Análise e Especificação do Sistema de Automatização de Manufatura Aditiva

Eugênio Polistchuk Berendsen Gabriel Almeida Fontes Vinícius Baldan Herrera

Automatização de Manufatura Aditiva

VERSÃO: 0.1

DATA DE REVISÃO:

Sumário

1. INTRO	DUÇÃO 1	
1.1	Descrição do Problema	1
1.2	Alternativas existentes	1
1.3	Objetivos	1
1.4	Definição do usuário	1
2. FUNCI	ONALIDADES DO SISTEMA	2
	uisitos funcionais uisitos não-funcionais po 3	2
3. DIAGF	RAMA DE CASO DE USO	4
	rama de caso de uso cificação de caso de uso	4 4
4. MODE	LO DE CLASSES	5
	elo de Domínio (Fase de análise) rama de Classe (Fase de projeto)	5 5
5. DIAGE	RAMA DE SEQUÊNCIA	6
6. DIAGE	RAMA DE MÁQUINA	7
7. CARA	CTERÍSTICAS OPERACIONAIS DO SOFTWARE	8
7.2. Arqu	iente operacional itetura do software iistemas e Componentes	8 8 8
8. RISCO	OS 9	
9. CRON	OGRAMA	1
10. CON	CLUSÕES	2
RESPON	SABILIDADES	3

1. INTRODUÇÃO

1.1 Descrição do Problema

[Descrever, de forma clara, a situação atual.

Se o projeto estiver sendo desenvolvido para gerar uma nova oportunidade de mercado/negócio, descrever a posição da concorrência em relação ao assunto.

Se o projeto estiver sendo desenvolvido para solucionar um problema existente, apontar esse problema e explorar os riscos potenciais em se manter esta situação.

Buscar contextualizar o ambiente alvo onde a solução gerada pelo projeto estará inserida.]

A manufatura aditiva, especialmente por meio da impressão 3D, enfrenta entraves que dificultam sua expansão entre pequenos empreendedores e usuários iniciantes. Os processos ainda são lentos, exigem conhecimento técnico e dependem de etapas manuais que comprometem a eficiência. Além disso, os custos são elevados e variam conforme o tipo de projeto e a localização, tornando o serviço pouco acessível. A terceirização da impressão, comum entre quem não possui equipamentos, encarece ainda mais o processo e aumenta o tempo de espera. A falta de domínio técnico também leva a falhas na produção e desperdício de materiais. Manter esse cenário gera riscos como a estagnação do setor, baixa competitividade e desestímulo à inovação local. Diante disso, o desenvolvimento de um sistema automatizado surge como uma solução estratégica, capaz de reduzir custos, aumentar a autonomia do usuário e tornar a impressão 3D mais acessível e eficiente, especialmente para pequenos negócios e criadores independentes.

Artefato 01: Apresentação do problema.

1.2 Alternativas existentes

[Identificar e descrever, de forma clara, as alternativas existentes para a solução do problema. Fornecer todos os detalhes que se julgue necessário para a perfeita compreensão da alternativa. As alternativas existentes devem incluir, além da solução que está sendo proposta pelo projeto, produtos similares já existentes no mercado ou pesquisas acadêmicas em andamento e que solucionam o problema de forma similar.]

Atualmente, existem diversas alternativas no mercado para enfrentar os problemas relacionados à manufatura aditiva, especialmente no que diz respeito à automação e acessibilidade da impressão 3D. A principal alternativa são os serviços terceirizados de impressão 3D, disponíveis em plataformas como Treatstock, 3D Hubs (hoje parte da Hubs) e algumas redes locais que conectam usuários a prestadores de serviço. Essas plataformas facilitam o acesso à impressão, mas ainda envolvem custos elevados, prazos longos e falta de controle direto sobre o processo.

Outra alternativa são as **impressoras 3D com sistemas semi-automatizados**, como os modelos da Prusa, Bambu Lab e Creality, que oferecem recursos como nivelamento automático da mesa, sensores de falhas e integração com softwares de fatiamento. Contudo, essas máquinas ainda exigem conhecimento técnico para operação completa e não oferecem automação total do fluxo de trabalho (como retirada automática da peça, organização de filas de produção ou interface amigável para leigos).

Há também **projetos acadêmicos e de startups** em andamento que buscam automatizar partes do processo, como braços robóticos para pós-processamento, plataformas de monitoramento remoto com IA para detecção de falhas, e sistemas integrados de gerenciamento de múltiplas impressoras.

Artefato 02: Pesquisa de mercado.

1.3 Objetivos

[Descrever, de forma clara e sucinta, os objetivos do projeto. Um parágrafo curto, composto de frases com verbos no infinitivo, é o suficiente. Voltada para nível gerencial superior, não diretamente envolvido com o desenvolvimento do projeto.

