Deep Generative Models: Discrete Latent Variables

```
Philip Schulz

https://vitutorial.github.io

https:
//github.com/vitutorial/VITutorial
```

Deep Generative Models

First Attempt: Wake-Sleep

Revisiting the Inference Gradient

Control Variates and Baselines

Generative Models

Joint distribution over observed data x and latent variables Z.

$$p(x, z|\theta) = \underbrace{p(z)}_{\text{prior}} \underbrace{p(x|z, \theta)}_{\text{likelihood}}$$

The likelihood and prior are often standard distributions (Gaussian, Bernoulli) with simple dependence on conditioning information.

Deep generative models

Joint distribution with deep observation model

$$p(x, z|\theta) = \underbrace{p(z)}_{\text{prior}} \underbrace{p(x|z, \theta)}_{\text{likelihood}}$$

mapping from z to $p(x|z,\theta)$ is a NN with parameters θ

Deep generative models

Joint distribution with deep observation model

$$p(x, z|\theta) = \underbrace{p(z)}_{\text{prior}} \underbrace{p(x|z, \theta)}_{\text{likelihood}}$$

mapping from z to $p(x|z,\theta)$ is a NN with parameters θ

Marginal likelihood

$$p(x|\theta) = \int p(x, z|\theta) dz = \int p(z) \underbrace{p(x|z, \theta)}_{\text{highly nonlinear!}} dz$$

intractable in general

We want

richer probabilistic models

We want

- richer probabilistic models
- complex observation models parameterised by NNs

We want

- richer probabilistic models
- complex observation models parameterised by NNs

but we can't perform gradient-based MLE

We want

- richer probabilistic models
- complex observation models parameterised by NNs

but we can't perform gradient-based MLE

We need approximate inference techniques!

Deep Generative Models

First Attempt: Wake-Sleep

Revisiting the Inference Gradient

Control Variates and Baselines

Wake-sleep Algorithm

- Generalise latent variables to Neural Networks
- Train generative neural model
- Use variational inference! (kind of)

2 Neural Networks:

• A generation network to model the data (the one we want to optimise) – parameters: θ

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ
- Original setting: binary hidden units

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ
- Original setting: binary hidden units
- ▶ Training is performed in a "hard EM" fashion

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- ▶ Update generation parameters θ to maximize liklelihood of data given latent state $p(x|z,\theta)$

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- ▶ Update generation parameters θ to maximize liklelihood of data given latent state $p(x|z,\theta)$

Sleep Phase

- Produce dream sample \tilde{x} from random hidden unit z
- Update inference parameters λ to maximize probability of latent state $q(z|\tilde{x}, \lambda)$

Wake Phase Objective

Assumes latent state z to be fixed random draws from $q(z|x,\lambda)$.

$$\max_{\theta} \ \mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x|\theta) \right] + \mathbb{H}[q(z|x,\lambda)]$$

Wake Phase Objective

Assumes latent state z to be fixed random draws from $q(z|x,\lambda)$.

$$egin{aligned} \max_{ heta} & \mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x| heta)
ight] + \mathbb{H}[q(z|x,\lambda)] \ & \overset{\mathsf{MC}}{pprox} & \max_{ heta} & rac{1}{S} \sum_{s=1}^{S} \log p(z^{(s)},x| heta), \quad z^{(s)} \sim q(z|x,\lambda) \end{aligned}$$

Wake Phase Objective

Assumes latent state z to be fixed random draws from $q(z|x,\lambda)$.

$$egin{array}{l} \max_{ heta} \; \mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x| heta)
ight] + \mathbb{H}[q(z|x,\lambda)] \ & pprox \; \max_{ heta} \; rac{1}{S} \sum_{s=1}^{S} \log p(z^{(s)},x| heta), \quad z^{(s)} \sim q(z|x,\lambda) \end{array}$$

This is simply supervised learning with imputed latent data!

Wake Phase Update

Needed to find alternative objective because

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[p(x,z|\theta) \right] = \sum_{z} \frac{\partial}{\partial \lambda} q(z|x,\lambda) p(x,z|\theta)$$

is not an expectation!

Needed to find alternative objective because

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[p(x,z|\theta) \right] = \sum_{z} \frac{\partial}{\partial \lambda} q(z|x,\lambda) p(x,z|\theta)$$

is not an expectation!

Idea

Optimize q towards a sample from p.

