Contents

1	\mathbf{Intr}	oduzione 5	3
	1.1	Teoria degli insiemi	3
	1.2	Insiemi numerici	4
		1.2.1 Campo	4
		1.2.2 Modulo	6
	1.3	Insiemi limitati e illimitati	6
	1.4	Radici e potenze	7
2	Fun	zioni	8
	2.1	Introduzione alle funzioni $\dots \dots \dots$	8
	2.2	Suriettività e iniettività	9
	2.3	Composizione di funzioni	0
	2.4	Funzioni inverse	0
		2.4.1 Composizione con funzioni inverse	1
		2.4.2 Funzioni trigonometriche inverse	1
	2.5	Monotonia di una funzione	4
	2.6	Funzioni esponenziali e logaritmiche	5
		2.6.1 Funzioni esponenziali	5
		2.6.2 Funzioni logaritmiche	6
3	Intr	oduzione ai limiti 18	3
	3.1	Introduzione	8
	3.2	Punti isolati e di accumulazione	8
	3.3	Cenni di topologia	9
4	Lim	iti 20	O
	4.1	Limiti per infinito	1
	4.2	Verifica di una proprietà	1
	4.3	Massimo e minimo locale e globale	1
	4.4	Teorema di unicità del limite	2
	4.5	Teorema del confronto	2
	4.6	Teorema del confronto	3
	4.7	Limite di funzioni monotone	
	4.8	Limiti di potenze, esponenziali e logaritmi	3
		4.8.1 Potenze	
		4.8.2 Esponenziali	4
		4.8.3 Logaritmi	5
		4.8.4 Figure trigonometriche	5
		4.8.5 Figure trigonometriche inverse	6
	4.9	Teorema del limite composto	6
	4.10	Forme indeterminate	7
	4.11	Infiniti e infinitesimi	7
		4.11.1 Ordini infinitesimali e confronto tra infinitesimali 27	7
		4.11.2 Ordini di infiniti e confronto tra infiniti	8

	4.12	ordine
	4.13	o-piccolo
		4.13.1 Proprietà degli o picccoli
		4.13.2 Generalizzazione
	4.14	Asintotici
	4.15	Gerarchia degli infiniti
		4.15.1 Limiti importanti
	4.16	Semplificazione dei limiti con notazioni asintotiche
		Limiti notevoli
		$4.17.1 \lim_{x\to 0} \frac{\sin x}{x} = 1 \dots 33$
	4.18	$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{x}{2}$
		$4.18.1 \lim_{x\to 0} \frac{\tan^2 x}{x} = 1 \dots 34$
		4.18.2 $\lim_{x \to +\infty} (1 + \frac{1}{n})^n = e$
		11 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1
5	Suc	cessioni 35
	5.1	Limiti delle successioni
	5.2	Teoremi per le successioni
		5.2.1 Teorema di permanenza del segno
		5.2.2 Teorema delle successioni convergenti
		5.2.3 Teorema del confronto
		5.2.4 Teorema di regolarità delle successioni monotone 36
	5.3	La successione $n!$
		5.3.1 Limite di $\frac{a^n}{n!}$
	5.4	Numero di nepero 38
		5.4.1 La formula di Stirling
	5.5	Sottosuccessioni

Appunti di Analisi 1

Marco Zanchin

February 2023

1 Introduzione

1.1 Teoria degli insiemi

 $\bf Definition~1.1~(Insieme).~Un insieme è una collezione di qualsiasi tipologia di oggetti.$

$$A = \{a, b, c\}$$

Insiemi infiniti di elementi

- $\mathbb{N} = \{0, 1, 2, 3, 4, 5, \dots\}$
- $P = \{n \in \mathbb{N} : n = 2m, m \in \mathbb{N}\}\$

Notazioni:

- \forall per ogni
- \exists esiste
- $\not\exists$ non esiste
- \exists ! Esiste ed è unico
- ∨ Oppure
- $\wedge E$
- \Rightarrow Implica
- $\bullet \;\; \Leftrightarrow \mathbf{Se} \; \mathbf{e} \; \mathbf{solo} \; \mathbf{se} \; (\mathbf{uguaglianza})$

 $\bf Definition~1.2$ (Differenza tra insiemi). La differenza tra due insiemi A e B è l'insieme

$$A \setminus B = \{x \in A : x \notin B\}$$

Definition 1.3 (Insiemi disgiunti). Due insiemi sono disgiunti se la loro intersezione corrisponde all'insieme vuoto

Definition 1.4 (Complementare di insieme). Se $A\subseteq M$ il complementare di A rispetto a M è

$$A^c = \{ x \in M : x \not\in A \}$$

Definition 1.5 (Legge del doppio complementare).

$$(A^c)^c = A$$

Definition 1.6 (Leggi di De Morgan).

$$(A \cap B)^c = A^c \cup B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

Definition 1.7 (Prodotto cartesiano).

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

1.2 Insiemi numerici

• Numeri naturali

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

• Numeri interi

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

• Numeri razionali

$$\mathbb{Q} = \{\pm \frac{p}{q} : p,q \in \mathbb{N}, q \neq 0, p \; e \; q \; primi\}$$

1.2.1 Campo

L'insieme Q con le operazioni di addizione e moltiplicazione forma un campo perchè soddisfa le seguenti proprietà:

1. Chiusura prodotto e somma

$$\forall x, y \in Q$$

$$x + y \in Q$$

$$x \cdot y \in Q$$

2. Commutativa

$$\forall x, y \in Q$$
$$x + y = y + q$$
$$x \cdot y = y \cdot x$$

3. Associativa

$$\forall x, y, z \in Q$$
$$(x+y) + z = x + (y+z)$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

4. ∃! un elemento neutro Sia per l'addizione che per la moltiplicazione

$$0 + x = x$$
$$1 \cdot x = x$$

5. \exists ! un elemento opposto e inverso

$$\forall x \in \mathbb{Q} \exists -x \in Q \text{ tale che } x + (-x) = 0$$
$$\forall x \in \mathbb{Q} \setminus \{0\} \exists x^{-1} \in Q \text{ tale che } x \cdot x^{-1} = 1$$

6. Distributiva

$$\forall x,y,z \in Q$$

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

Un insieme che verifica queste proprietà è detto campo.

Definition 1.8 (campo ordinato). Un insieme numerico è un **campo ordinato** se valgono le seguenti proprietà:

- 1. $\forall x,y,z:x\leq y\Rightarrow x+z\leq y+z$ Se x è minore o uguale ad y allora anche sommando z verrà rispettato l'ordine
- 2. $\forall x, y, z : x \leq y \ e \ z \geq 0 \Rightarrow x \cdot z \leq y \cdot z$

l'ordinamento si dice **totale** se $\forall x, y$ si ha che $x \leq y$ oppure $y \leq x$

1.2.2 Modulo

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{altrimenti} \end{cases}$$
 (1)

Proprietà del modulo:

- $|x| \ge 0 \ \forall x \in \mathbb{R}$
- $|x| = 0 \Leftrightarrow x = 0$
- $|xy| = |x| \cdot |y|$
- $|xy| = |x| \cdot |y|$
- $\mid \frac{x}{y} \mid = \frac{|x|}{|y|}$
- $|x+y| \le |x| + |y|$
- Se $a \in \mathbb{R}^+$ $|x| < a \Leftrightarrow -a < x < a$
- Se $a \in \mathbb{R}^+$ $|x| < a \Leftrightarrow -a < x < a$

1.3 Insiemi limitati e illimitati

Definition 1.9 (Maggiorante e minorante). Sia $A \subseteq \mathbb{R}, A \neq 0$ un numero $k \in \mathbb{R}$ è un **maggiorante** dell'iniseme A se $\forall x \in A$ si ha $x \leq k$

Sia $A\subseteq \mathbb{R}, A\neq 0$ un numero $k\in \mathbb{R}$ è un **minorante** dell'iniseme A se $\forall x\in A$ si ha $x\geq k$

Definition 1.10 (Insieme limitato). Un insieme è **limitato** se è limitato sia superiormente che inferiormente, dunque ha un maggiorante e un minorante.

