Honors Single Variable Calculus 110.113

September 19, 2023

1 Equivalence Relation

Week 3 Reading: [3, Ch.3.5, Ch.4], On the construction of \mathbb{Q} , see [1, 2.4].

Learning Objectives

Last few lectures:

- Defined the natural numbers and sets axiomatically.
- Discussed how cardinality came up from "counting" sets.

This and next lecture:

- discuss equivalence relation.
- construct \mathbb{Z}, \mathbb{Q} . Extend addition and multiplication in this context.

1.1 Ordered pairs

We now describe a new mathematical object, we leave it as an exercise to see how this object can be can be constructed form axioms of set theory.

Axiom 1.1. If x, y are objects, there exists a mathematical object

denote the ordered pair. Two ordered pairs (x, y) = (x', y') are equal iff x = x' and y = y'.

Example

In sets:

•
$$\{1,2\} = \{2,1\}$$

In ordered pairs

•
$$(1,2) \neq (2,1)$$

Definition 1.2. Let X, Y be two sets. The *cartesian product* of X and Y is the set

$$X \times Y = \{(x,y) \,:\, x \in X, y \in Y\}$$

Currently, we can either put the existence of such a set as an axiom, or use the axioms of set theory, this is in hw.

Discussion

Let $n \in \mathbb{N}$. How can we generalize the above for an ordered n-tuple and n-cartesian product?

Pedagogy

As with construction quotient set, and function, we do not show how this can be derived from the axioms of set theory. We refer to the interested reader, [2, 7,8].

What is a relation? What kind of relations are there? We can make a mathematical interpretation using ordered pairs.

Definition 1.3. Given a set A, a relation on A is a subset R of $A \times A$. For $a, a' \in A$, We write

$$a \sim_R a'$$

if $(a, a') \in R$. We will drop the subscript for convenience. We say R is:

• Reflexive For all $a \in A$

 $a \sim a$

• Transitive. For all $a, b, c \in A$,

$$a \sim b, b \sim c \Rightarrow a \sim c$$

• Symmetric. For all $a, b \in A$,

$$a \sim b \Leftrightarrow b \sim a$$

Discussion

What are example of each relations?

Often times, people do not describe the subset R, but describe it a relation equivalently as a rule: saying $a,b \in A$ are related if some property P(a,b) is true. In short hand, one writes

$$a \sim b$$
 iff ...

Definition 1.4. Let R be an equivalence relation on A. Let $x \in A$, The equivalence class of x in A is the set of $y \in A$, such that $x \sim y$. We denote this as ¹

$$[x] := \{ y \in A : x \sim y \}$$

An element in such an equivalence is called a representative of that class.

Definition 1.5. Quotient set. Given an equivalence relation R on a set A, the quotient set A/\sim is the set of equivalence classes on A.

Example

Consider $\mathbb N$ and the equivalence relation that $a\sim b$ iff a and b have the same parity. a

- There are two equivalence classes: the odds and evens.
- For the odd class, a *representative*, or an element in the equivalence class, is 3.

There is a relation between equivalence and partition of sets.

Definition 1.6. A partition of a set X is a collection ???

1.2 Integers

What are the integers? It consists of the natural numbers and the negative numbers. What is *subtraction*? We do not know yet. Can we define *negative* numbers without referencing minus sign? Yes, we can. Say

$$-1$$
is " $0-1$ " is $(0,1)$

Discussion

Let us say we define the integers as pairs (a, b) where $a, b \in \mathbb{N}$. Would this be our desired

$$\mathbb{Z} := \{\ldots, -1, 0, 1, \ldots\}$$

• How many -1s are there?

But we have a problem, there are multiple ways to express -1. Our system cannot have multiple -1s. What are other ways We can also have 1-2, or the pair (1,2).

^ai.e. both or odd or even.

 $^{^1\}mathrm{It}$ does not matter if we write $\{y\in A\,:\,y\sim x\}$ by symmetry condition.

Discussion

Now that we have our \mathbb{Z} , how do we define addition? ^aCan we leverage our understanding?

^aWhat is addition abstractly? It is an operation $+: X \times X \to X$.

Intuitively, the *integers* is an expression 2 of non-negative integers, (a, b), thought of as a - b. Two expressions (a, b) and (c, d) are the same if a + d = b + c. Formally

Definition 1.7. Let

$$R \subseteq (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$$

consists of all pairs (a, b) and (c, d) such that a + d = b + c. Equivalently,

$$R := \{(a, b), (c, d) \in (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) : a + d = b + c\}$$

The *integers* is the set

$$\mathbb{Z} := \mathbb{N}^2 / \sim$$

Definition 1.8. Addition, multiplication. [3, 4.1.2] .

We can now finally define negation.

Definition 1.9. [3, 4.1.4].

Proposition 1.10. Algebraic properties. Let $x, y, z \in \mathbb{Z}$.

- Addition
 - Symmetric x + y = y + x.
 - Admits identity element.

