Számítógépes Hálózatok

3. Előadás: Fizikai réteg

Fizikai réteg

Alkalmazási Megjelenítési Munkamenet Szállítói Hálózati Adatkapcsolati **Fizikai**

- Szolgáltatás
 - Információt visz át két fizikailag összekötött eszköz között
 - definiálja az eszköz és a fizikai átviteli közeg kapcsolatát
- □ Interfész
 - Specifikálja egy bit átvitelét
- Protokoll
 - Egy bit kódolásának sémája
 - Feszültség szintek
 - Jelek időzítése
- Példák: koaxiális kábel, optikai kábel, rádió frekvenciás adó

Alapfogalmak

- Digitális számítógépek
 - Nullák és egyesek
- Analóg világ
 - Amplitúdók és frekvenciák

Egyszerű adatátvitel

- 1-es bit: feszültség vagy áramerősség
- O-ás bit: nincs feszültség

A "b" karakter átvitele

- Egynél több bit szükséges a "b" karakter átviteléhez
- □ A "b" ASCII kódja bináris formában: 01100010

A "b" karakter átvitele

□ Túl rossz vétel

Adatátvitel vezeték esetén valamilyen fizikai jellemző változtatásával lehetséges (pl.: feszültség, áramerősség)

- a viselkedést f(t) függvénnyel jellemezhetjük
- □ Bármely T periódusidejű g(t) periodikus függvény előáll a következő alakban:

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t),$$
 ahol $f = \frac{1}{T}$ az alapfrekvencia, a_n és b_n pedig az n-edik harmonikus szinuszos illetve koszinuszos amplitúdók.

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

$$b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$

$$c = \frac{2}{T} \int_0^T g(t) dt$$

Példa

- Tegyük fel, hogy az ASCII "b" karaktert küldjük, amely 8 biten ábrázolható, azaz a bitminta 01100010.
- A jel Fourier-sora az alábbi együtthatókat tartalmazza:

$$a_n = \frac{1}{\pi n} \left[\cos\left(\pi \frac{n}{4}\right) - \cos\left(3\pi \frac{n}{4}\right) + \cos\left(6\pi \frac{n}{4}\right) - \cos(7\pi \frac{n}{4}) \right]$$

$$b_n = \frac{1}{\pi n} \left[\sin\left(3\pi \frac{n}{4}\right) - \sin\left(\pi \frac{n}{4}\right) + \sin\left(7\pi \frac{n}{4}\right) - \sin(6\pi \frac{n}{4}) \right]$$

$$c = \frac{3}{4}$$

- A harmonikus amplitúdók négyzetösszege arányos a frekvencián továbbított energiával
- (energiaveszteség lehetséges)

- A digitális szignál nem periodikus
 - Pl. "b" ASCII kódja 8 bit hosszú

- ...de elképzelhetjük, hogy végtelen sokszor ismétlődik, ami egy periodikus függvényt ad
 - Pl. "b" esetén a periódus 8 bit hosszú

Elméleti alapok - Elnyelődés

- Elnyelődés (attenuation): α
 - \blacksquare Lényegében a küldési (P_0) és vételi (P_1) energiák hányadosa
 - Nagy elnyelődés esetén kevés energia éri el a fogadót
 - A jel helyreállítása lehetetlen
 - Mértékegysége deciBel

$$\alpha[in \ dB] = 10 \times \log_{10} \frac{P_0}{P_1}$$
 (deciBel [dB])

- Az elnyelődést befolyásoló tényezők
 - Átviteli közeg
 - Adó és vevő távolsága
 - ...

Elméleti alapok - Elnyelődés

- Valódi közegben
 - Frekvenciafüggő elnyelődés
 - Fáziseltolódás
 - Különböző frekvenciáknak különböző a terjedési sebessége
 - Frekvenciafüggő torzítás
 - Zaj
 - Hő, más rendszerek zavarása...

Szimbólumok és bitek

- Bitek helyett szimbólumok használata az átvitelhez
- □ Példa:
 - Vezessünk be 4 szimbólumot: A(00),B(01),C(10),D(11)
 - Szimbólum ráta: (BAUD)
 - Elküldött szimbólumok száma másodpercenként
 - Adat ráta (bps):
 - Elküldött bitek száma másodpercenként

Példa:

Egy 600 Baudos modemmel, ami 16 szimbólumot különböztet meg 2400 bps adatráta érhető el.

