Projet 7 : Implémentez un modèle de scoring

Présenté par : Bourama FANE Etudiant Data Scientist **Dirigé par** : Babou M'BAYE Mentor chez OpenClassrooms

11 Décembre 2023

Sommaire

- Problématique
- 2 Exploration
- 3 Traitements des données
- 4 Modélisation
- Conclusion

Plan de la présentation

- Problématique
- 2 Exploration
- Traitements des données
- 4 Modélisation
- Conclusion

Problématique

La société financière, nommée "Prêt à dépenser", propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt. L'entreprise souhaite mettre en œuvre un outil de scoring crédit pour calculer la qu'un client rembourse son crédit, puis classifie la demande en crédit accordé ou refusé. Elle souhaite donc développer un algorithme de classification en s'appuyant sur des sources de données variées.

- ✓ identité,
- ✓ données comportementales,
- ✓ données provenant d'autres institutions bancaires,
- ✓ etc.

Objectifs

Analyse d'un jeu de données :

Nettoyage du jeu de données Recherche du modèle optimal Mise en place d'une métrique adaptée pour la banque

r API

Dashboard interactif

Visualisation score et interprétation Informations du client Interprétation prédiction modèle

Données

Caractéristiques des fichiers

	nb_lignes	nb_cols	%missings	%doublons	object_dtype	float_dtype	int_dtype	bool_dtype	Mo_Memory
application_test.csv	48744	121	23.81	0.0	16	65	40	Θ	44.998
application_train.csv	307511	122	24.40	0.0	16	65	41	Θ	286.227
bureau.csv	1716428	17	13.50	0.0	3	8	6	Θ	222.620
bureau_balance.csv	27299925	3	0.00	0.0	1	θ	2	Θ	624.846
credit_card_balance.csv	3840312	23	6.65	0.0	1	15	7	Θ	673.883
${\tt HomeCredit_columns_description.csv}$	219	5	12.15	0.0	4	θ	1	Θ	0.008
installments_payments.csv	13605401	8	0.01	0.0	θ	5	3	Θ	830.408
POS_CASH_balance.csv	10001358	8	0.07	0.0	1	2	5	Θ	610.435
previous_application.csv	1670214	37	17.98	0.0	16	15	ó	Θ	471.481
sample_submission.csv	48744	2	0.00	0.0	θ	1	1	0	0.744

Taux de remplissage

Taux de completion (application_train) Taux de completion (application_test)

Analyse de la target

Bourama FANE Soutenance P7 11 Décembre 2023 9 / 27

Plan de la présentation

- Problématique
- 2 Exploration
- Traitements des données
- 4 Modélisation
- Conclusion

Distribution de la target : NAME_CONTRACT_TYPE

Répartition de la variable NAME_CONTRACT_TYPE

Distribution de la target : CODE_GENDER

Répartition de la variable CODE_GENDER

Distribution de la target : Autres variables

13 / 27

∢□▶∢酃▶∢臺▶∢臺▶

Distribution de la target : Autres variables

Plan de la présentation

- Problématique
- 2 Exploration
- 3 Traitements des données
- 4 Modélisation
- 5 Conclusion

Utilisation du Kernel Kaggle

- Jointure des tables selon la clé primaire;
- Imputation des valeurs manquantes/aberrantes;
- Features engineering (création de nouvelles variables);
- Encodage des variables catégorielles;
- Agreggation des données par client ;

Autres traitements

- Suppression des colonnes avec plus de 40% de missings;
- Supression des colonnes constantes;
- conversion des ages (nombre de jours) en années;
- changement des valeurs négatives en valeurs positives;
- Imputation avec la méthode interpolate;

Bourama FANE Souten

Selection de features : 6 méthodes

```
Pearson Correlation;

SelectKBest;

RFE (Recursive Feature Elimination);

Logistics Regression L1;

Random Forest;

LightGBM;
```

Comparaison des 100 'best' features selectionnés

Plan de la présentation

- Problématique
- 2 Exploration
- Traitements des données
- 4 Modélisation
- Conclusion

Algorithmes de classification

Les Algorithmes

- Dummy Classifier
- Logistic Regression

 Logistic Regression
- r SVC
- □ Decision Tree
- Random Forest
- XG Boost
- □ Light GBM

Désequilibre entre classes

- class_weight
- SMOTE
- Tomek Links
- RandomUnderSampler
- RandomOverSampler

Les méthodes RandomUnderSampler et class_weight fournissent les meilleurs scores. Nous optons pour l'approche d'undersampling en utilisant RandomUnderSampler pour équilibrer nos données.

