Learning to Prune: Exploring the Frontier of Fast & Accurate Inference

Tim Vieira & Jason Eisner Johns Hopkins University

Learning to Prune: Exploring the Frontier of Fast & Accurate Inference

Tim Vieira & Jason Eisner Johns Hopkins University

Pareto Pareto

Search a space of approximate inference policies using machine learning

Search a space of approximate inference policies using machine learning

Want better algorithms? Use data, not just theory!

Outline

- Background
- Learning to prune
- Learning algorithm
- Making learning fast
 - Change propagation
 - Dynamic programming
- Results & conclusions

"Diagramming sentences"

What is a good derivation for this sentence?

What is a good derivation for this sentence?

$$p(d) = g(NP \rightarrow D N)$$

What is a good derivation for this sentence?

 $p(d) = g(NP \rightarrow D N) * g(VP \rightarrow V NP)$

What is a good derivation for this sentence?

 $p(d) = g(NP \rightarrow D N) * g(VP \rightarrow V NP) * g(NP \rightarrow D N)$

What is a good derivation for this sentence?

What is a good derivation for this sentence?

What is a good derivation for this sentence?

What is a good derivation for this sentence?

What is a good derivation for this sentence?

Written more generally, product of edge weights

$$p(d) = \prod_{e \in d} k_e$$

What is a good derivation for this sentence?

Grammar

 $S \rightarrow NPVP$

 $VP \rightarrow V NP$

 $NP \rightarrow D N$

D → the

V → cooks

N → chef

N → soup

$$\underset{d \in D}{\operatorname{argmax}} p(d) = \underset{d \in D}{\operatorname{argmax}} \prod_{e \in d} k_e$$

How does a parser work?

Papa	a						
	ate						
		the					
Parsers (typi	Parsers (typically) fill in a chart . (Given a grammar and a sentence)						
				with			
					the		
						spoon	

Papa							
	ate						
		the					
			caviar				
ow to read the chart				with			
ellow represents the top of a ee that covers the span					the		
ate the caviar with the spoon"					spoon		

Papa							
	ate		VP			VP	
		the					
			caviar				
Just like we sa\	ust like we saw earlier:					PP	
Trees are built	rees are built up of adjacent subtrees						
ate the caviar	te the caviar with the spoon					spoon	

Papa							
	ate						
		the					
Chart is typically filled in bottom-up, known as the CKY algorithm			caviar				
				with			
Runtime? O(G n³)					the		
O(n²) cells, O(G n) time to fill						spoon	
Real grammars a	Real grammars are BIG						

Span classification: Bodenstab (2012)

1.00 Papa 1.00 NP			1.00 S			1.00 S 1.00 S	1.00 S 1.00 S
	1.00 ate 1.00 V		0.40 VP			0.40 VP 0.10 VP	
		1.00 the 1.00 Det	0.50 NP			0.12 NP	
			1.00 caviar 1.00 N				
How to train?			1.00 with 1.00 P		1.00 PP		
					1.00 the 1.00 Det	0.50 NP	
						1.00 spoon 1.00 N	

Unmodeled interactions

Fails to capture end-to-end performance.

Unmodeled interactions

Fails to capture end-to-end performance.

- Requires labeling
 - Doesn't consider other "good" parses
 - What's the best labeling to use?

Unmodeled interactions

Fails to capture end-to-end performance.

- Requires labeling
 - Doesn't consider other "good" parses
 - What's the best labeling to use?
- Limits expressiveness of features

Doesn't support dynamic features, e.g., looking the parse chart.

Our Approach

reward = accuracy - λ runtime

How to train?

Hard to optimize

Cross-section of reward along a random direction, d

Hard to optimize

Cross-section of reward along a random direction, d

Hard to optimize

Cross-section of reward along a random direction, d

What if we prune instead?

Classification example: label: better action R>R' weight: R - "|

Charts are so similar! Can we reuse work?

