Incremental Discovery of Prominent Situational Facts

Afroza Sultana¹, Naeemul Hassan¹, Chengkai Li¹, Jun Yang², Cong Yu³

¹University of Texas at Arlington, ²Duke University, ³Google Research

ICDE 2014, Chicago, IL

"Paul George had 21 points, 11 rebounds and 5 assists to become the first Pacers player with a 20/10/5 (points/rebounds/assists) game against the Bulls since Detlef Schrempf in December 1992." (http://espn.go.com/espn/elias?date=20130205)

"Paul George had 21 points, 11 rebounds and 5 assists to become the first Pacers player with a 20/10/5 (points/rebounds/assists) game against the Bulls since Detlef Schrempf in December 1992." (http://espn.go.com/espn/elias?date=20130205)

"Paul George had 21 points, 11 rebounds and 5 assists to become the first Pacers player with a 20/10/5 (points/rebounds/assists) game against the Bulls since Detlef Schrempf in December 1992." (http://espn.go.com/espn/elias?date=20130205)

"The social world's most viral photo ever generated 3.5 million likes, 170,000 comments and 460,000 shares by Wednesday afternoon."

(http://www.cnbc.com/id/49728455/President Obama Sets New Social Media Record)

"The social world's most viral photo ever generated 3.5 million likes, 170,000 comments and 460,000 shares by Wednesday afternoon."

(http://www.cnbc.com/id/49728455/President Obama Sets New Social Media Record)

"The social world's most viral photo ever generated 3.5 million likes, 170,000 comments and 460,000 shares by Wednesday afternoon."

(http://www.cnbc.com/id/49728455/President Obama Sets New Social Media Record)

- •Stock Data: Stock A becomes the first stock in history with price over \$300 and market cap over \$400 billion.
- •Weather Data: Today's measures of wind speed and humidity are x and y, respectively. City B has never encountered such high wind speed and humidity in March.
- •Criminal Records: There were 50 DUI arrests and 20 collisions in city C yesterday, the first time in 2013.

id	player	day	month	season	team	opp_team	pts	ast	reb
t_1	Bogues	11	Feb.	1991-92	Hornets	Hawks	4	12	5
t_2	Seikaly	13	Feb.	1991-92	Heat	Hawks	24	5	15
t_3	Sherman	7	Dec.	1993-94	Celtics	Nets	13	13	5
t_4	Wesley	4	Feb.	1994-95	Celtics	Nets	2	5	2
t_5	Wesley	5	Feb.	1994-95	Celtics	Timberwolves	3	5	3
t_6	Strictland	3	Jan.	1995-96	Blazers	Celtics	27	18	8
t_7	Wesley	25	Feb.	1995-96	Celtics	Nets	12	13	5

Last tuple appended to table

id	player	day	month	season	team	opp_team	pts	ast	reb
t_1	Bogues	11	Feb.	1991-92	Hornets	Hawks	4	12	5
t_2	Seikaly	13	Feb.	1991-92	Heat	Hawks	24	5	15
t_3	Sherman	7	Dec.	1993-94	Celtics	Nets	13	13	5
t_4	Wesley	4	Feb.	1994-95	Celtics	Nets	2	5	2
t_5	Wesley	5	Feb.	1994-95	Celtics	Timberwolves	3	5	3
t_6	Strictland	3	Jan.	1995-96	Blazers	Celtics	27	18	8
t_7	Wesley	25	Feb.	1995-96	Celtics	Nets	12	13	5

id	month		pts	ast	reb
t_1	Feb.		4	12	5
t_2	Feb.		24	5	15
t_4	Feb.		2	5	2
t_5	Feb.		3	5	3
t_7	Feb.		12	13	5

id	month		pts	ast	reb
t_{I}	Feb.		4	12	5
t_2	Feb.		24	5	15
t_4	Feb.		2	5	2
t_5	Feb.		3	5	3
t_7	Feb.		12	13	5

•Wesley had 12 points, 13 assists and 5 rebounds on February 25, 1996 to become the first player with a 12/13/5 (points/assists/rebounds) in February.

id		season		pts	ast	reb
t_6		1995-96		27	18	8
t_7		1995-96		12	13	5

id			team	opp_team		ast	reb
					Ш		
t_3			Celtics	Nets		13	5
t_4			Celtics	Nets		5	2
t_7			Celtics	Nets		13	5

•Wesley had 13 assists and 5 rebounds on February 25, 1996 to become the second Celtics player with a 13/5 (assists/rebounds) game against the Nets.

