

IA P

Escola Politècnica Superior Escuela Politécnica Superior

Tema 1: Matrices y Sistemas de Ecuaciones

Fundamentos de Matemática Aplicada a la Inteligencia Artificial II

Kristian Alonso Stenberg Miguel Lloret Climent

Departamento de Matemática Aplicada

Curso 2023 - 2024

Índice

Matrices

Concepto de matriz
Matrices iguales
Clasificación de matrices
Tipos de matrices cuadradas
Operaciones con matrices
Matriz traspuesta
Rango de una matriz
Matriz inversa
Ecuaciones matriciales

Concepto de matriz

Matriz

Una matriz A es un conjunto de números ordenados en m filas y n columnas:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

- **Dimensión** de una matriz: $m \times n$
- **Elementos** de una matriz: números a_{ij} $\begin{cases} \mathsf{Sub\'indice}\ i o \mathsf{fila} \\ \mathsf{Sub\'indice}\ j o \mathsf{columna} \end{cases}$
- **Subíndices:** i = 1, 2, ..., m j = 1, 2, ..., n

Concepto de matriz

Notación de una matriz:

$$A A = (a_{ij}) A = [a_{ij}] A = (a_{ij})_{m \times n}$$

Ejemplo

Consideremos la matriz A:

$$A = \left(\begin{array}{rrrr} 4 & 6 & 5 & -1 \\ 0 & 2 & 1 & 0 \\ -2 & 7 & 0 & -4 \end{array}\right)$$

- Dimensión: 3 × 4
- Elementos: $a_{11} = 4$, $a_{23} = 1, \dots$ Columna 3: $C_3 = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}$
- Fila 2: $F_2 = (0 \ 2 \ 1 \ 0)$

Concepto de matriz

- Conjunto de matrices de dimensión $m \times n$: $\mathcal{M}_{m \times n}$
- En el ejemplo anterior: $A \in \mathcal{M}_{3\times 4}$

Ejercicios

1 Escribir una matriz $A \in \mathcal{M}_{3\times 2}$ que cumpla lo siguiente:

$$a_{ij} = (-1)^{i+j} \cdot (2j+1)$$

Solución:

$$A = \begin{pmatrix} 3 & -5 \\ -3 & 5 \\ 3 & -5 \end{pmatrix}$$

Matrices iguales

Matrices iguales

Dos matrices A y B son iguales si:

- 1 Tienen la misma dimensión: $m \times n$
- **2** Los elementos correspondientes coinciden: $a_{ij} = b_{ij} \ \forall i, j$.

Ejemplo

 $_{i}A = B? _{i}C = D?
 _{i}C = D?$

$$A = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 3 \end{pmatrix}$ $C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ $D = \begin{pmatrix} 1 & y \\ x & 4 \end{pmatrix}$

- $A \neq B$ porque tienen distinta dimensión: $2 \times 1 \neq 1 \times 2$.
- C = D solo si x = 3 e y = 2.

Matrices iguales

Ejercicios

2 Determinar x e y para que las matrices A y B sean iguales:

$$A = \begin{pmatrix} 2x + 1 & 3y \\ 0 & y^2 - 5y \end{pmatrix} \quad B = \begin{pmatrix} x + 3 & y^2 + 2 \\ 0 & -6 \end{pmatrix}$$

Solución: x = 2, y = 2.

Clasificación de matrices

• Matriz fila: Tiene 1 fila y n columnas $(1 \times n)$.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{pmatrix}$$

• Matriz columna: Tiene m filas y 1 columna $(m \times 1)$.

$$A = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}$$

Ejemplo

$$A = \begin{pmatrix} 1 & -1 & 3 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Matriz fila de 1×4

Matriz columna de 2×1

Clasificación de matrices

• Matriz nula: Todos sus elementos son 0. Se representa con: \mathcal{O}

$$\mathcal{O} = \left(\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{array}\right)$$

Importante

Hay una matriz nula para cada dimensión:

$$\mathcal{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \mathcal{O} = \begin{pmatrix} 0 & 0 \end{pmatrix} \qquad \mathcal{O} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

dim. 2×1 dim. 1×2 dim. 2×2

Clasificación de matrices

• Matriz cuadrada: Tiene mismo n^{Q} de filas y columnas (m = n).

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \quad \begin{array}{c} \text{dimension } n \times n \\ \parallel \\ \text{orden } n \end{array}$$

• Matriz rectangular: Matriz que no es cuadrada $(m \neq n)$.

Ejemplo

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ -1 & 4 & 3 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Matriz cuadrada Matriz cuadrada Matriz rectangular orden 2 orden 3 dim $. 2 \times 3$

Diagonal principal y Traza

La diagonal principal de una matriz cuadrada A está formada por todos los elementos a_{ii} (i = 1, 2, ... n):

$$\{a_{11}, a_{22}, \ldots, a_{nn}\}$$

La traza es la suma de los elementos de la diagonal principal:

$$tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$$

Diagonal principal $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$ i = i

Ejemplo

$$A = \left(\begin{array}{ccc} \mathbf{2} & -2 & 0 \\ 1 & -\mathbf{3} & 3 \\ 1 & 3 & \mathbf{10} \end{array}\right)$$

D. ppal: $\{2, -3, 10\}$ tr(A) = 9

 Matriz triangular superior: Todos los elementos por debajo de la diagonal principal son 0.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix} a_{ij} = 0 \text{ si } i > j$$

$$i > j$$

$$A = \begin{pmatrix} 7 & -1 \\ \mathbf{0} & 10 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -3 & 0 \\ \mathbf{0} & 1 & 3 \\ \mathbf{0} & \mathbf{0} & 14 \end{pmatrix}$$

 Matriz triangular inferior: Todos los elementos por encima de la diagonal principal son 0.

$$A = \begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & a_{32} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix} \quad a_{ij} = 0 \text{ si } i < j$$

$$A = \begin{pmatrix} 7 & \mathbf{0} \\ -1 & 10 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & \mathbf{0} & \mathbf{0} \\ -3 & 1 & \mathbf{0} \\ 0 & 3 & 14 \end{pmatrix}$$

 Matriz diagonal: Todos los elementos fuera de la diagonal principal son 0.

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} a_{ij} = 0 \text{ si } i \neq j$$

• Matriz escalar: Matriz diagonal con $a_{ii} = k$.

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
Matriz diagonal Matriz escalar

• Matriz identidad: Matriz escalar con $a_{ii} = 1$. Se representa con: I

$$I=\left(egin{array}{cccc} 1&0&\cdots&0\ 0&1&\cdots&0\ dots&dots&\ddots&dots\ 0&0&\cdots&1 \end{array}
ight)$$

Importante

Hay una matriz identidad para cada orden:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

orden 2

orden 3

orden 4

Ejercicios

3 Considerando la matriz:

$$A = \left(\begin{array}{cccc} x & x+y & x-z \\ x-y & y & y+z \\ x+z-2 & z-y & z \end{array}\right)$$

- a) Calcular x, y, z para que la matriz A sea triangular superior.
- **b)** Calcular x, y, z para que la matriz A sea triangular inferior.
- c) Obtener las trazas de ambas matrices triangulares.

