Problem Set 1: Discrete-Choice Schooling

September, 2025

Data and setup

We have 10000 households choosing among 5 schools ($N \times J = 50{,}000$ rows). Utilities follow

$$u_{ij} = \beta_1 \operatorname{test}_j + \beta_2 \operatorname{sports}_j - \alpha d_{ij} + \xi_j + \varepsilon_{ij}, \quad \varepsilon_{ij} \text{ i.i.d. Gumbel.}$$

Identification in a single "market": school-level regressors (test, sports) cannot be jointly identified with $\{\xi_j\}$. Accordingly, we estimate: (i) a plain logit without ξ , (ii) a restricted ξ -only model, (iii) mixed-logit with a normal random coefficient on test and no ξ , and (iv) an MSM estimator based on the mixed-logit shares.

Q1. Distance distributions

Figure 1: Histogram: distances to all schools.

Figure 2: Histogram: distance to the *chosen* school.

Q2–Q4. Plain logit (no ξ)

The run returned:

NLL = 15047.327,
$$\hat{\beta}_1 = 0.0000 \text{ (s.e. } 10000.0000), \qquad \hat{\beta}_2 = 0.0000 \text{ (s.e. } 10000.0000),$$

$$\hat{\alpha} = 0.1450 \text{ (s.e. } 0.0037).$$

Predicted shares $\hat{s} = (0.1995, 0.2004, 0.2007, 0.1994, 0.1999)$, diversion $D_{1\to 2} = 0.2504$, and average own distance elasticity for the chosen school -0.4860. The large standard errors on β_1, β_2 reflect the lack of independent variation once ASCs are omitted from this single-market setting.

Preferred baseline. The plain logit without ξ fits best among likelihood-based models here (lowest NLL) and yields a precisely estimated distance sensitivity $\hat{\alpha} \approx 0.145$.

Q5. Restricted model (ξ -only)

NLL = 16094.379,
$$\hat{\xi}_1 = \hat{\xi}_2 = \hat{\xi}_3 = \hat{\xi}_4 = 0.0000 \quad \text{(s.e. 0.0316) and } \hat{\xi}_5 \equiv 0, \\ \hat{s} = (0.2, 0.2, 0.2, 0.2, 0.2), \quad D_{1 \to 2} = 0.2500.$$

As expected with equal predicted shares, the ξ -only model underperforms by NLL.

Q6–Q7. Mixed logit with random β_{1i}

We assume $\beta_{1i} \sim \mathcal{N}(\beta_1, \sigma_b^2)$ and estimate $\theta = [\beta_1, \log \sigma_b, \beta_2, \alpha]$.

MSL (Monte Carlo, R = 100).

$$\begin{aligned} \text{NLL} &= 15761.117, \\ \hat{\beta}_1 &= 0.0000, \quad \widehat{\log \sigma_b} = -1.6094 \ \Rightarrow \ \hat{\sigma}_b \approx 0.2000, \\ \hat{\beta}_2 &= 0.0000, \quad \hat{\alpha} = 0.06618 \text{ (s.e. } 0.00278), \\ \hat{s} &= (0.19981, \, 0.20003, \, 0.20056, \, 0.19983, \, 0.19977), \quad D_{1 \to 2} = 0.2500, \end{aligned}$$

avg own elasticity = -0.2159.

MSL (Gauss-Hermite, K=20). Identical objective and virtually identical estimates to MC ($\hat{\alpha}=0.06618$). The dispersion estimate $\hat{\sigma}_b\approx 0.2$; the small $\hat{\alpha}$ relative to the plain logit reflects the extra flexibility of random taste on test.

Q8–Q11. MSM (two-step, efficient weighting)

Q8–Q11. Method of Simulated Moments (MSM)

Model and simulated shares. Let $\theta = (\beta_1, \log \sigma_b, \beta_2, \alpha)$ and $\beta_{1i} \sim \mathcal{N}(\beta_1, \sigma_b^2)$. For each i, define simulated logit probabilities $\bar{P}_{ij}(\theta)$ by integrating over β_{1i} . We approximate the integral with Gauss–Hermite quadrature:

$$\bar{P}_{ij}(\theta) \ = \ \sum_{k=1}^K w_k \ \frac{\exp\{\beta_{1k} \operatorname{test}_j + \beta_2 \operatorname{sports}_j - \alpha d_{ij}\}}{\sum_{m=1}^J \exp\{\beta_{1k} \operatorname{test}_m + \beta_2 \operatorname{sports}_m - \alpha d_{im}\}}, \quad \beta_{1k} = \beta_1 + \sigma_b \sqrt{2} \, x_k,$$

with (x_k, w_k) the Hermite nodes and weights (rescaled by $1/\sqrt{\pi}$).

