курс «Прикладные задачи анализа данных»

# Минимизация ошибок

Александр Дьяконов

30 октября 2020 года

#### План

# Как настраиваться на конкретные функции

Задачи для решения

#### Минимизация конкретной функции ошибок на практике

1. Она минимизируется напрямую

RMSE – Ridge

2. Она может быть приближена (имитирована другой)

**RLMSE** 

- 3. Реализация минимизации конкретной функции
- XGBoost прописываем метрику и производные
  - ниже расщепление в деревьях для AUC
  - 4. Решаем одной, донастариваем на другую

При раннем останове смотрим на значение целевой функции Идеология РП

# Прямая настройка – идеология РП

$$F(B \cdot C_c) 
ightarrow \min_c$$
 стандартная простое РП

Как в задаче CrowdFlower (выбор порогов)

# **AUC ROC:** Полностью бинарный случай $a \in \{0,1\}^m$ , $y \in \{0,1\}^m$



$$S = \frac{xy}{2} + \frac{(1-x)(1-y)}{2} + (1-x)y$$
$$S = \frac{1-x+y}{2}$$

$$AUC = \frac{1 - FPR + TPR}{2} = \frac{1}{2} \left( 1 - \frac{FP}{FP + TN} + TPR \right) = \frac{1}{2} \left( 1 - \frac{FP}{FP + TN} + \frac{TP}{TP + FN} \right) = \frac{1}{2} \left( \frac{TN}{FP + TN} + \frac{TP}{TP + FN} \right)$$

**AUC ROC:** Полностью бинарный случай  $a \in \{0,1\}^m$ ,  $y \in \{0,1\}^m$ 

$$AUC = \frac{R_0 + R_1}{2}$$

Среднее арифметическое полноты по классам 0 и 1... это же сбалансированная точность!

> А если выровнять мощности (как?), то можно смотреть на точность...

> > Максимизация AUC ~

$$TPR-FPR \rightarrow max$$

Реальный случай: Сбербанк

# Использование «тайных знаний» на практике

# **Строим деревья в решающем лесе – хотим максимизировать AUC ROC**



# Хотим выбирать оптимальный порог





 $m_i$  – числа точек в листах  $m_i$  – числа объектов первого класса в листах

$$m = m_1 + m_0$$
$$n = n_1 + n_0$$

# Хотим выбирать оптимальный порог





$$AUC = \frac{1}{2} \left[ \frac{m_1}{m} + \frac{n_0 - m_0}{n - m} \right] =$$

$$= \frac{1}{2} \left[ \frac{m_1}{m} + \frac{(n - m) - (n_1 - m_1)}{n - m} \right] =$$

$$= \frac{1}{2} + \frac{1}{2} \left[ \frac{m_1}{m} - \frac{n_1 - m_1}{n - m} \right]$$

# Хотим выбирать оптимальный порог

Логично 
$$|AUC - 0.5| \rightarrow \max$$

$$\left| \frac{m_1}{m} - \frac{n_1 - m_1}{n - m} \right| \to \max$$

Модуль разностей вероятностей классов «0», «1» в правом листе

$$\left| \frac{m_1 n - n_1 m}{m(n-m)} \right| \to \max$$

$$|m_1 n - n_1 m| \rightarrow \max$$

А ведь тогда просто реализовать перебор порогов в скриптовых языках



# RF для AUC

Получили «новую» модель алгоритмов!

ДЗ Исследовать подобный критерий... помогает ли в оптимизации AUC ROC?

# Задача классификации {0,1} с ответами на [0,1]

### Реальный случай

### Пусть ошибка:

$$|y_i - a_i| \cdot \begin{cases} 0.8, & y_i = 1, \\ 0.2, & y_i = 0, \end{cases}$$
 (\*)

где  $y_i \in \{0,1\}$  – верная классификация i-го объекта,  $a_i \in [0,1]$  – ответ нашего алгоритма.

