Proyecto Júpiter Octubre 2025

PONTIA WORLD

RECONOCIMIENTO DE EMOCIONES

Sistema avanzado de análisis de datos para la detección y clasificación de emociones en parques temáticos.

Nuestro equipo

ANAMARÍA TURDA

Project Manager

Liderazgo del Proyecto, limpieza de datos con python, modelo relacional SQL, desarrollo ML e IA generativa.

INÉS BENITO

Miembro activo

Limpieza de datos con python, modelo relacional SQL, desarrollo ML e IA generativa.

IÑIGO UGIDOS

Miembro activo

Limpieza de datos con python, modelo relacional SQL, desarrollo ML e IA generativa.

WILLIAM GANEM

Miembro activo

Limpieza de datos con python, modelo relacional SQL, desarrollo ML e IA generativa.

Objetivos

OBJETIVO GENERAL

Analizar los datos generales generados en Pontia World para detectar patrones en las emociones y usar esa información para mejorar la experiencia de los clientes y la rentabilidad del negocio

OBJETIVOS ESPECÍFICOS

OBJETIVO 1

Desarrollar un proceso ETL completo utilizando Python y librerías como Pandas y Numpy para la limpieza de archivos JSON.

OBJETIVO 2

Diseñar e implementar un modelo de base de datos relacional en SQL que organice la información para facilitar consultas.

OBJETIVO 3

Desarrollar, entrenar y comparar diferentes modelos de ML/DL para clasificar emociones y predecir comportamientos. Acompañarlo de una propuesta de IA Generativa.

OBJETIVO 4

Generar un dashboard de insights para presentar los datos y conclusiones, cargando los datos en Power Bl.

Metodología

PIPELINE LIMPIEZA DE DATOS

Partiendo de archivos JSON, se identificaron y corrigieron diversos problemas de calidad:

★ FORMATO DE DATOS

Desglose de datos encapsulados en diccionarios y homogeneización de tablas.

★ VALORES NEGATIVOS

Tiempo de espera, costes y duraciones negativas transformados a valores positivos.

★ ID VISITANTE INCONSISTENTE

Se creó un nuevo campo id_visitante a partir de procedencia, duración y día de visita.

VALORES EXTREMOS EN DURACIÓN

Visitas con duración superior a 9 horas imputadas con la duración media de 350 minutos.

***** VALORES ATÍPICOS EN COSTES

Tickets con valores muy bajos revisados por tipo de entrada.

Nº de Visitantes

3000 2000 1000

Análisis exploratorio

Se realizaron visualizaciones como mapamundi de distribución geográfica de visitantes, gráficos de número de visitantes por atracción, distribución de entradas y duraciones medias.

Base de datos

PIPELINE PREPARACIÓN SQL

- LIMPIEZA Y TRANSFORMACIÓN
 Limpieza y transformación de datos para cargarlos en SQL.
- **SOLUCIÓN DE ERRORES TÉCNICOS**Solución de errores de codificación (utf-8 → latin1) + validación de tipos + problemas de carga de datos.
- DEFINICIÓN DE REGLAS DE NEGOCIO

 Definición de reglas de negocio para imputar valores anómalos (duración > 540min = 350 min, fast pass comprados con > 3 días de antelación = Pase rápido erróneo).
- PREPARACIÓN FINAL
 Uso de los CSVs para la realización de consultas/querys.

Modelo relacional

valoraciones_emociones
† t.id VARCHAR(100)

emocion VARCHAR(100)

fecha hora DATETIME

valoracion TINYINT

Modelo de datos

Se diseñó un modelo relacional que conecta las fuentes de datos y tablas principales para facilitar consultas analíticas.

Sistema Rank

Se implementó un sistema con RANK para manejar empates en los datos y obtener una mejor visión de conjunto.

Conclusiones

- ★ Los visitantes subían como máximo a 7 atracciones, y como mínimo a 1.
- ★ La emoción más fuerte es "feliz" para todas las atracciones.
- ★ Todas las atracciones tienen prácticamente la misma media de valoración (5/10).

Consultas destacadas

- ★ La mayoría de los visitantes (90,74%) solo se han subido a una atracción.
- ★ La media de valoraciones no varía significativamente por cada país.
- ★ Las entradas tienen el mismo precio independientemente de la antelación de su compra.
- ★ El tiempo de espera no afecta positiva o negativamente a las valoraciones.
- ★ El tiempo de espera es prácticamente igual para todas las atracciones.

Detección de emociones

OBJETIVO

Desarrollar un sistema que clasifique 7 emociones a partir de imágenes faciales 48×48 en escala de grises, usando el dataset de Pontia World.

ANG RY

DISGUST

FEAR

HAPPY

NEUTRAL

SURPRISE

PREPARACIÓN DE DATOS

- ✓ División: Train ≈ 22.968, Val ≈ 5.741, Test ≈ 7.178 imágenes.
- ✓ Aumentación moderada (rotación, traslación, flip, zoom).
- ✓ Normalización: Rescalado a [0,1].
- ✓ Class weights para equilibrar clases desbalanceadas.

