

DataSet Santander

Overview

- 1. Objetivos
- 2. Estratégia
- 3. Resultados
- 4. Aplicação

Objetivos

	target	var_0	var_1	 var_197	var_198	var_199
0	0	8.9255	-6.7863	 8.5635	12.7803	-1.0914
1	0	11.5006	-4.1473	 8.7889	18356	1.9518
199998	0	9.7148	-8.6098	 10.0342	15.5289	-13.9001
199999	0	10.8762	-5.7105	 8.1857	12.1284	0.1385

Objetivos

• Redirecionamento de tendências;

- Targeted Marketing;
- Valores do Santander.

Estratégia

Vamos usar Machine Learning!!

Primeiro, deveríamos fazer um tratamento dos dados, mas o dataset já estava limpo.

Estratégia

Em seguida, procuramos padrões nas variáveis.

Maior Correlação: Corr(var_26,var_139) = 0.0098.

Estratégia

```
Modelo: GridSearchCV + Undersampling +
```

- LogisticRegression;
- RandomForest;
- XGBoost;
- LightGBM.

Resultados

Métrica escolhida: ROC AUC

Aplicação

Como aplicar o modelo escolhido, na prática?

Para o XGBoost com t = 0.5, a matriz de confusão é:

Aplicação

Uma possível escolha de custo:

F2 score = Média Harmônica entre Recall (com peso 2) e Precision.

- t = 0.34
- F2 score = 0.61

Antes (t = 0.5):

• F2 score = 0.57

