Algorithm Homework 11

Daoyu Wang

November 23

Contents

1	Alarm	ii
2	31.1-10 2.1 Lemma	
3	31.2-5 3.1 Lemmas 3.1.1 Fibonacci sequence 3.1.2 Thereom 31.10 3.1.3 Basic conclusions of number theory 3.2 Prove 3.2.1 $k \le 1 + \log_{\Phi}(b)$ 3.2.2 $k \le 1 + \log_{\Phi}(\frac{b}{(a,b)})$	iii iii iii iv iv
4	31.4-1	v
5	31.5-2	\mathbf{v}
6	31.7-2	v
7	31.8-3	vi

1 Alarm

In order to save space and simplify expression, we use (a, b) instead of gcd(a, b).

2 31.1-10

To show the **gcd** operation is independent of the order of its argument, we prove the following swap property, for all a, b, c, (a, (b, c)) = ((a, b), c).

2.1 Lemma

Let a_i be the power of the *i*th prime in the prime factorization of a. Similarly as b_i and c_i .

Then, we have that:

$$a = \prod_{i=1}^{\infty} p_i^{a_i}$$

$$b = \prod_{i=1}^{\infty} p_i^{b_i}$$

$$c = \prod_{i=1}^{\infty} p_i^{c_i}$$

$$(1)$$

2.2 Prove

$$(a, (b, c)) = \prod_{i=1}^{\infty} p_i^{\min(a_i, \min(b_i, c_i))}$$

$$= \prod_{i=1}^{\infty} p_i^{\min(a_i, b_i, c_i)}$$

$$= \prod_{i=1}^{\infty} p_i^{\min(\min(a_i, b_i), c_i)}$$

$$= ((a, b), c)$$

$$(2)$$

So, the **gcd** opration is independent of the order of its argument.

31.2-5 3

3.1Lemmas

3.1.1Fibonacci sequence

We acknowledge that:

$$F_k = \frac{1}{\sqrt{5}} \left(\left(\frac{\sqrt{5} + 1}{2} \right)^k - \left(1 - \frac{\sqrt{5}}{2} \right)^k \right)$$

$$= \frac{1}{\sqrt{5}} \left(\Phi^k - \left(-\Phi^{-1} \right)^k \right)$$
(3)

And $\Phi = \frac{\sqrt{5}+1}{2}$.

3.1.2 Thereom 31.10

We acknowledge that: If $a > b \ge 0$ and EUCLID(a, b) performs krecursive calls, then

$$b \ge F_{k+1}$$

$$= \frac{1}{\sqrt{5}} (\Phi^{k+1} - (-\Phi^{-1})^{k+1})$$
(4)

This equation can be expressed in another way as follows:

$$\sqrt{5}b \ge \Phi^{k+1} + \frac{(-1)^k}{\Phi^{k+1}} \tag{5}$$

Let $f(x) = x^2 - \sqrt{5}bx + (-1)^k$, we have:

$$f(\Phi^{k+1}) \le 0 \tag{6}$$

Basic conclusions of number theory

There are two basic conclusions:

$$\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1\tag{7}$$

This is because (a, b) is the gcd of a and b.

$$\frac{a}{(a,b)} \mod \frac{b}{(a,b)} = \frac{a \mod b}{(a,b)} \tag{8}$$

Assume that $\frac{a}{(a,b)} = k \cdot \frac{b}{(a,b)} + r$, we know $r < \frac{b}{(a,b)}$. So we have $a = kb + r \cdot (a,b)$. And because $r \cdot (a,b) < b$, $a \mod b = r \cdot (a,b)$. So, $r = \frac{a \mod b}{(a,b)}$.

3.2 Prove

Assume that $a > b \ge 0$ and EUCLID(a, b) performs k recursive calls.

3.2.1 $k \leq 1 + \log_{\Phi}(b)$

To prove that $k \leq 1 + \log_{\Phi}(b)$, we can just prove that $\Phi^{k+1} \leq \Phi^2 b$. Consider function $f(x) = x^2 - \sqrt{5}bx + (-1)^k$ defined above is a quadratic function that opens upward and $f(\Phi^{k+1}) \leq 0$, we have:

$$f(\Phi^{2}b) = \Phi^{4}b^{2} - \sqrt{5}b \cdot \Phi^{2}b + (-1)^{k}$$

$$= \Phi^{2}(\Phi^{2} - \sqrt{5})b^{2} + (-1)^{k}$$

$$= \frac{3 + \sqrt{5}}{2} \cdot \frac{3 - \sqrt{5}}{2}b^{2} + (-1)^{k}$$

$$= b^{2} + (-1)^{k} \ge 1 - 1 \ge 0$$

$$(9)$$

And $\Phi^2 b = \frac{3+\sqrt{5}}{2}b > \frac{\sqrt{5}}{2}b$, which is the midline of f(x). So, we have $\Phi^{k+1} \leq \Phi^2 b$ which represents that $k \leq 1 + \log_{\Phi}(b)$.

3.2.2 $k \leq 1 + \log_{\Phi}(\frac{b}{(a,b)})$

We acknowledge that for $a>b\geq 0$, EUCLID(a,b) performs until EUCLID((a,b),0). Similarly, we acknowledge that for $\frac{a}{(a,b)}>\frac{b}{(a,b)}\geq 0$, $EUCLID(\frac{a}{(a,b)},\frac{b}{(a,b)})$ performs until EUCLID(1,0).

