Supplementary material

De novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

Seema Meena^{1,#}, Sarma Rajeev Kumar^{1,#}, D.K. Venkata Rao¹, Varun Dwivedi¹, H.B. Shilpashree¹, Shubhra Rastogi², Ajit Kumar Shasany², and Dinesh A. Nagegowda^{1*}

^{*}Correspondence: Dr. Dinesh A. Nagegowda, da.nagegowda@cimap.res.in

Table S1 List of qRT-PCR primers used in the study

	_ _
CfTPS1 RT F	GATTCCATTCGCCCTTTGTC
CfTPS1 RT R	AGGCCCTCCTGGAAATCAA
CfPP1 RT F	CATCAAGCAGGACACCAAGAAG
CfPP1 RT R	CCATGTTTGAGGAAGTAACCCATA
Cf PP2 RT F	ATGATTGACCAGGGTGAAAAGG
Cf PP2 RT R	ATGTCGTTGTAGTGACGGTATTCAG
CfADH1 RT F	GAGTTGGTTCTTAATTTGTCATGGTTT
CfADH1 RT R	CGGCCCTGTCTCCCTCTTAT
CfADH2a RT F	CACGGCCTCTGCAAGCA
CfADH2a RT R	GCAGGCCAACCAAGATCATC
CfADH3b RT F	GGACACCTCTCCCCCTACAC
CfADH3b RT R	CAGATCCCACAGTAGAGC
CfADH4 RT F	GCTCGGAAAACAAAAAGGATGA
CfADH4 RT R	TCTTGGTCGTCGCTGTTAACA
CfAKR1 RT F	GCATCGACCTCTACTACCAGCAT
CfAKR1 RT R	GCTCACCCATCGTGATCTCA
CfAKR2a RT F	CGACCGTTATGCTGGAATTA
CfAKR2a RT R	TGGCTACTCATATTTCCAAGAAGA
CfAKR2b RT F	CAGATGAGATGGCCGAACTTG
CfAKR2b RT R	GGTGTTGGCCATTTGAGGAT
CfCCD1 RT F	AAACACTCTTTCACTGCTCATCCA
CfCCD1 RT R	GGAGGTTCATGCGAATATCCA
CfAAT1 RT F	CTATGAAGGGCTGGCGTTTG
CfAAT1 RT R	GCTCAGCCTGCAATGAGATG
CfAAT2 RT F	CGATGCAGCAGCGTCAGT
CfAAT2 RT R	GCACGAACCAGACAAGAAAGTG
CfAAT3 RT F	CAACCGCTCGAAACCAACA
CfAAT3 RT R	CACGCCCATGAAGTTTGGA
CfALDH1 RT F	TTGCTGTGCTGGGTCTCGTA
CfALDH1 RT R	GGCCTTCTCCACGAACTCATC
CfALDH2 RT F	ATCCCCATCGCCATTGCT
CfALDH2 RT R	AGACATCACGCTGACAAGTGACA
CfALDH3 RT F	TGGGCCTGTTCAGTCAATCC
CfALDH3 RT R	CCAATCCATACTGGCTTGCA
EF1a RT F	TCTCGGAGCTGCTCACCAA
EF1a RT R	GTCGCCATTCTTGAGGAACTTG
Cf Actin RT F	GACTACGACCAGGAGATGGAGACT
Cf Actin RT R	ATGACCTGTCCATCAGGAAGCT
Cf GAPDH RT F	CCCGACGAGCCCATCAT
Cf GAPDH RT R	CTTTTGGTCGAGCACCTTGAC

 Table S2 Annotation summary of C. flexuosus transcripts

Database	Total no. of annotated transcripts	Percentage
NCBI	76293	82.80%
Uniprot	69984	75.95%
KEGG	24147	26.21%
AGRIS	5867	6.37%
Total	92139	100.00%

Table S3 Aroma biosynthetic pathway genes identified in *C. flexuosus* transcriptome and SSRs associated with them.

Gene	No. of trans- cripts	Avg. FPKM	No. of transcrip ts (SSR- linked)	No. of SSRs	SSR motifs					
MEP pathway genes										
1-Deoxy-D-xylulose 5-phosphate synthase (DXS)	21	4.29	3	2	(TG)7 and (CTC)5					
1-Deoxy-d-xylulose 5-phosphate reducto isomerase (DXR)	4	2.85	-	-	-					
2-C-methyl-D-erythritol 4- phosphate cytidylyl transferase (MCT)	3	3.76	-	-	-					
4-Diphosphocytidyl-2-C-methyl- D-erythritol kinase (CMK)	5	15.88	-	-	-					
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (ispF)	1	20.42	-	-	-					
4-Hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS)	11	10.47	-	-	-					
4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR)	11	22.70	7	1	(CAC)6					
	MV	A pathy	vay genes							
Acetoacetyl-CoA thiolase/acetyl-CoA C-acetyltransferase (AACT)	16	8.22	1	1	(CCG)6					
3-Hydroxy-3-methylglutaryl coenzyme A synthase (HMGS)	21	3.56	1	1	(CGG)8					
3-Hydroxy-3-methylglutaryl- coenzyme A reductase (HMGR)	25	7.88	7	5	(A)10, (T)12, (AGC)5, (CGC)5 and (TCC)5					
Mevalonate kinase (MVK)	3	2.73	-	-	-					
5-Phosphomevalonate kinase (PMK)	8	5.17	-	-	-					
Mevalonate diphosphate decarboxylase (MVD)	4	3.55	-	-	-					
Do	wnstrea	m terper	ne pathway	genes						
Isopentenyl-diphosphate isomerase (IDI)	9	17.73	4	2	(C)23 and (GCA)5					
Geranyl diphosphate synthase (GDS)	8	2.96	-	-	-					

Farnesyl diphosphate synthase (FPPS)	9	3.65	2	2	(TC)6 and (CGC)6							
Geranylgeranyl diphosphate synthase (GGDS)	5	6.98	4	3	(AT)6, (CGG)5 and (CAC)6							
Geranylgeranyl diphosphate synthase small subunit (GGDS.SSU)	4	2.64	-	-	-							
Aroma biosynthetic genes identified in C. flexuosus												
Terpene synthase (TPS)	16	3.087	1	1	(T)11							
Pyrophosphatase (PPase)	19	78.96	3	7	(G)26, (AG)6, (CCG)5 and (GCC)5ggccgatccgccggcgatgatg(CGT)5							
Nudix hydrolase (NUDX)	26	6.06	4	5	(GA)7, (GCG)5, (CGG)7, (CGC)7 and (CGAT)5							
Alcohol dehydrogenases (ADH)	92	22.72	21	8	(A)16/19/35, (T)10, (TC)9, (GGC)5/8, (GCC)5, (CGC)6 and (GGA)5gaagagggaggaggaggaggagggggggggggggggg							
Aldo-Keto Reductases (AKR)	38	7.70	5	3	(A)11, (GGC)5 and (CGG)7							
Carotenoid Cleavage Dioxygenases (CCD)	11	17.62	-	-	-							
Alcohol acyltransferases (AAT)	35	6.76	8	3	(T)10/13, (GTC)6 and (GGCA)5							
Aldehyde dehydrogenases (ALDH)	88	16.67	6	4	(TCA)5, (GCC)5, (CAG)5 and (CCTCA)5							

Table S4 Other important secondary metabolic pathway genes identified in *C. flexuosus* transcriptome and SSRs putatively associated with them.

Gene	No. of transc ripts	Avg. FPKM	No. of transcript s(SSR- linked	No. of	f SSR motifs						
Phenylpropanoid,	Phenylpropanoid, flavanoid and anthocyanin biosynthetic pathway genes										
Phenylalanine ammonia-lyase (PAL)	59	33.55	2	2	(A)10 and (CTC)6						
Cinnamate 4-hydroxylase (C4H)	10	8.19	-	-	-						
beta-glucosidase (bgl)	37	11.59	5	4	(A)11/12, (GCG)5 and (GCG)5agcagaacaacacacacacacacacacacacacacacac						
Catalase-peroxidase (KatG)	3	2.85	-	-	-						
4-Coumarate:coenzyme A ligase (4CL)	9	5.03	2	1	(CGA)5						
Cinnamoyl-CoA reductase (CCR)	16	6.63	1	1	(CAA)5						
Cinnamyl alcohol dehydrogenase (CAD)	24	9.11	13	6	(A)19, (GGC/GCC)5/8, (CGC)6 and (GGA)5gaagagggaggaggaggaggagggggagggagggaggag						
shikimate O- hydroxycinnamoyltransferase (HCT)	4	9.21	-	-	-						
coumaroylquinate(coumaroylshi kimate) 3'-monooxygenase (C3'H)	1	5.84	-	-	-						
caffeoylshikimate esterase (CSE))	1	1.85	-	-	-						
Caffeic acid 3-O- methyltransferase (COMT)	6	41.95	2	2	(GA)7 and (TGC)5						
Caffeoyl CoA O- methyltransferase (CCOMT)	8	19.57	-	-	-						
Chalcone synthase (CHS)	2	3.19	-	-	-						
Chalconeisomerase (CHI)	14	20.33	2	1	(GGC)5						
Flavanol synthase(FLS)	3	4.01	-	-	-						
Flavonoid 3'-hydroxylase(F3'H)	6	9.63	4	5	(A)11 and (ACG)5						

