

MACHINE LEARNING & MODELLING

Esta disciplina aborda os principais conceitos sobre aprendizado de máquina e as técnicas clássicas de modelagem

Na última aula...

- Conceitos avançados sobre dados
- Árvores de decisão

Agenda

- Parametrização dos modelos baseados em árvores
- Como evitar overfitting

- Como observar a composição da árvore construída
- Trabalhando com outra métrica de avaliação (AUC)
- Pipeline para comparação de múltiplos modelos
- Criação do modelo final (e seu uso!)

reproduzidas da Internet

Árvores de decisão

Vantagens

- Pouco esforço de preparação dos dados
- São capazes de lidar com múltiplos labels (classes)
- Alta explicabilidade

Desvantagens

- Podem ser desbalanceadas (overfitting)
- São instáveis (alta variância)
- Podem não ser ótimas

Como contornar os 2 últimos problemas?

Florestas Aleatórias

Parametrizando os modelos

```
# Arvore
tree = DecisionTreeClassifier()
```

floresta = RandomForestClassifier(n_estimators=5)

sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, ccp_alpha=0.0)

[source]

sklearn.ensemble.RandomForestClassifier

class $sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) [source]$

Parametrizando a Árvore

Parameters:

criterion: {"gini", "entropy"}, default="gini"

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain.

splitter: {"best", "random"}, default="best"

The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split.

max_depth: int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int or float, default=2

The minimum number of samples required to split an internal node:

- If int, then consider min samples split as the minimum number.
- If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf: int or float, default=1

The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least min samples leaf training samples in each of the left and right branches. This

Parametrizando os modelos

- Veja mais:
 - Árvores: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
 - Florestas: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Modelos baseados em árvores: evitando overfitting

Algumas estratégias para ajudar a evitar o overfitting:

- Especificar o **número mínimo de amostras para divisão do nó**. Valores altos previnem a criação de modelos complexos ou podem causar underfitting.
- Especificar o número mínimo de amostras para o nível folha. Nos permite controlar o crescimento da árvore e deve ser considerado em cenários com dados desbalanceados.
- Profundidade máxima da árvore.
- Número máximo de features para considerar durante a divisão.

E na prática?

Vamos ver como refinar o modelo criado na última aula

OBRIGADO!

Prof. Michel Fornaciali

https://www.linkedin.com/in/michelfornaciali/