Contents

Problem 1															 							2
Problem 2															 							2
Problem 3															 							2
Problem 4															 							
Problem 5															 							
Problem 6															 							(
Problem 7															 							(
Problem 8																						
Problem 9																						
Problem 10	0														 							•
Problem 1	1																					9

Math 350 - Advanced Calculus Homework 3

Chan Nguyen

December 11, 2012

Problem 1 Let F = Q be the ordered filed of rational numbers. Find the supremum and the infinum of the following subsets of Q if they exist:

(i)
$$A = \{1, 1/2, 1/3, 1/4, \dots, 1/n, 1/(n+1), \dots\}$$

Proof. For $n > 1, \frac{1}{n} < 1$, thus the supremum of \mathbf{Q} is 1. The series is decreasing as $n \to \infty$, the infinum doesn't exist.

(ii)
$$B = \{1/3, 4/9, 13/27, 40/81, \dots, p/q, (p+q)/3q, \dots\}$$

Proof. First we will show that $\frac{1}{3}$ is a lower bound of B, by finding the nth term of the sequence, starting from $\frac{p}{q} = \frac{1}{3}$. Let's define b_i to be the ith element of B where $i = 0, 1, 2 \dots$, we have:

$$b_0 = \frac{p}{q}$$

$$b_1 = \frac{q+p}{3q}$$

$$b_2 = \frac{3q+q+p}{3^2q}$$

$$b_3 = \frac{3^2q+3q+q+p}{3^3q}$$
... = ...
$$b_n = \frac{3^{n-1}q+3^{n-2}q+\dots 3^0q+p}{3^nq}$$

Now consider,

$$\begin{array}{ll} b_n & = & \frac{3^{n-1}q + 3^{n-2}q + \dots 3^0q + p}{3^nq} \\ & = & \frac{(3^{n-1} + 3^{n-2} + \dots + 1) \cdot q}{3^nq} + \frac{p}{3^nq} \\ & = & \frac{3^{n-1} + 3^{n-2} + \dots + 1}{3^n} + \frac{p}{3^nq} \\ & = & \frac{3^{n-1} + 3^{n-2} + \dots + 1}{3^n} + \frac{1}{3^{n+1}} \text{ substitute } p = 1, q = 3 \\ & = & \frac{3^n + 3^{n-1} + \dots + 3}{3^{n+1}} + \frac{3}{3^{n+1}} \end{array}$$

Therefore

$$b_n = \frac{3^n + 3^{n-1} + \dots + 3^1 + 3^0}{3^{n+1}}$$

Using geometric sum for the numerator since $3 \neq 1$ to obtain:

$$3^{n} + 3^{n-1} + \ldots + 3^{1} + 3^{0} = \sum_{k=0}^{n} 3^{k} = \frac{1 - 3^{n+1}}{1 - 3} = \frac{3^{n+1} - 1}{3 - 1}$$

Substituting this back into b_n , we have:

$$b_n = \frac{3^{n+1} - 1}{2} \cdot \frac{1}{3^{n+1}} = \frac{3^{n+1}}{2 \cdot 3^{n+1}} - \frac{1}{2 \cdot 3^{n+1}} = \frac{1}{2} - \frac{1}{2 \cdot 3^{n+1}}$$

Ignore the term $\frac{1}{2}$ in b_n since it is just a constant and take the limit of

$$\lim_{n \to \infty} \left(\frac{1}{2 \cdot 3^{n+1}} \right) = \frac{1}{\infty} = 0$$

which implies

$$\lim_{n \to \infty} b_n = \frac{1}{2}$$

Thus $b_n \geq \frac{1}{3}$ for all $n=0,1,2,3,\ldots$, so $\frac{1}{3}$ is a lower bound of B. Furthermore, $\frac{1}{3} \in B$, so it must be the greatest lower bound otherwise it's nonsense. Therefore we conclude that $\inf(B) = \frac{1}{3}$

Next we will show that the $\sup(B) = \frac{1}{2}$. Let's ignore the limit above, and try a short C++ solution to find out as what is the value of n,

```
void generate_pq() {
    double p = 1.0, q = 3.0;
    double num, den;
    for (int i = 0; i <= 40; ++i) {
        /* \frac{p}{q}, \frac{p+q}{3q}, ... */
        num = (p + q);
        den = 3.0*q;
        p = num, q = den;
        cout << p/q << '\n';
    }
}</pre>
```

The output was:

As we can see, it converges to $\frac{1}{2}$ quite fast which is consistent with our limit result. Thus the upper bound of B is $\frac{1}{2}$. Next we will show that is also the least upper bound by contradiction.

