Baptiste Plaquevent-Jourdain, with Jean-Pierre Dussault, Université de Sherbrooke Jean Charles Gilbert, INRIA Paris

October, 05 2023

Outline

- From a nonsmooth question...
- 2 ... to combinatorics
- Algorithmic details
 - Main principle
 - Improving on the structure
 - Dual approach: LO-free method
- Some results

Plan

•00000

From a nonsmooth question...

- From a nonsmooth question...
- - Main principle
 - Improving on the structure
 - Dual approach: LO-free method

Linear Complementarity Problems

General form [CPS92; FP03]

$$A, B \in \mathbb{R}^{n \times n}, a, b \in \mathbb{R}^{n}, \to A(x) = Ax + a, B(x) = Bx + b$$

$$0 \le (Ax + a) \perp (Bx + b) \ge 0$$

$$\forall i \in [1:n], \begin{cases} A_{i,i}x + a_{i} \ge 0 \\ B_{i,i}x + b_{i} \ge 0 \end{cases}, (A_{i,i}x + a_{i})(B_{i,i}x + b_{i}) = 0$$
(1)

Remark:
$$u \ge 0, v \ge 0, uv = 0 \Leftrightarrow \min(u, v) = 0$$

(1) $\Leftrightarrow \forall i \in [1:n], F_i(x) := \min(A_i(x), B_i(x)) = 0 \Leftrightarrow F(x) = 0$

Linear Complementarity Problems

General form [CPS92; FP03]

$$A, B \in \mathbb{R}^{n \times n}, a, b \in \mathbb{R}^{n}, \to A(x) = Ax + a, B(x) = Bx + b$$

$$0 \le (Ax + a) \perp (Bx + b) \ge 0$$

$$\forall i \in [1:n], \begin{cases} A_{i,:}x + a_{i} \ge 0 \\ B_{i,:}x + b_{i} \ge 0 \end{cases}, (A_{i,:}x + a_{i})(B_{i,:}x + b_{i}) = 0$$
(1)

Remark:
$$u \ge 0, v \ge 0, uv = 0 \Leftrightarrow \min(u, v) = 0$$

(1) $\Leftrightarrow \forall i \in [1:n], F_i(x) := \min(A_i(x), B_i(x)) = 0 \Leftrightarrow F(x) = 0$

General form [CPS92; FP03]

$$A, B \in \mathbb{R}^{n \times n}, a, b \in \mathbb{R}^{n}, \to A(x) = Ax + a, B(x) = Bx + b$$

$$0 \le (Ax + a) \perp (Bx + b) \ge 0$$

$$\forall i \in [1:n], \begin{cases} A_{i,:}x + a_{i} \ge 0 \\ B_{i,:}x + b_{i} \ge 0 \end{cases}, (A_{i,:}x + a_{i})(B_{i,:}x + b_{i}) = 0$$
(1)

Remark:
$$u \ge 0, v \ge 0, uv = 0 \Leftrightarrow \min(u, v) = 0$$

(1) $\Leftrightarrow \forall i \in [1:n], F_i(x) := \min(A_i(x), B_i(x)) = 0 \Leftrightarrow F(x) = 0$

From a nonsmooth question...

Nonlinear (nonsmooth) equations - Newton's method

1D Illustration

$$x^0$$
 near x^* ,
 $F \in \mathcal{C}^{1,1}$,
 $F'(x^*)$ non-singular
 \Rightarrow quadratic
convergence

F' not defined everywhere

```
x^0 near x^*,

F semismooth,

all J \in "F'(x^*)" non-singular

\Rightarrow quadratic

convergence
```

From a nonsmooth question...

Nonlinear (nonsmooth) equations - Newton's method

1D Illustration

$$x^0$$
 near x^* ,
 $F \in \mathcal{C}^{1,1}$,
 $F'(x^*)$ non-singular
 \Rightarrow quadratic
convergence

F' not defined everywhere

$$x^0$$
 near x^* ,
 F semismooth,
all $J \in "F'(x^*)"$ non-singular
 \Rightarrow quadratic
convergence

From a nonsmooth question...

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

From a nonsmooth question...

- take $x^0 \in \mathbb{R}^n$ (near x^*)
- for k = 1 2, ..., solve $F(x^k) + J_k z^k = 0$ for z^k , with $J_k \in \partial_B F(x^k)$: $\partial_B F$ is the Bouligand differential
- then $x^{k+1} = x^k + (\alpha_k)z^k$

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

From a nonsmooth question...

- take $x^0 \in \mathbb{R}^n$ (near x^*)
- for $k = 1, \ldots$, solve $F(x^k) + J_k z^k = 0$ for z^k , with
- then $x^{k+1} = x^k + (\alpha_k)z^k$

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

From a nonsmooth question...

- take $x^0 \in \mathbb{R}^n$ (near x^*)
- for $k = 1, \ldots$, solve $F(x^k) + J_k z^k = 0$ for z^k , with $J_k \in \partial_B F(x^k)$: $\partial_B F$ is the Bouligand differential
- then $x^{k+1} = x^k + (\alpha_k)z^k$

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

From a nonsmooth question...

