Appendix C Numerical linear algebra background

Last update on 2022-05-04 17:22

Table of contents

Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDL^T factorization

Block elimination and matrix inversion lemma

Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDL^T factorization

Block elimination and matrix inversion lemma

Complexity via flop count

execution time (cost) of solving Ax = b with nonsingular $A \in \mathbb{R}^{n \times n}$

- ightharpoonup for general methods, grows as n^3
- \blacktriangleright less if A is structured (banded, sparse, Toeplitz, ...)

flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity

vector-vector operations with $x, y \in \mathbb{R}^n$

- ▶ inner product x^Ty : 2n-1 flops (≈ 2n if n is large)
- sum x + y, scalar multiplication αx : n flops

matrix-vector product y = Ax with $A \in \mathbb{R}^{m \times n}$

- ▶ m(2n-1) flops ($\approx 2mn$ if n is large)
- ightharpoonup 2N if A is sparse with N nonzero elements
- ▶ 2p(n+m) if A is given as $A = UV^T$ where $U \in \mathbb{R}^{m \times p}$ and $V \in \mathbb{R}^{n \times p}$

matrix-matrix product C = AB with $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$

- ▶ mp(2n-1) flops (≈ 2mnp if n is large)
- ightharpoonup less if A and/or B are sparse
- $(1/2)m(m+1)(2n-1)\approx m^2n$ if m=p and C symmetric

Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDL^T factorization

Block elimination and matrix inversion lemma

Linear equations that are easy to solve

diagonal matrices (
$$a_{ij}=0$$
 if $i \neq j$) n flops
$$x=A^{-1}b=(b_1/a_{11},\ldots,b_n/a_{nn})$$

lower triangular
$$(a_{ij}=0 \text{ if } j>i)$$
 n^2 flops via forward substitution
$$x_1=b_1/a_{11}$$

$$x_2=(b_2-a_{21}x_1)/a_{22}$$

$$\vdots$$

$$x_n=(b_n-a_{n1}x_1-\cdots-a_{n,n-1}x_{n-1})/a_{nn}$$

upper triangular $(a_{ij} = 0 \text{ if } j < i)$ n^2 flops via backward substitution

orthogonal matrices $(A^{-1} = A^T)$

- $\blacktriangleright \ 2n^2 \ {\rm flops} \ {\rm to} \ {\rm compute} \ x = A^T b \ {\rm for} \ {\rm general} \ A$
- less with structure, e.g., if $A = I 2uu^T$ with $||u||_2 = 1$, we can compute

$$x = A^T b = b - 2(u^T b)u$$

in 4n flops

permutation matrices

$$a_{ij} = \begin{cases} 1, & j = \pi_i \\ 0, & \text{otherwise} \end{cases}$$

where $\pi=(\pi_1,\pi_2,\ldots,\pi_n)$ is a permutation of $(1,2,\ldots,n)$

- ▶ interpretation: $Ax = (x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n})$
- ightharpoonup satisfies $A^{-1}=A^T$, hence cost of solving Ax=b is 0 flops

Factor-solve method for solving Ax = b

lacktriangle factor A as a product of simple matrices (usually 2 or 3)

$$A = A_1 A_2 \dots A_k$$

where A_i diagonal, upper or lower triangular, etc.

lacktriangle compute $x=A^{-1}b=A_k^{-1}\dots A_2^{-1}A_1^{-1}b$ by solving k "easy" equations

$$A_1 x_1 = b$$
, $A_2 x_2 = x_1$, ..., $A_k x = x_{k-1}$

cost of factorization usually dominates cost of solve

equations with multiple righthand sides

$$Ax_1 = b_1, \quad Ax_2 = b_2, \quad \dots, \quad Ax_m = b_m$$

cost: one factorization plus m solves

Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDL^T factorization

Block elimination and matrix inversion lemma

LU factorization

assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular

LU factorization

$$A = PLU$$

where ${\cal P}$ permutation matrix, ${\cal L}$ lower triangular, ${\cal U}$ upper triangular

$$cost = (2/3)n^3$$
 flops

solving linear equations by LU factorization

given a system of linear equations Ax = b with A nonsingular

- 1. LU factorization. Factor A as A = PLU, cost $(2/3)n^3$ flops
- 2. Permutation. Solve $Pz_1 = b$, cost 0 flops
- 3. Forward substitution. Solve $Lz_2 = z_1$, cost n^2 flops
- 4. Backward substitution. Solve $Ux = z_2$, cost n^2 flops

total cost =
$$(2/3)n^3 + 2n^2 \approx (2/3)n^3$$

assume further that A is sparse

sparse LU factorization

$$A = P_1 L U P_2$$

- lacktriangle adding permutation matrix P_2 offers possibility of sparser L and U
- $ightharpoonup P_1$ and P_2 chosen (heuristically) to yield sparse L and U
- choice of P₁ and P₂ depends on sparsity pattern and values of A
- lacktriangledown cost is usually much less than $(2/3)n^3$; exact value depends in a complicated way on n, number of zeros in A, and sparsity pattern

Cholesky factorization

assume that $A \in \mathbb{S}^n_{++}$

Cholesky factorization

$$A = LL^T$$

where ${\cal L}$ lower triangular

$$cost = (1/3)n^3$$
 flops

solving linear equations by Cholesky factorization

 $\mbox{ given } \qquad \mbox{a system of linear equations } Ax = b \mbox{ with } A \in \mathbb{S}^n_{++}$

