

Optimization in ANSYS Workbench

YY. Perng
Lead Application Engineer
ANSYS, Inc.

Johannes Will CEO Dynardo, GmbH

Agenda

- Optimization using ANSYS DesignXplorer
 - Overview
 - DOE (Design of Experiments)
 - Response Surface
 - Goal Driven Optimization(GDO)
- Optimization using OptiSlang
 - Sensitivity Analysis for Large Number of Parameters
 - Optimization using Meta Model of Optimal Prognosis
 - Live Demo

Optimization tools at ANSYS

- ANSYS DesignXplorer
 - Unified Workbench solution
- ANSYS Fluent
 - Built-in morphing and optimization tools
 - Adjoint solver
- ANSOFT Optimetrics
- ANSYS MAPDL
 - DX VT
- Icepak Optimization

Optimization Partners

ANSYS simulation software has been effectively used to drive innovation in concert with optimization partners

- OptiSLang (Dynardo)
- RBF-Morph
- MATLAB (Mathworks)
- ModeFrontier (Esteco)
- Sculptor (Optimal)
- Sigma Technology (IOSO)
- TOSCA (FE-DESIGN)
- Qfin (Qfinsoft)
- and more...

A Good Design in Three Steps

- 1. Identify key design parameters of your design
- 2. Identify the variation of the performance of your design with respect to the variations of the design parameters
- Make the right decision based upon the right information with the appropriate tools

Agenda

- Optimization using ANSYS DesignXplorer
 - Overview
 - DOE (Design of Experiments)
 - Response Surface
 - Goal Driven Optimization(GDO)
- Optimization using OptiSlang
 - Sensitivity Analysis for Large Number of Parameters
 - Optimization using Meta Model of Optimal Prognosis
 - Live Demo

ANSYS DesignXplorer

ANSYS ANSYS DesignXplorer Design of Experiments

ANSYS Response Surface

Understand the sensitivities of the output parameters (results) wrt the input parameters.

ANSYS Correlation Matrix

ANSYS°

Goal-Driven Optimization

ANSYS°

Robustness Evaluation

Input parameters have variation!

Total Deformation Maximum

0.2067

	5.e-004	-3.2905	0.21691
	1.e-003	-3.0902	0.21811
	1.3499e-003	-3.	0.21949
	5.e-003	-2.5758	0.22743
	1.e-002	-2.3263	0.23231
	2.275e-002	-2.	0.24076
	2.5e-002	-1.96	0.24176
	5.e-002	-1.6449	0.24888
	0.1	-1.2816	0.25813
	0.15866	-1	0.26536
	0.3	-0.5244	0.2782
	0.5	0.	0.29276
	0.7	0.5244	0.30882
	0.84134	1	0.32413
	0.9	1.2816	0.33301
	0.95	1.6449	0.34566
	0.975	1.96	0.35592
	0.97725	2.	0.3569
	0.99	2.3263	0.36859
	0.995	2.5758	0.37717
	0.99865	3.	0.39772
	0.999	3.0902	0.40085
	0.9995	3.2905	□ 0.41375
	0.9999	3.719	0.44766
X	0.99993	3.8106	0.44919

How many parts will likely fail?

Which inputs require the greatest control?

How will your performance vary with your design tolerances?

Agenda

- Optimization using ANSYS DesignXplorer
 - Overview
 - DOE (Design of Experiments)
 - Response Surface
 - Goal Driven Optimization(GDO)
- Optimization using OptiSlang
 - Sensitivity Analysis for Large Number of Parameters
 - Optimization using Meta Model of Optimal Prognosis
 - Live Demo

Limitations of the Parametric Analysis

- This approach is a trial & error approach and could require some time in order to get an appropriate parameter set for the goal to be achieved
- To get a reliable information, the number of configurations to examine can be quite important if the number of input parameters is high
- Even if a valid design can be found, there are little estimates about its quality: can I achieve a better solution?
- Response Surface Method addresses limitations of parametric analysis and to further explore design options and perform optimization, 6-sigma, and more

Response Surface Method

- Response surfaces are an efficient way to get the variation of a given performance with respect to input parameters
- Provide a continuous variation of the performance over a given variation of the input
- Accuracy can be controlled
- Usually work well for up to 10 input parameters
- A great basis for further analyses: optimization, 6sigma robust design...

