東大 2019 年度数学解答例

文殊の知恵 高橋那弥

(加筆:中田昌輝)

目次

第	1問																										1
	第1問問題文			 			 						 							 							1
	第1問解答例			 			 					•	 							 				•	•		2
第	2 問																										11
	第2問問題文			 			 						 							 						•	11
	第2問解答例			 			 						 							 					•	•	12
第	3 問																										17
	第3問問題文			 			 						 							 							17
	第 9 問 鼦 炫 励																										1 2

問題文 第1問

第1問

第1問 問題文

複素正方行列 X は $XX^*=I$ を満たすとき, ユニタリ行列であるという. 但し, X^* は行列 X の共役転置行列(もしくは随伴行列)を表し,I は単位行列とする. また,I は虚数単位とする. 以下の問いに答えよ.

- (1) n を正の整数とし,A,B を n 次ユニタリ行列とする. 行列 AB もユニタリ行列であることを示せ.
- (2) n を正の整数とし、C、D を n 次実正方行列とする. 行列 F を $F=C+\mathrm{i}D$ と定義し、行列 G を

$$G = \begin{pmatrix} C & -D \\ D & C \end{pmatrix}$$

と定義する. 行列 F がユニタリ行列であることと行列 G が直交行列であることは同値であることを示せ.

(3) 次の行列の固有値を求めよ.

$$\frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

(4) n を正の整数とし,n 次正方行列 Q の (j,k) 成分 q_{jk} を

$$q_{jk} = \frac{1}{\sqrt{n}} \exp\left(\frac{2\pi i(j-1)(k-1)}{n}\right)$$

とする. 行列 Q はユニタリ行列であることを示せ.

(5) 行列式が 1 である 2 次のユニタリ行列は次の一形式を持つことを示せ. 但し, θ , ψ は実数であるとする. (これは一般形ではないので、誤植修正しました).

$$H = \begin{pmatrix} \exp(i\psi_1)\cos\theta & \exp(i\psi_2)\sin\theta \\ -\exp(-i\psi_2)\sin\theta & \exp(-i\psi_1)\cos\theta \end{pmatrix}$$

(6) 2次のユニタリ行列の一般形を求めよ

第1問 解答例

(1) A, B ともにユニタリ行列より以下が成り立つ.

$$\begin{cases}
AA^* = I \\
BB^* = I
\end{cases}$$
(1.1)

よって,式(1.1)より,以下が成り立つ.

$$(AB)(AB)^* = ABB^*A^*$$

$$= AIA^*$$

$$= AA^*$$

$$= I$$

よって、行列 AB についてもユニタリ行列であることが示された.

(2) 題意は以下のように同値変形できる.

行列 F がユニタリ行列であることと行列 G が直交行列であることは同値である \Longleftrightarrow 行列 F がユニタリ行列である \Leftrightarrow 行列 G が直交行列である

$$\iff FF^* = I \Leftrightarrow GG^\top = I \tag{1.2}$$

よって、式 (1.2) が成り立つことを示せばよい.

まず以下の式 (1.3) が成り立つことを示す.

$$FF^* = I \Rightarrow GG^{\top} = I \tag{1.3}$$

題意より、F = C + iD より、 $F^* = C^\top - iD^\top$ であり、式 (1.3) の仮定条件 $FF^* = I$ から以下が成り立つ.

$$FF^* = (C + iD) (C^{\top} - iD^{\top})$$

$$= CC^{\top} + DD^{\top} + i (DC^{\top} - CD^{\top})$$

$$= I$$

$$\iff I = CC^{\top} + DD^{\top} + i (DC^{\top} - CD^{\top})$$

$$\iff I \& \text{実正方行列より} \mathbf{0} = DC^{\top} - CD^{\top}$$

$$\iff I = CC^{\top} + DD^{\top}$$

$$\therefore GG^{\top} = \begin{pmatrix} C & -D \\ D & C \end{pmatrix} \begin{pmatrix} C^{\top} & D^{\top} \\ -D^{\top} & C^{\top} \end{pmatrix}$$

$$= \begin{pmatrix} CC^{\top} + DD^{\top} & CD^{\top} - DC^{\top} \\ DC^{\top} - CD^{\top} & DD^{\top} + CC^{\top} \end{pmatrix}$$

$$= \begin{pmatrix} I & \mathbf{0} \\ \mathbf{0} & I \end{pmatrix}$$

$$= I$$

よって,式(1.3)が成り立つことは示された.

次に以下の式 (1.4) が成り立つを示す.

$$GG^{\top} = I \Rightarrow FF^* = I \tag{1.4}$$

題意と式 (1.4) の仮定条件 $GG^{\top} = I$ から以下が成り立つ.

$$GG^{\top} = \begin{pmatrix} C & -D \\ D & C \end{pmatrix} \begin{pmatrix} C^{\top} & D^{\top} \\ -D^{\top} & C^{\top} \end{pmatrix}$$
$$= \begin{pmatrix} CC^{\top} + DD^{\top} & CD^{\top} - DC^{\top} \\ DC^{\top} - CD^{\top} & DD^{\top} + CC^{\top} \end{pmatrix}$$
$$= I$$
$$\iff \begin{cases} \mathbf{0} = CD^{\top} - DC^{\top} \\ I = CC^{\top} + DD^{\top} \end{cases}$$

$$FF^* = (C + iD) (C^{\top} - iD^{\top})$$

$$= CC^{\top} + DD^{\top} + i (DC^{\top} - CD^{\top})$$

$$= I + \mathbf{0}$$

$$= I$$

よって,式(1.4)が成り立つことが示された.

従って、式 (1.3)、(1.4) が成り立つことが示されたので、式 (1.2) が成り立つことが示された。よって、題意は示された。

(中田解)

行列
$$F$$
 がユニタリ行列である \iff $FF^* = I$

$$\iff (C + iD)(C + iD)^* = I$$

$$\iff (C + iD)(C^\mathsf{T} - iD^\mathsf{T}) = I$$

$$\iff (CC^\mathsf{T} + DC^\mathsf{T}) + i(DC^\mathsf{T} + CD^{-\mathsf{T}}) = I$$

$$\iff \begin{cases} CC^\mathsf{T} + DD^\mathsf{T} = I \\ DC^\mathsf{T} + CD^\mathsf{T} = 0 \end{cases}$$

$$\iff \begin{pmatrix} CC^\mathsf{T} + DD^\mathsf{T} & \mathbf{0} \\ 0 & CC^\mathsf{T} + DD^\mathsf{T} \end{pmatrix} = I$$

$$\iff \begin{pmatrix} C & -D \\ D & C \end{pmatrix} \begin{pmatrix} C^\mathsf{T} & D^\mathsf{T} \\ -D^\mathsf{T} & C^\mathsf{T} \end{pmatrix} = I$$

$$\iff GG^\mathsf{T} = I$$

よって、題意は示された.

(3) 題意の 4 次正方行列を A とおき, A は行列 A の行列式を表すとすると, 固有値 λ は以下を満たす.

$$|\lambda I - A| = 0$$

よって、この方程式を解くと以下のようになる.

$$\begin{split} |\lambda I - A| &= \left(\frac{1}{2}\right)^4 |2\lambda I - 2A| \\ &= \frac{1}{16} \begin{vmatrix} 2\lambda - 1 & -1 & -1 & -1 \\ -1 & 2\lambda - i & 1 & i \\ -1 & 1 & 2\lambda - 1 & 1 \\ -1 & i & 1 & 2\lambda - i \end{vmatrix} \\ &= \frac{1}{16} \begin{vmatrix} 0 & (2\lambda - 1)(2\lambda - i) - 1 & 2\lambda - 2 & i(2\lambda - 1) - 1 \\ -1 & 2\lambda - i & 1 & i \\ 0 & 1 + i - 2\lambda & 2\lambda - 2 & 1 - i \\ 0 & 2i - 2\lambda & 0 & 2\lambda - 2i \end{vmatrix} \\ &= \frac{1}{16} \times (-1)^{2+1} \times (-1) \begin{vmatrix} (2\lambda - 1)(2\lambda - i) - 1 & 2\lambda - 2 & i(2\lambda - 1) - 1 \\ 1 + i - 2\lambda & 2\lambda - 2 & 1 - i \\ 2i - 2\lambda & 0 & 2\lambda - 2i \end{vmatrix} \\ &= \frac{1}{16} \begin{vmatrix} (2\lambda - 1)(2\lambda - i) - 1 & 2\lambda - 2 & 2\lambda(2\lambda - 1) - 2 \\ 1 + i - 2\lambda & 2\lambda - 2 & 2 - 2\lambda \\ 2i - 2\lambda & 0 & 0 \end{vmatrix} \\ &= \frac{1}{16} \times (-1)^{3+1} \times (2i - 2\lambda) \begin{vmatrix} 2\lambda - 2 & 2\lambda(2\lambda - 1) - 2 \\ 2\lambda - 2 & 2 - 2\lambda \end{vmatrix} \\ &= \frac{1}{16} (2i - 2\lambda)(2\lambda - 2) [2 - 2\lambda - \{2\lambda(2\lambda - 1) - 2\}] \\ &= \frac{1}{2} (i - \lambda)(\lambda - 1)(2 - \lambda - 2\lambda^2 + \lambda) \\ &= (i - \lambda)(\lambda - 1)(1 - \lambda^2) \\ &= (\lambda - i)(\lambda - 1)^2(\lambda + 1) \\ \therefore \lambda &= \pm 1, i \end{split}$$

よって, 固有値は ±1i である.

