Ohm's Law

 Ohm's law states that the potential difference (or voltage) across any two ends of a conductor is directly proportional to the current flowing between the two ends provided that the temperature of the conductor remains constant.

i-v characteristic of a linear resistor

Resistance and Conductance

Resistance R of an element denotes its ability to resist the flow of electric current; it is measured in ohms (Ω) .

$$R = \frac{V}{I}$$

- Careful attention must be considered to the current direction and voltage polarity. The direction of current i and the polarity of voltage v must conform with the passive sign convention.
- If current flows from a higher potential to a lower potential, v = iR.
- If current flows from a lower potential to a higher potential, v = -iR.
- A short circuit is a circuit element with resistance approaching zero.
- An open circuit is a circuit element with resistance approaching infinity.

Resistance and Conductance...Continued

• Conductance is the ability of an element to conduct electric current; it is measured in siemens (S).

$$i = Gv$$

• The same resistance can be expressed in ohms or siemens. For example, 10 Ω is the same as 0.1 S.

$$G = \frac{1}{R} = \frac{i}{v}$$

Power

Power is the time rate of expending or absorbing energy, measured in watts (W).

$$p = \frac{dw}{dt} = \frac{dw}{dq} \frac{dq}{dt} = vi$$

$$p = \frac{v^2}{R} = i^2 R$$

- The power dissipated in a resistor is a nonlinear function of either current or voltage.
- The power dissipated in a resistor is always positive. Thus, a resistor always absorbs power from the circuit.

Active and Passive Components

- Active components are the elements which rely on an external power source to control or modify electrical signals.
- Active components such as transistors and silicon-controlled rectifiers (SCRs) use electricity to control
 electricity.
- Passive components don't need an external power source to function. They only require the current traveling through the connected circuit.
- Passive components like resistors, capacitors, inductors, diodes etc. impede the flow of electrons without introducing more electricity into the system.

Resistors Connected in Series

$$R_{eq} = R_1 + R_2 + R_3$$

- The total resistance of a series configuration is the sum of the individual resistances.
- More resistors in series combination, the greater the resistance, no matter what the value of the resistor is.

Resistors Connected in Parallel

Two or more resistors are in parallel if they have two points in common.

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

 Req is always smaller than the resistance of the smallest resistor in the parallel combination

Voltage Division Rule

Current through the circuitI is given by

$$I = \frac{V}{R_E}$$

Voltage drop across resistors R₁, R₂, R₃:

$$V_1=I.R_1$$
 $V_2=I.R_2$ $V_3=I.R_3$

• $V = V_1 + V_2 + V_3$

$$V_1 = \frac{R_1}{R_E}V$$
 $V_2 = \frac{R_2}{R_E}V$ $V_3 = \frac{R_3}{R_E}V$

 $V = IR_1 + IR_2 + IR_3 =$

Current Division Rule

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \qquad R_{eq} = \frac{R_1 R_2 R_3}{R_1 R_2 + R_2 R_3 + R_3 R_1}$$

Total Current flowing through the circuit:

$$I = \frac{V_{AB}}{R_E}$$

• Current I_1 through R_1 is:

•
$$I_1 = \frac{V_{AB}}{R_1}$$
 i.e., $I_1 = \frac{R_2 R_3}{R_1 R_2 + R_2 R_3 + R_3 R_1} I$

• Similarly,
$$I_2 = \frac{R_1R_3}{R_1R_2 + R_2R_3 + R_3R_1}I$$

$$I_3 = \frac{R_1R_2}{R_1R_2 + R_2R_3 + R_3R_1}I$$