- take $x^0 \in \mathbb{R}^n$ (near x^*)
- for $k = 1, \ldots$, solve $F(x^k) + J_k z^k = 0$ for z^k , with $J_k \in \partial_B F(x^k)$: $\partial_B F$ is the Bouligand differential
- then $x^{k+1} = x^k + (\alpha_k)z^k$

Generalized derivatives

Bouligand differential

$$\partial_{\mathsf{B}}F(x) = \{ J \in \mathbb{R}^{n \times n} : \exists (x_k)_k \to x, F'(x_k) \to J \}$$
 (2)

Example:
$$F(x) = \begin{cases} -x/2 & \text{if } x \leq 0 \\ -x & \text{if } x > 0 \end{cases}$$
, $\partial_B F(0) = \{-1/2, -1\}.$

Summary

000000

From a nonsmooth question...

 $Minimum(LCPs) \Rightarrow semismooth system, requires info on$ $\partial_{\mathbf{R}} \min(\mathcal{A}, \mathcal{B})(\cdot) = \partial_{\mathbf{R}} F(\cdot)$

$$x \mapsto F(x) = \min(Ax + a, Bx + b)$$

Summary

000000

From a nonsmooth question...

 $Minimum(LCPs) \Rightarrow semismooth system, requires info on$ $\partial_{\mathbf{R}} \min(\mathcal{A}, \mathcal{B})(\cdot) = \partial_{\mathbf{R}} F(\cdot)$

One $J_B \in \partial_B F$: [Qi93]. But all of them?

$$x \mapsto F(x) = \min(Ax + a, Bx + b)$$

000000

From a nonsmooth question...

 $Minimum(LCPs) \Rightarrow semismooth system, requires info on$ $\partial_{\mathcal{B}} \min(\mathcal{A}, \mathcal{B})(\cdot) = \partial_{\mathcal{B}} F(\cdot)$

One $J_B \in \partial_B F$: [Qi93]. But all of them?

The main question

Determine generalized Jacobians of

$$x \mapsto F(x) = \min(Ax + a, Bx + b)$$

- \rightarrow structure?
- \rightarrow number?
- \rightarrow computation?

Plan

- 2 ... to combinatorics
- - Main principle
 - Improving on the structure
 - Dual approach: LO-free method

$$\min(\overbrace{f(x),g(x)}^{\in\mathbb{R}}) \text{ NOT diff } \Leftrightarrow f(x) = g(x) \text{ and } f'(x) \neq g'(x).$$

Illustration for 1D affine functions (\rightarrow dimension n)

$$I(x) := \{i \in [1:n]: A_{i,:}x + a_i \stackrel{\text{C1}}{=} B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(\overbrace{f(x),g(x)}^{\in\mathbb{R}}) \text{ NOT diff} \Leftrightarrow f(x) = g(x) \text{ and } f'(x) \neq g'(x).$$

Illustration for 1D affine functions (\rightarrow dimension n)

$$I(x) := \{i \in [1:n]: A_{i,:}x + a_i \stackrel{C1}{=} B_{i,:}x + b_i, A_{i,:} \stackrel{C2}{\neq} B_{i,:}\}; |I(x)| = p$$

Computing the B-differential - 2

$$\min(\mathcal{A}, \mathcal{B})(\overset{\sim}{x_k}) \text{ non-diff} \Leftrightarrow \overset{\in I(x)}{\exists} i, (Ax_k + a)_i \overset{\mathsf{C1}}{=} (Bx_k + b)_i \overset{x_k = x + d}{\Leftrightarrow} (Ax + a)_i + A_{i,:} d = (Bx + b)_i + B_{i,:} d \Leftrightarrow A_{i,:} d = B_{i,:} d \Leftrightarrow d \in v_i^{\perp} (v_i \neq 0 \text{ by C2})$$

Hyperplanes $H_i:=(B_{i,:}-A_{i,:})^{\perp}:=v_i^{\perp}$; for ∂_B 's def, $\mathbb{R}^n\setminus\cup H_i$

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \quad \left\{ \begin{array}{l} H_{i}^{-} = \{x \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}}x < 0\} \\ H_{i}^{+} = \{x \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}}x > 0\} \end{array} \right.$$

Convention: $\forall i \in [1:p]$

$$H_i^+ \Leftrightarrow B_{i,:}d - A_{i,:}d > 0 \Leftrightarrow \min(\dots) = A_i(\dots) \Leftrightarrow J_{i,:} = A_{i,:}$$

$$H_i^- \Leftrightarrow B_{i,:}d - A_{i,:}d < 0 \Leftrightarrow \min(\dots) = B_i(\dots) \Leftrightarrow J_{i,:} = B_{i,:}$$

so $\forall J, \forall i, J_{i,:} \in \{A_{i,:}, B_{i,:}\}$

From a nonsmooth question...

