Eero Hakavuori

University of Jyväskylä

May 13, 2019

Theorem

If $(V, \|\cdot\|)$ is a normed space with

∥⋅∥ strictly convex,

- geodesics $[a, b] \hookrightarrow V$ are line segments
- isometric embeddings $W \hookrightarrow V$ are affine.

Theorem

If $(G, \|\cdot\|)$ is a sub-Finsler Carnot group with

- *G step 2*
- ||·|| strictly convex,

- *infinite* geodesics $\mathbb{R} \hookrightarrow G$ are lines
- isometric embeddings $H \hookrightarrow G$ are affine.

Theorem

If $(G, \|\cdot\|)$ is a sub-Finsler Carnot group with

- *G step 2*
- ||·|| strictly convex,

- infinite geodesics $\mathbb{R} \hookrightarrow G$ are lines
- isometric embeddings $H \hookrightarrow G$ are affine.

Carnot groups

Definition

A sub-Finsler Carnot group consists of

- a Lie group G,
- ullet a horizontal subspace $V_1\subset \mathfrak{g}$, and
- ullet a norm $\|\cdot\|\colon V_1 o\mathbb{R}$

such that \mathfrak{g} is stratified:

$$V_{k+1} := [V_1, V_k] \implies egin{cases} \mathfrak{g} = V_1 \oplus V_2 \oplus \cdots \oplus V_s \ V_{s+1} = \{0\} \end{cases}$$

Carnot groups

Definition

A sub-Finsler Carnot group consists of

- a Lie group G,
- ullet a horizontal subspace $V_1\subset \mathfrak{g}$, and
- ullet a norm $\lVert \cdot
 Vert \colon V_1 o \mathbb{R}$

such that $\mathfrak g$ is stratified:

$$V_{k+1} := [V_1, V_k] \implies egin{cases} \mathfrak{g} = V_1 \oplus V_2 \oplus \cdots \oplus V_s \ V_{s+1} = \{0\} \end{cases}$$

step
$$2 \iff \mathfrak{g} = V_1 \oplus V_2$$

Metric and dilations

• A left-invariant geodesic metric:

$$d(g,h) = \min \left\{ \int_0^1 \lVert \dot{\gamma}(t) \rVert dt : \dot{\gamma}(t) \in V_1, \ \frac{\gamma(0) = g}{\gamma(1) = h} \right\}$$

• \mathfrak{g} stratified $\Longrightarrow \exists$ dilations $\delta_{\lambda} \colon G \to G$:

$$\delta(\exp(X_1 + \dots + X_s)) = \exp(\lambda X_1 + \dots + \lambda^s X_s)$$

$$\stackrel{\cap}{V_1} \qquad \stackrel{\nabla}{V_s}$$

$$d(\delta_{\lambda}(g), \delta_{\lambda}(h)) = \lambda d(g, h).$$

Affinity

In a normed space V:

Definition

affine = composition of a translation and a linear map

Definition

line =
$$t \mapsto y + tx$$

 $=\quad \text{a curve through }y\in V \text{ with constant derivative }x\in V$

Affinity

In a Carnot group G:

Definition

affine = composition of a left translation and a homomorphism

Definition

```
line = t \mapsto g \exp(tX)
```

= a curve through $g \in G$ with constant derivative $X \in \mathfrak{g}$

The horizontal space

• V_1 generates $\mathfrak{g} \implies \exp(V_1)$ generates G:

$$g \in G \implies \exists g_1, \dots, g_m \in \exp(V_1) : g = g_1 g_2 \dots g_m$$

Definition (Horizontal projection)

The horizontal projection is a submetry

$$\pi(B_d(g,r)) = B_{\|\cdot\|}(\pi(g),r)$$

and a homomorphism

$$\pi(gh) = \pi(g) + \pi(h).$$

Theorem

If $(G, \|\cdot\|)$ is a sub-Finsler Carnot group with

- G step 2
- ||·|| strictly convex,

- infinite geodesics $\mathbb{R} \hookrightarrow G$ are lines
- isometric embeddings $H \hookrightarrow G$ are affine.

Theorem

If $(G, \|\cdot\|)$ is a sub-Finsler Carnot group with

- *G step 2*
- $\|\cdot\|$ strictly convex,

then

- infinite geodesics $\mathbb{R} \hookrightarrow G$ are lines
- isometric embeddings $H \hookrightarrow G$ are affine.

