제5장 연산기

- 연산기 개요
- 정수
- 논리 연산
- 쉬프트 연산
- 정수 산술 연산
- IEEE 754 형식
- 실수 연산

연산기 개요

■ 연산기 구조

차리할 데이터: 레지스터 혹은 기억장치
수행할 연산:
제어 신호
연산기
연산기
연산결과: 레지스터 혹은 기억장치

- 연산의 종류
 - □ 단항 연산자 (unary operator)
 - -(음수 만들기), 1의 보수(NOT), 왼쪽/오른쪽 쉬프트, 증가, 감소 등
 - □ 이항 연산자 (binary operator)
 - 사칙 연산(+, -, x, /), 논리 연산(AND, OR, XOR), 비교(compare, test) 등

수의 형식과 연산 종류

■ 수의 표현과 연산 방법

수의 형식		연산 방법	
TJ A	부호 없는 수	논리 연산	
정수	부호 있는 수	쉬프트 연산 산술 연산	
실수		산술 연산	

정수

- 정수
 - □ 부호 없는 수
 - 0을 포함한 양의 정수만을 표현
 - □ 부호 있는 수
 - 0, 양수, 음수
- 부호 있는 정수 표현 방법
 - □ signed magnitude (부호화 크기)
 - □ 1's complement (1의 보수)
 - □ 2's complement (2의 보수)

부호화 크기

- 해석 방법: S = a_{n-1}: 부호 비트(sign bit)
- n 비트 표현 범위: -(2ⁿ⁻¹-1) ~ +(2ⁿ⁻¹-1)
- 특징
 - □ 0이 두 개: 0000_0000, 1000_0000
 - □ 덧셈, 뺄셈시 부호를 별도로 고려해야 한다.

보수

- R 진법의 수 N에 대한 보수(complement)
 - □ (R-1)의 보수: N + C_{R-1} = Rⁿ 1
 - \square R의 보수 N + C_R = Rⁿ
 - $\Box C_R = C_{R-1} + 1$
- 예
 - □ 10 진수 457
 - 9의 보수: (1000-1) 457 = 542
 - 10의 보수: 9의 보수 + 1 = 543
 - □ 2 진수 0011_1000
 - 1의 보수: (1_0000_0000 1) 0011_1000 = 1100_0111
 - 2의 보수: 1의 보수 + 1 = 1100_1000

2진수의 보수

- 1의 보수: 0 ↔ 1 (NOT gate)
- 2의 보수: 1의 보수 + 1
- 예)
 - 0101_1010 1의 보수: 1010_01012의 보수: 1010_0110
 - □ 0000_0000 1의 보수: 1111_1111 (0의 표현이 2 개) 2의 보수: 0000_0000 (0의 표현이 1 개)

2의 보수 방식으로 부호있는 수 표현

부호: 0 양수/1 음수
$$-a_{n-1} a_{n-2}$$
 ... $a_1 a_0$ $N = -2^{n-1} \cdot a_{n-1} + \sum_{i=0}^{n-2} 2^i \cdot a_i$

■ 수의 표현 범위: -2ⁿ⁻¹ ~ +(2ⁿ⁻¹-1)

비트 수	8 비트	16 비트	32 비트
표현 범위	-128 ~ 127	-32,768 ~ 32,767	-2,146,483,648 ~ 2,146,483,647

예

$$\Box$$
 0110_1010 64 + 32 + 8 + 2 = 106

$$\Box$$
 1001_0110 -128 + 16 + 4+ 2 = -106

부호 확장 (sign expansion)

- 예: 8비트 → 16 비트
 - \Box (122) 0111_1010 \rightarrow 0000_0000_0111_1010
 - \Box (-83) 1010_1101 \rightarrow 1111_1111_1010_1101

논리 연산

- 논리 연산: 부호 없는 수로 취급
 - □ 단항 논리 연산: NOT
 - □ 이항 논리 연산: AND, OR, XOR

NOT 연산

- 오퍼런드의 각 비트를 NOT
- 1의 보수를 구한 결과와 동일
- 예) R0 = 0010_1000일 때 □ R0 ← NOT R0 = 1101_0111

AND 연산

- 마스크(mask) 연산
 - □ 특정 비트만 0으로 만든다.