Dihydroflavonol 4-reductase (DFR)	3	3.53	-	-	-					
Flavonoid 3',5'-hydroxylase (CYP75A)	5	12.52	4	1	(T)10					
Leucoanthocyanidindioxygenas e (ANS)	2	2.25	-	-	-					
Leucoanthocyanidinreductase (LAR)	1	2.84	-	-	-					
Anthocyanidinreductase (ANR)	8	20.14	-	-	-					
Isoflavone 7-O-glucoside-6"-O-malonyltransferase (IF7MAT)	1	5.33	-	-	-					
Flavonol-3-O-beta-D-glucoside 6"-O-malonyltransferase	5	2.48	3	2	(GCC)5 and (GGCA)6					
beta-glucuronidase (GUSB)	6	5.14	3	1	(TAA)5					
UDP-glucose:flavonol 3-O-glucosyltransferase	2	2.24	-	-	-					
UDP-glucose:flavonoid 7-O-glucosyltransferase	1	1.81	-	-	-					
Querceitin/flavonoid/flavonol 3- O-methyltransferase	2	17.38	2	3	(GA)7 and (TA)7					
Flavonol 3-sulfotransferase	1	1.49	-	-	-					
trans-resveratrol di-O- methyltransferase (ROMT)	2	4.70	-	-	-					
Quinate O- Hydroxycinnamoyltransferase	3	2.91	-	-	-					
Anthocyanidin 5,3-O-glucosyltransferase (GT1)	8	3.64	-	-	-					
Aanthocyanin 5-aromatic acyltransferase (5AT)	1	2.38	-	-	-					
Alkaloid biosynthetic pathway genes										
Strictosidine synthase	15	10.00	3	1	(CGC)5					
Aspartate aminotransferase (GOT/ASP)	19	16.26	5	4	(T)10/15, (A)18 and (CTC)6					
Tyrosine aminotransferase (TAT)	2	5.05	-	-						
	Taxol ł	oiosynthetic	pathway	genes						
5-alpha-taxadienol-10-beta- hydroxylase	5	3.00	_	-	-					
Taxadien-5-alpha-ol O- acetyltransferase	5	6.00	_							

3-N-debenzoyltransferase Figural Figura	10-deacetylbaccatin III-10-O-acetyl transferase-like	1	2.90	-	-	-					
Squalene synthase (SQS) 8 3.32 - - - Squalenemonooxygenase (SQE) 4 2.57 - - - Cycloartenol synthase 2 6.55 - - - Delta24-sterol reductase (DHCR24) 10 17.93 1 1 (T)12 Sterol 124-C-methyltransferase (SMT1) 6 12.60 2 2 (AC)6 and (CCG)5 Delta14-sterol reductase (SMT1) 2 4.88 1 1 (A)10 (SMTT1) 0 6 5.52 - - - Delta14-sterol reductase (SMT2) 3 6.78 - - - (CPI1) 3 2.97 - - - Methylsterolmonooxygenase (SMO) 3 2.97 - - - Sterol-4alpha-carboxylate 3-dybdyrogenase (NSDHL) 3 2.97 - - - Cholestenol delta-isomerase (EBP) 7 25.58 7 2 (TGG)5 and (GAG)5/6/7 Lathost		7	6.90	-	-	-					
Squalenemonooxygenase (SQE) 4 2.57 - - - Cycloartenol synthase 2 6.55 - - - Delta24-sterol reductase (DHCR24) 10 17.93 1 1 (T)12 Sterol 14-demethylase (CYP51) 2 5.21 - - - Sterol 24-C-methyltransferase (SMT1) 6 12.60 2 2 (AC)6 and (CCG)5 Delta14-sterol reductase (SMT1) 2 4.88 1 1 (A)10 CHMPISTE2) Methylsterolmonooxygenase (SMO) 3 6.78 - - - Serol-4alpha-carboxylate 3-dehydrogenase (NSDHL) 3 2.97 - - - - Cholestenol delta-isomerase (EBP) 6 5.64 3 2 (A)10 and (TC)7 24-methylenesterol C-methyltransferase (SMT2) 1 7.39 - - - - Lathosterol oxidase (SC5DL) 1 7.39 - - - - CYP710A 1 2.09 <td colspan="11">•</td>	•										
Cycloartenol synthase 2 6.55 - - - - Delta24-sterol reductase (DHCR24) 10 17.93 1 1 (T)12 Sterol 14-demethylase (CYP51) 2 5.21 - - - Sterol 24-C-methyltransferase (SMT1) 0 12.60 2 2 2 (AC)6 and (CCG)5 Sterol 24-C-methyltransferase (SMT1) 0 1 (A)10 Methylsterol reductase (TMT5F2) 2 4.88 1 1 (A)10 Methylsterol monooxygenase (SMO) 3 6.78 - - - Cycloeucalenolcycloisomerase (CPI1) 3 2.97 - - - Cycloeucalenolcycloisomerase (CPI1) 3 2.97 - - - Cholestenol delta-isomerase (EBP) 3 2.97 - - - Cholestenol delta-isomerase (EBP) 7 25.58 7 2 (TGG)5 and (GAG)5/6/7 Lathosterol oxidase (SCSDL) 1 7.39 - - - Delta7-sterol reductase (SMT2) 1 2.09 - - - CyP710A 1 2.09 - - (CGC)5cggttaggeticcegeticcegeta (SOAT) 3 - 1 (CGC)5cggttaggeticcegeticcegeta (SOAT) 3 - - Sterol O-acyltransferase (SOAT) 14 2.75 - - - Sterol 22-alpha-hydroxy-delta5-steroid dehydrogenase (3β-HSD) 2 9.74 - - - Steroid 22-alpha-hydroxylase (CYP90B1/DWF4) 2 9.74 - - - Steroid 5-alpha-reductase (DET2) 2 1.28 - - - Steroid 5-alpha-reductase (DET2) 3 2 2 1.28 - - - Steroid 5-alpha-reductase (DET2) 3 3 3 3 3 3 3 3 3	Squalene synthase (SQS)	8	3.32	-	-	-					
Delta24-sterol reductase (DHCR24)	Squalenemonooxygenase (SQE)	4	2.57	-	-	-					
CDHCR24 Sterol 14-demethylase (CYP51) 2 5.21 - - -	Cycloartenol synthase	2	6.55	-	-	-					
Sterol 24-C-methyltransferase (SMT1)		10	17.93	1	1	(T)12					
SMT1 S	Sterol 14-demethylase (CYP51)	2	5.21	-	-	-					
(TM7SF2) 2 4.88 1 1 (A)10 Methylsterolmonooxygenase (SMO) 3 6.78 - - - (SMO) Cycloeucalenolcycloisomerase (CPII) 6 5.52 - - - Sterol-4alpha-carboxylate 3-dehydrogenase (NSDHL) 3 2.97 - - - Cholestenol delta-isomerase (EBP) 6 5.64 3 2 (A)10 and (TC)7 24-methylenesterol C-methyltransferase (SMT2) 7 25.58 7 2 (TGG)5 and (GAG)5/6/7 Lathosterol oxidase (SC5DL) 1 7.39 - - - Delta7-sterol reductase (DHCR7) 8 6.83 1 1 (A)12 CYP710A 1 2.09 - - (CGC)5cegtgaegetcecgetcegea (SOAT) Sterol O-acyltransferase (SOAT) 8 3.51 1 1 gacgcaegeagagcaegagcaegagcatcaege (SOAT) 3-beta-hydroxy-delta5-steroid dehydrogenase (3β-HSD) 14 2.75 - - - Steroid 22-alpha-hydroxylase (CYP90B1/DWF4)	(SMT1)	6	12.60	2	2	(AC)6 and (CCG)5					
SMO Society Society	(TM7SF2)	2	4.88	1	1	(A)10					
CPII Sterol-4alpha-carboxylate 3-dehydrogenase (NSDHL) 3 2.97 - - - -	(SMO)	3	6.78	-	-	-					
dehydrogenase (NSDHL) 3 2.97 - - - Cholestenol delta-isomerase (EBP) 6 5.64 3 2 (A)10 and (TC)7 24-methylenesterol C-methyltransferase (SMT2) 7 25.58 7 2 (TGG)5 and (GAG)5/6/7 Lathosterol oxidase (SC5DL) 1 7.39 - - - Delta7-sterol reductase (DHCR7) 8 6.83 1 1 (A)12 CYP710A 1 2.09 - - - - Sterol O-acyltransferase (SOAT) 8 3.51 1 1 1 (CGC)5cggtgacgctcccgctccgctacgcacg(SOAT) 3-beta-hydroxy-delta5-steroid dehydrogenase (3β-HSD) 14 2.75 - - - - Steroid 22-alpha-hydroxylase (CYP90B1/DWF4) 4 2.66 - - - - CYP90A1 (CPD) 2 9.74 - - - - Steroid 5-alpha-reductase (DET2) 2 1.28 - - - - <		6	5.52	-	-	-					
CEBP 24-methylenesterol C-methyltransferase (SMT2) 7 25.58 7 2 (TGG)5 and (GAG)5/6/7 Lathosterol oxidase (SC5DL) 1 7.39 - - - Delta7-sterol reductase (DHCR7) 8 6.83 1 1 1 (A)12 CYP710A 1 2.09 - - (CGC)5cggtgacgctcccgctaggacg(SOAT) 1 2.75 - - 3-beta-hydroxy-delta5-steroid dehydrogenase (3β-HSD) 14 2.75 - - - Steroid 22-alpha-hydroxylase (CYP90B1/DWF4) 4 2.66 - - - CYP90A1 (CPD) 2 9.74 - - - Steroid 5-alpha-reductase (DET2) 8.82 4 5 (GAA)5, (GGA)6 and (TCT)5 CGAA)5, (GGA)6 and (TCT)5 1 1 1 1 CGAGC 1 1 1 1 CA 1 1 (A)12 CA 1 1 (CGC)5cggtgacgctcccgctccgca gcagcaggaggcagaggcatcagg(CGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1	3	2.97	-	-	-					
Methyltransferase (SMT2)		6	5.64	3	2	(A)10 and (TC)7					
Delta7-sterol reductase (DHCR7) 8 6.83 1 1 1 (A)12		7	25.58	7	2	(TGG)5 and (GAG)5/6/7					
CYP710A	Lathosterol oxidase (SC5DL)	1	7.39	-	-	-					
Sterol O-acyltransferase (SOAT) 8 3.51 1 1 1 gcagcagcaggagcaggagcagaggcatcagg(AGC)5 3-beta-hydroxy-delta5-steroid dehydrogenase (3β-HSD) 14 2.75 - - - - - Steroid 22-alpha-hydroxylase (CYP90B1/DWF4) 4 2.66 - - - - CYP90A1 (CPD) 2 9.74 - - - - Steroid 5-alpha-reductase (DET2) 2 1.28 - - - - Brassinosteroid-6-oxidase 1/2 (CYP85A1/A2/;BR6OX1/2) 4 8.82 4 5 (GAA)5, (GGA)6 and (TCT)5		8	6.83	1	1	(A)12					
Steroid O-acyltransferase (SOAT) 8 3.51 1 1 gcagcagcaggagcaggagcatcagg(SOAT) 3-beta-hydroxy-delta5-steroid dehydrogenase (3β-HSD) 14 2.75 - - - -	CYP710A	1	2.09	-	-	-					
3-beta-hydroxy-delta5-steroid dehydrogenase (3β-HSD) Brassinosteroid biosynthetic pathway genes Steroid 22-alpha-hydroxylase (CYP90B1/DWF4) CYP90A1 (CPD) 2 9.74 Steroid 5-alpha-reductase (DET2) Brassinosteroid-6-oxidase 1/2 (CYP85A1/A2/;BR6OX1/2) 4 8.82 4 5 (GAA)5, (GGA)6 and (TCT)5		8	3.51	1	1	gcagcagcaggagcagaggcatcagg(
Steroid 22-alpha-hydroxylase (CYP90B1/DWF4) 4 2.66 -<		14	2.75	-	-	-					
Steroid 22-alpha-hydroxylase (CYP90B1/DWF4) 4 2.66 -<	Bra	ssinoste	roid biosynt	thetic pat	hway ger	nes					
Steroid 5-alpha-reductase (DET2) 2 1.28 - - - - Brassinosteroid-6-oxidase 1/2 (CYP85A1/A2/;BR6OX1/2) 4 8.82 4 5 (GAA)5, (GGA)6 and (TCT)5	Steroid 22-alpha-hydroxylase			-	-	-					
(DET2) Brassinosteroid-6-oxidase 1/2 (CYP85A1/A2/;BR6OX1/2) 4 8.82 4 5 (GAA)5, (GGA)6 and (TCT)5	CYP90A1 (CPD)	2	9.74	-	-	-					
(CYP85A1/A2/;BR6OX1/2) 4 8.82 4 5 (GAA)5, (GGA)6 and (TC1)5		2	1.28	-	-	-					
		4	8.82	4	5	(GAA)5, (GGA)6 and (TCT)5					
		3	2.38	-	-	-					

