动态规划选讲

重庆南开中学信息学竞赛教练组

遗留问题

在一个n*n的网格内,每格有 a_{ij} 和 b_{ij} 两个值。从左上角(1,1)走到右下角(n,n),每一步只能向下或者向右走。虽然走法有很多,但都恰好经过了2n-1格。设路径上所有的 a_{ij} 之和为 sa, b_{ij} 之和为 sb, 求 sa*sb 的最大值。

$$1 \le n \le 100$$

$$1 \le a_{ij}, b_{ij} \le 10^6$$

 a_{ij} , b_{ij} 均匀**随机生成**

2 3	3 2	1 5	5 1
6 2	3 4	2 3	4 5
3 1	4 2	1 3	4 4
5 4	2 3	4 5	1 3

- 数据随机
- 贪心乱搞
 - Wrong Answer

- 数据随机
- 贪心乱搞
 - Wrong Answer
- 暴搜, 状态 (sa, sb)
 - 有多少走法?
 - 杨辉三角 C_{2n-2}^{n-1}

1	1	1	1
1	2	3	4
1	3	6	10
1	4	10	20

- 数据随机
- 贪心乱搞
 - Wrong Answer
- 暴搜, 状态 (sa,sb)
 - 有多少走法?
 - 杨辉三角 C_{2n-2}^{n-1}

1	1	1	1
1	2	3	4
1	3	6	10
1	4	10	20

• 考虑剪枝

- 在同一个位置, 当 sa 和 sb 均不超过另一状态的。不可能发展成最优解
- dfs的形式不方便进行这种剪枝
- 把一个位置的所有方案计算出来再进行剪枝效果更佳

- 动态规划
- 设 dp[i][j][sa] 表示从 (1,1) 走到 (i,j) 且 a 的和为 sa 时, sb 的最大值
 - $dp[i][j][sa] = max(dp[i-1][j][sa-a_{ij}], dp[i][j-1][sa-a_{ij}]) + b_{ij}$ ap[い」」」sa 値域可达 10⁸ 级别

- 动态规划
- 设 dp[i][j][sa] 表示从 (1,1) 走到 (i,j) 且 a 的和为 sa 时, sb 的最大值
 - $dp[i][j][sa] = \max(dp[i-1][j][sa-a_{ij}], dp[i][j-1][sa-a_{ij}]) + b_{ij}$
 - sa 值域可达 10⁸ 级别
- 猜测: 随机数据下剪枝后有效的 sa 数量较少
 - 用 vector 离散化存储状态 (sa,sb)
- 观察: 剪枝后的 (sa, sb) 构成了一个阶梯形状
 - 求 dp[i][j] 相当于合并 dp[i-1][j] 与 dp[i][j-1] 的两个阶梯
 - 两个阶梯的 sa 均有序,可以线性合并(归并)

- 数据随机,可本地生成数据观察性质和规律
- 经测试,随机数据下,一个位置的有效状态数量的最大值只能达到2000多一点,平均状态数量只有 $300\sim400$,时间复杂度约为 $O(400n^2)$

- 数据随机的标志
 - 题面明示
 - 使用随机数生成器生成数据(线性同余法, shift xor 法等)

在一个n*m的网格内填入 $1\sim n*m$,一个数只能用一次。

定义"山谷":小于周围8连通邻居的值。

求有多少种方案, 使得描定的位置'X'为山谷, 其它位置''不为山谷。

 $1 \le n, m \le 5$

样例输入

2 4

. X. .

