第1章 李群

1.1 基本概念

定义 1.1 (李群)

一个李群是指,一个带有群结构的光滑(带边)流形 G,配有一个光滑的乘法映射 m: $G \times G \to G$ 和一个光滑的取逆映射 $i: G \to G$,

$$m(g,h) = gh, \quad i(g) = g^{-1}$$

定义 1.2

设 G 是一个李群,对于任意的 $g \in G$,定义映射 $L_g, R_g: G \to G$,分别称为左平移和右平移,按

$$L_g(h) := gh, \quad R_g(h) := hg$$

Remark

1. 由于 L_q 可以表示为复合映射

$$G \xrightarrow{\iota_g} G \times G \xrightarrow{m} G$$

其中 $\iota_g(h) = (g,h), m$ 是乘法, 因此 L_g 是光滑的。

2. L_g 有光滑的逆映射 $L_{g^{-1}}$,因此是微分同胚。

Example 1.1 李群的例子

- 1. 一般线性群 $GL(n,\mathbb{R})$ (Example??) 的矩阵乘法表为 A,B 分量的多项式,进而是光滑的。 取逆映射由 Cramer 法则可知也是光滑的。因此 $GL(n,\mathbb{R})$ 构成一个李群。
- 2. 令 $\operatorname{GL}^+(n,\mathbb{R})$ 表示由正行列式矩阵构成的 $\operatorname{GL}(n,\mathbb{R})$ 的子集。因为 $\det(AB) = (\det A) (\det B)$,且 $\det(A^{-1}) = 1/\det A$,所以 $\operatorname{Gl}^+(n,\mathbb{R})$ 是 $\operatorname{GL}(n,\mathbb{R})$ 的一个子群;并且 $\operatorname{GL}^+(n,\mathbb{R})$ 是行列式函数这样一个连续函数在 $(0,\infty)$ 下的原像,故而是 $\operatorname{GL}(n,\mathbb{R})$ 的一个开子集。群作用是 $\operatorname{GL}(n,\mathbb{R})$ 上的限制,从而是光滑映射。因此 $\operatorname{GL}^+(n,\mathbb{R})$ 是一个李群。
- 3. 令 G 是一个李群。若 $H \subseteq G$ 同时是 G 的子群和开子集,则 H 构成一个李群,被称为是 G 的一个 **开子群**。
- 4. **复一般线性群** $GL(n,\mathbb{C})$ 为全体 $n \times n$ 的可逆复矩阵。它是 $2n^2$ -维光滑流形 $M(n,\mathbb{C})$ 的一个开子流形,并且通过分解实虚部可知矩阵乘法和逆映射均为光滑映射,因此 $GL(n,\mathbb{C})$ 也构成一个李群。
- 5. 若 V 是任意实或复的线性空间,令 $\operatorname{GL}(V)$ 表示全体 V 到自身的可逆线性映射。则 $\operatorname{Gl}(V)$ 在线性映射的复合下构成群。若 V 的维数为 $n<\infty$,则 V 的任意一组基给出 $\operatorname{GL}(V)$ 到 $\operatorname{GL}(n,\mathbb{R})$ 或 $\operatorname{GL}(n,\mathbb{C})$ 的一个同构,因此 $\operatorname{GL}(V)$ 构成一个李群。

- 6. \mathbb{R}^n , $n \ge 1$ 和 \mathbb{C}^n , $n \ge 1$ 分别在各自加法下构成李群。
- 7. 非零实数集 $\mathbb{R}^* \simeq \mathrm{GL}\,(1,\mathbb{R})$ 构成 1-维李群, $\mathbb{R}^+ \simeq \mathrm{GL}^+\,(1,\mathbb{R})$ 是 \mathbb{R}^* 的开子群,故而也是 1-维李群。
- 8. 非零复数集 $\mathbb{C}^* \simeq \mathrm{GL}(1,\mathbb{C})$ 构成 2-维李群。
- 9. 圆 $\mathbb{S}^1 \subseteq \mathbb{C}$ 是一个光滑流形,且在复数乘法下构成群。在选取合适的角函数作为局部坐标下,乘法和逆运算的坐标表示为 $(\theta_1,\theta_2) \mapsto \theta_1 + \theta_2, \theta \mapsto -\theta$ 均是光滑的,因此 \mathbb{S}^1 构成一个李群,被称为是 **圆群**。
- 10. 给定李群 G_1, \dots, G_k ,定义它们的乘积,为积流形 $G_1 \times \dots \times G_k$ 配备以下分量乘法

$$(g_1,\cdots,g_k)\left(g_1',\cdots,g_k'\right):=\left(g_1g_1',\cdots,g_kg_k'\right)$$

不难验证这是一个李群。

11. n-圆环 $\mathbb{T}^n = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1$ 是一个 n-为阿贝尔李群。