Ejercicios

Solución:

a) Triangular superior cuando x = y = z = 1:

$$T_{sup} = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right)$$

b) Triangular inferior cuando x = z = a, y = -a ($a \in \mathbb{R}$):

$$T_{inf} = \begin{pmatrix} a & 0 & 0 \\ 2a & -a & 0 \\ 2a - 2 & 2a & a \end{pmatrix}$$

c)
$$tr(T_{sup}) = 3$$
, $tr(T_{inf}) = a$

Suma y resta de matrices

La **suma y resta de dos matrices** A y B de la misma dimensión $m \times n$ es:

$$A+B=(a_{ij}+b_{ij}) A-B=(a_{ij}-b_{ij})$$

Las matrices suma A + B y resta A - B tienen dimensión $m \times n$.

Propiedades:

- Conmutativa: A + B = B + A
- Asociativa: A + (B + C) = (A + B) + C
- Elemento neutro: $A + \mathcal{O} = A$
- Elemento opuesto: $A + (-A) = \mathcal{O}$

Importante

Si A y B tienen distinta dimensión no se pueden sumar ni restar.

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 0 & -8 & 5 \end{pmatrix}_{2\times 3} \qquad B = \begin{pmatrix} -1 & 0 & 2 \\ 1 & 8 & -3 \end{pmatrix}_{2\times 3}$$

$$C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{2 \times 3} \qquad D = \begin{pmatrix} 1 \\ 3 \end{pmatrix}_{2 \times 1}$$

$$A + B = \begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 2 \end{pmatrix}_{2 \times 3}$$
 $A - A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{2 \times 3}$

$$A+C=\begin{pmatrix} 3 & -1 & 2 \\ 0 & -8 & 5 \end{pmatrix}_{2\times 3}$$
 $A+D\to \text{No pueden sumarse}$ $B-D\to \text{No pueden restarse}$

Producto de un número por una matriz

El **producto de un número** real k **por una matriz** A de dimensión $m \times n$ es:

$$k \cdot A = (k \cdot a_{ij})$$

La matriz resultado $k \cdot A$ tiene dimensión $m \times n$.

Propiedades:

•
$$k \cdot (A + B) = k \cdot A + k \cdot B$$

•
$$1 \cdot A = A$$

•
$$(k_1 + k_2) \cdot A = k_1 \cdot A + k_2 \cdot A$$

•
$$0 \cdot A = \mathcal{O}$$

•
$$(k_1 \cdot k_2) \cdot A = k_1 \cdot (k_2 \cdot A)$$

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 0 & 2 \\ -7 & 1 & 8 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

$$3A = 3 \cdot \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{pmatrix} = \begin{pmatrix} 3 & -6 & 9 \\ 12 & 15 & -18 \end{pmatrix}$$

$$3A - 2B = \begin{pmatrix} 3 & -6 & 9 \\ 12 & 15 & -18 \end{pmatrix} + \begin{pmatrix} -6 & 0 & -4 \\ 14 & -2 & -16 \end{pmatrix} = \begin{pmatrix} -3 & -6 & 5 \\ 26 & 13 & -34 \end{pmatrix}$$

$$\frac{1}{2}A = \begin{pmatrix} \frac{1}{2} & -1 & \frac{3}{2} \\ 2 & \frac{5}{2} & -3 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{matrix} 3 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 3 \cdot I$$

Ejercicios

Calcular la matriz:

$$X=\frac{1}{6}\left(4A+3B-2I\right)$$

Donde:

$$A = \begin{pmatrix} -4 & 0 & 1 \\ 1 & -5 & 0 \\ -3 & 2 & 1 \end{pmatrix} \text{ y } B = \begin{pmatrix} 1 & 2 & 0 \\ -2 & 1 & -1 \\ 4 & 4 & 0 \end{pmatrix}$$

Solución:

$$X = \begin{pmatrix} -5/2 & 1 & 2/3 \\ -1/3 & -19/6 & -1/2 \\ 0 & 10/3 & 1/3 \end{pmatrix}$$

Producto de matrices

El **producto de dos matrices** $A(m \times n)$ y $B(n \times p)$ es la matriz:

$$C = A \cdot B = (c_{ij})$$

donde:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{nj} \quad \forall i, j$$

La matriz producto $C = A \cdot B$ tiene dimensión $m \times p$.

Importante

Para poder multiplicar A y B:

 N° de columnas de $A = N^{\circ}$ de filas de B

• Se trata de multiplicar cada fila de A por cada columna de B:

Si
$$A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$$
 y $B = \begin{pmatrix} 2 & 0 & -4 \\ 3 & -2 & 6 \end{pmatrix}$, calcular $A \cdot B$ y $B \cdot A$:

$$A \cdot B = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & -4 \\ 3 & -2 & 6 \end{pmatrix} = \frac{2 \times 2}{2 \times 3}$$

$$=\left(\begin{array}{cccc} 1\cdot 2+3\cdot 3 & 1\cdot 0+3\cdot (-2) & 1\cdot (-4)+3\cdot 6 \\ 2\cdot 2+(-1)\cdot 3 & 2\cdot 0+(-1)(-2) & 2\cdot (-4)+(-1)\cdot 6 \end{array}\right)_{2\times 3}=$$

$$= \begin{pmatrix} 11 & -6 & 14 \\ 1 & 2 & -14 \end{pmatrix}$$

Continuación del ejemplo

Si
$$A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$$
 y $B = \begin{pmatrix} 2 & 0 & -4 \\ 3 & -2 & 6 \end{pmatrix}$, calcular $A \cdot B$ y $B \cdot A$:

No pueden multiplicarse: $3 \neq 2$.

Importante

En general, el producto de matrices no es conmutativo:

$$A \cdot B \neq B \cdot A$$

Propiedades del producto de matrices:

- Asociativa: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- Distributiva por la izda: $A \cdot (B + C) = A \cdot B + A \cdot C$
- Distributiva por la dcha: $(B + C) \cdot A = B \cdot A + C \cdot A$
- Elemento neutro: $I \cdot A = A \cdot I = A$
- Matriz nula: $\mathcal{O} \cdot A = A \cdot \mathcal{O} = \mathcal{O}$
- Es posible que $A \cdot B = \mathcal{O}$ siendo $A \neq \mathcal{O}$ y $B \neq \mathcal{O}$

Ejercicios

6 Considerando las matrices:

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right) \text{ y } B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

- a) Verificar que: $(A + B)(A B) \neq A^2 B^2$
- b) ¿Por qué sucede lo anterior?

Ejercicios

Solución:

a)
$$(A+B)(A-B) = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 2 & -2 \\ -1 & 0 & -1 \end{pmatrix} \neq \begin{pmatrix} 0 & 1 & 1 \\ -2 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix} = A^2 - B^2$$

b) Porque, en general, el producto de matrices no es conmutativo:

$$(A + B)(A - B) = A^2 - AB + BA - B^2$$

Y como $AB \neq BA$, no podemos cancelar -AB y +BA.

Por tanto, no obtenemos $A^2 - B^2$.

Matriz traspuesta

La matriz traspuesta A^t se obtiene al cambiar en la matriz $A(m \times n)$ las filas por las columnas:

$$A=(a_{ij})\rightarrow A^t=(a_{ji})$$

La matriz traspuesta A^t tiene dimensión $n \times m$.

