

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

(A State Government University)

B. Tech, 2024

Minor Degree in

Intelligent Systems Design and Manufacturing

Offered By: (Mechanical Engineering)

CURRICULUM

	Minor(Intelligent Systems Design and Manufacturing)										
SI.No:	Semester	Course Code	Course Title (Course Name)	Cree	dit Stru	cture	SS	Total M	Total Marks		Hrs./ Week
SI.	Sen			L	Т	P		CIA	ESE		
1	3	MNMET309	Introduction to product design and Associated Development Tools * /MOOC#	3	0	2&	5.5	40	60	4	5
2	4	MNMET409	Introduction to Computational Methods* /MOOC#	3	0	2 ^{&}	5.5	40	60	4	5
3	5	MNMET509	Intelligent Design Practices and Smart Manufacturing /MOOC	3	1	0	5	40	60	4	4
4	6	MNMET609	Mechatronics and robotics /MOOC	3	0	0	4.5	40	60	3	3
			Total				21			15	17

^{*}Students must register for theory courses listed in the 3rd and 4th semesters of the Minor curriculum.

^{*}Students who fail a theory course listed in the Minor curriculum are permitted to register for an alternate MOOC course specified in the Minor curriculum.

[&]amp; The courses offered in the third and fourth semesters can be structured as either theory-based courses or a combination of theory and lab-based courses

SYLLABUS

SEMESTER 3

SEMESTER 3

INTRODUCTION TO PRODUCT DESIGN AND ASSOCIATED DEVELOPMENT TOOLS

Course Code	MNMET309	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:2	ESE Marks	60
Credits	4	Exam Hours	2Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory + Lab

Course Objectives:

- 1. To establish fundamental knowledge of product development process
- 2. Apply knowledge of robust industrial design and conceptual design in product development
- 3. To acquaint with the basic concepts of design for manufacturing and assembly in product design.
- 4. To understand the concept of ergonomics and rapid prototyping in product development
- 5. To acquaint with 2d drawing and 3d modelling software.

SYLLABUS

Module No.	Syllabus Description	Contact Hours		
1	Introduction: Classification/ Specifications of Products, Product life cycle, product mix. Introduction to product design, Modern product development process Design by evolution, Design by innovation, Morphology of design			
2	Creativity Techniques: Creative thinking, conceptualization, brain storming, primary design, drawing, simulation, detail design. Conceptual Design: Generation, selection & embodiment of concept, Product architecture. Industrial design: process, need.			
3	Manufacturing and Assembly: Methods of designing for Manufacturing and Assembly. Design for Maintenance. Design for Environment.	11		

	Ergonomics in product design.	
	Aesthetics in product design. Concepts of size and texture colour.	
	Concurrent Engineering -Elements of concurrent engineering, Benefits	
4	Rapid prototyping: concepts, processes and advantages.	11
	Reverse engineering: steps in reverse engineering	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Apply the tools for product development process	К3		
CO2	Conduct study on the use of robust industrial design and conceptual design in product development	K5		
CO3	Assess concepts of design for manufacturing and assembly in product design.	K5		
CO4	Analysing the concept of ergonomics and rapid prototyping	K4		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	1	-	-	2	1	1	2
CO2	3	3	3	2	3	1	1	-	2	1	1	2
CO3	3	3	3	2	3	1	2	-	2	1	1	2
CO4	3	3	3	2	3	1	-	-	2	1	1	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Product Design & Development	Karl T Ulrich, Steven D Eppinger	Tata McGraw Hill,	2003.		
2	The Mechanical Design Process.	David G Ullman,	McGraw Hill Inc Singapore	1992		
3	Machine Drawing	N. D. Bhatt and V.M. Pancha	Charotar Publishing House.	2016		
4	Machine Drawing	P I Varghese & K C John	PHI Learning Private Limited	2009		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Designing for Production	Baldwin E N & Neibel B W	Edwin Homewood Illinois	1974			
2	"Handbook of Product Design for Manufacture,	Bralla J G (Ed.)	McGraw Hill, NewYork,	1986			

