2020 年下半年初中数学网络教学资源学生作业答案

第12周(11月6日~11月20日)

下载链接:链接: https://pan.baidu.com/s/19ybY8CjuUiqmEBDsnJ8gTw 提取码: idnw

下载二维码:

课序	课题	作业答案		
37	2.9 分数运算的应用②	1. 4. 2. 24. 3. 350 本. 4. 4/5 米. 5. 8 小时.		
38	分复结	$1.7;\ 4.$ $2.$ $(1)\ 2\frac{7}{9} = \frac{25}{9};\ (2)\ \frac{37}{5} = 7\frac{2}{5}.\ 3.\frac{35}{40} < \frac{56}{63};$ $4.\ (1)\ 1\frac{1}{26};\ (2)\ 41\frac{1}{7}.\ (3)\ \frac{3}{10}$ $5.$ $8150 \times \frac{3}{5} = 90\ (5),\ 90-10=80\ (5),\ 80 \div 150 = \frac{8}{15}.$ $150-80=70\ (5),\ 70 \div 7 = 10\ (5).$ $10 \div 150 = \frac{1}{15}.$ 答:小杰阅读过的页数占这本书的 $\frac{8}{15}.$ 如果七天后必须还书,那么,小杰在这七天中平均每天应阅读 $10\ 5$. 最后七天中平均每天阅读的页数占全书页数的 $\frac{1}{15}.$ $6.$ 解 $(1)\ 设六(1)$ 班女生的人数是 x 人,则 $\frac{3}{2}x + x = 50.x = 20.$ 答:六 (1) 班女生的人数是 x 人, $x + \frac{1}{2}x + x = 50.x = 20.$ 答:六 (1) 班女生的人数是 x 人, $x + \frac{1}{2}x + x = 50.x = 20.$ 答:六 (1) 班女生的人数是 x 人, $x + \frac{1}{2}x + x = 50.x = 20.$ 答:六 (1) 班女生的人数是 x 人, $x + \frac{1}{2}x + x = 50.x = 20.$ 答:六 (1) 班女生的人数是 x 人, $x + \frac{1}{2}x + x = 50.x = 20.$		

39	分数单元讲评	1. $\frac{3}{4} = (12) \div 16 = \frac{3 + (9)}{8 + (8)}$. 2. $\frac{37}{48}$. 3. $\frac{3}{7} < \frac{1}{2} < \frac{3}{5}$. 4. (1) $\frac{77}{80}$; (2) $\frac{61}{40}$; (3) $\frac{117}{40}$. 5. (1) $80 \div 200$; (2) $1 - 80 \div 200$; (3) $200 \times \left(1 - \frac{3}{5}\right)$; (4) $80 \div \left(1 - \frac{3}{5}\right)$. 6. 解 设丢番图活了 x 岁 据题意得: $\frac{1}{6}x + \frac{1}{12}x + \frac{1}{7}x + 5 + \frac{1}{2}x + 4 = x$. 解得: $x = 84$. 答: 丢番图活了 84 岁.
40	个分数拆为	1. $\frac{1}{8} = \frac{1}{24} + \frac{1}{12}$; $\frac{1}{8} = \frac{1}{40} + \frac{1}{10}$; $\frac{1}{8} = \frac{1}{72} + \frac{1}{9}$ 2. $\frac{2}{7} = \frac{1}{4} + \frac{1}{28}$; $\frac{7}{16} = \frac{1}{48} + \frac{1}{12} + \frac{1}{3}$; $\frac{5}{27} = \frac{1}{6} + \frac{1}{54}$. 3. $1 = \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{15} + \frac{1}{33} + \frac{1}{45} + \frac{1}{385}$; $1 = \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{15} + \frac{1}{21} + \frac{1}{27} + \frac{1}{35} + \frac{1}{63} + \frac{1}{105} + \frac{1}{135}$. 4. \$\frac{1}{8}\$.

课序	课题	作业答案		
37	式除以单	1. (2) (3) 2. (1) x^{10} ; (2) x^{10} ; (3) x^{20} ; (4) $\frac{5}{3}ab^3$; (5) $\frac{4}{9}x^2y^4$; (6) $-\frac{15}{2}a^2b^2c$. 3. (1) $3a^6$; (2) $-\frac{3}{2}a$; (3) $-\frac{4}{9}ab^3$; (4) $-\frac{4}{3}y^{10}$. 4. (1) $\frac{27}{4}ab^4$; (2) $-\frac{1}{20}a^7$; (3) $-\frac{10}{3}xy^4$; (4) $\frac{2}{3}a^8$; (5) $5a$.		

