## Ch 7.6: Complex Eigenvalues

• We consider again a homogeneous system of *n* first order linear equations with constant, real coefficients,

$$x'_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$x'_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots$$

$$x'_{n} = a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n},$$

and thus the system can be written as x' = Ax, where

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \ \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

## Conjugate Eigenvalues and Eigenvectors

- We know that  $\mathbf{x} = \xi e^{rt}$  is a solution of  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ , provided r is an eigenvalue and  $\xi$  is an eigenvector of  $\mathbf{A}$ .
- The eigenvalues  $r_1, ..., r_n$  are the roots of  $\det(\mathbf{A} r\mathbf{I}) = 0$ , and the corresponding eigenvectors satisfy  $(\mathbf{A} r\mathbf{I}) \xi = \mathbf{0}$ .
- If **A** is real, then the coefficients in the polynomial equation  $\det(\mathbf{A} r\mathbf{I}) = 0$  are real, and hence any complex eigenvalues must occur in conjugate pairs. Thus if  $r_1 = \lambda + i\mu$  is an eigenvalue, then so is  $r_2 = \lambda i\mu$ .
- The corresponding eigenvectors  $\xi^{(1)}$ ,  $\xi^{(2)}$  are conjugates also.

To see this, recall A and I have real entries, and hence

$$(\mathbf{A} - r_1 \mathbf{I})\boldsymbol{\xi}^{(1)} = \mathbf{0} \implies (\mathbf{A} - \overline{r_1} \mathbf{I})\overline{\boldsymbol{\xi}}^{(1)} = \mathbf{0} \implies (\mathbf{A} - r_2 \mathbf{I})\boldsymbol{\xi}^{(2)} = \mathbf{0}$$

### **Conjugate Solutions**

• It follows from the previous slide that the solutions

$$\mathbf{x}^{(1)} = \boldsymbol{\xi}^{(1)} e^{r_1 t}, \quad \mathbf{x}^{(2)} = \boldsymbol{\xi}^{(2)} e^{r_2 t}$$

corresponding to these eigenvalues and eigenvectors are conjugates conjugates as well, since

$$\mathbf{x}^{(2)} = \mathbf{\xi}^{(2)} e^{r_2 t} = \overline{\mathbf{\xi}}^{(1)} e^{\overline{r_2} t} = \overline{\mathbf{x}}^{(1)}$$

#### **Example 1: Direction Field** (1 of 7)

• Consider the homogeneous equation  $\mathbf{x'} = \mathbf{A}\mathbf{x}$  below.

$$\mathbf{x'} = \begin{pmatrix} -1/2 & 1 \\ -1 & -1/2 \end{pmatrix} \mathbf{x}$$

- A direction field for this system is given below.
- Substituting  $\mathbf{x} = \xi e^{rt}$  in for  $\mathbf{x}$ , and rewriting system as  $(\mathbf{A} r\mathbf{I}) \xi = \mathbf{0}$ , we obtain

$$\begin{pmatrix} -\frac{1}{2} - r & 1 \\ -1 & -\frac{1}{2} - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

#### **Example 1: Complex Eigenvalues** (2 of 7)

• We determine r by solving  $det(\mathbf{A} - r\mathbf{I}) = 0$ . Now

$$\begin{vmatrix} -1/2 - r & 1 \\ -1 & -1/2 - r \end{vmatrix} = (r + 1/2)^2 + 1 = r^2 + r + \frac{5}{4}$$

Thus

$$r = \frac{-1 \pm \sqrt{1^2 - 4(5/4)}}{2} = \frac{-1 \pm 2i}{2} = -\frac{1}{2} \pm i$$

• Therefore the eigenvalues are  $r_1 = -1/2 + i$  and  $r_2 = -1/2 - i$ .

#### Example 1: First Eigenvector (3 of 7)

• Eigenvector for  $r_1 = -1/2 + i$ : Solve

$$(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = \mathbf{0} \iff \begin{pmatrix} -1/2 - r & 1 \\ -1 & -1/2 - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 1 & i \\ -1 & -i \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

by row reducing the augmented matrix:

$$\begin{pmatrix} 1 & i & 0 \\ -1 & -i & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & i & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \boldsymbol{\xi}^{(1)} = \begin{pmatrix} -i\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_2 \end{pmatrix} \rightarrow \text{choose } \boldsymbol{\xi}^{(1)} = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

Thus

$$\xi^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

#### Example 1: Second Eigenvector (4 of 7)

• Eigenvector for  $r_1 = -1/2 - i$ : Solve

$$(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = \mathbf{0} \iff \begin{pmatrix} -1/2 - r & 1 \\ -1 & -1/2 - r \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} i & 1 \\ -1 & i \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 1 & -i \\ -1 & i \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

by row reducing the augmented matrix:

$$\begin{pmatrix} 1 & -i & 0 \\ -1 & i & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \boldsymbol{\xi}^{(2)} = \begin{pmatrix} i\boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_2 \end{pmatrix} \rightarrow \text{choose } \boldsymbol{\xi}^{(2)} = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

