Publication Date: May 5, 1982 | doi: 10.1021/ba-1982-0040.fw001

Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Society Library 1155 16th St. N. V

- 1 nominal mass of the singly charged ion in daltons
- 2 elemental composition
- 3 proportion of this entry out of the total entries of this type
- 4 average abundance (maximum 99)
- 5 specificity of this explanation for the peak vs. other probable explanations (maximum 99)
- 6 proportion of data-base spectra with mass 71 of \geq 1% abundance
- 7 proportion of data-base spectra with an "important" peak at mass 71
- 8 for the substructure Y_L - $(CH_2)_3$ -CO- Y_R , 70% of the Y_L neighbors are CH_2 groups and 25% of Y_R are ethers
- 9 proportion of mass 71 ions assigned as $C_4H_7O^+$
- 10 proportion of $\text{C}_4\text{H}_7\text{O}^+$ assignments from compounds containing -(CH $_2)_3\text{-CO}\text{-}$
- 11 "+" indicates that the proportion for compounds of molecular weight >236 is larger by >25% (absolute) vs. the proportion for others
- 12 butyryl or isobutyryl
- 13 no substructures indicated for hydrocarbons because of high tendency to rearrange
- 14 substituent at each end of substructure
- 15 -O-ÇH-CH-O-H₂C (cyclic)
- most common substructures yielding $C_4H_9N^+$; data are averages for all
- e.g., pyrollidinyl
- 18 less common compositions found for mass 71 peaks
- 19 methoxycycloalkyl formation of the indicated ion can involve H transfer
- 20 to the substructure shown, and can also involve H transfer
- 21 from the substructure shown

American Chemical Society Library

1155 16th St. N. W

Mass Spectral Correlations

Mass Spectral Correlations Second Edition

Fred W. McLafferty

Department of Chemistry Cornell University Ithaca, New York 14853

Rengachari Venkataraghavan

Department of Chemistry
Cornell University
Ithaca, New York 14853
Current affiliation:
Lederle Laboratories
Pearl River, New York 10965

ADVANCES IN CHEMISTRY SERIES

40

AMERICAN CHEMICAL SOCIETY
WASHINGTON, D. C. 1982

Library of Congress TP Data

McLafferty, Fred W.
Mass spectral correlations.
(Advances in chemistry series, ISSN 0065-2393; 40)
Bibliography: p. 10

1. Mass spectrometry.

I. Venkataraghavan, Rengachari, 1939- . II. Title. III. Series.

QD1.A355 no. 40, 1982 [QD96.M3] 540s 81-20564 ISBN 0-8412-0702-X [543'.0873] AACR2 ADCSAJ 40 1-124 1982

Copyright © 1982

American Chemical Society

All Rights Reserved. The appearance of the code at the bottom of the first page of each article in this volume indicates the copyright owner's consent that reprographic copies of the article may be made for personal or internal use or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to copying or transmission by any means—graphic or electronic—for any other purpose, such as for general distribution, for advertising or promotional purposes; for creating new collective work, for resale, or for information storage and retrieval systems.

The citation of trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval by ACS of the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission, to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto.

PRINTED IN THE UNITED STATES APPRICADA Chemical Society Library
1155 16th St. N. W.
Washington, D. C. 20036

Advances in Chemistry Series

M. Joan Comstock, Series Editor

Advisory Board

David L. Allara Marvin Margoshes

Robert Baker Robert Ory

Donald D. Dollberg Leon Petrakis

Robert E. Feeney Theodore Provder

Brian M. Harney Charles N. Satterfield

W. Jeffrey Howe Dennis Schuetzle

James D. Idol, Jr. Davis L. Temple, Jr.

Herbert D. Kaesz Gunter Zweig

FOREWORD

Advances in Chemistry Series was founded in 1949 by the American Chemical Society as an outlet for symposia and collections of data in special areas of topical interest that could not be accommodated in the Society's journals. It provides a medium for symposia that would otherwise be fragmented, their papers distributed among several journals or not published at all. Papers are reviewed critically according to ACS editorial standards and receive the careful attention and processing characteristic of ACS publications. Volumes in the Advances in Chemistry Series maintain the integrity of the symposia on which they are based; however, verbatim reproductions of previously published papers are not accepted. Papers may include reports of research as well as reviews since symposia may embrace both types of presentation.

INTRODUCTION

INTRODUCTION

Since the First Edition of this book appeared in 1963 (1), mass spectrometry has become a widely accepted technique for molecular structure determination. Particularly impressive is the extensive use of gas chromatography/mass spectrometry resulting from its unique analytical applicability to complex mixtures. Identification of scores of components, even at the subnanogram level, is possible, but requires interpretation of the individual spectra. Literally thousands of papers have now appeared correlating mass spectra with structure for a wide variety of compounds (2), but these emphasize the spectral patterns or decomposition pathways to be expected for a specific However, in determining type of molecular structure. the structure of an unknown compound the situation is reversed; it is from the known prominent ions in the unknown spectrum that the probable structures must be ascertained. This similar problem in other fields of spectroscopy has led to charts or tables indicating the prominent functional group or other structural features which are found at particular wavelengths. Possibly the best known is the "Colthup chart" (3) of infrared spectroscopy, whose wide utility led to the original suggestion for this tabulation (4).

Extended use of the First Edition has led to a number of suggestions for improvements as well as additional correlations. A real motivation was supplied by the availability of a reference file containing mass spectra of ten times as many compounds as the original file. Correlating these spectra was only possible with computer assistance, but this had the advantage of yielding much more extensive and accurate statistical data. This compilation lists more than 3,000 structures corresponding to 1,500 elemental compositions, several times the numbers of the First Edition.

Format of the Correlations

The tabulation lists the most probable elemental compositions and substructures corresponding to specific $\underline{m}/\underline{z}$ values of singly charged ions found in electron ionization (~70 eV) mass spectra. Under each \underline{m} Under each m/z value (starting at 12) are listed the most probable elemental compositions and their exact masses; for most compositions the common substructure assignments are given, and for some of these common neighboring groups are listed. Other data are the proportion of total entries represented by a specific entry and the weighted average of peak abundances for the entry. The degree of ambiguity in classifying the entry is indicated by the value for its specificity. tries resulted from the computer-assisted procedure described below, after which other correlations (such as peaks from skeletal rearrangements) were added using the First Edition and other tabulations (2).

Preparation of the Correlations

These data have been taken from a collection of electron-ionization mass spectra of 32,830 different compounds (5) whose structures are coded in Wiswesser Line Notation (WLN) (6). The correlations utilized a DEC PDP-11/45 computer system with GT-40 CRT display and DIVA 58 Mbyte disk system. The spectral data with the compound name, molecular formula, molecular weight, and WLN were stored on the disk as one file. To facilitate structure manipulation, the WLNs were decoded into a connection table showing the individual units and their connections to other units using a computer program similar to the one described by Hyde et al. The WLN connection table preserves the linear connectivity information, and so is particularly useful in assigning specific substructures to fragment The computer-assisted correlation of spectral peaks with structure involves four major steps: selection of significant peaks from individual specassignment of all possible elemental compositions, assignment of substructures, and statistical tabulation of the results. The following is a brief description of each step in the process.

<u>Selection of Significant Peaks</u>. The abundances of major peaks in each spectrum are first corrected for isotopic contributions estimated from the elemen-

4

tal formula of the compound. Using the peak selection procedures developed for the Probability Based Matching System (7), the peaks are then assigned uniqueness (U) and abundance (A) values; these are based on the occurrence probability of peaks in the data base (5), shown in Figure 1. From each spectrum the 15 to 26 peaks (more for compounds of higher molecular weight) of highest (U + A) values are selected (7) as the "condensed spectrum" and written on a separate disk file.

Assignment of Elemental Compositions. This program uses the molecular formula as the upper bound to determine the numbers and kinds of elements possible in each peak of the condensed spectrum. Improbable compositions exceeding bonding limitations (e.g., $C_2H_8^+$) or with a much higher degree of unsaturation than the molecule (e.g., C_7H^+ from C_8H_{18}) are eliminated to generate the list of possible elemental compositions. These data are mapped according to their heteroatom content so that ions with specific heteroatom compositions are grouped together. For example, an organic compound with one oxygen and one nitrogen atom will have four groups: one with only carbon and hydrogen atoms, one with these plus an oxygen, one with these plus a nitrogen, and one with these and an oxygen and a nitrogen. This step facilitates the substructure assignment by enabling the programs to start from specific heteroatom centers in the molecule and determine all possible substructures for all ions with the same heteroatom compositions.

Assignment of Substructures. Because of the high tendency for rearrangement accompanying the formation of hydrocarbon ions (2), specific substructures are assigned only to peaks with elemental compositions containing one or more heteroatoms. Given a particular heteroatom composition, the program labels their locations in the connection table description of the Starting from each identified heteroatom structures. location, a neighbor unit connected to it is added and the elemental composition comprising the units This composition is compared against the assigned composition; if it is identical (the number of hydrogen atoms is allowed to differ by ±2) the substructure is stored as a possible assignment for the composition. In addition, all the neighbor units connected to the terminals of the substructure are saved. All paths from the same heteroatom center in the molecular graph are explored to assign all possible substructures. This process is repeated starting

from all other heteroatom centers in the structure, if any, for a particular heteroatom composition. When a composition has more than one heteroatom, all possible combinations of heteroatom centers in the structure are considered by taking them one at a time in assigning substructural possibilities.

Scoring of Substructure Probabilities. This procedure often results in multiple substructure assignments for a possible elemental composition of a peak. For heteroatom-containing ions, the probability that an assignment is correct is estimated by a scoring system whose rules are summarized in Table I. rules, based on the most common types of ion fragmentations (2), compare the difference in number of hydrogen atoms between the assigned elemental composition and substructure, the type of ion (odd- or evenelectron), the type of bond cleavage, the number of bonds cleaved, and the bond environment. The two substructures with the highest score are retained as the most probable assignments to the fragment.

For hydrocarbon ions, the compositions, but not structures, were correlated; the score for each is based on a comparison of its composition and ringsplus-double-bonds (r + db) value (2) with that of the largest hydrocarbon fragment in the structure. score of full, half, or eighth credit is assigned if the r + db value of the proposed composition is less than that of the largest hydrocarbon fragment by ≤ 1.5 , ≤ 2.5 , or ≥ 2.5 , respectively. Further, the neutral lost from largest hydrocarbon fragment in forming the ion is considered; if the ratio of the r + dbvalue of the neutral to its number of carbons is 0.57-0.66, this score is halved; it is one-quarter if this ratio is >0.66. All scores are further halved if the r + db value of the fragment ion is less than Only the hydrocarbon composition of highest score is retained.

Tabulation of Results. The file for each m/z value containing the results of previous steps (relative abundance, elemental composition, substructures, and neighbor units) is read to compile the following correlations: the occurrence of a significant peak at the particular m/z value as a percentage of the total number of spectra examined; the occurrence of a particular elemental composition as a percentage of the total number of significant peaks observed at that m/z value; the occurrence of a particular substructure as a percentage of the total number of iso-

<u>Table I.</u> Pathway Probabilities for Heteroatom Ion Formation

H atom loss <u>a</u>	Ion _b type	Formed by	Score
0	OE;	Cleavage of 2 ring bonds	Ful1
0	OE;	Other	Half
0	EE ⁺	α-cleavage ^C	Full
0	EE ⁺	Other	Half
±1	OE;	Any	Full
±1	EE ⁺	Only one bond cleaved	Half
+1	EE ⁺	α -cleavage plus a second α -cleavage or cleavage of a heteroatom bond	Ful1
+1	EE ⁺	Other	Half
-2	OE [‡] , EE [‡]	Only one bond cleaved	Quarter
±2	OE ⁺ , EE ⁺	Other	Half

and Number of hydrogen atoms in the assigned composition $\frac{b}{2}OE^{\dagger}$, EE^{\dagger} : odd- and even-electron ions.

For a carbon attached to O, N, S, or P, cleavage of another bond to that carbon.

mers observed with that elemental composition; and the occurrence of a particular neighbor at a particular terminal of a substructure as a percentage of all neighbors found at that terminal. The specificity of an elemental composition or substructure assignment is the reciprocal of the number of possible assignments stored; the specificity of an entry is then the average of these individual values.

Explanatory Notes

For each m/z value the most common elemental composition assignments of singly-charged non-metastable ions are listed. For each of these the most probable substructure assignments are illustrated, and for some common substructures the common neighboring groups are In contrast to the First Edition (loc. cit.), the mechanism for fragment ion formation is now shown. The entries are ranked according to the product of their proportion and abundance values. None of the listings is exhaustive; the entries only indicate the most probable assignments. Structures in parentheses are illustrative of the preceding entry; "etc" indicates that isomeric ions are commonly formed by simi-The user must remember that there is a lar pathways. finite possibility that the correct assignment for a peak in an individual unknown spectrum is not represented in this compilation.

The number of hydrogen atoms in the listed substructure may actually differ from that of the indicated elemental composition; the computer correlation considered that the rearrangement of as many as two hydrogen atoms to or from the substructure during its formation was possible.

Proportion: The percent value in parenthesis following the nominal m/z heading indicates the proportion of reference spectra in the data base which have a peak at this nominal mass of abundance equal to or greater than 1% (Figure 1). The value on the same line in the Proportion column is the percentage of reference spectra having a peak at this mass whose abundance and "uniqueness" were sufficiently significant to be used in the correlations (those peaks selected as significant by the Probability Based Matching algorithm - see above). For the elemental composition subheadings (those followed by an exact mass value) the entry in the Proportion column indicates the percentage of the entries of this nominal mass which were determined to have this elemental

composition. For the substructure entries (non-underlined data in the Proportion column) the values are the percentage of the elemental composition entries which were assigned to the particular substructure shown. The percentage values following the colon after the substructure indicate the entries for a particular "neighbor" group (see below) adjacent to the substructure relative to the total number of neighbor entries at the designated location of that substructure. All these proportion values have been adjusted for multiple assignment possibilities (see Specificity below) so that the total of all entries (including those not listed here) should equal 100%.

Neighbors: Following the colon after each substructure are listed the most abundant neighbors in descending order of proportion; the percentage values are given only if the data were statistically significant (less accurate values are rounded to the nearest The horizontal dashes in the substructure indicate bonds; those which are incompletely substituted are the positions holding neighboring groups. symbol "(-)" indicates a free bond to an undesignated neighboring group from the immediately preceding atom not in parentheses; this symbol at the left of the substructure (or following "cyc") is a free bond to the preceeding group. The symbol "(-)2" indicates two such single bonds, not a double bond, which is indicated as "=". The neighbors for each of these positions, left to right, are listed together, separated by semicolons; the proportion of a particular pair of neighbors occurring simultaneously is indicated by neighboring groups separated by a colon, listed at the end of the neighbor data. Thus "-CH₂-CO-: CH₂ 50%, CH 25%; -O- 40%; CH₂:-O- 25%" indicates for the -CH₂-CO- substructure that 50% occur as -CH₂CH₂-CO-, 25% as -CH(-)CH₂-CO-, 40% as $-CH_2-CO-O^2$, and 25% as $-CH_2CH_2-CO-O-$.

<u>Abundance</u>: The average (weighted for Specificity, below) of the abundances of the peaks are given as a percentage value in the second column.

Specificity: A particular peak can have more than one assignment of both elemental composition and substructure identity; for example, $\underline{\text{m/z}}$ 43 in $\text{C}_3\text{H}_7\text{-CO-CH}_3$ could be C_3H_7^+ and/or $\text{C}_2\text{H}_3\text{O}^+$, or $\text{C}_2\text{H}_3\text{O}^+$ in $\text{CH}_3\text{-CO-OCH=CH}_2$ could be $\text{CH}_3\text{-CO}^+$ or $\text{CH}_2\text{-CHO}^+$. The specificity is 100% if only one assignment is made, 50% for each assignment if two are made, and so forth.

The Specificity column shows the average percentage of the assignments for the indicated entries.

High molecular weight data (+ and - signs): statistics were taken in two sets to ascertain the effect of molecular weight on the results. If the proportion or abundance values for the compounds of molecular weight above 236 were more than 25% (absolute) greater than those of the lower molecular weight set, a "+" follows the weighted average shown; if the value for the lower molecular weight set is more than 25% (absolute) greater than the higher, a "-" follows the weighted average value.

Acknowledgments. R. S. Gohlke, V. J. Caldecourt, and N. Wright made vital contributions to the origination of this book. Many people contributed to the Second Edition; particularly helpful suggestions came from K. Biemann, G. A. Junk, H. E. Dayringer, and K. S. Haraki. We especially thank In Ki Mun for ideas, programming assistance, and computer production of all Lorrene Lawrence helped develop the correlations data. the format and typed the entire book. Financial support for research that made this correlation possible was provided by the National Institutes of Health, and funds for the computer used came in part from the National Science Foundation.

The book is dedicated to Tibby McLafferty and Usha Venkataraghavan, who continue to provide invaluable support and encouragement.

Literature Cited

- 1. McLafferty, F. W., "Mass Spectral Correlations," Advances in Chemistry Series No. 40, American Chemical Society, Washington, DC (1963).
- McLafferty, F. W., "Interpretation of Mass Spectra," Third Edition, University Science Books, Mill 2. Valley, CA (1980).
- Colthup, N. B., J. Opt. Soc. Am. (1950), 40, 397. 3.
- McLafferty, F. W. and Gohlke, R. S., Anal. Chem. 4. (1959), 31, 1160.
- Stenhagen, E., Abrahamsson, S., and F. W. McLaf-5. ferty, "Registry of Mass Spectral Data," extended version on magnetic tape, Wiley, New York (1978). Hyde, E., Mathews, F. W., Thomson, L. H., and Wis-
- 6. wesser, W. J., J. Chem. Doc. (1967), 7, 200.
- Pesyna, G. M., Venkataraghavan, R., Dayringer, H. 7. E., and McLafferty, F. W., Anal. Chem. (1976), 48, 1362.

11

MASS SPECTRAL DATA

m/z, comp	Substructure, neighbor	Prop Abnd Spcf
m/z 12		
<u>C, 12.0000</u> s	mall molecules	
m/z 13		
CH, 13.0018	small molecules	
m/z 14		
<u>СН</u> 2, 14.0156	1	
N, 14.0031		
m/z 15		
<u>СН</u> 3, 15.0235	<u>С</u> СН ₃ −Y*	
m/z 16		
0, 15.9949		
<u>н</u> 2 ^N , 16.0187	,	
m/z 17		
HO, 17.0027		
<u>н</u> 3 ^N , 17.0265	5	
m/z 18		
H ₂ O, 18,0106	data not meaningful, as	water is ubiqui-

tous in inlet systems

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 19		······································	
F, 18.9984			
$\underline{\text{H}}_{3}$ 0, 19.0184			
m/z 20-23 uncommon			
m/z 24		· · · · · · · · · · · · · · · · · · ·	
\underline{C}_{2} , 24.0000 highly unsatd hc			
B_2H_2 , 24.0343			
m/z 25		·	
\underline{C}_{2} H, 25.0078 highly unsatd hc			
B_2H_3 , 25.0421			
m/z 26		 	
$\underline{C}_{2}\underline{H}_{2}$, 26.0156 ar/unsatd hc			
CN, 26.0031 NC-R, RCHN ₂			
B_2H_4 , 26.0499			
m/z 27			
$\underline{C}_{2}\underline{H}_{3}$, 27.0235 \underline{CH}_{2} = \underline{CH} - \underline{Y} *, other hc			
$\underline{\text{CH}_4\text{B}}$, 27.0406 $\underline{\text{CH}_3\text{BH-}}$, higher boron alky	ls		
B ₂ H ₅ , 27.0577			

16

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 28			
\underline{N}_2 , 28.0061 \underline{N}_2 gas is a common contamination	nt		
$\underline{C}_{2}\underline{H}_{4}$, 28.0313 hc			
$\underline{\text{CH}}_{2}\underline{\text{N}}$, 28.0187 aziridines, $(\text{CH}_{3})_{2}$ N-, other	r ami	ines	
CO, 27.9949 lactones, etc			
m/z 29 (34%)	2%	51%	
СНО, 29.0027	40	63	73
-CH ₂ O-	40	85	60
<u>С₂н₅, 29.0391</u>	17	60	75
CH ₃ N, 29.0265	15	38	75_
-CH ₂ N(-)-, -CH ₂ NH-	40	40	80
m/z 30 (15%)	5%	25%	
CH ₄ N, 30.0343	28	33	74
-CH ₂ NH-: CH ₂ 50%; C=O 30%, CH ₂ 30%	25		65
н ₂ NCн ₂ -: Сн ₂ 70%, Сн 17%	15	70	75
<u>СН₂О, 30.0105</u> СН ₃ О-, -СН ₂ О-, НОСН ₂ -	33	17	76
also NO, 29.9979 (-NO ₂ , -N(-)NO, -O-NO); 30.0216; H ₂ Si, 30.9921	H ₂ N ₂	2'	
m/z 31 (19%)	4%	29%	
	48	32	80
<u>CH₃O, 31.0184</u> HOCH ₂ -: CH 45%, CH ₂ 33%, C 13%	36	35	80
-CH ₂ O-: CH ₂ 47%, CH ₃ 42%; C=O 61%	31	33	67

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
СH ₃ O-: C=O 59%	13	28	46
CF, 30.9984	11	21	82
F-C(-) ₂ -: F, C1	63	18	90
F-ar-, $F-C(-)=$	24	32	40
HNO, 31.0057	4	25	67_
-O-N(-)-	55	28	46
<u>СН₅N, 31.0421</u>	3	18	85
CH ₃ NH-: C=O 35%	40	20	75
m/z 32 Data unreliable because oxygen is a comm	non co	ontami	inant
S, 31.9721; O ₂ , 31.9898; CH ₄ O, 32.0262			
2	4%	4%	
m/z 33 (3%) CH ₅ O, 33.0340; HS, 32.9802; CH ₂ F, 33.014			
m/z 33 (3%) CH ₅ O, 33.0340; HS, 32.9802; CH ₂ F, 33.014	10; н		
m/z 33 (3%) CH ₅ O, 33.0340; HS, 32.9802; CH ₂ F, 33.014 32.9894	10; н	2 ^P ,	99
m/z 33 (3%) CH ₅ O, 33.0340; HS, 32.9802; CH ₂ F, 33.014 32.9894 m/z 34 (2%)	10; н _.	2 ^P , 2%	
m/z 33 (3%) CH ₅ O, 33.0340; HS, 32.9802; CH ₂ F, 33.014 32.9894 m/z 34 (2%) H ₂ S, 33.9880 (can be impurity)	3% 50	2 ^P , 2%	
m/z 33 (3%) CH ₅ O, 33.0340; HS, 32.9802; CH ₂ F, 33.014 32.9894 m/z 34 (2%) H ₂ S, 33.9880 (can be impurity) m/z 35 (4%)	3% 50 2%	2 ^P , 2% 2 4%	99
m/z 33 (3%) CH ₅ O, 33.0340; HS, 32.9802; CH ₂ F, 33.014 32.9894 m/z 34 (2%) H ₂ S, 33.9880 (can be impurity) m/z 35 (4%) C1, 34.9688 C1: Y*	3% 50 2%	2 ^P , 28 2 4% 4 3	99

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 37 (12%)	2%	9%	
<u>C</u> ₃ H, 37.0078	85	8	99
m/z 38 (23%)	3%	17%	
$\underline{C_3H_2}$, 38.0156 unsatd hc	58	15	89
$C_{2}N, 38.0030$ arN, ar-N(-)-, ar-NH-	_22_	13	66
m/z 39 (50%)	4%	37%	
$\underline{C_3H_3}$, 39.0235 $HC = CCH_2$ -, ar, etc	57	38	96
C_2HN , 39.0108 arN, unsatd R-CN	20	24	75
m/z 40 (34%)	4%	19%	
$\underline{C}_{3}\underline{H}_{4}$, 40.0313 diunsatd/cyc hc	31	15	78
$C_{2}0, 39.9949$ ar(CO), R-CO-, etc	_21_	21	60
$\frac{C_2H_2N, 40.0186}{\text{amines, etc}}$ arn, imines, unsatd	17	19	58_
<u>CN</u> 2, 40.0060 arN2		20	53
m/z 41 (60%)	6%	52%	
$\underline{\mathrm{C}_{3}\mathrm{H}_{5}}$, 41.0391 CH_{2} =CHCH $_{2}$ -, other hc	32	69	87
$\frac{\text{C}_2\text{HO}, 41.0027}{\text{-C(-)}_2\text{-CO-}, \text{ar-OH}, \text{etc}}$	26	52	74_
$\underline{\text{C}}_{2}\underline{\text{H}}_{3}\underline{\text{N}}, \ 41.0265 \text{ arN}, \ \text{NC-CH}_{2}, \ -\text{CH}_{2}\text{CH}_{2}\text{N()}$),		

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
CH ₂ CH(-)NH-	_13_	38	65
$\underline{\text{CHN}}_2$, 41.0138 arN ₂ , arN-NH ₂ , etc	3_	24	52
m/z 42 (49%)	14%	28%	
<u>С₂Н₂О, 42.0105</u>	25	24	62
-CH ₂ -CO-: CH ₂ 60%, CH ₃ 15%; O 40%, CH ₂ 30%	23	32	48
CH ₃ -CO-: -O- 30%, CH ₂ 20%, -N(-)- 15%,		02	10
-NH- 12%	15	15	52
also -CH(-)-CO-, $\mathrm{CH_2CH(-)O-}$, -CH $_2\mathrm{CH_2O-}$, =CH	-CO-	
$\underline{\text{C}}_{3}\underline{\text{H}}_{6}$, $\underline{\text{42.0469}}$ $\underline{\text{CH}}_{2}$ = $\underline{\text{CH-CH}}_{2}$ -, $\underline{\text{cycC}}_{3}\underline{\text{H}}_{5}$ -, $\underline{\text{hc}}$	_22_	22	75_
$\underline{C}_{2}\underline{H}_{4}\underline{N}$, 42.0343 CH ₃ N=CH-, arn, cycN,			
aziridinyl, etc	_16_	31	60
$\underline{\text{CH}}_{2}\underline{\text{N}}_{2}$, $\underline{\text{42.0216}}$ $\underline{\text{arN}}_{2}$, $\underline{\text{H}}_{2}$ N- $\underline{\text{arN}}$, $\underline{\text{CH}}_{3}$ N=N-	5	35	56
CNO, 41.9979 -NH-CO-, -N(-)-CO-, HO-arN,			
OCN-, etc	5	28	48
N_3 , 42.0090 -NH-N=N-, -N(-)N=N-	1_	31	69_
m/z 43 (59%)	9%	72%	
C. H. O. 42, 0194	40	70	7.4
$\underline{C}_{2}\underline{H}_{3}\underline{O}$, 43.0184 $\underline{C}\underline{H}_{3}-\underline{C}O-: -O-28\%$, CH 19%, $\underline{C}\underline{H}_{2}$ 13%,	_40_		74_
-NH- 10%	35	88	60
-CH ₂ -CO-: CH ₂ 60%, CO 21%; -O- 53%,			
CH ₂ 23%	21	77	60
-CH(OH)CH ₂ -: CH ₂ 67%; CH ₂ 78%	10	72	65
-CH ₂ CH ₂ O-: CH ₂ 65%, CH ₃ 20%; CO 53%,			

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
CH ₂ 25-%	8	68	47
-CH ₂ C(-) ₂ O-, -CH(CH ₃)O-, -CH ₂ OCH ₂ -	12	75	70
C_3H_7 , 43,0547	18	79	87
<u>С₂н₅N, 43.0421</u>	7	52	60
cycN, -CH ₂ CH ₂ N(-)-, C ₂ H ₅ NH-, -CH ₂ CH(-)NH-, -CH(CH ₃)N(-)-, -CH ₂ CH ₂ NH-, -CH ₂ N(CH ₃)-	52	72	52
CHNO, 43.0057 -NH-CO-, -N(-)-CO-,	5	56	61
H ₂ N-CO-			-01
$\frac{\text{CH}_3\text{N}_2, 43.0295}{\text{-N=NCH}_3, -\text{N=NCH}_2}$ arN-NH ₂ , -N(-)N(-)CH ₂ -,	3	53	66
also HN ₃ , 43.0168; C ₂ F, 42.9984; CP, 42.	9738		
5 2			
m/z 44 (45%)	10%	33%	
m/z 44 (45%)		33% 24	 66
m/z 44 (45%) C ₂ H ₄ O, 44.0262	10%		66 58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10% 25 23	24 21	
<u>m/z 44 (45%)</u> <u>C₂H₄O, 44.0262</u> <u>CH₃-CO-: -NH- 32%, -O- 20%, N 17%</u>	10% 25	24	58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10% 25 23	24 21	58
$\begin{array}{c} \underline{\text{m/z}} \ 44 \ (45\%) \\ \\ \underline{\text{C}}_{2}\underline{\text{H}}_{4}\underline{\text{O}}, \ 44.0262 \\ \\ \text{CH}_{3}\text{-CO-:} -\text{NH-} \ 32\%, \ -\text{O-} \ 20\%, \ \text{N} \ 17\% \\ \\ \text{C}_{2}\underline{\text{H}}_{5}\underline{\text{O-}}, \ \text{HOCH}_{2}\underline{\text{CH}}_{2}\text{-}, \ -\text{CH}_{2}\underline{\text{CH}}_{2}\text{O-}, \ \text{HO-cyc}, \\ \\ \text{H-CO-CH}_{2}\text{-} \\ \\ \\ \underline{\text{C}}_{2}\underline{\text{H}}_{6}\underline{\text{N}}, \ 44.0499 \\ \\ \text{CH}_{3}\underline{\text{CH}}(\text{NH}_{2})\text{-}, \ \text{CH}_{3}\text{NHCH}_{2}\text{-}: \ \text{CH}_{2} \ 75\% \\ \end{array}$	10% 25 23 37	24 21 23	58 52
$\begin{array}{c} \text{m/z 44 (45\%)} \\ \\ \underline{\text{C}_2\text{H}_4\text{O}, 44.0262}} \\ \text{CH}_3\text{-CO-: -NH- }32\%, -\text{O- }20\%, \text{ N }17\%} \\ \text{C}_2\text{H}_5\text{O-, HOCH}_2\text{CH}_2\text{-, -CH}_2\text{CH}_2\text{O-, HO-cyc},} \\ \text{H-CO-CH}_2\text{-} \\ \\ \\ \underline{\text{C}_2\text{H}_6\text{N}, 44.0499}} \\ \text{CH}_3\text{CH(NH}_2\text{)-, CH}_3\text{NHCH}_2\text{-: CH}_2 75\%} \\ \text{-CH}_2\text{NHCH}_2\text{-: CH}_2 50\%, CH 30\%;} \end{array}$	10% 25 23 37 13	24 21 23 43	58 52 63
$\begin{array}{c} \underline{\text{m/z}} \ 44 \ (45\%) \\ \\ \underline{\text{C}}_{2}\underline{\text{H}}_{4}\underline{\text{O}}, \ 44.0262 \\ \\ \text{CH}_{3}\text{-CO-:} -\text{NH-} \ 32\%, \ -\text{O-} \ 20\%, \ \text{N} \ 17\% \\ \\ \text{C}_{2}\underline{\text{H}}_{5}\underline{\text{O-}}, \ \text{HOCH}_{2}\underline{\text{CH}}_{2}\text{-}, \ -\text{CH}_{2}\underline{\text{CH}}_{2}\text{O-}, \ \text{HO-cyc}, \\ \\ \text{H-CO-CH}_{2}\text{-} \\ \\ \\ \underline{\text{C}}_{2}\underline{\text{H}}_{6}\underline{\text{N}}, \ 44.0499 \\ \\ \text{CH}_{3}\underline{\text{CH}}(\text{NH}_{2})\text{-}, \ \text{CH}_{3}\text{NHCH}_{2}\text{-}: \ \text{CH}_{2} \ 75\% \\ \end{array}$	10% 25 23 37 13 12	24 21 23 43 88	58 52 63 75
$\begin{array}{c} \underline{\text{m/z}} \ 44 \ (45\%) \\ \\ \underline{\text{C}}_{2}\underline{\text{H}}_{4}\text{O}, \ 44.0262} \\ \text{CH}_{3}\text{-CO-:} -\text{NH-} \ 32\%, \ -\text{O-} \ 20\%, \ \text{N} \ 17\% \\ \\ \text{C}_{2}\underline{\text{H}}_{5}\text{O-}, \ \text{HOCH}_{2}\text{CH}_{2}\text{-}, \ -\text{CH}_{2}\text{CH}_{2}\text{O-}, \ \text{HO-cyc}, \\ \\ \text{H-CO-CH}_{2}\text{-} \\ \\ \underline{\text{C}}_{2}\underline{\text{H}}_{6}\underline{\text{N}}, \ 44.0499} \\ \text{CH}_{3}\text{CH}(\text{NH}_{2})\text{-}, \ \text{CH}_{3}\text{NHCH}_{2}\text{-}: \ \text{CH}_{2} \ 75\% \\ -\text{CH}_{2}\text{NHCH}_{2}\text{-}: \ \text{CH}_{2} \ 50\%, \ \text{CH} \ 30\%; \\ \\ \text{CH}_{2}\text{:} \text{CH}_{2} \ 30\% \\ \end{array}$	10% 25 23 37 13 12 7 6	24 21 23 43 88 55	58 52 63 75
$\begin{array}{c} \text{m/z } 44 \ (45\%) \\ \\ \underline{\text{C}_2\text{H}_4\text{O}, } \ 44.0262 \\ \text{CH}_3\text{-CO-: } \ -\text{NH- } 32\%, \ -\text{O- } 20\%, \ \text{N } 17\% \\ \text{C}_2\text{H}_5\text{O-, } \ \text{HOCH}_2\text{CH}_2\text{-, } \ -\text{CH}_2\text{CH}_2\text{O-, } \ \text{HO-cyc}, \\ \text{H-CO-CH}_2\text{-} \\ \\ \\ \underline{\text{C}_2\text{H}_6\text{N}, } \ 44.0499 \\ \text{CH}_3\text{CH}(\text{NH}_2)\text{-, } \ \text{CH}_3\text{NHCH}_2\text{-: } \ \text{CH}_2 \ 75\% \\ \text{-CH}_2\text{NHCH}_2\text{-: } \ \text{CH}_2 \ 50\%, \ \text{CH } 30\%; \\ \text{CH}_2\text{: CH}_2 \ 30\% \\ \text{(CH}_3)_2\text{N-: } \ -\text{CH=, } \text{ar, } \text{C=0, } -\text{S-} \end{array}$	10% 25 23 37 13 12 7 6	24 21 23 43 88 55	58 52 63 75
$\begin{array}{c} \underline{\text{m/z}} \ 44 \ (45\%) \\ \\ \underline{\text{C}}_{2}\underline{\text{H}}_{4}\text{O}, \ 44.0262} \\ \text{CH}_{3}\text{-CO-:} \ -\text{NH-} \ 32\%, \ -\text{O-} \ 20\%, \ \text{N} \ 17\% \\ \\ \text{C}_{2}\text{H}_{5}\text{O-}, \ \text{HOCH}_{2}\text{CH}_{2}\text{-}, \ -\text{CH}_{2}\text{CH}_{2}\text{O-}, \ \text{HO-cyc}, \\ \\ \text{H-CO-CH}_{2}\text{-} \\ \\ \underline{\text{C}}_{2}\underline{\text{H}}_{6}\underline{\text{N}}, \ 44.0499} \\ \text{CH}_{3}\text{CH}(\text{NH}_{2})\text{-}, \ \text{CH}_{3}\text{NHCH}_{2}\text{-}: \ \text{CH}_{2} \ 75\% \\ -\text{CH}_{2}\text{NHCH}_{2}\text{-}: \ \text{CH}_{2} \ 50\%, \ \text{CH} \ 30\%; \\ \text{CH}_{2}\text{:}\text{CH}_{2} \ 30\% \\ \text{(CH}_{3})_{2}\text{N-}: \ -\text{CH=}, \ \text{ar}, \ \text{C=O}, \ -\text{S-} \\ \text{cyc-CH}_{2}\text{N}(\text{CH}_{3})\text{-}, \ -\text{CH}_{2}\text{CH}_{2}\text{NH-}, \ -\text{CH}_{2}\text{CH}(\text{NH}_{2}) \end{array}$	10% 25 23 37 13 12 7 6	24 21 23 43 88 55 35	58 52 63 75 88 50

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
-NH- 17%, -O- 1 5%	41	25	65
H ₂ N-CO-: CH ₂ 35%, -NH- 20%, ar 15%	22	43	79
HO-arN, $H-CO-NH-$, $-N(-)-CO-$, $ON-ar$,			
ON-CH=	21	30	58
CO ₂ , 43.9898 (also from thermal decomp)	9	30	60
HO-CO-: CH 30%, ar 25%, CH ₂ 25%	42	40	60
-O-CO-: CH ₃ 55%; CH 28%, ar 20%,			
CH ₂ 20%	45	25	52
CH ₄ N ₂ , 44.0373	3	40	58
-N(CH ₃)N(-)-	25	50+	80
-N(-)N(-)CH ₂ -	17+	35	40
$CH_3N=N-$, $-N-CH=N-$, $H_2N-NHCH_2-$, H_2N-arN	,		
$H_2NC(-)=N-$, $cyc-CH_2N(NH_2)-$	30	45-	60
also C_2HF , 44.0062; N_2O , 44.0009; CS , 43	3.9724	1	
2			
also C ₂ HF, 44.0062; N ₂ O, 44.0009; CS, 43 m/z 45 (45%)	9%	30%	
m/z 45 (45%)			66
2	9%	30%	66 75
m/z 45 (45%) C ₂ H ₅ O, 45.0340	9%	30% 36	
m/z 45 (45%) C ₂ H ₅ O, 45.0340 CH ₃ OCH ₂ -: CH 47%, CH ₂ 28% CH ₃ CHOH-: CH ₂ 62%, CH 28%, C=O 6% -CH ₂ OCH ₂ -: CH ₂ 76%, CH ₃ 15%;	9% 22 15	30% 36 59	75
m/z 45 (45%) C ₂ H ₅ O, 45.0340 CH ₃ OCH ₂ -: CH 47%, CH ₂ 28% CH ₃ CHOH-: CH ₂ 62%, CH 28%, C=O 6% -CH ₂ OCH ₂ -: CH ₂ 76%, CH ₃ 15%; CH ₂ : CH ₂ 55%	9% 22 15 8	30% 36 59	75
$\begin{array}{c} \underline{\text{m/z}} \ 45 \ (45\%) \\ \underline{\text{C}}_{2}\underline{\text{H}}_{5}\underline{\text{O}}, \ 45.0340 \\ \underline{\text{CH}}_{3}\underline{\text{OCH}}_{2}\text{:} \ \ \text{CH} \ 47\%, \ \text{CH}_{2} \ 28\% \\ \underline{\text{CH}}_{3}\underline{\text{CHOH}}\text{:} \ \ \text{CH}_{2} \ 62\%, \ \text{CH} \ 28\%, \ \text{C=O} \ 6\% \\ \underline{\text{-CH}}_{2}\underline{\text{OCH}}_{2}\text{:} \ \ \text{CH}_{2} \ 76\%, \ \text{CH}_{3} \ 15\%; \\ \underline{\text{CH}}_{2}\text{:} \underline{\text{CH}}_{2} \ 55\% \\ \underline{\text{-CH}}(\underline{\text{CH}}_{3})\underline{\text{O:}} \ \ \underline{\text{CH}}_{3} \ 50\%, \ -\underline{\text{O}} \ 33\%, \ \underline{\text{CH}}_{2} \ 42\% \\ \end{array}$	9% 22 15 8 12	30% 36 59 70 39	75 70 56
$\begin{array}{c} \underline{\text{m/z}} \ 45 \ (45\%) \\ \\ \underline{\text{C}_2\text{H}_5\text{O}}, \ 45.0340 \\ \\ \text{CH}_3\text{OCH}_2\text{-:} \text{CH} \ 47\%, \ \text{CH}_2 \ 28\% \\ \\ \text{CH}_3\text{CHOH-:} \text{CH}_2 \ 62\%, \ \text{CH} \ 28\%, \ \text{C=O} \ 6\% \\ \\ -\text{CH}_2\text{OCH}_2\text{-:} \text{CH}_2 \ 76\%, \ \text{CH}_3 \ 15\%; \\ \\ \text{CH}_2\text{:} \text{CH}_2 \ 55\% \\ \\ -\text{CH}(\text{CH}_3)\text{O-:} \text{CH}_3 \ 50\%, \ -\text{O-} \ 33\%, \ \text{CH}_2 \ 42\% \\ \\ \text{C=O} \ 38\% \end{array}$	9% 22 15 8	30% 36 59 70	75 70
$\begin{array}{c} \underline{\text{m/z}} \ 45 \ (45\%) \\ \underline{\text{C}}_{2}\underline{\text{H}}_{5}\underline{\text{O}}, \ 45.0340 \\ \underline{\text{CH}}_{3}\underline{\text{OCH}}_{2}\text{:} \ \ \text{CH} \ 47\%, \ \text{CH}_{2} \ 28\% \\ \underline{\text{CH}}_{3}\underline{\text{CHOH}}\text{:} \ \ \text{CH}_{2} \ 62\%, \ \text{CH} \ 28\%, \ \text{C=O} \ 6\% \\ \underline{\text{-CH}}_{2}\underline{\text{OCH}}_{2}\text{:} \ \ \text{CH}_{2} \ 76\%, \ \text{CH}_{3} \ 15\%; \\ \underline{\text{CH}}_{2}\text{:} \underline{\text{CH}}_{2} \ 55\% \\ \underline{\text{-CH}}(\underline{\text{CH}}_{3})\underline{\text{O:}} \ \ \underline{\text{CH}}_{3} \ 50\%, \ -\underline{\text{O}} \ 33\%, \ \underline{\text{CH}}_{2} \ 42\% \\ \underline{\text{C=O}} \ 38\% \\ \underline{\text{-CH}}_{2}\underline{\text{CHOH}}, \ \underline{\text{HOCH}}_{2}\underline{\text{CH}}_{2}, \ \underline{\text{HOC}}(-)_{2}\underline{\text{CH}}_{2}, \end{array}$	9% 22 15 8 12	30% 36 59 70 39 43	75 70 56 76
$\begin{array}{c} \underline{\text{m/z}} \ 45 \ (45\%) \\ \\ \underline{\text{C}_2\text{H}_5\text{O}}, \ 45.0340 \\ \\ \text{CH}_3\text{OCH}_2\text{-:} \text{CH} \ 47\%, \ \text{CH}_2 \ 28\% \\ \\ \text{CH}_3\text{CHOH-:} \text{CH}_2 \ 62\%, \ \text{CH} \ 28\%, \ \text{C=O} \ 6\% \\ \\ -\text{CH}_2\text{OCH}_2\text{-:} \text{CH}_2 \ 76\%, \ \text{CH}_3 \ 15\%; \\ \\ \text{CH}_2\text{:} \text{CH}_2 \ 55\% \\ \\ -\text{CH}(\text{CH}_3)\text{O-:} \text{CH}_3 \ 50\%, \ -\text{O-} \ 33\%, \ \text{CH}_2 \ 42\% \\ \\ \text{C=O} \ 38\% \\ \\ -\text{CH}_2\text{CHOH-}, \ \text{HOCH}_2\text{CH}_2\text{-}, \ \text{HOC}()_2\text{CH}_2\text{-}, \\ \\ \text{HOCH}_2\text{CH}() \end{array}$	9% 22 15 8 12 5 18	30% 36 59 70 39 43	75 70 56 76
$\begin{array}{c} \underline{\text{m/z}} \ 45 \ (45\%) \\ \underline{\text{C}}_{2}\underline{\text{H}}_{5}\underline{\text{O}}, \ 45.0340 \\ \underline{\text{CH}}_{3}\underline{\text{OCH}}_{2}\text{:} \ \ \text{CH} \ 47\%, \ \text{CH}_{2} \ 28\% \\ \underline{\text{CH}}_{3}\underline{\text{CHOH}}\text{:} \ \ \text{CH}_{2} \ 62\%, \ \text{CH} \ 28\%, \ \text{C=O} \ 6\% \\ \underline{\text{-CH}}_{2}\underline{\text{OCH}}_{2}\text{:} \ \ \text{CH}_{2} \ 76\%, \ \text{CH}_{3} \ 15\%; \\ \underline{\text{CH}}_{2}\text{:} \underline{\text{CH}}_{2} \ 55\% \\ \underline{\text{-CH}}(\underline{\text{CH}}_{3})\underline{\text{O:}} \ \ \underline{\text{CH}}_{3} \ 50\%, \ -\underline{\text{O}} \ 33\%, \ \underline{\text{CH}}_{2} \ 42\% \\ \underline{\text{C=O}} \ 38\% \\ \underline{\text{-CH}}_{2}\underline{\text{CHOH}}, \ \underline{\text{HOCH}}_{2}\underline{\text{CH}}_{2}, \ \underline{\text{HOC}}(-)_{2}\underline{\text{CH}}_{2}, \end{array}$	9% 22 15 8 12	30% 36 59 70 39 43	75 70 56 76
$\begin{array}{c} \underline{\text{m/z}} \ 45 \ (45\%) \\ \\ \underline{\text{C}_2\text{H}_5\text{O}}, \ 45.0340 \\ \\ \text{CH}_3\text{OCH}_2\text{-:} \text{CH} \ 47\%, \ \text{CH}_2 \ 28\% \\ \\ \text{CH}_3\text{CHOH-:} \text{CH}_2 \ 62\%, \ \text{CH} \ 28\%, \ \text{C=O} \ 6\% \\ \\ -\text{CH}_2\text{OCH}_2\text{-:} \text{CH}_2 \ 76\%, \ \text{CH}_3 \ 15\%; \\ \\ \text{CH}_2\text{:} \text{CH}_2 \ 55\% \\ \\ -\text{CH}(\text{CH}_3)\text{O-:} \text{CH}_3 \ 50\%, \ -\text{O-} \ 33\%, \ \text{CH}_2 \ 42\% \\ \\ \text{C=O} \ 38\% \\ \\ -\text{CH}_2\text{CHOH-}, \ \text{HOCH}_2\text{CH}_2\text{-}, \ \text{HOC}()_2\text{CH}_2\text{-}, \\ \\ \text{HOCH}_2\text{CH}() \end{array}$	9% 22 15 8 12 5 18	30% 36 59 70 39 43	75 70 56 76
$\begin{array}{l} \underline{\text{m/z}} \ 45 \ (45\%) \\ \underline{\text{C}}_{2}\underline{\text{H}}_{5}\underline{\text{O}}, \ 45.0340 \\ \underline{\text{CH}}_{3}\text{OCH}_{2}\text{:} \ \text{CH} \ 47\%, \ \text{CH}_{2} \ 28\% \\ \underline{\text{CH}}_{3}\text{CHoH}\text{:} \ \underline{\text{CH}}_{2} \ 62\%, \ \text{CH} \ 28\%, \ \text{C=O} \ 6\% \\ -\underline{\text{CH}}_{2}\text{OCH}_{2}\text{:} \ \underline{\text{CH}}_{2} \ 76\%, \ \underline{\text{CH}}_{3} \ 15\%; \\ \underline{\text{CH}}_{2}\text{:}\underline{\text{CH}}_{2} \ 55\% \\ -\underline{\text{CH}}(\underline{\text{CH}}_{3})\text{O-:} \ \underline{\text{CH}}_{3} \ 50\%, \ -\text{O-} \ 33\%, \ \underline{\text{CH}}_{2} \ 42\% \\ \underline{\text{C=O}} \ 38\% \\ -\underline{\text{CH}}_{2}\text{CHoH-}, \ \underline{\text{HOCH}}_{2}\text{CH}_{2}, \ \underline{\text{HOC}}()_{2}\text{CH}_{2}, \\ \underline{\text{HOCH}}_{2}\text{CH}() \\ \underline{\text{CH}}_{3}\text{CH}_{2}\text{O}, \ -\underline{\text{CH}}_{2}\text{CH}_{2}\text{O}, \ \underline{\text{CH}}_{3}\text{CH}() \underline{\text{O-}} \end{array}$	9% 22 15 8 12 5 18 16	30% 36 59 70 39 43 30 25	75 70 56 76 63 43

