Graduate Trade (II): ECON 8433

Sergey Nigai University of Colorado Boulder Fall Semester 2020

Plan

Week	Topic
Week 1	Introduction to Structural Gravity Equation
Week 2	Calibration and Estimation
Week 3	Mapping Models to the Data
Week 4	Designing Counterfactual Experiments in General Equilibrium
Week 5	Presentations (I) and Catch-up
Week 6	Heterogeneous Firms (I)
Week 7	Heterogeneous Firms (II)
Week 8	Ricardian Models
Week 9	Multi-Sector Models
Week 10	Global Value Chains
Week 11	Presentations (II) and Catch-up
Week 12	Extensions: Demand Side
Week 13	Extensions: Supply Side
Week 14	Extensions: Migration and Geography
Week 15	Presentations (III) and Catch-up

Plan

Week	TOPIC
Week 1	Introduction to Structural Gravity Equation
Week 2	Calibration and Estimation
Week 3	Mapping Models to the Data
Week 4	Designing Counterfactual Experiments in General Equilibrium
Week 5	Presentations (I) and Catch-up
Week 6	Heterogeneous Firms (I)
Week 7	Heterogeneous Firms (II)
Week 8	Ricardian Models
Week 9	Multi-Sector Models
Week 10	Global Value Chains
Week 11	Presentations (II) and Catch-up
Week 12	Extensions: Demand Side
Week 13	Extensions: Supply Side
Week 14	Extensions: Migration and Geography
Week 15	Presentations (III) and Catch-up

One-sector models

So far, we have focused on one-sector models of international trade:

- ► Anderson and van Wincoop (2003)
- ► Eaton and Kortum (2002)
- ► Melitz (2003)

Under certain parametric assumptions about technology:

- ► The models are isomorphic
- lacktriangle The welfare gains from trade can be measured as $G_j=\lambda_{jj}^{-rac{1}{\epsilon}}$

One-sector models

- Isomorphic one-sector models generally predict that the welfare gains from trade relative to autarky are moderate at best
- For example, according to Arkolakis, Costinot and Rodriguez-Clare (2012), in " ... the United States for the year 2000, the import penetration ratio was 7 percent, which implies $\lambda=0.93.\ldots$ Applying the previous formula ... implies gains from trade ranging from 0.7 to 1.4 percent".

What are the reasons behind these arguably negligible welfare gains?

- ► Caliendo and Parro (2014) and Ossa (2015) argue that the main driver behind the results above is the assumption of a single sector.
- Input-output linkages across sectors magnify the welfare gains from trade and account for the rich patterns of national and international supply chains.

Multi-sector models

- Multi-sector and multi-country models of trade are on the frontier of quantitative trade models
- ▶ We will spend the next 4 classes:
 - Understanding the set-up
 - Calibrating/estimating parameters of the model
 - Conducting counterfactual experiments
- ► Today: Understanding the set-up and data prep.
- Wednesday: Calibration & first part of the solution

Multi-sector model

The set-up mostly follows Caliendo and Parro (2014):

- ▶ There are S countries in the world, each endowed with L_i unit of labor
- ► There are *J* sectors. Labor is mobile across sectors within each country but not across countries. What does it imply?
- ► Markets are perfectly competitive as in EK (2002)
- ► Countries differ in productivity levels in every sector as in EK (2002)
- ► There are input-output linkages such that the output of one sectors is used as inputs in all other sectors
- There are (potentially) two types of trade barriers: iceberg trade costs and tariffs

Consumption

The utility function has two tiers. The upper-tier is a Cobb-Douglas aggregate:

$$U(\mathcal{C}_i) = \prod_j (Q_i^j)^{lpha_i^j}$$
 such that $\sum_j lpha_i^j = 1$

Consumers maximize this utility function given their income l_i which includes labor income, transfers from other countries, and (potentially) rebates from tariff revenues.