Thus

$$\boldsymbol{\xi}^{(2)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

#### **Example 1: General Solution (5 of 7)**

• The corresponding solutions  $\mathbf{x} = \xi e^{rt}$  of  $\mathbf{x'} = \mathbf{A}\mathbf{x}$  are

$$\mathbf{u}(t) = e^{-t/2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cos t - \begin{pmatrix} 0 \\ 1 \end{bmatrix} \sin t \end{bmatrix} = e^{-t/2} \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}$$

$$\mathbf{v}(t) = e^{-t/2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \sin t + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cos t \end{bmatrix} = e^{-t/2} \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

The Wronskian of these two solutions is

$$W[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}](t) = \begin{vmatrix} e^{-t/2} \cos t & e^{-t/2} \sin t \\ -e^{-t/2} \sin t & e^{-t/2} \cos t \end{vmatrix} = e^{-t} \neq 0$$

• Thus  $\mathbf{u}(t)$  and  $\mathbf{v}(t)$  are real-valued fundamental solutions of  $\mathbf{x'} = \mathbf{A}\mathbf{x}$ , with general solution  $\mathbf{x} = c_1\mathbf{u} + c_2\mathbf{v}$ .

#### Example 1: Phase Plane (6 of 7)

• Given below is the phase plane plot for solutions  $\mathbf{x}$ , with

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} e^{-t/2} \cos t \\ -e^{-t/2} \sin t \end{pmatrix} + c_2 \begin{pmatrix} e^{-t/2} \sin t \\ e^{-t/2} \cos t \end{pmatrix}$$

- Each solution trajectory approaches origin along a spiral path as  $t \to \infty$ , since coordinates are products of decaying exponential and sine or cosine factors.
- The graph of **u** passes through (1,0), since u(0) = (1,0). Similarly, the graph of **v** passes through (0,1).
- The origin is a **spiral point**, and is asymptotically stable.



#### Example 1: Time Plots (7 of 7)

• The general solution is  $\mathbf{x} = c_1 \mathbf{u} + c_2 \mathbf{v}$ :

$$\mathbf{x} = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} c_1 e^{-t/2} \cos t + c_2 e^{-t/2} \sin t \\ -c_1 e^{-t/2} \sin t + c_2 e^{-t/2} \cos t \end{pmatrix}$$

• As an alternative to phase plane plots, we can graph  $x_1$  or  $x_2$  as a function of t. A few plots of  $x_1$  are given below, each one a decaying oscillation as  $t \to \infty$ .



#### **General Solution**

• To summarize, suppose  $r_1 = \lambda + i\mu$ ,  $r_2 = \lambda - i\mu$  and that  $r_3, \ldots, r_n$  are all real and distinct eigenvalues of **A**. Let the corresponding eigenvectors be

$$\boldsymbol{\xi}^{(1)} = \mathbf{a} + i\mathbf{b}, \ \boldsymbol{\xi}^{(2)} = \mathbf{a} - i\mathbf{b}, \ \boldsymbol{\xi}^{(3)}, \ \boldsymbol{\xi}^{(4)}, \dots, \ \boldsymbol{\xi}^{(n)}$$

• Then the general solution of x' = Ax is

$$\mathbf{x} = c_1 \mathbf{u}(t) + c_2 \mathbf{v}(t) + c_3 \boldsymbol{\xi}^{(3)} e^{r_3 t} + \dots + c_n \boldsymbol{\xi}^{(n)} e^{r_n t}$$

where

$$\mathbf{u}(t) = e^{\lambda t} (\mathbf{a} \cos \mu t - \mathbf{b} \sin \mu t), \ \mathbf{v}(t) = e^{\lambda t} (\mathbf{a} \sin \mu t + \mathbf{b} \cos \mu t)$$

#### **Real-Valued Solutions**

- Thus for complex conjugate eigenvalues  $r_1$  and  $r_2$ , the corresponding solutions  $\mathbf{x}^{(1)}$  and  $\mathbf{x}^{(2)}$  are conjugates also.
- To obtain real-valued solutions, use real and imaginary parts of either  $\mathbf{x}^{(1)}$  or  $\mathbf{x}^{(2)}$ . To see this, let  $\boldsymbol{\xi}^{(1)} = \mathbf{a} + i\mathbf{b}$ . Then

$$\mathbf{x}^{(1)} = \mathbf{\xi}^{(1)} e^{(\lambda + i\mu)t} = (\mathbf{a} + i\mathbf{b}) e^{\lambda t} (\cos \mu t + i \sin \mu t)$$

$$= e^{\lambda t} (\mathbf{a} \cos \mu t - \mathbf{b} \sin \mu t) + i e^{\lambda t} (\mathbf{a} \sin \mu t + \mathbf{b} \cos \mu t)$$

$$= \mathbf{u}(t) + i \mathbf{v}(t)$$
where

 $\mathbf{u}(t) = e^{\lambda t} (\mathbf{a} \cos \mu t - \mathbf{b} \sin \mu t), \ \mathbf{v}(t) = e^{\lambda t} (\mathbf{a} \sin \mu t + \mathbf{b} \cos \mu t),$  are real valued solutions of  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ , and can be shown to be linearly independent.

