Optimization and algorithms

Course overview

Team: João Xavier, João Sequeira, Hugo Pereira

Instituto Superior Técnico, Universidade de Lisboa

September 2024

Outline

- What is the goal of optimization?
- What is the most important fact about optimization?
- Your first optimization problem: where to place a fire station?
- What is the plan for the lectures?
- How is your grade computed?

What is the goal of optimization?

Why study optimization?

Optimization is at the heart of numerous fields:

- communications
- control
- power systems
- computer vision
- machine learning
- finance
- networks
- data science
- •

An optimization problem is a mathematical object of the following form:

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to} & h_1(x) &= 0 \\ & & \vdots \\ & h_p(x) &= 0 \\ & g_1(x) &\leq 0 \\ & & \vdots \\ & g_m(x) &\leq 0 \end{array}$$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function that we want to minimize
- $h_1,\ldots,h_p,g_1,\ldots,g_m:\mathbf{R}^n\to\mathbf{R}$ are constraint functions

Solving an optimization problem means finding a global minimizer

An unconstrained optimization problem:

A constrained optimization problem:

constraint set (we can only search in here)

What is the most important fact about optimization?

- Algorithms that solve typical nonconvex problems are very slow
- Algorithms that solve typical convex problems are very fast

Your first optimization problem: where to place a fire station?

- A fire station is going to serve K villages
- The K villages are located at given positions $p_1, p_2, \dots, p_K \in \mathbf{R}^2$
- Where should you place the fire station?

• A possible problem formulation is as follows:

minimize
$$\max_{x} \{ \|x - p_1\|, \|x - p_2\|, \dots, \|x - p_K\| \}$$

with optimization variable $x \in \mathbf{R}^2$ (x is location of fire station)

• Is this a convex or a nonconvex problem?

```
1 % firestation.m; uses package CVX from http://cvxr.com/cvx
2 KK = 20; % choose K = number of villages
3 p1 = 0.5 \times randn(2.KK); % generate random positions
4 p2 = p1+[5; 0] * ones(1, KK);
p = [p1, p2, [5; 5]]; K = size(p, 2);
6
7 % plot the villages
8 figure(1); clf;
9 plot(p(1,:),p(2,:),'^','MarkerSize',8,'MarkerFaceColor','b');
10 grid on;
11
  % solve the optimization problem
12
13 cvx_begin guiet
      variable x(2,1);
14
15
16
  % build cost function
f = norm(x - p(:,1));
18 for i = 2:K
          f = max(f.norm(x-p(:,i)));
19
   end;
20
21
   minimize(f);
22
23 cvx_end;
24
25 %plot solution
26 hold on; plot(x(1),x(2),'rx','MarkerSize',15,'LineWidth',2);
```

• Here is a typical output:

The course consists of four modules:

- module 1: formulating optimization problems
- module 2: unconstrained optimization
 - basic theory
 - numerical algorithms
- module 3: convex functions
 - how to notice and build convex functions
- module 4: constrained optimization
 - basic theory
 - numerical algorithms

Plan for the theoretical lectures

number of lec	module	
1	formulating optimization problems	
2	formulating optimization problems	
3	formulating optimization problems	
4	unconstrained optimization	
5	unconstrained optimization	
6	unconstrained optimization	
7	convex functions	
8	convex functions	
9	convex functions	
10	constrained optimization	
11	quiz (MAP45)	
12	constrained optimization	
13	constrained optimization	
14	constrained optimization	

Plan for the practice lectures

week	1st lec	2nd lec
1	no class	no class
2	exercises 1, 2, 3	exercises 5, 6, 7
3	project support	project support
4	exercises 12, 14, 19, 20	project support
5	exercises 31, 36, 38	exercises 32, 35, 37
6	exercises 39, 40, 42	exercises 48, 50, 51
7	project support	exercises 52, 55, 56

Grading

Your grade is computed as follows:

$$\mathsf{G} = 25\%\mathsf{P} + \max\{50\%\mathsf{EX1} + 25\%\mathsf{MAP45}, 75\%\mathsf{EX1}, 75\%\mathsf{EX2}\}$$

- ► G = final grade
- ▶ P = project done (in MATLAB, Python, ...) in a group during the quarter. Minimum passing grade: 9.5
- ► EX1 = closed-book exam in the normal period of evaluation (Nov 2024). Duration: 1h45m. Minimum passing grade: 8
- MAP45 = closed-book quiz done in class the theoretical class on Monday, Oct 14 (week 6). Duration: 45min. Minimum passing grade: 0
- ► EX2 = closed-book exam in the appeal period (Feb 2025). Duration: 1h30m. Minimum passing grade: 8
- For the special season of exams (Jul 2025), the grade is 100% from a closed-book exam with a duration of 2h

About the project

- The project is done in groups of up to 4 students
- The group must be formed until Sep 16, 2024 (start of week 2)
- The project consists in 10 tasks, some theoretical and some numerical
- Each groups delivers a report, which is a pdf file with the answers to the 10 tasks (for numerical tasks, the code MATLAB or Python should also be included)
- The deadline for submitting the report is Oct 25, 2024 (end of week 7)