NGUYỄN THỊ CẨM VÂN

Khoa Khoa Học Ứng Dụng ĐẠI HỌC BÁCH KHOA TPHCM ĐẠI HỌC QUỐC GIA TPHCM

Ngày 31 tháng 10 năm 2019

Mail: ntcvantud@gmail.vn

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Câu 1.

Biết A có giá trị gần đúng là a = 0.5484 với sai số tương đối là $\delta_a = 0.21\%$. Ta làm tròn a thành a^* theo nguyên tắc quá bán đến chữ số thứ hai sau dấu chấm. Sai số tuyệt đối của a^* là:

(A) Các câu khác đều sai

B 0.1167

C 0.1168

D 0.0028

E 0.0027

BổI HCMUT-CNCP

Câu 1.

- Biết A có giá trị gần đúng là a = 0.5484 với sai số tương đối là $\delta_a = 0.21\%$. Ta làm tròn a thành a* theo nguyên tắc quá bán đến chữ số thứ hai sau dấu chấm. Sai số tuyệt đối của a* là:
 - A Các câu khác đều sai
 - **C** 0.1168
 - **E** 0.0027

- **B** 0.1167
- **D** 0.0028

Lời giải. Đáp án đúng

Câu 2.

■ Cho
$$A = \begin{bmatrix} 4 & m & -4 \\ 3 & 5 & 2 \\ 0 & -1 & 5 \end{bmatrix}$$
. Tìm tất cả giá trị m để $||A||_1 + ||A||_\infty = 21$

- A Các câu khác đều sai
- $m = \pm 2$ $m = \pm 2$

- B $-2 \le m \le 2$ D $m = \pm 2$ hoặc $m = \pm 1$

HƯỚNG DẪN CÂU 2

Câu 2.

■ Cho
$$A = \begin{bmatrix} 4 & m & -4 \\ 3 & 5 & 2 \\ 0 & -1 & 5 \end{bmatrix}$$
. Tìm tất cả giá trị m để $||A||_1 + ||A||_{\infty} = 21$

- A Các câu khác đều sai
- $m = \pm 2$ $m = \pm 2$ $m = \pm 2$

- **B** $-2 \le m \le 2$ **D** $m = \pm 2$ hoặc $m = \pm 1$

Lời giải. Đáp án đúng Bri HCMUT-CNCP

Câu 3.

- Cho biểu thức $f = xy y^2$. Biết $x = 1.8175 \pm 0.0061$ và $y = 1.7032 \pm 0.0065$. Sai số tuyệt đối của f là
 - A Các câu khác đều sai

 - **c** 0.0236
 - 0.0208

0.0237

0.0207

Câu 3.

- Cho biểu thức $f = xy y^2$. Biết $x = 1.8175 \pm 0.0061$ và $y = 1.7032 \pm 0.0065$. Sai số tuyệt đối của f là
 - (A) Các câu khác đều sai
 - **C** 0.0236
 - **E** 0.0208

- **B** 0.0237
- 0.0207

Lời giải. Đáp án đúng (E).

Câu 4.

- Phương trình $f(x) = x^3 + 6x 9.7 = 0$ trên khoảng cách ly nghiệm [1, 2] có nghiệm gần đúng $x^* = 1.19$. Sai số nhỏ nhất theo công thức đánh giá sai số tổng quát của x* là
 - A Các câu khác đều sai

 - 0.0971
 - **c** 0.0973

- **B** 0.0972
- 0.0970

HƯỚNG DẪN CÂU 4

Câu 4.

- Phương trình $f(x) = x^3 + 6x 9.7 = 0$ trên khoảng cách ly nghiệm [1,2] có nghiệm gần đúng $x^* = 1.19$. Sai số nhỏ nhất theo công thức đánh giá sai số tổng quát của x^* là
 - A Các câu khác đều sai
 - **c** 0.0973
 - **(E)** 0.0971

- **B** 0.0972
- 0.0970

.

Lời giải. Đáp án đúng C

Câu 5.

