Model-Based Control

Model-Based Control

1. Inverse Control

- 1.1. Applicable condition
- 1.2. Two Classical Ways

Open-Loop Feedforward Control

Open-Loop Feedback Control

1.3. Methods of Inverse f(.)

Numerically Method

Affine TS Model

Singleton Model

2. Internal Model Control

3. Model-Based Predictive Control

1. Inverse Control

The objective of inverse control is to compute for the current state x(k) the control input u(k), such that the system's output at the next sampling instant is **equal to the desired** (reference) output r(k+1).

system model:
$$y(k+1) = f(\mathbf{x}(k), u(k))$$
 (1)
contro signal: $u(k) = f^{-1}(\mathbf{x}(k), r(k+1))$

1.1. Applicable condition

- 1. Process (model) is stable and invertible
- 2. The inverse model is stable

- 3. Process model is accurate (enough)
- 4. Little influence of disturbances

1.2. Two Classical Ways

Open-Loop Feedforward Control

- Stable control is guaranteed for open-loop stable, minimum-phase system
- a model-plant mismatch or a disturbance d will cause a **steady-state error** at the process output

Open-Loop Feedback Control

- improve the prediction accuracy and eliminate offsets
- in the presence of noise or a significant model–plant mismatch, in which cases it can cause oscillations or instability.

1.3. Methods of Inverse f(.)

Numerically Method

$$J(u(k)) = (r(k+1) - f(\mathbf{x}(k), u(k)))^{2}$$
(3)

The minimization of J with respect to u(k) gives the control corresponding to the inverse function

Affine TS Model

Consider the following fuzzy process model

$$\mathcal{R}_{i}: \qquad \text{If } y(k) \text{ is } A_{i1} \text{ and } \dots \text{ and } y(k-n_{y}+1) \text{ is } A_{in_{y}} \text{ and } \\ u(k-1) \text{ is } B_{i2} \text{ and } \dots \text{ and } u(k-n_{u}+1) \text{ is } B_{in_{u}} \text{ then } \\ y_{i}(k+1) = \sum_{j=1}^{n_{y}} a_{ij}y(k-j+1) + \sum_{j=1}^{n_{u}} b_{ij}u(k-j+1) + c_{i}, \tag{9.4}$$

So, the state space should have:

$$\mathbf{x}(k) = [y(k), y(k-1), \dots, y(k-n_y+1), u(k-1), \dots, u(k-n_u+1)]$$
(4)

And the output y(k+1) should be:

$$y(k+1) = \frac{\sum_{i=1}^{K} \beta_i(\mathbf{x}(k)) y_i(k+1)}{\sum_{i=1}^{K} \beta_i(\mathbf{x}(k))}$$
(5)

where

$$egin{aligned} eta_{i}(\mathbf{x}(k)) = & \mu_{A_{i1}}(y(k)) \wedge \ldots \wedge \mu_{A_{in_y}}\left(y\left(k-n_y+1
ight)
ight) \wedge \ & \mu_{B_{i2}}\left(u(k-1)
ight) \wedge \ldots \wedge \mu_{B_{in_y}}\left(u\left(k-n_u+1
ight)
ight). \end{aligned}$$

We can rewrite it as:

$$egin{aligned} y(k+1) &= \sum_{i=1}^K \lambda_i(\mathbf{x}(k)) \left[\sum_{j=1}^{n_y} a_{ij} y(k-j+1) + \sum_{j=2}^{n_u} b_{ij} u(k-j+1) + c_i
ight] + \ &+ \sum_{i=1}^K \lambda_i(\mathbf{x}(k)) b_{i1} u(k) \end{aligned}$$

where

$$\lambda_i(\mathbf{x}(k)) = \frac{\beta_i(\mathbf{x}(k))}{\sum_{j=1}^K \beta_j(\mathbf{x}(k))}$$
(6)

So, now we have:

$$y(k+1) = g(\mathbf{x}(k)) + h(\mathbf{x}(k))u(k) \tag{7}$$

so we can calculate:

$$u(k) = \frac{r(k+1) - g(\mathbf{x}(k))}{h(\mathbf{x}(k))} \tag{8}$$

and it will be:

$$u(k) = \frac{r(k+1) - \sum_{i=1}^{K} \lambda_i(\mathbf{x}(k)) \left[\sum_{j=1}^{n_y} a_{ij} y(k-j+1) + \sum_{j=2}^{n_u} b_{ij} u(k-j+1) + c_i \right]}{\sum_{i=1}^{K} \lambda_i(\mathbf{x}(k)) b_{i1}}.$$
 (9)

Singleton Model

If
$$y(k)$$
 is A_1 and $y(k-1)$ is A_2 and ... and $y(k-n_y+1)$ is A_{n_y} and $u(k)$ is B_1 and ... and $u(k-n_u+1)$ is B_{n_u} (9.13) then $y(k+1)$ is c ,

First, simplify the rule base to:

If
$$\mathbf{x}(k)$$
 is X and $u(k)$ is B then $y(k+1)$ is c .