In fact, in step 2:

The immediate implications

```
 \| \cdot \| \text{ strictly convex} \quad &\longleftarrow \quad \text{infinite geodesics are lines} \\ &\longleftarrow \quad \text{isometric embeddings are affine}
```

The immediate implications

- $\|\cdot\|$ not strictly convex \implies \exists non-line infinite geodesics
- In a normed space:

The immediate implications

 $\|\cdot\|$ not strictly convex \implies \exists non-line infinite geodesics

• In a normed space:

unit ball an infinite geodesic

• In a Carnot group:

geodesic in $(V_1, \|\cdot\|) \stackrel{\mathsf{lift}}{\Longrightarrow} \mathsf{geodesic}$ in G

 $H \hookrightarrow G$ are affine.

From geodesics to embeddings

 $\mathbb{R} \hookrightarrow G$ are lines

Theorem

In every sub-Finsler Carnot group G:

infinite geodesics \implies isometric embeddings

4D > 4A > 4B > 4B > B 990

Theorem

In every sub-Finsler Carnot group G:

 $\begin{array}{c} \textit{infinite geodesics} \\ \mathbb{R} \hookrightarrow \textit{G are lines} \end{array} \implies \begin{array}{c} \textit{isometric embeddings} \\ \textit{H} \hookrightarrow \textit{G are affine.} \end{array}$

• Balogh, Fässler and Sobrino (2018) for Heisenberg groups.

Theorem

In every sub-Finsler Carnot group G:

 $\begin{array}{c} \textit{infinite geodesics} \\ \mathbb{R} \hookrightarrow \textit{G are lines} \end{array} \implies \begin{array}{c} \textit{isometric embeddings} \\ \textit{H} \hookrightarrow \textit{G are affine.} \end{array}$

- Balogh, Fässler and Sobrino (2018) for Heisenberg groups.
- Idea:
 - **1** $\varphi: H \hookrightarrow G$ isometric embedding, $\varphi(1_H) = 1_G$.
 - ② Foliate H by horizontal lines $t \mapsto h \exp_H(tX)$, $h \in H$, $X \in V_1^H$.
 - **3** Study foliation of $\varphi(H)$ by infinite geodesics $t \mapsto \varphi(h \exp_H(tX))$.

3 Study foliation by infinite geodesics $t \mapsto \varphi(h \exp_H(tX))$.

- **3** Study foliation by infinite geodesics $t \mapsto \varphi(h \exp_H(tX))$.
 - Geodesic linearity $\implies \varphi$ maps lines to lines:

$$\varphi(\exp_H(tX)) = \exp_G(tY), \quad Y \in V_1^G$$

$$\varphi(h \exp_H(tX)) = \varphi(h) \exp_G(tZ), \quad Z \in V_1^G.$$

- **3** Study foliation by infinite geodesics $t \mapsto \varphi(h \exp_H(tX))$.
 - Geodesic linearity $\implies \varphi$ maps lines to lines:

$$\varphi(\exp_H(tX)) = \exp_G(tY), \quad Y \in V_1^G$$

$$\varphi(h \exp_H(tX)) = \varphi(h) \exp_G(tZ), \quad Z \in V_1^G.$$

Consider the distance

$$d(\exp_H(tX), h \exp_H(tX)) = d(\exp_G(tY), \varphi(h) \exp_G(tZ)).$$

Parallel lines diverge sublinearly:

Lemma

$$d(\exp(tA), h\exp(tB)) = o(t)$$
 as $t \to \infty \iff A = B$.

Parallel lines diverge sublinearly:

Lemma

In a Carnot group $\forall h \in G \ \forall A, B \in V_1$

$$d(\exp(tA), h\exp(tB)) = o(t) \text{ as } t \to \infty \iff A = B.$$

• $d(\exp_H(tX), h \exp_H(tX)) = d(\exp_G(tY), \varphi(h) \exp_G(tZ))$ $\implies Y = Z$

Parallel lines diverge sublinearly:

Lemma

$$d(\exp(tA), h\exp(tB)) = o(t) \text{ as } t \to \infty \iff A = B.$$

•
$$d(\exp_H(tX), h \exp_H(tX)) = d(\exp_G(tY), \varphi(h) \exp_G(tZ))$$

 $\implies Y = Z$
 $\implies \varphi(h \exp_H(tX)) = \varphi(h)\varphi(\exp_H(tX)).$

Parallel lines diverge sublinearly:

Lemma

$$d(\exp(tA), h\exp(tB)) = o(t) \text{ as } t \to \infty \iff A = B.$$

- $d(\exp_H(tX), h \exp_H(tX)) = d(\exp_G(tY), \varphi(h) \exp_G(tZ))$ $\implies Y = Z$ $\implies \varphi(h \exp_H(tX)) = \varphi(h)\varphi(\exp_H(tX)).$
- $\varphi(hg) = \varphi(h)\varphi(g) \ \forall h \in H \ \forall g \in \exp(V_1^H).$