- Cho phương trình $f(x) = 2x^3 6x^2 + 13x 5 = 0$ trong khoảng cách li nghiệm [0, 1]. Theo phương pháp chia đôi, nghiệm gần đúng x_5 của phương trình là
 - A Các câu khác đều sai

B 0.4843

C 0.4844

D 0.4709

E 0.4708

BỞI HCMUT-CNCP

Câu 5.

- Cho phương trình $f(x) = 2x^3 6x^2 + 13x 5 = 0$ trong khoảng cách li nghiệm [0,1]. Theo phương pháp chia đôi, nghiệm gần đúng x_5 của phương trình là
 - A Các câu khác đều sai
 - **C** 0.4844
 - **E** 0.4708

- **B** 0.4843
- 0.4709

Lời giải. Đáp án đúng Coll HCMUT-CNCP

Câu 6.

Cho phương trình $x=\sqrt[3]{6x+7.5}$ thỏa điều kiện lặp đơn trên [2,3]. Nếu chọn $x_0=2.8$, tìm số lần lặp tối thiểu để được nghiệm với sai số tiên nghiệm nhỏ hơn 10^{-6}

(A) Các câu khác đều sai

B 11

C 13

D 12

E) 10

BŐI HCMUT-CNCP

Câu 6.

- Cho phương trình $x = \sqrt[3]{6x + 7.5}$ thỏa điều kiện lặp đơn trên [2,3]. Nếu chọn $x_0 = 2.8$, tìm số lần lặp tối thiểu để được nghiệm với sai số tiên nghiệm nhỏ hơn 10^{-6}
 - A Các câu khác đều sai
 - **C** 13
 - **E** 10

- **B** 11
- **D** 12

Lời giải. Đáp án đúng E

Câu 7.

- Cho phương trình $x = \sqrt[5]{3x + 13}$ thỏa điều kiện lặp trên [1,2]. Nếu chọn $x_0 = 1.0$ thì nghiệm gần đúng x_4 theo phương pháp lặp đơn là
 - A Các câu khác đều sai
 - **(C)** 1.8797
 - **E** 1.7897

B 1.8799

D 1.7899

BổI HCMUT-CNCP

Câu 7.

- Cho phương trình $x = \sqrt[5]{3x + 13}$ thỏa điều kiện lặp trên [1,2]. Nếu chọn $x_0 = 1.0$ thì nghiệm gần đúng x_4 theo phương pháp lặp đơn là
 - A Các câu khác đều sai
 - **C** 1.8797
 - **(E)** 1.7897

- **B** 1.8799
- **D** 1.7899

- Lời giải. Đáp án đúng D.
 - Loi giai. Dap an dung D.

Câu 8.

Cho phương trình $x = \sqrt[4]{3x+11}$ thỏa điều kiện lặp đơn trên [2,3]. Nếu chọn $x_0 = 2.5$ thì sai số tuyệt đối nhỏ nhất của nghiệm gần đúng x_3 theo công thức tiên nghiệm là

A Các câu khác đều sai

B 0.0002

0.0001

D 0.0004

E 0.0003

BổI HCMUT-CNCP

Câu 8.

- Cho phương trình $x = \sqrt[4]{3x+11}$ thỏa điều kiện lặp đơn trên [2,3]. Nếu chọn $x_0 = 2.5$ thì sai số tuyệt đối nhỏ nhất của nghiệm gần đúng x_3 theo công thức tiên nghiệm là
 - 🛕 Các câu khác đều sai
 - **C** 0.0001
 - **E** 0.0003

- **B** 0.0002
- **D** 0.0004

Lời giải. Đáp án đúng

Câu 9.

- Cho phương trình $f(x) = 2x^3 5x^2 + 7x 5.5 = 0$ trong khoảng cách ly nghiệm [1,2]. Với $x_0 = 1.9$ tìm nghiệm gần đúng x_5 theo phương pháp Newton là
 - (A) Các câu khác đều sai

B 1.4026

C 1.4027

D 1.4025

E 1.4024

BỞI HCMUT-CNCP

HƯỚNG DẪN CÂU 9

Câu 9.

