Algorithmics	Student information	Date	Number of session
	UO: UO294515	24/02/2025	6
	Surname: Lopez Garcia	Escuela de	
	Name: Oscar		Ingeniería Informática

Activity 1. [Direct exchange or Bubble algorithm]

n	T ordered	T reverse	T random
10000	333	1524	1079
2*10000	1254	5976	4265
2^2*10000	4908	23844	16829
2^3*10000	19757	ОоТ	67368
2^4*10000	ОоТ	ОоТ	ОоТ

All three, ordered, reverse and random have a quadratic complexity O(n^2), the times make sense as reverse has to make more changes in the vector than random, and ordered has no changes to do.

Activity 2. [Selection algorithm]

n	T ordered	T reverse	T random
10000	313	296	320
2*10000	1260	1176	1266
2^2*10000	5045	4507	5022
2^3*10000	19450	18041	20069
2^4*10000	ОоТ	ОоТ	ОоТ

All three, ordered, reverse and random have a quadratic complexity O(n^2). It makes sense as for this method it is not better if the vector is ordered or if it is not.

Algorithmics	Student information	Date	Number of session
	UO: UO294515	24/02/2025	6
	Surname: Lopez Garcia		
	Name: Oscar		

Activity 3. [Insertion algorithm]

n	T ordered	T reverse	T random
10000	LoR	299	154
2*10000	LoR	1158	584
2^2*10000	LoR	4683	2344
2^3*10000	LoR	18816	9277
2^4*10000	LoR	74765	37072
2^5*10000	LoR	ОоТ	ОоТ
2^6*10000	LoR	ОоТ	ОоТ
2^7*10000	LoR	ОоТ	ОоТ
2^8*10000	LoR	ОоТ	ОоТ
2^9*10000	91	ОоТ	ОоТ
2^10*10000	179	ОоТ	ОоТ
2^11*10000	359	ОоТ	ОоТ
2^12*10000	728	ОоТ	ОоТ
2^13*10000	1452	ОоТ	ОоТ

Yes, as the complexity is linear O(n) for the ordered vectors as it does not have to enter the while loop, and it is quadratic O(n^2) for the reverse and random vectors, as it enters the while loop that iterates n times.

 $K=(n_2^2/n_1^2)$

Algorithmics	Student information	Date	Number of session
	UO: UO294515	24/02/2025	6
	Surname: Lopez Garcia		
	Name: Oscar		

Activity 4. [Quicksort algorithm]

n	T ordered	T reverse	T random
25000	LoR	LoR	93
2*25000	63	72	192
2^2*25000	123	140	403
2^3*25000	257	289	869
2^4*25000	530	599	1873
2^5*25000	1098	1249	4229
2^6*25000	2263	2523	10312

It matchs the expected as for all cases the complexiity is between nlogn and n^2 which are the best and worse cases of this algorithm.

```
Buble: O(n^2) for random
n_1 = 10000 \rightarrow t_1 = 1079 \text{ ms}, n_2 = 16*10^6 \rightarrow t_2 = ?
 K=(n_2^2/n_1^2)
t_2 = k*t1 = ((16*10^6)^2/10000^2)*1079 \text{ ms} = (16*10^{12}/1*10^8)*1079 \text{ ms} = 16*10^4*1079 \text{ ms} = 16*
 172640000 ms * (1 s/1000ms)*(1h/3600s)*(1 day/24h) = 1,998 days
 Selection: O(n^2) for random
 n_1 = 10000 \rightarrow t_1 = 320 \text{ ms}, n_2 = 16*10^6 \rightarrow t_2 = ?
```

 t_2 = k*t1 = ((16*10⁶)²/10000²)*320 ms = (16*10¹²/1*10⁸)*320 ms = 16*10⁴*320 ms =

51200000 ms * (1 s/1000 ms) * (1 h/3600 s) * (1 day/24 h) = 0,593 days

Algorithmics	Student information	Date	Number of session
	UO: UO294515	24/02/2025	6
	Surname: Lopez Garcia		
	Name: Oscar		

```
Selection: O(n^2) for random  n_1 = 10000 \text{ -> } t_1 = 154 \text{ ms , } n_2 = 16*10^6 \text{ -> } t_2 = ?   K = (n_2^2/n_1^2)   t_2 = k*t1 = ((16*10^6)^2/10000^2)*154 \text{ ms } = (16*10^{12}/1*10^8)*154 \text{ ms } = 16*10^{4*}154 \text{ ms } = 24640000 \text{ ms } * (1 \text{ s}/1000\text{ms})*(1\text{h}/3600\text{s})*(1 \text{ day}/24\text{h}) = 0,285 \text{ days}
```

Activity 5. [Quicksort+Insertion algorithm]

N = 16*10^6	T random
Quicksort	2766
Quicksort+Insertion (k=5)	2544
Quicksort+Insertion (k=10)	2425
Quicksort+Insertion (k=20)	2377
Quicksort+Insertion (k=30)	2353
Quicksort+Insertion (k=50)	2294
Quicksort+Insertion (k=100)	2133
Quicksort+Insertion (k=200)	1810
Quicksort+Insertion (k=500)	2394
Quicksort+Insertion (k=1000)	4034

We can conclude that this algorithm improves the performance of the quicksort algorithm if we choose a good k , if k is too small, the algorithm does not change too much, and if it is too big, we can get a worse time than if we didn't implement the insertion, as we will be doing too many sortings with the insertion.

Algorithmics	Student information	Date	Number of session
	UO: UO294515	24/02/2025	6
	Surname: Lopez Garcia		
	Name: Oscar		