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
HOOC-: CH ₂ 50%, CH 20%, ar 17%, C 8%	29-	33	68
-OC(-) ₂ O-, -OCH ₂ O-, -OCH(-)O-	10	30	55
CHS, 44.9799	7	24	86
arS	56	19	87
-SCH ₂ -: CH ₂ 45%, CH 25%; CH ₂ 55%,			
CH 20%	23	36	52
ar-S-	8	19	45
$\underline{C_2H_7N, 45.0578}$ ($\underline{C_2H_6N}^+$ usually larger)	4	18	81_
$(CH_3)_2$ N-: CH_2 30%, C=O 25%, -C= 15%	53	20	85
$\mathrm{H_2NCH_2CH_2^-}$: $\mathrm{CH_2}$ 70%, NH 5%, CH 5%	13	18	76
$\mathrm{H}_{2}\mathrm{NCH}(\mathrm{CH}_{3})$ -, $\mathrm{-CH}(\mathrm{NH}_{2})\mathrm{CH}_{2}$ -, $\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{NH}$ -	25	13	85
<u>СН3</u> NO, 45.0215 Н2N-CO-, -NH-CO-, ONCH-	3	22	63
<u>С</u> 2H2F, 45.0140 CHF=CH-, CH3CF(-)-,			
-CF=CHF-	1	21	72
<u>CH₅N₂, 45.0452</u>	1_	21	65
m/z 46 (12%)	7%	9%	
$\underline{\text{NO}}_2$, 45.9928 nitrates, ar- $\underline{\text{NO}}_2$, R- $\underline{\text{ONO}}$	6	34	94
<u>CH</u> 202, 46.0054	_18_	5	82
$\underline{C}_{2}\underline{H}_{6}\underline{O}$, 46.0418	16	7	79
$\underline{\text{CH}}_{2}\underline{\text{S}}, \underline{\text{45.9880}}$ -CH $_{2}$ S-, etc	7	10	75
NS, 45.9754 S=N-	1	27	78

m/z, comp Substructure, neighbor	<u>Prop</u>	Abnd	Spcf
m/z 47 (13%)	8%	10%	
<u>СН₃S, 46.9959</u> нSCH ₂ -, -CH ₂ S-, CH ₃ S-	12	9	82
		11	
also CC1, 46.9688; C_2H_7O , 47.0496 (CH $_3O-Y$) alcohols/ethers); C_2H_4F , 47.0297 (CH $_3CH_4O-Y$) 46.9687; CH_4P , 47.0051; COF , 46.9933 (F	F-);	РО,	
47.9749		,,	-,
m/z 48 (4%)	6%	3%	
CH ₄ S, 48.0037	6	8	80
СН ₃ S-: СН ₂ 50%, СН 20%, С=О 8%	40	20	73
-CH ₂ S-: CH ₂ 35%, CH 12%, CH ₂ 40%, CH 12%	35	5	70
CHC1, 47.9766	9	3	89
$\underline{\text{H}}_{2}\underline{\text{NO}}_{2}, \underline{\text{48.0084}} \text{ -ONO, -NO}_{2}$	4	3	95
H ₂ NS, 47.9910	1_	16	70
also CH_4O_2 , 48.0211; OS, 47.9673; HOP, 47	.976	5	
m/z 49 (9%)	5%	6%	
<u>С</u> 4 <u>н, 49.0078</u>	61	5	98_
<u>CH₂Cl, 48.9844</u>	12	12	85
${ m C1CH}_2{ m -:}$ ${ m CH}_2$ 35%, ${ m CH}$ 30%, ${ m C=O}$ 10%	45	16	67
C1C(-) ₂ -	20+		84
C1CH(-)-: C1 25%, CH ₃ 20%, CH ₂ 20%	17	5	80
HOS, 48.9751 O=S(-)-: CH ₂ 35%, O 35%	1_	3	99

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\underline{\text{H}}_{2}\underline{\text{OP}}, 48.9843 \text{ O=P(-)}_{2}\text{-: CH}_{3} 40\%, \text{ O } 15\%,$		10	00
S 15%	1		99
also ${\rm H_2FSi}$, 48.9809; NCl, 48.9718; ${\rm CH_2OF}$,	49.0	089	
m/z 50 (35%)	5%	17%	
C_4H_2 , 50.0156 ar	63	16	95
<u>C₃N, 50.0030</u> arN	7	17_	63
$\frac{\text{CF}}{2}$, 49.9968 -CF ₂ - etc	5	13	89
<u>CH₃C1, 49.9923</u>	11	47	78
C1CH ₂ -: C=O 45%, -C=C- 45%	70-	57	75
m/z 51 (48%)	11%	20%	
C_4H_3 , 51.0235 ar	45	18	89
<u>C₃HN, 51.0108</u> arn, ar-N(-)-	21	21	68
CHF ₂ , 51.0046	2	36	88
CHF ₂ -: CX ₂ 35%, C=O 30%	25	80	82
-CF ₂ -	50	23	78
also FS, 50.9708; HFP, 50.9800			
m/z 52 (35%)	5%	19%	
C_3H_2N , 52.0186 arN, ar-NH ₂	20	15	51
$C_{3}0$, 51.9949 ar-CO-, ar(C=O), ar-O-, etc	19	18	_63_
$\underline{C_4}\underline{H_4}$, 52.0313 ar, unsatd hc	19	13	69
<u>C₂N₂, 52.0060</u> arN ₂	11_	20	51_

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf		
m/z 53 (49%)	8%	20%			
$\underline{C_4H_5}$, 53.0391 polyunsatd hc	31	18	88		
$C_{3}HO, 53.0027$ ar(C=0), ar0, ar-0-,					
cyc-CO-, cyc-O-	22	21	67		
$\underline{C_{3}H_{3}N}$, 53.0265 arn, ar-NH ₂ , cycN, etc	11	18	58		
$\underline{\text{C}}_{2}\underline{\text{HN}}_{2}$, 53.0138 arN ₂ , cycN ₂ , etc	4	18	48		
m/z 54 (34%)	5%	24%			
<u>С₄н₆, 54.0469</u>	34_	25	81		
<u>С₃н₂О, 54.0105</u> ar(CO), R-CO-, etc	20	23	60		
$\underline{C_{3}H_{4}N, 54.0343}$ NC-CH ₂ CH ₂ -, ar(NH), imines	:				
(-CH ₂ CH ₂ C(=NH)-)		24	51		
$\underline{C}_{2}\underline{H}_{2}\underline{N}_{2}$, 54.0216 arN ₂ , etc		18	46_		
also C ₂ NO, 53.9979 (arNO); CN ₃ , 54.0090 (arN ₃)					
m/z 55 (55%)	10%	46%			
$\underline{C_4}\underline{H_7}$, 55.0547 $\underline{H_2}C=C(C\underline{H_3})C\underline{H_2}$ -,					
CH ₃ CH=CHCH ₂ -, other hc	34	55	88		
<u>С₃н₃0, 55.0184</u>	_29_	48	74		
сус-СH ₂ CH ₂ -CO-: CH ₂ 50%, CH 15%;					
CH ₂ 40%, -0- 30%	38 6	56 53	72 68		
CH_2 =CH-CO-, -CH=CH-CO- also -CH=CHCH ₂ O-, HOCH ₂ C=C-, ar-OCH ₃ , ϵ	-	<i>3</i> 3	00		
$\underline{C}_{3}\underline{H}_{5}\underline{N}$, 55.0421 substd/cyc amines,					

27

m/z comp Substructure reighbor	Dron	Ahnd	Snaf
MC-CH ₂ CH ₂ -, CN-CH ₂ CH ₂ -, arN	8	Abnd 31	61
$\underline{\text{C}}_{2}\underline{\text{HNO}}, \underline{55.0057} \text{ -CH}_{2}\text{-CO-N(-)-}, \\ -\underline{\text{CH}}_{2}\text{N(-)-CO-}, \underline{\text{OCN-CH}}_{2}, \underline{\text{-NHCH(-)-CO-}},$	2	90	45
etc	3	28	45_
$\frac{\text{C}_2\text{H}_3\text{N}_2, 55.0295}{\text{cyc/substd diamines}}$ arN-NHCH $_3$,	2	26	52
also CHN ₃ , 55.0168 (arN ₃)			
m/z 56 (42%)	11%	28%	
$\frac{\text{C}_4\text{H}_8, \ 56.0626}{\text{H}-\text{R}-\text{CH}_2\text{C}(\text{CH}_3)=\text{CH}_2 \ \text{etc}, \ \text{hc}} \text{H-C}_4\text{H}_8\text{-R-Y*},$	30	31	78
$\frac{\text{C}_3\text{H}_4\text{O}, 56.0262}{\text{etc}}$ substd/cyc ketones/ethers	24	26	62
$\frac{\text{C}_3\text{H}_6\text{N}, 56.0499}{(\text{cyc-CH}_2\text{CH}_2\text{CH}(\text{NH}_2)-)}$	_11_	29	57
$\frac{\text{C}_2\text{H}_2\text{NO}, 56.0135}{(-\text{N(CH}_3)-\text{CO}-), \text{OCN-CH}_2-, \text{ar-NO, etc}}$	6	27_	53
2			
$\underline{\text{C}}_{2}\underline{\text{O}}_{2}$, 55.9898 -CH ₂ O-CO-, -CH ₂ -CO-O-, -CO-CO-, etc	4_	24	42_
also $C_2H_4N_2$, 56.0373 (arN ₂ , $C_2H_5N(-)N(-)$ 56.0009; CH_2N_3 , 56.0246 (arN ₃)	-, et	c); Cl	N ₂ O,
m/z 57 (48%)	11%	43%	
<u>С₃Н₅О, 57.0340</u>	27	40_	64
-3-5 -CH ₂ CH ₂ OCH ₂ -: CH ₂ 68%, OH 23%; CH ₂ 72% CH 18% -CH ₂ CH ₂ -CO-: CH ₂ 35%, -O- 20%; CH ₂ 30%	, 8	68	85
200, 000, 000, 000,	,		

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf		
-0- 20%	13	35	50		
С ₂ H ₅ -CO-: CH ₂ 33%, -O- 21%	7	76	57		
-CH ₂ CH ₂ CH(OH)- (cycloalkanols),					
-CH(CH ₂ OH)CH ₂ -, cycO	10	60	80		
-(CH ₂) ₃ O-, CH ₃ CH(-)-CO-	13	25	50		
$\underline{C_4}\underline{H_9}, 57.0704$	24	_55_	85		
<u>С₂но₂, 56.9976</u>	8	36	53		
-CH ₂ O-CO-: CH ₂ 35%, CH ₃ 27%; CH 30%	38	33	50		
$-\text{CH}_2\text{-CO-O}: \text{ CH}_2 45\%, \text{ CH}_3 18\%; \text{ CH}_3 47\%$	27	35	48		
-CO-CO-	6	50	60		
$-C(-)_2O-CO-$, cyc-CH(OH)-CO-,					
$-C(-)_2$ -CO-O-, cyc-CH(-COOH)-	10	65	45		
$\underline{C_3H_7N}$, 57.0577 -(CH ₂) ₃ N(-)-, -CH ₂ CH ₂ N(CH ₃)-, CH ₃ N=CHCH ₂ -, -(CH ₂) ₃ NH-	-,				
$-CH_2CH_2N(-)CH_2-, -C(CH_3)_2N(-)-$	8	27	60		
2 2 1 2 1 3 2 1 1					
$\frac{\text{C}_2\text{H}_3\text{NO}, 57.0214}{\text{NO}_{1}}$	5	23	55		
also $C_2H_5N_2$, 57.0451; CHN_2O , 57.0087; $CH_5C_2H_2P$, 56.9894	3 ^N 3, 5	57.032	25;		
m/z 58 (34%)	6%	32%			
$\underline{C_{3}H_{8}N, 58.0656}$	_16_	57	<u>74</u>		
$(\mathrm{CH_3})_2\mathrm{NCH}_2$ -: $\mathrm{CH_2}$ 65%, CH 20%	31	95	86		
$-CH_2N(C_2H_5)-: CH_3 50\%; C=0 60\%$	8	40	73		
cyc-CH ₂ N(CH ₃)CH ₂ -: CH ₂ :CH ₂ 50%	6	63+	70		
other cycN	12	38	55		
$C_{2}H_{5}NHCH_{2}-$, $C_{2}H_{5}CH(NH_{2})-$, $(CH_{3})_{2}C(NH_{2})-$,					
CH ₃ NHCH(CH ₃)-	7	80	70		
<u>С₃н₆0, 58.0418</u>	25	28	68		

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
CH ₃ -CO-CH ₂ -: CH ₂ 55%, C=O 25%, CH 10%	10	47+	75
-CH ₂ -CO-CH ₂ -	6	55	94
HO-cyc (cycloalkanols)	12	30	58
CH ₃ OCH ₂ CH ₂ -, HO(CH ₂) ₃ -, -CH ₂ CH ₂ -CO-,			
C ₃ H ₇ O-	11	35	55
$\underline{\text{C}}_{2}\underline{\text{H}}_{2}\underline{\text{O}}_{2}$, 58.0054 $\underline{\text{CH}}_{3}$ O-CO-, -CH $_{2}$ -CO-O-	9	23	55
<u>С</u> 2H ₄ NO, 58.0292 СН ₃ NH-СО-, -N(СН ₃)-СО-	7	23	62
CW N O 50 0165 O W WO W			
<u>CH₂N₂O, 58.0165</u> -O-arN ₂ , HO-arN ₂ ,	0	25	61
-NH-CO-N(-)-			61
also C ₂ H ₂ S, 57.9880; C ₂ H ₆ N ₂ , 58.0529; CNC	$^{0}2^{,}$	1.992	o;
CNS, 57.9754			
m/z 59 (31%)	13%	23%	
<u>С₂н₃О₂, 59.0133</u>	27	22	77
CH ₃ O-CO-: CH ₂ 50%, CH 20%, ar 9%	<u>27</u> 60	22 23	77 75
CH ₃ O-CO-: CH ₂ 50%, CH 20%, ar 9% -CO-OCH ₂ -: CH ₂ 41%, CH 24%, ar 13%;	60	23	75
CH ₃ O-CO-: CH ₂ 50%, CH 20%, ar 9% -CO-OCH ₂ -: CH ₂ 41%, CH 24%, ar 13%; CH ₃ 40%, CH ₂ 35%, CH 15%	60 9	23 17	75 60
CH ₃ O-CO-: CH ₂ 50%, CH 20%, ar 9% -CO-OCH ₂ -: CH ₂ 41%, CH 24%, ar 13%;	60	23	75
CH ₃ O-CO-: CH ₂ 50%, CH 20%, ar 9% -CO-OCH ₂ -: CH ₂ 41%, CH 24%, ar 13%; CH ₃ 40%, CH ₂ 35%, CH 15%	60 9	23 17	75 60
CH ₃ O-CO-: CH ₂ 50%, CH 20%, ar 9% -CO-OCH ₂ -: CH ₂ 41%, CH 24%, ar 13%; CH ₃ 40%, CH ₂ 35%, CH 15% -CH(OH)CH ₂ O-: CH ₃ 70%; CH ₂ 50%, ar 25%	60 9 2	23 17 38	75 60 65
CH ₃ O-CO-: CH ₂ 50%, CH 20%, ar 9% -CO-OCH ₂ -: CH ₂ 41%, CH 24%, ar 13%; CH ₃ 40%, CH ₂ 35%, CH 15% -CH(OH)CH ₂ O-: CH ₃ 70%; CH ₂ 50%, ar 25% C ₃ H ₇ O, 59.0496 -C(CH ₃) ₂ O-	60 9 2	23 17 38 28	75 60 65 70
$\begin{array}{c} \text{CH}_3\text{O-CO-: CH}_2 \ 50\%, \ \text{CH 20\%, ar 9\%} \\ -\text{CO-OCH}_2\text{-: CH}_2 \ 41\%, \ \text{CH 24\%, ar 13\%;} \\ \text{CH}_3 \ 40\%, \ \text{CH}_2 \ 35\%, \ \text{CH 15\%} \\ -\text{CH(OH)CH}_2\text{O-: CH}_3 \ 70\%; \ \text{CH}_2 \ 50\%, \ \text{ar 25\%} \\ \\ \underline{\text{C}_3\text{H}_7\text{O}, \ 59.0496} \end{array}$	60 9 2 16 8	23 17 38 28 45	75 60 65 70 60
$\begin{array}{c} \text{CH}_3\text{O-CO-: CH}_2 \ 50\%, \ \text{CH 20\%, ar 9\%} \\ -\text{CO-OCH}_2\text{-: CH}_2 \ 41\%, \ \text{CH 24\%, ar 13\%;} \\ \text{CH}_3 \ 40\%, \ \text{CH}_2 \ 35\%, \ \text{CH 15\%} \\ -\text{CH(OH)CH}_2\text{O-: CH}_3 \ 70\%; \ \text{CH}_2 \ 50\%, \ \text{ar 25\%} \\ \\ \hline \frac{\text{C}_3\text{H}_7\text{O}, \ 59.0496}{\text{-C(CH}_3)_2\text{O-}} \\ \text{C}_2\text{H}_5\text{OCH}_2\text{-: CH}_2 \ 30\%, \ \text{C=O 25\%, CH 25\%} \end{array}$	60 9 2 16 8 5	23 17 38 28 45 45	75 60 65 70 60 55
$\begin{array}{c} \text{CH}_3\text{O-CO-: CH}_2 \ 50\%, \ \text{CH 20\%, ar 9\%} \\ -\text{CO-OCH}_2\text{-: CH}_2 \ 41\%, \ \text{CH 24\%, ar 13\%;} \\ \text{CH}_3 \ 40\%, \ \text{CH}_2 \ 35\%, \ \text{CH 15\%} \\ -\text{CH(OH)CH}_2\text{O-: CH}_3 \ 70\%; \ \text{CH}_2 \ 50\%, \ \text{ar 25\%} \\ \\ \frac{\text{C}_3\text{H}_7\text{O, 59.0496}}{\text{-C(CH}_3)_2\text{O-}} \\ \text{C}_2\text{H}_5\text{OCH}_2\text{-: CH}_2 \ 30\%, \ \text{C=O 25\%, CH 25\%} \\ \text{C}_2\text{H}_5\text{CH(OH)-: CH}_2 \ 60\%, \ \text{CH 15\%} \end{array}$	60 9 2 16 8 5 4	23 17 38 28 45 45 75	75 60 65 70 60 55 65
$\begin{array}{c} \text{CH}_3\text{O-CO-: CH}_2 \ 50\%, \ \text{CH 20\%, ar 9\%} \\ -\text{CO-OCH}_2\text{-: CH}_2 \ 41\%, \ \text{CH 24\%, ar 13\%;} \\ \text{CH}_3 \ 40\%, \ \text{CH}_2 \ 35\%, \ \text{CH 15\%} \\ -\text{CH(OH)CH}_2\text{O-: CH}_3 \ 70\%; \ \text{CH}_2 \ 50\%, \ \text{ar 25\%} \\ \\ \hline \frac{\text{C}_3\text{H}_7\text{O}, \ 59.0496}{\text{-C(CH}_3)_2\text{O-}} \\ \text{C}_2\text{H}_5\text{OCH}_2\text{-: CH}_2 \ 30\%, \ \text{C=O 25\%, CH 25\%} \\ \text{C}_2\text{H}_5\text{CH(OH)-: CH}_2 \ 60\%, \ \text{CH 15\%} \\ \text{(CH}_3)_2\text{C(OH)-: CH}_2 \ 55\%, \ \text{CH 20\%} \\ \end{array}$	60 9 2 16 8 5 4	23 17 38 28 45 45 75	75 60 65 70 60 55 65
$\begin{array}{c} {\rm CH_3O-CO-:\ CH_2\ 50\%,\ CH\ 20\%,\ ar\ 9\%} \\ -{\rm CO-OCH_2-:\ CH_2\ 41\%,\ CH\ 24\%,\ ar\ 13\%;} \\ -{\rm CH_3\ 40\%,\ CH_2\ 35\%,\ CH\ 15\%} \\ -{\rm CH(OH)CH_2O-:\ CH_3\ 70\%;\ CH_2\ 50\%,\ ar\ 25\%} \\ \\ \frac{{\rm C_3H_7O,\ 59.0496}}{-{\rm C(CH_3)_2O-}} \\ -{\rm C_2H_5OCH_2-:\ CH_2\ 30\%,\ C=O\ 25\%,\ CH\ 25\%} \\ {\rm C_2H_5CH(OH)-:\ CH_2\ 60\%,\ CH\ 15\%} \\ {\rm (CH_3)_2C(OH)-:\ CH_2\ 55\%,\ CH\ 20\%} \\ -{\rm CH_2CH_2OCH_2-,\ -CH_2CH_2CH_2O-,\ -CH(CH_3)OCH_2-} \end{array}$	60 9 2 16 8 5 4 4	23 17 38 28 45 45 75 70	75 60 65 70 60 55 65 85
$\begin{array}{c} \text{CH}_3\text{O-CO-: CH}_2 \ 50\%, \ \text{CH} \ 20\%, \ \text{ar} \ 9\% \\ -\text{CO-OCH}_2\text{-: CH}_2 \ 41\%, \ \text{CH} \ 24\%, \ \text{ar} \ 13\%; \\ \text{CH}_3 \ 40\%, \ \text{CH}_2 \ 35\%, \ \text{CH} \ 15\% \\ -\text{CH}(\text{OH})\text{CH}_2\text{O-: CH}_3 \ 70\%; \ \text{CH}_2 \ 50\%, \ \text{ar} \ 25\% \\ \\ \hline \frac{\text{C}_3\text{H}_7\text{O}, \ 59.0496}{\text{-C}(\text{CH}_3)_2\text{O-}} \\ \text{C}_2\text{H}_5\text{OCH}_2\text{-: CH}_2 \ 30\%, \ \text{C=O} \ 25\%, \ \text{CH} \ 25\% \\ \text{C}_2\text{H}_5\text{CH}(\text{OH})\text{-: CH}_2 \ 60\%, \ \text{CH} \ 15\% \\ \text{(CH}_3)_2\text{C}(\text{OH})\text{-: CH}_2 \ 55\%, \ \text{CH} \ 20\% \\ -\text{CH}_2\text{CH}_2\text{OCH}_2\text{-, -CH}_2\text{CH}_2\text{CH}_2\text{O-, -CH}(\text{CH}_3)\text{OCH}_2\text{-}} \\ \hline \underline{\text{C}_2\text{H}_5\text{NO}, \ 59.0370} \\ \hline \end{array}$	60 9 2 16 8 5 4 4	23 17 38 28 45 45 75 70	75 60 65 70 60 55 65 85
$\begin{array}{c} {\rm CH_3O-CO-:\ CH_2\ 50\%,\ CH\ 20\%,\ ar\ 9\%} \\ -{\rm CO-OCH_2-:\ CH_2\ 41\%,\ CH\ 24\%,\ ar\ 13\%;} \\ -{\rm CH_3\ 40\%,\ CH_2\ 35\%,\ CH\ 15\%} \\ -{\rm CH(OH)CH_2O-:\ CH_3\ 70\%;\ CH_2\ 50\%,\ ar\ 25\%} \\ \\ \frac{{\rm C_3H_7O,\ 59.0496}}{-{\rm C(CH_3)_2O-}} \\ -{\rm C_2H_5OCH_2-:\ CH_2\ 30\%,\ C=O\ 25\%,\ CH\ 25\%} \\ {\rm C_2H_5CH(OH)-:\ CH_2\ 60\%,\ CH\ 15\%} \\ {\rm (CH_3)_2C(OH)-:\ CH_2\ 55\%,\ CH\ 20\%} \\ -{\rm CH_2CH_2OCH_2-,\ -CH_2CH_2CH_2O-,\ -CH(CH_3)OCH_2-} \end{array}$	60 9 2 16 8 5 4 4 15	23 17 38 28 45 45 75 70 20 24	75 60 65 70 60 55 65 85 55

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
HO-N=CHCH ₂ -	2	90	99
cyc-C(=N-OH)-CH ₂ -	4	25	99
cyc-CH(NH ₂)-CH(OH)-	3	50	99
$\operatorname{cyc-N}(\operatorname{CH}_3)\operatorname{-CO-}, \operatorname{CH}_3\operatorname{O-N=CH-}, \operatorname{-CH}_2\operatorname{NH-CO-}$	17	10	75
<u>С₂н₃s, 58.9959</u>	3	20	75
cyc-S-CH(CH ₃)-: C; -O-, S	23+	42+	90
-СН(СН ₃)S-	15	11	80
-CH=CH-S-	4	23-	65
$-\text{CH}_2\text{CH}_2\text{S-}, -\text{CH}_2\text{SCH}_2\text{-}, \text{CH}_3\text{SCH}(\text{-})\text{-}$	20	12	80
$C_{3}H_{9}N$, 59.0734 ($C_{3}H_{8}N$ usually larger)	3	7	77_
н ₂ NCH ₂ CH ₂ CH ₂ -: СН ₂ 80%	16	9	76
$(CH_3)_2$ NCH ₂ -, $C(CH_3)_2$ NH-, $-CH_2$ N(C_2 H ₅)-, $(CH_3)_2$ CHNH-	30	10	70
$\underline{\text{CHNO}}_2$, 59.0006 $\underline{\text{O}}_2$ $\underline{\text{NCH}}_2$ -, -O-CO-N(-)-,			
-O-CO-NH-	_1	20	60
$\underline{\text{C}}_{3}\underline{\text{H}}_{4}\underline{\text{F}}$, 59.0297 cyc-CHFCH $_{2}$ CH $_{2}$ -,			
cyc-CH ₂ CHFCH ₂ -	1_	20	80
m/z 60 (19%)	6%	20%	
$C_2H_4O_2$, 60.0211	27	22	79
HO-CO-CH ₂ -: CH ₂ 60%, CH 12%	18	45	76
-O-CO-CH ₂ -: CH ₂ :CH ₂ 25%	11	22	74
cyc-CH(OH)CH(OH)-	10	35	76
C H O 60 0575 eve_CH(CH)CH O			
C_3H_8O , 60.0575 cyc-CH(CH ₃)CH ₂ O-,	11	16	62
cyc-CH ₂ CH(OH)CH ₂ -, etc		10	
$\underline{C_2}\underline{H_6}\underline{NO}, 60.0448$	6	28	72
CH_3 -CO-NH-: CH_2 40%, CH 40%	35	24	77
$HOCH_2CH(NH_2)-: CH_2 40\%, C=0 40\%$	5	55	75

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
-CH(CH ₂ OH)NH-: C=O; C=O	3	70	55
(CH ₃) ₂ N-O-	4	55	95
<u>С</u> 2H ₄ S, 60.0037	5_	20	74
-СH ₂ CH ₂ S-: СН ₂ ; СН ₂	25	38	73
<u>CHOP, 59.9765</u> arP	1_	20+	70
m/z 61 (21%)	5%	16%	
<u>С₂н₅О₂, 61.0289</u>	_21_	16	80
CH ₃ -CO-O-: CH ₂ 65%, CH 30%	17	13	60
HO-CO-CH ₂ -, CH ₃ O-CO-: CH ₂ , CH	20	21	73
cyc-CH(OH)CH(OH)-	13	18	85
also CH ₃ OCH(-)0-, -OC(-)(CH ₃)0-			
<u>C₅H, 61.0078</u>	_24_	10	90
<u>С₂н₅S, 61.0115</u>	9	28	80_
CH ₃ SCH ₂ -: CH ₂ 80%	12	75	80
-CH ₂ SCH ₂ -	35+	35	80
$\mathrm{CH_3^{CH}(SH)}_{-}$, $-\mathrm{CH(CH_3)S}_{-}$, $-\mathrm{CH_2CH_2S}_{-}$,			
с ₂ н ₅ s-	25	25	55
$\underline{C_{2}H_{2}C1}$, 60.9844 -CH ₂ CHC1-, C1CH=CH-,			
C1-cyc	5	19	93
$\underline{C_{2}H_{6}P}$, 61.0207 (CH ₃) ₂ P- (abnd 100%), etc	c <u>1</u>	70	64_
also CH_2OP , 60.9843 (-P-CO-); $\text{CH}_5\text{N}_2\text{O}$, 61 ($\text{H}_2\text{N}\text{-CO-NH-}$); $\text{C}_2\text{H}_2\text{OF}$, 61.0089 ($\text{FCH}_2\text{-CO-}$ 61.0453 ((CH_3) $_2\text{CF-}$)	.0400		
m/z 62 (20%)	5%	10%	
C_5H_2 , 62.0156	53	9	94

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
C_4N , 62.0030 arN, ar-N(-)-	11	11	75
C_2H_3C1 , 61.9923	4	16	90
$\underline{C}_{2}\underline{H}_{7}\underline{P}$, 62.0285 (CH ₃) ₂ P-: -CO-; $\underline{C}_{2}\underline{H}_{5}$ PH-	1	50	72
C_2H_6S , 62.0193 C_2H_5S -	2	13	79
<u>CH</u> ₄ NO ₂ , 62.0241 H ₂ N-CO-O-	1_	20	96
$\underline{C}_{2}\underline{F}_{2}$, 61.9968	2	7	83
$\frac{\text{C}_2\text{H}_6\text{O}_2, 62.0367}{\text{also CH}_2\text{OS}, 61.9829; CH}_4\text{NS}, 62.0067; H}_2\text{N}_2$ CHNCl, 61.9796 (Cl-arN)		<u>10</u> L.9940	
m/z 63 (35%)	8%	18%	
C_5H_3 , 63.0235	_56	16	88_
<u>C₄HN, 63.0108</u> arN	10	16	72
C_2H_4C1 , 63.0001	3	34	79
C1CH ₂ CH ₂ -: O 35%, C=O 15%, CH ₂ 15%	38	42	65
C1CH(CH ₃)-: C=O 30%, CH ₂ 20%, CH 20%	11	54	43
COC1, 62.9637 C1-CO-: O 40%, CH ₂ 15%	1	41	97
$\frac{\text{CH}_{3}\text{OS}, 62.9908}{\text{CH}_{3}\text{S}(=0)-}$ -CH ₂ S(=0)-, CH ₃ OS-,	1	36	74
$\underline{\text{C}}_{2}\underline{\text{HF}}_{2}$, 63.0046 CHF=CF-, -CF(-)CF(-)-	1	27	90
<pre>CFS, 62.9708 cyc-CF(-)S- etc</pre>	1_	26	99
also CH_3O_3 , 63.0082 (-C(-O-) ₃ , O=C(-O-) ₂))		

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 64 (24%)	7%	12%	
C_5H_4 , 64.0313 ar	46	9	82
C_4H_2N , 64.0186 arn, ar-N(-)-, etc	10	11	50
$\underline{C_3N_2}$, 64.0060 arN ₂	5	12	43
$C_{4}0$, 63.9949 ar(C=0), ar-CO-, ar0	5	9	50
$\underline{C_2}\underline{H_2}\underline{F_2}$, 64.0124 -CH ₂ CF ₂ -, etc	2	26	84
\underline{S}_{2} , 63.9448 disulfides	_1	33	81
<u>CH₄OS, 63.9986</u> CH ₃ O-S-	1	23	79
SO ₂ , 63.9622 (could be impurity)	1	21	99
also C_2H_5C1 , 64.0079; HO_2P , 63.9714; CHFS CNF_2 , 63.9998			
also C ₂ H ₅ Cl, 64.0079; HO ₂ P, 63.9714; CHFS			
also ${\rm C_2H_5Cl}$, 64.0079; ${\rm HO_2P}$, 63.9714; CHFS ${\rm CNF_2}$, 63.9998	63.	19%	
also C ₂ H ₅ Cl, 64.0079; HO ₂ P, 63.9714; CHFS CNF ₂ , 63.9998 <u>m/z 65 (43%)</u>	8%	9786; 19% 17	
also C_2H_5C1 , 64.0079; HO_2P , 63.9714; CHFS CNF_2 , 63.9998 m/z 65 (43%) C_5H_5 , 65.0391 unsatd hc, ar	8% 8% 34 17	9786; 19% 17	77
also C_2H_5C1 , 64.0079; HO_2P , 63.9714; CHFS CNF_2 , 63.9998 m/z 65 (43%) C_5H_5 , 65.0391 unsatd hc, ar C_4H_3N , 65.0265 arN, ar-NH ₂ , ar-NH-	8% 8% 34 17	9786; 19% 17	77
also C ₂ H ₅ Cl, 64.0079; HO ₂ P, 63.9714; CHFS CNF ₂ , 63.9998 m/z 65 (43%) C ₅ H ₅ , 65.0391 unsatd hc, ar C ₄ H ₃ N, 65.0265 arN, ar-NH ₂ , ar-NH- C ₄ HO, 65.0027 ar-CO-, ar(C=O), arO, ar-O-	8% 34 17	9786; 19% 17 19	77 58
also C ₂ H ₅ Cl, 64.0079; HO ₂ P, 63.9714; CHFS CNF ₂ , 63.9998 m/z 65 (43%) C ₅ H ₅ , 65.0391 unsatd hc, ar C ₄ H ₃ N, 65.0265 arN, ar-NH ₂ , ar-NH- C ₄ HO, 65.0027 ar-CO-, ar(C=O), arO, ar-O-ar-OH	8% 34 17	9786; 19% 17 19	77 58

m/z, comp Substructure, neighbor	Prop		
ar-F ₂ , etc		44-	
also ${\rm HO_2S}$, 64.9700; ${\rm H_2C1Si}$, 64.9513; CHNF	$^{1}2, 65$.0076	5
m/z 66 (29%)	7%	13%	
$\underline{\text{C}}_{5}\underline{\text{H}}_{6}$, 66.0469 ar, CH_{3} -pyridines	_26	11	84
$\underline{C_4}\underline{H_2}\underline{O}$, 66.0105 ar-CO-, ar-O-, ar-OH etc	_17	10	62
$\underline{C_4}\underline{H_4}\underline{N}$, 66.0343 arN (pyrroly1-, \underline{N} -R-pyrroly1)	12	11	50
$\underline{\text{C}}_{3}\underline{\text{H}}_{2}\underline{\text{N}}_{2}$, 66.0216 arN ₂ (pyrazoly1), ar-CH=N-NH-	6	12	42
$\frac{\text{C}_3\text{NO}, 65.9979}{\text{etc}}$ ar(NH-CO-), arN-OH, arON	4	11	47
$\underline{\text{H}}_{2}\underline{\text{S}}_{2}$, 65.9604 -S-S-	1	39	55
$\underline{\text{C}}_{2}\underline{\text{N}}_{3}$, 66.0090 arN ₃ etc	1	13	35
CFC1, 65.9672 -CC1F-, C1FC=	1	11	99
m/z 67 (40%)	11%	34%	
$\underline{C}_{5}\underline{H}_{7}$, 67.0547 polyunsatd/cyc hc	43	38	95
$\frac{\text{C}_4\text{H}_3\text{O}, 67.0184}{\text{ar(C-O), etc}}$ substd ketones, furyl,	17	35	73
$\frac{C_4H_5N, 67.0421}{\text{substd amines, etc}}$ pyrrolyl, cyc imines,	7	22	58
$\frac{\text{C}_3\text{H}_3\text{N}_2, 67.0295}{\text{cyc} \text{ hydrazone}}$ arN ₂ (imidazoyl, etc),	3	20	42
$\frac{\text{C}_{3}\text{HNO, 67.0057}}{\text{arN-CO-, etc}}$ ar(-NH-CO-), arN-OH,	2	20	42

m/z, comp Substructure, neighbor Prop Abnd Spcf also C_2N_3 , 67.0168 (arN₃); CHFC1, 66.9750 (FC1CH-); $CHOF_2$, 66.9995 (- CF_2O -); C1S, 66.9412; OFS, 66.9657 m/z 68 (33%) 27% 6% C_5H_8 , 68.0626 cyclopentyl, cyc/unsatd hc 37 84 $\underline{C_4}\underline{H_4}\underline{O}$, 68.0262 subst/cyc -CO-/-O-20 29 59 $\underline{C_4}\underline{H_6}\underline{N}$, 68.0499 subst/cyc amines/imines, nitriles 8 23 50 C_3H_2NO , 68.0135 arN-OH, ar(NO) (isoxazolyl), ar-0-, ar(N-CO), 42 NC-CH2-CO-24 $\underline{C_3H_4N_2}$, 68.0373 arN₂ (pyrimidinyl, etc), $arN-NH_2$, etc 17 49 4 $C_{3}O_{2}$, 67.9898 ar-CO-O-, ar(C=O)-O-, substd/unsatd -CO-O-, etc 3 23 46 also C_2N_2O , 68.0009 (NarNH-CO-, etc); $C_2H_2N_3$, 68.0246 $(arN_3, arN_2-NH-); C_4HF, 68.0062; CN_4, 68.0120 (arN_4)$ m/z 69 (49%) 12% 35% $\underline{C_5H_9}$, 69.0704 CH_2 =CHC(CH_3)₂-, cyclopentyl, other unsatd/cyc hc 28 35 90 20 33 66 $C_{\Lambda}H_{5}O, 69.0340$ ${\tt cyc-CH(CH_3)CH_2-CO-,\ cyc-CH_2CH(CH_3)-CO-,}$ $\label{eq:cyc-CH2} \texttt{cyc-CH}_2\texttt{CH}(\texttt{-CO-)-, cyc-(CH}_2)_3\texttt{-CO-,}$ 72 etc 25+35 $\mathrm{CH_3CH} = \mathrm{CH} - \mathrm{CO}$, other $\mathrm{C_3H_5} - \mathrm{CO}$, CH3-CO-CH=CH-5 55 60

```
Substructure, neighbor
                                                                 Prop Abnd Spcf
   also CH<sub>3</sub>C=CCH(OH)-, cyc/unsatd/subst -O-/OH
\underline{C_3HO_2}, 68.9976 unsatd/cyc/ar
   -CO-/-O-/-OH (-CH=CH-CO-, etc)
                                                                     7
                                                                            33
                                                                                    56
CF<sub>3</sub>, 68.9952 CF<sub>3</sub>-, polyfluoro/haloalkanes_
                                                                     3
                                                                           63
                                                                                    73
\underline{C_3H_3NO}, 69.0214 -CH=CH-CO-NH-, HO-arN,
   OarN, ar-NO, etc
                                                                            21
                                                                                    48
\underline{C_4}\underline{H_7}\underline{N}, 69.0577 NC(CH<sub>2</sub>)<sub>3</sub>-, arN, substd/cyc
                                                                           19
                                                                                    57
   amines
also C_3H_5N_2, 69.0451 (unsatd/ar amines/imines/azo);
   C_2HN_2O, 69.0087; C_2H_3N_3, 69.0325 (arN<sub>3</sub>); C_3HS,
   68.9802 (arS); CHN_A, 69.0198 (arN<sub>A</sub>)
m/z 70 (37%)
                                                                            28%
\underline{C_{5}H_{10}}, 70.0782 H-C<sub>5</sub>H<sub>10</sub>-Y*, H-C<sub>5</sub>H<sub>10</sub>-R-Y*,
   H-R-CH(CH_3)C(CH_3)=CH_2 etc, hc
                                                                    25
                                                                            27
                                                                                    82
\underline{C_1H_6O}, 70.0418 cyc/substd ketones/-0-/-OH 21
                                                                                    59
                                                                            27
\underline{C_4H_8N}, 70.0656 cyc/subst amines (pyrro-
   lidinyl, CH_3N=CHCH_2CH_2-, aziridinyl-CH_2-,
   cyc-CH<sub>2</sub>CH(CH<sub>3</sub>)CH(NH<sub>2</sub>)-, etc)
                                                                            30
                                                                                    58
\underline{C_3H_2O_2}, 70.0054 -CH<sub>2</sub>O-CO-CH<sub>2</sub>-,
   -CH_2CH(-)-CO-O-, 4-pyrones,
   -CH_{2}CH_{2}O-CO-, -CO-CH_{2}-CO-, HO-ar(C=O),
                                                                            25
                                                                                    43
   etc
                                                                     6
\underline{C_{2}}\underline{H_{4}}\underline{NO}, 70.0292 - CH_{2}CH_{2} - CO - NH - ,
   \operatorname{cyc-N}(C_2H_5)-\operatorname{CO-}, \operatorname{CH}_3\operatorname{C}(\operatorname{CN})(\operatorname{OH})-,
   \mathrm{H}_{2}N-CO-CH=CH-, NCO-CH(CH<sub>3</sub>)-, OCN-C<sub>2</sub>\mathrm{H}_{4}-,
   -CH(CH_3)-CO-NH-, etc
                                                                            27
                                                                                    44
```

