

Homework #2

Задание 639.

Пара векторов $ec{v}_1, ec{v}_2 \in F^n, n \geq 2$ является линейно зависимой тогда и только тогда, когда:

$$\exists \lambda \in F : \vec{v}_2 = \lambda \vec{v}_1$$

Заметим, что для данной конкретной пары мы не можем найти λ (пусть наши

вектора
$$ec{v}_1=egin{pmatrix}1\\2\\3\end{pmatrix}$$
и $ec{v}_2=egin{pmatrix}3\\6\\7\end{pmatrix}$). Действительно, пусть $ec{v}_2=\lambdaec{v}_1$. Тогда

чтобы первая и вторая координата у вектора \vec{v}_2 и $\lambda \vec{v}_1$ были равны, нужно, чтобы $\lambda=2$. Однако $3\cdot 2\neq 7$ (третья координата). Поэтому видим, что $\lambda_1\vec{v}_1+\lambda_2\vec{v}_2=0$ только если $\lambda_1=\lambda_2=0$, т.е система линейно независима.

Задание 642.

Попробуем найти $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ такие, что:

$$\lambda_1 egin{pmatrix} 5 \ 4 \ 3 \end{pmatrix} + \lambda_2 egin{pmatrix} 3 \ 3 \ 2 \end{pmatrix} + \lambda_3 egin{pmatrix} 8 \ 1 \ 3 \end{pmatrix} = ec{ heta}$$

Запишем это уравнение немного в другом виде:

$$egin{cases} 5\lambda_1 + 3\lambda_2 + 8\lambda_3 = 0 \ 4\lambda_1 + 3\lambda_2 + \lambda_3 = 0 \ 3\lambda_1 + 2\lambda_2 + 3\lambda_3 = 0 \end{cases}$$

Заметим, что мы можем подобрать решение $(\lambda_1,\lambda_2,\lambda_3)$, причём $\lambda_1,\lambda_2,\lambda_3\neq 0$ одновременно. Например, (7,-9,-1). Поэтому система является линейно зависимой.

Задание 1285.

Рассмотрим произвольный вектор $\vec{v} \in \mathbb{Z}^n$. Заметим, что если это множество является линейном подпространством \mathbb{R}^n , то должна быть определена операция умножения на скаляр для любого \vec{v} (в нашем случае $\mathbb{R} \times \mathbb{Z}^n \to \mathbb{Z}^n$), т.е. иначе говоря,

$$orall ec{v} \in \mathbb{Z}^n, orall \lambda \in \mathbb{R}: \lambda ec{v} \in \mathbb{Z}^n$$

Однако заметим, что если мы возьмём $\lambda\in\mathbb{R}\setminus\mathbb{Q}$ (например, $\lambda=\sqrt{2}$), то $\lambda \vec{v}\in\mathbb{R}^n$, однако $\lambda \vec{v}\notin\mathbb{Z}^n$. Т.е. \mathbb{Z}^n не является линейным подпространством \mathbb{R}^n

Задание 1286.

Данное множество можно записать в таком виде:

$$L = \{ egin{pmatrix} x \ y \ 0 \end{pmatrix} \in F^3 \mid x = 0 ee y = 0 \}$$

Рассмотрим произвольные 2 вектора $ec{v}_1 = egin{pmatrix} x_1 \\ y_1 \\ 0 \end{pmatrix}$ и $ec{v}_2 = egin{pmatrix} x_2 \\ y_2 \\ 0 \end{pmatrix}$. Рассмотрим

сумму двух векторов
$$ec{v}_1 + ec{v}_2 = egin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ 0 \end{pmatrix}$$
. Если L — линейное

подпространство, то $ec{v}_1+ec{v}_2\in L$. Однако это не всегда так. Достаточно взять $x_1
eq 0, y_1=0$ и $x_2=0, y_2
eq 0$. В таком случае $x_1+x_2
eq 0 \wedge y_1+y_2
eq 0$ и в таком случае $ec{v}_1+ec{v}_2
eq L$.

Например,
$$ec{v}_1=egin{pmatrix}1\\0\\0\end{pmatrix}$$
 и $ec{v}_2=egin{pmatrix}0\\1\\0\end{pmatrix}$. Заметим, что $ec{v}_1,ec{v}_2\in L$, однако $ec{v}_1+ec{v}_2=egin{pmatrix}1\\1\\0\end{pmatrix}
otin L$.

Задание 1291.

Данное множество запишем в следующем виде:

$$L = \{egin{pmatrix} x_1 \ x_2 \ \dots \ x_n \end{pmatrix} \in \mathbb{R}^n \mid \sum_{j=1}^n x_j = 0 \}$$

Рассмотрим сумму двух произвольных векторов
$$ec{v}_1=egin{pmatrix} x_1 \ x_2 \ \dots \ x_n \end{pmatrix}, ec{v}_2=egin{pmatrix} y_1 \ y_2 \ \dots \ y_n \end{pmatrix} \in$$

L:

$$ec{v}_1+ec{v}_2=egin{pmatrix} x_1+y_1\ x_2+y_2\ \dots\ x_n+y_n \end{pmatrix}$$

Покажем, что $ec{v}_1 + ec{v}_2 \in L$. Действительно,

$$\sum_{j=1}^n (x_j+y_j) = \sum_{j=1}^n x_j + \sum_{j=1}^n y_j = 0 + 0 = 0$$

Теперь рассмотрим умножение вектора на скаляр: $\lambda ec{v} = egin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \dots \\ \lambda x_n \end{pmatrix}$, где $\lambda \in \mathbb{R}$.

