MATH 301: INTRODUCTION TO PROOFS HOMEWORK 4

SINA HAZRATPOUR

Problem 1. Decide whether the following are functions, giving reasons for your answers:

- (1) The assignment $g: \mathbb{N} \to \mathbb{N}$ given by $n \mapsto$ "the (n+1) prime number".
- (2) The assignment $e: \mathbb{P}rop \times \mathbb{P}rop \to \mathbb{P}rop$ which assigns to a pair of propositions P and Q a proposition R such that $P \wedge R \Rightarrow Q$.
- (3) The assignment $f: \mathbb{R} \to \mathbb{R}$ which assigns to a real number x a real number y such that $y^2 = x$.
- (4) The assignment $f' : \mathbb{C} \to \mathbb{C}$ which assigns to a complex number z a complex number w such that $w^2 = z$.
- (5) The assignment $h: \mathbb{Q} \to \mathbb{Q}$ given by h(y) = 1/y.
- (6) The assignment $j: \mathbb{Q} \to \mathbb{Q}$ given by h(y) = 1/y.
- (7) The assignment $k \colon \mathbb{N} \to \mathbb{N}$ given by $m \mapsto d$ where d is a divisor of m.

Problem 2. Let $f: X \to Y$ be a function. Prove or find a counterexample for the following assertions

- (1) $U \subset f^{-1}(f(U))$ for all $U \subset X$
- (2) $f^{-1}(f(U)) \subset U$ for all $U \subset X$
- (3) $V \subset f(f^{-1}(V))$ for all $V \subset Y$
- (4) $f(f^{-1}(V)) \subset V$ for all $V \subset Y$

Problem 3.

- (1) As in the lecture, write $\mathbf{1} = \{0\}$ for the set with one element. Let A be a set. Construct an isomorphism i between A and the $A^{\mathbf{1}}$.
- (2) As in the lecture, write $\mathbf{2} = \{0, 1\}$ for the set with two elements. Construct an isomorphism j between the cartesian product $A \times A$ and the A^2 .
- (3) Show the "diagonal" function $A \to A \times A$ is an injection.
- (4) Use (3) to prove that the function $A^1 \to A^2$ induced by the unique function $2 \to 1$ is an injection.

Problem 4. Let $f: X \to Y$ and $g: Y \to Z$ be functions.

- (1) Show that if f and g are surjective, then $g \circ f$ is surjective.
- (2) Show that if $g \circ f$ is surjective, then g is surjective.

Problem 5. Let n be a natural number and define an equivalence relation \sim_n on \mathbb{Z} by

$$a \sim_n b$$
 if $a - b$ is divisible by n .

- (1) Show that \sim_n is an equivalence relation.
- (2) For $a \in \mathbb{Z}$, define the set

$$[a]_{\sim_n} = \{b \in \mathbb{Z} \mid a \sim_n b\},\,$$

and let C_n be the set

$$\{[a]_{\sim_n} \mid a \in \mathbb{Z}\}.$$

Show that C_n is a finite set.

(3) Show that the assignment

$$[a]_{\sim_n} + [b]_{\sim_n} = [a+b]_{\sim_n}$$

defines a function

$$+: C_n \times C_n \to C_n$$
.

In other words, show that the equivalence class [a+b] only depends on the equivalence classes [a], [b] and not on the representatives a, b.

(4) Similarly, show that the assignment

$$[a]_{\sim_n} * [b]_{\sim_n} = [a \cdot b]_{\sim_n},$$

where $a \cdot b$ is just the usual multiplication of integers, defines a function

$$*: C_n \times C_n \to C_n$$
.

(5) Fill in the multiplication table for C_4 .

*	[0]	[1]	[2]	[3]
[0]				
[1]				
[2]				
[3]				

(6) Prove that for any integer m, the remainder of m^2 when divided by 4 is not 3. State your proof strategy.