Preliminary ⁶⁴Zn(n,p)⁶⁴Cu and ⁴⁷Ti(n,p)⁴⁷Sc Data

Andrew Voyles 23 May 2016

Experimental Setup – 03 Nov 2015

- Zinc
 - Thickness: 1.03 ± 0.01 mm
 - Diameter: 9.90 ± 0.15 mm
 - Weight: 0.5375 \pm 0.0001 g
- Indium
 - Thickness: 0.48 ± 0.02 mm
 - Diameter: 9.77 ± 0.12 mm
 - Weight: 0.2475 \pm 0.0001 g
- Beam On: 2:13:16 PM
- Beam Off: 5:13:16 PM
- Start of Counting: 5:43:01 PM

Polyethylene

Experimental Setup – 25 Feb 2016

Titanium

- Thickness: 1.03 ± 0.01 mm
- Diameter: 9.9034± 0.15 mm
- Weight: 0.337 \pm 0.0001 g

Indium

- Thickness: 0.48 ± 0.02 mm
- Diameter: 10.136 ± 0.12 mm
- Weight: 0.2475 \pm 0.0001 g
- Beam On: 1:40:35 PM
- Beam Off: 4:57:52 PM
- Start of Counting: 5:47:59 PM

Polyethylene

Model

$$N_{obs_2} = \frac{R_2}{\lambda_2} (1 - e^{-\lambda_2 t_1}) e^{-\lambda_2 t_2} (e^{-\lambda_2 t_3} - 1) B_2 \epsilon_{In}$$

$$\begin{split} \sigma_1 = & \sigma_2 \left(\frac{N_{obs_1}}{N_{obs_2}}\right) \left(\frac{\lambda_1}{\lambda_2}\right) \left(\frac{N_{02}}{N_{01}}\right) \left(\frac{B_2}{B_1}\right) \left(\frac{\epsilon_{In}}{\epsilon_{Sc}}\right) \times \\ & \frac{(1-e^{-\lambda_2 t_1})e^{-\lambda_2 t_2}(e^{-\lambda_2 t_3}-1)}{(1-e^{-\lambda_1 t_1})e^{-\lambda_1 t_2}(e^{-\lambda_1 t_3}-1)} \end{split}$$

