- 1 import pandas as pd
- 1 from google.colab import drive
- 2 drive.mount('/content/drive')
- → Mounted at /content/drive
- 1 vr = pd.read_csv('/content/drive/MyDrive/VRImmersiondataset.csv')
- 1 vr.head()

→		headphones	width	height	fov	fps	stereopsis	antialiasing	textures
	0	1	1641.3370	911.8539	37	60	1	1	1
	1	1	1282.1180	712.2877	39	55	1	1	1
	2	1	1795.5310	997.5171	40	47	1	1	0
	3	2	838.4885	465.8270	44	48	0	0	1
	4	2	1924.7020	1069.2790	85	35	1	1	1

5 rows × 24 columns

1 # five number summary

2 vr.describe()

•	_	_
_	_	-
_	~	~
1		_

	headphones	width	height	fov	fps	stereopsis	anti
count	401.000000	401.000000	401.000000	401.000000	401.000000	401.000000	۷
mean	1.149626	1204.965531	669.425287	64.628429	37.264339	0.541147	
std	0.701823	574.094938	318.941619	20.599492	13.359077	0.498927	
min	0.000000	216.410400	120.228000	30.000000	15.000000	0.000000	
25%	1.000000	719.343100	399.635000	46.000000	25.000000	0.000000	
50%	1.000000	1198.628000	665.904200	64.000000	38.000000	1.000000	
75%	2.000000	1714.976000	952.764500	84.000000	49.000000	1.000000	
max	2.000000	2155.729000	1197.627000	99.000000	60.000000	1.000000	

8 rows × 24 columns

- 1 import matplotlib.pyplot as plt
- 2 import seaborn as sns
- 3 import numpy as np
- 1 import cufflinks as cf
- 2 cf.go_offline()
- 3 cf.set_config_file(offline=False, world_readable=True)

- 1 def enable_plotly_in_cell():
- 2 import IPython
- 3 from plotly.offline import init_notebook_mode
- 4 display(IPython.core.display.HTML('''<script</pre>
- 5 src="/static/components/requirejs/require.js"></script>'''))
- 6 init_notebook_mode(connected=False)

1 vr.columns

```
Index(['headphones', 'width', 'height', 'fov', 'fps', 'stereopsis',
            'antialiasing', 'textures', 'lightMode', 'saturation', 'brightness',
            'contrast', 'sharpness', 'shadowStrength', 'reflections', 'modelsDetail', 'dof', 'particles', 'locomotion', 'ambientSound',
            'reverbZone', 'spatialSound', 'time', 'totalImmersion'],
           dtvpe='object')
1 sns.displot(vr['totalImmersion'],
2
                rug = True,
3
                rug kws={'color':'r','alpha':0.5,'height':0.07},
4
                alpha = 0.5
5
6 plt.title('Total Immersion Histogram')
7 plt.xlabel('Total Immersion', fontsize = 12)
8 plt.ylabel('Frequency', fontsize=12)
10 # clean up final results
11 sns.despine(trim = True, offset = 2);
```

\rightarrow

Total Immersion Histogram

 $\overline{\Rightarrow}$

Total Time Histogram


```
1 enable_plotly_in_cell()
2 vr.iplot(kind='scatter',
3
              x='time',
4
              y='totalImmersion',
5
              bestfit=True,
              bestfit_colors=['red'],
6
7
              mode='markers',
              color=['blue'],
8
              title='Time vs. Immersion',
9
              xTitle='Time (Seconds)',
10
              yTitle='Immersion')
11
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: Futur pandas.util.testing is deprecated. Use the functions in the public API at pand

Time vs. Immersion


```
1 enable_plotly_in_cell()
2 vr.iplot(kind='scatter',
               x='width',
 3
               y='totalImmersion',
 4
 5
               bestfit=True,
               bestfit_colors=['red'],
 6
               mode='markers',
 7
               color=['blue'],
 8
               title='Width vs. Immersion',
 9
               xTitle='Width',
10
               yTitle='Immersion')
11
\overline{\Rightarrow}
```

Width vs. Immersion


```
1 enable_plotly_in_cell()
2 vr.iplot(kind='scatter',
               x='height',
 3
               y='totalImmersion',
 4
 5
               bestfit=True,
               bestfit_colors=['red'],
 6
 7
               mode='markers',
               color=['blue'],
 8
               title='Height vs. Immersion',
 9
               xTitle='Height',
10
               yTitle='Immersion')
11
\overline{\Rightarrow}
```

Height vs. Immersion


```
1 enable_plotly_in_cell()
2 vr.iplot(kind='scatter',
               x='fov',
 3
               y='totalImmersion',
 4
 5
               bestfit=True,
               bestfit_colors=['red'],
 6
               mode='markers',
 7
               color=['blue'],
 8
               title='Fov vs. Immersion',
 9
               xTitle='Fov',
10
               yTitle='Immersion')
11
\overline{\Rightarrow}
```

Fov vs. Immersion


