305 Lecture 5.6 - Two Special Cases

Brian Weatherson

This lecture looks at two tricky cases, and how the proofs for them work.

Associated Reading

forall x, chapter 17.

Disjunctive Syllogism

- 1. $A \lor B$
- 2. ¬A
- 3. So, B

That looks pretty good; let's try proving it.

No Rule Found			1.	A v B	PR
			2.	¬А	PR
1. A \/ B	:PR	+	3.	···	
2. ~A 3.	:PR	+ A	4.	IIII	
4.		Δ	5.	mm .	
5.		Δ.	6.	ш	
6. 7.		Δ	7.	ш	
8. B		Δ	8.	В	
			٠.	1 -	

List premises and conclusion

No Rule Found			1.	A v B	PR
			2.	¬A	PR
1. A \/ B	:PR	+ +	3.	А	AS
2. ~A 3. A	: PR : AS	+	4.	mm .	
4. 5.		Δ Δ	5.		
6.		Δ.	6.	nn	
7. 8. B		Δ Δ	7.		
9			8.	В	
10. B 11. B	:R	<u>^</u> ?	10.	В	
12. B	•••	Δ	11.	В	R
			12.	В	
Expand 🔯					

We have a \lor premise, so set up \lor E

No Rule Found		1.	A v B	PR
		2.	¬A	PR
1. A \/ B	: PR : PR	+ + 3.	A	AS
2. ~A 3. A	:AS	+ 4.	IIII	
4. 5.		Δ 5.		
6.		△ 6.		
7. 8. B		Δ 7.		
9		8.	В	
10. B 11. B	:R	[^] ? 10). B	
12. B		△ 11	. В	R
		12	B	
Expand 🖫			•	

I've already added the rule for the second half

A tricky move - we have a ¬ premise so we'll need Indirect Proof

No Rule Fo	und			
1. A \ 2. ~A 3. 4. 5. 6.	A B	~B !?	:PR :PR :AS :AS :~E 2, 3 :IP	+ + + + + ?
7 8. 9. 10. B	B B		:R	А ? А
Expand 2				

1.	A v B	PR
2.	¬A	PR
3.	A	AS
4.	¬В	AS
4.5.6.	_	¬E 2, 3
6.	В	IP
8.	В	
9.	В	R
10.	В	

And the contradiction comes very easily

No Rule Fo	und			
1. A \ 2. ~A 3. 4. 5. 6. 7 8. 9. 10. B	A B B B B	~B !?	:PR :PR :AS :AS :~E 2, 3 :IP	+ + + + ? ^
Expand 53	3			

1.	A v B	PR
2.	¬A	PR
3.	Α	AS
4.	¬B	AS
4. 5.	_	¬E 2, 3
6.	В	IP
8.	В	
9.	В	R
10.	В	

Maybe too easily? Should we have been forced to use B?

Since $\neg B$ got to contradiction, we can infer B

No Rule Fo	und			
1. A ` 2. ~A 3. 4. 5. 6. 7	Α _	~B !?	:PR :PR :AS :AS :~E 2, 3 :IP 4-5	+ + + + +
9. 10. B	В		:R 8	+ A

1.	A v B	PF
2.	¬A	PF
3.	A	AS
4. 5.	¬В	AS
5.	L	¬E 2, 3
6.	В	IP 4-5
8.	В	AS
9.	В	R 8
10.	В	

Now fill in line number on second subproof

A ∨ B , ¬A ⊢ E	В		
1. A \/ 2. ~A 3. 4. 5. 6.	B A ~B !? B	:PR :PR :AS :AS :∼E 2, 3 :IP 4-5	+ + + + +
7 8. 9. 10. B	B B	:AS :R 8 :\/E 1, 3-6, 8-9	++++

1.	A v B	PR
2.	¬А	PR
3.	А	AS
4.	¬В	AS
5.	1	¬E 2, 3
6.	В	IP 4-5
8.	В	AS
9.	В	R 8
10.	В	∨E 1, 3-6, 8-9

And now we're done.

