> Problématique 1

FIGURE 1 : Différents temps de cuisson selon l'altitude

Question: Pourquoi le temps de cuisson d'un aliment dans de l'eau en ébullition augmente-t-il lorsqu'on est en altitude?

> Syst. = corps pur présent sous 2 phases Équilibre corps pur diphasé = équilibre de diffusion

Lycée M. Montaigne – MP2I

> Problématique 2

FIGURE 2 : Formation des glaçons

Question : Quelle est l'énergie nécessaire pour que les glaçons se forment ?

> Transformation = changement de phase Bilans d'énergie et bilans d'entropie

Lycée M. Montaigne – MP2I

```
CHAPITRE ECT4
Changements de phase
```

- 1 Corps pur diphasé en équilibre
- 1.1 Changements d'état (de phase)
- > Phase
 - Définition: Phase
- > Changement de phases

Modification T, P, V: évolution = chgt d'état Selon les conditions, coexistence 2 ou 3 phases du corps pur : équilibre de changement d'état

> <u>Définitions</u>:

Syst. comportant 1 / 2 / 3 phases

= syst. monophasé / diphasé / triphasé

- 1 Corps pur diphasé en équilibre
- 1.1 Changements d'état (de phase)

> Nomenclature des transitions de phase

FIGURE 3 : Nomenclature des transitions de phase

1.2 Diagramme de phases (P,T)

> Variables d'état

système thermodynamique fermé (n=cste), soumis aux seules forces pressantes 3 variables d'état : P, T et V

« carte » des phases dans le plan (P,T) pour un volume V fixé

- 1 Corps pur diphasé en équilibre
- 1.2 Diagramme de phases (P,T)

> Allure générale du diagramme d'état d'un corps

FIGURE 4 : Diagramme de phases d'un corps pur

> Zones du corps pur monophasé > Équilibre diphasé

1.2 Diagramme de phases (P,T)

> Propriété

Équilibre sous 2 phases différentes I et II si P et T vérifient :

$$P = P_{I-II}\left(T\right)$$

 $P_{I-II}(T)$: pression d'équilibre à la température T pour les phases I et II.

condition d'équilibre de diffusion

- 1 Corps pur diphasé en équilibre
- 1.2 Diagramme de phases (P,T)

FIGURE 4 : Diagramme de phases d'un corps pur

Vidéo 1 : YouTube / Chaîne mrmrobin / Vidéos / Supercritical CO2 (4'19)

https://www.youtube.com/watch?v=P9EftqFYaHg

1.2 Diagramme de phases (P,T)

> Diagramme d'état de l'eau

Vidéo 2 : YouTube / Chaîne Phydéo ULg / Vidéos / Fil à couper la glace (0'57)

https://www.youtube.com/watch?v=fzP3w4FVmAI

H_2O	P (bar)	$T\left(\mathrm{K}\right)$
Triple T_r	6,11.10 ⁻³	273,16
Critique C	221	647,3

FIGURE 5 : Diagramme d'état de l'eau (échelle logarithmique à gauche ; échelle linéaire au centre)

- [1] G. Liger-Belair *et al.*, Le fugace nuage bleu du champagne, *Pour la Science*, n°488, p 46-51, Juin 2018
- [2] G. Liger-Belair et D. Cordier, Hétéro-nucléation de cristaux de neige carbonique au débouchage d'une bouteille de champagne, *Reflets de la Physique*, n°61, p 32-35, Mars 2019

1 Corps pur diphasé en équilibre

1.2 Diagramme de phases (P,T)

Exercice d'application 1

Certains corps existent sous plusieurs états solides. Par exemple, le soufre existe sous la forme α et β . Sous pression atmosphérique, le passage $S_{\alpha} \to S_{\beta}$ a lieu à 95 °C, le passage $S_{\beta} \to S_{\beta}$ (liquide) à 119 °C et le passage $S_{\beta} \to S_{\beta}$ (gaz) à 444 °C. Patm

- 1. Comment appelle-t-on les formes S_{α} et S_{β} ?
- 2. Attribuer les domaines du diagramme ci-contre.
- 3. Combien de points triples y a-t-il?

