Portal da Física CF!

www.cursodefisica.com.br

O desafio de aprender, nunca se acaba!

Apostilas Exercícios Tecnologia Ciência Notícias Biografias Humor

Vídeos

E muito mais!!!

Os créditos são de seus autores.

Caso algum material locado em nosso site esteja em desacordo com a Lei de Direitos Autorais ou lhe pertença e deseja que seja retirado, contacte-nos:

contato@cursodefisica.com.br

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA

GERÊNCIA EDUCACIONAL DE ELETRÔNICA CURSO SUPERIOR DE TECNOLOGIA EM SISTEMAS DIGITAIS

Unidade de Estudos de Retificadores

Prof. Fernando Mussoi

TEOREMA DE THÈVENIN

As vezes, um circuito é muito grande e exige um grande número de cálculos para sua solução. Outras, tem-se cargas variáveis (vários valores para R_L) e será necessário analisar todo o circuito para cada carga conectada, o que representa um esforço de cálculo e tempo significativos.

Seja o circuito da figura 1. Devido ao porte do circuito apresentado, sua análise pode ser um tanto complexa, principalmente se a resistência da carga R_L for variável.

Figura 1 - Circuito para análise da resposta na carga

O Teorema de Thèvenin permite determinar a tensão e a corrente aplicadas em um determinado bipolo de um componente num circuito (ou parte de um circuito), sem a necessidade de se calcular outros parâmetros (tensões e correntes) nos demais componentes, ou de se repetir todo o processo para cada mudança de parâmetros em um componente do circuito.

Por exemplo, simplificando toda a parte do circuito da figura 1 que é permanente (parâmetros não mudam), menos a parte que estamos interessados em analisar com mais detalhes, reduz-se significativamente o trabalho de análise.

Esta simplificação do circuito pode ser feita através da aplicação do Teorema de Thèvenin:

"Qualquer circuito linear de dois terminais de saída (bipolo A e B) que tenha uma ou mais fontes de tensão e/ou de corrente, pode ser representado (substituído, simplificado) por uma fonte de tensão real, ou seja, por uma fonte de tensão em série com uma resistência, chamada <u>Equivalente de Thèvenin</u>".

Portanto, para o circuito da figura 1, para analisar-se a tensão e a corrente no bipolo A e B da resistência de carga R_L , pode-se substituir toda a parte do circuit o entre A e B (lado esquerdo) pelo seu Equivalente de Thèvenin, como indica a figura 2.

Os parâmetros do Equivalente Thévenin, Tensão de Thèvenin V_{th} e Resistência de Thèvenin R_{th} , devem ser determinados da seguinte forma:

- Tensão de Thèvenin (V_{th}): é a tensão entre os terminais A e B do circuito quando eles estiverem em aberto.
- Resistência de Thèvenin (R_{th}): é a <u>resistência total</u> existente <u>entre os pontos A e B em aberto</u>, (sem a carga), com todas as fontes desativadas (anuladas)

Fonte de Tensão \rightarrow anulada com um curto-circuito Fonte de Corrente \rightarrow anulada com um circuito aberto

Atenção:

- A Tensão de Thèvenin **não** é a tensão da fonte do circuito;
- A Resistência de Thèvenin **não** é a resistência equivalente do circuito.

Figura 2 - Equivalente Thèvenin para o circuito da figura 1

EXEMPLO:

1. Determinar o Equivalente Thèvenin e a potência dissipada na carga.

2. Determinar o Equivalente Thèvenin para o circuito dado:

LISTA DE EXERCÍCIOS - EQUIVALENTE THÈVENIN

1. Determinar o Equivalente Thèvenin para o circuito abaixo. Resp: $V_{th}=12V$; $R_{th}=6$ W

2. Determinar a tensão e a corrente em R_3 . Resp: $I_3=112,5mA$; $V_3=5,27V$

3. Determinar o Equivalente Thèvenin para o circuito abaixo. Resp: V_{th} =3,75V; R_{th} =1375W

4. Determinar o Equivalente Thèvenin para o circuito abaixo. Resp: $V_{th}=21,75V$; $R_{th}=2755,5W$

5. Determinar o Equivalente Thèvenin para o circuito abaixo e a queda de tensão e a corrente no resistor da carga R_L . Resp: V_{th} =0,4V; R_{th} =880 W; V_L =0,16V; I_L =0,28mA

6. Determinar o Equivalente Thèvenin para o circuito abaixo e a queda de tensão e a corrente no resistor da carga R_L . Resp: V_{th} =8,02V; R_{th} =21,54 \mathbf{W} ; V_L =5,6V; I_L =0,1A

7. Qual a menor carga que devemos colocar entre A e B para que a mesma dissipe uma potência de 20mW. $Resp.: R_L=21W$

8. Sabendo-se que V_{th} =10V, determine a potência dissipada por um resistor de 100Ω colocado entre A e B. *Resp.:* P=0,63W.

