MAPSI — cours 4 : Expectation-Maximization (EM)

Christophe Gonzales

LIP6 - Université Paris 6, France

Plan du cours n°4

- Quelques rappels de maths
- L'algorithme EM
- Pourquoi fonctionne-t-il?
- Mixtures de Gaussiennes et EM

Typologies de données incomplètes

xº: données observées, xh: données manquantes

• $\mathcal{M}_{ij} = P(r_i^j \in \mathbf{x}^h)$: position des données manquantes

Typologies de données incomplètes

Typologies

- Missing Completely at Random (MCAR) : $P(\mathcal{M}|\mathbf{x}) = P(\mathcal{M})$ Aucune relation entre le fait qu'une donnée soit manquante ou observée
- Missing at Random (MAR) : $P(\mathcal{M}|\mathbf{x}) = P(\mathcal{M}|\mathbf{x}^o)$ données manquantes en relation avec les données observées mais pas avec les autres données manquantes
- Not Missing At Random (NMAR) : P(M|x) données manquantes en relation avec toutes les données

Rappel: fonctions convexes

Définition

 $f \text{ convexe} \Longleftrightarrow \forall \lambda \in [0, 1], \forall x_1, x_2:$

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

fonction concave

f concave \iff -f convexe

Généralisation : l'inégalité de Jensen

Inégalité de Jensen

- f convexe définie sur D
- \bullet $x_1,\ldots,x_n\in D$
- \bullet $\lambda_1, \ldots, \lambda_n \geq 0, \quad \sum_{i=1}^n \lambda_i = 1$

Alors:

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i)$$

Inégalité de Jensen

- f convexe
- X: variable aléatoire à n dimensions x_1, \ldots, x_n
- $\lambda_1, \ldots, \lambda_n \geq 0$, $\sum_{i=1}^n \lambda_i = 1 \Longrightarrow \text{probabilité } P_{\lambda}$
- $f(\mathbb{E}_{P_{\lambda}}(X)) \leq \mathbb{E}_{P_{\lambda}}(f(X))$ où $\mathbb{E}_{P_{\lambda}} = \text{esp\'erance}$

Démonstration de l'inégalité de Jensen

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i)$$

• par récurrence : si n = 1 : trivial, si n = 2 : convexité

•
$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\lambda_{n+1} x_{n+1} + \sum_{i=1}^{n} \lambda_i x_i\right)$$

$$= f\left(\lambda_{n+1} x_{n+1} + (1 - \lambda_{n+1}) \sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} x_i\right)$$

$$\leq \lambda_{n+1} f(x_{n+1}) + (1 - \lambda_{n+1}) f\left(\sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} x_i\right)$$

$$\leq \lambda_{n+1} f(x_{n+1}) + (1 - \lambda_{n+1}) \sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} f(x_i)$$

$$= \lambda_{n+1} f(x_{n+1}) + \sum_{i=1}^{n} \lambda_i f(x_i) = \sum_{i=1}^{n+1} \lambda_i f(x_i)$$

Conséquences de l'inégalité de Jensen

Inégalité de Jensen pour le logarithme

Logarithme = fonction concave :

$$\log\left(\sum_{i=1}^n \lambda_i x_i\right) \ge \sum_{i=1}^n \lambda_i \log(x_i)$$

$$\mathbb{E}(\log(X)) = \log(\mathbb{E}(X)) \Longrightarrow X = \mathbb{E}(X) =$$
constante

Log-vraisemblance et données incomplètes

- Échantillon $\mathbf{x} = \{x_1, \dots, x_n\}$ de taille n
- données complètes : $\log L(\mathbf{x}, \Theta) = \sum_{i=1}^{n} \log P(x_i | \Theta)$
- x°: données observées, x^h: données manquantes
- $\log L(\mathbf{x}^o, \Theta) = \log$ -vraisemblance des données observées

$$= \sum_{i=1}^{n} \log P(x_i^o|\Theta) = \sum_{i=1}^{n} \log \left(\sum_{\mathbf{x}_i^h \in \mathbf{x}^h} P(x_i^o, \mathbf{x}_i^h|\Theta) \right)$$

• Soit $Q_i(x_i^h)$ une loi de proba quelconque alors :

$$\log L(\mathbf{x}^o, \Theta) = \sum_{i=1}^n \log \left(\sum_{x_i^h \in \mathbf{x}^h} \frac{Q_i(x_i^h)}{Q_i(x_i^h)} \frac{P(x_i^o, x_i^h | \Theta)}{Q_i(x_i^h)} \right)$$

