LalCheetah ICPC Team Notebook (2016-17)

Contents

1	Combinatorial optimization 1			
	1.1	Sparse max-flow(aka Modified Ford Fulkerson)	1	
	1.2	Global min-cut	1	
2	Geometry			
	2.1	Convex hull	2	
	2.2	Miscellaneous geometry	3	
3	Numerical algorithms			
	3.1	Fast Fourier transform	4	
4	Graph algorithms			
	4.1	Fast Dijkstra's algorithm	5	
	4.2	Strongly connected components	5	
	4.3	Bellman Ford's algorithm	6	
5	Miscellaneous 6			
	5.1	Longest increasing subsequence	6	
	5.2	C++ input/output	6	
	5.3	Knuth-Morris-Pratt	7	
	5.4	Topological sort (C++)	7	
	5.5	Fast exponentiation	7	
	5.6	Longest common subsequence	8	
	5.7	Miller-Rabin Primality Test (C)	8	
6	Data structures			
	6.1	Suffix array	9	
	6.2	Binary Indexed Tree	9	
	6.3	Union-find set(aka DSU)	10	
	6.4	Lowest common ancestor	10	

1 Combinatorial optimization

1.1 Sparse max-flow(aka Modified Ford Fulkerson)

```
// Adjacency list implementation of Dinic's blocking flow algorithm.
// This is very fast in practice, and only loses to push-relabel flow.
// Running time:
     O(|V|^2 |E|)
       - graph, constructed using AddEdge()
      - source and sink
// OUTPUT:
      - maximum flow value
       - To obtain actual flow values, look at edges with capacity > 0
        (zero capacity edges are residual edges).
#include<cstdio>
#include<vector>
#include<queue>
using namespace std;
typedef long long LL;
struct Edge {
 int u, v;
 LL cap, flow;
  Edge() {}
 Edge(int u, int v, LL cap): u(u), v(v), cap(cap), flow(0) {}
struct Dinic {
  int N;
  vector<Edge> E;
```

```
vector<vector<int>> g;
  vector<int> d, pt;
  Dinic(int N): N(N), E(0), g(N), d(N), pt(N) {}
  void AddEdge(int u, int v, LL cap) {
    if (u != v) {
      E.emplace_back(Edge(u, v, cap));
      g[u].emplace_back(E.size() - 1);
      E.emplace_back(Edge(v, u, 0));
      g[v].emplace_back(E.size() - 1);
  bool BFS(int S, int T) {
   queue<int> q({S});
    fill(d.begin(), d.end(), N + 1);
    while(!q.empty()) {
      int u = q.front(); q.pop();
      if (u == T) break;
      for (int k: g[u]) {
         Edge &e = E[k];
         if (e.flow < e.cap && d[e.v] > d[e.u] + 1) {
          d[e.v] = d[e.u] + 1;
           q.emplace(e.v);
    return d[T] != N + 1;
  LL DFS (int u, int T, LL flow = -1) {
    if (u == T || flow == 0) return flow;
    for (int &i = pt[u]; i < g[u].size(); ++i) {</pre>
      Edge &e = E[g[u][i]];
      Edge &oe = E[g[u][i]^1];
      if (d[e.v] == d[e.u] + 1) {
        LL amt = e.cap - e.flow;
if (flow != -1 && amt > flow) amt = flow;
if (LL pushed = DFS(e.v, T, amt)) {
          e.flow += pushed;
oe.flow -= pushed;
          return pushed;
    return 0;
  LL MaxFlow(int S, int T) {
    LL total = 0;
while (BFS(S, T)) {
     fill(pt.begin(), pt.end(), 0);
while (LL flow = DFS(S, T))
        total += flow:
    return total:
};
// The following code solves SPOJ problem #4110: Fast Maximum Flow (FASTFLOW)
  int N, E;
  scanf("%d%d", &N, &E);
  Dinic dinic(N);
  for (int i = 0; i < E; i++)
    int u, v;
    LL cap;
    scanf("%d%d%lld", &u, &v, &cap);
    dinic.AddEdge(u - 1, v - 1, cap);
    dinic.AddEdge(v - 1, u - 1, cap);
  printf("%1ld\n", dinic.MaxFlow(0, N - 1));
  return 0;
// END CUT
```

1.2 Global min-cut

```
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm.
// Running time:
```

```
0(|V|^3)
// INPUT:
        - graph, constructed using AddEdge()
// OUTPUT:
        - (min cut value, nodes in half of min cut)
#include <cmath>
#include <vector>
#include <iostream>
using namespace std;
typedef vector<int> VI:
typedef vector<VI> VVI;
const int INF = 1000000000;
pair<int, VI> GetMinCut(VVI &weights) {
  int N = weights.size();
  VI used(N), cut, best_cut;
  int best_weight = -1;
  for (int phase = N-1; phase >= 0; phase--) {
    VI w = weights[0];
    VI added = used:
    int prev, last = 0;
    for (int i = 0; i < phase; i++) {</pre>
      prev = last;
       last = -1;
      for (int j = 1; j < N; j++)
  if (!added[j] && (last == -1 || w[j] > w[last])) last = j;
       if (i == phase-1) {
        for (int j = 0; j < N; j++) weights[prev][j] += weights[last][j]; for (int j = 0; j < N; j++) weights[j][prev] = weights[prev][j];
        used[last] = true;
         cut.push_back(last);
        if (best_weight == -1 || w[last] < best_weight) {</pre>
           best_cut = cut;
           best_weight = w[last];
      l else (
        for (int j = 0; j < N; j++)
           w[i] += weights[last][i];
        added[last] = true;
  return make_pair(best_weight, best_cut);
// REGIN CUT
// The following code solves UVA problem #10989: Bomb, Divide and Conquer
int main() {
 int N:
  cin >> N:
  for (int i = 0; i < N; i++) {
    int n. m:
    cin >> n >> m;
    VVI weights(n, VI(n));
    for (int j = 0; j < m; j++) {
      int a, b, c;
      cin >> a >> b >> c;
      weights[a-1][b-1] = weights[b-1][a-1] = c;
    pair<int, VI> res = GetMinCut(weights);
cout << "Case #" << i+1 << ": " << res.first << endl;</pre>
// END CUT
```

