Universidade do Minho **DMAT**

Nome:

Probabilidades e Aplicações Teste II - A || 13 de dezembro 2024

 N^{o}

Curso: LCC

2024/2025

Responda à questão 4 neste enunciado e responda às restantes questões na folha de teste. Justifique todas as respostas, indique cálculos intermédios e funções do R que utilizar. Duração: 2h.

1. Seja X uma v.a.r. absolutamente contínua, com função densidade de probabilidade dada por

$$f(x) = \begin{cases} \frac{1}{3} & se & 0 \le x < 1 \\ k & se & 1 \le x \le 2 \\ 0 & se & c.c. \end{cases}$$

em que k é uma constante real.

- (a) Mostre que $k = \frac{2}{3}$.
- (b) Determine a função de distribuição de X, F_X .
- (c) Mostre que E[X] e Var[X] existem e que $E[X] = \frac{7}{6}$ e $Var[X] = \frac{11}{36}$.
- (d) Determine os quartis de X.
- (e) Seja Y uma v.a.r. tal que X e Y são independentes e $Y \sim Exp(1)$.
 - i. Calcule $P(X \ge \frac{4}{3} \cup Y \ge 2)$.
 - ii. Determine a função densidade de probabilidade conjunta do par aleatório (X,Y)
 - iii. Calcule $P(Y \leq X | X < 1)$.
 - iv. Determine E[XY] e Cov(X, Y).
- (f) Sejam X_1, \ldots, X_{50} v.a.r.'s independentes e identicamente distribuídas com X. Determine um valor aproximado de $P(S_{50} > 60)$, em que em que $S_{50} = \sum_{i=1}^{50} X_i$.

Nota: Caso não consiga resolver (b), pode usar, se necessário, que $F_X(\frac{4}{3}) = \frac{5}{9}$ e que $F_X(1) = \frac{1}{3}$.

- 2. O Sr. A. trabalha como vendedor numa certa empresa e o montante de unidades vendidas por ele <u>diariamente</u> é uma v.a.r., A, que segue a lei N(100, 100).
 - (a) Assuma que o Sr. A. trabalha 6 dias por semana e que os montantes vendidos em dias distintos são quantidades independentes. Qual a probabilidade de, numa semana de trabalho, o Sr. A. vender menos de 100 unidades em pelo menos 2 dias e vender mais de 120 unidades em pelo menos 3 dias? Justifique.
 - (b) Esta empresa tem um outro vendedor, o Sr. B., cujo montante diário de vendas é uma outra v.a.r. B. Sabe-se que $B \sim N(80, 90)$ e que as v.a.r.'s $A \in B$ são independentes.
 - i. Considere a v.a.r. D = A 2B. Determine E[D], Var[D] e identifique a lei de D.
 - ii. Qual a probabilidade de, num dia, o Sr. A. vender pelo menos o dobro das unidades vendidas pelo Sr. B.? Justifique.
- 3. Sejam X_1, \ldots, X_n v.a.r.'s independentes e seja F_{X_i} a função de distribuição de X_i , $i=1,\ldots,n$.
 - (a) Mostre que a função de distribuição da v.a.r. $N=\min(X_1,X_2,\ldots,X_n)$ é dada por

$$F_N(c) = 1 - \prod_{i=1}^{n} [1 - F_{X_i}(c)].$$

(b) Assuma agora que $X_i \sim Exp(\lambda_i)$, $i = 1, \ldots, n$, e identifique, neste caso, a lei da v.a.r. N. Justifique a resposta.

- 4. Seja $X \sim Poisson(\lambda)$.
 - (a) Mostre que a Transformada de Laplace de X é dada por $L(t)=\exp\{-\lambda(1-e^{-t})\},\ t\in\mathbb{R}.$
 - (b) Considere agora X_1, \ldots, X_n v.a.r.'s independentes e identicamente distribuídas com a lei $Poisson(\lambda)$. Determine a Transformada de Laplace de S_n e mostre que

$$S_n \sim Poisson(n\lambda),$$

em que
$$S_n = \sum_{i=1}^n X_i$$
.

(c) Determine, usando a definição, os quartis da lei Poisson(1).

Nota: Pode usar o seguinte resultado: $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$.