Best Available Copy

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 5. Dezember 2002 (05.12.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/096888 A1

(51) Internationale Patentklassifikation⁷: C07D 239/48, A61K 31/505, 31/506, A61P 35/00, C07D 239/47, 239/34, 239/42, 405/12, 401/12, 403/12, 409/12, 417/12 Bergstrasse 62, 11115 Berlin (DE). **HUWE, Christoph**; Sandhauser Strasse 111, 13005 Berlin (DE).

- 239/42, 405/12, 401/12, 403/12, 409/12, 41
- (21) Internationales Aktenzeichen: PCT/EP02/05669
- (22) Internationales Anmeldedatum:

23. Mai 2002 (23.05.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

DE 101 27 581.1 29. Mai 2001 (29.05.2001) DE 102 12 098.6 11. März 2002 (11.03.2002) DE

(71) Anmelder: SCHERING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, 13342 Berlin (DE).

(72) Erfinder: BRUMBY, Thomas; Lepsiusstrasse 60, 12163 Berlin (DE). JAUTELAT, Rolf; Driesenerstrasse 1, 10439 Berlin (DE). PRIEN, Olaf; Lützenstrasse 12, 10711 Berlin (DE). SCHÄFER, Martina; Ossietzystrasse 7, 13187 Berlin (DE). SIEMEISTER, Gerhard; Reimerswalder Steig 26, 13503 Berlin (DE). LÜCKING, Ulrich;

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: CDK INHIBITING PYRIMIDINES, PRODUCTION THEREOF AND THEIR USE AS MEDICAMENTS

(54) Bezeichnung: CDK INHIBITORISCHE PYRIMIDINE, DEREN HERSTELLUNG UND VERWENDUNG ALS ARZNEI-MITTEL

(57) Abstract: The invention relates to the pyrimidine derivatives of general formula (1), wherein R^1 , R^2 , X, A and B are defined as in the description, for use as inhibitors of the cyclin-dependent kinase. The invention further relates to the production thereof as well as to their use as medicament in the treatment of various diseases.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft Pyrimidinderivate der allgemeinen Formel (1) in der R¹, R², X, A und B die in der Beschreibung enthaltenen Bedeutungen haben, als Inhibitoren der Zyklin-abhängigen Kinase, deren Herstellung sowie deren Verwendung als medikament zur Behandlung verschiedener Erkrankungen.

CDK inhibitorische Pyrimidine, deren Herstellung und Verwendung als Arzneimittel

Die vorliegende Erfindung betrifft Pyrimidinderivate, deren Herstellung sowie deren Verwendung als Medikament zur Behandlung verschiedener Erkrankungen.

Die CDKs (cyclin-dependent kinase) ist eine Enzymfamilie, die eine wichtige Rolle bei der Regulation des Zellzyklus spielt und somit ein besonders interessantes Ziel für die Entwicklung kleiner inhibitorischer Moleküle ist. Selektive Inhibitoren der CDKs können zur Behandlung von Krebs oder anderen Erkrankungen, die Störungen der Zellproliferation zur Ursache haben, verwendet werden.

- Pyrimidine und Analoga sind bereits als Wirkstoffe beschrieben wie beispielsweise die 2-Anilino-Pyrimidine als Fungizide (DE 4029650) oder substituierte Pyrimidinderivate zur Behandlung von neurologischen oder neurodegenerativen Erkrankungen (WO 99/19305). Als CDK-Inhibitoren werden unterschiedlichste Pyrimidinderivate beschrieben, beispielsweise Bis(anilino)-pyrimidinderivate (WO 00/12486), 2-Amino-4-substituierte Pyrimidine (WO 01/14375), Purine (WO 99/02162), 5-Cyano-Pyrimidine (WO 02/04429), Anilinopyrimidine (WO 00/12486) und 2-Hydroxy-3-N,N-dimethylaminopropoxy-Pyrimidine (WO 00/39101).
- Die Aufgabe der vorliegenden Erfindung ist es Verbindungen bereitzustellen, die bessere Eigenschaften als die bereits bekannten Inhibitoren haben. Die hier beschriebenen Substanzen sind besser wirksam, da sie bereits im nanomolaren Bereich inhibieren und so von anderen bereits bekannten CDK-Inhibitoren wie z.B. Olomoucin und Roscovitin zu unterscheiden sind.

Es wurde nun gefunden, dass Verbindungen der allgemeinen Formel I

in der

 R^1

für Wasserstoff, Halogen, C₁-C₆-Alkyl, Nitro oder für die Gruppe -COR5, -OCF3, -(CH2)nR5, -S-CF3 oder -SO2CF3 steht,

für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht oder für ein- oder mehrfach, gleich oder

verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-

Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-

Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-

Alkenyl, C2-C6-Alkinyl, C1-C6-Alkoxy-C1-C6-Alkyl, C1-C6-

Alkoxy-C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -NHC₁-C₆-Alkyl, -N(C₁-C₆-

 $Alkyl)_2$, $-SO(C_1-C_6-Alkyl)$, $-SO_2(C_1-C_6-Alkyl)$, $C_1-C_6-Alkanoyl$,

-CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc, Carboxy, Aryl,

Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n-

R⁵, -(CH₂)₀PO₃(R⁵)₂ oder mit der Gruppe -R⁶ oder -NR³R⁴

substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl

oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-

Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-

Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich

oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-

Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF₃ oder

-OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-

Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch ein-

oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-

Atome unterbrochen sein kann und/ oder durch ein oder

mehrere =C=O Gruppen im Ring unterbrochen sein kann

und/ oder gegebenenfalls ein oder mehrere mögliche

Doppelbindungen im Ring enthalten sein können, oder

 R^2

10

5

15

20

 R^2

für die Gruppe

$$\mathbb{R}^{8}$$
 oder \mathbb{R}^{8} \mathbb{R}^{9}

5

steht,

Χ

für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl) oder für -OC₃-C₁₀ -Cycloalkyl welches ein- oder mehrfach, gleich oder verschieden mit einem Heteroaromaten substituiert sein kann, steht

10

15

aboutaiore och karni, c

oder

X und R²

gemeinsam einen C₃–C₁₀ –Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituiert sein

kann,

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C_1 - C_3 -Alkyl, C_1 - C_6 -Alkoxy oder für die Gruppe -SR⁷, -S(O)R⁷, -SO₂R⁷, -NHSO₂R⁷, -CH(OH)R⁷, -CR⁷(OH)-R⁷, C_1 - C_6 -AlkylP(O)OR³OR⁴, -COR⁷ oder für

stehen,

oder

5 A und B

gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden der gegebenenfalls durch ein- oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O oder =SO₂

VV O 02/070000		1 € 1/21 € 2/03009
		Gruppen im Ring unterbrochen sein kann und/ oder
		gegebenenfalls ein oder mehrere mögliche
		Doppelbindungen im Ring enthalten sein können und der
		C ₃ -C ₁₀ -Cycloalkyl-Ring gegebenenfalls ein- oder mehrfach,
5		gleich oder verschieden mit Hydroxy, Halogen, C ₁ -C ₆ -
		Alkoxy, C ₁ -C ₆ -Alkylthio, Amino, Cyano, C ₁ -C ₆ -Alkyl, C ₂ -C ₆ -
		Alkenyl, C ₃ -C ₁₀ -Cycloalkyl, C ₁ -C ₆ -Alkoxy-C ₁ -C ₆ -Alkyl, -
		NHC ₁ -C ₆ -Alkyl, -N(C ₁ -C ₆ -Alkyl) ₂ , -SO(C ₁ -C ₆ -Alkyl) ₂ -SO ₂ R ⁷ ,
		C ₁ -C ₆ -Alkanoyl, -CONR ³ R ⁴ , -COR ⁵ , C ₁ -C ₆ -AlkylOAc,
10		Phenyl, oder mit der Gruppe R ⁶ substituiert sein kann, wobei
		das Phenyl selbst gegebenenfalls ein- oder mehrfach, gleich
		oder verschieden mit Halogen, Hydroxy, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -
		Alkoxy, oder mit der Gruppe -CF ₃ oder -OCF ₃ substituiert
		sein kann,
15	R ³ und R ⁴	jeweils unabhängig voneinander für Wasserstoff, Phenyl,
		Benzyloxy, C ₁ -C ₁₂ -Alkyl, C ₁ -C ₆ -Alkoxy, C ₂ -C ₄ -Alkenyloxy,
		C ₃ -C ₆ -Cycloalkyl, Hydroxy, Hydroxy-C ₁ -C ₆ -alkyl, Dihydroxy-
		C ₁ -C ₆ -alkyl, Heteroaryl, Heterocyclo-C ₃ -C ₁₀ -alkyl,
		Heteroaryl-C₁-C₃-alkyl,
20		gegebenenfalls mit Cyano substituiertes C ₃ -C ₆ -Cycloalkyl-
		C ₁ -C ₃ -alkyl, oder für
		gegebenenfalls ein- oder mehrfach, gleich oder verschieden
		mit Phenyl, Pyridyl, Phenyloxy, C ₃ -C ₆ -Cycloalkyl, C ₁ -C ₆ -
		Alkyl oder C ₁ -C ₆ -Alkoxy substituiertes C ₁ -C ₆ -Alkyl steht,
25		wobei das Phenyl selbst ein oder mehrfach, gleich oder
		verschieden mit Halogen, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy oder mit
		der Gruppe –SO₂NR³R⁴ substituiert sein kann,
		oder für die Gruppe – $(CH_2)_nNR^3R^4$, -CNHNH ₂ oder – NR ³ R ⁴
		oder
30	R³ und R⁴	gemeinsam einen C ₃ -C ₁₀ -Cycloalkyl-Ring bilden der
		gegebenenfalls durch ein- oder mehrere Stickstoff,
		Sauerstoff und/ oder Schwefel-Atome unterbrochen sein
		kann und/ oder durch ein oder mehrere =C=O Gruppen im

PCT/EP02/05669 WO 02/096888 Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, steht. R^5 für Hydroxy, Phenyl, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, 5 Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht. R^6 für einen Heteroaryl oder C₃-C₁₀-Cycloalkyl-Ring steht, wobei der Ring die oben angegebene Bedeutung hat, R^7 für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₁₀-Cycloalkyl mit der oben angegebenen 10 Bedeutung, oder für die Gruppe -NR³R⁴ steht, oder für einoder mehrfach, gleich oder verschieden mit Hydroxy, C₁-C₆-Alkoxy, Halogen, Phenyl, -NR³R⁴ oder Phenyl. welches selbst, ein-oder mehrfach gleich oder verschieden mit Halogen, Hydroxy, 15 C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann, substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht, oder für Phenyl steht, welches selbst ein- oder mehrfach, gleich oder 20 verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann, R⁸, R⁹ und R^{10} jeweils unabhängig voneinander für Wasserstoff, Hydroxy, 25 C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH- $(CH_2)_n$ - C_3 - C_{10} -Cycloalkyl, C_3 - C_{10} -Cycloalkyl, C_1 - C_6 -30 Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy-C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -NHC₁-C₆-Alkyl, $-N(C_1-C_6-Alkyl)_2$, $-SO(C_1-C_6-Alkyl)_1 -SO_2(C_1-C_6-Alkyl)_1$

C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc,

Carboxy, Aryl, Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n-R⁵, -(CH₂)_nPO₃(R⁵)₂ oder mit der Gruppe -R⁶ oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch ein- oder mehrere Stickstoff. Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, stehen, und für 0 - 6 steht,

n für 0 - 6 steht,

5

10

15

bedeuten, sowie deren Isomeren, Diastereomeren, Enantiomeren und Salze, die bekannten Nachteile überwinden.

Unter Alkyl ist jeweils ein geradkettiger oder verzweigter Alkylrest, wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek. Butyl, tert. Butyl, Pentyl, Isopentyl, Hexyl, Heptyl, Octyl, Nonyl und Decyl, zu verstehen.

Unter Alkoxy ist jeweils ein geradkettiger oder verzweigter Alkoxyrest, wie beispielsweise Methyloxy, Ethyloxy, Propyloxy, Isopropyloxy, Butyloxy, Isobutyloxy, sek. Butyloxy, tert.-Butyloxy, Pentyloxy, Isopentyloxy oder Hexyloxy zu verstehen.

Unter Alkylthio ist jeweils ein geradkettiger oder verzweigter Alkylthiorest, wie beispielsweise Methylthio, Ethylthio, Propylthio, Isopropylthio, Butylthio, Isobutylthio, sek. Butylthio, tert.-Butylthio, Pentylthio, Isopentylthio oder Hexylthio zu verstehen.

Unter Cycloalkyl sind im allgemeinen monocyclische Alkylringe wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl oder Cyclodecyl, aber auch bicyclische Ringe oder tricyclische Ringe wie zum Beispiel Norbornyl, Adamantanyl, etc. zu verstehen.

5

10

15

Unter den Ringsystemen, bei denen gegebenenfalls ein- oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, sind zum Beispiel Cycloalkenyle wie Cyclopropenyl, Cyclobutenyl, Cyclopentenyl, Cyclohexenyl, Cycloheptenyl zu verstehen, wobei die Anknüpfung sowohl an der Doppelbindung wie auch an den Einfachbindungen erfolgen kann.

Falls A und B, R³ und R⁴, X und R² ,jeweils unabhängig voneinander, gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden, der gegebenenfalls durch einoder mehrere Heteroatome wie Stickstoff-Atome, Sauerstoff-Atome und/ oder Schwefel-Atome unterbrochen sein kann, und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann, und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, sind aber auch die unter Heteroarylrest bzw. Heterocycloalkyl und 20 Heterocycloalkenyl genannten Definitionen zu verstehen.

Unter Halogen ist jeweils Fluor, Chlor, Brom oder Jod zu verstehen.

Die Alkenyl-Substituenten sind jeweils geradkettig oder verzweigt, wobei 25 beispielsweise folgenden Reste gemeint sind: Vinyl, Propen-1-yl, Propen-2-yl, But-1-en-1-yl, But-1-en-2-yl, But-2-en-1-yl, But-2-en-2-yl, 2-Methyl-prop-2-en-1yl, 2-Methyl-prop-1-en-1-yl, But-1-en-3-yl, Ethinyl, Prop-1-in-1-yl, But-1-in-1-yl, But-2-in-1-yl, But-3-en-1-yl, Allyl.

30 Unter Alkinyl ist jeweils ein geradkettiger oder verzweigter Alkinyl-Rest zu verstehen, der 2 - 6, bevorzugt 2 - 4 C-Atome enthält. Beispielsweise seien die folgenden Reste genannt: Acetylen, Propin-1-yl, Propin-3-yl, But-1-in-1-yl, But-1in-4-yl, But-2-in-1-yl, But-1-in-3-yl, etc.

Der Arylrest umfaßt jeweils 3 – 12 Kohlenstoffatome und kann jeweils benzokondensiert sein.

Beispielsweise seien genannt: Cyclopropenyl, Cyclopentadienyl, Phenyl, Tropyl, Cyclooctadienyl, Indenyl, Naphthyl, Azulenyl, Biphenyl, Fluorenyl, Anthracenyl etc.

Der Heteroarylrest umfaßt jeweils 3 - 16 Ringatome und kann anstelle des Kohlenstoffs ein- oder mehrere, gleiche oder verschiedene Heteroatome, wie Sauerstoff, Stickstoff oder Schwefel im Ring enthalten, und kann mono-, bi- oder tricyclisch sein, und kann zusätzlich jeweils benzokondensiert sein.

Beispielsweise seien genannt:

10

Thienyl, Furanyl, Pyrrolyl, Oxazolyl, Thiazolyl, Imidazolyl, Pyrazolyl, Isoxazolyl,
Isothiazolyl, Oxadiazolyl, Triazolyl, Thiadiazolyl, etc. und Benzoderivate davon,
wie z. B. Benzofuranyl, Benzothienyl, Benzoxazolyl, Benzimidazolyl, Indazolyl,
Indolyl, Isoindolyl, etc.; oder Pyridyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, Triazinyl,
etc. und Benzoderivate davon, wie z. B. Chinolyl, Isochinolyl, etc.; oder
Azocinyl, Indolizinyl, Purinyl, etc. und Benzoderivate davon; oder Chinolinyl,
Isochinolinyl, Cinnolinyl, Phthalazinyl, Chinazolinyl, Chinoxalinyl, Naphthyridinyl,
Pteridinyl, Carbazolyl, Acridinyl, Phenazinyl, Phenothiazinyl, Phenoxazinyl,
Xanthenyl, Oxepinyl, etc.

Heterocycloalkyl steht für einen 3 – 12 Kohlenstoffatome umfassenden Alkylring,
der anstelle des Kohlenstoffes ein oder mehrere, gleich oder verschiedene
Heteroatome, wie z. B. Sauerstoff, Schwefel oder Stickstoff enthält.
Als Heterocycloalkyle seien z. B. genannt: Oxiranyl, Oxethanyl, Aziridinyl,
Azetidinyl, Tetrahydrofuranyl, Pyrrolidinyl, Dioxolanyl, Imidazolidinyl,
Pyrazolidinyl, Dioxanyl, Piperidinyl, Morpholinyl, Dithianyl, Thiomorpholinyl,
Piperazinyl, Trithianyl, Chinuclidinyl etc.

Heterocycloalkenyl steht für einen 3 – 12 Kohlenstoffatome umfassenden Alkylring, der anstelle des Kohlenstoffes ein oder mehrere, gleich oder

verschiedene Heteroatome, wie z. B. Sauerstoff, Schwefel oder Stickstoff enthält, und der teilgesättigt ist.

Als Heterocycloalkenyle seien z. B. genannt: Pyran, Thiin, Dihydroazet, etc.

Ist eine saure Funktion enthalten, sind als Salze die physiologisch verträglichen Salze organischer und anorganischer Basen geeignet, wie beispielsweise die gut löslichen Alkali- und Erdalkalisalze sowie N-Methyl-glukamin, Dimethyl-glukamin, Ethyl-glukamin, Lysin, 1,6-Hexadiamin, Ethanolamin, Glukosamin, Sarkosin, Serinol, Tris-hydroxy-methyl-amino-methan, Aminopropandiol, Sovak-10 Base, 1-Amino-2,3,4-butantriol.

Ist eine basische Funktion enthalten, sind die physiologisch verträglichen Salze organischer und anorganischer Säuren geeignet wie Salzsäure, Schwefelsäure, Phosphorsäure, Zitronensäure, Weinsäure u.a.

15

Besonders wirksam sind solche Verbindungen der allgemeinen Formel (I) in der

	R ¹	für Wasserstoff, Halogen, C ₁ -C ₆ -Alkyl, Nitro oder für die
20		Gruppe -COR ⁵ , -OCF ₃ , -(CH ₂) _n R ⁵ , -S-CF ₃ oder -SO ₂ CF ₃
		steht,
	R^2	für C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl oder C_3 - C_{10} -
		Cycloalkyl steht oder für ein- oder mehrfach, gleich oder
		verschieden mit Hydroxy, Halogen, C ₁ -C ₆ -Alkoxy, C ₁ -C ₆ -
25		Alkylthio, Amino, Cyano, C ₁ -C ₆ -Alkyl, -NH-(CH ₂) _n -C ₃ -C ₁₀ -
		Cycloalkyl, C ₃ -C ₁₀ -Cycloalkyl, C ₁ -C ₆ -Hydroxyalkyl, C ₂ -C ₆ -
		Alkenyl, C ₂ -C ₆ -Alkinyl, C ₁ -C ₆ -Alkoxy-C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -
		$Alkoxy-C_1-C_6-Alkoxy-C_1-C_6-AlkyI, -NHC_1-C_6-AlkyI, -N(C_1-C_6-AlkyI)$
		$Alkyl)_2, \ -SO(C_1-C_6-Alkyl), \ -SO_2(C_1-C_6-Alkyl), \ C_1-C_6-Alkanoyl,$
30		-CONR ³ R ⁴ , -COR ⁵ , C ₁ -C ₆ -AlkylOAc, Carboxy, Aryl,
		Heteroaryl, -(CH ₂) _n -Aryl, -(CH ₂) _n -Heteroaryl, Phenyl-(CH ₂) _n -
		R^5 , -(CH ₂) _n PO ₃ (R^5) ₂ oder mit der Gruppe - R^6 oder -NR ³ R ⁴
		substituiertes C ₁ -C ₁₀ -Alkyl, C ₂ -C ₁₀ -Alkenyl, C ₂ -C ₁₀ -Alkinyl

oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch einoder mehrere Stickstoff-, Sauerstoff- und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, oder

R² für die Gruppe

15

25

5

10

steht,

für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl)

oder für -OC₃-C₁₀ -Cycloalkyl welches ein- oder mehrfach,
gleich oder verschieden mit einem Heteroaromaten
substituiert sein kann, steht
oder

X und R² gemeinsam einen C₃–C₁₀ –Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halaogen substituiert sein kann,

WO 02/096888

PCT/EP02/05669

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C₁-C₃-Alkyl, C₁-C₆-Alkoxy oder für die Gruppe -S-CH₃, -SO₂-C₂H₄-OH, -CO-CH₃, -S-CHF₂, -S-(CH₂)_nCH(OH)CH₂N-R³R⁴, -CH₂P(O)OR³OR⁴, -S-CF₃, -SO-CH₃, -SO₂CF₃, -SO₂-(CH₂)_n-N-R³R⁴, -SO₂-NR³R⁴, -SO₂R⁷, -CH-(OH)-CH₃ oder für

stehen, oder

5 A und B gemeinsam eine Gruppe

5 bilden können,

R³ und R⁴ jeweils unabhängig voneinander für Wasserstoff, Phenyl,
Benzyloxy, C₁-C₁₂-Alkyl, C₁-C₆-Alkoxy, C₂-C₄-Alkenyloxy,
C₃-C₆-Cycloalkyl, Hydroxy, Hydroxy-C₁-C₆-alkyl, Dihydroxy-C₁-C₆-alkyl, Heteroaryl, Heterocyclo-C₃-C₁₀-alkyl,

Heteroaryl-C₁-C₃-alkyl, gegebenenfalls mit Cyano substituiertes C₃-C₆-Cycloalkyl-

C₁-C₃-alkyl, oder für

gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Phenyl, Pyridyl, Phenyloxy, C₃-C₆-Cycloalkyl, C₁-C₆-

Alkyl oder C₁-C₆-Alkoxy substituiertes C₁-C₆-Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder mit der Gruppe –SO₂NR³R⁴ substituiert sein kann,

oder für die Gruppe – $(CH_2)_nNR^3R^4$, - $CNHNH_2$ oder – NR^3R^4 oder für

25

10

15

*-
$$(CH_2)_n$$
 *- $(CH_2)_n$ *- $($

5

stehen, welche gegebenenfalls mit $C_1\text{-}C_6\text{-}Alkyl$ substituiert sein können,

 R^5

für Hydroxy, Phenyl, $C_1\text{-}C_6\text{-}Alkyl,\ C_3\text{-}C_6\text{-}Cycloalkyl,}$

Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht,

 R^6

für die Gruppe

10

 R^7 für Halogen, Hydroxy, Phenyl, C_1 - C_6 -Alkyl, $-C_2H_4OH$, $-NR^3R^4$, oder die Gruppe

R⁸, R⁹ und

R¹⁰ jeweils unabhängig voneinander für Wasserstoff, Hydroxy,

C₁-C₆-Alkyl, C₃-C₆-Cyclolkyl oder für die Gruppe

5

stehen und

n für 0 – 6 steht, bedeuten, sowie deren Isomeren,

10 Enantiomeren, Diastereomeren und Salze.

Als ganz besonders wirksam haben sich solche Verbindungen der allgemeinen Formel I erwiesen, in der

15 R^1 für Wasserstoff, Halogen, C_1 - C_3 -Alkyl oder für die Gruppe -(CH_2)_n R^5 steht,

 R^2 für -CH(CH₃)-(CH₂)_n- R^5 , -CH-(CH₂OH)₂, -(CH₂)_n R^7 ,

·	-CH(C ₃ H ₇)-(CH ₂) _n -R5, -CH(C ₂ H ₅)-(CH ₂) _n -R ⁵ , -CH ₂ -CN, -CH(CH ₃)COCH ₃ , -CH(CH ₃)-C(OH)(CH ₃) ₂ ,
	-CH(CH(OH)CH ₃)OCH ₃ , -CH(C ₂ H ₅)CO-R ⁵ , C ₂ -C ₄ -AlkinyI, -(CH ₂) _n -COR ⁵ , -(CH ₂) _n -CO-C ₁ -C ₆ -AlkyI, -(CH ₂) _n -C(OH)(CH ₃)-
5	Phenyl, $-CH(CH_3)-C(CH_3)-R^5$, $-CH(CH_3)-C(CH_3)(C_2H_5)-R^5$,
3	-CH(OCH ₃)-CH ₂ -R ⁵ , -CH ₂ -CH(OH)-R ⁵ , -CH(OCH ₃)-CHR ⁵ -
	CH_3 , $-CH(CH_3)-CH(OH)-CH_2-CH=CH_2$, $-CH(C_2H_5)-CH(OH)-CH_2-CH=CH_2$
	$(CH_2)_n$ - CH_3 , - $CH(CH_3)$ - $CH(OH)$ - $(CH_2)_n$ - CH_3 , - $CH(CH_3)$ -
	$CH(OH)-CH(CH_3)_2$, $(CH_2OAC)_2$, $-(CH_2)_n-R^6$, $-(CH_2)_n-(CF_2)_n-$
10	CF_{3} , $-CH(CH_{2})_{n}-R^{5})_{2}$, $-CH(CH_{3})-CO-NH_{2}$, $-CH(CH_{2}OH)-$
	Phenyl, -CH(CH ₂ OH)-CH(OH)-(CH ₂) _n R ⁵ , -CH(CH ₂ OH)-
	CH(OH)-Phenyl, -CH(CH ₂ OH)-C ₂ H ₄ -R ⁵ , -(CH ₂) _n -C \cong C-
	$C(CH_3)=CH-COR^5$, $-CH(Ph)-(CH_2)_n-R^5$, $-(CH_2)_n-COR^5$, -
	$(CH_2)_nPO_3(R^5)_2$, $-(CH_2)_n-COR^5$, $-CH((CH_2)_nOR^5)CO-R^5$, -
15	$(CH_2)_nCONHCH((CH_2)_nR^5)_2$, $-(CH_2)_nNH-COR^5$, -
	$CH(CH_2)_nR^5$ - $(CH_2)_nC_3$ - C_{10} - $Cycloalkyl$, - $(CH_2)_n$ - C_3 - C_{10} -
	Cycloalkyl, C ₃ -C ₁₀ -Cycloalkyl, gegebenenfalls ein- oder
	mehrfach, gleich oder verschieden mit Hydroxy, C ₁ -C ₆ -Alkyl
	oder der Gruppe –COONH(CH₂) _n CH₃ oder –NR³R⁴
20	substituiertes C ₁ -C ₆ -Alkyl, C ₃ -C ₁₀ -Cycloalkyl, -(CH ₂) _n -O-
	$(CH_2)n-R^5$, $-(CH_2)_n-NR^3R^4$,
	-CH(C ₃ H ₇)-(CH ₂) _n -OC(O)-(CH ₂)n-CH ₃ , -(CH ₂) _n -R ⁵ ,
	$-C(CH_3)_2-(CH_2)_n-R^5$, $-C(CH_2)_n(CH_3)-(CH_2)_nR^5$,
	$-C(CH_2)_n-(CH_2)_nR^5$, $-CH(t-Butyl)-(CH_2)_n-R^5$,
25	$-CCH_3(C_3H_7)-(CH_2)_nR^5$, $-CH(C_3H_7)-(CH_2)_n-R^5$,
	-CH(C_3H_7)-COR ⁵ , -CH(C_3H_7)-(CH ₂) _n -OC(O)-NH-Ph,
	$-CH((CH_2)_n(C_3H_7))-(CH_2)_nR^5$,
	-CH(C_3H_7)-(CH ₂) _n -OC(O)-NH-Ph(OR ⁵) ₃ , -NR ³ R ⁴ ,
	$-NH-(CH_2)_n-NR^3R^4$, $R^5-(CH_2)n-C*H-CH(R^5)-(CH_2)_n-R^5$,
30	- $(CH_2)_n$ -CO-NH- $(CH_2)_n$ -CO-R ⁵ , -OC(O)NH-C ₁ -C ₆ -Alkyl oder
	$-(CH_2)_n$ -CO-NH- $(CH_2)_n$ -CH- $((CH_2)_nR^5)_2$,
	oder für C ₃ -C ₁₀ -Cycloalkyl steht, welches mit der Gruppe

substituiert ist, oder für die Gruppe

$$-(CH_2)_n - CH(CH_3)$$

$$-(CH_2)_n - (CH_2)_n - (CH_2)_$$

oder

10

5

steht,

X für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl) oder

steht, oder

5 R² für die Gruppe

$$\mathbb{R}^8$$
 oder \mathbb{R}^8 \mathbb{R}^9 \mathbb{R}^9

steht,

oder

X und R² gemeinsam eine Gruppe

10

15 bilden,

A und B jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C_1 - C_3 -Alkyl, C_1 - C_6 -Alkoxy oder für die Gruppe -S- CH_3 , $-SO_2$ - C_2H_4 -OH, -CO- CH_3 , -S- CHF_2 , -S- $(CH_2)_nCH(OH)CH_2N$ - R^3R^4 , $-CH_2PO(OC_2H_5)_2$, -S- CF_3 , -SO- CH_3 , $-SO_2CF_3$, $-SO_2$ - $(CH_2)_n$ -N- R^3R^4 , $-SO_2$ - NR^3R^4 , $-SO_2R^7$, -CH(OH)- CH_3 , -COOH, $-CH((CH_2)_nR^5)_2$, $-(CH_2)_nR^5$, -COO- C_1 - C_6 -Alkyl, $-CONR^3R^4$ oder für

stehen, oder

A und B gemeinsam eine Gruppe

5

bilden können,

10 R³ und R⁴

jeweils unabhängig voneinander für Wasserstoff, Phenyl, Benzyloxy, C_1 - C_{12} -Alkyl, C_1 - C_6 -Alkoxy, C_2 - C_4 -Alkenyloxy, C_3 - C_6 -Cycloalkyl, Hydroxy, Hydroxy- C_1 - C_6 -alkyl, Dihydroxy- C_1 - C_6 -alkyl, Heteroaryl, Heterocyclo- C_3 - C_{10} -alkyl, Heteroaryl- C_1 - C_3 -alkyl,

15

gegebenenfalls mit Cyano substituiertes C_3 - C_6 -Cycloalkyl- C_1 - C_3 -alkyl, oder für gegebenenfalls ein- oder mehrfach, gleich oder verschieden

20

gegebenentalls ein- oder mehrfach, gleich oder verschieden mit Phenyl, Pyridyl, Phenyloxy, C₃-C₆-Cycloalkyl, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₁-C₆-Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder mit der Gruppe –SO₂NR³R⁴ substituiert sein

kann,

oder für die Gruppe –(CH_2)_n NR^3R^4 , - $CNHNH_2$ oder – NR^3R^4

25

oder für

5

stehen, welche gegebenenfalls mit $C_1\text{-}C_6\text{-}Alkyl$ substituiert sein können,

 R^5 für Hydroxy, Phenyl, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Benzoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkoxy steht, R^6 für die Gruppe

steht,

R⁷ für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, -(CH₂)_nOH,
-NR³R⁴ oder die Gruppe

5

20

25

30

10 steht,

R⁸, R⁹ und

R¹⁰ für Wasserstoff, Hydroxy, C₁-C₆-Alkyl oder für die Gruppe

-(CH₂)_n-COOH stehen, und

n für 0 – 6 stehen, bedeuten, sowie deren Isomeren,

15 Diastereoisomeren, Enantiomeren und Salze.

Die erfindungsgemäßen Verbindungen inhibieren im wesentlichen Zyklinabhängige Kinasen, worauf auch deren Wirkung zum Beispiel gegen Krebs, wie solide Tumoren und Leukämie, Autoimmunerkrankungen wie Psoriasis, Alopezie, und Multiple Sklerose, Chemotherapeutika-induzierte Alopezie und Mukositis, kardiovaskuläre Erkrankungen, wie Stenosen, Arteriosklerosen und Restenosen, infektiöse Erkrankungen, wie z. B. durch unizelluläre Parasiten, wie Trypanosoma, Toxoplasma oder Plasmodium, oder durch Pilze hervorgerufen, nephrologische Erkrankungen, wie z. B. Glomerulonephritis, chronische neurodegenerative Erkrankungen, wie Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung, akute neurodegenerative Erkrankungen, wie Ischämien des Gehirns und Neurotraumata, virale Infektionen, wie z. B. Cytomegalus-Infektionen, Herpes, Hepatitis B und C, und HIV Erkrankungen basiert.

