BAHAN AJAR STATISTIK LANJUT

(untuk kalangan sendiri)

Disusun Oleh:

Rahmawati Yuliyani Nani Mulyani Munasiah Avini Nurazhimah Arfa

FAKULTAS TEKNIK & MIPA PRODI INFORMATIKA UNIVERSITAS INDRAPRASTA (2014)

KATA PENGANTAR

Dengan rahmat Tuhan Yang Maha Esa, penyusunan bahan ajar Statistik Lanjut untuk program studi Informatika di lingkungan Universitas Indraprasta PGRI (Unindra) telah dapat terselesaikan. Buku ini merupakan rangkuman dari bukubuku yang sudah ada yang disesuaikan dengan SAP (Satuan Acara Perkuliahan) yang diberlakukan di Universitas Indraprasta PGRI (Unindra)

Kami sadar masih banyak kekurangan dalam bahan ajar ini, untuk itu segala saran, kritikan serta masukan sangat kami harapkan dari semua pihak demi perbaikan ke depan.

Jakarta, Oktober 2014

Penyusun

DAFTAR ISI

1.	Kata Pengantar	- 2
2.	Daftar Isi	- 3
3.	Peubah Acak	4
4.	Distribusi Teoritis	13
5.	Distribusi Sampling	22
6.	Pendugaan Parameter	41
7.	Uji Hipotesa	46
8.	Pengujian Hipotesa Rata-rata	52
9.	Pengujian Hipotesa Proporsi	58
10.	Analisis Beda Rerata dua sampel	63
11.	Analisis Varians (ANAVA)	70
12.	Analisis Kovarian (ANAKOVA)	74
13.	Lampiran-lampiran	83

PEUBAH ACAK

VARIABEL ACAK, NILAI HARAPAN dan VARIANCE

VARIABEL ACAK

Untuk menggambarkan hasil-hasil percobaan sebagai nilai-nilai numerik secara sederhana, kita menggunakan apa yang disebut sebagai variabel acak. Jadi variabel acak dapat didefinisikan sebagai deskripsi numerik dari hasil percobaan. Ada juga yang menuliskan bahwa Variabel acak (variabel random) adalah variabel yang nilai-nilainya ditentukan oleh kesempatan atau variabel yang dapat bernilai numerik yang di definisikan dalam suatu ruang sampel.

Variabel acak biasanya menghubungkan nilai-nilai numerik dengan setiap kemungkinan hasil percobaan. Karena nilai-nilai numerik tersebut dapat bersifat diskrit(hasil perhitungan) dan bersifat kontinu(hasil pengukuran) maka variabel acak dapat dikelompokkan menjadi variabel acak diskrit dan variabel acak kontinu.

Variabel Acak Diskrit

Varibel acak diskrit adalah variabel acak yang tidak mengambil seluruh nilai yang ada dalam sebuah interval atau variabel yang hanya memiliki nilai tertentu. Nilainya merupakan bilangan bulat dan asli, tidak berbentuk pecahan. Variabel acak diskrit jika digambarkan pada sebuah garis interval, akan berupa sederetan titik-titik yang terpisah.

Contoh:

- 1. Banyaknya pemunculan sisi muka atau angka dalam pelemparan sebuah koin (uang logam).
- Jumlah anak dalam sebuah keluarga.

Contoh soal:

Dua buah kotak masing-masing berisi 4 bola yang bertuliskan angka 1,2,3,4. Dari kotak I dan II masing-masing diambil sebuah bola secara random. Tentukan nilai dari variabel random yang menyatakan jumlah kedua angka pada bola yang terambil!

Penyelesaian:

Dari pengambilan bola pada kotak I dan II, diperoleh titik sampel sebanyak 16. Jika Y menyatakan jumlah kedua angka pada bola yang terambil maka:

$$Y(1,1) = 2$$

$$Y(1,2) = 3$$

$$Y(1,3) = 4$$

dan seterusnya.

Sehingga, daerah hasil dari variabel random Y adalah

$$R_Y = \{2, 3, 4, 5, 6, 7, 8\}$$

Variabel Acak Kontinu

Varibel acak kontinu adalah variabel acak yang mengambil seluruh nilai yang ada dalam sebuah interval atau variabel yang dapat memiliki nilai-nilai pada suatu interval tertentu. Nilainya dapat merupakan bilangan bulat maupun pecahan. Varibel acak kontinu jika digambarkan pada sebuah garis interval, akan berupa sederetan titik yang bersambung membantuk suatu garis lurus.

Contoh:

- 1. Usia penduduk suatu daerah.
- 2. Panjang beberapa helai kain.

Contoh soal:

Pada label kawat baja, tertulis diameter $2\pm0,0005$ mm. Tentukan nilai dari variabel acak yang menunjukkan diameter kawat tersebut! Penyelesaian :

Diameter kawat baja tidak boleh kurang dari 2 - 0,0005 mm = 1,9995 mm dan tidak boleh lebih dari 2 + 0,0005 mm = 2,0005 mm. Sehingga daerah

hasil dari variabel acak X adalah $R_x = \{X: 1,9995 \le x \le 2,0005, x \text{ bilangan real}\}$

DISTRIBUSI PROBABILITAS VARIABEL ACAK DISKRIT

Distribusi probabilitas variabel acak menggambarkan bagaimana suatu probabilitas didistribusikan terhadap nilai-nilai dari variabel acak tersebut. Untuk variabel diskrit X, distribusi probabilitas didefinisikan dengan fungsi probabilitas dan dinotasikan sebagai p(x).

Fungsi probabilitas p(x) menyatakan probabilitas untuk setiap nilai variabel acak X.

Contoh:

1. Jumlah mobil terjual dalam sehari menurut jumlah hari selama 300 hari

Jumlah mobil terjual dalam sehari	Jumlah hari
0	54
1	117
2	72
3	42
4	12
5	3
Total	300

Distribusi Probabilitas Jumlah Mobil Terjual dalam Sehari

X	p(x)
0	0,18
1	0,39
2	0,24
3	0,14
4	0,04
5	0,18 0,39 0,24 0,14 0,04 0,01
Total	1,00

Dalam membuat suatu fungsi probabilitas untuk variabel acak diskrit, kondisi berikut harus dipenuhi.

1.
$$p(x) \ge 0$$
 atau $0 \le p(x) \le 1$

2.
$$\Sigma p(x) = 1$$

Kita juga bisa menyajikan distribusi probabilitas dengan menggunakan grafik.

Fungsi Probabilitas Kumulatif Variabel Acak diskrit

Fungsi probabilitas kumulatif digunakan untuk menyatakan jumlah dari seluruh nilai fungsi probabilitas yang lebih kecil atau sama dengan suatu nilai yang ditetapkan.

Secara matematis, fungsi probabilitas kumulatif dinyatakan sebagai berikut.

$$F(x) = P(X \le x) = X \le p(x)$$

Dimana

 $F(x) = P(X \le x)$ menyatakan fungsi probabilitas kumulatif pada titik X = x yang merupakan jumlah dari seluruh nilai fungsi probabilitas untuk nilai X sama atau kurang dari x.

Contoh:

Probabilitas Kumulatif dari jumlah mobil terjual dalam sehari

Χ	F(x)
0	0,18
1	0.57 (= 0.18 + 0.39)
2	0.81 (= 0.18 + 0.39 + 0.24)
3	0.95 (= 0.18 + 0.39 + 0.24 + 0.14)
4	0.99 (= 0.18 + 0.39 + 0.24 + 0.14 + 0.04)
5	1,00 (= 0,18 + 0,39 + 0,24 + 0,14 + 0,04 + 0,01)

Kita bisa menyajikan fungsi probabilitas kumulatif dalam bentuk grafik, sbb.

DISTRIBUSI PROBABILITAS VARIABEL ACAK KONTINU

Distribusi probabilitas variabel acak kontinu dinyatakan dengan fungsi f(x) dan sring disebut sebagai fungsi kepadatan atau fungsi kepadatan probabilitas dan bukan fungsi probabilitas. Nilai f(x) bisa lebih besar dari 1. Fungsi kepadatan probabilitas harus memenuhi syarat sebagai berikut.

- 1. $f(x) \ge 0$
- 2. $\int_{-\infty}^{\infty} f(x)dx = 1$ (integral seluruh fungsi kepadatan probabilitas f(x) = 1)

3.
$$P(a < X < b) = \int_{a}^{b} f(x)dx$$

Catatan : $f(x) dx = P\{x \le X \le (x + dx)\}$, yaitu probabilitas bahwa nilai X terletak pada interval x dan x + dx.

Fungsi Probabilitas Kumulatif Variabel Acak Kontinu

Kalau pada variabel acak diskrit, fungsi probabilitas kumulatif dihitung dengan cara penjumlahan maka pada variabel acak kontinu, probabilitas kumulatif dicari dengan integral.

Rumusnya adalah sebagai berikut.

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

Nilai-nilai dalam rumus ini harus kontinu atau dalam suatu interval.

Contoh:

Suatu variabel acak kontinu X yang memiliki nilai antara X = 1 dan X = 3 memiliki fungsi densitas yang dinyatakan oleh.

$$f(x) = \frac{2(1+x)}{21}$$

Tentukan nilai P(X < 2)!

Penyelesaian:

$$P(X < 2) = P(1 < X < 2)$$

$$= \int_{1}^{2} \frac{2(1+x)dx}{21}$$

$$= \frac{1}{21} (2x + x^{2})_{1}^{2} = \frac{5}{21}$$

NILAI HARAPAN DAN VARIANS DARI VARIABEL ACAK DISKRIT

Rata-rata (µ) dari distribusi probabilitas adalah nilai harapan dari variabel acaknya.

Nilai harapan variabel acak diskrit adalah rata-rata tertimbang terhadap seluruh kemungkinan hasil dimana penimbangnya adalah nilai probabilitas yang dihubungkan dengan setiap hasil.

Nilai harapan diperoleh dengan menyatakan setiap kemungkinan hasil x dengan probabilitasnya P(X) dan kemudian menjumlahkan hasil perkalian tersebut.

Nilai harapan dari variabel acak diskrit X yang dinotasikan dengan E(X) dirumuskan sebagai berikut.

$$E(X) = \mu_x = \sum_{i=1}^{N} x_i \ p(x_i)$$

= $x_1 \ p(x_1) + x_2 \ p(x_2) + \dots + x_N \ p(x_N)$

dimana.

 x_i = nilai ke-i dari variabel acak X $p(x_i)$ = probabilitas terjadinya x_i

Selain rata-rata, ukuran statistic yang lain adalah varians dan standar deviasi.

Varians (σ^2) dari variabel acak diskrit didefinisikan sebagai berikut.

Varians dari variabel acak diskrit adalah rata-rata tertimbang dari kuadrat selisih antara kemungkinan hasil dan rata-ratanya dimana penimbangnya adalah probabilitas dari masing-masing hasil tersebut.

Varians diperoleh dengan mengalikan setiap kemungkinan kuadrat selisih $(x_i - \mu)^2$ dengan probabilitasnya $p(x_i)$ dan kemudian menjumlahkan seluruh hasil perkalian tersebut. Sehingga varians dinyatakan sebagai berikut.

$$\sigma^2 = E(X - \mu)^2 = \sum_{i=1}^{N} (x_i - \mu)^2 p(x_i)$$

dimana:

x_i = nilai ke-I dari variable acak X

 $p(x_i)$ = probabilitas terjadinya x_i

Standar deviasi σ diperoleh dengan menarik akar dari σ^2 .

Var (x) =
$$\sigma^2 = E(X^2) - (E(X))^2$$
 atau
Var (x) = $\sigma^2 = \Sigma ((x - \mu)^2, P(x))$

$$\sigma = \sqrt{Var(X)}$$

contoh soal:

 Sekelompok ahli sebuah perusahaan terdiri atas 4 orang ahli manajemen dan 3 orang ahli akuntansi. Akan dibentuk suatu komisi yang terdiri atas 3 orang (komisi 3). Jika anggota komisi tiga diambil secara acak dari ke – 7 ahli tersebut, tentukan a. nilai harapan banyaknya ahli manajemen yang dapat duduk dalam komisi tiga tersebut!. b. Var (X) dan simpangan bakunya.

Penyelesaian:

Misalkan x adalah banyaknya ahli manajemen dalam komisi tiga maka variabel acak x dapat memiliki nilai 0,1,2,3. Distribusi probabilitas dari variabel x dapat dihitung dengan menggunakan pendekatan kombinasi.

$$f(x) = \frac{C_x^4 C_{3-x}^3}{C_3^7}$$
, $x = 0,1,2,3$

$$f(0) = \frac{1}{35}$$

$$f(1) = \frac{12}{35}$$

$$f(2) = \frac{18}{35}$$

$$f(3) = \frac{4}{35}$$

distribusi probabilitasnya adalah:

Х	0	1	2	3
f(x)	1/35	12/35	18/35	4/35
x.f(x)	0	12/35	36/35	12/35

Maka nilai harapan banyaknya ahli manajemen yang dapat duduk dalam komisi tiga tersebut adalah :

$$E(x) = \sum x.f(x) = 0 + \frac{12}{35} + \frac{36}{35} + \frac{12}{35} = \frac{60}{35} = 1.7$$

Dari hasil tersebut, dapat disimpulkan bahwa andaikan komisi tiga itu dibentuk berulang-ulang maka diharapkan banyaknya ahli manajemen dalam setiap komisi yang terbentuk adalah 1,7 atau 2 orang (sebagai pendekatan).

$$E(X^2) = \sum x^2 \cdot f(x) = O(\frac{1}{35}) + 1(\frac{12}{35}) + 4(\frac{18}{35}) + 9(\frac{4}{35}) = \frac{120}{35} = 3.43$$

Var (X) = E(X²) – (E(X))²
= 3.43 – (1,7)² = 3.43 – 2.89 = 0.54
$$\sigma = \sqrt{Var(X)} = \sqrt{0.54} = 0.73$$

2. Seorang salesman menjual mesin cuci baru untuk PT makmur. Ia kemudian membuat suatu distribusi probabilitas untuk jumlah mesin cuci yang diharapkan dapat terjual pada bulan tertentu.

Jumlah mesin cuci yang terjual (x)	Probabilitas p(x)
0	0.06
1	0.14
2	0.4
3	0.15
4	0.15
5	0.10

- a.Berapa jumlah mesin cuci yang diharapkan oleh salesman tersebut dapat terjual dan apa artinya?
- b. hitung varian dan simpangan bakunya.

Penyelesaian:

$$E(x) = \mu = \Sigma x.f(x) = 0(0.06) + 1(0.14) + 2(0.4) + 3(0.15) + 4(0.15) + 5(0.10) = 2.49$$

Artinya : untuk beberapa bulan salesman berharap dapat menjual mesin

cuci dengan rata-rata 2.49 sebulan (tentu saja adalah tidak mungkin baginya untuk menjual tepat 2.49 mesin cuci pada suatu bulan tertentu).

$$E(X^{2}) = \Sigma x^{2}.f(x) = 0(0.06)+1(0.14)+4(0.4)+9(0.15)+16(0.15)+25(0.10)=7.99$$

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$= 7.99 - (2.49)^{2} = 7.99 - 6.2 = 1,79$$

$$\sigma = \sqrt{Var(X)} = \sqrt{1,791} = 1.33$$

DISTRIBUSI TEORITIS

DISTRIBUSI NORMAL & normal baku (Z)

Distribusi probabilitas yang sangat penting dalam ilmu statistik adalah distribusi normal. Distribusi ini bersifat kontinu dan bergantung pada dua parameter yaitu rata-rata μ dan simpangan baku σ. Distribusi normal baku adalah distribusi normal yang memiliki rata-rata nol dan simpangan baku satu. Distribusi ini juga dijuluki kurva lonceng (bell curve) karena grafik fungsi kepekatan probabilitasnya mirip dengan bentuk lonceng.

Distribusi normal memodelkan fenomena kuantitatif pada <u>ilmu alam</u> maupun <u>ilmu sosial</u>. Beragam skor pengujian <u>psikologi</u> dan fenomena <u>fisika</u> seperti jumlah <u>foton</u> dapat dihitung melalui pendekatan dengan mengikuti distribusi normal. Distribusi normal banyak digunakan dalam berbagai bidang <u>statistika</u>, misalnya <u>distribusi sampling rata-rata</u> akan mendekati normal, meski distribusi populasi yang diambil tidak berdistribusi normal. Distribusi normal juga banyak digunakan dalam berbagai distribusi dalam statistika, dan kebanyakan <u>pengujian hipotesis</u> mengasumsikan normalitas suatu data.

Perhatikan kurva distribusi normal standar berikut:

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga $(-\infty)$ hingga positif takhingga $(+\infty)$. Kurva normal memiliki puncak pada X=0. Perlu diketahui bahwa luas kurva normal adalah satu (sebagaimana konsep probabilitas). Dengan demikian, luas kurva normal pada sisi kiri = 0,5; demikian pula luas kurva normal pada sisi kanan = 0,5.

Dalam analisis statistika, seringkali kita menentukan probabilitas kumulatif yang dilambangkan dengan notasi **P** (X<x). Sebagai contoh, **P** (X<1), apabila diilustrasikan dengan grafik adalah luas kurva normal dari minus

takhingga hingga X = 1.

Secara matematis, probabilitas distribusi normal standar kumulatif dapat dihitung dengan menggunakan rumus:

$$\int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx$$

Perlu diketahui bahwa untuk menentukan luas daerah antara a dan b di bawah kurva, perlu dilakukan pengintegralan yang ditafsirkan sebagai probabilitas peubah acak X antara x=a dan x=b.

$$P(a < X < b) = \int_a^b \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} (\frac{x-\mu}{\sigma})^2} dx$$

Hasil integrasi tersebut untuk nilai-nilai μ dan σ yang diberikan akan selalu berkisar antara 0 dan 1, karena luas keseluruhan daerah sama dengan satu unit persegi.