38	9.19 多项 式除以单	1 (1) $x^2 - x + \frac{1}{2}$; (2) $2x^2 - 4$; (3) $6x^2y - 4xy^2 + 2y^3$.
		2 (1) $3b-4a^2b$; (2) $2a^3+2a^2b$; (3) $\frac{4}{5}xy^2-\frac{6}{5}y+1$;
		$(4) 2ab + 6a^2b - 8a^4b.$
	项式	3 (1) $3a^5 + 2a^4 + 4a^3 + 2a^2 + a$; (2) $-x^2y + \frac{3}{2}xy^2 - \frac{5}{2}y^3$;
		(3) $\frac{1}{2}a^5 + 8a^3 - \frac{1}{2}a$; (4) $13ab - 2$.
		—, C; D; D; A.
		$\equiv 1. \ x^2 + \frac{1}{2}xy$;
	包习与小	2. \pm , \pm , $\frac{1}{2}$, $-\frac{1}{4}x^4 - \frac{5}{4}x^3y^2 + \frac{3}{4}x^2y + \frac{1}{2}y^4 + \frac{1}{2}$;
		3. a^4 ; 4. k=5; 5. 8016; 6. $6a + 6b \cdot 2a^2 + 5ab + 2b^2$.
		$= 1\frac{3}{4}a^{12}; 22a^{12}; 3. \frac{3}{4}x^3y^5 - x^3y^6 + \frac{1}{4}x^2y^4;$
39		4. $3x^2 + 3x - 26$;
		5. $1-4a^4$; 6. $25x^2y^2-20xy+4$;
		7. $x^4 + 4x^3 + 10x^2 + 12x + 9$;
		$8. \ a^4 - 4b^4 + 16b^2 - 16.$
		四、 (1) $\frac{1}{2}a^2 - \frac{1}{2}ab + \frac{1}{2}b^2$; (2) $\frac{19}{2}$.
	整式单元 复习与小 结(2)	1.2y(x+y)(x-y); 2. $(5a+0.7b)(5a-0.7b)$
		3. $(2a^2+3b^2)^2$; 4. $(ab+4)(ab-5)$;
40		5. $(x+3y)(x-3y)(x^2+4y^2)$;
40		6. $(x+1)(x-1)(y+1)(y-1)$;
		7. $(x+2y)(x-2y-2)$; 8. $(x+4)(x-2)$;
		9. $(x+3y)(x-6y-3)$; 10. $(y+2)(x+4)(x-3)$.

课序	课题	作业答案
37	19.1 命题和证明②	 (1) B; (2) C. (1) 已知: 如图 (1), △ABC中, AB=AC, CE⊥AB, BD⊥AC, 垂足分別是点 E、D. 求证: BD=CE. (2) 已知: 如图 (2), 直线 AB、CD 被直线 EF 所截, 且 AB // CD, PG 平分 ∠AGH, PH 平分 ∠CHG. 求证: PG⊥PH. (1) 如可以找到三个内角的度数分别为 90°、30°、60°的 两块三角板, 它们的大小不一样, 即这两块三角板分别所成的三角形不全等。 (2) 如 ∠ABC=∠A'B'C'=90°, 这时 ∠ABC 与 ∠A'B'C'互补,但这两个角不是锐角或钝角. (3) 如图 (3), △ABC中, AB=AC; △A'B'C'中, A'B'=A'C'; 且BC=B'C', ∠A=∠B'. 但△ABC 与△A'B'C'不全等.
38	19.2 证明举 例①	 由∠AOB=∠COD,再结合已知,可得∠A=∠C,从而证明 AB//CD.

