Challenges in Finding Generalized Plans

Siddharth Srivastava Joint work with Neil Immerman and Shlomo Zilberstein University of Massachusetts, Amherst

ICAPS 2009 Workshop on Generalized Planning: Macros, Loops, Domain Control September 20th, 2009

Generalized Planning

Plans or planning structures that "work in many situations"

- Triangle Tables [Fikes et al., 1972]
- Case Based Planning [Hammond, 1986]
- Explanation Based Planning
 [Minton et al., 1989, Shavlik, 1990]
- Contingent Planning
- Learning domain specific planners from examples [Winner and Veloso, 2003]; Planning with loops [Levesque, 2005];

Overview

- Universal Challenges
- Our Framework

- Generalized Planning with Sensing Actions
- Results

Classical Plans

 $mvToTable(b_3)$, $mvToTable(b_2)$, $mvToTable(b_1)$

Classical Plans

 $\mathtt{mvToTable}(b_3)$, $\mathtt{mvToTable}(b_2)$, $\mathtt{mvToTable}(b_1)$

More General:

```
"Unstack":
```

while $(\exists b: topmost(b) \land \neg onTable(b)) \{mvToTable(b)\}$

Classical Plans

 $mvToTable(b_3)$, $mvToTable(b_2)$, $mvToTable(b_1)$

More General:

"Unstack":

while $(\exists b: topmost(b) \land \neg onTable(b)) \{mvToTable(b)\}$

Still More General:

FF, SATPLAN, SGPLAN, ...

Classical Plans

 $mvToTable(b_3)$, $mvToTable(b_2)$, $mvToTable(b_1)$

More General:

"Unstack":

while $(\exists b: topmost(b) \land \neg onTable(b)) \{mvToTable(b)\}$

Still More General:

FF, SATPLAN, SGPLAN, ...

Common fundamental problem (*Generalized Planning*): Find a function *G* (a *generalized plan*):

G: Problem instance \rightarrow sequence of actions

What makes us prefer one over another?

Challenges for Any Approach to Generalized Planning

- Applicability Test
- Cost of Instantiation
- Domain Coverage
- Quality of instantiated plans
- Complexity of creating generalized plans

Applicability Test

G: Problem instance $\xrightarrow{\text{plan instantiation}} a_1, \dots a_n$

- One approach: simulated execution.
- Cost of instantiation will be wasted if *G* cannot solve it.

NavigateGrids /*Start at bottom left*/

```
repeat
| while ¬rightmost do
| mvR()
end
mvU()
while ¬leftmost do
| mvL()
end
mvU()
until atgoal
```


Applicability Test

G: Problem instance $\xrightarrow{\text{plan instantiation}} a_1, \dots a_n$

- One approach: simulated execution.
- Cost of instantiation will be wasted if *G* cannot solve it.

```
NavigateGrids /*Start at bottom left*/

repeat

while ¬rightmost do

nvR()

end

mvU()

while ¬leftmost do

mvL()

end

mvL()

end
```

mvU()
until atgoal

Applicability Test (ctd.)

- Historically not common: not required for very general (FF) or very simple plans $(a_1, \ldots a_n)$.
- Computed generalized plans typically have a limited applicability.
- More of a problem with compact representations (loops).
 - Simulated execution may not even terminate!!

Ideal applicability test: linear in the size of the problem

$$G:$$
 Problem instance $\xrightarrow{\text{plan instantiation}} a_1, \dots a_n$

- Makes generalized plans like "unstack" (O(n)) more desirable than classical planners $(O(\exp(n)))$.
- In hindsight: low COI = one of the main motivations behind this field.

Domain Coverage

The set/fraction of solvable problems solved by a generalized plan.

- Historically one of the most measured attributes.
- Trade-offs with cost of instantiation.

Quality of Instantiated Plans

The computational cost (makespan/number of actions/time etc.) of executing the instantiated plan.

- Satisficing, optimal generalized plans.
- Trade-offs with domain coverage and cost of instantiation.

Complexity of Creating Generalized Plans

Complexity of Creating Generalized Plans

- Serious problems with applicability test, instantiation:
 - Loop termination, progress

Our Objective

- Compute algorithm-like "generalized" plans.
 - Low cost of instantiation
 - Efficient applicability tests
 - Efficient generation of generalized plans
- Need to determine progress and termination.

Concrete States as Logical Structures

 $\mathcal{V} = \{object^1, bin^1, isGlass^1, isPaper^1, in^2, empty^1, collected^1, forGlass^1, forPaper^1\}$

((object(2))) = 1

((isPaper(2))) = 1

((bin(1))) = 1

((in(2,1))) = 1

 S_1

((object(2))) = 1

((isGlass(2))) = 1

((bin(1))) = 1

((in(2,1))) = 1

Example: The Collect Action

Collect(o,c)

 $object(o) \land container(c) \land (isGlass(o) \leftrightarrow forGlass(c)) \land \exists b(bin(b) \land in(o,b) \land robotAt(b))$

$$in'(u,v) := (in(u,v) \land u \neq o) \lor$$

 $(\neg in(u,v) \land u = o \land v = c)$
 $empty'(u) := (empty(u) \land u \neq c) \lor in(o,u)$
 $collected'(u) := collected(u) \lor o = u$

Abstraction Using 3-Valued Logic

Use 3-Valued logic to abstract as:

TVLA: [Sagiv et al., 2002]

Abstraction Using 3-Valued Logic

Implementation of "sensing" actions

Abstraction Using 3-Valued Logic

Abstraction Using 3-Valued Logic: Summary

TVLA [Sagiv et al., 2002]: Three Valued Logic Analysis

- Abstraction predicates: unary predicates.
- Element's role = set of abstraction predicates satisfied
- Collapse elements of a role into summary elements.
- Use integrity constraints to retreive concrete states.