Transformasi normal baku

Untuk memudahkan perhitungan, supaya kita tidak harus melakukan integral berulang-ulang maka kita perlu mentransformasi setiap pengamatan peubak acak X menjadi suatu nilai peubah acak normal Z dengan nilai rata-rata μ =0 dan simpangan baku σ =1. Distribusi yang diamati, harus dibakukan dengan menggunakan rumus :

$$Z = \frac{x - \mu}{\sigma}$$

Dengan padanan z merupakan jarak simpangan x terhadap nilai rata-rata. Transformasi ini kita sebut transformasi normal baku.

Nilai Z merupakan peubah acak kontinu normal baku dengan nilai ratarata nol dan ragamnya satu. Bila X berada diantara selang x_1 dan x_2 , maka peubah acak normal baku Z akan berada diantara nilai-nilai padanannya yaitu :

$$Z_1 = \frac{x_1 - \mu}{\sigma} \qquad \text{dan} \qquad Z_2 = \frac{x_2 - \mu}{\sigma}$$

Sehingga $P(x_1 < X < x_2) = P(z_1 < Z < z_2)$. Untuk selanjutnya hasil perhitungan baku ini dapat kita lihat pada tabel distribusi normal z atau disingkat tabel z.

Contoh soal:

1. Suatu distribusi normal dengan μ = 80 dan σ = 5, hitunglah probabilitas bahwa X mengambil sebuah nilai antara 75 dan 90.

Penyelesaian:

Nilai-nilai z padanan $x_1 = 75$ dan $x_2 = 90$ adalah:

$$Z_1 = \frac{75 - 80}{5} = -1$$
 dan $Z_2 = \frac{90 - 80}{5} = 2$

Dengan demikian P(75 < X < 90) = P(-1 < Z < 2).

Sehingga berdasarkan tabel z diperoleh nilai P(-1<Z<2)=1-P(z<-1)-P(z>2)

= 1-0,1587-0,0228

= 0.8185

Jadi probabilitasnya adalah 0,8185.

Distribusi t

a. Ciri-Ciri Distribusi t

- 1) Sampel yang diuji berukuran kecil (n < 30).
- 2) Penentuan nilai tabel dilihat dari besarnya tingkat signifikan (α) dan besarnya derajat kebebasan (dk).

b. Fungsi Pengujian Distribusi t

- 1) Untuk memperkirakan interval rata-rata.
- 2) Untuk menguji hipotesis tentang rata-rata suatu sampel.
- 3) Menunjukkan batas penerimaan suatu hipotesis.
- 4) Untuk menguji suatu pernyataan apakah sudah layak untuk dipercaya.

c. Cara membaca tabel t

contoh:

$$\alpha = 5\% = 0.05$$

n = 15

d. Penggunaan Hipotesis

Rumus:

$$t_h = \frac{x - \mu}{s / \sqrt{n}}$$

ket: th = t hitung

x = rata-rata sampel μ = rata-rata populasi

s = standar deviasi n = jumlah sampel

- juiillaii

dk = n - 1

CONTOH

Rata-rata lamanya mahasiswa mengisi KRS tiap semesternya adalah 50 menit dan standar deviasi 10 menit. Sekarang dengan danya pengisian KRS melalui komputer, ternyata dari 12 mahasiswa memiliki rata-rata lamanya mengisi KRS 42 menit dan standar deviasi 11,9 menit. Ujilah hipotesa bahwa dengan adanya penggunaan komputer maka pengisian KRS dapat lebih cepat ($\alpha = 0,05$)

Jawab :

$$\begin{array}{lll} \mu_x = 50 & & dan \ \sigma_x = 10 \\ \bar{x} & = 42 & dan \ S_x & = 11,9 \end{array}$$

Karena n = 12 maka gunakanlah uji t sampel kecil.

Ho: $\mu = 50$ menit

H1: μ < 50 menit (karena setelah ada computer rata-rata 42 menit)

$$t_h = \frac{42 - 50}{11,9/\sqrt{12}} = -2,33$$

$$t_{\text{tabel}} = -t_{\text{df=n-1}}$$

$$= -t_{(0,05, 11)} = -1,796$$

Ho : diterima jika t_h ≥ t_{tabel} Ho : ditolak jika t_h < t_{tabel}

Kesimpulan Ho ditolak (th < ttabel) yaitu -2,33 < -1,796

Dengan demikian pengisian KRS dengan cara sistem computer lebih cepat daripada pengisian KRS sistem yang lama.

Distribusi Chi-Square (Chi Kuadrat) Ciri-Ciri Distribusi Chi Kuadrat

- a) Tidak simetri dengan variabel acak kontinum
- b) Kurvanya landai ke kanan (kurva positif)
- c) Semakin besar derajat kebebasan (dk), semakin kurang landai kurvanya

Rumus Chi Kuadrata Hitung : $X^2 = \sum_{i}^{k} \frac{(f_0 - f_e)^2}{f_e}$

Dimana: f0= frekuensi dari yang diamati

Cara membaca tabel chi kuadrat

contoh: $\alpha = 5\%=0.05$ dk = 3

Contoh:

Pada pelemparan sebanyak 360 kali sepasang dadu keluar 74 kali berjumlah 7 dan 24 kali berjumlah 11. dengan menggunakan $\alpha = 0.05$ ujilah apakah dadu tersebut seimbang.

Distribusi F

Jawab:

Probablitas angka dadu berjumlah 7 = 6/36 = 1/6, fe = $1/6 \times 360 = 60$ sedangkan fo berjumlah 7=74.

Probablitas angka dadu berjumlah 11 = 2/36, fe = $2/36 \times 360 = 20$ sedangkan fo berjumlah 11=24.

B/K	Berjumlah 7	Berjumlah 11
fo	74	24
fe	60	20

$$X^{2} = \sum_{i}^{k} \frac{(f_{0} - f_{e})^{2}}{f_{e}} = \frac{(74 - 60)^{2}}{60} + \frac{(24 - 20)^{2}}{20} = 4,07$$

 X^{2}_{tabel} = 3,84 (untuk α =0,05 dan dk = k-1=2-1=1)

Kriteria : tolak Ho jika $X^2_{\text{tabel}} > X^2_{\text{hitung}}$ terima Ho jika $X^2_{\text{tabel}} < X^2_{\text{hitung}}$

Ho: kedua dadu tidak seimbang

Hi: kedua dadu seimbang

Kesimpulan Ho diterima ($X^2_{\text{tabel}} < X^2_{\text{hitung}}$) yaitu 3,84 < 4,07. Dengan demikian kedua dadu tidak seimbang.

Distribusi F

Sifat - Sifat model Distribusi F:

- a) Tidak simetri dengan variabel kontinum
- b) Kurvanya landai kekenan (kurva positif)
- c) Menggunakan 2 derajat kebebasan (dk), yaitu dk pembilang dan dk penyebut.

Rumus Uji F:

$$F = \frac{S_b^2}{S_w^2}$$

 $F = \frac{S_b^2}{S_w^2}$ $S_b^2 = \text{varian antar sampel}$ $S_w^2 = \text{varian dalam sampel}$ Dimana:

Cara membaca tabel F

contoh:

= 5% = 0.05α

V1 = 10

= 8 **V**2

Contoh:

١

Untuk membandingkan apakah ada perbedaan nilai atau tidak dari penerapan 3 metode mengajar yang dapat ditempuh pada siswa SMP. Setelah 1 tahun metode-metode tersebut diterapkan pada siswa, maka pada pelajaran Matematika diperoleh hasil ujian sebagai berikut :

Hasil Ujian MTK SMP dgn 3 Metode Mengajar

Metode 1 (X1)	Metode II (X2)	Metode III (X3)
77	73	76
78	76	77
80	76	82
82	77	83
83	78	87

Jawab:

Ho: $\mu_1 \neq \mu_2 \neq \mu_3$ H1; $\mu_1 = \mu_2 = \mu_3$

Mencari nilai rerata masing-masing metode:

 $\bar{x}_1 = 80$

 $\bar{x}_2 = 76$

 $\bar{x}_3 = 81$

Varian dari masing-masinf metode:

 $S_{x1}^2 = 6.5$ $S_{x2}^2 = 3.5$ $S_{x3}^2 = 20.5$

Mencari rerata total dari rerata masing-masing metode :

$$X_{\bar{x}} = \frac{\bar{x}_1 + \bar{x}_2 + \bar{x}_3}{k} = \frac{80 + 76 + 81}{3} = 79$$

Varian antar kelompok sampel

$$S_b^2 = n \left[\frac{(\bar{x}_1 - \bar{X}_{\bar{x}})^2 + (\bar{x}_2 - \bar{X}_{\bar{x}})^2 + (\bar{x}_3 - X_{\bar{x}})^2}{k - 1} \right]$$
$$= \left[\frac{(80 - 79)^2 + (76 - 79)^2 + (81 - 79)^2}{2} \right] = 35$$

Varian dalam sampel

$$s_w^2 = \frac{s_{x1}^2 + s_{x2}^2 + s_{x3}^2}{k} = \frac{6,5 + 3,5 + 20,5}{3} = 10,17$$

Nilai Fhitung

$$Fhitung = \frac{S_b^2}{S_w^2} = \frac{35}{10,17} = 3,44$$

Kriteria Pengujian Ho diterima jika F_h > F_t dan Ho ditolak jika Ho F_h < F_t

3,42 3,89

Kesimpulan:

Ho ditolak yang berarti ketoga metode pengajaran tersebut sama, yaitu tidak ada perbedaan tingkat efektifitasnya, karena $F_h < F_t$ (3,44 < 3,88).

Catatan : untuk α ; 0,05; dkpembilang = dk1 = k - 1 = 3 - 1 = 2 ; dan dkpenyebut = dk2 = nt - k = 15 - 3 = 12 diperoleh Ft = 3,88.

DISTRIBUSI SAMPLING

A.POPULASI DAN SAMPEL

Populasi (universe) adalah totalitas dari semua objek atau individu yang memiliki karakteristik tertentu, jelas dan lengkap yang akan di teliti (bahan penelitian). Sampel adalah bagian dari populasi yang di ambil melalui cara-cara tertentu yang juga memiliki karakteristik tertentu, jelas dan lengkap yang di anggap bisa mewakili populasi. Untuk menerangkan karakteristik dari populasi dan sampel, di gunakan istilah parameter dan statistik. Parameter dan statistik adalah besaran yang berupa data ringkasan atau angka ringkasan yang menunjukkan suatu ciri dari populasi dan sampel. Parameter dan statistic merupakan hasil hitungan nilai dari semua unit di dalam populasi dan sampel bersangkutan.

Berikut ini tabel lambang yang di gunakan untuk parameter dan statistik:

Besaran	Lambang Parameter (Populasi)	Lambang Statistik (Sampel)
Rata-rata	μ	\overline{X}
Varian	σ^2	S²
Simpangan Baku	σ	S
Jumlah Observasi	N	n
Proporsi	Р	р

B. METODE SAMPLING

Metode sampling adalah cara pengumpulan data yang hanya mengambil sebagian elemen populasi atau karakteristik yg ada dalam populasi. Cara pengumpulan data yg lain adalah sensus. Sensus adalah cara pengumpulan data yang mengambil setiap elemen populasi atau karakteristik yg ada dalam populasi.

Untuk suatu hal maka sensus di laksanakan,tetapi karena suatu hal pula mungkin sensus tidak dapat dilaksanakan dan kemudian dipilih sampling. Alasan-alasan dipilihnya sampling antara lain sebagai berikut.

1) objek penelitian yang homogen

Dalam menghadapi objek penelitian yang homogeny atau 100% sama, sensus tidak perlu dilaksanakan, cukup hanya dengan melakukan sampling untuk memperoleh data yang diperlukan. Contoh objek yang bersifat homogen ialah: darah dalam tubuh seseorang,dan kadar garam dalam air laut.

2) Objek penelitian yang mudah rusak

Dalam menghadapi objek penelitian yang mudah rusak, sensus tidak mungkin dilakukan sebab akan merusak objek yang diteliti.

Contoh :Penelitian mengenai rasa jeruk tidak mungkin dilakukan dengan mencicipi satu persatu jeruk satu kebun

3) Penghematan biaya dan waktu

Biaya yang dikeluarkan untuk melakukan sensus jauh lebih besar dibandingkan dengan sampling, sehingga penggunaan sensus banyak menimbulkan pemborosan, sedangkan penggunaan sampling lebih efisien. Hal itu disebabkan pada sensus objek yang diteliti jauh lebih banyak dibandingkan objek yang diteliti pada sampling. Demikian pula halnya dengan waktu, waktu yang digunakan untuk melakukan sensus lebih lama jika dibandingkan dengan waktu yang digunakan untuk melakukan sampling

4) Masalah ketelitian

Pada sensus objek yang harus diteliti lebih banyak dibandingkan dengan pada sampling, sehingga keakuratan hasil penelitiannya juga lebih kecil dari pada sampling.pengalaman mengatakan bahwa semakin banyak objek yang diteliti, semakin kurang pula ketelitian yang dihasilkan.

5) Ukuran populasi

Seperti diketahui bahwa berdasarkan ukurannya populasi dapat berupa populasi berhingga dan populasi tak berhingga.untuk populasi tak berhingga, yaitu populasi yang memiliki banyak objek tak berhingga banyaknya, sensus tidak mungkin dilakukan. Untuk populasi berhingga, tetapi memiliki objek yang sedemikian besarnya, sensus juga sulit untuk dilaksanakan untuk kedaan seperti itu, sampling lebih cocok untuk digunakan.

6) Factor ekonomis

Factor ekonomis diartikan apakah kegunaan dari hasil penelitian sepadan dengan biaya ,waktu, dan tenaga yang telah dikeluarkan untuk penelitian tersebut. Jika tidak, mengapa harus dilakukan sensus yang memakan biaya, waktu, dan tenaga yang banyak dan sebagai alternatifnya dilakukan sampling.

Metode sampling pada dasarnya dapat dibedakan atas dua macam, yaitu sampling random dan sampling non random.

1.SAMPLING RANDOM (sampling acak)

Sampling random atau sampling probabilitas adalah cara pengambilan sampel dengan semua objek atau elemen populasi memiliki kesempatan yang sama untuk dipilih sebagai sampel. Hasil dari sampling random memiliki sifat yang objektif. Yang termasuk sampling random, antara lain sampling random sederhana, sampling berlapis, sampling sintetis, dan sampling kelompok

a. Sampling random sederhana

Sampling random sederhana adalah bentuk sampling random yang sifatnya sederhana, tipa sampel yang berukuran sama memiliki probabilitas sama untuk terpilih dari populasi. Sampling ramdom sederhana dilakukan apabila :

1). Elemen-elemen populasi yang bersangkutan homogen;

2). Hanya diketahui identitas-identitas dari satuan individu (elemen) dalam populasi, sedangkan keterangan lain mengenai populasi, seperti derajat keseragaman, pembagian dalam golongan-golongan tidak diketahui, dan sebagainya, Sampling random sederhana dapat dilakukan dengan mengunakan dua metode, yaitu metode undian dan metode tabel random.

1) Metode undian

Metode undian adalah yang prosesnya dilakukan dengan menggunakan pola pengundian. Proses pengerjaannya ialah sebagai berikut,

- a) Member kode pada semua elemen populasi pada lembar kertas-kertas kecil
- b) Menggulung lembar kertas-kertas kecil kemudian memasukannya kedalam kotak, mengocoknya dengan rata, dan mengembalikannya satu per satu
- c) Hasil undian itu merupakan sampel yang dipilih, metode undian hanya cocok untuk jumlah populasi yang kecil.

2) Metode tabel random

Metode tabel random adalah metode yang prosesnya dilakukan dengan menggunakan tabel bilangan random. Tabel bilangan random adalah tabel yang dibentuk dari bilangan biasa yang diperoleh secara berturut-turut dngan sebuah proses random serta disusun dalam satu tabel(lihat lampiran)

Proses pengerjaannya sebagai berikut;

- a) Member nomor urut (mulai dari 1) pada sema elemen populasi, sebanyak elemen tersebut.
- b) Secara acak, memilih salah satu tabel bilangan random, demikia pula dngan pemilihan kolom dan barisnya.
- c) Nomor-nomor yang terpilih dari tabel tersebut merupakan nomor-nomor dari sampel. Apabila nomor sampel sudah

terpilih atau muncul, kemudian muncil lagi, maka nomor itu dilewati.

Contoh soal:

PT TERBANG BERSAMA memiliki 100 orang karyawan jika akan dipilih 15 orang sebagai sampel penelitian, tentukan nomor-nomor karyawan tersebut sebagai sampel dengan menggunakan tabel bilangan random!

Penyelesaian:

- (1) Ke-100 orang karyawan diberi nomor 01, 02, 03, 04, 05, 100
- (2) Dari pengacakan,misalkan terpilih tabel bilangan random seribu angka kedua, kolom 3 dan 4, baris ke-6.
- (3) Dari tabel bilangan random, diperoleh nomor-nomor karyawan sebagai sampel yaitu: 86,04,50,62,59,01,75,80,58,65,50,76,92,95,03.

b. Sampling berlapis (sampling stratified)

Sampling berlapis adalah bentuk sampling random yang populasi atau elemen populasinya di bagi dalam kelompok-kelompok, yang disebut strata sampling stratified dilakukan apabila:

- 1) Elemen-elemen populasi heterogen
- Ada criteria yang akan digunakan sebagai dasar untuk menstratifikasi populasi kedalam stratum-stratum, misalnya variable yang akan diteliti
- 3) Ada data pendahuluan dari populasi mengenai kriteria yang akan digunakan untuk stratifikasi;
- 4) Dapat diketahui dengan tepat jumlah satuan-satuan individu dari setiap stratum dalam populasi;

Proses pengerjaan ialah sebagai berikut.

