Conteúdo

Tarefas gerais dos protocolos	3 4 9 4 5 6
Interface com o meio físico de transmissão	4 4 5
Fundamentos de transmissão de dados: 2 técnicas usuais de transmissão de dados em sério Detecção de erros	4 5 6
Detecção de erros	4 5 6
Detecção de erros	5 6
Controlo da ligação de dados	6
• •	
	_
Protocolos de linha	
Controlo de fluxo	
Utilização da ligação	
Controlo de erros	8
HDLC	9
Três tipos de ligação	9
Duas configurações das ligações	9
Três modos de operação	9
Dois formatos de quadro	9
Tipos de trama1	.0
Fases da ligação lógica1	.0
Formato da trama	.1
Funções da camada física:1	.1
Parâmetros de configuração do protocolo1	.2
Outros protocolos de ligação1	.3
LAPB: Link Access Procedure, Balanced	.3
Asynchronous Transfer Mode (ATM) 1	.3
Redes de Computadores 1	.4
Topologias WAN1	.4
Topologias LAN1	.5
Formato da trama MAC1	.6
Controlo de acesso ao meio:	
Protocolo IP	
Fragmentação 1	

Resumos de CDR

2006/2007

	IPv6	17
	Interligações físicas	18
Εı	ndereçamento	19
	Endereços Ethernet	19
	Endereços IP	19
	Máscara de endereço	19
	Subnetting	20
	Encaminhamento (routing):	20
	ARP - Protocolo de Resolução de Endereços (IP)	20
	Protocolo ICMP	21
T	CP/IP	21
	Características	21
	Camadas	22
	User Datagram Protocol (UDP)	22
	Transmission Control Protocol (TCP)	23
	Flags TCP (1 bit por flag)	23
	Segmentos TCP	23
	Operação TCP	24
	Aplicações de rede	24
	Modelo cliente/servidor	24

Transmissão e Comunicação de Dados

Tarefas gerais dos protocolos

- Geração de sinais
- Definição interfaces
- Sincronização
- Formatação dados
- Endereçamento
- Detecção de erros
- Correcção de erros
- Controlo de fluxo
- Formatação de mensagens
- Encaminhamento de mensagens
- Transporte de mensagens
- Verificação de mensagens
- Recuperação de mensagens
- Independência dados
- Protecção/segurança
- Gestão da comunicação

Funções distintivas dos níveis físicos e lógico

Nível físico	Nível de ligação lógica
Envio de um sinal sobre um meio de	Estrutura das tramas
transmissão	Configuração e acesso à linha
Sincronismo (nível do bit)	Endereçamento
Codificação de linha	Controlo de fluxo
Modulação do sinal	Controlo de erros
Multiplexagem física	Gestão da ligação (controlo da troca de
Interface com o meio	dados)

Interface com o meio físico de transmissão

- DTE (Data Terminal Equipment) é a designação genérica das normas para qualquer equipamento de dados (computador, impressora, etc.)
- DCE (Data Circuit-terminating Equipment) é a designação genérica das normas para qualquer equipamento de comunicações (modems, bridges, multiplexador, routers, etc.)
- Os DTE têm capacidade de transmissão limitada, ligando-se aos sistemas de transmissão através de um DCE
- Um DCE transmite e recebe bits do meio de transmissão e troca os dados recebidos ou transmitidos com o DTE. Do lado da linha um DCE comunica com outro DCE (interface de linha ou DCE/DCE) e do lado oposto comunica com um DTE (interface de dados ou DTE/DCE).
- A ligação directa de dois DTE necessita um modem nulo, que pode ser realizado no cabo de interligação então designado cabo cross-over

Fundamentos de transmissão de dados: 2 técnicas usuais de transmissão de dados em série

- Transmissão assíncrona
 - Estratégia
 - Enviar dados em pequenas unidades (caracter)
 - Envia código de caracter (5 a 8 bits) de cada vez
 - Os caracteres ocorrem assincronamente
 - Vantagens
 - (re) sincronização no início de cada caracter
 - Esquema simples e económico
 - Desvantagens
 - Overhead elevado (em geral> 20%)
 - Erros resultantes de assimetrias

Transmissão síncrona

- Estratégia
 - Usada para transmitir unidades de dados maiores
 - Sincronização do transmissor (Tx) com receptor (Rx):
 - Não são usados start/stop bits
 - Ou existe um canal separado de sincronização
 - Ou a sincronização faz-se no canal dos dados
- Existe um determinado formato de trama que define a estrutura da unidade de dados a ser transmitida
 - Trama = campo de controlo + campo de dados

