CS/ECE 374 A: Algorithms & Models of Computation, Spring 2020

Assignment Project, Exem Help **Circuit-SAT**

https://tutorcs.com

April 28, 2020

NP: languages that have non-deterministic polynomial time
Assignment Project Exam Help

https://tutorcs.com

NP: languages that have non-deterministic polynomial time

Assignment Project Exam Help

A language L is NP-Complete iff

- L is in NP
- for https://tutorcs.com

NP: languages that have non-deterministic polynomial time

Assignment Project Exam Help

A language L is NP-Complete iff

- L is in NP
- for https://tutorcs.com

L is NP-Hard if for every L' in NP, $L' \leq_P L$.

WeChat: cstutorcs

NP: languages that have non-deterministic polynomial time

Assignment Project Exam Help

A language L is NP-Complete iff

- L is in NP
- for https://tutorcs.com

L is NP-Hard if for every L' in NP, $L' \leq_P L$.

WeChat: cstutorcs

Theorem (Cook-Levin)

SAT is NP-Complete.

Spring 2020

Assignment Project Exam Help https://tutores.com WeChat: cstutorcs

P and NP

Possible scenarios:

Assignment Project Exam Help

https://tutorcs.com

P and NP

Possible scenarios:

Assignment Project Exam Help

Question: Suppose P \neq NP. Is every problem in NP \ P also NP-Complete S: // tutorcs.com

P and NP

Possible scenarios:

Assignment Project Exam Help

Question: Suppose $P \neq NP$, Is every problem in $NP \setminus P$ also NP-Cornlet QS: //tutorcs.com

Theorem (Ladner)

If $P \neq NP$ then there is a problem than the X is not NP-complete.

Today

NP-Completeness of three problems:

Aşşignment Project Exam Help

Circuit SAT

Importaring the copiers and than they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Assignmente Project ve Exam Help

https://tutorcs.com WeChat: cstutorcs

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Assignmented Phrilipping tycex an Help visits every vertex in **G** exactly once

https://tutorcs.com WeChat. cstutorcs

Is the following graph Hamiltonianan?

Directed Hamiltonian Cycle is NP-Complete

Directed Hamiltonian Cycle is in NP: exercise

Assign Project Exam Help

https://tutorcs.com

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

Assignment rule by a poxion and time telp algorithm \mathcal{A}

https://tutorcs.com
Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses

 C_1, C_2, \ldots, C_m

Reduction: First Ideas

- Viewing SAT: Assign values to *n* variables, and each clauses has ways in which it can be satisfied. Exam Help construct graph with 2" Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
 - Then add more graph structure to encode constraints on assignments unposed by the clauses. COM

- Traverse path i from left to right iff x_i is set to true
- As Signamuser of clauses in Help (Itaxiana) Help

• Add vertex c_j for clause C_j . c_j has edge from vertex 3j and to vertex 3j + 1 on path j if x_i appears in clause C_j , and has edge S_j and S_j and S_j and S_j are the sum of S_j are the sum of S_j and S_j are the sum of S_j and S_j are the sum of S_j

Spring 2020

Correctness Proof

Proposition

Assignifying engine Puffset Hemitoning CFIelp

Proof.

- ⇒ Let la parthe satisfying assignment for the Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path i from left to right
 - If $a(x_i) = 0$ then traverse path i from right to left
 - direction to splice in the node corresponding to clause

$\overline{\mathsf{Hamiltonian}}$ Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- As high interest of clause C_j) from vertex 3j on path i same path i
 - If not, then only unvisited neighbor of 3j+1 on path i is 3j+2• Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
 - Similarly, if Π enters c_j from vertex 3j + 1 on path i then it must leave the clause vertex c_i on edge to 3j on path i CSTULOTCS

Example

Assignment Project Exam Help

Hamiltonian Cycle \Longrightarrow Satisfying assignment (contd)

Assignment Projector Exam: Help connected by an edge

• We can remove c_j from cycle, and get Hamiltonian cycle in $\frac{G}{t}$ https://tutorcs.com • Consider Hamiltonian cycle in $\frac{G}{t}$ - $\frac{G}{t}$, ... $\frac{G}{t}$; it traverses

• Consider Hamiltonian cycle in $G - \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment Chat: cstutorcs

Hamiltonian Cycle

Assimulation and itect project (P5 am Help Gal Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start https://tutorcs.com

WeChat: cstutorcs

NP-Completeness

Theorem

Assignment Project Exam Help

Proof.

