1. [punti 6] L'amplificatore operazionale di figura definisce un sistema dinamico orientato da u (tensione all'ingresso) ad y (tensione all'uscita).

Di questo sistema si determinino: 1) la funzione di trasferimento; 2) l'equazione differenziale; 3) gli zeri, i poli e i modi.

2. [punti 5] Due carrelli di massa m collegati come mostrato in figura costituiscono un sistema dinamico Σ orientato da f (forza applicata al carrello di sinistra) ad x_2 (posizione del carrello di destra). In condizione di riposo delle molle sia $x_1 = 0$ e $x_2 = 0$

- 1. Determinare l'equazione differenziale che descrive il comportamento di Σ .
- 2. Determinare la funzione di trasferimento G(s) di Σ .

3. [punti 6]

Dimostrare le seguenti proprietà della trasformata di Laplace:

1.
$$L[Df(t)] = sF(s) - f(0+);$$

2.
$$L\left[\int_{0}^{t} f(v)dv\right] = \frac{1}{s}F(s);$$

3. $L[t^{n}] = \frac{n!}{s^{n+1}}.$

$$3. L[t^n] = \frac{n!}{s^{n+1}}.$$

- **4.** [punti 5] Nota la risposta al gradino unitario $g_s(t)$ di un sistema lineare stazionario dedurre la risposta forzata $y_F(t)$ del sistema ad un ingresso forzante u(t).
- **5.** [**punti 8**] Determinare la risposta forzata y(t) in risposta al gradino unitario u(t) = 1(t) per un sistema con funzione di trasferimento $G(s) = \frac{4}{\left[(s+1)^2+1\right]^2}$. Determinare inoltre il grado massimo di continuità su \mathbb{R} di y(t). [L'esercizio può essere svolto senza uso della calcolatrice. Se nei calcoli appaiono funzioni trigonometriche inverse queste vanno riportate senza valutarle numericamente. Esempio: $\operatorname{arctg}(5)$ non va calcolato.]
- **6.** [punti 6] Un sistema dinamico ha funzione di trasferimento $G(s) = \frac{1-s}{s^2+2s+1}$. L'ingresso applicato è u(t) = 0 per ogni $t \ge 0$ e dell'uscita si conosce che y(0+) = 2 e Dy(0+) = 1. Determinare y(t) per $t \ge 0$.