Estimating the Single Index Model

Eric Zivot

August 15, 2012

Estimating the Single Index Model

Sharpe's Single (SI) model:

$$R_{it} = \alpha_i + \beta_i R_{Mt} + \varepsilon_{it}, \ t = 1, \dots, T$$

$$\varepsilon_{it} \sim \operatorname{iid} N(\mathbf{0}, \sigma_{\varepsilon,i}^2), \ R_{M,t} \sim \operatorname{iid} N(\mu_M, \sigma_M^2)$$

$$\operatorname{cov}(R_{Mt}, \varepsilon_{is}) = 0 \ \operatorname{for} \ t, s$$

$$E[R_{it}] = \mu_i = \alpha_i + \beta_i \mu_M, \ \operatorname{var}(R_{it}) = \beta_i^2 \sigma_M^2 + \sigma_{\varepsilon,i}^2$$

$$\alpha_i = \mu_i - \beta_i \mu_M$$

$$\beta_i = \frac{\operatorname{cov}(R_{it}, R_{Mt})}{\operatorname{var}(R_{Mt})} = \frac{\sigma_{iM}}{\sigma_M^2}$$

Main parameters to estimate: α_i , β_i and $\sigma_{\varepsilon,i}^2$

Plug-in Principle Estimators

Plug-in principle: Estimate model parameters using sample statistics

$$\hat{\beta}_{i} = \frac{\hat{\sigma}_{iM}}{\hat{\sigma}_{M}^{2}}$$

$$\hat{\sigma}_{iM} = \frac{1}{T-1} \sum_{t=1}^{T} (R_{it} - \hat{\mu}_{i})(R_{Mt} - \hat{\mu}_{M})$$

$$\hat{\sigma}_{M}^{2} = \frac{1}{T-1} \sum_{t=1}^{T} (R_{Mt} - \hat{\mu}_{M})^{2}$$

$$\hat{\mu}_{i} = \frac{1}{T} \sum_{t=1}^{T} R_{it},$$

$$\hat{\mu}_{M} = \frac{1}{T} \sum_{t=1}^{T} R_{Mt}$$

Plug-in principle estimator for $\alpha_i = \mu_i - \beta_i \mu_M$:

$$\hat{\alpha}_i = \hat{\mu}_i - \hat{\beta}_i \hat{\mu}_M$$

Plug-in principle estimator of $arepsilon_{it}$:

$$\hat{\varepsilon}_{it} = R_{it} - \hat{\alpha}_i - \hat{\beta}_i R_{Mt}$$

Plug-in principle estimator for $\sigma_{\varepsilon,i}^2 = \text{var}(\varepsilon_{it})$:

$$\hat{\sigma}_{\varepsilon,i}^2 = \frac{1}{T-2} \sum_{t=1}^{T} \hat{\varepsilon}$$

$$= \frac{1}{T-2} \sum_{t=1}^{T} \left(R_{it} - \hat{\alpha}_i - \hat{\beta}_i R_{Mt} \right)^2$$

Least Squares Estimation of SI Model Parameters

Idea: SI model postulates a linear relationship between R_{it} and R_{Mt} with intercept α_i and slope β_i :

$$R_{it} = \alpha_i + \beta_i R_{Mt} + \varepsilon_{it}$$

Estimate α_i and β_i by finding the "best fitting line" to the scatterplot of data

- Problem: How to define the "best fitting line"?
- Least Squares solution: minimize the sum of squared residuals (errors)

Least Squares Algorithm

$$\hat{\alpha}_i = \text{initial guess for } \alpha_i$$
 $\hat{\beta}_i = \text{initial guess for } \beta_i$
 $\hat{R}_{it} = \hat{\alpha}_i + \hat{\beta}_i R_{Mt} = \text{fitted line}$
 $\hat{\varepsilon}_{it} = R_{it} - \hat{R}_{it}$
 $= R_{it} - (\hat{\alpha}_i + \hat{\beta}_i R_{Mt}) = \text{residual}$

Determine the best fitting line by minimizing the *Sum of Squared Residuals* (SSR)

$$SSR(\hat{\alpha}_i, \hat{\beta}_i) = \sum_{t=1}^{T} \hat{\varepsilon}_{it}^2$$

$$= \sum_{t=1}^{T} \left(R_{it} - \hat{\alpha}_i - \hat{\beta}_i R_{Mt} \right)^2$$

