1 EXERCÍCIOS DAS CAIXAS

- 1. Seja $f: X \to Y$ contínua e suponha que X é conexo. Sem perda de generalidade, podemos supor que f é sobrejetiva (caso não fosse, bastaria restringir o contradomínio ao espaço da imagem Z = f(X), que preserva continuidade). Assim, suponha por absurdo que $Z = f(X) = Y = A \cup B$, i.e, é desconexo. Então, se tomarmos $x \in X$, ou $f(x) \in A$ ou $f(x) \in B$, de onde concluímos que $f^{-1}(A)$ e $f^{-1}(B)$ são abertos (pela hipótese de continuidade) disjuntos cuja união $f^{-1}(A) \cup f^{-1}(B) = X$, ou seja, X é desconexo, um absurdo.
- 2. a) Suponha que S seja conexo. Vamos mostrar que a única cisão de \overline{S} é a trivial, isto é, se $\overline{S} = A \cup B$ e $A \neq \emptyset$, então $B = \emptyset$. De fato, temos $A \cap \overline{B} = \overline{A} \cap B = \emptyset$, e tomando $a \in A$, como $a \notin \overline{B}$, existe $U \ni a$ aberto tal que $U \cap B = \emptyset$, e como $a \in \overline{S}$, existe $x \in U \cap S \neq \emptyset$ com $x \notin B$, assim $x \in S \cap A \neq \emptyset$. Note que $S = (A \cap S) \cup (B \cap S)$, e pela hipótese de conexidade $B \cap S = \emptyset \implies B = \emptyset$.
 - b) Suponha por absurdo que $D = A \cup B$ com A, B abertos disjuntos e não vazios. Pelo lema 23.2 do Munkres, podemos assumir sem perda de generalidade que $S \subset A$, assim $\overline{S} \subset \overline{A}$. Como \overline{A} e B são disjuntos, concluímos que $B = \emptyset$, uma contradição, logo D é conexo.
- 3. a) Temos $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n]$, uma união de subespaços da reta conexos e não disjuntos. O resultado segue da proposição 12.6.
 - b) Tome $v=(x_1,\cdots,x_n)\in\mathbb{R}^n$ com ||v||=1 e seja L_v a reta de \mathbb{R}^n passando pela origem e com vetor direcional v. É claro que $\mathbb{R}^n=\bigcup_{||v||=1}L_v$, uma união de subespaços de \mathbb{R}^n não disjuntos e conexos (pois são a imagem de \mathbb{R} sob a função contínua $f:\mathbb{R}\to\mathbb{R}^n$ dada por f(t)=tv), e o resultado segue da proposição 12.6.
- 4. Fixe algum $x \in \Omega$. Então é claro que $\Omega = \bigcup_{x \neq y \in \Omega} S_{xy}$, e o resultado segue da proposição 12.6.
- 5. É claro que $f: \Omega_2 \to \{x\} \times \Omega_2$ definida por $f(t) = (x,t) \in \{x\} \times \Omega_2$ e $g: \Omega_1 \to \Omega_1 \times \{y\}$ definida por $g(t) = (t,y) \in \Omega_1 \times \{y\}$ são bijeções contínuas com inversas contínuas, como desejado.

2 LISTA DE EXERCÍCIOS

- 1. Considerando a topologia discreta, qualquer $V \subset \Omega$ com mais de dois elementos é desconexo, pois fixado $x \in V$, $\{x\} \cup V \setminus \{x\} = V$ é uma união de abertos disjuntos cuja união é V. A recíproca não vale, um contra-exemplo é o exemplo 4 no parágrafo 23 do Munkres: os racionais com a topologia induzida da reta também são totalmente desconexos.
- 2. Primeiro provaremos que $\bigcup_{i=1}^n A_i$ é conexo para todo $n \in \mathbb{N}$. De fato, pela proposição 12.6, temos que $A_1 \cup A_2$ é conexo, assim $A_1 \cup A_2 \cup A_3$ também é conexo, também pela proposição 12.6. Repetindo esse processo, temos que a união finita é conexa. Agora, afirmamos que

$$B = \bigcup_{n \in \mathbb{N}} B_n$$

é conexo, onde $B_n = \bigcup_{i=1}^n A_i$. De fato, usando o lema 23.2 do Munkres e supondo que haja uma cisão $B = U \cup V$, mostraremos que ou $U = \emptyset$ ou $V = \emptyset$, isto é, B é conexo. Com efeito, como $B_1 \in B$ é conexo e $B_1 \subset B_n \ \forall n \in \mathbb{N}$, então ou $B_1 \subset U$ e $B_n \subset U \ \forall n \in \mathbb{N} \implies U = B$ e $V = \emptyset$ ou $V \in B_n \subset V$ e $V \in B_n \subset V \ \forall n \in \mathbb{N} \implies V = B$ e $V \in B$ e V

