

电路基础

空间科学与技术学院 贾静

1.7 受控源

▶教学内容: 受控源的含义及模型

▶教学要求:理解受控源与独立源的区别

会分析、计算含受控源电路

1.7.1 受控源的定义

电源 { 独立电源 电源 非独立电源,常称为受控源(Controlled Source)

为了描述一些电子器件内部的一种受控的物理现象,在电路模型中常包含另一类电源—受控源。

受控电源是由电子器件抽象出来的一种电路模型,简称受控源,又称非 独立源。受控电压源的电压受其他支路电压或电流的控制。受控电流源的电 流受其他支路的电压或电流的控制。它们和独立电源一样,除了有数值的大 小外,还有方向或极性。

晶体管、运算放大器、变压器等电子器件都可以用受控源来表示。

受控源是指大小方向受电路中其它地方的电压或电流控制的电源。

一、四种受控源

受控电压源

电压控制电压源(Voltage Controlled Voltage Source, 简记VCVS)

电流控制电压源(Current Controlled Voltage Source, 简记CCVS)

受控电流源

电压控制电流源(Voltage Controlled Current Source, 简记VCCS)

电流控制电流源(Current Controlled Current Source, 简记CCCS)

例1 如图电路, 求电压U和受控源提供的功率。

解:

- ① 由KCL,得 $I_1 = 8I + I = 9I$
- ② 在回路A利用KVL列方程为

$$2I + U - 20 = 0$$

利用OL,有

$$U = 2I_1 = 18I$$

解上两式得,U=18V

受控源提供的功率 P=8IU=144W

受控源提 供功率

二、四种受控源的电路模型

注意:

受控源是双

口元件(电

源端口和控

制端口)。

线性时不变受控源

其中,控制系数 μ 、 α 无量纲,r的单位是 Ω ,g的单位为S。

受控源是双口元件,本质上和电源不同,VAR和电源类似。

例2 求图示电路中各支路电流和受控源发出的功率。

解: 由KVL可得: $10i_1 + 50 + 10i_1 = 0$

$$i_1 = -2.5A$$

由KCL可得: $i_2 = 2 - i_1 = 4.5$ A

受控源发出的功率为:

$$P_3 = 10i_1i_2 = -25 \times 4.5 = -112.5W$$

由此例1和例2看出: 受控源可以吸收功率, 也可以提供功率。

如图所示电路,则电压U=____V

- (A) (D
- B 1
- **2**
- **D** 3

三.说明

- 1) 独立源与受控源是两个本质不同的物理概念。独立源在电路中起着"激励"的作用,而受控源不是激励源。
- 2) 分析受控源与分析独立源的方法相同。
- 3) 受控源和独立源都属于有源器件,他们能够向外提供功率。

五、思考

1.8 电路等效

>教学内容:

电路等效的概念 电阻串并联等效以及分压分流公式 电阻三角形连接与星型连接转换 含受控源电路的等效

> 教学要求:

熟练掌握电阻串并联等效熟练掌握含受控源电路的等效

1.8.1 电路等效的定义

电路理论中,等效的概念及其重要。利用它可以简化电路分析。

若二端电路 N_1 与 N_2 的外部端口处(u, i)具有相同的电压电流关系

(VCR) ,则称 N_1 与 N_2 相互等效。

图中两个结构并不相同的电路,但对于外部a、b端口而言,两电路端口处的VCR相同,u=5i。

1.8.2 电路等效的含义

对任何电路A,如果用B' 代B后,能做到A中的电流、电压、 功率不变,则称B'与B等效。

或者说,若B'与B等效,则用图(b)求A中的电流、电压、功率与用图(a)求A中的电流、电压、功率的效果完全一样。

例2 如图(a)电路,求电流i和 i_1 。

解: 首先求电流i。 $R=3//6=2\Omega$

如图(b)所示。故电流 i = 9/(1+R) = 3(A)

$$u = R i = 2 \times 3 = 6(V)$$

再回到图(a), 得
$$i_1 = u/6 = 1(A)$$

1.8.3 电阻串联等效

电阻串联的特征:流过各电阻的电流是同一电流。

对N₁根据KVL和OL, 其端口伏安特性:

$$u = u_1 + u_2 + \dots + u_n = (R_1 + R_2 + \dots + R_n)i$$

对 N_2 , 其端口伏安特性为: $u = R_{eq}i$

根据等效定义, N₁与N₂的伏安特性完全相同, 从而得:

①串联电阻等效公式: $Req = R_1 + R_2 + \dots + R_n$

②串联电阻分压公式: $u_k = R_k i = \frac{R_k}{R_{eq}} u$ k = 1, 2, ..., n

例:如图所示两个电阻 R_1 、 R_2 串联的电路。

各自分得的电压 $u_1 \times u_2$ 分别为:

$$u_1 = \frac{R_1}{R_1 + R_2} u$$
 , $u_2 = \frac{R_2}{R_1 + R_2} u$

电阻 R_1 、 R_2 的功率为:

$$P_{R1} = R_1 i^2 \quad P_{R2} = R_2 i^2$$

故有

$$\frac{u_1}{u_2} = \frac{R_1}{R_2}$$
 , $\frac{P_{R1}}{P_{R2}} = \frac{R_1}{R_2}$

对电阻串联,电阻值越大者分得的电压大,吸收的功率也大。

1.8.4 电阻的并联等效

电阻并联的特征: 各电阻两端的电压是同一电压。

对N₁, 根据KCL和OL, 其端口伏安特性:

$$i = i_1 + i_2 + \dots + i_n = (G_1 + G_2 + \dots + G_n)u$$

对 N_2 , 其端口伏安特性为: $i = G_{eq} u$

根据等效定义, N_1 与 N_2 的伏安特性完全相同,从而得:

①并联电导等效公式: $G_{eq} = G_1 + G_2 + \dots + G_n$

②并联电阻分流公式:
$$i_k = G_k u = \frac{G_k}{G_{eq}} i$$
 $k = 1, 2, ..., n$

例:如图所示两个电阻 $R_1 \times R_2$ 并联的电路。

等效电阻
$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

电阻 $R_1 \times R_2$ 分得的电流 $i_1 \times i_2$ 分别为:

$$i_1 = \frac{G_1}{G_1 + G_2}i = \frac{R_2}{R_1 + R_2}i$$
, $i_2 = \frac{G_2}{G_1 + G_2}i = \frac{R_1}{R_1 + R_2}i$

电阻
$$R_1$$
、 R_2 的功率为: $P_{R_1} = G_1 u^2$, $P_{R_2} = G_2 u^2$

故有
$$\frac{i_1}{i_2} = \frac{G_1}{G_2} = \frac{R_2}{R_1}$$
 , $\frac{P_{R1}}{P_{R2}} = \frac{G_1}{G_2} = \frac{R_2}{R_1}$

对电阻并联,电阻值越大者分得的电流小,吸收的功率也小。

1.8.5 混联等效

既有串联又有并联的电路称为电阻混联电路。

如何判断串并联?

(1) 看电路的结构特点

- ①若两电阻是首尾相联且中间又无分岔,就是串联;
- ②若两电阻是首首相联尾尾相联,就是并联。

(2)看电压、电流关系

- ①若流经两电阻的电流是同一个电流,就是串联;
- ②若施加到两电阻的是同一电压,该两电阻就是并联。

(3) 变形等效

在保持电路连接关系不变的情况下,对电路作变形等效。即对电路作扭动变形,如对短路线进行任意压缩与伸长等。

既有串联又有并联的电路称为电阻混联电路。

例:如图电路,求ab的等效电阻 R_{eq} 。

如图所示电路,ab端口的等效电阻Rab=_____ Ω

- B 24
- (c) **21**
- D 19

如图所示电路,ab端口的等效电阻Rab=_____ Ω

- (A) 1
- B 2
- 3
- D 4

1.8.6 △形与Y形连接的等效

- ◆ 电路(α)三个电阻R₁₂R₁₃ R₂₃的连接结构称为△(或π/三角形)形电路;
- ◆ 电路(b)三个电阻R₁R₂R₃的连接结构常称为Y(或T、或星)形电路。

若能将电路(a)中的B电路等效替换为电路(b)中C电路,则由电阻 串并联公式很容易求得ab端的等效电阻。

由KCL/KVL

$$i_3 = i_1 + i_2$$

$$u_{12} = u_{13} - u_{23}$$

显然3个电流和3个电压中各有两个是相互独立的。

由图(a),根据KVL,有

$$u_{13} = R_1 i_1 + R_3 i_3 = (R_1 + R_3) i_1 + R_3 i_2$$
 (1)

$$u_{23} = -R_2 i_2 - R_3 i_3 = -R_3 i_1 - (R_2 + R_3) i_2$$
 (2)

由图(b),根据OL和KCL,有

$$i_1 = u_{13} / R_{13} + u_{12} / R_{12} = (1/R_{13} + 1/R_{12}) u_{13} - (1/R_{12}) u_{23}$$
 (3)

$$i_2 = -u_{23}/R_{23} - u_{12}/R_{12} = -(1/R_{12})u_{13} - (1/R_{23} + 1/R_{12})u_{23}$$
 (4)

