START OF QUIZ Student ID: 30821250,Huang,Chloe

Topic: Lecture 5 Source: Lecture 5

Why can we be confident that a low-rank approximation of a matrix contains the most important information in a document? (1)

Topic: Lecture 6 Source: Lecture 6

In class, we talked about bookstores and streaming algorithms classifying books / movies. How can we tell that they don't use a topic modeling algorithm (or, if you think they do, what would be some clues)? (1)

Topic: Lecture 7 Source: Lecture 7

Define P@R. (1)

Topic: Lecture 8 Source: Lecture 8

In class, I mentioned that high k value for BM25 TF weighting rewards documents with many, many instances of a term in them. Explain why that's the case. (2)

Topic: Lecture 6 Source: Lecture 6

Why can't we just run an HMM over documents to discover the latent states like we do for POS-tagging? (1)

Topic: Lecture 7 Source: Lecture 7

Explain why the cosine similarity between a document and query vector is roughly equivalent to adding up the TF-IDF scores of each word in the document that occurs in the query. (2)

Topic: Lecture 5 Source: Lecture 5

Why can we represent a rank-m matrix as the sum of m rank-1 matrices *or* the product of an n x m matrix and an m x n matrix (ie, what is matrix multiplication doing that we can take advantage of?)? Explain. (2)

Topic: Lecture 8 Source: Lecture 8

P(d|q) is not what we are solving with the language model. Why is this not generally a problem? (1)

Topic: Long

Source: Lecture 5

Imagine that we are working with a language other than English, such as Indonesian, with significant agglutinative morphology (words are inflected through the concatenation of affixes to a lemma). How do you think that this would impact our various vector space models? Which of them would be most affected, and which would be least affected? Explain. (3)

END OF QUIZ