Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Рубежный контроль №2

По курсу «методы машинного обучения в АСОИУ»

Выполнил:

студент ИУ5-24M Ширшов A.C.

Проверил:

Гапанюк Ю.Е.

Подпись:

29.02.2024

Задание

Необходимо решить задачу классификации текстов на основе любого выбранного Вами датасета (кроме примера, который рассматривался в лекции).

Классификация может быть бинарной или многоклассовой.

Целевой признак из выбранного Вами датасета может иметь любой физический смысл, примером является задача анализа тональности текста.

Необходимо сформировать два варианта векторизации признаков - на основе CountVectorizer и на основе TfidfVectorizer. В качестве классификаторов необходимо использовать два классификатора по варианту для Вашей группы:

Для моей группы - GradientBoostingClassifier и LogisticRegression Для каждого метода необходимо оценить качество классификации. Сделайте вывод о том, какой вариант векторизации признаков в паре с каким классификатором показал лучшее качество.

Ход работы

Скачаем с сети набор данных Imdb. Применим на нём предложенные методы.

Рисунок 1 - Структура проекта

По варианту необходимо взять GradientBoostingClassifier и LogisticRegression

```
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

# Векторизация с использованием CountVectorizer
count_vectorizer = CountVectorizer(max_features=5000)
X_train_count = count_vectorizer.fit_transform(X_train)
X_test_count = count_vectorizer.transform(X_test)

# Векторизация с использованием TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(max_features=5000)
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
```

Рисунок 2 - Count и Tfid Vectorizer

Запуск всех 4-х вариантов представлен ниже.

```
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy_score, classification report
# GradientBoostingClassifier c CountVectorizer
gbc count = GradientBoostingClassifier()
gbc count.fit(X train count, y train)
y_pred_gbc_count = gbc_count.predict(X_test_count)
accuracy gbc count = accuracy score(v test, v pred gbc count)
report gbc count = classification report(y test, y pred gbc count)
# GradientBoostingClassifier c TfidfVectorizer
gbc tfidf = GradientBoostingClassifier()
gbc_tfidf.fit(X_train_tfidf, y_train)
y_pred_gbc_tfidf = gbc_tfidf.predict(X_test_tfidf)
accuracy gbc tfidf = accuracy score(y test, y pred gbc tfidf)
report_gbc_tfidf = classification_report(y_test, y_pred_gbc_tfidf)
# LogisticRegression c CountVectorizer
lr count = LogisticRegression(max iter=1000)
lr_count.fit(X_train_count, y_train)
y pred lr count = lr count.predict(X test count)
accuracy_lr_count = accuracy_score(y_test, y_pred_lr_count)
report_lr_count = classification_report(y_test, y_pred_lr_count)
# LogisticRegression c TfidfVectorizer
lr tfidf = LogisticRegression(max iter=1000)
lr_tfidf.fit(X_train_tfidf, y_train)
y pred lr tfidf = lr tfidf.predict(X test tfidf)
accuracy_lr tfidf = accuracy_score(y_test, y_pred_lr_tfidf)
report lr_tfidf = classification_report(y_test, y_pred_lr_tfidf)
```

Рисунок 3 - Запуск всех четырех вариантов

GradientBoostingClassifier c CountVectorizer						
Accuracy: 0.6325644098262433						
	precision	recall	f1-score	support		
0	0.74	0.76	0.75	2620		
1	0.55	0.86	0.67	2429		
2	0.66	0.10	0.17	1627		
accuracy			0.63	6676		
macro avg	0.65	0.57	0.53	6676		
weighted avg	0.65	0.63	0.58	6676		
GradientBoostingClassifier c TfidfVectorizer						
Accuracy: 0.6331635710005992						
	precision	recall	f1-score	support		
0	0.74	0.76	0.75	2620		
1	0.56	0.85	0.67	2429		
2	0.67	0.11	0.19	1627		
accuracy			0.63	6676		
macro avg	0.65	0.57	0.54	6676		
weighted avg	0.65	0.63	0.58	6676		

Рисунок 4 - Результаты градиентного бустинга

LogisticRegression c CountVectorizer Accuracy: 0.6503894547633313							
pi	recision	recall	f1-score	support			
0	0.76	0.76	0.76	2620			
1	0.65	0.68	0.67	2429			
2	0.46	0.44	0.45	1627			
accuracy			0.65	6676			
macro avg	0.62	0.62	0.62	6676			
weighted avg	0.65	0.65	0.65	6676			
LogisticRegression c TfidfVectorizer Accuracy: 0.6980227681246255							
-	recision		f1-score	support			
0	0.79	0.84	0.82	2620			
1	0.65	0.79	0.71	2429			
2	0.57	0.33	0.42	1627			
accuracy			0.70	6676			
macro avg	0.67	0.65	0.65	6676			
weighted avg	0.69	0.70	0.68	6676			

Рисунок 5 - Результаты логистической регрессии

Лучшей комбинацией оказалась - Линейная регрессия с Tfid Vectorizer.

```
results = {
    "GBC + Count": accuracy_gbc_count,
    "GBC + Tfidf": accuracy_gbc_tfidf,
    "LR + Count": accuracy_lr_count,
    "LR + Tfidf": accuracy_lr_tfidf
}

best_method = max(results, key=results.get)
print(f"Лучший метод: {best_method} c точностью {results[best_method]:.4f}")

✓ 0.0s

Лучший метод: LR + Tfidf c точностью 0.6980
```

Рисунок 6 - Вывод лучшего результата

Вывод

Логистическая регрессия - это простой и эффективный алгоритм, который используется для решения задач бинарной классификации. Он моделирует вероятность принадлежности объекта к определенному классу на основе линейной комбинации признаков.

Градиентный бустинг - это более сложный алгоритм, который используется для решения задач как бинарной, так и многоклассовой классификации. Он строит модель на основе последовательности слабых классификаторов, которые постепенно улучшают качество классификации.

После проведения исследования и экспериментов с различными подходами к векторизации признаков и выбором классификаторов, мы пришли к выводу, что лучшая комбинация для решения задачи классификации текстов на основе выбранного датасета - это использование метода векторизации TfidfVectorizer и классификатора LogisticRegression.

В ходе экспериментов мы также проверили комбинацию CountVectorizer c GradientBoostingClassifier, однако показатели качества классификации были ниже, чем при использовании TfidfVectorizer и LogisticRegression.