Suppose that there is another upper bound says b that is $<\frac{1}{2}$, we exclude the "=" sign here because the least upper bound must be unique. Since b is the least upper bound of B, we have that for all $b_n \in B, n = 0, 1, 2, \ldots, b_n \le b$, and this is clearly a contradiction because as we just have proved above, $b_n \to \frac{1}{2}$ as $n \to \infty$. Therefore the $\sup(B) = \frac{1}{2}$.

Problem 2 Let **F** be an ordered field with the least upper bound property. Prove that if a > 1 is any number in **F**, then the set $\{a, a^2, a^3, \ldots\}$ is not bounded above.

Proof. We will prove this by contradiction. Suppose that $S = \{a, a^2, a^3, \ldots\}$ is bounded above, where $a \in \mathbf{F}$ and \mathbf{F} is an ordered field with the least upper bound property. Now recall **Theorem 4.2** in lecture note 4:

Theorem 4.2. If **F** is an ordered field with the least upper bound property, then the following are true.

- (i) The subset $N \subset F$ is not bounded above.
- (ii) For each $a \in \mathbf{F}_+$, there is $n \in \mathbf{N}$ such that $\frac{1}{n} = n^{-1} < a$
- (iii) For each $a \in \mathbf{F}$, there is $m \in \mathbf{Z}$ such that $m \le a \le m+1$
- (iv) For each $a \in \mathbf{F}$ and $\epsilon \in \mathbf{F}_+$, there is a rational number $r \in \mathbf{Q}$ such that $|a-r| < \epsilon$

Hence, if S is bounded above, then the least upper bound must exists. Let's b be the least upper bound of S, then all elements in S is less than or equal to b including all other upper bounds of S of-course. In other words, $a^n \leq b$, $\forall n \in \mathbb{N}$. On the other hand, \mathbb{F} is an ordered field with the least upper bound property, so $b \cdot a^{-1}$ is also an upper bound of S. This leads to the contradiction because we just claim that b is the least upper bound of S or $\sup(S)$, but

$$ba^{-1} = \frac{b}{a} < b$$
 because $a > 1$

Therefore S is not bounded above.

<u>Problem 3</u> Let ${\bf F}$ be an ordered field with the least upper bound property. Prove that for any number $a \in {\bf F}$ and any $\epsilon > 0$ there is natural number n such that $\frac{a}{2^n} < \epsilon$.

Proof. We will prove this by contradiction. Suppose that $\exists a \in \mathbf{F}$ and $\exists \epsilon > 0$, for all natural numbers n, then $\frac{a}{2^n} \geq \epsilon \Leftrightarrow a \geq \epsilon \cdot 2^n$. However, F is an ordered field with the least upper bound property which implies the largest lower bound as well. Look at the expression:

$$a \ge \epsilon \cdot 2^n$$

which tells us that $\epsilon \cdot 2^n, \forall n \in \mathbf{N}$ is clearly a lower bound of a, which implies there exists the largest lower bound. But we can increase n forever, to obtain a larger and larger lower bound which contradicts there exists the largest lower bound. Therefore for any number $a \in \mathbf{F}$ and any $\epsilon > 0$ there is natural number n such that $\frac{a}{2^n} < \epsilon$

Problem 4

(i) Prove that

$$\max\{a, b\} = \frac{a+b+|b-a|}{2}$$

- (ii) Derive a similar formula for $\max\{a,b,c\}$ using for example, $\max\{a,b,c\} = \max\{a,\max\{b,c\}\}$
- (i) To prove this formula, we just need to break it into three cases.

Proof. If $b > a \Rightarrow |b - a| = b - a$, then

$$\frac{a+b+|b-a|}{2} = \frac{a+b+b-a}{2} = \frac{2b}{2} = b$$

If $a < b \Rightarrow |b - a| = -(b - a) = a - b$, then

$$\frac{a+b+|b-a|}{2}=\frac{a+b+a-b}{2}=\frac{2a}{2}=a$$

If a = b then

$$\frac{a+b+0}{2} = \frac{2a}{2} = \frac{2b}{2} = a = b$$

Thus

$$\max\{a, b\} = \frac{a+b+|b-a|}{2}$$

(ii) Using the given formula for two numbers we can derive the max of three numbers as follows:

$$\max\{a, b, c\} = \max\{a, \max\{b, c\}\}\$$

$$= \frac{a + \max\{b, c\} + |\max\{b, c\} - a|}{2}$$

$$= \frac{a + \frac{b + c + |c - b|}{2} + \left|\frac{b + c + |c - b|}{2} - a\right|}{2}$$

$$= \frac{2a + b + c + |c - b|}{2} + \left|\frac{b + c + |c - b| - 2a}{2}\right|$$

