Nižanje stopnje Bézierjevih krivulj z metodo najmanjših kvadratov

Luka Polanič, Justin Raišp

Ljubljana, 2024

Motivacija

Podano imamo Bézierjevo krivuljo stopnje *n*:

$$p_n(t) = \sum_{i=0}^n b_i B_i^n(t), \quad t \in [0,1],$$

kjer so b_i kontrolne točke in $B_i^n(t)$ Bernsteinovi bazni polinomi stopnje n. Naš cilj je poiskati Bézierjevo krivuljo stopnje m < n

$$\tilde{\rho}_m(t) = \sum_{i=0}^m c_i B_i^m(t), \quad t \in [0,1],$$

da je razdalja med krivuljama minimalna.

Metoda najmanjših kvadratov

Kontrolne točke c_i določimo tako, da minimiziramo L_2 -normo med krivuljama p_n in \tilde{p}_m , pri čemer je L_2 -norma definirana kot:

$$d_2(p_n, \tilde{p}_m) = \sqrt{\int_0^1 \|p_n(t) - \tilde{p}_m(t)\|^2} dt,$$

kjer je $\|p_n(t) - \tilde{p}_m(t)\|^2$ kvadrat evklidske razdalje med krivuljama.

Konstrukcija nižanja stopnje iz n na n-1.

Konstrukcije se bomo lotili induktivno. Če bi želeli zvišati stopnjo Bézierjeve krivulje, bi uporabili naslednjo zvezo:

$$b_i = \frac{i}{n}c_{i-1} + \frac{n-i}{n}c_i, \quad i = 0, 1, \dots, n.$$

Sedaj lahko na dva načina izrazimo zaporedje neznanih kontrolnih točk $\{c_i\}_{i=0}^{n-1}$. Dobimo dva sistema enačb, pri čemer bomo v obeh primerih zanemarili eno enačbo, saj bi bil sistem sicer predoločen.

• Zanemarimo zadnjo enačbo za i = n in dobimo

$$c_i^{(I)} = \frac{1}{n-i} \left(nb_i - ic_{i-1}^{(I)} \right)$$
 za $i = 0, 1, \dots, n-1$.

Dodatno upoštevamo, da je $c_{-1} = 0$.

ullet Pri drugi izražavi zanemarimo prvo enačbo, tj. za i=0, in dobimo

$$c_{i-1}^{(II)} = \frac{1}{i} \left(nb_i - (n-i)c_i^{(II)} \right)$$
 za $i = n, \dots, 1$.

Množici kontrolnih točk $\{c_i^{(I)}\}_{i=0}^{n-1}$ in $\{c_i^{(II)}\}_{i=0}^{n-1}$ predstavljata kontrolna poligona za dve različni Bézierjevi krivulji stopnje n-1. Označimo ju z $\tilde{p}_{n-1}^{(I)}$ in $\tilde{p}_{n-1}^{(II)}$.

Lastnosti krivulj $\tilde{p}_{n-1}^{(I)}$ in $\tilde{p}_{n-1}^{(II)}$

Krivulji $\tilde{p}_{n-1}^{(I)}$ in $\tilde{p}_{n-1}^{(II)}$ imata naslednji lastnosti:

- p_n in $\tilde{p}_{n-1}^{(I)}$ imata enaki vrednosti v t=0,
- p_n in $\tilde{p}_{n-1}^{(II)}$ imata enaki vrednosti v t=1.

Sedaj moramo poiskati še kontrolne točke $\{c_i\}_{i=0}^{n-1}$ končne Bézierjeve krivulje \tilde{p}_{n-1} . Za kontrolne točke vzamemo linearno kombinacijo točk, določenih z zgornjima izrazoma:

$$c_i = (1 - \lambda_i) \cdot c_i^{(I)} + \lambda_i \cdot c_i^{(II)}$$
 za $i = 0, 1, \dots, n-1$.