Table S5 Identity and similarity matrix of the identified *C. flexuosus* candidates with other characterized proteins

C. flexuosus candidates	Homology with the characterized Genes								
Terpene synthase	VvLIS/NES (AEY82696)	VvGES (ADR74218)							
CfTPS1	I=42%, S=62%, QC=92%	I=36%, S=57%, QC=86%							
Alcohol dehydrogena se	AaCAD1 (ACB54931)	CdGeDH (WP_043683 915)	ClGeDH (B2NI93)	ObCAD1 (Q2KNL5)	ObGeDH (Q2KNL6)	PcGeDH (AFY63473)	PfGeDH (AFY63472)	PsGeDH (AFY634 74)	ZoGeDH1 (BAR42579)
CfADH1	I=51%,	I=29%,	I=26%,	I=51%,	I=56%,	I=57%,	I=57%,	I=57%,	I=59%,
	S=68%,	S=42%,	S=43%,	S=69%,	S=72%,	S=74%,	S=74%,	S=74%,	S=75%,
	QC=82%	QC=75%	QC=91%	QC=83%	QC=83%	QC=83%	QC=83%	QC=83%	QC=87%
CfADH2a	I=45%,	I=28%,	I=23%,	I=46%,	I=53%,	I=54%,	I=54%,	I=54%,	I=65%,
	S=63%,	S=42%,	S=38%,	S=65%,	S=72%,	S=71%,	S=71%,	S=71%,	S=77%,
	QC=95%	QC=86%	QC=88%	QC=93%	QC=96%	QC=96%	QC=96%	QC=96%	QC=96%
CfADH2b	I=47%,	I=29%,	I=24%,	I=48%,	I=53%,	I=56%,	I=56%,	I=56%,	I=62%,
	S=65%,	S=42%,	S=41%,	S=67%,	S=71%,	S=73%,	S=73%,	S=73%,	S=76%,
	QC=93%	QC=85%	QC=73%	QC=92%	QC=94%	QC=94%	QC=94%	QC=94%	QC=94%
CfADH3a	I=75%,	I=35%,	I=25%,	I=78%,	I=48%,	I=50%,	I=50%,	I=50%,	I=49%,
	S=84%,	S=82%,	S=38%,	S=86%,	S=67%,	S=68%,	S=68%,	S=68%,	S=67%,
	QC=98%	QC=4%	QC=90%	QC=97%	QC=95%	QC=95%	QC=95%	QC=95%	QC=95%
CfADH3b	I=75%,	I=35%,	I=25%,	I=78%,	I=49%,	I=50%,	I=50%,	I=50%,	I=49%,
	S=84%,	S=82%,	S=38%,	S=85%,	S=67%,	S=68%,	S=68%,	S=68%,	S=66%,
	QC=98%	QC=4%	QC=90%	QC=97%	QC=94%	QC=95%	QC=95%	QC=95%	QC=95%
CfADH3c	I=74%,	I=29%,	I=25%,	I=78%,	I=50%,	I=51%,	I=51%,	I=51%,	I=49%,
	S=83%,	S=54%,	S=38%,	S=85%,	S=67%,	S=69%,	S=69%,	S=69%,	S=66%,
	QC=98%	QC=8%	QC=91%	QC=97%	QC=94%	QC=94%	QC=94%	QC=94%	QC=94%
CfADH3d	I=73%,	I=29%,	I=25%,	I=77%,	I=50%,	I=51%,	I=51%,	I=51%,	I=49%,
	S=84%,	S=54%,	S=38%,	S=85%,	S=68%,	S=69%,	S=69%,	S=69%,	S=67%,
	QC=98%	QC=8%	QC=91%	QC=97%	QC=94%	QC=94%	QC=94%	QC=94%	QC=94%

