Events following axontomy (cutting of the axon):
Fragmentation of distal axons stump, debris cleared away by macrophages.
Different nerve regeneration response to axon injury:
• In PNS: macrophage clears away the debris
• In CNS: no macrophage clearance of debis. Inhibitory substance prevent axon regeneration, astrocytes become reactive
astrocyte, also inhibit regeneration
• In DRG: If PNS axon is injured and regenerated, an injury in the CNS can be regenerated as well. This is due to the
presence of intracellular cAMP. Experiment shows adding cAMP to leision site induce regeneration.
Regeneration events:
• Wallerian degeneration:
○ Recruitment of macrophages to the injury site.
Redifferentiation and proliferation of schwann cells.
O Degradation of surrounding myelin, removal of debris.
• Axon regeneration:
○ Integrin bind with laminin, promote axon growth via tensin transduction
○ Neurotrophin-3 (NT-3) bind with TrkC to promote axon survival
○ BDNF bind to p75 NTR to promote axon growth
Genetic screen identification of genes involved in neuron regeneration
Ced-1: gene involved in engulfment and regeneration signalling
○ In Ced-1 mutants, debris remain around the injury site, restore Ced-1 in neurons did not rescue(not an
intrinsic factor)
o Immunofluorescence shows Ced-1 co-localise with both early and late endosomes (Phagocytosis)
Restore extracellular domain in muscle cells allow rescue (act as signalling & adhesion molecule)
Reprogramming of the schwann cell, autophagocytosis of myelin:
 Myelin act as an inhibitory substance, through the p75 receptor, activate Rho GTPase which inhibits microtubule assembly.
After axon injury, schwann cells redifferentiate into repair mode, promote autophagocytosis of myelin within the cytoplasm.
 Axon membrane have <u>integrin</u> (receptor), bind to <u>laminin</u> in the extracellular matrix, signal through the PI3K pathway and GSK3 to promote microtubule polymerisation and promote growth cone.
• Tensin is an intracellular protein which contains a SH2 domain, can bind to integrin receptor phosphorylated domain and activate nerve regeneration.
○ Expression of tensin-1 in injured neurons in tensin-1 mutant C. Elegans shows rescue effect.
 Mutations in different domains of tensin shows the SH2 domain and the PTB domain is important for
regneration. SH2 domain of tensin interact with MAPK RTK receptors
○ Pull-down assay shows the PTB domain of tensin binds to the PAT-3 intracellular domain of integrin

• Intrinsic mechanisms in the regenerating neuron: Neurons have differential regenerative abilities in the same culture.
 Series of biogenesis events underlying the restructuring of the axon (membrane remodelling, cytoskeleton
formation, axon transport)
 Biogenesis within the cell is regulated by master regulator gene mTOR, which is activated by the PI3K pathway
and inhibited by PTEN
Neurotrophin-3 / TrkC signalling activates PI3K pathway
 Interleukin-6 & Leukemia inhibitory factor activates the JAK/STAT3 pathway, promote cytoskeleton remodelling
• cAMP activates PKA, which inhibits Rho, promote microtubule assembly
CAMP also activates CREB transcription, which promotes microtubule assembly. CAMP also activates CREB transcription, which promotes microtubule assembly.
CAMI also activates of LB transcription, which promotes interotubule assembly.