1) Membagi populasi menjadi beberapa stratum

- 2) Mengambil sebuah sampel random dari setiap stratum. Banyaknya unsure yang dipilih tiap stratum dalam populasinya. Jika pengambilan banyaknya unsure tiap stratum sebanding denga ukuran-ukuran tiap stratum dan pengambilanya dilakukan secara random, dinamakan propotional random sampling.
- 3) Menggabungkan dari hasil pengambilan sampel tiap stratum menjadi satu sampel yang diperlukan.

Contoh soal:

Sebuah populasi terdiri atas 500 pedagang kaki lima, dengan komposisi . 200 pedagang makanan, 150 pedagang mainan, 100 pedagang kerajinan, 50 pedagang rokok. Jika 20 pedagang kaki lima itu hendak dijadikan sampel, tentukan sampel tiap stratum(gunakan metode sebanding) dan nomor-nomor sampel yang dipilih (gunakan tabel bilangan random) pada tiap stratum

Penyelesaian:

(a) Pengelompokan sampel menjadi beberapa stratum pada tabel berikut ini .

TABEL 3.2 PENGELOMPOKAN SAMPEL

Stratum	Jenis usaha	Jumlah		
I	Makanan	200		
II	Barang mainan	150		
III	Kerajinan	100		
IV	Rokok	50		
jumlah		500		

(b) Pengambilan sampel dari masing-masing stratum adalah sebagai berikut .

Stratum I =
$$\frac{200}{500}$$
 × 20 = 8 Pedagang

Stratum II = $\frac{150}{500}$ × 20 = 6 pedagang

Stratum III =
$$\frac{100}{500}$$
 × 20 = 4 pedagang
Stratum IV = $\frac{50}{500}$ × 20 = 2 pedagang
Jumlah seluruhnya = 20 pedagang

(c) Pemilihan sampel pada tiap stratum dilakukan dengan menggunakan tabel bilangan random, silahkan cari sendiri.

c. sampling sistematis

sampling sistematis adalah bentuk sampling random yang menggambarkan elemen-elemen yang akan diselidiki berdasarkan urutan tertentu dari populasi yang telah disusun secara teratur . sampling sistematis dilakukan apabila:

- Identifikasi atau nama dari elemen-elemen dalam populasi itu terdapat dalam suatu daftar, sehingga elemen- elemen tersebut dapat diberi nomor urut;
- 2). Populasi memiliki pola beraturan, seperti blok-blok dalam kota atau rumak-rumah pada suatu ruas jalan.

Proses pengerjaannya ialah sebagai berikut .

- Jumlah elemen dalam populasi dibagi jumlah unsur yang digunakan dalam sampel, sehingga terdapat subpopulasi-subpopulasi yang memiliki jumlah elemen yang sama (mimiliki interval yang sama).
- Dari subpopulasi pertama dipilih sebuah anggota dari sampel yang dikehendaki, biasanya dengan menggunakan tabel bilangan random.
- anggota dari sub sampel pertama yang terpilih digunakan sebagai titik acuan (awal) untuk memilih sampel berikutnya, pada jarak interval tertentu.

Contoh soal:

Sebuah populasi yang memiliki elemen 800, hendak diambil 20 sampel sebagai bahan penelitian. Tentukan nomor-nomor sampel yang terpilih!

Penyelesaian:

- Ke-800 elemen diberi nomor urut 001, 002, 800. Ke 800 elemen dibagi menjadi 20 subpopulasi, dimana setiap subpopulasi terdiri atas 20 elemen.
- Dengan menggunakan tabel bilangan random, diperoleh sebuah sampel dan subsample pertama sebagai titk acuan, misalkan bernomor 007.
- 3) Karena sampel pertama jauh pada nomor 007, maka nomor untuk sampel-sampel berikutnya adalah 047,087, 127, 167,207,247, 287, 327, 367, 407, 447, 487, 527, 567, 607, 647, 687, 727, 767.

d. Sampling kelompok (sampling cluster)

Sampling kelompok adalah bentuk sampling random yang populasinya dibagi menjadi beberapa kelompok (cluster) dengan menggunakan aturan-aturan tertentu, seperti batas-batas alam dan wilayah administrasi pemerintahan . proses pengerjaan ya iaslah sebagai berikut.

- 1). Membagi populasi kedalam beberapa kelompok.
- 2). Memilih satu atau sejumlah kelompok dari kelompok-kelompok tersebut. Pemilihan kelompok-kelompok itu dilakukan secara random
- Menentukan sampel dari satu atau sejumlah kelompok yang terpilih secara ramdom

Antara sampling cluster dan sampling stratified terdapat perbedaan dari cara pengambilan sampelnya. Pada sampling cluster sampelnya diambil dari cluster

terpilih, sedangkan pada sampling stratified sampelnya diambil dari stratum.

Contoh soal:

Sebuah desa memiliki 1.500 KK, akan diteliti mengenai respon penggunaan bumbu masak merek ASSOI. Untuk keperluan tersebut dipilih sampel sebanyak 50 KK. Dari 1.500KK tersebut kita bagi menjadi 150

kelompok dengan anggota 10 KK tiap kelompok yang berdekatan. Dari 150 kelompok iti, dipilih sebuah sampel random yang terdiri atas 5 kelompok, dengan demikian, dari 5 kelompok pilihan itu, diperoleh 5x10 = 50 KK sebagai sampel.

2. SAMPLING NONRANDOM (sampling tidak acak)

Sampling non random atau sampel non probabilitas adalah cara pengambilan sampel yang semua objek atau elemen populasinya tidak memiliki kesempatan yang sama untuk dipilih sebagai sampel

Hasil dari sampling non random memilii sifat subjektif atau kurang objektif.Hal itu disebabkan pada waktu sampel diambil dari populasi, probabilitas tidak diikutsertakan, tetapi berdasarkan aspek pribadi seseorang

yang termasuk sampling nonrandom, antara lain sampling kuota, sampling pertimbangan dan sampling seadanya.

a. Sampling kuota

Sampling kuota adalah bentuk sampling nonrandom yang mericikan lebih dahulu segala sesuatu yang berhubungan dengan pengambilan sampel.dengan demikian, petugas hanya mengumpulkan data mengenai sesuati yang telah terinci, akan tetapi, pengambilan unit samplingnya ditentukan oleh si petugas.

Contoh:

Sebuah kawasan dihuni oleh 1.000 KK .dalam rangka penelitian diperlukan 50 KK dalam kategori umur dan pendapatan tertentu, dalam penentuan sampel sebanyak 50 KK itu, petugas melakukannya atas pertimbangan sendiri.

b. Sampling pertimbangan

Sampling pertimbangan adalah bentuk sampling nonrandom yang pengambilan sampelnya ditentukan oleh peneliti berdasarkan

pertimbangan atau kebijaksanaannya. Cara sampling pertimbangan cocok untuk studi kasus .

Contoh:

Dari penyebaran 100 kuesioner, ternyata yang kembali hanya 30 (30%). Berdasarkan pertimbangan tertentu dari peneliti atau ahli, diputuskan untuk menggunakan 30 kuesioner tersebut sebagai sambel.

c. Sampling seadanya

Sampling seadanya adalah bentuk sampling nonrandom yang pengambilan sampelnya dilakukan seadanya berdasarkan kemudahannya mendapatkan apa yang diperlukan. Pada sampling seadanya, tingkat kerepresentatifan sampel tidak terlalu diperhatikan.

Contoh:

Pengambilan sampel mengenai ramalan tentang partai yang akan menjadi pemenang pada pemilu yang akan dating. Pengambilan sampelnya dilakukan dengan mengumpulkan opini masyarakat, dalam hal ini adalah orang-orang yang lewat pada suatu jalan. Orang-orang yang lewat tersebut tidak merupakan bagian representative dari keseluruhan masyarakat yang berhak memilih.

C. TEKNIK PENENTUAN JUMLAH SAMPEL

Untuk menentukan banyaknya sampel yang dapat diambil dari suatu populasi yang berukuran tertentu digunakan perhitungan sebagai berikut.

Untuk pengambilan sampel dengan pengambilan

Pengambilan sampel disebut dengan pengambilan

Pengambilan sampel disebut dengan pengambilan jika anggota yang telah diambil untuk dijadikan sampel disatukan kembai dengan anggota populasi lamanya sehingga ada kesempatan untuk kembali. Jika dari populasi berukuran N diambil sambel berukuran dengan pengembalian maka banyaknya sampel yang mungkin diambil adalah

 N^m

Contoh:

Untuk populasi berukuran 4 dengan anggota-anggotantanya A, B, C, D dan sampel yang diambil berukuran 2 maka banyaknya sampel yang mungkin dapat diambil adalah $4^2 = 16$, yaitu :

sampel 1	: AA	sampel 9 : CA
sampel 2	: AB	sampel 10 : CB
sampel 3	: AC	sampel 11 : CD
sampel 4	: AC	sampel 12 : CB
sampel 5	: BA	sampel 13 : CC
sampel 6	: BB	sampel 14 : CD
sampel 7	: BC	sampel 15 : DC
sampel 8	: BD	sampel 16 : DD

Suatu teoritis, populasi berhingga yang dikenali sampling dengan pengembalian dapat dianggap sebagai populasi tak berhingga. Hal itu di sebabkan berapapun banyaknya sampel yang diambil, populai tidak akan pernah habis

2. UNTUK PENGAMBILAN SAMPEL TANPA PENGEMBALIAN

Pengembalian sampel disebut tanpa pengembalian jika anggota populasi yang telah diambil untuk dijadikan sampel tidak disatukan dengan anggota populasi lainya .jika dari populasi berukuran *N* diambil sampel beukuran *n* tanpa pengembalian maka banyaknya sampel yang mungkin dapat diambil adalah.

$$C_n^N = \frac{N!}{n! (N-n)!}$$

Contoh:

Untuk populasi berukuran 5 dengan anggota-anggotanya A,B,C,D sampel yang diambil berukuran 2 maka banyaknya sampel yang mungkin dapat diambil adalah

$$C_2^5 = \frac{5!}{2!(5-2)!}$$

= 10 buah sampel

Ke-10 buah sampel itu adalah

Sampel 1	: AB	sampel	6	:	BD
Sampel 2	: AC	sampel	7	:	BE
Sampel 3	: AD	sampel	8	:	CD
Sampel 4	: AE	sampel	9	:	CE
Sampel 5	: BC	sampel	10	:	DE

D. PENGERTIAN DISTRIBUSI SAMPLING

Distrubusi sampling adalah dari besaran-besaran statistik,seperti ratarata,simpangan baku,proporsi (persentase) yang mungkin muncul dari sampel-sampel. Ada beberapa jenis distribusi sampling, diantaranya yang akan dibahas berikut ini:

1. Distribusi sampling rata-rata untuk pemilihan sampel dari populasi terbatas.

Bila populasi terbatas yang berukuran N dan berdistribusi normal dengan rata-rata μ dan simpangan baku σ , rata-rata sampel \bar{x} yang didasarkan pada sampel random berukuran n dan dipilih dari populasi diatas, akan memiliki distribusi normal dengan rata-rata dan simpangan baku seperti ini.

1) Untuk pengambilan sampel tanpa pengembalian atau $\frac{n}{N} > 5\%$:

$$\mu_{\overline{x}} = \mu$$

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

2) Untuk pengambilan sampel dengan pengembalian atau $\frac{n}{N} \leq 5\%$

$$\mu_{\overline{x}} = \mu$$

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

Contoh sal:

Toko UNDUR-UNDUR memiliki 5 karyawan, yaitu A,B,C,D,E dengan upah perjam (ribuan rupiah) : 2,3,3,4,5, jika upah yg diperoleh dianggap sebagai populasi,tentukan:

- a) Rata-rata sampel dari 2 unsur (upah dari dua karyawan)
- b) Rata-rata dari rata-rata sampel
- c) Simpangan baku dari rata-rata sampel

Pengambilan sampel dilakukan tanpa pengembalian.

Penyelesaian:

Banyaknya sampel yang mungkin adalah

$$C_2^5 = \frac{5!}{2!(5-2)!} = 10$$
 buah

Ke-10 buah sampel itu ialah:

1	2.2
	/ .3

7. 3;5

8. 3,4

9. 3;5

10. 4;5

Rata-rata sampelnya ialah:

Sampel
$$1 = 2,5$$

sampel
$$6 = 3.5$$

Sampel
$$2 = 2,5$$

sampel
$$7 = 4$$

Sampel
$$3 = 3$$

sampel
$$8 = 3.5$$

Sampel
$$4 = 3.5$$

sampel
$$9 = 4$$

Sampel
$$5 = 3$$

sampel
$$10 = 4,5$$

b. Rata-rata dari rata rata sampel adalah

$$\mu = \frac{2 + 3 + 3 + 4 + 5}{5}$$

$$= 3,4$$

$$\mu_{\overline{x}} = \mu = 3,4$$

c . simpangan baku dari rata-rata sampel:

$$\sigma_p = \sqrt{\frac{(2-3,4)^2 + (3-3,4)^2 + (3-3,4)^2 (4-3,4)^2 + (5-3,4)^2}{5}}$$

$$= 1,02$$

$$\sigma_{\overline{\chi}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{n-1}}$$

$$= \frac{1,02}{\sqrt{2}} \sqrt{\frac{5-2}{5-1}}$$

$$= 0,62$$

b. Untuk pemilihan sampel dari populasi yang tidak terbatas

Bila populasi memiliki ukuran yang tidak berhingga dan didistribusikan secara normal dengan rata-rata μ simpangan baku σ maka rata-rata sampel X yang dipilih dengan pengembalian atau tanpa pengembalian dari populasi tersebut akan memliki distrubusi normal dengan rata-rata dan simpangan baku:

$$\mu_{\overline{x}} = \mu \ dan \ \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

3. Daftar distribusi normal untuk distribusi sampling rata-rata

Penggunaan daftar distribusi normal untuk distribusi sampling ratarata dapat digunakan rumus:

$$Z = \frac{\overline{X} - \mu}{\sigma_{\overline{X}}}$$

1) Untuk populasi terbatas atau $\frac{n}{N} > 5\%$ berlaku:

$$Z = \frac{\overline{X} - \mu}{\sigma_{\overline{X}}} \text{ atau } Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}} \sqrt{\frac{N - n}{N - 1}}}$$

2) Untuk populasi tidak terbatas atau $\frac{n}{N} \le 5\%$ berlaku:

$$Z = \frac{\overline{X} - n}{\sigma_{\overline{X}}}$$
 atau $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$

2. Distribusi Sampling Proporsi

Proporsi dari populasi dinyatakan dengan $P = \frac{X}{N}$ dan proporsi untuk sampel dinyatakan dengan $p = \frac{X}{n}$.

Distribusi sampling proporsi adalah distribusi dari proporsi (presentase) yang diperoleh dari semua sampel sama besar yang mungkin dari satu populasi.

Distribusi sampling proporsi juga memiliki arti yang penting seperti distrubusi sampling rata-rata. Distribusi sampling digunakan untuk mengetahui persentase atau perbandingan antara dua hal yang

berkomplemen (peristiwa binomial), seperti persentase perokok dan bukan perokok, persentase pemilih dan bukan pemilih disuatu pemilu, dan perbandingan pemakai dan bukan pemakai hasil produksi tertentu.

Pada distribusi sampling proporsi, berlaku hal-hal sebagai berikut

1) Untuk pengambilan sampel dengan pengembalian atau jika ukuran populasi lebih besar dibandingkan dengan ukuran sampel,yaitu $\left(\frac{n}{N}\right) \le 5\%$ memiliki rata-rata dan simpangan baku:

$$\mu_{p} = \rho$$

$$\sigma_{p} = \sqrt{\frac{p(1 - p)}{n}} = \sqrt{\frac{pQ}{n}}$$

Keterangan:

P = proporsi kejadian sukses

Q = proporsi kejadian gagal (1 - P)

2) Untuk pengambilan sampel tanpa pengambilan atau jika ukuran populasi kecil dibandingkan dengan ukuran sampel,yaitu $\left(\frac{n}{N}\right)$ > 5% memiliki rata-rata dan simpangan baku

$$\mu_p = P$$

$$\sigma_p = \sqrt{\frac{p(1-p)}{n}} \cdot \sqrt{\frac{N-n}{N-1}}$$

$$= \sqrt{\frac{PQ}{n}} \sqrt{\frac{N-n}{N-1}}$$

Contoh soal:

Sebuah Toko memiliki 6 karyawan,misalkan A,B,C untuk yang senang membaca dan X , Y , Z untuk yang tidak suka

membaca , Jika 6 karyawan tersebut diambil sampel yang beranggotakan 4 karyawan (pengambilan sampel tanpa pengembalian),tentukan:

- a. Banyaknya sampel yang mungkin diambil,
- b. Distribusi sampling proporsinya,
- c. Rata-rata dan simpangan baku sampling proporsinya!