Dimension space: $\mathcal{D}=\{d_1,\ldots,d_n\}$

Measure space: $\mathcal{M} = \{m_1, \dots, m_s\}$

id	player	day	month	season	team	opp_team	pts	ast	reb
t_{I}	Bogues	11	Feb.	1991-92	Hornets	Hawks	4	12	5
t_2	Seikaly	13	Feb.	1991-92	Heat	Hawks	24	5	15
t_3	Sherman	7	Dec.	1993-94	Celtics	Nets	13	13	5
t_4	Wesley	4	Feb.	1994-95	Celtics	Nets	2	5	2
t_5	Wesley	5	Feb.	1994-95	Celtics	Timberwolves	3	5	3
t_6	Strictland	3	Jan.	1995-96	Blazers	Celtics	27	18	8

append-only table

 $\Box \textbf{Constraint} (C): d_1 = v_1 \land d_2 = v_2 \land \dots \land d_n = v_n, v_i \in dom(d_i) \cup \{*\}$

■ team=*Celtics* ∧ opp_team=*Nets*

id				team	opp_team		
			П				
t_3			П	Celtics	Nets		
t_4			П	Celtics	Nets		
			П				

 \Box Constraint-Measure Pair (C, M): Combination of a constraint and measure subspace

■ (team=*Celtics* ∧ opp_team=*Nets*, {assists,rebounds})

id	team	opp_team	ast	reb
t_3	Celtics	Nets	13	5
t_4	Celtics	Nets	5	2

 \square Contextual skyline: skyline regarding (C, M)

• $\sigma_{\text{team}=Celtics \land opp_team}=Nets}(R), M=\{\text{assists,rebounds}\}$

$\{t_2\}$
-1135

id		team	opp_team	ast	reb
t_3		Celtics	Nets	13	5
t_4		Celtics	Nets	5	2

Problem Definition; Situational Fact Discover Problem

Tuples capturing real world events appended to table

	id	player	day	month	season	team	opp_team	pts	ast	reb
1	t_I	Bogues	11	Feb.	1991-92	Hornets	Hawks	4	12	5
1	t_2	Seikaly	13	Feb.	1991-92	Heat	Hawks	24	5	15
	t_3	Sherman	7	Dec.	1993-94	Celtics	Nets	13	13	5
	t_4	Wesley	4	Feb.	1994-95	Celtics	Nets	2	5	2
	t_5	Wesley	5	Feb.	1994-95	Celtics	Timberwolves	3	5	3
_	t_{ϵ}	Strictland	3	Jan.	1995-96	Blazers	Celtics	27	18	8
	t_7	Wesley	25	Feb.	1995-96	Celtics	Nets	12	13	5

Find constraint-measure pair (C,M) such that t is in the contextual skyline.

Constraint	Measure
month=Feb	pts, ast, rb
opp_team=Nets	ast, rb
team=Celtics \(\text{opp_team} = Nets \)	ast, rb

Template

Wesley had 12 points, 13 assists and 5 rebounds on February 25, 1996 to become the first player with a 12/13/5 (points/assists/rebounds) in February.

Related Work

- Conventional skyline analysis (Borzsonyi et al. ICDE 2001)
 - $\blacksquare Q$: context, measure subspace $\Longrightarrow A$: contextual skyline tuples
 - \checkmark Our focus--- A: tuple \Longrightarrow Q: constraint-measure pairs

Related Works

- Compressed Skycube (Xia et al. SIGMOD 2006)
 - Update compressed skycube in monitoring fashion
 - ✓ We adapted CSC for each constraint: Constraint-CSC

id	player	day	month	season	team	opp_team	pts	ast	reb
t_I	Bogues	11	Feb.	1991-92	Hornets	Hawks	4	12	5
t_2	Seikaly	13	Feb.	1991-92	Heat	Hawks	24	5	15
t_3	Sherman	7	Dec.	1993-94	Celtics	Nets	13	13	5
t_4	Wesley	4	Feb.	1994-95	Celtics	Nets	2	5	2
t_5	Wesley	5	Feb.	1994-95	Celtics	Timberwolves	3	5	3
t_{ϵ}	Strictland	3	Jan.	1995-96	Blazers	Celtics	27	18	8
t_7	Wesley	25	Feb.	1995-96	Celtics	Nets	12	13	5

Related Works

- Prominent Analysis by Ranking (Wu et. Al. VLDB 2009)
 - Static data, onetime query
 - ✓ We dealt on continuous data, standing query
 - •Find the contexts where an object is ranked high in a single scoring attribute
 - ✓ We considered skyline on multiple measure subspaces

