A MINI PROJECT REPORT On Multiple Regression and Model Building

Submitted by

Name: Anujay Jain
Roll No: 161500106

Name: Nihit Jain
Roll No: 161500350

Name: Utkarsh Rai Roll No: 161500599

> To Mr. Rahul Pradhan

Department of Computer Engineering & Applications

Institute of Engineering & Technology

GLA University Mathura- 281406, INDIA December, 2018

Department of Computer Engineering and Applications GLA University, Mathura

17 km. Stone NH#2, Mathura-Delhi Road, P.O. – Chaumuha,

Mathura – 281406

Declaration

We hereby declare that the work which is being presented in the Mini Project "Multiple Regression and Model Building", in partial fulfillment of the requirements for Mini-Project LAB, is an authentic record of our own work carried under the supervision of Mr. Rahul Pradhan, Assistant Professor, GLA University, Mathura.

Anujay Jain
Sign:
Nihit Jain
Sign:
Utkarsh Rai
Sign:

Department of Computer Engineering and Applications GLA University, Mathura

17 km. Stone NH#2, Mathura-Delhi Road, P.O. – Chaumuha, Mathura – 281406

CERTIFICATE

This is to certify that the project entitled "Multiple Regression and Model Building" carried out in Mini Project – I Lab is a bonafide work done by Anujay Jain (161500106), Nihit Jain (161500350) and Utkarsh Rai (161500599) and is submitted in partial fulfillment of the requirements for the award of the degree Bachelor of Technology (Computer Science & Engineering).

Signature of Supervisor:	
Name of Supervisor:	
Date:	

ACKNOWLEDGEMENT

It gives us a great sense of pleasure to present the report of the B. Tech Mini Project undertaken during

B. Tech. Third Year. This project in itself is an acknowledgement to the inspiration, drive and technical

assistance contributed to it by many individuals. This project would never have seen the light of the day

without the help and guidance that we have received.

Our heartiest thanks to Dr. (Prof). Anand Singh Jalal, Head of Dept., Department of CEA for providing

us with an encouraging platform to develop this project, which thus helped us in shaping our abilities

towards a constructive goal.

We owe special debt of gratitude to Mr. Rahul Pradhan, Assistant Professor Department of CEA, for his

constant support and guidance throughout the course of our work. His sincerity, thoroughness and

perseverance have been a constant source of inspiration for us. He has showered us with all his

extensively experienced ideas and insightful comments at virtually all stages of the project & has also

taught us about the latest industry-oriented technologies.

We also do not like to miss the opportunity to acknowledge the contribution of all faculty members of the

department for their kind guidance and cooperation during the development of our project. Last but not

the least, we acknowledge our friends for their contribution in the completion of the project.

Anujay Jain

Nihit Jain

Utkarsh Rai

Abstract

In this project, we wanted to analyse on Car Crash dataset and predict Head Injury using Multiple Regression. In our project, we first build a regression model considering all other variables as predictors. Thus, it results in errors due to multicollinearity, between the variables. Thus, in our next model, we eradicate multicollinearity using Backward Elimination and Stepwise Elimination. We calculate and find that our model is better from the previous one and the related values say it all. We, find from the dataset, the indicator variables and also the variables that are superfluous. The project is quite accurate in its predictions and results, and can be used for future references. In a world, where AI is in trends, it will rule the world in future, cars will be automated and driverless. In such a scenario, these results will be influential and beneficial for making such cars.

Table of Contents Declaration ii Certificate iii Acknowledgments iv **Abstract** v **Table of Contents** vi 1. Business understanding 1 2. Description 2 3. Project Implementation 4 4. Conclusion 12

13

5. Appendix

1. Business Understanding

A crash test is a form of destructive testing usually performed in order to ensure safe design standards in crashworthiness and crash compatibility for various modes of transportation (automobiles) or related systems and components.

1.1 Motivation

The main motivation for us to go for this project was that a lot of accidents happen due to various reasons like not following the rules, increase in traffic, failure of a certain model of a car etc., it is not possible to completely stop these accidents but if we can find out what causes the most dangerous type of injury i.e. head injury then we can minimize the overall injury caused in an accident and that is our goal.