Der eukaryote Zellteilungszyklus stellt die Duplikation des Genoms und seine Verteilung auf die Tochterzellen sicher, indem er eine koordinierte und regulierte Abfolge von Ereignissen durchläuft. Der Zellzyklus wird in vier

aufeinanderfolgende Phasen eingeteilt: die G1 Phase repräsentiert die Zeit vor der DNA-Replikation, in der die Zelle wächst und für externe Stimuli empfänglich ist. In der S Phase repliziert die Zelle ihre DNA, und in der G2 Phase bereitet sie sich auf den Eintritt in die Mitose vor. In der Mitose (M Phase) wird die replizierte DNA getrennt und die Zellteilung vollzogen.

10

15

20

Die Zyklin-abhängigen Kinasen (CDKs), eine Familie von Serin/Threonin-Kinasen, deren Mitglieder die Bindung eines Zyklins (Cyc) als regulatorische Untereinheit zu ihrer Aktivierung benötigen, treiben die Zelle durch den Zellzyklus. Unterschiedliche CDK/Cyc Paare sind in den verschiedenen Phasen des Zellzyklus aktiv. Für die grundlegende Funktion des Zellzyklus bedeutende CDK/Cyc Paare sind beispiels-weise CDK4(6)/CycD, CDK2/CycE, CDK2/CycA, CDK1/CycA und CDK1/CycB. Einige Mitglieder der CDK-Enzymfamilie haben eine regulatorische Funktion indem sie die Aktivität der vorgenannten Zellzyklus-CDKs beeinflussen, während anderen Mitgliedern der CDK-Enzymfamilie noch keine bestimmte Funktion zugeordnet werden konnte. Eine von diesen, CDK5, zeichnet sich dadurch aus, daß sie eine atypische, von den Zyklinen abweichende, regulatorische Untereinheit besitzt (p35), und ihre Aktivität im Gehirn am höchsten ist.

Der Eintritt in den Zellzyklus und das Durchlaufen des "Restriction Points", der die Unabhängigkeit einer Zelle von weiteren Wachstumssignalen für den Abschluß der begonnenen Zellteilung markiert, werden durch die Aktivität der CDK4(6)/CycD und CDK2/CycE Komplexe kontrolliert. Das wesentliche Substrat dieser CDK-Komplexe ist das Retinoblastoma-Protein (Rb), das Produkt des
 Retinoblastoma Tumorsuppressor Gens. Rb ist ein transkriptionelles Ko-Repressor Protein. Neben anderen noch weitgehend unverstandenen Mechanismen, bindet und inaktiviert Rb Transkriptionsfaktoren vom E2F-Typ,

und bildet transkriptionelle Repressorkomplexe mit Histon-Deacetylasen

(HDAC) (Zhang H.S. et al. (2000). Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and RbhSWI/SNF. Cell 101, 79-89). Durch die Phosphorylierung des Rb durch CDKs werden gebundene E2F Transkriptionsfaktoren freigesetzt und führen zu 5 transkriptioneller Aktivierung von Genen, deren Produkte für die DNA Synthese und die Progression durch die S-Phase benötigt werden. Zusätzlich bewirkt die Rb-Phosphorylierung die Auflösung der Rb-HDAC Komplexe, wodurch weitere Gene aktiviert werden. Die Phosphorylierung von Rb durch CDK's ist mit dem Überschreiten des "Restriction Points" gleichzusetzen. Für die Progression 10 durch die S-Phase und deren Abschluß ist die Aktivität der CDK2/CycE und CDK2/CycA Komplexe notwendig, z. B. wird die Aktivität der Transkriptionsfaktoren vom E2F-Typ mittels Phosphorylierung durch CDK2/CycA abgeschaltet sobald die Zellen in die S-Phase eingetreten sind. Nach vollständiger Replikation der DNA steuert die CDK1 im Komplex mit CycA 15 oder CycB den Eintritt und das Durchlaufen der Phasen G2 und M (Abb. 1).

Entsprechend der außerordentlichen Bedeutung des Zellteilungszyklus ist das Durchlaufen des Zyklus streng reguliert und kontrolliert. Die Enzyme, die für die Progression durch den Zyklus notwendig sind, müssen zu dem richtigen Zeitpunkt aktiviert werden, und auch wieder abgeschaltet werden sobald die entsprechende Phase durchlaufen ist. Entsprechende Kontrollpunkte ("Checkpoints") arretieren die Progression durch den Zellzyklus falls DNA-Schäden detektiert werden, oder die DNA-Replikation, oder der Aufbau des Spindelapparates noch nicht beendet ist.

Die Aktivität der CDKs wird durch verschiedene Mechanismen, wie Synthese und Degradation der Zykline, Komplexierung der CDKs mit den entsprechenden Zyklinen, Phosphorylierung und Dephosphorylierung regulatorischer Threoninund Tyrosin-Reste, und die Bindung natürlicher inhibitorischer Proteine, direkt kontrolliert. Während die Proteinmenge der CDKs in einer proliferierenden Zelle relativ konstant ist, oszilliert die Menge der einzelnen Zykline mit dem Durchlaufen des Zyklus. So wird zum Beispiel die Expression von CycD während der frühen G1 Phase durch Wachstumsfaktoren stimuliert, und die Expression von CycE wird nach Überschreiten des "Restriction Points" durch die

Aktivierung der Transkriptionsfaktoren vom E2F-Typ induziert. Die Zykline selbst werden durch Ubiquitin-vermittelte Proteolyse abgebaut. Aktivierende und inaktivierende Phosphorylierungen regulieren die Aktivität der CDK's, zum Beispiel phosphorylieren CDK-aktivierende Kinasen (CAKs) Thr160/161 der 5 CDK1, wohingegen die Familie der Wee1/Myt1 Kinasen CDK1 durch Phosphorylierung von Thr14 und Tyr15 inaktivieren. Diese inaktivierenden Phosphorylierungen können durch cdc25 Phosphatasen wieder aufgehoben werden. Sehr bedeutsam ist die Regulation der Aktivität der CDK/Cyc-Komplexe durch zwei Familien natürlicher CDK Inhibitorproteine (CKIs), den 10 Proteinprodukten der p21 Genfamilie (p21, p27, p57) und der p16 Genfamilie (p15, p16, p18, p19). Mitglieder der p21 Familie binden an Zyklin-Komplexe der CDKs 1,2,4,6, inhibieren aber nur Komplexe die CDK1 oder CDK2 enthalten. Mitglieder der p16 Familie sind spezifische Inhibitoren der CDK4- und CDK6-Komplexe.

15

Oberhalb dieser komplexen direkten Regulation der Aktivität der CDKs liegt die Ebene der Kontrollpunkt-Regulation. Kontrollpunkte erlauben der Zelle das geordnete Ablaufen der einzelnen Phasen während des Zellzykluses zu verfolgen. Die wichtigsten Kontrollpunkte liegen am Übergang von G1 nach S 20 und von G2 nach M. Der G1-Kontrollpunkt stellt sicher, daß die Zelle keine DNA-Synthese beginnt falls sie nicht entsprechend ernährt ist, mit anderen Zellen oder dem Substrat korrekt interagiert, und ihre DNA intakt ist. Der G2/M Kontrollpunkt stellt die vollständige Replikation der DNA und den Aufbau der mitotischen Spindel sicher, bevor die Zelle in die Mitose eintritt. Der G1 25 Kontrollpunkt wird von dem Genprodukt des p53 Tumorsuppressorgens aktiviert. p53 wird nach Detektion von Veränderungen im Metabolismus oder der genomischen Integrität der Zelle aktiviert und kann entweder einen Stopp der Zellzyklusprogression oder Apoptose auslösen. Dabei spielt die transkriptionelle Aktivierung der Expression des CDK Inhibitorproteins p21 durch p53 eine 30 entscheidende Rolle. Ein zweiter Zweig des G1 Kontrollpunktes umfaßt die Aktivierung der ATM und Chk1 Kinasen nach DNA-Schädigung durch UV-Licht oder ionisierende Strahlung und schließlich die Phosphorylierung und den nachfolgenden proteolytischen Abbau der cdc25A Phosphatase (Mailand N. et

al. (2000). Rapid destruction of human cdc25A in response to DNA damage.
Science 288, 1425-1429). Daraus resultiert eine Arretierung des Zellzykluses,
da die inhibitorische Phosphorylierung der CDKs nicht entfernt wird. Nach
Aktivierung des G2/M Kontrollpunktes durch Schädigung der DNA sind beide
Mechanismen in ähnlicher Weise daran beteiligt, die Progression durch den
Zellzyklus zu stoppen.

Der Verlust der Regulation des Zellzyklusses und der Verlust der Funktion der Kontrollpunkte sind Charakteristika von Tumorzellen. Der CDK-Rb-Signalweg ist 10 in über 90% humaner Tumorzellen von Mutationen betroffen. Diese Mutationen, die schließlich zur inaktivierenden Phosphorylierung des RB führen, schließen die Überexpression von D- und E-Zyklinen durch Genamplifikation oder chromosomale Translokationen, inaktivierende Mutationen oder Deletionen von CDK-Inhibitoren des p16-Typs, sowie erhöhten (p27) oder verminderten (CycD) 15 Proteinabbau ein. Die zweite Gruppe von Genen, die durch Mutationen in Tumorzellen getroffen sind, kodiert für Komponenten der Kontrollpunkte. So ist p53, das essentiell für die G1 und G2/M Kontrollpunkte ist, das am häufigsten mutierte Gen in humanen Tumoren (ca. 50%). In Tumorzellen, die p53 ohne Mutation exprimieren, wird es häufig aufgrund einer stark erhöhten 20 Proteindegradation inaktiviert. In ähnlicher Weise sind die Gene anderer für die Funktion der Kontrollpunkte notwendiger Proteine von Mutationen betroffen, zum Beispiel ATM (inaktivierende Mutationen) oder cdc25 Phosphatasen (Überexpression).

Überzeugende experimentelle Daten deuten darauf hin, daß CDK2/Cyc-Komplexe eine entscheidende Position während der Zellzyklusprogression einnehmen: (1) Sowohl dominant-negative Formen der CDK2, wie die transkriptionelle Repression der CDK2 Expression durch anti-sense Oligonukleotide bewirken einen Stopp der Zellzyklusprogression. (2) Die
 Inaktivierung des CycA Gens in Mäusen ist letal. (3) Die Störung der Funktion des CDK2/CycA Komplexes in Zellen mittels zell-permeabler Peptide führte zur Tumorzell-selektiven Apoptose (Chen Y.N.P. et al. (1999). Selective killing of

transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. *Proc. Natl. Acad. Sci. USA* 96, 4325-4329).

- Veränderungen der Zellzykluskontrolle spielen nicht nur bei Krebserkrankungen ein Rolle. Der Zellzyklus wird durch eine Reihe von Viren, sowohl durch transformierende, wie durch nicht-transformierende, aktiviert um die Vermehrung der Viren in der Wirtszelle zu ermöglichen. Der fälschliche Eintritt in den Zellzyklus von normalerweise post-mitotischen Zellen wird mit verschiedenen neurodegenerativen Erkrankungen in Zusammenhang gebracht.
- Die Mechanismen der Zellzyklusregulation, ihrer Veränderungen in Krankheiten und eine Vielzahl von Ansätzen zur Entwicklung von Inhibitoren der Zellzyklusprogression und speziell der CDKs wurden bereits in mehreren Publikationen ausführlich zusammenfassend beschrieben (Sielecki T.M. et al. (2000). Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation.
- J. Med. Chem. 43, 1-18; Fry D.W. & Garrett M.D. (2000). Inhibitors of cyclin-dependent kinases as therapeutic agents for the treatment of cancer. Curr. Opin. Oncol. Endo. Metab. Invest. Drugs 2, 40-59; Rosiania G.R. & Chang Y.T. (2000). Targeting hyperproliferative disorders with cyclin dependent kinase inhibitors. Exp. Opin. Ther. Patents 10, 215-230; Meijer L. et al. (1999).
- 20 Properties and potential applications of chemical inhibitors of cyclin-dependent kinases. *Pharmacol. Ther.* 82, 279-284; Senderowicz A.M. & Sausville E.A. (2000). Preclinical and clinical development of cyclin-dependent kinase modulators. *J. Natl. Cancer Inst.* 92, 376-387).
- Zur Verwendung der erfindungsgemäßen Verbindungen als Arzneimittel werden diese in die Form eines pharmazeutischen Präparats gebracht, das neben dem Wirkstoff für die enterale oder parenterale Applikation geeignete pharmazeutische, organische oder anorganische inerte Trägermaterialien, wie zum Beispiel, Wasser, Gelatine, Gummi arabicum, Milchzucker, Stärke,
- Magnesiumstearat, Talk, pflanzliche Öle, Polyalkylenglykole usw. enthält. Die pharmazeutischen Präparate können in fester Form, zum Beispiel als Tabletten, Dragees, Suppositorien, Kapseln oder in flüssiger Form, zum Beispiel als Lösungen, Suspensionen oder Emulsionen vorliegen. Gegebenenfalls enthalten

sie darüber hinaus Hilfsstoffe, wie Konservierungs-, Stabilisierungs-, Netzmittel oder Emulgatoren; Salze zur Veränderung des osmotischen Drucks oder Puffer. Diese pharmazeutischen Präparate sind ebenfalls Gegenstand der vorliegenden Erfindung.

5

- Für die parenterale Anwendung sind insbesondere Injektionslösungen oder Suspensionen, insbesondere wäßrige Lösungen der aktiven Verbindungen in polyhydroxyethoxyliertem Rizinusöl, geeignet.
- Als Trägersysteme können auch grenzflächenaktive Hilfsstoffe wie Salze der Gallensäuren oder tierische oder pflanzliche Phospholipide, aber auch Mischungen davon sowie Liposomen oder deren Bestandteile verwendet werden.
- Für die orale Anwendung sind insbesondere Tabletten, Dragees oder Kapseln mit Talkum und/oder Kohlenwasserstoffträger oder -binder, wie zum Beispiel Lactose, Mais- oder Kartoffelstärke, geeignet. Die Anwendung kann auch in flüssiger Form erfolgen, wie zum Beispiel als Saft, dem gegebenenfalls ein Süßstoff beigefügt ist.

- Die enteralen, parenteralen und oralen Applikationen sind ebenfalls Gegenstand der vorliegenden Erfindung.
- Die Dosierung der Wirkstoffe kann je nach Verabfolgungsweg, Alter und

 Gewicht des Patienten, Art und Schwere der zu behandelnden Erkrankung und ähnlichen Faktoren variieren. Die tägliche Dosis beträgt 0,5-1000 mg, vorzugsweise 50-200 mg, wobei die Dosis als einmal zu verabreichende Einzeldosis oder unterteilt in 2 oder mehreren Tagesdosen gegeben werden kann.
- 30 Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der Verbindungen der allgemeinen Formel I, zur Herstellung eines Arzneimittels zur Behandlung von Krebs, Autoimmunerkrankungen, kardiovaskulären Erkrankungen, Chemotherapeutika-induzierter Alopezie und Mukositis,

infektiösen Erkrankungen, nephrologischen Erkrankungen, chronischen und akuten neurodegenerativen Erkrankungen und viralen Infektionen, wobei unter Krebs solide Tumoren und Leukämie, unter Autoimmunerkrankungen Psoriasis, Alopezie und Multiple Sklerose, unter kardiovaskulären Erkrankungen Stenosen,

- Arteriosklerosen und Restenosen, unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene Erkrankungen, unter nephrologischen Erkrankungen Glomerulonephritis, unter chronisch neurodegenerativen Erkrankungen Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung,
- unter akut neurodegenerativen Erkrankungen Ischämien des Gehirns und Neurotraumata, und unter viralen Infektionen Cytomegalus-Infektionen, Herpes, Hepatitis B oder C, und HIV Erkrankungen zu verstehen sind.
- Ebenfalls Gegenstand der vorliegenden Erfindung sind Arzneimittel zur

 Behandlung der oben aufgeführten Erkrankungen, die mindestens eine

 Verbindung gemäß der allgemeinen Formel I enthalten, sowie Arzneimittel mit geeigneten Formulierungs- und Trägerstoffen.
- Die erfindungsgemäßen Verbindungen der allgemeinen Formel I sind unter anderem hervorragende Inhibitoren der Zyklin-abhängigen Kinasen, wie CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 und CDK9, sowie der Glycogen-Synthase-Kinase (GSK-3ß).
- Soweit die Herstellung der Ausgangsverbindungen nicht beschrieben wird, sind diese bekannt oder analog zu bekannten Verbindungen oder hier beschriebenen Verfahren herstellbar. Es ist ebenfalls möglich, alle hier beschriebenen Umsetzungen in Parallel-Reaktoren oder mittels kombinatorischer Arbeitstechniken durchzuführen.
- Die Isomerengemische können nach üblichen Methoden wie beispielsweise

 Kristallisation, Chromatographie oder Salzbildung in die Enantiomeren bzw. E/ZIsomeren aufgetrennt werden.
 - Die Herstellung der Salze erfolgt in üblicher Weise, indem man eine Lösung der Verbindung der Formel I mit der äquivalenten Menge oder einem Überschuß

einer Base oder Säure, die gegebenenfalls in Lösung ist, versetzt und den Niederschlag abtrennt oder in üblicher Weise die Lösung aufarbeitet.

Herstellung der erfindungsgemäßen Verbindungen

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Verbindungen, ohne den Umfang der beanspruchten Verbindungen auf diese

Beispiele zu beschränken.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I lassen sich nach folgenden allgemeinen Verfahrenschemata herstellen:

10 Schema 1

Schema 2

15 **Z = O oder NH**

Schema 3

Beispiel 1

5 Herstellung von 5-Brom-N2-(4-difluorormethylthiophenyl)-N4-2-propynyl-2,4-pyrimidindiamin (erfolgt nach Verfahrensschema 1) (Verbindung 23).

245 mg (1 mmol) 2-Chlor-4-2-propynylaminopyrimidin werden in 2 ml Acetonitril gelöst und eine Suspension von 4-(Difluormethylthio)-anilinhydrochlorid

[hergestellt aus 352 mg (2 mmol) 4-(Difluormethylthio)-Anilin, 1 ml Acetonitril and 0,5 ml wässrige HCl (4M in Dioxan)] wird bei Raumtemperatur hinzugegeben. Anschließend wird das Reaktionsgemisch über Nacht unter N₂-Atmosphäre am Rückfluss erhitzt. Nach Abkühlung wird das Gemisch filtriert, die verbleibende feste Phase wird mit H₂O gewaschen und getrocknet. Eine Ausbeute von 328 mg (85%) des Produktes ist zu erwarten.

Beispiel 2

5 Herstellung von 5-Brom-N-(3-(oxiranylmethoxy)phenyl)-2-(2-propynyloxy)-2-pyrimidinamin (Verbindung 51) und erfolgt nach Verfahrensschema 2.

1,55 g (4.9 mmol) der Verbindung 20 werden in 5,5 ml Epibromhydrin gelöst, 1,38 g K₂CO₃ und 65 mg Tetrabutylammoniumbromid werden dazu gegeben.

Das Reaktionsgemisch wird unter Stickstoffatmosphäre bei 100°C 1 Stunde gerührt. Nach Zugabe von Ethylacetat wird das resultierende Präzipitat gesammelt und vom Ethanol umkristallisiert. Die Produktausbeute beträgt 1,15 g (62%) als weißes Pulver.

15

Die Substanz 40 wird analog zu Beispiel 2 hergestellt

WO 02/096888

/\omega^o	6-H	8.36 (s,1H)	Chromatographie:
ни 🗸	2CH	7.60 (d,1H)	H/EA 1:3 0.5%TEA
N. N		6.91 (d,1H)	
Br O		4.28 (dd,1H)	
		3.79 (dd,1H)	Ausbeute: 38%
		3.31 (m,1H)	
		2.84 (dd,1H)	Schmelzpunkt: 140-141°C
		2.70 (dd,1H)	
	4CH	5.07 (d,12H)	
		3.65 (t,1H)	
	NH	9.65 (sb,1H)	
	ОН		

PCT/EP02/05669

Beispiel 3

5

Herstellung 1-(4-((5-Brom-4-(2-propynyloxy)-pyrimidin-2-yl)-amino)phenoxy)-3-(4-phenylpiperazin-1-yl)-2-propanol (Verbindung 41).

Zu einer Lösung von 19 mg (0.05 mM) der Substanz 51 in N,N'Dimethylpropylharnstoff (DMPU) werden 0.2 ml einer 0.5 M 4-PhenylpiperazinLösung in DMPU gegeben. Das Reaktionsgemisch wird für 18 Stunden bei einer
 Temperatur von 80°C gehalten. Nach dem Abkühlen werden 3,5 ml tertiärer
Butylmethylether hinzugegeben und die organische Phase wird 5 mal mit 1,5 ml
H₂O extrahiert und anschließend im Vakuum evaporiert. Der verbleibende Rest
wird an 1,7g (15 μM) Lichrosphere Si60 (Gradient: Dichloromethan / Hexan 1:1
zu DCM und dann Dichloromethan / Methanol 99:1 bis 93:7) chromatographiert.
 Eine Produktausbeute von 17 mg (64%) wird erreicht.

In analoger Verfahrensweise werden auch die folgenden Verbindungen hergestellt:

Nr.	Struktur	Nr.	Struktur	Nr.	Struktur
96	N CH CH	97		98	De la companya de la
99	CH CH	100	CH CH	101	OH OCH
102		103		104	jorga
105		106	, Con	107	
108		109		110	
111	Mo for a	112	By CH S	113	DEED COLUMN

Nr.	Struktur	Nr.	Struktur	Nr.	Struktur
114	on on on on on one of the original or of the ori	115		116	OH ON
117	N N N N N N N N N N N N N N N N N N N	118	OH OH NO	119	EH CH

Folgende Verbindungen wurden in analoger Verfahrensweise zu den beschriebenen Beispielen hergestellt.

Nr	Struktur	Name
28	HN N N N N N N N N N N N N N N N N N N	5-Brom-N2-(4-(2- Diethylaminoethylsulfonyl)phenyl)-N4-2-propynyl- 2,4-pyrimidindiamin
30	HN HO N	1-(4-[5-Brom-4-(2-propynylamino)-2-pyrimidinyl]amino-phenylthio)-3-(diethylamino)-2-propanol
32		5-Brom-N2-(3-phenylsulfonylphenyl)-N4-2- propynyl-2,4-pyrimidindiamin

Nr	Struktur	Name
33		N-[4-[[5-Brom-4-(2-propynylamino)-2-pyrimidinyl]amino]-benzolsulfonyl]morpholin
41		1-(4-((5-Brom-4-(2-propynyloxy)-pryrimidin-2-yl)- amino)phenoxy)-3-(4-phenylpiperazin-1-yl)-2- propanol
57	HN N N OH	N-[5-Brom-4-((2R)-1-hydroxy-4-methyl-2- butylamino)-2-pyrimidinyl]-indazol-5-amin
58	HN OH	4-[[5-Fluor-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-pyrimidinyl]amino]-benzolsulfonamid
59	HN OH	4-[[5-lod-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-pyrimidinyl]amino]-benzolsulfonamid
62	HN N N N N N N N N N N N N N N N N N N	4-[[5-Fluor-4-(2-propynylamino)-2-pyrimidinyl]amino]-benzolsulfonamid
65	N N N N N N N N N N N N N N N N N N N	4-[[5-Ethyl-4-(2-propynylamino)-2- pyrimidinyl]amino]-benzolsulfonamid
66	HN N N OH	1-[4-[(5-lod-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-pyrimidinyl)amino]phenyl]-ethanon

Nr	Struktur	Name
68	~i	1-[4-[(5-Ethyl-4-((2R)-1-hydroxy-3-methyl-2-
	HN	butylamino)-2-pyrimidinyl)amino]phenyl]-ethanon
	у тон	
72	ONH ₂	4-[[5-Brom-4-(2-(2-oxo-imidazolin-1-yl)ethylamin)-
	HN	2-pyrimidinyl]amino]-benzolsulfonamid
	Br H NH	
73	O NH ₂	4-[[5-Brom-4-(2,2,3,3,3-pentafluorpropyloxy)-2-
	HN	pyrimidinyl]amino]-benzolsulfonamid
	N CF3	
75	S NH ₂	4-[[5-Brom-4-(1,3-bisacetoxy-2-propyloxy)-2-
10	HN DAC	pyrimidinyl]amino]-benzolsulfonamid
76	O'S_NH ₂	4-[[5-Brom-4-(1,3-dihydroxy-2-propyloxy)-2-
	ну Суб	pyrimidinyl]amino]-benzolsulfonamid
	Br OH OH	
79	NH ₂	N□-(5-Brom-2-(4-sulfamoylphenyl)amino-pyrimidin-
	HN	4-yl)-L-alanineamid
	Br H NH	
83	OH OH	1-[4-[(5-Brom-4-(2-propynylamino)-2-
	HN	pyrimidinyl)amino]phenyl]-ethanol
	Br OH	

Folgende Verbindungen wurden analog zu den beschriebenen Syntheseverfahren gemäß Schema 1 oder 2 hergestellt: Alle NMR-Spektren werden in angegebenem Lösungsmittel gemessen oder in

5

DMSO.