Esempi:

• A = [-2, 1]Ogni numero ≥ 1 è maggiorante Ogni numero ≤ -2 è minorante A è limitato

Definition 1.11 (Massimo e minimo). Un maggiorante di $A\subseteq\mathbb{R}$ che appartiene ad A si chiama **massimo** di A

Un minorante di $A \subseteq \mathbb{R}$ che appartiene ad A si chiama **minimo** di A

$$A = [-2, 1]$$

- minA = -2
- maxA = 1

Proposition 1. Se $A \subseteq \mathbb{R}$ e A ammette massimo o minimo allora tale massimo o minimo è **unico**

Dimostriamo che non ci può essere più di un massimo o minimo

Dimostrazione per assurdo, ipotizziamo che ne esistano due diversi. Supponiamo che $m1, m2 \in A$ tali che m1 = maxA e m2 = maxA con $m1 \neq m2$

 $\forall x \in A, x < m1$ dato che $m2 \in A \Rightarrow m2 \le m1$

 $\forall x \in A, x < m2$ dato che $m1 \in A \Rightarrow m1 \leq m2$

Dunque m1 = m2

Definition 1.12 (Estremo superiore e inferiore). Sia $A \subseteq \mathbb{R}$ si chiama **estremo superiore** di A il più piccolo maggiorante di A e si chiama **estremo inferiore** il più grande minorante di A.

Osservazione

Se $A \subseteq \mathbb{R}$ è un insieme limitato superiormente $\Rightarrow \exists sup A \in \mathbb{R}$ In \mathbb{Q} questa proprietà non vale

$$A = \{1, 1.4, 1.41, 1.414, \dots\}$$

- 1 è un minorante
- 2 è un maggiorante
- $\sqrt{2} = \sup A \notin \mathbb{Q}$

1.4 Radici e potenze

Sia $y \in \mathbb{R}, y \ge 0$ e $n \in \mathbb{N} \setminus \{0\} \Rightarrow \exists ! x \in \mathbb{R}, x \ge 0$ tale che $x^n = y$ x è la radice n-esima di y e si scrive $x = \sqrt[n]{y}$. Se n è **dispari** si può considerare anche y < 0

2 Funzioni

"Who has not been amazed to learn that the function y = ex, like a phoenix rising from its own ashes, is its own derivative?"

— François Le Lionnais

2.1 Introduzione alle funzioni

Definition 2.1 (Funzione). Una funzione è una legge che associa ad ogni $x \in X$ uno e un solo elemento $y \in Y$

Il grafico di f è un sottoinsieme di $X \times Y$

$$graf(f) = \{(x, y) \in X \times Y \mid x \in X \ e \ y = f(x)\}\$$

Definition 2.2 (Immagine). L'immagine di una funzione è un **sottoinsieme** del codominio

$$Im(f) = f(x) = \{ y \in Y \mid f(x) = y \ con \ x \in X \}$$

Se ImF è uguale a Y allora la funzione è suriettiva.

Definition 2.3 (Funzione limitata). Una funzione è **limitata superiormente** se $\exists M \in \mathbb{R}$ tale che $f(x) \leq M \forall x \in X$

Una funzione è **limitata inferiormente** se $\exists M \in \mathbb{R}$ tale che $M \leq f(x) \forall x \in X$

Definition 2.4 (Punto di massimo e massimo di una funzione). Sia

$$f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$$

una funzione

se $\exists x_0 \in X$ tale che $f(x_0) \geq f(x) \forall x \in X$

 x_0 si dice **punto di massimo** e $f(x_0)$ è il **massimo** di f.

2.2 Suriettività e iniettività

Definition 2.5 (Funzione iniettiva). Sia

$$f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$$

Se $\forall x_1, x_2 \in X$ con $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ la funzione è **iniettiva**.

Nella prima immagine possiamo prendere piu punti x_n dove per ognuno di essi la funzione avrà un valore comune.

Nella seconda immagine possiamo notare come qualsiasi punto si prenda la funzione avrà sempre un valore diverso.

Definition 2.6 (Funzione suriettiva). Una funzione

$$f:X\subseteq\mathbb{R}\Rightarrow\mathbb{R}$$

è suriettiva se $\forall y \in \mathbb{R} \exists x \in X$ tale che f(x) = y

Questa funzione non è suriettiva perchè per y < 0 la funzione non è definita.

2.3 Composizione di funzioni

Definition 2.7 (Funzione composta). Siano

$$f: B \Rightarrow C$$

e

$$g: A \Rightarrow B$$

due funzioni tali che $ImF \cap B \neq \emptyset$ Si dice funzione composta $g \circ f$ la funzione

$$g \circ f : A \Rightarrow C$$

Esempio

$$f(x) = 2x + 3$$

$$g(x) = x^2 + 1$$

$$(f \circ g)(x) = f(g(x)) = f(x^2 - 1) = 2(x^2 - 1) + 3 = 2x^2 + 1$$

2.4 Funzioni inverse

Sia $f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ una funzione iniettiva $\forall x \in X, \exists y \in Im(f)$ tale che f(x) = y La funzione inversa $f(x)^{-1}$ è:

$$f^{-1}: Im(F) \Rightarrow X$$

Osservazione

Perchè la funzione deve essere iniettiva?

Non posso associare più di un valore a $y_0 \in Im(f)$, altrimenti non sarebbe più una funzione per definizione.

Not injective function

Inverse function does not exist

2.4.1 Composizione con funzioni inverse

$$(f \circ f^{-1})(y) = f(f(y)^{-1}) = f(x) \ \forall y \in ImF$$

 $(f^{-1} \circ f)(x) = f(f(x))^{-1} = f(y)^{-1} \ \forall x \in X$

Sono chiamate identità, lasciano la variabile immutata.

