$EXERCÍCIOS\ AUTOMATOS\ FINITOS:\ DFA\ e\ NFA\ (\ Sem\ utilizar\ {\cal E})$

(Gabarito de 1 a 13)

PARTE A: extraídos do livro: "Introduction to the Theory of Computation" - Michael Sipser

1) Nas figuras abaixo apresenta-se o diagrama de estados de dois DFA's (M1 e M2).

Pergunta-se:

M 2

a) Qual é o estado inicial de M1?

Solução: q1

b) Quais são os estados de aceitação de M1?

Solução: q2

c) Qual é o estado inicial de M2?

Solução: q1

d) Quais são os estados de aceitação de M2?

Solução: q1 e q4

e) Qual é a seqüência de estados percorrida por M1 quando a cadeia de entrada é aabb?

Solução: q2 q3 q1 q1

f) M1 aceita a cadeia aabb?

Solução: M1 não aceita a cadeia aabb

g) M2 aceita a cadeia aabb?

Solução: A seqüência percorrida por M2 será : q1 q1 q2 q4, onde q4 é um dos estados de aceitação, ou seja, a cadeia *aabb* será aceita.

2) Apresente a definição formal de M1 e M2. (Lembrar que DFA = $< Q, \Sigma, q_0, \delta, F >$)

Solução: \rightarrow M1=({q1,q2,q3},{a,b},q1, δ ,{q2}), com δ :

$$\delta(q1,b)=q1$$

$$\delta(q2,b)=q3$$

$$\delta(q1,a)=q2$$

$$\delta(q3,a)=q2$$

$$\delta(q2,a)=q3$$

$$\delta(q3,b)=q1$$

3) Dado o DFA definido abaixo, apresente o diagrama de estados e a tabela de transição.

$$M = \{ q_1, q_2 q_3 q_4 q_5 \}, \{ u, d \}, q_3, \delta, q_3 >, \text{ com } \delta$$
:

$$\begin{array}{lll} \delta \left(\, q_{1}, \, u \, \right) = q_{1} & \delta \left(\, q_{3}, \, d \, \right) = q_{4} \\ \delta \left(\, q_{1}, \, d \, \right) = q_{2} & \delta \left(\, q_{4}, \, u \, \right) = q_{3} \\ \delta \left(\, q_{2}, \, u \, \right) = q_{1} & \delta \left(\, q_{4}, \, d \, \right) = q_{5} \\ \delta \left(\, q_{2}, \, d \, \right) = q_{3} & \delta \left(\, q_{5}, \, u \, \right) = q_{4} \\ \delta \left(\, q_{3}, \, u \, \right) = q_{2} & \delta \left(\, q_{5}, \, d \, \right) = q_{5} \end{array}$$

Solução: • Diagrama de estados :

• Tabela de transição :

	u	d
→*q1	q1	q2
q2	q1	q3
q3	q2	q4
q4	q3	q5
q5	q4	q5

- 4) Para $\Sigma = \{0, 1\}$, apresente DFA's ou NFA's que reconhecem as linguagens abaixo definidas.
 - a) {w | w começa por 1 e termine por 0} Solução:

b) {w | w contém pelo menos três 1's} Solução:

c) $\{w \mid w = x0101y\}$ **Solução:**

d) $\{w \mid |w| \ge 3 \text{ e o } 3^{\circ} \text{ símbolo } \neq 0\}$ **Solução:**

e) {w | w começa por 0 e tem comprimento ímpar ou começa por 1 e tem comprimento par} *Solução:*

f) {w | w não possui a sub-cadeia 110} Solução:

g) {w | o comprimento de w é no máximo = 5} Solução:

h) {w | w é qualquer cadeia diferente da 11 e 111} Solução:

i) {w | qualquer posição ímpar de w é igual a 1} Solução:

j) {w | w contém pelo menos 2 zeros e, no máximo um 1} Solução:

5) Caso você tenha resolvido algum dos itens do exercício anterior usando NFA's, transforme-os em DFA's que reconhecem a mesma linguagem.