	HN N N N N N N N N N N N N N N N N N N	HN N N N N N N N N N N N N N N N N N N		
BspNr.	37	38	39	5
6-H	8.34 (s,1H)	8.39 (s,1H)	8.30 (s,1H)	8.00 (s,1H)
2CH	12.88	9.28 (s,1H)	7.74 (s,1H)	7.52 (d,2H)
	(sb,1H)	8.79 (s,1H)	7.44 (d,1H)	6.65 (d,2H)
	8.07 (s,1H)	7.70 (d,1H)	7.22 (d,1H)	
	7.93 (s,1H)	8.04 (d,1H)	3.98 (t,2H)	
	7.41 (d,1H)	,	3.13 (t,2H)	
	7.56		2.99 (s,3H)	
4CH	(dd,1H)	4.19 (d,2H)	4.16 (d,2H)	4.09 (d,2H)
		3.22 (sb,1H)	3.28 (sb,1H)	3.09 (s,1H)
NH	4.15	10.43(sb,1H)	10.6(1H)	9.00 (s,1H)
	(dd,2H)	8.45 (sb,1H)	8.75 (1H)	8.96 (s,1H)
	3.18 (t,1H)			7,31 (t,1H)
	9.30			
	(sb,1H)			
	7.39			
	(tb,1H)			
Chro-	EA + 0.5%	-	Kristallisiert	-
mato-	TEA		MeOH	
graphie	10%	36%	73%	20%
Aus-				
beute				
Schmp.	231°C	>235°C	237°C	157°C

·	S Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	S F F F F F F F F F F F F F F F F F F F	S S Z Z Z Z B	F F S F F
Beispiel	16	24	26	35
Nr.				
6-H	8.80 (s,1H)	8.30 (s,1H)	8.18 (s,1H)	8.14 (s,1H)
2CH	7.67 (d,2H)	7.94 (d,2H)	7.67 (s,1H)	8.28 (s,1H)
	7.27 (d,2H)	7.63 (d,2H)	7.54 (d,1H)	7.98 (d,1H)
	2.47 (s,3H)		7.24 (t,1H)	7.41 (t,1H)
			6.92 (d,1H)	7.25 (d,1H)
4CH	4.17 (dd,2H)	4.17 (dd,2H)	4.20 (dd,2H)	4.14 (dd,2H)
	3.75 (t,1H)	3.18 (t,1H)	3.12 (sb,1H)	3.04 (sb,1H)
NH	10.55	10.45	9.78 (sb,1H)	9.58 (sb,1H)
	(sb,1H)	(sb,1H)	7.95 (sb,1H)	7.46 (sb,1H)
	8.68 (sb,1H)	8.22 (sb,1H)		
Chrom.	-	•	•	-
Aus-	94%	86%	73%	69%
beute				
Schmp.	232-234°C	160°C	194°C	143°C

		HN NH NH	H T T T T T T T T T T T T T T T T T T T	
Beispiel	27	36	34	21
Nr.				
6-H	8.18 (s,1H)	8.26 (s,1H)	8.25 (s,1H)	8.17 (s,1H)
2CH	8.73 (s,1H)	8.12 (s,1H)	8.16 (s,1H)	8.74 (s,1H)
	7.62 (d,1H)	7.35-	7.43 (d,1H)	7.43 (d,1H)
	7.72 (t,1H)	7.55(m,3H)	7.52 (t,1H)	7.52 (t,1H)
f	8.31 (d,1H)	8.06 (d,1H)	8.01 (d,1H)	8.08 (d,1H)
			2.78 (m,2H)	3.43 (t,2H)
			1.35 (mc,2H)	3.70 (t,2H)
		ı	1.24 (mc,2H)	
			0.80 (t,3H)	
4CH	4.18 (dd,2H)		4.21 (d,2H)	4.20 (dd,2H)
	3.06 (t,1H)	4.21 (d,2H)	3.09 (sb,1H)	3.08 (t,1H)
NH	10.02 (s,1H)	3.09 (sb,1H)	10.3 (sb,1H)	9.79 (s,1H)
	7.49 (sb,1H)	9.68 (sb,1H)	8.13 (sb,1H)	7.55 (tb,1H)
ОН		7.30 (sb,2H)		4.90 (sb,1H)
Chrom.		krist.EtOH	-	-
Aus-	69%	64%	87%	59%
beute				
Schmp.	144°C	219°C	220°C	192.5-
				193.5°C

·	P P P P P P P P P P P P P P P P P P P	0=w	S F F NH	NH,
Beispiel	31	25	23	11
Nr.				
6-H	8.25 (s,1H)	8.14 (s,1H)	8.25 (s,1H)	8.29 (s,1H)
2CH	7.65 (d,2H)	8.01 (d,2H)	7.86 (d,2H)	7.95 (d,2H)
	7.24 (d,2H)	7.56 (d,2H)	7.51 (d,2H)	7.78 (d,2H)
	3.19	2.70 (s,3H)	7.38	
	(d,21.3Hz,2		(t,56.8Hz,1H)	
	H)			
	3.95			
4CH	(mc,4H)	4.15 (dd,2H)	4.18 (m,2H)	4.19 (d,2H)
	1.20 (t,6H)	3.14 (t,1H)	3.16 (sb,1H)	3.18 (sb,1H)
NH		9.69 (sb,1H)	10.24 (sb,1H)	10.40
	4.17 (sb,2H)	7.55 (tb,1H)	8.17 (sb,1H)	(sb,1H)
	3.15 (sb,1H)			8.24 (sb,1H)
	10.19			7.15 (sb,2H)
	(sb,1H)			
	8.34(sb,1H)			
Chrom.	EA krist.	DCM/MeOH	-	krist.
Aus-	H/DIPE	95:5	85%	DIPE/EtOH
beute	23%	25%		17%
Schmp.	198°C	217-218°C	>235°C	>235°C

·	NH ₂	N N N N N N N N N N N N N N N N N N N	HN OH N OH Br
Beispiel	44	45	4
Nr.			
6-H	8.34 (s,1H)	8.34 (s,1H)	8.23 n(sb,1H)
2CH	7.93 (d,2H)	7.74 (mc,4H)	7.39 (d,2H)
	7.79 (d,2H)		6.79 (d,2H)
4CH	4.20 (sb,2H)	4.55 (q,1H)	3.52-3.71 (2H)
	3.31 (sb,1H)	1.98 (dq,2H)	3.97 (mc,1H)
		0.94 (t,3H)	1.96 (mc,1H)
		3.61 (s,3H)	0.91 (d,3H)
NH	11.03 (sb,1H)	10.60 (s,1H)	0.85 (d,3H)
	9.04 (sb,1H)	7.97 (d,1H)	10.35 (sb,1H)
	7.34 (sb,2H)	7.31 (db,2H)	7.76 (sb,1H)
Chrom.	krist. EtOH	krist. EtOH	-
Aus-	27%	48%	52%
beute			
Schmp.	252°C	235°C	242-243°C

	NH ₂ OH	S HN N OH	HN OH OH	HN SOH OH
Beispiel	10	15	3	19
Nr.				
6-H	8.27 (s,1H)	8.17 (s,1H)	7.97 (s,1H)	8.20-8.35
2H	7.80	7.60 (d,2H)	7.44 (d,2H)	(2H)
	(mc,4H)	7.24 (d,2H)	6.67 (d,2H)	7.90 (sb,1H)
		2.44 (s,3H)		7.50-7.64
				(2H)
				3.46 (t,2H)
4H		3.5-3.7 (2H)	3.50-3.65	3.70 (t,2H)
	3.66	40.1 (mc,1H)	(4H)	
	(mc,2H)	1.98 (mc,1H)	4.12 (mc,1H)	3-56-3.66
	n.obs.	0.94 (d,3H)		(4H)
	2.04	0.90 (d,3H)		4.28 (mc,1H)
NH	(mc,1H)	9.95 (sb,1H)		
ОН	0.97 (d,3H)	6.96 (sb,1H)	8.98 (sb,1H)	
	0.94 (d,3H)	ca.4, sehr	5.97 (db,1H)	
	10.40	breit	8.90 (sb,1H)	NH and OH
	(sb,1H)		4.80 (tb,2H)	sind sehr
	7.18 (sb,2H)			breit
	n. obs.			
Chrom.	-	-	-	Kristallisiert
				Wasser
Aus-	43%	27%	76%	52%
beute				
Schmp.	252-253°C	192-193°C	257-258°C	209-210°C

	HN OH OH	S OH OH	HN OH	HE NOTE OF THE PROPERTY OF THE
Beispiel	9	14	55	50
Nr.				
6-H	8.30 (s,1H)	8.30 (s,1H)	8.11 (s,1H)	8.17 (s,1H)
2H	7.82	7.55 (d,2H)	7.87 (s,4H)	7.95 (d,2H)
	(mc,4H)	7.30 (d,2H)	2.50 (s)	7.86 (d,2H)
		2.48 (s,3H)		2.50 (s)
	·		1	
4H		3.54-3.68	4.19 (mc,1H)	4.17 (dd,2H)
	3.63	(4H)	3.61 (mc,4H)	3.13 (t,1H)
	(mc,4H)	4.24 (mc,1H)	Ì	
NH	4.24		9.73 (s,1H)	9.81 (s,1H)
ОН	(mc,1H)	10.63 (sb,1H)	6.20 (s,1H)	7.58 (t,1H)
		7.60 (sb,1H)	4.88 (t,2H)	
	10.59 (b,1H)	4.4 (b)		
	7.2 (sb)			
	6.1 (sb)			
Chrom.	Kristallisiert		Kristallisiert	-
Aus-	MeOH		MeOH/DIPE	
beute	24%	91%	27%	56%
Schmp.	247-248°C	233-234°C	228-229°C	241°C
	 		<u> </u>	1

	HN N N N N N N N N N N N N N N N N N N	HN S N N N N N N N N N N N N N N N N N N	HN N N N Br	HN N OH
Beispiel	46	13	52	53
Nr.				
6-H	8.07s,1H)	8.00 (s,1H)	8.09 (s,1H)	8.11 (s,1H)
2H	7.91 (d,2H)	7.68 (d,2H)	7.88 (s,4H)	7.86 (s,4H)
	7.69 (d,2H)	7.18 (d,2H)		not obs.
ļ		2.44 (s,3H)		
4H	3.30 (t,2H)	3.54 (q,2h9	3.32 (t,2H)	3.62 (mc,2H)
	n.obs.(mc,1	2.53 (t,2H)	1.20 (mc,1H)	4.06 (mc,1H)
	H)	2.40-2.45	0.44 (mc,2H)	2.02 (mc,1H)
	0.45	(4H)	0.30 (mc,2H)	0.97 (d,3H)
	(mc,2H)	3.58 (t,4H)		0.92 (d,3H)
NH	0.30		9.70 (s,1H)	9.70 (s,1H)
ОН	(mc,2H)	9.20 (sb,1H)	7.21 (t,1H)	6.24 (d,1H)
		6.81 (tb,1H)		4.80 (sb,1H)
	9.94 (s,1H)			
	7.21 (t,1H)			
	7.18 (s,2H)			
Chrom.	H/EA 1:2	-	-	·H/EA 1:2
Aus-	20%	28%	53%	9%
beute				
Schmp.	256°C	185-186°C	183°C	170°C

·	HN N N N N N N N N N N N N N N N N N N	HA NA	S HN N N N N N N N N N N N N N N N N N N	HN OH OH
Beispiel	1	54	12	60
Nr.				
6-H	7.96 (s,1H)	8.22 (s,1H)	8.03 (s,1H)	8.10 (s,1H)
2H	7.43 (d,2H)	7.93 (d,2H)	7.68 (d,2H)	7.92 (d,2H)
ļ	6.67 (d,2H)	7.85 (d,2H)	7.19 (d,2H)	7.66 (d,2H)
			2.43 (s,3H)	not. obs.
				2.74 (t,2H)
4H	1.20 (d,3H)	4.26 (d,2H)	1.20 (d,3H)	3.61 (mc,2H)
	4.38	3.12 (sb,1H)	4.42 (mc,1H)	4.04 (mc,1H)
	(mc,1H)		3.37 (dd,1H)	2.01 (mc,1H)
	3.37 (dd,1H)	••	3.50 (dd,1H)	0.94 (d,3H)
	3.48 (dd,1H)		3.34 (s,3H)	0.91 (d,3H)
NH	3.28 (s,3H)	9.78 (s,1H)	9.26 (s,1H)	9.72 (s,1H)
	8.92 (sb,1H)			7.65 (s,1H)
	8.81 (sb,1H)			6.27 (d,1H)
ОН	,	7.21 (t,1H)	6.42 (d,1H)	4.80 (sb,1H)
	6.20 (tb,1H)			4.70 (sb,1H)
Chrom.	Kristallisiert	Kristallisiert	Kristallisiert.	
Aus-	EA	DIPE/MeOH	EA	
beute	64%	52%	36%	
	165.5-	210°C	91°C	150-151°C
Schmp.	166°C			

·	HN N N N N N N N N N N N N N N N N N N	HN N OH	HN N N	DE SOLUTION OH
Beispiel	7	17	2	18
Nr.				
6-H	8.32 (s,1H)	8.08 (s,1H)	7.95 (s,1H)	8.32 (s,1H)
4CH	1.22 (d,3H)	1.21 (d,3H)	3.50 (q,2H)	3.10 (m,2H)
	4.46	4.53 (mc,1H)	2.50 (t,2H)	3.52 (m,4H)
	(mc,1H)	3.41 (dd,1H)	2.40 (t,4H)	3.77-3.97
	3.40 (dd,1H)	3.51 (dd,1H)	3.59 (t,4H)	(6H)
	3.57 (dd,1H)	3.27 (s,3H)		
2CH	3.28 (s,3H)	8.53 (s,1H)	7.45 (d,2H)	
	7.80 (s,4H)	7.40 (d,1H)	6.66 (d,2H)	8.40 (s,1H)
		7.50 (t,1H)		7.55-7.70
		7.86 (d,1H)		(2H)
		3.40 (t,2H)		7.85 (d,1H)
		3.68 (t,2H)		3.48 (m,2H)
NH		9.65 (sb,1H)	8.94 (sb,1H)	3.70 (m,2H)
	10.79	6.47 (db,1H)	8.79 (sb,1H)	
ОН	(sb,1H)	4.84 (tb,1H)	6.70 (tb,1H)	11.16 (sb,1H)
	7.84 (db,1H)			10.60 (sb,1H)
	7.31 (sb,2H)		-	8.20 (sb,1H)
Chrom.		•	-	kristall.
Aus-	25%	10%	62%	МеОН
beute				50%
Schmp.	247°C Zers.	201-202°C	227.5-	245°C Zers.
			228.5°C	

	NH ₂
Beispiel	8 (D ₂ O)
Nr.	
6-H	8.14 (s,1H)
4CH	3.06 (sb,2H)
	3.39 (t,4H)
	3.71 (sb,2H)
	3.85 (sb,2H)
	3.94 (t,2H)
2CH	8.00 (d,2H)
	7.72 (d,2H
NH	
он	
Chrom.	krist. Wasser
Aus-	25%
beute	
Schmp.	>275°C

·	HN CF ₃	OH N N N N N N N N N N N N N N N N N N N		HN CF ₃
Beispiel	47	6	22	84
Nr.				
5-H	8.74 (s,1H)	8.31 (s,1H)	8.31 (s,1H)	8.47 (s,1H)
2CH	7.87 (d,2H)	7.47 (d,2H)	7.76 (d,2H)	4.48 (t,2H)
	7.74 (d,2H)	6.71 (d,2H)	7.72 (d,2H)	2.01 (mc,2H)
			2.58 (s,3H)	2.44 (mc,2H)
4CH	4.50 (t,2H) 2.03 (mc,2H) 2.44 (mc,2H)	5.04 (d,2H) 3.59 (t,1H)	5.05 (d,2H) 2.57 (t,1H)	7.91 (d,2H)
2NH	10.14 (s,1H)	9.02 (sb,1H)	7.47 (sb,1H)	7.85 (d,2H)
	7.21 (s,2H)	9.40 (sb,1H)		2.50 (s)
ļ	·			10.19 (s,1H)
Chrom.	MeOH/DCM		-	-
Aus-	1:9	66%	8%	11%
beute	4%			
Schmp.	186-187°C	146°C	165-166°C	152°C

·		, 0
	HN N O	NAME OF THE PROPERTY OF THE PR
Beispiel	86	77
Nr.		
5-H	8.47 (s,1H)	8.48 (s,1H)
2CH	4.07 (mc,2H)	5.52 (m,1H)
	3.81 (mc,2H)	3.68 (d,4H)
	3.60 (mc,2H)	3.48 (mc,4H)
4CH	3.48 (mc,2H)	1.09 (t,6H)
	3.41 (t,2H)	7.84 (d,2H)
	1.07 (t,3H)	
		٠.
2NH	7.84 (d,2H)	7.74 (d,2H)
	7.91 (d,2H)	8.05 (vb)
	10.18 (s,1H)	3.40 (vb)
Chrom.	-	-
Aus-	2%	74%
beute		
Schmp.	85°C	132°C

	0	
	HN	ни
	N N	N N
	Br	Br 📗
Beispiel	40	20
	40	20
Nr.		
6-H	8.36 (s,1H)	8.40 (s,1H)
2CH	7.60 (d,1H)	7.23 (s,1H)
	6.91 (d,1H)	6.42 (d,1H)
	4.28 (dd,1H)	7.06 (t,1H)
	3.79 (dd,1H)	7.18 (d,1H)
	3.31 (m,1H)	
	2.84 (dd,1H)	
	2.70 (dd,1H)	
4CH	5.07 (d,12H)	5.12 (d,2H)
	3.65 (t,1H)	
NH		3.60 (sb,1H)
	9.65 (sb,1H)	9.60 (sb,1H)
ОН		9.21 (sb,1H)
Chrom.	H/EA 1:3	krist. DIPE
Aus-	0.5%TEA	35%
beute	38%	
Schmp.	140-141°C	174°C

				<u>-</u>
	HN COOH	D DH OH	HN OH OH	F F F F F F F F F F F F F F F F F F F
Beispiel	49	48	29	42
Nr.				
6-H	8.14 (s,1H)	8.10 (s,1H)	8.09 (s,1H)	7.87 (d,3.4,1H)
2H	7.88 (d,2H)	7.92 (d,2H)	8.50 (s,1H)	7.51 (d,2H)
	7.69 (d,2H)	7.66 (d,2H)	7.86 (d,1H)	6.66 (d,2H)
	•	not. obs.	7.50 (t,1H)	
		2.74 (t,2H)	7.40 (d,1H)	
4H	3.41 (q,2H)	3.61 (mc,2H)	3.40 (t,2H)	4.13 (dd,2H)
	2.20 (t,2H)	4.04 (mc,1H)	3.52-3.73	3.08 (t,1H)
	1.81 (q,2H)	2.01 (mc,1H)	(4H)	
		0.94 (d,3H)	4.09 (mc,1H)	
		0.91 (d,3H)	1.98 (mc,1H)	
			0.97 (d,3H)	
NH	9.64 (s,1H)	9.72 (s,1H)	0.89 (d,3H)	8.76 (s,1H)
	7.64 (t,1H)	7.65 (s,1H)	9.68 (s,1H)	7.74 (tb,1H)
ОН	3.5 (vb	6.27 (d,1H)	6.17 (d,1H)	8.88 (s,1H)
		4.80 (sb,1H)	4.74 (t,1H)	
		4.70 (sb,1H)	4.93 (t,1H)	
Chrom.	-	krist.MeOH/DI	DCM/EA 2:1	H/EA 1:2
Aus-	9%	PE	26%	29%
beute		16%		
Schmp.	262°C	150-151°C		163°C

·	HN NH NH	HN OH	HN OH	ONH ₂ OH N HN N OH HN HN H H H H H H H H H H
Beispiel	43	55	89	88
Nr.				
6-H	7.93 (s,1H)	8.11 (s,1H)	8.36 (s,1H)	8.29 (s,1H)
2H	7.52 (d,2H)	7.87 (s,4H)	7.7-7.8 (5H)	7.73 (d,2H)
	6.68 (d,2H)	2.50 (s)		7.57 (d,2H)
4H	3.09 (s,1H)	4.19 (mc,1H)	3.66 (mc,2H)	3.7-3.9 (2H)
	4.14 (d,2H)	3.61 (mc,4H)	4.04 (m,1H)	5.19 (m,1H)
			1.99 (mc,1H)	7.2-7.4 (5H)
			0.94 (d,3H)	
			0.89 (d,3H)	
		, i		
NH	8.98 (sb,2H)	9.73 (s,1H)	11.11 (sb,1H)	10.50 (s,1H)
	7.50 (s,1H)	6.20 (s,1H)		5.029 (vb)
ОН		4.88 (t,2H)	7.34 (sb,2H)	
			n. obs.	
Chrom.	H/EA 1:2	krist. MeOH/	-	-
Aus-	35%	DIPE	74%	27%
beute		27%		
Schmp.	168°C	228°C	248°C Zers.	159°C Zers.

·		HZ ON D HZ Z Z H B	DO STORY OF THE PROPERTY OF TH	HN N N N N N N N N N N N N N N N N N N
Beispiel	87	92	91	96
Nr.				
6-H	8.09 (s,1H)	8.10 (s,1H)	8.09 (s,1H)	8.06 (s,1H)
2H	7.90 (d,2H)	7.91 (d,2H)	7.98 (d,2H)	7.88 (d,2H)
	7.82 (d,2H)	7.63 (d,2H)	7.61 (d,2H)	7.69 (d,2H)
	not. obs	2.39 (d,3H)	2.54 (s,6H)	
4H	3.69 (td,2H)	1.21 (d,3H)	1.20 (d,3H)	3.41 (m,2H)
	2.84 (t,2H)	4.45 (mc,1H)	4.46 (mc,1H)	1.62 (m,4H)
	7.60 (s,1H)	3.38 (dd,1H)	3.47 (dd,1H)	2.41 (m,2H)
	6.86 (s,1H)	3.51 (dd,1H)	3.51 (dd,1H)	5.07 (s,2H)
			3.38 (s,3H)	
NH	7.34 (tb,1H)	9.73 (sb,1H)	9.81 (sb,1H)	7.32 (s,5H)
	9.72 (s,1H)	7.20 (q,1H)	6.58 (db,1H)	9.64 (s,1H)
		,,,		7.16 (sb,2H)
ОН	11.91 (sb,1H)	6.57 (d,1H)		
Chrom.	•	H bis H/EA 1:1	H bis H/EA	-
Aus-	16%	21%	1:1	33%
beute			7%	
Schmp.	210 °C	167-168°C	105°C	202°C

	DE STATE OF THE ST	HN N NH	HN NH N	
Beispiel	97	98	90	85
Nr.				
6-H	8.07 (s,1H)	8.10 (s,1H)		8.30 (s,1H)
2H	7.87 (s,4H)	7.86 (mc,4H)		7.95 (d,2H)
	2.50 (s,3H)	n. obs.		7.69 (d,2H)
				2.48 (s,3H)
4H	3.41 (m,2H)	3.68 (t,2H)		3.50 (q,2H)
	1.61 (m,4H)	2.68 (t,2H)		1.87 (m,2H)
	2.41 (m,2H)	4.08 (q,2H)		2.38 (t,2H)
	5.07 (s,2H)	1.17 (t,§H)		4.03 (q,2H)
				1.13 (t,3H)
NH	7.32 (s,5H)	9.74 (s,1H)		10.86 (s,1H)
	9.70 (s,1H)	7.18 (t,1H)		8.28 (sb,2H)
	7.19 (t,1H)			
Chrom.	-	-		-
Aus-	23%	32%		53%
beute				
Schmp.	152°C	172		184°C

·	HN N N N N N N N N N N N N N N N N N N	HN S OH	HN HO OH	HN NH2
Beispiel	63	94	93	80
Nr.				
	9.73 (s,1H) 8.25 (s,1H) 7.95 (d,2H) 7.67 (d,2H) 7.21 (s,3H) 4.12 (s,2H) 3.12 (s,1H)	10.91 (s,1H) 8.34 (s,1H) 7.80 (s,4H) 7.30 (s,2H) 4.35 (m,1H) 3.58 (m,2H) 2.47 (m,2H) 2.03 (s,3H) 1.91 (m,2H)	10.80 (s,1H) 8.30 (s,1H) 7.81 (d,2H) 7.65 (d,2H) 7.30 (m,8H) 4.95 (d,1H) 4.38 (m,1H) 3.59 (d,1H)	10.88 (s,1H) 8.40 (s,1H) 8.29 (m,1H) 7.79 (s,4H) 7.31 (s,2H) 4.75 (dd,1H) 3.65 (m,1H) 3.49 (m,1H) 2.10 (m,2H)
Aus-	61%	24%	70%	51%
beute				
Schmp.	220	168	243	
Masse	428 (EI)	462 (ES)	494 (ES)	427 (EI)

	O O O NH ₂ HN OH		O S NH ₂	N N N N N N N N N N N N N N N N N N N
Beispiel	120	121	122	123
Nr.				
141.				
	9.65 (s,1H) 8.12 (s,1H) 7.89 (d,2H) 7.65 (d,2H) 7.15 (s,2H) 6.06 (d,1H) 4.71 (t,1H) 4.18 (m,1H) 3.67 (t,1H) 0.95 (s,9H)	9.68 (s,1H) 8.11 (s,1H) 7.93 (t,1H) 7.90 (d,2H) 7.65 (d,2H) 7.15 (s,2H) 7.07 (t,1H) 3.65 (m,2H) 3.56 (s,3H) 3.07 (q,2H) 2.45 (t,2H) 2.30 (t,2H) 1.65 (p,2H)	11.30 (s,1H) 8.11 (d,1H) 7.85 (d,2H) 7.72 (d,2H) 7.31 (s,2H) 6.71 (d,1H) 3.85 (m,8H)	10.79 (s,1H) 8.35 (s,1H) 8.25 (s,1H) 7.80 (s,4H) 7.30 (s,2H) 3.41 (m,2H) 2.22 (t,2H) 1.60 (m,4H) 1.30 (m,2H)
Aus-	49%	24%	80%	73%
	→3 /0	4 7 /0	OU 70	1370
beute		:		
Schmp.				252
Masse	445 (Ei)	516 (EI)	334 (EI)	459 (EI)

	Y			<u> </u>
	HN N N N N N N N N N N N N N N N N N N		HN NH ₂	HH Z OH OH OH
Beispiel	95	124	125	126
Nr.			İ	
	11.19 (s,1H) 8.37 (s,1H) 8.11 (d,1H) 7.80 (s,4H) 7.31 (s,2H) 3.91 (m,1H) 1.89 (m,4H) 1.67 (m,1H) 1.55 (m,2H) 1.34 (m,2H) 1.15 (m,1H)	9.62 (s,1H) 8.04 (s,1H) 7.88 (m,3H) 7.66 (d,2H) 7.13 (s,3H) 3.58 (s,3H) 3.40 (m,2H) 3.05 (m,2H) 2.25 (m,2H) 2.05 (m,2H) 1.60 (m,5H) 1.32 (m,3H)	9.62 (s,1H) 8.04 (s,1H) 7.86 (d,2H) 7.66 (d,2H) 7.12 (s,3H) 3.58 (s,3H) 3.40 (m,2H) 2.30 (t,2H) 1.60 (m,4H) 1.32 (m,2H)	10.91 (s,1H) 8.38 (s,1H) 7.83 (d,2H) 7.77 (d,2H) 7.28 (s,2H) 7.04 (d,1H) 6.40 (br,3H) 4.35 (m,1H) 3.87 (m,1H) 3.60 (d,2H) 3.41 (dd,1H) 3.28 (dd,1H)
Aus-	29%	25%	27%	46%
beute				, ,
Schmp.	255		218	
Masse	425 (EI)	557 (ES)	471 (EI)	449 (EI)

NH ₂	N COM	HN N OH	HE Z Z OH
127	128	129	130
9.96 (s,1H) 8.12 (s,1H) 7.85 (d,2H) 7.69 (d,2H) 7.20 (s,2H) 6.78 (d,1H) 4.35 (m,1H) 3.48 (m,2H) 1.65 (m,7H) 1.10 (m,6H)	9.60 (s,1H) 8.05 (s,1H) 7.90 (d,2H) 7.69 (d,2H) 7.42 (d,1H) 7.16 (m,3H) 4.57 (t,2H) 3.70 (m,1H) 3.4 (m,5H) 2.10 (t,2H) 1.55 (m,4H) 1.30 (m,2H)	9.67 (s,1H) 8.07 (s,1H) 7.87 (d,2H) 7.75 (d,2H) 7.13 (s,2H) 6.40 (d,1H) 4.91 (br,1H) 4.23 (m,1H) 3.52 (m,2H) 1.21 (d,3H)	9.65 (s,1H) 8.08 (s,1H) 7.87 (d,2H) 7.64 (d,2H) 7.14 (s,2H) 6.53 (d,1H) 4.62 (d,1H) 3.90 (br,1H) 3.40 (br,1H) 1.88 (m,4H) 1.50 (m,2H) 1.30 (m,2H)
18%	94%	61%	58%
220		259	262
485 (EI)	531 (ES)	403 (EI)	443 (EI)
	9.96 (s,1H) 8.12 (s,1H) 7.85 (d,2H) 7.69 (d,2H) 7.20 (s,2H) 6.78 (d,1H) 4.35 (m,1H) 3.48 (m,2H) 1.65 (m,7H) 1.10 (m,6H)	127 128 9.96 (s,1H) 9.60 (s,1H) 8.12 (s,1H) 7.85 (d,2H) 7.90 (d,2H) 7.69 (d,2H) 7.69 (d,2H) 7.20 (s,2H) 7.42 (d,1H) 6.78 (d,1H) 7.16 (m,3H) 4.35 (m,1H) 3.70 (m,1H) 1.65 (m,7H) 3.4 (m,5H) 1.10 (m,6H) 2.10 (t,2H) 1.55 (m,4H) 1.30 (m,2H) 18% 94%	127 128 129 9.96 (s,1H) 9.60 (s,1H) 9.67 (s,1H) 8.12 (s,1H) 8.05 (s,1H) 7.85 (d,2H) 7.90 (d,2H) 7.75 (d,2H) 7.20 (s,2H) 7.42 (d,1H) 7.13 (s,2H) 6.78 (d,1H) 7.16 (m,3H) 6.40 (d,1H) 4.35 (m,1H) 4.57 (t,2H) 4.91 (br,1H) 3.48 (m,2H) 3.70 (m,1H) 4.23 (m,1H) 1.65 (m,7H) 3.4 (m,5H) 3.52 (m,2H) 1.10 (m,6H) 2.10 (t,2H) 1.21 (d,3H) 18% 94% 61%

	ONH ₂		NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	DE HOLD OF HEAD OF HEA
Beispiel	131	132	133	134
Nr.]			
	9.62 (s,1H)	9.70 (s,1H)	9.69 (s,1H)	10.85 (s,1H)
·	8.08 (s,1H)	8.11 (s,1H)	8.11 (s,1H)	8.31 (s,1H)
	7.92 (d,2H)	7.90 (d,2H)	7.88 (d,2H)	7.90 (d,1H)
	7.67 (d,2H)	7.60 (d,2H)	7.66 (d,2H)	7.85 (d,2H)
	7.23 (s,2H)	7.21 (q,1H)	7.15 (s,2H)	7.75 (d,2H)
	6.75 (t,1H)	5.25 (d,1H)	6.52 (d,1H)	7.54 (s,1H)
	3.22 (d,2H)	4.77 (t,1H) ·	4.35 (dd,1H)	3.90 (m,1H)
	1.95 (s,3H)	4.02 (m,1H)	2.29 (m,1H)	3.38 (t,2H)
	1.60 (m,12H)	3.60 (m,2H)	1.07 (d,3H)	2.78 (br,2H)
		2.39 (d,3H)	0.91 (d,3H)	1.50 (m,11H)
		2.02 (m,1H)		
		0.95 (dd,6H)		
Aus-	9%	42%	25%	64%
beute	J 70	72/0	2J /0	U4 70
Schmp.	229	141	· · · · · · · · · · · · · · · · · · ·	
Masse	491 (EI)	443 (EI)	444 (FAB)	