# Spiral Points, Centers, Eigenvalues, and Trajectories

• In previous example, general solution was

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} e^{-t/2} \cos t \\ -e^{-t/2} \sin t \end{pmatrix} + c_2 \begin{pmatrix} e^{-t/2} \sin t \\ e^{-t/2} \cos t \end{pmatrix}$$



- The origin was a **spiral point**, and was asymptotically stable.
- If real part of complex eigenvalues is positive, then trajectories spiral away, unbounded, from origin, and hence origin would be an unstable spiral point.
- If real part of complex eigenvalues is zero, then trajectories circle origin, neither approaching nor departing. Then origin is called a **center** and is stable, but not asymptotically stable. Trajectories periodic in time.
- The direction of trajectory motion depends on entries in **A**.

#### Example 2:

#### Second Order System with Parameter (1 of 2)

• The system  $\mathbf{x}' = \mathbf{A}\mathbf{x}$  below contains a parameter  $\alpha$ .

$$\mathbf{x'} = \begin{pmatrix} \alpha & 2 \\ -2 & 0 \end{pmatrix} \mathbf{x}$$

• Substituting  $\mathbf{x} = \xi e^{rt}$  in for  $\mathbf{x}$  and rewriting system as  $(\mathbf{A} - r\mathbf{I}) \xi = \mathbf{0}$ , we obtain

$$\begin{pmatrix} \alpha - r & 2 \\ -2 & -r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• Next, solve for r in terms of  $\alpha$ :

$$\begin{vmatrix} \alpha - r & 2 \\ -2 & -r \end{vmatrix} = r(r - \alpha) + 4 = r^2 - \alpha r + 4 \Rightarrow r = \frac{\alpha \pm \sqrt{\alpha^2 - 16}}{2}$$

# Example 2: $r = \frac{\alpha \pm \sqrt{\alpha^2 - 16}}{2}$ Eigenvalue Analysis (2 of 2)

- The eigenvalues are given by the quadratic formula above.
- For  $\alpha$  < -4, both eigenvalues are real and negative, and hence origin is asymptotically stable node.
- For  $\alpha > 4$ , both eigenvalues are real and positive, and hence the origin is an unstable node.
- For  $-4 < \alpha < 0$ , eigenvalues are complex with a negative real part, and hence origin is asymptotically stable spiral point.
- For  $0 < \alpha < 4$ , eigenvalues are complex with a positive real part, and the origin is an unstable spiral point.
- For  $\alpha = 0$ , eigenvalues are purely imaginary, origin is a center. Trajectories closed curves about origin & periodic.
- For  $\alpha = \pm 4$ , eigenvalues real & equal, origin is a node (Ch 7.8)

# Second Order Solution Behavior and Eigenvalues: Three Main Cases

- For second order systems, the three main cases are:
  - Eigenvalues are real and have opposite signs;  $\mathbf{x} = \mathbf{0}$  is a saddle point.
  - Eigenvalues are real, distinct and have same sign;  $\mathbf{x} = \mathbf{0}$  is a node.
  - Eigenvalues are complex with nonzero real part;  $\mathbf{x} = \mathbf{0}$  a spiral point.
- Other possibilities exist and occur as transitions between two of the cases listed above:
  - A zero eigenvalue occurs during transition between saddle point and node. Real and equal eigenvalues occur during transition between nodes and spiral points. Purely imaginary eigenvalues occur during a transition between asymptotically stable and unstable spiral points.

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$







#### **Example 3: Multiple Spring-Mass System (1 of 6)**

• The equations for the system of two masses and three springs discussed in Section 7.1, assuming no external forces, can be expressed as:

$$m_1 \frac{d^2 x_1}{dt^2} = -(k_1 + k_2)x_1 + k_2 x_2$$
 and  $m_2 \frac{d^2 x_2}{dt^2} = k_2 x_1 - (k_2 + k_3)x_2$   
or  $m_1 y_3' = -(k_1 + k_2)y_1 + k_2 y_2$  and  $m_2 y_4' = k_2 y_1 - (k_2 + k_3)y_2$   
where  $y_1 = x_1$ ,  $y_2 = x_2$ ,  $y_3 = x_1'$ , and  $y_4 = x_2'$ 

• Given  $m_1 = 2$ ,  $m_2 = 9/4$ ,  $k_1 = 1$ ,  $k_2 = 3$ , and  $k_3 = 15/4$ , the equations become

$$y_1' = y_3$$
,  $y_2' = y_4$ ,  $y_3' = -2y_1 + 3/2$   $y_2$ , and  $y_4' = 4/3$   $y_1 - 3y_2$ 

$$y_1' = y_3$$
,  $y_2' = y_4$ ,  $y_3' = -2y_1 + 3/2$   $y_2$ , and  $y_4' = 4/3$   $y_1 - 3y_2$ 