3	Rapid Manufacturing-The Technologies and Applications of Rapid Prototyping and Rapid Tooling,	D. T. Pham, S.S. Dimov,	Springer – Verlag, London,	2001.			
4	Successful Product Design	Hollins B & Pugh S	Butter worths London,	1990			
5	Design Methods. Seeds of Human Futures.	Jones J C	John Willey,	1970			
6	Product Design: Techniques in Reverse Engineering and new Product Development.	Kevin Otto & Kristin Wood	Pearson Education New Delhi	2000			
7	Product Design Fundamentals and Methods	N J M Roozenberg , J Ekels , N F M Roozenberg	John Willey & Sons	1995			
8	Rapid Prototyping	Andreas Gebhardt	Carl Hanser – Verlag, Munich	2003			
Video Links (NPTEL, SWAYAM)							
Module	No.	Link ID					
1-4	https://www.youtube.com	https://www.youtube.com/watch?v=HN9GtL21rb4					

1. Continuous Assessment (5 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (3 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

Final Marks Averaging: The final marks for preparation and conduct of experiments are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Internal Lab Examination (10 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (3 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task

2. Result (5 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (2 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

(Minimum 8 Experiments)

Experiment No.	Experiment
1-5	Understand the basics of machine drawing using any 2D drawing software. Study types of lines, dimensioning, scales of drawing, sectional views, Practice simple 2D sketches to familiarize with these concepts. (Minimum 4). simple sketches are required
6-10	Creating 3D machine components using any 3d modelling software (Minimum 4).