Log-vraisemblance et données incomplètes

$$\log L(\mathbf{x}^o, \Theta) \geq \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} Q_i(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta)}{Q_i(x_i^h)} \right)$$

Jensen
$$\Longrightarrow$$
 égalité ssi $\frac{P(x_i^o, x_i^n | \Theta)}{Q_i(x_i^h)} = \text{constante}$

choisir
$$Q_i(x_i^h) \propto P(x_i^o, x_i^h|\Theta) \Longrightarrow Q_i(x_i^h) = P(x_i^h|x_i^o, \Theta)$$

Algorithme EM

Algorithme

- **1** choisir une valeur initiale $\Theta = \Theta^0$
- 2 Étape E (expectation) :
 - $\bullet \ Q_i^{t+1}(x_i^h) \leftarrow P(x_i^h|x_i^o,\Theta^t) \quad \forall i \in \{1,\ldots,n\}$
 - $\log L^{t+1}(\mathbf{x}^o, \Theta) = \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} Q_i^{t+1}(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta)}{Q_i^{t+1}(x_i^h)} \right)$
- 3 Étape M (maximization) :
 - $\bullet \ \Theta^{t+1} \leftarrow \operatorname{Argmax}_{\Theta} \log L^{t+1}(\mathbf{x}^o, \Theta)$
- Tant qu'on n'a pas convergé, revenir en 2

À convergence, Θ^{t+1} = optimum local par max de vraisemblance

lacktriangle 2 variables aléatoires $A \in \{a,b\}$ et $C \in \{c,d\}$

$$P(A, C|\Theta) = \begin{bmatrix} \theta_{ac} & \theta_{ad} \\ \theta_{bc} & \theta_{bd} \end{bmatrix} \Longrightarrow \Theta = \{\theta_{ac}, \theta_{ad}, \theta_{bc}, \theta_{bd}\}$$

but: estimer ⊖ par EM

Α	C
а	?
b	?
а	d
b	d
а	С

A toujours observé :

$$\Longrightarrow \theta_{ac} + \theta_{ad} = \frac{3}{5}$$
 par max de vraisemblance $\theta_{bc} + \theta_{bd} = \frac{2}{5}$ par max de vraisemblance

initialisation possible :

$$\Theta^0 = \{\theta^0_{ac} = 0.3, \theta^0_{ad} = 0.3, \theta^0_{bc} = 0.2, \theta^0_{bd} = 0.2\}$$

• Étape E (expectation) : $Q_i^1(x_i^h) \leftarrow P(x_i^h|x_i^o,\Theta^0) \quad \forall i \in \{1,2\}$

$$Q_1^1(C) = P(C|A=a,\Theta^0) = \frac{P(A=a,C|\Theta^0)}{\sum_C P(A=a,C|\Theta^0)} = \begin{bmatrix} 0.3\\0.6 \end{bmatrix}, \ \frac{0.3}{0.6} \end{bmatrix} = [0.5,\ 0.5]$$

$$Q_2^1(C) = P(C|A = b, \Theta^0) = \frac{P(A = b, C|\Theta^0)}{\sum_{a} P(A = b, C|\Theta^0)} = [\frac{0.2}{0.4}, \frac{0.2}{0.4}] = [0.5, 0.5]$$

$$\Theta^{0} = \{\theta^{0}_{ac} = 0.3, \theta^{0}_{ad} = 0.3, \theta^{0}_{bc} = 0.2, \theta^{0}_{bd} = 0.2\}$$

$$Q_1^1(C) = [0.5, 0.5]$$
 $Q_2^1(C) = [0.5, 0.5]$ $P(x_i^h, x_i^o | \Theta^0) = \begin{bmatrix} 0.3 & 0.3 \\ 0.2 & 0.2 \end{bmatrix}$

$$\log L^{t+1}(\mathbf{x}^o, \Theta) = \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} Q_i^{t+1}(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta)}{Q_i^{t+1}(x_i^h)} \right)$$

