

PROJEKT DATABÁZOVÝ DESIGN - KNIHOVNA

Autor: Veronika Vojáčková

Obor: Informační bezpečnost

Předmět: Bezpečnost databázových systémů

Obsah

U۱	vod	1	3	
1.	C	Odkaz na GitHub repository	3	
2.	(Obrázek reprezentující databázový design	3	
3.	F	Popis aplikace	4	
4.	F	Popis každé tabulky	4	
	4.1	1. Tabulka user	4	
	4.2	2. Tabulka writer	4	
	4.3	3. Tabulka book	5	
	4.4	4. Tabulka type	5	
	4.5	5. Tabulka borrow	5	
	4.6	6. Tabulka reader	5	
	4.7	7. Tabulka address	5	
	4.8	3. Tabulka state	6	
	4.9	9. Tabulka contact_r	6	
	4.1	10. Tabulka library	6	
	4.1	11. Tabulka worker	6	
	4.1	12. Tabulka role	7	
	4.1	13. Tabulka contact_w	7	
	4.1	14. Tabulky bookwriter, booktype a workerhasaddress	7	
5.	F	Proč se jedná o databázi v 3 normální formě?	7	
6.		DDL skripty pro vytvoření databáze v SQLite	7	
7.		Důkaz o vytvoření databáze	8	
Za	ávěi	§r1	0	
S	Seznam obrázků			

Úvod

Tato práce shromažďuje teoretické informace o prvním projektu z předmětu Bezpečnost databázových systémů.

1. Odkaz na GitHub repository

https://github.com/xvojac04/bds-db-design/tree/master

2. Obrázek reprezentující databázový design

Obr. 1 Databázový design

Databázový design byl vytvořen v online softwaru draw.io.

3. Popis aplikace

Účel této aplikace je vytvoření databázového systému pro soubor knihoven. Jedná se o hromadný systém, kde ze samostatné tabulky user spravujeme systém několika knihoven. Každá knihovna má svou adresu a své zaměstnance. Každý ze zaměstnanců má pouze jednu funkci, není tedy možné, aby zastával více funkcí. Každý zaměstnanec má kontaktní údaje skládající se z telefonu, emailu a fotky. Dále také každý zaměstnanec může pracovat pouze v jedné knihovně.

Dále se zde nachází seznam čtenářů s jejich kontaktními údaji a jejich adresou. Každý čtenář má pouze jednu adresu, protože nám stačí adresa, kam posílat případné připomínky a nezajímá nás, zda se jedná o trvalou či přechodnou adresu. Kontaktní údaje se skládají z telefonu a emailu.

Další část databáze se skládá z tabulek o knihách. Každá kniha má svůj název a rok publikace, svého spisovatele a svůj žánr. Kniha může mít více spisovatelů, stejně tak může mít i více žánrů

V neposlední řadě také můžeme vidět výpůjčky. Zde můžeme vidět který uživatel má půjčenou kterou knihu, ze které knihovny, kdy si ji půjčil a kdy ji má vrátit.

4. Popis každé tabulky

4.1. Tabulka user

Tabulka user zastává roly správce. Máme zde unikátní ID pro identifikaci pod názvem user_id s typem serial pro automatické číslování. Dále zde máme atribut name pro jeho jméno a surname pro příjmení, obě s typem varchar s délkou 64 z důvodu nutnosti uchovat text. Atribut password pak slouží k uchování jeho hesla. Tento atribut má také typ varchar s délkou 64 z důvodu nutnosti uchovat text.

4.2. Tabulka writer

Tabulka writer slouží k uchování seznamu autorů. Atribut writer_id slouží k jednoznačné identifikaci každého autora. Jedná se o serial, kvůli automatickému číslování. Atribut first_name slouží k uložení jména každého autora. Jedná se o typ varchar s délkou 64, kvůli možnosti dlouhého jména. Typ varchar je zvolen na základě toho, že jméno je vždy znaková sada pole. Atribut surname slouží k uložení příjmení každého autora. Je zde opět ze stejných důvodů zvolen typ varchar s délkou 64.