Assume that EUCLID(a, b) performs k recursive calls while $EUCLID(\frac{a}{(a,b)}, \frac{b}{(a,b)})$ performs k' recursive calls, we can prove k = k' as follows:

After a recursive, for $EUCLID(\frac{a}{(a,b)}, \frac{b}{(a,b)})$, according to **Lemma** 3, we have:

$$EUCLID(\frac{a}{(a,b)}, \frac{b}{(a,b)}) \to EUCLID(\frac{b}{(a,b)}, \frac{a}{(a,b)} \mod \frac{b}{(a,b)})$$

$$= EUCLID(\frac{b}{(a,b)}, \frac{a \mod b}{(a,b)})$$
(10)

Considering the end condition of the recursion, we can find that for EUCLID(a, b) and $EUCLID(\frac{a}{(a,b)}, \frac{b}{(a,b)})$, the recursive process of the two of them corresponds to each other one by one in the following table:

	(a,b)		$\left(rac{a}{(a,b)},rac{b}{(a,b)} ight)$
0	EUCLID(a,b)	0	$EUCLID(\frac{a}{(a,b)},\frac{b}{(a,b)})$
1	$EUCLID(b, a \mod b)$	1	$EUCLID(\frac{b}{(a,b)}, \frac{a \mod b}{(a,b)})$
	•••	• • •	•••
k-1	$EUCLID(\cdots,(a,b))$	k' - 1	$EUCLID(\cdots, 1)$
k	EUCLID((a,b),0)	k'	EUCLID(1, 0)

According to the table, we can find that k=k'. According **Lemma** 2, for $EUCLID(\frac{a}{(a,b)},\frac{b}{(a,b)})$, we have $\frac{b}{(a,b)}$ $geqF_{k'+1}$. So, use the conclusion $k \leq 1 + \log_{\Phi}(b)$ mentioned above, we have:

$$k = k' \le 1 + \log_{\Phi}\left(\frac{b}{(a,b)}\right) \tag{11}$$

4 31.4-1

Firstly, we can solve the problem $7x \equiv 2 \mod 10$. Obviously, the result is $x \equiv 6 \mod 10$.

Back to the initial problem $35x \equiv 10 \mod 50$, the result is as follows: $x \equiv 6 \mod 50$ or $16 \mod 50$ or $26 \mod 10$ or $36 \mod 10$ or $46 \mod 10$.

5 31.5-2

The problem is as follows:

$$\begin{cases} x \equiv 1 \mod 9 \\ x \equiv 2 \mod 8 \\ x \equiv 3 \mod 7 \end{cases}$$
 (12)

Obviously, x=10 is a solution of the problem. According to the **Chinese Remainder Theorem**: the general solution of the equation is $x \equiv 10 \mod 7 \times 8 \times 9$, which is $x \equiv 10 \mod 504$.

$6 \quad 31.7-2$

According to RSA public key encryption system, we know that $ed \equiv 1 \mod \Phi(n)$, n = pq and $\Phi(n) = (p-1)(q-1)$.

If e=3, we have $3d\equiv 1 \mod \Phi(n)$. According to the topic, $0< d<\Phi(n)$, so $3d-1=\Phi(n)$ or $3d-1=2\Phi(n)$. Consider the relationship between n and 3d-1, we can determine $\Phi(n)$ as follows:

$$\begin{cases}
\Phi(n) = 3d - 1 & 3d - 1 < n \\
\Phi(n) = \frac{3d - 1}{2} & 3d - 1 > n
\end{cases}$$
(13)

So, we can get the following conclusion:

$$\begin{cases} \Phi(n) = \frac{3d-1}{k} = (p-1)(q-1) \\ n = pq \end{cases}$$
 (14)

where k=1 or k=2. Consider that $\Phi(n)=pq-p-q+1=n-p-q+1$. So, we have:

$$\begin{cases}
pq = n \\
p + q = n - \frac{3d-1}{k} + 1
\end{cases}$$
(15)

Once we determine k (which can be solved just by **ADDITION**, **SUBTRACTION**), the equation can be solved just by **ADDITION**, **SUBTRACTION**, **MULTIPLICATION** and **DIVISION**.

As we know, **ADDITION**, **SUBTRACTION**, **MULTIPLICATION** and **DIVISION** are all polynomial time operations with respect to number of n digits. So, the problem can be solved in polynomial time with respect to number of n digits.

7 31.8-3

Since x is the nontrivial square root of 1 modulo n, we can get that $x^2 \equiv 1 \mod n$. Since x is nontrivial, $x \neq kn \pm 1$.

Since $x^2 \equiv 1 \mod n$, we have $(x-1)(x+1) \equiv 0 \mod n$.

Assume (x-1,n)=1, in other word, $x+1\equiv 0 \mod n$. However, $x\neq kn\pm 1$ (means $x+1\neq kn$) which is a contradiction. Similarly, we can prove that (x+1,n)=1 is also a contradiction. According to the above, we can get that $(x-1,n)\neq 1$ and $(x+1,n)\neq 1$. Meanwhile, $(x-1,n)\neq n$ (because it needs x=kn+1 which is contradict) and $(x+1,n)\neq n$ (because it needs x=kn-1 which is contradict).

Obviously, (x-1,n)|n and (x+1,n)|n, which means (x-1,n) and (x+1,n) are factors of n. And they are not trivial factors of n as mentioned above, so they are nontrivial factors of n.