

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Haiora Seuger! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Função logarítmica

Olímpio Rudinin Vissoto Leite

■ O que é logaritmo?

Reproduzimos, a seguir, um trecho da tabela que Henry Briggs publicou em 1617. Na versão original, os números indicados na coluna 10^m variam de 1 a 1 000 e os indicados na coluna m apresentam até 14 casas decimais:

10 ^m	m

101	2,004321
102	2,008600
103	2,012837
104	2,017033
105	2,021189
•••••	

Analisando um trecho da tabela de Briggs, podemos escrever:

$$\begin{cases} 10^{2,004321} = 101 \\ 10^{2,008600} = 102 \\ 10^{2,012837} = 103 \\ 10^{2,017033} = 104 \\ 10^{2,021189} = 105 \end{cases}$$

Os expoentes de 10 são denominados *logaritmos*. Assim:

- O expoente 2,004321 é o logaritmo de 101 na base 10.
- O expoente 2,008600 é o logaritmo de 102 na base 10.
- O expoente 2,012837 é o logaritmo de 103 na base 10.

E assim por diante.

O que significa dizer que o número 2,004321 é o logaritmo de 101 na base 10? Significa que 10^{2,004321} é igual a 101 (na verdade, aproximadamente igual).

Na escrita, usa-se a notação log para abreviar o termo logaritmo. Escrevemos: log_{10} 101 = 2,004321.

Definição de logaritmos

Considere N e b números reais positivos, com $b \ne 1$. Definimos: $\log_b N = a \Leftrightarrow b^a = N$, onde:

- b: base do logaritmo
- N: logaritmando
- a: logaritmo de *N na base b*

As restrições impostas à base b do logaritmo (b > 0 e $b \ne 1$) garantem a existência e a unicidade (único valor) do logaritmo de qualquer número positivo.

Exemplos:

$$\log_{10} 105 = 2,021189$$
, pois a $10^{2,021189} = 105$
 $\log_3 9 = 2$, pois a $3^2 = 9$
 $\log_5 5 = 1$, pois a $5^1 = 5$
 $\log_7 1 = 0$, pois $7^0 = 1$
 $\log_{10} 0.1 = -1$, pois $10^{-1} = 0.1$
 $\log_2 2^{15} = 15$, pois $2^{15} = 2^{15}$

Observação:

Quando a base do logaritmo é 10, é comum não indicá-la e o logaritmo é chamado decimal. Assim, $\log_{10} N = \log N$.

Exemplos:

Descobrir o valor de x, em cada item:

- a) $\log_{2} x = 5$
- b) $\log_{5} 125 = x$
- c) $\log_{8} = 3$
- d) $log 10^{x} = 7$

Solução:

Pela definição de logaritmo, se $\log_a N = b$ então $a^b = N$.

- a) $\log_2 x = 5 \Rightarrow 2^5 = x$. Portanto, x = 32
- b) $\log_5 125 = x \Rightarrow 5^x = 125$, $\log 5^x = 5^3$. Portanto, x = 3
- c) $\log_x 8 = 3 \Rightarrow x^3 = 8$. Portanto x = 2
- d) $\log 10^x = 7 \Rightarrow \log_{10} 10^x = 7$, então $10^x = 10$. Portanto, x = 7

A tecla log

A calculadora científica tem uma tecla especial para o cálculo do logaritmo decimal (base 10). Em geral, essa tecla tem a seguinte configuração: log. Essa tecla permite determinar o logaritmo de qualquer número positivo.

Exemplo:

Usando uma calculadora, determinar:

a) log 5

Solução:

Ao operar com calculadoras eletrônicas, devemos considerar que o número de casas decimais e o modo de digitar variam de acordo com o tipo de máquina:

- a) Digitar 5 e em seguida apertar a tecla log. Aparecerá no visor o valor 0,6990, isso considerando quatro casas decimais.
- b) Para alguns modelos de calculadoras, o processo é um pouco diferente:
- 1.º) aperta-se a tecla log
- 2.º) aperta-se a tecla 5
- 3.º) apertando-se a tecla = aparecerá o valor 0,6990 no visor.

