CS3063 Theory of Computing

Semester 4 (20 Intake), Feb – Jun 2023

Lecture 2

Regular Languages & Finite Automata

Announcements

- We follow the flipped-classroom model
- Video recorded lecture and slides on Moodle; students study these privately in their own time
- Physical meeting every week from 13th March, on Mondays, by dividing the students into 2 Groups
 - Start with a short online Quiz on the previous week's lecture
 - Group 1: Monday 10.15am 11.00am in L2 Lab
 - Group 2: Monday 11.15am 12.00 noon in L2 Lab

Today's Outline

Lecture 2

- Regular Languages
- Regular Expressions
- Finite Automata (FA)
- Kleene's Theorem

Today's Outline

Lecture 2

- Regular Languages
- Regular Expressions
- Finite Automata (FA)
- Kleene's Theorem

Introduction

• Consider the languages obtained by concatenation of simple languages of the form $\{a\}$ where $a \in \Sigma$

 If we use concatenation only, then we get single strings (languages with one string)

 Adding union and Kleene * operations, we can produce infinite languages

Basic Languages

 To the simple language of the form {a}, let us add the empty language Ø and the language {Λ} that has only the null string, to get the basic languages

• Basic languages: $\{a\}$, \emptyset and $\{\Lambda\}$

Regular Languages/Expressions

- Regular language over an alphabet Σ
 - The language that can be obtained from the basic languages using the union, concatenation and Kleene * operations

 A regular language can be represented by a simple form called a regular expression

Regular Languages/Expressions

- Regular expression for a regular language is obtained by:
 - 1) Leaving out { and } or replacing with (and)

(some use "+"); note that "0+1" and "0+1" are different

- Example: let $\Sigma = \{0, 1\}$
 - Some regular languages over Σ and the corresponding regular expressions are: (see next slide)

Regular Language	Regular Expression
$\{\Lambda\}$	
{0}	
{001} (i.e., {0}{0}{1})	
$\{0,1\}$ (i.e., $\{0\} \cup \{1\}$)	
$\{0, 10\}$ (i.e., $\{0\} \cup \{10\}$)	
$\{1,\Lambda\}\{001\}$	
$\{110\}^* \{0,1\}$	
{1}*{10}	
{10, 111, 11010}*	
$\{0,10\}^*(\{11\}^* \cup \{001,\Lambda\})$	

Regular Language	Regular Expression	
$\{\Lambda\}$	Λ	
{0}	0	
{001} (i.e., {0}{0}{1})	001	
$\{0,1\}$ (i.e., $\{0\} \cup \{1\}$)	0 1 or $0+1$	
$\{0, 10\}$ (i.e., $\{0\} \cup \{10\}$)	0 10 or $0+10$	
$\{1,\Lambda\}\{001\}$	$(1 \Lambda)001 \text{ or } (1+\Lambda)001$	
$\{110\}^* \{0,1\}$	(110)* (0 1)	
{1}*{10}	1*10	
{10, 111, 11010}*	(10 111 11010)*	
$\{0,10\}^*(\{11\}^* \cup \{001,\Lambda\})$	$(0 10)^* ((11)^* 001 \Lambda)$	

Regular Expressions

 A regular expression indicates the most typical string in a regular language

Example

1*10 is a string that consists of any number of 1's followed by the substring 10

Recursive Definition

- Let Σ be an alphabet; the regular expressions and the corresponding set R of regular languages over Σ are defined recursively as follows:
 - 1. Ø is a regular expression; denotes Ø in R
 - 2. Λ is a regular expression; denotes $\{\Lambda\}$ in R
 - 3. For each a in Σ , a is a regular expression and it denotes the language $\{a\}$ in R

contd...

Recursive Definition ...contd

- 4. If *p* and *q* are regular expressions denoting languages *P* and *Q*, respectively, in *R* then:
 - $(p \mid q)$ is a regular expression; denotes $P \cup Q$ in R
 - (pq) is a regular expression; denotes PQ in R
 - (p^*) is a regular expression; denotes P^* in R

Only those obtained from 1 - 4 above are regular expressions/languages over Σ

More on Regular Expressions

- The empty language Ø is used in the definition mainly for consistency
 - Else, some trivial cases can be complicated

- Some notations for regular expressions
 - (x^i) means $(xx \cdot \cdot \cdot \cdot x)$ i times
 - (x^+) means $((x^*)x)$

A Better Notation

- To omit some parentheses let's assume:
 - Kleene *: highest precedence
 - Concatenation: higher precedence than "
 - "" has lowest precedence

Examples

$$- (a|((b^*)c)) \rightarrow a/b^*c \qquad \text{or} \quad a+b^*c$$

-
$$((0(1*))|0) \rightarrow 01*|0$$
 or $01*+0$

More on Regular Expressions

• If two regular expressions p and q correspond to the same language then we write p = q, else $p \neq q$

Regular Expression	Description
(0 1)*	?
(0 1)*00(0 1)*	?
(1 10)*	?
(0 A)(1 10)*	?
(0 1)*011	?
0*1*2*	?
00*11*22*	?

