

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Advanced Level

CONFIDENTIAL

MARKING SCHEME

JUNE 2016

MATHEMATICS

20 52 20 52 -8 127 2 25

9164/4

1
$$P(X > 2) = 0.03$$

$$P\left(Z > \frac{2 - \mu}{0.1}\right) = 0.03$$

$$P\left(Z < \frac{2-\mu}{0.1}\right) = 1 - 0.03 = 0.97$$

$$\frac{2-\mu}{0.1} = 1.881$$

$$2 - \mu = 0.1881$$

$$\mu = 2 - 0.1881$$

$$\mu = 1.8119$$

2 (a)
$$2k \div \frac{3k}{2} + k = 1$$

$$\frac{9}{2}k = 1$$

$$k = \frac{2}{9}$$

(b)
$$f(x) = \begin{cases} \frac{2}{9} & \text{for } 1 \le x \le 3_1 \\ \frac{2}{9}x - \frac{4}{9} & \text{for } 3 \le x \le 4 \end{cases}$$
$$\frac{20}{9} - \frac{4}{9}x \text{ for } 4 \le x \le 5$$
0 otherwise

MI Standardiset

B1 Table value

MI attempt to

A1 [4]

MI attempt to

the graph of

equations

A1 A. C.

B2 -1 each error [4]

3/20

777 54 54 34

3 (a)
$$P(2 \text{ red}) = \frac{1}{2} \left(\frac{3}{5}\right) \left(\frac{2}{4}\right) + \frac{1}{2} \left(\frac{2}{5}\right) \left(\frac{1}{4}\right)$$

$$= \frac{1}{5}$$

(b)
$$P(\text{from A/2 red}) = \frac{P(\text{from A} \cap 2 \text{ red})}{P(2 \text{ red})}$$

BI.

$$=\frac{\frac{6}{40}}{\frac{1}{5}}$$

correct knowers BI MI. dividing by his

$$=\frac{3}{4}$$

Take note

[5] Take note

partlei

<i>x</i>	2	3	4-	5	6	7	8
$\overline{P(X=x)}$	1	2	3	4	3	2	1
	16	16	16	16	16	16	16

(b)

X	2,3 or 4	5,6 or 7	8
P(X=x)	. 6	9	1
	16	16	16
Gain / Loss	-1	1	3

E (Gain/Loss) = $-1\left(\frac{6}{16}\right) + 1\left(\frac{9}{16}\right) + 3\left(\frac{3}{16}\right)$

BIMI de gain + Loss

Mieltiplication

by 3 probabilities

Al 151

3/20# 3 3/20

5/20

2/20 1/10

5 (a)
$$Q_1: \frac{1}{4}(n+1)^{th} = \frac{1}{4}(25+1)^{th} = 6.5^{th}$$
 or equiv.

MI

 $Q_1 = 18.5$ hectares

$$Q_2: \frac{1}{2}(25+1)^{th} = 28 \text{ hectares}$$

$$Q3: \frac{3}{4}(25+1)^{ih} = 36 \text{ hectares}$$

Interquartile range = 36 - 18.5

17.5 hectares

B2-1-each error for all

. BI both correct.

9, \$ 93.

MI subtracting
his Ritrantis

Al 03.

6 (a) (i)
$$\bar{x} = \frac{8960}{12} = 746.666$$

746.7

(ii)
$$\hat{\sigma}^2 = \frac{1}{11} \left[6828956 - \frac{8960^2}{12} \right]$$

= 12 620.24

(b)
$$750 \pm 1.64 \sqrt{\frac{10816}{50}}$$

= (725.81; 774.12)

7 (a)
$$P(X=0) = \frac{e^{-2}2^0}{0!} = e^{-2}$$

= 0.135

(b)
$$P(X > 4) = 1 - P(X \le 4)$$

$$= 1 - e^{-2} \left(1 + 2 + \frac{4}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} \right)$$

$$=$$
 1 - 0.9473

= 0.0527

(c)
$$\lambda = 2 \times 2 = 4$$

$$P(X=2) = \frac{e^{-4} 4^2}{2!}$$

= 0.1465

nq > 5

(ii)
$$X \approx Bin(100, \frac{1}{2})$$

$$np = 50, npq = 50(1 - 0.5) = 25$$

BH BI

At

M1

A1

BI table value 1

MI substituting

Al Al loner and apper a

M1

A1

BI Inderpreted 1 c

MI at least for

A1

В1

M1

A1 [8]

BIBI For any

B+

$$X \sim N (50, 25)$$

$$P(X < 37) = P(X < 36.5)$$

$$= P\left(Z < \frac{36.5 - 50}{\sqrt{25}}\right)$$

$$= P(Z < -2.7)$$

$$= 1 - 0.9965$$

$$= 0.0035$$

$$Y \sim \text{Bin}(2\ 000, 0.0035)$$

$$np = 2\ 000 \times 0\ 0035 = 7$$

$$Y \sim P(7)$$

$$P(Y > 3) = 1 - P(Y \le 3)$$

$$= 1 - e^{-7} \left(1 + 7 + \frac{7^2}{2!} + \frac{7^3}{3!}\right)$$

$$= 0.918$$
(i) For M contents $-X$ Paragraphs of A Paragraphs of A

(b)

. 9

(a)

= 0.918

(i)

B)
$$f \in \mu$$
.

B1 $f \in \mu$.

B2 $f \in \mu$.

B3 $f \in \mu$.

B4 $f \in \mu$.