Computing the B-differential - 2

$$\min(\mathcal{A},\mathcal{B})(\overset{\simeq}{x_k}) \text{ non-diff} \Leftrightarrow \overset{\in I(x)}{\exists} i, (Ax_k + a)_i \overset{C1}{=} (Bx_k + b)_i \overset{x_k = x + d}{\Leftrightarrow} (Ax + a)_i + A_{i,:} d = (Bx + b)_i + B_{i,:} d \Leftrightarrow A_{i,:} d = B_{i,:} d \Leftrightarrow d \in v_i^{\perp} (v_i \neq 0 \text{ by C2})$$

Hyperplanes $H_i:=(B_{i,:}-A_{i,:})^{\perp}:=v_i^{\perp}$; for ∂_B 's def, $\mathbb{R}^n\setminus\cup H_i$

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \quad \left\{ \begin{array}{l} H_{i}^{-} = \{x \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}}x < 0\} \\ H_{i}^{+} = \{x \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}}x > 0\} \end{array} \right.$$

Convention: $\forall i \in [1 : p]$

$$H_i^+ \Leftrightarrow B_{i,:}d - A_{i,:}d > 0 \Leftrightarrow \min(\dots) = A_i(\dots) \Leftrightarrow J_{i,:} = A_i, H_i^- \Leftrightarrow B_{i,:}d - A_{i,:}d < 0 \Leftrightarrow \min(\dots) = B_i(\dots) \Leftrightarrow J_{i,:} = B_{i,:}$$

so $\forall J, \forall i, J_{i,:} \in \{A_{i,:}, B_{i,:}\}$

$$\min(\mathcal{A}, \mathcal{B})(\overset{\simeq}{x_k}) \text{ non-diff} \Leftrightarrow \overset{\in I(x)}{\exists} i, (Ax_k + a)_i \overset{C1}{=} (Bx_k + b)_i \overset{x_k = x + d}{\Leftrightarrow} (Ax + a)_i + A_{i,:} d = (Bx + b)_i + B_{i,:} d \Leftrightarrow A_{i,:} d = B_{i,:} d \Leftrightarrow d \in v_i^{\perp} (v_i \neq 0 \text{ by C2})$$

Hyperplanes $H_i:=(B_{i,:}-A_{i,:})^\perp:=v_i^\perp$; for ∂_B 's def, $\mathbb{R}^n\setminus\cup H_i$

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \quad \left\{ \begin{array}{l} H_{i}^{-} = \{x \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}}x < 0\} \\ H_{i}^{+} = \{x \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}}x > 0\} \end{array} \right.$$

Convention: $\forall i \in [1 : p]$,

$$H_i^+ \Leftrightarrow B_{i,:}d - A_{i,:}d > 0 \Leftrightarrow \min(\dots) = A_i(\dots) \Leftrightarrow J_{i,:} = A_{i,:}$$

 $H_i^- \Leftrightarrow B_{i,:}d - A_{i,:}d < 0 \Leftrightarrow \min(\dots) = B_i(\dots) \Leftrightarrow J_{i,:} = B_{i,:}$

so $\forall J, \forall i, J_{i,:} \in \{A_{i,:}, B_{i,:}\}$

From a nonsmooth question...

References

Computing the B-differential - 3

So far:

- vectorial problem in dimension n: derivatives $J \in \mathbb{R}^{n \times n}$
- the matrices J are composed of lines of A and B
- $\forall i \in [1:p]$, 2 possibilities: 2^p total, combinatorial nature

References

Computing the B-differential - 3

So far:

- vectorial problem in dimension n: derivatives $J \in \mathbb{R}^{n \times n}$
- function is piecewise affine, derivative is piecewise constant
- the matrices J are composed of lines of A and B
- $\forall i \in [1:p]$, 2 possibilities: 2^p total, combinatorial nature

Computing the B-differential - 3

So far:

- vectorial problem in dimension n: derivatives $J \in \mathbb{R}^{n \times n}$
- function is piecewise affine, derivative is piecewise constant
- the matrices J are composed of lines of A and B
- $\forall i \in [1:p]$, 2 possibilities: 2^p total, combinatorial nature

References

Computing the B-differential - 3

So far:

From a nonsmooth question...

- vectorial problem in dimension n: derivatives $J \in \mathbb{R}^{n \times n}$
- function is piecewise affine, derivative is piecewise constant
- the matrices J are composed of lines of A and B
- $\forall i \in [1:p]$, 2 possibilities: 2^p total, combinatorial nature

Some results

Summary

|I(x)| = p hyperplanes, $H_i = v_i^{\perp}, v_i = B_{i,:} - A_{i,:}$ [data] $\mathbb{R}^n \setminus \bigcup H_i = \text{differentiable points}$, on the + or - side of every H_i . By convention: the \pm becomes the sign s

$$\begin{aligned} &\text{given } V = [v_1 \ \dots \ v_p] \\ &\text{find all } s = (s_1, \dots, s_p) \in \{\pm 1\}^p, \\ &\text{s.t. } \exists \ d_s, \forall \ i \in [1:p], s_i v_i^\top d_s > 0 \end{aligned}$$