That is, the least squares estimates solve

$$\min_{\hat{\alpha}_i, \hat{\beta}_i} \mathsf{SSR}(\hat{\alpha}_i, \hat{\beta}_i) = \sum_{t=1}^T \left(R_{it} - \hat{\alpha}_i - \hat{\beta}_i R_{Mt} \right)^2$$

Note: Because $SSR(\hat{\alpha}_i, \hat{\beta}_i)$ is a quadratic function in $\hat{\alpha}_i, \hat{\beta}_i$, the first order conditions for a minimum give two linear equations in two unknowns and so there is an analytic solution to the minimization problem that we can find using calculus.

Calculus Solution

The first order conditions for a minimum are

$$0 = \frac{\partial \mathsf{SSR}(\hat{\alpha}_i, \hat{\beta}_i)}{\partial \hat{\alpha}_i} = -2 \sum_{t=1}^T (R_{it} - \hat{\alpha}_i - \hat{\beta}_i R_{Mt}) = -2 \sum_{t=1}^T \hat{\varepsilon}_{it}$$

$$0 = \frac{\partial \mathsf{SSR}(\hat{\alpha}_i, \hat{\beta}_i)}{\partial \hat{\beta}_i} = -2 \sum_{t=1}^T (R_{it} - \hat{\alpha}_i - \hat{\beta}_i R_{Mt}) R_{Mt} = -2 \sum_{t=1}^T \hat{\varepsilon}_{it} R_{Mt}$$

These are two linear equations in two unknowns. Solving for $\hat{\alpha}_i$ and $\hat{\beta}_i$ gives

$$\hat{lpha}_i = \hat{\mu}_i - \hat{eta}_i \hat{\mu}_M$$
 $\hat{eta}_i = rac{\hat{\sigma}_{iM}}{\hat{\sigma}_M^2}$

which are exactly the plug-in principle estimators!

Estimators for $\sigma^2_{\varepsilon,i}$ and R-square

Utilize plug-in principle

$$\begin{split} \hat{\varepsilon}_{it} &= R_{it} - \hat{\alpha} - \hat{\beta}_i R_{Mt} \\ \hat{\sigma}_{\varepsilon,i}^2 &= \frac{1}{T-2} \sum_{t=1}^T \hat{\varepsilon}_{it}^2 \\ \hat{\sigma}_{\varepsilon,i} &= \sqrt{\hat{\sigma}_{\varepsilon,i}^2} = \mathsf{SER} \\ &= \mathsf{standard\ error\ of\ regression} \end{split}$$

Remarks

- \bullet $\hat{\sigma}_{arepsilon,i}$ typical magnitude of residual = standard error of regression (SER)
- ullet Divide by T-2 to get unbiased estimate of $\sigma^2_{arepsilon,i}$
- T-2= degrees of freedom = sample size number of estimated parameters (α_i)

Recall

$$R_i^2 = \frac{\beta_i^2 \sigma_M^2}{\sigma_i^2}$$
$$= 1 - \frac{\sigma_{\varepsilon,i}^2}{\sigma_i^2}$$

= % of variability due to market

Estimate using plug-in principle

$$egin{aligned} \hat{R}_i^2 &= rac{\hat{eta}_i^2 \hat{\sigma}_M^2}{\hat{\sigma}_i^2} \ &= 1 - rac{\hat{\sigma}_{arepsilon,i}^2}{\hat{\sigma}_i^2} \end{aligned}$$

Least Squares Estimation Using R

R command

1m - linear model estimation

Syntax

my.data.df = data frame with columns named y and x

Note: y~x is formula notation in R. It translates as the linear model

$$y = \alpha + \beta x + \varepsilon$$

For multiple regression, the notation y^x1+x2 implies

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Important method functions for Im objects

summary(): summarize model fit

plot(): plot results

residuals(): extract residuals

fitted(): extract fitted values

coef(): extract estimated coefficients

confint(): extract confidence intervals

Least Squares Estimates are Maximum Likelihood Estimates Under Normal Distribution Assumption

$$R_{it} = \alpha_i + \beta_i R_{Mt} + \varepsilon_{it}, \ t = 1, \dots, T$$

$$\varepsilon_{it} \sim \text{iid } N(0, \sigma_{\varepsilon, i}^2), \ R_{M, t} \sim \text{iid } N(\mu_M, \sigma_M^2)$$

