

Universidade Estadual de Feira de Santana

Departamento de Tecnologia

Curso de Engenharia da Computação

Disciplina: MI - Projeto de circuitos digitais

Professor: Anfranserai Morais Dias

Problema 03- Circuito Digitais

Cofre

PARTICIPANTES:

JOÃO MARCUS PABLO GABRIEL

Apresentação do Problema:

Requisitos:

- · Implementação na placa DE10-Lite, utilizando a ferramenta Quartus II;
- DISPLAY COM INDICAÇÕES DE ESTADO (AL, PF, AB, FE, EM, BL, AF, E1, E2);
 PERMITIR ABERTURA E FECHAMENTO DO COFRE (NORMAL, REMOTO);

ENTRADAS DE COMANDO:

- · A (MODO NORMAL/REMOTO), B (PROGRAMAÇÃO/CONFIRMAÇÃO);
- ENTRADA DE SENHA;

SENSORES:

- · SPA (PORTA DO COFRE),
- · SPN (PINO DE FECHAMENTO AUTOMÁTICO);
- · ABERTURA REMOTA (SAF) E CHAVE MESTRA (H);

- AÇÃO AUTOMATIZADA DOS PINOS DE FECHAMENTO (CLOSE);
 O ESTADO ATUAL DO COFRE É SEMPRE EXIBIDO NO DISPLAY PARA O USUÁRIO.

Criação de um diagrama de Alto Nível

Como determinar o funcionamento do cofre?

Sinais necessários para obter saídas desejadas no Sistema;
Sinais automáticos;
Redução de entradas das MEFs;
Entradas físicas;
Saídas;

A vizualização e implementação do circuito, foi possível através do diagrama de alto nivel logo abaixo.

Entradas e Saídas do circuito

Entradas:

```
4 Switches para a senha;
1 Switche para o Modo (A),
1 Botão para Programação /
Confirmação (B),
1 Switche para a Porta(SPA),
```

1 Switche para o fechamento remoto (SAF), 1 Switche para a Chave Mestra (CH), 1 Botão para o reset (rst), Clock de 50 MHz.

Saídas:

- · Displays para exibir caracteres do Modo (AL, PF);
- · Displays para exibir caracteres de Estados (Ab, AF, FE, E1, E2, bL);
- · Displays para exibir caracteres de Emergência (EM);
- 5 Leds da placa (Porta, CLOSE, SAF, CH, CS, Prog),
- 4 Leds da placa (Apagados).

Seleção dos Estados:

Depois de decidir e separar as entradas e saídas necessárias:

- Máquinas de Moore;
- Os diagramas de cada Mef foram construídos (4 no total);
- Tabelas de transições de estado;
 - Tabelas de excitação dos estados;
- Extração da lógica de saída e transição de cada Mef por meio dos Mapas de Karnaugh.

Verilog Estrutural:

Flip-Flops tipo D.

Diagrama de estados:

Máquina da Porta:

Moore

Porta Aberta: PA (0); Porta Fechada: PL (1);

Entradas:

SPA: 0 -> Aberta;

1-> Fechada;

SPN: 0 -> Destravada;

1-> Travada;

Clk: clk

Saída:

Sinal "Porta" - > Liga um led.

Circuito da MEF Porta:

Expressão extraída do mapa de Karnaugh:

D=Q.LGD'+SPA.LGD

Saída:

Porta = Q

Sinal "Porta".

Diagrama de estados:

Máquina do Modo:

Moore

Modo Normal: MN (0); Modo Remoto: MR (1);

Entradas:

A: 0 -> Normal;
1-> Remoto;
LGD 0 -> Ativa;
1-> Desativa;
Clk: clk

Saída:

Sinal "Modo".

Displays (HEX 5 e HEX 4)-> AL (Normal), PF (Remoto).

Circuito da MEF Modo:

Expressão de transição extraída do mapa de Karnaugh:

· Saídas:

Modo = Q

Sinal "Modo"

Lógica de saída para os displays:

- HEX 5: (A ou P)
- a,b,e,f,g=0 c=Q d=1
- HEX 4: (Lou F)
- a, g = Q' b, c = 1 e,f = 0 d = Q

Diagrama de estados:

00

01

10

```
Máquina Remoto:
```

Moore

Aberta em modo Remoto: ABR(0); Fechada em modo Remoto: FER (1);

Entradas:

```
SAF: 0 -> Aberta;

1-> Fechada;

Porta 0 -> Aberta;

1-> Fechada;

Clk_Remoto: clk, Modo-> 1;
```

Saída:

Sinal "SPN_R".