#### Example 3: Multiple Spring-Mass System (2 of 6)

• Writing the system of equations in matrix form:

$$y' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 3/2 & 0 & 0 \\ 4/3 & -3 & 0 & 0 \end{pmatrix} y = Ay$$

• Assuming a solution of the form  $y = \xi e^{rt}$ , where r must be an eigenvalue of the matrix  $\mathbf{A}$  and  $\xi$  is the corresponding eigenvector, the characteristic polynomial of

**A** is 
$$r^4 + 5r^2 + 4 = (r^2 + 1)(r^2 + 4)$$
  
 $r_1 = i, r_2 = -i, r_3 = 2i, \text{ and } r_4 = -2i$ 

yielding the eigenvalues:

$$\mathbf{y'} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 3/2 & 0 & 0 \\ 4/3 & -3 & 0 & 0 \end{pmatrix} \mathbf{y} = \mathbf{A}\mathbf{y}$$

#### **Example 3: Multiple Spring-Mass System (3 of 6)**

• For the eigenvalues  $r_1 = i$ ,  $r_2 = -i$ ,  $r_3 = 2i$ , and  $r_4 = -2i$  the corresponding eigenvectors are

$$\xi^{(1)} = \begin{pmatrix} 3 \\ 2 \\ 3i \\ 2i \end{pmatrix}, \ \xi^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -3i \\ -2i \end{pmatrix}, \ \xi^{(3)} = \begin{pmatrix} 3 \\ -4 \\ 6i \\ -8i \end{pmatrix}, \ \text{and} \ \xi^{(4)} = \begin{pmatrix} 3 \\ -4 \\ -6i \\ 8i \end{pmatrix}$$

• The products  $\xi^{(1)}e^{it}$  and  $\xi^{(3)}e^{2it}$  yield the complex-valued solutions:

$$\xi^{(1)}e^{it} = \begin{pmatrix} 3\\2\\3i\\2i \end{pmatrix}(\cos t + i\sin t) = \begin{pmatrix} 3\cos t\\2\cos t\\-3\sin t\\-2\sin t \end{pmatrix} + i \begin{pmatrix} 3\sin t\\2\sin t\\3\cos t\\2\cos t \end{pmatrix} = \mathbf{u}^{(1)}(t) + i\mathbf{v}^{(1)}(t)$$

$$\xi^{(3)}e^{2it} = \begin{pmatrix} 3 \\ -4 \\ 6i \\ -8i \end{pmatrix} (\cos 2t + i\sin 2t) = \begin{pmatrix} 3\cos 2t \\ -4\cos 2t \\ -6\sin 2t \\ 8\sin 2t \end{pmatrix} + i \begin{pmatrix} 3\sin 2t \\ -4\sin 2t \\ 6\cos 2t \\ -8\cos 2t \end{pmatrix} = \mathbf{u}^{(2)}(t) + i\mathbf{v}^{(2)}(t)$$

$$y_1' = y_3$$
,  $y_2' = y_4$ ,  $y_3' = -2y_1 + 3/2$   $y_2$ , and  $y_4' = 4/3$   $y_1 - 3y_2$ 

### **Example 3: Multiple Spring-Mass System (4 of 6)**

• After validating that  $\mathbf{u}^{(1)}(t)$ ,  $\mathbf{v}^{(1)}(t)$ ,  $\mathbf{u}^{(2)}(t)$ ,  $\mathbf{v}^{(2)}(t)$  are linearly independent, the general solution of the system of equations can be written as

$$y = c_{1} \begin{pmatrix} 3\cos t \\ 2\cos t \\ -3\sin t \\ -2\sin t \end{pmatrix} + c_{2} \begin{pmatrix} 3\sin t \\ 2\sin t \\ 3\cos t \\ 2\cos t \end{pmatrix} + c_{3} \begin{pmatrix} 3\cos 2t \\ -4\cos 2t \\ -6\sin 2t \\ 8\sin 2t \end{pmatrix} + c_{4} \begin{pmatrix} 3\sin 2t \\ -4\sin 2t \\ 6\cos 2t \\ -8\cos 2t \end{pmatrix}$$

- where  $c_1, c_2, c_3, c_4$  are arbitrary constants.
- Each solution will be periodic with period  $2\pi$ , so each trajectory is a closed curve. The first two terms of the solution describe motions with frequency 1 and period  $2\pi$  while the second two terms describe motions with frequency 2 and period  $\pi$ . The motions of the two masses will be different relative to one another for solutions involving only the first two terms or the second two terms.