1.3 Variables d'état d'un système diphasé

- > Soit un corps pur en **équilibre sous 2 phases** différentes *I* et *II*.
- > Quelles sont les variables d'état nécessaire ?
- > Titres massique et molaire

Définition: Titre massique

$$x_I = \frac{m_I}{m_I + m_{II}} \ \text{ et } x_{II} = \frac{m_{II}}{m_I + m_{II}} \ \text{ tels que } x_I + x_{II} = 1$$

> <u>Définition</u>: Titre molaire

$$w_I = \frac{n_I}{n_I + n_{II}} \quad \text{et } w_{II} = \frac{n_{II}}{n_I + n_{II}} \ \text{tels que } w_I + w_{II} = 1$$

- 1 Corps pur diphasé en équilibre
- 1.3 Variables d'état d'un système diphasé
- Variables d'étatPropriété

3 variables d'état

- Température T ou pression d'équilibre $P_{I-II}(T)$
- Masse totale m ou quantité de matière totale n
- Titre massique <u>ou</u> molaire d'une des 2 phases : x_I ou x_{TT} ou w_T ou w_{TT}

- 1.4 Équilibre liquide vapeur d'un corps pur
- 1.4.1 Vapeur sèche ou saturante?
- > Définition
 - Coexistence phases liquide et vapeur : saturation
- > <u>Définition</u>: vapeur saturante

$$P_{sat}\left(T
ight)$$
 = $P_{L-V}\left(T
ight)$

- > <u>Définition</u>: vapeur sèche
- > Propriété

pression de vapeur saturante P_{sat}

- 1 Corps pur diphasé en équilibre
- 1.4 Équilibre liquide vapeur d'un corps pur

> Retour à la problématique 1

https://www.youtube.com/watch?v=nxAdQ_8tC1U

Vidéo 4 : YouTube / Chaîne Expériences EPFL / Vidéos / 344 Bouillant de Franklin pression (2'45)

https://www.youtube.com/watch?v=hX2o6hqy7nE

1 Corps pur diphasé en équilibre

1.4 Équilibre liquide – vapeur d'un corps pur

Exercice d'application 2

On introduit dans une enceinte de volume V une masse $m=100\,\mathrm{g}$ d'eau liquide. L'enceinte est maintenue à la température $T=423\,\mathrm{K}$, température à laquelle la pression de vapeur saturante de l'eau est $P_{sat}=4,76\,\mathrm{bar}$. La vapeur d'eau est assimilée à un gaz parfait. Déterminer l'état d'équilibre atteint par l'eau pour $V=V_1=50\,\mathrm{L}$. Que dire de l'état d'équilibre si $V_2=1\,\mathrm{L}$?

- 1 Corps pur diphasé en équilibre
- 1.4 Équilibre liquide vapeur d'un corps pur
- 1.4.2 Étude d'une compression isotherme dans le diagramme d'état (P,T)
- Evolution du corps pur dans le diagramme d'état

T = cste : P → Favorisation de l'état le + dense

1 Corps pur diphasé en équilibre

1.4 Équilibre liquide – vapeur d'un corps pur

1.4.2 Étude d'une compression isotherme dans le diagramme d'état (*P*,*T*)

- Evolution de la pression au cours du temps
- \succ Limite du diagramme (P,T)

- 1 Corps pur diphasé en équilibre
- 1.4 Équilibre liquide vapeur d'un corps pur
- 1.4.3 Étude d'une compression isotherme dans le diagramme de Clapeyron massique (P, v)
- Représentation de la compression isotherme à la température T du gaz
- > Propriété:

Phénomène de liquéfaction réversible

Liquéfaction et vaporisation :

succession d'états d'équilibre

> Détente isotherme

Définition : ébullition

- 1 Corps pur diphasé en équilibre
- 1.4 Équilibre liquide vapeur d'un corps pur

1.4.4 Réseau des isothermes d'Andrews

- 1 Corps pur diphasé en équilibre
- 1.4 Équilibre liquide vapeur d'un corps pur
- 1.4.4 Réseau des isothermes d'Andrews
- Exercice d'application 3

Les isothermes d'Andrews de l'hexafluorure de soufre (SF6) ont été tracées expérimentalement pour $T_1=26$ °C , $T_2=30$ °C , $T_3=40$ °C et $T_4=50$ °C sur un système de

masse $m = 172 \text{ mg de SF}_6$.