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH AND VEAR

Course Code: MNMET309		YEAR							
Nax. Marks: 60 Duration: 2 Hours 30 Minutes									
PART A Answer all questions. Each question carries 3 marks CO Marks	M	3.4			0 M.	4			
Answer all questions. Each question carries 3 marks CO Marks	Ma	X. M	Aarks: 60 Duration	n: 2 Hours 3	U Min	utes			
What is product mix?			PART A						
Explain morphology of design. 1 (3)			Answer all questions. Each question carries 3 m	arks	CO	Marks			
What is the role of simulation in product design?	1		What is product mix?		1	(3)			
4 Why drawing is important in product design? 2 (3) 5 What is design for assembly? 3 (3) 6 What is the role of Ergonomics in product design? 3 (3) 7 What are the benefits of Concurrent Engineering? 4 (3) 8 What is Reverse engineering 4 (3) PART B Answer any one full question from each module. Each question carries 9 marks Module 1 9 a) Explain product life cycle with an example. 1 (6) b) Explain Design by evolution. 1 (3) 10 a) What are the classifications of a product? Explain. 1 (5) b) Explain Morphology of design 1 (4) Module 2 11 a) What is Creative thinking? Explain with an example. 2 (5) b) Explain Product architecture. 2 (4) 12 a) What is primary design? 2 (4) b) What is design for manu	2		Explain morphology of design.		1	(3)			
5 What is design for assembly? 3 (3) 6 What is the role of Ergonomics in product design? 3 (3) 7 What are the benefits of Concurrent Engineering? 4 (3) PART B Answer any one full question from each module. Each question carries 9 marks Module 1 9 a) Explain product life cycle with an example. 1 (6) b) Explain Design by evolution. 1 (3) 10 a) What are the classifications of a product? Explain. 1 (5) b) Explain Morphology of design 1 (4) Module 2 11 a) What is Creative thinking? Explain with an example. 2 (5) b) Explain Product architecture. 2 (4) 12 a) What are the steps to design a concept 2 (5) b) What is primary design? 2 (4) Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)	3		What is the role of simulation in product design?		2	(3)			
6 What is the role of Ergonomics in product design? 3 (3) 7 What are the benefits of Concurrent Engineering? 4 (3) PART B Answer any one full question from each module. Each question carries 9 marks Module 1 9 a) Explain product life cycle with an example. 1 (6) b) Explain Design by evolution. 1 (3) 10 a) What are the classifications of a product? Explain. 1 (5) b) Explain Morphology of design 1 (4) Module 2 11 a) What is Creative thinking? Explain with an example. 2 (5) b) Explain Product architecture. 2 (4) 12 a) What are the steps to design a concept 2 (5) b) What is primary design? 2 (4) Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)	4		Why drawing is important in product design?		2	(3)			
7 What are the benefits of Concurrent Engineering? 4 (3) 8 What is Reverse engineering 4 (3) PART B Answer any one full question from each module. Each question carries 9 marks Module 1 9 a) Explain product life cycle with an example. 1 (6) b) Explain Design by evolution. 1 (3) 10 a) What are the classifications of a product? Explain. 1 (5) b) Explain Morphology of design 1 (4) Module 2 11 a) What is Creative thinking? Explain with an example. 2 (5) b) Explain Product architecture. 2 (4) 12 a) What are the steps to design a concept 2 (5) b) What is primary design? 2 (4) Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)	5		What is design for assembly?		3	(3)			
What is Reverse engineering	6		What is the role of Ergonomics in product design?		3	(3)			
PART B Answer any one full question from each module. Each question carries 9 marks Module 1 9 a) Explain product life cycle with an example.	7		What are the benefits of Concurrent Engineering?	What are the benefits of Concurrent Engineering? 4 (3)					
Answer any one full question from each module. Each question carries 9 marks Module 1	8		What is Reverse engineering 4 (3)						
Module 19a) Explain product life cycle with an example.1(6)b) Explain Design by evolution.1(3)10a) What are the classifications of a product? Explain.1(5)b) Explain Morphology of design1(4)Module 211a) What is Creative thinking? Explain with an example.2(5)b) Explain Product architecture.2(4)12a) What are the steps to design a concept2(5)b) What is primary design?2(4)Module 313a) What is design for manufacturing? Explain with an example.3(5)				1					
9 a) Explain product life cycle with an example. b) Explain Design by evolution. 1 (3) 10 a) What are the classifications of a product? Explain. b) Explain Morphology of design 1 (4) Module 2 11 a) What is Creative thinking? Explain with an example. b) Explain Product architecture. 2 (5) b) Explain Product architecture. 2 (4) 12 a) What are the steps to design a concept b) What is primary design? 2 (4) Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)		Α	Answer any one full question from each module. Each que	estion carries 9	mark.	S			
b) Explain Design by evolution. 1 (3) 10 a) What are the classifications of a product? Explain. 1 (5) b) Explain Morphology of design 1 (4) Module 2 11 a) What is Creative thinking? Explain with an example. 2 (5) b) Explain Product architecture. 2 (4) 12 a) What are the steps to design a concept 2 (5) b) What is primary design? 2 (4) Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)			Module 1						
10 a) What are the classifications of a product? Explain. b) Explain Morphology of design 1 (4) Module 2 11 a) What is Creative thinking? Explain with an example. 2 (5) b) Explain Product architecture. 2 (4) 12 a) What are the steps to design a concept b) What is primary design? 2 (5) Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)	9	a)	Explain product life cycle with an example.		1	(6)			
b) Explain Morphology of design 1 (4) Module 2 11 a) What is Creative thinking? Explain with an example. 2 (5) b) Explain Product architecture. 2 (4) 12 a) What are the steps to design a concept 2 (5) b) What is primary design? 2 (4) Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)		b)	Explain Design by evolution.		1	(3)			
Module 2 11 a) What is Creative thinking? Explain with an example. 2 (5)	10	a)	What are the classifications of a product? Explain.		1	(5)			
11 a) What is Creative thinking? Explain with an example. 2 (5) b) Explain Product architecture. 2 (4) 12 a) What are the steps to design a concept 2 (5) b) What is primary design? 2 (4) Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)		b)	Explain Morphology of design		1	(4)			
b) Explain Product architecture. 2 (4) 12 a) What are the steps to design a concept 2 (5) b) What is primary design? 2 (4) Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)			Module 2						
12 a) What are the steps to design a concept b) What is primary design? 2 (4) Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)	11	a)	What is Creative thinking? Explain with an example.		2	(5)			
b) What is primary design? Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)		b)	Explain Product architecture.		2	(4)			
Module 3 13 a) What is design for manufacturing? Explain with an example. 3 (5)	12	a)	What are the steps to design a concept 2 (5)						
13 a) What is design for manufacturing? Explain with an example. 3 (5)		b)	What is primary design?		2	(4)			
			Module 3						
b) Explain Design for Maintenance. 3 (4)	13	a)	What is design for manufacturing? Explain with an examp	ole.	3	(5)			
		b)	Explain Design for Maintenance.		3	(4)			