17

- mágneses adathordozók sávszélesség jó, késleltetés nagy (nem on-line kapcsolat)
- Sodort érpár (angolul "twisted pair") főként távbeszélőrendszerekben használatos; dupla rézhuzal; analóg és digitális jelátvitel; UTP és STP
- **Koaxális kábel** nagyobb sebesség és távolság érhető el, mint a sodorttal; analóg (75 Ω) és digitális (50 Ω) jelátvitel

Átviteli közegek – vezetékes 2/3

Fényvezető szálak – részei: fényforrás, átviteli közeg és detektor; fényimpulzus 1-es bit, nincs fényimpulzus 0-s bit; sugaraknak más-más módusa van (határszög ≤ beeső sugár szöge)

(Tanenbaum)

Fénykábelek felépítése:

Átviteli közegek – vezetékes 3/3

Fénykábelek összevetése fényimpulzus típusa alapján

Jellemző	LED	Félvezető lézer
Adatátvíteli sebesség	Alacsony	Magas
Módus	Többmódusú	Több- vagy egymódusú
Távolság	Kicsi	Nagy
Élettartam	Hosszú	Rővid
Hőmérsékletérzékenység	Kicsi	Jelentős
Ár	Olcsó	Drága

20

- □ Frekvencia: elektromágneses hullám másodpercenkénti rezgésszáma.
 - □ Jelölés: f
 - Mértékegység: Hertz (Hz)
- Hullámhossz: két egymást követő hullámcsúcs (vagy hullámvölgy) közötti távolság
 - Jelölés: λ
- □ **Fénysebesség:** az elektromágneses hullámok terjedési sebessége vákuumban
 - □ Jelölés: C
 - □ Értéke: kb. $3 * 10^8 \frac{m}{s}$
 - Rézben és üvegszálban ez a sebesség nagyjából a 2/3-adára csökken
- \square Összefüggés a fenti mennyiségek között: $\lambda f = c$

Elméleti alapok – elektromágneses spektrum

Tartomány neve	Hullámhossz (centiméter)	Frekvencia (Hertz)
Rádió	>10	< 3 * 10 ⁹
Mikrohullám	10 - 0.01	3 * 10 ⁹ - 3 * 10 ¹²
Infravörös	0.01 - 7 x 10 ⁻⁵	$3 \times 10^{12} - 4.3 \times 10^{14}$
Látható	$7 \times 10^{-5} - 4 \times 10^{-5}$	4.3 * 10 ¹⁴ - 7.5 * 10 ¹⁴
Ultraibolya	4 x 10 ⁻⁵ - 10 ⁻⁷	7.5 * 10 ¹⁴ - 3 * 10 ¹⁷
Röntgen sugarak	10 ⁻⁷ - 10 ⁻⁹	3 * 10 ¹⁷ - 3 * 10 ¹⁹
Gamma sugarak	< 10-9	> 3 * 10 ¹⁹

Elméleti alapok – elektromágneses spektrum

Elméleti alapok – elektromágneses spektrum

[Forrás: Tanenbaum]

Átviteli közegek – vezeték nélküli

 Rádiófrekvenciás átvitel – egyszerűen előállíthatóak; nagy távolság; kültéri és beltéri alkalmazhatóság; frekvenciafüggő terjedési jellemzők

- Mikrohullámú átvitel egyenes vonal mentén terjed; elhalkulás problémája; nem drága
- Infravörös és milliméteres hullámú átvitel kistávolságú átvitel esetén; szilárd tárgyakon nem hatol át
- Látható fényhullámú átvitel lézerforrás + fényérzékelő; nagy sávszélesség,
 olcsó, nem engedélyköteles; időjárás erősen befolyásolhatja;

Internet a kábel TV hálózaton

Internet a kábel TV hálózaton

Frekvencia kiosztás egy tipikus kábel TV alapú Internet elérés esetén

Átviteli közegek – kommunikáció műholdak

JELLEMZŐK

- Transzpondereket tartalmaz a spektrum részek figyelésére
- Jeleket felerősíti és továbbítja egy másik frekvencián
 - széles területen vagy
 - keskeny területen
- Magassággal nő a keringé idő is.

[Forrás: Tanenbaum]

Átviteli közegek – kommunikáció műholdak

FAJTÁI

- □ **Geoszinkron műholdak** 270 milliszekundum késleltetés, 3 műhold szükséges a föld lefedésére, 35800 kilométeres magasságban keringenek
- Közepes röppályás műholdak 35-85 milliszekundum késleltetés, 10 műhold szükséges a föld lefedésére, a két Van Allen-öv közötti magasságban keringenek
- Alacsony röppályás műholdak 1-7 milliszekundum késleltetés, 50 műhold szükséges a föld lefedésére, az alsó Van Allen-öv alatti tartományban keringenek

Adatátvitel

Kiinduló feltételek

30

 Két diszkrét jelünk van, ahol magas érték kódolja az 1-et és alacsony a 0-át.

