Competitive Hebbian learning through spike-timing-dependent synaptic plasticity - A summary [SMA00]

Jonas Wildberger

February 9, 2021

Overview

- 1 Motivation
- 2 The model
- 3 Summary

Overview

- 1 Motivation
- 2 The model
- 3 Summary

Motivation

Hebbian learning:

- ➤ Synapse connecting neurons that are repeatedly active at the same time becomes stronger
- ▶ Different synapses compete with each other: The strengthening of one leads to the weakening of another

Motivation

Hebbian learning:

- ➤ Synapse connecting neurons that are repeatedly active at the same time becomes stronger
- ▶ Different synapses compete with each other: The strengthening of one leads to the weakening of another

What are biophysically realistic explanations for this behaviour?

Motivation

Hebbian learning:

- ➤ Synapse connecting neurons that are repeatedly active at the same time becomes stronger
- ▶ Different synapses compete with each other: The strengthening of one leads to the weakening of another

What are biophysically realistic explanations for this behaviour?

Song et. al: Spike-timing dependent plasticity (STDP) naturally leads to a stationary distribution of synaptic conductances that enables competition among synapses

Overview

- 1 Motivation
- 2 The model
- 3 Summary

STDP

Function describing change in synaptic conductances

$$F(\Delta t) = egin{cases} A_+ \exp(\Delta t/ au_+), & ext{if } \Delta t < 0 \ -A_- \exp(-\Delta t/ au_-), & ext{if } \Delta t \geq 0 \end{cases}$$

Presynaptic spikes / Postsynaptic action potential: Strengthening

Postsynaptic action potential / Presynaptic

spikes: Weakening

Dependence of synaptic conductances on Δt [SMA00]

The simulation

▶ Integrate-and-fire model neuron with 1000 excitatory synapses and 200 inhibitory synapses

The simulation

- ▶ Integrate-and-fire model neuron with 1000 excitatory synapses and 200 inhibitory synapses
- ▶ Inhibitory synapses are kept fixed with input frequency of 10 Hz.

The simulation

- ▶ Integrate-and-fire model neuron with 1000 excitatory synapses and 200 inhibitory synapses
- Inhibitory synapses are kept fixed with input frequency of 10 Hz.
- Excitatory synapses initialised with maximum values g_{max} ; adapted according to STDP with input frequencies of 10Hz and 40Hz

Stationary distribution I

- ► At the beginning: Mean input already brings the neuron's potential above its activation threshold
 - \Rightarrow synapses are weakened according to F

Stationary distribution I

- At the beginning: Mean input already brings the neuron's potential above its activation threshold
 - \Rightarrow synapses are weakened according to F
- Eventually excitatory inputs balance inhibitory effects: Stationary distribution

Stationary distribution I

- ► At the beginning: Mean input already brings the neuron's potential above its activation threshold
 - \Rightarrow synapses are weakened according to F
- Eventually excitatory inputs balance inhibitory effects: Stationary distribution

Stationary distribution of synaptic conductances [SMA00]

Stationary distribution II

 Regulatory effect on postsynaptic firing rate

Stationary distribution of synaptic conductances [SMA00]

Stationary distribution II

- Regulatory effect on postsynaptic firing rate
- ► For all input frequencies: Same ratio of inhibitory and excitatory conductances

Stationary distribution of synaptic conductances [SMA00]

Overview

- 1 Motivation
- 2 The model
- 3 Summary

Advantages:

Advantages:

▶ Synapses only adapted based on causal relationships rather than chance

Advantages:

- ▶ Synapses only adapted based on causal relationships rather than chance
- ▶ Competition arises naturally to maintain equilibrium distribution

Advantages:

- Synapses only adapted based on causal relationships rather than chance
- ▶ Competition arises naturally to maintain equilibrium distribution

Disadvantages:

Advantages:

- ▶ Synapses only adapted based on causal relationships rather than chance
- Competition arises naturally to maintain equilibrium distribution

Disadvantages:

► Requires a few assumptions to reach equilibrium distribution like nonlinear spike-generation process

Advantages:

- ▶ Synapses only adapted based on causal relationships rather than chance
- ▶ Competition arises naturally to maintain equilibrium distribution

Disadvantages:

- Requires a few assumptions to reach equilibrium distribution like nonlinear spike-generation process
- ▶ Postsynaptic firing rate is sole source for synaptic adaptiation! What if excitatory synapses aren't strong enough to begin with?

References

Sen Song, Kenneth Miller, and L.F. Abbott.

Competitive hebbian learning through spike timing-dependent plasticity.

Nature neuroscience, 3:919–26, 10 2000.