(中田解)

この行列を A とし、この行列 A に対する固有値を λ 、固有ベクトルを x とおくと

$$Ax = \lambda x \iff (\lambda I - A)x = \mathbf{0}$$
$$\iff \det(\lambda I - A) = 0$$

が成り立つ. ゆえに求める固有値 λ は

$$\det \begin{vmatrix} \begin{pmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{vmatrix} = 0$$

$$\Leftrightarrow \det \begin{vmatrix} \frac{1}{2} \begin{pmatrix} 2\lambda - 1 & -1 & -1 & -1 & -1 \\ -1 & 2\lambda - i & 1 & i \\ -1 & 1 & 2\lambda - 1 & 1 \\ -1 & i & 1 & 2\lambda - i \end{vmatrix} = 0$$

$$\Leftrightarrow \begin{vmatrix} \frac{2\lambda - 1}{1} & -1 & -1 & -1 \\ -1 & 2\lambda - i & 1 & i \\ -1 & 1 & 2\lambda - 1 & 1 \\ -1 & i & 1 & 2\lambda - i \end{vmatrix} = 0$$

$$\Leftrightarrow \begin{vmatrix} 0 & -1 + (2\lambda - 1)(2\lambda - i) & 2\lambda - 2 & -1 + i(2\lambda - 1) \\ -1 & 2\lambda - i & 1 & i \\ 0 & -2\lambda + i + 1 & 2\lambda - 2 & 1 - i \\ 0 & -2\lambda + 2i & 0 & 2\lambda - 2i \end{vmatrix} = 0$$

$$\Leftrightarrow \begin{vmatrix} -1 + (2\lambda - 1)(2\lambda - i) & 2\lambda - 2 & -1 + i(2\lambda - 1) \\ -2\lambda + i + 1 & 2\lambda - 2 & 1 - i \\ 0 & -2\lambda + 2i & 0 & 2\lambda - 2i \end{vmatrix} = 0$$

$$\Leftrightarrow \begin{vmatrix} -1 + (2\lambda - 1)(2\lambda - i) & 2\lambda - 2 & -1 + i(2\lambda - 1) \\ -2\lambda + 2i & 0 & 2\lambda - 2i \end{vmatrix} = 0$$

$$\Leftrightarrow \begin{vmatrix} -1 + (2\lambda - 1)(2\lambda - i) & 2\lambda - 2 & -2 + 2\lambda(2\lambda - 1) \\ -2\lambda + 2i & 0 & 2\lambda - 2i \end{vmatrix} = 0$$

$$\Leftrightarrow (-2\lambda + 2i) \begin{vmatrix} 2\lambda - 2 & -2 + 2\lambda(2\lambda - 1) \\ -2\lambda + 2i & 0 & 0 \end{vmatrix} = 0$$

$$\Leftrightarrow (-2\lambda + 2i) \begin{vmatrix} 2\lambda - 2 & -2 + 2\lambda(2\lambda - 1) \\ 2\lambda - 2 & -2\lambda + 2 \end{vmatrix} = 0$$

$$\Leftrightarrow (\lambda - i)(\lambda - 1) \begin{vmatrix} 1 & -2 + 2\lambda(2\lambda - 1) \\ 1 & -2\lambda + 2 \end{vmatrix} = 0$$

$$\Leftrightarrow (\lambda - i)(\lambda - 1)(-4\lambda^2 + 4) = 0$$

$$\Leftrightarrow (\lambda - i)(\lambda - 1)(-4\lambda^2 + 4) = 0$$

$$\Leftrightarrow (\lambda - i)(\lambda - 1)(\lambda^2 - 1) = 0$$

$$\Leftrightarrow (\lambda - i)(\lambda - 1)(\lambda^2 - 1) = 0$$

$$\Leftrightarrow (\lambda - i)(\lambda - 1)(\lambda^2 - 1) = 0$$

$$\Leftrightarrow (\lambda - i)(\lambda - 1)(\lambda^2 - 1) = 0$$

$$\Leftrightarrow \lambda = \pm 1, i$$

よって, 固有値は ±1, i である.

中田別方針

問題の行列を A とすると

$$AA^* = I$$

より,A はユニタリ行列である. この A の固有値を λ , 固有ベクトルを x とすると

$$A\mathbf{x} = \lambda \mathbf{x}$$

が成り立ち, 複素内積と随伴行列の間に

$$\langle \boldsymbol{x}, A\boldsymbol{y} \rangle = \langle A^*\boldsymbol{x}, \boldsymbol{y} \rangle$$

の関係があることから

$$\langle Ax, Ax \rangle = \langle A^*Ax, x \rangle$$

= $\langle x, x \rangle$
= $\|x\|^2$

となり、Ax 同士の内積はx のノルムの2 乗に等しくなる.

一方で, 複素内積の性質で

$$\langle \boldsymbol{x}, \alpha \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$$

 $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha^* \langle \boldsymbol{x}, \boldsymbol{y} \rangle$

となるので,

$$\langle A\boldsymbol{x}, A\boldsymbol{x} \rangle = \langle \lambda \boldsymbol{x}, \lambda \boldsymbol{x} \rangle$$

$$= \lambda^* \langle \boldsymbol{x}, \lambda \boldsymbol{x} \rangle$$

$$= \lambda^* \lambda \langle \boldsymbol{x}, \boldsymbol{x} \rangle$$

$$= |\lambda|^2 ||\boldsymbol{x}||^2$$

したがって,

$$\|\boldsymbol{x}\|^2 = |\lambda|^2 \|\boldsymbol{x}\|^2$$

ここで, $x \neq 0$ から $||x||^2 \neq 0$ であるので,

$$|\lambda|^2 = 1 \Longleftrightarrow |\lambda| = 1$$

となる. 4 次のユニタリ行列であるので, $\lambda=\pm 1,\pm i$ が候補に上がる. これから固有ベクトルを求めて一致するかどうかを確認する.

(4) 題意より複素数 z に対する共役な複素数を \overline{z} と表すとき, n 次正方行列 Q の共役転置行列 Q^* の (j,k) 成分 q_{jk}^* は以下のようになる.

$$q_{jk}^* = \overline{q_{kj}}$$

$$= \frac{1}{\sqrt{n}} \exp\left(\frac{-2\pi i(k-1)(j-1)}{n}\right)$$
(1.5)

よって, 式 (1.5) から QQ^* の (j,k) 成分 Q_{jk} は以下のようになる.

$$Q_{jk} = \sum_{l=1}^{n} (q_{jl} \times q_{lk}^{*})$$

$$= \sum_{l=1}^{n} \left\{ \frac{1}{\sqrt{n}} \exp\left(\frac{2\pi i(j-1)(l-1)}{n}\right) \times \frac{1}{\sqrt{n}} \exp\left(\frac{-2\pi i(k-1)(l-1)}{n}\right) \right\}$$

$$= \frac{1}{n} \sum_{l=1}^{n} \exp\left(\frac{2\pi i(j-1)(l-1)}{n} + \frac{-2\pi i(k-1)(l-1)}{n}\right)$$

$$= \frac{1}{n} \sum_{l=0}^{n-1} \exp\left(\frac{2\pi i(j-k)l}{n}\right)$$

$$= \frac{1}{n} \sum_{l=0}^{n-1} \exp(0) \qquad j = k$$

$$= \begin{cases} \frac{1}{n} \sum_{l=0}^{n-1} \exp(0) & j \neq k \\ \frac{1}{n} \sum_{l=0}^{n-1} \exp\left(\frac{2\pi i(j-k)n}{n}\right) - \exp(0) & j \neq k \end{cases}$$

オイラーの公式からj,k は整数より

$$Q_{jk} = \begin{cases} \frac{1}{n} & j = k \\ \frac{1}{n} \frac{\cos\{2\pi(j-k)\} + i\sin\{2\pi(j-k)\} - 1}{\exp\left(\frac{2\pi i(j-k)}{n}\right) - 1} = 0 & j \neq k \end{cases}$$

従って、対角成分のみ 1 となり、他の成分は全て 0 となるので、 QQ^* は単位行列となる。従って、Q はユニタリ行列であることが示された。

(5) 題意の 2 次正方行列 H についてユニタリ行列であることを示す.

$$HH^* = \begin{pmatrix} \exp(\mathrm{i}\psi)\cos\theta & \exp(\mathrm{i}\psi)\sin\theta \\ -\exp(-\mathrm{i}\psi)\sin\theta & \exp(-\mathrm{i}\psi)\cos\theta \end{pmatrix} \begin{pmatrix} \exp(-\mathrm{i}\psi)\cos\theta & -\exp(\mathrm{i}\psi)\sin\theta \\ \exp(-\mathrm{i}\psi)\sin\theta & \exp(\mathrm{i}\psi)\cos\theta \end{pmatrix}$$

$$= \begin{pmatrix} \exp(\mathrm{i}\psi - \mathrm{i}\psi)(\cos^2\theta + \sin^2\theta) & \exp(2\mathrm{i}\psi)(-\cos\theta\sin\theta + \sin\theta\cos\theta) \\ \exp(-2\mathrm{i}\psi)(-\sin\theta\cos\theta + \cos\theta\sin\theta) & \exp(-\mathrm{i}\psi + \mathrm{i}\psi)(\sin^2\theta + \cos^2\theta) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= I$$

よって、行列 H はユニタリ行列である。また、行列 H の行列式は以下のようになる。

$$|H| = \exp(i\psi)\cos\theta \times \exp(-i\psi)\cos\theta - (-\exp(-i\psi)\sin\theta) \times \exp(i\psi)\sin\theta$$
$$= \cos^2\theta + \sin^2\theta = 1$$

よって、この 2 次正方行列 H は行列式が 1 でユニタリ行列であるので、行列式が 1 で 2 次のユニタリ行列の一形式となることが示された.

(中田解)

求める行列をHとする.

