实验1: 局域网组网

学号: 2213034

姓名: 辛杰

实验1: 局域网组网

- (1) 在仿真环境下进行单交换机以太网组网,测试网络的连通性。
- (2) 在仿真环境下利用终端方式对交换机进行配置
- (3) 在单台交换机中划分VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析。
- (4) 在仿真环境下组建多集线器、多交换机混合式网络。划分跨越交换机的VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析。
- (5) 在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并进行分析。
- (6) 学习仿真环境提供的简化配置方式。

(1) 在仿真环境下进行单交换机以太网组网,测试网络的连通性。

PC0 ip: 192.186.0.1 PC1 ip: 192.186.0.2

PC0 ping PC1测试网络的连通性

```
C:\>ping 192.168.0.2

Pinging 192.168.0.2 with 32 bytes of data:

Reply from 192.168.0.2: bytes=32 time=4ms TTL=128
Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
Reply from 192.168.0.2: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.0.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 4ms, Average = 1ms
```

(2) 在仿真环境下利用终端方式对交换机进行配置

在PC7的终端里进行配置

```
Switch#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#enable password 123456
Switch(config)#enable secret 123456
The enable secret you have chosen is the same as your enable password.
This is not recommended. Re-enter the enable secret.
Switch(config)#enable secret 1234567
Switch(config)#hostname sw1
sw1(config)#
```

(3) 在单台交换机中划分VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析。

在PC7里面设置局域网,创建两个局域网VLAN10和VLAN20,将接口1~3 (PC0、PC1、PC2) 分配给VLAN10,接口4 (PC3) 分配给VLAN20

S1(config-vlan)#name Test 为该vlan命名VLan 10

S1(config-if)#switchport mode access 启用 access 模式

S1(config-if)#switchport access vlan 10 将端口指定到VLAN

```
sw1#enable
sw1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
sw1(config)#vlan 10
sw1(config-vlan)#name VLAN10
sw1(config-vlan)#vlan 10
sw1(config-vlan)#name VLAN10
sw1(config-vlan)#vlan 20
sw1(config-vlan)#name VLAN20
sw1(config-vlan)#exit
sw1(config)#interface range FastEthernet0/1 - 3
sw1(config-if-range)#switchport mode access
sw1(config-if-range)#switchport access vlan 10
sw1(config-if-range)#interface range FastEthernet0/4
sw1(config-if-range)#switchport mode access
sw1(config-if-range)#switchport access vlan 20
```

show vlan 检查VLAN配置

	vlan	rio_i. comi	<u>rgureu</u>	IIOM C	JIISOTE 1	Jy CONSOI				
VLAN Name				Stat	tus Po	rts				
1	defau	lt			acti	Fa Fa Fa	10/9, 10/13, 10/17, 10/21,	Fa0/6, Fa Fa0/10, Fa Fa0/14, Fa0/18, Fa0/22, Fa0/22, Gig0/2	a0/11, 1 Fa0/15, Fa0/19,	Fa0/12 Fa0/16 Fa0/20
10	VLAN10				act	i v e Fa	Fa0/1, Fa0/2, Fa0/3			
20	VLAN20				act	ive Fa	Fa0/4			
1002	002 fddi-default				act:	cive				
1003	1003 token-ring-default				act:	active				
1004	1004 fddinet-default				act:	active				
1005	1005 trnet-default				act:	ive				
VLAN	Туре	SAID	MTU	Parent	RingNo	BridgeNo	Stp	BrdgMode	Trans1	Trans2
1	enet	100001	1500						0	0
		100010							0	0
20	enet	100020	1500						0	0
1002	fddi		1500						0	0
M	ore									

然后用PCO分别ping PC2和PC3

```
C:\>ping 192.168.0.3

Pinging 192.168.0.3 with 32 bytes of data:

Reply from 192.168.0.3: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>ping 192.168.0.4

Pinging 192.168.0.4 with 32 bytes of data:
Request timed out.
```

PC2可以连接, PC3无法连接

现象分析:

- **同一VLAN内通信**:在同一VLAN内的主机可以互相通信,因为它们处于同一广播域内,交换机会在这些端口之间转发数据包。
- 不同VLAN间通信:不同VLAN间的主机默认情况下不能直接通信,因为它们处于不同的广播域。交换机不会在不同VLAN的端口之间转发数据包,除非通过路由器或三层交换机进行路由。
- (4) 在仿真环境下组建多集线器、多交换机混合式网络。 划分跨越交换机的VLAN,测试同一VLAN中主机的连通性 和不同VLAN中主机的连通性,并对现象进行分析。

