Семинар 7

28 октября 2020 г.

Задача 1. Теорема Хершелла-Максвелла.

Рассмотрим замкнутую плоскую фигуру внутри которой случайно летают частицы. Обозначим $V=(V_x,V_y)'$ – вектор скоростей случайно выбранной частицы.

Предположим, что

- 1. Распределение вектора V не должно меняться при его повороте на любой угол (то есть не зависит от направления вектора).
- 2. V_x и V_y независимы.
- 3. $Var(V_x) = Var(V_y) = 1$.
- 4. $f(v_x, v_y)$ существует и непрерывна.
- а) Найдите координаты вектора V', который получается поворотом вектора V на 90° против часовой стрелки.
- **b)** Докажите, что распределения V_x , V_y и $-V_y$ совпадают.
- ${f c}$) По предположению 3 понятно, что ${
 m Var}(V_x)={
 m Var}(V_y)=1.$ Покажите, что ${\Bbb E}(V_x)={\Bbb E}(V_y)=0.$
- **d)** Докажите, что совместная функция плотности $f_V(v_x,v_y)$ представима в виде

$$f_V(v_x, v_y) = h(v_x^2 + v_y^2),$$

где h – некоторая функция. Сделайте вывод из этого утверждения.

e) Покажите, что совместная функция плотности $f_V(v_x, v_y)$ представима в виде

$$f_V(v_x, v_y) = g(v_x^2)g(v_y^2),$$

где g – некоторая функция.

- **f)** Докажите, что выражение h'(t)/h(t) равно константе.
- **g)** Найдите функцию h(t) с точностью до константы.
- **h)** Выпишите $f_V(v_x, v_y)$ с точностью до константы.

Задача 2. Независимость длин проекций.

Пусть вектор $u \in \mathbb{R}^3$ имеет многомерное стандартное нормальное распределение.

а) Найдите проекцию вектора u на подпространство $V = \{(x_1, x_2, x_3) \mid x_1 = x_2 = x_3\}.$

- **b)** Найдите проекцию вектора u на подпространство $W = \{(x_1, x_2, x_3) \mid x_2 = 0, x_1 = -x_3\}.$
- **c)** Являются ли V и W ортогональными?
- **d)** Убедитесь, что $\|\hat{u}_V\|$ и $\|\hat{u}_W\|$ независимы.

Задача 3. Распределение хи-квадрат.

Теорема 1. Пусть вектор $u \in \mathbb{R}^n$ имеет многомерное стандартное нормальное распределение. Пусть $V \subset \mathbb{R}^n$, $\dim V = k$. Тогда $\|\hat{u}_V\|^2 \sim \chi_k^2$.

- а) Пусть вектор $u \in \mathbb{R}^3$ имеет многомерное стандартное нормальное распределение. Найдите проекцию и распределение квадрата длины проекции вектора u на подпространство $V = \{(x_1, x_2, x_3 \mid x_3 = 2x_1 + x_2)\}.$
- b) Найдите распределение квадрата длины проекции вектора u на подпространство $V^{\perp}.$

Задача 4. Г-распределение.

Определение 1. Пусть случайные величины $X \sim \chi_a^2$, $Y \sim \chi_b^2$, и X и Y независимы. Тогда случайная величина Z имеет распределение Фишера с a и b степенями свободы:

$$Z = \frac{X/a}{Y/b} \sim F_{a,b}.$$

Пусть вектор $u \in \mathbb{R}^n$ имеет многомерное стандартное нормальное распределение. Пусть V и W – ортогональные подпространства в \mathbb{R}^n , $\dim V = k$. $\dim W = m$.

- а) Постройте проекции вектора u на V и W. Как распределены квадраты длин этих проекций?
- **b)** Постройте проекцию вектора u на (V + W).
- **c)** Покажите на рисунке угол, квадрат тангенса которого равен отношению квадратов длин проекций u на V и W. Обозначим этот угол как α .
- d) Какое распределение имеет величина

$$\frac{m}{k}\tan^2\alpha$$
?

е) Поясните идею сравнения прогнозов моделей при помощи F-распределения.

Задача 5. Применение F-распределения.

Теорема 2. Пусть имеются UR-модель и R-модель и тестируется гипотеза

$$H_0$$
: Верны и UR- и R-модели

против

 H_A : UR-модель верна, а R-модель неверна.

Тогда H_0 отвергается на уровне значимости α , если F-статистика

$$F = \frac{(RSS_R - RSS_{UR})/(\mathit{df}_R - \mathit{df}_{UR})}{RSS_{UR}/\mathit{df}_{UR}}$$

превышает критическое значение F_{α} . Здесь df – число степеней свободы в соответствующей модели, df = n - k, где n – число наблюдений, k – число регрессоров.

Пусть UR-модель задаётся следующим образом:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + u_i.$$

Тестируется следующая R-модель:

$$y_i = \beta_0 + \beta_1(x_i + z_i) + u_i.$$

Предположим, что $u_i \sim \mathcal{N}(0,1)$ и независимы.

- а) Постройте подпространства V_{UR} и V_R и проекции вектора y на них.
- **b)** Покажите RSS_{UR} и RSS_R . Обозначим угол между ними как α .
- с) Покажите, что $RSS_R RSS_{UR} = \|\hat{y}_{UR} \hat{y}_R\|^2$.
- **d)** Выразите $\tan^2 \alpha$ через $y, \hat{y}_{UR}, \hat{y}_{R}$.
- е) Рассмотрим векторы $y \hat{y}_{UR}$ и $\hat{y}_{UR} \hat{y}_{R}$. Найдите размерности подпространств, в которых они лежат.
- f) Выпишите F-статистику в геометрическом и в классическом смыслах.