路由器配置实验

一、实验目的

- 1. 认识路由器的端口、型号
- 2. 掌握路由器的路由配置
- 3. 理解网络互联的基本原理

二、实验环境与设备

本实验在 PC 机上利用模拟软件 Packet Tracer V6 进行操作。

三、实验内容

- 1. 路由器接口的配置
- 2. 静态路由配置
- 3. 默认路由配置
- 4. 动态路由配置

本次实验的主要任务是了解路由器的基本设置,和网络之间的连接关系。通过 这次的实验很好的掌握了各个网段之间的,各个路由器下的 pc 的连接情况。通 过对静态,默认,动态路由配置,使得各个路由器下的 PC 相互通信。

四、实验步骤

1. 路由器接口的配置 创建如图所示的拓扑结构图。

(1) 为主机 PCO, PC1, PC2 配置 IP 地址、子网掩码和默认网关。

网络设备	接口	IP 地址	子网掩码	默认网关
PC0	FastEthernet	192. 168. 1. 2	255. 255. 255. 0	192. 168. 1. 1

PC1	FastEthernet	192. 168. 2. 2	255. 255. 255. 0	192. 168. 2. 1
PC2	FastEthernet	192. 168. 3. 2	255. 255. 255. 0	192. 168. 3. 1

(2) 为路由器的各个接口分配 IP 地址和子网掩码,交换机不用配置。

网络设备	接口	IP 地址	子网掩码	默认网关	
Router0	F0/0	192. 168. 1. 1	255. 255. 255. 0		
	S2/0	172. 16. 1. 2	255. 255. 255. 0		
Router1	F0/0	192. 168. 2. 1	255. 255. 255. 0		
	S3/0	172. 16. 2. 2	255. 255. 255. 0		
Router2	F0/0	192. 168. 3. 1	255. 255. 255. 0		
	S2/0	172. 16. 1. 1	255. 255. 255. 0		
	S3/0	172. 16. 2. 1	255. 255. 255. 0		

(4) 如配置 Router0

(5) 查看路由器的路由表

使用命令: show ip route 显示路由表中的路由信息。保存此时路由器显示的路由信息,以便与后面的实验结果进行比较。(C表示直连路由)

Router0的路由表:

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 1 subnets
C 172.16.1.0 is directly connected, Serial2/0
C 192.168.1.0/24 is directly connected, FastEthernet0/0
Routers
Router1 的路由表:
```

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 1 subnets
C 172.16.2.0 is directly connected, Serial3/0
C 192.168.2.0/24 is directly connected, FastEthernet0/0
Router#
```

Router2的路由表:

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 2 subnets
C 172.16.1.0 is directly connected, Serial2/0
C 172.16.2.0 is directly connected, Serial3/0
C 192.168.3.0/24 is directly connected, FastEthernet0/0
Router#
```

(6) 测试主机之间的连通性

PC0 与 PC2 的连通性:

PC1 与 PC2 的连通性:

原因: 因为不在同一个网段。

2. 配置静态路由

- (1) 在 Router 0 中添加一条到网络 192.168.3.0 的静态路由,命令如下: Router (config) #ip route 192.168.3.0 255.255.255.0 172.16.1.1
- (2) 再去查看 Router 0 路由表,与步骤(2) 中的路由表进行对比,观察路由表的变化情况。

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 1 subnets
C 172.16.1.0 is directly connected, Serial2/0
C 192.168.1.0/24 is directly connected, FastEthernet0/0
S 192.168.3.0/24 [1/0] via 172.16.1.1
Router#
```

(3) 在 Router2 中添加一条到网络 192.168.1.0 的路由后,路由表如下: Router(config)#ip route 192.168.1.0 255.255.0 172.16.1.2

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 2 subnets
C 172.16.1.0 is directly connected, Serial2/0
C 172.16.2.0 is directly connected, Serial3/0
S 192.168.1.0/24 [1/0] via 172.16.1.2
C 192.168.3.0/24 is directly connected, FastEthernet0/0
Router#
```

(4) 测试 PC0 与 PC2 的连通性

PC0 与 PC2 的连通性如下图:

```
PC>ping 192.168.3.2

Pinging 192.168.3.2 with 32 bytes of data:

Request timed out.

