Basic Calculas

hayami-m

4/29

shift operator

 l^2 の片側ずらし作用素 V のスペクトルを分類せよ.

 l^2 の片側ずらし作用素 V は等長であるから,(Beurling より) スペクトル半径は r(V)=1 である. $x\in l^2, \lambda\in\mathbb{C}$ が $V^*x=\lambda x$ を満たすとき,全ての $n\in\mathbb{N}$ について $x_n=\lambda^n x_0$ を満たす.またこのとき $x\in l^2$ より $|\lambda|<1$ でなければならない.逆に $|\lambda|<1, x_n=\lambda^n$ とすれば $x=(x_n)_{n\in\mathbb{N}\cup 0}\in l^2$ かつ $V^*x=\lambda x$ である.したがって, $\sigma_p(V^*)=\mathbb{D}$.($\lambda I-T$)* $=\overline{\lambda}I-T^*$ だから, $r(V^*)=r(V)=1$.Gelfand より $\sigma(V^*)$ はコンパクトなので, $\sigma(V^*)=\overline{\mathbb{D}}$.また, $\sigma(V)=\overline{\mathbb{D}}$.

ここで, $(S^1=)\partial\sigma(V^*)=\sigma_p(V^*)\cup\sigma_c(V^*)\subset\sigma_{ap}(V^*)$ と $(\mathbb{D}=)\sigma_p(V^*)\subset\sigma_{ap}(V^*)$ より, $(\overline{\mathbb{D}}=)\sigma(V^*)=\sigma_{ap}(V^*)\cup\sigma_r(V^*)$ から, $\sigma_r(V^*)=\emptyset$, $\sigma_c(V^*)=S^1$ がわかる.

連続スペクトル間の対応から $\sigma_c(V) = S^1$ がわかる.

 $x\in l^2, \lambda\in\mathbb{C}$ が $Vx=\lambda x$ を満たすとき、全ての $n\in\mathbb{N}$ について $\lambda x_0=0, \lambda x_n=x_{n-1}$ を満たす、 $x\neq 0$ なら $\lambda=0$ でなければならないので $\sigma_p(V)=\{0\}$ は容易にわかる. 点スペクトルの対応から $\sigma_r(V)=\sigma_p(V^*)\backslash\sigma_p(V)=\mathbb{D}\backslash\{0\}$ がわかる.