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\underline{C_{3}H_{6}N_{2}}, 70.0529 \underline{C_{3}H_{7}}-N=N-, \text{ arN}_{2}, \text{ cycN}_{2},$	0	0.0	4.0
etc	3	28	46_
also $C_2H_2N_2O$, 70.0165 (HO-arN ₂); C_2NO_2 , 6 (-CO-NH-CO-); $C_2H_4N_3$, 70.0403	9.992	8	
m/z 71 (38%)	10%	33%	
C_4H_7O , 71.0496	29	35	62
-(CH ₂) ₃ -CO-: CH ₂ 70%; -O- 25%, CH ₂ 20%	15+	32	50
С ₃ H ₇ -CO-: CH ₂ 35%; -O- 25%	7	60	60
$-(CH_2)_4O$, tetrahydrofuryl-, 1,2-epoxy-butyl-, -(CH ₂) ₃ CH(OH)-, -(CH ₂) ₃ OCH ₂ -,			
$-\text{CH}_2\text{CH}_2\text{CH}(\text{CH}_2\text{OH})$ -, $-\text{CH}_2\text{CH}_2\text{OCH}_2\text{CH}_2$ -	22	30	75
$C_{5}H_{11}$, 71.0860	20	35	84_
<u>С₃н₃О₂, 71.0133</u>	11	30	49
-CH ₂ CH ₂ -CO-О-, -CH ₂ -CO-ОСН ₂ -	30	35	50
-CH ₂ CH ₂ O-CO-, -CH(CH ₃)-CO-O-, -CO-CH ₂ -CO-, cyc-CH ₂ CH(O-)CH(O-)-	30	30	45
$\frac{\text{C}_4\text{H}_9\text{N}, 71.0734}{(\text{CH}_3)_2\text{NCH}_2\text{CH}_2^-, \text{arN-C}_3\text{H}_7, \text{H}_2\text{N}(\text{CH}_2)_4^-,}$	C	00	61
cycN	6		61
<u>C₃H₅NO, 71.0370</u>	3	21	40
also C_3H_3S , 70.9959; $C_3H_7N_2$, 71.0607; $C_2H_3S_2$, 71.0006; C_2N_2F , 71.0044	3 ^N 2 ^O ,	71.0	244;
m/z, 72 (26%)	8%	19%	
C_4H_8O , 72.0575	_22_	16	63
C ₂ H ₅ -CO-CH ₂ -, CH ₃ -CO-CH(CH ₃)-: CH ₂ 75% HO-cyc, CH ₃ O-cyc, C ₂ H ₅ OCH ₂ CH ₂ -,	7	50+	85
CH3OCH2CH2CH2-	10	25	50

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\underline{c}_{3}\underline{H}_{4}\underline{o}_{2}$, 72.0211 $\underline{c}_{2}\underline{H}_{5}$ 0-CO-, $\underline{c}\underline{H}_{3}$ 0-CO- $\underline{c}\underline{H}_{2}$	13	15	56
<u>C₃H₆NO, 72.0448</u>	8	33	60
$(CH_3)_2N-CO-: -NH-, ar, -N(-)-$	16	75	81
СН ₃ -СО-NНСН ₂ -: СН ₂ 70%	18	25	80
C ₂ H ₅ NH-CO-: -NH-, C	3	53	56
H_2^{-} N-CO-CH ₂ CH ₂ -: CH ₂ , CH	3	33	50
also HON=CHCH2CH2-			
$\frac{\text{C}_{4}\text{H}_{10}\text{N}, 72.0812}{\text{C}_{4}\text{H}_{10}\text{N}, 72.0812}$	_10_	26	64
$C_3^{H}_7$ NHCH ₂ -, $C_3^{H}_7$ CH(NH ₂)-,			
(CH ₃) ₂ NCH(CH ₃)-, etc	20	65	65
$-CH(C_3H_7)NH$, $-CH_2N(C_3H_7)$, etc	5	85	90
$(C_2H_5)_2N-$, $C_3H_7NHCH(-)-$, C_4H_9NH- ,			
$C_4H_9N(-)-$	10	33	55
$\underline{C}_{2}\underline{H}_{2}\underline{NO}_{2}$, 72.0084 -CH(-CO-OH)NH-, -N(CH ₃)-CO-O-, -CH(NH ₂)-CO-O-,	0	0.1	5 0
-CH ₂ O-CO-NH	3	21	50
$\underline{C}_{2}\underline{H}_{4}\underline{N}_{2}\underline{O}, 72.0322$ -N(CH ₃)-CO-N(-)-	2_	24	55
also $C_3H_8N_2$, 72.0686; C_2H_2NS , 71.9910 (S0 72.0129	CNCH ₂ -	-); C _{	3 ^H 5 ^P ,
m/z 73 (32%)	14%	38+9	70
<u>С₃н₅О₂, 73.0289</u>	21	30	67
-CH ₂ CH ₂ -CO-O-: CH ₂ 60%; Si 50%	7	60+	46
HO-CO-CH ₂ CH ₂ -: CH ₂ 55%, CH 16%, S 12%	7	48	66
С ₂ H ₅ O-CO-: CH ₂ 55%, CH 18%	12	19	73
CH ₃ O-CO-CH ₂ - (also m/z 74): CH ₂ 37%,			
CH 34%	5	26	41
СН ₃ -СО-ОСН ₂ -: СН ₂ 50%, СН 30%	7	20+	65
-CH ₂ OCH ₂ CH ₂ O-, cyc-CH ₂ CH ₂ OCH(-)-O-,			
-CH ₂ CH(OH)CH(OH)-	10	45	75

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
<u>С₄н₉О, 73.0653</u>	12	34	63
-(CH ₂) ₄ O-: CH ₂ 75%; Si 50%	13+	34	57
С ₂ H ₅ CH(ОСН ₃)-: СН ₂ 80%	5	80+	90
CH ₃ (CH ₂) ₃ O-: C=O 80%	6	19	40
C_2H_5 -CO- (also m/z 72): CH_2 80%	5	20+	94
$C_2H_5CH_2CH(OH)-$, $(CH_3)_2CH(OH)-$,			
$-(CH_2)_3$ OCH ₂ -, $(CH_3)_2$ CHOCH ₂ -,			
$C_2^{H_5}CH_2^{OCH_2^{-}}, C_2^{H_5}C(CH_3)(OH)_{-},$			
$cyc-C(CH_3)(C_2H_5)O-$	20	40	65
<u>С₃Н₇NO, 73.0526</u>	4	35	70_
CH ₃ -CO-NH-CH ₂ - (also m/z 72): CH ₂ 85%	19	34	85
-CH ₂ CH=NOCH ₃ , CH ₃ C(=NOCH ₃)-			
$-CH_2CH(=NOCH_3)-: CH_2; C=O$	9	80	99
$-CH_2CH_2C(=N-OH)-: CH_2 50\%; CH_2 50\%$	5	75	99
CH ₃ -CO-N(CH ₃)-	3	55-	55
C ₂ H ₅ -CO-NH-	2	30	99
$(CH_3)_2C=N-O-, -CH(OCH_3)-CH(-NH-)-,$			
$-CH_2$ -CO-NH-CH ₂ -, CH_3 NHCH ₂ CH(-)-O-	10	80	80
$C_2H_3NO_2$, 73.0163	3	35	68
-NHCH ₂ -CO-O-: C=O; Si	13	80	76
-NHCH(-)-CO-O-, -N(-)-CH ₂ -CO-O-	15+	50+	80
HO-CO-CH(NH ₂)-: CH ₂	10	14	80
ar-CH=C(NO ₂)-	5	10	59
С2НО3, 72.9925	2	28	70
-OCH ₂ -CO-O-: CH ₂ , ar, Si; Si, CH ₂	10	73	53
-OCH(-)-CO-O-, -OC(-) ₂ -CO-O-,			
HOCH(-)-CO-O-	22	55+	50
-CO-CO-O-: ar, -O-; Si, CH ₂	5	50-	60
$\underline{\text{C}}_{3}\underline{\text{H}}_{9}\underline{\text{Si}}$, 73.0373 (CH ₃) ₃ Si-, -CH ₂ Si(CH ₃) ₂ -	1_	44	80
$\underline{C_2H_5N_2O}$, 73.0400	1_	23	70

$\begin{array}{ccc} \underline{\text{m/z, comp}} & \underline{\text{Substructure, neighbor}} \\ & \text{O=N-N(C$_2$H$_5$)-: CH$_2} \\ & \text{also C$_3H_9N_2$, 73.0764 ((CH$_3$)$_2$N-N(CH$_3$)-)} \end{array}$	Prop <u>1</u>		<u>Spcf</u> 80
m/z 74 (34%)	5%	27%	
<u>С₃н₆О₂, 74.0367</u>	30	43	84_
СН ₃ О-СО-СН ₂ -: СН ₂ 70%, СН 13%	51+	63	84
CH ₃ O-CO-CH=: = CH-	3	31	95
HO-CO-CH(CH ₃)-: CH ₂ 70%, -NH- 20%	2	60	75
cyc-CH(OH)CH(OCH ₃)-	2	50	45
$\underline{C}_{6}\underline{H}_{2}, 74.0156$	_23	13	92
$\frac{\text{C}_{2}\text{H}_{4}\text{NO}_{2}, 74.0241}{\text{C}_{2}\text{H}_{4}\text{NO}_{2}, 74.0241}$	5	20	81
HO-CO-CH(NH ₂)-: CH ₂ 75%, CH 20%	30	40	77
-CH ₂ O-CO-N(-)-	2	70	58
$\underline{C_{4}H_{10}O, 74.0731}$ CH ₃ O-cyc, cycO, HO-cyc	5	18	69
$\underline{C}_{2}\underline{H}_{2}\underline{O}_{3}$, 74.0003 cyc-OCH(O-)CH(OH)-,			
-OC(OCH ₃)O-, -OC(-OCH ₂ -)O-	3	23	55
$\frac{\text{C}_{3}\text{H}_{6}\text{S}, 74.0193}{\text{-CH}_{2}\text{CH}_{2}\text{SCH}_{2}\text{-}} \text{ cyc-SC(CH}_{3})_{2}, -(\text{CH}_{2})_{3}\text{S},$	3	39	64
$\frac{\text{C}_{3}\text{H}_{8}\text{NO}}{1}$, 74.0605 -CH(OH)CH(NHCH ₃)-,			
-CH(OH)CH(CH ₃)NH-, CH ₃ CH(OH)CH(NH ₂)-	2	46	60
also C ₅ N, 74.0030 (arN); C ₃ F ₂ , 73.9968 (F ₂ -ar)	;	
${ m CH_2N_2O_2},\ 74.0114\ ({ m ONNH-CO-});\ { m C_2H_4NS},\ 7$	4.0067	(arl	NS);
${ m CH_2N_2S}$, 73.9940 (${ m H_2N-arNS}$, -S-arN ₂); C (C1-ar)	3 ^H 3 ^{C1} ,	73.9	923
m/z 75 (36%)	8%	30%	
<u>С</u> ₆ H ₃ , 75.0235	30	20	88
$\underline{C_{3}}\underline{H_{7}}\underline{O_{2}}, 75.0445$	_13_	30	80

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
CH ₃ O-CO-CH ₂ -: CH ₂ 65%, CH 15%	24+	22	93
(CH ₃ O) ₂ CH-: CH ₂ 70%, CH 20%	6	75-	80
С ₂ Н ₅ -CO-O: СН ₂ 70%, СН 20%	6	29	74
$\text{HOC}_{2}^{\text{H}_{4}\text{OCH}_{2}^{\text{-}}}$, $\text{HOC}_{2}^{\text{H}_{4}\text{CH(OH)-}}$, $\text{CH}_{3}^{\text{OCH}_{2}\text{CH(OH)}}$	H)		
etc	9	22	85
CH ₃ -CO-OCH ₂ -	2	42	70
also C ₂ H ₅ OCH(-)0-			
<u>C₅HN, 75.0108</u> arN	9	19	74_
C U OS: 75 0165 S:(OU) O			
$\frac{\text{C}_2\text{H}_7\text{OSi}, 75.0165}{\text{CH}_3\text{C}_3$	0	7.5	0.0
(CH ₃) ₂ Si(OH)-	3	75	96
C_3H_4C1 , 75.0001	4	31	71
C_3H_7S , 75.0271	3	42	66
C ₂ H ₅ SCH ₂ -, CH ₃ SCH(CH ₃)-	20	95	55
also C_3H_7S -			
C H NO 75 0210 HO CO CH(NH)			
$\underline{C_2H_5NO_2}$, 75.0319 HO-CO-CH(NH ₂)-,	3	20	70
-NHCH ₂ -CO-O-, NH ₂ -CO-OCH ₂ -	<u> </u>	28	78
$C_2H_3O_3$, 75.0082 cyc-CH(-O-)-CO-O-,		•	
-OCH-CO-O-	2	27	55_
also C ₂ H ₃ OS, 74.9908; C ₃ HF ₂ , 75.0046 (ar-	F ₂);	C ₃ H ₉ I	NO,
75.0683(CH ₃ CH(OH)CH(NH ₂)-); C ₂ OC1, 74.9	_	0 0	
75.0556 (CH ₃ -CO-NH-NH-); C ₄ H ₈ F, 75.0610		2 .	2
4 0			
m/z 76 (30%)	10%	13%	
0.77. 70.0010		4.0	0.0
C_6H_4 , 76.0313	38	10	86
<u>C₅H₂N, 76.0186</u> arN	10	13	61
<u>C₅O, 75.9949</u> ar(CO), arO	6	21	63
<u></u>	_ _		

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\frac{\text{C}_4\text{N}_2, 76.0060}{\text{arN}_2}$	4	16	49
$\underline{C_3}\underline{H_5}\underline{C1}, 76.0079 \text{ C1C}_3\underline{H_6}$	2	19	82
$\underline{C_{3}H_{8}S}$, 76.0350 $\underline{C_{3}H_{7}S}$ -	2	12	72
$\frac{\text{CS}_2}{2}$, 75.9448 arS ₂ , -S-C(=S)-, pyrolysis product	_1_	21_	90
<u>С₂н₄О₃, 76.0160</u> Сн ₃ О-СО-О-, НО-СО-СН(ОН)- -СН(ОН)-СО-О	-, 1_	12	55
also $C_3H_2F_2$, 76.0124; $H_2N_3O_2$, 76.0144			
m/z 77 (55%)	18%	29%	
$\underline{C}_{6}\underline{H}_{5}$, 77.0391 phenyl-Y, Y-phenyl-Y'	_41_	27	86
$C_{5}H_{3}N$, 77.0265 arn, ar-N(-)-	_10_	30	56
$C_{5}HO, 77.0027$ ar-CO-, etc	6	26	60
C_4HN_2 , 77.0138 arN ₂ , arN-N(-)-, etc	2	26	40
$\frac{\text{C}_{3}\text{H}_{3}\text{F}_{2}, 77.0203}{\text{etc}}$ -C ₂ H ₄ CF ₂ -, CF ₂ =CHCH ₂ -,	1	57	80_
$\underline{C_{3}H_{6}C1}$, 77.0157 $\underline{C_{2}H_{5}CHC1}$ -, etc	1_	26	71
$\underline{\text{CH}}_{2}\underline{\text{O}}_{2}\underline{\text{P, 76.9792}}$ $\underline{\text{CH}}_{3}\underline{\text{OP}}(=0)(-)-, \text{ etc}$	1	24	70
m/z 78 (39%)	7%	18%	
$\underline{C}_{6}\underline{H}_{6}$, 78.0469 phenyl	42	15	83
$\underline{C}_{5}\underline{H}_{4}\underline{N}$, 78.0343 pyridyl-, other arN,			
ar-NH-	_11_	21	<u>51</u>

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
C_5H_2O , 78.0105 ar-CO-, aro		22	56
$\frac{\text{C}_4\text{H}_2\text{N}_2}{\text{1}}$, 78.0216 arN ₂ , ar-N=N-	5	20	43
$\underline{C_4}$ NO, 77.9979 arN-CO-, ar-NO, arNO, etc	2	19	36
<u>СН₂S₂, 77.9604</u> -СН ₂ -S-S-, -SCH ₂ S-, SCH(-)S-	1	44	88
also C_3N_3 , 78.0090; C_2OF_2 , 77.9917 (-CF ₂ -		11	
m/z 79 (43%)	11%	30%	
<u>C₆H₇, 79.0547</u>	32	34	89
$\underline{C_{5}}\underline{H_{3}}\underline{0}$, 79.0184 ar-O-, ar-CH ₂ OH, subst			
cyc(C=O), etc	14	27	66
$\underline{C}_{5}\underline{H}_{5}\underline{N}$, 79.0421 arN, subst cyc-NH-, etc	10	21	55
$\underline{C_4}\underline{H_3}\underline{N_2}, 79.0295 \text{ arN}_2, \text{ etc}$	3	20	38
$\underline{\text{C}}_{4}$ HNO, 79.0057 arN-CO-, arNO, ar-NO, etc	2	20	34_
$\underline{\text{CH}_4\text{O}_2}\underline{\text{P}, 78.9949} \ \text{CH}_3\text{OP}(=0)(-)_2$			
CH ₃ P(=0)(-)0-	1_	34	85
$\underline{\text{CH}}_{3}\underline{\text{O}}_{2}\underline{\text{S}}, 78.9857 \text{ CH}_{3}\text{OS}(=0)-, -\text{CH}_{2}\text{OS}(=0)-$	1	42	78
Br, 78.9183	2	14	93
also CH_3S_2 , 78.9683 (CH_3 -S-S-); C_2H_4 OC1,	78.99	950	
(C1CH ₂ OCH ₂ -, C1CH ₂ CH(OH)-); C ₂ HFC1, 78. 78.9585 (-OPH(=0)O-, -OP(-)(=0)O-)	9750;	, O ₃ P,	,
m/z 80 (28%)	8%	17%	
$\underline{C_{6}H_{8}}$, 80.0626 cyclohexenes, etc	29	18	91

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$C_{5}H_{4}O$, 80.0262 arO, etc	_13_	16	61
$\underline{\text{C}}_5\underline{\text{H}}_6\underline{\text{N}}$, 80.0499 arN (pyridyl, pyrrolyl-CH ₂ -), ar-NH ₂ , subst cycloalkanones	9	15	57
$\frac{\text{C}_4\text{H}_2\text{NO}, 80.0135}{\text{etc}}$ arn-OH, ar(N-CO-), ar-NO	, 4	15	44_
$\underline{\text{C}}_{4}\underline{\text{H}}_{4}\underline{\text{N}}_{2}$, 80.0373 arN ₂ , arN-NH ₂	4	14	44
$\underline{C_{3}H_{2}N_{3}}$, 80.0246 arN ₃ , arN ₂ -NH-	2	15	36
<u>C</u> ₄ O ₂ , 79.9898 ar-COOH, -CO-C≡C-CO-, ar-CO-O-	2_	14	42
<u>HBr, 79.9261</u> (can be impurity)	2	9	96
$ \begin{array}{l} \underline{\text{C}}_{3}\underline{\text{N}}_{2}\underline{\text{O}}, \ 80.0009 \ \text{arN}_{2}\text{-O-}, \ \text{arN}_{2}(\text{C=O}), \ \text{etc} \\ \text{also CH}_{4}\text{O}_{2}\text{S}, \ 79.9935 \ (\text{CH}_{3}\text{OS}(\text{=O})\text{-}); \ \text{HO}_{3}\text{P}, \\ \text{(-OPH(=O)O-); CH}_{4}\text{S}_{2}, \ 79.9761 \ (\text{CH}_{3}\text{S-S-}) \end{array} $			42
m/z 81 (39%)	6%	36%	
$\underline{C}_{6}\underline{H}_{9}$, 81.0704 polyisoprenes, polyunsatd/cyc hc	33	46	92
$C_5 H_5 O, 81.0340$	_19_	40	67
furyl-CH ₂ -: -O- 49%, -S- 28%, CH ₂ 11%	3	94-	55
unsatd/subst hc-CO-	25	40	7 5
ar-OH, subst/unsatd/cyc hc-OH	10	25	70
$\underline{\text{C}}_5\underline{\text{H}}_7\underline{\text{N}}$, 81.0577 arN (CH ₃ -pyrrolyl etc), unsatd/cyc/substd imine/amine, ar amine	e6_	23	60

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\frac{\text{C}_4\text{H}_3\text{NO}, 81.0214}{\text{methoxime, unsatd oxyamine, etc}}$	3	25	48
$\begin{array}{c} \underline{\text{C}_4\text{HO}_2,\ 80.9976} \text{ subst/cyc-O-CO-, arO}_2, \\ -\text{O-ar-O-, etc} \\ \text{also } \text{C}_4\text{H}_5\text{N}_2,\ 81.0451 \ (\text{arN}_2,\ \text{etc}); \ \text{C}_3\text{HN}_2\text{O}, \\ \text{C}_3\text{H}_3\text{N}_3,\ 81.0325 \ (\text{arN}_3,\ \text{etc}); \ \text{C}_2\text{F}_3,\ 80.9} \end{array}$			47
80.9741 (-OP(=0)O-, etc); C_4 HS, 80.9802 81.0140 (ar-F); C_2 H $_3$ OF $_2$ (CH $_3$ OCF $_2$ -); C_2 H $_3$ CFC1-, -CH $_2$ CHFC1)	(ar	3); C	$5^{ m H}2^{ m F}$
m/z 82 (33%)	7%	29%	
$\frac{\text{C}_{6}\text{H}_{10}, 82.0782}{\text{hc}}$ cyclohexyl, subst/unsatd	30	32	84_
$\underline{\text{C}}_{5}\underline{\text{H}}_{6}\underline{\text{O}}$, 82.0148 furyl-CH ₂ -, ketones, cyc-OH, cycO, etc	17	29	57
$\frac{\text{C}_5\text{H}_8\text{N}, 82.0656}{\text{cyc/substd/unsatd amines/imines}},$ $\text{NC-C}_4\text{H}_8$	7	29	53
$\frac{\text{C}_4\text{H}_4\text{NO}, 82.0292}{\text{(CH}_3\text{NHC(-)=CH-CO-), arNO}} \text{ unsatd ketoamines}$ $(\text{CH}_3\text{-isoxazolyl), arN(C=0), subst/cyc}$			
aminoethers, etc	4	25	46
$\frac{\text{C}_4\text{H}_2\text{O}_2,\ 82.0054}{\text{ar-CO-OH},\ \text{unsatd-CO-O-}}$	4	23	49
$\frac{\text{C}_4\text{H}_6\text{N}_2,\ 82.0529}{\text{unsatd amines}} \text{ arN}_2 \text{ (pyrimidiny1-CH}_2\text{-),}$ unsatd amines also $\text{C}_3\text{H}_2\text{N}_2\text{O},\ 82.0165;\ \text{C}_3\text{H}_4\text{N}_3,\ 82.0403 (to$	2 riaz:	27 inyl);	49

<u>m/z, comp</u> <u>Substructure, neighbor</u> <u>Substruc</u>			Spcf
$C_2^{H_2N_4}$, 82.0276 (arN ₄); $C_2^{HF_3}$, 82.0030;			9692
m/z 83 (38%)	10%	34%	
$\underline{C}_{6}\underline{H}_{11}$, 83.0860 cyclohexyl, $\underline{CH}_{3}\underline{CH}=\underline{CHC}(\underline{CH}_{3})_{2}$ - etc	29	33	89_
$\frac{\text{C}_5\text{H}_7\text{O}, 83.0496}{(-\text{CH}_2\text{C}(\text{CH}_3)_2\text{-CO- etc}), \text{lactones}},\\ \text{cyc/subst/unsatd -O-/-OH/-CO-}\\ ((\text{CH}_3)_2\text{C=CH-CO-})$	22	29	69_
$\frac{\text{C}_4\text{H}_3\text{O}_2, 83.0133}{\text{ar-CO-OCH}_3, \text{subst/cyc -O-/-OH/-CO-}}$ (HO-furyl-)	6	28	50
$\underline{\text{C}}_{5}\underline{\text{H}}_{9}\underline{\text{N}}$, 83.0734 NC(CH ₂) ₄ -, cyc/substd amines (piperidyl)	4	29	57
$\frac{\text{C}_4\text{H}_5\text{NO}, 83.0370}{\text{-NH-/-NH}_2/\text{C=O/-OH/-O-/-CH=N-OH}} \text{ (cyc-NH-CO-CH=C(CH}_3)-, -CH=C(CH}_3) \text{NH-CO-H}_2\text{N-CO-C(CH}_3)=\text{CH-})$,	24	50_
CHCl ₂ , 82.9454 CHCl ₂ , -CCl ₂ -	2	54	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, etc , 83.); 0297;	;

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 84 (81%)	12%	19%	
C ₅ H ₈ O, 84.0575 cyc/subst ketones (2-R-cyclopentanones), cyc/substd/unsat	:d		
-O-/-OH	_21_	18	57
$\frac{\text{C}_6\text{H}_{12},\ 84.0938}{\text{etc}}\ \text{H-C}_6\text{H}_{12}\text{-Y*},\ \text{H-C}_6\text{H}_{12}\text{-R-Y*},$	23	14	77
$\frac{\text{C}_4\text{H}_4\text{O}_2}{\text{CH}_3\text{-4-pyrones}}$ beta diketones, $\frac{\text{CH}_3\text{-4-pyrones}}{\text{CH}_3\text{-0-CO-}}$			
но-со-	_10_	19	50
$\frac{\text{C}_5\text{H}_{10}\text{N}, 84.0812}{\text{(2-piperidynl, N-CH}_3\text{-pyrrolidinyl,}}$ $\text{cyc-CH}_2\text{CH}_2\text{CH}(\text{NHC}_2\text{H}_5)\text{- etc})$	7	25	54_
$ \begin{array}{l} \underline{\text{C}}_{4}\underline{\text{H}}_{6}\underline{\text{NO}}, \ 84.0448 \ \text{subst/cyc amides} \\ \text{(-CH}_{2}\text{CH}(\text{NH-CO-CH}_{3}, \ -\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{-CO-NH-)}, \\ -\text{CH}_{2}\text{CH}_{2}\text{CH}(\text{NH}_{2})\text{-CO-}, \ -\text{CH}(\text{NH}_{2})\text{CH}_{2}\text{CH}_{2}\text{-CO-}, \\ \text{OCN-C}_{3}\underline{\text{H}}_{6}, \ \text{etc} \end{array} $	6	22	45
$\frac{\text{C}_4\text{H}_8\text{N}_2, 84.0686}{\text{-(CH}_2)_3\text{C(-)=N-NH-, -N(-)(CH}_2)_3\text{N(-)-,}} \\ \text{arN}_2 \text{etc}$	2	28	49_
	2	23_	48
$\frac{\text{C}_{3}\text{H}_{2}\text{NO}_{2}, \ 84.0084}{-\text{C(NH}_{2})=\text{CH-CO-O-}, \ \text{HO-CO-arN, ar-NO}_{2}}$ also C_{3}O_{3} , 83.9847 (-O-CO-CH ₂ -CO-)	2_	19	42

American Chemical

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 85 (33%)	14%	20%	
<u>С₅н₉0, 85.0653</u>	22	20	66
$-(CH_2)_4$ $-CO-: CH_2$ 70%; $-O-$ 27%	17+	25	63
C_4H_9 -CO-: CH_2 35%; -CH(-) ₂ 30%	6	40	65
cyc0 (tetrahydropyryl-), $-(CH_2)_5O-$, $-(CH_2)_4CH(-)O-$, $-(CH_2)_3OCH_2CH_2-$,	10	20	G.E.
$C_{3}^{H}_{7}^{C(-)(CH_{2}^{OH})-, -(CH_{2}^{-})_{4}^{OCH}_{2}^{-}$	16	32	65
$\underline{C}_{6}\underline{H}_{13}, 85.1017$	_19_	17	85
$\underline{C_4}\underline{H_5}\underline{O_2}$, 85.0289	_15	19	58
CH ₃ -CO-CH ₂ -CO-	4	60	82
gamma-lactones	2	90	81
$\begin{array}{c} -(\text{CH}_2)_3 - \text{CO-O-}, & -\text{CH}_2\text{CH}_2 - \text{CO-OCH}_2 -, \\ -\text{CH}_2\text{CH}_2\text{O-CO-CH}_2 -, & 2 - (\text{methylethylene} \\ \text{ketal}) -, & -\text{CH}_2\text{CH}(\text{O-})\text{CH}_2\text{CH}(\text{O-}) -, \\ -\text{O}(\text{CH}_2)_3 - \text{CO-} \end{array}$	20	20	60
$\frac{\text{C}_{5^{\text{H}}_{11}\text{N}, 85.0890}}{\text{-(CH}_{2})_{5}\text{N(-)-, arN-C}_{4^{\text{H}}_{9}}, \text{C}_{4^{\text{H}}_{9}\text{CH=N-}}}$	4		
also C_4H_7NO , 85.0526; $C_3H_3NO_2$, 85.0163;		, 84.9	9925;
$ ^{\text{CC1F}}_{2}, \ 84.9656; \ C_{4}^{\text{H}}_{9}^{\text{N}}_{2}, \ 85.0764 \ (\text{cycN}_{2} \ (\text{CH}_{3})_{2}^{\text{N}-\text{N}=\text{CH}-\text{CH}_{2}^{-}}); \ C_{4}^{\text{H}}_{5}^{\text{S}}, \ 85.0115 \ (\text{cyc})_{2}^{\text{N}} $			
m/z 86 (22%)	6%	18%	
$\frac{C_5H_{12}N, 86.0968}{(C_2H_5)_2NCH_2-, C_4H_9NHCH_2-,}$	8	36	62
${\rm C_3H_7N(CH_3)CH_2^-, \ C_4H_9CH(NH_2)^-,} \ {\rm (CH_3)_2NC(CH_3)_2^-, \ etc} \ {\rm -CH_2N(C_4H_9)^-, \ -CH(CH_3)N(CH_3)CH(CH_3)^-,} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	15	75	70
$-\text{CH}_2\text{N}(\text{C}_4\text{H}_9)^{-1}, -\text{CH}(\text{CH}_3)\text{N}(\text{CH}_3)^{-1},$ $-\text{CH}_2\text{CH}_2\text{N}(\text{C}_2\text{H}_5)\text{CH}_2^{-1}$	8	55	60

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\underline{C_4}\underline{H_6}\underline{O_2}$, 86.0367 1-dioxolany1(-)-cyc-CH ₂ -	14	16	54
$\underline{C}_{5}\underline{H}_{10}\underline{O}, 86.0731$	13	17	53_
$C_3^{H_7-CO-CH_2-}, C_2^{H_5-CO-CH(CH_3)-},$ $Y^{*-C_5^{H_10}O-}$	7	20	63
$\frac{\text{C}_4\text{H}_8\text{NO}, 86.0605}{\text{CH}_3\text{NH-cyc-OH}}$ $\text{H}_2\text{N-CO-CH}_2\text{CH(CH}_3)$ -,	8	24	57
$\underline{C_{3}H_{4}NO_{2}}$, 86.0241 -CH(-CO-OCH ₃)-NH-,			
$-CH(NH_2)-CO-OCH_2-$	4	27	44
also $C_3H_6N_2O$, 86.0478 (-NH-CO-NH-); C_3H_2O	3, 86	3,0003	3;
$C_4^{H}_{10}^{N}_{2}$, 86.0842 ((CH ₃) ₂ NN=CH-CH ₂ -); C_2^{C}	H ₄ N ₃ 0), 86	0351
(H ₂ N-CO-NH-N=CH-)	10		
2			
m/z 87 (23%)	7%	219	6
$\underline{C_{4}H_{7}O_{2}}$, 87.0445	25	26	62
$\frac{\text{C}_4\text{H}_7\text{O}_2, 87.0445}{\text{CH}_3\text{O}-\text{CO}-\text{CH}_2\text{CH}_2-: CH}_2$ 55%, -CH= 15%	25 12	26 34	<u>62</u> 35
${\rm CH_3O-CO-CH_2CH_2-:\ CH_2\ 55\%,\ -CH=\ 15\%}$			
1 , 2	12	34	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 5	34 50	35 58
$\begin{array}{llllllllllllllllllllllllllllllllllll$	12 5	34 50	35 58
$\begin{array}{llllllllllllllllllllllllllllllllllll$	12 5	34 50	35 58
$\begin{array}{llllllllllllllllllllllllllllllllllll$	12 5	34 50	35 58
$\begin{array}{llllllllllllllllllllllllllllllllllll$	12 5 3	34 50 53-	35 58 99
$\begin{array}{l} \text{CH}_{3}\text{O}-\text{CO}-\text{CH}_{2}\text{CH}_{2}\text{-:} \text{CH}_{2} 55\%, -\text{CH}= \ 15\% \\ \text{CH}_{3}\text{O}-\text{CO}-\text{CH}(-)-\text{CH}_{2}\text{-:} \text{CH}_{2} 70\%; \text{CH}_{2} 55\% \\ \text{CH}_{3}\text{O}-\text{CO}-\text{CH}=\text{CH}-: \text{CH}_{2} \\ -\text{O}-\text{CO}(\text{CH}_{2})_{3}\text{-,} \text{HO}-\text{CO}-(\text{CH}_{2})_{3}\text{-,} \\ -\text{CO}-\text{O}(\text{CH}_{2})_{3}\text{-,} -\text{CH}_{2}\text{O}-\text{CO}-(\text{CH}_{2})_{2}\text{-,} \\ -\text{CO}-(\text{CH}_{2})_{3}\text{-O}\text{-,} \text{CH}_{3}\text{-dioxolanyl-,} \\ \text{CH}_{3}\text{CO}-\text{O}(\text{CH}_{2})_{2}\text{-} \\ \\ \hline \underline{\text{C}}_{5}\underline{\text{H}}_{11}\underline{\text{O}}, 87.0809 \\ \end{array}$	12 5 3	34 50 53-	35 58 99
$\begin{array}{c} \text{CH}_{3}\text{O}-\text{CO}-\text{CH}_{2}\text{CH}_{2}\text{-:} \text{CH}_{2} \ 55\%, \ -\text{CH}=\ 15\% \\ \text{CH}_{3}\text{O}-\text{CO}-\text{CH}(-)-\text{CH}_{2}\text{-:} \text{CH}_{2} \ 70\%; \ \text{CH}_{2} \ 55\% \\ \text{CH}_{3}\text{O}-\text{CO}-\text{CH}=\text{CH}-: \ \text{CH}_{2} \\ -\text{O}-\text{CO}(\text{CH}_{2})_{3}\text{-,} \ \text{HO}-\text{CO}-(\text{CH}_{2})_{3}\text{-,} \\ -\text{CO}-\text{O}(\text{CH}_{2})_{3}\text{-,} \ -\text{CH}_{2}\text{O}-\text{CO}-(\text{CH}_{2})_{2}\text{-,} \\ -\text{CO}-(\text{CH}_{2})_{3}\text{-O}\text{-,} \ \text{CH}_{3}\text{-dioxolanyl-,} \\ \text{CH}_{3}\text{CO}-\text{O}(\text{CH}_{2})_{2}\text{-} \\ \\ \hline \\ \frac{\text{C}_{5}\text{H}_{11}}{\text{O}, \ 87.0809} \\ \text{HOC}(\text{C}_{2}\text{H}_{5})_{2}\text{-,} \ \text{HOC}(\text{C}_{3}\text{H}_{7})(\text{CH}_{3})\text{-,} \end{array}$	12 5 3	34 50 53-	35 58 99
$\begin{array}{l} \text{CH}_{3}\text{O}-\text{CO}-\text{CH}_{2}\text{CH}_{2}\text{-:} \text{CH}_{2} \ 55\%, \ -\text{CH}=\ 15\% \\ \text{CH}_{3}\text{O}-\text{CO}-\text{CH}(-)-\text{CH}_{2}\text{-:} \text{CH}_{2} \ 70\%; \ \text{CH}_{2} \ 55\% \\ \text{CH}_{3}\text{O}-\text{CO}-\text{CH}=\text{CH}-: \ \text{CH}_{2} \\ -\text{O}-\text{CO}(\text{CH}_{2})_{3}\text{-,} \ \text{HO}-\text{CO}-(\text{CH}_{2})_{3}\text{-,} \\ -\text{CO}-\text{O}(\text{CH}_{2})_{3}\text{-,} \ -\text{CH}_{2}\text{O}-\text{CO}-(\text{CH}_{2})_{2}\text{-,} \\ -\text{CO}-(\text{CH}_{2})_{3}\text{-O}\text{-,} \ \text{CH}_{3}\text{-dioxolanyl-,} \\ \text{CH}_{3}\text{CO}-\text{O}(\text{CH}_{2})_{2}\text{-} \\ \\ \text{C}_{5}\text{H}_{11}\text{O}, \ 87.0809 \\ \text{HOC}(\text{C}_{2}\text{H}_{5})_{2}\text{-,} \ \text{HOC}(\text{C}_{3}\text{H}_{7})(\text{CH}_{3})\text{-,} \\ \text{HOCH}(\text{C}_{4}\text{H}_{9})\text{-} \end{array}$	12 5 3	34 50 53- 23 22	35 58 99 55
$\begin{array}{c} \text{CH}_3\text{O}-\text{CO}-\text{CH}_2\text{CH}_2\text{:} \text{CH}_2 55\%, -\text{CH}= 15\% \\ \text{CH}_3\text{O}-\text{CO}-\text{CH}(-)-\text{CH}_2\text{:} \text{CH}_2 70\%; \text{CH}_2 55\% \\ \text{CH}_3\text{O}-\text{CO}-\text{CH}=\text{CH}-: \text{CH}_2 \\ -\text{O}-\text{CO}(\text{CH}_2)_3\text{,} \text{HO}-\text{CO}-(\text{CH}_2)_3\text{,} \\ -\text{CO}-\text{O}(\text{CH}_2)_3\text{,} -\text{CH}_2\text{O}-\text{CO}-(\text{CH}_2)_2\text{,} \\ -\text{CO}-\text{(CH}_2)_3\text{-O}-, \text{CH}_3\text{-dioxolanyl-,} \\ \text{CH}_3\text{CO}-\text{O}(\text{CH}_2)_2 \\ \text{CH}_3\text{CO}-\text{O}(\text{CH}_2)_2 \\ \\ \frac{\text{C}_5\text{H}_{11}}{\text{O}}, & 87.0809 \\ \text{HOC}(\text{C}_2\text{H}_5)_2\text{,} \text{HOC}(\text{C}_3\text{H}_7)(\text{CH}_3)\text{,} \\ \text{HOCH}(\text{C}_4\text{H}_9) \\ \text{C}_4\text{H}_9\text{OCH}_2\text{,} \text{C}_2\text{H}_5\text{OC}(\text{CH}_3)_2\text{,} \end{array}$	12 5 3	34 50 53- 23 22	35 58 99 55
$\begin{array}{l} \text{CH}_{3}\text{O}-\text{CO}-\text{CH}_{2}\text{CH}_{2}\text{-:} \text{CH}_{2} \ 55\%, \ -\text{CH}=\ 15\% \\ \text{CH}_{3}\text{O}-\text{CO}-\text{CH}(-)-\text{CH}_{2}\text{-:} \text{CH}_{2} \ 70\%; \ \text{CH}_{2} \ 55\% \\ \text{CH}_{3}\text{O}-\text{CO}-\text{CH}=\text{CH}-: \ \text{CH}_{2} \\ -\text{O}-\text{CO}(\text{CH}_{2})_{3}\text{-,} \ \text{HO}-\text{CO}-(\text{CH}_{2})_{3}\text{-,} \\ -\text{CO}-\text{O}(\text{CH}_{2})_{3}\text{-,} \ -\text{CH}_{2}\text{O}-\text{CO}-(\text{CH}_{2})_{2}\text{-,} \\ -\text{CO}-(\text{CH}_{2})_{3}\text{-O}\text{-,} \ \text{CH}_{3}\text{-dioxolanyl-,} \\ \text{CH}_{3}\text{CO}-\text{O}(\text{CH}_{2})_{2}\text{-} \\ \\ \text{C}_{5}\text{H}_{11}\text{O}, \ 87.0809 \\ \text{HOC}(\text{C}_{2}\text{H}_{5})_{2}\text{-,} \ \text{HOC}(\text{C}_{3}\text{H}_{7})(\text{CH}_{3})\text{-,} \\ \text{HOCH}(\text{C}_{4}\text{H}_{9})\text{-} \end{array}$	12 5 3 2 11 11	34 50 53- 23 22	35 58 99 55 60

