Metodi Matematici per l'Informatica (secondo canale) — 20 Giugno 2024 Soluzioni di Andrea Princic. Cartella delle soluzioni.

Indichiamo con $P(A)$ l'insieme dei sottoinsiemi di un insieme A con $X,Y \in P(A)$. Allora: $A \cdot \text{se } \emptyset \in A \text{ allora } \emptyset \in P(A)$ $A \cdot \text{se } \emptyset \in P(A) \text{ allora } \emptyset \in A$ $A \cdot \text{co } (X \cup Y) \cap X = X$ $A \cdot \text{co } (X \cup Y) \cap X = X$ $A \cdot \text{co } (X \cap Y) \cup X = X$ $A \cdot \text{co } (X \cap Y) \cup X = X$ $A \cdot \text{co } (X \cap Y) \cup X = X$ $A \cdot \text{co } (X \cap Y) \cup X = X$ $A \cdot \text{co } (X \cap Y) \cup X = X$ $A \cdot \text{co } (X \cap Y) \cup X = X$ $A \cdot \text{co } (X \cap Y) \cup X = X$
Sia $R \subseteq A \times A$ una relazione simmetrica e antisimmetrica. Allora F A. non può esistere una tale R B. $R = A \times A$ F. C. R è necessariamente anche antiriflessiva F D. se per ogni F A esiste F tale che F allora F è un'equivalenza
Siano $f: X \to Y$ e $g: Z \to Y$ dove $Z \subseteq X$. Indicare se le seguenti affermazioni sono vere o false. (NB: per un qualunque $S \subseteq X$, con $f(S)$ si denota l'insieme $\{y \in Y \mid \exists s \in S \text{ per cui } f(s) = y\}$. Analogamente per $g(S)$) F. A. Se f è iniettiva allora g è iniettiva F. B. $f(X - Z) \subseteq f(X) - f(Z)$ F. C. $Y = f(X) \cup g(Z)$
L'unione numerabile di insiemi numerabili è numerabile?
Rispondere qui
Dimostrare usando il Principio di Induzione la seguente proposizione: Con francobolli da 4 e 5 centesimi posso ottenere ogni affrancatura di valore $n \geq 12$.
Rispondere qui
FFFF

Es 6.	Se so che $A \to B$ ha valore	VERO, che cosa	posso concludere	del valore di veri	tà delle proposizioni
	seguenti?				

A.
$$(A \lor C) \to (B \lor C)$$

Rispondere qui

B.
$$(\neg A \land B) \leftrightarrow (A \lor B)$$

 ${\bf Rispondere~qui}$

$$\square_V \square_F$$
 A. $((\exists x P(x)) \to (\exists x Q(x))) \to (\exists x (P(x) \to Q(x)))$

Es 8. Formalizzare la frase $Tutti\ i\ nipoti\ amano\ i\ propri\ nonni$, considerando come universo del discorso l'insieme di tutte le persone ed utilizzando il linguaggio formato da due simboli di relazione binari G e A interpretati come segue: G(x,y) se e solo se x è genitore di y, A(x,y) se e solo se x ama y.

Rispondere qui			