. . . X

合法方案

3 1 4 5

6782

- 数据范围提示我们使用状压DP
 - 2^{25} ?
 - 2²⁵ = 33,554,432,有亿点大

- 数据范围提示我们使用状压DP
 - 2^{25} ?
 - 2²⁵ = 33,554,432,有亿点大

输入中有8连通相 邻的X时,答案为0

- 观察: 山谷不能8连通相邻
- 分析: 山谷的数量最多只有9个
 - 29 状压山谷的位置是否填写
 - 山谷确定后,周围不能填更小的数
 - 从小到大填数字

- dp[i][j] 表示填了前 i 个数字,山谷状态为 j 的方案数,接下来填写数字 i+1
 - 填入第k个 'X' : $dp[i+1][j|(1 \ll k)] += dp[i][j]$
 - 填入某个 '.' : dp[i+1][j] += cnt[i][j] * dp[i][j]
 - cnt[i][j] 表示状态 (i, j) 下剩余可填的 '.' 数量

- dp[i][j] 表示填了前 i 个数字,山谷状态为 j 的方案数,填写数字 i+1 转移
 - 填入第 k 个山谷: $dp[i+1][j|(1 \ll k)] += dp[i][j]$
 - 填入一个非山谷: dp[i+1][j] += cnt[i][j] * dp[i][j]
 - cnt[i][j] 表示状态 (i, j) 下剩余可填的''数量
 - cnt[i][j] = n * m S i + percount(j)? (S 为 'X' 总数)
 - 状态 j 下未填的山谷周围此时也不能填
 - cnt[i][j] 中的 n*m-S 应改为状态 j 下周围没有未填山谷的'',数量
 - cnt[i][j] 可预处理
 - 时间复杂度 $O(n*m*2^9)$

- 这个题做完了吗?
- $5*5*2^9 = 12800$?

- 刚才的状态设计和等移只保证了 'X' 的位置一定成立
- 但题目要求 ': 不能为此谷

- 多算了减去就行了
- 容斥!

• 通过 dfs 枚举可能成为 'X' 的 '.' 位置,将其修改为 'X' 后再进行一次计算,根据新增 'X' 的数量进行容斥

- 极限情况为5*5的全''的地图,经测试有6427种合法的'X'分布
- 与 2^S 加权后大约为 204,627

• 5*5*204627 = 5,115,675

(换根)树彩DP选讲

换根DP的常规流程

① 通常的树形DP (有根树) 第一次dfs, 求出每个点子树内的答案 由多个子节点合并出父节点的答案

② 换根DP(无根树) 第二次dfs,求出每个点为根时的答案 计算"父节点新增子树"对子节点答案的贡献

换根DP图解

f[u]: u子树内的答案

g[u]: u为根的答案

第一次dfs算出所有f[u] 第二次dfs中,假设已经算出g[u]

计算g[v]相当于在f[v]的基础上添加一棵以父节点u为根的子树,如红框所示

换根DP图解

计算红框内子树的答案,关键在于从g[u]中去除以v为根的子树的影响

$$h[v] = g[u] \ominus f[v]$$

$$g[v] = f[v] \oplus h[v]$$

换根DP主要考虑**添加** \oplus 或**删除** \ominus 一棵子树对于答案的贡献 换根DP的难点主要在于**删除** \ominus 操作,即计算h[v]

例1 Luogu P3478 [POI2008] STA-Station

给定一个 n 个点的树,请求出一个结点,使得以这个结点为根时,所有结点的深度之和最大。

一个结点的深度之定义为该节点到根的简单路径上边的数量。

$$n \le 10^6$$

- 求出每个点为根时的深度之和即可
- 怎么求以1为根,所有子树的答案 f[u]?
 - 先dfs1次求出dep,再dfs1次求出子树内dep之和
 - 一次dfs即可,考虑添加一棵子树的贡献, $f[u] = \sum_{v \in Son_u} (f[v] + size[v])$

例1 Luogu P3478 [POI2008] STA-Station

- 以u为根时,子树v 中的节点深度+1
- g[u] = h[v] + f[v] + size[v]
- $\Rightarrow h[v] = g[u] (f[v] + size[v])$

- 以v为根时,子树u 中的节点深度+1
- g[v] = f[v] + h[v] + (n size[v])

例2 POJ 3585 Accumulation Degree

在一棵n个点的树中,边有容量。A(x) 定义为:以x 作为源点,其它度为1的节点作为汇点的最大流。求所有的A(x)。

$$n \le 2 * 10^5$$

- 先考虑固定源点 x ,此时汇点为以 x 为权的有根树中所有的叶子节点
- 直接跑最大流?

