

SLOTIFY

AN ENSEMBLE MODEL
FOR MUSIC GENRE CLASSIFICATION

FMA DATASET

106,574
Tracks in entire dataset

Hip-Hop Pop Folk

Experimental

8,000
Tracks in small subset summing

7.2 GB

Rock
International
Electronic
Instrumental

Longitudinal or compression wave

Transverse wave

© The University of Waikato Te Whare Wānanga o Waikato I www.sciencelearn.org.nz

FEATURE: ZERO CROSSING RATE

FEATURE: MEL-FREQUENCY CEPSTRUM COEFFICIENTS

Source: "Mel–Frequency Cepstral Coefficients Explained Easily" Valerio Velardo
The Sound of AI [https://www.youtube.com/watch?v=4_SH2nfbQZ8]

FEATURE: MEL-FREQUENCY CEPSTRUM COEFFICIENTS

Source: "Mel–Frequency Cepstral Coefficients Explained Easily" Valerio Velardo
The Sound of AI [https://www.youtube.com/watch?v=4_SH2nfbQZ8]

FEATURE: MEL-FREQUENCY CEPSTRUM COEFFICIENTS

SPECTRAL CENTROID

$$f_c = rac{\sum_k S(k) f(k)}{\sum_k S(k)}$$

SPECTRAL BANDWIDTH

SPECTRAL CONTRAST

$$Peak_k = \log\{\frac{1}{\alpha N} \sum_{i=1}^{\alpha N} x_{k,i}^i\}$$
 (1)

$$Valley_k = \log \left\{ \frac{1}{\alpha N} \sum_{i=1}^{\alpha N} x'_{k,N-i+1} \right\}$$
 (2)

And their difference is:

$$SC_k = Peak_k - Valley_k$$
 (3)

where N is total number in k-th sub-band, $k \in [1,6]$.

SPECTRAL ROLL-OFF

CHROMA FEATURES

TONAL CENTROID FEATURES (TONNETZ)

OUR METHOD

DATASET PREP

TRAIN: VALIDATION: TEST = 8:1:1
EQUALLY DISTRIBUTED FOR EACH GENRE!

FEATURE AND MODEL SELECTION

ENSEMBLE ONE: LR LINSVC1 LINSVC2 POLYNOMIAL SVC RBF SVC

ENSEMBLE TWO: MLP2 LR RBF SVC

Ensemble Voting Mechanism

LET'S VOTE!

ENSEMBLE ONE:

LR

LINSVC1

LINSVC2

POLYNOMIAL SVC

RBF SVC

EVALUATION OF ENSEMBLE ONE / Two

F1 PERFORMANCE

CONFUSION OF THE HIGHEST ORDER

CONCLUSION

WE DON'T NEED AN ENSEMBLE MODEL

CONCLUSION

WE DON'T NEED AN ENSEMBLE MODEL

OR DO WE?

AN ENSEMBLE MODEL MIGHT STILL GENERALIZE BETTER AND OUTPERFORM RBF SVC ON A LARGER OR DIFFERENT DATASET