実数 $r_{11}, r_{12}, r_{21}, r_{22}, \psi_{11}, \psi_{12}, \psi_{21}, \psi_{22}$ を用いて次のように H を表すことができる.

$$H = \begin{pmatrix} r_{11} \exp(i\psi_{11}) & r_{12} \exp(i\psi_{12}) \\ r_{21} \exp(i\psi_{21}) & r_{22} \exp(i\psi_{22}) \end{pmatrix}$$

解答例 第1問

H がユニタリ行列になるとき

$$HH^* = I$$

$$\iff \begin{pmatrix} r_{11} \exp(i\psi_{11}) & r_{12} \exp(i\psi_{12}) \\ r_{21} \exp(i\psi_{21}) & r_{22} \exp(i\psi_{22}) \end{pmatrix} \begin{pmatrix} r_{11} \exp(-i\psi_{11}) & r_{21} \exp(-i\psi_{21}) \\ r_{12} \exp(-i\psi_{12}) & r_{22} \exp(-i\psi_{22}) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\iff \begin{cases} r_{11}^2 + r_{12}^2 = 1 \\ r_{11}r_{21} \exp(i(\psi_{11} - \psi_{21})) + r_{12}r_{22} \exp(i(\psi_{12} - \psi_{22})) = 0 \\ r_{11}r_{21} \exp(i(\psi_{21} - \psi_{11})) + r_{12}r_{22} \exp(i(\psi_{22} - \psi_{12})) = 0 \\ r_{21}^2 + r_{22}^2 = 1 \end{cases}$$

$$\iff \begin{cases} r_{11}^2 + r_{12}^2 = 1 \\ r_{11}r_{21} \exp(i(\psi_{11} - \psi_{21})) + r_{12}r_{22} \exp(i(\psi_{12} - \psi_{22})) = 0 \\ r_{21}^2 + r_{22}^2 = 1 \end{cases}$$

同様にして、

$$H^*H = I$$

$$\iff \begin{pmatrix} r_{11} \exp(-\mathrm{i}\psi_{11}) & r_{21} \exp(-\mathrm{i}\psi_{21}) \\ r_{12} \exp(-\mathrm{i}\psi_{12}) & r_{22} \exp(-\mathrm{i}\psi_{22}) \end{pmatrix} \begin{pmatrix} r_{11} \exp(\mathrm{i}\psi_{11}) & r_{12} \exp(\mathrm{i}\psi_{12}) \\ r_{21} \exp(\mathrm{i}\psi_{21}) & r_{22} \exp(\mathrm{i}\psi_{22}) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\iff \begin{cases} r_{11}^2 + r_{21}^2 = 1 \\ r_{11}r_{12} \exp(\mathrm{i}(\psi_{12} - \psi_{11})) + r_{21}r_{22} \exp(\mathrm{i}(\psi_{22} - \psi_{21})) = 0 \\ r_{11}r_{12} \exp(\mathrm{i}(\psi_{11} - \psi_{12})) + r_{21}r_{22} \exp(\mathrm{i}(\psi_{21} - \psi_{22})) = 0 \\ r_{12}^2 + r_{22}^2 = 1 \end{cases}$$

$$\iff \begin{cases} r_{11}^2 + r_{21}^2 = 1 \\ r_{11}r_{12} \exp(\mathrm{i}(\psi_{11} - \psi_{12})) + r_{21}r_{22} \exp(\mathrm{i}(\psi_{21} - \psi_{22})) = 0 \\ r_{12}^2 + r_{22}^2 = 1 \end{cases}$$

これらをまとめると,

$$\begin{cases} r_{11}^2 + r_{12}^2 = 1 \\ r_{11}r_{21} \exp(\mathrm{i}(\psi_{11} - \psi_{21})) + r_{12}r_{22} \exp(\mathrm{i}(\psi_{12} - \psi_{22})) = 0 \\ r_{21}^2 + r_{22}^2 = 1 \\ r_{11}^2 + r_{21}^2 = 1 \\ r_{11}r_{12} \exp(\mathrm{i}(\psi_{11} - \psi_{12})) + r_{21}r_{22} \exp(\mathrm{i}(\psi_{21} - \psi_{22})) = 0 \\ r_{12}^2 + r_{22}^2 = 1 \end{cases}$$

$$\iff \begin{cases} r_{11}^2 + r_{12}^2 = 1 \\ r_{11}^2 + r_{12}^2 = 1 \\ r_{11}^2 = r_{22}^2 \\ r_{12}^2 = r_{21}^2 \\ r_{11}r_{21} \exp(\mathrm{i}(\psi_{11} - \psi_{21})) + r_{12}r_{22} \exp(\mathrm{i}(\psi_{12} - \psi_{22})) = 0 \\ r_{11}r_{12} \exp(\mathrm{i}(\psi_{11} - \psi_{12})) + r_{21}r_{22} \exp(\mathrm{i}(\psi_{21} - \psi_{22})) = 0 \end{cases}$$

したがって, $r_{11} = \cos\theta \ (\theta \in \mathbb{R})$ とすると, $r_{12} = \sin\theta$ となり, $r_{21} = \pm\sin\theta$, $r_{22} = \pm\cos\theta$ となる. また行列式の値が 1 であるから.

$$\begin{vmatrix} r_{11} \exp(i\psi_{11}) & r_{12} \exp(i\psi_{12}) \\ r_{21} \exp(i\psi_{21}) & r_{22} \exp(i\psi_{22}) \end{vmatrix} = 1$$

$$\iff r_{11}r_{22} \exp(i(\psi_{11} + \psi_{22})) - r_{12}r_{22} \exp(i(\psi_{12} + \psi_{21})) = 1 \tag{*}$$

(i) $r_{21} = \sin \theta, r_{22} = \cos \theta$ のとき,

$$\begin{cases} \sin \theta \cos \theta \Big\{ \exp(i(\psi_{11} - \psi_{21})) + \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \\ \sin \theta \cos \theta \Big\{ \exp(i(\psi_{11} - \psi_{21})) + \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \end{cases}$$

$$\iff \begin{cases} \psi_{11} - \psi_{21} = (2k+1)\pi + \psi_{12} + \psi_{22} & (k \in \mathbb{Z}) \\ \psi_{11} - \psi_{12} = (2m+1)\pi + \psi_{21} + \psi_{22} & (m \in \mathbb{Z}) \end{cases}$$

$$\iff \psi_{11} = (2k+1)\pi + \psi_{12} + \psi_{21} - \psi_{22} & (k \in \mathbb{Z}) \end{cases}$$

式 (*) に代入すると

$$\cos^{2}\theta \exp\{i((2k+1)\pi + \psi_{12} + \psi_{21} - \psi_{22} + \psi_{22})\} - \sin^{2}\theta \exp(i(\psi_{12} + \psi_{21})) = 1$$

$$\iff -\cos^{2}\theta \exp(i(\psi_{12} + \psi_{21})) - \sin^{2}\theta \exp(i(\psi_{12} + \psi_{21})) = 1$$

$$\iff \psi_{12} + \psi_{21} = \pi$$

したがって,

$$r_{21} \exp(i\psi_{21}) = \sin\theta \exp(i(\pi - \psi_{12}))$$
$$= -\sin\theta \exp(-i\psi_{12})$$

また, $\psi_{12} + \psi_{21} = \pi$ より

$$\psi_{11} = (2k+1)\pi + \pi - \psi_{22}$$
$$= -\psi_{22}$$

(ii) $r_{21} = \sin \theta, r_{22} = -\cos \theta$ のとき,

$$\begin{cases} \sin \theta \cos \theta \Big\{ \exp(i(\psi_{11} - \psi_{21})) - \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \\ \sin \theta \cos \theta \Big\{ \exp(i(\psi_{11} - \psi_{21})) - \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \end{cases}$$

$$\iff \begin{cases} \psi_{11} - \psi_{21} = 2k\pi - \psi_{12} - \psi_{22} & (k \in \mathbb{Z}) \\ \psi_{11} - \psi_{12} = 2m\pi - \psi_{21} - \psi_{22} & (m \in \mathbb{Z}) \end{cases}$$

$$\iff \psi_{11} = 2k\pi + \psi_{12} + \psi_{21} - \psi_{22} & (k \in \mathbb{Z}) \end{cases}$$

(iii) $r_{21} = -\sin\theta, r_{22} = \cos\theta$ のとき,

$$\begin{cases} \sin \theta \cos \theta \Big\{ \exp(i(\psi_{11} - \psi_{21})) - \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \\ \sin \theta \cos \theta \Big\{ - \exp(i(\psi_{11} - \psi_{21})) + \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \end{cases}$$

$$\iff \begin{cases} \psi_{11} - \psi_{21} = 2k\pi - \psi_{12} - \psi_{22} & (k \in \mathbb{Z}) \\ \psi_{11} - \psi_{12} = 2m\pi - \psi_{21} - \psi_{22} & (m \in \mathbb{Z}) \end{cases}$$

$$\iff \psi_{11} = 2k\pi + \psi_{12} + \psi_{21} - \psi_{22} & (k \in \mathbb{Z}) \end{cases}$$

(iv) $r_{21} = -\sin\theta, r_{22} = -\cos\theta \, \mathcal{O} \, \xi \, \xi$,

$$\begin{cases} \sin \theta \cos \theta \Big\{ -\exp(i(\psi_{11} - \psi_{21})) - \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \\ \sin \theta \cos \theta \Big\{ -\exp(i(\psi_{11} - \psi_{21})) - \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \end{cases}$$

$$\iff \begin{cases} \psi_{11} - \psi_{21} = 2k\pi - \psi_{12} - \psi_{22} & (k \in \mathbb{Z}) \\ \psi_{11} - \psi_{12} = 2m\pi - \psi_{21} - \psi_{22} & (m \in \mathbb{Z}) \end{cases}$$

$$\iff \psi_{11} = (2k+1)\pi + \psi_{12} + \psi_{21} - \psi_{22} & (k \in \mathbb{Z}) \end{cases}$$

(6) 解けなかったので後述.

(中田解)

求める行列をHとする.

実数 $r_{11}, r_{12}, r_{21}, r_{22}, \psi_{11}, \psi_{12}, \psi_{21}, \psi_{22}$ を用いて次のように H を表すことができる.

$$H = \begin{pmatrix} r_{11} \exp(i\psi_{11}) & r_{12} \exp(i\psi_{12}) \\ r_{21} \exp(i\psi_{21}) & r_{22} \exp(i\psi_{22}) \end{pmatrix}$$

H がユニタリ行列になるとき

$$\begin{split} HH^* &= I \\ \iff \begin{pmatrix} r_{11} \exp(\mathrm{i}\psi_{11}) & r_{12} \exp(\mathrm{i}\psi_{12}) \\ r_{21} \exp(\mathrm{i}\psi_{21}) & r_{22} \exp(\mathrm{i}\psi_{22}) \end{pmatrix} \begin{pmatrix} r_{11} \exp(-\mathrm{i}\psi_{11}) & r_{21} \exp(-\mathrm{i}\psi_{21}) \\ r_{12} \exp(-\mathrm{i}\psi_{12}) & r_{22} \exp(-\mathrm{i}\psi_{22}) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \iff \begin{cases} r_{11}^2 + r_{12}^2 & 1 \\ r_{11}r_{21} \exp(\mathrm{i}(\psi_{11} - \psi_{21})) + r_{12}r_{22} \exp(\mathrm{i}(\psi_{12} - \psi_{22})) & = 0 \\ r_{11}r_{21} \exp(\mathrm{i}(\psi_{21} - \psi_{11})) + r_{12}r_{22} \exp(\mathrm{i}(\psi_{22} - \psi_{12})) & = 0 \\ r_{21}^2 + r_{22}^2 & = 1 \end{cases} \\ \iff \begin{cases} r_{11}^2 + r_{12}^2 & 1 \\ r_{11}r_{21} \exp(\mathrm{i}(\psi_{11} - \psi_{21})) + r_{12}r_{22} \exp(\mathrm{i}(\psi_{12} - \psi_{22})) & = 0 \\ r_{21}^2 + r_{22}^2 & = 1 \end{cases} \end{split}$$