Penyelesain:

a. Banyaknya sampel yang mungkin adalah:

$$C_4^6 = \frac{6!}{4!(6-4)!}$$

= 15 buah sampel

Ke-15 buah sampel itu ialah:

- 1) 1 senang membaca dan 3 tidak: $C_1^3 \times C_3^3 = 3 \times 1 = 3$, yaitu: AXYZ, BXYZ, CXYZ
- 2) 2 senang membaca dan 2 tidak: $C_2^3 \times C_2^3 = 3 \times 3 = 9$, yaitu: *ABXY,ABXZ,ABYZ,ACXY, ACXZ,ACYZ,BCXY,BCXZ,BCYZ*
- 3) 3 senang membaca dan 1 tidak: $C_3^3 \times C_1^3 = 1 \times 3 = 3$, yaitu: ABCX, ABCY, ABCZ
- b. Jika X = senang membaca dan n = jumlah sampel maka distribusi sampling distribusi sampling proporsinya adalah n = 4

TABEL 3.5 DISTRIBUSI SAMPLING PROPORSI

Sampel yang Mungkin (X)	Proporsi Sampel $\left(\frac{X}{n}\right)$	Banyaknya Sampel	Prob.
1 2 3	0,25 0,50 0,75	3 9 3	0,2 0,6 0,2
Jumlah		15	1,0

c. Proporsi populasi untuk peristiwa sukses (senang membaca) adalah :

$$P = \frac{1}{2} = 0.5$$
 Jadi:

$$\mu_p = P$$
= 0,5
$$\sigma_p = \sqrt{\frac{P(1-P)}{n}} \sqrt{\frac{N-n}{N-1}}$$

$$= \sqrt{\frac{(0,5)(1-0,5)}{4}} \sqrt{\frac{6-4}{6-1}}$$
= 0,158

- 3) Daftar distribusi normal untuk distribusi sampling proporsi dapat ditentukan sebagai berikut:
 - a) Jika *n* besar maka nilai Z adalah

$$Z = \frac{p - P}{\sigma_p}$$

b) Jika *n* sangat kecil maka nilai Z adalah

$$Z = \frac{p \pm \frac{1}{2n} - P}{\sigma_p}$$

Keterangan:

$$\frac{1}{2n}$$
 = faktor koreksi kontinuitas

Contoh soal:

Toko mainan anak BONEKA bermaksud mengadakan pertunjukan sulap secara tetap seminggu sekali atau sebulan sekali. Pimpinan toko memperkirakan bahwa pengunjung akan mencapai 40% dari seluruh pengunjung toko dalam interval waktu yang sama. Jika dari hasil sampel di ketahui probabilitas proporsi yg mengikuti acara sulap itu hanya 15% atau lebih di bawah rata-rata populasi maka acara itu di adakan sebulan sekali. Untuk itu, setiap pengunjung di beri kuesioner dan dari jawabannya diambil 500 sebagai sampel.Hasil sampel

menunjukkan 175 pengunjung mengikuti acara tersebut. Menurut pendapat anda, sebaiknya acara sulap itu di adakan seminggu sekali atau sebulan sekali?

Penyelesaian:

$$P = 40\% = 0.4$$

$$N = 500$$

$$p = \frac{175}{500} = 0.35$$

Karena sampel kecil, maka digunakan faktor koreksi

$$Z = \frac{p + \frac{1}{2n} - p}{\sigma_p}$$

$$= \frac{0.35 - \left(\frac{1}{1000}\right) - 0.4}{\sqrt{\frac{(0.4)(0.6)}{600}}}$$

$$= -2.55$$

Didapatkan: P (-2,55
$$<$$
 Z $<$ 0)
P (-2,55 $<$ Z $<$ 0) = P(0 $<$ Z $<$ 2,25)
= 0,4946

Jadi probabilitas proporsi sampel yang mengikuti acara tersebut adalah 0,4946 atau 49,46% yang berarti lebih dari 15% dibawah rata-rata sampel. Dengan demikian, acara pertunjukan sulap tersebut diadakan sebulan sekali

PENDUGAAN PARAMETER

A.Pengertian pendugaan dan penduga

Pendugaan adalah proses yang menggunakan sampel static untuk menduga atau menaksir hubungan parameter populasi yang tidak diketahui. pendugaan merupakan suatu pernyataan mengenai parameter populasi yang diketahui berdasarkan informasi dari sampel, dalam hal ini sampel random, yang diambil dari populasi bersangkutan. Jadi dengan pendugaan itu, keadaan parameter populasi dapat diketahui.

Penduga adalah suatu stastik (harga sampel) yang digunakan untuk menduga suatu parameter. Dengan penduga, dapat diketahui seberapa jauh suatu parameter populasi yang tidak diketahui berada disekitar sampel (statistik sampel).

Secara umum, parameter diberi lambang θ (baca: theta) dan penduga diberi lambang $\hat{\theta}$ (baca: theta topi). Untuk lebih jelasnya,perhatikan tabel berikut:

Parameter (θ)	Penduga $(\hat{ heta})$
μ (rata-rata populasi) P (proporsi/ persentase) σ² (varians) σ (simpangan baku) r (koefisien korelasi) b (koefisien regresi)	\overline{X} atau $\hat{\mu}$ \hat{p} S^2 atau \hat{S}^2 S atau \hat{S} ρ atau \hat{r} B atau \hat{b}

Karena penduga merupakan fungsi dari nilai-nilai sampel maka penduga termasuk Variable random dan memiliki distribusi sampling (distribusi pemilihan sampel).

B. CIRI-CIRI PENDUGA YANG BAIK

Suatu penduga dikatakan baik apabila memiliki ciri berikut .

1. TIDAK BIAS (unbiased)

Suatu penduga $(\hat{\theta})$ dikatakan tidak bias bagi parameternya (θ) apabila nilai penduga sama dengan nilai yang diduganya (parameternya).

Jadi penduga tersebut tepat dapat menduga nilai dari parameternya.

2. Efisien

Suatu penduga $(\hat{\theta})$ dikatakan efisien bagi parameternya (θ) apabila penduga tersebut memiliki varians yang kecil. Apabila terdapat lebih dari satu penduga, penduga yang efisien adalah penduga yang memiliki varians terkecil. Dua buah penduga dapat dibandingkan efisiensinya dengan menggunakan efisiensi relative (*relative efficiency*).

3. Konsisten

Suatu penduga dikatakan konsisten apabila memenuhi syarat sebagai berikut,

a. Jika ukuran sampel semakin bertambah maka penduga akan mendekati parameternya. Jika besarnya sampel menjadi tak berhingga maka penduga konsisten harus dapat memberi suatu pendugaan titik yang sempurna terhadap parameternya. Jadi, θ merupakan penduga konsisten, jika dan hanya jika ;

E
$$(\hat{\sigma} - \sigma)^2$$
 → 0 jika n → -

Contoh:

Rata – rata sampel \overline{X} merupakan penduga μ_X yang konsisten karena :

- 1) Bias rata-rata nya = o untuk sembarang n.
- 2) Var $(\bar{X}) = \frac{\sigma}{\sqrt{n}} \rightarrow 0$ jika sampelnya $(n) \rightarrow \sim$

b. Jika ukuran sample bertambah tak berhingga maka distribusi sampling penduga akan mengecil menjadi suatu garis tegak lurus diatas parameter yang sebenarnya dengan probabilitas sama dengan 1.

C. Jenis-Jenis Pendugaan Berdasarkan Jenis parameternya

- a. Pendugaan rata-rata μ, yaitu pendugaan mengenai nilai parameter
 μ yang sebenarnya berdasarkan informasi rata-rata sampel.
- b. Pendugaan proporsi, yaitu pendugaan dari proporsi populasi yang tidak diketahui.
- c. Pendugaan varians σ^2 , yaitu pendugaan dari varians populasi yang tidak diketahui.
- d. Pendugaan simpangan baku, yaitu pendugaan dari simpangan baku populasi (parameter) yang tidak diketahui.

Dari berbagai jenis pendugaan diatas, kita tidak akan membahas semuanya. Kita hanya akan membatasi pembahasan tentang pendugaan interval rata-rata dan pendugaan interval proporsi dengan sampel kecil.

1. Pendugaan interval untuk rata-rata dengan sampel kecil (n \leq 30)

Untuk sampel kecil yang pengambilan sampelnya dengan pengembalian dan σ tidak diketahui, maka pendugaan interval untuk rata rata dirumuskan :

$$\bar{X} - t_{\alpha/2} \cdot \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

$$S = \sqrt{\frac{\Sigma X^2}{n-1} - \frac{(\Sigma X)^2}{n (n-1)}}$$

ContohSoal;

Suatu sampel random yang terdiri atas 9 orang karyawan di sebuah perusahaan memiliki waktu yang diperlukan untuk menyelesaikan sebuah pekerjaan, yaitu 14; 17; 15; 18; 18; 14; 15; 19; 15 menit. Dugalah rata-rata

waktu yang digunakan bagi karyawan tersebut dengan interval keyakinan 99%.

Penyelesaian:

n = 9

$$\Sigma X = 145$$

$$\Sigma X^{2} = 2.365$$

$$\overline{X} = \frac{145}{9} = 16,11$$

$$1 - \alpha = 99\%$$

$$\alpha = 1\% = 0,01$$

$$\alpha/2 = 0,005$$

$$n - 1 = 9 - 1 = 8$$

$$t_{0.005:8} = 3,355$$

$$s = \sqrt{\frac{2.365}{8} - \frac{(145)^{2}}{72}} = 1,9$$

$$\overline{X} - t_{\alpha/2}. \frac{s}{\sqrt{n}} < \mu < \overline{X} + t_{\alpha/2}. \frac{s}{\sqrt{n}}$$

$$16,11 - (3,355)(\frac{19}{3}) < \mu < 16,11 + (3,355)(\frac{1,9}{3})$$

$$13.985 < \mu < 18,235$$

Jadi rata-rata waktu yang digunakan oleh para karyawan perusahaan dengan interval keyakinan 99% berkisar antara 13,985 menit sampai 18,235 menit.

Pendugaan interval untuk proporsi dengan sampel kecil (n≤ 30)
 Untuk sampel kecil pendugaan interval untukproporsi dirumuskan ;

$$\hat{p} - t_{\alpha/2} \sqrt{\frac{\hat{p} (1-\hat{p})}{n}} < P < \hat{p} + t_{\alpha/2} \sqrt{\frac{\hat{p} (1-\hat{p})}{n}}$$

Rumus diatas kurang sesuai dengan distribusi t, namun hasilnya dianggap lebih baik daripada distribusi Z. Beberapa ahli cenderung

mengganti varians proporsi dengan cara membuat maksimum $\hat{p}(1-\hat{p})$, yaitu jika $\hat{p}=\frac{1}{2}$ maka $\hat{p}(1-\hat{p})=\frac{1}{4}$. dirumuskan :

$$\hat{p} - t_{\alpha/2} \sqrt{\frac{1}{\frac{4}{n}}} < P < \hat{p} + t_{\alpha/2} \sqrt{\frac{1}{\frac{4}{n}}}$$

ContohSoal:

Penelitian terhadap sampel sebanyak 20 karyawan sebuah perusahaan, 6 diantaranya memiliki mobil. Dengan interval keyakinan 95%, tentukan proporsi karyawan yang memiliki mobil

Penyelesaian:

n = 20
X = 6

$$\hat{p}$$
 = $\frac{6}{20}$ = 0,3
 $1 - \alpha$ = 95%
 α = 5% = 0,05
 $\alpha/2$ = 0,025
n-1 = 20 - 1 = 19
 $t_{0.025:19}$ = 2,093
 \hat{p} - $t_{0.025:19}$ = 2,093
 \hat{p} - $t_{0.025:19}$ = 2,093
 \hat{p} - $t_{0.025:19}$ = 2,093
0,3 - 2,093 $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} < P < \hat{p} + t_{0.025:19}$ = 0,3 +2,093 $\sqrt{\frac{(0,3)(0,7)}{20}}$ 0,0855< P < 0,5145
8,55% < P < 51,45 %

Proporsi karyawan yang punya mobil berkisar 8,55% sampai 51,45%

UJI HIPOTESA

A. Pengertian Dasar Hipotesa

Banyak pendapat yang menjelaskan arti dari pengujian hipotesis tersebut. Berikut akan dijabarkan beberapa pengertian dari berbagai refrensi yang ada.

- Sutrisno Hadi, dalam bukunya yang berjudul "Statistika" istilah hipotesa sebenarnya adalah kata majemuk, terdiri dari katakata hipo dan tesa. Hipo berasal dari bahasa yunani hupo, yang berarti dibawah, kurang atau lemah. Tesa berasal dari bahasa yunani thesis, yang berarti teori atau proposisi yang disajikan sebagai bukti. Jadi hipotesa adalah pernyataan yang masih lemah kebenarannya dan masih perlu dibuktikan kenyataannya.
- J. Supranto, hipotesa pada dasarnya merupakan suatu proposisi atau anggapan yang mungkin benar dan sering dipergunakan untuk dasar pembuatan keputusan atau pemecahan persoalan atau untuk dasar penelitian yang lebih lanjut.
- Soegyono Mangkuatmojo, hipotesis (atau lengkapnya hipotesis statistik) merupakan suatu anggapan atau suatu dugaan mengenai populasi.

Sebelum menerima atau menolak sebuah hipotesis, seorang peneliti harus menguji keabsahan hipotesis tersebut untuk menentukan apakah hipotesis itu benar atau salah.

Pengujian Hipotesis adalah suatu prosedur yang dilakukan dengan tujuan memutuskan apakah menerima atau menolak hipotesis mengenai parameter populasi.

Ciri-ciri Hipotesis yang baik adalah

- (1) Hipotesis harus menyatakan hubungan;
- (2) Hipotesis harus sesuai dengan fakta;
- (3) Hipotesis harus sesuai dengan ilmu;
- (4) Hipotesis harus dapat diuji;

- (5) Hipotesis harus sederhana;
- (6) Hipotesis harus dapat menerangkan fakta.

Dalam statistic dan penelitian terdapat dua macam hipotesis, yaitu hipotesis nol (H₀) dan hipotesis alternatif (H_a) atau hipotesis kerja (H₁).

- 1. Hipotesis nol (H₀) adalah hipotesis yang dirumuskan sebagai suatu pernyataan yang akan diuji. Disebut hipotesis nol karena hipotesis tersebut tidak memiliki perpedaan atau perbedaannya nol dengan hipotesis sebenarnya.
- 2. Hipotesis alternatif (H_a) atau hipotesis kerja (H₁) adalah hipotesis yang dirumuskan sebagai lawan dari hipotesis nol.

Rumusan Hipotesis

1. Hipotesis Deskriptif

Hipotesis deskriptif adalah dugaan tentang nilai suatu variable mandiri, tidak membuat perbandingan atau hubungan. Sebagai contoh bila rumusan masalah penelitian sebagai berikut ini, maka hipotesis (jawaban sementara) yang dirumuskan adalah hipotesis deskriptif.

- a. Seberapa tinggi daya tahan lampu merk X?
- b. Seberapa tinggi produktivitas padi di Kabupaten Bogor?

Rumusan hipotesisnya:

- a. Daya tahan lampu merk X = 800 jam
- b. Produktivitas padi di Kabupaten Bogor 8 ton/ha.

Hipotesis statistik dirumuskan dengan simbol-simbol statistik, dan antara hipotesis nol (H_0) dan hipotesis alternatif (H_a) selalu dipasangkan.

Berikut contoh pernyataan yang dapat dirumuskan hipotesis deskriptif-statistiknya:

 Suatu perusahaan minuman harus mengikuti ketentuan, bahwa salah satu unsure kimia hanya boleh dicampurkan paling banyak 1% (paling banyak berarti ≤). Dengan demikian rumusan hipotesis statistiknya adalah:

 $H_0: \mu \leq 0.01$

 $H_a: \mu > 0.01$

2) Suatu bimbingan tes menyatakan bahwa murid yang dibimbing di lembaga itu, paling sedikit 90% dapat diterima di Perguruan Tinggi Negeri.

Dengan demikian rumusan hipotesis statistiknya adalah:

$$H_0:\, \mu \! \geq \! 0.9$$

$$H_a: \mu < 0.9$$

3) Seorang peneliti menyatakan bahwa daya tahan lampu merk A = 450 jam dan B = 600 jam.

Dengan demikian rumusan hipotesis statistiknya adalah:

Lampu A Lampu B

$$H_0: \mu = 450$$
 $H_0: \mu = 600$

$$H_a: \mu \neq 450$$
 $H_a: \mu \neq 600$

2. Hipotesis Komparatif

Hipotesis komparatif adalah Pernyataan yang menunjukkan dugaan nilai dalam satu variabel atau lebih pada sampel yang berbeda.

Contoh:

Apakah ada perbedaan efektivitas antara metode pembelajaran A dan B?

Rumusan hipotesis:

- Tidak terdapat perbedaan antara metode pembelajaran A dan B.
- Efektivitas metode pembelajaran A kurang dari sama dengan metode pembelajaran B.
- Efektivitas metode pembelajaran A lebih dari sama dengan metode pembelajaran B.

Hipotesis statistiknya:

- Ho : $\mu 1 = \mu_2$ H₁ : $\mu 1 \neq \mu_2$ \rightarrow rumusan uji hipotesis dua pihak (kanan dan kiri)
- $H_0: \mu \le \mu_2$ $H_1: \mu > \mu_2$ \rightarrow rumusan uji hipotesis satu pihak kanan
- $H_0: \mu \geq \mu_2$ $H_1: \mu < \mu_2$ rumusan uji hipotesis satu pihak kiri

3. Hipotesis hubungan (asosiatif)

Hipotesis hubungan adalah Pernyataan yang menunjukkan dugaan tentang hubungan antara dua variable atau lebih.

Contoh rumusan masalahnya adalah "apakah ada hubungan antara gaya kepemimpinan dengan efektivitas kerja?".

Rumusan hipotesis:

Tidak ada hubungan antara gaya kepemimpinan denganm efektivitas kerja.

Hipotesis statistiknya:

 $Ho: \rho = 0$

 H_1 : $\rho \neq 0$ (ρ = simbol yang menunjukkan kuatnya hubungan)

B. Dua kesalahan dalam pengujian

Dalam melakukan pengujian hipotesisada dua macam kesalahan yang dapat terjadi, yaitu:

- 1. Kesalahan tipe I (type error I) adalah suatu kesalahan bila menolak hipotesis nol (H₀) yang benar (seharusnya diterima).
- 2. Kesalahan tipe II (type erroe II) adalah kesalahan bila menerima hipotesis yang salah (seharusnya ditolak).