CON DIVI	I=74%,	I=29%,	I=25%,	I=77%,	I=50%,	I=51%,	I=51%,	I=51%,	I=49%,
CfADH3e	S=83%,	S=54%,	S=38%,	S=85%,	S=67%,	S=69%,	S=69%,	S=69%,	S=66%,
	QC=98%	QC=8%	QC=91%	QC=97%	QC=93%	QC=93%	QC=93%	QC=93%	QC=94%
	I=23%,	I=31%,	I=35%,	I=23%,	I=25%,	I=25%,	I=25%,	I=25%,	I=24%,
CfADH4	S=37%,	S=47%,	S=52%,	S=38%,	S=40%,	S=39%,	S=39%,	S=39%,	S=43%,
	QC=87%	QC=95%	QC=97%	QC=92%	QC=91%	QC=88%	QC=88%	QC=88%	QC=81%
Aldo-keto	BdAKR	ObAKR	PcAKR	PfAKR	PsAKR				
reductase	(XP_003575	(XP_006652	(AFV99149)	(AFV99148)	(AFV99150)				
reductase	318)	179)	` ′	` ′	` ′				
	I=76%,	I=80%,	I=62%,	I=61%,	I=61%,				
CfAKR1	S=86%,	S=88%,	S=75%,	S=74%,	S=74%,				
	QC=97%	QC=96%	QC=98%	QC=98%	QC=98%				
	I=82%,	I=87%,	I=68%,	I=67%,	I=67%,				
CfAKR2a	S=90%,	S=93%,	S=80%,	S=80%,	S=80%,				
	QC=99%	QC=100%	QC=99%	QC=99%	QC=99%				
	I=82%,	I=89%,	I=68%,	I=68%,	I=68%,				
CfAKR2b	S=90%,	S=95%,	S=81%,	S=81%,	S=80%,				
	QC=99%	QC=100%	QC=99%	QC=99%	QC=99%				
Carotenoid	OsCCD1	SICCD1A	SICCD1B						
cleavage	(AK066766)	(AAT68187)	(AAT68188)						
dioxygenase	` ′	` ′	` ′						
242.22.4	I=99%,	I=78%,	I=74%,						
CfCCD1	S=99%,	S=86%,	S=86%,						
	QC=100%	QC=98%	QC=98%			35 1 155		Т	
Alcohol acyl	CbBEBT	FaAAT2	FaSAAT	FcAAT1	FVAAT	MsAAT1	RhAAT		
transferase	(AAN09796)	(AEM43830)	(AAG13130)	(ACT82247)	(AAN07090)	(CAC09063)	(AAW31948)		
CfAAT1	I=30%, S=47%,	I=28%,	I=23%, S=41%,	I=23%, S=40%,	I=24%, S=42%,	I=28%,	I=23%, S=40%,		
CIAATI	QC=97%	S=49%,		,		S=45%,	,		
	I=33%,	QC=85% I=31%,	QC=91%	QC=90% I=28%,	QC=91%	QC=97% I=40%,	QC=85% I=23%,		
CfAAT2	S=48%,	S=45%,	I=26%, S=46%,	S=45%,	I=26%, S=44%,	S=57%,	S=38%,		
CIAA12	OC=71%	OC=72%	OC=40%	S-43%, QC=39%	QC=33%	OC=98%	S-38%, QC=73%		
	I=26%,	I=24%,	I=22%,	I=22%,	I=23%,	I=28%,	I=22%,		
CfAAT3	S=35%,	S=38%,	S=36%	S=38%,	S=38%,	S=38%,	S=37%		
CIAATS	QC=75%	S-38%, QC=59%	S-30%, QC=90%	QC=97%	QC=89%	QC=60%	S-57%, QC=96%		
	QC-13%	QC-39%	QC-90%	QC-9/70	QC-89%	QC-00%	QC-90%		

Aldehyde dehydrogena se	AmBALHD (ACM89738)	AtALDH2b (Q8S528.2)	CdGalDH (CCF55023)	NtALDH (CAA71003)	OsALDH2b (AAF73828)	ZmRF2A (AAC49371)	ZmRF2B (AAL99613)	
	I=77%,	I=81%,	I=37%,	I=79%,	I=99%,	I=90%,	I=76%,	
CfALDH1	S=85%,	S=90%,	S=55%,	S=90%,	S=99%,	S=94%,	S=86%,	
	QC=99%	QC=91%	QC=86%	QC=91%	QC=100%	QC=99%	QC=100%	
	I=72%,	I=76%,	I=37%,	I=76%,	I=80%,	I=78%,	I=84%,	
CfALDH2	S=83%,	S=87%,	S=53%,	S=87%,	S=88%,	S=86%,	S=92%,	
	QC=100%	QC=89%	QC=85%	QC=90%	QC=94%	QC=99%	QC=99%	
	I=80%,	I=81%,	I=38%,	I=81%,	I=92%,	I=94%,	I=77%,	
CfALDH3	S=87%,	S=89%,	S=56%,	S=91%,	S=96%,	S=96%,	S=86%,	
	QC=94%	QC=92%	QC=86%	QC=91%	QC=94%	QC=100%	QC=99%	

 Table S6
 Summary of molecular docking analyses of candidate proteins

Predicted polypeptides from <i>C. flexuosus</i>	Substrate	ΔG kcal/mol
CfADH1 (Grid space, 0.619; grid dimension (xyz, 57.579 124. 528 35.04),	Geraniol 1-Octanol Farnesol Cinnamyl alcohol Sinnapyl alcohol	-6.17 -4.12 -5.60 -3.22 -3.25
CfADH2a (Grid space, 0.597; grid center (xyz, 56.405,123.318, 29.928)	Geraniol 1-Octanol Farnesol Cinnamyl alcohol Sinnapyl alcohol	-6.88 -4.22 -4.99 -3.22 -2.99
CfAKR2b (Grid space, 0.35; grid center (xyz,16.394 -1.929 19.407)	Geraniol 1-Octanol Farnesol Cinnamyl alcohol Sinnapyl alcohol	-6.96 -3.99 -4.33 -5.12 -4.32
CfAAT3 Grid space, 0.525; grid center (xyz, -42.258 -20.514 20.781)	Geraniol 1-Octanol Farnesol Cinnamyl alcohol Sinnapyl alcohol	-5.67 -3.12 -5.96 -4.15 -4.13
CfALDH3 (Grid space, 0.547; grid center (xyz, 52.25 112.178 5.182)	Geranial 1-Octanal Farnesal Cinnamaldehyde Sinapaldehyde	-6.16 -3.66 -4.11 -2.66 -2.16

 Table S7 Summary of SSR analysis in C. flexuosus transcriptome

SSR mining							
Total number of sequences examined	92937						
Total number of identified SSRs	12968						
Number of SSR containing sequences	10715						
Number of sequences containing more than 1 SSR	1805						
Number of SSRs present in compound formation	966						
Distribution of SSRs in Different repeat types							
Mono-nucleotide	3139						
Di-nucleotide	1705						
Tri-nucleotide	7755						
Tetra-nucleotide	188						
Penta-nucleotide	101						
Hexa-nucleotide	80						

Table S8 Summary of the number of classified repeat types considering sequence complementary in *C. flexuosus*

Repeat motif	No. of repeats							
	5	6	7	8	9	10	>10	Total
Mono-nucleotide ((3139, 24.2 %	o)						
A/T	-	-	-	-	-	1314	1724	3038
C/G	-	-	-	-	-	30	71	101
Di-nucleotide (1 70	05, 13.1 %)							
AG/CT	-	305	210	138	116	81	305	1155
AC/GT	-	124	60	25	18	7	39	273
AT/AT	-	78	33	21	12	4	16	164
CG/CG	-	83	18	7	5	-	-	113
Tri-nucleotide (77	55 59 8 %)							
CCG/CGG	2226	987	364	174	64	16	1	3832
AGG/CCT	621	274	114	49	26	6	_	1090
AGC/CTG	581	295	110	55	14	2	4	1061
ACC/GGT	305	113	33	10	4	10	-	507
ACG/CGT	320	122	51	9	1	-	4	475
ACT/AGT	33	12	10	1	_	1	-	394
AGC/CTG	581	295	110	55	14	2	4	210
AGG/CCT	621	274	114	49	26	6	-	100
ATC/ATG	152	45	11	2	_	_	-	57
CCG/CGG	2226	987	364	174	64	16	1	29
TF 4	100 1 4 0/)							
Tetra-nucleotide (1	_	2				10
AAAG/CTTT	11	1	5	2	-	-	-	19
AGGC/CCTG	14	3	-	-	-	-	-	17
AAAT/ATTT	5	8	-	-	-	-	-	13 13
ATCC/ATGG	10 13	-	3	-	-	-	-	13
ATCG/ATCG	3	-	- 1	6	2	-	-	13
AACC/GGTT	12	-	1	O	2	-	-	12
AATC/ATTG AGCG/CGCT	11	-	-	-	-	-	-	11
AGCG/CGCT AAGG/CCTT	5	3	-	-	-	-	-	8
ACTC/AGTG	<i>7</i>	5	<u>-</u> -	<u>-</u> -	<u>-</u>	-	-	7
AGAT/ATCT	7	_	_	_	_	_	-	7
AGCT/AGCT	7	_	_	_	_	_	-	7
ACAT/ATGT	5	_	_	_	_	_	_	5
ACGC/CGTG	2	3	_	_	_	_	_	5
AGCC/CTGG	5	<i>-</i>	_	_	_	_	_	5
ATGC/ATGC	5	_	_	_	_	_	_	5
AIUC/AIUC	3	-	-	-	-	-	-	5

