

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) Veröffentlichungsnummer:

0 348 846
A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89111501.6

(50) Int. Cl.⁴: F04D 29/66

(22) Anmeldetag: 23.06.89

(30) Priorität: 30.06.88 DE 3822179

(71) Anmelder: Siemens Aktiengesellschaft
Wittelsbacherplatz 2
D-8000 München 2(DE)

(43) Veröffentlichungstag der Anmeldung:
03.01.90 Patentblatt 90/01

(72) Erfinder: Moll, Helmut, Dipl.-Ing. (FH)
Haselhofstrasse 32
D-8520 Erlangen(DE)
Erfinder: Muck, Jürgen, Dipl.-Ing. (FH)
Echter Strasse 4
D-8705 Zellingen(DE)
Erfinder: Reisenweber, Walter, Dipl.-Ing. (FH)
Im Weingarten 8
D-8744 Mellrichstadt(DE)

(84) Benannte Vertragsstaaten:
DE FR GB IT

(54) Ausgewuchtetes Lüfterrad sowie Verfahren und Vorrichtung zur Herbeiführung des Unwuchtausgleiches.

(57) Derartige Lüfterräder bestehen insbesondere aus thermoplastischem Kunststoff, wobei von einer Nabe ausgehend, die auf eine Drehachse aufsteckbar ist eine konzentrische Ringscheibe mit wenigstens einer Reihe von Lüfterlamellen angeordnet ist. Derartige Lüfterräder haben durch die Herstellung durch Spritzgießen bedingt üblicherweise eine Unwucht, die durch positives Wuchten über Ausgleichselemente, die als sogenannte Wuchtklammern aufgesteckt werden, ausgeglichen wird. Gemäß der Erfindung sind die Ausgleichselemente (16, 16', 16'', 16''') zur Beseitigung der Unwucht unlösbar mit der Ringscheibe (3) oder den Lüfterlamellen (4, 5) verbunden. Dabei werden die Ausgleichselemente variabler Größe an der Ringscheibe und/oder den Lamellen des Lüfterrades durch Ultraschalleinwirkung befestigt, wo sie mit dem auszuwuchtenden Teil vorsichtigweise eine Schweißverbindung eingehen. Die dazu notwendige Vorrichtung zum Ultraschallschweißen kann durch ein Handgerät gebildet sein oder in eine stationäre Einrichtung integriert werden, die zusammen mit der Prüfeinrichtung eine gemeinsame Betriebseinheit bildet.

A2

846

848

348

0

EP

FIG 3

FIG 4

Ausgewuchtetes Lüfterrad sowie Verfahren und Vorrichtung zur Herbeiführung des Unwuchtausgleiches

Die Erfindung bezieht sich auf ein ausgewuchtetes Lüfterrad, insbesondere aus thermoplastischem Kunststoff, bei dem auf eine Drehachse aufsteckbar eine Nabe mit einer konzentrischen Ringscheibe mit wenigstens einer Reihe von Lüfterlamellen vorhanden ist und bei dem die durch herstellungsbedingte Unrundheiten Unwucht über am Lüfterrad befestigbare Ausgleichselemente ausgeglichen wird. Daneben bezieht sich die Erfindung auch auf ein Verfahren zur Herstellung eines solchen Lüfterrades, bei dem zur Herbeiführung eines positiven Wuchtausgleichs Ausgleichselemente am Lüfterrad befestigt werden, sowie auf zugehörige Vorrichtungen zur Durchführung dieses Verfahrens.

Lüfterräder werden u.a. für Gebläse zwecks Kühlung von Elektromotoren benötigt. Sie sind häufig aus Kunststoff, insbesondere aus thermoplastischem Material, gebildet und werden durch Spritzgießen in Massenfertigung hergestellt.

Derartige axiale oder radiale Lüfterräder haben üblicherweise durch die Herstellungstechnologie bedingt eine Unwucht. Vor der Freigabe in der Fertigung durchlaufen sie daher im Rahmen der Qualitätssicherung eine Auswuchtstation, bei der die Unwucht geprüft und durch Aufstecken von sogenannten Wuchtklammern aus Metall an ausgewählten Lamellen die festgestellte Unwucht beseitigt wird. Normalerweise werden Wuchtklammern mit Gewichtsstufungen verwendet, wobei in der Praxis nach dem Feststellen der Unwucht geeignete Wuchtklammern ausgewählt werden. Es ist auch üblich, mehrere Klammern zur Winkelwuchtung zu verwenden. Immer sind dafür entsprechende Erfahrungen notwendig.