	HN PFFF	D NH H	N N N N N N N N N N N N N N N N N N N	
Beispiel	135	136	137	138
Nr.		·		
	10.01 (s,1H) 8.28 (s,1H)	9.70 (s,1H) 8.11 (s,1H)	9.65 (s,1H)	9.70 (s,1H)
			9.58 (s,1H)	8.10 (s,1H)
	7.81 (d,2H)	7.90 (d,2H)	8.10 (s,1H)	7.89 (d,2H)
	7.71 (t,1H) 7.63 (d,2H)	7.64 (d,2H) 7.35 (t,1H)	7.85 (d,2H)	7.63 (d,2H)
	7.45 (br,1H)	6.55 (d,1H)	7.68 (d,2H)	7.39 (t,1H)
	4.34 (dt,2H)		7.40 (m,2H)	6.68 (d,1H)
	3.32 (t,2H)	4.65 (t,1H)	7.18 (m,4H)	4.34 (dd,1H)
	2.71 (br,2H)	4.45 (m,1H) 3.53 (m,1H)	6.94 (t,1H)	3.36 (m,3H)
	2.7 1 (DI,2H)	3.44 (m,6H)	6.75 (d,1H)	2.25 (q,2H)
		2.75 (q,2H)	4.40 (m,3H) 2.05 (m,1H)	2.29 (m,1H) 1.05 (dd,6H)
		1.20 (d,3H)	0.96 (dd,6H)	1.05 (uu,0H)
Aus-	34%	53%	59%	57%
beute	J-7/0	J3 70	J970	51%
Schmp.	F70 (F0)			
Masse	570 (ES)	460 (ES)	549 (ES)	488 (ES)

	DE NH OH	O DH	O O NH. N OH	DO NH2
Beispiel	139	140	141	142
Nr.				
	9.82 (s,1H) 8.15 (s,1H) 7.82 (d,2H) 7.64 (d,2H) 7.39 (t,1H) 6.55 (d,1H) 4.64 (t,1H) 4.50 (t,1H) 3.65 (s,3H) 3.4 (m,2H) 2.75 (m,2H) 2.35 (m,1H) 1.00 (dd,6H)	9.82 (s,1H) 8.08 (s,1H) 7.96 (d,2H) 7.75 (t,1H) 7.62 (d,2H) 7.30 (t.1H) 4.64 (t,1H) 4.14 (m,2H) 3.35 (m,2H) 3.16 (m,1H) 2.75 (q,2H)	9.58 (s,1H) 8.12 (s,1H) 7.83 (d,2H) 7.68 (d,2H) 7.15 (s,2H) 5.92 (s,1H) 5.28 (t,1H) 3.50 (d,2H) 1.42 (s,6H)	9.62 (s,1H) 8.07 (s,1H) 7.87 (d,2H) 7.67 (d,2H) 7.14 (s,2H) 6.36 (d,1H) 4.81 (t,1H) 4.32 (m,1H) 3.47 (m,2H) 1.52 (m,3H) 0.90 (d,3H) 0.86 (d,3H)
Aus-	20%	63%	23%	8%
beute				
Schmp.				
Masse	502 (ES)	382 (ES)	415 (EI)	443 (EI)

	HN NH,	HN N N N N N N N N N N N N N N N N N N	HN HO NH	NW CONTRACTOR NAME OF THE PARTY
Beispiel	143	144	145	78
Nr.			·	
	10.6 (s,1H) 8.28 (s,1H) 8.30 (m,5H) 7.48 (d,1H) 7.20 (s,1H) 4.05 (br,1H) 3.60 (br,2H) 2.01 (m,1H) 0.90 (m,6H)	10.11 (s,1H) 8.45 (s,1H) 7.86 (d,2H) 7.78 (d,2H) 7.15 (br,2H) 5.32 (m,1H) 3.91 (m,2H) 3.53 (m,2H) 2.05 (m,2H) 1.70 (m,2H)	11.05 (s,1H) 8.32 (s,1H) 8.08 (d,1H) 7.80 (m,4H) 7.30 (br,2H) 3.88 (m,1H) 3.65 (m,1H) 1.95 (m,2H) 1.69 (m,2H) 1.35 (m,4H)	9.69 (s,1H) 8.06 (s,1H) 7.88 (d,2H) 7.63 (d,2H) 7.18 (s,2H) 7.10 (t,1H) 6.65 (d,1H) 4.47 (m,1H) 3.97 (m,1H) 2.98 (m,2H) 2.00 (m,4H) 1.40 (m,8H) 0.85 (t,3H)
Aus-	13%	47%	42%	20%
beute -				
Schmp.				
Masse	392 (EI)	428 (EI)	441 (EI)	541 (ES)

	HN N OH	O S O O O O O O O O O O O O O O O O O O	DH DH	O OH OH N N N N N N N N N N N N N N N N N
Beispiel	146	147	148	149
Nr.				
	11.13 (s,1H)	11.18 (s,1H)	11.15 (s,1H)	9.19 (s,1H)
	8.38 (s,1H)	8.35 (s,1H)	8.35 (s,1H)	8.30 (s,1H)
	7.92 (d,2H)	7.90 (s,4H)	7.90 (d,2H)	8.02 (s,1H)
	7.75 (m,3H)	7.62 (d,1H)	7.65 (m,3H)	7.62 (m,1H)
	4.04 (m,1H)	4.02 (m,1H)	4.01 (m,1H)	6.85 (d,1H)
	3.80 (s,3H)	3.62 (m,2H)	3.60 (m,6H)	6.05 (d,1H)
	3.65 (m,2H)	3.02 (s,3H)	2.85 (m,4H)	4.03 (m,1H)
	2.00 (m,1H)	2.00 (m,1H)	2.00 (m,1H)	3.56 (m,2H)
	0.96 (d,3H)	0.95 (d,3H)	0.95 (d,3H)	1.96 (m,1H)
	0.89 (d,3H)	0.89 (d,3H)	0.85 (d,3H)	0.97 (d,3H)
			!	0.90 (d,3H)
Aus-	86%	33%	79%	42%
beute				
Schmp.	225	211	232	241
Masse	408 (EI)	428 (EI)	501 (EI)	411 (ES)

	HN NH OH	OH OH OH	OH OH	
Beispiel	150	151	152	153
Nr.				
	11.19 (s,1H)	10.96 (s,1H)	9.50 (s,1H)	12.90 (s,1H)
	10.80 (s,1H)	8.35 (s,1H)	8.08 (s,1H)	9.45 (s,1H)
}	8.30 (m,2H)	7.95 (m,2H)	7.75 (m,5H)	8.52 (s,1H)
	7.85 (d,1H)	7.65 (m,3H)	6.17 (d,1H)	8.05 (s,1H)
	7.72 (d,1H)	4.04 (m,1H)	4.80 (br,1H)	7.82 (d,1H)
	7.20 (d,1H)	3.62 (m,2H)	4.64 (br,2H)	7.50 (d,1H)
	4.02 (m,1H)	2.00 (m,1H)	4.05 (m,1H)	7.32 (t,1H)
	3.60 (m,2H)	0.90 (M,6H)	3.94 (m,1H)	6.11 (d,1H)
	2.00 (m,1H)	ļ	3.52 (m,6H)	4.72 (s,1H)
	1.01 (d,3H)		2.01 (m,1H)	4.10 (s,1H)
}	0.90 (d,3H)		0.93 (dd,6H)	3.60 (m,2H)
				2.01 (m,1H)
				0.99 (d,3H)
				0.92 (d,3H)
Aus-	27%	65%	85%	9%
beute	,			
Schmp.				231
Masse	420 (ES)	395 (ES)	468 (ES)	395 (ES)

·	HN OH	O OME	HN OH	HA Z OH
Beispiel	154	155	156	157
Nr.				
	10.91 (s,1H)	11.05 (s,1H)	10.51 (s,1H)	15.5o (s,1H)
<u>.</u>	8.38 (s,1H)	8.34 (m,2H)	8.22 (s,1H)	9.50 (s,1H)
ļ	7.90 (d,1H)	7.75 (m,3H)	7.71 (d,1H)	8.40 (s,1H)
 	7.80 (m,4H)	7.52 (t,1H)	7.27 (m,1H)	8.11 (s,1H)
	7.05 (d,1H)	4.04 (m,1H)	6.86 (m,2H)	7.80 (d,1H)
	4.50 (s,2H)	3.85 (s,3H)	6.06 (s,2H)	7.53 (d,1H)
	4.04 (m,1H)	3.65 (m,2H)	3.96 (m,1H)	6.16 (d,1H)
·	3.62 (m,2H)	2.00 (m,1H)	3.62 (m,2H)	4.78 (br,1H)
	1.96 (m,1H)	0.94 (d,3H)	1.99 (m,1H)	4.03 (m,1H)
	0.93 (d,3H)	0.85 (d,3H)	0.90 (m,6H)	3.60 (m,2H)
	0.85 (d,3H)			2.01 (m,1H)
				0.91 (dd,6H)
Aus-	90%	48%	77%	21%
beute				
Schmp.	170	181	177	196
Masse	381 (ES)	409 (ES)	394 (EI)	391 (EI)

				
•	MN NHPh	Diastereomere 1/2 (ca. 1:3)	Diastereomere 1/2 (ca. 6:1)	SO ₂ NH ₃
Beispiel	158	159 *	160 *	161 *
Nr.				
	10.80 (s,1H)	9.65	9.65	7.92 (s,1H)
	8.31 (s,1H)	(s,1H,1+2)	(s,1H,1+2)	7.84 (d,2H)
	7.97 (d,2H)	8.08	8.08	7.58 (d,2H)
	7.88 (m,3H)	(s,1H,1+2)	(s,1H,1+2)	3.72 (m,1H)
	7.52 (m,5H)	7.88	7.88	3.35 (m,2H)
	4.01 (m,1H)	(d,2H,1+2) ··	(d,2H,1+2)	3.10 (m,1H)
	3.62 (m,2H)	7.65	7.65	2.91 (m,2H)
	2.00 (m,1H)	(d,2H,1+2)	(d,2H,1+2)	2.00 (m,2H)
	0.91 (m,6H)	7.15	7.15	1.89 (m,2H)
		(s,1H,1+2)	(s,1H,1+2)	1.66 (m,4H)
		6.62 (d,1H,2)	6.62 (d,1H,2)	1.39 (m,5H)
		6.40 (d,1H,1)	6.40 (d,1H,1)	
		4.05 (m,1H,1)	4.05 (m,1H,1)	
		3.89 (m,1H,2)	3.89 (m,1H,2)	
		2.30-1.20	2.30-1.20	
		(m,15H,1+2)	(m,15H,1+2)	
Aus-	37%	21%	14%	8%
beute				
Schmp.			199	> 300
Masse	469 (EI)	468 (EI)	468 (EI)	508 (EI)

				
	HO NH ₂	Diastereomere 1/2 (ca. 1:1)	O O O O O O O O O O O O O O O O O O O	No.
BspNr.	162	163 *	164	165
	11.25 (s,1H) 9.40 (s,1H) 8.47 (s,1H) 8.29 (s,1H) 7.63 (s,1H) 7.43 (d,1H) 7.07 (m,3H) 4.06 (m,1H) 3.63 (m,2H) 1.98 (m,1H) 0.95 (d,3H) 0.85 (d,3H)	10.95 (s,1H) 10.72 (s,1H) 9.47 (br,2H) 9.30 (br,2H) 8.32 (2xs,2H) 8.08 (d,1H) 7.88 (d,2H) 7.75 (m,6H) 7.30 (br,4H) 6.95 (d,1H) 4.12 (m,1H) 3.98 (m,1H) 3.98 (m,1H) 3.10 (m,1H) 2.69 (m,2H) 2.25 (m,2H) 1.80 (m,18H) 1.01 (m,4H)	9.65 (s,1H) 8.54 (s,1H) 8.10 (s,1H) 7.82 (d,1H) 7.45 (m,2H) 6.20 (d,1H) 4.70 (t,1H) 4.10 (m,1H) 3.60 (m,2H) 3.15 (s,3H) 2.00 (m,1H) 0.96 (d,3H) 0.89 (d,3H)	
Aus-	16%	0.72 (m,4H)	14%	51%
beute	10 /0	3370	1470	J 1 70
Schmp.	195			162-164
Masse	446 (ES)	480 (EI)	429 (ES)	462 (EI)

Raionial	HN Z Z J OH		Diastereomere 1/2 (ca.1:1)	
Beispiel	166	167 *	168 *	169
Nr.				
	10.90 (s,1H) 8.95 (s,1H) 7.93 (m,2H) 7.25 (m,3H) 6.30 (s,1H) 6.00 (d,1H) 4.75 (tr,1H) 4.05 (m,1H) 3.60 (m,2H) 2.00 (m,1H) 1.00 (m,6H)	11.15 (br,1H) 10.90 (s,1H) 9.75 (br,2H) 8.35 (s,1H) 7.78 (m,4H) 7.30 (br,2H) 4.15 (m,1H) 3.50 (m,5H) 2.85 (s,6H) 1.90 (m,8H)	11.30 (br,2H) 11.08 (s,1H) 10.92 (s,1H) 9.90 (s,1H) 9.70 (s,1H) 8.36 (2xs,2H) 8.20 (d,1H) 7.93 (d,2H) 7.75 (m,6H) 7.35 (br,4H) 7.10 (d,1H) 4.15 (m,1H) 3.98 (m,1H) 3.64 (m,8H) 3.40 (m,5H) 3.10 (m,5H)	9.05 (br,1H) 8.85 (s,1H) 8.11 (d,1H) 7.97 (s,1H) 7.47 (dd,1H) 6.80 (d,1H) 5.95 (d,1H) 4.80 (br,2H) 3.90 (m,2H) 3.45 (m,6H) 2.00 (m,1H) 0.90 (m,6H)
Aus-	6%	16%	1.95 (m,26H) 58%	60%
beute	0.70	1070	0070	00 /0
		050	004	
Schmp.		256	261	
Masse	390 (ES)	512 (ES)	538 (ES)	484 (ES)

·	Diastereomere 1/2 (ca. 1:1)	NA N	OH OH OH OH	D D D D D D D D D D D D D D D D D D D
Beispiel	170 *	171	172	173
Nr.				
	11.05 (s,1H) 10.90 (s,1H) 10.6 (br,2H) 8.35 (2xs,2H) 8.15 (d,1H) 7.80 (m,8H) 7.30 (br,4H) 7.05 (m,1H) 4.25 (m,1H) 3.95 (m,2H) 3.65 (m,1H) 3.20 (m,10H) 1.90 (m,24H)	10.45 (s,1H) 8.25 (s,1H) 8.00 (br,1H) 7.85 (d,2H) 7.75 (d,2H) 7.45 (br,1H) 3.60 (m,5H) 3.35 (m,2H) 2.80 (m,2H) 2.41 (t,2H) 1.90 (m,2H)	11.05 (s,1H) 8.35 (m,2H) 7.82 (d,1H) 7.65 (d,2H) 7.50 (t,1H) 4.05 (m,1H) 3.62 (m,2H) 2.00 (m,1H) 0.96 (d,3H) 0.85 (d,3H)	8.90 (s,1H) 8.72 (s,1H) 7.95 (s,1H) 7.18 (m,1H) 7.05 (dd,1H) 6.75 (d,1H) 5.99 (d,1H) 4.74 (t,1H) 4.03 (m,1H) 3.70 (s,3H) 3.60 (m,2H) 2.00 (m,1H) 0.90 (m,6H)
Aus-	64%	7%	65% .	40%
beute				
Schmp.	226	164	206	144
Masse	525 (ES)	488 (ES)	395 (ES)	397 (ES)

	Diastereomere 1/2 (ca. 1:1)	Diastereomere	NH ₂	NH ₂
		3/4 (ca. 1:1)		
Beispiel	174 *	175 *	176	177
Nr.				
	11.05 (m,3H)	11.15 (br,1H)	8.00 (s,1H)	9.65 (s,1H)
	10.48 (s,1H)	11.05 (s,2H)	7.80 (m,4H)	8.08 (s,1H)
	8.38 (s,2H)	10.65 (br,1H)	4.48 (m,1H)	7.85 (d,2H)
	7.80 (m,8H)	8.30 (s,2H)	3.65 (d,2H)	7.65 (d,2H)
	7.80 (br,4H)	8.13 (m,2H)	1.75 (m,1H)	7.40 (br,1H)
	7.10 (s,1H)	7.88 (m,8H)	1.59 (m,2H)	7.15 (s,2H)
	6.95 (s,1H)	7.30 (br,4H)	1.01 (d,3H)	3.55 (m,2H)
	4.42 (m,2H)	4.40 (m,2H)	0.92 (d,3H)	2.55 (m,2H)
	4.18 (m,2H)	4.00 (br,2H)		2.15 (m,2H)
	3.70-2.90	3.70-2.90		1.80 (m,3H)
	(m,10H)	(m,10H)		1.65 (m,1H)
	2.40-1.60	2.40-1.40		
	(m,20H)	(m,20H)		
Aus-	95%	51%	3%	8%
beute				
Schmp.				
Masse	511 (ES)	511 (ES)	443 (EI)	456 (EI)

				·
·	S NH ₂	NH,	HN HILL OF THE PARTY OF THE PAR	HN NH OH
Beispiel	178	179	180	181
Nr.				
		<u> </u>		
	9.49 (s,1H)	9.61 (s,1H)	9.65 (s,1H)	9.71 (s,1H)
	8.25 (s,1H)	8.08 (s,1H)	8.11 (s,1H)	8.06 (s,1H)
	7.80 (m,4H)	7.88 (d,2H)	7.81 (s,2H)	7.90 (d,2H)
	7.32 (br,2H)	7.65 (d,2H)	7.63 (d,2H)	7.61 (d,2H)
	4.03 (m,2H)	7.60 (t,1H)	7.15 (s,2H)	7.37 (t,1H)
	3.75 (m,1H)	7.15 (s,2H)	6.64 (d,1H)	6.56 (d,1H)
	3.35 (m,2H)	3.45 (m,2H)	4.28 (m,3H)	4.66 (m,2H)
	1.80 (m,2H)	2.40 (t,2H)	2.00 (m,1H)	3.90 (m,1H)
	1.40 (m,2H)	2.20 (s,6H)	1.98 (s,3H)	3.39 (m,3H)
		1.75 (t,2H)	0.98 (d,3H)	2.78 (q,2H)
		-	0.93 (d,3H)	1.96 (m,4H)
				1.56 (m,2H)
				1.29 (m,2H)
Aus-	17%	9%	27%	24%
beute				
Schmp.				
Masse	427 (EI)	428 (EI)	472 (ES)	486 (ES)

				·
		HN N N N N N N N N N N N N N N N N N N	HN N OH	HN OH
Daianial	400	400	404	405
Beispiel	182	183	184	185
Nr.				
	9.68 (s,1H)	10.97 (s,1H)	11.06 (s,1H)	11.01 (s,1H)
	9.47 (s,1H)	8.30 (s,1H)	8.04 (m,1H)	8.38 (s,1H)
	8.10 (s,1H)	8.02 (d,1H)	7.82 (m,2H)	7.82 (s,4H)
	7.81 (d,2H)	7.81 (m,4H)	7.70 (m,2H)	7.40 (d,1H)
	7.67 (d,2H)	7.30 (s,2H)	7.30 (s,2H)	7.32 (s,2H)
	7.14 (s,2H)	4.14 (m,1H)	6.72 (m,1H)	4.20 (m,1H)
	6.76 (m,3H)	1.80 (m,12H)	3.75 (m,5H)	3.70 (m,2H)
	4.47 (m,2H)	!	1.88 (m,2H)	0.97 (s,9H)
	4.30 (m,1H)		1.48 (m,2H)	
	3.65 (s,6H)			
	3.54 (s,3H)			
	1.99 (m,1H)			
	0.98 (d,3H)			
	0.92 (d,3H)			
Aus-	57%	78%	26%	76%
beute				
Schmp.				
Masse	639 (ES)	439 (EI)	348 (EI)	445 (EI)

·	NH ₂	HIN SHAPE	HN OH	NH ₂
Beispiel	186	187	188	189
Nr.				
	9.71 (s,1H) 8.11 (s,1H) 7.90 (d,2H) 7.70 (d,2H) 7.12 (s,2H) 6.75 (d,1H) 4.45 (m,1H) 2.25 (m,6H) 1.90 (m,2H)	7.75 (s,1H) 7.65 (d,2H) 7.58 (d,2H) 5.82 (s,1H) 4.25 (s,2H) 3.40 (t,2H) 2.82 (t,2H) 2.06 (s,3H)	10.60 (s,1H) 8.29 (s,1H) 7.79 (d,2H) 7.71 (d,2H) 7.28 (s,2H) 6.60 (s,1H) 3.58 (s,2H) 2.10 (m,2H) 1.78 (m,2H) 1.55 (m,4H)	11.19 (s,1H) 8.03 (d,1H) 7.88 (d,2H) 7.78 (d,2H) 7.31 (s,2H) 6.58 (d,1H) 3.60 (m,4H) 1.20 (m,6H)
Aus-	16%	7%	61%	35%
beute	- 2.0	- /0	3170	0070
Schmp.				
Masse	440 (ES)	480 (ES)	443 (EI)	321 (EI)

	NH ₂	Diastereomer	Diastereomer 2	HN NH2
Beispiel	190	191 *	192 *	193
Nr.				
	10.61 (s,1H) 8.28 (s,1H) 7.82 (d,2H) 7.73 (d,2H) 7.53 (br,1H) 7.25 (s,2H) 4.25 (m,1H) 2.59 (br,1H) 2.21 (br,1H) 1.94 (m,1H) 1.40 (m,7H)	9.67 (s,1H) 8.08 (s,1H) 7.88 (d,2H) 7.65 (d,2H) 7.11 (s,2H) 6.35 (d,1H) 4.10 (m,1H) 3.62 (m,4H) 2.45 (m,4H) 2.19 (m,1H) 1.88 (m,4H) 1.65 (m,4H)	9.63 (s,1H) 8.06 (s,1H) 7.85 (d,2H) 7.65 (d,2H) 7.15 (s,2H) 6.55 (d,1H) 3.95 (m,1H) 3.58 (m,4H) 2.50 (m,4H) 1.96 (m,1H) 1.50 (m,4H) 1.30 (m,4H)	10.61 (s,1H) 8.28 (s,1H) 7.78 (m,4H) 7.45 (d,1H) 7.20 (s,2H) 4.30 (br,2H) 3.53 (m,2H) 1.21 (d,3H)
Aus-	63%	15%	17%	57%
beute				
Schmp.				
Masse	437 (EI)	511 (ES)	511 (EI)	403 (EI)

·	N F F F	HN CH	HIN N N N N N N N N N N N N N N N N N N	N O O O O O O O O O O O O O O O O O O O
Deignial	404	405	400	407
Beispiel Nr.	194	195	196	197
INI.				
	9.89 (s,1H)	10.98 (s,1H)	10.39 (s,1H)	10.85 (s,1H)
	8.21 (s,1H)	8.51 (br,1H)	8.30 (s,1H)	8.71 (d,1H)
	7.82 (d,2H)	8.29 (s,1H)	8.04 (d,2H)	8.31 (s,1H)
	7.65 (m,3H)	7.81 (m,4H)	7.70 (d,2H)	7.72 (d,2H)
	7.17 (br,2H)	7.29 (br,2H)	7.21 (br,2H)	7.55 (d,2H)
	4.30 (m,2H)	3.45 (m,4H)	6.55 (s,1H)	7.30 (m,6H)
		1.68 (m,2H)	3.49 (s,1H)	5.41 (m,1H)
		1.45 (m,2H)	2.32 (m,2H)	3.49 (m,2H)
			1.85 (m,2H)	2.11 (m,2H)
			1.60 (m,5H)	
		·	1.29 (m,1H)	
Aus-	26%	56%	12%	61%
beute				
Schmp.				
Masse	476 (EI)	417 (EI)	450 (EI)	479 (EI)

	(+)- Enantiomer	(-)- Enantiomer	Diastereomer 1	Diastereomer 2
Beispiel	198	199	200	201
Nr.				
	11.01 (s,1H) 8.32 (s,1H) 8.10 (d,1H) 7.80 (m,4H) 7.30 (br,2H) 3.70 (m,1H) 1.80 (m,5H) 1.48 (m,1H) 1.29 (m,2H) 1.07 (m,1H) 0.83 (d,3H)	11.01 (s,1H) 8.32 (s,1H) 8.10 (d,1H) 7.80 (m,4H) 7.30 (br,2H) 3.70 (m,1H) 1.80 (m,5H) 1.48 (m,1H) 1.29 (m,2H) 1.07 (m,1H) 0.83 (d,3H)		9.16 (s,1H) 8.07 (s,1H) 7.89 (d,2H) 7.67 (d,2H) 7.15 (s,2H) 6.45 (d,1H) 4.35 (s,2H) 3.97 (m,1H) 3.40 (m,4H) 2.85 (m,1H) 2.55 (m,1H) 1.82 (m,2H) 1.61 (m,6H)
Aus-	4%	4%	7%	2%
beute				
Schmp.				
Masse	439 (EI)	439 (EI)	515 (ES)	515 (ES)

	O S F F F O H	Diastereomer 1	Diastereomer 2	NH ₂ NH ₃ NH ₄ N H N H N H N H N H N H N H N
Beispiel	202	203 *	204 *	205
Nr.				
	10.21 (s,1H) 8.18 (s,1H) 8.10 (d,2H) 7.92 (d,2H) 6.39 (d,1H) 4.80 (br,1H) 4.05 (m,1H) 3.62 (m,2H) 2.00 (m,1H) 0.99 (d,3H) 0.92 (d,3H)	•	9.66 (s,1H) 8.08 (s,1H) 7.90 (d,2H) 7.69 (d,2H) 7.15 (s,2H) 6.53 (d,1H) 3.93 (m,1H) 2.05 (m,5H) 1.51 (m,2H) 1.15 (m,2H) 0.42 (m,2H) 0.25 (m,2H)	9.73 (s,1H) 8.11 (s,1H) 7.82 (d,2H) 7.65 (d,2H) 7.12 (s,2H) 6.80 (d,1H) 4.67 (m,1H) 3.13 (m,1H) 2.86 (m,3H) 2.18 (m,2H)
Aus-	10%	2%	2%	16%
beute				
Schmp.				
Masse	483 (ES)	480 (EI)	480 (EI)	430 (ES)

	ONH ₂ HN OH OH Br	DH OH	O O O O O O O O O O O O O O O O O O O	2 2 3 3 3 4 4 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5
Beispiel	206	207	208	209
Nr.				
			·	
j	9.75 (s,1H)	10.98 (s,1H)	11.00 (s,1H)	9.55 (s,1H)
	8.19 (s,1H)	8.50 (d,2H)	8.31 (s,1H)	8.08 (s,1H)
1	7.75 (d,2H)	8.31 (s,1H)	7.74 (m,5H)	7.80 (d,2H)
	7.18 (d,2H)	7.97 (d,2H)	7.21 (d,1H)	7.60 (d,2H)
	7.17 (s,2H)	7.78 (d,2H)	6.80 (d,1H)	6.58 (br,4H)
	6.68 (d,1H)	7.57 (d,1H)	4.00 (m,1H)	6.20 (d,1H)
	5.35 (t,1H)	7.00 (t,1H)	3.62 (m,2H)	4.80 (br,1H)
	4.71 (m,1H)	4.01 (m,1H)	1.95 (m,1H)	4.04 (m,1H)
	3.91 (m,2H)	3.62 (m,2H)	0.98 (d,3H)	3.60 (m,2H)
	3.65 (s,3H)	1.97 (m,1H)	0.90 (d,3H)	2.00 (m,1H)
		0.98 (d,3H)		0.99 (d,3H)
		0.92 (d,3H)		0.92 (d,3H)
Aus-	5%	55%	44%	77%
beute				
Schmp.	223	248	228	231
Masse	446 (ES)	507 (EI)	514 (EI)	

		DH NO DH	HN OH	
Beispiel	210	211	212	71
Nr.				
	10.03 (s,1H) 8.38 (s,1H) 8.14 (s,1H) 7.81 (d,2H) 7.60 (d,1H) 7.30 (m,7H) 4.99 (s,2H) 3.42 (m,2H) 2.97 (m,2H) 1.58 (m,2H) 1.30 (m,4H)	10.90 (s,1H) 8.40 (m,1H) 8.30 (s,1H) 7.88 (d,2H) 7.73 (d,2H) 7.38 (br,1H) 3.45 (m,4H) 2.38 (s,3H) 1.62 (m,2H) 1.45 (m,2H)	9.18 (s,1H) 9.05 (s,1H) 7.98 (s,1H) 7.18 (m,2H) 6.98 (m,2H) 6.31 (m,1H) 4.45 (t,1H) 3.47 (m,4H) 1.63 (m,2H) 1.48 (m,2H)	9.66 (s,1H) 8.08 (s,1H) 7.88 (d,2H) 7.63 (m,3H) 7.28 (t,1H) 7.11 (s,2H) 6.88 (s,1H) 3.65 (m,2H) 2.88 (t,2H)
Aus-	86%	22%	41%	77%
beute				
Schmp.				
Masse	528 (CI)	429 (EI)	352 (EI)	437 (EI)

·	HN OH	NH ₂	HN S NH ₂	HN N NH3
Beispiel	213	61	214	215
Nr.				
	12.40 (br,1H) 11.10 (s,1H) 8.08 (d,2H) 7.79 (m,4H) 7.30 (s,2H)	12.41 (br,1H) 11.11 (s,1H) 8.10 (d,1H) 7.80 (m,5H) 7.30 (s,2H)	8.03 (s,1H) 7.76 (m,4h) 3.70 (s,2H) 1.92 (m,4H) 0.92 (m,6H)	9.55 (s,1H) 8.10 (s,1H) 7.80 (d,2H) 7.68 (d,2H) 7.15 (s,2H)
	4.04 (m,1H) 3.60 (m,2H) 2.07 (s,3H) 2.00 (m,1H) 0.97 (d,3H)	4.08 (m,1H) 3.63 (m,2H) 2.50 (m,2H) 2.01 (m,1H) 1.15 (t,3H)	(in MeOD)	5.82 (s,1H) 3.74 (d,1H) 3.52 (d,1H) 2.72 (m,1H) 1.35 (s,3H)
	0.90 (d,3H)	0.99 (d,3H) 0.92 (d,3H)		0.97 (d,3H) 0.91 (d,3H)
Aus- beute	49%	25%	2%	9%
Schmp.				
Masse	365 (EI)	379 (EI)	443 (ES)	444 (ES)

