Math Computing

Chakali Suresh

NCERT 9.7.1.7

This question is from class 9 ncert chapter 7.triangles

- 1. **AB** is a line segment and **P** is its mid-point. **D** and **E** are points on the same side of **AB** such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that
 - (a) $\triangle \mathbf{DAP} \cong \triangle \mathbf{EBP}$
 - (b) AD = BE

Figure 1: $\triangle \mathbf{DAP}$ and $\triangle \mathbf{EBP}$

Construction steps:

(i) Let assume, the input parameters are,

Parameter	Value	Description
θ_1	30°	$\angle BAD = \angle ABE$
θ_2	60°	$\angle EPA = \angle DPB$
A	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Reference point at origin
В	$\begin{pmatrix} 5 \\ 0 \end{pmatrix}$	point ${f B}$ on the same axis of ${f A}$

Table 1: Input Parameters

 \therefore the output can be calculated as,

Parameter	Value	Description
r	A - B	Length of AB
P	$\frac{\mathbf{A} + \mathbf{B}}{2}$	Mid-point of AB
D	$\mathbf{A} + \begin{pmatrix} r\cos\theta_1 \\ r\sin\theta_1 \end{pmatrix}$	From point A makes an angle θ_1 in anticlock-wise with line $(\mathbf{AB}, \mathbf{AD})$
E	$\mathbf{B} + \begin{pmatrix} -r\cos\theta_1\\r\sin\theta_1 \end{pmatrix}$	From point B makes an angle θ_1 in clock-wise with line $(\mathbf{AB}, \mathbf{BE})$
D	$\mathbf{P} + \begin{pmatrix} r\cos\theta_2 \\ r\sin\theta_2 \end{pmatrix}$	From point \mathbf{P} makes an angle θ_2 in anticlock-wise with line $(\mathbf{BP}, \mathbf{DP})$
E	$\mathbf{P} + \begin{pmatrix} -r\cos\theta_2 \\ r\sin\theta_2 \end{pmatrix}$	From point \mathbf{P} makes an angle θ_2 in anticlock-wise with line $(\mathbf{AP}, \mathbf{EP})$

Table 2: Output Parameters

... By, joining these points forms the required figure

Figure 2: $\triangle \mathbf{DAP}$ and $\triangle \mathbf{EBP}$