Qli Viven arr(N) where all the elements are lying in the range 1-5. Sort the array.

- 1 freq Hashmap.
- 2 fry arr

0	4	5	3	2	1	
0	1	2	3	Ч	5	

eler	nent treg	
1	- XZZY	
2	-> X 22 XS	
4	→ 1 2	
3	s → 1 <u>2</u> 3	

(<u>•d</u>(. → int fry (K+17; for (i=0; i < N; i++) { no of iterations $\begin{array}{c|cccc}
1 & (1/a) & a \\
2 & (1/b) & b \\
4 & 0 & 1 \\
1 & 0 & 1
\end{array}$ $\begin{array}{c|cccc}
5 & 0 & 1 \\
6 & (1/c) & c
\end{array}$ $\begin{array}{c|cccc}
6 & (1/c) & c
\end{array}$ 1 | [1,4] → What if 1 ≤ arr(i) ≤ 109, 1≤ N ≤ 105 frq (109+1] fry Hashmap? V

[: no. of keys in worst - case = 105]

-ve elements

-
$$\frac{1}{1} \le anv(i) \le 6$$
, $1 \le N \le 10^{5}$

min max

 $anv \rightarrow [2, 1, 3, -5, -2, -4, -1, 5, 3, 6, 4]$

for
$$l = min; i = max; int)$$

$$for(f = 1; f = freq[i-min]; f + t)$$

$$for(f);$$

$$for(f);$$

$$for(f) = freq[i-min]; f + t)$$

$$for(f) = freq[i-min]; f + t)$$

S-C-> O(max-min)

Q: inf
$$\rightarrow 345768$$

 $54321°$
 $345768/1000 \implies 345\%10 \rightarrow S.$

$$j^{th}$$
 - digit of, a number $\Rightarrow \left(\frac{N}{10^{i}}\right) \frac{1}{6}$ to

Q - Cliven tre integers. Sort these integers on the bosis of tens place. = D [stable]

$$arr \rightarrow [361, 432, 12, 78, 500, 112, 27]$$

$$\begin{array}{c}
2p \\
500, 2, 12, 112, 432, 361, 78]
\end{array}$$

$$\begin{array}{c}
digit \rightarrow [0,9] & count?
\end{array}$$

code - List
$$\leq$$
 integer > [10] freq;

for (i = 0; i < N; i++) \(\)

\[
\left\{ \text{care}(i) / 10\) \(\) \(\) \(\)

\[
\left\{ \text{req}(\text{tens}) \cdot \text{lnsut}(\text{care}(i));} \\
\left\{ \text{for}(\text{i} = 0'; \text{i} < 10'; \text{i} + 1) \\
\left\{ \text{for}(\text{i} = 0'; \text{j} < \text{freq}(i) \text{size}()'; \text{i} + 1) \\
\left\{ \text{size}(\text{j} \text{i} \text{size}()'; \text{i} + 1) \\
\left\{ \text{size}(\text{i}) \text{i} \text{size}()'; \text{size}()'; \text{i} \text{size}()'; \text{size

d - no. of digits in the maximum number.

$$\begin{cases} T \cdot C \rightarrow O(N \cdot d) \\ S \cdot C \rightarrow O(N) \end{cases}$$

$$\begin{cases} max = 0 \\ ser(i=0; i \in N; i+1) \\ max = Max(max, arr(i)) \end{cases}$$

$$\begin{cases} max = Max(max, arr(i)) \\ m = max; digits = 0 \end{cases}$$

$$\begin{cases} while(m!=0) \\ m = 10; \\ digits + t \end{cases}$$

$$\begin{cases} m = 10; \\ digits + t \end{cases}$$

Q1 Civen arr(N) and all elements one distinct. Find sum of (max-min) of all subsets.

	max	min	max-min
ſŢ	_	_	0
[37	3	3	o t
[1]	1	1	D f
[-4]	-4	- 4	o t
[2,1]	3	1	2
[3, -4]	3	-4	7
(1, -4]	1	-4	J ,
[3,1,-4]	3	-4	7
'	Emars -	- Emins	21

Subsch: - Set of elements attained by deleting 0

or more elements.

arr - (1, 7, 9, 3, 4)

(7, 3, 4) \(7, 34) \(X \)

(1, 27 \(X \)

Bif idea - Generale all subsets, and for every subset find the minimum & maximum element & take their difference.

Tic - O(2"*N) = exponential Ic

Contribution?

Contribution = arr(i) and subsets in which arr(i) will be the maximum element

1) In how many subsets, 6 is the maximum element.

$$\begin{bmatrix} & & & 6 \end{bmatrix}$$

$$\Rightarrow & 2^{2} - 8$$

② In how many subset, 6 is the minimum element. $\Rightarrow y^{n} \cdot \theta \text{ grater element than 6}$ $\Rightarrow y^{2} = 4$.

Sorting

Count of smaller elements than $arr(i) \rightarrow i$ Count of greater elements than $arr(i) \rightarrow N-i-1$

Contribution of carrier in Emars = arrier 2 in Contribution of arrier in Emins = arrier 2 2 N-i-1 A code-Sort(arr), long = 0, $min_s = 0$, $mod \rightarrow 10^9 + 7$ for (i = 0; i = N; i = +) { $max_s = max_s + arr(i) = fast power(2, i, mod);$ $min_s = min_s + arr(i) = fast power(2, N-i-1, mod);$ return (int) ((mar, - min,) / mod) Sic -> O(NIOgN) 1 = N = 104 14 arr(i) < 103 take modulo with 104+7.