Untuk mengingat hubungan antara hipotesis, kesimpulan, dar kesalahan/kekeliruan dapat dilihat dalam tabel di bawah ini.

Kesimpulan	Keadaan sebenarnya	
	Hipotesis benar	Hipotesis salah
Terima hipotesis	Benar	Kesalahan tipe II
Tolak hipotesis	Kesalahan tipe I	benar

Agar penelitian dapat dilakukan maka kedua tipe kesalahan itu kita nyatakan dalam peluang. Peluang membuat kesalahan I dinyatakan dengan α (alpha) atau disebut kesalahan α , dan peluang membuat kesalahan tipe II dinyatakan dengan β (betha) atau disebut kesalahan β .

Dalam penggunaannya α disebut taraf signifikansi atau taraf arti atau taraf nyata dengan harga yang biasa digunakan 0,01 atau 0,05.

Dengan $\alpha = 0.05$ (5%), maka berarti kira-kira 5 dari setiap 100 kesimpulan bahwa kita akan menolak hipotesis yang seharusnya diterima.

C. Prosedur/tahapan pengujian

Merumuskan Hipotesa
 H₀ adalah hipotesis yang dirumuskan sebagai sutu pernyataan yang akan diuji.

H₁ adalah hipotesis yang dirumuskan sebagai lawan atau tandingan dari hipotesis nol. Dalam menyusun hipotesis alternative (H₁), timbul keadaan berikut:

 Jika H₁, menyatakan bahwa harga parameter ≠ dengan harga yang dihipotesiskan. Pengujian ini disebut uji dua pihak/arah, didapat dua daerah kritis masing-masing pada ujung-ujung distribusi. Luas daerah kritis adalah ½α.

2) Jika H₁, menyatakan bahwa harga parameter > dengan harga yang dihipotesiskan, disebut uji pihak kanan.

3) Jika H₁, menyatakan bahwa harga parameter < dengan harga yang dihipotesiskan, disebut uji pihak kiri.

- 2. Menentukan taraf signifikansi (taraf nyata)
- Menentukan kriteria pengujian
 Kriteria pengujian adalah bentuk pembuatan keputusan dalam
 menerima atau menolak H₀ dengan cara membandingkan nilai α
 tabel distribusinya (nilai kritis) dengan nilai uji statistiknya, sesuai
 dengan bentuk pengujiannya.
 - Penerimaan H_0 terjadi jika nilai uji statistic lebih kecil atau lebih besar daripada nilai positif atau negative dari α tabel. Atau nilai uji statistic diluar nilai kritis.
 - Penolakan Ho jika nilai uji statistic didalam nilai kritis.
- 4. Menentukan uji statistic (uiji Z, uji t, uji F, uji chi kuadrat dll)
- 5. Membuat kesimpulan dalam hal penerimaan atau penolakan H₀

PENGUJIAN HIPOTESIS RATA-RATA

(untuk sampel kecil n≤30)

A. Untuk satu rata-rata

Untuk pengujian hipotesis satu rata-rata dengan sampel kecil (n≤30), uji statistiknya menggunakan distribusi t. Prosedur pengujiannya adalah sebagai berikut:

- 1) Formula Hipotesis
 - a) $H_0: \mu = \mu_0$

 $H_1: \mu > \mu_0$

b) $H_0: \mu = \mu_0$

 $H_1: \mu < \mu_0$

c) $H_0: \mu = \mu_0$

 $H_1: \mu \neq \mu_0$

2) Penentuan nilai α (taraf nyata) dan nilai t-tabel

Menentukan nilai α sesuai soal, kemudian menentukan derajat bebas, yaitu db=n-1, lalu menentukan nilai $t_{\alpha/2; n-1}$ dari tabel.

- 3) Kriteria pengujian
 - a) Untuk $H_0: \mu = \mu_0$ dan $H_1: \mu > \mu_0$
 - i) Ho diterima jika th ≤ t-tabel
 - ii) Ho ditolak jika th > t-tabel
 - b) Untuk $H_0: \mu = \mu_0$ dan $H_1: \mu < \mu_0$
 - i) Ho diterima jika th ≥ t-tabel
 - ii) Ho ditolak jika th < t-tabel
 - c) Untuk $H_0: \mu = \mu_0$ dan $H_1: \mu \neq \mu_0$
 - i) Ho diterima jika -t-tabel $\leq th \leq t$ -tabel
 - ii) Ho ditolak jika th > t-tabel atau th < t-tabel
- 4) Uji statistik

a) simpangan baku (σ) populasi diketahui

th =
$$\frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}}$$
 = $\frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$

b) simpangan baku (σ) populasi tidak diketahui

th =
$$\frac{\bar{x} - \mu_0}{S_{\bar{x}}}$$
 = $\frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}}$

5) Kesimpulan

Menyimpulkan tentang penerimaan atau penolakan H₀ (sesuai dengan kriteria pengujiannya).

Contoh soal:

Sebuah sampel terdiri dari 15 kaleng cat, memiliki isi berat kotor seperti yang diberikan berikut ini:

(Isi berat kotor dalam kg/kaleng):

Jika digunakan taraf nyata 1%, dapatkah kita meyakini bahwa populasi cat dalam kaleng rata-rata memiliki berat kotor 1,2 kg/kaleng? (dengan alternatif tidak sama dengan). Berikan evaluasi anda.

Penyelesaian:

n=15
$$\alpha$$
=1%= 0,01 μ_0 = 1,2

$$\Sigma x = 18,13$$
 $\Sigma x^2 = 21,9189$

$$\bar{x} = \frac{18,13}{15} = 1,208$$

$$s = \sqrt{\frac{21,9189}{14} - \frac{(18,13)^2}{210}} = 0.02$$

a. Formulasi hipotesis:

$$H_0$$
: $\mu = 1,2$

$$H_1: \mu \neq 1.2$$

b. Taraf nyata dan nilai dari t-tabel;

$$\alpha$$
=1%= 0,01

$$\alpha/2 = 0.005$$

dengan
$$db = 15-1 = 14$$

 $t_{0,005;14} = 2,977$

c. Kriteria pengujiannya;

 H_0 diterima apabila $-2,977 \le t0 \le 2,977$

 H_0 ditolak apabila t0 < -2,977 atau t0 > 2,977

d. Uji statistik

$$t_0 = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{1,208 - 1,2}{\frac{0,02}{\sqrt{15}}} = 1,52$$

e. Kesimpulan:

Karena - $t_{0,005;14}$ =- 2,977 $\leq t_0$ = 1,52 $\leq t_{0,005;14}$ = 2,977, maka H₀ diterima. Jadi, populasi cat dalam kaleng secara rata-rata berisi berat kotor 1,2 kg/kaleng.

B. Untuk beda dua rata-rata

Sama dengan yang satu rata-rata, pada pengujian ini kita juga akan menggunakan distribusi t. Prosedur pengujian hipotesisnya ialah sebagai berikut :

1) Formula Hipotesis

a) $H_0: \mu_1 = \mu_2$

 $H_1: \mu_1 > \mu_2$

- b) $H_0: \mu_1 = \mu_2$
 - $H_1: \mu_1 < \mu_2$
- c) $H_0: \mu_1 = \mu_2$
 - $H_1: \mu_1 \neq \mu_2$
- 2) Penentuan nilai α (taraf nyata) dan nilai t-tabel

Menentukan nilai α sesuai soal, kemudian menentukan derajat bebas, yaitu db=n-1, lalu menentukan nilai $t_{\alpha/2}$; n-1 dari tabel.

- 3) Kriteria pengujian
 - a) Untuk $H_0: \mu_1 = \mu_2$ dan $H_1: \mu_1 > \mu_2$
 - i) Ho diterima jika th ≤ t-tabel
 - ii) Ho ditolak jika th > t-tabel
 - b) Untuk $H_0: \mu_1 = \mu_2$ dan $H_1: \mu_1 < \mu_2$
 - i) Ho diterima jika th ≥ t-tabel
 - ii) Ho ditolak jika th < t-tabel
 - c) Untuk $H_0: \mu_1 = \mu_2$ dan $H_1: \mu_1 \neq \mu_2$
 - i) Ho diterima jika -t-tabel $\leq th \leq t$ -tabel
 - ii) Ho ditolak jika th > t-tabel atau th < t-tabel
- 4) Uji Statistik
 - a) Untuk pengamatan tidak berpasangan

$$t_0 = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} (\frac{1}{n_1} + \frac{1}{n_2})}}$$

t₀ memiliki distribusi dengan db= n₁ + n₂ -2

b) Untuk pengamatan tidak berpasangan

$$t_0 = \frac{\bar{d}}{\frac{s_d}{\sqrt{n}}}$$

Keterangan:

 \bar{d} = rata-rata dari nilai d

s_d = simpangan baku dari nilai *d*

n = banyaknya pasangan

to memiliki distribusi dengan db = n-1

5) Kesimpulan

Kesimpulan pengujian merupakan penerimaan atau penolakan Ho

Contoh soal:

Sebuah perusahaan mengadakan pelatihan teknik pemasaran. Sampel sebanyak 12 orang dengan metode biasa dan 10 orang dengan terprogram. Pada akhir pelatihan diberikan evaluasi dengan materi yang sama. Kelas pertama mencapai nilai rata-rata 80 dengan simpangan baku 4 dan kelas kedua mencapai rata-rata 75 dengan simpangan baku 4,5. Ujilah hipotesis kedua metode pelatihan, dengan alternatif keduanya tidak sama!. Gunakan taraf nyata 10%! Asumsikan kedua populasi menghampiri distribusi normal dengan varians yang sama.

Penyelesaian:

$$N_1 = 12$$
 $n_2 = 10$ $\bar{x}_1 = 80$ $\bar{x}_2 = 75$ $s_1 = 4$ $s_2 = 4,5$

a. Formulasi hipotesis:

 $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$

b. Taraf nyata dan nilai dari t-tabel;

$$\alpha$$
=10%= 0,1 α /2= 0,05 dengan db = 12+10-2 = 20 $t_{0,05;20}$ = 1,725

c. Kriteria pengujiannya;

 $H_0 \text{ diterima apabila -1,725} \leq t_0 \leq 1,725$ $H_0 \text{ ditolak apabila } t_0 < -1,725 \text{ atau } t_0 > 1,725$

d. Uji statistik

$$t_0 = \frac{80-75}{\sqrt{\frac{(12-1)4^2 + (10-1)4,5^2}{12+10-2} \left(\frac{1}{12} + \frac{1}{10}\right)}} = 2,76$$

5) kesimpulan

Karena $t_0 > t$ -tabel maka H_0 ditolak. Jadi, kedua metode yang digunakan dalam pelatihan tidak sama hasilnya.

PENGUJIAN HIPOTESIS PROPORSI

A. Untuk satu proporsi

Prosedur pengujian hipotesis satu proporsi adalah sebagai berikut :

- 1) Formula Hipotesis
 - a) $H_0: P = P_0$

$$H_1: P > P_0$$

b) $H_0: P = P_0$

$$H_1: P < P_0$$

c) $H_0: P = P_0$

$$H_1: P \neq P_0$$

2) Penentuan nilai α (taraf nyata) dan nilai t-tabel

Menentukan nilai α sesuai soal, kemudian menentukan nilai Z_{α} atau $Z_{\alpha/2}$ dari tabel.

3) Kriteria pengujian

a) Untuk
$$H_0$$
: $P = P_0$

$$H_1: P > P_0$$

- i) Ho diterima jika $z_0 \le z_\alpha$
- ii) Ho ditolak jika $z_0 > z_\alpha$

b) Untuk
$$H_0$$
: $P = P_0$

dan

$$H_1: P < P_0$$

- i) Ho diterima jika $z_0 \ge -z_\alpha$
- ii) Ho ditolak jika $z_0 < -z_\alpha$

c) Untuk
$$H_0: P = P_0$$

$$H_1: P \neq P_0$$

- i) Ho diterima jika $z_{\alpha/2} \le z_0 \le z_{\alpha/2}$
- ii) Ho ditolak jika $z_0 > z_{\alpha/2}$ atau

$z_0 < - z_{\alpha/2}$

4) Uji Statistik

$$z_0 = \frac{x - nP_0}{\sqrt{nP_0(1 - P_0)}}$$

atau

$$z_0 = \frac{\frac{x}{n} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}}$$

Keterangan:

n = banyaknya ukuran sampel

x = banyaknya ukuran sampel dengan karakteristik tertentu

5) kesimpulan

Kesimpulan dalam menerima atau menolak Ho

Contoh soal

Seorang kontraktor menyatakan bahwa 60% rumah-rumah yang baru dibangun di kota X dilengkapi dengan telepon. Apakah anda setuju dengan pernyataan tersebut apabila diantara 50 rumah baru yang diambil secara acak terdapat 33 rumah yang menggunakan telepon?? Gunakan taraf nyata 10%, dengan alternatif lebih besar dari itu?

Penyelesaian:

$$n = 50$$
 $X = 33$ $P_0 = 60\% = 0{,}60$

a. Formulasi hipotesis:

 $H_0: P = 0,60$ $H_1: P > 0,60$

b. Taraf nyata dan nilai dari Z tabel;

$$\alpha$$
=10%= 0,1 $Z_{0,1}$ = 1,28

c. Kriteria pengujiannya;

Ho diterima jika $z_0 \le 1,28$

Ho ditolak jika $z_0 > 1,28$

4) Uji Statistik:

$$Z_0 = \frac{33 - 50(0,60)}{\sqrt{50(0,60)(0,40)}} = 0,87$$

5) Kesimpulan

Karena $Z_0 = 0.87 < Z_{0,1} = 1.28$, maka H_0 diterima. Jadi pernyataan kontraktor bahwa 60% rumah-rumah yang baru dibangun di kota X dilengkapi dengan telepon dapat diterima (benar).

B. Pengujian Hipotesis Beda Dua Proporsi.

Untuk pengujian hipotesis beda dua proporsi, prosedur pengujiaannya adalah sebagai berikut.

1) Formula Hipotesis

a)
$$H_0: P_1 = P_2$$

$$H_1: P_1 > P_2$$

b)
$$H_0: P_1 = P_2$$

$$H_1: P_1 < P_2$$

c)
$$H_0: P_1 = P_2$$

$$H_1: P_1 \neq P_2$$

2) Penentuan nilai α (taraf nyata) dan nilai t-tabel

Mengambil nilai α sesuai soal (sesuai kebijakan), kemudian menentukan nilai Z_{α} atau $Z_{\alpha/2}$ dari tabel.

3) Kriteria pengujian

a) Untuk
$$H_0$$
: $P_1 = P_2$ dan

$$H_1: P_1 > P_2$$

- i) Ho diterima jika $z_0 \le z_\alpha$
- ii) Ho ditolak jika $z_0 > z_\alpha$

b) Untuk
$$H_0: P_1 = P_2$$

$$H_1: P_1 < P_2$$

- i) Ho diterima jika $z_0 \ge -z_\alpha$
- ii) Ho ditolak jika $z_0 < -z_\alpha$

c) Untuk
$$H_0: P_1 = P_2$$

dan
$$H_1: P_1 \neq P_2$$

- i) Ho diterima jika $z_{\alpha/2} \le z_0 \le z_{\alpha/2}$
- ii) Ho ditolak jika $z_0 > z_{\alpha/2}$ atau $z_0 < -z_{\alpha/2}$
- 4) Uji Statistik

$$z_0 = \frac{P_1 - P_2}{\sqrt{P(1 - P)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$P_{1} = \frac{X_{1}}{n_{1}}$$

$$P_{2} = \frac{X_{2}}{n_{2}}$$

$$P = \frac{X_{1} + X_{2}}{n_{1} + n_{2}}$$

5) kesimpulan

Kesimpulan dalam menerima atau menolak H₀

Contoh soal:

Suatu pemungutan suara akan dilakukan di antara penduduk kota M dan sekitarnya mengenai pendapat mereka tentang rencana pendirian gedung serbaguna di tengah kota. Untuk mengetahui apakah ada perbedaan antara proporsi penduduk kota dan sekitarnya yang menyetujui rencana tersebut, diambil sebuah sampel acak yang terdiri dari 200 penduduk kota dan 500 penduduk disekitarnya. Apabila ternyata ada 120 penduduk kota dan 240 penduduk di sekitarnya yang setuju, apakah anda setuju jika dikatakan bahwa proporsi penduduk kota yang setuju lebih tinggi daripada proporsi penduduk di sekitarnya? Gunakan taraf nyata 1%!

Penyelesaian:

$$n_1 = 200$$
 $n_2 = 500$

$$X_1 = 120$$
 $X_2 = 240$

1) Formula Hipotesisnya

 $H_0: P_1 = P_2$ $H_1: P_1 > P_2$ 2) Taraf nyata dan nilai Z tabelnya

$$\alpha = 1\% = 0.01$$
 $Z_{0.01} = 2.33$

3) Kriteria pengujian

Ho diterima jika
$$z_0 \le 2,33$$

Ho ditolak jika $z_0 > 2,33$

4) Uji Statistik

$$P_{1} = \frac{120}{200} = 0,60 \qquad P_{2} = \frac{240}{500} = 0,48$$

$$P = \frac{120 + 240}{200 + 500} = 0,51$$

$$Z_{0} = \frac{0,60 - 0,48}{\sqrt{0,51(0,49)(\frac{1}{200} + \frac{1}{500})}} = 2,9$$

5) kesimpulan

Karena $Z_0 = 2.9 > Z_{0.01} = 2.33$. Maka H_0 ditolak. Jadi, kita setuju dengan pendapat bahwa proporsi penduduk kota yang menyetujui rencana itu lebih besar daripada proporsi penduduk di sekitarnya.

