ams math

Московский физико-технический институт

Лабораторная работа

Электромагнитные волны в волноводах

выполнила студентка 653 группы ФФКЭ Карпова Татьяна

1 Цель работы

Ознакомление с методами получения и анализа электромагнитных волн СВЧ - диапазона

2 В работе используются:

- генератор СВЧ типа Г4-83
- измерительная линия Р1-28
- усилитель 28 ИМ
- заглушка
- отрезок волновода с поглощающей нагрузкой
- отрезки волноводов различных сечений
- детекторная головка

3 Теоретические положения

В СВЧ-диапазоне энергия передаётся с помощью металлических труб, называемых волноводами (в миллиметровом диапазоне длин волн волноводы могут быть сделаны и из диэлектрика). Электромагнитные волны могут распространяться по металлическим трубам любого профиля, но из технологических соображений сечения волноводов делаются либо круглыми, либо прямоугольными.

Построим э.м. поле в волноводе, складывая падающую и отражённые от стенок плоские волны. Такой метод называется концепцией Бриллюэна.

Абсолютное значение волнового вектора ${\bf k}$ - волновое число - равно

$$k = \frac{2\pi}{\lambda} = \frac{\omega}{v_{ph}} \tag{1}$$

Уравнения падающей и отражённой электромагнитных волн:

$$E_1 = E_0 e^{i(\omega t - k_1 r)} \tag{2}$$

где $k_1 = k_2 = \frac{\omega}{c}$. Проекции волновых векторов на оси координат:

 $E_1 = -E_0 e^{i(\omega t - k_2 r)},$

$$k_{1x} = -k\cos\theta, \qquad k_{2x} = k\cos\theta, \qquad k_{1z} = k\sin\theta,$$

Рис. 1: Отражение плоской волны от проводящей плоскости

$$k_{2z} = k cos \theta, \tag{4}$$

Суммарное электрическое поле в точке М:

$$E = E_0[e^{i(\omega t - k_1 r)} - e^{i(\omega t - k_2 r)}]$$
(5)

(3)

Подставляя в (5) координаты вектора $\mathbf{r}(x,0,z)$ и значения **k1** и **k2** из (4),

$$E = 2iE_0 sin(kxcos\theta)e^{i\omega(t-zsin\theta/c)}$$
(6)

Это выражение описывает волну с амплитудой

$$2iE_0sin(kxcos\theta),$$
 (7)

бегущую в направлении z с фазовой скоростью

$$v_{ph} = \frac{c}{\sin\theta} \tag{8}$$

Отметим две важные особенности этой волны: 1) её фазовая скорость больше скорости света; 2) при фиксированном угле амплитуда поля гармонически зависит от x и не меняется со временем.

Иначе говоря, в результате интерференции падающей и отражённой волн в пространстве над проводящей поверхностью в направлении оси X образуется система стоячих волн. Электрическое поле стоячей волны равно нулю в точках, где $kxcos\theta=n\pi$, т.е. там, где

$$x = \frac{n\pi}{k\cos\theta} \tag{9}$$

Мы показали, что в волноводе прямоугольного сечения может распространяться э.м. волна, которую в пределах волновода можно рассматривать как результат суперпозиции двух плоских волн. Каждая плоская волна является чисто поперечной, так что электрическое и магнитное поля перпендикулярны к направлению их распространения. В суммарной волне электрическое поле имеет только составляющую E_y и, следовательно, перпендикулярно оси волновода, а магнитное поле имеет составляющие H_x и H_z

Электромагнитное поле в волноводе не является чисто поперечным, а имеет продольные составляющие.

Если даны две параллельные проводящие плоскости, расположенные на расстоянии a друг от друга, то между ними могут распространяться волны, если

$$\cos\theta_n = \frac{n\pi}{ka} = \frac{n\lambda_0}{2a} = \frac{n}{a\omega},\tag{10}$$

где λ_0 – длина волны в свободном пространстве.

