JICSCI803 Algorithms and Data Structures March to June 2020

Highlights of Lecture 07

Greedy Algorithms

Characters of Greedy Algorithms

- These algorithms work by taking what seems to be the best decision at each step
- No backtracking is done (once a choice is made we are stuck with it)
- Easy to design
- Easy to implement
- Efficient (when they work)

Example 1: Making Change

Problem: Given we have \$2, \$1, 50c, 20c, 10c, 5c and 1c coins; what is the best (fewest coins) way to pay any given amount?

- •The greedy approach is to pay as much as possible using the larges coin value possible, repeatedly until the amount is paid.
- •E.g. to pay \$17.97 we pay 8 \$2 coins, 1 \$1 coin, 1 50c coin, 2 20c coins, 1 5c coin and 2 1c coins(15 coins total).
- •This is the optimal solution in required number of coins (although this is harder to prove than you might think).
- •Note that this algorithm will not work with an arbitrary set of coin values.
- •Adding a 12c coin would result in 15c being made from 1 12c and 3 1c (4 coins) instead of 1 10c and 1 5c coin (2 coins).

Greedy Algorithms: selected or rejected method

- We start with a set of candidates which have not yet been considered for the solution
- •As we proceed, we construct two further sets:
 - -Candidates that have been considered and selected
 - -Candidates that have been considered and rejected
- •At each step we check to see if we have reached a solution
- At each step we also check to see if a solution can be reached at all
- •At each step we select the best acceptable candidate from the unconsidered set and move it into the selected set
- •We also move any unacceptable candidates into the rejected set

- •Let G = (N, E) be a connected, directed graph consisting of a set of nodes N and a set of directed edges E.
- •Each edge has a length, the distance from the node at one end of the edge to the node at the other end.
- One node is designated the source node
- The problem is to find the shortest path from the source node to each of the other nodes

```
Application
   In a graph in which edges have costs ..
   Find the shortest path from a source to a destination
   Surprisingly ...
      While finding the shortest path from a source to one
      destination,
      we can find the shortest paths to all over destinations
      as well!
   Common algorithm for
         single-source shortest paths
```

is due to Edsger Dijkstra

Dijkstra's Algorithm—DS design

For a graph,

$$G = (V, E)$$

Dijkstra's algorithm keeps two sets of vertices:

S Vertices whose shortest paths have already been determined

Q=V-S Remainder

Also

d Best estimates of shortest path to each vertex

 π Predecessors for each vertex

Predecessor Sub-graph

```
Array of vertex indices, \pi[j], j=1.. |V| \pi[j] contains the predecessor for node j All j's predecessors is are \pi[\pi[j]], and so on ....
```

The edges in the predecessor subgraph are $(\pi[j], j)$

Initialise d and π

For each vertex, j, in V $d_j = \infty$ $\pi_i = \text{nil}$
No connections

Source distance, $d_s = 0$

Set S to empty

While V-S is not empty

Sort V-S based on d

Add u, the closest vertex in V-S, to S \leftarrow Add s first!

Relax all the vertices still in V-S connected to u

The Relaxation process

Dijkstra's Algorithm - Full

Given a graph, g, and a source, s

```
shortest paths (Graph g, Node s)
 initialise single source(g, s)
 S := { 0 } /*Make S empty*/
 Q := Vertices(g) /*Put the vertices in a PQ*/
 while not Empty(Q)
     u := ExtractCheapest( Q );
     AddNode(S, u); /* Add u to S */
     for each vertex v in Adjacent( u )
         relax( u, v, w )
```

Dijkstra's Algorithm - Initialise

```
Given a graph, g,
and a source, s
```

```
Initialise d, \pi, S,
                                     vertex Q
shortest_paths( Graph g, Node s
  initialise_single_source( g, s )
              /* Make S empty */
   Q := Vertices(g) /* Put the vertices in a PQ */
   while not Empty(Q)
       u := ExtractCheapest( Q );
       AddNode(S, u); /* Add u to S */
        for each vertex v in Adjacent( u )
            relax( u, v, w )
```

