Az internet ökoszisztémája és evolúciója Gyakorlat 2

IP címzés

IP subnetting

- CIDR (Classless Interdomain Routing): az IP címek alhálózati prefixbe (subnet) gyűjthetők
 - az első X bit az alhálózat-azonosító
 - a maradék 32-X bit hosztazonosító
 - X-et a prefix hossz (pl. /18) vagy a netmask (pl. 255.255.192.0) adja meg
- Konvenció: ha az alhálózatról beszélünk, akkor a hosztazonosítót zérus bitekkel töltjük fel

- **Kérdés:** hány IP címet tartalmaz a 12.130.192.0/21 prefix?
- **Válasz:** a hosztazonosító hossza 32 21 = 11, vagyis a prefixen belül összesen $2^{11}=2048$ IP cím azonosítható egyértelműen
- Kérdés: hány hosztazonosító adható ki ebből a prefixből?
- Válasz: a prefix első címe nem osztható ki (ez a prefix azonosítására szolgál konvenció szerint), az utolsó sem (multicast), így a válasz 2046

- **Kérdés:** melyik az első és melyik az utolsó IP cím a 12.130.192.0/21 prefixben?
- Válasz: ehhez már érdemes a bináris reprezentációt használni

CIDR notation	12.130.192.0/21
Prefix hossza	21 bit (az MSB-től)
bináris	00001100 10000010 11000000 00000000
Subnet mask (bináris)	11111111 11111111 11111000 00000000
Subnet mask (dotted)	255.255.248.0
Első IP cím	12.130.192.1
bináris	00001100 10000010 11000000 00000001
Utolsó IP cím	12.130.199.254 (!!!!)
bináris	00001100 10000010 11000111 11111110

- **Kérdés:** melyik /19 prefix tartalmazza a 73.38.171.112 **IP címet?**
- Érdekesség: pontosan 1 ilyen /19 van
- Válasz: a bináris reprezentációt használva
- Hoszt-azonosító=000... (az utolsó 13 bit)

IP cím	73.38.171.112		
Bináris	01001001 00100110 10101011 01110000		
Az első 19 bit a prefix azonosító a maradékot kinullázzuk	01001001 00100110 10100000 00000000		
Dotted decimál notation	73.38.160.0/19		

- **Kérdés:** tartalmazza-e a 153.43.255.0/24 prefix a 153.47.255.199 IP címet?
- Válasz: mivel /24-ről van szó, elég az első 3 számot nézni a címben és a prefixben
- Mivel ezek nem egyeznek meg, a válasz nem
- **Kérdés:** tartalmazza-e a 189.208.40.0/22 prefix a 189.208.44.89 **IP címet?**
- Válasz: nem, mert az első 22 bit különbözik

A prefix binárisan	10111101	11010000	00101000	00000000
Az IP cím binárisan	10111101	11010000	00101100	01011001
Az alhálózat azonosítója	10111101	11010000	001011	

Legspecifikusabb prefix

A csomagtovábbítás a FIB alapján történik

Egy router FIB-jének részlete				
IP prefix/hossz	A prefix binárisan	Next-hop IP címe		
189.110.0.0/15	10111101 0110111	10.0.0.1		
189.111.16.0/22	10111101 01101111 000100	10.0.0.2		
189.111.18.0/23	10111101.01101111 0001001	10.0.0.3		
189.111.17.0/24	10111101 01101111 00010001	10.0.4		

- Minden IP címre meg kell találni az arra legtöbb biten illeszkedő bejegyzést: Longest Prefix Match (LPM)
- Alhálózatokra speciális útválasztási döntések érvényesíthetők

Legspecifikusabb prefix: példa

- **Kérdés:** melyik a legspecifikusabb bejegyzés a 189.111.19.10 IP címre?
- **Válasz:** 189.111.19.10 = 10111101 011011111 0001011 00001010
- Az első, a második, és a harmadik bejegyzés illeszkedik, így a harmadik a legspecifikusabb
- Kérdés: LPM a 189.111.16.110 IP címre?
- Válasz: csak az első két bejegyzés illeszkedik
- A 189.111.17.11 IP címre a negyedik a legspecifikusabb bejegyzés

Aggregáció/deaggrregáció

- Kérdés: osszuk fel a 1.11.112.0/22 prefixet
 2 darab /24-re és egy /23-ra
- Válasz: először osszuk két /23-ra, a 23. bit 0 és 1 értéke (helyi érték: 2) generálja a két /23-t 1.11.112.0/22 = 1.11.112.0/23 ∪ 1.11.114.0/23
- Majd az első /23-at osszuk két /24-re 1.11.112.0/23 = 1.11.112.0/24 ∪ 1.11.113.0/24
- Feloszthattuk volna a másodikat is...