Движение э.м. волны по волноводу возможно, если углы падения подчиняются условию

$$\cos\theta_n = \frac{n\lambda_0}{2a} \le 1\tag{11}$$

Нижняя критическая частота волны

$$\omega_{cr} = \frac{\pi c}{a} \tag{12}$$

и верхняя критическая длина волны

$$\lambda_{cr} = 2a \tag{13}$$

соответствуют n=1

Выражение для фазовой скорости э.м. волны, распространяющейся в волноводе:

$$v_{ph} = \frac{c}{\sin \theta} = \frac{c}{\sqrt{1 - \cos^2 \theta}} = \frac{c}{\sqrt{1 - (\omega_{cr}/\omega)^2}}$$
(14)

Фазовая скорость (скорость перемещения поверхности постоянной фазы $v+p+h=\omega/k$) в волноводе больше скорости света в пустоте, а групповая (скорость распространения возмущения $u=d\omega/dk$) всегда меньше.

Волновое число k_z , описывающее распространение волны вдоль волновода:

$$k_z = \frac{\omega}{v_{ph}} = \frac{\omega}{c} \sqrt{1 - (\frac{\omega_{cr}}{\omega})^2}$$
 (15)

При частотах $\omega < \omega_{cr} = \pi c/a$ волны вдоль трубы экспоненциально затухают. Поэтому критическую частоту называют граничной частотой волновода.

Преобразуя соотношение (15), можно связать длины волн в волноводе (λ_w), в открытом пространстве (λ_0) и критическую (λ_{cr}):

$$\frac{1}{\lambda_w^2} = \frac{1}{\lambda_0^2} - \frac{1}{\lambda_{Gr}^2} \tag{16}$$

В случае прямоугольного волновода с поперечными размерами a и b все возможные критические длины волн определяются общей формулой

$$\lambda_{cr} = \frac{1}{\sqrt{(\frac{m}{2a})^2 + (\frac{n}{2b})^2}}$$

Величина m представляет собой полное число полупериодов изменения той или иной составляющей поля вдоль пути, идущего параллельно широкой стенке волновода (a), а n- то же для узкой стенки (b)

Если в волноводе имеется какое-либо препятствие, нерегулярность (в предельном случае он просто закрыт металлической пластиной), то в нём появляется отражённая волна. Падающая и отражённая волны интерферируют и создают в волноводе стоячую волну. Прямая волна, движущаяся в положительном направлении оси Z:

$$E_1 = E_0 e^{i(\omega t - k_z z)},$$

а отражённая -

$$E_2 = \rho E_0 e^{i(\omega t + k_z z + \phi)},\tag{17}$$

где ρ — коэффициент отражения по амплитуде, а ϕ — фаза отражённой волны. Суммарное поле в волноводе имеет вид

$${\bf E}({\bf z})={\bf E}_1+E_2=E_0e^{-ik_zz}(1+\rho e^{i(2k_zz+\phi)}e^{i\omega t})=A_0e^{i\omega t}$$

Из этого выражения видно, что в каждом сечении волновода (z=const) поле зависит от времени по гармоническому закону, а квадрат амплитуды равен

$$A_0^2 = E_0^2 [1 + \rho^2 + 2\rho \cos(2k_z z + \phi)] \tag{18}$$

Максимальное (в пучности) и минимальное (в узле) значения поля равны соответственно:

$$E_{max} = E_0(1+\rho), \qquad E_m in = E_0(1-\rho)$$
 (19)

Из формулы (18) следует, что расстояние l между соседними узлами (или пучностями) составляет

$$l = \frac{\pi}{k_x} = \frac{\lambda_w}{2} \tag{20}$$

Это даёт удобный способ измерения длины волны в в волноводе. Отношение

$$K = \frac{E_{max}}{E_{min}} \tag{21}$$

называется коэффициентом стоячей волны (к.с.в.). Из (19) следует, что коэффициент отражения от препятствия по амплитуде

$$\rho = \frac{E_{max} - E_{min}}{E_{max} + E_{min}} = \frac{K - 1}{K + 1} \tag{22}$$

В случае полного отражения (металлическая заглушка) $\rho = 1$, а если в волновод вставлено вещество, поглощающее СВЧ-излучение (согласованная нагрузка), то $\rho = 0$.