	NH2 NNH2	HN N N N N N N N N N N N N N N N N N N	NH ₂	NH, NH, NH, NH, NH, NH, NH, NH, NH, NH,
Beispiel	216	217	218	219
Nr.	j			
	10.88 (s,1H) 8.36 (s,1H) 8.03 (d,1H) 7.79 (m,4H) 7.28 (br,2H) 4.65 (m,1H) 3.89 (m,2H)	10.88 (s,1H) 8.36 (s,1H) 8.03 (d,1H) 7.79 (m,4H) 7.28 (br,2H) 4.65 (m,1H) 3.89 (m,2H) 3.71 (m,2H) 2.19 (m,2H)	11.01 (s,1H) 8.52 (br,1H) 8.29 (s,1H) 7.78 (m,4H) 7.32 (s,2H) 3.39 (m,2H) 1.70 (m,6H) 1.15 (m,3H) 0.96 (m,2H)	11.11 (s,1H) 8.53 (m,1H) 8.36 (s,1H) 7.80 (m,4H) 7.31 (s,2H) 3.71 (m,2H) 2.65 (m,2H)
Aus-	65%	34%	58%	88%
beute				
Schmp.	239	239	238	280
Masse	439 (EI)	413 (EI)	439 (EI)	416 (EI)

	NH, NH, NH, NH, NH, NH, NH, NH, NH, NH,	HN OH	HN N N N N N N N N N N N N N N N N N N	Neg -
Beispiel	74	56	220	221
Nr.				
	9.67 (s,1H)	9.70 (s,1H) 8.11 (s,1H) 7.88 (m,4H) 6.25 (d,1H) 4.81 (m,1H) 4.05 (m,1H) 3.61 (m,2H) 2.01 (m,1H) 0.97 (d,3H) 0.92 (d,3H)	8.92 (m,1H) 8.81 (m,1H) 7.96 (s,1H) 7.43 (d,2H) 6.67 (d,2H) 6.20 (m,1H) 4.38 (m,1H) 3.48 (m,1H) 3.37 (m,1H) 1.20 (d,3H)	9.66 (s,1H) 8.08 (s,1H) 7.83 (d,2H) 7.68 (d,2H) 7.22 (t,1H) 7.11 (s,2H) 3.95 (m,4H) 3.48 (m,2H) 1.79 (m,4H) 1.18 (t,6H)
Aus-	7%	17%	65%	19%
beute				
Schmp.	285	158	166	
Masse	457 (EI)	392 (EI)	354 (EI)	522 (ES)

·	NH,	HN N N N N N N N N N N N N N N N N N N	HN N P OH	
Beispiel	222	223	224	225
Nr.				
	9.81 (s,1H) 9.08 (s,1H) 8.68 (s,1H) 8,35 (m,1H) 8.20 (s,1H) 8.02 (t,1H) 7.63 (m,5H) 7.17 (s,2H) 7.03 (s,1H)	9.71 (s,1H) 8.13 (s,1H) 7.89 (d,2H) 7.66 (d,2H) 7.31 (t,1H) 7.14 (s,2H) 3.98 (m,2H) 3.69 (s,3H) 3.64 (s,3H)	9.70 (s,1H) 8.08 (s,1H) 7.88 (d,2H) 7.65 (d,2H) 7.25 (m,3H) 6.11 (m,1H) 3.40 (m,5H)	10.29 (s,1H) 8.83 (m,2H) 8.51 (m,1H) 8.26 (s,1H) 7.93 (d,2H) 7.60 (d,2H) 7.51 (d,2H) 7.25 (br,2H) 4.90 (d,2H)
	4.82 (d,2H)			
Aus-	54%	23%	7%	43
beute				
Schmp.	300	300		243
Masse	501 (EI)	465 (EI)		434 (EI)

	NHT,	HN N N N N N N N N N N N N N N N N N N	O S S S S S S S S S S S S S S S S S S S	NH,
Beispiel	226	227	228	229
Nr.				
	10.38 (s,1H)	10.30 (s,1H)	10.52 (s,1H)	10.88 (s,1H)
	8.52 (br,1H)	8.78 (m,1H)	8.66 (m,1H)	8.92 (m,1H)
	8.23 (s,1H)	8.36 (m,3H)	8.28 (s,1H)	8.33 (s,1H)
	7.72 (m,4H)	7.81 (m,2H)	7.63 (m,4H)	7.72 (d,2H)
	7.36 (m,1H)	7.60 (m,4H)	7.26 (m,6H)	7.62 (d,2H)
	7.22 (s,2H)	7.22 (br,2H)	4.63 (d,2H)	7.30 (m,4H)
	7.03 (m,1H)	4.94 (d,2H)		6.89 (d,2H)
	6.95 (m,1H)	٠.		4.62 (d,2H)
	4.80 (d,2H)			3.70 (s,3H)
Aus-	47%	41%	88%	89%
beute				
Schmp.	229	287	259	233
Masse	440 (CI)	434 (EI)	451 (EI)	463 (EI)

BeispielNr.	230
Delapielivi.	200
	10.45 (s,1H) 8.20 (s,1H) 8.05 (m,1H) 7.79 (m,4H) 7.21 (s,2H) 3.50 (m,2H) 1.83 (m,2H) 1.56 (m,2H)
Ausbeute	58%
Schmp.	>300
Masse	466 (ES)

5

	HA ZA	HN N N N N N N N N N N N N N N N N N N	NH ₂ SO O HN N N N N N N N N N N N N N N N N N	O NH2
Beispiel	231	232	233	234
Nr.				
	10.3 (s, 1H)	9.28 (s, 1H)	10.48 (s, 1H)	9.63 (s, 1H)
	8.34 (tr,1H)	8.0 (s, 1H)	8.25 (s, 1H)	8.12 (s, 1H)
	8.2 (s, 1H)	7.73 (d, 2H)	7.85 (m, 4H)	7.65 (m, 4H)
]	7.9 (m, 4H)	7.63 (tr, 1H)	7.25 (m, 1H)	7.42 (d, 2H)
	4.3 (q, 2H)	7.18 (d, 2H)	7.15 (s, 1H)	7.35 (tr, 2H)
	4.2 (m, 2H)	5.0 (m, 1H)	5.1 (m, 1H)	7.21 (m, 1H)
	3.23 (tr,1H)	4.3 (s, 2H)	3.58 (m, 4H)	7.16 (s, 1H)
	1.32 (tr, 3H)	4.14 (m, 2H)		5.35 (m, 1H)
		3.11 (tr,1H)		1.55 (d, 3H)
Aus-	85%	35%	33%	25%
beute				
Schmp.				
Masse	330 (EI)	288 (EI)	389 (CI)	448 (ESI)

	# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		OH OH OH	ON STATE OF THE ST
Beispiel- Nr.	235	236	237	238
Schmp. [°C]				
Masse	486 (ES)	516 (ES)	504 (ES)	488 (ES)

	HN N N N OH	NH OH	HN OH	
Beispiel- Nr.	239	240	241	242
Schmp. [°C]				
Masse	536 (ES)	502 (ES)	484 (ES)	551 (ES)

	HN N OH	DO SO	O O O D D D D D D D D D D D D D D D D D
Beispiel- Nr.	243	244	245
Schmp. [°C]			
Masse	516 (ES)	514 (ES)	433 (ES)

	ON OH HN H OH	NH ₂	OH OH OH	O S O OH
Beispiel- Nr.	246	247	248	249
Schmp. [°C]			205	>300
Masse	446 (ES)	415 (EI)	504 (ES)	431 (ES)

	N N N OH	DH D	O O F	HN N OH
Beispiel- Nr.	250	251	252	253
Schmp. [°C]	113	231	187	
Masse	488 (ES)	446 (ES)	433 (ES)	

	S OH OH	ONH, OH DE DE D	ON STATE OF THE PROPERTY OF TH	
Nr.	254	255	256	257
Schmp. [°C]				
Masse	399 (ES)	444 (ES)	474 (ES)	486 (ES)

Die mit *) gekennzeichneten Verbindungen Nr. 159, 160, 161, 163, 167, 168, 170, 174, 175, 191, 192, 203 und 204 können über die unter Beispiel Nr. 295 beschriebene Verfahrensvariante hergestellt werden.

Beispiel 258

5

15

10 Herstellung von 4-(5-Brom-4-morpholin-4-yl-pyrimidin-2-ylamino)-phenylsulfonamid

202 mg (0.60 mmol) der Verbindung Beispiel Nr. 122 werden mit 1 ml Wasser sowie 0.2 g (1.2 mmol) Brom versetzt und bei Raumtemperatur gerührt. Nach 24 Stunden werden erneut 0.2 g (1.2 mmol) Brom zugegeben und weitere 24 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird mittels

Unterdruck evaporiert und der verbleibende Rückstand chromatographisch (Flashmaster II, DCM / MeOH 7:3) gereinigt. Man erhält 17 mg (0.04 mmol, 7%) des Produktes als weissen Feststoff.

·	NH ₃ S=0 HN N N N N N N N N N N N N N N N N N	HN COH	HE NOT HE	ин Д ОН ОН ВИ ОН ОН ВИ ОН
Beispiel-Nr.	259	260	261	262
Schmp. [°C]		205-207	202-203	
Masse	MS (ES) 452,			428 (ES)
	454 (M+ H,			
	100 %)			

Beispiel- Nr.	Verbindung	ESI-MS
263	Br O OH N	434
264	Br O OH	434
265	Br OH N N HN N	477
266	Br O OH N	477
267	Br O OH N	552
268	Br O H Z	552

Analog der unter Beispiel 6.0 (s. Herstellung der Zwischenprodukte, Seite 186)

beschriebenen Verfahrensweise zur Herstellung der Zwischenprodukte wurden auch folgende Verbindungen hergestellt:

10

Beispiel-	269	270	271
Nr.			•
	Br HHO N N S NH ₂		BH HZ HZ O. S. O. SH2
Ausbeute	47%	90%	
Masse	ESI: MH ⁺ 480 (100%) 478 (97%) 115 (30%)	ESI: MH ⁺ 432 (100%) 430 (94%) 157 (43%)	ESI: MH ⁺ 446 (18%)

Analog zu Herstellungsbeispiel 1 wurden auch die folgenden Verbindungen hergestellt:

5

	Br HZ OO SO NH2	HN ON NH2	Br HN O O O NH2	Br HN O NH2
Beispiel	272	273	274	275
-Nr.				
Aus-	61%	44%	42%	68%
beute				
Masse	EI:	EI:	ESI:	EI:
	M ⁺ 463 (4%)	M ⁺ 403 (24%)	MH ⁺ 418	M ⁺ 401 (33%)
	277 (8%)	358 (100%)	100%	372 (100%)
	105 (100%)	277 (52%)	416 (94%)	344 (38%)
			346 (8%)	

	Br HN O O NH2	Br HN O O O O O O O	Br H OH O	Br HN STO NH2
Beispiel	276	277	278	279
-Nr.				
Aus-	81%	58%	~20%	30%
beute				
Masse	EI:	ESI:	ESI:	ESI:
	M ⁺ 431 (5%)	MH ⁺ 444	MH+ 494	MH+ 418
	372 (100%)	(100%)	(75%)	(100%)
	291 (46%)	442 (97%)	346 (18%)	416 (97%)
		115 (20%)	214 (55%)	310 (27%)

	Br HN SO NH2	Br HN Si O H	Br N N N N N N N N N N N N N N N N N N N	Br HN Si NH2
Beispiel	280	281	282	283
-Nr.				
Aus-	55%	43%	~18%	35%
beute				
Masse	ESI:	ESI:	ESI:	ESI:
	MH ⁺ 444	MH ⁺ 446	MH ⁺ 416	MH ⁺ 446
	(100%)	(100%)	(100%)	(100%)
	442 (97%)	444 (95%)	414 (96%)	444 (90%)
	214 (12%)	346 (5%)	317 (4%)	

·	Chiral Chiral Sp. O	Chiral Chiral S=0 S = N NH ₂	Br HN SO NH2	Br HZ S O H2
Beispiel -Nr.	284	285	286	287
Aus- beute	51%	46%	47%	61%
Masse	ESI: MH ⁺ 520 (100%) 518 (97%) 115 (27%)	ESI: MH ⁺ 520 (100%) 518 (97%) 115 (23%)	ESI. MH* 432 (100%) 430 (95%) 346 (5%)	ESI. MH* 446 (100%) 444 (93%) 115 (13%)

5

Gemäß nachfolgender Herstellungsvariante werden auch die folgen Verbindungen synthetisiert:

10

30 mg (0,0678 mMol) der Verbindung Nr. 277 werden in 1 ml
Methanol/Tetrahydrofuran 1:1 gelöst. Nach Zugabe von ~10 mg
Natriumborhydrid wird 2 Stunden nachgerührt. Dann wird unter Kühlung mit ~34 Tropfen Eisessig gequencht und eingeengt. Nachfolgend wird das Rohprodukt

mit wenig Wasser aufgenommen, abgesaugt, mit Acetonitril nachgewaschen und bei bei 60°C im Vakuum getrocknet. Ausbeute: 21 mg (70% der Theorie) der gewünschten Verbindung.

	Br Co. Sh. Sh. Sh. Sh. Sh. Sh. Sh. Sh. Sh. Sh	BE Z HO NH2
Beispiel	288	289
-Nr.		
Aus-	52%	70%
beute		
Masse	El:	ESI:
	M ⁺ 465 (5%)	MH ⁺ 446
	358 (40%)	(100%)
	207 (31%)	444 (93%)
		117 (20%)

Beispiel 290

5 Herstellung der Oximether-Pyrimidin-Verbindungen der allgemeinen Formel I

Die Herstellung der Oximether erfolgt nach dem folgenden allgemeinen Reaktionsschema:

10

15

R⁸ und R⁹ haben die in der allgemeinen Formel I angegebenen Bedeutungen.

Herstellung von Beispiel 290

20

25

50 mg (0,12 mMol) der Verbindung Nr. 282, 34 mg Hydroxylammoniumchlorid und 150 mg pulversiertes KOH werden 2 Stunden in 2 ml Ethanol unter Rückfluß gekocht. Danach wird auf Eiswasser gegossen und mit Eisessig

angesäuert, 3 mal mit Dichlormethan/Isopropanol 4:1 extrahiert, getrocknet mit Magnesiumsulfat und eingeengt. Der Rückstand wird mit Acetonitril aufgeschlemmt, absaugt und bei 60 °C getrocknet. Ausbeute: 28 mg (54% der Theorie) gewünschte Verbindung.

5

Masse

ESI:

MH⁺ 429 (29%)

371 (61%)

10 289 (91%)

In analoger Verfahrensweise wurden auch folgende Verbindungen hergestellt:

	Br HZ O S. NH2	Br HN OON NAT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Besispiel-Nr.	291	292	293
Ausbeute	34%	36%	40%
Masse	ESI: MH+ 443 (95%) 445 (99%) 373 (32%)	ESI: MH+ 485 (92%) 487 (99%)	ESI: MH ⁺ 487 (91%) 489 (89%) 373 (32%)

15

Beispiel 294

5 Reduktive Aminierung

50 mg (0,12 mMol) der Verbindung Nr. 282 und 7,5 mg (0,132 mMol)

Cyclopropylamin werden in 2 ml 1,2-Dichlorethan gelöst. Nach Zugabe von 9,1

mg (0,144 mMol) Natriumcyanoborhydrid lässt man 12 Stunden nachrühren.

Dann wird mit Dichlormethan/ Isopropanol 4:1 verdünnt, 2 mal mit Wasser gewaschen, getrocknet mit Magnesiumsulfat und einengt. Der Rückstand wird über Kieselgel mit Dichlormethan/ Methanol 95:5 chromatographiert. Ausbeute:

18 mg (33 % der Theorie) gewünschte Verbindung.

	B Z Z Z O S S O S S O S S O S S O S S O S S O
Aus-	33%
beute	
Masse	ESI:
	MH ⁺ 457
	(98%)
	455 (93%)
	249 (55%)

In analoger Verfahrensweise werden auch die Verbindungen Nr. 159, 160, 161, 163, 167, 168, 170, 174, 175, 191, 192, 203 und 204 hergestellt.

Beispiel 295 und 296

In analoger Verfahrensweise zu Beispiel 1 werden auch folgende zwei Verbindungen hergestellt:

	Br HN OH SO NH ₂	Br OH OH OH OH OH
Beispiel	295	296
Ausbeute	46 %	47 %
Masse	ESI:	ESI:
	MH ⁺ 432 (30%)	MH ⁺ 446 (45%)
	434 (31%)	448 (49%)
	123 (100%)	123 (90%)

Herstellung der Sulfonamide der allgemeinen Formel I

5

10

0.2 mmol Sulfonsäurefluorid werden im Reaktor eines Synthesizers vorgelegt,
15 Man gibt 1.0 ml Solvens, vorzugsweise 2-Butanol hinzu. Nacheinander werden über eine Pipette 0.2 ml (0.2 mmol) von DMAP – gelöst in einem Solvens, beispielsweise DMSO oder 2-Butanol - und 0.2 mL (0.2 mmol) des Amins, gelöst in 2-Butanol, hinzugegeben. Die Reaktionsmischung wird anschliessend für 20 Stunden bei 80°C gerührt. Nach beendeteter Reaktion wird das
20 Rohprodukt abpipettiert und der Reaktor mit 1.0 mL THF nachgewaschen. Die Lösung des Rohproduktes wird dann eingeengt und mittels HPLC gereinigt.

Es wurden die nachfolgenden Verbindungen hergestellt:

Beispiel-			
Nr.	Verbindung	Molgewicht	ESI-MS
297		526,4968	526/528
298		562,5298	562/564
299		624,6006	624/626
300	Br HN CH,	501,4471	501/503
301	BY HILL OH	538,4682	538/540

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
302	Br N H ₂ C HN O > S	588,4465	588/590
303	B H, C C P C C P S	528,5126	528/530
304	BT H,C CH ₃	542,5394	542/544
305	Br Hy.C Hy.C CH ₃	556,5662	556/558
306	BI H,C OH N,C OH,	570,593	570/572

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
307	BI HAVE AND STATE OF THE STATE	510,4106	510/512
308	BH H.C. N H.C. O D D D D D D D D D D D D D D D D D D	588,4465	588/590
309	Br H,C OH N H,C OH N N H,C OH	548,503	548/550
310	BH H.C.	555,4949	555/557
311	HN CH,	500,459	500/502

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
312	DH H ₂ C CH ₃	514,4858	514/516
313		515,4739	515/517
314	DH H2C CH3 CH3 CH3 CH3 CH3	557,5543	557/559
315		470,3896	470/472
316	Br OH N H,C N N N N N N N N N N N N N N N N N N N	551,5069	551/553

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
317	Br OH N H,C HN O⇒ S D O D O D O D O D O D O D O D O D O D	534,4762	534/536
318	Br H ₁ C OH	568,9213	568/570
319	Gr HN HN C SSS H CCH ₃	524,4374	524/526
320	BH H2C H	543,4839	543/545
321	Br Hysc OH	488,4044	488/490

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
322	DE H.C. HN. OFFICE OF STATE	526,4776	526/528
323	DH H,C, O DE H, O DE	564,502	564/566
324	Br H,C OH	527,4849	527 <i>İ</i> 529
325	Br H ₂ C OH	541,5117	541/543
326	Br N N N N N N N N N N N N N N N N N N N	538,4395	538/540

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
327	Br N H,C O ≥ S N N H,C	541,5117	541/543
328	DH H ₂ C O	521,4375	521/523
329	PF HYDOH	· 538,4395	538/540
330	DE H. C.	521,4375	521/523
331	\$	550,4752	550/552

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
332	BY H,C OH	550,4752	550/552
333	BH H.C. SING SING SING SING SING SING SING SING	613,5551	613/615
334		534,4762	534/536
335		512,47	512/514
336		548,503	548/550

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
337	Br CH ₃	610,5738	610/612
338	DE CH, CH,	487,4203	487/489
339	Br H H O H	 524,4414	524/526
340	CH CH CH CH CH CH CH CH CH CH CH CH CH C	574,4197	574/576
341	Br CH ₃ ON CH ₃ CCH ₃	514,4858	516/514

Beispiel- Ńr.	Verbindung	Molgewicht	ESI-MS
342	Br CH ₃ OH CH ₃ CH ₃	528,5126	528/530
343	DE TO THE TOTAL PROPERTY OF THE TOTAL PROPER	542,5394	542/544
344	BE CH, OH	556,5662	556/558
345	Br CH ₃	496,3838	496/498
346	Br CH ₃	574,4197	574/576

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
347	H CH	534,4762	534/536
348	B H C C C C C C C C C C C C C C C C C C	541,4681	541/543
349	BH CH3 OF CH3 CH3	486,4322	486/488
350	Br CH ₃	500,459	500/502
351	Br HN CH3	501,4471	501/503
352	OF HASC CH3	543,5275	543/545

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
353	Bi H H O O O O O O O O O O O O O O O O O	456,3628	456/458
354		537,4801	537/539
355		520,4494	520/522
356		554,8945	554/556
357	Br CH, CH	510,4106	510/512

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
358	Br CH, OH	529,4571	529/531
359		474,3776	474/476
360		512,4508	541/514
361	DH CH CO CO CO CO CO CO CO CO CO CO CO CO CO	550,4752	550/552
362	Br H CH,	513,4581	513/515

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
363	Br CH ₃	527,4849	527/529
364	B T T T T T T T T T T T T T T T T T T T	524,4127	524/526
365	BH CHANGE THE CHANGE T	527,4849	527/529
366	Br CH,	507,4107	507/509
367	Br CH ₃	524,4127	524/526

Beispiel-			ESI-MS
Ńr.	Verbindung	Molgewicht	
368	Br CH,	507,4107	507/509
369	To the second se	536,4484	536/538
370		, 536,4484	536/538
371	Br HN SH	599,5283	599/601
372	BH CH3 OH CH3 CH3 CH3	520,4494	520/522

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
373		512,47	512/514
374		548,503	548/550
375		610,5738	610/612
376		524,4414	524/526
377		574,4197	574/576

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
378	Er H ₂ C OH OH	514,4858	514/516
379	THE PROPERTY OF THE PROPERTY O	528,5126	528/530
380	BH H ₃ C CH ₃	542,5394	542/544
381	Br Hz C ZH	496,3838	496/498
382	Br H,C H	574,4197	574/576

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
383		534,4762	534/536
384	BI H H O O O O O O O O O O O O O O O O O	541,4681	541/543
385	Br H,C ON ON ON ON ON ON ON ON ON ON	486,4322	486/488
386	Br H ₂ C OH	500,459	500/502
387	Br H ₁ C H _N CH ₃ CH ₃	501,4471	501/503
388	Br H ₁ C CH ₃ CH ₃ CH ₃ CH ₃	543,5275	543/545

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
389	Br H,C OH	537,4801	537/539
390		520,4494	520/522
391		554,8945	554/556
392	Br Hy Co Hy	510,4106	510/512
393		529,4571	529/531

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
394	Br H,C OH	474,3776	474/476
395	Br H ₂ C OH	512,4508	512/514
396	DH H,C HN ON NO NO NO NO NO NO NO NO NO NO NO NO	513,4581	513/515
397		527,4849	527/529
398	BI HICK	524,4127	524/526

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
399	Br Hy.C Hy.C Hy.C	527,4849	527/529
400	Br H,C OH	507,4107	507/509
401	BH H, C, C M M M M M M M M M M M M M M M M M	524,4127	524/526
402	Br H.C.	507,4107	507/509
403		536,4484	526/538

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
404	Br H,C OH	536,4484	536/538
405	Br Haring ON Haring ON No. 10 May 10	599,5283	599/601
406	Br N H.C. O ≥ S H	520,4494	520/522
407	Br H ₂ C OF SO N N N N S CH ₂	529,4419	529/531
408	\$ 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	534,4762	534/536

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
409	Br CH, OH	596,547	596/598
410	Br CH ₃ OB CH ₃ CH ₃ CH ₃	473,3935	473/475
411	Br CH, OH	510,4146	510/512
412	Br CH3	560,3929	560/562
413	Br CH ₃	500,459	500/502

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
414	DI CH	514,4858	514/516
415	DH CH ₂ OH OH CH ₂ CH ₃	528,5126	528/530
416	BI LE STORY OF THE	482,357	482/484
417	Br CH ₃	560,3929	560/562
418		520,4494	520/522

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
419	BI CH ₃	527,4413	527/529
420	DET HON CH3	472,4054	472/474
421	BH CH ₃ OH CH ₃ CCH ₃	486,4322	486/488
422	Br N CH ₃ O D CH ₃ CH ₃ CH ₃	487,4203	487/489
423	Br CH ₃ OH N CH ₃ OSS H CH ₃ CH ₃ CH ₃	529,5007	529/531

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
424	Br H, OH	523,4532	523/525
425	OH OH OH OH OH OH OH	506,4226	506/508
426	BH CHANGE CO	540,8677	540/542
427	BI CH ₃ N CH ₃ O S S N CH ₃	496,3838	496/498
428	BH CH,	515,4303	515/517

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
429	Br CH, OH	460,3508	460/462
430	Br H OH OH OH OH	498,424	498/500
431	BI CH, OF	499,4313	499/501
432		513,4581	513/515
433	Br H OH	510,3859	510/512

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
434	Bi H, C	513,4581	513/515
435	BH CH NO ON ON ON ON ON ON ON ON ON ON ON ON	493,3839	493/495
436	BH CH3	510,3859	510/512
437		493,3839	493/495
438		522,4216	522/524

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
439	Br CH ₃ OH	522,4216	522/524
440	Br CH, OH	585,5015	585/587
441	Br CH ₃	506,4226	506/508
442	OF CH,	515,4151	515/517
443 *)	O NH ₂ O O H	416,30	416/418

^{*)} hergestellt nach dem unter Sulfonamide beschriebenen Verfahren

Herstellung der Pyrimidin-Sulfonylfluoride der allgemeinen Formel I

Die Herstellung der Pyrimidin-Sulfonsäurefluoride erfolgt analog zur Herstellung der Sulfonsäureamide.

5

10

Beispiel-Nr.	Verbindung	Molgewicht	Schmelzpunkt [°C] und ESI-MS
444	O, F DE DE 405,25	217-220 405/407	
445	O F O H	419,27	196-202 419/421

Beispiel-Nr.	Verbindung	Molgewicht	Schmelzpunkt [°C] und ESI-MS
446	О, .О S - F Ну	419,27	165-196
	N N OH		419/421
447	O S F	433,30	198-204
	N N N OH		433/435
448	O S F	433,30	144-149
	N N N OH		433/435
449	O S F	447,33	219-222
	N N N OH		447/449

Beispiel-Nr.	Verbindung	Molgewicht	Schmelzpunkt
			[°C]
			und ESI-MS
450	0,0	405,25	170-173
	, , , , , , , , , , , , , , , , , , ,		
	HN _		405/407
	Br N OH		
451	0, 0 \$.	419,27	226-228
	HŅ		
!	N _		419/421
	Br OH		
452	0,0	433,30	
	HN		433/435
	N OH		455/455
	Br H		
453		447,33	
	HN O'S F		447/449
	N N OH		441/449
454	₿r ''	433,30	
	HN		
1.	O F		433/435
,	Br H OH		
455		419,27	
	HN O'S'F		419/421
	OH OH		4131421
	Br H		

In analoger Verfahrensweise zu den oben beschriebenen Beispielen wurden auch die folgenden para-Verbindungen hergestellt:

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
456	Br HZ OH	498,4432	498/500
457	A C C C C C C C C C C C C C C C C C C C	534,4762	534/536
. 458	Direction of the control of the cont	596,547	596/598
459	Br CH, OH	473,3935	473/475

5

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
460 ⁻	Br CH, OH	510,4146	510/512
461	Br CH, OCH THE FE	560,3929	560/562
462	Br CH ₃	500,459	500/502
463	Br H OH	514,4858	514/516

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
464	Br CH ₃ OH	528,5126	528/530
465	DE CHS OH OH OH OH OH OH OH OH OH OH OH OH OH	542,5394	542/544
466	EX CH OCO NH	560,3929	560/562
467	BH CH	520,4494	520/522

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
468	Br CH, OH	527,4413	527/529
469	Br CH ₃ OH	472,4054	472/474
470	Br CH, OUD CH,	486,4322	486/488
471	Br H CH ₃ N N CH ₃ N	529,5007	529/531
472		442,336	442/444

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
473	Br HN OH	523,4532	523/525
474	B L Z L Z L Z L Z L Z L Z L Z L Z L Z L	506,4226	506/508
475		540,8677	540/542
476	Br HN OH OH OH OH OH OH OH OH OH OH OH OH OH	496,3838	496/498

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
477	Br CH, OH	515,4303	515/517
478	Br HN OO NH NA CO	460,3508	460/462
479	Br CH ₃	498,424	498/500
480	Br H CH, DH	- 536,4484	536/538
481	Br CH ₃ OH	499,4313	499/501

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
482	Br CH, OO NO	513,4581	513/515
483	Br CH ₃	510,3859	510/512
484	BH CH, CO NH CH, CC NH CH,	513,4581	513/515
485	Br CH ₃	493,3839	493/495
486	Br H OH	510,3859	510/512

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
487	Br H OH	493,3839	493/495
488	Br C O O O O O O O O O O O O O O O O O O	522,4216	522/524
489	Br CH, OH	522,4216	522/524
490	Br HN CH ₂ OH CH ₂ CH	585,5015	585/587
491	Br Hy OH	506,4226	506/508

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
492	Br HN CH ₃ OH	515,4151	515/517
493		512,47	
494	\$ 000 \$ 1	548,503	
495		610,5738	
496	HN CHA	487,4203	
497	DE TENTON TO THE TENTON THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TO THE TE	524,4414	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
498	Br NH FF	574,4197	
499	DE THE CH.	514,4858	
500	D' OH CH,	528,5126	
501	Br CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	542,5394	
502	E TO THE STATE OF	556,5662	
503	₹	496,3838	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
504	Br. Hooh F.F.	574,4197	
505		534,4762	
506		541,4681	
507	DE TO THE STATE OF	486,4322	
508	E E E E E E E E E E E E E E E E E E E	500,459	
509	Br OH H,C N-CH,	501,4471	
510	Br CH, CH, CH,	543,5275	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
511	HN CONSTRUCTION OF THE PARTY OF	456,3628	
512	Br Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	537,4801	
513		520,4494	
514	BH HC O H, C O H,	566,4742	
515	DE LES CO	554,8945	
516	Br CH,	510,4106	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
517		529,4571	
518	HY OH O-CH,	474,3776	
519	BH S S S S S S S S S S S S S S S S S S S	512,4508	
520		550,4752	
521	₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹	513,4581	
522		527,4849	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
523	Br OH F F F F F F F F F F F F F F F F F F	524,4127	
524	DOH OH OH OH	527,4849	
525	ŏ → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	507,4107	
526		524,4127	
527	ð	507,4107	
528	BY OH OH	536,4484	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
529	DE LOCAL DE LA COLONIA DE LA C	536,4484	
530	Br HN OH OF NH.	599,5283	
531	BI CH,	520,4494	
532	Br H, C, w	529,4419	

Trennung von Diastereomerengemischen der erfindungsgemäßen Verbindungen

5 Trennung am Beispiel des Diastereomerengemisches der Verbindung Nr. 274

10

Das Diastereomerengemisch wurde in die beiden korrespondieren Racemate (A und B) mittels HPLC getrennt. Bedingungen:

Säule:

Kromasil C18(5µm) 150x4,6mm

15 Eluent: 25% Acetonitril / Wasser mit 1 ml NH3/l;

Fluß:

1,0 ml/min

Detektion:

PDA 300nm

Retentionszeiten: Racemate A - 11,6 min

Racemate B - 12,4 min

·	Br HN OH NH2 N N NH2 Racemate B	Br H OH N N O S NH ₂ Racemate A
NMR	DMSO-d6: 9.68, s, 1 H 8.12, s, 1 H 7.87, d, 2 H 7.70, d, 2 H 7.14, s, 2 H 6.15, d, 1 H 5.01, d, 1 H 4.10, m, 1 H 3.80, m, 1 H 1.22, d, 3 H 1.1, d, 3 H	DMSO-d6: 9.68, s, 1 H 8.11, s, 1 H 7.85, d, 2 H 7.69, d, 2 H 7.16, s, 2 H 6.35, d, 1 H 4.90, d, 1 H 4.08, m, 1 H 3.80, m, 1 H 1.18, d, 3 H 1.12, d, 3 H

Nachfolgend wurden die Racemate A und B jeweils mittels chiraler HPLC getrennt.