Dijkstra's Algorithm - Loop

The Shortest Paths algorithm

Given a graph, g, and a source, s

Dijkstra's Algorithm - Relax neighbours

The Shortest Paths algorithm

```
Given a graph, g,
and a source, s
                     Update the
                   estimate of the
shortest_paths(
                   shortest paths to
    initialise si
                      all nodes
    S := { 0 }
                                  empty */
                    attached to u
                          ruc che vertices in a PQ */
    Q := Vertices ( y / )
    while not Empty(Q)
                                                    Greedy!
        u := ExtractChe st(Q);
        AddNode(S, u); /* Add u to S */
        for each vertex v in Adjacent( u )
       L ___ relax( u, v, w_) __ _ _ _ _ _
```

Initial Graph

Distance to all nodes marked ∞

Initial Graph

Initial Graph

Dijkstra's Algorithm - Operation Relax v because a shorter path via y exists \boldsymbol{u} \boldsymbol{u} 10 8 10 4 X S is now $\{s, x\}$

Sort vertices and choose closest

Dijkstra's Algorithm - Proof

Greedy Algorithm
Proof by contradiction test

Lemma 1

Shortest paths are composed of shortest paths Proof

If there was a shorter path than any sub-path, then substitution of that path would make the whole path shorter

Dijkstra's Algorithm — Correctness Proof

Denote

 $\delta(s,v)~$ - the cost of the shortest path from s to v Lemma 2

If $s \rightarrow ... \rightarrow u \rightarrow v$ is a shortest path from s to v, then after u has been added to S and relax(u,v,w[][]) called, $d[v] = \delta(s,v)$ and d[v] is not changed thereafter.

Proof

Follows from the fact that at all times $d[v] \ge \delta(s,v)$ See Cormen (or any other text) for the details.

Dijkstra's Algorithm - Proof

```
Using Lemma 2
   After running Dijkstra's algorithm, we assert
   d[v] = \delta(s,v) for all v
Proof (by contradiction)
   Suppose that u is the first vertex added to S for which
   d[u] \neq \delta(s,u)
   Note
      v is not s because d[s] = 0
      There must be a path s \rightarrow ... \rightarrow u,
      otherwise d[u] would be \infty
      Since there's a path, there must be a shortest path
```

Dijkstra's Algorithm - Proof

Proof (by contradiction)

Suppose that u is the first vertex added to S for

which $d[u] \neq \delta(s,u)$

Let $s \rightarrow x \rightarrow y \rightarrow u$ be the shortest path

s→u,

where x is in S and y is the

first outside S

When x was added to S, $d[x] = \delta(s,x)$

Edge $x \rightarrow y$ was relaxed at that time,

so $d[y] = \delta(s,y)$

Proof (by contradiction)

Edge $x \rightarrow y$ was relaxed at that time,

so
$$d[y] = \delta(s,y)$$

 $\leq \delta(s,u) \leq d[u]$

But, when we chose u,

both u and y where in V-S,

so
$$d[u] \le d[y]$$

(otherwise we would have chosen y)

Thus the inequalities must be equalities

$$\therefore d[y] = \delta(s,y) = \delta(s,u) = d[u]$$

And our hypothesis $(d[u] \neq \delta(s,u))$ is contradicted!

