

ATK-7'TFTLCD 用户手册

7寸 TFTLCD 电容触摸屏模块

用户手册

ALIENTEK 广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.00	2013/3/22	第一次发布
V1.01	2013/11/29	更新部分信息
V2.00	2015/11/27	触摸屏 IC 更换为 FT5206

目 录

1. 特性	参数	1
	说明	
	模块引脚说明	
2.2	LCD 控制器接口时序	3
2.3	LCD 控制器寄存器说明	4
	2.3.1 CUR_X 寄存器(0x01)和 CUR_Y 寄存器(0x00)	4
	2.3.2 PIXELS 寄存器(0x02)	5
	2.3.3 END_X 寄存器(0x03)	5
	2.3.4 PREF 寄存器(0x05)	6
	2.3.5 MIRROR 寄存器(0X07)	
	2.3.6 STATE/ DATA 寄存器	7
2.5	电容触摸屏接口说明	7
	2.5.1 FT5206 寄存器简介	8
	2.5.2 FT5206 初始化流程	10
3. 结构,	尺寸	10
4. 其他.		11

1. 特性参数

ATK-7' TFTLCD-V14(V14 是版本号,下面均以 ATK-7' TFTLCD 表示该产品)是 ALIENTEK 推出的一款高性能 7 寸电容触摸屏模块。该模块屏幕分辨率为 800*480, 16 位 真彩显示,模块自带 LCD 控制器,拥有多达 8MB 的显存,能提供 8 页的显存,并支持任意点颜色读取。模块采用电容触摸屏,支持 5 点同时触摸,具有非常好的操控效果。

ATK-7' TFTLCD 模块还提供了镜像翻转、背光控制等功能,方便用户使用。ATK-7' TFTLCD 模块各项参数如表 1.1、表 1.2 和表 1.3 所示。

项目	说明
接口类型	LCD 驱动器: Intel8080-16 位并口 触摸屏: IIC
颜色格式	RGB565
颜色深度	16 位
显存页数	8页
显存容量	8MB ¹
LCD 分辨率	800*480
触摸屏类型	电容触摸
触摸点数	最多 5 点同时触摸
工作温度	-0°C~70°C
外形尺寸	100mm*180mm

表 1.1 ATK-7' TFTLCD 基本特性

注1:8M字节

功能	说明
定点写数据	将指定数据写入指定坐标
X坐标自动累加	每写入1个数据点,当前X坐标会自动加1
X坐标自动返回	当 X 坐标累加到用户预设的 X 结束坐标后,自动返回用户预设的 X 起始坐标
Y坐标自动累加	X 坐标自动返回时, Y 坐标自动加 1
数据读	读取任意点的像素数据
镜像翻转	在X方向或Y方向翻转显示的图像
背光控制	PWM 背光信号 64 级可调
状态标识	通过总线接口读取控制器的状态位

表 1.2 ATK-7' TFTLCD 功能特性

项目	说明
电源电压	$5\pm0.5V$
IO 口电平 ¹	3.3V LVTTL
功耗 ²	130~350mA

表 1.3 ATK-7 TFTLCD 电气特性

注 1: 3.3V 系统,可以直接接本模块 (供电必须 5V),如果是 5V 系统,建议串接 1K 左右电阻,做限流处理。

注 2: 130mA 对应背光关闭时的功耗, 350mA 对应背光最亮时的功耗, 此数据是在电源电压为 5V 时测出的,实际应用中功耗会由于电源电压的波动而略微变化。

2. 使用说明

2.1 模块引脚说明

ATK-7' TFTLCD 电容触摸屏模块通过 2*17 的排针(2.54mm 间距)同外部连接,模块可以与ALIENTEK的 STM32开发板直接对接,我们提供相应的例程,用户可以在ALIENTEK STM32 开发板上直接测试。ATK-7' TFTLCD 电容触摸屏模块外观如图 2.1.1 所示:

图 2.1.1-1 ATK-7' TFTLCD 电容触摸屏模块正面图

图 2.1.1-2 ATK-7' TFTLCD 电容触摸屏模块背面图

模块通过34(2*17)个引脚同外部连接,各引脚的详细描述如表2.1.1所示:

序号	名称	说明			
1	NCE	LCD 控制器片选信号(低电平有效)			
2	RS	命令/数据控制信号(0,命令;1,数据;)			
3	WR	写使能信号(低电平有效)			
4	RD	读使能信号(低电平有效)			
5	RST	复位信号(低电平有效)			
6~21	D0~D15	双向数据总线			
22,26,27	GND	地线			
23~25	NC	未用到			
28	VCC	5V 电源输入引脚			
29	MISO	NC, 电容触摸屏未用到			
30	MOSI	电容触摸屏 IIC_SDA 信号(CT_SDA)			
31	PEN	电容触摸屏中断信号(CT_INT)			
32	BUSY	NC,电容触摸屏未用到			
33	CS	电容触摸屏复位信号(CT_RST)			
34	CLK	电容触摸屏 IIC_SCL 信号(CT_SCL)			

表 2.1.1 ATK-7'TFTLCD 模块引脚说明

从上表可以看出,LCD 控制器总共需要 21 个 IO 口驱动,电容触摸屏需要 4 个 IO 口驱动,这样整个模块需要 25 个 IO 口驱动。

2.2 LCD 控制器接口时序

ATK-7'TFTLCD模块自带的LCD控制器采用16位8080总线接口,总线写时序如图2.2.1 所示:

图 2.2.1 总线写时序

图中,当 RS 为 0 的时候,表示写入的是寄存器地址(0~7),RS 为 1 的时候,表示写入的是数据(寄存器值/GRAM 数据)。

总线读时序如图 2.2.2 所示:

图 2.2.2 总线读时序

ATK-7' TFTLCD 模块自带的 LCD 控制器可读的寄存器只有 2 个,当 RS 为 0 的时候,表示读取的是状态寄存器(STATE),当 RS 为 1 的时候,表示读取的是像素数据(DATA),读期间的地址寄存器(ADDR)将被忽略。

2.3 LCD 控制器寄存器说明

ATK-7'TFTLCD 模块自带的 LCD 控制器各个寄存器的地址和功能简介如表 2.3.1 所示:

RS	操作	位宽	地址	名称	功能简介	复位值
0	写	16	_	ADDR	设置地址寄存器的值	0x0000
0	读	16	_	STATE	读状态寄存器	0x0000
1	读	16		DATA	读像素数据	0x0000
1	写	16	0x00	CUR_Y	设置屏幕的Y坐标	0x0000
1	写	16	0x01	CUR_X	设置屏幕的X坐标	0x0000
1	写	16	0x02	PIXELS	写入像素数据	0x0000
1	写	16	0x03	END X	设置 X 方向自动返回的坐标,以及页拷贝时	0x031f
			0x03	END_A	X 方向的结束坐标	
1	写	16	0x04	保留		
1	写	16	0x05	PREF	设置当前显示页、当前操作页,	0x0000
					背光等	
1	写	8	0x06	保留		
1	写	8	0x07	MIRROR	控制镜像翻转	0x0001

表 2.3.1 ATK-7 TFTLCD 模块自带 LCD 驱动器寄存器地址和功能简介

2.3.1 CUR_X 寄存器(0x01)和 CUR_Y 寄存器(0x00)

寄存器 CUR_X 和 CUR_Y 用于设置待操作像素点的坐标,TFTLCD 屏幕上坐标的排列 如图 2.3.1.1 所示:

图 2.3.1.1 坐标排列

当 CUR_Y 和 CUR_X 的值确定后,像素点 A 的位置便被唯一的确定了,随后的写入的像素数据会被准确的放置在 A 点。

2.3.2 PIXELS 寄存器(0x02)

寄存器 PIXELS 对应着 16 位的颜色数据,如果当前显示页与当前操作页相同,那么写入 PIXELS 的数据会被立即呈现在由 CUR_X 和 CUR_Y 选中的当前激活点上,如果当前显示页与当前操作页不相同,那么写入 PIXELS 的数据不会被立即呈现出来。

ATK-7'TFTLCD 模块的颜色格式为 RGB565, 具体的颜色与每个位对应关系如表 2.3.2.1 所示:

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	В4	В3	B2	B1	В0

图 2.3.2.1 颜色与位对应关系

2.3.3 END_X 寄存器(0x03)

为了提高像素数据连续读写的效率,当设置好 CUR_X 和 CUR_Y 后,每读取/写入一个像素,当前激活点的 X 坐标就会自动加一,当激活点的 X 坐标等于 END_X 后,便会自动返回 CUR_X 同时 Y 坐标自动加一。如图 2.3.3.1 所示:

图 2.3.3.1 X 坐标自动返回示意图

以写数据为例,假设 CUR_X、CUR_Y、END_X 分别为 400、200、500, A 点、B 点、C 点、D 点的坐标分别为(400, 200)、(500, 200)、(400, 201)、(500, 201)。设置好 CUR_X、CUR_Y 后,第一个像素写到了 A 点,第 100 个像素写到 B 点,第 101 个像素写到 C 点,

第200个像素写到D点,依此类推。

借助 END_X 寄存器,可以简化 MCU 批量数据读写的流程,假设 MCU 需要以(100,200)为起始坐标写入一个 10×20 的矩形,那么只需要将 CUR_X 设为 100,CUR_Y 设为 200,END_X 设为 210,然后进行 200 次的像素点读/写操作即可,期间不需要再进行坐标设置操作,所有的坐标都会被自动推算。

2.3.4 PREF 寄存器(0x05)

PREF 寄存器用于设置当前显示页、当前操作页和 TFT 背光,各个位的具体含义如表 2.3.4.1 所示:

位	名称	功能简介	复位值
b5~b0	BK_PWM	背光控制	0
b8~b6	保留		0
b11~b9	CUR_PAGE	当前显示的页	0
b14~b12	OPT_PAGE	当前操作的页	0
b15	保留		0

表 2.3.4.1 HREF 寄存器各位定义

2.3.4.1 背光控制

BK_PWM 用于设置背光信号的占空比,从而调节 TFT 背光的亮度,取值范围为 0~63,0 代表背光关闭,63 代表背光最亮。上电复位后 BK_PWM 的值默认为 0,也就是背光关闭,在 MCU 对 BK PWM 赋以非零值后,背光才能点亮。

2.3.4.2 当前显示/操作页

当前显示页由 CUR_PAGE 指定,表示屏幕上实际显示的显存分页,当前操作页由 OPT_PAGE 指定,表示当前读写操作的显存分页。如果 CUR_PAGE 与 OPT_PAGE 指向同一显存分页,那么写显存操作的结果会被立即呈现在屏幕上,如果 CUR_PAGE 与 OPT_PAGE 指向不同的显存分页,那么对 OPT_PAGE 的任何操作都不会影响屏幕上的显示内容,只有在 CUR_PAGE 切换到 OPT_PAGE 后,OPT_PAGE 中数据才会被显示出来。

2.3.5 MIRROR 寄存器(0X07)

MIRROR 寄存器用于实现图像的水平和垂直镜像翻转,该寄存器各位的具体含义如表 2.3.5.1 所示。

位	名称	功能简介	复位值
b15~b2	保留		0
b1	UD	控制垂直镜像翻转	0
b0	LR	控制水平镜像翻转	1

表 2.3.5.1 MIRROR 寄存器各位定义

UD 位用于控制显示画面的垂直翻转,LR 位用于控制显示画面的水平翻转,操作 UD 位和 LR 位会影响 TFT 上的像素点位置与显存中数据地址的映射关系,但不会改变显存中的数据,不同的 UD 和 LR 值所对应的显示效果如图 2.3.5.1 所示。

图 2.3.5.1 显示效果示意图

2.3.6 STATE/ DATA 寄存器

这两个寄存器相互配合,用于完成像素数据的读操作。STATE 寄存器的位定义如表 2.3.6.1 所示,读取该寄存器会自动启动像素点的读操作,当 MCU 查询到 STATE 的 DATA_OK 位(b0 位)为 1 后,表示像素数据有效,然后 MCU 读 DATA 寄存器即可获得对应点的像素数据,与写像素数据的操作相同,读像素数据的像素点位置也是由当前的 CUR_X 和 CUR_Y 定义的。当 MCU 读取 DATA 寄存器后,DATA_OK 位会被自动清零。需要注意的是,读 STATE 寄器时, b15~b1 位是随机值,因此在判断 DATA_OK 时,需要屏蔽掉这些位。