4 Экспериментальная установка

4.1 Волны в волноводе при частоте выше критической

Рис. 2: Схема для исследования структуры волн СВЧ

Схема для исследования структуры волн в волноводе при частоте выше критической представлена на рис. 2. Модулированный сигнал от высокочастотного генератора (цуги с частотой повторения $1\ \kappa\Gamma$ ц) поступает на вход A измерительной линии, вдоль которой перемешается зонд S. Высокочастотный сигнал с зонда поступает на кристаллический детектор D.

С нагрузки детектора (с RC-цепочки) снимается огибающая высокочастотного сигнала и подаётся на усилитель низкой частоты. Величина сигнала регистрируется вольтметром, вмонтированным в усилитель. Ручка С — настройка измерительной линии — служит для согласования зонда (как антенны) со входом усилителя. В волноводе с закрытым выходом образуется стоячая волна. Определив расстояние между узлами, можно рассчитать длину волны и фазовую скорость СВЧ-сигнала в волноводе. Устройство детекторной головки, установленной на измерительной линии, таково, что отклик вольтметра U на величину напряжённости электрического поля E в волноводе пропорционален E^n

$$U \propto E^n,$$
 (23)

а показатель степени п сам зависит от величины сигнала: при малых сигналах детектирование квадратичное (n=2), при больших — линейное (n=1). Если известно распределение поля E(z) вдоль измерительной линии, то, изучив распределение U(z), можно по графику ln(U)=f[ln(E)] определить характер детектирования: в двойном логарифмическом масштабе любая степенная функция — прямая линия, по наклону которой можно определить n. Распределение E(z) нетрудно рассчитать для волновода с закороченным концом (металлической заглушкой), когда фаза отражённой волны $\phi=\pi$, а $\rho=1$. Как следует из (17), электрическое поле в этом случае имеет вид:

$$E(z) = E_0 e^{-ik_1 z} (1 - e^{2ik_z z}) e^{i\omega t} = E_0 e^{i\omega t} (e^{-ik_1 z} - e^{ik_1 z}) = 2E_0 e^{i\omega t} \sin(k_z z) \propto \sin(k_z z),$$
(24)

где z – смещение от узла.

Меняя нагрузку на выходе измерительной линии (В на рис. 2) и сравнивая максимальное и минимальное показания вольтметра, можно рассчитать коэффициент стоячей волны (к.с.в.) и коэффициент отражения ρ .

4.2 Волны в волноводе при частоте ниже критической

Рис. 3: Схема для исследования затухания

Для исследования затухания волн в волноводе при частоте ниже кри- тической используются те же генератор, усилитель, измерительная линия и дополнительный набор волноводов с отдельной детекторной головкой G (рис. 3). Дополнительный набор начинается и заканчивается волноводами переменного сечения I и II. Между ними можно разместить 1, 2 или 3 одинаковых отрезка с постоянным сечением. В такой системе волны с частотами меньше критической экспоненциально затухают.

Мощность сигнала на выходе из волновода W можно связать с мощностью входного сигнала W_0 двумя способами:

$$W = W_0 e^{-\alpha z}$$
 или $W = W_0 10^{-\beta z},$ z – длина волновода.