5 Bedingungen:

Säule:

Chiralpak AD(10µm) 250x4,6mm

Eluent:

Hexan/ Ethanol 80:20

Fluß:

1,0 ml/min

Detektion:

PDA 300nm

10

Retentionszeiten: Enantiomer A1 - 16,6 min

Enantiomer A2 - 19,6 min

Enantiomer B1 - 16,0 min

Enantiomer B2 - 17,8 min

Herstellung der für die Synthese der erfindungsgemäßen Verbindungen der allgemeinen Formel I vorzugsweise verwendeten Zwischenstufen.

5 Beispiel 1.0

Herstellung von N-(2-Chlor-5-fluor-4-pyrimidinyl)-N-2-propynylamin

11,1g (66 mmol) 2,4-Dichlor-5-fluorpyrimidin werden in 60 ml Acetonitril gelöst,
10,2 ml (73 mmol) Triäthylamin und 6,0 ml (86 mmol) Propynylamin werden hinzugegeben. Das Reaktionsgemisch wird bei Raumtemperatur über Nacht gerührt und anschließend in Wasser gegossen. Die Mischung wird mittels Ethylacetat extrahiert, die kombinierten organischen Phasen werden über MgSO₂ getrocknet und das Lösemittel wird mittels Unterdruck evaporiert. Nach
Umkristallisierung des verbleibenden Materials mit Diisopropylether / Hexan, beträgt die Ausbeute 10.6 g (87% der Theorie) des Produktes.

20

25

Die nachfolgenden beschriebenen 4-(Diaminocyclohexyl)-Derivate werden über reduktive Aminierungen des beschriebenen Keto-Derivates unter Verwendung von Triacetoxyborhydrid (Abdel-Magid, Carson, Harris, Maryanoff, Sha, *J. Org. Chem.* 1996, *61*, 3849) synthetisiert. Das Keto-Derivat wird durch TPAP-Oxidation (Griffith, Ley, *Aldrichimica Acta* 1990, *23*, 13) des entsprechenden Alkohols erhalten.

WO 02/096888 PCT/EP02/05669

In analoger Verfahrensweise werden auch folgende Zwischenverbindungen hergestellt.

	N TO N			
Beispiel	1.1	1.2	1.3	1.4
-Nr.				
Löse-	CDCI ₃	DMSO	DMSO	DMSO
mittel		·		
5-H	7.87 (s,1H)	8.34 (s,1H)	8.24 (s,1H)	8.23 (s,1H)
4CH	4.32 (dd,2H)	4.48 (q,1H)	3.59 (td,2H)	3.21 (t,2H)
	2.30 (t,1H)	1.93 (dq,2H)	2.78 (t,2H)	1.10 (mc,1H)
		0.92 (t,3H)	7.57 (s,1H)	0.42 (mc,2H)
5CH	2.03 (s,3H)	3.66 (s,3H)	6.85 (s,1H)	0.37 (mc,2H)
		ı	7.90 (tb,1H)	7.84 (t,1H)
NH	4.91 (sb,1H)	7.69 (d,1H)	11.92 (sb,1H)	
Aus-	80%	42%	33%	74%
beute				
Schmp.	121-121.5°C	73°C	90°C	98°C

·	CI N H	SCI N CH	D OH	D C I
Beispiel	1.5	1.6	1.7	1.8
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
6-H	8.26 (s,1H)	8.26 (s,1H)	8.27 (s,1H)	8.37 (s,1H)
4CH	3.59 (mc,2H)	3.58 (mc,2H)	3.58 (sb,4H)	4.40 (m, 1H)
	3.90 (mc,1H)	3.97(mc,1H)	4.14 (mc,1H)	3.49 (dd,1H)
	1.98 (mc,1H)	1.96 (mc,1H)		3.33 (dd,1H)
	0.94 (d,3H)	0.92 (d,3H)		3.26 (s,3H)
	0.86 (d,3H)	0.84 (d,3H)		1.15 (d,3H)
ОН	4.67 (mb,1H)	4.74 (t,1H)	4.78 (sb,2H)	
NH	6.75 (sb,1H)	6.87 (d,1H)	6.73 (sb,1H)	7.29 (d, 1H)
Aus-	82%	91%	41%	74%
beute				
Schmp.	113-114°C	121 – 122°C	155-156°C	Öl

·		
Beispiel-Nr.	1.9	1.10
Lösemittel	DMSO	DMSO
6-H	8.24 (s,1H)	8.36 (s,1H)
4CH	3.49 (q,2H)	4.14 (d,2H)
	2.50 (t,2H)	3.18 (t,1H)
	2.42 (t,4H)	
	3.56 (t,4H)	
ОН		
NH	7.57 (sb,1H)	8.40 (s,1H)
Ausbeute	31%	73
Schmp.	118 – 119°C	103 – 104°C

·	CI N N N N N N N N N N N	CI N N N N N N N N N N N N N N N N N N N	CI NOH	S S S S S S S S S S S S S S S S S S S
Beispiel	1.11	1.12	1.13	1.14
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
6-H	8.30 (s,1H)	8.32 (s,1H)	8.29 (s,1H)	8.24 (s,1H)
	4.46 (dq,1H)	5.04 (q,1H)	3.7-3.9 (2H)	4.25 (m,1H)
	1.38 (d,3H)	2.39 (m,2H)	5.19 (m,1H)	3.48 (m,2H)
			7.2-7.4 (5H)	
NH	7.60 (sb,1H)	4.31 (q,1H)	7.72 (d,1H)	1.86 (m,2H)
			5.09 (t,1H)	
ОН	7.29 (sb,1H)	4.40 (t,1H)		2.43 (m,2H)
	7.21 (d,1H)	8.13 (d,1H)·		2.03(s,3H)
				7.13 (d,1H)
				4.88 (t,1H)
Aus-	87%	63%	99%	78%
beute				
Schmp.	234°C Zers.	210°C Zers.	152-153°C	130°C

	CI PH OH		
Beispiel-Nr.	1.15	1.16	1.17
Lösemittel	DMSO	DMSO	DMSO
6-H	8.20 (s,1H)	8.21 (s,1H)	8.22 (s,1H)
	3.55 (m, 2H)	3.33 (q, 2H)	3.39 (q,2H)
	4.22 (m,1H)	1.53 (m,4H)	2.26 (t,2H)
	5.03 (m,2H)	1.28 (m,2H)	1.79 (q,2H)
	7.1-7.4 (5H)	2.29 (t,2H)	
NH	6.53 (d,1H)	7.74 (t,1H)	7.78 (t,1H)
	5.93 (d,1H)		12.11 (sb,1H)
			100
Ausbeute	93%	99%	11%
Schmp.	ÖI	Öl	Öl

	Br HN O	φ-{====================================	Br HN N CI
Beispiel-Nr.	1.18	1.19	1.20
Ausbeute	86 %	64 %	87%
Masse	ESI:	ESI:	CI:
	MH ⁺ 297(2%)	MH ⁺ 311 (2%)	M+ 354 (100%)
	266 (22%)	248 (20%)	352 (72%)
	234 (30%)	236 (18%)	308 (54%)

		Br H	Br HZ N CO
Beispiel-Nr.	1.21	1.22	1.23
Ausbeute	26 %	~20%	89%
Masse	EI: M ⁺ 327 (10%) 222 (36%) 105 (100%)	NMR , CDCl3 8,16 (s, 1H) 6,55 (s ,1H) 4,43 (d ,2H) 1,29 (s ,9H)	EI: M* 265 (15%) 236 (100%) 209 (18%)

·	Br H Chiral	Chiral Chiral	B Z C C C C C C C C C C C C C C C C C C
Beispiel-Nr.	1.24	1.25	1.26
Ausbeute	75 %	70 %	83 %
Masse	CI: M ⁺ 384 (100%) 212 (21%) 91 (7%)	CI M ⁺ 384 (100%) 212 (21%) 91 (7%)	ESI: 319 3% 278 100% 220 68%

·	Br HN O
Beispiel-Nr.	1.27
Ausbeute	98 %
Masse	ESI:
	MH ⁺ 296 (90%)
	298 (100%)
	210 (12%)

Beispiel 2.0

Herstellung von 5-Brom-2-chlor-4-(4,4,4-trifluorbutoxy)pyrimidin

3,19 g (14 mmol) 5-Brom-2,4-dichlorpyrimidin werden mit 8,06 g (63 mmol)
 4,4,4-trifluorbutanol gemischt und 0,74 ml (8.4 mmol) Trifluormethansulfonsäure werden langsam dazu gegeben. Das Reaktionsgemisch wird bei Raumtemperatur über Nacht gerührt und anschließend in Wasser gegossen. Die Mischung wird mittels Ethylacetat extrahiert, die kombinierten organischen
 Phasen werden über MgSO₂ getrocknet und das Lösemittel wird mittels Unterdruck evaporiert. Das Produkt ist immer mit variierenden Mengen 2,4-Bisalkoxypyrimidin kontaminiert. Deshalb wird das verbleibende Material mittels Gradientenchromatographie mit Kieselgel als Trägermaterial (Eluent: Hexan und Hexan/ethlyacetat im Verhältnis 9:1) gereinigt. Dieses Verfahren führt zu einer
 Ausbeute von 1,70 g (38%) und liefert ebenfalls 1,93 g (34%) an 5-Brom-2,4-bis-(4,4,4-Trifluorbutoxy)pyrimidin (Ausgangsverbindung).

5-H 8.74 (s,1H) Chromatographie: H bis H/EA 9:1

4C 4.48 (t,2H) Ausbeute: 38%

H 2.00 (mc,2H) Schmelzpunkt: 66.5 – 67.5°C

2.44 (mc,2H)

5C

Н

In analoger Verfahrenweise werden auch die folgenden Verbindungen hergestellt:

	CI Z B	
Beispiel-	2.1	2.2
Nr.		
	CDCI ₃	DMSO
5-H	8.49 (s,1H)	8.75 (s,1H)
4CH	5.10 (d,2H)	4.05 (mc,2H)
		3.79 (mc,2H)
		3.60 (mc,2H)
5CH	2.59 (t,1H)	3.48 (mc,2H)
VI		3.40 (t,2H)
		1.07 (t,3H)
Chrom.	H to	DCM to DCM/
	H/EA 4:1	MeOH 95:5
Ausbeute	78%	11%
Schmp.	55°C	Öl

Analog zu den Verfahrensbeispielen 1 und 2 werden auch folgende Zwischenprodukte hergestellt:

	CI N OH	CI OH	OH OH	CI HO
Beispiel	1-2.1	1-2.2	1-2.3	1-2.4
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
Mittel				
	8.26 (s,1H) 6.65 (d,1H) 4.70 (t,1H) 4.10 (dt,1H) 3.65 (at,2H) 0.90 (s,9H)	8.26 (s,1H) 6.65 (d,1H) 4.70 (t,1H) 4.10 (dt,1H) 3.65 (at,2H) 0.90 (s,9H)	8.29 (s,1H) 6.32 (s,1H) 4.89 (t,3H) 3.74 (d,6H)	8.28 (s,1H) 7.09 (d,1H) 5.05 (d,1H) 3.95 (m,1H) 3.60 (m,5H) 1.30 (s,3H) 1.28 (s,3H)
Aus- beute	49%	70%	16%	92%
Masse	309 (EI)	309 (EI)	314 (EI)	354 (EI)

		CI N N Br OM	CI NOH	CI NOH
Beispiel -Nr.	1-2.5	1-2.6	1-2.7	1-2.8
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.15 (s,1H) 7.25 (t,1H) 3.16 (s,2H) 1.90 (s,3H) 1.61 (q,6H) 1.41 (s,6H)	8.22 (s,1H) 4.82 (t,1H) 4.49 (br,1H) 3.85 (m,1H) 3.76 (m,1H) 3.54 (m,1H) 3.40 (m,1H) 1.93 (m,3H) 1.80 (m,1H)	8.28 (s,1H) 6.29 (s,1H) 5.31 (t,1H) 3.39 (d,2H) 1.39 (s,6H)	8.22 (s,1H) 7.23 (d,1H) 4.60 (d,1H) 3.85 (m,1H) 3.35 (m,1H) 1.80 (m,4H) 1.53 (m,2H) 1.20 (m,2H)
Aus- beute	70%	75%	46%	24%
Masse	357 (EI)	293 (EI)	281 (EI)	305 (EI)

·	CI N OH	Сі Д ОН	CI NOH	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Beispiel -Nr.	1-2.9	1-2.10	1-2.11	1-2.12
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.38 (s,1H) 4.81 (br,1H) 3.96 (m,2H) 3.72 (m,1H) 3.30 (m,2H) 1.81 (m,2H) 1.48 (m,2H)	8.22 (s,1H) 7.05 (d,1H) 4.82 (t,1H) 4.18 (m,1H) 3.42 (m,2H) 1.15 (d,3H)	8.21 (s,1H) 7.06 (d,1H) 4.81 (t,1H) 4.22 (m,1H) 3.47 (m,2H) 1.51 (m,2H) 1.37 (m,1H) 0.88 (m,6H)	8.31 (s,1H) 7.32 (d,1H) 4.35 (s,1H) 3.68 (s,3H) 2.32 (m,1H) 0.90 (dd,6H)
Aus- beute	19%	71%	99%	77 %
Masse	292 (EI)	266 (EI)	308 (EI)	322 (ES)

				trans
Beispiel -Nr.	1-2.13	1-2.14	1-2.15	1-2.16
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.41 (s,1H)	8.25 (s,1H)	8.19 (s,1H)	8.19 (s,1H)
	8.11 (s,1H)	4.53 (m,1H)	7.65 (t,1H)	7.30 (d,1H)
	4.28 (t,2H)	3.88 (m,2H)	3.18 (t,2H)	3.65 (m,1H)
		3.70 (dd,1H)	1.62 (m,6H)	1.68 (m,5H)
		3.62 (dd,1H)	1.16 (m,3H)	1.25 (m,4H)
		2.16 (m,1H)	0.90 (m,2H)	0.78 (d,3H)
		2.02 (m,1H)		
		7.56 (d,1H)		
Aus- beute	46%	72%	68%	31%
Masse	390 (FAB)	277 (EI)	303 (EI)	305 (EI)

				Z Z Z OH
Beispiel	1-2.17	1-2.18	1-2.19	1-2.20
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel		,		
	8.21 (s,1H) 7.22 (d,1H) 3.88 (m,1H) 1.70 (m,4H) 1.50 (m,2H) 1.28 (m,1H) 1.01 (m,2H) 0.82 (d,3H)	8.35 (t,1H) 8.19 (s,1H) 3.40 (m,2H) 2.97 (p,1H) 2.22 (m,4H) 2.08 (dd,1H) 1.70 (m,6H)	8.21 (s,1H) 7.81 (t,1H) 3.41 (dd,2H) 2.31 (m,10H) 2.13 (s,3H) 1.70 (p,2H)	8.20 (s,1H) 7.71 (t,1H) 4.45 (br,1H) 3.40 (m,4H) 1.60 (m,2H) 1.44 (m,2H)
Aus- beute	22%	32%	28%	98%
Masse	303 (EI)	320 (EI)	349 (EI)	281 (EI)

	N N N OH			
Beispiel	1-2.21	1-2.22	1-2.23	1-2.24
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
	8.25 (s,1H) 8.08 (d,1H) 7.35 (m,5H) 5.30 (m,1H) 4.81 (t,1H) 3.45 (m,2H) 2.05 (m,2H)	8.25 (s,1H) 7.38 (d,1H) 4.44 (m,1H) 2.60 (m,2H) 2.24 (m,2H) 2.07 (m,2H) 1.90 (m,2H)	8.20 (s,1H) 7.28 (d,1H) 4.19 (m,1H) 2.40 (m,6H) 1.50 (m,4H) 1.15 (d,3H) 0.91 (t,6H)	8.21 (s,1H) 7.24 (d,1H) 7.02 (t,1H) 4.40 (m,1H) 3.92 (m,1H) 2.95 (q,2H) 1.95 (m,2H) 1.82 (m,2H) 1.59 (m,2H) 1.3 (m,6H) 0.82 (t,3H)
Aus- beute	97%	58%	52%	70%
Masse	343 (EI)	304 (ES)	348 (EI)	

·	Diastereomer 1/2	Diastereomer 1	Diastereomer 2	Diastereomer 1
Beispiel -Nr.	1-2.25	1-2.26	1-2.27	1-2.28
Löse- mittel	DMSO	DMSO	DMSO	DMSO
		8.22 (s,1H)	8.25 (s,1H)	8.22 (s,1H)
		7.21 (d,1H) 3.82 (m,1H)	6.87 (d,1H) 4.02 (m,1H)	7.28 (d,1H) 3.85 (m,1H)
		2.45 (m,4H) 2.22 (m,1H)	2.45 (m,4H) 2.22 (m,1H)	2.19 (s,6H) 2.15 (m,1H)
		1.78 (m,8H)	1.78 (m,8H)	1.82 (m,4H)
		1.45 (m,6H)	1.45 (m,6H)	1.50 (m,2H) 1.25 (m,2H)
Aus- beute	n.b.	26%	23%	51%
Masse	344 (EI)	374 (EI)	374 (EI)	334 (EI)

	γ	,	,	
		Diastereomer	Diastereomer	
	Diastereomer	1+2 (ca.1:1)	3+4 (ca.1:1)	
	1+2 (ca.1:1)			
Beispiel	1-2.29	1-2.30	1-2.31	1-2.32
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
	8.22 (s,2H)	8.21 (s,1H)	8.21 (s,1H)	8.71 (s,1H)
	7.28 (d,1H)	7.18 (d,1H)	7.22 (d,1H)	5.32 (m,1H)
	7.10 (d,1H)	4.62 (s,1H)	4.65 (s,1H)	3.82 (m,2H)
	4.00 (m,1H)	4.20 (m,1H)	4.15 (m,1H)	3.55 (m,2H)
	3.85 (m,1H)	3.95 (m,1H)	3.85 (m,1H)	2.00 (m,2H)
	2.19 (s,6H)	2.75 (dd,1H)	2.78 (m,1H)	1.70 (m,2H)
	2.17 (s,6H)	2.50 (m,2H)	2.60 (m,1H)	
	2.15 (m,1H)	2.31 (dd,1H)	2.38 (dd,1H)	
	2.00 (m,1H)	2.15 (s,1H)	1.95 (m,3H)	•
	1.82 (m,8H)	2.00 (m,1H)	1.80 (m,2H)	
	1.50 (m,6H)	1.82 (m,4H)	1.52 (m,3H)	
	1.25 (m,2H)	1.55 (m,5H)	1.20 (m,2H)	
			:	
Aus-	13%	35%	21%	40%
beute			!	
Masse	334 (EI)	374 (EI)	374 (EI)	292 (EI)

	CI NH NH			Diastereomere 1+2 (ca.1:1)
Beispiel -Nr.	1-2.33	1-2.34	1-2.35	1-2.36
Löse- mittel	DMSO	CDCI3	DMSO	CDCI3
	8.50 (s,1H) 4.10 (m,2H) 3.72 (m,1H) 3.30 (m,2H) 1.75 (m,2H) 1.35 (m,2H)	8.08 (s,1H) 6.04 (m,1H) 5.71 (br,1H) 4.48 (d,2H) 3.71 (s,3H) 2.25 (s,3H)	8.23 (s,1H) 7.27 (d,1H) 7.04 (t,1H) 4.46 (m,1H) 3.95 (m,1H) 2.94 (m,2H) 1.92 (m,4H) 1.62 (m,2H) 1.32 (m,6H) 0.84 (t,3H)	8.11 (s,2H,1+2) 5.55 (m,1H,1) 5.29 (m,1H,2) 4.25 (m,1H,1) 3.98 (m,1H,2) 3.72 (m,8H,1+2) 2.65 (m,8H,1+2) 1.70 (m,18H,1+2)
Aus- beute	3%	30%	70%	66%
Masse	291 (EI)	300 (ES)	405 (ES)	375 (ES)

·	D N N N N N N N N N N N N N N N N N N N		CI N OH	
Beispiel -Nr.	1-2.37	1-2.38	1-2.39	1-2.40
Löse- mittel	CDCI3	CDCI3	DMSO	DMSO
	8.14 (s,1H) 5.41 (m,1H) 4.49 (m,1H) 2.44 (m,6H) 1.79 (m,2H)	8.20 (s,1H) 7.71 (m,1H) 7.30 (m,6H) 4.97 (s,2H) 3.00 (m,2H) 1.40 (m,8H)	8.22 (s,1H) 6.35 (s,1H) 5.19 (t,1H) 3.54 (d,2H) 2.00 (m,2H) 1.75 (m,4H) 1.53 (m,2H)	8.22 (s,1H) 7.12 (d,1H) 4.10 (m,1H) 2.20 (m,1H) 1.89 (m,1H) 1.35 (m,8H)
Aus- beute	58%	77%	48%	60%
Masse	304 (ES)	427 (ES)	308 (EI)	301 (EI)

	CI N H	CI N OH	- CI Z Z Z Z Z B	CI N F F
Beispiel	1-2.41	1-2.42	1-2.43	1-2.44
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
	8.19 (s,1H)	8.21 (s,1H)	8.28 (s,1H)	8.41 (s,1H)
	7.21 (d,1H)	7.03 (d,1H)	3.62 (q,4H)	8.15 (t,1H)
	4.03 (m,1H)	4.83 (t,1H)	1.18 (t,6H)	4.21 (td,2H)
	1.60 (m,12H)	4.13 (m,1H)		
		3.47 (m,2H)		
		1.12 (d,3H)	,	
Aus-	73%	61%	13%	21%
beute				
Masse	303 (EI)	267 (EI)	265 (EI)	339 (EI)

·		CI N OH	CI N N N N N N N N N N N N N N N N N N N	N HO HO
Beispiel	1-2.45	1-2.46	1-2.47	1-2.48
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
	8.36 (s,1H) 6.56 (s,1H) 3.81 (s,1H) 2.28 (m,2H) 1.83 (m,2H) 1.58 (m,6H)	8.26 (s,1H) 8.06 (d,1H) 7.30 (m,5H) 5.29 (m,1H) 4.81 (t,1H) 3.42 (m,2H) 2.10 (m,2H)	8.32 (t,1H) 8.15 (s,1H) 3.40 (m,2H) 2.34 (m,2H) 2.18 (s,6H) 1.69 (m,2H)	8.15 (s,1H) 7.06 (d,1H) 4.65 (br,1H) 3.79 (m,1H) 3.52 (m,1H) 1.86 (m,2H) 1.61 (m,2H) 1.25 (m,4H)
Aus- beute	84%	97%	22%	53%
Masse	314 (EI)	343 (EI)	294 (EI)	307 (EI)

·	CI N COH		СІ Д ДОН	CC Z DH
Beispiel -Nr.	1-2.49	1-2.50	1-2.51	1-2.52
Löse- mittel	DMSO	DMSO	DMSO	
	8.29 (s,1H) 6.05 (s,1H) 5.18 (m,1H) 3.54 (s,2H) 1.92 (m,2H) 1.70 (m,2H)	8.18 (s,1H) 7.25 (d,1H) 4.15 (m,1H) 2.40 (m,6H) 1.50 (m,4H) 1.17 (d,3H) 0.90 (dd,6H)	8,29 (s,1H) 6.18 (s,1H) 5.15 (t,1H) 3.70 (m,1H) 3.49 (m,1H) 2.60 (m,1H) 0.92 (d,3H) 0.83 (d,3H)	8.38 (s,1H) 7.28 (d,1H) 5.28 (t,1H) 4.65 (m,1H) 3.86 (m,2H) 3.65 (s,3H)
Aus- beute	16%	52%	27%	63%
Masse	308 (EI)	350 (EI)	308 (EI)	309 (EI)

		N N OH	Co 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Beispiel	1-2.53	1-2.54	1-2.55
-Nr.			
Löse-	DMSO	DMSO	DMSO
mittel			
	8.22 (s,1H) 7.65 (t,1H) 7.30 (m,6H) 5.01 (s,2H) 3.38 (m,2H) 3.04 (m,2H) 1.68 (m,2H)	7.75 (s,1H) 6.55 (d,1H) 4.54 (m,1	8.18 (s,1H) 7.69 (t,1H) 4.32 (br,1H) 3.35 (m,4H) 1.40 (m,6H)
Aus- beute	77%	50%	43%
Masse	398 (EI)	229 (EI)	295 (EI)

Beispiel 3.0

Herstellung der Amine

5

10

4,5 g (20 mMol) 2-Brombutyraldehyddiethylacetal (Fa. Pfaltz-Bauer) und 5,2 g (80 mMol) Natriumazid werden 5 Tage in 15 ml DMF bei 100°C gerührt. Dann wird auf kalte verdünnte Natriumhydrogencarbonatlösung gegossen, 3x mit Ether extrahiert, die org. Phase mit Magnesiumsulfat getrocknet und eingeengt: Rohausbeute 1,87 g (50% d.Th.).

936 mg des Rohproduktes werden in 50 ml Methanol gelöst, mit Palladium auf Kohle (10%ig) versetzt und 12 Stunden unter H₂-Atmossphäre gerührt. Nach

Abfiltrieren des Katalysators und Einengen verbleiben 457mg (57% der Theorie) des gewünschten Amins.

	N-N-N	H ₂ N → Q	N=N=N	H ₂ N O
Beispiel-	3.0	3.1	3.2	3.3
Nr.		·		
Ausbeute	50%	57%	50 %	71 %
NMR	4,38 (d,1H)	4,19 (d, 1H)	4,38 (d , 1H)	4,25 (d , 1H)
CDCl3	3,72 (m , 2H)	3,68 (m , 2H)	3,58 (·m , 2H)	3,5 (m, 1H)
	3,6 (m, 2H)	3,52 (m , 2H)	3,5 (m,1H) 3,49 (s,3H)	3,42 (s,3H) 3,41 (s,3H)
	3,25 (m, 1H)	2,7 (m, 1H)	3,43 (s, 3H)	3,41 (\$,511) 3,40 (m,1H)
	1,7 (m, 1H)	1,60 (m , 1H)	3,39 (s, 3H)	3,08 (m, 1H)
	1,46 (m , 1H)	1,25 (m , 1H)	, , ,	
	1,25 (trtr , 6H)	1,2(trtr , 6H)		
	1,0 (tr, 3H)	0,95 (tr _, 3H)		

5

Beispiel 4.0

Herstellung der freien Aldehyde

10

15

148 mg 0,5 mMol der Zwischenprodukt-Verbindung 1.18 werden in 1 ml Eisessig gelöst. Bei Raumtemperatur gibt man 0,5 ml 1N Salzsäure hinzu und rührt 12 Stunden. Zur Aufarbeitung wird auf Eiswasser gegossen und vorsichtig mit pulverisiertem Natriumhydrogencarbonat neutralisiert. Dann wird 3 mal mit

Essigester extrahiert, die org. Phase mit Magnesiumsulfat getrocknet und eingeengt. Rohprodukt 104 mg (83% der Theorie) des Aldehyds der Verbindung 4.0. Das Rohprodukt kann ohne weitere Reinigung eingesetzt werden.

	B N C	Br HN CI	Br HN CI	Br TZ O-
Beispiel	4.1	4.0	4.2	4.3
-Nr.				
Aus-	82 %	83 %	89 %	79 %
beute		•		Ì
Masse	ESI:	ESI:	ESI:	ESI:
	MH ⁺ 278	MH ⁺ 250	MH ⁺ 266	MH+ 294
	(39%)	(9%)	(8%)	(10%)
	210 (100%)			

Beispiel 5.0

5 Herstellung der Ketone

100 mg (0,356 mMol) der Verbindung 6.0 und126 mg N-Methylmorpholin-N-oxid werden in 5 ml Dichlormethan gelöst, und 10 min. mit pulverisiertem Molsieb (4 A) gerührt. Dann gibt man 6 mg Tetrapropylammoniumperruthenat hinzu und rührt 4 Stunden bei Raumtemperatur nach. Nach Einengen wird über Kieselgel chromatographiert (Hexan/Essigester 4:1 > 2:1). Ausbeute: 75 mg (76% derTheorie) des Ketons der Verbindung 5.0.