Try alternative actions at each position

SEARN (Daumé+,2009) LOLS (Chang+,2015)

Making learning fast

Like a Makefile for parse charts...

- Like a Makefile for parse charts → fast because changes are sparse.
- Leverages structure of underlying computation so that we can efficiently propagate updates.
- Not an asymptotic speed up, but works very well in practice.

Empirical comparison

Rollouts are a lot like a gradient...

$$\frac{\Delta r}{\Delta \pi_j}$$

Expected reward:

$$r(\underset{d \in D}{\operatorname{argmax}} p(d)) \approx \sum_{d \in D} r(d) p(d)$$

Expected reward:

$$r(\underset{d \in D}{\operatorname{argmax}} p(d)) \approx \sum_{d \in D} r(d) p(d)$$

Sample a tree from the pruned forest instead of argmax

Expected reward:

$$r(\underset{d \in D}{\operatorname{argmax}} p(d)) \approx \sum_{d \in D} r(d) p(d)$$

Differentiable: If we change one edge's value a little bit. The gradient tells us how reward changes.

$$r(\vec{k} + \varepsilon \cdot \vec{1}_e) \approx r(\vec{k}) + \varepsilon \cdot \frac{\partial r}{\partial k_e}$$

Sample a tree from the pruned forest instead of argmax

Expected reward:

$$r(\underset{d \in D}{\operatorname{argmax}} p(d)) \approx \sum_{d \in D} r(d) p(d)$$

Differentiable: If we change one edge's value a little bit. The gradient tells us how reward changes.

$$r(\vec{k} + \varepsilon \cdot \vec{1}_e) \approx r(\vec{k}) + \varepsilon \cdot \frac{\partial r}{\partial k_e}$$

Sample a tree from the pruned forest instead of argmax

Inaccurate for large $\, \xi \,$

Expected reward:

$$r = \sum_{d \in D} r(d) p(d)$$

Expected reward:

$$r = \sum_{d \in D} r(d) p(d)$$

Break-up into numerator and denominator.

Expected reward:

Expected reward:

Expected reward:

$$r = \sum_{d} r(d) p(d)$$

Break-up into numerator and denominator.

$$\overline{r} = \sum_{i} r(d) \, \overline{p}(d)$$

Multi-linear (by example)

$$f(x,y,z)=xyz$$

$$Z = \sum_{d \in D} \prod_{e \in d} k_e$$

Expected reward:

$$r = \sum_{l=0}^{\infty} r(d) p(d)$$

 $\overline{d \in D}$

Break-up into numerator and denominator.

$$\overline{r} = \sum_{i} r(d) \, \overline{p}(d)$$

Multi-linear (by example)

$$f(x,y,z)=xyz$$
$$f(x+\varepsilon,y,z)$$

$$Z = \sum_{d \in D} \prod_{e \in d} k_e$$

Expected reward:

$$r = \sum_{l=0}^{\infty} r(d) p(d)$$

 $d \in D$

Break-up into numerator and denominator.

$$\overline{r} = \sum_{r(d)} \overline{p}(d)$$

Multi-linear (by example)

$$f(x,y,z)=xyz$$

$$f(x+\varepsilon,y,z)=(x+\varepsilon)yz$$

$$Z = \sum_{d \in D} \prod_{e \in d} k_e$$

Expected reward:

$$r = \sum_{d} r(d) p(d)$$

Break-up into numerator and denominator.

$$\overline{r} = \sum_{i} r(d) \, \overline{p}(d)$$

Multi-linear (by example)

$$f(x,y,z) = xyz$$

$$f(x+\varepsilon,y,z) = (x+\varepsilon)yz$$

$$= xyz + \varepsilon yz$$

$$= f(x,y,z) + \varepsilon \frac{\partial f}{\partial x}$$

$$Z = \sum_{d \in D} \prod_{e \in d} k_e$$

Expected reward:

 $d \in D$

Break-up into numerator and denominator.

$$\overline{r} = \sum_{d \in D} r(d) \overline{p}(d)$$

$$= \sum_{d \in D} r(d) \prod_{e \in d} k_e$$

Multi-linear function of edge weights!

$$Z = \sum_{d \in D} \prod_{e \in d} k_e$$

Expected reward:

$$r = \sum_{d} r(d) p(d)$$

 $d \in D$

Break-up into numerator and denominator.