- The problem so in NI Uproflet So Service
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem
 - WeChat: cstutores

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path Reduction Help Reduction

https://tutorcs.com

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path Reduction Help

• Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}

https://tutorcs.com

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path Reduction Help

- Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}
- A directed edge (1) this replaced by edge (1) out, bin)

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path G' such that G has Hamiltonian Path iff G' has Hamiltonian path G' such that G has Hamiltonian Project G' has Hamiltonian path G' such that G' has Hamiltonian path G' has Hamiltonian path G' such that G' has Hamiltonian path G' has Hamiltonian pa

- Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}
- A directed edge (a,b) is replaced by edge (a_{out}, b_{in})

Reduction: Wrapup

• The reduction is polynomial time (exercise)

Assignment Project Exam Help

https://tutorcs.com

Hamiltonian Path

Input Given a graph G = (V, E) with n vertices

Assignment Phrilipped to the Branch Help Assignment Assignment Phrilipped to the Branch Help visits every vertex in **G** exactly once

https://tutorcs.com

Hamiltonian Path

Input Given a graph G = (V, E) with n vertices

Assignment Phrilipped the Participant of the graph that Principal Participant of the graph that Principant of the graph of the

https://tutorcs.com

Theorem

are NP-Complete hat: CStutorcs

Assignment Project Exam Help

https://tutorcs.com

Problem: Graph Coloring

Assignment Projected ray, area Help Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color? CCS. COM

Problem: 3 Coloring

Assignment/Projected Fax an Help Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do

nt ret the same color? Orcs.com

Problem: 3 Coloring

Assignment/Projected Fax an Help Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do

nt ret the same color? Orcs.com

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be having into the first set of G to G the contraction of the color class (nodes of same color) form an independent set in G. Thus, G can be having in G to G to G the color class (nodes of same color) form an independent set in G.

https://tutorcs.com

WeChat: cstutorcs

26

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be having the property of the contract of the

Graph **2**-Coloring can be decided in polynomial time.

https://tutorcs.com

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be having the property of the contract of the

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite. Com

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be Aasisch 17th material sets if G is A-coxraten G.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using BFS

Graph Coloring and Register Allocation

Register Allocation

Assign variables to cathetes placed to the same register

Interference Graph / 111000

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observatore Chat: cstutores

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with *k* colors
- Moreover, 3-COLOR \leq_P k-Register Allocation, for any k > 3

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Assignment Project Exam Help

https://tutorcs.com

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Assignment Project Exam Help

Create graph G

- a nedge between v_i and v_j if classes i and j conflict

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Assignment Project Exam Help

Create graph G

- a nedge between v_i and v_j if classes i and j conflict

Exercise: Wisckfcoll problet iff kersoms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple
Access.(FDMA) (example: GSM in Europe and Asia and AT&T in
ASSIGNMENT Project Exam Help

Brookup a frequency range [3, b] into disjoint hands of

- Breakup a frequency range [a, b] into disjoint bands of frequencies $[a_0, b_0], [a_1, b_1], \dots, [a_k, b_k]$
- Eachetps://eutoffos.eomand
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple
Access. (FDMA) (example: GSM in Europe and Asia and AT&T in

ASSIGNMENT Project Exam Help

Breakup a frequency range [3, b] into disjoint hands of

- Breakup a frequency range [a, b] into disjoint bands of frequencies $[a_0, b_0], [a_1, b_1], \dots, [a_k, b_k]$
- Eachetpse to to the top of the
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: Ween bands and song teg drough owers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the Aoses ream Help

https://outorcs.com

- (A) Yes.
- (B) No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the Acts ream Help

https://outorcs.com

- (A) Yes.
- (B) No.

3-Coloring is **NP-Complete**

• 3-Coloring is in NP.

Assigned file and edge (Q) the color of cash hold the poly that of v.