2 Geometry

2.1 Convex hull

```
// Compute the 2D convex hull of a set of points using the monotone chain
// algorithm. Eliminate redundant points from the hull if REMOVE_REDUNDANT is
// #defined.
//
// Running time: O(n log n)
//
// INPUT: a vector of input points, unordered.
// OUTPUT: a vector of points in the convex hull, counterclockwise, starting
// with bottommost/leftmost point
```

```
#include <cstdio>
#include <cassert>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
// END CUT
using namespace std;
#define REMOVE REDUNDANT
typedef double T:
const T EPS = 1e-7;
struct PT {
  PT() {}
  PT(T x, T y) : x(x), y(y) {}
  bool operator<(const PT &rhs) const { return make_pair(y,x) < make_pair(rhs.y,rhs.x); }</pre>
  bool operator==(const PT &rhs) const { return make_pair(y,x) == make_pair(rhs.y,rhs.x); }
T cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
T area2(PT a, PT b, PT c) { return cross(a,b) + cross(b,c) + cross(c,a); }
#ifdef REMOVE REDUNDANT
bool between (const PT &a, const PT &b, const PT &c) {
 return (fabs(area2(a,b,c)) < EPS && (a.x-b.x) *(c.x-b.x) <= 0 && (a.y-b.y) *(c.y-b.y) <= 0);
void ConvexHull(vector<PT> &pts) {
  sort(pts.begin(), pts.end());
  pts.erase(unique(pts.begin(), pts.end()), pts.end());
   vector<PT> up, dn;
  for (int i = 0; i < pts.size(); i++) {</pre>
    while (up.size() > 1 && area2(up[up.size()-2], up.back(), pts[i]) >= 0) up.pop_back();
while (dn.size() > 1 && area2(dn[dn.size()-2], dn.back(), pts[i]) <= 0) dn.pop_back();</pre>
    up.push back(pts[i]);
    dn.push_back(pts[i]);
  pts = dn;
  for (int i = (int) up.size() - 2; i >= 1; i--) pts.push back(up[i]);
#ifdef REMOVE_REDUNDANT
  if (pts.size() <= 2) return;</pre>
  dn.clear();
  dn.push_back(pts[0]);
  dn.push_back(pts[1]);
  for (int i = 2; i < pts.size(); i++) {
   if (between(dn[dn.size()-2], dn[dn.size()-1], pts[i])) dn.pop_back();</pre>
    dn.push_back(pts[i]);
  if (dn.size() >= 3 && between(dn.back(), dn[0], dn[1])) {
    dn[0] = dn.back();
    dn.pop_back();
  pts = dn;
#endif
// BEGIN CUT
// The following code solves SPOJ problem #26: Build the Fence (BSHEEP)
int main() {
 int t;
scanf("%d", &t);
  for (int caseno = 0; caseno < t; caseno++) {</pre>
    int n:
    scanf("%d", &n);
    vector<PT> v(n);
    for (int i = 0; i < n; i++) scanf("%lf%lf", &v[i].x, &v[i].y);</pre>
    vector<PT> h(v);
    map<PT,int> index;
    for (int i = n-1; i >= 0; i--) index[v[i]] = i+1;
    ConvexHull(h);
    double len = 0;
    for (int i = 0; i < h.size(); i++) {</pre>
      double dx = h[i].x - h[(i+1)%h.size()].x;
double dy = h[i].y - h[(i+1)%h.size()].y;
      len += sqrt (dx*dx+dy*dy);
    if (caseno > 0) printf("\n");
    printf("%.2f\n", len);
    for (int i = 0; i < h.size(); i++) {
      if (i > 0) printf(" ");
      printf("%d", index[h[i]]);
```

```
printf("\n");
}
}
// END CUT
```