Szinkron átvitel, pl. adott egy óra, ami a jel mintavételezését vezérli

A jel amplitúdója és az időbeli kiterjedése a fontos

Non-Return to Zero (NRZ) kódolás

 \square 1 \rightarrow magas jel, 0 \rightarrow alacsony jel

- Probléma: 0-ákból vagy 1-esekből álló hosszú sorozatok a szinkronizáció megszűnéséhez vezetnek
 - Hogyan különböztessünk meg sok nullát attól az állapottól, amikor nincs jel?
 - Hogyan hozzuk szinkronba az órákat egy hosszú egyeseket tartalmazó sorozat után?

("deszinkronizáció")

32

 Probléma: mikén állítsuk vissza az órát hosszú egyes vagy nullás sorozat után:

- Felügyelet szükséges a szinkron működéshez
 - Explicit órajel
 - párhuzamos átviteli csatornák használata,
 - szinkronizált adatok,
 - rövid átvitel esetén alkalmas.
 - 2. Kritikus időpontok
 - szinkronizáljunk például egy szimbólum vagy blokk kezdetén,
 - a kritikus időpontokon kívül szabadon futnak az órák,
 - feltesszük, hogy az órák rövid ideig szinkronban futnak
 - Szimbólum kódok
 - önütemező jel külön órajel szinkronizáció nélkül dekódolható jel,
 - a szignál tartalmazza a szinkronizáláshoz szükséges információt.

34

- □ A digitális kódok 3 lényeges momentumban térnek el:
 - Mi történik egy szignál intervallum elején?
 - ii. Mi történik egy szignál intervallum közepén?
 - iii. Mi történik egy szignál intervallum végén?

Néhány konkrét digitális kód

□ Biphase-Mark (váltás, 1-es bit esetén váltás, semmi)

Biphase-Space (váltás, 0-ás bit esetén váltás, semmi)

NRZ-L (1-es bit magas jelszint/ 0-s bit alacsony jelszint, semmi, semmi)

NRZ-M (1-es bit jelszint váltás/ 0-ás bit esetén nincs váltás, semmi, semmi)

 \square RZ (1-es bit magas jelszint/0-s bit alacsony jelszint, 1-es bit esetén váltás, semmi)

Differential Manchester (0-s bit esetén váltás, váltás, semmi)

□ Delay-Modulation (semmi, 1-es bit esetén váltás, 0-s bit következik váltás)

Manchester (semmi, 1-es bit magasról alacsonyra/ 0-s alacsonyról magasra, semmi)
 1 0 1 1 0 0 1 1 0 1

Ethernet példa: 10BASE-TX 100BASE-TX

38

□ 1 → átmenet magasról alacsonyra, 0 → alacsonyról magasra

- Megoldás az órák elcsúszásának problémájára (minden bit átmenettel kódolt)
- Negatívum, hogy az átvitel felét használja ki (két óraidő ciklus per bit)

Non-Return to Zero Inverted (NRZI)

 \square 1 \rightarrow átmenet, 0 \rightarrow ugyanaz marad

A csupa egyes sorozat problémáját megoldja ugyan,
 de a csupa nulla sorozatot ez sem kezeli...

4-bit/5-bit kódolás NRZI előtt (100 Mbps Ethernet -100BASE-TX)

□ Megfigyelés:

NRZI jól működik, amíg nincs csupa 0-ákból álló sorozat

□ Ötlet - Kódoljunk minden 4 hosszú bitsorozatot 5-bitbe:

Nem lehet egynél több nulla a sorozat elején, és nem lehet kettőnél több a

végén

4-bit	5-bit	4-bit	5-bit
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Hátrányok: 20%-ot veszítünk a hatékonyságból

4-bit/5-bit kódolás NRZI előtt (100 Mbps Ethernet -100BASE-TX)

Megfigyelés:

NRZI 8-bit/10-bit kódolás használata Gigabit Ethernet

□ Otlet - Kódoljunk minden 4 hosszú bissarozatot 5-bitbe:

Nem lehet egynél több nulla a sorozat elején, és nem lehet kettőnél több a

végén

4-bit	5-bit	4-bit	5-bit
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Hátrányok: 20%-ot veszítünk a hatékonyságból