同様にして,

$$H^*H = I$$

$$\iff \begin{pmatrix} r_{11} \exp(-\mathrm{i}\psi_{11}) & r_{21} \exp(-\mathrm{i}\psi_{21}) \\ r_{12} \exp(-\mathrm{i}\psi_{12}) & r_{22} \exp(-\mathrm{i}\psi_{22}) \end{pmatrix} \begin{pmatrix} r_{11} \exp(\mathrm{i}\psi_{11}) & r_{12} \exp(\mathrm{i}\psi_{12}) \\ r_{21} \exp(\mathrm{i}\psi_{21}) & r_{22} \exp(\mathrm{i}\psi_{22}) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\iff \begin{cases} r_{11}^2 + r_{21}^2 = 1 \\ r_{11}r_{12} \exp(\mathrm{i}(\psi_{12} - \psi_{11})) + r_{21}r_{22} \exp(\mathrm{i}(\psi_{22} - \psi_{21})) = 0 \\ r_{11}r_{12} \exp(\mathrm{i}(\psi_{11} - \psi_{12})) + r_{21}r_{22} \exp(\mathrm{i}(\psi_{21} - \psi_{22})) = 0 \\ r_{12}^2 + r_{22}^2 = 1 \end{cases}$$

$$\iff \begin{cases} r_{11}^2 + r_{21}^2 = 1 \\ r_{11}r_{12} \exp(\mathrm{i}(\psi_{11} - \psi_{12})) + r_{21}r_{22} \exp(\mathrm{i}(\psi_{21} - \psi_{22})) = 0 \\ r_{12}^2 + r_{22}^2 = 1 \end{cases}$$

これらをまとめると,

$$\begin{cases} r_{11}^2 + r_{12}^2 = 1 \\ r_{11}r_{21} \exp(\mathrm{i}(\psi_{11} - \psi_{21})) + r_{12}r_{22} \exp(\mathrm{i}(\psi_{12} - \psi_{22})) = 0 \\ r_{21}^2 + r_{22}^2 = 1 \\ r_{11}^2 + r_{21}^2 = 1 \\ r_{11}r_{12} \exp(\mathrm{i}(\psi_{11} - \psi_{12})) + r_{21}r_{22} \exp(\mathrm{i}(\psi_{21} - \psi_{22})) = 0 \\ r_{12}^2 + r_{22}^2 = 1 \end{cases}$$

$$\iff \begin{cases} r_{11}^2 + r_{12}^2 = 1 \\ r_{11}^2 + r_{12}^2 = 1 \\ r_{11}^2 = r_{22}^2 \\ r_{12}^2 = r_{21}^2 \\ r_{11}r_{21} \exp(\mathrm{i}(\psi_{11} - \psi_{21})) + r_{12}r_{22} \exp(\mathrm{i}(\psi_{12} - \psi_{22})) = 0 \\ r_{11}r_{12} \exp(\mathrm{i}(\psi_{11} - \psi_{12})) + r_{21}r_{22} \exp(\mathrm{i}(\psi_{21} - \psi_{22})) = 0 \end{cases}$$

したがって, $r_{11}=\cos\theta$ ($\theta\in\mathbb{R}$) とすると, $r_{12}=\sin\theta$ となり, $r_{21}=\pm\sin\theta$, $r_{22}=\pm\cos\theta$ となる.

(i) $r_{21} = \sin \theta, r_{22} = \cos \theta$ のとき,

$$\begin{cases} \sin \theta \cos \theta \Big\{ \exp(i(\psi_{11} - \psi_{21})) + \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \\ \sin \theta \cos \theta \Big\{ \exp(i(\psi_{11} - \psi_{21})) + \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \end{cases}$$

$$\iff \begin{cases} \psi_{11} - \psi_{21} = (2k+1)\pi + \psi_{12} + \psi_{22} & (k \in \mathbb{Z}) \\ \psi_{11} - \psi_{12} = (2m+1)\pi + \psi_{21} + \psi_{22} & (m \in \mathbb{Z}) \end{cases}$$

$$\iff \psi_{11} = (2k+1)\pi + \psi_{12} + \psi_{21} - \psi_{22} & (k \in \mathbb{Z}) \end{cases}$$

(ii) $r_{21} = \sin \theta, r_{22} = -\cos \theta$ のとき,

$$\begin{cases} \sin \theta \cos \theta \Big\{ \exp(i(\psi_{11} - \psi_{21})) - \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \\ \sin \theta \cos \theta \Big\{ \exp(i(\psi_{11} - \psi_{21})) - \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \end{cases}$$

$$\iff \begin{cases} \psi_{11} - \psi_{21} = 2k\pi - \psi_{12} - \psi_{22} & (k \in \mathbb{Z}) \\ \psi_{11} - \psi_{12} = 2m\pi - \psi_{21} - \psi_{22} & (m \in \mathbb{Z}) \end{cases}$$

$$\iff \psi_{11} = 2k\pi + \psi_{12} + \psi_{21} - \psi_{22} & (k \in \mathbb{Z}) \end{cases}$$

(iii) $r_{21} = -\sin\theta, r_{22} = \cos\theta$ のとき,

$$\begin{cases} \sin \theta \cos \theta \Big\{ \exp(i(\psi_{11} - \psi_{21})) - \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \\ \sin \theta \cos \theta \Big\{ - \exp(i(\psi_{11} - \psi_{21})) + \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \end{cases}$$

$$\iff \begin{cases} \psi_{11} - \psi_{21} = 2k\pi - \psi_{12} - \psi_{22} & (k \in \mathbb{Z}) \\ \psi_{11} - \psi_{12} = 2m\pi - \psi_{21} - \psi_{22} & (m \in \mathbb{Z}) \end{cases}$$

$$\iff \psi_{11} = 2k\pi + \psi_{12} + \psi_{21} - \psi_{22} & (k \in \mathbb{Z}) \end{cases}$$

(iv)
$$r_{21} = -\sin\theta, r_{22} = -\cos\theta$$
 のとき,

$$\begin{cases} \sin \theta \cos \theta \Big\{ -\exp(i(\psi_{11} - \psi_{21})) - \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \\ \sin \theta \cos \theta \Big\{ -\exp(i(\psi_{11} - \psi_{21})) - \exp(i(\psi_{12} - \psi_{22})) \Big\} = 0 \end{cases}$$

$$\iff \begin{cases} \psi_{11} - \psi_{21} = 2k\pi - \psi_{12} - \psi_{22} & (k \in \mathbb{Z}) \\ \psi_{11} - \psi_{12} = 2m\pi - \psi_{21} - \psi_{22} & (m \in \mathbb{Z}) \end{cases}$$

$$\iff \psi_{11} = (2k+1)\pi + \psi_{12} + \psi_{21} - \psi_{22} & (k \in \mathbb{Z}) \end{cases}$$

したがって、一般形は (i),(ii),(iii),(iv) より

$$H = \begin{pmatrix} -\exp(i(\psi_{12} + \psi_{21} - \psi_{22}))\cos\theta & \exp(i\psi_{12})\sin\theta \\ \exp(i\psi_{21})\sin\theta & \exp(i\psi_{22})\cos\theta \end{pmatrix}$$

問題文 第 2 問

第2問

第2問 問題文

実数値関数 u(x,t) が $-\infty < x < \infty, t > 0$ で定義されている. ここで x,t は独立である. 偏微分方程式

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \tag{2.1}$$

の解を初期条件

$$u(x,0) = \exp\left(-ax^2\right) \tag{2.2}$$

$$\frac{\partial u}{\partial t}(x,0) = 0 \tag{2.3}$$

の下で求める. 但しa,c は正の実数でありi は虚数単位とする. 以下の問いに答えよ.

(1) 次の式を複素積分を用いて計算せよ.

$$\int_{-\infty}^{\infty} \exp\left(-a(x+\mathrm{i}d)^2\right) \,\mathrm{d}x$$

但し.d は実数である. また、以下の式を用いてもよい

$$\int_{-\infty}^{\infty} \exp\left(-x^2\right) \, \mathrm{d}x = \sqrt{\pi}$$

(2) u(x,t) の x に関するフーリエ変換 U(k,t) を以下のように定義する.

$$U(k,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x,t) \exp(-ikx) dx$$

ここで x に関する積分と t に関する積分の順序の交換が可能であると仮定してよい. さらに,u(x,t) と $\frac{\partial u}{\partial x}(x,t)$ は任意の t に対して $x \to \pm \infty$ の時 0 に収束するものとする.

- (i) u(x,t) が式 (2.1) を満たすとき,U(k,t) が従う偏微分方程式を答えよ.
- (ii) (i) の解は式 (2.3) の初期条件の下で k を変数とする関数 F(k) を用いて以下のように表せることを示せ.

$$U(k,t) = F(k)\cos(kct)$$

- (iii) さらに式 (2.2) の初期条件の下で F(k) を求め,U(k,t) を与えよ. 設問 (1) の結果を用いてもよい.
- (3) 設問 2 で得られた U(k,t) のフーリエ逆変換を計算することにより,u(x,t) を求めよ. 但し, フーリエ逆変換は次式で定義される.

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} U(k,t) \exp(\mathrm{i}kx) \,\mathrm{d}k$$

第2問 解答例

(1) 題意の式は複素数 $f(z)=\exp(-az^2)$ とおくと $R(\in \mathbb{R})$ を用いて、直線 $\gamma_1(t)=t+\mathrm{i}d$: $t\in [-R,R]$ における以下のような複素積分となる.

$$\int_{-\infty}^{\infty} \exp\left\{-a(x+id)^2\right\} dx$$

$$= \lim_{R \to \infty} \int_{\gamma_1} \exp\left(-az^2\right) dz$$

$$= \lim_{R \to \infty} \int_{\gamma_1} f(z) dz$$
(2.4)

よって、式 (2.4) を求めればいいことが分かるので、この式の値を以下で求める.

