divisor de r_1 y $r_2 \implies d_1|r_1$ y $d_1|r_2$, pero como d_2 es máximo común divisor de r_1 y $r_2 \implies d_1|d_2$. Un argumento simétrico verifica que $d_1|d_2 \implies$ por el lema 2.9, $\exists u \in R$, unidad de $R \ni d_1 = ud_2 \implies d_1$ y d_2 son asociados.

Definición 21. Si R es un anillo conmutativo con elemento neutro multiplicativo, $r_1 \ y \ r_2 \in R$, entonces el **Máximo Común Divisor** de $r_1 \ y \ r_2$, denotado por (r_1, r_2) es la clase de equivalencia a la asociación de cualesquiera máximo común divisor de $r_1 \ y \ r_2$.

Clase: 02/08/2022

Lema 14 (3.10). Si R es un anillo euclideano $r_1, r_2 \in R - \{0\}$ y r_2 no es una unidad de R, entonces $d(r_1) < d(r_1r_2)$.

Demostración. Considérese $(r_1) = \{r_1 \cdot r : r \in R\}$, un ideal de R. Por la condición (i) de la definición de anillo euclideano, $d(r_1) \leq d(r_1r_2)$. Nótese que $r_1r_2 \in (r_1)$ y si se supone $d(r_1) = d(r_1r_2) \implies$ por el argumento usado por la prueba del teorema 3D, el d-valor de r_1 es mínimo en $(r_1) \implies d(r_1r_2)$ también es mínimo en $(r_1) \implies$ todo elemento de (r_1) es múltiplo de $r_1r_2 \implies$ $(r_1) \subseteq (r_1r_2) \implies r_1r_2|r_1 \implies \exists x \in R \ni r_1 = (r_1r_2)x = r_1(r_2x) \implies 0 =$ $r_1 - r_2(r_2x) = r_1 \cdot 1 - r_1(r_2x) = r_1(1 - r_2x) \implies$ como $r_1 \neq 0$ y R es dominio entero y por lo tanto carece de divisores de 0.

$$0 = 1 - r_2 x \implies 1 = r_2 x \implies$$

 r_2 es unidad $(\rightarrow \leftarrow)$. $\implies d(r_1) < d(r_1r_2)$

Definición 22. Si R es un anillo euclideano, $\pi \in R$ es un **Elemento Primo** de R, si π no es una unidad de R y si $\pi = r_1r_2$, entonces r_1 ó r_2 es una unidad de R.

Proposición 6. Si R es un anillo euclideano $y r \in R - \{0\}$, entonces r es una unidad de R, si y solo si, d(r) = d(1).

Demostración. Tenemos

- (\Longrightarrow) Si r es unidad de $R \Longrightarrow \exists u \in R \ni ru = 1 \Longrightarrow \text{por } (1)$ de la definición de anillo euclideano, $d(r) \le d(ru) = d(1) \le d(1r) = d(r) \Longrightarrow d(r) = d(1)$
- (\iff) Si $d(r) = d(1) \implies \exists q_1 \sigma \in R \ni 1 = q\sigma \text{ con } \sigma = 0 \text{ o } d(\sigma) < d(r) = d(1)$. Si $\sigma \neq 0 \implies d(\sigma) < d(1) = d(1) = d(\sigma) = d(\sigma) = d(\sigma) \implies 1 = qr \implies r$ es una unidad de R.

Lema 15 (3.11 - Existencia de las factorizaciones primas). Si R es un anillo euclideano $y r \in R - \{0\}$, entonces r puede factorizarse como el producto de un número finito de elementos primos de R.

Demostración. Procediendo por inducción sobre d(r):

- Si $d(r) = d(1) \implies r$ es una unidad de $R \implies$ es el producto de 0 elementos primos de R, y el lema es válido.
- Supóngase el lema válido para todo $x \in R \{0\} \ni d(x) < d(r)$
- Si r es un elemento primo de $R \implies r$ se factoriza como el producto de 1 elemento primero de R. Supóngase que r no es una unidad de R y que existen $a, b \in R \{0\}$ ninguno unidad de R tales que $r = ab \implies$ por (i) de la definición de anillo euclideano, $d(a) \leq d(ab) = d(r) \implies$ por la hipótesis inductiva $\exists m \in \mathbb{Z}^+, \pi_1, \cdots, \pi_m \ni a = \prod_{i=1}^m \pi_i$. Además, también por el lema $3.10, d(b) < d(ba) = d(ab) = d(r) \implies$ por la hipótesis inductiva $\exists n \in \mathbb{Z}^+, \pi'_1, \cdots, \pi'_n$ elementos primos de $R \ni b = \prod_{j=1}^n \pi'_j \implies r = ab = (\prod_{i=1}^m \pi_i) \left(\prod_{j=1}^n \pi'_j\right)$

Definición 23. Si R es un anillo euclideano $y r_1, r_2 \in R - \{0\}$, entonces $r_1 y r_2$ son **Primos Relativos** si (r_1, r_2) es una unidad de R.

NOTA. Se sabe que el (r_1, r_2) es la clase de equivalencia respecto a la asociación de algún máximo común divisor de r_1 y r_2 . También se sabe que todo unidad es asociado a 1, es decir, sin perdida de generalidad se puede afirmar que en un anillo euclideano r_1 y r_2 son primos relativo \iff $(r_1, r_2) = 1$

Lema 16 (3.12). Si R es un anillo euclideano, $r_1, r_2, r_3 \in R - \{0\}$ tales que $r_1|r_2r_3$ y $(r_1, r_2) = 1$ entonces $r_1|r_2$.

Demostración. Por el lema 3.8, $\exists \lambda, \mu \in R \ni 1 = (r_1, r_2) = \lambda r_1 + \mu r_2 \implies r_3 = r_1 \lambda r_1 + r_3 \mu r_2 = r_1(r_3 \lambda) + r_2(r_3 \mu)$. Pero $r_1 | r_2 r_3 \implies \exists x \in R \ni r_2 r_3 = r_1 x \implies r_3 = r_1(r_3 \lambda) + (r_2 r_3) \mu = r_1(r_3 \lambda) + (r_1 x) \mu = r_1(r_3 \lambda) + r_1(x \mu) = r_1(r_3 \lambda + x \mu) \implies r_1 | r_3$.

Proposición 7. Si R es un anillo euclideano, π es un elemento primo de R y $r \in R - \{0\}$, entonces $\pi | r$ o $(\pi, r) = 1$.

Demostración. Tenemos $(\pi, r)|\pi \implies (\pi, r) = \pi$ o $(\pi, 1) = 1$ (o cualquiera de esta unidad) \implies si $\pi = (\pi, r)|r$ o $(\pi, r) = 1$.

Lema 17 (3.13). Si R es un anillo euclideano, π es un elemento primo de R. $r_1, r_2 \in R - \{0\} \ni \pi | r_1 r_2$, entonces

Demostración. Si $\pi / r_1 \implies (\pi, r_1) = 1 \implies$ por el lema 3.12, $\pi | r_2$. Un argumento simétrico, asegura $\pi / r_2 \implies \pi | r_1$

Corolario 17.1. Si R es un anillo euclideano, π es un elemento primo de R y $r_1, \cdot, r_n \in R - \{0\}$ y $\pi | \prod_{i=1}^n \pi_i$ entonces existe $i, 1 \le i \le n \ni \pi | r_i$.

Demostración. Por inducción matemática y el lema 3.13.

Clase: 04/08/2022

Teorema 18 (3E (unicidad de la factorización)). Si R es un anillo euclideano y $r \in R - \{0\}$ que no es una unidad de R y existen $m, n \in \mathbb{Z}^+n, \pi_1, \cdots, \pi_m, \pi'_1, \cdots, \pi'_n$ elementos primos de R tales que

$$r = \prod_{i=1}^m \pi_i = \prod_{j=1}^n \pi'_j,$$

entonces m=n y cada π_i es asociado de algún π'_j , para $1 \leq i,j \leq m$ y recíprocamente cada π'_k es asociado de algún π_k , $1 \leq k,l \leq m$.

Demostración. Sea

$$\pi_1\left(\prod_{i=2}^m \pi_i\right) = \prod_{i=1}^m \pi_i = \prod_{j=1}^m \pi_j'$$

$$\pi_1 | \prod_{j=1}^n \pi_j'$$

 \implies por el lema 3.13, $\exists j, 1 \leq j \leq n \ni \pi_i | \pi'_j$. Pero, como π_1 y π'_j son elementos primos de $R \implies \exists u_1$, unidad de $R \ni \pi'_j = u_1 \pi_1$.

Corolario 18.1. Todo elemento de un anillo euclideano tiene una única factorización prima, salvo asociación.

NOTA (Anillo euclideano). Tenemos:

- 1. Dominio entero
 - a) Campo de cocientes
 - b) Anillo conmutativo
 - c) \(\mathcal{Z}\) divisores de cero
- 2. d-valor
- 3. Algoritmo de la división
- 4. Neutro multiplicativo
- 5. Anillo de ideales principales
- 6. Máximo común divisor único, excepto asociación
- 7. Lema de Bezzóut
- 8. U es unidad $y r \in R \implies d(r) = d(ur)$
- 9. Propiedades aritméticas de la divisibilidad.
- 10. Es unidad \iff d(u) = d(1)
- 11. $r_1 \ y \ r_2 \ asociados \iff d(r_1) = d(r_2)$.

Lema 19 (3.14). Si R es un anillo euclideano y $r_0 \in R$, entonces (r_0) es un elemento primo de R.

Clase: 09/08/2022

Definición 24. El conjunto $\mathbb{Z}(i) = \{a + bi : a, b \in \mathbb{Z}, i = \sqrt{-1}\}$ es el conjunto de los **Enteros Gaussianos**.

Proposición 8. Sea $(\mathbb{Z}(i), +, \cdot)$, donde $+, \cdot$ son las operaciones usuales de números complejos es un dominio entero.

Teorema 20 (3F). Sea $(\mathbb{Z}(i), +, \cdot)$ es un anillo euclideano.

Demostración. Considérese la función

$$d: \mathbb{Z} - \{0\} \to \mathbb{Z}^+ \cup \{0\} \ni d = (a+bi) = a^2 + b^2$$

De esta definición, $d(a+bi) \in \mathbb{Z}^+ \cup \{0\}$, $\forall a+bi \in \mathbb{Z}(i) - \{0\}$. Además, si a_1+b_1i , $a_2+b_2i \in \mathbb{Z}(i) - \{0\} \implies d((a_1+b_1i)(a_2+b_2i)) = d((a_1a_2-b_1b_2) + (b_1a_2+a_1b_2)i) = (a_1a_2-b_1b_2)^2 + (b_1a_2+a_1b_2)^2 = \cdots = a_1^2(a_2^2+b_2^2) + b_1^2(a_2^2+b_2^2) = (a_1^2+b_1^2)(a_2^2+b_2^2) = d(a_1+b_1i)d(a_2+b_2i)$. Ahora bien, si $0 = d(a+bi) = a^2+b^2 \implies a = b = 0 \implies d(a+bi) > 0, \forall a+bi \in \mathbb{Z}(i) - \{0\} \implies d(a+bi) \geq 1, \forall a+bi \in \mathbb{Z}(i) - \{0\} \implies d(a_1+b_1i)d(a_2+b_2i) = (a_1^2+b_1^2)(a_2^2+b_2^2) \geq a_1^2+b_1^2 = d(a_1+b_1i) \implies d$ es un d-valor para $\mathbb{Z}(i)$.

Considérese el caso especial $n \in \mathbb{Z}$ y $a + bi \in \mathbb{Z}(i)$ \Longrightarrow por el algoritmo de la división en \mathbb{Z} , $\exists q_1, q_2, r_1, r_2 \in \mathbb{Z} \ni a = q_1 n + r_1$ y $b = q_2 n + r_2$, con $0 \le r_2 < n$ y $0 \le r_2 < n$. Si $0 \le r_1 < n/2$ y $0 \le r_2 < n/2$, sean $\delta_1 = q_1, \delta_2 = q_2, \sigma_1 = r_1$ y $\sigma_2 = r_2$. Si $n/2 < r_1 < n$ \Longrightarrow $-n/2 > -r_1 > -n$ \Longrightarrow $n/2 \ge n - r_1 > 0 > -n/2$ \Longrightarrow $|n - r_1| < n/2$ \Longrightarrow sean $\delta_1 = q_1 + 1$ y $\delta_1 = r_1 - n$ \Longrightarrow $a = 1, n + r_1 = q_1 n + n - n + r_1 = (q_1 + 1)n + (r_1 - n) = \delta_1 n + \sigma_1$, con $|\sigma_1| < n/2$. De igual forma, si $n/2 < r_2 < n$, sean $\delta_2 = q_2 + 1$ y $\delta_2 = r_2 - n$ \Longrightarrow $b = q_2 n + r_2 = q_2 n + n - n + r_2 = (q_2 + 1)n + (r_2 - n) = \delta_2 n + \sigma_2$, $|\sigma_2| < n/2$. Entonces, $a + bi = (\delta_1 n \sigma_1) + (\delta_2 n + \sigma_2)i = \delta_1 n + \sigma_1 + \delta_2 ni + \sigma_2 i = (\delta_1 + \delta_2 i)n + (\sigma_1 + \sigma_2 i)$, con $d(\sigma_1 + \sigma_2 i) = \sigma_1^2 + \sigma_2^2 < n^2/4 + n^2/4 = n^2/2 < n^2 = d(n + 0i) = d(n)$, con $\sigma_1 + \sigma_2 i, \sigma_1 + \sigma_2 i \in \mathbb{Z}(i)$

Sean ahora $a_1 + b_1i, a_2 + b_2i \in \mathbb{Z}(i)$ y $a_2 + b_2i \neq 0 \Longrightarrow (a_2 + b_2i)\overline{(a_2 + b_2i)} = (a_2 + b_2i)(a_2 - b_2i) = a^2 + b_2^2 \in \mathbb{Z}^+$. Además, $(a_1 + b_1i)\overline{(a_2 + b_2i)} = (a_1 + b_1i)(a_2 - b_2i) \in \mathbb{Z}(i) \Longrightarrow \text{aplíquese el caso especial a } (a_2 + b_2i)\overline{(a_2 + b_2i)} \in \mathbb{Z}^+$ y $(a_1 + b_1i)\overline{a_2 + b_2i} \in \mathbb{Z}(i) \Longrightarrow \exists \delta_1, \delta_2, \sigma_1, \sigma_2 \in \mathbb{Z} \ni (a_1 + b_1i)\overline{(a_2 + b_2i)} = (\delta_1 + \delta_2i)\left[(a_2 + b_2i)\overline{(a_2 + b_2i)}\right] + (\sigma_1 + \sigma_2i) \ni d(a_2 + b_2i)d(\overline{(a_2 + b_2i)}) = d\left((a_2 + b_2i)\overline{(a_2 + b_2i)}\right) > d(\sigma_1 + \sigma_2i) = d\left((a_1 + b_1i)\overline{(a_2 + b_2i)} - (\sigma_1 + \sigma_2i)\left[(a_2 + b_2i)\overline{(a_2 + b_2i)}\right]\right) = d\left((a_1 + b_1i) - (\sigma_1 + \sigma_2i)(a_2 + b_2i)\overline{(a_2 + b_2i)}\right) \implies d(a_2 + b_2i) > d(a_2 + b_2i) = d(a_2 + b_2i)(a_2 + b_2i) \implies d(a_2 + b_2i) > d(a_2 + b_2i) = d(a_2$

 $d((a_1 + b_1i) - (\delta_1 + \delta_2i)(a_2 + b_2i))$. Sea $R_1 + R_2i \in \mathbb{Z}(i) \ni R_1 + R_2i = (a_1 + b_1i)(\delta_1 + \delta_2i)(a_2 + b_2i)$. Es conclusión, $\delta_1 + \delta_2i$, $R_1 + R_2i \in \mathbb{Z}(i) \ni a_1 + b_1i = (\delta_1 + \delta_2)(a_2 + b_2i) + (R_1 + R_2i)$, con $R_1 + R_2 = 0$ o $d(R_1 + R_2i) < d(a_2 + b_2i)$.

