CSE-233 : Section A Summer 2020

Pushdown Automata (PDA)

Reference: Book2 Chapter 2

Finite Automata vs Regular Expression

What's the difference?

Finite Automata vs. Regular Expression

- Regular Expression describes a language (Specification of a language)
- Finite Automata detects if a string is in the language or not (Recognizing mechanism)

? vs. Context Free Grammar

- CFG describes a regular/non-regular language (Specification of a language)
- ? detects if a string is in the language or not (Recognizing mechanism)

Pushdown Automata vs. Context Free Grammar

- CFG describes a regular/non-regular language (Specification of a language)
- PDA detects if a string is in the language or not (Recognizing mechanism)

Pushdown Automata is nothing but an NFA with a stack (to push-down or pop data). The stack doesn't have memory limit.

Detecting non-regular language using PDA

$$L = \{0^n 1^n \mid n \ge 0\}$$

Detecting non-regular language using PDA

$$L = \{0^n 1^n \mid n \ge 0\}$$

- 1. From the start state, take input of 0
- 2. and push it in stack
- 3. When we get a 1, we move to the next state and pop the stack to see if it has a 0
- 4. In the next state while getting 1, we pop 0 from stack.
- 5. If the stack becomes empty and all input are 1, we reach a final state
- 6. We don't provide any other transition arrows to final state, so any other case will not reach final state.

PDA

How do we know if there's more os in the stack or not?

$$L = \{0^n 1^n \mid n \ge 0\}$$

- 1. From the start state, take input of 0
- 2. and push it in stack
- 3. When we get a 1, we move to the next state and pop the stack to see if it has a 0
- 4. In the next state while getting 1, we pop 0 from stack.
- 5. If the stack becomes empty and all input are 1, we reach a final state
- 6. We don't provide any other transition arrows to final state, so any other case will not reach final state.

How do we know if there's more os in the stack or not?

$$L = \{0^n1^n \mid n \ge 0\}$$

- From the start state, push an arbitrary symbol \$ denoting the top of stack and take input of 0
- 2. and push it in stack
- 3. When we get a 1, we move to the next state and pop the stack to see if it has a 0
- 4. In the next state while getting 1, we pop 0 from stack.
- 5. If the stack top is \$ and all input are 1, we reach a final state
- 6. We don't provide any other transition arrows to final state, so any other case will not reach final state.

Informal PDA

How can we keep count of 0 so that we can compare it with 1?

*tos = Top of stack

For NFA we used to write like this

If input == 1, Push 1 in stack and go to q2

If input == 1, Push 2 in stack and go to q2

If input == 1 & tos == 3, Pop 3, Push 2 in stack and go to q2

What will this mean?

If input == 1 & tos == 3, Pop 3 from stack, Push nothing, and go to q2

What does it mean?

If input == 1 Then go to q2

No need to check stack

What does this mean?

If you reach q1 & tos == 3,
Pop 3 from stack, Push nothing, and go to q2

Task

Design Pushdown Automata for the following languages-

- 1. aⁿ#bⁿ ; n≥1
- 2. $a^n b^n c^m | n, m \ge 1$
- 3. $a^n b^m c^n | n, m \ge 1$
- 4. $a^{m+n}b^mc^n|n,m \ge 1$

What does this PDA do?

Formal Definition of PDA

The definition can slightly vary depending on context.

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- 1. Q is the set of states,
- 2. Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

The following is the formal description of the PDA (page 110) that recognizes the language $\{0^n1^n | n \ge 0\}$. Let M_1 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where

Q =

 $\Sigma =$

 $\Gamma =$

F =

$$Q = \{q_1, q_2, q_3, q_4\},\$$

$$\Sigma =$$

$$\Gamma =$$

$$F =$$

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = F = \{0,1\}$

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{\mathtt{0,1}\},$
 $\Gamma = \{\mathtt{0,\$}\},$
 $F = \{\mathtt{0,\$}\},$

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{\mathtt{0,1}\},$
 $\Gamma = \{\mathtt{0,\$}\},$
 $F = \{q_1, q_4\}, ext{ and }$

Input:	0			1			ε			
Stack:	0	\$	ε	0	\$	ε	0	\$	ε	

 q_1

 q_2

 q_3

 q_4

Input: Stack:	0			1		arepsilon			
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2									
q_3									
q_4									

Input:	0			1 1			ε		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2, 0)\}$	$\{(q_3,oldsymbol{arepsilon})\}$					
q_3									
q_4									

Input:	0			1			arepsilon		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2, 0)\}$	$\{(q_3,oldsymbol{arepsilon})\}$					
q_3				$\{(q_3, oldsymbol{arepsilon})\}$				$\{(q_4, oldsymbol{arepsilon})\}$	
q_4									

Input:	0			1			arepsilon		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2, 0)\}$	$\{(q_3,oldsymbol{arepsilon})\}$					
q_3				$\{(q_3, oldsymbol{arepsilon})\}$				$\{(q_4, oldsymbol{arepsilon})\}$	
q_4									

Shorthand Notation

Implementing the shorthand $(r, xyz) \in \delta(q, a, s)$

Taking Advantage of Non-determinism

PDA M_3 that recognizes $\{ww^{\mathcal{R}} | w \in \{0, 1\}^*\}$

Taking Advantage of Non-determinism

PDA M_3 that recognizes $\{ww^{\mathcal{R}} | w \in \{0, 1\}^*\}$

Important Note

PDA M_3 that recognizes $\{ww^{\mathcal{R}} | w \in \{0, 1\}^*\}$

This means that the popping of 0 and 1 in q3 has no effect in the stack of q2 as it's done in a copied dedicated stack for q3

Another Example

Design a PDA that recognizes the following language

$$\{a^ib^jc^k|i,j,k\geq 0 \text{ and } i=j \text{ or } i=k\}.$$

Another Example

Design a PDA that recognizes the following language

$$\{\mathbf{a}^i\mathbf{b}^j\mathbf{c}^k|\ i,j,k\geq 0\ \text{and}\ i=j\ \text{or}\ i=k\}.$$

Practice

Describe PDAs for the following languages:

- L = { $w \# w^{\mathbb{R}}$: $w \in \{0, 1\}^*$ }, $\Sigma = \{0, 1, \#\}$
- $L = \{ ww^R : w \in \Sigma^* \}, \Sigma = \{0, 1\}$
- L = {w: w has same number of 0s and 1s}, $\Sigma = \{0, 1\}$
- L = $\{0^{i}1^{j}: i \leq j \leq 2i\}, \Sigma = \{0, 1\}$

Practice

Draw the schematic diagram of-

- PDA for $a^n b^{2n} | n, m \ge 1$.
- PDA for odd palindrome*.
- PDA for $a^nb^{n+m}c^m|n,m \ge 1$ OR $a^nb^nb^mc^m|n,m \ge 1$.
- PDA for $a^n b^m c^{n+m} | n, m \ge 1$

^{*}Palindrome of odd length (e.g. 1110111, abcdcba, etc)