14	a)	What are the concepts of size and texture colour in product design?	3	(5)
	b)	Explain Design for Environment.	3	(4)
		Module 4		
15	a)	What are the elements of concurrent engineering? Explain	4	(5)
	b)	What are the advantages of rapid prototyping?	4	(4)
16	a)	Explain the steps in reverse engineering.	4	(5)
	b)	What is Concurrent Engineering?	4	(4)
		****	•	,

SEMESTER 4

SEMESTER 4
INTRODUCTION TO COMPUTATIONAL METHODS

Course Code	MNMET409	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:2	ESE Marks	60
Credits	4	Exam Hours	2Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory + Lab

Course Objectives:

- 1. To establish fundamental knowledge of basic fluid mechanics and simulation using FVM.
- 2. Apply heat transfer principles to solve engineering problems and simulations using FEM and FVM.
- 3. To acquaint with the basic concepts of stress and deformation in solids and simulations using FEM.
- 4. To understand the kinematics of different mechanism and simulations of different mechanisms.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to fluid mechanics - Types of fluids, Newton's law of viscosity. Dynamic and Kinematic Viscosity. Fluid kinematics: Description of fluid motion – Types of flows, Continuity equation, and Momentum equation (Derivation is not required). Laminar and turbulent flows, Reynolds number. Introduction to Computational Fluid Dynamics. Discretization-converting derivatives to their finite difference forms. Boundary and Initial conditions.	11
2	Modes of heat transfer - General heat conduction equation in three dimensions through plane (Derivation is not required, Simple problems only). –initial and boundary conditions.	11

	Natural convection and forced convection. (Basic concepts only) Basic laws of radiation heat transfer – Black, gray, diffuse and real surfaces.	
3	Introduction to analysis of deformable bodies. Hooke's law - Stress-Strain diagrams. Deformation in axially loaded bars (uniform cross section). Pure Bending – Flexure formula for beams (Derivation is not required, Simple problems only). Torsion: Shafts - torsion theory of elastic circular bars (Derivation is not required, Simple problems only). Introduction to FEM, Governing Equations (Derivation is not required). Formulation of stiffness matrix- one dimensional spring element.	11
4	Concepts of Kinematics and Dynamics, Mechanisms and Machines, Degrees of Freedom. Kinematic Pairs, Kinematic Chains, Kinematic Diagrams, Inversions of Four bar chain and Slider Crank Mechanisms.	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply CAD, FEA and FVM tools to design and simulate mechanical systems.	К3
CO2	Conduct thermal and stress analysis on mechanical components under different loading conditions.	K5
CO3	Assessing Fluid flow using Computational Fluid Dynamics (CFD) software.	K5
CO4	Analysing linkage motions in different mechanisms	K4

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	1	-	-	2	1	1	2
CO2	3	3	3	2	3	1	1	-	2	1	1	2
CO3	3	3	3	2	3	1	2	-	2	1	1	2
CO4	3	3	3	2	3	1	-	-	2	1	1	2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Fluid Mechanics and Hydraulic Machines	Bansal R. K	Laxmi Publications	2005
2	Computational Fluid Dynamics	John D Anderson Jr	McGraw-Hill Book Company	2012
3	Fundamentals of engineering heat and mass transfer	R. C. Sachdeva	New Age International Publishers	6 th edition, 2022
4	Mechanics of Solids	R.K.Bansal	Laxmi Publications	2012
5	Finite Element Analysis	S SBhavikatti	New Age Publisher	Third edition,2008
6	Theory of Machines	S. S. Rattan	Tata McGraw Hill	2009