Propriedades dos logaritmos

Observe os logaritmos decimais de 2, 3, 6 e 8:

- $\log 2 = 0.301$
- $\log 3 = 0,477$
- $\log 6 = 0,778$
- $\log 8 = 0.903$

Veja as coincidências:

- a) $\log 2 + \log 3 = \log 6$, isto é, $\log 2 + \log 3 = \log (2.3)$
- b) $\log 6 \log 3 = \log 2$, isto é, $\log 6 \log 3 = \log \frac{6}{3}$
- c) $\log 8 = 3 \cdot \log 2$, isto é, $\log 2^3 = 3 \cdot \log 2$

Na verdade, essas coincidências são propriedades dos logaritmos. Vamos demonstrá-las:

Considere m, n, e a números reais positivos com $a \ne 1$. Considere, ainda, que $\log_a m = x \Rightarrow a^x = m$ e $\log_a n = y \Rightarrow a^y = n$.

Lembrando que $\log_a a^x = x$, temos:

Propriedade de um produto

$$m \cdot n = a^{x} \cdot a^{y} = a^{x+y}$$

Portanto, $\log_a(m \cdot n) = \log_a(a^{x+y}) = x + y = \log_a m + \log_a n$. Assim:

$$\log_a(m.n) = \log_a m + \log_a n$$

Propriedade de um quociente

$$m: n = a^{x}: a^{y} = a^{x-y}$$

Portanto, $\log_a (m:n) = \log_a (a^{x-y}) = x - y = \log_a m - \log_a n$. Assim:

$$\log_a(m:n) = \log_a m - \log_a n$$

Propriedade de uma potência

Considere r um número real. Então, $m^r = (a^x)^r = a^{xr}$. Portanto, $\log_a m^r = \log_a a^{xr} = x \cdot r = r \cdot \log_a m$. Assim:

$$\log_a m^r = r \cdot \log_a m$$

Exemplos:

- **1.** Dados $\log 2 = 0.301 e \log 3 = 0.477$, calcular:
- a) log 5
- b) log 81
- c) log 36
- d) log 0,06
- e) log 30,5

Solução:

a)
$$\log 5 = \log \frac{10}{2} = \log 10 - \log 2 = 1 - 0.301 = 0.699$$

b)
$$\log 81 = \log 3^4 = 4 \cdot \log 3 = 4 \cdot 0,477 = 1,908$$

c)
$$\log 36 = \log 4 \cdot 9 = \log 4 + \log 9 = \log 2^2 + \log 3^2 = 2 \cdot \log 2 + 2 \cdot \log 3 = 2 \cdot 0,301 + 2 \cdot 0,477 = 0,602 + 0,954 = 1,556$$

d)
$$\log 0.06 = \log \frac{6}{100} = \log 6 - \log 100 = \log 2 \cdot 3 - \log 10^2 =$$

= $\log 2 + \log 3 - 2 \cdot \log 10 = 0.301 + 0.477 - 2 = -1.222$

e)
$$\log 3^{0.5} = 0.5 \cdot \log 3 = \frac{1}{2} \cdot 0.477 = 0.239$$

- 2. Dado log 7 = 0,845098, calcular:
- a) log 70
- b) log 700
- c) log 0,7
- d) log 0,07

Solução:

- a) $\log 70 = \log (7.10) = \log 7 + \log 10 = 0.845098 + 1 = 1.845098$
- b) $\log 700 = \log (7.100) = \log 7 + \log 100 = 0.845098 + 2 = 2.845098$
- c) $\log 0.7 = \log (7.0.1) = \log 7 + \log 10^{-1} = 0.845098 1 = -0.154902$
- d) $\log 0.07 = \log (7.0.01) = \log 7 + \log 10^{-2} = 0.845098 2 = -1.154902$
- **3.** Conhecidos $\log 2 = 0.301 \text{ e } \log 7 = 0.845$, calcular x tal que $2^x = 7$.

Solução:

Se $2^x = 7$, então $\log 2^x = \log 7$. Pela propriedade de uma potência: x . $\log 2 = \log 7$ Logo, x . 0,301 = 0,845, isto é, $x = \frac{0,845}{0.301} = 2,807$

4. Calcular o valor de log₃ 17

Solução:

Chamando $\log_3 17 = x$, temos $3^x = 17$. Se $3^x = 17$, então $\log 3^x = \log 17$. Pela propriedade de uma potência: x . $\log 3 = \log 17$

$$Dai, x = \frac{log 17}{log 3}$$

Conclusão: $\log_3 17 = \frac{\log 17}{\log 3}$

Usando a calculadora encontramos:

$$\log_3 17 = \frac{\log 17}{\log 3} = \frac{1,230}{0,477} = 2,579$$

Esse exemplo sugere um caminho para obter o logaritmo de um número em qualquer base.

