PENYEDERHANAAN EKSPRESI LOGIKA DAN STRATEGI PEMBALIKAN

1. Penyederhanaan

Penyederhanaan adalah proses mengubah bentuk ekspresi-ekspresi logika menjadi lebih sederhana, dengan menggunakan hukum-hukum ekivalensi dalam logika. Tujuan dari penyederhanaan ini adalah kemudahan dalam mengoperasikan atau menentukan ekivalensinya dengan ekspresi logika yang lain.

Operasi penyederhanaan adalah langkah mengubah persamaan logika dengan menggunakan hukum-hukum logika pada operasi logika. Penyederhanaan logika menggunakan tabel pada bagian Ekuivalen Logis.

2. Hukum – Hukum Logika

Berikut ini merupakan tabel yang berisi hukum-hukum logika yang penting dan banyak digunakan untuk melakukan operasi logika dan semua hukum-hukum tersebut dapat dibuktikan dengan tabel kebenaran :

Daftar Ekuivalen Logis
(Plus Hukum-hukum Logika Proposisional)

No	Ekuivalen Logis	Nama
1	A ^ 1 ≡ A	Identity of ^ (Identity Laws)
	$A \lor 0 \equiv A$	Zero of v (Identity Laws)
2	A v 1 ≡ 1	Identity of v (Dominition Laws)
	A ^ 0 = 0	Zero of ^ (Dominition Laws)
3	A v ¬A ≡ 1	Tautology (Excluded Middle Law)
3	A ^ ¬A ≡ 0	Law of Contradiction
4	$A \lor A \equiv A$	Idempotence Laws
4	A ^ A = A	Idempotence Laws
5	$\neg \neg A \equiv A$	Law of Double Negation
6	$A \wedge B \equiv B \wedge A$	Komutatif
0	$A \lor B \equiv B \lor A$	Komutatif
7	$(A \land B) \land C \equiv A \land (B \land C)$	Assosiatif
_ ′	$(A \lor B) \lor C \equiv A \lor (B \lor C)$	Assosiatif
8	$A ^ (B \vee C) \equiv (A ^ B) \vee (A ^ C)$	Distributif
0	$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$	Distributif
9	$A ^(A \lor B) \equiv A$	Absorpsi
9	$A \lor (A \land B) \equiv A$	Absorpsi
10	A ^ (¬A v B) ≡ A ^ B	Absorpsi

	A v (¬A ^ B) ≡ A v B	Absorpsi
44	¬ (A ^ B) ≡ ¬A v ¬B	De Morgan's Law
11	¬ (A v B) ≡ ¬A ^ ¬B	De Morgan's Law
12	(A ^ B) v (A ^ ¬B) ≡ A	
13	$A \rightarrow B \equiv \neg A \lor B$	
13	$A \rightarrow B \equiv \neg (A \land \neg B)$	
14	$A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$	
14	$A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$	
15	(A ^ B) v (A ^ ¬B) ≡ A	
13	(A ∨ B) ^ (A ∨ ¬B) ≡ A	
46	(A ^ B) v (¬A ^ B) ≡ B	
16	$(A \lor B) \land (\neg A \lor B) \equiv B$	

3. Hukum Komutatif dan Asosiatif

Komutatif

Ciri-cirinya:

 Variabel kedua proposisi dapat saling berganti tempat tanpa mengubah nilai kebenaran dari kedua ekspresi.

Ex:
$$(A ^B) \equiv (B ^A)$$

 $(A \leftrightarrow B) \equiv (B \leftrightarrow A)$

- 2. Perangkai Konjungsi (^), Disjungsi (v) dan Ekuivalensi (↔) bersifat komutatif
- 3. Perangkai Implikasi (\rightarrow) tidak bersifat komutatif dengan dibuktikan dari tabel kebenaran

 $Ex:\quad (\ A\to B\)$ dengan ($B\to A$) tidaklah ekuivalen.

Asosiatif

Ciri – cirinya:

 Mengacu pada pemindahan tanda kurung dan tidak mengubah nilai kebenarannya.

