O Notation Part 5

O Notation

O Notation

- Counting comparisons
- O Notation
 - O notation's mathematical basis
 - O notation classes
 - ullet Θ and Ω notations

Comparisons

Ignoring Leading Constants

- Calculation of a detailed cost function can be onerous and dependent on
 - Exactly how the algorithm was implemented
 - Implementing selection sort as a single function would have resulted in a different cost function
 - The definition of a single discrete operation
 - How many operations is this: mid = (low + high) / 2?
- We are often interested in how algorithms behave as the problem size increases

Comparing Algorithm Performance

- There can be many ways to solve a problem
 - Different algorithms that produce the same result
 - There are numerous sorting algorithms
- Compare algorithms by their behaviour for large input sizes, i.e., as n gets large
 - On today's hardware, most algorithms perform quickly for small n
- Interested in growth rate as a function of n
 - Sum an array: lineαr growth
 - Sort with selection sort: quadratic growth

Comparing Algorithms

- Measuring the performance of an algorithm can be simplified by
 - Only considering the highest order term
 - i.e. only consider the number of times that the barometer instruction is executed
 - And ignoring leading constants
- Consider the selection sort algorithm
 - $t_{\text{selection sort}} = 2n^2 2n + 10(n-1) + 2$
 - Its cost function approximates to n²

Algorithm Summary

- What are the approximate number of barometer operations for the algorithms we looked at?
 - Ignoring leading constants
- Linear search: n
- Binary search: log₂n
- Selection sort: n²
- Insertion sort: n²
- Quicksort: $n(\log_2(n))$

worst and average case

worst and average case

all cases

worst and average case

best and average case

Algorithm Growth Rate

- What do we want to know when comparing two algorithms?
 - Often, the most important thing is how quickly the time requirements increase with input size
 - e.g. If we double the input size how much longer does an algorithm take?
- Here are some graphs ...

Small n

Larger n

Much Larger n

Logarithmic Scale

O Notation

O Notation Introduction

- Exact counting of operations is often difficult (and tedious), even for simple algorithms
 - And is often not much more useful than estimates due to the relative importance of other factors
- O Notation is a mathematical language for evaluating the running-time of algorithms
 - O-notation evaluates the growth rate of an algorithm

Example of a Cost Function

- Cost Function: $t_A(n) = n^2 + 20n + 100$
 - Which term in the function is the most important?
- It depends on the size of n
 - n = 2, $t_A(n) = 4 + 40 + 100$
 - The constant, 100, is the dominating term
 - n = 10, $t_A(n) = 100 + 200 + 100$
 - 20n is the dominating term
 - $n = 100, t_A(n) = 10,000 + 2,000 + 100$
 - n^2 is the dominating term
 - $n = 1000, t_A(n) = 1,000,000 + 20,000 + 100$
 - n^2 is still the dominating term

The general idea is ...

- Big-O notation does not give a precise formulation of the cost function for a particular data size
- It expresses the general behaviour of the algorithm as the data size n grows very large so ignores
 - lower order terms and
 - constants
- A Big-O cost function is a simple function of n
 - $n, n^2, \log_2(n), \text{ etc.}$

Order Notation (Big O)

- Express the number of operations in an algorithm as a function of n, the problem size
- Briefly
 - Take the dominant term
 - Remove the leading constant
 - Put O(...) around it
- For example, $f(N) = 2n^2 2n + 10(n-1) + 2$
 - i.e. O(*n*²)

But ...

- Of course, leading constants matter
 - Consider two algorithms
 - $f_1(n) = 20n^2$
 - $f_2(n) = 2n^2$
 - Algorithm 2 runs ten times faster
- Let's consider machine speed
 - If machine 1 is ten times faster than machine 2 it will run the same algorithm ten times faster
- Big O notation ignores leading constants
 - It is a hardware independent analysis

O Notation, More Formally

- Given some function t(n) t(n) might be a detailed cost function ...
 - Say that t(n) = O(f(n)) if t(n) is at most a constant times f(n) Where f(n) is a simple function: n^2 , $n \log n$, etc.
 - Except perhaps for some small values of n
- Properties
 - Constant factors don't matter
 - Low-order terms don't matter
- Rules
 - For any k and any function g(n), k*g(n) = O(f(n))
 - e.g., 5n = O(n)

Why Big O?

- An algorithm is said to be order f(n)
 - Denoted as O(f(n))
- The function f(n) is the algorithm's growth rate function
 - If a problem of size n requires time proportional to n then the problem is O(n)
 - e.g. If the input size is doubled so is the running time

Big O Notation Definition

- An algorithm is order f(n) if there are positive constants k and m such that
 - $t_A(n) \le k * f(n)$ for all $n \ge m$
 - i.e. find constants k and m such that the cost function is less than or equal to k * a simpler function for all n greater than or equal to m
- If so, we would say that $t_A(n)$ is O(f(n))

Constants k and m

- Finding a constant $k \mid t_A(n) \le k * f(n)$ shows that t is O(f(n))
 - e.g. If the cost function was n² + 20n + 100 and we believed this was O(n)
 - We claim to be able to find a constant $k \mid t_A(n) \le k * f(n)$ for all values of n
 - Which is not possible
- For some small values of n lower order terms may dominate
 - The constant m addresses this issue

Or In English...

