Ind	Date
Introduction to m. 1.	
Machine Lea	nning
Part data,	2 (' 1 "
	bredition.
AI VIC	
Enable	s marine learns
Intellian	
Can .	
(No need to pre-program)	
Machine Learning application	
Latin quaker	
3) Stack / Crypto currency.	
2*(
- CIIII	
Juperiused ML Jun-superiused ML	
- Re-infancement ML	
Supervised M	
	classification
Regners on	

Scanned by TapScanner

Date y= mx +c 2 4 (y Z (mx+c-y') SS E= This minimum (mx2 +c -2)2 (mx1+c-3)+ $(m \times 3 + (-4)^2$ Loss function minimum loss should give $d(SSE) = 2(m+c-3) + 2(2m+(-2)x^2)$ Far m'n'ma, + 2(3m+c-4) x3 =0 dm $\frac{\partial(SSE)}{\partial(SSE)} = 2(m+c-3) + 2(2m+c-2)$ + 2 (3m -1 c -4) = 0 Far maxima & minima