Started on Wednesday, 22 February 2017, 10:57 AM

State Finished

Completed on Wednesday, 22 February 2017, 11:51 AM

Time taken 54 mins 7 secs

Grade 100.00 out of 100.00

Question 1

Correct

Mark 15.00 out of 15.00

Q1b

Consider the sinusoidal voltage $v(t) = 100 \cos(240 \pi t + 45^{\circ}) V_{rms}$.

a) What is the maximum amplitude of the voltage?

$$V_{\rm m} = \boxed{141.42} \quad \checkmark V$$

b) What is the frequency of v(t) in hertz?

$$f = 120$$
 \checkmark Hz

c) What is the frequency of v(t) in radians per second?

$$\omega = \boxed{753.6}$$
 \checkmark rad/sec

d) What is the phase angle in radians?

$$\varphi$$
 (phi) = .785 \checkmark radians

e) What is the period in milliseconds?

Correct

Marks for this submission: 15.00/15.00.

Question 2

Correct

Mark 5.00 out of 5.00

Q2a

Given:
$$x(t) = 100 \cos(300 t + 45^\circ) + 500 \cos(300 t - 60^\circ)$$

Use the concept of the phasor to combine this sinusoidal function into a single trigonometric expression in the form similar to $x(t) = A \cos(\omega t + \theta^{\circ})$.

Magnitude A of
$$x(t) = 483.85$$

Angle
$$\theta$$
 of $x(t) = \begin{vmatrix} -48.48 \end{vmatrix}$ (Degree)

Correct

Marks for this submission: 5.00/5.00.

Correct

Mark 15.00 out of 15.00

Q3c

Assume the operational amplifier is ideal.

Given $v_g(t) = -38.0 \text{ V}$ (a constant voltage)

Find the steady-state output $v_0(t)$.

$$v_0(t) = \begin{bmatrix} -10 \\ \checkmark \end{bmatrix}$$
 Volts

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 10.00 out of 10.00

Q4a

Find the phasor voltages V_0 and V_1 . I suggest you use the Node Method.

$$V_0 = \begin{bmatrix} 15.8 \\ \checkmark \end{bmatrix}$$
 at angle $\begin{bmatrix} 18.4 \\ \checkmark \end{bmatrix}$ (Degrees) Volts $V_1 = \begin{bmatrix} 49.9 \\ \checkmark \end{bmatrix}$ at angle $\begin{bmatrix} -53.1 \\ \checkmark \end{bmatrix}$ (Degrees) Volts

Express your answer as a positive magnitude and then the angle in the appropriate quadrant.

Correct

Marks for this submission: 10.00/10.00.

Question 5

Correct

Mark 15.00 out of 15.00

Q5b

Given
$$i_s = 20 \cos(100,000 t + 6.12^\circ)$$
 Amps

The equivalent admittance of the circuit is $Y_{Eq} = 0.2166$ at angle 6.12° (Degrees) Siemens

Calculate the average power absorbed/delivered by the 6 Ω (Ohm) resistor.

$$P_{6\Omega} = 491.8033$$
 \checkmark W "+" = absorbed "-" = delivered

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 10.00 out of 10.00

Q6a

Given:

The voltage source V_g = 160 at angle 0° V_{rms} and the voltage V_0 = 122.714 at angle -4.40° V_{rms}

Find the average and reactive power for the voltage source $V_{\rm g}$.

$$S_g = \begin{bmatrix} -481.2 & \checkmark + j & 120.24 & \checkmark & VA \end{bmatrix}$$

"+" = absorbed and "-" = delivered

Correct

Marks for this submission: 10.00/10.00.

Question 7

Correct

Mark 5.00 out of 5.00

Q7d

Given that a balanced three-phase set of voltages is in the negative phase sequence where $v_a = 240 \cos(\omega t - 41^\circ) \text{ V}$.

Find the other two phase voltages.

$$v_b = 240$$
 \checkmark $\cos(\omega t + 79$ \checkmark °) \lor
 $v_c = 240$ \checkmark $\cos(\omega t + -161)$ \checkmark °) \lor

Correct

Marks for this submission: 5.00/5.00.

Correct

Mark 15.00 out of 15.00

Q8a

Given: $V_{a'n} = 120$ at angle $0^{\circ} V_{rms}$ in a balanced three phase system with a positive phase sequence.

The source and load are Y connected.

$$Z_{qa} = 1 + j15 \Omega$$
 $Z_{ia} = 19 + j5 \Omega$ $Z_{A} = 20 + j20 \Omega$

Calculate the single phase equivalent line currents $\rm I_{aA}, \, I_{bB}$ and $\rm I_{cC}.$

Calculate the line to line voltages $\rm V_{AB}, \rm V_{BC},$ and $\rm V_{CA}.$

$$V_{AB} = \boxed{103.92}$$
 at angle $\boxed{30}$ ° (Degrees) V_{rms} $V_{BC} = \boxed{103.92}$ at angle $\boxed{-90}$ ° (Degrees) V_{rms} $V_{CA} = \boxed{103.92}$ at angle $\boxed{150}$ ° (Degrees) V_{rms}

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 10.00 out of 10.00

Q9a

The total apparent power supplied in a balanced three-phase Y-D system is 3,600 VA. The source line to neutral voltage is 240 V_{rms} . The line impedance is negligible and the power factor angle of the load is 35° lagging.

Determine the impedance of the load.

$$Z_{\Delta,load} = \boxed{39.32} + j \boxed{27.5} \qquad \checkmark \Omega \text{ (Ohms)}$$

Correct

Marks for this submission: 10.00/10.00.