Modeling

							$T \{t_2, t_3, t_4, t_5\}$	
id	d_1	d_2	d_3	m_1	m_2		(12,13,14,15)	
t_1	a_{I}	b_2	c_2	10	15	\mathbf{a}_1	$\mathbf{b_1'}$	c_1
t_2	a_I	b_{I}	c_{I}	15	10	$\{t_1,t_2,t_5\}$	$\{\mathbf{t}_2,\mathbf{t}_3,\mathbf{t}_4,\mathbf{t}_5\}$	$\{t_2,t_4\}$
t_3	a_2	b_I	c_2	17	17			<
t_4	a_2	b_I	c_{I}	20	20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a_{1}, c_{1} $ $\{t_{2}, t_{5}\}$	$b_{1}, 0$ $\{t_{2}, t_{4}, t_{4}\}$
t_5	a_I	b_{I}	c_1	11	15		(2,05)	-162,645
							a_1,b_1,c_1	
					1		$\{\mathbf t_2, \mathbf t_5\}$	
					$a_1 = a_1 \wedge a$	$d_2 = b_1 \wedge d_3 = c_1$	Lattice of C^{t_2}	5

Tuple Satisfied Constraint C^t : If $\forall d_i \in \mathcal{D}$, $C.d_i = *$ or $C.d_i = t.d_i$, t satisfies C.

Modeling

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_1	b_2	c_2	10	15
t_2	a_1	b_I	c_1	15	10
t_3	a_2	b_I	c_2	17	17
<i>t</i> ₄	a_2	\boldsymbol{b}_1	c_1	20	20
<i>t</i> ₅	a_1	b ₁	c_1	11	15

Modeling

id	d_1	d_2	d_3	m_1	m_2
t_1	a_{I}	b_2	c_2	10	15
t_2	a_{I}	b_I	c_1	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	\boldsymbol{b}_1	c_1	20	20
<i>t</i> ₅	a_1	b ₁	c_1	11	15

Lattice Intersection: $C^{t_4,t_5} = C^{t_4} \cap C^{t_5}$

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_{I}	b_2	c_2	10	15
t_2	a_{I}	b_I	c_{I}	15	10
t_3	a_2	b_{I}	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_1	b_I	c_1	11	15

				1	
id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_1	b_2	c_2	10	15
t_2	a_{I}	b_I	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_{I}	c_{I}	20	20
t_5	a_{I}	b_I	c_{I}	11	15

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_I	b_2	c_2	10	15
t_2	a_{I}	b_I	c_{I}	15	10
t_3	a_2	b_{I}	c_2	17	17
t_4	a_2	b_{I}	c_{I}	20	20
t_5	a_1	b_I	c_{I}	11	15

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_1	b_2	c_2	10	15
t_2	a_1	b_{I}	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_{I}	b_I	c_{l}	11	15

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_1	b_2	c_2	10	15
t_2	a_1	b_{I}	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_{I}	b_I	c_{l}	11	15

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_{I}	b_2	c_2	10	15
t_2	a_1	b_{I}	c_{I}	15	10
t_3	a_2	b_{I}	c_2	17	17
t_4	a_2	b_{I}	c_{I}	20	20
t_5	a_{I}	b_I	c_{I}	11	15

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_1	b_2	c_2	10	15
t_2	a_1	b_{I}	c_{I}	15	10
t_3	a_2	b_1	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_1	b_I	c_{I}	11	15

Total $|R|^*(2^{|\mathcal{D}|+|\mathcal{M}|}-1)$ comparisons! Total 16 comparisons in this case!

Challenges

- Exhaustive comparison with every tuple
- >Under every constraint
- ➤ Over every measure subspace

Challenges and Ideas

- Exhaustive comparison with every tuple
 - ✓ Tuple reduction
 - Comparison with skyline tuples is enough

$$\mathbf{1}_{4} \mathbf{1}_{\{m_{1},m_{2}\}} t_{3} \mathbf{1}_{\{m_{1},m_{2}\}} t_{5} => t_{4} \mathbf{1}_{\{m_{1},m_{2}\}} t_{5}$$

id	d_2	m_1	m_2
t_2	b_{I}	15	10
t_3	b_I	17	17
t_4	b_{I}	20	20
t_5	b_{I}	11	15

Challenges and Ideas

➤ Under every constraint

- ✓ Constraint pruning
 - ■In $C^{t,t'}$, one comparison on t and t' is enough

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_{I}	b_2	c_2	10	15
t_2	a_{I}	b_I	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_1	b_I	c_{I}	11	15