Propiedades:

•
$$(A + B)^t = A^t + B^t$$

•
$$(A \cdot B)^t = B^t \cdot A^t$$

•
$$(A^t)^t = A$$

•
$$(k \cdot A)^t = k \cdot A^t$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}_{2 \times 3} \longrightarrow A^{t} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}_{3 \times 2}$$

$$B = \begin{pmatrix} 2 & -5 & 1 \\ 0 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}_{3 \times 3} \rightarrow B^{t} = \begin{pmatrix} 2 & 0 & 1 \\ -5 & 3 & 2 \\ 1 & -2 & -4 \end{pmatrix}_{3 \times 3}$$

$$C = \begin{pmatrix} 1 & -3 & -5 \end{pmatrix}_{1 \times 3} \longrightarrow C^t = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}_{3 \times 1}$$

$$D = \begin{pmatrix} 2 \\ 8 \end{pmatrix}_{2 \times 1} \qquad \rightarrow \quad D^t = \begin{pmatrix} 2 & 8 \end{pmatrix}_{1 \times 2}$$

• Una matriz cuadrada A es **simétrica** si: $A = A^t$

$$A = \begin{pmatrix} a & d & e \\ d & b & f \\ e & f & c \end{pmatrix} \rightarrow \text{Los elementos simétricos a la diagonal principal son iguales}$$

• Una matriz cuadrada A es antisimétrica si: $A = -A^t$

$$A = \begin{pmatrix} 0 & d & e \\ -d & 0 & f \\ -e & -f & 0 \end{pmatrix} \rightarrow \text{Los elementos simétricos son opuestos}$$

$$\text{La diagonal principal tiene 0s}$$

Ejemplo

$$A = \begin{pmatrix} 3 & -5 & 0 \\ -5 & 2 & 1 \\ 0 & 1 & 6 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 & -2 & 0 \\ -1 & 0 & -3 & -1 \\ 2 & 3 & 0 & 4 \\ 0 & 1 & -4 & 0 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix}$$

Simétrica

Antisimétrica

Ni sim. ni antisim.

No lo olvides

Si A es una matriz cuadrada:

- La matriz $A + A^t$ es simétrica.
- La matriz $A A^t$ es antisimétrica.
- $A = \frac{1}{2}(A + A^t) + \frac{1}{2}(A A^t)$

Ejercicios

6 Encontrar todas las matrices, X, simétricas de orden 2 que verifiquen: $X^2 = I$.

Solución: Las matrices *X* pueden ser:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$\begin{pmatrix} a & \sqrt{1-a^2} \\ \sqrt{1-a^2} & -a \end{pmatrix}, \begin{pmatrix} a & -\sqrt{1-a^2} \\ -\sqrt{1-a^2} & -a \end{pmatrix}$$

$$con -1 < a < 1$$

Rango de una matriz

Dependencia lineal de filas

Una fila no nula F_i de una matriz **depende linealmente** (D.L.) de las filas F_{j1} , F_{j2} ,..., F_{jm} si:

$$F_i = k_1 F_{j1} + k_2 F_{j2} + \dots + k_m F_{jm}$$

$$k_1, k_2, \ldots, k_m \in \mathbb{R} \to \text{no todos } 0$$

Es decir: F_i es **combinación lineal** de F_{j1} , F_{j2} ,..., F_{jm} .

Independencia lineal de filas

Una fila de una matriz es linealmente independiente (L.I.) cuando no depende linealmente de otras filas.

Rango de una matriz

Ejemplo

$$A = \begin{pmatrix} 1 & 1 & 2 \\ -2 & -2 & -4 \end{pmatrix}$$
 $F_2 = -2 \cdot F_1 \to F_2$ D.L. de F_1

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 3 & 3 & -8 \end{pmatrix} \quad F_2 \neq k \cdot F_1 \ \rightarrow F_1 \text{ y } F_2 \text{ son L.I.}$$

$$A = egin{pmatrix} 1 & 1 & 0 \ 2 & 1 & 1 \ 4 & 3 & 1 \end{pmatrix} \qquad egin{pmatrix} F_2
eq k \cdot F_1 & o F_1 \ y \ F_2 \ ext{son L.I.} \ F_3 = 2 \cdot F_1 + F_2 o F_3 \ ext{D.L.} \ ext{de } F_1 \ y \ F_2 \ ext{de } F_2 \ ext{de } F_3 \ ext{D.L.} \ ext{de } F_1 \ y \ F_2 \ ext{de } F_2 \ ext{de } F_3 \ ext{D.L.} \ ext{de } F_1 \ y \ F_2 \ ext{de } F_2 \ ext{de } F_3 \ ext{D.L.} \ ext{de } F_1 \ y \ F_2 \ ext{de } F_2 \ ext{de } F_3 \ ext{D.L.} \ ext{de } F_1 \ y \ F_2 \ ext{de } F_3 \ ext{de } F_3$$

Recuerda

Las definiciones anteriores también son válidas para las columnas.

Rango de una matriz

El **rango de una matriz** A, rg(A), es el n^{Q} de filas o de columnas no nulas L.I.

Ejemplo

Las filas que D.L. y las nulas no cuentan para el rango:

$$A = \begin{pmatrix} 1 & 1 & 2 \\ -2 & -2 & -4 \\ 0 & 0 & 0 \end{pmatrix} \quad F_2 \text{ D.L. de } F_1$$

$$F_3 \text{ es nula} \quad F_3 \text{ es nula} \quad F_4 \text{ project} \quad F_4 \text{ proje$$

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 4 & 3 & 1 \end{pmatrix}$$
 F_3 D.L. de F_1 y $F_2 \to rg(A) = 2$

Para calcular el rango usamos: Método de Gauss o Determinantes.

1 Método de Gauss: $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \sim \begin{pmatrix} t_{11} & t_{12} & t_{13} \\ 0 & t_{22} & t_{23} \\ 0 & 0 & t_{33} \end{pmatrix}$

Convertimos la matriz A en una triangular con 0s bajo la diagonal. Para ello, aplicamos operaciones elementales sobre filas:

- i) $F_i \leftrightarrow F_i$
- ii) $F_i \rightarrow aF_i \ (a \neq 0)$
- iii) $F_i \rightarrow aF_i + bF_j$ $(a, b \neq 0)$

 $rg(A) = n^{\underline{o}}$ de filas **no nulas** de la matriz triangular

Recuerda

- Podemos aplicar operaciones elementales sobre columnas.
- Si la matriz tiene más filas que columnas: $rg(A) = rg(A^t)$
- $\operatorname{rg}(A) \leqslant \min\{m, n\}$
- $rg(A \cdot B) \leq min \{rg(A), rg(B)\}$

Ejemplo

Mediante el método de Gauss, calcular el rango de A:

$$A = \left(\begin{array}{rrrr} 2 & 5 & 1 & -3 \\ 1 & 3 & -2 & 1 \\ -1 & 3 & 2 & -3 \\ 3 & -4 & -1 & 2 \end{array}\right)$$

Continuación del ejemplo

$$rg(A) = 3$$

Ejercicios

7 Calcular el rango de A según los valores del parámetro λ . Utilizar el método de Gauss:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ \lambda & -1 & 10 \\ -1 & \lambda & -6 \\ 2 & 5 & 1 \end{pmatrix}$$

Solución:

Si
$$\lambda = 3 \rightarrow \operatorname{rg}(A) = 2$$

Si
$$\lambda \neq 3 \rightarrow \operatorname{rg}(A) = 3$$

2 Rango por determinantes:

Menor de orden k de una matriz A

Es el **determinante** formado por los elementos que pertenecen a k filas y k columnas de A.

