Chapitre 1

Suites numériques

I. Comportement d'une suite

1) Monotonie

Définitions:

On dit qu'une suite (u_n) définie sur \mathbb{N} est :

- **croissante** si et seulement si, pour tout entier naturel n, $u_{n+1} \ge u_n$.
- **décroissante** si et seulement si, pour tout entier naturel n, $u_{n+1} \le u_n$.

Une suite (u_n) est dite **monotone** lorsqu'elle est croissante ou décroissante.

Remarques:

Trois méthodes permettent l'étude de la monotonie d'une suite,

- **Méthode algébrique** : elle consiste à comparer directement u_n et u_{n+1} .
 - Soit en étudiant le signe de la différence $u_{n+1} u_n$.
 - Soit en comparant le quotient $\frac{u_{n+1}}{u_n}$ à 1 si, pour tout entier naturel $u_n \ge 0$.
- **Méthode fonctionnelle**: elle s'applique aux suites définies par une formule explicite de la forme $u_n = f(n)$ (f étant une fonction).

Elle consiste à étudier le sens de variation du f sur $[0; +\infty[$. Le sens de variation de (u_n) s'en déduit.

• Raisonnement par récurrence : elle s'applique aux suites définies par une relation de récurrence de la forme $u_{n+1} = f(u_n)$.

Elle consiste à démontrer qu'une des propriétés P(n): $u_{n+1} \le u_n$ ou P(n): $u_{n+1} \ge u_n$ est vraie pour tout entier n.

Exemples:

• Soit la suite (u_n) définie sur \mathbb{N} par $u_n = 2 n^2 + n + 5$.

On a:

$$u_{n+1} - u_n = 2(n+1)^2 + (n+1) + 5 - (2n^2 + n + 5)$$

$$u_{n+1} - u_n = 2n^2 + 4n + 2 + n + 1 + 5 - 2n^2 - n - 5$$

$$u_{n+1} - u_n = 4n + 3$$

 $u_{n+1}-u_n>0$ car $n\ge 0$, d'où $u_{n+1}>u_n$ pour tout $n\in\mathbb{N}$.

Donc (u_n) est strictement croissante.

Comme la fonction f définie par $f(x) = 2x^2 + x + 5$ sur \mathbb{R}^+ .

• Soit la suite (v_n) définie sur \mathbb{N} par $\begin{cases} v_0 = -1 \\ v_{n+1} = v_n - 2 \end{cases}$

On a
$$v_{n+1} - v_n = v_n - 2 - v_n = -2$$
.

D'où
$$v_{n+1} - v_n < 0$$
 pour tout $n \in \mathbb{N}$.

Donc (v_n) est strictement décroissante.

Contrairement à la fonction f définie par : $x \mapsto x - 2$ qui est croissante sur \mathbb{R} .

2) Suites bornées

Définitions:

Soit M et m deux nombres réels. On dit que la suite (u_n) est :

- majorée par M si, pour tout $n \in \mathbb{N}$, $u_n \leq M$. M est appelé un majorant de (u_n) .
- **minorée** par m si, pour tout $n \in \mathbb{N}$, $u_n \ge m$. m est appelé un **minorant** de (u_n) .
- **bornée** si elle est à la fois majorée et minorée.

Remarques:

- Une suite majorée admet une infinité de majorants. En effet, si M est un majorant de (u_n) , tous les réels supérieurs à M sont également des majorants de (u_n) . De même, une suite minorée admet une infinité de minorants,
- Toute suite croissante est minorée par son premier terme et toute suite décroissante est majorée par son premier terme.

Exemples:

• Soit la suite (u_n) , définie pour tout $n \ge 1$, par $u_n = \frac{1}{n}$. Pour tout $n \in \mathbb{N}^*$, $\frac{1}{n} > 0$.

Cette suite est donc minorée par 0, mais aussi par tout réel négatif.

• Soit la suite (u_n) , définie pour tout $n \ge 0$, par $u_n = n^2$. Pour tout $n \in \mathbb{N}$, $n^2 \ge 0$.

Cette suite est donc minorée par 0, qui est, en plus, le **minimum** de la suite, car il est atteint au rang 0.

Représentation graphique d'une suite bornée :

• Sur la droite numérique : tous les nombres u_n sont compris entre m et M.

• Dans le plan:

tous les points de coordonnées $(n; u_n)$ sont situés entre les droites d'équations y=m et y=M.

II. Limites finies

1) <u>Définitions et propriétés</u>

Définition:

Soit une suite (u_n) et un réel ℓ .

