# Midterm Project

## Analizador de Arte Multimedia

Autor: Mateo Cardona Arias

### 1. Introducción

Este proyecto tiene como objetivo el desarrollo de un analizador multimedia capaz de integrar el procesamiento de imágenes y audio en un mismo flujo de trabajo. El programa permite extraer características visuales y sonoras de archivos de entrada y luego relacionarlas mediante un proceso de fusión multimodal.

Se buscó que la implementación fuese práctica y clara, evitando el uso de funciones encapsuladas, para que la ejecución pueda seguirse de manera lineal. El usuario únicamente debe proporcionar una imagen (.jpg) y un archivo de audio (.wav), y el sistema se encarga de realizar todo el análisis automáticamente.

Además, dentro del proyecto se incluyen varias imágenes de prueba y audios de distintos géneros, como música clásica o rock, de manera que se puedan realizar diferentes pruebas sin necesidad de modificar el código

Aparte se realizo un video explicativo del programa: https://youtu.be/QURcYFdZRwQ

#### 2. Tecnologías utilizadas

El proyecto fue implementado en Python, utilizando las siguientes bibliotecas:

- NumPy: manejo de arreglos y operaciones matemáticas.
- Matplotlib: visualización de gráficos y figuras.
- OpenCV: procesamiento de imágenes y conversión de espacios de color.
- Scikit-learn (KMeans): extracción de colores dominantes en la imagen.
- Librosa: análisis de audio (RMS, centroide espectral, tempo, onset, espectrogramas).

Los resultados se presentan de dos maneras:

- 1. En consola, donde se listan las principales características extraídas.
- 2. En la carpeta outputs/, que el mismo programa crea automáticamente y donde se almacenan gráficos, espectrogramas y un archivo de texto con una interpretación automática.

#### 3. Descripción del funcionamiento del código

El código está estructurado como un flujo lineal que va ejecutando paso a paso cada etapa del análisis. A continuación, se describe de manera general lo que ocurre durante la ejecución:

- Carga de archivos: se leen la imagen (.jpg) y el audio (.wav) definidos en las variables de configuración. Si los archivos no se encuentran, el programa notifica el error.
- 2. **Procesamiento de la imagen**: la imagen se convierte del espacio de color BGR a RGB y HSV. Luego:

- Se calculan histogramas de color en RGB y del tono (Hue) en HSV.
- Se aplica el algoritmo *KMeans* para identificar los colores dominantes.
- Se obtiene la paleta de colores con su frecuencia de aparición.
- 3. **Procesamiento del audio**: se carga el archivo de sonido con *Librosa* y, en caso necesario, se eliminan los silencios. Después se extraen características como:
  - Energía RMS (intensidad promedio).
  - Centroide espectral (brillo del sonido).
  - Tempo estimado y beats.
  - Tasa de onsets (ataques sonoros).
  - Mel-espectrograma, que representa la energía en distintas bandas de frecuencia a lo largo del tiempo.
- 4. Fusión multimodal: se combinan métricas de imagen (tono, saturación) con métricas de audio (brillo, energía). Esto permite generar un perfil conjunto que refleja la relación entre los colores y las propiedades del sonido.
- 5. Visualización y almacenamiento:
  - Se genera una figura con subgráficos: la imagen original, su paleta de colores, histogramas, forma de onda, RMS y centroide espectral.
  - Se guarda un mel-espectrograma en un archivo aparte.
  - Se escribe un archivo de texto con una interpretación automática de los resultados.

#### 4. Resultados

En esta sección se presentan los resultados obtenidos al ejecutar pruebas con los archivos de ejemplo.

En particular, se realizó una prueba utilizando la **imagen "espacio"** y el **audio de** "**rock**". Para este caso, se incluyen diferentes tipos de salidas generadas por el programa:

- Características de la imagen: gráfica con los colores dominantes, histogramas y paletas obtenidas.
- Características del audio: gráfica con el espectro, RMS, centroide espectral, tempo y onsets.
- Fusión de resultados: representación conjunta donde se visualizan en un mismo espacio tanto las propiedades de la imagen como del audio.
- Resultados en consola: captura de pantalla de los valores numéricos calculados, como los colores dominantes en RGB/HSV y las métricas de audio.



Figura 1: Perfil artístico multimedia.



Figura 2: Mel-espectrograma del audio.

Figura 3: Resultados mostrados en consola.

De esta forma, el reporte incluye tanto la información visual como la numérica, permitiendo una comprensión completa de los resultados generados por el programa.