

**BUSINESS SCHOOL** 

## MGMT5504

#### SEMESTER 2 2022 - LECTURE 3



✓ Wounds✓ Other causes







# **Module 2 – Probability Distributions and Inference**





#### **Probability Essentials**

- Probability the chance that an uncertain event will occur (always between 0 and 1)
- ☑ Concept of probability is quite intuitive; however, the rules of probability are not always intuitive or easy to master.
  - An event with probability zero cannot occur.
  - An event with probability 1 is certain to occur.
  - An event with probability greater than 0 and less than 1 involves uncertainty, but the closer its probability is to 1 the more likely it is to occur.

## Interpretations of Probability

## **Objective and Subjective**

- ∠ Classical Propensity i.e. logic analysis (dice)
- ☑ Empirical Relative frequency in the long run (mortality tables for calculating insurance premiums)
- Subjective Personal and subjective judgement (reliability of witness testimony)

#### **Probability Essentials (cont'd)**

- <u>Experiment</u> a process that produces outcomes for uncertain events
- Sample Space the collection of all possible experimental outcomes
- - Collectively Exhaustive events
  - Mutually Exclusive events
- ☑ Event A union Event B: A ∪ B
- □ Event A intersect Event B: A ∩ B
- ightharpoonup Complement of Event A : A<sup>C</sup> or  $\bar{A}$

#### **Example**

A snowboarder athlete attempts to predict her chances of earning a medal in the women's halfpipe.

Sample Space S={gold, silver, bronze, no medal}

Event A: 'At least earning a silver medal'

Event B: 'At most earning a silver medal'

Event C: 'Winner of the competition'

A  $\cup$  B = S; B  $\cup$  C = S A  $\cap$  B = {silver}; A  $\cap$  C = {gold} A<sup>C</sup>={bronze, no medal}; B<sup>C</sup>={gold}=C

## Sample Space Examples

The Sample Space is the collection of all possible outcomes

Example 1: All 6 faces of a die



Example 2: All 52 cards of a deck of cards













#### **Visualizing Events**

Club

Spade

Diamond

Heart

## 

|       | Ace | Not Ace | Total |
|-------|-----|---------|-------|
| Black | 2   | 24      | 26    |
| Red   | 2   | 24      | 26    |
| Total | 4   | 48      | (52)  |

☑ Tree Diagrams



Sample Space

#### **Example (Cont'd)**

A snowboarder athlete attempts to predict her chances of earning a medal in the women's halfpipe.

| Outcome  | Probability |  |
|----------|-------------|--|
| Gold     | 0.1         |  |
| Silver   | 0.15        |  |
| Bronze   | 0.2         |  |
| No Medal | 0.55        |  |

Event A: 'At least earning a silver medal'

Event B: 'At most earning a silver medal'

Event C: 'Winner of the competition'

$$P(A)=P(\{Gold\})+P(\{Silver\})=0.1+0.15=0.25$$
  
 $P(B)=P(\{Silver\})+P(\{Bronze\})+P(\{No\ Medal\})$   
 $=0.15+0.2+0.55=0.9$   
 $P(C)=P(\{Gold\})=0.1=1-P(B)$ 

 $P(A \cup B) = P(A) + P(B) = 0.25 + 0.9$  ???? What's wrong?



## **Probability – Characteristics**

#### Probabilities must lie between 0 and 1

Probability = a number between 0 and 1 that measures the likelihood that some event will occur (e.g., P(A)).

## Probabilities must add up

If two outcomes for a decision problem are mutually exclusive (at most one of them can occur) and also collectively exhaustive, then the probability that either outcome occurs =1, the sum of the individual probabilities (one or the other occurs).

$$P (A \text{ or } B) = P(A) + P(B)=1$$

$$\Sigma p_i = 1$$



#### **Rules of Probability**

## Complement Rule (simplest)

■ The complement of an event E is the collection of all possible elementary events NOT contained in event E. The complement of event E is represented by E or E<sup>C</sup>.

Complement Rule:

e.g., If there is a 40% chance it will rain, there is a 60% chance it won't rain!



#### **Addition Rule for Two Events**

Addition Rule (when events are NOT mutually exclusive):

$$P(E_1 \text{ or } E_2) = P(E_1) + P(E_2) - P(E_1 \text{ and } E_2)$$



NOTE: "or" indicates addition of events

The University of Western Australia

joint probability

#### **Example**

Anthony feels that he has a 75% chance of getting an A in statistics and a 55% chance of getting an A in management economics. He also believes he has a 40% chance of getting an A in both courses.

