EPFL

MAN

Mise à niveau

Maths 1A Prepa-031(A)

Student:
Arnaud FAUCONNET

Professor: Guido BURMEISTER

Printemps - 2019

Chapter 3

Polynôme réels

3.1 Définition et opérations

Définition: Un polynôme en x à coefficients réels est une combinaison linéaire de puissance de x.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$$

avec $a_k \in \mathbb{R}, k = 0, ..., n$

On note $P \in \mathbb{R}[x]$ "ensemble de polynôme en x à coefficients réels"

Le degré de P, noté $\deg P$, est la plus grande puissance de x dont le coefficient est non nul.

Convention Le polynôme nul est de degré $-\infty$

Le sous-ensemble de $\mathbb{R}[\ x\]$ des polynômes de degré inférieur ou égale à $n\in\mathbb{N}$ est notée $\mathbb{P}_n[\ x\]$

$$\mathbb{P}_n[x] = \{ P \in \mathbb{R}[x] | \deg P \le n \}$$

Définition: La somme de 2 polynômes P et Q se note P+Q. On l'obtient en additionnant les coefficients d'une même puissance

Exemple:

$$P(x) = x^3 + 3x^2 + 5x - 6$$
$$Q(x) = -x^3 - 2x^2 + 3$$

Alors

$$(P+Q)(x) = P(x) + Q(x) = x^2 + 5x - 3$$

Remarque:

$$deg(P+Q) \leq max(deg P, deg Q)$$

Définition: L'amplification par $\lambda \in \mathbb{R}$ d'un polynôme P donne un polynôme noté λP . On obtient en multipliant chaque coefficient par λ .

Exemple:

$$P(x) = 3x^2 + 5x - 6$$
 $\lambda = -\frac{2}{3}$

Alors

$$(\lambda P)(x) = \lambda \cdot P(x) = -2x^2 - \frac{10}{3}x + 4$$

Remarques:

1.

Si
$$\lambda \neq 0 \iff \deg(\lambda P) = \deg P$$

Si $\lambda = 0 \iff \deg(\lambda P) = 0$

2. Avec les lois (addition et amplification), $\mathbb{R}[x]$ et $\mathbb{P}_n[x]$ sont des espaces vectoriels.

Définition: Multiplication par un monôme.

Soit

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

et

$$Q(x) = x^n$$

un monôme.

Leur produit est un polynôme. On l'obtient en distribuant la multiplication par x^n .

$$x^{m}(a_{n}x^{n} + ... + a_{0}) = a_{n}x^{n+m} + a_{n-1}x^{n-1+m} + ... + a_{0}x^{m}$$

Remarque:

$$\deg(x^m P) = m + \deg P$$

Définition: Soient P et Q deux polynômes. Leur produit noté $P \cdot Q$. On l'obtient par distribution des produits et un regroupant les coefficients d'une même puissance de x.

Exemple:

$$P(x) = 3x^2 + 5x - 6$$
 $Q(x) = -x^3 - 2x^2 + 3$

Alors

$$(PQ)(x) = P(x) \cdot Q(x)$$

$$= (3x^2 + 5x - 6) \cdot (-x^3 - 2x^2 + 3)$$

$$= -3x^5 - 6x^4 + 9x^2 - 5x^4 - 10x^3 + 15x + 6x^3 + 12x^2 - 18$$

$$= -3x^5 - 11x^4 - 4x^3 + 21x^2 + 15x - 18$$

Remarque:

$$\deg(PQ) = \deg P + \deg Q$$

Définition: Soit

$$P(x) = a_n x^n + a_{n-1} \cdot x^{n-1} + \dots + a_0 \in \mathbb{R}[x]$$

Alors

$$P: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto P(x) \qquad \text{"image par P de x"}$$

est une fonction polynomiale.