On dit que (u_n) tend vers ℓ quand n tend vers $+\infty$ si tout intervalle ouvert I contenant ℓ (aussi ℓ petit ℓ soit-il) contient tous les termes u_n à partir d'un certain rang n_0 .

Exemple:

La suite (u_n) représentée ci-dessous semble avoir une limite ℓ . Autrement dit, on peut trouver une valeur de n_0 pour laquelle les termes de la suite sont aussi proches que l'on veut de ℓ .

Remarque:

Pour tout réel $\varepsilon > 0$, on peut trouver un rang n_0 tel que, pour tout entier $n \ge n_0$, on a :

$$\ell - \varepsilon < u_n < \ell + \varepsilon$$
 soit encore $u_n \in]\ell - \varepsilon$; $\ell + \varepsilon$ [, soit encore $|u_n - \ell| < \varepsilon$.

Propriété:

Si une suite (u_n) a une limite finie ℓ quand n tend vers $+\infty$, cette limite est **unique**.

On la note
$$\lim_{n\to +\infty} u_n = \emptyset$$
.

Démonstration :

Supposons que (u_n) admette deux limites l et l ' avec l < l ':

- $\left| l-1; \frac{l+l'}{2} \right|$ contient tous les termes u_n à partir du rang n_0 .
- $\left| \frac{l+l'}{2}; l'+1 \right|$ contient tous les termes u_n à partir du rang n_1 .

Pour n plus grand que n_0 et n_1 , u_n appartiendrait à la fois aux deux intervalles qui sont disjoints. C'est impossible donc (u_n) ne peut pas admettre deux limites finies distinctes.

Définitions:

- Une suite convergente est une suite qui a pour limite un nombre réel ℓ . On dit aussi que la suite converge vers ℓ .
- Une suite divergente est une suite qui ne converge pas.

Remarques:

- Si (u_n) converge vers ℓ , les suites (u_{n+1}) , (u_{2n}) , (u_{2n+1}) convergent aussi vers ℓ .
- Une suite convergente est bornée.

2) <u>Limites des suites usuelles</u>

Propriétés:

- $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$
- Pour tout $p \in \mathbb{N}^*$, les suites $\left(\frac{1}{n^p}\right)$ convergent vers 0.

$$\lim_{n\to+\infty}\frac{1}{n^p}=0$$

4

• Pour tout réel q tel que -1 < q < 1, la suite géométrique (q^n) converge vers 0.

Algorithme:

Déterminer le rang à partir duquel $|q^n| < \varepsilon$ pour |q| < 1

```
n \leftarrow 0

Tant que |q^n| \ge \varepsilon faire

n \leftarrow n+1

Fin Tant que
```

Calculatrice:

III. Suites divergentes

1) <u>Limite infinie</u>

Définition:

Une suite (u_n) a pour limite $+\infty$ lorsque, pour tout réel A, l'intervalle de la forme A; $+\infty$ contient tous les termes a_n à partir d'un certain rang.

Autrement dit, pour tout réel A, on peut trouver un rang n_0 tel que, pour tout entier $n \ge n_0$, on a :

$$u_n \geqslant A$$
.

On le note $\lim_{n\to +\infty} u_n = +\infty$

Exemple:

La suite (u_n) représentée ci-contre semble avoir pour limite $+\infty$.

En effet pour un réel A choisi, on peut déterminer le rang n_0 à partir duquel tous les termes sont supérieurs ou égaux à A.

Remarques:

- Lorsque $\lim_{n \to +\infty} u_n = +\infty$ on dit que la suite (u_n) diverge vers $+\infty$.
- Concrètement, les termes deviennent aussi grands qu'on le souhaite à partir d'un certain rang.
- De la même façon :

 u_n tend vers $-\infty$ quand n tend vers $+\infty$ si tout intervalle de la forme $]-\infty$; A[contient tous les termes u_n à partir d'un certain rang n_0 .

On le note $\lim_{n \to +\infty} u_n = -\infty$.

Limites des suites usuelles

Propriété:

Les suites (\sqrt{n}) , (n^2) , (n^3) , ..., (n^p) , où $p \in \mathbb{N}^*$, ont pour limite $+\infty$.

Démonstration :

Soit A un réel. Comme A est destiné à être aussi grand que l'on veut, on suppose A>0.

Alors dès que $n > A^2$, on a $A < \sqrt{n} \le n \le n^2 \le ... \le n^p$.