2.4.2 Funzioni trigonometriche inverse

$$f(x) = \sin(x)$$

Troviamo un intervallo nella quale la funzione è iniettiva, convenzionalmente si sceglie $[-\frac{\pi}{2};\frac{\pi}{2}]$

$$f: [-\frac{\pi}{2}; \frac{\pi}{2}] \Rightarrow [-1; 1]$$

$$f^{-1}: [-1; 1] \Rightarrow [-\frac{\pi}{2}; \frac{\pi}{2}]$$

La funzione inversa del seno è chiamata arcoseno

$$f(y)^{-1} = \arcsin(x)$$

 $\arcsin(1) = \frac{\pi}{2}$

$$\arcsin(0) = 0$$

Osservazione

Il grafico di una funzione inversa corrisponde a quello della funzione normale specchiato sulla funzione y=x

$$f(x) = \cos(x)$$

Scegliamo come intervallo iniettivo $[0; \pi]$

$$f:[0;\pi]\Rightarrow [-1;1]$$

$$f^{-1}:[-1;1] \Rightarrow [0;\pi]$$

La funzione inversa del coseno è anche chiamata **arcoseno**

$$\arccos(0) = \frac{\pi}{2}$$

$$f(x) = \tan(x)$$

Scegliamo come intervallo iniettivo $[-\frac{\pi}{2};\frac{\pi}{2}]$

$$f:[-\frac{\pi}{2};\frac{\pi}{2}]\Rightarrow \mathbb{R}$$

$$f^{-1}: \mathbb{R} \Rightarrow [-\frac{\pi}{2}; \frac{\pi}{2}]$$

La funzione inversa della tangente è anche chiamata **arcotangente**.

$$\arctan(0) = 0$$

2.5 Monotonia di una funzione

Definition 2.8 (Funzioni crescenti e descrescenti). Sia $f:A\subseteq\mathbb{R}\Rightarrow\mathbb{R}$ se $\forall x_1,x_2\in A$ $f(x_1)\leq f(x_2)$ la funzione si dice **crescente**.

Sia $f: A \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ se $\forall x_1, x_2 \in A \ f(x_1) \geq f(x_2)$ la funzione si dice **decrescente**.

Se $\forall x_1, x_2 \in A \ f(x_1) < f(x_2)(f(x_1) > f(x_2))$ la funzione si dice **strettamente** crescente (strettamente decrescente)

Definition 2.9 (Funzione monotona). Le funzioni crescenti oppure decrescenti sono dette **monotone**.

$$f(x) = \frac{1}{2}$$

la funzione non è monotona in \mathbb{R} , ma posso stringere l'attenzione in specifici intervalli:

- $(-\infty,0)$ strettamente decrescente
- $(0, \infty)$ strettamente crescente

2.6 Funzioni esponenziali e logaritmiche

2.6.1 Funzioni esponenziali

$$f: \mathbb{R} \Rightarrow \mathbb{R}, \ con \ a \in \mathbb{R}_+ \setminus \{1\}$$

$$f(x) = a^x$$

• Se a > 1: se $x_1 < x_2 \Rightarrow a^{x_1} < a^{x_2}$

funzione strettamente crescente

• Se 0 < a < 1:

se
$$x_1 < x_2 \Rightarrow a^{x_1} > a^{x_2}$$

funzione strettamente decrescente

$$f(x) = x^{\alpha}, \ \alpha \in \mathbb{R}, \ x > 0$$

2.6.2 Funzioni logaritmiche

Le funzioni esponenziali sono iniettive, dunque esiste una funzione inversa. La funzione inversa di $f(x) = a^x$ è la funzione logaritmica in base a

$$f(x)^{-1} = \log_a x$$

Ricorda

il dominio di f^{-1} coincide con l'immagine di f, mentre l'immagine di f^{-1} coincide con il dominio di f.

La funzione logaritmo ha come dominio l'immagine della corrispondente funzione esponenziale, quindi $(0,+\infty)$ e come immagine il dominio della funzione

esponenziale, cioè \mathbb{R} .

$$f^{-1}:(0,+\infty)\Rightarrow \mathbb{R}$$

Ponendo $f(x) = a^x e f(x)^{-1} = log_a x$ Le identità logaritmiche che si ottengono per composizione con la funzione inversa sono le seguenti:

$$f(f(x)^{-1}) = x \Rightarrow f(\log_a x) = x \Rightarrow a^{\log_a x} = x$$

 $f(f(x))^{-1} = x \Rightarrow f(a^x) \Rightarrow \log_a^{a^x} = x$

La funzione inversa di $f(x) = e^x$ è il logaritmo in base e, detto **logaritmo** naturale

Proprietà del logaritmo

Sia a > 0 $a \neq 0$

- 1. $\log_a(x_1 \cdot x_2) = \log_a x_1 + \log_a x_2 \ \forall x_1, x_2 \in (0, +\infty)$
- 2. $\log_a(x^r) = r \cdot \log_a x \ \forall x \in (0, +\infty), \ \forall r \in \mathbb{R}$
- 3. $\log_a(\frac{x_1}{x_2}) = \log_a x_1 \log_a x_2 \ \forall x_1, x_2 \in (0, +\infty)$
- 4. se $b>0, b\neq 0$ vale la regola di cambio di base: $\log_b x=\frac{\log_a x}{\log_b x} \ \forall x\in (0,+\infty)$

Dimostrazione delle proprietà:

- 1. Sia $\alpha = \log_a x_1 \in \beta = \log_a x_1$
 - Transforma ciascuna equazione logaritmica nella sua equazione esponenziale corrispondente, (ricorda che $log_b(c) = a$ significa $b^a = c$) $a^{\alpha} = a^{\log_a x_1} = x_1$, $a^{\beta} = a^{\log_a x_2} = x_2$
 - $a^{\alpha} \cdot a^{\beta} = x_1 \cdot x_2 = a^{\alpha+\beta}$
 - $\log_a(x_1 \cdot x_2) = \log_a a^{\alpha+\beta} = \alpha + \beta = \log_a x_1 + \log_b x_2$
- 2. Sia $\alpha = \log_a x_1 \in \beta = \log_a x_1$
 - $a^{\alpha} = a^{\log_a x} = x$
 - $(a^{\alpha})^r = a^{\alpha \cdot r} = x^r$
 - $\log_a a^{\alpha \cdot r} = \log_a x^r$
 - $r \cdot \alpha$

3 Introduzione ai limiti

3.1 Introduzione

Definition 3.1 (Distanza). Una funzione $\mathbb{R} \times \mathbb{R} \Rightarrow \mathbb{R}$ si dice distanza se verifica le seguenti proprietà:

- 1. $d(x_1, x_2) \ge 0 \ \forall x_1, x_2 \in \mathbb{R}$ $d(x_1, x_2) = 0 \Leftrightarrow x_1 = x_2$
- 2. $d(x_1, x_2) = d(x_2, x_1) \ \forall x_1, x_2 \in \mathbb{R}$
- 3. $d(x_1, x_2) \le d(x_1, x_3) + d(x_3, x_2) \ \forall x_1, x_2, x_3 \in \mathbb{R}$

Definition 3.2 (Distanza euclidea). $d(x_1, x_2) = |x_1 - x_2|, \forall x_1, x_2 \in \mathbb{R}$

Definition 3.3 (Intorno). Sia $x_0 \in \mathbb{R}$ e $\epsilon > 0$ Un intorno di raggio ϵ è

$$B_e(x_0) = \{ x \in \mathbb{R} : |x - x_0| < \epsilon \}$$

Osservazione

 ϵ è usato convenzionalmente per denotare una piccola quantità, un infinitesimale.

