Paradigmas de Sistemas Distribuídos Sistemas Distribuídos em Grande Escala "Partilha de Álbuns"

Trabalho Prático
2023/2024

Informações gerais

- Cada grupo deve ser constituído por até 4 elementos, de ambas ou de uma das UCs. Os grupos que não frequentem ambas as UCs devem contactar <u>imediatamente</u> os docentes para adaptar o enunciado.
- Deve ser entregue o código fonte e um relatório de até 6 páginas (A4, 11pt) no formato PDF.
- O trabalho deve ser entregue até às 23:59 do dia 17 de maio de 2024 no *eLearning* de qualquer das UCs.
- A apresentação do trabalho ocorrerá em data a anunciar.
- O trabalho será classificado separadamente para cada uma das UCs, de acordo com os objetivos de cada uma delas.

Resumo

Pretende-se um sistema de partilha de álbuns, contendo ficheiros como fotografias ou vídeos. O serviço deve permitir a gestão de utilizadores, criação de álbuns, associação de utilizadores a álbuns, fazer *upload* e *download* de ficheiros do álbum, atribuir uma classificação aos ficheiros, e ainda permita discussão em tempo real relativamente a cada álbum.

De forma a utilizar o serviço, primeiro um *cliente* liga-se a um *servidor central*, autenticando-se, e mantendo uma ligação estabelecida, sobre a qual poderá efetuar operações de administração, como criar um álbum. Este serviço mantém uma réplica dos metadados de cada album, mas não o conteúdo dos ficheiros do álbum, que se encontra nos *servidores de dados*.

Os servidores de dados implementam content-addressable storage distribuída: armazenam o conteúdo dos ficheiros, sendo a chave para inserção ou leitura o hash do conteúdo por uma função de hash criptográfica, como SHA-256.

A edição de um álbum por um conjunto de utilizadores, bem como a discussão, é feita diretamente entre as aplicações cliente por uma interação *peer-to-peer* entre os utilizadores envolvidos. O servidor central é usado apenas para a obtenção de uma réplica do álbum (metadados) para uso local pelo cliente.

Funcionalidade

Cliente

A aplicação cliente deve permitir o estabelecimento de sessões com o servidor central para utilizar a sua funcionalidade, nomeadamente a obtenção de réplicas de álbuns, para edição local. A comunicação com o servidor central deverá ser através de *sockets* TCP/IP.

Durante uma sessão de edição, a comunicação deverá ser diretamente entre clientes, usando ZeroMQ, quer para a propagação de metadados do álbum, quer para o serviço de *chat* em tempo real entre os editores, que deve ser suportado. Quando a edição de um álbum termina, o servidor central deverá ser informado, e a réplica local descartada.

A edição de um álbum deverá permitir a qualquer membro associado ao álbum:

- adicionar novo ficheiro, com nome e conteúdo;
- remover ficheiro;
- adicionar utilizador ao grupo;
- remover utilizador do grupo;
- classificar ficheiros do álbum, com uma pontuação entre 0 e 5.

Cada utilizador só deve poder classificar uma única vez cada ficheiro. O cliente deverá permitir a um utilizador de um álbum listar os ficheiros (nome e média das pontuações) e descarregar o conteúdo de um ficheiro. Para tal, o cliente deve pedir o conteúdo ao servidores de dados, com a chave (que não deve estar visível na interface com o utilizador), via gRPC.

Servidor central

O papel do servidor central é permitir o registo e autenticação de utilizadores, guardar uma réplica dos metadados de cada álbum, incluíndo o grupo de utilizadores do album, e enviar a réplica a utilizadores que pretendam a sua edição. Depois de se autenticar, um utilizador deve poder:

- criar novo álbum, ficando como membro do grupo associado ao álbum;
- se membro, requisitar uma réplica do álbum, para edição local.

Servidores de dados

O papel dos servidores de dados é garantir a persistência do conteúdo dos ficheiros e a escalabilidade em termos da quantidade de dados armazenados. No contexto deste trabalho, assume-se que estes servidores não falham e que fazem o armazenamento no sistema de ficheiros. Os servidores de dados não têm a noção de sessão nem controlo de acesso, servindo a chave como *capability* para aceder ao ficheiro.

Os servidores de dados devem formar uma *distributed hash table*, para armazenar o conteúdo dos ficheiros, sendo a chave para inserção ou leitura o *hash* do conteúdo por uma função de hash criptográfica, como SHA-256. O conteúdo de cada ficheiro fica armazenado num único nó. Este serviço deve permitir:

- 1. fazer o upload de um novo ficheiro, dada a sua chave, caso este ainda não exista;
- 2. fazer o download de um ficheiro, dada uma chave,

Admita que os ficheiros são de grande dimensão e que podem não caber completamente em memória central, pelo que devem ser transferidos de forma incremental.

O conjunto de servidores de dados pode ser alterado acrescentando novos servidores, caso em que a carga deve ser distribuída entre eles. Assuma no entanto que existe no máximo um processo de integração de um novo servidor em curso, não começando outro até este estar concluído.

Objetivos

PSD O trabalho deve ser efetuado utilizando Java (servidor de dados), Erlang (servidor central), ZeroMQ (cliente), sockets TCP (entre cliente e servidor central), e reactive-grpc (entre cliente e servidores de dados, e entre estes).

SDGE O sistema deve fazer uma distribuição de carga entre os servidores de dados usando *consistent hashing* e permitir a edição de álbuns de forma descentralizada com CRDTs, suportando interação peer-to-peer entre clientes, que mantêm réplicas locais de álbuns durante a sessão de edição. Será valorizada uma implementação em que certas partes de estruturas de dados da uma réplica tenham uma representação linear no número de utilizadores que editaram o álbum concorrentemente, e não no total de utilizadores do álbum. Deve ainda garantir entrega causal no serviço de chat dentro de cada grupo de edição.