Challenges and Ideas

➤ Under every constraint

- ✓ Constraint pruning
 - In $C^{t,t'}$, one comparison on t and t' is enough

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_{I}	b_2	c_2	10	15
t_2	a_1	b_{I}	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_{I}	b_I	c_{I}	11	15

Challenges and Ideas

- ➤ Over every measure subspace
 - ✓ Sharing computation across measure subspaces
 - Reusing computations on full space in subspaces

id	d_{I}	d_2	d_3	m_1	m_2
t_{I}	a_1	b_2	c_2	10	15
t_2	a_{I}	b_I	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_1	b_I	c_{I}	11	15

Challenges and Ideas

- ➤ Over every measure subspace
 - ✓ Sharing computation across measure subspaces
 - Reusing computations on full space in subspaces

					,		\times $\stackrel{T}{\Longrightarrow}$	
id	d_1	d_2	d_3	m_1				
t_{I}	a_{1}	b_2	c_2	10			 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
t_2	a_{I}	b_{I}	c_1	15		$\times a_1$	\wedge 0_1	\times \mathfrak{c}_1
t_3	a_2	b_I	c_2	17			\sim	
t_4	a_2	b_{I}	c_1	20		$\times a_1,b_1$	\times a ₁ ,c ₁	$\times b_1,c_1$
t_5	a_{I}	b_{I}	c_1	11				
						-		
							$\times a_1,b_1,c_1$	

Our Algorithms

- ➤ Tuple reduction + Constraint pruning
 - BottomUp
 - TopDown
- ➤ Tuple reduction + Constraint pruning + Sharing computation
 - SBottomUp
 - STopDown

- Stores a tuple for every such constraint that qualifies it as a contextual skyline tuple
- \triangleright Traverses the constraints in C^t in a bottom-up, breadth-first manner

id	d_1	d_2	d_3	m_1	m_2
t_1	a_{I}	b_2	c_2	10	15
t_2	a_{I}	b_I	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_1	b_I	c_{I}	11	15

id	d_{I}	d_2	d_3	m_1	m_2
t_2	a_{I}	b_I	c_I	15	10
t_5	a_1	b_{I}	c_1	11	15

id	d_{I}	d_2	d_3	m_1	m_2
t_2	a_1	b_I	c_{I}	15	10
t_5	a_1	b_1	c_1	11	15

id	d_1	d_2	d_3	m ₁	m_2
t_2	a_1	b_1	c_1	15	10
t_5	a_{I}	b_{I}	c_{I}	11	15

id	d_1	d_2	d_3	m_1	m_2
t_2	a_1	b_I	c_{I}	15	10
t_5	a_1	b_{I}	c_I	11	15

id	d_2	d_3	m_{I}	m_2
t_2	b_I	c_1	15	10
t_4	b_1	c_{I}	20	20
t_5	b_I	c_{I}	11	15

id	d_2	d_3	m_{I}	m_2
t_2	b_I	c_1	15	10
t_4	b_1	c_{I}	20	20
t_5	b_I	c_{I}	11	15

d_1		m_1	m_2
a_1		10	15
a_1		15	10
a_{I}		11	15
	a_{I} a_{I}		a_1 10 a_1 15

$\begin{array}{c cccc} t_1 & a_1 & & 10 \\ \hline t_2 & a_1 & & 15 \\ \end{array}$	15
t_2 a_1 15	
	10
$ t_5 $ $ a_1 $ $ 11 $	15

 $\begin{array}{c} \textbf{T} \\ & \times \{t_4\} \\ & \times \{t_2,t_5\} \\ & \times \{t_4\} \\ & \times \{t_2,t_5\} \\ & \times$

Total 6 comparisons in this case

➤ Cons of BottomUp

- Repetitive storage: space complexity
- ■Repetitive comparisons: time complexity

TopDown stores a tuple for its maximal skyline constraints only.

Skyline Constraints

Constraints whose contextual skylines include *t*.

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_1	b_2	c_2	10	15
t_2	a_1	b_I	c_{I}	15	10
t_3	a_2	b_{I}	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_{I}	b_I	c_{I}	11	15

Maximal Skyline Constraints

Constraints not subsumed by any other skyline constraints of t.

id	d_1	d_2	d_3	m_1	m_2
t_1	a_1	b_2	c_2	10	15
t_2	a_1	b_I	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_{I}	b_{I}	c_1	11	15

Maximal Skyline Constraints

Constraints not subsumed by any other skyline constraints of t.

