Real and Complex Analysis Qualifying Exam January 2006

Throughout, $\mathbb{N} := \{1, 2, 3, ...\}$, $\mathbb{R} := \text{real numbers}$, $\mathbb{C} := \text{the complex numbers}$, $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, $\bar{\mathbb{D}} := \{z \in \mathbb{C} : |z| \le 1\}$, Ω is an open connected subset of \mathbb{C} , $H(\Omega)$ is the set of holomorphic functions in Ω , and (X, μ) is a measure space.

Problem 1.

- (a) Suppose $\mu(X) < \infty$ and $1 \le r \le s \le \infty$. Prove that $L^s(X) \subseteq L^r(X)$.
- (b) Give an example to show that if $\mu(X) = \infty$ the result in (a) may not hold.
- **Problem 2**. Let $A, B \subseteq \mathbb{R}$ be Lebesgue measurable sets. Let $h(x) = |(A x) \cap B|$. (Here | | is Lebesgue measure on \mathbb{R} .) Prove that h is measurable and $\int_{\mathbb{R}} h(x) dx = |A| |B|$.

Hint: Express h(x) in terms of an integral.

- **Problem 3**. Let \mathcal{F} be a σ -algebra on a set X and $\eta : \mathcal{F} \to [0, \infty]$ a function defined on \mathcal{F} with the properties:
 - (i) If $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$, then $\eta(A \cup B) = \eta(A) + \eta(B)$.
 - (ii) If $A_n \in \mathcal{F}$, $n \in \mathbb{N}$ and $A_1 \supseteq A_2 \supseteq \dots$ with $\bigcap_{n=1}^{\infty} A_n = \emptyset$, then $\lim_{n \to \infty} \eta(A_n) = 0$.

Prove that η is a measure.

- **Problem 4.** Let h be a bounded measurable function on $\mathbb R$ which has the property that $\lim_{n\to\infty}\int_E h(nx)dx=0$ for every measurable set E of finite measure. Prove that for every $f\in L^1(\mathbb R), \ \lim_{n\to\infty}\int_{\mathbb R} f(x)h(nx)dx=0.$
- **Problem 5**. (i) Show that if $L: \Omega \to \mathbb{C}$ is continuous and $e^{L(z)} = z$ for all $z \in \Omega$, then L is holomorphic in Ω .
 - (ii) Prove that there is no continuous logarithm in $\mathbb{D} \setminus \{0\}$. That is, no continuous function $L : \mathbb{D} \setminus \{0\} \to \mathbb{C}$ exists which satisfies $e^{L(z)} = z$ for all $z \in \mathbb{D} \setminus \{0\}$.

Problem 6. $f, g \in H(\mathbb{C})$ and $|f| \leq |g|$.

- (i) Show that if z_0 is a zero of g having multiplicity m, then z_0 is a zero of f having multiplicity at least m.
- (ii) Show that f is a constant multiple of g.

Problem 7. Compute

(i)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^4}$$
 (ii)
$$\int_{0}^{2\pi} e^{-i\theta} e^{e^{i\theta}} d\theta.$$

Problem 8. Let $S := \{z \in \mathbb{C} : 0 < \operatorname{Re} z < 2\}$ and for each $z \in S$ let $l_z(t) := tz + 1 - t$, $0 \le t \le 1$. Without assuming a primitive of f exists, show that for each $f \in H(S)$, $F(z) := \int_{l_z} f$ defines a holomorphic function in S such that F' = f. Explain why the conclusion fails whenever f is not holomorphic.