Algoritmo de Reducción de Brzozowski-McCluskey, Método de Arden

Alan Reyes-Figueroa Teoría de la Computación

(Aula 07) 07.agosto.2024

Equivalencia entre AFNs y expresiones regulares (Parte 2)

Dado un AFN, construye una expresión regular que describe el lenguaje aceptado por el autómata.

Idea base: eliminar estados, 1 a la vez, a manera de reducir el AFN a un autómata de uno o dos estados sólo.

Figura 3.9. Un autómata genérico de dos estados.

Figura 3.10. Autómata genérico de un estado.

La siguiente figura muestra lo que ocurre al eliminar un estado s.

R + QP

QS*P

R + QS*P

La siguiente figura muestra lo que ocurre al eliminar un estado *s*.

Figura 3.7. Un estado s que va a ser eliminado.

Figura 3.8. Resultado de eliminar el estado s de la Figura 3.7.

Paso 1: Para cada estado de aceptación, aplicamos el proceso de reducción. Eliminamos todos los estados excepto q y el estado inicial q_0 .

Paso 2a: Si $q \neq q_0$, llegaremos a un autómata de dos estados como

Cuya expresión regular es (R + SU*T)*SU*.

Paso 2b: Si $q = q_0$, llegaremos a un autómata de un solo estado como

Cuya expresión regular es R*.

Paso 3: Finalmente, la expresión regular de todo el autómata es la suma (unión) de todas las expresiones obtenidas al reducir para cada estado de aceptación q.

Ejemplos

Lema de Arden

Lema (Lema de Arden)

Si A y B son lenguajes sobre un alfabeto Σ , y ε no está en A, entonces la ecuación $\mathbf{X} = \mathbf{A}\mathbf{X} + \mathbf{B}$, tiene como única solución el lenguaje $X = A^*B$.

Ejemplos

- La ecuación X = aX + b*ab tiene solución
 X = a*b*ab
- 2) La ecuación $X = a^2X + b^+X + ab$ tiene solución $X = (a^2 + b^+)*ab$
- 3) La ecuación $X = ab^2X + aX + a*b + b*a$ tiene solución $X = (ab^2 + a)*(a*b + b*a)$

Algoritmo de Arden

El lema de Arden proporciona otro mecanismo para convertir un AFN es una expresión regular.

Sea M = (K, Σ , q_0 , F, Δ) un AFN. Observe que M posee un único estado inicial q_0 .

Para cada estado $q_i \in K$, sea $M_i = (K, \Sigma, q_i, F, \Delta)$ el autómata que coincide con M pero con estado inicial q_i . Denotamos por A_i el lenguaje aceptado por M_i .

Cada A_i puede escribirse como

$$A_{i} = \begin{cases} \bigcup_{a \in \Sigma} \{aA_{j}: q_{j} \in \Delta(q_{i}, a)\}, & si \ q \notin F \\ \bigcup_{a \in \Sigma} \{aA_{j}: q_{j} \in \Delta(q_{i}, a)\} + \varepsilon, & si \ q \in F \end{cases}$$

Algoritmo de Arden

 $Q = \{q_0, q_1, q_2, ..., q_n\}$, las igualdades anteriores conforman un sistema de ecuaciones "lineales"

$$\begin{array}{rcl} A_0 & = & c_{00}A_0 + c_{01}A_1 + \dots + c_{0n}A_n \\ A_1 & = & c_{10}A_0 + c_{11}A_1 + \dots + c_{1n}A_n \\ \vdots & \vdots & & \vdots \\ A_n & = & c_{n0}A_0 + c_{n1}A_1 + \dots + c_{nn}A_n \end{array}$$

donde cada c_{ij} o es Ø ó es un símbolo de Σ .

El término ε se añade a una ecuación sólo si el estado correspondientes A_i es un estado de aceptación.

Basta aplicar sucesivamente el Lema de Arden para resolver este sistema (siempre hay solución y es única).

Ejemplos

