Algorithms

Lecture 4: Greedy Algorithm

Anxiao (Andrew) Jiang

CH 16. Greedy Algorithms

16.3 Huffman Code

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05

How to represent the symbols using bits, to minimize the average number of bits needed?

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05

How to represent the symbols using bits, to minimize the average number of bits needed?

Assume: we use "Fixed Length Code (FLC)"

1-bit codewords: 0, 1 (not enough)

2-bit codewords: 00, 01, 10, 11 (not enough)

3-bit codewords: 000, 001, 010, 011, 100, 101, 110, 111 (enough)

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

How to represent the symbols using bits, to minimize the average number of bits needed?

Assume: we use "Fixed Length Code (FLC)"

1-bit codewords: 0, 1 (not enough)

2-bit codewords: 00, 01, 10, 11 (not enough)

3-bit codewords: 000, 001, 010, 011, 100, 101, 110, 111 (enough)

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

Symbol	a	b	\mathcal{C}	d	е	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Text: $a a b f e d c a \cdots$

Compression (encoding): turn a text to bits

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Text: $a a b f e d c a \cdots$

Compression (encoding): turn a text to bits

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

Symbol	a	b	С	d	е	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

000 000 001 101 100

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

000 000 001 101 100 011

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

000 000 001 101 100 011 010

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

000 000 001 101 100 011 010 000 ...

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

Symbol	a	b	С	d	е	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

$$a \ a \ b \ f$$

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Compression (encoding): turn a text to bits

000 000 001 101 100 011 010 000 ...

Decompression (decoding): turn a bit sequence back to text

 $a a b f e d c a \cdots$

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

$$a a b f e d c a \cdots$$

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101

Variable Length Code (VLC): the codewords can have different lengths.

Prefix Code: no codeword is the prefix of another codeword.

Let's study Variable Length Prefix Code (VLPC).

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Variable Length Code (VLC): the codewords can have different lengths.

Prefix Code: no codeword is the prefix of another codeword.

Let's study Variable Length Prefix Code (VLPC).

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a a b f e d c a \cdots$

Compression (encoding): turn a text to bits

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a a b f e d c a \cdots$

Compression (encoding): turn a text to bits

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

0010111001111

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

00101110011111100

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

001011100111111000 ...

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text

a a

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text

a a

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text

a a

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text $a\ a\ b$

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text $a\ a\ b$

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text $a\ a\ b$

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text

$$a \ a \ b \ f$$

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text $a\ a\ b\ f$

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text $a\ a\ b\ f$

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text $a\ a\ b\ f$

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text

$$a \ a \ b \ f \ e$$

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text $a\ a\ b\ f\ e$

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text $a\ a\ b\ f\ e$

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \ \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text

$$a \ a \ b \ f \ e \ d$$

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text $a\ a\ b\ f\ e\ d$

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text $a\ a\ b\ f\ e\ d$

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

Decompression (decoding): turn a bit sequence back to text

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
FLC	000	001	010	011	100	101
VLPC	0	101	100	111	1101	1100

Text: $a \ a \ b \ f \ e \ d \ c \ a \cdots$

Compression (encoding): turn a text to bits

00101110011111000 ...

Decompression (decoding): turn a bit sequence back to text

 $a \quad a \quad b \quad f \quad e \quad d \quad c \quad a \quad \dots$

Symbol	a	b	С	d	е	f	
Probability	0.45	0.13	0.12	0.16	0.09	0.05	
FLC	000	001	010	011	100	101	3 bits per symbol
VLPC	0	101	100	111	1101	1100	2.24 bits per symbol

Average codeword length for VLPC:

 $1 \times 0.45 + 3 \times 0.13 + 3 \times 0.12 + 3 \times 0.16 + 4 \times 0.09 + 4 \times 0.05 = 2.24$ bits/symbol

Input: n symbols s_1, s_2, \cdots, s_n . For $i=1,2,\cdots,n$, the symbol s_i has probability f_i .

Output: Design a prefix code for the n symbols such that the average codeword length is minimized.

Assume the codeword for symbol s_i has L_i bits.

Average Codeword Length =
$$\sum_{i=1}^{n} f_i L_i$$

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	а	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	a	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	а	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	a	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	a	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	a	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	a	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Leaves of a subtree

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Average codeword length

Average depth of leaves

Average codeword length

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Average codeword length

Average depth of leaves

Symbol	a	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Average codeword length

Average depth of leaves

Symbol	а	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Average codeword length

Average depth of leaves

Symbol	a	b	С	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	а	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Average codeword length

Average depth of leaves

Property 1 of optimal code: The (or one) symbol of lowest probability has the longest codeword.

Symbol	а	b	$\boldsymbol{\mathcal{C}}$	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Symbol	а	b	$\boldsymbol{\mathcal{C}}$	d	e	$\int f$
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Property 1 of optimal code: The (or one) symbol of lowest probability has the longest codeword.

Proof: If not, then we can switch its codeword With another symbol, and get a better code.

That will be a contradiction.

Property 1 of optimal code: The (or one) symbol of lowest probability has the longest codeword.

Proof: If not, then we can switch its codeword With another symbol, and get a better code.

That will be a contradiction.

Example: Assume f does not have the longest codeword.

Property 1 of optimal code:
The (or one) symbol of lowest probability
has the longest codeword.