From a nonsmooth question...

$$|I(x)| = p$$
 hyperplanes, $H_i = v_i^{\perp}$, $v_i = B_{i,:} - A_{i,:}$ [data] $\mathbb{R}^n \setminus \bigcup H_i$ = differentiable points, on the $+$ or $-$ side of every H_i . By convention: the \pm becomes the sign s

Fundamental question

$$\begin{aligned} &\text{given } V = [v_1 \ \dots \ v_p] \\ &\text{find all } \boldsymbol{s} = (\boldsymbol{s}_1, \dots, \boldsymbol{s}_p) \in \{\pm 1\}^p, \\ &\text{s.t. } \exists \ d_{\boldsymbol{s}}, \forall \ i \in [1:p], \boldsymbol{s}_i v_i^\mathsf{T} d_{\boldsymbol{s}} > 0 \end{aligned}$$

 2^p linear feasibility problems to solve... How to improve?

Plan

- From a nonsmooth question...
- 2 ... to combinatorics
- Algorithmic details
 - Main principle
 - Improving on the structure
 - Dual approach: LO-free method
- 4 Some results

Main reasoning

From a nonsmooth question...

Algorithm from [RČ18]:

- recursive tree that adds hyperplanes one at a time
- each node has one or two descendants.
- checked through Linear Optimization Problem (LOP)

$$\forall i \in [1:k], \exists d_{s}, s_{i}v_{i}^{\mathsf{T}}d_{s} > 0 \Rightarrow \begin{cases} \forall i \in [1:k], s_{i}v_{i}^{\mathsf{T}}d > 0 \\ +v_{k+1}^{\mathsf{T}}d > 0 \end{cases} ?$$

$$\forall i \in [1:k], s_{i}v_{i}^{\mathsf{T}}d > 0 \\ -v_{k+1}^{\mathsf{T}}d > 0 \end{cases} ?$$

Main reasoning

From a nonsmooth question...

Algorithm from [RČ18]:

- recursive tree that adds hyperplanes one at a time
- each node has one or two descendants.
- checked through Linear Optimization Problem (LOP)

at level k, with $s \in \{\pm 1\}^k$,

$$\forall \ i \in [1:k], \exists \ d_{s}, s_{i}v_{i}^{\mathsf{T}}d_{s} > 0 \Rightarrow \begin{cases} \forall \ i \in [1:k], s_{i}v_{i}^{\mathsf{T}}d > 0 \\ +v_{k+1}^{\mathsf{T}}d > 0 \end{cases} ?$$

$$\forall \ i \in [1:k], s_{i}v_{i}^{\mathsf{T}}d > 0 \\ -v_{k+1}^{\mathsf{T}}d > 0 \end{cases} ?$$

The LOPs represent the main computational effort

Main principle

.. to combinatorics Algorithmic details Some results

Main principle

Main principle

Main principle

- each tree node: a Linear Optimization Problem; small dimension, but the only 'real' task
- goal is to avoid solving LOPs

Each node is associated to a $s \in \{\pm 1\}^k$ and its $d_s \in \mathbb{R}^n$. Between levels k and k+1, when hyperplane k+1 is added, d_s can belong to $H_{k+1} \Leftrightarrow v_{k+1}^\mathsf{T} d_s = 0$: $(i \in [1:k])$

```
 \begin{cases} s_i v_i^\mathsf{T} d_s \ge 0 \\ v_{k+1}^\mathsf{T} d_s = 0 \end{cases} \Rightarrow \exists (d^+, d^-), \begin{cases} s_i v_i^\mathsf{T} d^{\pm} \ge 0 \\ \pm v_{k+1}^\mathsf{T} d^{\pm} \ge 0 \end{cases}
```

 $v_{k+1}^{\mathsf{T}} d_s = 0$ is utopic, but formalized for $|v_{k+1}^{\mathsf{T}} d_s|$ small enough

- each tree node: a Linear Optimization Problem; small dimension, but the only 'real' task
- goal is to avoid solving LOPs

Each node is associated to a $s \in \{\pm 1\}^k$ and its $d_s \in \mathbb{R}^n$. Between levels k and k+1, when hyperplane k+1 is added, d_s can belong to $H_{k+1} \Leftrightarrow v_{k+1}^\mathsf{T} d_s = 0$: $(i \in [1:k])$

$$\begin{cases} s_i v_i^{\top} d_s > 0 \\ v_{k+1}^{\top} d_s = 0 \end{cases} \Rightarrow \exists (d^+, d^-), \begin{cases} s_i v_i^{\top} d^{\pm} > 0 \\ \pm v_{k+1}^{\top} d^{\pm} > 0 \end{cases}$$

 $v_{k+1}^{\perp}d_s=0$ is utopic, but formalized for $|v_{k+1}^{\perp}d_s|$ small enough

- each tree node: a Linear Optimization Problem; small dimension, but the only 'real' task
- goal is to avoid solving LOPs