4.3. Tabulka book

Tabulka book slouží k uchování seznamu všech dostupných knih. Atribut book_id slouží jako jednoznačný identifikátor každé knihy. Jedná se o serial, kvůli automatickému číslování. Atribut title slouží pro uchování názvu knihy. Z důvodu možnosti dlouhého názvu knihy je zvolena znaková sada pole, tedy varchar, o délce 64. Atribut publicationyear slouží k uchování roku publikace knihy. Typ je zvolen jako smallint, protože tento typ svým rozsahem stačí.

4.4. Tabulka type

Tabulka type shromažďuje veškeré možné žánry knih. Atribut type_id slouží jako jednoznačný identifikátor každého žánru. Jedná se o serial, kvůli automatickému číslování. Atribut type slouží pro uchování názvu samotných žánrů. Zvolen je typ varchar s délkou 32, kvůli nutnosti uchování textu.

4.5. Tabulka borrow

Tabulka borrow slouží k indikaci půjčení. Atribut borrow_id slouží jako jednoznačný identifikátor každého výpůjčky. Jedná se o serial, kvůli automatickému číslování. Atribut borrow_date slouží k určení dne, kdy k výpůjčce došlo. Atribut return_date slouží k určení, kdy došlo k vrácení knihy. Oba atributy udržují datové informace, proto je zvolen typ timestamp. Atribut book_id určuje id vypůjčené knihy. Atribut reader_id určuje id čtenáře, který provedl výpůjčku. Oba tyto atributy jsou cizí klíče a zvoleny jako serial na základě toho, že všechny id v této databázi jsou serial.

4.6. Tabulka reader

Tabulka reader sdružuje data o čtenářích. Atribut reader_id slouží jako jednoznačný identifikátor každého čtenáře. Jedná se o serial, kvůli automatickému číslování. Atribut first_name slouží k uložení křestního jména a atribut surname k uložení příjmení čtenáře. Zvolen je u obou typ varchar s délkou 64. Tabulka dále obsahuje atributy address_id a contact_id. Tyto atributy jsou cizí klíče a jelikož databáze používá pouze serial jako id, je zvolen typ serial. Atribut address_id slouží k přiřazení adresy. Atribut contact_id slouží k přiřazení kontaktních údajů.

4.7. Tabulka address

Tabulka address nám vytváří seznam všech adres. Atribut address_id slouží jako jednoznačný identifikátor každé adresy. Jedná se o serial, kvůli automatickému číslování. Atribut state_id slouží k uchování id státu ke kterému adresa patří. Je zvolen typ serial, jelikož všechny id v této databázi tento typ mají. Atribut city slouží k uchování názvu měst. Je zvolen jako varchar s délkou 64, z důvodu uchování textu. Atribut street je užíván k uchování názvů ulic. Je zvolen jako varchar s délkou 64 znaků, kvůli uchování textu. Atribut zipcode slouží k uchování poštovního směrovacího čísla a atribut house_number má účel uchování čísla domu. Oba tyto 5

atributy jsou zvoleny jako varchar s délkou 32, kvůli možnosti označení domu písmeny, případně písmen v poštovním směrovacím čísle.

4.8. Tabulka state

Tabulka state obsahuje state_id, jakožto jednoznačný identifikátor každé adresy. Je zvolen typ serial, kvůli automatickému číslování. Atribut name poté slouží pro zapsání názvu země. Jelikož se jedná o název je zvolen varchar s délkou 64 znaků.

4.9. Tabulka contact_r

Tabulka contactr sdružuje kontaktní údaje o čtenářích. Atribut contactr_id slouží jako jednoznačný identifikátor každých kontaktních informací. Jedná se o serial, kvůli automatickému číslování. Atribut mail slouží pro uchování emailové adresy uživatele a je zvolen jako varchar s délkou 128 znaků pro uchování textového řetězce. V atributu phone uchováváme telefonní číslo čtenáře. Tento atribut má typ integer kvůli uchovávání čísla.

