Vers une Théorie Probabiliste des Champs Conformes en Dimension Trois

Abdelmalek Abdesselam Département de Mathématiques, Université de Virginie

Référence: arXiv:1511.03180[math.PR]

Colloquium à l'Institut Camille Jordan Lyon, 18 janvier 2016

- Introduction
- Le modèle BMS en 3D: moult conjectures
- Se Le modèle hiérarchique p-adique: quelques théorèmes
- 4 La méthode: le groupe de renormalisation inhomogène

1) Limites d'échelle:

1) Limites d'échelle:

Marche aléatoire sur réseau

(Par László Németh via Wikimedia Commons)

de plus loin...

(Par László Németh via Wikimedia Commons)

d'encore plus loin...

(Par László Németh via Wikimedia Commons)

Ce type d'objet limite possède deux propriétés importantes:

- ① l'universalité (beaucoup de modèles discrets ont cette même limite)
- 2 plus de symétries (e.g., rotations de 90 degrés \rightarrow toutes les rotations)

Ce type d'objet limite possède deux propriétés importantes:

- ① l'universalité (beaucoup de modèles discrets ont cette même limite)
- 2 plus de symétries (e.g., rotations de 90 degrés \rightarrow toutes les rotations)

Invariance d'échelle: $\lambda^{[\phi]}B(\lambda t)\stackrel{d}{=}B(t)$ pour tout $\lambda>0$. Ici $[\phi]=-\frac{1}{2}$ est la dimension du champ. Relié à l'exposant de Hurst par $[\phi]=-H$.

Ce type d'objet limite possède deux propriétés importantes:

- ① l'universalité (beaucoup de modèles discrets ont cette même limite)
- 2 plus de symétries (e.g., rotations de 90 degrés \rightarrow toutes les rotations)

Invariance d'échelle: $\lambda^{[\phi]}B(\lambda t)\stackrel{d}{=}B(t)$ pour tout $\lambda>0$. Ici $[\phi]=-\frac{1}{2}$ est la dimension du champ. Relié à l'exposant de Hurst par $[\phi]=-H$. Plus simplement $B(\lambda t)\stackrel{d}{=}\lambda^{\frac{1}{2}}B(t)$.

Ce type d'objet limite possède deux propriétés importantes:

- ① l'universalité (beaucoup de modèles discrets ont cette même limite)
- 2 plus de symétries (e.g., rotations de 90 degrés \rightarrow toutes les rotations)

Invariance d'échelle: $\lambda^{[\phi]}B(\lambda t)\stackrel{d}{=}B(t)$ pour tout $\lambda>0$. Ici $[\phi]=-\frac{1}{2}$ est la dimension du champ. Relié à l'exposant de Hurst par $[\phi]=-H$. Plus simplement $B(\lambda t)\stackrel{d}{=}\lambda^{\frac{1}{2}}B(t)$. Invariance conforme globale (P. Lévy 1940): Pour tout t>0, $|f'(t)|^{[\phi]}B(f(t))\stackrel{d}{=}B(t)$ où f désigne l'inversion $f(t)=\frac{1}{t}$.

Ce type d'objet limite possède deux propriétés importantes:

- ① l'universalité (beaucoup de modèles discrets ont cette même limite)
- 2 plus de symétries (e.g., rotations de 90 degrés \rightarrow toutes les rotations)

Invariance d'échelle: $\lambda^{[\phi]}B(\lambda t)\stackrel{d}{=}B(t)$ pour tout $\lambda>0$. Ici $[\phi]=-\frac{1}{2}$ est la dimension du champ. Relié à l'exposant de Hurst par $[\phi]=-H$. Plus simplement $B(\lambda t)\stackrel{d}{=}\lambda^{\frac{1}{2}}B(t)$. Invariance conforme globale (P. Lévy 1940): Pour tout t>0, $|f'(t)|^{[\phi]}B(f(t))\stackrel{d}{=}B(t)$ où f désigne l'inversion $f(t)=\frac{1}{t}$. Plus simplement $tB(\frac{1}{t})\stackrel{d}{=}B(t)$.

Ce type d'objet limite possède deux propriétés importantes:

- ① l'universalité (beaucoup de modèles discrets ont cette même limite)
- 2 plus de symétries (e.g., rotations de 90 degrés \rightarrow toutes les rotations)

Invariance d'échelle: $\lambda^{[\phi]}B(\lambda t)\stackrel{d}{=}B(t)$ pour tout $\lambda>0$. Ici $[\phi]=-\frac{1}{2}$ est la dimension du champ. Relié à l'exposant de Hurst par $[\phi]=-H$. Plus simplement $B(\lambda t)\stackrel{d}{=}\lambda^{\frac{1}{2}}B(t)$. Invariance conforme globale (P. Lévy 1940): Pour tout t>0, $|f'(t)|^{[\phi]}B(f(t))\stackrel{d}{=}B(t)$ où f désigne l'inversion $f(t)=\frac{1}{t}$. Plus simplement $tB(\frac{1}{t})\stackrel{d}{=}B(t)$.

Le facteur de dilatation λ devient |f'(t)| et donc dépendent de la position ou local.

2) Deuxième motivation, la théorie quantique des champs:

(Par Maximilien Brice, CERN, via Wikimedia Commons)

Un modèle plus simple (en fait une partie du modèle standard reliée au boson de Higgs) est celui d'un champ scalaire avec interaction quartique ou le modèle ϕ^4 .

Un modèle plus simple (en fait une partie du modèle standard reliée au boson de Higgs) est celui d'un champ scalaire avec interaction quartique ou le modèle ϕ^4 .

Mathématiquement, il s'agit de construire et d'étudier une mesure de probabilité sur un espace de "fonctions" $\phi: \mathbb{R}^d \to \mathbb{R}$ donnée de manière heuristique par

Un modèle plus simple (en fait une partie du modèle standard reliée au boson de Higgs) est celui d'un champ scalaire avec interaction quartique ou le modèle ϕ^4 .

Mathématiquement, il s'agit de construire et d'étudier une mesure de probabilité sur un espace de "fonctions" $\phi: \mathbb{R}^d \to \mathbb{R}$ donnée de manière heuristique par

$$\frac{1}{\mathcal{Z}}\exp\left(-\int_{\mathbb{R}^d}\left\{\frac{1}{2}(\nabla\phi)^2(x)+\mu\phi(x)^2+g\phi(x)^4\right\}d^dx\right)\ D\phi$$

Une limite d'échelle est un example de théorème limite en probabilités. Pour celà on a besoin d'un espace mesurable fixe (Ω, \mathcal{F}) sur lequel étudier une convergence faible de mesures de probabilités $\mathbb{P}_n \to \mathbb{P}$. Il faut que Ω soit un espace topologique et que \mathcal{F} soit sa tribu Borélienne.

Une limite d'échelle est un example de théorème limite en probabilités. Pour celà on a besoin d'un espace mesurable fixe (Ω, \mathcal{F}) sur lequel étudier une convergence faible de mesures de probabilités $\mathbb{P}_n \to \mathbb{P}$. Il faut que Ω soit un espace topologique et que \mathcal{F} soit sa tribu Borélienne.

Choix très général et assez canonique: $\Omega = S'(\mathbb{R}^d)$ avec la topologie faible-*.

Une limite d'échelle est un example de théorème limite en probabilités. Pour celà on a besoin d'un espace mesurable fixe (Ω, \mathcal{F}) sur lequel étudier une convergence faible de mesures de probabilités $\mathbb{P}_n \to \mathbb{P}$. Il faut que Ω soit un espace topologique et que \mathcal{F} soit sa tribu Borélienne.

Choix très général et assez canonique: $\Omega = S'(\mathbb{R}^d)$ avec la topologie faible-*.

Rappel: Soit $\phi : \mathbb{R}^d \to \mathbb{R}$ une fonction continue et tempérée. Soit L un entier > 1 (facteur de zoom arrière).

Une limite d'échelle est un example de théorème limite en probabilités. Pour celà on a besoin d'un espace mesurable fixe (Ω, \mathcal{F}) sur lequel étudier une convergence faible de mesures de probabilités $\mathbb{P}_n \to \mathbb{P}$. Il faut que Ω soit un espace topologique et que \mathcal{F} soit sa tribu Borélienne.

Choix très général et assez canonique: $\Omega = S'(\mathbb{R}^d)$ avec la topologie faible-*.

Rappel: Soit $\phi: \mathbb{R}^d \to \mathbb{R}$ une fonction continue et tempérée. Soit L un entier > 1 (facteur de zoom arrière). Téchniques dyadiques d'analyse harmonique $\leftrightarrow L = 2$.

Une limite d'échelle est un example de théorème limite en probabilités. Pour celà on a besoin d'un espace mesurable fixe (Ω, \mathcal{F}) sur lequel étudier une convergence faible de mesures de probabilités $\mathbb{P}_n \to \mathbb{P}$. Il faut que Ω soit un espace topologique et que \mathcal{F} soit sa tribu Borélienne.

Choix très général et assez canonique: $\Omega = S'(\mathbb{R}^d)$ avec la topologie faible-*.

Rappel: Soit $\phi: \mathbb{R}^d \to \mathbb{R}$ une fonction continue et tempérée. Soit L un entier >1 (facteur de zoom arrière). Téchniques dyadiques d'analyse harmonique $\leftrightarrow L=2$. Pour toute fonction test $f \in S(\mathbb{R}^d)$ on a $L^{rd} \sum_{x \in I^r \mathbb{Z}^d} \phi(x) f(x) \to \int_{\mathbb{R}^d} \phi(x) f(x) \ d^d x$ quand $r \to -\infty$.

Une limite d'échelle est un example de théorème limite en probabilités. Pour celà on a besoin d'un espace mesurable fixe (Ω, \mathcal{F}) sur lequel étudier une convergence faible de mesures de probabilités $\mathbb{P}_n \to \mathbb{P}$. Il faut que Ω soit un espace topologique et que \mathcal{F} soit sa tribu Borélienne.

Choix très général et assez canonique: $\Omega = S'(\mathbb{R}^d)$ avec la topologie faible-*.

Rappel: Soit $\phi: \mathbb{R}^d \to \mathbb{R}$ une fonction continue et tempérée. Soit L un entier > 1 (facteur de zoom arrière). Téchniques dyadiques d'analyse harmonique $\leftrightarrow L = 2$. Pour toute fonction test $f \in S(\mathbb{R}^d)$ on a $L^{rd} \sum_{x \in L^r \mathbb{Z}^d} \phi(x) f(x) \to \int_{\mathbb{R}^d} \phi(x) f(x) \ d^d x$ quand $r \to -\infty$. Donc $L^{rd} \sum_{x \in L^r \mathbb{Z}^d} \phi(x) \delta_x \to \phi$ dans $S'(\mathbb{R}^d)$.

Soit $(\sigma_{\mathbf{x}})_{\mathbf{x} \in \mathbb{Z}^d}$ un champ aléatoire sur réseau à valeurs dans $\{1, -1\}$ ou \mathbb{R} .

Soit $(\sigma_{\mathbf{x}})_{\mathbf{x} \in \mathbb{Z}^d}$ un champ aléatoire sur réseau à valeurs dans $\{1, -1\}$ ou \mathbb{R} .

On obtient une distribution aléatoire vivant sur un réseau fin de maille L^r en prenant

$$L^{r(d-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}^d} \sigma_{\mathbf{x}} \delta_{L^r \mathbf{x}}$$

avec une dimension du champ $[\phi]$ bien choisie pour avoir convergence en loi.

Soit $(\sigma_{\mathbf{x}})_{\mathbf{x} \in \mathbb{Z}^d}$ un champ aléatoire sur réseau à valeurs dans $\{1, -1\}$ ou \mathbb{R} .

On obtient une distribution aléatoire vivant sur un réseau fin de maille L^r en prenant

$$L^{r(d-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}^d} \sigma_{\mathbf{x}} \delta_{L^r \mathbf{x}}$$

avec une dimension du champ $[\phi]$ bien choisie pour avoir convergence en loi.

Exo sympa:

Soit $(\sigma_{\mathbf{x}})_{\mathbf{x} \in \mathbb{Z}^d}$ un champ aléatoire sur réseau à valeurs dans $\{1, -1\}$ ou \mathbb{R} .

On obtient une distribution aléatoire vivant sur un réseau fin de maille L^r en prenant

$$L^{r(d-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}^d} \sigma_{\mathbf{x}} \delta_{L^r \mathbf{x}}$$

avec une dimension du champ $[\phi]$ bien choisie pour avoir convergence en loi.

Exo sympa:

marche aléatoire \rightarrow mouvement brownien (d = 1 et D = 1).

Soit $(\sigma_{\mathbf{x}})_{\mathbf{x} \in \mathbb{Z}^d}$ un champ aléatoire sur réseau à valeurs dans $\{1, -1\}$ ou \mathbb{R} .

On obtient une distribution aléatoire vivant sur un réseau fin de maille L^r en prenant

$$L^{r(d-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}^d} \sigma_{\mathbf{x}} \delta_{L^r \mathbf{x}}$$

avec une dimension du champ $[\phi]$ bien choisie pour avoir convergence en loi.