Apresentando os benefícios com a execução do projeto.]

A proposta deste projeto se destaca por buscar uma solução completa, acessível e focada no usuário iniciante e pequeno empreendedor, automatizando desde o preparo até o controle da produção, eliminando a dependência de conhecimento técnico aprofundado ou serviços de terceiros

Artefato 03: Descrição do objetivo do projeto.

1.4 Definição do usuário

[Descrever, de forma clara e sucinta, os usuários envolvidos]

Pequenos empreendedores e artesãos: utilizam a impressão 3D para criar produtos personalizados e buscam uma solução acessível, eficiente e fácil de operar, sem depender de terceiros ou conhecimento técnico avançado.

Designers e criadores independentes: produzem protótipos, peças decorativas e utilitárias, e necessitam de agilidade no processo produtivo, com maior controle sobre a impressão.

Instituições de ensino e estudantes: utilizam a impressão 3D como ferramenta educacional e demandam sistemas automatizados que simplifiquem o uso e reduzam erros comuns.

Hobbystas e entusiastas da tecnologia: interessados em explorar a impressão 3D de forma prática, desejam uma solução intuitiva que automatize processos e reduza a curva de aprendizado.

Artefato 04: Mapeamento os usuários.

2. FUNCIONALIDADES DO SISTEMA

2.1. Requisitos funcionais

ld	Descrição	Solicitante	Prioridade
RF01	Exigir login do usuário	Patrocinador	Alta
RF1.2	Realizar o cadastro e edição dos dados do usuário	Patrocinador	Alta
RF02	Realizar orçamento de peças conforme a quantidade	Usuário final	Alta
RF2.1	O sistema deverá permitir o download do arquivo STL	Usuário final	Alta
RF2.2	Permitir o download de imagens do modelo	Usuário final	Média
RF03	Registrar a quantidade de itens selecionados	Usuário final	Alta
RF04	Registrar cada venda realizada	Patrocinador	Alta
RF4.1	Emitir nota fiscal eletrônica (NFe) automaticamente	Patrocinador	Alta
RF4.2	Realizar o pagamento via PIX ou cartão de crédito	Usuário final	Alta
RF05	Oferecer opções de entrega via transportadora, Correios e Sedex	Usuário final	Média

2.2. Requisitos não-funcionais

ID	Descrição	Solicitante	Prioridade	Detalhamento
RFN01	Interface amigável	Usuário final	Alta	O sistema deve apresentar uma interface intuitiva e de fácil navegação.

ID	Descrição	Solicitante	Prioridade	Detalhamento
RFN02	Tempo de resposta	Patrocinador	Alta	O tempo de carregamento das páginas não deve exceder 2 segundos.
RFN03	Compatibilidade com navegadores	Patrocinador	Alta	O sistema deve funcionar nos navegadores Chrome, Firefox e Edge (últimas 3 versões).
RFN04	Adoção de boas práticas de desenvolvimento	Patrocinador	Alta	O sistema deve seguir padrões definidos pela organização para código e segurança.
RFN05	Criptografia de comunicação	Patrocinador	Alta	Todas as transações devem ocorrer sob protocolo HTTPS com TLS ativo.
RFN06	Alta disponibilidade	Patrocinador	Alta	O sistema deve estar disponível pelo menos 99,5% do tempo útil (horário comercial).
RFN07	Tempo médio de reparo (MTTR)	Patrocinador	Média	O tempo médio para recuperação após falhas não deve ultrapassar 2 horas.
RFN08	Controle de bugs críticos	Patrocinador	Alta	O sistema deve manter taxa máxima de 1 bug crítico a cada 5.000 linhas de código.

ID	Descrição	Solicitante	Prioridade	Detalhamento
RFN09	Suporte a múltiplos usuários simultâneos		Média	O sistema deve suportar no mínimo 100 usuários ativos simultaneamente.
RENTH	Manutenibilidade e padrão de código	Equipe técnica	Média	O código deve seguir padrão de nomenclatura e estar bem documentado.

Artefato 06: Lista dos requisitos funcionais e não funcionais do sistema.

2.3. Escopo

O projeto entregará

[Descrever o escopo do projeto, ressaltando os aspectos que serão, e os que não serão cobertos. Isto permite delimitar de forma clara as fronteiras de atuação. Enumerar, se for o caso, as restrições impostas pelo ambiente e/ou suas fronteiras. Para os aspectos não cobertos: justificar porque não serão atendidos pelo projeto e referenciar, se for o caso, outros projetos que estejam tratando o assunto.]

