Code:No: 115EQ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, March - 2017 GEOTECHNICAL ENGINEERING

(Common to CE, CEE)

Time: 3 hours Max. Marks: 75

PART - A

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

4444	9254 225	30000 000	1.000	350432 000	(25 Marks)
1.a)	Explain the formation	of soil.			[2]
b)	Explain any two field t	ests to identify silts	s from clays.		[3]
ç)	What is adsorbed wate	r?	****	AR	[2]
d), :::	What is adsorbed wate What is Dargy's law ar	nd under what cond	litions it is valid	* *****	:::: :::[3]
e)	What are the factors af	fecting contact pres	ssure?		[2]
f)	Differentiate between o	compaction and cor	nsolidation.		[3]
g)	What is secondary con	solidation?			[2]
h)	What do you unders			over consolidated	l and under
11	consolidated clays.	-"F-p"			[3]
i)	consolidated clays. What is the Mohr-Cou	lomb theory of fails	ure?	:	[2]
j)	State the limitations of	direct shear test.			[3]
		PART	- B		

(50 Marks)

An oven dry soil sample of volume 300 cc weighs 450 g. If the specific gravity of solids is 2.65, what is the water content when the soil becomes fully saturated without any change in its volume? What will be the water content which will fully saturate the soil sample and also cause an increase in volume equal to 15% of the original dry volume?

OR

- 3. Explain step by step procedure to classify soils as per I.S. Classification of soils. [10]
- 4. Derive an expression to determine coefficient of permeability of soil by laboratory falling head permeability test. [10]

OR

5... In a deposit of silty soil, the water table which was at originally at a depth of 1 m below ground level was lowered to 3m below ground level. The bulk and saturated unit weight of silty soil was 18kN/m³ and 20kN/m³ respectively. What is the change in effective pressure at a depth of 1.0m and 3.0m.

6.a): :	Write the difference Briefly explain factor	s between standar ors affecting comp	d and modified p action of soil. OR	roctor compaction	on test.**[5+5]	
7.	Find the intensity of acting at a horizontal horizontally away from under the load at a d	al ground surface. rom the axis of lo	at a point 4m d What will be the	e vertical pressure same depth of	re at a point 2 m	
8.	A normally consolice. The average overbut Due to construction 40kN/m² at the mide would ratio is 0.9. Estimate.	lated clay layer 2 rden stress at the of a structure the le of clay layer. The	m thick is sandy middle of clay l ere is an increa 'he liquid limit o	viched between layer can be take se in effective v	en as 160kN/m ² . Vertical stress of	
9.a)	Explain how you w method. Also explain	n how do you find	coefficient of vo	olume change?		
b)	Explain square roc consolidation,		g method for o		coefficient of	
10.	Differentiate between the neat sketches. Do for a drained test a consolidated clay. Discuss Skempton's In a direct shear test and 300 kN/m², resinclined at 30° to the	efine stress path, and undrained test portain pore pressure part the major and min spectively. Determ	and draw typica st on normally OR :::::::::::::::::::::::::::::::::::	l stress paths (Toconsolidate clay	SP, TSSP, ESP) y, and on over- [10] """ to be 500 kN/m ²	
	1 26		4.2 5.44 5.44 5.44	100 July 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		06	0000			
Z.	26		25		25	#
,	: Z5				Mary Law Table Table	2
	26		26	26	26	