Заказчик: важно получать значения из отрезка [0,1] и интерпретировать как вероятности принадлежности к классу 1

# Вычисление матожидания ошибки

# Пусть i-й объект принадлежит к классу 1 с вероятностью p

#### Посчитаем матожидание нашей ошибки:

$$0.8 | 1 - a_i | p + 0.2 | a_i | (1 - p) =$$

$$= 0.8 p - 0.8 p a_i + 0.2 a_i - 0.2 p a_i =$$

$$= 0.8 p - (p - 0.2) a_i$$



### Вычисление матожидания ошибки

$$0.8p - (p-0.2)a_i \rightarrow \min$$

# Оптимальное решение (которое минимизирует матожидание ошибки)

$$a_i = \begin{cases} 0, & p < 0.2, \\ 1, & p \ge 0.2. \end{cases}$$

Функционал (\*) вынуждает нас выдавать значения из множества {0,1}

В чём ошибка заказчика, как исправить?

# Неправильный выбор функционала

Интересно... матожидание ошибки (при оптимальном решении) в зависимости от р.



# Задачи с интервальными признаками... Как решать



# Качество измеряем, например так:

$$\frac{A \cap B}{A \cup B}$$

#### 1 способ

#### Две задачи:

**Целевой признак – начало интервала, Целевой признак – конец интервала** 

- на практике работает не очень хорошо
- надо дорабатывать классические алгоритмы

(т.к. в случае начала интервала лучше занижать...)



#### 2 способ

**Целевой признак – середина интервала,** плюс оцениваем отклонение от середины



- иногда противоречит природе данных (интервал заходит в отрицательную область)

### Концепция решающего правила

# Как всё-таки минимизировать нужный функционал...

# 1. Есть предварительный ответ [a,b]

2. Формируем окончательный параметрический...

$$\left[\frac{a+b}{2}-\varepsilon\frac{b-a}{2},\frac{a+b}{2}-\varepsilon\frac{b+a}{2}\right]$$

3. Настраиваем параметр

Прямой перебор – явная минимизация

#### Можно и по-другому...

#### Ho:

- 1. Есть базовые алгоритмы (операторы)
  - 2. Есть параметризованный способ перевода их ответов в нужные
- 3. Прямая минимизация функционала

# Из задачи Rossmann Store Sales

# **Root Mean Square Percentage Error (RMSPE)**

$$\sqrt{\frac{1}{|\{i \mid y_i > 0\}|} \sum_{i : y_i > 0} \left(\frac{a_i - y_i}{y_i}\right)^2} \, \mathbf{M}$$

Оправдание деформации логарифмом...

# Оправдание деформации логарифмом...

#### Ищем деформацию

$$\frac{a-y}{y} \approx F(a) - F(y)$$

### чтобы функционал превратился в RMSE

$$\sqrt{\frac{1}{|\{i \mid y_i > 0\}|} \sum_{i: y_i > 0} (F(a_i) - F(y_i))^2}$$

Пусть 
$$a = y + \delta$$
, тогда

$$\frac{\delta}{y} \approx F(y+\delta) - F(y) = F'\delta + o(\delta)$$

#### решим уравнение

$$\frac{\delta}{y} = F'\delta$$

### Оправдание деформации логарифмом...

$$\frac{1}{y} = \frac{\partial F}{\partial y}$$

$$F(y) = \ln|y| + C$$

Выбираем деформацию  $F(y) = \ln |y|$ 

Но, возможно, всё проще...

при логарифмировании отклонения похожи на нормальные

# Распределения покупок





### Метод градиентного спуска

# Задача оптимизации функции ошибки от параметров алгоритма:

$$J(w) \rightarrow \min$$

$$w \leftarrow w - \alpha \frac{\partial J}{\partial w} \bigg|_{w}$$

# Возьмём конкретную задачу и метод

#### **Качество: LOG LOSS**

Метод: логистическая регрессия

(правильнее: сигмоида!)

logloss = 
$$-\frac{1}{m} \sum_{i=1}^{m} (y_i \log a_i + (1 - y_i) \log(1 - a_i))$$

$$a = \frac{1}{1 + e^{-z}}$$

z=z(w) – может как-то зависеть от параметров w.