Ex:((A^B)^C) = (A^(B^C))

Buktikan dengan Tabel Kebenaran

2. Biasanya terjadi pada perangkai yang sama (Disjungsi, Konjungsi dan Ekuivalensi)

$$Ex:((AvB)vC) \equiv (Av(BvC))$$

3. Pengecualian pada Perangkai Implikasi (ightarrow)

Ex : ((A
$$\rightarrow$$
 B) \rightarrow C) tidak sama (A \rightarrow (B \rightarrow C)) \clubsuit Buktikan dengan Tabel Kebenaran

4. Jika perangkainya berbeda pada satu ekspresi logika tidak bisa memindahkan tanda kurung dengan sembarangan.

Example:

2.
$$(A \land \neg B) \lor (A \land B \land C)$$

 $\equiv (A \land \neg B) \lor (A \land (B \land C))$ Tambah Kurung
 $\equiv A \land (\neg B \lor (B \land C))$ Distributif 1
 $\equiv A \land ((\neg B \lor B) \land (\neg B \lor C))$ Distributif 2
 $\equiv A \land (1 \land (\neg B \lor C))$ Tautologi
 $\equiv A \land (\neg B \lor C)$

Penyederhanaan juga dapat digunakan untuk membuktikan ekuivalen atau kesamaan secara logis.

3.
$$\neg A \rightarrow \neg (A \rightarrow \neg B)$$

 $\equiv \neg \neg A \lor \neg (A \rightarrow \neg B)$
 $A \rightarrow B \equiv \neg A \lor B$
 $A \rightarrow B \equiv \neg A \lor B$

$$\equiv \neg \neg A \lor \neg (\neg A \lor \neg B)$$
 $\equiv \neg \neg A \lor (\neg \neg A \land \neg \neg B)$ Hukum De'Morgan
 $\equiv A \lor (A \land B)$ Law of Double Negation
 $\equiv A$

Untuk membuat penyederhanaan, pertama kali harus dihilangkan adalah $\rightarrow dan \leftrightarrow$ dan menjadikan kombinasi dari \land , \lor , dan \sim . Beberapa contoh kesamaan logis.

$$A \to B \equiv (\sim A \lor B)$$
$$A \leftrightarrow B \equiv (\sim A \lor B) \land (\sim B \lor A)$$
$$\equiv (A \land B) \lor (\sim A \land \sim B)$$

Operasi Penyederhanaan dari suatu ekspresi logika dapat dikatakan bila :

- 1. Tautologi : Kalau hasil akhir ekspresi yg disederhanakan itu bernilai 1
- 2. Kontradiksi : Kalau hasil akhir ekspresi yg disederhanakan itu bernilai 0
- 3. Contingent: Kalau hasil akhir ekspresi yg disederhanakan itu bernilai tidak 1 atau tidak 0.

Contoh:

1. (A v B) ^ ¬A ^ ¬B

$$\equiv \neg A \land (A \lor B) \land \neg B$$
 Hukum Komutatif
 $\equiv (\neg A \land (A \lor B)) \land \neg B$ Tambah Kurung
 $\equiv (\neg A \land B) \land \neg B$ Absorpsi
 $\equiv \neg A \land (B \land \neg B)$ Assosiatif
 $\equiv \neg A \land 0$ Law of contradiction
 $\equiv \mathbf{0}$ Zero of \land

Ekspresi Logika diatas dikatakan Kontradiksi

Ekspresi Logika diatas dikatakan Tautologi

3. ((A v B) ^ ¬A)
$$\rightarrow$$
 ¬B

A → B ≡ ¬A v B

Hukum De'morgan

Hukum De'morgan

Lawof double negasi

Komutatif

Absorpsi

Assosiatif

Ekspresi Logika diatas dikatakan Contingent.

4. Strategi Pembalikkan

Strategi pembalikan dilakukan dengan cara menyalahkan kesimpulan dari argument yakni :

- 1. Menegasikan kesimpulan, atau
- 2. Memberi nilai F.
- Kesimpulan diberi negasi dan diberi operator ^

Contoh:

 Jika lampu lalu lintas menyala merah, maka kendaraan-kendaraan berhenti. Lampu lalu lintas menyala merah. Dengan demikian, kendaraan-kendaraan berhenti.