Parallel lines diverge sublinearly:

Lemma

$$d(\exp(tA), h\exp(tB)) = o(t) \text{ as } t \to \infty \iff A = B.$$

- $d(\exp_H(tX), h \exp_H(tX)) = d(\exp_G(tY), \varphi(h) \exp_G(tZ))$ $\implies Y = Z$ $\implies \varphi(h \exp_H(tX)) = \varphi(h)\varphi(\exp_H(tX)).$
- $\varphi(hg) = \varphi(h)\varphi(g) \ \forall h \in H \ \forall g \in \exp(V_1^H).$
- $\exp(V_1^H)$ generates $H \implies \varphi$ is a homomorphism.

Theorem

 $(G, \|\cdot\|)$ sub-Finsler Carnot group of step 2.

 $\|\cdot\|$ strictly convex \implies infinite geodesics $\gamma \colon \mathbb{R} \hookrightarrow G$ are lines.

Theorem

 $(G, \|\cdot\|)$ sub-Finsler Carnot group of step 2. $\|\cdot\|$ strictly convex \implies infinite geodesics $\gamma \colon \mathbb{R} \hookrightarrow G$ are lines.

Proof structure:

● Pontryagin Maximum Principle \(\sim \) implicit geodesic equation.

Theorem

```
(G, \|\cdot\|) sub-Finsler Carnot group of step 2.
\|\cdot\| strictly convex \implies infinite geodesics \gamma \colon \mathbb{R} \hookrightarrow G are lines.
```

Proof structure:

- **1** Pontryagin Maximum Principle → implicit geodesic equation.
- 2 The asymptotic cone of γ contains a line $t \mapsto \exp(tY)$.

Theorem

 $(G, \|\cdot\|)$ sub-Finsler Carnot group of step 2. $\|\cdot\|$ strictly convex \implies infinite geodesics $\gamma \colon \mathbb{R} \hookrightarrow G$ are lines.

Proof structure:

- Pontryagin Maximum Principle wimplicit geodesic equation.
- **②** The asymptotic cone of γ contains a line $t \mapsto \exp(tY)$.
- **③** Implicit geodesic equation \implies both Y and $\dot{\gamma}(t)$ maximize a linear function a(t) in the ball $\{\|\cdot\| \le 1\}$.

Theorem

 $(G, \|\cdot\|)$ sub-Finsler Carnot group of step 2. $\|\cdot\|$ strictly convex \implies infinite geodesics $\gamma \colon \mathbb{R} \hookrightarrow G$ are lines.

Proof structure:

- Pontryagin Maximum Principle \(\sim \) implicit geodesic equation.
- **②** The asymptotic cone of γ contains a line $t \mapsto \exp(tY)$.
- **1** Implicit geodesic equation \implies both Y and $\dot{\gamma}(t)$ maximize a linear function a(t) in the ball $\{\|\cdot\| \le 1\}$.

Proposition (Step 2 sub-Finsler PMP)

- ullet a dual curve a: $\mathbb{R} o V_1^*$, and
- a skew-symmetric bilinear form $B \colon V_1 \times V_1 \to \mathbb{R}$ such that for a.e. $t \in \mathbb{R}$:
 - $\frac{d}{dt}a(t)Y = B(\dot{\gamma}(t), Y) \quad \forall Y \in V_1$
 - a(t) is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(t)$.

Proposition (Step 2 sub-Finsler PMP)

- ullet a dual curve a: $\mathbb{R} o V_1^*$, and
- ullet a skew-symmetric bilinear form $B\colon V_1 imes V_1 o \mathbb{R}$ such that for a.e. $t\in \mathbb{R}$:
 - $\frac{d}{dt}a(t)Y = B(\dot{\gamma}(t), Y) \quad \forall Y \in V_1$
 - a(t) is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(t)$.

Proposition (Step 2 sub-Finsler PMP)

- ullet a dual curve a: $\mathbb{R} o V_1^*$, and
- a skew-symmetric bilinear form $B \colon V_1 \times V_1 \to \mathbb{R}$ such that for a.e. $t \in \mathbb{R}$:
 - $\frac{d}{dt}a(t)Y = B(\dot{\gamma}(t), Y) \quad \forall Y \in V_1$
 - a(t) is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(t)$.