На конкретном объекте:

$$J(w) = -\begin{cases} \log a, & y = 1, \\ \log(1-a), & y = 0. \end{cases}$$

#### Итак,

$$J(w) = -\begin{cases} \log\left(\frac{1}{1+e^{-z}}\right), & y = 1, \\ \log\left(1 - \frac{1}{1+e^{-z}}\right), & y = 0. \end{cases}$$

$$J(w) = -\begin{cases} -\log(1 + e^{-z}), & y = 1, \\ -z - \log(1 + e^{-z}), & y = 0. \end{cases}$$

$$\frac{\partial \log(1+e^{-z})}{\partial w} = -\frac{1}{1+e^{-z}}e^{-z}\frac{\partial z}{\partial w}$$

$$\frac{\partial J(w)}{\partial w} = -\frac{\partial z}{\partial w} \begin{cases} \frac{e^{-z}}{1 + e^{-z}}, & y = 1, \\ -1 + \frac{e^{-z}}{1 + e^{-z}}, & y = 0. \end{cases}$$

#### Поэтому

$$\frac{\partial J(w)}{\partial w} = -\frac{\partial z}{\partial w} \begin{cases} 1 - \frac{1}{1 + e^{-z}}, & y = 1, \\ 0 - \frac{1}{1 + e^{-z}}, & y = 0. \end{cases} = -\frac{\partial z}{\partial w} (y - a)$$

# Получаем формулу для коррекции весов:

$$w \leftarrow w + \alpha (y - a) \frac{\partial z}{\partial w}$$

#### Очень логичная: изменение зависит от величины ошибки

$$(y-a)$$

# В классической логистической регрессии

$$a = \frac{1}{1 - \sum_{t=1}^{n} w_{t}[x]_{t}}$$

$$1 + e^{-\sum_{t=1}^{n} w_{t}[x]_{t}}$$

(линейная комбинация признаков)

## Поэтому

$$w \leftarrow w + \alpha(y - a)x$$

 $\mathcal{X}$  – признаковое описание объекта

#### Вопрос с подвохом

# Kачество: logloss Метод: линейная регрессия

$$J(w) = -\begin{cases} \log(z), & y = 1, \\ \log(1-z), & y = 0. \end{cases}$$
 
$$\frac{\partial J(w)}{\partial w} = -\frac{\partial z}{\partial w} \begin{cases} 1/z, & y = 1, \\ -1/(1-z), & y = 0, \end{cases} = \frac{1}{z+y-1} \frac{\partial z}{\partial w}$$
 **тогда** 
$$w \leftarrow w - \frac{\alpha}{z+y-1} \frac{\partial z}{\partial w}$$

Что смущает в этой формуле? Почему так получилось?

#### Вопрос с подвохом

$$w \leftarrow w - \frac{1}{z + y - 1} \frac{\partial z}{\partial w}$$

# Коррекция происходит даже при абсолютно правильном ответе...

$$J(w) = -\begin{cases} \log(z), & y = 1, \\ \log(1-z), & y = 0. \end{cases}$$

# Нужны ещё ограничения

### В логистической регрессии

$$\frac{1}{1 + e^{-z}} \in [0, 1]$$

## Линейная регрессия с НСКО

$$J(w) = (w^{\mathrm{T}}x - y)^2 \rightarrow \min$$
  $x$  – объект,  $y$  – его регрессионная метка

$$\frac{\partial J}{\partial w} = 2(w^{\mathrm{T}}x - y)x$$

$$w \leftarrow w - \alpha(w^{\mathsf{T}}x - y) \cdot x$$

**В**ыберем  $\alpha$ 

Коррекция такая же как в логистической регрессии с logloss-oм!

# Метод наискорейшего спуска

$$((w - \alpha(w^{\mathsf{T}}x - y)x)^{\mathsf{T}}x - y)^{2} \to \min$$

$$w^{\mathsf{T}}x - \alpha(w^{\mathsf{T}}x - y)x^{\mathsf{T}}x - y = 0$$

$$w^{\mathsf{T}}x - y = \alpha(w^{\mathsf{T}}x - y)x^{\mathsf{T}}x$$

$$\alpha = \frac{1}{x^{\mathsf{T}}x}$$

# Задача 1.

#### Качество: СКО

$$J = \frac{1}{m} \sum_{i=1}^{m} (y_i - a_i)^2$$

# Метод: логистическая регрессия

$$a = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Вычислить формулу для коррекции весов методом стохастического градиентного спуска

Задача 2.

