Download from finelybook www.finelybook.com

select a more powerful model, to feed the training algorithm with better features, or to reduce the constraints on the model. This model is not regularized, so this rules out the last option. You could try to add more features (e.g., the log of the population), but first let's try a more complex model to see how it does.

Let's train a DecisionTreeRegressor. This is a powerful model, capable of finding complex nonlinear relationships in the data (Decision Trees are presented in more detail in Chapter 6). The code should look familiar by now:

```
from sklearn.tree import DecisionTreeRegressor
tree reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_labels)
```

Now that the model is trained, let's evaluate it on the training set:

```
>>> housing predictions = tree reg.predict(housing prepared)
>>> tree mse = mean squared error(housing labels, housing predictions)
>>> tree rmse = np.sqrt(tree mse)
>>> tree rmse
0.0
```

Wait, what!? No error at all? Could this model really be absolutely perfect? Of course, it is much more likely that the model has badly overfit the data. How can you be sure? As we saw earlier, you don't want to touch the test set until you are ready to launch a model you are confident about, so you need to use part of the training set for training, and part for model validation.

Better Evaluation Using Cross-Validation

One way to evaluate the Decision Tree model would be to use the train_test_split function to split the training set into a smaller training set and a validation set, then train your models against the smaller training set and evaluate them against the validation set. It's a bit of work, but nothing too difficult and it would work fairly well.

A great alternative is to use Scikit-Learn's *cross-validation* feature. The following code performs K-fold cross-validation: it randomly splits the training set into 10 distinct subsets called folds, then it trains and evaluates the Decision Tree model 10 times, picking a different fold for evaluation every time and training on the other 9 folds. The result is an array containing the 10 evaluation scores:

```
from sklearn.model_selection import cross val score
scores = cross_val_score(tree_reg, housing_prepared, housing_labels,
                         scoring="neg mean squared error", cv=10)
rmse_scores = np.sqrt(-scores)
```


Download from finelybook www.finelybook.com Scikit-Learn cross-validation features expect a utility function (greater is better) rather than a cost function (lower is better), so the scoring function is actually the opposite of the MSE (i.e., a negative value), which is why the preceding code computes -scores before calculating the square root.

Let's look at the results:

```
>>> def display scores(scores):
       print("Scores:", scores)
       print("Mean:", scores.mean())
       print("Standard deviation:", scores.std())
>>> display scores(tree rmse scores)
Scores: [ 74678.4916885 64766.2398337
                                         69632.86942005 69166.67693232
         71486.76507766 73321.65695983 71860.04741226 71086.32691692
         76934.2726093 69060.93319262]
Mean: 71199,4280043
Standard deviation: 3202.70522793
```

Now the Decision Tree doesn't look as good as it did earlier. In fact, it seems to perform worse than the Linear Regression model! Notice that cross-validation allows you to get not only an estimate of the performance of your model, but also a measure of how precise this estimate is (i.e., its standard deviation). The Decision Tree has a score of approximately 71,200, generally ±3,200. You would not have this information if you just used one validation set. But cross-validation comes at the cost of training the model several times, so it is not always possible.

Let's compute the same scores for the Linear Regression model just to be sure:

```
>>> lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels,
                                 scoring="neg_mean_squared_error", cv=10)
. . .
>>> lin_rmse_scores = np.sqrt(-lin_scores)
>>> display scores(lin rmse scores)
Scores: [ 70423.5893262 65804.84913139 66620.84314068 72510.11362141
          66414.74423281 71958.89083606 67624.90198297 67825.36117664
          72512.36533141 68028.11688067]
Mean: 68972.377566
Standard deviation: 2493.98819069
```

That's right: the Decision Tree model is overfitting so badly that it performs worse than the Linear Regression model.

Let's try one last model now: the RandomForestRegressor. As we will see in Chapter 7, Random Forests work by training many Decision Trees on random subsets of the features, then averaging out their predictions. Building a model on top of many other models is called Ensemble Learning, and it is often a great way to push ML algorithms even further. We will skip most of the code since it is essentially the same as for the other models:

Download from finelybook www.finelybook.com

```
>>> from sklearn.ensemble import RandomForestRegressor
>>> forest reg = RandomForestRegressor()
>>> forest reg.fit(housing prepared, housing labels)
>>> [...]
>>> forest rmse
22542.396440343684
>>> display_scores(forest_rmse_scores)
Scores: [ 53789.2879722 50256.19806622 52521.55342602 53237.44937943
          52428.82176158 55854.61222549 52158.02291609 50093.66125649
          53240.80406125 52761.50852822]
Mean: 52634.1919593
```

Standard deviation: 1576,20472269

Wow, this is much better: Random Forests look very promising. However, note that the score on the training set is still much lower than on the validation sets, meaning that the model is still overfitting the training set. Possible solutions for overfitting are to simplify the model, constrain it (i.e., regularize it), or get a lot more training data. However, before you dive much deeper in Random Forests, you should try out many other models from various categories of Machine Learning algorithms (several Support Vector Machines with different kernels, possibly a neural network, etc.), without spending too much time tweaking the hyperparameters. The goal is to shortlist a few (two to five) promising models.

You should save every model you experiment with, so you can come back easily to any model you want. Make sure you save both the hyperparameters and the trained parameters, as well as the cross-validation scores and perhaps the actual predictions as well. This will allow you to easily compare scores across model types, and compare the types of errors they make. You can easily save Scikit-Learn models by using Python's pickle module, or using sklearn.externals.joblib, which is more efficient at serializing large NumPy arrays:

```
from sklearn.externals import joblib
joblib.dump(my_model, "my_model.pkl")
# and later...
my_model_loaded = joblib.load("my_model.pkl")
```

Fine-Tune Your Model

Let's assume that you now have a shortlist of promising models. You now need to fine-tune them. Let's look at a few ways you can do that.