Dijkstra's Algorithm - Time Complexity

```
Dijkstra's Algorithm

Key step is sort on the edges

Complexity is

O((|E|+|V|)\log|V|) or

O(n^2\log n)

for a dense graph with n=|V|
```

Node 1 is Source

- 1 to 2, length 35

- 1 to 3 length 30

- 1 to 4 length 20

Example 2: Shortest Path

- 1 to 5 length 10

Example 2: Shortest Path

- -Dijkstra's Algorithm
- -Uses two sets of nodes S and C
- -At each iteration S contains the set of nodes that have already been chosen
- -At each iteration *C* contains the set of nodes that have not yet been chosen
- -At each step we move the node which is cheapest to reach from C to S
- -An array *D* contains the shortest path so far from the source to each node

Example 2: Shortest Path

• Dijkstra's Algorithm: An Example - Step 0 $S = \{1\}$ $C = \{2, 3, 4, 5\}$ D = [50, 30, 100, 10]

• Dijkstra's Algorithm: An Example

- Step 1
$$S = \{1,5\}$$
 $C = \{2, 3, 4\}$ $D = [50, 30, 20, 10]$

$$- Step 2 S = \{1,4,5\}$$

• Dijkstra's Algorithm: An Example
$$- \mbox{Step 2} \quad \mbox{$S=\{1,4,5\}$} \qquad \mbox{$C=\{2,3\}$} \quad \mbox{$D=[40,30,20,10]$}$$

Dijkstra's Algorithm

Dijkstra's Algorithm (recorded paths)

```
Function Dijkstra(L[1..n, 1..n]): array [2..n]
  array D[2..n], P[2..n]
  C = \{2, 3, ..., n\}
  for i = 2 to n do
     D[i] = L[1, i]
     P[i] = 1
  repeat n - 2 times
    v = the index of the minimum D[v] not yet selected
    remove v from C // and implicitly add v to S
    for each w \in C do
        if (D[w] > D[v] + L[v, w]) then
             D[w] = D[v] + L[v, w]
             P[w] = v
   return D, P
```

Dijkstra's Algorithm: at start

$$C = \{2, 3, 4, 5\}$$

Dijkstra's Algorithm: at start

$$v = 5$$

 $C = \{2, 3, 4, 5\} \Rightarrow \{2, 3, 4\}$
 $S = \{1\}$

Dijkstra's Algorithm: after iteration 1

L=	∞	∞	∞	∞	∞	P =) =
	50	∞	5	20-	<u>`</u>	1-	 50
	30	∞	∞	50	∞	1	30
	100	∞	∞	∞	10	5	20
	10	∞	∞	∞	∞	1	10

$$V = 4$$

 $C = \{2, 3, 4\}$
 $S = \{1,5\}$

Dijkstra's Algorithm: after iteration 2

L=	∞	∞	∞	∞	∞	P =	=	D	=
	50	∞	5	_20	<u></u>		4		→ 40 →
	30	∞	∞	50	8		1		30
	100	∞	∞	∞	10		5		20
	10	8	8	8	8		1		10

$$v = 3$$

 $C = \{2, 3\}$
 $S = \{1,4,5\}$

Dijkstra's Algorithm: after iteration 3

$$V = 2$$

 $C = \{2\}$
 $S = \{1,3,4,5\}$

Dijkstra's Algorithm: Recorded Paths

What does it mean?

P =

3

1

5

1

Node 1 is source.

The Predecessor of Node 2 is Node 3.

The Predecessor of Node 3 is Node 1 (source).

The Predecessor of Node 4 is Node 5

The Predecessor of Node 5 is Node 1 (source).

Dijkstra's Algorithm: Recorded Paths

To
$$2 - 1$$
, 3, 2
To $3 - 1$, 3
To $4 - 1$, 5, 4
To $5 - 1$, 5

• Dijkstra's Algorithm: Another Example

• Dijkstra's Algorithm: At start

<u>L = </u>							_	P =	_	D =
∞	∞	4	8	∞	∞	8				
2	∞	8	8	∞	∞	8		1		2
∞	∞	∞	2	<u> </u>	<u> </u>	8		1	}	∞_{\blacktriangle}
1	3	∞	∞	∞	∞	8		1		1
∞	10	∞	2	∞	∞	8.		1	}	•
∞	∞	5	8	∞	∞	1		1	}	∞
∞	∞	∞	4	6	∞			1	}	∞

$$V = 4$$

 $C = \{2, 3, 4, 5, 6, 7\}$
 $S = \{1\}$

∞	∞	4	∞	∞	∞	∞
2	∞	8	∞	∞	∞	∞
∞	∞	8	2	∞	∞	∞
1	3	∞	∞	∞	∞	∞
∞	10	8	2	∞	∞	∞
∞	∞	5	8	∞	∞	1
∞	∞	8	4	6	∞	∞

