BANCO DE DADOS

Prof. Faber Henrique

Apresentação

HiveSys

QUAL O ATIVO MAIS VALIOSO DE SUA EMPRESA?

Acelerador de Partículas: R\$ 19 Bilhões

Equipe: Valor de mercado Google US\$ 229 bilhões

INFORMAÇÃO

Valor de mercado Google US\$ 229 bilhões

O principal desafio na ciência dos dados

O principal desafio na ciência dos dados

"Pergunte a si mesmo, qual o problema que você resolveu, que valia a pena resolver, onde você sabia que toda a informação dada com antecedência; ou onde você não tivesse um excesso de informações e você tinha que filtrá-la para fora, ou você não tivesse informação suficiente e teve que ir encontrar alguma"

Dan Meyer, Matemático

Informação

Qual a quantidade de informação na WWW?

> 27/04/2015

- Pesquisadores estimaram quantas folhas de papel seriam necessárias para imprimir uma página convencional da rede, indexada no Google (sem conteúdo inapropriado para menores).
- ▶ Cada site gasta em média I 5 folhas de papel A4 para ser impresso.

4,5 bilhões de sites \times 15 folhas de papel = **68**. **100**. **002**. **500**

- Consideraram essa estimativa conservadora
 - ▶ Resolveram dobrar o valor
 - □ 136 bilhões folhas de papel

McKinsey Global Institute

June 2011

Big data: The next frontier for innovation, competition, and productivity

Heritage Health Prize

Pedidos de Táxis – Belo Horizonte

Solicitações

Conclusões

monolith - single database

microservices - application databases

Qual o melhor cenário para uma empresa?

- Tecnologia e BD
- Utilitários
- DevOps
- Ferramentas de Gestão

• Tecnologia e BD

Utilitários

• DevOps

Ferramentas de Gestão

Bases de dados relacionais

Bases de dados não relacionais

TEC. WEB - TÓPICOS

Quem usa essas tecnologias?

TEC. WEB - TÓPICOS

Quem usa essas tecnologias?

Como construir o melhor Stack?

Curadores de informação

https://stackshare.io/

http://humnetlab.mit.edu/

https://medium.com/

Marta Gonzalez

Silvio Meira

Rodrigo Giaffredo

Murilo Gun

Faber Xavier

Quem são os seus curadores de informação?

- ▶ Era da Informação
- Petabytes
- Exabytes
- Big Data
- ▶ Felix Gessert
 - **2016**
 - ▶ NoSql

Bases de dados relacionais

Bases de dados não relacionais

Definição

- Bases Relacionais
 - Escalabilidade horizontal
 - Disponibilidade

- Bases Não Relacionais
 - Escalabilidade horizontal
 - Disponibilidade
 - Perda de garantias de consistência
 - Perda de capacidade de pesquisa

NoSQL

- Bases Não Relacionais
 - Modelos de dados
 - Teorema CAP
 (Consistência, Disponibilidade, Partição)

NoSQL

- Key-Value Store
 - Estrutura mais simples
 - Valores inerentes ao BD
 - Apenas operações de get e set
 - CRUD
 - Estrutura na parte lógica
 - Scheme-on-read

- Key-Value Store
 - Vantagens
 - Partição facilitada
 - Consulta simples
 - Baixa latência
 - Alto throughput
 - Desvantagens
 - Não suporta consultas complexas
 - Dados devem ser analisados na aplicação

- Document Database
 - Key-value
 - Estruturado
 - Maior flexibilidade de aceso
 - Buscar partes do documento
 - Agregação

JSON Document

- Column Family store
 - BigTable google
 - Colunas esparças
 - Valores nulos podem ser armazenados sem ocupar espaços

Teorema CAP

- Disponibilidade CAP
 - Eric Brewer PODC 2000
- "Um registro de leitura/gravação sequencialmente consistente que eventualmente responde a todas as solicitações não pode ser realizar em um sistema assíncrono propenso a partições de rede"
 - Consistência
 - Disponibilidade
 - Tolerância a partição

Teorema CAP

Consistência

 Lê e grava são sempre executadas atômica e são estritamente consistentes

Disponibilidade

 Cada nó que não falha no sistema sempre pode aceitar solicitações de leitura e gravação.

