

كزآموزش اكترويج

پردازش تکاملی

تاریخچه بیولوژیکی Biological History (قسمت اول)

دانشگاه صنعتی مالک اشتر

مجتمع دانشگاهی فن آوری اطلاعات و امنیت

زمستان ۱۳۹۲

مرز آموزش اکترویو

تاريخچه مختصر

- :1948, Turing •
- «تحقیق ژنتیکی یا تکاملی» را پیشنهاد داد
 - 1962, Bremermann بهینه سازی از طریق تکامل و بازترکیبی
 - 1964, Rechenberg استراتژیهای تکاملی را معرفی کرد
- 1965, L. Fogel, Owens and Walsh برنامه نویسی تکاملی را معرفی کرد
 - 1975, Holland الگوریتمهای تکاملی را معرفی کرد
 - 1992, Koza برنامه نویسی ژنتیک را معرفی کرد

مرزة موزش اكترويو

استراتژیهای تکاملی و برنامه نویسی تکاملی

استراتژیهای تکاملی (آلمان، ۱۹۶۴، Rechenberg, Schwefel)

- به طور معمول اعمال می شود به:
 - بهینه سازی عددی
 - ویژگیهای منتسب:
- بهینه ساز خوب و سریع برای بهینه سازی حقیقی
 - relatively much theory
 - خصوصیات:
 - خود-تطبیقی استاندارد پارامترها (جهش)

برنامه نویسی تکاملی (Fogel et al ،۱۹۶۵ ،USA)

- به طور معمول اعمال می شود به: یادگیری ماشین (EP قدیمی)، بهینه سازی
 - ویژگیهای منتسب:
 - قالب بسیار باز: هر نمایش و جهش OPای مورد تایید است.
 - خصوصیات:
 - بدون بازترکیبی
 - خود تطبیقی استاندارد پارامترها (همزمان با EP)

الگوریتم ژنتیک و برنامه نویسی ژنتیک

الگوریتم های ژنتیک (امریکا ۱۹۷۵، هلند، DeJong):

- به طور معمول اعمال می شود به: بهینه سازی گسسته
 - ویژگیهای منتسب:
 - خیلی سریع نیست
 - راه حل خوب برای مسائل ترکیبی
- خصوصیات: انواع مختلفی مانند مدلهای تکرارشونده، اپراتورها

برنامه نویسی ژنتیک (امریکا، ۱۹۹۲، Koza)

- به طور معمول اعمال می شود به: مسائل یادگیری ماشین
 - ویژگیهای منتسب:
 - competes with neural nets and alike
 - slow •
 - needs huge populations (thousands) •
- Special: non-linear chromosomes: trees, graphs —

Brief History

- ۱۹۸۵• اولین کنفرانس بین المللی (ICGA)
- ۱۹۹۰: اولین کنفرانس بین المللی در اروپا (PPSN)
 - ۱۹۹۳: اولین مجله علمی (MIT Press)
- ۱۹۹۷: راه اندازی شبکه تحقیقاتی EC اروپایی ۴۳۰۰ •

مرز آموزش اکترویو

EC in the early 21st Century

۳ کنفرانسECبزرگ، در مورد مورد مربوطه کوچک

۳ مجله EC هسته علمی

۷۵۰ تا ۱۰۰۰ مقاله منتشر شده در ۲۰۰۳

شبکه EvoNet بالغ بر ۱۵۰ موسسه عضو دارد

کاربردهای بی شمار (خیلی زیاد) دارد

تعداد بی شمار شرکت R&D و مشاور دارد.

مرزآ موزش اکتروی

فهرست علائم بیولوژیکی

- الازم است معانى زير شناخته شوند:
- Species, organism, cell, nucleus, chromosome, <u>DNA</u>
 - Genome, gene, base, residue, protein, amino acid -
 - Transcription, translation, messenger RNA -
 - Codons, genetic code, evolution, mutation, crossover
 - Polymer, genotype, phenotype, conformation
 - Inheritance, <u>homology</u>, <u>phylogenetic trees</u> –

زیرساخت و اثر

(Top Down/Bottom Up)

Cell

- •مجموعه ای از فاکتورهای کوچک که با هم کار می کنند
 - •مرکز*:* هسته سلول
 - •هسته شامل اطلاعات ژنتیک می باشد.

