Tect Nº3

Составим матрицы соединений R графа и расстояний D множества позиций.

								$p_{1} p_{2} p_{3} p_{4}$			
e	1	0	3	4	0	$D = p_2$	0	1	2	3	
$R = e_2$	2	3	0	2	2	$D = p_2$	1	0	1	2	
e ₃	3	4	2	0	1	<i>p</i> ₃	2	1	0	1	
ez	1	0	2	1	0	<i>p</i> ₄	3	2	1	0	

Определим нижнюю границу целевой функции для этих исходных данных. Для этого упорядочим составляющие вектора r в невозрастающем порядке, а вектора d – в неубывающем.

$$r = \{4 \ 3 \ 2 \ 2 \ 1 \ 0\}$$

 $d = \{1 \ 1 \ 1 \ 2 \ 2 \ 3\}$
 $r * d = 4 + 3 + 2 + 4 + 2 + 0 = 15$

Это значит, что для этих исходных данных значение целевой функции $F\left(P\right)$ не может быть меньше 15

1) Помещаем элемент e_1 в позицию p_1 . Т. к. размещен один элемент F(q) = 0. Неразмещенные элементы $\{e_2; e_3; e_4\}$, свободные позиции $\{p_2; p_3; p_4\}$.

Составим вектор, соответствующий первой строке матрицы R r_1 = $\{4\ 3\ 0\}$, и вектор, соответствующий первой строке матрицы D d_1 = $\{1\ 2\ 3\}$, суммарная длина соединений между размещенным и неразмещенными элементами

$$w(P) = r_1 * d_1 = 4 + 6 + 0 = 10$$

Для оценки v(P) вычеркнем из матриц R и D первые строку и столбец. Образуем вектора: $r = \{2\ 2\ 1\}$ и $d = \{1\ 1\ 2\}$, соответствующие верхним половинам усеченных матриц R и D.

Получим
$$v(P) = r*d = 2 + 2 + 2 = 6$$

Таким образом, нижняя граница $F(P) = 0 + 6 + 10 = 16$

2) Помещаем элемент e_1 в позицию p_2 . Т. к. размещен один элемент F(q) = 0. Неразмещенные элементы $\{e_2; e_3; e_4\}$, свободные позиции $\{p_1; p_3; p_4\}$.

Составим вектор, соответствующий первой строке матрицы R r_1 = $\{4\ 3\ 0\}$, и вектор, соответствующий второй строке матрицы D d_2 = $\{1\ 1\ 2\}$, суммарная длина соединений между размещенным и неразмещенными элементами

$$w(P) = r_1 * d_2 = 3 + 4 + 0 = 7$$

Для оценки v(P) вычеркнем из матрицы R первые строку и столбец, а из матрицы D вторые строку и столбец. Образуем вектора: $r = \{2 \ 2 \ 1\}$ и $d = \{1 \ 2 \ 3\}$, соответствующие верхним половинам усеченных матриц R и D.

Получим
$$v(P) = r * d = 2 + 4 + 3 = 9$$

Таким образом, нижняя граница $F(P) = 0 + 7 + 9 = 16$

Ввиду симметричности позиций (p1 и p4) и (p2 и p3) будут получены те же результаты для симметричных позиций. Назначаем элемент e_1 на позицию p_2 .

3) Помещаем элемент e_1 в позицию p_3 . Т. к. размещен один элемент F(q) = 0. Неразмещенные элементы $\{e_2; e_3; e_4\}$, свободные позиции $\{p_1; p_2; p_4\}$.

Составим вектор, соответствующий первой строке матрицы R r_1 = $\{4\ 3\ 0\}$, и вектор, соответствующий третьей строке матрицы D d_3 = $\{1\ 1\ 2\}$, суммарная длина соединений между размещенным и неразмещенными элементами

$$w(P) = r_1 * d_2 = 3 + 4 + 0 = 7$$

Для оценки v(P) вычеркнем из матрицы R первые строку и столбец, а из матрицы D третью строку и столбец. Образуем вектора: $r=\{2\ 2\ 1\}$ и $d=\{1\ 2\ 3\}$, соответствующие верхним половинам усеченных матриц R и D.

4) Помещаем элемент e_1 в позицию p_4 . Т. к. размещен один элемент F(q) = 0. Неразмещенные элементы $\{e_2; e_3; e_4\}$, свободные позиции $\{p_1; p_2; p_3\}$.

Составим вектор, соответствующий первой строке матрицы R r_1 = $\{4\ 3\ 0\}$, и вектор, соответствующий третьей строке матрицы D d_4 = $\{1\ 2\ 3\}$, суммарная длина соединений между размещенным и неразмещенными элементами

$$w(P) = r_1 * d_2 = 4 + 6 + 0 = 10$$

Для оценки v(P) вычеркнем из матрицы R первые строку и столбец, а из матрицы D четвертую строку и столбец. Образуем вектора: $r = \{2 \ 2 \ 1\}$ и $d = \{1 \ 1 \ 2\}$, соответствующие верхним половинам усеченных матриц R и D.