#### Качество: СКО

$$J = \frac{1}{m} \sum_{i=1}^{m} (y_i - a_i)^2$$

**Метод:** 
$$a = \ln(1 + e^z)$$

# Вычислить формулу для коррекции весов методом стохастического градиентного спуска



#### Задача 2. Ответ

$$w \leftarrow w - \alpha \frac{(a - y)}{1 + e^{-z}} \frac{\partial z}{\partial w}$$

# Почти классический вариант (линейная регрессия + СКО), но с поправкой на отрицательной оси...

$$w \leftarrow w - \alpha \underbrace{(a - y)}_{\text{классика}} \underbrace{\sigma(z)}_{=\frac{1}{1 + e^{-z}}} \frac{\partial z}{\partial w}$$

$$\frac{(a-y)}{1+e^{-z}} \approx \begin{cases} (a-y), & z >> 0 \\ 0, & z << 0 \end{cases}$$

#### Всё очень логично!

# Задача 1. Ответ

$$w \leftarrow w - \alpha \cdot a(1 - a)(y - a) \frac{\partial z}{\partial w}$$

рекомендация: 
$$\frac{\partial a(w)}{\partial w} = a(1-a)$$
 (производная сигмоиды)

Вопрос: что плохого в это формуле?

#### Задача 1. Ответ

$$w \leftarrow w - \alpha \cdot \underbrace{a(1-a)}_{\text{что-то новое}} \underbrace{(y-a)}_{\text{классика}} \frac{\partial z}{\partial w}$$

### Вопрос: что плохого в это формуле?

В случае полностью неправильного ответа, например

$$y = 0, a \approx 1$$

коррекции почти не будет:

$$a(1-a)(y-a) \approx 0$$

Вопрос: что с этим делать?

# Задача 3. Вычислить Cohen's Kappa

|   | 0.4 |     |    |    | ~  | 0.1 | 3  |    |    | ~  | 0.0 | 8  |    |    | ~  | ·0.1 | 8  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |  |  |  |   |    |     |   |   |  |     |     |   |    |  |     |     |     |    |
|---|-----|-----|----|----|----|-----|----|----|----|----|-----|----|----|----|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|--|--|--|---|----|-----|---|---|--|-----|-----|---|----|--|-----|-----|-----|----|
|   | no  | 10  | 15 | 15 | 15 | 15  | 15 | 15 | 15 | 15 | 15  | 15 | 15 | 15 | 15 | 15   | 15 | 15 | 15 | 15 | 15 | 15 | 1  | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | L5 | .5 | .5 | 5 | 5 |  |  |  | r | no | 25  | 1 | 5 |  | no  | 10  |   | 5  |  | no  | 10  |     | 15 |
| 3 | /es | 20  | 5  | 5  | 5  | 5   | 5  | 5  | 5  | 5  | 5   | 5  | 5  | 5  | 5  | 5    | 5  | 5  | 5  | 5  | 5  | 5  | ļ  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5 | 5 |  |  |  | y | es | 45  | 1 | 5 |  | yes | 30  |   | 10 |  | yes | 30  |     | 20 |
|   |     | yes | no | no | 10 | no  | no | no | no | no | no  | no | no | no | no | no   | no | no | no | no | no | no | ne | no | 10 | 10 | 10 | no | 10 | no | 10 | 10 | 10 | 0  | 0  | 0  | 0 | ) |  |  |  |   |    | yes | n | 0 |  |     | yes | ا | no |  |     | yes | _ ' | no |

# Задача 4.

### Показать, что Каппа Коэна частный случай Weighted Карра для 2х классов.

#### Напомним

$$\kappa = \frac{\text{Accuracy} - \text{Accuracy}_{\text{chance}}}{1 - \text{Accuracy}_{\text{chance}}}$$

$$\kappa_{w} = 1 - \frac{\sum_{i=1}^{l} \sum_{j=1}^{l} w_{ij} m_{ij}}{\sum_{i=1}^{l} \sum_{j=1}^{l} w_{ij} S_{ij}} \in [-1, +1]$$