Aufgabe der Erfindung ist es demgegenüber, ein verbessertes Lüfterrad zu schaffen und zugehörige Verfahren zu dessen Herstellung anzugeben, mit denen das Auswuchten vereinfacht wird. Gleichermassen sollen hierzu die notwendigen Vorrichtungen geschaffen werden.

Die Aufgabe ist erfindungsgemäß bei einem Lüfterrad der eingangs genannten Art dadurch gelöst, daß die Ausgleichselemente zur Beseitigung der Unwucht unlösbar mit der Ringscheibe und/oder den Lamellen verbunden sind. Dazu werden die Ausgleichselemente durch Ultraschallwirkung am Lüfterrad befestigt, wo sie mit dem auszuwuchtenden Teil eine unlösbare Verbindung eingehen.

Bei der Erfindung wird vorzugsweise ein Ultraschallschweißen von variablen Elementen des gleichen oder ähnlichen Materials auf den Grundkörper zur Herbeiführung des positiven Wuchtausgleiches ausgeführt. Dabei ist besonders vorteilhaft,

dass nunmehr ein weitgehend stufenloses Auswuchten möglich ist, da Ausgleichselemente beliebiger Gewichtsstufung realisierbar sind. Dafür können die Elemente von einem Endlosstreifen entsprechend der festgestellten Unwucht geeignet abgelängt und auf die Arbeitsfläche einer Ultraschallsondrode aufgebracht werden. Ein Ultraschallamboß dient in bekannter Weise als Gegenwerkzeug, so dass jeweils das Verbinden bzw. insbesondere Aufschweißen der Ausgleichselemente durch Ultraschallalleinwirkung erfolgen kann. Gegebenenfalls können auch metallische Teile mittels eines Klebers auf die Unterlage aufgebracht werden, wobei aber das eigentliche Kleben ebenfalls ultraschallaktiviert erfolgt.

Bei den zugehörigen Vorrichtungen zur Durchführung des Unwuchtausgleiches kann in einer ersten Ausbildung der Erfindung ein Handgerät zum Ultraschallschweißen vorgesehen sein. In anderer Ausbildung kann die Schweißeinrichtung stationär ausgebildet sein und zusammen mit einer Prüfeinrichtung für die Feststellung der Unwucht eine gemeinsame Betriebseinheit bilden.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den Unteransprüchen.

Es zeigen

FIG 1 und FIG 2 ein bekanntes Lüfterrad in Draufsicht und Seitenansicht;

FIG 3 und FIG 4 eine Anordnung zur Ausführung des erfindungsgemäßen Verfahrens beim Aufschweißen in zwei unterschiedlichen Positionierungen;

FIG 5 einen Teilausschnitt des Lüfterrades mit ultraschallgeschweißten Ausgleichselementen und

FIG 6 Halzeugmaterial für Ausgleichselemente zum Ultraschallaufschweißen auf Lüfterrädern.

In FIG 1 und FIG 2 ist mit 1 die Nabe eines Lüfterrades bezeichnet, das zwecks Rotation auf eine (nicht dargestellte) Welle aufschiehbar ist. Von der Nabe 1 gehen mehrere Speichen 2 ab, beispielsweise fünf Speichen 2, die im Abstand konzentrisch zur Nabe 1 eine Ringscheibe 3 abstützen. Die Ringscheibe 3 ist Träger einer Vielzahl von konkav ausgestellten Lamellen 4 und 5. Dabei sind die Lamellen 4 und 5 jeweils abwechselnd gegenüberliegenderseitig auf beiden Seiten der Ringscheibe angeordnet; sie werden an ihrer äußeren Umfangskante je durch einen konzentrischen Ring 7 und 8 fixiert, während deren innere Abrisskante frei-

liegt. Das Lüfterrad ergibt sich so insgesamt als stabiles Bauteil.

Das in FIG 1 und FIG 2 dargestellte Lüfterrad ist nur beispielhaft zu betrachten. Alternative Lüfterräder können aus einer Nabe 1 mit unmittelbar daran angebrachter Ringscheibe 3 für lediglich eine Reihe von Lamellen 4 ausgebildet sein. Die Lamellen 4 können auch unmittelbar als gewölbte Schaufeln auf der Nabe angebracht sein. Derartige Lüfterräder sind prinzipiell in axialer oder radialer Ausbildung vom Stand der Technik bekannt. Sie bestehen insbesondere aus thermoplastischem Kunststoff und werden vorteilhafterweise durch Spritzgießen in Massenfertigung hergestellt. Aufgrund zwangsläufig vorhandener Ungenauigkeiten bei der Massenfertigung haben derartige Lüfterräder aber normalerweise eine Unwucht, die im Rahmen der Qualitätssicherung vor der Freigabe der Teile beseitigt werden muß.

