Ensemble des nombres réels et sous-ensembles

Leçon : Ensemble des nombres réels et sous-ensembles Présentation globale

D Ensembles de nombres.

- Les entiers naturels
- Les entiers relatifs
- Les décimaux
- Les rationnels
- Les réels
- Schéma d'inclusions successives

II) opérations dans l'ensemble des nombres réels

III)Racine carrée

IV)Les Puissances et Écriture scientifique

V)Identités remarquables

I.Ensembles de nombres.

Il existe différentes sortes de nombres. Pour les classer, on les a regroupés dans différents ensembles remarquables :

1°) L'ensemble des entiers naturels. N

Rappel de notations : $\mathbb{N}=\{0;1;2;...;n;...\}$, $\mathbb{N}^* = \mathbb{N} \{0\}$ (\mathbb{N} privé de 0).

2°) L'ensemble des entiers relatifs : Z

Tous les entiers qu'ils soient négatifs, positifs ou nuls, sont des entiers relatifs

Exemple: -45, -1, 0 et 56 sont des entiers relatifs.

L'ensemble des entiers relatifs est noté **Z**. Tous les entiers naturels sont des entiers relatifs. On dit alors que

l'ensemble N est inclu dans l'ensemble Z Cette inclusion est notée :N⊂ℤ Le symbole "⊏" signifie "est inclu dans".

notations:
$$\mathbb{Z} = \{ \dots; -3; -2; -1; 0; 1; 2; 3; \dots \}$$

 $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$ (\mathbb{Z} privé de 0);

3°) L'ensemble des décimaux. D

3-1) L'ensemble des décimaux est l'ensemble des nombres dits "à virgule". Cet ensemble est noté D.

négatifs ou positifs.

Les entiers relatifs sont aussi des décimaux.

En effet :-4 = -4,000

on dit alors que l'ensemble **Z** est inclu dans l'ensemble **D**.

Ce qui se note : $\mathbb{Z} \subseteq \mathbb{D}$

donc on a $: \mathbb{N} \subset \mathbb{Z} \subset \mathbf{D}$

$$D = \left\{ a \times 10^{-n} = \frac{a}{10^n} / a \in \mathbb{Z}; n \in \mathbb{N} \right\} \text{ Écriture en}$$

compréhension

3-2) critère pour reconnaître un nombre décimal sous form<u>e fractionnaire :</u>

Pour savoir si un nombre rationnel est décimal ou pas, on peut mettre ce nombre sous la forme d'une fraction irréductible ; si le dénominateur est de la forme $2^p \times 5^q$, p et q étant des entiers naturels, alors ce nombre est décimal, sinon il ne l'est

Exemples: Les nombres
$$\frac{54}{40}, \frac{126}{450}, \frac{75}{90}$$
 sont-ils des

décimaux?

$f 4^\circ)$ L'ensemble des rationnels. f Q

Les nombres rationnels sont les fractions de la forme p/q où p et q sont des entiers (non nul pour q)...

Par exemple, 2/3 et -1/7 sont des rationnels.

Tous les nombres décimaux sont des nombres rationnels exemple 1,59. C'est en fait le quotient des entiers 159 et 100 car 159 / 100 = 1.59.

De même, tous les entiers sont des décimaux. Prenons l'exemple de -4. On peut dire que -4 est le quotient de -4 et de 1 car -4/1 = -4.

On résume cela par :N ⊂ ℤ ⊂ **D** ⊂ **Q**

Par exemple, -3,89 et 5,2 sont des décimaux. Ils peuvent être
$$\mathbb{Q} = \left\{ \frac{a}{b} / a \in \mathbb{Z}; b \in \mathbb{N}^* \right\}$$
 Écriture en compréhension

$$\left| \frac{1}{3} = 0.333333...$$
 est rationnel mais $\frac{1}{3} \notin D$

Remarque1 : un rationnel non décimal a une écriture décimale périodique infinie :

$$\frac{17}{7}$$
 = 2.4285714285714285714285714285714...;

428571 se répète

Remarque2:
$$\sqrt{2} \notin Q$$
; $-\frac{\sqrt{3}}{2} \notin Q$; $\pi \notin Q$

5°) L'ensemble des réels.

Tous les nombres utilisés en Seconde sont des réels. Cet ensemble est noté IR.

Remarque1 : Parmi les nombres réels, il y a les entiers naturels, les entiers relatifs, les nombres décimaux, les nombres rationnels. Les nombres réels qui ne sont pas rationnels sont appelés nombres irrationnels.

Et on a : $\mathbb{N} \subset \mathbb{Z} \subset D \subset \mathbb{Q} \subset \mathbb{R}$

Remarque2 : un irrationnel a une écriture décimale non périodique infinie:

Par exemple: 1.4142135623730950488016887242097 ...

6°) Représentation par ensembles

Remarque3:

- « soit x un nombre quelconque » sera désormais remplacé par : « soit $x \in IR$ » ou « soit x un nombre réel »
- Le signe * placé en haut à droite de la lettre désignant un ensemble de nombres, prive celui-ci de zéro.

