CSC263H

Data Structures and Analysis

Prof. Bahar Aameri & Prof. Marsha Chechik

Winter 2024 - Week 4

For a binary tree with n nodes, what is the smallest possible height?

· What kinds of binary trees have such height?

In a **complete** binary tree, the **heights** of the **left** and **right** sub-trees of any node <u>differ by</u> at most 1.

Balance Factor (BF): The height of the right sub-tree minus the height of the left sub-tree.

$$BF(n) = n.right.height - n.left.height$$

AVL Invariant: A node n satisfies the AVL invariant if $-1 \le BF(n) \le 1$.

AVL-Balanced: A binary tree that all of its nodes satisfy the AVL invariant.

AVL Tree: A BST which is AVL-balanced.

Invented by Georgy Adelson-Velsky and E. M. Landis in 1962.

Implication: In an AVL tree, the BF of every node is -1, 0, or 1.

(**Note:** Height is measured by the <u>number of levels</u> (number of nodes in the longest path from the root to a leaf).)

AVL Trees – Properties

- If BF(x) = +1, x is right heavy.
- If BF(x) = -1, x is **left heavy**.
- If BF(x) = 0, x is balanced.

Theorem: The height of an AVL tree with n nodes is at most $1.44 \log_2{(n+2)}$.

 \Rightarrow For an AVL tree with height h we have: $h \in \Theta(\log n)$.

AVL Trees – Implementation

Storage:

In addition to *x.key*, *x.left*, *x.right*, *x.p*, *x.height* is stored in each node *x*.

Operation Implementation:

- · AVLSearch: Same as BSTSearch.
- AVLInsert and AVLDelete:

Challeng: Keeping tree *balanced* after each update (insert/delete).

- Maintain AVL invariant for all affected nodes (i.e., ancestors of the inserted/deleted node).
- 2. Maintain the BST property.
- 3. *Update height* of the affected nodes accordingly.

AVL Trees – Implementation

Insert 35 Insert 20

AVL Trees – Implementation

Observations:

- Inserting/deleting a node can only change the balance factors of <u>its</u> <u>ancestors</u>.
- Inserting/deleting a node can cause a sub-tree's height to increase/decreases by at most 1.
 So the balance factor of the affected nodes changes by at most 1.
 The balance factor of the affected nodes can only be -2 or 2.

Assumption: y is the lowest ancestor that became unbalanced.

That is, all decedents of \boldsymbol{y} satisfy the AVL invariant.

Case 1: All nodes (in the subtree) except y satisfy the AVL invariant and BF(y) = 2

- To rebalance, must increase the height of the left subtree of y and decrease the height of the right subtree of y .

Case 2: All nodes (in the subtree) except y satisfy the AVL invariant and BF(y) = -2. (symmetric to Case 1) Assumption: X is either balanced or right-heavy

 $\label{eq:Assumption: } \textbf{Assumption: } y \text{ is the lowest ancestor that became unbalanced.}$

That is, all decedents of \boldsymbol{y} satisfy the AVL invariant.

Case 1: All nodes (in the subtree) except y satisfy the AVL invariant and BF(y) = 2.

Case 2: All nodes (in the subtree) except y satisfy the AVL invariant and BF(y) = -2. (symmetric to Case 1)

• To rebalance, must increase the height of the right subtree of y and decrease the height of the left subtree of y.

AVL Rebalancing: Right Rotation

Rebalancing Move: Rotation!

Right rotation around

- 1. <u>Changes heights</u> of a node's left and right subtrees.
- 2. Maintains BST property.

BST order to be maintained: A x B > C

AVL Rebalancing: Left Rotation

Rebalancing Move: Rotation!

Left rotation around

Requirements:

- 1. <u>Changes heights</u> of a node's left and right subtrees.
- 2. Maintains BST property.

BST order to be maintained: こすられ A

Case 1: Inserting a new node into the right-subtree of y while y is right-heavy (i.e., BF(y)=+1) before insertion.

- Case 1.1: Insert the new node to the *right* subtree of x (x is the right child of y)
- Case 1.2: Insert the new node to the *left* subtree of \boldsymbol{x}

Rotation works for adjusting the heights of the *left side* and the *right side*. But height of the middle subtree does *NOT* shrink when rotating around root y.

Must move the new node to the side first!