Exo sympa:

marche aléatoire \rightarrow mouvement brownien (d=1 et D=1). Soit $\sigma_{\mathbf{x}}=0$ si $\mathbf{x}\leq 0$ et $\sigma_{\mathbf{x}}=\sum_{0<\mathbf{y}\leq\mathbf{x}}\omega_{\mathbf{y}}$ si $\mathbf{x}>0$, où les pas ω sont indépendants et valent ± 1 avec probabilité $\frac{1}{2}$.

$$\phi_r(f) = L^{r(1-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}} \sigma_{\mathbf{x}} f(L^r \mathbf{x})$$

$$\phi_r(f) = L^{r(1-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}} \sigma_{\mathbf{x}} f(L^r \mathbf{x})$$

$$= L^{r(1-[\phi])} \sum_{\mathbf{x} > 0} \left(\sum_{0 < \mathbf{y} \le \mathbf{x}} \omega_{\mathbf{y}} \right) f(L^r \mathbf{x})$$

$$\phi_r(f) = L^{r(1-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}} \sigma_{\mathbf{x}} f(L^r \mathbf{x})$$

$$= L^{r(1-[\phi])} \sum_{\mathbf{x} > 0} \left(\sum_{0 < \mathbf{y} \le \mathbf{x}} \omega_{\mathbf{y}} \right) f(L^r \mathbf{x})$$

$$= L^{r(1-[\phi])} \sum_{\mathbf{y} > 0} \omega_{\mathbf{y}} \left(\sum_{\mathbf{x} \ge \mathbf{y}} f(L^r \mathbf{x}) \right)$$

$$\phi_r(f) = L^{r(1-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}} \sigma_{\mathbf{x}} f(L^r \mathbf{x})$$

$$= L^{r(1-[\phi])} \sum_{\mathbf{x} > 0} \left(\sum_{0 < \mathbf{y} \le \mathbf{x}} \omega_{\mathbf{y}} \right) f(L^r \mathbf{x})$$

$$= L^{r(1-[\phi])} \sum_{\mathbf{y} > 0} \omega_{\mathbf{y}} \left(\sum_{\mathbf{x} \ge \mathbf{y}} f(L^r \mathbf{x}) \right)$$

Par le théorème de convergence dominée

$$= \lim_{N \to +\infty} \prod_{0 < \mathbf{y} \le N} \cos \left(L^{r(1-[\phi])} \left(\sum_{\mathbf{x} \ge \mathbf{y}} f(L^r \mathbf{x}) \right) \right)$$

$$= \lim_{N \to +\infty} \prod_{0 < \mathbf{y} \le N} \cos \left(L^{r(1-[\phi])} \left(\sum_{\mathbf{x} \ge \mathbf{y}} f(L^r \mathbf{x}) \right) \right)$$

$$\sim \exp\left[\sum_{\mathbf{y}>0}\log\cos\left\{L^{-r[\phi]}\left(L^r\sum_{\mathbf{x}\geq\mathbf{y}}f(L^r\mathbf{x})\right)\right\}\right]$$

$$= \lim_{N \to +\infty} \prod_{0 < \mathbf{y} \le N} \cos \left(L^{r(1-[\phi])} \left(\sum_{\mathbf{x} \ge \mathbf{y}} f(L^r \mathbf{x}) \right) \right)$$

$$\sim \exp \left[\sum_{\mathbf{y}>0} \log \cos \left\{ L^{-r[\phi]} \left(L^r \sum_{\mathbf{x} \geq \mathbf{y}} f(L^r \mathbf{x}) \right) \right\} \right]$$

$$\sim \exp\left[-rac{1}{2}\sum_{\mathbf{y}>0}L^{-2r[\phi]}\left(L^r\left(\sum_{\mathbf{x}\geq\mathbf{y}}f(L^r\mathbf{x})
ight)
ight)^2
ight]$$

$$= \lim_{N \to +\infty} \prod_{0 < \mathbf{y} \le N} \cos \left(L^{r(1-[\phi])} \left(\sum_{\mathbf{x} \ge \mathbf{y}} f(L^r \mathbf{x}) \right) \right)$$

$$\sim \exp\left[\sum_{\mathbf{y}>0}\log\cos\left\{L^{-r[\phi]}\left(L^r\sum_{\mathbf{x}\geq\mathbf{y}}f(L^r\mathbf{x})\right)\right\}\right]$$

$$\sim \exp\left[-\frac{1}{2}\sum_{\mathbf{y}>0}L^{-2r[\phi]}\left(L^r\left(\sum_{\mathbf{x}\geq\mathbf{y}}f(L^r\mathbf{x})\right)\right)^2\right]$$

$$\sim \exp\left[-\frac{1}{2}L^{-r(\mathbf{1}+2[\phi])}L^r\sum_{\mathbf{y}>0}\left(L^r\left(\sum_{\mathbf{x}>\mathbf{y}}f(L^r\mathbf{x})\right)^2\right)\right]$$

$$= \lim_{N \to +\infty} \prod_{0 < \mathbf{y} \le N} \cos \left(L^{r(1-[\phi])} \left(\sum_{\mathbf{x} \ge \mathbf{y}} f(L^r \mathbf{x}) \right) \right)$$

$$\sim \exp\left[\sum_{\mathbf{y}>0} \log \cos \left\{L^{-r[\phi]} \left(L^r \sum_{\mathbf{x} \geq \mathbf{y}} f(L^r \mathbf{x})\right)\right\}\right]$$

$$\sim \exp\left[-\frac{1}{2} \sum_{\mathbf{y}>0} L^{-2r[\phi]} \left(L^r \left(\sum_{\mathbf{x} \geq \mathbf{y}} f(L^r \mathbf{x})\right)\right)^2\right]$$

$$\sim \exp\left[-\frac{1}{2} L^{-r(\mathbf{1}+2[\phi])} L^r \sum_{\mathbf{y}>0} \left(L^r \left(\sum_{\mathbf{x} \geq \mathbf{y}} f(L^r \mathbf{x})\right)^2\right)\right]$$

$$\to \exp\left[-\frac{1}{2} \int_0^{+\infty} \left(\int_y^{+\infty} f(x) dx\right)^2 dy\right] \quad \text{si} \quad [\phi] = -\frac{1}{2}.$$

On trouve donc

$$\lim_{r \to -\infty} \langle e^{i\phi_r(f)} \rangle = \exp\left(-\frac{1}{2} \langle \phi(f)\phi(f) \rangle\right)$$

avec

$$\langle \phi(f)\phi(f)\rangle = \int_{\mathbb{R}^2} \langle \phi(x_1)\phi(x_2)\rangle f(x_1)f(x_2) \ dx_1 dx_2$$

οù

$$\langle \phi(x_1)\phi(x_2)\rangle = \begin{cases} \min(x_1,x_2) & \text{si } x_1,x_2 \geq 0, \\ 0 & \text{sinon.} \end{cases}$$

On trouve donc

$$\lim_{r \to -\infty} \langle e^{i\phi_r(f)} \rangle = \exp\left(-\frac{1}{2} \langle \phi(f)\phi(f) \rangle\right)$$

avec

$$\langle \phi(f)\phi(f)\rangle = \int_{\mathbb{R}^2} \langle \phi(x_1)\phi(x_2)\rangle f(x_1)f(x_2) \ dx_1 dx_2$$

οù

$$\langle \phi(x_1)\phi(x_2)\rangle = \begin{cases} \min(x_1,x_2) & \text{si } x_1,x_2 \geq 0, \\ 0 & \text{sinon.} \end{cases}$$

Enfin, on conclue par le théorème de continuité de Lévy pour $S'(\mathbb{R})$.

Modèle d'Ising 2D:

Modèle d'Ising 2D:

A la température critique, le champ aléatoire $(\sigma_{\mathbf{x}})_{\mathbf{x}\in\mathbb{Z}^2}$ à valeurs ± 1 est tel que la loi de $\phi_r = L^{r(d-[\phi])} \sum_{\mathbf{x}\in\mathbb{Z}^d} \sigma_{\mathbf{x}} \delta_{L^r\mathbf{x}}$, avec d=2 et $[\phi]=\frac{1}{8}$ converge faiblement, quand $r\to -\infty$, vers une mesure de probabilité non gaussienne et invariante conforme sur $S'(\mathbb{R}^2)$.

Modèle d'Ising 2D:

A la température critique, le champ aléatoire $(\sigma_{\mathbf{x}})_{\mathbf{x}\in\mathbb{Z}^2}$ à valeurs ± 1 est tel que la loi de $\phi_r = L^{r(d-[\phi])} \sum_{\mathbf{x}\in\mathbb{Z}^d} \sigma_{\mathbf{x}} \delta_{L^r\mathbf{x}}$, avec d=2 et $[\phi]=\frac{1}{8}$ converge faiblement, quand $r\to -\infty$, vers une mesure de probabilité non gaussienne et invariante conforme sur $S'(\mathbb{R}^2)$.

Résultat de Camia-Garban-Newman (Ann. Probab. 2015) et Chelkak-Hongler-Izyurov (Ann. Math. 2015).

- Introduction
- Le modèle BMS en 3D: moult conjectures
- Substitution Le modèle hiérarchique p-adique: quelques théorèmes
- 4 La méthode: le groupe de renormalisation inhomogène

Modèle étudié par Brydges-Mitter-Scoppola CMP 2003 ainsi que A. A. CMP 2007. Il s'agit d'une généralisation du modèle ϕ^4 à des puissances fractionnaires du laplacien.

Modèle étudié par Brydges-Mitter-Scoppola CMP 2003 ainsi que A. A. CMP 2007. Il s'agit d'une généralisation du modèle ϕ^4 à des puissances fractionnaires du laplacien.

Analogie: L'équation de Navier-Stokes

$$\partial_t u + u \cdot \nabla u = \Delta u - \nabla p$$

se généralise en

Modèle étudié par Brydges-Mitter-Scoppola CMP 2003 ainsi que A. A. CMP 2007. Il s'agit d'une généralisation du modèle ϕ^4 à des puissances fractionnaires du laplacien.

Analogie: L'équation de Navier-Stokes

$$\partial_t u + u \cdot \nabla u = \Delta u - \nabla p$$

se généralise en

$$\partial_t u + u \cdot \nabla u = -(-\Delta)^{\alpha} u - \nabla p$$

l'équation de Navier-Stokes hyperdissipative.

Modèle étudié par Brydges-Mitter-Scoppola CMP 2003 ainsi que A. A. CMP 2007. Il s'agit d'une généralisation du modèle ϕ^4 à des puissances fractionnaires du laplacien.

Analogie: L'équation de Navier-Stokes

$$\partial_t u + u \cdot \nabla u = \Delta u - \nabla p$$

se généralise en

$$\partial_t u + u \cdot \nabla u = -(-\Delta)^{\alpha} u - \nabla p$$

l'équation de Navier-Stokes hyperdissipative.

Pour $\alpha > \frac{5}{4}$ la régularité globale des solutions a été démontrée par Katz-Pavlović GAFA 2002.

Modèle étudié par Brydges-Mitter-Scoppola CMP 2003 ainsi que A. A. CMP 2007. Il s'agit d'une généralisation du modèle ϕ^4 à des puissances fractionnaires du laplacien.

Analogie: L'équation de Navier-Stokes

$$\partial_t u + u \cdot \nabla u = \Delta u - \nabla p$$

se généralise en

$$\partial_t u + u \cdot \nabla u = -(-\Delta)^{\alpha} u - \nabla p$$

l'équation de Navier-Stokes hyperdissipative.

Pour $\alpha>\frac{5}{4}$ la régularité globale des solutions a été démontrée par Katz-Pavlović GAFA 2002.

Pour tout exposant $\alpha < \frac{5}{4}$, c'est un problème ouvert.

$$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \langle \phi, (-\Delta) \phi \rangle_{L^2} - \int_{\mathbb{R}^d} \{ g \phi(x)^4 + \mu \phi(x)^2 \} d^d x \right) \ D\phi$$

par

$$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \langle \phi, (-\Delta) \phi \rangle_{L^2} - \int_{\mathbb{R}^d} \{ g \phi(x)^4 + \mu \phi(x)^2 \} d^d x \right) \ D\phi$$

par

$$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \langle \phi, (-\Delta)^{\alpha} \phi \rangle_{L^2} - \int_{\mathbb{R}^d} \{ g \phi(x)^4 + \mu \phi(x)^2 \} d^d x \right) \ D\phi$$

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\langle\phi,(-\Delta)\phi\rangle_{L^2}-\int_{\mathbb{R}^d}\{g\phi(x)^4+\mu\phi(x)^2\}d^dx\right)\ D\phi$$

par

$$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \langle \phi, (-\Delta)^{\alpha} \phi \rangle_{L^2} - \int_{\mathbb{R}^d} \{ g \phi(x)^4 + \mu \phi(x)^2 \} d^d x \right) \ D\phi$$

Le modèle BMS est le cas particulier d=3 et $\alpha=\frac{3+\epsilon}{4}$ avec $0<\epsilon\ll 1$.

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\langle\phi,(-\Delta)\phi\rangle_{L^2}-\int_{\mathbb{R}^d}\{g\phi(x)^4+\mu\phi(x)^2\}d^dx\right)\ D\phi$$

par

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\langle\phi,(-\Delta)^{\alpha}\phi\rangle_{L^{2}}-\int_{\mathbb{R}^{d}}\{g\phi(x)^{4}+\mu\phi(x)^{2}\}d^{d}x\right)\ D\phi$$

Le modèle BMS est le cas particulier d=3 et $\alpha=\frac{3+\epsilon}{4}$ avec $0<\epsilon\ll 1$.

Peut se voir comme limite continue de modèles de spins, comme lsing, mais avec interactions ferromagnétiques de longue portée.

