f(x)	f'(x)
u(x)v(x)	u'v + uv'
u(x)	u'v - uv'
$\overline{v(x)}$	v^2
u(v(x))	u'(v(x))v'(x)
$\ln \left(u\left(x\right) \right)$	$\frac{u'(x)}{u(x)}$
$\sin\left(ax\right)$	$a\cos(ax)$
$\cos\left(ax\right)$	$-a\sin(ax)$
$\tan\left(ax\right)$	$a \sec^2{(ax)}$
$\cot\left(ax\right)$	$-a\csc^2(ax)$
$\sec\left(ax\right)$	$a \sec(ax) \tan(ax)$
$\csc(ax)$	$-a\csc(ax)\cot(ax)$

Trigonometric Identities

$$1 = \sin^{2}(x) + \cos^{2}(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \cos^{2}(x) - \sin^{2}(x)$$

$$\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$

$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

Partial Fraction Decomposition

$$\frac{p(x)}{(x+a)(x+b)} = \frac{A}{x+a} + \frac{B}{x+b}$$

Integration Techniques

$$\int u \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x = uv - \int v \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x$$

$$\int f(g(x)) \frac{\mathrm{d}g(x)}{\mathrm{d}x} \, \mathrm{d}x = \int f(u) \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x$$
where $u = g(x)$.

Trigonometric Substitutions

Substitute the appropriate value in and find that the value under the root is now square. Calculate $\frac{dx}{d\theta}$ to change the variable. Use substitution to find the new Taylor Polynomials / Series limits.

Sine
$$(a^2 - b^2 x^2, x = \frac{a}{b} \sin(\theta))$$

Tangent $(a^2 + b^2x^2, x = \frac{a}{b}\tan(\theta))$

Secant $(b^2x^2 - a^2, x = \frac{a}{b}\sec(\theta))$

L'Hôpital's Rule

$$\begin{split} & \text{If} \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \text{ or } \pm \infty \text{, then} \\ & \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}. \end{split}$$

Continuity

f(x) continuous at c iff $\lim_{x\to c} f(x) = f(c)$. If $b_{i+1}\leqslant b_i$ & $\lim_{i\to\infty}b_i=0$, then f(x) is continuous on I:(a,b) if it is convergent, else inconclusive. continuous for all $x \in I$.

f(x) is continuous on I : [a, b] if it is continuous for all $x \in I$, but only right Given $\rho = \lim_{i \to \infty} \left| \frac{a_{i+1}}{a} \right|$: continuous at a and left continuous at b.

Intermediate Value Theorem

If f(x) is continuous on I:[a,b] and $f(a) \le c \le f(b)$, then $\exists x \in I : f(x) = c$.

Differentiability

f(x) is differentiable at $x=x_0$ iff

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 exists. This defines the derivative

ts. This defines the derivative
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Mean Value Theorem

If f(x) is continuous and differentiable on I : [a, b], then

$$\exists c \in I: f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Definite Integrals

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Fundamental Theorem of Calculus

$$\begin{split} & \int_a^b \frac{\mathrm{d}}{\mathrm{d}x} F(x) \, \mathrm{d}x = F(b) - F(a) \\ & \frac{\mathrm{d}}{\mathrm{d}x} \int_a^x f(t) \, \mathrm{d}t = f(x) \end{split}$$

$$f(x) \approx p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k$$

The Taylor Series is taking the limit as ngoes to infinity of p_n .

Maclaurin Series: $x_0 = 0$.

Common Maclaurin Series

Function	Series Term	Conv.
e^x	$\frac{x^n}{n!}$	all x
$\sin\left(x\right)$	$ \begin{array}{c c} & \frac{x^n}{n!} \\ & (-1)^n \frac{x^{2n+1}}{(2n+1)!} \\ & (-1)^n \frac{x^{2n}}{(2n)!} \end{array} $	all x
$\cos\left(x\right)$	$\left(-1\right)^{n} \frac{x^{2n}}{(2n)!}$	all x
$\frac{1}{1-x}$	x^n	(-1, 1)
$\frac{1}{1+x^2}$	$(-1)^n x^{2n}$	(-1, 1)
$\ln\left(1+x\right)$	$(-1)^{n+1} \frac{x^n}{n}$	[-1, 1]

Power Series: $\sum_{n=0}^{\infty} c_n (x - x_0)^n$

Series Tests

For a series of the form $\sum_{i=1}^{\infty} a_i$:

Alternating Series Test

Given $a_i = (-1)^i b_i$ and $b_i > 0$.