2.2 Miscellaneous geometry

```
// C++ routines for computational geometry.
#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>
using namespace std;
double INF = 1e100;
double EPS = 1e-12;
struct PT {
  double x, y;
  PT() {}
 PT(double x, double y) : x(x), y(y) {}
PT(const PT &p) : x(p.x), y(p.y) {}
PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }
  PT operator - (const PT &p) const { return PT(x-p.x, y-p.y); ]
  PT operator * (double c)
                                const { return PT(x*c, y*c ); ]
  PT operator / (double c)
                                const { return PT(x/c, y/c ); }
double dot(PT p, PT q)
                            { return p.x*q.x+p.y*q.y; }
double dist2(PT p, PT q) { return dot(p-q,p-q); }
double cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
ostream & operator << (ostream & os, const PT & p) {
    os << "(" << p.x << "," << p.y << ")";
// rotate a point CCW or CW around the origin
PT RotateCCW90(PT p) { return PT(-p.y,p.x); }
PT RotateCW90 (PT p)
                         { return PT(p.y,-p.x); }
PT RotateCCW(PT p, double t) {
 return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
// project point c onto line through a and b
// assuming a != b
PT ProjectPointLine(PT a, PT b, PT c) {
  return a + (b-a) *dot (c-a, b-a) /dot (b-a, b-a);
// project point c onto line segment through a and b
PT ProjectPointSegment (PT a, PT b, PT c) {
  double r = dot(b-a,b-a);
  if (fabs(r) < EPS) return a;</pre>
  r = dot(c-a, b-a)/r;
  if (r < 0) return a;
  if (r > 1) return b;
  return a + (b-a) *r;
// compute distance from c to segment between a and b
double DistancePointSegment(PT a, PT b, PT c) {
  return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
// compute distance between point (x,y,z) and plane ax+by+cz=d double DistancePointPlane(double x, double y, double z,
                            double a, double b, double c, double d)
  return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
// determine if lines from a to b and c to d are parallel or collinear
bool LinesParallel(PT a, PT b, PT c, PT d) {
  return fabs(cross(b-a, c-d)) < EPS;
bool LinesCollinear(PT a, PT b, PT c, PT d) {
  return LinesParallel(a, b, c, d)
      && fabs(cross(a-b, a-c)) < EPS
      && fabs(cross(c-d, c-a)) < EPS;
// determine if line segment from a to b intersects with
// line segment from c to d
bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
```

```
if (LinesCollinear(a, b, c, d)) {
    if (dist2(a, c) < EPS || dist2(a, d) < EPS ||</pre>
      dist2(b, c) < EPS || dist2(b, d) < EPS) return true;</pre>
    if (dot(c-a, c-b) > 0 && dot(d-a, d-b) > 0 && dot(c-b, d-b) > 0)
      return false;
    return true;
  if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
  if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
  return true:
// compute intersection of line passing through a and b // with line passing through c and d, assuming that unique // intersection exists; for segment intersection, check if
 // segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
 b=b-a; d=c-d; c=c-a;
  assert(dot(b, b) > EPS && dot(d, d) > EPS);
  return a + b*cross(c, d)/cross(b, d);
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
 b = (a+b)/2;
 c = (a+c)/2:
 return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90(a-c));
// determine if point is in a possibly non-convex polygon (by William
// Randolph Franklin); returns 1 for strictly interior points, 0 for
// strictly exterior points, and 0 or 1 for the remaining points.
// Note that it is possible to convert this into an *exact* test using
// integer arithmetic by taking care of the division appropriately
// (making sure to deal with signs properly) and then by writing exact
// tests for checking point on polygon boundary
bool PointInPolygon(const vector<PT> &p, PT q) {
  bool c = 0;
  fool c = 0;
for (int i = 0; i < p.size(); i++) {
  int j = (i+1) %p.size();
}</pre>
    if ((p[i].y <= q.y && q.y < p[j].y ||</pre>
      p[j].y \le q.y && q.y < p[i].y) &&
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
 return c;
// determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector<PT> &p, PT q) {
  for (int i = 0; i < p.size(); i++)</pre>
    if (dist2(ProjectPointSegment(p[i], p[(i+1)%p.size()], q), q) < EPS)</pre>
     return true:
    return false:
// compute intersection of line through points a and b with
// circle centered at c with radius r >
vector<PT> CircleLineIntersection(PT a, PT b, PT c, double r) {
 vector<PT> ret;
  b = b-a;
  a = a-c;
  double A = dot(b, b);
  double B = dot(a, b);
  double C = dot(a, a) - r*r;
double D = B*B - A*C;
  if (D < -EPS) return ret;</pre>
  ret.push_back(c+a+b*(-B+sqrt(D+EPS))/A);
  if (D > EPS)
    ret.push_back(c+a+b*(-B-sqrt(D))/A);
  return ret:
// compute intersection of circle centered at a with radius r
// with circle centered at b with radius R
vector<PT> CircleCircleIntersection(PT a, PT b, double r, double R) {
  vector<PT> ret;
  double d = sqrt(dist2(a, b));
  if (d > r+R | | d+min(r, R) < max(r, R)) return ret;</pre>
  double x = (d*d-R*R+r*r)/(2*d);
  double y = sqrt(r*r-x*x);
  PT v = (b-a)/d;
  ret.push_back(a+v*x + RotateCCW90(v)*y);
  if (v > 0)
    ret.push back(a+v*x - RotateCCW90(v)*v);
  return ret:
// This code computes the area or centroid of a (possibly nonconvex)
// polygon, assuming that the coordinates are listed in a clockwise or
// counterclockwise fashion. Note that the centroid is often known as
// the "center of gravity" or "center of mass".
```

```
double ComputeSignedArea(const vector<PT> &p) {
  double area = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int j = (i+1) % p.size();
    area += p[i].x*p[j].y - p[j].x*p[i].y;
  return area / 2.0;
double ComputeArea(const vector<PT> &p) {
  return fabs(ComputeSignedArea(p));
PT ComputeCentroid(const vector<PT> &p) {
  PT c(0,0);
  double scale = 6.0 * ComputeSignedArea(p);
  for (int i = 0; i < p.size(); i++) {
    int j = (i+1) % p.size();
    c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
  return c / scale;
// tests whether or not a given polygon (in CW or CCW order) is simple
bool IsSimple(const vector<PT> &p)
  for (int i = 0; i < p.size(); i++) {</pre>
   for (int k = i+1; k < p.size(); k++) {
     int j = (i+1) % p.size();
int l = (k+1) % p.size();
if (i == l || j == k) continue;
     if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
       return false;
  return true;
int main() {
  // expected: (-5,2)
  cerr << RotateCCW90(PT(2,5)) << endl;</pre>
  // expected: (5,-2)
  cerr << RotateCW90(PT(2,5)) << endl;</pre>
  // expected: (-5,2)
  cerr << RotateCCW(PT(2,5),M_PI/2) << endl;</pre>
  // expected: (5,2)
  cerr << ProjectPointLine(PT(-5,-2), PT(10,4), PT(3,7)) << endl;</pre>
  // expected: (5,2) (7.5,3) (2.5,1)
  << ProjectPointSegment (PT(-5,-2), PT(2.5,1), PT(3,7)) << endl;
  // expected: 6.78903
  cerr << DistancePointPlane(4,-4,3,2,-2,5,-8) << endl;</pre>
  cerr << LinesParallel(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
       << LinesParallel(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
       << LinesParallel(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
  cerr << LinesCollinear(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "</pre>
       << LinesCollinear(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
       << LinesCollinear(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
  // expected: 1 1 1 0
  << SegmentsIntersect(PT(0,0), PT(2,4), PT(5,5), PT(1,7)) << endl;
  cerr << ComputeLineIntersection(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << endl;</pre>
  cerr << ComputeCircleCenter(PT(-3,4), PT(6,1), PT(4,5)) << endl;</pre>
  vector<PT> v;
  v.push_back(PT(0,0));
  v.push_back(PT(5,0));
  v.push back(PT(5.5));
  v.push_back(PT(0,5));
  // expected: 1 1 1 0 0
  cerr << PointInPolygon(v, PT(2,2)) << " "
       << PointInPolygon(v, PT(2,0)) << " "
       << PointInPolygon(v, PT(0,2)) << " "
       << PointInPolygon(v, PT(5,2)) << " "
```

```
<< PointInPolygon(v, PT(2,5)) << endl;
// expected: 0 1 1 1 1
cerr << PointOnPolygon(v, PT(2,2)) << " "
      << PointOnPolygon(v, PT(2,0)) << " "
      << PointOnPolygon(v, PT(0,2)) << " "
      << PointOnPolygon(v, PT(5,2)) << " "
      << PointOnPolygon(v, PT(2,5)) << endl;
// expected: (1,6)
                (5,4) (4,5)
               blank line
                (4,5) (5,4)
               blank line
               (4.5) (5.4)
vector<PT> u = CircleLineIntersection(PT(0,6), PT(2,6), PT(1,1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
u = CircleLineIntersection(PT(0,9), PT(9,0), PT(1,1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
u = CircleCircleIntersection(PT(1,1), PT(10,10), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
 u = CircleCircleIntersection(PT(1,1), PT(8,8), 5, 5); \\  for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl; 
 u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 10, sqrt(2.0)/2.0); \\ \textbf{for (int } i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl; 
 u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 5, sqrt(2.0)/2.0); \\  for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl; 
// area should be 5.0
// centroid should be (1.1666666, 1.166666)
PT pa[] = { PT(0,0), PT(5,0), PT(1,1), PT(0,5) };
vector<PT> p(pa, pa+4);
PT c = ComputeCentroid(p);
cerr << "Area: " << ComputeArea(p) << endl;
cerr << "Centroid: " << c << endl;
return 0;
```