Proposition (Step 2 sub-Finsler PMP)

- ullet a dual curve a: $\mathbb{R} o V_1^*$, and
- a skew-symmetric bilinear form $B \colon V_1 \times V_1 \to \mathbb{R}$ such that for a.e. $t \in \mathbb{R}$:
 - $\frac{d}{dt}a(t)Y = B(\dot{\gamma}(t), Y) \quad \forall Y \in V_1$
 - a(t) is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(t)$.
 - $Y \in \ker B \implies \frac{d}{dt}a(t)Y = 0$ $\implies Y \colon V_1^* \to \mathbb{R}$ is invariant along any solution.

The asymptotic invariant

Theorem (H. - Le Donne, 2018)

G sub-Finsler Carnot group with strictly convex norm. $\gamma \colon \mathbb{R} \to G$ geodesic $\Longrightarrow \exists H < G$ of lower rank such that $\mathrm{Asymp}(\gamma) \subset H$.

$$\implies \exists \lambda_k o \infty \text{ such that } \lim_{k o \infty} \delta_{1/\lambda_k} \gamma(\lambda_k t) = \exp(tY) \ \forall t \in \mathbb{R}.$$

Theorem (H. - Le Donne, 2018)

G sub-Finsler Carnot group with strictly convex norm. $\gamma \colon \mathbb{R} \to G$ geodesic $\Longrightarrow \exists H < G$ of lower rank such that $\mathrm{Asymp}(\gamma) \subset H$.

$$\implies \exists \lambda_k \to \infty \text{ such that } \lim_{k \to \infty} \delta_{1/\lambda_k} \gamma(\lambda_k t) = \exp(tY) \ \forall t \in \mathbb{R}.$$

Remark (Monti - Pigati - Vittone, 2018)

 γ_k geodesics, $\gamma_k \to \tilde{\gamma}$ in $L^{\infty}_{loc} \Longrightarrow \exists$ subsequence $\gamma_k \to \tilde{\gamma}$ in $W^{1,2}_{loc}$.

$$\implies \lim_{k \to \infty} \dot{\gamma}(\lambda_k t) = Y \text{ for almost every } t \in \mathbb{R}.$$

Lemma

$$\lambda_k o \infty \implies Y = \lim_{k o \infty} \dot{\gamma}(\lambda_k t) \in \ker B$$

Lemma

$$\lambda_k \to \infty \implies Y = \lim_{k \to \infty} \dot{\gamma}(\lambda_k t) \in \ker B$$

Proof part 1/3: Suffices to show $\forall t_1 < t_2$

$$\lim_{k\to\infty} \int_{t_1}^{t_2} \dot{\gamma}(\lambda_k t) \in \ker B.$$

That is:

$$B\left(\int_{t_1}^{t_2} \dot{\gamma}(\lambda t)\,dt,X
ight) o 0\quad ext{as }\lambda o\infty\quad orall X\in V_1.$$

Lemma

$$\lambda_k o \infty \implies Y = \lim_{k o \infty} \dot{\gamma}(\lambda_k t) \in \ker B$$

Proof part 2/3:

Proposition (Step 2 sub-Finsler PMP)

• •

•
$$\frac{d}{dt}a(t)X = B(\dot{\gamma}(t), X) \quad \forall X \in V_1$$

$$B\left(\int_{t_1}^{t_2} \dot{\gamma}(\lambda t) dt, X\right) = \int_{\lambda t_1}^{\lambda t_2} B\left(\dot{\gamma}(t), X\right) dt$$
$$= \frac{1}{\lambda(t_2 - t_1)} \left(a(\lambda t_2)X - a(\lambda t_1)X\right)$$

Lemma

$$\lambda_k \to \infty \implies Y = \lim_{k \to \infty} \dot{\gamma}(\lambda_k t) \in \ker B$$

Proof part 3/3:

$$B\left(\int_{t_1}^{t_2} \dot{\gamma}(\lambda t) dt, X\right) = \frac{1}{\lambda(t_2 - t_1)} \left(a(\lambda t_2)X - a(\lambda t_1)X\right)$$

Proposition (Step 2 sub-Finsler PMP)

. . .

• a(t) is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(t)$.

$$\implies |a(t)X| \le ||\dot{\gamma}(t)|| ||X|| = ||X||$$
$$\implies |a(\lambda t_2)X - a(\lambda t_1)X| < 2||X||.$$

The asymptotic invariant

 $\gamma \colon \mathbb{R} \to G$ geodesic $\Longrightarrow \exists \lambda_k \to \infty \exists Y \in V_1$:

- ullet $Y=\lim_{k o\infty}\dot{\gamma}(\lambda_k t)$ for almost every $t\in\mathbb{R}$
- $Y: V_1^* \to \mathbb{R}$ is an invariant: $a(t)Y \equiv C$.

