Writing with NAO

Adrien Bardes, Marius Dufraisse, Pierre Guetschel, Mengda Li January 18, 2019

Goal of our project

We want to make our robot NAO write!

Methodology

Analysis of handwriting and extraction of trajectory function

Inverse kinematics

Analysis of handwriting and

extraction of trajectory function

trajectory function

We formalize what we want to write by a trajectory function.

Inverse kinematics

approching the goal trajectory

We approach this goal trajectory by solving a sequence of optimization problem: minimizing the errors betwenn the goal trajectory and the real trajectory.

[2]

modeling the coordinate system i

The robot is a n-joint system. We find the position of endeffector (the pen) by composing a sequence of *change of coordi*nates.

modeling the coordinate system ii

7

Bibliography i

- NAO robot illustrating a TechCrunch article. https://www.robotlab.com/blog/ nao-robot-illustrating-a-techcrunch-article
- Planification et suivi de trajectoires. http://cas.ensmp.fr/~petit/smai/
- Interfacing of Kinect Motion Sensor and NAO Humanoid Robot for Imitation Learning.

https://www.youngscientistjournal.org/article/ interfacing-of-kinect-motion-sensor-and-nao-humanoid-re

Bibliography ii

- Emrehan Yavşan, Ayşegül Uçar. Teaching human gestures to humanoid robots by using Kinect sensor.

 https://www.researchgate.net/publication/
 282829504_Teaching_human_gestures_to_humanoid_
 robots_by_using_Kinect_sensor
- Oussama Khatib. Springer Handbook of Robotics. Fig. 3.5