

Operational Security: Firewall and IDS

Securing Wireless Networks, COMP4337/9337

Never Stand Still

Uzma Maroof
uzma.maroof@unsw.edu.au

CySPri Laboratory

http://cyspri.web.cse.unsw.edu.au/

Operational Security

- World divides neatly into two camps:
- 1. Good guys?
 - Belong to the organization, should have access...
- 2. Bad guys?
 - Everyone else
 - Access must be scrutinized
- From medieval castles to modern cooperate office buildings...
 - There are always Entry/Exit points, where good and bad guys are security-checked
- How is this done in Computer Network Traffic?
- Answer: Firewalls, Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS)

Firewalls

firewall

isolates organization's internal net from larger Internet, allowing some packets to pass, blocking others

Firewalls: Goals

- 1. All traffic Outside to Inside, Inside to Outside passes through it
- 2. Only "authorized"??? traffic will be allowed to pass

Defined by local security policy...

3. Firewall itself is immune to penetration

Firewalls: why

prevent denial of service attacks:

 SYN flooding: attacker establishes many bogus TCP connections, no resources left for "real" connections

prevent illegal modification/access of internal data

e.g., attacker replaces CIA's homepage with something else

allow only authorized access to inside network

set of authenticated users/hosts

three types of firewalls:

- stateless packet filters
- stateful packet filters
- application gateways

- Stateless??
- Makes decision on Packet-by-packet basis
- internal network connected to Internet via router firewall
- router filters packet-by-packet, decision to forward/drop packet based on???
 - source IP address, destination IP address
 - TCP/UDP source and destination port numbers
 - ICMP message type
 - TCP SYN and ACK bits

Stateless packet filtering: example

- example 1: block incoming and outgoing datagrams with IP protocol field = 17 and with either source or dest port = 23
 - result??
 - all incoming, outgoing UDP flows and telnet connections are blocked
- example 2: block inbound TCP segments with ACK=0.
 - result??
 - prevents external clients from making TCP connections with internal servers, but allows internal clients to connect to outside.

ACK = 0 in first segment in every TCP connection

ACK = 1 in all other segments

Stateless packet filtering: more examples

Policy	Firewall Setting
No outside Web access.	Drop all outgoing packets to any IP address, port 80
No incoming TCP connections, except those for institution's public Web server only.	Drop all incoming TCP SYN packets to any IP except 130.207.244.203, port 80
Prevent Web-radios from eating up the available bandwidth.	Drop all incoming UDP packets - except DNS and router broadcasts.
Prevent your network from being used for a smurf DoS attack.	Drop all ICMP packets going to a "broadcast" address (e.g. 130.207.255.255).
Prevent your network from being tracerouted	Drop all outgoing ICMP TTL expired traffic

Access Control Lists

ACL for organization 222.22/16:

table of rules, applied top to bottom to incoming packets:

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222,2246 ows web s 222,22/16	urfing to i	nternal u	sers 0	any
allow	outside All 222.22/16	222.22/16	TCP	80	> 1023	ACK
allow	222.22/16	outside of 222,22/16 VS packets	UDP to enter	or leave	the organi	zation
allow	Allows Di	VS packets	UDP	53	> 1023	
deny	all	all	all	all	all	all

Access Control Lists

What if a packet "arrives" with Source Port 80 and ACK = 1? What if its sent without any prior TCP connection?

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any
allow	outside of 222.22/16	222.22/16 N: Block Tarevents in	CP ACK	packets a	as well veb-surfin	ACK
allow	SOLUTIC But that p	N: Block Torevents in	ternal use	> 1023	53	
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023	
deny	all	all	all	all	all	all

- stateless packet filter: heavy handed tool
 - admits packets that "make no sense," e.g., source port = 80, ACK bit set, even though no TCP connection established:

action	source address	dest address	protocol	source port	dest port	flag bit
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK

BETTER SOLUTION??
Keep Track of Connections
STATEFUL PACKET FILTERING

- stateless packet filter: heavy handed tool
 - admits packets that "make no sense," e.g., source port = 80, ACK bit set, even though no TCP connection established:

action	source address	dest address	protocol	source port	dest port	flag bit
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK

- stateful packet filter: track status of every TCP connection
 - How does the firewall knows about a new connection setup?
 - SYN, SYNACK, ACK
 - determine whether incoming, outgoing packets "makes sense"
 - timeout inactive connections at firewall: no longer admit packets

- ...3 ongoing connections...
- Who initiated these?
- From within the organization

source address	dest address	source port	dest port
222.22.1.7	37.96.87.123	12699	80
222.22.93.2	199.1.205.23	37654	80
222.22.65.143	203.77.240.43	48712	80

Connection should be checked for two of the rules

action	source address	dest address	proto	source port	dest port	flag bit	check conxion
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any	
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK	X
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53		
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023		X
deny	all	all	all	all	all	all	

- Packet Arrives:
- source port = 80, ACK =1
- dest port = 12543, Source IP = 150.23.23.155

action	source address	dest address	protocol	source port	dest port	flag bit	check conxion
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK	X

	source	dest	source	dest
	address	address	nort Poject	the packet
	222 22 1 7	ection found =	:=> Reject	80
No 6	existing com.	address ection found = 199.1.205.23	37654	80
	222.22.65.143	203.77.240.43	48712	80

What if...

