

## 第十一讲 不等式证明技巧 2

**例1.** 已知实数  $a \cdot b \cdot c$  满足  $a^2 + b^2 + c^2 = 3$ . 求证:  $a^3(b+c) + b^3(c+a) + c^3(a+b) \le 6$ .

证: 由  $a^2 + b^2 + c^2 = 3$ , 本题即证  $a^3(b+c) + b^3(c+a) + c^3(a+b) \le \frac{2}{3}(a^2 + b^2 + c^2)^2$ . 展开得  $2(a^4 + b^4 + c^4) + 4(a^2b^2 + b^2c^2 + c^2a^2) - 3(a^3b + ab^3 + b^3c + bc^3 + c^3a + ca^3) \ge 0$ .

类似可得 $b^4 - 3b^3c + 4b^2c^2 - 3bc^3 + c^4 \ge 0$ ,  $a^4 - 3a^3c + 4a^2c^2 - 3ac^3 + c^4 \ge 0$ .

相加即可得证.

**例2.** 已知 a、b、c 为正实数,且满足  $a^2+b^2+c^2=1$ ,求证:  $\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b} \ge \sqrt{3}$ .

证: 设 $\frac{ab}{c} = x, \frac{bc}{a} = y, \frac{ca}{b} = z$ , 则由 $a^2 + b^2 + c^2 = 1$ 可得xy + yz + zx = 1.

故 $(x+y+z)^2 \ge 3(xy+yz+zx)=3$ .

所以 $x+y+z \ge \sqrt{3}$ ,不等式得证.

**例3.** 设  $a \times b \times c$  是一个三角形的三条边,且 a+b+c=1,

求证:  $a^2 + b^2 + c^2 + 4abc < \frac{1}{2}$ .

证: 设 $\frac{b+c-a}{2} = x$ ,  $\frac{c+a-b}{2} = y$ ,  $\frac{a+b-c}{2} = z$ .

由于 a、b、c 是一个三角形的三条边,故 x、y、z 为正实数.

此时 a = y + z, b = x + z, c = x + y, 且  $x + y + z = \frac{1}{2}$ . 代入原式,

即证 $(x+y)^2 + (y+z)^2 + (z+x)^2 + 4(x+y)(y+z)(z+x) < \frac{1}{2}$ .

将此式归一化为齐次式,即证

 $2(x+y+z)\Big[(x+y)^2+(y+z)^2+(z+x)^2\Big]+4(x+y)(y+z)(z+x)<4(x+y+z)^3.$ 

展开可知上式等价于xyz>0. 显然成立.

综上即可得证.

**例4.** 已知 $a \times b \times c$  为非负实数,a+b+c=1.

求证:  $(1-a^2)^2 + (1-b^2)^2 + (1-c^2)^2 \ge 2$ .

证一: 原不等式展开即证 $a^4 + b^4 + c^4 - 2(a^2 + b^2 + c^2) + 1 \ge 0$ .

齐次化后等价于证明  $a^4 + b^4 + c^4 - 2(a^2 + b^2 + c^2)(a + b + c)^2 + (a + b + c)^4 \ge 0$ .

展开可知即证  $2(a^2b^2+b^2c^2+c^2a^2)+8abc(a+b+c) \ge 0$ . 显然成立.



证二:设ab+bc+ca=m, abc=n.则m、n为非负实数.

则 
$$a^2 + b^2 + c^2 = 1 - 2m$$
 ,  $a^2b^2 + b^2c^2 + c^2a^2 = m^2 - 2n \times 1 = m^2 - 2n$  ,

$$a^4 + b^4 + c^4 = (a^2 + b^2 + c^2)^2 - 2(a^2b^2 + b^2c^2 + c^2a^2) = (1 - 2m)^2 - 2(m^2 - 2n) = 2m^2 - 4m + 4n + 1$$
,

左式=
$$a^4+b^4+c^4-2(a^2+b^2+c^2)+3=2m^2-4m+4n+1-2(1-2m)+3=2m^2+4n+2\geq 2$$
.

综上即可得证.

**例5.** 已知 x、y、z、w 是四个不全为零的实数,求  $\frac{xy + 2yz + zw}{x^2 + y^2 + z^2 + w^2}$  的最大值.

解: 设最大值为 t. 则不等式  $xy + 2yz + zw \le t(x^2 + y^2 + z^2 + w^2)$  对任意实数 x、y、z、w 恒成立. 此时即求使得该式成立的 t 的最小值.

注意 
$$y^2+z^2 \ge 2yz$$
 ,故只需  $tx^2+(t-1)y^2 \ge xy$  ,  $tw^2+(t-1)z^2 \ge zw$  成立即可. 此时只需  $t(t-1) \ge \frac{1}{4}$  ,舍去负数情况,可得  $t \ge \frac{\sqrt{2}+1}{2}$  .

先证明 
$$\frac{\sqrt{2}+1}{2}(x^2+y^2+z^2+w^2) \ge xy+2yz+zw$$
. 利用均值不等式,有  $\frac{\sqrt{2}+1}{2}x^2+\frac{\sqrt{2}-1}{2}y^2 \ge xy$ ,  $y^2+z^2 \ge 2yz$ ,  $\frac{\sqrt{2}-1}{2}z^2+\frac{\sqrt{2}+1}{2}w^2 \ge zw$  相加即可得证.

再取 y=z=1,  $x=w=\sqrt{2}-1$  ,可使得等号成立. 故所求式子的最大值为  $\frac{\sqrt{2}+1}{2}$  .

**例6.** (1) 已知 
$$\frac{1}{2} \le x \le 1$$
,求  $(1+x)^5 (1-x)(1-2x)^2$  的最大值.

- (2) 求函数  $y = \sqrt{x+27} + \sqrt{13-x} + \sqrt{x}$  的最大值.
- (1) 解: 取正实数 a、b, 考虑下列变形:

曲均值不等式
$$(1+x)^5(1-x)(1-2x)^2 = (1+x)^5(1-x)(2x-1)^2 = \frac{1}{a^5b}(a+ax)^5(b-bx)(2x-1)^2$$

$$\leq \frac{1}{a^5b} \cdot \left[ \frac{5(a+ax) + (b-bx) + 2(2x-1)}{8} \right]^8 = \frac{1}{2^{24}a^5b} \left[ (5a-b+4)x + (5a+b-2) \right]^8$$
 此时要使得  $5a-b+4=0$ ,且  $a+ax=b-bx=2x-1$ .后者可得  $\frac{a+1}{2-a} = x = \frac{b+1}{b+2}$ .解得  $a=\frac{2}{5}$ ,  $b=6$ .  
代入上式,可得  $x=\frac{7}{8}$  时,原式取最大值  $\frac{3^75^5}{2^{22}}$ .

(2) 取正实数 
$$a$$
、 $b$ ,考虑柯西不等式 $\left(a(x+27)+b(13-x)+x\right)\left(\frac{1}{a}+\frac{1}{b}+1\right) \ge y^2$  此时需要  $a-b+1=0$ ,且由等号成立条件得  $a^2(x+27)=b^2(13-x)=x$  整理得  $40a^4+80a^3+54a^2-26a-13=0$ .

解得 $a = \frac{1}{2}$ ,  $b = \frac{3}{2}$ . 代入上式,可得x = 9时,原式取最大值为 11.