The Data Science Process, Part 1

Neba Nfonsang

The Data Science Process Outline: Part 1

- Introduction to data science
- Types of learning task
- Data preprocessing
 - Data cleaning
 - Data exploration
 - Data transformation
 - Feature selection/extraction

Introduction to Data Science Tools

What Is Data Science?

- Data science is an interdisciplinary field that uses a collection of tools, methods, and algorithms from other fields such as machine learning, data mining, statistics, and computing.
- Data science is a systematic process of extracting meaning from data.
- The explosive growth of data and increased computing power have promoted the use of data science tools.

Components of a Dataset

Data-Related Terminology

- A variable is a characteristic or property of an entity or object that takes on different values. Each column in a dataset is a variable; for example, height, weight, and city.
- Data are values or facts associated with variables.
- An observation is a single instance in the dataset. It is a row of data values in the dataset.
 Alternative names include instance, example, tuple, data point, or record.
- A dataset is a collection of observations.

Types of Variables

Categorical (nominal) variable

- This is a variable whose values fall into categories.
 This is a variable whose unique values form a finite set.
- For example, the categorical variable, gender, could assume values (male or female).

Numerical variable

- This is a variable whose values are numbers with consistent intervals; for example, age.
- Numerical variables take on numbers that are realvalued (continuous) or integer-valued (discrete).

Input and Output Variables

- Input variable: this is an independent variable, also called:
 - Input
 - Feature (input feature)
 - Attribute
 - Predictor
 - Covariate
 - X-variable

- Output variable: this is the dependent variable, also called:
 - Output
 - Target
 - Response
 - Outcome
 - Class or label (when categorical)
 - Y-variable

Input and Output Variables

Training Examples and Set

- In a dataset, a pair of input and output
 (x⁽ⁱ⁾, y⁽ⁱ⁾) in supervised learning is called a training example.
- A training set, D, is a collection of training examples:
 - D = $\{(x^{(i)}, y^{(i)})\}_{i=1}^N$ or
 - D = $\{(x^{(i)}, y^{(i)}); i = 1, ..., N\}$

- i indicates the ith training example and N is the total number of training examples.
- In unsupervised learning, the training example is (x⁽ⁱ⁾) and the training set is:
 - $D = \{(x^{(i)})\}_{i=1}^N$

Algorithms

- An algorithm is a step-bystep procedure for solving a problem.
- Algorithms used in data science originated from different fields, including data mining and machine learning.
- Algorithms used in data science are iterative.

- These iterative algorithms automate the process of searching for an optimal solution for a given data problem.
- Algorithms are used to learn (or search for) optimal solutions.

Introduction to Data Science Tools

The End

Types of Learning Tasks

Types of Learning Tasks

What types of tasks can be achieved in data science?

- Description: involve the description of patterns and trends in the dataset
- Estimation: to approximate the numeric value of a target or output variable; for example, estimate GPA given SAT scores
- Classification: to approximate the categorical value of a target variable
- Prediction: to approximate the numeric value of target variable that lie in the future; for example, predict stock prices for the next week

Types of Learning Tasks (cont.)

- Clustering: grouping observations into classes or clusters of similar objects. This is similar to classification, but no target variable is used
- Anomaly detection:
 involves predicting if a
 data point is an outlier
 compared to other
 data points in the dataset
- Association: involves finding the relationship between attributes by establishing an if-then rule
- Association can be used to find out which items in a supermarket are purchased together

Types of Learning Problems

- Data science actually starts with asking a question or defining a problem that can be addressed using data science tools.
- There are different types of problems that can be solved with data science tools.

- This course focuses on supervised and unsupervised learning problems.
 - The goal of supervised learning is to build predictive models.
 - Unsupervised learning focuses on learning the structure in the dataset.

Supervised Learning

- Supervised learning uses a training dataset containing input and output values to build a model that is later used for predicting the output values of new input data
- Supervised learning can be further divided into regression and classification supervised learning
 - Supervised regression models predict continuous outcomes
 - Supervised classification models predict categorical outcomes

Supervised Learning (cont.)

Supervised Learning (cont.)

- Commonly used supervised learning approaches for solving supervised learning problems include:
 - Decision trees
 - Random forest
 - K-nearest neighbor
 - Support vector machines

- Naïve Bayes
- Linear regression
- Polynomial regression
- Logistic regression
- Neural networks
- And others

Supervised Learning (cont.)

An example of supervised regression

An example of a supervised classification

Unsupervised Learning

- Unsupervised learning involves finding the hidden structure in unlabeled data.
- An example of unsupervised learning is clustering. This approach groups objects based on their similarity on the input data.

Types of Learning Tasks

The End