Image Denoising with an Autoencoder

Aditya Hegde | Al and ML Club, SJSU

Problem Description

- What is Image Denoising? –
 Essentially, recovering clean
 images from noisy input images.
- Why? Noise severely degrades visual quality and reduces effectiveness of downstream tasks in other applications or domains.
- Image sources:
 - MDPI
 - BleepingComputer
 - ResearchGate

Great, but what is an Autoencoder?

What else can an Autoencoder be used for?

- Image Colorization: Converting grayscale images into realistic color versions.
- Data Compression: Reducing image dimensionality while retaining key features (useful for storage and transmission).
- Super-Resolution: Enhancing image resolution by reconstructing fine details.
- Feature Extraction: Learning compact latent representations for use in classification or clustering.
- Anomaly Detection: Identifying unusual patterns in images (e.g., defects in manufacturing, medical anomalies).
- Style Transfers: Mapping images from one style or domain to another (e.g., sketches → photos, conversions between different art styles).

Domains or Applications

- Photography enhancement
- Satellite imagery
- Astronomy
- Medical Imaging
- Surveillance & autonomous systems

Just about any field dealing with imagery and suffering from noisy images is a candidate that benefits from Autoencoder architectures.

Goals

Establish	- Establish baseline performance with a simpler autoencoder.
Explore	- Explore improved architectures (U-Net, residual autoencoders)
Experiment	- Experiment with real-world noisy datasets
Evaluate	- Evaluate with PSNR and visual inspection
Demonstrate	- Demonstrate downstream benefits for other CV tasks

Data I've found thus far

Low-Light Dataset: Approx. 40k images across ISO levels

<u>Darmstadt Noise Dataset</u> (DND): 50 high-res realistic noisy images, 12 GB in size

Smartphone Image Denoising Dataset (SIDD): 30k images total

Synthetic noise augmentation (Gaussian, Poisson, salt-and-pepper)

Approach: start small → scale to larger realistic datasets

Where do we go from here?

Members

- I'm looking for 2-3 members
- Skills preferred but not mandatory:
 - Deep Learning Experience
 - Willingness to work with Pytorch
 - Git
 - OpenCV for image processing
- For now, all the code will be in python

Interested?

Reach out to me on Discord (@aditya__hegde) or just talk to me during the networking section of the meeting:)

P.S. the username has 2 underscores, not 1