联立求解式(3)(4)得

$$u_{13} = \frac{R_{23}(R_{12} + R_{23})}{R_{12} + R_{13} + R_{23}} i_1 + \frac{R_{13}R_{23}}{R_{12} + R_{13} + R_{23}} i_2$$
(5)
$$u_{13} = (R_1 + R_3) i_1 + R_3 i_2$$
(1)
$$u_{23} = \frac{R_{13}R_{23}}{R_{12} + R_{12} + R_{22}} i_1 + \frac{R_{23}(R_{12} + R_{13})}{R_{12} + R_{12} + R_{12} + R_{22}} i_2$$
(6)
$$u_{23} = R_3 i_1 + (R_2 + R_3) i_2$$
(2)

(5)(6)与式(1)(2)分别相等时可推导等效公式。

△形与Y形电路互换公式

①已知△形连接的三个电阻来确定等 效Y形连接的三个电阻的公式为:

Y形 电阻 $R_i = \frac{\Delta + i$ 节点连接的两电阻乘积 $\Delta + i$ 中所有电阻之和

②已知Y形连接的三个电阻来确定等效 三角形连接的三个电阻的公式为:

 Δ 形电阻 $R_{ij} = \frac{Y$ 中两两电阻乘积之和Y中不与i,j相连接的电阻

$$R_{1} = \frac{R_{31}R_{12}}{R_{12} + R_{23} + R_{31}}$$

$$R_{2} = \frac{R_{12}R_{23}}{R_{12} + R_{23} + R_{31}}$$

$$R_{3} = \frac{R_{23}R_{31}}{R_{12} + R_{23} + R_{31}}$$

$$R_{12} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

$$R_{23} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_{31} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

③若Y形电路三个电阻相等, $R_1=R_2=R_3=R_Y$,则其等效 Δ 电路电阻也相等 $R_{12}=R_{23}=R_{13}=R_{\Delta}$ 。 其关系为

$$R_{\Delta} = 3R_{Y}$$

例1 求图中电流I

1.8.6 △形与Y形连接的等效

例1 求图中电流I

1.8.7 含受控源电路(无独立源)的等效

图示电路N为含有受控源但不含独立源的电路。

- 只包含电阻和受控源的一端口网络N,对外可以等效为一个电阻。若此端口是输入端口,则此电阻称为输入电阻;若此端口为输出端口,则此电阻称为输出电阻。
- 如图所示, u、i参考方向关联,则其端口等效电阻可定义为:

$$R_{eq} = \frac{u}{i}$$

例1 求图示电路ab端的等效电阻 R_{ab} 。

解: 求端口的伏安特性

在c点,根据KCL,有:

$$i_2 = i_1 - \beta i_1 = i - \beta i_1 = (1 - \beta)i$$

由KVL,有
$$u = R_1 i_1 + R_2 i_2 =$$

$$R_1 i + R_2 (1 - \beta) i = [R_1 + R_2 (1 - \beta)] i$$

故
$$R_{ab} = u/i = R_1 + R_2(1-\beta)$$

$$ŻR_1 = R_2 = 10Ω$$
, β= 4,则 $R_{ab} = -20Ω$

可以为正值、负值或零。

等效电阻为 此时a、b短 路。

例2 求图示电路ab端的等效电阻 R_{ab} 。

解:求等效电阻 R_{ab} 。设在端口施加电流 i,由KCL、KVL、欧姆定律可知

$$i_1 = u / R_1, \ u = R_2 i_2 + \beta i_1, i = i_1 + i_2$$

可得
$$i = \frac{R_1 + R_2 - \beta}{R_1 R_2} u$$

于是

$$R_{\rm ab} = \frac{R_1 R_2}{R_1 + R_2 - \beta}$$

如果
$$\beta = R_1 + R_2$$
, $i = 0$, $R_{ab} = \infty$, 此时a、b开路。

如图所示电路, ab端口的等效电阻R_{ab}=

 $lue{\Omega}$

- **0.4**
- **-0.4**

四、小结与思考

如何求不含独立源的一端口网络的等效电阻?

包含电阻和受控源 的一端口网络可以等效成什么?

三端子网络等效如何理解?

?

电阻的△形与 Y形电路相互 等效有什么用?

两电路等效 必须满足什 么条件?__

∫等效的对象、 _等效的目的又、 ____是什么?′