- a. Placer sur le graphe ci-contre le point critique caractérisé par $p_C=37,7$ bar et $V_C=0,45~\rm mL$. Tracer la courbe de saturation.
- b. Quel est l'état physique du SF6 pour :
 - $p_1 = 30$ bar à la température T_1 ?
 - $p_2 = 29$ bar à la température T_2 ?
 - $p_3 = 20$ bar à la température T_3 ?
 - $p_4 = 32$ bar à la température T_4 ?

- c. À la température T_1 , quels sont les volumiques massiques du liquide saturant et de la vapeur saturante ?
- d. Visionner la vidéo 5. Quelle est la température critique T_C du SF6?
- Vidéo 5 : YouTube / Chaîne Expériences EPFL /Vidéos/ 369 Contournement du point critique (1'45)

https://www.youtube.com/watch?v=jMfDBOg8ibY

- 1 Corps pur diphasé en équilibre
- 1.4 Équilibre liquide vapeur d'un corps pur
- 1.4.4 Réseau des isothermes d'Andrews

L: Liquide saturant

V : Vapeur saturante

4: Fluide

supercritique

(mL)

1.5 Détermination de la composition d'un système diphasé

 $p_{\rm sat}(T_{\rm exp})$.

- > Position du problème
- > Comment déterminer la composition du syst. au point N?

uvULExpressions des titres FIGURE 7 : Composition d'un système diphasé liquide – vapeur dans le diagramme de Clapeyron

 $T = T_{\rm exp}$ fixée

> Théorèmes des moments

$$x_L \overline{NL} = x_V \overline{VN}$$

massiques

1 Corps pur diphasé en équilibre

1.5 Détermination de la composition d'un système diphasé

Exercice d'application 4

On considère de l'eau liquide en équilibre avec sa vapeur à la température $T_0 = 394~\rm K$. La masse d'eau est $m = 10,0~\rm g$ et le volume total du système est $V_0 = 4,0~\rm L$. À la température T_0 , les volumes massiques de l'eau sous forme de liquide saturant et de vapeur saturante sont respectivement $v_L = 1,06~\rm L.kg^{-1}$ et $v_V = 858~\rm L.kg^{-1}$.

- a. Déterminer le volume V_L occupé par le système sous forme de liquide saturant (état L) puis le volume V_V occupé par le système sous forme de vapeur saturante (état V).
- b. Dans le diagramme de Clapeyron, représenter l'isotherme à T_0 , la courbe de saturation ainsi que les points L, V et M (état du système).
- c. Déterminer le titre en vapeur du mélange à T_0 . En déduire les masses et les volumes de chaque phase.

Exercice d'application 5

Reprendre l'exercice d'application 2 et déterminer l'état d'équilibre atteint par l'eau pour $V=V_2=1$ L, sachant que pour T=423 K, $v_{\scriptscriptstyle L}=1,1$ L.kg⁻¹.

1.6 Stockage des fluides

> Importance du point critique

FIGURE 8: Stockage d'un fluide

> Propriété

$$T_{\scriptscriptstyle C} > T_{\scriptscriptstyle amb}$$

$$v > v_C$$

2 Bilans énergétiques et entropiques des changements d'états

- Éq. chgt d'état corps pur entre 2 phases I et II
- 2.1 Fonctions d'état d'un corps pur diphasé
- ightharpoonup Définitions des fonctions d'état massiques \hat{A} la température T de l'équilibre et à la pression d'équilibre P_{I-II} , fct d'état massiques pour phase I et pour phase II:
 - u_I , u_{II} : énergie interne massique (J.kg⁻¹)
 - h_I , h_{II} : enthalpie massique (J.kg⁻¹)
 - s_I , s_{II} : entropie massique (J.K⁻¹.kg⁻¹)

