

Attribute Normalization, Standardization and Dimension Reduction of Data

Student's Name: Sumit Kumar Branch:

Roll Number: B19118 CSE

Mobile No: 7807327549

1 a.

Table 1 Minimum and Maximum Attribute Values Before and After Min-Max Normalization

S. No.	Attribute	Before Min-Max Normalization		After Min-Max Normalization	
		Minimum	Maximum	Minimum	Maximum
1	Temperature (in °C)	10.085	31.375	3.0	9.0
2	Humidity (in g.m ⁻³)	34.205	99.72	3.0	9.0
3	Pressure (in mb)	992.654	1037.604	3.0	9.0
4	Rain (in ml)	0.0	2470.5	3.0	9.0
5	Lightavgw/o0 (in lux)	0.0	10565.352	3.0	9.0
6	Lightmax (in lux)	2259	54612	3.0	9.0
7	Moisture (in %)	0.0	100.0	3.0	9.0

Inferences:

- 1. The attribute "Rain" contains the maximum number of outliers whereas there is no any outlier in the attribute "Lightmax" and "Moisture".
- 2. After performing the maximum minimum normalization, the data points get transformed into the value between 3-9.
- 3. On doing normalization the behavior of the data is not changing only scaling is changed.

b.

Table 2 Mean and Standard Deviation Before and After Standardization

S. No.	Attribute	Before Standardization		After Standardization	
		Mean	Std. Deviation	Mean	Std. Deviation
1	Temperature (in °C)	6.180	1.163	0	1.0
2	Humidity (in g.m ⁻³)	7.559	1.608	0	1.0
3	Pressure (in mb)	5.955	0.817	0	1.0
4	Rain (in ml)	3.416	0.968	0	1.0
5	Lightavgw/o0 (in lux)	4.271	1.253	0	1.0

Attribute Normalization, Standardization and Dimension Reduction of Data

6	Lightmax (in lux)	5.238	2.529	0	1.0
7	Moisture (in %)	4.943	2.019	0	1.0

Inferences:

- 1. After standardization the mean is found to be zero and the standard deviation is found to be 1.
- 2. We are considering the gaussian distribution of the data points.

2 a.

Figure 1 Scatter Plot of 2D Synthetic Data of 1000 samples

Inferences:

- 1. The correlation between the attribute x1 and x2 is high and positively correlated because as x1 is increasing, the value of x2 is also increasing.
- 2. The scatter plot is very dense around the mean 0.

Attribute Normalization, Standardization and Dimension Reduction of Data

b.

Figure 2 Plot of 2D Synthetic Data and Eigen Directions

Inferences:

- 1. The data is highly spread along the eigen value 18.169.
- 2. The eigen vector intersect at the origin (mean) where the data is very dense and the density decreases as we move along the 2^{nd} eigen vector.
- 3. The variance along the eigen vector whose eigen value is 1.699 is less as compared to the other.

c.

Attribute Normalization, Standardization and Dimension Reduction of Data

Figure 3 Projected Eigen Directions onto the Scatter Plot with 1st Eigen Direction highlighted

Figure 4 Projected Eigen Directions onto the Scatter Plot with 2nd Eigen Direction highlighted

Attribute Normalization, Standardization and Dimension Reduction of Data

Inferences:

- 1. The magnitude of the 1st eigen vector is **1.699** whereas the magnitude of the second eigen vector is **18.169**.
- 2. The figure3 shows that the projection the 1st eigen vector lies in small values because the magnitude of the eigen value is small.
- 3. The variance along the eigen vector whose eigen value is 1.699 is less as compared to the other.
- **d.** Reconstruction Error = 1.135 * 10^-14

Inferences:

1. Here the actual dimension and the dimension after the reduction are same (i = 2), so root square mean error is almost zero. The error in reconstruction increases as we increase the dimension.

3 a.

Table 3 Variance and Eigen Values of the projected data along the two directions

Direction	Variance	Eigen Value
1	2.222	2.224
2	1.428	1.430

Inferences:

- 1. The variance and the eigen value is almost same for both the directions.
- 2. High eigen value means that the data is more spread along that eigen vector.

Attribute Normalization, Standardization and Dimension Reduction of Data

Figure 5 Plot of Landslide Data after dimensionality reduction

Inferences:

1. The data points is highly scattered after the reduction in dimensionality.

b.

Figure 6 Plot of Eigen Values in descending order

Attribute Normalization, Standardization and Dimension Reduction of Data

Inferences:

- 1. The eigen value is decreasing gradually except from the 1^{st} to 2^{nd} . There is a sharp decrease in the eigen values from 1^{st} to 2^{nd} after that it decreases gradually.
- 2. After 2nd, the eigen value is decreasing substantially.

c.

Figure 7 Line Plot to demonstrate Reconstruction Error vs. Components

Inferences:

- 1. The magnitude of the reconstruction is decreasing as the value of L increases.
- 2. It means that if we reduce the dimensionality to L which is same as the dimension of the original data then the reconstruction error is very less and we can say that the data is recovered more accurately if L increases.

Attribute Normalization, Standardization and Dimension Reduction of Data