Ejemplo

$$A = \begin{pmatrix} -1 & 0 & 0 & 2 & -2 \\ 3 & 1 & -1 & 4 & 0 \\ 2 & 1 & -1 & 6 & -2 \end{pmatrix}$$

- Menores de **orden 1**: $-1, 0, 0, 2, -2, \dots, 6, -2$
- Menores de orden 2:

$$\begin{vmatrix} F_1 & F_2 \\ C_1 & C_2 \end{vmatrix} \rightarrow \begin{vmatrix} -1 & 0 \\ 3 & 1 \end{vmatrix} = -1, \quad \begin{vmatrix} F_1 & F_2 \\ C_1 & C_3 \end{vmatrix} \rightarrow \begin{vmatrix} -1 & 0 \\ 3 & -1 \end{vmatrix} = 1 \dots$$

Continuación del ejemplo

$$\begin{vmatrix} F_1 & F_3 \\ C_1 & C_2 \end{vmatrix} \rightarrow \begin{vmatrix} -1 & 0 \\ 2 & 1 \end{vmatrix} = -1, \dots, \begin{vmatrix} F_2 & F_3 \\ C_4 & C_5 \end{vmatrix} \rightarrow \begin{vmatrix} 4 & 0 \\ 6 & -2 \end{vmatrix} = -8$$

Menores de orden 3:

$$\begin{vmatrix}
F_1 & F_2 & F_3 \\
C_1 & C_2 & C_3
\end{vmatrix} \rightarrow \begin{vmatrix}
-1 & 0 & 0 \\
3 & 1 & -1 \\
2 & 1 & -1
\end{vmatrix} = 0, \dots$$

$$\begin{vmatrix}
F_1 & F_2 & F_3 \\
C_3 & C_4 & C_5
\end{vmatrix} \rightarrow \begin{vmatrix}
0 & 2 & -2 \\
-1 & 4 & 0 \\
-1 & 6 & -2
\end{vmatrix} = 0$$

No hay menores de **orden** > 4.

Rango por determinantes:

rg(A) = orden del mayor menor**no nulo**de A

Ejercicios

Calcular el rango de la matriz a partir de sus menores:

$$A = \begin{pmatrix} -1 & 0 & 0 & 2 & -2 \\ 3 & 1 & -1 & 4 & 0 \\ 2 & 1 & -1 & 6 & -2 \\ 6 & 2 & -2 & 1 & 0 \end{pmatrix}$$

Solución: rg(A) = 3

9 Resolver el ejercicio 7 utilizando menores.

Matriz inversa

La **matriz inversa** A^{-1} de una matriz cuadrada A (orden n) verifica que:

$$A \cdot A^{-1} = I$$
 y $A^{-1} \cdot A = I$

La matriz inversa A^{-1} , si existe, tiene orden n y es única.

- A es invertible o regular cuando tiene inversa.
- A es singular cuando no tiene inversa.

Propiedades:

•
$$(A^{-1})^{-1} = A$$

•
$$(A^t)^{-1} = (A^{-1})^t$$

•
$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

•
$$(k \cdot A)^{-1} = \frac{1}{k} \cdot A^{-1} \ (k \neq 0)$$

Recuerda

- Solo las matrices cuadradas pueden tener inversa.
- Una matriz cuadrada A (orden n) tiene inversa si:

$$rg(A) = n$$
 \equiv $|A| \neq 0$

Ejemplo

Hallar A^{-1} , siendo $A = \begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix}$.

Por definición, se cumple que:

$$A \cdot A^{-1} = I \quad \rightarrow \quad \begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Continuación del ejemplo

$$\begin{pmatrix} a+4c & b+4d \\ -a-3c & -b-3d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} a+4c=1 \\ -a-3c=0 \\ b+4d=0 \\ -b-3d=1 \end{pmatrix} \begin{pmatrix} a=-3 \\ c=1 \\ b=-4 \\ d=1 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} -3 & -4 \\ 1 & 1 \end{pmatrix}$$

Comprobación:

$$A \cdot A^{-1} = I \quad \rightarrow \quad \begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix} \cdot \begin{pmatrix} -3 & -4 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \checkmark$$

 A^{-1} suele hallarse por: Método de Gauss-Jordan o Determinantes.

- **1** Método de Gauss-Jordan: $(A \mid I) \sim (I \mid A^{-1})$
 - i) Escribimos la matriz: $(A \mid I)$.
 - ii) Aplicamos operaciones elementales para convertir A en I.
 - iii) La matriz resultante de la derecha será A^{-1} .

Ejemplo

Hallar A^{-1} , si existe, aplicando el método de Gauss-Jordan, donde:

$$A = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$

Continuación del ejemplo

$$(A \mid I) = \begin{pmatrix} 1 & 3 & -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Continuación del ejemplo

$$\begin{array}{c}
\sim \\
F_1 \to 3F_1 - F_3 \\
F_2 \to F_2 - F_3
\end{array}
\begin{pmatrix}
6 & 0 & 0 & 4 & 4 & -6 \\
0 & -6 & 0 & 2 & 2 & -6 \\
0 & 0 & 3 & -4 & -1 & 6
\end{pmatrix}$$

$$\begin{array}{c}
\sim \\
F_1 \to \frac{1}{6}F_1 \\
F_1 \to \frac{1}{6}F_1
\end{array}
\begin{pmatrix}
1 & 0 & 0 & \frac{2}{3} & \frac{2}{3} & -1 \\
0 & 1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 1 \\
0 & 0 & 1 & -\frac{4}{3} & -\frac{1}{3} & 2
\end{pmatrix} = (I \mid A^{-1})$$

$$F_2 \to -\frac{1}{6}F_2$$

$$F_3 \to \frac{1}{3}F_3$$

$$A^{-1} = \begin{pmatrix}
\frac{2}{3} & \frac{2}{3} & -1 \\
-\frac{1}{3} & -\frac{1}{3} & 1 \\
-\frac{4}{3} & -\frac{1}{3} & 2
\end{pmatrix}$$

Ejercicios

• En caso de existir, calcular las matrices inversas de A y B mediante Gauss-Jordan:

$$A = \begin{pmatrix} 1 & 4 & 2 \\ 3 & 7 & 9 \\ 1 & 5 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 2 & 3 \\ 4 & 1 & 2 & 0 \\ 2 & -1 & 3 & 1 \\ 4 & 2 & 1 & -5 \end{pmatrix}$$

Solución:

$$A^{-1} = \begin{pmatrix} -19 & 3 & 11 \\ 3 & -\frac{1}{2} & -\frac{3}{2} \\ 4 & -\frac{1}{2} & -\frac{5}{2} \end{pmatrix}$$

 B^{-1} no existe (B es singular).