1.3 Rational numbers

Reading: [1, 2.4]

In a similar manner

Definition 1.11. The rationals is the set

$$\mathbb{Q}:=\mathbb{Z}\times (\mathbb{Z}\backslash \left\{ 0\right\})/\sim$$

where $(a,b) \sim (c,d)$ if and only if ad = bc. We will denote a pair (a,b) by a/b.

Again, we need the notion of addition, multiplication, and negation.

²Rather than a pair, as an expression has multiple ways of presentation

Definition 1.12. Let $a/b, c/d \in \mathbb{Q}$. Then

1. Addition:

$$a/b + c/d := (ad + bc)/bd$$

2. Multiplication

$$a/b \cdot c/d := (ac)/(bd)$$

3. Negation.

$$-(a/b) := (-a)/b$$

Discussion

Is this definition well defined? What does this mean? This is hw.

Rational is sufficient to do much of algebra. However, we could not do *trigonome-try*. One passes from a *discrete* system to a *continuous* system.

Discussion __

What is something not in \mathbb{Q} ?

Proposition 1.13. $\sqrt{2}$ is not rational.

Proof. ???

2 Homework for week 3

Due: Week 4, Saturday. You will select 3 problems to be graded.

Problems 1-3 are on cardinality. Problem 4 is on a general construction of equivalence relations. Problems 5-7 is about addition, multiplication, and division on Z

and \mathbb{Q} .

1. Show that the relation \leq is transitive, i.e. $|X| \leq |Y|, |Y| \leq |Z|$ then $|X| \leq |Z|$.

- 2. (**) Prove that $\mathbb{N} \times \mathbb{N}$ is countably infinite. ³ Prove that \mathbb{Q} is countably infinite. You are free to use results from previous problems and theorems stated in lectures.
- 3. (**) Let X be any set. Prove that there is no surjection (hence, bijection) between X and $\{0,1\}^X$. Deduce that $\{0,1\}^N$ is uncountable. Argue the first part by contradiction:
 - Consider the set

$$A = \{ x \in X : x \notin f(x) \}$$

- As f is a surjection (write the general definition) there must exists $a \in X$ such that f(a) = A. Do case work on whether $a \in A$ or $a \notin A$.
- 4. (**) Let X be any set. Recall that a binary relation on X, is any subset $R \subseteq X \times X$. We define $R^{(n)}$ as follows
 - For n=0,

$$R^{(0)} = \{(x, x) : x \in X\}$$

• Suppose $R^{(n)}$ has been defined.

$$R^{(n+1)} := \left\{ (x,y) \in X \times X : \exists z \in X, (x,z) \in R^{(n)}, (z,y) \in R \right\}$$

Show that

- (a) $R^t := \bigcup_{n \geq 1} R^{(n)}$ defines a *smallest* transitive relation on X containing R. i.e. if Y is any other transitive relation on X containing R, then $R^t \subset Y$.
- (b) Show that $R^{ts} := \bigcup_{n \geq 0} R^{(n)}$ is the *smallest* symmetric and transitive relation on X. i.e. if Y is any other transitive and reflexive relation on X containing R, then $R^{st} \subseteq Y$.

³Knowing the Cartesian product is required for this problem, skip 5. and 6. if unfamiliar.

⁴The argument is similar to that of Russell's argument.

- 5. (***) Show that addition, product, and negation are well-defined for rational numbers; see def. 1.11 or [3, 4.2]. You are free to use any facts and properties you know about \mathbb{Z} .
- 6. (*) Let $x, y, z \in \mathbb{Z}$. Use the definition of addition and multiplication from 1.8, or [3, 4.1], show:
 - (a) x(y+z) = xy + xz.
 - (b) x(yz) = (xy)z.

You are free to use any facts and properties you know about \mathbb{N} .

7. Let $x, y \in \mathbb{Z}$. You are free to use any facts you know about \mathbb{N} , in particular, it would be helpful to use the following the result: [3, 2.3.3]: Let $n, m \in \mathbb{N}$. Then $n \times m = 0$ if and only if at least one of n, m is equal to zero. Show that if xy = 0 then x = 0 or y = 0.

2.1 Tri-weekly diary

- 8. (**) Write a 800-1000 words diary or story. Pen down a diary on your experiences with the course topics and experiences so far, focusing particularly on:
 - Concepts or ideas that you initially found challenging or confusing. For example, the axioms of natural numbers N, set theory, etc.
 - Topics that have piqued (if any, XD) your curiosity.
 - Topics that you wanted to be covered, and why.
 - Topics that you would like further elaboration.
 - People you find fun to be with (or scared of)!
 - + (*) points for the best diary.

References

- $[1] \ \ Derek \ Goldrei, \ Propositional \ and \ predicate \ calculus: \ A \ model \ of \ argument, \ 2005.$
- [2] Paul R. Halmos, Naive set theory, 1961.
- [3] Terence Tao, Analysis I, 4th edition, 2022.