Lycée M. Montaigne – MP2I

- 2 Bilans énergétiques et entropiques des changements d'états
- 2.1 Fonctions d'état d'un corps pur diphasé
- > Expressions des fonctions d'état massiques

Énergie interne massique: $u = x_I u_I + (1 - x_I) u_{II}$

$$u = x_I u_I + (1 - x_I) u_{II}$$

Enthalpie massique:
$$h = x_I h_I + (1 - x_I) h_{II}$$

Entropie massique:
$$s = x_I s_I + (1 - x_I) s_{II}$$

 \triangleright Titre massique x_T

$$x_{I} = \frac{u - u_{II}}{u_{I} - u_{II}} = \frac{h - h_{II}}{h_{I} - h_{II}} = \frac{s - s_{II}}{s_{I} - s_{II}} = \frac{v - v_{II}}{v_{I} - v_{II}}$$

tables thermodynamiques

CHAPITRE	EC	Γ4
Changements	de	phase

2 Bilans énergétiques et entropiques des changements d'états

2.2 Enthalpie de changement d'état

> Définition :

enthalpie massique de changement de phase $\Delta h_{I \to II}(T)$

$$\Delta h_{I \to II}\left(T\right) = h_{II}\left(T\right) - h_{I}\left(T\right)$$

> Relation entre enthalpie massique de chgt d'état et quantité de chaleur

$$\Delta h_{I
ightarrow II}\left(T
ight)$$
 $=q^{rcute{e}v}=rac{Q^{rcute{e}v}}{m}$

2 Bilans énergétiques et entropiques des changements d'états

2.3 Chaleurs latentes des changements d'état

- > Énergie thermique échangée

$$Q = \Delta H = m \Delta h_{I
ightarrow II} \left(T
ight) = m \cdot l_{I
ightarrow II} \left(T
ight) = Q^{r cute{e}v}$$

<u>Définition</u>: transformation endothermique

$$Q^{ extit{r\'ev}} > 0$$

<u>Définition</u>: transformation exothermique

$$Q^{r\acute{e}v} < 0$$

> <u>Synthèse</u>

- 2 Bilans énergétiques et entropiques des changements d'états
- 2.3 Chaleurs latentes des changements d'état

Changement	Chaleur la	Nature de la	
d'état 1→2	Nom	Expression et signe	transfor- mation
solide → liquide	fusion	$l_{fus}\left(T\right) = l_{S o L}\left(T\right) = \Delta h_{S o L}\left(T\right) > 0$	endothermique
liquide→ gaz	vaporisation	$l_{vap}(T) = l_{L \to V}(T) = \Delta h_{L \to V}(T) > 0$	endothermique
solide → gaz	sublimation	$l_{sub}\left(T\right) = l_{S \to V}\left(T\right) = \Delta h_{S \to V}\left(T\right) > 0$	endothermique
liquide → solide	solidification	$egin{aligned} l_{sol}\left(T ight) &= l_{L ightarrow S}\left(T ight) = \Delta h_{L ightarrow S}\left(T ight) \ &= -l_{fus}\left(T ight) < 0 \end{aligned}$	exothermique
gaz → liquide	liquéfaction	$\begin{aligned} l_{liq}\left(T\right) &= l_{V \to L}\left(T\right) = \Delta h_{V \to L}\left(T\right) \\ &= -l_{vap}\left(T\right) < 0 \end{aligned}$	exothermique
gaz → solide	condensation	$egin{aligned} l_{cond}\left(T ight) &= l_{V ightarrow S}\left(T ight) = \Delta h_{V ightarrow S}\left(T ight) \ &= -l_{sub}\left(T ight) < 0 \end{aligned}$	exothermique

FIGURE 9 : Enthalpies massiques de changements d'états

CHAPITRE	ECT	Γ4
Changements	de	phase

2 Bilans énergétiques et entropiques des changements d'états

- 2.4 Bilans énergétiques en présence de changements d'états
- > Position du problème
 - **Système**: corps pur de masse m sous 2 phases I et II à des $T \neq (T$ de changement d'état : T_{I-II})
 - placé dans enceinte adiabatique et déformable :

transformation monobare

Quel est l'état final?

