A Study on Application-aware Dynamic Interconnects

Keichi Takahashi

August 6, 2018

List of Publications

Summary

Contents

ı	intro	auction	•
	1.1	Background and Motivation	1
	1.2	Objective	1
	1.3	Organization of the Dissertation	1
	1.4	Current Trend of High-performance Computing Systems	1
		1.4.1 Cluster Architecture	1
		1.4.2 Interconnect	1
		1.4.3 Programming Model	1
	1.5	Related Work	1
2	Tool	set for Analyzing Application-aware Dynamic Interconnects	3
	2.1	Introduction	3
	2.2	Problem and Objective	3
	2.3	Toolset for Analyzing Application-aware Dynamic Interconnects	3
		2.3.1 Fine-grained MPI Profiler	3
		2.3.2 Lightweight Interconnect Simulator	3
	2.4	Evaluation	3
		2.4.1 Experimental Environment	3
		2.4.2 Accuracy of Traffic Estimation	3
		2.4.3 Execution Time of Simulation	3
		2.4.4 Profiling Overhead	3
	2.5	Conclusion	3
3	SDN	-enhanced MPI Collective	5
	3.1	Introduction	5
	3.2	Problem and Objective	5
		3.2.1 Related Work on Optimization of MPI Collectives	5
		3.2.2 Problem of Conventional Traffic Balancing Methods	5

Contents

	3.3	SDN-enhanced MPI_Allreduce	5
		3.3.1 Design	5
		3.3.2 Implementation	5
	3.4	Evaluation	5
		3.4.1 Experimental Environment	5
		3.4.2 Execution Time of SDN-enhanced MPI_Allreduce	5
	3.5	Conclusion	5
4	Coo	rdination Mechanism of Communication and Computation	7
	4.1	Introduction	7
	4.2	Problem and Objective	7
	4.3	Coordination Mechanism of Communication and Computation	7
		4.3.1 Basic Idea	7
		4.3.2 Intra-node Architecture	7
		4.3.3 Inter-node Architecture	7
	4.4	Evaluation	7
		4.4.1 Experimental Environment	7
		4.4.2 Verification of the Coordination	7
		4.4.3 Overhead Incurred by the Coordination Mechanism	7
	4.5	Conclusion	7
5	Con	clusion	9
	5.1	Concluding Remarks	9
	5.2	Future Directions	9

1 Introduction

- 1.1 Background and Motivation
- 1.2 Objective
- 1.3 Organization of the Dissertation
- 1.4 Current Trend of High-performance Computing Systems
- 1.4.1 Cluster Architecture
- 1.4.2 Interconnect
- 1.4.3 Programming Model
- 1.5 Related Work

2 Toolset for Analyzing Application-aware Dynamic Interconnects

- 2.1 Introduction
- 2.2 Problem and Objective
- 2.3 Toolset for Analyzing Application-aware Dynamic Interconnects
- 2.3.1 Fine-grained MPI Profiler
- 2.3.2 Lightweight Interconnect Simulator
- 2.4 Evaluation
- 2.4.1 Experimental Environment
- 2.4.2 Accuracy of Traffic Estimation
- 2.4.3 Execution Time of Simulation
- 2.4.4 Profiling Overhead
- 2.5 Conclusion

3 SDN-enhanced MPI Collective

- 3.1 Introduction
- 3.2 Problem and Objective
- 3.2.1 Related Work on Optimization of MPI Collectives
- 3.2.2 Problem of Conventional Traffic Balancing Methods
- 3.3 SDN-enhanced MPI_Allreduce
- 3.3.1 Design
- 3.3.2 Implementation
- 3.4 Evaluation
- 3.4.1 Experimental Environment
- 3.4.2 Execution Time of SDN-enhanced MPI_Allreduce
- 3.5 Conclusion

4 Coordination Mechanism of Communication and Computation

- 4.1 Introduction
- 4.2 Problem and Objective
- 4.3 Coordination Mechanism of Communication and Computation
- 4.3.1 Basic Idea
- 4.3.2 Intra-node Architecture
- 4.3.3 Inter-node Architecture
- 4.4 Evaluation
- 4.4.1 Experimental Environment
- 4.4.2 Verification of the Coordination
- 4.4.3 Overhead Incurred by the Coordination Mechanism
- 4.5 Conclusion

5 Conclusion

- **5.1 Concluding Remarks**
- **5.2 Future Directions**

Acknoledgements