#### **Example 3: Multiple Spring-Mass System (5 of 6)**

- To obtain the fundamental mode of vibration with frequency 1  $c_3 = c_4 = 0 \rightarrow \text{occurs when } 3y_2(0) = 2y_1(0) \text{ and } 3y_4(0) = 2y_3(0)$
- To obtain the fundamental mode of vibration with frequency 2  $c_1 = c_2 = 0 \rightarrow \text{occurs when } 3y_2(0) = -4y_1(0) \text{ and } 3y_4(0) = -4y_3(0)$
- Plots of  $y_1$  and  $y_2$  and parametric plots (y, y') are shown for a selected solution with frequency 1



#### **Example 3: Multiple Spring-Mass System (6 of 6)**

• Plots of  $y_1$  and  $y_2$  and parametric plots (y, y') are shown for a selected solution with frequency 2



#### **Ch 7.7: Fundamental Matrices**

- Suppose that  $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$  form a fundamental set of solutions for  $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$  on  $\alpha < t < \beta$ .
- The matrix

$$\Psi(t) = \begin{pmatrix} x_1^{(1)}(t) & \cdots & x_1^{(n)}(t) \\ \vdots & \ddots & \vdots \\ x_n^{(1)}(t) & \cdots & x_n^{(n)}(t) \end{pmatrix},$$

whose columns are  $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$ , is a fundamental matrix for the system  $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ . This matrix is nonsingular since its columns are linearly independent, and hence det  $\Psi \neq 0$ .

• Note also that since  $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$  are solutions of  $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ ,  $\mathbf{\Psi}$  satisfies the matrix differential equation  $\mathbf{\Psi}' = \mathbf{P}(t)\mathbf{\Psi}$ .

## **Example 1:**

• Consider the homogeneous equation  $\mathbf{x'} = \mathbf{A}\mathbf{x}$  below.

$$\mathbf{x'} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x}$$

• In Example 2 of Chapter 7.5, we found the following fundamental solutions for this system:

$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t}, \quad \mathbf{x}^{(2)}(t) = \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$$

• Thus a fundamental matrix for this system is

$$\Psi(t) = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix}$$

#### **Fundamental Matrices and General Solution**

• The general solution of  $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ 

$$\mathbf{x} = c_1 \mathbf{x}^{(1)}(t) + \dots + c_n \mathbf{x}^{(n)}$$

can be expressed  $\mathbf{x} = \mathbf{\Psi}(t)\mathbf{c}$ , where  $\mathbf{c}$  is a constant vector with components  $c_1, \dots, c_n$ :

$$\mathbf{x} = \mathbf{\Psi}(t)\mathbf{c} = \begin{pmatrix} x_1^{(1)}(t) & \cdots & x_1^{(n)}(t) \\ \vdots & \ddots & \vdots \\ x_n^{(1)}(t) & \cdots & x_n^{(n)}(t) \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

#### Fundamental Matrix & Initial Value Problem

• Consider an initial value problem

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \ \mathbf{x}(t_0) = \mathbf{x}^0$$

where  $\alpha < t_0 < \beta$  and  $\mathbf{x}^0$  is a given initial vector.

- Now the solution has the form  $\mathbf{x} = \Psi(t)\mathbf{c}$ , hence we choose  $\mathbf{c}$  so as to satisfy  $\mathbf{x}(t_0) = \mathbf{x}^0$ .
- Recalling  $\Psi(t_0)$  is nonsingular, it follows that

$$\Psi(t_0)\mathbf{c} = \mathbf{x}^0 \implies \mathbf{c} = \Psi^{-1}(t_0)\mathbf{x}^0$$

• Thus our solution  $\mathbf{x} = \mathbf{\Psi}(t)\mathbf{c}$  can be expressed as

$$\mathbf{x} = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(t_0)\mathbf{x}^0$$

#### **Recall: Theorem 7.4.4**

• Let

$$\mathbf{e}^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ \mathbf{e}^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \ \mathbf{e}^{(n)} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

• Let  $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$  be solutions of  $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$  on  $I: \alpha < t < \beta$  that satisfy the initial conditions

$$\mathbf{x}^{(1)}(t_0) = \mathbf{e}^{(1)}, \dots, \mathbf{x}^{(n)}(t_0) = \mathbf{e}^{(n)}, \ \alpha < t_0 < \beta$$

Then  $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$  are fundamental solutions of  $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ .

#### Fundamental Matrix & Theorem 7.4.4

• Suppose  $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$  form the fundamental solutions given by Thm 7.4.4. Denote the corresponding fundamental matrix by  $\Phi(t)$ . Then columns of  $\Phi(t)$  are  $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$ , and hence

$$\Phi(t_0) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \mathbf{I}$$

• Thus  $\Phi^{-1}(t_0) = \mathbf{I}$ , and the hence general solution to the corresponding initial value problem is

$$\mathbf{x} = \mathbf{\Phi}(t)\mathbf{\Phi}^{-1}(t_0)\mathbf{x}^0 = \mathbf{\Phi}(t)\mathbf{x}^0$$

• It follows that for any fundamental matrix  $\Phi(t)$ ,

$$\mathbf{x} = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(t_0)\mathbf{x}^0 = \mathbf{\Phi}(t)\mathbf{x}^0 \implies \mathbf{\Phi}(t) = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(t_0)$$

# The Fundamental Matrix **Φ** and Varying Initial Conditions

• Thus when using the fundamental matrix  $\Phi(t)$ , the general solution to an IVP is

$$\mathbf{x} = \mathbf{\Phi}(t)\mathbf{\Phi}^{-1}(t_0)\mathbf{x}^0 = \mathbf{\Phi}(t)\mathbf{x}^0$$

- This representation is useful if same system is to be solved for many different initial conditions, such as a physical system that can be started from many different initial states.
- Also, once  $\Phi(t)$  has been determined, the solution to each set of initial conditions can be found by matrix multiplication, as indicated by the equation above.
- Thus  $\Phi(t)$  represents a linear transformation of the initial conditions  $\mathbf{x}^0$  into the solution  $\mathbf{x}(t)$  at time t.