		2. 提示:利用平行线判定与性质.
		3. 由 <i>AB</i> // <i>CD</i> ,得 ∠ <i>A</i> + ∠ <i>D</i> =180°.
		又∠A=∠C, 得∠C+∠D=180°. 所以 AD//BC.
		4. 提示:利用等腰三角形 OAD 与等腰三角形 OBC 的顶角相等,
		再由三角形内角和,推出∠A=∠B,从而 AD//BC.
		1. 由 <i>AB</i> // <i>CD</i> , 得 ∠ <i>B</i> = ∠ <i>C</i> ; 又由 <i>BF</i> = <i>CE</i> , 得 <i>BE</i> = <i>CF</i> , 从而证得
		△ABE≌△DCF. 所以 AE=DF.
		2. 提示:利用等腰三角形性质与三角形的外角性质,推出∠B=
20	19.2 证明举例②	∠C,从而得 AB=AC.
39		3. 提示:证明△OAC≌△OBD, 得∠CAO=∠DBO; 又根据 OA=OB,
		得∠OAB=∠OBA,从而得到∠CAB=∠DBA.
		4. 提示:设法证明△BCE≌△CBD,从而得到∠BCE=∠CBD,推
		出 OB=OC.
	19.2 证明举例③	1. 由 DE//BC, 得 ∠DAB= ∠ABC, ∠EAC= ∠ACB. 又 AB=AC,
		得∠ABC=∠ACB,从而∠DAB=∠EAC,得∠DAC=∠EAB. 再证
		△DAC≌△EAB,推出 BE=CD.
		2. 提示:利用等腰三角形 OAB 与等腰三角形 ODC 的底角互余,
40		再由三角形内角和,推出 ZA 与 ZD 互补,从而 AB//DC.
		3. 提示:证明△ADF≌△CBE,得∠AFD=∠CEB;再利用等角的
		补角相等,得∠AFB=∠CED. 推出 AF//CE.
		4. 提示: 证明△ABD≌△CDB, 得∠ADB=∠CBD, 推出 DE//BF. 所
		以 $\angle E = \angle F$.

课序	课题	作业答案
46	26.3 二次 函数	1. (1) 开口向上、直线 x = -3、顶点 (-3,-2);
	$y = ax^2 + bx - 6$ 的图像①	(2) 开口向下、直线 x = −1、顶点 (−1,5);

		(3) 开口向上、直线 x = 2、 顶点 (2, -7);
		(4) 开口向下、直线 x = 5、顶点 (5,6).
		2. 物线 $y = -3x^2$ 的开口向下,对称轴是 y 轴,顶点坐标 $(0,0)$;
		抛物线 $y = -3(x+4)^2 - 2$ 的开口向下,对称轴是直线 $x = -4$,
		顶点坐标(-4,-2);
		把抛物线 $y=-3x^2$ 向左平移 4 个单位,再向下平移 2 个单位.
		3. (1) $y = -\frac{1}{4}x^2 - 5$; (2) $y = -\frac{1}{4}(x+2)^2$;
		(3) $y = -\frac{1}{4}(x-1)^2 + 1$; (4) $y = -\frac{1}{4}(x-3)^2 - 2$.
		4. $y = -4(x-3)^2$.
		5. 答案不唯一,如 $y = (x-2)^2 + 3$.
		6. <i>a</i> >0, <i>m</i> <0, <i>k</i> <0.
	26.3 二次 函数 $y = ax^2 + bx$ - 的图像②	1. $y = -3(x-3)^2$.
		2. 开口向上,对称轴是直线 $x=3$,顶点坐标 $(3,1)$,图像略.
		3. (1) 向下, 直线 $x = -1$, $(-1,3)$;
		(2) 左, 1, 上, 3.
		4. 直线 $x = 3$, 左 , 右 , 高 , $(3,4)$.
		5. 答案不唯一,如 $y = -4(x-2)^2 + 1$.
47		6. $y = -\frac{1}{2}(x-3)^2 + 1$.
		提示: 由抛物线 $y=a(x-h)^2+k$ 经平移后得到抛物线
		$y = -\frac{1}{2}(x+2)^2 - 3$, 可确定 $a = -\frac{1}{2}$, 且原抛物线顶点坐标为
		(h, k). 又因为向左平移 5 个单位, 再向下平移 4 个单位与新抛物
		线顶点 $(-2,-3)$ 重合,即 $h-5=-2$, $k-4=-3$.所以, $h=3$,