1.2 Scope

The scope of our analysis is that it can be used to reduce the severity of the injury caused in a car accident. This is so, as based on our analysis we can find out those attributes which are most significant for the injury thus helping us to focus on only those attributes rather than wasting our effort and time on other unrelated areas. Thus it will help as follows:

- 1. Redefine the criteria for passing of the car before production
- 2. Indirectly reduce medical expenditure of the country.
- 3. Reduce fatality rate

1.3 Drawbacks in existing system

- These days more importance is given to shape, color and speed of the car than their safety features.
- The test a car need to pass are now outdated and need to be revised based on current advancement in designs of cars.

2. Description

- Data collected from online collaborative repository of Car Assessment Program
- A sample data is recorded in a file Crash.dat

2.2 Project Plan

2.2.1 Objective

- Build the best multiple regression model that can predict head injury severity, using all the other variables as the predictors.
- Determine which variables must be made into indicator variables.
- Determine which variables might be superfluous.
- Build two parallel models, one where you account for multicollinearity, and another where you don't consider multicollinearity. For which purpose may each of these models be used?
- Continuing with the Crash data set, combine the four injury measurement variables into a single variable, defending your choice of combination function.
 - Build the best multiple regression model for the purpose of predicting injury severity, using all the variables as the predictors.
 - Build two parallel models, one where you account for multicollinearity, and another where you don't consider multicollinearity. For which purpose may each of these models be used?

2.2.2 Goals

- To help the lecturers, improve and organize the process of track and manage student attendance.
- Provides a valuable attendance service for both teachers and students.
- Reduce manual process errors by provide automated and a reliable attendance system.
- Increase privacy and security which student cannot present him or his friend while they are not.
- Produce monthly reports for lecturers.
- Flexibility, Lectures capability of editing attendance records.

3. Project Implementation

It includes the steps taken to implement the project.

3.1 Understanding the Dataset

MAKE	MODEL	CARID	CARID_YR	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	DRIV_PAS	PROTECT	DOORS	YEAR	WEIGHT	SIZE	SIZE2	PROTECT2
Acura	Integra	Acura Integra	Acura Integra 87	599	35	791	262	Driver	manual belts	2	87	2350	lt	2	
Acura	Integra RS	Acura Integra RS	Acura Integra RS 90	585		1545	1301	Driver	Motorized belts	4	90	2490	lt	2	7
Acura	Legend LS	Acura Legend LS	Acura Legend LS 88	435	50	926	708	Driver	d airbag	4	88	3280	med	3	1
Audi	80	Audi 80	Audi 80 89	600	49	168	1871	Driver	manual belts	4	89	2790	comp	1	1
Audi	100	Audi 100	Audi 100 89	185	35	998	894	Driver	d airbag	4	89	3100	med	3	1
BMW	325i	BMW 325i	BMW 325i 90	1036	56	865		Driver	d airbag	2	90	2862	comp	1	4
Buick	Century	Buick Century	Buick Century 91	815	47	1340	315	Driver	passive belts	4	91	2992	comp	1	
Buick	Elect. Park Ave	Buick Elect. Park Ave	Buick Elect. Park Ave 88	1467	54	712	1366	Driver	manual belts	4	88	3360	med	3	
Buick	Le Sabre	Buick Le Sabre	Buick Le Sabre 90		35	1049	908	Driver	passive belts	2	90	3240	med	3	
Buick	Regal	Buick Regal	Buick Regal 88	880	50	996	642	Driver	passive belts	2	88	3210	med	3	ş
Cadillac	De Ville	Cadillac De Ville	Cadillac De Ville 90	423	39	541	1629	Driver	d airbag	4	90	3500	hev	4	4
Chevrolet	Astro	Chevrolet Astro	Chevrolet Astro 88	1603	72	1572	700	Driver	manual belts	2	88	3787	van	6	
Chevrolet	Astro	Chevrolet Astro	Chevrolet Astro 89	1849	64	2737	1043	Driver	manual belts	5	89	4002	van	6	
Chevrolet	Beretta	Chevrolet Beretta	Chevrolet Beretta 91	343	37	659	523	Driver	d airbag	2	91	2671	comp	1	1
Chevrolet	Beretta GT	Chevrolet Beretta GT	Chevrolet Beretta GT 88	864	50	1692	1052	Driver	passive belts	2	88	2890	comp	1	
Chevrolet	Camaro	Chevrolet Camaro	Chevrolet Camaro 87	733	39	736	353	Driver	manual belts	2	87	3070	med	3	
Chevrolet	Camaro	Chevrolet Camaro	Chevrolet Camaro 91	585	39	717	150	Driver	d airbag	2	91	3191	med	3	2
Chevrolet	Caprice	Chevrolet Caprice	Chevrolet Caprice 89	1328	64	406	493	Driver	manual belts	4	89	3693	hev	4	
Chevrolet	Caprice	Chevrolet Caprice	Chevrolet Caprice 91	533	54	1529	613	Driver	d airbag	4	91	3990	hev	4	4
Chevrolet	Cavalier	Chevrolet Cavalier	Chevrolet Cavalier 90	770	49	775	531	Driver	passive belts	4	90	2540	comp	1	