2 Inversa por determinantes:

$$A^{-1} = \frac{1}{|A|} \operatorname{adj} (A)^{t} \quad |A| \neq 0$$

• adj(A): Matriz adjunta de $A \rightarrow adj(A) = \begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \dots & A_{nn} \end{pmatrix}$ A_{ii} : adjuntos de los elementos a_{ii} .

$$A_{ij} = (-1)^{i+j} \cdot \alpha_{ij}$$

$$\begin{pmatrix} + & - & + & \cdots \\ - & + & - & \cdots \\ + & - & + & \cdots \\ & & & \\ & &$$

Ejemplo

Utilizando determinantes, calcular la matriz inversa de A:

$$A = \begin{pmatrix} -2 & 1 & 0 \\ 0 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$|A| = \begin{vmatrix} -2 & 1 & 0 \\ 0 & 3 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 0 + 1 + 0 - (0 - 2 + 0) = 3$$

$$\mathsf{adj}(A) = \left(\begin{array}{ccc} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}\right)$$

Continuación del ejemplo

$$A_{11} = + \begin{vmatrix} 3 & 1 \\ 1 & 0 \end{vmatrix} = -1$$
 $A_{12} = - \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = 1$ $A_{13} = + \begin{vmatrix} 0 & 3 \\ 1 & 1 \end{vmatrix} = -3$

$$A_{21} = - \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} = 0$$
 $A_{22} = + \begin{vmatrix} -2 & 0 \\ 1 & 0 \end{vmatrix} = 0$ $A_{23} = - \begin{vmatrix} -2 & 1 \\ 1 & 1 \end{vmatrix} = 3$

$$A_{31} = + \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} = 1$$
 $A_{32} = - \begin{vmatrix} -2 & 0 \\ 0 & 1 \end{vmatrix} = 2$ $A_{33} = + \begin{vmatrix} -2 & 1 \\ 0 & 3 \end{vmatrix} = -6$

Continuación del ejemplo

$$adj(A) = \begin{pmatrix} -1 & 1 & -3 \\ 0 & 0 & 3 \\ 1 & 2 & -6 \end{pmatrix} \rightarrow adj(A)^{t} = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & 2 \\ -3 & 3 & -6 \end{pmatrix}$$

$$A^{-1} = \frac{1}{3} \cdot \begin{pmatrix} -1 & 0 & 1\\ 1 & 0 & 2\\ -3 & 3 & -6 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} & 0 & \frac{1}{3}\\ \frac{1}{3} & 0 & \frac{2}{3}\\ -1 & 1 & -2 \end{pmatrix}$$

Recuerda

Si A es una matriz 2×2 y $|A| \neq 0$:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \rightarrow \quad A^{-1} = \frac{1}{|A|} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Ejercicios

• Utilizando determinantes, calcular las inversas de las siguientes matrices:

a)
$$\begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & 2 \\ 1 & -3 & 3 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix}$

Solución:

a)
$$\begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{3}{4} \end{pmatrix}$$
 b) $\begin{pmatrix} \frac{5}{8} & -\frac{1}{8} & -\frac{1}{8} \\ -\frac{1}{24} & \frac{5}{24} & -\frac{1}{8} \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & -\frac{1}{4} \end{pmatrix}$

Ejercicios

Hallar el valor de a para que la siguiente matriz sea invertible:

$$\left(\begin{array}{cccc}
a+1 & 1 & 1 \\
1 & a-1 & 1 \\
0 & 1 & a+2
\end{array}\right)$$

Solución:

La matriz será invertible cuando $a \neq -1$ y $a \neq \frac{-1 \pm \sqrt{17}}{2}$.

Ecuaciones matriciales

Una ecuación matricial es una ecuación en la que todos sus términos (A, B, C, X) son matrices. Ejemplos:

$$AX = B$$
 $XA = B$ $AX + B = C$

Resolverla es hallar la matriz incógnita X que verifica la ecuación.

Ejemplo

Comprobar que X es solución de la ecuación AX = B, donde:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix} X = \begin{pmatrix} 2 & 0 \\ 0 & -2/3 \end{pmatrix} y B = 2I$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & -2/3 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \quad X \text{ es solución } \checkmark$$

¿Cómo resolver una ecuación matricial?

- Aplicamos operaciones y propiedades de matrices.
- Una matriz NO puede pasar a dividir al otro lado del "=":

$$AX = B \rightarrow X \neq \frac{B}{A}$$

• En su lugar, multiplicamos por su inversa, respetando el orden:

$$AX = B$$
 $XA = B$

Por la izda. $A^{-1}AX = A^{-1}B$ $XAA^{-1} = BA^{-1}$ Por la dcha.

$$IX = A^{-1}B \qquad XI = BA^{-1}$$

$$X = A^{-1}B \qquad \qquad X = BA^{-1}$$

Ejercicios

Resolver la ecuación matricial:

$$B(2A+I)=AXA+B$$

Donde:

$$A = \begin{pmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

Solución:

$$X = \begin{pmatrix} -2 & -8 & 14 \\ -6 & -18 & 32 \\ 4 & 14 & -26 \end{pmatrix}$$

Ejercicios

Resolver la ecuación matricial:

$$BAX + AX = C - I - 2DAX$$

Donde:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Solución:

$$X = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -1 & 1 \end{pmatrix}$$

Sistema de ecuaciones matriciales

Si unimos 2 o más ecuaciones matriciales, tenemos un **sistema de ecuaciones matriciales**. Ejemplo:

$$AX + BY = C$$
$$DX + EY = F$$

Resolverlo es hallar las matrices incógnita X, Y, \ldots que cumplen todas las ecuaciones.

Ejercicios

Resolver el sistema matricial:

$$2X + 3Y = A 5X - 2Y = B$$
 donde: $A = \begin{pmatrix} 4 & 8 \\ 7 & 11 \end{pmatrix}$ $B = \begin{pmatrix} 10 & 1 \\ 8 & 18 \end{pmatrix}$

Ejercicios

Solución:

$$X = \begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}$$

Resolver el sistema matricial: $X^t + AY = B \\ X + Y^tC = D$ donde:

$$A = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$$

Solución:

$$X = \begin{pmatrix} \frac{11}{3} & \frac{7}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \qquad Y = \begin{pmatrix} -\frac{1}{3} & -\frac{1}{3} \\ 0 & 1 \end{pmatrix}$$

Índice

2 Sistemas de ecuaciones lineales

Ecuaciones lineales
Sistema de ecuaciones lineales
Forma matricial de un sistema
Método de Gauss para resolver sistemas
Teorema de Rouché-Fröbenius
Sistemas homogéneos
Factorización LU
Factorización de Cholesky

Ecuación lineal

Una ecuación lineal es una igualdad de la forma:

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

Donde:

• Incógnitas: x_1, x_2, \dots, x_n

Tienen exponente 1

• Coeficientes: a_1, a_2, \ldots, a_n

Constantes

• Término independiente: b

Constante

• La solución de una ecuación lineal son los valores:

$$x_1 = c_1, x_2 = c_2, \dots, x_n = c_n$$

que verifican la ecuación.