```
1 enable_plotly_in_cell()
2 vr.iplot(kind='scatter',
3
              x='fps',
              y='totalImmersion',
4
5
              bestfit=True,
              bestfit_colors=['red'],
6
7
              mode='markers',
              color=['blue'],
8
              title='Fps vs. Immersion',
9
              xTitle='Fps',
10
              yTitle='Immersion')
11
\overline{2}
```

Fps vs. Immersion


```
1 # Compare several distributions by using boxplots
2
3 fig, axs = plt.subplots(figsize=(10, 10))
```

```
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='stereopsis', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Stereopsis', fontsize=18)
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Stereopsis and Immersion Comparison', ha='center', fontsize=20)
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```


Stereopsis and Immersion Comparison


```
1 # Compare several distributions by using boxplots
2
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='antialiasing', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Antialiasing', fontsize=18)
```

```
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Antialiasing and Immersion Comparison', ha='center', fontsize=2
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```

$\overline{\mathbf{T}}$

Antialiasing and Immersion Comparison

1 # Compare several distributions by using boxplots 2

```
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='textures', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Textures', fontsize=18)
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Textures and Immersion Comparison', ha='center', fontsize=20)
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```


Textures and Immersion Comparison


```
1 # Compare several distributions by using boxplots
2
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='lightMode', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Illumination', fontsize=18)
```

```
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Illumination and Immersion Comparison', ha='center', fontsize=20
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```

$\overline{\mathbf{T}}$

Illumination and Immersion Comparison


```
1 enable_plotly_in_cell()
2 vr.iplot(kind='scatter',
              x='saturation',
3
              y='totalImmersion',
4
5
              bestfit=True,
              bestfit_colors=['red'],
6
              mode='markers',
7
              color=['blue'],
8
              title='Saturation vs. Immersion',
9
              xTitle='Saturation',
10
              yTitle='Immersion')
11
```

$\overline{\Rightarrow}$

Saturation vs. Immersion


```
1 enable_plotly_in_cell()
2 vr.iplot(kind='scatter',
               x='brightness',
 3
               y='totalImmersion',
 4
 5
               bestfit=True,
               bestfit_colors=['red'],
 6
 7
               mode='markers',
               color=['blue'],
 8
               title='Brightness vs. Immersion',
 9
               xTitle='Brightness',
10
               yTitle='Immersion')
11
\overline{\Rightarrow}
```

Brightness vs. Immersion


```
1 enable_plotly_in_cell()
2 vr.iplot(kind='scatter',
               x='contrast',
 3
               y='totalImmersion',
 4
 5
               bestfit=True,
               bestfit_colors=['red'],
 6
               mode='markers',
 7
               color=['blue'],
 8
               title='Contrast vs. Immersion',
 9
               xTitle='Contrast',
10
               yTitle='Immersion')
11
\overline{\Rightarrow}
```

Contrast vs. Immersion


```
1 enable_plotly_in_cell()
2 vr.iplot(kind='scatter',
              x='sharpness',
3
              y='totalImmersion',
4
5
              bestfit=True,
              bestfit_colors=['red'],
6
              mode='markers',
7
              color=['blue'],
8
              title='Sharpness vs. Immersion',
9
              xTitle='Sharpness',
10
              yTitle='Immersion')
11
```

→

Sharpness vs. Immersion


```
1 enable_plotly_in_cell()
2 vr.iplot(kind='scatter',
3
              x='shadowStrength',
              y='totalImmersion',
4
5
              bestfit=True,
6
              bestfit_colors=['red'],
7
              mode='markers',
              color=['blue'],
8
              title='Shadows vs. Immersion',
9
              xTitle='Shadows',
10
              yTitle='Immersion')
11
\overline{2}
```

Shadows vs. Immersion


```
1 # Compare several distributions by using boxplots
2
3 fig, axs = plt.subplots(figsize=(10, 10))
```

```
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='reflections', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Reflections', fontsize=18)
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Reflections and Immersion Comparison', ha='center', fontsize=20
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```


Reflections and Immersion Comparison


```
1 # Compare several distributions by using boxplots
2
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='modelsDetail', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('3D Models Detail', fontsize=18)
```

```
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('3D Models Detail and Immersion Comparison', ha='center', fontsi
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```

$\overline{2}$

3D Models Detail and Immersion Comparison

1 # Compare several distributions by using boxplots

2

```
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='dof', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Depth-of-Field', fontsize=18)
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Depth of Field and Immersion Comparison', ha='center', fontsize:
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```


Depth of Field and Immersion Comparison


```
1 # Compare several distributions by using boxplots
2
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='particles', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Particles', fontsize=18)
```

```
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Particles and Immersion Comparison', ha='center', fontsize=20)
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```

$\overline{2}$

Particles and Immersion Comparison

1 # Compare several distributions by using boxplots

2

