A*: informed search

НАШ КУРС

Большие идеи в компьютерных науках и Al

Связь науки и практики в AI и CS

SHAKEY THE ROBOT

"The first general-purpose mobile robot able to reason about its own actions"

ПОИСК ОПТИМАЛЬНОГО ПУТИ

Задача

Перейти из состояния А в состояние В с наименьшими затратами

ДИСКРЕТНЫЙ СЛУЧАЙ

Задача на графе

Найти путь между двумя вершинами с минимальным суммарным весом¹

¹Ребра имеют неотрицательный вес

Uninformed search

ЧТО МЫ ЗНАЕМ В САМОМ НАЧАЛЕ?

 $\begin{array}{c} S \rightarrow^{1} A \\ S \rightarrow^{3} B \end{array}$

Мы знаем кратчайший путь из S в A

S →¹ A

Продолжаем исследовать граф в направлении A

ШАГ 2: ИССЛЕДУЕМ ВЕРШИНУ А

Продолжаем исследовать граф в направлении В

ШАГ 3: ИССЛЕДУЕМ ВЕРШИНУ В

Продолжаем исследовать граф в направлении E¹

¹Выбор между Е и С осуществляется произвольно

ФИНАЛЬНЫЙ ШАГ

Мы знаем кратчайший путь из S в F

АЛГОРИТМ: UNINFORMED SEARCH

FRONTIER NODES = S

EXPANDED NODES = { }

Пока цель F не попала в EXPANDED NODES:

 \blacksquare Найти вершину X с минимальным расстоянием от S в FRONTIER NODES

$$X = \underset{x \in FN}{\operatorname{argmin}} g(x)$$

- Исследовать (EXPAND) вершину X
- Добавить X в EXPANDED NODES и удалить ee из FRONTIER NODES

вершины, до которых мы знаем путь из S

вершины, до которых мы знаем **кратчайший** путь из S

g(x) – длина текущего пути из S в x

добавляем соседей X в FRONTIER NODES (если они еще не в EXPANDED NODES) и обновляем длины текущих путей

TEOPEMA

АЛГОРИТМ UNINFORMED SEARCH ГАРАНТИРОВАННО НАЙДЕТ КРАТЧАЙШИЙ ПУТЬ ИЗ S B F

РАБОТА АЛГОРИТМА НА НАШЕМ ГРАФЕ

```
FRONTIER NODES = S
EXPANDED NODES = { }
Пока цель F не попала в EXPANDED NODES:
■ Найти вершину X с минимальным
  расстоянием от S в FRONTIER NODES
             X = \operatorname{argmin} g(x)
                   x \in FN
■ Исследовать (EXPAND) вершину X
  Добавить X в EXPANDED NODES и удалить
  ее из FRONTIER NODES
```


– оптимальный путь

ЧТО МОЖНО УЛУЧШИТЬ?

МОТИВАЦИЯ: GOOGLE MAPS

МОТИВАЦИЯ: GOOGLE MAPS

МОТИВАЦИЯ: GOOGLE MAPS

Informed search

Если у нас есть способ **оценить длину оптимального пути** из каждой вершины до цели, мы можем ускорить работу алгоритма, раскрывая меньше вершин.

ОПРЕДЕЛЕНИЕ

ЭВРИСТРИКА

Функция h(X), которая для любой вершины X дает оценку длины оптимального пути из X в F

АЛГОРИТМ: A* SEARCH

UNINFORMED SEARCH

```
FRONTIER NODES = S

EXPANDED NODES = { }

Пока цель F не попала в EXPANDED NODES:
```

 \blacksquare Найти вершину X с минимальным расстоянием от S в FRONTIER NODES

$$X = \operatorname{argmin} g(x)$$

 $x \in FN$

- Исследовать (EXPAND) вершину X
- Добавить X в EXPANDED NODES и удалить ее из FRONTIER NODES

g(x) – длина текущего пути из S в x

A* SEARCH

```
FRONTIER NODES = S

EXPANDED NODES = { }

Пока цель F не попала в EXPANDED NODES:
```

■ Найти вершину X из FRONTIER NODES по критерию

```
X = \operatorname{argmin} (g(x) + h(x))
x \in FN
```

- Исследовать (EXPAND) вершину X
- Добавить X в EXPANDED NODES и удалить ее из FRONTIER NODES

h(x) – значение эвристики в вершине х

ОПТИМАЛЬНОСТЬ A* SEARCH

ГАРАНТИРУЕТ ЛИ А* НАХОЖДЕНИЕ ОПТИМАЛЬНОГО ПУТИ?