Chaque modèle est entraîné en utilisant ces techniques.

Bourama FANE Soutenance P7 11 Décembre 2023 20 / 27

Modèle final et métriques

```
model_performance = pd.concat(models_perf, axis=0)
model performance.sort values(by
                                   = ['Recall class 1','AUC', 'score Gain', 'FN'],
                            ascending = [False.
                                                          False, False, True],
                            inplace = True. )
model_performance = (model_performance.loc[model_performance.Modele.str.contains('Model', case=False),:]
                    .drop_duplicates())
model_performance.reset_index(drop=True, inplace=True)
model_performance
```

	Modele	Accuracy	AUC	Recall class 1	F1	fbeta	TP	Precision	FN	score Gain	train_time	predict_time
Θ	Model_LGBMClassifier	0.699815	0.765181	0.696073	0.272405	0.429114	3456	0.169337	1509	0.698336	6.136364	1.406532
1	Model_LGBMClassifier	0.699815	0.765181	0.696073	0.272405	0.429114	3456	0.169337	1509	0.698336	6.233220	1.624582
2	Model_SVC	0.688986	0.752176	0.689829	0.263685	0.418981	3425	0.162994	1540	0.689319	2533.136927	300.204419
3	Model_LogisticRegression	0.691717	0.751976	0.681974	0.263174	0.416718	3386	0.163047	1579	0.687868	7.234787	1.064942
4	Model_XGBClassifier	0.687929	0.745665	0.676737	0.259329	0.411684	3360	0.160397	1605	0.683507	10.105386	1.399076
5	${\tt Model_RandomForestClassifier}$	0.691376	0.740535	0.667472	0.258815	0.409095	3314	0.160531	1651	0.681932	98.769776	3.561240
6	Model_DecisionTreeClassifier	0.586290	0.588409	0.590937	0.187404	0.317484	2934	0.111360	2031	0.588126	14.551581	0.949493

Bourama FANE Soutenance P7 11 Décembre 2023 21 / 27

Interpretabilité globale :Features importances

Interpretabilité locale : LIME & Shap.force

Le client 100009 est selectionné Intercept 0.11387343997572051

```
Prediction local [0.04884055]
Right: 0.007487046292433223
 Prediction probabilities
                                                                                          Feature
                                                                                                        Value
                                   FXT SOURCE 2 > ...
                           0.99
                                   AMT_GOODS_PRIC...
                                                                                          EXT_SOURCE_2
                                                                                                             0.72
            1 0.01
                                                      AMT CREDIT >
                                                                                        AMT_G00DS_PRICE 1395000.00
                                                                                            AMT_CREDIT 1560726.00
                                    0.00 < CODE_G...
                                                                                           CODE GENDER
                                                                                                             1.00
                                                                                                         41301.00
Le client 100009 est selectionné
LightGBM binary classifier with TreeExplainer shap values output has changed to a list of ndarray
                         higher ← lower
                  -0.1374
                               0.845
                                            1.863
                                                         2.863
                                                                     3.863
                                                                                  4.863
                                                                                                            6.863
```

INUITY = 4.13e+4 AMT CREDIT = 1.561e+6 EXT SOURCE 2 = 0.724 AMT GOODS PRICE = 1.395e+6 PAYMENT RATE = 0.02646 NAME EDUCATION TYPE High

Bourama FANE Soutenance P7 11 Décembre 2023

4 D > 4 A > 4

Github & API & Dashboard

Github

https://github.com/bouramayaya/OC-Projet-7

API

http://54.172.177.114:8000/

http://54.172.177.114:8000/docs

Dashboard

http://54.172.177.114:8080/

Plan de la présentation

- Conclusion

Conclusion

- Utilisation du **kernel Kaggle** fourni dans les ressources;
- Selection de **100 Variables** (de façon arbitraire);
- □ lightGBM a été le modele final retenu;
- Un score AUC autour de 0.77.

MERCI POUR VOTRE AIMABLE ATTENTION

