

Integration of LISP and LISP-MN in INET

Dominik Klein, Matthias Hartmann (University of Wuerzburg, Germany) Michael Höfling, Michael Menth (University of Tuebingen, Germany)

Motivation

Current naming and addressing architecture is facing scalability problems

- Overload of IP address semantics with identification & routing information
- Possible solution
 - Locator identifier split
- Example: Locator/ID Separation Protocol (LISP) by CISCO

Outline

- Introduction
 - Locator/identifier split
- LISP background
 - Basic LISP architecture
 - Overview of LISP extensions
- LISP simulation model
 - Implemented nodes and messages
- Evaluation
 - Detailed analysis of handover delay
- Summary and future work

Introduction – Locator/Identifier Split

Idea

- Address space divided into identifiers and routing locators
- Mapping system provides ID-to-Loc information
- Network layer entities, e.g. gateways, add source and destination
 Locs to outgoing packets after mapping lookup

Locator/ID Separation Protocol (LISP)

- Separates local naming and addressing from global routing
 - EIDs: locally routable and identifier on global scope
 - RLOCs: globally routable IP addresses of LISP gateways
 - LISP gateways add RLOCs to IP packets after mapping lookup
 - Mapping service provides EID-to-RLOC information

LISP Interworking: Outgoing Flow

- ► Idea: send LISP packets without outer header
- Problem: upstream provider drops packets due to uRPF
- ► Solution: tunnel packets to proxy ETR (PETR)

LISP Interworking: Incoming Flow

- ► Observation: non-LISP nodes use EIDs as destination address
- ► **Problem:** EIDs are not globally routable
- ► Solution: proxy ITRs announces highly aggregated EID-prefix

LISP Mobile Node (MN)

- MN acts as whole LISP domain
 - Implements LISP gateway functionality
 - EID used for identification and not for forwarding anymore
 - Care-of-address used for forwarding within local domain
 - MN registers care-of-address as RLOC at mapping service

LISP NAT Traversal

- ► NAT traversal router (NTR) acts as anchor and relay
 - NTR collocated with PETR
 - MN registers at an NTR
 - NTR adds own RLOC to mapping service
- Tunnel between MN and NTR used to bypass NAT

Motivation & Background

Motivation

- Test and evaluate improvements to mobile node
- Proof-of-concept for NAT traversal
- Check interoperability of LISP-MN and NAT traversal
- Study handover performance of LISP-MN
- Implementation background
 - Extends INET framework with LISP protocol functionality
 - Based on design ideas of OpenLISP
 - Implementation according to LISP working group drafts
 - Several modifications
 - Integration of DHCP
 - Extension of wireless model → multihoming support
 - Integration of basic NAT functionality

Overview

- Modified IP module
 - Anchor point for LISP modules
- ► LISP routing module
 - Adds and removes LISP header on data plane
 - Triggers signaling messages
- Map resolver module
 - UDP application
 - Control plane signaling
- LISP mapping cache
 - Stores used mappings
- Inter-module communication
 - Done via Notification Board

Implemented Messages

- Message types and message formats implemented according to LISP working group drafts
- LISP header added and removed by lisp routing module
- Signaling messages sent by map resolver module over UDP
 - Registration messages
 - Mapping messages (lookup, probing, ...)

Implemented LISP Nodes

LISP (Proxy) Router Module

Implemented LISP Nodes

LISP Mobile Node Module

Implemented LISP Nodes

LISP Map Server

Implemented LISP Nodes

NAT Traversal Router

Handover Scenario

Detailed Delay Analysis

Summary

- Implementation of LISP model in INET
 - Based on OpenLISP design idea and working group drafts
 - Basic LISP architecture with interworking and mapping interface
 - LISP mobility architecture with own NAT traversal
 - Handover delay study as working example
- Future work
 - Extension of existing framework with mapping system
 - Update/upgrade implementation according to the newest drafts
 - Update implementation to the newest INET version
 - Own website with documentation, tutorial, paper, ...

Thank You for Your Attention

