$Solutions \; MP/MP^* \ S\'eries \; Enti\`eres$

Solution 1.

1. On pose, pour tout $n \ge 1$, $u_n = \left(\cosh\left(\frac{1}{n}\right)\right)^{n^{\alpha}} > 0$. On va chercher un équivalent. On a $u_n = e^{n^{\alpha} \ln\left(\cosh\left(\frac{1}{n}\right)\right)}$. Comme $\cosh(x) = 1 + \frac{x^2}{2} + O(x^4)$, on a

$$\ln\left(\cosh\left(\frac{1}{n}\right)\right) \underset{+\infty}{=} \ln\left(1 + \frac{1}{2n^2} + O\left(\frac{1}{n^4}\right)\right),\tag{1}$$

$$= \frac{1}{+\infty} \frac{1}{2n^2} + O\left(\frac{1}{n^4}\right). \tag{2}$$

Ainsi, $u_n = e^{\frac{n^{\alpha-2}}{2} + O(n^{\alpha-4})}$. Donc :

— si
$$\alpha < 2$$
, $\lim_{n \to +^i n f t y} u_n = 1$ et $R = 1$,

- si
$$\alpha = 2$$
, $\lim_{n \to +infty} u_n = e^{\frac{1}{2}}$ et $R = 1$,

— si $\alpha > 2$, on a

$$\frac{u_{n+1}}{u_n} = e^{\left(\frac{(n+1)^{\alpha-2}}{2}\right) - \frac{n^{\alpha-2}}{2} + O(n^{\alpha-4})}.$$
 (3)

Or

$$(n+1)^{\alpha-2} - n^{\alpha-2} = n^{\alpha-2} \left(\left(1 + \frac{1}{n} \right)^{\alpha-2} - 1 \right), \tag{4}$$

$$\underset{+\infty}{=} n^{-2} \left(\frac{\alpha - 2}{n} + O\left(\frac{1}{n^3}\right) \right), \tag{5}$$

$$=_{+\infty} (\alpha - 2) n^{\alpha - 3} + O(n^{\alpha - 4}). \tag{6}$$

Donc $\frac{u_{n+1}}{u_n} = e^{\frac{(\alpha-2)n^{\alpha-3}}{2} + O(n^{\alpha-4})}$. Ainsi,

— si
$$\alpha < 3$$
, $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $R = 1$,

— si
$$\alpha = 3$$
, $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = e^{\frac{1}{2}}$ et $R = e^{-\frac{1}{2}}$,

$$- \operatorname{si} \alpha = 3, \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = e^{\frac{1}{2}} \text{ et } R = e^{-\frac{1}{2}},$$

$$- \operatorname{si} \alpha > 3, \operatorname{comme} \frac{(\alpha - 2)n^{\alpha - 3}}{2} + O\left(n^{\alpha - 4}\right) \underset{+\infty}{\sim} \frac{(\alpha - 2)}{2} n^{\alpha - 3}, \operatorname{il existe } N_0 \in \mathbb{N} \text{ tel que pour tout }$$

$$n \geqslant N_0,$$

$$\frac{(\alpha - 2)n^{\alpha - 3}}{2} + O\left(n^{\alpha - 4}\right) \geqslant \frac{\alpha - 2}{4}n^{\alpha - 3} \xrightarrow[+\infty]{} + \infty. \tag{7}$$

Ainsi, $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = +\infty$ et R = 0.

2. On note $u_n = e^{n^2 \ln \left(1 + \frac{(-1)^n}{n^2}\right)} > 0$. Comme $\ln(1+x) = x + O(x^2)$, on a $u_n = e^{(-1)^n n + O\left(\frac{1}{n}\right)} \sim e^{(-1)^n n + O\left(\frac{1}{n}\right)}$ $e^{(-1)^n n} = v_n$. On ne peut pas appliquer la règle de d'Alembert à v_n , ça ne va pas converger. Mais on peut encadrer $v_n: 0 < v_n \leqslant e^n$ et donc $R \geqslant \frac{1}{e}$. On a $\frac{u_n}{e^n} = e^{n((-1)^n - 1) + O\left(\frac{1}{n}\right)}$ et $\frac{u_{2n}}{e^{2n}} \xrightarrow[n \to +\infty]{} 1$ donc $\sum \frac{u_n}{e^n}$ diverge. Ainsi, $R = \frac{1}{e}$.

Solution 2.

1. On remarque

$$\underbrace{\begin{pmatrix} u_n \\ u_{n+1} \\ \dots \\ u_{n+p-1} \end{pmatrix}}_{X_n} = \underbrace{\begin{pmatrix} m_1 & \dots & m_p \\ m_1 e^{i\theta_1} & \dots & m_p e^{i\theta_p} \\ \vdots & & \vdots \\ m_1 e^{i(p-1)\theta_p} & & m_p e^{i(p-1)\theta_p} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} e^{in\theta_1} \\ \vdots \\ e^{in\theta_p} \end{pmatrix}}_{Y_n}. \tag{8}$$

A est inversible car $\det(A) = (\prod_{i=1}^p m_i) \times \operatorname{VdM}(e^{i\theta_1}, \dots, e^{i\theta_p}) \neq 0$. Donc si $u_n \xrightarrow[n \to +\infty]{} 0$, on a $X_n \xrightarrow[n \to +\infty]{} 0$ et $Y_n = A^{-1}X_n \xrightarrow[n \to +\infty]{} 0$ ce qui n'est pas car $\|Y_n\|_{\infty} = 1$.

