AULA 19: OS TRÊS PRINCÍPIOS DE LITTLEWOOD

Os princípios de Littlewood transmitem a intuição básica da teoria da medida de Lebesgue.

O primeiro: Todo conjunto mensurável é "quase" aberto.

Além disso, todo conjunto mensurável com medida finita está perto de um conjunto elementar (isto é, de uma união finita de caixas).

O segundo: Toda função absolutamente integrável é "quase" contínua.

O terceiro: Toda sequência de funções mensuráveis, convergente em q.t.p. é "quase" uniformemente convergente.

Em outras palavras, o conceito tangível, real (a mensurabilidade de um conjunto, de uma função, ou de convergência pontual de uma sequência de funções mensuráveis) pode ser visto como "quase" o conceito ideal correspondente (de conjunto aberto ou elementar, de função contínua, de convergência uniforme).

Porém, o diabo está nos detalhes.

O PRIMEIRO PRINCÍPIO DE LITTLEWOOD

Um conjunto $E \subset \mathbb{R}^d$ é mensurável à Lebesgue se para todo $\epsilon > 0$ existe um conjunto aberto U tal que

$$U \supset E$$
 e $m^*(U \setminus E) < \epsilon$.

Esta afirmação foi escolhida como nossa definição do conceito de conjunto mensurável. Como já vimos, ela é equivalente a outras definições, por exemplo a de Carathéodory (que será usada em contextos mais abstratos).

Além disso, provamos que se $E \subset \mathbb{R}^d$ for mensurável e m $(E) < \infty$, então para todo $\epsilon > 0$ existe um conjunto elementar $B = B_1 \sqcup \ldots \sqcup B_k$ tal que m* $(E \triangle B) < \epsilon$.

As caixas B_1, \ldots, B_k podem ser escolhidas como caixas diádicas (da mesma geração).

O SEGUNDO PRINCÍPIO DE LITTLEWOOD

Teorema 1. (de Lusin) Seja $f: \mathbb{R}^d \to \mathbb{R}$ uma função absolutamente integrável. Então, para todo $\epsilon > 0$ existe $E \subset \mathbb{R}^d$ mensurável tal que

$$m(E^{\complement}) \le \epsilon \quad e \quad f_{|_E} \quad \acute{e} \ continua.$$

Observação 1. A informação de que $f|_E$ é contínua $n\tilde{a}o$ significa que f é contínua em E. De fato, dado $x_0 \in E$, $f|_E$ é contínua no ponto x_0 significa

$$\lim_{x \in E, x \to x_0} f(x) = f(x_0),$$

embora f contínua no ponto x_0 significa

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Por exemplo, a função $\mathbf{1}_{\mathbb{Q}} \colon \mathbb{R} \to \mathbb{R}$ não é contínua em *nenhum* ponto, mas $\mathbf{1}_{\mathbb{Q}|_{\mathbb{Q}}} \equiv 0$ que é, evidentemente, contínua em todo ponto do seu domínio.

A prova do teorema de Lusin usa um resultado de aproximação em $L^1(\mathbb{R}^d)$, útil em si.

Definição 1. Uma função $s : \mathbb{R}^d \to \mathbb{R}$ é chamada de função escada se

$$s = \sum_{j=1}^k c_j \, \mathbf{1}_{B_j},$$

onde $c_j \in \mathbb{R}$ e B_j é uma caixa para todo $j \in [k]$.

Em particular, toda função escada é simples e mora numa caixa.

Teorema 2. (aproximação de uma função absolutamente integrável) Sejam $f \in L^1(\mathbb{R}^d)$ e $\epsilon > 0$.

- (1) Existe uma função simples s, que mora numa caixa, tal que $||f-s||_1 < \epsilon$.
- (2) Existe uma função escada σ tal que $\|f-\sigma\|_1<\epsilon$.
- (3) Existe uma função contínua g, com suporte compacto tal que $||f g||_1 < \epsilon$.

Observação 2. Pela Observação 1 da Aula 18, toda função mensurável que mora numa caixa é absolutamente integrável, ou seja, pertence ao espaço $L^1(\mathbb{R}^d)$.

Denotamos por $C_c(\mathbb{R}^d)$ o espaço vetorial de funções contínuas com suportes compactos. Tais funções são claramente também limitadas (e mensuráveis). Então toda função $f \in C_c(\mathbb{R}^d)$ é mensurável e mora numa caixa, logo $C_c(\mathbb{R}^d) \subset L^1(\mathbb{R}^d)$.

Portanto, o teorema de aproximação acima pode ser reformulado do seguinte modo: cada um dos espaços de funções

- (1) o espaço de funções simples,
- (2) o espaço de funções escada,
- (3) o espaço $C_c(\mathbb{R}^d)$ de funções contínuas com suporte compacto

é denso em $L^1(\mathbb{R}^d)$ com respeito à sua norma $\|\cdot\|_1$.

