Chapter 22 Relations de comparaisons sur les suites

Exercice 22.1

Classer les suites de la liste ci-dessous de manière à ce que chacune d'entre elles soit négligeable devant les suivantes.

$$a_n = \ln n,$$
 $b_n = e^n,$ $c_n = (\ln n)^{2023},$ $d_n = n^{0.1},$ $e_n = 5^n,$ $f_n = 2^n,$ $g_n = n^{10},$ $h_n = \sqrt{\ln n},$ $i_n = n!.$

Solution 22.1

C'est du cours!

$$\sqrt{\ln n} = o(\ln n) \qquad \ln n = o\left((\ln n)^{2023}\right) \qquad (\ln n)^{2023} = o\left(n^{0.1}\right) \qquad n^{0.1} = o\left(n^{10}\right)$$

$$n^{10} = o\left(2^{n}\right) \qquad 2^{n} = o\left(e^{n}\right) \qquad e^{n} = o\left(5^{n}\right) \qquad 5^{n} = o\left(n!\right).$$

Vrai ou Faux?

- 1. $e^n \sim e^{n+1}$.
- **2.** $e^{u_n} \sim e^{v_n}$ si et seulement si $(u_n v_n)$ converge vers 0.
- 3. Si $u_n \sim v_n$ alors $e^{u_n} \sim e^{v_n}$.
- **4.** $\stackrel{\text{...}}{\rightharpoonup}$ Si $u_n \sim v_n$ alors $\ln u_n \sim \ln v_n$.

Solution 22.2

1. Faux. On a

$$\frac{e^n}{e^{n+1}} = \frac{1}{e}$$

qui ne tend pas vers 1 lorsque $n \to +\infty$.

2. Vrai.

$$e^{u_n} \sim e^{v_n} \iff \lim_{n \to \infty} \frac{e^{u_n}}{e^{v_n}} = 1 \iff \lim_{n \to \infty} e^{u_n - v_n} = 1 \iff \lim_{n \to \infty} u_n - v_n = 0.$$

- **3.** Faux. Par exemple, $n \sim n + 1$ mais e^n et e^{n+1} ne sont pas équivalentes.
- 4. Faux. Trouver un contre exemple non trivial est un peu plus dur. Par exemple,

$$1 + \frac{1}{n} \sim 1 + \frac{1}{n^2}$$

Or $\ln 1 + \frac{1}{n} \sim \frac{1}{n}$ et $\ln 1 + \frac{1}{n^2} \sim \frac{1}{n^2}$; et puisque 1/n et $1/n^2$ ne sont pas équivalents,

$$\ln 1 + \frac{1}{n} \sim \ln 1 + \frac{1}{n^2}$$
.

Classer les suites de la liste ci-dessous de manière à ce que chacune d'entre elles soit négligeable devant les suivantes.

$$a_n = n^n,$$
 $b_n = n^{\ln(n)},$ $c_n = e^{n^2},$ $d_n = (\ln n)^{n \ln n}.$

Solution 22.3

Nous émettons une conjecture:

$$b_n = o(a_n) a_n = o(d_n) d_n = o(c_n).$$

Pour la démontrer, on peut réécrire les termes généraux sous forme exponentielle:

$$a_n = n^n = e^{n \ln n},$$
 $b_n = n^{\ln(n)} = e^{(\ln n)^2},$ $c_n = e^{n^2},$ $d_n = (\ln n)^{n \ln n} = e^{n \ln(n) \ln(\ln n)}.$

On a

$$\frac{b_n}{a_n} = e^{(\ln n)^2 - n \ln n} = e^{\ln n(\ln n - n)} \to 0$$

puisque $\ln n - n \sim -n \to -\infty$. On a donc $b_n = o(a_n)$.

