

Verifiable Trust Bases

Renewing the Web of Trust

Samuel M. Smith Ph.D.

sam@keri.one

https://keri.one

version 2.53

2020/10/20

Resources

keri.one

Universal Identifier Theory

Identity System Security Overlay

Spanning Layer

Hourglass

Platform Locked Trust

Trust Domain Based Segmentation

Each trust layer only spans platform specific applications Bifurcates the internet trust map No spanning trust layer

Waist and Neck

Zooko's Trilemma

Desirable identifier properties: secure, decentralized, human meaningful

Trilemma: May have any two of the three properties but not all three.

One way to sort of solve the trilemma is to uniquely register a human meaningful identifier on a ledger controlled by a different identifier that is secure and decentralized but not human meaningful.

Trust Basis

Administrative Trust Basis

Algorithmic Trust Basis

Autonomic Trust Basis

KEY Event Based Provenance of Identifiers

KERI enables cryptographic proof-of-control-authority (provenance) for each identifier.

A proof is in the form of an identifier's key event receipt log (KERL).

KERLs are End Verifiable:

End user alone may verify. Zero trust in intervening infrastructure.

KERLs may be Ambient Verifiable:

Anyone may verify anylog, anywhere, at anytime.

KERI = self-cert root-of-trust + certificate transparency + KA²CE + recoverable + post-quantum.

Autonomic Identifier (AID) and Namespace (AN)

auto nomos = self rule

autonomic = self-governing, self-controlling, etc.

An autonomic namespace is

self-certifying and hence self-administrating.

AIDs and ANs are portable = truly self-sovereign.

autonomic prefix = self-cert + UUID + URL = universal identifier

Unified Identifier Model

AID: Autonomic Identifier (primary) self-managing self-certifying identifier with cryptographic root of trust secure, decentralized, portable, universally unique

LID: Legitimized Human Meaningful Identifier (secondary)

legitimized within trust domain of given AID by a verifiable authorization from AID controller authorization is verifiable to the root-of-trust of AID

Forms $AID \mid LID$ couplet within trust domain of AID

AID LID Couplet

625.127C125r

EXq5YqaL6L48pf0fu7IUhL0JRaU2 RxFP0AL43wYn148|625.127C125r

Trust Balance

Reputational Trust

veracity

Cryptographic Trust

authenticity

Decentralized Key Management Infrastructure (Univalent DKMI)

Hierarchical DKMI: Bivalent DKMI

Interaction Delegation

Delegating Interaction Event Message

header configuration delegation seal(s) signatures

Scaling Delegation via Interaction

 $\Delta \rightarrow X$: Delegation to X $\Delta \leftarrow A$: Delegation from A

MultiValent Delegation

Delegation (Cross Anchor)

header

Interaction Delegation

Delegating Interaction Event Message

header configuration delegation seal(s) signatures

Scaling Delegation via Interaction

 $\Delta \rightarrow X$: Delegation to X $\Delta \leftarrow A$: Delegation from A

Rotation Delegation

Delegated Event Message				
header	configuration	perms	delegation seal(s)	signatures

Scaling Delegation via Rotation

 $\Delta \rightarrow X$: Delegation to X $\Delta \leftarrow A$: Delegation from A

Multi-layer Multi-Valent Delegation

Smith's Identifier System Properties Triangle

May exhibit any two at the highest level but not all three at the highest level

Indirect Mode Promulgation Service

Indirect Mode Promulgation and Confirmation Services

Indirect Mode with Ledger Oracles

Indirect Replay Mode with Ledger Oracle

Separation of Control

Shared ledger = shared control over shared data.

Shared data = good, shared control = bad.

Shared control between controllers and validators may be problematic for governance, scalability, and performance.

KERI = separated control over shared data.

Separated control between controllers and validators may provide better decentralization, more flexibility, better scalability, lower cost, higher performance, and more privacy at comparable security.

BACKGROUND

Delegation (Cross Anchor)

header

Interaction Delegation

Delegating Interaction Event Message

header configuration delegation seal(s) signatures

Scaling Delegation via Interaction

 $\Delta \rightarrow X$: Delegation to X $\Delta \leftarrow A$: Delegation from A

Rotation Delegation

Delegated Event Message				
header	configuration	perms	delegation seal(s)	signatures

Scaling Delegation via Rotation

 $\Delta \rightarrow X$: Delegation to X $\Delta \leftarrow A$: Delegation from A

KERI for the DIDified

KERI non-transferable ephemeral with derivation code ~ did:key

KERI private direct mode (one-to-one) ~ did:peer

KERI public persistent indirect mode (one-to-any) ~ Indy interop, did:sov etc

KERI = did:un (did:uni, did:u) (all of the above in one method)

```
did:un:prefix[:options][/path][?query][#fragment]
```

KERI Agnosticism and Interop

KERI itself is completely agnostic about anything but the prefix!

```
??:prefix[:options][/path][?query][#fragment]
```

The KERI layer establishes control authority over a prefix

Any and All namespaces that share the same prefix may share the same KERI trust basis for control establishment over that prefix and hence that namespace.

Interop happens in a layer above the KERI layer

All we need for bootstrapping interop is some indication that the *prefix* inside identifier is KERI based (KERI trust basis).

Self-Certifying Identifier Prefixes

All crypto material appears in KERI in a fully qualified representation that includes a derivation code prepended to the crypto-material.

Identifier prefixes are fully qualified crypto-material.

Discovery

Ledger Based

Non-Ledger Based

DNS "Hierarchical" Discovery

DNS "Hierarchical" Discovery

Complete DNS Lookup and Webpage Query example.com 11111111111 Server 11111111111 Root Server пинин HILLIAM **DNS Resolver TLD Server** ---> Recursive Query 1111111111 → Iterative Query example.com

```
$ORIGIN example.com.
```

```
3600 SOA ns1.p30.oraclecloud.net. (
     zone-admin.dyndns.com.; address of responsible party
                        ; serial number
     2016072701
                     ; refresh period
      3600
      600
                    ; retry period
      604800
                      ; expire time
                    ); minimum ttl
      1800
     86400 NS ns1.p68.dns.oraclecloud.net.
     86400 NS
                ns2.p68.dns.oraclecloud.net.
     86400 NS ns3.p68.dns.oraclecloud.net.
      86400 NS ns4.p68.dns.oraclecloud.net.
      3600 MX 10 mail.example.com.
      3600 MX 20 vpn.example.com.
      3600 MX 30 mail.example.com.
      60 A 204.13.248.106
      3600 TXT "v=spf1 includespf.oraclecloud.net ~all"
                  14400 A 204.13.248.106
     mail
                   60 A 216.146.45.240
     vpn
                      60 A 216.146.46.10
     webapp
     webapp
                     60 A 216.146.46.11
              43200 CNAME example.com.
WWW
```


DHT Discovery for KERI

Resolve Node Prefix to IP Mapping

Prefix to Inception/Latest Rotation Event Caching

-> Extract Witness Prefixes from Event

Witness Prefix to IP Mapping

KERL Query to Witness Node