Capítulo 21 - Análise Combinatória - Métodos de Contagem

Exercícios Respondidos, Básicos, Complementares e Questões de Vestibular

Autor: Daniel de Lima Claudino

Referência Bibliográfica

PAIVA, Manoel Rodrigues. Matemática. Vol. 2. São Paulo: Moderna, 2004.

Sumário

1	Map	Mapa Mental - Analise Combinatoria		
2	Exe	rcícios Resolvidos	1	
3	Exe	rcícios Básicos	5	
4	Exercícios Complementares			
5	Questões de Vestibulares		14	
Lista de Figuras				
	1	Mapa Mental - Análise Combinatória	1	
	2	[Questão R6, pág.158] - Os elementos dos subconjuntos do conjunto A	4	
	3	[Questão B1, pág.159] - Esquema das opções de transporte de A para C, passando		
		por B	5	
	4	[Questão B9, pág.159] - Esquema - Quantos números podemos formar?	9	
	5	[Questão B10, pág.159] - Formar placas com pelo menos um dígito não-nulo	10	
	6	[Questão C1, pág.160 1/2] - O que é uma função bijetora?		
	7	[Questão C1, pág.160 2/2] - Diagrama de Venn do enunciado da questão	12	

Lista de Tabelas

1 Mapa Mental - Análise Combinatória

Figura 1: Mapa Mental - Análise Combinatória

Fonte:Site Infinittus - Conhecimento nas medidas exatas

2 Exercícios Resolvidos

- **R1** Uma montadora de automóveis apresenta um carro em **quatro modelos** diferentes e em **cinco cores** diferentes. Um consumidor que quiser arquirir esse veículo terá quantas opções de escolha ?
 - ① **O que contar?:** Quantas opções de escolha de veículo o consumidor terá?
 - ② **Restrições do(s) Experimento(s):** Nenhuma.
 - ③ **Experimento 1:** Escolher uma das opções de modelo. n_1 possui 5 resultados possíveis.
 - **Experimento 2:** Escolher uma das opções de cor. n_2 possui 4 resultados possíveis.
 - **S Cálculo:** Pelo princípio fundamental da contagem (PFC), o experimento composto 1 e 2, nessa ordem, tem $n_1 \times n_2$ resultados possíveis, ou seja, $5 \times 4 = 20$ opções de escolha.
 - **©** Conclusão: existem 20 opções de escolha de veículos para o consumidor.

- **R2** Quantos números naturais de três algarismos podem ser formados com os algarismos $A = \{1, 2, 6, 8, 9\}$?
 - ① **O que contar?:** Quantos números naturais de três algarismos podem ser formados com os algarismos dados.
 - ② Restrições do(s) Experimento(s): Nenhuma.
 - ③ **Experimento 1:** E_1 = Preencher a posição das unidades com um dos algarismos dados. Sendo n_1 o número de resultados possíveis do **experimento 1**, n_1 possui n(A) resultados possíveis, ou seja, $n_1 = n(A) = 5$.
 - **Experimento 2:** E_2 = Preencher a posição das dezenas com um dos algarismos dados. Sendo n_2 o número de resultados possíveis do **experimento 2**, n_2 possui n(A) resultados possíveis, já que nenhuma restrição existe para realizarmos o experimento, ou seja, $n_2 = n(A) = 5$.
 - ⑤ Experimento 2: E_3 = Preencher a posição das centenas com um dos algarismos dados. Sendo n_1 o número de resultados possíveis do **experimento 2**, n_3 possui n(A) resultados possíveis, já que nenhuma restrição existe para realizarmos o experimento, ou seja, $n_3 = n(A) = 5$.
 - **© Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2 e 3 apresentam, respectivamente, n_1 , n_2 e n_3 resultados possíveis, logo o experimento composto 1, 2 e 3 possuem, nessa ordem, $n_1 \times n_2 \times n_3$ ou $5 \times 5 \times 5 = 125$ resultados possíveis.
 - Conclusão: Podemos formar 125 números naturais de três algarismos com os números dados.
- **R3** Quantos números naturais de três algarismos **distintos** podem ser formados com os algarismos $A = \{1, 2, 6, 8, 9\}$?
 - ① **O que contar?:** Quantos números naturais de três algarismos **distintos** podem ser formados com os algarismos dados.
 - ② Restrições do(s) Experimento(s): Os números escolhidos em cada experimento devem ser distintos.
 - ③ **Experimento 1:** E_1 = Preencher a posição das unidades com um dos algarismos dados. Sendo n_1 o número de resultados possíveis do **experimento 1**, n_1 possui n(A) resultados possíveis, ou seja, $n_1 = n(A) = 5$.
 - **Experimento 2:** E_2 = Preencher a posição das dezenas com um dos algarismos dados. Sendo n_2 o número de resultados possíveis do **experimento 2**, n_2 possui n(A) 1 resultados possíveis, pois um dos algarismos já foi escolhido no experimento 1, ou seja, $n_2 = n(A) 1 = 5 1 = 4$.
 - **Experimento 3:** E_3 = Preencher a posição das centenas com um dos algarismos dados. Sendo n_3 o número de resultados possíveis do **experimento 3**, n_3 possui n(A) 2 resultados possíveis, pois um dos algarismos já foi escolhido no **experimento 1** e outro no **experimento 2**, ou seja, $n_2 = n(A) 2 = 5 2 = 3$.
 - **© Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2 e 3 apresentam, respectivamente, n_1 , n_2 e n_3 resultados possíveis, logo o experimento composto 1, 2 e 3 possuem, nessa ordem, $n_1 \times n_2 \times n_3$ ou $5 \times 4 \times 3 = 60$ resultados possíveis.
 - Conclusão: Podemos formar 60 números naturais de três algarismos distintos com os números dados.