## Example 2: Find $\bigoplus(t)$ for 2 x 2 System (1 of 5)

• Find  $\Phi(t)$  such that  $\Phi(0) = \mathbf{I}$  for the system below.

$$\mathbf{x'} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x}$$

• Solution: First, we must obtain  $\mathbf{x}^{(1)}(t)$  and  $\mathbf{x}^{(2)}(t)$  such that

$$\mathbf{x}^{(1)}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \mathbf{x}^{(2)}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• We know from previous results that the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$$

• Every solution can be expressed in terms of the general solution, and we use this fact to find  $\mathbf{x}^{(1)}(t)$  and  $\mathbf{x}^{(2)}(t)$ .

#### **Example 2: Use General Solution (2 of 5)**

• Thus, to find  $\mathbf{x}^{(1)}(t)$ , express it terms of the general solution

$$\mathbf{x}^{(1)}(t) = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$$

and then find the coefficients  $c_1$  and  $c_2$ .

To do so, use the initial conditions to obtain

$$\mathbf{x}^{(1)}(0) = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

or equivalently,

$$\begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

## Example 2: Solve for $x^{(1)}(t)$ (3 of 5)

• To find  $\mathbf{x}^{(1)}(t)$ , we therefore solve

$$\begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

by row reducing the augmented matrix:

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1/2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$$

$$\rightarrow \begin{array}{ccc} c_1 & = 1/2 \\ c_2 & = 1/2 \end{array}$$

Thus

$$\mathbf{x}^{(1)}(t) = \frac{1}{2} \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + \frac{1}{2} \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t} = \begin{pmatrix} \frac{1}{2} e^{3t} + \frac{1}{2} e^{-t} \\ e^{3t} - e^{-t} \end{pmatrix}$$

## Example 2: Solve for $x^{(2)}(t)$ (4 of 5)

• To find  $\mathbf{x}^{(2)}(t)$ , we similarly solve

$$\begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

by row reducing the augmented matrix:

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & -4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1/4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1/4 \\ 0 & 1 & -1/4 \end{pmatrix}$$

$$\rightarrow \begin{array}{cccc} c_1 & = & 1/4 \\ c_2 & = -1/4 \end{array}$$

Thus

$$\mathbf{x}^{(2)}(t) = \frac{1}{4} \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} - \frac{1}{4} \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t} = \begin{pmatrix} \frac{1}{4} e^{3t} - \frac{1}{4} e^{-t} \\ \frac{1}{2} e^{3t} + \frac{1}{2} e^{-t} \end{pmatrix}$$

## Example 2: Obtain $\Phi(t)$ (5 of 5)

• The columns of  $\Phi(t)$  are given by  $\mathbf{x}^{(1)}(t)$  and  $\mathbf{x}^{(2)}(t)$ , and thus from the previous slide we have

$$\mathbf{\Phi}(t) = \begin{pmatrix} \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} & \frac{1}{4}e^{3t} - \frac{1}{4}e^{-t} \\ e^{3t} - e^{-t} & \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} \end{pmatrix}$$

• Note  $\Phi(t)$  is more complicated than  $\Psi(t)$  found in Ex 1. However, it is now much easier to determine the solution to any set of initial conditions.

$$\Psi(t) = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix}$$

### **Matrix Exponential Functions**

- Consider the following two cases:
  - The solution to x' = ax,  $x(0) = x_0$ , is  $x = x_0 e^{at}$ , where  $e^0 = 1$ .
  - The solution to  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ ,  $\mathbf{x}(0) = \mathbf{x}^0$ , is  $\mathbf{x} = \mathbf{\Phi}(t)\mathbf{x}^0$ , where  $\mathbf{\Phi}(0) = \mathbf{I}$ .
- Comparing the form and solution for both of these cases, we might expect  $\Phi(t)$  to have an exponential character.
- Indeed, it can be shown that  $\Phi(t) = e^{At}$ , where

$$e^{\mathbf{A}t} = \sum_{n=0}^{\infty} \frac{\mathbf{A}^n t^n}{n!} = \mathbf{I} + \sum_{n=1}^{\infty} \frac{\mathbf{A}^n t^n}{n!}$$

is a well defined matrix function that has all the usual properties of an exponential function. See text for details.

• Thus the solution to  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ ,  $\mathbf{x}(0) = \mathbf{x}^0$ , is  $\mathbf{x} = e^{\mathbf{A}t}\mathbf{x}^0$ .

### **Coupled Systems of Equations**

Recall that our constant coefficient homogeneous system

$$x'_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$\vdots$$

$$x'_{n} = a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n},$$

written as x' = Ax with

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix},$$

is a system of *coupled* equations that must be solved *simultaneously* to find all the unknown variables.

