ПРОЛЕТ 2017

Задача 1. Да се пресметне стойността на израза

$$\sqrt{(-1)^2} + \sqrt{(-1)^4} + \sqrt{(-1)^6} + \sqrt{(-1)^8} + \sqrt{(-1)^{10}} + \sqrt{(-1)^{12}}$$
.

 \mathbf{A}) - 6

D) друг отговор

Задача 2. За колко цели стойности на параметъра a уравнението $ax^2 - 4x + 1 = 0$ се удовлетворява само за едно число x?

A) 0

B) 1

C) 2

D) повече от 2

Задача 3. Лицето на триъгълник ABC е 1 cm^2 . Колко cm^2 е лицето на триъгълник XYZ, ако точката A е среда на отсечката CZ; точката B е среда на отсечката AX и точката C е среда на отсечката ВУ?

A) 4

B) 6

C) 7

D) 8

Задача 4. Ако x < 0 и $x^2 + \frac{1}{x^2} = 14$, да се пресметне стойността на израза $x^3 + \frac{1}{x^3}$.

A) 52

B) - 52

C) 76

D) -76

Задача 5. Ако всеки участник в един шахматен турнир изиграе по 1 партия с всички участници ще бъдат изиграни общо 66 партии. Колко са участниците?

A) 11

B) 12

C) 22

D) 33

Задача 6. Кое от уравненията има два положителни корена?

A)
$$x^2 + x - 2 = 0$$

B)
$$x^2 - x + 2 = 0$$

C)
$$x^2 + x + 2 = 0$$

A)
$$x^2 + x - 2 = 0$$
 B) $x^2 - x + 2 = 0$ **C)** $x^2 + x + 2 = 0$ **D)** $|x - \sqrt{5}| = \sqrt{2}$

Задача 7. Графиката на линейната функция y = x + 1 е перпендикулярна на графиката на линейната функция:

$$\mathbf{A}) y = x + 3$$

$$\mathbf{B}) \mathbf{v} = 0$$

9)
$$y = 2 + x$$

Задача 8. Колко са реалните корени на уравнението $((x^2-1)^2+1)^2=1-|x|$?

A) 0

A) 1,5

B) 1

C) 2

Задача 9. Пресметнете стойността на израза

- $\left(1 + \frac{1}{2}\right) \times \left(1 \frac{1}{3}\right) \times \left(1 + \frac{1}{4}\right) \times \dots \times \left(1 \frac{1}{15}\right)$ $C) \frac{14}{15}$
- **D**) друг отговор

Задача 10. Точката D е от страната BC на триъгълник ABC.

Ако AB = 12 cm, BC = 16 cm и \sphericalangle $BAD = \sphericalangle$ ACB, тогава дължината на отсечката CD е:

- **A)** 9 cm
- **B**) 7 cm
- **C**) 4,5 *cm*
- **D**) 14 *cm*

Задача 11. Колко са естествените трицифрени числа които са едновременно сбор на 2 последователни естествени числа и сбор на 3 последователни естествени числа?

Задача 12. Пресметнете стойността на x, за която триъгълник със страни 3, 5 и x има най-голямо лице?

Задача 13. С цифрите 0, 1, 2 и 7 са съставени всички четирицифрени числа с различни цифри. Пресметнете сбора им.

Задача 14. Делимото е равно на стойността на израза $4^5 + 625^3$, делителят — на стойността на израза $2^5 + 25^3 + 8 \times 125$, частното е $32 + 25^3 - x$. Пресметнете x.

Задача 15. Даден е триъгълник *ABC*. През два от върховете му са построени прави, пресичащи противоположните страни. По този начин триъгълникът е разделен на 12 непресичащи се части. Ако построим 11 прави през единия връх и 99 прави през друг връх на колко части ще разделим триъгълника?

Задача 16. Колко са положителните цели числа, които са решение на неравенството

$$(x^2 - 6x + 8)^3 \times (x - 4) \le 0?$$

Задача 17. Колко е сбора на простите числа p, q и r, ако $r = p^3 - q^3$?

Задача 18. Във всяка от 10 торбички има по 10 еднакви монети, но в едната те са фалшиви. Всяка от фалшивите монети е с тегло 9 грама, а всяка от истинските - с тегло 10 грама. Торбичките са номерирани с числата от 1 до 10. От всяка от торбичките вземаме толкова монети, колкото е номерът й. Теглото се оказва 547 грама. Кой е номерът на торбичката с фалшивите монети?

Задача 19. Определете цифрата a, която е решение на ребуса $\overline{8a} \times (\overline{3a} - \overline{a9}) = \overline{a46}$.

Задача 20. Триъгълник *ABC* е неравнобедрен правоъгълен триъгълник и *CH* е височината към хипотенузата. Колко са двойките подобни триъгълници?