Propriedade de mudança de base

Do exemplo anterior, concluímos que o logaritmo de um número pode ser escrito como quociente de dois logaritmos em uma base qualquer.

Considere a, b e n números reais positivos e diferentes de 1. Para obter $\log_b a$, fazemos $\log_b a = x$, ou seja, $b^x = a$.

Se $b^x = a$, então $\log_n b^x = \log_n a$. Aplicando a propriedade de uma potência, obtemos: $x \cdot \log_n b = \log_n a$. Daí, $x = \frac{\log_n a}{\log_n b}$

Assim:

$$\log_b a = \frac{\log_n a}{\log_n b}$$

Exemplo:

Dados $\log 2 = 0.30 e \log 5 = 0.70$, calcular $\log_2 5$.

Solução:

Usando a propriedade de mudança de base, podemos escrever:

$$\log_2 5 = \frac{\log_{10} 5}{\log_{10} 2} = \frac{\log 5}{\log 2} = \frac{0.70}{0.30} \approx 2.34$$

Quanto vale o logaritmo decimal de 2?

No estudo de logaritmos que fizemos até aqui, tivemos a oportunidade de utilizar valores de log 2 com aproximações diferentes: log 2 = 0,301; log 2 = 0,30 etc. Por ser mais prático, usamos o símbolo de igualdade (=) no lugar do símbolo de aproximadamente igual (\cong).

Podemos provar que log 2 é irracional (como π ou $\sqrt{2}$), isto é, apresenta infinitas casas depois da vírgula que não formam período. O número de casas depois da vírgula é fixado em função da precisão exigida pelos cálculos.

Exercícios

1.	Aplicando a definição de logaritmo, calcule: a) log ₃ 1
	b) log ₃ 3
	c) log ₃ 81
	d) log ₃ 3 ^{4,51}
2.	Sabendo que $\log_{10} x$ é um logaritmo decimal e costuma ser indicado por log x, calcule: a) log 1
	b) log 10
	c) log 100

- d) log 1 000
- e) log 0,1
- 3. Determine o valor numérico de x em cada um dos itens a seguir:
 - a) $\log_3 x = 4$
 - b) $\log_2 128 = x$
 - c) $\log_{x} 27 = 3$
 - d) $\log_2 x = 10$
 - e) $\log_3 3^x = 13$
- 4. Calcule:
 - a) log 1

c) log₃ 1

d) $\log_a 1$, sendo a um número real positivo e diferente de 1

5. Sabendo que log 13 = 1,114, use as propriedades dos logaritmos e calcule:

a) log 130

b) log 1 300

c) log 1,3

d) log 0,13

e) log₁₃ 13³

f) log₁₃ 10

- 6. São dados $\log 2 = 0.301$ e $\log 7 = 0.845$. Usando as propriedades dos logaritmos, calcule:
 - a) log 14

b) log 3,5

- c) log 70
- d) log 28
- e) log_8_7
- f) $\log_2 7$

■ Função logarítmica

Denomina-se função logarítmica, qualquer função $f: \mathbb{R}_+^* \to \mathbb{R}$, dada por uma lei da forma y = $\log_a x$, em que a é um número real positivo e diferente de 1.

Existem condições para que a função logarítmica exista. São elas:

- a base a deve ser um número real positivo e diferente de 1 (um);
- a variável x deve ser maior que zero, logo, o seu domínio é o conjunto dos números reais positivos.

Como se constrói o gráfico da função logarítmica?

Para construir o gráfico da função logarítmica devemos atribuir alguns valores convenientes para a variável x e calcularmos os valores correspondentes para a variável y. Os pares ordenados obtidos corresponderão a alguns pontos do gráfico.