Tentukan:

- a. Ekspresi logikanya
- b. Buat tabel kebenaran dan tentukan jenis operasinya
- c. Kalau perlu sederhanakan hasil ekspresi logikanya.
- d. Strategi pembalikan

Jawab:

A = Lampu lalu lintas menyala merah

B = Kendaraan-kendaraan berhenti

- 1. $A \rightarrow B$ Ekspresi Logikanya : (($A \rightarrow B$) ^ A) $\rightarrow B$
- 2. A
- 3. B

Tabel Kebenaran

Α	В	$A \rightarrow B$	(A → B) ^ A	$((A \rightarrow B) \land A) \rightarrow B$
F	F	T	F	Т
F	Т	T	F	Т
Т	F	F	F	T
Т	Т	Т	Т	Т

Strategi Pembalikan:

$$((A \rightarrow B)^A) \rightarrow B$$
 menjadi $(A \rightarrow B)^A A^B$

Α	В	$A \rightarrow B$	(A → B) ^ A	¬В	(A → B) ^ A ^ ¬B
F	F	Т	F	Т	F
F	Т	Т	F	F	F
Т	F	F	F	Т	F
Т	Т	Т	T	F	F

Setelah hasil strategi pembalikan dengan menegasikan kesimpulan diperiksa dengan tabel kebenaran, ternyata diperoleh nilai F pada semua kemungkinan nilai, maka **dianggap valid**.

 Jika Persebaya memenangkan Liga Indonesia, maka para bonek akan senang. Jika mereka tidak senang maka para bonek akan minum-minum. Dengan demikian, jika para bonek tidak minum-minum, maka Persebaya akan memenangkan Liga Indonesia.

Tentukan:

- a. Ekspresi Logika
- b. Strategi Pembalikannya.

A = Persebaya memenangkan Liga Indonesia

B = Para Bonek senang

C = Para bonek minum-minum

$$1. \ A \to B$$

$$2. \ \, \neg B \to C$$

3.
$$\neg C \rightarrow A$$

Ekspresi Logikanya : ((A \rightarrow B) ^ (¬B \rightarrow C) \rightarrow (¬C \rightarrow A)

Tabel Kebenaran

Α	В	С	¬B	¬С	$A \rightarrow B$	$\neg B \to C$	(¬C → A)	(1) ^	(1) ^ (2) → (3)
					(1)	(2)	(3)	(2)	
F	F	F	Т	Т	Т	F	F	F	T
F	F	Т	Т	F	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	Т	F	Т	F
F	Т	Т	F	F	Т	Т	Т	Т	T
Т	F	F	Т	Т	F	F	Т	F	T
Т	F	Т	Т	F	F	Т	Т	F	T
Т	Т	F	F	Т	T	Т	Т	Т	Ţ
Т	Т	Т	F	F	T	Т	T	T	T

Strategi Pembalikan

egi Pernbankan
$$((A \rightarrow B) \land (\neg B \rightarrow C) \rightarrow (\neg C \rightarrow A)$$
 menjadi $(A \rightarrow B) \land (\neg B \rightarrow C) \land \neg (\neg C \rightarrow A)$

Α	В	С	¬B	¬С	$A \rightarrow B$	$\neg B \to C$	(¬C → A)	¬(¬С→А)	(1) ^ (2) ^ (4)
					(1)	(2)	(3)	(4)	
F	F	F	Т	Т	Т	F	F	T	F
F	F	Т	Т	F	T	Т	Т	F	F
F	Т	F	F	Т	T	Т	F	T	T
F	Т	Т	F	F	T	Т	Т	F	F
Т	F	F	Т	Т	F	F	Т	F	F
Т	F	Т	Т	F	F	Т	Т	F	F
Т	Т	F	F	Т	Т	Т	Т	F	F
Т	Т	Т	F	F	Τ	Т	T	F	F

Setelah hasil strategi pembalikan dengan menegasikan kesimpulan diperiksa dengan tabel kebenaran, ternyata diperoleh hanya 1 nilai T dan lainnya F pada semua kemungkinan nilai, maka **dianggap tidak valid**.