DISCRETE MATHEMATICS

Assignment-1

1	Check whether the following are tautologies or contradiction or contingency
	$(i) (((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
	(ii) $(pv(q \land r)) \leftrightarrow ((p \lor r) \land (p \lor q))$
2	Prove that $\neg(p\lor(\neg p\land q))$ and $\neg p\land \neg q$ are equivalent
3	Show that R \lor S follows logically from the premises C \lor D, (C \lor D) $\to \neg$ H , \neg H \to (A $\land \neg$ B) and (A $\land \neg$ B) \to R \lor S
4	Find the PDNF and PCNF of the following
	$(i). (\neg P \rightarrow R) \land (Q \leftrightarrow P)$
	(ii). $P \rightarrow ((P \rightarrow Q) \land \neg (\neg Q \lor \neg P))$
5	Test the validity of the following argument
	"If you work hard, you will pass the exam. You did not pass. Therefore you did not work hard"
6	Prove that the following argument is valid
	"All men are fallible. All kings are men. Therefore, all kings are fallible."
7	Explain the Warshall's algorithm and find the transitive closure of the relation $R=\{(1,4),(2,1),(2,3),(3,1),(3,4),(4,3)\}$ on $A=\{1,2,3,4\}$ using the same.
8	Draw the Hasse diagram representing the partial ordering $\{(a,b) a \text{ divides } b\}$ on $\{1,2,3,4,6,8,12\}$.
9	If R be a relation in the set of integers Z defined by
	$R = \{(x, y) : x \in Z, y \in Z, (x - y) \text{ is divisible by 6}\}$. Then prove that R is an equivalence relation.
10	List the ordered pairs in the relation on $\{1,2,3,4\}$ corresponding to the following matrix $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix},$ Also draw the digraph representing this relation. Use the graph to find if the relation is reflexive ,symmetric ,transitive.

11	The relation matrices of two relations R and S from A to B is given below
	$\boldsymbol{M}_{R} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \ \boldsymbol{M}_{S} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
	Determine the relation matrices of $R \cup S$, $R \cap S$, R^c , \overline{S} where A={1,2,3}, B={1,2,3,4}
12	Let the recurrence relation be $a_n = 2^n + 5.3^n$.
	(i) Find first five terms of the recurrence relation.
	(ii) Show that $a_2=5a_1-6a_0$, $a_3=5a_2-6a_1$, $a_4=5a_3-6a_2$
13	Find the first five terms of $a_n = na_{n-1} + n^2a_{n-2}$, $a_0 = 1$, $a_1 = 1$