Logical Agents

Petros Papapanagiotou

Informatics 2D: Reasoning and Agents

Lecture 9

Knowledge bases

Knowledge base (KB) = set of sentences in a formal language

Declarative approach to building an agent (or other system):

• Tell it what it needs to know

Then it can Ask itself what to do - answers should follow from the KB

Agents can be viewed at the knowledge level i.e. what they know, regardless of how implemented

Or at the implementation level

• i.e. data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

The agent must be able to:

- represent states, actions, etc.
- incorporate new percepts
- update internal representations of the world
- deduce hidden properties of the world
- deduce appropriate actions

```
function KB-AGENT( percept) returns an action

persistent: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence( percept, t))

action \leftarrow Ask(KB, Make-Action-Query(t))

Tell(KB, Make-Action-Sentence( action, t))

t \leftarrow t + 1

return action
```


Wumpus World

Wumpus World

Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pits are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Performance measure

- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Sensors: Stench, Breeze, Glitter, Bump, Scream

Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

INF2D: REASONING AND AGENTS

3

2

Observable

Deterministic

Episodic

Static

Discrete

Single-agent

Observable No - only local perception Deterministic Episodic Static Discrete Single-agent

Observable

No - only local perception

Deterministic

Yes - outcomes exactly specified

Episodic

Static

Discrete

Single-agent

Observable

No - only local perception

Deterministic

Yes - outcomes exactly specified

Episodic

• No - sequential at the level of actions

Static

Discrete

Single-agent

Observable

No - only local perception

Deterministic

Yes - outcomes exactly specified

Episodic

• No - sequential at the level of actions

Static

Yes - Wumpus and Pits do not move

Discrete

Single-agent

Observable

No - only local perception

Deterministic

Yes - outcomes exactly specified

Episodic

• No - sequential at the level of actions

Static

Yes - Wumpus and Pits do not move

Discrete

Yes

Single-agent

Observable

No - only local perception

Deterministic

Yes - outcomes exactly specified

Episodic

• No - sequential at the level of actions

Static

Yes - Wumpus and Pits do not move

Discrete

Yes

Single-agent

Yes - Wumpus is essentially a natural feature

Logic

Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics defines the *meaning* of sentences; define truth of a sentence in a world

E.g., the language of arithmetic

```
x+2 \ge y is a sentence x2+y > \{\} is not a sentence x+2 \ge y is true iff the number x+2 is no less than the number y x+2 \ge y is true in a world where x=7, y=1 x+2 \ge y is false in a world where x=0, y=6
```

Entailment

Entailment means that one thing follows from another:

$$KB \models \alpha$$

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

- \circ e.g. x+y=4 entails 4=x+y
- e.g. the KB containing "Celtic won" and "Hearts won" entails "Either Celtic won or Hearts won"
- Entailment is a relationship between sentences (syntax) that is based on semantics

Models

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m.

 $M(\alpha)$ is the set of all models of α .

 $KB \models \alpha \text{ iff } M(KB) \subseteq M(\alpha)$

The stronger an assertion, the fewer models it has.

Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for KB assuming only pits

3 Boolean choices \rightarrow 8 possible models

What are these 8 models?

KB = wumpus-world rules + observations

KB = wumpus-world rules + observations

 $\alpha_1 = "[1,2] \text{ has no pit"}$

 $KB \models \alpha_1$, proved by model checking

 $\circ\,$ In every model in which KB is true, α_1 is also true

KB = wumpus-world rules + observations

KB = wumpus-world rules + observations

 $\alpha_2 = "[2,2] \text{ has no pit"}$

 $KB \not\models \alpha_2$

 \circ In some models in which KB is true, α_2 is false

Inference

 $KB \vdash_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by inference procedure } i$

Soundness

• *i* is sound if whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

Completeness

• *i* is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

Preview: we will define first-order logic:

- expressive enough to say almost anything of interest,
- sound and complete inference procedure exists.

But first...

Propositional logic

Propositional logic: Syntax

Propositional logic is the simplest logic - illustrates basic ideas

- \circ The proposition symbols P_1 , P_2 etc are sentences
- ∘ If S is a sentence, ¬S is a sentence
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence
- \circ If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence
- \circ If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence

[negation]

[conjunction]

[disjunction]

[implication]

[biconditional]

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

e.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ false true false

With these symbols, 8 possible models or can be enumerated automatically!