1	
4	
1	
4	
4	
4	

$$D =$$

2
3
1
3
9
5

$$v = 2$$

 $C = \{2, 3, 5, 6, 7\}$
 $S = \{1, 4\}$

P =	
1	
4	
1	
4	
4	
4	

	D =	
	2	
	3	
	1	
Î	3	
Ī	9	
Ī	5	
•		

$$V = 5$$

 $C = \{ 3, 5, 6, 7 \}$
 $S = \{1, 2, 4 \}$

$$v = 3$$

 $C = \{ 3, 6, 7 \}$
 $S = \{1, 2, 4, 5 \}$

$$V = 7$$

 $C = \{6, 7\}$
 $S = \{1, 2, 3, 4, 5\}$

• Dijkstra's Algorithm: After step 5 – done

- L=

∞	∞	4	∞	8	8	8
2	∞	8	∞	∞	8	8
∞	∞	8	2	8	8	8
1	3	8	∞	8	8	8
∞	10	8	2	8	8	8
∞	∞	5	8	8	8	1
∞	∞	8	4	6	8	8

P =

1
4
1
4
7
4

D =

2	
3	
1	
3	
6	
5	

$$v = 7$$

 $C = \{6\}$
 $S = \{1, 2, 3, 4, 5, 7\}$

- Dijkstra's Algorithm: After step 5 done
 - Paths

To 2: 1, 2

To 3: 1, 4, 3

To 4: 1, 4

To 5: 1, 4, 5

To 6: 1, 4, 7, 6

To 7: 1, 4, 7

P =

Example 3: Minimum Spanning Tree

Greedy Algorithms

- Example 3: Minimum Spanning Tree
 - Let G = (N, E) be a connected, undirected graph consisting of a set of nodes, N, and a set of edges E.
 - Each edge has a length, the distance from the node at one end of the edge to the node at the other end.
 - The problem is to find a subset, S, of the edges of G such that the graph G'= (N, S) is still connected and that the total length of the edges in S is minimized.
 - G' is called the minimum spanning tree for the graph G

Example 3: Minimum Spanning Tree

Example 3: Minimum Spanning Tree

- Two possible paths of attack seem possible:
- Start with an empty set S and select at each stage the shortest edge that has been neither selected nor rejected.
- Start at a given node and at each stage select into S shortest edge that extends the graph to a new node
- Strangely, both approaches work

Kruskal's Algorithm

- Start with an initially empty set of edges S.
- Add edges to S
- At each step add the shortest edge to S which increases the connectedness of the graph.
- Reject a candidate edge if it does not effect the connectedness of S.
- Stop when the graph is connected.

- Kruskal's Algorithm: An Example
 - Step 0 {1} {2} {3} {4} {5} {6} {7}

- Kruskal's Algorithm: An Example
 - Step 1 {1,2} {3} {4} {5} {6} {7}

• Step 2 {2,3} {1,2,3} {4} {5} {6} {7}

• Step 3 {4,5} {1,2,3} {4,5} {6} {7}

• Step 4 {6,7} {1,2,3} {4,5} {6,7}

• Step 5 {1,4} {1,2,3,4,5} {6,7}

- Kruskal's Algorithm: An Example
 - Step 5 {2,5} {1,2,3,4,5} {6,7} rejected

• Step 5 {4,7} {1,2,3,4,5,6,7} - done

- Kruskal's Algorithm
 - -type node = record
 node_number: integer
 - type edge = record
 start: ^node