Ainsi **IR*** désigne les réels non nuls.

- Le signe + ou - placé en haut à droite de la lettre désignant un ensemble de nombre, prive celui-ci des nombres négatifs positifs

Ainsi **IR**⁺ désigne l'ensemble des réels positifs (avec zéro)

IR⁻ désigne l'ensemble des réels négatifs (avec zéro)

Exercice1: compléter par $: \in ; \notin ; \subset ; \not\subset$

$$6...\mathbb{Z}$$
; $\frac{2}{3}...\mathbb{Q}$; $\sqrt{2}...\mathbb{Q}$; $\sqrt{2}...\mathbb{R}$; $\mathbb{Q}...\mathbb{R}$; $\mathbb{N}...\mathbb{Q}$;

$$-\frac{2}{3}...\mathbb{R}^{+}\;;\;\frac{2}{3}...\mathbb{N}\;\;;\;\frac{6}{2}...\mathbb{N}\;\;;\;\frac{\sqrt{100}}{5}...\mathbb{N}\;\;;\;\mathbb{Q}...\mathbb{Z}\;\;;\;\mathbb{Z}...\mathbb{Q}\;\;;$$

$$\pi...\mathbb{Z}$$
; $0...\mathbb{Q}^*$; $-\frac{7}{3}...\mathbb{Q}^{+*}$; $\sqrt{16}...\mathbb{N}$; $0...\mathbb{R}^*$;

$$\{1;3;-8\}...\mathbb{N} \; ; \; \mathbb{R}^+...\mathbb{R} \; ; \; \frac{1}{2}...D \; ; \; \frac{1}{3}...D$$

Solution:
$$6 \in \mathbb{Z}$$
; $\frac{2}{3} \in \mathbb{Q}$; $\sqrt{2} \notin \mathbb{Q}$; $\sqrt{2} \in \mathbb{R}$; $\mathbb{Q} \subset \mathbb{R}$;

$$\mathbb{N} \subset \mathbb{Q} \; ; \; -\frac{2}{3} \notin \mathbb{R}^+ \; ; \; \frac{2}{3} \notin \mathbb{N} \; ; \; \frac{6}{2} \in \mathbb{N} \; ; \; \frac{\sqrt{100}}{5} \in \mathbb{N} \; ; \; \mathbb{Q} \not\subset \mathbb{Z} \; \left| C = \left(\frac{2}{3} - \frac{5}{2}\right)^2 = \left(\frac{4 - 15}{6}\right)^2 = \left(\frac{-11}{6}\right)^2 = \frac{\left(-11\right)^2}{6^2} = \frac{121}{36}$$

Prof/ATMANI NAJIB

$$; \mathbb{Z} \subset \mathbb{Q} ; \pi \notin \mathbb{Z} ; 0 \notin \mathbb{Q}^* ; -\frac{7}{3} \notin \mathbb{Q}^{+*} ; \sqrt{16} \in \mathbb{N} ;$$

$$0 \notin \mathbb{R}^* ; \{1;3;-8\} \subset \mathbb{N} ; \mathbb{R}^+ \subset \mathbb{R} ; \frac{1}{2} \in D; \frac{1}{3} \notin D$$

II) opérations et règles de calcul dans l'ensemble des nombres réels

$$a \in \mathbb{R}$$
 et $b \in \mathbb{R}$ et $c \in \mathbb{R}$ et $d \in \mathbb{R}$ et $k \in \mathbb{R}$

$$a+b=b+a$$
; $a+(b+c)=(a+b)+c=a+b+c$

$$(-a)+a=a+(-a)=0$$
 et $a+0=0+a=a$

$$a-b = a + (-b)$$
 et $-(a-b) = -a + b$

$$a \times b = b \times a = ab = ba$$
 et $a(bc) = (ab)c = (ac)b = abc$

Si:
$$a \neq 0$$
; $a \times \frac{1}{a} = 1$ $\frac{1}{a}$ l'inverse de a et $\frac{a}{b} = a \times \frac{1}{b}$

$$k(a+b) = ka+kb$$
 et $k(a-b) = ka-kb$

$$(a+b)(c-d) = ac-ad+bc-bd$$

Si
$$bd \neq 0$$
 $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$ et $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ et $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$
 et $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$ et $k \times \frac{a}{b} = \frac{ak}{b}$

$$\frac{a}{\frac{b}{c}} = a \times \frac{c}{b} = \frac{ac}{b}; bc \neq 0 \text{ et } \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