Then

$$R_{it}|R_{Mt} \sim N(\alpha_i + \beta_i R_{Mt}, \sigma_{\varepsilon,i}^2)$$

$$f(R_{it}|R_{Mt}) = (2\pi\sigma_{\varepsilon,i}^2)^{-1/2} \exp\left(\frac{-1}{2\sigma_{\varepsilon,i}^2} (R_{it} - \alpha_i + \beta_i R_{Mt})^2\right)$$

$$\ln L(\theta|\mathbf{R}, \mathbf{R}_M) = \frac{-T}{2} \ln(2\pi) - \frac{T}{2} \ln(\sigma_{\varepsilon,i}^2)$$

$$-\frac{1}{2\sigma_{\varepsilon,i}^2} \sum_{t=1}^{T} (R_{it} - \alpha_i + \beta_i R_{Mt})^2$$

Maximizing In $L(\theta|\mathbf{R}, \mathbf{R}_M)$ with respect to $\theta = (\alpha_i, \beta_i, \sigma_{\varepsilon,i}^2)'$ gives the least squares estimates!

Statistical Properties of Least Squares Estimates

Assuming the SI model generates the observed data, the estimators

$$\hat{lpha}_i,\;\hat{eta}_i\; \mathsf{and}\; \hat{\sigma}^2_{arepsilon,i}$$

are random variables.

Properties

• $\hat{\alpha}_i$, $\hat{\beta}_i$ and $\hat{\sigma}^2_{\varepsilon,i}$ are unbiased estimators

$$E[\hat{\alpha}_i] = \alpha_i$$

$$E[\hat{\beta}_i] = \beta_i$$

$$E[\hat{\sigma}_{\varepsilon,i}^2] = \sigma_{\varepsilon,i}^2$$

• Analytic standard errors are available for $\widehat{SE}(\hat{\alpha}_i)$ and $\widehat{SE}(\hat{\beta}_i)$

$$\begin{split} \widehat{\mathsf{SE}}(\hat{\alpha}_i) &= \frac{\hat{\sigma}_{\varepsilon,i}}{\sqrt{T \cdot \hat{\sigma}_M^2}} \cdot \sqrt{\frac{1}{T} \sum_{t=1}^T R_{Mt}^2} \\ \widehat{\mathsf{SE}}(\hat{\beta}_i) &= \frac{\hat{\sigma}_{\varepsilon,i}}{\sqrt{T \cdot \hat{\sigma}_M^2}} \end{split}$$

These are routinely reported in standard regression ouput (e.g. by R summary command)

- $\widehat{\mathsf{SE}}(\hat{\alpha}_i)$ and $\widehat{\mathsf{SE}}(\hat{\beta}_i)$ are smaller the smaller is $\hat{\sigma}_{\varepsilon,i}$
- $\widehat{\mathsf{SE}}(\hat{eta}_i)$ is smaller the larger is $\hat{\sigma}_M^2$
- $\widehat{SE}(\hat{\alpha}_i)$ and $\widehat{SE}(\hat{\beta}_i) \to 0$ as T gets large $\Rightarrow \hat{\alpha}_i$ and $\hat{\beta}_i$ are consistent estimators

ullet Standard errors for $\hat{\sigma}^2_{arepsilon,i}$, $\hat{\sigma}_{arepsilon,i}$ or R-square can be computed using the bootstrap

ullet For T large enough, the central limit theorem (CLT) tells us that

$$\hat{\alpha}_i \sim N(\alpha_i, \widehat{\mathsf{SE}}(\hat{\alpha}_i)^2)$$

 $\hat{\beta}_i \sim N(\beta_i, \widehat{\mathsf{SE}}(\hat{\beta}_i)^2)$

• Approximate 95% confidence intervals

$$\hat{\alpha}_i \pm 2 \cdot \widehat{\mathsf{SE}}(\hat{\alpha}_i)$$

 $\hat{\beta}_i \pm 2 \cdot \widehat{\mathsf{SE}}(\hat{\beta}_i)$

SI Model Using Matrix Algebra

$$R_{it} = \alpha_i + \beta_i R_{Mt} + \varepsilon_{it}, \ t = 1, \dots, T$$

Stack over observations $t = 1, \ldots, T$

$$\begin{pmatrix} R_{i1} \\ \vdots \\ R_{iT} \end{pmatrix} = \alpha_i \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} + \beta_i \begin{pmatrix} R_{M1} \\ \vdots \\ R_{MT} \end{pmatrix} + \begin{pmatrix} \varepsilon_{i1} \\ \vdots \\ \varepsilon_{iT} \end{pmatrix}$$