- · 流量分支不会在中途相交,这看似可以dp
- dp方程怎么列?

例2 POJ 3585 Accumulation Degree

- 在右图的例子中, f[4] 显然为15
- 考虑向 1 中添加 4 这棵子树,能够增加的流量为 (1,4)这条边的容量 13 和 f[4]
 15 中的较小值

• $f[u] = \sum_{v \in son_u} \min(f[v], c_{uv})$

• 叶子节点直接和汇相连, f[u] 应该初始化为 ∞

例2 POJ 3585 Accumulation Degree

• 换根的转移情况与例1类似,留给大家思考

• 本题还有一个注意点,当换根到原来的叶子节点时,转移与非叶子节点稍有不同

例3 HDU 2196 Computer

在一颗无根树中,边有长度,求每个点为根时的树高。

多组数据, $n \leq 10^4$

- 固定根时, 你一眼秒了这个水题
- $f[u] = \max_{v \in son_u} (w_{uv} + f[v])$

- 换根时,不好转移
- max 运算不支持"减法"

例3 HDU 2196 Computer

• 好在 $f[v] + w_{uv}$ 只是计算 g[u] 的 max 式中的一项

• 若 $f[v] + w_{uv}$ 不是其中最大值,则 h[v] = g[u]

• 若 $f[v] + w_{uv}$ 是其中最大值,则去掉它后,h[v] 应该为其中次大值,因此只需要额外维护一下次大值 f2[u] 即可完成转移

 当转移方程中含有最值函数时,通常需要维护多个 最值

例4 HDU 5834 ... with his excited tree

在一棵n个点的树中,每个点处有价值为 w_i 的宝物,通过一条边需要支付 c_i 的费用。宝物只能拾取一次,但每次经过一条边都需要支付相应的费用。你想知道以每个点为起点时(终点不固定),能获取的最大收益。

 $n \le 10^5$

- 题目描述和数据范围都明示换根DP
- 固定起点时,最优策略一定是:在一些收益为正的子树内往返,最后停留在一棵子树内不返回
- dp 时要计算不返回根的最大收益 f1[u] 和要返回根的最大收益 f2[u]

例4 HDU 5834 ... with his excited tree

- 考虑添加子树 v 对于父节点 u 的影响

• 要返回时,考虑是否有正收益:
$$f2[u] += \max(f2[v] - 2c_{uv}, 0)$$

例4 HDU 5834 ... with his excited tree

- 考虑添加子树 v 对于父节点 u 的影响
 - 要返回时,考虑是否有正收益:

$$f2[u] += \max(f2[v] - 2c_{uv}, 0)$$

• 不返回时,计算停留在 v 中相比返回 u 可以获取的收益 p:

当
$$f2[v] - 2c_{uv} \ge 0$$
 时,原本会选入 v ,则 $p = f1[v] - f2[v] + c_{uv}$ 当 $f2[v] - 2c_{uv} < 0$ 时,原本不进入 v ,则 $p = f1[v] - c_{uv}$

• $f1[u] = f2[u] + \max\{p\}$

• 换根时, f2[u] 是求和, f1[u] 是求 max, 都是之前见过的套路了

其它换根相关问题

- ① 树的重心
- · 计算以 u 为根时所有子树size的最大值,使得最大size最小的 u 就是树的重心
- 常规换根dp
- 以父亲为根的子树size为n-size[u],一次dfs就可以完成

- 性质
 - 重心最多只有2个
 - 重心的子树大小不超过n/2
 - 在树上增加或删除一个叶子节点,重心最多只会移动1条边

其它换根相关问题

- ② 树的直径
- 即树上最长链

- 两次dfs: 先随意选根dfs求出最远点 u, 再以u为根dfs找到最远点 v, $u \to v$ 即是一条直径
- 树形dp: 求以 u 为根的子树内的最远和次远,相加后全局取max(不用换根)

直径合并:两棵树用一条边连接起来,组成一棵新树,则新树某条直径的两个端点一定是在组成原来两树直径的4个点中

练习题

热多训练6

vjudge.net/convest/452738

密码

ilovedp