end: ^node

length: integer

Kruskal's Algorithm

```
Function Kruskal(N[1..n]: ^node,
E[1..e]: ^edge)
    sort E by increasing length
    s = \{\}
    for i = 1 to n do
        set[i] = {N[i]}
    i = 0
    repeat
        i = i + 1
        u = E[i]^{.start}
        v = E[i]^{\cdot}.end
        uset = find u in set[]
        vset = find v in set[]
        if uset != vset then
             merge(uset, vset)
             add E[i] to S
    until S contains n - 1 edges
    return S
```

Kruskal's Algorithm

```
Function Kruskal(N[1..n]: ^node,
E[1..e]: ^edge)
    sort E by increasing length
    s = \{\}
    for i = 1 to n do
        set[i] = {N[i]}
    i = 0
    repeat
        i = i + 1
        u = E[i]^{.start}
        v = E[i]^{\cdot}.end
        uset = find u in set[]
        vset = find v in set[]
        if uset != vset then
             merge(uset, vset)
             add E[i] to S
    until S contains n - 1 edges
    return S
```

Kruskal's Algorithm

```
KRUSKAL(G):
1 A = \emptyset
2 foreach v \in G.V:
3 MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v),
increasing:
5 if FIND-SET(u) ≠ FIND-SET(v):
6 A = A \cup \{(u, v)\}
7 UNION(u, v)
8 return A
```

Prim's Algorithm

- Let O be a set of nodes and S a set of edges
 - Initially O contains the first node of N and S is empty
 - At each step look for the shortest edge {u, v} in E
 such that u ∈ O and v ∉ O
 - $Add \{u, v\} to S$
 - Add v to O
 - Repeat until O = N
 - Note that, at each step, S is a minimum spanning tree on the nodes in O

• Step 0 - {1}

• Step 1 {1, 2} {1, 2}

• Step 2 {2, 3} {1, 2, 3}

• Step 3 {1, 4} {1, 2, 3, 4}

• Step 4 {4, 5} {1, 2, 3, 4, 5}

• Step 5 {4, 7} {1, 2, 3, 4, 5, 7}

• Step 5 {7, 6} {1, 2, 3, 4, 5, 6, 7} – done

Prim's Algorithm

```
Function Prim(L[1..n, 1..n])
      S = \{\}
      for i = 2 to n do
          nearest[i] = 1
          mindist[i] = L[i, 1]
      repeat n - 1 times
          min = \infty
           for j = 2 to n do
               if 0 \le mindist[j] \le min then
                    min = mindist[j]
                    k = j
          add {nearest[k], k} to S
          mindist[k] = -1
           for j = 2 to n do
               if L[j, k] < mindist[j] then</pre>
                   mindist[j] = L[j, k]
                   nearest[j] = k
      return S
```

Prim's Algorithm: at start

=	∞	1	8	4	∞	∞	8	nearest =	1	mindist =	∞	
	1	8	2	6	4	8	8		1		1	
	∞	2	8	8:	5	6	8:		·-1-··		∞	
	4	6	8	8	3	8	4		1		4	
	8	4	- 5-	3	∞	8	7		1		- ▶∞	
	8	∞	6	∞	8	∞	3		1		∞	
	8	8	8	4	7	3	8		1		∞	