4 4 4 4 3 2 2 2						
4 4 3 2 2						
4 3 2 2						
3 2 2						
3 2 2						
2 2						
2						
2						
1						
1						
1						
1						
1						
Penta-nucleotide (101, 0.8 %)						
25						
22						
8						
7						
7						
4						
4						
4						
3						
5						
3						
3						
3 2						
3 2 2						
3 2						
3 2 2						
3 2 2						
3 2 2						
3 2 2						
3 2 2						
3 2 2						
3 2 2						
3 2 2						
3 2 2						
3 2 2						
3 2 2						
3 2 2 2 1 1 1 1 1 1 1 1						
3 2 2 2 1 1 1 1 1 1 1 1 1 1 7						
3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 7 6						
3 2 2 2 1 1 1 1 1 1 1 1 1 7 6 5						
3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 7 6 5 5						
3 2 2 2 1 1 1 1 1 1 1 1 1 1 7 6 5 5						
3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 7 6 5 5						

%	37.2	20.1	8.3	4.0	2.2	11.4	16.7	100
Total	4824	2607	1082	518	285	1481	2171	12968
ATCGGC/ATGCCG	2	-	-		-	-	-	1
ATATCC/ATATGG	1	-	-	-	-	-	-	1
AGGGCG/CCCTCG	1	-	-	-	-	-	-	1
AGGCGG/CCGCCT	10	-	-	-	-	-	-	1
AGGCCC/CCTGGG	2	-	-	-	-	-	-	1
AGCGGG/CCCGCT	1	-	-	-	-	-	-	1
AGCCGG/CCGGCT	5	-	-	-	-	-	-	1
AGCATC/ATGCTG	1	2	-	-	-	-	-	1
AGATGG/ATCTCC	2	-	-	-	-	-	-	1
AGAGGG/CCCTCT	1	-	-	-	-	-	-	1
AGAGGC/CCTCTG	2	-	-	-	-	-	-	1
ACGGCG/CCGTCG	7	-	-	-	-	-	-	1
ACGGCC/CCGTGG	2	-	-	-	-	-	-	1
ACGCCC/CGTGGG	1	-	-	-	-	-	-	1
ACGATG/ATCGTC	-	1	-	-	-	-	-	1
ACGAGG/CCTCGT	1	-	-	-	-	-	-	1
ACCTCG/AGGTCG	1	-	-	-	-	-	-	2
ACCTCC/AGGTGG	2	-	-	-	-	-	-	2
ACCGCC/CGGTGG	4	-	-	-	-	-	-	2
ACCATC/ATGGTG	1	-	-	-	-	-	-	2
ACATAT/ATATGT	3	1	-	-	-	-	-	2
ACAGCC/CTGTGG	-	1	-	-	-	-	-	2
AATGAC/ATTGTC	1	2	-	-	-	-	-	2
AATCCT/AGGATT	1	_	-	-	-	-	-	3

Figure S1 Length (a) and FPKM (b) distribution of assembled transcripts, and E-value (c) and similarity score (d) of the NCBI annotated transcripts.

Figure S2 Top-hit species distribution of BLASTX matches for *C. flexuosus* transcripts.

Figure S3 Gene ontology distribution of transcripts

Figure S4 Distribution of transcripts into transcription factor classes based on AGRIS annotations. Transcription factors were identified using BLASTX search against AGRIS database (http://arabidopsis.med.ohio-state.edu).

Figure S5 Percentage distribution of transcripts into KEGG orthologous categories. Right panel shows the percentage distribution of transcripts into sub-categories of metabolism.

Figure S6 The phylogenetic relationship of *C. flexuosus* TPS1.

The evolutionary history was inferred using unrooted Neighbor-Joining (NJ) method with boot strap value of 1000. Evolutionary analyses were done using MEGA6. Abbreviation with accession numbers- Antirrhinum majus nerolidol/linalool synthase (AmNES/LIS1 ABR24417, AmNES/LIS2 ABR24418), A. majus myrcene synthase (AmMYS AAO41727), C. flexuosus terpene synthase 1 (CfTPS1), Catharanthus roseus geraniol synthase (CrGES), Cinnamomum tenuipile (CtGES CAD29734), Hedychium coronarium (HcLIS AER12203), H. coronarium (HcMTPS AHJ57305), Ocimum basilicumα- zingiberene synthase (ObAZIS Q5SBP4), O. O.basilicum synthase basilicum geraniol synthase (ObGES Q6USK1), linalool (ObLIS Q5SBP3), Oryza sativa linalool/nerolidol synthase (OsLIS/NES ACF05530), Perilla citriodora geraniol synthase (PcGES ABB30217), Phyla dulcis geraniol (PdGES ADK62524), Santalum album monoterpene synthase (SaMTPS1 B5A434), Solanum lycopersicum myrcene synthase (SIMYS G1JUH1), Valeriana officinalis geraniol synthase (VoGES AHE41084), Vitis vinifera geraniol synthase (VvGES NP 001267920), V. vinifera linalool/nerolidol synthase (VvLIS/NES AEY82696), Zingiber montanum monoterpene synthase (ZmoMTPS AHI46572).

Figure S7 GC-MS profile (top) and relative quantification (bottom) of individual components in *C. martinii* inflorescence.

Figure S8A Expression profiling of reference genes in different species and tissues of *Cymbopogon* sp. Elongation factor 1α (*EF1* α), *actin* and glyceraldehydes 3- phospahate dehydrogenase (*GAPDH*) were used to check the stability across different *Cymbopogon* species and also in different tissues of *C. flexuosus*. CFL, *C. flexuosus* leaf; CML, *C. martini* leaf; CWL, *C. winterianus* leaf; and CFR, *C. flexuosus* root.

Figure S8B and C Relative expression analysis in *Cymbopogon*.

Comparative expression of *ALDH* candidates (b) and tissue specific expression of *TPS1*, *PPase1*, *ADH3b*, *ADH4* and *ALDH3* in *C. flexuosus* (c).

Figure S9 Three-dimensional ribbon model of the complete structure of CfALDH3. The homology model was built using the X-ray structures of *Bos taurus* ALDH (PDB ID: 1AG8). The substrate bound complexes were visualized by PMV software (http://mgltools.scripps.edu). The active site residues are represented as ball and stick, and substrates are shown as stick (coloured by atom type).

(A)

CfADH3b	1	MGSLASERKVVGWAARD <mark>ATGH</mark> LSPYTYTLRNTGPEDVVVKVLYCGICHTDIHQ <mark>A</mark> K
ObCAD1	1	MGSLEVERK <mark>T</mark> VGWAARDPSGVLSPY <mark>E</mark> YTLRNTGPQDVYVEVMCCGICHTDVHQIK
AaCAD	1	MGSMKEERKI <mark>T</mark> GWAARDPSGVL <mark>A</mark> PYTYTLRNTG <mark>A</mark> EDVLIKVICCGICHTDPHQIK
CfADH3b ObCAD1 AaCAD	56 56 56	GHEXXGXXXXXGXXV NHLGASKYPMVP SHEVVGEVVEVGPEV KYGVGDVVGIGVIVGCCRECSPCKANV NDLGMSNYPMVP SHEVVGEVVEVGSEV KFRAGDVVGVGCIVGSCGNCRPCNSDI NDLGMSNYPMVP SHEVVGEVVEVGPEV KFKVGDCVGVGCLVGCCDACRPCKAEV
CfADH3b	111	EQYCNKKIWSYNDVYTDGRPTQGGFA <mark>STMVVDQKFVVKIPA</mark> GLAPEQAAPLLCAG
ObCAD1	111	EQYCNKKIWSYNDVY <mark>P</mark> DGKPTQGGFAG <mark>AMVVDQKFVVKIPDGMAPEQAAPLLCAG</mark>
AaCAD	111	EQYCNKKIWSYNDVYTDGKPTQGGFAGSMVV <mark>H</mark> QKFVVKIPEGM <mark>S</mark> PEQ <mark>V</mark> APLLCAG
CfADH3b ObCAD1 AaCAD	166 166 166	GXGXXG VTVYSPLKAFGLTAPGLRGGII GLGGVG MGVKVAKAMGHHVTVISSSSKKRAEA VTVYSPLNHFGLKQSGLRGGII GLGGVG MGVKIAKAMGHHVTVISSSDKKRAEA VTVYSPLNYFGLKKSGLKGGII GLGGVG MGV <mark>I</mark> IAKAMGHHVTVISSSDKKK <mark>E</mark> EA
CfADH3b	221	MDHLGAD <mark>A</mark> YLVSSDAA <mark>A</mark> MAAADSLDYIIDTVPVHHPLEPYLSLLKLDGK <mark>H</mark> VLLG
ObCAD1	221	LDHLGADDYLVSSDAARMQEAADSLDYIIDTVPV <mark>F</mark> HPLEPYLSLLKIDGKLILMG
AaCAD	221	LD <mark>V</mark> LGADDYLISSD <mark>VE</mark> RMQE <mark>L</mark> ADS <mark>F</mark> DYIIDTVPVHHPLEP <mark>S</mark> LSLLKLDGKLIIMG
CfADH3b	276	VIGEPL <mark>S</mark> FVSPMVMLGRKAITGSFIGSI <mark>D</mark> ETAEVLQFCVDKGLTSQIEVVKMGYV
ObCAD1	276	VVNTPLQFVSPMVMLGRKSITGSFIGSMKE <mark>LAEMLEFCKEKD</mark> LSSTIEIVKMDYI
AaCAD	276	VINVPLQFVSPLLMLGRKMITGTFIGSMKET <mark>Q</mark> EMLEFCNEKGVRSTIEVVKMDYV
CfADH3b	331	N <mark>ealerlerndvryrfvvdvagsnvee</mark> aaadapsn
ObCAD1	331	nta <mark>ferlekndvryrfvvdvagsk</mark> lyo
AaCAD	331	ntamdrl <mark>akndvryrfvvdvagsnlee</mark> ettn