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
<u>С₄Н₉NO, 87.0683</u>	4	25	74
CH ₃ ON=C(CH ₃)CH ₂ -: CH ₂	8	90	99
(CH ₃) ₂ N-CO-CH ₂ -	2	99+	99
$CH_3CO-NH(CH_2)_2-$, $C_3H_7CO-NH-$,			
CH ₃ CO-N(CH ₃)-CH ₂ -	28	18	85
$\underline{C_3H_3O_3}$, 87.0082 -CO-CH ₂ CO-O-,			
-CO-CH(-)-CO-O-, -CO-O-CH ₂ CH ₂ O-,			
-CH(O-)-CH(OH)-CH(O-)-, -CH(OH)CH ₂ O-CO- -CH(C ₂ H ₅)O-CO-, -(CH) ₃ (-)(OH)(O-)-O-	4	19	56
$-cn(c_2n_5)o-co-$, $-(cn)_3(-)(on)(o-)-o-$			
<u>C₄H₇S, 87.0271</u>	3	20	83
Thiacyclopentyl-: CH ₂	5	99	75
other thiacycloalkanes (cycS)	75	20	70
G W NO	0	20	CO.
$\underline{C_{3}H_{5}NO_{2}}, 87.0319$	$\frac{3}{7}$	20 37-	<u>62</u> 99
-CH ₂ C(NH ₂)(COOH)-	3	59-	99
CH ₃ O-CO-CH(NH ₂)-	3	33-	33
CH ₃ CO-N(-)-CO-, -CH(OH)CH ₂ N(-)-CO-,			
$-NHCH(-)-CO-OCH_2-$, $CH_3O-CO-CH_2-NH-$, $(arN)-CO-OCH_2-$, $-C(=NOH)-C(OH)(-)-$	30	25	75
also $C_5H_{13}N$, 87.1047 ((C_2H_5) ₂ NCH ₂ -); C_4H_4			_
$C_3H_7N_2O$, 87.0556; $C_4H_{11}Si$, 87.0530 ($C_2H_{11}Si$)			
3-7-2-,, -4 11-, 2	5 `	3'2	•
m/z 88 (17%)	5%	22%	
$\underline{C_4}\underline{H_8}\underline{O_2}, 88.0524$	_22_	29	66
CH ₃ O-CO-CH(CH ₃)-: CH ₂ 70%	13	80	92
С ₂ H ₅ O-CO-CH ₂ -: CH ₂ 55%, C=O 15%, CH 15%		52	78 75
$\text{HO-CO-CH}(\text{C}_2\text{H}_5)$ -, $\text{HO-CO-C}(\text{CH}_3)_2$ -	4	30	75 20
cyc-CH(OCH ₃)CH(OCH ₃)-	2	56	22
also C ₂ H ₅ OC(-)(CH ₃)O-			

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\underline{C}_{7}\underline{H}_{4}$, 88.0131 ext/substd ar	16	10	84
<u>С₃Н₆NO₂, 88.0397</u>	6	26	78
-CH(-CO-OCH ₃)-NH-: CH ₂ 60%, C=O 70%	31	32	80
CH ₃ O-CO-CH ₂ NH-: C=O 65%, Si, 15%	9	25	80
also CH ₃ O-CO-CH(NH ₂)-			
$\underline{C_{3}H_{4}O_{3}}$, 88.0160	4	24	48
-CH(O-)CH(OCH ₃)O-	9	67	33
also C_4H_5C1 , 88.0079; $C_5H_{12}O$, 88.0887 (CH	1 ₃ 0-cy	yc);	
$C_6^{H_2^{N}}$, 88.0186 (arN); $C_4^{H_{10}^{NO}}$, 88.0661			
$(CH_3OCH_2NHCH(CH_3)-); C_4H_8S, 88.0350$			
$(-CH(CH_3)CH_2SCH_2-); C_3H_8N_2O, 88.0635$			
m/z 89 (28%)	11%	15%	
$\underline{\text{C}}_{7}\underline{\text{H}}_{5}$, 89.0391 ext-arY, unsatd-ar	36	12	83
<u>C6H3N, 89.0265</u> arN	9	12	61
$\underline{C_4}\underline{H_9}\underline{O_2}$, 89.0602	7	17	78_
С ₃ H ₇ -CO-О-: СН ₂ 85%	10	32	74
also C ₃ H ₇ OCH(-)0-			
$\underline{C_{3}}\underline{H_{5}}\underline{O_{3}}$, 89.0238 $\underline{CH_{3}}$ -CO-CO-O-	3	25	67
<u>C</u> ₆ HO, 89.0027 arO, ar-CO-	5	13	65
$\underline{\mathrm{C}_{4}\mathrm{H}_{9}\mathrm{S}}$, 89.0428 $\underline{\mathrm{C}_{3}\mathrm{H}_{7}\mathrm{SCH}_{2}}$ -, $\underline{\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{SCH}(\mathrm{CH}_{3})}$ -	2	28	61
C H NO. 90 0475 NO GO GY/NY NO.			
$\underline{\text{C}}_{3}\underline{\text{H}}_{7}\underline{\text{NO}}_{2}$, 89.0475 HO-CO-CH(NH ₂)CH ₂ -, $\underline{\text{CH}}_{3}$ O-CO-CH ₂ NH-, HO-CO-C(CH ₃)(NH ₂)-	2	14	76
$\underline{\text{C}_{3}\text{H}_{9}\text{OSi}}$, 89.0322 -CH ₂ OSi(CH ₃) ₂ -	1_	25	99
also C_3H_5OS , 89.0064 (1,3-oxathiolany1);	С ₄ Н ₆ С	C1,	

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
89.0157 (C1CH=C(CH ₃)CH ₂ -); C_5HN_2 , 89.01	.38 (8	arN ₂)	
m/z 90 (19%)	7%	14%	
$\underline{c}_{7}\underline{H}_{6}$, 90.0469	33	12	83
$C_{6}H_{4}N$, 90.0343 arN, ar-NH-	14	11	62
$C_{6}H_{2}O, 90.0105$ ar(CO), arO, ar-O-	7	13	56
$\frac{\text{C}_5\text{H}_2\text{N}_2}{\text{M}_2}$, 90.0216 arN ₂	4	16	43
<u>Сзн</u> 603, 90.0316	2_	23	76
CH ₃ O-CO-CH(OH)-: CH, CH ₂ also C ₂ H ₅ O-CO-O-	25	70	87
<u>С₃Н₈NO₂, 90.0554</u> СН ₃ О-СО-СН ₂ NH-	1	22	80
0 0 2			
also C_4H_7C1 , 90.0235 (C_4H_8C1 -); $C_4H_{10}S$, 9	0.050	06	
0 0 2	0.050	06	
also C_4H_7C1 , 90.0235 (C_4H_8C1 -); $C_4H_{10}S$, 9 (C_4H_9S -); C_5NO , 89.9979; $C_4H_{10}O_2$, 90.06	0.050	о6 Сз ^н 6 ^{ОS}	
also C_4H_7C1 , 90.0235 (C_4H_8C1 -); $C_4H_{10}S$, 9 (C_4H_9S -); C_5NO , 89.9979; $C_4H_{10}O_2$, 90.06 90.0142; C_4N_3 , 90.0090 (arN_2 -N(-)-, arN_2 -M/Z 91 (46%)	0.050 880; 0 1 ₃)	о6 Сз ^н 6 ^{ОS}	
also C_4H_7C1 , 90.0235 (C_4H_8C1 -); $C_4H_{10}S$, 9 (C_4H_9S -); C_5NO , 89.9979; $C_4H_{10}O_2$, 90.06 90.0142; C_4N_3 , 90.0090 (arN ₂ -N(-)-, arN	0.050 880; 0 1 ₃)	о6 Сз ^н 6 ^{ОS}	
also C_4H_7C1 , 90.0235 (C_4H_8C1 -); $C_4H_{10}S$, 9 (C_4H_9S -); C_5NO , 89.9979; $C_4H_{10}O_2$, 90.06 90.0142; C_4N_3 , 90.0090 (arN ₂ -N(-)-, arN m/z 91 (46%)	11%	06 C ₃ H ₆ OS 38%	5,
also C_4H_7C1 , 90.0235 (C_4H_8C1 -); $C_4H_{10}S$, 9 (C_4H_9S -); C_5NO , 89.9979; $C_4H_{10}O_2$, 90.06 90.0142; C_4N_3 , 90.0090 (arN_2 -N(-)-, arN_2 - m/z 91 (46%) $\frac{m/z}{C_7H_7} \frac{91.0547}{c_{H_3}-phenyl-Y_n}$ phenyl- CH_2 -Y, phenyl- $C(-Y)_n$ etc	0.050 80; (13) 11%	06 C ₃ H ₆ OS 38%	82
also C_4H_7C1 , 90.0235 (C_4H_8C1 -); $C_4H_{10}S$, 9 (C_4H_9S -); C_5NO , 89.9979; $C_4H_{10}O_2$, 90.06 90.0142; C_4N_3 , 90.0090 (arN_2 -N(-)-, arN_2 - m/z 91 (46%) C_7H_7 , 91.0547 phenyl- CH_2 -Y, phenyl- $C(-Y)_n$ CH_3 -phenyl- Y_n , etc C_6H_5N , 91.0421 cycN-ar, ar - NH -, arN_2	0.050 680; (13) 11% 39	06 C ₃ H ₆ OS 38% 44 30 28	82 58
also C_4H_7C1 , 90.0235 (C_4H_8C1 -); $C_4H_{10}S$, 9 (C_4H_9S -); C_5NO , 89.9979; $C_4H_{10}O_2$, 90.06 90.0142; C_4N_3 , 90.0090 (arN_2 -N(-)-, arN_2 -N(-)-, arN_3 -phenyl-Y _n , etc $\frac{C_7H_7}{CH_3$ -phenyl-Y _n , etc C_6H_5N , 91.0421 cycN-ar, ar-NH-, arN $\frac{C_6H_3O$, 91.0184 ar-CO-, arO, etc	10.050 11% 39 10	28 36	82 58
also C_4H_7C1 , 90.0235 (C_4H_8C1 -); $C_4H_{10}S$, 9 (C_4H_9S -); C_5NO , 89.9979; $C_4H_{10}O_2$, 90.06 90.0142; C_4N_3 , 90.0090 (arN_2 -N(-)-, arN_2 -N/2 91 (46%) C_7H_7 , 91.0547 phenyl- CH_2 -Y, phenyl- $C(-Y)_n$ CH_3 -phenyl- Y_n , etc C_6H_5N , 91.0421 cycN-ar, ar-NH-, arN C_6H_3O , 91.0184 ar-CO-, arO, etc $C_5H_3N_2$, 91.0295 arN_2 , ar -N=N-, etc	0.050 680; (13) 11% 39 10 10	28 36	82 58 56 40

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$ \begin{array}{l} \underline{\text{C}_5}\text{HNO, 91.0057} \text{ ar-NO, cycN(C=O),} \\ \hline \text{arN(C=O), etc} \\ \text{also C}_3\text{H}_4\text{OC1, 90.9950 (C1C}_2\text{H}_4\text{-CO-); C}_2\text{H}_5\text{NC} \\ \text{CHNS}_2, 90.9556 (-\text{C(=S)NH-}); C}_3\text{H}_7\text{O}_3, 91. \\ \text{(C}_2\text{H}_5\text{OC(-)(-O-)}_2) \\ \end{array} $			
m/z 92 (31%)	11%	15%	
$\underline{\text{C}}_{7}\underline{\text{H}}_{8}$, 92.0626 phenyl-CH ₂ - etc	32	13	85
$C_{6}H_{4}O, 92.0262$ aro, ar(C=O), ar-O-, ar-OH	12	13	55
$\underline{\text{C}}_{6}\underline{\text{H}}_{6}\underline{\text{N}}$, 92.0499 pyridyl-CH ₂ -, ar-NH ₂ ,			
ar-NH-	8	14	52
$\underline{C}_{5}\underline{H}_{4}\underline{N}_{2}$, 92.0373 arN ₂ , etc	4	16	43
0 2		12	
also $\mathrm{C_4H_2N_3}$, 92.0246; $\mathrm{C_4N_2O}$, 92.0009; $\mathrm{C_5O}$ CHBr, 91.9261; $\mathrm{C_3H_8O_3}$, 92.0473 (HOCH2CH			
m/z 93 (35%)	8%	34%	
$\underline{C_7}\underline{H_9}$, 93.0704 terpenes, cyclohexenyl-,			
polyunsatd cyc hc	24	41	89
$\underline{C}_{6}\underline{H}_{5}\underline{O}$, 93.0340 phenyl-O-, HO-phenyl-			
ar-CO-, ar-O-, subst/cyc(C=O), etc	15	26	66
$\underline{C}_{6}\underline{H}_{7}\underline{N}$, 93.0577 pyridyl-CH ₂ -, phenyl-NH-,			
ar-amines, cyc-NH-, CH ₃ -pyridyl-	8	35	62
$\underline{C_5H_5N_2}$, 93.0451 $\underline{CH_3}$ -pyrazinyl-,			
R_2 N-pyridyl-, arN ₂ , ar-N=N-, arN-NH ₂	3	26	46

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\frac{\text{C}_5\text{H}_3\text{NO}, 93.0214}{\text{cyclopentadienyl-NO, ar-NO, arN-OH}}$	3	22	45
$\underline{\text{C}}_{5}\underline{\text{HO}}_{2}$, 92.9976 ar-(0-) ₂ , ar0-C0-, etc	3	27	42
$\underline{C_4}\underline{H_3}\underline{N_3}$, 93.0325 arN ₃ , etc	2_	22	37
$\underline{\text{C}_4\text{HN}}_2\underline{\text{O}}$, 93.0078 arN ₂ (C=O), ar-NH-CO-NH-	2	36	41
$\underline{C_3F_3}$, 92.9952 unsatd, perhalocarbon	2	22	73
$\frac{\text{C}_{3}\text{H}_{6}\text{OC1, 93.0106}}{\text{C1CH}_{2}\text{C(OH)(CH}_{3})-, \text{ etc}}\text{C1CH}_{2}$	1_	50	65
CH ₂ Br, 92.9339 BrCH ₂ -, cyc-Br also CH ₂ O ₃ P, 92.9741 (CH ₃ OP(=O)(-)O-); C ₂		24 Si,	84_
93.9922 ((CH ₃) ₂ SiCl-)			
m/z 94 (27%)	8%	19%	
m/z 94 (27%) $\underline{\text{C}}_{7}\underline{\text{H}}_{10}, \ 94.0782 \text{ polyunsatd/cyc hc}$		19% 17	91
$\underline{C_{7}}_{10}^{\underline{H}}$ 94.0782 polyunsatd/cyc hc			91
	22	17	
$\underline{C_{7}H_{10}}$, 94.0782 polyunsatd/cyc hc $\underline{C_{6}H_{6}O}$, 94.0418	22 19 14	17 22 56	65 72
$\frac{\text{C}_{7}\text{H}_{10}, \ 94.0782}{\text{C}_{6}\text{H}_{6}\text{O}, \ 94.0418}} \text{ polyunsatd/cyc hc}$ $\frac{\text{C}_{6}\text{H}_{6}\text{O}, \ 94.0418}{\text{C}_{6}\text{H}_{5}\text{O-}: \ \text{CH}_{2}} \text{ 55\%, C=0 15\%}$	22 19 14 cyc-0	17 22 56 CO-O-,	65 72
$\frac{\text{C}_{7}\text{H}_{10}, \ 94.0782}{\text{C}_{6}\text{H}_{6}\text{O}, \ 94.0418}} \text{ polyunsatd/cyc hc}$ $\frac{\text{C}_{6}\text{H}_{6}\text{O}, \ 94.0418}{\text{C}_{6}\text{H}_{5}\text{O-: CH}_{2} \ 55\%, \ \text{C=O 15\%}} \text{ also ar-OH, ar-OCH}_{3}, \text{ substd alkanones,}$	22 19 14 cyc-0	17 22 56 CO-O-,	65 72 etc
$\begin{array}{l} \underline{\text{C}}_{7}\underline{\text{H}}_{10}, \ 94.0782 \ \text{polyunsatd/cyc hc} \\ \\ \underline{\text{C}}_{6}\underline{\text{H}}_{6}\text{O}, \ 94.0418} \\ \\ \text{C}_{6}\text{H}_{5}\text{O-: CH}_{2} \ 55\%, \ \text{C=O 15\%} \\ \\ \text{also ar-OH, ar-OCH}_{3}, \ \text{substd alkanones,} \\ \\ \underline{\text{C}}_{6}\underline{\text{H}}_{8}\underline{\text{N}}, \ 94.0656} \ \text{subst amines, imines, etc} \\ \end{array}$	22 19 14 cyc-0	17 22 56 CO-O-,	65 72 etc
$\begin{array}{c} \underline{C_{7}}\underline{H_{10}}, \ 94.0782 \ \text{polyunsatd/cyc hc} \\ \\ \underline{C_{6}}\underline{H_{6}}0, \ 94.0418 \\ \underline{C_{6}}\underline{H_{5}}0-: \ \underline{CH_{2}} \ 55\%, \ \underline{C=0} \ 15\% \\ \text{also ar-OH, ar-OCH}_{3}, \ \text{substd alkanones,} \\ \\ \\ \underline{C_{6}}\underline{H_{8}}\underline{N}, \ 94.0656 \ \text{subst amines, imines, etc} \\ \\ \\ \underline{C_{5}}\underline{H_{4}}\underline{NO}, \ 94.0292 \ \text{pyrrolyl-CO-, HO-arN-,} \end{array}$	19 14 cyc-(17 22 56 CO-O-,	65 72 etc 57
$\begin{array}{c} \underline{C_7 H_{10},\ 94.0782} \text{ polyunsatd/cyc hc} \\ \\ \underline{C_6 H_6 O,\ 94.0418} \\ \underline{C_6 H_5 O:\ CH_2\ 55\%,\ C=0\ 15\%} \\ \text{also ar-OH, ar-OCH}_3, \text{ substd alkanones,} \\ \\ \underline{C_6 H_8 N,\ 94.0656} \text{ subst amines, imines, etc} \\ \\ \underline{C_5 H_4 NO,\ 94.0292} \text{ pyrrolyl-CO-, HO-arN-,} \\ \text{etc} \\ \end{array}$	19 14 cyc-(17 22 56 CO-O-,	65 72 etc 57
$\begin{array}{l} \underline{C_7}\underline{H_{10}}, \ 94.0782 \ \text{polyunsatd/cyc hc} \\ \underline{C_6}\underline{H_6}0, \ 94.0418 \\ \underline{C_6}\underline{H_5}0-: \ \underline{CH_2} \ 55\%, \ \underline{C=0} \ 15\% \\ \text{also ar-OH, ar-OCH}_3, \ \text{substd alkanones,} \\ \underline{C_6}\underline{H_8}\underline{N}, \ 94.0656 \ \text{subst amines, imines, etc} \\ \underline{C_5}\underline{H_4}\underline{NO}, \ 94.0292 \ \text{pyrrolyl-CO-, HO-arN-, etc} \\ \underline{C_5}\underline{H_2}\underline{O_2}, \ 94.0054 \ \text{ar(C=O)-CO-, subst} \end{array}$	19 14 cyc-(7	17 22 56 CO-O-, 19	65 72 etc 57

		111/2	30-30
m/z, comp Substructure, neighbor also C ₄ H ₂ N ₂ O, 94.0165 (C ₃ H ₂ N ₂ -CO-); C ₄ H ₄ N (ext-arN ₃); C ₃ H ₂ N ₄ , 94.0276 (ext-arN ₄); 93.9376; C ₂ H ₆ S ₂ , 93.9917 (C ₂ H ₅ S-S-)	U	.0403	
m/z 95 (34%)	17%	26%	
C_7 H_{11} , 95.0860 polyunsatd/cyc hc	26	25	92
$\frac{\text{C}_{6}\text{H}_{7}\text{O}, 95.0496}{\text{oxygen cpds}}$ ar or cyc/subst/unsatd	16	25	67
$\underline{C_{5}H_{3}O_{2}}$, 95.0133 furyl-CO-, ar(-O-CO-), subst/cyc -CO-OCH ₃ , etc	5	23	55
C_6H_9N , 95.0734 cyc imine, nitriles, cyc/unsatd amine	3	18	56
$\underline{C_{5}H_{5}NO}$, 95.0370 pyridyl-O-, ar(N-CO-), subst/cyc-NH-CO-, ar-NO	3	16	48_
$\frac{\text{C}_5\text{H}}{7}\frac{\text{M}_2}{2}$, 95.0607 arN ₂ , cyc imine	2	24	51
$\frac{\mathrm{C_4H_3N_2O,~95.0244}}{\mathrm{arN_2-OH,~etc}}$ imidazole-CO-, $\mathrm{arN_2-CO-,}$	2	20	48
$\underline{\text{C}_4\text{HNO}_2}$, 95.0006 arN(CO) ₂ , -CO-ar-NH-CO-	1	14	42
also $C_4H_5N_3$, 95.0481 (arN ₂ -NH ₂); C_3HN_3O , C_2HCl_2 , 94.9454; $C_3H_3N_4$, 95.0355; CH_4O_3 ($CH_3OP(=O)O-$); C_6H_4F , 95.0297 (ar-F)			3
m/z 96 (28%)	9%	19%	
$\underline{\text{C}}_{7}\underline{\text{H}}_{12}$, 96.0938 substd/cyc/unsatd hc	23	19	81
$\frac{\text{C}_6\text{H}_8\text{O}, 96.0575}{\text{cyc-O-, etc}}$ R-CO-, substd/cyc ketones,	19	18	60_

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\frac{\text{C}_6\text{H}_{10}\text{N}, 96.0812}{\text{substd/cyc amines, NC-C}_5\text{H}_{10}}$	7	22	58_
$\begin{array}{c} \underline{\text{C}}_5\underline{\text{H}}_4\text{O}_2, \ 96.0211 \ \text{unsatd esters, etc} \\ \text{also C}_5\underline{\text{H}}_6\text{NO}, \ 96.0448; \ \text{C}_5\underline{\text{H}}_8\text{N}_2, \ 96.0686 \ (\text{ar} \\ \text{C}_4\underline{\text{H}}_2\text{NO}_2, \ 96.0084 \ (\text{NHar}(\text{C=O})_2, \ \text{etc}); \ \text{C}_4\underline{\text{H}} \\ \text{(arN}_2\text{-OH etc}); \ \text{C}_4\underline{\text{H}}_6\text{N}_3, \ 96.0559 \ (\text{C}_2\underline{\text{H}}_5\text{-ar} \\ 95.9532; \ \text{C}_3\underline{\text{H}}_4\text{N}_4, \ 96.0433 \end{array}$	N-NH- 4 ^N 2 ^O ,	96.0), 322
m/z 97 (32%)	15%	21%	
$\underline{\text{C}}_{7}\underline{\text{H}}_{13}$, 97.1017 CH_{3} -cyclohexyl etc	23	21	88_
$\frac{\text{C}_6\text{H}_9\text{O}, 97.0653}{\text{(cyclopenty1-CO-, cyc-CH}_2\text{CH(C}_3\text{H}_7)-\text{CO-}}\\ \text{etc), epoxycyclohexy1, C}_3\text{H}_7\text{CH=CH-CO-}\\ \text{etc, cyc/subst/unsatd -O-/-OH}$	21	19	71_
$\underline{C}_{5}\underline{H}_{5}\underline{O}_{2}$, 97.0289 cyc/unsatd/subst $\underline{C}_{5}\underline{H}_{5}\underline{O}_{2}$, 97.0289 cyc/unsatd/subst pentadione)	7	21	52
$\frac{\text{C}_6\text{H}_{11}\text{N}, 97.0890}{\text{CH}_3\text{-pyrrolizidinyl-, subst/cyc/unsatd}} \text{ amines} \\ \text{NC(CH}_2)_5\text{-}, \\ \text{CH}_3\text{-pyrrolizidinyl-, subst/cyc/unsatd}$	4	18	62
$\begin{array}{c} \underline{\text{C}}_5\underline{\text{H}}_7\underline{\text{NO}},\ 97.0526\ \text{CH}_3\text{-oxazoles},\\ \text{cyc/unsatd}\ -\text{N(-)-/-NH-/-N=/C=O/-OH/-O-}\\ \text{also}\ \text{C}_4\underline{\text{H}}_3\underline{\text{NO}}_2,\ 97.0163\ (\text{-CH=CH-CO-N(-)-CO-C}_4\underline{\text{H}}_5\underline{\text{N}}_2\underline{\text{O}},\ 97.0400\ (\text{carbamyl});\ \text{C}_4\underline{\text{HO}}_3,\ 96.\\ 97.0764;\ \text{C}_5\underline{\text{H}}_5\underline{\text{S}},\ 97.0115\ (\text{thiophenyl-CH}_2\\ \text{C}_2\underline{\text{H}}_3\underline{\text{Cl}}_2,\ 96.9611;\ \text{C}_2\underline{\text{OF}}_3,\ 96.9901\ (\text{-C}_2\underline{\text{HF}}_5\underline{\text{CF}}_3\text{-CO-}) \end{array}$, ar- 9925; -, ar	·NO ₂); ·C ₅ H ₉ ·-SCH ₃	N ₂ ,

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 98 (26%)	10%	19%	
$\underline{C_{7}}\underline{H_{14}}$, 98.1094 H-C ₇ H ₁₄ -Y*, H-C ₇ H ₁₄ -R-Y*	22	12	79
$\underline{C}_{6}\underline{H}_{10}\underline{O}$, 98.0731 2-R-cyclohexanone,			
$R-(CH_2)_5-CO-Y$, $C_2H_5CH=CH-CO-CH_2-$,			
cyc/subst ketones/-0-/-OH, etc	_18	20	60_
$C_5H_6O_2$, 98.0367 furyl-CH(OH)-,			
2,3-(CH ₃) ₂ -4-pyrones, substd/cyc esters	5		
etc	_11_	19	53
CH N 98 0968 cyc/substd amines			
$\underline{\text{C}_6\text{H}_{12}\text{N},~98.0968}}$ cyc/substd amines, (piperidine-CH ₂ -), C_4H_9 -CH=NCH ₂ - etc	6	29	60_
$\underline{C_{5}H_{8}NO}$, 98.0605 cyc amides (valerolactams	5		
etc), $(CH_3)_2$ NCH=CH-CO-,			
$-(CH_2)_3CH(NH_2)-CO-, OCN-C_4H_8-$	5	25	50
also $C_4H_4NO_2$, 98.0241 ($H_2N-CO-CH=CH-CO-$)	C ₅ H ₁	LO ^N 2,	
98.0842 ($C_5H_{11}-N=N-$); $C_4H_2O_3$, 98.0003			
(HO-CO-CH=CH-CO-, HO-CO-ar-CO-); $C_4H_6N_5$	₂ 0, 98	3.0478	3;
$\mathrm{C_4H_4NS}$, 98.0065 (thiazole- $\mathrm{CH_2}$ -)			
m/z 99 (26%)	9%	17%	
$\frac{\text{C}_{6}\text{H}_{11}\text{O}, 99.0809}{\text{C}_{6}\text{H}_{11}}$		15	62
C_5H_{11} -CO-: CH_2 20%, -CH= 18%, -NH- 16%	9	40	65
$-(CH_2)_5-CO-, -(CH_2)_5CH(OH)-,$			
$-(CH_2)_4$ CH(OH)CH(-)-, $-CH_2$ CH(C_4 ^H ₉)O-	13	20	60
$\underline{C}_{5}\underline{H}_{7}\underline{O}_{2}$, 99.0445 delta- and \underline{CH}_{3} -gamma-			
lactones, $-(CH_2)_4$ -CO-O-, CH_3 -CO- C_2H_4 -CO	0-,		
1-dioxolany1(-)-cyc-CH2CH2-	_14_	18	60

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\begin{array}{l} \underline{\text{C}}_{7}\underline{\text{H}}_{15}, \ 99.1173 \ \text{satd hc} \\ \text{also C}_{5}\underline{\text{H}}_{9}\text{NO}, \ 99.0319 \ (\text{OCN-(CH}_{2})_{4}\text{-}); \ \text{C}_{4}\underline{\text{H}}_{5}\text{NO}, \\ (\text{arN-CO-OC}_{2}\underline{\text{H}}_{5}); \ \text{C}_{6}\underline{\text{H}}_{13}\text{N}, \ 99.1047; \ \text{C}_{4}\underline{\text{H}}_{3}\text{O}_{3} \\ \\ \underline{\text{C}}_{5}\underline{\text{H}}_{11}\underline{\text{N}}_{2}, \ 99.0920 \ (\text{cycN}_{2}); \ \underline{\text{C}}_{5}\underline{\text{H}}_{7}\text{S}, \ 99.027 \\ \\ \underline{\text{C}}_{4}\underline{\text{H}}_{5}\text{NS}, \ 99.0145 \ (\text{thiazole-CH}_{2}\text{-}) \end{array}$	0 ₂ , 9	0082;	L9
m/z 100 (18%)	6%	18%	-
$\frac{\text{C}_5\text{H}_{10}\text{NO}, \ 100.0761}{\text{-(CH}_2)_4\text{-NH-CO-}, \ \text{CH}_3\text{O-N=C(CH}_3)\text{CH(CH}_3)-}$	8	24	62_
$\underline{\text{C}}_{5}\underline{\text{H}}_{8}\underline{\text{O}}_{2}$, 100.0524 $\underline{\text{CH}}_{3}$ O-CO-CH=CH-CH $_{2}$, (CH $_{3}$ -CO-) $\underline{\text{C}}_{2}$ CH-	13	15	59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	17	68
$\frac{\text{C}_{6}\text{H}_{12}\text{O}, 100.0887}{\text{C}_{4}\text{H}_{9}\text{O-ar}}$ $\text{C}_{2}\text{H}_{5}\text{-CO-C(CH}_{3})_{2}\text{-},$	9	11	64
$\underline{\text{C}_4\text{H}_6\text{NO}_2}$, 100.0397 -CH ₂ C(=NOCH ₃)-CO-, -CH=CHCH ₂ NH-CO-O-	5	16	54_
$\frac{\text{C}_4\text{H}_4\text{O}_3, 100.0160}{\text{HO-CO-C(-)}_2\text{CH}_2\text{-CO-}}$ substd trioxane,	_5_	15	50
C_8H_4 , 100.0313 ar/unsatd hc	7	10	71
$ \begin{array}{l} \underline{\text{C}}_5\underline{\text{H}}_{12}\underline{\text{N}}_2, \ \ 100.0998 \\ \\ \text{cyc-CH}_2\text{CH}_2\text{N}(\text{CH}_2\text{CH}_2\text{CH}_2\text{NH-})-, \\ -\text{CH}_2\text{CH}_2\text{N}(-)(\text{CH}_2)_3\text{NH-} \\ \\ \text{also } \text{C}_4\text{H}_8\text{N}_2\text{O}, \ 100.0635 \ (-\text{NH}(\text{CH}_2)_3\text{N}(-)-\text{CO-} \\ \\ 100.0033 \ \ (\text{HO-CO-CH}(-)\text{NH-CO-}); \ \text{C}_2\text{F}_4, \ 99. \end{array} $			

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 101 (25%)	8%	22%	
$\underline{\text{C}_5\text{H}_9\text{O}_2}$, $\underline{\text{101.0602}}$ $\underline{\text{C}_2\text{H}_5\text{O}-\text{CO}-\text{CH}_2\text{CH}_2}$ -, $\underline{\text{C}_4\text{H}_9\text{O}-\text{CO}-}$, $\underline{\text{cyc}-\text{CH}_2\text{CH}_2\text{C}(\text{OCH}_3)}_2$ -,			
$^{\text{C}_2\text{H}_5}_{5}$ -dioxolanyl-, -(CH $_2$) $_3$ -CO-O-CH $_2$ -	19	21	60
$\underline{C}_{8}\underline{H}_{5}$, 101.0391 -styrenyl- \underline{Y}_{2}^* , ext-ar	12	11	75
$\frac{\text{C}_{6}\text{H}_{13}\text{O}, \ 101.0966}{\text{C}_{4}\text{H}_{9}\text{C}(\text{CH}_{3})(\text{OH})-, \ \text{CH}_{3}\text{CH}(-)(\text{CH}_{2})_{3}\text{C}(-)(\text{CH}_{2})$	ЭН)-, 8	13	68
$\underline{\text{C}}_4\underline{\text{H}}_5\underline{\text{O}}_3$, $\underline{\text{101.0238}}$ $\underline{\text{CH}}_3\text{O-CO-CH}_2\text{-CO-}$, $\underline{\text{-O(CH}}_2)_3\text{-CO-O-}$, $\underline{\text{-CH}}_2\text{-CO-OCH}_2\underline{\text{CH}}_2\text{O-}$, $\underline{\text{CH}}_3\text{O-CO-CH}(-)\text{-CO-}$,			
cyc-CH ₂ CH(-O-)CH(-O-)-O-	7	29	57
$\underline{\text{C}}_{7}\underline{\text{H}}_{3}\underline{\text{N}}$, 101.0265 ext-arN, NC-phenyl-	6	9	67
$\frac{\text{C}_4\text{H}_7\text{NO}_2,\ 101.0475}{\text{CH}_3\text{O-CO-CH=CH-N(-)-},\ \text{C}_2\text{H}_5\text{O-CO-arN}}$, 3	18	62
also $C_5H_{11}NO$, 101.0839 (CH_3 -CO-NH(CH_2)3 (CH_3)2N(CH_2)3O-); C_5H_9S , 101.0428	3-,		
$(CH_3-thiacyclopentyl-); C_4H_5OS, 101.0 $ $(-CH_2CH_2S-CO-CH_2-); CFCl_2, 100.9360;$,	
101.0156 (-phospholane-O-); C_4H_7NS , 1 (SCN-(CH ₂) ₃ -); $C_3H_7N_3O$, 101.0586	L01.029	9	
$(H_2N-CO-NH-N=CH-CH_2-)$			
m/z 102 (23%)	7%	15%	
$\frac{\text{C}_{7}\text{H}_{12}, 96.0938}{\text{Pheny1-C(-)=CH-, ext-ar,}}$			
quinolines	_23_	12	86

m/z, comp Substructure, neighbor	<u>Prop</u>	Abnd	Spcf
C_7H_4N , 102.0343 ext-arN, phenyl-arN	_11_	12	61
$ \begin{array}{c} \underline{\mathbf{C}}_{5}\underline{\mathbf{H}}_{10}\underline{\mathbf{O}}_{2}, \ \underline{102.0680} \ \mathbf{C}_{2}\mathbf{H}_{5}\mathbf{O}\mathbf{-CO}\mathbf{-CH}(\mathbf{CH}_{3})\mathbf{-,} \\ \mathbf{C}_{3}\mathbf{H}_{7}\mathbf{-CO}\mathbf{-CH}_{2}\mathbf{-,} \ \mathbf{-(CH}_{2})_{4}\mathbf{-CO}\mathbf{-O}\mathbf{-,} \end{array} $			
C ₃ H ₇ O-CO-CH(-)-	9	15	69
$\underline{C}_{7}\underline{H}_{2}\underline{O}$, 102.0105 ext-ar(C=O), ext-arO	8	12	71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
CH_3 -CO-NHCH ₂ CH(OH)-, -NH(CH ₂) ₃ -CO-O-	4	22	65
$\underline{\text{C}}_{6}\underline{\text{H}}_{2}\underline{\text{N}}_{2}$, $\underline{\text{102.0216}}$ ext-arN ₂ , NC-pyridyl-	3	14	43
$ \begin{array}{c} \underline{\mathrm{C_4H_6O_3,\ 102.0316}} & -\mathrm{CH(OH)CH(OH)CH(OH)CH(-)} \\ \mathrm{CH_3O-CO-CH(-CH_2OH)-,\ CH_3-CO-CH(-)-CO-O-Also\ C_5H_{12}NO,\ 102.0917\ (C_2H_5OCH_2CH_2CH(NH_2C_3H_4NO_3,\ 102.0190\ (cyc-CH(OH)-CH(-NH-CO-CH(-NH-CO-CH(-)-CH(-NH-CO-CH(-)-CH(-$	3	11	50
m/z 103 (32%)	12%	17%	
$\underline{\text{C}_8\text{H}_7}$, 103.0547 phenyl- C_2H_2 -, indoles, benzofurans, phenyl- $\text{CH}(\text{-})\text{-}\text{CH}(\text{-})\text{-}$	29	13	85
C_7H_5N , 103.0421 phenyl-arN, phenyl-CH=N-, ext-arN, cyc-CH(phenyl)-N(-)-	10	14	58_
C7H3O, 103.0184 ext-ar(C=O), Y*-phenyl-CO-Y*, ar-CH=CH-CO-, ext-ar-O-	7	15	64_
$\frac{\text{C}_5\text{H}_{11}\text{O}_2, \ 103.0758}{\text{C}_4\text{H}_9\text{OCH(-)O-}, \ \text{C}_4\text{H}_9\text{-CO-O-},}\\ \text{HOCH(CH}_3\text{)CH}_2\text{OCH(CH}_3\text{)-},$			

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
СH ₃ OCH ₂ CH ₂ CH(OCH ₃)-, С ₄ H ₉ O-CO-	4	25	68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	16	64
	2	27	90
$\frac{\text{C}_6\text{H}_3\text{N}_2, \ 103.0295}{\text{cyc-NN(phenyl)-, -NH-phenyl-N(-)-}}$	2	13	42
$\underline{c_{5}}\underline{H_{11}}\underline{s}, \underline{103.0584}$ $\underline{c_{4}}\underline{H_{9}}\underline{s}\underline{c}\underline{H_{2}}$, $\underline{c_{2}}\underline{H_{5}}\underline{s}\underline{c}(\underline{c}\underline{H_{3}})\underline{-}$, $-\underline{c}\underline{H}(\underline{c_{2}}\underline{H_{5}})\underline{s}\underline{c}\underline{H}(\underline{c}\underline{H_{3}})$ -	1	24	55
also C_5H_8C1 , 103.0314 (cyc-CC1(-)-C(-)(CH ₃)-C(-)(CH ₃)-); C_3H_3 (cyc-CH(OH)-CH(-CO-OH)-O-)	04, 1	.03.00	031
(-5 () ())			
m/z 104 (26%)	10%	19%	
	10% 27	19%	84
<pre>m/z 104 (26%) C₈H₈, 104.0626 tetralins, indans, phenyl-CH₂CH₂-Y*, o-CH₃-phenyl-CH₂-Y*, phenyl-cycR C₇H₆N, 104.0499 phenyl-arN, ext-arN, cyc-CH(phenyl)-NH-, phenyl-C(-)=N-,</pre>			84
<u>m/z 104 (26%)</u> <u>C₈H₈, 104.0626</u> tetralins, indans, phenyl-CH ₂ CH ₂ -Y*, o-CH ₃ -phenyl-CH ₂ -Y*, phenyl-cycR <u>C₇H₆N, 104.0499</u> phenyl-arN, ext-arN,		20	84
<pre>m/z 104 (26%) C₈H₈, 104.0626 tetralins, indans, phenyl-CH₂CH₂-Y*, o-CH₃-phenyl-CH₂-Y*, phenyl-cycR C₇H₆N, 104.0499 phenyl-arN, ext-arN, cyc-CH(phenyl)-NH-, phenyl-C(-)=N-,</pre>	27	20	
<pre>m/z 104 (26%) C₈H₈, 104.0626 tetralins, indans, phenyl-CH₂CH₂-Y*, o-CH₃-phenyl-CH₂-Y*, phenyl-cycR C₇H₆N, 104.0499 phenyl-arN, ext-arN, cyc-CH(phenyl)-NH-, phenyl-C(-)=N-, cyc-CH₂N(phenyl)-</pre> C ₇ H ₄ O, 104.0262 ext-ar(C=O),	27	20	
<pre>m/z 104 (26%) C₈H₈, 104.0626 tetralins, indans, phenyl-CH₂CH₂-Y*, o-CH₃-phenyl-CH₂-Y*, phenyl-cycR C₇H₆N, 104.0499 phenyl-arN, ext-arN, cyc-CH(phenyl)-NH-, phenyl-C(-)=N-, cyc-CH₂N(phenyl)- C₇H₄O, 104.0262 ext-ar(C=O), cyc-phenyl-CO-, Y-phenyl-CO-,</pre>	13	20 19	62

m/z, comp Substructure, neighbor	Prop	<u>Abnd</u>	Spcf
$\frac{\text{C}_4\text{H}_8\text{O}_3}{\text{C}_3\text{H}_7\text{O-CO-O-}}$, $\frac{\text{C}_4\text{H}_4\text{O-CO-CH}_2\text{-}}{\text{C}_3\text{H}_7\text{O-CO-O-}}$, $\frac{\text{C}_4\text{H}_3\text{O-CO-CH(OCH}_3\text{)-}}{\text{C}_3\text{H}_7\text{O-CO-O-}}$	2	16	73
$\frac{\text{C}_5\text{H}_2\text{N}_3}{\text{also C}_5\text{H}_{12}\text{O}_2}$, 104.0836; C ₄ H ₈ OS, 104.0299	1	25	37
$(-CH_2OCH_2CH_2SCH_2-, HOCH_2CH_2SCH_2CH_2-)$			
m/z 105 (38%)	9%	37%	
$\underline{C_{7}H_{5}O, 105.0340}$	18	47	67
phenyl-CO-: -O- 25%, CH ₂ 20%, -NH- 20%, CH 20%	30	83	69
cyc-CH(phenyl)-O-: -O- 75%, CH ₂ 15%; CH ₂ 35%, C=O 25%, CH 25% also ext-ar(C=O), -phenyl-CO-, -phenyl-	5 -OCH ₂ -	67 -,	70
phenyl-C(-)(OH)-	_		
$\underline{C_8}\underline{H_9}$, $\underline{105.0704}$ phenyl-CH(CH ₃)-,			
$\mathrm{CH_3}$ -phenyl- $\mathrm{CH_2}$ -, $(\mathrm{CH_3})_2$ -phenyl etc	25	34	80
$\underline{C_{7}H_{7}N, 105.0577}$ phenyl-N(CH ₃)-, -phenyl-CH ₂ -N(-)-, cyc-CH(phenyl)-NH-,	_	0.0	
phenyl-arN, CH ₃ -pyridyl-CH ₂ -		29	56
$\frac{\text{C}_{6}\text{H}_{3}\text{NO}, \ 105.0214}{\text{ext-arN(C=O)}} \text{ pyridyl-CO-, -phenyl-NO,}$		36+	50
$\frac{\text{C}_6\text{H}_5\text{N}_2, \ \text{105.0451}}{\text{arN amines}} \text{ phenyl-N=N-, ext-arN}_2,$	3_	23	45_
<u>C₆HO₂, 104.9976</u> ar/unsatd/cyc	2	29	44
$C_3H_5S_2$, 104.9839 (dithietane)		55+	