# **Uncoupled Systems & Diagonal Matrices**

- In contrast, if each equation had only one variable, solved for independently of other equations, then task would be easier.
- In this case our system would have the form

$$x'_{1} = d_{11}x_{1} + 0x_{2} + \dots + 0x_{n}$$

$$x'_{2} = 0x_{1} + d_{11}x_{2} + \dots + 0x_{n}$$

$$\vdots$$

$$x'_{n} = 0x_{1} + 0x_{2} + \dots + d_{nn}x_{n},$$

or  $\mathbf{x'} = \mathbf{D}\mathbf{x}$ , where **D** is a diagonal matrix:

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}$$

# **Uncoupling: Transform Matrix T**

- In order to explore transforming our given system  $\mathbf{x'} = \mathbf{A}\mathbf{x}$  of coupled equations into an uncoupled system  $\mathbf{x'} = \mathbf{D}\mathbf{x}$ , where  $\mathbf{D}$  is a diagonal matrix, we will use the eigenvectors of  $\mathbf{A}$ .
- Suppose A is  $n \times n$  with n linearly independent eigenvectors  $\xi^{(1)},...,\xi^{(n)}$  and corresponding eigenvalues  $\lambda_1,...,\lambda_n$ .
- Define *n* x *n* matrices **T** and **D** using the eigenvalues & eigenvectors of **A**:

$$\mathbf{T} = \begin{pmatrix} \boldsymbol{\xi}_1^{(1)} & \cdots & \boldsymbol{\xi}_1^{(n)} \\ \vdots & \ddots & \vdots \\ \boldsymbol{\xi}_n^{(1)} & \cdots & \boldsymbol{\xi}_n^{(n)} \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

• Note that T is nonsingular, and hence  $T^{-1}$  exists.

# Uncoupling: $T^{-1}AT = D$

• Recall here the definitions of **A**, **T** and **D**:

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad \mathbf{T} = \begin{pmatrix} \xi_1^{(1)} & \cdots & \xi_1^{(n)} \\ \vdots & \ddots & \vdots \\ \xi_n^{(1)} & \cdots & \xi_n^{(n)} \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

• Then the columns of **AT** are  $\mathbf{A} \xi^{(1)}, \dots, \mathbf{A} \xi^{(n)}$ , and hence

$$\mathbf{AT} = \begin{pmatrix} \lambda_1 \xi_1^{(1)} & \cdots & \lambda_n \xi_1^{(n)} \\ \vdots & \ddots & \vdots \\ \lambda_1 \xi_n^{(1)} & \cdots & \lambda_n \xi_n^{(n)} \end{pmatrix} = \mathbf{TD}$$

• It follows that  $T^{-1}AT = D$ .

## **Similarity Transformations**

• Thus, if the eigenvalues and eigenvectors of **A** are known, then **A** can be transformed into a diagonal matrix **D**, with

$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \mathbf{D}$$

• This process is known as a **similarity transformation**, and **A** is said to be **similar** to **D**. Alternatively, we could say that **A** is **diagonalizable**.

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad \mathbf{T} = \begin{pmatrix} \xi_1^{(1)} & \cdots & \xi_1^{(n)} \\ \vdots & \ddots & \vdots \\ \xi_n^{(1)} & \cdots & \xi_n^{(n)} \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

# Similarity Transformations: Hermitian Case

• Recall: Our similarity transformation of A has the form

$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \mathbf{D}$$

where **D** is diagonal and columns of **T** are eigenvectors of **A**.

- If **A** is Hermitian, then **A** has *n* linearly independent orthogonal eigenvectors  $\xi^{(1)},...,\xi^{(n)}$ , normalized so that  $(\xi^{(i)},\xi^{(i)})=1$  for i=1,...,n, and  $(\xi^{(i)},\xi^{(k)})=0$  for  $i\neq k$ .
- With this selection of eigenvectors, it can be shown that  $\mathbf{T}^{-1} = \mathbf{T}^*$ . In this case we can write our similarity transform as

$$T^*AT = D$$

## Nondiagonalizable A

- Finally, if **A** is  $n \times n$  with fewer than n linearly independent eigenvectors, then there is no matrix **T** such that  $\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \mathbf{D}$ .
- In this case, A is not similar to a diagonal matrix and A is not diagonlizable.

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad \mathbf{T} = \begin{pmatrix} \xi_1^{(1)} & \cdots & \xi_1^{(n)} \\ \vdots & \ddots & \vdots \\ \xi_n^{(1)} & \cdots & \xi_n^{(n)} \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

### Example 3:

#### Find Transformation Matrix T (1 of 2)

• For the matrix **A** below, find the similarity transformation matrix **T** and show that **A** can be diagonalized.

