5.8 设二维随机变量 (X,Y) 的概率密度

$$f(x,y) = \begin{cases} cxy & 0 \leqslant x \leqslant y \leqslant 1 \\ 0 & \sharp \Xi, \end{cases}$$

求 $P(X \leq 1/2)$.

- **5.9** 若多维随机向量 $(X_1, X_2, \dots, X_r) \sim M(n, p_1, p_2, \dots, p_r)$, 则每个随机变量 X_i $(i \in [r])$ 的 边缘分布为二项分布 $B(n, p_i)$. (利用联合分布函数的定义证明)
- **5.10** 设随机变量 X, Y, Z 服从 (0,1) 上的均匀分布且相互独立, 求概率 $P(X \ge YZ)$.
- 5.11 设随机向量 (X,Y) 的密度函数为

$$f(x,y) = \begin{cases} 1 & x \in (0,1), |y| < x \\ 0 & \text{ $\not\sqsubseteq \dot{\mathbb{C}} }, \end{cases}$$$

求条件概率密度 $f_{Y|X}(y|x)$ 和 $f_{X|Y}(x|y)$.

5.12 设随机向量 (X,Y) 的密度函数为

$$f(x,y) = \begin{cases} e^{-y} & y > x > 0 \\ 0 & \sharp \dot{\Xi} \end{cases}$$

求条件概率密度 $f_{X|Y}(x|y)$.

5.13 设随机向量 (X,Y) 的密度函数为

$$f(x,y) = \begin{cases} x+y & x,y \in (0,1) \\ 0 & \text{\pm E} \end{cases},$$

求 $Z_1 = X + Y$ 和 $Z_2 = XY$ 的密度函数.

5.14 设随机向量 (X,Y) 的密度函数为

$$f(x,y) = \begin{cases} A(x+y)e^{-x-y} & x > 0, y > 0 \\ 0 & \sharp \dot{\Xi} , \end{cases}$$

求随机变量 X 与 Y 的独立性, 以及 Z = X + Y 的密度函数.

习题 135

5.15 设随机向量 (X,Y) 的密度函数为

$$f(x,y) = \begin{cases} Ae^{-x-y} & 0 < x < 1, y > 0 \\ 0 & \text{ \(\) \($$

求 1) 常数 A; 2) X 与 Y 的边缘密度函数, 3) $Z = \max(X, Y)$ 的密度函数.

- **5.16** 设随机变量 $X \sim U(0,1)$ 和 $Y \sim e(1)$ 相互独立, 求 Z = X + Y 的概率密度.
- **5.17** 若随机变量 $X \sim e(\lambda_1)$ 和 $Y \sim e(\lambda_2)$ 相互独立, 求 Z = X + Y 的分布函数和概率密度.
- **5.18** 若随机变量 $X \sim e(1)$ 和 $Y \sim e(1)$ 相互独立, 求 Z = Y/X 的概率密度.
- **5.19** 若随机变量 $X \sim G(p_1)$ 和 $Y \sim G(p_2)$ 相互独立, 求 Z = X + Y 的分布列.
- **5.20** 若相互独立的随机变量 X 和 Y 分别服从参数为 λ_1 和 λ_2 的泊松分布, 求在 X+Y=n 的 条件下 X 的条件分布.