Будем считать, что матрица штрафов 
$$\begin{bmatrix} 0 & w \\ w & 0 \end{bmatrix}$$

#### Задача 4: решение

$$\kappa = \frac{\text{Accuracy-Accuracy}_{\text{chance}}}{1 - \text{Accuracy}_{\text{chance}}} = \frac{\frac{m_{00} + m_{11}}{m} - \frac{m_{0:}m_{:0}}{m^2} - \frac{m_{1:}m_{:1}}{m^2}}{1 - \frac{m_{0:}m_{:0}}{m^2} - \frac{m_{1:}m_{:1}}{m^2}} = \frac{m(m_{00} + m_{11}) - m_{0:}m_{:0} - m_{1:}m_{:1}}{m^2} = \frac{m(m_{00} + m_{11}) - m_{0:}m_{:0} - m_{1:}m_{:1}}{m^2 - m_{0:}m_{:0} - m_{1:}m_{:1}} = \frac{(m_{00} + m_{11})(m_{00} + m_{01} + m_{10} + m_{11}) - m_{10}m_{01} - m_{10}m_{01} - m_{10}m_{01} - m_{10}m_{01} - m_{10}m_{01} - m_{10}m_{01} - m_{10}m_{01}}{m_{0:}m_{:1} + m_{1:}m_{:0}} = \frac{2(m_{00}m_{11} - m_{10}m_{01})}{m_{0:}m_{:1} + m_{1:}m_{:0}}$$

#### Задача 4: решение

$$\kappa_{w} = 1 - \frac{wm_{01} + wm_{10}}{ws_{01} + ws_{10}} = 1 - \frac{wm_{01} + wm_{10}}{w\frac{m_{0:}m_{:1}}{m} + w\frac{m_{1:}m_{:0}}{m}} = \frac{m_{0:}m_{:1} + m_{1:}m_{:0} - m(m_{01} + m_{10})}{m} = \frac{m_{0:}m_{:1} + m_{1:}m_{:0}}{m_{0:}m_{:1} + m_{1:}m_{:0}} = \frac{2(m_{00}m_{11} - m_{10}m_{01})}{m_{0:}m_{:1} + m_{1:}m_{:0}}$$

#### Задача 5.

Рассматривается задача классификации на два класса. На рисунке показаны объекты в пространстве ответов двух алгоритмов. Вычислить AUC ROC для алгоритмов.



### Задача 5 – Решение

#### 1. Смотрим проекции на оси – ответы алгоритмов



# 2. По проекциям строим ROC - кривые:





# 3. Вычисляем площади под ROC - кривыми:



Какие значения F<sub>1</sub>-меры могут быть у классификатора в задаче с двумя непересекающимися классами и тремя объектами?

# Задача 6 - Решение.

#### Можно честно рассмотреть все возможные случаи:













### Задача 6 – Решение.

Получаем, что F1-мера – среднее гармоническое чисел из пар (1, 1), (1/2, 1), (2/3, 1), (1/3, 1), (1/2, 1/2), (0, 0)

Все возможные значения F1-меры: 1, 0.8, 2/3, 0.5, 0

Но можно быстрее догадаться до ответа...

### Вычислить ap@k:

ap@5(actual = [1, 2, 3], predict = [1, 4, 5, 2, 6, 3])

ap@3(actual = [1, 2, 3], predict = [1, 4, 5, 2, 6, 3])

ap@3(actual = [1], predict = [1, 2, 3, 4, 5, 6])

ap@3(actual = [1, 3], predict = [1, 2, 3, 4, 5, 6])

ap@2(actual = [1, 3], predict = [1, 2, 3, 4, 5, 6])

#### Решение:

На ответах алгоритма  $a(x) \in [0,1]$  объекты класса 0 распределены с плотностью  $p_0(a) = 2-2a$ , а объекты класса 1 – с плотностью  $p_1(a) = 2a$ . Построить ROC-кривую и вычислить площадь под ней.