Для всех ячеек получается одно число. Из этого следует, что они равнозначны.

Назначаем элемент e_1 в позицию p_1

5) Помещаем элемент e_2 в позицию p_2 . Размещены два элемента: e_1 в позиции p_1 и e_2 в позиции p_2 , $F(q) = r_{11}d_{22} = 0$

Неразмещенные элементы $\{e_3, e_4\}$, свободные позиции $\{p_3, p_4\}$;

$$r_1 = \{4 \ 0\} \text{ u } d_1 = \{2 \ 3\}, r_1 \times d_2 = 8 + 0 = 8$$

 $r_2 = \{2 \ 2\} \text{ u } d_2 = \{1 \ 2\}, r_2 \times d_2 = 2 + 4 = 6$
 $w(P) = 8 + 6 = 14$
 $r = \{1\} \text{ u } d = \{1\}, v(P) = r \times d = 1$
 $F(P) = 0 + 14 + 2 = 15$

6) Помещаем элемент e_2 в позицию p_3 . Размещены два элемента: e_1 в позиции p_1 и e_2 в позиции p_3 , $F(q) = r_{11}d_{23} = 1$

Неразмещенные элементы $\{e_3, e_4\}$, свободные позиции $\{p_2, p_4\}$;

$$r_1 = \{4 \ 0\} \text{ in } d_1 = \{1 \ 3\}, r_1 \times d_2 = 4 + 0 = 4$$

 $r_2 = \{2 \ 2\} \text{ in } d_3 = \{1 \ 1\}, r_2 \times d_3 = 2 + 2 = 4$
 $w(P) = 4 + 4 = 8$
 $r = \{1\} \text{ in } d = \{2\}, v(P) = r \times d = 2$
 $F(P) = 1 + 8 + 3 = 11$

7) Помещаем элемент e_2 в позицию p_4 . Размещены два элемента: e_1 в позиции p_1 и e_2 в позиции p_4 , $F(q) = r_{11}d_{24} = 2$

Неразмещенные элементы $\{e_3, e_4\}$, свободные позиции $\{p_2, p_3\}$;

$$r_1 = \{4 \ 0\} \text{ u } d_1 = \{1 \ 2\}, r_1 \times d_2 = 4 + 0 = 4$$

$$r_2 = \{2 \ 2\} \text{ in } d_4 = \{1 \ 2\}, r_2 \times d_3 = 2 + 4 = 6$$

$$w(P) = 6 + 4 = 10$$

$$r = \{1\}$$
 и $d = \{1\}$, $v(P) = r \times d = 1$

$$F(P) = 2 + 10 + 1 = 13$$

Назначаем элемент e_2 в позицию p_3

8) Помещаем элемент e_3 в позицию p_2 . Размещены три элемента: e_1 в позиции p_1 , e_2 в позиции p_3 и e_3 в позицию p_2 , $F(q) = r_{12}d_{13} + r_{13}d_{12} + r_{23}d_{32} = 6 + 8 + 2 = 16$ Неразмещенный элемент $\{e_4\}$, свободная позиция $\{p_4\}$;

$$r_1 = \{0\}$$
 и $d_1 = \{3\}$, $r_1 \times d_2 = 0$

$$r_2 = \{2\} \text{ u } d_3 = \{1\}, r_2 \times d_4 = 2$$

$$r_3 = \{1\} \text{ u } d_2 = \{2\}, r_2 \times d_3 = 2$$

$$w(P) = 0 + 2 + 2 = 4$$

Неразмещенный элемент один, v(P) = 0. F(P) = 16 + 4 = 20

9) Помещаем элемент e_3 в позицию p_4 . Размещены три элемента: e_1 в позиции p_1 , e_2 в позиции p_3 и e_3 в позицию p_2 , $F(q) = r_{12}d_{13} + r_{13}d_{12} + r_{23}d_{34} = 6 + 8 + 2 = 16$ Неразмещенный элемент $\{e_4\}$, свободная позиция $\{p_2\}$;

$$r_2 = \{2\}$$
 и $d_3 = \{1\}$, $r_2 \times d_4 = 2$

$$r_3 = \{1\}$$
 и $d_4 = \{2\}$, $r_2 \times d_3 = 2$

$$w(P) = 0 + 2 + 2 = 4$$

Неразмещенный элемент один, v(P) = 0. F(P) = 16 + 4 = 20

Для всех ячеек получается одно число. Из этого следует, что они равнозначны.

Назначаем элемент e_3 в позицию p_2 .

10) Неразмещенный элемент e_4 , свободная позиция p_2 . Размещены четыре элемента: e_1 в позиции p_1 , e_2 в позиции p_3 , e_3 в позицию p_4 и e_4 в позиции p_4 $F(q) = r_{12}d_{13} + r_{13}d_{12} + r_{14}d_{14} + r_{23}d_{32} + r_{34}d_{24} + r_{42}d_{43} = 6 + 4 + 0 + 2 + 2 + 2 = 16$

Назначаем элемент e_4 в позицию p_4

