Lycée Secondaire Bouargoub

Année scolaire : 2023/2024

Série n°1

Limites et continuité

<u>Prof</u>: Daaloul Sahbi

Niveau: 4ème Sciences

Exercice n°1:
Calculer les limites suivantes :

$$\lim_{x \to 0^+} \sqrt{\frac{x^2 + x + 1}{x^2 + x}} \; \; ; \; \lim_{x \to 1^+} \sqrt{\frac{x^2 + 1}{x - 1}} \; \; ; \; \lim_{x \to +\infty} \sqrt{\frac{2x^2 - 1}{x}} \; \; ; \; \lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} \; \; ; \; \lim_{x \to -\infty} \sqrt{4x^2 + 5} + 2x$$

$$\lim_{x \to -\infty} \frac{x - \sqrt{x^2 + x + 1}}{2x + \sqrt{2x^2 + x}} \; ; \; \lim_{x \to +\infty} \frac{\sqrt{x^2 - x} - x |x|}{x} \; ; \; \lim_{x \to +\infty} \sqrt{3x^2 + 5} - \sqrt{x^2 + 1} \; ; \; \lim_{x \to -\infty} 2x - \sqrt{4x^2 + x + 1} \; .$$

Exercice n°2:

Calculer les limites suivantes :

$$1) \lim_{x \to 0} \frac{1 - \cos x}{tg^2 x}$$

$$2) \lim_{x\to 0} \frac{7tgx}{2\sin x}$$

3)
$$\lim_{x \to 0} \frac{tgx - \sin x}{x^2}$$

4)
$$\lim_{x\to 0} \frac{|x^2 \sin x|}{1-\cos x}$$

$$5) \lim_{x \to -\infty} x^2 \sin \frac{1}{x}$$

1)
$$\lim_{x \to 0} \frac{1 - \cos x}{tg^2 x}$$
 2) $\lim_{x \to 0} \frac{7tgx}{2\sin x}$ 3) $\lim_{x \to 0} \frac{tgx - \sin x}{x^2}$ 4) $\lim_{x \to 0} \frac{x^2 \sin x}{1 - \cos x}$ 5) $\lim_{x \to \infty} x^2 \sin \frac{1}{x}$ 6) $\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{tgx}$ 7) $\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$

7)
$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$$

Exercice n°3:

Soit la fonction définie par
$$\begin{cases} f(x) = x^2 + 2x & \text{si } x \le 0 \\ f(x) = \frac{x-1}{x+2} & \text{si } x > 0 \end{cases}$$

- 1) Justifier que f est continue sur chacun des intervalles $[-\infty; 0]$ et $[0; +\infty[$.
- 2) Tracer la représentation graphique de f dans un repère orthonormé $(O; \vec{i}; \vec{j})$.
- 3) f est-elle continue sur IR?

Exercice n°4: Soit la fonction f définie sur \mathbb{R} par : $f(x) = \begin{cases} \sqrt{2x^2 - x^3} & \text{si } x < 1 \\ \frac{3x + 1}{x + 3} & \text{si } x \ge 1 \end{cases}$

- 1) Montrer que f est continue sur \mathbb{R} . 2) Soit g la fonction définie par $g(x) = \frac{f(x)-1}{x-1}$

Montrer que g est prolongeable par continuité en 1 est définir ce prolongement .

Soit la fonction f définie par $f(x) = \begin{cases} \frac{2}{3}x + \frac{1}{3x^2} & \text{si } x \ge 1\\ \frac{6\cos(\frac{\pi}{2}x)}{\pi(1-x^3)} & \text{si } x < 1 \end{cases}$

- 1) a) Déterminer $\lim_{x \to 1} \frac{\cos\left(\frac{\pi}{2}x\right)}{1-x}$. b) Etudier la continuité de f en 1.

1

- 2) a) Montrer que pour tout x < 1 on a : $-\frac{6}{\pi(1-x^3)} \le f(x) \le \frac{6}{\pi(1-x^3)}$.
- b) En déduire $\lim f(x)$.

Exercice n°6:

On donne ci-dessous , les courbes représentatives ζ_f et ζ_g des fonctions f et g définies sur leurs domaines de définition D_f et D_g dans un repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$.

La droite Δ : y = x - 3 est une asymptote à ζ_f au voisinage de $+\infty$.

La courbe ζ_g admet une branche parabolique de direction asymptotique la droite Δ' : y = x au voisinage de $+\infty$. La droite D: y = 2 est une asymptote à ζ_f au voisinage de $-\infty$ et la droite D': x = 2 est une asymptote à ζ_f .