2) Régularisation sur réseau:

2) Régularisation sur réseau:

(constante de normalisation \mathcal{Z} omise pour alleger)

$$\begin{split} \exp\left(-\frac{1}{2}\langle\phi,(-\Delta_{L^r\mathbb{Z}^3})^\alpha\phi\rangle_{\ell^2} - L^{3r}\sum_{x\in L^r\mathbb{Z}^3}\{\frac{\mathbf{g_r}\phi(x)^4 + \mu_r\phi(x)^2\}}{D\phi}\right) D\phi \\ \text{avec } D\phi &= \prod_{x\in L^r\mathbb{Z}^3} d\phi(x) \text{ et} \end{split}$$

$$\ell^2 = \ell^2(L^r\mathbb{Z}^3, L^{3r} \times \text{mesure de comptage})$$

2) Régularisation sur réseau:

(constante de normalisation \mathcal{Z} omise pour alleger)

$$\exp\left(-\frac{1}{2}\langle\phi,(-\Delta_{L^r\mathbb{Z}^3})^{\alpha}\phi\rangle_{\ell^2}-L^{3r}\sum_{x\in L^r\mathbb{Z}^3}\{\frac{\mathbf{g}_r\phi(x)^4+\mu_r\phi(x)^2\}}{D\phi}\right)D\phi$$

avec $D\phi = \prod_{x \in L^r \mathbb{Z}^3} d\phi(x)$ et

$$\ell^2 = \ell^2(L^r\mathbb{Z}^3, L^{3r} \times \text{mesure de comptage})$$

Un peu de Fourier sur réseau:

$$\widehat{f}(\xi) = L^{3r} \sum_{x \in L^{r/3}} e^{-i\xi x} f(x)$$

$$f(x) = \frac{1}{(2\pi)^3} \int_{[0,2\pi I^{-r}]^3} e^{i\xi x} \ \widehat{f}(\xi) \ d^3 \xi$$

$$(-\Delta_{L^r\mathbb{Z}^3})(f)(x) = L^{-2r} \sum_{j=1}^3 [2f(x) - f(x + L^r e_j) - f(x - L^r e_j)]$$

$$(-\Delta_{L^r\mathbb{Z}^3})(f)(x) = L^{-2r} \sum_{i=1}^3 [2f(x) - f(x + L^r e_i) - f(x - L^r e_i)]$$

et en Fourier

$$(-\widehat{\Delta_{L^r\mathbb{Z}^3}})(f)(\xi) = \widehat{f}(\xi)L^{-2r}\sum_{j=1}^3 2(1-\cos(L^r\xi_j)).$$

$$(-\Delta_{L^r\mathbb{Z}^3})(f)(x) = L^{-2r} \sum_{i=1}^3 [2f(x) - f(x + L^r e_i) - f(x - L^r e_i)]$$

et en Fourier

$$\begin{split} &(-\widehat{\Delta_{L^r\mathbb{Z}^3}})(f)(\xi) = \widehat{f}(\xi)L^{-2r}\sum_{j=1}^3 2(1-\cos(L^r\xi_j)). \text{ Donc} \\ &(-\Delta_{L^r\mathbb{Z}^3})^\alpha(f)(x) = L^{3r}\sum_{y\in L^r\mathbb{Z}^3} \left(-\Delta_{L^r\mathbb{Z}^3}\right)^\alpha(x,y)f(y) \end{split}$$

$$(-\Delta_{L^r\mathbb{Z}^3})(f)(x) = L^{-2r} \sum_{i=1}^3 [2f(x) - f(x + L^r e_i) - f(x - L^r e_i)]$$

et en Fourier

$$\begin{split} &(-\widehat{\Delta_{L^r\mathbb{Z}^3}})(f)(\xi) = \widehat{f}(\xi)L^{-2r}\sum_{j=1}^3 2(1-\cos(L^r\xi_j)). \text{ Donc} \\ &(-\Delta_{L^r\mathbb{Z}^3})^\alpha \left(f\right)(x) = L^{3r}\sum_{y\in L^r\mathbb{Z}^3} \left(-\Delta_{L^r\mathbb{Z}^3}\right)^\alpha (x,y)f(y) \text{ avec} \\ &(-\Delta_{L^r\mathbb{Z}^3})^\alpha \left(x,y\right) = \end{split}$$

$$\frac{1}{(2\pi)^3} \int_{[0,2\pi L^{-r}]^3} e^{i\xi(x-y)} \left(L^{-2r} \sum_{i=1}^3 2(1-\cos(L^r \xi_i)) \right)^{\alpha} d^3 \xi$$

$$(-\Delta_{L^r\mathbb{Z}^3})(f)(x) = L^{-2r} \sum_{j=1}^3 [2f(x) - f(x + L^r e_j) - f(x - L^r e_j)]$$

et en Fourier

$$(-\widehat{\Delta_{L^r\mathbb{Z}^3}})(f)(\xi) = \widehat{f}(\xi)L^{-2r}\sum_{j=1}^3 2(1-\cos(L^r\xi_j)). \text{ Donc}$$

$$(-\Delta_{L^r\mathbb{Z}^3})^{\alpha}(f)(x) = L^{3r}\sum_{y\in L^r\mathbb{Z}^3} (-\Delta_{L^r\mathbb{Z}^3})^{\alpha}(x,y)f(y) \text{ avec}$$

$$(-\Delta_{L^r\mathbb{Z}^3})^{\alpha}(x,y) =$$

$$\frac{1}{(2\pi)^3} \int_{[0,2\pi L^{-r}]^3} e^{i\xi(x-y)} \left(L^{-2r} \sum_{j=1}^3 2(1-\cos(L^r \xi_j)) \right)^{\alpha} d^3 \xi$$

Relation d'échelle importante:

$$\left(-\Delta_{L^{r}\mathbb{Z}^{3}}\right)^{\alpha}\left(x,y\right)=L^{-r(3+2\alpha)}\left(-\Delta_{\mathbb{Z}^{3}}\right)^{\alpha}\left(L^{-r}x,L^{-r}y\right).$$

Posons $J_{\mathbf{x},\mathbf{y}} = -(-\Delta_{\mathbb{Z}^3})^{\alpha}(\mathbf{x},\mathbf{y})$ pour $\mathbf{x},\mathbf{y} \in \mathbb{Z}^3$, et faisons le changement de variable $\phi(x) = L^{-r[\phi]}\sigma_{L^{-r}x}$.

Posons $J_{\mathbf{x},\mathbf{y}} = -(-\Delta_{\mathbb{Z}^3})^{\alpha}(\mathbf{x},\mathbf{y})$ pour $\mathbf{x},\mathbf{y} \in \mathbb{Z}^3$, et faisons le changement de variable $\phi(x) = L^{-r[\phi]}\sigma_{L^{-r}x}$. Si on choisit $[\phi]$ de façon à ce que $3-2[\phi]-2\alpha=0$ alors

Posons $J_{\mathbf{x},\mathbf{y}} = -\left(-\Delta_{\mathbb{Z}^3}\right)^{\alpha}(\mathbf{x},\mathbf{y})$ pour $\mathbf{x},\mathbf{y} \in \mathbb{Z}^3$, et faisons le changement de variable $\phi(x) = L^{-r[\phi]}\sigma_{L^{-r}x}$. Si on choisit $[\phi]$ de façon à ce que $3-2[\phi]-2\alpha=0$ alors

$$\exp\left(-\frac{1}{2}\langle\phi,(-\Delta_{L^r\mathbb{Z}^3})^\alpha\phi\rangle_{\ell^2}-L^{3r}\sum_{x\in L^r\mathbb{Z}^3}\{g_r\phi(x)^4+\mu_r\phi(x)^2\}\right)\ D\phi$$

devient

Posons $J_{\mathbf{x},\mathbf{y}} = -\left(-\Delta_{\mathbb{Z}^3}\right)^{\alpha}(\mathbf{x},\mathbf{y})$ pour $\mathbf{x},\mathbf{y} \in \mathbb{Z}^3$, et faisons le changement de variable $\phi(x) = L^{-r[\phi]}\sigma_{L^{-r_x}}$. Si on choisit $[\phi]$ de façon à ce que $3-2[\phi]-2\alpha=0$ alors

$$\exp\left(-\frac{1}{2}\langle\phi,(-\Delta_{L^r\mathbb{Z}^3})^\alpha\phi\rangle_{\ell^2}-L^{3r}\sum_{x\in L^r\mathbb{Z}^3}\{g_r\phi(x)^4+\mu_r\phi(x)^2\}\right)\ D\phi$$

devient

$$\exp\left(\frac{1}{2}\sum_{\mathbf{x},\mathbf{y}\in\mathbb{Z}^3}J_{\mathbf{x},\mathbf{y}}\sigma_{\mathbf{x}}\sigma_{\mathbf{y}}-\sum_{\mathbf{x}}\{g_{r}\mathbf{L}^{r(3-4[\phi])}\sigma_{\mathbf{x}}^4+\mu_{r}\mathbf{L}^{r(3-2[\phi])}\sigma_{\mathbf{x}}^2\}\right)\ D\sigma$$

où
$$D\sigma = \prod_{\mathbf{x} \in \mathbb{Z}^3} d\sigma_{\mathbf{x}}$$
.

Posons $J_{\mathbf{x},\mathbf{y}} = -\left(-\Delta_{\mathbb{Z}^3}\right)^{\alpha}(\mathbf{x},\mathbf{y})$ pour $\mathbf{x},\mathbf{y} \in \mathbb{Z}^3$, et faisons le changement de variable $\phi(x) = L^{-r[\phi]}\sigma_{L^{-r}x}$. Si on choisit $[\phi]$ de façon à ce que $3-2[\phi]-2\alpha=0$ alors

$$\exp\left(-\frac{1}{2}\langle\phi,(-\Delta_{L^r\mathbb{Z}^3})^\alpha\phi\rangle_{\ell^2}-L^{3r}\sum_{x\in L^r\mathbb{Z}^3}\{g_r\phi(x)^4+\mu_r\phi(x)^2\}\right)\ D\phi$$

devient

$$\exp\left(\frac{1}{2}\sum_{\mathbf{x},\mathbf{y}\in\mathbb{Z}^3}J_{\mathbf{x},\mathbf{y}}\sigma_{\mathbf{x}}\sigma_{\mathbf{y}}-\sum_{\mathbf{x}}\{g_rL^{r(\mathbf{3}-\mathbf{4}[\phi])}\sigma_{\mathbf{x}}^4+\mu_rL^{r(\mathbf{3}-\mathbf{2}[\phi])}\sigma_{\mathbf{x}}^2\}\right)\ D\sigma$$

où $D\sigma = \prod_{\mathbf{x} \in \mathbb{Z}^3} d\sigma_{\mathbf{x}}$.

Une limite d'échelle d'un modèle sur réseau unité fixe (comme pour Ising 2D) revient à prendre $g_r = L^{-r(3-4[\phi])}g$ et $\mu_r = L^{-r(3-2[\phi])}\mu$ pour g,μ fixes.

Posons $J_{\mathbf{x},\mathbf{y}} = -\left(-\Delta_{\mathbb{Z}^3}\right)^{\alpha}(\mathbf{x},\mathbf{y})$ pour $\mathbf{x},\mathbf{y} \in \mathbb{Z}^3$, et faisons le changement de variable $\phi(x) = L^{-r[\phi]}\sigma_{L^{-r}x}$. Si on choisit $[\phi]$ de façon à ce que $3-2[\phi]-2\alpha=0$ alors

$$\exp\left(-\frac{1}{2}\langle\phi,(-\Delta_{L^r\mathbb{Z}^3})^\alpha\phi\rangle_{\ell^2}-L^{3r}\sum_{x\in L^r\mathbb{Z}^3}\{g_r\phi(x)^4+\mu_r\phi(x)^2\}\right)\ D\phi$$

devient

$$\exp\left(\frac{1}{2}\sum_{\mathbf{x},\mathbf{y}\in\mathbb{Z}^3}J_{\mathbf{x},\mathbf{y}}\sigma_{\mathbf{x}}\sigma_{\mathbf{y}}-\sum_{\mathbf{x}}\{g_rL^{r(3-4[\phi])}\sigma_{\mathbf{x}}^4+\mu_rL^{r(3-2[\phi])}\sigma_{\mathbf{x}}^2\}\right)\ D\sigma$$

où
$$D\sigma = \prod_{\mathbf{x} \in \mathbb{Z}^3} d\sigma_{\mathbf{x}}$$
.

Une limite d'échelle d'un modèle sur réseau unité fixe (comme pour Ising 2D) revient à prendre $g_r = L^{-r(3-4[\phi])}g$ et $\mu_r = L^{-r(3-2[\phi])}\mu$ pour g,μ fixes. Pour $\alpha = \frac{3+\epsilon}{4}$ on a $[\phi] = \frac{3-\epsilon}{4}$.

On se ramène ainsi à l'étude de la limite d'échelle critique d'un modèle de spins continus $(\sigma_x)_{x\in\mathbb{Z}^3}$ donné par la mesure de Gibbs

$$\frac{1}{\mathcal{Z}} \exp \left(\frac{1}{2} \sum_{\mathbf{x} \neq \mathbf{y}} J_{\mathbf{x}, \mathbf{y}} \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} \right) \prod_{\mathbf{x} \in \mathbb{Z}^3} d\rho(\sigma_{\mathbf{x}})$$

On se ramène ainsi à l'étude de la limite d'échelle critique d'un modèle de spins continus $(\sigma_{\mathbf{x}})_{\mathbf{x} \in \mathbb{Z}^3}$ donné par la mesure de Gibbs

$$\frac{1}{\mathcal{Z}} \exp \left(\frac{1}{2} \sum_{\mathbf{x} \neq \mathbf{y}} J_{\mathbf{x}, \mathbf{y}} \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} \right) \prod_{\mathbf{x} \in \mathbb{Z}^3} d\rho(\sigma_{\mathbf{x}})$$

avec une mesure initiale par site

$$d
ho(\sigma)\sim \exp\left(-g\sigma^4-(\mu-rac{1}{2}J_{\mathbf{0},\mathbf{0}})\sigma^2
ight)d\sigma$$

qui, en prenant des limites appropriées des paramètres g, μ , permet aussi d'obtenir la mesure $\frac{1}{2}(\delta_1 + \delta_{-1})$ du modèle d'Ising classique.

On se ramène ainsi à l'étude de la limite d'échelle critique d'un modèle de spins continus $(\sigma_{\mathbf{x}})_{\mathbf{x} \in \mathbb{Z}^3}$ donné par la mesure de Gibbs

$$\frac{1}{\mathcal{Z}} \exp \left(\frac{1}{2} \sum_{\mathbf{x} \neq \mathbf{y}} J_{\mathbf{x}, \mathbf{y}} \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} \right) \prod_{\mathbf{x} \in \mathbb{Z}^3} d\rho(\sigma_{\mathbf{x}})$$

avec une mesure initiale par site

$$d
ho(\sigma)\sim \exp\left(-g\sigma^4-(\mu-rac{1}{2}J_{\mathbf{0},\mathbf{0}})\sigma^2
ight)d\sigma$$

qui, en prenant des limites appropriées des paramètres g,μ , permet aussi d'obtenir la mesure $\frac{1}{2}(\delta_1+\delta_{-1})$ du modèle d'Ising classique.

Pour $0 < \alpha < 1$ et $\mathbf{x} \neq \mathbf{y}$ on a $J_{\mathbf{x},\mathbf{y}} > 0$.

On se ramène ainsi à l'étude de la limite d'échelle critique d'un modèle de spins continus $(\sigma_{\mathbf{x}})_{\mathbf{x} \in \mathbb{Z}^3}$ donné par la mesure de Gibbs

$$\frac{1}{\mathcal{Z}} \exp \left(\frac{1}{2} \sum_{\mathbf{x} \neq \mathbf{y}} J_{\mathbf{x}, \mathbf{y}} \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} \right) \prod_{\mathbf{x} \in \mathbb{Z}^3} d\rho(\sigma_{\mathbf{x}})$$

avec une mesure initiale par site

$$d
ho(\sigma)\sim \exp\left(-g\sigma^4-(\mu-rac{1}{2}J_{\mathbf{0},\mathbf{0}})\sigma^2
ight)d\sigma$$

qui, en prenant des limites appropriées des paramètres g, μ , permet aussi d'obtenir la mesure $\frac{1}{2}(\delta_1+\delta_{-1})$ du modèle d'Ising classique.

Pour $0 < \alpha < 1$ et $\mathbf{x} \neq \mathbf{y}$ on a $J_{\mathbf{x},\mathbf{v}} > 0$.