Regular Expression	Description	
(0 <mark> </mark> 1)*	All strings of 0's and 1's	
(0 <mark> </mark> 1)*00(0 <mark> </mark> 1)*	All strings of 0's and 1's with at least 2 consecutive 0's	
(1 10)*	All strings of 0's and 1's beginning with 1 and no consecutive 0's	
(0 \Lambda)(1 10)*	All strings of 0's and 1's not having consecutive 0's	
(0 1)*011	All strings of 0's and 1's ending in 011	
0*1*2*	Any # of 0's followed by any # of 1's followed by any # of 2's	
00*11*22*	0*1*2* with at least one of 0, 1, 2	

More Examples

From the textbook (pp. 87-89)

- Suppose $\Sigma = \{0, 1\}$; give regular expressions for the following
 - a) Strings of even length \rightarrow ?
 - b) Strings with an odd number of 1's →?
 - c) Strings of length 6 or less \rightarrow ?
 - d) Strings ending in 1, not containing $00 \rightarrow ?$

Solutions

• $\Sigma = \{0, 1\}$; regular expressions are:

- a) Strings of even length \rightarrow (00|01|10|11)*
- b) Strings with an odd number of 1's → 0*10*(10*10*)* or (0*10*1)*0*10* or 0*(10*10*)*10*
- c) Strings of length 6 or less \rightarrow $(0|1|\Lambda)^6$
- d) Strings ending in 1, not containing $00 \rightarrow (1|01)^+$

Today's Outline

Lecture 2

- Regular Languages
- Regular Expressions
- Finite Automata (FA)
- Kleene's Theorem

Recognizing a Language

- Recognizing a language: deciding if an arbitrary string is in the language
- Can use the following approach
 - Use a single pass of input string, left → right
 - Rather than wait until ending symbol, make a tentative decision after each symbol
- How much memory is needed?
 - We must remember something

Finite Automata (FA)

 A finite automaton (FA) consists of a finite set of states and a set of transitions from state to state that occur on input symbols from an alphabet

- For each input symbol, there is exactly one transition out of each state
 - Transition can be back to the state itself

Finite Automata (FA) ...contd

- A directed graph called a (state) transition diagram can represent an FA
 - Vertices ↔ states
 - Edge labeled a from vertex p to q ↔ transition from state p to q on input a
 - The FA accepts a string x if the sequence of transitions for the symbols in x leads from the start state to an accepting state

Transition Diagram

Inputs = $\{0, 1\}$

Finite Automata (FA) ...contd

 Can view an FA also as a machine in some state, reading a sequence of symbols from Σ on a tape

Finite Automata: Definition

- An FA is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where:
 - Q is a finite set of states
 - Σ is a finite alphabet of input symbols
 - $-q_0 \in Q$ is the initial (or start) state
 - $-A \subseteq Q$ is the set of accepting (or final) states
 - δ is the transition function; maps $Q \times \Sigma$ to Q

• $\delta(q, a)$ will be the new state of the FA, if it is now in state q and receives input a

Finite Automata (FA) ...contd

In our machine on slide 26, after reading a symbol a while in state q, the machine enters state $\delta(q, a)$ and moves its head one symbol to the right

• If $\delta(q, a)$ is an accepting state, then the FA accepts the string up to a on the tape

(State) Transition Table

- Alternative representation for an FA
 - E.g., transition table corresponding to the transition diagram on slide 25

Current State	Input	
Current State	0	1
p	S	q
q	r	p
r	q	S
S	p	r
	<u> </u>	

next state

Extended Transition Function δ*

 We extend δ to describe concisely what happens to an FA on an input string x

- Definition: The function δ^* : $Q \times \Sigma^* \to Q$ is such that:
 - For any $q \in Q$, $\delta^*(q, \Lambda) = q$
 - For any $q \in Q$, $y \in \Sigma^*$ and $a \in \Sigma$, $\delta^*(q, ya) = \delta(\delta^*(q, y), a)$

Extended Transition Function δ*

• $\delta^*(q, x)$ is the state the FA will be in after reading the string x starting in state q

 In the transition diagram, there is a path labeled x from q to some unique state r

Acceptance by an FA

- Let $M = (Q, \Sigma, q_0, A, \delta)$ be an FA
- A string $x \in \Sigma^*$ is accepted by M if $\delta^*(q_0, x)$ is in A
- If a string is not accepted, then it is rejected by M

• The language accepted (or recognized) by M is the set $L(M) = \{x \in \Sigma^* \mid x \text{ is accepted by } M\}$

Regular Languages and FA

Kleene's Theorem

- A language $L \subseteq \Sigma^*$ is regular if and only if there is an FA with alphabet Σ that accepts L

This means:

- If M is an FA, there is a regular expression corresponding to the language L(M)
- Given a regular expression, there is an FA that accepts the corresponding language

Conclusion

- Summary of discussion today
 - Regular languages
 - Regular expressions
 - Finite automata (FA)
 - Acceptance by FA
 - Kleene's Theorem