Podstawy fizyki kwantowej

Lista zadań 1c – Aparat matematyczny

Andrzej Więckowski

- 1. Dane są dwie ortonormalne bazy $\{|a_i\rangle\}$ oraz $\{|\tilde{a}_i\rangle\}$. Wiadomo, że można przejść z jednej do drugiej za pomocą operatora $U\colon |a_i\rangle = U|\tilde{a}_i\rangle$. Znaleźć postać operatora U oraz pokazać, że jest to operator unitarny. Dowolny operator A w bazie a_i można przedstawić w następującej postaci: $A = \sum_i \sum_j \langle a_i | A | a_j \rangle |a_i\rangle \langle a_j|$. Znaleźć postać operatora A w bazie \tilde{a}_i .
- 2. Operator w bazie $\{|0\rangle, |1\rangle\}$ ma postać: $a|0\rangle\langle 0| + b|1\rangle\langle 0| + c|0\rangle\langle 1| + d|1\rangle\langle 1|$. Znaleźć postać operatora w bazie $\{\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)\}$. Przedstawić operator jako kombinację macierzy Pauliego: $\{1, \sigma_x, \sigma_y, \sigma_z\}$.
- 3. Określić jak działa operator $\hat{\mathcal{O}}$ na funkcje falową $\psi(x)$. Skorzystaj z definicji $\psi(x) = \langle x | \psi \rangle$. Obliczyć działanie dla $\hat{\mathcal{O}} = \hat{x}$.
- 4. Znaleźć elementy macierzowe (baza położeniowa) operatora pędu: $\langle x|\hat{p}|x'\rangle$. Podpowiedź: skorzystaj z $[x_i,p_j]=i\hbar\delta_{ij}$ oraz znanej tożsamości z teorii dystrybucji $\delta_{ij}\delta(x_i)=-x_i\frac{\partial}{\partial x_j}\delta(x_i)$. Analogicznie oblicz elementy macierzowe: $\langle x|\hat{p}^2|x'\rangle$.
- 5. Pokazać, że: $\hat{p}|\psi\rangle = \int \mathrm{d}x |x\rangle (-i\hbar) \frac{\partial}{\partial x} \psi(x)$. Policzyć $\langle x|\hat{p}|\psi\rangle$ (działanie operatora pędu na funkcję falową). Analogicznie wyznaczyć $\langle x|\hat{p}^2|\psi\rangle$.
- 6. Z fundamentalnego równania Schrödingera $i\hbar\partial_t|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$, wyprowadzić dla hamiltonianu $\hat{H}=\frac{p^2}{2m}+V(x)$ równanie falowe: $i\hbar\frac{\partial}{\partial t}\psi(x,t)=\left(-\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}+V(x)\right)\psi(x,t)$.