Коэффициент (αz) измеряется в неперах (Нп). 1 непер соответствует отношению интенсивностей, равному основанию натуральных логарифмов. Коэффициент (βz) принято измерять в децибелах [дБ]: один бел соответствует уменьшению мощности в 10 раз; децибел — одна десятая бела. Измеренное в децибелах затухание определяется формулой

$$(\beta z) = 10lg \frac{W_0}{W}$$

Из этого определения вытекает, что

$$\alpha = 2, 3\beta \tag{25}$$

Как следует из (17), в закритическом волноводе при квадратичном детектировании интенсивность сигнала падает по закону $E^2 \propto e^{-\alpha z}$, где — коэффициент затухания:

$$\alpha = 2ik_z$$

Подставляя волновое число из (15) и заменяя частоты с помощью (10) и (12), найдём

$$\alpha = 2ik_z = \frac{2\omega}{c} \sqrt{(\frac{\omega_{cr}}{\omega})^2 - 1} = \frac{2\pi}{a} \sqrt{1 - (\frac{2a}{\lambda_0})^2}$$
 (26)

Здесь $\lambda_0=c/\nu=3,22$ см — длина волны в свободном пространстве, соответствующая рабочей частоте $\nu=9320$ МГц, a=1,6 см — размер широкой стенки волновода-вставки.

5 Выполнение работы

5.1 Исследование структуры волн при частоте выше критической

5.1.1 Определение длины волны СВЧ-сигнала в волноводе

- 1. Определим критическую частоту для данного волновода по формуле $\nu_{cr} = c/2a = 6517~{\rm M}\Gamma$ ц $(a=23~{\rm mm})$, она больше рабочей частоты 9320 М Γ ц. Проведём настройку приборов.
- 2. Снимем зависимость показаний вольтметра U от положения зонда z. Результаты занесём в таблицу 1.

Таблица 1: Показания вольтметра в зависимости от положения зонда на измерительной линии

U, мВ	37	25	16	7,8	2,9	0,3	0,54	3,5	9,7	19	29	43	57	72	84
z, MM	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
U, мВ	91	99	101	98	85	75	62	47	32	22	12	5,2	1,25	0,09	1,8
z, MM	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
U, мВ	6,15	14	23	36	49.5	64	78	89	98	102	97	90	78	66	52
z, MM	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44

3. Построим график U=f(z) (рис. 4) и определим по нему длину волны λ_w в волноводе. $\lambda_w=22$ мм. Используя формулу (16), рассчитаем теоретическое значение длины волны в волноводе: $\lambda_w=(\frac{1}{\lambda_0^2}-\frac{1}{\lambda_{c_r}^2})^{-1/2}=44,54$ мм

Рис. 4: Зависимость показаний вольтметра от положения зонда

Расстояние между соседними узлами в стоячей волне составляет 1/2 длины свободной волны. По графику определяем длину свободной волны в волноводе $\lambda_w=2l=44,5$ мм. Она совпадает с длиной волны $\lambda_w=44,54$ мм, рассчитанной теоретически. Отсюда можем судить, что в данном режиме работы зонд исправен и даёт точные показания.

Длина волны в свободном пространстве $\lambda_0=32,2$ мм меньше критической длины волны $\lambda_{cr}=46$ мм.

Фазовая скорость волн в волноводе из (14) $v_{ph} = \frac{c}{\sqrt{1-(\omega_{cr}/\omega)^2}} = \frac{c}{\sqrt{1-(\nu_{cr}/\nu)^2}} = 419361,71$ км/с, $v_{ph} > c$. Это не противоречит законам, так как с такой скоростью перемещаются узлы волн, при этом не передаётся ни энергия, ни информация (именно они не могут передаваться со скоростью, большей скорости света в вакууме).

большей скорости света в вакууме). Групповая скорость $u=\frac{c^2}{v_{ph}}=214315,04$ км/с.

5.1.2 Определение характера детектирования

1. Перемещая зонд вблизи узла 28 мм, оценим диапазон измерений вольтметра U. Снимем зависимость U от координаты зонда вблизи узла $(z=\pm 1 \text{ мм})$, фиксируя значения множителей K_5 и K_9 . Результаты занесём в таблицу 2.