```
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='locomotion', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Locomotion', fontsize=18)
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Locomotion and Immersion Comparison', ha='center', fontsize=20)
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```


Locomotion and Immersion Comparison


```
1 # Compare several distributions by using boxplots
2
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='headphones', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Sound System', fontsize=18)
```

```
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Sound System and Immersion Comparison', ha='center', fontsize=2
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```

$\overline{2}$

Sound System and Immersion Comparison

1 # Compare several distributions by using boxplots 2

```
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='ambientSound', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Ambient Sound', fontsize=18)
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Ambient Sound and Immersion Comparison', ha='center', fontsize=15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```


Ambient Sound and Immersion Comparison


```
1 # Compare several distributions by using boxplots
2
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='reverbZone', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('Reverberation', fontsize=18)
```

```
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('Reverberation and Immersion Comparison', ha='center', fontsize=15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```

$\overline{2}$

Reverberation and Immersion Comparison

1 # Compare several distributions by using boxplots

```
3 fig, axs = plt.subplots(figsize=(10, 10))
4
5 # Boxplot
6 sns.boxplot(ax = axs, x='spatialSound', y='totalImmersion', data=vr)
7
8 # Define x-axis limits and label
9 axs.set_ylim(-2, 125)
10 axs.set_xlabel('3D Spatial Sound', fontsize=18)
11 axs.set_ylabel('Immersion', fontsize=18)
12
13 # Title each plot
14 axs.set_title('3D Spatial Sound and Immersion Comparison', ha='center', fontsi
15
16 # Clean up each plot
17 sns.despine(ax=axs, offset=2, trim=True)
```


3D Spatial Sound and Immersion Comparison

Locomotion and Sound System

```
1 # create the FacetGrid
2 facet = sns.FacetGrid(vr, col='headphones', row = 'locomotion', size = 5, hue=
3 facet.map(sns.regplot, 'fov', 'totalImmersion');
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning:

The `size` parameter has been renamed to `height`; please update your code.

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='headphones', row = 'locomotion', size = 5, hue=

The `size` parameter has been renamed to `height`; please update your code.

3 facet.map(sns.regplot, 'fps', 'totalImmersion');

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning:

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='headphones', row = 'locomotion', size = 5, hue=
- 3 facet.map(sns.regplot, 'time', 'totalImmersion');
- /usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning:
 The `size` parameter has been renamed to `height`; please update your code.

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='headphones', row = 'locomotion', size = 5, hue=
- 3 facet.map(sns.regplot, 'width', 'totalImmersion');

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='headphones', row = 'locomotion', size = 5, hue=
- 3 facet.map(sns.regplot, 'height', 'totalImmersion');

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='headphones', row = 'locomotion', size = 5, hue=
- 3 facet.map(sns.regplot, 'saturation', 'totalImmersion');

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='headphones', row = 'locomotion', size = 5, hue=
- 3 facet.map(sns.regplot, 'brightness', 'totalImmersion');

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='headphones', row = 'locomotion', size = 5, hue=
- 3 facet.map(sns.regplot, 'contrast', 'totalImmersion');

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning:

The `size` parameter has been renamed to `height`; please update your code.

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='headphones', row = 'locomotion', size = 5, hue=
- 3 facet.map(sns.regplot, 'sharpness', 'totalImmersion');

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='headphones', row = 'locomotion', size = 5, hue=

3 facet.map(sns.regplot, 'shadowStrength', 'totalImmersion');

Locomotion and Textures

```
1 # create the FacetGrid
2 facet = sns.FacetGrid(vr, col='textures', row = 'locomotion', size = 5, hue='textures');
3 facet.map(sns.regplot, 'fov', 'totalImmersion');
```


- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='textures', row = 'locomotion', size = 5, hue='textures')

3 facet.map(sns.regplot, 'fps', 'totalImmersion');

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='textures', row = 'locomotion', size = 5, hue='textures')
- 3 facet.map(sns.regplot, 'time', 'totalImmersion');

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning:

The `size` parameter has been renamed to `height`; please update your code.

Sound System and Textures

```
1 # create the FacetGrid
2 facet = sns.FacetGrid(vr, col='textures', row = 'headphones', size = 5, hue='textures')
```

3 facet.map(sns.regplot, 'fov', 'totalImmersion');

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='textures', row = 'headphones', size = 5, hue='textures')
- 3 facet.map(sns.regplot, 'fps', 'totalImmersion');

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning:

The `size` parameter has been renamed to `height`; please update your code.

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='textures', row = 'headphones', size = 5, hue='textures')
- 3 facet.map(sns.regplot, 'time', 'totalImmersion');

- 1 # create the FacetGrid
- 2 facet = sns.FacetGrid(vr, col='textures', row = 'headphones', size = 5, hue='textures')
- 3 facet.map(sns.regplot, 'width', 'totalImmersion');

headphones = 0 | textures = 0 | headphones = 0 | textures = 1