- 1. What is the probability that he gets an A in at least one of these courses?
- 2. What is the probability that he does not get an A in either of these courses?

$$P(A_S \cup A_M) = P(A_S) + P(A_M) - P(A_S \cap A_M) = 0.75 + 0.55 - 0.4 = 0.9$$
$$P((A_S \cup A_M)^C) = 1 - P(A_S \cup A_M) = 0.1$$

#### **Conditional Probability**

## P(A|B)

- Probabilities are always assessed relative to the information currently available. As new information becomes available, probabilities often change.
- △ A formal way to revise probabilities on the basis of new information is to use conditional probabilities.
- Let A and B be any events with probabilities P(A) and P(B). Typically the probability P(A) is assessed without knowledge of whether B does or does not occur. However if we are told B has occurred, the probability of A might change.

#### **Conditional Probability Example**

Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD), and 20% of the cars have both.

☑ What is the probability that a car has a CD player, given that it has AC?

i.e., we want to find  $P(CD \mid AC)$ 

#### **Conditional Probabilities**

|       | CD  | No CD | Total |
|-------|-----|-------|-------|
| AC    | 0.2 | 0.5   | 0.7   |
| No AC | 0.2 | 0.1   | 0.3   |
| Total | 0.4 | 0.6   | 1.0   |

Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). **20%** of the cars have both.

$$P(CD \mid AC) = \frac{P(CD \text{ and } AC)}{P(AC)} = \frac{0.2}{0.7} = 0.2857$$





## **Probability Characteristics – Cont' d**

## Joint probability (Compound events)

If two different events A and B occur, the probability is a joint probability and can be calculated as a product.



## **Conditional probability**

Probabilities are always assessed relative to info currently available.

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

#### **Multiplication Rule**

- In the conditional probability rule the numerator is the probability that both A and B occur. It must be known in order to determine P(A|B).
- However, in some applications P(A|B) and P(B) are known; in these cases we can multiply both side of the conditional probability formula by P(B) to obtain the **multiplication rule**.

$$P(A \text{ and } B) = P(A|B)P(B)$$

☑ The conditional probability formula and the multiplication rule are both valid; in fact, they are equivalent.

## **Summing Up - Conditional Probabilities**

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

## So - joint probability P(A and B) is

$$P(A \text{ and } B) = P(A | B)P(B) = P(B | A)P(A)$$

## **Independent and Dependent Events**

- Two events are independent if the occurrence of one event does not affect the probability of the occurrence of the other event.
- Two events are independent if and only if

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

☐ The main advantage of knowing that two events are independent is that the multiplication rule simplifies to P(A and B) = P(A)P(B)

#### **Example**

A stockbroker knows from the past experience that the probability that a client owns share is 0.6 and the probability that a client owns bond is 0.5. The probability that the client owns bonds if she already owns share is 0.55

- 1. What is the probability that the client owns both of these securities?
- 2. Given that the client owns bonds, what is the probability that the client owns share?

$$P(A) = 0.6$$
,  $P(B) = 0.5$ ,  $P(B|A) = 0.55$ 

1. 
$$P(A \cap B) = P(B|A) \times P(A) = 0.55 \times 0.6 = 0.33$$

2. 
$$P(A|B) = P(A \cap B)/P(B) = 0.33/0.5 = 0.66$$

#### Example

Samantha, a UWA student in year 3, contemplates her future immediately after graduation. She thinks there is a 25% chance that she will get a job at E&Y and a 35% chance that she will enroll in a full-time honours program in Perth. These are mutually exclusive outcomes.

$$P(A \cup B) = P(A) + P(B) = 0.25 + 0.35 = 0.60$$

What is the probability that she does not choose either of these options?

$$P((A \cup B)^{c}) = 1 - P(A \cup B) = 1 - 0.60 = 0.40$$

## **Break**



#### **Theoretical Distributions**

- → Random variable
- ☑ Two types:
  - Discrete (has only a finite number of possible values)

Example: The number of defective light bulbs in a sample of five;

Continuous (has a continuum of possible values)

Example: The flight time between Perth and Sydney



## **Terminology**

- Every random variable is associated with a probability distribution that describes the variable completely.
  - A probability mass function is used to describe discrete random variables.

P(X=x) x refers to a possible outcome

 A probability density function is used to describe continuous random variables.