Each node is associated to a $s \in \{\pm 1\}^k$ and its $d_s \in \mathbb{R}^n$. Between levels k and k+1, when hyperplane k+1 is added, d_s can belong to $H_{k+1} \Leftrightarrow v_{k+1}^\mathsf{T} d_s = 0$: $(i \in [1:k])$

$$\begin{cases} \mathbf{s}_i \mathbf{v}_i^\mathsf{T} \mathbf{d}_{\mathbf{s}} > 0 \\ \mathbf{v}_{k+1}^\mathsf{T} \mathbf{d}_{\mathbf{s}} = 0 \end{cases} \Rightarrow \exists \ (\mathbf{d}^+, \mathbf{d}^-), \begin{cases} \mathbf{s}_i \mathbf{v}_i^\mathsf{T} \mathbf{d}^{\pm} > 0 \\ \pm \mathbf{v}_{k+1}^\mathsf{T} \mathbf{d}^{\pm} > 0 \end{cases}$$

 $v_{k+1}^{\mathsf{T}} d_{s} = 0$ is utopic, but formalized for $|v_{k+1}^{\mathsf{T}} d_{s}|$ small enough

Using the "contrapositive"

$$|v_{k+1}^{\mathsf{T}} d_s|$$
 'large' \to less chance of both $(s,+1)$ and $(s,-1)$.

In s, hyperplanes
$$\overbrace{\{i_1,\ldots,i_k\}}^{=l^s}$$
; $i_{k+1} = \arg\max_j |v_j^\mathsf{T} d_s|, j \in [1:p] \setminus l^s$

Only a heuristic, but reasonably efficient.

Also, this order change is local - for each s it can change

Using the "contrapositive"

 $|v_{k+1}^{\mathsf{T}} d_s|$ 'large' \to less chance of both (s,+1) and (s,-1).

In s, hyperplanes
$$\{i_1,\ldots,i_k\}$$
; $i_{k+1} = \arg\max_j |v_j^\mathsf{T} d_s|, j \in [1:p] \setminus I^s$

Only a heuristic, but reasonably efficient.

Also, this order change is local - for each s it can change.

Dual approach: LO-free method

Infeasibility, matroids and circuits - 1

++- (and --+) corresponds to an empty region: + means right to H_1 , + over H_2 , - down left H_3 : such a point does not exist. The system is $+: d_1 > 0, +: d_2 > 0, -: -d_1 - d_2 > 0$

Infeasibility, matroids and circuits - 2

With p > 3, $++- \cdot \cdot \dots \cdot$ always infeasible.

Gordan's alternative

 $M \in \mathbb{R}^{p \times n}$, exactly one is true:

$$\begin{cases}
\exists d \in \mathbb{R}^n : Md > 0_{\mathbb{R}^p} \\
\exists \gamma \in \mathbb{R}^p_+ \setminus \{0\} : M^\mathsf{T} \gamma = 0
\end{cases}$$
(3)

 $s \in \{\pm 1\}^p$ arbitrary

$$M = \operatorname{diag}(s)V^{\mathsf{T}} \rightarrow Md = (s_1v_1^{\mathsf{T}}d; \dots; s_pv_p^{\mathsf{T}}d)$$

"Feasibility of a system or element in the null space of the matrix"

Infeasibility, matroids and circuits - 2

With p > 3, $++- \cdot \cdot \dots \cdot$ always infeasible.

Gordan's alternative

 $M \in \mathbb{R}^{p \times n}$, exactly one is true:

$$\begin{cases}
\exists d \in \mathbb{R}^n : Md > 0_{\mathbb{R}^p} \\
\exists \gamma \in \mathbb{R}^p_+ \setminus \{0\} : M^\mathsf{T} \gamma = 0
\end{cases}$$
(3)

 $s \in \{\pm 1\}^p$ arbitrary:

$$M = \operatorname{diag}(s)V^{\mathsf{T}} \rightarrow Md = (s_1v_1^{\mathsf{T}}d; \dots; s_pv_p^{\mathsf{T}}d)$$

Infeasibility, matroids and circuits - 2

With p > 3, $++- \cdot \cdot \dots \cdot$ always infeasible.

Gordan's alternative

 $M \in \mathbb{R}^{p \times n}$, exactly one is true:

$$\begin{cases}
\exists d \in \mathbb{R}^n : Md > 0_{\mathbb{R}^p} \\
\exists \gamma \in \mathbb{R}^p_+ \setminus \{0\} : M^T \gamma = 0
\end{cases}$$
(3)

 $s \in \{\pm 1\}^p$ arbitrary:

$$M = \operatorname{diag}(s)V^{\mathsf{T}} \to Md = (s_1v_1^{\mathsf{T}}d; \dots; s_pv_p^{\mathsf{T}}d)$$

"Feasibility of a system or element in the null space of the matrix"

Dual approach: LO-free method

Infeasibility, matroids and circuits - 3

Instead: search for $\Gamma = \{\gamma\}$ and prune/stop the tree when an infeasibility is detected.