3 Numerical algorithms

3.1 Fast Fourier transform

```
#include <cassert>
#include <cstdio>
#include <cmath>
struct cpx
  cpx(double aa):a(aa),b(0){}
  cpx(double aa, double bb):a(aa),b(bb){}
  double a:
  double b;
  double modsq(void) const
    return a * a + b * b;
  cpx bar(void) const
    return cpx(a, -b);
};
cpx operator + (cpx a, cpx b)
  return cpx(a.a + b.a, a.b + b.b);
cpx operator * (cpx a, cpx b)
  return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
cpx operator / (cpx a, cpx b)
  return cpx(r.a / b.modsq(), r.b / b.modsq());
cpx EXP (double theta)
  return cpx(cos(theta), sin(theta));
```

```
const double two_pi = 4 * acos(0);
// in:
           input array
// out:
          output array
// step: {SET TO 1} (used internally)
// size: length of the input/output {MUST BE A POWER OF 2}
// dir: either plus or minus one (direction of the FFT)
// RESULT: out[k] = \sum_{j=0}^{size - 1} in[j] * exp(dir * 2pi * i * j * k / size)
void FFT(cpx *in, cpx *out, int step, int size, int dir)
  if(size < 1) return;</pre>
  if(size == 1)
    out[0] = in[0];
    return:
  FFT(in, out, step * 2, size / 2, dir);
  FFT(in + step, out + size / 2, step * 2, size / 2, dir);
  for(int i = 0; i < size / 2; i++)
    cpx even = out[i];
    cpx odd = out[i + size / 2];
    out[i] = even + EXP(dir * two_pi * i / size) * odd;
    out[i + size / 2] = even + EXP(dir * two_pi * (i + size / 2) / size) * odd;
// Usage:
// f[0...N-1] and g[0...N-1] are numbers
// Want to compute the convolution h, defined by
// h[n] = sum \ of \ f[k]g[n-k] \ (k = 0, ..., N-1).
// Here, the index is cyclic; f[-1] = f[N-1], \ f[-2] = f[N-2], \ etc.
// Let F[0...N-1] be FFT(f), and similarly, define G and H.
// The convolution theorem says H[n] = F[n]G[n] (element-wise product).
// To compute h[] in O(N \log N) time, do the following:
    1. Compute F and G (pass dir = 1 as the argument).
// 2. Get H by element-wise multiplying F and G.
    3. Get h by taking the inverse FFT (use dir = -1 as the argument)
        and *dividing by N*. DO NOT FORGET THIS SCALING FACTOR.
int main (void)
  printf("If rows come in identical pairs, then everything works.\n");
  cpx \ a[8] = \{0, 1, cpx(1,3), cpx(0,5), 1, 0, 2, 0\};
  cpx b[8] = \{1, cpx(0,-2), cpx(0,1), 3, -1, -3, 1, -2\};
  cpx A[8];
  cpx B[8];
  FFT(a, A, 1, 8, 1);
  FFT(b, B, 1, 8, 1);
  for (int i = 0; i < 8; i++)
    printf("%7.21f%7.21f", A[i].a, A[i].b);
  printf("\n");
  for (int i = 0; i < 8; i++)
    cpx Ai(0,0);
    for (int j = 0; j < 8; j++)
      Ai = Ai + a[j] * EXP(j * i * two_pi / 8);
    printf("%7.21f%7.21f", Ai.a, Ai.b);
  printf("\n");
  cpx AB[8];
for(int i = 0 ; i < 8 ; i++)</pre>
    AB[i] = A[i] * B[i];
  cpx aconvb[8]; FFT(AB, aconvb, 1, 8, -1); for(int i = 0; i < 8; i++)
    aconvb[i] = aconvb[i] / 8;
  for (int i = 0; i < 8; i++)
    printf("%7.21f%7.21f", aconvb[i].a, aconvb[i].b);
  printf("\n");
  for(int i = 0; i < 8; i++)
    cpx aconvbi(0,0);
    for(int j = 0; j < 8; j++)
      aconvbi = aconvbi + a[j] * b[(8 + i - j) % 8];
    printf("%7.21f%7.21f", aconvbi.a, aconvbi.b);
  printf("\n");
  return 0:
```

