### Análisis espectral de señales: Serie de Fourier

Procesamiento Digital de Señales



Marco Teran

#### Contenido

- Introducción
- 2 Series de Fourier
- 3 Serie exponencial de Fourier para señales de tiempo discreto
- 4 Convergencia de la serie de Fourier de tiempo discreto
- 5 Propiedades de la serie de Fourier

#### Formula de Euler

$$e^{ix} = \cos x + i \sin x$$
 
$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$$



Figure 1: Formula de Euler

Si s solo tiene parte imaginaria,  $s=i\Omega$ :  $x[n]=Ae^{i\Omega n}=A\left(\cos(\Omega n)+i\sin(\Omega n)\right)$ 

- Dentro de sus propiedades se encuentra la periodicidad, cuyo periodo fundamental
  - $N = T\{x[n]\} = \frac{2\pi}{\Omega}$

### Introducción

Es posible descomponer cualquier señal en elementos sinusoidales, y el análisis de Fourier muestra como hacerlo.

#### Análisis:

- Del dominio del tiempo al dominio de la frecuencia
- Encontrar la contribución de cada frecuencia distinta
- Encontrar propiedades ocultas de la señal

#### Síntesis

- Del dominio de la frecuencia al dominio del tiempo
- Crear señales a partir del conocimiento de la frecuencia
- Fijar señales en regiones especificas de frecuencia

### Historia

Según el físico matemático francés *Jean-Baptiste Joseph Fourier* (Auxerre, Francia, 21 de marzo de 1768 - París, 16 de mayo de 1830) cualquier señal, sin importar su complejidad, se puede generar a partir de la suma de armónicos, cuyas frecuencias son múltiplos enteros de una frecuencia fundamental (ligada a un periodo fundamental), con distintas fases y amplitudes.



Figure 2: Retrato de Jean-Baptiste Joseph Fourier realizado por el pintor y dibujante francés Louis Léopold Boilly

### Bases matemáticas

- El análisis de Fourier se puede representar mediante un cambio de base.
- Un cambio de base es un cambio de perspectiva para el análisis.
- Si las bases a las cuales se realizará el cambio son bien escogidas, esta nueva base revelará características hasta ahora desconocidas de la señal.
- Secuencia discreta **periódica** con periodo N.

### Series de Fourier para señales periódicas

- Especial para el análisis de señales y sistemas.
- Muchas similitudes entre la serie de Fourier de tiempo continuo y la serie de tiempo discreto.

#### Fourier serie

Una señal periódica, de periodo N, se puede representar mediante la Serie de Fourier (FS, ing. Fourier Series) y consta de la suma de funciones armónicamente relacionadas.

### Series de Fourier para señales periódicas: caso discreto

#### Tiempo discreto:

Funciones armónicamente relacionadas:

$$s_k[n] = e^{j\frac{2\pi}{N}kn} = e^{j\Omega kn} = e^{j\Omega_k n}, \text{ donde } k = 0, 1, 2, 3, \dots, N-1. \tag{1}$$

Donde 
$$\Omega_k = \frac{2\pi}{N}k$$
.

- Cada uno de estos exponenciales complejos, relacionados a N, como productos enteros del inverso de este, se denominan *armónicos*.
- $s_k[n]$  es periódica de periodo N,  $s_k[n] = s_k[n+N]$ .

# Series exponencial de Fourier para señales de tiempo discreto

#### Ecuación de síntesis

$$x[n] = \sum_{k=\langle N \rangle} c_k e^{j\Omega kn} = \sum_{k=0}^{N-1} c_k e^{j\frac{2\pi}{N}kn}$$
 (2)

Ecuación de análisis

$$c_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j\Omega kn} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$
(3)

donde,  $\Omega_k=\Omega k=\frac{2\pi}{N}k$  — k-ésimo armónico.  $\Omega$  — frecuencia fundamental de la secuencia periódica.

### Características de la Serie exponencial de Fourier

- Los coeficientes de de la serie exponencial de Fourier  $c_k=c[k]$  proporcionan una descripción de x[n]/x(t) en el dominio de la frecuencia.
- ullet  $c_k$ , de naturaleza compleja, representa la *amplitud* y la *fase* asociada a cada uno de los armónicos, componentes de frecuencia.
- lacksquare Como  $s_k[n]$  es periódica, también lo es  $c_k$  y su periodo es N,  $c_k=c_{k+N}$ .
- El espectro de una sea una señal periódica x[n], de periodo N, es una secuencia periódica de periodo N.

Coeficiente especial: cuando k=0 obtenemos el valor promedio de la señal x[n]

$$c_0 = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] \tag{4}$$

#### **Ejemplo**

Considera la siguiente señal periódica con periodo N=10. Calcule el espectro de la señal en función de  $c_{\bf k}$ .

$$x[n] = \begin{cases} 1, & \text{para } 0 \le n \le 4 \\ 0, & \text{para } 5 \le n \le 9. \end{cases}$$

### Convergencia de la serie de Fourier

¿Que es la convergencia de una serie (sumatoria)?

#### Convergencia de la serie de Fourier

Si la serie de Fourier es finita, entonces no existen problemas de convergencia.

