

ARE YOU READY?

Which boxes should be chosen to maximise the amount of money while keeping the overall weight under or equal to 15 kg?

Formulating the IP

Decision variables:

$$x_i = If \ item \ i \ is \ taken(1) or \ not \ (0) \ where$$
 $i = items \ 1 - 5$

Objective function:

$$\max z = 4x_1 + 2x_2 + 2x_3 + x_4 + 10x_5$$

Constraint:

$$12x_1 + 2x_2 + x_3 + x_4 + 4x_5 \le 15$$

• Sign restrictions:

$$x_i (i = items 1 - 5) = 0 \text{ or } 1$$

Solver								
	X 1	X2	Х З	X 4	X 5	Ref.	Sign	b
Var,	0	1	1	1	1			
Obj.	4	2	2	1	10	15		
s.t. 1	12	2	1	1	4	8	≤	15

Ratio Test					
Item	z_i/c_i	Rank			
x_1	$\frac{4}{12} = \frac{1}{3} = 0.333$	5			
x_2	$\frac{2}{2} = 1$	3			
x_3	$\frac{2}{1} = 2$	2			
x_4	$\frac{1}{1} = 1$	4			
x_5	$\frac{10}{4} = 2,5$	1			

Integer Programming Model											
max z =	4x1	+	2x2	+	2x3	+	x4	+	10x5		
s.t	12x1	+	2x2	+	х3	+	x4	+	4x5	≤	15
		xi = 0 or 1									

Sub-Problem	
$x_5 = 1$	15-4=11
$x_3 = 1$	11-1=10
$x_2 = 1$	10-2=8
$x_4 = 1$	8-1=7
$x_1 = 7/12$	7-12

Sub-P 1: x1 = 0

Sub-P 2: x1 = 1

Ratio Test					
Item	Rank				
x_1	5				
x_2	3				
x_3	2				
x_4	4				
x_5	1				

	Integer Programming Model										
max z =	4x1	+	2x2	+	2x3	+	x4	+	10x5		
s.t	12x1	+	2x2	+	х3	+	x4	+	4x5	≤	15
		xi = 0 or 1									

Sub-Problem 1				
$*x_1 = 0$	15-0=15			
$x_5 = 1$	15-4=11			
$x_3 = 1$	11-1=10			
$x_2 = 1$	10-2=8			

Sub-P 1: x1 = 0

$$z = 10 + 2 + 2 + 1 = 15$$

Candidate A

8-1=7

Best Candidate

 $x_4 = 1$

Sub-P 2: x1 = 1						
Sub-Problem 2						
$* x_1 = 1$	15-12=3					
$x_5 = 3/4$	3-4					
$x_3 = 0$						
$x_2 = 0$						
$x_4 = 0$						

Sub-P 2.1: x5 = 0

Sub-P 2.2: x5 = 1

Ratio Test					
Item	Rank				
x_1	5				
x_2	3				
x_3	2				
x_4	4				
x_5	1				

			Inte	eger Progra	ammin	g Mo	del				
max z =	4x1	+	2x2	+	2x3	+	x4	+	10x5		
s.t	12x1	+	2x2	+	х3	+	x4	+	4x5	≤	15
		xi = 0 or 1									

Sub-P 2.1: x5 = 0

Sub-Problem 1					
$* x_1 = 1$	15-12=3				
$*x_5 = 0$	3-0=3				
$x_3 = 1$	3-1=2				
$x_2 = 1$	2-2=0				
$x_4 = 0$	Stays 0				

$$z = 4 + 2 + 2 = 8$$

Candidate B

Sub-P 2.2: x5 = 1

Sub-Problem 2					
$*x_1 = 1$	15-12=3				
$*x_5 = 1$	3-4				
$x_3 = 0$					
$x_2 = 0$					
$x_4 = 0$					

Infeasible

Sub-Problem								
$x_5 = 1$	15-4=11							
$x_3 = 1$	11-1=10							
$x_2 = 1$	10-2=8							
$x_4 = 1$	8-1=7							
$x_1 = 7/12$	7-12							

Sub-P 1: x1 = 0

$$z = 10 + 2 + 2 + 1 = 15$$

Candidate A

Best Candidate

Sub-P 2:
$$x1 = 1$$

Sub-P 2.1: x5 = 0

$$z = 4 + 2 + 2 = 8$$

Candidate B

Sub-P 2.2: x5 = 1

Infeasible

Exercises

Stocks & Bonds is considering four investments. Investment 1 will yield a net present value (NPV) of R16 000; investment 2, an NPV of R22 000; investment 3, an NPV of R12 000; and investment 4, an NPV of R8 000. Each investment requires a certain cash outflow at the present time: investment 1, R5 000; investment 2, R7 000; investment 3, R4 000; and investment 4, R3 000. Currently, R14 000 is available for investment.

Integer Programming Model											
max z =	16 x ₁	+	22x 2	+	12x 3	+	8x4				
s.t	5x1	+	7 x2	+	4x 3	+	3x4	≤	14	Funds Restriction	
	xi = 0 or 1										

Solve using Branch & Bound Algorithm – Knapsack method More exercises can be found in the document 'Knapsack Problems (Exercises)'

info@belgiumcampus.ac.za

+27 10 593 5368

+27 (0) 12 543-1617

PO Box 60327, Karenpark 0118, South Africa

@BelgiumCampusSA

@BelgiumCampus

/Belgium Campus

Ekurhuleni Campus 45A Long Street **Kempton Park**

Nelson Mandela Bay Campus 6 Uitenhage Road North End, Port Elizabeth,