Ratio Test

Given
$$\rho = \lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right|$$
:
 $\rho < 1 : \text{convergent}$
 $\rho > 1 : \text{divergent}$
 $\rho = 1 : \text{inconclusive}$

Multivariable Functions

Partial Derivatives are done w.r.t one variable, other variables unchanged. The **Gradient** is $\nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, ... \rangle$

Level Curves

$$L_{c}(f) = \{(x, y) : f(x, y) = c\}$$

If $f(x, y) \to L$ as $(x, y) \to (x_0, y_0)$, then $\lim_{(x, y) \to (x_0, y_0)} = L$ along any smooth curve.

The limit does not exist if L changes along different smooth curves.

Multivariable Chain Rule

For $\frac{\partial f}{\partial s}$, create a tree from f to the variable s. On each edge, where the node above is a and below is b, each edge is $\frac{\partial a}{\partial b}$. Traverse each path between f and s and multiply the edges. Add each path together. (i.e. for $f(x,y), x(s,t), y(s,t), \frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s})$

Directional Derivatives

$$\mathbf{D}_{\boldsymbol{u}}f = \boldsymbol{\nabla}_{\boldsymbol{u}}f = \boldsymbol{\nabla}f \cdot \boldsymbol{u}$$

where u is a unit vector and the slope is given by $\|\nabla_{\boldsymbol{u}} f\|$. If $\nabla_{\boldsymbol{u}} f = 0$, \boldsymbol{u} is tangent to the level curve at x_0 .

$$\max_{\|\boldsymbol{u}\|=1} \boldsymbol{\nabla}_{\boldsymbol{u}} f = \boldsymbol{\nabla} f$$

If $\nabla f \neq 0$, ∇f is a normal vector to the level curve at x_0 .

Critical Points

 (x_0, y_0) is a critical point if $\nabla f(x_0, y_0) =$ **0** or if $\nabla f(x_0, y_0)$ is undefined.

Classification of Critical Points

$$D = f_{xx}f_{yy} - \left(f_{xy}\right)^2$$

D > 0 and $f_{xx} < 0$: local maxima

D > 0 and $f_{xx} > 0$: local minima

D < 0: saddle point

D=0: inconclusive

Double Integrals

The volume of the solid enclosed between the surface z = f(x, y) and the region Ω is defined by

$$V = \iint_{\Omega} f(x, y) \, \mathrm{d}A.$$

If Ω is a region bounded by $a \leq x \leq b$ and $c \leq y \leq d$, then

$$\iint_{\Omega} f(x, y) dA = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$
 Order: highest derivate Autonomous DE: described explicitly on the independence of the control of th

Type I Regions

$$\iint\limits_{\Omega} f(x,\,y)\,\mathrm{d}A = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,\,y)\,\mathrm{d}y\,\mathrm{d}x \text{ A fixed point is the value of }y \text{ for which } f(y) = 0.$$

Bounded left & right by:

$$x = a$$
 and $x = b$

Bounded below & above by:

$$y=g_1(x) \text{ and } y=g_2(x)$$
 where $g_1(x) \leq g_2(x)$ for $a \leq x \leq b$:

Type II Regions

$$\iint\limits_{\Omega}f(x,\,y)\,\mathrm{d}A=\int_{c}^{d}\int_{h_{1}(x)}^{h_{2}(x)}f(x,\,y)\,\mathrm{d}x\,\mathrm{d}y$$

Bounded left & right by:

$$x = h_1(y)$$
 and $x = h_2(y)$

Bounded below & above by:

$$y = c$$
 and $y = d$

where $h_1(y) \le h_2(y)$ for $c \le y \le d$. To integrate, solve the inner integrals first.

Vector Valued Functions

$$\mathbf{r}: \mathbb{R} \to \mathbb{R}^n$$

The **domain** of $\mathbf{r}(t)$ is the intersection of the domains of its components.

The **orientation** of $\mathbf{r}(t)$ is the direction of motion along the curve as the value of the parameter increases.

all component-wise. Each component has $P_y=Q_x$, where $P=\Psi_x$ and $Q=\Psi_y$. its own constant of integration.

Parametric Lines

$$\mathbf{l}(t) = \mathbf{P}_0 + t\mathbf{v}$$

where $\mathbf{l}(t)$ passes through P_0 , and is parallel to \boldsymbol{v} .