4.10. Tabulka library

Tabulka library slouží pro uchování informací o jednotlivých pobočkách knihoven. Atribut library_id slouží jako jednoznačný identifikátor každé knihovny. Jedná se o serial, kvůli automatickému číslování. Atribut name slouží pro uchování názvu knihovny. Jedná se o varchar s délkou 64, pro nutnost uchování textového pole. Tabulka také uchovává cizí klíč address_id jako odkaz na tabulku address kde se nachází adresa dané knihovny. Tento atribut využívá typ serial, na základě toho, že všechny id v této databázi jsou serial.

4.11. Tabulka worker

Tabulka worker ztělesňuje informace o jednotlivých zaměstnancích. Atribut worker_id slouží jako jednoznačný identifikátor každého pracovníka. Jedná se o serial, kvůli automatickému číslování. Atribut first_name slouží pro uchování křestního jména zaměstnance. Jedná se o varchar s délkou 64, pro nutnost uchování textového pole o různé délce jména. Kvůli možnosti dvou a více jmen, dlouhého jména atd. je zvolena větší délka. Atribut surname slouží pro uchování příjmení zaměstnance. Jedná se o varchar s délkou 64, pro nutnost uchování textového pole o různé délce příjmení. Kvůli možnosti dvou a více příjmení, dlouhého příjmení atd. je zvolena větší délka. Atribut role_id je cizí klíč k určení pozice zaměstnance. Atribut library_id je cizí klíč k identifikaci knihovny, ve které daný zaměstnanec pracuje. Atribut contactw_id je cizí klíč k určení kontaktních údajů zaměstnance. Všechny cizí klíče jsou serial z důvodu, že všechny id v databázi jsou serial.

4.12. Tabulka role

Tabulka role slouží jako seznam pracovních pozicí s jejich platy. Atribut role_id slouží jako jednoznačný identifikátor každé pozice. Jedná se o serial, kvůli automatickému číslování. Atribut role slouží jako textové pole pro zápis jednotlivých pozic. Jelikož se jedná o textové pole je zvolen typ varchar s délkou 64. Atribut salary slouží k uchování platů jednotlivých pozic. Toto si můžeme dovolit, protože každý zaměstnanec může mít pouze jednu pozici. Tento atribut uchováváme jako integer, z důvodu potřeby zapsání čísla.

4.13. Tabulka contact w

Tabulka contactr sdružuje kontaktní údaje zaměstnanců. Atribut contactr_id slouží jako jednoznačný identifikátor každých kontaktních údajů. Jedná se serial, kvůli automatickému číslování. Atribut mail slouží pro uchování emailové adresy zaměstnance a je zvolen jako varchar s délkou 128 znaků pro uchování textového řetězce. V atributu phone uchováváme soukromé telefonní číslo zaměstnance. Tento atribut má typ integer kvůli uchovávání čísla. Atribut photo slouží k uchování fotografie zaměstnance. Jedná se o typ varchar s délkou 128, která je dostatečná pro uchování cesty k fotografii.

4.14. Tabulky bookwriter a booktype

Tyto tabulky jsou sdruženy do jedné kapitoly z důvodu, že se jedná o spojové tabulky, které využíváme při M:M vztazích. Tyto tabulky obsahují pouze své id ve formě serial a dvakrát typ serial pro reprezentaci cizích klíčů z tabulek které spojují. U tabulky bookwriter je to tedy id spisovatele a id knihy a u tabulky booktype se jedná o id knihy a id žánru knihy.

5. Proč se jedná o databázi v 3 normální formě?

Věřím, že se jedná o databázi ve 3 normální formě, díky nevyskytujícím se duplicitním sloupcům. Dále databáze obsahuje samostatnou tabulku pro každou skupinu dat. Obsah žádného sloupce se mi nedaří již dále dělit na další sloupce. Z tabulky jsou odstraněny všechny data, která nezávisí přímo na primárním klíči. Veškeré duplicitní informace mám nahrazeny pouze cizím klíčem a je pro ně vytvořena další samostatná tabulka.