		$k=1$. 所以,原抛物线表达式为 $y=-\frac{1}{2}(x-3)^2+1$.
		1. (1) $y = -x^2 + 6x - 1 = -(x - 3)^2 + 8$, 开口向下, 对称轴是直
		线 $x = 3$, 顶点坐标是 (3,8).
		(2) $y = 1 - 4x - 2x^2 = -2x^2 - 4x + 1 = -2(x+1)^2 + 3$, $\pi \Box \Box$
		下,对称轴是直线 $x=-1$,顶点坐标是 $\left(-1,3\right)$.
		(3) $y = -\frac{1}{3}x^2 + 2x + 3 = -\frac{1}{3}(x-3)^2 + 6$, \mathcal{F} 口向下, 对称轴是
		直线 $x=3$,顶点坐标是 $(3,6)$.
		(4) $y = \frac{1}{2} - \frac{1}{3}x^2 - 2x = -\frac{1}{3}x^2 - 2x + \frac{1}{2} = -\frac{1}{3}(x+3)^2 + \frac{7}{2}$, #
		口向下,对称轴是直线 $x=-3$,顶点坐标是 $\left(-3,\frac{7}{2}\right)$.
	26.3 二次 函数 $y = ax^2 + bx$ 的图像③	2. $m < \frac{9}{4}$.
48		
		$ = \left(x + \frac{1}{2}\right)^2 + m - \frac{9}{4}$ 顶点坐标为 $\left(-\frac{1}{2}, m - \frac{9}{4}\right)$. 由于该抛物线顶
		点在第三象限,所以 $m-\frac{9}{4}<0$,得 m 的取值范围为 $m<\frac{9}{4}$.
		3. (补充) $\frac{5}{2}$ 分析: 通过配方把二次函数的一般式化为顶点式,
		保持恒等变形. 因此,把顶点式去括号可得一般式.
		$=-\frac{1}{2}x^2+x+\frac{5}{2}$, 因此得 $5-m=1$, 且 $n-3=\frac{5}{2}$, 解得 $m=4$,
		$n = \frac{11}{2}$,所以 $2m - n = \frac{5}{2}$.
		4. (选做)分析:对于抛物线 $y = ax^2 + bx + c$,表达式中 a 的符
		号决定抛物线的开口方向, a 的绝对值大小决定它的开口大小. 本题中两个二次函数的二次项系数是相等的,它们的开口方向和开
		口大小一样.

		解: 因为两个抛物线的表达式中的二次项系数相同, 所以能够通
		过抛物线 $y = 2x^2 - 4x$ 的平移得到抛物线 $y = 2x^2 + 6x - 1$. 由
		$y = 2x^2 - 4x = 2(x-1)^2 - 2$, 顶点为 $(1,-2)$.
		$y = 2x^2 + 6x - 1 = 2\left(x^2 + 3x + \frac{9}{4}\right) - \frac{9}{2} - 1 = 2\left(x + \frac{3}{2}\right)^2 - \frac{11}{2}$, $\sqrt{3}$
		点为 $\left(-\frac{3}{2}, -\frac{11}{2}\right)$. 所以将抛物线 $y = 2x^2 - 4x$ 向左平移 $\frac{5}{2}$ 个单位
		长度,再向下平移 7 2 个单位长度后,所得的新抛物线与抛物线
		$y = 2x^2 + 6x - 1 $
		1.第一列: 向上、 y 轴、 $(0,0)$; 第二列: 向上、直线 $x=-3$ 、
		(-3,-9); 第三列: 向上、直线 $x = -3$ 、 $(-3,3)$.
		2.图略. 抛物线 $y=x^2+4x+3=(x+2)^2-1$,它的开口向上,对
		 称轴是直线 $x = -2$,顶点坐标是 $(-2,-1)$; 沿着 x 轴正方向看,
	26.3 二次函数	$\Delta x < -2$ 的抛物线部分下降, $\Delta x > -2$ 的抛物线部分上升.
49	$y = ax^2 + bx$	3. (1) =; (2) 1; (3) 16.
.,	的图像④	4.由巳知二次函数的解析式,可知这个函数图像的对称轴是直线.
		$x = -\frac{-m}{2(m-2)}$, $\operatorname{pp} \frac{m}{2(m-2)} = 1$, $\operatorname{mp} = 4$.
		于是,这个二次函数的解析式为 $y=2x^2-4x$,它的图像的顶点
		坐标是(1,-2).
		5.满足条件的函数解析式不唯一,如: $y = (x-2)^2 - 4$.
		1. (1) $y = -2(x - \frac{3}{4})^2 + \frac{25}{8}$, 开口向下, 对称轴是直线 $x = \frac{3}{4}$,
		顶点坐标是 $(\frac{3}{4},\frac{25}{8})$;
	26.3 二次函	(2) $y = (x+k)^2 + 1 - k^2$, 开口向上, 对称轴是是直线 $x = -k$,
	数,,,	顶点坐标是 $(-k,1-k^2)$.
50	$y = ax^2 + bx$ 的图像⑤	2. 抛物线 $y = x^2 + mx + m$ 的顶点坐标是 $\left(-\frac{m}{2}, \frac{4m - m^2}{4}\right)$. 已
		知顶点在直线 $y=-x$ 上,所以 $\frac{m}{2} = \frac{4m-m^2}{4}$,解得
		$m_1=0, m_2=2.$
		3. (1) $y = 2x^2 - 6x + 4$; (2) $y = x^2 - x + 1$;

(3)	v =	$-x^2$	+	x		
(0)	<i>y</i> —		•	~	•	

4. (1)
$$C(-1,0)$$
; (2) $y = -2x^2 + x + 3$.