Figure S10 Multiple sequence alignment of CfADH1 and CfADH2a (a), CfADH3b (b), and CfADH4 (c) with the characterized GeDH and CAD. Abbreviation with accession numbers-CAD, Cinnamayl alcohol dehydrogenase; GeDH, Geraniol dehydrogenase. Species: Aa-Artemisia annua (ACB54931); Cd, Castellaniellade fragrans (B2N193); Cf, Cymbopogon flexuosus; Cl, Carpoglyphus lactis (HIZV38); Ocimum basilicum (ObCAD_AAX83108 and ObGeDH_AAX831C7); Pc, Perilla citriodora (AFY63473); Pf, P. frutescens (AFY63472); Ps, P. setoyensis (AFY63474) and Zo, Zingiber officinale (BAR42579). Alignment was built using MAFFT 7 and BOXSHADE 3.21. The catalytically active zinc binding motif and glycine reich phosphate binding loop are boxed in red and blue, respectively.

Figure S11 Multiple sequence alignment of CfAKR2b. Abbreviation- Bd, *Brachypodium distachyon* (XP_003575318); Ob, *Oryza brachyantha* (XP_006652179); Pc, *Perilla citriodora* (AFV99149); Pf, *Perilla frutescens* (AFV99148); Ps, *Perilla setoyensis* (AFV99150) and *R. serpentina* perakine reductase (3V0T_A). Alignment was built using MAFFT version 7 and BOXSHADE version 3.21. The catalytic residues are indicated by *. Cofactor binding motif (GXGXXC) and conserved residues are underlined in red.

Figure S12 Multiple sequence alignment of CfCCD1 with characterized rice and tomato CCDs. Abbreviation- CCD, carotenoid cleavage dioxygenase. Species- Os, *Oryza sativa* (AK066766) and S1, *Solanum lycopersicum* (AAT68187 and AAT68188). Alignment was built using MAFFT version 7 and BOXSHADE version 3.21.

Figure S13 Sequence alignment of CfAAT3 with AATs from other plants. Abbreviation-FaAAT2, *Fragaria ananassa* alcohol acyltransferase 2 (AAG13130); FcAAT, *Fragaria chiloensis* alcohol acyltransferase (ACT822471); RhGAAT, *Rosa hybrida* acetyl CoA geraniol/citronellol acetyltransferase (AAW31948). Alignment was built using MAFFT version 7 and BOXSHADE version 3.21. The catalytic and structural motifs are boxed in red and blue, respectively.

Figure S14 Sequence alignment of CfALDH3 nearest characterized homologue. Abbreviation – Zm, Zea mays fertility restoration factor (RF)(AAL99613). Alignment was built using MAFFT version 7 and BOXSHADE version 3.21.

Protein sequences used in this study.

>CfTPS1

MSAAPVRIFSSSMEPLLLSSASPAATTAANNSRQGRRHRGDSIRPLSSSSSAVNTLLLRNDFDFQEGLKN VLHQRQKSAREMMVTIDNLKRLCIDHYFEEEIESAMSSCMDLVHSNDLFDATLAFMLLREAGHDVSANDV LRRFTDDSGEFKLPLSMDIRGLLSLHDMSHLDIGGEVLLYKAKEFSSKHLTSAIRYLEPSLAEYVRQSLD HPYHRSLMQYKARHHLTYLQSLPIRDTVVEKLAVEEFQLNKLLHQQEVQEVNRWWMDLGLVQEIPVVRDQ VLKWYMWSMTALQGYSFSRYRVEITKIIALVYVVDDIFDLVGTLEELSLFTEAVKVWNTAAADSLPSCMR SCYMALYTITNEIADMAEKEHGLNPVNHLKKAWAVLFDGFLVEAKWLATDQVPTAEDYLRNGVITSGVPL TLVHIFIMLGCDQSTEPLIDQMPSIISCPAKILRLWDDMGSAEDEAQEGLDGSYRDFYLIENPICGPSDA EAHMRSLIAREWEELNRECLCKRSFSSNFTOTCLNVTRMISVMYSYNKEQRLLVLEDYARMLIL

>CfPPase1

MATAATASATAATRFTLLAGAGLRSRISIIRRRPTTAVRFQRQQRGLTTTALLKTAELLPKTQGQPETLD YRVFLVDGGGRKVSPWHDVPLRAGDGVFHFVVEIPKESSAKMEVATDEPFTPIKQDTKKGNLRYYPYNIN WNYGLLPQTWEDPTSANSEVEGAFGDNDPVDVVEIGERRANVGEVLKVKPLAALAMIDEGELDWKIVAIS LDDPKASLVNDVDDVEKHFPGTLTAIRDWFRDYKIPDGKPANKFGLGNKPASKEYALKVIEETNESWEKL VKRNIPAGELSLA

>CfPPase2

MSEEDKTAASAEQPKRAPKLNERILSSLSRRSVAAHPWHDLEIGPGAPAVFNVVVEITKGSKVKYELDKK TGLIKVDRVLYSSVVYPHNYGFIPRTLCEDNDPMDVLVLMQEPVIPGSFLRARAIGLMPMIDQGEKDDKI IAVCADDPEYRHYNDISELSPHRLQEIKRFFEDYKKNENKEVAVDAFLPATTAREAIQYSMDLYAQYILQ SLRO

>CfAE1

MGCSWALAALVLGFLVVAVHGSEPWLNQTQVYSTNANSGSNGVFVGITLIQSAAAKGAVCLDGSLPGYHL HRGFGSGANSWLVNLEGGGWCNDVKSCVFRKSSRRGSSNHMESQLQFTGIMSNRPEENPDFYNWNRVKVR YCDGGSFTGDGADASAGLYFRGQRIWQAAMDDLMAQGMRYANQALLSGCSAGGVSTILHCDEFRGLFSGS TNVKCLADAGMFLDFVDVSGQREMRDFFNGIVRLQGSGRSLPRSCTSRMDKTSCFFPQNVVPNIQTPTFI LNTAYDVWQLQQSVAPKRADPQGLWRGCRMNHASCNSNQLQFLQGFRNQMLDAVRGFSGARQNGLFINSC FAHCQSERQDTWYAGDSPRLGNKRIAEAVGDWFFDRADAKYTDCAYPCDGTCHHLTFRGDY

>CfADH1

MSYHCRAALVVHGPFLHPPFSPGAASALAPSLGVSVGLPSRALRLPRASVEKREQQTTMAEQGGQAAFGW AARDDTGVLSPYSFSRRVPKDDDVTIKVLYCGICHTDLHIIKNDWRNAMYPVVPGHEIVGVVTGVGGGVT RFKAGDTVGVGYFVGSCRACDSCGRGYENYCTGVVPTSNGVDHAHGGEPTMGGFSDVIVVNEHYVVRVPD GMALDRAAPLLCAGVTVYSPMMRHGLNAPGKHLGVVGLGGLGHVAVKFGKAFGMKVTVISTSASKRQEAI ESLGADEFLISRDPEQMKAATGTMDGIIDTVSVWHAITPLLALLKPLGQMVIGGGPSKPLELPAYAIVPS GKGVAGNSVGSVGECQAMLEFAGKHGIGAEVEVIKMDYVNTAFERLEKNDVRYRFVIDVAGSLGSAA