Clase: 11/08/2022

Teorema 21 (Wilson).

Lema 22 (3.15). Sea p un número primo y supóngase que para $c \in \mathbb{Z}$, (c,p) = 1 existen $x, y \in \mathbb{Z}$, tales que: $cp = x^2 + y^2$, entonces existen $a, b \in \mathbb{Z}$ tales que $p = a^2 + b^2$.

Demostración. Nótese que $(\mathbb{Z}, +, \cdot)$ es un subanillo de $(\mathbb{Z}(i), +, i)$ y p es un elemento primo de $(\mathbb{Z}, +, \cdot)$. Supóngase que p es elemento primo de $(\mathbb{Z}(i), +, \cdot)$, pero por hipótesis, $cp = x^2 + y^2 = (x + yi)(x - yi) \implies$ por el lema 3.13, $p|x + yi \text{ o } p|x - yi \implies p|x + yi \implies \exists u + iv \in \mathbb{Z}(i) \ni x + iy = p(u + iv) = pu + i(pv) \implies x = pu, y = pv \implies x - iy = pu - i(pv) = p(u - iv) \implies p|x - yi \implies p^2|(x + iy)(x - iy) = cp \implies p|c \implies 1 = (p, c) > p(\rightarrow \leftarrow) \implies p$ no es elemento primo de $\mathbb{Z}(i) \implies a + bi, \alpha + \beta i \in \mathbb{Z}(i)$, ninguno de los dos unidades de $\mathbb{Z}(i) \ni p = (a + bi)(\alpha + \beta i) \implies d(a + bi) = a^2 + b^2 \neq 1$ y $d(\alpha - \beta i) = \alpha^2 + \beta^2 \neq 1$. Pero $p = (a + bi)(\alpha + \beta i) = (a\alpha b\beta) + (a\beta + b\alpha)i \implies a\beta + b\alpha = 0 \implies p = (a\alpha - b\beta) - 0 = (a\alpha - b\beta) - (a\beta + b\alpha)i = a\alpha - a\beta i - b\beta - b\alpha i = a(\alpha - \beta i) - bi(\alpha - \beta i) = (a - bi)(\alpha - \beta i)$. Entonces $p^2 = pp = (a + bi)(\alpha + \beta i)(a - bi)(\alpha - \beta i) = (a^2 + b^2)(\alpha^2 + \beta^2) \implies a^2 + b^2|p^2$ y como $\alpha^2 + \beta^2 > 1$ y $\alpha^2 + b^2 < p^2 \implies a^2 + b^2 = 1$ o $\alpha^2 + b^2 = p \implies p = a^2 + b^2$.

Lema 23 (3.16). Si p es un número primo de la forma 4n + 1, entonces la congruencia $x^2 \equiv -1 \mod p$ tiene solución.

 $\begin{array}{ll} \textit{Demostración.} \text{ Sea } x = \left(\frac{p-1}{2}\right)! \implies \text{ como } p \text{ es de la forma } 4n+1 \implies \\ x = \left(\frac{p-1}{4}\right) \text{ tiene un número par de factores } \implies x = \prod_{i=1}^{p-1/2} i = \prod_{i=1}^{p-1/2} -i. \\ \text{Ahora bien, } p-k \equiv -k \mod p \implies x^2 = x \cdot x = \left(\prod_{i=1}^{p-1/2} i\right) \left(\prod_{i=1}^{p-1/2} -i\right) = \left(\prod_{i=1}^{(p-1)/2} i\right) \left(\prod_{i=1}^{(p-1)/2} p-i\right) = \left(\prod_{i=1}^{(p-1)/2} i\right) \left(\prod_{i=1}^{p-1} i = (p-1) = \equiv -1 \mod p. \end{array}$

Teorema 24 (3.6 - Fermat). Si p es un número primo de la forma 4n + 1, entonces existen $a, b \in \mathbb{Z}$ tales que $p = a^2 + b^2$.

Demostración. Por el lema 3.15, $\exists x \in \mathbb{Z} \ni x^2 \equiv -1 \mod p$ y elíjase $x \ni 0 \le x \le p-1$. Si $x < p/2 \implies (p-x)^2 = p^2 - 2px + x^2 \equiv -1 \mod p$ y |p-x| = |p-x| = |x-p| < p/2. De cualquier forma, siempre es posible elegir X de manera que $|x| \le p/2$ y $p|x^2 + 1 \implies \exists c \in \mathbb{Z} \ni pc = x^2 + 1 \le p^2/4 + 1 < p^2 \implies p \not | c \implies (p,c) = 1 \implies \text{por el lema 3.15} \exists a,b \in \mathbb{Z} \ni p = a^2 + b^2$.

Definición 25. Si F es un campo, el conjunto de polinomios en la variable x con coeficientes en F o sobre F es $F[x] = \{\sum_{i=0}^{n} a_i x^i : a_i \in F \land n \in \mathbb{Z}^+ \cup \{0\}\}.$

Clase: 16/08/2022

Definición 26. Si F es un campo,

$$p(x) = \sum_{i=0}^{m} a_i x_i, \quad q(x) = \sum_{j=0}^{n} b_j x^j \in F[x],$$

entonces:

1. p(x) = q(x), si y solo si, m = n y $a_i = b_i$, $1 \le i \le m$.

2.
$$p(x) + q(x) = \sum_{k=0}^{\max\{m,n\}} (a_k + b_k) x^k, a_k = 0 \text{ para } k > m \text{ y } b_k = 0 \text{ para } k > n$$

3.
$$p(x)q(x) = \sum_{k=0}^{m+n} \left(\sum_{l=0}^{k} a_k b_{k-l}\right) x^k, a_l = 0 \text{ para } l > m \text{ y } b_{k-l} = 0 \text{ para } k-l > n.$$

Proposición 9. Si F es un campo, entonces $(F[x], +, \cdot)$ es un anillo conmutativo con elemento neutro multiplicativo.

Definición 27. Si F es un campo y $f(x) = \sum_{i=0}^{n} a_i x^i \in F[x], a_n \neq 0$, entonces el **grado** de f(x) es gr(f) = n. No está definido el grado del polinomio cero y si gr(f) = 0, entonces f(x) se dice constante.

Lema 25 (3.17). Si F es un campo $y f(x), g(x) \in F[X] - \{0\}$, entonces gr(fg) = gr(f) + gr(g).

Demostración. Se deduce directamente de la definición de producto en F[x].

Corolario 25.1. Si F es un campo y $f(x), g(x) \in F[x] - \{0\}$, entonces $gr(f) \le gr(fg)$

Demostración. Sea
$$0 \le gr(g) \implies gr(f) = gr(f) + 0 \le gr(f) + gr(g) = gr(fg).$$

Corolario 25.2. Si F es un campo, entonces $(F[x], +, \cdot)$ es un dominio entero.

Definición 28. Si F es un campo, entonces el campo de cocientes del dominio entero $(F[X], +, \cdot)$ es $(F(x), +, \cdot)$, el campo de las funciones racionales en x sobre F.

Proposición 10. Si F es un campo, entonces la función $\operatorname{gr}: F[X] - \{0\} \to \mathbb{Z}^+ \cup \{0\}$ cumple:

1.
$$gr(f) \in \mathbb{Z}^+ \cup \{0\}, \forall f \in F[X] - \{0\}$$

2.
$$gr(f) \le gr(f, g), \forall f, g \in F[X] - \{0\}$$

Lema 26 (3.18 - Algoritmo de la división). Si F sea un campo, $f(x), g(x) \in F[X]$ $y \ g(x) \neq 0$, entonces existen $q(r), r(x) \in F[X]$ tales que f(x) = q(x)g(x) + r(x), $con \ r(x) < 0 \ o \ gr(r) < gr(g)$.

Demostración. Si
$$gr(f) < gr(g) \implies q(x) = 0$$
 y $r(x) = f(x)$

Teorema 27 (3H). Si F es un campo, entonces $(F[X], +, \cdot)$ es un anillo euclideano.

Demostración. Se deduce directamente de las definiciones y propiedades de F[X] y gr y del lema 3.18.

Lema 28 (3.19). Si F es un campo, entonces $(F[x], +, \cdot)$ es un anillo de ideales principales.

Demostración. Se deduce directamente de los teoremas 3D y 3H.

Lema 29 (3.20). Si F es un campo, entonces $f(x), g(x) \in F[X] - \{0\}$ siempre tiene un máximo común divisor $d(x) \in F[x]$ y es tal que existen $\lambda(x), \delta(x) \in F[x]$ tales que $d(x) = \lambda(x)f(x) + \delta(x)g(x)$.

Demostración. Se deduce directamente del teorema 3H y el lema 3.8

Definición 29. Si F es un campo, $p(x) \in F[X]$ es irreducible sobre F si p(x) = g(x)h(x), con $g(x)h(x) \in F[X] - \{0\}$, entonces gr(g) = 0 o gr(h) = 0

Ejemplo 10. $x^2 + 1$ es irreducible sobre \mathbb{Q} pero no es irreducible sobre \mathbb{C} .

Lema 30 (3.21). Si F es un campo, entonces todo polinomio en F[X] puede factorizarse de manera única, salvo asociación, como producto de un número finito de polinomios de F[X] irreducibles sobre F.

Demostración. Se deduce directamente de los teoremas 3E y 3H.

Lema 31 (3.22). Si F es un campo, el ideal generado por el polinomio p(x) de F[X] es un ideal maximal del anillo de polinomios si y solo si, $p(x) \in F[x]$ es irreducible sobre F.

Demostración. Se deduce de los lemas 3.14, 3.21 y teorema 3H. ■

Clase: 18/08/2022

$$(x^{2}-2)(x^{2}+1)$$

$$(x^{3}-2) = \{f(x)(x^{3}-2) : f(x) \in \mathbb{Q}[x]\}$$

Ejemplo 11. $x^2 - 2 \in \mathbb{Q}[x]$, irreducible sobre $\mathbb{Q} \implies por \ el \ lema \ 3.22 \ (x^3 - 2)$ es un ideal maximal de $\mathbb{Q}[x] \implies por \ el \ teorema \ 3B, \ \mathbb{Q}[x]/(x^3 - 1)$. Se verificará detalladamente este hecho, nótese que $\mathbb{Q}[x]/(x^3 - 2) = \{f(x) + [x^3 - 2] : f(x) \in \mathbb{Q}[x]\}$. Por el algoritmo de la división en $\mathbb{Q}[x], \exists q(x), r(x) \in \mathbb{Q}[x] \ni f(x) = q(x)(x^2 - 2) + r(x)$, con r(x) = 0 o $gr(r) < gr(x^3 - 2) = 3 \implies \exists a_0, a_1, a_2 \in \mathbb{Q} \ni r(x) = a_0 + a_1x + a_2x^2 \implies f(x) + [x^3 - 2] = (q(x)(x - 2) + r(x)) + [x^3 - 2] = q(x)(x^3 - 2) + [x^3 - 2] + r(x) + [x^3 - 2] = (a_0 + a_1x + a_2x^2) + (x^3 - 2) = [a_0 + [x^3 - 2]] + [a_1x + [x^3 - 2]] + [a_2x^2 + [x^3 - 2]] = a_0[x + [x^3 - 2]]^0 + a_1[x + [x^3 - 2]]^1 + a_2[x + [x^3 - 2]]^2$

$$q(x)(x^3-2) + [x^3-2] = 0 + [x^3-2] = [x^3-2]$$

Sea $\alpha = x + [x^3 - 2] \in \mathbb{Q}[x]/(x^3 - 2)$, con lo cual $f(x) + [x^3 - 2] = a_0 + a_1\alpha + a_2\alpha^2$