Subdifferentials – compactness

The asymptotic invariant

- ullet $Y=\lim_{k o\infty}\dot{\gamma}(\lambda_k t)$ for almost every $t\in\mathbb{R}$
- $Y: V_1^* \to \mathbb{R}$ is an invariant: $a(t)Y \equiv C$.

Proposition (Step 2 sub-Finsler PMP)

• •

• $a(\lambda_k t)$ is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(\lambda_k t)$.

Subdifferentials – compactness

The asymptotic invariant

- ullet $Y=\lim_{k o\infty}\dot{\gamma}(\lambda_k t)$ for almost every $t\in\mathbb{R}$
- $Y: V_1^* \to \mathbb{R}$ is an invariant: $a(t)Y \equiv C$.

Proposition (Step 2 sub-Finsler PMP)

• •

- $a(\lambda_k t)$ is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(\lambda_k t)$.
- $\implies \exists$ subsequence $a(\lambda_k t) \rightarrow ilde{a} \in V_1^*$ such that
 - \tilde{a} subdifferential of $\frac{1}{2}\|\cdot\|^2$ at the point $Y=\lim_{k\to\infty}\dot{\gamma}(\lambda_k t)$
 - $\tilde{a}Y = C$

Subdifferentials – maximizers

- a(t) is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(t)$
- \widetilde{a} is a subdifferential of $\frac{1}{2}\|\cdot\|^2$ at the point $Y=\lim_{k \to \infty} \dot{\gamma}(\lambda_k t)$

Subdifferentials – maximizers

- a(t) is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(t)$
- \widetilde{a} is a subdifferential of $\frac{1}{2}\|\cdot\|^2$ at the point $Y=\lim_{k\to\infty}\dot{\gamma}(\lambda_k t)$

$$\widetilde{a}Y = \max_{\|X\| \leq \|Y\|} \widetilde{a}X$$
 and $a(t)\dot{\gamma}(t) = \max_{\|X\| \leq \|\dot{\gamma}(t)\|} a(t)X$

Subdifferentials - maximizers

- a(t) is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(t)$
- \widetilde{a} is a subdifferential of $\frac{1}{2}\|\cdot\|^2$ at the point $Y=\lim_{k\to\infty}\dot{\gamma}(\lambda_k t)$

Subdifferentials - maximizers

- a(t) is a subdifferential of $\frac{1}{2} \|\cdot\|^2$ at the point $\dot{\gamma}(t)$
- ullet $ilde{a}$ is a subdifferential of $frac{1}{2}\|\cdot\|^2$ at the point $Y=\lim_{k o\infty}\dot{\gamma}(\lambda_k t)$
- $\begin{array}{l} \bullet \ \|\dot{\gamma}(t)\|=1=\|Y\| \\ \tilde{a}Y=\max_{\|X\|\leq 1} \tilde{a}X=1 \quad \text{and} \quad a(t)\dot{\gamma}(t)=\max_{\|X\|\leq 1} \ a(t)X=1 \end{array}$

$$a(t)Y \equiv C = \tilde{a}Y \implies a(t)Y = \tilde{a}Y = 1.$$

Subdifferentials - maximizers

- a(t) is a subdifferential of $\frac{1}{2}\|\cdot\|^2$ at the point $\dot{\gamma}(t)$
- \widetilde{a} is a subdifferential of $\frac{1}{2}\|\cdot\|^2$ at the point $Y=\lim_{k \to \infty} \dot{\gamma}(\lambda_k t)$
- $\begin{array}{l} \bullet \ \|\dot{\gamma}(t)\|=1=\|Y\| \\ \tilde{a}Y=\max_{\|X\|\leq 1} \tilde{a}X=1 \quad \text{and} \quad a(t)\dot{\gamma}(t)=\max_{\|X\|\leq 1} \ a(t)X=1 \end{array}$

$$a(t)Y \equiv C = \tilde{a}Y \implies a(t)Y = \tilde{a}Y = 1.$$

$$\begin{array}{ll} \|\cdot\| \text{ strictly convex} & \Longrightarrow & \textit{a}(t) \text{ has a unique maximum} \\ & \Longrightarrow & \textit{Y} = \dot{\gamma}(t) \text{ for almost every } t \in \mathbb{R} \\ & \Longrightarrow & \gamma \colon \mathbb{R} \to \textit{G} \text{ is a line} \end{array}$$

Thank you for your attention!