- 3. \mathbb{R}_l não é conexo, pois $\mathbb{R} = (-\infty, 0) \cup [0, \infty)$, uma união de abertos disjuntos na topologia do limite inferior que dá o \mathbb{R} todo.
- 4. Primeiro provaremos a contrapositiva de conexo \implies únicas funcões contínuas são constantes. De fato, se $f:\Omega \to \{0,1\}$ é não constante e contínua, então, como $\{0,1\}$ é clopen independente de sua topologia, por hipótese $f^{-1}(\{0,1\})$ é um clopen não vazio de Ω , i.e, Ω é desconexo. Reciprocamente, se $\Omega = A \cup B$ com A e B abertos não vazios disjuntos, note que $f:\Omega \to \{0,1\}$ definida pondo f(x) = 0 se $x \in A$ e f(x) = 1 se $x \in B$ é não constante e contínua.
- 5. Fixe algum $x \in \Omega$. Então é claro que $\Omega = \bigcup_{x \neq y \in \Omega} S_{xy}$, e o resultado segue da proposição 12.6.
- 6. Iremos mostrar a condição mais forte de que $\mathbb{R}^n \setminus F$, onde $F \subset \mathbb{R}^n$ é finito, é conexo por caminhos (e é fácil ver que todo espaço conexo por caminhos é conexo). De fato, dado $x,y \in \mathbb{R}^n$, há uma quantidade infinita (e não enumerável) de retas passando por x que não intersectam F, escolha aleatoriamente alguma dessas retas e seja α a sua inclinação. É claro que também há uma quantidade infinita (e não enumerável) de retas passando por y com inclinação $\beta \in \mathbb{R} \setminus \{\alpha\}$ que não intersectam F, escolha também uma dessas retas e seja β a sua inclinação. Como L_{α} e L_{β} tem inclinações diferentes, sua interseção é não vazia, e basta tomar algum p nessa interseção e note que o caminho que vai de x a p contido em L_{α} e depois de p a p contido em p0 contido em p0 contido em p1 contido em p2 contido em p3 contido em p4 contido em p5 contínuo. Note que poderíamos enfraquecer a condição de p5 ser finito, a prova também funciona se p6 for só enumerável.
- 7. Observe que \mathbb{Q}^2 é enumerável. A prova é idêntica à do exercício anterior (uma prova mais fácil é notar que dado dois pontos p, q com coordenadas irracionais, eles podem ser conectados pelo caminho que passa pelo ponto intermediário ($\sqrt{2}$, $\sqrt{2}$) por segmentos de retas horizontais e verticais).
- 8. $\mathbb{R} \setminus \{0\}$ é desconexo, mas para $n \geq 2$ tirar qualquer ponto de \mathbb{R}^n ainda o deixa conexo. Como conexidade é um invariante topológico (ou seja, se dois espaços são homeomorfos ou ambos são conexos ou ambos são desconexos), o resultado segue.
- 9. Seja F um subespaço complementar de E, isto é, $\mathbb{R}^n = E \oplus F$. Tome $x, y \in \mathbb{R}^n \setminus E$ e denote por \bar{x}, \bar{y} as suas projeções em F. Afirmamos que o seguinte caminho liga x a y:

$$x \to \bar{x} \to_* \bar{y} \to y$$

onde cada \to denota um segmento de reta, e devemos tomar o cuidado de não passar pela origem indo de \bar{x} a \bar{y} (o que é facilmente realizado por um argumento análogo ao do exercício 6: escolha retas passando por \bar{x} e por \bar{y} que não passam pela origem se intersectam em p e tome o caminho $\bar{x} \to p \to \bar{y}$)

Observação: a recíproca desse exercício também vale (e é mais fácil de provar), i.e, se E é um subespaço vetorial, $\mathbb{R}^n \setminus E$ ser conexo implica que $\dim(E) \leq n-2$