Podstawy automatyki; AiR Zestaw 1 - Transformacja Laplace'a

Zadanie 1 Zweryfikować następujace własnoś- **Zadanie 5** Wykazać, że jeśli x(t) jest funkcją ci transformacji Laplace'a

a)
$$\frac{d}{dt}f(t) = sF(s) - f(0-),$$

b)
$$\int_{0}^{t} f(\tau)d\tau = \frac{1}{s}F(s),$$

c)
$$tf(t) = -\frac{d}{ds}F(s)$$
,

d)
$$e^{at}f(t) = F(s-a)$$
,

e)
$$\int_0^t f(t-\tau)g(\tau)d\tau = F(s)G(s),$$

f)
$$f(t-T) = e^{-sT} F(s)$$
, gdzie $T \ge 0$

Na podstawie definicji wyznaczyć transformatę impulsu Diraca, a następnie - korzystając z tych własności - wyznaczyć transformaty następujących funkcji: 1, t, t^n , e^{-at} , te^{at} , t^2e^{at} , $\sin \omega t$, $\cos \omega t$, $e^{-at}\sin \omega t$, $\sin(\omega t + \varphi)$, $t\sin\omega t$, a także $\delta(t-T)$ i 1(t-T), gdzie $T \geq 0$.

Zadanie 2 Metodą rozkładu na ułamki proste wyznaczyć oryginały następujących transformat:

a)
$$\frac{1}{(s+1)(s+2)}$$
, b) $\frac{1}{(s+1)^2(s+2)}$

c)
$$\frac{s+3}{(s+1)(s+2)}$$
, d) $\frac{s^2+2s+3}{(s+1)(s+2)}$

Zadanie 3 Sprawdzić, że

a)
$$\frac{b-a}{(s-a)(s-b)} = e^{-at} + e^{-bt}$$
,

b)
$$\frac{\omega^2}{s(s^2 + \omega^2)} = 1 - \cos \omega t.$$

Zadanie 4 Zakładając, że a) $\Delta > 0$, b) $\Delta =$ $(0, c) \Delta < 0$, gdzie $\Delta = 4p^2 - 4q$, wyznaczyć i naszkicować oryginał transformaty

$$\frac{1}{s^2 + 2ps + q}.$$

okresowa o okresie T, to

$$X(s) = \frac{X_T(s)}{1 - e^{-sT}},$$

gdzie $X_T(s) = \int_0^T x(t)e^{-st}dt$. Sprawdzić następnie, że transformata fali prostokątnej pokazanej na rys 1 jest równa

$$\frac{(1 - e^{-s})^2}{2(1 - e^{-2s})}.$$

Rys. 1. Fala prostokatna

Zadanie 6 Rozwiązać równania różniczkowe:

a)
$$y'' + 3y' + y = 0$$
.

b)
$$y'' + 3y' + y = 1$$
,

c)
$$y'' + 3y' + y = t$$
,

d)
$$y'' + 3y' + y = \sin \omega t$$
,

e)
$$y'' + y' - 2y = 0$$
,

f)
$$y'' + y' - 2y = 1$$
.

Zadanie 7 Wyznaczyć $e^{\mathbf{A}t}$, jeśli

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ -3 & -4 \end{array} \right].$$

Zadanie 8 Równanie różniczkowe ma postać:

$$y''(t) + 3y'(t) + 2y(t) = 0.$$

Sprawdzić, że jeśli $\boldsymbol{\xi}^T(t) = [y(t), y'(t)],$ to

$$\dot{\boldsymbol{\xi}}(t) = \mathbf{A}\boldsymbol{\xi}(t),$$

gdzie

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ -2 & -3 \end{array} \right],$$

a następnie wyznaczyć $\xi(t)$ oraz y(t).