Action Application on Belief States

- Make structures precise by creating possible cases: focus (automatic)
- Apply action

Action Application on Belief States

- Make structures precise by creating possible cases: focus (automatic)
- Apply action

Action Branches and Plan Preconditions

Branches solve only *some* members of abstract structures

- May be classifiable, e.g $\#_R\{S\} > 1$
 - Extended-LL domains: all branches are classifiable
- Subtract role-count changes to obtain preconditions at start.
- Generalize to simple loops, nested loops due to shortcuts and sensing actions.

Plan Generalization

Use abstract structures to recognize loop invariants in example concrete plans.

Developed for completely observable settings [Srivastava et al., 2008]

Merging Generalized Plans

Plan for Unhandled Structure

$$S_7^{\#}$$
 - preProc-Glass() $S_9^{\#}$ - collectGlass() \rightarrow $S_{10}^{\#}$ - goToNextBin() \rightarrow $S_{11}^{\#}$ - - -

Generalize and Merge

- A single plan may not explore all possibilities.
- Construct problem instances from unsolved belief states.
- Solve them using classical planners.

Example Results

 $\begin{aligned} p_0 &= \|\{\mathsf{paper, collected}\}\|; pc_0 = \|\{\mathsf{empty,container,forPaper}\}\|; \\ g_0, gc_0 &: \mathsf{similar for glass}; b_0 = \|\{\mathsf{bin}\}\| \end{aligned}$

Merging Generalized Plans: Algorithm

```
Input: Existing plan \Pi, eg trace trace<sub>i</sub>
    Output: Extension of \Pi
 1 if \Pi = \emptyset then
          \Pi \leftarrow \text{trace}_i
 3
          return Π
    end
 4 mp_{\Pi}, mp_t \leftarrow findMergePoint(\Pi, trace_i, bp_{\Pi}, bp_t)
     repeat
 5
          if mp_{\Pi} found then
 6
                bp_{\Pi}, bp_{t} \leftarrow findBranchPoint(\Pi, trace_{i}, mp_{\Pi}, mp_{t})
          end
          if bp_{\Pi} found then
 8
 9
                mp_{\Pi}, mp_{t} \leftarrow findMergePoint(\Pi, trace_{i}, bp_{\Pi}, bp_{t})
10
                addEdges(\Pi, trace<sub>i</sub>, bp_t, mp_t, mp_{\Pi}, bp_{\Pi})
          end
    until new bp_{\Pi} or mp_{\Pi} not found
11 return ∏
```

Algorithm 1: ARANDA-Merge

Addressing the Challenges

- Cost of testing applicability: independent of the size of the problem.
- Cost of instantiation: linear, or better with role-lists
- Domain Coverage can increase exponentially with new examples
- Complexity of creating generalized plan: $O(s \cdot n_{\rho\sigma}^2)$ to find loops, $O(s \cdot n_{eg})$ for preconditions.

Conclusions

- Clear formal framework for algorithmic plans, avoiding intractability of automated program synthesis.
- Approach for learning generalized conditional plans with nested loops by composition of simple linear plans.
- Efficient methods for computation of measures of progress and preconditions.

Transport Domain

Transport Domain: Results

 $m_0 = \|\{\text{monitor, atD2}\}\|; s_0 = \|\{\text{server, atD1}\}\|$

• Precons:

$$m_0 = l_1; s_o = l_1 + k_1$$

Example Results: Domain Coverage

$$D_{\pi}(n) = |\mathcal{S}_{\pi}(n)|/|\mathcal{T}(n)|$$

Related Work

- Plans with Loops
 - [Winner and Veloso, 2007]: no preconditions or sensing actions, but use partial ordering.
 - [Levesque, 2005]: single planning parameter, limited preconditions.
 - [Cimatti et al., 2003]: "hard" loops.
- Planning with unknown quantities:
 - [Milch et al., 2005]: action operators not provided.

References I

Cimatti, A., Pistore, M., Roveri, M., and Traverso, P. (2003). Weak, strong, and strong cyclic planning via symbolic model checking.

Artif. Intell., 147(1-2):35-84.

- Fikes, R., Hart, P., and Nilsson, N. (1972).

 Learning and Executing Generalized Robot Plans.

 Technical report, AI Center, SRI International.
- Hammond, K. (1986). CHEF: A Model of Case-Based Planning. In *Proceedings of AAAI-86*, pages 267–271.
- Planning with loops.
 In *Proc. of IJCAI*, pages 509–515.

Levesque, H. J. (2005).

References II

Milch, B., Marthi, B., Russell, S. J., Sontag, D., Ong, D. L., and Kolobov, A. (2005).

Blog: Probabilistic models with unknown objects. In *Proc. of IJCAI*, pages 1352–1359.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., and Etzioni, O. (1989).Explanation-based Learning: A Problem Solving

Artif. Intell., 40(1-3).

Perspective.

Sagiv, M., Reps, T., and Wilhelm, R. (2002). Parametric shape analysis via 3-valued logic.

ACM Transactions on Programming Languages and Systems, 24(3):217–298.

References III

- Shavlik, J. W. (1990).
 Acquiring recursive and iterative concepts with explanation-based learning.

 Machine Learning, 5:39–40.
- Srivastava, S., Immerman, N., and Zilberstein, S. (2008). Learning generalized plans using abstract counting. In *Proc. of AAAI*, pages 991–997.
- Winner, E. and Veloso, M. (2003).

 Distill: Learning domain-specific planners by example.
 In *Proc. of ICML*, pages 800–807.

References IV

Winner, E. and Veloso, M. (2007). LoopDISTILL: Learning domain-specific planners from example plans.

In Workshop on AI Planning and Learning, ICAPS.