Exemplos:

1. O gráfico a seguir é da função $y = log_3 x$:

x	у	(x, y)
1 9	-2	$\left(\frac{1}{9}, -2\right)$
1/3	-1	$\left(\frac{1}{3}, -1\right)$
1	0	(1, 0)
3	1	(3, 1)
9	2	(9, 2)

A partir desse gráfico é possível concluir que:

- a) Se x = 9, então y = 2, isto é, $\log_3 9 = 2$
- b) Se x = 5, então y \cong 1,5, isto é, $\log_3 5 \cong$ 1,5
- c) $x > 3 \Leftrightarrow y > 1$, isto é, $x > 3 \Leftrightarrow \log_3 x > 1$

2. Observe o gráfico da função $y = log_{\frac{1}{2}} x$:

X	у	(x, y)
<u>1</u> 9	2	$\left(\frac{1}{9},2\right)$
1/3	1	$\left(\frac{1}{3},1\right)$
1	0	(1, 0)
3	-1	(3, -1)
9	-2	(9, -2)

A partir desse gráfico, é possível concluir que:

Se x = 9, então y = -2, isto é,
$$\log_{\frac{1}{3}} 9 = -2$$

Se x = 5, então y = -1,5, isto é, $\log_{\frac{1}{3}} 5 = -1,5$
x > 3 \Leftrightarrow y < -1, isto é, x > 3 \Leftrightarrow $\log_{\frac{1}{3}} x < -1$

Observação:

Em geral, função logarítmica é toda função cuja lei é dada pela equação $y = \log_b x$, sendo b um número real positivo e diferente de 1.

O gráfico da função logarítmica $y = \log_b x$ ou $f(x) = \log_b x$ tem as seguintes características:

- Passa pelo ponto P (1, 0);
- Apresenta uma das seguintes configurações:

O domínio da função logarítmica é formado exclusivamente pelos números reais positivos. Observe que não são definidos $\log_b 0$, $\log_b (-1)$. Portanto, a função $y = \log_b x \operatorname{com} b > 0$ e $b \neq 1$ tem domínio \mathbb{R}^* e conjunto imagem \mathbb{R} .

Comportamento da função logarítmica: crescente ou decrescente?

Se $y = \log_b x$, com x > 0, temos:

Exercícios

7. Em cada item, construa uma tabela para os seguintes valores de x: $\frac{1}{4}$, $\frac{1}{2}$, 1, 2 e 4. Construa o gráfico da função logarítmica, dê o domínio e o conjunto imagem da função:

a)
$$y = \log_2 x$$

b)
$$y = \log_{\frac{1}{2}} x$$

8. Observe a base do logaritmo e esboce o gráfico da função y = log x.

9. Observe a base do logaritmo e esboce o gráfico da função $y = log_{\frac{1}{2}} x$.

10. Se $x \in [1, 4]$, qual é o conjunto imagem da função $y = log_{\frac{1}{4}}x$?

11. Esboce o gráfico da função $y = \log_2 x$ sendo $x \in [0, 5; 16]$. Qual o conjunto imagem dessa função?

De acordo com a Receita Federal, depreciação é a diminuição do valor de um bem, que resulta do desgaste pelo uso, pela ação da natureza ou pela obsolescência. Em uma fábrica, uma máquina recém-adquirida custou R\$250.000,00 e sabe-se que ela sofre uma desvalorização (depreciação) de 12% ao ano. Daqui quanto tempo o valor da máquina será reduzido à metade? Dados: log 0,88 ≈ -0,0555 e log 0,5 ≈ -0,3010.

Equação logarítmica

É toda equação cuja incógnita é apresentada no logaritmando ou na base de um logaritmo.

A seguir, alguns exemplos de equações logarítmicas:

- a) $\log_{5} x = 2$
- b) $\log_{9} x^2 = 32$
- c) $\log_2 (3x 6) + \log_2 (x + 5) = 2 \cdot \log_2 x$

Uma propriedade importante dos logaritmos, muito utilizada na resolução das equações logarítmicas é a seguinte:

$$\log_b m = \log_b n \Leftrightarrow m = n$$
, sendo m , $n \in \mathbb{R}^* e \ b > 0 \ e \ b \neq 1$

Exemplos:

- 1. Resolva as equações logarítmicas a seguir:
- a) $\log_{3} x = 5$
- b) $\log_2 (3x + 5) = 3$
- c) $\log_2 (x-2) + \log_2 (x-2) = 3$
- d) $\log_5 (2x 6) = \log_5 (x + 10)$

