Processamento de Sinais para Biolog*s

Eduardo X. Miqueles

Scientific Computing Group Brazilian Synchrotron Light Laboratory, CNPEM, Campinas, Brazil

November 26, 2020

DOWNLOAD:

https://github.com/exmiqueles/fofurasIB

PARTE 2: Algumas definições

What is this lecture about?

GCC team

- (a) Segmentation
- (b) Reconstruction
- (c) HPC

My part ...

- Applied Mathematics
- @ General computer stuff
- Opening Patience

Scientific Computing

Users dynamics

An image

An image

Resolution?

Resolution: in practice

Good resolution: image S

Notation

A profile

Symbol

$$S = (S_{ij}) \in \mathbb{R}^{32 \times 32}$$

Image ← Matrix

Generally

 $S \in \mathbb{F}^{n \times n}$

 $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{Z}, \mathbb{N}\} \dots$

(mathematically known as "a field")

$\textbf{Surface} \iff \textbf{Image} \iff \textbf{Matrix}$

$\mathsf{Surface} \iff \mathsf{Image} \iff \mathsf{Matrix}$

Surface \iff Image \iff Matrix

2D Functions

$$p(x,y) = \frac{\sin(10(x^2 + y^2))}{10(x^2 + y^2)}, \quad x_i = -1 + i \underbrace{\frac{2}{n}}_{\Delta x}, \quad y_j = -1 + j \underbrace{\frac{2}{n}}_{\Delta y}$$

(a)
$$n = 32$$

(b) n = 512

$\mathsf{Surface} \iff \mathsf{Image} \iff \mathsf{Matrix}$

Warning

$$\dim(p) = 2$$
, $\operatorname{graph}(f) \in \mathbb{R}^3$

Importance

- Image segmentation
- ② Data analysis

Disk space (DS)

Formula

 $\mathsf{DS} = (\mathsf{bit}\;\mathsf{depth}) \times (\mathsf{rows}) \times (\mathsf{columns})\;\mathsf{bits}$

1 bit $=\frac{1}{8}$ Bytes

General formula

$$DS = \frac{bn^2}{8} \text{Bytes} = \begin{cases} &\frac{bn^2}{8 \times 1024} = \frac{bn^2}{2^{13}} \text{ KB} \\ &\frac{bn^2}{8 \times 1024^2} = \frac{bn^2}{2^{23}} \text{ MB} \\ &\frac{bn^2}{8 \times 1024^3} = \frac{bn^2}{2^{33}} \text{ GB} \end{cases}$$

... megabytes

	b = 4	b = 8	b = 16	b = 32	
n = 512	0.125	0.250	0.500	1.000	
n = 1024	0.500	1.000	2.000	4.000	
n = 2048	2.000	4.000	8.000	16.000	
n = 3072	4.500	9.000	18.000	36.000	
n = 10000	47.684	95.367	190.735	381.470	