- 1. Cholesky factorization. Factor A as $A = LL^T$, cost $(1/3)n^3$ flops
- 2. Forward substitution. Solve $Lz_1 = b$, cost n^2 flops
- 3. Backward substitution. Solve $L^T x = z_1$, cost n^2 flops

total cost =
$$(1/3)n^3 + 2n^2 \approx (1/3)n^3$$

assume further that A is sparse

sparse Cholesky factorization

$$A = PLL^T P^T$$

- adding permutation matrix P offers possibility of sparser L
- ▶ P chosen (heuristically) to yield sparse L
- choice of P depends only on sparsity pattern of A (unlike sparse LU)
- ightharpoonup cost is usually much less than $(1/3)n^3$; exact value depends in a complicated way on n, number of zeros in A, and sparsity pattern

LDL^T factorization

assume that $A \in \mathbb{S}^n$ is nonsingular

LDL^T factorization

$$A = PLDL^T P^T$$

where P permutation matrix, L lower triangular, D block diagonal with nonsingular 1×1 or 2×2 diagonal blocks

$$cost = (1/3)n^3$$
 flops

ightharpoonup cost of solving system of linear equations Ax = b by LDL^T factorization

$$(1/3)n^3 + 2n^2 + cn \approx (1/3)n^3$$

• for sparse A, can choose P to yield sparse L, with cost much less than $(1/3)n^3$

Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDL^T factorization

Block elimination and matrix inversion lemma

Equations with structured subblocks

assume the system of linear equations Ax=b can be written in the block form

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

where vabiables $x_1 \in \mathbb{R}^{n_1}$ and $x_2 \in \mathbb{R}^{n_2}$; blocks $A_{ij} \in \mathbb{R}^{n_i \times n_j}$

▶ if A_{11} is nonsingular, can eliminate x_1 by

$$x_1 = A_{11}^{-1}(b_1 - A_{12}x_2)$$

ightharpoonup to compute x_2 , solve the reduced equation

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1$$

the matrix

$$S = A_{22} - A_{21}A_{11}^{-1}A_{12}$$

is called the **Schur complement** of A_{11} in A; S is nonsingular iff A is nonsingular

solving linear equations by block elimination

given a system of linear equations with A and A_{11} nonsingular

- 1. Form $A_{11}^{-1}A_{12}$ and $A_{11}^{-1}b_1$.
- 2. Form $S=A_{22}-A_{21}A_{11}^{-1}A_{12}$ and $\overline{b}=b_2-A_{21}A_{11}^{-1}b_1$.
- 3. Determine x_2 by solving $Sx_2 = \overline{b}$.
- **4**. Determine x_1 by solving $A_{11}x_1 = b_1 A_{12}x_2$.

dominant terms in flop count

- ▶ step 1: $f + n_2 s$ (f is cost of factoring A_{11} ; s is cost of solve step)
- ▶ step 2: $2n_2^2n_1$ (cost dominated by product of A_{21} and $A_{11}^{-1}A_{12}$)
- ▶ step 3: $(2/3)n_2^3$ (LU factorization)
- ▶ step 4: neglected (A_{11} already factored in step 1)

total cost
$$\approx f + n_2 s + 2n_2^2 n_1 + (2/3)n_2^3$$

 \blacktriangleright for general A_{11} , standard methods give $f=(2/3)n_1^3$ and $s=2n_1^2$

total cost
$$\approx (2/3)n_1^3 + 2n_1^2n_2 + 2n_2^2n_1 + (2/3)n_2^3 = (2/3)(n_1 + n_2)^3$$

lacktriangle for structured A_{11} , could be much smaller, e.g., if A_{11} diagonal, f=0 and $s=n_1$

total cost
$$\approx 2n_2^2 n_1 + (2/3)n_2^3$$

Structured matrix plus low rank term

assume $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{p \times n}$, consider

$$(A + BC)x = b$$

write equivalently as

$$\begin{bmatrix} A & B \\ C & -I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

apply block elimination, first solve

$$(I + CA^{-1}B)y = CA^{-1}b$$

then solve

$$Ax = b - By$$

Matrix inversion lemma

matrix inversion lemma if A and A + BC are nonsingular, then

$$(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}$$

ightharpoonup particularly useful when A has structure, and p small (BC low rank)

example A diagonal

▶ method 1: form D = A + BC, then solve Dx = b

$$\cos t \approx (2/3)n^3 + 2pn^2$$

▶ method 2: first solve $(I + CA^{-1}B)y = CA^{-1}b$, then solve Ax = b - By

$$\cos t \approx 2p^2n + (2/3)p^3$$

dominated by solving for y

Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDL^T factorization

Block elimination and matrix inversion lemma

Underdetermined linear equations

assume $A \in \mathbb{R}^{p \times n}$ with p < n, $\operatorname{rank} A = p$

$${x \mid Ax = b} = {Fz + \hat{x} \mid z \in \mathbb{R}^{n-p}}$$

- $ightharpoonup \hat{x}$ is (any) particular solution
- $lackbox{ columns of } F \in \mathbb{R}^{n \times (n-p)} \text{ span nullspace of } A$
- ▶ there exist several numerical methods for computing F (e.g., QR factorization, rectangular LU factorization, . . .)