2. On pose $\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$. Si $\chi_A = (X - \lambda_1) \dots (X - \lambda_p)$ avec $|\lambda_1| = \dots = |\lambda_j| = \rho(A)$ et $|\lambda_i| < \rho(A)$ pour tout $i \in \{j+1,\dots,p\}$. On écrit $a_n = \sum_{i=1}^p \lambda_i^n = \sum_{i=1}^j \lambda_i^n + \sum_{i=j+1}^p \lambda_i^n$. D'après la règle de d'Alembert, on a $R \geqslant \frac{1}{\rho(A)}$ (et $R = +\infty$ si $\rho(A) = 0$ et A est nilpotente). De plus, on a

$$\frac{a_n}{\rho(A)^n} = \sum_{k=1}^j m_k e^{in\theta_k} + \sum_{i=j+1}^p \left(\frac{\lambda_i}{\rho(A)}\right)^n, \tag{9}$$

et le premier terme ne tend pas vers 0 d'après ce qui précède tandis que le deuxième tend vers 0. Donc $\sum \frac{a_n}{\rho(A)}$ diverge grossièrement, donc $R = \frac{1}{\rho(A)}$.

Soit $z \in \mathbb{C}$ avec $|z| < \frac{1}{\rho(A)}$, on a

$$\sum_{n=0}^{+\infty} a_n z^n = \sum_{i=1}^p \left(\sum_{n=0}^{+\infty} \lambda_i^n z^n \right), \tag{10}$$

$$=\sum_{i=1}^{p} \frac{1}{1-\lambda_i z},\tag{11}$$

$$=\operatorname{Tr}\left(I_{p}-zA\right)^{-1},\tag{12}$$

car pour tout $i \in [\![1,p]\!]$, $|\lambda_i z| < 1$ et on peut trigonaliser dans la même base A et $I_p - zA$.

Solution 3. D'après la règle de d'Alembert, on a R=1. De plus, $|a_n|=O(\frac{1}{n^3})$ donc il y a convergence uniforme sur $\overline{D(0,1)}$. Ainsi, la somme S est continue sur $\overline{D(0,1)}$. Soit $t \in]-1,1[$,

comme $\frac{1}{X(X+1)(2X+1)} = \frac{a}{X} + \frac{b}{X+1} + \frac{c}{2X+1}$ avec a = b = 1 et c = 4, on a

$$\frac{S(t)}{6} = \sum_{n=1}^{+\infty} \left(\frac{t^n}{n} + \frac{t^n}{n+1} - 4 \frac{t^n}{2n+1} \right) = -\ln(1-t) + \left(\frac{-\ln(1-t)}{t} - 1 \right) - 4 \underbrace{\sum_{n=1}^{+\infty} \frac{t^n}{2n+1}}_{g(t)}. \tag{13}$$

Si t > 0, on a $\sqrt{t}g(t) = \sum_{n=1}^{+\infty} \frac{(\sqrt{t})^{2n+1}}{2n+1}$. On pose $h(x) = \sum_{n=1}^{+\infty} \frac{x^{2n+1}}{2n+1}$, C^{∞} sur [0,1[et h(0) = 0. On a $h'(x) = \sum_{n=1}^{+\infty} x^{2n} = \frac{x^2}{1-x^2} = -1 - \frac{1}{2} \frac{1}{x+1} + \frac{1}{2} \frac{1}{x-1}$ donc $h(x) = -x - \frac{1}{2} \ln(x+1) + \frac{1}{2} \ln(x-1)$ d'où $g(t) = -\sqrt{t} - \frac{1}{2} \ln(\sqrt{t} + 1) + \frac{1}{2} \ln(\sqrt{t} - 1)$.

Si t < 0, $\sqrt{-t}g(t) = \sum_{n=1}^{+\infty} \frac{(-1)^n \sqrt{-t}^{2n+1}}{2n+1} = \arctan(\sqrt{-t}) - \sqrt{-t}$. Donc $g(t) = \frac{\arctan(\sqrt{-t})}{\sqrt{-t}} - 1$. L'expression de S reste valable en -1 et 1 par continuité de S.

