EGE UNIVERSITY FACULTY of ENGINEERING COMPUTER ENGINEERING DEPARTMENT 204 DATA STRUCTURES (3+1) 2020-2021 FALL SEMESTER

PROJECT 1: (Arrays, Matrices, Methods, Random Numbers)

1 GENERATING DISTANCE MATRIX FROM POINTS IN A 2D PLANE (2 BOYUTLU DÜZLEMDE NOKTALARDAN UZAKLIK MATRISI ÜRETİLMESİ)
2 CLASSIFICATION USING K-NEAREST NEIGHBORS (KNN) ALGORITHM (K EN YAKIN KOMŞU YÖNTEMİ İLE SINIFLANDIRMA)

Date Given: 01.12.2020 **Submission Date :** 14.12.2020

*Bu proje **tek** kişi olarak hazırlanabileceği gibi **iki** veya en fazla **üç** kişilik gruplar şeklinde de yapılabilir.

1) GENERATING DISTANCE MATRIX FROM POINTS IN A 2D PLANE

Projenin bu bölümünde 2 boyutlu (2D) Öklid uzayında noktalar üretmeniz ve bu noktalar üzerinde bazı hesaplamalar gerçekleştirmeniz istenmektedir. Şekil 1'de örnek bir 2D Öklid düzlemi verilmiş olup düzlemin başlangıç noktası (0, 0) sol üst köşe olarak belirlenmiştir.

Şekil 1. 2D noktaların Öklid düzleminde gösterilmesi.

2D Öklid uzayında herhangi iki nokta arasındaki uzaklık aşağıdaki formüle göre hesaplanmaktadır:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Örneğin, P1(x_1 =10.5, y_1 =20.7) ve P2(x_2 =3.1, y_2 =19.9) gibi iki adet nokta koordinatları için aralarındaki mesafe şu şekilde bulunacaktır:

$$d = \sqrt{(3.1 - 10.5)^2 + (19.9 - 20.7)^2} \approx 7.44$$

a) Rastgele Nokta Üretimi: Genişliği (width) ve yüksekliği (height) verilen 2 boyutlu alan içerinde *n* adet rastgele nokta üreten ve döndüren metodu yazınız. Üretilen noktalar *nx2* matris içerisinde; her bir satır bir noktaya ve her bir sütun da sırasıyla x ve y koordinat değerlerine karşılık gelecek biçimde saklanacak ve döndürülecektir. Üretilecek koordinatlar double tipinde olmalıdır.

15 p

Bu metodu aşağıdaki parametreler ile ayrı ayrı test ediniz: Test sonucu döndürülen matrisin bilgilerini (her bir nokta için x ve y koordinat değerleri) konsola yazdırınız.

- 1. n=10, width=100, height=100
- 2. n=100, width=100, height=100

15 p

b) Uzaklık Matrisi (Distance Matrix-DM) Üretimi: Kendisine verilen nx2 noktalar matrisini (bir önceki maddede istenen metot kullanılarak üretilmiş) nxn'lik uzaklık matrisine çeviren ve döndüren metodu yazınız. Uzaklık matrisi (DM) her bir nokta çifti arasındaki uzaklık bilgisini içermektedir. Örneğin, DM[i,j] i ve j noktaları arasındaki mesafeyi verecektir. Uzaklıklar simetrik olduğundan DM[i,j]=DM[j,i] eşitliği sağlanacaktır (i'den j'ye uzaklık ile j'den i'ye uzaklık aynıdır). Şekil 2'de örnek bir uzaklık matrisi yer almaktadır.

Bu metodu n=10, width=100, height=100 parametreleri ile test ediniz. Üretilen DM'yi konsola yazdırınız.

Distance Matrix							
	0	1	2	3	4	5	
0	0.0	1.2	0.5	4.7	5.6	4.9	
1	1.2	0.0	3.1	2.0	1.4	4.0	
2	0.5	3.1	0.0	6.1	2.8	1.9	
3	4.7	2.0	6.1	0.0	2.1	3.5	
4	5.6	1.4	2.8	2.1	0.0	3.3	
5	4.9	4.0	1.9	3.5	3.3	0.0	

Şekil 2. Altı adet nokta için örnek bir DM.

2 CLASSIFICATION USING K-NEAREST NEIGHBORS (KNN) ALGORITHM K EN YAKIN KOMŞU YÖNTEMİ İLE SINIFLANDIRMA

Gerçek ve sahte banknot görüntü örneklerinden çıkarılan çeşitli öznitelikler bulunmaktadır. Bu bilgiler aracılığı ile verilen görüntü gerçek/sahte olarak sınıflandırılabilmektedir. Her bir örnek için 4'er adet özellik (varyans, çarpıklık, basıklık, entropi) bilgisi ve gerçek para olup/olmadığı (tür) hazır olarak verilmektedir. Tablo 1'de 6 tanesine yer verilmiştir. Elimizde toplam 1372 adet örneğe ilişkin veriler bulunmaktadır. Bu verileri kullanarak, görüntünün iki farklı türden hangisine ait olduğunu bulduran bir algoritmanın yazılması istenmektedir. Görüntü yerine görüntü öznitelikleri kullanılarak işlemler gerçekleştirilecektir.