Tangent Lines

If $\mathbf{r}(t)$ is differentiable at t_0 and $\mathbf{r}'(t_0) \neq$

$$\mathbf{l}(t) = \mathbf{r}(t_0) + t\mathbf{r}'(t_0).$$

Curves of Intersection

Choose one of the variables as the Boundary Values parameter, and express the remaining variables in terms of that parameter.

Arc Length

$$S = \int_a^b \|\mathbf{r}'(t)\| \, \mathrm{d}t$$

Ordinary Differential Equations

Order: highest derivative in DE.

Autonomous DE: does not depend explicitly on the independent variable.

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y)$$

Stability of Fixed Points

Given a positive/negative perturbation from a fixed point, that point is

Stable: if both tend toward FP

Unstable: if both tend away from FP Semi-Stable: if one tends toward FP, and another tends away from FP

Directly Integrable ODEs

For
$$\frac{dy}{dx} = f(x)$$
:

$$y(x) = \int f(x) \, \mathrm{d}x.$$

Separable ODEs

$$\begin{split} \text{For } & \frac{\mathrm{d}y}{\mathrm{d}x} = p(x)q(y) \text{:} \\ & \int \frac{1}{q(y)} \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x = \int p(x) \, \mathrm{d}x \, . \end{split}$$

Linear ODEs

For $\frac{dy}{dx} + p(x)y = q(x)$, use the integrating factor: $I(x) = e^{\int p(x)dx}$, so that

$$y(x) = \frac{1}{I(x)} \int I(x)q(x) dx.$$

Exact ODEs

 $P(x, y) + Q(x, y) \frac{dy}{dx} = 0$ has the solution **Limits**, derivatives and integrals are $\Psi(x, y) = c$ iff it is exact, namely, when

$$\Psi(x, y) = \int P(x, y) dx + f(y)$$

$$\Psi(x, y) = \int Q(x, y) \, \mathrm{d}y + g(x)$$

and f(y) and g(x) can be determined by solving these equations simultaneously.

Second-Order ODEs

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = F(x)$$

Initial Values

$$y(x_0)=y_0 \quad y'(x_0)=y_1$$

$$y(x_0) = y_0 \quad y(x_1) = y_1$$

Reduction of Order

$$y_2(x) = v(x) y_1(x)$$

v(x) can be determined by substituting y_2 into the ODE, using w(x) = v'(x).

General Solution

$$y(x) = y_H(x) + y_P(x) \label{eq:y_hat}$$

Homogeneous Solution

$$y_H(x) = e^{\lambda x}$$

Real Distinct Roots

$$y_H(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

Real Repeated Roots

$$y_H(x) = c_1 e^{\lambda x} + c_2 t e^{\lambda x}$$

Complex Conjugate Roots

Given
$$\lambda = \alpha \pm \beta i$$
:

$$y_H(x) = e^{\alpha x} \big(c_1 \cos{(\beta x)} + c_2 \sin{(\beta x)} \big)$$

Particular Solution

F(x)	$y_P(x)$
constant	A
polynomial degree n	$\sum_{i=1}^{n} A_i x^i$
e^{kx}	Ae^{kx}
$\cos(\omega x) \text{ or } \sin(\omega x)$	$\begin{vmatrix} A_0 \cos(\omega x) \\ +A_1 \sin(\omega x) \end{vmatrix}$
	$+A_1\sin(\omega x)$

If F(x) is a combination of the above, $y_P(x)$ should be too. If the choice would be linearly dependent to $y_H(x)$, multiply by x until it isn't.

Substitute y_P into the nonhomogeneous ODE, and solve the undetermined coefficients.

Spring and Mass Systems

$$my'' + \gamma y' + ky = f(t)$$

Newton's Law: F = my''

Spring force: $F_s = -ky$

Damping force: $F_d = -\gamma y'$

k: spring constant

 γ : damping f(t): external force

Electrical Circuits

The sum of voltages around a loop equals

$$v(t) - iR - L\frac{\mathrm{d}i}{\mathrm{d}t} - \frac{q}{C} = 0$$

$$L\frac{\mathrm{d}^2q}{\mathrm{d}t^2}+R\frac{\mathrm{d}q}{\mathrm{d}t}+\frac{1}{C}q=v(t)$$

where $i = \frac{\mathrm{d}q}{\mathrm{d}t}$.

R: resistance C: capacitance

L: inductance v(t): voltage supply