

64-Tap 16-bit Dual-Clock Fixed-to-Floating-Point Finite Impulse Response Filter Design

CSEE W4823 Fall 2024 Project

Group 9 Yuan Jiang (yj2848) Hongxin Xu (hx2389)

□ Architecture - FIR core Testbench

• Inputs:

- Provides clk1 (10 kHz) and clk2 (640 kHz) clock signals.
- Generates input stimulus din (16-bit FX) and preloads coefficients (16-bit FX) into memory from Matlab .txt files.

• Top-Level FIR Core Modules:

- FIFO: Stores input data at clk1 and bridges asynchronous clock domains with clk2.
- o CMEM: Pre-loaded 64 coefficients.
- **IMEM_reg**: Holds the 64 most recent input samples for convolution.
- **ALU**: Performs MAC and converts FX16 to FP16.
- **FSM**: Controls the states: IDLE, LOAD_COEF, PROCESS, and DONE.

Outputs:

- The filtered output dout (FP16) is generated and validated using valid out signal.
- Compares outputs with precomputed values (.txt file).
- Flags mismatches and tracks error count / accuracy.

Metrics of the FIR Filter

Metrics	Results
Throughput	10 kS/s
Maximum Clock Frequency	34.03 MHz
Power Consumption	$1.868 \times 10^{-5} \mathrm{W}$
Energy Efficiency	0.549 pJ/S
Area	86547.7 mm ²
Accuracy	Worst case: 95.30189 % Average: 99.92025 %

Methods source: Lecture 07, "Advanced Logic Design," Fall 2024 CSEE W4823, by Prof. Mingoo Seok, pp.9.

