Funções

Prof. Dr. Vinícius Wasques

Universidade Paulista - Unip, Campus Swift Campinas

7 de abril de 2020

Funções

Definição

Dados dois conjuntos A e B, uma função definida de A para B é uma lei que associa cada elemento do conjunto A a um único elemento em B.

Exemplos de leis que não são funções

Exemplos de leis que são funções

Notações e definições

- O conjunto A é chamado de domínio da função f e é denotado por Dom(f);
- O conjunto B é chamado de contradomínio da função f e é denotado por CDom(f);
- A imagem da função f é definida por todos os elementos do contradomínio CDom(f), que "recebem pelo menos uma flecha" e é denotado por Im(f);

Seja
$$f(x) = x + 1$$
. Considere $Dom(f) = \{1, 2, 3\}$ e $CDom(f) = \{0, 1, 2, 3, 4, 5\}$.

Seja
$$f(x) = x + 1$$
. Considere

$$Dom(f) = \{1, 2, 3\}$$
 e $CDom(f) = \{0, 1, 2, 3, 4, 5\}.$

Dom(f)	f(x)
1	
2	
3	

Seja
$$f(x) = x + 1$$
. Considere

$$Dom(f) = \{1, 2, 3\}$$
 e $CDom(f) = \{0, 1, 2, 3, 4, 5\}.$

Dom(f)	f(x)
1	
2	
3	

$$\Rightarrow$$

Dom(f)	f(x)
1	2
2	3
3	4

Seja
$$f(x) = x + 1$$
. Considere

$$Dom(f) = \{1, 2, 3\}$$
 e $CDom(f) = \{0, 1, 2, 3, 4, 5\}.$

Dom(f)	f(x)
1	
2	
3	

Dom(f)	t(x)
1	2
2	3
2	1

Seja
$$f(x) = x + 1$$
. Considere

$$Dom(f) = \{1, 2, 3\}$$
 e $CDom(f) = \{0, 1, 2, 3, 4, 5\}.$

Dom(f)	f(x)
1	
2	
3	

Dom(f)	f(x)
1	2
2	3
3	4

A representação gráfica de funções se dá no plano cartesiano, associando os valores de $x \in Dom(f)$ com os elementos $y \in Im(f)$. Tal representação é feita por elementos da forma (x, f(x)).

Exemplo: Seja
$$f(x) = x + 1$$
. Considere

$$Dom(f) = \{1, 2, 3\}$$
 e $CDom(f) = \{0, 1, 2, 3, 4, 5\}.$

Х	f(x)	(x,y)
1	2	(1,2)
2	3	(2,3)
3	4	(3,4)

Exemplo: Seja f(x) = x + 1, sendo $Dom(f) = \mathbb{R}$ e $CDom(f) = \mathbb{R}$.

Exemplo: Seja f(x) = 3 - x, sendo $Dom(f) = \mathbb{R}$ e $CDom(f) = \mathbb{R}$.

Exemplo: Seja $f(x) = x^2$, sendo $Dom(f) = \mathbb{R}$ e $CDom(f) = \mathbb{R}$.

Função que calcula área de quadrado

A área (A) de um quadrado de lado I é dada por $A = I^2$.

Função que calcula área de quadrado

A área (A) de um quadrado de lado I é dada por $A = I^2$.

Considere um quadrado de lado 2. Então a área do quadrado é $A=2^2=4$

Função que calcula área de quadrado

A área (A) de um quadrado de lado I é dada por $A = I^2$.

Considere um quadrado de lado 2. Então a área do quadrado é $A = 2^2 = 4$

Considere um quadrado de lado 3. Então a área do quadrado é $A=3^2=9$

Função que calcula área de quadrado

A área (A) de um quadrado de lado I é dada por $A = I^2$.

Considere um quadrado de lado 2. Então a área do quadrado é $A = 2^2 = 4$

Considere um quadrado de lado 3. Então a área do quadrado é $A=3^2=9$

Considere um quadrado de lado I. Então a área do quadrado pode ser calculado pela função $f(I) = I^2$.

Função que calcula área de um círculo

A área (A) de um círculo de raio r é dada por $A = \pi r^2$.

Função que calcula área de um círculo

A área (A) de um círculo de raio r é dada por $A = \pi r^2$.

Considere um círculo de raio r. Então a área do círculo pode ser calculado pela função $f(r) = \pi r^2$.

Função que calcula área de um círculo

A área (A) de um círculo de raio r é dada por $A = \pi r^2$.

Considere um círculo de raio r. Então a área do círculo pode ser calculado pela função $f(r) = \pi r^2$.

Considere um círculo de raio 3. Então a área do quadrado é $A=\pi 3^2=9\pi$

Função que calcula área de um círculo

A área (A) de um círculo de raio r é dada por $A = \pi r^2$.

Considere um círculo de raio r. Então a área do círculo pode ser calculado pela função $f(r) = \pi r^2$.

Considere um círculo de raio 3. Então a área do quadrado é $A=\pi 3^2=9\pi$

Considere um círculo de raio 4. Então a área do quadrado é $A=\pi 4^2=16\pi$

Um projétil é lançado para cima a partir do solo e sua altura varia com o tempo, conforme o gráfico abaixo

- a) Qual a altura do projétil após 1 segundo?
- b) Em qual instante o projétil atinge a altura máxima?
- c) Em qual instante o projétil retorna ao solo?

- a) Qual a altura do projétil após 1 segundo? 15 metros
- b) Em qual instante o projétil atinge a altura máxima?
- c) Em qual instante o projétil retorna ao solo?

- a) Qual a altura do projétil após 1 segundo? 15 metros
- b) Em qual instante o projétil atinge a altura máxima? Em t=2
- c) Em qual instante o projétil retorna ao solo?

- a) Qual a altura do projétil após 1 segundo? 15 metros
- b) Em qual instante o projétil atinge a altura máxima? Em t=2
- c) Em qual instante o projétil retorna ao solo? Em t=4

Exercícios propostos

Exercício 1, página 54 apostila da Unip

Exercício 10, página 56 apostila da Unip

Exercício 1, página 59 apostila da Unip

Exercício 2, página 60 apostila da Unip

Obrigado pela atenção!

Prof. Dr. Vinícius Wasques

email: vinicius.wasques@docente.unip.br

Departamento de Engenharia, Ciência da Computação e Sistemas de Informação