Solução: Não foi utilizado anteriormente nenhum NFA . Para transformar um NFA em um DFA , basta começarmos copiando a primeira linha da tabela de transições do NFA , que será do estado inicial , depois copiar os estados diferentes dos que já apareceram e fazer suas transições ; Quando forem para dois ou mais estados diferentes , basta fazermos as uniões dos estados. Os estados finais serão todos que tiverem a "letra" que é estado final no NFA . Por exemplo :

	NFA			
	0	1		
$\rightarrow p$	{p,q}	{p}		
q	{r}	{r}		
r	{s}	Ø		
*s	{s}	{s}		

	DFA	
	0	1
$\rightarrow p$	{p,q}	{p}
{p,q}	$\{p,q,r\}$	{p,r}
{p}	{p,q}	{p}
$\{p,q,r\}$	$\{p,q,r,s\}$	{p,r}
{p,r}	$\{p,q,s\}$	{p}
$*{p,q,r,s}$	$\{p,q,r,s\}$	$\{p,r,s\}$
*{p,q,s}	$\{p,q,r,s\}$	$\{p,r,s\}$
$*{p,r,s}$	$\{p,q,s\}$	{p,s}
*{p,s}	$\{p,q,s\}$	{p,s}

DEA

PARTE B: extraídos de outras fontes

Considere $\Sigma = \{0,1\}$ para todos os exercícios a seguir.

- 6) Indicar quais das cadeias abaixo são aceitas pelo NFA.
 - 01: aceita
 - 0 1 0 : não aceita
 - 0 1 0 1 : aceita
 - 0 1 1 0 :não aceita

PUCSP

TEORIA DA COMPUTAÇÃO I

- 0 1 1 : não aceita
- 7) Idem, para o NFA e cadeias a seguir.
 - 10: aceita
 01: não aceita
 11: aceita
 1: não aceita
 1: não aceita
 - 111101: não aceita

8) Propor um DFA e um NFA que reconhecem cadeias iniciadas ou terminadas por 01.

Ou seja :
$$\left\{ \begin{array}{c} 0.1 \\ 0.1 x \\ x 0.1 \\ 0.1 x 0.1 \end{array} \right\}$$
 onde x é sub-cadeia que não contém 01

Solução: •DFA

Para esse enunciado, o NFA não é muito mais simples

Simulação: Exemplos

1°) 0 0 0 1 0 (não aceita)

2°) 1 1 0 1 (aceita)

9) Propor um DFA e um NFA que reconhecem cadeias iniciadas e terminadas por 01.

Ou seja, aceitam cadeias do tipo:

 $\begin{array}{c} 0 \ 1 \\ 0 \ 1 \ x \ 0 \ 1 \end{array}$

Solução: •DFA

• *NFA*

10) Propor um DFA e um NFA que reconhecem cadeias que começam e terminam por 1 e, sempre que há um 0, ele é precedido por, pelo menos, 2 UNS.

Exemplos de cadeias aceitas:

1 11 1111.....1 1101 111...101101

Solução: •DFA

TEORIA DA COMPUTAÇÃO I

• NFA

11) Propor um NFA que reconhece cadeias iniciadas por um número par de zeros, seguidos por um número par de uns, seguidos por 010.

Exemplos: (Lembrar que par = 0,2,4,...)

 $\left.\begin{array}{c} 0\,1\,0\\ 0\,0\,0\,1\,0\\ 1\,1\,0\,1\,0\\ 0\,0\,0\,0\,1\,1\,0\,1\,0 \end{array}\right\} \quad \text{ou seja} \quad \left[\begin{array}{c} P_{zeros}\,P_{uns} \;\;0\,1\,0\,s\~{ao}\,\,cade\'{ias}\,\,ace\'{itas} \end{array}\right.$

Solução:

TEORIA DA COMPUTAÇÃO I

12) Idem, ao exercício 11, fazendo, diretamente, o DFA *Solução:*

13) Transforme o NFA do exercício 11 num DFA e compare o resultado com o DFA do exercício 12. *Solução:*

	NFA				DFA	
	0	1			0	1
→ q1	{q2,q5}	{q3}		→ q1	{q2,q5}	{q3}
q2	{q1}	Ø		{q2,q5}	{q1}	{q6}
q5	Ø	{q6}		{q3}	Ø	{q4}
q3	Ø	{q4}		{q6}	*{q7}	Ø
q6	{q7}	Ø		{q4}	{q5}	{q3}
q4	{q5}	{q3}		*{q7}	Ø	Ø
*q7	Ø	Ø		{q5}	Ø	{q6}
		•	-	Ø	Ø	Ø

Logo , com a transformação do NFA para um DFA , temos a tabela de transições citada acima que é igual ao DFA do exercício 12 , representado em diagrama de transições , porém com nomeações diferentes . A representação abaixo representa a tabela acima na forma de diagrama percebendo a semelhança dos DFAs .