Demonstração do Teorema 2. (1) Consideramos primeiro o caso $f \ge 0$. Como

$$\int f \, d\mathbf{m} = \sup \big\{ \int s \, d\mathbf{m} \colon 0 \le s \le f, \quad s \text{ \'e simples e mora numa caixa} \big\},$$

e como $\int f d\mathbf{m} = \|f\|_1 < \infty$, dado $\epsilon > 0$ existe uma função simples s que mora numa caixa tal que

$$0 \le s \le f$$
 e $\int f d\mathbf{m} < \int s d\mathbf{m} + \epsilon$.

Segue que

$$||f - s||_1 = \int |f - s| \ dm = \int (f - s) \ dm = \int f \ dm - \int s \ dm < \epsilon.$$

Considerando agora uma função $f \in L^1(\mathbb{R}^d)$ qualquer, escrevemos $f = f^+ - f^-$, onde $f^+, f^- \geq 0$ e $\int f^+ d\mathbf{m}, \int f^- d\mathbf{m} < \infty$. Pelo caso anterior, existem duas funções simples que moram em caixas, s_1 e s_2 , tais que

$$||f^+ - s_1||_1 < \epsilon$$
 e $||f^- - s_2||_1 < \epsilon$.

Logo, a função $s := s_1 - s_2$ é simples, mora em uma caixa e

$$||f - s||_1 = ||(f^+ - f^-) - (s_1 - s_2)||_1 = ||(f^+ - s_1) - (f^- - s_2)||_1$$

$$\leq ||f^+ - s_1||_1 + ||f^- - s_2||_1 < 2\epsilon,$$

mostrando a densidade em $L^1(\mathbb{R}^d)$ do espaço de funções simples e localizadas em caixas.

(2) Pelo item anterior, baixa provar que toda função simples s, que mora em uma caixa, pode ser aproximada em $L^1(\mathbb{R}^d)$ por funções escada. Sejam $\epsilon > 0$ e

$$s = \sum_{j=1}^{k} c_j \mathbf{1}_{E_j}$$

onde, para todo $j \in [k]$, $c_j \in \mathbb{R}$ e m $(E_j) < \infty$ (s tem suporte limitado, então de medida finita). Pelo primeiro princípio de Littlewood, para cada $j \in [k]$, existe um conjunto elementar B_j tal que

$$m(E_j \triangle B_j) < \frac{\epsilon}{M},$$

onde $M := \sum_{j=1}^{k} |c_k| < \infty$.

Como $\left|\mathbf{1}_{E_j} - \mathbf{1}_{B_j}\right| = \mathbf{1}_{E_j \triangle B_j}$, temos que

$$\|\mathbf{1}_{E_j} - \mathbf{1}_{B_j}\|_1 = |\mathbf{1}_{E_j} - \mathbf{1}_{B_j}| = \int \mathbf{1}_{E_j \triangle B_j} = \mathrm{m}(E_j \triangle B_j) < \frac{\epsilon}{M}.$$

Seja

$$\sigma := \sum_{i=1}^k c_j \mathbf{1}_{B_j} \,.$$

Então σ é uma função escada (já que B_j , $j \in [k]$ são conjuntos elementares, então podem ser representados como uniões de caixas).

Além disso,

$$||f - \sigma||_{1} = \left\| \sum_{j=1}^{k} c_{j} \mathbf{1}_{E_{j}} - \sum_{j=1}^{k} c_{j} \mathbf{1}_{B_{j}} \right\|_{1}$$

$$= \left\| \sum_{j=1}^{k} c_{j} \left(\mathbf{1}_{E_{j}} - \mathbf{1}_{B_{j}} \right) \right\|_{1}$$

$$\leq \sum_{j=1}^{k} |c_{j}| \left\| \mathbf{1}_{E_{j}} - \mathbf{1}_{B_{j}} \right\|_{1} < M \frac{\epsilon}{M} = \epsilon.$$

(3) Sejam $f \in L^1(\mathbb{R}^d)$ e $\epsilon > 0$. Pelo item (2), existe uma função escada

$$\sigma := \sum_{j=1}^k c_j \mathbf{1}_{B_j} \quad \text{tal que} \quad \|f - \sigma\|_1 < \epsilon \,,$$

onde, para todo $j \in [k], c_j \in \mathbb{R}, c_j \neq 0$ e B_j é uma caixa.

Dada uma caixa $B \subset \mathbb{R}^d$ e dado $\epsilon > 0$, existe $h \in C_c(\mathbb{R}^d)$ tal que

$$\|\mathbf{1}_B - h\|_1 \le \epsilon.$$

Isso é fácil de ver em dimensão d=1. De fato, se $B=[a,b]\subset \mathbb{R}$, h pode ser escolhida como uma função linear por partes, veja abaixo.

