СОДЕРЖАНИЕ

ВВЕДІ	ЕНИЕ		5
1 AHA	АЛИЗ ПІ	РЕДМЕТНОЙ ОБЛАСТИ	8
1.1	Особенности работы GPS-приёмников		8
1.2	Дифференциальная GPS и кинематика реального времени		8
1.3	Программный пакет RTKLIB		9
	1.3.1	Поддерживаемые спутниковые системы	9
	1.3.2	Режимы работы	9
	1.3.3	Поддерживаемые форматы данных	9
	1.3.4	Программы, входящие в состав RTKLIB	9
1.4	Основные проблемы использования RTKLIB		9
1.5	Обзор	Обзор существующих веб-приложений, предназначенных для	
	работі	ы с устройствами без органов управления	9
1.6	Выволы по разлелу 1		

ВВЕДЕНИЕ

Актуальность темы. В настоящее время сложно представить жизнь без спутниковой навигации — данная технология стала неотъемлемой частью деятельности огромного числа людей. Спутниковые системы позволяют легко определить улицу или дом, где находится человек, или же просто помочь в ориентировании на незнакомой местности. Но использование систем навигации не ограничивается только лишь бытовым применением — данная технология активно применяется для решения задач автоматизации сельскохозяйственных работ, топографических съёмок, а также в множестве других областей.

Точность современных приёмников, установленных, например, в смартфонах или автомобильных навигаторах, в зависимости от условий, при которых осуществлялось определение местоположения, варьируется от трёх до пяти метров. Для повседневного применения, например, ориентации по городу — это отличный результат. Однако же, для решения задач более сложных, чем перечисленные выше, необходимы гораздо более точные данные, которые получают, используя технологию дифференциального GPS. Данное решение подразумевает использование сложных алгоритмов, а стоимость представленных на рынке устройств, позволяющих производить подобные расчёты, может превышать 10000 долларов США.

Для тех, кому по тем или иным причинам дорогостоящее оборудование недоступно, решением может стать RTKLIB — проект с открытым исходным кодом, реализующий вышеупомянутые алгоритмы для стандартных, общедоступных приёмников. Однако, распространению данного пакета программ мешает неудобство его использования: для управления и мониторинга требуется наличие полноценного компьютера, а программы RTKLIB имеют множество режимов работы и настроек, что достаточно сильно повышает общий порог вхождения.

Объектом исследования является программный пакет высокоточного позиционирования RTKLIB.

Предметом исследования является процесс взаимодействия пользователя с программными компонентами RTKLIB.

Целью исследования является создание приложения, позволяющего взаимодействовать с RTKLIB через веб-браузер. Под взаимодействием понимается возможность наблюдать различные статусы и изменять настройки компонентов RTKLIB, производить сбор данных, а также работать с накопленными файлами логов данных глобальных навигационных спутниковых систем (ГНСС).

Для достижения цели исследования был сформулирован следующий ряд задач:

- изучить состав и возможности программного комплекса RTKLIB;
- произвести анализ существующих веб-приложений, предназначенных для работы устройствами, у которых отсутствую органы управления;
 - осуществить проектирование и разработку приложения;
 - произвести тестирование приложения.

Также, по завершении разработки, ставится задача создания открытого программного интерфейса приложения (англ. *Application Programming Interface, API*), с помощью которого пользователи смогут без труда расширять функциональность приложения в соответствии со своими задачами.

Средствами разработки в представленной работе являются: языки программирования Python и JavaScript для реализации серверной (англ. backend) и клиентской (англ. front-end) частей приложения соответственно, открытые JavaScript-библиотеки D3.js, OpenLayers, JavaScript-фреймворк Vue.js. Для организации обмена данными серверной и клиентской частей приложения в реальном времени используются библиотека Socket.IO, принцип работы которой основывается на протоколе WebSocket.

Методологической основой работы послужила гибкая методология разработки (англ. *Agile software development*), ориентированная на итеративный процесс создания программного продукта и учитывающая возможность динамического формирования требований.

Новизна работы обусловлена отсутствием в настоящее время какихлибо программных продуктов с открытым API, основанных на RTKLIB и позволяющих работать с геодезическим оборудованием через веб-браузер.

Результатом данной работы является рабочая версия приложения, в которой реализованы все необходимые функции, перечисленные в постановке цели исследования. Также была создана и выложена в открытый доступ пользовательская документация, поясняющая основные моменты работы с приложением. Открытый АРІ находится в стадии разработки.

Апробация результатов работы. Наличие документации позволило осуществить открытое тестирование приложения пользователями и, как результат, получить отзывы, сообщения об ошибках и пожелания к функциональности.

1 АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ

1.1 Особенности работы GPS-приёмников

Каждый GPS-приёмник определяет свои координаты, основываясь на расстояниях до спутников, с которых он получает сигналы. Данные расстояния вычисляются из времени, которое требуется радиосигналам для прохождения от космических аппаратов до приёмника.

Для установления позиции приёмнику необходимо получать сигналы минимум от четырёх спутников. Каждый из этих сигналов может быть искажён при прохождении через слои атмосферы или при отражении от различных наземных объектов — данные явления вызывают появление ошибок и задержек, что отрицательно сказывается на точности позиционирования.

Важную роль в решении проблемы, описанной выше, играет масштабность системы GPS. Расстояние между наземными объектами и космическими спутниками так велико, что многие расстояния на земле становятся незначительными. Иными словами, если разместить два приёмника на расстоянии нескольких сотен километров друг от друга, то сигналы, которые они будут получать со спутников, будут проходить практически через одну и ту же часть атмосферы, что позволит считать ошибки на обоих приёмниках одинаковыми.

1.2 Дифференциальная GPS и кинематика реального времени

Дифференциальная GPS (англ. Differential Global Positioning System, DGPS) — система, предназначенная для повышения точности сигналов GPS. Принцип работы данной системы заключается в измерении и учёте при работе разницы между рассчитанной и закодированной псевдодальностями до спутников.

Важнейшей особенность DGPS является использование двух приёмников при проведении измерений:

- **База** (англ. *base*) стационарный приёмник, который находится в точке с заранее рассчитанной координатой. База транслирует данные о разнице между информацией о позиции, полученной со спутника, и закодированными данными о своём местонахождении.
- **Ровер** (англ. *rover*) приёмник, с помощью которого производятся какие-либо измерения. Используя данные, полученные с базы, ровер учитывает влияние внешних факторов на расчёт координаты, тем самым получая более точную информацию о своём местонахождении.

1.3 Программный пакет RTKLIB

- 1.3.1 Поддерживаемые спутниковые системы 1.3.2 Режимы работы
 - 1.3.3 Поддерживаемые форматы данных
- 1.3.4 Программы, входящие в состав RTKLIB
- 1.4 Основные проблемы использования RTKLIB
- 1.5 Обзор существующих веб-приложений, предназначенных для работы с устройствами без органов управления
 - 1.6 Выводы по разделу 1