IP subnetting: eszközök

• ipcalc(1): konverzió tetszőleges formátumok között: http://jodies.de/ipcalc

```
$ ipcalc 203.123.64.0/19
Address: 203.123.64.0
                       11001011.01111011.010 00000.0000000
Netmask: 255.255.224.0 = 19 11111111.11111111.111 00000.0000000
Wildcard: 0.0.31.255
                              00000000.00000000.000 11111.11111111
=>
Network: 203.123.64.0/19 11001011.01111011.010 00000.00000000
HostMin: 203.123.64.1
                             11001011.01111011.010 00000.00000001
HostMax: 203.123.95.254
                             11001011.01111011.010 11111.11111110
Broadcast: 203.123.95.255 11001011.01111011.010 11111.11111111
Hosts/Net: 8190
                             Class C
$ ipcalc 203.123.64.0/19 -s 4000 4000
```

- libc: inet_aton(3), inet_ntoa(3), ...
- python: from netaddr import *

Feladatok

- Hány IP címet tartalmaz a 120.1.32.0/19 prefix?
 Hány hosztazonosító adható ki ebből a prefixből?
 Melyik az első és melyik az utolsó IP cím a 120.1.32.0/19 prefixben?
- Melyik /14 prefix tartalmazza a 3.41.11.12 IP címet?
- Aggregálható-e a 177.143.96.0/21 és a 177.143.104.0/21?
- Ossza fel a 107.14.64.0/19 prefixet egy legalább 2000 és két, legalább 1000 címet tartalmazó alhálózatra!

Feladatok

• Melyik a legspecifikusabb bejegyzés az alábbi FIBben a 10.100.45.1, 10.100.27.111, illetve a 10.99.5.5 IP címre?

Egy router FIB-jének részlete				
IP prefix/prefix hossz	Next-hop IP cime			
10.96.0.0/12	10.0.0.1			
10.100.0.0/17	10.0.0.2			
10.100.16.0/20	10.0.0.3			
10.100.32.0/20	10.0.4			

Csomagok generálása: Scapy

- Csomagok összeállítása és küldése tetszőleges tartalommal
- Egyszerű csomagdekódokolás és -kiiratás (akár pdf-be!)
- Szkennelés, traceroute, unit tesztek
- Formátumok támogatása a link rétegtől egészen az alkalmazási rétegig
- Protokollok elleni célzott támadások speciálisan formázott csomagokkal
- Mindez a python szkriptnyelvbe integrálva

- A scapy telepítve van az OpenWRT image-ben
- Indítsuk el a múltkori gyakorlaton elmentett topológiát és lépjünk be az R1-re

```
root@OpenWrt:/# scapy
Welcome to Scapy (2.3.1)
>>>
```

• Csomag a 10.0.1.2 címre, maximális TTL-lel

```
>>> packet=IP(dst="10.0.1.2", ttl=255)
>>> packet
<IP ttl=255 dst=10.0.1.2 |>
>>> packet.show()
```

- Csomag tartalmát érdemes változóba tenni
- Elég a fontos mezőket megadni (többi automatikus)

```
>>> p = IP(dst="10.0.1.2")
>>> p.ttl
64
```

- Összes mező: p.show()
- Byte-sorozat: str(p)
- Hexa tartalom: hexdump (p)
- Csomag küldése: send(p) (kitöltött routing tábla kell, különben nem tudjuk elküldeni!)

- Protokollok a "/" operátorral kombinálhatók
- Küldjünk HTTP csomagot a 10.0.1.2-re
- A TCP csomagba HTTP tartalmat helyezve a Scapy automatikusan 80-ra állítja a TCP portot

```
>>> send(IP(dst="10.0.1.2")/TCP()/"GET / HTTP/1.0\r\n\r\n")
```

Csomagok elkapása az R2-n

```
root@OpenWrt:/# tcpdump -ni eth1
[ 2557.630466] device eth1 entered promiscuous mode
18:50:20.630222 ARP, Request who-has 10.0.1.2 tell 10.0.1.1
18:50:20.630250 ARP, Reply 10.0.1.2 is-at 00:ab:6d:22:ff:01
18:50:20.633839 IP 10.0.1.1.20 > 10.0.1.2.80: Flags [S] ...
18:50:20.633919 IP 10.0.1.2.80 > 10.0.1.1.20: Flags [R.] ...
```