Покажем, что $\lambda \vec{v} \in L$. Действительно: $\sum_{j=1}^n \lambda x_j = \lambda \sum_{j=1}^{n} x_j = \lambda \cdot 0 = 0$. Остальные аксиомы легко проверяются. Отметим лишь, что противоположный

вектор к \vec{v} это вектор $-\vec{v}=\begin{pmatrix} -x_1\\-x_2\\ \dots\\-x_n \end{pmatrix}$. Этот вектор очевидно принадлежит L т.к.

это частный случай умножения на скаляр, где $\lambda=-1$. Нулевой же вектор $ec{ heta}=$

$$\begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix} \in L.$$

Задание 1292.

Данное множество запишем в следующем виде:

$$L = \{egin{pmatrix} x_1 \ x_2 \ \dots \ x_n \end{pmatrix} \in \mathbb{R}^n \mid \sum_{j=1}^n x_j = 1 \}$$

Рассмотрим сумму двух произвольных векторов $ec{v}_1=egin{pmatrix} x_1 \ x_2 \ \dots \ x_n \end{pmatrix}, ec{v}_2=egin{pmatrix} y_1 \ y_2 \ \dots \ y_n \end{pmatrix}\in$

L:

$$ec{v}_1+ec{v}_2=egin{pmatrix} x_1+y_1\ x_2+y_2\ \dots\ x_n+y_n \end{pmatrix}$$

Теперь рассмотрим сумму всех координат $ec{v}_1 + ec{v}_2$:

$$\sum_{j=1}^n (x_j+y_j) = \sum_{j=1}^n x_j + \sum_{j=1}^n y_j = 1+1=2$$

По этой причине $ec{v}_1 + ec{v}_2
otin L$. Поэтому L — это не подпространство \mathbb{R}^n .

Задание 1293.

Данное множество имеет даже своё обозначение — $\mathrm{span}(S)$, где $S=\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_k\}$. Рассмотрим 2 вектора: $\vec{v}_1=\sum_{j=1}^k\lambda_j\vec{x}_j$ и $\vec{v}_2=\sum_{j=1}^k\mu_j\vec{x}_j$, где $\lambda_j,\mu_j\in\mathbb{R}$. Рассмотрим сумму векторов:

$$ec{v}_1 + ec{v}_2 = \sum_{j=1}^k \lambda_j ec{x}_j + \sum_{j=1}^k \mu_j ec{x}_j = \sum_{j=1}^k (\lambda_j + \mu_j) ec{x}_j$$

Видим, что $ec{v}_1+ec{v}_2\in \mathrm{span}(S)$, т.к. обозначив $\omega_j=\lambda_j+\mu_j\in\mathbb{R}$, получим, что:

$$ec{v}_1 + ec{v}_2 = \sum_{j=1}^k \omega_j ec{x}_j$$

Рассмотрим умножение вектора $ec{v} = \sum_{j=1}^k \lambda_j ec{x}_j$ на скаляр $\gamma \in \mathbb{R}$. Получим:

$$\gamma ec{v} = \gamma \sum_{j=1}^k \lambda_j ec{x}_j = \sum_{j=1}^k (\gamma \lambda_j) ec{x}_j$$

Обозначив $\omega_j = \gamma \lambda_j \in \mathbb{R}$, имеем, что $\gamma \vec{v} = \sum_{j=1}^k \omega_j \vec{x}_j \in \mathrm{span}(S)$. Осталось проверить наличие нулевого и обратного элемента. Нулевой элемент — $\vec{\theta} = (0,\dots,0)^T \in \mathrm{span}(S)$, т.к. мы можем положить все коэффициенты $\lambda_j = 0, j = \overline{1,k}$, в таком случае $\sum_{j=1}^k \lambda_j \vec{x}_j = \vec{\theta}$. Обратный элемент также легко определить — пусть $\vec{v} = \sum_{j=1}^k \lambda_j \vec{x}_j$, тогда обратный элемент будет иметь вид $-\vec{v} = \sum_{j=1}^k (-\lambda_j) \vec{x}_j \in \mathrm{span}(S)$. Оно лежит в $\mathrm{span}(S)$, т.к. это частный случай умножения на скаляр $\gamma = -1$. Поэтому $\mathrm{span}(S)$ — линейное подпространство \mathbb{R}^n .

Задание 1297.