Solution 4. Soit $t \in]-1,1[$, on a

$$I(t) = \int_0^1 e^{u \ln(1+t)} du,$$
 (14)

$$= \left[\frac{1}{\ln(1+t)} e^{u \ln(1+t)}\right]_{u=0}^{u=1},\tag{15}$$

$$=\frac{1+t}{\ln(1+t)} - \frac{1}{\ln(1+t)},\tag{16}$$

$$= \frac{t}{\ln(1+t)} = f(t). \tag{17}$$

Soit $u \in [0,1]$, on a $(1+t)^u = \sum_{n=0}^{+\infty} \frac{u(u-1)...(u-n+1)}{n!} t^n = \sum_{n=0}^{+\infty} f_n(u)$. f_n est continue sur [0,1]. On a

$$|f_n(u)| = \frac{u(1-u)\dots(n-1-u)}{n!} |t|^n,$$
 (18)

$$\leqslant \frac{(n-1)!}{n!} |t|^n, \tag{19}$$

$$=\frac{1}{n}\left|t\right|^{n},\tag{20}$$

$$\leq |t|^n$$
, (21)

car pour tout $u \in [0,1]$, $0 \le k - u \le k$. Comme |t| < 1, $|t|^n$ est le terme général d'une série convergente. Donc $\sum f_n$ converge normalement sur [0,1] et on peut intervertir :

$$f(t) = \sum_{n=0}^{+\infty} \left(\int_0^1 \frac{u(u-1)\dots(u-n+1)}{n!} du \right) t^n,$$
 (22)

encore vrai pour t=0 car $a_0=1$. Donc f est développable en série entière sur]-1,1[et f est \mathcal{C}^{∞} sur]-1,1[. Par ailleurs, f est \mathcal{C}^{∞} sur $\left[\frac{1}{2},+\infty\right[$, donc f est \mathcal{C}^{∞} sur $]-1,+\infty[$.

Remarque 1. On a

$$a_n = \frac{(-1)^n}{n!} \int_0^1 u(1-u) \dots (n-1-u) du.$$
 (23)

De plus,

$$|a_{n+1}| = \frac{1}{(n+1)!} \int_0^1 u(1-u) \dots (n-1-u) \underbrace{(n-u)}_{\leq n} du, \tag{24}$$

$$\leq \frac{1}{n!} \int_0^1 u(1-u) \dots (n-1-u) du = |a_n|.$$
 (25)

Enfin, $|a_n| \leqslant \frac{(n-1)!}{n!} = \frac{1}{n}$. D'après le critère spécial des séries alternées, $\sum a_n$ converge. Puis $\sum a_n t^n$ converge uniformément sur [0,1] (majorer le reste par le critère spécial des séries alternées), donc il y a convergence et continuité en 1. On vérifie que $|a_n| = \frac{1}{n} \int_0^1 u e^{\sum_{k=1}^{n-1} \ln(1-\frac{u}{k})} du = \frac{1}{n} \int_0^1 e^{-\ln(n)u+g_n(u)}$, où $g_n(u)$ est majorée par M indépendant de n et de u. Ainsi, par convergence dominée, $|a_n| \underset{+\infty}{\sim} \frac{1}{n} \int_0^1 \frac{u}{n^u} du$, terme général d'une série divergente.

Solution 5. On a $a_n = e^{\ln(n)\ln\left(\sum_{k=1}^n \frac{1}{k}\right)} = e^{\ln(n)\ln(\ln(n)+\gamma+o(1))}$. On a

$$\ln\left(\ln(n) + \gamma + o(1)\right) = \ln(\ln(n)) + \ln\left(1 + \frac{\gamma}{\ln(n)} + O\left(\frac{1}{\ln(n)}\right)\right),\tag{26}$$

$$= \ln(\ln(n)) + \frac{\gamma}{\ln(n)} + o\left(\frac{1}{\ln(n)}\right). \tag{27}$$

Donc $a_n = e^{\ln(n)\ln(\ln(n)) + \gamma + o(1)} \underset{+\infty}{\sim} e^{\gamma} \underbrace{e^{\ln(n)\ln(\ln(n))}}_{b_n}$. On a

$$\frac{b_{n+1}}{b_n} = e^{\ln(n+1)\ln(\ln(n+1)) - \ln(n)\ln(\ln(n))},$$
(28)

mais

$$\ln(n+1) = \ln(n) + \ln\left(1 + \frac{1}{n}\right) = \ln(n) + O\left(\frac{1}{n}\right),\tag{29}$$

et

$$\ln(n+1)\ln(\ln(n+1)) = \ln(n)\ln(\ln(n+1)) + \underbrace{O\left(\frac{\ln(\ln(n+1))}{n}\right)}_{=o(1)},$$
(30)

puis

$$\ln(\ln(n+1)) = \ln\left(\ln(n) + O\left(\frac{1}{n}\right)\right),\tag{31}$$

$$= \lim_{+\infty} \ln(\ln(n)) + \ln\left(1 + O\left(\frac{1}{n\ln(n)}\right)\right), \tag{32}$$

$$= \ln(\ln(n)) + O\left(\frac{1}{n\ln(n)}\right). \tag{33}$$

Donc $\ln(n+1)\ln(\ln(n+1)) - \ln(n)\ln(\ln(n)) = o_{+\infty}(1)$, et $\frac{b_{n+1}}{b_n}\lim_{n\to+\infty}1$, d'où R=1.

De plus, $\lim_{n\to+\infty} a_n = +\infty$ donc il y a divergence sur le cercle de convergence.