$$\langle \{1, \alpha^1, \alpha^2\} \rangle_{\mathbb{Q}}$$

 $\implies \langle \{1, \alpha^1, \alpha^2\} \rangle_{\mathbb{Q}} = \mathbb{Q}[x]/(x^3-2)$. Por otro lado, nótese que $\alpha^3-2 \approx [x+1]$ (x^3-2)]³ - [2 + (x^3-2)] = [x^3 + (x^3-2)] - [2 + (x^3-2)] = (x^3-2) + [x^3-2] = $0+[x^3-2]=[x^3-2]\approx 0 \implies \alpha \text{ es una raíz de } x^3-2 \implies \alpha \in \mathbb{O}[x]/(x^3-2)-\mathbb{O}$ (Nótese que si $a \in \mathbb{Q} \implies a \approx a + (x^3 - 2) \in \mathbb{Q}[x]/(x^3 - 2)$, con lo cual. $\mathbb{Q} \subseteq \mathbb{Q}[x]/(x^3-2)$) contiene una raíz de x^2-2 . Si $\exists a_0, a_1, a_2 \in \mathbb{Q}$ no todos cero $\exists a_0 + a_1 \alpha + a_2 \alpha^2 = 0 \implies -a_0 - a_2 \alpha^2 = a_1 \alpha \in \mathbb{Q}(\rightarrow \leftarrow) \implies \{1, \alpha, \alpha^2\} \ es$ linealmente independiente sobre $\mathbb{Q} \implies \{1, \alpha, \alpha^2\}$ es una base para el espacio $vectorial\ (\mathbb{Q}[X]/(x^3-2), +, \cdot, \mathbb{Q}) \implies \dim\ (\mathbb{Q}[x]/(x^3-2), +, \cdot, \mathbb{Q}) = 3 = gr(x^3-x^3-x^3)$ 2). Por otro lado, si $a_0, a_1, a_2, b_0, b_1, b_2 \in \mathbb{Q} \ni a_0 + a_1\alpha + a_2\alpha^2 = f(x) + (x^3 - 2) = f(x) + f(x)$ $a_0(x + (x^3 - 2)) + a_1(x + (x^3 - 2)) + a_2(x + (x^3 - 2))^2 = f(x) + (x^2 - 2) =$ $b_0(x^0+(x^3-2))+b_1(x+(x^3-2))+b^2(x^2+(x^2-2)) \implies (a_0-b_0)(x^0+(x^3-2))+(a_1-b_0)(x^0+(x^3-2))+b_1(x^0+(x^3-2))+b_2(x^0+($ $(b_1)(x+(x^2-2))+(a_2-b_2)(x^2+(x^3-2)) = (a_0-b_0)+(a_1-b_1)x+(a_2-b_2)x^2+[x^2-2] = (a_0-b_0)x+(a_1-b_1)x+(a_2-b_2)x+(a_1-b_1)x+(a_2-b_2)x+(a_1-b_1)x+(a_1-b_2)x+(a_1-b_1)x+(a_1-b_2)x+$ $[x^3-2] = 0 + [x^2-2] \implies (a_0-b_0) + (a_1-b_1)x + (a_2-b_2)x^2 \equiv 0 \mod(x^2-2) \implies$ $x^3 - 2|(a_0 - b_0) + (a_1 - b_1)x + (a_2 - b_2)x^2 \implies a_0 - b_0 = a_1 - b_1 = a_2 - b_2 = 0 \implies$ $a_0 = b_0, a_1 = b_1 \ y \ a_2 = b_2 \implies todo \ elemento \ f(x) + (x^3 - 2) \ de \ \mathbb{Q}[x]/(x^3 - 2) \ de$ $\mathbb{Q}[x]/(x^3-2)$ tiene representación única como polinomio cuadrático en α sobre \mathbb{Q} . Sea $a_0 + a_1 \alpha + a_2 \alpha^2 \in \mathbb{Q}[x]/(x^2 - 2) - \{(x^3 - 2)\} \implies a_0, a_1 \ y \ a_2 \ no \ son \ todos$

cero. El lema 3.22 asegura que $\mathbb{Q}[x]/(x^3-2)$ es un campo $\implies \exists b_0, b_1, b_2 \in \mathbb{Q} \ni 1 = (a_0 + a_1\alpha + a_2\alpha^3)(b_0 + b_1\alpha + b_2\alpha^2) = a_0b_0 + a_0b_1\alpha + a_0b_2\alpha^2 + a_1b_0\alpha + a_1b_1\alpha^2 + a_1b_2\alpha^3 + a_2b_0\alpha^2 + a_2b_1\alpha^3 + a_2b_2\alpha^4 = a_0b_0 + a_0b_1\alpha + a_0b_2\alpha^2 + a_1b_0\alpha + a_0b_1\alpha^2 + 2a_1b_2 + a_2b_0\alpha^2 + 2a_2b_1 + 2a_2b_2\alpha = (a_0b_0 + 2a_1 + b_2 + 2a_2b_1) + (a_0b_1 + a_1b_0 + 2a_2b_2) + (a_0b_2 + a_1b_1 + a_2b_0)\alpha^2 \implies \text{resolviendo el sistema de ecuaciones... por medio de la regla de Cramer, encontramos que el determinantes es <math>a_0^3 + 2a_1^3 + 4a_2^3 - 6a_0a_1a_2 \neq 0$. Nótese que $a_0 = p_0/q_0, a_1 = p_1/q_1, a_2 = p_2/q_2 \in \mathbb{Q} \ni \cdots \cdots$

Clase: 23/08/2022

Definición 30. $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ es primitivo si $(a_0, \dots, a_n) = 1$

Lema 32 (3.23). Si $f(x), g(x) \in \mathbb{Z}[x]$ son primitivos, entonces f(x)g(x) es primitivo.

Demostración. Si $f(x) = \sum_{i=0}^{n} a_i x^i$ y $g(x) = \sum_{j=0}^{n} b_j x^j$, supóngase que el máximo común divisor de los coeficientes de f(x)g(x) es mayor que $1. \Longrightarrow \exists p$, número primo \ni divisor al máximo común divisor de los coeficientes f(x)g(x). Como f(x) es primitivo, $p \not| (a_0, \dots, a_m) \Longrightarrow \text{sea } i^*$ el índice más pequeño tal que $p \not| a_{i^*}$. De igual manera, sea j^* el índice más pequeño tal que $p \not| b$. Entonces, el coeficiente de $x^{i^*+j^*}$ en f(x)g(x) es

$$C_{i^*+j^*} = \sum_{k=0}^{i^*+j^*} a_k b_{i^*+j^*-k} = a_{i^*} + b_{j^*} + \sum_{k=0}^{i^*-1} a_k b_{i^*+j^*-k} + \sum_{k=i^*+1}^{i^*+j^*} a_k b_{i^*+j^*-k}.$$

Por la elección de i^* y j^* , $p|a_i$ para $0 \le i < i^*$ y $p|b_j$ para $0 \le j < j^*$ $\implies p|a_k b_{i^*+j^*-k}$ para $0 \le k \le i^*-1$ y $p|a_k b_{i^*+j^*-k}$ para $i^*+1 \le k \le i^*+j^*$ $\implies p|\sum_{k=0}^{i^*-1} a_k b i^*+j^*-k$ y $p|\sum_{k=i^*+1}^{i^*+j^*} a_k b i^*+j^*-k$ y por hipótesis, $p|c_{i^*+j^*}$ $\implies p|\left(c_{i^*+j^*}-\sum_{k=0}^{i^*-1} a_k b_{i^*+j^*-k}-\sum_{k=i^*+1}^{i^*+j^*} a_k b_{i^*+j^*-k}\right)=a_{i^*}b_{j^*}$ $\implies p|a_{i^*} \circ p|b_{j^*}(\to \leftarrow) \implies f(x)g(x)$ es primitivo.

Definición 31. El contenido de $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ es (a_0, \dots, c_n) . Notación, C(f).

Proposición 11. Si $f(x) \in \mathbb{Z}[x]$, entonces existe $p(x) \in \mathbb{Z}[x]$, primitivo, tal que f(x) = C(f)p(x).

Teorema 33 (3I - Lema de Gauss). Si $p(x) \in \mathbb{Z}[x]$ es primitivo y puede factorizarse como el producto de dos polinomios con coeficientes racionales, entonces puede factorizarse como el producto de dos polinomios con coeficientes enteros.

Demostración. Si $u(x) = \sum_{i=0}^{m} \frac{\alpha_i}{\beta_i} x^i, v(x) = \sum_{j=0}^{n} \frac{\delta_j}{\gamma_j} x_j \in \mathbb{Q}[x]$. Es decir, $\alpha_i, \delta_i \in \mathbb{Z}$ y $\beta_i, \gamma_j \in \mathbb{Z} - \{0\} \ni$

$$\begin{split} p(x) &= u(x)v(x) \\ &= \left(\sum_{i=0}^{m} \frac{\alpha_i}{\beta_i} x^i\right) \left(\sum_{j=0}^{n} \frac{\delta_j}{\gamma_j} x_j\right) \\ &= \frac{1}{\left(\prod_{i=0}^{m} \beta_i\right) \left(\prod_{j=0}^{n} \gamma_j\right)} \left(\sum_{i=0}^{m} \alpha_i \left(\prod_{l=i} \beta_l\right) x^i\right) \left(\sum_{j=0}^{n} \delta_j \left(\prod_{r+j} \gamma_r\right) x^j\right) \end{split}$$

Sea $\sigma(x) = \sum_{i=0}^{m} \alpha_i \left(\prod_{l=i} \beta_l\right) x^i, \nu(x) = \sum_{j=0}^{n} \delta_j \left(\prod_{r+j} \delta_r\right) x^j \in \mathbb{Z}[x] \implies p(x) = 1/\left(\left(\prod_{i=0}^{m} \beta_i\right) \left(\prod_{j=0}^{n} \gamma_j\right)\right) \sigma(x)\nu(x) = \frac{a}{b}q_1(x)q_2(x), \text{ donde } a = C(\delta)c(\nu) \in \mathbb{Z}, b = \left(\prod_{i=0}^{m} p_i\right) \left(\prod_{j=0}^{n} \gamma_j\right) \in \mathbb{Z} - \{0\}, \text{ sea } q_1(x), q_2(x) \in \mathbb{Z}[x] \text{ primitivos y}$ $\sigma(x) = C(\sigma)q_1(x) \text{ y } \nu(x) = C(\nu)q_2(x) \implies \text{por el lema } 3.23 \ q_1(x)q_2(x) \text{ es}$ $\text{primitivo y } bp(x) = aq_1(x)q_2(x). \text{ Como } p(x) \text{ es primitivo, el contenido de } bp(x) \text{ es}$ $b \text{ y como } q_1(x)q_2(x) \text{ primitivo.} \implies \text{el contenido de } aq_1(x)q_2(x) \text{ es } a \implies \text{como}$ $\text{los contenidos de polinomios es iguales de ser iguales, } a = b \neq 0 \implies a/b = 1 \implies p(x) = q_1(x)q_2(x).$

Definición 32. Si $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ y $a_n = 1$, entonces f(x) se dice **Entero Mónico**.

Proposición 12. Todo polinomio mónico de $\mathbb{Z}[x]$ es primitivo.

Corolario 33.1. Si un polinomio mónico de $\mathbb{Z}[x]$ se factoriza como el polinomio en $\mathbb{Q}[x]$, entonces se factoriza como el producto de los polinomios enteros mónicos.

Demostración. Se deduce del lema de Gauss (3I) y la propiedad anterior.

Teorema 34 (3J - Criterio de Einsentein). Si $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ y p es un número primo que p $\not|a_n, p|(a_0, \dots, a_{n-1})$ y $p^2|a_0,$ entonces f(x) es irreducible en $\mathbb{Q}[x]$.

Demostración. Sea $p(x) \in \mathbb{Z}[x]$, primitivo $\ni f(x) = C(f)p(x)$, y nótese que f(x) es irreducible sobre \mathbb{Q} \iff p(x) es irreducible sobre \mathbb{Q} . Además, la hipótesis se se tienen, ya que (C(f),p)=1. Sea $p(x)=\sum_{i=0}^n \alpha_i x^i$, con $p \neq [\alpha_n,p](\alpha_0,\cdot,\alpha_{n-1})$ y $p^2 \neq [\alpha_0]$. Supóngase que p(x) no es irreducible sobre \mathbb{Q} \implies $u(x),v(x)\in\mathbb{Q}[x],gr(u)>0$ y $gr(v)>0\ni p(x)=u(x)v(x)$ \implies por el teorema de Gauss (3I) $\exists r(x)=\sum_{j=0}^{m_1}\beta_j x^j,s(x)=\sum_{k=0}^{m_2}\delta_k x^k\in\mathbb{Z}[x],m_1=gr(r)>0$ y $m_2=gr(s)>0\ni\sum_{i=0}^n a_i x^i=p(x)=r(x)s(x)=\sum_{i=0}^{m_1+m_2+m}\left(\sum_{t=0}^i\beta_t\delta_{i-t}\right)x^i$. Entonces, $p|\alpha_0=\beta_0\delta_0$ \implies $p|\beta_0$ o $p|\delta_0$. Pero, $p^2 \neq [\alpha_0=\beta_0\delta_0]$ \implies $p|\beta_0$ o $p|\delta_0$. Si $p|(\beta_0,\cdots,\beta_{m_1})$ \implies $p|\beta_{m_1}|\beta_{m_1}\delta_{m_2}=\alpha_{m_1+m_2}=\alpha_n(\rightarrow\leftarrow)$ \implies Sea $p|\beta_0$ Sea $p|\beta_0$ $p|\beta_0$ supóndice tal que $p|\beta_0$ supóndi

Clase: 25/08/2022

Proposición 13. Si R es un anillo conmutativo con elemento neutro multiplicativo, entonces R[x] es un anillo conmutativo con elemento neutro multiplicativo.

Demostración. ejercicio.

Definición 33. Si R es un anillo conmutativo con elemento neutro multiplicativo, entonces $R[x_1, \dots, x_n]$ se define: $R_1 = R[x]$; $R_2 = R_1[x_2] = (R[x_1])[x_2] = R[x_1, x_2]$; $R_3 = R_2[x_3] = ((R[x_1])[x_2])[x_3] = R[x_1, x_2, x_3]$; \dots ; $R_n = R_{n-1}[x_n] = R[x_1, \dots, x_n]$, el anillo de polinomios en las variables x_1, \dots, x_n con coeficientes en R.

Proposición 14. Si R es un anillo conmutativo con elemento neutro multiplicativo, entonces los elementos de $R[x_1, \dots, x_n]$ son de la forma $\sum a_i, \dots, i_n \prod_{j=1}^n x_j^{i_j}$, con $a_i, \dots, i_n \in R$, y la suma de estos polinomios definidos por las operaciones entre coeficientes, y el producto de estos polinomios usando la ley distributiva y las reglas de exponentes $\left(\prod_{j=1}^n x_j^{i_j}\right) \left(\prod_{j=1}^n x_j^{k_j}\right) = \prod_{j=1}^n x_j^{i_j+k_j}$

Lema 35. Si R es un dominio entero, entonces R[x] es un dominio entero.

Demostración. Nótese que en la demostración del lema 3.17 y sus corolarios no se usó la existencia de inversos multiplicativos en el campo F, por lo que esos argumentos son válidos para el dominio entero R.