Per poter definite gli intorni di $+\infty$ e $-\infty$ dobbiamo ampliare l'insieme $\mathbb R$ Sia $\mathbb R^*=\mathbb R\cup\{+\infty,-\infty\}$

$$\mathbb{R}^* = [-\infty, +\infty]$$

Un intorno di $+\infty$ è un intervallo del tipo $(a, +\infty]$, $a \in \mathbb{R}^* \setminus \{+\infty\}$ Un intorno di $-\infty$ è un intervallo del tipo $[-\infty, b)$, $b \in \mathbb{R}^* \setminus \{-\infty\}$

3.2 Punti isolati e di accumulazione

Definition 3.4 (Punto di accumulazione). Sia $E \subseteq \mathbb{R}^*$

Un punto $x_0 \in \mathbb{R}^*$ si dice **punto di accumulazione** dell'insieme E se per ogni intorno U di x_0 si ha che

$$(U \cap E) \setminus \{x_0\} \neq \emptyset$$

Dunque se scelto un intorno risulta che esso contenga **almeno** un punto di E diverso da x_0

Definition 3.5 (Punto isolato). Un punto $x_0 \in E$ che non è di accumulazione per X si dice **isolato** per x.

$$E = \mathbb{N}$$

 $0, 1, 2, 3 \dots$ non sono punti di accumulazione, tranne $+\infty$

$$E=\{x=\frac{1}{n}, n\in\mathbb{N}\smallsetminus\{0\}\}$$

I punti di E sono tutti isolati. L'unico punto di accumulo è 0.

3.3 Cenni di topologia

Definition 3.6 (Punto interno). Sia $E \subseteq \mathbb{R}$. un elemento $x_0 \in E$ è punto interno di E se $\exists \epsilon > 0 \mid B(x_0, \epsilon) \subset E$

Definition 3.7 (Punto esterno). Un punto $x_0 \in \mathbb{R}$ si dice **esterno** se è un punto interno di E^C , ossia se esiste almeno un intorno di x_0 contenuto nel complementare di E.

Definition 3.8 (Punto di frontiera). Un punto $x_0 \in \mathbb{R}$ si dice **punto di frontiera** se ogni intorno $B_E(x_0)$ contiene sia punti di E che punti di E^c (complementare)

Definition 3.9 (Frontiera). L'insieme di tutti i punti di frontiera di E costituisce la frontiera di E denotata con ∂E

Definition 3.10 (Insieme aperto e chiuso). Un insieme $E \subseteq \mathbb{R}$ è **aperto** se tutti i punti di E sono punti interni.

Un insieme $E \subseteq \mathbb{R}$ è **chiuso** E^C è aperto. Se è chiuso contiene ∂E .

4 Limiti

"Infinity converts the possible into the inevitable."

— Norman Cousins

Definition 4.1 (Limite). Sia $f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ e sia $x_0 \in \mathbb{R}^*$ un punto di accumulazione per X.

Si dice che $L \in \mathbb{R}^*$ è il limite di f(x) per x che tende a x_0 e si scrive

$$\lim_{x \to x_0} f(x) = L$$

Se $\forall V(L)$ (intorno di L) $\exists U(x_0)$ (intorno di x) tale che $\forall x \in U(x_0) \smallsetminus \{x_0\}$ si ha che $f(x) \in V(L)$

Se $x_0 \in \mathbb{R}, L \in \mathbb{R}$

$$\lim_{x \to x_0} f(x) = L$$

 $\begin{array}{llll} \forall \varepsilon &> 0 & \exists & \delta &> 0 \text{ tale che} \\ \forall x &\in (x_0 - \delta, x_0 + \delta), & \cos x \neq \\ x_0 & \text{si ha} & f(x) &\in (L - \varepsilon, L + \varepsilon) \end{array}$

O equivalentemente $\forall x$ tale che $x_0 - \delta < x < x_0 + \delta$, $x \neq x_0$ si ha $L - \varepsilon < f(x) < L + \varepsilon$

Esempio

$$\lim_{x \to x_0} x^2$$

Vogliamo trovare i valori di x per cui | $x^2 - 0$ |< ε , $x \neq 0$

$$0 < x^2 < \varepsilon$$

$$0 < \sqrt{x^2} < \varepsilon$$

$$0 < |x| < \sqrt{\varepsilon} = \delta$$

$$\lim_{x \to x_0} x^2 = 0$$

4.1 Limiti per infinito

Sia

$$x_0 = +\infty \in L \in \mathbb{R}$$

dato che x_0 deve essere di accumulazione per il dominio X della funzione, X deve essere illimitato superiormente.

$$\lim_{x \to +\infty} f(x) = L$$

 $\forall \varepsilon > 0 \; \exists \; a \in \mathbb{R} \; \text{tale che} \; \forall x \in (a, +\infty] \; \text{si ha} \; f(x) \in (L - \varepsilon, L + \varepsilon)$ Ovvero $\forall x > a \; \text{si ha} \; | \; f(x) - L \; | < \varepsilon$

4.2 Verifica di una proprietà

Definition 4.2. Sia $f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$, sia $x_0 \in \mathbb{R}$ un punto di accumulazione per X

f verifica una proprietà P **definitivamente** per $x \to x_0$ se $\exists U(x_0)$ per cui f verifica la proprietà P $\forall x \in U(x_0) \setminus \{x_0\}, \ x \in X$

4.3 Massimo e minimo locale e globale

Definition 4.3 (Massimo e minimo locale). Sia $f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ e sia $x_0 \in X$ tale che $\exists U(x_0) \subseteq X$ per cui $f(x_0) \geq f(x) \forall x \in U(x_0)$ x_0 si dice **punto di massimo locale** e $f(x_0)$ è il massimo locale.

Sia $f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ e sia $x_0 \in X$ tale che $\exists U(x_0) \subseteq X$ per cui $f(x_0) \leq f(x) \forall x \in U(x_0)$ si dice **punto di minimo locale** e $f(x_0)$ è il minimo locale.

Definition 4.4 (Massimo e minimo globale). Sia $f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ e sia $x_0 \in X$ tale che $\exists U(x_0) \subseteq X$ per cui $f(x_0) \geq f(x) \forall x \in X$ x_0 si dice **punto di massimo globale** e $f(x_0)$ è il massimo globale.

Sia $f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ e sia $x_0 \in X$ tale che $\exists U(x_0) \subseteq X$ per cui $f(x_0) \leq f(x) \forall x X$ x_0 si dice **punto di minimo globale** e $f(x_0)$ è il minimo globale.

Caso particolare

Se x_0 è un **punto isolato**, esso sarà sia un un punto di massimo locale che di minimo locale.

4.4 Teorema di unicità del limite

Definition 4.5 (Teorema di unicità del limite). Sia $f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ e sia $x_0 \in \mathbb{R}^*$ un punto di accumulazione per X Se $\exists \lim_{x \to x_0} f(x) = L \in \mathbb{R}^*$ allora L è unico.

