Exercice 1

Expliciter le terme général des suites suivantes en fonction de l'indice.

$$\forall k \in \mathbb{N}^{\times}, \quad a_{k+1} = -2a_k \text{ avec } a_1 = 7 \quad \forall n \geqslant 2, \quad 2b_n = b_{n-1} \text{ avec } b_1 = 3.$$

$$\forall p \geqslant 0, \quad c_{p+1} - c_p = 3 \text{ et } c_0 = 10. \qquad \forall n \in \mathbb{N}^{\times}, \quad d_n = \frac{d_{n-1}}{3} + 4 \text{ avec } d_0 = 1.$$

$$\forall i \in \mathbb{N}, \quad 4e_{i+1} + 1 = e_i \text{ avec } e_0 = 0. \quad \forall j \in \mathbb{N}, \quad 3f_{j+1} - 2f_j = 1 \text{ avec } f_0 = 1.$$

$$\forall n \in \mathbb{N}, \quad 2h_{n+2} + h_{n+1} - h_n = 0 \text{ avec } h_0 = h_1 = 1.$$

$$\forall m \in \mathbb{N}^{\times}, \quad l_{m+1} = l_m + l_{m-1} \text{ avec } l_0 = 1 \text{ et } l_1 = 2.$$

Exercice 2

Soit u une suite vérifiant $\forall n \ge 0$, $u_{n+1} = 2u_n + n$ et $u_0 = 1$.

- 1. Montrer qu'il existe un couple (a, b) de réels tel que la suite $\forall n \in \mathbb{N}, \quad w_n = an + b$ vérifie la relation $\forall n \in \mathbb{N}, \quad w_{n+1} = 2w_n + n$.
- 2. Montrer que la suite $z_n = u_n + n + 1$ vérifie $z_{n+1} = 2z_n$.
- 3. En déduire l'expression de z_n en fonction de n puis celle de u_n .

Exercice 3

Soient α et β deux suites satisfaisant la relation

$$\forall k \in \mathbb{N}, \quad \left\{ \begin{array}{l} \alpha_{k+1} = 3\alpha_k + \beta_k \\ \beta_{k+1} = 2\alpha_k + 4\beta_k \end{array} \right. \quad \text{et} \quad \left\{ \begin{array}{l} \alpha_0 = 2 \\ \beta_0 = -1 \end{array} \right.$$

On introduit deux suites auxiliaires z et t en posant $z_k = \alpha_k + \beta_k$ et $t_k = 2\alpha_k - \beta_k$.

- 1. Montrer que les deux suites z et t sont géométriques.
- 2. Donner l'expression de z_k et t_k en fonction de k, puis celle de α_k et β_k .

Exercice 4

Soit $(u_p)_{p\geqslant 0}$ une suite satisfaisant à la relation $\forall p\geqslant 0,\quad u_{p+1}=2u_p+5^p.$

Pour expliciter le terme général de cette suite, on pose $\forall p \in \mathbb{N}, \quad \alpha_p = \frac{u_p}{5^p}$.

- 1. Vérifier que $\forall p \in \mathbb{N}, \quad \alpha_{p+1} = \frac{2}{5}\alpha_p + \frac{1}{5}.$
- 2. En déduire l'expression de α_p en fonction de p puis celle de u_p .

Exercice 5

On considère deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, \quad \left\{ \begin{array}{l} u_{n+1} = 2u_n - v_n \\ v_{n+1} = u_n + 4v_n \end{array} \right. \quad \text{et} \quad \left\{ \begin{array}{l} u_0 = 2 \\ v_0 = -1 \end{array} \right.$$

- 1. On considère la suite p définie par $\forall n \in \mathbb{N}, \quad p_n = u_n + v_n$. Montrer que la suite $(p_n)_{n \in \mathbb{N}}$ est géométrique. En déduire l'expression de p_n en fonction de n.
- 2. A l'aide de la question précédente, montrer que $\forall n \in \mathbb{N}, \quad v_{n+1} = 3v_n + 3^n$.
- 3. Montrer que la suite $z_n = \frac{v_n}{3^n}$ est arithmétique. En déduire l'expression de z_n en fonction de n
- 4. Donner enfin l'expression de v_n puis de u_n en fonction de n.

Exercice 6

On considère la suite u définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{3u_n + 1}{2u_n + 4}$.

- 1. Montrer que $\forall n \in \mathbb{N}, \quad u_n \in \mathbb{R}_+$.

 On introduit alors la suite auxiliaire t définie par $\forall n \in \mathbb{N}, \quad t_n = \frac{2u_n 1}{u_n + 1}$.
- 2. Montrer que la suite t est géométrique.
- 3. Expliciter alors t_n en fonction de n puis u_n en fonction de n. En déduire la convergence de la suite u et donner sa limite.

Exercice 7

Soit la suite vérifiant $\forall n \in \mathbb{N}, \quad u_{n+1} = e\sqrt{u_n} \text{ avec } u_0 > 0.$

- 1. Montrer que $\forall n \in \mathbb{N}, \quad u_n > 0$. On introduit la suite auxiliaire t définie par $\forall n \in \mathbb{N}, \quad t_n = \ln u_n$.
- 2. Justifier que la suite t est arithmético-géométrique.
- 3. En déduire l'expression de t_n en fonction de n, t_0 puis de u_n en fonction de n, u_0 . En déduire la convergence de la suite u et donner sa limite.

Exercice 8

Soit u la suite vérifiant la relation $\forall n \in \mathbb{N}, \quad u_{n+2} = \sqrt{u_n u_{n+1}}$ avec $u_0 > 0$ et $u_1 > 0$.

- 1. Montrer que $\forall n \in \mathbb{N}$, $u_n > 0$ (on posera comme hypothèse de récurrence " $u_n > 0$ et $u_{n+1} > 0$ "). On considère alors la suite w définie par $\forall n \in \mathbb{N}$, $w_n = \ln u_n$.
- 2. Montrer que la suite w est récurrente linéaire d'ordre 2 à coefficients constants.
- 3. Expliciter w_n en fonction de n, w_1, w_0 et en déduire sa limite en $+\infty$.
- 4. Calculer alors la limite de u en $+\infty$ en fonction de u_0, u_1 .