Z uvedbo faktorjev $\{\lambda_i \in \mathbb{R}\}$ prevedemo problem iskanja kontrolnih točk $\{c_i\}_i$ na problem računanja ustreznih faktorjev $\{\lambda_i\}_i$, za katere velja, da je $d_2(p_n, \tilde{p}_{n-1})$ minimalna.

Izbira uteži

Da se pokazati, da če za krivuljo p_n z $\Delta^n b_0 \neq 0$ in $2\alpha \leq n$, izberemo faktorje λ_i kot

$$\lambda_{i} = \binom{2n}{n+2\alpha}^{-1} \cdot \sum_{j=0}^{i} \binom{n}{j-\alpha} \binom{n}{j+\alpha}, \quad i = 0, 1, \dots, n-1,$$

potem za $t_0 = 0$ in $t_1 = 1$ velia:

$$\left. \frac{d^r}{dt^r} \rho_n(t) \right|_{t=t_0} = \left. \frac{d^r}{dt^r} \tilde{\rho}_{n-1}(t) \right|_{t=t_0}, \quad 0 \le r \le \alpha - 1.$$

Izbira uteži

Parameter	<i>n</i>	λ_0	λ_1	λ_2	λ_3	λ_{4}	λ_5	λ_6
$\alpha = 1$	3	0	$\frac{1}{2}$	1				
	4	0	$\frac{\frac{1}{2}}{\frac{3}{14}}$ $\frac{1}{12}$	$\frac{11}{14}$	1			
	5	0	$\frac{1}{12}$	$\frac{11}{14}$ $\frac{1}{2}$	$\frac{11}{12}$	1		
$\alpha = 2$	5	0	0	1 5	1	1		
	6	0	0	$\frac{5}{22}$	$\frac{1}{2}$	$\frac{17}{22}$	1	
	7	0	0	1 5 22 5 52	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{17}{22}$ $\frac{47}{52}$	1	1

Velja:

- $\lambda_i = 1 \lambda_{n-i-1}$
- $0 = \lambda_0 = \ldots = \lambda_{\alpha-1} < \lambda_{\alpha} < \ldots < \lambda_{n-\alpha-1} < \lambda_{n-\alpha} = \ldots = \lambda_{n-1} = 1$

Posplošitev znižanja stopnje

Doslej smo zniževali stopnjo le iz n na n-1. Sedaj želimo splošnejši algoritem za znižanje stopnje iz n do m, kjer m < n. Postopek je iterativen: na vsakem koraku zmanjšamo stopnjo krivulje za eno, dokler ne dosežemo želene stopnje. Ključne lastnosti:

- Nova krivulja in originalna krivulja se ujemata v $\alpha-1$ prvih odvodih na robnih točkah.
- \bullet L^2 -norma minimizira razdaljo med krivuljama.

Uporaba drugih norm, npr. d_{∞} , ne bi zagotovila minimizacije z iterativnim algoritmom.

Algoritem

Algorithm 1 Algoritem za znižanje stopnje Bézierjeve krivulje

```
1: Vhodni podatki: \{b_0, b_1, \ldots, b_n\}, k. \alpha
 2: c_0 = b_0, c_{n-1} = b_n
 3: \lambda = lambda(n, \alpha)
 4: while k > 0 do
        for i = 1 to n - 2 do
           c_i^{(I)} = \frac{1}{n-i} \left( nb_i - ic_{i-1}^{(I)} \right)
 6:
           c_{n-i-1}^{(II)} = \frac{1}{n-i+1} \left( nb_{n-i+1} - (i-1)c_{n-i+1}^{(II)} \right)
        end for
 8:
        for i = 1 to n - 2 do
 g.
           c_i = (1 - \lambda_i)c_i^{(I)} + \lambda_i c_i^{(II)}
10:
        end for
11:
12:
      k = k - 1
13: end while
```

Primeri v Matlabu.