L =	∞	1	∞	4	∞	∞	∞	nearest =	1	mindist =	∞
	1	∞	2	6	4	∞	8		1		-1
	8	2	∞	∞	5	6	8		2		2
	4	6	∞	8	3	8	4		1		4
	8	4	5	3	8	8	7		2		4
	∞	∞	6 -	<u>∞</u>	- 8 -	_ <u>∞</u>	3		_1		$ ightharpoonup \infty$
	∞	∞	∞	4	7	3	8		1		∞

$$S = \{\{1, 2\}\}\$$

L =	8	1	∞	4	8	8	8	nearest =	1	mindist =	∞
	1	8	2	6	4	8	8		1		-1
	8	2	8	8	5	6	8		2		-1
	4	6	8	8	თ	8	4		1		4
	8	4	5	3	8	8	7-		2 -		- •4
	8	8	6	8	8	8	3		3		6
	8	∞	∞	4	7	3	8		1		

$$S = \{\{1, 2\}, \{2, 3\}\}$$

L =	8	1	∞	4	8	8	8	nearest =	1	mindist =	∞
	1	8	2	6	4	8	8		1		-1
	8	2	8	8	5	6	8		2		-1
	4	6	8	8	3	8	4		1		-1
	8	4	5	3	8	8	7		4	•	3
	8	8	6	8	8	8	3		3		6
	∞	∞	∞	4	7	3	∞		4		4

$$S = \{\{1, 2\}, \{2, 3\}, \{1, 4\}\}$$

L=	8	1	8	4	8	8	8	nearest =	1	mindist =	∞
	1	8	2	6	4	8	8		1		-1
	8	2	8	8	5	6	8		2		-1
	4	6	8	8	3	8	4		1		-1
	8	4	5	3	8	8	7		4		-1
	8	8	6	8	8	8	3 -		-3		▶ 6
	8	∞	∞	4	7	3	8		4		4

$$S = \{\{1, 2\}, \{2, 3\}, \{1, 4\}, \{4, 5\}\}$$

L=	8	1	∞	4	8	8	8	nearest =	1	mindist =	∞
	1	8	2	6	4	8	8		1		-1
	∞	2	∞	∞	5	6	∞		2		-1
	4	6	∞	∞	3	∞	4		1		-1
	∞	4	5	3	∞	8	7		4		-1
	∞	∞	6	∞	8	∞	3		7		3
	∞	∞	∞	4	7	3	∞		4		-1

$$S = \{\{1, 2\}, \{2, 3\}, \{1, 4\}, \{4, 5\}, \{4, 7\}\}$$

$$S = \{\{1, 2\}, \{2, 3\}, \{1, 4\}, \{4, 5\}, \{4, 7\}, \{7, 6\}\}\}$$

- We have a set of n objects and a knapsack.
- Each object has a weight w i
- Each object has a value v i
- The knapsack can hold a total weight W
- We must pack the knapsack with the most valuable load.
- We may break an object into smaller pieces if we wish. I.e.
 we can pack a fraction x i of object i where 0 < x i < 1
- Note: If we are not allowed to break objects this becomes a much harder problem.

- An example:

$$-n = 5$$
, $W = 100$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60

Strategy 1: pick the most valuable object

- Pack as much of the most valuable object as you can

$$-n = 5$$
, $W = 100$, $V = 66$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
X _i			1.0		

- Pack as much of the next most valuable object

$$-n = 5$$
, $W = 100$, $V = 126$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
X _i			1.0		1.0

- And the next most valuable object

$$-n = 5$$
, $W = 100$, $V = 146$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
X _i			1.0	0.5	1.0

- An example:

$$-n = 5$$
, $W = 100$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60

Strategy 2: pick the lightest object

- Pack as much of the lightest object as you can

$$-n = 5$$
, $W = 100$, $V = 20$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
X _i	1.0				

- Pack as much of the next lightest object as you can

$$-n = 5$$
, $W = 100$, $V = 50$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
X _i	1.0	1.0			

And the next lightest object

$$-n = 5$$
, $W = 100$, $V = 116$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
X _i	1.0	1.0	1.0		

- And, finally, the next lightest object

$$-n = 5$$
, $W = 100$, $V = 156$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
X _i	1.0	1.0	1.0	1.0	