			Α	В	Q_i^{t+1}	P/Q_i^{t+1}	$\log(P/Q_i^{t+1})$
Α	В		а	С	0.5	$\theta_{ac}/0.5$	$\log \theta_{ac} - \log 0.5$
а	?		а	d	0.5	$ heta_{ad}/0.5$	$\log \theta_{ad} - \log 0.5$
b	?		b	С	0.5	$\theta_{bc}/0.5$	$\log \theta_{bc} - \log 0.5$
а	d		b	d	0.5	$\theta_{bd}/0.5$	$\log \theta_{bd} - \log 0.5$
b	d	'	а	d	1	$ heta_{\sf ad}$	$\log heta_{ad}$
а	C		b	d	1	$ heta_{ extsf{bd}}$	$\log heta_{bd}$
	•	•	а	С	1	$ heta_{ extsf{ac}}$	$\log heta_{ac}$

 \implies revient à observer l'échantillon avec poids Q_i^{t+1}

Algorithme EM

$$\log L^{t+1}(\mathbf{x}^{o}, \Theta) = \sum_{i=1}^{n} \sum_{x_{i}^{h} \in \mathbf{x}^{h}} Q_{i}^{t+1}(x_{i}^{h}) \log \left(\frac{P(x_{i}^{o}, x_{i}^{h}|\Theta)}{Q_{i}^{t+1}(x_{i}^{h})} \right)$$

$$= \sum_{i=1}^{n} \sum_{x_{i}^{h} \in \mathbf{x}^{h}} Q_{i}^{t+1}(x_{i}^{h}) \left[\log(P(x_{i}^{o}, x_{i}^{h}|\Theta)) - \log(Q_{i}^{t+1}(x_{i}^{h})) \right]$$

$$\Rightarrow \Theta^{t+1} = \operatorname{Argmax}_{\Theta} \log L^{t+1}(\mathbf{x}^{o}, \Theta)$$

$$= \operatorname{Argmax}_{\Theta} \sum_{i=1}^{n} \sum_{\mathbf{x}^{h} \in \mathbf{x}^{h}} Q_{i}^{t+1}(x_{i}^{h}) \log(P(x_{i}^{o}, x_{i}^{h} | \Theta))$$

Principe de EM

Étape M \Longrightarrow maximum de vraisemblance avec un échantillon dont chaque enregistrement x_i a un poids Q_i^{t+1}

$$\Theta^{1} = \operatorname{Argmax}_{\Theta} \sum_{i=1}^{n} \sum_{x_{i}^{h} \in \mathbf{x}^{h}} Q_{i}^{t+1}(x_{i}^{h}) \log \left(\frac{P(x_{i}^{o}, x_{i}^{h} | \Theta)}{Q_{i}^{t+1}(x_{i}^{h})} \right)$$

Α	В	Q_i^{t+1}	$\log \theta$
а	С	0.5	$\log \theta_{ac}$
а	d	0.5	$\log \theta_{ad}$
b	C	0.5	$\log \theta_{bc}$
b	d	0.5	$\log \theta_{bd}$
а	d	1	$\log \theta_{ad}$
b	d	1	$\log \theta_{bd}$
а	С	1	$\log \theta_{ac}$

$$\Theta^{1} = \operatorname{Argmax}_{\Theta}[0.5 + 1] \log \theta_{ac} + [0.5 + 1] \log \theta_{ad} + 0.5 \log \theta_{bc} + [0.5 + 1] \log \theta_{bd}$$

Sous contrainte : $\theta_{ac} + \theta_{ad} + \theta_{bc} + \theta_{bd} = 1$

$$\Theta^1 = \{\theta_{ac}^1 = \frac{3}{10}, \ \theta_{ad}^1 = \frac{3}{10}, \ \theta_{bc}^1 = \frac{1}{10}, \ \theta_{bd}^1 = \frac{3}{10}\}$$

$$\Theta^1 = \{\theta^1_{ac} = \frac{3}{10}, \ \theta^1_{ad} = \frac{3}{10}, \ \theta^1_{bc} = \frac{1}{10}, \ \theta^1_{bd} = \frac{3}{10}\}$$

• Étape E (expectation) : $Q_i^2(x_i^h) \leftarrow P(x_i^h|x_i^o,\Theta^1) \quad \forall i \in \{1,2\}$

$$Q_1^2(C) = P(C|A = a, \Theta^1) = \frac{P(A = a, C|\Theta^1)}{\sum_C P(A = a, C|\Theta^1)} = \begin{bmatrix} 0.3 \\ 0.6 \end{bmatrix}, \ \frac{0.3}{0.6} \end{bmatrix} = [0.5, \ 0.5]$$

$$Q_2^2(C) = P(C|A = b, \Theta^1) = \frac{P(A = b, C|\Theta^1)}{\sum_C P(A = b, C|\Theta^1)} = \begin{bmatrix} 0.1 \\ 0.4 \end{bmatrix}, \ \frac{0.3}{0.4} \end{bmatrix} = [0.25, \ 0.75]$$