Si on a :
$$\begin{cases} a = b \\ c = d \end{cases}$$
 alors $a + c = b + d$

Si
$$bd \neq 0$$
 $\frac{a}{b} = \frac{c}{d}$ si et seulement si ad=bc

$$\frac{a}{b} = 0$$
 ssi $a = 0$

Exercice 2: calculer et simplifier : $A = \frac{3}{4} + \frac{5}{2} - \frac{7}{6}$

$$B = \frac{-2}{3} + \frac{7}{6} - \frac{1}{4} - 2 \quad C = \left(\frac{2}{3} - \frac{5}{2}\right)^2 \quad D = \frac{5 + \frac{1}{3}}{2 - \frac{3}{2}}$$

$$E = \left(1 - \frac{1}{3}\right)\left(\frac{2}{5} + 1 - \frac{1}{2}\right) \qquad F = \frac{7 - \frac{4}{\pi}}{12 - 21\pi}$$

$$G = [(a-c)-(a-b)]-[(c-a)+(b-c)]$$

Solution:
$$A = \frac{3}{4} + \frac{5}{3} - \frac{7}{6} = \frac{9}{12} + \frac{20}{12} - \frac{14}{12} = \frac{9 + 20 - 14}{12} = \frac{15}{12} = \frac{5}{4}$$

$$B = \frac{-2}{3} + \frac{7}{6} - \frac{1}{4} - 2 = \frac{-8}{12} + \frac{14}{12} - \frac{3}{12} - \frac{24}{12} = \frac{-8 + 14 - 3 - 24}{12} = \frac{-21}{12} = -\frac{7}{4}$$

$$C = \left(\frac{2}{3} - \frac{5}{2}\right)^2 = \left(\frac{4 - 15}{6}\right)^2 = \left(\frac{-11}{6}\right)^2 = \frac{\left(-11\right)^2}{6^2} = \frac{121}{36}$$

$$D = \frac{5 + \frac{1}{3}}{2 - \frac{3}{2}} = \frac{\frac{16}{3}}{\frac{1}{2}} = \frac{16}{3} \times \frac{2}{1} = \frac{32}{3}$$

$$E = \left(1 - \frac{1}{3}\right)\left(\frac{2}{5} + 1 - \frac{1}{2}\right) = \left(\frac{3}{3} - \frac{1}{3}\right)\left(\frac{4}{10} + \frac{10}{10} - \frac{5}{10}\right) = \frac{2}{3}\left(\frac{4 + 10 - 5}{10}\right) = \frac{2}{3}\left(\frac{9}{10}\right) = \frac{2}{3} \times \frac{3 \times 3}{5 \times 2} = \frac{3}{5}$$

$$F = \frac{7 - \frac{4}{\pi}}{12 - 21\pi} = \frac{\frac{7\pi - 4}{\pi}}{\frac{12 - 21\pi}{1}} = \frac{7\pi - 4}{\pi} \times \frac{1}{12 - 21\pi} = \frac{7\pi - 4}{\pi} \times \frac{1}{12 - 21\pi}$$

$$F = \frac{7\pi - 4}{\pi} \times \frac{1}{-3(7\pi - 4)} = -\frac{1}{3\pi}$$

$$G = [(a-c)-(a-b)]-[(c-a)+(b-c)] = (a-c-a+b)-(c-a+b-c)$$

$$G = a - c - a + b - c + a - b + c = a - c$$

III)Racine carrée

Activité : On considère un triangle ABC rectangle en A 1)Sachant que AB = 3 cm et AC = 4 cm,

- a) Calculer la valeur exacte de BC.
 - b) Quels sont les nombres qui ont pour carré 25
 - ? Pourquoi a-t-on BC = 5 ?
 - c) Compléter la phrase suivante :
 - « BC est le nombre positif dont le carré est ... »
 - 2)On suppose maintenant que AB = 2 cm et AC = 3 cm.
 - « BC est le nombre positif dont le carré est ... »

Rechercher la valeur exacte de BC

On dira que la valeu<u>r e</u>xacte de BC est **la racine carrée** de 13 que l'on notera $\sqrt{13}$

3)Peut-on obtenir la racine carrée de -16?

La racine carrée d'un nombre négatif existe-t-elle ?

<u>Définition</u>: a est un nombre **positif**. La **racine carrée** de a, notée \sqrt{a} , est le nombre positif dont le carré est Égal à a.

exemple:
$$\sqrt{4} = 2$$
; $\sqrt{0} = 0$
 $\sqrt{1} = 1$; $\sqrt{4} = 2$; $\sqrt{9} = 3$; $\sqrt{16} = 4$; ... $\sqrt{225} = 15$
 $\sqrt{1,5625} = 1,25$; $\sqrt{360000000} = 60000$

Un nombre négatif n'a pas de racine carrée.

