Math 591 Lecture 21

Thomas Cohn

10/19/20

Last time, we showed that a smooth vector field $X \in \mathfrak{X}(M)$ defines a derivation

$$X: C^{\infty}(M) \to C^{\infty}(M)$$

 $f \mapsto (p \mapsto X_p([f]))$

Here, we're thinking of X as an operator, i.e., $f \mapsto X(f)$. Note that $\forall p \in M, X_p \in T_pM$.

Prop: The commutator of any two derivations $C^{\infty}(M) \to C^{\infty}(M)$ is a derivation. Proof: This is just an algebraic calculation.

Today, we'll prove the converse – that for any derivation D, there is a unique vector field $X \in \mathfrak{X}(M)$ such that D = X (as an operator). So overall, we will have showed a one-to-one correspondence between derivations and vector fields. To do this, we need "bump functions".

Prop: Let $U \subseteq M$ open, $p \in U$. Then $\exists \chi \in C^{\infty}(M)$ s.t.

- (1) supp $(\chi) = \overline{\{q \in M : \chi(q) \neq 0\}} \subseteq U$ (and it is compact)
- (2) $\exists V$ open with $p \in V$ such that $\chi|_V \equiv 1$. Note: (1) implies that $\overline{V} \subseteq U$.

Defn: Such a χ is called a bump function at p.

Proof: It's enough to consider the case where $p = 0 \in \mathbb{R}^n$, as we can use a chart near p to define χ in some neighborhood of p, and then extend χ to be 0 outside that neighborhood.

Start with the case where n=1 (i.e. \mathbb{R}). (See also §13 in the book.) Start with

$$f(x) = \begin{cases} e^{-1/x} & x > 0\\ 0 & x < 0 \end{cases}$$

We claim that f is C^{∞} on \mathbb{R} . (This is because $\forall k \in \mathbb{N}, f^{(k)}(0)$ is defined.)

Note: f is a famous example of a non-analytic function.

Next, let $g(x) = \frac{f(x)}{f(x) + f(1-x)}$. Note: $\forall x \in \mathbb{R}$, $f(x) + f(1-x) \neq 0$, so g is well-defined, and C^{∞} . If $x \geq 1$, then f(1-x) = 0, so g(x) = 1. If $x \leq 0$, f(x) = 0, so g(x) = 0.

Next, choose some $a,b\in\mathbb{R}_{>0}$ with $0< a^2< b^2$, and define $h(x)=g(\frac{x-a^2}{b^2-a^2})$. Then finally, take $\rho(x)=1-h(x^2)$. Then we have $\rho|_{[-a,a]}\equiv 1$, and $\rho|_{(-\infty,-b]\cup[b,\infty)}\equiv 0$, and ρ is C^∞ .

For \mathbb{R}^n , let $\chi(x) = \rho(||x||^2)$. Then supp χ is a subset of a ball around the origin, and χ restricted to a smaller ball is always 1. \square

 $\textbf{Defn:}\ \ D: C^{\infty}(M) \rightarrow C^{\infty}(M) \ \text{is a} \ \underline{\text{local operator}} \ \text{if} \ \forall f,g \in C^{\infty}(M), \ \forall U \overset{\text{\tiny open}}{\subseteq} M, \ \text{if} \ \ f|_{U} = g|_{U}, \ \text{then} \ \ D(f)|_{U} = D(g)|_{U}.$

Prop: A derivation $D: C^{\infty}(M) \to C^{\infty}(M)$ is a local operator.

Proof: By linearity of D, WOLOG $g \equiv 0$. Assume that $f|_U \equiv 0$, and let $p \in U$. Let $\chi \in C^{\infty}(M)$ be a bump function at p with supp $(\chi) \subset U$. Note: $\chi \cdot f \equiv 0$ on M, so $D(\chi f) = 0$. Well, by the chain rule, $D(\chi f) = \chi D(f) + f D(\chi)$. If we evaluate at p, we have f(p) = 0 and $\chi(p) = 1$, so 0 = 0 + D(f)(p), so D(f)(p) = 0. Thus, $D(f)|_U \equiv 0$. \square

Note: One can show that every local (linear) operator is a differential operator.

Thm: Let $D: C^{\infty}(M) \to C^{\infty}(M)$ be a derivation. Then $\exists X \in \mathfrak{X}(M)$ such that D = X (as an operator).

Proof: Let $p \in M$. To define $X_p \in T_pM$, pick some $[f] \in C_p^{\infty}(M)$. Let $f: U \to \mathbb{R}$ represent this germ. Let χ be a bump function at p with $\operatorname{supp}(\chi) \subseteq U$. Define $\tilde{f}: M \to \mathbb{R}$ where $\tilde{f} = \chi f$, i.e.,

$$\tilde{f}(p) = \left\{ \begin{array}{ll} \chi(p)f(p) & p \in U \\ 0 & p \in M \setminus U \end{array} \right.$$

Observe that $\tilde{f} \in C^{\infty}(M)$, and since \tilde{f} agrees with f in some open neighborhood V of p, it's an extension of $f|_V$. Define $X_p([f]) = D(\tilde{f})(p)$. We need to justify that this is well-defined – what if we changed our representation of [f], or chose a different χ ? Is the number $D(\tilde{f})(p)$ invariant with respect to these changes? Yes! Under the above changes, there's no effect on the germ $[\chi f] \in C_p^{\infty}(M)$, and we just proved that D is local.

Next, we need to show that X, as it's defined above, is smooth. Let $\phi = (x^1, \dots, x^n)$ be any coordinate system on $U \subset M$. Then

$$X|_{U} = \sum_{j=1}^{n} X(x^{j}) \frac{\partial}{\partial x^{j}}$$

where $X(x^j)$ is a function on U. We need to check that each $X(x^j)$ is smooth. Again, we will use a bump function at $p \in U$. By definition, $X(x^j)(p) = D(\tilde{x}^j)(p)$, where $\tilde{x}^j = \chi \cdot x^j$ (extended by 0 outside of U). And by our assumption, $D(\tilde{x}^j) \in C^{\infty}(M)$.

We conclude that $X(x^j) \in C^{\infty}(M)$, so X is smooth. \square

Cor: If $X, Y \in \mathfrak{X}(M)$, then [X, Y] (treating X and Y as operators) is itself a vector field.