Ejemplo

Considerando la ecuación lineal x + 2y - 3z = 6:

- Incógnitas: x, y, z
- Coeficientes: 1, 2, −3, respectivamente.
- Término independiente: 6
- Es solución x = 5, y = 2, z = 1, ya que:

$$5 + 2 \cdot 2 - 3 \cdot 1 = 6$$
 \checkmark

• No es solución x = 1, y = 2, z = 3, ya que:

$$1 + 2 \cdot 2 - 3 \cdot 3 = -4 \neq 6$$

Recuerda

- Una ecuación lineal con más de 1 incógnita, tiene ∞ soluciones.
- Para resolverlas tomamos parámetros $(\alpha, \beta, \gamma, ...)$:

 N^{o} Parámetros = N^{o} Incógnitas — N^{o} Ecuaciones

Ejemplo

Resolver las siguientes ecuaciones lineales:

• 1 incógnita:

$$2x = 5 \rightarrow \mathsf{Soluci\'on}$$
: $x = \frac{5}{2}$ $0y = 3 \rightarrow 0 = 3 \rightarrow \mathsf{No}$ tiene soluci\'on

$$0z = 0 \rightarrow 0 = 0 \rightarrow \mathsf{Solución}: z \in \mathbb{R}$$

Continuación del ejemplo

• 2 incógnitas:

$$x + 2y = 4 \rightarrow x = 4 - 2y \xrightarrow{1 \text{ par.}} \begin{cases} x = 4 - 2\alpha \\ y = \alpha \end{cases} (\alpha \in \mathbb{R})$$

Para $\alpha = 0 \rightarrow \text{Solución: } x = 4, \ y = 0$

• 3 incógnitas:

$$3x + 2y - z = 3 \rightarrow z = 3x + 2y - 3 \xrightarrow{2 \text{ par.}} \begin{cases} x = \alpha \\ y = \beta \\ z = 3\alpha + 2\beta - 3 \end{cases}$$

Para $\alpha = 1$ y $\beta = 0 \rightarrow \text{Solución: } x = 1, y = 0, z = 0$

Sistema de ecuaciones lineales

Un **sistema de ecuaciones lineales** es un conjunto de *m* ecuaciones lineales con las mismas *n* incógnitas:

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{vmatrix}$$

Donde:

• Incógnitas: x_1, x_2, \dots, x_n

Tienen exponente 1

• Coeficientes: $a_{11}, a_{12} \dots a_{mn}$

Constantes

• Términos independientes: b_1, b_2, \ldots, b_m

Constantes

La solución de un sistema de ecuaciones lineales son los valores:

$$x_1 = c_1, \ x_2 = c_2, \dots, x_n = c_n$$

que verifican todas las ecuaciones del sistema.

Ejemplo

En el sistema:

$$\begin{cases} x + y + 4z + 3t = 5 \\ 2x + 3y + z - 2t = 1 \\ x + 2y - 5z + 4t = 3 \end{cases}$$

• Es solución x = -8, y = 6, z = 1, t = 1, ya que:

$$\begin{array}{c}
-8+6+4\cdot 1+3\cdot 1=5 \\
2(-8)+3\cdot 6+1-2\cdot 1=1 \\
-8+2\cdot 6-5\cdot 1+4\cdot 1=3
\end{array}\right\}$$

Continuación del ejemplo

• No es solución x = -10, y = 5, z = 1, t = 2, ya que:

$$-10 + 5 + 4 \cdot 1 + 3 \cdot 2 = 5$$
$$2(-10) + 3 \cdot 5 + 1 - 2 \cdot 2 = -8 \neq 1$$

• Clasificación de sistemas: según sus soluciones

$$\begin{cases} \mathsf{Compatible} \to \mathsf{Tiene} \ \mathsf{soluci\'on} \end{cases} \begin{cases} \mathsf{Determinado} \to 1 \ \mathsf{soluci\'on} \\ \mathsf{Indeterminado} \to \infty \ \mathsf{soluciones} \end{cases}$$

Incompatible o No tiene solución

No lo olvides

- Podemos resolverlos por reducción, sustitución o igualación.
- Al resolver un SCI con ∞ soluciones: tomamos parámetros.

Ejercicios

Resolver y clasificar los siguientes sistemas:

$$x - 2y + 3z = 9$$
a) $-x + 3y = -4$
 $2x - 5y + 5z = 17$

$$y-z=0$$
c) $x-3z=-1$
 $-x+3y=1$

$$x - 3y + z = 1$$
b) $2x - y - 2z = 2$
 $x + 2y - 3z = -1$

Sistema de ecuaciones lineales

Ejercicios

Solución:

a) SCD
$$\begin{cases} x=1 \\ y=-1 \\ z=2 \end{cases}$$
 b) SI \rightarrow No tiene solución

c) SCI
$$\begin{cases} x = 3\alpha - 1 \\ y = \alpha \\ z = \alpha \end{cases} \quad (\alpha \in \mathbb{R})$$

Forma matricial de un sistema

• Un sistema puede escribirse en forma matricial:

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{vmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \longrightarrow AX = B$$

$$A \qquad X \qquad B$$

$$Matriz de \qquad Matriz de \qquad Matriz de$$

coeficientes

incógnitas términos indep.

Forma matricial de un sistema

- Solución del sistema: $X = A^{-1}B$ (si A^{-1} existe).
- Por otro lado, la matriz ampliada del sistema se define como:

$$A^* = (A \mid B) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Ejemplo

Consideremos el sistema:

$$\left. \begin{array}{l}
 x + 2y - 4z + 7t = 4 \\
 3x - 5y + 6z - 8t = 8 \\
 4x - 3y - 2z + 6t = 11
 \end{array} \right\}$$

Forma matricial de un sistema

Continuación del ejemplo

Su forma matricial es:

$$\begin{pmatrix} 1 & 2 & -4 & 7 \\ 3 & -5 & 6 & -8 \\ 4 & -3 & -2 & 6 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 11 \end{pmatrix}$$

Y su matriz ampliada es:

$$A^* = \begin{pmatrix} 1 & 2 & -4 & 7 & 4 \\ 3 & -5 & 6 & -8 & 8 \\ 4 & -3 & -2 & 6 & 11 \end{pmatrix}$$

• El método de Gauss es útil para resolver sistemas de ecuaciones.

$$A^* = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix} b_1 b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \\ b_8 \\ b_9 \\ b_9$$

$$\begin{array}{c} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a_{1n}x_n = b_1 \\ a_{22}x_2 + a_{23}x_3 + \cdots + a_{2n}x_n = b_2 \\ a_{33}x_3 + \cdots + a_{3n}x_n = b_3 \\ \vdots \\ a_{mn}x_n = b_m \end{array} \right\} \begin{array}{c} \textbf{Sistema} \\ \textbf{escalonado} \\ \textbf{(sustitución)} \end{array}$$

- i) Escribimos la matriz ampliada del sistema: A*
- ii) Hacemos 0s bajo la diagonal principal de A^* .
- iii) Obtenemos un sistema escalonado equivalente.
- iv) Resolvemos el sistema escalonado por sustitución (de abajo hacia arriba).

Recuerda

- En un sistema escalonado cada ecuación tiene menos incógnitas que la anterior.
- Dos sistemas son **equivalentes** si tienen las mismas soluciones.

• Discusión de un sistema:

Discutir un sistema es decir si es: SCD, SCI o SI.

¿Cómo discutir un sistema por Gauss?

