Лабораторная №2. Моделирование радио покрытия точки доступа Wi-Fi и оптимизации

Данил Тиванов Октрябрь 2020

1 Введение

Модели потерь при распространении радиосигнала играют важную роль в разработке сотовых систем для определения ключевых параметров системы, таких как, мощность передачи, частота, высота антенны и так далее. Некоторые модели были предложены для сотовых систем, работающих в различной окружающей среде (городской, сельской и т.д.). Каждая из моделей использует свои определјиные параметры для обеспечения точности предсказания распространения радиосигнала. Основными задачами данной лабораторно работы являются: 1. В качестве тестового стенда рекомендуется использовать точку доступа Wi-Fi. Необходимо определить усиление антенны и мощность передатчика; 2. Построить теоретическую модель бюджета канала точки доступа Wi-Fi. Построить схему с учетом вашей местности (комнаты, квартиры, дома); 3. Визуализировать в виде тепловой карты распространение радиосигнала. 4. Установить на телефон Wi-Fi Analyzer; 5. Измерить уровень радиосигнала текущей Wi-Fi точки в различных частях комнаты квартиры дома, сохранить результаты; 6. Найти корректирующие коэффициенты для исходной модели; 7. Проверить адекватность теоретической модели.

2 Схематичный план помещения, в котором проводили эксперимент в котором происходило измерение

3 Характеристики устройства

Модель: RT-GM-2 GPON Terminal
. Мощность передатчика 23[dBM]
. Усиление антенны 18[dBi]
. Запасы на прохождение радиосигнала через припятствия 12[dB]
. Запасы на интерференцию 3[dB]

4 Таблицы значений

асстояние[m]	Эксперемент.[dBm]	Teoper.[dBM]
0.2	-25	-18
0.5	-28	-21
0.7	-32	-23
1	-33	-26
1.2	-38	-28
1.5	-44	-33
2	-42	-38
2.3	-42	-43
2.7	-45	-47
3	-49	-50
3.3	-55	-53
3.6	-60	-56
3.9	-62	-59
4	-64	-60
4.5	-62	-64
5	-64	-69
5.5	-73	-71
6	-69	-73
6.1	-68	-73
6.5	-69	-74
7	-64	-74
7.5	-64	-76
8	-68	-76
8.5	-74	-76
9.5	-68	-77
10	-68	-77
10.5	-77	-78
11	-71	-78
11.5	-71	-81
12.5	-71	-82
13	-79	-82
14	-85	-83
15	-86	-84
16.5	-88	-85
17.5	-82	-87
18	-85	-88
19	-86	-90
20	-88	-92

5 График исходной модели распростронения радиосигнала и модифицированной

6 Тепловая карта

7 Вывод

Я научился измерять усиление антенны и мощность Wi-Fi сигнала, построил теоретическую модель бюджета канала точки доступа Wi-Fi. Визуализировал в виде тепловой карты. Измериял уровень радиосигнала.