7. 5. 2014 Jak-Team

Testovací protokol – detekce mrkání

1. Experiment I

Popis

Cílem experimentu je ověřit základní funkčnost – spuštění, stabilita skriptu.

- 1. Spuštění MATLABu, připravení Mindwave Mobile.
- 2. Otevření složky se skripty matlab scripts.
- 3. Spuštění skriptu readRAW.m skript načte 61440 hodnot ze snímače cca 2 minuty.
- 4. Uživatel s nasazeným snímačem ověří funkčnost vyhodnocování mrknutí pomocí zobrazeného grafu (graf zobrazuje modře křivku signálu a červeně znázorňuje mrknutí).
- 5. Skript readRAW.m též zapisuje naměřená data do výstupních proměnných ověřit, případně upravit funkčnost.

Konfigurace

Doba testování: 25 minut

Hodnoty konstant ve skriptu:

Prahová hodnota: 420
Tolerance: 20
Buffer: 64

Průběh

- Problémy s propojením Mindwave mobile a PC přes bluetooth nezávislé na skriptech.
- Během jednoho měření velké problémy s velmi rozkmitanou křivkou bez ohledu na nasazení.
- Spuštění skriptu bez problému.
- Subjekt 1 pomalé a jasné mrkání je na grafu znázorněno bez problémů podle očekávání.
- Subjekt 2 vyhodnocení vykazuje vysokou míru správného vyhodnocení. Velmi slabá mrknutí a pomalé zavření očí je ignorováno.
- Subjekt 3 při rychlém mrkání nastal problém s vyhodnocením, zvednutí obočí je zaznamenáno rozkmitem, většinou též vyhodnoceno jako mrknutí.

2. Experiment II

Popis

Cílem experimentu je hledání hraničních hodnot.

- 1. Stejné jako kroky 1-3 v prvním experimentu.
- 2. Obsluha zkouší metodou pokus-omyl (případně "půlení intervalu") měnit různé hraniční hodnoty uvnitř skriptu analyse. m jako je prahová hodnota mrknutí nebo tolerance vyhodnocení.

Konfigurace

Doba testování: 30 minut

Lze znovu testovat na libovolných naměřených datech.

Vyzkoušené hodnoty:

Prahová hodnota	Tolerance	Velikost bufferu	Poznámka
420	20	64	Výchozí stav
350	20	64	
300	1	64	
300	99	64	Falešné detekce
500	50	64	
420	20	64	
420	20	48	
400	10	32	Velmi přesné

Měřeno po 20s. Cílem bylo experimentálně nalézt nejideálnější konfiguraci konstant skriptu.

Průběh

- Opět byl pozorován šum ze zařízení po jeho spuštění. Opětovné připojení šum odstranilo.
 Příčina neznámá.
- Kvalita měření a úspěšnost detekce je více závislá na nasazení hlavice než na samotné volbě konstant – možná nutnost přidělání funkce učení.

3. Experiment III

Popis

Cílem experimentu je zkoumání kvality signálu a vlivu na rozpoznávání v závislosti na umístění snímače. Závěrem může být zjištění potřeby filtrování dat při špatném signálu, aby nedocházelo k falešným vyhodnocením (například při nenasazení snímače).

- 1. Stejné jako kroky 1-4 v prvním experimentu.
- 2. Během pokusu uživatel zkouší měnit umístění snímače na frontálu hlavy.

Konfigurace

Doba testování: 15 minut

Hodnoty konstant ve skriptu:

Prahová hodnota: 400
Tolerance: 10
Buffer: 32

Průběh

- Hledání ideální polohy posuvem čidla do místa, když se vyhodnocování zdálo být nejpřesnější (vyhodnoceno testovaným subjektem).
- Testováno subjektem 1 ideální poloha nalezena po několika sekundách.
- Subjekt 2 po nasazení se hlavice odpojila od počítače. Pravděpodobně problém baterie.
 Nepodařilo se subjekt 2 zapojit do měření problém hlavice.
- Subjekt 3 po nasazení se hlavice odpojila od počítače. Restartování hlavice, změna polohy vůči počítači, restartování aplikace ani jiná úprava okolních vlivů nepomohla. Po několika dalších pokusech se hlavice rozhodla spolupracovat a měření mohlo pokračovat. Další výpadky nezaznamenány.
- Subjekt 3 našel ideální pozici hlavice opět během několika sekund.
- Subjekt 4 našel opět ideální pozici hlavici téměř okamžitě.

4. Experiment IV

Popis

Cílem experimentu je praktické ověření skriptů.

- 1. Stejné jako kroky 1-3 v prvním experimentu použije se skript readRAWinf.m, který nezobrazuje graf, pouze provádí vyhodnocení a na základě mrknutí simuluje stisk levého tlačítka myši (LTM). Skript běží, dokud není ukončen.
- 2. Otevření jednoduché stránky test.html, která reaguje na kliknutí změnou barvy.
- 3. Uživatel se snaží kontrolovaně mrkáním měnit barvu stránky. *Dodatečnou korekcí skriptu se lze pokusit přiblížit stavu, kdy bude zaznamenáno pouze cílené mrknutí (přirozené a slabé bude ignorováno).*
- 4. Další funkčnost lze testovat ovládáním webového prohlížeče případně akční hry (pozn. ne všechny hry dokáží zaregistrovat simulované kliknutí myší).

Průběh

- Testováno převážně mezi jednotlivými experimenty ovládání počítače a webového prohlížeče.
- Test na reálné aplikaci
 - Úprava vyvolaného signálu na klávesu "W", pokus o rozpohybování vozidla ve hře Grand Theft Auto III – neúspěch – hra má pravděpodobně jiný systém odchytávání vstupních impulzů.
 - Testování levého kliku v akční hře Vietcong. Pohyb ovládán klávesnicí a myší, střelba ovládána mrknutím – po chvilce trénování subjektu získáváme uspokojivé výsledky. Střelba se dá ovládat s přibližně 95% úspěšností.
- U všech testovaných subjektů výsledky dopadly v podstatě stejně. Pokud byla hlavice nasazena správně, nebyl problém ovládat například vybranou hru Vietcong, nebo měnit barvu pozadí testovací webové stránky bez ohledu na testovaný subjekt.

5. Závěr

Během testování ideálních konstant skriptu jsme došli k těmto hodnotám:

Prahová hodnota: 400
Tolerance: 10
Buffer: 32

Hodnoty jsou vhodné pro všechny testované subjekty – největší část správného vyhodnocení závisí na správném nasazení hlavice a následně nalezení ideální polohy čidla na čele.

Vzhledem k nutnosti správného nasazení, které velmi ovlivňuje výsledky, bude přiděláno ověřování kvality signálu před samotným vyhodnocením mrknutí.