MÉTRICAS PRINCIPALES Y CRITERIOS DE EVALUACIÓN

Promedia el FI por clase dando el mismo peso a cada emoción, crítico cuando hay desbalance de clases.

★ KPI de referencia — Accuracy

Sencilla de entender (aciertos/total), útil para una visión global pero puede enmascarar problemas en clases minoritarias.

Modelos

DEL PREENTRENADO GENÉRICO AL CNN COMBINADO

★ FASE 0 – TRASFER LEARNING

Punto de partida con MobileNet. Resultado: ~48% accuracy. El mismatch de escala (48×48) y la falta de ajuste fino impidieron capitalizar el preentrenamiento.

★ FASE 1 - CNN PROPIA "SIMPLE"

Arquitectura secuencial básica sin nada contra el desbalanceo. Resultado: ~0,54 accuracy y 0,50 en macro-Fl. Mejor que el preentrenado pero floja en clases minoritarias.

- FASE 2 CNN "PROFUNDA" Y ESTABLE

 Mayor profundidad, augmentación moderada, class weights,
 BatchNorm y Dropout. Resultado: ~0,63 accuracy y ~0,61 macro
 F1. Mejora en equilibrio entre emociones.
- FASE 3 DE CLASIFICADOR A "BACKBONE + EMBEDDINGS"

 CNN como extractor de embeddings con clasificador lineal y uno fino para el bloque difícil angry/fear/sad.
- ★ FASE 4 ENSAMBLE SUAVE

 Ensamble entre CNN y clasificador especializado con peso α=0,25: 0,6454 accuracy y 0,6237 Macro-Fl en TEST (mejor rendimiento global).

Conclusión y modelo final

FUNCIONAMIENTO DEL MODELO ELEGIDO

- Recibe la imagen en tamaño pequeño y en blanco y negro (para quedarse con las formas y gestos importantes).
- Una red (CNN) actúa como extractor de rasgos: cejas, ojos, comisuras, arrugas. De ahí saca un resumen numérico.
- Se combinan dos opiniones independientes: generalista (probabilidad por emoción) y especialista (para casos confusos).
- Fusión con peso fijo: 25% especialista / 75% generalista, dando más voz al generalista pero escuchando al especialista.
- Se elige la emoción con mayor probabilidad y se muestra también un nivel de confianza.

LIMITACIONES Y RIESGOS

- ✓ Desbalanceo de clases (disgust muy escasa) que sesga el aprendizaje.
- ✓ Solapamiento semántico entre expresiones sutiles (fear vs sad/angry).
- ✓ Transfer learning genérico no adapta bien a imágenes 48×48.

Viabilidad de las métricas

★ SUPERACIÓN DEL NIVEL DE AZAR

El modelo del Proyecto Júpiter (64.54% Accuracy) supera significativamente el nivel de azar para 7 emociones (14.29% Accuracy), siendo aproximadamente 4.5 veces más preciso que una predicción aleatoria.

★ RENDIMIENTO COMPARATIVO CON HUMANOS (FER2013)

En el dataset FER2013, el rendimiento humano estimado es de ~65.5% Accuracy. El modelo del Proyecto Júpiter (64.54% Accuracy) se encuentra muy cerca de este baseline, demostrando una capacidad competitiva.

* CONTEXTO DE COMPLEJIDAD

Estudios muestran que el rendimiento humano en tareas de reconocimiento de emociones puede variar (41%-72% Accuracy) y ser inferior en contextos más complejos o con mayor número de emociones.

★ VIABILIDAD Y POTENCIAL

Las métricas obtenidas demuestran que el modelo es viable y robusto para la clasificación de emociones, ofreciendo una base sólida para la toma de decisiones estratégicas en PontIA World.

LA generativa

RESUMEN

★ PROBLEMA

Valoraciones bajas en atracciones (media de 5 sobre 10).

★ OBJETIVO

Mejorar la experiencia y valoraciones de los visitantes.

★ SOLUCIÓN

lA generativa para personalización de la experiencia en tiempo real.

CASOS DE USO

- ✓ Itinerario personalizado con tiempos de espera en tiempo real.
- ✓ Chat para incidencias y dudas del usuario.
- ✓ Diseño adaptativo de experiencias basado en emociones.

BENEFICIOS ESPERADOS

- ✓ Fiabilidad y trazabilidad de datos automatizada.
- ✓ Mejora de valoraciones (objetivo: subir de 5-7 sobre 10).
- ✓ Propuesta de valor diferencial frente a competencia.

Dashboard interactivo

Conclusiones

XX ✓ XXX

XX</ >

Trabajo a futuro

- ★ Tablas estáticas en SQL.
- * XX
- * XX
- * XX
- ★ XX

Proyecto Júpiter Octubre 2025

¡GRACIAS!

