Ausgabe: 30.11.2022 Abgabe: 06.12.2022

Aufgabe 7

 x_1, \ldots, x_n seien linear unabhängige Vektoren aus einem K-Vektorraum V. Weiter sei $x = \sum_{i=1}^n \mu_i x_i$ und $\mu_i \in K$ für alle $i = 1, \ldots, n$. Es ist zu zeigen, dass unter der Voraussetzung $\sum_{i=1}^n \mu_i \neq 1$ die Vektoren $x - x_1, \ldots x - x_n$ linear unabhängig sind.

Lösung 7a

$$0 = \sum_{i=1}^{n} \lambda_i (x - x_i)$$

$$= \sum_{i=1}^{n} (\lambda_i x) - \sum_{i=1}^{n} (\lambda_i x_i)$$

$$= x \cdot \sum_{i=1}^{n} (\lambda_i) - \sum_{i=1}^{n} (\lambda_i x_i)$$

$$= \sum_{i=1}^{n} (\mu_i x_i) \cdot \sum_{i=1}^{n} (\lambda_i) - \sum_{i=1}^{n} (\lambda_i x_i)$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} (\lambda_j) \cdot \mu_i x_i \right) - \sum_{i=1}^{n} (\lambda_i x_i)$$

$$= \sum_{i=1}^{n} \left(\left(\left(\sum_{j=1}^{n} (\lambda_j) \cdot \mu_i \right) - \sum_{i=1}^{n} (\lambda_i) \right) x_i \right)$$

Aus der linearen Unabhängigkeit folgt:

$$0 = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} (\lambda_j) \cdot \mu_i \right) - \sum_{i=1}^{n} (\lambda_i)$$

$$\Leftrightarrow \qquad \sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} (\lambda_j) \cdot \mu_i \right)$$

$$\Rightarrow \forall i \in [1; n] : \lambda_i = \sum_{j=1}^{n} (\lambda_j) \cdot \mu_i$$

Außerdem gilt

$$\sum_{i=1}^{n} \lambda_{i} = \sum_{i=1}^{n} \left(\mu_{i} \cdot \sum_{j=1}^{n} \lambda_{j} \right)$$

$$\Leftrightarrow 0 = \sum_{i=1}^{n} \left(\mu_{i} \cdot \sum_{j=1}^{n} \lambda_{j} \right) - \sum_{i=1}^{n} \lambda_{i}$$

$$\Leftrightarrow 0 = \sum_{i=1}^{n} \lambda_{i} \cdot \left(\sum_{i=1}^{n} (\mu_{i}) - 1 \right)$$

Da $\sum_{i=1}^n \mu_i \neq 1$ ist, muss $\sum_{i=1}^n \lambda_i = 0$ gelten.

Ausgabe: 30.11.2022

Abgabe: 06.12.2022

Lösung 7b

Aus $\sum_{i=1}^{n} \lambda_i = 0$ und $\sum_{i=1}^{n} \lambda_i (x - x_i) = 0$ folgt

$$0 = \sum_{i=1}^{n} \lambda_{i}(x - x_{i})$$

$$= \sum_{i=1}^{n} \lambda_{i}x - \sum_{i=1}^{n} \lambda_{i}x_{i}$$

$$= x \cdot \sum_{i=1}^{n} \lambda_{i} - \sum_{i=1}^{n} \lambda_{i}x_{i}$$

$$= -\sum_{i=1}^{n} \lambda_{i}x_{i}$$

$$= \sum_{i=1}^{n} \lambda_{i}x_{i} \checkmark$$

Aus den folgenden Informationen

$$0 = \sum_{i=1}^{n} (\lambda_i x) - \sum_{i=1}^{n} (\lambda_i x_i)$$

$$\sum_{i=1}^{n} \lambda_i = 0$$

$$\sum_{i=1}^{n} \lambda_i x_i = 0$$

lässt sich nun (beinahe) zeigen, dass

$$0 = x \cdot \sum_{i=1}^{n} (\lambda_i) - \sum_{i=1}^{n} (\lambda_i x_i)$$

$$\Leftrightarrow \qquad 0 = x \cdot \sum_{i=1}^{n} (\lambda_i)$$

$$\Rightarrow \forall i \in [1; n] : \lambda_i = 0$$