Detecção de erros

- A cada trama, o Tx adiciona um número de bits que será usado pelo Rx para detecção de erros.
- Em caso de erro, ou o Rx corrige o erro, ou o Tx deve ser notificado.
- Técnicas:
 - Utilização de bit e de caracter de paridade
 - Processo simples que reduz a probabilidade de aceitação de tramas erradas
 - A taxa de transmissões elevadas pode ocorrer erros em bits consecutivos (erros residuais...)
 - Capacidade de detecção de erros limitada
 - Verificação de redundância cíclica Cyclic Redundacy Check (CRC)
 - Dada uma mensagem inicial k bits, o transmissor gera uma sequência de n-k bits [CRC ou FCS Frame Check Sequence] tal que, os n bits da trama resultante sejam divisíveis por um número pré-determinado G.
 - O processo CRC é, em geral, expresso através de polinómios de uma variável, com coeficientes binários.
 - Seja G (x) o polinómio de grau n-k gerador de um código sistemático (n, k) e D (x) o polinómio correspondente aos dados da mensagem
 - Seja R (x) (dígitos de verificação) o resto da divisão de xn-kD
 (x) por G (X)
 - C (x) é o polinómio correspondente à palavra de código gerada – (C (x) = R (x) + x^{n-k} * D (x))
 - Técnica de Forward Error Correction (FEC)
 - É o receptor que corrige o erro
 - Probabilidades de erro aceitáveis exigem que o código seja gerado por polinómio com grau da mesma ordem de grandeza do dos dados.
 - Técnica pouco usada em comunicação de dados
 - Apenas usada em situações onde é impraticável a retransmissão
 - Em geral, é preferível retransmitir
 - Técnica de Automatic Repeat Request (ARQ)
 - O receptor não tenta corrigir os erros
 - O código de controlo de erros é usado no receptor apenas como detector de erros
 - Detectados erros, o receptor pede a retransmissão da unidade de dados
 - Probabilidades de erro aceitáveis podem ser obtidas com polinómios de menor grau
 - Técnica mais usada em comunicação de dados

Controlo da ligação de dados

Protocolos de linha

- Ligações Ponto-a-Ponto (PP)
 - Em geral são ligações com um canal (circuito ou banda) para transmissão em cada sentido
 - Por usarem canal dedicado (não partilhado), a ligação lógica pode efectuar-se imediatamente porque o canal está naturalmente adquirido.

Ligações Multiponto (MP)

- Em geral são ligações com um único canal de transmissão que é partilhado por várias estações
- A ligação lógica tem de ser precedida pela aquisição do canal através de um protocolo de acesso ao meio (protocolo MAC).
- Tipos de protocolo:
 - Poll/Select: a estação primária selecciona outra estação para enviar dados ou passa o controlo para uma estação secundária (poll) ficando esta autorizada a seleccionar outra estação para enviar dados.
 - Contencioso: todas as estações são primárias e secundárias (mistas) podendo duas ou mais transmitir simultaneamente dando origem a colisões de tramas que terão de ser posteriormente retransmitidas. Existe contenção para a aquisição do meio.

Controlo de fluxo

- Técnica para assegurar que a estação que transmite não sobrecarrega a que recebe, evitando perda de tramas.
- Em geral, a existência de buffers na estação de recepção, reduz mas não elimina a necessidade de controlar o fluxo.
- A perda de tramas pode ocorrer, também, na(s) rede(s) de interligação das estações quando estas se encontram congestionadas nalgum ponto do percurso entre a estação que transmite e a que recebe.
- Técnicas mais comuns de controlo de fluxo:
 - Stop-and-wait
 - Após a transmissão de uma trama, a fonte aguarda confirmação da sua recepção (ACK) antes de transmitir a trama seguinte.
 - A recepção pode parar o fluxo de dados suspendendo temporariamente as confirmações.
 - Esta técnica funciona razoavelmente bem quando uma mensagem é fragmentada em poucas tramas de grande dimensão.
 - Contudo, se o tamanho das tramas é grande é maior a probabilidade de erro na trama, é maior ocupação de recursos (buffers, ...)
 - Sliding window (janela deslizante)
 - Permite que existam múltiplas tramas de dados em trânsito
 - O transmissor pode enviar até W tramas de dados sem que receba qualquer confirmação da sua recepção
 - Obriga o uso de sequenciação (n bits, numeração módulo 2n)
 - Cada confirmação positiva indica a próxima trama esperada
 - Pode haver confirmação simultânea de múltiplas tramas
 - Existem mecanismos distintos para transmitir e receber
 - W é designado abertura da janela (Wmax=2n-1)

Utilização da ligação

- A utilização ou rendimento da ligação depende de W e do parâmetro a
- O parâmetro a é a razão entre o tempo de propagação e o tempo de transmissão
 - a = tprop / ttrama
 - a = rd / vL
 - d distância (m);
 - v velocidade de propagação (m/s);
 - L comprimento trama (bits);
 - r ritmo de transmissão (bps).