60 trillion cells
320 cell types

A Cell

سلول ها

- واحد اصلی زندگی
- انواع مختلف سلول:
- پوست، مغز، گلبولهای سفید و قرمز
 - تابع بیولوژیکی مختلف
- سلولها توسط سلولها تولید می شوند
 - تقسيم سلولي
- (تقسیم مستقیم هسته سلول)
 - و سلول دختر –

ژنها و ژنوم

- ژنها در رشته های DNA که کروموزوم نامیده می شوند، کد شده اند.
 - در اکثر سلولها دو کپی از هر کروموزوم وجود دارد. (دوبرابر)
 - ماده ژنتیک کامل دریک ژنوتایپ منفرد، ژنوم نامیده می شود
 - در یک گونه، اکثر ماده ژنتیک یکسان است

مرز آموزش اکتروین

Diploid vs. Haploid

- ارگانیزمهایی که کروموزومهایشان به صورت جفتی آرایش یافته اند، diploid نامیده می شوند
- ارگانیزمهایی که کروموزومهایشان جفتی نیستند، haploid نامیده می شوند
- انسانها، diploid هستند با ۲۳ جفت کروموزوم که هر عضو از یکی از والدین، ناشی می شود

مرنة موزش اكتروية

كروموزوم

- تعداد مختلف برای گونه های مختلف
 - انسان (۴۶)، تنباکو (۴۸)
 - ماهی قرمز (۹۴)، شامپانزه (۴۸)
 - معمولا جفتی
 - کروموزومهای X و Y
 - (XX) مونث (XY)، مونث (XX)
 - (xy)، مونث (xx).پرندگان: مذکر(xx)، مونث (xy)
 - DNA انسان داخل کروموزوم سازماندهی شده است
- سلولهای بدن انسان شامل ۲۳جفت کروموزوم می شود که باهم مشخصات فیزیکی یک فرد را تعریف می کنند

مرز آموزش اکترویو

كروموزوم

- كروموزومها اطلاعات ژنتيک را ذخيره مي كنند
 - هر کروموزوم از DNA ساخته شده است
- کروموزومها در انسانها جفتهای ۲۳ تایی را تشکیل می دهند
 - كروموزومها به بخشهايي تقسيم مي شوند: ژن
 - Genes code for properties
 - مقادیر ممکن برای ژنها: allele
 - موقعیت ژن در کروموزوم: locus

- ترکیب کلی ژنها: **ژنوتایپ**
- یک ژنوتایپ به عنوان یک phenotype بیان می شود
 - Allele ها، مي توانند غالب يا مغلوب باشند
- Allele های غالب، اکثرا از ژنوتایپ به صورت phenotype ظاهر می شوند
 - Alleleهای مغلوب می توانند در یک جمعیت برای نسلهای زیادی باقی بمانند بدون ظاهر شدن

ژنتیک طبیعی

- اطلاعاتی که برای ساخت یک ارگانیزم زنده مورد نیاز است در DNA آن ارگانیزم کد می شود
 - ژنوتایپ (داخل DNA)، phenotype را تعریف می کند
 - و رنها باشد و phenotype یک نگاشت کامل می باشد
- یک ژن ممکن است روی صفات زیادی تاثیر بگذارد (pleiotropy)
 - خیلی از ژنها ممکن است روی یک صفت تاثیر داشته باشند. (polygeny)
- تغییرات کوچک در ژنوتایپ منجر به تغییرات کوچک در ارگانیسم می شود (مانند قد، رنگ مو)

20

DNA (<u>d</u>eoxyribo<u>n</u>ucleic <u>a</u>cid)

توالی ژن انسان، ۲.۹۱ میلیارد جفت پایه (bp) دارد و تقریبا ۳۵۰۰۰ ژن.

