CS 584 - MACHINE LEARNING

TOPIC: CLASSIFIER EVALUATION

♦ http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

TASK

- Given a labeled dataset $\mathcal{D} = \{\langle x_i, y_i \rangle\}$, where x_i is the input and y_i is the discrete output
- Train a classifier $f: \mathcal{X} \to \mathcal{Y}$ using \mathcal{D}
- \circ The purpose of f is to perform "well" on unseen data
- How do we define "well"?

0/1 Error & Accuracy

- The simplest measure is "is the prediction correct?"
- Examples
 - Given an email, the model predicts it's spam. Is it correct?
 - Given a patient, the model predicts the patient is suffering from Heart disease. Is it correct?
 - Given a loan application, the model recommends reject. Is the recommendation correct?
- Given a dataset, accuracy is the percentage of objects the model's predictions are correct

SOME PROBLEMS WITH ACCURACY

- All mistakes are considered equal; for example
 - Misclassifying a ham email as spam, and misclassifying a spam email as ham are considered equally bad
 - Approving a loan application that should have been rejected, and rejecting a loan application that should have been approved are considered equally bad
- If a class is dominant, it's often easy to get high accuracy by simply predicting every object as the dominant class; for example
 - If 80% of the emails are ham, a classifier that classifies every email as ham will have 80% accuracy
- All cases are considered equal; for example, email from your family, boss, bank, social media updates, ... are all considered equally important, which might or might not be true

Types of Errors – Classification

- Assume a target/positive class
 - Spam, HasHeartDisease, Approve, etc.
 - This step is important; positive does not mean "good"; positive mean the concept of interest and you decide which class is positive
 - For example, positive covid test does not mean "good" news

• False positive

- Falsely classifying an object as positive
 - E.g., classifying a ham email as spam, diagnosing a healthy patient as having heart disease, approving a loan that should have been rejected, and so on
- Also called *Type I* error

• False negative

- Falsely classifying an object as negative
 - E.g., classifying a spam email as ham, claiming that a heart-disease patient is healthy, rejecting a loan that should have been approved, and so on
- Also called *Type II* error

CONFUSION MATRIX

		Predicted Class		
		Positive	Negative	
A street Class	Positive	True Positive	False Negative	
Actual Class	Negative	False Positive	True Negative	

ACCURACY

		Predicted Class		
		Positive	Negative	
A street Class	Positive	True Positive	False Negative	
Actual Class	Negative	False Positive	True Negative	

$$Accuracy = \frac{Num\ Correct}{Data\ Size} = \frac{TP + TN}{TP + TN + FP + FN}$$

PRECISION

		Predicted Class			
		Positive			Negative
A street Class	Positive	Tr	ie Positiv	Œ,	False Negative
Actual Class	Negative	Fa	lse Positiy	e	True Negative

$$Precision = \frac{True\ Positive}{Predicted\ Positive} = \frac{TP}{TP + FP}$$

True Positive Rate – Recall – Sensitivity

		Predicted Class		
		Positive	Negative	
Actual Class	Positive	True Positive	False Negative	
	Negative	False Positive	True Negative	

$$TPR = Recall = \frac{True\ Positive}{Actual\ Positive} = \frac{TP}{TP + FN}$$

True Negative Rate – Specificity

		Predicted Class		
		Positive	Negative	
A street Class	Positive	True Positive	False Negative	
Actual Class	Negative	False Positive	True Negative	

$$TNR = Specificity = \frac{True\ Negative}{Actual\ Negative} = \frac{TN}{TN + FP}$$

FALSE POSITIVE RATE — FALL-OUT

		Predicted Class		
		Positive		Negative
A star al Classe	Positive	True Positive		False Negative
Actual Class	Negative	False Positive	!	True Negative
	•		<u>.</u>	

$$FPR = FallOut = \frac{False\ Positive}{Actual\ Negative} = \frac{FP}{TN + FP}$$

False Negative Rate – Miss Rate

		Predicted Class		
		Positive	Negative	
Actual Class	Positive	True Positive	False Negative	
	Negative	False Positive	True Negative	

$$FNR = Miss\ Rate = rac{False\ Negative}{Actual\ Positive} = rac{FN}{TP + FN}$$

F1

		Predicted Class		
		Positive	Negative	
A street Class	Positive	True Positive	False Negative	
Actual Class	Negative	False Positive	True Negative	

$$F1 = \frac{2 * Precision * Recall}{Precision + Recall}$$

OTHER MEASURES BASED ON CONFUSION MATRIX

- False discovery rate = FP/PP
- False omission rate = FN/PN
- Negative predictive value = TN/PN
- Positive likelihood ratio = TPR/FPR
- Negative likelihood ratio = FNR/TNR
- Diagnostic odd ratio = PLR / NLR
- **o** ...