En particulier, l'évaluation de P en $x_0 \in \mathbb{R}$ s'écrit

$$P(x_0) = a_n x_0^n + a_{n-1} \cdot x_0^{n-1} + \dots + a_0$$

P évalué en x_0

Exemple:

$$P(x) = x^2 - 5x + 6$$
 et $x_0 = -2$

Alors

$$P(x_0) = (-2)^2 - 5(-2) + 6 = 20$$

3.2 Binôme de Newton

Définition: Le polynôme en x.

$$P_n(x) = (x+a)^n, \quad a \in \mathbb{R}, n \in \mathbb{R}$$

est appelé binôme de Newton (x + a: binôme)

Calculons...

Définition: On note C_n^k le nombre de manières de choisir un sous-ensemble à k éléments dans un ensemble à n éléments.

On peut montre que

$$C_n^k = \frac{n!}{k! \cdot (n-k)!}$$

où

$$k!k \cdot (k-1) \cdot (k-2) \cdot \dots \cdot 2 \cdot 1$$

est dit "k-factorielle".

On pose

$$0! = 1$$

et

$$C_n^0 = 1 = C_0^0$$

Remarque: Une factorielle est vite très grande...

On calcul plutôt:

$$\begin{split} C_n^k &= \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1) \cdot (n-k)!}{k! \cdot (n-k)!} \\ &= \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k \cdot (k-1) \cdot \ldots \cdot 1} & \leftarrow k \text{ facteurs} \\ &\leftarrow k \text{ facteurs} \end{split}$$

Propriétés:

1.
$$C_n^k = C_n^{n-k}, \quad k = 0, ..., n$$

2.
$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$$
, $k = 1, ..., n-1$

3.
$$C_n^0 + C_n^1 + C_n^2 + \dots + C_n^{n-1} + C_n^n = \sum_{k=0}^n C_n^k = 2^n$$

Corollaire: Le développement du binôme de Newton donne:

$$\begin{split} (x+a)^n &= C_n^0 a^0 x^n + C_n^1 a^1 x^{n-1} + C_n^2 a^2 x^{n-2} + \ldots + C_n^k a^k x^{n-k} + \ldots + C_n^{n-1} a^{n-1} x^1 + C_n^n a^n x^0 \\ &= \sum_{k=0}^n C_n^k a^k x^{n-k} \quad \text{remarque: il y a n+1 termes} \end{split}$$

En effet, dnas le développement de

$$(x+a)^n = \underbrace{(x+a)\cdot(x+a)\cdot\ldots\cdot(x+a)}_{n \text{ facteurs}}$$

le terme a^kx^{n-k} apparait C_n^k fois, on a à choisir k fois le a et du coup on a n-k fois le x.

Exemple: Développer

$$(x-1)^6 = C_6^0(-1)^0 x^6 + C_6^1(-1)^1 x^5 + C_6^2(-1)^2 x^4 + C_6^3(-1)^3 x^3 + C_6^4(-1)^4 x^2 + C_6^5(-1)^5 x^1 + C_6^6(-1)^6 x^0$$

$$= x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1$$

Exemples:

1. Donner le coefficient de x^{127} dans $(x+2)^{129}$. Le terme en x^{127} est (k=2)

$$C_{129}^2 2^2 x^{127} = \frac{129 \cdot 128}{2 - 1} \cdot 2^2 x^{127} = 33024 x^{127}$$

2. Terme en x^8 dans $(4x^3 + \frac{3}{x^2})^{11}$

Le terme général ($(k+1)^e$ terme) est

$$C_n^k \left(\frac{3}{x^2}\right)^k \cdot (4x^3)^{n-k} = C_{11}^k 3^k 4^{11-k} x^{-2k} x^{3(11-k)}$$

Il faut trouver

$$k \text{ t.q. } 33 - 5k = 8 \quad (k = 0, 1, ..., 11)$$

 $k = 5$

D'où le terme en $x^8:C^5_{11}3^54^{11-5}x^8=\dots$

3.3 Zéro, schéma de Hörmer, multiplication

Théorème: Soient P un polynôme avec $\deg P \ge 1$ et $x_0 \in \mathbb{R}$. Alors il existe un unique polynôme

$$F \text{ t.q. } P(x) = F(x) \cdot (x - x_0) + P(x_0)$$

Remarques:

- $\deg F = \deg P 1$
- Il est un cas particulier de division euclidienne

En effet, notons

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

et

$$F(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_0$$

Alors

$$P(x) = F(x) \cdot (x - x_0) + r$$
 r: à déterminer
$$= b_{n-1}x^n + b_{n-2}x^{n-1} + \dots + b_0x - x_0b_{n-1}x^{n-1} - x_0b_{n-2}x^{n-2} - \dots - x_0b_0$$

En additionnant toute les lignes les, les b_k tombent

Donc les b_k existent (uniques) et $r = P(x_0)$

Ce processus est résumé dans le schéma de Hörner

Exemple: Division euclidienne de

$$P(x) = 4x^3 + 2$$

par

$$x + 2$$

 $x_0 = -2$

Ainsi:

$$4x^3 + 2 = (4x^2 - 8 + 16) \cdot (x+2) \underbrace{-30}_{P(-2)}$$

Corollaire: Le reste de la division de P(x) par $x - x_0$ est $P(x_0)$.

Définition: Soit $P \in \mathbb{R}[x]$. x_0 est un zéro de P (ou racine) si $P(x_0) = 0$.

Corollaire: x_0 est un zéro de P(x) si et seulement si P est divisible par $x - x_0$.

Exemple:

$$x_0 = -1$$

est racine évidente de

$$P(x) = 3x^3 - 2x^2 + 4x + 9$$
$$P(-1) = 0$$

Alors P(x) est divisible par

$$x - x_0 = x + 1$$

Pour trouver la factorisation: diviser ou utiliser le schéma de Hörner.

Définition: Soit P un polynôme, $\deg P \ge 1$. Si x_0 est un zéro de P, il existe $n \in \mathbb{N}^*$, appelé la multiplicité de x_0 , tel que

$$P(x) = (x - x_0)^n Q(x)$$

avec

$$Q(x_0) \neq 0$$

et

$$\deg Q = \deg P - n$$

Remarques:

- Cas particulier de division euclidienne
- degF = degP 1
- $P(x_0)$ est le reste de division de P par $x x_0$
- x_0 est le zéro d P si et seulement si $P(x_0) = 0$ si et seulement si $x x_0$ divise P

3.4 Division euclidienne

Théorème: Soient P et Q deux polynômes tels que $\deg P \ge \deg Q$. Il existe alors deux polynômes uniques F et R tels que

$$P(x) = F(x) \cdot Q(x) + R(x)$$
 (avec deg $R < \deg Q$)

Cette décomposition est appelée la **division euclidienne** de P par Q. Si R=0, on dit que Q divise P.

Exemple: Donner la division euclidienne de

$$P(x) = 3x^4 + 2x^3 - 46x^2 + 88x - 23$$

par

$$Q(x) = x^2 - 4x + 5$$

Ainsi:

$$3x^4 - 2x^3 - 46x^2 + 88x - 23 = (3x^2 + 14x - 5) \cdot (x^2 - 4x + 5) + (-2x + 2)$$

3.5 Décomposition en facteurs irréductibles

Définition: Un polynôme est dit irréductible s'il ne peut pas être décomposé en un produit de polynôme de degré plus petit (degré null par example)

Théorème: Dans $\mathbb{R}[x]$, les polynômes irréductibles sont dans la forme

- ax + b, $a \neq 0$
- $ax^2 + bx + c$, $a \neq 0$ et $\Delta b^2 4ac < 0$ (pas de racines réelles et donc pas de factorisation).