Taylor expansion works!

$$\overline{r}(\vec{k} + \varepsilon \cdot \vec{1}_e) = \overline{r}(\vec{k}) + \varepsilon \cdot \frac{\partial \overline{r}}{\partial k_e}$$

Same for Z

Quotient of separate expansions gives us exact expected reward for any perturbation.

$$Z = \sum_{d \in D} \prod_{e \in d} k_e$$

Loose ends

- Efficiently computing gradients

- Pruning affects more than one edge at a time.

- Want one-best, not expected

Loose ends

- Efficiently computing gradients

Fast algorithms for decomposable rewards, e.g., Second-order inside-outside algorithm (Li & Eisner,09)

$$r(d) = \sum_{e \in d} r_e$$

- Pruning affects more than one edge at a time.

- Want one-best, not expected

Loose ends

- Efficiently computing gradients

Fast algorithms for decomposable rewards, e.g., Second-order inside-outside algorithm (Li & Eisner,09)

$$r(d) = \sum_{e \in d} r_e$$

- Pruning affects more than one edge at a time.

Need to maintain multi-linearity → pruning factors appear at most once per derivation.

- Want one-best, not expected

Loose ends

- Efficiently computing gradients

Fast algorithms for decomposable rewards, e.g., Second-order inside-outside algorithm (Li & Eisner,09)

$$r(d) = \sum_{e \in d} r_e$$

- Pruning affects more than one edge at a time.

Need to maintain multi-linearity → pruning factors appear at most once per derivation.

- Want one-best, not expected

Annealing – a general trick for interpolating between expectation and maximization.

$$\lim_{\gamma \to \infty} \frac{1}{Z_{\gamma}} \sum_{d \in D} r(d) p(d)^{\gamma} = r(\underset{d \in D}{\operatorname{argmax}} p(d))$$

• How it works: a carefully applied Taylor expansion gives us an $O(G n^3 + n^2)$ algorithm.

- How it works: a carefully applied Taylor expansion gives us an O(G n³+n²) algorithm.
- Fast and exact for decomposable reward functions

- How it works: a carefully applied Taylor expansion gives us an O(G n³+n²) algorithm.
- Fast and exact for decomposable reward functions
 - Accuracy:-)

- How it works: a carefully applied Taylor expansion gives us an O(G n³+n²) algorithm.
- Fast and exact for decomposable reward functions
 - Accuracy:-)
 - Runtime:-(

- How it works: a carefully applied Taylor expansion gives us an O(G n³+n²) algorithm.
- Fast and exact for decomposable reward functions
 - Accuracy:-)
 - Runtime :-(
 Boolean version of changeprop for runtime is super fast.

- How it works: a carefully applied Taylor expansion gives us an O(G n³+n²) algorithm.
- Fast and exact for decomposable reward functions
 - Accuracy:-)
 - Runtime :-(
 Boolean version of changeprop for runtime is super fast

Sorry, no benchmark plot, yet.

Experiments

TODO

• See paper for updated experimental results.

 Modeling end-to-end performance leads to better policies

- Modeling end-to-end performance leads to better policies
- LOLS works pretty well for training

- Modeling end-to-end performance leads to better policies
- LOLS works pretty well for training
- Training under end-to-end objective requires running inference millions of times.

- Modeling end-to-end performance leads to better policies
- LOLS works pretty well for training
- Training under end-to-end objective requires running inference millions of times.