On a affaire à un modèle ferromagnétique avec intéractions de longue portée.

Soit $C_{-\infty}$ la forme bilinéaire continue sur $S(\mathbb{R}^3)$ donnée par

$$C_{-\infty}(f,g) = rac{1}{(2\pi)^3} \int_{\mathbb{R}^3} rac{\overline{\widehat{f}(\xi)}\widehat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^3\xi$$

où $[\phi] = \frac{3-\epsilon}{4}$ est la dimension du champ. Soit $\mu_{C_{-\infty}}$ la mesure gaussienne centrée de covariance $C_{-\infty}$.

Soit $C_{-\infty}$ la forme bilinéaire continue sur $S(\mathbb{R}^3)$ donnée par

$$C_{-\infty}(f,g) = rac{1}{(2\pi)^3} \int_{\mathbb{R}^3} rac{\overline{\widehat{f}(\xi)} \widehat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^3 \xi$$

où $[\phi] = \frac{3-\epsilon}{4}$ est la dimension du champ. Soit $\mu_{C_{-\infty}}$ la mesure gaussienne centrée de covariance $C_{-\infty}$.

Mollifiant ho_{UV} : fonction C^{∞} , $\mathbb{R}^3 \to \mathbb{R}$, support compact, O(3)-invariante, $\int \rho_{\mathrm{UV}} = 1$.

Soit $C_{-\infty}$ la forme bilinéaire continue sur $S(\mathbb{R}^3)$ donnée par

$$C_{-\infty}(f,g) = rac{1}{(2\pi)^3} \int_{\mathbb{R}^3} rac{\overline{\widehat{f}(\xi)}\widehat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^3\xi$$

où $[\phi]=\frac{3-\epsilon}{4}$ est la dimension du champ. Soit $\mu_{C_{-\infty}}$ la mesure gaussienne centrée de covariance $C_{-\infty}$.

Mollifiant ho_{UV} : fonction C^{∞} , $\mathbb{R}^3 \to \mathbb{R}$, support compact, O(3)-invariante, $\int \rho_{\mathrm{UV}} = 1$.

Tronquature ρ_{IR} : fonction C^{∞} , $\mathbb{R}^3 \to \mathbb{R}$, support compact, O(3)-invariante, positive, égale à 1 près de l'origine.

Soit $C_{-\infty}$ la forme bilinéaire continue sur $S(\mathbb{R}^3)$ donnée par

$$C_{-\infty}(f,g) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{\overline{\widehat{f}(\xi)} \widehat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^3 \xi$$

où $[\phi] = \frac{3-\epsilon}{4}$ est la dimension du champ. Soit $\mu_{C_{-\infty}}$ la mesure gaussienne centrée de covariance $C_{-\infty}$.

Mollifiant $\rho_{\rm UV}$: fonction C^{∞} , $\mathbb{R}^3 \to \mathbb{R}$, support compact, O(3)-invariante, $\int \rho_{\rm UV} = 1$.

Tronquature ρ_{IR} : fonction C^{∞} , $\mathbb{R}^3 \to \mathbb{R}$, support compact, O(3)-invariante, positive, égale à 1 près de l'origine.

On fixe encore le rapport de zoom L > 1.

Pour $r \in \mathbb{Z}$ (coupure UV $r \to -\infty$), soit $\rho_{\mathrm{UV},r}(x) = L^{-3r}\rho_{\mathrm{UV}}(L^{-r}x)$.

Pour $r \in \mathbb{Z}$ (coupure UV $r \to -\infty$), soit $\rho_{\mathrm{UV},r}(x) = L^{-3r}\rho_{\mathrm{UV}}(L^{-r}x)$. Pour $s \in \mathbb{Z}$ (coupure IR $s \to \infty$), soit $\rho_{\mathrm{IR},s}(x) = \rho_{\mathrm{IR}}(L^{-s}x)$. Pour $r \in \mathbb{Z}$ (coupure UV $r \to -\infty$), soit $\rho_{\mathrm{UV},r}(x) = L^{-3r}\rho_{\mathrm{UV}}(L^{-r}x)$. Pour $s \in \mathbb{Z}$ (coupure IR $s \to \infty$), soit $\rho_{\mathrm{IR},s}(x) = \rho_{\mathrm{IR}}(L^{-s}x)$. Soit μ_{C_r} la loi de $\phi * \rho_{\mathrm{UV},r}$ où $\phi \in S'(\mathbb{R}^3)$ est de loi $\mu_{C_{-\infty}}$. Pour $r \in \mathbb{Z}$ (coupure UV $r \to -\infty$), soit $\rho_{\mathrm{UV},r}(x) = L^{-3r}\rho_{\mathrm{UV}}(L^{-r}x)$. Pour $s \in \mathbb{Z}$ (coupure IR $s \to \infty$), soit $\rho_{\mathrm{IR},s}(x) = \rho_{\mathrm{IR}}(L^{-s}x)$. Soit μ_{C_r} la loi de $\phi * \rho_{\mathrm{UV},r}$ où $\phi \in S'(\mathbb{R}^3)$ est de loi $\mu_{C_{-\infty}}$.

Etant donné un choix $(g_r, \mu_r)_{r \in \mathbb{Z}}$, on a des mesures bien définies $d\nu_{r,s}(\phi)$ dont la dérivée de Radon-Nikodym par rapport à $d\mu_{C_r}(\phi)$ est

$$\sim \exp\left(-\int_{\mathbb{R}^3} \rho_{\mathrm{IR},s}(x) \left\{g_r: \phi^4: (x) + \mu_r: \phi^2: (x)\right\} d^3x\right)$$

avec ordre de Hermite-Wick par rapport à μ_{C_r} .

Pour $r \in \mathbb{Z}$ (coupure UV $r \to -\infty$), soit $\rho_{\mathrm{UV},r}(x) = L^{-3r}\rho_{\mathrm{UV}}(L^{-r}x)$. Pour $s \in \mathbb{Z}$ (coupure IR $s \to \infty$), soit $\rho_{\mathrm{IR},s}(x) = \rho_{\mathrm{IR}}(L^{-s}x)$. Soit μ_{C_r} la loi de $\phi * \rho_{\mathrm{UV},r}$ où $\phi \in S'(\mathbb{R}^3)$ est de loi $\mu_{C_{-\infty}}$.

Etant donné un choix $(g_r, \mu_r)_{r \in \mathbb{Z}}$, on a des mesures bien définies $d\nu_{r,s}(\phi)$ dont la dérivée de Radon-Nikodym par rapport à $d\mu_{C_r}(\phi)$ est

$$\sim \exp\left(-\int_{\mathbb{R}^3} \rho_{\mathrm{IR},s}(x) \left\{g_r: \phi^4: (x) + \mu_r: \phi^2: (x)\right\} d^3x\right)$$

avec ordre de Hermite-Wick par rapport à μ_{C_r} .

La mesure BMS invariante d'échelle doit être la limite faible $\nu_{\phi} = \lim_{r \to -\infty} \lim_{s \to \infty} \nu_{r,s}$ pour un choix $(g_r, \mu_r)_{r \in \mathbb{Z}}$ simulant une limite d'échele d'un modèle critique fixe sur le réseau unité.

Conjecture 1:

Soit $[\phi] = \frac{3-\epsilon}{4}$ pour $0 < \epsilon \ll 1$.

Il existe un intervalle ouvert non vide $I\subset]0,\infty[$ et une fonction $\mu_{\rm c}:I\to\mathbb{R}$ telle que pour tout $g\in I$, si on pose $g_r=L^{-r(3-4[\phi])}g$ et $\mu_r=L^{-r(3-2[\phi])}\mu_{\rm c}(g)$, la limite faible ν_ϕ existe, est non gaussienne, stationnaire, O(3)-invariante, et invariante d'échelle avec exposant $[\phi]$, i.e., $\lambda^{[\phi]}\phi(\lambda\cdot)\stackrel{dd}{=}\phi(\cdot)$ pour tout $\lambda>0$.

De plus, cette limite est indépendante de L and $g \in I$ ainsi que des choix de $\rho_{\rm UV}, \rho_{\rm IR}$.

Conjecture 1:

Soit $[\phi] = \frac{3-\epsilon}{4}$ pour $0 < \epsilon \ll 1$.

Il existe un intervalle ouvert non vide $I\subset]0,\infty[$ et une fonction $\mu_{\rm c}:I\to\mathbb{R}$ telle que pour tout $g\in I$, si on pose $g_r=L^{-r(3-4[\phi])}g$ et $\mu_r=L^{-r(3-2[\phi])}\mu_{\rm c}(g)$, la limite faible ν_ϕ existe, est non gaussienne, stationnaire, O(3)-invariante, et invariante d'échelle avec exposant $[\phi]$, i.e., $\lambda^{[\phi]}\phi(\lambda\cdot)\stackrel{dd}{=}\phi(\cdot)$ pour tout $\lambda>0$.

De plus, cette limite est indépendante de L and $g \in I$ ainsi que des choix de $\rho_{\rm UV}, \rho_{\rm IR}$.

Mesure obtenue sur le tore par Mitter (\sim 2004) en utilisant le point fixe construit dans BMS, CMP 2003.

Une mesure de probabilité μ sur $S'(\mathbb{R}^3)$ a des moments de tout ordre (propriété MTO) si pour tout $f \in S(\mathbb{R}^3)$ et tout $p \in [0, \infty)$, la fonction $\phi \mapsto \phi(f)$ est dans $L^p(S'(\mathbb{R}^3), \mu)$.

Une mesure de probabilité μ sur $S'(\mathbb{R}^3)$ a des moments de tout ordre (propriété MTO) si pour tout $f \in S(\mathbb{R}^3)$ et tout $p \in [0, \infty)$, la fonction $\phi \mapsto \phi(f)$ est dans $L^p(S'(\mathbb{R}^3), \mu)$. Les formes n-linéaires données par les moments

$$S_n(f_1,\ldots,f_n)=\langle \phi(f_1)\cdots\phi(f_n)\rangle=\int_{S'(\mathbb{R}^3)}\phi(f_1)\cdots\phi(f_n)d\mu(\phi)$$

sont automatiquement continues (Fernique 1967).

Une mesure de probabilité μ sur $S'(\mathbb{R}^3)$ a des moments de tout ordre (propriété MTO) si pour tout $f \in S(\mathbb{R}^3)$ et tout $p \in [0, \infty)$, la fonction $\phi \mapsto \phi(f)$ est dans $L^p(S'(\mathbb{R}^3), \mu)$. Les formes n-linéaires données par les moments

$$S_n(f_1,\ldots,f_n)=\langle \phi(f_1)\cdots\phi(f_n)\rangle=\int_{S'(\mathbb{R}^3)}\phi(f_1)\cdots\phi(f_n)d\mu(\phi)$$

sont automatiquement continues (Fernique 1967).

Une mesure de probabilité μ est déterminée par ses corrélations (DC) si elle est MTO et la seule mesure MTO avec la même suite de moments S_n est μ elle-même.

Une mesure de probabilité μ sur $S'(\mathbb{R}^3)$ a des moments de tout ordre (propriété MTO) si pour tout $f \in S(\mathbb{R}^3)$ et tout $p \in [0, \infty)$, la fonction $\phi \mapsto \phi(f)$ est dans $L^p(S'(\mathbb{R}^3), \mu)$. Les formes n-linéaires données par les moments

$$S_n(f_1,\ldots,f_n)=\langle \phi(f_1)\cdots\phi(f_n)\rangle=\int_{S'(\mathbb{R}^3)}\phi(f_1)\cdots\phi(f_n)d\mu(\phi)$$

sont automatiquement continues (Fernique 1967).

Une mesure de probabilité μ est déterminée par ses corrélations (DC) si elle est MTO et la seule mesure MTO avec la même suite de moments S_n est μ elle-même. Par le théorème nucléaire S_n vit aussi dans $S'(\mathbb{R}^{3n})$.

① $\forall n, S_n \in S'(\mathbb{R}^{3n})$ a son support singulier dans la grande diagonale $\operatorname{Diag}_n = \{(x_1, \dots, x_n) \in \mathbb{R}^{3n} | \exists i \neq j, x_i = x_j \}$. Ceci définit les corrélations ponctuelles $S_n(x_1, \dots, x_n) = \langle \phi(x_1) \cdots \phi(x_n) \rangle$ comme fonctions C^{∞} sur $\mathbb{R}^{3n} \backslash \operatorname{Diag}_n$.

- ① $\forall n, S_n \in S'(\mathbb{R}^{3n})$ a son support singulier dans la grande diagonale $\operatorname{Diag}_n = \{(x_1, \dots, x_n) \in \mathbb{R}^{3n} | \exists i \neq j, x_i = x_j\}$. Ceci définit les corrélations ponctuelles $S_n(x_1, \dots, x_n) = \langle \phi(x_1) \cdots \phi(x_n) \rangle$ comme fonctions C^{∞} sur $\mathbb{R}^{3n} \backslash \operatorname{Diag}_n$.
- 2 Les corrélations ponctuelles sont $L^{1,loc}$ sur la grande diagonale.

- ① $\forall n, S_n \in S'(\mathbb{R}^{3n})$ a son support singulier dans la grande diagonale $\operatorname{Diag}_n = \{(x_1, \dots, x_n) \in \mathbb{R}^{3n} | \exists i \neq j, x_i = x_j \}$. Ceci définit les corrélations ponctuelles $S_n(x_1, \dots, x_n) = \langle \phi(x_1) \cdots \phi(x_n) \rangle$ comme fonctions C^{∞} sur $\mathbb{R}^{3n} \backslash \operatorname{Diag}_n$.
- 2 Les corrélations ponctuelles sont $L^{1,loc}$ sur la grande diagonale.
- 3 Pour tout *n* et toutes fonctions test $f_1, \ldots, f_n \in S(\mathbb{R}^3)$,

$$\langle \phi(f_1) \cdots \phi(f_n) \rangle =$$

$$\int_{\mathbb{R}^{3n} \backslash \text{Diag.}} \langle \phi(x_1) \cdots \phi(x_n) \rangle f(x_1) \cdots f(x_n) d^3 x_1 \cdots d^3 x_n.$$

- ① $\forall n, S_n \in S'(\mathbb{R}^{3n})$ a son support singulier dans la grande diagonale $\operatorname{Diag}_n = \{(x_1, \dots, x_n) \in \mathbb{R}^{3n} | \exists i \neq j, x_i = x_j \}$. Ceci définit les corrélations ponctuelles $S_n(x_1, \dots, x_n) = \langle \phi(x_1) \cdots \phi(x_n) \rangle$ comme fonctions C^{∞} sur $\mathbb{R}^{3n} \backslash \operatorname{Diag}_n$.
- 2 Les corrélations ponctuelles sont $L^{1,loc}$ sur la grande diagonale.
- 3 Pour tout n et toutes fonctions test $f_1, \ldots, f_n \in S(\mathbb{R}^3)$,

$$\langle \phi(f_1) \cdots \phi(f_n) \rangle =$$

$$\int_{\mathbb{R}^{3n} \backslash \text{Diag}_n} \langle \phi(x_1) \cdots \phi(x_n) \rangle f(x_1) \cdots f(x_n) d^3 x_1 \cdots d^3 x_n.$$

Conjecture 2:

 ν_{ϕ} est DCP.