- **R4** Quantos números naturais de três algarismos **distintos** podem ser formados com os algarismos $A = \{0, 1, 2, 6, 8\}$?
 - ① **O que contar?:** Quantos números naturais de três algarismos **distintos** podem ser formados com os algarismos dados.
 - 2 Restrições do(s) Experimento(s):
 - a) Os números escolhidos em cada experimento devem ser distintos.
 - b) A posição da **centena** não pode conter o número zero (0), pois, nesse caso, o número natural formado não terá três algarismos, e sim dois.
 - ③ Experimento 1: E_1 = Preencher a posição das centenas com um dos algarismos dados, observando as duas restrições apontadas do experimento. Lembrando que o zero não pode ser excolhido. Sendo n_1 o número de resultados possíveis do experimento 1, n_1 possui n(A) resultados possíveis, ou seja, $n_1 = n(A) - 1 = 4$.
 - Experimento 2: E₂ = Preencher a posição das dezenas com um dos algarismos dados, observando as duas restrições apontadas do experimento.
 Lembrando que: (1) Já foi escolhido o algarismo das centenas e (2) para casa das dezenas o zero pode ser escolhido.
 Sendo n₂ o número de resultados possíveis do experimento 2, n₂ possui n(A) 1 resultados possíveis, pois um dos algarismos já foi escolhido no experimento 1 e o zero pode ser escolhido, ou seja, n₂ = n(A) 1 = 5 1 = 4.
 - ⑤ Experimento 3: E₂ = Preencher a posição das unidades com um dos algarismos dados, observando as duas restrições apontadas do experimento.
 Lembrando que: (1) Já foi escolhido o algarismo das centenas e das dezenas e (2) para casa das unidades o zero pode ser escolhido.
 Sendo n₂ o número de resultados possíveis do experimento 2, n₂ possui n(A) 2 resultados possíveis, pois um dos algarismos já foi escolhido no experimento 1, outro algarismo no experimento 2 e o zero pode ser escolhido, ou seja, n₂ = n(A) 2 = 5 2 = 3.
 - **© Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2 e 3 apresentam, respectivamente, n_1 , n_2 e n_3 resultados possíveis, logo o experimento composto 1, 2 e 3 possuem, nessa ordem, $n_1 \times n_2 \times n_3$ ou $4 \times 4 \times 3 = 48$ resultados possíveis.
 - Conclusão: Podemos formar 48 números naturais de três algarismos distintos com os números dados.
- **R5** Quantos divisores naturais possui o número 72?
 - ① **Que contar?** Quantos divisores naturais possui o número 72.
 - ② Restrições do(s) Experimento(s): Nenhum.
 - 3 Fatoramos o número 72.