(Q8) MSM estimator and instruments. Choose the instruments

$$z_{ij} = [1, \text{ test}_j, \text{ sports}_i, d_{ij}],$$

stacked over j. Define moment conditions

$$g(\theta) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{J} z_{ij} \left(y_{ij} - \bar{P}_{ij}(\theta) \right) \in \mathbb{R}^{J \times 4}.$$

The MSM estimator solves

$$\hat{\theta}_1 = \arg\min_{\theta} \ Q(\theta), \quad Q(\theta) = g(\theta)^{\top} W g(\theta), \qquad W = I \text{ (first stage)}.$$

- (Q9) Jacobian. The Jacobian of the moments is $J(\theta) = \partial g(\theta)/\partial \theta$. We compute it by automatic differentiation in the code (ForwardDiff).
- (Q10) Estimates. From the first-stage criterion with W = I we obtain

$$\hat{\theta}_1 = (0.0, -1.6094, 0.0, 0.1751),$$

with predicted shares $\hat{s} = (0.19934, 0.20065, 0.20072, 0.19912, 0.20016)$ and diversion $D_{1\to 2} = 0.2506$.

(Q11) Efficient MSM and variance. Let \hat{S} be the covariance matrix of the sample moments (built from per-observation contributions). Set $W = \hat{S}^{-1}$ and re-optimize to obtain the efficient estimator

$$\hat{\theta}_2 = (0.0, -1.6094, 0.0, 0.19310).$$

Its asymptotic covariance uses the sandwich formula

$$\widehat{\text{Var}}(\hat{\theta}_2) = (J'WJ)^{-1} (J'W\hat{S}WJ) (J'WJ)^{-1},$$

which yields s.e. for α of about 0.4288 in our run.

Compact summary from results_table.csv

I include a direct import of the summary CSV produced by the script:

Q2-Q7. Core fit statistics by model

Table 1: Negative log-likelihood (NLL), diversion $1 \rightarrow 2$, and average own distance elasticity.

Model	NLL	Diversion	Avg own elasticity
Plain (no ξ)	15047.327	0.2504	-0.4860
Restricted (ξ only)	16094.379	0.2500	-
Mixed (MSL, MC $R=100$)	15761.117	0.2500	-0.2159
Mixed (MSL, Gauss–Hermite $K=20$)	15761.117	0.2500	-0.2159
MSM (first stage, $W=I$)	16572.997	0.2506	-0.6550
MSM (efficient 2-step)	16572.997	0.2506	-0.6550

Parameter estimates (selected)

Plain logit (no ξ)

$$\hat{\beta}_1 = 0.0000$$
 (s.e. 10000.0000),
 $\hat{\beta}_2 = 0.0000$ (s.e. 10000.0000),
 $\hat{\alpha} = 0.1450085$ (s.e. 0.0037191).

Restricted (ξ only; $\xi_5 \equiv 0$)

$$\hat{\xi}_1 = \hat{\xi}_2 = \hat{\xi}_3 = \hat{\xi}_4 = 0.0000$$
 (s.e. 0.0316).

Mixed logit (MSL, MC R=100)

$$\hat{\beta}_1 = 0.0000, \quad \widehat{\log \sigma_b} = -1.6094 \implies \hat{\sigma}_b \approx 0.2000,$$

 $\hat{\beta}_2 = 0.0000, \quad \hat{\alpha} = 0.0661783 \text{ (s.e. } 0.0027755).$

Mixed logit (MSL, Gauss-Hermite K=20)

Same objective and virtually identical parameters: $\hat{\alpha} = 0.0661783$ and $\hat{\sigma}_b \approx 0.2000$.

MSM

First stage (W=I). $\hat{\theta} = (0.0, -1.6094, 0.0, 0.1750572)$. Proxy NLL = 16572.997.

Efficient two-step. $\hat{\theta} = (0.0, -1.6094, 0.0, 0.1930971)$ with s.e. (0, 0, 0, 0.4287950). Shares and elasticities are the same as in first stage.

Predicted shares

Table 2: Predicted shares by model.

Model	School 1	School 2	School 3	School 4	School 5
Plain (no ξ)	0.19952	0.20040	0.20070	0.19943	0.19995
ξ only	0.20000	0.20000	0.20000	0.20000	0.20000
Mixed (MC)	0.19981	0.20003	0.20056	0.19983	0.19977
Mixed (GH)	0.19981	0.20003	0.20056	0.19983	0.19977
MSM (W=I)	0.19934	0.20065	0.20072	0.19912	0.20016
MSM (Eff.)	0.19934	0.20065	0.20072	0.19912	0.20016

Recommendation (best alternative)

Given the outputs above, a concrete and robust baseline is the *plain logit without* ξ : it achieves the lowest NLL (15047.3) and yields a precisely estimated $\hat{\alpha} \approx 0.145$, whereas mixed-logit/MSM trade likelihood for flexibility and produce smaller or noisier α . If policy counterfactuals are primarily distance-driven, this baseline would be the suggested one.

Reproducibility notes

If you re-run in the same REPL and see warnings like redefinition of constants (e.g. Z_ijl), either wrap constants in guards if !isdefined(...) or start a fresh session. The LaTeX above expects the figures in figures/ and the CSV file results_table.csv next to the .tex.