Nenadzirana klasifikacija slika

Korisnička dokumentacija

Sadržaj

1	$\mathbf{U}\mathbf{vod}$	2
2	Upoznavanje s radnim direktorijem	3
	2.1 Numerički poddirektoriji u direktoriju CNN	3
	2.2 Numerički poddirektoriji u direktoriju Results	3
3	Pregled potrebnih programskih alata i paketa	4
4	Pregled programskih skripti	5
5	Literatura	7

1 Uvod

Ovaj dokument predstavlja korisničku dokumentaciju vezanu uz realizaciju rješenja problema nenadzirane klasifikacije slika u svrhu natjecanja Mozgalo. Najprije ćemo ukratko čitatelja upoznati s radnim direktorijem, a nakon toga ćemo dati pregled programskih alata i paketa potrebnih za uspješno pokretanje svih priloženih skripti. Posebno ćemo istaknuti alate koji nisu nužni za pokretanje pojedinih programa, ali podosta utječu na efikasnost njihovog izvršavanja. U zadnjem poglavlju ćemo detaljno objasniti pokretanje svake skripte s ulaznim parametrima i očekivane izlazne rezultate. Također, osvrnut ćemo se i na neke varijabilne dijelove programskog koda.

2 Upoznavanje s radnim direktorijem

Radni direktorij sastoji se od sljedećih poddirektorija:

- 1. Augmented. Sadrži augmentirane slike načinjene od slika iz foldera Images.
- 2. CNN. Sadrži dva poddirektorija iste strukture koji odgovaraju dvjema neuronskim mrežama. Svaki od njih sadrži direktorije numeričkog imena koji odgovaraju broju pomoćnih klasa na kojima treniramo neuronsku mrežu. Više o tome se može pronaći u sljedećem potpoglavlju.
 - (a) Big: 100, 200, 500
 - (b) Small: 100, 200, 500
- 3. Code. Sadrži programski kod pisan u Python-u.
- 4. Images. Originalni dataset koji želimo klasterirati.
- 5. Papers. Literatura vezana uz rješenje problema.
- 6. Results. Direktorij slične strukture kao CNN koji sadrži značajke dobivene neuronskom mrežom, rezultate klasteriranja zapisane u .csv datotekama kao i direktorije s klasteriranim slikama.
- 7. Test. Sadrži reskalirane slike iz direktorija Images.

2.1 Numerički poddirektoriji u direktoriju CNN

Numerički folderi su iste strukture pa radi jednostavnosti u nastavku opisujemo samo sadržaj foldera 100 unutar foldera *Small*. On sadrži sljedeće foldere i datoteke:

- 1. models. Tu je smješten model manje neuronske mreže istreniran na 100 pomoćnih klasa.
- 2. train i validate. Direktoriji koji sadrže po 100 poddirektorija, tako da svaki poddirektorij sadrži augmentacije točno jedne slike. Služe za treniranje, odnosno validaciju neuronske mreže. Važno je napomenuti da train i validate nemaju zajedničkih slika.
- 3. mylabel.txt. Tekstualna datoteka koja u svakom retku sadrži ime jedne pomoćne klase.
- 4. train-00000-of-00001 i validation-00000-of-00001. Binarne datoteke koje sadrže podatke pogodne za obradu u TensorFlow-u.

2.2 Numerički poddirektoriji u direktoriju Results

Numerički folderi su iste strukture pa radi jednostavnosti u nastavku opisujemo samo sadržaj foldera 100 unutar foldera *Small*. On sadrži sljedeće foldere i datoteke:

- 1. features.txt. Tekstualna datoteka koja sadrži podatke o naučenim značajkama.
- 2. results.csv. Tekstualna datoteka koja sadrži rezultate klasteriranja.
- 3. $results yyyy mm dd\ hh: mm: ss.$ Direktoriji s klasterima.

3 Pregled potrebnih programskih alata i paketa

Sve programske skripte napisane su u programskom jeziku Python [1] i testirane na verziji 3.5. Od korištenih programskih paketa u Python-u istaknut ćemo sljedeće:

- 1. *Imgaug*. Biblioteka za augmentaciju slika. Više informacija se može pronaći u [2]. Važno je napomenuti da je ova biblioteka ovisna o biblioteci *OpenCV* [3].
- 2. Matplotlib. Koristi se za crtanje dvodimenzionalnih grafova [4].
- 3. NumPy. Koristi se za znanstveno računanje [5].
- 4. SciPy. Koristi se za znanstveno računanje. Između ostalog sadrži biblioteke Matplotlib i NumPy [6].
- 5. Scikit learn. Paket za strojno učenje [7].

Za treniranje konvolucijskih neuronskih mreža koristili smo TensorFlow [8]. Poželjno je konfigurirati TensorFlow da radi uz pomoć Nvidia grafičke kartice kako bi izračunavanja završila u razumnom vremenu. U tom slučaju je potrebno imati instalirati pakete CUDAToolkit 8.0, cuDNN v5.1 i libcupti-dev, kako je navedeno u [9].