The above image is a snippet of the dataset on which this project is done. It has 16 columns and 352 rows, i.e. there are 352 records each having 16 variables.

3.2 Describe data

The description of the column is as follows:

- MAKE It tells the company of the car.
- MODEL It tells the model of the car.
- CARID It is the unique name by which we can know the company and the model of the company. It uniquely identifies a certain type of car from another.

- CARID_YR It also contains the CARID, but along with it also tells the year in which it was released.
- HEAD_INJ Number of head injuries in an accident in a certain type of car.
- CHEST_IN Number of chest injuries in an accident in a certain type of car.
- LLEG_INJ Number of injuries in left leg in an accident in a certain type of car.
- RLEG_INJ Number of injuries in right leg in an accident in a certain type of car.
- DRIV_PAS Whether the passenger got hurt or the driver.
- PROTECT What type of protection was available in the vehicle.
- DOORS Number of doors in the vehicle.
- YEAR In what year the car was launched.
- WEIGHT Tells the weight of the car.
- SIZE Categorize the cars by their size.
- SIZE2 Size in numeric value for the category of size to which the car belongs.
- PROTECT2 Numeric value for the protection in the car.

3.3 Data cleaning

The data which is obtained may need to be processed before it can be actually used, like there may be some values missing which need to be filled otherwise they will cause problem when doing the analyses on the data.

In the above image we can see that there are some missing values so we need to fill them before we do anything else.

3.4 Data Insights

Here are certain insights of the data which may help in analyses:

1. First five rows of the dataset

	MAKE	MODEL	CARID	CARID_YR	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	DRIV_PAS	PROTECT	DOORS	YEAR	WEIGHT	SIZE	SIZE2	PR
0	Acura	Integra	Acura Integra	Acura Integra 87	599	35	791	262	Driver	manual belts	2	87	2350	It	2	1
1	Acura	Integra RS	Acura Integra RS	Acura Integra RS 90	585		1545	1301	Driver	Motorized belts	4	90	2490	It	2	2
2	Acura	Legend LS	Acura Legend LS	Acura Legend LS 88	435	50	926	708	Driver	d airbag	4	88	3280	med	3	4
3	Audi	80	Audi 80	Audi 80 89	600	49	168	1871	Driver	manual belts	4	89	2790	comp	1	1
4	Audi	100	Audi 100	Audi 100 89	185	35	998	894	Driver	d airbag	4	89	3100	med	3	4

2. Summary of the dataset after preprocessing

	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	DOORS	YEAR	WEIGHT	SIZE2	PROTECT2
count	338.000000	338.000000	338.000000	338.000000	338.000000	338.000000	338.000000	338.000000	338.000000
mean	900.568047	48.523669	1058.073964	740.180473	3.130178	88.881657	2902.917160	3.553254	1.896450
std	465.049823	9.556689	542.827741	424.225893	0.888890	1.398671	592.878968	2.416279	1.159883
min	157.000000	31.000000	120.000000	89.000000	2.000000	87.000000	1590.000000	1.000000	1.000000
25%	583.000000	42.000000	691.750000	450.000000	2.000000	88.000000	2465.000000	2.000000	1.000000
50%	790.500000	47.000000	1012.500000	656.500000	3.000000	89.000000	2845.000000	3.000000	1.000000
75%	1069.500000	54.000000	1365.500000	943.500000	4.000000	90.000000	3284.000000	6.000000	3.000000
max	3665.000000	97.000000	3347.000000	2856.000000	4.000000	91.000000	5103.000000	8.000000	4.000000