Remarque 2. On peut aussi écrire $a_n \leqslant n^{\ln(n)} = e^{(\ln(n))^2} = c_n$, et

$$\frac{c_{n+1}}{c_n} = e^{(\ln(n+1))^2 - (\ln(n))^2} = e^{\left(\ln(n) + O\left(\frac{1}{n}\right)\right)^2 - (\ln(n))^2} \xrightarrow[n \to +\infty]{} 1.$$
(34)

Donc $\sum c_n z^n$ a pour rayon de convergence 1, donc $R \geqslant 1$, et $\sum a_n$ diverge donc R = 1.

Solution 6. Le nombre de diviseurs est compris entre 1 et n. Comme $\sum z^n$ et $\sum nz^n$ ont un rayon de convergence égal à 1, on a R=1 par encadrement.

Solution 7. On pose $u_n = \frac{a_{n+1}}{a_n}$. Alors $\frac{a_{n-1}a_{n+1}}{a_n^2} = \frac{u_n}{u_{n-1}}$.

- Si l<1, alors d'après la règle de d'Alembert, $\sum u_n$ converge donc $\lim_{n\to+\infty}u_n=0$ donc $R=+\infty$.
- Si l > 1, il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \ge N_0$, $\frac{u_n}{u_{n-1}} \ge \frac{l+1}{2}$ et pour tout $n \ge N_0$, $u_n \ge u_{N_0} \times \left(\frac{l+1}{2}\right)^{n-N_0} \xrightarrow[n \to +\infty]{} +\infty$ donc R = 0.
- Si l=1: si $a_n=n!$, on a $u_n=n+1$ donc R=0, si $a_n=\frac{1}{n!}$, on a $u_n=\frac{1}{n+1}$ donc $R=+\infty$, si $a_n=\lambda^n$ avec $\lambda>0$, on a $u_n=\lambda$ et $R=\frac{1}{\lambda}$. Donc on ne peut rien dire.

Solution 8. D'après la règle de d'Alembert, avec $a_n = \frac{(-1)^n}{n}$, on a $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n}{n+1} \xrightarrow[n \to +\infty]{} 1$ donc le rayon de convergence de ϕ est R = 1 donc ϕ est bien définie.

Fixons $z \in \mathbb{C}^*$ avec |z| < 1, formons

$$f: [0,1] \to \mathbb{C}$$

$$t \mapsto e^{\phi(tz)}$$
(35)

z étant fixé, le rayon de convergence de la série entière $\sum_{n\geqslant 1}(-1)^{n-1}\frac{t^nz^n}{n}=\phi(tz)$ vaut $\frac{1}{|z|}>1$, donc l'application $t\mapsto \phi(tz)$ est \mathcal{C}^{∞} sur $[0,1]\subset \left]-\frac{1}{|z|},\frac{1}{|z|}\right[$. f est donc \mathcal{C}^{∞} sur [0,1] et pour tout $t\in[0,1]$,

$$f'(t) = \sum_{n=1}^{+\infty} (-1)^{n-1} z^n t^{n-1} \times f(t) = \frac{z}{1+tz} f(t), \tag{36}$$

car |zt| < 1 et f(0) = 1. On pose g(t) = 1 + tz. Alors $g'(t) = z = \frac{z}{1+tz}g(t)$ et g(0) = 1. Ainsi, par unicité (d'après le théorème de Cauchy-Lipschitz), pour tout $t \in [0,1]$, f(t) = g(t). En particulier, $f(1) = e^{\phi(z)} = 1 + z$.

Remarque 3. On vient de définir, pour |z| < 1, $\phi(z)$ qui est un logarithme complexe continue de 1 + z. Si $1 + z = \rho e^{i\theta}$ avec $\theta \in]-\pi,\pi[$, $\phi(z) = \ln(\rho) + i\theta$.

Solution 9. On a $a_n = \frac{1}{\cos(\frac{2n\pi}{3})}$ et $1 \leq |a_n| \leq 2$ donc R = 1. Si |z| < 1, on a

$$\sum_{n=0}^{+\infty} z^{3n} - 2\left(\sum_{n=0}^{+\infty} -z^{3n+1} + z^{3n+2}\right) = \frac{1}{1-z^3} + \frac{2z}{1-z^3} - \frac{2z^2}{1-z^3} = \frac{1+2z-2z^2}{1-z^3}.$$
 (37)

Solution 10.

