

Introdución aos clúster Beowulf

Sumario

Intr	odución aos clúster Beowulf	1
1	Convencións empregadas	3
2	Introdución	4
	2.1 Arquitectura xeral	
3	Configuración dun clúster Beowulf	
	3.1 Configuración da máquina Storage	5
	3.1.1 Instalación do servidor NFS	
	3.1.2 Creación do cartafol compartido	5
	3.1.3 Configuración do cartafol a exportar	5
	3.1.4 Configuración dos parámetros de rede	5
	3.2 Configuración da máquina Head	6
	3.2.1 Instalación do cliente NFS	6
	3.2.2 Creación do cartafol compartido	6
	3.2.3 Configuración do cartafol a importar	6
	3.2.4 Configuración dos parámetros de rede	6
	3.2.5 Instalación de software	7
	3.3 Configuración das máquinas worker nodes	7
4	Aplicación de exemplo	7

1 Convencións empregadas

8	Esta icona fai referencia a notas de introdución
(i)	Esta icona indica aclaración
	Esta icona fai referencia a arquivos de configuración, de rexistro
>_	Esta icona indica casos de uso
A	Esta icona fai referencia a avisos o advertencias
	Esta icona indica incidentes
\checkmark	Esta icona fai referencia a sección que inclúen instrucións paso a paso
	Esta icona fai referencia a sección que inclúen capturas de pantalla
Carried Charles	Esta icona fai referencia a actividades
	Esta icona fai referencia a documento esencial (licenza: http://www.ohmyicons.com)
S	Referencia a ligazón recomendada (licenza: http://iconleak.com)

2 Introdución

Un clúster Beowulf é un sistema de cómputo paralelo que se implementa empregando computadores de propósito xeral a través de redes informáticas estándar, sen empregar equipamento específico. Este modelo se desenvolveu por primeira vez no proxecto de investigación Earth and Space Sciences de NASA

2.1 Arquitectura xeral

O Clúster Beowulf posúe unha arquitectura baseada en multicomputadoras ou memoria distribuída, o cal pode ser utilizado para a computación paralela.

A arquitectura típica consta de al menos un nodo mestre (head ou master node) que é o lugar a onde se conectarán os usuarios do clúser, e un ou máis nodos escravos (worker nodes) que se encargan de executar as tarefas. Os nodos escravos son configurados e controlados polo nodo mestre, polo que fan soamente o que este lle indique, a comunicación é por medio dunha rede Ethernet.

A característica principal desde sistema de cómputo e a de ter memoria distribuída, na que se téñen espazos físicos e virtuais para cada procesador, cada un pode acceder á súa memoria local, pero non ás memorias doutros procesadores, desta forma os cambios que cada un realice na súa memoria local non teñen efecto sobre a memoria doutro procesador. Se un procesador debe acceder a un dato localizado na memoria doutro procesador, estes teríanse que comunicar vía mensaxe a través da rede de interconexión.

As direccións de memoria dun procesador non se mapean ao resto de procesadores, de modo que non existe o direccionamento global. Cando un proceso necesita acceder aos datos doutro, adoita ser tarefa do programador definir explicitamente como e cando se comunicasen. Outra tarefa importante do programador é lograr a sincronización. Para evitar ter que implementar todo isto a baixo nivel, existen librarías específicas que permiten xestionar este tipo de paradigma de cómputo dun xeito máis amigable para o desenvolvedor, coma as librarías de interfaz de paso de mensaxes (librarías MPI).

3 Configuración dun clúster Beowulf

O clúster Beowulf que imos a empregar está formado por varias máquinas que van a desempeñar os seguintes roles:

- **Storage**: máquina que vai a proporcionar o espazo de almacenamento compartido para o clúster. Neste caso se empregará o sistema de arquivos compartidos NFS.
- **Head ou master:** máquina que proporciona o acceso aos usuarios ao clúster. Tamén se encarga de coordinar os traballos que se executan no clúster
- Worker node: nodo de traballo que executa as tarefas solicitadas polos usuarios.
 Este tipo de nodos están controlados polo nodo head.

3.1 Configuración da máquina Storage

3.1.1 Instalación do servidor NFS

apt install nstall nfs-common nfs-kernel-server

3.1.2 Creación do cartafol compartido

mkdir /shared
chmod 777 /shared

3.1.3 Configuración do cartafol a exportar

cat /etc/exports

/shared

192.168.254.0/24 (rw, sync, no wdelay, subtree check, root squash)

- rw allows both reads and writes to the filesystem
- sync is the synchronous option avoid server to respond requests before committing changes preventing data corruption
- wdelay is the Write delay option that allows the NFS server to put off committing changes to disk if it suspects that another write is coming shortly
- subtree_check improves security by checking not just that the client has rights to
 mount a directory, but all of the directory's subdirectories as well. Sub-tree checking
 is enabled by default, but the NFS server would complain if you don't specifically
 indicate it.
- root_squash prevents a root user on a machine using the filesystem to act as it if is
 the root user on the actual filesystem. This is more secure and is the default
 behaviour

exports -a exports

3.1.4 Configuración dos parámetros de rede

Configurar a rede cos seguintes parámetros:

hostname: storage

• ip: 192.168.254.2

mask: 255.255.255.0

• gateway: 192.168.254.1

3.2 Configuración da máquina Head

3.2.1 Instalación do cliente NFS

apt install nfs-common

3.2.2 Creación do cartafol compartido

mkdir /shared chmod 777 /shared

3.2.3 Configuración do cartafol a importar

```
cat /etc/fstab
192.168.254.2:/shared /shared nfs defaults 0 0
```

Configurar acceso passwordless ssh aos nodos dende o usuario de traballo do cluster

```
ssh-keygen -t rsa
cd .ssh/
cat id_rsa.pub > authorized_keys2
chmod 640 known_hosts
chmod 700 ../.ssh/
chmod 640 authorized keys2
```

Comprobar acceso passwordless mediante:

ssh localhost

3.2.4 Configuración dos parámetros de rede

Configurar a rede cos seguintes parámetros:

· hostname: head

• ip: 192.168.254.3

mask: 255.255.255.0

gateway: 192.168.254.1

Configurar arquivo de hosts cos hostnames das diferentes máquinas.

```
cat /etc/hosts
120.0.0.1 localhost
192.168.254.2 storage
```

```
192.168.254.3 head
192.168.254.4 node1
192.168.254.5 node2
192.168.254.6 node3
192.168.254.7 node4
```

3.2.5 Instalación de software

```
apt install mpich
apt install openmpi-bin
apt install libopenmpi-dev
```

3.3 Configuración das máquinas worker nodes

Clonar o head e reconfigurar hostname, hosts, e configuración de rede

4 Aplicación de exemplo

Copiar o código fonte a /shared

```
#include <mpi.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv)
{
   int rank;
   char hostname[256];
   MPI_Init(&argc,&argv);
   MPI_Comm_rank(MPI_COMM_WORLD, &rank);
   gethostname(hostname,255);
      printf("Son o procesador numero: %d no equipo %s\n", rank,hostname);
   MPI_Finalize();
   return 0;
```

}

Compilar con:

```
mpicc ola.c -o ola
```

Crear o arquivo machinefile co hostname dos worker nodes que se van a empregar na execución.

Executar con:

mpirun -np 2 --machinefile machinefile ./ola