The γ 's represent the "circuits" of the "matroid" defined by V

- the tree from [RC18]
- the dual algorithm detecting infeasibilities
- normal tree algorithm but with some infeasibility detection

Dual approach: LO-free method

Infeasibility, matroids and circuits - 3

Instead: search for $\Gamma = \{\gamma\}$ and prune/stop the tree when an infeasibility is detected.

The γ 's represent the "circuits" of the "matroid" defined by V

- the tree from [RČ18]
- some improvements on the overall tree
- the dual algorithm detecting infeasibilities
- normal tree algorithm but with some infeasibility detection

From a nonsmooth question... Dual approach: LO-free method

Technical details

LO solver

Gurobi chosen (as [RČ18]), practical & easy to use through JuMP. To compare with others (small dimension LOPs)

From a nonsmooth question... Dual approach: LO-free method

Technical details

LO solver

Gurobi chosen (as [RČ18]), practical & easy to use through JuMP. To compare with others (small dimension LOPs)

For the circuits: several ways to implement/compute - mostly matricial manipulations.

Inspiration: compute at each level the information to know if the current sign vector will cover a circuit.

- 1 From a nonsmooth question...
- 2 ... to combinatorics
- Algorithmic details
 - Main principle
 - Improving on the structure
 - Dual approach: LO-free method
- 4 Some results

Summary

- LO only = ABC
- LO + a bit of duality = ABCD2
- LO + a lot of duality = ABCD3
- only duality = AD4

- LO only = ABC
- LO + a bit of duality = ABCD2
- LO + a lot of duality = ABCD3
- only duality = AD4

- LO only = ABC
- LO + a bit of duality = ABCD2
- LO + a lot of duality = ABCD3
- only duality = AD4

- LO only = ABC
- LO + a bit of duality = ABCD2
- LO + a lot of duality = ABCD3
- only duality = AD4