Donc \sqrt{n} , n, n^2 , ..., n^p appartiennent à $]A; +\infty[$ dès que $n > A^2$. Ils ont donc pour limite $+\infty$ quand n tend vers $+\infty$.

Propriété:

Les suites géométriques (q^n) où q > 1 divergent vers $+\infty$.

Donc, pour q réel tel que q>1, $\lim_{n\to+\infty} q^n = +\infty$

Démonstration :

Soit q>1. Posons q=1+a où a>0.

Préliminaire: montrons par récurrence que pour tout $n \ge 0$, $(1+a)^n \ge 1+na$.

• Initialisation:

Pour n=0, $(1+a)^n=1$ et 1+na=1 donc l'inégalité est vérifiée pour n=0.

• Hérédité :

Soit
$$n \in \mathbb{N}$$
 tel que $(1+a)^n \ge 1+na$. Montrons que $(1+a)^{n+1} \ge 1+(n+1)a$.

$$(1+a)^n \ge 1+na$$
 et $(1+a)>0$ donc $(1+a)(1+a)^n \ge (1+a)(1+na)$.

Soit
$$(1+a)^{n+1} \ge 1 + na + a + na^2$$
, d'où $(1+a)^{n+1} \ge 1 + (n+1)a + na^2$.

Comme
$$n \ge 0$$
 et $a^2 > 0$, $1 + (n+1)a + na^2 \ge 1 + (n+1)a$.

Ainsi
$$(1+a)^{n+1} \ge 1 + (n+1)a$$
.

• Conclusion:

Pour tout
$$n \ge 0$$
, $(1+a)^n \ge 1+na$.

Soit A un réel. Dès que $n \ge \frac{A-1}{a}$ on aura $1 + na \ge A$ et donc $(1+a)^n \ge A$.

La suite $((1+a)^n)$ c'est-à-dire la suite (q^n) a donc pour limite $+\infty$.

2) Suites sans limite

Une suite n'a pas forcément de limite. On dit également qu'elle diverge.

Exemples:

• La suite (u_n) définie sur \mathbb{N} , par $u_n = (-1)^n$ est divergente.

En effet, un intervalle contenant 1 mais pas -1 ne contiendrait qu'un terme sur deux de la suite et ne répondrait donc pas à la définition de la limite d'une suite.

• La suite (v_n) définie sur \mathbb{N} , par $v_n = \sin n$ est divergente.

En effet les termes de la suite se répartissent uniformément dans l'intervalle [-1;1].

La suite (v_n) n'a donc pas de limite.

IV. Opérations sur les limites

Soit (u_n) et (v_n) deux suites. Soit l et l' deux réels.

1) Somme de deux suites

$\operatorname{Si} \lim_{n \to +\infty} u_n =$	l	l	l	+∞	-∞	+∞
et $\lim_{n\to+\infty}v_n=$	l'	+∞	-∞	+∞	-∞	∞
alors $\lim_{n \to +\infty} (u_n + v_n) =$	<i>l</i> + <i>l</i> '	+∞	∞	+∞	-∞	On ne peut pas conclure directement

Remarque:

Dans le cas où l'on ne peut pas conclure, on dit que l'on a une forme indéterminée.

2) Produit de deux suites

Si $\lim_{n\to+\infty} u_n =$	l	l > 0 ou $+\infty$	<i>l</i> < 0 ou -∞	l > 0 ou $+\infty$	<i>l</i> < 0 ou −∞	0
et $\lim_{n \to +\infty} v_n =$	l'	+∞	+∞		-∞	+∞ ou -∞
alors $\lim_{n\to+\infty} (u_n \times v_n) =$	1 × 1 ′	+∞	∞	∞	+∞	On ne peut pas conclure directement

3) Quotient de deux suites

On suppose que pour tout entier n, $v_n \neq 0$.

Cas où la suite *u* est positive à partir d'un certain rang.

Si $\lim_{n \to +\infty} u_n =$	l	l	0	$l > 0$ ou $+\infty$	$l > 0$ ou $+\infty$	+∞	+∞
et $\lim_{n\to+\infty} v_n =$	<i>l</i> '≠0	+∞ ou −∞	0	0 avec $v_n > 0$	0 avec $v_n < 0$	<i>l '≠</i> 0	+∞ ou −∞
alors $\lim_{n\to+\infty} \frac{u_n}{v_n} =$	<u>l</u> !'	0	On ne peut pas conclure directement	+∞	-∞	$ \begin{array}{c} +\infty \\ \text{si } l' > 0 \end{array} $	On ne peut pas conclure directement
						-∞ si <i>l</i> ' < 0	

Dans le cas où la suite u est négative à partir d'un certain rang, on construit un tableau analogue en utilisant la règle des signes.

