MT231 - Analysis 1

Homework #1

Angel Cervera Roldan 21319203

Prove that for any sets A and B, the following holds

$$A = (A \cap B) \cup (A \setminus B)$$

To prove this, we will show that any element $x \in A$ will also be a part of $(A \cap B) \cup (A \setminus B)$ For any element, it can either be in B or not be in B, therefore:

$$x \in A$$

 $x \in A$ and $(x \in B \text{ or } x \notin B)$
 $(x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \notin B)$
 $(x \in A \cap B) \text{ or } (x \in A \setminus B)$
 $x \in (A \cap B) \cup (A \setminus B)$

Therefore, if $x \in A$, then $x \in (A \cap B) \cup (A \setminus B)$. This shows that $A \subseteq (A \cap B) \cup (A \setminus B)$ as every element in A has to be in $(A \cap B) \cup (A \setminus B)$.

Now we need to show that every element $x \in (A \cap B) \cup (A \setminus B)$ also has to be in A.

$$x \in (A \cap B) \cup (A \setminus B)$$

 $x \in (A \cap B) \text{ or } x \in (A \setminus B)$
 $(x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \notin B)$
 $x \in A \text{ and } (x \in B \text{ or } x \notin B)$

Therefore, if $x \in (A \cap B) \cup (A \setminus B)$, then $x \in A$ and $(x \in B \text{ or } x \notin B)$, which shows that regardless of wether x is or isn't in B, x will be in A. This means that every element in $(A \cap B) \cup (A \setminus B)$ is in A. Therefore, $(A \cap B) \cup (A \setminus B) \subseteq A$.

Because $(A \cap B) \cup (A \setminus B)$ is a subset of A, and A is a subset of $(A \cap B) \cup (A \setminus B)$, that means that every element in one set must be in the other, they are therefore the same.

Let $a, b \in \mathbb{R}$, where a < b, find a bijection from (a, b) to (0, 1).

Fist, find a bijection from (a, b) to (0, n) for some $n \in \mathbb{R}$.

$$g:(a,b) \to (0,n)$$

$$g:(a,b) \to (a-a,b-a)$$

$$g:(a,b) \to (0,b-a)$$

$$g(x) = x - a$$

g is clearly a bijection as it is a linear function. Now, find a bijection from (0, b - a) to (0, 1).

$$p: (0, b-a) \to (0, 1)$$
$$p(0) = 0$$
$$p(b-a) = 1$$
$$p(x) = \frac{x}{b-a}$$

If we combine the two functions above, we get:

$$f(x) = p \circ g$$

$$= p(g(x))$$

$$= \frac{x - a}{b - a}$$

$$= \frac{1}{b - a}x - \frac{a}{b - a}$$

f will have the domain of g.

The range of g is the domain of p, therefore f will have the range of p. This means that $f:(a,b)\to(0,1)$

Because $\frac{1}{b-a}$ is a constant, the function f(x) is linear, and therefore a bijection.

Prove that a function $f: A \to B$ which possesses an inverse must be a bijection.

For a function to be a bijection, it must be one-to-one, and onto. We will prove that if f has an inverse, then it must be both one-to-one and onto by contradiction.

f must be one-to-one

We know that f has an inverse, assuming that f isn't one-to-one, then $\exists a_1, a_2 \in A$ where $a_1 \neq a_2$ and $b \in B$ such that:

$$f(a_1) = f(a_2) = b$$

This would mean that:

$$f^{-1}(b) = a_1$$
 and $f^{-1}(b) = a_2$

But a function cannot return two different values when given one input.

This means that if f isn't one to one, it cannot have an inverse. This is a contradiction, as we know that f does have an inverse, meaning that f has to be one to one.

f must be a onto

We know that f has an inverse, assuming that f isn't onto, then $\exists b \in B$ such that $f(a) \neq b$ for any $a \in A$.

If f had an inverse $f^{-1}(b)$ would be undefined, meaning that $f^{-1}: B \to A$ wouldn't exist. Therefore, for f to have an inverse, it must be onto.

Because we know that f must be one-to-one, and f must be onto, f must be a bijection if it has an inverse.

Part a

Consider the function $f: A \to B$. Show that setting $a_1 \sim a_2$ if $f(a_1) = f(a_2)$ defines an equivalence relation on A.

- 1. $a \sim a$ since f(a) = f(a)
- 2. if $a \sim b$, then $b \sim a$ since f(a) = f(b), then f(b) = f(a)
- 3. if $a \sim b$ and $b \sim c$, then $a \sim c$ since if f(a) = f(b) and f(b) = f(c), then f(a) = f(c)

Part b

Identify the equivalence classes under this equivalence relation if $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = x^2$

$$f(a) = f(b)$$
$$a^2 = b^2$$
$$\pm a = b$$

Therefore the equivalence class of any x is:

$$[x] = \{x, -x\}$$

Part c

Identify the equivalence classes under this equivalence relation if $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \lfloor x \rfloor$

There are an infinite amount of equivalence classes, all in the form [n, n + 1) for some integer n

$$[x] = [\lfloor x \rfloor, \lfloor x \rfloor + 1)$$

Let *C* be the set of counties in Ireland.

Part a

Give an example of an equivalence relation on C. What are the equivalence classes of this relation?

An example of an equivalence relation on C would be $a \sim b$ if the first letter of a is the same as the first letter of b.

This is an equivalence relation as it fulfils all 3 rules:

- 1. $a \sim a$ since a will always have the same name as a, a will always have the same first letter as a.
- 2. if $a \sim b$, then $b \sim a$ since if a and b have the same first letter, then b and a will also have the same first letter.
- 3. if $a \sim b$, and $b \sim c$, then $a \sim c$. If a and b have the same first letter, and b and c have the same first letter, then c and a must have the same first letter, and therefore, $a \sim c$.

The equivalence relation classes would be all counties starting with a, all counties starting with b, all counties starting with c...

Part b

Give another example of an equivalence relation on *C*.

Another example of an equivalence relation on C would be $a \sim b$ if a and b have the same number of houses.

This is an equivalence relation as it fulfils all 3 rules:

- 1. $a \sim a$ since a will always have the same houses as a.
- 2. if $a \sim b$, then $b \sim a$ since if a and b have the same number of houses, then b and a will also have the same number of houses.
- 3. if $a \sim b$, and $b \sim c$, then $a \sim c$. If a and b have the same number of houses, and b and c have the same number of houses, then c and a must have the same number of houses, and therefore, $a \sim c$.

Part c

Give an example of a relation on C which is not an equivalence relation.

An example of a relation on C which it not an equivalence relation would be $a \sim b$ if a and b border each other.

This is not an equivalence relation as Waterford and Cork border each other, therefore Waterford ∼ Cork. Cork also borders Kerry therefore Cork ∼ Kerry. However Waterford ≁ Kerry.

This breaks the transitive property of equivalence relations.