



# Universal Representation: Modeling, Application and Evaluation

Jiatong Shi

Carnegie Mellon University, Language Technologies Institute jiatongs@cs.cmu.edu

#### Content

Brief Summary

- Research Roadmap
- Future Envision



#### Education

- Carnegie Mellon University (2021 present)
  - PhD in Language Technologies Institute
  - Advisor: Dr. Shinji Watanabe
- Johns Hopkins University (2019 2021)
  - MS. in Computer Science
  - Advisor: Dr. Shinji Watanabe
- Remin University of China (2015 2019)
  - BS. in Computer Science + BA. in Fintech
  - Advisor: Dr. Qin Jin, Dr. Wei Xu, and Dr. Wei Du



#### Diverse Experiences

- 77 publications in top speech/NLP/ML journals/conferences
  - 20 first-authored papers, 2600+ citations
  - Mentored 17 students with 16 first-authored papers
  - Extensive experiences in wide-range of speech tasks
    - Automatic Speech Recognition (ASR)
    - Text-to-speech (TTS)
    - Speech Translation (ST)
    - Speech-to-speech Translation (S2ST)
    - Spoken Language Understanding (SLU)
    - Speech coding (SC)
    - Speaker Diarization (SD)
    - Singing voice synthesis (SVS)



### Diverse Experiences (Cont'd)

#### Open-source contribution

- Maintainer and major contributor in
  - ESPnet (maintainer, 8.5k stars)
- Key-feature contributors in
  - S3PRL (2.3k stars)
  - ParallelWaveGAN (1.6k stars)
  - AudioGPT (10k stars)
  - Fairseq (30.5k stars)

#### Benchmark and Challenge Organizers

- Speech Universal PERformance Benchmark (SUPERB) [SLT2022]
- Multilingual SUPERB [ASRU 2023 & Interspeech 2025]
- Discrete speech challenge [Interspeech 2024]
- Singing voice conversion challenge [ASRU2023]
- Simultaneous speech translation challenge [IWSLT 2022-2024]
- Singing voice deepfake detection challenge [SLT2024]



#### Notable Achievement

#### • 2024

- Best paper award at Interspeech 2024
- Honorable mention demo award at ACMMM 2024
- Best paper honorable mention at Responsible speech workshop at Interspeech 2024
- 1st Place at discrete speech challenge (SVS track)
- 2<sup>nd</sup> Place at discrete speech challenge (ASR track)

#### • 2023

Best paper finalist at 2023 ASRU

#### • 2022

- Best paper finalist at 2022 SLT
- Best project at 2022 SLT Hackathon (as a mentor)
- CMU Presidential Fellowship
- 1st Place at IWSLT 2022 (dialectal speech translation track)
- 7<sup>th</sup> Place at Al Song Contest 2022



#### Research Topic: Universal Representation

- General concept:
  - Towards an eco-system for universal representation for various speech tasks
- Major components:
  - Modeling
    - Multi-resolution modeling (MR-HuBERT, SingOMD)
    - Multi-level modeling (MMM, ESPnet-Codec, TokSing)
  - Application
    - Speech recognition, text-to-speech, speech-to-text/speech translation, speech coding, spoken language understanding, singing voice synthesis
  - Evaluation
    - Representation evaluation (SUPERB, ML-SUPERB)
    - Spoken language model (Dynamic SUPERB)
    - Generative audio/speech/music evaluation (VERSA, VERSA-v2)



Go universal with multi-level multi-resolutional processing

MR-HuBERT (ICLR2024, Spotlight)

 Use multi-resolution architecture for speech self-supervised learning



Go universal with multi-level multi-resolutional processing

Multi-resolution HuBERT [ICLR2024, Spotlight]

 Use multi-resolution architecture for speech self-supervised learning

| Model                    | Understanding         | Enhancement           | General               |
|--------------------------|-----------------------|-----------------------|-----------------------|
| HuBERT-base              | 861.2                 | 98.20                 | 670.4                 |
| HuBERT-base <sup>+</sup> | 876.9                 | 150.2                 | 695.2                 |
| HuBERT-large             | 932.6                 | 456.0                 | 813.4                 |
| HuBERT-large*            | 936.2                 | 501.5                 | 827.5                 |
| mono-base<br>mono-large  | 885.8<br><b>949.7</b> | 195.0<br><b>609.5</b> | 708.7<br><b>864.6</b> |