Controlo de erros

- Envolve a detecção de falhas nas tramas trocadas de modo a tornar a ligação de dados fiável.
- Tipos de falhas: trama perdida ou trama errada
- As técnicas para controlo de erros são ARQ, que envolve:
 - Detecção de erros na trama recebida através do CRC
 - Confirmação positiva: para tramas recebidas sem erros
 - Confirmação negativa e retransmissão: para tramas onde é detectado erro
 - Retransmissão por limite de tempo se não é recebida confirmação de trama, dentro do período de tempo t
- O ARQ (Automatic Repeat reQuest):
 - Processa-se de forma automática e contínua, sem qualquer intervenção do utilizador
 - Existem diversas alternativas para métodos de ARQ
 - Stop-and-wait (Pára-e-espera)
 - Usado na técnica de controlo de fluxo stop-and-wait
 - Transmissor:
 - Activa temporizador e mantém cópia da trama até obter ACK
 - o No máximo espera *Timeout* até transmitir de novo
 - Receptor:
 - o Envia ACK, NAK ou no reply
 - Sequenciação necessária para resolver a situação de erro na trama de confirmação
 - Vantagem: simples; desvantagem: reduzida eficiência
 - Go-back-N (volta-atrás-N)
 - Usado na janela deslizante
 - A falta de sequenciação ou erro na recepção implica a retransmissão a partir de uma determinada ordem.
 - Selective Reject (rejeição selectiva)
 - Alternativa possível na janela deslizante
 - Apenas são retransmitidas as tramas que recebem confirmação negativa explícita (SREJ) ou se ocorre Timeout.
 - Trama posteriormente transmitidas e correctamente recebidas n\u00e3o tem que ser retransmitidas
 - Wmax mais restritivo para não sobrepor as janelas na transmissão e na recepção (Wmax=2n-1 e não Wmax=2n-1)
 - Vantagem: menos retransmissões, melhor utilização da ligação
 - Desvantagem: requer mais processamento (e controlo) na transmissão e na recepção

HDLC

Três tipos de ligação

- Primária: responsável pela gestão da ligação lógica.
- Secundária: espera sob controlo duma estação primária.
- **Combinada:** Partilha o controlo da ligação lógica com outra do mesmo tipo.

Duas configurações das ligações

Não equilibrada:

1 Primária, 1 ou + secundárias. Ligações ponto a ponto ou multiponto Transmissão Full-Duplex ou Half-Duplex

Equilibrada:

2 Combinadas Ligações ponto a ponto Transmissão Full-Duplex ou Half-Duplex

Três modos de operação

- NRM Normal Response Mode
 - Usado em configurações não equilibradas
 - A secundária só transmite depois de receber uma trama da primária
- ARM -- Asynchronous Response Mode
 - Usado em configurações não equilibradas
 - A secundária pode transmitir livremente após estabelecimento da ligação lógica respectiva pela primária.
- ABM Asynchronous Balanced Mode
 - Usado em configurações equilibradas.
 - Ambas as estações partilham o controlo da ligação lógica

Dois formatos de quadro

- Normal Campo de controlo de 8 bits.
- Extendido Campo de controlo de 16 bits.

Tipos de trama

- Tramas de informação
 - O campo de dados é passado de/para o nível protocolar superior
 - N (S) número sequencial da trama corrente enviada
 - N (R) número sequencial da próxima trama a receber
 - O campo N (R) possibilita, à estação que envia, a confirmação implícita de tramas I recebidas - confirmação em piggyback
 - O bit P/F (Poll/Final) é usado para efectuar o Poll de uma estação forçando-a a uma resposta
- Tramas de supervisão
 - RR N(R) (Receiver Ready)
 - Usadas na impossibilidade de fazer piggyback
 - Confirmação mais rápida
 - RNR (Receiver Not Ready)
 - Indicam indisponibilidade temporária para a recepção de tramas I
 - **REJ** N(R) ou **SREJ** N(R)
 - Retransmissão a partir da trama N(R) ou retransmissão selectiva da trama N(R)
 - Não contêm informação do utilizador (nível superior)
 - Usadas unicamente na fase de transferência de dados
- Tramas não-numeradas (exemplos)
 - **SABM/SABME** (set asynchronous balanced mode/extended);
 - SNRM/SNRME (set normal response mode/extended);
 - SARM/SARME (set Asynchronous response mode/extended);
 - Comandos que inicializam a ligação lógica e estabelecem o modo de operação
 - DISC termina a ligação lógica
 - UA (Unnumbered Ack) confirma o estabelecimento ou terminação da ligação