Principles of Response Surface Method:

- The user gives an acceptable range of variation for each input parameter (thus defining the design space)
- A Design of Experiment (DOE) is computed: only a few points are computed in the design space
- A response surface (best fit surface) is computed from the DOE results for each output parameter
- The user can then investigate the results

Design of Experiments (DOE)

- Basically, a DOE (Design of Experiments) is a scientific way to conduct a series of experiments with a given set of parameters, each with a range, that MINIMIZES the number of runs needed to understand the influence of the parameters...
- DOE algorithms in DesignXplorer
 - Central Composite Design
 - Box-Behnken Design
 - Optimal Space Filling
 - Custom
 - Custom + Sampling
 - Sparse Grid Initialization

ANSYS A DOE Example: Custom + Sampling

Manufacturable Values

Table of Outline : P1 - WB_>

Name

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6 New Level 0.125

0.25

0.75

1.5

1

3

4

5

6 7

Manufacturable Values

- DOE is the same as for Continuous
- Use to represent real world manufacturing or production constraints.
 - Only values that realistically represent manufacturing capabilities are included in the post-processing analysis
 - Verification points and optimization candidates will all be "manufacturable"

Manufacturable P3 - WB Z1

ties of Outline A5: P1	- 1 X			
A	В			
Property	Value			
■ General				
Units				
Туре	Design Variable			
Classification	Continuous 🔟			
■ Values				
Initial Value	1.			
Lower Bound	-10			
Upper Bound	10			
Use Manufacturable Values	₹ 4			
Number Of Levels	6			
	A Property General Units Type Classification Values Initial Value Lower Bound Upper Bound Use Manufacturable Values			

Agenda

- Optimization using ANSYS DesignXplorer
 - Overview
 - DOE (Design of Experiments)
 - Response Surface
 - Goal Driven Optimization(GDO)
- Optimization using OptiSlang
 - Sensitivity Analysis for Large Number of Parameters
 - Optimization using Meta Model of Optimal Prognosis
 - Live Demo

Response Surface Basics

Response surfaces fit thru the calculated points to interpolate the space

- Like a best fit curve in MS Excel
- A response surface is created for each output parameter

ANSYS Response Surface Types

There are five response surface types in DX

- 1. Standard Response Surface (2nd order polynomial) [default]
- 2. Kriging
- 3. Non-parametric Regression
- 4. Neural Network
- 5. Sparse Grid

Each is trying to fit to the data...

NNSYS°

Sparse Grid Refinement in R14

- Sparse Grid adaptive refinement.
- Enhanced local refinement process
 - Fewer design points for same resolution
 - Reaches required accuracy faster
 - Dynamic convergence feedback!
 - Option to limit refinement points
- Still requires a lot of solved design points, so works better with "quick solvers"

Check goodness of fit by reviewing goodness of fit metrics

Coefficient of Determination (R² measure):

- Measures how well the response surface represents output parameter variability.
- Should be as close to 1.0 as possible.

Adjusted Coefficient of Determination:

- Takes the sample size into consideration when computing the Coefficient of Determination.
- Usually this is more reliable than the usual coefficient of determination when the number of samples is small (< 30).

Maximum Relative Residual:

- Similar measure for response surface using alternate mathematical representation.
- Should be as close to 0.0 as possible.

Improve Response Surface

Procedure

- Select a more appropriate response surface type
- Manually add Refinement Points: Points which are to be solved to improve the response surface quality in this area of the design space.

Agenda

- Optimization using ANSYS DesignXplorer
 - Overview
 - DOE (Design of Experiments)
 - Response Surface
 - Goal Driven Optimization(GDO)
- Optimization using OptiSlang
 - Sensitivity Analysis for Large Number of Parameters
 - Optimization using Meta Model of Optimal Prognosis
 - Live Demo

Goal Driven Optimization (GDO)

- Determines candidate designs based on your design goals
- Uses DOE/response surface results to quickly explore parameter space

 State a series of design goals to generate candidate designs

- 1. Select optimization method
- 2. Rank objectives based on importance
- 3. DX returns candidate designs
- 4. Drill down to further resolve promising design spaces

*	A	В	ζ	D	E
1		P1 - guide_curve_angle	P2 - guide-curve-radius	P3 - section-1-length-1	P4 - effective_flow_area
2	■ Optimization Stud	ly			
3	Objective	Minimize 🔻	Maximize ▼	No Objective ▼	Maximize •
4	Target Value				
5	Importance	Default •	Default ▼	Default ▼	Higher T
6	■ GDO Sample Set	1			
7	Candidate A	50.127	49.689	- 50.927	- 0.001129
8	Candidate B	** 53.583	49.952	- 50.652	- 0.0011331
9	Candidate C	57.039	49.82	50.854	- 0.0011318