- Cho phương trình $f(x) = 2x^3 5x^2 + 7x 5.5 = 0$ trong khoảng cách ly nghiệm [1,2]. Với $x_0 = 1.9$ tìm nghiệm gần đúng x_5 theo phương pháp Newton là
 - 🛕 Các câu khác đều sai
 - **C** 1.4027
 - **(E)** 1.4024

- **B** 1.4026
- **D** 1.4025

Lời giải. Đáp án đúng D.

Câu 10.

- Cho phương trình $f(x) = 2x^3 5x^2 + 7x 5 = 0$ trong khoảng cách ly nghiệm [1,2]. Với x_0 cho bởi điều kiện Fourier, sai số của nghiệm gần đúng x_2 tính theo công thức sai số tổng quát là
 - (A) Các câu khác đều sai

B 0.4195

C 0.4194

0.0588

E 0.0587

BỞI HCMUT-CNCP

Câu 10.

- Cho phương trình $f(x) = 2x^3 5x^2 + 7x 5 = 0$ trong khoảng cách ly nghiệm [1,2]. Với x_0 cho bởi điều kiện Fourier, sai số của nghiệm gần đúng x_2 tính theo công thức sai số tổng quát là
 - 🛕 Các câu khác đều sai
 - **C** 0.4194
 - **(E**) 0.0587

- **B** 0.4195
- **D** 0.0588

Lời giải. Đáp án đúng Di HCMUT-CNCP

Câu 11.

■ Cho
$$A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & \alpha & -2 \\ 0 & -2 & -5 \end{bmatrix}$$
. Với giá trị nào của α thì ma trận A là ma trận đối

xứng và xắc định dương

(A)
$$\alpha$$
 < 0.534

$$\alpha > 1.334$$

$$\alpha < 0.334$$
 $\alpha > 1.334$ $\beta = 0.334$ $\beta =$

$$leve{f B}$$
 $lpha>$ 1.333

D
$$\alpha$$
 < 0.533

Câu 11.

■ Cho
$$A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & \alpha & -2 \\ 0 & -2 & -5 \end{bmatrix}$$
. Với giá trị nào của α thì ma trận A là ma trận đối

xứng và xắc định dương

A
$$\alpha$$
 < 0.534

$$\alpha > 1.334$$

$$\bigcirc R \sim 1.333$$

$$\bigcirc$$
 α < 0.533

Lời giải. Đáp án đúng E O H C M U T - C N C P

Câu 12.

Cho
$$A = \begin{bmatrix} 3 & 5 & 7 \\ 2 & 3 & -1 \\ 1 & 2 & 4 \end{bmatrix}$$
. Tìm phần tử U_{23} của ma trận U trong phân tích

Doolitle của ma trận A = LU

- A Các câu khác đều sai
- $U_{23} = -5.6667$ $U_{23} = -5.6669$

HƯỚNG DẪN CÂU 12

Câu 12.

Cho
$$A = \begin{bmatrix} 3 & 5 & 7 \\ 2 & 3 & -1 \\ 1 & 2 & 4 \end{bmatrix}$$
. Tìm phần tử U_{23} của ma trận U trong phân tích

Doolitle của ma trân A = LU

- A Các câu khác đều sai
- C) $U_{23} = -5.6667$
- $U_{23} = -5.6669$

$$U_{23} = -5.6665$$
 $U_{23} = -5.6663$

$$D U_{23} = -5.6663$$

Lời giải. Đáp án đúng COI HCMUT-CNCP

Câu 13.

■ Cho
$$A = \begin{bmatrix} 4 & 3 & 2 \\ 3 & 6 & -4 \\ 2 & -4 & 10 \end{bmatrix}$$
. Phân tích $A = BB^T$ theo phương pháp Choleski,

tổng các phần tử $tr(B) = b_{11} + b_{22} + b_{33}$ của ma trận B là

(A) Các câu khác đều sai

(B) 5.9026

(D) 3.9026

E) 4.9026

HƯỚNG DẪN CÂU 13

Câu 13.