Tolerância a partição

 O sistema mantém as garantias de consistência exibidas anteriormente e a disponibilidade na presença de perda de mensagem entre os nós ou falha parcial do sistema.

Teorema CAP

Características

Classe de aplicativos

Características

Classe de aplicativos

- Fragmentação
 - SQL
 - Bases de dados distribuídas
 - Arquitetura shared-disk
 - NoSQL
 - Arquitetura shared-nothing
 - Conexão através das rede
 - Dados divididos em vários nós
 - Escalabilidade
 - Throughput

- Fragmentação
 - Range-sharding
 - Distribuição ordenada
 - Orquestrador

- Fragmentação
 - Hash-sharding
 - Distribuição a partir de uma Função hash
 - Não necessita de um orquestrador
 - Distribuição uniforme
 - Melhor elasticidade

- Fragmentação
 - Entity-group sharding
 - Garantir partição em dados locais
 - Partições
 - Definidas pela aplicação
 - Padrões de acesso

- Replicação
 - Confiabilidade
 - CA (Consistência e disponibilidade)

RAID 10 (RAID 1+0)

Stripe + Mirror

- Replicação
 - Confiabilidade
 - Clusters

Replicação

- Replicação
- Quando realizar?
 - Síncrona
 - Garantia de consistência
 - Maior latência
 - Assíncrona

Menor latência

Sem garantia de consistência

- Replicação
- Onde realizar?
 - Master-Slave
 - Réplica
 - Menor complexidade
 - Multi-Master
 - Maior complexidade
 - Cada nó pode aceitar gravações

Armazenamento

- Armazenamento
 - Stonebraker, Michael (VLDB, 2007)
 - 6,8% do tempo de execução é gasto em trabalho útil
 - 34,6% Armazenamento de cache
 - 14,2% bloqueio de concorrência
 - 16,3% isolamento lógico
 - 1,9% logs
 - 16,2% otimizações realizadas manualmente

- Armazenamento
 - Bancos de dados em memória
 - Durabilidade
 - Replicação
 - Cópia para um ambiente de maior durabilidade

- Processamento de consultas
 - Consultas por ID
 - Consultas por filtro
 - Varreduras completas na tabela
 - Estratégia scatter-gather para bases distribuidas

Arquitetura Cliente servidor

- Server passivo
- Requisições
- Alterações no banco não são automaticamente apresentadas na aplicação
- Sistemas reativos
- Wolfram Wingerath
 - ▶ 16 julho de 2017
 - Bancos de dados em tempo real

▶ Consultas em tempo real

36.67 21.45 78.49	32.67 51.08	10.66	11.85
36.66 39.77 9.58 57.90	34.28	A	66.72V 57.90
36.66 23.77 36.67 33.98	4.52 60.12	38,45 378,40	2.31 132.88
78.49 36.66 39.77	32.67 51.08	10.66	1.85

- Banco de dados em tempo real
 - ▶ 100 usuários
 - ▶ 100 requisições por segundo
 - Servidor deve responder a 10.000 requisições por segundo
 - Escalabilidade é pré requisito

Consultas em tempo real

- BD em tempo real deve manter a visualização fora da camada de aplicação
- Enviar a aplicação qualquer atualização, remoção e inserção de itens ao cliten

Resultados

- Self-maintaining queries
 - ▶ Mesma semântica
 - Pró-ativos
 - Fornecem resultados sempre que houve uma alteração
- Event stream queries
 - Orientados a eventos
 - Fornecer informações detalhadas sobre os eventos

▶ METEOR

- Framework JS
 - ► MongoDB
- Monitoramento de alterações no cliente
- Poll-Diff

Parse

- Framework
 - ▶ MongoDB
- ▶ Consultas em tempo real
 - **2016**
- ▶ Poll-Diff

OBRIGADO.