	Reference Books						
Sl. No	Title of the Book Name of the Author/s Name of the Publisher		Edition and Year				
1	Fluid Mechanics	White F.M.	Tata McGraw Hill	2003			
2	Introduction to computational fluid dynamics	Anil W. Date	Cambridge University Press	2005			
3	A text book on heat transfer	S.P. Sukhatme	Universities Press	4 th edition, 2005			
4	Mechanics of Solids	S. S. Bhavikatti	New Age International	2013			
5	An introduction to Finite Element Method	J N Reddy	McGrawHill Education	Third Edition, 2009			
6	Theory of Machines and Mechanisms	Ballaney P. L.	Khanna Publishers	2005			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://www.youtube.com/watch?v=rY7bvZn75Do&list=PLwdnzlV3ogoWrAmpEcsPXay fsXnFfYY1O&index=4 https://www.youtube.com/watch?v=rY7bvZn75Do&list=PLwdnzlV3ogoWrAmpEcsPXay fsXnFfYY1O&index=4 https://nptel.ac.in/courses/112105045					
2	https://archive.nptel.ac.in/courses/112/105/112105124/ https://onlinecourses.nptel.ac.in/noc20_me64/preview					
3 4	https://onlinecourses.nptel.ac.in/noc22_ce46/preview https://nptel.ac.in/courses/112106135 https://archive.nptel.ac.in/courses/112/105/112105268/					

1. Continuous Assessment (5 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (3 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

Final Marks Averaging: The final marks for preparation and conduct of experiments are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Internal Lab Examination (10 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (3 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task

2. Result (5Marks)

Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (2 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

(Minimum 8 Experiments)

Experiment No.	Experiment	
	Simulations using Finite Volume Method	
1.1	Laminar flow through pipe	
1.2	Turbulent flow through pipe	
1.3	Simulation of fluid flow and heat transfer in a mixing elbow	
1.4	Drag and lift forces in an aerofoil	
Simulations using Finite Element Method		
2.1 Truss analysis		
2.2	Analysis of beams	
2.3	Plane stress analysis	
2.4	Steady state thermal analysis	
	Simulation of Mechanisms	
3.1	Dynamic simulation of a four-bar mechanism.	
3.2	Simulation of a Whitworth Quick Return Mechanism	

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH AND YEAR

		YEAR		
		Course Code: MNMET409		
Ma	x M	Course Name: Introduction to Computational Methods [arks: 60 Duration: 2 hours 3]	0 mini	ıtes
1714	ZX. 1VI	Buturon. 2 nours 5	O IIIIII	4105
	1	PART A	<u> </u>	N/ 1
		Answer all questions. Each question carries 3 marks	СО	Marks
1		How fluids are classified?	1	(3)
2		What is Reynolds number?	1	(3)
3		What is boundary condition?	2	(3)
4		What is Natural convection?	2	(3)
5		Write and explain the terms in Flexure formula for beams.	3	(3)
6		Explain Hooke's law.	3	(3)
7		What is a Mechanism?	4	(3)
8		What is a Kinematic Pair?	4	(3)
		PART B		
	£.	Answer any one full question from each module. Each question carries 9	mark	S
		Module 1		
9	a)	Explain the difference between Laminar and turbulent flows.	1	(3)
	b)	What are the steps in Computational Fluid Dynamics Analysis?	1	(6)
10	a)	Explain the terms in Continuity equation and Momentum equation.	1	(6)
	b)	What is Discretization?	1	(3)
		Module 2		
11	a)	Explain the general heat conduction equation in three dimensions	2	(6)
		through plane.		
	b)	What is initial condition?	2	(3)
12	a)	The air in a room is at 25° C and outside temperature is 0° C. The	2	(6)
		window of the room has an area of 2 m2 and thickness 2 mm.		
		Calculate the rate of loss of heat by conduction through window?		
		Thermal conductivity for glass is 1 W/m-K.		
	b)	Explain Stefan-Boltzman Law.	2	(3)
		Module 3		
		Tionale C		