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\frac{\text{C}_5\text{H}_3\text{N}_3}{\text{etc}}$ ext-arN ₃ , pyridyl-N=N-etc	2	23	43
С ₃ н ₇ осн(-о-)о-	1	30+	77
$\underline{\text{C}}_{5}\underline{\text{HN}}_{2}\underline{\text{O}}$, 105.0087 NC-pyrrolidonyl-,			
ar/ext-ar C=O/-OH/-NH-/-N=N- etc	1	26	34
<u>С₃Н₅О₂S, 105.0013</u> сус-СН ₂ СН(-СО-ОН)S-,			
HO-CO-CH ₂ SCH ₂ -, -SCH ₂ CH ₂ -CO-O-	1	24	86
also C ₅ H ₁₀ C1, 105.0470 (C1(CH ₂) ₅ -, C1C(C ₅	H ₇)((CH ₃)-);
C_4H_9OS , 105.0377 ($C_3H_7-CO-S-$); C_2H_2Br , (BrCH=CH-)	-	_	
(Bren-en-)			
m/z 106 (27%)	7%	17%	
	7%		76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c} \underline{\text{m/z 106 (27\%)}} \\ \underline{\text{C}_8}\underline{\text{H}}_{10}, \ \underline{\text{106.0782}} \ \text{CH}_3\text{-phenyl-CH}_2\text{- etc} \\ \underline{\text{C}_7}\underline{\text{H}}_6\underline{\text{O}}, \ \underline{\text{106.0418}} \ \text{cyc-CH(phenyl)-O-,} \\ \underline{\text{HO-phenyl-CH}_2\text{-, HO-(CH}_3\text{-)phenyl-,}} \end{array} $	21	13	76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21		76
$\begin{array}{c} \underline{\text{m/z 106 (27\%)}} \\ \underline{\text{C}_8\underline{\text{H}}_{10},\ 106.0782} \ \text{CH}_3\text{-phenyl-CH}_2\text{- etc} \\ \underline{\text{C}_7\underline{\text{H}}_60,\ 106.0418} \ \text{cyc-CH(phenyl)-O-,} \\ \text{HO-phenyl-CH}_2\text{-, HO-(CH}_3\text{-)phenyl-,} \\ \text{substd/cyc ketones} \\ \underline{\text{C}_7\underline{\text{H}}_8\underline{\text{N}},\ 106.0656} \ \text{CH}_3\text{-pyridyl-CH}_2\text{-,} \end{array}$	21	13	76
$\frac{\text{m/z 106 (27\%)}}{\text{C}_8\text{H}_{10}, \ 106.0782} \text{ CH}_3\text{-phenyl-CH}_2\text{- etc}} \\ \frac{\text{C}_7\text{H}_6\text{O}, \ 106.0418}{\text{HO-phenyl-CH}_2\text{-, HO-(CH}_3\text{-)phenyl-,}} \\ \text{substd/cyc ketones}$	21	13	76 62
$\frac{\text{m/z 106 (27\%)}}{\text{C}_8\text{H}_{10}, \ 106.0782} \text{ CH}_3\text{-phenyl-CH}_2\text{- etc} \\ \frac{\text{C}_7\text{H}_6\text{O}, \ 106.0418}{\text{HO-phenyl-CH}_2\text{-}, \ \text{HO-(CH}_3\text{-)phenyl-},} \\ \text{substd/cyc ketones} \\ \frac{\text{C}_7\text{H}_8\text{N}, \ 106.0656}{\text{(CH}_3\text{-pyridyl-CH}_2\text{-},} \\ \text{(CH}_3)_2\text{-pyridyl-}, \ \text{cyc-CH}_2\text{N(phenyl)-},} \\ \text{ar-amines} \\$	15	13	76 62
$\frac{\text{m/z 106 (27\%)}}{\underline{\text{C}}_{8}\underline{\text{H}}_{10}, \ 106.0782 \ \text{CH}_{3}\text{-phenyl-CH}_{2}\text{-} \ \text{etc}}}{\underline{\text{C}}_{7}\underline{\text{H}}_{6}\underline{\text{O}}, \ 106.0418 \ \text{cyc-CH(phenyl)-O-,}} \\ + \text{HO-phenyl-CH}_{2}\text{-}, \ \text{HO-(CH}_{3}\text{-)phenyl-,} \\ \text{substd/cyc ketones}} \\ \underline{\text{C}}_{7}\underline{\text{H}}_{8}\underline{\text{N}}, \ 106.0656 \ \text{CH}_{3}\text{-pyridyl-CH}_{2}\text{-},} \\ \text{(CH}_{3})_{2}\text{-pyridyl-, cyc-CH}_{2}\text{N(phenyl)-,} \\ \text{ar-amines}} \\ \underline{\text{C}}_{6}\underline{\text{H}}_{4}\underline{\text{NO}}, \ 106.0292 \ \text{pyridyl-CO-,}}$	15	13	76 62 58
$\frac{\text{m/z 106 (27\%)}}{\text{C}_8\text{H}_{10}, \ 106.0782} \text{ CH}_3\text{-phenyl-CH}_2\text{- etc} \\ \frac{\text{C}_7\text{H}_6\text{O}, \ 106.0418}{\text{HO-phenyl-CH}_2\text{-}, \ \text{HO-(CH}_3\text{-)phenyl-},} \\ \text{substd/cyc ketones} \\ \frac{\text{C}_7\text{H}_8\text{N}, \ 106.0656}{\text{(CH}_3\text{-pyridyl-CH}_2\text{-},} \\ \text{(CH}_3)_2\text{-pyridyl-}, \ \text{cyc-CH}_2\text{N(phenyl)-},} \\ \text{ar-amines} \\$	15 7	13	76 62 58

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ S)	Abnd 2 ^{CH-)}	
m/z 107 (31%)	15%	24%	
$\frac{\text{C}_7\text{H}_7\text{O}, \ 107.0496}{\text{HO-phenyl-CH}_2\text{-}, \ \text{cyc-CH(phenyl)-O-},}$ $\text{substd/cyc/unsatd C=O/-OH ketones}$	16	27	65
$\underline{C_8}\underline{H_{11}}$, 107.0860 polyunsatd/cyc hc	17		85
$\frac{\text{C}_{6}\text{H}_{3}\text{O}_{2}, \ 107.0133}{\text{C=O/-O-/-OH}}$ ar/unsatd/cyc	5	16	52
$\frac{\text{C}_6\text{H}_5\text{NO}, 107.0370}{\text{CH}_3\text{-pyrrole-CO-}}$ ON-phenyl-,	4	16	48
$\frac{\text{C}_7\text{H}_9\text{N}, \ 107.0734}{\text{phenyl-N(CH}_3)-, \ \text{cyc/unsatd amines}}$	4	16	55
$\frac{\text{C}_5\text{H}_5\text{N}_3}{\text{also C}_6\text{H}_7\text{N}_2}$, 107.0607 (-NH-phenyl-NH-,	2	21	42
$(CH_3)_2$ -pyrazinyl-); C_2H_4Br , 106.9496 (B etc); $C_5H_3N_2O$, 107.0244 (ext-arN ₂ (C=O))	rCH(C	H ₃)-	
m/z 108 (26%)	9%	20%	
$\frac{\text{C}_{7}\text{H}_{8}\text{O}, \ 108.0575 \ \text{phenyl-CH}_{2}\text{O-},}{\text{HO-phenyl-CH}_{2}\text{-}, \ \text{CH}_{3}\text{-phenyl-O-},}\\ \text{CH}_{3}\text{O-phenyl-}, \ \text{phenyl-O-Y*-CH}_{3}\\ \text{(Y* = -CO-O-)}, \ \text{cyc/substd/unsatd}\\ \text{C=O/-O-/HO-}$	18	24	61
$\underline{C_8}\underline{H_{12}}$, 108.0938 polyunsatd/cyc hc	17		

65

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\frac{\text{C}_{6}\text{H}_{4}\text{O}_{2}, \ \text{108.0211}}{\text{cyc/subtd/unsatd/ar C=O/-O-/HO-}}$	7	18	46
$\frac{\text{C}_6\text{H}_6\text{NO}, 108.0448}{\text{H}_2\text{N-phenyl-O-}, -\text{NH-phenyl-O-},}$			
substd/cyc -NH-CO-/-OH/-O- etc	4	20	50
$\frac{\text{C}_7\text{H}_{10}\text{N}, 108.0812}{\text{nminos}}$ cyc/substd/unsatd	4	17	57
amines	4	17	57
$\underline{C_{6}H_{8}N_{2}}$, 108.0686 (CH ₃) ₂ -pyrazinyl-,	2	17	16
phenyl-NHNH-, arN-NH- etc also $C_5H_4N_2O$, 108.0322 (-N-ar-NH-CO- etc)	3 : C-F	17 I_NO_	46_
$108.0084 \text{ (-O-ar-NH-CO-, O}_2\text{N-ar); C}_5\text{H}_6\text{N}_3$	_		
2 000			
(pyridyl-NHNH, H ₂ N-(CH ₂ -)pyrimidinyl-);	$U_{\Lambda}\Pi_{\epsilon}$) <u>-</u> ''Q~,	
(pyridyl-NHNH, H_2 N-(CH ₃ -)pyrimidinyl-); 108.0195 (H_2 N-pyrimidinyl-O-); $C_4H_4N_4$,		_	
(pyridyl-NHNH, $H_2N-(CH_3-)$ pyrimidinyl-); $108.0195 (H_2N-pyrimidinyl-0-); C_4H_4N_4, (ext-arN4): C_6H_4S, 108.0037 (arS); C_6H_5$	108.0)433	29
108.0195 (H_2 N-pyrimidinyl-O-); C_4 H_4 N_4 ,	108.0)433	29
108.0195 (H_2N -pyrimidinyl-0-); $C_4H_4N_4$, (ext-arN ₄): C_6H_4S , 108.0037 (arS); C_6H_5 (ar-P)	108.0 P, 10	0433 08.012	
108.0195 (H_2 N-pyrimidinyl-O-); C_4 H_4 N_4 , (ext-arN ₄): C_6 H_4 S, 108.0037 (arS); C_6 H_5	108.0)433	
108.0195 (H_2N -pyrimidinyl-0-); $C_4H_4N_4$, (ext-arN ₄): C_6H_4S , 108.0037 (arS); C_6H_5 (ar-P)	108.0 P, 10	0433 08.012 23%	
$\begin{array}{c} 108.0195 \; (\mathrm{H_2N-pyrimidinyl-O-}); \; \mathrm{C_4H_4N_4}, \\ (\mathrm{ext-arN_4}): \; \mathrm{C_6H_4S}, \; 108.0037 \; (\mathrm{arS}); \; \mathrm{C_6H_5}; \\ (\mathrm{ar-P}) \\ \\ \underline{\mathrm{m/z}} \; 109 \; (31\%) \\ \\ \underline{\mathrm{C_8H_{13}}, \; 109.1017} \; \mathrm{polyunsatd/cyc} \; \mathrm{hc} \end{array}$	108.0 P, 10	0433 08.012 23%	
108.0195 (H ₂ N-pyrimidinyl-O-); C ₄ H ₄ N ₄ , (ext-arN ₄): C ₆ H ₄ S, 108.0037 (arS); C ₆ H ₅ ; (ar-P)	108.0 P, 10	0433 08.012 23%	
$\begin{array}{c} 108.0195 \; (\mathrm{H_2N-pyrimidinyl-O-}); \; \mathrm{C_4H_4N_4}, \\ (\mathrm{ext-arN_4}): \; \mathrm{C_6H_4S}, \; 108.0037 \; (\mathrm{arS}); \; \mathrm{C_6H_5}; \\ (\mathrm{ar-P}) \\ \\ \underline{m/z} \; 109 \; (31\%) \\ \\ \underline{C_8H_{13}, \; 109.1017} \; \mathrm{polyunsatd/cyc} \; \mathrm{hc} \\ \\ \underline{C_7H_9O, \; 109.0653} \; 1\text{-decalones}, \\ \mathrm{cyc/substd/unsatd} \; \mathrm{ketones} \\ \end{array}$	108.(P, 10	0433 08.012 23% 19	89
$\begin{array}{c} 108.0195 \; (\mathrm{H_2N-pyrimidinyl-O-}); \; \mathrm{C_4H_4N_4}, \\ (\mathrm{ext-arN_4}): \; \mathrm{C_6H_4S}, \; 108.0037 \; (\mathrm{arS}); \; \mathrm{C_6H_5}; \\ (\mathrm{ar-P}) \\ \\ \underline{m/z} \; 109 \; (31\%) \\ \\ \underline{C_8H_{13}, \; 109.1017} \; \mathrm{polyunsatd/cyc} \; \mathrm{hc} \\ \\ \underline{C_7H_9O, \; 109.0653} \; 1\text{-decalones}, \\ \mathrm{cyc/substd/unsatd} \; \mathrm{ketones} \\ \\ \underline{C_6H_5O_2, \; 109.0289} \; \mathrm{HO-phenyl-O-}, \end{array}$	108.0 P, 10 14% 20	23% 19 21	89 65
$\begin{array}{c} 108.0195 \; (\mathrm{H_2N-pyrimidinyl-O-}); \; \mathrm{C_4H_4N_4}, \\ (\mathrm{ext-arN_4}): \; \mathrm{C_6H_4S}, \; 108.0037 \; (\mathrm{arS}); \; \mathrm{C_6H_5}; \\ (\mathrm{ar-P}) \\ \\ \underline{m/z} \; 109 \; (31\%) \\ \\ \underline{C_8H_{13}, \; 109.1017} \; \mathrm{polyunsatd/cyc} \; \mathrm{hc} \\ \\ \underline{C_7H_9O, \; 109.0653} \; 1\text{-decalones}, \\ \mathrm{cyc/substd/unsatd} \; \mathrm{ketones} \\ \end{array}$	108.(P, 10	0433 08.012 23% 19	89
$\begin{array}{llllllllllllllllllllllllllllllllllll$	108.0 P, 10 14% 20	23% 19 21	89 65
108.0195 (H ₂ N-pyrimidinyl-O-); C ₄ H ₄ N ₄ , (ext-arN ₄): C ₆ H ₄ S, 108.0037 (arS); C ₆ H ₅ ; (ar-P) m/z 109 (31%) C ₈ H ₁₃ , 109.1017 polyunsatd/cyc hc C ₇ H ₉ O, 109.0653 1-decalones, cyc/substd/unsatd ketones C ₆ H ₅ O ₂ , 109.0289 HO-phenyl-O-, CH ₃ -furyl-CO- C ₆ H ₇ NO, 109.0526 -O-pyridyl-CH ₂ -, CH ₃ O-pyridyl-, H ₂ N-phenyl-O-,	108.0 P, 10 14% 20 14	23% 19 21	89 65 49
$\begin{array}{llllllllllllllllllllllllllllllllllll$	108.0 P, 10 14% 20	23% 19 21	89 65
108.0195 (H ₂ N-pyrimidinyl-O-); C ₄ H ₄ N ₄ , (ext-arN ₄): C ₆ H ₄ S, 108.0037 (arS); C ₆ H ₅ ; (ar-P) m/z 109 (31%) C ₈ H ₁₃ , 109.1017 polyunsatd/cyc hc C ₇ H ₉ O, 109.0653 1-decalones, cyc/substd/unsatd ketones C ₆ H ₅ O ₂ , 109.0289 HO-phenyl-O-, CH ₃ -furyl-CO- C ₆ H ₇ NO, 109.0526 -O-pyridyl-CH ₂ -, CH ₃ O-pyridyl-, H ₂ N-phenyl-O-,	108.0 P, 10 14% 20 14	23% 19 21	89 65 49

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\begin{array}{c} \underline{C_5H_3NO_2,\ 109.0163} \text{ ar-NO}_2, \text{ arN-CO-OH,} \\ -\text{O-ar-NH-CO-} \\ \text{also } \text{C}_6\text{H}_5\text{S},\ 109.0152 \text{ (phenyl-S-); } \text{C}_5\text{H}_5\text{N}_2\text{CO}} \\ \text{(CH}_3\text{-pyrimidinyl-O-); } \text{C}_5\text{HO}_3,\ 108.9925 \text{ (} \\ \text{C}_4\text{H}_3\text{N}_3\text{O},\ 109.0274 \text{ (H}_2\text{N-CO-imidazolyl); } \text{CO}} \\ \text{108.9611; } \text{C}_6\text{H}_9\text{N}_2,\ 109.0764 \text{ (arN-NH-); } \text{CO}} \\ \text{109.0637 (H}_2\text{N-(CH}_3)\text{-pyrimidinyl)} \end{array}$	(-0-ar C ₃ H ₃ Cl	.0400 -0-C0)
m/z 110 (25%)	7%	20%	
$\underline{\text{C}}_{7}\underline{\text{H}}_{10}\underline{\text{O}}$, 110.0731 substd/cyc/unsatd ketones	_17	20	60
$\underline{C}_{8}\underline{H}_{14}$, 110.1094 substd/cyc/unsatd hc	20	13	82
$\frac{\text{C}_{7}\text{H}_{12}\text{N}, \ 110.0968}{\text{NC-C}_{6}\text{H}_{12}\text{-}}$ substd/cyc amines,	7	26	63_
$\frac{\text{C}_{6}\text{H}_{6}\text{O}_{2}, \ 110.0367}{\text{(HO)}_{2}\text{-phenyl-}, \ \text{substd/cyc}}$ $\text{(C=O)}_{2}/\text{C=O/-O-}$	7	22	46
$\frac{\text{C}_{6}\text{H}_{8}\text{NO, 110.0605}}{\text{cyc/substd/unsatd C=O/N/-CO-N-/C=N-OH,}}$ ar-CO-NH-	4	24	41
$\frac{\text{C}_5\text{H}_4\text{NO}_2, \ 110.0241}{\text{maleimidy1-CH}_2\text{-}, \ \text{cyc C=O/-N-CO-/-O-}}$	2		47_
also $C_5H_2O_3$, 110.0003 (ar C=0/-0-/-C0-0-) 110.0478 (arN ₂ -0-); $C_6H_{10}N_2$, 110.0842; 110.0193 (phenyl-S-); $C_4H_4N_3O$, 110.0352 (N ₂ ar(C=0)-NH ₂); $C_4H_2N_2O_2$, 110.0114 (pyrazine-(-0-) ₂ - C_6H_3C1 , 109.9923 (C1- $C_2H_7O_3P$, 110.0132 ((CH ₃ O) ₂ -P(=O)-)	^С 6 ^Н 6 ^S	5,	

m/z, comp	Substructure, neighbor	Prop	Abnd	Spcf
m/z 111 (28%)	10%	20%	
<u>C₈H₁₅, 111.1</u>	173 (CH ₃) ₂ -cyclohexyl- etc	_23_	18	86
	0809 cyclohexyl-CO-,			
	CO-, substd/cyc/unsatd	10	10	60
-CO-/-O-/-	On	18	19	69_
· -	0445 -CO-C ₄ H ₈ -CO- (adipates) =CHCH=CH-, cyc/unsatd	•		
U	/-O-/-OH, ar-(OR) ₂	8	23	54
C_H_NO. 111.	0683 cyc/unsatd			
~ ~	nes/C=O/-O-	3_	21	47
O II N 111	1045			
$\frac{C_7H}{13^N}$, 111.	1047 substd/cyc/unsatd	3	16	62
amines, we	6"12			- 02
	0082 HO-pyrone-, furanoate,			
-CO-C(OH)=	C(CH ₃)-CO-	3	14	57
C ₆ H ₇ S, 111.0	$271 \text{ (CH}_3)_2$ -thiophenyl-,			
· .	-CH(CH ₃)-, ar-S-	2	31	73
C II NO 111	0010			
0 0 2	.0319 pyrolly1-CO-O-, H ₃)=CH-CO-, ar-OCH ₂ -CO-NH-	2	20	54
_	, 111.0556 (cyc-carbamate, as			
٠, ٥	11.0920 (ar-N=CHN(CH ₃) ₂ , cyc	_		
0 11 2	1.0001 (Cl-phenyl-); $C_4^{H_3}N_2^{O_4}$			3
(-NH-CO-NH	-co-); с ₄ н ₅ N ₃ O, 111.0430 (но	$-$ arN $_2$	$-NH_2$)	;
C ₃ H ₅ Cl ₂ , 1 -CCl ₂ -CO-)	10.9767; С ₂ НОС1 ₂ , 110.9403 (С1 ₂ СН-	-CO-,	

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 112 (21%)	6%	18%	
$\underline{C}_{8}\underline{H}_{16}$, 112.1251 \underline{H} - $C_{8}\underline{H}_{16}$ - \underline{Y} *, \underline{H} - $C_{8}\underline{H}_{16}$ - \underline{R} - \underline{Y} *	_19_	9	82
$\frac{\text{C}_7\text{H}_{12}\text{O}, \text{112.0887}}{\text{R-(CH}_2)_6\text{-CO-Y}, \text{C}_3\text{H}_7\text{CH=CH-CO-CH}_2\text{-},}\\ \text{cyc/subst/unsatd} \text{-CO-/-O-/-OH}$	_12_	18	61
$\underline{\text{C}_6}\underline{\text{H}_8}\underline{\text{O}_2}$, 112.0524 furyl-CH(OCH ₃)-, cyc diketones, cyc/substd/unsatd	10	20	54
-CO-O-/-CO-OH/-O-		20	54
$\frac{\text{C}_{7}\text{H}_{14}\text{N}, 112.1125}{\text{amines (cyclohexyl-NH-CH}_{2}\text{-})}$	6	25	63
$\frac{\text{C}_6\text{H}_{10}\text{NO}, \ 112.0761}{\text{cyc-CH}_2\text{CH}(\text{N(C}_2\text{H}_5)\text{-CO-CH}_3)\text{-, lactams,}}$ other cyc/unsatd amides, cyc HO-N=CH-,			
OCN-C5H10-	5	18	56
$C_5H_4O_3$, 112.0160 fury1-CO-O-, ar(C=O)-CO-OH, HO-CO-C(CH ₃)=CH-CO-,	2	0.0	5 0
ketoesters	3	26 112 0	<u>53</u>
also $C_5H_6NO_2$, 112.0397 (ketoamides); C_5H_6 (arNS); $C_6H_{12}N_2$, 112.0998 (-N=N-, amino $C_5H_8N_2O$, 112.0635 (aminoamides); C_6H_8S (CH ₃ -thiophenyl-CH ₂ -); $C_4H_4N_2O_2$, 112.09 (-CH(-)-CO-NH-CO-NH-CH(-)-)	oimino , 112	es);	220
m/z 113 (23%)	6%	21%	
$\frac{C_{8}H_{17}}{113.1329}$ satd hc	19	12	87
$\underline{C}_{7}\underline{H}_{13}\underline{O}$, 113.0966 $\underline{C}_{6}\underline{H}_{13}$ -CO-,			
40			

```
m/z, comp
                       Substructure, neighbor
                                                                   Prop Abnd Spcf
   \text{cyc-CH(OH)CH}_2\text{CH(C}_3\text{H}_7)-, -(CH<sub>2</sub>)<sub>6</sub>-CO-,
   CH<sub>3</sub>O-cyclohexyl-
                                                                     14
                                                                             30+
                                                                                     71
\underline{\text{C}_{6}\text{H}_{9}\text{O}_{2}}, 113.0602 \text{CH}_{3}\text{O}\text{-CO}\text{-CH}\text{=CH}\text{-CH}_{2}\text{CH}_{2}\text{-},
   C_3H_7-CO-CH<sub>2</sub>-CO-, -CH(OH)-(CH<sub>2</sub>)<sub>4</sub>-CO-
                                                                     11
                                                                             16
                                                                                     60
\underline{C_5H_5O_3}, 113.0238 furyl-CO-O-,
   CH_3O-CO-CH=CH-CO-, cyc C=O/-OH/-O-
                                                                       5
                                                                             19
                                                                                     57
\underline{C}_{6}\underline{H}_{11}\underline{NO}, 113.0839 cycC=N-OH,
   pyrrolidinyl-CO-CH<sub>2</sub>-, cycN -OH/-O-
                                                                       3
                                                                             25+
                                                                                     57
C6H9S, 113.0428 thiabicycloalkane
                                                                       2
                                                                             29
                                                                                     66
\underline{C_5H_7NO_2}, 113.0475 NC-CH(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>-,
   CH3-succinimidyl-, glutarimidyl-
                                                                             22
                                                                                     52
also C_7H_{15}N, 113.1203 (cycN); C_8H_3N, 113.0264
   (ext-arN); C_6H_{13}N_2, 113.1077 (cycN<sub>2</sub>); C_5H_9N_2O,
   113.0713 (pentanolactam-NH-); C_5H_7NS, 113.0301
   (CH_3-thiazolyl-CH_2-); C_4H_5N_2O_2, 113.0349
   (cyc(-N-CO-N-CO-)); C_4HO_4, 112.9874
   (\text{cyc-CH}(-\text{CO-O-})-\text{CH}(-\text{CO-O-})-); C_5H_5OS, 113.0064
    (CH_3O-thiophenyl-, CH_3S-furyl-, ar-SO-)
m/z 114 (17%)
                                                                     11%
                                                                             10%
C_{6}H_{10}O_{2}, 114.0680
   cyc-CH(-CH_2-)(CH_2)_3-CO-O-
   \mathrm{CH_3O-CO-CH=C(CH_3)CH_2-}
   CH_3O-CO-C_4H_8-Y*
                                                                     14
                                                                             12
                                                                                     61
\underline{C_7}\underline{H_16}\underline{N}, 114.1281 (C_3\underline{H_7})_2\underline{NCH_2}- etc
                                                                             15
                                                                     11
                                                                                     64
\underline{\text{C}}_{5}\underline{\text{H}}_{6}\underline{\text{O}}_{3}, 114.0316 HO-CO-(CH<sub>2</sub>)<sub>3</sub>-CO-
                                                                      7
                                                                             11
                                                                                     48
```

```
m/z, comp
                        Substructure, neighbor
                                                                       Prop Abnd Spcf
\underline{C_6H_{12}NO}, 114.0917 \underline{CH_3}-CO-NH-CH(\underline{C_3H_7})-,
   C_4H_9-COCH(-)NH-, C_4H_9N(CH_3)-CO-
also C_7H_{14}O, 114.1044 (C_5H_{11}-CO-CH<sub>2</sub>-); C_5H_8NO_2,
   114.0554 (CH_3 - CO - CH_2 - N(-CO - CH_3) -); C_6H_{14}N_2, 114.1155
   (C_2H_5-imidazolidinyl-CH_2-); C_4H_6N_2O_2, 114.0427
    (-CH(-)-CO-NH-CO-NH-CH(-)-)
                                                                                  27%
m/z 115 (34%)
\frac{C_9H_7}{115.0547}
                                                                                   24
                                                                                           87
                                                                          28
\underline{C}_{6}\underline{H}_{11}\underline{O}_{2}, 115.0758 \underline{CH}_{3}\underline{O}-\underline{CO}-(\underline{CH}_{2})_{4}-,
    C_3H_7CH=CH-CO-O-, CH_3O-CO-CH_2C(CH_3)_2-,
    (CH_3)_2-1,3-dioxanyl-
                                                                           7
                                                                                   28
                                                                                           62
\underline{\text{C}}_{5}\underline{\text{H}}_{7}\underline{\text{O}}_{3}, 115.0394 \underline{\text{CH}}_{3}O-CO-\underline{\text{CH}}_{2}CH<sub>2</sub>-CO-,
   C_2H_5O-CO-CH_2-CO-
   CH_3-CO-CH(-)-CO-OCH<sub>2</sub>-,
   -CO-CH<sub>2</sub>CH(CH<sub>3</sub>)-O-CO-
                                                                           5
                                                                                   38
                                                                                           55
\underline{C_7H_{17}N}, 115.1359 \underline{C_3H_7}NHCH(\underline{C_3H_7})-; and
   \underline{C_8}\underline{H_5}\underline{N}, 115.0421 ext-arN (indolyl-),
    pyrroly1-ar
                                                                                   ^{22}
                                                                                           60
\underline{C_7H_{15}O}, 115.1122 \underline{C_6H_{13}CH(OH)}-,
    C_5H_{11}OCH(CH_3)-, (CH_3)_3C-O-Y*-C(CH_3)_2-;
    and C_8H_3O, 115.0184 ext-ar(-CO-CH<sub>2</sub>-),
    ext-ar-CO- etc
                                                                                   20
                                                                                           63
also C_7H_3N_2, 115.0295 (indazolyl-); C_6H_{11}S, 115.0584
    (\text{cyc-CH}_2\text{CH}_2\text{CH}(\text{SC}_3\text{H}_7)-) \text{ C}_5\text{H}_9\text{NO}_2, 115.0632
    (\text{cyc-N}(-\text{CH}_2\text{CH}(-)\text{CH}_3)-\text{CO-OCH}_2-); \text{ } \text{C}_6\text{H}_{13}\text{NO}, \text{ } 115.0996
    ((C_2H_5)_2N-CO-CH_2-); C_4H_5NO_3, 115.0268
    (\text{cyc-C(OH)(CH}_3)-\text{CO-NH-CO-}); C_4 H_3 O_4, 115.0031
```

```
m/z, comp
                      Substructure, neighbor
                                                                  Prop Abnd Spcf
   (HO-CO-CH<sub>2</sub>-C(-)(-CO-OH)-); C<sub>5</sub>H<sub>9</sub>NS, 115.0458
   (SCN-(CH<sub>2</sub>)<sub>4</sub>-)
                                                                     7%
                                                                           16%
m/z 116 (25%)
C_9H_8, 116.0626 phenyl-C_3H_3(-)-, ext-ar
                                                                  24
                                                                            10
                                                                                    87
\underline{C_8H_6N}, 116.0499 indolyl, ext-arN,
   NC-phenyl-CH<sub>2</sub>-, phenyl-arN
                                                                                    60
                                                                  11
                                                                            15
\underline{C_5}\underline{H_8}\underline{O_3}, 116.0473 \underline{CH_3}\underline{O}-\underline{CO}-\underline{CH_2}-\underline{CO}-\underline{CH_2}-,
   CH_3O-CO-CH(-CO-CH_3)-
   CH_3O-CO-CH_2-CO-CH(-)-
                                                                                    64
                                                                            24
C_8H_4O, 115.9898 ext-ar(C=0), ext-ar-CO-
                                                                            11
                                                                                    64
\underline{C_6}\underline{H_{12}}\underline{O_2}, 116.0836 \underline{CH_3}\underline{O}-\underline{CO}-\underline{CH}(\underline{C_3}\underline{H_7})-,
   -C(C_2H_5)_2-CO-O-, C_3H_7O-CO-CH(CH<sub>3</sub>)-,
   (C_2H_5O)_2C(CH_3)-
                                                                            13
                                                                                    62
C_7H_4N_2, 116.0373 ext-arN<sub>2</sub>
   (benzimidazoles), phenyl-arN2
                                                                                    49
also C_5^{H}_{10}NO_2, 116.0710 (CH_3O-CO-CH_2CH_2CH(NH_2)-);
   C_A H_A O_A, 116.0109 ((HO)<sub>2</sub>-ar(-O-CO-),
   CH_3O-CO-C(-)_2-CO-O-); C_4H_6NO_3, 116.0346
   (-C(CH_3)(OH)-CO-NH-CO-); C_AH_AS_2, 115.9761
   (thiophenyl-S-, arS<sub>2</sub>); C_4H_8N_2O_2, 116.0584
   (-CH<sub>2</sub>NH-CO-CH<sub>2</sub>NH-CO-); C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>Si,
                                                        116.0193
   ((CH_3)_3SiO-CO-)
                                                                            20%
                                                                    11%
m/z 117 (30%)
\underline{C_9H_9}, 117.0704 \underline{CH_2}=CH-phenyl-CH<sub>2</sub>-,
   phenyl-CH=CH-CH2-, indanyl- etc
                                                                    24
                                                                            17
                                                                                    83
```

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\frac{C_8H_7N, 117.0577}{\text{ext-arN}, \text{cyc-CH}_2\text{CH(-)-N(phenyl)-,}}$			
phenyl-arN	9	16_	61
C_8H_5O , 117.0340 ext-ar(C=0), HO-ext-ar,			
ext-ar-CO-	6	16	63
$-CH(-CHO-)-OC(CH_3)_2-O-$,			
CH ₃ O-CO-CH ₂ CH(ОСН ₃)-	4	18	67
$\underline{\text{C}}_{7}\underline{\text{H}}_{5}\underline{\text{N}}_{2}$, $\underline{\text{117.0451}}$ ext-arN ₂ , phenyl-arN ₂	2	15	46
$\frac{\text{C}_{6}\text{H}_{13}\text{O}_{2}, \ 117.0915}{\text{CH}_{3}\text{OCH}(\text{CH}_{3})\text{CH}(\text{CH}_{3})\text{CH}(\text{OH})-,}$			
$-\text{CH}_2\text{O-}(\text{CH}_2)_4 - \text{OCH}_2$ -, $\text{C}_3\text{H}_7\text{OCH}(\text{OC}_2\text{H}_5)$ -	2	12	61
also $C_6H_{13}S$, 117.0741 ($C_4H_9SCH(CH_3)$ -); C_5	H ₁₃ OS	Si,	
117.0635 ((CH_3) ₃ SiOCH(CH_3)-, C_3 H ₇ OSi(CH			
CCl_3 , 116.9064; $\text{C}_7\text{H}_3\text{NO}$, 117.0214 (ext-a			
ext-arN-CO-); C ₅ H ₉ OS, 117.0377 (CH ₃ -1,3	-oxa	thiane	e);
$c_2^{HF}_3c1$, 116.9718 ($c_3c(-)c1-$)			
m/z 118 (23%)	6%	18%	
$\underline{C_9}_{10}^{\text{H}}, 118.0782 \text{ phenyl-} C_3^{\text{H}}_5(-)-,$			
tetralins, -CH ₂ phenyl-C ₂ H ₄ -	22	15	81_
$\underline{C_8H_8N, 118,0656}$ phenyl-cyc-amine (-CH(CH ₃)-N(phenyl)-),			
phenyl-C(=NCH ₃)-, phenyl-CH=NCH ₂ -	10	17	61
_			
$C_{8}H_{6}O$, 118.0418 phenyl-CH ₂ -CO-,	a	10	50
-CH(phenyl)-CH(-)-O-, ext-ar(-CO-CH $_2$ -)		19	59_

73

```
m/z, comp
                      Substructure, neighbor
                                                             Prop Abnd Spcf
\underline{C_7H_6N_2}, 118.0529 ext-ar-N<sub>2</sub>, phenyl-arN<sub>2</sub>,
   pheny1-C(-N-)=N-
                                                                6
                                                                      17
                                                                             54
\underline{C_7}\underline{H_A}\underline{NO}, 118.0292 cyc-N(phenyl)-CO-,
   -phenyl-CH=N-O-, HO-ext-arN,
  o-H<sub>2</sub>N-CO-phenyl-
                                                                             56
also C_7H_9O_9, 118.0054 (ext-ar(C=0)-0-, ar-CO-0-,
   ar-(C=0)_2-); C_6H_4N_3, 118.0403 (ext-arN_3); C_5H_{10}O_3,
   118.0629 (HO-CO-C(OH)({\rm C_3H_7})-, {\rm C_4H_9O-CO-O-},
  HOC_3H_6O-CO-CH_2-); C_6H_2N_2O, 118.0165 (NC-pyridyl-O-);
   C_4H_8O_4, 118.0265 (HO-CO-C(-)(CH<sub>3</sub>)-); C_4H_8NO_3,
   118.0503 (cyc-CH(OH)-CH(OH)-N(CH<sub>3</sub>)-CO-,
  H_2N-CO-OCH_2CH(OH)CH_2-); C_5H_{12}NO_2, 118.0867
   (C_4H_9NH-CO-O-, C_4H_9O-CO-NH-)
m/z 119 (30%)
                                                               12%
                                                                      21%
\underline{C_9H_{11}}, 119.0860 phenyl-C(CH<sub>3</sub>)<sub>2</sub>-,
   (CH_3)_3-phenyl- etc
                                                                              79
                                                               ^{22}
                                                                      17
\underline{C_8}\underline{H_7}\underline{O}, 119.0496 \underline{CH_3}-phenyl-CO-,
   dihydrobenzofurans, -CH<sub>2</sub>CH(pheny1)-O-,
   substd/cyc/unsatd ketones
                                                               10
                                                                      20
                                                                             60
\underline{C_7}\underline{H_5}\underline{NO}, 119.0370 \underline{H_2}\underline{N-phenyl-CO-},
   phenyl-NH-CO-, cyc-N(phenyl)-CO-,
   ext-ar(-NH-CO-)
                                                                6
                                                                      21
                                                                              59
\underline{C_7H_3O_2}, 119.0133 ar(C=0)<sub>2</sub>, -phenyl-CO-O-,
   phenyl-ar(-O-CO-)
                                                                      21
                                                                              54
                                                                4
\underline{C_8}\underline{H_9}\underline{N}, \underline{119.0734} benzo-NHCH<sub>2</sub>-,
   phenyl-CH=N-CH_2-, phenyl-CH_2CH(NH_2)-,
   cyc-CH<sub>2</sub>CH(phenyl)N(-)-
                                                                      13
                                                                              54
```

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\underline{\text{C}}_{7}\underline{\text{H}}_{7}\underline{\text{N}}_{2}$, 119.0607 $\underline{\text{CH}}_{3}$ -phenyl-N=N-,			
phenyl-CH=N-NH-, CH ₃ CH=CH-pyrazyl-	3	19	43
also $C_6H_5N_3$, 119.0481 (arN ₃); $C_6H_3N_2O$, 11	9.024	4	
(imidazolidone-ar, $HO-ext-arN_2$); $C_5H_3N_2$, 119	.0355	•
(ext-arN ₄); C ₂ F ₅ , 118.9920	_		
m/z 120 (24%)	7%	19%	
11/2 120 (24/0)	1 /0	10 /0	
$\underline{\text{C}}_{9}\underline{\text{H}}_{12}$, 120.0938 (CH ₃) ₂ -phenyl-CH ₂ - etc	_17_	14	73
$C_{8}H_{8}O$, 120.0575 phenyl-CO-CH ₂ -,			
cyc-CH ₂ CH(pheny1)-O-, substd/cyc			
ketones	12	18	58
$\underline{C}_{8}\underline{H}_{10}\underline{N}, 120.0812 \text{ (CH}_{3})_{3}\text{-pyridyl-},$			
H ₂ NCH(CH ₂ -phenyl)-,			
ar/unsatd/cyc/substd amines	6	30	64
$\underline{C_{7}H_{6}NO}$, 120.0448 $H_{2}N$ -phenyl-CO-,			
phenyl-NH-CO-, HO(CH ₃ -)pyridyl-CH ₂ -	7	25	56
3 /10 2			
$\underline{C_{7}H_{4}O_{2}}$, 120.0211 HO-phenyl-CO-,			
HO-CO-phenyl-, -phenyl-CO-O-,			
-phenyl-O-CO-, $ext-ar(-O-CO-)$			
(dihydrocoumarins)	6	23	53
$\underline{\mathrm{C}}_{7}\underline{\mathrm{H}}_{8}\underline{\mathrm{N}}_{2}$, 120.0686 $\mathrm{C}_{3}\mathrm{H}_{7}$ -pyrazines,			
phenyl-CH=N-NH-, ar-amines	3	23	<u>43</u>
C H N O 120 0322 ar(-NH_CO_NH_)			
$\frac{\text{C}_{6}\text{H}_{4}\text{N}_{2}\text{O}, 120.0322}{\text{ext-arN}_{2}\text{O}}$ ar(-NH-CO-NH-),	3	18	55
also $C_5H_4N_4$, 120.0433 (ext-arN ₄); $C_6H_6N_3$,			
$(\text{ext-arN}_3); C_6H_2NO_2, 120.0084 (\text{ext-ar})$			
ŭ ŭ L L			
-pyridyl-CO-O-, -CO-NH-ar-CO-); ${\rm C_5H_2N_3C}$, 120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•

```
Substructure, neighbor
m/z, comp
                                                         Prop Abnd Spcf
   (ext-arN_3(C=0)); C_3H_5Br, 119.9574
   (\text{cyc-CH}_2\text{CH}(-)\text{CHBr-}); C_2\text{HOBr}, 119.9210 (=\text{CBr-CO-},
   ar-Br(OH))
m/z 121 (30%)
                                                           11%
                                                                  24\%
\underline{C_9H_{13}}, 121.1017 polyunsatd/cyc hc
                                                           20
                                                                  27
                                                                         85
C_8 H_0 O, 121.0653 cyc-CH(-)CH(phenyl)O-,
  phenyl-C(-)(OCH<sub>3</sub>)-, phenyl-CHY*-Y-OCH<sub>3</sub>,
  substd/cyc/unsatd C=O/-O-/-OH
                                                           13
                                                                  27
                                                                         62
\underline{C_7}\underline{H_5}\underline{O_2}, 121.0289 HO-phenyl-CO-,
   CH_3(-CH_2-)furyl-CO-, furyl-CH=CH-CO-,
  -O-phenyl-CH_2O-, substd/cyc C=O/-O-
                                                           11
                                                                  30
                                                                         58
\underline{C_{7}H_{7}NO}, 121.0526 phenyl-CH=N-O-,
   phenyl-NH-CO-, cyc/unsatd/substd
   amines/C=O/-O-/-OH
                                                                  14
                                                                         52
\underline{\text{C}}_{8}\underline{\text{H}}_{11}\underline{\text{N}}, \ 121.0890 \ (\text{CH}_{3})_{2} \text{phenyl-NH-,}
   ar-amines
                                                                  13
                                                                         55
also C_6H_3NO_2, 121.0163 (O_2N-phenyl-, ar/arN
   C=O/-NH/-O-/OH); C_6H_5N_2O, 121.0400 (pyrazones,
  HO-phenyl-N=N-); C_7H_0N_2, 121.0764 ((CH<sub>3</sub>)<sub>2</sub>N-pyridyl-,
  pyrazines); C_5H_3N_3O, 121.0274 (HO-ext-arN<sub>3</sub>-);
   C_7H_5S, 121.0115 (cyc-CH(phenyl)-S-, arS); C_6H_7N_3,
   121.0637 (ext-arN<sub>3</sub>); C<sub>2</sub>H<sub>2</sub>BrO, 120.9289 (BrCH<sub>2</sub>-CO-)
m/z 122 (23%)
                                                            7%
                                                                  17%
\underline{C_8H_{10}O}, 122.0731 C_2H_5O-phenyl-,
   phenyl-O-Y*-C_2H_5, cyc/substd/unsatd
   ketones/-OH
                                                           14
                                                                  19
                                                                         60
```