- 1) Déterminer graphiquement :
 - a) Le domaine de définition D_f de la fonction f et D_g de la fonction g .

b)
$$\lim_{x \to +\infty} f(x)$$
; $\lim_{x \to +\infty} \frac{f(x)}{x}$; $\lim_{x \to +\infty} [f(x) - x]$; $\lim_{x \to -\infty} f(x)$; $\lim_{x \to 2^+} f(x)$ et $\lim_{x \to 2^-} f(x)$.

c)
$$\lim_{x \to +\infty} g(x)$$
; $\lim_{x \to +\infty} \frac{g(x)}{x}$; $\lim_{x \to +\infty} [g(x) - x]$; $\lim_{x \to -\infty} g(x)$; $\lim_{x \to -\infty} \frac{g(x)}{x}$ et $\lim_{x \to 0} \frac{1}{g(x)}$.

2) Déterminer les limites suivantes :

$$\lim_{x \to +\infty} \frac{x}{f^2(x)} \quad ; \lim_{x \to +\infty} \frac{f(x) - 3x}{x} \; ; \; \lim_{x \to -\infty} \frac{1 - f(x)}{2 - f(x)} \; ; \; \lim_{x \to +\infty} f \circ g(x) \text{ et } \lim_{x \to +\infty} \frac{f \circ g(x)}{2g(x) - 1}.$$

- 3) a) La fonction $\frac{1}{f}$ est elle prolongeable par continuité en 2? Si oui définir son prolongement.
 - b) Déterminer : $f\langle]-\infty;2[\rangle ; f\langle [-1;1]\rangle .$
 - c) Montrer que l'équation f(x) = 0 admet une solution unique α dans l'intervalle [-1;1].
 - d) Soit n un entier naturel non nul , montrer que l'équation $f(x) = \frac{1}{n}$ admet une solution unique α_n dans l'intervalle [-1;1] ; donner alors α_2 .

Exercice nº7:

Partie I:

On considère la fonction
$$f$$
 définie \mathbb{R} par $f(x) = \begin{cases} \frac{2\sqrt{x+1} - 2 - x}{x} & \text{si } x > 0 \\ x^2 \left[1 - \cos\left(\frac{\pi}{x}\right) \right] & \text{si } x < 0 \\ 0 & \text{si } x = 0 \end{cases}$

- 1) Montrer que pour tout $x \in]0; +\infty[$, on a : $f(x) = \frac{2}{1+\sqrt{x+1}} 1$.
- 2) Montrer que pour tout $x \in]-\infty; 0[$; on a : $0 \le f(x) \le 2x^2$
- 3) a) Montrer que f est continue en 0.
 - b) Montrer que f est continue sur $]0;+\infty[$.
 - c) Montrer que f est strictement décroissante sur $]0;+\infty[$ puis déterminer $f\langle]0;+\infty[\rangle$.
- 4) a) Donner $\lim_{x \to +\infty} f(x)$ et interpréter graphiquement le résultat .
 - b) Montrer que $\lim_{x \to -\infty} f(x) = \frac{\pi^2}{2}$ et interpréter graphiquement le résultat.
- 5) On considère la fonction u définie sur $\left[0; \frac{\pi}{2}\right]$ par $: u(x) = f(\tan^2 x)$ pour tout $x \in \left]0; \frac{\pi}{2}\right[$ et u(0) = 0.
 - a) Montrer que u est continue à droite en 0.
 - b) Montrer que pour tout $x \in \left[0; \frac{\pi}{2}\right]$; on a : $u(x) = \frac{-1 + \cos x}{1 + \cos x}$.

Partie II:

On donne dans <u>ci-dessous</u> la courbe représentative ζ_g d'une fonctions g définie sur $\mathbb{R}\setminus\{-1\}$ dans un repère orthonormé (O; i; j).

- La courbe ζ_g passe par les points A(-3;-1); $B\left(-\frac{1}{2};-1\right)$ et C(1;-1).
- La droite $\Delta : y = x + 1$ est une asymptote à ζ_g au voisinage de $-\infty$.
- La courbe ζ_g admet une branche parabolique de direction asymptotique la droite Δ' : y = -2x au voisinage de $+\infty$.

3

- La droite D: x = -1 est une asymptote à ζ_g .
- 1) a)Déterminer graphiquement :

$$\lim_{x \to +\infty} g(x) \; ; \; \lim_{x \to +\infty} \frac{g(x)}{x} \; ; \; \lim_{x \to +\infty} \left[g(x) + 2x \right] \; . \; \lim_{x \to -\infty} g(x) \; ; \; \lim_{x \to -\infty} \frac{g(x)}{x} \; ; \; \lim_{x \to -\infty} g(x) - x \; .$$

b) Déterminer les limites suivantes : $\lim_{x \to \infty} g(x) \sin \left(\frac{1}{g(x)} \right)$

et
$$\lim_{x\to 1} \frac{1-\cos(1+g(x))}{(1+g(x))^2}$$
.