Solução:

a) $\log_{3} x = 5$

Aplicando a definição de logaritmos, temos:

$$\log_3 x = 5 \Rightarrow x = 3^5$$
, $\log_3 x = 243$

Devemos lembrar que o logaritmando deve ser maior do que zero. Sendo assim, a condição de existência (CE) é representada po x > 0. Como x = 243 satisfaz a condição de existência, temos que 243 é a solução da equação.

$$S = \{243\}$$

b)
$$\log_{2}(3x + 5) = 3$$

Aplicando a definição de logaritmos, temos:

$$\log_3 (3x + 5) = 3 \Rightarrow 3x + 5 = 2^3$$
, então $3x + 5 = 8$, $\log_3 x = 1$

Condição de existência: 3x + 5 > 0

Como para x = 1 a condição de existência é satisfeita, temos que: S = {1}

c)
$$\log_2(x-2) + \log_2(x-2) = 3$$

Aplicando a propriedade dos logaritmos: $\log_a (m \cdot n) = \log_a m + \log_a n$, a equação pode ser escrita de outra forma, vejamos:

$$\log_{2}(x-2) \cdot (x-2) = 3$$

Aplicando a definição de logaritmos, temos:

$$\log_{3}(x-2) \cdot (x-2) = 3 \Rightarrow (x-2) \cdot (x+2) = 2^{3}, \log_{2} x^{2} - 4 = 8$$

$$x^2 = 12$$

$$x = \pm \sqrt{12} = \pm 2\sqrt{3}$$

Condição de existência: x + 2 > 0 e x - 2 > 0

Das raízes obtidas, apenas $x=+2\sqrt{3}$ satisfaz a condição de existência da equação inicial, então temos que: $S=\{2\sqrt{3}\}$

d)
$$\log_{5}(2x-6) = \log_{5}(x+10)$$

Primeiramente, temos que aplicar a propriedade fundamental da igualdade de logaritmos:

log_b M = log_b N
$$\Leftrightarrow$$
 M = N
$$\begin{cases} b, M, N \in \mathbb{R}^*_+ \\ b \neq 1 \end{cases}$$

Logo:

$$(2x - 6) = (x + 10) \Rightarrow x = 16$$

Condição de existência: 2x - 6 > 0 e x + 10 > 0

Como x = 16 satisfaz a condição de existência, temos que: $S = \{16\}$.

A função exponencial de base 'e' e de base $\frac{1}{e}$

O número *e* é empregado na resolução de muitos problemas. Antes de ver alguns exemplos, vamos observar os gráficos a seguir:

Gráfico de $y = e^x$

Como a base é maior que 1 ($e \approx 2,718$), a função y = e^x é crescente:

• Gráfico de $y = \left(\frac{1}{e}\right)^x = e^{-x}$

Como a base é menor que 1 e maior que $0\left(\frac{1}{e} \approx 0.3679\right)$, a função $y = e^{-x}$ é decrescente:

Exemplo:

No instante t=0, há mil bactérias numa certa cultura. O número de bactérias varia segundo a lei $N=1~000e^{2t}$, onde t é o tempo em minutos. Calcular o número de bactérias para t=5. (Use $e^{10} \approx 22~026$)

Solução:

$$N = 1\ 000e^{2.5} = 1\ 000e^{10} \cong 1\ 000\ .\ 22\ 026$$

Assim, para t = 5 temos $N \cong 2$ 026 000, ou seja, após 5 minutos a cultura terá 22 026 000 bactérias.

Logaritmo natural

Esses logaritmos são muito utilizados no estudo de fenômenos naturais e são, por isso, chamados de logaritmos naturais.

 $\log_e x = \ln x$ (logaritmo natural de x)

Pela definição de logaritmo, temos $\log_{e} N = a \Leftrightarrow e^{a} = N$, com N > 0.