- 1. On a $b_n \ge 0$ donc g est croissante sur [0,1[. g admet donc une limite $l \in \mathbb{R}_+$ en 1^- . Pour tout x < 1, $g(x) \le l$. Pour tout $N \in \mathbb{N}$, pour tout $x \in [0,1[$, comme $b_n x^n \ge 0$, on a $\sum_{n=0}^N b_n x^n \le g(x) \le l$. N étant fixé, quand $x \to 1$, on a $\sum_{n=0}^N b_n \le l$ et quand $N \to +\infty$, on a $l = +\infty$.
- 2. Soit $\varepsilon > 0$, il existe $n_0 \in \mathbb{R}$, pour tout $n \geqslant n_0$, $|a_n b_n| < \frac{\varepsilon}{2} \times b_n$. Pour tout $x \in [0, 1[$, on a $|f(x) g(x)| \leqslant \sum_{n=0}^{n_0-1} |a_n b_n| x^n + \sum_{n=n_0}^{+\infty} |a_n b_n| x^n$. Le terme de gauche est en polynôme en x qui a une limite finie en 1^- , le terme de droite majoré par $\frac{\varepsilon}{2} \sum_{n=n_0}^{+\infty} b_n x^n \leqslant \frac{\varepsilon}{2} g(x)$, car les b_n sont positifs. Ainsi, ce terme de droite est un O(g(x)) donc majoré par $\frac{\varepsilon}{2} g(x)$ pour x suffisamment proche de 1, d'où $|f(x) g(x)| \leqslant \varepsilon g(x)$ et $f(x) \sim g(x)$.

3. On a $n^p \sim n(n-1) \dots (n-p+1)$, donc

$$h_p(x) \sim \sum_{n=0}^{+\infty} n(n-1)\dots(n-p+1)x^n = \sum_{n=p}^{+\infty} n(n-1)\dots(n-p+1)x^n,$$
 (38)

et $f(x) = \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, $f'(x) = \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}$. De proche en proche, on a $f^{(p)}(x) = \frac{p!}{(1-x)^{p+1}} = \sum_{n=p}^{+\infty} n \dots (n-p+1)x^{n-p}$, d'où

$$h_p(x) \sim \frac{p!}{(1-x)^{p+1}}.$$
 (39)

Solution 11. Soit $\varepsilon > 0$. Il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \ge N_0$, $|a_n| \le \frac{\varepsilon}{n}$. Alors si $S_n = \sum_{h=0}^n a_h$, on a

$$|S_n - S| \le \left| S_n - f\left(1 - \frac{1}{n}\right) \right| + \left| f\left(1 - \frac{1}{n}\right) - S \right|. \tag{40}$$

Puisque $f\left(1-\frac{1}{n}\right) \xrightarrow[n \to +\infty]{} S$, il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \geqslant N_1$, $\left|f\left(1-\frac{1}{n}\right)-S\right| \leqslant \frac{\varepsilon}{4}$. Pour $n \geqslant N_0$, on a alors

$$\left| S_n - f\left(1 - \frac{1}{n}\right) \right| \leqslant A_n + B_n + C_n, \tag{41}$$

avec $A_n = \sum_{h=0}^{N_0} |a_h| \left(1 - \left(1 - \frac{1}{n}\right)^h\right) \xrightarrow[n \to +\infty]{} 0$ et il existe N_1 pour tout $n \geqslant N_1$, $A_n \leqslant \frac{\varepsilon}{4}$. On a

$$B_n = \sum_{h=N_0+1}^n |a_h| \left(1 - \left(1 - \frac{1}{n} \right)^h \right), \tag{42}$$

$$\leqslant \frac{\varepsilon}{4} \sum_{h=N_0+1}^n \left(\frac{1}{h} \times h \left(1 - \left(1 - \frac{1}{n} \right) \right) \right), \tag{43}$$

$$\leqslant \frac{\varepsilon}{4} \sum_{h=N_0}^{n} \frac{1}{n},\tag{44}$$

$$\leq \frac{\varepsilon}{4} \times \frac{n - N_0}{n},$$
 (45)

$$\leq \frac{\varepsilon}{4}.$$
 (46)

Cela est dû au fait que $x \mapsto 1 - x^h$ est concave sur [0,1] donc $\left(1 - \left(1 - \frac{1}{n}\right)^h\right) \leqslant h\left(1 - \left(1 - \frac{1}{n}\right)\right)$ (ou

par accroissement fini). Enfin, on a

$$C_n = \sum_{h \geqslant n} a_h \left(1 - \frac{1}{n} \right)^h, \tag{47}$$

$$\leqslant \frac{\varepsilon}{4} \sum_{h \geqslant n} \frac{\left(1 - \frac{1}{n}\right)^h}{h},\tag{48}$$

$$\leqslant \frac{\varepsilon}{4n} \sum_{h \geqslant n} \left(1 - \frac{1}{n} \right)^h,$$
 (49)

$$\leqslant \frac{\varepsilon}{4n} \sum_{h=0}^{+\infty} \left(1 - \frac{1}{n} \right)^h, \tag{50}$$

$$=\frac{\varepsilon}{4}.\tag{51}$$

Ainsi, on a
$$|S_n - S| \leq \varepsilon$$
 et donc $S_n \xrightarrow[n \to +\infty]{} S$.

Remarque 4. C'est une réciproque du lemme d'Abel radial i.e. si $\sum a_n$ converge alors

$$\lim_{x \to 1^{-}} \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} a_n.$$
 (52)

Remarque 5. Ce n'est pas valable par exemple pour $a_n = (-1)^n$, car $f(x) = \frac{1}{1+x} \xrightarrow[x \to 1^-]{} \frac{1}{2}$ mais $\sum (-1)^n$ diverge.