ここで、以下の積分路 $C: \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$ を考える.

よって、この時, $f(z)=\exp(-az^2)$ は $\mathbb C$ 上で正則であるので,積分路 C 及び C 内で正則より,Cauchy の積分定理より以下が成り立つ.

$$\int_C f(z) \, \mathrm{d}z = 0 \tag{2.5}$$

よって、またここで以下が成り立つ.

$$\int_{C} f(z) dz = \int_{\gamma_{1}} f(z) dz + \int_{\gamma_{2}} f(z) dz + \int_{\gamma_{3}} f(z) dz + \int_{\gamma_{4}} f(z) dz$$
 (2.6)

従って、積分路 $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ における積分について以下が成り立つ.

まず, γ_2 の積分について $\gamma_2(t) = -R + \mathrm{i}t : t \in [0,d]$ より以下が成り立つ.

$$\int_{\gamma_2} f(z) dz = \int_0^d \exp\left(-a(-R+it)^2\right) i dt$$

$$= \int_0^d \exp\left(-a(R^2 - 2iRt - t^2)\right) i dt$$
(2.7)

次に, γ_3 の積分について $\gamma_3(t) = t : t \in [-R, R]$ より以下が成り立つ.

$$\int_{\gamma_3} f(z) dz = \int_R^{-R} \exp\left(-at^2\right) dt \tag{2.8}$$

次に, γ_4 の積分について $\gamma_4(t)=R+\mathrm{i}t$: $t\in[0,d]$ より以下が成り立つ.

$$\int_{\gamma_4} f(z) dz = \int_0^d \exp\left(-a(R+it)^2\right) i dt$$

$$= \int_0^d \exp\left(-a(R^2 + 2iRt - t^2)\right) i dt$$
(2.9)

従って,式(2.7)より,以下が成り立つ.

$$\left| \int_0^d \exp\left(-a(R^2 - 2iRt - t^2)\right) i \, \mathrm{d}t \right| \le \int_0^d \left| \exp\left(-a(R^2 - 2iRt - t^2)\right) i \right| \, \mathrm{d}t$$

$$= \int_0^d \left| \exp\left(-a(R^2 - 2iRt - t^2)\right) \right| \left| i \right| \, \mathrm{d}t$$

$$= \int_0^d \left| \exp\left(-aR^2\right) \right| \left| \exp\left(-2iRt\right) \right| \left| \exp\left(-t^2\right) \right| \, \mathrm{d}t$$

$$= \int_0^d \left| \exp\left(-aR^2\right) \right| \left| \exp\left(-t^2\right) \right| \, \mathrm{d}t$$

$$= \exp\left(-aR^2\right) \int_0^d \exp\left(-t^2\right) \, \mathrm{d}t$$

$$\therefore \lim_{R \to \infty} \int_0^d \left| \exp\left(-a(R^2 - 2iRt - t^2)\right) i \right| \, \mathrm{d}t = \lim_{R \to \infty} \exp\left(-aR^2\right) \int_0^d \exp\left(-t^2\right) \, \mathrm{d}t = 0$$

挟み撃ちの定理より

$$\lim_{R \to \infty} \left| \int_0^d \exp\left(-a(R^2 - 2iRt - t^2)\right) i dt \right| = 0$$

$$\therefore \lim_{R \to \infty} \int_0^d \exp\left(-a(R^2 - 2iRt - t^2)\right) i dt = 0$$
(2.10)

また,式(2.9)より,同様にして以下が成り立つ.

$$\left| \int_0^d \exp\left(-a(R^2 + 2iRt - t^2)\right) i \, dt \right| \le \exp\left(-aR^2\right) \int_0^d \exp\left(-t^2\right) \, dt$$

$$\therefore \lim_{R \to \infty} \int_0^d \left| \exp\left(-a(R^2 - 2iRt - t^2)\right) i \right| \, dt = \lim_{R \to \infty} \exp\left(-aR^2\right) \int_0^d \exp\left(-t^2\right) \, dt = 0$$

挟み撃ちの定理より

$$\lim_{R \to \infty} \left| \int_0^d \exp\left(-a(R^2 - 2iRt - t^2)\right) i \, dt \right| = 0$$

$$\therefore \lim_{R \to \infty} \int_0^d \exp\left(-a(R^2 - 2iRt - t^2)\right) i \, dt = 0$$
(2.11)

また, 題意の式より, 以下が成り立つ.

$$\int_{-\infty}^{\infty} \exp\left(-x^2\right) \, \mathrm{d}x = \sqrt{\pi} \tag{2.12}$$

また,a > 0 より式 (2.8) から, $u = -\sqrt{at}$ と置換すると以下が成り立つ.

$$\int_{R}^{-R} \exp\left(-at^{2}\right) dt = \int_{-\sqrt{a}R}^{\sqrt{a}R} \exp\left(-u^{2}\right) \frac{1}{-\sqrt{a}} du$$
(2.13)

よって、式 (2.12)、(2.13) より、以下のようになる。

$$\lim_{R \to \infty} \int_{R}^{-R} \exp(-at^{2}) dt = -\frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} \exp(-u^{2}) du$$
$$= -\frac{\sqrt{\pi}}{\sqrt{a}}$$
(2.14)

従って,式(2.5),(2.10),(2.14),(2.11)より,以下が成り立つ。

$$\lim_{R \to \infty} \int_C f(z) \, \mathrm{d}z = 0$$

$$\iff \lim_{R \to \infty} \int_{\gamma_1} f(z) \, \mathrm{d}z + \lim_{R \to \infty} \int_{\gamma_2} f(z) \, \mathrm{d}z + \lim_{R \to \infty} \int_{\gamma_3} f(z) \, \mathrm{d}z + \lim_{R \to \infty} \int_{\gamma_4} f(z) \, \mathrm{d}z = 0$$

$$\iff \lim_{R \to \infty} \int_{\gamma_1} f(z) \, \mathrm{d}z + 0 + \left(-\sqrt{\frac{\pi}{a}} \right) + 0 = 0$$

$$\iff \lim_{R \to \infty} \int_{\gamma_1} f(z) \, \mathrm{d}z = \sqrt{\frac{\pi}{a}}$$

従って,式 (2.4) より求める値は $\sqrt{\frac{\pi}{a}}$ となる.

(中田解)

 $f(z) = \exp(-az^2)$ とする.

 $R(\in \mathbb{R})$ を用いて、次の積分路を考える.

 e^{-az^2} に留数は存在しないので、上の周回積分路 C において

$$\int_C \exp(-az^2) \, \mathrm{d}z = 0$$

ここで、 $-R \to R$ の積分路を C_1 とし、 $R \to R + \mathrm{i}d$ の積分路を C_2 、 $R + \mathrm{i}d \to -R + \mathrm{i}d$ の積分路を C_3 、 $-R + \mathrm{i}d \to -R$ の積分路を C_4 とすると、

$$C = C_1 + C_2 + C_3 + C_4$$

である. ここで, $R \to \infty$ において

$$\lim_{R \to \infty} \int_{C_2} \exp(-az^2) dz = \lim_{R \to \infty} \int_0^d \exp(-a(R + it)^2) dt$$
$$= 0$$

同様にして

$$\lim_{R \to \infty} \int_{C_4} \exp(-az^2) dz = \lim_{R \to \infty} \int_d^0 \exp(-a(-R + it)^2) dt$$
$$= 0$$

となるので,

$$\lim_{R \to \infty} \int_C \exp(-az^2) dz = \lim_{R \to \infty} \int_{C_1} \exp(-az^2) dz + \lim_{R \to \infty} \int_{C_3} \exp(-az + id) dz$$
$$= 0$$

したがって,

$$\int_{-\infty}^{\infty} \exp(-ax^2) dx = \int_{-\infty}^{\infty} \exp(-a(x+id)^2) dx$$

ここで, $t = \sqrt{ax}$ とおくと,

$$\frac{\mathrm{d}t}{\mathrm{d}x} = \sqrt{a} \iff \mathrm{d}x = \frac{1}{\sqrt{a}}\,\mathrm{d}t$$

であるから,

$$\int_{-\infty}^{\infty} \exp(-ax^2) dx = \int_{-\infty}^{\infty} \exp(-t^2) \cdot \frac{1}{\sqrt{a}} dt$$
$$= \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} \exp(-x^2) dx$$
$$= \sqrt{\frac{\pi}{a}}$$

よって,

$$\int_{-\infty}^{\infty} \exp(-a(x+\mathrm{i}d)) \,\mathrm{d}x = \sqrt{\frac{\pi}{a}}$$

(2) (i) 式 (2.1) と題意より,以下が成り立つ.

$$\begin{split} \frac{\partial^2 U(k,t)}{\partial t^2} &= \frac{\partial^2 \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x,t) \exp(-\mathrm{i}kx) \, \mathrm{d}x\right)}{\partial t^2} \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial^2 u(x,t)}{\partial t^2} \exp(-\mathrm{i}kx) \, \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \exp(-\mathrm{i}kx) \, \mathrm{d}x \\ &= \frac{c^2}{\sqrt{2\pi}} \left\{ \left[\frac{\partial u(x,t)}{\partial x} \exp(-\mathrm{i}kx) \right]_{-\infty}^{\infty} - (-\mathrm{i}k) \int_{-\infty}^{\infty} \frac{\partial u(x,t)}{\partial x} \exp(-\mathrm{i}kx) \, \mathrm{d}x \right\} \\ &= \frac{\mathrm{i}kc^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial u(x,t)}{\partial x} \exp(-\mathrm{i}kx) \, \mathrm{d}x \\ &= \frac{\mathrm{i}kc^2}{\sqrt{2\pi}} \left\{ \left[u(x,t) \exp(-\mathrm{i}kx) \right]_{-\infty}^{\infty} - (-\mathrm{i}k) \int_{-\infty}^{\infty} u(x,t) \exp(-\mathrm{i}kx) \, \mathrm{d}x \right\} \\ &= \frac{(\mathrm{i}kc)^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x,t) \exp(-\mathrm{i}kx) \, \mathrm{d}x \\ &= -(kc)^2 U(k,t) \end{split}$$

よって,U(k,t) は以下の偏微分方程式に従う.

$$\frac{\partial^2 U(k,t)}{\partial t^2} = -(kc)^2 U(k,t) \tag{2.15}$$

(ii) 初期条件 (2.3) より,以下のことが成り立つ.

$$\frac{\partial U(k,t)}{\partial t} = \frac{\partial \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x,t) \exp(-ikx) dx\right)}{\partial t}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial u(x,t)}{\partial t} \exp(-ikx) dx$$

$$\therefore \frac{\partial U}{\partial t}(k,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial u}{\partial t}(x,0) \exp(-ikx) dx = 0$$
 (2.16)

よって,U(k,t) に関する初期条件も式 (2.16) のようになる. ここで U(k,t) が題意の関数で表されるとすると U(k,t) の t に関する 1 階偏微分を行うと以下のようになる.

$$\frac{\partial U(k,t)}{\partial t} = \frac{\partial F(k)\cos(kct)}{\partial t}$$
$$= F(k)(-kc\sin(kct))$$

よって,以下が成り立つ.

$$\frac{\partial U}{\partial t}(k,0) = F(k)(-kc\sin(kc\cdot 0)) = 0 \tag{2.17}$$

よって, 題意の関数でおくと初期条件 (2.16) を満たす. また,(i) の解となるかを以下に示す.