Reply from 192.168.3.2: bytes=32 time=125ms TTL=126

Reply from 192.168.3.2: bytes=32 time=96ms TTL=126

Reply from 192.168.3.2: bytes=32 time=96ms TTL=126

Ping statistics for 192.168.3.2:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 96ms, Maximum = 125ms, Average = 115ms
```

(5)在 Router1 和 Router2 中各添加一条静态路由,以实现 PC1 与 PC2 的互通。 在 Router1 中添加静态路由:

```
Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip route 192.168.3.0 255.255.255.0 172.16.2.1
Router(config)#exit
Router#
%SYS-5-CONFIG_I: Configured from console by console
Router#shoe ip route
```

Router1 路由表:

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 1 subnets
C 172.16.2.0 is directly connected, Serial3/0
C 192.168.2.0/24 is directly connected, FastEthernet0/0
S 192.168.3.0/24 [1/0] via 172.16.2.1
Router#
```

在 Router2 中添加静态路由:

```
Router>en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip route 192.168.2.0 255.255.255.0 172.16.2.2
Router(config)#exit
Router#
%SYS-5-CONFIG_I: Configured from console by console
Router#show ip route
```

Router2 路由表:

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 2 subnets
C 172.16.1.0 is directly connected, Serial2/0
C 172.16.2.0 is directly connected, Serial3/0
S 192.168.1.0/24 [1/0] via 172.16.1.2
S 192.168.2.0/24 [1/0] via 172.16.2.2
C 192.168.3.0/24 is directly connected, FastEthernet0/0
Router#
```

P1 与 P2 的连通性:

```
PC>ping 192.168.3.2 with 32 bytes of data:

Reply from 192.168.3.2: bytes=32 time=125ms TTL=126
Reply from 192.168.3.2: bytes=32 time=124ms TTL=126
Reply from 192.168.3.2: bytes=32 time=125ms TTL=126
Reply from 192.168.3.2: bytes=32 time=125ms TTL=126

Ping statistics for 192.168.3.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 124ms, Maximum = 125ms, Average = 124ms

PC>
```

(6) 测试 PC0 与 PC1 的连通性

此时, PC0 与 PC2 可以互通, PC1 与 PC2 可以互通, 那么, PC0 与 PC1 的连通情况是如何的呢?

```
PC>ping 192.168.2.2

Pinging 192.168.2.2 with 32 bytes of data:

Reply from 192.168.1.1: Destination host unreachable.

Ping statistics for 192.168.2.2:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

查看 Router0 的路由表可知,其中不存在到达 PC1 所在网络(192.168.2.0)的路由,查看 Router2 的路由表可知,其中不存在到达 PC0 所在网络(192.168.1.0)的路由,因此,PC0 与 PC1 的连通性为不通。

(7)请分别在 Router0 和 Router1 中添加静态路由,以实现 PC0 与 PC1 的互通。请在实验报告中记录你所使用的配置命令、主机间的连通性测试结果以及 Router0 和 Router1 的路由表(以截图形式)。

在 Router0 添加静态路由:

```
Router*en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip route 192.168.2.0 255.255.255.0 172.16.1.1
Router(config)#end
```

路由表:

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 1 subnets
C 172.16.1.0 is directly connected, Serial2/0
C 192.168.1.0/24 is directly connected, FastEthernet0/0
S 192.168.2.0/24 [1/0] via 172.16.1.1
S 192.168.3.0/24 [1/0] via 172.16.1.1
Router#
```

在 Router1 中添加静态路由:

```
Enter configuration commands, one per line. End with CNTL/Z.

