

Niels Henrik Abels matematikkonkurranse 2006–2007. *Løsninger*

Første runde 2. november 2006

Oppgave 1. Alle tallene er delelige med 5. Det eneste av tallene som ikke er delelig med 3, er 230
Oppgave 2. Lengden av periferien er π^2 og lengden av diameteren 2π . Ti sammen $\pi^2 + 2\pi$
Oppgave 3. De 8 bøkene på 3 kg må sendes i hver sin eske. Ingen av de 3 bøkene på 2 kg kan legges i noen av de nevnte 8 eskene, og 2 esker må til for å sende disse, slik at 10 esker trengs. Det er plass til de 2 bøkene på 1 kg for eksempel i eska med 1 bok på 2 kg
Oppgave 4. Likningene gir $a = \frac{2}{5}b$ og $c = \frac{2}{5}d$, der b og d er positive tall, slik at $b + d \neq 0$. Så $\frac{a+c}{b+d} = \frac{\frac{2}{5}b + \frac{2}{5}d}{b+d} = \frac{\frac{2}{5}(b+d)}{b+d} = \frac{2}{5}$
Oppgave 5. De to trekantene ADE og BDE er kongruente da begge er rettvinklete og katetene har parvis samme lengde. Vinklene BAE og ABE er like store og AEB rett Summen av dem er 180° , og vinkelen BAE er 45°
Oppgave 6. Første gutt kan plukkes ut på 8 måter. For hver av disse mulighetene kan andre gutt plukkes ut på 7 måter. Da vi ikke skiller mellom et utvalg av to gutter og et utvalg av de to samme der den første og den andre utplukkete er byttet om, er antall utvalg av 2 gutter $8 \cdot 7/2 = 28$. For hver av disse 28 mulighetene, har vi på samme måte $5 \cdot 4/2 = 10$ mulige utvalg av to jenter – til sammen $28 \cdot 10 = 280$ mulige lag
Oppgave 7. $1/x = x+2 \text{ gir } 1/x^2 = 1+2/x = 1+2 \cdot 1/x = 1+2(x+2) = 2x+5$

Oppgave 8. Hvis sirkelen har diameter d, så har det største kvadratet sidelengde d og det minste sidelengde x bestemt ved at $2x^2=d^2$ (Pytagoras' setning). Forholdet mellom arealene er $d^2/x^2=2d^2/2x^2=2d^2/d^2=2$.

Oppgave 11. La kvadratsidene ha lengder x, 2x, y og 2y, som vist på figuren. Ved å sammenlikne nedre og øvre vannrette side i rektanglet, får vi 7x = 3y, mens de loddrette sidene har lengde 2x + 2y. Forholdet mellom vannrette og loddrette sider er $7x/(2x + 2y) = 7x/(2x + 2 \cdot 7x/3) = 21/20$

Oppgave 12. Vi skal finne arealet av det mørkeste området på figuren ved å trekke arealet av det hvite området fra arealet av sirkelsektoren som består av det hvite og det mørkeste området. Den markerte vinkelen er 60° , fordi den øvre hvite rettvinklete trekanten har en katet som er halvparten av hypotenusen. Dette er velkjent, men kan ses ved å sette sammen trekanten med dens speiling langs den andre kateten, slik at en likesidet trekant framkommer (stiplet). Arealet av sirkel- $120\pi/360 = \pi/3$ mens arealet av den hvite trekanten er

Oppgave 13. Det er 20 kvadrater av med sidelengde 1, 12 kvadrater med sidelengde 2, 6 kvadrater med sidelengde 3 og 2 kvadrater med sidelengde 4.

Oppgave 14. Parallellforskyv BC slik at C kommer på D. Da dannes en trekant med vinklene 30° , 60° og 90° og med hypotenus av lengde 13-5=8. Den korteste kateten, AD, har halv-

Oppgave 15. Hvis vi har en rød, en blå og en grønn terning, er det 6 muligheter for den røde, 6 muligheter for hver av disse for den blå, til sammen 36 muligheter, og for hver av disse 6 muligheter for den grønne, til sammen $36 \cdot 6 = 216$ like sannsynlige muligheter. Terningene kan gi 12 på 6 måter med verdiene 1+5+6, på 6 måter med 2+4+6, på 3 måter med 2+5+5, på 3 måter med 3+3+6, på 6 måter med 3+4+5 og på 1 måter med 4+4+4

Oppgave 16. Siste siffer i produktet av to tall er lik siste siffer i produktet av siste siffer i de to tallene. Siste siffer i 2007ⁿ vil følge mønsteret 1, 7, 9, 3, $1, 7, 9, 3, \ldots$ når vi starter med n = 0 og lar n vokse med én om gangen (et tall i denne følgen er siste siffer i produktet av 7 og foregående tall). Når n er delelig med 4, er 1 siste siffer i 2007^n . Her er eksponenten $n = 2006^{2005}$, som er delelig med 4, da 2006 er delelig med 2 og dermed 2006^k delelig med

Oppgave 17. La b være Berits alder da Anna var 4b år. Annas alder er nå 5b år, og Berit er også blitt b år eldre, slik at hun er 2b år. Om 6 år er Anna 5b + 6 år og Berit 2b + 6 år, og 5b + 6 = 2(2b + 6) gir b = 6, og 5b + 2b = 42.D

Oppgave 18. Lengden av AC er $\sqrt{2}$, da BC har lengde 4 og trekanten ABC har areal $2\sqrt{2}$. La AD ha lengde x og CD lengde h. Trekantene ABC og ACD er formlike, slik at $x/h = \sqrt{2}/4$, og dermed er $h^2 = 8x^2$. Etter Pytagoras' setning er $2 = x^2 + h^2 = 9x^2$, slik at $x = \sqrt{2}/3$. c

Oppgave 19. La de fire tallene være a, b, c og d. Da er $178 = 2^2 + 3^2 + 4^$ $6^{2} + 7^{2} + 8^{2} = (a+b)^{2} + (a+c)^{2} + (a+d)^{2} + (b+c)^{2} + (b+d)^{2} + (c+d)^{2} =$ $3(a^2 + b^2 + c^2 + d^2) + 2(ab + ac + ad + bc + bd + cd) = 2(a^2 + b^2 + c^2 + d^2) + 2(ab + ac + ad + bc + bd + cd)$ $(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2) + 100$. Den siste likheten følger av at vi i summen 2+3+4+6+7+8=30 teller hvert av de fire tallene 3 ganger, slik at a+b+c+d=30/3=10. (Eventuelt kan vi innse at a+b+c+d er summen av de to minste og de to største tallene, altså 2 + 8 = 10.) Dermed er $a^2 + b^2 + c^2 + d^2 = (178 - 100)/2 = 39$.

Alternativ: La de fire tallene være a, b, c og d, der $a \leq b \leq c \leq d$. Da er a + b = 2 og a + c = 3, og b + c = 4 (da er a + d = 6) eller b + c = 6 (da er a+d=4). Summen av de to første likningene er 2a+b+c=5, og kombinert med hver av alternativene for b+c, gir dette 2a+4=5 eller 2a+6=5, slik at a=1/2 eller a=-1/2. Dette gir henholdsvis b=3/2 og c=5/2,

Abelkonkurransen 2006-2007

Første runde

Løsninger

Side 4 av 4

Fasit

			ı
1	В	11	Α
2	E	12	С
3	С	13	С
4	С	14	Е
5	В	15	D
6	С	16	Α
7	В	17	D
8	С	18	С
9	В	19	D
10	С	20	Е

Hvis denne siden kopieres over på en transparent, så fungerer tabellen til venstre som en rettemal.