De plus,

$$\frac{a_n}{d_n} = e^{n \ln n - n \ln n \ln \ln n} = e^{n \ln n (1 - \ln \ln n)} \to 0$$

puisque $\ln \ln n \to +\infty$. Donc $a_n = o(d_n)$.

$$\frac{d_n}{c_n} = e^{n \ln n \ln \ln n - n^2} = e^{n \left(\ln n \ln \ln n - n^2 \right)}.$$

Or

$$\ln n \ln \ln n - n^2 = n^2 \left(\frac{\ln n}{n} \frac{\ln \ln n}{n} - 1 \right) \to -\infty$$

donc $\frac{d_n}{c_n} \to 0$, ainsi $d_n = o(c_n)$. On peut résumer ces résultats:

$$n^{\ln n} = o(n^n) \qquad \qquad n^n = o\left((\ln n)^{n \ln n}\right) \qquad \qquad (\ln n)^{n \ln n} = o\left(e^{n^2}\right).$$

Pour chaque paire de suites (u_n) et (v_n) ci-dessous, A-t-on $u_n = \mathcal{O}(v_n)$, $v_n = \mathcal{O}(u_n)$, $u_n = o(v_n)$, $v_n = o(u_n)$ ou $u_n \sim v_n$?

1.
$$u_n = (n^2 - n)/2$$
 et $v_n = 6n$.

2.
$$u_n = n + 2\sqrt{n}$$
 et $v_n = n^2$.

3.
$$u_n = n \ln n \text{ et } v_n = n \sqrt{n}/2.$$

4.
$$u_n = n + \ln n \text{ et } v_n = \sqrt{n}$$
.

5.
$$u_n = 2 (\ln n)^2$$
 et $v_n = \ln(n) + 1$.

6.
$$u_n = 4n \ln n + n \text{ et } v_n = (n^2 - n)/2.$$

Solution 22.4

1.
$$v_n = o(u_n)$$
 donc $v_n = \mathcal{O}(u_n)$.

2.
$$u_n = o(v_n)$$
 donc $u_n = \mathcal{O}(v_n)$.

3.
$$\ln n = o(\sqrt{n})$$
 donc $u_n = o(v_n)$ d'où $u_n = \mathcal{O}(v_n)$.

4.
$$v_n = o(u_n)$$
 donc $v_n = \mathcal{O}(u_n)$.

5.
$$v_n = o(u_n)$$
 donc $v_n = \mathcal{O}(u_n)$.

6.
$$u_n = o(v_n)$$
 donc $u_n = \mathcal{O}(v_n)$.

Trouver un équivalent simple de (u_n) lorsque n tend vers $+\infty$ dans les cas suivants.

- 1. $u_n = (1000)2^n + 4^n$.
- **2.** $u_n = n + n \ln n + \sqrt{n}$.
- 3. $u_n = \ln(n^{20}) + (\ln n)^{10}$.
- **4.** $u_n = (0.99)^n + n^{100}$.

Solution 22.5

1. Par croissance comparée, $2^n = o(4^n)$ donc

$$u_n = (1000)2^n + 4^n \sim 4^n.$$

2. On a $1 = o(\ln n)$ (et $n = \mathcal{O}(n)$) donc $n = o(n \ln n)$. De plus, $\sqrt{n} = o(n)$ donc $\sqrt{n} = o(n \ln n)$. Finalement,

$$u_n = n + n \ln n + \sqrt{n} \sim n \ln n \quad [n \to +\infty].$$

3. On a $\ln (n^{20}) = 20 \ln n = o((\ln n)^{10})$, d'où

$$u_n = \ln(n^{20}) + (\ln n)^{10} \sim (\ln n)^{10} \quad [n \to +\infty].$$

4. On a $\lim_{n \to \infty} (0.99)^n = 0$ et $\lim_{n \to \infty} n^{100} = +\infty$ donc $(0.99)^n = o(n^{100})$, d'où

$$u_n = (0.99)^n + n^{100} \sim n^{100} \quad [n \to +\infty].$$

Déterminer un équivalent simple quand *n* tend vers l'infini de

1.
$$a_n = \frac{1}{3^n} - \frac{1}{2^n}$$
;

2.
$$b_n = \frac{1}{n} + \frac{10^{32}}{n^2}$$
;

3.
$$c_n = n^{-1/2} + 1$$
;

4.
$$d_n = \ln n - \sqrt{n} + (-1)^n$$
;

5.
$$e_n = 10^n + n!$$

6.
$$f_n = \frac{1}{10^n} + \frac{1}{n!}$$

7.
$$g_n = n! + n^{\sqrt{n}} + n^n$$
;

4.
$$d_n = \ln n - \sqrt{n} + (-1)^n$$
;
5. $e_n = 10^n + n!$;
6. $f_n = \frac{1}{10^n} + \frac{1}{n!}$;
7. $g_n = n! + n^{\sqrt{n}} + n^n$;
8. $h_n = \sum_{k=1}^{10} \frac{1}{(\operatorname{ch} n)^k}$;
9. $i_n = \sqrt{n+1} - \sqrt{n}$;

9.
$$i_n = \sqrt{n+1} - \sqrt{n}$$

10.
$$i_n = \ln(n + 32)$$
.