- > États finaux possibles
 - Système monophasé
 - Système diphasé

- 2 Bilans énergétiques et entropiques des changements d'états
- 2.4 Bilans énergétiques en présence de changements d'états
- > Méthode | W
- $Additivité / extensivité de l'enthalpie : \Delta H = \sum_i \Delta H_i$
- \clubsuit Transformation monobare : $Q = \Delta H$
- rians Transformation adiabatique : Q = 0
- ❖ Formuler une hypothèse (la + probable) et la valider ou non

2 Bilans énergétiques et entropiques des changements d'états

2.4 Bilans énergétiques en présence de changements d'états

Hypothèse	Grandeur connue	Grandeur à déterminer	Condition de validité
Système monophasé	Toute la masse <i>m</i> est dans la phase considérée	Température finale T_F	T _F compatible avec l'existence du corps sous la phase considérée
Système diphasé	La température finale est imposée : $T_F = T_{I-II} \label{eq:TF}$	Masse ayant subi un changement d'état	Il reste une masse non nulle du corps sous chaque phase

FIGURE 10 : Hypothèses à formuler en présence de changement d'état

> Remarque

Si enceinte <u>in</u>déformable :

transformation isochore

$$\Delta U = \sum_{i} \Delta U_{i} = Q = 0$$

CHAPITRE	EC'	Γ4
Changements	de	phase

2 Bilans énergétiques et entropiques des changements d'états

2.5 Entropie de changement d'état

> Définition :

entropie massique de changement de phase $\Delta s_{I o II}(T)$

$$\Delta s_{_{I\rightarrow II}}\left(T\right)=s_{_{II}}\left(T\right)-s_{_{I}}\left(T\right)$$

Relation entre entropie massique de chgt d'état et quantité de chaleur

$$\Delta s_{I o II}\left(T
ight) = rac{q^{rev}}{T} = rac{Q^{rev}}{m\,T}$$

- 2 Bilans énergétiques et entropiques des changements d'états
- 2.5 Entropie de changement d'état
- Relation entre entropie massique et chaleur latente de changement d'état

$$\Delta s_{I o II} \left(T
ight) = rac{\Delta h_{I o II} \left(T
ight)}{T}$$

> Signe de la chaleur latente de changement d'état

$$l_{I \to I\!I}\left(T\right) = \Delta h_{I \to I\!I}\left(T\right) = T \Delta s_{I \to I\!I}\left(T\right) = T\left(s_{I\!I}\left(T\right) - s_{I}\left(T\right)\right)$$

2 Bilans énergétiques et entropiques des changements d'états

2.6 Retour à la problématique 2

Exercice d'application 6

On remplit un bac à glaçons d'eau et on le place dans un congélateur. Le bac à glaçons permet de faire N=12 glaçons cubiques ayant chacun une masse $m=15\,\mathrm{g}$. Le congélateur est maintenu à la température $T_2=-18\,\mathrm{°C}$ et l'eau liquide mise dans le bac à glaçons est initialement à la température $T_1=25\,\mathrm{°C}$. On attend suffisamment longtemps pour que l'équilibre thermique soit atteint.

On donne la capacité thermique massique de l'eau liquide c_l = 4,2 kJ.K⁻¹.kg⁻¹, la capacité thermique de la glace c_g = 2,1 kJ.K⁻¹.kg⁻¹, l'enthalpie massique de fusion de la glace à T_0 = 0 °C qui vaut Δh_{fus} = 3,3.10² kJ.kg⁻¹. On rappelle que pour une phase condensée de capacité thermique C, l'entropie s'écrit, avec T^0 une température de référence choisie arbitrairement :

$$S(T) = C \ln \left(\frac{T}{T^0}\right) + S(T^0)$$

- 1. Déterminer la variation d'enthalpie ΔH de l'eau entre son état initial à la température T_1 et son état final à la température T_2 .
- 2. Déterminer l'énergie reçue sous forme de transfert thermique Q par l'eau de la part du congélateur en supposant que l'évolution se fasse à pression constante $p^0 = 1$ bar.
- 3. Déterminer la variation d'entropie ΔS au cours de la transformation.