

BayEsian Analysis of GaLaxy sEds (BEAGLE)

Developed by Jacopo Chevallard, Stéphane Charlot, Emma Curtis-Lake etc. https://www.iap.fr/beagle/

Originally described in <u>Chevallard & Stéphane 2016</u> Nebular emission in <u>Gutkin, Charlot & Bruzual 2016</u>

BEAGLE incorporates the consistent modelling of stellar radiation and its transfer through the interstellar and intergalactic media, allowing one to build mock galaxy catalogues as well as to interpret, in a Bayesian framework, any combination of photometric and spectroscopic galaxy observations.

Well suited to model extremely emission line galaxies that are becoming common at highz in this JWST era

The models underlying BEAGLE

- The **latest version of the Bruzual & Charlot (2003) stellar population synthesis code**: updated stellar evolutionary tracks + the optical/ultraviolet spectral libraries (<u>Chevallard & Stéphane 2016</u>), IMF up to 300 Msun.
- BC03+CLOUDY: Physically self-consistent modeling of stellar continuum and the nebular emission processed by the interstellar medium (<u>Gutkin, Charlot & Bruzual 2016</u>)
- Nebular emission from the narrow-line regions surrounding active galactic nuclei (<u>Vidal-García et al. 2024</u>)
- Binary stellar population models?? (<u>Lecroq et al. 2024</u>)

"Efficient" exploration of a wide grid of physical parameters affecting the light emitted by a galaxy (redshift, stellar age, metallicity, ionization parameter, chemical abundance, star formation history, dust, etc)

Example usage: fitting to NIRCam photometry

Simultaneously explore the possible range of redshift, stellar mass and age, dust attenuation.

Example parameters files (after obtaining BEAGLE access) https://github.com/jacopo-chevallard/BEAGLE-general/tree/master/params

Example usage: fitting to NIRSpec prism spectrum

Example parameter file, accounting for wavelength-dependent resolution https://github.com/jacopo-chevallard/BEAGLE-configurations/tree/main/JWST_NIRSFEC_PRISM

Photometry + Spectroscopy fit

- □ Photometry + Line fluxes (e.g., NIRCam photometry + Grism line fluxes)
- Photometry + Line equivalent widths (e.g., SDSS photometry + line equivalent widths from ground-based spectroscopy, in order to avoid aperture issue)
- Pure line fluxes for photoionization modeling (e.g., use BEAGLE to explore properties of ionized gas with pure measured line fluxes as input, including attenuation, metallicity, ionization parameter)

Mock SED

- ☐ Synthesize spectrum and photometry with a given set of galaxy parameters, allowing us to explore how galaxy properties may affect the observables.
- ☐ Example parameters files (after obtaining BEAGLE access)

 https://github.com/jacopo-chevallard/BEAGLE-general/tree/master/params

Miscellaneous - modeling

- Obviously BEAGLE may not model Lya well, and you can remove it in your modeling (e.g., by commenting it out in the line wavelength file: cb2016_Jan16_line_wavelengths_may2017.dat)
- Try with the ionizing photon escape fraction as an additional parameter in fitting weird sources

Miscellaneous - modeling

- Obviously BEAGLE may not model Lya well, and you can remove it in your modeling (e.g., by commenting it out in the line wavelength file: cb2016_Jan16_line_wavelengths_may2017.dat)
- Try with the ionizing photon escape fraction as an additional parameter in fitting weird sources

Miscellaneous - modeling

- □ Obviously BEAGLE may not model Lya well, and you can remove it in your modeling (e.g., by commenting it out in the line wavelength file: cb2016_Jan16_line_wavelengths_may2017.dat)
- Try with the ionizing photon escape fraction as an additional parameter in fitting weird sources
- □ Are we extracting reliable galaxy physical properties? (e.g., Be aware of what the inferred properties actually mean – The stellar mass assuming a constant star formation history would correspond to mass associated with the recent star formation epoch) Or are we exploring what physical properties are required to reproduce the observables?