Corolario 35.1. Si R es un dominio entero, entonces $R[x_1, \dots, x_n]$ es un dominio entero.

Demostración. Se deduce del lema 3.24 y la definición de $R[x_1, \dots, x_n]$

NOTA. Si R es dominio entero $\implies R[x_1, \dots, x_n]$ es dominio entero. \implies $R(x_1, \dots, x_n)$ es el campo de las funciones racionales en las variables x_1, \dots, x_n con coeficientes en R. Si F es un campo, en particular es un dominio entero y $F(x_1, \dots, x_n)$ es el campo de las funciones racionales en las variables x_1, \dots, x_n con coeficientes en F, el caul juega un papel importante en Geometría Algebraica y la teoría de Galois.

Ejemplo 12. El teorema 3D dice que si F es un campo, entonces F[x] es un anillo de ideales principales (de hecho, 3F a continuación asegura que F[x] son anillos euclideanos). Ahora, si F es un campo, ${}_{\dot{c}}F[x_1,\dots,x_n]$ es también un anillo de ideales principales? Considérese el anillo $\mathbb{Q}[x,y]$, los polinomios $x,y\in\mathbb{Q}[x,y]$ y el conjunto $(x,y)=\{\alpha(x,y)x+\beta(x,y)y:\alpha(x,y),\beta(x,y)\in\mathbb{Q}[x,y]\}\subseteq\mathbb{Q}[x,y]$. Sean $\alpha_1(x,y)+\beta_1(x,y)y,\alpha_2(x,y)x+\beta_2(x,y)y\in(x,y)\Rightarrow \alpha_1(x,y)x+\beta_1(x,y)y-(\alpha_2(x,y)x+\beta_2(x,y)y)=(\alpha_1(x,y)-\alpha_2(x,y))x+(\beta_1(x,y)-\beta_2(x,y))y\in(x,y),$ ya que $\alpha_1(x,y)-\alpha_2(x,y),\beta_1(x,y)-\beta_2(x,y)\in\mathbb{Q}[x,y]\Rightarrow$ por el corolario al lema 2.3, ((x,y),+) es un subgrupo $(\mathbb{Q}[x,y],+)$. Sea ahora $f(x,y)\in\mathbb{Q}[x,y]$ y $\alpha(x,y)x+\beta(x,y)y\in(x,y)\Rightarrow f(x,y)(\alpha(x,y)+\beta(x,y)y)=(f(x,y)\alpha(x,y))x+(f(x,y)\beta(x,y))y\in(x,y),$ ya que $f(x,y)\alpha(x,y),f(x,y)\beta(x,y)\in\mathbb{Q}\Rightarrow (x,y)$ es un ideal de $\mathbb{Q}[x,y]$.

Por otro lado, el teorema 3E, dice que si F es un campo, entonces F[x] tiene factorización prima única (de hecho, el teorema 3F asegura que F[x] es anillo euclideano)

Si R es un dominio entero con factorización prima única, $_{\dot{c}}R[x]$ es también dominio entero con factorización prima única? En caso afirmativo, $_{\dot{c}}R[x_1, \cdots, x_n]$ es también un dominio entero con factorización prima única?

Definición 34. Un dominio entero con elemento neutro multiplicativo es un dominio de factorización única si:

- Todo elemento de R {0} es una unidad o puede factorizarse como el producto de un número finito de elementos irreducibles (primos) de R.
- 2. La factorización de (i) es única salvo el orden de los factores y asociación.

Clase: 30/08/2022

Ejemplo 13. El teorema 3.E muestra que todo anillo euclideano es un dominio de factorización única.

Lema 36 (3.25). Si R es un dominio de factorización única, $r_1, r_2 \in R$ entonces r_1 y r_2 tienen un único (salvo asociación) máximo común divisor $(r_1, r_2) \in R$. Además, si r_1 y r_2 son primos relativos $r_1|r_2r_3$, entonces $r_1|r_3$.

Demostración. Si r_1 o r_2 son unidades, entonces $(r_1, r_2) = 1$ (salvo asociación). Si r_1 y r_2 no son unidades de $R \implies \exists p_1, \cdots, p_m, q_1, \cdots, q_j \in R$, elementos primos de $R, m, n \in \mathbb{Z}^+ \ni r_1 = \prod_{i=1}^m p_i^{\alpha_i}$ y $r_2 = \prod_{j=1}^n q_j^{\beta_j}, \alpha_i, \beta_j \in \mathbb{Z}^+$ las factorizaciones primas únicas de r_1 y r_2 en R. Sea $S=\{p_1,\cdots,p_m\}\cap\{q_1,\cdots,q_n\}$. Si S= $\varnothing \implies (r_1, r_2) = 1$. Si $S = \{s_1, \dots, s_k\} \implies \prod_{l=1}^k s_l^{\delta_l}$, donde $s_l = p_{i_l} = q_{j_l}$ y $\delta_l = \min\{\alpha_{i_l}, \beta_{j_l}\} \implies \prod_{l=1}^k s_l^{\delta_l} | r_1 \ge \prod_{l=1}^k s_l^{\delta_l} | r_2$. Sea $d \in R \ni d | r_1 \ge d | r_2 \implies$ sea $d = \prod_{h=1}^t a_h^{\gamma_h}$, la factorización prima de d en R. Es decir, a_n son elementos primos de R y $\gamma_n \in \mathbb{Z}^+$. Pero $a_{h^k} | \prod_{k=1}^t a_h^{\gamma_n} = d | r_1 = \prod_{i=1}^m p_i^{\alpha_i} \implies \exists \sigma \in R \ni a_h \sigma =$ $\prod_{i=1}^m p_i^{\alpha_i}$. Sea $\alpha = \prod_{g=1}^\tau \pi_g^{\nu_g} \implies a_n \prod_{g=1}^\tau \pi_g^{\nu_g} = \prod_{i=1}^m p_i^{\alpha_i} \implies \text{por la unicidad}$ de las factorizaciones primas en R, debe existir $i_n, 1 \le i - h \le m \ni a_h = p_{i_n}$. De igual forma $a_n | \prod_{k=1}^t a_n^{\gamma_n} = d | r_2 = \prod_{j=1}^n q_j^{\beta_j} \implies \exists j_n, 1 \leq j_n \leq n \ni a_h = q_{j_n} \implies$ $a_h \in S \implies d \mid \prod_{q=1}^k s_l^{\delta_l} \implies (r_1, r_2) = \prod_{l=1}^k s_l^{s_l}$, el cual es único en R porque se construyó a partir de la factorización única de r_1 y r_2 . Ahora, si r_1 y r_2 son primos relativos $\implies (r_1,r_2)=1$. Además, si $r_3=\prod_{z=1}^\phi c_z^{\psi_z}$, la factorización prima única de r_3 en $R \implies \prod_{i=1}^m p_i^{\alpha_i} | \left(\prod_{j=1}^m q_j^{\beta_j} \right) \left(\prod_{z=1}^\phi c_z^{\psi_z} \right) \implies \text{por la unicidad de las}$ factorizaciones primas en R, cada p_i debe coincidir cib algún elemento primo de Ren la lista $q_1, \dots, q_n, c_1, \dots, c_1 \phi$. Pero como $(r_1, r_2) = 1 \implies \{p_i\} \cap \{q_1, \dots, q_n\} = 1$ $\varnothing \implies p_i \in \{c_1, \cdots, c_\phi\} \implies r_1 = \prod_{i=1}^m p_i^{\alpha_i} | \prod_{z=1}^\phi c_z^{\phi_z} = r_3.$

Corolario 36.1. Si R es un dominio de factorización única $p, r_1, r_2 \in R$, p elemento primo de R y $p|r_1r_2$, entonces $p|r_1$ o $p|r_2$.

Demostración. Si $p|r_1$ y $p|r_2$, el corolario es válido. Si $p / r_1 \implies (p, r_1) = 1 \implies$ por el lema 3.25, $p|r_2$. El caso restante es simétrico.

Lema 37 (3.26). Si R es un dominio de factorización única, entonces el producto de dos polinomios primitivos en R[x] es también primitivo en R[x].

Demostración. Por la unicidad de la factorización prima en R, la existencia y unicidad de los máximos comunes divisores en R, garantizado por el lema 3.25 y por la propiedad de divisibilidad demostrada también el lema 3.25, los argumentos del lema 3.23, válido para $\mathbb{Z}[x]$, son también válidos para R[x].

Corolario 37.1. Si R es un dominio de factorización única y $f(x), g(x) \in R[x]$, entonces c(fg) = c(f)c(g), salvo asociación.

Demostración. Sea $f(x) = c(f)f_1(x)$ y $g(x) = c(g)g_1(x)$, con $f_1(x)$, $g_1(x)$ primitivos en $R[x] \implies f(x)g(x) = (c(f))f_1(x)(c(g)g_1(x)) = (c(f)c(g))f_1(x)g_1(x) \implies$ por el teorema 2.26 $f_1(x)g_1(x)$ es primitivo en $R[x] \implies c(f)c(g)$ es el contenido de $(c(f)c(g))f_1(x)g(x) = f(x)g(x) \implies c(f)c(g) = c(fg)$.

Corolario 37.2. Si R es dominio de factorización única $f_1(x), \dots f_n(x) \in R[x]$, entonces $c(f_1, \dots, f_n) = \prod_{i=1}^n c(f_i)$, excepto asociación.

Lema 38 (3.27). Si R es un dominio de factorización única, $f(x) \in R[x]$ es primitivo y F es el campo de cocientes de R. Entonces, f(x) es irreducible en R[x] si y solo si, f(x) es irreducible en F[x].

Demostración. Tenemos

• (\Longrightarrow) si f(x) es irreducible sobre R, pero $\exists g(x), h(x) \in F[x] \ni gr(g) > 0$ y $gr(h) > 0 \ni f(x) = g(x)h(x) \implies \exists a,b \in R - \{0\}, g_1(x), h_1(x) \in R[x] \ni g(x) = \frac{1}{a}g_1(x)$ y $h(x) = \frac{1}{b}h_1(x) \implies abf(x) = g_1(x)h_1(x)$. Además, $\exists g_2(x), h_2(x) \in R[x]$, primitivos $\ni g_1(x) = c(g_1)g_2(x)$ y $h_1(x) = c(h_1)h_2(x) \implies abf(x) = c(g_1)c(h_1)g_2(x)h_2(x)$ por el lema 3.26, $g_2(x)$ es primitivo y $c(g_1)c(h_1)$ es el contenido de $c(g_1)c(g_2)g_2(x)h_2(x) = abf(x)$ y f(x) es primitivo en R[x], ab es el contenido de $abf(x) \implies c(g_1)c(g_2) = ab \implies f(x) = g_2(x)h_2(x)$. Pero $gr(g_2) = gr(g) > 0$ y $gr(h_2) = gr(h_1) = gr(h) > 0 \implies f(x)$ no es irreducible. $(\rightarrow \leftarrow) f(x)$ es irreducible sobre F.

• (\iff) Si f(x) es irreducible sobre F, pero existen $g(x), h(x) \in R[x] \ni gr(g) > 0, gr(h) > 0$ y f(x) = g(x)h(x), como $R \subseteq F \implies R[x] \subseteq F[x] \implies g(x), h(x) \in F[x], f(x)$ no es irreducible ($\to \leftarrow$)f(x) es irreducible sobre R.

Clase: 01/09/2022

Lema 39 (3.28). Si R es un dominio es un dominio de factorización única y $p(x) \in R[x]$ es primitivo, entonces p(x) puede factorizarse de manera única como producto de polinomios irreducibles en R[x].

Demostración. Sea F el campo de cocientes de $R \implies R \subseteq F \implies R[x] \subseteq F[x] \implies p(x) \in F[x] \implies \text{por el lema } 3.21, \exists p_1(x), \dots, p_n(x) \in F[x], \text{ irreducibles sobre } F, n \in \mathbb{Z}^+, \text{ únicos salvo asociación } \ni p(x) = \prod_{i=1}^n p_i(x).$

 $p_i(x) \in F[x], p_i(x)$ es irreducible sobre F.

$$p_i(x) = \sum_{j=0}^{m} \frac{a_j}{b_j} x^j, \quad a_j, b_j \in R, b_j \neq 0$$

Además,

$$p_{i}(x) = \sum_{j=0}^{m} \frac{a_{j}}{b_{j}} x^{j}$$

$$= 1 \cdot \sum_{j=0}^{m} \frac{a_{j}}{b_{j}} x^{j}$$

$$= \frac{\prod_{i=0}^{m} b_{j}}{\prod_{j=0}^{m} b_{j}} \sum_{j=0}^{m} \frac{a_{j}}{b_{j}} x^{j}$$

$$= \frac{1}{\prod_{j=0}^{m} b_{j}} a_{j} \left(\prod_{k \neq j} b_{j}\right) x^{j}$$

Por el lema 3.25 $\exists q_i(x) \in R[x]$ primitivo sobre R, irreducible sobre F tal que:

$$p_i(x) = \frac{\left(a_0(\prod_{j\neq 0} b_j), \cdots, a_m(\prod_{j\neq m} b_j)\right)}{\prod_{j=0}^m b_j} q_i(x)$$

Entonces para cada $p_i(x)$, $\exists f_i(x) \in R[x]$ y $b \in R - \{0\} \ni p_i(x) = \frac{1}{b}f_i(x)$ y $f_i(x)$ es irreducible sobre F. Además, para cada $f_i(x)$, $\exists q_i(x) \in R[x]$, primitivo en R[x], irreducible sobre $F \ni p_i(x) = \frac{c(f_i)}{b_i}q_i(x) \Longrightarrow$ por el lema 3.27, $q_i(x)$ es irreducible sobre R. Pero $p(x) = \prod_{i=1}^n p_i(x) = \prod_{i=1}^n \frac{c(f_i)}{b_i}q_i(x) = \left(\prod_{i=1}^n \frac{c(f_i)}{b_i}\right)\left(\prod_{i=1}^n q_i(x)\right)$. Ahora bien, por el lema 3.23, $\prod_{i=1}^n q_i(x)$ es primitivo en $R[x] \Longrightarrow$ el contenido de $\left(\prod_{i=1}^n \frac{c(f_i)}{b_i}\right)\left(\prod_{i=1}^n q_i(x)\right)$ es $\prod_{i=1}^n \frac{c(f_i)}{b_i}$ y también debe ser igual al contenido de p(x), que por ser primitivo $1 = c(p) = \prod_{i=1}^n \frac{c(f_i)}{b_i} \Longrightarrow p(x) = \prod_{i=1}^n q_i(x)$. La unicidad, salvo asociación, de los $q_i(x)$, se deriva de la unicidad de los $p_i(x)$.