Not clear which is better: dual computations are sometimes not useful

Results; blue = times, black = improvement factor

Name	RC	ABC		ABCD2		ABCD3		AD4	
R-4-8-2	$1.70 \ 10^{-2}$	$7.20 \ 10^{-3}$	2.36	$6.53 \ 10^{-3}$	2.60	$3.13 \cdot 10^{-3}$	5.43	$8.03 \ 10^{-3}$	2.12
R-7-8-4	5.70 10-2	$3.38 \ 10^{-2}$	1.69	$3.15 \ 10^{-2}$	1.81	2.24 10-2	2.54	2.79 10-2	2.04
R-7-9-4	$9.97 \ 10^{-2}$	$4.98 \ 10^{-2}$	2.00	$4.96\ 10^{-2}$	2.01	$3.43 \ 10^{-2}$	2.91	$5.16 \ 10^{-2}$	1.93
R-7-10-5	2.33 10-1	$1.16 \ 10^{-1}$	2.01	$1.29 \ 10^{-1}$	1.81	$1.05 \ 10^{-1}$	2.22	$1.22 \ 10^{-1}$	1.91
R-7-11-4	2.36 10-1	$1.22 \ 10^{-1}$	1.93	$1.20 \ 10^{-1}$	1.97	$8.49 \ 10^{-2}$	2.78	$1.32 \ 10^{-1}$	1.79
R-7-12-6	9.35 10 ⁻¹	5.05 10 ⁻¹	1.85	5.74 10 ⁻¹	1.63	$5.13 \ 10^{-1}$	1.82	$5.65 \ 10^{-1}$	1.65
R-7-13-5	$9.11\ 10^{-1}$	$4.70\ 10^{-1}$	1.94	5.41 10-1	1.68	$4.71\ 10^{-1}$	1.93	$5.33 \ 10^{-1}$	1.71
R-7-14-7	3.69	2.15	1.72	2.39	1.54	2.42	1.52	2.42	1.52
R-8-15-7	6.43	3.56	1.81	3.92	1.64	4.30	1.50	4.57	1.41
R-9-16-8	1.51 10 ⁺¹	8.88	1.70	1.03 10 ⁺¹	1.47	1.34 10 ⁺¹	1.13	1.41 10 ⁺¹	1.07
R-10-17-9	3.45 10 ⁺¹	2.08 10 ⁺¹	1.66	2.50 10+1	1.38	4.04 10+1	0.85	3.53 10 ⁺¹	0.98
2d-20-4	3.48 10 ⁻¹	1.76 10 ⁻¹	1.98	8.03 10 ⁻²	4.33	6.96 10 ⁻²	5.00	$1.73 \ 10^{-1}$	2.01
2d-20-5	$6.74 \ 10^{-1}$	$3.54 \ 10^{-1}$	1.90	$1.29 \ 10^{-1}$	5.22	$1.32 \ 10^{-1}$	5.11	$3.59 \ 10^{-1}$	1.88
2d-20-6	1.19	$6.04 \ 10^{-1}$	1.97	$2.23 \ 10^{-1}$	5.34	$2.70 \ 10^{-1}$	4.41	$6.52 \ 10^{-1}$	1.83
2d-20-7	2.08	1.45	1.43	5.40 10-1	3.85	$6.21 \ 10^{-1}$	3.35	1.11	1.87
2d-20-8	3.69	1.85	1.99	$6.36 \ 10^{-1}$	5.80	$7.95 \ 10^{-1}$	4.64	1.92	1.92
sR-2	1.71 10+1	4.26	4.01	3.11	5.50	4.14	4.13	1.05 10+1	1.63
sR-4	8.03 10+1	3.68 10 ⁺¹	2.18	4.40 10 ⁺¹	1.83	1.41 10+2	0.57	2.02 10 ⁺²	0.40
sR-6	1.08 10+2	1.54 10 ⁺²	0.70	7.01 10 ⁺¹	1.54	2.58 10 ⁺²	0.42	4.04 10 ⁺²	0.27
perm-5	6.64 10 ⁻¹	$1.89 \ 10^{-1}$	3.51	6.87 10-2	9.67	$8.53 \ 10^{-2}$	7.78	3.75 10 ⁻¹	1.77
perm-6	5.80	1.32	4.39	$5.19 \ 10^{-1}$	11.18	1.03	5.63	3.81	1.52
perm-7	5.70 10 ⁺¹	1.10 10 ⁺¹	5.18	4.16	13.70	2.12 10 ⁺¹	2.69	6.37 10 ⁺¹	0.89
perm-8	5.98 10 ⁺²	1.08 10+2	5.54	4.41 10+1	13.56	6.46 10+2	0.93	1.59 10 ⁺³	0.38
r-3-7	5.83 10 ⁻¹	$3.16 \ 10^{-1}$	1.84	2.79 10 ⁻¹	2.09	$2.27 \ 10^{-1}$	2.57	$3.64 \ 10^{-1}$	1.60
r-3-9	$3.31\ 10^{-1}$	$2.92 \ 10^{-1}$	1.13	$1.96 \ 10^{-1}$	1.69	$1.41\ 10^{-1}$	2.35	$1.77 \ 10^{-1}$	1.87
r-4-7	3.13	1.62	1.93	1.37	2.28	2.21	1.42	3.01	1.04
r-4-9	2.76	1.36	2.03	1.13	2.44	1.85	1.49	2.87	0.96
r-5-7	8.92	4.72	1.89	3.94	2.26	8.64	1.03	1.26 10+1	0.71
r-5-9	9.02	4.47	2.02	3.72	2.42	7.92	1.14	1.06 10+1	0.85
r-6-7	2.18 10+1	1.20 10+1	1.82	1.14 10+1	1.91	2.89 10 ⁺¹	0.75	4.03 10+1	0.54
r-6-9	2.63 10 ⁺¹	1.45 10 ⁺¹	1.81	1.17 10 ⁺¹	2.25	3.39 10 ⁺¹	0.78	4.89 10 ⁺¹	0.54
r-7-7	5.72 10+1	3.30 10+1	1.73	3.49 10 ⁺¹	1.64	1.17 10+2	0.49	1.60 10+2	0.36
r-7-9	4.68 10 ⁺¹	2.58 10 ⁺¹	1.81	2.45 10 ⁺¹	1.91	7.30 10 ⁺¹	0.64	8.74 10 ⁺¹	0.54
median/mean			1.93/2.23		2.05/3.70		1.93/2.48		1.52/1.32

- pretty far from the differentiability; but relevant in itself
- also: affine hyperplanes $\sqrt{\ }$, version for rational data $\simeq \sqrt{\ }$,

Conclusion

- pretty far from the differentiability; but relevant in itself
- various elements: LO, LA, recursivity, implementation choices...

References

Conclusion

- pretty far from the differentiability; but relevant in itself
- various elements: LO, LA, recursivity, implementation choices...
- also: affine hyperplanes √, version for rational data ≃√, dedicated package...

Conclusion

- pretty far from the differentiability; but relevant in itself
- various elements: LO, LA, recursivity, implementation choices...
- also: affine hyperplanes √, version for rational data ≃√, dedicated package...

Thanks for your attention! Some questions?

From a nonsmooth question...

- [CPS92] R.W. Cottle, J.-S. Pang, and R.E. Stone. *The Linear* Complementarity Problem. Academic Press, Boston, 1992
- [CX11] X. Chen and S. Xiang. "Computation of generalized differentials in nonlinear complementarity problems". In: Computational Optimization and Applications 50 (2011). [doi], pp. 403-423.
- [FP03] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research. Springer, 2003.
- [Qi93] L. Qi. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations". In: Mathematics of Operations Research 18 (Feb. 1993). [doi], pp. 227–244.

References

Bibliographic elements II

From a nonsmooth question...

- [QS93] L. Qi and J. Sun. "A nonsmooth version of Newton's method". In: Mathematical Programming 58 (1993). [doi], pp. 353-367.
- [RČ18] Miroslav Rada and Michal Černý. "A New Algorithm for Enumeration of Cells of Hyperplane Arrangements and a Comparison with Avis and Fukuda's Reverse Search". In: SIAM Journal on Discrete Mathematics 32 (Jan. 2018), pp. 455-473. DOI: 10.1137/15M1027930.