We presented efficient algorithms for repeated inference: change propagation and dynamic programming.

Thanks!

Twitter: @xtimv

Blog: http://timvieira.github.io/blog

Backup slides

Runtime with Jacobian

runtime
$$(\pi + \varepsilon \mathbf{1}_j) = \sum_{x} \mathbf{1} \left[\beta_x(\pi) + \varepsilon \cdot \frac{\partial \beta_x(\pi)}{\partial \pi_j} > 0 \right]$$

General trick: apply expansion before nonlinearity.

Needs T Jacobian-vector products → asymptotically slower than running inference T times.

Just want Booleans in the end → changeprop will be faster.

O(G*n^3)

O(n^2) cells O(G*n) time to fill each

O(G*n^3)

O(n^2) cells O(G*n) time to fill each

How many grammar lookups to fill this cell

255*484

O(G*n^3)

O(n^2) cells O(G*n) time to fill each

How many grammar lookups to fill this cell

255*484 **+ 443*484**

O(G*n^3)

O(n^2) cells O(G*n) time to fill each

How many grammar lookups to fill this cell

255*484 + 443*484 + 456*483

O(G*n^3)

O(n^2) cells O(G*n) time to fill each

How many grammar lookups to fill this cell

255*484

- + 443*484
- + 456*483
- + 472*471

O(G*n^3)

O(n^2) cells O(G*n) time to fill each

How many grammar lookups to fill this cell

255*484

- + 443*484
- + 456*483
- + 472^{*}471
- + 488*347

 $O(G^*n^3)$

O(n^2) cells O(G*n) time to fill each

How many grammar lookups to fill this cell

255*484

- + 443*484
- + 456*483
- + 472*471
- + 488*347
- = 949,728

Almost a million lookups for one cell!

Tricky to optimize

Cross-section of objective, J, along a random direction, d

Diminishing returns

Changeprop

Changeprop

Dynamic program (cheat sheet)

Suppose final reward is expected reward instead of one-best

$$r = \overline{r}/Z$$

$$Z = \sum_{d} \prod_{e \in d} k_e$$

(1) To start: what if we change just one edge?

$$\overline{r} = \sum_{d} r(d) p(d) = \sum_{d} r(d) \prod_{e \in d} k_{e}$$

(2) Multi-linear functions of single edge weights

(3) <u>Multi-linear</u> (example): f(x,y,z) = xyz not jointly linear, but is linear in x, y or z, separately (i.e., hold others fixed).

(4) No edge appears twice in a given derivation. Note: r(d) can't depend on edge weights.

- (5) Compute change with Taylor expansion:
- (7) Take quotient

$$\overline{r}(\vec{k} + \varepsilon \cdot \vec{1}_e) = \overline{r}(\vec{k}) + \varepsilon \cdot \frac{\partial \overline{r}}{\partial k_e}$$

(8) Need additive reward to efficiently compute. Use second-order inside-outside or backprop to get gradients.

Similarly for Z.

 \rightarrow All T=O(n²) rollouts for the cost of one!

Tweaks:

- Similar trick for runtime requires Jacobian. Not very efficient
- (9) Pruning changes multiple edges.
- (10) Use annealing to recover one-best

Approximate policy iteration (cheat sheet)

Algorithm 2 SEARN algorithm for learning a sequential prediction policy.

Dependence on expert decreases quickly with iterations. (relative performance; exploration)

Like a "gradient" → d R / d a

policy family ("linear min. oracle")

Keeps policy from changing "too much"

What is a good derivation for this sentence?

Approximate policy iteration

Intuition: It's easier to navigate the space of decision sequences (pruning masks) than parameters.

- 1. Guess a decision sequence
- 2. Given a decision sequence, we can approximately map to parameters, which produce that sequence by solving a classification problem.
- 3. Improve guess by looking a nearby sequences.
- 4. Repeat 2 and 3