Bisher wurde die Unwucht derartiger Lüfterräder aus Kunststoff durch Aufsetzen von metallischen Wuchtklammern auf die Lamellen 4 bzw. 5 gemäß FIG 1 und FIG 2 beseitigt. Hierfür stehen Wuchtklammern mit Gewichtsstufungen zur Verfügung. Dabei wird in einem Prüfplatz das Lüfterrad auf eine Dreheinrichtung aufgesetzt, beim Drehen die Unwucht festgestellt und durch Aufsetzen entsprechender Wuchtklammern ein positiver Unwuchtausgleich durchgeführt. Trotz Automatisierung der Prüfplätze, bei denen unmittelbar angeben wird, welche Wuchtklammern verwendet werden müssen, sind Ungenauigkeiten beim Stand der Technik nicht zu vermeiden und weitgehend von der Sorgfalt der ausführenden Person abhängig.

Zum Erreichen der in der Praxis angestrebten Erhöhung der Wuchtgüte müßten Klammern mit geringem und feinstabgestimmten Gewichten verwendet werden. Bei Klammern mit geringstem Gewicht verkleinern sich die Abmessungen aber so weit, daß eine sinnvolle Handhabung nicht mehr möglich ist.

Unabhängig davon besteht auch die Gefahr, daß beim bestimmungsmäßigen Gebrauch der herkömmlich angewuchtenen Lüfterräder versehentlich oder absichtlich Wuchtklammern entfernt werden und dadurch später im praktischen Betrieb unkontrolliert Unwucht an einem Lüfterrad erzeugt wird.

Es wird vorgeschlagen, als Ausgleichselemente ein Teil aus solchem Material zu wählen, das mit dem Kunststoff des Lüfterrades insbesondere eine Schweißverbindung eingehen kann. Dafür ist das Ausgleichselement vorteilhafterweise aus dem gleichen Material wie das Lüfterrad gebildet und steht als bandförmiges Halbzeug zur Verfügung, von dem Elemente geeigneter Länge abgetrennt werden. Da dieses Material ein geringeres spezifisches Gewicht als Metall hat, lassen sich bei gleichem Gewicht größere und damit leichter handhabbare

Elemente verwenden.

In FIG 3 und FIG 4 ist jeweils ein Lüfterrad 1 bis 8 gemäß FIG 1 und FIG 2 in zwei unterschiedlichen Positionierungen zusammen mit einem Werkzeug für das Ultraschallschweißen angedeutet. Es ist eine Sonotrode 11 und ein zugehöriger Amboß 12 erkennbar, die in FIG 3 beidseitig der Ringscheibe 3 und in FIG 4 beidseitig einer Lamelle 4 angeordnet sind. Dabei definiert der Amboß 12 eine Auflage zum Ultraschallschweißen und die Sonotrode 11 das zugehörige Ultraschallwerkzeug, das in vertikaler Richtung verschiebbar ist und durch Druck einerseits und senkrechte Ultraschall- schwingungen mit vorgegebener Frequenz und Amplitude sowie Leistung andererseits einen Verschweißvorgang aktivieren kann. Beispielsweise wird - wie beim Ultraschallschweißen von Kunststoffen üblich - mit einer Frequenz von 20 kHz, einer Amplitude von 25 µm und einer Leistung von 1000 W gearbeitet.

Die Sonotrode 11 wird jeweils senkrecht zur Schweißebene zugeführt. Der Amboß 12 ist mit seiner Auflagefläche an die Kontur der Schweißebene angepaßt. Zwischen Sonotrode 11 und der durch den Amboß 12 abgestützten Fläche der Ringscheibe 3 oder der Lamelle 4 wird ein Ausgleichselement 15 eingeschoben und in geeigneter Länge durch ein Schniedmesser 13 abgetrennt. Das abgelängte Teil 16 kann dann unmittelbar in der vorgegebenen Lage durch die Druckkraft F in Verbindung mit der Ultraschalleinwirkung mit der Ringscheibe 3 oder der Lamelle 4 unlösbar verbunden werden, wobei das Material des Lüfterades und des Ausgleichselementes eine Schweißverbindung eingeht.