Router(config) #interface FastEthernet0/0

Router(config-if) #exit

Router(config) #ip route 192.168.1.0 255.255.255.0 172.16.2.1

Router(config) #end
```

路由表:

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 1 subnets

C 172.16.2.0 is directly connected, Serial3/0

S 192.168.1.0/24 [1/0] via 172.16.2.1

C 192.168.2.0/24 is directly connected, FastEthernet0/0

S 192.168.3.0/24 [1/0] via 172.16.2.1

Router#
```

P0 与 P1 连通性测试:

```
PC>ping 192.168.2.2

Pinging 192.168.2.2 with 32 bytes of data:

Reply from 192.168.2.2: bytes=32 time=188ms TTL=125
Reply from 192.168.2.2: bytes=32 time=171ms TTL=125
Reply from 192.168.2.2: bytes=32 time=187ms TTL=125
Reply from 192.168.2.2: bytes=32 time=188ms TTL=125

Ping statistics for 192.168.2.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 171ms, Maximum = 188ms, Average = 183ms

PC>
```

3. 设置默认路由

经过上一个实验(配置静态路由)的实验操作后,路由器 Router0 的路由表如下:

(S 表示静态路由)

```
C 172.16.1.0 is directly connected, Serial2/0
C 192.168.1.0/24 is directly connected, FastEthernet0/0
S 192.168.2.0/24 [1/0] via 172.16.1.1
S 192.168.3.0/24 [1/0] via 172.16.1.1
```

PC0 想要访问 PC1 和 PC2 所在网络,需要在 Router0 中添加两条静态路由。这两条静态路由的下一跳 IP 地址相同,并且 Router0 所在网络只有一条通路连接其它网络。这种情况下,如果使用默认路由,则 Router0 只需设置一条默认路由就可使 PC0 可访问 PC1 和 PC2,这样 Router0 的路由表将更加简单。下面我们来看看默认路由的配置:

(1) 首先删除 Router0 中到达 PC1 和 PC2 所在网络的静态路由,参考命令如下:

Router#conf t

Router(config)#no ip route 192.168.2.0 255.255.255.0

Router(config)#no ip route 192.168.3.0 255.255.255.0

Router(config)#exit

Router#show ip route //查看是否删除成功

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 1 subnets
C 172.16.1.0 is directly connected, Serial2/0
C 192.168.1.0/24 is directly connected, FastEthernet0/0
```

(2) 在 Router0 中添加一条默认路由,命令为:

Router#conf t

Router(config)#ip route 0.0.0.0 0.0.0.0 172.16.1.1

Router(config)#exit

Router#show ip route

路由表中的路由信息为:(S*为默认路由)

```
Gateway of last resort is 172.16.1.1 to network 0.0.0.0

172.16.0.0/24 is subnetted, 1 subnets

C 172.16.1.0 is directly connected, Serial2/0

C 192.168.1.0/24 is directly connected, FastEthernet0/0

S* 0.0.0.0/0 [1/0] via 172.16.1.1
```

(3) 再测试 PC0 与 PC1,PC2 的连通性 (通)。

```
PC>ping 192.168.2.2
Pinging 192.168.2.2 with 32 bytes of data:

Reply from 192.168.2.2: bytes=32 time=188ms TTL=125
Reply from 192.168.2.2: bytes=32 time=187ms TTL=125
Reply from 192.168.2.2: bytes=32 time=185ms TTL=125
Reply from 192.168.2.2: bytes=32 time=140ms TTL=125
Ping statistics for 192.168.2.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 140ms, Maximum = 188ms, Average = 175ms
```

```
PC>ping 192.168.3.2

Pinging 192.168.3.2 with 32 bytes of data:

Reply from 192.168.3.2: bytes=32 time=125ms TTL=126
Reply from 192.168.3.2: bytes=32 time=125ms TTL=126
Reply from 192.168.3.2: bytes=32 time=110ms TTL=126
Reply from 192.168.3.2: bytes=32 time=110ms TTL=126

Ping statistics for 192.168.3.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 110ms, Maximum = 125ms, Average = 117ms
```

4. 动态路由协议 RIP 的配置

本实验使用与上一个实验相同的网络拓扑结构,在配置 RIP 协议之前,先把三个路由器中的静态路由和默认路由全部删除,然后按如下步骤操作。

- (1) 查看三个路由器的路由表信息,可看到此时路由表中只有直连路由 C。
- (2) 在 Router0 上配置 RIP 协议,配置命令如下:

Router#conf t