Teorema 40 (3K). Si R es un dominio de factorización única, entonces R[x] es un dominio de factorización única.

Demostración. Por el lema 3.24, R[x] es un dominio entero, y como R tiene elemento neutro multiplicativo, este lo es también de R[x]. Sea $f(x) \in R[x] - \{0\} \implies \exists f_1(x) \in R[x] - \{0\}$, primitivo sobre $R \ni f(x) = c(f)f_1(x) \implies$ por el teorema 3.28 $\exists p_1(x), \cdots, p_n(x) \in R[x], n \in \mathbb{Z}^+$, todos irreducibles sobre R, únicos salvo asociación $\ni f_i(x) = \prod_{i=1}^n p_i(x) \implies f(x) = c(f)f_1(x) = c(f)\prod_{i=1}^n p_i(x)$. Si $\exists q_1(x), \cdots, q_m(x) \in R[x] \ni c(f) = \prod_{i=1}^m q_i(x) \implies 0 = gr(c(f)) = \sum_{i=1}^m gr(q_i) \implies gr(q_i) = 0 \implies q_i(x)$ son polinomios constantes \implies

la única factorización de c(f) como elemento de R[x] es la misma factorización que tiene como elemento de R, la cual también es única $\implies R[x]$ es un dominio de factorización única.

Corolario 40.1. Si R es un dominio de factorización única, entonces $R[x_1, \dots, x_n]$ es también un dominio de factorización única.

Demostración. Aplicación sucesiva del teorema 3k en la definición de $R[x_1, \dots, x_n]$.

Corolario 40.2. Si F es un campo, entonces $F[x_1, \dots, x_n]$ es un dominio de factorización única.

Demostración. F es un dominio de factorización única.

2. Teoría de campos

Definición 35. Si F es un campo, un campo K es una extensión de F si $F \subseteq K$, es decir, si F es un subcampo de K.

Definición 36. Si F es un campo y K es una extensión de F, entonces el grado de K sobre F es la dimensión de K como espacio vectorial sobre F.

[K:F], el grado de K sobre F. Si $[K:F] \in \mathbb{Z}^+$, entonces K se dice que una extensión finita de F.

Teorema 41 (5A). Si L es una extensión finita del campo K y K es una extensión finita del campo F, entonces L es una extensión finita de F, [L:F] = [L:K][K:F]

Demostración. Sea $\{l_1, \cdots, l_{[L:K]}\}$ una base de L sobre K y $\{k, \cdots, k_{[K:F]}\}$ una base de K sobre F. Sea ahora $l \in L \implies \exists \alpha_1, \cdots, \alpha_{[L:K]} \in K \ni l = \sum_{i=1}^{[L:k]} \alpha_i l_i$, pero para cada $i \exists \beta_1, \cdots, \beta_{[L_k]} \in F \ni \alpha_i = \sum_{j=1}^{[L:K]} \beta_j k_j \implies l = \sum_{i=1}$

Clase: 06/09/2022

Corolario 41.1. Si F es un campo, L es una extensión finita de F y K es un subcampo de L tal que $F \subseteq K$, entonces [K : F] | [L : F].

Demostración. Del álgebra lineal, si $F \subseteq K \subseteq L \implies [L:K] \le [L:F] \in \mathbb{Z}^+ \implies [L:K] \in \mathbb{Z}^+$. Además, $(K,+,\cdots,F)$ es subespacio de $(L,+,\cdot,F) \implies [K:F] \le [L:F] \in \mathbb{Z}^+ \implies [K:F] \in \mathbb{Z}^+ \implies \text{por el teorema, 5.A.}$ $[L:K][K:F] = [L:F] \implies [K:F]|[L:F].$

Corolario 41.2. Si F es un campo, L es una extensión finita de F y [L:F] es un número primo, entonces no existe K extensión de F tal que $F \subset K \subseteq L$; es decir L es la extensión propia de F más pequeña (en el orden parcial de la contención).

Definición 37. Sea F un campo, K una extensión de F, entonces $a \in K$ es algebraico sobre F si existen $n \in \mathbb{Z}^+, \alpha_0, \dots, \alpha_n \in F$, no 0, tales que $\sum_{i=0}^n \alpha_i a^i = 0$.

 $a \in K$ es algebraico sobre $F \iff \exists f(x) \in F[x] \ni f(a) = 0$. En donde,

$$f(x) = \sum_{i=0}^{n} \alpha_i x^i \in F[x], \quad \alpha_0, \dots, \alpha_n \in F$$

Definición 38. Si F es un campo y K es una extensión de F, $f(x) = \sum_{i=0}^{n} \alpha_i x^i \in F[x]$ y $a \in K$, entonces $f(a) = \sum_{i=0}^{n} \alpha_i a^i \in K$ es **el valor de** f(x) en a. Si f(a) = 0, entonces se dice que a satisface a f(x) o que a es una raíz de f(x).

Proposición 15. Si F es un campo y K es una extensión de F, entonces $a \in K$ es algebraico sobre F, si existe $f(x) \in F[x] \ni f(a) = 0$.

Proposición 16. Si F es un campo, K es una extensión de F, $a \in K$ y $\mathbb{M} = \{L : Lex una extensión de <math>F$ y $a \in L\}$, entonces:

- 1. $\mathbb{M} \neq \emptyset$
- 2. $\bigcap M \in M$

Demostración. Tenemos

- 1. $k \in \mathbb{M} \implies \mathbb{M} \neq \emptyset$
- 2. $F \subseteq \bigcap \mathbb{M}, a \in \bigcap \mathbb{M}$ y la intersección de campo es campo.

NOTA. Notación. Si F es un campo, k es una extensión de F y $a \in K$ entonces $F(a) = \bigcap \{L : Les una extensión de <math>F \ni a \in L\}$. La propiedad asegura que $F(a) \neq \emptyset$ y F(a) es la extensión más pequeña de F que contiene a a como uno de sus elementos. En particular, $F \subseteq F(a) \subseteq K$.

Definición 39. Si F es un campo, K es una extensión de F y $a \in K$, entonces F(a) se le llama subcampo de K obtenido por la adjunción de a.

Proposición 17. Si F es un campo, K es una extensión de F y $a \in K$, entonces

$$F(a) = \left\{ \frac{f(a)}{g(a)} \ni f(x), g(x) \in F[x], g(a) \neq 0 \right\}$$

Demostración. Tenemos:

- (⊆) Nótese que $\left\{\frac{f(a)}{g(a)}\ni f(x),g(x)\in F[x],g(a)\neq 0\right\}$ es una copia isomorfica del campo de las funciones racionales en x sobre F, $F(x)=\left\{\frac{f(x)}{g(x)}\ni f(x),g(x)\in F[x],g(x)\neq 0\right\}$. Nótese que si $\alpha\in F\implies$ sean $f(x)=\alpha$ y $g(x)=1\in F[x]\implies f(a)=\alpha$ y $g(a)=1\implies \alpha=\frac{\alpha}{1}=\frac{f(a)}{g(a)}\in \left\{\frac{f(a)}{g(a)}\ni f(x),g(x)\in F[x]yg(a)\neq 0\right\}\implies F\subseteq \left\{\frac{f(a)}{g(a)}\ni f(x),g(x)\in F[x],g(a)\neq 0\right\}$. Sean $f(x)=x,g(x)=1\in F[x]\implies a=\frac{a}{1}=\frac{f(a)}{g(a)}\in \left\{\frac{f(a)}{g(a)}:f(x),g(x)\in F[x]\;y\;g(a)\neq 0\right\}$ es un campo que contiene a F y a a. $\Longrightarrow F(a)\subseteq \left\{\frac{f(a)}{g(a)}\ni f(x),g(x)\in F[x],g(a)\neq 0\right\}$.
- (⊇) Sea $\frac{p(a)}{q(a)} \in \left\{ \frac{f(a)}{g(a)} : f(x), g(x) \in F[x] \text{ y } g(a) \neq 0 \right\} \implies \exists m, n \in \mathbb{Z}^+, \alpha_0, \cdots, \beta_0, \cdots, \beta_n \in F \ni p(x) = \sum_{i=0}^m \alpha_i x^i, g(x) = \sum_{j=0}^n \beta_j x^j, q(a) = \sum_{j=0}^n \beta_j a^j \neq 0$. Ahora bien, $a \in F(a) \implies a^x \in F(a), \forall x \in \mathbb{Z}$. Además, $F \subseteq F(a) \implies \delta \in F(a), \forall \delta \in F \implies \alpha_i a^i, \beta_j a^j \in F(a) \implies f(a) = \sum_{i=0}^m \alpha_i a^i, q(a) = \sum_{j=0}^n \beta_j a^j \in F(a) \text{ y como } q(a) \neq 0 \implies f(a), \frac{1}{q(a)} \in F(a) \implies \frac{f(a)}{q(a)} \in F(a) \implies \left\{ \frac{f(a)}{g(a)} \ni f(x), g(x) \in F[x], g(a) \neq 0 \right\} \subseteq F(a)$

Clase: 08/09/2022

Teorema 42 (5B). Si F es un campo, K es una extensión de F y $a \in K$, entonces es algebraico sobre F si y solo si, F(a) es una extensión finita de F.

Demostración. Tenemos:

• (\Longrightarrow) Supóngase que a es algebraico sobre F \Longrightarrow el conjunto de polinomios en F[x] satisfecho por a no es vacío \Longrightarrow sea $p(x) \in F[x]$, de grado mínimo tal que p(a) = 0. Si existen $f(x), g(x) \in F[x] - \{0\}$ tales que $p(x) = f(x)g(x) \Longrightarrow 0 = p(a) = f(a)g(a)$. Pero $f(a) \in K$, que por ser campo carece de divisores de cero, f(a) = 0 o g(a) = 0, $gr(f) \ge gr(p)$ o $gr(g) \ge gr(p)$. Pero por otro lado, $p(x) = f(x)g(x) \Longrightarrow gr(f) \le gr(p)$ o $gr(g) \le gr(p) \Longrightarrow gr(f) = 0$ o gr(g) = 0. $\Longrightarrow f(x)$ o g(x) es constante en $F[x] \Longrightarrow p(x)$ es irreducible sobre F. Por el lema 3.22 [p(x)] es un ideal máxima de $F[x] \Longrightarrow$ por el teorema 3.B, el cociente F[x]/[p(x)] es campo. Sea $f(x) + [p(x)] \in F[x]/[p(x)]$, y por el algoritmo de la división en F[x] (lema 3.17) $\exists q(x), r(x) \in F[x] \ni r(x) = 0$ o $gr(r) < gr(p) \Longrightarrow \exists \alpha_0, \cdots, \alpha_{gr(p)-1} \in F \ni r(x) = \sum_{i=0}^{gr(p)-1} \alpha_i x^i$, tales que $f(x) + [p(x)] = (p(x)q(x) + r(x)) + [p(x)] = [p(x)q(x) + [p(x)]] + [r(x) + [p(x)]] = [p(x)] + [r(x) + [p(x)]] = r(x) + [p(x)] = \sum_{i=0}^{gr(p)-1} \alpha_i x^i + [p(x)] = r(x)$

$$p(x)q(x) - 0 = p(x)q(x) \in [p(x)] \implies p(x)q(x) \in [p(x)] \implies$$

 $p(x)q(x) \equiv 0 \pmod{[p(x)]} \implies p(x)q(x) + [p(x)] = [p(x)]$

 $= \sum_{i=0}^{gr(p)-1} [\alpha_i x^i + [p(x)]] = \sum_{i=0}^{gr(p)-1} [\alpha_i + [p(x)]] [x^i + [p(x)]] = \sum_{i=0}^{gr(p)-1} [\alpha_i + [p(x)]] [x^i + [p(x)]]^i.$

El intento fallido. Sea $\psi: F[x]/[p(x)] \to F(a) \ni \psi(f(x) + [p(x)]) = f(a)$. Si $f(x) + [p(x)], g(x) + [p(x)] \in F[x]/[p(x)] \ni f(x) + [p(x)] = g(x) + [p(x)] \implies f(x) \equiv g(x) \pmod{(p(x))} \implies f(x) - g(x) \in [p(x)] \implies \exists q(x) \in F[x] \ni p(x)q(x) = f(x) - q(x) \implies f(x) = g(x) + p(x)q(x) \implies f(a) = \psi[f(x) + [p(x)]] = \psi[(g(x) + p(x) + q(x)) + [p(x)]] = g(a) + p(a)q(a) = g(a) + 0q(a) = q(a) = \psi(g(x) + [p(x)]) \implies \psi \text{ es una función bien definida.}$

Además, $\psi[f(x) + [p(x)]] + [g(x) + [p(x)]] = \psi[(f(x) + g(x)) + [p(x)]] = f(a) + g(a) = \psi[f(x) + [p(x)]] + \psi[g(x) + [p(x)]]$ y $\psi[f(x) + [p(x)]][g(x) + [g(x)]] = \psi[f(x)g(x) + [p(x)]] = f(a)g(a) = \psi[f(x) + [p(x)]]\psi[g(x) + [p(x)]] \implies \psi$ es un homomorfismo.