Conjecture 3:

Les corrélations ponctuelles de u_{ϕ} vérifient

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \left(\prod_{i=1}^n |J_f(x_i)|^{\frac{[\phi]}{3}} \right) \times \langle \phi(f(x_1)) \cdots \phi(f(x_n)) \rangle$$

pour tout $f \in \mathcal{M}(\mathbb{R}^3)$ et toute collection de points distincts dans $\mathbb{R}^3 \setminus \{f^{-1}(\infty)\}$.

Conjecture 3:

Les corrélations ponctuelles de ν_{ϕ} vérifient

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \left(\prod_{i=1}^n |J_f(x_i)|^{\frac{[\phi]}{3}} \right) \times \langle \phi(f(x_1)) \cdots \phi(f(x_n)) \rangle$$

pour tout $f \in \mathcal{M}(\mathbb{R}^3)$ et toute collection de points distincts dans $\mathbb{R}^3 \setminus \{f^{-1}(\infty)\}$.

Ici, $\mathcal{M}(\mathbb{R}^3)$ est le groupe de Möbius des transformations conformes globales et $J_f(x)$ désigne le jacobien de f en x.

Conjecture 3:

Les corrélations ponctuelles de ν_{ϕ} vérifient

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \left(\prod_{i=1}^n |J_f(x_i)|^{\frac{[\phi]}{3}} \right) \times \langle \phi(f(x_1)) \cdots \phi(f(x_n)) \rangle$$

pour tout $f \in \mathcal{M}(\mathbb{R}^3)$ et toute collection de points distincts dans $\mathbb{R}^3 \setminus \{f^{-1}(\infty)\}$.

Ici, $\mathcal{M}(\mathbb{R}^3)$ est le groupe de Möbius des transformations conformes globales et $J_f(x)$ désigne le jacobien de f en x. La Conj. 3 est une formulation précise de prédictions dans "Conformal invariance in the long-range Ising model" par Paulos, Rychkov, van Rees et Zan, Nucl. Phys. B 2016 -> Bootstrap conforme en haute dimension.

Soit $\widehat{\mathbb{R}^3} = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$.

Soit $\widehat{\mathbb{R}^3} = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$. $\mathcal{M}(\mathbb{R}^3)$ est le groupe de transformations bijectives de $\widehat{\mathbb{R}^3}$ engendré par les isométries, les homothéties, et l'inversion par rapport à la sphère unité $J(x) = |x|^{-2}x$.

Soit $\mathbb{R}^3 = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$. $\mathcal{M}(\mathbb{R}^3)$ est le groupe de transformations bijectives de \mathbb{R}^3 engendré par les isométries, les homothéties, et l'inversion par rapport à la sphère unité $J(x) = |x|^{-2}x$. C'est aussi le groupe d'invariance du birapport absolu

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}.$$

Soit $\widehat{\mathbb{R}^3} = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$. $\mathcal{M}(\mathbb{R}^3)$ est le groupe de transformations bijectives de $\widehat{\mathbb{R}^3}$ engendré par les isométries, les homothéties, et l'inversion par rapport à la sphère unité $J(x) = |x|^{-2}x$. C'est aussi le groupe d'invariance du birapport absolu

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}.$$

Modèle boule conforme: $\widehat{\mathbb{R}^3} \simeq \mathbb{S}^3$ vu comme frontière de \mathbb{B}^4 avec la métrique $ds = \frac{2|dx|}{1-|x|^2}$.

Soit $\widehat{\mathbb{R}^3} = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$. $\mathcal{M}(\mathbb{R}^3)$ est le groupe de transformations bijectives de $\widehat{\mathbb{R}^3}$ engendré par les isométries, les homothéties, et l'inversion par rapport à la sphère unité $J(x) = |x|^{-2}x$. C'est aussi le groupe d'invariance du birapport absolu

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}.$$

Modèle boule conforme: $\widehat{\mathbb{R}^3} \simeq \mathbb{S}^3$ vu comme frontière de \mathbb{B}^4 avec la métrique $ds = \frac{2|dx|}{1-|x|^2}$.

Modèle demi-espace: \mathbb{R}^3 vu comme frontière de $\mathbb{H}^4 = \mathbb{R}^3 \times (0, \infty)$ avec la métrique $ds = \frac{|dx|}{x_4}$.

Soit $\widehat{\mathbb{R}^3} = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$. $\mathcal{M}(\mathbb{R}^3)$ est le groupe de transformations bijectives de $\widehat{\mathbb{R}^3}$ engendré par les isométries, les homothéties, et l'inversion par rapport à la sphère unité $J(x) = |x|^{-2}x$. C'est aussi le groupe d'invariance du birapport absolu

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}.$$

Modèle boule conforme: $\widehat{\mathbb{R}^3} \simeq \mathbb{S}^3$ vu comme frontière de \mathbb{B}^4 avec la métrique $ds = \frac{2|dx|}{1-|x|^2}$.

Modèle demi-espace: \mathbb{R}^3 vu comme frontière de $\mathbb{H}^4 = \mathbb{R}^3 \times (0,\infty)$ avec la métrique $ds = \frac{|dx|}{x_4}$. Correpondance bijective: $f \in \mathcal{M}(\mathbb{R}^3) \leftrightarrow$ isométrie hyperbolique de l'intérieur \mathbb{B}^4 ou \mathbb{H}^4 .

- Introduction
- Le modèle BMS en 3D: moult conjectures
- Le modèle hiérarchique p-adique: quelques théorèmes
- 4 La méthode: le groupe de renormalisation inhomogène

Soit p un entier > 1 (en fait un nombre premier).

Soit p un entier > 1 (en fait un nombre premier).

Soit \mathbb{L}_k , $k \in \mathbb{Z}$, l'ensemble des cubes $\prod_{i=1}^d [a_i p^k, (a_i + 1) p^k]$ pour $a_1, \ldots, a_d \in \mathbb{N}$. Les cubes de \mathbb{L}_k forment une partition de l'octant $[0, \infty[^d]$.

Soit p un entier > 1 (en fait un nombre premier).

Soit \mathbb{L}_k , $k \in \mathbb{Z}$, l'ensemble des cubes $\prod_{i=1}^d [a_i p^k, (a_i + 1) p^k]$ pour $a_1, \ldots, a_d \in \mathbb{N}$. Les cubes de \mathbb{L}_k forment une partition de l'octant $[0, \infty[^d]$.

Ainsi $\mathbb{T} = \bigcup_{k \in \mathbb{Z}} \mathbb{L}_k$ a naturellement une structure d'arbre doublement infini organisé en couches ou générations \mathbb{L}_k :

Dessin pour
$$d = 1$$
, $p = 2$

Oublions $[0,\infty)^d$ et \mathbb{R}^d . Définissons le substitut du continuum $\mathbb{Q}_p^d:=$ feuilles à l'infini

" $\mathbb{L}_{-\infty}$ ".

Oublions $[0,\infty)^d$ et \mathbb{R}^d .

Définissons le substitut du continuum $\mathbb{Q}_p^d:=$ feuilles à l'infini " $\mathbb{L}_{-\infty}$ ".

Plus précisement, ce sont les chemins montants infinis dans l'arbre.

Un chemin représentant un élément $x \in \mathbb{Q}_p^d$

Un point $x \in \mathbb{Q}_p^d$ est codé par une suite $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \dots, p-1\}^d$. Soit $0 \in \mathbb{Q}_p^d$ la suite avec tous les chiffres égaux à zéro. Un point $x \in \mathbb{Q}_p^d$ est codé par une suite $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \dots, p-1\}^d$. Soit $0 \in \mathbb{Q}_p^d$ la suite avec tous les chiffres égaux à zéro.

Prudence! notation casse-cou

 a_n représente les coordonnées locales d'un cube de \mathbb{L}_{-n-1} à l'intérieur d'un cube de \mathbb{L}_{-n} .

Un point $x \in \mathbb{Q}_p^d$ est codé par une suite $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \dots, p-1\}^d$. Soit $0 \in \mathbb{Q}_p^d$ la suite avec tous les chiffres égaux à zéro.

Prudence! notation casse-cou

 a_n représente les coordonnées locales d'un cube de \mathbb{L}_{-n-1} à l'intérieur d'un cube de \mathbb{L}_{-n} .

De plus, une homothétie est définie comme suit.

Si $x = (a_n)_{n \in \mathbb{Z}}$ alors $px = (a_{n-1})_{n \in \mathbb{Z}}$, i.e., décalage vers le haut.

De plus, une homothétie est définie comme suit. Si $x=(a_n)_{n\in\mathbb{Z}}$ alors $px=(a_{n-1})_{n\in\mathbb{Z}}$, i.e., décalage vers le haut.

De même $p^{-1}x$ est un décalage vers le bas et ainsi de suite pour définir p^kx , $k \in \mathbb{Z}$.

Si $x, y \in \mathbb{Q}_p^d$, on définit leur distance $|x - y| := p^k$ où k est la profondeur où se situe la bifurcation entre les deux chemins.

Si $x, y \in \mathbb{Q}_p^d$, on définit leur distance $|x - y| := p^k$ où k est la profondeur où se situe la bifurcation entre les deux chemins.

Si $x, y \in \mathbb{Q}_p^d$, on définit leur distance $|x - y| := p^k$ où k est la profondeur où se situe la bifurcation entre les deux chemins.

On pose aussi |x| := |x - 0|.

Si $x, y \in \mathbb{Q}_p^d$, on définit leur distance $|x - y| := p^k$ où k est la profondeur où se situe la bifurcation entre les deux chemins.

On pose aussi |x| := |x - 0|. A cause du choix de notation

$$|px| = p^{-1}|x|$$

Les boules fermées Δ de rayon p^k correspondent aux sites

 $\mathbf{x} \in \mathbb{L}_k$

Les boules fermées Δ de rayon p^k correspondent aux sites $\mathbf{x} \in \mathbb{L}_k$

3) Mesure de Lebesgue:

3) Mesure de Lebesgue:

Espace métrique $\mathbb{Q}_p^d \to \text{tribu de Borel} \to \text{mesure de Lebesgue}$ $d^d x$ qui donne un volume p^{dk} aux boules fermées de rayon p^k .

3) Mesure de Lebesgue:

Espace métrique $\mathbb{Q}_p^d \to \text{tribu de Borel} \to \text{mesure de Lebesgue}$ $d^d x$ qui donne un volume p^{dk} aux boules fermées de rayon p^k .

Construction: prendre le produit des mesures uniformes sur $(\{0,1,\ldots,p-1\}^d)^{\mathbb{N}}$ pour $\overline{B}(0,1)$ et de même pour les autres boules fermées de rayon 1, puis recoller.

4) La mesure gaussienne de masse nulle:

4) La mesure gaussienne de masse nulle:

Pour tout groupe G de rejetons d'un site $\mathbf{z} \in \mathbb{L}_{k+1}$ on associe un vecteur gaussien centré $(\zeta_{\mathbf{x}})_{\mathbf{x} \in G}$ dont la matrice de covariance $p^d \times p^d$ est faite de $1 - p^{-d}$'s sur la diagonale et de $-p^{-d}$'s partout ailleurs. On suppose que des vecteurs appartenant à des couches différentes ou des groupes différents sont indépendants.

4) La mesure gaussienne de masse nulle:

Pour tout groupe G de rejetons d'un site $\mathbf{z} \in \mathbb{L}_{k+1}$ on associe un vecteur gaussien centré $(\zeta_{\mathbf{x}})_{\mathbf{x} \in G}$ dont la matrice de covariance $p^d \times p^d$ est faite de $1 - p^{-d}$'s sur la diagonale et de $-p^{-d}$'s partout ailleurs. On suppose que des vecteurs appartenant à des couches différentes ou des groupes différents sont indépendants. On a $\sum_{\mathbf{x} \in G} \zeta_{\mathbf{x}} = 0$ p.s.

La fonction ancêtre: pour k < k', $\mathbf{x} \in \mathbb{L}_k$, soit $\operatorname{anc}_{k'}(\mathbf{x})$ l'ancêtre dand $\mathbb{L}_{k'}$.

La fonction ancêtre: pour k < k', $\mathbf{x} \in \mathbb{L}_k$, soit $\operatorname{anc}_{k'}(\mathbf{x})$ l'ancêtre dand $\mathbb{L}_{k'}$. Idem pour $\operatorname{anc}_{k'}(x)$ quand $x \in \mathbb{Q}_p^d$.

La fonction ancêtre: pour k < k', $\mathbf{x} \in \mathbb{L}_k$, soit $\operatorname{anc}_{k'}(\mathbf{x})$ l'ancêtre dand $\mathbb{L}_{k'}$.

Idem pour $\operatorname{anc}_{k'}(x)$ quand $x \in \mathbb{Q}_p^d$. Le champ de gaussien de masse nulle $\phi(x)$

Le champ de gaussien de masse nulle $\phi(x)$, $x \in \mathbb{Q}_p^d$ avec dimension $[\phi]$ est donné par

$$\phi(x) = \sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

$$\langle \phi(x)\phi(y)\rangle = \frac{c}{|x-y|^{2[\phi]}}$$

La fonction ancêtre: pour k < k', $\mathbf{x} \in \mathbb{L}_k$, soit $\operatorname{anc}_{k'}(\mathbf{x})$ l'ancêtre dand $\mathbb{L}_{k'}$.

Idem pour $\operatorname{anc}_{k'}(x)$ quand $x \in \mathbb{Q}_p^d$.

Le champ de gaussien de masse nulle $\phi(x)$, $x \in \mathbb{Q}_p^d$ avec dimension $[\phi]$ est donné par

$$\phi(x) = \sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

$$\langle \phi(x)\phi(y)\rangle = \frac{c}{|x-y|^{2[\phi]}}$$

C'est purement formel car ϕ n'est pas défini de manière ponctuelle. On a besoin de distributions aléatoires.