Então hé contínuas, $\operatorname{supp}(h) \subset [a-\epsilon,b+\epsilon]$ e

$$\|\mathbf{1}_{B} - h\|_{1} = \int |\mathbf{1}_{B} - h| = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Em dimensão maior, se $B = I_1 \times ... \times I_d \subset \mathbb{R}^d$ é uma caixa, para cada intervalo I_j , $j \in [d]$, considere uma função $h_j \in C_c(\mathbb{R})$ como acima e defina $h \colon R^d \to \mathbb{R}$,

$$h(x_1,\ldots,x_d):=h_1(x_1)\cdot\ldots\cdot h_d(x_d).$$

Já que

$$\mathbf{1}_{B}(x_{1},\ldots,x_{d})=\mathbf{1}_{I_{1}}(x_{1})\cdot\ldots\cdot\mathbf{1}_{I_{d}}(x_{d}),$$

é fácil concluir que

$$\|\mathbf{1}_B - h\|_1 \le d \epsilon.$$

Voltando à função escada

$$\sigma := \sum_{j=1}^k c_j \mathbf{1}_{B_j} \,,$$

onde B_j , $j \in [k]$ são caixas, pelo argumento apresentado acima, existem funções $g_1, \ldots, g_k \in C_c(\mathbb{R}^d)$ tais que

$$\left\|\mathbf{1}_{B_j}-g_j\right\|_1<\frac{\epsilon}{M}\,,$$

para todo $j \in [k]$, onde $M := \sum_{j=1}^{k} |c_j| < \infty$.

Definindo

$$g := \sum_{j=1}^k c_j g_j \,,$$

segue que $g \in C_c(\mathbb{R}^d)$ e

$$\|\sigma - g\|_1 = \left\| \sum_{j=1}^k c_j \mathbf{1}_{E_j} - \sum_{j=1}^k c_j g_j \right\|_1$$

$$\leq \sum_{j=1}^k |c_j| \|\mathbf{1}_{E_j} - g_j\|_1$$

$$< M \frac{\epsilon}{M} = \epsilon.$$

Concluímos que

$$\|f-g\|_1 \leq \|f-\sigma\|_1 + \|\sigma-g\|_1 < 2\epsilon,$$

o que finaliza a prova do teorema.

Estamos prontos para provar o teorema de Lusin.

Demonstração do Teorema 1. Fixe $\epsilon > 0$. Pelo teorema de aproximação em $L^1(\mathbb{R}^d)$, para todo $n \geq 1$ existe $g_n \in C_c(\mathbb{R}^d)$ tal que

$$||f - g_n||_1 < \frac{\epsilon}{4^n},$$

ou seja, em média, g_n está perto de f.

Pela desigualdade de Chebyshev, isto implica a proximidade pontual entre g_n e f, exceto por um conjunto de pontos com media relativamente pequena. De fato, para todo $n \geq 1$, o conjunto

$$F_n := \left\{ |f - g_n| > \frac{1}{2^n} \right\}$$

é mensurável e

$$m(F_n) \le \frac{\|f - g_n\|_1}{1/2^n} < \frac{\epsilon}{4^n} \, 2^n = \frac{\epsilon}{2^n} \, .$$

Seja
$$F := \bigcup_{n>1} F_n$$
.

Então, F é mensurável e

$$\operatorname{m}(F) \le \sum_{n=1}^{\infty} \operatorname{m}(F_n) = \epsilon.$$

Finalmente, seja $E:=F^{\complement}$. Então E é mensurável, $\mathrm{m}(E^{\complement})=\mathrm{m}(F)\leq\epsilon$ e, como veremos, $f|_E$ é contínua.

Para estabelecer a continuidade de $f|_{E}$, basta verificar que

$$g_n|_E \to f|_E$$
 uniformemente,

já que as funções g_n são contínuas em \mathbb{R}^d , então são contínuas quando restritas ao conjunto E. De fato, se $x \in E = F^{\complement} = \bigcap_{n \geq 1} F_n^{\complement}$, então $x \notin F_n$ para todo $n \geq 1$, logo

$$|f(x) - g_n(x)| \le \frac{1}{2^n} \ge \frac{1}{2^n} \to 0$$

mostrando a convergência uniforme de $g_n|_E$ para $f|_E$, e portanto a continuidade de $f|_E$. \square

O TERCEIRO PRINCÍPIO DE LITTLEWOOD

Definição 2. Sejam $E \subset \mathbb{R}^d$ um conjunto mensurável e $\{f_n \colon E \to \mathbb{R}\}_{n \geq 1}$ uma sequência de funções. Dizemos que

$$f_n \to f$$
 localmente uniformemente em E

se para todo ponto $x \in E$ existe r > 0 tal que

$$f_n \to f$$
 uniformemente em $E \cap B(x,r)$.