$$= \frac{2a + b + c + |c - b|}{2}$$

Problem 5 Prove that if

$$|x-x_0|<rac{\epsilon}{2}$$
 and $|y-y_0|<rac{\epsilon}{2}$

then

$$|(x+y)-(x_0+y_0)| < \epsilon \text{ and } |(x-y)-(x_0-y_0)| < \epsilon$$

Proof. Since $|x - x_0| \ge 0$ and $|y - y_0| \ge 0$, we have:

$$|x - x_0| + |y - y_0| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Now consider

$$|(x+y)-(x_0+y_0)| = |(x-x_0)+(y-y_0)| = |x-x_0|+|y-y_0| < \epsilon$$

and

$$|(x-y)-(x_0-y_0)| = |(x-x_0)+(y_0-y)| = |x-x_0|+|y_0-y| = |x-x_0|+|y-y_0| < \epsilon$$

Problem 6 Prove that if

$$|x-x_0|<rac{\epsilon}{2(|y_0|+1)}$$
 and $|x-x_0|<1$ and $|y-y_0|<rac{\epsilon}{2(|x_0|+1)}$

then

$$|xy - x_0y_0| < \epsilon$$

(Hint. Write $xy - x_0y_0$ in a way that involves $x - x_0$ and $y - y_0$)

Proof. We have that:

$$\begin{aligned} |xy - x_0 y_0| &= |(xy - xy_0 + xy_0 - x_0 y_0)| \\ &= |x(y - y_0) + y_0(x - x_0)| \\ &\leq |x(y - y_0)| + |y_0(x - x_0)| \text{ by triangle inequality} \\ &= |x| \cdot |y - y_0| + |y_0| \cdot |x - x_0| \\ &< |x| \frac{\epsilon}{2(|x_0| + 1)} + |y_0| \cdot \frac{\epsilon}{2(|y_0| + 1)} \\ &= \frac{\epsilon}{2} \cdot \frac{|x|}{|x_0| + 1} + \frac{\epsilon}{2} \cdot \frac{|y_0|}{|y_0| + 1} \end{aligned}$$

Now what we need to show is

$$rac{|x|}{|x_0|+1} \le 1 ext{ and } rac{|y_0|}{|y_0|+1} \le 1$$

and we're done.

The second one is trivial since $\frac{|y_0|}{|y_0|+1} \le 1 \Leftrightarrow |y_0| \le |y_0|+1 \Leftrightarrow 0 \le 1$ which is true. To show the first inequality is true, we need $|x - x_0| < 1$ from the hypothesis which is equivalent to:

$$-1 < x - x_0 < 1 \Rightarrow x < x_0 + 1$$

Thus,

$$|xy - x_0y_0| < \frac{\epsilon}{2} \cdot \frac{|x|}{|x_0| + 1} + \frac{\epsilon}{2} \cdot \frac{|y_0|}{|y_0| + 1} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Problem 7 Prove that if $x_0 \neq 0$ and

$$|x - x_0| < \min\left\{\frac{|x_0|}{2}, \frac{\epsilon |x_0|^2}{2}\right\}$$

then $x \neq 0$ and $\left| \frac{1}{x} - \frac{1}{x_0} \right| < \epsilon$

Proof. We have that,

$$M = \min\left\{\frac{|x_0|}{2}, \frac{\epsilon |x_0|^2}{2}\right\} = \begin{cases} \frac{|x_0|}{2} & \text{, if } \frac{|x_0|}{2} < \frac{\epsilon |x_0|^2}{2} \\ \frac{\epsilon |x_0|^2}{2} & \text{, if } \frac{|x_0|}{2} > \frac{\epsilon |x_0|^2}{2} \end{cases} (1)$$

If $M = \frac{|x_0|}{2} \Rightarrow |x - x_0| < \frac{|x_0|}{2} \Rightarrow x \neq 0$ otherwise $|x_0| < \frac{|x_0|}{2}$ is nonsense because $x_0 \neq 0$.

If $M=\frac{\epsilon|x_0|^2}{2}\Rightarrow |x-x_0|<\frac{\epsilon|x_0|^2}{2}\Rightarrow x\neq 0$ otherwise $\Rightarrow |x_0|<\frac{\epsilon|x_0|^2}{2}$ is also nonsense because $x_0\neq 0$. On the other hand, we have

 $\left| \frac{1}{x} - \frac{1}{x_0} \right| = \left| \frac{x_0 - x}{x x_0} \right|$

Now we are ready to prove the other part by considering two cases:

• (1)
$$|x - x_0| < \frac{|x_0|}{2} < \frac{\epsilon |x_0|^2}{2}$$

From $|x - x_0| < \frac{\epsilon |x_0|^2}{2} \Rightarrow \epsilon > \frac{2|x - x_0|}{|x_0|^2} > \left| \frac{x_0 - x}{xx_0} \right| = \left| \frac{1}{x} - \frac{1}{x_0} \right|$

$$\bullet (2) |x - x_0| < \frac{\epsilon |x_0|^2}{2} < \frac{|x_0|}{2}$$

$$\operatorname{From} |x - x_0| < \frac{\epsilon |x_0|^2}{2} \Rightarrow \epsilon > \frac{2|x - x_0|}{|x_0|^2} > \left| \frac{x_0 - x}{xx_0} \right| = \left| \frac{1}{x} - \frac{1}{x_0} \right|$$

Problem 8 Let **F** be an ordered field with the least upper bound property. If $A \neq \emptyset$ is bounded below, let B be the set of all lower bounds of A. Prove that:

- (i) $B \neq \emptyset$
- (ii) B is bounded above
- (iii) $\sup(B) = \inf(A)$

Proof. The set $B \neq \emptyset$ because A is bounded below (any lower bound for A is in B). Because A is nonempty, there is a in A, and this a satisfies $y \leq a$ for all y in B. Because of this, $y \leq x$ for all x in A and all y in B, and thus $\sup(B) \leq \inf(A)$. If $\sup(B) < \inf(A)$, then there is a number x such that $\sup(B) < x < \inf(A)$. The inequality $\sup(B) < x$ implies that b < x for all $b \in B$ and thus that x is not in B. The inequality $x < \inf(A)$ implies that x < a for all a in A, and thus that x is a lower bound for A. Therefore x is in B. But this contradicts the inequality $\sup(B) < x$ as noted.

Problem 9 Let \mathbf{F} be an ordered field with the least upper bound property. Let $A \subset \mathbf{F}$ be a nonempty set of numbers. Prove that $\alpha = \sup(A)$ if and only if α is an upper bound for A and for any $\epsilon > 0$, there is an x in A such that $\alpha < x + \epsilon$.

Proof. To prove if and only if, we need to prove it for both direction, and we will prove this by contradiction.

- \Rightarrow : The contradiction can be written as follows: If $\alpha = \sup(A)$ then α is an upper bound for A and $(\exists \epsilon > 0)(\forall x \in A)$ such that $\alpha \geq x + \epsilon$. Note that we don't take the part α is an upper bound for A into the statement, and apply Demorgan's law: $\neg(A \text{ and } B) = \neg(A) \text{ or } \neg(B)$ strictly because it's trivially true when $\alpha = \sup(A)$. On the other hand, this supposition implies that $\alpha \epsilon$ is also the least upper bound of A because $\alpha \epsilon \geq x$, $\forall x \in A$. Furthermore $\epsilon > 0$ and $\alpha \epsilon < \alpha$, this is a contradiction. Therefore if $\alpha = \sup(A)$ then α is an upper bound for A and for any $\epsilon > 0$, there is an x in A such that $\alpha < x + \epsilon$.
- \Leftarrow : To prove from this side, we assume that if α is an upper bound for A and for any $\epsilon > 0$, there is an x in A such that $\alpha < x + \epsilon$ then $\alpha \neq \sup(A)$. This side is too obvious and it leads to contradiction immediately.

<u>Problem 10</u> Let \mathbf{F} be an ordered field with the least upper bound property. Let $A \subset \mathbf{F}$ and $B \subset \mathbf{F}$ be the two nonempty sets of numbers that are bounded above, and let A+B denote the set of all numbers of the form x+y with $x \in A$ and $y \in B$. Prove that $\sup(A+B) = \sup(A) + \sup(B)$.

Proof. Since $x \leq \sup(A)$ and $y \leq \sup(B)$ for every x in A and y in B, it follows that $x + y \leq \sup(A) + \sup(B)$. Thus $\sup(A) + \sup(B)$ is an upper bound for A + B, so $\sup(A + B) \leq \sup(A) + \sup(B)$. If x and y are chosen in A and B, respectively, so that $\sup(A) - x < \epsilon/2$ and $\sup(B) - y < \epsilon/2$, then $\sup(A) + \sup(B) - (x + y) < \epsilon$. Hence $\sup(A + B) \geq x + y > \sup(A) + \sup(B) - \epsilon$.

Problem 11 Suppose that A and B are 2 non-empty sets of numbers such that $x \leq y$ for all x in A and all y in B.

(a) Prove that $\sup(A) \leq y$ for all $y \in B$.

Proof. Since any y in B satisfies $y \geq x$ for all x in A, any y in B is an upper bound for A, so $y \geq \sup(A)$. \Box (b) Prove that $\sup(A) \leq \inf(B)$

Proof. Part (a) shows that $\sup(A)$ is a lower bound for B, so $\sup(A) \leq \inf(B)$.