Propriétés : soient *a* et *b* deux nombres positifs ou nuls

1)
$$\left(\sqrt{a}\right)^2 = \sqrt{a^2} = a$$
 2) $\left(\sqrt{a}\right)^n = \sqrt{a^n}; n \in \mathbb{N}^*$

3)
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$
 4) $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}; b \succ 0$

Remarque: $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$

En effet : $\sqrt{9+16} \neq \sqrt{9} + \sqrt{16} \text{ car} : \sqrt{9+16} = \sqrt{25} = 5$

Et $\sqrt{9} + \sqrt{16} = 3 + 4 = 7$

Propriété: $x \ge 0$ et $y \ge 0$

 $\sqrt{x} = \sqrt{y}$ ssi x = y

Propriété : $a \in \mathbb{R}^+$

 $x^2 = a$ si et seulement si $x = \sqrt{a}$ ou $x = -\sqrt{a}$

Exemple: résoudre l'équation suivante $x^2 = 100$ $x^2 = 100$ si et seulement si $x = \sqrt{100}$ ou $x = -\sqrt{100}$ ssi x = 10 ou x = -10Donc: $S = \{-10; 10\}$

Quelques valeurs exactes à connaître :

a	0	1	4	9	16	25	36	49	64	81	100
√a	0	1	2	3	4	5	6	7	8	9	10

$$\sqrt{0} = 0$$
; $\sqrt{1} = 1$; $\sqrt{4} = 2$; $\sqrt{9} = 3$; $\sqrt{16} = 4$;

$$\sqrt{25} = 5$$
; $\sqrt{36} = 6$; $\sqrt{49} = 7$; $\sqrt{64} = 8$; $\sqrt{81} = 9$;

$$\sqrt{100} = 10$$
; $\sqrt{121} = 11$; $\sqrt{144} = 12$; $\sqrt{169} = 13$;

$$\sqrt{196} = 14; \sqrt{225} = 15; \sqrt{625} = 25.$$

Exercice 3: calculer et simplifier:

$$A = \sqrt{\frac{9}{2}}$$
; $B = \frac{\sqrt{28}}{\sqrt{14}}$; $C = 3\sqrt{20} + 4\sqrt{45} - 2\sqrt{80} - \sqrt{180}$

$$D = (\sqrt{3} + \sqrt{2} - \sqrt{5})(\sqrt{3} + \sqrt{2} + \sqrt{5}) : E = \frac{\sqrt{3} + \sqrt{5}}{\sqrt{3} - \sqrt{5}} - \frac{\sqrt{3} - \sqrt{5}}{\sqrt{3} + \sqrt{5}}$$

Solution:
$$A = \sqrt{\frac{9}{2}} = \frac{\sqrt{9}}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{3\sqrt{2}}{\left(\sqrt{2}\right)^2} = \frac{3\sqrt{2}}{2}$$

$$B = \frac{\sqrt{28}}{\sqrt{14}} = \sqrt{\frac{28}{14}} = \sqrt{2}$$

$$C = 3\sqrt{20} + 4\sqrt{45} - 2\sqrt{80} - \sqrt{180} = 3\sqrt{4 \times 5} + 4\sqrt{9 \times 5} - 2\sqrt{16 \times 5} - \sqrt{36 \times 5}$$

$$C = 3\times 2\sqrt{5} + 4\times 3\sqrt{5} - 2\times 4\sqrt{5} - 6\sqrt{5} = 6\sqrt{5} + 12\sqrt{5} - 8\sqrt{5} - 6\sqrt{5} = (6+12-8-6)\sqrt{5}$$

$$C = 4\sqrt{5}$$

$$D = (\sqrt{3} + \sqrt{2} - \sqrt{5})(\sqrt{3} + \sqrt{2} + \sqrt{5}) = ((\sqrt{3} + \sqrt{2}) - \sqrt{5})((\sqrt{3} + \sqrt{2}) + \sqrt{5})$$

$$D = (\sqrt{3} + \sqrt{2})^2 - (\sqrt{5})^2 = (\sqrt{3})^2 + 2\sqrt{3}\sqrt{2} + (\sqrt{2})^2 - 5 = 3 + 2\sqrt{3 \times 2} + 2 - 5$$

$$D = 2\sqrt{6}$$

$$E = \frac{\sqrt{3} + \sqrt{5}}{\sqrt{3} - \sqrt{5}} - \frac{\sqrt{3} - \sqrt{5}}{\sqrt{3} + \sqrt{5}} = \frac{\left(\sqrt{3} + \sqrt{5}\right)\left(\sqrt{3} + \sqrt{5}\right) - \left(\sqrt{3} - \sqrt{5}\right)\left(\sqrt{3} - \sqrt{5}\right)}{\left(\sqrt{3} + \sqrt{5}\right)\left(\sqrt{3} - \sqrt{5}\right)}$$

$$E = \frac{\left(\sqrt{3} + \sqrt{5}\right)^{2} - \left(\sqrt{3} - \sqrt{5}\right)^{2}}{\left(\sqrt{3}\right)^{2} - \left(\sqrt{5}\right)^{2}} = \frac{\left(\sqrt{3}\right)^{2} + 2\sqrt{3}\sqrt{5} + \left(\sqrt{5}\right)^{2} - \left(\left(\sqrt{3}\right)^{2} - 2\sqrt{3}\sqrt{5} + \left(\sqrt{5}\right)^{2}\right)}{\left(\sqrt{3}\right)^{2} - \left(\sqrt{5}\right)^{2}}$$

$$E = \frac{3 + 2\sqrt{15} + 5 - \left(3 - 2\sqrt{15} + 5\right)}{\left(\sqrt{3}\right)^2 - \left(\sqrt{5}\right)^2} = \frac{3 + 2\sqrt{15} + 5 - 3 + 2\sqrt{15} - 5}{\left(\sqrt{3}\right)^2 - \left(\sqrt{5}\right)^2} = \frac{4\sqrt{15}}{-2} = -2\sqrt{15}$$