Second example

How to prove things from zero premises

- 1. If they are a conditional, set up \rightarrow I. The left hand side will work just like a premise.
- 2. If they are not a conditional, go for Indirect Proof.

No Rule Found		1.	
		2.	""
1.	Δ	3.	ш
2. 3.	Δ	4.	ш
3. 4.	Δ.	5.	IIII
5.	Δ	6.	
6.	Δ.		
7.	Δ.	7.	""
8. A \/ ~A	Δ	8.	A∨¬A
			1

Writing out conclusion - but not premise because there is none

No Rule Found		1.	-(AS
1. ~(A \/ ~A 2. 3.) :AS	2. + 3. A 4.	. ""	
4. 5. 6. 7. !? 8. A \/ ~A	:IP	5. Δ 6. Λ 7.		
		8.	. A v ¬A	IP

Setting up indirect proof

No Rule Found			1.	¬(A ∨ ¬A)	AS
1. ~(A \/ ~A)	:AS	+	2. 3.	A A A	AS VI 2
2. A 3. A \/ ~A 4. !?	:\/I 2 + :~E 1, 3 + :~I 2-4	+	4.	A V ¬A	¬E 1, 3
2. A 3. A \/ ~A 4. !? 5. ~A 6. 7.		Δ	5. 6.	¬A	¬I 2-4
7. 8. 9. !?		Δ.	7.		
10. A \/ ~A	:IP	?	8. 9.	""	
Expand 🔯			10.	A ∨ ¬A	IP

A very tricky move - extracting something from negated disjunction

Negated Disjunctions

- The move from the previous slide is more or less compulsory.
- The only way to get something out of ¬(X ∨ Y) is to assume X, get a contradiction (via deriving X ∨ Y), and then use ¬I to get ¬X.
- It's a pain, and it's just a move you have to learn.
- It might be my single least favorite part of this system.

$\vdash A \lor \neg A$

Rule Found			1.	¬(A ∨ ¬A)	AS
1. ~(A \/ ~A)	:AS	+	2.	A	AS
	:AS	+	3.	A ∨ ¬A	∨I 2
2. A 3. A \/ ~A	:\/I 2	+ +	4.	_	¬E 1, 3
4. !? 5. ~A 6. A \/ ~A	:~E 1, 3 :~I 2−4	+	5.	∏'¬A	¬I 2-4
6. A \/ ~A	:\/I 5	+ +	6.	A ∨ ¬A	∨I 5
7. !? 8. A \/ ~A	:~E 1, 6 :IP	?	7.	_	¬E 1, 6
			8.	A ∨ ¬A	IP

If we have ¬A, we are basically home

$\vdash A \lor \neg A$

A ∨ ¬A			1.	¬(A ∨ ¬A)	AS
1 (4) (4)	. 46	+	2.	A	AS
1. ~(A \/ ~A) 2. A	:AS :AS	+	3.	A∨¬A	∨l 2
2. A	:\/I 2	+	4.	_	¬E 1, 3
4. !? 5. ~A 6. A \/ ~A	:~E 1, 3 :~I 2-4	+	5.	'¬A	¬I 2-4
6. A \/ ~A	:\/I 5	+ +	6.	A ∨ ¬A	∨I 5
7. !? 8. A \/ ~A	:~E 1, 6 :IP 1−7	+	7.	_	¬E 1, 6
			8.	A v ¬A	IP 1-7

Filling in line numbers - note the subproof is the entire proof to this point

Challenge Problem

- 1. Prove \vdash ((A \rightarrow B) \rightarrow A) \rightarrow A
- 2. See if you can complete that proof in under 25 lines.

That one, like \vdash A $\lor \neg$ A, is a sign that the strategies in 17.1 and 17.2 work 98% of the time, but not 100% of the time.

No recorded lectures next week. We'll just go over the proofs in the weekly assignment, and do some revision.