位	名称	功能简介	复位值
b15~b1	保留		0
b0	DATA_OK	数据有标志	0

表 2.3.6.1 STATE 寄存器各位定义

2.5 电容触摸屏接口说明

ATK-7' TFTLCD V2 模块采用 *教泰*电子(FocalTech)的 FT5206 作为电容触摸屏的驱动 IC,该驱动芯片通过 4 根线与外部连接: CT_RST、CT_INT、CT_SDA、CT_SCL。

CT_RST 为 FT5206 的复位信号, 低电平有效, 可以用来复位 FT5206, 并可以让 FT5206 进入正常工作模式。

CT_INT 为 FT5206 的中断输出引脚,当 FT5206 有数据可以输出的时候,该引脚会输出脉冲信号,提醒 CPU 可以读取数据了。

CT_SDA 和 CT_SCL 则是 FT5206 和 CPU 进行 IIC 通信的接口,通过 IIC 总线进行数据交换。

FT5206 采用标准的 IIC 通信,最大通信速率为 400Khz,模块设置的 FT5206 器件地址 为 0X70(写)和 0X71(读)。

FT5206 的写操作流程如图 2.5.1 所示:

图 2.5.1 FT5206 写操作流程图

图 2.5.1 为 CPU 写 FT5206 的操作流程图,首先 CPU 产生一个起始信号(S),然后发送地址信息及读写位信息"0"表示写操作: 0X70(Address_W)。

FT5206 接收到正确的地址后,发送 ACK 给 CPU, CPU 随后发送 8 位寄存器地址,发送完地址之后,发送 8 位要写入到寄存器的数据内容。

FT5206 寄存器的地址指针,会在写入一个数据后,自动加 1,所以当 CPU 需要对连续地址的寄存器进行写操作的时候,只需要写入第一个寄存器的地址,然后开始连续写入数据即可。最后,当写操作完成时,CPU 发送停止信号(E),结束当前的写操作。

FT5206 的读操作流程如图 2.5.2 所示:

图 2.5.2 FT5206 读操作流程图

图 2.4.2 为 CPU 读 FT5206 的操作流程图,首先 CPU 产生一个起始信号(S),然后发送地址信息及读写位信息"0"表示写操作: 0X70 (Address W)。

FT5206 接收到正确的地址后,发送 ACK 给 CPU, CPU 随后发送 8 位首寄存器地址,设置要读取的寄存器地址。在收到应答后,CPU 重新发送一次起始信号(S),发送地址信息及读写位信息"1"表示读操作: 0X71(Address_R)。在收到应答(ACK)后,CPU 就可以开始读取数据了。

同样,FT5206 支持连续的读操作,CPU 只需要在每收到一个数据后,发送一个 ACK 给 FT5206,就可以读取下一个寄存器的数据,寄存器地址也是自动增加的。当 CPU 想停止继续读数据的时候,发送 NACK,然后在发送停止信号(E),即可结束当前的读操作。

2.5.1 FT5206 寄存器简介

FT5206 的寄存器比较多,我们这里就不一一介绍了,仅介绍一部分比较重要的寄存器。 其他寄存器描述,请大家参考: FTS_AN_CTPM_Standard.pdf 这个文档。这里我们将介绍: 0X00、0XA4、0X80、0X88、0XA1、0XA2、0X02、0X03~0X06、0X09~0X0C、0X0F~0X12、0X15~0X18、0X1B~0X1E 等寄存器。

1, 工作模式寄存器(0X00)

该寄存器用于设置 FT5206 的工作模式。该寄存器各位描述如表 2.5.1.1 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0X00	0	MODE[2:0]			0	0	0	0

表 2.5.1.1 0X00 寄存器各位描述

MODE[2: 0]用于控制 FT5206 的工作模式,一般设置为: 000b,表示正常工作模式。

2, 中断状态控制寄存器(0XA4)

该寄存器用于设置 FT5206 的中断状态。该寄存器各位描述如表 2.5.1.2 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
OXA4	0	0	0	0	0	0	0	M

表 2.5.1.2 0XA4 寄存器各位描述

该寄存器只有最低位有效, M=0 的时候, 表示查询模式; M=1 的时候, 表示触发模式。 一般设置为查询模式。

3, 有效触摸门限控制寄存器(0X80)

该寄存器用于设置 FT5206 的有效触摸门限值。该寄存器各位描述如表 2.5.1.3 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0X80	T7	T7	T5	T4	T3	T2	T1	T0