B5 $f \in \mu$.

B6 $f \in \mu$.

B7 $f \in \mu$.

B1 $f \in \mu$.

B2 $f \in \mu$.

B3 $f \in \mu$.

B4 $f \in \mu$.

B5 $f \in \mu$.

B6 $f \in \mu$.

B7 $f \in \mu$.

B1 $f \in \mu$.

B2 $f \in \mu$.

B1 $f \in \mu$.

B1 $f \in \mu$.

B2 $f \in \mu$.

B1 $f \in \mu$.

B2 $f \in \mu$.

B3 $f \in \mu$.

$$X \sim N (500, 8^{2}), Y \sim N (20, 2^{2})$$

$$X + Y \sim N(520, 8^{2} + 2^{2})$$

$$P(X + Y > 525) = P\left(Z > \frac{525 - 520}{\sqrt{68}}\right)$$

$$= P(Z > + 0.6063)$$

$$= 1 - 0.7276 = 0.2724$$
(ii) Let W = $X_{1} + X_{2} + X_{3}$

$$W \sim N (1500, 3 \times 8^{2})$$

 $P(W > 1515) = P\left(Z > \frac{1515 - 1500}{\sqrt{192}}\right)$

Al creed ourses BIBI J8 M \$ 52 MI stasta.

= 1 - 0.8606

= P(Z > 1.083)

AH BI table value

$$-U-N(450,10^2)$$

B土

B±B‡

$$V = U_1 ... + U_5 - (X_1 ... + X_4)$$

$$V \sim N(5 \times 405 - 4 \times 500, 5 \times 6^2 + 4 \times 8^2)$$

$$V \sim N(25, \sqrt{436})$$

$$P(V>0) = P\left(Z > \frac{0-25}{\sqrt{436}}\right)$$

$$= P(Z > -1.197)$$

A1

M1

[14]

Al for or Stelst".

10 (a)

- (a) (i) correct scale and labels B1 any 4 correct plots. B1
 - (ii) strong negative linear relationship

all correct plots

(c) (i) Line passing thru \bar{x} ; \bar{y} and an M1 Fintercept other correct line pollet B1 A1

> interpolation D = 14.25

Ml

for the value of

(b)
$$\bar{x} = 242.86$$
 $\bar{y} = 18.57$

$$\bar{y} = 18.57$$

$$m = \frac{7 \times 27850 - 1700 \times 130}{7 \times 575000 - (1700)^2}$$

M1

$$= -\frac{26\,050}{1135\,000}$$

$$=$$
 -0.02295

A1

$$y = 18.33 = 0.02295 (x - 258.33)$$

M1 . A1

$$y = 24.143 - 0.023x$$

AI [14]

11

(a)	Cl	·	167,5	172,5	1775	18 2.5	187 5	
(a)	Class centre	163	168	173	178	192	100	7
	Frequence	4	18	37	26	103	188	BT .
	1	1 4	18	_ 37	26	10	T	5

(i) $\mu = \bar{x} = 174.75$ 174.27

(ii)

 $\hat{\sigma} = 5.7899$ $\hat{\sigma}^2 = 33.52$. 32, 7271.

5.721 (iii)

母 MIAI.

0	E	
4	3.73	
18	16.00	
37	31.11	
26	30.05	
10	1420	29.07
5	14.39	12.80
	4.73	7.24

Revised Table

Ho observith a N dialin

BI

(b)

O	E	$(O-E)^2$	
	r.		
22	19.73	E	
37		0.261	
	31.11	1.161	
26	30.05	0.533	
15	19.12	0.888	
10	12.8	0.6125	
3	7 29	0.719	

BI to patter.

Pooling

MI AI Any acreet B4—1 each error

$$\chi^2_{cal} = 2.843$$
 3.29

M1 A1

故县 B1

Since 2.843 < 3.841 we fail to reject H0 and conclude that the Normal distribution with the above parameters is an adequate model.

B2 M1 A1[17]

12 (i)
$$\theta = \tan^{-1} 2 = 63.4^{\circ}$$

(ii)
$$\frac{9.81(2^2+1)}{2V^2} = 0.01$$

$$V = \sqrt{\frac{9.81(5)}{0.02}} = 49.5 \, ms^{-1}$$

13 $7 + 6\cos 50^{\circ} - 5\cos 30^{\circ}$ for both $6 \sin 50 - 5 \sin 30$

B1

$$R = \sqrt{6.53^2 + 2.096^2}$$

$$= 6.858 \approx 6.9 \text{ N}$$

$$= 6.838 \approx 6.9 \text{ N}$$

$$\theta = t n^{-1} \left(\frac{2.096}{6.53} \right)$$

14 (a) V/ms-1

B1 for labelled axes

B1 for correct shape

B1 for correct times and B1 for correct velocities

[4]

(b) (i) Distance =
$$\frac{1}{2}(8+4)6+\frac{1}{2}(4)(0.8)$$
 - M1
= 38-m $38.2 \text{ m}/191/5$ A1 [2]
(ii) Displacement = $36-21$ /6 M1
= 34 m A1 [3] [8]
= 35 m .

15 (i) $T-0.2 \text{ g} = 0.2 \text{ a}$ for both
 $-T+0.28 \text{ g} = 0.28 \text{ a}$ for both
 $0.28 \text{ g} - 0.2 \text{ g} = 0.28 \text{ a} + 0.2 \text{ a}$ M1 Attempt to solve to a solv

R = 0.654 N