P(a<X<b) a and b refer to values of a specific interval

 A cumulative distribution function may be used to describe both discrete and continuous random variables

 $P(X \le x)$  x refers a possible outcome/value in discrete/continuous random variable variable

#### **Discrete Random Variable**

Expected value and the standard deviation

$$\mathsf{E}(\mathsf{x}) = \Sigma \mathsf{x} \mathsf{P}(\mathsf{x})$$

Example: Toss 2 coins, x = # of heads, compute expected value of x:

$$E(x) = (0 \times 0.25) + (1 \times 0.50) + (2 \times 0.25)$$
  
= 1.0

Standard Deviation of a discrete distribution

Expected value may not equal to most probable value!

$$\sigma_{x} = \sqrt{\sum \{x - E(x)\}^{2} P(x)}$$

where:

E(x) = Expected value of the random variable

x = Values of the random variable

P(x) = Probability of the random variable having the value of x

## **Standard Deviation for Tossing 2 Coins**

 $\mathbf{Y}$  Recall that the expectation  $\mathbf{E}(\mathbf{x}) = \mathbf{1}$ 

$$\sigma_{x} = \sqrt{\sum \{x - E(x)\}^{2} P(x)}$$

$$\sigma_x = \sqrt{(0-1)^2(0.25) + (1-1)^2(0.50) + (2-1)^2(0.25)} = \sqrt{0.50} = .707$$
Possible number of heads
= 0, 1, or 2

## **Continuous distribution-Normal Distribution**

- ☑ Gauss curve
- ☑ Bell shaped, symmetric, asymptotic
- △ Almost all of its values are within plus or minus 3 standard deviations
- ☑ I.Q., height = examples



#### **Standardised Values**

Used to compare an individual value to the population mean in units of the standard deviation

Standardize (value, mean, stdev)

$$z = \frac{x - \mu}{\sigma}$$

Arr Necessary to compare distributions for the NORMDIST (x, $\mu$ , $\sigma$ ,1/0) or NORMSDIST

$$N_{DADM} = (65,20); N_{OB}(75,5)$$

$$\Sigma_{DADM} = (85-65)/20 = 1$$

$$\Sigma_{OB} = (85-75)/5 = 2$$

Probability is measured by the area under the curve



## **Examples N Distribution – Excel Functions**

- ☑ The weekly rent for apartments and houses in Nedlands is N distributed with a mean of \$425 and a variance of \$90^2.
- ☑ What is the chance to find a house under \$320 per week?
  - P(x < 320) = ?
  - Z=STANDARDIZE(320,425,90)=-1.667
  - P (x < 320) =P (Z<-1.667) = NORMDIST(320,425,90,TRUE) = NORMSDIST(-1.667) = 0.1217
- ☑ What is the chance that you find a house with rent between \$450 and \$550/week?
  - =NORMSDIST(1.389)- NORMSDIST(0.278)=0.308

#### **Statistics**

- ✓ Statistics: Data, analysis, and interpretation
- ✓ Descriptive statistics vs Inferential statistics
- ✓ Cross-sectional and time-series/longitudinal.



#### Recap

#### What Does Statistics Mean?

→ Descriptive statistics

Collecting, presenting and describing data

- E.g., number of people, trends in employment
- Numerical and graphical tools



#### Recap

#### Inferential statistics

Make an inference (draw conclusions and/or make decisions) about a population from a sample

- Population Parameter vs Sample Statistics
- Estimation
- Hypothesis testing







# Recap Sampling Method

#### **Probability Sampling**

Simple Random sampling

Stratified Random sampling

Cluster sampling

#### **Non-probability Sampling**

Snowball sampling

Convenience sample



#### Recap

#### **Types of Data/Variables**

Cross-sectional and timeseries/longitudinal

- ∠ Categorical nominal, ordinal
- ∠ Continuous/Numerical interval, ratio



#### **Understand different types of measurement scales**



### **Descriptive analysis**



### **Example: Categorical variable**

Adidas's net sales by region (millions of euros)

|               | •    | _ | `     |
|---------------|------|---|-------|
| Region        | 2000 |   | 2009  |
| Europe        | 2860 |   | 4384  |
| North America | 1906 |   | 2360  |
| Aisa          | 875  |   | 2614  |
| Latin America | 171  |   | 1006  |
| Total         | 5812 |   | 10364 |