Solution 22.6

Réponses à détailler.

1.
$$a_n \sim -\frac{1}{2^n}$$
;

2.
$$b_n \sim \frac{1}{n}$$
;

3.
$$c_n \sim 1$$
;

4.
$$d_n \sim -\sqrt{n}$$

5.
$$e_n \sim n!$$

4.
$$d_n \sim -\sqrt{n}$$
;
5. $e_n \sim n!$;
6. $f_n \sim \frac{1}{10^n}$;
7. $g_n \sim n^n$;

7.
$$g_n \sim n^n$$

8.
$$h_n \sim 2e^{-n}$$

8.
$$h_n \sim 2e^{-n}$$
;
9. $i_n \sim \frac{1}{2\sqrt{n}}$;
10. $j_n \sim \ln(n)$.

10.
$$j_n \sim \ln(n)$$
.

Déterminer un équivalent simple de

1.
$$u_n = \frac{100^n + 3(n!)}{2(n!) + 1000^n}$$

2.
$$v_n = \frac{n! + 2^n}{3^n + n^{30}}$$
,

3. $w_n = \frac{n^3 + n! + 10^n}{(n+2)! + 100^n},$ 4. $t_n = \frac{n! + n^n}{n^{n+3} + 1000^n},$

4.
$$t_n = \frac{n! + n^n}{n^{n+3} + 1000^n}$$

et en déduire leurs limites.

Solution 22.7

Réponses à détailler.

1.
$$u_n \sim \frac{3}{2} \xrightarrow[n \to +\infty]{} \frac{3}{2}$$
,

$$2. \ v_n \sim \frac{n!}{3^n} \xrightarrow[n \to +\infty]{} +\infty,$$

3.
$$w_n \sim \frac{1}{n^2} \xrightarrow[n \to +\infty]{} 0,$$

4. $t_n \sim \frac{1}{n^3} \xrightarrow[n \to +\infty]{} 0.$

4.
$$t_n \sim \frac{1}{n^3} \xrightarrow[n \to +\infty]{} 0$$

Trouver un équivalent simple de (u_n) lorsque n tend vers $+\infty$ dans les cas suivants.

1.
$$u_n = n^{1/n} - 1$$
;

2.
$$u_n = \frac{1 + \sin\frac{1}{n}}{\tan\frac{1}{n^2}}$$
;

3.
$$u_n = \ln\left(n + \sqrt{n^2 + 1}\right)$$
;

4.
$$u_n = (n+3\ln n) e^{-(n+1)}$$
;

5.
$$u_n = \frac{n! + e^n}{2^n + 3^n}$$
;

6.
$$u_n = \frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n+1}}$$

Solution 22.8

1. Pour $n \in \mathbb{N}^*$,

$$u_n = e^{\frac{1}{n} \ln n} - 1$$
 et $\lim_{n \to \infty} \frac{1}{n} \ln n = 0$

et donc

$$u_n = e^{\frac{1}{n}\ln n} - 1 \underset{n \to +\infty}{\sim} \frac{\ln n}{n}.$$

2. Lorque $n \to +\infty$, on a $\frac{1}{n} \to 0$ et $\frac{1}{n^2} \to 0$ donc

$$\sin\frac{1}{n} \sim \frac{1}{n} \text{ et } \tan\frac{1}{n^2} \sim \frac{1}{n^2}.$$

On a donc $\sin \frac{1}{n} \sim \frac{1}{n} = o(1)$ d'où $1 + \sin \frac{1}{n} \sim 1$. Finalement,

$$u_n = \frac{1 + \sin\frac{1}{n}}{\tan\frac{1}{n^2}} \sim \frac{1}{\frac{1}{n^2}} \sim n^2.$$

3. Pour $n \ge 1$,

$$u_n = \ln\left(n + \sqrt{n^2 + 1}\right) = \ln\left(n(1 + \sqrt{1 + 1/n^2}\right) = \ln n + \ln\left(1 + \sqrt{1 + 1/n^2}\right).$$

Or

$$\lim_{n \to \infty} \ln n = +\infty \text{ et } \lim_{n \to \infty} \ln \left(1 + \sqrt{1 + \frac{1}{n^2}} \right) = \ln 2$$

On a donc $\ln\left(1+\sqrt{1+1/n^2}\right) = o(\ln n)$ d'où

$$u_n \sim \ln n$$
.