Fatoração do número 72

72	2
36	2
18	2
9	3
3	3
1	$2^4 \cdot 3^2$

④ A partir da fatoração realizada no item 3, podemos construir uma lista de divisores do número 72. Qualquer número que pode ser escrito através do produto $2^{\{0..3\}} \times 3^{\{0..2\}}$, com $x \in \{0, 1, 2, 3\}$ e $y \in \{0, 1, 2\}$, é um divisor de 72. Ou seja, os divisores são:

$$D(72) = \{2^0 \times 3^0, 2^0 \times 3^0, 2^0 \times 3^1, 2^0 \times 3^2, 2^1 \times 3^0, 2^1 \times 3^1, 2^1 \times 3^2, 2^2 \times 3^0, 2^2 \times 3^1, 2^2 \times 3^2, 2^3 \times 3^0, 2^3 \times 3^1, 2^3 \times 3^2\}$$
 ou
$$D(72) = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72\}$$

Um outra forma, mais genérica e rápida, de constatar que 72 possui 12 divisores é descobrir de quantas maneiras, no produto $2^{\{0...3\}} \times 3^{\{0...2\}}$, com $x \in \{0,1,2,3\}$ e $y \in \{0,1,2\}$, eu posso preencher o expoente do 2 e o expoente do 3.

Percebe-se que, tal qual respondemos nas questões anteriores, pelo princípio fundamental da contagem (PFC), temos dois experimentos: E_1 = Preencher o expoente do 2 e E_2 = Preencher o expoente do 3. Sendo n_1 o número de resultados possíveis do experimento E_1 e n_2 o número de resultados possíveis do experimento E_2 , temos que pelo PFC, o experimento composto E_1 e E_2 , nessa ordem, apresenta $n_1 \times n_2$ resultados possíveis, ou seja $4 \times 3 = 12$ números (divisores).

© Conclusão: O número 72 possui 12 divisores naturais.

R6 Quantos subconjuntos possui o conjunto $A = \{a, b, c, d\}$?

Figura 2: [Questão R6, pág.158] - Os elementos dos subconjuntos do conjunto A

$$\mathsf{A} = \{ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \}_{\frac{Presente}{Simi} \frac{Presente}{N\"{\mathsf{N}}\breve{\mathsf{a}}\breve{\mathsf{d}}} \frac{Presente}{Simi} \frac{Presente}{N\"{\mathsf{N}}\breve{\mathsf{a}}\breve{\mathsf{d}}} \frac{Presente}{N\"{\mathsf{N}}\breve{\mathsf{a}}\breve{\mathsf{d}}} \frac{Presente}{N\"{\mathsf{N}}\breve{\mathsf{a}}\breve{\mathsf{d}}} \frac{Presente}{N\"{\mathsf{N}}\breve{\mathsf{a}}\breve{\mathsf{d}}} \frac{Presente}{N\breve{\mathsf{N}}\breve{\mathsf{a}}\breve{\mathsf{d}}} \frac{Presente}{N\breve{\mathsf{n}}\breve{\mathsf{d}}} \frac{Presente}{N\breve{\mathsf{a}}\breve{\mathsf{d}}} \frac{Presente}{N\breve$$

- ① **O que contar?:** Quantos subconjuntos possui o conjunto A.
- ② Restrições do(s) Experimento(s): Nenhum.
- 3 Experimento: trata-se de um experimento composto de vários experimentos, conforme explicitamos abaixo.
 - ① E_1 Escolher se o $\mathbf{1}^{\mathbf{0}}$ elemento do conjunto de A, "a", será ou não escolhido. Esse experimento possui $n(E_1) = 2$ resultados possíveis (presente ou não presente).
 - ② E_1 Escolher se o **2º** elemento do conjunto de A, "b", será ou não escolhido. Esse experimento possui $n(E_2) = 2$ resultados possíveis (presente ou não presente)
 - ③ E_1 Escolher se o $\mathbf{3}^{\mathbf{0}}$ elemento do conjunto de A, "c", será ou não escolhido. Esse experimento possui $n(E_3) = 2$ resultados possíveis (presente ou não presente)
 - ① E_1 Escolher se o **4º** elemento do conjunto de A, "d", será ou não escolhido. Esse experimento possui $n(E_4) = 2$ resultados possíveis (presente ou não presente)
- **@ Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2, 3 e 4 apresentam, respectivamente, n_1 , n_2 , n_3 e n_4 resultados possíveis, logo o experimento composto 1, 2, 3 e 4 possuem, nessa ordem, $n_1 \times n_2 \times n_3 \times n_4$ ou $2 \times 2 \times 2 \times 2 = 16$ resultados possíveis.
- © Conclusão: Podemos formar 16 subconjuntos de A, incluindo o conjunto vazio.

