Aggregating From Multiple Target-Shifted Sources

Changjian Shui, Zijian Li, Jiaqi Li, Christian Gagné, Charles X.Ling, Boyu Wang

ICML 2021

Multiple-Source Domain Adaptation

 Learning a target domain with limited or even no label information through multiple *related* sources.

Multiple-Source Domain Adaptation

- Learning a target domain with limited or even no label information through multiple related sources.
- Widely applied in image segmentation, crowd sourcing and personal medicine.

Multiple-Source Domain Adaptation

- Learning a target domain with limited or even no label information through multiple related sources.
- Widely applied in image segmentation, crowd sourcing and personal medicine.
- Key Question:
 How to select relevant sources to avoid negative transfer ?

Selection through domain similarity

Conventional theories in multi-source domain adaptation:

$$R_{\mathcal{T}}(h) \leq \frac{1}{T} \sum_{t=1}^{T} R_{\mathcal{S}_t}(h) + \sum_{t=1}^{T} \boldsymbol{\lambda}[t] \mathrm{dist}(\mathcal{S}_t(\mathbf{x}), \mathcal{T}(\mathbf{x}))$$

- ullet λ is a simplex, measuring source-target relations.
- If marginal distribution distance $dist(S_t(x), \mathcal{T}(x))$ is small, assigning higher $\lambda[t]$.

Limitation of adopting $\mathrm{dist}(\mathcal{S}_t(x),\mathcal{T}(x))$

•
$$\operatorname{dist}(\mathcal{S}_1(x), \mathcal{T}(x)) = \operatorname{dist}(\mathcal{S}_2(x), \mathcal{T}(x)))$$

•
$$\lambda[1] = \lambda[2]$$

• S_2 is a unreliable source: label propotion between sources-target is different.

Research Goal: Leveraging from different label (y)-shifted sources.

One Solution

 $\quad \bullet \ \operatorname{dist}(\mathcal{S}_1(\boldsymbol{x}|\boldsymbol{y}), \mathcal{T}(\boldsymbol{x}|\boldsymbol{y})) < \operatorname{dist}(\mathcal{S}_2(\boldsymbol{x}|\boldsymbol{y}), \mathcal{T}(\boldsymbol{x}|\boldsymbol{y})))$

One Solution

- $\operatorname{dist}(\mathcal{S}_1(\mathbf{x}|\mathbf{y}), \mathcal{T}(\mathbf{x}|\mathbf{y})) < \operatorname{dist}(\mathcal{S}_2(\mathbf{x}|\mathbf{y}), \mathcal{T}(\mathbf{x}|\mathbf{y}))$
- Assigning higher $\lambda[1]$ for \mathcal{T} .

One Solution

- $\operatorname{dist}(\mathcal{S}_1(x|y), \mathcal{T}(x|y)) < \operatorname{dist}(\mathcal{S}_2(x|y), \mathcal{T}(x|y)))$
- Assigning higher $\lambda[1]$ for \mathcal{T} .
- Adopting the similarity of conditional distribution is more reliable.

Our Contributions

• Analyze multi-sources domain adaptation with $\mathcal{S}_t(y) \neq \mathcal{T}(y)$, $\mathcal{S}_t(x|y) \neq \mathcal{T}(x|y)$

Our Contributions

- Analyze multi-sources domain adaptation with $\mathcal{S}_t(y) \neq \mathcal{T}(y)$, $\mathcal{S}_t(x|y) \neq \mathcal{T}(x|y)$
- A theoretically grounded approach with compelling empirical results, compared with modern baselines.

Our Contributions

- Analyze multi-sources domain adaptation with $\mathcal{S}_t(y) \neq \mathcal{T}(y)$, $\mathcal{S}_t(x|y) \neq \mathcal{T}(x|y)$
- A theoretically grounded approach with compelling empirical results, compared with modern baselines.
- A unified method for handling different scenarios, where previous works generally treated as separate problems.

Unified Approach

Table 1: Three multi-source domain adaptation (DA) scenarios

	Target label	$\boxed{\operatorname{supp}(\mathcal{S}_t(y)) = \operatorname{supp}(\mathcal{T}(y))}$	Additional Assumption
DA Limited label	✓	✓	x
Unsupervised DA	Х	✓	/
Partial Unsupervised DA	X	×	✓

- Require additional assumptions in unsupervised scenarios when label and conditional distribution shift.
- Partial Unsupervised DA $\operatorname{supp}(\mathcal{T}(y)) \subseteq \operatorname{supp}(\mathcal{S}_t(y))$

Thank You