表 2.5.1.3 0X80 寄存器各位描述

该寄存器 8 位数据都有效,用于设置 FT5206 有效触摸的门限值, 计算公式为:

有效触摸门限值=T[7:0]*4

T[7:0]所设置的值越小,触摸越灵敏,默认状态下T[7:0]=70。

4, 激活周期控制寄存器(0X88)

该寄存器用于设置 FT5206 的激活周期。该寄存器各位描述如表 2.5.1.4 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0X88	0	0	0	0	Р3	P2	P1	P0

表 2.5.1.4 0X88 寄存器各位描述

该寄存器只有低 4 位有效,用于设置 FT5206 的激活周期。P[3:0]的设置范围为: 3~14,不过建议一般不要小于 12。

5, 库版本寄存器(0XA1 和 0XA2)

这里由 2 个寄存器: 0XA1 和 0XA2 组成,用于读取 FT5206 的驱动库版本,0XA1 用于读取版本的高字节,0XA2 用于读取版本的低字节。ATK-7'TFTLCD V2 模块所用的 FT5206 库版本为: 0X3003。

6, 触摸状态寄存器(0X02)

该寄存器用于读取 FT5206 的触摸状态。该寄存器各位描述如表 2.5.1.5 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0X02	0	0	0	0	TD3	TD2	TD1	TD0

表 2.5.1.5 0X02 寄存器各位描述

该寄存器只有低 4 位有效,TD[3:0]的取值范围是: 1~5,表示有多少个有效触摸点。我们可以根据这个寄存器的值来判断有效触摸点的个数,然后通过 0X03/0X09/0X0F/0X15 和 0X1B 等寄存器来读取触摸坐标数据。

7, 触摸数据寄存器(0X03~0X1E)

这里总共包括 20 个寄存器,他们是: 0X03~0X06、0X09~0X0C、0X0F~0X12、0X15~0X18、0X1B~0X1E。每 4 个寄存器为 1 组,表示一个触摸点的坐标数据,比如 0X03~0X06,则表示触摸点 1 的坐标数据,其他的以此类推。这里,我们仅介绍 0X03~0X06 寄存器,如表 2.5.1.6 所示:

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0X03	Event FLAG		0	0	X[11:8]			
0X04		X[7:0]						
0X05	Touch ID 0 0 Y[11:8]							
0X06		Y[7:0]						

表 2.5.1.6 0X03~0X06 寄存器各位描述

这里的 Event FLAG 用于表示触摸状态: 00,按下; 01,松开; 10,持续触摸; 11,保留。一般我们只需要判断该状态为 10 即可,即持续触摸状态,就可以稳定的读取触摸坐标数据了。而 Touch ID,我们一般用不到,这里就不做介绍了。最后,是 X 和 Y 的坐标数据,这些数据以 12 位的形式输出,如表 2.5.1.6 所示。

其他的 0X09~0X0C、0X0F~0X12、0X15~0X18、0X1B~0X1E 等寄存器,则分别用于读取第 2~5 个触摸点的坐标数据。

2.5.2 FT5206 初始化流程

FT5206 的初始化流程非常简单,首先通过 CT_RST 引脚对 FT5206 进行一次复位,让 FT5206 进入正常工作模式。然后设工作模式、中断状态、触摸阀值和激活周期等参数,就 完成了对 FT5206 的初始化。

初始化完成便可以读取触摸坐标数据了,先读取 0X02 寄存器,判断有多少个有效触摸点,然后读取 0X03~0X1E 等寄存器,便可以获得触摸坐标数据。

3. 结构尺寸

ATK-7' TFTLCD 电容触摸屏模块的尺寸结构如图 3.1 所示:

图 3.1 ATK-7' TFTLCD 模块尺寸图

4. 其他

1、购买地址:

官方店铺 1: http://shop62103354.taobao.com 官方店铺 2: http://shop62057469.taobao.com

2、资料下载

ATK-7'TFTLCD 模块资料下载地址: http://www.openedv.com/posts/list/0/13558.htm

3、技术支持

公司网址: <u>www.alientek.com</u> 技术论坛: <u>www.openedv.com</u>

传真: 020-36773971 电话: 020-38271790