Observação 3. Não é difícil verificar a equivalência das seguintes afirmações:

- (i) $f_n \to f$ localmente uniformemente em E;
- (ii) $f_n \to f$ uniformemente em $E \cap K$ para todo conjunto compacto $K \subset \mathbb{R}^d$;
- (iii) $f_n \to f$ uniformemente em $E \cap L$ para todo conjunto limitado $L \subset \mathbb{R}^d$;
- (iv) $f_n \to f$ uniformemente em $E \cap B(0,R)$ para todo R > 0.

O terceiro princípio de Littlewood é formalmente expresso pelo teorema de Egorov.

Teorema 3 (de Egorov). Seja $\{f_n \colon \mathbb{R}^d \to \mathbb{R}\}_{n \geq 1}$ uma sequência de funções mensuráveis tal que

$$f_n \to f$$
 pontualmente em q.t.p.

Seja $\epsilon>0$. Então existe um conjunto mensurável $E\subset\mathbb{R}^d$ tal que $\mathrm{m}(E^\complement)<\epsilon$ e

$$f_n \to f$$
 localmente uniformemente em E .

Demonstração. Para tornar uma afirmação pontual em uma afirmação algo uniforme, o procedimento comum é usar um argumento de tempos de parada.

Como $f_n \to f$ em quase todo ponto, existe um conjunto $\mathcal{Z} \subset \mathbb{R}^d$ com $\mathrm{m}(\mathcal{Z}) = 0$ tal que

$$f_n(x) \to f(x)$$
 para todo $x \in \mathbb{R}^d \setminus \mathcal{Z}$.

Então, para todo $x \in \mathbb{R}^d \setminus \mathcal{Z}$ e para todo $m \geq 1$, existe $N(x,m) \in \mathbb{N}$ tal que

(1)
$$|f_n(x) - f(x)| \le \frac{1}{m} \quad \text{para todo } n \ge N(x, m).$$

Para todo $m, N \in \mathbb{N}$ definimos o "evento favorável"

$$G_{m,N} := \left\{ |f_n - f| \le \frac{1}{m} \quad \forall n \ge N \right\}.$$

Fixe $m \geq 1$. Então $G_{m,N}$ é mensurável e, claramente, pela equação (1),

$$G_{m,N} \nearrow \mathbb{R}^d \setminus \mathcal{Z}$$
 quando $N \to \infty$.

Definimos o evento complementar (então não favorável)

$$F_{m,N} := G_{m,N}^{\complement}$$
.

Temos que

$$F_{m,N} \searrow \mathcal{Z}$$
 quando $N \to \infty$ e $m(\mathcal{Z}) = 0$.

Não podemos concluir que m $(F_{m,N}) \to 0$ quando $N \to \infty$ já que os conjuntos $F_{m,N}$ podem ter medida infinita. O truque, então, é localizar $F_{m,N}$ dentro de uma bola determinada, por exemplo B(0,m).

De fato, $F_{m,1} \cap B(0,m)$ tem medida finita pois é um conjunto limitado,

$$F_{m,N} \cap B(0,m) \searrow \mathcal{Z} \cap B(0,m)$$
 quando $N \to \infty$,

e $\mathcal{Z} \cap B(0,m) \subset \mathcal{Z}$ tem medida zero. Logo, pelo teorema de convergência monótona para conjuntos, tem-se

$$m(F_{m,N} \cap B(0,m)) \to 0$$
 quando $N \to \infty$.

Segue que para todo $m \in \mathbb{N}$ existe $N_m \in \mathbb{N}$ tal que

$$\operatorname{m}\left(F_{m,N_m}\cap B(0,m)\right)<\frac{\epsilon}{2^m}.$$

Seja

$$F := \bigcup_{m \ge 1} \left(F_{m, N_m} \cap B(0, m) \right) .$$

Então F é mensurável e m $(F) \le \epsilon$. Seja

$$E := F^{\complement} = \bigcap_{m \ge 1} (F_{m,N_m} \cap B(0,m))^{\complement}$$
$$= \bigcap_{m \ge 1} G_{m,N_m} \cup B(0,m)^{\complement}.$$

Resta provar que $f_n \to f$ localmente uniformemente em E. Fixe uma bola B(0, R). Vamos provar que $f_n \to f$ uniformemente em $E \cap B(0, R)$.

Seja $m \geq R$. Então, como $B(0,R) \subset B(0,m)$, dado $x \in E \cap B(0,R) \subset B(0,m)$, tem-se $x \in G_{m,N_m}$. Logo

$$|f_n(x) - f(x)| \le \frac{1}{m}$$
 para todo $n \ge N_m$.

Como a escolha da escala de tempo N_m não depende do ponto $x \in E \cap B(0, R)$, segue que, de fato, $f_n \to f$ uniformemente em $E \cap B(0, R)$.