Fases da ligação lógica

- Estabelecimento da ligação
- Transferência de dados
- Finalização da ligação

Formato da trama

Flag	Endereço	Controlo	Informação	FCS	Flag
8 Bits	8(+) Bits	8/16 Bits	Variável	16/32 Bits	8 Bits
01111110	Identifica a	Define a função da	Texto a ser	Sequência de	
	estação	trama	transferido	detecção de erros	
	secundária				
Delimita a	Broadcast:	3 Tipos de trama:	Presente	É calculado sobre	
trama	11111111	 I - Informação 	apenas em	toda a trama,	
		 S - Supervisão 	tramas I e	exceptuando as	
		• U - Não	algumas U	flags	
		numerada			
A mesma flag	Redundante	Indica o número de			
finaliza uma	em ligações	sequência			
trama e	ponto a				
assinala o	ponto				
inicio de					
outra					
Bit-stuffing:		O tamanho da janela			
É inserido um		é o número de tramas			
0 após cinco		que podem ser			
1		enviadas sem			
consecutivos		recepção de			
(excepto nas		confirmação			
flags)					
• O receptor					
retira cada 0					
que suceda a					
cinco 1					
consecutivos					

Funções da camada física:

- Transmissão de bits sobre um canal de transmissão
- Codificação de linha, modulação, multiplexagem
- Física, acesso ao meio, controlo de erros.
- Definição e normalização das características das
- Interfaces físicas:
 - Mecânicas (conectores, nº de pinos e funções)
 - Eléctricas (níveis eléctricos)
 - Funcionais (controlo, dados, temporização)
 - Procedimentais (sequência de acções entre circuitos)

Parâmetros de configuração do protocolo

- **T1:** Timeout (FRACK), tempo máximo de espera por um ACK antes de retransmitir a trama
- **T2:** Timeout (ResponseTime), tempo de espera entre a recepção de uma trama-l e o envio do ACK (RR, RNR, REJ)
- **T3:** Timeout (CHECKTime), tempo máximo de inactividade antes de enviar um poll para testar a ligação
- **T4:** Timeout (DisconnectTime), tempo máximo de inactividade antes de terminar automaticamente a ligação
- **N1:** comprimento máximo das tramas
- N2: número máximo de retransmissões de uma trama
- **K:** abertura da janela de controlo de fluxo

Outros protocolos de ligação

LAPB: Link Access Procedure, Balanced

- Subconjunto do HDLC operando em modo ABM
- Usado em links PP de acesso a redes alargadas (WAN): o lado da rede é o DCE e o lado do assinante é o DTE
- Ex: usado como nível 2 do X.25
- Tanto o DCE como o DTE são estações mistas podendo actuar como primárias ou como secundárias no estabelecimento de uma ligação lógica
- Utilização do bit P/F
 - Numa trama de comando o bit P/F é P=1|0 indicando se é exigida uma resposta ou não
 - Numa trama de resposta o bit P/F é F=1|0 indicando se é uma resposta a um comando com P=1 ou não
 - Uma trama de resposta com F=1 é a resposta a uma trama de comando transmitida com P=1

Asynchronous Transfer Mode (ATM)

- CO (orientado à conexão), usado em redes de alto débito
- Não é baseado em HDLC
- As conexões designam-se circuitos virtuais
- Definem-se caminhos virtuais (Virtual Path) entre estações
- Definem-se circuitos virtuais (Virtual Circuits) dentro de VPs
- Identificados por VPI e VCI (virtual path/circuit identifier)
- As tramas são denominadas células
- Uma célula tem um comprimento fixo de 53 Bytes (5 Cabeçalho + 48 dados)
- Normalização ex: interfaces a 155 e 622 Mbps

Redes de Computadores

Topologias WAN

- As WAN são geralmente redes store-and-forward
 - O número de circuitos, c, necessários para a interligação total de N estações, seria: c = (N (N-1)) /2
 - Para reduzir as interligações utilizam-se comutadores de tráfego interligados por um (menor) número de circuitos ponto-a-ponto de alta capacidade multiplexando tráfego
 - Os circuitos de acesso à WAN são ponto-a-ponto e podem usar diferentes protocolos de acesso