• Hardness: We will show 3-SAT \leq_P 3-Coloring. https://tutorcs.com

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables Assignment satisfied ect Exam Help

• need to establish truth assignment for x_1, \ldots, x_n via colors for $\begin{array}{c} \text{https://tutorcs.com} \\ \end{array}$

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that ASiS1-Sinhelie it satisfies ACT Exam Help

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ_n}
- creatitians with their offers sectam

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that ASiS1-Sinhelie it satisfies ACT Exam Help

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ_n}
- creatitings with thit oreconsectam
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that ASSIST-SIMPLE SATISFIED ECT EXAM Help

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- creatitians with the tote of sectam
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph excolorate the South of the Same color as True. Interpret this as a truth assignment to v_i

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that ASSIST-SIMPLE SATISFIED ECT EXAM Help

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- creatitings with thit of the Consectant
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph escape the State of the Same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

Assignment Project Exam Help https://tutorcs.com v_1 WeChat: cstutorcs $\overline{v_2}$ v_2

Clause Satisfiability Gadget

For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

Assessment of the connects to nodes corresponding to a, b Help

OR-gadget-graph:

OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

of OR-gadget has to be colored False.

Assignment Project Exam Help
Property: if one of a, b, c is colored True then OR-gadget can be
3-colored such that output node of OR-gadget is colored True.

https://tutorcs.com

Reduction

• create triangle with nodes True, False, Base

Assignment Base Project V. Edward Help

• for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b/q and connect output node of gadget to both False and Pase. / TUTOTCS. COM

Reduction

Claim

No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3-coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

Example Assignment Project Exam Help Variable and negation have complementary ► Palette OR-gates

40

arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable

Assignment Project Exam Help

https://tutorcs.com

arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable

Assignment (a vojectlest Xian, b, cleptored True. OR-gadget for C_j can be 3-colored such that output is True.

https://tutorcs.com

arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable

Assignment (a voice of the strong of the str

https://tutorcs.com

arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable

Assignment False False False Colored True. OR-gadget for C_j can be 3-colored such that output is True.

https://tutorcs.com

 G_{φ} is 3-colorable implies φ is satisfiable

• if v_i is colored True then set x_i to be True, this is a legal truth assignment Chat: CSTUTORCS

arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable

Assigned True, color v_i , True and \bar{v}_i False colored True. OR-gadget for C_j can be 3-colored such that output is True.

https://tutorcs.com

 G_{φ} is 3-colorable implies φ is satisfiable

- if v_i is colored True then set x_i to be True, this is a legal truth assignment Chat: CSTUTOTCS
- consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

Graph generated in reduction...

... from 3SAT to 3COLOR

42

Assignment Project Exam Help

https://t@itoitc\$AJom

Circuits

Definition Asirsuit is notificated at the Prophy with the Exam Help incoming edges) labelled with **0**, **1** or a distinct variable. https://tutorcs.cromer vertex is labelled \vee , \wedge or \neg . Single node output vertex established Single node output vertex establ

Circuits

Definition Asissite and rected to Problem Letters without Problem Letters (without Problem Letters (without Problem Letters) incoming edges) labelled with **0**, **1** or a distinct variable. https://tutorcs.ecome vertex is labelled \vee , \wedge or \neg . Single node output vertex echatic CStutonic Single node output vertex

Circuits

Definition A sirsuit is a directed rever Problem to the Exam Help incoming edges) labelled with **0**, **1** or a distinct variable. https://tutorcs.ecome vertex is labelled \vee , \wedge or \neg . Single node output vertex established Single node output vertex establ

CSAT: Circuit Satisfaction

```
Definition (Circuit Satisfaction (CSAT).)

Given a circuit as imprifies the recomposition to get value 1?
```

https://tutorcs.com

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit an importation for the courses the output to get value 1?

Claim https://tutores.com

- Certificate: Assignment to input variables.
 Certificate: Assignment to input variables.
 Certificate: Assignment to input variables. DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Aissi genment purojecto Eximmy theip Boolean formulas

https://tutorcs.com

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Aissi gen monte per ujecten Eximmy thosp Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem

SAT < P CSAT.

WeChat: cstutores

Theorem

 $CSAT <_P SAT <_P 3SAT$

Converting a CNF formula into a Circuit

Given 3CNF formulat φ with n variables and m clauses, create a Circuit C.