3. Pairplot of significant variables

4. OLS Regression Results after considering all variables as predictors

OLS Regression Results

Dep. Variable:	HEAD_INJ	R-squared:	0.390
Model:	OLS	Adj. R-squared:	0.375
Method:	Least Squares	F-statistic:	26.28
Date:	Fri, 14 Dec 2018	Prob (F-statistic):	2.35e-31
Time:	02:06:40	Log-Likelihood:	-2471.6
No. Observations:	338	AIC:	4961.
Df Residuals:	329	BIC:	4996.
Df Model:	8		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
intercept	1889.2188	1372.098	1.377	0.169	-809.973	4588.411
CHEST_IN	25.2415	2.304	10.955	0.000	20.709	29.774
LLEG_INJ	-0.0203	0.039	-0.518	0.605	-0.097	0.057
RLEG_INJ	-0.0194	0.050	-0.390	0.697	-0.117	0.078
DOORS	-16.5654	24.189	-0.685	0.494	-64.149	31.019
YEAR	-24.9043	15.856	-1.571	0.117	-56.095	6.287
WEIGHT	0.0682	0.042	1.630	0.104	-0.014	0.150
SIZE2	8.0180	11.164	0.718	0.473	-13.943	29.979
PROTECT2	-73.1042	21.115	-3.462	0.001	-114.641	-31.567

Omnibus:	88.562	Durbin-Watson:	1.770
Prob(Omnibus):	0.000	Jarque-Bera (JB):	229.007
Skew:	1.240	Prob(JB):	1.87e-50
Kurtosis:	6.180	Cond. No.	2.22e+05

5. Which company make had highest head injury count

	MAKE	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	DOORS	YEAR	WEIGHT	SIZE2	PROTECT2	intercept
5	Chevrolet	41903	1980	51539	23507	116	3386	129905	171	72	38

6. Which company make had lowest head injury count

	MAKE	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	DOORS	YEAR	WEIGHT	SIZE2	PROTECT2	intercept
4	Cadillac	423	39	541	1629	4	90	3500	4	4	1

7. Which year car make had the highest head injury

	YEAR	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	DOORS	WEIGHT	SIZE2	PROTECT2	intercept
0	87	70044	3479	65088	46651	212	193924	245	115	73

8. Which year car make had the lowest head injury

	YEAR	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	DOORS	WEIGHT	SIZE2	PROTECT2	intercept
4	91	46416	2907	66819	46660	196	171189	181	155	59

9. Which types of protection have highest influence on head injury

	PROTECT2	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	DOORS	YEAR	WEIGHT	SIZE2	intercept
0	1	197512	9495	181948	120332	582	16884	559452	885	191

10. Which types of protection have least influence on head injury

	PROTECT2	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	DOORS	YEAR	WEIGHT	SIZE2	intercept
1	2	34358	2191	59704	49825	156	4141	128480	89	46

11. Significance of doors on head injury.

	DOORS	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	YEAR	WEIGHT	SIZE2	PROTECT2	intercept
2	4	136752	7759	169763	123737	14087	462894	426	341	158

Multiple Regression And Model Building

12. Driver had more injury or passenger (line graph plot of driver and passenger based on various factors)

	DRIV_PAS	HEAD_INJ	CHEST_IN	LLEG_INJ	RLEG_INJ	DOORS	YEAR	WEIGHT	SIZE2	PROTECT2	intercept
0	Driver	973.298851	51.712644	1010.316092	801.867816	3.143678	88.919540	2913.109195	3.551724	1.919540	1.0
1	Passen	823.402439	45.140244	1108.743902	674.731707	3.115854	88.841463	2892.103659	3.554878	1.871951	1.0