6. DDL skripty pro vytvoření databáze v SQLite

CREATE TABLE user (user_id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT, surname TEXT, password TEXT);

CREATE TABLE state (state_id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT);

CREATE TABLE contact_r (contactr_id INTEGER PRIMARY KEY AUTOINCREMENT, mail TEXT, phone INTEGER);

CREATE TABLE contact_w (contactw_id INTEGER PRIMARY KEY AUTOINCREMENT, mail TEXT, phone INTEGER, photo TEXT);

CREATE TABLE address (address_id INTEGER PRIMARY KEY AUTOINCREMENT, state_id INTEGER, city TEXT, street TEXT, zipcode TEXT, house_number TEXT, FOREIGN KEY(state_id) REFERENCES state(state_id));

CREATE TABLE reader (reader_id INTEGER PRIMARY KEY AUTOINCREMENT, first_name TEXT, surname TEXT, address_id INTEGER, contact_r_id INTEGER, FOREIGN KEY (address_id) REFERENCES address(address_id), FOREIGN KEY (contact_r_id) REFERENCES contact_r(contact_r_id));

CREATE TABLE library (library_id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT, address_id INTEGER, FOREIGN KEY (address_id) REFERENCES address(address_id));

CREATE TABLE role (role_id INTEGER PRIMARY KEY AUTOINCREMENT, role TEXT, salary INTEGER);

CREATE TABLE worker (worker_id INTEGER PRIMARY KEY AUTOINCREMENT, first_name TEXT, surname TEXT, role_id INTEGER, library_id INTEGER, address_id INTEGER, contactw_id INTEGER, FOREIGN KEY (address_id) REFERENCES address(address_id), FOREIGN KEY (contact_w_id), FOREIGN KEY (library_id) REFERENCES library(library_id), FOREIGN KEY (role_id) REFERENCES role(role_id));

CREATE TABLE type (type_id INTEGER PRIMARY KEY AUTOINCREMENT, type TEXT);

CREATE TABLE writer (writer_id INTEGER PRIMARY KEY AUTOINCREMENT, first_name TEXT, surname TEXT);

CREATE TABLE book (book_id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT, public_year INTEGER);

CREATE TABLE bookwriter (bookwriter_id INTEGER PRIMARY KEY AUTOINCREMENT, book_id INTEGER, writer_id INTEGER, FOREIGN KEY (book_id) REFERENCES book(book_id), FOREIGN KEY (writer_id) REFERENCES writer(writer_id));

CREATE TABLE booktype (booktype_id INTEGER PRIMARY KEY AUTOINCREMENT, book_id INTEGER, type_id INTEGER, FOREIGN KEY (book_id) REFERENCES book(book_id), FOREIGN KEY (type_id) REFERENCES type(type_id));

CREATE TABLE borrow (borrow_id INTEGER PRIMARY KEY AUTOINCREMENT, borrow_date TEXT, return_date TEXT, book_id INTEGER, reader_id INTEGER, FOREIGN KEY (book_id) REFERENCES book(book_id), FOREIGN KEY (reader_id) REFERENCES reader(reader_id));

7. Důkaz o vytvoření databáze

Obr. 2 Screenshot z aplikace DataGrip(JetBrains) o skutečném vytvoření databáze

Snímek obrazovky z aplikace DataGrip od společnosti JetBrains s.r.o. spolu s vygenerovaným EM diagramem.

Závěr

Tento projekt se projevil jako velice časově náročný, díky své obsáhlosti. Téma knihovna jsem si zvolila kvůli velkému množství informací, co se zde uchovává, což se projevilo jako krok dobrým směrem. S realizací jsem z hlediska časové tísně přijatelně spokojena a věřím, že jsem hlavní body zadání splnila.

Seznam obrázků

Obr. 1 Databázový design	3
Obr. 2 Screenshot z aplikace DataGrip(JetBrains) o skutečném vytvoření databáze	9