TP 6 : Les régimes transitoires du circuit RLC

Préparation : Partie 1 ; Partie 2 a c ; Partie 3 a ; Partie 4 a

Partie 1 – Etude préliminaire

- a- Donner l'équation régissant la tension aux bornes du condensateur dans le cas d'un circuit RLC série.
- b- Rappeler brièvement les différents régimes possibles en fonction de Q. Expliquer par une courbe le comportement dans chaque cas.

Partie 2 – Etude du régime apériodique

Réaliser le montage ci-dessus avec L=10mH ; C=1nF et un GBF en tension créneau de 0 à 5V.

- a- Déterminer la valeur de R pour avoir Q = 0,1.
- b- Régler la fréquence du GBF pour que le régime permanent soit tout juste atteint sur chaque demi-période.
- c- Montrer que lorsque Q<<1, on peut assimiler le régime apériodique à une variation exponentielle du type $exp(-Q*\omega_0*t)$
- d- En utilisant la valeur de la tension moitié, déterminer Q. Le comparer avec Qthéorique.

Avec le modèle de l'exponentielle décroissante (Q<<1), on peut considérer que le régime permanant est atteint au bout d'un temps delta $t = T_0/Q$

e- Déterminer graphiquement delta t et en déduire une valeur de Q.

Partie 3 – Etude du régime critique

a- Calculer la valeur de la résistance critique.

Pour visualiser le changement de régime, prenez une résistance supérieure à Rcritique et une résistance inférieure.

b- Visualiser la tension aux bornes de C et reproduire l'oscillogramme. Le comportement est-il comme attendu ?

Partie 4 – Etude du régime pseudo-périodique

- a- Calculer et régler R pour avoir Q=8. Prener la valeur de R la plus voisine.
- b- Régler le GBF pour avoir le régime permanant tout juste atteint sur chaque demi-période.
- c- Visualiser U_{GBF} et U_C. Reproduire les oscillogrammes et déterminer la pulsation des pseudooscillations.
- d- Comparer avec la pulsation propre.
- e- Mesurer, à l'aide des curseurs horizontaux, les hauteurs du premier et du quatrième pic (V1 et V4).

En déduire la valeur du décrément logarithmique delta = $ln(V1/V_n)/n$

Questions Bonus:

- f- Montrer par le calcul que delta = $2*\pi/\text{sqrt}(4*Q^2-1)$
- g- En déduire Q et le comparer avec Q_{théorique}
- h- Calculer la fonction de transfert globale du circuit

Rappels

Impédance d'un condensateur : $Z_C = 1/(j^*\omega^*C)$ Impédance d'une bobine : $Z_L = j^*\omega^*L$

Impédance d'une résistance : $Z_R = R$

Le facteur de qualité d'un système RLC du second ordre : Q=sqrt(L/C)/R Pulsation propre d'un système RLC du second ordre : ω_0 =1/sqrt(L*C) Fréquence de résonnance d'un circuit RLC : $f=\omega_0/(2*\pi)$