SWCON253: Machine Learning

Lecture 06 Perceptron

Jinwoo Choi Assistant Professor CSE, Kyung Hee University

Contents

- o. (Recap) Extending Linear Regression for Binary Classification
- 1. Perceptron
- 2. Decision Boundary

References

- 패턴 인식 by 오일석, 기계 학습 by 오일석
- Intro to Deep Learning & Generative Models by Sebastian Raschka (http://pages.stat.wisc.edu/~sraschka/teaching/stat453-ss2020/)

(Recap.) Extending Linear Regression for Binary Classification

 \bullet For Binary classification, we can extend Linear regression by adding some Activation function τ ().

Linear Regression

- Examples of $\tau(z)$
 - ★ step function: hard threshold
 - * sigmoid function: soft threshold

<u>Linear Regression + Threshold function</u>

1. Perceptron

- 1. Model & Terminology
- 2. Learning Problem
- 3. Cost Function
- 4. Gradient
- 5. Learning Algorithm

Perceptron – Model & Terminology

- ◆ 퍼셉트론의 구조와 동작
 - 입력층의 i번째 노드는 특징 벡터 $\mathbf{x} = (x_1, x_2, \dots, x_d)^{\mathrm{T}}$ 의 i번째 요소 x_i 를 담당
 - 출력층은한 개의 노드
 - *i*번째 입력층 노드와 출력층을 연결하는 <mark>에지</mark>는 <mark>가중치</mark> w_i를 가짐
 - 해당하는 특징값과가중치를 곱한 결과를 모두 더하여 s를 구하고, \ge 성함수 τ 를 적용함

$$\tau(s) = \begin{cases} 1 & s \ge 0 \\ -1 & s < 0 \end{cases} \quad \text{if } \quad \text$$

(b) 계단함수를 활성함수 $\tau(s)$ 로 이용함

Perceptron – Example

♦ Logical OR Gate

Z ;	ズェ	4	,
8	Ð	٥	- (!) 🗀
ō	ì	i	•
i	P	Į.	•
Ł	ţ	3	•

2차원 특징 벡터로 표현되는 샘플을 4개 가진 훈련집합 $\mathbb{X} = \{\mathbf{x}_{\bullet}, \mathbf{x}_{\bullet}, \mathbf{x}_{\bullet}, \mathbf{x}_{\bullet}, \mathbf{x}_{\bullet}\}, \mathbb{Y} = \{y_{\bullet}, y_{\bullet}, y_{\bullet}, y_{\bullet}\}$ 를 생각하자. [그림 3-4(a)]는 이 데이터를 보여준다.

$$\mathbf{x}_{\bullet \bullet}^{\bullet \bullet \uparrow} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ y_{\bullet \bullet}^{\bullet \downarrow} = -1, \ \mathbf{x}_{\bullet}^{\bullet \bullet \downarrow} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ y_{\bullet}^{\bullet \bullet \downarrow} = 1, \ \mathbf{x}_{\bullet}^{\bullet \bullet \downarrow} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ y_{\bullet}^{\bullet \bullet \downarrow} = 1, \ \mathbf{x}_{\bullet}^{\bullet \bullet \downarrow} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ y_{\bullet \bullet}^{\bullet \bullet \uparrow} = 1$$

샘플 4개를 하나씩 입력하여 제대로 분류하는지 확인해 보자.

$$\begin{array}{llll} x_0^{(1)} : & s = -0.5 + 0 * 1.0 + 0 * 1.0 = -0.5, & \tau(-0.5) = -1 \\ x_0^{(1)} : & s = -0.5 + 1 * 1.0 + 0 * 1.0 = 0.5, & \tau(0.5) = 1 \\ x_0^{(1)} : & s = -0.5 + 0 * 1.0 + 1 * 1.0 = 0.5, & \tau(0.5) = 1 \\ x_0^{(1)} : & s = -0.5 + 1 * 1.0 + 1 * 1.0 = 1.5, & \tau(1.5) = 1 \end{array}$$

결국 [그림 3-4(b)]의 퍼셉트론은 샘플 4개를 모두 맞추었다. 이 퍼셉트론은 훈련집합을 100% 성능으로 분류한다고 말할 수 있다.