>CfADH2a

MAPTTTATAAAEQAPPPQHTRKAVGLAAHDDSGHLTPIRISRRKTGDDDVAIKVLYCGICHSDLHTIKNE WRNAVYPVVAGHEITGVVTEVGKNVARFKAGDEVGVGCMVNTCGGCESCRDGCENYCSGGVVFTYNSVDR DGTRTYGGYSDAVVVSQRFVVRFPSSAGGGAGAALPLDSGAPLLCAGVTVYAPMRQHGLCEAGKHVGVVG LGGLGHVAVKFARAFGMRVTVISTSPVKRQEALERLGADGFIVSTNASEMKAAMGTMHGIINTASASTSM HSYLALLKPKGKMILVGLPEKPLQIPTFALVGGGKILAGSCMGSISETQEMIDFAAEHGVAADIELIGAD EVNTAMERLAKGDVRYRFVVDIGNTLRSD

>CfADH2b

MAPTTTATAAAEQAPPPQHTRKAVGLAAHDDSGHLTPIRISRRKTGDDDVAIKVLYCGICHSDLHTIKNE WRNAVYPVVAGHEITGVVTEVGKNVARFKAGDEVGVGCMVNTCGGCESCRDGCENYCSGGVVFTYNSVDR DGTRTYGGYSDAVVVSQRFVVRFPSSAGGGAGAALPLDSGAPLLCAGVTVYAPMRQHGLCEAGKHVGVVG LGGLGHVAVKFAKAFGMRVTVISTSPGKRREALEHLGADEFLVSRDAGQMAAAAATMDGILNTVSAWHPV

APLFALMKPMAQMVFVGAPTRPLELPAYAIVPGGKGITGNCVGGIRDCQAMLDFAGEHGITAEVEVIKMD YVNTAMERLEKNDVRYRFVIDVAGSSLAGSGDAKI

>CfADH3a

MGSLASERKVVGWAARDATGHLSPYTYTLRNTGPEDVVVKVLYCGICHTDIHQAKNHLGASKYPMVPGHE VVGEVVEVGPEVTKYGVGDVVGIGVIVGCCRECSPCKANVEQYCNKKIWSYNDVYTDGRPTQGGFASTMV VDQKFVVKIPAGLAPEQAAPLLCAGVTVYSPLKAFGLTAPGLRGGILGLGGVGHMGVKVAKAMGHHVTVI SSSSKKRAEAMDHLGADAYLVSSDAAAMAAAADSLDYIIDTVPVHHPLEPYLSLLKLDGKHVLLGVIGEP LSFVSPMVMLGRKAITGSFIGSIDETAEVLQFCVDKGLTSQIEVVKMGYVNEALERLERNDVRYRFVVDV AGSNIDDADAPPA

>CfADH3b

MGSLASERKVVGWAARDATGHLSPYTYTLRNTGPEDVVVKVLYCGICHTDIHQAKNHLGASKYPMVPGHE VVGEVVEVGPEVTKYGVGDVVGIGVIVGCCRECSPCKANVEQYCNKKIWSYNDVYTDGRPTQGGFASTMV VDQKFVVKIPAGLAPEQAAPLLCAGVTVYSPLKAFGLTAPGLRGGILGLGGVGHMGVKVAKAMGHHVTVI SSSSKKRAEAMDHLGADAYLVSSDAAAMAAAADSLDYIIDTVPVHHPLEPYLSLLKLDGKHVLLGVIGEP LSFVSPMVMLGRKAITGSFIGSIDETAEVLQFCVDKGLTSQIEVVKMGYVNEALERLERNDVRYRFVVDV AGSNVEEAAADAPSN

>CfADH3c

MGSLAAEKTVTGWAARDASGHLTPYNYTLRKTGPEDVVVKVLYCGICHTDIHQAKNHLGASKYPMVPGHE VVGEVVEVGPEVTKYSAGDVVGVGVIVGCCRECHPCKANVEQYCNKRIWSYNDVYTDGRPTQGGFASAMV VDQKFVVKIPAGLAPEQAAPLLCAGVTVYSPLKAFGLTAPGLRGGILGLGGVGHMGVKVAKAMGHHVTVI SSSSKKRAEAMDHLGADAYLVSSDAAAMAAAADSLDYIIDTVPVHHPLEPYLSLLKLDGKHVLLGVIGEP LSFVSPMVMLGRKAITGSFIGSIDETAEVLQFCVDKGLTSQIEVVKMGYVNEALERLERNDVRYRFVVDV AGSNIDDADAPPA

>CfADH3d

MGSLAAEKTVTGWAARDASGHLTPYNYTLRKTGPEDVVVKVLYCGICHTDIHQAKNHLGASKYPMVPGHE VVGEVVEVGPEVTKYSAGDVVGVGVIVGCCRECHPCKANVEQYCNKRIWSYNDVYTDGRPTQGGFASAMV VDQKFVVKIPAGLAPEQAAPLLCAGLTVYSPLKHFGLMSPGLRGGVLGLGGVGHMGVKVAKSMGHHVTVI SSSARKRGEAMDDLGADAYLVSSDAAAMAAAGDSLDYIIDTVPVHHPLEPYLALLKLDGKLILMGVINQP LSFISPMVMLGRKAITGSFIGSMAETEEVLNFCVDKGLTSQIEVVKMGYVNEALERLERNDVRYRFVVDV AGSNIDDADAPPA

>CfADH3e

MGSLAAEKTVTGWAARDASGHLTPYNYTLRKTGPEDVVVKVLYCGICHTDIHQAKNHLGASKYPMVPGHE VVGEVVEVGPEVTKYSAGDVVGVGVIVGCCRECHPCKANVEQYCNKRIWSYNDVYTDGRPTQGGFASAMV VDQKFVVKIPAGLAPEQAAPLLCAGVTVYSPLKAFGLTAPGLRGGILGLGGVGHMGVKVAKAMGHHVTVI SSSSKKRAEAMDHLGADAYLVSSDAAAMAAAADSLDYIIDTVPVHHPLEPYLSLLKLDGKHVLLGVIGEP LSFVSPMVMLGRKAITGSFIGSIDETAEVLQFCVDKGLTSQIEVVKMGYVNEALERLERNDVRYRFVVDV AGSNVEEAAADAPSN

>CfADH4

MVEDRSPKPIRCRAAVCRAAGEPLAIEEIVVDPPKAYEIRIKVICTSLCHTDVTFWKAKVAPVFPRILGH EAYGVVESVGENVEGFVAGDTVVPTFLGQCSHCASCTSEHSNVCDSVPFIIGPGMRRDGTTRFWDAQGNP LHDLLAVSSFAEYTVVDVNQVVKLDPAVPPKLACLLSCGAGTGVGAAWRSAKVEPGSTVAIFGLGSVGLA VVQGAKMCGASKIIGVDLNPDKEEVGKSFGVTHFINPSQLDNRSIIEVIVEMTGGGVDYSFECIGVPSVM TDAFRCTKMGKGKTVVLGLGKDSDQMCLPALELLFGRCVMGALFGGIKPKTDIPILAKKCMDKELQLDAL VTHELGLQEINTAFDLLLQGKSLRCIVWMDKQDK

>CfAKR1

MAAAAATAPAAAVVRRMKLGSOGMEVSAOGLGCMGMSAVYGERKPEADMVALVRHAVAAGVTFLDTSDVY

GPHTNEVLVGKAVAAAAATEEEVQVQVATKFGITPAWEVRGDPAYVRAACEGSLRRLGVGCIDLYYQHRI DSTVPVEITMGELKKLVEEGKIKYIGLSEASASTIRRAHVVHPITAVQIEWSLWSRDVEEDIVPTCRELG IGIVAYSPLGRGFFSSGAKLVDELPDDDFRKSLPRFQPENLEKNAAIFEKVNAMAARKGCTSSQLALAWV HHQGSDVCPIPGTTKIHNFDQNVGALSVKLTPDEMSELESYASADVVQGDRYHGTFLNTWKNSETPPLSS WRSGN

>CfAKR2a

MAAASVSVPRMKLGSQGLEVSAQGLGCMGMSAFYGPPKPEPDMIMLIHHAVASGVTFLDTSDMYGPHTNE ILLGKALQGGVREKVELATKFAVSFADGKREIRGDPAYVRAACEGSLKRLGVDCIDLYYQHRIDKKVPIE VTIGELKKLVEEGKIKYIGLSEASASTIRRAHAVHPITAVQLEWSLWSRDVEEDIIPTCRELGIGIVAYS PLGRGFLCGGAKLVDSLSDQDFRKHMPRFQPENIDKNAKIFEHVNAMAAKKGCTPSQLALAWVHHQGNDV CPIPGTTKIENFNQNVGALSVKLTPDEMVELESYTAAGEVSGDRYAGITNTWKDSETPPLSSWKYE