4. Lorsque $n \to +\infty$, on a $\ln n = o(n)$, donc $n + 3 \ln n \sim n$. Finalement

$$u_n \sim ne^{-(n+1)} = \frac{ne^{-n}}{e}.$$

5. Lorsque $n \to +\infty$,

$$e^n = o(n!)$$
 et $2^n = o(3^n)$

On a donc $n! + e^n \sim n!$ et $2^n + 3^n \sim 3^n$, d'où

$$u_n = \frac{n! + e^n}{2^n + 3^n} \sim \frac{n!}{3^n}.$$

8

6. On a $\frac{1}{\sqrt{n-1}} \sim \frac{1}{\sqrt{n}}$ et $\frac{1}{\sqrt{n+1}} \sim \frac{1}{\sqrt{n}}$: aucun des terme n'est négligeable devant l'autre (et on ne peut pas additionner les équivalents!).

Pour $n \ge 2$,

$$u_n = \frac{\sqrt{n+1} - \sqrt{n-1}}{\sqrt{n-1}\sqrt{n+1}} = \frac{\sqrt{n+1} - \sqrt{n-1}}{\sqrt{n^2 - 1}} = \frac{2}{\sqrt{n^2 - 1}\left(\sqrt{n+1} + \sqrt{n-1}\right)}.$$

Or, lorsque $n \to +\infty$, $n^2 - 1 \sim n^2$ donc $\sqrt{n^2 - 1} \sim n$.

De plus, $n+1 \sim n$ et $n-1 \sim n$, on a alors $\sqrt{n+1} \sim \sqrt{n}$ et $\sqrt{n-1} \sim n$, et on peut écrire

$$\sqrt{n+1} + \sqrt{n-1} = \sqrt{n} + o(\sqrt{n}) + \sqrt{n} + o(\sqrt{n}) = 2\sqrt{n} + o(\sqrt{n})$$

Ce qui revient à $\sqrt{n+1} + \sqrt{n-1} \sim 2\sqrt{n}$.

Finalement,

narque

$$u_n = \frac{2}{\sqrt{n^2 - 1} \left(\sqrt{n + 1} + \sqrt{n - 1}\right)} \sim \frac{2}{n \times 2\sqrt{n}} \sim \frac{1}{n\sqrt{n}}.$$

Si l'on veut se passer de «petit-o», on peut faire le calcul «à la main»:

$$\sqrt{n+1} + \sqrt{n-1} = \sqrt{n} \left(\sqrt{1+1/n} + \sqrt{1-1/n} \right) \text{ et } \sqrt{1+1/n} + \sqrt{1-1/n} \rightarrow 2$$

donc $\sqrt{n+1} + \sqrt{n-1} \sim 2\sqrt{n}$.

Soient $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ et $(u_n)_{n\in\mathbb{N}}$ trois suites à valeurs réelles. On suppose que $a_n \underset{n\to\infty}{\sim} b_n$ et qu'à partir d'un certain rang

$$a_n \leq u_n \leq b_n$$
.

Montrer qu'alors

$$u_n \underset{n \to +\infty}{\sim} a_n$$
 et $u_n \underset{n \to +\infty}{\sim} b_n$.

Solution 22.9

arque

À partir d'un certain rang k, on a

$$0 \le u_n - a_n \le b_n - a_n,$$

d'où $u_n - a_n = \mathcal{O}(b_n - a_n)$. De plus, $a_n \sim b_n$ donc $b_n - a_n = o(a_n)$. Finalement, on a $u_n - a_n = o(a_n)$ c'est-à-dire,

$$u_n \underset{n\to+\infty}{\sim} a_n,$$

et puisque $a_n \sim b_n$, on a par transitivité $u_n \sim b_n$.

