

Le produit scalaire dans le plan

I. Différentes expressions du produit scalaire :

1. Vecteurs colinéaires :

Définition :

soient \vec{u} et \vec{v} deux vecteurs colinéaires non nuls, tels que

$$\vec{u} = \vec{OA}$$
 et $\vec{v} = \vec{OB}$.

- Si \vec{u} et \vec{v} sont de même sens : $\vec{u}.\vec{v} = OA \times OB$.
- Si \vec{u} et \vec{u} sont de sens contraires : $\vec{u}.\vec{v} = OA \times OB$.
- Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$ alors $\vec{u}.\vec{v} = 0$.
- $\vec{u}.\vec{u} = ||\vec{u}||$ est le carré scalaire du vecteur \vec{u}

2. Vecteurs quelconques:

Propriété 1 :

Soient \vec{u} et \vec{v} deux vecteurs non nuls tels que

$$\vec{u} = \vec{OA}$$
 et $\vec{v} = \vec{OB}$.

Alors:

A' et B' sont respectivement les projetés orthogonaux de A sur (OB) et de B sur (OA).

3. Propriétés:

Propriété 2 :

Soient (x;y) et (x';y') les coordonnées respectives des vecteurs \vec{u} et \vec{v} dans un **repère orthonormé** quelconque.

II. Produit scalaire et orthogonalité :

Définition :

Dire que \vec{u} et \vec{v} sont deux vecteurs orthogonaux signifie que :

- Soit $\vec{u} \equiv \vec{0}$ ou $\vec{v} \equiv \vec{0}$;
- Soit (OA) \perp (OB), avec $\vec{u} = \vec{OA}$ et $\vec{v} = \vec{OB}$ non nuls.

2. Propriété:

Propriété:

III. Propriétés du produit scalaire :

Propriétés:

Propriétés:

Soient \vec{u} , \vec{v} , \vec{w} trois vecteurs et k un nombre réel.

- $\vec{u}.\vec{v} = \vec{v}.\vec{u}$ (symétrie).
- $(k\vec{u}).\vec{v} = \vec{u}.(k\vec{v}) = k(\vec{u}.\vec{v})$ (linéarité)
- $(\vec{u} + \vec{v}).\vec{w} = \vec{u}.\vec{w} + \vec{v}.\vec{w}$ (linéarité)
- $\vec{u}.(\vec{v}+\vec{w}) = \vec{u}.\vec{v} + \vec{u}.\vec{w}$ (linéarité)
- $(\vec{u}+\vec{v})^2=\vec{u}^2+2\vec{u}.\vec{v}+\vec{v}^2$ (identité remarquable)
- $(\vec{u}-\vec{v})^2=\vec{u}^2-2\vec{u}.\vec{v}+\vec{v}^2$ (identité remarquable)
- $(\vec{u}-\vec{v})(\vec{u}+\vec{v})=\vec{u}^2-\vec{v}^2$ (identité remarquable)

IV. Applications du produit scalaire :

1. Produit scalaire et cosinus :

Propriété:

Soit \vec{u} et \vec{v} non nuls.

$$\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$$

2. Théorème d'Al-Kashi:

Théorème:

Soit ABC un triangle tel que AB=c, AC=b et BC=a.

On a:

1.
$$a^2 = b^2 + c^2 - 2bc \times cos(\widehat{A})$$

2.
$$b^2 = a^2 + c^2 - 2ac \times cos(\widehat{B})$$

3.
$$c^2 = a^2 + b^2 - 2ab \times cos(\widehat{C})$$

3. Théorème de la médiane :

Théorème:

Soient A et B deux points distincts et I le milieu du segment [AB] .

Pour tout point M, :

