

Ciência de Dados

Licenciatura Engenharia Informática 2° Semestre – 2021/2022

Ricardo Jesus Ferreira ricardojesus.ferreira@my.istec.pt

Trabalhar com Dados

- Medidas de Dispersão, Frequência, Localização
- Analise de um dataset com Python
- Bibliotecas Python para analise de dados
- Ferramentas Python para visualização de dados

Dataset - Iris

- 150 linhas
- Download a partir da UCI Machine Learning Repository
- Atributos da informação
 - Caule
 - Comprimento e largura
 - Pétalas
 - Comprimento e largura
 - Espécie

	T	1			
SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
5.1	3.5	1.4	0.2	Iris-setosa	
4.9	3.0	1.4	0.2	Iris-setosa	
4.7	3.2	1.3	0.2	Iris-setosa	
4.6	3.1	1.5	0.2	Iris-setosa	
5.0	3.6	1.4	0.2	Iris-setosa	
5.4	3.9	1.7	0.4	Iris-setosa	
4.6	3.4	1.4	0.3	Iris-setosa	
5.0	3.4	1.5	0.2	Iris-setosa	
4.4	2.9	1.4	0.2	Iris-setosa	
4.9	3.1	1.5	0.1	Iris-setosa	
5.4	3.7	1.5	0.2	Iris-setosa	
4.8	3.4	1.6	0.2	Iris-setosa	
4.8	3.0	1.4	0.1	Iris-setosa	
4.3	3.0	1.1	0.1	Iris-setosa	

27/05/2022 Ciência de Dados 4.:

Média

- Em estatística, <u>média</u> é definida como o valor que demonstra a concentração dos dados de uma distribuição
- Seja n o número total de valores e x_i cada valor, em que $i=1,\dots,n$
- Média aritmética é a soma dos valores x_i dividido pelo número total de valores n

$$ar{x}=rac{x_1+x_2+\ldots +x_n}{n}=rac{1}{n}\sum_{i=1}^n x_i$$

Mediana

- É o valor que separa a metade maior e a metade menor de uma amostra, uma população ou uma distribuição de probabilidade
 - Elementos Ímpar
 - Elementos Par

- Se a lista tiver um numero ímpar de elementos calcula-se ordenando todos os elementos da lista e escolhe-se o que fica no meio
- Se a lista tiver um numero par de elementos calcula-se a média dos dois valores que ficam no centro da lista ordenada

Moda

• Em estatística, <u>moda</u> como média e mediana é uma medida de dispersão, de localização ou de tendência central que mostra a frequência dos dados.

• Ordenando os elementos de um conjunto de dados e obtém-se a moda extraindo o(s) elemento(s) com maior repetição

• Uma amostra pode ser unimodal (uma moda), bimodal (duas modas), multimodal (várias modas) e amodal (nenhuma moda)

Amplitude

• Em estatística, a amplitude representa a diferença entre o maior e o menor valor de um conjunto de dados

- Mostra a dispersão dos valores de uma série
 - Se a amplitude for um valor elevado, então os valores na série estão afastados uns dos outros
 - Se a amplitude for um número baixo, então, os valores na série estão próximos uns dos outros.

Variância

- Em estatística, a variância de uma variável aleatória ou processo estocástico é uma medida da sua dispersão estatística, indicando "o quão longe" em geral os seus valores se encontram do valor esperado
 - Uma baixa variância indica que os valores do conjunto estão mais próximos
 - Uma alta variância, indica que os valores do conjunto estão mais espaçados

$$\sigma^2 = rac{1}{N} \sum_{i=1}^N \left(y_i - \mu
ight)^2,$$

Percentagem

• A percentagem é uma medida de frequência que identifica a proporção de um determinado valor para uma variável

 Para calcular uma percentagem, é necessário o número total de observações e o número total de observações para um valor específico de uma variável

Percentagem

 A alteração percentual dá-nos uma compreensão de como uma medida muda com o tempo. Pode calcular a alteração relativa subtraindo o valor inicial do valor final e, em seguida, dividindose pelo valor absoluto do valor inicial

$$ext{Percentage change} = rac{\Delta V}{V_1} = rac{V_2 - V_1}{V_1} imes 100\%.$$

Percentagem

• A diferença percentual compara dois valores para uma variável

 Calcula-se a diferença percentual subtraindo o valor inicial do valor final e, em seguida, dividindo-se pela média dos dois valores

$$\text{Relative change}(x, x_{\text{reference}}) = \frac{\text{Actual change}}{|x_{\text{reference}}|} = \frac{\Delta}{|x_{\text{reference}}|} = \frac{x - x_{\text{reference}}}{|x_{\text{reference}}|}.$$

Intervalo de Confiança

 Um intervalo de confiança descreve a possibilidade de uma amostra conter o verdadeiro parâmetro populacional numa gama de valores em torno da média

$$\bar{X} \pm Z \frac{s}{\sqrt{n}}$$

• É uma medida estatística que indica se duas variáveis são linearmente dependentes

$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

• É obtida através dos desvios padrão e da covariância

$$Cor(X,Y) = rac{Cov(X,Y)}{superior}$$

$$Cor(X,Y) = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum (x_i - ar{x})^2(y_i - ar{y})^2}}$$
 $\frac{1}{\text{deviations}}$

• Esta pode ser positiva, negativa ou nula

• Varia entre -1 e 1

Size of Correlation	Interpretation	
.90 to 1.00 (90 to -1.00)	Very high positive (negative) correlation	
.70 to .90 (70 to90)	High positive (negative) correlation	
.50 to .70 (50 to70)	Moderate positive (negative) correlation	
.30 to .50 (30 to50)	Low positive (negative) correlation	
.00 to .30 (.00 to30)	negligible correlation	

• A Regressão Linear é utilizada para estimar a variável dependente (y) baseado na variável independente (x)

Serve para encontrar uma relação linear entre variáveis

- Y variável dependente
- X variável independente
- β_0 valor de y quando x=0
- β_1 Inclinação da reta

- Numa estimação não podemos ignorar a existência de erros
- Este erro representa a diferença entre a realidade dos dados e os valores estimados

Х	4	6	7	5	8	10
Υ	15	18	19	20	21	23

27/05/2022

$$y = \beta_0 + \beta_1 x + \varepsilon$$

$$y = 11,21 + 1,24x + \varepsilon$$

 $15 = 11,21 + 1,24x + \varepsilon$
 $\varepsilon = 11,21 + 1,24 * 4 - 15$
 $\varepsilon = 1,17$

$$y = \beta_0 + \beta_1 x + \varepsilon$$

$$y = 11,21 + 1,24x + \varepsilon$$

 $18 = 11,21 + 1,24x + \varepsilon$
 $\varepsilon = 11,21 + 1,24 * 6 - 18$
 $\varepsilon = 0,65$

Bibliografia

- B. Gomez, (2020) "Resolviendo problemas de Big Data", Alfaomega.
- D. Insua, (2019) "Big data: Conceptos, tecnologías y aplicaciones", CSIC.
- H. Jones, (2019) "Analítica de datos", HJ,.
- J. Somed, (2020)"Big Data Analytics", JLC.
- D. Petković (2020)"Microsoft® SQL Server® 2019 A Beginner's Guide Seventh Edition", McGraw Hill.