Propositional logic: Semantics

Rules for evaluating truth with respect to a model m:

```
\neg S is true iff S is false S_1 \wedge S_2 is true iff S_1 is true and S_2 is true S_1 \vee S_2 is true iff S_1 is true or S_2 is true S_1 \Rightarrow S_2 is true iff S_1 is false or S_2 is true iff S_1 is false or S_2 is true S_1 \Rightarrow S_2 \Rightarrow S_3 \Rightarrow S_4 \Rightarrow S_4 \Rightarrow S_5 \Rightarrow S_5
```

Simple recursive process evaluates an arbitrary sentence:

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$$

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Truth tables for connectives

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i, j].

Let B_{i,i} be true if there is a breeze in [i, j].

$$\neg P_{1,1} \quad \neg B_{1,1} \quad B_{2,1}$$

"Pits cause breezes in adjacent squares"

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$\alpha_1 = "[1,2] \text{ has no pit"}$$

B _{1,1}	B _{2,1}	$P_{1,1}$	$P_{1,2}$	P _{2,1}	P _{2,2}	P _{3,1}	KB	α_1
false	false	false	false	false	false	false	false	true
false	false	false	false	false	false	true	false	true
:	:	:	:	:	:	÷	:	:
true	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	true	true
false	true	false	false	false	true	false	true	true
false	true	false	false	false	true	true	true	true
false	true	false	false	true	false	false	false	true
:	:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false	false

Truth tables for inference

```
function TT-ENTAILS?(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
          \alpha, the query, a sentence in propositional logic
  symbols \leftarrow a list of the proposition symbols in KB and \alpha
  return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
  if EMPTY?(symbols) then
      if PL-True?(KB, model) then return PL-True?(\alpha, model)
      else return true // when KB is false, always return true
  else do
      P \leftarrow \text{First}(symbols)
      rest \leftarrow REST(symbols)
      return (TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = true\})
              and
              TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false \}))
```

Inference by enumeration

Depth-first enumeration of all models is sound and complete

PL-TRUE?

returns true if a sentence holds within a model

For *n* symbols

- Time complexity is $O(2^n)$
- Space complexity is O(n)

$$(\alpha \land \beta) \equiv (\beta \land \alpha)$$

$$(\alpha \lor \beta) \equiv (\beta \lor \alpha)$$

$$((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$$

$$((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$$

$$\neg(\neg \alpha) \equiv \alpha$$

$$(\alpha \to \beta) \equiv (\neg \beta \to \neg \alpha)$$

$$(\alpha \to \beta) \equiv (\neg \alpha \lor \beta)$$

$$(\alpha \leftrightarrow \beta) \equiv ((\alpha \to \beta) \land (\beta \to \alpha))$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \land \neg \beta)$$

$$(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$$

$$(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$$

commutativity of \(\) commutativity of \vee associativity of \wedge associativity of \vee double-negation elimination contraposition implication elimination biconditional elimination de Morgan de Morgan distributivity of ∧ over ∨ distributivity of ∨ over ∧

Logical equivalence

Two sentences are logically equivalent iff true in the same models:

 $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

Validity and satisfiability

A sentence is **valid** if it is true in all models

• true, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the **Deduction Theorem**

• $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is **satisfiable** if it is true in *some model*

• e.g., A v B, C

A sentence is **unsatisfiable** if it is true in *no models*

• e.g., A ∧ ¬A

Satisfiability is connected to inference via the following:

- $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
- prove α by reductio ad absurdum

Proof methods

APPLICATION OF INFERENCE RULES

- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search algorithm!
- Typically require transformation of sentences into a **normal form**
- Example: resolution

MODEL CHECKING

- truth table enumeration
 - (always exponential in *n*)
- improved backtracking
 - e.g. DPLL
- heuristic search in model space
 - (sound but incomplete)
 - e.g. min-conflicts-like hill-climbing algorithms

Summary

Logical agents apply inference to a knowledge base to derive new information and make decisions

Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundness: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Does propositional logic have enough expressive power?