13	a)	Explain Stress-Strain diagram.	3	(3)			
	b)	A steel plate of width 120 mm and of thickness 20mm is bent into a	3	(6)			
		circular arc of radius 10 m. Determine the maximum stress induced					
		and the bending moment which will provide the maximum stress. Take					
		E = 2x105 N/mm2.					
14	a)	A solid shaft of 150 mm diameter is used to transmit torque. Find the	3	(4)			
		maximum torque transmitted to the shaft if the maximum shear stress					
	induced to the shaft is 45 N/mm2.						
	b) What are the steps in FEA.						
		Module 4					
15	a)	Explain Inversions of Four bar chain.	4	(5)			
	b)	What is Degree of Freedom?	4	(4)			
16	16 a) Explain Inversions of Slider Crank Mechanism.						
	b) Explain Kinematic Chains.						
		****		ı			

SEMESTER 5

SEMESTER 5
INTELLIGENT DESIGN PRACTICES AND SMART MANUFACTURING

Course Code	MNMET509	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:1:0	ESE Marks	60
Credits	4	Exam Hours	2Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To equip students with a comprehensive understanding of structured design methodologies
- 2. To impart knowledge on advanced manufacturing technologies, including Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE), along with CNC systems, programming methods, and modern additive manufacturing techniques.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Concept Generation -Structured Design - Axiomatic Design, Algorithmic Design Intuitive Bias, Synectics and Systematic Search - Product Detailing Material Selection for Mechanical and Aesthetic Design - Embodiment Design - Placement of sensors and actuators - Design Inspired by Nature Inspirations in the Functional and Evolution Domain.	11
2	Computer Aided Drawing (CAD) and Computer Aided Manufacturing (CAM): Introduction, Role of CAD in design and development of new products, Advantages of CAD and CAM. Computer-Aided Engineering (CAE) -Analysis, Simulation, Optimization, and Manufacturing process improvement. Computer Aided Process Planning (CAPP) - automation and optimization.	11
3	CNC: systems - Principle of operation, components of CNC system, coordinate systems, classification of CNC systems - incremental and	11

	absolute programming methods, open loop and closed loop systems,				
	feedback devices. Interpolators: liner and circular interpolator. Manual part				
	programming - Computer aided part programming.				
	Material addition processes: - Stereo-lithography, Selective laser sintering,				
	Fused deposition modeling, Laminated object manufacturing, Powder bed				
4	fusion, 3D Printing, GTAW/GMAW process extension to derive basic metal				
	additive manufacturing techniques. Available MAM Systems and Modern				
	Developments.				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the different aspects of Design Practice with an emphasis on Product Design	K2
CO2	Understand the theory of CAD and CAM and Sketch simple drawings and solids using appropriate cad tools.	K2 K3
CO3	CNC programming, select appropriate tooling and parameters.	<i>K3</i>
CO4	Explain the processes used in additive manufacturing for a range of materials and applications.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2	-	-	3	2	2	-	-	-	3
CO2	3	-	3	-	2	3	-	-	-	2	-	3
CO3	3	2	2	-	2	2	-	-	-	2	-	-
CO4	3	2	2	-	2	3	2	-	-	2	-	2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Universal Principles of Design,	Lidwell, Holden and Butler	Rockport Publishers	2010					
2	Computer control of manufacturing systems	Yoram Koren	ТМН	2017					
3	Machine Tool Design & Numerical Control	N K Mehta	McGrawhill Education	2020					
4	Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing	Ian Gibson, David Rosen, Brent Stucker	Springer Nature	2nd ed. 2015					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Computer-Aided Design and Manufacturing	M.P. Groover, E.M. Zimmers, Jr.	Prentice Hall of India	1987					
2	Programmable logic controllers	Petruzella Frank.D.	McGraw Hill	2016					
3	Developments in high-speed metal forming	Davies K and Austin E.R	The Machinery Publishing Co	1970					
4	Advanced Machining Processes	Jain V.K.	Narosa publishers	2014					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc25_de10/unit?unit=42&lesson=44						
2	https://onlinecourses.swayam2.ac.in/nou25_me04/preview						
3	3 https://onlinecourses.nptel.ac.in/noc25 me49/preview						
4	https://www.youtube.com/playlist?list=PLgMDNELGJ1CZlDT0ysOjbpR 6QTFmvIv7						