Miscellaneous - technical

- Running on UA HPC without sudo privileges: Run with singularity container https://github.com/jacopo-chevallard/BEAGLE-general/issues/21
- Run in parallel with large catalogs: launch BEAGLE with docker/singularity using the same command (and parameter file) multiple times, and BEAGLE will figure it out not duplicate the fitting for each source.
- □ The uncertainty floor: How high SNR do you actually believe you can achieve with your photometry? (one may set the minimum relative uncertainty in the filter configuration file, e.g. min_rel_err:0.05)

BEAGLE Access

- BEAGLE is not yet publicly released (most updated version v0.29.2), but <u>Stéphane</u>, <u>Jacopo</u>, and <u>Emma</u> generally welcome people to ask for access.
- Email them! (Let them know your needs). They will provide the instruction to access BEAGLE and download the necessary files.
- ☐ There will be a BEAGLE policy document to sign. The document also asks for associating the BEAGLE people in the resulting scientific publication.
- ☐ The BEAGLE github wiki provides instructions for using BEAGLE and the user manual. The github issue is also a good place to discuss any bugs you may encounter.
- PyP-BEAGLE for post-processing the results. (You can also sample from the output posterior based on their probabilities).

```
# *************** TFMPLATES *******************
#TEMPLATES = $BEAGLE_TEMPLATES/bc03/bc03_miles_chab_spectra
TEMPLATES NEBULAR =
$BEAGLE TEMPLATES/ineb Jan16 C100/cb2013 n2 mup100 N015 O01 deplO70 C100 Jan16
EMISSION LINES CONFIGURATION =
$BEAGLE TEMPLATES/ineb Jan16 C100/cb2013 n2 mup100 N015 O01 deplO70 C100 Jan16 I
ine wavelengths PHOTOMETRY.dat
#SHRINK TEMPLATES WL RANGE = 900 60000
REBIN TEMPLATES = 10
```

```
*********************
#
FILTERS THROUGHPUTS = /groups/dpstark/zychen/beagle/specz_nrc/nrs/jades.fits
FILTERS CONFIGURATION = /groups/dpstark/zychen/beagle/specz_nrc/nrs/jades.dat
PHOTOMETRIC CATALOGUE = /groups/dpstark/zychen/beagle/specz nrc/nrs/phot nircam spec.fits
# e.g. $BEAGLE DATA/jades v0p4/ID.fits
# If you want to fix redshift to a given value (see sec 3.7.1 of the Beagle
# manual, version 0.17.1)
PRIORS CATALOGUE = /groups/dpstark/zychen/beagle/specz nrc/nrs/phot nircam spec.fits
```

IGM ABSORPTION = Inoue

```
# **************
# ****** SF BIN #1 ***********
#options for analytic SFHs are 'ssp' (for a burst), 'constant', 'exponential', 'delayed', 'rising'
# In log(yr)
#SF PARAMETER = name:tau
                                type:fitted order priority:1 prior:distribution:uniform
prior:range:[7.,10.5]
# in log(Z/Z_sun)
SF PARAMETER = name:metallicity
                                type:fitted order_priority:1 prior:distribution:uniform
prior:range:[-2.2,0.24]
# In log M/M sun
SF PARAMETER = name:mass
                                type:fitted order_priority:0 prior:distribution:uniform
prior:range:[5.,12.]
```

```
# In log(yr)
#SF_PARAMETER = name:current_sfr_timescale
                                                   type:fitted order_priority:1 prior:distribution:uniform
prior:range:[6.0,7.0]
SF PARAMETER = name:current sfr timescale
                                                 type:fixed value:0.0
# In log(yr^{-1})
                                             type:fitted order_priority:1 prior:distribution:uniform
#SF_PARAMETER = name:specific_sfr
prior:range:[-10.,-6.]
# In log(yr)
SF_PARAMETER = name:max_stellar_age type:fitted order_priority:1 prior:distribution:uniform
prior:range:[6.,10.2]
# In log(M_sun/yr)
#SF PARAMETER = name:sfr
                                    type:fitted order priority:1 prior:distribution:uniform
prior:range:[-4.,4.] mock:type:random
```

PARAMETER = name:tauV eff type:fitted order priority:0

```
PDF SAMPLER FILE = $BEAGLE PARAM DIR/MCMC new.param
# PARAMETER = name:redshift type:fitted order priority:0 prior:distribution:uniform prior:range:[0.,20.]
# Uncomment the line below, and comment out the line above, to use the redshift
# in the photometric catalogue instead of letting Beagle determine a photo-z
# together with the other parameters (see sec 3.7.1 of the Beagle manual,
# version 0.17.1)
PARAMETER = name:nebular logU type:fitted order priority:0 prior:distribution:uniform prior:range:[-4,,-1.]
PARAMETER = name:nebular_xi type:fixed value:0.3
PARAMETER = name:nebular Z type:dependent
PARAMETER = name:attenuation type type:fixed char value:SMC
# values can be: CF00, Calzetti, CCWW13_universal, CCWW13_full
```

prior:distribution:log-uniform prior:range:[0.001,5.]