Section 3.1 Iterated Partial Derivatives

Recall. In single variable calculus we used the derivative f'(x) to test for critical points $(f'(x_0) = 0)$ and we checked f''(x) to see if x_0 is a max $(f''(x_0) < 0)$ or a min $(f''(x_0) > 0)$.

Goal. Extend the methods to real valued functions of several variables $(f : \mathbb{R}^m \to \mathbb{R})$. In order to achieve this goal, we have to develop higher order derivatives and derive tests for maxima, minima, and saddle points.

Iterated Partial Derivatives

Let $f: \mathbb{R}^3 \to \mathbb{R}$ have continuous partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$. We call such a function a C^1 function.

If each of these partials themselves have continuous partials, we say that f is a C^2 .

Notation.

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

$$\frac{\partial}{\partial z} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial z \partial y}$$

If f is a function of only x and y and $\partial f/\partial x$, $\partial f/\partial y$ are continuously differentiable, then we get four second-order partial derivatives

$$\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial x \, \partial y}, \text{ and } \frac{\partial^2 f}{\partial y \, \partial x}.$$

All of these are called *iterated partial derivatives*, while $\frac{\partial^2 f}{\partial x \partial y}$, and $\frac{\partial^2 f}{\partial y \partial x}$ are called *mixed partial derivatives*.

Example. Find all the second partial derivatives of the function $f(x,y) = x^2y^3 + e^x$. Solution. Since

$$\frac{\partial f}{\partial x} = 2xy^3 + e^x$$
 and $\frac{\partial f}{\partial y} = 3x^2y^2$,

we obtain

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} (2xy^3 + e^x) = 2y^3 + e^x \\ \frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y} (3x^2y^2) = 6x^2y \\ \frac{\partial^2 f}{\partial x \partial y} &= \frac{\partial}{\partial x} (3x^2y^2) = 6xy^2 \\ \frac{\partial^2 f}{\partial y \partial x} &= \frac{\partial}{\partial y} (2xy^3 + e^x) = 6xy^2. \end{split}$$

Example. Let $f(x,y) = \cos x \sin y$. Find all the second partial derivatives of f(x,y). Solution. Since

$$\frac{\partial f}{\partial x} = -\sin x \sin y$$
 and $\frac{\partial f}{\partial y} = \cos x \cos y$,

we obtain

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (-\sin x \sin y) = -\cos x \sin y$$
$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (\cos x \cos y) = -\cos x \sin y$$
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (\cos x \cos y) = -\sin x \cos y$$
$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (-\sin x \sin y) = -\sin x \cos y.$$

Remark. In both examples, we had

$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 f}{\partial y \, \partial x}.$$

Theorem. If f(x,y) is of class C^2 , then the mixed partials are equal, i.e.

$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 f}{\partial y \, \partial x}.$$

Example. Let w = f(x, y) where x = u + v and y = u - v. Find $\frac{\partial^2 w}{\partial u \partial v}$. Solution.

$$\begin{split} \frac{\partial^2 w}{\partial u \, \partial v} &= \frac{\partial}{\partial u} \left(\frac{\partial w}{\partial v} \right) \\ &= \frac{\partial}{\partial u} \left(\frac{\partial w}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial v} \right) \\ &= \frac{\partial}{\partial u} \left(\frac{\partial w}{\partial x} (1) + \frac{\partial w}{\partial y} (-1) \right) \quad \text{(by the Chain Rule)}. \end{split}$$

Let $g(x,y) = \frac{\partial w}{\partial x}$ and $h(x,y) = \frac{\partial w}{\partial y}$. Then

$$\begin{split} \frac{\partial^2 w}{\partial u \, \partial v} &= \frac{\partial}{\partial u} \left(g(x,y) - h(x,y) \right) \\ &= \frac{\partial g}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial u} - \frac{\partial h}{\partial x} \frac{\partial x}{\partial u} - \frac{\partial h}{\partial y} \frac{\partial y}{\partial u} \\ &= \frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} - \frac{\partial h}{\partial x} - \frac{\partial h}{\partial y} \\ &= \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial x \, \partial y} - \frac{\partial^2 w}{\partial y \, \partial x} - \frac{\partial^2 w}{\partial y^2} \\ &= \frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial y^2}. \end{split}$$