Displays (HEX 1 e HEX 0)-> AF (Aberta), FE (Fechada).

Circuito MEF Remoto:

Expressão extraída do mapa de Karnaugh:

D=Q.SAF'+A.SAF

- Saídas:
- SPN_R: Pino de Fechamento Remoto.

Barramento para os displays:

HEX_1_ Remoto; (A ou F)

$$a,e,f,g=0 b,c=Q d=1$$

HEX_0_Remoto: (F ou E)

$$a, e, f, g = 0 b, c = 1, d = Q$$

Diagrama de estados:

Máquina Local: Moore

Aberta em modo Local: ABL(000),

Programação: PROG (001),

Fechada em modo Local: FEL (010),

Tentativa 1: T1 (011),

Tentativa 2: T2 (100),

Bloqueado: BLOQ (101).

Máquina Local:

Moore

Entradas:

```
CS: 0 -> Senha incorreta;
1-> Senha correta;
```

Porta 0 -> Aberta;

1-> Fechada;

Clk_local: B, Modo-> 0, SPN_R->0.

Saída:

Sinal "SPN_L" e "Prog".

Displays (HEX 1 e HEX 0)-> Ab (Aberta), FE (Fechada), E1 (Tentativa 1), E2 (Tentativa 2), bL (Bloqueado).

Reset:

CH: Chave Mestra;

Estado BLOQ.

BLOQ - > ABL

Circuito da MEF Local: Mef_desativa Clkmlocal Rst_senha **Porta** HEX_1_Local

Circuito da MEF Local:

Expressão de transição extraída do mapa de Karnaugh:

```
D2= Q2 Q1' Q0 + Q2Q1' Porta' + Q2Q1' CS' + Q2'Q1Q0CS' Porta
D1= Q2'Q1 Porta' + Q2'Q1Q0'CS' + Q2'Q1'Q0CS Porta
D0= Q2Q1'Q0 + Q1'CS' Porta + Q2'Q1Q0 Porta' + Q1'Q0CS Porta' + Q2'Q0'CS' Porta + Q2'Q1'Q0'Porta
```

Saídas:

- SPN_L: Pino de Fechamento Local. (FEL, E1, E2, bL)
- Prog, Mef_desativa, Rst_senha: Sinal de Programação. (PROG)

Lógica de saída para os displays:

- HEX_1_Local: (A, F, E ou b)
 a = Q2Q0 + Q2Q1 b = Q1 + Q2 c = Q1 + Q2Q0 d = Q2'Q1' + Q2Q1 + Q2'Q0' e, f, g = Q2Q1

Circuito do Registrador Senha:

Circuito Comparador de Senha:

Saída:

CS: Confirmação de Senha

Circuito do Mux Displays:

Multiplexaor simples instanciado várias vezes;

Possibilitou a passagem dos sinais de saída dos displays:

Mef Remoto ou Local:

Selecionador:

Modo e SAF e SPN_L

Emergência ou Apagado:

Selecionador:

Emergência: Situação de mal intepretação de entradas ou estados.

Exibe nos displays HEX 3 e HEX 2 os caracteres EM:

EX: Fechado no modo Remoto e tentar abrir no modo Local.

Circuito Mux Display Emergência:

Circuito Mux Display:

M<u>UX x</u>7 HEX_1 HEX_1_Local sel x1 sel HEX_1_Remoto, nModo nSPN_L SAF MUX x7 HEX_0 HEX_0_Local HEX_0_Remoto sel

Multiplexador simples

Cenário de Testes:

Entradas:

- Modo = 1
- SPA = 1
- SAF=1
- Modo = 0

Saída atual:

Saída esperada:

Não consegue abrir localmente

Cenário de Testes 2:

Saída atual:

CH não faz diferença. Só muda de Estado com B =1.

Programação ou sem programação.

- Porta fechada.
- SPN = 1

Saída Esperada:

- CS=1-> AL Ab
- SPN = 0
- Porta pode abrir.

- SPN = 1
- CS = 0 AL E1

Cenário de Testes 3:

Entradas:

• CH=1->Ab

Saída atual:

Entradas:

SAF = 1, enquanto estiver FEL

Saída esperada:

Saída esperada Emergência:

FINA Cobrigado.

