Introduction to Data Science

Data Warehousing and Data Mining

Sunsern Cheamanunkul

sunsern.che@mahidol.edu

Course Structure

- Lectures
 - 2 lectures / week
 - 10-minute break after the first hour
 - Bring your laptop to lectures
 - There will be in-class exercises
- Weekly programming assignments
- Midterm Exam
- Project

Logistics

- Course website (syllabus, lecture slides, assignments, etc.)
 - https://canvas.instructure.com/courses/1112677
 - code: JALGRW
- Attendance is strongly recommended.
 - Your participation score is highly correlated with your attendance rate.

Assignments

- ▶ There will be total of ~10 assignments.
- Some of them will be continuation or improvement on the in-class exercises.
- Solutions must be submitted as Python notebooks.
- Hence, you are expected to know Python, or have ability to learn Python really fast.

Project

- Team of 1-2 students
 - Your choice!
 - Start looking for a team early!
- Can be any data science related project from any domain such as audio, images, videos, gaming, finance etc.
- You should use original datasets which mean you are the one to collect them yourself.
- However, if your project idea requires existing datasets, exceptions can be made.

Project

- Proposal:
 - During week 5, each team will present:
 - project overview.
 - details about data collection process.
 - what will be studied and how the analysis will be carried out.
- Checkpoint:
 - During week 8-10
 - Informal status update
- Final presentation:
 - During week 12

Exams

- Midterm
 - Mixed of multiple-choice and open-ended questions.
 - Exam date will be announced on Canvas. Approximately during week 7.
 - You will be tested on the concepts and materials presented in class.
- No final exam!
 - We will have final project presentation instead of the final exam.

Grading policy

- Project 30%
 - Proposal 5%
 - Checkpoint 5%
 - ▶ Final presentation 20%
- Assignments 45%
- Midterm exam 20%
- Participation 5%

Tentative Schedule

- Week 1: Introduction to Data Science
- Week 2: Data collection and warehousing
- Week 3: Working with data
- Week 4: Machine Learning
- Week 5: Regression
- Week 6: Nearest Neighbor, Decision Tree, SVM
- Midterm Exam —
- Week 7: Clustering
- Week 8: Ensemble Methods
- Week 9: Natural Language Processing
- Week 10: Neural Networks
- Week 11: Recommender System
- Week 12: Itemset Mining
- Project Presentation —

Expectations

- You will be working closely with data, a lot of data actually. Unless you can process large data sets by hand, programming skill is a must for this course.
- You should possess basic probability and statistics knowledge.
- You should be able to read API documentations.
- ▶ This is a practical course. You are expected to work on your project and assignments. They count for 75% of your grade.

Collaboration Policy

- We encourage collaboration, but do not plagiarize.
- Copying code from other people is not acceptable.
- When in doubt, cite your sources in your work.

Getting help

- Office hours:
 - Monday, Wednesday 10-12pm
 - Tuesday, Thursday 4-6pm
 - You can find me either in the Science division or 1409.
- ▶ Email:
 - sunsern.che@mahidol.edu
 - sunsern@gmail.com (just in case)

Data Mining

- Data mining is a process of discovering structures, relationships, or "models" from (large) datasets.
- Why data mining?
 - We have large amount of data, but only a small fraction is knowledge.
 - Automated data collection tools, larger and cheaper storage devices, computerized society
- Data sources:
 - Business: web, e-commerce, transactions, stock market, etc.
 - Science: sensors technology, bioinformatics, simulations, etc.
 - User-generated contents: news, blogs, photos, youtube, etc.

Data Science

Harvard Business Review

DAT

Data Scientist: The Sexiest Job of the 21st Century

by Thomas H. Davenport and D.J. Patil

FROM THE OCTOBER 2012 ISSUE

Introduction to Data Science

Pattern mining

Frequently Bought Together

amazon.com

Customers Who Bought This Item Also Bought

Hardcover

\$66.50 Prime

Hardcover

\$78.09 Prime

The Elements of Statistical Learning:... Trevor Hastie 黄黄黄黄☆ 45 #1 Best Seller (in Bioinformatics

Page 1 of 20

Predictive modeling

Facebook's DeepFace — facial recognition algorithm

eHarmony — a dating site

Clustering

Netflix movie recommendations

Facebook friend suggestions

Anomaly detection

DDOS attack monitoring

Credit card fraud detection

Typical workflow

Data collection

- Acquiring data from (multiple) sources
- Storing / Warehousing
- Cleaning
- Manipulating
- Feature extraction / engineering

Model training

- Pattern mining
- Clustering
- Classification
- Regression

Visualizing results

- Summary
- Tables
- Plotting
- Infographic

Statistical Limits on Data Mining

- When you have a large amount of data, and you look for specific things in the data. You will find them, even if they data is completely random.
- These findings are considered "bogus".
- This is known as Bonferroni's principle

Example of Bonferroni's Principle

- Suppose there are some "evil-doers" out there and we want to detect them before they do bad things.
- We have reasons to believe that these evil-doers often gather at a hotel to come up evil plans.
- Assume the following:
 - There are 1 billion people who might be evil-doers.
 - ▶ Everyone goes to a hotel 1 day in 100 days.
 - ▶ A hotel holds 100 people. Hence, there are 100,000 hotels enough to hold 1% of people who visit a hotel on a given day.
 - We look at the hotels records for 1000 days

Example of Bonferroni's Principle

- We want to find out who, on two different days, were both at the same hotel.
- First, suppose there are no evil-doers. Everyone picks hotels at random.
- ▶ The probability of any two people both deciding to visit a hotel is 0.01 * 0.01 = 0.0001.
- The chance that they will visit the same hotel is 0.0001 / 100000 = 10⁻⁹
- ► The chance of that happening on two different days is 10⁻¹⁸

Example of Bonferroni's Principle

- Now we consider data from 1 billion people.
- ▶ The number of pairs of people is $\binom{10^9}{2} \approx 5 \times 10^{17}$
- ▶ The number of pairs of days is $\binom{1000}{2} \approx 5 \times 10^5$
- The number of events that look like evil-doing is $5 \times 10^{17} \times 5 \times 10^5 \times 10^{-18} = 250,000$
- Suppose, there really are only 10 pairs of evil-doers. That means there must be something wrong with our method of finding evil-doers.

Next Step

- Setting up software stack
 - IPython (notebook)
 - Numpy
 - Scipy
 - Pandas
 - etc.
- Easier to just install Anaconda:
 - https://www.continuum.io/downloads
- Now go through the Numpy and Pandas tutorial

These might interest you...

- Kaggle competitions
- Hackathons