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$

• We already know that the eigenvalues are  $\lambda_1 = 3$ ,  $\lambda_2 = -1$  with corresponding eigenvectors

$$\xi^{(1)}(t) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ \xi^{(2)}(t) = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

Thus

$$\mathbf{T} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$$

### **Example 3: Similarity Transformation (2 of 2)**

• To find  $T^{-1}$ , augment the identity to T and row reduce:

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & -2 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -4 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1/2 & -1/4 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 0 & 1/2 & 1/4 \\ 0 & 1 & 1/2 & -1/4 \end{pmatrix} \rightarrow \mathbf{T}^{-1} = \begin{pmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{pmatrix}$$

• Then

$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \begin{pmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{pmatrix} \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \end{bmatrix}$$
$$= \begin{pmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 6 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} = \mathbf{D}$$

• Thus A is similar to D, and hence A is diagonalizable.

#### Fundamental Matrices for Similar Systems (1 of 3)

- Recall our original system of differential equations  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ .
- If A is  $n \times n$  with n linearly independent eigenvectors, then A is diagonalizable. The eigenvectors form the columns of the nonsingular transform matrix T, and the eigenvalues are the corresponding nonzero entries in the diagonal matrix D.
- Suppose x satisfies  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ , let y be the  $n \times 1$  vector such that  $\mathbf{x} = \mathbf{T}\mathbf{y}$ . That is, let y be defined by  $\mathbf{y} = \mathbf{T}^{-1}\mathbf{x}$ .
- Since  $\mathbf{x'} = \mathbf{A}\mathbf{x}$  and  $\mathbf{T}$  is a constant matrix, we have  $\mathbf{T}\mathbf{y'} = \mathbf{A}\mathbf{T}\mathbf{y}$ , and hence  $\mathbf{y'} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\mathbf{y} = \mathbf{D}\mathbf{y}$ .
- Therefore y satisfies y' = Dy, the system similar to x' = Ax.
- Both of these systems have fundamental matrices, which we examine next.

### Fundamental Matrix for Diagonal System (2 of 3)

- A fundamental matrix for y' = Dy is given by  $Q(t) = e^{Dt}$ .
- Recalling the definition of  $e^{\mathbf{D}t}$ , we have

$$\mathbf{Q}(t) = \sum_{n=0}^{\infty} \frac{\mathbf{D}^{n} t^{n}}{n!} = \sum_{n=0}^{\infty} \begin{pmatrix} \lambda_{1}^{n} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n}^{n} \end{pmatrix} \frac{t^{n}}{n!} = \begin{pmatrix} \sum_{n=0}^{\infty} \frac{(\lambda_{1} t)^{n}}{n!} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sum_{n=0}^{\infty} \frac{(\lambda_{n} t)^{n}}{n!} \end{pmatrix}$$

$$= \begin{pmatrix} e^{\lambda_1 t} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{\lambda_n t} \end{pmatrix}$$

## Fundamental Matrix for Original System (3 of 3)

• To obtain a fundamental matrix  $\Psi(t)$  for  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ , recall that the columns of  $\Psi(t)$  consist of fundamental solutions  $\mathbf{x}$  satisfying  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ . We also know  $\mathbf{x} = \mathbf{T}\mathbf{y}$ , and hence it follows

that
$$\Psi = \mathbf{TQ} = \begin{pmatrix} \boldsymbol{\xi}_{1}^{(1)} & \cdots & \boldsymbol{\xi}_{1}^{(n)} \\ \vdots & \ddots & \vdots \\ \boldsymbol{\xi}_{n}^{(1)} & \cdots & \boldsymbol{\xi}_{n}^{(n)} \end{pmatrix} \begin{pmatrix} e^{\lambda_{1}t} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{\lambda_{n}t} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\xi}_{1}^{(1)}e^{\lambda_{1}t} & \cdots & \boldsymbol{\xi}_{1}^{(n)}e^{\lambda_{n}t} \\ \vdots & \ddots & \vdots \\ \boldsymbol{\xi}_{n}^{(1)}e^{\lambda_{1}t} & \cdots & \boldsymbol{\xi}_{n}^{(n)}e^{\lambda_{n}t} \end{pmatrix}$$

• The columns of  $\Psi(t)$  given the expected fundamental solutions of  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ .

## Example 4:

# **Fundamental Matrices for Similar Systems**

- We now use the analysis and results of the last few slides.
- Applying the transformation  $\mathbf{x} = \mathbf{T}\mathbf{y}$  to  $\mathbf{x}' = \mathbf{A}\mathbf{x}$  below, this system becomes  $\mathbf{y}' = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\mathbf{y} = \mathbf{D}\mathbf{y}$ :

$$\mathbf{x'} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x} \implies \mathbf{y'} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{y}$$

• A fundamental matrix for y' = Dy is given by  $Q(t) = e^{Dt}$ :

$$\mathbf{Q}(t) = \begin{pmatrix} e^{3t} & 0 \\ 0 & e^{-t} \end{pmatrix}$$

• Thus a fundamental matrix  $\Psi(t)$  for  $\mathbf{x}' = \mathbf{A}\mathbf{x}$  is

$$\Psi(t) = \mathbf{TQ} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} e^{3t} & 0 \\ 0 & e^{-t} \end{pmatrix} = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix}$$