Dimostrazione per assurdo:

Supponiamo che $\exists L_1, L_2 \in \mathbb{R}^*$ con $L_1 \neq L_2$ con $\lim_{x \to x_0} f(x) = L_1$ e $\lim_{x \to x_0} f(x) = L_2$ $L_1 \neq L_2 \Rightarrow \exists V(L_1)$ (intorno di l1) e $V(L_2)$

Tali che $V(L_1) \cap V(L_2) = \emptyset$ Dato che $\lim_{x \to x_0} f(x) = L_1$

• • •

Osservazione

Il limite di una funzione per $x \to x_0 \in \mathbb{R}^*$ non esiste sempre. Esempio:

 $\lim_{x\to +\infty}\sin(x)$

4.5 Teorema del confronto

Sia

$$f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$$

e $x_0 \in \mathbb{R}^*$ di accumulazione per X

Se $l \in \mathbb{R}^*$ è tale che $\lim_{x \to x_0} f(x) = l > 0$

Allora f(x) > 0 per $x \to x_0$

Cioè $\exists U(x_0)$ tale che $\forall x \in U(x_0) \setminus \{x_0\}$ tale che f(x) > 0

Lo stesso vale (all'inverso) quando l < 0

4.6 Teorema del confronto

Siano $f,g,h:X\subseteq\mathbb{R}\Rightarrow\mathbb{R}$ e sia $x_0\in\mathbb{R}^*$ di accumulazione per x. Se $f(x)\leq g(x)\leq h(x)$ definitivamente per $x\to x_0$ e $\lim_{x\to x_0}f(x)=\lim_{x\to x_0}h(x)=L$ Allora

4.7 Limite di funzioni monotone

Sia $f:X\subseteq\mathbb{R}\Rightarrow\mathbb{R}$ una funzione monotona

1. Se $X_0 \in \mathbb{R}^*$ è un punto di accumulazione destro per X e se f è crescente in X

$$\lim_{x \to x_0^+} f(x) = \inf_{(x_0, +\infty)} f(x)$$

4.8 Limiti di potenze, esponenziali e logaritmi

4.8.1 Potenze

$$\lim_{x \to x_0} x^{\alpha} = x_0^{\alpha} \ \forall \alpha \in \mathbb{R} \ \text{se } x_0 > 0$$

$$\lim_{x \to 0^+} x^{\alpha} = \begin{cases} 0 & \text{if } \alpha > 0 \\ +\infty & \alpha < 0 \end{cases}$$
$$\lim_{x \to +\infty} x^{\alpha} = \begin{cases} +\infty & \text{if } \alpha > 0 \\ 0 & \alpha < 0 \end{cases}$$

4.8.2 Esponenziali

$$\lim_{x \to x_0} a^x = a_0^x \ \forall x_0 \in \mathbb{R} \ a > 0$$

$$\lim_{x \to +\infty} a^x = \begin{cases} +\infty & \text{if } a > 1\\ 0 & 0 < a < 1 \end{cases}$$

$$\lim_{x \to -\infty} a^x = \begin{cases} 0 & \text{if } a > 1\\ +\infty & 0 < a < 1 \end{cases}$$

4.8.3 Logaritmi

$$\lim_{x\to x_0}\log_a x = \log_a x_0 \; \forall x_0>0 \; a>0, a\neq 1$$

$$\begin{split} & \lim_{x \to +\infty} \log_a x = \begin{cases} +\infty & \text{if } a > 1 \\ -\infty & 0 < a < 1 \end{cases} \\ & \lim_{x \to 0^+} \log_a x = \begin{cases} -\infty & \text{if } a > 1 \\ +\infty & 0 < a < 1 \end{cases} \end{split}$$

4.8.4 Figure trigonometriche

 $Seno\ e\ coseno$

$$\lim_{x \to x_0} \sin x = \sin x_0; \forall x_0 \in \mathbb{R}$$
$$\lim_{x \to x_0} \cos x = \cos x_0; \forall x_0 \in \mathbb{R}$$
$$\lim_{x \to \pm \infty} \sin x \not\exists \lim_{x \to \pm \infty} \cos x \not\exists$$

Tangente

4.8.5 Figure trigonometriche inverse

Arcocoseno e arcoseno

$$\forall x_0 \in [-1, 1]$$

$$\lim_{x \to x_0} \arcsin x = \arcsin x_0$$

 $\lim_{x \to x_0} \arccos x = \arccos x_0$

Arcotangente

$$\forall x_0 \in \mathbb{R}$$

$$\lim_{x\to x_0}\arctan x=\arctan x_0$$

$$\lim_{x\to +\infty}\arctan x=\frac{\pi}{2}$$

$$\lim_{x\to -\infty}\arctan x=-\frac{\pi}{2}$$

4.9 Teorema del limite composto

Siano

$$f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$$

$$g:Y\subseteq\mathbb{R}\Rightarrow\mathbb{R}$$

con $f(x) \leq Y$ (l'immagine di f è \leq al dominio di g)

Siano $x_0 \in \mathbb{R}^*$ e $l \in \mathbb{R}^*$ punti di accumulazione rispettivamente per X e Y. Se

$$\lim_{x\to x_0} f(x) = l$$
e $\lim_{y\to l} g(y) = k$ e se $f(x) \neq l$ per $x\to x_0$

$$\lim_{x \to x_0} g(f(x)) = k$$

4.10 Forme indeterminate

- $\infty \infty$)
- $0 \cdot \pm \infty$
- $\frac{\pm \infty}{\pm \infty}$
- \bullet $\frac{0}{0}$
- ∞^0
- 1^{±∞}
- 0^{0}

4.11 Infiniti e infinitesimi

Definition 4.6 (Infinito). Sia $f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ e sia $x_0 \in \mathbb{R}^*$ di accumulazione per X.

Se
$$\lim_{x \to x_0} f(x) = \pm \infty$$

f(x) è un **infinito** per $x \to x_0$

Definition 4.7 (Infinitesimo). Sia $f: X \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ e sia $x_0 \in \mathbb{R}^*$ di accumulazione per X.

Se
$$\lim_{x \to x_0} f(x) = 0$$

f(x) è un **infinitesimo** per $x \to x_0$

Ordini infinitesimali e confronto tra infinitesimali

Siano $f \in g$ due infinitesimi per $x \to x_0 \in \mathbb{R}^* \in g(x) \neq 0$ per $x \to x_0$

1. Se $\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = 0$ f(x) è un infinitesimo di ordine superiore (più veloce) rispetto a g(x)

Spiegazione

Una funzione genera un infinitesimo di ordine superiore rispetto a un'altra se si avvicina al valore zero più velocemente rispetto

Questo è esattamente ciò che esprime il rapporto $\frac{f(x)}{g(x)}$, che dice quante volte g(x) sta in f(x). Man mano che x tende a x_0 o a $+\infty$ a seconda dei casi, entrambe le funzioni tendono a zero, ma f(x)assume di volta in volta valori più piccoli rispetto a g(x)

2. Se $\lim_{x\to x_0} |\frac{f(x)}{g(x)}| = L \in \mathbb{R} \setminus \{0\}$ f e g sono infinitesimi dello stesso ordine per $x\to x_0$

Le funzioni tendono a zero nello stesso modo, con la stessa velocità.

