Assignment 6 MAT 347

Q5i: Since any any $\phi \in Aut(G)$ is determined by $\phi(\overline{1}) = a\overline{1}$, for some $a \in \mathbb{F}_p$ it is sufficient to determine which $a \in \mathbb{F}_p$ will give an invertible map. Note that from number theory, the elements in \mathbb{F}_p which have multiplicative inverses are the nonzero elements. Hence we can correspond every automorphism of G with an element \mathbb{F}_p^{\times} by identifying ϕ with $\phi(1)$. Hence

$$Aut(G) \cong F_p^{\times}$$

Q5ii: Similarly to 5i, an automorphism $\phi \in Aut(\mathbb{Z}/n\mathbb{Z})$ will be determined by $\phi(\overline{1}) = a\overline{1}$. Hence the set of all automorphisms can be corresponded to the set of all $a \in \mathbb{Z}/n\mathbb{Z}$ which have multiplicative inverses. We know from number theory this is exactly the set of all $a \in \mathbb{Z}/n\mathbb{Z}$ such that $\gcd(a,n) = 1$ i.e. the unit group of $\mathbb{Z}/n\mathbb{Z}$.