Assumes fake data \tilde{x} and latent variables z to be fixed random draw from $p(x, z|\theta)$.

$$\max_{\lambda} \; \mathbb{E}_{p(\tilde{x},z|\theta)} \left[\log q(z|\tilde{x},\lambda) \right] + \mathbb{E}_{p(\tilde{x})} \left[\mathbb{H} \left(p(z|\tilde{x},\theta) \right) \right]$$

Assumes fake data \tilde{x} and latent variables z to be fixed random draw from $p(x, z|\theta)$.

$$\max_{\lambda} \ \mathbb{E}_{p(\tilde{x},z|\theta)} \left[\log q(z|\tilde{x},\lambda) \right] + \mathbb{E}_{p(\tilde{x})} \left[\mathbb{H} \left(p(z|\tilde{x},\theta) \right) \right]$$

$$\stackrel{\mathsf{MC}}{\approx} \max_{\lambda} \ \frac{1}{S} \sum_{s=1}^{S} \log q(z^{(s)}|\tilde{x}^{(s)},\lambda), \quad (\tilde{x},z)^{(s)} \sim p(x,z|\theta)$$

Sleep Phase Update

Wake-sleep Algorithm

Advantages

- Simple layer-wise updates
- Amortised inference: all latent variables are inferred from the same weights λ

Wake-sleep Algorithm

Advantages

- Simple layer-wise updates
- Amortised inference: all latent variables are inferred from the same weights λ

Drawbacks

- Inference and generative networks are trained on different objectives
- ▶ Inference weights λ are updated on fake data \tilde{x}
- Generative weights are bad initially, giving wrong signal to the updates of λ

Deep Generative Models

First Attempt: Wake-Sleep

Revisiting the Inference Gradient

Control Variates and Baselines

Generative Model with NN Likelihood

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Generative Model with NN Likelihood

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Problem

 $p(x) = \int p(x|z, \theta)p(z)dz$ is hard to compute.

Generative Model with NN Likelihood

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Problem

$$p(x) = \int \underbrace{p(x|z,\theta)}_{\substack{\text{highly} \\ \text{non-linear}}} p(z) dz \text{ is hard to compute.}$$

$$\log p(x|\theta) \geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,Z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{ElBO}}$$

$$\log p(x|\theta) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,Z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{ELBO}}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta) + \log p(Z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)$$

$$\log p(x|\theta) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,Z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{ = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta) + \log p(Z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{ = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

$$\begin{split} \log p(x|\theta) &\geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,Z|\theta)\right] + \mathbb{H} \left(q(z|x,\lambda)\right)}_{\mathbf{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta) + \log p(Z)\right] + \mathbb{H} \left(q(z|x,\lambda)\right)}_{\mathbf{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z)\right) \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z)\right) \\ &= \sup_{\theta,\lambda} & \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z)\right) \end{split}$$

$$\begin{split} \log p(x|\theta) &\geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,Z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\mathcal{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta) + \log p(Z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\mathcal{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right) \end{split}$$

$$&= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

$$&\text{arg max } \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right) \end{split}$$

▶ assume KL $(q(z|x,\lambda) || p(z))$ analytical true for exponential families

$$\log p(x|\theta) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,Z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta) + \log p(Z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

$$\operatorname{arg\,max}_{\theta,\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

- ▶ assume KL $(q(z|x, \lambda) || p(z))$ analytical true for exponential families
- ▶ approximate $\mathbb{E}_{q(z|x,\lambda)}[\log p(x|z,\theta)]$ by sampling feasible because $q(z|x,\lambda)$ is simple

$$\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{constant}$$

$$\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right]$$

$$\begin{split} &\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant} \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right] \\ &\overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial \theta} \log p(x|z_i,\theta) \\ &\text{where } z_i \sim q(z|x,\lambda) \end{split}$$

$$\begin{split} &\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{constant} \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right] \\ &\overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial \theta} \log p(x|z_i,\theta) \\ &\overset{\mathsf{where}}{\approx} z_i \sim q(z|x,\lambda) \end{split}$$

Note: $q(z|x,\lambda)$ does not depend on θ .

$$rac{\partial}{\partial \lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right]$$

$$\frac{\partial}{\partial \lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right] \\ = \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\text{analytical computation}}$$

$$\frac{\partial}{\partial \lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right] \\ = \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\text{analytical computation}}$$

The first term again requires approximation by sampling

$$rac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z, heta)
ight]$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right]$$

$$= \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta)$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} [\log p(x|z,\theta)]$$

$$= \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta)$$

$$= \sum_{z} \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta)$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} [\log p(x|z,\theta)]$$

$$= \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta)$$

$$= \sum_{z} \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta)$$

Not an expectation!

Back to Basic Calculus

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\log f(\lambda)$$

Back to Basic Calculus

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\log f(\lambda) = \frac{\frac{\mathrm{d}}{\mathrm{d}\lambda}f(\lambda)}{f(\lambda)}$$

Back to Basic Calculus

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\log f(\lambda) = \frac{\frac{\mathrm{d}}{\mathrm{d}\lambda}f(\lambda)}{f(\lambda)}$$

Consequence

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}f(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda}\log f(\lambda) \times f(\lambda)$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}f(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda}\log f(\lambda) \times f(\lambda)$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}f(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda}\log f(\lambda) \times f(\lambda)$$

Apply this to the ELBO derivative.

$$\sum_{z} \frac{\partial}{\partial \lambda} q(z|\lambda) \times \log p(x|z,\theta) =$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}f(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda}\log f(\lambda) \times f(\lambda)$$

Apply this to the ELBO derivative.