R1 ← R1 AND R2, R2: mask pattern

$$R1 = 1010_0110$$
 $R1 = 1010_0110$ $AND R2 = 1110_0011$ $R1 = 1010_0010$ $R1 = 0000_0110$

OR 연산

- 선택적 세트(selective set) 연산
 - □ 특정 비트만 1로 만든다.

R1
$$\leftarrow$$
 R1 OR R2 R1 = 'A' = 0100_0001
R1 = 1010_0110 R1 = 0100_0001
OR R2 = 1110_0011 OR R2 = 0010_0000
R1 = 1110_0111 R1 = 0110_0001
R1 = 'a'

XOR 연산

- 선택적 보수 (selective complement) 연산
 - □ 특정 비트만 보수로 만든다.

$$R1 \leftarrow R1 \text{ XOR } R2$$
 $R1 \leftarrow R1 \text{ XOR } R1$ $R1 = 1010_0110$ $R1 = 1010_0110$ $R1 = 1010_101$ $R1 = 1010_1001$ $R1 = 0000_0000$

쉬프트 연산

쉬프트 회로

■ 멀티플렉서를 사용한 쉬프트 회로

정수 산술 연산

- 단항 연산
- 덧셈과 뺄셈
- 곱셈
- 나눗셈

단항 연산

- NEG : $R \leftarrow -R$
- INC : R ← R+1
- DEC : R ← R-1

덧셈과 뺄셈

- 덧셈과 뺄셈
 - □ 덧셈은 그대로 더하고, 뺄셈은 2의 보수를 더한다.
 - □ 결과를 부호 없는 수 혹은 정수로 해석할 수 있다.

$$-115$$
 $+ 101$
 $- 14$

- (a) 이진수 덧셈 (b) 부호 없는 수 해석 (c) 정수 해석

- (a) 이진수 뺄셈 (b) 2의 보수 더하기 (c) 정수 해석

오버플로우

- 레지스터 크기 제한
- 연산 결과가 수의 표현 범위를 초과하는 현상
- Overflow = $C_n \oplus C_{n-1}$

```
C_8C_7
               C_8C_7
01111 001
               11010 011
 0101 1001
              0101 1001
+0010_1101 +1101_0011
1000_0110 = -122 0010_1100 = 44
89+45 = 132 > 127 89-45 = 44
 overflow
C_8C_7
               C_8C_7
00101 111
              10000 111 ← 자리올림
1010 0111 1010 0111
+0010_1101 +1101_0011
-89+45 = -44 -89-45 = -134 < -128
                  overflow
```

병렬 덧셈기

■ 4비트 덧셈기

곱셈

- n-비트 곱셈
 - □ a x b = 곱 (product, 2n 비트)
 - □ a: 피승수(multiplicand), b: 승수(multiplier)

부호 없는 수 곱셈 알고리즘

나눗셈

- 2n 비트 / n 비트 나눗셈 = n 비트 몫 ... n 비트 나머지
 - □ a/b = 몫 (quotient) ... 나머지(remainder)
 - □ a: 피젯수(dividend), b: 젯수(divisor)

부호 없는 수 나눗셈 알고리즘

부호 없는 수 나눗셈 알고리즘

실수

- 컴퓨터에서 실수를 표현 하는 방법
 - □ 과학 표기(scientific notation)
 - □ Floating-point number
- 부동소수점 표현
- IEEE 754 형식

부동 소수점 표현

- 과학적 표기(scientific notation)
 - □ ±significant x Base^{exponent} (부호·가수 x 기수^{지수})
 - □ significant = mantissa = fraction
- 10 진수 예
 - \square 976,000,000,000 = 9.76 x 10¹¹
 - \Box -0.000000000000976 = -9.76 x 10⁻¹²
- 2 진수 예→ 정규화(normalize) 필요
 - \Box 0.1101 x 2²
 - \Box 11.010 x 2⁰
 - \Box 1.1010 x 2⁻¹