Speziell die Anordnung nach FIG 4 hat den Vorteil, daß das Ausgleichselement 16 in unterschiedlicher Lateralstellung auf die Lamelle 4 des Lüfterades aufgebracht werden kann. Dazu sind Sonotrode 11, Amboß 12 und Schniedmesser 13 in Querrichtung verschiebbar angeordnet. Mit einer solchen Anordnung kann auch eine Taumelbewegung bei ausgedehnten Lüfterräden ausgewichtet werden. Selbstverständlich können verschiedene Ausgleichselemente 16 in Kombination auf die Ringscheibe 3 und die Lamellen 4 bzw. auf Schaufeln von Axial-Lüfterräder nach dem beschriebenen Verfahren aufgebracht werden.

In FIG 5 sind Teile 16 als Ausgleichselemente 50 unlösbar mit der Ringscheibe 3 bzw. der Lamelle 4 verbunden. Für die exakte Bestimmung der Unwucht bzw. Herbeiführung des Unwuchtausgleiches wird - wie beim Stand der Technik - zunächst automatisch auf dem Prüfplatz die Unwucht festgestellt, dann die notwendige Länge des Ausgleichselementes bestimmt und anschließend das Schniedmesser 13 bei der automatischen Zuführung des Streifens 15 so gesteuert, daß jeweils ein

definiertes Teil 16 vom Streifen 15 abgeschnitten und unmittelbar an der vorbestimmten Stelle aufgeschweißt wird.

Aus FIG 5 sind derartige Ausgleichselemente unterschiedlicher Länge als Teile 16 bzw. 16' oder 16" auf der Ringscheibe erkennbar. Ein weiteres Ausgleichselement 16" ist auf einer Lamelle 4 befestigt. Es kann somit ein optimales Auswuchten durch die Vielzahl der Möglichkeiten unterschiedlicher Ausgleichselemente 16 durch Variation der Länge und/oder Lage am Lüfterrad herbeigeführt werden.

Für das Ultraschallschweißen von Elementen unterschiedlichen Gewichtes ist es zweckmäßig, einen Endlosstreifen 15 gemäß FIG 6 als Halbzeug zu verwenden, der auf seiner Unterseite profiliert ausgebildet ist und sogenannte Schweißdächer 17 und 18 aufweist, die als Energierichtungsgeber dienen. Bei einer solchen Ausbildung des Streifens 15 wird immer eine hinreichend gute Schweißverbindung erzielt. Das gewünschte Gewicht eines Einzelselementes 16 wird allein durch dessen variable Länge bestimmt.

Eine anhand der FIG 3 und FIG 4 im wesentlichen funktionsmäßig beschriebene Vorrichtung kann als Handgerät ausgebildet sein. Sie kann aber auch in eine stationäre Einrichtung integriert sein, die insbesondere die Prüfeinrichtung zur Feststellung der Unwucht umfaßt, so daß das Aufschweißen der Ausgleichselemente in einem integrierten Fertigungsvorgang erfolgt.

Für den Fall, daß die Lüfterräder nicht aus thermoplastischem Kunststoff, sondern aus duroplastischem Kunststoff oder gegebenenfalls aus Metall bestehen, kann als Ausgleichselement auch ein mit thermoplastischem Kunststoff oder Schmelzkleber beschichtetes Teil verwendet werden. Dieses Teil wird durch thermische Erwärmung oder Ultraschallschweißen in der oben beschriebenen Weise an geeigneter Stelle mit dem Lüfterrad verbunden. In diesem Fall ist man nicht mehr auf thermoplastischen Kunststoff als Material für das Lüfterrad angewiesen.

Ansprüche

1. Ausgewuchtetes Lüfterrad, insbesondere aus thermoplastischem Kunststoff, bei dem auf eine Drehachse aufsteckbar eine Nabe mit einer konzentrischen Ringscheibe mit wenigstens einer Reihe von Lamellen vorhanden ist und bei den die durch herstellungsbedingte Unrundheiten bewirkte Unwucht über am Lüfterrad befestigbare Ausgleichselemente ausgeglichen wird, dadurch gekennzeichnet, daß die Ausgleichselemente (16, 16', 16", 16") unlösbar mit der Ringscheibe (3) und/oder den Lamellen (4, 5) verbunden sind.

2. Lüfterrad nach Anspruch 1, dadurch gekennzeichnet, daß die Ausgleichselemente Kunststoffteile (16, 16', 16", 16") sind.

5 3. Lüfterrad nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Ausgleichselemente (16, 16', 16", 16") aus dem gleichen Material wie das Lüfterrad (1 bis 8) bestehen.