(i) の式に代入して,

(左辺) =
$$\frac{\partial^2 U(k,t)}{\partial t^2}$$

= $\frac{\partial^2 (F(k)\cos(kct))}{\partial t^2}$
= $-(kc)^2 F(k)\cos(kct)$
= $-(kc)^2 U(k,t)$
= (右辺)

よって, $U(k,t) = F(k)\cos(kct)$ は (i) の解の一つである. 従って, 式 (2.3) の初期条件のもとで (i) の解となることが示されたので, 題意は示された.

(iii) 式 (2.2) の初期条件の下で設問 (1) より, 以下が成り立つ.

$$U(k,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x,0) \exp(-ikx) dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-ax^2) \exp(-ikx) dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-ax^2 - ikx) dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left\{-a\left(x - \frac{ik}{2a}\right)^2 + \frac{1}{a} \cdot \left(\frac{ik}{2}\right)^2\right\} dx$$

$$= \frac{\exp\left(-\frac{k^2}{4a}\right)}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left\{-a\left(x - \frac{ik}{2a}\right)^2\right\} dx$$

$$= \frac{\exp\left(-\frac{k^2}{4a}\right)}{\sqrt{2\pi}} \sqrt{\frac{\pi}{a}}$$

従って以下が成り立つ.

$$U(k,0) = F(k)\cos(kc \cdot 0) = F(k) = \frac{\exp\left(-\frac{k^2}{4a}\right)}{\sqrt{2a}}$$

よって,U(k,t) は以下のようになる

$$U(k,t) = F(k)\cos(kct) = \frac{\exp\left(-\frac{k^2}{4a}\right)}{\sqrt{2a}}\cos(kct)$$
 (2.18)

(3) 設問 (2) で得られた U(k,t) と a > 0, 設問 (1) より,以下が成り立つ.

$$\begin{split} u(x,t) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} U(k,t) \exp(ikx) \, \mathrm{d}k \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\exp\left(\frac{-k^2}{4a}\right)}{\sqrt{2a}} \cos(kct) \exp(ikx) \, \mathrm{d}k \\ &= \frac{1}{2\sqrt{a\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{k^2}{4a} + ikx\right) \frac{\exp\left(ikct\right) + \exp\left(-ikct\right)}{2} \, \mathrm{d}k \\ &= \frac{1}{4\sqrt{a\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{k^2}{4a} + ikx + ikct\right) + \exp\left(-\frac{k^2}{4a} + ikx - ikct\right) \, \mathrm{d}k \\ &= \frac{1}{4\sqrt{a\pi}} \int_{-\infty}^{\infty} \exp\left[-\frac{1}{4a} \left\{k - 2a\mathrm{i}(x + ct)\right\}^2 - a(x + ct)^2\right] \, \mathrm{d}k \\ &+ \frac{1}{4\sqrt{a\pi}} \int_{-\infty}^{\infty} \exp\left[-\frac{1}{4a} \left\{k - 2a\mathrm{i}(x - ct)\right\}^2 - a(x - ct)^2\right] \, \mathrm{d}k \\ &= \frac{1}{4\sqrt{a\pi}} \exp\left\{-a(x + ct)^2\right\} \int_{-\infty}^{\infty} \exp\left[-\frac{1}{4a} \left\{k - 2a\mathrm{i}(x + ct)\right\}^2\right] \, \mathrm{d}k \\ &+ \frac{1}{4\sqrt{a\pi}} \exp\left\{-a(x - ct)^2\right\} \int_{-\infty}^{\infty} \exp\left[-\frac{1}{4a} \left\{k - 2a\mathrm{i}(x - ct)\right\}^2\right] \, \mathrm{d}k \\ &= \frac{1}{4\sqrt{a\pi}} \exp\left\{-a(x + ct)^2\right\} \sqrt{\frac{\pi}{\frac{1}{4a}}} + \frac{1}{4\sqrt{a\pi}} \exp\left\{-a(x - ct)^2\right\} \sqrt{\frac{\pi}{\frac{1}{4a}}} \\ &= \frac{1}{2} \left[\exp\left\{-a(x + ct)^2\right\} + \exp\left\{-a(x - ct)^2\right\}\right] \end{split}$$

よって、求める関数 u(x,t) は以下のようになる.

$$u(x,t) = \frac{1}{2} \left[\exp \left\{ -a(x+ct)^2 \right\} + \exp \left\{ -a(x-ct)^2 \right\} \right]$$

問題文 第 3 問

第3問

第3問 問題文

下図のように、平面上に三角形 ABC が与えられており、各頂点の座標は A(1,0)、B(0,1)、C(-1,-1) とする. 原点 (0,0) を端点とする半直線 ℓ をランダムに選ぶ. すなわち、 Θ を区間 $[0,2\pi)$ 上の一様分布に従う確率変数として、

$$\ell = \{ (r\cos\Theta, r\sin\Theta) \mid r \ge 0 \}$$

とおく. この半直線 ℓ と三角形 ABC の周との交点を Q とおく. また,Q の座標を (X,Y) とおく. ただし,X,Y は確率変数 である. 以下の問いに答えよ.

- (1) 点 Q が辺 AB 上にある確率を求めよ.
- (2) 点 Q が辺 AB 上にあるという条件の下での X の期待値は 1/2 であることを示せ. 但し, 三角形 ABC が直線 y=x に 関して対称であることを利用してもよい.
- (3) 点 Q が辺 BC にあるという条件のもとでの X の確率密度関数を,変数変換の公式

$$f(x) = g(h(x)) \left| \frac{\mathrm{d}h}{\mathrm{d}x}(x) \right|$$

を使って求めよ. ただし,x は任意の実数とし,f と g はそれぞれ X と Θ の確率密度関数を表し,h は $\Theta=h(X)$ を満たす関数とする.

- (4) 点 Q が辺 BC にあるという条件のもとでの X の期待値を α とおく. 設問 3 の結果を用いて α を求めよ.
- (5) Χ の期待値 μ を求めよ.

第3問 解答例

(1) 点 Q が辺 AB にある時, 確率変数 Θ は以下の範囲に存在する.

$$0 \le \Theta \le \frac{\pi}{2} \tag{3.1}$$

ここで, 確率変数 Θ は区間 $[0,2\pi)$ 上の一様分布に従う確率変数であるので, Θ に関する確率密度関数 $f_{\Theta}(\Theta)$ は定数 $c\in\mathbb{R}$ を用いて, 以下のように定義される.

$$f_{\Theta}(\Theta) = \begin{cases} c & 0 \le \Theta < 2\pi \\ 0 & 0 > \Theta, \ \Theta \ge 2\pi \end{cases}$$
 (3.2)

よって、式(3.2)と確率密度関数の定義より、以下が成り立つ.

$$\int_{-\infty}^{\infty} f_{\Theta}(\Theta) d\Theta = 1$$

$$\iff \lim_{x \to 2\pi - 0} \int_{0}^{x} c d\Theta = 1$$

$$\iff \lim_{x \to 2\pi - 0} cx = 1$$

$$\iff 2c\pi = 1$$

$$\iff c = \frac{1}{2\pi}$$

よって, 式 (3.2) から $f_{\Theta}(\Theta)$ は以下のように定義し直すことができる.

$$f_{\Theta}(\Theta) = \begin{cases} \frac{1}{2\pi} & 0 \le \Theta < 2\pi \\ 0 & 0 > \Theta, \ \Theta \ge 2\pi \end{cases}$$
(3.3)

従って式(3.3),(3.1)から求める確率Pは以下のようになる.

$$P = \int_0^{\frac{\pi}{2}} f_{\Theta}(\Theta) d\Theta = \int_0^{\frac{\pi}{2}} \frac{1}{2\pi} d\Theta$$
$$= \frac{1}{2\pi} \frac{\pi}{2} = \frac{1}{4}$$

よって、求める確率は $\frac{1}{4}$ になる.

(中田解)

Q が AB 上にある確率とは, Q が第 1 象限上に存在する確率と等しい. ここで, Θ は区間 $[0,2\pi)$ 上の一様分布に従う確率変数であるので, 半直線 l が第 1 象限上に存在する確率は $\frac{1}{4}$ である. よって答えは $\frac{1}{4}$ である.

(2) 設問 (1) より, 辺 AB 上に点 Q が存在するときは $0 \le \Theta \le \frac{\pi}{2}$ を満たす. また、この時、題意より確率変数 X について以下が成り立つ.