Exercice 4: soit
$$E = \frac{5\sqrt{7}}{\sqrt{2} - \sqrt{7}} + \frac{5\sqrt{2}}{\sqrt{2} + \sqrt{7}}$$

Montrer que : E est nombre entier relatif

Solution:

$$E = \frac{5\sqrt{7}}{\sqrt{2} - \sqrt{7}} + \frac{5\sqrt{2}}{\sqrt{2} + \sqrt{7}} = \frac{\left(5\sqrt{7}\right)\left(\sqrt{2} + \sqrt{7}\right) + -5\sqrt{2}\left(\sqrt{2} - \sqrt{7}\right)}{\left(\sqrt{2} + \sqrt{7}\right)\left(\sqrt{2} - \sqrt{7}\right)}$$

$$E = \frac{5\sqrt{7}\sqrt{2} + 5\sqrt{7}\sqrt{7} + 5\sqrt{2}\sqrt{2} - 5\sqrt{2}\sqrt{7}}{\left(\sqrt{2}\right)^{2} - \left(\sqrt{7}\right)^{2}} = \frac{35 + 10}{\left(\sqrt{2}\right)^{2} - \left(\sqrt{7}\right)^{2}} = \frac{45}{-5} = -9 \in \mathbb{Z}$$

Exercice 5: calculer et_simplifier

$$A = \sqrt{2 - \sqrt{2 + \sqrt{2}}} \times \sqrt{2 + \sqrt{2 + \sqrt{2}}} \times \sqrt{2 + \sqrt{2}} \times \sqrt{2 + \sqrt{2}} \times \sqrt{2}$$

Solution:
$$A = \sqrt{(2 - \sqrt{2 + \sqrt{2}})(2 + \sqrt{2 + \sqrt{2}})} \times \sqrt{2 + \sqrt{2}} \times \sqrt{2}$$

 $A = \sqrt{2^2 - (\sqrt{2 + \sqrt{2}})^2} \times \sqrt{2 + \sqrt{2}} \times \sqrt{2} = \sqrt{4 - (2 + \sqrt{2})} \times \sqrt{2 + \sqrt{2}} \times \sqrt{2}$
 $A = \sqrt{2 - \sqrt{2}} \times \sqrt{2 + \sqrt{2}} \times \sqrt{2} = \sqrt{2^2 - (\sqrt{2})^2} \times \sqrt{2} = \sqrt{2} \times \sqrt{2} = 2$

Exercice6 : Rendre le dénominateur rationnel du quotient suivant: $A = \frac{1}{\sqrt{2}-1}$

Solution: on multiplie le dénominateur par son conjugué

$$A = \frac{1}{\sqrt{2} - 1} = \frac{\sqrt{2} + 1}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \frac{\sqrt{2} + 1}{\sqrt{2}^2 - 1^2} = \frac{\sqrt{2} + 1}{1} = \sqrt{2} + 1$$

1)Définition et notations : $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$ et $n \in \mathbb{N}^*$

Le produit de n facteurs égaux à a et noté aⁿ et s'appelle la puissance n-ième de a » ; n est appelé exposant :

$$a^n = \underbrace{a \times a \times a \times \cdots \times a}_{\text{local}}$$
 Cas particulier: $a^1 = a; a^0 = 1$

et on a :
$$a^{-n} = \frac{1}{a^n}$$
 En particulier : Pour $a \neq 0$ $a^{-1} = \frac{1}{a}$

$$10^n = \underbrace{1000\cdots0}_{n}; n \in \mathbb{N} \text{ (n zéros)}$$

$$10^{-n} = \underbrace{0,000\cdots01}_{n}; n \in \mathbb{N} \text{ (n zéros)}$$

$$10^{1} = 10$$
; $10^{-1} = 0.1$; $10^{-2} = 0.01$; $10^{0} = 1$

2) Propriétés des puissances : $a \in \mathbb{R}^*$ et $b \in \mathbb{R}^*$ et $n \in \mathbb{N}^*$; $m \in \mathbb{N}^*$ 1)

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n a^n \times b^n = \left(ab\right)^n; \quad \left(a^n\right)^m = a^{nm}; \quad a^n \times a^m = a^{n+m};$$

$$A = 9 \times 10^{-3} + 0.4 \times 10^{-2} - 9 \times 10^{-4} \text{ en mettant d'abord } 10^{-4}$$
en facteur et sans utiliser de calculatrice.

V) Identités remarquables : $a \in \mathbb{R}$ et $b \in \mathbb{R}$

3)Remarque: a) La puissance d'un nombre négatif est positive si l'exposant est pair

b) La puissance d'un nombre négatif est négative si b $a^3 + b^3 = (a+b)(a^2 - ab - b^2)$ Somme de deux cubes l'exposant est impair.