- An example:

$$-n = 5$$
, $W = 100$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60

Strategy 3: pick the object with the highest value per unit weight

Calculate the value per unit weight, ½ w_i

$$-n = 5$$
, $W = 100$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
V _i / W _i	2.0	1.5	2.2	1.0	1.2

- Pack as much of the best object as you can

$$-n = 5$$
, $W = 100$, $V = 66$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
V _i / W _i	2.0	1.5	2.2	1.0	1.2
X _i			1.0		

- Repeat with the next best object
- -n = 5, W = 100, V = 86

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
V _i / W _i	2.0	1.5	2.2	1.0	1.2
X _i	1.0		1.0		

– And the next best

$$-n = 5$$
, $W = 100$, $V = 116$

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
V _i / W _i	2.0	1.5	2.2	1.0	1.2
X _i	1.0	1.0	1.0		

- And, finally, the next best
- -n = 5, W = 100, V = 164

Object	1	2	3	4	5
W _i	10	20	30	40	50
V _i	20	30	66	40	60
V _i / W _i	2.0	1.5	2.2	1.0	1.2
X _i	1.0	1.0	1.0		0.8

- In summary:

Strategy		Value				
Max v _i	0.0	0.0	1.0	0.5	1.0	146
Min w _i	1.0	1.0	1.0	1.0	0.0	156
Max v _i / w _i	1.0	1.0	1.0	0.0	0.8	164

- Clearly, the last strategy gives the best results

Greedy Algorithms

- Example 5: Scheduling minimum time
 - A single server has n customers to serve
 - The service time for each customer is known in advance = T_i
 for customer i.
 - We want to minimize the average time each customer spends in the queue = T_{av}
 - This is equivalent to spending the least total time since $T_{av} = (T_1 + T_2 + \dots + T_n)/n$

-An example:

$$n = 3$$
, $t_1 = 5$, $t_2 = 10$, $t_3 = 3$

– Try all possible orderings of t_1 and t_2 and t_3

Order	Т	
1, 2, 3	5 + (5 + 10) + (5 + 10 + 3)	38
1, 3, 2	5 + (5 + 3) + (5 + 3 + 10)	31
2, 1, 3	10 + (10 + 5) + (10 + 5 +3)	43
2, 3, 1	10 + (10 + 3) + (10 + 3 +5)	41
3, 1, 2	3 + (3 + 5) + (3 + 5 + 10)	29
3, 2, 1	3 + (3 + 10) + (3 + 10 + 5)	34

- We note that the optimal solution, 29, is obtained by choosing the customers in order of increasing service time.
 - One example does not constitute a proof that the best result is obtained by serving in increasing order.
 - Let us see if we can prove that this is the best strategy.

- Theorem: serving customers in increasing order of service time minimizes the total time.
 - **Proof:** Let $P = P_1, P_2, ..., P_n$ be a permutation of customers 1 to n and let $s_i = t_{pi}$ be the service time for the i^{th} customer if customers are served in order P.

The total time for order P is

$$T(P) = s_1 + (s_1 + s_2) + (s_1 + s_2 + s_3) + \cdots$$

= $ns_1 + (n-1)s_2 + (n-2)s_3 + \cdots$
= $\sum_{k=1}^{n} (n-k)s_k$

- If we can find customers a, b < n such that P_a < P_b and s_a > s_b we can produce a new permutation P^* by swaping P_a and P_b in the permutation

The total service time for P^* is

$$T(P^*) = (n - P_a + 1)s_b + (n - P_b + 1)s_a + \sum_{k=1}^{n} (n - k + 1) s_k$$
$$k \neq P_a, P_b$$

- The new schedule P* is better than P because

$$T(P) - T(P^*) = (n - P_a + 1)(S_a - S_b) + (n - P_b + 1)(S_b - S_a)$$

= $(P_a - P_b)(S_a - S_b) > 0$
because $P_a - P_b$ and $S_a - S_b$

- Thus, total service time can be improved as long as any customers match the above criteria.
- No further improvement is possible when customers are served in order of increasing service time.
- Thus, service time is minimized when customers are served in order of increasing service time.

