Analyse Hilbertienne

1 Rappels sur les espaces de Hilbert

1.1 Espace de Hilbert

Définition - Produit scalaire

Soit E un espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}).

On appelle un *produit scalaire* sur E, toute application $E \times E \to \mathbb{K}$, notée $(x,y) \mapsto \langle x,y \rangle$, vérifiant les propriétés suivantes :

- $\forall x, y \in E, x \mapsto \langle x, y \rangle$ et $y \mapsto \langle x, y \rangle$ sont linéaires
- $\forall x, y \in E, \langle x, y \rangle = \overline{\langle y, x \rangle}$ (symétrie conjuguée)
- $\forall x \in E, \langle x, x \rangle \ge 0$
- $\forall x \in E, \langle x, x \rangle = 0 \Leftrightarrow x = 0$

Définition - Norme

Soit E un espace vectoriel muni d'un produit scalaire $\langle \cdot, \cdot \rangle$.

On appelle norme associée à ce produit scalaire, l'application $E \to \mathbb{R}^+$, notée $x \mapsto ||x||$, définie par $||x|| = \sqrt{\langle x, x \rangle}$.

Exemple:

- $E = \mathbb{C}^d$ muni du produit scalaire $\langle x, y \rangle = \sum_{i=1}^d x_i \overline{y_i}$
- $E = \mathbb{R}^d$ muni du produit scalaire $\langle x,y \rangle = \sum_{i=1}^d x_i y_i$
- $E = \mathcal{C}([0,1],\mathbb{C})$ muni du produit scalaire $\langle f,g \rangle = \int_0^1 f(t) \overline{g(t)} dt$
- **Remarque** : $(E, ||\cdot||)$ est appelé un *espace préhilbertien*.

Propriété - Inégalité de Cauchy-Schwarz

Soit $(E, ||\cdot||)$ un espace préhilbertien. Alors $\forall x, y \in E, |\langle x, y \rangle| \leq ||x|| \cdot ||y||$.

► Texte Manquant

Propriété

- $2\operatorname{Re}(\langle x, y \rangle) = ||x + y||^2 ||x||^2 ||y||^2$ (identité de polarisation)
- $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$ (identité de Parallelogramme)

1.2Orthogonalité

Définition - Orthogonalité

- Soit $(x,y) \in E^2$. On dit que x et y sont orthogonaux si $\langle x, y \rangle = 0$.
- Soit $A \subset E$. L'orthogonal de A est l'ensemble $A^{\perp} = \{x \in E \mid \forall y \in A, \langle x, y \rangle = 0\}.$
- Une famille $(x_i)_{i=1,\dots,n}$ est dite orthogonale si $\forall i \neq j, \langle x_i, x_j \rangle = 0$.

Remarque:

- A^{\perp} est un sous-espace vectoriel de E.
- Si A = E, alors A[⊥] = {0}.
 A[⊥] = Vect(A)[⊥].
- **Remarque:** Une famille orthogonale sans vecteur nul est libre.

Théorème - Théorème de Pythagore

Soit $(E, ||\cdot||)$ un espace préhilbertien, et $(x_i)_{i\in [1,n]}$ une famille orthogonale. Alors $||\sum_{i=1}^{n} x_i||^2 = \sum_{i=1}^{n} ||x_i||^2$.

Procédé d'orthogonalisation de Gram-Schmidt:

Soit (x_1, \ldots, x_n) une famille libre d'un espace préhilbertien $(E, \langle \cdot, \cdot \rangle)$. Il existe une famille orthogonale (v_1, \ldots, v_n) telle que : $Vect(x_1, \ldots, x_n) = Vect(v_1, \ldots, v_n).$

Construction:

$$v_{1} = x_{1}$$

$$v_{2} = x_{2} - \frac{\langle x_{2}, v_{1} \rangle}{||v_{1}||^{2}} v_{1}$$

$$v_{3} = x_{3} - \frac{\langle x_{3}, v_{1} \rangle}{||v_{1}||^{2}} v_{1} - \frac{\langle x_{3}, v_{2} \rangle}{||v_{2}||^{2}} v_{2}$$

$$\dots$$

$$v_{n} = x_{n} - \sum_{i=1}^{n-1} \frac{\langle x_{n}, v_{i} \rangle}{||v_{i}||^{2}} v_{i}$$

1.3 Espace de Hilbert

Définition

Un espace de Hilbert (réel ou hermitien dans le cas complexe) est un espace préhilbertien complet pour la norme associée au produit scalaire : $||\cdot||: x \mapsto \sqrt{\langle x, x \rangle}.$

Remarque: Cela signifie:

 $\forall (x_n) \subset H$, si $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \forall p \in \mathbb{N}, ||x_n - x_p|| \leq \varepsilon$, alors (x_n) converge dans H.