Ex:
$$(-1)^{2020} = 1^{2020} = 1$$
 et $(-1)^{2019} = -1^{2019} = -1$

Exercice7: simplifier et écrire sous forme d'une puissance

$$A = 2^{3} \times \left(2^{2}\right)^{4} \times \left(2^{-5}\right)^{3} \qquad B = \left(-3\right)^{1} \times \left(-3\right)^{5} \times \left(3\right)^{2} \times \left(-3\right)^{-10}$$

$$C = \frac{3^{-5} \times 4^{-2}}{12^{3}} \times \frac{9}{2^{2}} \qquad D = \frac{\left(-2\right)^{3} \times \left(4^{2}\right)^{-1} \times 8}{1024 \times \left(-16\right)^{-4}}$$

$$E = \frac{10^{-8} \times 10^{9} \times 10^{7} \times 10^{-4}}{10^{-2} \times 10^{3} \times 10^{5}}$$

Solution:

$$A = 2^{3} \times \left(2^{2}\right)^{4} \times \left(2^{-5}\right)^{3} = 2^{3} \times 2^{2 \times 4} \times 2^{-5 \times 3} = 2^{3+8-15} = 2^{-4}$$

$$A = \frac{1}{2^{4}} = \frac{1}{16}$$

$$B = (-3)^{1} \times (-3)^{5} \times (3)^{2} \times (-3)^{-10} = -(3)^{1} \times -(3)^{5} \times (3)^{2} \times (3)^{-10}$$

$$B = 3^{1} \times 3^{5} \times 3^{2} \times 3^{-10} = 3^{1+5+2-10} = 3^{-2} = \frac{1}{3^{2}} = \frac{1}{9}$$

$$C = \frac{3^{-5} \times 4^{-2}}{12^{3}} \times \frac{9}{2^{2}} = \frac{3^{-5} \times \left(2^{2}\right)^{-2}}{\left(3 \times 2^{2}\right)^{3}} \times \frac{3^{2}}{2^{2}} = \frac{3^{-5} \times \left(2\right)^{-4} \times 3^{2}}{\left(3\right)^{3} \times 2^{6} \times 2^{2}}$$

$$C = \frac{3^{-5} \times \left(2\right)^{-4} \times 3^{2}}{\left(3\right)^{3} \times 2^{6} \times 2^{2}} = 3^{-5} \times 2^{-4} \times 3^{2} \times \left(3\right)^{-3} \times 2^{-6} \times 2^{-2} = 3^{-5-3+2} \times 2^{-4-6-2}$$

$$C = 3^{-6} \times 2^{-12}$$

$$D = \frac{\left(-2\right)^{3} \times \left(4^{2}\right)^{-1} \times 8}{1024 \times \left(-16\right)^{-4}} = \frac{-2^{3} \times 4^{2 \times \left(-1\right)} \times 2^{3}}{1024 \times \left(-2^{3}\right)^{-4}} = \frac{-2^{3} \times \left(2^{2}\right)^{-2} \times 2^{3}}{2^{10} \times \left(-2^{3}\right)^{-4}}$$

$$D = -2^{3} \times \left(2^{2}\right)^{-2} \times 2^{3} \times 2^{-10} \times \left(-2\right)^{3 \times 4} = -2^{3-4+3-10+12} = -2^{4} = -16$$

$$E = \frac{10^{-8} \times 10^{9} \times 10^{7} \times 10^{-4}}{10^{-2} \times 10^{3} \times 10^{5}} = 10^{-8} \times 10^{9} \times 10^{7} \times 10^{-4} \times 10^{2} \times 10^{-3} \times 10^{-5}$$

$$E = 10^{-8+9+7-4+2-3-5} = 10^{-2} = \frac{1}{10^{2}} = \frac{1}{100} = 0.01$$

4°) Écriture scientifique d'un nombre décimal

La notation scientifique d'un nombre décimal est de la forme $a \times 10^{p}$ où a est un nombre décimal ($1 \le a < 10$) et p un nombre entier relatif.

Ex:
$$593.7 = 5.937 \times 10^2$$
 et $7300 = 7.3 \times 10^3$
 $2328423 = 2.328423 \times 10^6$ et $-0.051 = -5.1 \times 10^{-2}$

$$-0.00032 = -3.2 \times 10^{-4}$$
 sur la calculatrice -3.2 E-4

Exercice 8 : Ecrire en notation scientifique le nombre

en facteur et sans utiliser de calculatrice.

V) Identités remarquables : $a \in \mathbb{R}$ et $b \in \mathbb{R}$

1)
$$(a+b)^2 = a^2 + 2ab + b^2$$
 2) $(a-b)^2 = a^2 - 2ab + b^2$
3) $a^2 - b^2 = (a-b)(a+b)$ 4) $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$
5) $a^3 + b^3 = (a+b)(a^2 - ab - b^2)$ Somme de deux cubes
6) $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ Cube d'une Somme
7) $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ Cube d'une différence
Ces formules sont pour **développer** et pour **factoriser**
Factoriser une expression, c'est l'écrire sous la forme d'un **produit**.