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FII	TH	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH	í AND	YEAR							
		Course Code: MNMET509									
Ma	x. M	Course Name: Intelligent Design Practices and Smart Manufacturi farks: 60 Duration: 2 hours 30		tes							
		DADE A									
		PART A Answer all questions. Each question carries 3 marks CO Marks									
1		What is Structured Design?	1	(3)							
2		What is actuator?	1	(3)							
3		What is Computer Aided Manufacturing?	2	(3)							
4		Discuss the importance of process planning in product development.	2	(3)							
5		What is the difference between incremental and absolute programming	3	(3)							
		methods?									
6		What are G codes and M codes?	3	(3)							
7		Explain the working of Fused deposition modelling.	4	(3)							
8		What is 3D Printing?	4	(3)							
		PART B									
		Answer any one full question from each module. Each question carries 9	marks	•							
	1	Module 1									
9	a)	How the Material is selected for Mechanical and Aesthetic Design?	1	(6)							
	b)	What is the importance of Evolution Domain in product design?	1	(3)							
10	a)	What are the factors to be considered while placement of sensors and	1	(5)							
		actuators?									
	b)	What is Design Inspired by Nature?	1	(4)							
		Module 2									
11	a)	Explain the steps in Computer Aided Process Planning.	2	(5)							
	b)	How CAD helps to optimise the design of a product?	2	(4)							
12	a)	Explain Computer Aided Manufacturing.	2	(4)							
	b)	What is the role of CAD in design and development of new product?	2	(5)							
		Module 3									
13	a)	What are the main parts of the CNC machine?	3	(5)							
	b)	What is the difference between open loop and closed loop systems?	3	(4)							

14	a)	3	(5)			
	b) Explain the following NC Part Program Codes:					
		N001 G21 G90 G92 X0 Y-0.50.0 Z030.0;				
		N002 G00 X0.70.0 Y030.0;				
		Module 4				
15	a)	Explain the steps involved in Selective laser sintering.	4	(4)		
	b)	Explain Laminated object manufacturing with diagrams.	4	(5)		
16	a)	What are the Modern Developments in additive manufacturing?	4	(4)		
	b)	Explain the steps in Powder bed fusion.	4	(5)		
	ı	****	I			

SEMESTER 6

SEMESTER 6

MECHATRONICS AND ROBOTICS

Course Code	MNMET609	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	ESE Marks	60
Credits	3	Exam Hours	2Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To understand behaviour of sensors and actuators.
- 2. To understand different controllers for mechatronic systems
- 3. To understand the basics of robotics and trajectory planning
- **4.** To understand the application of mechatronics in robotics

