体論 (第5回)

5. 拡大次数の性質

体の拡大 L/K に対して、その拡大次数は

 $[L:K] = \dim_K L$ (LのK上ベクトル空間としての次元)

によって定義された. 今回は拡大次数の性質や計算法についてみる.

定理 5-1 (拡大次数の連鎖律)

L/M と M/K を有限次拡大とするとき, L/K も有限次拡大であり, さらに

$$[L:K] = [L:M][M:K]$$

が成り立つ.

[証明]

 $\{x_1,...,x_l\}, \{y_1,...,y_m\}$ をそれぞれ L/M, M/K の基底とする. このとき,

$$S = \{x_i y_i \mid i = 1, ..., l, j = 1, ..., m\}$$

がL/Kの基底であることを示す.

(1 次独立であること) $a_{ij} \in K$ として、

$$\sum_{i=1}^{l} \sum_{j=1}^{m} a_{ij} x_i y_j = 0$$

とする. このとき,

$$\sum_{i=1}^{l} \left(\sum_{j=1}^{m} a_{ij} y_j \right) x_i = 0$$

において, $\sum_{j=1}^m a_{ij}y_j \in M$ であり, $\{x_1,\ldots,x_l\}$ は M 上 1 次独立であるから

$$\sum_{i=1}^{m} a_{ij} y_j = 0 \ (i = 1, 2, ..., l).$$

copyright ⓒ 大学数学の授業ノート

さらに, $\{y_1, ..., y_m\}$ は $K \perp 1$ 次独立であるから

$$a_{ij} = 0 \ (i = 1, ..., l, j = 1, 2, ..., m).$$

従って、S は K 上 1 次独立である.

(L を生成すること) $z \in L$ をとる. $\{x_1, ..., x_l\}$ は L/M の基底より,

$$z = \sum_{i=1}^{l} a_i x_i \ (a_i \in M)$$

と表せる. 各 a_i に対し, $\{y_1, ..., y_m\}$ はM/K の基底より,

$$a_i = \sum_{j=1}^m b_{ij} y_j \ (b_{ij} \in K).$$

よって

$$z = \sum_{i=1}^{l} a_i x_i = \sum_{i=1}^{l} \sum_{j=1}^{m} b_{ij}(x_i y_j).$$

従って、zはSの元のK上の1次結合でかける.

定理 5-1 の使い方について二つ例題を紹介する.

例題 5-1

 \mathbb{C}/\mathbb{R} の中間体は \mathbb{R} または \mathbb{C} のいずれかであることを示せ.

[証明]

M を \mathbb{C}/\mathbb{R} の中間体とする. 定理 5-1 より

$$2 = [\mathbb{C} : \mathbb{R}] = [\mathbb{C} : M][M : \mathbb{R}].$$

従って $[\mathbb{C}:M]=1$ または $[M:\mathbb{R}]=1$. よって $\mathbb{C}=M$ または $M=\mathbb{R}$.

問題 5-1 L/K の中間体 M_1, M_2 を考える. $[M_1:K]=2, [M_2:K]=3$ のとき, $M_1\cap M_2=K$ を示せ (注: $M_1\cap M_2$ は定理 1-1 の部分体の条件を満たすので, L/K の中間体である).

例題 5-2

 $[\mathbb{Q}(\sqrt{2},\sqrt{-1}):\mathbb{Q}]=4$ を計算せよ.

[解答]

 $L=\mathbb{Q}(\sqrt{2},\sqrt{-1}),\,K=\mathbb{Q}(\sqrt{2})$ と置く. $\sqrt{-1}\notin K$ より, $\sqrt{-1}$ の K 上の最小多項式の次数は 2 以上. 従って $f(x)=x^2+1$ は $\sqrt{-1}$ の K 上の最小多項式である. よって

$$[K(\sqrt{-1}):K] = \deg f = 2.$$

一方, $[K:\mathbb{Q}]=2$ である. よって, $L=\mathbb{Q}(\sqrt{2},\sqrt{-1})=K(\sqrt{-1})$ に注意すれば,

$$[L:\mathbb{Q}] = [L:K][K:\mathbb{Q}] = [K(\sqrt{-1}):K][K:\mathbb{Q}] = 4.$$

問題 5-2

- (1) $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]$ と $[\mathbb{Q}(\sqrt[3]{5}):\mathbb{Q}]$ を求めよ.
- (2) $\sqrt{3} \notin \mathbb{Q}(\sqrt[3]{5})$ を示せ.
- (3) $K = \mathbb{Q}(\sqrt[3]{5})$ のとき, $[K(\sqrt{3}):K]$ を求めよ.
- (4) $[\mathbb{Q}(\sqrt{3}, \sqrt[3]{5}) : \mathbb{Q}]$ を求めよ.

定理 5-2

L/K を体の拡大とし、 $\alpha_1, \ldots, \alpha_n \in L$ は K 上代数的とする.このとき、 $K(\alpha_1, \ldots, \alpha_n)/K$ は有限次拡大である.

[証明]

n=1 のときは定理 4-2 より従う.次に n-1 のとき正しいと仮定し,n の場合を考える. $M=K(\alpha_1,\ldots,\alpha_{n-1})$ と置くと,帰納法の仮定から $[M:K]<\infty$ である.また α_n は K 上代数的であるから,M 上代数的でもある.g(x) を α_n の M 上の最小多項式とすると

$$[M(\alpha_n):M]=\deg g<\infty.$$

よって

$$[K(\alpha_1, ..., \alpha_n) : K] = [M(\alpha_n) : K] = [M(\alpha_n) : M][M : K] < \infty.$$

これでnの場合も正しいことが示せた.

[**補足**] 定理 5-2 は逆も成立する. つまり, L/K が有限次拡大ならば, $L=K(\alpha_1,...,\alpha_n)$ を満たす K 上代数的な元 $\alpha_1,...,\alpha_n \in L$ が存在することが確かめられる.