Exemple 1:
$$x \in \mathbb{R}$$
 développer et calculer et simplifier $A = (\sqrt{5} + \sqrt{2})^2 - (\sqrt{5} - \sqrt{2})^2$ et $B = [(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3})]^2$ $C = (\sqrt{2} + 1)^3$ $D = (3x - 2)^3$ $E = (x + 2)(x^2 - 2x + 4)$ $F = (200520052006)^2 - (200520052005 \times 200520052007)$ (Lorsque la calculatrice tombe en panne ou ne peut pas calculer)

Solution:

$$A = (\sqrt{5} + \sqrt{2})^{2} - (\sqrt{5} - \sqrt{2})^{2} = (\sqrt{5})^{2} + 2\sqrt{5}\sqrt{2} + (\sqrt{2})^{2} - ((\sqrt{5})^{2} - 2\sqrt{5}\sqrt{2} + (\sqrt{2})^{2})$$

$$A = 5 + 2\sqrt{10} + 2 - (5 - 2\sqrt{10} + 2) = 5 + 2\sqrt{10} + 2 - 5 + 2\sqrt{10} - 2 = 4\sqrt{10}$$

$$B = \left[(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3}) \right]^{2} = \left((\sqrt{2})^{2} - (\sqrt{3})^{2} \right)^{2} = (2 - 3)^{2} = (-1)^{2} = 1$$

$$C = (\sqrt{2} + 1)^{3} = (\sqrt{2})^{3} + 3(\sqrt{2})^{2} \times 1 + 3\sqrt{2}(1)^{2} + (1)^{3} = 2\sqrt{2} + 3 \times 2 + 3\sqrt{2} + 1$$

$$C = 5\sqrt{2} + 7$$

$$D = (3x-2)^3 = (3x)^3 - 3(3x)^2 \times 2 + 3 \times 3x \times (2)^2 - (2)^3$$

$$D = 27x^3 - 54x^2 + 36x - 8$$

$$E = (x+2)(x^2-2x+4) = (x+2)(x^2-2\times x+2^2) = x^3+2^3 = x^3+8$$

$$F = (200520052006)^{2} - (200520052005 \times 200520052007)$$

On remarque que les nombres : 200520052006 et 200520052005 Et 200520052007 différent par leurs chiffes des unités

Pour simplifier on pose : x = 200520052006

Donc:
$$200520052005 = x - 1$$
 et $200520052007 = x + 1$

Donc:
$$F = x^2 - (x-1)(x+1)$$

$$=x^2-(x^2-1)=x^2-x^2+1=1$$
 Donc: $F=1$

Exemple2: Factoriser les expressions suivantes : $x \in \mathbb{R}$

1)
$$49x^2 - 81$$

2)
$$16x^2 - 8x + 1$$

3)
$$x^3$$
-8

4)
$$C = (a + 1) (2a - 3) + 6(a + 1)$$
 $D = 27x^3 + 1$

Solution :1) On regarde l'expression, pour choisir l'identité remarquable à appliquer.

L'expression semble être de la forme : a² - b².

$$49x^2 - 81 = (7x)^2 - 9^2 = (7x - 9) \times (7x + 9)$$
 il s'agit

d'un produit. L'expression est factorisée.

2)
$$16x^2 - 8x + 1 = (4x)^2 - 8x + 1^2 = (4x)^2 + 2 \times (4x) \times +1 = (4x-1)^2$$

3)
$$x^3-8=x^3-2^3=(x-2)(x^2+2x+2^2)=(x-2)(x^2+2x+4)$$

4) (a + 1) est le facteur commun.

$$C = (a + 1)(2a - 3 + 6)$$
 Donc $C = (a + 1)(2a + 3)$

5)D =
$$27x^3 + 1$$
 -> II n'y a pas de facteur commun.

-> L'expression semble être de la forme $a^3 + b^3$.

D =
$$27x^3 + 1 = (3x)^3 - 1^3 = (3x+1)((3x)^2 - 1(3x) + 1^2)$$

 $= (3x+1)(9x^2-3x+1)$

Donc : **Méthodes** : Pour factoriser une expression, on doit :

- identifier une identité remarquable ou

- identifier un facteur commun

Attention : on ne peut pas toujours factoriser une expression exemple : $16x^2 + 8x + 3 = (4x+1)^2 + 2$; cette expression ne peut pas être factorisée sous la forme d'un produit de deux facteurs de degré 1