4 Graph algorithms

4.1 Fast Dijkstra's algorithm

```
// Implementation of Dijkstra's algorithm using adjacency lists
// and priority queue for efficiency.
// Running time: O(|E| log |V|)
#include <queue>
#include <cstdio>
using namespace std;
const int INF = 2000000000;
typedef pair<int, int> PII;
int main() {
        int N, s, t;
        scanf("%d%d%d", &N, &s, &t);
        vector<vector<PII> > edges(N);
        for (int i = 0; i < N; i++) {
                int M;
                scanf("%d", &M);
for (int j = 0; j < M; j++) {
                         int vertex, dist;
                         scanf("%d%d", &vertex, &dist);
                         edges[i].push_back(make_pair(dist, vertex)); // note order of arguments here
        // use priority queue in which top element has the "smallest" priority
        priority_queue<PII, vector<PII>, greater<PII> > Q;
        vector<int> dist(N, INF), dad(N, -1);
        Q.push(make_pair(0, s));
        dist[s] = 0;
        while (!Q.empty()) {
                PII p = Q.top();
Q.pop();
                 int here = p.second;
                 if (here == t) break;
                 if (dist[here] != p.first) continue;
                 for (vector<PII>::iterator it = edges[here].begin(); it != edges[here].end(); it++) {
                         if (dist[here] + it->first < dist[it->second]) {
                                 dist[it->second] = dist[here] + it->first;
                                 dad[it->second] = here;
                                 Q.push(make_pair(dist[it->second], it->second));
        printf("%d\n", dist[t]);
        if (dist[t] < INF)</pre>
                for (int i = t; i != -1; i = dad[i])
                         printf("%d%c", i, (i == s ? '\n' : ' '));
        return 0;
Sample input:
5 0 4 2 1 2 3 1
2 2 4 4 5
3 1 4 3 3 4 1
20123
2 1 5 2 1
Expected:
```

4.2 Strongly connected components

```
#include<memory.h>
struct edge{int e, nxt;};
int V, E;
edge e[MAXE], er[MAXE];
int sp[MAXV], spr[MAXV];
int group_ent, group_num[MAXV];
```

6

```
bool v[MAXV];
int stk[MAXV];
void fill_forward(int x)
  for(i=sp[x];i;i=e[i].nxt) if(!v[e[i].e]) fill_forward(e[i].e);
  stk[++stk[0]]=x;
void fill_backward(int x)
  int i;
  v[x]=false;
  group_num[x]=group_cnt;
  for(i=spr[x];i;i=er[i].nxt) if(v[er[i].e]) fill_backward(er[i].e);
void add_edge(int v1, int v2) //add edge v1->v2
  e [++E].e=v2; e [E].nxt=sp [v1]; sp [v1]=E;
  er[ E].e=v1; er[E].nxt=spr[v2]; spr[v2]=E;
void SCC()
  int i;
  stk[0]=0;
  memset(v, false, sizeof(v));
  \label{formula} \textbf{for}(\texttt{i=1};\texttt{i<=V};\texttt{i++}) \ \textbf{if}(\texttt{!v[i]}) \ \texttt{fill\_forward(i)};
  group_cnt=0;
  for(i=stk[0];i>=1;i--) if(v[stk[i]]) {group_cnt++; fill_backward(stk[i]);}
```

4.3 Bellman Ford's algorithm

```
// This function runs the Bellman-Ford algorithm for single source
// shortest paths with negative edge weights. The function returns // false if a negative weight cycle is detected. Otherwise, the
// function returns true and dist[i] is the length of the shortest
// path from start to i.
// Running time: O(|V|^3)
      INPUT: start, w[i][j] = cost \ of \ edge \ from \ i \ to \ j
      OUTPUT: dist[i] = min weight path from start to i
                 prev[i] = previous node on the best path from the
#include <iostream>
#include <queue>
#include <cmath>
#include <vector>
using namespace std:
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
typedef vector<int> VI;
typedef vector<VI> VVI;
bool BellmanFord (const VVT &w, VT &dist, VI &prev, int start) {
  int n = w.size();
  prev = VI(n, -1);
dist = VT(n, 1000000000);
dist[start] = 0;
   for (int k = 0; k < n; k++) {
     for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
    if (dist[j] > dist[i] + w[i][j]) {
            if (k == n-1) return false;
            dist[j] = dist[i] + w[i][j];
prev[j] = i;
   return true;
```

5 Miscellaneous

5.1 Longest increasing subsequence

```
// Given a list of numbers of length n, this routine extracts a
// longest increasing subsequence.
// Running time: O(n log n)
    INPUT: a vector of integers
    OUTPUT: a vector containing the longest increasing subsequence
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef vector<int> VI;
typedef pair<int, int> PII;
typedef vector<PII> VPII;
#define STRICTLY INCREASING
VI LongestIncreasingSubsequence(VI v) {
 VI dad(v.size(), -1);
  for (int i = 0; i < v.size(); i++) {</pre>
#ifdef STRICTLY_INCREASNG
    PII item = make_pair(v[i], 0);
    VPII::iterator it = lower_bound(best.begin(), best.end(), item);
    item.second = i:
#else
    PII item = make_pair(v[i], i);
    VPII::iterator it = upper_bound(best.begin(), best.end(), item);
#endif
    if (it == best.end()) {
      dad[i] = (best.size() == 0 ? -1 : best.back().second);
      best.push_back(item);
      dad[i] = dad[it->second];
      *it = item;
  for (int i = best.back().second; i >= 0; i = dad[i])
   ret.push back(v[i]);
  reverse(ret.begin(), ret.end());
  return ret;
```

