# Dimensionality Reduction Part 3: The Local Manifold

Ng Yen Kaow

#### **Dimensionality Reduction**

- Linear methods
  - PCA (Principal Component Analysis)
  - CMDS (Classical Multidimensional Scaling)
- Non-linear methods
  - KPCA (Kernel PCA)
  - mMDS (Metric MDS)
  - Isomap
  - **LLE** (Locally Linear Embedding)
  - Laplacian Eigenmap
  - t-SNE (t-distributed Stochastic Neighbor Embedding)
  - UMAP (Uniform Manifold Approximation and Projection)

#### Keys principles for PCA/MDS

|               | Property in matrix                         | Linearity of mapped space             | Principle                            | Dimensionality reduction |
|---------------|--------------------------------------------|---------------------------------------|--------------------------------------|--------------------------|
| PCA           | Pairwise ( <b>global</b> ) covariance      | Linearly mapped space (or no mapping) | Maximizes covariance in mapped space | Principal eigenvectors   |
| cMDS          | Pairwise ( <b>global</b> ) inner product   | Linearly mapped space (or no mapping) | Recovers original structure          | Principal eigenvectors   |
| mMDS          | Pairwise ( <b>global</b> ) metric distance | Non-linearly mapped space             | Find approximate dimension           | tion in low              |
| Kernel<br>PCA | Pairwise ( <b>global</b> ) covariance      | Non-linearly<br>mapped space          | Maximizes covariance in mapped space | Principal eigenvectors   |

<sup>□</sup> PCA readily allows embedding of **out-of-sample examples** 

## Drawback with global properties

 Global properties on some manifolds cannot characterize the manifold well



 Techniques based on preserving global properties does poorly on the Swiss roll

# Drawback with global properties





Data projected to main three eigenvectors in **kernel PCA** (rbf kernel)



On the other hand, methods such as **LLE** that preserve local properties can handle the Swiss roll

## Trends in Dimensionality Reduction



2000 Isomap, LLE

2001 Laplacian Eigenmap

2008 t-SNE

2018 UMAP

© 2021. Ng Yen Kaow

Non-global

# Local structure preserving mapping



Weinberger and Saul. "Unsupervised Learning of Image Manifolds by Semi-definite Programming", CVPR 2004

#### Isomap idea



- Isomap performs only the first step to find (Euclidean) distances of neighboring points
- Pairwise (geodesic) distances are estimated using the neighboring distances
- □ Then, MDS is used on the estimated geodesic distances

## Isomap algorithm

- 1. Construct neighborhood graph
  - Find nearest k neighbors  $N(x_i)$  of each point  $x_i$
  - Construct a neighborhood graph by connecting x<sub>i</sub> to the points in N(x<sub>i</sub>) with Euclidean distance set as edge weight
- 2. Compute (shortest) distance matrix M
  - Find shortest distance between pairwise points on the graph
- 3. Find eigenvectors of M using MDS (or PCA)

#### Isomap

- At first look, appear to be very different from kernel PCA (or PCA)
- However, from a kernel perspective,
   Isomap is similarly a kernel method
  - Discussed in Ham *et al*. "A kernel view of the dimensionality reduction of manifolds", 2003
  - Such a framework allows mapping out-ofsample examples to the embedded space
    - Discussed in Bengio *et al*. "Out-of-Sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering", 2003

# Locally Linear Embedding (LLE)



□ LLE is the first algorithm that runs the full scheme

## Locally Linear Embedding (LLE)

- 1. Construct neighborhood graph
  - Find nearest k neighbors  $N(x_i)$  of each point  $x_i$
- 2 Find matrix W which minimizes its sum of squares error in representing each  $x_i$  with its neighbors  $x_i$  as a linear combination of its neighbors
  - If suffices that for each i error( $w_i$ ) =  $||x_i \sum_{j \neq i} w_{ij} x_j||^2$  is minimized
- 3. Find low dimensional  $y_1, ..., y_n$  that is most consistent with W
  - Minimize

error
$$(y_1, ..., y_n) = \sum_{i=1}^n ||y_i - \sum_{j \neq i} w_{ij} y_j||^2$$

- □ For each i, find  $w_{i1}, ..., w_{ik}$  such that  $\|x_i \sum_{j \neq i} w_{ij} x_j\|^2$  is minimized
  - Further require that  $\sum_{i} w_{ij} = 1$ 
    - 1. Then, solution will be invariant to translation