 $f: \mathbb{Q}_p^d \to \mathbb{R}$ est régulière si elle est localement constante

 $f: \mathbb{Q}_p^d \to \mathbb{R}$ est régulière si elle est localement constante On définit $S(\mathbb{Q}_p^d)$ comme l'espace des fonctions régulières à support compact.

 $f: \mathbb{Q}_p^d \to \mathbb{R}$ est régulière si elle est localement constante On définit $S(\mathbb{Q}_p^d)$ comme l'espace des fonctions régulières à support compact.

On a

$$S(\mathbb{Q}_p^d) = \cup_{n \in \mathbb{N}} S_{-n,n}(\mathbb{Q}_p^d)$$

où pour tout $t_- \leq t_+$, $S_{t_-,t_+}(\mathbb{Q}_p^d)$ désigne l'espace des fonctions constantes dans les boules fermées de rayon p^{t_-} et à support dans $\overline{B}(0,p^{t_+})$.

 $f: \mathbb{Q}_p^d \to \mathbb{R}$ est régulière si elle est localement constante On définit $S(\mathbb{Q}_p^d)$ comme l'espace des fonctions régulières à support compact.

On a

$$S(\mathbb{Q}_p^d) = \cup_{n \in \mathbb{N}} S_{-n,n}(\mathbb{Q}_p^d)$$

où pour tout $t_- \leq t_+$, $S_{t_-,t_+}(\mathbb{Q}_p^d)$ désigne l'espace des fonctions constantes dans les boules fermées de rayon p^{t_-} et à support dans $\overline{B}(0,p^{t_+})$.

Topologie engendrée par l'ensemble de toutes les semi-normes.

6) Distributions:

 $S'(\mathbb{Q}_p^d)$ est le dual muni de la topologie faible-*.

 $S'(\mathbb{Q}_p^d)$ est le dual muni de la topologie faible-*.

$$S(\mathbb{Q}_p^d)\simeq \oplus_{\mathbb{N}}\mathbb{R}$$

 $S'(\mathbb{Q}_p^d)$ est le dual muni de la topologie faible-*.

$$S(\mathbb{Q}_p^d)\simeq \oplus_{\mathbb{N}}\mathbb{R}$$

Ainsi

$$S'(\mathbb{Q}_p^d)\simeq \mathbb{R}^{\mathbb{N}}$$

avec la topologie produit

 $S'(\mathbb{Q}_p^d)$ est le dual muni de la topologie faible-*.

$$S(\mathbb{Q}_p^d)\simeq \oplus_{\mathbb{N}}\mathbb{R}$$

Ainsi

$$S'(\mathbb{Q}_p^d)\simeq \mathbb{R}^{\mathbb{N}}$$

avec la topologie produit \rightarrow espace polonais.

 $S'(\mathbb{Q}_p^d)$ est le dual muni de la topologie faible-*.

$$S(\mathbb{Q}_p^d)\simeq \oplus_{\mathbb{N}}\mathbb{R}$$

Ainsi

$$S'(\mathbb{Q}_p^d)\simeq \mathbb{R}^{\mathbb{N}}$$

avec la topologie produit \rightarrow espace polonais.

Les probas sur $S'(\mathbb{Q}_p^d)$ c'est fantastique!

Théorème de Prokhorov

- 1 Théorème de Prokhorov
- 2 Théorème de Bochner

- 1 Théorème de Prokhorov
- 2 Théorème de Bochner
- 3 Théorème de continuité de Lévy

- 1 Théorème de Prokhorov
- 2 Théorème de Bochner
- 3 Théorème de continuité de Lévy
- 4 La convergence uniforme des fonctions caractéristiques dans un voisinage complexe de l'origine entraîne la convergence faible des mesures de probabilité (utiliser les moments ou the théorème de Vitali-Porter).

- Théorème de Prokhorov
- 2 Théorème de Bochner
- 3 Théorème de continuité de Lévy
- 4 La convergence uniforme des fonctions caractéristiques dans un voisinage complexe de l'origine entraîne la convergence faible des mesures de probabilité (utiliser les moments ou the théorème de Vitali-Porter).
- 5 Les téchniques de groupe de renormalisation de A.A.-Chandra-Guadagni 2013 permettent d'établir ce type de critère de convergence.

- 1 Théorème de Prokhorov
- 2 Théorème de Bochner
- Théorème de continuité de Lévy
- 4 La convergence uniforme des fonctions caractéristiques dans un voisinage complexe de l'origine entraîne la convergence faible des mesures de probabilité (utiliser les moments ou the théorème de Vitali-Porter).
- 5 Les téchniques de groupe de renormalisation de A.A.-Chandra-Guadagni 2013 permettent d'établir ce type de critère de convergence.
- **6** $S'(\mathbb{Q}_p^d) \times S'(\mathbb{Q}_p^d) \simeq S'(\mathbb{Q}_p^d)$ la théorie marche aussi pour des lois jointes de paires de distributions aléatoires, e.g., $(\phi, N[\phi^2])$ plus loin.

$$d = 3$$
, $[\phi] = \frac{3 - \epsilon}{4}$,

$$d=3$$
, $[\phi]=rac{3-\epsilon}{4}$, $L=p^I$ facteur de zoom

$$d=3$$
, $[\phi]=rac{3-\epsilon}{4}$, $L=p^I$ facteur de zoom

$$r \in \mathbb{Z}$$
 coupure UV, $r \to -\infty$

$$d=3$$
, $[\phi]=rac{3-\epsilon}{4}$, $L=p^I$ facteur de zoom

$$r \in \mathbb{Z}$$
 coupure UV, $r \to -\infty$

$$s \in \mathbb{Z}$$
 coupure IR, $s \to \infty$

$$d=3$$
, $[\phi]=\frac{3-\epsilon}{4}$, $L=p'$ facteur de zoom

$$r \in \mathbb{Z}$$
 coupure UV, $r \to -\infty$

$$s \in \mathbb{Z}$$
 coupure IR, $s \to \infty$

La mesure gaussienne régularisée μ_{C_r} est la loi de

$$\phi_r(x) = \sum_{k=lr}^{\infty} p^{-k[\phi]} \zeta_{\text{anc}_k(x)}$$

$$d=3$$
, $[\phi]=rac{3-\epsilon}{4}$, $L=p^I$ facteur de zoom

$$r \in \mathbb{Z}$$
 coupure UV, $r \to -\infty$

$$s \in \mathbb{Z}$$
 coupure IR, $s \to \infty$

La mesure gaussienne régularisée μ_{C_r} est la loi de

$$\phi_r(x) = \sum_{k=lr}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

Ses réalisations sont des fonctions localement constantes à l'échelle L^r .

Ces mesures sont reliées par des homothéties.

$$d=3$$
, $[\phi]=rac{3-\epsilon}{4}$, $L=p'$ facteur de zoom

$$r \in \mathbb{Z}$$
 coupure UV, $r \to -\infty$

$$s \in \mathbb{Z}$$
 coupure IR, $s \to \infty$

La mesure gaussienne régularisée μ_{C_r} est la loi de

$$\phi_r(x) = \sum_{k=lr}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

Ses réalisations sont des fonctions localement constantes à l'échelle L^r .

Ces mesures sont reliées par des homothéties.

Si la loi de $\phi(\cdot)$ est μ_{C_0} , alors celle de $L^{-r[\phi]}\phi(L^r)$ est μ_{C_r} .

Fixons les paramètres g, μ and posons $g_r = L^{-(3-4[\phi])r}g$ et $\mu_r = L^{-(3-2[\phi])r}\mu$.

Fixons les paramètres g,μ and posons $g_r=L^{-(3-4[\phi])r}g$ et $\mu_r=L^{-(3-2[\phi])r}\mu$.

Soit $\Lambda_s = \overline{B}(0, L^s)$, tronquature IR ou de volume.

Fixons les paramètres g, μ and posons $g_r = L^{-(3-4[\phi])r}g$ et $\mu_r = L^{-(3-2[\phi])r}\mu$.

Soit $\Lambda_s = \overline{B}(0, L^s)$, tronquature IR ou de volume.

Soit

$$V_{r,s}(\phi) = \int_{\Lambda_s} \{g_r : \phi^4 :_{C_r} (x) + \mu_r : \phi^2 :_{C_r} (x)\} d^3x$$

et définissons la mesure de probabilité

$$d
u_{r,s}(\phi) = \frac{1}{\mathcal{Z}_{r,s}} e^{-V_{r,s}(\phi)} d\mu_{C_r}(\phi)$$

Soit $\phi_{r,s}$ la variable aléatoire dans $S'(\mathbb{Q}_p^3)$ échantillonnée selon $\nu_{r,s}$ et définissons le champ au carré $N_r[\phi_{r,s}^2]$ qui est une fonction déterministe de $\phi_{r,s}$, à valeurs dans $S'(\mathbb{Q}_p^3)$, donnée par

$$N_r[\phi_{r,s}^2](j) = Z_2^r \int_{\mathbb{Q}_p^3} \{ Y_2 : \phi_{r,s}^2 :_{C_r}(x) - Y_0 L^{-2r[\phi]} \} j(x) \ d^3x$$

avec des paramètres Z_2 , Y_0 , Y_2 à bien choisir.

Soit $\phi_{r,s}$ la variable aléatoire dans $S'(\mathbb{Q}_p^3)$ échantillonnée selon $\nu_{r,s}$ et définissons le champ au carré $N_r[\phi_{r,s}^2]$ qui est une fonction déterministe de $\phi_{r,s}$, à valeurs dans $S'(\mathbb{Q}_p^3)$, donnée par

$$N_r[\phi_{r,s}^2](j) = Z_2^r \int_{\mathbb{Q}_p^3} \{ Y_2 : \phi_{r,s}^2 :_{C_r} (x) - Y_0 L^{-2r[\phi]} \} j(x) \ d^3x$$

avec des paramètres Z_2 , Y_0 , Y_2 à bien choisir.

Le résultat principal concerne la loi limite de la paire $(\phi_{r,s}, N_r[\phi_{r,s}^2])$ dans $S'(\mathbb{Q}_p^3) \times S'(\mathbb{Q}_p^3)$ quand $r \to -\infty$, $s \to \infty$ (ordre indifférent).

Pour l'énoncé, on a besoin du point fixe approché

$$\bar{g}_* = \frac{p^\epsilon - 1}{36L^\epsilon(1 - p^{-3})}$$

Théorème 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho, \ \exists L_0, \ \forall L \geq L_0, \ \exists \epsilon_0 > 0, \ \forall \epsilon(0, \epsilon_0], \ \exists [\phi^2] > 2[\phi], \ \exists \text{ fonctions}$ $\mu(g), \ Y_0(g), \ Y_2(g) \ \text{sur }]\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}}[$ telles que si l'on pose $\mu = \mu(g), \ Y_0 = Y_0(g), \ Y_2 = Y_2(g) \ \text{et} \ Z_2 = L^{-([\phi^2]-2[\phi])}$ alors la loi de $(\phi_{r,s}, N_r[\phi^2_{r,s}])$ converge faiblement et au sens des moments vers celle d'une paire $(\phi, N[\phi^2])$ telle que:

Théorème 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho, \ \exists L_0, \ \forall L \geq L_0, \ \exists \epsilon_0 > 0, \ \forall \epsilon(0, \epsilon_0], \ \exists [\phi^2] > 2[\phi], \ \exists \text{ fonctions}$ $\mu(g), \ Y_0(g), \ Y_2(g) \ \text{sur }]\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}}[$ telles que si l'on pose $\mu = \mu(g), \ Y_0 = Y_0(g), \ Y_2 = Y_2(g) \ \text{et} \ Z_2 = L^{-([\phi^2]-2[\phi])}$ alors la loi de $(\phi_{r,s}, N_r[\phi^2_{r,s}])$ converge faiblement et au sens des moments vers celle d'une paire $(\phi, N[\phi^2])$ telle que:

1
$$\forall k \in \mathbb{Z}$$
, $(L^{-k[\phi]}\phi(L^k \cdot), L^{-k[\phi^2]}N[\phi^2](L^k \cdot)) \stackrel{d}{=} (\phi, N[\phi^2])$.

Théorème 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho, \ \exists L_0, \ \forall L \geq L_0, \ \exists \epsilon_0 > 0, \ \forall \epsilon(0, \epsilon_0], \ \exists [\phi^2] > 2[\phi], \ \exists \text{ fonctions}$ $\mu(g), \ Y_0(g), \ Y_2(g) \ \text{sur }]\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}}[$ telles que si l'on pose $\mu = \mu(g), \ Y_0 = Y_0(g), \ Y_2 = Y_2(g) \ \text{et} \ Z_2 = L^{-([\phi^2]-2[\phi])}$ alors la loi de $(\phi_{r,s}, N_r[\phi^2_{r,s}])$ converge faiblement et au sens des moments vers celle d'une paire $(\phi, N[\phi^2])$ telle que:

- 2 $\langle \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}) \rangle^{\mathrm{T}} < 0$ i.e., ϕ est non gaussien. Ici, $\mathbf{1}_{\mathbb{Z}_p^3}$ désigne la fonction indicatrice de $\overline{B}(0,1)$.