Solution 12. On note $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ avec $a_0 = f(0) = \rho e^{i\theta} \neq 0$. Alors

$$f(z) = f(0) \left(1 + \underbrace{\sum_{n=1}^{+\infty} \frac{a_n}{a_0} z^n}_{=q(z)} \right), \tag{53}$$

avec $g(z) \xrightarrow[z \to 0]{} 0$ car g est somme d'une série entière donc continue. Il existe r > 0, si |z| < r, |g(z)| < 1. Alors on a vu, d'après l'Exercice 8, que l'on a

$$f(z) = \exp\left(\ln \rho + i\theta + \sum_{p=1}^{+\infty} (-1)^{p-1} \frac{g(z)^p}{p}\right).$$
 (54)

Pour $p \in \mathbb{N}$ fixé, on peut développer chaque terme $g(z)^p = \sum_{n=0}^{+\infty} a_{n,p} z^n$ (produit de Cauchy). On vérifie alors (théorème de Fubini) que l'on peut intervertir les sommations.

Remarque 6. Autre méthode : si T existe avec $T(z) = \sum_{n=0}^{+\infty} b_n z^n$. Pour $t \in]-r, r[$, on a $f(t) = e^{T(t)}$. En dérivant, on a $f'(t) = T'(t)f(t) = (\sum_n (n+1)b_{n+1}t^n) f(t)$. Par unicité de développement, et par produit de Cauchy, pour tout $n \in \mathbb{N}$, on a

$$(n+1)a_{n+1} = \sum_{h=0}^{n} (h+1)b_{h+1}a_{n-h}, \tag{55}$$

$$= (n+1)b_{n+1} \underbrace{a_0}_{\neq 0} + \sum_{h=1}^n hb_h a_{n-h+1}.$$
 (56)

On a $b_0 = T(0)$, on choisit b_0 tel que $e^{b_0} = a_0 \neq 0$ et on définit univoquement $(b_n)_{n \in \mathbb{N}}$ par récurrence. On vérifie alors, en majorant, que $\sum b_n z^n$ a un rayon de convergence r > 0 (montrer qu'il existe $M \geqslant 0, A \geqslant 0$ tels que pour tout $n \in \mathbb{N}$, $|b_n| A M^n$). Alors f'(t) = T'(t) f(t) et en posant $g(t) = e^{T(t)}$, on a g = f par unicité via le théorème de Cauchy-Lipschitz.

Solution 13.

- 1. Pour tout $n \ge 1$, on a $\left| \frac{1}{\sin(n\pi a)} \right| \ge 1$, donc $R_a \le 1$.
- 2. On rappelle que si a est irrationnel algébrique de degré $d \geqslant 2$, il existe C > 0 tel que pour tout $\frac{p}{q} \in \mathbb{Q}$, on a $\left| a \frac{p}{q} \right| \geqslant \frac{C}{q^d}$. Soit $n \in \mathbb{N}^*$. On fixe $p \in \mathbb{N}$ tel que $n\pi a p\pi \in \left] \frac{\pi}{2}, \frac{\pi}{2} \right[$. On a alors

$$|\sin(n\pi a)| = |\sin(n\pi a - p\pi)|, \qquad (57)$$

$$\geqslant \frac{2}{\pi} \left| n\pi a - p\pi \right|,\tag{58}$$

$$\geqslant 2\left|na - p\right|,\tag{59}$$

$$\geqslant 2n\frac{C}{n^d} = \frac{2C}{n^{d-1}},\tag{60}$$

car par concavité, on a pour tout $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $|\sin(t)| \geqslant \frac{2}{\pi} |t|$. On a donc $|a_n| \leqslant \frac{n^{d-1}}{2C}$, et comme le rayon de convergence de $\sum \frac{n^{d-1}}{2C} z^{d-1}$ vaut 1, on a $R_a = 1$.

3. On a $|\sin(n!\pi e)| = \left|\sin\left(n!\pi\sum_{k=0}^{+\infty}\frac{1}{k!}\right)\right| = \left|\sin\left(\frac{\pi}{n+1} + O\left(\frac{1}{n^2}\right)\right)\right| \sim \frac{\pi}{n}$. Pour $x \in]0,1]$, $\sum nx^{n!}$ converge. L'idée est donc de former a tel que pour tout $x \in]0,1]$, on puisse extraire

$$\left(\frac{x^{\sigma(n)}}{\sin\left(\sigma(n)\pi a\right)}\right)_{n\in\mathbb{N}},\tag{61}$$

qui ne tend pas vers 0.

