ℓ_p Norm Concentration

Alireza Naderi

October 2021

Let $X = (X_1, \dots, X_N)^{\top}$, where X_i are iid sub-gaussian random variables with $||X_i||_{\psi_2} \leq K$. Then, for every p > 0, the random variable $Y_i := |X_i|^p$ satisfies

$$\mathbb{E}[\exp(Y_i^{\beta}/\sigma^{\beta})] \le 2,$$

for $\beta = 2/p$ and $\sigma = K^p$, i.e. Y_i is sub-weibull with $||Y_i||_{\psi_{\beta}} \leq K^p$. (Check!)

We want to bound the tail probability $\mathbb{P}(\left| \|X\|_p - (\mathbb{E} \|X\|_p^p)^{1/p} \right| \geq t)$ for $p \geq 2$. Let $\mu := \mathbb{E} Y_i = \mathbb{E} |X_i|^p$, thus $(\mathbb{E} \|X\|_p^p)^{1/p} = (N\mu)^{1/p}$.

Lemma 1. For any $p \ge 1$ and $z, \delta \ge 0$, if $|z - 1| \ge \delta$, then $|z^p - 1| \ge \max\{\delta, \delta^p\}$.

Theorem 1 (Theorem 3.1 in [1]). Suppose $\{Y_i\}_{i=1}^N$ are independent subweibull random variables with $\|Y_i\|_{\psi_\beta} \leq \sigma$. Then for any $\mathbf{a} = (a_1, \dots, a_N)^\top \in \mathbb{R}^N$ and all s > 2, we have

$$\mathbb{P}\left(\left|\sum_{i=1}^{N} a_i Y_i - \mathbb{E}\left(\sum_{i=1}^{N} a_i Y_i\right)\right| \ge C_{\beta} \sigma\left(\|\mathbf{a}\|_2 \sqrt{s} + \|\mathbf{a}\|_{\infty} s^{1/\beta}\right)\right) \le e^{-s}, \quad (1)$$

where C_{β} is an absolute constant only depending on β .

Remark. In our setting, $1/\beta = p/2 \ge 1$. Check that the following is equivalent to (1):

$$\mathbb{P}\left(\left|\sum_{i=1}^{N} a_{i} Y_{i} - \mathbb{E}\left(\sum_{i=1}^{N} a_{i} Y_{i}\right)\right| \geq u\right) \leq \exp\left(-c \min\left\{\frac{u^{2}}{C_{\beta}^{2} \sigma^{2} \|\mathbf{a}\|_{2}^{2}}, \frac{u^{\beta}}{C_{\beta}^{\beta} \sigma^{\beta} \|\mathbf{a}\|_{\infty}^{\beta}}\right\}\right). \tag{2}$$

Theorem 2. Let $X = (X_1, \dots, X_N)^{\top}$, where X_i are iid sub-gaussian random variables with $||X_i||_{\psi_2} \leq K$. Then, for every $p \geq 2$,

$$\left\| \|X\|_{p} - (\mathbb{E} \|X\|_{p}^{p})^{1/p} \right\|_{\psi_{2}} \lesssim C_{p} K^{p},$$

where C_p is a constant that only depends on p.

Proof. Throughout, let $\beta = 2/p \le 1$, $\sigma = K^p$, $Y_i = |X_i|^p$, and $\mu = \mathbb{E}Y_i = \mathbb{E}|X_i|^p$. Note that the sub-gaussianity of X_i implies that all the p-norms are finite, i.e. $\mu < \infty$. By Lemma 1, the event $\{\left|\frac{\|X\|_p}{(N\mu)^{1/p}} - 1\right| \ge \delta\}$ is included in the event $\{\left|\frac{\|X\|_p^p}{N\mu} - 1\right| \ge \max\{\delta, \delta^p\}\}$. Thus,

$$\mathbb{P}\left(\left|\frac{\|X\|_{p}}{(N\mu)^{1/p}} - 1\right| \ge \delta\right) \le \mathbb{P}\left(\left|\frac{\|X\|_{p}^{p}}{N\mu} - 1\right| \ge \max\{\delta, \delta^{p}\}\right)$$
$$= \mathbb{P}\left(\left|\sum_{i=1}^{N} \frac{1}{N\mu} Y_{i} - \mathbb{E}\left(\sum_{i=1}^{N} \frac{1}{N\mu} Y_{i}\right)\right| \ge \max\{\delta, \delta^{p}\}\right).$$

For $\delta \geq 1$, $\max{\{\delta, \delta^p\}} = \delta^p$. Then by Theorem 1, the tail probability can be bounded by

$$\begin{split} \exp\big(-c\min\{\frac{\delta^{2p}\cdot N\mu^2}{C_{\beta}^2\sigma^2}, \frac{\delta^2\cdot (N\mu)^{\beta}}{C_{\beta}^{\beta}\sigma^{\beta}}\}\big) &\leq \exp\big(-\frac{c}{C_{\beta}^2\sigma^2}\min\{\delta^{2p}N\mu^2, \delta^2N^{\beta}\mu^{\beta}\}\big) \\ &\leq \exp\big(-c\frac{\delta^2N^{\beta}\mu^{\beta}}{C_{\beta}^2\sigma^2}\big). \end{split}$$

Hence, by letting $t := \delta(N\mu)^{1/p}$, we have

$$\mathbb{P}\left(\left| \|X\|_{p} - (\mathbb{E} \|X\|_{p}^{p})^{1/p} \right| \ge t\right) = \mathbb{P}\left(\left| \|X\|_{p} - (N\mu)^{1/p} \right| \ge t\right) \\
\le \exp\left(-c\frac{t^{2}}{C_{\beta}^{2}\sigma^{2}}\right). \tag{3}$$

Therefore,
$$\left\| \|X\|_p - (\mathbb{E} \|X\|_p^p)^{1/p} \right\|_{\psi_2} \lesssim C_\beta \sigma = C_\beta K^p$$
.

References

[1] Hao, B., Abbasi Yadkori, Y., Wen, Z., & Cheng, G. (2019). Bootstrapping Upper Confidence Bound. Advances in Neural Information Processing Systems, 32, 12123-12133.