Exercícios

- 13. Resolva as equações logarítmicas a seguir:
 - a) $\log_5 (5x 10) = 2$
 - b) $\log_2 (x^2 5x + 14) = 3$
 - c) $\log (2x 7) = \log (3x 20)$
- **14.** Esboce o gráfico da função $y = e^x$, para x no intervalo [0, 2]. Qual é o conjunto imagem dessa função? (Use $e^2 \approx 7.4$)

- **15.** A população de um país cresce de acordo com a fórmula $P = P_0 e^{it}$, onde P_0 é a população num instante t = 0, t é dado em anos e t é a taxa de crescimento anual. Sabendo que t 2 t 0,69, calcule em quanto tempo essa população estará duplicada:
 - a) em um país, onde a taxa de crescimento é de 1% ao ano;
 - b) em outro país, onde a taxa de crescimento é de 1,7% ao ano.
- **16.** A massa de uma substância radioativa, que se desintegra segundo uma taxa de 5% ao ano, é dada por $M = M_0 e^{-it}$, onde M_0 é a massa num instante t = 0, t é dado em anos e i é a taxa anual de desintegração. Nessas condições, $M_0 = 200$ g. Em quanto tempo essa massa estará reduzida a 100g? (Use $\ln 2 = 0.69$)

17. Uma das maneiras de se descrever ciclos tecnológicos é a utilização da curva logística, ou curva em S.

Nesse modelo podem ser identificadas três fases distintas: um crescimento inicial lento, que representa o alto custo da inovação tecnológica e uma baixa penetração no mercado; uma aceleração do crescimento após a aceitação da inovação por parte do público e o barateamento dos custos; e a saturação, época onde podem ser iniciados ciclos de outros produtos com novas tecnologias.

Suponha que a curva de penetração no mercado para um determinado produto de alta tecnologia seja descrita pela função a seguir:

$$P(t) = \frac{20}{1 + e^{8-t}}$$

onde P(t) representa a penetração no mercado do produto em % e t representa o período, em anos, desde o início do ciclo. Calcule:

a) Qual será a porcentagem do mercado que esse produto terá após 9 anos? (Dado que $e^{-1} \approx 0.37$)

b) Após quantos anos a porcentagem do mercado do produto será de 2,4%? (Dado que In $\frac{22}{3} \approx 1,9923$)

IGabarito

Função logarítmica

1.

a)
$$\log_3 1 = x$$

$$3^{x} = 1$$

$$3^{x} = 3^{0}$$

$$x = 0$$

Resposta: 0

b)
$$\log_3 3 = x$$

$$3^{x} = 3$$

$$3^{x} = 3^{1}$$

$$x = 1$$

Resposta: 1

c)
$$\log_{3} 81 = x$$

$$3^{x} = 81$$

$$3^{x} = 3^{4}$$

$$x = 4$$

Resposta: 4

d)
$$\log_3 3^{4,51} = x$$

$$3^{x} = 3^{4,51}$$

$$x = 4,51$$

Resposta: 4,51

2.

a)
$$log 1 = x$$

$$10^{x} = 1$$

$$10^{x} = 10^{0}$$

$$x = 0$$

Resposta: 0

b)
$$\log 10 = x$$

$$10^{x} = 10$$

$$10^{x} = 10^{1}$$

$$x = 1$$

Resposta: 1

c)
$$log 100 = x$$

$$10^{x} = 100$$

$$10^{x} = 10^{2}$$

$$x = 2$$

Resposta: 2

d) $\log 1000 = x$

$$10^{x} = 1000$$

$$10^{x} = 10^{3}$$

$$x = 3$$

Resposta: 3

e)
$$\log 0.1 = x$$

$$10^{x} = 0.1$$

$$10^{x} = 10^{-1}$$

$$x = -1$$

Resposta: -1

3.

a)
$$\log_3 x = 4$$

$$x = 3^4$$

$$x = 81$$

Resposta: 81

b)
$$\log_{2} 128 = x$$

$$2^{x} = 128$$

$$3^{x} = 2^{7}$$

$$x = 7$$

Resposta: 7

c)
$$\log_{2} 27 = 3$$

$$x^3 = 27$$

$$x^3 = 3^3$$

$$x = 3$$

Resposta: 3

d)
$$\log_{2} x = 10$$

$$x = 2^{10}$$

$$x = 1024$$

Resposta: 1 024

e)
$$\log_3 3^x = 13$$

$$3^x = 3^{13}$$

$$x = 13$$

Resposta: 13

4.

a)
$$log 1 = x$$

$$10^{x} = 1$$

$$10^{x} = 10^{0}$$

$$x = 0$$

Resposta: 0

b)
$$\log_{2} 1 = x$$

$$2^{x} = 1$$

$$2^{x} = 2^{0}$$

$$x = 0$$

Resposta: 0

c)
$$\log_{3} 1 = x$$

$$3^{x} = 1$$

$$3^{x} = 3^{0}$$

$$x = 0$$

Resposta: 0

d)
$$\log_a 1 = x$$

$$a^x = 1$$

$$a^{x} = a^{0}$$

$$x = 0$$

Resposta: 0

5.