```
Router(config)#router rip //设置 RIP 协议
Router(config-router)#network 192.168.1.0
Router(config-router)#network 172.16.1.0
//network 命令功能:发布直连路由
Router(config-router)#exit
```

Router(config)#

```
172.16.0.0/24 is subnetted, 1 subnets
C 172.16.1.0 is directly connected, Serial2/0
C 192.168.1.0/24 is directly connected, FastEthernet0/0
Router#
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#router rip
Router(config-router)#network 192.168.1.0
Router(config-router)#network 172.16.1.0
Router(config-router)#exit
Router(config)#
```

(3)在Router1, Router2上配置RIP协议的命令同上。请在实验报告中记录你所使用的命令。

Router1:

```
172.16.0.0/24 is subnetted, 1 subnets

C 172.16.2.0 is directly connected, Serial3/0

C 192.168.2.0/24 is directly connected, FastEthernet0/0

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#router rip

Router(config-router)#network 172.16.2.0

Router(config-router)#networl 192.168.2.0

**Invalid input detected at '^' marker.

Router(config-router)#network 192.168.2.0

Router(config-router)#network 192.168.2.0

Router(config-router)#network 192.168.2.0

Router(config-router)#exit

Router(config)#
```

Router2:

```
172.16.0.0/24 is subnetted, 2 subnets

C 172.16.1.0 is directly connected, Serial2/0

C 172.16.2.0 is directly connected, Serial3/0

C 192.168.3.0/24 is directly connected, FastEthernet0/0

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#router rip

Router(config-router)#network 172.16.1.0

Router(config-router)#network 172.16.2.0

Router(config-router)#network 192.168.3.0

Router(config-router)#exit

Router(config)#
```

(4) 查看三个路由器的路由表,可看到各路由器学到的网段。下图是运行 RIP 协议后路由器中的路由信息: (R 为 RIP 动态路由) Router0 的路由表:

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 2 subnets
C 172.16.1.0 is directly connected, Serial2/0
R 172.16.2.0 [120/1] via 172.16.1.1, 00:00:19, Serial2/0
C 192.168.1.0/24 is directly connected, FastEthernet0/0
R 192.168.2.0/24 [120/2] via 172.16.1.1, 00:00:19, Serial2/0
R 192.168.3.0/24 [120/1] via 172.16.1.1, 00:00:19, Serial2/0
Router#
```

Router1的路由表:

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 2 subnets

R 172.16.1.0 [120/1] via 172.16.2.1, 00:00:18, Serial3/0

C 172.16.2.0 is directly connected, Serial3/0

R 192.168.1.0/24 [120/2] via 172.16.2.1, 00:00:18, Serial3/0

C 192.168.2.0/24 is directly connected, FastEthernet0/0

R 192.168.3.0/24 [120/1] via 172.16.2.1, 00:00:18, Serial3/0

Router#
```

Router2的路由表:

```
Gateway of last resort is not set

172.16.0.0/24 is subnetted, 2 subnets
C 172.16.1.0 is directly connected, Serial2/0
C 172.16.2.0 is directly connected, Serial3/0
R 192.168.1.0/24 [120/1] via 172.16.1.2, 00:00:13, Serial2/0
R 192.168.2.0/24 [120/1] via 172.16.2.2, 00:00:16, Serial3/0
C 192.168.3.0/24 is directly connected, FastEthernet0/0
Router#
```

(5) 测试各主机间的连通性。

PC0 和 PC1 的连通性(通) PC0 和 PC2 的连通性(通) PC1 和 PC2 的连通性(通)

```
PC>ping 192.168.2.2 with 32 bytes of data:

Reply from 192.168.2.2: bytes=32 time=187ms TTL=125
Reply from 192.168.2.2: bytes=32 time=187ms TTL=125
Reply from 192.168.2.2: bytes=32 time=188ms TTL=125
Reply from 192.168.2.2: bytes=32 time=171ms TTL=125

Ping statistics for 192.168.2.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 171ms, Maximum = 188ms, Average = 183ms
```