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\underline{C_9}\underline{H_{14}}$, 122.1095 polyunsatd/cyc hc	_16_	13	81
$\frac{\text{C}_{7}\text{H}_{6}\text{O}_{2}, \ 122.0367}{\text{(HO-)}_{2}\text{pheny1-CH}_{2}\text{-, cyc/substd C=O/-O-}}$	_11	14	54
$\frac{C_7H_8NO, 122.0605}{CH_8O_mh_{oral}}$ ext-ar(NH)(C=O),			
CH ₃ O-phenyl-NH-, substd/cyc amines/C=O/-O-	4	18	48
$\underline{\text{C}}_{8}\underline{\text{H}}_{12}\underline{\text{N}},\ \underline{\text{122.0968}}$ cyc/substd/unsatd amine	s <u>4</u>	18	59_
$\underline{\text{C}}_{6}\underline{\text{H}}_{4}\underline{\text{NO}}_{2}$, 122.0241 pyridone-CO-,			
HO-CO-pyridyl-, H-CO-pyrrolyl-CH ₂ O-, O ₂ N-phenyl-	3	23	50
also $C_6H_2O_3$, 122.0003; $C_6H_6N_2O$, 122.0478 (HO-(CH ₃ -) ₂ -pyrazinyl-); $C_7H_{10}N_2$, 122.	0842		
$((CH_3)_2 pyrazinyl-CH_2-); C_5H_4N_3O, 122.0$ (HO-ext-arN ₃ -); $C_5H_2N_2O_2$, 122.0114; C_7 (ext-arS)		L 22, 0	193
$((CH_3)_2 pyrazinyl-CH_2-); C_5 H_4 N_3 O, 122.0$ $(HO-ext-arN_3-); C_5 H_2 N_2 O_2, 122.0114; C_7 O_2$		122.01 22%	193
$((CH_3)_2 pyrazinyl-CH_2-); C_5 H_4 N_3 O, 122.0$ $(HO-ext-arN_3-); C_5 H_2 N_2 O_2, 122.0114; C_7 O$ (ext-arS)	H ₆ S, I		88
$ \begin{array}{c} ((\text{CH}_3)_2 \text{pyrazinyl-CH}_2); \ \text{C}_5 \text{H}_4 \text{N}_3 \text{O}, \ 122.0 \\ (\text{HO-ext-arN}_3); \ \text{C}_5 \text{H}_2 \text{N}_2 \text{O}_2, \ 122.0114; \ \text{C}_7 \text{O}_2 \\ (\text{ext-arS}) \\ \\ \underline{\text{m/z } 123 \ (25\%)} \\ \\ \underline{\text{C}_9 \text{H}_{15}, \ 123.1173} \ \text{polyunsatd/cyc hc} \\ \end{array} $	9%	22%	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9%	22%	
$ \begin{array}{c} ((\text{CH}_3)_2 \text{pyrazinyl-CH}_2\text{-}); \ \text{C}_5 \text{H}_4 \text{N}_3 \text{O}, \ 122.0 \\ (\text{HO-ext-arN}_3\text{-}); \ \text{C}_5 \text{H}_2 \text{N}_2 \text{O}_2, \ 122.0114; \ \text{C}_7 \\ (\text{ext-arS}) \\ \\ \underline{\text{m/z } 123 \ (25\%)} \\ \\ \underline{\text{C}_9 \text{H}_{15}, \ 123.1173 \ \text{polyunsatd/cyc hc}} \\ \underline{\text{C}_8 \text{H}_{11} \text{O}, \ 123.0809} \ \text{cyc/substd/unsatd} \\ \underline{\text{C}_{=0/-OH}} \\ \\ \underline{\text{C}_7 \text{H}_7 \text{O}_2, \ 123.0445} \ \text{phenyl-CO-O-,} \\ \end{array} $	9% 20	22%	
((CH ₃) ₂ pyrazinyl-CH ₂ -); C ₅ H ₄ N ₃ O, 122.0 (HO-ext-arN ₃ -); C ₅ H ₂ N ₂ O ₂ , 122.0114; C ₇ (ext-arS) m/z 123 (25%) C ₉ H ₁₅ , 123.1173 polyunsatd/cyc hc C ₈ H ₁₁ O, 123.0809 cyc/substd/unsatd C=O/-OH	9% 20	22%	
((CH ₃) ₂ pyrazinyl-CH ₂ -); C ₅ H ₄ N ₃ O, 122.0 (HO-ext-arN ₃ -); C ₅ H ₂ N ₂ O ₂ , 122.0114; C ₇ (ext-arS) m/z 123 (25%) C ₉ H ₁₅ , 123.1173 polyunsatd/cyc hc C ₈ H ₁₁ O, 123.0809 cyc/substd/unsatd C=O/-OH C ₇ H ₇ O ₂ , 123.0445 phenyl-CO-O-, HO-phenyl-CO(OH)-, phenyl-C(-)(-O-) ₂ ,	9% 20	22% 17 20	88
((CH ₃) ₂ pyrazinyl-CH ₂ -); C ₅ H ₄ N ₃ O, 122.0 (HO-ext-arN ₃ -); C ₅ H ₂ N ₂ O ₂ , 122.0114; C ₇ (ext-arS) m/z 123 (25%) C ₉ H ₁₅ , 123.1173 polyunsatd/cyc hc C ₈ H ₁₁ O, 123.0809 cyc/substd/unsatd C=O/-OH C ₇ H ₇ O ₂ , 123.0445 phenyl-CO-O-, HO-phenyl-CO(OH)-, phenyl-C(-)(-O-) ₂ , ar/unsatd/cyc C=O/-OH/-O-	9% 20	22% 17 20	88
((CH ₃) ₂ pyrazinyl-CH ₂ -); C ₅ H ₄ N ₃ O, 122.0 (HO-ext-arN ₃ -); C ₅ H ₂ N ₂ O ₂ , 122.0114; C ₇ (ext-arS) m/z 123 (25%) C ₉ H ₁₅ , 123.1173 polyunsatd/cyc hc C ₈ H ₁₁ O, 123.0809 cyc/substd/unsatd C=O/-OH C ₇ H ₇ O ₂ , 123.0445 phenyl-CO-O-, HO-phenyl-CO(OH)-, phenyl-C(-)(-O-) ₂ , ar/unsatd/cyc C=O/-OH/-O- C ₆ H ₃ O ₃ , 123.0082 ar/unsatd/cyc	9% 20 14	22% 17 20 21	88 64 54

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
HO-(CH ₃)-pyridonyl-	3	18	45
$\frac{\text{C}_{7}\text{H}_{9}\text{NO}, 123.0683}{\text{ar-CH}_{2}\text{CH}(-\text{CO-NH}_{2})-,}$			
CH ₃ O-(H ₂ N-)-phenyl-	2	21	45
also $C_8H_{13}N$, 123.1047 (cyc/unsatd amines)	•	•	
123.0271 (phenyl-SCH ₂ -, CH ₃ S-phenyl-); 123.0556 (CH ₃ -pyrimidinyl-OCH ₂ -,	^C 6 ^H 7 ¹	N ₂ O,	
$CH_3O-(CH_3-)-pyrazinyl-); C_5H_5N_3O, 123.0$	0430		
m/z 124 (19%)	6%	22%	
$\underline{C_{8}H_{12}O, 124.0887}$ substd/cyc/unsatd			
ketones	14	18	60
$\underline{\text{C}}_{9}\underline{\text{H}}_{16}$, 124.1251 substd/cyc/unsatd hc	15	10	83
$\underline{C}_{7}\underline{H}_{8}\underline{O}_{2}$, 124.0524 $\underline{CH}_{3}\underline{O}$ -phenyl-O-,			
(HO) ₂ -phenyl-CH ₂ -, cyc/substd/unsatd C=O/-O-	8	24	48
$\underline{C_8}\underline{H_{14}}\underline{N}$, 124.1125 substd/cyc amines,			
NC-C ₇ H ₁₄ -	6_	30	60
$\underline{\text{C}}_{7}\underline{\text{H}}_{8}\underline{\text{S}}$, 124.0350 $\underline{\text{CH}}_{3}$ -phenyl-S-	2_	59	71
$\underline{C_{7}H_{10}NO}$, 124.0761 oxazoles, cyc/substd			
amines/-O-/C=N-OH	3_	24	40
$C_6H_6NO_2$, 124.0397 furyl-CO-CH(NH ₂)-,			
maleimides, cyc/unsatd, amines/C=O/-O-	3_	17	48
$\underline{C}_{6}\underline{H}_{4}\underline{O}_{3}$, 124.0160 unsatd/ar C=0/-0-/-OH	3_	13	44
also $C_6H_8N_2O$, 124.0635; C_6H_6NS , 124.0223 (pyridyl-SCH ₂ -, CH_3S -pyridyl-, arS-NH-) 124.0271 (O_2N -pyridyl-, CH_3 -pyrazinyl-(•		2'

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 125 (22%)	6%	20%	
$\underline{\text{C}}_{9}\underline{\text{H}}_{17}$, 125.1329 cyc/unsatd hc	_21_	19	87
$\frac{\rm C_8H_{13}O,\ 125.0966}{\rm -C_7H_{14}-CO-}$ cyclohexyl-CH $_2$ -CO-, -CO-/-OH; and $\frac{\rm C_9HO,\ 125.0027}{\rm CO}$			
ext-ar(C=0)	11	16	66
$\frac{\text{C}_{7}\text{H}_{9}\text{O}_{2}, \ 125.0602}{\text{cyc/unsatd C=O/-O-/-OH, ar-(OCH}_{3})_{2}}$	8	19	58_
$\underline{C}_{6}\underline{H}_{5}\underline{O}_{3}$, 125.0238 CH ₃ O-pyrone-, furanoates etc	4	15	56
$\underline{\text{C}}_{7}\underline{\text{H}}_{9}\underline{\text{S}}$, 125.0428 $\underline{\text{C}}_{3}\underline{\text{H}}_{7}$ -thiophenyl-, ar-SR	2	20	72
$\begin{array}{c} \underline{\text{C}}_{6}\underline{\text{H}}_{7}\underline{\text{NO}}_{2},\ \underline{125.0475}\ \text{ar-NH-CO-OR},\\ \text{furyl-CO-NHCH}_{2}\text{-},\ \text{CH}_{3}\text{-ar-NO}_{2}\\ \text{also } \text{C}_{7}\underline{\text{H}}_{11}\underline{\text{NO}},\ \underline{125.0839}\ (\text{arN-O-});\ \text{C}_{8}\underline{\text{H}}_{15}\underline{\text{N}},\\ \text{C}_{6}\underline{\text{H}}_{9}\underline{\text{N}}_{2}\underline{\text{O}},\ \underline{125.0713}\ (\text{cyc carbamates});\ \text{C}_{7}\underline{\text{H}}_{2}\\ (\text{Cl-phenyl-CH}_{2}\text{-});\ \text{C}_{6}\underline{\text{H}}_{7}\underline{\text{NS}},\ \underline{125.0301}\ (\text{art}_{2},\ \underline{\text{C}}_{7}\underline{\text{H}}_{3}\underline{\text{N}}_{2},\ \underline{125.1077}\ (\text{cyc imines});\ \underline{\text{C}}_{5}\underline{\text{HO}}_{4},\\ (-\underline{\text{CH}}_{2}\underline{\text{O-CO-C}}=\underline{\text{C-CO-O-}},\ (-\underline{\text{O}})_{2}\underline{\text{ar-CO-}});\ \underline{\text{C}}_{6}\underline{\text{H}}_{2}}\\ \underline{125.0031}\ (\underline{\text{Cl-ar-NH-}}) \end{array}$	H ₆ Cl, N-S-) 124.9	1203; 125.0 ;	55 0157
m/z 126 (20%)	6%	20%	
$\frac{C_9 H_{18}, \ 126.1407 \ \text{H-C}_9 H_{18} - \text{Y*, H-C}_9 H_{18} - \text{R-Y*;}}{\text{and } C_{10} H_6, \ 126.0469} \ \text{naphthyl}$ $\frac{C_8 H_{14} O, \ 126.1044 \ 2 - \text{R-cyclopentanone-C}_3 H_7}{\text{R-(CH}_2)_7 - \text{CO-Y}, \ \text{cyc/substd/unsatd}}$	20	11	85
-CO-/-O-/-OH; and $\underline{C_9}\underline{H_2}\underline{O}$, 126.0105			

79

```
m/z, comp
                    Substructure, neighbor
                                                                 Prop Abnd Spcf
   ext-ar(C=0)
                                                                   11
                                                                           21
                                                                                   62
\underline{C_7}\underline{H_{10}}\underline{O_2}, 126.0680 cyc/substd/unsatd
   -CO-/-CO-O-/-O- etc
                                                                    7
                                                                           19
                                                                                   52
\underline{C_8}\underline{H_{16}}\underline{N}, 126.1281 cyc/substd/unsatd
   amines; and \underline{C_0H_4N}, 126.0343 substd
   quinolines
                                                                    5
                                                                           17
                                                                                  60
\underline{C_7}\underline{H_{12}}\underline{NO}, \underline{126.0917} \text{ cyc-}C_5\underline{H_9}-N(-CO-CH_3)-,
   cyc/unsatd amides, oximes, isocyanates 4
                                                                          16
                                                                                   54
\underline{C_6H_6O_3}, 126.0316 cyc/substd/unsatd
   C=O/-CO-O-/-OH
   (cyc-CH<sub>2</sub>CH<sub>2</sub>CH(-CO-)CH(-CO-OH)-
   HO-pyrone-CH<sub>2</sub>-)
                                                                    3
                                                                          23
                                                                                   50
also C_6H_8NO_2, 126.0554 (cyc-CO-NR-CO-, ar-NH-CO-OCH<sub>3</sub>);
   C_7H_{10}S, 126.0506 (ars); C_6H_8NS, 126.0380 (arNS);
   C_7H_{14}N_2, 126.1155 (unsatd diamines); C_5H_6N_2O_2,
   126.0427 (unsatd/cyc -NH-CO-N(-)-CO-) C_6H_{10}N_2O,
   126.0791 (C=N-NH-CO-)
                                                                           16%
m/z 127 (26%)
\underline{C}_{10}\underline{H}_{7}, 127.0547 naphthyl-Y*, ext-ar; and
   \underline{C_9H_{19}}, 127.1486 satd hc
                                                                   25
                                                                                   87
                                                                           11
\underline{C_7}\underline{H_{11}}\underline{O_2}, \underline{127.0758} C_4\underline{H_9}-CO-C\underline{H_2}-CO-
   CH_2O-(Y*-)cyclohexyl-O-,
   CH<sub>3</sub>O-CO-CH=C(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>2</sub>-
                                                                    8
                                                                           14
                                                                                   62
\underline{C_8}\underline{H_{15}}\underline{O}, 127.1122 C_7\underline{H_{15}}-CO-,
   -CH(OH)-(CH<sub>2</sub>)<sub>7</sub>-; and C_0H_3O, 127.0184
   ext-ar(C=0)(-benzofuranonyl-),
                                                                           14
                                                                                   66
   -0-phenyl-ar-O-
```

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
<u>C₆H₇O₃, 127.0394</u> ar/cyc/unsatd	4	10	58
-0-/-On/C-0	4	18	
<u>I, 126.9043</u> iodo	3	21	68
$\underline{C}_{5}\underline{H}_{7}\underline{N}_{2}\underline{O}_{2}$, 127.0505			
-CH ₂ -CO-NHCH(CH ₃)-CO-NH-,			
$-C(-)_2$ -CO-NH-CH $_2$ -CO-NH-CH $_2$ -	2	30	61
$C_{6}H_{9}NO_{2}$, 127.0632 arn -O-/-OH,			
$-N(C_2H_5)-CO-C(CH_3)=C(-)-O-$	2	24	62
also C ₉ H ₅ N, 127.0421 (ext-arN); C ₇ H ₁₅ N ₂ ,	127.0	295	
(ext-arN ₂); C ₇ H ₁₃ NO, 127.0196 (piperidy	1-CO-	-CH ₂ -));
$C_{7}^{H}_{11}^{S}$, 127.0584 (thiabicycloalkane); $C_{7}^{H}_{11}^{S}$	6 ^H 9 ^{NS}	3,	
$127.0457 (C_2H_5-thiazolyl-CH_2-); C_5H_3O_4,$	127	.0031	;
C6H6NC1, 127.0188 (C1-phenyl-NH-)			
m/z 128 (25%)	8%	17%	
m/z 128 (25%) $C_{10}H_{8}$, 128.0626 ext-ar hc		17% 13	
$\underline{C}_{10}\underline{H}_{8}$, 128.0626 ext-ar hc			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c} \underline{\text{C}}_{10}\underline{\text{H}}_{8}, \ \underline{\text{128.0626}} \ \text{ext-ar hc} \\ \\ \underline{\text{C}}_{7}\underline{\text{H}}_{12}\underline{\text{O}}_{2}, \ \underline{\text{128.0836}} \ \text{C}_{2}\text{H}_{5}\text{O-CO-CH=C(CH}_{3})\text{CH}_{2}\text{-,} \\ \\ \text{CH}_{3}\text{O-(HO-)-cyclohexyl-,} \end{array} $			
$\begin{array}{l} \underline{\text{C}}_{10}\underline{\text{H}}_{8}, \ \underline{\text{128.0626}} \ \text{ext-ar hc} \\ \\ \underline{\text{C}}_{7}\underline{\text{H}}_{12}\underline{\text{O}}_{2}, \ \underline{\text{128.0836}} \ \text{C}_{2}\text{H}_{5}\text{O-CO-CH=C(CH}_{3})\text{CH}_{2}\text{-,} \\ \\ \text{CH}_{3}\text{O-(HO-)-cyclohexyl-,} \\ \\ \text{C}_{2}\text{H}_{5}\text{O-CO-(CH}_{2})_{4}\text{-,} \end{array}$		13	85
$ \begin{array}{c} \underline{\text{C}}_{10}\underline{\text{H}}_{8}, \ \underline{\text{128.0626}} \ \text{ext-ar hc} \\ \\ \underline{\text{C}}_{7}\underline{\text{H}}_{12}\underline{\text{O}}_{2}, \ \underline{\text{128.0836}} \ \text{C}_{2}\text{H}_{5}\text{O-CO-CH=C(CH}_{3})\text{CH}_{2}\text{-,} \\ \\ \text{CH}_{3}\text{O-(HO-)-cyclohexyl-,} \end{array} $	22		85
$\begin{array}{l} \underline{\text{C}}_{10}\underline{\text{H}}_{8}, \ \underline{\text{128.0626}} \ \text{ext-ar hc} \\ \\ \underline{\text{C}}_{7}\underline{\text{H}}_{12}\underline{\text{O}}_{2}, \ \underline{\text{128.0836}} \ \text{C}_{2}\text{H}_{5}\text{O-CO-CH=C(CH}_{3})\text{CH}_{2}\text{-,} \\ \\ \text{CH}_{3}\text{O-(HO-)-cyclohexyl-,} \\ \\ \text{C}_{2}\text{H}_{5}\text{O-CO-(CH}_{2})_{4}\text{-,} \end{array}$	22	13	85 54
$\begin{array}{l} \underline{\mathrm{C}}_{10}\underline{\mathrm{H}}_{8}, \ \underline{128.0626} \ \ \mathrm{ext-ar} \ \ \mathrm{hc} \\ \\ \underline{\mathrm{C}}_{7}\underline{\mathrm{H}}_{12}\underline{\mathrm{O}}_{2}, \ \underline{128.0836} \ \ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O-CO-CH=C(CH}_{3})\mathrm{CH}_{2}^{-}, \\ \\ \mathrm{CH}_{3}\mathrm{O-(HO-)-cyclohexyl-}, \\ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O-CO-(CH}_{2})_{4}^{-}, \\ \mathrm{CH}_{3}\mathrm{O-CO-C(CH}_{3})_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}^{-} \\ \\ \underline{\mathrm{C}}_{9}\underline{\mathrm{H}}_{6}\underline{\mathrm{N}}, \ \underline{128.0499} \ \ \mathrm{quinolinyl}, \ \ \mathrm{phenyl-arN} \end{array}$	22	13	85 54
$\begin{array}{l} \underline{\mathbf{C}}_{10}\underline{\mathbf{H}}_{8}, \ \underline{128.0626} \ \text{ext-ar hc} \\ \\ \underline{\mathbf{C}}_{7}\underline{\mathbf{H}}_{12}\underline{\mathbf{O}}_{2}, \ \underline{128.0836} \ \mathbf{C}_{2}\mathbf{H}_{5}\\ \mathbf{O}-\mathbf{CO}-\mathbf{CH}=\mathbf{C}(\mathbf{CH}_{3})\mathbf{CH}_{2}^{-}, \\ \mathbf{CH}_{3}\\ \mathbf{O}-(\mathbf{HO}-)-\mathbf{cyclohexyl-}, \\ \mathbf{C}_{2}\mathbf{H}_{5}\\ \mathbf{O}-\mathbf{CO}-(\mathbf{CH}_{2})_{4}^{-}, \\ \mathbf{CH}_{3}\\ \mathbf{O}-\mathbf{CO}-\mathbf{C}(\mathbf{CH}_{3})_{2}\\ \mathbf{CH}_{2}\\ \mathbf{C}\\ \underline{\mathbf{C}}_{9}\underline{\mathbf{H}}_{6}\\ \underline{\mathbf{N}}, \ \underline{128.0499} \ \mathbf{quinolinyl}, \ \mathbf{phenyl-arN} \\ \\ \underline{\mathbf{C}}_{9}\underline{\mathbf{H}}_{4}\\ \underline{\mathbf{O}}, \ \underline{128.0262} \ \mathbf{ext-ar}(\mathbf{C}=\mathbf{O}) \end{array}$	22	13	85 54
$\begin{array}{l} \underline{\mathrm{C}}_{10}\underline{\mathrm{H}}_{8}, \ \underline{128.0626} \ \ \mathrm{ext-ar} \ \ \mathrm{hc} \\ \\ \underline{\mathrm{C}}_{7}\underline{\mathrm{H}}_{12}\underline{\mathrm{O}}_{2}, \ \underline{128.0836} \ \ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O-CO-CH=C(CH}_{3})\mathrm{CH}_{2}^{-}, \\ \\ \mathrm{CH}_{3}\mathrm{O-(HO-)-cyclohexyl-}, \\ \\ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O-CO-(CH}_{2})_{4}^{-}, \\ \\ \mathrm{CH}_{3}\mathrm{O-CO-C(CH}_{3})_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}^{-} \\ \\ \underline{\mathrm{C}}_{9}\underline{\mathrm{H}}_{6}\underline{\mathrm{N}}, \ \underline{128.0499} \ \ \mathrm{quinolinyl}, \ \ \mathrm{phenyl-arN} \\ \\ \underline{\mathrm{C}}_{9}\underline{\mathrm{H}}_{4}\mathrm{O}, \ \underline{128.0262} \ \ \mathrm{ext-ar(C=O)} \\ \\ \mathrm{(benzofuranonyl-)}, \ \ \mathrm{ext-ar-CO-}, \end{array}$	6 8	13 17 11	54 61
$\begin{array}{l} \underline{\mathbf{C}}_{10}\underline{\mathbf{H}}_{8}, \ \underline{128.0626} \ \text{ext-ar hc} \\ \\ \underline{\mathbf{C}}_{7}\underline{\mathbf{H}}_{12}\underline{\mathbf{O}}_{2}, \ \underline{128.0836} \ \mathbf{C}_{2}\mathbf{H}_{5}\\ \mathbf{O}-\mathbf{CO}-\mathbf{CH}=\mathbf{C}(\mathbf{CH}_{3})\mathbf{CH}_{2}^{-}, \\ \mathbf{CH}_{3}\\ \mathbf{O}-(\mathbf{HO}-)-\mathbf{cyclohexyl-}, \\ \mathbf{C}_{2}\mathbf{H}_{5}\\ \mathbf{O}-\mathbf{CO}-(\mathbf{CH}_{2})_{4}^{-}, \\ \mathbf{CH}_{3}\\ \mathbf{O}-\mathbf{CO}-\mathbf{C}(\mathbf{CH}_{3})_{2}\\ \mathbf{CH}_{2}\\ \mathbf{C}\\ \underline{\mathbf{C}}_{9}\underline{\mathbf{H}}_{6}\\ \underline{\mathbf{N}}, \ \underline{128.0499} \ \mathbf{quinolinyl}, \ \mathbf{phenyl-arN} \\ \\ \underline{\mathbf{C}}_{9}\underline{\mathbf{H}}_{4}\\ \underline{\mathbf{O}}, \ \underline{128.0262} \ \mathbf{ext-ar}(\mathbf{C}=\mathbf{O}) \end{array}$	22	13	85 54
$\begin{array}{l} \underline{\mathrm{C}}_{10}\underline{\mathrm{H}}_{8}, \ \underline{128.0626} \ \ \mathrm{ext-ar} \ \ \mathrm{hc} \\ \\ \underline{\mathrm{C}}_{7}\underline{\mathrm{H}}_{12}\underline{\mathrm{O}}_{2}, \ \underline{128.0836} \ \ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O-CO-CH=C(CH}_{3})\mathrm{CH}_{2}^{-}, \\ \\ \mathrm{CH}_{3}\mathrm{O-(HO-)-cyclohexyl-}, \\ \\ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O-CO-(CH}_{2})_{4}^{-}, \\ \\ \mathrm{CH}_{3}\mathrm{O-CO-C(CH}_{3})_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}^{-} \\ \\ \underline{\mathrm{C}}_{9}\underline{\mathrm{H}}_{6}\underline{\mathrm{N}}, \ \underline{128.0499} \ \ \mathrm{quinolinyl}, \ \ \mathrm{phenyl-arN} \\ \\ \underline{\mathrm{C}}_{9}\underline{\mathrm{H}}_{4}\mathrm{O}, \ \underline{128.0262} \ \ \mathrm{ext-ar(C=O)} \\ \\ \mathrm{(benzofuranonyl-)}, \ \ \mathrm{ext-ar-CO-}, \end{array}$	6 8	13 17 11	54 61
$\begin{array}{l} \underline{\mathbf{C}}_{10}\underline{\mathbf{H}}_{8}, \ 128.0626 \ \text{ext-ar hc} \\ \\ \underline{\mathbf{C}}_{7}\underline{\mathbf{H}}_{12}\underline{\mathbf{O}}_{2}, \ 128.0836 \ \mathbf{C}_{2}\mathbf{H}_{5}\mathbf{O}-\mathbf{CO}-\mathbf{CH}=\mathbf{C}(\mathbf{CH}_{3})\mathbf{CH}_{2}^{-}, \\ \\ \mathbf{CH}_{3}\mathbf{O}-(\mathbf{HO}-)-\mathbf{cyclohexyl-}, \\ \\ \mathbf{C}_{2}\mathbf{H}_{5}\mathbf{O}-\mathbf{CO}-(\mathbf{CH}_{2})_{4}^{-}, \\ \\ \mathbf{CH}_{3}\mathbf{O}-\mathbf{CO}-\mathbf{C}(\mathbf{CH}_{3})_{2}\mathbf{CH}_{2}\mathbf{CH}_{2}^{-} \\ \\ \underline{\mathbf{C}}_{9}\underline{\mathbf{H}}_{6}\mathbf{N}, \ 128.0499 \ \text{quinolinyl, phenyl-arN} \\ \\ \underline{\mathbf{C}}_{9}\underline{\mathbf{H}}_{4}\mathbf{O}, \ 128.0262 \ \text{ext-ar}(\mathbf{C}=\mathbf{O}) \end{array}$	22	13	85 54
$\begin{array}{l} \underline{\mathrm{C}}_{10}\underline{\mathrm{H}}_{8}, \ 128.0626 \ \ \mathrm{ext-ar} \ \ \mathrm{hc} \\ \\ \underline{\mathrm{C}}_{7}\underline{\mathrm{H}}_{12}\underline{\mathrm{O}}_{2}, \ 128.0836 \ \ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O-CO-CH=C(CH}_{3})\mathrm{CH}_{2}^{-}, \\ \\ \mathrm{CH}_{3}\mathrm{O-(HO-)-cyclohexyl-}, \\ \\ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O-CO-(CH}_{2})_{4}^{-}, \\ \\ \mathrm{CH}_{3}\mathrm{O-CO-C(CH}_{3})_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}^{-} \\ \\ \underline{\mathrm{C}}_{9}\underline{\mathrm{H}}_{6}\mathrm{N}, \ 128.0499 \ \ \mathrm{quinolinyl}, \ \ \mathrm{phenyl-arN} \\ \\ \underline{\mathrm{C}}_{9}\underline{\mathrm{H}}_{4}\mathrm{O}, \ 128.0262 \ \ \mathrm{ext-ar(C=O)} \\ \\ \mathrm{(benzofuranonyl-)}, \ \ \mathrm{ext-ar-CO-}, \\ \\ \mathrm{phenyl-cyc(C=O)} \end{array}$	6 8	13 17 11	54 61

```
Prop Abnd Spcf
                       Substructure, neighbor
   cyc-CH<sub>2</sub>CH<sub>2</sub>C(CH<sub>3</sub>)(OH)CH<sub>2</sub>CH<sub>2</sub>N(CH<sub>3</sub>)-
                                                                                    28
                                                                                             56
\underline{\text{C}}_{6}\underline{\text{H}}_{8}\underline{\text{O}}_{3}, 128.0473 \underline{\text{CH}}_{3}O-CO-C(OCH<sub>3</sub>)=CHCH<sub>2</sub>-,
   CH_3O-CO-(CH_2)_3-CO-
   C_2H_5O-CO-CH(-CO-CH_3)-
                                                                                   20
                                                                                            50
also C_6H_{10}NO_2, 128.0710 ((CH<sub>3</sub>)<sub>2</sub>NC(OCH<sub>3</sub>)=CH-CO-,
   \text{cyc-CH}_2\text{CH}_2\text{CH}(-\text{NH-CO-OC}_2\text{H}_5); C_8\text{H}_{16}\text{O}, 128.1200
   (C_6H_{13}-CO-CH_{2}-); C_7H_{16}N_2, 128.1311 ((C_3H_7)_2C=N-NH-);
   C_8H_4N_2, 128.0373 (ext-arN<sub>2</sub>(-quinoxalinyl));
   C_5H_6NO_3, 128.0346 (-CH<sub>2</sub>CH(NH-CO-CH<sub>3</sub>)-CO-O-);
   C_6H_5OC1, 128.0029 (C1-phenyl-O-); C_5H_4O_4, 128.0109
   (-CH_2O-CO-)_2CH-)
m/z 129 (28%)
                                                                           10%
                                                                                    20%
\underline{C}_{10}\underline{H}_{0}, 129.0704 indenes, indanes,
    tetralins etc
                                                                           21
                                                                                    16
                                                                                            84
\underline{C_7}\underline{H_{13}}\underline{O_2}, 129.0915 HO-CO-cyclohexyl-,
   \text{HO-CO-(CH}_2)_6-, \text{CH}_3-CO-(CH_2)<sub>5</sub>-,
   -(CH_2)_6-CO-O-
                                                                             7
                                                                                    20
                                                                                             61
\underline{C}_{8}\underline{H}_{17}\underline{O}, \underline{129.1278} \underline{C}_{7}\underline{H}_{15}\underline{C}\underline{H}(\underline{O}\underline{H})-,
    C_6H_{13}OCH(CH_3)-; and C_9H_5O, 129.0340
   phenyl-CH=C(-)-CO-, -indonyl-O-,
    cyc-CH<sub>2</sub>C(-)(phenyl)-
                                                                             8
                                                                                    15
                                                                                             64
\underline{C_0H_7N}, 129.0577 indolyl-CH<sub>2</sub>-,
    1,2-dihydroquinolinyl-, 2-quinolinyl-
                                                                             8
                                                                                             61
\underline{C_6}\underline{H_0}\underline{O_3}, 129.0551 -CO-(CH<sub>2</sub>)<sub>4</sub>-CO-O-,
    CH_3O-CO-(CH_3)_2-CO-,
    -C(OCH_3) = CHCH_2CH_2 - CO - O -
    -CH2CH(OH)CH2O-CO-CH2CH2-
                                                                                    19
                                                                                             59
```

```
m/z, comp
                  Substructure, neighbor
                                                          Prop Abnd Spcf
\underline{C_8H_5N_2}, 129.0451 ext-arN<sub>2</sub> (quinazolinyl,
   CH<sub>3</sub>-benzimidazolyl-)
                                                                          53
also C_8H_3NO, 129.0214 (ext-arN-CO-, ext-arN(C=O));
   C_5H_5O_4, 129.0187 (-O-CO-CH<sub>2</sub>CH(OH)CH<sub>2</sub>-CO-)
   C_6H_{13}N_2O, 129.1026 (-NH(CH<sub>2</sub>)<sub>3</sub>N(-CO-CH<sub>3</sub>)-CH<sub>2</sub>-);
   C_7H_3N_3, 129.0325 (ext-arN<sub>2</sub>-N(-)-); C_7H_{13}S, 129.0741
   (\operatorname{cyc-CH_2CH_2CH}(-\operatorname{SC_4H_9})-)
m/z 130 (22%)
                                                             6%
                                                                   19%
\underline{C}_{10}\underline{H}_{10}, 130.0782 phenyl-C_4\underline{H}_5(-)-,
   C_5H_9-phenyl-CH<sub>2</sub>-, ext-ar
                                                            18
                                                                   15
                                                                          83
\underline{C_9H_8N}, 130.0656 ext-arN (CH<sub>3</sub>-indolinyl-,
   indole-CH_2-), phenyl-arN
                                                                   26
                                                                          61
\underline{C_9H_6O}, 130.0418 ext-ar(C=O),
   -phenyl-CH_2CH(-)-CO-
                                                             8
                                                                   18
                                                                          65
\frac{C_8 H_6 N_2}{130.0529} ext-arN<sub>2</sub>
   (quinazolinyl), phenyl-arN2
                                                              5
                                                                   18
                                                                          48
\underline{C_8}\underline{H_4}\underline{NO}, 130.0292 NC-phenyl-CO-,
   ext-arN-CO-, ext-arN-O-
                                                                   23
                                                                          48
also C_7H_{14}O_2, 130.0993 (CH_3O-CO-C(CH_3)(C_3H_7)-);
   C_6H_{10}O_3, 130.0629 (C_2H_5O-CO-CH(-CO-CH_3)-);
   C_6H_{12}NO_2, 130.0866 (CH_3O-CO-(CH_2)_3-CH(NH_2)-);
   C_5H_8NO_3, 130.0503 (-N(-CO-O-C_2H_5)-CH_2CH_2O-,
   -O-CO-CH_2CH_2CH(NH_2)-CO-); C_6H_{14}N_2O, 130.1104
   (H_2NCH_2CH_2N(C_2H_4OH)-CH_2CH_2-); C_5H_{10}N_2O_2, 130.0740
   ((-CH_2-)_2C=N-NH-CO-OCH_3); C_3H_2N_2O_4, 130.0013
   ((0_2N)_2-ar)
```

m/z, comp Substructure, neighbor	<u>Prop</u>	Abnd	Spcf
m/z 131 (27%)	10%	20%	
$\frac{\text{C}_{10}\text{H}_{11}, \text{131.0860}}{\text{tetraliny1 etc}} \text{C}_{3}\text{H}_{5}\text{-pheny1-CH}_{2}\text{-,}$	18	20	82
$\underline{C_9}\underline{H_7}\underline{O}$, 131.0496 phenyl-CH=CH-CO-,			
ext-ar(C=0), phenyl-CH(-)CH ₂ -CO-		23	68
$\underline{C_9}\underline{H_9}\underline{N}$, 131.0734 ext-arN, phenyl-arN	5	14	60
$\underline{\text{C}}_{8}\underline{\text{H}}_{7}\underline{\text{N}}_{2}$, 131.0607 $\underline{\text{CH}}_{3}$ -indazolyl, phthalazinyl	3	22	57
$\frac{\text{C}_{7}\text{H}_{15}\text{O}_{2}, \ 131.1071}{\text{C}_{3}\text{H}_{7}\text{-CH(-O-CO-CH}_{3})-\text{CH}_{2}\text{-}; \ \text{and}} \\ \frac{\text{C}_{8}\text{H}_{3}\text{O}_{2}, \ 131.0133}{\text{ext-ar(C=O)-O-}}$	3	15	56
$C_8H_5NO, 131.0370 \text{ ext-arN(C=O)},$			4.57
phenyl-arNO etc	3		47
also $C_6H_{11}O_3$, 131.0707 (HOCH ₂ -(CH ₃ -) ₂ -diction $C_7H_3N_2O$, 131.0244 (ext-arN ₂ -O-); $C_6H_{11}O_3$ ((CH ₃) ₂ -1,3-oxathiane); $C_5H_9NO_3$, 131.05 (CH ₃ -CO-NH-CH(-CO-O-CH ₃)-); $C_6H_{15}OSi$, 1 ((CH ₃) ₃ Si-O-CH(C_2H_5)-); C_3F_5 , 130.9920	08, 13 581	31.053	33
m/z 132 (21%)	6%	17%	
$\frac{C_{10}H_{12}}{\text{pheny1-C}_4H_7(-)-}$ etc	_16_	15	80_
$\frac{C_9H_8O, 132.0575}{C_9H_8O, 132.0575}$ ext-ar(C=0),			
-CH(CH_3)-C(-)(pheny1)-O-, (CH_3) ₂ -pheny1-CO-	_11_	17	64

m/z, comp Substructure, neighbor	Prop	<u>Abnd</u>	Spcf
$\frac{\text{C}_9\text{H}_{10}\text{N}, 132.0812}{\text{cyc-CH}_2\text{CH}_2\text{C}(\text{NH}_2)(\text{pheny1})}$			
ar amines/imines, ext-arN	7_	24	63
$\underline{\text{C}_8}\underline{\text{H}_6}\underline{\text{NO}}$, 132.0448 $\underline{\text{CH}_3}$ -phenyl-NH-CO-, $\underline{\text{HO-ext-arN}}$	6	15	60
C ₈ H ₈ N ₂ , 132.0686 phenyl-arN ₂	4	16	50
$\frac{\text{C}_8\text{H}_4\text{O}_2, \ 132.0211}{\text{HO-CO-ext-ar, ext-ar(-CO-O-)}}$	4	16	53
$C_5H_8O_4$, 132.0422 (CH ₃ O-CO-) ₂ CH-,	0	07	20
$(HO-CO-)_2C(C_2H_5)-$	2	27	63
$\frac{C_7H_4N_2O, 132.0322}{(hongoinide relation of the control of t$	2	18	49
$(\text{Denzoimidazoiyi-U-}), \text{ext-arn}_{0}(\text{C=U})$			
(benzoimidazoly1-0-), ext-arN ₂ (C=0) also $C_7^H e^{N_3}$, 132.0559 (ext-arN ₃); $C_2^F e^{C1}$			
_		L.9344	
also C ₇ H ₆ N ₃ , 132.0559 (ext-arN ₃); C ₂ F ₂ Cl ₂ m/z 133 (27%)	, 131	L.9344	
also $C_7^H_6^N_3$, 132.0559 (ext-arN ₃); $C_2^F_2^{C1}_2$, 131	19%	
also $C_7^H {}_6^N {}_3$, 132.0559 (ext-arN ₃); $C_2^F {}_2^C {}_2$ m/z 133 (27%) $C_{10}^H {}_{13}$, 133.1017 $C_{13}^H {}_3$ -phenyl-C($C_{13}^H {}_3$),	, 131 11%	19%	1
also $C_7^H {}_6^N {}_3$, 132.0559 (ext-arN ₃); $C_2^F {}_2^C {}_2$ m/z 133 (27%) $\frac{C_{10}^H {}_{13}, \ 133.1017 \ \text{CH}_3 - \text{phenyl-C(CH}_3)}{}_2^-, \\ (\text{CH}_3)_4 - \text{phenyl-etc}$, 131 11%	19%	1
also C ₇ H ₆ N ₃ , 132.0559 (ext-arN ₃); C ₂ F ₂ Cl ₂ m/z 133 (27%) C ₁₀ H ₁₃ , 133.1017 CH ₃ -phenyl-C(CH ₃) ₂ -, (CH ₃) ₄ -phenyl- etc C ₉ H ₉ O, 133.0653 (CH ₃) ₂ -phenyl-CO-, dyhydrobenzopyrans, phenyl-CH ₂ CH ₂ -CO- C ₈ H ₅ O ₂ , 133.0289 -phenyl-CO-OCH ₂ -,	, 131 11% 17	19% 19%	76
also $C_7^H_6^N_3$, 132.0559 (ext-arN ₃); $C_2^F_2^{C1}_2$ m/z 133 (27%) $\frac{C_{10}^H_{13}, 133.1017}{(CH_3)_4\text{-phenyl-}etc} CH_3^{2}^-, (CH_3)_2^-, (CH_3)_4^{2}^{2}^-$ $\frac{C_9^H_9^{O}, 133.0653}{dyhydrobenzopyrans} (CH_3)_2^{2}^{2}^-$, 131 11% 17	19% 19 23	76
also C ₇ H ₆ N ₃ , 132.0559 (ext-arN ₃); C ₂ F ₂ Cl ₂ m/z 133 (27%) C ₁₀ H ₁₃ , 133.1017 CH ₃ -phenyl-C(CH ₃) ₂ -, (CH ₃) ₄ -phenyl- etc C ₉ H ₉ O, 133.0653 (CH ₃) ₂ -phenyl-CO-, dyhydrobenzopyrans, phenyl-CH ₂ CH ₂ -CO- C ₈ H ₅ O ₂ , 133.0289 -phenyl-CO-OCH ₂ -, -CH ₂ -phenyl-O-CO-,	, 131 11% 17	19% 19 23	76
also C ₇ H ₆ N ₃ , 132.0559 (ext-arN ₃); C ₂ F ₂ Cl ₂ m/z 133 (27%) C ₁₀ H ₁₃ , 133.1017 CH ₃ -phenyl-C(CH ₃) ₂ -, (CH ₃) ₄ -phenyl- etc C ₉ H ₉ O, 133.0653 (CH ₃) ₂ -phenyl-CO-, dyhydrobenzopyrans, phenyl-CH ₂ CH ₂ -CO- C ₈ H ₅ O ₂ , 133.0289 -phenyl-CO-OCH ₂ -, -CH ₂ -phenyl-O-CO-, -CH(OH)-C(-)(phenyl-O-)-	, 131 11% 17	19% 19 23	76 61