a)
$$\log 130 = \log (13.10) =$$

= $\log 13 + \log 10 = 1,114 + 1 = 2,114$

b)
$$\log 1 \ 300 = \log (13 \ . \ 10^2)$$

c)
$$\log 1.3 = \log (13 \cdot 10^{-1}) =$$

= $\log 13 - \log 10 = 1.114 - 1 = 0.114$

d)
$$\log 0.13 = \log (13 \cdot 10^{-2})$$

$$= \log 13 - 2 \cdot \log 10$$

$$= 1,114 - 2 = -0,866$$

e)
$$\log 13^3 = 3 \cdot \log 13 = 3 \cdot 1{,}114 = 3{,}342$$

f)
$$\log_{13} 10 = \frac{\log 10}{\log 13} = \frac{1}{1.114} = 0.898$$

6.

a)
$$\log 14 = \log (2.7) = \log 2 + \log 7 =$$

= 0,301 + 0,845 = 1,146

b)
$$\log 3.5 = \log \frac{7}{2} = \log 7 - \log 2 =$$

= 0.845 - 0.301 = 0.544

c)
$$\log 70 = \log (7.10) =$$

= $\log 7 + \log 10 = 0.845 + 1 = 1.845$

d)
$$\log 28 = \log (2^2 \cdot 7) = 2 \cdot \log 2 + \log 7 = 2 \cdot 0,301 + 0,845 = 1,447$$

e)
$$\log \frac{8}{7} = \log \frac{2^3}{7} = 3 \cdot \log 2 - \log 7 =$$

= 3 \cdot 0,301 - 0,845 = 0,058

f)
$$\log_2 7 = \frac{\log 7}{\log 2} = \frac{0.845}{0.301} = 2.807$$

7.

a)
$$y = \log_2 x$$

X	у	(x, y)
1/4	-2	$\left(\frac{1}{4}, -2\right)$
1/2	-1	$\left(\frac{1}{2}, -1\right)$
1	0	(1, 0)
2	1	(2, 1)
4	2	(4, 2)

$$D = \mathbb{R}_+^* e Im = \mathbb{R}$$

b)
$$y = \log_{\frac{1}{2}} x$$

X	у	(x, y)
<u>1</u>	2	$\left(\frac{1}{4},2\right)$
1/2	1	$\left(\frac{1}{2},1\right)$
1	0	(1, 0)
2	-1	(2, -1)
4	-2	(4, -2)

$$D = \mathbb{IR}_{+}^{*} e \text{ Im} = \mathbb{IR}$$

8.
$$y = \log x$$

9.

10.

$$Im = [1, 4]$$

11.

$$Im = [-1, 4]$$

12.

$$100\% - 12\% = 88\% = 0.88$$

$$f(t) = 250\ 000\ .\ (0.88)^t$$

$$f(t) = 125\ 000$$

$$\frac{1}{2} = 0.88^{t}$$

$$0.5 = 0.88^{t}$$

$$log 0,5 = log 0,88^{t}$$

$$\log 0.5 = t \cdot \log 0.88$$

$$t = \frac{\log 0.5}{\log 0.88}$$

$$t = \frac{-0,301}{-0,055}$$

$$t = 5,42 \approx 5,4 \text{ anos}$$

Resposta: 5,4 anos

13.

a)
$$\log_5 (5x - 10) = 2$$

$$5x - 10 = 5^2$$

$$5x = 35$$

$$x = 7$$

Condição de existência: 5x + 10 > 0. Essa condição é satisfeita quando

x = 7.

Resposta:
$$S = \{7\}$$

b)
$$\log_{2}(x^{2} - 5x + 14) = 3$$

$$x^2 - 5x + 14 = 2^3$$

$$x^2 - 5x + 14 = 8$$

$$x^{2} - 5x + 14 = 8$$

 $x^{2} - 5x + 6 = 0$ $\begin{cases} x_{1} = 2 \\ x_{2} = 3 \end{cases}$

Condição de existência:

$$x^2 - 5x + 14 > 0$$
. Essa condição é satisfeita quando $x = 2$ e $x = 3$.