Greedy Algorithms

- Example 7: The Traveling Salesman Problem
 - Let G = (N, E) be a complete, undirected graph consisting of a set of nodes, N, and a set of edges E.
 - Each edge has a length, the distance from the node at one end of the edge to the node at the other end.
 - The problem is to find a subset, S, of the edges of G such that the graph G = (N, S) is still connected, S forms a cycle and that the total length of the edges in S is minimized.
 - If we view the nodes as towns and the edges as roads this is equivalent to finding the shortest round-trip route visiting each town once and returning to the start.
 - Can we find a greedy algorithm to solve this problem?

Example 7: The Traveling Salesman Problem

- Consider the following map - with distance matrix

0	3	10	11	7	25
3	0	8	12	9	26
10	8	0	တ	4	20
11	12	9	0	5	15
7	9	4	5	0	18
25	26	20	15	18	0

- A greedy algorithm might be:
 - Start at an arbitrary node (node 1)
 - At each step visit the nearest node to the current one
 - When no more nodes are left, go home
- How good is this algorithm?

0	3	10	11	7	25
3	0	8	12	9	26
10	8	0	တ	4	20
11	12	တ	0	5	15
7	ග	4	5	0	18
25	26	20	15	18	0

0	3	10	11	7	25
3	0	8	12	9	26
10	80	0	တ	4	20
11	12	9	0	5	15
7	9	4	5	0	18
25	26	20	15	18	0

0	3	10	11	7	25
3	0	8	12	9	26
10	8	0	9	4	20
11	12	9	0	5	15
7	9	4	5	0	18
25	26	20	15	18	0

0	3	10	11	7	25
3	0	8	12	9	26
10	8	0	9	4	20
11	12	တ	0	5	15
7	9	4	5	0	18
25	26	20	15	18	0

0	3	10	11	7	25
3	0	8	12	9	26
10	8	0	9	4	20
11	12	9	0	5	15
7	9	4	5	0	18
25	26	20	15	18	0

0	3	10	11	7	25
3	0	8	12	9	26
10	8	0	9	4	20
11	12	9	0	5	15
7	9	4	5	0	18
25	26	20	15	18	0

- Move back to node 1

0	3	10	11	7	25
3	0	8	12	9	26
10	8	0	9	4	20
11	12	9	0	5	15
7	9	4	5	0	18
25	26	20	15	18	0

- Route is 1 to 2 to 3 to 5 to 4 to 6 to 1

0	3	10	11	7	25
3	0	8	12	9	26
10	8	0	တ	4	20
11	12	တ	0	5	15
7	9	4	5	0	18
25	26	20	15	18	0

- Total distance is 60

0	3	10	11	7	25
3	0	8	12	9	26
10	8	0	တ	4	20
11	12	တ	0	5	15
7	9	4	5	0	18
25	26	20	15	18	0

- is this optimal?

- Total distance is 60

- is this optimal? No 58 is.

- The Traveling Salesman Problem
 - -It is close however.
 - –Is this greedy algorithm at least near optimal?
 - -Let us look at another problem.

- The Traveling Salesman Problem
 - Consider the following map:
 - The greedy algorithm gives path 1 to 2 to 3 to 4 to 1
 - With distance 105
 - Compared to 13

 Clearly, the greedy algorithm is not even close to optimal in this Case!

Greedy Algorithms

- -Good in a wide range of problem classes
- -Generally, easy to implement
- -Generally, efficient
- -Sometimes not very good at all
- -Clearly, for some sorts of problem we need a different approach from the greedy one
- -Divide-and-Conquer is such an approach

Discussions

- 1. What is Greedy Strategy.
- 2. What is the Greedy Algorithm.

Homework

Assignment 2
Implement Prime Algorithm for
Minimum Spanning Tree.