Este projeto tem como objetivo o desenvolvimento de um sistema web automatizado para facilitar o processo de venda e gestão de serviços de manufatura aditiva (impressão 3D), voltado a pequenos empreendedores, designers e usuários finais com pouca familiaridade técnica. A solução busca otimizar o fluxo de orçamentos, pedidos, pagamentos e entregas, promovendo autonomia, eficiência e redução de custos.

O projeto não entregará		

3. DIAGRAMA DE CASO DE USO

[Inserir o diagrama de caso de uso e as especificações de caso de uso: fluxo básico, alternativos exceções e regras de negócio.]

3.1. Diagrama de caso de uso

3.2. Especificação de caso de uso

Nome do Caso de Uso:	Realizar Orçamento Automático		
Ator (s):	Usuário Final		
Objetivo:	Permitir que o usuário obtenha o valor estimado de impressão de acordo com o modelo STL enviado, peso, tempo e quantidade desejada		
Fluxo Básico	1. O usuário acessa o sistema e realiza login.		
	 O usuário seleciona a opção "Novo Orçamento". 		
	3. O sistema solicita o upload do arquivo STL.		
	4. O usuário informa a quantidade desejada.		
	 O sistema calcula automaticamente o tempo estimado de impressão, peso do modelo e o custo total com base em regras definidas. 		
	6. O sistema exibe o orçamento detalhado.		
	 O usuário pode confirmar o orçamento ou salvá-lo para decisão posterior. 		
Fluxo Alternativo	3a. Arquivo inválido: a. O sistema detecta que o arquivo STL está corrompido ou fora do padrão. b. Exibe mensagem de erro e solicita novo envio.		
	 5a. Sistema fora do ar: a. Se a API de cálculo estiver indisponível, o sistema exibe mensagem informando a falha temporária. 		
Pré-Condições	O usuário deve estar autenticado.		
	 O sistema deve estar conectado ao módulo de cálculo de orçamento. 		

Pós-Condições	 O orçamento é registrado e vinculado ao usuário.
	 O arquivo STL é armazenado temporariamente para consulta posterior.

Artefato 07: Diagrama e especificação dos casos de uso.

4. MODELO DE CLASSES

4.1. Modelo de Domínio (Fase de análise)

[Inserir o Modelo de Classes em um nível adequado de abstração que permita entendimento completo da solução proposta. Especificar os atributos e os relacionamentos]

4.2. Diagrama de Classe (Fase de projeto)

[Inserir o Modelo de Classes em um nível adequado de abstração que permita entendimento completo da solução proposta. Especificar os atributos e os métodos.]

Artefato 08: Diagrama de classe detalhado.

4.1. Modelo de Domínio (Fase de Análise)

Representa os principais conceitos do sistema e como eles se relacionam, sem foco na implementação.

Classes e Atributos Principais:

Usuário

- o nome
- o email
- o senha
- o tipo (cliente, administrador)

ArquivoModelo

- o nomeArquivo
- o tipoArquivo (STL, imagem)
- o dataUpload

Orcamento

- o id
- o data
- o tempoEstimado
- o pesoEstimado
- o valorTotal
- o quantidade

Venda

- o id
- o data
- o status (pendente, pago, enviado)
- o valorFinal

Pagamento

o id

- o metodo (PIX, cartão)
- o status
- o dataPagamento

Entrega

- o id
- o metodo (Correios, transportadora, Sedex)
- o prazoEstimado
- o status

NotaFiscal

- o id
- o numero
- o dataEmissao
- o xml

Relacionamentos

- Usuário realiza muitos Orçamentos
- Usuário efetua muitas Vendas
- Orcamento gera uma Venda
- Venda possui um Pagamento
- Venda tem uma Entrega
- Venda emite uma NotaFiscal
- ArquivoModelo pertence a um Usuário

Usuario

+ nome: String
+ email: String
+ senha: String
+ tipo: String

+ fazerLogin(): boolean+ cadastrar(): void+ atualizarPerfil(): void

Orcamento

+ id: int

+ data: Date

+ tempoEstimado: double+ pesoEstimado: double+ valorTotal: double

+ quantidade: int

+ calcularValor(): double

+ salvar(): void

Venda

+ id: int

+ data: Date + status: String

+ valorFinal: double

+ confirmarVenda(): void

+ gerarNotaFiscal(): NotaFiscal

+ iniciarEntrega(): void

5. DIAGRAMA DE SEQUÊNCIA

[Expressar os aspectos dinâmicos da solução utilizando Diagramas de Seqüência ou de Colaboração.]

Artefato 09: Diagrama de sequência para três casos de uso.

6. DIAGRAMA DE MÁQUINA

[Incluir todos os diagramas de estados necessários, indicando as situações e métodos que permitem a mudança de estados. Os métodos devem ser consistentes com o diagrama de classes.]