Theoretical detour

Very well-known in algebra / combinatorics... ... but very theoretically: Möbius function, lattices, matroids.

Very impressive results / algorithms for the cardinal (number of feasible systems, number of $J \in \partial_B$) Upper bound, formula (also combinatorial)...

Theoretical detour

Very well-known in algebra / combinatorics... ... but very theoretically: Möbius function, lattices, matroids.

Very impressive results / algorithms for the cardinal (number of feasible systems, number of $J \in \partial_R$) Upper bound, formula (also combinatorial)...

-origin = center of symmetry; $s_i v_i^{\mathsf{T}} d > 0 \Leftrightarrow (-s_i) v_i^{\mathsf{T}} (-d) > 0$

Feasible ⇔ pointed cone

Infeasible ⇔ non-pointed

-"connectedness" property (vertices = J's, edges = hyperplanes)

• Given (v_1, \ldots, v_{k-1}) ; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$

- Given (v_1, \ldots, v_{k-1}) ; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], s_i v_i^{\mathsf{T}} d_s^{k-1} > 0$

Method - adding vectors one at a time

- Given (v_1, \ldots, v_{k-1}) ; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t.: $\forall i \in [1: k-1], \ s_i v_i^{\top} d_s^{k-1} > 0$
- $v_k^\mathsf{T} d_s^{k-1} > 0 \Rightarrow \begin{cases} +v_k^\mathsf{T} d_s^{k-1} > 0 \\ s_i v_i^\mathsf{T} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -v_k^\mathsf{T} d > 0 \\ s_i v_i^\mathsf{T} d > 0 \end{cases} ? \to \mathsf{L.O.}$

- Given (v_1, \ldots, v_{k-1}) ; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, ..., s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1: k-1], \ s_i v_i^{\top} d_s^{k-1} > 0$
- $v_k^\mathsf{T} d_{\mathsf{s}}^{k-1} > 0 \Rightarrow \left\{ \begin{array}{l} + v_k^\mathsf{T} d_{\mathsf{s}}^{k-1} > 0 \\ s_i v_i^\mathsf{T} d_{\mathsf{s}}^{k-1} > 0 \end{array} \right. \checkmark, \left\{ \begin{array}{l} v_k^\mathsf{T} d > 0 \\ s_i v_i^\mathsf{T} d > 0 \end{array} \right. ? \to \mathsf{L.O.}$
- $v_k^{\mathsf{T}} d_s^{k-1} < 0 \Rightarrow \begin{cases} -v_k^{\mathsf{T}} d_s^{k-1} > 0 \\ \mathbf{s}_i v_i^{\mathsf{T}} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} +v_k^{\mathsf{T}} d > 0 \\ \mathbf{s}_i v_i^{\mathsf{T}} d > 0 \end{cases} ? \to \mathsf{L.O.}$

- Given (v_1, \ldots, v_{k-1}) ; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t.: $\forall i \in [1: k-1], \ s_i v_i^{\top} d_s^{k-1} > 0$
- $v_k^\mathsf{T} d_s^{k-1} > 0 \Rightarrow \begin{cases} +v_k^\mathsf{T} d_s^{k-1} > 0 \\ s_i v_i^\mathsf{T} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -v_k^\mathsf{T} d > 0 \\ s_i v_i^\mathsf{T} d > 0 \end{cases} ? \to \mathsf{L.O.}$
- $v_k^{\mathsf{T}} d_s^{k-1} < 0 \Rightarrow \begin{cases} -v_k^{\mathsf{T}} d_s^{k-1} > 0 \\ \mathbf{s}_i v_i^{\mathsf{T}} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} +v_k^{\mathsf{T}} d > 0 \\ \mathbf{s}_i v_i^{\mathsf{T}} d > 0 \end{cases} ? \to \mathsf{L.O.}$
- $v_{k}^{\mathsf{T}} d_{s}^{k-1} = 0 \Rightarrow \text{both systems } \sqrt{\text{ by perturbation}}$

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow V_{:,I}\operatorname{sign}(\eta)\operatorname{sign}(\eta)$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if \geq 2, smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ $\mathcal N$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V_{-I})) = 1$, $I' \supseteq I$ useless to check

References

Circuits of matroids

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

From a nonsmooth question...

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because

if \geq 2, smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ ${\mathcal N}$ searches; subsets of size $\le 1 + {
m rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V_{-I})) = 1$, $I' \supseteq I$ useless to check

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ ${\cal N}$ searches; subsets of size $\leq 1 + {
m rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V_{:,I})) = 1$, $I' \supseteq I$ useless to check

From a nonsmooth question...

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{i,l})$ gives 'unsigned' η 's which define the sign $s_{i,l}=1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N}) = 1$

 2^p LO feasibility $\leftrightarrow 2^p$ N searches; subsets of size $\leq 1 + \text{rank}(V)$

From a nonsmooth question...

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ $\mathcal N$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V,I)) = 1$, $I' \supseteq I$ useless to check