3 Exercícios Básicos

B1 Duas linhas de ônibus vão de uma cidade A para uma cidade B e três linhas vão da cidade B para uma cidade C. De quantos modos diferentes um usuário dessas linhas pode ir de A para C, passando por B?

Figura 3: [Questão B1, pág.159] - Esquema das opções de transporte de A para C, passando por B

- ① Experimento 1: E_1 = Escolher uma das duas linhas de ônibus de A para B. Esse experimento possui $n(E_1) = 2$ resultados possíveis.
- ② Experimento 2: E_2 = Escolher uma das três linhas de ônibus de B para C. Esse experimento possui $n(E_2) = 3$ resultados possíveis.
- ③ Cálculo: Pelo princípio fundamental da contagem (PFC), os experimentos 1 e 2 apresentam, respectivamente, n_1 e n_2 resultados possíveis, logo o experimento composto 1 e 2 possui, nessa ordem, $n_1 \times n_2$ ou $2 \times 3 = 6$ resultados possíveis.
- Conclusão: O usuário dessas linhas pode ir de A para C, passando por B, de 6 formas diferentes.
- **B2** Quantos números naturais **de quatro algarismos** podem ser formados com os algarismos 3, 4, 5, 6, 7, 8 e 9?
 - ① Experimento 1: E_1 = Escolher o algarismo da unidade de milhar dentre os algarismos dados. Esse experimento possui $n(E_1) = 7$ resultados possíveis.
 - ② Experimento 2: E_2 = Escolher o algarismo da centena dentre os algarismos dados. Esse experimento possui $n(E_2) = 7$ resultados possíveis.
 - ③ Experimento 3: E_3 = Escolher o algarismo da dezena dentre os algarismos dados. Esse experimento possui $n(E_3) = 7$ resultados possíveis.
 - **Experimento 4:** E_4 = Escolher o algarismo da **unidade** dentre os algarismos dados. Esse experimento possui $n(E_4) = 7$ resultados possíveis.
 - ⑤ Cálculo: Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2, 3 e 4 apresentam, respectivamente, n_1, n_2, n_3 e n_4 resultados possíveis, logo o experimento composto 1, 2, 3 e 4 possui, nessa ordem, $n_1 \times n_2 \times n_3 \times n_4$ ou $7 \times 7 \times 7 \times 7 = 2401$ resultados possíveis.
 - **© Conclusão: 2.401 números naturais de quatro algarismos** podem ser formados com os algarismos 3, 4, 5, 6, 7, 8 e 9.
- **B3** Quantos números naturais de **quatro algarismos distintos** podem ser formados com os algarismos 3, 4, 5, 6, 7, 8 e 9?