Lemme 1. Soit $(a_n)_{n\in\mathbb{N}}\in(\mathbb{N}^*)^{\mathbb{N}}$ strictement croissante, et

$$a = \sum_{n=0}^{+\infty} \frac{1}{a_0 \dots a_n}.$$
(62)

On a

$$a - \sum_{k=0}^{N} \frac{1}{a_0 \dots a_k} \underset{N \to +\infty}{\sim} \frac{1}{a_0 \dots a_{N+1}}.$$
 (63)

Preuve du Lemme 1. On a pour tout $n \in \mathbb{N}^*$, $\frac{1}{a_0...a_n} \leqslant \frac{1}{a_0a_1^n}$ et $a_1 \geqslant 2$ donc $\sum_{n\geqslant 0} \frac{1}{a_0...a_n}$ converge. On a

$$\left| a - \sum_{n=0}^{N} \frac{1}{a_0 \dots a_n} \right| = \sum_{k=N+1}^{+\infty} \frac{1}{a_0 \dots a_k}, \tag{64}$$

donc $\frac{1}{a_0...a_{N+1}} \leqslant \sum_{k=N+1}^{+\infty} \frac{1}{a_0...a_k} \leqslant \frac{1}{a_0...a_N} \sum_{k=1}^{+\infty} \frac{1}{a_{N+1}^k} = \frac{1}{a_0...a_N} \times \frac{1}{a_{N+1}} \times \frac{1}{1 - \frac{1}{a_{N+1}}}$. Donc

$$a - \sum_{k=0}^{N} \frac{1}{a_0 \dots a_k} \underset{N \to +\infty}{\sim} \frac{1}{a_0 \dots a_{N+1}}.$$
 (65)

On a donc $(a_0 \dots a_N)a - \underbrace{(a_0 \dots a_N) \sum_{k=0}^N \frac{1}{a_0 \dots a_k}}_{\in \mathbb{N}} \sim \frac{1}{a_{N+1}}$. Ainsi,

$$\left| \sin \left(\underbrace{(a_0 \dots a_N)}_{=\sigma(N)} \pi a \right) \right| = \left| \sin \left((a_0 \dots a_N) \pi a - (a_0 \dots a_N) \sum_{k=0}^N \frac{\pi}{a_0 a_k} \right) \right| \underset{N \to +\infty}{\sim} \frac{\pi}{a_{N+1}}.$$
 (66)

Pour $x \in]0,1]$, on a $\frac{x^{\sigma(N)}}{|\sin(\sigma(N)\pi a)|} \sim \frac{1}{\pi} \exp(\sigma(N)\ln(x) + \ln(a_{N+1}))$. Il suffit de choisir a_{N+1} tel que $\ln(a_{N+1}) \geqslant N(a_0 \dots a_N)$, par exemple $a_{N+1} = \lfloor e^{N(a_0 \dots a_N)} \rfloor + 1$. Donc pour tout $x \in]0,1]$, $\lim_{N \to +\infty} \frac{x^{\sigma(N)}}{|\sin(\sigma(N)\pi a)|} = +\infty$. Ainsi, $R_a = 0$.

Solution 14. Pour |z| < 1, par produit de Cauchy, ces séries sont définies et absolument convergentes, par sommabilité,

$$\left(\sum_{p_1=0}^{+\infty} z^{a_1 p_1}\right) \times \dots \times \left(\sum_{p_N=0}^{+\infty} z^{a_N p_N}\right) - \frac{1}{(1-z^{a_1})\dots(1-z^{a_N})} = \sum_{(p_1,\dots,p_N)\in\mathbb{N}^N} z^{a_1 p_1 + \dots + a_N p_N}.$$
(67)

Par associativé, on regroupe selon les valeurs de l'exposant et on note l'expression précédente $\sum_{n=0}^{+\infty} c_n z^n$. On factorise la fraction rationnelle [les pôles sont des racines de l'unité] :

$$\frac{1}{\prod_{\xi \in \mathbb{U}} (z - \xi)^{m(\xi)}},\tag{68}$$

avec m(1) = N, $m(\xi) < N$ si $\xi \neq 1$ car $a_1 \wedge \cdots \wedge a_N = 1$: si $\xi^{a_1} = \cdots = \xi^{a_N} = 1$, l'ordre de ξ divise a_1, \ldots, a_N donc divise $a_1 \wedge \cdots \wedge a_N = 1$. Cette expression vaut alors $\sum_{k=1}^N \frac{\alpha_{1,k}}{(-z+1)^k} + \sum_{\xi \in \mathbb{U} \setminus \{1\}} \left(\sum_{k=1}^{N-1} \frac{\alpha_{\xi,k}}{(-z+\xi)^k} \right)$ (somme finie). Pour |z| < 1, on a

$$\frac{1}{(-z+\xi)^k} = \left(-\frac{1}{\xi}\right)^k \sum_{n=0}^{+\infty} \frac{(n-k+1)\dots(n+1)}{(k-1)!} \left(\frac{z}{\xi}\right)^n.$$
 (69)

Ainsi, le coefficient en z^n et équivalent à $\frac{n^{k-1}}{(k-1)!} \left(-\frac{1}{\xi}\right)^k$ en $+\infty$. Donc c_n est un polynôme en n, équivalent en $+\infty$ à $\alpha_{1,N} \times \frac{n^{N-1}}{(n-1)!}$.

