Problem

Implement Bellman Ford Algorithm and run it for a number of a number of inputs.

- 1. Implementation: Github link
- 2. Chart showing the running time vs input (vertices and edges) [Submit a pdf/picture]

Solution

- 1. Github link = Assignment_3.m
- 2. Formation of test cases:
 - Number of vertices, \mathbf{V} are varied in domain = $\{10,20,28,40,56\}$.
 - Number of edges, **E** are varied in domain = [v, 2v], where $v \in \mathbf{V}$.
 - Total number of runs for each case is $\mathbf{R} = 100$.
- 3. Plots:
 - Fig 1 Run-time vs V, with E = 100 (1a), V (1b), for $V = \{10,20,28,40,56\}$.
 - Fig 2 Run-time vs E, with E = [v, 2v], for = 20 (2a) and 56 (2b).
 - Fig 3 Run-time vs (V x E), for $V = \{10,20,28,40,56\}$.

(b) Run time vs V with E = V

Figure 1: Run time for Bellman Ford algorithm vs number of vertices

Figure 2: Run time for Bellman Ford algorithm vs number of edges

Figure 3: Run time for Bellman Ford algorithm vs V x E