Função	Redes de Datagramas	Redes de Circuitos Virtuais (VC)
Estabelecimento prévio da conexão (ou circuito)	Não é necessário	É necessário
Endereçamento	Endereço de origem e destino em cada PDU	PDUs contêm o identificador do circuito
Routing / Forwarding	PDUs são encaminhados de forma independente entre si	A rota é estabelecida inicialmente e todos os PDUs utilizam essa rota
Informação de estado	Não é necessária (para best -effort)	Necessária por VC
Falha de um elemento de Não é normalmen rede problemática		Todos os VC são terminados
Controlo de tráfego e controlo de congestão	Mais difícil	Fácil, se os recursos atribuídos são suficientes

Topologias LAN

- Utilização generalizada
 - Permitem a interligação de sistemas (computadores, sistemas de voz e vídeo) em áreas limitadas;
 - Em geral constituem redes privadas
 - Ligação de um elevado número de sistemas terminais
- Tecnologia normalizada e de baixo custo.
- Elementos duma rede:
 - Estações possuem interfaces de rede
 - Rede possui equipamentos de encaminhamento de tráfego
 - Ambos são interligados por cablagem
- Topologias LAN mais frequentes
 - Barramento, anel, estrela e árvore
 - Usam meios de transmissão variados: UTP/FTP, cabo coaxial ou fibra óptica.
 - Podem usar repetidores como extensão do meio de transmissão e seu isolamento físico/eléctrico
 - Utilização de equipamento específico para redução de colisões e melhorar desempenho e diminuir (bridge, switch)
- LAN de Acesso Partilhado (shared LAN)
 - As estações disputam a largura de banda existente
 - A transmissão no meio é difundida por todas as estações
 - Por definição, uma LAN é um domínio de entrega directa de tramas entre estações, designado por domínio de colisão.
 - As estações recebem a trama com um atraso mínimo
 - O método de acesso partilhado varia com a topologia:
 - Acesso contencioso: barramento e estrela com hub-repetidor
 - Acesso ordenado: anel e barramento com testemunho (token)
 - O desempenho de uma LAN varia com o tipo de aplicações e com o número de estações interligadas
- LAN Comutada (switched LAN)
 - É uma geração recente de LAN
 - É introduzido um comutador para criar e isolar subdomínios de colisão dentro de um domínio de entrega directa
 - O comutador de LAN filtra a difusão em função dos endereços da estação de destino das tramas (função bridging)
 - Vantagens:
 - Maior largura de banda agregada por redução das colisões
 - Consequentemente, melhor desempenho
- LAN Virtual Comutada (switched VLAN)
 - As estações ligam directamente ao comutador
 - Certos comutadores têm a capacidade de associar conjuntos de portas em diferentes sub-domínios de colisão constituindo LANs virtuais
 - As LAN virtuais não existem externamente ao comutador mas são construídas internamente por configuração do comutador
 - O princípio de funcionamento é idêntico ao da LAN Comutada
 - As estações ligam-se ao comutador normalmente em ponto-a-ponto fullduplex

Formato da trama MAC

Preambulo	End. Destino	End. Origem	Tipo	Informação	CRC
64 Bits	48 Bits	48 Bits	16 Bits	8n	32 Bits
Sequência de sincronização	Identifica uma única estação do grupo	Identifica a estação origem	Identifica o protocolo de alto nível	46 A 1500 bytes	Detecção de erros

Controlo de acesso ao meio:

- Detecção de colisão
 - Baseada no tempo de ida-e-volta (round trip) de uma trama
 - É necessário garantir um tamanho mínimo de trama que assegure a detecção de colisão no pior caso possível
 - Jamming: Para garantir que outras estações se apercebam da ocorrência de colisão, a que detecta deve forçar uma transmissão de alguns bits antes de parar de transmitir, i.e., reforçar a colisão para garantir que ela é detectada por todos os intervenientes.
- Na ethernet a trama de jam é designada de jam signal
- Após transmissão de uma trama mais do que uma estação pode estar à espera de uma oportunidade de transmissão.
- Consequência: Se houver mais do que uma estação a aguardar o fim de uma transmissão, quando tal suceder, a colisão é certa. Para evitar este evento, após uma colisão, as estações envolvidas esperam (retraem) um tempo aleatório n x tp (que, com alguma probabilidade será diferente para cada uma) antes de acederem novamente ao meio para retransmitir.