Exemples:

Soit les suites (u_n) et (v_n) définies sur \mathbb{N} , par $u_n = \frac{2}{3n+5}$ et $v_n = n - \sqrt{n}$

- Pour la suite (u_n) , on a $\lim_{n \to +\infty} 2 = 2$ et par produit et somme $\lim_{n \to +\infty} (3n+5) = +\infty$. Par quotient, on obtient $\lim_{n \to +\infty} u_n = 0$.
- Pour la suite (v_n) , on est dans un cas où on ne peut pas conclure directement. En effet, on ajoute une suite qui tend vers $+\infty$ ($w_n = n$) à une suite qui tend vers $-\infty$ ($u_n = -\sqrt{n}$).

En factorisant par n et en simplifiant, on a $v_n = n \times \left(1 - \frac{\sqrt{n}}{n}\right) = n \times \left(1 - \frac{1}{\sqrt{n}}\right)$

Or $\lim_{n \to +\infty} n = +\infty$ et par quotient puis somme $\lim_{n \to +\infty} \left(1 - \frac{1}{\sqrt{n}}\right) = 1$.

Par produit, on obtient $\lim_{n \to +\infty} v_n = +\infty$.

V. Propriétés sur les limites

1) <u>Détermination de limites par comparaison</u>

Propriétés:

Soit deux suites (u_n) et (v_n) et un entier naturel N tels que pour tout entier $n \ge N$, $u_n \le v_n$.

• Théorème de minoration :

Si
$$\lim_{n \to +\infty} u_n = +\infty$$
 alors $\lim_{n \to +\infty} v_n = +\infty$

• Théorème de majoration :

Si
$$\lim_{n\to+\infty} v_n = -\infty$$
 alors $\lim_{n\to+\infty} u_n = -\infty$

<u>Démonstration</u>:

On suppose que $\lim_{n\to+\infty} u_n = +\infty$.

On cherche à démontrer que tout intervalle de la forme $A;+\infty[$ contient toutes les valeurs de (v_n) à partir d'un certain rang.

Soit A un réel. Comme $\lim_{n\to +\infty} u_n = +\infty$, l'intervalle A; $+\infty$ [contient tous les u_n à partir d'un rang p: pour tout $n \ge p$, $u_n > A$.

Alors pour tout entier $n \ge max(p; N)$, on a $v_n \ge u_n > A$, c'est-à-dire $v_n \in A$;+ ∞ .

On en déduit : $\lim_{n \to +\infty} v_n = +\infty$.

La démonstration du théorème de majoration est analogue.

Exemple:

Soit la suite (u_n) définie sur \mathbb{N} , par $u_n = n + \sin(n)$.

Pour tout entier n, $\sin(n) \ge -1$, donc $u_n \ge n-1$.

Or $\lim_{n\to+\infty} (n-1) = +\infty$, donc d'après le théorème de minoration :

$$\lim_{n\to+\infty}u_n=+\infty.$$

Théorème des gendarmes :

On considère trois suites (u_n) , (v_n) et (w_n) .

Soit un entier N et un réel ℓ .

On suppose que pour tout entier $n \ge N$: $u_n \le v_n \le w_n$.

Si les suites (u_n) et (w_n) convergent vers la même limite ℓ , alors la suite (v_n) converge également vers ℓ .

Démonstration:

Soit I un intervalle contenant ℓ . On veut démontrer que cet intervalle contient tous les termes de la suite (v_n) à partir d'un certain rang n_0 .

On utilise les hypothèses :

- (u_n) tend vers ℓ , donc I contient tous les termes de la suite (u_n) à partir d'un certain rang n_1 .
- (w_n) tend vers ℓ , donc *I* contient tous les termes de la suite (w_n) partir d'un certain rang n_2 .
- $u_n \le v_n \le w_n$ à, partir d'un certain rang N.

Soit $n_0 = max(n_1; n_2; N)$.

I contient donc tous les termes des suites (u_n) et (w_n) à partir du rang n_0 .

Et $u_n \le v_n \le w_n$ pour tout $n \ge n_0$.

Ce raisonnement s'applique pour n'importe quel intervalle ouvert I contenant ℓ , la suite (v_n) tend donc vers ℓ .