Exercice9: Remplissez les blancs suivants :

$$10-4\sqrt{6} = (...-..)^2$$
 et $4+2\sqrt{2} = (...+...)^2$

Solution: 1)

$$\frac{2}{4+2\sqrt{3}} = 4+2\times\sqrt{3}\times1 = 3+2\times\sqrt{3}\times1 + 1 = \left(\sqrt{3}\right)^2 + 2\times\sqrt{3}\times1 + \left(1\right)^2$$

$$4+2\sqrt{3} = \left(\sqrt{3}+1\right)^2$$

$$10-4\sqrt{6} = 10-2\times2\times\sqrt{6} = \left(2\right)^2 + 2\times\sqrt{6}\times2 + \left(\sqrt{6}\right)^2$$

$$10-4\sqrt{6} = \left(2-\sqrt{6}\right)^2$$

Exercice 10: $a \in \mathbb{R}^*$ et $b \in \mathbb{R}^*$ et $a \ge b$

Montrer que :
$$\sqrt{a+\sqrt{a^2-b^2}} = \frac{\sqrt{2}}{2} \left(\sqrt{a-b} + \sqrt{a+b}\right)$$

Solution : pour montrer que deux nombres positifs sont égales on pourra montrer que leurs carrés sont égaux

$$\begin{split} & \left(\sqrt{a + \sqrt{a^2 - b^2}} \right)^2 = a + \sqrt{a^2 - b^2} \\ & \left(\frac{\sqrt{2}}{2} \left(\sqrt{a - b} + \sqrt{a + b} \right) \right)^2 = \left(\frac{\sqrt{2}}{2} \right)^2 \times \left(\sqrt{a - b} + \sqrt{a + b} \right)^2 \\ & = \frac{2}{4} \times \left(\sqrt{a - b} + \sqrt{a + b} \right)^2 = \frac{1}{2} \times \left(\left(\sqrt{a - b} \right)^2 + 2\sqrt{a - b} \sqrt{a + b} + \left(\sqrt{a + b} \right)^2 \right) \\ & = \frac{2}{4} \times \left(\sqrt{a - b} + \sqrt{a + b} \right)^2 = \frac{1}{2} \times \left(a - b + 2\sqrt{(a - b)(a + b)} + a + b \right) \\ & = \frac{1}{2} \times \left(2a + 2\sqrt{(a - b)(a + b)} \right) = a + \sqrt{(a - b)(a + b)} = a + \sqrt{a^2 - b^2} \\ & \text{Donc on a} : \left(\sqrt{a + \sqrt{a^2 - b^2}} \right)^2 = \left(\frac{\sqrt{2}}{2} \left(\sqrt{a - b} + \sqrt{a + b} \right) \right)^2 \end{split}$$

Exercice 11: Factoriser les expressions suivantes :
$$x \in \mathbb{R}$$

$$A = 16x^2 - 8x + 1$$
; $B = 16 - 25x^2$; $C = 1 - (1 - 3x)^2$
 $D = (2x - 1)^3 - 8$; $E = 27 + x^3$; $F = x^{12} - 2x^6 + 1$

Donc: $\sqrt{a + \sqrt{a^2 - b^2}} = \frac{\sqrt{2}}{2} (\sqrt{a - b} + \sqrt{a + b})$

$$H = x^3 + 1 + 2(x^2 - 1) - (x + 1)$$
 et $G = x^5 + x^3 - x^2 - 1$

Solution:
$$A = 16x^2 - 8x + 1 = (4x)^2 - 2 \times 4x \times 1 + 1^2 = (4x - 1)^2$$

$$B = 16 - 25x^2 = (4)^2 - (5x)^2 = (4 - 5x)(4 + 5x)$$

$$C = 1 - (1 - 3x)^2 = 1^2 - (1 - 3x)^2 = (1 - (1 - 3x))(1 + (1 - 3x))$$

$$C = (1-1+3x)(1+1-3x) = 3x(2-3x)$$

$$D = (2x-1)^3 - 8 = (2x-1)^3 - 2^3 =$$

On a:
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

donc:
$$D = ((2x-1)-2)((2x-1)^2+(2x-1)\times 2+2^2)$$

$$D = (2x-3)((2x)^2 - 4x + 1 + 4x - 2 + 4) = (2x-3)(4x^2 + 3)$$

$$E = 27 + x^3 = 3^3 + x^3 = (3+x)(3^2 - 3x + x^2)$$

On a:
$$a^3 + b^3 = (a+b)(a^2 - ab - b^2)$$

$$E = (3+x)(9-3x+x^2)$$

$$F = (x^6)^2 - 2x^6 + 1 = (x^6)^2 - 2x^6 \times 1 + 1^2 = (x^6 - 1)^2$$

$$G = x^5 + x^3 - x^2 - 1 = x^3(x^2 + 1) - (x^2 + 1) = (x^3 - 1)(x^2 + 1)$$

$$H = x^3 + 1 + 2(x^2 - 1) - (x + 1) = x^3 + 1^3 + 2(x^2 - 1^2) - (x + 1)$$

$$H = (x+1)(x^2 - x + 1^2) + 2(x+1)(x-1) - (x+1)$$

$$H = (x+1)(x^2-x+1+2(x-1)-1) = (x+1)(x^2-x+1+2x-2-1)$$

$$H = (x+1)(x^2+x-2)$$

<u>Factorise</u>r c'est écrire sous la forme d'un **produit**

Prof/ATMANI NAJIB