- ① **Restrição do(s) Experimento(s):** Os algarismos dos números naturais formados **devem ser distintos**.
- ② Experimento 1: E_1 = Escolher o algarismo da unidade de milhar dentre os algarismos dados. Esse experimento possui $n(E_1) = 7$ resultados possíveis.
- ③ Experimento 2: E_2 = Escolher o algarismo da centena dentre os algarismos dados, sem contar o que foi escolhido no experimento $1(E_1)$. Esse experimento possui $n(E_2) = 7 1 = 6$ resultados possíveis.
- **Experimento 3:** E_3 = Escolher o algarismo da **dezena** dentre os algarismos dados, sem contar o que foi escolhido nos experimentos 1 e 2 (E_1 e E_2). Esse experimento possui $n(E_3) = 7 2 = 5$ resultados possíveis.
- **Experimento 4:** E_4 = Escolher o algarismo da **unidade** dentre os algarismos dados, sem contar o que foi escolhido nos experimentos 1, 2 e 3 (E_1 e E_2 e E_3). Esse experimento possui $n(E_4) = 7 3 = 4$ resultados possíveis.
- **© Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2, 3 e 4 apresentam, respectivamente, n_1, n_2, n_3 e n_4 resultados possíveis, logo o experimento composto 1, 2, 3 e 4 possui, nessa ordem, $n_1 \times n_2 \times n_3 \times n_4$ ou $7 \times 6 \times 5 \times 4 = 840$ resultados possíveis.
- © Conclusão: 840 números naturais de quatro algarismos distintos podem ser formados com os algarismos 3, 4, 5, 6, 7, 8 e 9.
- **B4** Quantos números naturais de **cinco algarismos distintos** podem ser formados com os algarismos $A = \{0, 3, 4, 5, 6, 7, 8, 9\}$?
 - ① **Dados para o Problema:** O número de elementos de A é dado pela expressão: n(A) = 8
 - ② Restrições do(s) Experimento(s):
 - a) Os algarismos dos números naturais formados devem ser distintos;
 - b) A escolha do algarismo da **dezena de milhar** não pode ser zero, pois, nesse caso, o número natural formado não terá **cinco algarismos**.
 - ③ Experimento 1: E_1 = Escolher o algarismo da dezena de milhar, exceto o zero, dentre os algarismos dados. Esse experimento possui $n(E_1) = n(A) 1 = 8 1 = 7$ resultados possíveis.
 - **Experimento 2:** E_2 = Escolher o algarismo da **centena** dentre os algarismos dados, sem contar o que foi escolhido no experimento $1(E_2)$ e considerando que o zero pode ser escolhido. Esse experimento possui $n(E_2) = n(A) 1 = 8 1 = 7$ resultados possíveis.
 - **Experimento 3:** E_3 = Escolher o algarismo da **centena** dentre os algarismos dados, sem contar o que foi escolhido no experimento 1 e 2 (E_1 e E_2) e considerando que o zero pode ser escolhido. Esse experimento possui $n(E_3) = n(A) 2 = 8 2 = 6$ resultados possíveis.
 - **Experimento 4:** E_4 = Escolher o algarismo da **centena** dentre os algarismos dados, sem contar o que foi escolhido no experimento 1, 2 e 3 (E_1 e E_2 e E_3) e considerando que o zero pode ser escolhido. Esse experimento possui $n(E_4) = n(A) 3 = 8 3 = 5$ resultados possíveis.
 - **Experimento 5:** E_5 = Escolher o algarismo da **centena** dentre os algarismos dados, sem contar o que foi escolhido no experimento 1, 2, 3 e 4 (E_1 e E_2 e E_3 e E_4) e considerando que o zero pode ser escolhido. Esse experimento possui $n(E_5) = n(A) 4 = 8 4 = 4$ resultados possíveis.

- © Cálculo: Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2, 3, 4 e 5 apresentam, respectivamente, n_1, n_2, n_3, n_4 e n_5 resultados possíveis, logo o experimento composto 1, 2, 3, 4 e 5 possui, nessa ordem, $n_1 \times n_2 \times n_3 \times n_4 \times n_5$ ou $7 \times 7 \times 6 \times 5 \times 4 = 5880$ resultados possíveis.
- **® Conclusão: 5880 números naturais de cinco algarismos distintos** podem ser formados com os algarismos 0, 3, 4, 5, 6, 7, 8, 9.
- **B5** Quantos números pares e positivos de três algarismos distintos podem ser formados com os algarismos 3, 4, 5, 6, 7, 8 e 9?
 - ① **Dados para o problema:** O número de elementos de A é dado pela expressão: n(A) = 7

② Restrições do(s) Experimento(s):

- a) Devemos formar números naturais de três algarismos distintos;
- b) Os algarismos das unidades deve ser par, dentre os algarismos disponíveis, ou seja, 4, 6 ou 8;
- ③ Experimento 1: E_1 = Escolher o algarismo das unidades, dentre os algarismos dados de forma que o número seja par, ou seja, escolher entre 4,6 ou 8. Esse experimento possui $n(E_1) = 3$ resultados possíveis.
- **Experimento 2:** E_2 = Escolher o algarismo da **dezenas** dentre os algarismos dados, sem contar o que foi escolhido no experimento $1(E_1)$ e considerando a restrição "a"(algarismos distintos). Esse experimento possui $n(E_2) = n(A) 1 = 6$ resultados possíveis.
- ⑤ Experimento 3: E_3 = Escolher o algarismo da centena dentre os algarismos dados, sem contar o que foi escolhido no experimento 1 e 2 (E_1 e E_2) e considerando a restrição "a"(algarismos distintos). Esse experimento possui $n(E_2) = n(A) 2 = 5$ resultados possíveis.
- **© Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2 e 3 apresentam, respectivamente, n_1, n_2 e n_3 resultados possíveis, logo o experimento composto 1, 2 e 3 possui, nessa ordem, $n_1 \times n_2 \times n_3$ ou $3 \times 6 \times 5 = 90$ resultados possíveis.
- © Conclusão: 90 números pares positivos de três algarismos distintos podem ser formados com os algarismos 3, 4, 5, 6, 7, 8 e 9.
- **B6** Quatro linhas de ónibus unem a cidade A à cidade B e três linhas unem a cidade B à cidade C. Um usuário vai viajar de A para C passando por B e vai voltar para A, passando novamente por B. De quantos modos diferentes esse usuário poderá escolher as linhas, se na volta ele não puder usar a linha que usou na ida?

