N° étudiant : 1 – N° sujet : 14559

ETUDE STATIQUE - LP MNPR - 2017/18

L'exercice porte sur un système mécanique conforme au schéma cinématique donné page suivante selon plusieurs vues en 2D et en 3D.

Le système comporte :

- un arbre repéré 1 en liaison linéaire annulaire en A avec le bâti 0 et en liaison rotule en B avec le bâti 0;
- une roue repérée 2 en liaison glissière en C avec l'arbre 1,
- un levier repéré 3, en liaison ponctuelle en D avec la roue 2 et en liaison pivot en E avec le bâti 0;
- un vérin simple effet (avec un ressort de rappel à l'intérieur) dont la tige repérée 4 est en liaison ponctuelle en F avec le levier 3.

De plus, une roue est en liaison encastrement avec l'arbre 1 en R. sur cette roue s'applique un effort $\overrightarrow{F_1}$ au point

H tel que
$$\overrightarrow{F_1}$$
 $\begin{vmatrix} 900 \text{ N} \\ -700 \text{ N} \end{vmatrix}$. Le rayon de cette roue est $r_1 = 30 \text{ mm}$. -800 N

Un moment est appliqué suri l'arbre 1 en J tel que \overrightarrow{M} 4,5 N. m 400 N. m

Un effort
$$\overrightarrow{F_2}$$
 est exercé sur la roue 2 en l tel que $\overrightarrow{F_2}$ $\begin{vmatrix} -900 \text{ N} \\ 1400 \text{ N} \end{vmatrix}$. Le rayon de cette roue est $r_2=25 \text{ mm}$. -900 N

Les composantes des efforts correspondent au repère défini dans le schéma cinématique, avec l'axe \vec{y} selon l'axe de l'arbre 1 et l'origine du repère en bout d'arbre. On donne la valeur de la coordonnée selon y pour les points du tableau suivant :

Point	Α	В	С	J	R
Coordonnée selon y	$y_A = 130 \text{ mm}$	$y_B = 95 \text{ mm}$	$y_C = 25 \text{ mm}$	y _J = 112 mm	$y_R = 60 \text{ mm}$

Le point D se situe sur un cercle de rayon $r_D=15\ mm$ de centre le point C. Afin de repérer les points E et F par rapport au point D, la figure du levier 3 ci-contre illustre le paramétrage choisi.

Avec :
$$r_E = 25 \ mm$$
 ; $r_F = 40 \ mm$; $long_E = \ 15 \ mm$

Le vérin a un diamètre D = 21 mm.

Le ressort a une raideur k = 30 N/mm et est comprimé d'une valeur $\Delta L = 14 \ mm$.

- 1. Calculer toutes les inconnues statiques des liaisons mécaniques.
- 2. Calculer la pression théorique dans la chambre du vérin du côté opposé à la tige.
- 3. Sachant que le rendement du vérin est $\eta=0.90$, calculer la pression réelle.

