Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Игнатенкова Варвара Николаевна

Содержание

1	Задание										
2											
3	Выполнение лабораторной работы	7									
	3.1 Постановка задачи										
4	Выводы	19									

Список иллюстраций

3.1	Модель первой стратегии обслуживания	8
3.2	Отчёт по модели первой стратегии обслуживания	9
3.3	Модель второй стратегии обслуживания	10
3.4	Отчет по модели второй стратегии обслуживания	10
3.5	Модель двух стратегий обслуживания с 1 пропускным пунктом	12
3.6	Отчёт по модели двух стратегий обслуживания с 1 пропускным	
	пунктом	12
3.7	Модель первой стратегии обслуживания с 3 пропускными пунктами	13
3.8	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	пунктами	14
3.9	Модель первой стратегии обслуживания с 4 пропускными пунктами	15
3.10	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	пунктами	15
3.11	Модель второй стратегии обслуживания с 3 пропускными пунктами	16
3.12	Отчёт по модели второй стратегии обслуживания с 3 пропускными	
	пунктами	16
3.13	Модель второй стратегии обслуживания с 4 пропускными пунктами	17
3.14	Отчёт по модели второй стратегии обслуживания с 4 пропускными	
	пунктами	17

Список таблиц

3.1 Сравнение стратегий:	
--------------------------	--

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

3.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

3.2 Построение модели

Целью моделирования является определение:

• характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. [3.1]).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl 2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl_1; длина оч. 1= длине оч. 2
TRANSFER 0.5, Obsl 1, Obsl 2; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punktl ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punktl ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. [3.2]).

Untitled M	lodel 1.1.1	- KEPOKI								
		0,000	24, 11471	., 2020	0212312	•				
	START	TIME				FACILIT	TIES S	STORAGES		
	(0.000	1	000.080	18	2		0		
		-								
	NAN	1E			VALUE					
	OBSL_1 OBSL 2				5.000					
	OTHER1			1.0	000.000					
	OTHER2				001.000					
	PUNKT1				003.000					
	PUNKT2				002.000					
			DT 0011 -							
LABEL			GENERAT		ENTRY CO	UNI CURRE	INT COL	UNT RETRY 0		
			TEST	_	5853		0	_		
			TEST		4162		0	0		
			TRANSFE		2431		o	0		
BSL 1			QUEUE		2928		387	0		
_			SEIZE		2541		0	0		
		7	DEPART		2541		0	0		
		8	ADVANCE		2541		1	0		
		9	RELEASE		2540		0	0		
			TERMINA		2540		0	0		
BSL_2			QUEUE		2925		388	0		
			SEIZE		2537		0	0		
			DEPART		2537		0	0		
			ADVANCE		2537		1	0		
			RELEASE		2536 2536		0	0		
			TERMINA' GENERAT		2536		0	0		
			TERMINA		1		0	0		
		10	IERHINA	LL	_			0		
ACILITY								INTER RET		
PUNKT2			0.996		.957 1				0 388	
PUNKT1		2541	0.997	3	.955 1	5079	0	0	0 387	
UEUE		MAX C	ONT. ENT	RY ENTRY	(0) AVE.	CONT. AVE	.TIME	AVE.(-	0) RETRY	
OTHER1		393	387 29	28 1	2 187.			646.7		
OTHER2		393	388 29	25 1	2 187.	114 64	4.823	647.4	79 0	
EC XN	PRI	BDT	AS	SEM CUR	RENT NE	XT PARAM	METER	VALUE		
	0		102 58		0 1					
5079	0	10083.	517 50	79	8 9					
5078	0	10083.	808 50	78 1	4 15					
5856	0	20160.	000 58	56	0 17					

Рис. 3.2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. [3.3], [3.4]).

```
punkt STORAGE 2
GENERATE (Exponential (1,0,1.75))
QUEUE Other; присоединение к очереди 1
ENTER punkt,1; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt,1; освобождение пункта 1
TERMINATE; автомобтль покидает систему

;задание условия остановки процедуры моделирования
GENERATE 10080;
TERMINATE 1;
START 1;
```