Resposta: $S = \{2,3\}$

c)
$$\log(2x-7) = \log(3x-20)$$

$$2x - 7 = 3x - 20$$

$$2x - 3x = -20 + 7$$

$$-x = -13$$

$$x = 13$$

Condição de existência: 2x - 7 > 0 e 3x - 20 > 0. Essa condição é satisfeita quando x = 13.

Resposta: $S = \{13\}$

 $Im = [1, e^2]$

15.

a)
$$P = P_0 \cdot e^{i \cdot t}$$

 $i = 1\% = 0.01$
 $P = P_0 \cdot e^{0.01 \cdot t}$

$$P = 2.P_0$$

$$2.P_0 = P_0.e^{0.01.t}$$

$$2 = e^{0.01 \cdot t}$$

$$ln2 = ln e^{0,01.t}$$

$$ln2 = 0.01 t.lne$$

$$t = \frac{\ln 2}{0.01 \ln e}$$

$$ln2 = 0,69$$

$$lne = log_e e = 1$$

$$t = \frac{0.69}{0.01.1}$$

$$t = 69$$

Resposta: 69 anos

b)
$$P = P_0 \cdot e^{i.t}$$

$$i = 1,7\% = 0,017$$

$$P = P_0 \cdot e^{0.017 \cdot t}$$

$$P = 2 \cdot P_0$$

$$2.P_0 = P_0.e^{0.017.t}$$

$$2 = e^{0.017.t}$$

$$ln2 = ln e^{0.017.t}$$

$$ln2 = 0.017t ln e$$

$$t = \frac{\ln 2}{0.017 \cdot \ln e}$$

$$ln2 = 0.69$$

$$lne = log_e = 1$$

$$t = \frac{0,69}{0.017, 1}$$

t = 40,58 ≅ 4,6 anos

Resposta: 4,6 anos

16.
$$M = M_0 \cdot e^{-i \cdot t}$$

$$i = 5\% = 0.05$$

$$M = M_0 \cdot e^{-0.05 \cdot t}$$

$$M_0 = 200$$

$$M = 200 \cdot e^{-0.05 \cdot t}$$

M = 100
$100 = 200 \cdot e^{-0.05 \cdot t}$ $\frac{100}{200} = e^{-0.05 \cdot t}$ $\frac{1}{2} = e^{-0.05 \cdot t}$
$\ln 2^{-1} = \ln e^{-0.05 \cdot t}$
-1 . ln2 = -0.05t . ln6
$t = \frac{-1 \cdot ln2}{-0,05 \cdot lne}$
$lne = log_e e = 1$
ln2 = 69
$t = \frac{-1.0,69}{-0,05.1}$
t = 13,8

Resposta: 13,8 anos

$$e^{8-t} = \frac{17,6}{2,4}$$

$$e^{8-t} = \frac{22}{3}$$

$$\ln e^{8-t} = \ln \frac{22}{3}$$

$$\ln \frac{22}{3} = 1,9923$$

$$\ln e^{8-t} = 1,9923$$

$$(8-t) \cdot \ln e = 1,9923$$

$$8 \cdot \ln e - t \cdot \ln e = 1,9923$$

$$\ln e = 1$$

$$8 \cdot 1 - t \cdot 1 = 1,9923$$

$$- t = 1,9923 - 8$$

$$t = 6,0077 \cong 6$$
Resposta: 6 anos

17.

a)
$$P(t) = \frac{20}{1 + e^{8-t}}$$

$$t = 9$$

$$P(9) = \frac{20}{1 + e^{8-9}}$$

$$P(9) = \frac{20}{1 + e^{-1}}$$

$$e^{-1} = 0.37$$

$$P(9) = \frac{20}{1 + 0.37}$$

$$P(9) = 14.59 \approx 14.6\%$$
Resposta: 14.6%

b)
$$P(t) = \frac{20}{1 + e^{8-t}}$$

$$P(t) = 2.4$$

$$2.4 = \frac{20}{1 + e^{8-t}}$$

 $2,4 \cdot (1 + e^{8-t}) = 20$ $2,4 + 2,4 \cdot e^{8-t} = 20$ $2,4 \cdot e^{8-t} = 17,6$