

MigrOS: Transparent Live-Migration Support for Containerised RDMA Applications

Maksym Planeta¹ Jan Bierbaum¹ Leo Sahaya Daphne Antony² Torsten Hoefler³ Hermann Härtig¹

¹TU Dresden ²AMOLF ³ ETH Zürich

2021 USENIX Annual Technical Conference 2021-07-14

Containers are ubiquitous

- Containers are ubiquitous
- Fast networks (40G to 400G NICs) have become widespread

- Containers are ubiquitous
- Fast networks (40G to 400G NICs) have become widespread
- Traditional network stacks are unsustainable

- Containers are ubiquitous
- Fast networks (40G to 400G NICs) have become widespread
- Traditional network stacks are unsustainable
- RDMA networks access device directly, breaking isolation

- Containers are ubiquitous
- Fast networks (40G to 400G NICs) have become widespread
- Traditional network stacks are unsustainable
- RDMA networks access device directly, breaking isolation
- Direct device access complicates live migration

- Containers are ubiquitous
- Fast networks (40G to 400G NICs) have become widespread
- Traditional network stacks are unsustainable
- RDMA networks access device directly, breaking isolation
- Direct device access complicates live migration
- Goal: live migration with no application modifications and no performance overhead

Consists of

Checkpoint

- Checkpoint
- State transfer

- Checkpoint
- State transfer
- Restart

- Checkpoint
- State transfer
- Restart
 - Network reconfiguration

Zero-copy

- Zero-copy
- OS-bypass

- Zero-copy
- OS-bypass
 - Higher network performance
 - ✓ Lower CPU overhead

- Zero-copy
- OS-bypass
 - ✓ Higher network performance
 - ✓ Lower CPU overhead
 - ★ OS loses control

- Zero-copy
- OS-bypass
 - Higher network performance
 - ✓ Lower CPU overhead
 - ★ OS loses control
- Goal: Take back control

Send, receive, and completion queues

- Send, receive, and completion queues
- · Shared connection state

- Send, receive, and completion queues
- · Shared connection state
- OS can stop the application

- Send, receive, and completion queues
- · Shared connection state
- OS can stop the application
- OS cannot stop the NIC

- Send, receive, and completion gueues
- · Shared connection state
- OS can stop the application
- OS cannot stop the NIC
- Lost updates

• QP represents connection

- QP represents connection
- QP state machine
 - Reset

- QP represents connection
- QP state machine
 - Reset
 - Init

- QP represents connection
- · QP state machine
 - Reset
 - Init
 - Ready-to-Receive

Fixed source

- QP represents connection
- · QP state machine
 - Reset
 - Init
 - Ready-to-Receive
 - Ready-to-Send
- Fixed source
- Fixed destination

- QP represents connection
- · QP state machine
 - Reset
 - Init
 - Ready-to-Receive
 - Ready-to-Send
 - Error
- · Fixed source
- Fixed destination

• QPs in RTS state

- QPs in RTS state
- Changes:
 - Stopped (S) state

```
N_1 R
```


- QPs in RTS state
- Changes:
 - Stopped (S) state
 - Stopped nack

- QPs in RTS state
- Changes:
 - Stopped (S) state
 - Stopped nack
 - Paused (P) state

- QPs in RTS state
- Changes:
 - Stopped (S) state
 - Stopped nack
 - Paused (P) state

- QPs in RTS state
- Changes:
 - Stopped (S) state
 - Stopped nack
 - Paused Pstate

- QPs in RTS state
- Changes:
 - Stopped (S) state
 - Stopped nack
 - Paused (P) state
 - Resume message
- No lost state updates

Pause/Resume Protocol

- QPs in RTS state
- · Changes:
 - Stopped (S) state
 - Stopped nack
 - Paused (P) state
 - Resume message
- No lost state updates

Unmodifed guest:

Application

Unmodifed guest:

- Application
- libibverbs
- User-level driver

Container
Application
OpenMPI
libibverbs
RDMA ULD

Unmodifed guest:

- **Application**
- libibyerbs
- User-level driver

Modified host:

Kernel-level driver

Container **Application** OpenMPI libibverbs **RDMA ULD** ib_core

User Kernel

RDMA KLD

Unmodifed guest:

- Application
- libibverbs
- User-level driver

Modified host:

- · Kernel-level driver
- User-level driver
- libibverbs
- CRIU

Unmodifed guest:

- Application
- libibverbs
- User-level driver

Modified host:

- · Kernel-level driver
- User-level driver
- libibverbs
- CRIU

 RoCEv2 – InfiniBand protocol over UPD port

- RoCEv2 InfiniBand protocol over UPD port
- SoftRoCE software RoCEv2 implementation

- RoCEv2 InfiniBand protocol over UPD port
- SoftRoCE software RoCEv2 implementation
- × Performance overhead

- RoCEv2 InfiniBand protocol over UPD port
- SoftRoCE software RoCEv2 implementation
- × Performance overhead
- Easy to change the protocol

- RoCEv2 InfiniBand protocol over UPD port
- SoftRoCE software RoCEv2 implementation
- × Performance overhead
- Easy to change the protocol
- ✓ Feature-full implementation

- RoCEv2 InfiniBand protocol over UPD port
- SoftRoCE software RoCEv2 implementation
- × Performance overhead
- Easy to change the protocol
- Feature-full implementation
- Generalisable for other protocols

A few changes to the RDMA protocol enable transparent live-migration

Changes are small and backwards compatible

- Changes are small and backwards compatible
- Performance of normal operation is not affected

- Changes are small and backwards compatible
- Performance of normal operation is not affected
- Faster than software-level interception

- Changes are small and backwards compatible
- Performance of normal operation is not affected
- Faster than software-level interception
- Practicality

- Changes are small and backwards compatible
- Performance of normal operation is not affected
- Faster than software-level interception
- Practicality

Evaluation: Motivation

ConnectX-3 40GbE

Evaluation: Motivation

- ConnectX-3 40GbE
- MigrOS: No overhead, normal operation
- FreeFlow: Software RDMA switch
- DMTCP: Checkpoint/restore library

Evaluation: Motivation

- ConnectX-3 40GbE
- MigrOS: No overhead, normal operation
- FreeFlow: Software RDMA switch
- DMTCP: Checkpoint/restore library
- Constant per message latency increase

Evaluation: Practicality

SoftRoCE

Evaluation: Practicality

- SoftRoCE
- NAS Parallel Benchmarks

Evaluation: Practicality

- SoftRoCE
- NAS Parallel Benchmarks
- Checkpoint and transfer in parallel

Conclusion

- Added two new states and two new message types to RoCEv2
- Small changes to the software stack (CRIU, kernel, libibverbs)
- Integrate RDMA migration into existing container runtime and orchestration

Conclusion

- Added two new states and two new message types to RoCEv2
- Small changes to the software stack (CRIU, kernel, libibverbs)
- Integrate RDMA migration into existing container runtime and orchestration

Thank you!

Backup Slides