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
m/z 134 (22%)	6%	18%		
$\frac{\text{C}_{10}\text{H}_{14},\ 134.1095}{\text{phenyl-CO-OC}_4\text{H}_9}$ (CH $_3$) $_3$ -phenyl-CH $_2$ -,	17	16	73	
$\frac{\text{C}_8\text{H}_6\text{O}_2, 134.0367}{\text{ext-ar(-0-CO-)}, \underline{\text{o}}\text{-HO-phenyl-CH}_2\text{-CO-}}$	7	20	54	
$\frac{\text{C}_9\text{H}_{10}\text{O},~134.0731}{\text{pheny1-CH}_2\text{-CO-CH}_2\text{-, cyc/unsatd ketones}}$	9	13	55	
$\frac{\text{C}_8\text{H}_8\text{NO}, \ 134.0605}{\text{CH}_3\text{O-pheny1-CH=N-}, \ \text{CH}_3\text{-CO-N(pheny1)-},}\\ \text{pheny1-CO-CH=N-}$	5	19	56	
$\frac{\text{C}_{9}\text{H}_{12}\text{N}, \ 134.0968}{\text{C}_{2}\text{H}_{5}(\text{CH}_{3})_{2}\text{-pyridyl etc}},$	4	20	56_	
$\frac{\text{C}_{7}\text{H}_{6}\text{N}_{2}\text{O}, 134.0478}{\text{ext-arO-NH-}, -\text{NH-phenyl-CO-N(-)-}}$	3	20	54	
$\underline{C}_{6}\underline{H}_{6}\underline{N}_{4}$, 134.0589 ext-arN ₄ (purines)	2	30	50	
	3	12	56	
$\underline{C}_{8}\underline{H}_{10}\underline{N}_{2}$, 134.0842 $\underline{C}_{2}\underline{H}_{5}$ NH-ext-arN,				

m/z, comp Substructure, neighbor		<u>Abnd</u>	
ar-amines		16	
also $C_6H_4N_3O$, 134.0352 (-NHNH-pyridyl-CO-	•	<i>,</i>	
$134.0225 \text{ (HO-ext-arN}_4); C_6^{\text{H}}_2^{\text{N}}_2^{\text{O}}_2, 134.0$	114;	$^{\mathrm{C}_{7}^{\mathrm{H}}_{4}^{\mathrm{N}}}$	NS,
134.0067 (benzothiazole)			
m/z 135 (26%)	10%	23%	
$\underline{C}_{10}\underline{H}_{15}$, 135.1173 polyunsatd/cyc hc	13	20	79_
$C_8H_7O_2$, 135.0445 HO-(CH ₃ -)phenyl-CO-,			
CH ₃ O-CO-phenyl-, CH ₃ O-phenyl-CO-	9	19	56_
o o			
$\underline{C_9}\underline{H_{11}}\underline{O, 135.0809}$ phenyl-OC(CH ₃) ₂ -,			
ar/unsatd/cyc C=O/-O-/-OH	9	17	62
$\underline{C_8}\underline{H_9}\underline{NO}$, 135.0683 $\underline{H_2}\underline{N-CO-pheny1-CH_2-}$,			
HOCH ₂ -(CH ₃ -)pyridyl-CH ₂ -,			
phenyl-CO-NHCH ₂ -, H ₂ N-(CH ₃ O-)phenyl-	4	17	60
$\underline{\text{C}}_{7}\underline{\text{H}}_{5}\underline{\text{NO}}_{2}$, 135.0319 $\underline{\text{O}}_{2}$ N-phenyl-CH $_{2}$ -,			
H ₂ N-(HO-)phenyl-CO-	3_	23	50
C H O 135 0082 O phonyl CO O			
$\frac{\text{C}_7\text{H}_3\text{O}_3, 135.0082}{\text{ar C=0/-0-/-OH}}$ -O-phenyl-CO-O-,	3	18	50
also $C_9H_{13}N$, 135.1047 (ar-amines); $C_5H_3N_4$			
$(\text{ext-arN}_3-\text{NH-CO-etc}); C_6\text{H}_5\text{N}_3\text{O}, 135.043$			
(ext-arN ₃ (C=O)); C ₈ H ₁₁ N ₂ , 135.0920			
(-CH ₂ NH-phenyl-NHCH ₂ -, aminopyridines);	C _c H	N _O O	•
135.0193 (ext-arN ₂ O(C=O)); C ₇ H ₇ N ₂ O, 135	•		,
(CH ₃ NH-CO-pyridyl-, -N(-)-phenyl-NH-CO-			,
134.9809 (Br-(CH ₂) ₄ -); C ₅ H ₁₁ O ₄ , 135.0656 (sugars);			
$C_{7}H_{9}N_{3}$, 135.0794 (arN ₃); $C_{6}H_{7}N_{4}$, 135.0667 (purines);			
$C_5H_5N_4$, 135.0541 (purine-NH-); $C_5H_5N_5$,			
(purine-NH-)			

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 136 (20%)	6%	22%	
$\underline{C}_{10}\underline{H}_{16}$, 136.1251 polyunsatd/cyc hc	_16_	22	82
$\frac{C_9 H_{12} O, 136.0887}{HO-C=O/-O-}$ cyc/unsatd/ar	8	17	57_
$\underline{C_8}\underline{H_8}\underline{O_2}$, 136.0524 phenyl-CH ₂ -CO-O-,			
ar/unsatd/cyc C=O/-O-/-OH	8	16	50_
$\frac{\text{C}_7\text{H}_4\text{O}_3}{(\text{HO-})_2\text{phenyl-CO-}, \text{ ext-arO(CO)-},}$			
cyc/substd/unsatd ketones	4	27	51
$\frac{\text{C}_{7}\text{H}_{6}\text{NO}_{2}, \text{136.0397}}{\text{CH}_{3}\text{-pyridone-CO-}, \text{CH}_{3}\text{O-pyridyl-CO-},}\\ \text{O}_{2}\text{N-phenyl-CH}_{2}\text{-}$	4	16	48_
$\underline{C_9}\underline{H_{14}}\underline{N}$, 136.1125 cyc/substd/unsatd amines	3	22	67
also $C_8H_{10}NO$, 136.0761 (CH_3O -phenyl-N(CH_3)-, CH_3O -phenyl-CH(NH_2)-; $C_5H_4N_4O$, 136.0382 (HO -ext-arN ₄); $C_8H_{12}N_2$, 136.0998 (C_3H_7NH -pyridyl-); C_7H_6NS , 136.0223 (ext-arNS); C_8H_8S , 136.0350 (ext-arS); $C_7H_{10}N_3$, 136.0872 ((CH_3)2-pyrimidinyl-NHCH ₂ -); $C_6H_8N_4$, 136.0746 (H_2N -triazinyl-R); $C_5H_6N_5$, 136.0619 (H_2N -purines)			
m/z 137 (22%)	6%	22%	
$\underline{C}_{10}\underline{H}_{17}$, $\underline{137.1329}$ decahydronaphthyl	_15_	15	85
$\frac{\text{C}_{8}\text{H}_{9}\text{O}_{2}, 137.0602}{\text{CH}_{3}\text{-phenyl-CO-O-}}$ CH ₃ O-phenyl-CH(OH)-,	9	25	55

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\frac{\text{C}_{9}\text{H}_{13}\text{O}, 137.0966}{\text{C=O/-O-/-OH}}$ cyc/unsatd/substd	_11_	16	68_
$\underline{\text{C}}_{7}\underline{\text{H}}_{5}\underline{\text{O}}_{3}$, $\underline{137.0238}$ (HO-) ₂ phenyl-CO-, HO-(-O-)phenyl-CH(OH)-	6	26	60
$\underline{\text{C}}_{7}\underline{\text{H}}_{7}\underline{\text{NO}}_{2}$, 137.0475 $\underline{\text{H}}_{2}$ N-phenyl-CO-O-, phenyl-NH-CO-O-, HO-CO-phenyl-NH-	4	25	59
$\underline{\text{C}_{8}\text{H}_{9}\text{S}, 137.0428}$ CH ₃ -phenyl-SCH ₂ -	2	31	83
$\underline{C_8}\underline{H_{11}}\underline{NO}, \ 137.0839 \ C_2\underline{H_5}O-(C\underline{H_3}-)-pyridyl-, \\ C\underline{H_3}O-(\underline{H_2}\underline{NC}\underline{H_2}-)phenyl-$		19	
also $C_9H_{15}N$, 137.1203 (cyc/unsatd amines) 137.0031 (Cl-ext-arN-, Cl-phenyl-CH=N-) $C_4H_{10}O_3P$, 137.0367 (cyc-CH ₂ -CH(P(=0)(OCC) $C_2H_5O)_2P$ (=O)-); $C_6H_3NO_3$, 137.0112 (HO-ar-(-O-)-NH-CO-, HO-CO-ar-NH-CO-); 137.0713); ^{CH} 3 ⁾ 2)-,	•
m/z 138 (17%)	4%	20%	-
$\underline{C}_{1.0}\underline{H}_{18}$, 138.1408 cyc/unsatd hc	_15_	12	84
$\frac{\text{C}_8\text{H}_{10}\text{O}_2$, 138.0680 cyc/substd/unsatd C=O/-O-, (-CO-C $_6\text{H}_{12}$ -CO-, cycR-O-CO-CH $_3$),			
$CH_3O-(HO-)(CH_3-)-phenyl-$		21	56
$\underline{\text{C}}_{9}\underline{\text{H}}_{14}\underline{\text{O}}$, 138.1044 cyc/substd/unsatd ketones	8	17	57
$\underline{\text{C}}_{7}\underline{\text{H}}_{6}\underline{\text{O}}_{3}$, 138.0316 HO-CO-phenyl-O-, -O-phenyl-O-CO-, etc	6_	22	50

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\frac{\text{C}_9\text{H}_{16}\text{N}, 138.1281}{\text{amines, NC-C}_8\text{H}_{16}\text{-}}$ cyc/substd/unsatd	6	19	61
$ \begin{array}{c} \underline{\text{C}}_{6}\underline{\text{H}}_{6}\underline{\text{N}}_{2}\underline{\text{O}}_{2}, & 138.0427 \\ \text{HO-CO-pyridy1-NH-, pyrimidione-C}_{2}\underline{\text{H}}_{4}- \end{array} $	2_	38	48_
$\frac{\text{C}_8\text{H}_{12}\text{NO}, 138.0917}{\text{amines/-O-, -furyl-N-}}$ cyc/substd/unsatd	4_	21	47
$\frac{\text{C}_7\text{H}_8\text{NO}_2$, 138.0554 cyc/ar/substd/unsatd amines/-O-/-OH/C=O,			
$CH_3O-(HO-)(CH_3-)-pyridyl$, ketolactam	3	18	50
also $C_7H_{10}N_2O$, 138.0791 ($C_2H_5O-(CH_3-)-pyr$	imidi	iny1-)
m/z 139 (22%)	6%	21%	
$\underline{C}_{10}\underline{H}_{19}$, 139.1486 cyc/unsatd hc	22	15	87
$\frac{\text{C}_9\text{H}_{15}\text{O},\ 139.1122}{\text{cycloalkanone},\ -\text{C}_8\text{H}_{16}\text{-CO-},\ \text{cyc/substd}}$ ketones; and $\frac{\text{C}_{10}\text{H}_{30},\ 139.0184}{\text{C}_{10}\text{H}_{30},\ 139.0184}$			
ext-ar(C=O)	9_	18	66_
$\underline{\text{C}_7}\underline{\text{H}_4}\underline{\text{OCl}}$, 138.9950 Cl-phenyl-CO-	2	88	74
$\frac{C_7H_7O_3, 139.0394}{-CO-O-/-O-}$ furanoates, ar	5_	23	64
$\frac{\text{C}_8\text{H}_{11}\text{O}_2,\ 139.0758}{\text{C=O/-O-/-OH}}$ ar(C=O)-O-, cyc/unsatd	5	16	58
$\frac{C_{10}H_{5}N,\ 139.0421}{C_{9}H_{17}N,\ 139.1359}$ ext-arN	4	12	63
$\underline{\text{C}_{6}\text{H}_{3}\text{O}_{4}}$, 139.0031 HO-CO-furyl-CH ₂ O-,			

```
Substructure, neighbor
m/z, comp
                                                          Prop Abnd Spcf
   HO-CO-furyl-CO-, ar-O-/C=O
                                                                          50
                                                             2
                                                                   24
also C_7H_9NO_2, 139.0632 (arN-CO-O-, ar-NH-CO-O);
   C_8H_{13}NO, 139.0996; C_6H_7N_2O_2, 139.0506; C_8H_{11}S,
   139.0584 (C_4H_9-thiophenyl-); C_7H_7OS, 139.0220
   (HO-phenyl-S-CH_2-) C_8H_8Cl, 139.0314
   (Cl-phenyl-(C_2H_5)-); C_0H_3N_2, 139.0295 (ext-arN_2);
   C_6H_5NO_3, 139.0268 (O_2N-phenyl-O-)
m/z 140 (17%)
                                                             4%
                                                                   16%
\underline{C}_{10}\underline{H}_{20}, 140.1564 H-C_{10}\underline{H}_{20}-Y*; and
  C<sub>11</sub>H<sub>8</sub>, 140.0626 naphthyl-CH<sub>2</sub>-
                                                            16
                                                                    8
                                                                          84
\underline{C_9}\underline{H}_{18}\underline{N}, \underline{140.1438} cyc/substd/unsatd
   amines; and \underline{C}_{10}\underline{H}_{6}\underline{N}, 140.0499
  CH<sub>3</sub>-quinolinyl, benzoazepinyl
                                                                   12
                                                                          71
                                                             9
\underline{C_9H_{16}O}, 140.1200 cyc/substd/unsatd
  -CO-/-O-/-OH; and C_{10}H_{4}O, 140.0262
   ext-ar(C=O)
                                                                          62
                                                             8
                                                                   11
\underline{C_8H_{12}O_2}, 140.0836 cyc/substd/unsatd
   C=0/-0- etc
                                                                   14
                                                                          55
\underline{C_8H_{14}NO, 140.1074} \text{ cyc-}C_6H_{11}-N(-CO-CH_3)-
   cyc/unsatd amides, oximes, HO-amines,
   isocyanates
                                                                   17
                                                                          59
\underline{C_7}\underline{H_8}\underline{O_3}, 140.0473 cyc/substd/unsatd
   -O-/C=O/-OH (CH<sub>3</sub>O-pyrone-CH<sub>2</sub>-)
                                                                   20
                                                                          60
also C_7H_{10}NO_2, 140.0710 (ar-NH-CO-OC<sub>2</sub>H_5); C_7H_{10}NS,
   140.0536 (ar-S-R, arNS); C_{9}H_{4}N_{2}, 140.0373 (ext-arN<sub>2</sub>);
   C_6H_8N_2O_2, 140.0584 (unsatd amides, carbamates);
   C_8H_{12}S, 140.0662 (ars-R); C_6H_4O_4, 140.0109
```

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 141 (23%)	6%	19%	
$\underline{C}_{11}\underline{H}_{9}$, $\underline{141.0704}$ naphthyl- \underline{CH}_{2} -, ext-ar hc	24	18	90
$\frac{\text{C}_9\text{H}_{17}\text{O}, 141.1278}{\text{-CH(OH)-(CH}_2)_8\text{-}}$; and $\frac{\text{C}_{10}\text{H}_5\text{O}, 141.0340}{\text{-CH}_5\text{O}}$			
-0-phenyl-ar-0-, ext-ar(C=0) etc	8	13	71
$\frac{\text{C}_8\text{H}_{13}\text{O}_2, 141.0915}{\text{CH}_3\text{O}-\text{CO}-\text{cyclohexyl(-)-}}$, $\text{CH}_3\text{O}-\text{CO}-\text{cyclohexyl(-)-}$, $\text{CH}_3\text{O}-\text{CO}-(\text{CH}_2)_3\text{C}=\text{CCH}_2-}$,			
$C_4H_9C(OCH_3)=CH-CO-$	5	14	60
$\frac{\text{C}_{8}\text{H}_{13}\text{S}, 141.0741}{\text{sulfides}}$ cyc/substd/unsatd	2	37	56
$\underline{C}_{7}\underline{H}_{9}\underline{O}_{3}$, 141.0551 ar/cyc/unsatd			
C=O/-O-/-OH	3	19	54
$\frac{\text{C}_{7}\text{H}_{11}\text{NO}_{2}, 141.0788}{\text{succinimides}}$ R-ar(-CO-NH-CO-)-,	2	30	60
also $C_{10}^{H}_{7}^{N}$, 141.0577 (ext-arN); $C_{9}^{H}_{5}^{N}_{2}$, (ext-arN-N- etc); $C_{6}^{H}_{5}^{O}_{4}$, 141.0187	141.0	0451	
(cyc-CH(-CO-O-)-CH(-CO-O-)-); C ₇ H ₁₁ NS,	141.0	0614	
(arN-S-); C ₇ H ₆ OCl, 141.0106 (HO-(CH ₃ -)		pheny	l-,
HO-(Cl-)phenyl-CH ₂ -); C ₆ H ₅ O ₂ S, 141.001			
$(phenyl-SO_2-, HO-phenyl-SO-); C_6H_9N_2O_2$			
$((CH_3)_2NC(=CH-CO-CH_3)-N(-)-); CH_2I, 140$ (iodo-CH ₂ -)	J.919:	9	
m/z 142 (18%)	4%	19%	
$\underline{C}_{11}\underline{H}_{10}$, 142.0782 naphthyl-CH ₂ -, ext-ar h	c_19_	12	85

```
m/z, comp
                   Substructure, neighbor
                                                             Prop Abnd Spcf
\underline{C}_{10}\underline{H}_{8}\underline{N}, 142.0656 ext-arN (CH<sub>3</sub>quinolines),
   naphthyl-NH-, -phenyl-cycN
                                                                              68
\underline{C_8}\underline{H_{14}}\underline{O_2}, 142.0993 \underline{CH_3}\underline{O}-\underline{CO}-(\underline{CH_2})_6-,
   (CH<sub>3</sub>O)<sub>2</sub>-cyclohexyl-
                                                                       14
                                                                              54
\underline{\text{C}}_{8}\underline{\text{H}}_{16}\underline{\text{NO}}, \ 142.1230 \ -(\text{CH}_{2})_{7}-\text{NH-CO-},
   CH_3 - CO - N(C_5H_{11})CH_2 - ,
   HO-(R)-pyrollidinyl-; and
  \underline{C_0 H_4 NO}, 142.0291 ext-arN(C=O)
   (quinolinonyl), ext-arN-O-
                                                                      21
                                                                              55
also C_0H_6N_2, 142.0529 (ext-arN<sub>2</sub>, ext-arN-CH=N-);
   C_8H_{18}N_2, 142.1468 (C_8H_{17}-N(-)-N(-)-); C_9H_{18}O,
   142.1357 (C_7H_{15}-CO-CH_2-); C_{10}H_6O, 142.0418 (ext-aro);
   C_7H_{10}O_3, 142.0629 (CH_3O-CO-C_4H_8-CO-); C_7H_{12}NO_2,
   142.0866 (CH_3-CO-N(C_4H_9)-CO-); C_6H_6O_2S, 142.0091
   (HO-phenyl-SO-, phenyl-SO_2-); C_7H_{12}NS, 142.0692
   (arN-S-); C_6H_{10}N_2S, 142.0566 (R-imidazolyl-S-);
   C_7H_7OC1, 142.0184 (C1-(CH<sub>3</sub>-)phenyl-O-); C_6H_8NOS,
   142.0329 (HO-(CH_3-)-pyrrolyl-S-CH_2-); C_6H_{10}N_2O_2,
   142.0740 \text{ (cyc-CH}_2\text{CH(OH)CH(CH}_3)N(-)-\text{CO-N(CH}_3)-);
   {\rm C_6^H_6^O_4}, 142.0265 ({\rm C_2H_5O-CO-C(-)_2CH_2-CO-O-)}
m/z 143 (23%)
                                                                       19%
\underline{C}_{11}\underline{H}_{11}, 143.0860 substd indenes,
   tetralins etc
                                                               18
                                                                       15
                                                                              82
C_{10}H_{9}N, 143.0734 naphthyl-NH-,
   quinolinyl-CH_2-, phenyl-pyrrolyl etc
                                                                7
                                                                       18
                                                                              66
\underline{C_{9}H_{7}N_{2}}, 143.0607 ext-arN<sub>2</sub>
   (CH<sub>3</sub>-quinoxalinyl-), NC-ext-arN,
   pheny1-C(-CN)=CH-NH-
                                                                       19
                                                                              69
```

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
$\frac{\text{C}_9\text{H}_{19}\text{O},\ 143.1435}{\text{C}_7\text{H}_{15}\text{CH(OCH}_3)-}$ (C ₄ H ₉) ₂ C(OH)-,	6	14	68
$ \begin{array}{c} \underline{\text{C}}_{7}\underline{\text{H}}_{11}\underline{\text{O}}_{3}, \ \ 143.0707 \ \ \text{CH}_{3}\text{O-CO-C}_{4}\text{H}_{8}\text{-CO-}, \\ \text{CH}_{3}\text{O-CO-CH}_{2}\text{CH}_{2}\text{-CH=C(OCH}_{3})\text{-} \end{array} $	5	16	63
$ \begin{array}{l} \underline{\mathrm{C}_{8}}\underline{\mathrm{H}}_{15}\underline{\mathrm{O}}_{2}, \ 143.1071 \ \mathrm{CH}_{3}\mathrm{O-CO-(CH}_{2})_{6}^{-}, \\ -(\mathrm{CH}_{2})_{5}\mathrm{CH}(-)\mathrm{O-CO-}, \\ \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O-CO-CH}_{2}\mathrm{CH}_{2}\mathrm{C}(-)(\mathrm{C}_{2}\mathrm{H}_{5})^{-}; \ \mathrm{and} \\ \underline{\mathrm{C}_{9}}\underline{\mathrm{H}}_{3}\underline{\mathrm{O}}_{2}, \ 143.0133 \ \mathrm{ext-ar-(C=O)}_{2}^{-}, \end{array} $			
$ext-ar(C=0)_2$	6	13	61
also C_0H_5NO , 143.0370 (phenyl-arN(C=O));	C_6H_7	$D_{\!\scriptscriptstyle\Delta}$,	
143.0343 (-CH(CH ₃)CH(-CO-OCH ₃)-CO-O-); 143.0818 (-CH ₂ CH ₂ C(-CH ₂ -)=N-NH-CO-OCH ₃)	C ₆ H ₁ :	-	,
m/z 144 (18%)	5%	22%	
$\frac{\text{C}_{11}\text{H}_{12},\ 144.0938}{\text{C}_{6}\text{H}_{11}\text{-phenyl-CH}_{2}\text{-, ext-ar}}$	_15_	13	77
$\frac{\text{C}_{10}\text{H}_{10}\text{N}, \ 144.0812}{\text{((CH}_3)_2-\text{indolinyl-), phenyl-arN}}$		39	67
$\underline{C_9}\underline{H_6}\underline{NO}$, 144.0448 indole-CO-, phenyl-isoxazolyl-	6_	31	58
$\underline{C}_{10}\underline{H}_{8}0$, 144.0575 naphthyl-O-	8_	20	63
$\underline{C_8}\underline{H_{16}}\underline{O_2}$, 144.1149 $\underline{C_2}\underline{H_5}\underline{O}-\underline{CO}-\underline{C(C_2}\underline{H_5)_2}$; and $\underline{C_9}\underline{H_2}\underline{O_2}$, 144.0211 ext-ar(C=O) ₂	5	17	60_
$\underline{\text{C}}_{9}\underline{\text{H}}_{8}\underline{\text{N}}_{2}$, 144.0686 $\underline{\text{C}}_{2}\underline{\text{H}}_{5}$ -benzimidazolyl-, phenyl-C(CN)=CH-NH-	4	21	58
also $C_8H_4N_2O$, 144.0322 (HO-quinoxalinyl-)	; C ₆ 1	H ₈ O ₄ ,	

```
m/z, comp
                     Substructure, neighbor
                                                                    Prop Abnd Spcf
   144.0422 (-C(-O-CO-C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>); C<sub>7</sub>H<sub>14</sub>NO<sub>2</sub>, 144.0123
   (HO-CO-(CH_2)_5-CH(NH_2)-); C_6H_{10}NO_3, 144.0659
   (-CH<sub>2</sub>CH<sub>2</sub>CH(-CO-OCH<sub>3</sub>)-NH-CO-)
m/z 145 (23%)
                                                                              20%
                                                                        9%
\underline{C}_{11}\underline{H}_{13}, 145.1017 phenyl-unsatd R,
   benzo-cycR
                                                                      17
                                                                              23
                                                                                       80
\underline{C}_{10}\underline{H}_{9}0, 145.0653 \underline{CH}_{3}-phenyl-CH=CH-CO-,
                                                                       9
                                                                              18
                                                                                       64
\underline{\text{C}_{6}\text{H}_{9}\text{O}_{4}}, 145.0500 \text{CH}_{3}\text{O}\text{-CO}\text{-CH}_{2}\text{-CO}\text{-CH}_{2}\text{CH}(\text{OH})\text{-},
   \operatorname{cyc-CH}(-\operatorname{CO-OCH}_3)-\operatorname{C}(-)(-\operatorname{CO-OCH}_3)-
                                                                        3
                                                                              25
                                                                                      64
\underline{C_0H_7NO}, 145.0526 quinoline-O-, ext-arN-OH,
   ext-ar(-NH-CO-)
                                                                        5
                                                                              13
                                                                                       61
\underline{C}_{10}\underline{H}_{11}\underline{N}, 145.0890 R-ext-arN, R-indolinyl- 4
                                                                                       61
\underline{C_8H_5N_2O}, 145.0400 ext-arN(-N-CO-),
   HO-ext-arN2-, phenyl-arN2O
                                                                        3
                                                                              15
                                                                                       68
\underline{C_0H_0N_2}, 145.0764 \underline{C_2H_5}-benzimidazolyl-,
   phenylpyrazole
                                                                              21
                                                                                       60
also C_8H_{17}O_2, 145.1227 (C_5H_{11}OCH(OC_2H_5)-); C_9H_5O_2,
   145.0289 (-O-ext-ar-CO-); C<sub>7</sub>H<sub>1.7</sub>OSi, 145.0947
   (CH_3)_3SiOCH(C_3H_7)-, C_5H_{11}OSi(CH_3)_2-); C_7H_3N_3O,
   145.0274 \text{ (ext-arN}_2-\text{NO)}; C_6H_{13}O_2\text{Si}, 145.0584
   (C_3H_7-CO-O-Si(CH_3)_2-); C_6H_{11}NO_3, 145.0737
   (HO-CO-CH(C_3H_7)-NH-CO-); C_6H_3Cl_2, 144.9611
   (Cl_2-phenyl-)
```

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 146 (19%)	5%	20%	
$\frac{\text{C}_{10}\text{H}_{10}\text{O}, \ 146.0731}{\text{phenyl-CH=CH-CO-CH}_2\text{-},}$ benzocyclohexanones,			
cyc-C(C ₂ H ₅)(phenyl)-CO-	8	24	58
$\frac{\text{C}_{10}\text{H}_{12}\text{N}, 146.0968}{-\text{CH}(-\text{CH}_2\text{pheny1})\text{NHCH}(\text{CH}_3)}-$	6	25	70
$\underline{C}_{11}\underline{H}_{14}$, 146.1095 ar/cyc/unsatd hc	_12_	12	76_
$\frac{\text{C}_9\text{H}_8\text{NO}, \ 146.0605}{\text{etc}, \ \text{phenyl-CH}_2\text{CH(-)NH-CO-}}$	5	29	60
$\frac{\text{C}_9\text{H}_6\text{O}_2, \ 146.0367 \ \text{HO-phenyl-CH=CH-CO-},}{\text{phenyl-CH=C(-CO-OH)-, ext-ar(C=O)}_2,}$ $\text{cyc-CO-C(-)(phenyl)-CO-}$	6	21	65
$\frac{\text{C}_8\text{H}_6\text{N}_2\text{O}, 146.0478}{\text{ext-arN}_2(\text{C=O})}$ ext-arN ₂ -O-,	2	33	50
$\frac{\text{C}_8\text{H}_4\text{NO}_2, \ 146.0241}{\text{ext-arN(C=O)}_2, \ \text{HO-CO-benzopyrrolyl},}\\ \text{HO-ext-arN(C=O)}$	2	24	61
$\frac{\text{C}_9\text{H}_{10}\text{N}_2, \ 146.0842}{\text{benzo-cycN}_2\text{-, H}_2\text{NCH}_2\text{-ext-arN}}$	3_	14	52
also $C_8H_8N_3$, 146.0716 (ext-arN ₃); C_6H_1 ((HO-CO) ₂ -C(C_3H_7)-)	04, 14	6.057	8

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 147 (25%)	12%	23%	
$\frac{\text{C}_{11}\text{H}_{15},\ \text{147.1173}}{\text{(CH}_3)_5\text{phenyl etc}} \text{(CH}_3)_2\text{phenylC(CH}_3)_2\text{-,}$	_15_	23	76_
$\frac{\text{C}_9\text{H}_7\text{O}_2, 147.0445}{\text{HO-phenyl-CO-CH=CH-, CH}_3\text{O-benzofuryl-}}$	8	19	65
$\underline{C}_{10}\underline{H}_{11}\underline{O}$, 147.0809 (CH ₃) ₃ -phenyl-CO-, CH ₃ O-phenyl-CH ₂ CH=CH-,			
phenyl-CH ₂ CH(-)CH(OCH ₃)-, substd/cyc/unsatd ketones	8_	18	63_
$ \begin{array}{c} \underline{\text{C}_8\text{H}_7\text{N}_2\text{O}, \ 147.0556}}_{\text{H}_2\text{N-NH-(CH}_3\text{-)phenyl-CO-, CH}_3\text{O-ext-arN}_2} \\ \end{array} $	2_	32	60
$\frac{\text{C}_9\text{H}_9\text{NO}, \ 147.0683}{\text{-phenyl-CO-CH}_2\text{CH(NH}_2)-,}$			
cyc-CH(CH ₃)-N(phenyl)-CO-	3		54_
also $C_{10}^{H}_{13}^{N}$, 147.1047 (($C_{2}^{H}_{5}$) ₂ N-phenyl-); $C_{5}^{H}_{15}^{Si}_{2}^{O}$, 147.0400 (rearr; ≥ 2 ($C_{3}^{H}_{3}^{Si}_{3}^{O}_{3}^$			
m/z 148 (21%)	5%	18%	
$\underline{\text{C}}_{11}\underline{\text{H}}_{16}$, $\underline{\text{148.1251}}$ (CH ₃) ₄ -phenyl-CH ₂ - etc	_13_	15	74
$\underline{\text{C}}_{9}\underline{\text{H}}_{8}\underline{\text{O}}_{2}$, 148.0524 $\underline{\text{CH}}_{3}$ O-CO- $\underline{\text{CH}}_{2}$ -phenyl-,			

```
Substructure, neighbor
                                                            Prop Abnd Spcf
   -phenyl-CH_2-CO-OCH_2-,
   HO-pheny1-CH=CH-CO-O-
                                                                     21
                                                                             55
\underline{C_9H_{10}NO, 148.0761} phenyl-CO-NHCH(CH<sub>3</sub>)-,
   (CH_3)_2N-pheny1-CH(OH)-
                                                               5
                                                                     21
                                                                             57
\underline{C}_{10}\underline{H}_{12}\underline{O}, 148.0887 phenyl-CH<sub>2</sub>CH<sub>2</sub>-CO-CH<sub>2</sub>-,
   cyc/unsatd/ar C=O/-O-/-OH
                                                               6
                                                                     15
                                                                             62
\underline{C_8}\underline{H_4}\underline{O_3}, 148.0160 HO-CO-phenyl-CO-,
   -CH_{2}-(HO-)phenyl-CO-O-
                                                               3
                                                                     26
                                                                             49
\underline{C_8}\underline{H_6}\underline{NO_2}, 148.0397 pyridyl-CO-CH<sub>2</sub>-CO-,
  HO-CO-CH<sub>2</sub>-pyridyl-,
  HO-N=CH-CH<sub>2</sub>-pheny1-O-
                                                                     21
                                                                             46
also C_8H_8N_2O, 148.0635 (H_2N-NH-(CH_3-)phenyl-CO-);
   C_{10}H_{14}N, 148.1125 (arN, phenyl amines); C_{0}H_{12}N_{2},
   148.0998 (phenyl diamines); C_7H_4N_9O_9, 148.0271
   (O_2N-phenyl-CH=N-); C_6H_2N_3O_2, 148.0145
   (ext-arN_3(C=0)-0-); C_6H_4N_4O, 148.0382 (ext-arN_3-NO);
   C_7H_8N_4, 148.0746 (ext-arN<sub>4</sub>, (CH<sub>3</sub>)<sub>2</sub>N-ext-arN<sub>3</sub>);
   C_6H_6N_5, 148.0620 (purine-NH-CH<sub>2</sub>-); C_8H_{10}N_3,
   148.0872 (phenyl-NHC(=N-NHCH<sub>3</sub>)-); C_6 F_4, 147.9936
   (tetrafluorophenyl)
                                                                     19%
m/z 149 (26%)
\underline{C}_{11}\underline{H}_{17}, 149.1329 polyunsatd/cyc hc
                                                              12
                                                                     18
                                                                             81
\underline{C_0H_0O_2}, 149.0602 phenyl-CH(OH)CH<sub>2</sub>-CO-,
   ar C=O/-O-/-OH
                                                               8
                                                                     16
                                                                             64
\underline{C_8H_5O_3}, 149.0238 phthalates,
                                                                      21
                                                                             59
   HO-CO-phenyl-CO-
```

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
<u>C</u> ₁₀ <u>H</u> ₁₃ <u>O</u> , 149.0966 cyc/substd/unsatd/ar C=O/-OH/-O-	7	15	67
$\frac{\text{C}_8\text{H}_7\text{NO}_2, 149.0475}{\text{arN-CH}_2\text{-CO-O-}} \text{ON-CH}_2\text{-phenyl-CO-},$	3	18	51
also $C_9H_{11}NO$, 149.0839 (ar -O-/amines); C 149.1203 (arN); $C_7H_5N_2O_2$, 149.0349 (ar) 149.1077 (C_2H_5NH -phenyl-NHCH $_2$ -, pyrazir $C_6H_3N_3O_2$, 149.0223 (ext-arN $_3$ (C=O) $_2$); C 149.0301 (benzothiazole-CH $_2$ -)	; C ₉ I nes);	H ₁₃ N ₂	,
m/z 150 (19%)	5%	20%	
$\frac{C_{12}H_{6}, 150.0469}{C_{12}H_{6}}$ ext-ar hc	_17_	13	84
$\frac{\text{C}_9\text{H}_{10}\text{O}_2,\ 150.0680}{\text{cyc/unsatd/ar C=O/-OH/-O-}}$		14	59_
$\frac{\text{C}_{7}\text{H}_{4}\text{NO}_{3},\ 150.0190}{\text{-O-pheny1-O-CO-NH-}}$	2_	60	68
$\frac{\text{C}_{10}\text{H}_{14}\text{O}, 150.1044}{\text{phenyl}}$ cyc/unsatd ketones,	5	20	57
$\frac{\text{C}_8\text{H}_6\text{O}_3,\ 150.0316}{\text{-CO-O-/-OH/CH}_3\text{-/-CO-OH/-O-}}$	4	20	53
$\frac{\text{C}_8\text{H}_8\text{NO}_2, 150.0554}{\text{ar/cyc/unsatd}}$ CH ₃ 0-CO-NH-phenyl-,	4	24	58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

Note: The computer-aided correlations were carried out only for data from $\underline{m}/\underline{z}$ 29 to $\underline{m}/\underline{z}$ 150, inclusive.

m/z 151

 $C_2C1_2F_3$, 150.9329

 $\underline{\text{C}}_{9}\underline{\text{H}}_{11}\underline{\text{O}}_{2}$, 151.0758 (HO)₂phenyl-C(CH₃)₂-

 $\begin{array}{l} \underline{\text{C}_8}\underline{\text{H}_7}\underline{\text{O}_3}, \ \ 151.0720 \ \ \ (\text{CH}_3\text{O})_2 \\ \text{pheny1-CH}_2, \\ \text{CH}_3\text{O-(HO)-pheny1-CO-}, \ \ \text{CH}_3\text{O-CO-pheny1-O-} \\ \text{also IC=C-}, \ \ \text{CH}_2\text{-CH-(CH}_3\text{-)(C1-)pheny1-}, \ \ \text{monoterpenones}, \\ \underline{\text{C}_{12}}\underline{\text{H}_7} \\ \end{array}$

m/z 152

 $\frac{\text{C}_{12}\text{H}_8, \quad 152.0626}{\text{also CH}_3\text{O-C}_7\text{H}_5\text{O}_2, \quad \text{O}_2\text{N-(HO-)phenyl-CH}_2\text{-, CH}_2\text{=CH-CO-N}}{\text{(cyclohexyl)-, Cl-benzoxazolyl-, aporphine alkaloids}}$

m/z 153

 $\underline{C_9H_{10}Cl}$, 153.0471 Cl-phenyl dvts

 $\underline{\mathrm{C}}_{12}\underline{\mathrm{H}}_{9}$, 153.0704 phenyl-phenyl-, naphthyl-CH=CH-also $\mathrm{BrC}_2\mathrm{H}_4$ -CO-O-, (CH $_3\mathrm{O})_2$ -phenyl-O-, CH $_3\mathrm{O}$ -phenyl-CO-O-, thiophenyl-CO-CH $_2$ -CO-

m/z 154

H-CO-NH-(C1-)phenyl-, (phenyl)2SiCl2,

 $\frac{\text{m/z, comp}}{\text{CF}_3\text{-CO-N(C}_2\text{H}_5)\text{CH}_2\text{-, HO-(Cl-)(R-)phenyl-}} \underbrace{\frac{\text{Prop Abnd Spcf}}{\text{Prop Abnd Spcf}}}$

m/z 155

m/z 156

 $^{\mathrm{C_8H}_{17}\mathrm{N}(\mathrm{CH_3})\mathrm{CH_2}-}$, etc, $^{\mathrm{CH_3}-\mathrm{quinolinyl-CH_2}-}$, $^{\mathrm{quinolinyl-CH_2}\mathrm{CH_2}-}$, $^{\mathrm{Br-pyridyl-}}$, $^{\mathrm{C_4H_9}}$) $^{\mathrm{N-CO-}}$

m/z 157

 ${\rm C_{3}H_{5}}^{81}{\rm BrCl}$, 156.9244; ${\rm C_{3}H_{4}BrF_{2}}$, 156.9465; ${\rm (C_{3}H_{7})_{3}Si-}$, ${\rm CH_{3}-phenyl-pyrazole-}$

m/z 158

 $\underline{\text{C}}_{11}\underline{\text{H}}_{12}\underline{\text{N}}, \ 158.0969 \ (\text{CH}_3)_2 - \text{indole-CH}_2 -$