Uji – t untuk Uji Beda Rerata Dua Kelompok Data

A. Uji – t untuk dua kelompok data dari satu kelompok sampel (Berpasangan)

Jika analisis data dalam penelitian dilakukan dengan cara membandingkan data sebelum dan sesudah perlakuan dari satu kelompok sampel, atau membandingkan data antar waktu dari satu kelompok sampel, maka dilakukan pengujian hipotesis komparasi dengan uji – t sebagai berikut:

Hipotesis:

 $H_0: \mu_A = \mu_B$

 $H_1: \mu_A \neq \mu_B$

Dimana:

 μ_A = rerata data sesudah *treatment*

μ_B = rerata data sebelum *treatment*

rumus yang digunakan:

$$t = \frac{M_d}{\sqrt{\frac{\sum x_d^2}{n(n-1)}}}$$

Keterangan:

d_i = Selisih skor sesudah dengan skor sebelum dari tiap objek (i)

 M_d = Rerata dari *gain* (d)

 X_d = Deviasi skor *gain* terhadap reratanya (Xd = di - Md)

 χ_d^2 = Kuadrat deviasi skor *gain* terhadap reratanya

n = Banyaknya sampel (subjek penelitian)

Untuk pengujian hipotesis, selanjutnya nilai t (t_{hitung}) di atas dibandingkan dengan nilai t dari tabel distribusi t (t_{tabel}). Cara penentuan nilai t_{tabel}

didasarkan pada taraf signifikansi tertentu (misalnya α = 0,005) dan dk = n-1

Kriteria pengujian hipotesis untuk uji satu pihak kanan, yaitu:

Tolak H₀ jika thitung > ttabel

Terima H₀ jika t_{hitung} < t_{tabel}

Contoh:

Dilakukan penelitian untuk mengetahui tingkat signifikasi pemahaman siswa pada pelajaran matematika trigonometri dengan perlakuan pemberian soal pada tes awal dan tes akhir sebagai berikut:

Siswa	Skor perolehan		
Olowa	Tes Awal	Tes Akhir	
1	50	65	
2	40	62	
3	60	71	
4	35	60	
5	64	73	
6	54	70	
7	66	75	
8	57	72	
9	69	77	
10	65	78	

Penyelesaian:

Tabel penolong uji beda rata-rata dua kelompok berpasangan

	Skor per	olehan	Gain (d)		
Siswa	Tes	Tes	(Y-X)	Xd	Xd ²
	Awal	Akhir	(1-74)		
1	50	65	15	0,7	0,49
2	40	62	22	7,7	59,29
3	60	71	11	-3,3	10,89
4	35	60	25	10,7	114,49

5	64	73	9	-5,3	28,09
6	54	70	16	1,7	2,89
7	66	75	9	-5,3	28,09
8	57	72	15	0,7	0,49
9	69	77	8	-6,3	39,69
10	65	78	13	-1,3	1,69
		Jumlah	143		286,10

Hipotesis

H0: tidak ada perbedaan nilai rata-rata antara tes awal dengan tes akhir

H1: terdapat perbedaan nilai rata-rata antara tes awal dengan tes akhir

 $H_0: \mu_1 = \mu_2$

 $H_1: \mu_1 \neq \mu_2$

Menghitung nilai rata-rata dari gain (d)

$$M_d = \frac{\sum d}{n}$$

$$M_d = \frac{143}{10} = 14,3$$

Menentukan nilai thitung dengan menggunakan rumus

$$t = \frac{M_d}{\sqrt{\frac{\sum x_d^2}{n(n-1)}}} = \frac{14,3}{\sqrt{\frac{286,1}{10(10-1)}}} = \frac{14,3}{\sqrt{3,18}} = 8,02$$

Kriteria pengujian hipotesis

Tolak H₀ jika t_{hitung} > t_{tabel}

Terima H₀ jika thitung < ttabel

 t_{tabel} : $\alpha = 0.05$ dan db = n-1 = 9

t_{tabel}: 2,26

karena 8,02 > 2,26 atau thitung > ttabel maka H₀ ditolak

kesimpulannya adalah pd tingkat kepercayaan 95% terdapat perbedaan yang signifikan antara skor perolehan tes awal dengan tes akhir.

B. Uji – t untuk dua kelompok data dari dua kelompok sampel (tidak berpasangan)

Jika analisis data dalam penelitian dilakukan dengan cara membandingkan data dua kelompok sampel atau membandingkan data antara kelompok eksperimen dengan kelompok kontrol. atau peningkatan data kelompok eksperimen dengan membandingkan peningkatan data kelompok kontrol, maka digunakan pengujian hipotesis komparasi dengan uji – t sebagai berikut:

Hipotesis

 $H0: \mu A = \mu B$

 $H1: \mu A = \mu B$

Dimana

μA : rerata data kelompok eksperimen atau rerata peningkatan data kelompok eksperimen

μB : rerata data kelompok kontrol atau rerata peningkatan data kelompok kontrol

Rumus yang digunakan

$$t = \frac{\bar{X}_A - \bar{X}_B}{\sqrt{\frac{S_A^2 + S_B^2}{n_A n_B}}}$$

Keterangan:

 \bar{X}_A = Rerata skor kelompok eksperimen

 \bar{X}_R = Rerata skor kelompok kontrol

 S_A^2 = Varian kelompok eksperimen

 S_R^2 = Varian kelompok kontrol

 n_A = Banyaknya sampel kelompok

eksperimen

 n_B = Banyaknya sampel kelompok kontrol

$$t = \frac{\bar{X}_A - \bar{X}_B}{S_{gab}\sqrt{\left(\frac{1}{n_A} + \frac{1}{n_B}\right)}}$$

$$S_{gab} = \sqrt{\frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{n_A + n_B - 2}}$$

Untuk menguji hipotesis, selanjutnya nilai t_{hitung} di atas dibandingkan dengan nilai dari tabel distribusi t (t_{tabel}). Cara penentuan nilai t_{tabel} didasarkan pada taraf signifikansi tertentu misalnya α = 0,05 dan dk =

$$n_A + n_B - 2$$

Kriteria pengujian hipotesis

Tolak H₀ jika thitung > ttabel

Terima H₀ jika thitung < ttabel

Contoh:

Diadakan penelitian tentang perbandingan nilai akhir siswa yang menggunakan metode demonstrasi dengan metode ekspositori (konvensional) dalam pembelajaran geometri dengan hasil sebagai berikut:

Tabel skor perolehan hasil pembelajaran geometri

Kelas
Eksperimen
62
71
54
66
69
76
75
67
57
80
77
70
48

71	
75	
67	
70	
67	
45	
35	

75	
86	
65	
76	
56	
72	
70	

Penyelesaian

Hipotesis

H₀ : nilai akhir geometri siswa yang menggunakan metode demonstrasi tidak lebih tinggi atau sama dengan siswa yang menggunakan metode konvensional

H₁ : nilai akhir geometri siswa yang menggunakan metode demonstrasi lebih tinggi dari siswa yang menggunakan metode konvensional

 $H_0: \mu_A = \mu_B$ $H_1: \mu_A = \mu_B$

Dari data di atas diperoleh

Kelompok Data	$\sum X$	$\sum Y$
Kelas Kontrol (X)	1169	71575
Kelas Eksperimen (Y)	1372	95832

Menghitung varian kelas kontrol dan kelas eksperimen menggunakan rumus:

Varian Kelas Kontrol

$$s_K^2 = \frac{\sum X_1^2 - \frac{(\sum X_1)^2}{n}}{n-1} = \frac{71575 - \frac{(1169)^2}{20}}{19} = 170,892$$

Varian Kelas Eksperimen

$$s_E^2 = \frac{\sum X_2^2 - \frac{(\sum X_2)^2}{n}}{n-1} = \frac{95832 - \frac{(1372)^2}{20}}{19} = 90,147$$

Menghitung nilai rata-rata kelas kontrol dan eksperimen

$$\bar{X}_K = \frac{\sum X_1}{n} = \frac{1169}{20} = 58,45$$

$$\bar{X}_E = \frac{\sum X_2}{n} = \frac{1372}{20} = 68,6$$

Menghitung simpangan baku gabungan dengan menggunakan rumus :

$$S_{gab} = \sqrt{\frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{n_A + n_B - 2}} = \sqrt{\frac{(19)170,892 + (19)90,147}{20 + 20 - 2}}$$
$$= \sqrt{\frac{4959,741}{38}} = 11,425$$

Menentukan thitung dengan menggunakan rumus

$$t = \frac{\bar{X}_A - \bar{X}_B}{S_{gab}\sqrt{\left(\frac{1}{n_A} + \frac{1}{n_B}\right)}} = \frac{58,45 - 68,6}{11,425\sqrt{\frac{1}{20} + \frac{1}{20}}} = \frac{10,15}{11,425\sqrt{0,1}} = 2,81$$

Kriteria pengujian

Tolak H₀ jika thitung > ttabel

Terima H₀ jika t_{hitung} < t_{tabel}

Dari tabel distribusi t untuk α = 0,05 dan dk = 20+20-2 = 38 akan didapatkan nilai ttabel = 2,03

Karena thitung > ttabel maka H₀ ditolak. Sehingga dapat disimpulkan bahwa pada tingkat kepercayaan 95% nilai akhir siswa yang menggunakan metode demonstrasi lebih tinggi secara signifikan dari pada siswa yang menggunakan metode konvensional pada pembelajaran geometri

ANAVA Satu Arah / One Way ANOVA

ANAVA Satu Arah

Jika penelitian eksperimen atau *expose facto* terdiri atas satu variabel bebas (*treatment*) dengan satu varabel terikat, hanya saja terdiri atas lebih dari 2 (dua) kelompok *treatment*, maka analisis datanya menggunakan ANOVA (analisis varians) satu jalur. Misal sebuah penelitian ingin mengetahui perbedaan pengaruh waktu belajar (pagi, siang, sore dan malam) terhadap hasil belajar. Dalam penelitian ini, proses analisis data dilakukan dengan cara membandingkan keempat kelompok data hasil belajar, yaitu: hasil belajar siswa kelompok yang waktu belajarnya pagi hari, hasil belajar siang hari, hasil belajar sore hari dan hasil belajar malam hari. Untuk keperluan analisis semacam ini menggunakan teknik ANOVA satu jalur atau ANOVA satu variabel bebas. ANOVA satu jalur disebut pula dengan ANOVA tunggal, karena dalam ANOVA ini tidak ada variabel bebas baris tetapi hanya ada variabel bebas kolom.

Dalam ANOVA satu jalur, ada 2 jenis hipotesis penelitian yang perlu diuji yaitu:

- a. Hipotesis main effect
- b. Hipotesis simple effect.

Hipotesis *main effect* hanya ada satu buah, yaitu hipotesis dari perbedaan pengaruh variabel *treatment* terhadap variabel terikat (kriterium). Sedangkan banyaknya hipotesis *simple effect* tergantung banyaknya kelompok data, karena hipotesis ini merupakan hipotesis yang membandingkan antar 2 (dua) kelompok data.

Secara umum, langkah-langkah proses pengujian ANOVA satu jalur sebagai berikut:

1. Buat tabel dasar, yaitu tabel yang berisikan skor data-data mentah (raw data), seperti:

Tabel skor data mentah

Kelompok A	Kelompok B	Kelompok C
YA1	YB1	YC1

YA2	YB2	YC2
YAn	YBn	YCn

2. Tentukan ukuran-ukuran statistik dari tiap kelompok data yang diperlukan untuk perhitungan ANOVA, meliputi: n, Y, Y2, Y. Ukuran-ukuran ini dapat disajikan satu tabel dengan tabel dasar di atas, sehingga bentuknya menjadi:

Tabel dasar ANAVA

Ukuran	Kelompok A	Kelompok B	Kelompok C	Total
Statistik				(\sum_{})
	YA1	YB1	YC1	
	YA2	YB2	YC2	
	YA3	YB3	YC3	
	Y _{An}	Y _{Bn}	Y _{Cn}	
n	n _A	n _B	nc	$n_T = n_A + n_B + n_C$
ΣΥ	ΣYA	ΣYB	ΣYc	$\sum Y_T = \sum Y_A + \sum Y_B + \sum Y_C$
$\sum Y^2$	$\Sigma Y^2 A$	∑Y ² B	ΣY ² C	$\sum Y^2 T = \sum Y^2 A + \sum Y^2 B + \sum Y^2$
\overline{Y}	\bar{Y}_A	$ar{Y}_B$	\bar{Y}_C	

3. Buat tabel ringkasan ANOVA satu jalur, seperti berikut:

Tabel Ringkasan ANOVA

Sumber Varian	Db	JK	RJK (s²)	Fhitung	Ftabel
Kelompok (A)	db _(A)	JK _(A)	RJK _(A)	Fh	Ft
Dalam (D)	db _(D)	JK _(D)	RJK _(D)		

Total di koreksi (TR)	db _(TR)	JK _(TR)			
-----------------------	--------------------	--------------------	--	--	--

- Rumus-rumus untuk menentukan ukuran-ukuran dalam tabel ringkasan ANAVA
 - a. Tentukan derajat kebebasan setiap sumber varian, yaitu

$$db_{(TR)} = n_T - 1$$
$$db_{(A)} = k - 1$$

$$db_{(D)} = n_T - k$$

b. Hitung Jumlah Kuadrat (JK) setiap sumber varian

$$JK_{(TR)} = \sum Y_T^2 - \frac{(\sum Y_T)^2}{n_T}$$

$$JK_{(A)} = \sum \frac{(\sum Y_i)^2}{n_i} - \frac{(Y_T)^2}{n_T}$$

$$JK_{(D)} = JK_{(TR)} - JK_{(K)}$$

c. Hitung Rerata Jumlah Kuadrat (RJK) atau Varian (s²) dari sumber varian yg diperlukan:

$$RJK_{(A)} = \frac{JK_{(A)}}{db_{(A)}}$$

$$RJK_{(D)} = \frac{JK_{(D)}}{db_{(D)}}$$

d. Menghitung nilai Fh (F hitung)

$$F_h = \frac{RJK_{(A)}}{RJK_{(D)}}$$

e. Menentukan harga Ftabel

$$F_T = F_{(\alpha,db(K),db(D))} = F_{(\alpha,(k-1),(nt-k))}$$

5. Pengujian hipotesis main effect.

Hipotesis yang diuji, yaitu:

H₀: Tidak terdapat perbedaan pengaruh variabel *treatment* terhadap variabel kritera.

H₁: Terdapat perbedaan pengaruh variabel *treatment* terhadap variabel kriteria.

Kriteria pengujian:

- Terima H₀, jika F_{hitung} < F_{tabel}, dan
- Tolak H₀, jika F_{hitung} > F_{tabel}.
- 6. Uji lanjut, yaitu uji hipotesis simple effect.

Pengujian *simple effect* dilakukan atau perla dilakukan uji lanjut, jika dalam pengujian hipótesis *main effect* H0 ditolak atau H1 diterima. Uji hipótesis *simple effect* dapat dilakukan dengan teknik uji-t untuk beda rerata atau uji *tukey*, seperti yang telah dijelaskan di atas.

Analisis Kovarian (ANAKOVA)

Pengertian ANAKOVA

Analisis Kovarian (ANAKOVA) atau analysis of covariants (ANACOVA) adalah penggabungan antara uji komparatif dan korelasional. Lantas apa ANAKOVA dengan ANAVA? bedanya ANAVA hanya perbandingan saja, akan tetapi dalam ANAKOVA menguji perbandingan sekaligus hubungan. Istilah 'kova' dalam ANAKOVA berasal dari kata kovarian (covariance) yang menunjukkan adanya variabel yang dihubungkan, yaitu antara variabel bebas kovarian dengan variabel kriteria/terikat. Ingat bahwa co dalam Bahasa Inggris artinya bersama, yang menunjukkan adanya hubungan. Kita membandingkan variabel tergantung/kriteria (Y) ditinjau dari variabel bebas treatment berskala kategorik (A), sekaligus menghubungkan variabel tergantung (Y) dengan variabel bebas kovarian yang berskala numerik (X). Variabel bebas kovarian (X) yang dipakai dengan variabel kovarian.

Suatu variabel bebas atribut (X) berskala numerik merupakan variabel kovarian (kovariabel) apabila memenuhi syarat-syarat sebagai berikut:

- 1. Variabel kovarian (X) tidak terpengaruh oleh perlakuan/treatment
- 2. Variabel kovarian (X) diukur sebelum kegiatan perlakuan/treatment
- 3. Pengaruh variabel kovarian (X) terhadap variabel kriteria/tergantung (Y) berpola linear
- 4. Variabel kovarian (X) berpengaruh secara nyata terhadap variabel kriteria/tergantung (Y)
- 5. Pengaruh variabel kovarian (X) terhadap variabel kriteria/tergantung (Y) dapat dihilangkan/dikontrol dengan pendekatan regresi

Desain Penelitian

Sebuah penelitian eksperimen yang membandingkan antara hasil *post-test* pada kelompok eksperimen dengan kelompok kontrol, setelah mengendalikan pengaruh dari *pre-test* (pengetahuan awal) merupakan contoh desain penelitian dengan pendekatan ANAKOVA yang paling

sederhana. Desain penelitian eksperimen dari model penelitian ini dapat digambarkan sebagai berikut:

Atau dapat dibuat bagan desain faktorial dengan 2 kelompok perlakuan sebagai berikut:

Α	
A ₁	A ₂
(X ₁ , Y ₁)	(X_2, Y_2)

Keterangan:

A : Variabel perlakuan /

treatment

A₁: Perlakuan 1

A₂: Perlakuan 2

X: Variabel kovarian

Y: Variabel terikat/kriteria

Data hasil penelitian berdasarkan bagan di atas dapat disajikan dalam bentuk matriks seperti berikut:

Tabel Format Analisis Kovarian (ANAKOVA)

T ₁		T ₂	
O ₁	O ₃	O ₂	O ₄
X ₁₁	Y ₁₁	X ₂₁	Y ₂₁
X ₁₂	Y ₁₂	X ₂₂	Y ₂₂
X ₁₃	Y ₁₃	X ₂₃	Y ₂₃
X _{1n1}	Y _{1n1}	X _{2n1}	Y _{2n1}

Keterangan:

O1 dan O2 adalah observasi variabel kovarian (pretest)

O3 dan O4 adalah observarsi variabel tergantung/kriteria (posttest)

T1 dan T2 adalah kegiatan perlakuan/treatment pada kelompok eksperimen dan kontrol (variabel bebas perlakuan)

Catatan:

Suatu analisis kovarian (ANAKOVA) terjadi apabila:

- 1. X (kovarian) mempunyai pengaruh terhadap Y
- 2. Ada pengurangan pengaruh X (kovarian) dengan regresi
- 3. Pada dasarnya analisis kovarian sama dengan analisis varian dengan menggunakan model regresi linier untuk menghilangkan pengaruh variabel lain (X) terhadap variabel kriteria (Y). variabel lain itulah kovariabel
- Uji perbedaan rata-rata Y di kelompok 1 dan rata-rata Y di kelompok 2, dilakukan setelah menghilangkan pengaruh X terhadap Y
- 5. Kovariabel atau variabel yang mempengaruhi Y, pengaruhnya dihilangkan dengan menggunakan regresi

Rumus dasar analisis kovarian (ANAKOVA) pada dasarnya sama dengan rumus dasar analisis varian (ANAVA).