$$\Theta^1 = \{\theta^1_{ac} = \frac{3}{10}, \ \theta^1_{ad} = \frac{3}{10}, \ \theta^1_{bc} = \frac{1}{10}, \ \theta^1_{bd} = \frac{3}{10}\}$$

$$Q_1^2(C) = [0.5, 0.5]$$
 $Q_2^2(C) = [0.25, 0.75]$ $P(x_i^h, x_i^o | \Theta^0) = \begin{bmatrix} 0.3 & 0.3 \\ 0.1 & 0.3 \end{bmatrix}$

$$\log L^{t+1}(\mathbf{x}^o, \Theta) = \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} Q_i^{t+1}(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta)}{Q_i^{t+1}(x_i^h)} \right)$$

			Α	В	Q_i^{t+1}	P/Q_i^{t+1}	$\log(P/Q_i^{t+1})$
Α	В		а	С	0.5	$\theta_{ac}/0.5$	$\log \theta_{ac} - \log 0.5$
а	?		а	d	0.5	$\theta_{ad}/0.5$	$\log \theta_{ad} - \log 0.5$
b	?		b	С	0.25	$\theta_{bc} / 0.25$	$\log \theta_{bc} - \log 0.25$
а	d	\Longrightarrow	b	d	0.75	$\theta_{bd}/0.75$	$\log \theta_{bd} - \log 0.75$
b	d		а	d	1	$ heta_{\sf ad}$	$\log heta_{ad}$
а	С		b	d	1	$ heta_{ extsf{bd}}$	$\log \theta_{bd}$
			а	С	1	θ_{ac}	$\log \theta_{ac}$

$$\Theta^2 = \operatorname{Argmax}_{\Theta}[0.5 + 1] \log \theta_{ac} + [0.5 + 1] \log \theta_{ad} + 0.25 \log \theta_{bc} + [0.75 + 1] \log \theta_{bd}$$

Sous contrainte : $\theta_{ac} + \theta_{ad} + \theta_{bc} + \theta_{bd} = 1$

$$\bullet \ \Theta^2 = \{\theta_{ac}^2 = \tfrac{3}{10}, \ \theta_{ad}^2 = \tfrac{3}{10}, \ \theta_{bc}^2 = \tfrac{1}{20}, \ \theta_{bd}^2 = \tfrac{7}{20} \}$$

$$\bullet \ \Theta^3 = \{\theta^3_{ac} = \tfrac{3}{10}, \ \theta^3_{ad} = \tfrac{3}{10}, \ \theta^3_{bc} = \tfrac{1}{40}, \ \theta^2_{bd} = \tfrac{15}{40} \}$$

. . .

$$ullet$$
 $\theta_{ac} = \theta_{bc} = 0,3$

• $\theta_{bc} + \theta_{bd} = 0,4$ et θ_{bc} divisé par 2 à chaque étape.

$$\Rightarrow$$
 à convergence : $\Theta = \{\theta_{ac} = \frac{3}{10}, \ \theta_{ad} = \frac{3}{10}, \ \theta_{bc} = 0, \ \theta_{bd} = \frac{4}{10}\}$

Système de recommandation : le retour

Film
$$r_A$$
 r_B r_C r_D

I robot 4 ? 3 3 $\leftarrow \alpha_1^{t+1}(r_B)$ \Longrightarrow 4 enregistrements

Forest Gump ? ? 2 4 $\leftarrow \alpha_2^{t+1}(r_A, r_B)$ \Longrightarrow 16 enregistrements

Intouchables 2 2 3 ? $\leftarrow \alpha_3^{t+1}(r_D)$ \Longrightarrow 4 enregistrements

Le parrain 1 ? 2 ? $\leftarrow \alpha_4^{t+1}(r_B, r_D)$ \Longrightarrow 16 enregistrements

Pulp fiction 2 4 3 4 $\leftarrow \alpha_5^{t+1}(r_B, r_D)$ \Longrightarrow 1 enregistrement

 \implies 4 + 16 + 4 + 16 + 1 = 41 enregistrements pour calculer Θ^{t+1}

Convergence de EM: monotonie

Étape E :
$$\log L^{t+1}(\mathbf{x}^o, \Theta) = \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} \boxed{Q_i^{t+1}}(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta)}{\boxed{Q_i^{t+1}}(x_i^h)}\right)$$