Let 
$$x'_j \rightarrow x_j + c$$
. Then,  

$$x'_j - \sum_{j \neq i} w_{ij} x'_j = x_j + c - \sum_{j \neq i} w_{ij} (x_j + c)$$

$$= x_j + c - \sum_{j \neq i} w_{ij} x_j - c$$

$$= x_j - \sum_{i \neq i} w_{ij} x_i$$

2. Also,  $w_{ij}$  can be interpreted as transition probability

- □ For each i, find  $w_{i1}, ..., w_{ik}$  such that  $\|x_i \sum_{j \neq i} w_{ij} x_j\|^2$  is minimized
  - 1. Let  $x'_j \to x_j x_i$  (Center  $x_j$ ) Then,  $||x'_i - \sum_{j \neq i} w_{ij} x'_j||^2 = ||\sum_{j \neq i} w_{ij} x'_j||^2$
  - 2. Let  $C_i = [x'_1, ..., x'_k]$ Then,  $\|\sum_{j \neq i} w_{ij} x'_j\|^2 = w_i^T C_i C_i^T w_i$ Or,  $\|\sum_{j \neq i} w_{ij} x'_j\|^2 = w_i^T G_i w_i$  for  $G_i = C_i C_i^T$
  - $\Rightarrow$  Minimize  $w_i^T G_i w_i$  subject to  $\sum_j w_{ij} = 1$ Cannot be done by eigendecomposition of  $G_i$ since constraint  $\sum_j w_{ij} = 1$  cannot be fulfilled Return to the Lagrange multiplier method

- $\square$  Minimize  $w_i^{\mathrm{T}}G_iw_i$  subject to  $\sum_j w_{ij} = 1$ 
  - 1. Use Lagrange multiplier to constrain  $\sum_{j} w_{ij} = 1$ That is,  $\mathbf{1}^{T}w_{i} - 1 = 0$ , Lagrangian,  $\mathcal{L}(w_{i}, \lambda) = w_{i}^{T}Gw_{i} - \lambda(\mathbf{1}^{T}w_{i} - 1)$   $\frac{\partial \mathcal{L}}{\partial w_{i}} = 2G_{i}w_{i} - \lambda\mathbf{1} = 0 \Rightarrow G_{i}w_{i} = \frac{\lambda}{2}\mathbf{1}$  $\frac{\partial \mathcal{L}}{\partial \lambda} = \mathbf{1}^{T}w_{i} - 1 = 0$
  - 2. If G is invertible

$$G_i w_i = \frac{\lambda}{2} \mathbf{1} \Rightarrow w_i = \frac{\lambda}{2} G_i^{-1} \mathbf{1}$$

Find  $G_i^{-1}\mathbf{1}$  or solve linear equations  $G_iw_i = \frac{\lambda}{2}\mathbf{1}$ Then, scale  $\lambda$  such that  $\sum_i w_{ij} = 1$ 

3. If G is not invertible ( $k \ge m$ , rank deficient), use Tikhonov regularization

Minimize  $w_i^T G_i w_i + \alpha w_i^T w_i$  instead, subject to  $||w_i|| = 1$ , where  $\alpha$  determines the degree of regularization

$$\mathcal{L}(w_i, \lambda) = w_i^{\mathrm{T}} G w_i + \alpha w_i^{\mathrm{T}} w_i - \lambda (\mathbf{1}^{\mathrm{T}} w_i - 1)$$

$$\frac{\partial \mathcal{L}}{\partial w_i} = 2G_i w_i + 2\alpha w_i - \lambda \mathbf{1} = 0$$

$$(G_i + \alpha I) w_i = \frac{\lambda}{2} \mathbf{1}$$

$$w_i = \frac{\lambda}{2} (G_i + \alpha I)^{-1} \mathbf{1}$$

Find  $w_i = (G_i + \alpha I)^{-1} \mathbf{1}$  or solve linear equations  $(G_i + \alpha I)w_i = \mathbf{1}$ . Scale  $\lambda$  such that  $\sum_i w_{ij} = 1$ 

# LLE Step 3: Find low-D $y_1, ..., y_n$

- □ Find  $y_1, ..., y_n \in \mathbb{R}^q$  such that  $\|y_i \sum_{j \neq i} w_{ij} y_j\|^2$  is minimized
  - To restrict equivalent solutions due to translation, require that  $\sum_i y_i = 0$  (centered)
  - Let Y be the matrix formed by  $y_i$  as the rows, and  $u_i$  be the columns of Y. To ensure that  $u_i$  are orthogonal, require that  $Y^TY = nI$

i.e. 
$$Y^TY = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}^T \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} [u_1 \quad \dots \quad u_n] = \begin{bmatrix} u_1u_1 & \dots & u_1u_n \\ \vdots & \ddots & \vdots \\ u_nu_1 & \dots & u_nu_n \end{bmatrix}$$

$$\begin{bmatrix} u_1u_1 & \dots & u_1u_n \\ \vdots & \ddots & \vdots \\ u_nu_1 & \dots & u_nu_n \end{bmatrix} = nI \Rightarrow u_iu_j = 0 \text{ for } i \neq j$$