Perbedaan ANAVA dan ANAKOVA

- 1. Dalam ANAVA hanya ada JK (jumlah kuadrat) sumber varian
- Dalam ANAKOVA selain ada JK sumber varian juga ada JP (Jumlah perkalian) – sumber varian

Sehingga perhitungan ANAKOVA dilakukan dengan menghitung JK (jumlah kuadrat) dan JP (jumlah perkalian) untuk berbagai sumber varian ANAKOVA sederhana satu jalur

Analisis kovarian yang melibatkan satu variabel kovarian (X) disebut ANAKOVA sederhana, karena dalam permasalahannya hanya melibatkan regresi linear sederhana Y=a+bX. Sedangkan jika dalam analisis kovarian tersebut hanya melibatkan satu variabel bebas kategorik/treatment maka disebut ANAKOVA satu jalur. Jadi ANAKOVA sederhana satu jalur yaitu ANAKOVA dengan satu variabel bebas kovarian (X), satu variabel bebas kategorik/treatment (A), dan satu variabel tergantung/kriteria (Y).

Dalam ANAKOVA sederhana sedikitnya ada 3 (tiga) sumber varian yang harus dianalisis, yaitu:

- 1. Sumber varian total di reduksi (T)
- 2. Sumber varian dalam kelompok (D)
- 3. Sumber varian antar kelompok (A)

Hubungan dari ketiga sumber tersebut yaitu:

$$SV_{(T)} = SV_{(D)} + SV_{(A)}$$

Dari hubungan ini mengindikasikan bahwa:

$$JK_{(T)} = JK_{(D)} + JK_{(A)}$$

$$JP_{(T)} = JP_{(D)} + JP_{(A)}$$

Catatan: JK = Jumlah Kuadrat ; JP = Jumlah Perkalian

Dalam ANAKOVA sederhana satu jalur dilakukan dengan cara melakukan analisis JK sebanyak 2 (dua) buah yaitu JK_x dan JK_y, dan satu analisis JP (JP_x). Analisis JK dan JP sumber varian secara keseluruhan dalam ANAKOVA sederhana satu jalur adalah:

- 1. JK Total = $JK_{(T)}$ terdiri dari : $JK_{X(T)}$ dan $JK_{y(t)}$
- 2. JK Dalam = JK_(D) terdiri dari : JK_{X (D)} dan JK_{Y (D)}
- 3. JK Antara = JK (A) terdiri dari : JKx (A) dan JKy (A)

Dalam ANAKOVA sederhana satu jalur, dapat dilakukan 2 jenis pengujian hipotesis, yaitu:

- 1. Hipotesis *main effect* (pengaruh faktor utama) dengan mengontrol pengaruh variabel kovarian (X)
- 2. Hipotesis *simple effect* (perbedaan antara dua rerata variabel kriteria) dengan mengontrol pengaruh variabel kovarian (X)

Secara garis besar rumus-rumus dan langkah-langkah ANAKOVA sederhana satu jalur sebagai berikut:

1. Menghitung JK setiap sumber varian untuk kovariabel (X)

$$JK_{X(T)} = \sum X_T^2 - \frac{(\sum X_T)^2}{n_T}$$

$$JK_{X(A)} = \sum_{i=1}^{n} \frac{(\sum x_i)^2}{n_i} - \frac{(\sum x_T)^2}{n_T}$$

$$JK_{X(D)} = \sum_{i=1}^{n} \left\{ X_T^2 - \frac{(\sum X_T)^2}{n_T} \right\}$$

Menghitung JK untuk setiap sumber varian variabel kriteria/terikat
 (Y)

$$JK_{Y(T)} = \sum_{i=1}^{n} Y_{T}^{2} - \frac{(\sum Y_{T})^{2}}{n_{T}}$$

$$JK_{Y(A)} = \sum_{i=1}^{n} \frac{(\sum Y_{i})^{2}}{n_{i}} - \frac{(\sum Y_{T})^{2}}{n_{T}}$$

$$JK_{Y(D)} = \sum_{i=1}^{n} \left\{ Y_{T}^{2} - \frac{(\sum Y_{T})^{2}}{n_{T}} \right\}$$

3. Menghitung JP antara X dan Y untuk setiap sumber varian

$$JK_{XY(T)} = \sum_{i=1}^{n} X_{T}Y_{T} - \frac{\sum_{i=1}^{n} X_{T} \cdot \sum_{i=1}^{n} Y_{T}}{n_{T}}$$

$$JK_{XY(A)} = \sum_{i=1}^{n} \frac{(\sum_{i=1}^{n} X_{i})(\sum_{i=1}^{n} Y_{i})}{n_{i}} - \frac{\sum_{i=1}^{n} X_{i} \cdot \sum_{i=1}^{n} Y_{i}}{n_{i}}$$

$$JP_{XY(D)} = \sum_{i=1}^{n} \left\{ \sum_{i=1}^{n} X_{i}Y_{i} - \frac{\sum_{i=1}^{n} X_{i} \cdot \sum_{i=1}^{n} Y_{i}}{n_{i}} \right\}$$

4. Selanjutnya menghitung JK_Y yang sudah dikoreksi yang disebut JK_{Y-residu} atau JK_{Y(res)}

$$JK_{Yres\,(A)} = JK_{Y\,A} - \left[\frac{\left(JP_{XY\,(A)} + JP_{XY\,(D)} \right)^2}{JK_{X\,(A)} + JK_{X\,(D)}} - \frac{\left(JP_{XY\,(D)} \right)^2}{JK_{X(D)}} \right]$$

$$JK_{Yres\,(D)} = JK_{Y(D)} - \frac{\left(JP_{XY\,(D)}\right)^2}{JK_{X\,(D)}}$$

$$JK_{Yres(T)} = JK_{Yres(A)} + JK_{Yres(D)}$$

5. Menghitung derajat bebas (db) untuk masing-masing sumber varian $db_{(T)}=n_t-m-1$

$$db_{(A)} = a - 1$$

$$db_{(D)} = n_d - m - a$$

Keterangan:

n_t = banyaknya responden (pasang data)

a = banyaknya kelompok perlakuan

m = banyaknya kovariabel

6. Menghitung RJK (rata-rata jumlah kuadrat) untuk masing-masing sumber varian

$$RJK_{Yres\,(A)} = \frac{JK_{Yres\,(T)}}{db_{(T)}}$$

$$RJK_{Yres\,(A)} = \frac{JK_{Yres\,(A)}}{db_{(A)}}$$

$$RJK_{Yres\,(D)} = \frac{JK_{Yres\,(D)}}{db_{(D)}}$$

7. Menghitung Harga F₀ (Fhitung):

$$F_o = \frac{RJK_{Yres\,(A)}}{RJK_{Yres\,(D)}}$$

8. Menentukan Nilai F_t (F_{tabel})

Harga F_t ditentukan pada taraf signifikansi (α) tertentu, biasanya pada α =0,05 dengan db₁ = db_{pembilang} = db_A dan db₂ = db_{penyebut} = db_D

Sehingga $F_t = F_{(\alpha;db1/db2)}$

Membuat tabel rangkungan ANAKOVA untuk memudahkan proses interpretasi dan pengujian seperti berikut:

Tabel Rangkungan Analisis Kovarian (ANAKOVA)

Sumber Varian	JK _X	JK _Y	JP _{XY}	JK _{Yres}	db	RJK	F ₀	Ft
Total (T)								
Antar Kelompok (A)								
Dalam Kelompok (D)								

10. Menguji hipotesis main effect

Hipotesis statistik yang diuji, yaitu

 $H_0: \mu_1 = \mu_2 = \dots = \mu_n$

H₁: Bukan H₀

Pengujian dilakukan dengan cara membandingkan F_0 dengan F_t dengan kriteria:

Jika $F_0 > F_t$, maka H_0 ditolak, dan

Jika F₀ < F_t, maka H₀ diterima

11. Melakukan pengujian simple effect atau uji lanjut:

Jika hipotesis main effect (pengaruh faktor utama) diterima kebenarannya secara nyata/signifikan, maka perlu dilakukan uji lanjut untuk pengujian hipotesis simple effect dengan uji-t ANAKOVA, yaitu uji-t dengan menghilangkan/mengontrol pengaruh variabel kovarian (X) secara statistika.

Rumus uji-t ANAKOVA sebagai berikut:

$$t_0(A_i - A_j) = \frac{\left| \overline{Y}_{y(res)i} - \overline{Y}_{y(res)j} \right|}{\sqrt{RJK_{Yres\,D}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

Dengan

$$\bar{Y}_{Y(res)k} = \bar{Y}_k - b_{XY(D)}.(\bar{X}_k - \bar{X}_t)$$

k = i atau j

 $ar{Y}_{Y(res)k}$ adalah rerata Y dengan

mengontrol/mengendalikan/menghilangkan pengaruh kovarian (X) untuk kelompok ke-k

$$b_{XY(D)} = \frac{JP_{XY(D)}}{JP_{X(D)}}$$

 $\bar{X}_K = rerata$ skor kovarian dalam kelompok ke-k

 $\bar{X}_T = rerata \ skor \ kovarian \ total$

Hipotesis yang diuji, umumnya hipotesis satu pihak yaitu:

 $H_0: \mu_i \leq \mu_j$ (uji satu pihak kanan)

Atau

 $H_0: \mu_i \ge \mu_j$ (uji satu pihak kiri)

Kriteria pengujian:

Tolak H_0 jika $|t_h| > t_t$ dan

Terima H_0 jika $|t_h| < t_t$

Dalam hal ini t_t = t_{tabel} yaitu harga t yang didapat dari tabel distribusi t untuk taraf signifikansi tertentu (misal α =0,05) dan derajat kebebasan (db) = n_1 + n_2 - 2

Dimana n₁ = banyaknya data/sampel pada kelompok – 1

Dimana n₂ = banyaknya data/sampel pada kelompok – 2

DAFTAR PUSTAKA

- Hasan, Iqbal. 2001. *Pokok-Pokok Materi Statistik 2 (Statistik Inferensif)*. Edisi kedua. Bumi Aksara. Jakarta.
- Supardi U.S. 2012. *Aplikasi Statistika Dalam Penelitian*. Ufuk Press. Jakarta.
- Supranto, J. 2009. *Statistik Teori dan Aplikasi.* Jilid 2. Edisi ketujuh. Erlangga. Jakarta.

Lampiran-Lampiran

- I. Tabel Distribusi normal Z
- II. Tabel Distribusi Chi Kuadrat
- III. Tabel distribusi t
- IV. Tabel distribusi F
- V. Tabel angka random

LAMPIRAN I

Distribusi Normal

Tabel 3 Daerah Distribusi Normal Standar

Angka pada tabel menunjukkan proporsi bidang pada kurva yang terletak antara z=0 dan nilai z positif. Daerah untuk nilai z negatif diperoleh dengan cara yang sama.

z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1141
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1317
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0.2122	0.0155	0.2100	0.0004
0,6	0,2257	0,2291	0,2324	0,2357	0,2034	0,2422	0,2123	0,2157	0,2190	0,2224
0,7	0,2580	0,2611	0,2642	0,2673			0,2454	0,2486	0,2517	0,2549
0,8	0,2881	0,2910	0,2939	0,2967	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,9	0,3159	0,3186	0,3212		0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
	0,3139	0,3100	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
					•		·/ /	0/12/2	0,1000	0,4317
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
, 1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4005
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2	0.4770	0.4550	0.4500						-,	0,2,0,
2	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4949	0,4951	
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4901	0,4962		0,4964
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4971	0,4972	0,4973	0,4974
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4978	0,4979	0,4979	0,4980	0,4981
3	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4986	0,4986

LAMPIRAN II

Tabel 4a Distribusi χ^2

Kolom pertama memuat angka derajat kebebasan (v). Angka pada bagian atas kolom berikutnya menunjukkan probabilitas α untuk menghasilkan angka χ^2 . Untuk v>100, gunakan $\sqrt{2\chi^2}-\sqrt{2v-1}$ sebagai variabel normal standar.

-						
				α		
v	0,995	0,975	0,05	0,025	0,01	0,005
1	0,0000	0,0010	3,8415	5,0239	6,6349	7,8794
2	0,0100	0,0506	5,9915	7,3778	9,2104	10,5965
3	0,0717	0,2158	7,8147	9,3484	11,3449	12,8381
4	0,2070	0,4844	9,4877	11,1433	13,2767	14,8602
5	0,4118	0,8312	11,0705	12,8325	15,0863	16,7496
6	0,6757	1,2373	12,5916	14,4494	16,8119	18,5475
7	0,9893	1,6899	14,0671	16,0128	18,4753	20,2777
8	1,3444	2,1797	15,5073	17,5345	20,0902	21,9549
9	1,7349	2,7004	16,9190	19,0228	21,6660	23,5893
10	2,1558	3,2470	18,3070	20,4832	23,2093	25,1881
11	2,6032	3,8157	19,6752	21,9200	24,7250	26,7569
12	3,0738	4,4038	21,0261	23,3367	26,2170	28,2997
13	3,5650	5,0087	22,3620	24,7356	27,6882	29,8193
14	4,0747	5,6287	23,6848	26,1189	29,1412	31,3194
15	4,6009	6,2621	24,9958	27,4884	30,5780	32,8015
16	5,1422	6,9077	26,2962	28,8453	31,9999	34,2671
17	5,6973	7,5642	27,5871	30,1910	33,4087	35,7184
18	6,2648	8,2307	28,8693	31,5264	34,8052	37,1564
19	6,8439	8,9065	30,1435	32,8523	36,1908	38,5821
20	7,4338	9,5908	31,4104	34,1696	37,5663	39,9969
21	8,0336	10,2829	32,6706	35,4789	38,9322	41,4009
22	8,6427	10,9823	33,9245	36,7807	40,2894	42,7957
23	9,2604	11,6885	35,1725	38,0756	41,6383	44,1814
24	9,8862	12,4011	36,4150	39,3641	42,9798	45,5584
25	10,5196	13,1197	37,6525	40,6465	44,3140	46,9280
26	11,1602	13,8439	38,8851	41,9231	45,6416	48,2898
27	11,8077	14,5734	40,1133	43,1945	46,9628	49,6450
28	12,4613	15,3079	41,3372	44,4608	48,2782	50,9936
29	13,1211	16,0471	42,5569	45,7223	49,5878	52,3355
30	13,7867	16,7908	43,7730	46,9792	50,8922	53,6719
40	20,7066	24,4331	55,7585	59,3417	63,6908	66,7660
50	27,9908	32,3574	67,5048	71,4202	76,1538	79,4898
60	35,5344	40,4817	79,0820	83,2977	88,3794	91,9518
70	43,2753	48,7575	90,5313	95,0231	100,4251	104,2148
80	51,1719	57,1532	101,8795	106,6285	112,3288	116,3209
90	59,1963	65,6466	113,1452	118,1359	124,1162	128,2987
100	67,3275	74,2219	124,3421	129,5613	135,8069	140,1697

Sumber: Tabel ini dikutip dari Tabel 8 buku Biometrika Tables for Statisticians, Vol. 1, 3rd edition, 1966.

LAMPIRAN IIA

Tabel 4b Nilai X^{2*}

d.f.	X^2 0,05	X^2 0,025	X^2 0,01	X^2 0,005	d.f.
1	3,8415	5,0239	6,6349	7,8794	1
2	5,9915	7,3778	9,2104	10,5965	2
3	7,8147	9,3484	11,3449	12,8381	3
4	9,4877	11,1433	13,2767	14,8602	4
5	11,0705	12,8325	15,0863	16,7496	5
6	12,5916	14,4494	16,8119	18,5475	6
7	14,0671	16,0128	18,4753	20,2777	7
8	15,5073	17,5345	20,0902	21,9549	8
9	16,9190	19,0228	21,6660	23,5893	9
10	18,3070	20,4832	23,2093	25,1881	10
11	19,6752	21,9200	24,7250	26,7569	11
12	21,0261	23,3367	26,2170	28,2997	12
13	22,3620	24,7356	27,6882	29,8193	13
14	23,6848	26,1189	29,1412	31,3194	14
15	24,9958	27,4884	30,5780	32,8015	15
16	26,2962	28,8453	31,9999	34,2671	16
17	27,5871	30,1910	33,4087	35,7184	17
18	28,8693	31,5264	34,8052	37,1564	18
19	30,1435	32,8523	36,1908	38,5821	19
20	31,4104	34,1696	37,5663	39,9969	20
21	32,6706	35,4789	38,9322	41,4009	21
22	33,9245	36,7807	40,2894	42,7957	22
23	35,1725	38,0756	41,6383	44,1814	23
24	36,4150	39,3641	42,9798	45,5584	24
25	37,6525	40,6465	44,3140	46,9280	25
26	38,8851	41,9231	45,6416	48,2898	26
27	40,1133	43,1945	46,9628	49,6450	27
28	41,3372	44,4608	48,2782	50,9936	28
29	42,5569	45,7223	49,5878	52,3355	29
30	43,7730	46,9792	50,8922	53,6719	30

ini dikutip dari Tabel III buku R. A. Fisher, Statistical Methods for Research Worke kan oleh Oliver and Boyd, Ltd., Edinburgh.