4 Pregled programskih skripti

Za svaku programsku skriptu ćemo dati kratak opis onoga što radi, istaknuti neke važnije parametre koji se mogu mijenjati, odrediti izlazne podatke i po potrebi identificirati moguće greške prilikom pokretanja. Posebno ističemo datoteku *variables.py* koja sadrži sve važnije varijable koje se koriste u ostalim programima i nije namijenjena za izvođenje. Sve skripte koje su namijenjene za izvođenje jednostavno se pokreću naredbom *python3 ime_skripte.py*.

- 1. variables.py. Većina ostalih skripti se poziva na nju. Skripta sadrži sljedeće varijable:
 - (a) main_dir. Put prema glavnom direktoriju.
 - (b) $aug_dir, cnn_dir, code_dir, images_dir, papers_dir, results_dir, test_dir$. Putevi prema sljedećim folderima: Augmented, CNN, Code, Images, Papers, Results, Test.
 - (c) num_surr. Broj pomoćnih klasa.
 - (d) num_aug. Broj augmentacija po slici.
 - (e) patch_size, height, width. Veličine pravokutnog dijela slike na kojem je objekt od interesa.
 - (f) cnn_size. Veličina neuronske mreže. Može biti '/Big' i '/Small'.
 - (g) cnn_current. Put prema direktoriju koji se odnosi na mrežu koju trenutno treniramo.
 - (h) *cnn_models*. Put prema folderu koji sadrži istrenirani model.
 - (i) cnn_model. Put prema istreniranom modelu.
 - (j) train_dir, validate_dir. Putevi prema slikama za treniranje, odnosno validaciju.
 - (k) labels_file. Put prema datoteci s oznakama za treniranje i validaciju.
 - (l) results_current. Put prema direktoriju koji se odnosi na rezultate treniranja.
 - (m) features_file. Put prema datoteci sa značajkama.
 - (n) results_file. Put prema rezultatima zapisanim u tekstualnoj datoteci.
 - (o) train_steps. Broj koraka treniranja mreže.
 - (p) learning_rate. Parametar koji se odnosi na brzinu učenja.
 - (q) batch_size_. Broj slika koje se koriste u danom koraku za ažuriranje težina u neuronskoj mreži.
 - (r) num_clusters. Broj klastera za klasteriranje.
 - (s) visual_file. Put prema slikama koje želimo prikazati u pravokutnoj mreži.
- 2. big_CNN.py i small_CNN.py. Skripte koje sadrže definiciju velike, odnosno male neuronske mreže u TensorFlow-u. Nisu namijenjene za izvođenje, ali se koriste kao pomoćne skripte u skriptama big_train.py, big_getFeatures.py, small_train.py i small_getFeatures.py.
- 3. big_train.py i small_train.py. Služe za treniranje velike, odnosno male neuronske mreže na podacima iz train_dir. Programi će svakih nekoliko koraka ispisati točnosti na podacima za treniranje, odnosno validaciju. Istrenirani model će se spremiti u cnn_model.

- 4. big_getFeatures.py i small_getFeatures.py. Služe za dobivanje značajki pomoću slika iz test_dir koje se spremaju u datoteku features_file. Moguća greška uključuje postojanje direktorija kojeg program želi stvoriti.
- 5. makeAugmentations.py. Program služi za stvaranje $num_surr \cdot num_aug$ augmentiranih slika koje se spremaju u folder aug_dir . Moguća greška uključuje postojanje direktorija kojeg program želi stvoriti.
- 6. makeLabels.py. Program stvara direktorije $train_dir$ i $validate_dir$ koje popunjava slikama iz aug_dir te datoteku $labels_file$. Moguća greška uključuje postojanje direktorija kojeg program želi stvoriti.
- 7. makeTest.py. Ova jednostavna skripta stvara direktorij $test_dir$ pomoću slika iz $images_dir$. Moguća greška uključuje postojanje direktorija kojeg program želi stvoriti.
- 8. organize.py. Sadrži funkciju organizeIntoClusters() koja pomoću datoteke results_file kreira foldere s klasteriranim slikama.
- 9. paint.py. Pomoću slika iz visual_file stvara pravokutnu mrežu slika.
- 10. load_train_image.py. Sadrži funkciju getImage() koja čita jednu sliku iz TFRecords zapisa.
- 11. build_image_data.py. Skripta koja slike iz foldera train_dir i validate_dir stavlja u TFRecords format. Skripta je preuzeta sa stranice [10].
- 12. kmeans.py i kmeans2.py. Programi koriste algoritam k-sredina na značajkama $features_file$ da bi klasificirali slike. Rezultati su spremljeni u $results_file$.

5 Literatura

- [1] Python Software Foundation, https://www.python.org/
- [2] Python Software Foundation, https://pypi.python.org/pypi/imgaug/0.2.1
- [3] OpenCV, https://en.wikipedia.org/wiki/OpenCV
- [4] Matplotlib, https://matplotlib.org/
- [5] NumPy, http://www.numpy.org/
- [6] SciPy, https://www.scipy.org/
- [7] Scikit-learn, http://scikit-learn.org/stable/
- [8] TensorFlow, https://www.tensorflow.org/
- [9] TensorFlow (instalacija), https://www.tensorflow.org/install/
- [10] Build_image_data.py,

https://raw.githubusercontent.com/tensorflow/models/master/inception/inception/data/build_image_data.py