Left rotation around y

AVL Insertion: Outline

Case 1:

- · Case 1.1: single left rotation.
- · Case 1.2: double right-left rotation. > if a is h left-leavy

Case 2: (symmetric to Case 1)

- Case 2.1: single right rotation. > if n is left-heavy
- · Case 2.2: double left-right rotation. -> if x is right-heavy

~>BF(7)=-2

AVL Insertion: Example

Rotation

AVL Insert: Implementation

Operation Implementation:

- · AVLSearch: Same as BSTSearch.
- AVLInsert and AVLDelete:
 Challeng: Keeping tree balanced after each update (insert/delete).
 - Maintain AVL invariant for all affected nodes (i.e., ancestors of the inserted/deleted node).
 - 2. Maintain the BST property.
 - Update height of the affected nodes accordingly:
 Update heights going up from the new leaf to the root.

AVL Insert: Implementation

Observations:

- 1. BSTInsert/BSTDelete already traverse exactly the nodes which are ancestors of the modified node.
- If s an AVL tree before the recursive call, then so are the trees rooted at D.left and D.right.
- 3. If we can ensure that after the recursive call the trees rooted at *D.left* and *D.right* are still AVL trees, then we can apply rotations to fix the tree rooted at *D*.

AVL Insert: Implementation

Implementation Idea:

- AVLInsert(root, x):
 - **Precond:** The tree rooted at *root* is an AVL tree.
- **Postcond:** The tree rooted at root is an AVL tree that includes node x.
- After the recursive call, all the decedents of root satisfy the AVL invariant.All we need to do is to fix the tree rooted at root by applying rotations.

```
AVLInsert(root, x):
       if root == NII:
          root = x
       else if root.key > x.key:
          AVLInsert(root.left, x)
6
       else ·
          AVLInsert(root.right, x)
8
       BF = root.right.height - root.left.height
9
       if BF < -1 or BF > 1:
          # Fix the imbalance for the root node
10
11
          fix_imbalance(root)
      Cost. height = max(root. right. height, root, left. heigh
```


AVL Insert: Outline

- 1. Insert like a BST. $\longrightarrow \Theta(h) = \Theta(l_0 n)$
- 2. If still balanced, return.
- 3. Else: (need re-balancing)
 - · Case 1: left
 - Case 1.1: single right rotation.
 - Case 1.2: double left-right rotation. right - Left
 - Case 2: (symmetric to Case 1)
 - Case 2.1: single left rotation.
 - Case 2.2: double right-left rotation.
- 4. **Updated** the height of affected nodes.

() (lgn)

AVL Insert: Example

Insert 20 and 27 into the following AVL tree

AVL Delete: Outline

- 1. Delete like a BST. $\rightarrow \Theta((\alpha, n))$
- 2. If still balanced, return.
- 3. Else: (need re-balancing)
 - Case 1:
 - Case 1.1: single left rotation.
 - Case 1.2: double right-left rotation.
 - Case 2: (symmetric to Case 1)
 - Case 2.1: single right rotation.
 - Case 2.2: double left-right rotation.
- 4. Updated the balance factors of affected nodes.

Worst-case running time:

AVL Delete: Example

Delete 14

Left rotation around 17

Augmentation

- We augmented BSTs by storing additional information (the height) at each node.
 - The additional information enabled us to keep the tree balanced.
 - We could maintain this additional information efficiently in modifying operations (i.e., without affecting the running time of *Insert* or *Delete*).

Augmentation

Augmented Data Structure: A **modification** of an **existing** data structure by storing additional information and/or performing additional operations.

- · Why Augmentation is needed?
 - Textbook data structures rarely satisfy what is needed for solving real problems.
 - It is rarely needed to invent something completely new.
 - Augmenting known data structures to serve specific needs is the sensible middle-ground.

Augmenting Data Structures

General procedure:

- 1. Choose data structure to augment.
- 2. Determine additional information.
- 3. Check additional information can be maintained during each original operation (and additional cost, if any).
- 4. Implement new operations.

Augmenting Data Structures – Example

Ordered Sets:

- 1. Insert, Delete, Search: Same as Dictionaries.
- 2. Rank(k): return rank of key k, i.e., index of k in sorted ordering of set elements.
- 3. Select(r): return key with rank r.

Example: For the set $\{27, 56, 30, 13, 15\}$, Rank(15) = 2 and Select(4) = 30 because the sorted order is [13, 15, 27, 30, 56].

Tutorial 4: Implementation of Ordered Sets by **Augmented** AVL trees.

Theorem (AVL tree augmentation): In augmenting AVL trees, if the additional information of a node only depends on the information stored in its children and itself, this information can be maintained efficiently during *AVLInsert* and *AVLDelete* without affecting their $\Theta(\log n)$ worst-case runtime. (Proof Similar to Theorem 14.1 of CLRS)

After Lecture

- After-lecture Readings: Notes on AVL trees (posted on portal).
- · Review AVL trees in the Course Notes (Chapter 3).
- · Example Exercises (Course notes).
- Detailed implementation of AVLDelete.