3. Se $\lim_{x\to x_0} \left| \frac{f(x)}{g(x)} \right| = \pm \infty$ f(x) è un infinitesimo di ordine inferiore rispetto a g(x).

f(x) assume di volta in volta valori maggiori di g(x), man mano che entrambe le funzioni convergono a zero allora g(x) sta in f(x) sempre più

Definition 4.8. Sia f(x) un infinitesimo per $x \to x_0 \in \mathbb{R}^*$ se $x_0 \in \mathbb{R}$ e se $\exists \alpha \in \mathbb{R}^+ \text{ tale che}$

$$\lim_{x \to x_0} \frac{f(x)}{|x - x_0|^{\alpha}} = L \in \mathbb{R} \setminus \{0\}$$

f(x) è un infinitesimo di ordine α per $x \to x_0$

Definition 4.9. se

$$\lim_{x \to \pm \infty} \frac{f(x)}{\frac{1}{x^{\alpha}}} = \lim_{x \to \pm \infty} x^{\alpha} f(x) = L \in \mathbb{R} \setminus \{0\}$$

f(x) è un infinitesimo di ordine α per $x \to \pm \infty$

4.11.2 Ordini di infiniti e confronto tra infiniti

Siano f e g due infiniti per $x \to x_0 \in \mathbb{R}^*$

- 1. se $\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = 0$ g(x) è un infinito di ordine maggiore rispetto a f(x) e al tendere all'infinito di questo rapporto g(x) diventa sempre più grande del numeratore, portando il risultato della frazione a $\pm \infty$
- 2. se $\lim_{x\to x_0} \left| \frac{f(x)}{g(x)} \right| = L \in \mathbb{R} \setminus \{0\}$ g(x) è un infinito di ordine uguale rispetto a f(x). Entrambe le funzioni tendono a $\pm \infty$ nello stesso modo.
- 3. se $\lim_{x\to x_0} \left| \frac{f(x)}{g(x)} \right| = \pm \infty$ f è un infinito di ordine inferiore rispetto a g per $x \to x_0$. Se il rapporto tende all'infinito significa che la funzione f(x) diventa sem**pre più grande** di g(x) che pure tende all'infinito.

Sia f un infinito per $x \to \pm \infty$.

Se $\exists \alpha \in \mathbb{R}^*$ tale che

$$\lim_{x \to \pm \infty} \left| \frac{f(x)}{x^{\alpha}} \right| = L \in \mathbb{R} \setminus \{0\}$$

f è un infinito per $x \to x_0$ con $x_0 \in \mathbb{R}$

Esempi

$$\lim_{x \to +\infty} \frac{3x^2 + 2x - 1}{4x^2 + x} = \frac{3}{4}$$

Numeratore e denominatore sono infiniti dello stesso ordine.

$$\lim_{x \to 0} \frac{x^3 - x}{x^3 - x^4} = -\infty$$

 $x^3 - x$ è un infinitesimo di **ordine inferiore** rispetto a $x^3 + x^4$

Definition 4.10. Sia f(x) un infinito per $x \to x_0 \in \mathbb{R}^*$

4.12 ordine

. . .

4.13 o-piccolo

Definition 4.11 (o piccolo). Siano f e g due funzioni tali che $x_0 \in \mathbb{R}^*$ sia di accumulazione per entrambi i domini delle funzioni e $g(x) \neq 0$ per $x \to x_0$. Se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

diremo che f(x) = o(g(x)) per $x \to x_0$

Esempi: Siano $f(x) = x^5 + 2x - 1$ e $g(x) = x^7 + 4x$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{x^5 + 2x - 1}{x^7 + 4x} = \frac{1}{\infty} = 0$$

f(x) = o(g(x))

4.13.1 Proprietà degli o picccoli

Siano f e g due funzioni, e $c \in \mathbb{R} \setminus \{0\}$

- $o(f(x)) \pm o(f(x)) = o(f(x))$
- $c \cdot o(f(x)) = o(f(x))$
- $o(f(x)) \cdot o(g(x)) = o(f(x)g(x))$ $o(f(x)) \cdot o(f(x)) = o(f(x)^2)$

4.13.2 Generalizzazione

In generale se $x \to +\infty$

$$\lim_{x \to +\infty} \frac{x^k}{x^n} = \begin{cases} +\infty & k > h \\ 1 & k = h \\ 0 & k < h \end{cases}$$

$$x^k = o(x^h) \Leftrightarrow k < h, \text{ per } x \to +\infty$$

Osservazione

Nei limiti tendenti a $+\infty$ raccogliamo potenze con **esponente più alto** perchè quelle con esponente più basso sono *o piccoli* e dunque si possono **trascurare**

In generale se $x \to 0$

$$\lim_{x \to +\infty} \frac{x^k}{x^n} = \begin{cases} 0 & k > h \\ 1 & k = h \\ +\infty & k < h \end{cases}$$

$$x^k = o(x^h) \Leftrightarrow k > h$$
, per $x \to 0$

Osservazione

Nei limiti tendenti a 0 raccogliamo potenze con **esponente più basso** perchè quelle con esponente più alto sono $o\ piccoli$ e dunque si possono **trascurare**

4.14 Asintotici

Definition 4.12 (asintotici). Siano f e g due funzioni tali che $x_0 \in \mathbb{R}^*$ sia di accumulazione per entrambi i domini delle funzioni e $g(x) \neq 0$ per $x \to x_0$. Se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

diremo che f è asintotica a g per $x \to x_0$ e scriveremo $f(x) \sim g(x)$ per $x \to x_0$

Se
$$\lim_{x\to x_0} \frac{f(x)}{g(x)} = L \in \mathbb{R} \setminus \{0\}$$

 $\Rightarrow f(x) \sim L \cdot g(x) \text{ per } x \to x_0$

Esempi: Siano $f(x) = \sqrt{x} + x$ e $g(x) = \sqrt{x} + 2x^2$

$$\lim_{x \to 0} \frac{\sqrt{x} + x}{\sqrt{x} + 2x^2} = \lim_{x \to 0} \frac{\sqrt{x}(1 + \frac{x}{\sqrt{x}})}{\sqrt{x}(1 + \frac{2x^2}{\sqrt{x}})} = 1$$

$$\sqrt{x} + x \sim \sqrt{x} + 2x^2)$$

Osservazione

Osserviamo che per $x \to +\infty$ non è vero che $\sqrt{x} + x \sim \sqrt{x} + 2x^2)$

$$\lim_{x \to +\infty} \frac{\sqrt{x} + x}{\sqrt{x} + 2x^2} = \lim_{x \to +\infty} \frac{x(\frac{\sqrt{x}}{x} + 1)}{x^2(\frac{\sqrt{x}}{x^2} + 2)} = 0$$

4.15 Gerarchia degli infiniti

Per $x \to +\infty$ abbiamo la seguente gerarchia degli infiniti:

$$\log_a x < x^h < x^k < a^x$$

Se h < k, a > 1

4.15.1 Limiti importanti

Abbiamo osservato che

$$\lim_{x\to +\infty} \frac{a^x}{x^\alpha} = +\infty \ \text{ se } a>1 \text{ e } \alpha>0$$

se
$$\alpha \le 0 \Rightarrow \lim_{x \to +\infty} \frac{a^x}{x^{\alpha}} = +\infty$$

Quindi

$$\lim_{x\to +\infty}\frac{a^x}{x^\alpha}=+\infty\quad \text{se }a>1,\ \forall \alpha\in\mathbb{R}$$

Se 0 < a < 1

$$\lim_{x \to +\infty} \frac{a^x}{x^{\alpha}} = 0 \text{ se } \alpha \ge 0$$

Se $\alpha < 0$

$$\lim_{x \to +\infty} \frac{a^x}{x^\alpha} = \frac{0}{0}$$

Cambio di variabile t = -x

$$\lim_{x\to +\infty} \frac{a^x}{x^\alpha} = \lim_{t\to +\infty} \frac{a^-t}{-t^\alpha} = \lim_{t\to +\infty} \frac{-t^{-\alpha}}{a^t}$$

Al denominatore abbiamo un esponenziale, dunque andrà verso $+\infty$ più velocemente

$$\lim_{t\to +\infty}\frac{-t^{-\alpha}}{a^t}=0$$

Riassumendo:

$$\lim_{x \to +\infty} \frac{a^x}{x^{\alpha}} = \begin{cases} +\infty & a > 1, \forall \alpha \in \mathbb{R} \\ 0 & 0 < a < 1, \forall \alpha \in \mathbb{R} \end{cases}$$

. . .