9. Determine a queda de tensão e a corrente no resistor $R_{\rm 2}$ para cada carga fornecida:

a.
$$R_L = 8\Omega$$
 Resp.: $V_L = 6.32V$; $I_L = 0.79 A$

b.
$$R_L = 6\Omega$$
 Resp.: $V_L = 5{,}99V$; $I_L = 0{,}99 A$

c.
$$R_L = 4\Omega$$
 Resp.: $V_L = 5{,}32V$; $I_L = 1{,}33 A$

d.
$$R_L = 2\Omega$$
 Resp.: $V_L = 3.98V$; $I_L = 1.99 A$

- 10. Uma bateria de automóvel tem uma tensão de circuito aberto de 12,6V. A tensão nos terminais cai para 10,8V quando a bateria alimenta um motor de arranque com uma corrente de 40 A. Qual o Equivalente Thèvenin desta bateria?
- 11. O circuito abaixo representa uma carga. Conecte esta carga nos terminais A e B dos circuitos dos exercícios #1, #3 e #6 e determine a potência dissipada no resistor R_x .

TEOREMA DE NORTON

O Teorema de Norton é bastante similar ao Teorema de Thèvenin e também é utilizado quando se tem por objetivo conhecer a resposta (tensão e/ou corrente) num determinado bipolo de um circuito através de uma simplificação de parte do circuito a ser analisado.

Esta simplificação do circuito pode ser feita através da aplicação do Teorema de Norton:

"Qualquer circuito linear de dois terminais de saída (bipolo A e B) que tenha uma ou mais fontes de tensão e/ou de corrente, pode ser representado (substituído, simplificado) por uma Fonte de Corrente Real, ou seja, por uma fonte de corrente em paralelo com uma resistência, chamada Equivalente de Norton".

Seja o circuito da figura 1. Devido ao porte do circuito apresentado, sua análise pode ser um tanto trabalhosa, principalmente se a resistência da carga $R_{\rm L}$ for variável.

Figura 1 - Circuito para análise da resposta na carga

O Teorema de Norton permite determinar a tensão e a corrente aplicadas em um determinado bipolo de um componente num circuito (ou parte de um circuito), sem a necessidade de se calcular outros parâmetros (tensões e correntes) nos demais componentes, ou de se repetir todo o processo para cada mudança de parâmetros em um componente do circuito.

Por exemplo, simplificando toda a parte do circuito da figura 1 que é permanente (parâmetros não mudam), menos a parte que estamos interessados em analisar com mais detalhes, reduz-se significativamente o trabalho de análise.

Portanto, para o circuito da figura 1, para analisar-se a tensão e a corrente no bipolo A e B da resistência de carga R, pode-se substituir toda a parte do circuito entre A e B (lado esquerdo) pelo seu Equivalente de Norton, como indica a figura 2.

Os parâmetros do Equivalente Norton, Corrente de Norton I_N e Resistência de Norto R_N , devem ser determinados da seguinte forma:

- Corrente de Norton (I_N): é a corrente que circulará entre os terminais A e B do circuito quando eles estiverem em curto-circuito.
- Resistência de Norton (R_N): é a resistência total existente entre os pontos A e B em aberto, (sem a carga), com todas as fontes desativadas (anuladas). A Resistência de Norton é determinada da mesma forma que a Resistência de Thèvenin, portanto:

OBS:

Fonte de Tensão → anulada com um curto-circuito Fonte de Corrente → anulada com um circuito aberto

Atenção:

- A Corrente de Norton não é a corrente total do circuito;
- A Resistência de Norton (Thèvenin) **não** é a resistência equivalente do circuito.

Figura 2 - Equivalente Norton para o circuito da figura 1

TRANSFORMAÇÃO THEVENIN « NORTON

Um equivalente Thèvenin pode ser transformado num equivalente Norton através da trasformação de fontes de tensão reais em fontes de corrente reais e vice-versa. Assim, podemos dizer que:

Pela equivalência de fontes:

$$I_N = \frac{V_{TH}}{R_{TH}}$$
 $V_{TH} = R_{TH} \cdot I_N$

EXEMPLO:

1. Determinar o Equivalente Norton e a potência dissipada na carga.

2. Determinar o Equivalente Norton para o circuito dado:

LISTA DE EXERCÍCIOS - EQUIVALENTE NORTON

1 ao 8 - Resolver os exercícios da Lista de Equivalente Thèvenin utilizando o Teorema de Norton para analisar cada circuito.

Respostas:

- 1. Resp: $I_N = 2A$; $R_{th} = 6W$
- 2. Resp: $I_3=112,5mA$; $V_3=5,27V$
- 3. $Resp: I_N = 2.7 mA ; R_{th} = 1375 W$
- 4. Resp: $I_N = 7.9A$; $R_{th} = 2755.5W$
- 5. Resp: $I_N = 0.54mA$; $R_{th} = 880 \mathbf{W}$; $V_L = 0.16 V$; $I_L = 0.28mA$
- 6. Resp: $I_N = 0.37A$; $R_{th}=21.54$ W; $V_L=5.6V$; $I_L=0.1A$
- 7. $Resp.: R_L = 21W$
- 8. Resp.: P=0,63W.
 - a. Resp.: $V_L = 6.32V$; $I_L = 0.79 A$
 - b. Resp.: $V_L = 5,99V$; $I_L = 0,99 A$
 - c. Resp.: $V_L = 5.32V$; $I_L = 1.33 A$
 - d. $Resp.: V_L = 3,98V ; I_L = 1,99 A$