ℓの方程式:

$$X = r \cos \Theta, Y = r \sin \Theta : X \sin \Theta = Y \cos \Theta$$
 (3.4)

(3.5)

辺 AB の方程式:

$$(y-1) = \frac{0-1}{1-0}(x-0)$$
 : $y = -x + 1 (0 \le x \le 1)$

よって点QがAB上にあるので

$$Y = -X + 1 (0 \le X \le 1) \tag{3.6}$$

式 (3.4), (3.6) より 0 < X < 1 において

$$X \sin \Theta = (-X + 1) \cos \Theta$$

$$\therefore \cos \Theta = X(\sin \Theta + \cos \Theta)$$
(3.7)

ここで $\sin\Theta + \cos\Theta = \sqrt{2}\sin\left(\Theta + \frac{\pi}{4}\right)$ であるため, $0 \le \Theta \le \frac{\pi}{2}$ における範囲は以下のようになる.

$$\sqrt{2} \times \frac{1}{\sqrt{2}} \le \sqrt{2} \sin\left(\Theta + \frac{\pi}{4}\right) \le \sqrt{2}$$

$$\iff 1 \le \sin\Theta + \cos\Theta \le \sqrt{2}$$
(3.8)

よって、式(3.7)、(3.8) より、X は以下のように表せる.

$$X = \frac{\cos\Theta}{\sin\Theta + \cos\Theta} = \frac{\cos\Theta}{\sqrt{2}\sin\left(\Theta + \frac{\pi}{4}\right)}$$
(3.9)

ここで $0 \le \Theta \le \frac{\pi}{2}$ において, X を Θ の関数 $F(\Theta)$ として考えると以下が成り立つ.

$$\frac{\mathrm{d}F}{\mathrm{d}\Theta}(\Theta) = \frac{-\cos\left\{\Theta - \left(\Theta + \frac{\pi}{4}\right)\right\}}{\sqrt{2}\sin^2\left(\Theta + \frac{\pi}{4}\right)}$$
$$= -\frac{1}{2\sin^2\left(\Theta + \frac{\pi}{4}\right)} < 0$$

よって, $0 \le \Theta \le \frac{\pi}{2}$ において, $X = F(\Theta)$ は単調減少することが分かる. 従って, $0 \le \Theta \le \frac{\pi}{2}$ において, ある Θ に対応する X の値はただ一つしか存在しないので,X も $0 \le X \le 1$ において一様分布に従う. よって, この区間における確率密度関数 $f_{X_{01}}(X)$ は以下のようになる.

$$f_{X_{01}}(X) = \begin{cases} c_X & 0 \le X \le 1\\ 0 & X < 0, X > 1 \end{cases}$$

よって,確率密度関数の性質より

$$\int_{-\infty}^{\infty} f_{X_{01}}(X) \, \mathrm{d}X = 1$$

$$\int_{0}^{1} f_{X_{01}}(X) \, \mathrm{d}X = 1$$

$$\int_{0}^{1} c_X \, \mathrm{d}X = 1$$

$$c_X = 1$$

従って, 点 Q が辺 AB 上にある条件の下での X の期待値 E_X は以下のようになる.

$$E_X = \int_{-\infty}^{\infty} X f_{X_{01}}(X) \, dX$$
$$= \int_{0}^{1} X \, dX$$
$$= \frac{1}{2}$$

よって, 題意は示された.

(中田解)

三角形 ABC が直線 y=x に関して対称であることから一様分布に従う確率変数のもとでは期待値は y=x 上に存在する.ここで,点 Q が辺 AB 上にあるという条件下においては辺 AB と y=x の交点が期待値であることがいえる.ここで交点を求めると $\left(\frac{1}{2},\frac{1}{2}\right)$ であるから求める X の期待値は 1/2 である.よって,題意は示された.

(3) 以降 $\arctan x$ の定義域は $-\frac{\pi}{2} < x < \frac{\pi}{2}$ であるとする. 点 Q が辺 BC 上にあるので, 確率変数 X に関して以下が成り立つ. 辺 BC の方程式:

$$(y-1) = \frac{1+1}{0+1}(x-0)$$
 : $y = 2x+1$

よって点 Q が BC 上にあるので $-1 \le X \le 0$ において

$$Y = 2X + 1 (3.10)$$

点 Q は半直線 ℓ 上の点でもあるので、式 (3.4)、(3.10) より -1 < X < 0 において

$$X \sin \Theta = (2X + 1) \cos \Theta$$

$$\therefore \begin{cases} \Theta = \frac{\pi}{2} & X = 0\\ \sin \Theta = \frac{2X + 1}{X} \cos \Theta & -1 \le X < 0 \end{cases}$$
(3.11)

よって, $X\neq 0$ の時 $\Theta\neq \frac{\pi}{2}$ であるので $\cos\Theta\neq 0$ であり, 式 (3.11) より Θ について点 Q が辺 BC に存在する場合, $\frac{\pi}{2}\leq\Theta\leq \frac{5\pi}{4}$ より以下が成り立つ.

$$\begin{cases} \Theta = \frac{\pi}{2} & X = 0 \\ \tan \Theta = \frac{2X+1}{X} & -1 \le X < 0 \end{cases}$$

$$\iff \begin{cases} \Theta = \frac{\pi}{2} & X = 0 \\ \Theta = \pi + \arctan\left(\frac{2X+1}{X}\right) & -1 \le X < 0 \end{cases}$$
(3.12)

 Θ は区間 $[0,2\pi)$ において一様分布に従うので確率密度関数 $g(\Theta)$ は式 (3.3) であるため、以下が成り立つ.

$$g(\Theta) = \frac{1}{2\pi}$$

 $\frac{\pi}{2}<\Theta\leq \frac{5\pi}{4}$ において、つまり $-1\leq X<0$ の時、式 (3.12) より確率密度関数 f(x) は変数変換の公式を用いて以下のようになる

$$\Theta = h(X) = \pi + \arctan\left(\frac{2X+1}{X}\right)$$

$$\therefore \frac{dh}{dx}(x) = \frac{1}{1 + \left(\frac{2x+1}{x}\right)^2} \frac{2x - (2x+1)}{x^2}$$

$$= \frac{-x^2}{\left\{(2x+1)^2 + x^2\right\} x^2}$$

$$= \frac{-1}{(2x+1)^2 + x^2}$$

$$\iff f(x) = \frac{1}{2\pi} \frac{-1}{(2x+1)^2 + x^2}$$
(3.13)

 $\Theta=\frac{\pi}{2}$ において、 つまり X=0 の時、式 (3.12) より確率密度関数 f(x) は変数変換の公式を用いて以下のようになる

$$\Theta = h(0) = \frac{\pi}{2}$$

$$\frac{\mathrm{d}h}{\mathrm{d}x} = 0$$

$$\iff f(0) = 0 \tag{3.14}$$

よって、式 (3.13),(3.14) より、求める確率密度関数 f(x) は以下のようになる.

$$f(x) = \begin{cases} 0 & x = 0\\ \frac{-1}{2\pi\{(2x+1)^2 + x^2\}} & -1 \le x < 0 \end{cases}$$

(中田解)

辺 BC 上を通る直線の式は y=2x+1 である.ここで辺 BC 上に点 Q が存在する確率密度関数は Θ の範囲が $\left[\frac{\pi}{2},\frac{5}{4}\pi\right]$ であるから,

$$g(x) = \frac{4}{3\pi}$$

X, Θ の関係について Y = 2X + 1 であることと, $X = r \cos \Theta$, $Y = r \sin \Theta$ であることから,

$$\tan \Theta X = 2X + 1$$

となる. X=0 のとき, $\Theta=\frac{\pi}{2}$ である. $X\neq 0$ のときは

$$\tan \Theta X = 2X + 1$$

$$\iff \tan \Theta = 2 + \frac{1}{X}$$

$$\iff \Theta = \arctan\left(2 + \frac{1}{X}\right)$$

ゆえに

$$h(X) = Arctan\left(2 + \frac{1}{X}\right)$$

よって,

$$f(x) = g(h(x)) \left| \frac{\mathrm{d}h}{\mathrm{d}x}(x) \right|$$

$$= \frac{4}{3\pi} \left| \frac{1}{1 + \left(2 + \frac{1}{x}\right)^2} \cdot \left(-\frac{1}{x^2}\right) \right|$$

$$= \left| \frac{4}{3\pi} \cdot \frac{1}{5x^2 + 4x + 1} \right|$$

$$= -\frac{4}{3\pi} \cdot \frac{1}{5x^2 + 4x + 1}$$

x=0 に関しても連続であるから同様の答えとなる.

(4) 設問 (3) より辺 BC 上に点 Q が存在する時の X の期待値 α は以下のようになる.

$$\alpha = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \lim_{t \to -0} \int_{-1}^{t} x f(x) dx$$

$$= \lim_{t \to -0} \int_{-1}^{t} \frac{-x}{2\pi \left\{ (2x+1)^{2} + x^{2} \right\}} dx$$

$$= \lim_{t \to -0} \frac{-1}{20\pi} \int_{-1}^{t} \frac{10x + 4 - 4}{(2x+1)^{2} + x^{2}} dx$$

$$= \lim_{t \to -0} \frac{-1}{20\pi} \left\{ \left[\log \left\{ (2x+1)^{2} + x^{2} \right\} \right]_{-1}^{t} - \int_{-1}^{t} \frac{4}{(2x+1)^{2} + x^{2}} dx \right\}$$

$$= \lim_{t \to -0} \left(\frac{-1}{20\pi} \left[\log \left\{ (2t+1)^{2} + t^{2} \right\} - \log 2 \right] + \frac{1}{5\pi} \int_{-1}^{t} \frac{1}{\frac{1}{5} \left\{ (5x+2)^{2} + 1 \right\}} dx \right)$$

$$= \frac{\log 2}{20\pi} + \lim_{t \to -0} \frac{1}{\pi} \int_{-1}^{t} \frac{1}{(5x+2)^{2} + 1} dx$$

ここで $5x + 2 = \tan u$ と置換し, β, γ を $\tan \beta = -3$, $\tan \gamma = 5t + 2$ を満たすとものとしておくと以下のようになる.

$$\begin{split} \alpha &= \frac{\log 2}{20\pi} + \lim_{t \to -0} \frac{1}{\pi} \int_{\beta}^{\gamma} \frac{1}{\tan^2 u + 1} \frac{1}{5 \cos^2 u} \, \mathrm{d}u \\ &= \frac{\log 2}{20\pi} + \lim_{t \to -0} \frac{1}{5\pi} (\gamma - \beta) \\ &= \frac{\log 2}{20\pi} + \lim_{t \to -0} \frac{1}{5\pi} \left\{ (\pi + \arctan(5t + 2)) - (\pi + \arctan(-3)) \right\} \\ &= \frac{\log 2}{20\pi} + \frac{1}{5\pi} (\arctan 2 + \arctan 3) \end{split}$$

よって、期待値 α について以下のようになる.

$$\alpha = \frac{\log 2}{20\pi} + \frac{1}{5\pi} (\arctan 2 + \arctan 3) \tag{3.15}$$