 $\underline{C}_{12}\underline{H}_{14}$, 158.1095 -phenyl-cyclohexyl-

m/z 159

 $\frac{\text{C}_{7}\text{H}_{5}\text{Cl}_{2},~158.9768}{\text{also C}_{12}\text{H}_{15},~\text{C}_{6}\text{H}_{8}\text{Br},~\text{CHFI}} \text{cheff}$

m/z 160

 ${\rm C_2BrF_3,\ CH_3O-indole-CH_2-,\ -Cl_2-phenyl-O-number}$

100

m/z 161

 $^{\rm C}_{12}{}^{\rm H}_{17}$, 161.1329; $^{\rm CH}_3$ -benzothiophene- $^{\rm CH}_2$ -, $^{\rm BrC}_6{}^{\rm H}_{10}$ -, $^{\rm C}_3{}^{\rm H}_5$ -, $^{\rm CO-N(pheny1)-}$

m/z 162

 $\frac{\text{C}_6\text{H}_4\text{OCl}_2, \ 161.9639}{\text{also phenyl-N}(\text{C}_4\text{H}_9)\text{-CH}_2\text{-, phenyl-N}(\text{-CO-CH}_3)\text{CH}(\text{CH}_3)\text{-}}$

m/z 163

m/z 164

 $^{\rm C_6H_{11}-C_6H_9-}$, $^{\rm C_3H_5-(CH_3O-)phenyl-O-}$, $^{\rm H-CO-(CH_3O-)phenyl-O-}$, -fluorene-, berbines

m/z 165

 $\begin{array}{l} \underline{\text{C}}_{13}\underline{\text{H}}_{9},\ \ 165.0704\ \ \text{phenyl-CH(-)-phenyl-},\\ -(\text{CH}_{3}\text{-)phenyl-phenyl-}\\ \text{also}\ \ \text{C}_{10}\text{H}_{13}\text{O}_{2},\ \ \text{C}_{9}\text{H}_{9}\text{O}_{3},\ \text{aporphine alkaloids},\\ \text{BrCH}_{2}\text{-CO-OCH(CH}_{3}\text{)-},\ \ \text{Cl-phenyl-CH-CH-CO-},\\ \text{Cl-benzofuran-CH}_{2}\text{-},\ \ (\text{C}_{2}\text{H}_{5}\text{O})_{2}\text{P(=O)C}_{2}\text{H}_{4}\text{-},\ \text{C}_{5}\text{Cl}_{3}\\ \end{array}$

m/z 166

 $\begin{array}{l} \underline{\text{C}}_{13}\underline{\text{H}}_{10}, \ \ 166.0782 \ \ \text{(phenyl)}_2\text{-C(-)-} \\ \text{also C}_2\text{Cl}_3^{\ \ 37}\text{Cl}, \ \ -(\text{C}_3\text{H}_5\text{-})(\text{Cl-)}\text{phenyl-O-}, \ \text{carbazole-}, \\ \text{O}_2\text{N-(HO-)}\text{phenyl-CO-}, \ \text{phenyl(-CO-O-)}_2, \end{array}$

102

MASS SPECTRAL CORRELATIONS

```
Substructure, neighbor
                                                           Prop Abnd Spcf
m/z, comp
   C1-pheny1-N(C_3H_5)-
m/z 167
\underline{C_2C1_3F_2}, 166.9034
\underline{C}_{13}\underline{H}_{11}, \underline{167.0860} (phenyl)<sub>2</sub>-CH-, phenyl-CH<sub>2</sub>-phenyl-,
   acenaphthenes
also C1-phenyl-N(-CH<sub>2</sub>CH=CH<sub>2</sub>)-, C_{10}H_{12}Cl,
   C1-(HO-)phenyl-, C_3H_4-, phenyl(-CO-O-)_2
m/z 168
-phenyl-O-phenyl-, (phenyl)<sub>2</sub>-N-, C_QH_QOCl,
   O_2N-phenyl-O-, C_8H_8O_4, phenyl-NH-CO-, (phenyl)_2CH-
m/z 169
\underline{C}_{12}\underline{H}_{9}0, 169.0653 phenyl-phenyl-O-, phenyl-O-phenyl-,
   HO-(phenyl)2-
also C_7H_6Br, 168.9653; C_9H_{10}OC1, 169.0420; (phenyl)<sub>2</sub>N-,
   Cl-phenyl-Si(CH_3)_2-, naphthyl-C_3-,
   ^{{\rm C1}_2{\rm C}_2{\rm H}_3-{\rm CO-OCH(CH}_3)-,~{\rm C}_3{\rm H}_5{\rm O-CO-C}_4{\rm H}_8-{\rm CO-},}
   C1-terpenoles, C_3F_7, C1CH<sub>2</sub>-CO-N(phenyl)-, C_{12}H_{25},
   -(Br-)(HO-)phenyl-
m/z 170
\underline{C}_{12}\underline{H}_{10}0, 170.0731 phenyl-phenyl-0-
also (C_5H_{11})_2NCH_2-, Br-phenyl-NH-, (pyridyl)_2N-,
   C_3H_7-(Cl-), phenyl-O-
m/z 171
```

 $\underline{C_8H_5Cl_2}$, 170.9768 -(Cl₂-phenyl)-CH(-)CH₂-,

m/z, comp Substructure, neighbor Prop Abnd Spcf Cl2-phenyl-CH=CH-

m/z 172

 $\underline{\text{C}}_{6}\underline{\text{H}}_{5}\underline{\text{OBr}}$, 171.9524 Br-phenyl-O-

 $\underline{C_8}\underline{H_6}\underline{Cl_2}$, 171.9846 -Cl₂-phenyl-C₂H₃-

m/z 173

m/z 174

 $\text{CH}_2 = \text{CHCH}_2 \text{N}(-\text{CO-CH}_3) \text{phenyl-, } \text{HBr}^{81} \text{BrC-}$

m/z 175

 $\begin{array}{l} \underline{\text{C}}_{13}\underline{\text{H}}_{19}, \ 175.1486 \ \text{R}_{\text{n}}\text{-phenyl, perhydropyrene} \\ \text{also } \text{C}_{4}\text{Cl}_{2}\text{F}_{3}, \ \text{phenyl-Si(Cl)}_{2}\text{-,} \\ \text{H}_{2}\text{C=C(Cl)CH}_{2}\text{O-CO-C}_{2}\text{H}_{4}\text{-CO-, C}_{12}\text{H}_{15}\text{O} \end{array}$

m/z, comp Substructure, neighbor Prop Abnd Spcf

m/z 176

 $\underline{C}_{12}\underline{H}_{16}\underline{O}$, 176.1201 cyclohexyl-phenyl-O-

m/z 177

m/z 178

 $\begin{array}{l} \underline{\mathrm{C}}_{14}\underline{\mathrm{H}}_{10}, \ 178.0782 \ \text{dihydroethanoanthracene,} \\ -(\mathrm{pheny1})_2-\mathrm{C}_2-\\ \text{also } \mathrm{C}_3\mathrm{Cl}_3^{7}\mathrm{Cl, HO-phenyl-N(C}_4\mathrm{H}_9)\mathrm{CH}_2-,\\ \text{phenyl-CH(CH}_3)\mathrm{N(C}_2\mathrm{H}_4\mathrm{OH)CH}_2- \end{array}$

m/z 179

 $\underline{C_3Cl_3F_2}$, 178.9034

 $\begin{array}{l} \underline{\text{C}}_{14}\underline{\text{H}}_{11}, \ 179.0860 \ (\text{phenyl})_2 - \text{C}_2\text{H-} \\ \text{also C}_2\text{BrF}_4, \ \text{CH}_3\text{O-CO-C}_3\text{H}_5\text{Br-}, \ \text{C}_2\text{H}^{81}\text{BrClF}_2, \ \text{C}_3\text{HCl}_3^{37}\text{Cl}, \\ \text{C}_{11}\text{H}_{15}\text{O}_2, \ \text{Cl}_3 - \text{phenyl-} \end{array}$

m/z 180

 $\underline{\mathrm{C_9H}}_{10}\underline{\mathrm{NO}}_3$, 180.0660 $\mathrm{O_2N-(HO-)phenyl-C(CH_3)_2}$ -

Prop Abnd Spcf

m/z 181

 ${
m C_4F_7}$, 180.9888; phenyl-phenyl-CH(CH $_3$)-, Cl(CH $_3$ H $_7$ -)phenyl-CH(CH $_3$)-, phenyl-phenyl-NO-

m/z 182

 $\begin{array}{c} ({\tt pheny1})_2 {\tt NCH}_2 \hbox{--}, & ({\tt O}_2 {\tt N})_2 \hbox{--} {\tt pheny1-NH-}, \\ {\tt pheny1-CH}_2 \hbox{--} {\tt pheny1-NH-} \end{array}$

m/z 183

C7H4BrO, 182.9446 Br-phenyl-CO-

 $\underline{\text{C}}_{8}\underline{\text{H}}_{8}\underline{\text{Br}}$, 182.9810 Br-phenyl-CH(CH₃)-

 $\frac{\text{C}_{13}\text{H}_{11}\text{O}, \ 183.0809 \ \text{phenyl-O-phenyl-CH}_2\text{-}, \ \text{CH}_3\text{O-(phenyl)}_2\text{-},}{\text{phenyl-CH}_2\text{-phenyl-O-}, \ (\text{phenyl})_2\text{-O-CH}_2\text{-}}$ also (phenyl)₂SiH-, CF₃SSCF₂-

m/z 184

m/z 185

 $\begin{array}{l} {\rm C_4H_9O-CO-C_4H_8-CO-,\ C_2Cl_3}^{37}{\rm ClF,\ -Cl-phenyl-OCH_2-CO-O-,\ C_3ClF_6,\ C_2HBr}^{81}{\rm Br,\ Br-(HO-)(CH_3-)phenyl-} \end{array}$

m/z 186

phenyl-O-phenyl-O-, $C_4H_9O-CO-C_4H_8-CO-$, $C_2H_2Br^{81}Br$, $-Cl-(phenyl)_2-$

m/z, comp Substructure, neighbor Prop Abnd Spcf

m/z 187

C₁₄H₁₉, Cl₂-phenyl-C(CH₃)₂-, C₂H₃Br⁸¹Br

m/z 189

 $^{\mathrm{C}}_{14}{^{\mathrm{H}}}_{12}$, 189.1642; $^{\mathrm{C}}_{8}{^{\mathrm{H}}}_{7}{^{\mathrm{OC1}}}_{2}$, $^{\mathrm{C}}_{13}{^{\mathrm{H}}}_{17}{^{\mathrm{O}}}$, $^{\mathrm{CH}}_{2}$ =CHCH $_{2}$ O-CO-phenyl-CO-

m/z 190

Cl-(O2N-)phenyl-, NC-fluorene-

m/z 191

 $\underline{\mathbf{C}}_{15}\underline{\mathbf{H}}_{11}$, 191.0860 anthracene- \mathbf{CH}_2 -, phenanthrene- \mathbf{CH}_2 -

 $\underline{C}_{14}\underline{H}_{23}$, 191.1799 tetradecahydroanthracene-

 $\begin{array}{c} \underline{c}_{13}\underline{H}_{19}\underline{o}, \ 191.1435 \\ \text{also} \ c_{4}c_{13}F_{2}, \ c_{3}H_{6}c_{10}-\text{Sicl}_{2}-, \ c_{3}\text{BrF}_{4}, \ \text{CBr}^{81}\text{BrF}, \\ c_{4}\text{Hcl}_{3}^{}c_{1}, \ c_{3}H_{4}^{}\text{Brcl}_{2}, \ c_{4}c_{1}F_{4}S, \\ \underline{c}_{2}H_{2}F_{2}I, \ c_{3}H_{7}O-\text{CO-phenyl-CO-} \end{array}$

m/z 192

 CH_3O -phenyl- $N(C_4H_9)CH_2$ -, $-Cl_2$ -phenyl-CCl(-)-

m/z 193

 $^{\rm C}_{15}{}^{\rm H}_{13}$, $^{\rm Cl}_3{}^{\rm -phenyl-CH}_2{}^{\rm -}$, $(^{\rm C}_2{}^{\rm H}_5{}^{\rm O})_3{}^{\rm SiOCH}_2{}^{\rm -}$, $^{\rm C}_{12}{}^{\rm H}_{17}{}^{\rm O}_2$, $^{\rm C}_2{}^{\rm H}_5{}^{\rm O-CO-C}_3{}^{\rm H}_5{}^{\rm Br-}$, trimellitic anhydride esters

Prop Abnd Spcf

m/z 194

 ${\rm C_4Cl_2F_4}$, ${\rm C_2H_5O-CO-phenyl-CO-O-}$, $-({\rm Cl_3-})({\rm HO-}){\rm phenyl-}$

m/z 195

m/z 196

 $\label{eq:cl3-phenyl-o-phenyl-CH2N(phenyl)CH2-phenyl-(CH3-)-2-pyridonyl-} \\ \text{CH}_3\text{-phenyl-(CH}_3\text{-pyridonyl-}$

m/z 197

m/z 198

 $\begin{array}{c} ({\rm C_6^H}_{13})_2 {\rm NCH}_2\text{--}, \ \ {\rm HO-(O_2N-)_2 pheny1CH}_2\text{--}, \\ ({\rm CH_3)_2 N-CO-NH-(Cl-) pheny1-} \end{array}$

m/z 199

 ${\rm C_3H_3Br}^{81}{\rm Br}$, Br-(HO-)phenyl-CO-, ${\rm Cl_2}$ -benzofuran-CH₂-, ${\rm C_3HCl_3F_3}$

m/z, comp Substructure, neighbor Prop Abnd Spcf

m/z 200

 $-C1-(CH_3-)(pheny1)_2-, Y*-C_3H_4Br^{81}Br-$

m/z 201

 $\begin{array}{l} {\rm C_3H_5Br}^{81}{\rm Br,\ C_2HOBr}^{81}{\rm Br,\ Cl-phenyl-CH_2-phenyl-,\ C_3Cl_2F_5, \\ {\rm C_2Cl_4}^{37}{\rm Cl,\ (C_4H_9)_2(CH_3)_2Si_2H-,\ C_{16}H_9} \end{array}$

m/z 202

 ${\rm Hg}$, -(Cl-)phenyl-O-phenyl-, ${\rm Cl}_2$ -ext-ar-OCH₃

m/z 203

 $\begin{array}{c} {\rm Cl}_2({\rm CH}_3)_3 \text{-phenyl-O-, Cl-phenyl-O-phenyl-,} \\ {\rm Cl-(HO-)phenyl-phenyl-, Cl-phenyl-phenyl-O-,} \\ {\rm C}_{15}{\rm H}_{23} \ ({\rm B/C/D\ rings\ of\ cholestane}) \end{array}$

m/z 204

phenanthrene-cyc hc, ${\rm C_4H_5}^{\rm 81}{\rm BrCl}_2$, TMS dvts of pyranosides

m/z 205

phenyl -O-/-OH, sesquiterpenones, $C_7H_5^{81}BrCl$, $C_4H_9O-CO-phenyl-CO-$, C_6F_7 , $C_2H_5O-C_6H_9Br-$, $Br-phenyl-CF_2-$, Br-naphthyl-

m/z 206

 C_4H_9 -(C_3H_5O -)phenyl-O-, Cl_3 -phenyl-CH(-)CH₂-

Prop Abnd Spcf

m/z 207

phenyl C=O/-O-/-OH, Cl_3 -phenyl-CH(CH $_3$)-, methysiloxanes, CBr 81 BrCl, C_{16} H $_{15}$

m/z 208

Pb, 207.9766; OCN-phenyl-CH₂-phenyl-, phenyl-phenyl-OC₃H₃-

m/z 209

m/z 210

 O_2 N-phenyl-CH=CCl-CO-

m/z 211

 $\begin{array}{l} \mbox{HO-pheny1-pheny1-C(CH}_3)_2\mbox{-, HO-(O}_2\mbox{N-)}_2\mbox{pheny1-CH(CH}_3)\mbox{-,}\\ \mbox{C_3HBrF}_5$, $(C_4\mbox{$H}_9\mbox{O}_2\mbox{$P(=0)$O-, $C}_2\mbox{$H}^{81}\mbox{BrCl}_3$, $C_4\mbox{HCl}_3\mbox{$F}_3$,}\\ \mbox{pheny1-pheny1-Si(CH}_3)_2\mbox{O-, $C_5^{\rm H}_{11}$-naphthy1-CH}_2\mbox{-} \end{array}$

m/z 212

 C_3H_5 -(Br-)phenyl-O-, phenyl-O-phenyl- C_3H_6 -

m/z 213

 ${^{\text{C}_4\text{Cl}_2\text{F}_5}}$, HO-(Br-)phenyl-C(CH₃)₂-, ${^{\text{C}_3\text{Cl}_4}}^{37}$ Cl, ${^{\text{C}_2}}^{81}$ BrCl₂F₂, ${^{\text{C}_4\text{H}}}_5$ Br⁸¹Br, (CF₃)₂-phenyl-,

Prop Abnd Spcf

C1(pheny1)₂-CH=CH-, Δ -5-(HO-) steroid A/B/C rings, $^{\rm C}_6{^{\rm H}_{13}}^{\rm O-CO-C_4H_8-CO-}$

m/z 215

 $\begin{array}{c} {\rm C_{16}^{\rm H}_{23}:Y*-steroid~A/B/C~rings,~C_4H_7Br}^{\rm 81}{\rm Br,} \\ {\rm Cl_2-(C_2H_5-)_2phenyl-CH_2-,~Cl_3}^{\rm 81}{\rm Cl-phenyl-,} \\ {\rm CH_3-benzanthracenyl-} \end{array}$

m/z 217

 $\begin{array}{l} {\rm C_{16}^{\rm H}_{25}:steroid~A/B/C~rings,~R-phenyl,} \\ {\rm Cl_2-(CH_3O-)phenyl-C(CH_3)_2-,~Cl-(CH_3O-)phenyl-phenyl-,} \\ {\rm CH_3Hg-,~(phenyl-O)_2P-,~C_3Cl_3F_4,~TMS~dvts~of} \\ {\rm furanosides} \end{array}$

m/z 218

 $I-(HO-)phenyl-, (C_4H_Q)_2NCH(phenyl)-$

m/z 219

m/z 220

C1-phenyl-O-phenyl-O-, $(CH_3)_2$ N-CO- $(C_4H_9$ -)phenyl-, $(C_4H_9$ -(cyclohexyl)₂-

m/z 221

 ${^{\text{C}}_{6}}^{\text{H}}_{17}{^{\text{O}}_{3}}^{\text{Si}}_{3}$, (phenyl) $_{2}^{\text{-C}}_{5}^{\text{H}}_{7}^{\text{-}}$, ${^{\text{Cl}}_{2}^{\text{-}}}$ (phenyl) $_{2}^{\text{-}}$, (H $_{3}^{\text{CO-CO-}}$) $_{2}^{\text{phenyl-CO-}}$, ${^{\text{C}}_{4}}^{\text{ClF}}_{6}$, ${^{\text{Cl}}_{2}^{\text{-}}}$ (CH $_{3}^{\text{O-}}$) $_{2}^{\text{phenyl-O-}}$, 110

Prop Abnd Spfc

 $\begin{array}{l} {\rm Cl}_3\text{--}({\rm C}_2{\rm H}_5\text{--}){\rm phenyl-CH}_2\text{--}, \;\; {\rm phenyl-CO-CH=C(phenyl)CH}_2\text{--}, \\ {\rm Cl}_3\text{--}2,3\text{--}{\rm dihydrobenzofuryl-}, \;\; {\rm Cl}_2\text{--}{\rm phenyl-OCH}_2\text{--}{\rm CO-O-}, \\ {\rm C}_2{\rm H}_2{\rm Br}^{81}{\rm BrCl} \end{array}$

m/z 222

 $C_4 BrF_5$, $C_5 Cl_3 F_3$

m/z 223

 $\begin{array}{l} {\rm CH_3Pb}, \ {\rm C_3H_7-(pheny1)_2-CH(CH_3)-,} \\ {\rm Cl-(C_3H_7-)_2pheny1-CH(CH_3)-,} \ {\rm C_4H_9-(O_2N-)_2pheny1-,} \\ {\rm C_4H_9O-CO-pheny1-CO-O-,} \ {\rm C_4C1F_4S_2}, \\ {\rm -(C_3H_7-)(pheny1)_2-CH(CH_3)-,} \ {\rm Cl_3-pheny1-OCH(CH_3)-,} \\ {\rm C_{10}^H_{21}-cyclohexy1-} \end{array}$

m/z 224

 $-{\rm C}_{15}{\rm H}_{30}{\rm CH}({\rm C}_5{\rm H}_{11})-,\ {\rm C}_4{\rm H}_9{\rm O}-({\rm phenyl})_2-,\ {\rm C}_6{\rm F}_8$

m/z 225

 $\begin{array}{l} {\rm C1-(C_4H_9^-)(HO)pheny1-C(CH_3)_2^-,\ C_4Cl_4^{\ 37}Cl,\ C_3^{\ 81}BrCl_2F_2, \\ {\rm C_5H_{11}^-naphthy1-CH(CH_3)^-,\ HO-(O_2N^-)_2pheny1-C(CH_3)_2^-, } \\ {\rm Br-(C_3H_7^-)pheny1-CH(CH_3)^-,\ pheny1-O-cO-pheny1-CO-, } \\ {\rm pheny1-O-pheny1-C_4H_8^-,\ C_5Cl_2F_5,\ C_{15}H_{31}CH(C_5H_{11})^-} \end{array}$

m/z 226

 $(C_7H_{15})_2NCH_2^-, C_{18}H_{10}^+, (phenyl)_2^{-0-C_3H_4(OH)}$

m/z, comp Substructure, neighbor Prop Abnd Spcf

m/z 227

 $C_{18}H_{11}^{-}$, $C_4H_9^{-}(HO^{-})(Br^{-})$ phenyl-

m/z 228

 $C_{18}H_{12}$, $-C_5H_8Br^{81}Br^{-1}$

m/z 229

 $\begin{array}{l} {\rm Cl_3}^{37}{\rm Cl-(CH_3-)phenyl-,\ C_5H_9Br}^{81}{\rm Br-,\ C_3H}^{81}{\rm BrClF_4,} \\ {\rm BrHC=C}^{81}{\rm BrC(OH)(CH_3)-,\ C_{11}H_{13}Si_3,} \\ {\rm Cl_3-phenyl-O-Y-}^{37}{\rm Cl,\ C_4HCl_3}^{C1F_2,\ C_4Cl_3F_4,} \\ {\rm (phenyl)_3-,\ F_3CCClFC(CF_3)(OCH_3)-} \end{array}$

m/z 230

 $^{\mathrm{C}_{6}\mathrm{H}_{13}\mathrm{-CO-N(pheny1)-C}_{3}\mathrm{H}_{4}\mathrm{-}}$

m/z 231

$$\begin{split} &(\text{C}_4\text{H}_9)_2\text{-phenyl-C(CH}_3)_2\text{-, ClC}_2\text{H}_4\text{O-(Cl-)phenyl-C(CH}_3)}_2\text{-,} \\ &\text{phenyl-CH(C}_{10}\text{H}_{21}\text{)-, perhydrobenzanthracene-,} \\ &\text{ClC}_3\text{H}_4\text{O-CO-C}_2\text{H}_4\text{-CO-OC}_3\text{H}_4\text{-, C}_2\text{H}_5\text{Hg-, C}_5\text{F}_9\text{,}} \\ &\text{ICH}_2\text{CH(phenyl)-, Cl}_3^{37}\text{Cl-(HO-)phenyl-} \end{split}$$

m/z 233

 $\begin{array}{l} {\rm disbustd(HO-)steroid~A/B/C~rings,~Cl_3-benzofuran-CH_2-,} \\ {\rm (ClC_2H_4O)_2POC_2H_4-,~Br(phenyl)_2-,~C_7ClF_6,} \\ {\rm (phenyl-O)_2P(=O)-} \end{array}$

m/z, comp Substructure, neighbor Prop Abnd Spcf

m/z 234

-Br⁸¹Br-phenyl-

m/z 235

 $\begin{array}{lll} (\text{Cl-phenyl})_2 \text{CH-,} & \text{C}_3 \text{Cl}_3^{37} \text{ClF}_3, & \text{Br}_2\text{-phenyl-,} \\ & \text{ClC}_3 \text{H}_6 \text{O-Si}(\text{Cl}_2) \text{OC}_2 \text{H}_4\text{-,} & (\text{cyclohexyl-C}_2 \text{H}_4\text{-)}_2 \text{CH-,} \\ & \text{Cl}_3 (\text{C}_2 \text{H}_5)_2\text{-phenyl-} \end{array}$

m/z 236

 $\begin{array}{lll} & \text{HO-(O}_2\text{N-)phenyl-C}_7\text{H}_{14}\text{-, -(Cl}_2\text{-)-phenyl-O-phenyl-,} \\ & & \text{CH}_2\text{=CH-S-(Cl}_3\text{-)phenyl-Cl}_3\text{(C}_3\text{H}_5\text{)-phenyl-O-,} \\ & & \text{-C}_{12}\text{H}_{23}\text{-(C}_5\text{H}_9\text{)-, -(Br}_2\text{-)(CH}_3\text{-)(HO-)phenyl-, C}_7\text{F}_8 \end{array}$

m/z 237

 $\begin{array}{c} {\rm C_2H_5Pb,\ C_8H_{17}-thiophenyl-C(CH_3)_2-,}\\ {\rm Cl-(C_3H_7-)_2(CH_3-)phenyl-CH(CH_3)-,}\\ {\rm Cl_2-phenyl-O-phenyl-} \end{array}$

m/z 238

 $(CH_3)_2Pb$

m/z 239

 $^{81} {\rm BrCl}_3 - {\rm phenyl-CH}_2 - , \quad {\rm C}_5 {\rm H}_{11} - {\rm naphthyl-C}_3 {\rm H}_6 - , \\ {\rm phenyl-SiH}_2 - {\rm phenyl-Si(CH}_3)_2 - , \quad {\rm C}_{19} {\rm H}_{11} , \quad {\rm C}_{17} {\rm H}_{35} , \\ {\rm C}_4 {\rm H}_5 ^{81} {\rm BrCl}_3 , \quad {\rm phenyl-O-phenyl-C}_5 {\rm H}_{10} - , \quad {\rm C}_{15} {\rm H}_{31} - {\rm CO-phenyl-C}_5 + {\rm CO-phen$

m/z, comp Substructure, neighbor Prop Abnd Spcf m/z 240 $C_5Cl_3^{37}ClF_2$, $C_{19}H_{12}$, Cl_3 -phenyl-OCH₂CH₂Om/z 241 $\mathrm{Br^{81}Br\text{-}cyclohexyl\text{-},\ C_4BrF_6,\ C_5Cl_3F_4}$ ${\rm C1C_2H_4OC_2H_4O\text{-}pheny1-C(CH_3)_2\text{-},\ benzophenanthrene-CH_2\text{-},}$ 81 BrCl₂₋(HO-)phenyl-, C_4 H₉O-CO- C_8 H₁₆-CO-, $C_5HC1_3^{37}C1F_2$, $CHBr=CBrC(OH)(C_9H_5)$ m/z 243 $\mathrm{Cl}_2\text{-}(\mathrm{C}_2\mathrm{H}_5\text{-})_3\text{-phenyl-CH}_2\text{-}, \ \mathrm{Cl}_2\mathrm{CH-phenyl-CCl}^{37}\mathrm{Cl-},$ $(pheny1)_3C-$, $Cl_3-pheny1-SO_2-$, C_6F_9 m/z 244(phenyl)2N-phenylm/z 245 $tetrahydronaphthacene-CH_2-$, perhydronaphthacene-, $(CF_3CH_2O-)_2P(=O)-, C_3H_5O-(C_4H_9)_2$ -phenylm/z 247 $Cl_3^{37}Cl-(HO-)phenyl-O-, C_5ClF_8, C_4Cl_3^{37}ClF_3$ m/z 248 $(C_2H_5)_4$ -cyc-Si₃O₃-, -(phenyl)₂-C₂Cl₂-

Prop Abnd Spcf

m/z 249

$$\begin{array}{l} \text{Cl}_3\text{-}(\text{C}_2\text{H}_5\text{-})_2\text{-phenyl-CH}_2\text{-}, & \text{Br}^{81}\text{Br-phenyl-CH}_2\text{-}, \\ \text{(ClC}_3\text{H}_6\text{O-})_2\text{SiCl-}, & \text{C}_6\text{Cl}_4^{37}\text{Cl}, & \text{C}_3\text{HCl}_5^{37}\text{Cl}, \\ \text{(ClC}_2\text{H}_4\text{O-})_2\text{P(=0)OC}_2\text{H}_4\text{-}, & \text{C}_7\text{Cl}_2\text{F}_5, & \text{(OCN-phenyl-)}_2\text{CH-} \end{array}$$

m/z 250

$$Br^{81}Br-(H_2N-)$$
phenyl-

m/z 251

$$\begin{array}{l} {\rm CBr_2}^{81} {\rm Br,\ trisubstd\ ketosteroids,} \\ {\rm Cl-(C_4H_9-)_2phenyl-CH(CH_3)-,} \\ {\rm (phenyl)_2-C(CH_3)_2CH_2C(CH_3)_2-,\ C_3Cl_4}^{37} {\rm ClF_2,} \\ {\rm Br}^{81} {\rm Br-(HO-)phenyl-C_6H_{11}CH_2CH(C_{10}H_{21})-} \end{array}$$

m/z 253

$$(CH_3)_3$$
Pb, Cl_2 -phenyl- C_2 H $_3$ ⁸¹Br-

m/z 254

 $I_2(iodine)$

m/z 255

 $\mathbf{C_2HBr^{81}BrCl_2,~CH_3-benzanthracene-CH_2-}$

m/z 256

 $C_6C1_2F_6$, $S_8(255.7766$, sulfur)

m/z, comp	Substructure,	neighbor	Prop Abnd Spcf
m/z 257			
$C_{19}^{H}_{29}, Cl_{3}^{3}$	7 C1-(C $_2$ H $_5$ -)pher	nyl-CH ₂ -	
m/z 259			
$(CH_3-)_2$ phe	ohexyl, $C_5Cl_3^{37}$ $nyl-CH(C_{11}^{H}_{21}) l-)phenyl-C(CH_3^{37})$	-,	°Cl ₂ F ₃ ,
m/z 260			
C ₄ C1 ₅ ³⁷ C1			
m/z 261			
$c_4 cl_3 F_4 s$, c_5	HC13 ^F 5		
m/z 262			
-(Br ⁸¹ Br-)ph	enyl-CO-, C ₆ F ₁₀)	
m/z 263			
$\text{Cl}_4^{37}\text{Cl-phen}$	yl-CH ₂ -, Br ⁸¹ Bı	-phenyl-CH(CH	3)-, C ₂ Br ₂ ⁸¹ Br
m/z 264			
${\rm C_2 HBr_2}^{81} {\rm Br}$,	-(CH ₃ -)cyclohex	kyl-CH(C ₁₁ H ₂₃)	-
m/z 265			
$^{\mathrm{C_{2}H_{2}Br_{2}}^{\mathrm{81}}\mathrm{Br},}$	(C ₃ H ₇ -) ₂ (pheny 1 ^H 23 ⁾⁻	71) ₂ -СН(СН ₃)-,	С ₁₇ Н ₃₃ -СО-,
116			

Prop Abnd Spcf

m/z 266

 $\text{Cl}_4^{37}\text{Cl-phenyl-O-, (CF}_3)_2\text{-triazine-CF}_2\text{-, CI}_2$

m/z 267

 $\begin{array}{c} {\rm C_4H_9^-phenyl-O-phenyl-C(CH_3)_2^-,} \\ {\rm ClC_3H_6O-(C_4H_9^-)phenyl-C(CH_3)_2^-, \ C_2H_5^Pb(CH_3)_2^-, \ CHI_2,} \\ {\rm C_{17}^H_{35}CO-, \ C_4Cl_3F_6, \ (naphthyl)_2^-CH-} \end{array}$

m/z 268

 $(C_8H_{17})_2N-CO-, C_8F_9$

m/z 269

 ${^{\rm C}_{6}}^{\rm H}{_4}^{\rm BrF}_{6}, \ {^{\rm C}_{19}}^{\rm H}{_{27}}^{\rm O(Y*}{_2}^{\rm -hydroxyketosteroid)}, \\ {^{\rm Br}}^{\rm 81}{^{\rm BrCl-phenyl-}}, \ {^{\rm C}_{15}}^{\rm H}{_{21}}^{\rm Si}{_2}, \ {^{\rm C}_{5}}^{\rm F}{_{11}}$

m/z 271

 $^{\rm C}_{19}{}^{\rm H}_{27}{}^{\rm O(Y}_2{}^*-{\rm diketosteroid,\ CF}_3{}^{\rm Hg,\ CF}_3-{\rm (phenyl)}_2-{}^{\rm CF}_2-{\rm CC}_3-{\rm phenyl}_2-{}^{\rm OCF}_3-{\rm CC}_3-{\rm CC}_3-{$

m/z 272

 $c_5 c l_5^{37} c l$

m/z 273

 $^{\mathrm{C}_{19}^{\mathrm{H}}_{29}^{\mathrm{O}(\mathrm{Y^*-hydroxysteroid})}}$, Br-(CF₃-)phenyl-CF₂-, $^{\mathrm{C}_{3}^{\mathrm{HBr}}^{81}_{\mathrm{BrF}_{4}}}$

m/z, comp Substructure, neighbor Prop Abnd Spc	<u>f</u>		
m/z 274	_		
$^{\mathrm{C}}7^{\mathrm{F}}$ 10			
m/z 275			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
m/z 276			
$-(^{37}\text{Cl-})\text{phenyl-C}_2^{\text{Cl}}_4^-$			
m/z 277			
$ \begin{array}{c} \text{CCl}_2^{\ 37} \text{Cl-phenyl-CCl}_2^{\ -}, \ (\text{C}_2\text{H}_5)_5^{\ -} \text{cyclotrisiloxane-}, \\ \text{Br}^{\ 81} \text{Br-dihydrobenzofuryl-}, \ \text{Br}^{\ 81} \text{Br-phenyl-C(CH}_3)_2^{\ -}, \\ \text{dibenzoanthracenyl-} \end{array} $			
m/z 278			
$-C_6H_{10}-CH(C_{13}H_{27})-$			
m/z 279			
$C_3H_4Br_2^{81}Br$, naphthyl-CH($C_{10}H_{19}$)-, $C_5HCl_3^{37}ClF_4$			
m/z 280			
$-(C_9H_{18})CH(C_{10}H_{21})-$			

m/z, comp Substructure, neighbor Prop Abnd Spcf
m/z 281
$ \begin{array}{c} (\text{CH}_3)_7 \text{Si}_4 \text{O}_4\text{-}, \text{CH}_3 (\text{C}_2 \text{H}_5)_2 \text{Pb}, (\text{C}_3 \text{H}_7\text{-})_3 (\text{phenyl})_2\text{-}, \\ \text{C}_9 \text{H}_5 \text{F}_8 \text{O}, \text{C}_6 \text{H}_{13}\text{-phenyl}\text{-O-phenyl-C}_2 \text{H}_4\text{-}, \\ \text{C}_{10} \text{H}_{21} \text{CH} (\text{C}_9 \text{H}_{19})\text{-}, \text{Cl}_4 \\ \end{array} $
m/z 283
Br ⁸¹ Br-phenyl-CHCl-
m/z 284
C ₆ C1 ₅ ³⁷ C1
m/z 285
tetrahydronaphthyl-CH($C_{10}^{H}_{21}$)-, $C_{8}^{H}_{2}^{F}_{9}^{O}$
m/z 286
phenyl-Bi-, $^{\mathrm{C}_{8}\mathrm{F}}_{10}$
m/z 287
C ₁₄ H ₂₉ CH(phenyl)-
m/z 291
$C_5H^{81}BrClF_6$, decahydronaphthyl-CH($C_{10}H_{21}$)-
m/z 292
Br ⁸¹ BrC ₃ H ₅ -pheny1-0-

120

MASS SPECTRAL CORRELATIONS m/z, comp Substructure, neighbor Prop Abnd Spcf m/z 293 ${
m Br}^{81}{
m Br}$ -(HO-)phenyl-C(CH $_3$) $_2$ -, $c_4 H_6 Br_2^{81} Br - (HO-)phenyl-C(CH_3)_2 -, c_4 H_6 Br_2^{81} Br, c_7 F_{11}$ $(naphthy1)_2C=CHCH_2-, (C1C_3H_6O)_2SiC1-OC_2H_4$ m/z 294 ${\rm Br}^{81}{\rm Br}\text{--}({\rm C}_3{\rm H}_5\text{--}){\rm pheny}1\text{--}0\text{--},\ -({\rm C}_{10}{\rm H}_{20})\text{--}{\rm CH}({\rm C}_{10}{\rm H}_{21})\text{--}$ m/z 295 Cl_3 -phenyl-OP(=S) 37 Cl-, C_6H_{13} -phenyl-O-phenyl- C_3H_6 -, $(C_2H_5)_3Pb-, (C_{10}H_{21})_2CH$ m/z 297 C₅C1₃³⁷C1F₅ m/z 299 C_4H_9 -pyrene-C(CH₃)₂m/z 301 $C_2HBr^{81}Br_2C1$ m/z 305C8F11 m/z 307 $(C_5H_{11}-phenyl-)_2CH-, C_5Cl_6^{37}Cl$

m/z, comp Substructure, neighbor	Prop	Abnd	Spcf
m/z 309			
$C_{17}H_{35}CH(C_4H_9)-$			
m/z 311			-
Cl ₃ C-(Cl-)phenyl-CCl ³⁷ Cl-			
m/z 312			
C7F12			
m/z 313			
$\mathrm{Br_2}^{81}\mathrm{Br-phenyl-}$, $\mathrm{C_5Cl_4}^{37}\mathrm{ClF_4}$			
m/z 315			
$C_3^{\mathrm{H}}_3^{\mathrm{Br}}^{\mathrm{81}}_{\mathrm{Br}_2}^{\mathrm{C1}}$			
m/z 317			
^C 9 ^F 11			
m/z 319			
$c_6^{21}c_6^{37}c_1, c_6^{5}c_{13}$			
m/z 324			
$(CF_3CH_2O)_2P(=0)OC_2HF_2(-)-, C_8F_{12}$			

m/z, comp Substructure, neighbor Prop Abnd Spcf
m/z 325
$(HO-)(C_4H_9-)(pheny1-)_2C(CH_3)-$
m/z 327
$(C_4H_9O-CO-)_2C_3H_3-CO-OC_3H_6-, Br_2^{81}Br-phenyl-CH_2-$
m/z 329
C ₁₇ H ₃₅ CH(phenyl)-
m/z 331
$^{\text{C}}_{21}^{\text{H}}_{23}^{\text{Si}}_{2}, \ ^{\text{C}}_{7}^{\text{F}}_{13}$
m/z 337
С ₂₁ Н ₄₃ СН(С ₂ Н ₅)-
m/z 341
CCBr ₂ ⁸¹ Br-phenyl-CH(CH ₃)-
m/z 343
$\mathrm{Br_2}^{81}\mathrm{Br}$ -(HO-)(CH ₃ -)phenyl-, $\mathrm{C_8F_{13}}$
m/z 345
$C_2^{HBr_2^{81}Br_2}$, $I_2^{-(HO-)pheny1-}$
m/z 355
silicones, C ₉ F ₁₃
144

m/z, comp Substructure, neighbor Prop Abnd Spcf
m/z 359
$C_3^{\mathrm{H}} 3^{\mathrm{Br}} 2^{\mathrm{81}} ^{\mathrm{Br}} 2$
m/z 367
C ₁₀ F ₁₃
m/z 368
-cholestene-
m/z 369
$^{\mathrm{C}}7^{\mathrm{F}}15$
m/z 370
-cholestane-
m/z 381
C ₈ F ₁₅
above m/z 400
m/z 405, $C_{10}F_{15}$; m/z 412, $C_{9}F_{16}$; m/z 417, $C_{11}F_{15}$; m/z 424, $C_{10}F_{16}$; m/z 429, silicones; m/z 431, $C_{9}F_{15}$; m/z 436, $C_{11}F_{16}$; m/z 443, $C_{10}F_{17}$; m/z 447, $C_{4}Br_{3}^{81}Br_{2}$; m/z 448, $C_{12}F_{16}$; m/z 455, $C_{11}F_{17}$; m/z 462, $C_{10}F_{18}$; m/z 467, $C_{12}F_{17}$; m/z 469, $C_{9}F_{19}$; m/z 474, $C_{11}F_{18}$; m/z 481, $C_{10}F_{19}$; m/z 486, $C_{12}F_{18}$; m/z 493, $C_{11}F_{19}$; m/z 505, $C_{12}F_{19}$; m/z 512, $C_{11}F_{20}$; m/z 517, $C_{13}F_{19}$; m/z 524, $C_{12}F_{20}$; m/z 531, $C_{11}F_{21}$;

RECEIVED October 28, 1981.

Jacket design by Kathleen Schaner.
Production by Robin Giroux and Karen Gray.

Elements typeset by Service Composition Co., Baltimore, MD. Printed and bound by the Maple Press Company, York, PA.

In Mass Spectral Correlations; McLafferty, F., el al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

QD 96 .M3M15 1982

McLafferty, Fred W.

Mass spectral correlations

QD 96 .M3M15 1982

McLafferty, Fred W.

Mass spectral correlations

DATE LOANED	BORROWER'S NAME	DATE RETURNED	

When book is taken out, pls. sign name on card and leave it in the designated card file.

Return book to the Library Office

American Chemical Society Library 1155 16th St. N. W.

ABBREVIATIONS

```
aliph
             aliphatic
ar
             aromatic ring
arY
             an aromatic (or polyunsaturated) ring con-
               taining Y (as indicated) in the ring;
               ar(C=0) could be quinone, pyrone, etc
ar-Y
             a Y-group attached to an aromatic ring
CH_3, CH_2,
             saturated carbon atoms bearing one, two,
  CH, C
               three, and four substituents, respec-
               tivelv
cleav
             cleavage
cntd
             continued
corresp
             corresponding
cpd
             compound
C=O
             carbonyl
             a nonaromatic ring; groups listed next can
сус
               be part of ring
             a nonaromatic cycloalkyl group
cvcR
cycY
             a nonaromatic cyclic group containing Y
               (as indicated) in the ring
cyc-Y
             a Y group attached to an alicyclic ring
decom
             decomposition
dvts
             derivatives
esp
             especially
etc
             et cetera (similar or expected structures)
             extended aromatic: more than one ring.
ext-ar
               one is ar; ext-ar(C=0) includes tropolone,
               benzoquinone, indanone
gp
             group
hc
             hydrocarbon
mult
             multiple
             nitrogen bearing three substituents
\mathbf{N}
-0-
             oxygen (not -OH)
\mathbf{R}
             hydrocarbon moiety (usually alkyl, can
               be H)
R.*
             hydrocarbon moiety plus Y* (see below)
rearr
             rearrangement
satd
             saturated
slash,/
             "and/or"
substd
             substituted
TMS
             trimethylsilyl
unsatd
             unsaturated
X
             any halogen atom
Y
             a functional group
\mathbf{\tilde{Y}}_{n}
             one or more Y groups
Y*
             an electronegative functional group: X,
               -NO<sub>2</sub>, -CN, -COOR, -COR, -O-CO-R, -OH,
               -SH, -SO<sub>2</sub>X, etc
\mathbf{Z}
             another group or combination of several Ys
                      Society Library
```

1155 16th St. N. W.