or

$$\mathbf{R}_{i} = \alpha_{i} \cdot \mathbf{1} + \beta_{i} \cdot \mathbf{R}_{M} + \varepsilon_{i} = \begin{pmatrix} \mathbf{1} & \mathbf{R}_{M} \end{pmatrix} \begin{pmatrix} \alpha_{i} \\ \beta_{i} \end{pmatrix} + \varepsilon_{i}$$

$$= \mathbf{X}\gamma_{i} + \varepsilon_{i}$$

$$\mathbf{X} = \begin{pmatrix} \mathbf{1} & \mathbf{R}_{M} \end{pmatrix}, \ \gamma_{i} = \begin{pmatrix} \alpha_{i} \\ \beta_{i} \end{pmatrix}$$

Recall the least squares normal equations

$$0 = \frac{\partial \mathsf{SSR}(\hat{\alpha}_i, \hat{\beta}_i)}{\partial \hat{\alpha}_i} = -2 \sum_{t=1}^{T} (R_{it} - \hat{\alpha}_i - \hat{\beta}_i R_{Mt})$$
$$0 = \frac{\partial \mathsf{SSR}(\hat{\alpha}_i, \hat{\beta}_i)}{\partial \hat{\beta}_i} = -2 \sum_{t=1}^{T} (R_{it} - \hat{\alpha}_i - \hat{\beta}_i R_{Mt}) R_{Mt}$$

Using matrix algebra these equations are

$$\begin{pmatrix} \sum_{t=1}^{T} R_{it} \\ \sum_{t=1}^{T} R_{it} R_{Mt} \end{pmatrix} = \begin{pmatrix} T & \sum_{t=1}^{T} R_{Mt} \\ \sum_{t=1}^{T} R_{Mt} & \sum_{t=1}^{T} R_{Mt} \end{pmatrix} \begin{pmatrix} \hat{\alpha}_i \\ \hat{\beta}_i \end{pmatrix}$$

Equivalently,

$$\begin{pmatrix} \mathbf{1}'\mathbf{R}_i \\ \mathbf{R}'_M\mathbf{R}_i \end{pmatrix} = \begin{pmatrix} \mathbf{1}'\mathbf{1} & \mathbf{1}'\mathbf{R}_M \\ \mathbf{1}'\mathbf{R}_M & \mathbf{R}'_M\mathbf{R}_M \end{pmatrix} \begin{pmatrix} \hat{\alpha}_i \\ \hat{\beta}_i \end{pmatrix}$$

or

$$\mathbf{X}'\mathbf{R}_i = \mathbf{X}'\mathbf{X}\hat{\gamma}_i$$

Solving for $\hat{\gamma}_i$ gives the least squares estimates

$$\hat{\gamma}_i = \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{R}_i$$

Estimating SI Model Covariance Matrix

Recall, in the SI model

$$oldsymbol{\Sigma} = \sigma_M^2 eta eta' + \mathbf{D}$$
 $eta = egin{pmatrix} eta_1 \ drapprox \ eta_n \end{pmatrix}, \ \mathbf{D} = egin{pmatrix} \sigma_{arepsilon,1}^2 & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & \sigma_{arepsilon,n}^2 \end{pmatrix}$

Estimate Σ using plug-in principle

$$\hat{\mathbf{\Sigma}} = \hat{\sigma}_M^2 \hat{eta} \hat{eta}' + \hat{\mathbf{D}}$$

where

$$\hat{eta} = \left(egin{array}{c} \hat{eta}_1 \ \hat{eta}_n \end{array}
ight), \; \hat{\mathbf{D}} = \left(egin{array}{ccc} \hat{\sigma}^2_{arepsilon,1} & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & \hat{\sigma}^2_{arepsilon,n} \end{array}
ight)$$

