

Chemical Engineering 4H03

Projection of Latent Structures (Derivation)

Jake Nease McMaster University

Portions of this work are copyright of ConnectMV

Where are We?

- MLR is good for relating dependent outcomes (y) to independent inputs (X)
 - NOT appropriate if columns in X are dependent
 - Leads to singularity (ill conditioning) of $X^TX \rightarrow$ inverse issues
 - 'Spinning' of model plane (unstable coefficients)
 - NOT easy to visualize or interpret if K is large
- PCR is a nice tool that dimension-reduces first
 - SOLVES dependent column issue
 - EASIER to visualize with A < K
 - Does NOT help that y is assumed to contain all error
 - Must be done independently for EACH column in Y

A Better Idea

- Instead, let's fit the latent variable space to have A components, where each component represents data in X and data in Y simultaneously
 - We will have TWO sets of scores and loadings

Projection of Latent Structures

The Deluxe Linear Modeling Technique

Overview of PLS

- Projection of Latent Structures:
 - 1. Extracts components from X and Y sequentially
 - 2. Uses cross-validation to fit an appropriate number of components
 - 3. Scores for the PLS model are computed from *X* and *Y* simultaneously
 - 4. Makes engineering sense: system is driven by the same underlying latent variables (in X and Y)

Objective of PLS

- Objective of **PCA** is to explain X
- What do we want from PLS?
 - Best explanation of X
 - Best explanation of Y
 - Maximize the relationship between X and Y
- Covariance is going to come up again here

Some New Notation

PLS Geometrically

- Consider a data set with K = M = 3 (three variables)
 - The first component explains X and Y "well"
 - Why not "best?"

PLS Geometrically

- Compute the SCORES t_1 and u_1 for both model spaces
 - IN PCA, we would want to maximize the variance of t_1
 - If we were magically fitting one component to Y, we would want to maximize the variance of u_1
- Surprising absolutely no one, our objective in PLS is to maximize the **COVARIANCE** of t_1 and u_1

PLS Geometrically

- Now add the second component
 - $-w_2$ is orthogonal to w_1
 - $-c_2$ is orthogonal to c_1

PLS Analytically (Basic Version)

- PLS scores explain variance in X (recall w are loadings)
 - $t_a = X_a w_a$ Variance in X for in a^{th} component
 - $\max \phi = \boldsymbol{t}_a^T \boldsymbol{t}_a$ Subject to $\boldsymbol{w}_a^T \boldsymbol{w}_a = 1.0$
- PLS scores ALSO explain variance in Y
 - $u_a = Y_a c_a$ Variance in Y for in a^{th} component
 - max $v = \boldsymbol{u}_a^T \boldsymbol{u}_a$ Subject to $\boldsymbol{c}_a^T \boldsymbol{c}_a = 1.0$
- It does this by maximizing the relationship between explained variance in X and Y
 - $\max \psi = f(\mathcal{C}\{\boldsymbol{t}_a, \boldsymbol{u}_a\})$

PLS Maximizes Covariance of $\{X, Y\}$

Recall the calculation for covariance

$$\mathcal{C}\{\boldsymbol{t}_a,\boldsymbol{u}_a\} = \mathcal{E}\{(\boldsymbol{t}_a - \overline{\boldsymbol{t}}_a)(\boldsymbol{u}_a - \overline{\boldsymbol{u}}_a)\}$$

$$\mathcal{C}\{\boldsymbol{t}_a, \boldsymbol{u}_a\} \equiv \frac{1}{N} \; \boldsymbol{t}_a^T \boldsymbol{u}_a \;\; \cdots \qquad \text{why!!!???}$$

- Although this is our objective, covariance is hard to interpret and is dependent on units
- Instead, let's maximize correlation, which is a value between -1 and 1!

PLS Maximizes Covariance of $\{X, Y\}$

Correlation for x and y is

$$r\{x,y\} = \frac{\mathcal{E}\{(x-\bar{x})(y-\bar{y})\}}{\sqrt{\mathcal{V}(x)\mathcal{V}(y)}} = \frac{\mathcal{C}\{x,y\}}{\sqrt{\mathcal{V}(x)\mathcal{V}(y)}} = \frac{\mathcal{C}\{x,y\}}{\sqrt{\mathcal{V}(x)}\sqrt{\mathcal{V}(y)}}$$

$$C{x,y} := r{x,y} \cdot \sqrt{V(x)} \cdot \sqrt{V(y)}$$

For PLS scores:

$$\mathcal{C}\{\boldsymbol{t}_a, \boldsymbol{u}_a\} = r\{\boldsymbol{t}_a, \boldsymbol{u}_a\} \cdot \sqrt{\mathcal{V}(\boldsymbol{t}_a)} \cdot \sqrt{\mathcal{V}(\boldsymbol{u}_a)}$$

$$C\{t_a, u_a\} = r\{t_a, u_a\} \cdot \sqrt{t_a^T t_a} \cdot \sqrt{u_a^T u_a} \qquad \max_{max \phi = t_a^T t_a} max \phi = t_a^T t_a$$

PLS Maximizes Covariance of $\{X, Y\}$

$$C\{\boldsymbol{t}_{a}, \boldsymbol{u}_{a}\} = r\{\boldsymbol{t}_{a}, \boldsymbol{u}_{a}\} \cdot \sqrt{\boldsymbol{t}_{a}^{T} \boldsymbol{t}_{a}} \cdot \sqrt{\boldsymbol{u}_{a}^{T} \boldsymbol{u}_{a}}$$

$$\max \phi = \boldsymbol{t}_{a}^{T} \boldsymbol{t}_{a} \quad \max v = \boldsymbol{u}_{a}^{T} \boldsymbol{u}_{a}$$

Maximizing covariance simultaneously maximizes the RELATIONSHIP between t_a and u_a as well as their own variance (which was the point of PCA!)

I consider this important

PLS Summarized

- The OPTIMIZATION objective for PLS is to maximize the covariance between t_a and u_a for each component
 - $\max \psi = \mathcal{C}\{\boldsymbol{t}_a, \boldsymbol{u}_a\} = r\{\boldsymbol{t}_a, \boldsymbol{u}_a\} \cdot \sqrt{\boldsymbol{t}_a^T \boldsymbol{t}_a} \cdot \sqrt{\boldsymbol{u}_a^T \boldsymbol{u}_a}$
 - Explains X via $\mathbf{t}_a^T \mathbf{t}_a$
 - Explains Y via $\boldsymbol{u}_a^T \boldsymbol{u}_a$
 - But we also want a high **CORRELATION** between $oldsymbol{t}_a$ and $oldsymbol{u}_a$
 - Unsurprisingly, a high $r\{t_a, u_a\}$
 - Decision variables are w_a and c_a
- Some notes
 - Requires formal constrained optimization (outside 4H scope)
 - Can also be obtained through NIPALS (described next)

Final Remarks

- PLS elegantly exploits the covariance between t and u scores to simultaneously maximize correlation AND the individual variances of each
 - Thus we explain all dimensions as well as possible
- This is fundamental to the understanding of PLS
 - DISCUSSION: differences between PCR and PLS?
- Next up: Computing PLS components using NIPALS
 - Good news: the algorithm is similar to PCA
 - Bad news: it takes more steps and the interpretation is (a teensy bit)messier