Corollaire: Tout polynôme $P \in \mathbb{R}[x]$ peut être décomposé en produit de facteurs irréductibles dans $\mathbb{R}[x]$

$$P(x) = a(x - x_1)^{n_1} \cdots (x - x_p)^{n_p} \cdot (x^2 + \beta_1 x + \gamma_1)^{m_1} \cdots (x^2 + \beta_q x + \gamma_q)^{m_q}$$

avec

- $a \in \mathbb{R}^*$
- racines réelles x_i , i = 1, ..., p, toutes différentes
- $n_i \in \mathbb{N}^*$: ordre (ou multiplicité) de x_i
- (β_j,γ_j) j=1,...,q, tous différentes et tels que $\Delta_j=\beta_j^2-4\gamma_j<0$
- $m_j \in \mathbb{N}^*, \quad j = 1, ..., q$
- $n_1 + ... + n_p + 2m_1 + ... + 2m_q = \deg P$

Exemple:

$$P(x) = 2x^5 + 3x^4 - 2x^2 - 2x - 1$$

Remarque: $x_1 = 1$ annule P: P(1) = 0. Donc x - 1 divise P: P(x) = (...)(x - 1) Finalement $P(x) = (x + 1)^2(x - 1)(2x^2 + x + 1)$

3.6 Décomposition d'une fonction rationnelle en éléments simples

Définition: Soient $P, Q \in \mathbb{R}[x]$ deux polynômes. Leur quotient

$$f(x) = \frac{P(x)}{Q(x)}$$
 deg $Q \ge 0$

est une fonction rationnelle.

Cherchons à exprimer f(x) comme une osmme de fonctions rationnelles plus simples (p.ex intégrables)

Exemple: Considérons

$$P(x) = 2x^3 - 11$$

et

$$Q(x)x^5 - 2x^4 + x^3 - x^2 + 2x - 1$$

Remarque: Comme $\deg P < \deg Q$, une division euclidienne n'est pas utile Cherchons à factoriser Q(x)

Remarque:

$$Q(1) = 0$$

On peut donc factoriser Q(x) par x - 1 ...

$$Q(x) = (x-1)^3(x^2 + x + 1)$$

On vérifie que

$$\frac{P(x)}{Q(x)} = \frac{2x^3 - 11}{(x-1)^3(x^2 + x + 1)} = \frac{-2}{x-1} + \frac{5}{(x-1)^2} + \frac{-3}{(x-1)^3} + \frac{2x+1}{x^2 + x + 1}$$

Remarque: Les numérateurs associés au polynôme irréductible 1^{er} degré, x-1, sont de degré 0. Ceux associés à x^2+x+1 (irréductible de degré 2) sont du 1^{er} degré.

Définition: La décomposition d'une fonction $\frac{P(x)}{Q(x)}$ en éléments simples est son écriture comme une somme de fonctions rationnelles où le dénominateur de chaque terme est uniquement une puissance d'un polynôme irréductible.

Procédure

1. Si $\deg P \ge \deg Q$, on effectue d'abord la division euclidienne:

$$P = FQ + R \iff \frac{P}{Q} = F + \frac{R}{Q}$$

où $F \in \mathbb{R}[x]$ et $\deg R < \geq Q$.

Pour la décomposition de $\frac{R}{Q}$, voir ci-dessous.

2. Si $\deg P < \deg Q$, on décompose Q en produit de facteurs irréductibles. Pour Q unitaire (on peut toujours mettre un réel en évidence)

$$Q(x) = (x - x_1)^{n_1} \cdots (x - x_p)^{n_p} \cdot (x^2 + \beta_1 x + \gamma_1)^{m_1} \cdots (x^2 \beta_q x + \gamma_q)^{m_q}$$

