Stochastic Regressors

- 1) yi = po + p1 X1: + ... + BnXni + &
- (2) \(\(\x\)_{\(\ildot\)_{\(\ildo\)_{\(\ildot\)_{\(\ildo\)_{\(\ild
- 3 E(Xji) < 0, j=1,k; E(1) < 0

<=> ho outliers

(D) E(E(| a(i) - 0) + wi) = 0

F(ε)=0

L> COV (9:1 X:) =0

- (L)
- (3) rank (X) = K+1 U.p. 1

1-5 => Bois - consistent à asympte normal

1 X; I E; -> unbiased

consistent

2 cov(&; , X;)=0 => 6:0sed

consistent

(conditionally unbiased)

(3) $cov(e_i, x_i) \neq 0 = > inconsistent$

Col. 1. :
$$\sqrt{ax}(x) \xrightarrow{f} V_{0n}(x_i)$$
 $Cov(x_i, y_i) = E(X_i, y_i) - E(X_i)E(y_i)$
 $Cov(x_i, y_i) = \overline{X}y - \overline{X} \cdot \overline{y}$
 $\overline{X} \xrightarrow{f} E(X_i)$
 $\overline{X} \xrightarrow{f} E(X_i) = E(X_i)E(y_i)$
 $\overline{X} \xrightarrow{f} E(X_i)E(y_i)$
 $\overline{X} \xrightarrow{f} \overline{X} \xrightarrow{f} E(X_i)E(y_i) - E(X_i)E(y_i)$

Plan $\widehat{f} = f_{in} = \frac{2k_i - \overline{x}(y_i + \overline{y})^4 N}{\overline{x}(x_i - \overline{x})^4 N} = \frac{k_i + E}{V_i - \overline{x}(x_i - \overline{y})} = \frac{k_$