(中田解)

(3) の結果を用いて以下のように期待値は表せる.

$$\begin{split} &\alpha = \int_{-1}^{0} x f(x) \; \mathrm{d}x \\ &= \int_{-1}^{0} \left(-\frac{4}{3\pi} \cdot \frac{1}{5x^2 + 4x + 1} \right) \cdot x \; \mathrm{d}x \\ &= -\frac{4}{3\pi} \int_{-1}^{0} \frac{x}{5x^2 + 4x + 1} \; \mathrm{d}x \\ &= -\frac{4}{3\pi} \int_{-1}^{0} \frac{1}{10} \left(\frac{10x + 4}{5x^2 + 4x + 1} - \frac{4}{5x^2 + 4x + 1} \right) \; \mathrm{d}x \\ &= -\frac{2}{15\pi} \left(\left[\log |5x^2 + 4x + 1| \right]_{-1}^{0} - 4 \int_{-1}^{0} \frac{1}{5x^2 + 4x + 1} \; \mathrm{d}x \right) \\ &= -\frac{2}{15\pi} \left(-\log 2 - 4 \int_{-1}^{0} \frac{1}{5\left(x^2 + \frac{4}{5}x\right) + 1} \; \mathrm{d}x \right) \\ &= -\frac{2}{15\pi} \left(-\log 2 - 4 \int_{-1}^{0} \frac{1}{5\left(x + \frac{2}{5}\right)^2 - \frac{4}{25}\right) + 1} \; \mathrm{d}x \right) \\ &= -\frac{2}{15\pi} \left(-\log 2 - 4 \int_{-1}^{0} \frac{1}{5\left(x + \frac{2}{5}\right)^2 + \frac{1}{5}} \; \mathrm{d}x \right) \\ &= -\frac{2}{15\pi} \left(-\log 2 - 4 \int_{-1}^{0} 5 \cdot \frac{1}{25\left(x + \frac{2}{5}\right)^2 + 1} \; \mathrm{d}x \right) \\ &= -\frac{2}{15\pi} \left(-\log 2 - \left[4 \cdot 5 \cdot \frac{1}{5} \cdot \operatorname{Arctan} \left\{ 5 \cdot \left(x + \frac{2}{5} \right) \right\} \right]_{-1}^{1} \right) \\ &= -\frac{2}{15\pi} \left\{ -\log 2 - 4 \cdot \left(\operatorname{Arctan2} + \operatorname{Arctan3} \right) \right\} \\ &= -\frac{2}{15\pi} \left\{ -\log 2 - 4 \cdot \left(-\frac{\pi}{4} \right) \right\} \\ &= \frac{2}{15\pi} \log 2 - \frac{2}{15} \end{split}$$

(5) まず, 点 Q が辺 AC 上にある時の X の期待値 δ を求める.

設問(4),(3)と同様にして確率密度関数を求めてから期待値を求める.

この時,確率変数 X について以下のことが成り立つ.

辺 AC の方程式:

$$(y-0) = \frac{0+1}{1+1}(x-1)$$
 : $y = \frac{1}{2}(x-1)$

よって点 Q が AC 上にあるので $-1 \le X \le 1$ において

$$Y = \frac{1}{2}(X - 1) \tag{3.16}$$

点 Q は半直線 ℓ 上の点でもあるので、式 (3.4)、(3.16) より $-1 \le X \le 1$ において

$$X \sin \Theta = \frac{1}{2} (X - 1) \cos \Theta$$

$$\therefore \begin{cases} \Theta = \frac{3\pi}{2} & X = 0\\ \sin \Theta = \frac{X - 1}{2X} \cos \Theta & -1 \le X < 0, \ 0 < X \le 1 \end{cases}$$
(3.17)

よって, $X \neq 0$ の時 $\Theta \neq \frac{3\pi}{2}$ であるので $\cos \Theta \neq 0$ であり, 式 (3.17) より Θ について点 Q が辺 AC に存在する場合, つまり, $-1 \leq X \leq 1$ において以下が成り立つ.

$$\begin{cases}
\Theta = \frac{3\pi}{2} & X = 0 \\
\tan \Theta = \frac{X-1}{2X} & -1 \le X < 0, 0 < X \le 1
\end{cases}$$

$$\iff \begin{cases}
\Theta = \frac{3\pi}{2} & X = 0 \\
\Theta = \pi + \arctan\left(\frac{X-1}{2X}\right) & 0 < X \le 1 \\
\Theta = 2\pi + \arctan\left(\frac{X-1}{2X}\right) & -1 \le X < 0
\end{cases}$$
(3.18)

ここで Θ は区間 $[0,2\pi)$ において一様分布に従うので確率密度関数 $g(\Theta)$ は式 (3.3) であるため、以下が成り立つ.

$$g(\Theta) = \frac{\frac{1}{2\pi}}{\frac{3}{8}}$$
$$= \frac{4}{3\pi}$$

よって, $\frac{5\pi}{4} \le \Theta < \frac{3\pi}{2}$ において, つまり $0 < X \le 1$ の時, 式 (3.18) より, 確率密度関数 f(x) は変数変換の公式を用いて以下のようになる.

$$\Theta = h(X) = \pi + \arctan\left(\frac{X-1}{2X}\right)$$

$$\therefore \frac{dh}{dx}(x) = \frac{1}{1 + \left(\frac{x-1}{2x}\right)^2} \frac{x - (x-1)}{2x^2}$$

$$= \frac{4x^2}{\left\{(x-1)^2 + 4x^2\right\} 2x^2}$$

$$= \frac{2}{(x-1)^2 + 4x^2}$$

$$\iff f(x) = \frac{4}{3\pi} \frac{2}{(x-1)^2 + 4x^2}$$
(3.19)

 $\frac{3\pi}{2} < \Theta < 2\pi$ において、つまり $-1 \le X < 0$ の時、式 (3.18) より、確率密度関数 f(x) は変数変換の公式を用いて以下のようになる.

$$\Theta = h(X) = 2\pi + \arctan\left(\frac{X-1}{2X}\right)$$

 $0 < X \le 1$ の時と同様にして

$$\frac{dh}{dx}(x) = \frac{2}{(x-1)^2 + 4x^2}$$

$$\iff f(x) = \frac{4}{3\pi} \frac{2}{(x-1)^2 + 4x^2}$$
(3.20)

よって、式 (3.19)、(3.20) から確率密度関数 f(x) は x=0 の時も連続である。よって以下のようになる.

$$f(x) = \frac{8}{3\pi \left\{ (x-1)^2 + 4x^2 \right\}} - 1 \le x \le 1$$

従って期待値 δ は以下のようになる.

$$\delta = \int_{-1}^{1} x f(x) dx$$

$$= \int_{-1}^{1} \frac{8x}{3\pi \left\{ (x-1)^{2} + 4x^{2} \right\}} dx$$

$$= \frac{8}{3\pi} \int_{-1}^{1} \frac{x}{\left\{ (x-1)^{2} + 4x^{2} \right\}} dx$$

$$= \frac{8}{3\pi} \int_{-1}^{1} \frac{10x - 2}{\left\{ (x-1)^{2} + 4x^{2} \right\}} dx$$

ここで $5x-1=2\tan u$ と置換し、 β 、 $\gamma_1(<\frac{3\pi}{2})$ 、 $\gamma_2(>\frac{3\pi}{2})$ 、 η を $\tan \beta = -3$, $\tan \gamma_1 = \tan \gamma_2 = \frac{5t-1}{2}$, $\tan \eta = 2$ を満たすとものとしておくと以下のようになる.

$$\begin{split} \delta &= \frac{-\log 2}{10\pi} + \lim_{t \to -0} \frac{1}{\pi} \int_{\beta}^{\gamma_1} \frac{1}{4 \tan^2 u + 4} \frac{2}{5 \cos^2 u} \, \mathrm{d}u + \lim_{t \to +0} \frac{1}{\pi} \int_{\gamma_2}^{\eta} \frac{1}{4 \tan^2 u + 4} \frac{2}{5 \cos^2 u} \, \mathrm{d}u \\ &= \frac{-\log 2}{10\pi} + \lim_{t \to -0} \frac{1}{\pi} \int_{\beta}^{\gamma_1} \frac{1}{10} \, \mathrm{d}u + \lim_{t \to +0} \frac{1}{\pi} \int_{\gamma_2}^{\eta} \frac{1}{10} \, \mathrm{d}u \\ &= \frac{-\log 2}{10\pi} + \lim_{t \to -0} \frac{1}{10\pi} (\gamma_1 - \beta) + \lim_{t \to -0} \frac{1}{\pi} (\eta - \gamma_2) \\ &= \frac{-\log 2}{10\pi} + \frac{1}{10\pi} \left\{ \left(\pi + \arctan\left(\frac{-1}{2}\right) \right) - (\pi + \arctan(-3)) + (2\pi + \arctan 2) - \left(2\pi + \arctan\left(\frac{-1}{2}\right) \right) \right\} \\ &= \frac{-\log 2}{10\pi} + \frac{1}{10\pi} (\arctan 2 + \arctan 3) \end{split}$$

よって、期待値 δ について以下のようになる。

$$\delta = \frac{-\log 2}{10\pi} + \frac{1}{10\pi} (\arctan 2 + \arctan 3) \tag{3.21}$$

よって, 設問 (2), 式 (3.15), (3.21) より点 Q が辺 AB にある状態, 辺 AC にある状態, 辺 BC にある状態での X の期待値をそれぞれの状態における離散的な確率変数として考えるとそれぞれの出現確率が $\frac{1}{4}$, $\frac{3}{8}$, $\frac{3}{8}$ であるので X の期待値 μ は以下のようになる.

$$\mu = \frac{1}{4}E_X + \frac{3}{8}\alpha + \frac{3}{8}\delta$$

$$= \frac{1}{4} \cdot \frac{1}{2} + \frac{3}{8} \left\{ \frac{\log 2}{20\pi} + \frac{1}{5\pi} (\arctan 2 + \arctan 3) \right\} + \frac{3}{8} \left\{ \frac{-\log 2}{10\pi} + \frac{1}{10\pi} (\arctan 2 + \arctan 3) \right\}$$

$$= \frac{1}{8} \left\{ 1 - \frac{3\log 2}{20\pi} + \frac{9}{10\pi} (\arctan 2 + \arctan 3) \right\}$$