Sea $\psi: F[x] \to \psi(F[x])$ es homomorfismo sobreyectivo \implies por el primer teorema de isomorfismos (3A), $F[x]/K_{\psi} \approx \psi(F[x])$. Ahora bien, $p(x) \in K_{\psi} \implies (p(x)) \subseteq K_{\psi} \implies [p(x)] \subseteq K_{\psi} \subseteq F[x], \text{ pero}$ siendo [p(x)] un ideal maximal de F[x] y claramente $K_{\psi} \neq F[x] \implies$ $K_{\psi} = [p(x)] \implies F[x]/[p(x)] \approx \psi(F[x]) \implies \psi(F[x])$ es un campo \implies F(a) es una extensión de $\psi(F[x])$. Explicitando el isomorfismo de la relación $F[x]/[p(x)] \approx \psi(F[x])$, como $\phi: F[x]/[p(x)] \rightarrow$ $\psi(F[x]) \ni \phi[f(x) + [p(x)]] = \psi[f(x)] = f(a)$, isomorfismo. Entonces, nótese que $\phi(\alpha_i + [p(x)]) = \alpha, \forall \alpha \in F \implies F \subseteq \psi(F[x])$. Además, $\phi(x+[p(x)]) = a \implies a+\psi(F[x]) \implies \psi(F[x])$ es una extensión de F y $a \in \psi(F[x]) \implies F(a) \subseteq \psi(F[x])$. Por lo tanto, $F(a) = \psi(F[x]) \approx F[x]/[p(x)]$. Pero se había demostrado que f(x)+[p(x)] = $\sum_{i=0}^{gr(p)-1} (\alpha_i + [p(x)])(x + [p(x)])^i$, pero $\alpha_i + [p(x)] \approx \alpha_i \ y \ x + [p(x)] \approx$ $a \implies f(x) + [p(x)] = \sum_{i=0}^{gr(p)-1} [\alpha_i + [p(x)]][x + [p(x)]]^i \approx \sum_{i=0}^{gr(p)-1} \alpha_i a^i$ con $\alpha_0, \dots, \alpha_{gr(p)-1} \in F \implies F(a) \approx F[x]/[p(a)] = \langle \{1, \dots, a^{gr(p)-1}\} \rangle_F$. Pero además, si $\beta_0, \dots, \beta_{gr(p)-1} \in F \ni \sum_{i=0}^{gr(p)-1} \beta_i a^i = 0 \implies h(x) =$ $\sum_{i=0}^{gr(p)-1} \beta_i x^i \in F[x]$, de grado a lo más gr(p) = 1 y satisfecho por $a \implies h(x) = 0 \implies \beta_0 = \cdots = \beta_{gr(p)-1} = 0 \implies \{1, \cdots, a^{gr(p)-1}\}$ es l.i en F(a) sobre $F \implies [F(a):F] = gr(p) \in \mathbb{Z}^+$

• (\Longrightarrow) Versión 2. Sea $a \in K$ algebraico sobre $F \Longrightarrow \exists p(x) \in F[x]$, de grado mínimo $\ni p(a) = 0$. Además, supóngase sin pérdida de generalidad que p(x) es mónico. Si $p(x) = \sum_{i=0}^{n} \alpha_i x^i$ y $q(x) = \sum_{i=0}^{n} \beta_i x^i$, $\alpha_n = \beta_n = 1, p(a) = q(a) = 0$ y n es mínimo en $F[x] \Longrightarrow 0 = \sum_{i=0}^{n} \alpha_i a^i = \sum_{i=0}^{n} \beta_i a^i \Longrightarrow 0 = \sum_{i=0}^{n} (\alpha_i - \beta_i) a^i = (a^n - a^n) + \sum_{i=0}^{n-1} (\alpha_i - \beta_i) a^i = \sum_{i=0}^{n-1} (\alpha_i - \beta_i) a^i$. Si existe $0 \le i^* \le n - 1 \ni \alpha_i - \beta_i \ne 0 \Longrightarrow \sum_{i=0}^{i^*} (\alpha_i - \beta_i) x^i \in F[x]$, satisfecho por a y de grado menor a $n(\to \leftarrow) \Longrightarrow p(x)$ es único en F[x]. Si $p(x) = \sum_{i=0}^{gr(p)} \alpha_i x^i, \alpha_{gr(p)} = 1 \Longrightarrow 0 = p(a) = \sum_{i=0}^{gr(p)} \alpha_i a^i = a^{gr(p)} + a^{gr(p)} = a^{gr(p)} + a^{gr(p)} = a^{g$

$$\sum_{i=0}^{gr(p)-1} \alpha_i a^i \implies a^{gr(p)} = \sum_{i=0}^{gr(p)-1} (-\alpha_i) a^i \implies$$

$$a^{gr(p)+1} = \sum_{i=0}^{gr(p)-1} (-\alpha_i) a^{i+1}$$

$$= -\alpha_{gr(p)-1} a^{gr(p)} + \sum_{i=0}^{gr(p)-2} (-\alpha_i) a^{i+1}$$

$$= -\alpha_{gr(p)-1} \left(\sum_{i=0}^{gr(p)-1} (-\alpha_i) a^i \right) + \sum_{i=0}^{gr(p)-2} (-\alpha_i) a^{i+1}$$

$$= -\alpha_{gr(p)-1} \left(-\alpha_0 + \sum_{i=1}^{gr(p)-1} (-\alpha_i) a^i \right) + \sum_{i=0}^{gr(p)-2} (-\alpha_i) a^{i+1}$$

$$= \alpha_{gr(p)-1} \alpha_0 + \sum_{i=1}^{gr(p)-1} \alpha_{gr(p)-1} \alpha_i a^i + \sum_{i=1}^{gr(p)-1} (-\alpha_{i-1}) a^i$$

$$= \alpha_{gr(p)-1} \alpha_0 + \sum_{i=1}^{gr(p)-1} (\alpha_{gr(p)-1} \alpha_i - \alpha_{i-1}) a^i$$

 $\implies a^{gr(p)+1}$ es combinación lineal de $\{1,\cdots,a^{gr(p)-1}\}$. Un proceso inductivo muestra que si $k \in \mathbb{Z}^+$, $a^{gr(p)+k}$ es combinación lineal de $\{1, \cdots, a^{gr(p)-1}\}$. Nótese que $\langle \{1, \cdots, a^{gr(p)-1}\} \rangle_F \implies \{a^n : n \in \mathbb{Z}^+\} \subseteq \langle \{1, \cdots, a^{gr(p)-1}\} \rangle_F$ es cerrado bajo la suma y el producto en F(a) y por las propiedades de este conjunto, se puede demostrar, $(\langle \{1, \cdots, a^{gr(p)-1}\}, +, \cdots \rangle)$ es un anillo conmutativo con neutro multiplicativo. Además, si α · $1 \in \langle \{1, \cdots, a^{gr(p)-1}\} \rangle_F \implies F \subseteq \langle \{1, \cdots, a^{gr(p)-1}\} \rangle_F \text{ y claramen-}$ te $a \in \{1, \dots, a^{gr(p)-1}\} \subseteq \{\{1, \dots, a^{gr(p)-1}\}\}_F$. Sean $\sum_{i=0}^{gr(p)-1} \delta_i a^i \in$ $\langle \{1, \cdots, a^{gr(p)+1}\} \rangle_F - \{0\} \text{ y } q(x) = \sum_{i=0}^{gr(p)-1} \delta_i x^i \in F[x] \implies \text{como}$ $gr(q) < gr(p) \implies p(x) / |q(x)|$. Usando el mismo argumento empleado en la versión de la prueba, se puede demostrar que p(x) es irreducible sobre $F \implies q(x) / |p(x) \implies (p(x), q(x)) = 1 \implies$ por el lema 3.20, $f(x), g(x) \in F[x] \ni 1 = f(x)p(x) + g(x)g(x)$. Pero $1 = f(a)p(a) + g(a)q(a) = f(a) \cdot 0 + g(a)q(a) = g(a)q(a)$. Si g(x) = g(a)q(a) = g(a)q(a). $\sum_{j=0}^{m} \gamma_j x^j \in F[x] \implies g(a) = \sum_{j=0}^{m} \gamma_j a^j \in \langle \{1, \cdots, a^{gr(p)-1}\} \rangle_F \implies 1 = g(a) \sum_{i=0}^{gr(p)-1} \delta_i a^i \implies g(a) = \left(\sum_{i=0}^{gr(p)-1} \delta_i a^i\right)^{-1} \implies \langle \{1, \cdots, a^{gr(p)-1}\} \rangle_F$ es campo $\implies \{1, \dots, a^{gr(p)-1}\} \setminus_F$ es una extensión de F que contiene a $a \implies F(a) \subseteq \{1, \cdots, a^{gr(p)-1}\} \setminus_F \implies \{1, \cdots, a^{gr(p)-1}\}_F = F(a)$. Si

 $\gamma_0, \dots, \gamma_{gr(p)-1} \in F \ni \sum_{i=0}^{gr(p)-1} \gamma_i a^i = 0 \implies \text{sea } h(x) = \sum_{i=0}^{gr(p-1)} \gamma_i x^i \in F[x] \ni h(a) = 0 \text{ y } gr(h) \leq gr(p) - 1 \leq gr(p) \implies \text{como el } gr(p) \text{ es el } m$ ínimo de los polinomios en F[x] satisfechos por $a \implies h(x) = 0 \implies \gamma_0 = \dots = \gamma_{gr(p)-1} = 0 \implies \{1, \dots, a^{gr(p)-1}\}$ es linealmente independiente en F(a) sobre $F \implies \{1, \dots, a^{gr(p)-1}\}$ es una base pero F(a) sobre $F \implies [F(a): F] = gr(p) \in \mathbb{Z}^+$.

• (\iff) Si $[F(a):F] \in \mathbb{Z}^+ \implies \{1, \cdots, a^{[F(a):F]}\}$ por tener [F(a):F] + 1 elementos, es linealmente dependiente en F(a) sobre $F \implies \exists \alpha_0, \cdots, \alpha_{[F(a):F]} \in F$, no todos cero $\ni \sum_{i=0}^{[F(a):F]} \alpha_i a^i = 0 \implies$ sea $f(x) = \sum_{i=0}^{[F(a):F]} \alpha_i x^i \in F[x] - \{0\} \ni f(a) = 0 \implies a$ es algebraico sobre F.

Clase: 22/09/2022

Definición 40. Si F es un campo y K es una extensión de F, entonces $a \in K$ es algebraico grado n sobre F si existe un polinomio no nulo en F[x] de grado $n \in \mathbb{Z}^+$ satisfecho por a, y no existe ningún polinomio en F[x] satisfecho por a de grado menor a n.

Teorema 43 (5C). Si F es un campo, K es una extensión de F y $a \in K$ es algebraico de grado n sobre F, entonces [F(a):F]=n.

Demostración. Úsese la prueba del teorema 5B.

Teorema 44 (5D). Si F es un campo, K es una extensión de F y $a, b \in K$ son algebraicos sobre F, entonces $a \pm b$, ab son algebraicos sobre F. Además, si $b \neq 0$, entonces ab^{-1} es algebraico sobre F. Es decir, el conjunto de elementos de K algebraicos sobre F son un campo.

Demostración. Supóngase que a es algebraico de grado $m \in \mathbb{Z}^+$ sobre F y que b es algebraico de grado $n \in \mathbb{Z}^+$ sobre F. \Longrightarrow por el teorema 5.C. [F(a):F]=m. Por otro lado, $F \subseteq F(a) \implies F \subseteq F(b) \subseteq F(a)(b) \implies b \in F(a)(b)$ es algebraico de grado a lo más n sobre $F \implies b \in F(a)(b)$ es algebraico de grado a lo más n sobre $F(a) \implies$ por teorema 5C $[F(a)(b):F(a)] \le n \implies$ Por teorema 5A, $[F(a)(b):F(a)][F(a):F] \le nm \in \mathbb{Z}^+ \implies F(a)(b)$ es una extensión finita de F. Ahora bien, $a,b \in F(a)(b) \implies a \pm b,ab \in F(a)(b)$ y cuando $b \pm 0,ab^{-1} \in F(a)(b) \implies$ por el teorema 3B, $a \pm b,ab$ son algebraicos sobre F y cuando $b \ne 0,ab^{-1}$ es algebraico sobre F.

Corolario 44.1. Si F es un campo, K es una extensión de F, $a \in K$ es algebraico de grado $m \in \mathbb{Z}^+$ sobre F y $b \in K$ es algebraico de grado $n \in \mathbb{Z}^+$ sobre F, entonces $a \pm b$, ab y cuando $b \neq 0$, ab^{-1} son algebraicos sobre F de grado a lo más mn.

Demostración. Se deduce directamente de la prueba del teorema 5D.

NOTA. Si F es un campo, K es una extensión de F y $a,b \in K$, entonces F(a,b) = F(a)(b) y F(b,a) = F(b)(a).

Proposición 18. Si F es un campo, K es una extensión de F y $a,b \in K$, entonces F(a,b) = F(b,a).

Demostración. Sea $a \in F(a) \implies a \in F(a)(b)$. Además, $b \in F(a)(b)$ y $F \subseteq F(a) \subseteq F(a)(b) \implies F(b) \subseteq F(a)(b) \implies F(b)(a) \subseteq F(a)(b)$. La contención del otro lado es simétrica.

NOTA. Si F es un campo, K es una extensión de F y $\alpha_1, \dots, \alpha_n \in K \implies F(a_1, \dots, a_n)$ es la extensión más pequeña de F que contiene a a_1, \dots, a_n .

Definición 41. Si F es un campo, una extensión K de F es algebraica si todos los elementos de K son algebraicos sobre F.

Teorema 45 (5E). Si F es un campo, L es una extensión algebraica de K y K es una extensión algebraica de F, entonces L es extensión algebraica de F.

Demostración. Sea $l \in L \implies \exists k_1, \dots, k_m \in K \ni \sum_{i=0}^m k_i l^i = 0$. Pero k_1 es algebraico sobre $F \implies$ por el teorema 5BC, $[F(k_1) : F] \in \mathbb{Z}^+$. Ahora bien, k_2 es algebraico sobre $F \implies k_2$ es algebraico sobre $F(k_1)$.

:

Me cansé xd

Definición 42. $a \in \mathbb{C}$ es un número algebraico si es algebraico sobre \mathbb{Q} .

Definición 43. Un número complejo que no es algebraico es trascendente.

Ejemplo 14. e es trascendente

Clase: 27/09/2022

Lema 46 (5.1 (Teorema del residuo)). Si F es un campo, K es una extensión de F, $p(x) \in F[x]$, entonces para todo $k \in K$, existe $q(x) \in K[x]$ tal que gr(q) = gr(p) - 1 y p(x) = (x - k)q(x) + p(k)

Demostración. Sea $F \subseteq K \implies F[x] \subseteq K[x] \implies p(x) \in K[x]$. Por el lema 3.18 (algoritmo de la división) aplicado a p(x) y x - k en K[x], se tiene que existen $q(x), r(x) \in K[x] \ni p(x) = (x - k)q(x) + r(x)$, donde r(x) = 0 o gr(r) < gr(x - k) = 1. Pero $p(k) = (k - k)q(k) + r(k) = 0 \cdot q(k) + r(k) = r(k) \in K \implies p(x) = (x - k)q(x) + p(k)$, con $gr(q) = gr((x - k)q(x)) = gr(x - k) + gr(q) = 1 + gr(q) \implies gr(q) = qr(p) - 1$.