(last count 2003)

DNA (<u>d</u>eoxyribo<u>n</u>ucleic <u>a</u>cid)

Watson & Crick (1953): *Nature* 25: 737-738

Molecular Structure of Nucleic Acids: a structure for deoxyribose nucleic acid.

Nobel Prize, 1962.

Nucleotide:

purine or pyrimidine base.

deoxyribose sugar →

phosphate group.

Purine bases

A(denine), G(uanine) →

Pyrimidine bases

C(ytosine), T(hymine) →

Structure of DNA

Inter-strand hydrogen bonding

Structure and Nomenclature of Nucleotides

Nitrogenous Bases

Adenine (6-amino purine)

Cytosine (2-oxy-4-amino pyrimidine)

Guanine (2-amino-6-oxy purine)

Thymine (2-oxy-4-oxy)5-methyl pyrimidine)

purine

pyrimidine

Uracil (2-oxy-4-oxy)pyrimidine)

Structure of DNA

- Nucleic acids are polynucleotides; >
- Nucleotides are linked by phosphodiester bridges from 3' to 5':
- Polymers of ribonucleotides are ribonucleic acids, or RNA;
 - Polymers of deoxyribonucleotides are deoxyribonucleic acids, or DNA;

DeoxyriboNucleic Acid (DNA)

تقریبا تمام اطلاعات در طول زندگی بر روی زمین، در DNA ذخیره شده است

DeoxyriboNucleic Acid (DNA)

Sequence of • nucleotides: adenine (A), guanine (G), cytosine (C), and thymine (T)

Two strands, A must attach to T and G must attach to C

DeoxyriboNucleic Acid (DNA)

- ساختار «Double Helix»:
- دو زنجیره درهم تنیده از ۳ nucleotide مختلف
 - Adenine (A) –
 - Thymine (T) –
 - Cytosine (C) –
 - Guanine (G) -
 - اغلب در زوجهای مکمل رخ می دهد
 - A and T (or T and A) -
 - C and G (or G and C) —

DNA Structure

- Double Helix (Crick & Watson)
 - 2 coiled matching strands -
- Backbone of sugar phosphate pairs
 - Nitrogenous Base Pairs
 - Roughly 20 atoms in a base
 - Adenine ⇔ Thymine [A,T] –
 - Cytosine ⇔ Guanine [C,G] –
 - Weak bonds (can be broken) —
 - Form long chains called polymers —

Read the sequence on 1 strand Guanine

GATTCATCATGGATCATACTAAC -

مرز آموزش ا

Components of DNA

DNA از الفبای چهار نمادی برای нс كدگذارى اطلاعات استفاده میکند. این نمادها ملكولهايي هستند که به صورت جفتی متصل شده اند. به انها نوکلوئید . گفته می

Str

Structure of a single DNA strand

مرز آموزش اکتروین

نوكلوئيداسيد ها به صورت T o G C A خلاصه میشوند. أنها درامتداد یک زنجیره قندها و فسفات ها به هم بسته

Double-stranded DNA

مرز آموزش اکترویی

دو رشته DNA دور یکدیگر می پیچند تا یک ساختار پایدار تشکیل دهند double) helix).

د. دو nu مریک است. در هر

Nucleotide pairings

یک پیوند با T و C با G پیوند زده می شود. دو nucleotide بسته بهم یک جفت یایه است. اطلاعات در هر دو رشته یک double helix ىكسان است.

Nucleotide pairings

یک پیوند با T و C با G یپوند زده می شـود. دو nucleotides بهم پیوسته یک جفت يابه است اطلاعات در هردو double زنجیر یک

helix بکسان است

DNA Replication

رشته دوتایی DNA یک مكانيزم تكرار ميسازند.

DNA باز می شود و هر رشته مجددا با نوکلئیک اسىدھاى تطىيقى جدید جفت میشوند.

DNA Replication

بیشتر نوکلوئید اسیدها در محیط در دسترس هستند تا به رشته های DNA بپیوندند.

Evolutionary Computing

Replication of DNA