Assume we use the product t-norm for "and":

$$\beta_{ij}(k) = \mu_{X_i}(\mathbf{x}(k)) \cdot \mu_{B_j}(u(k))$$

$$y(k+1) = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} \beta_{ij}(k) \cdot c_{ij}}{\sum_{i=1}^{M} \sum_{j=1}^{N} \beta_{ij}(k)} = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} \mu_{X_i}(\mathbf{x}(k)) \cdot \mu_{B_j}(u(k)) \cdot c_{ij}}{\sum_{i=1}^{M} \sum_{j=1}^{N} \mu_{X_i}(\mathbf{x}(k)) \cdot \mu_{B_j}(u(k))}$$

Then we keep simplify the output equation

$$egin{aligned} y(k+1) &= rac{\sum_{i=1}^{M} \sum_{j=1}^{N} \mu_{X_i}(\mathbf{x}(k)) \cdot \mu_{B_j}(u(k)) \cdot c_{ij}}{\sum_{i=1}^{M} \sum_{j=1}^{N} \mu_{X_i}(\mathbf{x}(k)) \mu_{B_j}(u(k))} \ &= \sum_{i=1}^{M} \sum_{j=1}^{N} \lambda_i(\mathbf{x}(k)) \cdot \mu_{B_j}(u(k)) \cdot c_{ij} \ &= \sum_{j=1}^{N} \mu_{B_j}(u(k)) \sum_{i=1}^{M} \lambda_i(\mathbf{x}(k)) \cdot c_{ij} \end{aligned}$$

where
$$\lambda_i(\mathbf{x}(k)) = rac{\mu_{X_i}(\mathbf{x}(k))}{\sum_{j=1}^K \mu_{X_j}(\mathbf{x}(k))}$$

For **invertible**, The inversion method requires that the **antecedent membership** functions $\mu_{B_j}(u(k))$ are **triangular** and form a partition $\sum_{j=1}^N \mu_{B_j}(u(k)) = 1$ (Invertible condition 1)

we have

$$y(k+1) = \sum_{j=1}^{N} \mu_{B_j}(u(k))c_j$$
 (11)

where

$$c_j = \sum_{i=1}^{M} \lambda_i(\mathbf{x}(k)) \cdot c_{ij}$$
 (12)

Then we have some rules like:

If
$$u(k)$$
 is B_j then $y(k+1)$ is $c_j(k)$, $j=1,\ldots,N$.

Then we will invert it to:

If
$$r(k+1)$$
 is $c_j(k)$ then $u(k)$ is B_j $j=1,\ldots,N$.

Because it is singleton, we need interpolate

$$\mu_{C_1}(r) = \max\left(0, \min\left(1, \frac{c_2 - r}{c_2 - c_1}\right)\right)$$

$$\mu_{C_j}(r) = \max\left(0, \min\left(\frac{r - c_{j-1}}{c_j - c_{j-1}}, \frac{c_{j+1} - r}{c_{j+1} - c_j}\right)\right), \quad 1 < j < N,$$

$$\mu_{C_N}(r) = \max\left(0, \min\left(\frac{r - c_{N-1}}{c_N - c_{N-1}}, 1\right)\right)$$
(13)

Then we can calculate the output:

$$u(k) = \sum_{j=1}^{N} \mu_{C_j}(r(k+1))b_j$$
 (14)

$$y(k+1) = f_x(u(k)) = f_x\left(f_x^{-1}(r(k+1))\right) = r(k+1) \tag{15}$$

Notes

A invertible singleton model must with monotonous model.

2. Internal Model Control

The purpose of the process model working in parallel with the process is to subtract the effect of the control action from the process output.

- If the predicted and the measured process outputs **are equal**, the error e is zero and the controller works in an **open-loop configuration**.
 - If a **disturbance d** acts on the process output, the feedback signal e is equal to the influence of the disturbance and is not affected by the effects of the control action.

- This signal is subtracted from the reference. With a perfect process model, the IMC scheme
 - is hence able to **cancel the effect of unmeasured output-additive disturbances**.

3. Model-Based Predictive Control