가수 정규화(normalized mantissa)

- 가수 정규화
 - □ (1.bbb...b x 2[±]) 형식이 되도록 지수 조정
 - □ 1.은 표현에서 생략 (항상 1.0은 존재)
 - □ 가수를 표현하는 비트 영역 최대 활용
- 예) 가수를 8 비트를 사용할 때 101.1010_1111 = 1.0110_1011_11 x 2⁺²

바이어스 지수(biased exponent)

- 바이어스 지수
 - □ 표현 = 지수 + bias (실제 지수 = 표현 bias)
 - □ 이유? 간단하게 지수를 비교하기 위하여
- 예) 101.101011
 - □ 정규화: 101.1010_11 = 1.0110_1011 x 2²
 - □ 지수의 값 = 2 = 0000_0010
 - □ 지수 표현 = 0000_0010 + 0111_1111 = 1000_0001.

IEEE 754 형식

1 8 23

부호 지수(E) 가수(mantissa)

(a) 단정도 형식
1 11 52

부호 지수(E) 가수(mantissa)

(b) 배정도 형식

Exponent	Significant	Value
255	≠ 0	NaN
255	0	$(-1)^{s}\infty$
0 < e < 255	-	$(-1)^{s}2^{e-127}(1.f)$
0	≠ 0	$(-1)^{s}2^{e-126}(0.f)$
0	0	$(-1)^{s}0$

Ex	ponent	Significant	Value
	2047	≠ 0	NaN
	2047	0	(-1) ^s ∞
0<	e<2047	-	$(-1)^{s}2^{e-1023}(1.f)$
	0	≠ 0	$(-1)^{s}2^{e-1022}(0.f)$
	0	0	$(-1)^{s}0$

Single precision

Double precision

수 범위

Floating Point Range

	Denormalized	Normalized	Approximate Decimal
Single Precision	± 2 ⁻¹⁴⁹ to (1-2 ⁻²³)×2 ⁻¹²⁶	± 2 ⁻¹²⁶ to (2-2 ⁻²³)×2 ¹²⁷	± ≈10 ^{-44.85} to ≈10 ^{38.53}
Double Precision	$\pm 2^{-1074}$ to $(1-2^{-52})\times 2^{-1022}$	± 2 ⁻¹⁰²² to (2-2 ⁻⁵²)×2 ¹⁰²³	± ≈10 ^{-323.3} to ≈10 ^{308.3}

IEEE 754 예

■ 다음 single precision 형식이 나타내는 값은?

1100_0001_0101_0000_0000_0000_0000

(부호) 1

(지수) 10000010

(가수) 101_0000_0000_0000_0000

부호: 1

지수: e = 1000_0010 = 130₁₀

가수: M = 1.101

$$N = (-1)^{1} \times 1.101 \times 2^{130-127}$$
$$= -1.101 \times 2^{3}$$
$$= -1101 = -13_{10}$$

IEEE 754 가장 작은 수와 큰 수

■ 가장 작은 수 0000_0000_0000_0000_0000_0000_0001
(부호) 0
(지수) 0
(가수) 000_0000_0000_0000_0000
크기: (-1)s x 2e-126 x 0.f = (-1)0 x 2-126 x 0.000_0000_0000_0000_0000
= (-1)0 x 2-126 x 2-23
= 1 x 2-149

■ 가장 큰 수 0111_1111_0111_1111_1111_1111_1111 (부호) 0 (지수) 254 (가수) 111_1111_1111_1111 (가수) 111_1111_1111_1111_1111 (가수) 111_1111_1111_1111_1111 = (-1)⁰ x 2¹²⁷ x 1.111_1111_1111_1111_1111 = (-1)⁰ x 2¹²⁷ x (2 - 2⁻²³) = (2 - 2⁻²³) x 2¹²⁷ = (1 - 2⁻²⁴) x 2¹²⁸