5.2 C++ input/output

```
#include <iostream>
#include <iomanip>
using namespace std;
int main()
    // Ouput a specific number of digits past the decimal point,
    // in this case 5
    cout.setf(ios::fixed); cout << setprecision(5);</pre>
    cout << 100.0/7.0 << endl;
    cout.unsetf(ios::fixed);
    // Output the decimal point and trailing zeros
    cout.setf(ios::showpoint);
    cout << 100.0 << endl;
    cout.unsetf(ios::showpoint);
    // Output a '+' before positive values
    cout.setf(ios::showpos);
cout << 100 << " " << -100 << endl;</pre>
    cout.unsetf(ios::showpos);
    // Output numerical values in hexadecimal
    cout << hex << 100 << " " << 1000 << " " << 10000 << dec << endl;
```

5.3 Knuth-Morris-Pratt

```
Searches for the string w in the string s (of length k). Returns the
O-based index of the first match (k if no match is found). Algorithm
runs in O(k) time.
#include <iostream>
#include <string>
#include <vector>
using namespace std;
typedef vector<int> VI;
void buildTable(string& w, VI& t)
  t = VI(w.length());
  int i = 2, j = 0;
  t[0] = -1; t[1] = 0;
  while(i < w.length())</pre>
    if(w[i-1] == w[j]) { t[i] = j+1; i++; j++; }
else if(j > 0) j = t[j];
else { t[i] = 0; i++; }
int KMP (string& s, string& w)
  int m = 0, i = 0;
  buildTable(w, t);
  while(m+i < s.length())</pre>
    if(w[i] == s[m+i])
      if(i == w.length()) return m;
    else
       m += i-t[i];
      if(i > 0) i = t[i];
  return s.length();
int main()
  string a = (string) "The example above illustrates the general technique for assembling "+
    "the table with a minimum of fuss. The principle is that of the overall search: "+
    "most of the work was already done in getting to the current position, so very "+"little needs to be done in leaving it. The only minor complication is that the "+
    "logic which is correct late in the string erroneously gives non-proper "+
    "substrings at the beginning. This necessitates some initialization code.";
  string b = "table";
  int p = KMP(a, b);
cout << p << ": " << a.substr(p, b.length()) << " " << b << endl;</pre>
```

5.4 Topological sort (C++)

```
// This function uses performs a non-recursive topological sort.
//
Running time: O(|V|^2). If you use adjacency lists (vector<map<int> >),
//
the running time is reduced to O(|E|).
//
// INPUT: w[i][j] = 1 if i should come before j, 0 otherwise
// OUTPUT: a permutation of 0,...,n-1 (stored in a vector)
which represents an ordering of the nodes which
// is consistent with w
//
// If no ordering is possible, false is returned.
#include <iostream>
#include <queut>
#include <cmath>
```

```
#include <vector>
using namespace std;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
typedef vector<int> VI;
typedef vector<VI> VVI;
bool TopologicalSort (const VVI &w, VI &order) {
  int n = w.size();
  VI parents (n);
  queue<int> a:
  order.clear();
  for (int i = 0; i < n; i++) {</pre>
    for (int j = 0; j < n; j++)
  if (w[j][i]) parents[i]++;</pre>
       if (parents[i] == 0) q.push (i);
  while (q.size() > 0){
    int i = q.front();
    q.pop();
    q.pop(),
order.push_back (i);
for (int j = 0; j < n; j++) if (w[i][j]){</pre>
      parents[j]--;
       if (parents[j] == 0) q.push (j);
  return (order.size() == n);
```

5.5 Fast exponentiation

```
Uses powers of two to exponentiate numbers and matrices. Calculates
n^k in O(\log(k)) time when n is a number. If A is an n x n matrix,
calculates A^k in O(n^3*log(k)) time.
#include <iostream>
#include <vector>
using namespace std;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
T power(T x, int k) {
  T ret = 1;
  while(k) {
    if(k & 1) ret *= x;
    k >>= 1; x *= x;
  return ret;
VVT multiply(VVT& A, VVT& B) {
 int n = A.size(), m = A[0].size(), k = B[0].size();
VVT C(n, VT(k, 0));
  for (int i = 0; i < n; i++)
   for(int j = 0; j < k; j++)
for(int l = 0; l < m; l++)
        C[i][j] += A[i][1] * B[1][j];
  return C;
VVT power(VVT& A, int k) {
  int n = A.size();
  VVT ret(n, VT(n)), B = A;
  for(int i = 0; i < n; i++) ret[i][i]=1;</pre>
  while(k) {
    if(k & 1) ret = multiply(ret, B);
    k >>= 1; B = multiply(B, B);
  return ret;
```

```
int main()
  /* Expected Output:
     2.37^48 = 9.72569e+17
      376 264 285 220 265
      550 376 529 285 484
      484 265 376 264 285
     285 220 265 156 264
      529 285 484 265 376 */
  double n = 2.37;
  int k = 48;
  cout << n << "^" << k << " = " << power(n, k) << endl;
  double At [5] [5] = {
    { 0, 0, 1, 0, 0 },
     { 1, 0, 0, 1, 0 },
     { 0, 0, 0, 0, 1 },
  vector <vector <double> > A(5, vector <double>(5));
  for(int i = 0; i < 5; i++)
for(int j = 0; j < 5; j++)
   A[i][j] = At[i][j];</pre>
  vector <vector <double> > Ap = power(A, k);
  cout << endl:
  for (int i = 0; i < 5; i++) {
    for(int j = 0; j < 5; j++)

cout << Ap[i][j] << " ";
    cout << endl;
```