Adidas's net sale by region, 2000



Adidas's net sale by region, 2009



### **Example: Quantitate variable**



#### House sales prices in Warrnambool, 2014

| 349   | 435   | 525   | 315   |
|-------|-------|-------|-------|
| 349   | 399.9 | 229   | 335   |
| 299   | 331.1 | 331.1 | 480   |
| 330   | 299.9 | 339   | 239   |
| 289.9 | 375   | 399.9 | 330   |
| 629   | 315   | 695   | 209   |
| 595   | 355   | 355   | 519   |
| 339.9 | 385   | 329   | 520   |
| 595   | 449.9 | 499.9 | 399.9 |

### **Stem and Leaf Diagram**

- → A simple way to see distribution details for quantitative data
- Separate the sorted data series into leading digits (stem) and trailing digits (leaves)
- ∠ List all stems from low to high
- y For each stem, list all associated leaves

≥ Example: 12, 13, 17, 21, 24, 26, 27, 28, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

| Stem | Le | ave | es |   |   |   |
|------|----|-----|----|---|---|---|
| 1    | 2  | 3   | 7  |   |   |   |
| 2    | 1  | 4   | 4  | 6 | 7 | 8 |
| 3    | 0  | 2   | 5  | 7 | 8 |   |
| 4    | 1  | 3   | 4  | 6 |   |   |
| 5    | 3  | 8   |    |   |   |   |





### **Descriptive Statistics**

- ☑ Central tendency
  - Mean
  - Median
  - Mode
  - Percentile
  - Quartile

- → Measures of dispersion
  - Range
  - Variance and standard deviation
  - Coefficient of variation

$$=\frac{standard\ deviation}{mean}$$



#### **Calculation for central location**

- ☑ Mode = 40,000
- abla Percentile ( $p^{th}$  percentile)

$$L_p = (n+1)\frac{p}{100}$$

**y** Median

$$L_{50} = (7+1)\frac{50}{100} = 4$$
, thus Median=\$90,000

☐ Quartile (25<sup>th</sup> percentile, 50<sup>th</sup> percentile, 75<sup>th</sup> percentile)

$$L_{25} = (7+1)\frac{25}{100} = 2$$
, thus 1st Quartile=\$40,000

$$L_{50} = (7+1)\frac{50}{100} = 4$$
, thus 2<sup>nd</sup> Quartile=\$90,000

$$L_{75} = (7+1)\frac{75}{100} = 6$$
, thus 3<sup>rd</sup> Quartile=\$150,000

| Title                     | Salary (\$) |
|---------------------------|-------------|
| Administrative assistant  | 40,000      |
| Research assistant        | 40,000      |
| Computer programmer       | 65,000      |
| Senior research associate | 90,000      |
| Senior sales associate    | 145,000     |
| Chief financial officer   | 150,000     |
| President (and owner)     | 550,000     |

Question: Calculate and interpret the  $60^{th}$  percentile salary of employees.  $L_{60} = 4.8$ , thus 60% of employees' salary is below \$134,000



#### **Box-Whisker plot**

- ☑ Minimum
- ש 1st Quartile
- ✓ Median (2<sup>nd</sup> Quartile)
- **∠** 3<sup>rd</sup> Quartile
- ☑ Maximum

To determine the outlier

Smaller than 1.5×Interquartile Range below the 1st Quartile, OR

Larger than 1.5×Interquartile Range above the 3<sup>rd</sup> Quartile

Where Interquartile range (IQR)= Value of 3<sup>rd</sup> Quartile – Value of 1<sup>st</sup> Quartile



### **Empirical Rule**

Symmetric and bell-shaped distribution:

68% of observations fall in the interval  $\mu \pm \sigma$ 

95% of observations fall in the interval  $\mu \pm 2\sigma$ 

99.7% of observations fall in the interval  $\mu \pm 3\sigma$ 



Example: 280 students in one lecture class with a mean sore 74 and a standard deviation of 8 (assuming distribution is symmetric and bell-shaped).

- 1. Approximately how many students scored between 58 and 90?
- 2. Approximately how many students scored more than 90?





# **Probability Essentials**

- Probability the chance that an uncertain event will occur (always between 0 and 1)
- <u>□ Experiment</u> a process that produces outcomes for uncertain events.
- Sample Space (or event) the collection of all possible experimental outcomes
- ☑ Concept of probability is quite intuitive; however, the rules of probability are not always intuitive or easy to master.
  - An event with probability zero cannot occur.
  - An event with probability 1 is certain to occur.
  - An event with probability greater than 0 and less than 1 involves uncertainty, but the closer its probability is to 1 the more likely it is to occur.