Categorical SUPERB score over 10 speech processing tasks



- Go universal with multi-level multi-resolutional processing
  - Sing Oriented Multi-resolution Discrete Representation (SingOMD)
     [Interspeech 2024, oral]



- Go universal with multi-level multi-resolutional processing
  - Multi-layer Multi-residual Multi-stream Discrete Speech Representation (MMM)
    - [Interspeech 2024, Oral]
  - Discrete token-based SVS (TokSing)
    - [Interspeech 2024, Oral]

Use **multi-level** information to construct representation for both understanding and generation purposes.



 Expanding the usage of representation towards different tasks (using strategy for multi-modal modeling)

Multi-modal representation connector with unsupervised ASR [ICASSP 2023]



Expanding the usage of representation towards different tasks (using

strategy for synthesis purpose)

Discrete representation as regularization terms for network training.

[ICASSP 2023]





• Expanding the usage of representation towards different tasks (using

strategy for understanding purpose)

Strategies of using HuBERT with multiresolution for various tasks [Interspeech 2023]



 Expanding the usage of representation towards different tasks (using strategy for multilingual purpose)

Efficient feature fusion for multilingual speech recognition (EFFUSE)
[Interspeech 2024, Best paper award]





### Universal Representation (Evaluation)

- Representation evaluation in universal scenarios
  - Speech Universal PERFormance benchmark [Interspeech 2021]
    - Self-supervised Representation
  - Multilingual SUPERB [Interspeech 2023]
    - General speech representation (supervised/unsupervised) in multilingual scenarios
  - Dynamic SUPERB [ICASSP 2024]
    - Speech language modeling -> a unified solution for systematic evaluation in general speech systems with instruction tuning





### Universal Representation (Evaluation)

Representation evaluation with a special focus on speech in universal scenarios

- VERSA (together with ESPnet-Codec) [SLT2024]
  - A comprehensive evaluation interface for evaluation
- VERSA-v2 (ongoing)
  - A universal evaluation model with generative audio analysis





# Brief review of recent speech language model

- A big trend together with the release of GPT-4o
  - Use additional module to inject speech/audio/music into textual LLM
    - MullaMA, GAMA, SALMONN, Qwen2-Audio, Llama 3.1, Audio-Flamingo, WavLLM, SALMONN-OMNI
    - Pros: easier to maintain the textual LLM performance
    - Cons: difficult to involve **paralinguistics** into modeling (tones, expression, emotion, environment understanding, etc.)
  - Use speech representation to joint model with text
    - SLAM, AudioLM, X-LLM, Pengi AnyGPT, AudioPaLM, VoxtLM, SpiritLM. Moshi
    - Pros: easier to use all information in audio
    - Cons: difficult to **maintain** the textual LLM performance
      - (sequence complication)



# Brief review of recent speech language model

#### Major issue of recent works:

- Difficulty in balancing understanding and generation performance
- Difficulty to get aware of paralinguistics/general audio
- Difficulty to evaluate generation tasks
- Difficulty to keep efficient

- Cons: difficult to **maintain** the textual LLM performance
  - (sequence complication)





#### Future with Representation

- Current needs in speech representation learning
  - Going balanced -> balance between understanding and generation
  - Going expressive with real ear and mouth -> be aware of paralinguistic information (understand and generate)
  - Going evaluated -> comprehensive + easy to use objective metrics
  - Going fast -> streaming + lightweight (save for LLM reasoning body)

#### Future with Representation

More than GPT-40 in audio/speech?

- More understanding in the general audio world beyond the content (paralinguistics and other audio/music information)
- Better feedback systems to lead the targets of generation
- More specialization in target domain with easy extension.

Going fast -> streaming + lightweight (save for LLM reasoning body)

#### Future envision

- Thoughts from my research experiences
  - Multi-level/multi-resolution information in representation for diverse use cases
  - Strategic customization for targeted domain usage
  - Complete automatic evaluation for better guidance of the system



# Thank you for listening!

