06/01/2020 OneNote

> ✓11. Построить машину Тьюринга, удаляющую вторую и исправляющую последнюю цифры в семизначном двоичном числе. Применить эту машину к числу n, являющемуся Вашим семизначным номером по списку в двоичной системе записи чисел.

4 января 2020 г. 22:44

"0"	'	'1"

_A \Q	q_1	q ₂	q ₃	q ₄	q ₅
ε				εq ₅ L	
0	εq ₂ R	0q ₄ R	1q ₄ R	0q ₄ R	1q ₀ S
1	εq ₃ R	0q ₄ R	1q ₄ R	1q ₄ R	0q ₀ S

$$42_{10} = 0101010_2$$

Тест

$$0K\{_{q_1}^{0\ 101010}$$

$$1K\left\{ \begin{smallmatrix} \varepsilon & 1 & 01010 \\ q_2 \end{smallmatrix} \right.$$

$$2K\{^{\epsilon 0}_{q_{4}}^{1010}$$

$$3K\{^{\varepsilon00\ 1\ 010}_{\ q_4}$$

$$4K\{^{\epsilon 001\ 0\ 10}_{\quad q_4}$$

$$5K\{ {\varepsilon 0010\ 1\ 0 \atop q_4}$$

$$6K\{^{\epsilon 00101\ 0}_{q_4}$$

$$7K\{^{\epsilon 001010 \, \epsilon}_{q}$$

$$8K\{^{\varepsilon00101\ 0}_{q_5}^{\epsilon}$$

$$9K\{^{arepsilon 00101}\,_{q_0}^{1}$$
 стоп