$$\sum_{z} \frac{\partial}{\partial \lambda} q(z|\lambda) \times \log p(x|z,\theta) =$$

$$\sum_{z} q(z|\lambda) \frac{\partial}{\partial \lambda} \log q(z|\lambda) \times \log p(x|z,\theta) =$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}f(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda}\log f(\lambda) \times f(\lambda)$$

Apply this to the ELBO derivative.

$$\sum_{z} \frac{\partial}{\partial \lambda} q(z|\lambda) \times \log p(x|z,\theta) =$$

$$\sum_{z} q(z|\lambda) \frac{\partial}{\partial \lambda} \log q(z|\lambda) \times \log p(x|z,\theta) =$$

$$\mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \times \log p(x|z,\theta) \right]$$

Example Model

Let us consider a latent factor model for topic modelling. Each document x consists of n i.i.d. categorical draws from that model. The categorical distribution in turn depends on the binary latent factors $z = (z_1, \ldots, z_k)$ which are also i.i.d.

$$Z_j \sim \mathsf{Bernoulli}\left(\phi\right) \qquad (1 \le j \le k)$$

 $X_i | z \sim \mathsf{Categorical}\left(g(z)\right) \quad (1 \le i \le n)$

Here $g(\cdot)$ is a function computed by neural network with softmax output.

Example Model

At inference time the latent variables are marginally dependent. For our variational distribution we are going to assume that they are not (recall: mean field assumption).

Inference Network

The inference network needs to predict k Bernoulli parameters ψ . Any neural network with sigmoid output will do that job.

inference model

inference model

inference model

inference model

generation model

Pros and Cons

- Pros
 - Applicable to all distributions
 - Many libraries come with samplers for common distributions

Pros and Cons

- Pros
 - Applicable to all distributions
 - Many libraries come with samplers for common distributions
- Cons
 - ▶ High Variance!

Deep Generative Models

First Attempt: Wake-Sleep

Revisiting the Inference Gradient

Control Variates and Baselines

Fact

The Expectation of the score function is 0.

Fact

The Expectation of the score function is 0.

$$\mathbb{E}_{q(z|x,\lambda)}\left[\frac{\partial}{\partial\lambda}\log q(z|x,\lambda)\right]=0$$

We attempt to centre the gradient estimate. To do this we learn a quantity C that we subtract from the reconstruction loss.

$$\mathbb{E}_{q(z|\lambda)}\left[\log q(z|\lambda)\left(\log p(x|z,\theta)-C\right)\right]$$

We call C a baseline. It does not change the expected gradient (Williams, 1992).

$$\mathbb{E}_{q(z|\lambda)}\left[rac{\partial}{\partial\lambda}\log q(z|\lambda)\left(\log p(x|z, heta)-C
ight)
ight]=$$

$$\mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \left(\log p(x|z,\theta) - C \right) \right] =$$

$$\mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \log p(x|z,\theta) \right] -$$
score function gradient

$$\mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \left(\log p(x|z,\theta) - C \right) \right] = \\ \mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \log p(x|z,\theta) \right] - \\ \mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \right] C$$

We can make baselines input-dependent to make them more flexible.

$$\log q(z|\lambda) \left(\log p(x|z,\theta) - C(x;\omega)\right)$$

We can make baselines input-dependent to make them more flexible.

$$\log q(z|\lambda) \left(\log p(x|z,\theta) - C(x;\omega)\right)$$

However, baselines may not depend on the random value z! Quantities that may depend on the random value (C(z)) are called **control variates**.

See Blei et al. (2012); Ranganath et al. (2014); Gregor et al. (2014).

Baselines are predicted by a regression model (e.g. a neural net).

The model is trained using an L_2 -loss.

$$\min_{\omega} \left(C(x; \omega) - \log p(x|z, \theta) \right)^2$$

▶ Differentiating ELBO wrt λ does not yield an expectation.

- ▶ Differentiating ELBO wrt λ does not yield an expectation.
- Use score function estimator.

- ▶ Differentiating ELBO wrt λ does not yield an expectation.
- Use score function estimator.
- ► High variance.

- ▶ Differentiating ELBO wrt λ does not yield an expectation.
- Use score function estimator.
- ▶ High variance.
- Always use baselines for variance reduction!

David M. Blei, Michael I. Jordan, and John W. Paisley. Variational bayesian inference with stochastic search. In *ICML*, 2012. URL http://icml.cc/2012/papers/687.pdf.

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep autoregressive networks. In Eric P. Xing and Tony Jebara, editors, *ICML*, pages 1242–1250, 2014. URL http://proceedings.mlr.press/v32/gregor14.html.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine Learning*, 8(3-4): 229–256, 1992. URL https://doi.org/10.1007/BF00992696.

Chunting Zhou and Graham Neubig. Multi-space variational encoder-decoders for semi-supervised labeled sequence transduction. In *ACL*, pages 310–320, 2017. doi: 10.18653/v1/P17-1029. URL http:
//www.aclweb.org/anthology/P17-1029.