在右边交换设置在vlan20中

290	Port	Link	VLAN	IP Address	MAC Address
S	FastEthernet0/1	Up	20		0001.965E.B901
	FastEthernet0/2	Up	20		0001.965E.B902
	FastEthernet0/3	Up	20		0001.965E.B903
	FastEthernet0/4	Up			0001.965E.B904
	FastEthernet0/5	Down	1		0001.965E.B905
	FastEthernet0/6	Down	1		0001.965E.B906
	FastEthernet0/7	Down	1		0001.965E.B907
	FastEthernet0/8	Down	1		0001.965E.B908
	FastEthernet0/9	Down	1		0001.965E.B909
	FastEthernet0/10	Down	1		0001.965E.B90A
	FastEthernet0/11	Down	1		0001.965E.B90B
	FastEthernet0/12	Down	1		0001.965E.B90C
	FastEthernet0/13	Down	1		0001.965E.B90D
	FastEthernet0/14	Down	1		0001.965E.B90E
	FastEthernet0/15	Down	1		0001.965E.B90F
	FastEthernet0/16	Down	1		0001.965E.B910
	FastEthernet0/17	Down	1		0001.965E.B911
	FastEthernet0/18	Down	1		0001.965E.B912
	FastEthernet0/19	Down	1		0001.965E.B913
	- 1-11 10/00	_	_		2224 255244

然后再将两个交换机的局域网连起来

- 1 | Switch(config)#interface 交换机相连的端口
- 2 | Switch(config-if)#switchport mode trunk
- 3 Switch(config-if)#switchport trunk allowed vlan all
- 4 | Switch(config-if)#exit

```
sw1 (config) #interface f0/5
sw1 (config-if) #
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/5 (1), with Switch
FastEthernet0/4 (10).

sw1 (config-if) #switchport mode trunk

sw1 (config-if) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/5, changed state to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/5, changed state to up

%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/5 (1), with Switch
FastEthernet0/4 (10).

sw1 (config-if) #switchport trunk allowed vlan all
sw1 (config-if) #eixt
```

然后用PC3分别ping PC2和PC4

ping PC2 失败

```
Pinging 192.168.0.3 with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 192.168.0.3:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

```
C:\>ping 192.168.0.5

Pinging 192.168.0.5 with 32 bytes of data:

Reply from 192.168.0.5: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.0.5:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

现象分析:

- 同一VLAN内通信:在同一VLAN内但不在同一交换机下的主机可以互相通信,因为它们处于同一广播域内,交换机会在这些端口之间转发数据包。
- 不同VLAN间通信:不同VLAN间的主机默认情况下不能直接通信,因为它们处于不同的广播域。交换机不会在不同VLAN的端口之间转发数据包,除非通过路由器或三层交换机进行路由。

(5) 在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并进行分析。

从PC2向PC4发送数据包

0.000		1 02	
0.006		PC2	ICMP
0.007	PC2	Switch0	ICMP
0.008	Switch0	Switch1	ICMP
0.009	Switch1	PC4	ICMP
0.010	PC4	Switch1	ICMP
0.011	Switch1	Switch0	ICMP
0.012	Switch0	PC2	ICMP
1.015		PC2	ICMP
1.016	PC2	Switch0	ICMP

由图可知,数据包的传递为:

PC2->Switch0->Switch1->PC4->Switch1->Switch0->PC2

下面为数据包的帧结构

Ethernet II 头部

- Preamble (前导码): 10101010 , 用于同步接收端的时钟。
- **Destination MAC Address (目的MAC地址)**: 00:0c:85:66:52:c6 , 这是数据包的目的地址。
- Source MAC Address (源MAC地址): 00:E0:A3:06:0C, 这是发送数据包的设备的MAC地址。
- Type (类型): 0x0800 , 表示这是一个IPv4数据包。

IP 头部

- **Version (版本)**: 4,表示这是一个IPv4数据包。
- IHL (Internet Header Length): 5,表示IP头部的长度是20字节。
- DSCP (Differentiated Services Code Point): 0x00 , 用于服务质量 (QoS) 。
- Total Length (总长度): 128 ,表示整个IP数据包的长度是128字节。
- Identification (标识): 0x0003, 用于数据包的唯一标识。
- Flags (标志): 0,没有设置分片。
- Fragment Offset (分片偏移): ①,表示这是数据包的第一个分片。
- Time to Live (TTL): 128,表示数据包在网络中可以经过的最大跳数。
- Protocol: 0x01,表示这是一个ICMP数据包。
- Header Checksum (头部校验和): 用于验证IP头部的完整性。
- Source IP Address (源IP地址): 192.168.0.3, 这是发送数据包的设备的IP地址。
- Destination IP Address (目的IP地址): 192.168.0.5, 这是数据包的目的地址。
- Options (选项): 0x00000000, 没有使用IP选项。
- Padding (填充): 0x00 , 确保IP头部是32位对齐。

ICMP 头部

- Type (类型): 0x08 , 表示这是一个ICMP回显请求 (ping) 。
- Code (代码): 0x00 , 表示这是一个标准请求。
- Checksum (校验和): 用于验证ICMP头部的完整性。
- Identifier (标识符): 0x0003 , 用于匹配请求和响应。
- Sequence Number (序列号): 3,用于标识请求的顺序。

数据部分

• Data (数据): 这部分是可变长度的, 包含了ICMP回显请求的数据负载

(6) 学习仿真环境提供的简化配置方式。

以上就是我所学到的东西