Project 1 Introduction

ECE 5484

- 1) Design a combinational logic circuit that displays the hexadecimal value of a Balanced Gray code input according to the specifications given in the assignment.
- 2) Debug and test your design by simulating it using the Logisim simulator.
- 3) Document your work in a short report.

- 1) Design a combinational logic circuit that displays the hexadecimal value of a Balanced Gray code input according to the specifications given in the assignment.
- 2) Debug and test your design by simulating it using the Logisim simulator.
- 3) Document your work in a short report.

Block Diagram

Code Definition

	Balanced	Binary
Hexadecimal	Gray Code	Code
Value	$(X_{3}X_{2}X_{1}X_{0})$	$(Y_3 Y_2 Y_1 Y_0)$
0	0000	0000
1	1000	0001
2	1100	0010
3	1101	0011
4	1111	0100
5	1110	0 1 0 1
6	1010	0110
7	0010	0111
8	0110	1000
9	0100	1001
Α	0101	1010
В	0111	1011
С	0011	1100
D	1011	1101
E	1001	1110
F	0001	1111

Conversion Example

$$(X_3, X_2, X_1, X_0) = (1, 0, 1, 1)$$

 $(Y_3, Y_2, Y_1, Y_0) = (1, 1, 0, 1) = \text{Hex "D"}$

Expression for Y₀

- Bit Y₀ is "1" if and only if an odd number of X bits are "1" (1 bit or 3 bits are "1")
- Thus, Y₀ is the exclusive-or (or modulo-2 sum) of the four X bits

$$Y_0 = X_3 \oplus X_2 \oplus X_1 \oplus X_0$$

Logic Blocks for Four Outputs

- 1) Design a combinational logic circuit that displays the hexadecimal value of a Balanced Gray code input according to the specifications given in the assignment.
- 2) Debug and test your design by simulating it using the Logisim simulator.
- 3) Document your work in a short report.

Start of the Circuit in Logisim

Modeling and Simulation Tips

- Begin with the provided starter circuit
- Test Y_0 by setting different values of $X_3X_2X_1X_0$ and observe output Y_0
 - Change inputs by clicking on the X inputs
 - Observe logic values (bright green ⇒ "1")
- Build and test the combinational logic for Y₁, then for Y₂, and, finally, for Y₃
- Test the full system by observing specified versus actual hexadecimal outputs for different input combinations

- 1) Design a combinational logic circuit that displays the hexadecimal value of a Balanced Gray code input according to the specifications given in the assignment.
- 2) Debug and test your design by simulating it using the Logisim simulator.
- 3) Document your work in a short report.

Project 1: Report Content

- Name, email, title at the top of page 1
- Body of the Report
 - Section 1 Objectives (What are you trying to do?)
 - Section 2 Truth Table (Re-ordered version of table in the assignment)
 - Section 3 Logic Expressions (What are the expressions and how did you derive them?)
 - Section 4 Circuit Design (Show the circuit from Logisim)
 - Section 5 Conclusions
- Cover the requested content, but keep it brief