Таблица 2: Изменение показаний вольтметра при перемещении вблизи узла

U, мВ	0,83	0,59	0,39	0,24	0,17	0,08	0,07	0,11	0,22	0,36	0,66
z, MM	1	0,8	0,6	0,4	0,2	0	0,2	0,4	0,6	0,8	1

Рис. 5: Определение характера детектирования зонда по графикам

2. Аппроксимируя зависимость ln(U) = f(ln(z)) к прямой и вычисляя коэффициент наклона аппроксимирующей прямой, определяем характер детектирования зонда. Коэффициент при аргументе примерно равен 1, если принять во внимание оба графика - xарактер dетектирования в этом эксперименте линейный

5.1.3 Определение коэффициентов отражения

1. Снимем металлическую заглушку с фланца измерительной линии, измерим максимальное и минимальное напряжения в волне

$$U_{max} = 162 \text{ MB}$$
 $U_{min} = 43 \text{ MB}$

2. Наденем на выходной фланец измерительной линии отрезок волновода с поглощающей нагрузкой, измерим максимальное и минимальное напряжения в волне

$$U_{max}=96~\mathrm{mB}$$
 $U_{min}=71~\mathrm{mB}$

3. По формуле (22) определим коэффициенты отражения от препятствия по амплитуде для открытого, закрытого волновода и для волновода с поглощающей нагрузкой

$$\rho_{closed} = 0,998 \qquad \qquad \rho_{opened} = 0,580 \qquad \qquad \rho_{load} = 0,151$$

Только по значениям коэффициентов отражения можно было бы определить состояние волновода. При $\rho\approx 1$ волновод наглухо закрыт металлической заглушкой ($\rho_{closed}=0,998$), при $\rho\approx 0$ на конце волновода поставлено вещество, поглощающее СВЧ-излучение ($\rho_{load}=0,151$). Воздух не препятствует распространению СВЧ-волн, но в воздушной среде при распространении излучение становится менее интенсивным ($\rho_{opened}=0,580$)

5.2 Исследование затухания волн при частоте ниже критической

1. Соберем схему согласно рис. 3, измерим длину каждой секции.

$$\begin{array}{lll} l_{gold}=4,95~\text{cm} & l_{blue}=3,95~\text{cm} & l_{white}=5,7~\text{cm} \\ l_{var}=14,5~\text{cm} & l_{line}=15,3~\text{cm} & l_{det}=10,1~\text{cm} \end{array}$$

Критическая частота для этого эксперимента $\nu_{cr}=c/2a=9368,5$ МГц, рабочая частота $\nu=9320$ МГц $<\nu_{cr}$

2. Последовательно уменьшая количество секций волновода от трёх до нуля, будем подбирать такое ослабление γ с генератора, чтобы показания вольтметра на усилителе (U=5 мВ) оставались неизменными. Результаты занесём в таблицу 3.

Таблица 3: Зависимость ослабления от длины волновода

ү, дБ	20	26,2	28,8	33,45
z, cm	70	66.05	60,35	55,4

3. Построим график зависимости ослабления γ от длины волновода z (рис. 6)

Рис. 6: Зависимость ослабления входящего сигнала от длины волновода

По углу наклона графика определим значение коэффициента затухания β : $\beta = -\gamma/z = 0,0855$ Б/см. Тогда коэффициент $\alpha = 2,3\beta = 0,1969$ Нп/см.

Рассчитаем теоретические значения коэффициентов α и β . Если при квадратичном детектировании интенсивность сигнала падает по закону $E^2 \propto e^{-\alpha z}$, где $\alpha = 2ik_z$, то при линейном детектировании $E \propto e^{\alpha z}$ или $\alpha = ik_z$. Тогда, преобразовав формулу (26) по линейный характер детектирования, получим, что

$$lpha=ik_z=rac{\pi}{a}\sqrt{1-(rac{2a}{\lambda_0})^2}=0,2184$$
 Нп/см $eta=lpha/2,3=0,0950$ Б/см.