■ Cho
$$A = \begin{bmatrix} 4 & 3 & 2 \\ 3 & 6 & -4 \\ 2 & -4 & 10 \end{bmatrix}$$
. Phân tích $A = BB^T$ theo phương pháp Choleski,

tổng các phần tử tr(
$$B$$
) = $b_{11} + b_{22} + b_{33}$ của ma trận B là A Các câu khác đều sai B 5.9026

- **c** 6.9026
- 4.9026

Lời giải. Đáp án đúng (E) OI HCMUT-CNCP

Câu 14.

■ Cho $A = \begin{bmatrix} 6.2 & 6 \\ 7.1 & 8 \end{bmatrix}$. Số điều kiện tính theo chuẩn vô hạn của ma trận là

A 30.2

C Các câu khác đều sai

E 34.2

B 36.2

D 32.2

BổI HCMUT-CNCP

HƯỚNG DẪN CÂU 14

Câu 14.

- Cho $A = \begin{bmatrix} 6.2 & 6 \\ 7.1 & 8 \end{bmatrix}$. Số điều kiện tính theo chuẩn vô hạn của ma trận là

 - A 30.2 C Các câu khác đều sai
 - **E** 34.2

- B 36.2D 32.2

Lời giải. Đáp án đúng A.

Câu 15.

- Cho phương trình $x = \sqrt[3]{10 3x}$, $x_0 = 1$, theo phương pháp lặp thì phải lặp tới bước thứ n là bao nhiều $d\vec{e} | x_n x_{n-1} | < 10^{-5}$
 - A Các câu khác đều sai
 - **(C)** 14
 - **C** 14

- **D** 1
-) 14

BŐI HCMUT-CNCP

HƯỚNG DẪN CÂU 15

Câu 15.

- Cho phương trình $x = \sqrt[3]{10 3x}$, $x_0 = 1$, theo phương pháp lặp thì phải lặp tới bước thứ n là bao nhiêu để $|x_n - x_{n-1}| < 10^{-5}$
 - A Các câu khác đều sai

- Lời giải. Đáp án đúng (E).

Câu 16.

■ Cho hệ phương trình $\begin{cases} 13x_1 - 2x_2 = 4 \\ -6x_1 + 15x_2 = 5 \end{cases}$ Với $x^{(0)} = [0.3, 0.4]^T$. Vecto $x^{(5)}$ tính

theo phương pháp Jacobi là

- A Các câu khác đều sai
- © [0.3831; 0.4856]^T
 E [0.3829; 0.4858]^T
- **B** [0.3825; 0.4862]^T **D** [0.3827; 0.4860]^T

Câu 16.

Cho hệ phương trình $\begin{cases} 13x_1 - 2x_2 = 4 \\ -6x_1 + 15x_2 = 5 \end{cases}$. Với $x^{(0)} = [0.3, 0.4]^T$. Vecto $x^{(5)}$ tính

theo phương pháp Jacobi là

- A Các câu khác đều sai
- © [0.3831; 0.4856]⁷
- **E** [0.3829: 0.4858]⁷

- **B** $[0.3825; 0.4862]^T$ **D** $[0.3827; 0.4860]^T$

Lời giải. Đáp án đúng Bright HCMUT-CNCP

Câu 17.

■ Cho hệ phương trình $\begin{cases} 11x_1 - 5x_2 = 3 \\ 2x_1 + 12x_2 = 4 \end{cases}$ Với $x^{(0)} = [0.4, 0.3]^T$. Sai số $\Delta x^{(5)}$

của vecto $x^{(5)}$ tính theo phương pháp Jacobi, sử dụng chuẩn một và công thức tiên nghiệm là

A Các câu khác đều sai

B 0.0015 D 0.0014

c 0.0017

0.0016

Câu 17.

■ Cho hệ phương trình $\begin{cases} 11x_1 - 5x_2 = 3 \\ 2x_1 + 12x_2 = 4 \end{cases}$ Với $\mathbf{x}^{(0)} = [0.4, 0.3]^T$. Sai số $\Delta \mathbf{x}^{(5)}$

của vecto $x^{(5)}$ tính theo phương pháp Jacobi, sử dụng chuẩn một và công thức tiên nghiêm là

A Các câu khác đều sai

B 0.0015

C 0.0017

D 0.0014

E 0.0016

Hướng dẫn câu 17 (tiếp tục)

Lời giải. Đáp án đúng E.

TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

ACHKHOACNCP.COM

Câu 18.

■ Cho hệ phương trình $\begin{cases} 10x_1 + 7x_2 = 7 \\ -5x_1 + 15x_2 = 6 \end{cases}$ Với $x^{(0)} = [0.3, 0.5]^T$. Vecto $x^{(3)}$ tính

theo phương pháp Gauss-Seidel là

- A Các câu khác đều sai
- © [0.4655; 0.5094]^T
 E [0.4679; 0.5087]^T
- **B** [0.4303; 0.4909]^T **D** [0.4655; 0.5190]^T

Câu 18.

Cho hệ phương trình $\begin{cases} 10x_1 + 7x_2 = 7 \\ -5x_1 + 15x_2 = 6 \end{cases}$. Với $x^{(0)} = [0.3, 0.5]^T$. Vecto $x^{(3)}$ tính

theo phương pháp Gauss-Seidel là

- A Các câu khác đều sai
- **C** [0.4655; 0.5094]⁷
- **E**) [0.4679; 0.5087]⁷

- **B** $[0.4303; 0.4909]^T$ **D** $[0.4655; 0.5190]^T$

Lời giải. Đáp án đúng E JI HCMUT-CNCP

Câu 19.

- Cho hệ phương trình $\begin{cases} 15x_1 + 7x_2 = 3 \\ -7x_1 + 14x_2 = 3 \end{cases}$. Với $x^{(0)} = [0.2; 0.3]^T$, sử dụng phương pháp Jacobi, tìm chỉ số n nhỏ nhất để $||x^{(n)} x^{(n-1)}||_1 \le 0.0300$

- A Các câu khác đều sai
 C 7
 TAILIÊU D 5 U TÂP

Câu 19.

- Cho hệ phương trình $\begin{cases} 15x_1 + 7x_2 = 3 \\ -7x_1 + 14x_2 = 3 \end{cases}$. Với $x^{(0)} = [0.2; 0.3]^T$, sử dụng phương pháp Jacobi, tìm chỉ số n nhỏ nhất để $||x^{(n)} x^{(n-1)}||_1 \le 0.0300$
 - Các câu khác đều sai

- u khác đều sai TẠI LIỆU ĐỐ 5 U TẬP

Hướng dẫn câu 19 (tiếp tực)

Lời giải. Đáp án đúng E.

TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

BACHKHOACNCP.COM

Câu 20.

■ Cho hệ phương trình $\begin{cases} 10x_1 - 2x_2 = 1 \\ -6x_1 + 12x_2 = 3 \end{cases}$ Với $x^{(0)} = [0.2; 0.3]^T$, sử dụng

phương pháp Gauss-Seidel, đánh giá sai số $\Delta x^{(2)}$ của vecto $x^{(2)}$ theo công thức hâu nghiệm và chuẩn vô cùng là

- A Các câu khác đều sai

 B 0.0013

 C 0.0012

 D 0.0015

E 0.0014

Câu 20.

■ Cho hệ phương trình $\begin{cases} 10x_1 - 2x_2 = 1 \\ -6x_1 + 12x_2 = 3 \end{cases}$. Với $x^{(0)} = [0.2; 0.3]^T$, sử dụng

phương pháp Gauss—Seidel, đánh giá sai số $\Delta x^{(2)}$ của vecto $x^{(2)}$ theo công thức hậu nghiệm và chuẩn vô cùng là

- A Các câu khác đều sai
 - **B** 0.0013

C 0.0012

D 0.0015

E 0.0014

BOTHEMUT-CNEP

Hướng Dẫn Câu 20 (TIẾP TỤC)

Lời giải. Đáp án đúng D.

TÀI LIÊU SƯU TẬP

<ロ > (間) (間) (目) (目)