Corolario 46.1. Si F es un campo, K es una extensión F, $p(x) \in F[x]$ y $a \in K$ es una raíz de p(x), entonces (x - a)|p(x).

Definición 44. Si F es un campo y K es una extensión de F y $p(x) \in F[x]$, entonces $a \in K$ es una raíz de p(x) de multiplicidad $m \in \mathbb{Z}^+$, cuando $(x-a)^m|p(x)$ y $(x-a)^{m+1}$ $\not|p(x)$

Lema 47. Un polinomio de grado $n \in \mathbb{Z}^+$ sobre un campo F tiene a lo más n raíces en cualquier extensión de F, contando m raíces en el caso de las raíces de multiplicidad m.

Clase: 29/09/2022

Teorema 48 (5G). Si F es un campo, $p(x) \in F[x]$, $gr(p) \ge 1$, irreducible sobre F, entonces existe E, extensión de F tal que [E:F] = gr(p) y E contiene por lo menos una raíz de p(x).

Demostración. Por el lema 3.22, ((p(x))) es un ideal maximal de F en $F[x] \implies$ por el teorema 3B, F[x]/((p)) es un campo. Si $f(x) + [p(x)] \in F[x]/(p(x))$ con $f(x) \in F[x]$, aplicando el algoritmo de la división en F[x] (lema 3.17), a f(x) y $p(x), \exists q(x), r(x) \in F[x], r(x) = 0 \text{ o } r(x) = \sum_{i=0}^{gr(p)-1} \alpha_i x^i, \text{ i.e. } g(r) < gr(p) \implies$ f(x) + [p(x)] = (q(x)p(x) + r(x)) + [p(x)] = [q(x)p(x) + [p(x)]] + [r(x) + [p(x)]] =[0 + [p(x)]] + [r(x) + [p(x)]] = [p(x)] + [r(x) + [p(x)]] = r(x) + [p(x)] = $\sum_{i=0}^{gr(p)-1} \alpha_i x^i + [p(x)] = \sum_{i=0}^{gr(p)-1} (\alpha_i + [p(x)]) = \sum_{i=0}^{gr(p)-1} \alpha_i (x^i + [p(x)]) =$ $\sum_{i=0}^{gr(p)-1} \alpha_i(x + (p(x)))^i \implies F[x]/(p(x)) = \langle \{1, \cdots, (x + [p(x)])^{gr(p)-1} \} \rangle_F \text{ Sea}$ $\phi: F[x] \to F[x]/(p(x))$. Si $\beta_0, \dots, \beta_{qr(p)-1} \in F \ni ((p(x))) = \sum_{i=0}^{gr(p)-1} \beta_i(x+1)$ $[p(x)]^i = \left(\sum_{i=0}^{gr(p)-1} \beta_i x^i\right) + [p(x)]. \text{ Sea } g(x) = \sum_{i=0}^{gr(p)-1} \beta_i x^i \in F[x] \implies [p(x)] = \sum_{i=0}^{gr(p)-1} \beta_i x^i$ $g(x) + [p(x)] \implies g(x) \in [p(x)] \implies p(x)|g(x) \implies gr(p) - 1 \ge gr(q) \ge$ $gr(p) \implies p(x) = 0 \implies \beta_0 = \dots = \beta_{gr(p)-1} \implies \{1, \dots, (x + [p(x)])^{gr(p)-1}\}$ es linealmente independiente es F[x]/(p(x)) sobre $F \implies \{1, \dots, (x+[p(x)])^{gr(p)-1}\}$ es una base de F[x]/(p(x)) sobre F. Nótese que además, p(x+[p(x)])= $p(x) + [p(x)] = 0 + [p(x)] = [p(x)] \implies x + [p(x)] \in F[x]/(p(x))$ es una raíz de p(x). Si $\phi: F \to F[x]/(p(x)) \ni \phi(\alpha) = \alpha + [p(x)]$ y nótese que $\phi(\alpha_1 + \alpha_2) = (\alpha_1 + \alpha_2) + [p(x)] = (\alpha + [p(x)]) + (\alpha_2 + [p(x)]) = \phi(\alpha_1) + \phi(\alpha_2)$ $y \phi(\alpha_1 \alpha_2) = \alpha_1 \alpha_2 + [p(x)] = (\alpha_1 + [p(x)])(\alpha_2 + [p(x)]) = \phi(\alpha_1)\phi(\alpha_2) \implies \phi$ es un homomorfismo. Sea $\alpha \in K_{\phi} \implies \phi(\alpha) = \alpha + [p(x)] = [p(x)] \implies \alpha \in$ $[p(x)] \implies p(x)|\alpha \implies \alpha = 0 \implies K_{\phi} = (0) \implies \phi$ es inyectivo F está inmerso en $F[x]/(p(x)) \implies$ salvo isomorfismo, $F \subseteq F[x]/(p(x))$ y F[x]/(p(x))es la extensión de F requerida. Si $E = F[x]/(p(x)) \implies [E:F] = gr(p)$ y E contiene una raíz de p(x).

Clase: 04/10/2022

Corolario 48.1. Si F es un campo, $f(x) \in F[x]$, entonces existe una extensión E de F, finita, tal que contiene por lo menos una raíz de f(x) y $[E:F] \leq gr(f)$.

Demostración. Si F contiene a todas las raíces de F, entonces E = F y $[E : F] = [F : F] \le gr(f)$. Si p(x) es un factor de f(x), irreducible sobre F, entonces por el teorema 5.G existe E, extensión de F, tal que contiene una raíz de p(x) y por lo tanto, también de f(x) y $[E : F] = gr(p) \le gr(f)$.

Definición 45. Si F es un campo y $f(x) \in F[x]$, E es un campo de descomposición de f(x) sobre F, si E es una extensión finita de F en la que f(x) puede factorizarse como producto de polinomios lineales sobre E, y esta factorización no es posible sobre ningún subcampo propio de E.

Es decir, E es un campo de descomposición de f(x) sobre F, si E es una extensión finita de F que contiene a todas las raíces de f(x) y [E:F] es mínimo.

Ejemplo 15. Tenemos

$$x^3 - 2 \in \mathbb{Q}(\sqrt[3]{2})[x]$$

en donde:

$$x^{2} - 2 = (x - \sqrt[3]{2})(x^{2} + \sqrt[2]{2}x + (\sqrt[3]{2})^{2})$$

en donde $a_2x^2 + a_1x + a_0$ es irreducible sobre $\mathbb{Q}(\sqrt[3]{2})$, por el teorema 5.B.C.G $\implies \exists E \text{ extensión de } \mathbb{Q}(\sqrt[3]{2}) \ni \alpha_1 = x + (x^2 + \sqrt[3]{2}x + (\sqrt[3]{2})^2) \in \mathbb{Q}[x]/(x^2 + (\sqrt[3]{2})^2) \sim \mathbb{Q}(\sqrt[3]{2})(\alpha_1)$. Tenemos:

$$[\mathbb{Q}(\sqrt[3]{2})(\sqrt[3]{2}w):\mathbb{Q}(\sqrt[3]{2})]=2$$

$$[\mathbb{Q}(\sqrt[3]{2},\sqrt[3]{2}w):\mathbb{Q}] =$$

Teorema 49 (5H-Existencia de los campos de descomposición). Si F es un campo, $f(x) \in F[x]$ y $gr(f) \ge 1$, entonces existe una extensión de F, de grado a lo más gr(f)! tal que contiene a las gr(f) raíces de f(x).

Demostración. Procediendo por inducción sobre gr(f):

- 1. Si $gr(f) = 1 \implies f(x) = a_1x + a_0$, con $a_1, a_0 \in F, a_1 \neq 0 \implies -a_0/a_1 \in F$ es raíz de $f(x) \implies F$ es la extensión requerida de F, con [F:F] = 1.
- 2. Supóngase el teorema válido para todos los polinomios en F[x] de grado menor a gr(f).
- 3. Por el corolario al teorema 5G, existe E_0 extensión de F, $[E_0:F] \leq gr(f)$ y $\exists \alpha \in E_0 \ni f(\alpha) = 0$. \Longrightarrow por el teorema del residuo (lema 3.1) y su corolario, $\exists q(x) \in E_0(x) \ni (x \alpha)q(x) = f(x) \Longrightarrow gr(f) = gr(x \alpha) + gr(q) = 1 + gr(q) > gr(q) \Longrightarrow$ por la hipótesis inductiva, $\exists E$, extensión de E_0 , $[E:E_0] \leq gr(q)!$ y todas las raíces de q(x) están contenidas en E. Ahora bien, $\alpha \in E_0 \subseteq E \Longrightarrow \alpha \in E \Longrightarrow E$ contiene a todas las raíces de f(x). Además, por el teorema $\exists A, [E:F] = [E:E_0][E_0:F] \leq ((gr(f)-1)!)(gr(f)) = gr(f)!$

NOTA. Si F es un campo y $f(x) \in F[x]$, el teorema 5H garantiza la existencia de E, extensión de F, que contiene a todas las raíces de f(x) y $[E:F] \leq gr(f)! \Longrightarrow \{E:[E:F] \in \mathbb{Z}^+ \ y \ todas las raíces de <math>f(x)$ están contenidas en $E\} \neq \varnothing \Longrightarrow$ existe un elemento de este conjunto $\ni [E:F]$ es mínimo, y en ese caso, un campo de descomposición de f(x) sobre F.

NOTA. Se verá más adelante que existen campos F y polinomios $f(x) \in F[x]$, cuyos campos de descomposición E sobre F alcanzan la cota superior [E:F]=gr(f)!. Por ejemplo, $x^3-2\in\mathbb{Q}[x]$, se demostrará que si E es el campo de descomposición de x^3-2 sobre \mathbb{Q} entonces $[E:\mathbb{Q}]=6=3!=gr(x^3-2)!$

NOTA. Si F es un campo, $f(x) \in F[x]$ y E_1, E_2 son campos de descomposición de f(x) sobre F. ¿Existe alguna relación entre E_1 y E_2 ?

Clase: 24/11/2022

Lema 50 (5.3). Si F y F' son campos, $\tau : F \to F'$ es un isomorfismo, entonces $\tau^* : F[x] \to F'[t] \ni f(x) = \sum_{i=0}^n \alpha_i x^i \in F[x] \to \tau^*(f(x)) = \tau * (\sum_{i=0}^n \alpha_i x^i) = \sum_{i=0}^n \tau(\alpha_i) t^i = \sum_{i=0}^n \alpha'_i t^i$.

Demostración. Si $f(x) = \sum_{i=0}^{m} \alpha_i x^i, g(x) = \sum_{j=0}^{n} \beta_j x^j \in F[x] \implies$

$$\begin{split} \tau^*(f(x) + g(x)) &= \tau^* \left(\sum_{i=0}^m \alpha_i x^i + \sum_{i=0}^n \beta_j x^j \right) \\ &= \tau^* \left(\sum_{k=0}^{\max(m,n)} (\alpha_k + \beta_k) x^k \right) \\ &= \sum_{k=0}^{\max(m,n)} \tau(\alpha_k + \beta_k) t^k \\ &= \sum_{k=0}^{\max(m,n)} (\tau(\alpha_b) + \tau(\beta_k)) t^k \\ &= \sum_{k=0}^{\max(m,n)} (\alpha_k' + \beta_k') t^k = \sum_{i=0}^m \alpha_i' t^i + \sum_{j=0}^n \beta_j' t^j \\ &= \sum_{i=0}^m \tau(\alpha_i) t^i + \sum_{j=0}^n \tau(\beta_j) t^j \\ &= \tau^* (\sum_{i=0}^m \alpha_i x^i) + \tau^* (\sum_{j=0}^n \beta_j x^j) = \tau^* (f(x)) + \tau^* (g(x)) \end{split}$$

Además,

$$\tau^*(f(x)g(x)) = \tau^* \left(\left(\sum_{i=0}^m \alpha_i x^i \right) \left(\sum_{j=0}^n \alpha_j x^j \right) \right)$$

$$= \tau^* \left(\sum_{k=0}^{m+n} \left(\sum_{l=0}^k \alpha_l \beta_{k-l} \right) x^k \right)$$

$$= \sum_{k=0}^{m+n} \tau \left(\sum_{l=0}^k \alpha_l \beta_{k-l} \right) t^k$$

$$= \sum_{k=0}^{m+n} \left(\sum_{l=0}^k \tau(\alpha_l \beta_{k-l}) t^k \right)$$

$$= \sum_{k=0}^{m+n} \left(\sum_{l=0}^k \tau(\alpha_l) \tau(\beta_{k-l}) \right) t^k$$

$$= \cdots$$

$$= \tau^* \left(\sum_{i=0}^m \alpha_i x^i \right) \tau^* \left(\sum_{j=0}^n \beta_j x^j \right)$$

Entonces τ^* es homomorfismo.

Si $f(x) \in K_{\tau^*} \implies 0 = \tau^*(f(x)) = \tau^* \left(\sum_{i=0}^m \alpha_i x^i\right) = \sum_{i=0}^m \tau(\alpha_i) t^i \implies 0 = \tau(\alpha_0) = \cdots = \tau(\alpha_m) \implies \text{como } \tau \text{ es isomorfismo, } 0 = \alpha_0 = \cdots = \alpha_m \implies f(x) = 0 \implies K_{\tau^*} = 0 \implies \text{por lema } 3.5 \text{ , } \tau^* \text{ es inyectivo.}$

Si $f(t) \in F'[t] \implies \exists \alpha'_0, \dots, \alpha'_m \in F' \ni f(t) = \sum_{i=0}^m \alpha'_i t^i \implies \text{por la sobre-}$ yectividad de $\tau, \exists \alpha_0, \dots, \alpha_m \in F \ni \tau(\alpha_0) = \alpha'_0, \dots, \tau(\alpha_m) = \alpha'_m \implies f(x) = \sum_{i=0}^m \alpha_i x^i \in F[x] \ni \tau^*(f(x)) = \tau^*(\sum_{i=0}^m \alpha_i x^i) = \sum_{i=0}^m \tau(\alpha'_i) t^i = \sum_{i=0}^m \alpha'_i t^i = f(t) \implies \tau^* \text{ es sobreyectivo.} \implies \tau^* \text{ es isomorfismo.}$

NOTA. En los teoremas 5BCG se recurrió al cociente F[x]/(p(x)) para obtener una extensión finita de F que contenga una raíz de p(x). Por esta razón se estudiará la relación entre los cocientes entre el anillo F[x]/(f(x)) y F'[t]/(f(t)) cuando $F[x] \sum F'[t]$

Lema 51 (5.4). Si F y F' son campos, τ y τ^* definidos como en el lema 5.3, entonces $\tau^{**}: F[x]/(f(x)) \to F'[t]/(f'(t))$, isomorfismo, tal que $\tau^{**}(\alpha) = \tau(\alpha) = \alpha', \forall \alpha \in F$.