Рис. 3.3: Модель второй стратегии обслуживания

```
GPSS World Simulation Report - Untitled Model 1.4.1
                                               суббота, мая 17, 2025 02:01:25
                              START TIME END TIME 0.000 10080.000
                                                                                  END TIME BLOCKS FACILITIES STORAGES
                                    NAME
                                                                                                            VALUE
                           OTHER
                                                                                                10001.000
                           PUNKT

        LOC
        BLOCK TYPE
        ENTRY COUNT CURRENT COUNT RETRY

        1
        GENERATE
        5719
        0
        0

        2
        QUEUE
        5719
        668
        0

        3
        ENTER
        5051
        0
        0

        4
        DEPART
        5051
        0
        0

        5
        ADVANCE
        5051
        2
        0

        6
        LEAVE
        5049
        0
        0

        7
        TERMINATE
        5049
        0
        0

        8
        GENERATE
        1
        0
        0

        9
        TERMINATE
        1
        0
        0

    LABEL
                      MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
 QUEUE
    OTHER
                                                 668 668 5719 4 344.466
                                                                                                                                              607.138
                                                                                                                                                                             607.562
 STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY PUNKT 2 0 0 2 505 3 0000
                                                 2 0 0 2 5051 1

        FEC XN
        PRI
        BDT
        ASSEM
        CURRENT
        NEX

        5721
        0
        10080.466
        5721
        0
        1

        5051
        0
        10081.269
        5051
        5
        6

        5052
        0
        10083.431
        5052
        5
        6

        5722
        0
        20160.000
        5722
        0
        8

                                                                               ASSEM CURRENT NEXT PARAMETER VALUE
```

Рис. 3.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. [3.1]).

Таблица 3.1: Сравнение стратегий:

Показатель	стратегия 1	стратегия 2		
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

3.3 Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;

• среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. [3.5]).

```
GENERATE (Exponential (1,0,1.75))
QUEUE Other; присоединение к очереди 1
SEIZE punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
RELEASE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080;
TERMINATE 1;
START 1;
```

Рис. 3.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. [3.5]).

Рис. 3.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. [3.7], [3.8]).

```
GENERATE (Exponential (1,0,1.75))
Obsl 1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punktl;
DEPART Otherl;
ADVANCE 4,3;
RELEASE punkt1 ;
TERMINATE ;
Obsl_2 QUEUE Other2 ;
SEIZE punkt2 ;
DEPART Other2 ;
ADVANCE 4,3;
RELEASE punkt2 ;
TERMINATE ;
Obsl_3 QUEUE Other3 ;
SEIZE punkt3 ;
DEPART Other3 ;
ADVANCE 4,3;
RELEASE punkt3 ;
TERMINATE ;
; задание условия остановки процедуры моделирования
GENERATE 10080 ;
TERMINATE 1 ;
START 1 ;
```

Рис. 3.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

	START	TIME	END	TIME BL	OCKS F	ACILITIES	STORAGES		
	(.000	10080	.000	21	1	0		
	,	-		VAL					
	NAM OBSL 1			VAL 2.					
	OBSL_1 OBSL 2			8.					
	OBSL_3			14.					
	OTHER1			10000.					
	OTHER2			UNSPEC					
	OTHER3			UNSPEC					
	PUNKT1			10001.					
	PUNKT2 PUNKT3			UNSPEC					
	PUNKTS			UNSPEC	IFIED				
LABEL		LOC	BLOCK TYPE GENERATE	ENTR'	Y COUNT	CURRENT C	OUNT RETRY		
OBSL 1		2	OUDUD	5	744	3233	0		
ODDT_I		2	CETTE	5	/44 511	3233	0		
		3	QUEUE SEIZE DEPART	2.	511	0			
		4	DEPART	2.					
		5	ADVANCE RELEASE	2.	511	1	0		
		6	KELEASE	2.	510	0	0		
		7	TERMINATE QUEUE	2.	510	0	0		
OBSL_2		8	QUEUE		0	0	0		
			SEIZE		0	0	0		
		10	DEPART		0 0	0	0 0 0		
		11	ADVANCE RELEASE		0	0	0		
		12	RELEASE		0	0	0		
		13	TERMINATE QUEUE		0	0	0 0 0		
OBSL_3					0	0	0		
			SEIZE		0	0	0		
		16	DEPART		0	0	0		
			ADVANCE		0				
			RELEASE		0	0	0		
			TERMINATE		0				
			GENERATE		1	0	0		
		21	TERMINATE		1	0	0		
			UTIL. AV						
PUNKT1		2511	1.000	4.014	1	2512 0	0 0	3233	
QUEUE		MAX C	ONT. ENTRY E 233 5744	NTRY(0)	AVE.CON	IT. AVE.TIM	E AVE.(-0)) RETRY	
OTHER1		3234 3	233 5744	1 1	617.676	2838.81	9 2839.313	3 0	
			3.00=11	CURRENT.		D3.D3.VEE==			
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	VALUE		
2512	U	10080.	255 2512 384 5746	5	6				
5746 5747	U	10080.	384 5746 000 5747	0	1				
5747	0	20160.	000 5747	0	2.0				