Multiple Regression And Model Building

4. Conclusion

The analysis help to predict these things:

- I. Head injury based on all other variables
- II.Head injury based on all other variables when coliniarity is taken in to consideration.
- III. Total injury based on all other variables
- IV. Total injury based on all other variables when coliniarity is taken in to consideration.
- V.The indicator variables are MAKE and DRIV_PAS
- VI. The superfluous variable is CHEST_INJ

5. Appendix

```
#Read the dataset
```

```
ds=read.csv("F:/crash-dat-analysis-master/crash-dat-analysis-master/Crash.csv",sep = '\t')
```

View(ds)

#Data cleaning

```
ds$CHEST_IN[is.na(ds$CHEST_IN)]<-mean(ds$CHEST_IN,na.rm=TRUE)
ds$HEAD_INJ[is.na(ds$HEAD_IN)]<-mean(ds$HEAD_IN,na.rm=TRUE)
ds$LLEG_INJ[is.na(ds$LLEG_IN)]<-mean(ds$LLEG_IN,na.rm=TRUE)
ds$RLEG_INJ[is.na(ds$RLEG_IN)]<-mean(ds$RLEG_IN,na.rm=TRUE)
```

ds\$DOORS=as.numeric(ds\$DOORS)

```
ds$DOORS[is.na(ds$DOORS)]<-mean(ds$DOORS,na.rm=TRUE)
ds$WEIGHT[is.na(ds$WEIGHT)]<-mean(ds$WEIGHT,na.rm=TRUE)
ds$SIZE2[is.na(ds$SIZE2)]<-mean(ds$SIZE2,na.rm=TRUE)
ds$PROTECT2[is.na(ds$PROTECT2)]<-mean(ds$PROTECT2,na.rm=TRUE)
```

#ds\$SIZE2=as.numeric(ds\$SIZE2)

#Indicator variables

```
Multiple Regression And Model Building
```

```
ds$DRIV_PAS=factor(ds$DRIV_PAS,
levels=c('Driver','Passen'),
labels=c(1,2))
```

#Data spliting in training set and validation set

ind=sample(2,nrow(ds),replace=TRUE,prob = c(0.8,0.2))

#traing set made of 80% of the data

tdata=ds[ind==1,]

#validation set made of 20% of the data

vdata=ds[ind==2,]

#Multiple regression

#regression model using all the variables

result1=lm(HEAD_INJ~CHEST_IN+MAKE+LLEG_INJ+RLEG_INJ+DRIV_PAS+DOORS+YEAR+WEIGHT+SIZE2+PROTECT2,tdata)

#for all variables

y_pred=predict(result1,newdata = vdata)

#Using backward elimination to get the best regression model

step(result1, direction = "backward")

#based on backward elimination best model is:

```
result1=lm(formula = HEAD_INJ ~ CHEST_IN + DOORS + WEIGHT + PROTECT2,
data = tdata)
y_pred=predict(result1,newdata = vdata)
```

View(y_pred)

#creating a new column which is based on all the four type of injury

 $ds\$TOTAL_INJ = ds\$HEAD_INJ + ds\$CHEST_IN + ds\$LLEG_INJ + ds\$RLEG_INJ + ds*RLEG_INJ +$

#Data spliting in training set and validation set

ind=sample(2,nrow(ds),replace=TRUE,prob = c(0.8,0.2))

#traing set made of 80% of the data

tdata=ds[ind==1,]

#validation set made of 20% of the data

vdata=ds[ind==2,]

#Multiple regression

#regression model using all the variables

result1=lm(TOTAL_INJ~MAKE+DRIV_PAS+DOORS+YEAR+WEIGHT+SIZE2+PROTECT2,tdata)

#for all variables

y_pred=predict(result1,newdata = vdata)

#Using backward elimination to get the best regression model

step(result1, direction = "backward")

#based on backward elimination best model is:

result1=lm(formula = TOTAL_INJ ~ MAKE + DRIV_PAS + WEIGHT, data = tdata)
y_pred=predict(result1,newdata = vdata)
View(y_pred)