APPROXIMATION ALGORITHS

because something is better than nothing:)

TEAM 4 — — Ankita Ankush Praneeth

PREVIOUS WORK

- Read about P and NP type problems.
- Vertex Cover
- Travelling Salesman Problem

Set Cover Problem

Given a universal set $U = \{e1, e2, ..., en\}$ and a collection of subsets $S = \{S1, S2, ..., Sm\}$, where $Si \subseteq U$, The goal is to identify the minimum number of subsets from S whose union equals U, i.e., $U \in I$ Si = U, where $I \subseteq \{1, 2, ..., m\}$.

Subset sum problem

Given a set of integers $S=\{a1,a2,...,an\}$ and a target sum T, the task is to decide if there exists a subset $S'\subseteq S$ such that the sum of the elements in S' is as large as possible but not greater than T.

Parallel machine scheduling

The objective is to schedule a set of jobs on multiple identical machines to minimize the makespan, which is the time by which all jobs are completed.

Given n jobs J1,J2,...,Jn, each with a processing time pk≥0, m identical machines M1,M2,...,Mm_mM1,M2,...,Mm with each job requiring pk consecutive time units to complete, the problem is to plan a scheduling such that each of the jobs are completed running in minimal time. Some constraints are to be met.

SIMULATED ANNEALING

- Inspired by metallurgical annealing.
- Solves optimization problems by exploring the solution space probabilistically.

$$P=e^{-\Delta {\rm cost/temperature}}$$

Steps:

- Start with an initial solution and high "temperature."
- Iteratively modify the solution and evaluate cost changes.
- Accept worse solutions with decreasing probability to escape local minima.
- Gradually cool the system to refine the solution.
- Pros: Escapes local optima, efficient for large problems.
- Cons: Performance depends on tuning parameters.

COMPARING DIFFERENT ALGORITHMS

The following three algorithms were applied to the previously discussed problems, and their solutions were compared and analyzed:

- Brute Force
- Basic Approximation Algorithms
- Simulated Annealing

COMPARISON RESULTS

Brute Force:

- Guarantees optimal solution.
- Time complexity grows exponentially.
- Feasible only for small graphs due to high computational cost.
- Brute force is ideal for validation but impractical for large inputs.

Approximation Algorithm

- Provides a near-optimal solution
- Efficient.
- Accuracy depends on graph structure (typically within 2x).
- Fast and reliable for larger graphs.
- Approximation is fast and suitable for consistent near-optimal results.

Simulated Annealing:

- Balances solution quality and runtime.
- Requires tuning (e.g., cooling rate, initial temperature).
- Typically achieves high accuracy.
- Simulated annealing combines flexibility with competitive accuracy.

Graph Size	Brute Force		2- Approximation Algorithm			Simulated Annealing		
	Cost	Time (ms)	Cost	Time (ms)	Accuracy (%)	Cost	Time (ms)	Accuracy (%)
5	147	0.000000	180	0.000000	81.67	147	4.000000	100.00
7	180	0.000000	187	0.000000	96.26	180	0.000000	100.00
9	198	25.000000	198	0.000000	100.00	208	0.000000	95.19
11	217	3378.000000	407	0.000000	53.32	232	0.000000	93.53
4	-1	0.000000	-1	0.000000	100.00	-1	3.000000	100.00
Note: -1 ind	licates	no solution fo	ound.					
Tour results	along	with test case	es have	been saved a	s file 'result	s.txt'.		

THANKYOU

TEAM 4 — — — Siddarth Ankita Ankush Praneeth