	
	Br IN N CI
Beispiel	5.0
-Nr.	
Aus-	76%
beute	
Masse	ESI:
	MH ⁺ 280
}	(100%)
	200 (37%)
	156 (30%)

WO 02/096888

Beispiel 6.0

Herstellung der Alkohole

5

PCT/EP02/05669

265 mg (1 mMol) der Verbindung 4.2 werden in 20 ml Tetrahydrofuran gelöst.
 Unter Eisbadkühlung werden 5 Equivalente Methylmagnesiumbromid (3 molare Lösung in Ether) portionsweise hinzugegeben. Dann wird 3 Stunden bei Raumtemperatur nachgerührt und anschließend unter Kühlung mit Wasser gequencht. Dann wird mit Ammoniumchloridlösung versetzt, 3 mal mit

 Essigester extrahiert, die organische Phase mit Magnesiumsulfat getrocknet und einengt. Flashchromatographie (Hexan/Essigester 2:1) ergibt 213 mg (76% der Theorie) des Alkohols der Verbindung 6.0.

20

ESI: MH⁺ 282 (100%) 276 (5%)

In analoger Verfahrensweise werden auch folgende Zwischenprodukte

5 hergestellt:

	B Z O	Br HN N CI	B + 2
Beispiel	6.1	6.2	6.3
-Nr.			
Aus-	46%	32%	39%
beute			
Masse	EI:	ESI:	ESI:
	M ⁺ 267 (3%)	мн⁺ 308	MH ⁺ 296
	223 (100%)	(100%)	(100%)
	132 (27%)	306 (71%)	294 (73%)
		268 (31%)	217 (4%)

	Br HZ N C	Br HN N CI
Beispiel	6.4	6.5
-Nr.		
Aus-	36%	50%
beute		
Masse	EI:	ESI:
	M+ 281	MH ⁺ 310
	(3%)	(100%)
	223 (100%)	308 (87%)
	114 (38%)	298 (9%)

	DE NO CO	Br N CI	Br HN OH
Beispiel	6.6	6.7	6.8
-Nr.		·	
Aus-	40%	~20%	35%
beute			
Masse	EI:	CI:	ESI:
Masse	EI: M ⁺ 358	CI: M ⁺ 310 (100%)	ESI: MH ⁺ 294
Masse			
Masse	M ⁺ 358	M ⁺ 310 (100%)	MH ⁺ 294

	Br HN OH	Br N O
Beispiel -Nr.	6.9	6.10
Aus- beute	29 %	67 %
Masse	ESI: MH ⁺ 308 (28%) 310 (38%) 210 (100%)	ESI: MH+ 310 (87%) 312 (100%) 123 (24%)

5

Gegenstand der vorliegenden Erfindung sind somit auch Verbindungen der allgemeinen Formel la

$$\begin{array}{c|c}
D \\
N \\
\downarrow \\
R^1 \\
R^2
\end{array}$$
(la)

5

in der

D für Halogen, und X, R^1 , und R^2 die in der allgemeinen Formel (I) angegebenen Bedeutungen haben.

10 Insbesonders wertvoll sind solche Zwischenprodukte der allgemeinen Formel Ia, in der D für Chlor steht und X, R¹ und R² die in der allgemeinen Formel angegebenen Bedeutungen haben.

5

Ein weiterer Gegenstand der vorliegenden Erfindung sind auch solche Verbindungen, die unter das Schutzrecht DE 4029650 fallen und deren Wirkung im fungiziden Bereich liegt, die jedoch nicht als CDK-Inhibitoren beschrieben sind, und auch ihre Verwendung zur Behandlung von Krebs wird nicht beschrieben wird.

Nr.	Struktur	Name
5	THE THE THE THE THE THE THE THE THE THE	4-[[5-Brom-4-(2-propynylamino)-2- pyrimidinyl]amino]-phenol
6	HN N N N N N N N N N N N N N N N N N N	4-[[5-Brom-4-(2-propynyloxy)-2-pyrimidinyl]amino]- phenol
16	HN N N N N N N N N N N N N N N N N N N	5-Brom-N2-(4-methylthiophenyl)-N4-2-propynyl-2,4-pyrimidindiamin
22		1-[4-[(5-Brom-4-(2-propynyloxy)-2- pyrimidinyl)amino]phenyl]-ethanon
23	HN Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	5-Brom-N2-(4-difluormethylthiophenyl)-N4-2- propynyl-2,4-pyrimidindiamin

Nr.	Struktur	Name
24	HN N F F	5-Brom-N4-2-propynyl-N2-(4- trifluormethylthiophenyl)-2,4-pyrimidinediamin
35	HN S F F	5-Brom-N4-2-propynyl-N2-(3- trifluormethylthiophenyl)-2,4-pyrimidindiamin
37	HA Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	N-[5-Brom-4-(2-propynylamino)-2-pyrimidinyl]- indazol-5-amin
38		N-[5-Brom-4-(2-propynylamino)-2-pyrimidinyl]- benzthiazol-5-amin
42	D D D D D D D D D D D D D D D D D D D	4-[[5-Fluor-4-(2-propynyloxy)-2-pyrimidinyl]amino]- phenol
43	0H	4-[[5-Chlor-4-(2-propynyloxy)-2-pyrimidinyl]amino]- phenol
50		1-[4-[(5-Brom-4-(2-propynylamino)-2- pyrimidinyl)amino]phenyl]-ethanon

Nr.	Struktur	Name
54	j	1-[4-[(5-lod-4-(2-propynylamino)-2-
	HN	pyrimidinyl)amino]phenyl]-ethanon
70	~i	1-[4-[(5-Ethyl-4-(2-propynylamino)-2-
	HN	pyrimidinyl)amino]phenyl]-ethanon
81	OH OH	1-[4-[(5-Brom-4-(2-propynylamino)-2-
	HN	pyrimidinyl)amino]phenyl]-ethanol
82	ОН	1-[4-[(5-Brom-4-(2-propynyloxy)-2-
	HN	pyrimidinyl)amino]phenyl]-ethanol

Die Erfindung betrifft somit weiterhin pharmazeutische Mittel umfassend eine Verbindung der allgemeinen Formel I

in der

R¹ für Halogen oder C₁-C₃-Alkyl steht

5 X für Sauerstoff oder -NH steht,

A für Wasserstoff steht

B für Hydroxy, -CO-Alkyl- R^7 , -S-CHF₂, -S-(CH₂)_nCH(OH)CH₂N- R^3R^4 , -S-CF₃, oder -CH-(OH)-CH₃, steht, oder

A und B unabhängig voneinander eine Gruppe

R²,R³, R⁴, R⁷ und R⁸ die in der allgemeinen Formel I angegebenen Bedeutungen haben, sowie der Isomere, Diastereomere, Enantiomere und Salze.

15

20

25

30

10

Die erfindungsgemäßen Mittel können ebenfalls zur Behandlung von Krebs, Autoimmunerkrankungen, kardiovaskulären Erkrankungen, Chemotherapeutikainduzierter Alopezie und Mukositis, infektiösen Erkrankungen, nephrologischen Erkrankungen, chronischen und akuten neurodegenerativen Erkrankungen und
viralen Infektionen, wobei unter Krebs solide Tumoren und Leukämie, unter
Autoimmunerkrankungen Psoriasis, Alopezie und Multiple Sklerose, unter
kardiovaskulären Erkrankungen Stenosen, Arteriosklerosen und Restenosen,
unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene
Erkrankungen, unter nephrologischen Erkrankungen Glomerulonephritis, unter
chronisch neurodegenerativen Erkrankungen Huntington's Erkrankung,
amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und
Alzheimer'sche Erkrankung, unter akut neurodegenerativen Erkrankungen
Ischämien des Gehirns und Neurotraumata, und unter viralen Infektionen
Cytomegalus-Infektionen, Herpes, Hepatitis B oder C, und HIV Erkrankungen
verwendet werden.

Die nachfolgenden Beispiele beschreiben die biologische Wirkung der erfindungsgemäßen Verbindungen ohne die Erfindung auf diese Beispiele zu beschränken.

5 Beispiel 1

CDK2/CycE Kinase Assay

Rekombinante CDK2- und CycE-GST-Fusionsproteine, gereinigt aus
Bakulovirus-infizierten Insektenzellen (Sf9), wurden von Dr. Dieter Marmé, Klinik für Tumorbiologie Freiburg, erhalten. Histon IIIS, das als Kinase-Substrat verwendet wurde, wurde bei der Fa. Sigma gekauft.
CDK2/CycE (50 ng/Meßpunkt) wurde für 15 min bei 22°C in Anwesenheit verschiedener Konzentrationen an Testsubstanzen (0 μM, sowie innerhalb des
Bereiches 0,01 - 100 μM) in Assaypuffer [50 mM Tris/HCl pH8,0, 10 mM MgCl₂, 0,1 mM Na ortho-Vanadat, 1,0 mM Dithiothreitol, 0,5 μM Adenosintrisphosphat (ATP), 10 μg/Meßpunkt Histon IIIS, 0,2 μCi/Meßpunkt ³³P-gamma ATP, 0,05% NP40, 12,5% Dimethylsulfoxid] inkubiert. Die Reaktion wurde durch Zugabe von EDTA-Lösung (250 mM, pH8,0, 14 μl/Meßpunkt) gestoppt.

Von jedem Reaktionsansatz wurden 10 μl auf P30 Filterstreifen (Fa. Wallac) aufgetragen, und nicht-eingebautes ³³P-ATP wurde durch dreimaliges Waschen der Filterstreifen für je 10 min in 0,5%iger Phosphorsäure entfernt. Nach dem Trocknen der Filterstreifen für 1 Stunde bei 70°C wurden die Filterstreifen mit Szintillator-Streifen (MeltiLexTM A, Fa. Wallac) bedeckt und für 1 Stunde bei 90°C eingebrannt. Die Menge an eingebautem ³³P (Substratphosphorylierung) wurde durch Szintillationsmessung in einem gamma-Strahlungsmeßgerät (Wallac) bestimmt.

Beispiel 2

Proliferationsassay

5 Kultivierte humane Tumorzellen (wie angegeben) wurden in einer Dichte von 5000 Zellen/Meßpunkt in einer 96-Loch Multititerplatte in 200 µl des entsprechenden Wachstumsmediums ausplattiert. Nach 24 Stunden wurden die Zellen einer Platte (Nullpunkt-Platte) mit Kristallviolett gefärbt (s.u.), während das Medium der anderen Platten durch frisches Kulturmedium (200 µl), dem die 10 Testsubstanzen in verschiedenen Konzentrationen (0 µM, sowie im Bereich 0,01 - 30 μM; die finale Konzentration des Lösungsmittels Dimethylsulfoxid betrug 0,5%) zugesetzt waren, ersetzt. Die Zellen wurden für 4 Tage in Anwesenheit der Testsubstanzen inkubiert. Die Zellproliferation wurde durch Färbung der Zellen mit Kristallviolett bestimmt: Die Zellen wurden durch Zugabe von 20 15 µl/Meßpunkt einer 11%igen Glutaraldehyd-Lösung 15 min bei Raumtemperatur fixiert. Nach dreimaligem Waschen der fixierten Zellen mit Wasser wurden die Platten bei Raumtemperatur getrocknet. Die Zellen wurden durch Zugabe von 100 μl/Meßpunkt einer 0,1%igen Kristallviolett-Lösung (pH durch Zugabe von Essigsäure auf pH3 eingestellt) gefärbt. Nach dreimaligem Waschen der 20 gefärbten Zellen mit Wasser wurden die Platten bei Raumtemperatur getrocknet. Der Farbstoff wurde durch Zugabe von 100 µl/Meßpunkt einer 10%igen Essigsäure-Lösung gelöst. Die Extinktion wurde photometrisch bei einer Wellenlänge von 595 nm bestimmt. Die prozentuale Änderung des Zellwachstums wurde durch Normalisierung der Meßwerte auf die 25 Extinktionwerte der Nullpunktplatte (=0%) und die Extinktion der unbehandelten (0 μM) Zellen (=100%) berechnet.

Die Ergebnisse aus Beispiel 1 und 2 sind in der folgenden Tabelle angegeben.

Beispiel	Inhibition IC ₅₀	Proliferation IC ₅₀ [μΜ]		Sw		
Nummer	[nM]					
	CDK2/CycE	MCF7	H460	HCT116	DU145	(g/l)
22	40	1,2	1,5	1,5	1,5	0.003
37	70	4				0.006
6	70	4	6			0.008
40	20	1	3	3	9	0.002
51	70	8				
20	60	4	†			
21	400	2				
1	300	8			·	
2	700					, , , , , , , , , , , , , , , , , , ,
16	300	3				
24	400	5				
26	300	3				
35	120	>10				
23	180	3				
11	6	0,2	0,5	0,3	0,2	
38	80	>10				
. 34	1800					
10	4	0,2	0,5	0,5	0,5	
12	400	4				
25	70	1,2	1,5	1,1	1,2	0.017
9	7	0,9		3	3	
7	6	0,7	1,5	1,2	0,5	0.028
31	800	7				0.0023
14	200	3				0.013
18	2000					0.039
3	200	8				0.039
19	800	>10				0.041
13	2000	>10				

Beispiel	Inhibition IC ₅₀	Proliferation IC ₅₀ [μΜ]			Sw	
Nummer	[nM]					
,	CDK2/CycE	MCF7	H460	HCT116	DU145	(g/l)
17	1000	>10				0.04
4	40	8				0.042
15	300	>10				0.024
8	<10	4				0.007
43	200	6				0.04
36	30	0,4	0,6	0,5	0,6	0.018
27	>10000				-	
42	2000					0.043
39	300					0.0016
44	8	1,2	0,4	0,4	0,3	0.005
45	10	2	1,7	1,2	0,5	0.0094
50	150					
5	90	10				0.043
46	7	2				0.0069
52	200	0,2	1,6	1,2	2	0.0005
53	300	1,6				0.026
54	100	1,1				0.0015
47	12	0,7	1,8	1,3	0,9	
56	80	4				0.023
49	50	>10				0.044
48	4	0,2	1	0,4	0,3	0.042
96	400					0.0005
98	2000			-		
85	2000					0.001
84	400					0.0005
86	3000					
87	250	0,8				0.003
22	40	1,2	1,5	1,5	1,5	0.003

Beispiel	Inhibition IC ₅₀	Pro	liferatio	n IC ₅₀ [µN	7]	Sw
Nummer	[nM]					
,	CDK2/CycE	MCF7	H460	HCT116	DU145	(g/l)
37	70	4				0.006
6	70	4	6			0.008
16	300	3				
24	400	5				
35	120	>10				
23	180	3				
38	80	>10				
43	200	6				0.04
42	2000					0.043
50	150					
5	90	10				0.043
54	100	1,1				0.0015

Überlegenheitsnachweis der erfindungsgemäßen Verbindungen gegenüber den bekannten Verbindungen

Zum Nachweis der Überlegenheit der erfindungsgemäßen Verbindungen gegenüber den bekannten Verbindungen wurden die erfindungsgemäßen Verbindungen mit bekannten Referenzverbindungen und strukturähnlichen bekannten Verbindungen im Enzymtest verglichen. Das Ergebnis ist in der folgenden Tabelle aufgeführt.

Beispiel-Nr.	R ²	Α	CDK2/	MCF-7	Löslich-
Ì			CycE	IC ₅₀ [µM]	keit
			IC ₅₀ [nM]		(g/l)
O O	CH(C ₃ H ₇)-	-SO ₂ -N-	4	0.2	0,042
HN NA	CH ₂ -OH-	(CH ₂) ₂ -OH			
N OH Br OH					
Nr. 48					
NH ₂ OH OH OH	CH(CH ₂ OH) ₂	SO₂NH₂	7	0,9	0,009
Nr. 9					
	Propargyl- NH-	SO₂NH₂	6	0,2	
Nr. 11					

1 (1/2/03/05)					•
Beispiel-Nr.	R ^z	Α	CDK2/	MCF-7	Löslich-
			CycE	IC ₅₀ [µM]	keit
			IC ₅₀ [nM]		(g/l)
			7000	30	
			7000	50	
МН					
HO N N N					
Olomoucine					
Christ			1500	8	
HIJ		*			
0 1 1					!
Decenyiting.					
Roscovitine			40.5		
		•	1800	6	
HN					
Kenpaullone					
			90	1.2	
HN N					-
Alsterpaullone					
Chiral			10	2	
Purvalanol A					

Beispiel-Nr.	R²	Α	CDK2/	MCF-7	Löslich-
			CycE	IC ₅₀ [µM]	keit
			IC ₅₀ [nM]		(g/l)
Beispiel 11 aus			190		
WO01/14375					
(Seite 38)					ļ
THE PART OF THE PA					

Aus den Ergebnissen der Tabelle ist zu erkennen, dass die erfindungsgemäßen
Verbindungen sowohl im Enzym-Test, als auch im Zell-Test deutlich höhere
Aktivitäten am Enzym und in MCF-7-Zellen als die aus dem Stand der Technik
bekannten Verbindungen aufweisen. Damit sind die erfindungsgemäßen
Verbindungen den bekannten Verbindungen weit überlegen.

Patentansprüche

Verbindungen der allgemeinen Formel I

5

in der

 $10 R^1$

für Wasserstoff, Halogen, C_1 - C_6 -Alkyl, Nitro oder für die Gruppe - COR^5 , - OCF_3 , - $(CH_2)_nR^5$, -S- CF_3 oder - SO_2CF_3 steht,

 R^2

für C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl oder C_3 - C_{10} -Cycloalkyl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylthio, Amino, Cyano, C_1 - C_6 -Alkyl, -NH- $(CH_2)_n$ - C_3 - C_{10} -Cycloalkyl, C_3 - C_{10} -Cycloalkyl, C_1 - C_6 -Hydroxyalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkyl, -NHC $_1$ - C_6 -Alkyl, -N(C_1 - C_6 -Alkyl), -SO $_2$ (C_1 - C_6 -Alkyl), C_1 - C_6 -Alkanoyl,

20

15

-CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc, Carboxy, Aryl, Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n-R⁵, -(CH₂)_nPO₃(R⁵)₂ oder mit der Gruppe -R⁶ oder -NR³R⁴

25

substituiertes C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl oder C_3 - C_{10} -Cycloalkyl steht und das Phenyl, C_3 - C_{10} -Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C_1 - C_6 -Alkyl, C_1 - C_6 -

Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF3 oder

WO 02/096888

PCT/EP02/05669

-OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch einoder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, oder

 R^2 für die Gruppe

$$\mathbb{R}^{8}$$
 oder \mathbb{R}^{8} \mathbb{R}^{9} \mathbb{R}^{9} \mathbb{R}^{9}

10

15

5

steht,

für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl) oder für -OC₃-C₁₀ -Cycloalkyl welches ein- oder mehrfach. gleich oder verschieden mit einem Heteroaromaten substituiert sein kann, steht oder

X und R²

Χ

gemeinsam einen C₃-C₁₀ -Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituiert sein kann,

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C₁-C₃-Alkyl, C₁-C₆-Alkoxy oder für die Gruppe -SR⁷. -S(O)R⁷, -SO₂R⁷, -NHSO₂R⁷, -CH(OH)R⁷, -CR⁷(OH)-R⁷, C₁-C₆-AlkylP(O)OR³OR⁴, -COR⁷ oder für

25

stehen, oder

5 A und B

gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden der gegebenenfalls durch ein- oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O oder =SO₂

		Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche
	•	Doppelbindungen im Ring enthalten sein können und der
5		C ₃ -C ₁₀ -Cycloalkyl-Ring gegebenenfalls ein- oder mehrfach,
5		gleich oder verschieden mit Hydroxy, Halogen, C ₁ -C ₆ -Alkoxy, C ₁ -C ₆ -Alkylthio, Amino, Cyano, C ₁ -C ₆ -Alkyl, C ₂ -C ₆ -
		Alkenyl, C_3 - C_{10} -Cycloalkyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkyl, -
		NHC ₁ -C ₆ -Alkyl, -N(C ₁ -C ₆ -Alkyl) ₂ , -SO(C ₁ -C ₆ -Alkyl) ₂ -SO ₂ \mathbb{R}^7 .
		C_1 - C_6 -Alkanoyl, -CONR ³ R ⁴ , -COR ⁵ , C_1 - C_6 -AlkylOAc,
10		Phenyl, oder mit der Gruppe R ⁶ substituiert sein kann, wobei
	•	das Phenyl selbst gegebenenfalls ein- oder mehrfach, gleich
		oder verschieden mit Halogen, Hydroxy, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -
		Alkoxy, oder mit der Gruppe -CF ₃ oder -OCF ₃ substituiert
		sein kann,
15	R ³ und R ⁴	jeweils unabhängig voneinander für Wasserstoff, Phenyl,
		Benzyloxy, C_1 - C_{12} -Alkyl, C_1 - C_6 -Alkoxy, C_2 - C_4 -Alkenyloxy,
		C ₃ -C ₆ -Cycloalkyl, Hydroxy, Hydroxy-C ₁ -C ₆ -alkyl, Dihydroxy-
		C ₁ -C ₆ -alkyl, Heteroaryl, Heterocyclo-C ₃ -C ₁₀ -alkyl,
		Heteroaryl-C₁-C₃-alkyl,
20		gegebenenfalls mit Cyano substituiertes C ₃ -C ₆ -Cycloalkyl-
		C ₁ -C ₃ -alkyl, oder für
		gegebenenfalls ein- oder mehrfach, gleich oder verschieden
		mit Phenyl, Pyridyl, Phenyloxy, C ₃ -C ₆ -Cycloalkyl, C ₁ -C ₆ -
		Alkyl oder C ₁ -C ₆ -Alkoxy substituiertes C ₁ -C ₆ -Alkyl steht,
25		wobei das Phenyl selbst ein oder mehrfach, gleich oder
		verschieden mit Halogen, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy oder mit
		der Gruppe –SO₂NR³R⁴ substituiert sein kann,
		oder für die Gruppe –(CH₂) _n NR³R⁴, -CNHNH₂ oder – NR³R⁴
30	R ³ und R ⁴	oder
J U	N UNU R'	gemeinsam einen C ₃ -C ₁₀ -Cycloalkyl-Ring bilden der gegebenenfalls durch ein- oder mehrere Stickstoff,
		Sauerstoff und/ oder Schwefel-Atome unterbrochen sein
		kann und/ oder durch ein oder mehrere =C=O Gruppen im
		Kam and oder daron citt oder memere -0-0 Gruppen int

WO 02/096888 PCT/EP02/05669 Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, steht, R^5 für Hydroxy, Phenyl, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, 5 Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht. R^6 für einen Heteroaryl oder C₃-C₁₀-Cycloalkyl-Ring steht, wobei der Ring die oben angegebene Bedeutung hat, R^7 für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₁₀-Cycloalkyl mit der oben angegebenen Bedeutung, oder für die Gruppe -NR³R⁴ steht, oder für ein-10 oder mehrfach, gleich oder verschieden mit Hydroxy, C₁-C₆-Alkoxy, Halogen, Phenyl, -NR³R⁴ oder Phenyl, welches selbst, ein-oder mehrfach gleich oder verschieden mit Halogen, Hydroxy, 15 C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann, substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht, oder für Phenyl steht, welches selbst ein- oder mehrfach, gleich oder 20 verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann, R8, R9 und R^{10} jeweils unabhängig voneinander für Wasserstoff, Hydroxy, 25 C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-30 Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy-C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -NHC₁-C₆-Alkyl, $-N(C_1-C_6-Alkyl)_2$, $-SO(C_1-C_6-Alkyl)_1-SO_2(C_1-C_6-Alkyl)_1$

C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc.

> Carboxy, Aryl, Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n-R⁵, -(CH₂)_nPO₃(R⁵)₂ oder mit der Gruppe -R⁶ oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch ein- oder mehrere Stickstoff. Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, stehen, und für 0 - 6 steht,

15

10

5

bedeuten, sowie deren Isomeren, Diastereomeren, Enantiomeren und Salze.

20

2. Verbindungen der allgemeinen Formel I, gemäß Anspruch 1, in der R^1 für Wasserstoff, Halogen, C₁-C₆-Alkyl, Nitro oder für die Gruppe -COR⁵, -OCF₃, -(CH₂) $_{n}$ R⁵, -S-CF₃ oder -SO₂CF₃ steht,

25

 R^2

für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy- C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkyl, -NHC₁- C_6 -Alkyl, -N(C_1 - C_6 -Alkyl)₂, $-SO(C_1-C_6-Alkyl)$, $-SO_2(C_1-C_6-Alkyl)$, $C_1-C_6-Alkanoyl$,

-CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc, Carboxy, Aryl,

Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n- R^5 , -(CH₂)_nPO₃(R^5)₂ oder mit der Gruppe - R^6 oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF3 oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch einoder mehrere Stickstoff-, Sauerstoff- und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, oder

R² für die Gruppe

20

25

5

10

15

steht.

für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl) oder für -OC₃-C₁₀ -Cycloalkyl welches ein- oder mehrfach, gleich oder verschieden mit einem Heteroaromaten substituiert sein kann, steht oder

X und R² ger

gemeinsam einen C₃–C₁₀ –Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten

WO 02/096888

PCT/EP02/05669

kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder Halaogen substituiert sein kann,

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C_1 - C_3 -Alkyl, C_1 - C_6 -Alkoxy oder für die Gruppe -S- C_3 - C_2 - C_2 - C_4 - C_5 -

oder für

10

stehen, oder

5 A und B gemeinsam eine Gruppe

5 bilden können,

R³ und R⁴ jeweils unabhängig voneinander für Wasserstoff, Phenyl, Benzyloxy, C_1 - C_{12} -Alkyl, C_1 - C_6 -Alkoxy, C_2 - C_4 -Alkenyloxy, C_3 - C_6 -Cycloalkyl, Hydroxy, Hydroxy- C_1 - C_6 -alkyl, Dihydroxy- C_1 - C_6 -alkyl, Heteroaryl, Heterocyclo- C_3 - C_{10} -alkyl,

Heteroaryl-C₁-C₃-alkyl,

gegebenenfalls mit Cyano substituiertes C_3 - C_6 -Cycloalkyl- C_1 - C_3 -alkyl, oder für

gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Phenyl, Pyridyl, Phenyloxy, C_3 - C_6 -Cycloalkyl, C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy substituiertes C_1 - C_6 -Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder mit der Gruppe – $SO_2NR^3R^4$ substituiert sein kann,

oder für die Gruppe –(CH₂)_nNR³R⁴, -CNHNH₂ oder – NR³R⁴ oder für

20

10

5 stehen, welche gegebenenfalls mit C₁-C₆-Alkyl substituiert sein können,

 R^5 für Hydroxy, Phenyl, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Benzoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkoxy steht, R^6 für die Gruppe

R⁷ für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, -C₂H₄OH, -NR³R⁴, oder die Gruppe

PCT/EP02/05669

steht,

R8, R9 und

 R^{10}

jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C₁-C₆-Alkyl, C₃-C₆-Cyclolkyl oder für die Gruppe

5

stehen und

n für 0 – 6 steht, bedeuten, sowie deren Isomeren,

- 10 Enantiomeren, Diastereomeren und Salze.
 - 3. Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 und 2, in der

15 R^1 für Wasserstoff, Halogen, C_1 - C_3 -Alkyl oder für die Gruppe -(CH_2)_n R^5 steht,

 R^2 für -CH(CH₃)-(CH₂)_n-R⁵, -CH-(CH₂OH)₂, -(CH₂)_nR⁷,

	-CH(C ₃ H ₇)-(CH ₂) _n -R ⁵ , -CH(C ₂ H ₅)-(CH ₂) _n -R ⁵ , -CH ₂ -CN,
	-CH(CH ₃)COCH ₃ , -CH(CH ₃)-C(OH)(CH ₃) ₂ ,
•	-CH(CH(OH)CH ₃)OCH ₃ , -CH(C ₂ H ₅)CO-R ⁵ , C ₂ -C ₄ -Alkinyl,
	$-(CH_2)_n$ - COR^5 , $-(CH_2)_n$ - $CO-C_1$ - C_6 -Alkyl, $-(CH_2)_n$ - $C(OH)(CH_3)$ -
5	Phenyl, -CH(CH ₃)-C(CH ₃)-R ⁵ , -CH(CH ₃)-C(CH ₃)(C ₂ H ₅)-R ⁵ , -
	CH(OCH ₃)-CH ₂ -R ⁵ , -CH ₂ -CH(OH)-R ⁵ , -CH(OCH ₃)-CHR ⁵ -
	CH_3 , $-CH(CH_3)-CH(OH)-CH_2-CH=CH_2$, $-CH(C_2H_5)-CH(OH)-CH_2$
	$(CH_2)_n$ - CH_3 , - $CH(CH_3)$ - $CH(OH)$ - $(CH_2)_n$ - CH_3 , - $CH(CH_3)$ -
	CH(OH)-CH(CH ₃) ₂ , (CH ₂ OAC) ₂ , -(CH ₂) _n -R ⁶ , -(CH ₂) _n -(CF ₂) _n -
10	$CF_{3,}$ -CH(CH ₂) _n -R ⁵) ₂ , -CH(CH ₃)-CO-NH ₂ , -CH(CH ₂ OH)-
	Phenyl, -CH(CH ₂ OH)-CH(OH)-(CH ₂) _n R ⁵ , -CH(CH ₂ OH)-
	CH(OH)-Phenyl, -CH(CH ₂ OH)-C ₂ H ₄ -R ⁵ , -(CH ₂) _n -C \equiv C-
	$C(CH_3)=CH-COR^5$, $-CH(Ph)-(CH_2)_n-R^5$, $-(CH_2)_n-COR^5$, $-$
	$(CH_2)_nPO_3(R^5)_2$, $-(CH_2)_n-COR^5$, $-CH((CH_2)_nOR^5)CO-R^5$, $-$
15	$(CH_2)_nCONHCH((CH_2)_nR^5)_2$, $-(CH_2)_nNH-COR^5$, -
	$CH(CH_2)_nR^5$ - $(CH_2)_nC_3$ - C_{10} -Cycloalkyl, - $(CH_2)_n$ - C_3 - C_{10} -
	Cycloalkyl, C ₃ -C ₁₀ -Cycloalkyl, gegebenenfalls ein- oder
	mehrfach, gleich oder verschieden mit Hydroxy, C ₁ -C ₆ -Alkyl
	oder der Gruppe –COONH(CH ₂) _n CH ₃ oder –NR ³ R ⁴
20	substituiertes C ₁ -C ₆ -Alkyl, C ₃ -C ₁₀ -Cycloalkyl, -(CH ₂) _n -O-
	$(CH_2)n-R^5$, $-(CH_2)_n-NR^3R^4$,
	-CH(C ₃ H ₇)-(CH ₂) _n -OC(O)-(CH ₂)n-CH ₃ , -(CH ₂) _n -R ⁵ ,
	$-C(CH_3)_2-(CH_2)_n-R^5$, $-C(CH_2)_n(CH_3)-(CH_2)_nR^5$,
	$-C(CH_2)_n-(CH_2)_nR^5$, $-CH(t-Butyl)-(CH_2)_n-R^5$,
25	$-CCH_3(C_3H_7)-(CH_2)_nR^5$, $-CH(C_3H_7)-(CH_2)_n-R^5$,
	-CH(C ₃ H ₇)-COR ⁵ , -CH(C ₃ H ₇)-(CH ₂) _n -OC(O)-NH-Ph,
	$-CH((CH_2)_n(C_3H_7))-(CH_2)_nR^5,$
	-CH(C ₃ H ₇)-(CH ₂) _n -OC(O)-NH-Ph(OR ⁵) ₃ , -NR ³ R ⁴ ,
	-NH- $(CH_2)_n$ -NR ³ R ⁴ , R ⁵ - $(CH_2)_n$ -C*H-CH(R ⁵)- $(CH_2)_n$ -R ⁵ ,
30	-(CH ₂) _n -CO-NH-(CH ₂) _n -CO-R ⁵ , -OC(O)NH-C ₁ -C ₆ -Alkyl oder
	$-(CH_2)_n-CO-NH-(CH_2)_n-CH-((CH_2)_nR^5)_2$
	oder für C ₃ -C ₁₀ -Cycloalkyl steht, welches mit der Gruppe