Remarques:

- Ce théorème permet de montrer que la suite (v_n) a une limite et de connaître cette limite.
- On en déduit que si $|u_n$ $\ell| \le v_n$ à partir d'un certain rang avec $\lim_{n \to +\infty} v_n = 0$ alors $\lim_{n \to +\infty} u_n = \ell$.

2) Convergence monotone

Propriété:

Soit une suite (u_n) convergeant vers un réel ℓ .

Si la suite (u_n) est **croissante**, alors la suite (u_n) est **majorée** par ℓ .

Donc, pour tout entier n, $u_n \le \ell$.

<u>Démonstration</u>:

On raisonne par l'absurde : on suppose qu'il existe un entier n_0 tel que $u_{n_0} > \ell$.

- Comme la suite (u_n) est croissante, pour tout $n \ge n_0$, $\ell < u_{n_0} \le u_n$.
- L'intervalle] $\ell 1$; u_{n_0} [est un intervalle ouvert qui contient ℓ .

Comme la suite (u_n) converge vers ℓ , il existe un rang N tel que pour tout $n \ge N$,

$$u_n \in]\ell-1$$
; $u_{n_0}[.$

Ainsi pour tout entier $n \ge N$, $u_n < u_{n_0}$.

Alors, pour tout entier $n \ge max(N; n_0)$, on a $u_{n_0} \le u_n$ et $u_n < u_{n_0}$.

On aboutit à une contradiction, et l'hypothèse initiale est donc fausse.

On en déduit que pour tout entier $n, u_n \le \ell$.

Propriété:

Une suite qui converge est bornée.

Démonstration:

Soit la suite (u_n) et sa limite ℓ .

Tout intervalle ouvert contenant ℓ contient donc tous les termes de la suite à partir d'un certain rang.

L'intervalle] $\ell - 1$; $\ell + 1$ [contient tous les termes de la suite (u_n) à partir d'un certain rang n_0 .

On raisonne par disjonction de cas.

- Si $n \ge n_0$, nous venons de voir que u_n est bornée par $\ell 1$ et $\ell + 1$.
- Si $n < n_0$, nous avons un nombre fini de termes.

Il s'agit des termes de l'ensemble $\{u_0, u_1, u_2, \dots, u_{n_0-1}\}$. Comme il y a un nombre fini de termes, il y a un plus grand et un plus petit élément parmi eux.

Notre ensemble est donc borné.

La suite (u_n) est donc bornée dans les deux cas, c'est-à-dire pour les rangs inférieurs à n_0 et à partir du rang n_0 , donc la suite (u_n) est bornée.

Exemple:

La suite (u_n) définie sur \mathbb{N} , par $u_n = -5 + \frac{3}{2 + n^2}$ converge vers -5 et est bornée par -5 et -3,5.

Remarques:

• La réciproque du théorème est fausse.

Par exemple, la suite (v_n) définie sur \mathbb{N} par $v_n = (-1)^n$ est bornée mais elle diverge.

• Une suite non bornée est divergente.

Par exemple, la suite (u_n) définie sur \mathbb{N} par $u_n = (-1)^n \times n$ n'est pas bornée, donc elle diverge.

Théorème de convergence monotone (admis) :

- Si une suite est croissante et majorée, alors elle converge.
- Si une suite est décroissante et minorée, alors elle converge.

Remarque:

Ce théorème ne donne pas la valeur de la limite de la suite, mais seulement son existence et un majorant (ou minorant) de la limite.

Exemple:

La suite (u_n) définie sur \mathbb{N} , par $u_n = 5 + \frac{1}{n+1}$ est positive, donc minorée par 0, et décroissante.

Par conséquent (u_n) est une suite convergente.

Propriétés:

- Si une suite est croissante et non majorée, alors elle tend vers $+\infty$.
- Si une suite est **décroissante** et **non minorée**, alors elle tend vers $-\infty$.

Démonstration:

Soit (u_n) une suite non majorée, donc pour tout $M \in \mathbb{R}$, il existe un rang $n_0 \in \mathbb{N}$ tel que $u_{n_0} > M$.

Comme (u_n) est croissante, pour tout entier $n \ge n_0$, on a $u_n \ge u_{n_0}$ et donc $u_n \ge M$.

Ce qui signifie que, pour tout $M \in \mathbb{R}$, tous les termes de la suite sont dans l'intervalle M; $+\infty$ à partir d'un certain rang. Donc, par définition, $\lim_{n \to +\infty} u_n = +\infty$.

La deuxième proposition se démontre de la même façon.

Remarque:

Une suite croissante est:

- soit majorée et convergente
- soit non majorée et divergente vers +∞.