Proof: If not, then we can switch its codeword With another symbol, and get a better code.

That will be a contradiction.

Example: Assume f does not have the longest codeword.

Average codeword length = $1 \times 0.45 + 3 \times 0.13 + 4 \times 0.12 + 3 \times 0.16 + 4 \times 0.09 + 3 \times 0.05$

Property 1 of optimal code: The (or one) symbol of lowest probability has the longest codeword.

Proof: If not, then we can switch its codeword With another symbol, and get a better code.

That will be a contradiction.

Example: Assume f does not have the longest codeword.

Now switch a with c.

Average codeword length =
$$1 \times 0.45 + 3 \times 0.13 + 4 \times 0.12 + 3 \times 0.16 + 4 \times 0.09 + 3 \times 0.05$$

After switch, average codeword length = $1 \times 0.45 + 3 \times 0.13 + 3 \times 0.12 + 3 \times 0.16 + 4 \times 0.09 + 4 \times 0.05$

 $(4 \times 0.12 + 3 \times 0.05) - (3 \times 0.12 + 4 \times 0.05) = (4 - 3)(0.12 - 0.05) > 0$ Switch makes code better!

Symbol	a	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Property 2 of optimal code:

The symbol of lowest probability and longest codeword has a sibling leaf node.

Property 2 of optimal code:

The symbol of lowest probability and longest codeword has a sibling leaf node.

Proof: If not, we can move the codeword up to make it shorter.

Property 3 of optimal code:

There exists an optimal code where the two symbols of lowest probabilities are siblings.

Symbol	a	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05
VLPC	0	101	100	111	1101	1100

Property 3 of optimal code:

There exists an optimal code where the two symbols of lowest probabilities are siblings.

So we can build an optimal tree this way: first put the two symbols of lowest probabilities as siblings. Then figure out the rest of the tree.

Symbol	а	b	\mathcal{C}	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05

Idea: Once we put the two symbols are siblings, see them as one symbol (node) and combine their probabilities.

Original Huffman Code

What is the relationship between the two Huffman codes?

New Huffman Code

Symbol	а	b	C	d	e f	
Probability	0.45	0.13	0.12	0.16	0.09 0.05	

Symbol	а	b	С	d	ef	
Probability	0.45	0.13	0.12	0.16	0.14	

Original Code

What is the relationship between the two Huffman codes?

If we optimize the new code, we also optimize the old code (and vide versa).

New Code

Symbol	a	b	C	d	e f	
Probability	0.45	0.13	0.12	0.16	0.09 0.05	

Symbol	а	b	С	d	ef	
Probability	0.45	0.13	0.12	0.16	0.14	

Original Code

New Code

What is the relationship between the two Huffman codes?

If we optimize the new code, we also optimize the old code (and vide versa).

Average codeword length of original code = $1 \times 0.45 + 3 \times 0.13 + 3 \times 0.12 + 3 \times 0.16 + 4 \times 0.09 + 4 \times 0.05$ Average codeword length of new code = $1 \times 0.45 + 3 \times 0.13 + 3 \times 0.12 + 3 \times 0.16 + 3 \times (0.09 + 0.05)$

Symbol	а	b	С	d	e	f	
Probability	0.45	0.13	0.12	0.16	0.09	0.05	

Symbol	а	b	C	d	ef	
Probability	0.45	0.13	0.12	0.16	0.14	

Original Code

New Code

What is the relationship between the two Huffman codes?

If we optimize the new code, we also optimize the old code (and vide versa).

They differ by $f_e + f_f$

Average codeword length of original code =
$$1 \times 0.45 + 3 \times 0.13 + 3 \times 0.12 + 3 \times 0.16 + 4 \times 0.09 + 4 \times 0.05$$

Average codeword length of new code = $1 \times 0.45 + 3 \times 0.13 + 3 \times 0.12 + 3 \times 0.16 + 3 \times (0.09 + 0.05)$

Symbol	а	b	C	d	e	f	
Probability	0.45	0.13	0.12	0.16	0.09	0.05	

Symbol	а	b	C	d	ef	
Probability	0.45	0.13	0.12	0.16	0.14	

Idea of Greedy Algorithm:

- 1) Make the two symbols of lowest probabilities siblings.
- 2) Combine them into one symbol, and repeat the above process.

Example: Symbol a b c d e f Probability 0.45 0.13 0.12 0.16 0.09 0.05

Example: Symbol a b c d e f Probability 0.45 0.13 0.12 0.16 0.09 0.05

Example:	Symbol	a	b	\mathcal{C}	d	ef	
	Probability	0.45	0.13	0.12	0.16	0.14	

Example:	Symbol	a	b	C	d	ef
	Probability	0.45	0.13	0.12	0.16	0.14

Example:	Symbol	а	bc	d	ef
	Probability	0.45	0.25	0.16	0.14

Example: Symbol a bc d efProbability 0.45 0.25 0.16 0.14

Example: Symbol a bc def

Probability 0.45 0.25 0.3

Example:

Symbol	а	bc	def
Probability	0.45	0.25	0.3

Example: Symbol *a bcdef*Probability 0.45 0.55

Example:

Symbol	a	bcdef
Probability	0.45	0.55

Example: Symbol *a bcdef*Probability 0.45 0.55