실수 연산

- 실수 연산
 - □ 덧셈과 뺄셈
 - □ 곱셈과 나눗셈
- 실수 연산 예외
 - □ 지수 오버플로우(exponent overflow)
 - 양의 지수값이 최대 지수값을 초과한 경우
 - 연산 결과는 +∞ 또는 -∞로 표시된다.
 - □ 지수 언더플로우(exponent underflow)
 - 음의 지수값이 최소 지수값보다 적은 경우
 - 연산 결과는 0으로 표시된다.
 - □ 가수 오버플로우(significant overflow)
 - 최상위 비트에서 자리올림수가 발생한 경우
 - 재정렬((realignment): 가수를 왼쪽으로 쉬프트하고 지수를 조정
 - □ 가수 언더플로우(significant underflow)
 - 가수를 조정할 때 가수가 오른편으로 밀려 잘려나가는 경우
 - 연산 결과의 최하위 비트를 반올림한다.

덧셈과 뺄셈

■ 다음 두 수를 더하는 경우에

$$x = 1.1111 \times 2^{-1}$$

 $y = 1.1111 \times 2^{1}$

$$x = \begin{bmatrix} 0.0111 \\ y = 1.1111 \end{bmatrix}$$
 $x = \begin{bmatrix} 1.1111 \\ y = 11 \end{bmatrix}$ $x = \begin{bmatrix} 1.1111 \\ x = 2^{-1} \end{bmatrix}$ $x + y = 10.0110$ $x = \begin{bmatrix} 1.1111 \\ x = 2^{-1} \end{bmatrix}$ $x = \begin{bmatrix} 1.1111 \\ x = 2^{-1} \end{bmatrix}$ $x + y = 10.0110$ $x = \begin{bmatrix} 1.1111 \\ x = 2^{-1} \end{bmatrix}$ $x + y = 10.1011$ $x = \begin{bmatrix} 1.1111 \\ x = 2^{-1} \end{bmatrix}$ $x + y = 10.1011$ $x = \begin{bmatrix} 1.1111 \\ x = 2^{-1} \end{bmatrix}$

- (a) 정확성에는 문제가 있지만 심각하지 않음
- (b) y 의 상위 비트가 없어져서 문제가 심각함.

덧셈과 뺄셈

- $(x = S_x * 2^{Ex}) \pm (y = S_y * 2^{Ey})$
 - □ 제로 검사
 - x와 y가 0인지 검사한다
 - 만일 둘 중 하나가 0이면, 덧셈과 뺄셈을 수행할 필요가 없다.
 - □ 정렬
 - 지수를 비교하여 작은 수의 지수를 큰 수의 지수와 같아지도록 조정
 - 작은 수의 지수를 증가시키고, 가수를 오른쪽으로 쉬프트 한다.
 - □ 가수 덧셈/뺄셈
 - 가수를 서로 더하거나 뺀다.
 - □ 정규화
 - 결과를 정규화 한다.

곱셈과 나눗셈

$$x = S_x^* 2^{Ex}, y = S_y^* 2^{Ey}$$

 $x * y = (S_x^* S_y) * 2^{Ex+Ey} x / y = (S_x/S_y) * 2^{Ex-Ey}$

곱셈

- 제로 검사
 - 만일 x와 y 둘 중 하나가 0이면, 곱은 0이다.
- 지수 조정
 - 지수 E_x 와 E_y 를 더하고 바이어스를 뺀다.
- 가수 곱셈
 - 부호를 고려하여 S_x 와 S_y 를 곱한다
- 정규화
 - 곱셈 결과를 정규화 한다.

나눗셈

- 제로 검사
 - 만일 x가 0이면, 결과는 0이고, y가 0이면 결과는 NaN으로 설정하고 계산을 종료한다.
- 지수 조정
 - 지수 E_x 에서 E_y 를 빼고 바이어스를 더한다.
- 가수 나눗셈
 - 부호를 고려하여 S_x 에서 S_y 를 나눈다.
- 정규화
 - 나눗셈 결과를 정규화 한다.