# Interpretations of Probability

### **Objective and Subjective**

- ∠ Classical Propensity i.e. the physical design of an object (die)
- ☑ Empirical Relative frequency in the long run (mortality tables for calculating insurance premiums)
- Subjective Reasonable degree of subjective belief (reliability of witness testimony)

# **Rules of Probability**

## Complement Rule (simplest)

The complement of an event E is the collection of all possible elementary events NOT contained in event E (E or E<sup>C</sup>).

Complement Rule:

e.g., If there is a 40% chance it will rain, there is a 60% chance it won't rain!

$$P(\overline{E}) = 1 - P(E)$$
or





$$P(E) + P(\overline{E}) = 1$$

### **Addition Rule for Two Events**

Addition Rule (when events are NOT mutually exclusive):

$$P(E_1 \text{ or } E_2) = P(E_1) + P(E_2) - P(E_1 \text{ and } E_2)$$



NOTE: "OR" indicates

addition of events

*joint* probability "AND"

elements twice!

# **Conditional Probability**

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

- ☑ Probabilities are always assessed relative to the information currently available. As new information becomes available, probabilities often change.
- ∠ A formal way to revise probabilities on the basis of new information is to use conditional probabilities.
- Let A and B be any events with probabilities P(A) and P(B). Typically the probability P(A) is assessed without knowledge of whether B does or does not occur. However if we are told B has occurred, the probability of A might change.

# **Multiplication Rule**

- ☑ In the conditional probability rule the numerator is the probability that both A and B occur.

$$P(A \text{ and } B) = P(A|B)P(B)$$

☑ The conditional probability formula and the multiplication rule are both valid; in fact, they are equivalent.

1. An analyst collects data on the weekly closing price of gold throughout a year.

The scale of data measurement is \_\_\_\_\_.

- A. ratio scale
- B. ordinal scale
- C. interval scale
- D. nominal scale

A

2. In the accompanying stem-and-leaf diagram, the values in the stem

and leaf portions represent 10s and 1s digits, respectively.

| Stem | Leaf         |
|------|--------------|
| 1    | 3 5 6 8 8 9  |
| 2    | 012235668889 |
| 3    | 0 1 2 2 8    |
| 4    | 2 2          |

What is the frequency of the class 35 up to 45, that is  $\{x; 35 \le x < 45\}$ ?

A. 0

B. 1

 $C_{2}$ 

D. 3



3. A car dealership created a scatterplot showing the manufacturer's suggested retail price (MSRP) and profit margin for the cars on its lot.



As the MSRP increases, the profit margin tends to:

- A. increase
- B. decrease
- C. stay the same
- D. None of the answers

4. Consider a population with data values of 12, 8, 28, 22, 12, 30, 14

The mean and median are:

- A. Mean=12, Median=14
- B. Mean=18, Median=14.
- C. Mean=18, Median=12
- D. Mean=22, Median=12

В



5. An analyst gathered the following information about the net profit margins of companies in two industries:

| Net Profit Margin  | Industry A | Industry B |
|--------------------|------------|------------|
| Mean               | 15.0%      | 5.0%       |
| Standard deviation | 2.0%       | 0.8%       |
| Range              | 10.0%      | 15.0%      |

Compared with the other industry, the relative dispersion of net profit margins is smaller for Industry:

- A. B because it has a smaller mean deviation.
- B. B because it has a smaller range of variation.
- C. A because it has a smaller standard deviation.
- D. A because it has a smaller coefficient of variation.



6. Two hundred people were asked if they had read a book in the past month. The accompanying contingency table, cross-classified by age, was produced.

|     | Under 30 | 30 + |
|-----|----------|------|
| Yes | 76       | 65   |
| No  | 24       | 35   |

Given a respondent read a book in the past month, the probability he or she was at least 30 years old is *closest* to \_\_\_\_\_.

A. 0.33

B. 0.46

C. 0.65

D. 0.88

B

7. The following discrete probability distribution represents the anticipated profit/loss (\$1,000s) for a small business in the upcoming financial year.

| x        | -10  | 0    | 10   | 20   |
|----------|------|------|------|------|
| P(X = x) | 0.35 | 0.10 | 0.15 | 0.40 |

What is the probability the small business makes a profit?

A. 0.10

B. 0.35

C. 0.55

D. 0.65

C

### **Examples:**

8. A hedge fund returns on average 26% per year with a standard deviation of 12%. Using the empirical rule, approximate the probability the fund returns over 50% next year.

A. 0.5%

B. 1%

C. 2.5%

D. 5%

C