Riassumendo

$$\lim_{x \to +\infty} \frac{\log_a x}{x^\alpha} = \begin{cases} +\infty & a > 1, \alpha \leq 0 \\ -\infty & 0 < a < 1, \alpha \leq 0 \\ 0 & a > 0, a \neq 1, \alpha > 0 \end{cases}$$

4.16 Semplificazione dei limiti con notazioni asintotiche

Per
$$x \to x_0 \in \mathbb{R}^*$$

 $f(x) + o(f(x)) \sim f(x)$
 $\lim_{x \to x_0} f(x) = L \in \mathbb{R}^* \Leftrightarrow \lim_{x \to x_0} (f(x) + o(f(x))) = L$

Esempio

$$\lim_{x \to x_0} (x^4 - 2x + \sqrt[3]{x})$$

Le potenze con esponente più basso sono o-piccolo delle potenze con esponente più alto.

$$\lim_{x \to x_0} (x^4 - o(x^4) + o(x^4)) = \lim_{x \to x_0} (x^4) + +\infty$$

Proposition 2. Se $x \to x_0 \in \mathbb{R}^*$ allora:

$$\frac{f(x) + o(f(x))}{g(x) + o(g(x))} \sim \frac{f(x)}{g(x)}$$

e

$$(f(x) + o(g(x)) \cdot (g(x) + o(g(x))) \sim f(x) \cdot g(x)$$

4.17 Limiti notevoli

4.17.1
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

${\bf Dimostrazione}$

• Capiamo le grandezze in gioco:

$$-\widehat{PA} = r \cdot x = x$$

$$-\overline{PH} = \sin x$$

$$-\overline{AB} = \tan x$$

- Allora l'angolo ${\bf x}$ è compreso tra la tangente di ${\bf x}$ e il seno di ${\bf x}.$

$$\sin x \le x \le \tan x$$

$$\sin x \le x \le \tan x$$

$$\Rightarrow \frac{\sin x}{\sin x} \le \frac{x}{\Rightarrow \sin x} \le \frac{\tan x}{\sin x}$$

$$\Rightarrow 1 \le \frac{x}{\sin x} \le \frac{1}{\cos x}$$

$$\Rightarrow 1 \ge \frac{\sin x}{x} \ge \cos x$$

$$\Rightarrow 1 \le \frac{x}{\sin x} \le \frac{1}{\cos x}$$

$$\Rightarrow 1 \ge \frac{\sin x}{x} \ge \cos x$$

• Utilizziamo il teorema del confronto:

$$-\lim_{x\to 0} 1 = 1$$

$$-\lim_{x\to 0}\cos x = 1$$

$$- \Rightarrow \lim_{x \to x_0} \frac{\sin x}{x} = 1$$

4.18 $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$

Dimostrazione

• Moltiplichiamo la frazione per il numeratore con il segno invertito.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \frac{1 + \cos x}{1 + \cos x}$$

$$\lim_{x\to 0}\frac{1+\cos x-\cos x-\cos^2 x}{x^2\cdot(1+\cos x)}$$

$$\lim_{x \to 0} \frac{1 - \cos^2 x}{x^2 \cdot (1 + \cos x)}$$

Identità pitagorica

$$\sin^2 x + \cos^2 x = 1$$

$$\sin^2 x = 1 - \cos^2 x$$

$$\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \cdot \lim_{x \to 0} \frac{1}{(1 + \cos x)}$$
$$= 1 \cdot \frac{1}{2} = \frac{1}{2}$$

4.18.1
$$\lim_{x\to 0} \frac{\tan x}{x} = 1$$

Dimostrazione

$$\lim_{x \to 0} \frac{\frac{\sin x}{\cos x}}{x} = \lim_{x \to 0} \frac{\sin x}{\cos x \cdot x} = \lim_{x \to 0} \frac{1}{\cos x} = 1$$

4.18.2
$$\lim_{x\to +\infty} (1+\frac{1}{n})^n = e$$

Dimostrazione

5 Successioni

Definition 5.1 (Successione). Una funzione il cui dominio è un sottoinsieme di \mathbb{N} si dice **successione**.

Solitamente una successionesi indica scrivendo i valori assunti dalla funzione, cioè $\{a_n\}$.

 a_n si dice **termine n-esimo** della successione.

Esempio:

$$a_n = \frac{n-1}{n+1}$$

 $a_0 = -1, a_1 = 0, a_2 = \frac{1}{3}, a_3 = \frac{2}{4}, \dots$

Definition 5.2 (Successione crescente e decrescente). Una successione $\{a_n\}$ si dice **crescente** se

$$a_n \leq a_{n+1} \ \forall n \in \mathbb{N}$$

si dice decrescente se

$$a_n \ge a_{n+1} \ \forall n \in \mathbb{N}$$

Definition 5.3 (Successione strettamente crescente e strettamente decrescente). Una successione $\{a_n\}$ si dice **crescente** se

$$a_n < a_{n+1} \ \forall n \in \mathbb{N}$$

si dice **decrescente** se

$$a_n > a_{n+1} \ \forall n \in \mathbb{N}$$

Definition 5.4 (Successione monotona e strettamente monotona). Una successione si dice **monotona** se è crescente oppute decrescente, si dice **strettamente monotona** se è strettamente crescente oppute strettamente decrescente.

Definition 5.5 (Successione costante). Una successione che è sia crescente che decrescente è **costante**.

5.1 Limiti delle successioni

Dato che il dominio di una successione è \mathbb{N} , l'unico limite possibile per le successioni è il limite per $n \to +\infty$.

Dato che l'unico punto di accumulazione di $\mathbb N$ è $*\infty$

$$\lim_{n \to +\infty} a_n = \begin{cases} L & \forall \epsilon > 0 \; \exists \overline{n} \in \mathbb{N} \text{ tale che } \mid a_n - L \mid < \epsilon \forall n > \overline{n} \\ +\infty & \forall K \in \mathbb{R} \; \exists \overline{n} \in \mathbb{N} \text{ tale che } a_n > K \; \forall n > \overline{n} \\ -\infty & \forall K \in \mathbb{R} \; \exists \overline{n} \in \mathbb{N} \text{ tale che } a_n < K \; \forall n > \overline{n} \end{cases}$$

Definition 5.6 (Successioni convergenti, divergenti e irregolari). Una successione che ammette limite finito si dice **convergente**

Una successione che ammette limite infinito si dice divergente

Una successione che non ammette limite irregolare

5.2 Teoremi per le successioni

5.2.1 Teorema di permanenza del segno

Sia $\{a_n\}$ una successione tale che $\lim_{n\to +\infty}a_n=L\in\mathbb{R}^*$. Se L>0 (L<0) allora $\exists \overline{n}\in\mathbb{N}$ tale che $a_n>0$ $\forall n>\overline{n}$ $(a_n<0$ $\forall n>\overline{n})$ Quindi se una successione ammette limite positivo è definitivamente positiva, se ammette limite negativo è definitivamente negativa.

