## $\begin{array}{ccc} \text{EECS 16A} & \text{Designing Information Devices and Systems I} \\ \text{Spring 2023} & \text{Discussion 9B} \end{array}$

Note to students:

In this worksheet, we will begin exploring comparators (denoted by the little square wave within the triangle).

Here is the inherent logic of a comparator:

- If  $V_+ > V_-$ , then  $V_{\text{out}} = V_{DD}$  (positive supply rail)
- If  $V_+ < V_-$ , then  $V_{\text{out}} = V_{SS}$  (negative supply rail)

## 1. Comparators

We want to find the value of an unknown capacitor using the comparator outputs. For the circuit shown below (left),  $I_{\text{in}1} = 1 \mu \text{A}$ ,  $I_{\text{in}2} = 3 \mu \text{A}$ , and  $I_{\text{in}3} = 0.5 \mu \text{A}$  and the initial voltage across the capacitor is 0 when t = 0. The plot of  $V_{\text{out}}(t)$  for time t from 0-10s is shown on the right. Note that  $\mu = 10^{-6}$ . What is the value of the capacitor for each value of  $I_{\text{in}}$ ? Note: the intial voltage across the capacitor at time t = 0 is 0V in all three cases.



## 2. Data Conversion Circuits

(a) The dual to DAC circuits are analog-to-digital converters, or ADC circuits. Here is an example of one, called a "Flash ADC," using resistors and comparators:



Note: The red wires in the diagram are regular wires, but have been colored to show that they do not touch the crossing black wires.

The resistor ladder gives us a set of reference voltages to compare against. We use a set of comparators to compare the input voltage  $V_{in}$  against these reference levels, and we get out a corresponding digital code  $b_0$ ,  $b_1$ , and  $b_2$ .

Assume that  $V_{DD} = 1 \text{ V}$ , and that the comparators are connected to rails  $V_{DD} = 1 \text{ V}$  and  $V_{SS} = 0 \text{ V}$ . If  $V_{in}$  is 0.3 V, what are the outputs  $b_0$ ,  $b_1$ , and  $b_2$ ?