Demostración. Considérese la identificación isomorfica $\alpha \approx \alpha + [f(x)], \forall \alpha \in F$ y con ello $F \subseteq F[x]/((f(x)))$. De manera similar, $\alpha' \approx \alpha' + [f'(t)], \forall \alpha' \in F' \Longrightarrow F' \subseteq F'[t]/(f'(t))$. Sea $\tau^{**}: F[x]/(f(x)) \to F'[t]/(f'(t)) \ni \tau^{**}(g(x) + [f(x)]) = \tau^{**}(g(x)) + [f'(t)] = g'(t) + [f'(t)]$ y nótese que si $\alpha \in F \Longrightarrow \tau^{**}(\alpha) = \tau^{**}(\alpha + [f(x)]) = \tau'(\alpha) + [f'(t)] = \tau(\alpha) + [f'(t)] = \alpha' + [f'(t)] \approx \alpha'$.

Demostrar que está bien definido, si $g_1(x), g_2(x) \in F[x] \ni g_1(x) + [f(x)] = g_2(x) + [f(x)] = g_1(x) \equiv g_2(x) \mod (f(x)) \implies g_1(x) - g_2(x) \in (f(x)) \implies f(x)|g_1(x) - g_2(x) \implies \exists q(x) \in F[x] \ni f(x)q(x) = g_1(x) - g_2(x) \implies f'(t)q'(t) = \tau^*(f(x))\tau^*(q(x)) = \tau^*(f(x)q(x)) = \tau^*(g_1(x) - g_2(x)) = \tau^*(g_1(x)) - \tau^*(g_2(x)) = g'_1(t) - g'_2(t) \implies f'(t)|g'_1(t) - g'_2(t) \implies g'_1(t) - g'_2(t) \in (f(t)) \implies g'_1(t) \equiv g'_2(t) \mod (f'(t)) \implies \tau^*(g(t) + [f(x)]) = \tau^*(g_1(x)) + (f'(t)) = g'_1(t) + [f'(t)] = g'_2(t) + [f'(t)] = \tau^*(g_2(x)) + (f'(t)) = \tau^{**}(g_2(x) + f(x)) \implies \tau^{**} \text{ es una función bien definida.}$

Homomorfismo. Si $g_1(x), g_2(x) \in F[x] \Longrightarrow \tau^{**}((g_1(x) + [f(x)]) + (g_2(x) + (f(x))) = \tau^{**}((g_1(x) + g_2(x)) + [f(x)]) = \tau^{*}(g_1(x) + g_2(x)) + [f'(t)] = \tau^{*}(g_1(x) + g_2(x)) + [f'(t)] = \tau^{*}(g_1(x) + f'(t)] = \tau^{*}(g_1(x) + f'(t)] + \tau^{*}(g_2(x) + [f'(t)]) = \tau^{**}(g_1(x) + [f'(t)]) + \tau^{**}(g_2(x) + [f'(t)]) = \tau^{**}(g_1(x) + [f(x)]) + \tau^{**}(g_2(x) + [f(x)]) = \tau^{*}(g_1(x) + [f(x)]) = \tau^{*}(g_1(x) + [f(x)]) = \tau^{*}(g_1(x) + [f(x)]) = \tau^{*}(g_1(x) + [f(x)]) = \tau^{**}(g_1(x) + [g_1(x)]) = \tau^{**}(g_1(x) + [g_1(x)])$

Sea $f(x) + [f(x)] \in K_{\tau^{**}} \implies (f'(t)) = \tau^{**}(g(x) + [f(x)]) = \tau^{*}(g(x)) + [f'(t)] =$ $g'(t) + [f'(t)] \implies g'(t) \in (f'(t)) \implies f'(t)|g'(t) \implies \exists q'(t) \in F'[t] \ni$ f'(t)q'(t) = g'(t). Por la sobreyectividad de $\tau^{*}, \exists q(x) \in F[x] \ni \tau^{*}(q(x)) =$ $q'(t) \implies f(x)q(x) = (\tau^{*})^{-1}(f'(t))(\tau^{*})^{-1}(q'(t)) = (\tau^{*})^{-1}(f'(t)q'(t)) =$ $(\tau^{*})^{-1}(g'(t)) = g(x) \implies f(x)|g(x) \implies g(x) \in (f(x)) \implies g(x) + [f(x)] =$ $[f(x)] \implies K_{\tau^{**}} = (f(x)) \implies \text{por el lema } 3.5, \tau^{**} \text{ es inyectivo.}$

Si $g'(t) + (f'(t)) \in F'[t]/(f'(t)) \implies g'(t) \in F'[t]$ y por la sobreyectividad de $\tau^* \ni g(x) \in F[x] \ni \tau^*(g(x)) = g'(t) \implies g(x) + [f(x)] \in F[x]/(f(x)) \ni \tau^{**}(g(x) + [f(x)]) = \tau^*(g(x)) + (f'(t)) = g'(t) + [f'(t)] \implies \tau^{**}$ es sobreyectivo. $\implies \tau^{**}$ es isomorfismo.

Lema 5.4 es un lema de presentación más avanzada de teoría de anillos.

Clase: 25/11/2022

Teorema 52 (5I). Si F y F' son campos, $\tau: F \to F'$ es un isomorfismo, $p(x) \in F[x]$ es irreducible sobre F y v es una raíz de p(x), entonces existe $\sigma: F(v) \to F'(w)$, isomorfismo, donde w es una raíz de $p'(t) = \tau^*(p(x))$, y este isomorfismo σ puede elegirse tal que:

1.
$$\sigma(v) = w$$

2. $\sigma(\alpha) = \tau(\alpha) = \alpha', \forall \alpha \in F$. Es decir, σ deja fijos (salvo el isomorfismo) a los elementos de F

Demostración. Considere $M = \{f(x) \in F[x] : f(v) = 0\}$. Si $f_1(x), f_2(x) \in M \implies f_1(v) - f_2(v) = 0 - 0 = 0 \implies f_1(x) - f_2(x) \in M \implies \text{por}$ el corolario al lema 2.3 (M, +) es subgrupo de (F[x], +). Si $g(x) \in F[x]$ y $f(x) \in M \implies g(v)f(v) = g(v) = 0 = 0 \implies g(x)f(x) \in M \implies M$ es un ideal de F[x]. Además, $p(v) = 0 \implies p(x) \in M \implies (p(x)) \subseteq M$. Como existen polinomios en F[x], no satisfechos por $v \implies M \subset F[x]$, no satisfechos por $v \implies M \subset F[x]$. Pero, siendo p(x) irreducible sobre F, por el lema 3.22, (p(x)) es un ideal maximal en $F[x] \implies M = (p(x))$. Considérese el homomorfismo $\psi : F[x] \to F[v] \ni \psi(f(x)) = f(v)$ empleando los argumentos de la prueba de los teoremas 5.B.C.G, ψ es un homomorfismo $\ni K_{\psi} = M = (p(x))$ y existe $\psi^*F[x]/(p(x)) \to F(v) \ni \psi^*(f(x) + [p(x)]) = f(v)$, isomorfismo.

$$F[x]/(p(x)) \approx F(v)$$

F[x]
$$\varphi$$
 $f(F[x]) \subseteq F(V)$
 $f(F[x]) \subseteq F(X)$
 $f(F[x]) \subseteq F(X)$

Como p(x) es irreducible en F[x] y por el lema 5.3 $\tau^*: F[x] \to F'[t]$ es un isomorfismo entonces $\tau^*(p(x)) = p'(t)$ es irreducible en F'[t]. Entonces replicando los argumentos ya usados, existe $\theta^*: F'[t]/(p'(t)) \to F(w) \ni \theta^*(f'(t) + [p'(t)]) = f'(w)$, isomorfismo. Además, por el lema 5.4, $\tau^{**}: F[x]/(p(x)) \to F'[t]/(p'(t)) \ni \tau^{**}(f(x) + [p(x)]) = f'(t) + (p'(t))$ es un isomorfismo de campos \ni si $\alpha \in F \implies$

 $\tau^{**}(\alpha) \approx \tau^{**}(\alpha + (p(x))) = \tau(\alpha) + (p'(t)) = \alpha' + (p'(t)) \approx \alpha' \text{ y } \tau^{**}(x + (p(x))) = \tau^{*}(x) + (p'(t)) = t + (p'(t)). \text{ Considérese el siguiente diagrama:}$

Si F = F' (automorfismo), y donde $\sigma : F(v) \to F(w)$ y más precisamente $\sigma|_F = I_F$

y la función $\sigma = (\psi^*)^{-1}\tau^{**}\theta^*$: $F(v) \to F'(w)$, un isomorfismo, por ser la composición de isomorfismos. Nótese que $\sigma(v) = (\psi^*)^{-1}\tau^{**}\theta^{**}(v) = \theta^{**}(\tau^{**}(\psi^{*-1}(v))) = {}_{5B} = \theta^{**}(\theta^{**}(x+(p(x)))) = \theta^{**}(t+(p'(t))) = w y si$ $\alpha \in F \implies \sigma(\alpha) = \psi^{*-1}\tau^{**}\theta^{**}(\alpha) = \theta^{**}(\theta^{**}(\psi^{*-1}(\alpha))) = \theta^{**}(\tau^{**}(\alpha+p(w))) = \theta^{**}(\tau^{*}(\alpha)+(p'(t))) = {}_{5.3} = \theta^{**}(\tau(\alpha)+p'(t)) = \theta^{**}(\alpha'+(p'(t))) = \alpha'.$

Corolario 52.1. Si F es un campo, $p(x) \in F[x]$ es irreducible sobre F y a, b son raíces de p(x) entonces existe $\sigma : F(a) \to F(b)$, isomorfismo, tal que $\sigma(a) = b$ y $\sigma(\alpha) = \alpha, \forall \alpha \in F$.

Demostración. Aplíquese el teorema 5I al caso especial F = F' y $\tau = I_F$.

Clase: 13/11/2022

Teorema 53 (5J- Unicidad de los campos de descomposición). Si F y F' son campos, τ, τ^* y τ^{**} definidos como en los lemas 5.3 y 5.4 $f(x) \in F[x]$, $f'(t) = \tau^*(f(x)) \in F'[t]$, E es un campo de descomposición de f(x) sobre F y E' es un campo de descomposición de f'(t) sobre F', entonces existe $\phi: E \to E'$, isomorfismo tal que $\phi(\alpha) = \tau(\alpha) = \alpha', \forall \alpha \in F$

Demostración. Procediendo sobre [E:F]:

- 1. $[E:F]=1 \implies E$ es un espacio vectorial de dimensión 1 sobre $F \implies \exists \{a\} \subseteq E \ni \{a\}$ es base E sobre $F \implies \text{como } E \neq \{0\}, a \neq 0$ y además como $E = \langle \{a\} \rangle_F$ y $1 \in E \implies \exists \alpha \in F \{0\} \ni 1 = \alpha a \implies a = \alpha^{-1} \cdot 1 = \alpha^{-1} \in F \implies F = \langle \{a\} \rangle_F = E \implies F = E$ es campo de descomposición de f(x) sobre F. Sea $\phi = \tau \implies E = F \approx F'$. Por el lema 5.3, por lo que τ^* es un isomorfismo $\implies f(x)$ y f'(t) tienen las mismas raíces, salvo $\tau^* \implies F'$ contiene a todas las raíces de $f'(t) \implies E' \subseteq F'$. Pero E' es extensión de $F' \implies E' = F'$. Sea $\phi = \tau$, el isomorfismo requerido y $E \approx E'$.
- 2. Supóngase el teorema válido para todos los polinomios $g(x) \in F_0[x]$ con campo de descomposición E_0 sobre F_0 tales que $[E_0:F_0]<[E:F]$, si E'_0 es el campo de descomposición de $g'(t)=\tau^*(g(x))$, entonces $E_0\approx E'_0$ y $[E_0:F'_0]=[E'_0:F'_0]$.
- 3. Si $[E:F] > 1 \implies$ existen raíces de f(x) que no pertenecen a $F \implies \exists p(x) \in F[x]$ irreducible sobre $F \ni p(x)|f(x)$ y $1 < gr(p) \le gr(f) \implies$ por lema 5.3, τ^* es isomorfismo $p'(t) = \tau^*(p(x))$ es un factor irreducible de f'(t) y $1 < gr(p') = gr(p) \le gr(f) = gr(f')$. Sea $v \in E$ una raíz de $p(x) \implies$ por el teorema 5.C, [F(v):F] = gr(p). Sea $w \in E'$ una raíz de $p'(t) \implies$ por el teorema 5I, $\exists \sigma F(v) \to F'(w)$ isomorfismo y es tal que $\sigma(v) = w$ y $\sigma(\alpha) = \tau(a) = \alpha'$. Por el teorema 5A, [E:F] = [E:F(v)][F(v):F] y como $[F(v):F] = gr(p) > 1 \implies [E:F(v)] = [E:F]/[F(v):F] < [E:F]$. Considérese ahora a $f(x) \in F(v)[x]$. Si E no es campo de descomposición de f(x) sobre $F(v) \implies$ por el teorema 5H $\exists E_1$ campo de descomposición de f(x) sobre $F(v) \implies$ $[E:F(v)] > [E_1:F(v)] \implies$ por el teorema 5A, $[E:F] = [E:F(v)] > [E_1:F(v)] \implies$ por el teorema 5A, $[E:F] = [E:F(v)] > [E_1:F(v)] \implies$ por el teorema

no es campo de descomposición de f(x) sobre $F(\to \leftarrow) \Longrightarrow E$ es campo de descomposición de f(x) sobre F(v). Replicando este argumento, E' es campo de descomposición de f'(t) sobre F'(w). Aplicando la hipótesis inductiva a $f(x) \in F(v)[x]$, E es campo de descomposición de f(x) sobre F(v) y [E:F(v)] < [E:F], entonces existe $\phi:E\to E'$, isomorfismo $\ni \phi(\alpha) = \tau(\alpha) = \alpha', \forall \alpha \in F$.