- The idea is that a cost function can be approximated by another, simpler, function
 - The simpler function has 1 variable, the data size n
 - This function is selected such that it represents an *upper* bound on the value of $t_A(n)$
- Saying that the time efficiency of algorithm A $t_A(n)$ is O(f(n)) means that
 - A cannot take more than O(f(n)) time to execute, and
 - The cost function $t_A(n)$ grows at most as fast as f(n)

Big O Example

- An algorithm's cost function is 3n + 12
 - If we can find constants m and k such that:
 - $k * n \ge 3n + 12$ for all $n \ge m$ then
 - The algorithm is O(n)
- Find values of k and m so that this is true
 - k = 4, and
 - m = 12 then
 - $4n \ge 3n + 12$ for all $n \ge 12$

Another Big O Example

- A cost function is $2n^2 2n + 10(n-1) + 2$
- If we can find constants m and k such that:
 - $k * n^2 \ge 2n^2 2n + 10(n-1) + 2$ for all $n \ge m$ then
 - The algorithm is $O(n^2)$
- Find values of k and m so that this is true
 - k = 3, and
 - m = 9 then
 - $3n^2 > 2n^2 2n + 10(n-1) + 2$ for all $n \ge 9$

And Another Graph

O Notation Examples

- All these expressions are O(n)
 - n, 3n
 - -61n + 5
 - 22*n* − 5
- All these expressions are $O(n^2)$
 - n^2
 - 9*n*²
 - \blacksquare 18 n^2 + 4n 53
- All these expressions are O(n log n)
 - n(log n)
 - 5n(log 99n)
 - $18 + (4n 2)(\log (5n + 3))$

Arithmetic and O Notation

- O(k * f) = O(f) if k is a constant
 - e.g. O(23 * O(log n)), simplifies to O(log n)
- $O(f + g) = \max[O(f), O(g)]$
 - $O(n + n^2)$, simplifies to $O(n^2)$
- O(f * g) = O(f) * O(g)
 - O(m * n), equals O(m) * O(n)
 - Unless there is some known relationship between m and n that allows us to simplify it, e.g. m < n

Typical Growth Rate Functions

- Growth rate functions are typically one of the following
 - O(1)
 - O(log n)
 - O(n)
 - O(n*logn)
 - $O(n^2)$
 - $O(n^k)$
 - $O(2^n)$

O(1) - Constant Time

- We write O(1) to indicate something that takes a constant amount of time
 - Array look up
 - Swapping two values in an array
 - Finding the minimum element of an ordered array takes O(1) time
 - The minimum value is either the first or the last element of the array
 - Binary or linear search best case
- Important: constants can be large
 - So, in practice O(1) is not necessarily efficient
 - It tells us is that the algorithm will run at the same speed no matter the size of the input we give it

O(logn) – Logarithmic Time

- O(logn) algorithms run in logarithmic time
 - Binary search average and worst case
 - The logarithm is assumed to be base 2 unless specified otherwise
- Doubling the size of n increases the number of operations by one
- Algorithms might be O(logn)
 - If they are divide and conquer algorithms that halve the search space for each loop iteration or recursive call

O(n) – Linear Time

- O(n) algorithms run in *linear* time
 - Linear search
 - Summing the contents of an array
 - Traversing a linked list
 - Insertion sort or bogo sort best case
- Doubling the size of n doubles the number of operations
- Algorithms might be O(n)
 - If they contain a single loop
 - That iterates from o to n (or some variation)
 - Make sure that loops only contain constant time operations
 - And evaluate any function calls

O(nlogn)

- O(nlogn)
 - Mergesort in all cases
 - Heap sort in all cases
 - Quicksort in the average and best case
 - O(nlogn) is the best case for comparison sorts
 - We will not prove this in CMPT 225
- Growth rate is faster than linear but still slow compared to $O(n^2)$
- Algorithms are O(nlogn)
 - If they have one process that is linear that is repeated O(logn) times

$O(n^2)$ — Quadratic Time

- $O(n^2)$ algorithms run in *quadratic* time
 - Selection sort in all cases
 - Insertion sort in the average and worst case
 - Bubble sort in all cases
 - Quicksort worst case
- Doubling the size of n quadruples the number of operations
- Algorithms might be $O(n^2)$
 - If they contain nested loops
 - As usual make sure to check the number of iterations in such loops
 - And that the loops do not contain non-constant function calls

$O(n^k)$ – Polynomial Time

- O(n^k) algorithms are referred to as running in polynomial time
 - If k is large, they can be very slow
- Doubling the size of n increases the number of operations by 2^k

$O(2^n)$ – Exponential Time

- $O(2^n)$ or $O(k^n)$ algorithms are referred to as running in *exponential* time
- Very slow, and if there is no better algorithm implies that the problem is intractable
 - That is, problems of any reasonable size cannot be solved in a reasonable amount of time
 - Such as over the lifetime of the human race ...
- O(n!) algorithms are even slower
 - Traveling Salesman Problems (and many others)
 - Bogo sort in the average case

Worst, Average and Best Case

- The O notation growth rate of some algorithms varies depending on the input
- Typically, we consider three cases:
 - Worst case, usually (relatively) easy to calculate and therefore commonly used
 - Average case, often difficult to calculate
 - Best case, usually easy to calculate but less important than the other cases
 - Relying on the input having the best-case organization is not generally a good idea

Other Related Notations

- ullet Ω (omega) notation
 - Gives a lower bound
 - Whereas O notation is an upper bound
 - There exists some constant k, such that k * f(n) is a lower bound on the cost function g(n)
- Θ (theta) notation
 - Gives an upper and lower bound
 - $k_1 * f(n)$ is an upper bound on g(n) and $k_2 * f(n)$ is a lower bound on g(n)

Upper and Lower Bound