Assignment, Project & Examx, Help

- Use NOT gate to generate literal $\neg x_i$ for each variable x_i
- For each clause ($\ell_1 \lor \ell_2 \lor \ell_3$) use two OR gates to mimic form ttps://tutorcs.com
- Combine the outputs for the clauses using AND gates to obtain the final output

WeChat: cstutorcs

47

Example

$$\begin{array}{l} \varphi = (x_1 \lor \lor x_3 \lor x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor x_4) \\ \textbf{Assignment Project Exam Help} \end{array}$$

https://tutorcs.com

Label the nodes

49

Spring 2020

Introduce a variable for each node

Write a sub-formula for each variable that is true if the var is computed correctly.

(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Convert each sub-formula to an equivalent CNF formula

Assignment Project, Exam Help $(\neg x_k \lor x_i) \land (\neg x_k \lor x_i) \land (x_k \lor \neg x_i \lor \neg x_i)$ $x_k = x_i \wedge x_i$ $(\neg x_i \lor x_g) \land (\neg x_i \lor x_h) \land (x_i \lor \neg x_g \lor \neg x_h)$ DS://tutores.com¬xf) $(x_h \vee \neg x_d) \wedge \overline{(x_h \vee \neg x_e) \wedge (\neg x_h \vee x_d \vee x_e)}$ $x_h = x_d \vee x_e$ $(x_g \vee \neg x_b) \wedge (x_g \vee \neg x_c) \wedge (\neg x_g \vee x_b \vee x_c)$ $x_g = x_b \vee x_c$ $(\neg x_a) \land (\neg x_a \lor \neg x_b)$ $x_a = 1$ X_a

Take the conjunction of all the CNF sub-formulas

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

• For each gate (vertex) v in the circuit, create a variable x_v

As sign ris labeled Probas one inclining edge from U(s), $(\neg x_u \lor \neg x_v)$. Observe that

$$\underset{\sim}{\text{https://tutorcscom}}_{\text{both true.}} \text{both true.}$$

Continued...

Assignment Project Exam Help

• Case \vee : So $x_v = x_u \vee x_w$. In **SAT** formula generated, add clauses $(x_v \vee \neg x_u)$, $(x_v \vee \neg x_w)$, and $(\neg x_v \vee x_u \vee x_w)$. Again, observe the S://tutorcs.com

```
(x_{\nu} = x_{\nu} \lor x_{\nu}) \text{ is true} \iff (x_{\nu} \lor \neg x_{\nu}), \\ (x_{\nu} \lor \neg x_{\nu}), \\ \text{all true.}
```

Continued...

Assignment Project Exam Help

• Case \wedge : So $x_v = x_u \wedge x_w$. In **SAT** formula generated, add clauses $(\neg x_v \vee x_u)$, $(\neg x_v \vee x_w)$, and $(x_v \vee \neg x_u \vee \neg x_w)$. Again the that tutores.com

```
\begin{array}{c}
(\neg x_{v} \lor x_{u}), \\
(\neg x_{v} \lor x_{u}), \\
(\neg x_{v} \lor x_{w}), \\
(\neg x_{v} \lor x_{w}),
\end{array}
 all true.
```

Continued...

Assignment Project Exam Help

- If v_{ij} is the input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v . If $x_v = 0$ add clause $-x_v$
- 2 Add the clause x_v where v is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

ASSISHMENT Sterote Exam Help

- 2 Give value of gate v to variable x_v ; call this assignment a'
- 3 a' satisfies $\varphi_{\mathcal{C}}$ (exercise)
- Consider patisfying passyment g for one

 Let a be the restriction of a to only the input variables

 - 2 Value of gate \mathbf{v} under \mathbf{a}' is the same as value of $\mathbf{x}_{\mathbf{v}}$ in \mathbf{a}
 - Thus, a sertisfies, C CSTUTORCS

List of NP-Complete Problems to Remember

Problems

Assignment Project Exam Help

- CircuitSAT
- ondattes.sylutores.com
- O Clique
- Vertex Cover
- Harry Cycle at Harry Harry Mosth directed and undirected graphs
- 3Color and Color