Finalizado el método de Gauss, nos fijamos en la matriz final:

- a) Si aparece alguna fila del tipo $\begin{pmatrix} 0 & 0 & \cdots & 0 & b \end{pmatrix}$ $b \neq 0$: **SI**
- b) Si no hay filas del tipo $(0 \ 0 \ \cdots \ 0 \ | b) \ b \neq 0$:
 - b1) Si N° de filas = N° de incógnitas: **SCD**
 - b2) Si N° de filas < N° de incógnitas: SCI

Ejercicios

Usando el método de Gauss, discutir y resolver los siguientes sistemas:

$$x + 3y + z = -3$$
a)
$$3x + 9y + 4z = -7$$

$$2x - y + z = 6$$

$$x - y + z = 1$$
c) $2x + y + z = 0$
 $2x - 2y + 2z = 3$

Ejercicios

Solución:

a) SCD
$$\begin{cases} x = 1 \\ y = -2 \\ z = 2 \end{cases}$$
 b) SCI
$$\begin{cases} x = \alpha - 3 \\ y = 1 \\ z = \alpha \\ t = 1 \end{cases}$$
 $(\alpha \in \mathbb{R})$

c) SI → No tiene solución

Ejercicios

Aplicando el método de Gauss, discutir y resolver el sistema en función del parámetro a:

Solución:

- Si $a \neq 0$ y $a \neq 1$: SI
- Si a = 1: SCD $\rightarrow x = 2$, y = 1, z = -3
- Si a = 0: SCI $\rightarrow x = 7 5\alpha$, $y = \alpha$, $z = 3\alpha 6$ ($\alpha \in \mathbb{R}$)

Teorema de Rouché-Fröbenius

Teorema de Rouché-Fröbenius

En un sistema de ecuaciones lineales de m ecuaciones y n incógnitas:

- Si $rg(A) = rg(A^*) = n \Leftrightarrow SCD$
- Si $rg(A) = rg(A^*) < n \Leftrightarrow SCI$
- Si $rg(A) < rg(A^*) \Leftrightarrow SI$

Ejercicios

Discutir los sistemas del ejercicio 18 mediante el Teorema de Rouché-Fröbenius.

Nota: Aprovechar la matriz final obtenida en los 3 sistemas por el método de Gauss.

Teorema de Rouché-Fröbenius

Ejercicios

Solución:

a)
$$rg(A) = rg(A^*) = 3 = n \to SCD$$

b)
$$rg(A) = rg(A^*) = 3 < 4 = n \rightarrow SCI$$

c)
$$rg(A) = 2 \neq rg(A^*) = 3 \rightarrow SI$$

Estudiar mediante menores y aplicando el Teorema de Rouché-Fröbenius la compatibilidad del sistema:

$$\begin{array}{c}
 x + 2y + 2z = 3 \\
 y + 2z = 2 \\
 3x + 2y = 1 \\
 5x + 7y + 6z = 2
 \end{array}$$

Solución:
$$rg(A) = 3 \neq rg(A^*) = 4 \rightarrow SI$$

Sistemas homogéneos

Sistemas homogéneos

Un sistema es **homogéneo** si todos los términos independientes son 0:

$$\begin{vmatrix}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0
\end{vmatrix}$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

• Un sistema homogéneo siempre tiene la solución trivial:

$$x_1 = 0, x_2 = 0, \ldots, x_n = 0$$

• Un sistema homogéneo siempre tiene solución: $rg(A) = rg(A^*)$

Sistemas homogéneos

- **1** Si $rg(A) = n \Leftrightarrow SCD \rightarrow Solo$ tiene la solución trivial.
- **2** Si $rg(A) < n \Leftrightarrow SCI \to Tiene \infty$ soluciones.

Ejercicios

Discutir y resolver el sistema homogéneo según el parámetro a:

$$\begin{cases}
2x - y - 2z = 0 \\
x + y + z = 0 \\
4x - 5y + az = 0
\end{cases}$$

Solución:

- Si $a \neq -8$: SCD \rightarrow Solución trivial
- Si a=-8: SCI $\to x=\alpha/3, y=-4\alpha/3, z=\alpha \ (\alpha \in \mathbb{R})$

Factorización LU

La **factorización LU** de una matriz cuadrada A (orden n) consiste en hallar dos matrices triangulares L y U (orden n), tales que:

$$A = L \cdot U$$

- L: Matriz triangular inferior con 1s en la diagonal principal.
- *U*: Matriz triangular superior.

Ejemplo

$$A = \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 3 \\ 2 & -10 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 14 \end{pmatrix}$$

Importante

- Si todos los menores principales de A son $\neq 0$: única LU existe.
- Si algún menor principal es 0 salvo $|A| \neq 0$: LU no existe.

Ejemplo

• Menores principales de A (orden 3): A₁, A₂ y A₃

$$A = \begin{pmatrix} \begin{array}{c|c} a_{11} & a_{12} \\ \hline a_{21} & a_{22} \\ \hline a_{31} & a_{32} \\ \hline \end{array} \begin{array}{c} a_{13} \\ a_{23} \\ a_{33} \\ \end{array} \right) \rightarrow A_1 = a_{11} \quad A_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{array} \quad A_3 = |A|$$

Si $A_1 \neq 0$, $A_2 \neq 0$ y $A_3 \neq 0$, la factorización LU existe y es única.

Si $A_1 = 0$ o $A_2 = 0$ pero $A_3 \neq 0$, la factorización LU no existe.

¿Cómo obtener las matrices L y U?

• Cálculo de *U*: Aplicamos el método de Gauss modificado sobre *A*.

$$A \sim \cdots \sim U$$
 $F_i \leftrightarrow F_j \times$ Prohibido intercambiar filas
 $F_i \rightarrow F_i + k_{ij} \cdot F_i \checkmark$ Solo usar este tipo de operaciones

• Cálculo de L: Bajo su diagonal se ponen los multiplicadores $-k_{ij}$.

$$L = (l_{ij}) \to l_{ij} = \left\{ \begin{array}{ccc} 0 & i < j \\ 1 & i = j \\ -k_{ij} & i > j \end{array} \right. \to L = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ -k_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -k_{n1} & -k_{n2} & \cdots & 1 \end{array} \right)$$

Ejercicios

2 Determinar la factorización LU de las matrices:

a)
$$\begin{pmatrix} 2 & 1 \\ 8 & 7 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & -3 & 5 \\ 0 & -4 & 7 \\ -1 & -2 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 4 & -3 \\ 2 & 8 & 1 \\ -5 & -9 & 7 \end{pmatrix}$

Solución:

a)
$$A = L \cdot U = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$$

b)
$$A = L \cdot U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & \frac{5}{4} & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -3 & 5 \\ 0 & -4 & 7 \\ 0 & 0 & -\frac{11}{4} \end{pmatrix}$$

c) No admite factorización LU, ya que: $A_2 = 0$ y $A_3 \neq 0$.