Notation

2차원 특징 벡터로 표현되는 샘플을 4개 가진 훈련집합 $\mathbb{X} = \{x_{e}^{(1)}, x_{g}^{(2)}, x_{e}^{(3)}, x_{e}^{(4)}, y_{e}^{(3)}, y_{e}^{(3)}, y_{e}^{(4)}, y_{e}^{(3)}, y_{e}^{(4)}\}$ 를 생각하자. [그림 3-4(a)]는 이 데이터를 보여준다.

$$\mathbf{x}_{\bullet}^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ y_{\bullet}^{(1)} = -1, \ \mathbf{x}_{\bullet}^{(2)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ y_{\bullet}^{(2)} = 1, \ \mathbf{x}_{\bullet}^{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ y_{\bullet}^{(3)} = 1, \ \mathbf{x}_{\bullet}^{(4)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ y_{\bullet}^{(4)} = 1$$

Perceptron – Learning Problem

- ◆ 학습문제
 - w_1 과 w_2 , w_0 이 어떤 값을 가져야 100% 옳게 분류할까?
 - 현실 세계는 d차원 공간에 수백~수만개의 샘플이 존재 ★ 예, MNIST는 784차원에 6만개 샘플

(a) AND 분류 문제

(b) Haberman survival 분류 문제

Perceptron – Cost Function

Cost Function

- Parameters (가중치): $\mathbf{w} = (w_0, w_1, w_2, \dots, w_d)^{\mathrm{T}}$
- Cost Function의 조건:
 - J(w) ≥ 0이다.
 - w가 최적이면, 즉 모든 샘플을 맞히면 J(w) = 0이다.
 - 틀리는 샘플이 많은 w일수록 J(w)는 큰 값을 가진다.
- Cost Function for Perceptron: 틀린 샘플에 대해서만 정기
 - ★ Y를 오분류된샘플의 집합이라할때,

(18年): (18年) 70 号 (18年) 70 号门电时代 (18年) 70 号 (18年) 70 号 (18年) 70 号 (18年) 70 号 (18年) 70 (18年) 7

Perceptron – Gradient

Gradient

$$\begin{split} J(\mathbf{w}) &= \sum_{\mathbf{x}_k \in Y} -y_k \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_k \right) \\ \frac{\partial J(\mathbf{w})}{\partial w_i} &= \sum_{\mathbf{x}_k \in Y} \frac{\partial (-y_k (w_0 x_{k0} + w_1 x_{k1} + \dots + w_i x_{ki} + \dots + w_d x_{kd}))}{\partial w_i} = \sum_{\mathbf{x}_k \in Y} -y_k x_{ki} \end{split}$$

$$\frac{\partial J(\mathbf{w})}{\partial w_i} = \sum_{\mathbf{x}_i \in Y} -y_k x_{ki}, \qquad i = 0, 1, \dots, d$$

$$w_i = w_i + \rho \sum_{\mathbf{x}_k \in Y} y_k x_{ki}, \qquad i = 0, 1, \dots, d$$

Perceptron – Learning Algorithms

Batch mode:

 ▶ 운련집합의 샘플을 모두 맞출(즉 Y = Ø) 때까지 세대epoch(라인 3~9)를 반복함

Perceptron – Learning Algorithms (cont'd)

Stochastic mode:

● 샘플 순서를 섞음. 틀린 샘플이 발생하면 즉시 갱신

<u>행렬 표기</u>

9. for
$$i = 0$$
 to d
10. $w_i = w_i + \rho y_i x_{ii}$

$$\rightarrow$$
 9. $\mathbf{w} = \mathbf{w} + \rho y_i \mathbf{x}_i$

[주의] 선형분리 불가능한 경우에는 무한 반복함

→ until(Y = Ø) 또는 until(quit)를 until(더 이상 개선이 없다면)으로 수정해야 함

→Batch Mode도 동일힘

Perceptron – Learning Algorithms (cont'd)

Stochastic Mini-batch mode:

2. Decision Boundary

Decision Boundary

- ◆ 결정 경계 (Decision Boundary)
 - The boundary in the **feature space** that separates the area of each class: $d(\mathbf{x}) = 0$
 - ★ 결정 경계는 전체 특징 공간을 두 부분공간으로 분할하는 분류기 역할
- Examples (for Binary Classifications)

Linear Decision Boundary

◆ Equation for Linear Decision Boundary (선형 결정 경계)

$$d(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + w_0 = 0$$

- \star class 1 if $d(\mathbf{x}) > 0$, class 2 if $d(\mathbf{x}) < 0$
- <u>Two types</u> of vector representation:

$$\star$$
 Let $\mathbf{x} = [x_0 \ x_1 \ ... x_d], \mathbf{w} = [w_0 \ w_1 \ ... w_d] : d(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = 0$

★ Let
$$\mathbf{x} = [x_1 ... x_d]$$
, $\mathbf{w} = [w_1 ... w_d]$: $d(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$

- **♦** Geometric Interpretation
 - $d(\mathbf{x}) = 0$ is a **hyperplane** in the feature space.

$$d(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$
 normal vector of the hyperplane.

★ *b* determines the *position* (i.e., the displacement from the origin) of the hyperplane.

w는 결정경계의 방향을 결정하고, b는 위치를 결정한다.

Linear

* रेष्ट्रेल्स भित्र्र Consider an linear equation:

d(x) (a1x1+ a1x1+ ... + anx = 0

d(x)=0x =0

Now, let & + x - x. (32% of).

ायुक् देखेल्य परेम्ब्र्यः d(x)=nT(x-20)=0

or ntx + b = 0 (b=-nt2)

KHU 17

Vision & Learning Lab

Vision & Learn Kyung Hee U

Linear Decision Boundary (cont'd)

♦ For Logistic Regression

$$h(\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{b}) \leq Th = 0.5$$
$$\implies \mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{b} \leq 0$$

$$\Rightarrow d(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$

For Perceptron

$$h(\mathbf{x}) = \tau (\mathbf{w}^{\mathrm{T}} \mathbf{x} + \mathbf{b}) \leq Th = 0$$
$$\implies \mathbf{w}^{\mathrm{T}} \mathbf{x} + \mathbf{b} \leq 0$$

$$\Rightarrow d(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$

Linear Decision Boundary (cont'd)

Example: Binary Classification using Linear Regression

$$\begin{array}{c} h_{\theta}(\mathbf{x}) = \underline{\theta}^T \mathbf{x} \geq 0 \Rightarrow y = 1 \\ \underline{\theta}^T \mathbf{x} < 0 \Rightarrow y = 0 \end{array} \right\} \qquad \begin{array}{c} h_{\theta}(\mathbf{x}) = \mathbf{0} + \mathbf{0} \cdot \mathbf{y}_1 + \mathbf{0} \cdot \mathbf{x}_2 = \underline{\theta}^T \mathbf{x} \\ \underline{\mathbf{x}} = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix} \quad \underline{\theta} : \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \\ \underline{\theta} = \begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix} \quad \vec{\partial} \quad \mathbf{y} = 5 \quad -1 \cdot \mathbf{x}_1 + \mathbf{0} \cdot \mathbf{x}_2 = \underbrace{5 - \mathbf{x}_1} \\ \mathbf{x} = \begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix} \quad \vec{\partial} \quad \mathbf{y} = 1 \quad (\mathbf{x}_1 \leq 5) \\ \mathbf{x} = \mathbf{y} = 0 \quad (\mathbf{y}_1 > 5) \end{array}$$

Perceptron – Quiz

◆ 아래 그림의 OR Gate를 Perceptron으로 구현하시오.

$$d(\mathbf{x}) = d(x_1, x_2) = w_1 x_1 + w_2 x_2 + w_0 = 0$$

• 결정 직선 구하기:

$$\frac{d(2) = 0 + ... \times - \times 1 + 0.5}{d(2) > 0}$$

$$\frac{(3 = 1) : d(2) > 0}{(3 = -1) : d(2) > 0}$$

$$\frac{(3 = -1) : d(2) > 0}{(3 = -1) : d(2) > 0}$$

$$\frac{(3 = -1) : d(2) > 0}{(3 = -1) : d(2) > 0}$$