5.6 Longest common subsequence

```
Calculates the length of the longest common subsequence of two vectors.
Backtracks to find a single subsequence or all subsequences. Runs in
O(m*n) time except for finding all longest common subsequences, which
may be slow depending on how many there are.
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;
typedef int T;
typedef vector<T> VT;
typedef vector<VT> VVT;
typedef vector<int> VI;
typedef vector<VI> VVI;
void backtrack(VVI& dp, VT& res, VT& A, VT& B, int i, int j)
  if(!i || !j) return;
  if(A[i-1] == B[j-1]) { res.push_back(A[i-1]); backtrack(dp, res, A, B, i-1, j-1); }
    if(dp[i][j-1] >= dp[i-1][j]) backtrack(dp, res, A, B, i, j-1);
    else backtrack(dp, res, A, B, i-1, j);
void backtrackall(VVI& dp, set<VT>& res, VT& A, VT& B, int i, int j)
  if(!i || !j) { res.insert(VI()); return; }
  if(A[i-1] == B[j-1])
    backtrackall(dp, tempres, A, B, i-1, j-1);
    for(set<VT>::iterator it=tempres.begin(); it!=tempres.end(); it++)
     temp.push_back(A[i-1]);
res.insert(temp);
  else
```

```
if(dp[i][j-1] >= dp[i-1][j]) backtrackall(dp, res, A, B, i, j-1);
    if(dp[i][j-1] <= dp[i-1][j]) backtrackall(dp, res, A, B, i-1, j);</pre>
VT LCS(VT& A, VT& B)
  int n = A.size(), m = B.size();
  dp.resize(n+1);
  for(int i=0; i<=n; i++) dp[i].resize(m+1, 0);</pre>
  for(int i=1; i<=n; i++)</pre>
    for (int j=1; j<=m; j++)</pre>
      if(A[i-1] == B[j-1]) dp[i][j] = dp[i-1][j-1]+1;
      else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
  backtrack(dp, res, A, B, n, m);
  reverse(res.begin(), res.end());
  return res:
set<VT> LCSall(VT& A, VT& B)
 int n = A.size(), m = B.size();
  dp.resize(n+1);
  for(int i=0; i<=n; i++) dp[i].resize(m+1, 0);</pre>
  for(int i=1; i<=n; i++)</pre>
    for (int j=1; j<=m; j++)</pre>
      if(A[i-1] == B[j-1]) dp[i][j] = dp[i-1][j-1]+1;
      else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
  set<VT> res:
 backtrackall(dp, res, A, B, n, m);
  return res;
int main()
 int a[] = { 0, 5, 5, 2, 1, 4, 2, 3 }, b[] = { 5, 2, 4, 3, 2, 1, 2, 1, 3 };
VI A = VI(a, a+8), B = VI(b, b+9);
 VI C = LCS(A, B);
  for(int i=0; i<C.size(); i++) cout << C[i] << " ";</pre>
  cout << endl << endl;
  set <VI> D = LCSall(A, B);
  for(set<VI>::iterator it = D.begin(); it != D.end(); it++)
    for(int i=0; i<(*it).size(); i++) cout << (*it)[i] << " ";
    cout << endl:
```

5.7 Miller-Rabin Primality Test (C)

```
// Randomized Primality Test (Miller-Rabin):
    Error rate: 2^(-TRIAL)
// Almost constant time. srand is needed
#include <stdlib b>
#define EPS 1e-7
typedef long long LL;
LL ModularMultiplication (LL a, LL b, LL m)
        LL ret=0, c=a;
        while(b)
                if(b&1) ret=(ret+c)%m;
                b>>=1; c=(c+c)%m;
        return ret;
LL ModularExponentiation(LL a, LL n, LL m)
        LL ret=1, c=a;
        while(n)
                if(n&1) ret=ModularMultiplication(ret, c, m);
                n>>=1; c=ModularMultiplication(c, c, m);
```

```
return ret;
bool Witness(LL a, LL n)
        LL u=n-1;
  int t=0;
        while(!(u&1)){u>>=1; t++;}
        LL x0=ModularExponentiation(a, u, n), x1;
        for (int i=1; i <=t; i++)</pre>
                x1=ModularMultiplication(x0, x0, n);
                if(x1==1 && x0!=1 && x0!=n-1) return true;
                x0=x1:
        if(x0!=1) return true;
        return false;
LL Random(LL n)
  LL ret=rand(); ret*=32768;
        ret+=rand(); ret *= 32768;
        ret+=rand(); ret *= 32768;
        ret += rand();
  return ret%n:
bool IsPrimeFast (LL n. int TRIAL)
  while (TRIAL--)
    LL a=Random(n-2)+1;
    if(Witness(a, n)) return false;
```