>CfAKR2b

MAAASVSVPRMKLGSQGLEVSAQGLGCMGMSAFYGPPKPEPDMIMLIHHAVASGVTFLDTSDMYGPHTNE ILLGKALQGGVREKVELATKFAVSFADGKREIRGDPAYVRAACEGSLKRLGVDCIDLYYQHRIDKKVPIE VTIGELKKLVEEGKIKYIGLSEASASTIRRAHAVHPITAVQLEWSLWSRDVEEDIIPTCRELGIGIVAYS PLGRGFLCGGAKLVDSLSDQDFRKHMPRFQPENIDKNAKIFEHVNAMAAKKGCTPSQLALAWVHHQGNDV CPIPGTTKIENFNQNVGALSVKLTPDEMAELESYAAAGKVLGDRYPQMANTWKDSETPPLSSWKSE

>CfCCD1

MGGGDGDEVLLLPEPRPRRGLASWALDLLERAAVRLGHDASKPLYWLSGNFAPVHHETPPAPALPVRGHL PECLNGEFVRVGPNPKFVPVAGYHWFDGDGMIHAMRIKDGKATYVSRYVKTSRLKQEEYFGGAKFMKIGD LKGFYGLFMVQMQQLRKKLKVLDFTYGHGTANTALIYHHGKLMALSEADKPYVVKVLEDGDLQTLGLLDY DKRLKHSFTAHPKVDPFTDEMFAFGYSHEPPYCTYRVITKDGAMLDPVPITIPESVMMHDFAITENYSIF MDLPLLFRPKEMVKNGEFIYKFDPTKKARFGILQRYEKDDTNIRWFELPNCFIFHNANAWEEGDEVILIT CRLENPDLDKVNGYQSDNLENFGNELYEMRFNMKTGAASQKQLSVSAVDFPRINESYTGRKQRYVYCAIL NSIAKVAGIIKFDLHAEPEISGKKQLEVGGNVRGIFDLGPGRFGSEAIFVPREPGVSGEEDDGYLIFFVH DENTGKSEVNVIDAKTMSADPVAVVELPSRVPYGFHAFFINEEQLAKQSA

>CfAAT1

MAITVRRSTMVRPAWETPRVRLWNSNLDLVVPRFHTPSVYFYRRGPEGGGAPEGFFDGERMRRALAEALV PFYPMAGRLARDEDGRVEIDCNGEGVLFVEADAPDASVDDYGDFAPTMELKRLIPAVDYTDDISSFSLLV LQVTYFKCGGVSLGVGMQHHVADGMSGLHFINSWSDLCRGTQIAIMPFIDRTLLRARDPPTPSYPHVEYQ PAPAMLSSVPQSVTANKTTPPPTAVDIFKLTRSDLGRLRSQLPSGEGAPRFSTYAVLAAHVWRCVSLARG LPSEQPTKLYCATDGRQRLQPPLPEGYFGNVIFTATPLAEAGKVTSGLADGAAVIQEALDRMNDSYCRSA LDYLELQPDLSALVRGAHTFRCPNLGLTSWVRLPIHDADFGWGRPVFMGPGGIAYEGLAFVLPSANKDGS LSIAISLQAEHMEKFRKLIFEV

>CfAAT2

MGIFTVTKLSEGPVRPSADTPSVTLPLAWVDRYPTHRGLVESTHIYCSDAAAMNTLLPPAPAAGGAEVDG ALAAPKKEVVATKTMKSPAAVVRGALADALVHYYPFAGRIVEDVPGRPAVLCSAEGVYFVEAAANCTLAD VNFLERPLLLAKEQLVPYPTPELWPVEPHNSLAMIQVTSFTCGGFVVGLRTNHAVADGTGAAQFLNAVGD LARGLPEPRVKPVWGRDRFPDPDIKPGPLPELPVLALEYIAFDFPTAYLSKLKAQYAASTGGKICSGFDI VIAKLWQCRTRAIDAGGTSDVDVRLCFFASVRHVLKLEPGYYGNAIFPVKVCAPAEKVAGSSVIELVGMV REAKRRVAEECLAWAEGRTGGVDPFQMTFNYESVYVSDWSKLGFADVDYGYGAPMSAGPLVNCDLIASVI VMRAPAPLAGTRLLASCVTKEHADDFARRMREDLLV

>CfAAT3

MAPPISADACLVEAASALAGAASPSIEPPNGTVCKDNVAAPAISVVSKHTVRPAYGDASAAPVGDLRLSV SDMPMLSCHYIQKGLFFPPPPPGVSTTTASLVTSLVTALSRALGVFPALAGRLVTLHDDSIVIRCGGEDA AVEFYHAVAPSLLLGDFLVPGADVPTSLTNALLPMDRTVSYGGHARPLSSFQLTVLGDGAVFVGFVANHA VVDGTSFWHFFNTWAGFCRGGAPTQEPDFRRNFFGDSTAVLRFPGRMGPAVTFDAEAPLRERILHFSAAT IRELKATANRSKPTGHQDAEANGKLVHDSKLHGREISSFQSLCAHIWRAVTRARRLLAADKTTTFRMAVN CRHRLRPAISPLYFGNAIQSVATTATVAELASNDLGWAAARLHATVTSHEDGAIRRAAAEWEAAPRCFPL GNPDGAALTMGSSPRFPMYDGNDFGWGRALAVRSGRANKFDGKMSAFPGQAGDGSVDVEVCLAPDTMARL LLDEEFLOYVSSSPAP

>CfALDH1

MAAAAARRGSSLLSRCLLSRPAAAASPAVPSALRRADGTQGLLPGILQRFSTAAVAEEPISPPVQVNYTQ LLIDGKFVDSASGKTFPTLDPRTGELIAHVAEGDAEDINRAVHAARKAFDEGPWPKMTAYERSRILLRFA DLIEKHNDEIAALETWDNGKPYAQAANIEVPMVARLMRYYAGWADKIHGLVVPADGPHHVQVLHEPIGVA GQIIPWNFPLLMFAWKVGPALACGNTVVLKTAEQTPLSALFASKLLHEAGLPDGVVNVVSGFGPTAGAAL ASHMDVDKIAFTGSTDTGKVVLELAARSNLKSVTLELGGKSPFIIMDDADVDHAVELAHFALFFNQGQCC CAGSRTFVHERIYDEFVEKAKARALKRVVGDPFKNGVEQGPQIDDEQFNKILRYIKYGVDSGANLVTGGD RLGDKGYYIQPTIFSDVQDNMRIAQEEIFGPVQSILKFNDLNEVIKRANASQYGLAAGVFTNNLNTANTL TRALRVGTVWVNCFDVFDAAIPFGGYKQSGIGREKGIDSLKNYLQVKAVVTPIKNAAWL

>CfALDH2

MAARRAASSLLSRGLIARPSAASSTGDSAILGAGSARGFLPGSLHRFSAAPAAAATAAATEEPIQPPVDV
KYTKLLINGNFVDAASGKTFATVDPRTGDVIARVAEGDAEDVNRAVAAARRAFDEGPWPRMTAYERCRVL
LRFADLIEQHADEIAALETWDGGKTLEQTTGTEVPMVARYMRYYGGWADKIHGLVVPADGPHHVQVLHEP
IGVAGQIIPWNFPLLMFAWKVGPALACGNAVVLKTAEQTPLSALFVASLLHEAGLPDGVLNVVSGFGPTA
GAALSSHMGVDKLAFTGSTGTGKIVLELAARSNLKPVTLELGGKSPFIVMDDADVDQAVELAHRALFFNQ
GQCCCAGSRTFVHERVYDEFVEKARARALQRVVGDPFRTGVEQGPQIDGEQFKKILQYVKSGVDSGATLV
AGGDRAGSRGFYIQPTVFADVEDEMKIAQEEIFGPVQSILKFSTVEEVVRRANATPYGLAAGVFTQRLDA
ANTLARALRVGTVWVNTYDVFDAAVPFGGYKMSGVGREKGVYSLRNYLQTKAVVTPIKDAAWL

>CfALDH3

MARRAASSLISRCLLARAASSAPAGPSPSALRRPVPADGMRGLLPGVLQRFSTAAAVEEPITPSVQVNYT KLLINGNFVDSASGKTFPTLDPRTGEVIAHVAEGDAEDINRAVAAARKAFDEGPWPKMTAYERSRILLRF ADLIEKHNDELAALETWDNGKPYEQAAQIEVPMVARLMRYYAGWADKIHGLVVPADGPHHVQILHEPIGV AGQIIPWNFPLLMFAWKVGPALACGNTLVLKTAEQTPLSALYISKLLHEAGLPEGVVNVVSGYGPTAGAA LASHMDVDKVAFTGSTDTGKIILELAAKSNLKTVTLELGGKSPFIIMGDADVDHAVELAHFALFFNQGQC CCAGSRTFVHERVYDEFVEKSKARALKRVVGDPFRKGVEQGPQIDDEQFNKILRYIRSGVDSGANLVTGG DRLGDKGYYIQPTIFSDVQDGMKIAQEEIFGPVQSILKFKDLNEVIKRANASQYGLAAGVFTNNLDTANT LARALRVGTVWTNCFDIFDAAIPFGGYKMSGHGREKGIDSLKNYLQVKAVVTPIKNAAWL