Aplicaciones de la factorización LU

• Calcular el determinante de A: puede calcularse de forma sencilla.

$$A = L \cdot U$$

 $|A| = |L \cdot U| = |L| \cdot |U| = 1 \cdot |U| = |U|$

• Resolver sistemas: solo para SCD con *n* ecuaciones y *n* incógnitas.

$$AX = B \Rightarrow L \underbrace{UX}_{Z} = B \Rightarrow L \underbrace{Z}_{?} = B$$
 Sistema triangular

$$UX = Z$$

Sistema triangular

X es la solución de AX = B

Ejercicios

4 Utilizando la factorización LU del ejercicio 23b, obtener |A| y resolver el sistema:

$$\left. \begin{array}{l}
 x - 3y + 5z = 4 \\
 -4y + 7z = 1 \\
 -x - 2y + z = 0
 \end{array} \right\}$$

Solución:

$$|A| = 1 \cdot (-4) \left(-\frac{11}{4} \right) = 11$$
 SCD $\begin{cases} x = 3 \\ y = -2 \\ z = -1 \end{cases}$

LU vs Gauss para resolver sistemas

• LU es aprox. igual que Gauss si resolvemos 1 sistema: AX = B

1 sistema	Nº operaciones	N^{o} operaciones aprox. si n es grande
Gauss	$\frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6} + n^2$ Triangular matriz Resolver sistema tr.	$pprox rac{2n^3}{3}$
LU	$\frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6} + n^2 - n + n^2$ Factorización Resolver sistema tr. (1s en diagonal) sistema tr.	$pprox rac{2n^3}{3}$

Si
$$n = 50$$
: Gauss $\to 87025$ op. LU $\to 89475$ op. (+2.8%) $\frac{2n^3}{3} \to 83333$ op.

Pero LU es mucho más eficiente si resolvemos p sistemas del tipo:

$$AX = B_1, AX = B_2, \ldots, AX = B_p$$

p sistemas	Nº operaciones	N° operaciones aprox. si n es grande
Gauss	$p\left(\frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6} + n^2\right)$ Triangular matriz Resolver sistema tr.	$\approx p \cdot \frac{2n^3}{3}$
LU	$\frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6} + p(n^2 - n + n^2)$ Factorización Resolver sistema Resolver (1 vez) tr. (1s en diagonal) sistema tr.	$pprox rac{2n^3}{3}$

Si
$$p = 3$$
 y $n = 50$:

Gauss \rightarrow 261075 op.

 $LU \rightarrow 99375 \text{ op. } (-62\%)$

Factorización de Cholesky

La factorización de Cholesky de una matriz A simétrica definida positiva (orden n) es hallar una matriz Q (orden n) tal que:

$$A = Q \cdot Q^t$$

- Q: Matriz triangular inferior con elementos de la diagonal > 0.
- A es definida positiva si sus menores principales son positivos:

$$A_1 > 0, A_2 > 0, \ldots, A_n > 0$$

Ejemplo

$$A = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 5 & 4 \\ -2 & 4 & 6 \end{pmatrix} \rightarrow A_1 = 1 > 0, \ A_2 = 4 > 0, \ A_3 = 4 > 0$$

$$A \text{ es simétrica definida positiva (s.d.p)} \checkmark$$

Importante

- Si A es s.d.p: la factorización de Cholesky existe y es única.
- Si A no es s.d.p: la factorización de Cholesky no existe.

Ejemplo

Como A es s.d.p, la factorización de Cholesky existe y es única:

$$A = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 5 & 4 \\ -2 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

¿Cómo obtener la matriz Q?

• Calculamos la factorización A = LU y luego la matriz $D^{\frac{1}{2}}$:

$$Q=L\cdot D^{\frac{1}{2}}$$

$$D = \begin{pmatrix} u_{11} & 0 & \cdots & 0 \\ 0 & u_{22} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & u_{nn} \end{pmatrix} \rightarrow D^{\frac{1}{2}} = \begin{pmatrix} \sqrt{u_{11}} & 0 & \cdots & 0 \\ 0 & \sqrt{u_{22}} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \sqrt{u_{nn}} \end{pmatrix}$$

¿Cómo obtener la matriz Q?

• Existe también un algoritmo para calcular Q directamente:

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \longrightarrow Q = (q_{ij}) = \begin{pmatrix} q_{11} & 0 & \cdots & 0 \\ q_{21} & q_{22} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ q_{n1} & q_{n2} & \cdots & q_{nn} \end{pmatrix}$$

$$q_{ii} = \begin{cases} \sqrt{a_{11}} & i = 1\\ \sqrt{a_{ii} - \sum_{k=1}^{i-1} q_{ik}^2} & i = 2, 3, ..., n \end{cases} \qquad q_{ij} = \begin{cases} \frac{a_{i1}}{q_{11}} & j = 1\\ i = 2, 3, ..., n \end{cases} \\ \frac{\left(a_{ij} - \sum_{k=1}^{j-1} q_{ik} q_{jk}\right)}{q_{jj}} & j = 2, 3, ..., n \end{cases}$$

Ejercicios

Calcular la factorización de Cholesky de las matrices:

a)
$$\begin{pmatrix} 1 & -1 \\ -1 & 5 \end{pmatrix}$$
 b) $\begin{pmatrix} 4 & 2 & 14 \\ 2 & 17 & -5 \\ 14 & -5 & 83 \end{pmatrix}$ c) $\begin{pmatrix} 2 & 0 & 1 & 1 \\ 0 & -1 & -2 & 3 \\ 1 & -2 & 0 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$

Solución:

a)
$$A = Q \cdot Q^t = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$$

b)
$$A = Q \cdot Q^t = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 4 & 0 \\ 7 & -3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 7 \\ 0 & 4 & -3 \\ 0 & 0 & 5 \end{pmatrix}$$

c) No admite factorización de Cholesky: es simétrica pero no d.p.

Aplicaciones de la factorización de Cholesky

• Calcular el determinante de A:

$$A = Q \cdot Q^{t}$$

 $|A| = |Q \cdot Q^{t}| = |Q| \cdot |Q^{t}| = |Q| \cdot |Q| = |Q|^{2}$

Resolver sistemas: solo si la matriz A del sistema es s.d.p.

$$AX = B \Rightarrow Q Q^{t}X = B \Rightarrow Q Z = B$$
 Sistema triangular

$$Q^tX = Z$$

Sistema triangular

X es la solución de AX = B

Ejercicios

Utilizando la factorización de Cholesky del ejercicio 25b, obtener |A| y resolver el sistema:

$$\left. \begin{array}{l}
4x + 2y + 14z = 14 \\
2x + 17y - 5z = -101 \\
14x - 5y + 83z = 155
 \end{array} \right\}$$

Solución:

$$|A| = (2 \cdot 4 \cdot 5)^2 = 1600$$
 SCD
$$\begin{cases} x = 3 \\ y = -6 \\ z = 1 \end{cases}$$

Cholesky vs LU para resolver sistemas

• En 1 sistema: Cholesky \approx doble de eficiente que LU y Gauss.

1 sistema	Nº operaciones	N° operaciones aprox. si n es grande
Cholesky	$\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} + 2n^2$ Factorización (algoritmo) Resolver 2 sistemas tr.	$\approx \frac{n^3}{3}$
Gauss	$\frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6} + n^2$	$pprox rac{2n^3}{3}$
LU	$\frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6} + n^2 - n + n^2$	$pprox rac{2n^3}{3}$

• En p sistemas del tipo $AX = B_1$, $AX = B_2$, ..., $AX = B_p$: Cholesky \approx doble de eficiente que LU y 2p veces más que Gauss.

p sistemas	N° operaciones	N° operaciones aprox. si n es grande
Cholesky	$\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} + p \cdot 2n^2$ Factorización Resolver 2 sistemas tr.	$\approx \frac{n^3}{3}$
Gauss	$p\left(\frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6} + n^2\right)$	$\approx p \cdot \frac{2n^3}{3}$
LU	$\frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6} + p\left(n^2 - n + n^2\right)$	$pprox rac{2n^3}{3}$