Example 9

Let P be a point inside the square ABCD. Find the area of the square if PA=5, PB=8, and PC=13.

- (A) 153
- (B) 126
- (C) 128
- (D) 130
- (E) 132

Solution: (A).

Draw $PE \perp AB, PF \perp BC$, as shown in the figure. Let the side length be a, PE = x, and PF = y.

Applying the Pythagorean Theorem on $\triangle AEP, \triangle CPF,$ and $\triangle BPF,$ we have

$$x^{2} + (a - y)^{2} = 25$$
$$(a - x)^{2} + y^{2} = 169$$
$$x^{2} + y^{2} = 64$$

(1) - (3):
$$a^2 - 2ay = -39 \Rightarrow 4a^2y^2 = (a^2 + 39)^2$$

(2) - (3): $a^2 - 2ax = 105 \Rightarrow 4a^2x^2 = (a^2 - 105)^2$

$$(4) + (5): 4a^{2} (x^{2} + y^{2}) = (a^{2} + 39)^{2} + (a^{2} - 105)^{2}$$
Substituting (3) into (6): $4a^{2} \times 64 = (a^{2} + 39)^{2} + (a^{2} - 105)^{2}$

$$\Rightarrow a^{4} - 194a^{2} - 6273 = 0.$$
So $a^{2} = 41$ or 153 .

Since $PC < AC$, or $13 < \sqrt{2}a, 2a^{2} > 169$. Thus $a^{2} = 153$.
So the area is 153 .