Si $F = \frac{1}{(1-X^{a_1})...(1-X^{a_N})}$, en évaluant $(1-X)^N F$ et en prenant la limite en $X \to 1$, on a $\frac{X^{a_k-1}}{X-1} = 1 + X + \cdots + X^{a_k-1} \xrightarrow[X \to 1]{} a_k$. Finalement, $\alpha_{1,N} = \frac{1}{\prod_{k=1}^n a_k}$ et $c_n \geqslant 1$ pour n suffisamment grand. Ainsi,

$$c_n \underset{+\infty}{\sim} \frac{n^{N-1}}{\left(\prod_{k=1}^N a_k\right) (N-1)!}.$$
(70)

Solution 15. f est \mathcal{C}^{∞} sur \mathbb{R} par somme et composée. Pour $x \neq 1$, on a

$$f(x) = \sqrt{\frac{1 - x^3}{1 - x}} = \sqrt{1 - x^3} \times \sqrt{\frac{1}{1 - x}},\tag{71}$$

produit de deux fonctions développable en série entière sur]-1,1[. Il existe donc $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ telle que pour tout $x\in]-1,1[$, $f(x)=\sum_{n=0}^{+\infty}a_nx^n$. On a $f^2(x)=1+x+x^2$ et $(f^2)'(x)=2f'(x)f(x)=1+2x$ d'où pour tout $x\in]-1,1[$,

$$2\left(\sum_{n=0}^{+\infty}(n+1)a_{n+1}x^n\right)\left(\sum_{n=0}^{+\infty}a_nx^n\right) = 1 + 2x,\tag{72}$$

encore vrai pour $z \in D(0,1)$ par unicité du développement en série entière.

Si R > 1, me rayon de convergence de $\sum (n+1)a_{n+1}z^n$ est R. On aurait alors pour tout $z \in D(0,R)$

$$2\left(\sum_{n=0}^{+\infty}(n+1)a_{n+1}z^n\right)\left(\sum_{n=0}^{+\infty}a_nz^n\right) = 1 + 2z,\tag{73}$$

i.e. si $S(z) = \sum_{n=0}^{+\infty} a_n z^n$, alors 2S'(z)S(z) = 1 + 2z. En j, on a 2S'(j)S(j) = 1 + 2j. Comme pour tout $x \in]-1,1[$, $S^2(x) = 1 + x + x^2$, par unicité, on a pour tout $z \in D(0,R)$, $S^2(z) = 1 + z + z^2$. Donc $S^2(j) = 1 + j + j^2 = 0$ d'où S(j) = 0: impossible car sinon 0 = 1 + 2j. Ainsi, R = 1.

Solution 16.

1. $\sum_{k\in\mathbb{N}} \frac{f^{(k)(0)}}{k!} x^k$ est une série à termes positifs, d'après la formule de Taylor reste intégral, on a

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}}_{S_{n}(x)} + \underbrace{\int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt}_{R_{n}(x) \geqslant 0}.$$
 (74)

On a $0 \leq S_n(x) \leq f(x)$, donc la série converge et la suite $(R_n(x))_{n \in \mathbb{N}}$ converge aussi.

2. On pose t = xu et on a

$$R_n(x) = x^{n+1} \int_0^1 \frac{(1-u)^n}{n!} f^{(n+1)}(u) du.$$
 (75)

Pour tout $t \in [0, A[, f^{(n+2)}(t) \ge 0, f^{(n+1)}]$ est croissante. On a donc

$$0 \leqslant R_n(x) \leqslant \frac{x^{n+1}}{y^{n+1}} y^{n+1} \int_0^1 \frac{(1-u)^n}{n!} f^{(n+1)}(xu) du, \tag{76}$$

d'où $0 \leqslant R_n(x) \leqslant \left(\frac{x}{y}\right)^{n+1} R_n(y)$.

- 3. $(R_n(y))_{n\in\mathbb{N}}$ est bornée d'après a), donc $R_n(x) \xrightarrow[x\to 0]{} 0$ d'où $f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(0)}{k!} x^k$.
- 4. On a $\tan \ge 0$ sur $\left[0, \frac{\pi}{2}\right[$ et $\tan' = 1 + \tan^2 \ge 0$. Soit $n \in \mathbb{N}$, on suppose que pour tout $k \in [0, n]$, $\tan^{(k)} \ge 0$ sur $\left[0, \frac{\pi}{2}\right[$. On dérive n fois, d'après la formule de Leibniz, on a

$$\tan^{(n+1)} = \sum_{k=0}^{n} \binom{n}{k} \tan^{(k)} \tan^{(n-k)} \ge 0.$$
 (77)

Par imparité, on a pour tout $t \in \left[0, \frac{\pi}{2}\right]$

$$\tan(x) = \sum_{k=0}^{+\infty} \frac{\tan^{(k)}(0)}{k!} x^k = \sum_{q=0}^{+\infty} \frac{\tan^{(2p+1)}(0)}{(2p+1)!} x^{2p+1}.$$
 (78)

Par imparité, c'est aussi vrai sur $]-\frac{\pi}{2},\frac{\pi}{2}[.$

Remarque 7. Si $\tan(x) = \sum_{k=0}^{+\infty} a_k x^k$, $\tan' = 1 + \tan^2 fournit$, pour tout $n \ge 1$, $(n+1)a_{n+1} = \sum_{k=0}^{n} a_k a_{n-k}$.