36710 - 36752 ADVANCED PROBABILITY OVERVIEW FALL 2020 LECTURE 15: WED, OCT 21, 2020 SOME RECOMMENDED REFERENCES: 1) NOTES FOR A GRADUATE-LEVEL COURSE IN ASYMPTOTIC STEPTISTICS BY D. HUMBER http://personal.psu.edu/drh20/asymp/lectures/asymp.pdf 2) ELEMENTS OF LARGE SAMPLE TACORY, BY E. LEHMAN

- 3) ASYMPTOTIC STATISTICS, BY A. VAN DER VALET
- MODES OF STOCKLITTIC CONVERGENCE

ENSE DOES

Xn CONVERGE TO X, ANOTHER RU?

SO FAR, WE HAVE SEEN 3 MODES TO DESCRISE HOW A SEQUENCE (FIN?

of meas. Functions on (1, F, w) or (1, F, P) converces.

- 1) L' CONVERCIENCE: In Le f MEANS ((fa-f 1/p->0
- 2) a.e. se a.s convercience: for 1 mens that

3) CONVERCENCE IN MEASURE: $f_n \stackrel{\sim}{\to} f$ or $f_n \stackrel{\sim}{\to} f$ means

4850 km m ({ w= /fn(w) - f(w) (2 = 3) = 0

LP CONVERGENCE <= 3.5. CONVERGENCE EXAMPLE: M = [0,1], F = BOREL 6-FIED ON (0,1), A LEBESGUE CONSIDER THE SEQUENCE OF FUNCTIONS 1, 1 (9,1127, 1 (1,2,1) THESE FUNCTIONS CONVERGE TO 1 (0, 43) 1 (113, 213) 1 (213, 1) 0 in LP FOR ALL P 1 (9,1 1/2) --HOWEVER for \$ 0 (IT DOES NOT CONVERCE AT SIL). $\forall \omega \in \Omega$ $fn(\omega) = 1$ AND O (.O. · fn => 0 BECKUSE

VESO

A ({\lambda} \omega: \left(faco) / \seller \right) = \frac{1}{k} IF K (K+1) < n < (K+1) (K+2) EXAMPLE . SAME SETTING OF PREVIOUS EXAMPLE $fn(\omega) = \begin{cases} n & 0 < \omega < l/h \\ 0 & otherwise \end{cases}$ THEN facu) -> 0 ALL COE (So fa => 0) BUT IN DOES NOT CONVERCE IN LP BECKESTE ll falle = np-1 -> co · of course (n -> 0 Proposition LET (N, F, P) BE A PRIB. SPACE. IF for -> f THEN fn > f PP/ LET An = { w- I from I = II frilan }. THEN P (An) = 1 ALL n AND P() An) = 1 . So Va & An for (w) = lifation ->0 THIS PROVES THE RESULT FOR f = D, WHIEN f IS NOT THE ZERO FUNCTION

```
USE THESE ARGUMENTS ON fn-f.
PARTAL CONVERSE (EGOROFF THEOREM): (-1, F.M), M(-2) < 00
       IF for ST. MA) < E AND
            SUP (fr(a) - f(u) / -> 0. ALMOST UNIFORM CONVERGENCE
  LP CONVERCIENCE => CONVERCIENCE IN PROSADILITY
    BECAUSE IF IL Xn - XILp ->0 THEN, BY MARKOU'S INEQ.
               P( [Xn-X | ZE) & WXn-XHO =0 VESO
  CONVERCIENCE WITH PROB 1 => CONVERCIENCE IN PROBABILITY
   (a.e. CONVERCUENCE)
    TO SEE THIS RECALL THAT X => X WHEN
            P( (Xn-X1>8 1.0.) = 0 YESO
    [ BECACSE \left\{ \omega : \lim_{n\to\infty} X_n(\omega) = X_{(\alpha)} \right\}^c = \bigcup_{\Sigma \in \mathbb{R}} \left\{ \omega : \left[ X_n(\omega) - X_{(\omega)} \right] \geq \varepsilon \right\}
     LET ESO BE ARBITRARY. SE
              An, s = } a: | Xn(w) - X(w) | > s }. Then, suce Xn -> Xn
      P ( linsup An, E) = 0
      FROM THIS WE CONCLUDE THAT I'M P (AM, E) =0 BECAUSE
         lin P(Anis) & linear P(Anis) & P(linear Anis) = 9
REMARK IF WE ARE DEALING (Q, 5, m) AND U(-2) = co.
        THEN CONVERGENCE DOES NOT IMPLY CONVERGE IN MEASURE.
```


	ALMOST	SURTS	CONVE	RGENCE	AND	stron	(8 LL		NUMS
							E A SEQ		n ~
	7	rs CALI	PO THE	TAIL &	-FEN _	THE.	VAE ?		
f		4					. U Un	15	
•	E	3 e V	so B	E Un	FOR SOME	ξ Λ.	LET A E	. T	
	6						RE MORP.		াল্ডা.
	LX						T ARE		
	YACT,						⇒ P/A		
		-ANTELLI					80		
l)							1F 2/ 1=: (.o.)=(, øs
2)							cf 51 n = 1	P(An)	= %
	Ano	{An }			NOER EVE		uen		

Covollary IF Xn => X THEN 3 SUBSEQUENCE { Xnx3x ST. × , 3.5. × . PA/ LET SONZE AN INCREASING SEQUENCE S.T. IP ([Xnu-X] > 1/2") < 1/2" BEETESSE OF IP (| XINK - X | > 1/2") < 00 MEN, BY FIRST BC LEMMA, P([Xnu-x (> 1/2" 1.0.) = 0 $L > X_{n_n} - > X$ with PROB 1. [TARE $A = \{ [X_{n_n} - X_n] > [X_n] \}$ THEN PLAS)=1 THESE RESULTS ALLOW US TO DERIVE: Than (completeness) of LP spaces) Each LP space, 1 = p = 0, is complete. Def LET (DK, d) BE A MENRIC SPACE. A SEQUENCE {2n?n is It is said to BE A CAUGHY SEQUENCE IF $\forall \varepsilon > 0$, $\exists N = N(\varepsilon)$ s. $d(z_n, x_m) < \varepsilon \quad \forall n, m$