Probabilistic Tracking of Multiple Rodent Whiskers In Monocular Video Sequences

Jim Holmström, Emil Lundberg Bachelor's Thesis at CSC, KTH

Background

The Problem

The interest in studying rodent whiskers has recently seen a significant increase, particularly in the field of neurophysiology. As a result, there is a need for automatic tracking of whisker movements. Currently available commercial solutions either are extremely expensive, restrict the experiment setup, or fail when whiskers cross or overlap. A cheap, reliable solution to the tracking problem is needed.

A Probabilistic Approach

We propose solving the problem by a probabilistic approach. We use a technique known as the *Particle Filter* to propagate a whisker model between frames of high speed video. In each frame, the next state of the model is predicted by searching a pre-trained database, and filtering the results through the Particle Filter. The main difference between this and existing solutions is that it maintains a model of the whiskers. This makes it easier to keep track of them even when they cross or overlap.

The Probabilistic Framework

Our solution is based on discrete *Markov processes*, which are a special case of stochastic processes. For a Markov process, the next state depends only on the present state and not on past states.

An example of a discrete Markov process is that of throwing dice and summing the results: the throws and state space are discrete, and the possible states (sums) after the next throw depend only on the current state.

In mathematical terms, a discrete Markov process satisfies the following:

$$p\left(Z_{n+1}|Z_n \wedge Z_{n-1} \wedge \dots \wedge Z_0\right) = p\left(Z_{n+1}|Z_n\right) \tag{1}$$

where Z_n is the system's *state* after step n and $p(Z_{n+1}|Z_n \wedge Z_{n-1} \wedge \cdots \wedge Z_0)$ is the probability that the system will have state Z_{n+1} in the next step, given that the previous states were $Z_n, Z_{n-1}, Z_{n-2}, \ldots, Z_0$.

A *hidden Markov model* (HMM) describes a Markov process where one cannot measure the state *Z* of the system directly - it is "hidden" ^aIn this project, the observation is a grayscale *image*, which is why we use the symbol *I*.

- but rather obtains an *observation* I^a of the state by some *perception*. The observation is generally non-deterministic, so we need to denote it as $p(I_n|Z_n)$ which is the probability that we will observe I_n if the current state of the system is Z_n .

The Particle Filter

The Particle Filter is a technique for simulating a process described by a HMM. It uses a finite set X_n of N hypotheses to approximate the probability function $p(Z_n)$ above. The hypotheses X_n are also known as *particles*, thereby the term "particle filter". In short terms, the particle filter does the following:

1. Predicts the next state Z_{n+1} by drawing samples X_{n+1} from $p(Z_{n+1}|Z_n)$,

2. resamples the hypotheses X_{n+1} by drawing new samples from $p\left(I_{n+1}|x_{n+1}^i\right)$

Above is an illustration of a Particle Filter working with a Hidden Markov Model. The system assumes states $Z_0, Z_1, ...$ with probabilities $p(Z_0), p(Z_1|Z_0), \cdots$, and we obtain the observations I_1, I_2, \cdots with probabilities $p(I_1|Z_1), p(I_2|Z_2), \cdots$. Parallel to this, we have a set of hypotheses X for the state Z. The hypotheses X_n of Z_n are updated in the *prediction* step to hypotheses \bar{X}_{n+1} of Z_{n+1} . The image I_{n+1} of the system is then used in the *resampling step* to select the best hypotheses from \bar{X}_{n+1} , yielding the *belief* X_{n+1} . Finally, we create a single hypothesis X_{n+1} from X_{n+1} that will be our estimate of the state Z_{n+1} .

Results

So far, we have run some tests on randomly generated video sequences of whisker-like objects. While the results are far from good enough for practical use, they are still quite promising.