8 November, 2023

L6.1. 1 punkt Uzasadnij, że schemat Hornera jest algorytmem numerycznie poprawnym.

- L6.2. 1 punkt Sformuluj i udowodnij algorytm Clenshawa obliczania wartości wielomianu

$$w(x) = \frac{1}{2}c_0T_0(x) + c_1T_1(x) + c_2T_2(x) + \ldots + c_nT_n(x)$$

w punkcie x, gdzie c_0, c_1, \ldots, c_n są dane, a T_n oznacza n-ty wielomiany Czebyszewa.

- **L6.3.** 2 punkty Niech T_n (n = 0, 1, ...) oznacza n-ty wielomian Czebyszewa.
 - (a) Podaj postać potęgową wielomianu T₅.
 - (b) Jakimi wzorami wyrażają się współczynniki wielomianu T_n przy x^n i x^{n-1} ?
 - (c) Korzystając z faktu, że dla dowolnego x z przedziału [-1,1] $n\text{-ty }(n\geq 0)$ wielomian Czebyszewa wyraża się wzorem $T_n(x) = \cos(n \arccos x)$:
 - i. sprawdź, że $|T_n(x)| \le 1 \quad (-1 \le x \le 1; n \ge 0);$
 - ii. wyznacz wszystkie punkty ekstremalne n-tego wielomianu Czebyszewa, tj. rozwiązania równania $|T_n(x)| = 1$;
 - iii. udowodnij, że wielomian Czebyszewa T_{n+1} $(n \ge 0)$ ma n+1 zer rzeczywistych, pojedynczych, leżących w przedziale (-1,1).
- **L6.4.** 2 punkty Wykaż, że dla dowolnych $k, l \in \mathbb{N}$ oraz $x \in \mathbb{R}$ zachodzi

$$T_{kl}(x) = T_k(T_l(x)).$$

Wykorzystaj podaną zależność do opracowania szybkiego algorytmu wyznaczania wartości wielomianu Czebyszewa wysokiego stopnia niebędącego liczbą pierwszą.

- L6.5. 1 punkt Udowodnij istnienie i jednoznaczność rozwiązania zadania interpolacyjnego Lagrange'a.
- L6.6. 1 punkt Podaj postać Lagrange'a wielomianu interpolacyjnego dla danych

- **L6.7.** 1 punkt Niech będzie $f(x) = 2023x^8 + 1977x^7 1939x^4 + 1410x^2 966x + 1996$.
 - (a) Wyznacz wielomian stopnia ≤ 8 interpolujący funkcję f w punktach -2023, 1977, -1945, $\sin(1)$, 1989, -1939, 1791, 1945, π .
 - (b) Wyznacz wielomian drugiego stopnia, interpolujący funkcję f w punktach -1, 0, 1.