On peut montrer qu'il suffit alors de déterminer les coefficients

 A_{ij}, B_{kl}, C_{kl} dans le développement suivant:

$$\begin{split} \frac{P(x)}{Q(x)} &= \frac{A_{11}}{x-x_1} + \frac{A_{12}}{(x-x_1)^2} + \ldots + \frac{A_{1n_1}}{(x-x_1)^{n_1}} \\ &+ \frac{A_{21}}{x-x_2} + \frac{A_{22}}{(x-x_2)^2} + \ldots + \frac{A_{2n_2}}{(x-x_2)^{n_2}} \\ &+ \frac{A_{p1}}{x-x_2} + \frac{A_{p2}}{(x-x_2)^2} + \ldots + \frac{A_{pn_p}}{(x-x_2)^{n_p}} \\ &+ \frac{B_{11}x + C_{11}}{x^2 + \beta_1 x + \gamma_1} + \frac{B_{12}x + C_{12}}{(x^2 + \beta_1 x + \gamma_1)^2} + \ldots + \frac{B_{1m}x + C_{1m}}{(x^2 + \beta_1 x + \gamma_1)^m} \\ &+ \frac{B_{q1}x + C_{q1}}{x^2 + \beta_q x + \gamma_q} + \frac{B_{q2}x + C_{q2}}{(x^2 + \beta_q x + \gamma_q)^2} + \ldots + \frac{B_{qm}x + C_{qm}}{(x^2 + \beta_q x + \gamma_q)^m} \end{split}$$

Un terme du type $\frac{A}{(x-x_0)^k}$ est dit de première espèce et un terme de type $\frac{Bx+C}{(x^2+\beta x+\gamma)^k}$ de 2^e espèce.

- 3. Pour déterminer les coefficients, ou peut
 - Mettre au même dénominateur la somme des éléments simples et comparer les coefficients du numérateur obtenu à ceux de P(x).
 - Évaluer l'égalité en x_0 bien choisi, après une éventuelle multiplication par $(x-x_0)^k$
 - Faire la limite $x \longrightarrow \infty$, après une éventuelle multiplication par x^k .

Exemple:

$$P(x) = x^4 - 2x^3 + 5x - 10, \quad Q(x) = x^5 - x^3 - x^2 + 1$$

Décomposons $\frac{P}{Q}$ en éléments simples.

- 1. Division euclidienne: pas nécessaire, car $\deg P < \deg Q$
- 2. Factoriser Q(x). Observation: $Q(x) = (x^2 + 1)(x^3 1)$ donc

$$Q(x) = (x-1)^{2}(x+1)(x^{2}+x+1)$$

3. Éléments simples

$$\frac{P(x)}{Q(x)} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{x+1} + \frac{dx+e}{x^2+x+1}$$

- 4. Pour déterminer les coefficients
 - Soit on met au même dénominateur

• Soit on évacue:

$$\frac{x^4 - 2x^3 + 5x - 10}{(x-1)^2(x+1)(x^2+x+1)} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{x+1} + \frac{dx+e}{x^2+x+1}$$

Multiplions par $(x-1)^2$

$$\frac{x^4 - 2x^3 + 5x - 10}{(x-1)^2(x+1)(x^2+x+1)} = a(x-1) + b + \frac{c}{x+1} \cdot (x-1)^2 + \frac{dx+e}{x^2+x+1} \cdot (x-1)^2$$

et évaluer en x = 1:

$$\implies -\frac{6}{6} = 0 + b + 0 + 0 \implies b = -1$$

Multiplions par (x + 1)

$$\implies -\frac{12}{4} = 0 + 0 + c + 0 \implies c = -3$$

Multiplions par x et $x \longrightarrow \infty$

$$\implies 1 = a + 0 + c + d \implies a + d = 4$$

Évaluer en x = 0

$$\implies -\frac{10}{7} = -a + b + c + e \implies -a + e = -6$$

Évaluer en x=2

$$\implies 0 = a + b + \frac{c}{3} + \frac{2d + e}{7} \implies 7a + 2d + e = 14$$

Finalement

$$a = 2$$
 $b = -1$ $c = -3$ $d = 2$ $e = -4$

d'où

$$\frac{P(x)}{Q(x)} = \frac{2}{x-1} + \frac{-1}{(x-1)^2} + \frac{-3}{x+1} + \frac{2x-4}{x^2+x+1}$$