Jelátvitel

- Alapsáv avagy angolul baseband
 - a digitális jel direkt árammá vagy feszültséggé alakul;
 - a jel minden frekvencián átvitelre kerül;
 - átviteli korlátok.
- Szélessáv avagy angolul broadband
 - Egy széles frekvencia tartományban történik az átvitel;
 - a jel modulálására az alábbi lehetőségeket használhatjuk:
 - adatok vivőhullámra "ültetése" (amplitúdó moduláció);
 - vivőhullám megváltoztatása (frekvencia vagy fázis moduláció);
 - különböző vivőhullámok felhasználása egyidejűleg

Digitális alapsávú átvitel struktúrája

Digitális szélessávú átvitel struktúrája

46

Egy szinusz rezgés amplitúdó ábrázolása T periódus idejű függvényre $s(t) = A \sin(2\pi f t + \varphi)$, ahol A az amplitúdó, f a frekvencia és φ a fáziseltolás.

Amplitúdó moduláció

Az s(t) szignált a szinusz görbe amplitúdójaként kódoljuk, azaz: $f_A(t) = s(t) * \sin(2\pi f t + \varphi)$

 Digitális szignál: amplitúdó keying (szignál erőssége egy diszkrét halmaz értékeinek megfelelően változik)

Frekvencia moduláció

- Az s(t) szignált a szinusz görbe frekvenciájában kódoljuk, azaz: $f_F(t) = a * \sin(2\pi s(t)t + \varphi)$
 - analóg szignál: frekvencia moduláció
 - Digitális szignál: frekvencia-eltolás keying (például egy diszkrét halmaz szimbólumaihoz különböző

Illusztráció - AM & FM analóg jel esetén

Fázis moduláció

 Az s(t) szignált a szinusz görbe fázisában kódoljuk, azaz:

$$f_P(t) = a * \sin(2\pi f t + s(t))$$

- analóg szignál: fázis moduláció (nem igazán használják)
- Digitális szignál: fázis-eltolás keying (például egy diszkrét halmaz szimbólumaihoz különböző fázisok

Több szimbólum használata

PSK különböző szimbólumokkal

- A fázis eltolások könnyen felismerhetőek a fogadó által
- Diszkrét halmaz kódolja a szimbólumokat
 - Például 4 szimbólum esetén: $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$
 - Ezzel kétszeres adatrátát kapunk a szimbólum rátához ke
 - Ezt nevezzük Quadrature Phase Shift Keying

Amplitúdó- és fázis-moduláció

- Kombinálhatóak a módszerek
- Diszkrét halmaz kódolja a szimbólumokat
 - Például 16 különböző szimbólum (amplitúdó és fázis kom használata
 - Ezzel négyszeres adatrátát kapunk a szimbólum rátához
 - Ezt nevezzük Quadrature Amplitude Modulation-16

Digitális és analóg jelek összehasonlítása

- Digitális átvitel Diszkrét szignálok véges halmazát használja (például feszültség vagy áramerősség értékek).
- Analóg átvitel Szignálok folytonos halmazát használja (például feszültség vagy áramerősség a vezetékben)
- Digitális előnyei
 - Lehetőség van a vételpontosság helyreállítására illetve az eredeti jel helyreállítására
- Analóg hátránya
 - A fellépő hibák önmagukat erősíthetik

Csatorna hozzáférés módszerei (statikus)

Multiplexálás

 Lehetővé teszi, hogy több jel egyidőben utazzon egy fizikai közegen

 Több jel átvitele érdekében a csatornát logikailag elkülönített kisebb csatornákra (alcsatornákra) bontjuk

 A küldő oldalon szükséges egy speciális eszköz (multiplexer), mely a jeleket a csatorna megfelelő alcsatornáira helyezi

Térbeli multiplexálás

- Ez a legegyszerűbb multiplexálási módszer.
- Angolul Space-Division Multiplexing
- Vezetékes kommunikáció esetén minden egyes csatornához külön pont-pont vezeték tartozik.
- Vezeték nélküli kommunikáció esetén minden egyes csatornához külön antenna rendelődik.