Théorème 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho, \ \exists L_0, \ \forall L \geq L_0, \ \exists \epsilon_0 > 0, \ \forall \epsilon(0, \epsilon_0], \ \exists [\phi^2] > 2[\phi], \ \exists \ \text{fonctions}$ $\mu(g), \ Y_0(g), \ Y_2(g) \ \text{sur} \] \bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}} [\ \text{telles que si l'on}$ pose $\mu = \mu(g), \ Y_0 = Y_0(g), \ Y_2 = Y_2(g) \ \text{et} \ Z_2 = L^{-([\phi^2] - 2[\phi])}$ alors la loi de $(\phi_{r,s}, N_r[\phi^2_{r,s}])$ converge faiblement et au sens des moments vers celle d'une paire $(\phi, N[\phi^2])$ telle que:

- 2 $\langle \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}) \rangle^{\mathrm{T}} < 0$ i.e., ϕ est non gaussien. Ici, $\mathbf{1}_{\mathbb{Z}_p^3}$ désigne la fonction indicatrice de $\overline{B}(0,1)$.
- **3** $\langle N[\phi^2](\mathbf{1}_{\mathbb{Z}_p^3}), N[\phi^2](\mathbf{1}_{\mathbb{Z}_p^3}) \rangle^{\mathrm{T}} = 1.$

$$\langle \phi(L^{-k}x_1)\cdots\phi(L^{-k}x_n)N[\phi^2](L^{-k}y_1)\cdots N[\phi^2](L^{-k}y_m)\rangle$$

$$=L^{-(n[\phi]+m[\phi^2])k}\langle\phi(x_1)\cdots\phi(x_n)N[\phi^2](y_1)\cdots N[\phi^2](y_m)\rangle$$

$$\langle \phi(L^{-k}x_1) \cdots \phi(L^{-k}x_n) N[\phi^2](L^{-k}y_1) \cdots N[\phi^2](L^{-k}y_m) \rangle$$

$$= L^{-(n[\phi]+m[\phi^2])k} \langle \phi(x_1) \cdots \phi(x_n) N[\phi^2](y_1) \cdots N[\phi^2](y_m) \rangle$$

Pour le modèle BMS *p*-adique nous avons aussi montré que $[\phi^2] - 2[\phi] = \frac{1}{3}\epsilon + o(\epsilon)$ comme attendu dans le modèle sur \mathbb{R}^3 .

$$\langle \phi(L^{-k}x_1) \cdots \phi(L^{-k}x_n) N[\phi^2](L^{-k}y_1) \cdots N[\phi^2](L^{-k}y_m) \rangle$$

$$= L^{-(n[\phi]+m[\phi^2])k} \langle \phi(x_1) \cdots \phi(x_n) N[\phi^2](y_1) \cdots N[\phi^2](y_m) \rangle$$

Pour le modèle BMS *p*-adique nous avons aussi montré que $[\phi^2] - 2[\phi] = \frac{1}{3}\epsilon + o(\epsilon)$ comme attendu dans le modèle sur \mathbb{R}^3 .

Assez proche, si l'on pose $\epsilon=1$, de l'estimation la plus précise actuellement pour le modèle d'Ising 3D classique (interactions de courte portée): $[\phi^2]-2[\phi]=0.3763\dots$ (Simmons-Duffin 2015 par la méthode du bootstrap conforme).

$$\langle \phi(L^{-k}x_1) \cdots \phi(L^{-k}x_n) N[\phi^2](L^{-k}y_1) \cdots N[\phi^2](L^{-k}y_m) \rangle$$

$$= L^{-(n[\phi]+m[\phi^2])k} \langle \phi(x_1) \cdots \phi(x_n) N[\phi^2](y_1) \cdots N[\phi^2](y_m) \rangle$$

Pour le modèle BMS *p*-adique nous avons aussi montré que $[\phi^2] - 2[\phi] = \frac{1}{3}\epsilon + o(\epsilon)$ comme attendu dans le modèle sur \mathbb{R}^3 .

Assez proche, si l'on pose $\epsilon=1$, de l'estimation la plus précise actuellement pour le modèle d'Ising 3D classique (interactions de courte portée): $[\phi^2]-2[\phi]=0.3763\dots$ (Simmons-Duffin 2015 par la méthode du bootstrap conforme).

La loi $\nu_{\phi \times \phi^2}$ de $(\phi, N[\phi^2])$ est indépendante de g: universalité.

Théorème 2: A.A.-Chandra-Guadagni 2013

 $\nu_{\phi \times \phi^2}$ est entièrement invariante d'échelle, i.e., invariante sous l'action du groupe $p^{\mathbb{Z}}$ au lieu de $L^{\mathbb{Z}}$. De plus, $\mu(g)$ et $[\phi^2]$ sont indépendants du facteur arbitraire L.

Théorème 2: A.A.-Chandra-Guadagni 2013

 $\nu_{\phi \times \phi^2}$ est entièrement invariante d'échelle, i.e., invariante sous l'action du groupe $p^{\mathbb{Z}}$ au lieu de $L^{\mathbb{Z}}$. De plus, $\mu(g)$ et $[\phi^2]$ sont indépendants du facteur arbitraire L.

Les corrélations à deux points sont données au sens des distributions par

$$\langle \phi(x)\phi(y)\rangle = \frac{c_1}{|x-y|^{2[\phi]}}$$

$$\langle N[\phi^2](x) \ N[\phi^2](y) \rangle = \frac{c_2}{|x-y|^{2[\phi^2]}}$$

Théorème 2: A.A.-Chandra-Guadagni 2013

 $\nu_{\phi \times \phi^2}$ est entièrement invariante d'échelle, i.e., invariante sous l'action du groupe $p^{\mathbb{Z}}$ au lieu de $L^{\mathbb{Z}}$. De plus, $\mu(g)$ et $[\phi^2]$ sont indépendants du facteur arbitraire L.

Les corrélations à deux points sont données au sens des distributions par

$$\langle \phi(x)\phi(y)\rangle = rac{c_1}{|x-y|^{2[\phi]}}$$
 $\langle N[\phi^2](x) N[\phi^2](y)\rangle = rac{c_2}{|x-y|^{2[\phi^2]}}$

Il est à noter que $3-2[\phi^2]=3-\frac{1}{3}\epsilon+o(\epsilon)\to \text{toujours }L^{1,\text{loc}}$!

Théorème 3: A.A., Mai 2015

Notons ψ_i l'un ou l'autre de ϕ ou $N[\phi^2]$. Alors, pour toute fonction de corrélation mixte \exists une fonction régulière $\langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle$ sur $(\mathbb{Q}_p^3)^n \backslash \mathrm{Diag}$ localement intégrable (sur la diagonale Diag) et telle que

$$\langle \psi_1(f_1) \cdots \psi_n(f_n) \rangle =$$

$$\int_{(\mathbb{Q}_p^3)^n \setminus \text{Diag}} \langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle f_1(z_1) \cdots f_n(z_n) \ d^3z_1 \cdots d^3z_n$$

pour toutes fonctions test $f_1, \ldots, f_n \in S(\mathbb{Q}_p^3)$.

Théorème 3: A.A., Mai 2015

Notons ψ_i l'un ou l'autre de ϕ ou $N[\phi^2]$. Alors, pour toute fonction de corrélation mixte \exists une fonction régulière $\langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle$ sur $(\mathbb{Q}_p^3)^n \backslash \mathrm{Diag}$ localement intégrable (sur la diagonale Diag) et telle que

$$\langle \psi_1(f_1) \cdots \psi_n(f_n) \rangle =$$

$$\int_{(\mathbb{Q}_p^3)^n \backslash \text{Diag}} \langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle f_1(z_1) \cdots f_n(z_n) \ d^3z_1 \cdots d^3z_n$$

pour toutes fonctions test $f_1, \ldots, f_n \in S(\mathbb{Q}_p^3)$.

 $\nu_{\phi \times \phi^2}$ a la propriéte DCP (c'est l'analogue de la Conj. 2).

Progrés vers la preuve de l'analogue p-adique de la Conj. 3.

Progrés vers la preuve de l'analogue *p*-adique de la Conj. 3.

∃ travaux antérieurs partiels par Lerner et Missarov (début des années 90).

Progrés vers la preuve de l'analogue p-adique de la Conj. 3.

∃ travaux antérieurs partiels par Lerner et Missarov (début des années 90).

Groupe de Möbius p-adique: engendré par les isometries (ultramétriques), les homothéties $x \mapsto p^k x$, $k \in \mathbb{Z}$, et l'inversion $J(x) = |x|^2 x$.

Progrés vers la preuve de l'analogue p-adique de la Conj. 3.

∃ travaux antérieurs partiels par Lerner et Missarov (début des années 90).

Groupe de Möbius p-adique: engendré par les isometries (ultramétriques), les homothéties $x \mapsto p^k x$, $k \in \mathbb{Z}$, et l'inversion $J(x) = |x|^2 x$.

On peut aussi definir le birapport absolu avec la distance ultramétrique. $\mathcal{M}(\mathbb{Q}_p^3)$ est alors les groupe des transformations de $\widehat{\mathbb{Q}_p^3} = \mathbb{Q}_p^3 \cup \{\infty\}$ qui préservent ce birapport.

Progrés vers la preuve de l'analogue p-adique de la Conj. 3.

∃ travaux antérieurs partiels par Lerner et Missarov (début des années 90).

Groupe de Möbius p-adique: engendré par les isometries (ultramétriques), les homothéties $x \mapsto p^k x$, $k \in \mathbb{Z}$, et l'inversion $J(x) = |x|^2 x$.

On peut aussi definir le birapport absolu avec la distance ultramétrique. $\mathcal{M}(\mathbb{Q}_p^3)$ est alors les groupe des transformations de $\widehat{\mathbb{Q}_p^3} = \mathbb{Q}_p^3 \cup \{\infty\}$ qui préservent ce birapport.

L'intérieur AdS est l'arbre \mathbb{T} avec la distance de la théorie des graphes. Analogue d'une métrique hyperbolique.

Lemme de Mumford-Manin-Drinfeld

$$CR(x_1, x_2, x_3, x_4) := \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|} = p^{-\delta(x_1 \to x_2; x_3 \to x_4)},$$

où $\delta(x_1 \to x_2; x_3 \to x_4)$ est le nombre d'arêtes communes des chemins doublement infinis $x_1 \to x_2$ et $x_3 \to x_4$, compté positivement si les orientations coincident et négativement sinon.

Lemme de Mumford-Manin-Drinfeld

$$CR(x_1, x_2, x_3, x_4) := \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|} = p^{-\delta(x_1 \to x_2; x_3 \to x_4)},$$

où $\delta(x_1 \to x_2; x_3 \to x_4)$ est le nombre d'arêtes communes des chemins doublement infinis $x_1 \to x_2$ et $x_3 \to x_4$, compté positivement si les orientations coincident et négativement sinon.

Grace à ce lemme, on peut établir une correpondance: $f \in \mathcal{M}(\mathbb{Q}_p^3) \leftrightarrow \text{isométrie hyperbolique de l'intérieur } \mathbb{T}.$

Lemme de Mumford-Manin-Drinfeld

$$CR(x_1, x_2, x_3, x_4) := \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|} = p^{-\delta(x_1 \to x_2; x_3 \to x_4)}$$

où $\delta(x_1 \to x_2; x_3 \to x_4)$ est le nombre d'arêtes communes des chemins doublement infinis $x_1 \to x_2$ et $x_3 \to x_4$, compté positivement si les orientations coincident et négativement sinon.

Grace à ce lemme, on peut établir une correpondance: $f \in \mathcal{M}(\mathbb{Q}_p^3) \leftrightarrow \text{isométrie hyperbolique de l'intérieur } \mathbb{T}$.

Le groupe de renormalisation (GR) inhomogène pour des couplages dépendants de la position de ACG 2013 \rightarrow coupure UV inhomogène en espace \rightarrow Conj. 3 en montrant l'équivalence entre la coupure usuelle du demi-espace avec celle de la boule conforme.

L'arbre, à nouveau

- Introduction
- Le modèle BMS en 3D: moult conjectures
- Le modèle hiérarchique p-adique: quelques théorèmes
- 4 La méthode: le groupe de renormalisation inhomogène

Dans le GR rigoureux usuel les couplages sont constants dans l'espace

$$\int \{g: \phi^4: (x) + \mu: \phi^2: (x)\} d^d x$$

Dans le GR rigoureux usuel les couplages sont constants dans l'espace

$$\int \{g: \phi^4: (x) + \mu: \phi^2: (x)\} d^d x$$

ACG 2013 \rightarrow GR inhomogène pour des couplages dépendents de l'espace

$$\int \{g(x): \phi^4: (x) + \mu(x): \phi^2: (x)\} d^d x$$

e.g,. $g(x) = g + \delta g(x)$, avec $\delta g(x)$ une perturbation locale, e.g., fonction test.

Dans le GR rigoureux usuel les couplages sont constants dans l'espace

$$\int \{g: \phi^4: (x) + \mu: \phi^2: (x)\} d^d x$$

ACG 2013 \rightarrow GR inhomogène pour des couplages dépendents de l'espace

$$\int \{g(x): \phi^4: (x) + \mu(x): \phi^2: (x)\} d^d x$$

e.g,. $g(x) = g + \delta g(x)$, avec $\delta g(x)$ une perturbation locale, e.g., fonction test.

Avatar non perturbatif rigoureux du GR local:

Wilson-Kogut PR 1974, Drummond-Shore PRD 1979, Jack-Osborn NPB 1990....

utile pour généralisations du "Théorème"-c de Zamolodchikov, relation invariance d'échelle vs. conforme, AdS/CFT,...

1ère étape: se placer sur le réseau unité

$$\mathcal{S}_{r,s}^{\mathrm{T}}(f) := \log \frac{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx + \int \phi(x) f(x) dx\right)}{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx\right)}$$

1ère étape: se placer sur le réseau unité

$$\mathcal{S}_{r,s}^{\mathrm{T}}(f) := \log$$

$$\begin{split} \frac{\int d\mu_{C_{r}}(\phi) \exp\left(-\int_{\Lambda_{s}} \{g_{r}:\phi^{4}:_{r}(x) + \mu_{r}:\phi^{2}:_{r}\} dx + \int \phi(x) f(x) dx\right)}{\int d\mu_{C_{r}}(\phi) \exp\left(-\int_{\Lambda_{s}} \{g_{r}:\phi^{4}:_{r}(x) + \mu_{r}:\phi^{2}:_{r}\} dx\right)} \\ &= \log\frac{\int d\mu_{C_{0}}(\phi) \mathcal{I}^{(r,r)}[f](\phi)}{\int d\mu_{C_{0}}(\phi) \mathcal{I}^{(r,r)}[0](\phi)} \end{split}$$

avec

$$\mathcal{I}^{(r,r)}[f](\phi) = \exp\left(-\int_{\Lambda_{s-r}} \{g : \phi^4 :_0 (x) + \mu : \phi^2 :_0\} d^3x + L^{(3-[\phi])r} \int \phi(x) f(L^{-r}x) d^3x\right)$$

2ème étape: définir le GR inhomogène

Covariance de fluctuation $\Gamma := C_0 - C_1$.

La mesure gaussienne associée est la loi du champ de fluctuation

$$\zeta(x) = \sum_{0 \le k \le I} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

Les L-blocs sont indépendants. Donc

2ème étape: définir le GR inhomogène

Covariance de fluctuation $\Gamma := C_0 - C_1$.