Protocolo IP

- O datagrama é o termo normalmente utilizado para designar a unidade de dados da rede
- É um protocolo de interligação de redes
- Paradigma protocolar do melhor esforço (best effort): o protocolo esforça-se por entregar os datagramas ao destino mas não o garante (datagramas podem perder-se)
- Versões: IPv4 (em uso generalizado), IPv6 (em instalação)
- Principais funções:
 - Fornece a unidade elementar de transferência de dados
 - Encaminhamento de datagramas
 - Fragmentação de datagramas: transita em qq LAN
 - Incorpora um esquema de endereçamento universal

Fragmentação

- Um datagrama cujo comprimento exceda o MTU definido para a LAN, é dividido em datagramas mais curtos, chamados fragmentos, que serão reagrupados no destino de modo a reconstituírem o datagrama original
- Os fragmentos são datagramas IP e são encaminhados como tal como qualquer outro datagrama IP
- MTU (Maximum Transfer Unit): número máximo de bytes aceite no campo de dados da trama da LAN
- A fragmentação não depende dos routers, mas sim das características das LAN ligadas aos seus interfaces
- Campos manipulados na fragmentação:
 - Identification identifica fragmentos pertencentes ao mesmo datagrama original
 - More fragments flag que determina se o fragmento é o último
 - May fragment identificação da possibilidade ou não do datagrama ser fragmentado pela rede
 - Fragment offset offset dos dados do fragmento relativamente ao datagrama original

IPv6

- Define novo formato de pacotes com introdução de novas funcionalidades no IP
- Novos formatos de endereços
- Diminuição do overhead de processamento (e.g. eliminação checksum no cabeçalho)
- Melhor desempenho dos elementos de rede
- Introdução de novas options IP
- Introdução de mecanismos de segurança a nível da camada de rede
- Evita a fragmentação IP nos routers
- Alguns extension headers interessantes...
- Possibilita configurações automáticas

Interligações físicas

Repetidores	Bridges	Switch	Router
Nível Físico	Nível Lógico	Nível Lógico	Nível Lógico
2 Ou + Portas	2 Ou + Portas	2 Ou + Portas	2 Ou + Portas
Sinal retransmitido para todas as portas	Examinam o endereço MAC da trama recebida, enviando-a Apenas para o segmento a	Examinam o endereço MAC da trama recebida, enviando-a Apenas para o segmento a	Cada segmento tem um endereço de rede diferente
•	que diz respeito	que diz respeito	
Conectam segmentos de rede idênticos	Conectam segmentos de redes similares ou dissimilares	Cada segmento representa um domínio de colisão com largura de banda dedicada	Encaminhamento de pacotes entre redes
Não verificam erros ou colisões	Verificam erros e confinam colisões a um segmento	Ligações ponto a Ponto	Tabelas de encaminhamento (routing)
Amplificam e regeneram o sinal Independência de protocolos		Incremento do desempenho de rede	

Endereçamento

- Endereçamento por classes (ou Classful)
 - Esquema original, baseado na RFC 791
 - Usa os primeiros bits como identificadores de classe
- Endereçamento sem classes (ou Classless)
 - Não considera os bits de classe utilizando uma máscara de 32 bits para determinar o endereco de rede
 - Permite routing mais eficiente por agregação de rotas, designado CIDR (Classless Internet Domain Routing)
 - Tabelas de encaminhamento mais pequenas as rotas são agregadas por grupos de endereços adjacentes
 - Usado pelas tabelas de routing dos ISPs

Endereços Ethernet

- 48 Bits (6 bytes em hexadecimal: 08:00:0c:01:2c:e3)
- Atribuído pelo fabricante da placa, sendo único e inalterável.

Endereços IP

- 32 Bits (4 bytes em decimal: 192.88.251.35)
- Endereço divide-se em 2 partes: Endereço de rede + endereço Host.
- Restrições a Endereços IP
 - Endereços reservados:
 - Os primeiros 4 bits não podem ser 1
 - 127.x.x.x é o endereço reservado para loopback
 - Bits de Host a Os ou 1s são reservados (a rede ou Broadcast)
 - Bits de subnet a 0s ou 1s são reservados
 - Endereços privados: atribuídos para internet privadas (sem conectividade global, não devem ser visíveis nem são encaminhados na internet exterior), RFC1918:
 - Bloco 192.168.0.0 192.168.255.255
 - Bloco 172.16.0.0 172.31.255.255
 - Bloco 10.0.0.0 10.255.255.255