Veriseti: https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Görüntü 1: 200 bʻlik Banknot görüntüsü.

Tablo 1: Banknot verisetinden alınmış 6 adet banknot örneğine ilişkin bilgiler

Örnek No	Varyans Değeri	Çarpıklık Değeri	Basıklık Değeri	Entropi Değeri	Tür
0	3.6216	8.6661	-2.8073	-0.44699	0
1	4.5459	8.1674	-2.4586	-1.4621	0
2	3.866	-2.6383	1.9242	0.10645	0
3	-1.3971	3.3191	-1.3927	-1.9948	1
4	0.39012	-0.14279	-0.031994	0.35084	1
5	-1.6677	-7.1535	7.8929	0.96765	1
			•••		

a) kNN ile sınıflandırma: Bulduğumuz ancak türünü bilmediğimiz bir banknotun hangi türe ait olduğunu tespit eden algoritmayı (k en yakın komşu yöntemi) yazınız (hazır kNN kullanmayınız). k değerini, kullanıcı tarafından girilebilen bir banknotun tüm özellik(ler)ini girdi olarak aldırarak bu yöntemle hangi sınıftan (gerçek (1) / sahte (0)) olduğunu bulduran kNN algoritmasını kendiniz yazınız.

kNN Yöntemi:

10 p

10 p

Elinizdeki türü bilinmeyen banknotun özelliklerini, verisetindeki tüm kayıtlarla karşılaştırarak özellikleri uzaklık d (distance) formülüne göre en yakın olan k tane banknotu bulmalısınız. Bulduğunuz bu k tane banknotun türlerine bakarak en çok sayıda hangi türden banknot varsa banknotunuzu o türden sayacak ve sınıflandıracaksınız.

 $A=(x_1,\,x_2,...,\,x_m)$ ve $B=(y_1,\,y_2,...,\,y_m)$ özellik vektörleri, m özellik sayısı olmak üzere iki banknot (A ve B) arasındaki uzaklığı (distance) hesaplayan d(A,B) Formülü: $\sqrt{\sum_{i=1}^m(x_i-y_i)^2}$ Tablo 1'deki ikinci yani 1 numaralı banknotun özellikleri sırası ile 4.5459, 8.1674, -2.4586 ve -1.4621'dir.

Örnek olarak K değerini kullanıcı 3 girdiyse, verdiğiniz öznitelik dizisine uzaklığı en yakın (az) olan 3 banknotu tespit etmelisiniz. İki tanesi *gerçek* (1), bir tanesi de *sahte* (0) ise oy çokluğu ile banknotu *gerçek* olarak sınıflandıracaksınız. Eğer oy çokluğu konusunda 1'den fazla banknot arasında eşitlik olursa en yakın banknotun türünde sınıflandırabilirsiniz (k=1 için).

- * kNN tutorial: KNN Algorithm Finding Nearest Neighbors Tutorialspoint
- * kNN demo: vision.stanford.edu/teaching/cs231n-demos/knn/

b) Banknot sınıflandırma: Yazdığınız kNN algoritmasının k değerini, kullanıcı tarafından girilebilen bir banknotun 4 adet özelliğini girdi olarak aldırarak, en yakın k adet banknotun özelliklerini, uzaklıklarını ve hangi sınıflardan olduklarını bir tablo olarak ekrana listeleyiniz. Bağlantısı önceki sayfada verilen verisetini kullanarak kNN yöntemi ile banknotun da türünü tahminleyiniz ve ekrana yazdırınız.

Dileyenler Tablo 2'de verilen örnek veriler ve tahminlenecek tür bilgisi için programını test edebilir.

Tablo 2: Banknot veriseti için verilen 10 adet yeni örnek ve k değeri için tahminlenecek türe ilişkin değerler

Örnek Veri	Varyans	Çarpıklık	Basıklık	Entropi	K Değeri	Tahminlenecek
No						Tür
1	1.89	-2.05	0.93	1.24	5	1
2	2.43	2.82	-2.79	-2.81	3	1
3	-2.24	2.74	2.09	-1.34	1	1
4	2.48	-0.09	2.60	-2.72	1	0
5	0.79	1.80	1.07	-2.42	3	0
6	-2.41	-2.15	1.55	1.94	5	1
7	-1.33	-0.47	1.46	1.17	3	1
8	0.28	2.49	-0.65	-1.10	3	1
9	2.75	1.75	0.93	2.70	1	0
10	2.79	2.76	-1.97	-2.79	5	1