Variante dans un cas particulier

Dans le cas où $a_n > 0$, on obtient une démonstration rapide à partir du quotient. C'est un cas fréquent en pratique.

À partir d'un certain rang

$$1 \le \frac{u_n}{a_n} \le \frac{b_n}{a_n}.$$

Or $a_n \sim b_n$ d'où $\lim_{n \to +\infty} \frac{b_n}{a_n} = 1$. D'après le théorème d'existence de limite par encadrement, on a donc

$$\lim_{n \to +\infty} \frac{u_n}{a_n} = 1,$$

d'où $u_n \sim a_n \sim b_n$.

Lorsque le signe des suites n'est pas constant, on peut faire un raisonnement analogue, mais il faut alors faire très attention avec les inégalités précédentes.

Soient u et v deux suites de réels strictement positifs telles que, à partir d'un certain rang,

$$\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}.$$

Montrer que $u_n = \mathcal{O}(v_n)$.

Solution 22.10

Soit $\alpha \in \mathbb{N}$ tel que pour $n \ge \alpha$,

$$0<\frac{u_{n+1}}{u_n}\leq \frac{v_{n+1}}{v_n}.$$

On a alors

$$\prod_{k=\alpha}^{n-1} \frac{u_{n+1}}{u_n} \le \prod_{k=\alpha}^{n-1} \frac{v_{n+1}}{v_n}$$

c'est-à-dire, par télescopage

$$\frac{u_n}{u_\alpha} \le \frac{v_n}{v_\alpha}.$$

Finalement, si $n \ge \alpha$, on a

$$0 < u_n \le \frac{u_\alpha}{v_\alpha} v_n;$$

d'où $u_n = \mathcal{O}(v_n)$.

Seconde méthode, utilisant la monotonie du quotient.

Puisque les suites sont à valeurs > 0, il existe un rang $\alpha \in \mathbb{N}$ tel que

$$\forall n \ge \alpha, \frac{u_{n+1}}{v_{n+1}} \le \frac{u_n}{v_n}.$$

Autrement dit, la suite $\left(\frac{u_n}{v_n}\right)_{n>\alpha}$ est décroissante. On a donc

$$\forall n \geq \alpha, \frac{u_n}{v_n} \leq \frac{u_\alpha}{v_\alpha}.$$

En notant $k = u_{\alpha}/v_{\alpha}$, on a donc

$$\forall n \geq \alpha, 0 \leq u_n \leq k v_n;$$

et par conséquent $u_n = \mathcal{O}(v_n)$.

Déterminer un équivalent simple de (u_n) dans les cas suivants.

1.
$$u_n = \ln\left(1 + \frac{a}{n}\right)$$
, où $a \in \mathbb{R}^*$.

2.
$$u_n = \left(1 + \sqrt{n^2 + 1}\right)^{1/2}$$
.
3. $u_n = \ln\left(n^2 + n + 1\right)$.

3.
$$u_n = \ln(n^2 + n + 1)$$

Solution 22.11

1.
$$u_n \sim \frac{a}{n}$$
.

2.
$$u_n \sim \sqrt{n}$$
. **3.** $u_n \sim 2 \ln n$.

3.
$$u_n \sim 2 \ln n$$

Soit (u_n) la suite définie par

$$u_0>0$$
 et $\forall n\in\mathbb{N}, u_{n+1}=\frac{u_n}{\sqrt{1+u_n^2}}.$

- 1. Prouver que (u_n) est convergente.
- 2. Pour $n \in \mathbb{N}^{\star}$, on définit $w_n = \frac{1}{u_n^2} \frac{1}{u_{n-1}^2}$. Déterminer w_n , calculer de deux façons différentes $\frac{1}{n} \sum_{k=1}^n w_k$, déduire $\lim_{n \to +\infty} n u_n^2$, puis un équivalent de u_n .

Solution 22.12

1. Il est clair que pour tout $n \in \mathbb{N}$, $u_n > 0$ et $\sqrt{1 + u_n^2} > u_n$, d'où $u_{n+1} < u_n$, la suite (u_n) est donc décroissante. Étant décroissante et minorée (par 0), elle est convergente.

