Cheat sheet: Linear Algebra and Differential Equations

Viet Duc Nguyen Technical University of Berlin

December 26, 2018

Contents

5	Examples	4
4	Matrix expontial 4.1 A is diagonalisable	3
3	Stability of 2×2 matrices	3
2	Higher order equations	2
1	The matrix is diagonalisable	1
0	Preface	1

0 Preface

A concise overview of solving linear differential equations with constant coefficients by methods of Eigenvalues and Eigenvectors. It is based on the monography *Introduction to Linear Algebra* by Gilbert Strang. This sheet is primarily written for me as a learning guide but may be useful for others. Feel free to use it.

1 The matrix is diagonalisable

Consider the problem

$$\dot{\mathbf{u}} = A\mathbf{u}.\tag{1}$$

This is a first order differential equation with constant coefficients (non-autonomous). The problem becomes easy when $A\mathbf{x} = \lambda \mathbf{x}$ for specific \mathbf{x} . If this is the case, we get a solution of (1) with

$$\mathbf{u}(t) = e^{\lambda t} \mathbf{x},$$

for $\dot{\mathbf{u}} = \lambda e^{\lambda t} \mathbf{x}$ and substituting in (1) yields

$$\dot{\mathbf{u}}(t) = \lambda e^{\lambda t} \mathbf{x} = A e^{\lambda t} \mathbf{x} = \lambda e^{\lambda t} \mathbf{x} = A \mathbf{u}(t).$$

The questions is: how do we find such λ and \mathbf{x} ? The scalars λ are the Eigenvalues of A with Eigenvectors \mathbf{x} . If A with dimension n decomposes into n distinct eigenvalues λ_i , we obtain n distinct solutions $\mathbf{u}_i(t) = e^{\lambda_i t} \mathbf{x}_i$.

The idea is basically a change of coordinates. We try to display the solution \mathbf{u} as a linear combination of Eigenvectors \mathbf{x}_i . We get specific solutions by setting the *i*-th coordinate to $e^{\lambda_i t}$ and everything else to null. As linear combinations of Eigenvectors remain Eigenvectors, $A\mathbf{u}$ is the same as $\lambda \mathbf{u}$, and simple derivation confirms the solution.

By change of coordinates to a basis of Eigenvectors, we are essentially decoupling the system. The matrix A can be displayed as a matrix in diagonal form, which means the equations are now independent from each other. We just need to solve n linear differential equations with constant coefficients (without change of coordinates this is not possible because the equations depend on each other).

2 Higher order equations

We increase the dimension of A and as a tradeoff we obtain a system of first order differential equations. For a system of n-th order, we introduce n-1 new variables $z_1, ..., z_{n-1}$ that reflect the derivatives. Given a higher order differential equation

$$a_0y + a_1y' + \dots + a_ny^{(5)} = 0,$$

we convert it to

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ & 0 & 1 & 0 & 0 \\ & & 0 & 1 & 0 \\ & & & 0 & 1 \\ -\frac{a_0}{a_n} & -\frac{a_1}{a_n} & \dots & \dots & -\frac{a_{n-1}}{a_n} \end{pmatrix} \begin{pmatrix} y \\ z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \frac{d}{dt} \begin{pmatrix} y \\ y' \\ y'' \\ y''' \\ y^{(4)} \end{pmatrix}.$$

It contains the following constraints: $z_1 = y',..., z_4 = \frac{d}{dt}y'''$ and $y^{(5)} = ...$ We can solve $A\mathbf{y} = \dot{\mathbf{y}}$ for y, and obtain the original solution.

3 Stability of 2×2 matrices

If all Eigenvalues have negative real part, then A is stable and solutions $\mathbf{u}(t) \to 0$ for $t \to \infty$. The reason is that every component of \mathbf{u} is of the form $e^{\lambda_i t}$. This part indeed converges to zero for negative λ_i . The matrix A must pass two requirements:

$$tr A < 0$$
 and $\lambda_1 \lambda_2 > 0$.

First, we know that the sum of all Eigenvalues equals the trace. Secondly, the determinant of A is the product of all Eigenvalues.

4 Matrix expontial

We cannot work with Eigenvalues and Eigenvectors if A is not diagonalisable. Instead, we can use the matrix exponential, which will always work. The problem consists of finding the exponential of a matrix A, i.e. calculate e^{At} .

The matrix exponential e^A is a matrix defined as

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

The problem will be calculating A^k . If we take the matrix At, the formula is

$$e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}.$$

Note that $t \in \mathbb{R}$ is a scalar and not a vector. The solution

$$\mathbf{u}(t) = e^{At}\mathbf{u}(0)$$

solves $\dot{\mathbf{u}} = A\mathbf{u}$ with initial value $\mathbf{u}(0)$ for t = 0. We can prove it by

$$\frac{d}{dt}e^{At} = Ae^{At}.$$

Just put it into the equation and we get the result.

We collect some properties:

- The inverse of e^A is e^{-A}
- For commutative matrices: $e^A e^B = e^B e^A = e^{A+B}$

• $e^{(A^T)} = (e^A)^T$. This means, the exponential matrix maps *symmetric* matrices to *symmetric* matrices.

$$(e^A)^T = e^{(A^T)} = e^A$$
 for symmetric A.

The exponential matrix maps skew-symmetric matrices $(A^T = -A)$ to orthogonal matrices $(AA^T = I)$.

$$e^A(e^A)^T = e^A e^{(A^T)} = e^A e^{-A} = I$$
 for skew-symmetric A.

4.1 A is diagonalisable

If A decomposes into $S\Lambda S^{-1}$, where $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$, the matrix exponential e^{At} is easy to compute.

$$e^{At} = S(e^{\Lambda t})S^{-1} = S\left(\text{diag}(e^{\lambda_1 t}, ..., e^{\lambda_n t})\right)S^{-1}.$$

The trick is that e^A becomes really easy if $A = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ is a diagonal matrix. For

$$e^{A} = \sum_{k=0}^{\infty} \frac{\operatorname{diag}(\lambda_{1}^{k}, ..., \lambda_{n}^{k})}{k!} = \operatorname{diag}(e^{\lambda_{1}}, ..., e^{\lambda_{n}}).$$

5 Examples

1. f