10 p

c) **Başarı Ölçümü:** Verisetinde her bir tür banknot örneğinin sonunda yer alan 100'er veriyi test verisi olarak ayırınız. k değerini kullanıcıdan aldırarak, test verilerinden herbirini, a maddesindeki yöntemi ve 4 özelliğin tümünü kullanarak kalan 1172 adet örnek veri üzerinden sınıflandırınız, b'deki listelemeleri yapınız. Test verilerinin gerçek sınıfları ile, kNN ile tahminlediğiniz sınıflarını karşılaştırınız (gerçek ve tahminlenen türlerin / sınıfların her ikisini de yazdırınız). **Başarı oranını**:

doğru sınıflandırılan banknot sayısı / verisetinde test amaçlı kullandığınız toplam banknot sayısı

olarak hesaplayarak yazdırınız.

10 p

- d) Listeleme: Bellekteki verisetindeki değerleri görüntüleyen kodu yazınız.
- İlk proje olduğundan her projede tek sınıf kullanılması yeterlidir. Dileyenler, her bir banknotun bilgilerini birer nesnede tutup işlemlerini yürütebilirler. Listeler için dizi, matris, ArrayList gibi önereceğiniz veri yapılarını kullanabilirsiniz. Dosya kullanımı anlatılmadığı için dileyen öğrenciler, veriyi programa yapıştırarak ayrıştırabilirler veya https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-read-from-a-text-file.
- Programınız farklı değerler ile (örnek olarak k=1 ile 5 arasında değerler verilerek) test edilebilmelidir. Varsayımlarınızı raporda belirtmelisiniz. Sınıf (tür) sayısının 2 olarak sabit alındığını varsayabilirsiniz.

PROJE TESLİMİNE İLİSKİN BİLGİLER

1) Data Structures dersinin bu projesi için (ortak çalışma imkanınız bulunan kişilerle) 2 veya 3 kişilik çalışma grupları oluşturmanız önerilir. Dileyen öğrenciler projeyi tek kişi olarak da hazırlayabilir. İkinci ve daha sonraki projeler ise sadece tek kişi olarak hazırlanacaktır, grup olarak teslim edilmeyeceklerdir.

- 2) Rapor (20 p) hazırlanırken Egeders'te yer alan "DS_20_P1 Report Template.docx" şablonunu kullanınız. Sonda yer alan özdeğerlendirme tablosunu (10 p) doldurmayı ve rapor yazımı sonrası içindekiler bölümündeki sayfa numaralarını güncellemeyi unutmayınız.
- 3) Projenizin işleyişini anlatan maksimum **5 dk'lık bir demo** videosu hazırlayınız. Video hazırlama için:
 - 1. Teams içerisinde **takvim** (calendar) sayfasına gidip "**şimdi toplantı yapın** (meet now)" seçeneği ile bir toplantı başlatın.
 - 2. Eğer grup çalışması yapıyorsanız diğer grup üyelerini de bu toplantıya dahil edin.
 - 3. Toplantı içerisinde kaydı başlatın.
 - 4. Ekran paylaşımı ile kodunuzu ve nasıl çalıştırıldığını, projede istenenleri dikkate alarak anlatın. (Grup çalışmasında her bir grup üyesi anlatımda görev almalıdır).
 - 5. Kaydı durdurun.
 - 6. <u>Toplantıdan ayrılmadan</u>, sohbet (chat) bölümünü açın. Videonuz burada oluşturulacaktır. Videonuza tıklayarak indirin ve saklayın.
 - Mikrofon gibi ekipman sıkıntısı yaşayanlar alternatif olarak demoyu ekran görüntüsü destekli yazılı doküman olarak da hazırlayabilirler. Demo dökümanı rapordan farklı olarak adım adım ekran görüntüleri ve ayrıntılı açıklama ile proje kodlarının nasıl çalıştırılacağını anlatmalıdır (raporda sadece ilgili maddenin konsol çıktısı istenmekteydi). Bir başka deyişle video demosunun yazılı bir versiyonudur.
- 4) Rapor, demo ve her iki programın açıklama satırları destekli kaynak kodları (.cs uzantılı), çalışma grubundan bir öğrenci tarafından (dersin duyurularında belirtilen formata uygun olarak) son teslim tarihine kadar ilgili seçenekten sisteme tek bir zip dosyası halinde yüklenmelidir. Oluşturulan "zip" veya "rar" dosyasının adı 8 haneli öğrenci numarası ve öğrenci ad ve soyadının alt çizgi (_) ile ayrılmasıyla oluşturulacaktır. Birden fazla öğrenci olması durumunda, proje üyeleri birbirinden yine alt çizgi kullanılarak ayrılacaktır.

Örneğin; "05146924_AliYılmaz_05130084_AyşeÖztürk.zip"

5) MOSS üzerinden belli ölçüde kod benzerlikleri görülen gruplara proje notu olarak 0 atanacaktır.