Frekvencia multiplexálás

- Olyan módszertan, amelyben egy kommunikációs
 csatornán több szignál kombinációja adja az átvitelt.
- Minden szignálhoz más frekvencia tartozik.
- Angolul Frequency-Division Multiplexing
- □ Tipikusan analóg vonalon használják.
- □ Többféle megvalósítása van:
 - XOR a szignálokon véletlen bitsorozattal,
 - pszeudo véletlen szám alapú választás

Hullámhossz multiplexálás

- Optikai kábeleknél alkalmazzák.
- Angolul Wavelength-Division Multiplexing

Időbeli multiplexálás

- Több párhuzamos adatfolyam átvitelét a jelsorozat rövid időintervallumokra szegmentálásával oldja meg.
- Diszkrét időszeletek használata. Minden állomás saját időszeletet kap.
- Angolul Time-Division Multiplexing

- a harmadik generációs mobiltelefon hálózatok alapját képezi (IS-95 szabvány)
- minden állomás egyfolytában sugározhat a rendelkezésre álló teljes frekvenciasávon
- Feltételezi, hogy a többszörös jelek lineárisan összeadódnak.
- Kulcsa: a hasznos jel kiszűrése

ALGORITMUS

- minden bitidőt m darab rövid intervallumra osztunk, ezek a töredékek (angolul chip)
- minden állomáshoz egy m bites kód tartozik, úgynevezett töredéksorozat (angolul chip sequence)
- Ha 1-es bitet akar továbbítani egy állomás, akkor elküldi a saját töredéksorozatát.
- Ha 0-es bitet akar továbbítani egy állomás, akkor elküldi a saját töredéksorozatának egyes komplemensét.

Code Division Multiple Access 2/3

60

- m-szeres sávszélesség válik szükségessé, azaz szórt spektrumú kommunikációt valósít meg
- szemléltetésre bipoláris kódolást használunk:
 - bináris 0 esetén -1; bináris 1 esetén +1
 - az állomásokhoz rendelt töredék sorozatok **páronként ortogonálisak**

Code Division Multiple Access 3/3

szinkron esetben a Walsh mátrix oszlopai vagy sorai egyszerű módon meghatároznak egy kölcsönösen ortogonális töredék sorozat halmazt

$$\forall k \in \mathbb{N} \land k \ge 2 : H(2^k) = \begin{bmatrix} H(2^{k-1}) & H(2^{k-1}) \\ H(2^{k-1}) & -H(2^{k-1}) \end{bmatrix}$$

Code Division Multiple Access példa

A állomás

Chip kódja legyen (1,-1). Átvitelre szánt adat legyen 1011

- Egyedi szignál
 előállítása az (1,0,1,1)
 vektorra:
 ((1,-1),(-1,1),(1,-1),(1,1))
- Szignál modulálása a csatornára.

B állomás

Chip kódja legyen (1,1). Átvitelre szánt adat legyen 0011

- Egyedi szignál
 előállítása az (0,0,1,1)
 vektorra:
 ((-1,-1),(-1,-1),(1,1),(1,1))
- Szignál modulálása a csatornára.

$$((1+(-1),(-1)+(-1)),((-1)+(-1),1+(-1)),(1+1,(-1)+1),(1+1,(-1)+1)) = (0,-2,-2,0,2,0,2,0)$$

Code Division Multiple Access példa

((1+(-1),(-1)+(-1)),((-1)+(-1),1+(-1)),(1+1,(-1)+1),(1+1,(-1)+1)) = ((0,-2),(-2,0),(2,0),(2,0))

Vevő 1

Ismeri B chip kódját: (1,1).

- Visszakódolás az ismert kóddal: ((0,-2)*(1,1),(-2,0)*(1,1),(2,0)*(1,1),(2,0)*(1,1))
- Kapott (-2,-2,2,2) eredmény értelmezése:
 (-,-,+,+), azaz 0011 volt az üzenet B-től.

Vevő 2

Ismeri A chip kódját: (1,-1).

- Visszakódolás az ismert kóddal: ((0,-2)*(1,-1),(-2,0)*(1,-1),(2,0)*(1,-1) ,(2,0)*(1,-1))
- Kapott (2,-2,2,2) eredmény értelmezése: (+,-,+,+), azaz 1011 volt az üzenet A-tól.

Médium többszörös használata összefoglalás

64

- Tér-multiplexálás avagy SDM (párhuzamos adatátviteli csatornák)
 - cellurális hálózatok
- Frekvencia-multiplexálás avagy FDM(a frekvencia tartomány felosztása és küldőhöz rendelése)
 - "Direct Sequence Spread Spectrum" (XOR a szignálokon véletlen bitsorozattal)
 - "Frequency Hopping Spread Spectrum" (pszeudo véletlen szám alapú választás)
- Idő-multiplexálás avagy TDM (a médium használat időszeletekre osztása és küldőhöz rendelése)
 - diszkrét idő szeletek (slot)
 - koordináció vagy merev felosztás kell hozzá
- Hullámhossz-multiplexálás avagy WDM (optikai frekvencia-multiplexálás)
- Kód multiplexálás avagy CDM (mobil kommunikációban használatos)

Köszönöm a figyelmet!