Midterm exam

You are allowed your notes, but no phones, laptops or other devices.

All answers must be justified.

Exercise 1: For a positive integer n the hypercube $Q_n = (V, E)$ is the graph whose vertices correspond to the (0,1)-vectors of length n, i.e., $V = \{0,1\}^n$, where two vertices are adjacent if and only if the two corresponding vectors differ in exactly one entry.

- 1. Draw Q_n for $1 \le n \le 4$.
- 2. Determine those n, such that Q_n is Eulerian.
- 3. Show that Q_n is bipartite for all $n \geq 1$.
- 4. Compute the girth of Q_n for all $n \geq 1$.

Exercise 2: Prove or disprove the following statements:

- 1. Every Eulerian bipartite graph has an even number of edges.
- 2. Every Eulerian graph with an even number of vertices has an even number of edges.

Exercise 3: Let T be a binary tree, i.e., one vertex (the root) has degree 2, and all other vertices have degree 1 or 3. Show that if T has ℓ leafs, then it has $2\ell - 1$ vertices in total.

Apply this to answer the following:

We want to break a $n \times m$ chocolate bar into single pieces of size 1×1 . At each step we are allowed to break a piece along a horizontal or vertical line. How may steps are needed?

Figure 1: Some steps in breaking a 4×5 chocolate bar.

Exercise 4: Let $k \leq n$ be positive integers and $d = (d_1 \geq \ldots \geq d_n)$ a sequence of non-negative integers. Prove that the following two statements are equivalent:

- (i) d is graphic and $\sum_{i=0}^{n} d_i \ge 2(n-k)$,
- (ii) d is the degree sequence of a simple graph with at most k connected components.