Chapter 16 Vector Calculus 16.7 Surface Integrals

Surface Differential

EXAMPLE. Find the area of the following parametric surface S:

https://www.desmos.com/3d/728faf627a

Parametric Equations

$$x = \cos((\pi/2)u)$$
$$y = \sin((\pi/2)u)$$
$$z = v$$

$$0 \le u \le 1, \ 0 \le v \le 1.$$

1. Divide the uv-region in small rectangles.

2. Approximate the area of each small piece.

3. Sum up.

4. Compute the Area.

Surface Area Differential:

$$dS = |\vec{r}_u \times \vec{r}_v| dA$$

Integral of scalar-valued functions.

Data:

- \bullet A surface S.
- A parametrization $\vec{r}(u,v)$ of the surface with domain D.
- A scalar-valued function f(x, y, z).

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\vec{r}(u, v)) |\vec{r}_{u} \times \vec{r}_{v}| dA$$

5-20 Evaluate the surface integral.

5.
$$\iint_S (x + y + z) dS$$
,
S is the parallelogram with parametric equations $x = u + v$,
 $y = u - v$, $z = 1 + 2u + v$, $0 \le u \le 2$, $0 \le v \le 1$

EXAMPLE.

Evaluate $\iint_S z \, dS$, where S is the surface whose sides are given by the cylinder $x^2 + y^2 = 1$ from z = 0 to z = 2 and whose bottom is the disk $x^2 + y^2 \le 1$ in the plane z = 0.

Surface integral of Vector Fields.

• Non-orientable surfaces.

https://www.desmos.com/3d/45663aa8e7

• Orientable surface.

https://www.desmos.com/3d/b9f507b01b

- We assume that the surface is orientable, so that there is a well-defined normal vector.
- For a parametric surface with parametrization $\vec{r}(u, v)$:

$$\vec{n} = \frac{\vec{r}_u \times \vec{r}_v}{|\vec{r}_u \times \vec{r}_v|}$$

EXAMPLE.

Find a normal vector at every point of a sphere of equation

$$x^2 + y^2 + z^2 = 1$$

Positive orientation of a closed surface.

Negative orientation of a closed surface.

Flux integral (or Surface integral).

https://www.desmos.com/3d/d51cd6d708

Data:

- \bullet An orientable surface S.
- A parametrization $\vec{r}(u, v)$ of the surface.
- A vector field $\vec{F}(x, y, z)$.

$$\int_{S} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F} \cdot (\vec{r}_{u} \times \vec{r}_{v}) \, dA$$

EXAMPLE.

Find the flux integral of $\vec{F}(x,y,z) = \langle xy,yz,zx \rangle$ through the part of the paraboloid $z=4-x^2-y^2$ lying above the square $[0,1]\times[0,1]$ and with upward orientation.

EXAMPLE.

Find the flux integral of $\vec{F}(x,y,z) = \langle x,2y,3z \rangle$ if S is a cube with diagonal (0,0,0) to (1,1,1) and S has the positive orientation.

Gauss' Law

The net charge enclosed by a closed surface S is

$$Q = \varepsilon_0 \iint_S \vec{E} \cdot d\vec{S}$$

where \vec{E} is the electric field and ε_0 is the permittivity of free space.