### Задача 8 - решение



#### Решение

TPR(
$$\theta$$
) =  $1 - \frac{1}{2}\theta 2\theta = 1 - \theta^2$   
FPR( $\theta$ ) =  $\frac{1}{2}(1 - \theta)(2 - 2\theta) = (1 - \theta)^2$ 

#### Задача 8 – решение

### Площадь под параметрической кривой

$$\int_{1}^{0} \text{TPR}(\theta) \cdot \text{FPR}'(\theta) \partial \theta = 2 \int_{0}^{1} (1 - \theta^{2}) (1 - \theta) \partial \theta$$
или
$$\text{TPR} = 2 \sqrt{\text{FPR}} - \text{FPR}.$$

$$\int_{0}^{1} (2 \sqrt{t} - t) \partial t = \frac{5}{6} \approx 0.83.$$

https://dyakonov.org/2017/07/28/auc-roc-%d0%bf%d0%bb%d0%be%d1%89%d0%b0%d0%b4%d1%8c-%d0%bf%d0%be%d0%b4-%d0%ba%d1%80%d0%b8%d0%b2%d0%be%d0%b9-%d0%be%d1%88%d0%b8%d0%b1%d0%be%d0%ba/

### В описанной выше задаче вычислить:

$$R = 1 - \theta^{2}$$

$$P = (1 + \theta) / 2$$

$$F_{1} = \frac{1 - \theta^{2}}{1.5 - \theta}$$

$$MCC = \sqrt{\theta(1 - \theta)}$$

$$\kappa = \frac{\frac{1 + 2\theta - 2\theta^{2}}{2} - \frac{1}{2}}{1 - \frac{1}{2}} = 2\theta(1 - \theta)$$

$$BA = Accuracy = \frac{(1 - \theta^{2}) + (1 - (1 - \theta)^{2})}{2} = \frac{1 + 2\theta - 2\theta^{2}}{2}$$

Задача 9

### построить графики



# Задача 10 – задачи на вычисление Вычислить коэффициент Мэттьюса

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

#### для следующих векторов меток и ответов

| истина            | ответ             | MCC    |
|-------------------|-------------------|--------|
| [1,1,1,1,0,0,0,0] | [1,1,1,0,0,0,1,1] | 0.258  |
| [1,1,1,1,0,0,0,0] | [1,1,1,1,1,0,1,1] | 0.378  |
| [1,1,1,1,1,0,0]   | [1,1,1,1,1,0,1,1] | -0.218 |

Задача 11 – Задачи на вычисление Проверить иллюстрацию из лекции про многомерный AUC

| N     | иа | трица   | классис  | рикаций   |         |    |            |      | M     | атри  | ца  | отве | тов |      |     |
|-------|----|---------|----------|-----------|---------|----|------------|------|-------|-------|-----|------|-----|------|-----|
|       |    | class 1 | class 2  | class 3   |         |    |            | _    | cla   | ass 1 | cla | ss 2 | cla | ss 3 |     |
|       | 0  | 1       | . 0      | 0         |         |    |            |      | 0     | 0.75  |     | 0.00 | (   | 0.25 |     |
|       | 1  | 0       | 1        | 0         |         |    |            |      | 1     | 0.00  |     | 0.50 | (   | 0.25 |     |
|       | 2  | 0       | 0        | 1         |         |    |            |      | 2     | 0.25  |     | 1.00 | (   | 0.25 |     |
|       | 3  | 1       | . 1      | 0         |         |    |            | ;    | 3     | 0.00  |     | 0.25 | (   | 0.75 |     |
| macre | 0  | micro   | weighted | samples   | _       |    |            |      |       | clas  | s 0 | clas | s 1 | clas | s 2 |
| 0.4   | 9  | 0.53    | 0.52     | 0.56      |         |    | AUC_       | per_ | class | 0     | .62 |      | 0.5 | 0    | .33 |
|       |    |         |          |           |         |    | <b>P</b> _ | per_ | class | 0     | .50 |      | 0.5 | 0    | .25 |
|       |    |         |          |           | class 0 | cl | lass 1     | cla  | ss 2  | class | 3   |      |     |      |     |
|       |    |         | AUC_per_ | _instance | 1.0     |    | 1.0        |      | 0.25  | C     | 0.0 |      |     |      |     |