5.2.2 Teorema delle successioni convergenti

Sia $\{a_n\}$ una successione convergente. Allora $\{a_n\}$ è limitata.

5.2.3 Teorema del confronto

Siano $\{a_n\},\{b_n\},\{c_n\}$ tre successioni tali che

$$a_n \le b_n \le c_n \text{ per } n \to +\infty$$

Se

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} c_n = L \in \mathbb{R}^*$$

$$\Rightarrow \lim_{n \to +\infty} b_n = L$$

5.2.4 Teorema di regolarità delle successioni monotone

Sia $\{a_n\}$ una successione monotona. Allora $\exists \lim_{n \to +\infty} a_n = L \in \mathbb{R}^*$

- Se $\{a_n\}$ è limitata $\Rightarrow L \in \mathbb{R}$
- Se $\{a_n\}$ è illimitata $\Rightarrow L = \pm \infty$

5.3 La successione n!

$$n! = \begin{cases} 1 & n = 0 \\ 1 \cdot 2 \cdot \dots \cdot n & n \neq 0 \end{cases}$$

5.3.1 Limite di $\frac{a^n}{n!}$

Proposizione: sia $a \in \mathbb{R}^+$, allora

$$\lim_{n\to +\infty}\frac{a^n}{n!}=0$$

$$1\times 10^{2^n}$$
The factorial function always overtakes an exponential function
$$6\times 10^{20}$$

$$4\times 10^{20}$$

$$18$$

$$19$$

$$20$$

$$21$$

$$21$$

Dimostrazione:

$$\frac{a^n}{n!} = \frac{a}{1} \cdot \frac{a}{2} \cdot \frac{a}{3} \cdot \dots \cdot \frac{a}{n}$$

Dato che

$$\lim_{n \to +\infty} \frac{a}{n} = 0$$

I termini di questa successione per n
 che cresce si avvicinano a 0. Dunque esisterà un certo \overline{n} dopo la quale i termini saranno tutt
i $<\frac{1}{2}$ In generale: $\exists \overline{n} \in \mathbb{N}$ t.
c $\forall n > \overline{n}, \ \frac{a}{n} < \frac{1}{2}$

$$\underbrace{\frac{a}{1} \cdot \frac{a}{2} \cdot \frac{a}{3} \cdot \dots \cdot \frac{a}{\overline{n}}}_{=K \in \mathbb{R}} \cdot \underbrace{\frac{a}{\overline{n}+1} \cdot \frac{a}{n}}_{<\frac{1}{2}}$$

Questo prodotto sarà più piccolo di:

$$K \cdot \left(\frac{1}{2}\right)^{n-\overline{n}}$$

Perchè per $n\to\infty$ esisteranno anche frazioni più piccole, dunque vale la seguente uguaglianza:

$$\underbrace{\frac{a}{1} \cdot \frac{a}{2} \cdot \frac{a}{3} \cdot \dots \cdot \frac{a}{\overline{n}}}_{=K \in \mathbb{R}} \cdot \underbrace{\frac{a}{\overline{n}+1} \cdot \frac{a}{n}}_{<\frac{1}{2}} < K \cdot \left(\frac{1}{2}\right)^{n} \cdot \left(\frac{1}{2}\right)^{-\overline{n}}$$

$$\underbrace{\frac{a}{1} \cdot \frac{a}{2} \cdot \frac{a}{3} \cdot \dots \cdot \frac{a}{\overline{n}}}_{=K \in \mathbb{R}} \cdot \underbrace{\frac{a}{\overline{n}+1} \cdot \frac{a}{n}}_{<\frac{1}{2}} < K \cdot \left(\frac{1}{2}\right)^{n} \cdot 2^{\overline{n}}$$

Ora consideriamo:

$$0 < \frac{a^n}{n!} < K \cdot \left(\frac{1}{2}\right)^n \cdot 2^{\overline{n}}$$

$$\lim_{n \to +\infty} K \cdot \left(\frac{1}{2}\right)^n \cdot 2^{\overline{n}} = 0$$

Dunque per il teorema del confronto:

$$\lim_{n \to +\infty} \frac{a^n}{n!} = 0$$

Di conseguenza sappiamo che n! è un infinito di ordine superiore rispetto a a^n

$$\log_a^\alpha n^k < n^r B^n < n! < n^n$$

5.4 Numero di nepero

Il numero di nepero e è un numero irrazionale

Theorem 5.1. La successione $\{(1+\frac{1}{n})^n\}$ è strettamente crescente e limitata

Da questo teorema e dal teorema sulla regolarità delle funzioni monotone segue che il limite di questa successione esiste ed è finito.

$$\lim_{n\to +\infty} (1+\frac{1}{n})^n = e$$

con $e \in \mathbb{R} \setminus \{\mathbb{Q}\}$ e la sua approssimazione decimale finita è

$$e \sim 2,7182818284$$

5.4.1 La formula di Stirling

Si può utilizzare il numero di nepero per ottenere il comportamento asintotico di n! per $n \to +\infty$ tramite la **formula di Stirling**:

$$n! \sim n^n \cdot e^{-n} \cdot \sqrt{2\pi n} \text{ per } n \to +\infty$$

5.5 Sottosuccessioni

Una successione $\{b_n\}$ è una sotto successione di $\{a_n\}$ se esiste una successione $\{k_n\}$ strettamente crescente e a valori in $\mathbb N$ tale che

$$b_n = a_{k1} \ \forall n \in \mathbb{N} \setminus \{0\}$$

Esempio:

$$a_n = \frac{(-1)^n}{n} \ n \in \mathbb{N} \setminus \{0\}$$

Se prendiamo $\{k_n\}=2n+1$ (ossia quando i termini sono dispar i) è strettamente crescente ed è a valori in $\mathbb N$

$$b_n = a_{2n+1} = \frac{(-1)^{2n+1}}{2n+1}, \ n \in \mathbb{R}$$

Fatto 1. Se una successione è costante esistono infinite sottosuccessioni.

Theorem 5.2. Sia $\{a_n\}$ una successione, allora $\lim_{n\to+\infty} \{a_n\} = L \in \mathbb{R}^*$ \Rightarrow ogni sottosuccessione di $\{a_n\}$ ha limite L

Si può utilizzare questo teorema per dimostrare che il limite di una successione $\{a_n\}$ non esiste. Basta trovare una sottosuccessione che non ammette limite oppure due sottosuccessioni con limiti diversi.

Esempio:

$$a_n = (-1)^n$$

La sottosuccessione

$$a_{2n} = (-1)^{2n} = 1 \Rightarrow 1$$

 $a_{2n} = (-1)^{2n} = -1 \Rightarrow -1$

$$\lim_{n \to +\infty} a_n \not\exists$$