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_1	b_2	c_2	10	15
t_2	a_1	b_I	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_{I}	b_I	c_{I}	11	15

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_{I}	b_2	c_2	10	15
t_2	a_1	b_I	c_1	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_{I}	b_I	c_{I}	11	15

id	d_1	d_2	d_3	m_1	m_2
t_1	a_1	b_2	c_2	10	15
t_2	a_1	b_I	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_1	b_I	c_{I}	11	15

id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_{I}	b_2	c_2	10	15
t_2	a_1	b_I	c_{I}	15	10
t_3	a_2	b_I	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_{I}	b_I	c_{I}	11	15

id	d_1		m_1	m_2
t_1	a_{I}		10	15
t_2	a_1		15	10
t_5	a_{I}		11	15

id	d_I		m_1	m_2
t_1	a_{I}		10	15
t_2	a_1		15	10
t_5	a_{I}		11	15

id	d_I		m_1	m_2
t_1	a_{I}		10	15
t_2	a_{I}		15	10
t_5	a_{I}		11	15
		-		

Total 3 comparisons in this case

STopDown and SBottomUp

- ➤ Con of BottomUp and TopDown
 - Need to compute over every measure subspace separately
 - ➤STopDown and SBottomUp share computation across different subspaces

					-
id	d_1	d_2	d_3	m_1	m_2
t_{I}	a_1	b_2	c_2	10	15
t_2	a_{I}	b_I	c_{I}	15	10
t_3	a_2	b_{I}	c_2	17	17
t_4	a_2	b_I	c_{I}	20	20
t_5	a_1	b_I	c_{I}	11	15

id	d_1	d_2	d_3	m_2
t_{I}	a_{I}	b_2	c_2	15
t_2	a_1	b_I	c_{I}	10
t_3	a_2	b_I	c_2	17
t_4	a_2	b_I	c_{I}	20
t_5	a_{I}	b_{I}	c_1	15

61

id	d_1	m_1	m_2
t_{I}	a_1	10	15
t_2	a_1	15	10
t_5	a_1	11	15

Experiment Setup

□NBA Dataset

- 317,371 tuples of NBA box scores from 1991-2004 seasons
- 8 dimension attributes
- 7 measure attributes

□ Weather Dataset

- 7.8 million tuples of weather forecast from different locations of six countries & regions of UK
- 7 dimension attributes
- 7 measure attributes

Memory-Based Implementation

- ☐ Maintaining CSC for each constraint causes overhead (Xia et al. SIGMOD 2006)
 - Not benefitted by constraint pruning

Memory-Based Implementation

- **Weather Dataset**
- □BottomUp/SBottomUp exhausted available JVM heap
 - memory overflow
- □TopDown/STopDown was outperformed by BottomUp/SBottomUp
 - Updating maximal skyline constraints causes overhead

File-Based Implementation

- \square Each storage of (C,M) is a binary file
- □While traversing, file-read operation occurs if storage is nonempty: FSTopDown encounters many empty storage
- □For updating storage, file-write operation occurs: FSTopDown stores fewer tuples
- □I/O-cost dominates in-memory computation

Conclusion

- ✓ Novel problem of discovering prominent situational facts
- ✓ Presented Efficient algorithms
- ✓ Adopted prominence measure to rank

Ranking Facts

Prominence of Fact=

Skyline tuple in same context

Ranking Facts

id	month		pts	ast	rb
t_{I}	Feb.		4	12	5
t_2	Feb.		24	5	15
t_4	Feb.		2	5	2
t_5	Feb.		3	5	3
t_7	Feb.		12	13	5

 \square (month=Feb,{points,assists,rebounds})=>5/2

Ranking Facts

id			team	opp_team	ast	rb
t_3			Celtics	Nets	13	5
t_4			Celtics	Nets	5	2
t_7			Celtics	Nets	13	5

 \Box (team= $Celtics \land opp_team=Nets, \{assists, rebounds\})=>3/2$

Discovered Facts

- Lamar Odom had 30 points, 19 rebounds and 11 assists on March 6, 2004. No one before had a better or equal performance in NBA history.
- Allen Iverson had 38 points and 16 assists on April 14, 2004 to become the first player with a 38/16 (points/assists) game in the 2004-2005 season.
- Damon Stoudamire scored 54 points on January 14, 2005. It is the highest score in history made by any Trail Blazers.

Future Work

- Narrating facts in natural language text
- Demo under submission