Each (Q_i^j) is a CES-type aggregate which is defined as:

$$Q_i^j = \left(\int r_n^j (\omega^j)^{1-1/\sigma^j} d\omega^j\right)^{\sigma^j/(\sigma^j-1)}$$

Production

Within each sector, production is as in EK (2002). The cost function is defined as:

$$c_i^j = \Gamma_i^j w_i^{\gamma_i^j} \prod_k (P_i^k)^{\eta_i^{k,j}},$$

where

- $ightharpoonup \Gamma_i^j$ is a constant
- \triangleright w_i is wage in country i
- $\triangleright \gamma_i^j$ is the value-added parameter
- $hline \eta_i^{k,j}$ is the share of materials in sector k used in the production in sector j such that $\sum_k \eta_i^{k,j} = 1 \gamma_i^j$.

Note that a change in the price of output of any sector affects the costs in all other sectors via $\eta_i^{k,j}$!

International Trade and Prices

Within each sector, production is as in EK (2002), which means that the price of a variety ω^{j} in country i is:

$$p_i^j(\omega^j) = \min_n \left\{ \frac{c_n^j \tau_{ni}^j}{z_n^j(\omega_n^j)} \right\}$$

As in EK (2002), assume that z_n^j is drawn from a country-sector-specific Frechet distribution with the location parameter λ_i^j and dispersion parameter ω^j . Then the price of the CES composite can be defined as:

$$P_i^j = A^j \left(\sum_n \lambda_n^j (c_n^j \tau_{ni}^j)^{-\theta^j} \right)^{-\frac{1}{\theta^j}},$$

where A^{j} is a constant.

International Trade and Prices

We can also derive the trade shares for each sector j as:

$$\pi_{\mathit{in}}^{j} = rac{\lambda_{\mathit{i}}^{j} (c_{\mathit{i}}^{j} au_{\mathit{in}}^{j})^{- heta^{j}}}{\sum_{\ell} \lambda_{\ell}^{j} (c_{\ell}^{j} au_{\ell n}^{j})^{- heta^{j}}}$$

In nominal terms, the trade flow from i to n in sector j is:

$$X_{in}^j=\pi_{in}^jY_n^j,$$

where Y_n^j is n's total expenditure on goods produced in sector j.

Total expenditure

Total expenditure includes intermediate and final demand:

$$Y_i^j = \sum_k \eta_i^{j,k} \sum_n \pi_{in}^k Y_n^k + \alpha_i^j I_i,$$

where $I_i = L_i w_i + D_i$. Here D_i is the exogenous trade deficit (defined as total imports net of total exports). The trade balance condition is:

$$\sum_{j} \sum_{n} \pi_{ni}^{j} Y_{i}^{j} - D_{i} = \sum_{j} \sum_{n} \pi_{in}^{j} Y_{n}^{j}$$

Calibration

- ► In general, it would be challenging to estimate all primitives of a multi-country, multi-industry model of trade
- ► Instead, it has become a convention to use the hat algebra approach. Recall the following identity for an arbitrary variable *a*:

$$\widehat{a} = \frac{a'}{a},$$

where a' is a counterfactual value of a

We will rewrite the model in hat terms

Calibration

$$\widehat{c}_{i}^{j} = \widehat{w}_{i}^{\gamma_{i}^{j}} \prod_{k} (\widehat{P}_{i}^{k})^{\eta_{i}^{k,j}} \tag{1}$$

$$\widehat{P}_{i}^{j} = \left(\sum_{n} \pi_{ni} (\widehat{c}_{n}^{j} \widehat{\tau}_{ni}^{j})^{-\theta^{j}}\right)^{-\frac{1}{\theta^{j}}}$$
(2)

$$\pi_{in}^{j'} = \pi_{in}^{j} \left(\frac{\widehat{c}_{i}^{j} \widehat{\tau}_{in}^{j}}{\widehat{p}_{n}^{j}} \right)^{-\theta^{j}}$$
 (3)

$$Y_{i}^{j'} = \sum_{k} \eta_{i}^{j,k} \sum_{n} \pi_{in}^{k'} Y_{n}^{k'} + \alpha_{i}^{j} I_{i}^{j'}$$
 (4)

$$I_i' = (L_i w_i) \widehat{w}_i + D_i \tag{5}$$

$$D_{i} = \sum_{i} \sum_{n} \pi_{ni}^{j'} Y_{i}^{j'} - \sum_{i} \sum_{n} \pi_{in}^{j'} Y_{n}^{j'}$$
 (6)