ANSYS Goal Driven Optimization Methods

There are three optimization methods in DX

- 1. Screening (Shifted Hammersley) [default]
 - Direct sampling method by a quasi-random number generator
 - **Good for preliminary designs**
- 2. MOGA (Multi-objective Genetic Algorithm)
 - **Multi-goal optimization**
 - **Provides several candidates**
- 3. NLPQL (Non-linear Programming by Quadratic Lagrangian)
 - Fast gradient based local optimization algorithm for single objective

ANSYS Goal Driven Optimization: Tradeoff Chart

- Parameters are displayed on each axis so you can see the tradeoff
- A Pareto front is a group of solutions such that selecting any one of them in place of another will always sacrifice quality for at least one objective, while improving at least one other.
- The best set of samples (first Pareto front) is indicated in blue
- The worst set of samples (worst Pareto front) is indicated in red
- **Verify Candidates**
 - **Creating and updating Design Points** with a "real solve" using the input parameter values of the Candidate Points.

ANSYS Unified Reporting

DX Systems contribute to the unified report

Includes all DX tables and **Charts**

Intake Manifold

Design optimization Intake Manifold

Boundary Conditions

- Fresh air mass flow = 0.04 kg/s
- EGR mass flow 0.004 kg/s

Objective

- Outlet pressure = atmospheric
- Equal fresh and EGR mass flow distribution to each cylinder
- To minimize the overall pressure drop

Output parameter

- totmassimb = $\sum_{i=1}^{alloutlets} abs(0.25 + \left(\frac{mass\ flow\ out_i}{Total\ mas\ in}\right))$
- **egrimb** = $\sum_{i=1}^{alloutlets} abs(0.25 + \left(\frac{EGR \ mass \ flow \ out_i}{Total \ EGR \ mas \ in}\right)$
- delp = Inlet pressure outlet Pressure

Design Variables

- Inner radius of rounds on the inlet elbow
- Outer radius of rounds on the inlet elbow

Design optimization Intake Manifold

Design of experiment

- Design space defined by providing the lower and upper bounds of the input parameters
- Default Auto defined CCD algorithm
- 9 DOE points generated

Response Surfaces

Non parametric regression method used

Parameter	Lower Bound (mm)	Upper Bound (mm)	
rad.in.main	4 mm	14 mm	
Rad.out.main	6 mm	40mm	

Design optimization Intake Manifold

Goal Driven Optimization

- Multi-Objective Genetic Algorithm (MOGA)
- Goals
 - totmassimb: minimize, high importance
 - egrimb: minimize, high importance
 - delp: minimize, low importance

Table of Schematic B4: Optimization						
-	А	В	С	D	E	F
1		P1 - rad.in.main P3 - rad.out.main P4 - delp (Pa) P5 - egrimb P6 - totlan		P6 - totlamassimb		
2	□ Optimization Study					
3	Objective	No Objective ▼	No Objective ▼	Minimize ▼	Minimize ▼	Minimize ▼
4	Target Value					
5	Importance	Default ▼	Default ▼	Lower 🔻	Higher 🔻	Higher 🔻

Properti	Properties of Outline A2: Optimization				
-	А	В			
1	Property	Value			
2	□ Optimization				
3	Optimization Method	MOGA ▼			
4	Number of Initial Samples	6000			
5	Number of Samples Per Iteration	100			
6	Maximum Allowable Pareto Percentage	70			
7	Maximum Number of Iterations	20			
8	Initial Samples	Generate Initial Samples ▼			
9	Constraint Handling (GDO)	As Goals ▼			
10	Size of Generated Sample Set	100			

Summary

- ANSYS DesignXplorer
 - Enables extensive design exploration and optimization in Workbench environment
 - Quickly optimize designs based on your criteria
 - Is very easy to use: minimal extra effort than a single run
 - Adds tremendous engineering understanding for innovation and ROI

Agenda

- Optimization using ANSYS DesignXplorer
 - Overview
 - DOE (Design of Experiments)
 - Response Surface
 - Goal Driven Optimization(GDO)
- Optimization using OptiSlang
 - Sensitivity Analysis for Large Number of Parameters
 - Optimization using Meta Model of Optimal Prognosis
 - Live Demo