COMP245: Probability and Statistics 2016 - Problem Sheet 2 Solutions

Numerical Summaries

S1) Purpose: Link a measure of location with a measure of dispersion.

To find minima and maxima, we start by differentiating wrt m,

$$\frac{d}{dm}\sum_{i=1}^{n}(x_i-m)^2=-2\sum_{i=1}^{n}(x_i-m)=2(mn-\sum_{i=1}^{n}x_i).$$

Setting this equal to zero yields the stationary point of $m = \sum_{i=1}^{n} x_i/n = \bar{x}$. To check this is a minimiser, differentiate again wrt m,

$$\frac{d^2}{dm^2} \sum_{i=1}^{n} (x_i - m)^2 = 2n$$

which is positive for all m. Therefore, \bar{x} is a minimiser of $\sum_{i=1}^{n} (x_i - m)^2$.

S2) Purpose: Link a measure of location with a measure of dispersion.

As suggested in the hint, assume all samples are ordered so $x_1 \leq x_2 \leq \ldots \leq x_n$.

The case of n=1 is trivial, and for n=2

$$\sum_{i=1}^{n} |x_i - m| = |x_1 - m| + |x_2 - m| \ge x_2 - x_1$$

with equality attained $\forall m$ in the range $x_1 \leq m \leq x_2$, which includes the median.

Suppose the result holds for all samples up to size n, and now consider an ordered sample of size n+2. First note that the median of $x_2, x_3, \ldots, x_n, x_{n+1}$ is equal to the median of $x_1, x_2, x_3, \ldots, x_n, x_{n+1}, x_{n+2}$ (since in the larger sample we have simply appended a data point on either side), but that the former is a sample of size n. So we wish to show that the median of $x_2, x_3, \ldots, x_n, x_{n+1}$ is a minimiser of $\sum_{i=1}^{n+2} |x_i - m|$. Then

$$\sum_{i=1}^{n+2} |x_i - m| = |x_1 - m| + |x_{n+2} - m| + \sum_{i=2}^{n+1} |x_i - m| \ge x_{n+2} - x_1 + \sum_{i=2}^{n+1} |x_i - m|$$

with equality attained $\forall m$ in the range $x_1 \leq m \leq x_{n+2}$; and clearly the median of $x_2, x_3, \ldots, x_n, x_{n+1}$ lies within this range and is also a minimiser of $\sum_{i=2}^{n+1} |x_i - m|$ by the inductive hypothesis.

S3) Purpose: This time you need to provide the measure of dispersion.

A corresponding measure of dispersion would be

$$\sum_{i=1}^{n} I(x_i \neq m).$$

If m is our measure of location of the data, then this measure of dispersion counts how many of the sample take some different value. This would be minimised by the mode.

S4) Purpose: Practice computing the mean and median of data sets. Also, making you wary of skewed data sets.

Median = 110, mean = 138.6.

Because of the right skew.

Because it will be sensitive to the outlying value of 414.

S5) Purpose: Practice computing the covariance and correlation for ordered pairs of a real data set.

Differences are: -25.3, -20.5, -10.3, -24.4, -17.5, -30.6, -11.8, -12.9, -3.8, -20.6, -28.4.

Mean = -18.74, median = -20.5, sd = 7.94 (or 8.33).

Covariance = 19.24, correlation = 0.51.

S6) Purpose: Practice computing interquartile range and median.

The lower quartile LQ = $x_{((n+1)/4)} = x_{(23/4)}$ which is three quarters of the way between $x_{(5)} = 26.39$ and $x_{(6)} = 27.08$. Hence LQ = $26.39 + (27.08 - 26.39) \times 3/4 = 26.908$.

Similarly, the upper quartile $UQ = x_{((n+1)\times 3/4)} = x_{(69/4)}$, which is one quarter of the way between $x_{(17)} = 33.28$ and $x_{(18)=33.40}$. Hence, $UQ = 33.28 \times 3/4 + 33.40 \times 1/4 = 33.31$.

The median is $x_{((n+1)/2)} = x_{(23/2)} = 28.69/2 + 29.36/2 = 29.0$.

S7) Purpose: Practice plotting a histogram and transforming skewed data.

Mean = 286, sd = 332.72 (or 346.3 for $\frac{1}{n-1}$ formula).

Because of the skewness of the data.

Skewness = 1.43 (or similar); Skewness of log transformed data = 0.26 (or similar).

S8) Purpose: Example using the harmonic mean.

The car travels a total of 20 miles in (10/30 hours plus 10/60 hours). That is, 20 miles in 0.5 hours. That is, 40 miles per hour. (Not (30+60)/2.)

This can be most simply calculated using the harmonic mean,

3

$$\frac{2}{\frac{1}{30} + \frac{1}{60}} = \frac{2}{\frac{3}{60}} = 40.$$