Artefato 10: Diagrama de máquina de estados para três situações importantes.

7. CARACTERÍSTICAS OPERACIONAIS DO SOFTWARE

7.1. Ambiente operacional

[Descrever brevemente o ambiente de hardware e software necessário para o funcionamento do sistema. Pode-se ter uma representação gráfica da arquitetura de software e hardware se necessário, ou somente descritiva.

Utilizar o diagrama de implantação]

Artefato 11: Diagrama de implantação.

7.2. Arquitetura do software

Descrever como o sistema irá funcionar, em que plataforma, web, desktop, banco de dados, ambiente distribuído, acesso via telefone etc.

Utilizar um diagrama que apresente as camadas do sistema, principalmente que demonstre como o conceito de MVC (Model-View-Controller) está sendo utilizado. A UML oferece o Diagrama de Componentes ou Pacotes que permitem a criação de layers para separação dos componentes, conforme a estrutura MVC.

Deve-se representar no Diagrama de Componentes os principais componentes a serem gerados no projeto, bem como os componentes de terceiros que serão empregados. Incluir a versão dos componentes externos facilita posteriormente a manutenção e distribuição do sistema.

Artefato 11: Diagrama de componentes e pacotes.

7.3. Subsistemas e Componentes

Caso o sistema seja composto por subsistemas, eles podem ser melhor representados nesta secção. Recomenda-se utilizar os diagramas de Componentes ou de Pacotes para cada um deles.

O diagrama de componentes indica para a equipe técnica quais componentes devem fazer parte do sistema proposto e quais já estão disponíveis na arquitetura atual. Identificar adequadamente no artefato.

Artefato 12: Diagrama de subsistemas (se necessário).

Artefato 13: Demais diagramas vistos em sala de aula.

8. RISCOS

[Identificar possíveis riscos associados à alternativa. Apresentar a tabela de riscos do projeto contendo obrigatoriamente as seguintes colunas, ordenadas em ordem decrescente de SEVERIDADE (do mais grave para o menos grave):

- Identificação do Risco (numeração seqüencial)
- Descrição do Risco (texto descrevendo o risco)
- Probabilidade: probabilidade de ocorrência do risco. Evitar percentuais, dando preferência ao uso de escalas (Ex.: 1=baixa, 2=média e 3=alta). As escalas facilitam as análises, pois é impossível prever com exatidão a probabilidade de um risco ocorrer.
- Impacto: impacto causado ao projeto caso o risco venha a ocorrer. Seguir as mesmas orientações da probabilidade, ou seja, usar escala (Ex.: 1=baixo, 2=médio e 3=alto).
- Severidade: indicador que permite classificar os riscos entre si. Pode ser definida uma fórmula que considere probabilidade e impacto com pesos diferenciados, no entanto, S=P*I já é o suficiente.
- Ação de Prevenção: ação que visa reduzir a probabilidade do risco ocorrer. Esta ação precisa efetivamente ser executada para que se reduzam as chances do risco ocorrer.
- Ação de Contingência: ação que visa reduzir os impactos caso o risco ocorra. Esta ação deverá ser disparada caso um risco se torne efetivamente um problema que vai comprometer o sucesso do projeto.

Observações importantes:

Cada aluno deverá analisar o seu projeto e elaborar a sua própria lista de riscos. Não serão aceitas tabelas iguais para projetos diferentes, uma vez que cada projeto é único e possui características próprias e riscos inerentes à sua natureza e ao seu desenvolvedor.

Uma análise da evolução do risco em relação ao Estudo de Viabilidade deverá ser fornecida e deverão ser detalhadas as medidas que foram tomadas para resolver estes riscos. Devem ser incorporadas todas as modificações sugeridas pela banca na defesa do Estudo de Viabilidade.

Não terminar o projeto no prazo não é um risco em si, mas é a conseqüência de que outro risco ocorreu.]

9. CRONOGRAMA

[Apresentar um cronograma detalhado de atividades, com etapas do desenvolvimento da solução, datas e recursos envolvidos. Utilizar periodicidade semanal. Prever a utilização do tempo de forma realista, considerando semana de provas, férias e feriados. Avaliar, também de forma realista, o domínio do aluno em relação à compreensão do problema, da tecnologia e de quaisquer outros aspectos que possam influir no tempo do projeto. Considerar os marcos oficiais divulgados no Compromisso Pedagógico e também as atividades intermediárias necessárias para cada caso.]

10. CONCLUSÕES

[Resgatar os tópicos anteriores, revendo o panorama de inserção do projeto e voltando a analisar a viabilidade do projeto em função do progresso até o momento e da revisão dos riscos.]

RESPONSABILIDADES

[Os estudantes deverão assinar o Documento de Arquitetura.]