В итоге, сравнивая теоретические и экспериментальные данные:

$$\begin{array}{ll} \alpha_{th}=0,218~{\rm Hm/cm} & \alpha_{ex}=0,197~{\rm Hm/cm} \\ \beta_{th}=0,095~{\rm B/cm} & \beta_{ex}=0,086~{\rm B/cm} \end{array}$$

Результаты, полученные теоретически и экспериментально, практически совпадают. Примечательно, что если бы мы использовали формулу для квадратичного детектирования, указанную в указании к работе, результаты бы не совпали (см. вывод)

6 Вывод

В ходе работы было исследовано распространение СВЧ-волн в волноводах различных сечений. Проанализированы результаты измерения различных параметров волн при их частоте выше и ниже критической для соответсвующего волновода.

1. Была измерена длина волны в волноводе при частоте выше критической. Передвигая зонд, подсоединённый к усилителю с вольметром, измерялась величина СВЧ-сигнала (стоячая волна). Данным методом получилось с большой точностью определить длину волны в волноводе:

$$\lambda_{w(th)} = 44,54 \text{ mm}$$
 $\lambda_{w(ex)} = 44,50 \text{ mm}$

Также определена фазовая скорость волны в волноводе

$$v_{nh} == 419361,71 \text{ km/c}$$

и её групповая скорость

$$u = 214315,04 \text{ km/c}.$$

- 2. Определён характер детектирования зонда при малых сдвигах от местоположения узла волны. Он оказался линейным, а не квадратичным.
- 3. Определены коэффициенты отражения волны от разных материалов металлическая заглушка, воздушное пространство и поглощающая нагрузка.

$$\rho_{closed} = 0,998$$
 $\rho_{opened} = 0,580$
 $\rho_{load} = 0,151$

Действительно, в теории коэффициент отражения от металлической заглушки ≈ 1 , от поглощающей нагрузки ≈ 0

- 4. Было исследовано затухание СВЧ-волн при частоте ниже критической. В этом пункте при выполнении работы были замечены значительные несоответствия теории, предложенной в указании к работе, и экспериментальными данными.
 - Во-первых, формула $\gamma = \beta z$ неверна чисто с логической точки зрения. β коэффициент затухания по определению $\beta z = 10 lg \frac{W_0}{W}$ должен быть больше нуля (так как при длине волны ниже критической мощность сигнала на входе W_0 , очевидно, больше мощности на выходе W). С другой стороны, при уменьшении длины волновода для того, чтобы сигнал на выходе оставался тем же, нужно ослаблять входящий сигнал, то есть увеличивать ослабление. Таким образом, при уменьшении z должна увеличиваться γ , но при $\beta > 0$ и $\gamma = \beta z$ это не выполняется. Получается, нужная нам формула

$$\gamma = -\beta z$$

• Во-вторых, в описании к работе указаны формулы, принимая, что детектирование зонда квадратичное. Учитывая результаты измерений п. 5.1.2, мы вывели формулу для линейного характера детектирования и получили значения коэффициентов затухания α и β , очень близкие к практическим. Теперь посчитаем теоретические значения этих коэффициентов для квадратичного детектирования.

$$lpha=2ik_z=rac{2\pi}{a}\sqrt{1-(rac{2a}{\lambda_0})^2}=0,4368\ {
m H \pi/cm}$$
 $eta=lpha/2,3=0,1899\ {
m E/cm}.$

Эти значения почти в 2 раза больше, чем полученные экспериментально $\alpha=2,3\beta=0,1969$ Нп/см и $\beta=-\gamma/z=0,0855$ Б/см.

Полученная нами формула $\alpha=ik_z$ гораздо лучше описывает практические результаты

$$\begin{array}{ll} \alpha_{th}=0,218~\mathrm{Hp/cm} & \alpha_{ex}=0,197~\mathrm{Hp/cm} \\ \beta_{th}=0,095~\mathrm{B/cm} & \beta_{ex}=0,086~\mathrm{B/cm} \end{array}$$