Máscara de endereço

 Máscara: padrão que conjugado com o endereço IP, devolve a parte do endereço de rede (ou sub-rede)

- No endereçamento por classes as máscaras (default) são:
 - Classe A: 11111111.00000000.00000000.00000000
 - Notação decimal: 255.0.0.0
 - Notação CIDR: /8
 - Classe B: 11111111.11111111.00000000.00000000
 - Notação decimal: 255.255.0.0
 - Notação CIDR: /16
 - Classe C: 111111111.11111111.11111111.00000000
 - Notação decimal: 255.255.255.0
 - Notação CIDR: /24
- No endereçamento sem classes as máscaras têm qualquer outro valor permitindo a criação de sub-redes (subnet) ou supernets da classe original.

Subnetting

- Permite melhor aproveitamento, organização e gestão do espaço de endereços
- Introduz outro nível hierárquico para routing

Encaminhamento (routing):

- Estático baseado em rotas pré-definidas
 - As rotas permanecem fixas
 - Reduz o tráfego na rede
 - Esquema simples mas pouco flexível
- Dinâmico rotas actualizadas ao longo do tempo
 - Os routers trocam informação de routing entre si
 - Esta actualização dinâmica de rotas é obtida através de
 - Protocolos específicos de encaminhamento (routing)
 - Grande flexibilidade e adaptação (automática) a falhas ou mudaças na configuração de rede
 - O tráfego de actualização pode causar sobrecarga na rede
- Caminho de defeito
 - É a rota a seguir caso não exista uma entrada específica na tabela para a rede de destino
 - É um caso particular de encaminhamento estático
 - A rota por defeito tem prioridade inferior à das outras rotas
 - É identificado pelo termo default ou pela rede 0.0.0.0
 - Permite reduzir a tabela de encaminhamento
 - Os protocolos de encaminhamento modelam a rede como um grafo e calculam o melhor caminho para um dado destino

ARP - Protocolo de Resolução de Endereços (IP)

- ARP (Address Resolution Protocol) mapeia um endereço de rede no endereço MAC (48 bytes) que lhe corresponde.
- Operação:
 - Local à LAN

- Não usa encapsulamento IP
- O EtherType ARP é: 0x0806
- ARP-PDUs: ARP Request e ARP Reply
- ARP Request é enviado em broadcast
- ARP Reply é enviado em unicast à estação requerente, que mantém temporariamente a resolução na cache de ARP

Protocolo ICMP

- Reporta situações anómalas ocorridas no tratamento de datagramas IP
- Usa encapsulamento IP
- Não torna o IP fiável, apenas assinala erros
- O IP usa obrigatoriamente o ICMP para funções de controlo
- Utilizado por algumas aplicações de diagnóstico de rede
- Formato

Tipo	Código	FCS	Dados de mensagem
8 Bits	8 Bits		

- Tipo + Código define a mensagem ICMP
 - Mensagens de erro
 - Mensagens de query

TCP/IP

Características

- Aberta
 - Especificações publicadas e bem conhecidas
 - Abertura completa ao desenvolvimento de código
- Portável
 - Independência do sistema operativo e plataforma

- Quaisquer sistemas podem comunicar
- Estável e Robusta
 - Normas testadas ao longo de três décadas e fixas
 - Mas ainda em desenvolvimento e aperfeiçoamento
- Suporte global
 - Incluída na globalidade dos sistemas de computação
- Protocolos de rede organizados por níveis/camadas.
- Cada camada é responsável por uma faceta das comunicações

Camadas

Aplicação	
Transporte	
Rede	
Ligação Lógica	

- Aplicação: Trata os detalhes de uma aplicação concreta.
- **Transporte:** Trata o fluxo de dados entre 2 sistemas terminais:
 - TCP Fluxo de dados fiável. Simplificação das funções da aplicação
 - UDP Fluxo de dados sem garantias. Fiabilidade suportada pela aplicação.
- Rede: Trata os aspectos relativos à movimentação dos pacotes na rede
 - IP Protocolo principal, responsável pelo encaminhamento de pacotes na rede
 - ICMP Adjunto do IP, usado para mensagens de erro
 - IGMP Usado em multicast.
- **Ligação lógica:** Trata da transmissão de dados estruturada e isenta de erros sobre uma ligação física
 - ARP, RARP protocolos usados para mapeamento dos endereços IP em endereços MAC.

