Warm Up: Kinematics in 2D and 3D

Prof. Jordan C. Hanson

September 19, 2022

1 Memory

- 1. $y(t) = -\frac{1}{2}gt^2 + v_{i,y}t + y_i$... Accelerating system vertically.
- 2. $x(t) = v_{i,x}t + x_i$... Constant velocity horizontally.

2 Kinematics in 2D and 3D

- 1. Imagine a system propagating through 3D space with a velocity vector $\vec{v} = (2t-1)\hat{i} + 2\hat{j} + (-3t+2)\hat{k}$. (a) Is the object accelerating? Why or why not? (b) Write the acceleration vector by taking the derivative.
- 2. Suppose a system is thrown into the air, accelerating downwards due to gravity, but proceeding horizontally at constant velocity.
 - Modify the y(t) and x(t) equations in the memory bank to include the fact that the system starts at the origin, so $y_i = 0$ and $x_i = 0$ for t = 0.
 - Solve the x(t) equation for t:
 - Substitute t into the y(t) equation, to obtain a function like y(x):
 - Let $v_{i,x} = v_i \cos \theta$, and $v_{i,y} = v_i \sin \theta$, where θ is the angle of the throw relative to the ground.
 - Solve the quadratic equation y(x) to find where y = 0.