Exemple:

Texte Manquant

Propriété - Sommabilité

Soit H un espace de Hilbert, et (u_n) une suite d'éléments de H.

Si la suite (u_n) est composée d'éléments deux à deux orthogonaux et si $\sum ||u_n||^2$ converge, alors la série $\sum u_n$ converge dans H.

De plus, si $\sum ||u_n||$ converge, alors $\sum u_n$ converge dans H.

 $\blacktriangleright \quad \sum |u_n| \text{ converge} \Leftrightarrow (T_n) = \sum_{k=0}^n ||u_k|| \text{ converge.}$

 $\sum u_n$ converge \Leftrightarrow $(S_n) = \sum_{k=0}^n u_k$ converge.

Si *E* complet, alors $||S_n - S_m|| = ||\sum_{k=m+1}^n u_k|| \le \sum_{k=m+1}^n ||u_k|| \le T_n - T_m$.

Donc (T_n) converge \Rightarrow (T_n) de Cauchy \Rightarrow (S_n) de Cauchy dans un complet \Rightarrow (S_n) converge.

2 Théorème de projection sur un convexe et applications

2.1 Théorème de projection, projection orthogonale

Théorème

Soit H un espace de Hilbert, et C un convexe fermé non-vide de H.

Pour tout $f \in H$, il existe un unique point $g \in C$, appelé projection de f sur C, tel que la distance entre f et g soit minimale.

Ce point est caractérisé par : $\forall h \in C, \text{Re}(\langle f - g, h - g \rangle) \leq 0.$

Remarque: $d(f,C) = \inf_{h \in C} ||f - h|| = ||f - \Pi_C(f)||.$

▶ <u>Unicité</u>: Soient $g_1, g_2 \in C$ tels que $||f - g_1|| = ||f - g_2|| = d(f, C)$. Texte Manquant

Corollaire:

Tout élément $f \in H$ admet une unique décomposition f = g + h avec $g \in C$ et $h \in C^{\perp}$.

On a donc : $H = C \oplus C^{\perp}$; $(C^{\perp})^{\perp} = C$; $H^{\perp} = \{0\}$. Si $A \in H$ alors $(A^{\perp})^{\perp} = \overline{\mathrm{Vect}(A)}$ (adhérence).

► Texte Manquant

Remarque: $A \subset H$ est total $\Leftrightarrow \overline{\operatorname{Vect}(A)} = H \Leftrightarrow A^{\perp} = \{0\}.$

2.2 Théorème de représentation de Riesz

Théorème

Pour tout $f \in H$, l'application $h \mapsto \langle f, h \rangle$ est une forme linéaire continue sur H.

Réciproquement, si \tilde{f} est une forme linéaire continue sur H, alors il existe un unique $f \in H$ tel que $\forall h \in H, \tilde{f}(h) = \langle f, h \rangle$.

► Texte Manquant

Remarque: Convolution:

Soit $T: \mathcal{L}^2(\mathbb{R}^n) \to \mathcal{C}^0_0(\mathbb{R}^n)$ un opérateur linéaire, continu, invariant par transformation.

Il existe $g \in \mathcal{L}^2(\mathbb{R}^n)$ tel que T(f) = f * g.

Rappel:

 $\mathcal{C}^0_0(\mathbb{R}^n) = \{ \text{fonctions continues, limites nulles à l'infini} \}$

L'application $f \mapsto T(f)(0)$ est une forme linéaire continue sur $\mathcal{L}^2(\mathbb{R}^n)$ donc il existe $g_0 \in \mathcal{L}^2(\mathbb{R}^n)$ tel que $T(f)(0) = \int_{\mathbb{R}^n} f(x) \overline{g_0(x)} dx$.

De plus,
$$\tau_x(T(f)) = T(\tau_x(f)) \ (\tau_x : f \mapsto f(x)).$$

$$T(f)(x) = \tau_x(T(f))(0) = T(\tau_x(f))(0)$$

$$= \int_{\mathbb{R}^n} f(x+y)\overline{g_0(y)}dy$$

$$= \int_{\mathbb{R}^n} f(y)\overline{g_0(y-x)}dy$$

$$= \int_{\mathbb{R}^n} f(y)g(x-y)dy$$