# LLE Step 3: Find low-D $y_1, ..., y_n$

Find  $y_1, ..., y_n \in \mathbb{R}^q$  such that  $\|y_i - \sum_{j \neq i} w_{ij} y_j\|^2$  is minimized subject to  $Y^T Y = nI$  and  $\sum_i y_i = 0$ 

$$\sum_{i=1}^{n} (y_{i} - \sum_{j} w_{ij} y_{j})^{2}$$

$$= \sum_{i}^{n} y_{i}^{2} - y_{i} (\sum_{j} w_{ij} y_{j}) - (\sum_{j} w_{ij} y_{j}) y_{i} + (\sum_{j} w_{ij} y_{j})^{2}$$

$$= Y^{T}Y - Y^{T}(WY) - (WY)^{T}Y + (WY)^{T}(WY)$$

$$= ((I - W)Y)^{T} ((I - W)Y)$$

$$= Y^{T} (I - W)^{T} (I - W)Y$$

$$= Y^{T} MY \text{ where } M = (I - W)^{T} (I - W)$$

# LLE Step 3: Find low-D $y_1, ..., y_n$

□ Minimize  $Y^TMY$  where  $M = (I - W)^T(I - W)$ subject to  $Y^TY = nI$  and  $\sum_i y_i = 0$ Consider first case q = 1 (that is, Y is column vector and I = 1)

$$\mathcal{L}(Y,\mu) = Y^T M Y - \mu \left( \frac{Y^T Y}{n} - 1 \right) - \nu Y$$

$$\frac{\partial \mathcal{L}}{\partial Y} = 2MY - 2\frac{\mu}{n}Y - \nu = 0 \Rightarrow MY = \frac{\mu}{n}Y \text{ (Set } \nu = 0)$$

Hence Y is a eigenvector of M

For  $q \ge 2$ , simply observe that by the min-max theorem the eigenvectors for M minimizes  $Y^TMY$ 

Finally, since 
$$W\mathbf{1} = \mathbf{1}$$
,  $(I - W)\mathbf{1} = 0$   
 $\Rightarrow (I - W)^{\mathrm{T}}(I - W)\mathbf{1} = 0 \Rightarrow M\mathbf{1} = 0$   
 $\Rightarrow Y = \mathbf{1}$  is a eigenvector of zero eigenvalue (excluded)

## LLE algorithm

- 1. Construct neighborhood graph Find nearest k neighbors  $N(x_i)$  of each point  $x_i$
- 2. Find matrix W which minimizes its sum of squares error in representing each  $x_i$  with its neighbors

For each i

Let  $x'_j \rightarrow x_j - x_i$  and Let  $C_i = [x'_1, ..., x'_k]$ 

Solve  $G_i w_i = \mathbf{1}$  where  $G_i = C_i C_i^{\mathrm{T}}$ 

Scale  $w_i$  such that  $w_i \mathbf{1} = 1$ 

Collect  $w_i$  into W

3. Find low dimensional  $y_1, ..., y_n$  that is most consistent with W

Find eigenvectors for  $M = (I - W)^{T}(I - W)$  with smallest eigenvalues

#### LLE out-of-sample examples

- Mapping of out-of-sample examples not immediately available like in Kernel PCA
  - Discussed in Bengio et al. "Out-of-Sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering", 2003

# Laplacian Eigenmap idea

- □ The normalized Laplacian L encodes structure of the graph
  - The eigenvectors of L known to encode important features of the graph (see slides on Spectral Clustering)
- The Laplacian can be considered as eigenfunctions similar to kernel functions
  - Discussed in Bengio et al. "Learning eigenfunctions links Spectral Embedding and Kernel PCA", 2004
  - Readily gives rise to using Laplacian in similar way as Kernel PCA

# Laplacian Eigenmap algorithm

- 1. Construct neighborhood graph
  - Find nearest k neighbors  $N(x_i)$  of each point  $x_i$
  - Construct a neighborhood graph by connecting  $x_i$  to the points in  $N(x_i)$  with **Gaussian heat** function  $e^{-d^2/\sigma}$  set as edge weight
- 2. Construct normalized Laplacian *L* and degree matrix *D*
- 3. Find the eigenvectors for the generalized eigenvalue system  $Lu = \lambda Du$

## Laplacian Eigenmap

- Like in LLE, Laplacian Eigenmap models edge weight as transition probability
  - However, since edge weight  $e^{-d^2/\sigma}$  in Laplacian Eigenmap naturally falls off with distance  $\Rightarrow$  no need to find k neighbors
    - This is exploited in t-SNE
- Mapping of out-of-sample examples not immediately available like in Kernel PCA
  - Discussed in Bengio *et al*. "Out-of-Sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering", 2003

# Comparison

|                                        | Isomap                                            | LLE                                                                                          | Laplacian Eigenmap                                     |
|----------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Edge weight                            | Approximated geodesic distance                    | Coefficients $w_{ij}$ in reconstructing $x_i$ (transition probability)                       | Gaussian $e^{-d^2/\sigma}$ (transition probability)    |
| Pairwise edge or neighborhood only     | Pairwise Distant pairs use shortest path distance | Neighborhood only Matrix contains mostly zeros                                               | Neighborhood only Matrix contains mostly zeros         |
| Matrix to decompose                    | Edge weight                                       | Edge weight                                                                                  | Normalized Laplacian                                   |
| Embedding into lower dimensional space | Use principal eigenvectors from MDS               | Find low dimensional points that give the same $w_{ij}$ (shown to be principal eigenvectors) | Use principal eigenvectors that retain graph structure |
| Edge weight preservation               | Preserves<br>Euclidean<br>distance                | Normalized, scale-free                                                                       | Preserves $e^{-d^2/\sigma}$                            |