Se asume que x[n] es periódica con periodo T.

$$x[n] \xrightarrow{FS} c_k = c[k] \tag{5}$$

#### Linealidad

$$x[n] \xrightarrow{FS} a_k$$
 (6)

$$y[n] \xrightarrow{FS} b_k \tag{7}$$

entonces,

$$\alpha x[n] + \beta y[n] \xrightarrow{FS} \alpha a_k + \beta b_k \tag{8}$$

#### Desplazamiento en el tiempo

$$x[n] \xrightarrow{FS} c_k = c[k] \tag{9}$$

entonces

$$x[n-n_0] \xrightarrow{FS} c_k e^{-j\omega_k n_0}, \ n_0 \in \mathbb{Z}$$
 (10)

#### Inversión temporal

$$x[n] \xrightarrow{FS} c_k$$
 (11)  
 $x[-n] \xrightarrow{FS} c_{-k}$  (12)

$$x[-n] \stackrel{FS}{\longrightarrow} c_{-k} \tag{12}$$

#### Multiplicación

$$x[n] \xrightarrow{FS} a_k$$
 (13)  
 $y[n] \xrightarrow{FS} b_k$  (14)

$$y[n] \xrightarrow{FS} b_k \tag{14}$$

entonces

$$x[n]y[n] \xrightarrow{FS} \sum_{p=-\infty}^{\infty} a_p b_{k-p} = a_k * b_k \tag{15}$$

#### Conjugación y simetría conjugada

$$x[n] \xrightarrow{FS} c_k$$
 (16)

$$x[n] \xrightarrow{FS} c_k \tag{16}$$

$$y[n] = x^*[n] \xrightarrow{FS} c_{-k}^* \tag{17}$$

#### Periodicidad de los coeficientes de la serie de Fourier de tiempo discreto

Es necesario recordar la propiedad de periodicidad del exponencial complejo de tiempo discreto:

$$e^{j(\Omega_0 + 2\pi k)n} = e^{j\Omega_0 n} e^{j2\pi kn} = e^{j\Omega_0 n}$$
(18)

Los coeficientes  $c_k$  son periódicos con periodo fundamental  $N_0$ . Es posible escribir entonces

$$c_{k+N_0} = c_k \tag{19}$$

$$e^{j\Omega_0(k+N_0)n} = e^{j\Omega_0kn}e^{j\Omega_0N_0n} = e^{j\Omega_0kn}$$
(20)

#### Dualidad de la serie de Fourier

Para la relación que existe entre  $x[n] \to c_k$  y  $c[k] \to x_n$ .

$$c[k] = \sum_{n=\langle N_0 \rangle} \frac{1}{N_0} x[n] e^{-j\Omega_0 kn}$$
(21)

si hacemos n=-m, entonces

$$c[k] = \sum_{m=\langle N_0 \rangle} \frac{1}{N_0} x[-m] e^{j\Omega_0 kn}$$
(22)

hacemos k = n v m = k

$$c[n] = \sum_{n=\langle N_0 \rangle} \frac{1}{N_0} x[-k] e^{j\Omega_0 kn}$$
(23)

Si comparamos resultados obtenemos que

$$x[n] \xrightarrow{DTFS} c_k = c[k]$$
 (24)

$$x[n] \xrightarrow{DTFS} c_k = c[k]$$
 (24)  
 $c[n] \xrightarrow{DTFS} \frac{1}{N_0} x[-k]$  (25)

Complejo conjugado de la serie de Fourier

$$c_{-k} = c_{N_0 - k} = c_k^* (26)$$

#### Secuencia par e impar

Una secuencia  $x[n] \in \mathbb{R}$  se puede expresar mediante la suma de sus componentes par e impar:

$$x[n] = x_o[n] + x_e[n] \tag{27}$$

Si x[n] es real y par, sus coeficientes de Fourier  $c_k$  son reales. Si x[n] es real e impar, sus coeficientes de Fourier  $c_k$  son imaginarios.

$$x[n] \xrightarrow{DTFS} c_k$$
 (28)

$$x_e[n] \xrightarrow{DTFS} \Re\{c_k\}$$
 (29)

$$x_o[n] \xrightarrow{DTFS} j\Im m\{c_k\}$$
 (30)

#### Teorema de Parseval

$$\frac{1}{N_0} \sum_{n = \langle N_0 \rangle} |x[n]|^2 = \sum_{k = \langle N_0 \rangle} |c_k|^2 \tag{31}$$

#### **Ejemplo**

Determine el espectro de las siguientes señales:

$$x[n] = \cos\sqrt{2}\pi n$$

$$\mathbf{b} \ y[n] = \cos \frac{\pi n}{3}$$

c p[n] es periódica con periodo N=4 y  $p[n]=\underset{\uparrow}{1},2,0,0$ 

#### Ejemplo

Determine el espectro de las siguientes señales:

$$x[n] = \cos\sqrt{2}\pi n$$

$$\mathbf{b} \ y[n] = \cos \frac{\pi n}{3}$$

c p[n] es periódica con periodo N=4 y  $p[n]=\underset{\uparrow}{1},2,0,0$ 

### Ejercicio

Determine los coeficientes de Fourier para la secuencia periódica x[n] mostrada en la figura



Figure 3: Señal periódica

#### Ejercicio

Determine los coeficientes de Fourier para la secuencia periódica x[n]:

$$x[n] = \sum_{k = -\infty}^{\infty} \delta[n - 4k]$$

#### Ejercicio

Determine el espectro de las siguientes señales:

$$x[n] = \cos\frac{\pi}{4}n$$

$$y[n] = \cos^2 \frac{\pi n}{8}$$

$$w[m] = \cos\frac{\pi}{4}(m-3)$$

## ¡Muchas gracias por su atención!

¿Preguntas?



**Contacto:** Marco Teran **webpage:** marcoteran.github.io/