User Datagram Protocol (UDP)

- Protocolo de transporte n\u00e3o fi\u00e1vel, i.e. sem controlo de fluxo e sequencia\u00e7\u00e3o, e reduzido controlo de erros
- Cada segmento UDP é encapsulado num datagrama IP e enviado sem prévia negociação
- Actua como interface directo da aplicação com o IP para multiplexar e desmultiplexar tráfego
- Usa o conceito de porta / número de porta (16 bits)
- Verificação de erros no UDP:
 - Complemento para 1 da soma de grupos de 16 bits

- Cobre o datagrama completo (cabeçalho e dados)
- = **0** Significa que o cálculo não foi efectuado
- Se ≠ **0** e o receptor detecta erro na soma:
 - O datagrama é ignorado (descartado);
 - Não é gerada mensagem de erro para o transmissor;
 - Protocolo n\u00e3o inclui mecanismos de retransmiss\u00e3o.
- Se UDP é não fiável, porquê usar o UDP?
 - Não introduz latência inicial
 - Não requer connection state nos sistemas finais
 - Reduz overhead protocolar face ao TCP
 - Não restringe a taxa de envio das aplicações

Transmission Control Protocol (TCP)

- Transmissão e recepção fiável de dados fim-a-fim
- Orientado à conexão
 - Informação de estado da conexão existe apenas nos sistemas finais, i.e. ,o estado é negociado e sincronizado fim-a-fim
 - "Handshaking" de parâmetros iniciais entre entidades TCP
 - Conexão Id: porta e IP de origem, porta e IP destino
 - Protocolo de streaming : não existe correspondência exacta entre a escrita e leitura dos dados das aplicações, i.e. a estrutura da stream de dados não é preservada na rede
- Multiplexagem de dados provenientes de várias aplicações através do nº de porta
- Full-duplex
- Ponto-a-ponto TCP é baseado num modelo de rede unicast,
- Controlo de fluxo
 - Previne sobrecarga do receptor
 - Ajuste do débito baseado num sistema de créditos
- Controlo de erros
 - Detecta segmentos descartados, duplicados, corrompidos
 - Implica implementar mecanismos de retransmissão

Flags TCP (1 bit por flag)

- ACK indica se o nº de sequência de confirmação é válido
- **PSH** o receptor deve passar imediatamente os dados à aplicação
- RST indica que a conexão TCP vai ser reinicializada
- SYN indica que os números de sequência devem ser sincronizados para se iniciar uma conexão
- FIN indica que o transmissor terminou o envio de dados
- URG indica se o apontador de urgência é válido

Segmentos TCP

- Sequenciação necessária para ordenação na chegada
- O número de sequência é incrementado pelo número de bytes do campo de dados

- Cada segmento TCP tem de ser confirmado (ACK), contudo é válido o ACK de múltiplos segmentos
- O campo ACK indica o próximo byte (sequence) que o receptor espera receber (piggyback)
- O emissor pode retransmitir por timeout: o protocolo define o tempo máximo de vida dos segmentos ou MSL (maximum segment lifetime)

Operação TCP

Aplicações de rede

- Constituem o último nível da pilha protocolar TCP/IP
- Exemplo de aplicações de rede:
 - **smtp** simple message transfer protocol
 - domain (**dns**) domain name system
 - **snmp** simple network management protocol
 - **ftp** file transfer protocol, etc
- As aplicações usam os serviços de transporte locais
- Muitas das aplicações de rede tradicionais são baseadas no paradigma de interacção cliente/servidor

Modelo cliente/servidor

Resumos de CDR

2006/2007

Cliente	Servidor
Aplicação invocada pelo utilizador e mantida como cliente temporariamente	Dedicado à prestação de um serviço
Corre localmente	Pode atender em simultâneo múltiplos clientes
Interage com o servidor de forma activa	É invocado de forma automática quando o sistema arranca
Pode contactar múltiplos servidores durante a mesma sessão	Em geral, corre em sistemas partilhados
Não necessita de recursos	Permanentemente "à escuta"
Sofisticados	Requer mais recursos de hardware e software;

- Identificação de cada serviço é efectuada a nível dos protocolos de transporte
 - Número de porta único associado a cada serviço:
 - ftp (21), ssh (22), smtp (25), http (80), domain (53)..
- Em geral, um servidor tem a possibilidade de atender, em simultâneo, vários clientes
- Cada cliente possui também um identificador (port number). O software no servidor usa ambos os números de porta e os endereços IP do cliente e do servidor para identificar cada conexão.
- Uma aplicação cliente pode:
 - Escolher o protocolo de transporte a usar de acordo com as suas necessidades
 - Contactar vários servidores, um para cada serviço