Étape M : $\Theta^{t+1} \leftarrow \operatorname{Argmax}_{\Theta} \log L^{t+1}(\mathbf{x}^o, \Theta)$

$$\Longrightarrow \log L^{t+1}(\mathbf{x}^o, \Theta^{t+1}) \ge L^{t+1}(\mathbf{x}^o, \Theta^t)$$

Rappel : inégalité de Jensen

 \forall loi de proba $Q_i(x_i^h)$:

$$\log L(\mathbf{x}^o, \Theta^t) \geq \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} Q_i(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta^t)}{Q_i(x_i^h)} \right)$$

égalité
$$\iff Q_i(x_i^h) = P(x_i^h|x_i^o, \Theta^t) = Q_i^{t+1}(x_i^h)$$

$$\Longrightarrow \left\{ \begin{array}{l} \log L^{t+1}(\mathbf{x}^o, \Theta^t) = L(\mathbf{x}^o, \Theta^t) \geq L^t(\mathbf{x}^o, \Theta^t) \\ \log L(\mathbf{x}^o, \Theta^{t+1}) \geq \log L^{t+1}(\mathbf{x}^o, \Theta^{t+1}) \end{array} \right.$$

$$\Longrightarrow L(\mathbf{x}^o, \Theta^{t+1}) \ge L^{t+1}(\mathbf{x}^o, \Theta^{t+1}) \ge L(\mathbf{x}^o, \Theta^t) \ge L^t(\mathbf{x}^o, \Theta^t)$$

Convergence de EM

$$L(\mathbf{x}^o, \Theta^{t+1}) \ge L^{t+1}(\mathbf{x}^o, \Theta^{t+1}) \ge L(\mathbf{x}^o, \Theta^t) \ge L^t(\mathbf{x}^o, \Theta^t)$$

Propriété de EM

EM converge vers un maximum local de la vraisemblance

 (\mathbf{x}^o, Θ) si Argmax_{Θ} $L^{t+1}(\mathbf{x}^o, \Theta)$ estimé par descente de gradient, on peut perdre cette propriété!

Mixture de gaussiennes

$$p(\cdot) = 0,3 \times \mathcal{N}(0,2^2) + 0,4 \times \mathcal{N}(4,3^2) + 0,3 \times \mathcal{N}(-3,1^2)$$

Application: apprentissage de prix fonciers

- $\implies \text{prix dépendent } \left\{ \begin{array}{l} \text{des caractéristiques du bien (e.g. nombre de pièces)} \\ \text{du quartier} \end{array} \right.$
- ⇒ modélisation par une mixture de gaussiennes (ici 2 gaussiennes)

Modélisation du problème

- $\Theta = \{\mu_1, \mu_2, \sigma_1, \sigma_2, \pi_1, \pi_2\}$
- $p(x|\Theta) = \pi_1 \mathcal{N}(\mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(\mu_2, \sigma_2^2)$

Apprentissage non supervisé

- échantillon $\mathbf{x} = \langle x_1, \dots, x_n \rangle$
- $x_i = prix \implies$ on ne connaît pas la Gaussienne à laquelle le bien appartient

échantillon supposé complet (pas de données manquantes)

Application: apprentissage de prix fonciers

échantillon complet ⇒ estimation par max de vraisemblance

$$L(\mathbf{x},\Theta) = \prod_{i=1}^{n} p(x_i|\Theta) = \prod_{i=1}^{n} \sum_{k=1}^{2} \pi_k \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left\{-\frac{1}{2} \left(\frac{x_i - \mu_k}{\sigma_k}\right)^2\right\}$$

$$\log L(\mathbf{x}, \Theta) = \sum_{i=1}^{n} \log \left[\sum_{k=1}^{2} \pi_{k} \frac{1}{\sqrt{2\pi}\sigma_{k}} \exp \left\{ -\frac{1}{2} \left(\frac{x_{i} - \mu_{k}}{\sigma_{k}} \right)^{2} \right\} \right]$$

trop compliqué à maximiser analytiquement!