LAMPIRAN III

Tabel 5 Nilai t*

d.f.	t 0,1	t 0,05	t 0,025	t 0,01	t 0,005	d.f.
1	3,0777	6,3137	12,7062	31,8210	63,6559	1
2	1,8856	2,9200	4,3027	6,9645	9,9250	2
3	1,6377	2,3534	3,1824	4,5407	5,8408	3
4	1,5332	2,1318	2,7765	3,7469	4,6041	4
5	1,4759	2,0150	2,5706	3,3649	4,0321	5
6	1,4398	1,9432	2,4469	3,1427	3,7074	6
7	1,4149	1,8946	2,3646	2,9979	3,4995	7
8	1,3968	1,8595	2,3060	2,8965	3,3554	8
9	1,3830	1,8331	2,2622	2,8214	3,2498	9
10	1,3722	1,8125	2,2281	2,7638	3,1693	10
11	1,3634	1,7959	2,2010	2,7181	3,1058	11
12	1,3562	1,7823	2,1788	2,6810	3,0545	12
13	1,3502	1,7709	2,1604	2,6503	3,0123	13
14	1,3450	1,7613	2,1448	2,6245	2,9768	14
15	1,3406	1,7531	2,1315	2,6025	2,9467	15
16	1,3368	1,7459	2,1199	2,5835	2,9208	16
17	1,3334	1,7396	2,1098	2,5669	2,8982	17
18	1,3304	1,7341	2,1009	2,5524	2,8784	18
19	1,3277	1,7291	2,0930	2,5395	2,8609	19
20	1,3253	1,7247	2,0860	2,5280	2,8453	20
21	1,3232	1,7207	2,0796	2,5176	2,8314	21
22	1,3212	1,7171	2,0739	2,5083	2,8188	22
23	1,3195	1,7139	2,0687	2,4999	2,8073	23
24	1,3178	1,7109	2,0639	2,4922	2,7970	24
25	1,3163	1,7081	2,0595	2,4851	2,7874	25
26	1,3150	1,7056	2,0555	2,4786	2,7787	26
27	1,3137	1,7033	2,0518	2,4727	2,7707	27
28	1,3125	1,7011	2,0484	2,4671	2,7633	28
29	1,3114	1,6991	2,0452	2,4620	2,7564	29
inf.	1,2816	1,6449	1,9600	2,3264	2,5758	inf.

^{*}Tabel ini dikutip dari Tabel IV buku R. A. Fisher, *Statistical Methods for Research Workers*, yang dipublikasikan oleh Oliver and Boyd, Ltd., Edinburgh.

LAMPIRAN IV

Tabel 6a Nilai F 0,01[†]

Derajat kebebasan untuk pembilang

	ı																													
8	6 365 50	00 50	26.13	13.46	000	701	5,00	4.86	4.31	3,91	3,60	3.36	3.17	3.00	287	275	2,65	2.57	2.49	2.42	2,36	2.31	2,26	2,21	2.17	2.01	1.80	1,60	1,38	1,001
120	6 339 51	90 49	26.22	13.56	9 11	769	5,74	4.95	4.40	4,00	3,69	3.45	3,25	3.09	2.96	284	2,75	2.66	2.58	2.52	2,46	2,40	2,35	2,31	2,27	2,11	1.92	1.73	1.53	1,32
09	631297	99 48	26.32	13.65	9.20	202	28.5	5,03	4,48	4,08	3,78	3,54	3,34	3.18	3.05	2.93	2,83	2,75	2,67	2,61	2,55	2,50	2,45	2,40	2,36	2,21	2.02	1.84	1,66	1,47
40	6.286.43	99 48	26.41	13.75	9.29	7.14	5.91	5,12	4,57	4,17	3,86	3,62	3,43	3,27	3,13	3.02	2,92	2,84	2,76	2,69	2,64	2,58	2,54	2,49	2,45	2,30	2,11	1,94	1,76	1,59
30	6.260.35	99.47	26.50	13,84	9.38	7.23	5,99	5,20	4,65	4,25	3,94	3,70	3,51	3,35	3,21	3,10	3,00	2,92	2,84	2,78	2,72	2,67	2,62	2,58	2,54	2,39	2,20	2,03	1,86	1,70
24	6.234.27	99.46	26,60	13,93	9.47	7,31	6.07	5,28	4,73	4,33	4,02	3,78	3,59	3,43	3,29	3,18	3,08	3,00	2,92	2,86	2,80	2,75	2,70	2,66	2,62	2,47	2,29	2,12	1,95	1,79
20	6.208,66		26.69	14,02	9,55	7,40	6,16	5,36	4,81	4,41	4,10	3,86	3,66	3,51	3,37	3,26	3,16	3,08	3,00	2,94	2,88	2,83	2,78	2,74	2,70	2,55	2,37	2,20	2,03	1,88
15	6.156,97	~	26,87	14,20	9,72	7,56	6,31	5,52	4,96	4,56	4,25	4,01	3,82	3,66	3,52	3,41	3,31	3,23	3,15	3,09	3,03	2,98	2,93	2,89	2,85	2,70	2,52	2,35	2,19	2,04
12	6.106,68	99,42	27,05	14,37	68'6	7,72	6,47	2,67	5,11	4,71	4,40	4,16	3,96	3,80	3,67	3,55	3,46	3,37	3,30	3,23	3,17	3,12	3,07	3,03	2,99	2,84	2,66	2,50	2,34	2,18
10	6.055,93	99,40	27,23	14,55	10,05	7,87	6,62	5,81	5,26	4,85	4,54	4,30	4,10	3,94	3,80	3,69	3,59	3,51	3,43	3,37	3,31	3,26	3,21	3,17	3,13	2,98	2,80	2,63	2,47	2,32
6	6.022,40	66'66	27,34	14,66	10,16	2,98	6,72	5,91	5,35	4,94	4,63	4,39	4,19	4,03	3,89	3,78	3,68	3,60	3,52	3,46	3,40	3,35	3,30	3,26	3,22	3,07	2,89	2,72	2,56	2,41
8	5.980,95	86'66	27,49	14,80	10,29	8,10	6,84	6,03	5,47	2,06	4,74	4,50	4,30	4,14	4,00	3,89	3,79	3,71	3,63	3,56	3,51	3,45	3,41	3,36	3,32	3,17	2,99	2,82	2,66	2,51
7	5.928,33	96'66	27,67	14,98	10,46	8,26	66'9	6,18	5,61	5,20	4,89	4,64	4,44	4,28	4,14	4,03	3,93	3,84	3,77	3,70	3,64	3,59	3,54	3,50	3,46	3,30	3,12	2,95	2,79	2,64
9	5.858,95	99,33	27,91	15,21	10,67	8,47	7,19	6,37	5,80	5,39	2,07	4,82	4,62	4,46	4,32	4,20	4,10	4,01	3,94	3,87	3,81	3,76	3,71	3,67	3,63	3,47	3,29	3,12	2,96	2,80
. 5	5.763,96	99,30	28,24	15,52	10,97	8,75	7,46	6,63	90'9	5,64	5,32	2,06	4,86	4,69	4,56	4,44	4,34	4,25	4,17	4,10	4,04	3,99	3,94	3,90	3,85	3,70	3,51	3,34	3,17	3,02
4	5.624,26	99,25	28,71	15,98	11,39	9,15	7,85	7,01	6,42	2,99	2,67	5,41	5,21	5,04	4,89	4,77	4,67	4,58	4,50	4,43	4,37	4,31	4,26	4,22	4,18	4,02	3,83	3,65	3,48	3,32
3	5.403,53	99,16	29,46	16,69	12,06	82'6	8,45	7,59	66'9	6,55	6,22	5,95	5,74	2,56	5,42	5,29	5,19	2,09	5,01	4,94	4,87	4,82	4,76	4,72	4,68	4,51	4,31	4,13	3,95	3,78
2		00'66	30,82	18,00	13,27	10,92	9,55	8,65	8,02	95'/	7,21	6,93	6,70	6,51	96'9	6,23	6,11	6,01	5,93	5,85	5,78	5,72	5,66	5,61	75,5	5,39	5,18	4,98	4,79	4,61
1		98,50	34,12	21,20	16,26	13,75	12,25	11,26	10,56	10,04	9,65	9,33	20'6	8,86	8,68	8,53	8,40	8,29	8,18	8,10	8,02	56,1	7,88	787	11'1	95'/	7,31	2,08	6,85	6,63
	1	7	3	4	2	9	7	00	6	170	= ;	71	13	14	15	16	17	2 2	19	5 50	27	7 8	5 5	47 L	3 8	9 9	9 9	90	120	8

Tabel ini dikutip dari M. Merrington aud C.M. Thompson, "Tables of percentage points of the inverted beta (F) distribution," Biometrika, Vol. 33 (1943).

LAMPIRAN IVA

Tabel 6b Nilai F 0,05[†]

Derajat kebebasan untuk pembilang

"Tables of percentage points of the inverted beta (F) distribution," Biometrika, Vol. 33 (1943), 'Tabel ini dikutip dari M. Merrington aud C.M. Thompson, '

LAMPIRAN V

Angka Random Tabel 7 Angka Random

V									
27104	54374	83559	75559	90159	12338	36248	65036	47393	26242
85694	38272	69261	97632	94143	55827	37871	82946	18894	19132
77853	22702	28785	51676	02936	82362	73695	41692	19725	15049
86600	07664	89694	62964	51985	30784	95287	18448	91182	29128
26383	75981	54705	99067	93115	50695	57523	11214	64728	88875
45847	58215	58603	43798	31221	78476	78063	44014	67083	14321
23011	53152	15022	23592	89899	37661	17709	99827	73371	18303
28398	55932	20704	73139	96574	23366	21128	21770	43886	23808
99848	26278	14123	74472	97826	09121	00773	06158	65603	65568
62758	51058	48298	60557	72308	62076	05105	78524	39564	10347
98136	36786	33878	13646	72354	54715	19177	18929	54414	52147
18677	97088	89968	78156	26378	51126	83467	98723	85121	67291
40571	59619	34135	69444	45123	89107	15229	49271	12863	78270
62454	42536	94025	42152	52746	09096	53333	50151	48104	91480
55317	75637	02969	78351	05005	29496	95398	26237	13411	24813
				0.1=7.0	04/20	0.450	10001	24400	00004
04328	16840	22350	28042	94563	91678	04528	49891	34409	99024
17155	50891	53949	81421	82014	89254	44901	69374	75771	82675
50979	77093	36204	69750	52800	51098	94739	15749	43529	45405
31476	71195	59846	77236	21867	84452	32977	87833	51947	20388
28663	01447	60287	80016	35196	50923	30967	90195	18865	59892
E0040	F2F02	0.4700	25452	96460	21022	22015	20660	E0/10	02500
50040	53592	04708	35453	86469	31032	22015 93780	20660 88216	52418 33435	03598 28858
51113	97997	35218	62225	34206 90247	33613 54798	50446	24664	78730	96513
41728	93496	42111	33512	02948	36542	23930	49893	17241	06974
74949	88306	27356	73924	03343		78588	20034	01965	38029
58282	16917	97179	53913	03343	29567	70300	20034	01903	30029
07282	33824	12301	48955	35804	95307	98938	42112	93465	62750
01542	21849	78536	19261	26148	88627	13091	15262	87404	19027
17768	88860	01198	96465	03083	98379	92636	60429	05798	96954
43119	83731	51294	25245	11690	36360	95267	54157	50487	91949
63422	71647	31570	03270	87403	43964	18035	78342	06960	20159
00 122	. 101/	0.1070		100	20702				/
12046	50839	75199	19474	05631	42764	26415	70777	56374	53348
73702	42190	71675	06186	07320	51022	53592	27516	42949	58438
04525	26187	09521	75490	58513	26844	65707	45550	12720	26269
68018	59978	34624	64333	41426	16436	57702	00380	60033	78346
54797	01643	17267	18918	35363	98657	57191	29176	79127	75212

LAMPIRAN VA

Angka Random

				- 0					
85241	70478	18781	12066	03247	45482	06173	63638	89181	38343
55790	98283	99774	73218	99333	89266	84734	92889	81078	07510
57304	41873	10286	91120	65102	30663	20457	35811	03830	90997
70122	08752	00406	78564	11644	11179	80897	45164	36231	48785
58449	29787	71582	64245	83906	73512	26500	13960	89226	20860
72508	97694	20535	12005	73627	86819	77422	32976	04838	82943
51274	87662	26043	33846	98779	60877	61495	24095	90032	48037
67735	30104	21180	48926	47025	02986	30962	87803	27234	21394
90856	88878	38577	06814	58883	91115	85334	22245	56939	48186
42168	18127	99216	01912	99173	40951	40303	45517	33085	33715
38887	14807	31239	74128	03803	17359	88066	51906	10145	92769
14171	83443	61772	90891	77789	90893	23762	87048	43984	47676
05338	36899	24836	19133	38173	85054	19546	35790	38674	33247
26475	41951	72602	64031	69315	69254	35510	53631	76431	29035
23451	84544	85721	70498	52097	12232	43202	01611	98196	38140
39733	20091	83413	54369	73479	38932	66848	04434	08246	72904
56303	63683	96033	21289	04888	52763	11244	90346	10220	78168
55754	29726	93423	16004	81264	95261	99254	54259	69426	41213
80646	29209	33653	14124	34242	50312	68886	79671	44004	24165
72396	70823	80862	34992	48286	96907	24028	21108	11343	86396
	*								
83532	56416	85820	66039	49002	43084	01896	37112	02629	73840
94293	40197	61564	26753	98657	83452	15412	79615	05433	28152
48468	65648	23454	38856	84861	95211	95986	73432	59062	54316
92876	84052	98051	49249	72307	19749	95112	41633	73518	33383
13106	46440	38410	64842	47993	19746	90775	06422	68169	56170
0.4557	0=044								
94556	05211	11515	38651	55953	48980	07741	18999	16821	34772
03596	59432	43238	85411	06859	27959	11171	75877	90332	23895
32828	74719	15218	33906	26210	00510	44820	97946	14874	52967
26884	13604	93544	89571	92961	41296	54518	77725	02572	10303
00997	89469	64848	20288	27696	65025	87826	60113	63073	05421
00/0/	05025	F0 0//	20200	05040	2040=	*****			
88696	85935	72066	38280	85360	30105	32391	47562	01387	67944
36641	95399	22989	64464	87144	81119	08294	85010	09232	31095
98789	14059	33428	66827	79253	94049	44382	49437	01377	70887
43911 08545	90207	90782	20759	60360	80199	20819	71205	42944	37860
00343	99653	01882	93023	87789	69429	58431	09585	54433	97560

LAMPIRAN VB

Angka Random

-									
31379	43540	53174	70342	87308	59054	29858	41361	21252	52581
31721	42237	63702	49215	57319	13658	53171	51210	15358	54729
08689	78911	48127	45538	09635	35321	84229	05627	54535	85117
22255	14082	64300	89578	46723	10949	59738	28168	89686	13397
70145	20298	71082	76484	74723	54491	67390	78092	20095	63496
46405	79730	61201	26458	53814	75077	35368	48876	40141	80432
43800	25102	04501	67741	07031	61449	73133	94782	30269	57470
78814	16084	52469	66758	23729	48519	20286	22228	37501	34754
13096	19865	04032	08480	49678	23595	82955	40644	27280	35303
21954	45352	21976	70095	33596	48336	74343	73491	49786	01876
86649	47914	46322	91022	70591	42109	43837	90818	35492	78313
87227	87605	06819	86517	78196	02338	72567	36254	53733	20765
49364	98262	30504	65361	03782	36084	04920	90325	60866	31131
82355	53850	21875	18613	62722	83825	69663	96818	00619	37479
80309	42996	78324	24983	20640	33907	42594	73264	87308	52506
44978	08912	84074	23792	18308	30506	65748	33952	66084	02408
84806	24586	48295	77581	55540	80280	37884	86205	07124	91405
90212	03072	90865	06738	55451	83050	63615	13710	82985	21837
36952	23706	22513	04093	10934	27542	05906	38976	69903	86463
60011	51771	63378	95494	46184	02966	60908	41313	70402	54470
4.505	20-2-								
46597	89535	02848	12767	00773	14202	50524	56209	11021	75307
27976	84147	30146	65778	22049	62428	19676	00061	30830	21241
26800	81897.	41377	62318	45305	76044	26021	98310	20484	27553
54944	07538	51592	64263	55264	53114	87438	05057	11026	17584
82374	83735	63646	16673	53701	75953	29361	13370	02290	01169
10000	E(11.1	=====	04.488	(1001				(4)	
12909	56114	75250	91452	64206	85810	25737	44609	93974	65978
47922	26752	18583	32583	16038	96802	43262	31455	47573	59528
83631	24902	17137	76519	08101	94602	96698	45013	50965	61168
87928	20147	91650	81822	10769	89694	29200	14368	18409	52968
16122	44211	60719	70445	96064	63372	10930	51643	82724	39330