Chapter 17: Describing categorized data and the goodness of fit chi-square test

TXCL7565/PHSC7565

What This Lecture Covers

- Proportions and their confidence intervals
- Comparing observed proportion to some predetermined figure

PROPORTIONS AND THEIR CONFIDENCE INTERVALS

Nominal outcome data

- Nominal indicates that the variable is categorical
- For nominal outcome data, subjects are often placed into categories such as 'success or failure'.

Summary measure of nominal data

- Most often, nominal outcomes are summarized by the proportion of subjects in each category.
 - proportion a fraction, e.g., 20 out of 100 = 0.20
 - percentage percent of subjects, e.g., 20 out of 100 = 20%
- When there are only 2 categories (dichotomization), we usually refer to one proportion as p and the other as q.

Precision of sample estimates of a proportion

The precision with which proportions within the population can be estimated from samples, depends on:

- sample size
- presence of rare categories

Sample Size Effect on Precision

Figure 17.1 Ten sample estimates of the proportion of successful outcomes – Various sample sizes. (True proportion = 50%)

Rare category effect on precision

	Without ADR	With ADR	Percent with ADR
Scenario 1A	949	51	5.1%
Scenario 1B	960	40	4.0%
Scenario 1C	940	60	6.0%
Scenario 2A	996	4	0.4%
Scenario 2B	998	2	0.2%
Scenario 2C	994	6	0.6%

95% confidence interval for a proportion

Proportion CI in Prism

Enter the number of observation in each category in a single column.

box to

95% CI

calculate

Fraction of Total		Α			
		Data Set-A			
	8	Mean	Upper Limit	Lower Limit	
1		0.840	0.928	0.709	
2		0.160	0.291	0.072	
2					

95% C. I. for proportions

Number examined:	50
Number detected (Successful):	42
Point estimate (Successful):	84.0%
95% CI for proportion (Successful):	70.9 - 92.8%

Nominal data is not very efficient

Figure 17.3 95% C.I.s for the proportion of successful outcomes with varying sample sizes. Point estimate equals 50% in all cases

Alternative category

If you need the CI for the proportion in the opposite category (failures in the case below), subtract values from 100%.

95% C. I. for proportions	Successes	Failures
Number examined:	50	50
Number detected:	42	8
Point estimate:	84.0%	12.0%
95% CI for proportion:	70.9 - 92.8%	7.2% - 29.1%

Asymmetric confidence intervals

Confidence intervals for proportions are always asymmetrical, unless the point estimate happens to be exactly 50%.

Asymmetry is due to upper and lower constraints.

Figure 17.4 95% C.I. for the proportion of successful outcomes (42/50 in sample)

COMPARING OBSERVED PROPORTION TO SOME PRE-DETERMINED FIGURE

Using the 95% CI for the proportion

 Examine the 95% CI to determine if it includes the pre-determined figure, e.g., 50%.

Figure 17.4 95% C.I. for the proportion of successful outcomes (42/50 in sample)

Goodness of fit chi-square test

Compares the proportion within a sample with some hypothesized proportion for the population.

Is the sample data consistent with the specified proportion?

Chi-square example

A company produces pressurized canisters of drug for asthma inhalers.

- 2 machines that produce the inhalers
 - Allegro produces 61% of the canisters
 - Andante produces 39% of the canisters
- 126 canisters were returned as faulty
 - 52 from the Allegro machine
 - 74 from the Andante machine

Are the machines equally reliable?

Allegro	Andante
52	74
26 × 0.61 = 76.86	126 × 0.39 = 49.14
2 - 76.86 = -24.86	74 - 49.14 = 24.86
618	618
8.04	12.58
	52 26 × 0.61 = 76.86 2 - 76.86 = -24.86 618

$$\chi^2 = 8.04 + 12.58 = 20.62$$
 df = number of categories - 1

Chi-square goodness of fit in Prism

1.Create a new table using 'Parts of Whole' format

Input the number of observed for each category in a single column

1.Select
'Percentages'
for *Enter*expected
values as

2.Select 'Chisquare test for
goodness of
fit' for With
two rows,
perform

	O vs. E				
	O VS. L				
1	Table analyzed	Data 2			
2	Column analyzed	Column A			
3					
4	Chi-square test				
5	Chi-square	20.62			
6	DF	1			
7	P value (two-tailed)	<0.0001			
8	P value summary	***			
9	Is discrepancy significant (P < 0.05)?	Yes			
10					
11	Outcome	Expected #	Observed #	Expected %	Observed %
12	Allegro	76.86	52	61	41.27
13	Andante	49.14	74	39	58.73
14	TOTAL	126	126	100	100.00
4.5					

The 'Continuity' problem

- Mathematical basis of test includes the assumption that chi-squared values are 'continuous'.
- BUT, since we are examining discrete outcomes, this isn't completely true

Yates continuity correction

- Adjust the discrepancies (observed count minus expected count) by 0.5 towards zero.
- Only noticeable when counts are small
- Only use when there are just two categories
- NOT available in Prism for Chi-square goodness of fit test

Cases with more than two categories

Same procedure, more ambiguous result

	O vs. E					
1	Table analyzed	Data 3				
2	Column analyzed	Column A				
3						
4	Chi-square test					
5	Chi-square	4.467				
6	DF	2				
7	P value (two-tailed)	0.1072				
8	P value summary	ns				
9	Is discrepancy significant (P < 0.05)?	No				
10						
11	Outcome	Expected #	Observed #	Expected %	Observed %	
12	Leaflet A	30	23	33.33	25.56	
13	Leaflet B	30	39	33.33	43.33	
14	Leaflet C	30	28	33.33	31.11	
15	TOTAL	90	90	100	100.00	
16						

What did we learn?

- Nominal outcome data is treated differently than continuous (interval) outcome data
- Proportion of subjects within each category is used to summarize the data.
- Sampling error of a proportion depends on sample size and the presence of a rare category.
- 95% CI and a chi-square goodness of fit test can be used to compare an observed proportion to an expected proportion.