2. Pour
$$n \in \mathbb{N}^*$$
, $w_n = \left(\frac{\sqrt{1 + u_{n-1}^2}}{u_{n-1}}\right)^2 - \frac{1}{u_{n-1}^2} = 1$, d'où

$$\frac{1}{n}\sum_{k=1}^{n}w_k=1.$$

D'autre part, on a par télescopage,

$$\frac{1}{n} \sum_{k=1}^{n} w_k = \frac{1}{n} \left(\frac{1}{u_n^2} - \frac{1}{u_0^2} \right).$$

Ainsi, $\frac{1}{u_n^2} - \frac{1}{u_0^2} = n$, d'où $\frac{1}{nu_n^2} = 1 + \frac{1}{nu_0^2}$ avec $\lim_{n \to +\infty} \frac{1}{nu_0^2} = 0$. Ce qui prouve que $\lim_{n \to +\infty} nu_n^2 = 1$, on déduit que $\lim_{n \to +\infty} u_n \sqrt{n} = 1$ (car $u_n > 0$ pour tout $n \in \mathbb{N}$) et donc

$$u_n \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}}.$$

Exercice 22.13 (****)

Soit $T: \mathbb{N}^* \to \mathbb{R}_+^*$ telle que

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \mathcal{O}(n) \quad [n \to +\infty].$$

Montrer que $T(n) = \mathcal{O}(n \lg n)$.

Solution 22.13

L'hypothèse sur T(n) peut se réécrire

$$\forall n \in \mathbb{N}^{\star}, T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + g(n)$$

où $g(n) = \mathcal{O}(n)$, c'est-à-dire qu'il existe k > 0 et $n_0 \in \mathbb{N}$ tels que

$$\forall n \geq n_0, g(n) \leq kn$$
.

On a donc

$$\forall n \geq n_0, T(n) \leq 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + kn.$$

Quitte à changer, n_0 , on peut supposer $n_0 \ge 2$. On peut alors choisir $c \ge 1$ (en fait $c \ge k+1$) tel que

$$\forall n \in [[n_0, 2n_0]], T(n) \le cn \lg n$$

Par exemple

arque

arque

$$c = \max \left\{ \ k+1, \frac{T(n_0)}{n_0 \lg n_0}, \frac{T(n_0+1)}{(n_0+1)\lg(n_0+1)}, \dots, \frac{T(2n_0)}{2n_0 \lg(2n_0)} \ \right\}.$$

où lg désigne le logarithme de base 2.

Pour $n \ge n_0$, définissons le prédicat R(n) par « $T(n) \le cn \lg n$ » de sorte que $R(n_0)$, $R(n_0 + 1)$,..., $R(2n_0)$ sont vrais par définition de c.

Soit $n \ge 2n_0$ tel que $R(n_0)$, $R(n_0 + 1)$, ..., R(n), alors

$$n_0 \leq \left \lfloor \frac{2n_0+1}{2} \right \rfloor \leq \left \lfloor \frac{n+1}{2} \right \rfloor \leq \frac{n+1}{2} \leq n$$

En particulier, $R\left(\left\lfloor \frac{n+1}{2} \right\rfloor\right)$ est vraie et donc

$$T(n+1) = 2T\left(\left\lfloor \frac{n+1}{2} \right\rfloor\right) + g(n+1)$$

$$\leq 2c \left\lfloor \frac{n+1}{2} \right\rfloor \lg \left\lfloor \frac{n+1}{2} \right\rfloor + k(n+1)$$

$$\leq 2c \frac{n+1}{2} \lg \frac{n+1}{2} + k(n+1)$$

$$= (n+1) (c \lg(n+1) - c \lg 2 + k)$$

$$= (n+1) (c \lg(n+1) + 1 - c + k)$$

$$\leq c(n+1) \lg(n+1)$$
en choisissant $c \geq k+1$ au départ.

D'où R(n+1).

Conclusion

Par récurrence, on a pour $n \ge n_0$, $T(n) \le cn \lg n$, d'où

$$T(n) = \mathcal{O}(n \lg n).$$

Cette récurrence arrive naturellement (presque) sous cette forme lorsque l'on étudie la complexité en temps de l'algorithme de tri par fusion. En seconde année, vous montrerez d'ailleurs que $T(n) = \Theta(n \lg n)$.