- 2) Soient la fonction $k = g \circ g$ et ζ_k sa courbe représentative dans un repère .
 - a) Déterminer l'ensemble de définition de la fonction k.
 - b) Déterminer $\lim_{x \to -1} k(x)$ et interpréter graphiquement le résultat .
 - c) Déterminer $\lim_{x \to -\infty} k(x)$ puis montrer que $\lim_{x \to -\infty} \frac{k(x)}{g(x)} = 1$ et déduire que $\lim_{x \to -\infty} \frac{k(x)}{x} = 1$.
 - d) Montrer que la courbe ζ_k admet au voisinage de $(-\infty)$ une asymptote oblique que l'on précisera .
 - e) Déterminer $\lim_{x \to +\infty} k(x)$ puis montrer que $\lim_{x \to +\infty} \frac{k(x)}{x} = -2$.
 - f) Montrer que la courbe ζ_k admet au voisinage de $(+\infty)$ une direction asymptotique que l'on précisera
- 3) On considère la fonction $h = g \circ f$. Avec f la fonction définie dans la **Partie L**
 - a) Déterminer l'ensemble de définition de la fonction h.
 - b) Montrer que $\lim_{x \to +\infty} g \circ f(x) = -\infty$.
 - c) Montrer que la fonction h est continue sur $[0;+\infty[$.
 - d) Montrer que la fonction h est strictement décroissante sur $[0;+\infty[$.
 - e) Montrer que l'équation $h(x) = -\frac{1}{2}$ admet une solution unique α dans l'intervalle [0;8].

Exercice nº8:

Soit
$$f$$
 la fonction définie sur \mathbb{R} par :
$$\begin{cases} f(x) = \frac{1}{x-1} + \frac{\sin x}{x} & si \ x < 0 \\ f(x) = \frac{3x}{\sqrt{x^2 + 1}} & si \ x \ge 0 \end{cases}$$

- 1) a) Montrer que pour tout $x \in]-\infty; 0[$, on a : $\frac{1}{x-1} + \frac{1}{x} \le f(x) \le \frac{1}{x-1} \frac{1}{x}$.
 - b) Déduire $\lim_{x \to \infty} f(x)$.
- c) Calculer $\lim_{x \to +\infty} f(x)$.
- 2) Montrer que f est continue en 0.
- 3) Soit g la fonction définie sur $\left[0; \frac{\pi}{2}\right]$ par : $g(x) = \begin{cases} f(\cot an x) & \text{si } x \neq 0 \\ 3 & \text{si } x = 0 \end{cases}$
 - a) Montrer que g est continue à droite en 0 . b) Montrer que g est continue sur
- - c) Montrer que pour tout $x \in \left[0, \frac{\pi}{2}\right]$; on a : $g(x) = 3\cos x$.
 - d) Montrer que l'équation g(x) = x admet dans l'intervalle $0; \frac{\pi}{2}$ une solution unique α .
 - e) Déterminer un encadrement de α d'amplitude $\frac{\pi}{4}$.

Exercice n • 9 :

Soit
$$f$$
 la fonction définie par $f(x) = \frac{\sqrt{1+4x}-1}{2x}$

- 1) a) Déterminer le domaine de définition de la fonction f .
 - b) f est-elle prolongeable par continuité en 0 , si oui définir son prolongement noté F .
- 2) On considère la fonction g définie sur l'intervalle $\left| -\frac{1}{4}; +\infty \right|$ par : $g(x) = \frac{2}{1+\sqrt{1+4x}}$
 - a) Déterminer $\lim_{x \to +\infty} g(x)$.
 - b) Montrer que g est continue et strictement décroissante sur $\left| -\frac{1}{4}; +\infty \right|$ et Déterminer $g\left\langle \left| -\frac{1}{4}; +\infty \right| \right\rangle$.
- 3) a) Montrer que l'équation g(x)-x+1=0 admet une solution unique α dans l'intervalle [1;2].
 - b) Donner un encadrement de α d'amplitude 0,5
- 4) Soit la fonction G définie sur $\left[\frac{\pi}{2};\pi\right]$ par $G(x) = \begin{cases} g\left(\frac{1}{4}\tan^2 x\right) & \text{si } x \in \left[\frac{\pi}{2};\pi\right] \\ 0 & \text{si } x = \frac{\pi}{2} \end{cases}$
 - a) Montrer que la fonction $u: x \mapsto \frac{1}{4} \tan^2 x$ est décroissante sur l'intervalle $\left| \frac{\pi}{2}; \pi \right|$
 - b) Montrer que G est continue sur $\left| \frac{\pi}{2}; \pi \right|$.
 - c) Vérifier que : pour tout $x \in \left| \frac{\pi}{2}; \pi \right|$ on a : $G(x) = \frac{2\cos x}{-1 + \cos x}$.