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Sensors and Actuators: Introduction to Mechatronics: Structure of Mechatronics system. Sensors - Characteristics -Temperature, flow, pressure sensors. Displacement, position and proximity sensing by magnetic, optical, ultrasonic, inductive, capacitive and eddy current methods. Encoders, Piezoelectric sensors. Acoustic Emission sensors. Principle and types of vibration sensors. Actuators: Mechanical actuators, electrical actuators, hydraulic and pneumatic actuators.	9
2	Control of mechanical systems: System modeling - Mathematical models and basic building blocks of general mechanical, electrical, fluid and thermal systems (Concepts only). Programmable Logic Controllers (PLC) -Basic structure, input/ output processing. Development of simple ladder programs. Mechatronics in automobiles. EMS, Sensors, ECU, ABS, Cruise control.	9
3	Robotics - Definitions- Robots, Types of Robots- Manipulators, Mobile Robots-wheeled & Legged Robots, Aerial Robots; Anatomy of a robotic manipulator-links, joints, actuators, sensors, controller; open kinematic	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To understand behaviour of sensors and actuators.	K2
CO2	To understand different controllers for mechatronic systems	K2
CO3	To understand the basics of robotics and trajectory planning	K2
CO4	To understand the application of mechatronics in robotics	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	-	-	-	-	-	-		2
CO2	3	-	-	-	-	-	-	-	-	-	-	2
CO3	3	-	-	-	-	-	-	-	-	-	-	2
CO4	3	-	-	-	-	-	-	-	-	-	-	2

	Text Books								
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year					
1	Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering	W. Bolton	Pearson	7th					
2	Mechatronics: Principles and Applications	Godfrey C. Onwubolu	Elsevier						
3	Mechatronics System Design	Devdas Shetty, Richard Kolk	PWS Pub						
4	Fundamentals of Robotics – Analysis and Control	Robert. J. Schilling	Prentice Hall of India	1996					
5	Introduction to Robotics (Mechanics and Control)	John. J. Craig	Pearson Education Asia	2002					
6	Introduction to Robotics	S K Saha,	McGraw Hill Education						
7	Robotics and Control	R K Mittal	Tata McGraw Hill, New Delhi	2003					

	Reference Books									
Sl. No	Sl. No Title of the Book Name of the Author/s Name of the Publisher									
1	A Text Book of Mechatronics	R.K. Rajput	S. Chanth	First edition 2007						
2	Handbook of Robotics	Siciliano, Khatib	Springer	First edition						

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/112/107/112107298/			
2-3	https://archive.nptel.ac.in/courses/112/105/112105249/			
4	https://archive.nptel.ac.in/courses/112/107/112107298/			

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH AND VEAR

	YEAR								
	Course Code: MNMET609 Course Name: Mechatronics and robotics								
3.6									
Ma	Max. Marks: 60 Duration: 2 hours 30 minutes								
		PART A							
		Answer all questions. Each question carries 3 marks	СО	Marks					
1		Explain with a neat sketch, the working of a pressure sensor.	1	(3)					
2		How electrical actuators works?	1	(3)					
3		What is a ladder diagram?	2	(3)					
4		What is Cruise control?	2	(3)					
5		What is an Aerial Robot?	3	(3)					
6		What is the difference between open kinematic and closed kinematic	3	(3)					
		chain?							
7		Explain the working of BLDC motor.	4	(3)					
8		What is sliding in histogram processing?	4	(3)					
		PART B							
	4	Answer any one full question from each module. Each question carries 9	marks	5					
		Module 1							
9	a)	Explain the working of an Encoder with a neat sketch.	1	(3)					
	b)	Explain the working of any two displacement sensors.	1	(6)					
10	a)	Explain the working of proximity sensing by magnetic and optical	1	(6)					
		methods?							
	b)	What is the principle behind vibration sensors?	1	(3)					
		Module 2							
11	a)	Explain the mathematical models and basic building blocks of general	2	(5)					
		mechanical systems.							
	b)	Explain the basic structure of PLC.	2	(4)					
12	a)	How the fluid and thermal systems are modelled?	2	(5)					
	b)	Explain the working of ABS.	2	(4)					
Module 3									
13	a)	What are the different types of robots?	3	(6)					
	<u> </u>	ļ	1	1					

	b)	What is the need of controller in robots?	3	(3)				
14	a)	How End effectors are classified? Explain.	3	(5)				
	b)	Explain the working of any two robotic sensory devices.	3	(4)				
	Module 4							
15	a)	Explain the working of CCD with a neat sketch.	4	(5)				
	b)	Describe the working of stepper motors.	4	(4)				
16	a)	Explain the working of CID with a neat sketch.	4	(5)				
	b)	Explain the working of servo motors.	4	(4)				