PCT/EP02/05669

$$-N \longrightarrow -N \longrightarrow -N \longrightarrow -NH-(CH_2)_n \longrightarrow NH-(CH_2)_n $

5

substituiert ist, oder für die Gruppe

$$-(CH_2)_n$$

$$-(CH$$

oder

10

steht,

PCT/EP02/05669

Χ

für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl) oder

steht, oder

5 R²

für die Gruppe

$$\mathbb{R}^8$$
 oder \mathbb{R}^8 \mathbb{R}^9 \mathbb{R}^9

steht,

oder

X und R²

gemeinsam eine Gruppe

10

15

20

bilden,

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy,

C₁-C₃-Alkyl, C₁-C₆-Alkoxy oder für die Gruppe -S-CH₃,

-SO₂-C₂H₄-OH, -CO-CH₃, -S-CHF₂,

 $-S-(CH_2)_nCH(OH)CH_2N-R^3R^4$, $-CH_2PO(OC_2H_5)_2$, $-S-CF_3$,

-SO-CH₃, -SO₂CF₃, -SO₂-(CH₂)_n-N-R³R⁴, -SO₂-NR³R⁴,

 $-SO_2R^7$, $-CH(OH)-CH_3$, -COOH, $-CH((CH_2)_nR^5)_2$, $-(CH_2)_nR^5$,

-COO-C₁-C₆-Alkyl, -CONR³R⁴ oder für

WO 02/096888 PCT/EP02/05669

stehen, oder

WO 02/096888 PCT/EP02/05669

A und B gemeinsam eine Gruppe

5

bilden können,

10 R³ und R⁴

jeweils unabhängig voneinander für Wasserstoff, Phenyl, Benzyloxy, C_1 - C_{12} -Alkyl, C_1 - C_6 -Alkoxy, C_2 - C_4 -Alkenyloxy, C_3 - C_6 -Cycloalkyl, Hydroxy, Hydroxy- C_1 - C_6 -alkyl, Dihydroxy- C_1 - C_6 -alkyl, Heteroaryl, Heterocyclo- C_3 - C_{10} -alkyl, Heteroaryl- C_1 - C_3 -alkyl,

15

gegebenenfalls mit Cyano substituiertes C_3 - C_6 -Cycloalkyl- C_1 - C_3 -alkyl, oder für gegebenenfalls ein- oder mehrfach, gleich oder verschieden

20

gegebenentalis ein- oder mentrach, gleich oder verschieden mit Phenyl, Pyridyl, Phenyloxy, C₃-C₆-Cycloalkyl, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₁-C₆-Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder mit der Gruppe –SO₂NR³R⁴ substituiert sein

kann,

oder für die Gruppe – $(CH_2)_nNR^3R^4$, -CNHNH₂ oder – NR^3R^4 oder für

25

5

10

stehen, welche gegebenenfalls mit C₁-C₆-Alkyl substituiert sein können,

 R^5 für Hydroxy, Phenyl, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Benzoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkoxy steht,

R⁶ für die Gruppe

PCT/EP02/05669

steht,

 R^7 für Halogen, Hydroxy, Phenyl, C_1 - C_6 -Alkyl, -(CH₂)_nOH, -NR³R⁴ oder die Gruppe

5

10 steht,

R8, R9 und

R¹⁰ für Wasserstoff, Hydroxy, C₁-C₆-Alkyl oder für die Gruppe

-(CH₂)_n-COOH stehen, und

n für 0 – 6 stehen, bedeuten, sowie deren Isomeren,

15 Diastereoisomeren, Enantiomeren und Salze.

4. Verwendung der Verbindung der allgemeinen Formel la

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

20

in der D für Halogen steht, und X, R^1 , und R^2 die in der allgemeinen Formel (I) angegebenen Bedeutungen haben, als Zwischenprodukte zur Herstellung der Verbindung der allgemeinen Formel I.

25

WO 02/096888 PCT/EP02/05669

Verwendung der Verbindungen der allgemeinen Formel la, gemäß 5. Anspruch 4, in der D für Chlor steht und X, R¹ und R² die in der allgemeinen Formel angegebenen Bedeutungen haben.

5

6. Pharmazeutische Mittel umfassend eine Verbindung der allgemeinen Formel I in der

 R^1 für Halogen oder C₁-C₃-Alkyl steht

für Sauerstoff oder -NH steht, X

10 Α für Wasserstoff steht

> für Hydroxy, -CO-Alkyl-R⁷, -S-CHF₂, -В S(CH₂)_nCH(OH)CH₂N-R³R⁴, -S-CF₃, oder -CH-(OH)-CH₃,

> > steht, oder

A und B unabhängig voneinander eine Gruppe

15

R², R³, R⁴, R⁷ und R⁸ die in der allgemeinen Formel I angegebenen Bedeutungen haben, sowie deren Isomeren, Diastereomeren, Enantiomere und Salzen.

20

25

7. Verwendung der Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 bis 3, zur Herstellung eines Arzneimittels zur Behandlung von Krebs, Autoimmunerkrankungen, Chemotherapeutika-induzierter Alopezie und Mukositis, kardiovaskulären Erkrankungen, infektiösen Erkrankungen, nephrologischen Erkrankungen, chronisch und akut neurodegenerativen Erkrankungen und viralen Infektionen.

30

8. Verwendung gemäß Anspruch 7, dadurch gekennzeichnet, daß unter Krebs solide Tumoren und Leukämie, unter Autoimmunerkrankungen Psoriasis, Alopezie und Multiple Sklerose, unter kardiovaskulären

WO 02/096888 PCT/EP02/05669

Erkrankungen Stenosen, Arteriosklerosen und Restenosen, unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene Erkrankungen, unter nephrologischen Erkrankungen Glomerulonephritis, unter chronisch neurodegenerativen Erkrankungen Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung, unter akut neurodegenerativen Erkrankungen Ischämien des Gehirns und Neurotraumata, und unter viralen Infektionen Cytomegalus-Infektionen, Herpes, Hepatitis B und C und HIV Erkrankungen zu verstehen sind.

10

5

- Arzneimittel, die mindestens eine Verbindung gemäß den Ansprüchen 1 bis 3 enthalten.
- 15 10. Arzneimittel gemäß Anspruch 9, zur Behandlung von Krebs,
 Autoimmunerkrankungen, kardiovaskulären Erkrankungen, infektiöse
 Erkrankungen, nephrologische Erkrankungen, neurodegenerative
 Erkrankungen und virale Infektionen.

20

11. Verbindungen gemäß den Ansprüchen 1 bis 3 und Arzneimittel gemäß den Ansprüchen 6 bis 7 mit geeigneten Formulierungs- und Trägerstoffen.

25

12. Verwendung der Verbindungen der allgemeinen Formel I und der pharmazeutischen Mitteln, gemäß den Ansprüchen 1 bis 3 und 6, als Inhibitoren der Zyklin-abhängigen Kinasen.

30

13. Verwendung gemäß Anspruch 12, dadurch gekennzeichnet, daß die Kinase CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 oder CDK9 ist.

WO 02/096888 PCT/EP02/05669

14. Verwendung der Verbindungen der allgemeinen Formel I und der pharmazeutischen Mitteln, gemäß den Ansprüchen 1 bis 3 und 6 als
 5 Inhibitoren der Glycogen-Synthase-Kinase (GSK-3ß).

15. Verwendung der Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 bis 3, in Form eines pharmazeutischen Präparates für die enterale, parenterale und orale Applikation.

10

16. Verwendung des Mittels gemäß Anspruch 6, in Form eines Präparates fur die enterale, parenterale und orale Applikation.

Fig 1

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/EP 02/05669

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO7D239/48 A61k A61K31/505 A61K31/506 A61P35/00 CO7D239/47 CO7D239/34 C07D239/42 C07D405/12 CO7D401/12 C07D403/12 C07D409/12 C07D417/12 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, BEILSTEIN Data, PAJ, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category Citation of document, with indication, where appropriate, of the relevant passages P,X DING, SHENG ET AL: "A Combinatorial 1 - 16Scaffold Approach toward Kinase-Directed Heterocycle Libraries" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2002), 124(8), 1594-1596, XP002210160 the whole document P,X DATABASE CHEMCATS 'Online! 1-3 CHEMICAL ABSTRACTS SERVICE, COLUMBUS OHIO, US; 21 January 2002 (2002-01-21) retrieved from STN XP002210161 Order Number F0487-0047 "Ambinter Exploratory Library" , AMBINTER , F-75016 PARIS Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-*O* document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means *P* document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 16 August 2002 12/09/2002 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Kollmannsberger, M Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Intel anal Application No PCT/EP 02/05669

C (Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	101/11 02/03009
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Р,Х	DATABASE CHEMCATS 'Online! CHEMICAL ABSTRACTS SERVICES, COLUMBUS, OHIO, US; retrieved from STN XP002210162 Order Numbers CD207267, CD207266 & "Oak Samples Product List" 8 October 2001 (2001-10-08), OAK SAMPLES LTD., 03680 KIEV-142, UKRAINE	1-3
P,Y	WO 02 04429 A (THOMAS ANDREW PETER; ASTRAZENECA UK LTD (GB); HEATON DAVID WILLIAM) 17 January 2002 (2002-01-17) claims	1-16
X	WO 98 33798 A (DOHERTY ANNETTE MARIAN; DOBRUSIN ELLEN MYRA (US); WARNER LAMBERT C) 6 August 1998 (1998-08-06) Seite 47 4-Hydroxymethylverbindungen page 141; table 2 claim 20	1-16
X	WO 00 53595 A (BREAULT GLORIA ANNE ;JAMES STEWART RUSSELL (GB); PEASE JANE ELIZAB) 14 September 2000 (2000-09-14) claims page 51; examples 7-9	1-16
Y	WO 01 14375 A (BEATTIE JOHN FRANKLIN ;BREAULT GLORIA ANNE (GB); JEWSBURY PHILLIP) 1 March 2001 (2001-03-01) cited in the application claims	1–16
Y	WO 00 39101 A (BREAULT GLORIA ANNE ;PEASE JANET ELIZABETH (GB); ASTRAZENECA UK LT) 6 July 2000 (2000-07-06) claims	1-16
Υ	WO 99 50251 A (CALVERT ALAN HILARY ;NOBLE MARTIN EDWARD MANTYLA (GB); BOYLE FRANC) 7 October 1999 (1999-10-07) claims	1-16
X	EP 0 310 550 A (CIBA GEIGY AG) 5 April 1989 (1989-04-05) claim 1	1-3
X	Tabelle 1 Verbindungen mit R3=H Tabelle 3 Verbindungen mit R3=H	4,5
	o· -/	·

INTERNATIONAL SEARCH REPORT

Intel inal Application No PCT/EP 02/05669

		PCT/EP 02/05669
.(Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Calegory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
(DE 40 29 650 A (HOECHST AG) 26 March 1992 (1992-03-26) cited in the application claim 1 page 17 -page 57; table 1	1-3
(DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. BRN 249340, 265505 XP002210163 & NAITO, I. ET AL.: CHEM. PHARM. BULL., vol. 6, 1958, pages 338-341,	1-3
X	JP 03 127790 A (MORISHITA PHARMACEUT CO LTD) 30 May 1991 (1991-05-30) claim 2 page 847, column 26; table 5	1-3
X	EP 0 224 339 A (IHARA CHEMICAL IND CO;KUMIAI CHEMICAL INDUSTRY CO (JP)) 3 June 1987 (1987-06-03) claims 1-4 page 4; examples 3,13	1-3
X	BOSCHELLI D H ET AL: "SYNTHESIS AND TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDOÄ2,3-DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 41, no. 22, 1998, pages 4365-4377, XP002191993 ISSN: 0022-2623 page 4367; examples 42,43	1-3

INTERNATIONAL SEARCH REPORT mation on patent family members

Inte nal Application No PCT/EP 02/05669

			101/61	02/05669
Patent document clted in search report	Publication date		Patent family member(s)	Publication date
WO 0204429 A	17-01-2002	AU WO	6931701 A 0204429 A1	21-01-2002 17-01-2002
WO 9833798 A	06-08-1998	AU BR EP HR JP WO	6648098 A 9807305 A 0964864 A2 980060 A1 2001509805 T 9833798 A2	25-08-1998 02-05-2000 22-12-1999 30-06-1999 24-07-2001 06-08-1998
WO 0053595 A	14-09-2000	ZA AU BR CN EP WO NO NZ	9800914 A 2818700 A 0008770 A 1349528 T 1161428 A1 0053595 A1 20014317 A 513893 A	09-11-1998
WO 0114375 A	01-03-2001	AU BR CZ EP WO NO	6583300 A 0013476 A 20020617 A3 1214318 A1 0114375 A1 20020832 A	19-03-2001 30-04-2002 12-06-2002 19-06-2002 01-03-2001 12-04-2002
WO 0039101 A	06-07-2000	AU BR CN EP WO NO	1874300 A 9916590 A 1335838 T 1140860 A1 0039101 A1 20013038 A	31-07-2000 23-10-2001 13-02-2002 10-10-2001 06-07-2000 22-08-2001
WO 9950251 A	07-10-1999	AU CA EP WO JP	3155199 A 2326357 A1 1066266 A1 9950251 A2 2002509921 T	18-10-1999 07-10-1999 10-01-2001 07-10-1999 02-04-2002
EP 0310550 A	05-04-1989	AT AU BG BR CA CN CCZ CY DK EP ES FI	89821 T 2287088 A 60541 B1 8804955 A 1317952 A1 1331759 A1 1329934 A1 1032441 A ,B 1064270 A ,B 1064191 A ,B 8905753 A3 8806385 A3 1770 A 3881320 D1 85993 A 536288 A 0310550 A1 2054867 T3 884409 A ,B,	15-06-1993 06-04-1989 28-08-1995 02-05-1989 18-05-1993 30-08-1994 31-05-1994 19-04-1989 09-09-1992 09-09-1992 16-11-1994 16-11-1994 20-10-1995 01-07-1993 20-07-1993 29-03-1989 05-04-1989 16-08-1994 29-03-1989

INTERNATIONAL SEARCH REPORT rmation on patent family members

inte nai Application No PCT/EP 02/05669

			rui/E	P 02/05009
Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0310550 A		HK HR HU HU IE IL IL	21394 A 940473 A1 47787 A2 213938 B 62424 B 87866 A 102422 A	18-03-1994 30-04-1996 28-04-1989 28-11-1997 08-02-1995 13-05-1993 10-06-1993
		IL JP JP JP KR LV	102423 A 1113374 A 1924134 C 6049689 B 9206738 B1 10613 A	15-03-1993 02-05-1989 25-04-1995 29-06-1994 17-08-1992 20-04-1995
·		LV LV LV LV LV	10613 B 10614 A 10614 B 10556 A 10556 B 10676 A	20-04-1996 20-04-1995 20-04-1996 20-04-1995 20-04-1996 20-06-1995
		LV MD MD MD MX NO	10676 B 38 B1 501 B1 206 B1 13166 A 884284 A , E	20-04-1996 31-08-1994 29-03-1996 31-05-1995 01-09-1993 29-03-1989
		NO NZ PH PL PL	932441 A 226323 A 26459 A 274899 A1 281026 A1	29-03-1989 26-04-1990 27-07-1992 11-12-1989 05-03-1990
DE 4029650 A	26-03-1992	DE	4029650 A1	26-03-1992
JP 03127790 A	30-05-1991	NONE		
EP 0224339 A	03-06-1987	DE DE EP JP JP KR KR US	3676460 D1 224339 T1 0224339 A2 1901608 C 6029263 B 63208581 A 9300149 B1 9300150 B1 4988704 A	07-02-1991 05-11-1987 03-06-1987 27-01-1995 20-04-1994 30-08-1988 09-01-1993 09-01-1993 29-01-1991

Inter nales Aktenzeichen PCT/EP 02/05669

klassifizierung des anmeldungsgegenstandes PK 7 C07D239/48 A61K31/505 A. KLAS A61K31/506 A61P35/00 C07D239/47 C07D239/34 CO7D239/42 C07D401/12 C07D405/12 CO7D403/12 CO7D409/12 CO7D417/12 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C07D A61K Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, BEILSTEIN Data, PAJ, CHEM ABS Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle P,X DING, SHENG ET AL: "A Combinatorial 1-16 Scaffold Approach toward Kinase-Directed Heterocycle Libraries" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2002), 124(8), 1594-1596, XP002210160 das ganze Dokument P,X DATABASE CHEMCATS 'Online! 1-3 CHEMICAL ABSTRACTS SERVICE, COLUMBUS OHIO, US; 21. Januar 2002 (2002-01-21) retrieved from STN XP002210161 Order Number F0487-0047 "Ambinter Exploratory Library" AMBINTER , F-75016 PARIS Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Х Siehe Anhang Patentfamilie entnehmen "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist Besondere Kategorien von angegebenen Veröffentlichungen 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Täligkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichung dieser Kategorfe in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist ausgeführt) 'O' Veröffentlichung, die sich auf eine m\u00fcndliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Ma\u00ddnahmen bezieht
 'P' Ver\u00f6ffentlichung, die vor dem infernationalen Anmeldedatum, aber nach dem beanspruchten Priorit\u00e4tsdatum ver\u00f6ffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der Internationalen Recherche Absendedatum des internationalen Recherchenberichts 16. August 2002 12/09/2002 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Kollmannsberger, M Fax: (+31-70) 340-3016

Inte onales Aktenzeichen
PCT/EP 02/05669

C.(Fortsetz Kalegorie®	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr, Anspruch Nr.
Ρ,Χ	DATABASE CHEMCATS 'Online! CHEMICAL ABSTRACTS SERVICES, COLUMBUS, OHIO, US; retrieved from STN XP002210162 Order Numbers CD207267, CD207266 & "Oak Samples Product List" 8. Oktober 2001 (2001-10-08), OAK SAMPLES LTD., 03680 KIEV-142, UKRAINE	1-3
P,Y	WO 02 04429 A (THOMAS ANDREW PETER ;ASTRAZENECA UK LTD (GB); HEATON DAVID WILLIAM) 17. Januar 2002 (2002-01-17) Ansprüche	1-16
X	WO 98 33798 A (DOHERTY ANNETTE MARIAN; DOBRUSIN ELLEN MYRA (US); WARNER LAMBERT C) 6. August 1998 (1998-08-06) Seite 47 4-Hydroxymethylverbindungen Seite 141; Tabelle 2 Anspruch 20	1-16
X	WO 00 53595 A (BREAULT GLORIA ANNE ;JAMES STEWART RUSSELL (GB); PEASE JANE ELIZAB) 14. September 2000 (2000-09-14) Ansprüche Seite 51; Beispiele 7-9	1-16
Υ	WO 01 14375 A (BEATTIE JOHN FRANKLIN; BREAULT GLORIA ANNE (GB); JEWSBURY PHILLIP) 1. März 2001 (2001-03-01) in der Anmeldung erwähnt Ansprüche	1-16
Υ	WO 00 39101 A (BREAULT GLORIA ANNE ;PEASE JANET ELIZABETH (GB); ASTRAZENECA UK LT) 6. Juli 2000 (2000-07-06) Ansprüche	1-16
Υ	WO 99 50251 A (CALVERT ALAN HILARY ; NOBLE MARTIN EDWARD MANTYLA (GB); BOYLE FRANC) 7. Oktober 1999 (1999-10-07) Ansprüche	1-16
X	EP 0 310 550 A (CIBA GEIGY AG) 5. April 1989 (1989-04-05) Anspruch 1	1-3
X	Tabelle 1 Verbindungen mit R3=H Tabelle 3 Verbindungen mit R3=H	4,5
	-/	

Inte onales Aktenzelchen
PCT/EP 02/05669

Rategories Bezachtung der Veröffentlichung, sowell erfordrich unter Angabe der in Betracht kommenden Telek Betr. Anspruch Nr.			FCI/EP UZ	
X				
26. März 1992 (1992-03-26) in der Anmeldung erwähnt Anspruch 1 Seite 17 -Seite 57; Tabelle 1 DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. BRN 249340, 265505 XP002210163 & NAITO, I. ET AL.: CHEM. PHARM. BULL., Bd. 6, 1958, Seiten 338-341, X JP 03 127790 A (MORISHITA PHARMACEUT CO LTD) 30. Mai 1991 (1991-05-30) Anspruch 2 Seite 847, Spalte 26; Tabelle 5 X EP 0 224 339 A (IHARA CHEMICAL IND CO ;KUMIAI CHEMICAL INDUSTRY CO (JP)) 3. Juni 1987 (1987-06-03) Ansprüche 1-4 Seite 4; Beispiele 3,13 X BOSCHELLI D H ET AL: "SYNTHESIS AND TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDOÄ2,3-DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, Bd. 41, Nr. 22, 1998, Seiten 4365-4377, XP002191993 ISSN: 0022-2623	Kategorie®	Bezeichnung der Veröffentlichung, soweil erforderlich unter Angabe der in Betracht komme	enden Teile	Betr. Anspruch Nr.
Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. BRN 249340, 265505 XP002210163 & NAITO, I. ET AL.: CHEM. PHARM. BULL., Bd. 6, 1958, Seiten 338-341, X JP 03 127790 A (MORISHITA PHARMACEUT CO LTD) 30. Mai 1991 (1991-05-30) Anspruch 2 Seite 847, Spalte 26; Tabelle 5 X EP 0 224 339 A (IHARA CHEMICAL IND CO; KUMIAI CHEMICAL INDUSTRY CO (JP)) 3. Juni 1987 (1987-06-03) Ansprüche 1-4 Seite 4; Beispiele 3,13 X BOSCHELLI D H ET AL: "SYNTHESIS AND TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDOÄ2,3-DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, Bd. 41, Nr. 22, 1998, Seiten 4365-4377, XP002191993 ISSN: 0022-2623	Х	26. März 1992 (1992-03-26) in der Anmeldung erwähnt Anspruch 1		1-3
LTD) 30. Mai 1991 (1991-05-30) Anspruch 2 Seite 847, Spalte 26; Tabelle 5 X EP 0 224 339 A (IHARA CHEMICAL IND CO; KUMIAI CHEMICAL INDUSTRY CO (JP)) 3. Juni 1987 (1987-06-03) Ansprüche 1-4 Seite 4; Beispiele 3,13 X BOSCHELLI D H ET AL: "SYNTHESIS AND TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDOÄ2,3-DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, Bd. 41, Nr. 22, 1998, Seiten 4365-4377, XP002191993 ISSN: 0022-2623	X	Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. BRN 249340, 265505 XP002210163 & NAITO, I. ET AL.: CHEM. PHARM. BULL.,		1-3
;KUMIAI CHEMICAL INDUSTRY CO (JP)) 3. Juni 1987 (1987-06-03) Ansprüche 1-4 Seite 4; Beispiele 3,13 X BOSCHELLI D H ET AL: "SYNTHESIS AND TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDOÄ2,3-DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, Bd. 41, Nr. 22, 1998, Seiten 4365-4377, XP002191993 ISSN: 0022-2623	X	LTD) 30. Mai 1991 (1991-05-30) Anspruch 2		1-3
TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDOÄ2,3-DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, Bd. 41, Nr. 22, 1998, Seiten 4365-4377, XP002191993 ISSN: 0022-2623	X	;KUMIAI CHEMICAL INDUSTRY CO (JP)) 3. Juni 1987 (1987-06-03) Ansprüche 1-4		1-3
	X	TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDOÄ2,3-DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, Bd. 41, Nr. 22, 1998, Seiten 4365-4377, XP002191993 ISSN: 0022-2623		1-3

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Ansprüche Nr.: 1-16 (teilweise)

Die vorliegenden Ansprüche beziehen sich u. a. auf "Isomere" strukturell definierter Verbindungen. Da unter "Isomeren" normalerweise Verbindungen mit gleicher Summenformel, aber unterschiedlicher Struktur (z. B. Konstitution) verstanden werden, ist nicht klar, auf welche Verbindungen die Ansprüche in dieser Beziehung gerichtet sein sollen (Art. 6 PCT). Die Recherche wurde daher auf strukturell in den Ansprüchen definierte Verbindungen beschränkt.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.

nationales Aktenzeichen PCT/EP 02/05669

INTERNATIONALER RECHERCHENBERICHT

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blat	ıt 1)
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:	
1. X Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich	
Obwohl die Ansprüche 12-16 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.	
2. X Ansprüche Nr. 1-16 (teilweise) well sie sich auf Telle der Internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle Internationale Recherche nicht durchgeführt werden kann, nämlich	
s1ehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210	
3. Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.	i
Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)	
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält	
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.	
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine	
zusätziiche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.	
Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.	
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:	
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.	
Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.	

Angaben zu Veröffentlichu..., die zur selben Patentfamille gehören

Inte nales Aklenzelchen
PCT/EP 02/05669

	echerchenbericht rtes Patentdokumen	t	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO	0204429	Α	17-01-2002	AU WO	6931701 A 0204429 A1	21-01-2002 17-01-2002
WO	9833798	A	06-08-1998	AU BR EP HR JP WO ZA	6648098 A 9807305 A 0964864 A2 980060 A1 2001509805 T 9833798 A2 9800914 A	25-08-1998 02-05-2000 22-12-1999 30-06-1999 24-07-2001 06-08-1998 09-11-1998
WO	0053595	Α	14-09-2000	AU BR CN EP WO NO	2818700 A 0008770 A 1349528 T 1161428 A1 0053595 A1 20014317 A 513893 A	28-09-2000 08-01-2002 15-05-2002 12-12-2001 14-09-2000 01-11-2001 28-09-2001
WO	0114375	A	01-03-2001	AU BR CZ EP WO NO	6583300 A 0013476 A 20020617 A3 1214318 A1 0114375 A1 20020832 A	19-03-2001 30-04-2002 12-06-2002 19-06-2002 01-03-2001 12-04-2002
WO —	0039101	Α	06-07-2000	AU BR CN EP WO NO	1874300 A 9916590 A 1335838 T 1140860 A1 0039101 A1 20013038 A	31-07-2000 23-10-2001 13-02-2002 10-10-2001 06-07-2000 22-08-2001
WO	9950251	A	07-10-1999	AU CA EP WO JP	3155199 A 2326357 A1 1066266 A1 9950251 A2 2002509921 T	18-10-1999 07-10-1999 10-01-2001 07-10-1999 02-04-2002
EP	0310550	A	05-04-1989	AT AU BG BR CA CA CN CN CZ CY DE DK EP ES I	89821 T 2287088 A 60541 B1 8804955 A 1317952 A1 1331759 A1 1329934 A1 1032441 A 1064270 A 1064191 A 8905753 A3 8806385 A3 1770 A 3881320 D1 85993 A 536288 A 0310550 A1 2054867 T3 884409 A ,	B 09-09-1992 B 09-09-1992 16-11-1994 16-11-1994 20-10-1995 01-07-1993 20-07-1993 29-03-1989 05-04-1989 16-08-1994

Angaben zu Veröffentlichu......., die zur selben Patentfamilie gehören

Inte | nales Aktenzeichen PCT/EP 02/05669

				
Im Rechbrichenbericht geführtes Patentdokument	Datum der Veröffentlichung		/litglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0310550 A	<u> </u>	НК	21394 A	18-03-1994
E. 0010550 A		HR	940473 A1	30-04-1996
		HÜ	47787 A2	28-04-1989
		HU	213938 B	28-11-1997
		IE		08-02-1995
			62424 B	
		IL	87866 A	13-05-1993
		IL	102422 A	10-06-1993
		IL	102423 A	15-03-1993
		JP	1113374 A	02-05-1989
		JP	1924134 C	25-04-1995
		JP	6049689 B	29-06-1994
		KR	9206738 B1	17-08-1992
		LV	10613 A	20-04-1995
		LV	10613 B	20-04-1996
		L۷	10614 A	20-04-1995
		LV	10614 B	20-04-1996
		LV	10556 A	20-04-1995
		LV	10556 B	20-04-1996
		LV	10676 A	20-06-1995
		LV	10676 B	20-04-1996
		MD	38 B1	31-08-1994
		MD	501 B1	29-03-1996
		MD	206 B1	31-05-1995
		MX	13166 A	01-09-1993
		NO	884284 A ,B	
		NO	932441 A	29-03-1989
		NZ	226323 A	26-04-1990
		PH	26459 A	27-07-1992
		PL	274899 A1	11-12-1989
		PL	281026 A1	05-03-1990
DE 4029650 A	26-03-1992 	DE	4029650 A1	26-03-1992
JP 03127790 A	30-05-1991	KEINE		
EP 0224339 A	03-06-1987	DE	3676460 D1	07-02-1991
		DE	224339 T1	05-11-1987
		EP	0224339 A2	03-06-1987
		JP	1901608 C	27-01-1995
		JP	6029263 B	20-04-1994
		JP	63208581 A	30-08-1988
		Ui		
		KR	9300149 B1	09-01-1993
		KR	9300149 B1	09-01-1993 09-01-1993

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

BADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.