Данное множество запишем в виде:

$$L = \{ egin{pmatrix} \eta \ x_2 \ \dots \ x_{n-1} \ \eta \end{pmatrix} \mid \eta, x_2, \dots, x_{n-1} \in \mathbb{R} \}$$

Для начала покажем, что это линейное подпространство \mathbb{R}^n . Рассмотрим произвольных два вектора: $\vec{v}_1=(\eta_1,x_2,\ldots,x_{n-1},\eta_1)^T$ и $\vec{v}_2=(\eta_2,y_2,\ldots,y_{n-1},\eta_2)^T$. Рассмотрим сумму этих векторов:

$$ec{v}_1 + ec{v}_2 = egin{pmatrix} \eta_1 + \eta_2 \ x_2 + y_2 \ \dots \ x_{n-1} + y_{n-1} \ \eta_1 + \eta_2 \end{pmatrix} \in L$$

Видим, что данная сумма лежит в L т.к. первый и последний элементы равны по $\eta_1 + \eta_2$.

Теперь рассмотрим умножение вектора $\vec{v}=(\eta,x_2,\dots,x_{n-1},\eta)^T\in L$ на скаляр $\lambda\in\mathbb{R}$. Получим, что $\lambda\vec{v}=(\lambda\eta,\lambda x_2,\dots,\lambda x_{n-1},\lambda\eta)$. Этот вектор также лежит в L, т.к. первый и последний элементы равны по $\lambda\eta$. Остальные аксиомы

проверяются достаточно просто, отметим лишь, что обратный элемент к $\vec{v}=(\eta,x_2,\dots,x_{n-1},\eta)^T$ является вектор $-\vec{v}=(-\eta,-x_2,\dots,-x_{n-1},-\eta)\in L$, а нулевой — $\vec{\theta}=(0,0,\dots,0)^T$.

В качестве базиса возьмём вектора:

$$ec{e}_1 = egin{pmatrix} 1 \ 0 \ \dots \ 0 \ 1 \end{pmatrix}, ec{e}_2 = egin{pmatrix} 0 \ 1 \ \dots \ 0 \ 0 \end{pmatrix}, \dots, ec{e}_{n-1} = egin{pmatrix} 0 \ 0 \ \dots \ 1 \ 0 \end{pmatrix}$$

Тогда любой вектор $\vec{v} = (\eta, x_2, \dots, x_{n-1}, \eta)^T$ можно разложить таким образом:

$$ec{v} = \eta ec{e}_1 + x_2 ec{e}_2 + \dots + x_{n-1} ec{e}_{n-1}$$

Меньший базис мы взять не можем — базис \vec{e}_1 отвечает за "регулировку" первого и последнего элемента, а без этих элементов перед нами множество векторов \mathbb{R}^{n-2} , для которого нужно минимум n-2 векторов в базисе. Таким образом, $\dim L=n-1$.

Задание 1300.

Данное множество запишем в виде:

$$L = \{ egin{pmatrix} lpha \ eta \ \ldots \ lpha \ eta \end{pmatrix} \ \in \mathbb{R}^n \mid lpha, eta \in \mathbb{R} \}$$

Покажем, что перед нами линейное подпространство \mathbb{R}^n . Рассмотрим 2 вектора $\vec{v}_1=(lpha,eta,\dots,lpha,eta)^T$ и $\vec{v}_2=(\gamma,\delta,\dots,\gamma,\delta)^T$, Рассмотрим их сумму:

$$ec{v}_1 + ec{v}_2 = egin{pmatrix} lpha + \gamma \ eta + \delta \ \ldots \ lpha + \gamma \ eta + \delta \end{pmatrix} \in L$$

Сумма лежит в L т.к. перед нами вектор, где чередуются элементы $\alpha+\gamma$ и $\beta+\delta$.

Теперь рассмотрим умножение вектора $ec{v}=(lpha,eta,\dots,lpha,eta)^T$ на скаляр $\lambda\in\mathbb{R}$:

$$\lambda ec{v} = egin{pmatrix} \lambda lpha \ \lambda eta \ \dots \ \lambda lpha \ \lambda eta \end{pmatrix} \in L$$

Тут чередуются $\lambda \alpha$ и $\lambda \beta$, поэтому $\lambda \vec{v} \in L$. Остальные аксиомы проверяются элементарно. Отметим только, что обратный элемент, как обычно, $-\vec{v}=(-\alpha,-\beta,\ldots,-\alpha,-\beta)^T\in L$, а нулевой элемент — $\vec{\theta}=(0,0,\ldots,0)^T$ (тут $\alpha=\beta=0$, поэтому $\vec{\theta}\in L$).

Базис в этом случае построить совсем просто:

$$ec{e}_1=egin{pmatrix}1\0\1\ \cdots\1\0\end{pmatrix},\ ec{e}_2=egin{pmatrix}0\1\0\ \cdots\0\1\end{pmatrix}$$

В таком случае любой вектор $\vec{v}=(\alpha,\beta,\ldots,\alpha,\beta)$ можно записать в виде такой суммы:

$$ec{v} = lpha ec{e}_1 + eta ec{e}_2$$

Это минимальное количество (одного базисного вектора, очевидно, не хватит). Поэтому $\dim L=2$.