КОНТРПРИМЕРЫ

– значение эвристики

ПРИМЕР 1: ПЕССИМИСТИЧНАЯ ЭВРИСТИКА

ПРИМЕР 2: НЕРАВЕНСТВО ТРЕУГОЛЬНИКА

h(B) переоценивает длину оптимального пути

ОПРЕДЕЛЕНИЕ

КОНСИСТЕНТНАЯ ЭВРИСТРИКА

Эвристика h(X) называется консистентной если для любых двух вершин X и Y выполняется:

$$h(X) \le c(X, Y) + h(Y)$$

с(X, Y) – длина кратчайшего пути из X в Y в графе

КОНСИСТЕНТНАЯ ЭВРИСТИКА: ПРИМЕР 1

ПРИМЕР 2: КОНСИСТЕНТНАЯ ЭВРИСТИКА

– автомобильная дорога длины 1

Евклидово расстояние до цели

$$h(x) = \sqrt{(x_1 - f_1)^2 + (x_2 - f_2)^2}$$

Manhattan distance

$$h(x) = |x_1 - f_1| + |x_2 - f_2|$$

TEOPEMA

АЛГОРИТМ A* SEARCH C KOHCИСТЕНТНОЙ ЭВРИСТИКОЙ ГАРАНТИРОВАННО НАЙДЕТ КРАТЧАЙШИЙ ПУТЬ ИЗ S B F

НЕКОНСИСТЕНТНАЯ ЭВРИСТИКА

х – значение эвристики

Можем ли мы применить идеи A* к этому случаю?

АЛГОРИТМ: A* TREE SEARCH

A* SEARCH

```
FRONTIER NODES =
EXPANDED NODES = { }
Пока цель F не попала в EXPANDED NODES:
 ■ Найти вершину X из FRONTIER NODES
   по критерию
          X = \operatorname{argmin} g(x) + h(x)
               x \in FN
 Исследовать (EXPAND) вершину X
■ Добавить X в EXPANDED NODES и
   удалить ее из FRONTIER NODES
```

g(x) – длина текущего пути из S в x # h(x) – значение эвристики в вершине x

A* search

добавляем соседей X в FRONTIER NODES (если они еще не в EXPANDED NODES) и обновляем длины текущих путей

A* tree search

добавляем соседей X в FRONTIER NODES (если они еще не в EXPANDED NODES) и обновляем длины текущих путей

ОПТИМАЛЬНОСТЬ A* TREE SEARCH

ГАРАНТИРУЕТ ЛИ A* TREE SEARCH НАХОЖДЕНИЕ ОПТИМАЛЬНОГО ПУТИ?

КОНТРПРИМЕР

– значение эвристики

ПРИМЕР 1: ПЕССИМИСТИЧНАЯ ЭВРИСТИКА

ИНСАЙТ

h(B) переоценивает длину оптимального пути Нужно быть оптимистичным!

ОПРЕДЕЛЕНИЕ

ДОПУСТИМАЯ ЭВРИСТРИКА

Эвристика h(X) называется допустимой если для любой вершины X:

$$h(X) \leq c(X, F)$$

с(X, Y) – длина кратчайшего пути из X в Y в графе

ОТНОШЕНИЕ МЕЖДУ ДОПУСТИМОЙ И КОНСИСТЕНТНОЙ ЭВРИСТИКОЙ?

TEOPEMA

АЛГОРИТМ A* TREE SEARCH С ДОПУСТИМОЙ ЭВРИСТИКОЙ ГАРАНТИРОВАННО НАЙДЕТ КРАТЧАЙШИЙ ПУТЬ ИЗ S B F

ПОИСК ЭТО ТОЛЬКО ПРО МАРШРУТЫ?

Discrete Mathematics 27 (1979) 47-57.

© North-Holland Publishing Company

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \le (5n+5)/3$, and that $f(n) \ge 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2-1 \le g(n) \le 2n+3$.

ПРИМЕР: PANCAKES

ПРИМЕР: ПЯТНАШКИ

ОБЩИЙ ВИД ЗАДАЧИ ПОИСКА

Алгоритмы поиска можно применять для решения широкого класса задач

Состояния

Конфигурации задачи

Вершины графа

Действия

Возможные действия в каждом состоянии

Ребра графа

Стоимость

Цена каждого действия

Веса ребер

САММАРИ