Solution: EM

- **1** x_i appartient à une classe $y_{k(i)}$ non observée $\sim \mathcal{N}(\mu_{k(i)}, \sigma_{k(i)})$
- **2** échantillon $\mathbf{x} = \langle (x_i, y_{k(i)}) \rangle$

Application : apprentissage de prix fonciers

Nouvelle modélisation du problème

$$p(X_i, Y_{k(i)}|\Theta) = p(X_i|Y_{k(i)}, \Theta)P(Y_{k(i)}|\Theta) = \begin{bmatrix} \mathcal{N}(\mu_1, \sigma_1^2) \pi_1 \\ \mathcal{N}(\mu_2, \sigma_2^2) \pi_2 \end{bmatrix}$$

 \Longrightarrow pour x_i connu:

$$P(Y_{k(i)}|x_i,\Theta) = \frac{p(x_i,Y_{k(i)}|\Theta)}{p(x_i|\Theta)} \propto \begin{bmatrix} \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{1}{2}\left(\frac{x_i-\mu_1}{\sigma_1}\right)^2\right\} \times \pi_1 \\ \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{1}{2}\left(\frac{x_i-\mu_2}{\sigma_2}\right)^2\right\} \times \pi_2 \end{bmatrix}$$

- Initialisation d'EM : choisir une valeur $\Theta^0 = \{\mu_1^0, \mu_2^0, \sigma_1^0, \sigma_2^0, \pi_1^0, \pi_2^0\}$
- Étape E : $Q_i^1(y_k) \leftarrow P(y_k|x_i, \Theta^0)$ pour k = 1, 2 $\implies Q_i^1(\cdot)$ très facile à calculer
- Étape M :

$$\underset{\Theta}{\operatorname{Argmax}} \log L^{t+1}(\mathbf{x}^{o}, \Theta) = \underset{\Theta}{\operatorname{Argmax}} \sum_{i=1}^{n} \sum_{k=1}^{2} Q_{i}^{t+1}(y_{k}) \log \left(\frac{p(x_{i}, y_{k}|\Theta)}{Q_{i}^{t+1}(y_{k})} \right)$$

Application: apprentissage de prix fonciers

Étape M:

$$\begin{aligned} & \operatorname{Argmax}_{\Theta} \log L^{t+1}(\mathbf{x}^{o}, \Theta) \\ &= \operatorname{Argmax} \sum_{i=1}^{n} \sum_{k=1}^{2} Q_{i}^{t+1}(y_{k}) \log \left(\frac{p(x_{i}, y_{k} | \Theta)}{Q_{i}^{t+1}(y_{k})} \right) \\ &= \operatorname{Argmax} \sum_{i=1}^{n} Q_{i}^{t+1}(y_{1}) \log \left(\pi_{1} \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}} exp \left\{ -\frac{1}{2} \left(\frac{x_{i} - \mu_{1}}{\sigma_{1}} \right)^{2} \right\} \right) + \\ & Q_{i}^{t+1}(y_{2}) \log \left(\pi_{2} \frac{1}{\sqrt{2\pi\sigma_{2}^{2}}} exp \left\{ -\frac{1}{2} \left(\frac{x_{i} - \mu_{2}}{\sigma_{2}} \right)^{2} \right\} \right) \\ &= \operatorname{Argmax} \sum_{i=1}^{n} Q_{i}^{t+1}(y_{1}) \left[\log(\pi_{1}) - \frac{1}{2} \log(\sigma_{1}^{2}) - \frac{1}{2} \left(\frac{x_{i} - \mu_{1}}{\sigma_{1}} \right)^{2} \right] + \\ & Q_{i}^{t+1}(y_{2}) \left[\log(\pi_{2}) - \frac{1}{2} \log(\sigma_{2}^{2}) - \frac{1}{2} \left(\frac{x_{i} - \mu_{2}}{\sigma_{2}} \right)^{2} \right] \end{aligned}$$

Argmax facile à calculer!

classification d'images

Signatures spectrales en teintes de gris

- neige $\sim \mathcal{N}(\mu_1, \sigma_1^2)$
- forêt $\sim \mathcal{N}(\mu_2, \sigma_2^2)$
- désert $\sim \mathcal{N}(\mu_3, \sigma_3^2)$
- mer $\sim \mathcal{N}(\mu_4, \sigma_4^2)$
- Y = observation en teinte de gris = pixels d'une image
- Z = classe paysage $\in \{1, 2, 3, 4\} \sim \text{distribution } (\pi_1, \pi_2, \pi_3, \pi_4)$

Paramètres du problème

- $\Theta = \{(\mu_j, \sigma_j)\}_{j=1}^4 \cup \{\pi_j\}_{j=1}^4$

classification d'images

Y : observations, Z : classes de paysage

base de données incomplète ou Z non observé

 \implies estimation de Θ par EM (similaire aux prix fonciers)