Hypothesis Testing in SI Model

Single Index Model and Assumptions

$$R_{it} = \alpha_i + \beta_i R_{Mt} + \varepsilon_{it}$$

$$\operatorname{cov}(R_{Mt}, \varepsilon_{it}) = 0, \ \operatorname{cov}(\varepsilon_{it}, \varepsilon_{jt}) = 0, \ \operatorname{cov}(\varepsilon_{it}, \varepsilon_{i,t-j}) = 0$$

$$R_{Mt} \sim iid \ N(\mu_M, \sigma_M^2)$$

$$\varepsilon_{it} \sim iid \ N(0, \sigma_{\varepsilon,i}^2)$$

$$\alpha_i, \beta_i, \mu_M, \sigma_M^2, \sigma_{\varepsilon,i}^2 \text{ are constant over time}$$

Hypotheses of Interest

• Basic significance test

$$H_0: \beta_i = 0 \text{ vs. } H_1: \beta_i \neq 0$$

• Test for specific value

$$H_0: \beta_i = \beta_i^0 \text{ vs. } H_1: \beta_i = \beta_i^0$$

• Test of constant parameters

 H_0 : β_i is constant over entire sample

 H_1 : β_i changes in some sub-sample

Basic significance test

$$H_0: \beta_i = 0 \text{ vs. } H_1: \beta_i \neq 0$$

Test statistics: t-statistics

$$t_{\beta_i=0} = \frac{\hat{\beta}_i - 0}{\widehat{SE}(\hat{\beta}_i)} = \frac{\hat{\beta}_i}{\widehat{SE}(\hat{\beta}_i)}$$

Intuition:

- ullet If $|t_{eta_i=0}|pprox 0$ then $\hat{eta}_ipprox 0$, and $H_0:eta_i=0$ should not be rejected
- If $|t_{\beta_i=0}| > 2$, say, then $\hat{\beta}_i$ more than 2 values of $\widehat{SE}(\hat{\beta}_i)$ away from 0. This is very unlikely if $\beta_i = 0$, so $H_0: \beta_i = 0$ should be rejected.

Distribution of test statistics under H_0

Under the assumptions of the SI model, and H_0 : $\beta_i = 0$

$$t_{\theta=0} = \frac{\hat{\beta}_i}{\widehat{SE}(\hat{\beta}_i)} \sim t_{T-2}$$

where

 $t_{T-2} =$ Student t distribution with T-2 degrees of freedom (d.f.)

Remarks:

- \bullet t_{T-2} is bell-shaped and symmetric about zero (like normal)
- d.f. = sample size number of estimated parameters. In SI model there are two estimated parameters (α_i and β_i)
- Degrees of freedom determines kurtosis (tail thickness)

d.f.
$$= T - 2 < 10$$
, $kurt(t_{T-2}) >> 3$

d.f. =
$$T - 2 > 60$$
, $kurt(t_{T-2}) \approx 3$

• For $T \geq 60$, $t_{T-2} \sim N(0,1)$. Therefore, for $T \geq 60$

$$t_{\beta_i=0} = \frac{\hat{\beta}_i}{\widehat{SE}(\hat{\beta}_i)} \sim N(0,1)$$

Test for specific value

$$H_0: \beta_i = \beta_{i0} \text{ vs. } H_1: \beta_i \neq \beta_{i0}$$

Test statistics: t-statistics

$$t_{\beta_i=0} = \frac{\hat{\beta}_i - \beta_{i0}}{\widehat{SE}(\hat{\beta}_i)}$$

Intuition:

- If $|t_{\beta_i=\beta_{i0}}| \approx$ 0 then $\hat{\beta}_i \approx \beta_{i0}$, and $H_0: \beta_i=\beta_{i0}$ should not be rejected
- If $|t_{\beta_i=\beta_{i0}}| > 2$, say, then $\hat{\beta}_i$ more than 2 values of $\widehat{SE}(\hat{\beta}_i)$ away from β_{i0} . This is very unlikely if $\beta_i = \beta_{i0}$, so $H_0: \beta_i = \beta_{i0}$ should be rejected.

Diagnostic for constant parameters: rolling Regression

Idea: Compute estimates of α_i and β_i from SI model over rolling windows of length n < T

$$R_{it}(n) = \alpha_i(n) + \beta_i(n)R_{Mt}(n) + \varepsilon_{it}(n)$$

If $\hat{\alpha}_i(n)$, $\hat{\beta}_i(n)$ are roughly constant over the rolling windows then the hypothesis that α_i and β_i are constant is supported by the data.