10 4. Lüfterrad nach Anspruch 1, dadurch gekennzeichnet, daß die Ausgleichselemente (16, 16', 16") auf der Ringscheibe (3) zwischen den Lamellen (4, 5) angeordnet sind.

15 5. Lüfterrad nach Anspruch 4, wobei an der Ringscheibe eine einzige Reihe von Lamellen angeordnet ist, dadurch gekennzeichnet, daß die Ausgleichselemente (16, 16', 16") auf einer Seite der Ringscheibe (3) angeordnet sind.

20 6. Lüfterrad nach Anspruch 4, wobei an der Ringscheibe zwei Reihen von gegeneinander versetzten Lamellen angeordnet sind, dadurch gekennzeichnet, daß die Kunststoffteile (16, 16', 16") abwechselnd auf beiden Seiten der Ringscheibe (3) angeordnet sind.

25 7. Lüfterrad nach Anspruch 1, dadurch gekennzeichnet, daß die Ausgleichselemente (16") auf den Lamellen (4, 5) in variabler Lateralstellung angeordnet sind.

30 8. Verfahren zur Herstellung eines ausgewuchten Lüfterrades nach Anspruch 1 oder einem der Ansprüche 2 bis 7, bei dem zur Herbeiführung eines positiven Wuchtausgleiches Ausgleichselemente variablen Gewichtes am Lüfterrad befestigt werden, dadurch gekennzeichnet, daß die Ausgleichselemente durch Ultraschalleinwirkung am Lüfterrad befestigt werden, wo sie mit dem auszuwuchtenden Teil eine unlösbare Verbindung eingehen.

35 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Ausgleichselemente von einem Endlosstreifen entsprechend der festgestellten Unwucht geeignet abgelängt und auf der Arbeitsfläche einer Ultraschallsonotrode zwecks Aufschweißen auf das auszuwuchtende Teil angeordnet werden.

40 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die abgelängten Elemente in Taschen auf der Arbeitsfläche der Sonotrode gehalten werden.

45 11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die abgelängten Elemente auf der Arbeitsfläche der Sonotrode mittels einer Fixierfeder gehalten werden.

50 12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die abgelängten Elemente auf der Arbeitsfläche der Sonotrode durch Ansaugen gehalten werden.

55 13. Verfahren nach Anspruch 8 und 9, dadurch gekennzeichnet, daß die Ultraschallsonotrode mit abgelängtem Element senkrecht zur

Schweißebene am Lüfterrad auf das auszuwuchten-de Teil herangeführt wird.

14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Ultraschallsonotrode mit abgelängtem Element und zugehörigem Ultra-schallschweißamboß in axialer Richtung bezogen auf das Lüfterrad zum Herstellen der Schweißverbindung orientiert ist.

5

15. Verfahren nach Anspruch 8 und 9, da-durch gekennzeichnet, daß die Ultraschallsonot-rode mit abgelängtem Element und zugehörigem Ultra-schallschweißamboß in radialer Richtung bezo-gen auf das Lüfterrad zum Herstellen der Schweiß-verbindung auf das auszuwuchtende Teil herange-führt wird.

10

16. Verfahren nach Anspruch 8, wobei das Lüfterrad aus duroplastischem Kunststoff oder aus Metall besteht, dadurch gekennzeichnet, daß ein an der Fügefläche mit thermoplastischem Kun-ststoff oder Schmelzkleber beschichtetes Ausgleichs-element verwendet wird, das durch thermische Er-wärmung mittels Ultraschall oder Ultraschallschwei-ßen mit dem Lüfterrad unlösbar verbunden wird.

15

17. Vorrichtung zur Durchführung des Verfah-rens nach Anspruch 8 oder einem der Ansprüche 9 bis 16 zur Herstellung eines Lüfterrades nach An-spruch 1 oder einem der Ansprüche 2 bis 7, da-durch gekennzeichnet, daß ein Handgerät zum Ultraschallschweißen vorgesehen ist.

20

18. Vorrichtung zur Durchführung des Verfah-rens nach Anspruch 8 oder einem der Ansprüche 9 bis 16 zur Herstellung eines Lüfterrades nach An-spruch 1 oder einem der Ansprüche 2 bis 7, da-durch gekennzeichnet, daß eine stationäre Ein-richtung zum Ultraschallschweißen vorgesehen ist, die mit der Prüfeinrichtung eine einzige Betriebs-einheit für eine integrierte Fertigung bildet.

25

30

35

40

45

50

55

P 3260