AREA UNDER THE CURVE (AUC)

- Area Under the Curve
- What curve? ROC Curve
 - Receiving Operating Characteristic
 - The X axis is False Positive Rate
 - The Y axis is True Positive Rate

threshold

15

AUC EXAMPLE

- Assume 10 actual positives and 20 actual negatives
- Plot the ROC curve and compute the area under it for the following cases:
 - P, P, ..., P, N, N, ..., N
 - P, N, N, P, N, N, ..., P, N, N

TRUE ERROR

- Given h(x), we are interested in
 - $\sum_{x \sim \mathcal{X}} P(x) \mathbb{1}[h(x) \neq c(x)]$, where
 - \boldsymbol{x} is the space of all possible instances
 - P(x) is the probability of seeing instance $x \lor y \lor y \lor y \lor 0.0$
 - $1[h(x) \neq c(x)]$ is 1 if the prediction by h is incorrect; 0 otherwise

• Problems

- X is super large; exponential in the size of the domains of the variables
- We do not know P(x)

17

TRUE ERROR

- \circ Given h(x), we are interested in
 - $\sum_{x \sim X} P(x) \mathbb{1}[h(x) \neq c(x)]$, where
 - *X* is the space of all possible instances
 - P(x) is the probability of seeing instance x
 - $1[h(x) \neq c(x)]$ is 1 if the prediction by h is incorrect; 0 otherwise
- o Problems binned 2 100
 - *X* is super large; exponential in the size of the domains of the variables
 - We do not know P(x)

SAMPLING

- When space is large, sample from P(x)
- When P(x) is not known, or sampling from P(x) is not possible, collect a "representative" sample
- Let $\mathcal{D} \sim P(x)$ be a representative sample
- o For example, true mean versus sample mean
 - $\sum_{x \sim \mathcal{X}} P(x)x$
 - $\frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} x$
- How do we know how close the true mean and the sample mean are?

- Let $\mathcal{D} \sim P(x)$ be a representative dataset
- Sample error

•
$$\frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} 1 \llbracket h(x) \neq c(x) \rrbracket$$

- Remember the binomial distribution
 - n experiments, each with p success probability
 - *n* data points, each with *p* true error
 - Sample error is based on a binomial distribution where exactly k objects are incorrectly labeled
 - What is the probability that *k* objects are incorrectly labeled What is the expectation? What is the variance? What is the 95% confidence interval?
- \bullet Important note: h and $\mathcal D$ must be independent; h cannot depend on $\mathcal D$

20

SPLITTING THE DATASET

- 1. Train-test splits
- 2. Train-validation-test splits
- 3. Cross-validation

TRAIN-TEST SPLIT

- Randomly split the data into two disjoint sets
- A typical approach: 2/3 for train and 1/3 for test
- Train your model on training data and evaluate it on the test data
 - Use your favorite performance metric
- Report your performance as the expected performance on unseen data
- Caveats:
 - You need a large dataset for this to work
 - You cannot tune your parameters on the test data

TRAIN-VALIDATION-TEST SPLIT

- Split your data into three disjoint sets
 - Train, validation, test
- Train your model(s) on the training data
- Evaluate your model(s) on the validation data
- Pick the model that performs best on the validation data
- Test the model on the test data, and report its performance
- Caveat:
 - You need a really big dataset for this to work

23

CROSS-VALIDATION

- Split your data into k disjoint sets
- Each time, one set is the test set and the rest is the training set

COST-SENSITIVE CLASSIFICATION

- Given a probabilistic output for an object, say $\langle \dot{p}, 1-p \rangle$, how do we decide which class to assign to this object?
- The simplest approach is check whether p > 0.5 and make a decision accordingly
- This assumes each mistakes (False Positives and False Negatives) are equally costly

EQUAL MISCLASSIFICATION COSTS?

- Which one is worse for you:
 - Delivering a spam email into your Inbox (False Negative), or
 - Delivering a legitimate email into your Spam folder (False Positive)?
- If one is worse than the other, then, should we use 0.5 as the decision threshold or should we adjust it to your preference?

COST MATRIX

		Predicted Class		
		Positive	Negative	
A street Class	Positive	0	a	
Actual Class	Negative	b	0	

Given a probability distribution of $\langle p, 1-p \rangle$ for $\langle Positive, Negative \rangle$ respectively, and given the above cost matrix, under what conditions (in terms of a, b, and p) would you classify an object as *Positive*?

Cost FN: 9 (I-P) b