- Organization wants to provide Telnet service to a restricted set of internal users...
 - NOT some specific IP addresses...
- Also requires that users first authenticate before starting Telnet sessions..
- Beyond the capability of Stateful/Stateless filters
- User data is handled at which Layer?
- Application Layer

Application gateways

- An Application-specific server
- All application data MUST pass through it
- example: allow select internal users to telnet outside

- 1. require all telnet users to telnet through gateway.
- 2. for authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections
- 3. router filter blocks all telnet connections not originating from gateway.

Application gateways

- Application running in AG, listens for incoming Telnet sessions
- Prompts users for username and passwords

- Internet networks can have multiple Application Servers
 - Telnet, HTTP, FTP, e-mail
- Organization's email and Web-cache are Application Gateways

Application gateways

Disadvantages?

- If multiple app's. need special treatment, each has own app. gateway
- Performance penalty
- Client software must know how to contact gateway.
 - e.g., must set IP address of proxy in Web browser

More Limitations of firewalls, gateways

- IP spoofing: router can't know if data "really" comes from claimed source
- filters often use all or nothing policy for UDP
- tradeoff: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks

- Packet filtering:
 - operates on TCP/IP headers only
 - no correlation check among sessions
- IDS: intrusion detection system
 - deep packet inspection: look at packet contents
 - examine correlation among multiple packets

multiple IDSs: different types of checking at different locations

- Denial of Service
 - Attempts to crash a service or machine, overload network links, CPU, or fill up the disk, e.g. by sending lots of packets
- Port Scanning
 - Intruder sends packets to a list of ports trying to find open vulnerable ports. Next step could be to deliver malicious code at a vulnerable port.
- Securing Remote Shell Privileges
 - Intruder opens a shell on the victim machine, allowing arbitrary code execution.
- Network mapping
- Worms and Viruses
- OS vulnerability attacks

- Intrusion detection begins where the firewall ends.
- Preventing unauthorized entry is best, but not always possible.
- Threats can come from both outside and inside the network.

Elements of Intrusion Detection

- Primary assumptions:
 - System activities are observable
 - Normal and intrusive activities have distinct evidence
- Components of intrusion detection systems:
 - From an algorithmic perspective:
 - Features capture intrusion evidences
 - Models piece evidences together
 - From a system architecture perspective:
 - Various components: audit data processor, knowledge base, decision engine, alarm generation and responses

Components of Intrusion Detection System

Intrusion Detection Approaches

- Modeling
 - Features: evidences extracted from audit data
 - Analysis approach: piecing the evidences together
 - Misuse detection (a.k.a. signature-based)
 - Anomaly detection (a.k.a. statistical-based)
- Deployment: Network-based or Host-based
 - Network based: monitor network traffic
 - Host based: monitor computer processes

Signature based IDS

- ID system is programmed to interpret a certain series of packets, or a certain piece of data contained in those packets, as an attack.
- Mostly based on Pattern Matching systems
- For example, an IDS that watches web servers might be programmed to look for the string "phf" as an indicator of a CGI program attack.
- The IDS might simply looks for a sub string within a stream of data carried by network packets.
- When it finds this sub string (for example, the ``phf" in
 ``GET /cgi-bin/phf?"), it identifies those network packets as
 vehicles of an attack.

Signature based IDS

Example: *if* (traffic contains "x90+de[^\r\n]{30}") *then* "attack detected"

Problems?

Can't detect new attacks

Anomaly Detection

Define a profile describing "normal" behavior, then detects deviations.

- Relatively high false positive rates
- Anomalies can just be new normal activities.
- Anomalies caused by other element faults
 - E.g., router failure or misconfiguration, P2P misconfig
- Which method will detect DDoS SYN flooding?

Host-Based IDSs

- Use OS auditing and monitoring mechanisms to find applications taken over by attacker
 - Log all relevant system events (e.g., file/device accesses
 - Monitor shell commands and system calls executed by user applications and system programs
 - Pay a price in performance if every system call is filtered
- Problems:
 - User dependent: install/update IDS on all user machines!
 - If attacker takes over machine, can tamper with IDS binaries and modify audit logs
 - Only local view of the attack

Network Based IDSs

Network IDSs

- Deploying sensors at strategic locations
 - For example, Packet sniffing via tcpdump at routers
- Inspecting network traffic
 - Watch for violations of protocols and unusual connection patterns
 - Look into the packet payload for malicious code
- Limitations
 - Cannot execute the payload or do any code analysis!
 - Record and process huge amount of traffic
 - May be easily defeated by encryption