Рис. 3.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. [3.9], [3.10]).

```
GENERATE (Exponential (1,0,1.75))

TRANSFER 0.5,a,b;
a TRANSFER 0.5,Obsl_1,Obsl_2
b TRANSFER 0.5,Obsl_3,Obsl_4

Obsl_1 QUEUE Other1; | присоединение к очереди 1

SEIZE punktl;
DEPART Other1;
ADVANCE 4,3;
RELEASE punktl;
TERMINATE;
Obsl_2 QUEUE Other2;
SEIZE punkt2;
DEPART Other2;
ADVANCE 4,3;
RELEASE punkt2;
TERMINATE;
Obsl_3 QUEUE Other3;
SEIZE punkt3;
DEPART Other3;
ADVANCE 4,3;
RELEASE punkt3;
TERMINATE;
Obsl_4 QUEUE Other4;
SEIZE punkt3;
TERMINATE;
Obsl_4 QUEUE Other4;
SEIZE punkt4;
DEPART Other4;
ADVANCE 4,3;
RELEASE punkt4;
TERMINATE;

CObsl_4 QUEUE Other4;
SEIZE punkt4;
DEPART Other4;
ADVANCE 4,3;
RELEASE punkt4;
TERMINATE;

; BANDANCE 4,3;
RELEASE punkt4;
TERMINATE;

; SALEASE PUNKT4;
TERMINATE;

; SALEASE PUNKT4;
TERMINATE;

; SALEASE PUNKT4;
TERMINATE;

; SALEASE PUNKT4;
TERMINATE];
START 1;
```

Рис. 3.9: Модель первой стратегии обслуживания с 4 пропускными пунктами

		24				413		0		0	
		DEPART		_	1413		0		0		
	26 ADVANCE		1	1413				0			
		27	27 RELEASE		1	1412		0		0	
		28	TERMINATE		1	1412		0		0	
		29	GENERATE			1		0		0	
		30	TERMI	NATE		1		0		0	
FACILITY		ENTRIES	UTIL	. AV	E. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
PUNKT4		1413	0.5	57	3.971	1	5623	0	0	0	0
PUNKT3		1378	0.5	45	3.989	1	0	0	0	0	0
PUNKT2		1366	0.5	41	3.993	1	0	0	0	0	0
PUNKT1		1465	0.5	84	4.018	1	5621	0	0	0	0
QUEUE		MAX C	ONT. E	NTRY E	NTRY(0)	AVE.CON	IT. AVI	E.TIME	AV	E.(-0)	RETRY
OTHER4		7	0	1413	628	0.415	,	2.958	3	5.325	0
OTHER3		8	0	1378	655	0.345	,	2.527	7	4.816	0
OTHER2		6	0	1366	625	0.363	3	2.676	5	4.934	0
OTHER1		6	0	1465	590	0.492	2	3.385	5	5.667	0
FEC XN	PRI	BDT		ASSEM	CURRENT	NEXT	PARA	METER	VA	LUE	
5624	0	10080.0	041	5624	0	1					
5621	0	10080.3	398	5621	8	9					
5623	0	10082.2	255	5623	26	27					
5625	0	20160.0	000	5625	0	29					

Рис. 3.10: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются *оптимальным* количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. [3.11], [3.12]).

```
punkt STORAGE 3;
GENERATE (Exponential (1,0,1.75))

QUEUE Other;
ENTER punkt;
DEPART Other;
Advance 4,3;
LEAVE punkt;
TERMINATE;

; задание условия остановки процедуры моделирования
GENERATE 10080;
TERMINATE 1;
START 1;
```

Рис. 3.11: Модель второй стратегии обслуживания с 3 пропускными пунктами

Рис. 3.12: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. [3.13], [3.14]).

```
punkt STORAGE 4;

GENERATE (Exponential (1,0,1.75))

QUEUE Other;

ENTER punkt;

DEPART Other;

Advance 4,3;

LEAVE punkt;

TERMINATE;

;задание условия остановки процедуры моделирования

GENERATE 10080;

TERMINATE 1;

START 1;
```

Рис. 3.13: Модель второй стратегии обслуживания с 4 пропускными пунктами

Рис. 3.14: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка

меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

4 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.