La mesure gaussienne associée est la loi du champ de fluctuation

$$\zeta(x) = \sum_{0 \le k < l} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

Les L-blocs sont indépendants. Donc

$$\int \mathcal{I}^{(r,r)}[f](\phi) \ d\mu_{C_0}(\phi) = \int \int \mathcal{I}^{(r,r)}[f](\zeta + \psi) \ d\mu_{\Gamma}(\zeta) d\mu_{C_1}(\psi)$$
$$= \int \mathcal{I}^{(r,r+1)}[f](\phi) \ d\mu_{C_0}(\phi)$$

avec une nouvelle fonction intégrée

$$\mathcal{I}^{(r,r+1)}[f](\phi) = \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L\cdot)) \ d\mu_{\Gamma}(\zeta)$$

Besoin d'extraire une renormalisation du vide \rightarrow la bonne définition est

$$\mathcal{I}^{(r,r+1)}[f](\phi) = e^{-\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L\cdot)) \ d\mu_{\Gamma}(\zeta)$$

pour avoir

$$\int \mathcal{I}^{(r,r)}[f](\phi) \; d\mu_{C_0}(\phi) = e^{\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r+1)}[f](\phi) \; d\mu_{C_0}(\phi)$$

Besoin d'extraire une renormalisation du vide \rightarrow la bonne définition est

$$\mathcal{I}^{(r,r+1)}[f](\phi) = e^{-\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L\cdot)) \ d\mu_{\Gamma}(\zeta)$$

pour avoir

$$\int \mathcal{I}^{(r,r)}[f](\phi) \; d\mu_{C_0}(\phi) = e^{\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r+1)}[f](\phi) \; d\mu_{C_0}(\phi)$$

Bis repetita: $\mathcal{I}^{(r,r)} \to \mathcal{I}^{(r,r+1)} \to \mathcal{I}^{(r,r+2)} \to \cdots \to \mathcal{I}^{(r,s)}$

Besoin d'extraire une renormalisation du vide \rightarrow la bonne définition est

$$\mathcal{I}^{(r,r+1)}[f](\phi) = e^{-\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L\cdot)) \ d\mu_{\Gamma}(\zeta)$$

pour avoir

$$\int \mathcal{I}^{(r,r)}[f](\phi) \; d\mu_{C_0}(\phi) = e^{\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r+1)}[f](\phi) \; d\mu_{C_0}(\phi)$$

Bis repetita: $\mathcal{I}^{(r,r)} \to \mathcal{I}^{(r,r+1)} \to \mathcal{I}^{(r,r+2)} \to \cdots \to \mathcal{I}^{(r,s)}$

Il faut contrôler

$$S^{\mathrm{T}}(f) = \lim_{\substack{r \to -\infty \\ s \to \infty}} \sum_{\substack{r < q < s}} \left(\delta b(\mathcal{I}^{(r,q)}[f]) - \delta b(\mathcal{I}^{(r,q)}[0]) \right)$$

On utilise un relèvement de Brydges-Yau

$$\vec{V}^{(r,q)} \xrightarrow{GR_{\mathrm{inhom}}} \vec{V}^{(r,q+1)}$$
 $\downarrow \qquad \qquad \downarrow$
 $\mathcal{I}^{(r,q)} \xrightarrow{} \mathcal{I}^{(r,q+1)}$

On utilise un relèvement de Brydges-Yau

$$\begin{array}{ccc}
& & & & & & & & & \\
& & & & & & & & & \\
\downarrow^{(r,q)} & \longrightarrow & & & & & & \\
& & & & & \downarrow^{(r,q+1)} & & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,q+1)} & & \\
& & & & & & \downarrow^{(r,$$

On utilise un relèvement de Brydges-Yau

$$egin{array}{cccc} & GR_{
m inhom} & & & & \ ec{\mathcal{V}}^{(r,q)} & \longrightarrow & ec{\mathcal{V}}^{(r,q+1)} & & & \ \downarrow & & & \downarrow & & \ \mathcal{I}^{(r,q)} & \longrightarrow & \mathcal{I}^{(r,q+1)} & & \ & = & \prod & \left[e^{f_\Delta\phi_\Delta} imes
ight. \end{array}$$

$$\mathcal{I}^{(r,q)}(\phi) = \prod_{\stackrel{\Delta \in \mathbb{L}_0}{\Delta \subset \Lambda_{s-q}}} \left[e^{f_{\Delta}\phi_{\Delta}} imes
ight.$$

$$\begin{aligned}
&\{\exp\left(-\beta_{4,\Delta}:\phi_{\Delta}^{4}:_{C_{0}}-\beta_{3,\Delta}:\phi_{\Delta}^{3}:_{C_{0}}-\beta_{2,\Delta}:\phi_{\Delta}^{2}:_{C_{0}}-\beta_{1,\Delta}:\phi_{\Delta}^{1}:_{C_{0}}\right) \\
&\times\left(1+W_{5,\Delta}:\phi_{\Delta}^{5}:_{C_{0}}+W_{6,\Delta}:\phi_{\Delta}^{6}:_{C_{0}}\right) \\
&+R_{\Delta}(\phi_{\Delta})\}]
\end{aligned}$$

La variable dynamique est $\vec{V} = (V_{\Delta})_{\Delta \in \mathbb{L}_0}$ avec

$$V_{\Delta} = (\beta_{4,\Delta}, \beta_{3,\Delta}, \beta_{2,\Delta}, \beta_{1,\Delta}, W_{5,\Delta}, W_{6,\Delta}, f_{\Delta}, R_{\Delta})$$

GR_{inhom} agit sur l'espace $\mathcal{E}_{\mathrm{inhom}}$, essentiellement

$$\prod_{\Delta\in\mathbb{L}_0}\left\{\mathbb{C}^7\times\textit{C}^9(\mathbb{R},\mathbb{C})\right\}$$

 GR_{inhom} agit sur l'espace $\mathcal{E}_{\mathrm{inhom}}$, essentiellement

$$\prod_{\Delta\in\mathbb{L}_0}\left\{\mathbb{C}^7 imes\mathcal{C}^9(\mathbb{R},\mathbb{C})
ight\}$$

Sous-espaces stables

 $\mathcal{E}_{\mathrm{hom}} \subset \mathcal{E}_{\mathrm{inhom}}$: données constantes en espace $\mathcal{E} \subset \mathcal{E}_{\mathrm{hom}}$: potentiels pairs, i.e., g, μ seulement et R fonction paire.

Soit GR l'action induite par GR_{inhom} dans \mathcal{E} .

3ème étape: stabiliser l'évolution homogène Montrer que $\forall q \in \mathbb{Z}$, $\lim_{r \to -\infty} \vec{V}^{(r,q)}[0]$

existe, i.e.,

$$\lim_{r \to -\infty} RG^{q-r} \left(\vec{V}^{(r,r)}[0] \right)$$

existe.

3ème étape: stabiliser l'évolution homogène

Montrer que $\forall q \in \mathbb{Z}$, $\lim_{r \to -\infty} \vec{V}^{(r,q)}[0]$ existe, i.e.,

$$\lim_{r \to -\infty} RG^{q-r} \left(\vec{V}^{(r,r)}[0] \right)$$

existe.

L'évolution homogène est

$$\begin{cases} g' = L^{\epsilon}g - A_{1}g^{2} + \cdots \\ \mu' = L^{\frac{3+\epsilon}{2}}\mu - A_{2}g^{2} - A_{3}g\mu + \cdots \\ R' = \mathcal{L}^{(g,\mu)}(R) + \cdots \end{cases}$$

3ème étape: stabiliser l'évolution homogène

Montrer que $\forall q \in \mathbb{Z}$, $\lim_{r \to -\infty} \vec{V}^{(r,q)}[0]$ existe, i.e.,

$$\lim_{r \to -\infty} RG^{q-r} \left(\vec{V}^{(r,r)}[0] \right)$$

existe.

L'évolution homogène est

$$\begin{cases} g' = L^{\epsilon}g - A_{1}g^{2} + \cdots \\ \mu' = L^{\frac{3+\epsilon}{2}}\mu - A_{2}g^{2} - A_{3}g\mu + \cdots \\ R' = \mathcal{L}^{(g,\mu)}(R) + \cdots \end{cases}$$

Graphe du tétard avec insertion d'une masse

$$A_3 = 12L^{3-2[\phi]} \int_{\mathbb{Q}^3_p} \Gamma(0,x)^2 d^3x$$

est le principal responsable pour la dimension anormale.

Preuve d'Irwin \rightarrow variété stable W^s

Preuve d'Irwin ightarrow variété stable W^{s}

Restriction à $W^s \to \text{contraction} \to \text{point fixe IR } v_*$.

Preuve d'Irwin \rightarrow variété stable $W^{\rm s}$

Restriction à $W^{s} \rightarrow \text{contraction} \rightarrow \text{point fixe IR } v_{*}$.

Construction de la variété instable W^{u} , intersection avec W^{s} transverse exactement en v_{*} .

Preuve d'Irwin \rightarrow variété stable W^{s}

Restriction à $W^s \to \text{contraction} \to \text{point fixe IR } v_*$.

Construction de la variété instable W^{u} , intersection avec W^{s} transverse exactement en v_{*} .

Ici, $\vec{V}^{(r,r)}[0]$ independant de r: limite déchelle stricte d'un mod'ele fixe sur réseau unité.

Il faut le choisir dans $W^{\rm s} \to \mu(g)$ masse critique.

Preuve d'Irwin \rightarrow variété stable $W^{\rm s}$

Restriction à $W^s \to \text{contraction} \to \text{point fixe IR } v_*$.

Construction de la variété instable W^{u} , intersection avec W^{s} transverse exactement en v_* .

Ici, $\vec{V}^{(r,r)}[0]$ independant de r: limite déchelle stricte d'un mod'ele fixe sur réseau unité.

Il faut le choisir dans $W^{\mathrm{s}} \to \mu(g)$ masse critique.

Ainsi

$$\forall q \in \mathbb{Z}, \qquad \lim_{r \to -\infty} \vec{V}^{(r,q)}[0] = \nu_*$$

Espaces tangents au point fixe: E^{s} and E^{u} .

 $E^{\rm u}=\mathbb{C} e_{\rm u}$, avec $e_{\rm u}$ vecteur propre de $D_{v_*}GR$ pour la valeur propre $\alpha_{\rm u}=L^{3-2[\phi]}\times Z_2=:L^{3-[\phi^2]}$.

Pour tout q, borner $\vec{V}^{(r,q)}[f] - \vec{V}^{(r,q)}[0]$ uniformément en r.

Pour tout q, borner $\vec{V}^{(r,q)}[f] - \vec{V}^{(r,q)}[0]$ uniformément en r.

1) $\sum_{x \in G} \zeta_x = 0$ p.s. \rightarrow déviation est 0 pour q < l'échelle de constance locale de f.

Pour tout q, borner $\vec{V}^{(r,q)}[f] - \vec{V}^{(r,q)}[0]$ uniformément en r.

- 1) $\sum_{\mathbf{x} \in G} \zeta_{\mathbf{x}} = 0$ p.s. \rightarrow déviation est 0 pour q < l'échelle de constance locale de f.
- **2)** La déviation réside dans le cube unité à l'origine pour q > le rayon du support de f par rapport à l'origine \rightarrow décroissance exponentielle à grand q.

Pour tout q, borner $\vec{V}^{(r,q)}[f] - \vec{V}^{(r,q)}[0]$ uniformément en r.

- 1) $\sum_{x \in G} \zeta_x = 0$ p.s. \rightarrow déviation est 0 pour q < 1'échelle de constance locale de f.
- 2) La déviation réside dans le cube unité à l'origine pour q > 1le rayon du support de f par rapport à l'origine \rightarrow décroissance exponentielle à grand q. Pour le terme de source en ϕ^2 rajouter

$$Y_2Z_2^r \int : \phi^2 :_{C_r} (x)j(x)d^3x$$

dans le potentiel. $S_{r,s}^{T}(f,j)$ dépend de deux fonctions test. Après dilatation vers le réseau unité

$$Y_2\alpha'_{\rm u}\int :\phi^2:_{C_0}(x)j(L^{-r}x)d^3x$$

à combiner avec μ en $(\beta_{2,\Delta})_{\Delta \in \mathbb{L}_0}$ dépendant de l'espace.

Pour rejouer les coups précédents avec j présent,

Pour rejouer les coups précédents avec j présent, construire

$$\Psi(v,w) = \lim_{n \to \infty} GR^n(v + \alpha_{\mathbf{u}}^{-n}w)$$

pour $v \in W^s$ et toute direction w (surtout la $\int : \phi^2 :$).

Pour rejouer les coups précédents avec *j* présent, construire

$$\Psi(v, w) = \lim_{n \to \infty} GR^n(v + \alpha_{\mathbf{u}}^{-n}w)$$

pour $v \in W^s$ et toute direction w (surtout la $\int : \phi^2 :$).

Pour v fixé, $\Psi(v, \cdot)$ est une paramétrisation de W^{u} vérifiant $\Psi(v, \alpha_{\mathrm{u}} w) = RG(\Psi(v, w))$.

Pour rejouer les coups précédents avec j présent, construire

$$\Psi(v,w) = \lim_{n\to\infty} GR^n(v + \alpha_{\mathbf{u}}^{-n}w)$$

pour $v \in W^s$ et toute direction w (surtout la $\int : \phi^2 :$).

Pour v fixé, $\Psi(v, \cdot)$ est une paramétrisation de W^{u} vérifiant $\Psi(v, \alpha_{\mathrm{u}} w) = RG(\Psi(v, w))$.

S'il n'y avait pas de direction W^s (dynamique 1D) alors Ψ serait une conjugaison \to Théorème de Poincaré-Kænigs.

Pour rejouer les coups précédents avec j présent, construire

$$\Psi(v,w) = \lim_{n\to\infty} GR^n(v + \alpha_{\mathbf{u}}^{-n}w)$$

pour $v \in W^s$ et toute direction w (surtout la $\int : \phi^2 :$).

Pour v fixé, $\Psi(v, \cdot)$ est une paramétrisation de W^{u} vérifiant $\Psi(v, \alpha_{\mathrm{u}} w) = RG(\Psi(v, w))$.

S'il n'y avait pas de direction W^s (dynamique 1D) alors Ψ serait une conjugaison \to Théorème de Poincaré-Kænigs.

 $\Psi(v, w)$ est holomorphe en v et w. Essentiel pour l'interprétation probabiliste de $(\phi, N[\phi^2])$ comme paire de variables aléatoires dans $S'(\mathbb{Q}_n^2)$. Merci pour votre attention.