6 Data structures

6.1 Suffix array

```
// Suffix array construction in O(L log^2 L) time. Routine for
// computing the length of the longest common prefix of any two
 // suffixes in O(log L) time.
 // INPUT: string s
 // OUTPUT: array suffix[] such that suffix[i] = index (from 0 to L-1)
                               of substring s[i...L-1] in the list of sorted suffixes.
                               That is, if we take the inverse of the permutation suffix[],
                               we get the actual suffix array.
#include <vector>
#include <iostream>
#include <string>
using namespace std;
struct SuffixArray {
     const int L;
     string s;
      vector<vector<int> > P;
      vector<pair<pair<int,int>,int> > M;
     SuffixArray(\textbf{const} \ string \ \&s) \ : \ L(s.length()), \ s(s), \ P(1, \ vector < \textbf{int} > (L, \ 0)), \ M(L) \ \{ (1, \ 0), \ M(L), \ (1, \ 0), 
         for (int i = 0; i < L; i++) P[0][i] = int(s[i]);
for (int skip = 1, level = 1; skip < L; skip *= 2, level++) {</pre>
               P.push_back(vector<int>(L, 0));
               for (int i = 0; i < L; i++)
                   M[i] = make_pair(make_pair(P[level-1][i], i + skip < L ? P[level-1][i + skip] : -1000), i);
                sort (M.begin(), M.end());
               for (int i = 0; i < L; i++)
                    P[level][M[i].second] = (i > 0 && M[i].first == M[i-1].first) ? P[level][M[i-1].second] : i;
      vector<int> GetSuffixArray() { return P.back(); }
      // returns the length of the longest common prefix of s[i...L-1] and s[j...L-1]
      int LongestCommonPrefix(int i, int j) {
          int len = 0:
         if (i == j) return L - i;
for (int k = P.size() - 1; k >= 0 && i < L && j < L; k--) {
              if (P[k][i] == P[k][j]) {
                    i += 1 << k;
                    j += 1 << k;
```

```
len += 1 << k;
    return len;
// BEGIN CUT
// The following code solves UVA problem 11512: GATTACA.
#define TESTING
#ifdef TESTING
int main() {
 int T;
  cin >> T:
  for (int caseno = 0; caseno < T; caseno++) {</pre>
    string s;
    cin >> s;
    SuffixArray array(s);
    vector<int> v = array.GetSuffixArray();
    int bestlen = -1, bestpos = -1, bestcount = 0;
    for (int i = 0; i < s.length(); i++) {</pre>
      int len = 0, count = 0;
      for (int j = i+1; j < s.length(); j++) {</pre>
        int 1 = array.LongestCommonPrefix(i, j);
if (1 >= len) {
          if (1 > len) count = 2; else count++;
          len = 1:
      if (len > bestlen || len == bestlen && s.substr(bestpos, bestlen) > s.substr(i, len)) {
        bestlen = len:
        bestcount = count;
        bestpos = i;
    if (bestlen == 0) {
      cout << "No repetitions found!" << endl;</pre>
    } else {
      cout << s.substr(bestpos, bestlen) << " " << bestcount << endl;</pre>
#else
// END CUT
int main() {
  // bobocel is the O'th suffix
  // obocel is the 5'th suffix
      bocel is the 1'st suffix
       ocel is the 6'th suffix
        cel is the 2'nd suffix
         el is the 3'rd suffix
           1 is the 4'th suffix
  SuffixArray suffix("bobocel");
vector<int> v = suffix.GetSuffixArray();
  // Expected output: 0 5 1 6 2 3 4
  for (int i = 0; i < v.size(); i++) cout << v[i] << " ";
  cout << endl;
  cout << suffix.LongestCommonPrefix(0, 2) << endl;</pre>
// BEGIN CUT
#endif
// END CUT
```

6.2 Binary Indexed Tree

```
#include <iostream>
using namespace std;
#define LOGSZ 17

int tree[(1<<LOGSZ)+1];
int N = (1<<LOGSZ);

// add v to value at x
void set(int x, int v) {
  while(x <= N) {
    tree[x] += v;
    x += (x & -x);
  }
}

// get cumulative sum up to and including x
int get(int x) {</pre>
```

```
int res = 0;
while(x) {
    res += tree[x];
    x -= (x & -x);
}
    return res;
}

// get largest value with cumulative sum less than or equal to x;
// for smallest, pass x-1 and add 1 to result
int getind(int x) {
    int idx = 0, mask = N;
    while(mask && idx < N) {
        int t = idx + mask;
        if(x >= tree[t]) {
            idx = t;
            x -= tree[t];
        }
        mask >>= 1;
    }
    return idx;
}
```

6.3 Union-find set(aka DSU)

```
#include <iostream>
#include <vector>
using namespace std;
int find(vector<int> &C, int x) { return (C[x] == x) ? x : C[x] = find(C, C[x]); }
void merge(vector<int> &C, int x, int y) { C[find(C, x)] = find(C, y); }
int main()
{
    int n = 5;
    vector<int> C(n);
    for (int i = 0; i < n; i++) C[i] = i;
    merge(C, 0, 2);
    merge(C, 1, 0);
    merge(C, 1
```

6.4 Lowest common ancestor

```
const int max_nodes, log_max_nodes;
int num_nodes, log_num_nodes, root;
vector<int> children[max_nodes];
                                           // children[i] contains the children of node i
int A[max_nodes][log_max_nodes+1];
                                           // A[i][j] is the 2^j-th ancestor of node i, or -1 if that
      ancestor does not exist
int L[max_nodes];
                                           // L[i] is the distance between node i and the root
// floor of the binary logarithm of \boldsymbol{n}
int lb(unsigned int n)
    if(n==0)
        return -1;
    int p = 0;
    if (n >= 1<<16) { n >>= 16; p += 16; }
    if (n >= 1<< 8) { n >>= 8; p += 8; }
if (n >= 1<< 4) { n >>= 4; p += 4; }
    if (n >= 1<< 2) { n >>= 2; p += 2; }
```

```
if (n >= 1<< 1) {
                                   p += 1; }
    return p;
void DFS(int i, int 1)
    for(int j = 0; j < children[i].size(); j++)</pre>
        DFS(children[i][j], 1+1);
int LCA(int p, int q)
     // ensure node p is at least as deep as node q
    if(L[p] < L[q])
         swap(p, q);
     // "binary search" for the ancestor of node p situated on the same level as q
    for(int i = log_num_nodes; i >= 0; i--)
         if(L[p] - (1 << i) >= L[q])
             p = A[p][i];
    if(p == q)
         return p;
    // "binary search" for the LCA
    for(int i = log_num_nodes; i >= 0; i--)
   if(A[p][i] != -1 && A[p][i] != A[q][i])
             p = A[p][i];
             q = A[q][i];
    return A[p][0];
int main(int argc,char* argv[])
     // read num_nodes, the total number of nodes
    log_num_nodes=1b(num_nodes);
    for(int i = 0; i < num nodes; i++)</pre>
         // read p, the parent of node i or -1 if node i is the root
         A[i][0] = p;
         if(p != -1)
             children[p].push_back(i);
         else
             root = i;
     // precompute A using dynamic programming
    for(int j = 1; j <= log_num_nodes; j++)
    for(int i = 0; i < num_nodes; i++)
    if(A[i][j-1] != -1)</pre>
                 A[i][j] = A[A[i][j-1]][j-1];
             else
                 A[i][j] = -1;
     // precompute L
    DFS(root, 0);
    return 0:
```