① Restrições do(s) Experimento(s):

- a) Ir de A para C, passando por B;
- b) Voltar de C para A, passando por B e **não utilizando os ônibus usados na IDA de A para C**;
- ② **Experimento 1:** E_1 = Escolher o ônibus para ir da A para B. Esse experimento possui $n(E_1) = 4$ resultados possíveis.
- ③ **Experimento 2:** E_2 = Escolher o ônibus para ir da B para C. Esse experimento possui $n(E_2) = 3$ resultados possíveis.

- **Experimento 3:** E_3 = Escolher o ônibus para ir da C para B, **não podendo escolher o que foi utilizado no experimento 2** (E_2). Esse experimento possui $n(E_3) = 3 1 = 2$ resultados possíveis.
- **⑤** Experimento 4: E_4 = Escolher o ônibus para ir da B para A, não podendo escolher o que foi utilizado no experimento 1 (E_1). Esse experimento possui $n(E_4) = 4 1 = 3$ resultados possíveis.
- **© Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2, 3 e 4 apresentam, respectivamente, n_1, n_2, n_3 e n_4 resultados possíveis, logo o experimento composto 1, 2, 3 e 4 possui, nessa ordem, $n_1 \times n_2 \times n_3 \times n_4$ ou $4 \times 3 \times 2 \times 3 = 72$ resultados possíveis.
- © Conclusão: Para fazer a viagem de IDA e VOLTA conforme especificado no enunciado da questão, existem 72 possibilidade distintas.
- **B7** Oito atletas participam de uma corrida. Serão premiados apenas os três primeiros lugares. De quantas maneiras diferentes os prêmios podem ser distribuídos?

① Dados para o problema:

- a) O número de atletas que participam da corrida é dado pela expressão: n(A) = 8;
- b) Serão premiados apenas os três primeiros lugares;

② O que se dejesa saber?

- a) De quantas maneiras diferentes os prêmios podem ser distribuídos?
- ③ Experimento 1: E_1 = Premiar o corredor que terminou em **primeiro** lugar. Esse experimento possui $n(E_1) = n(A) = 8$ resultados possíveis.
- **Experimento 2:** E_2 = Premiar o corredor que terminou em **segundo lugar**. Esse experimento possui $n(E_2) = n(A) 1 = 8 1 = 7$ resultados possíveis já que desconsideramos o corredor que terminou em 1º lugar.
- **S** Experimento 3: E_3 = Premiar o corredor que terminou em terceiro lugar. Esse experimento possui $n(E_3) = n(A) 2 = 8$ resultados possíveis já que desconsideramos o corredor que terminou em 1° e em 2° lugar.
- **© Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2 e 3 apresentam, respectivamente, n_1, n_2 e n_3 resultados possíveis, logo o experimento composto 1, 2 e 3 possui, nessa ordem, $n_1 \times n_2 \times n_3$ ou $8 \times 7 \times 6 = 336$ resultados possíveis.
- © Conclusão: Os prêmios podem ser distribuídos de 336 maneiras diferentes.
- **B8** Uma prova é constituída por dez testes do tipo "verdadeiro ou falso". De quantas maneiras diferentes um candidato poderá responder aos dez testes, não deixando nenhum sem resposta e assinalando apenas uma alternativa em cada um?
 - ① **O que contar?:** Tratam-se de dez experimentos, um para cada questão, que consistem em escolher a ALTERNATIVA "V"OU "F", havendo, portanto, dois resultados possíveis para cada experimento.
 - ② **Restrições do(s) Experimento(s):** Ao responder as questões, o candidato:
 - a) Não pode deixar nenhuma questão sem resposta
 - b) Deve asinalar apenas uma alternativa em cada questão ("V"ou "F")

- ③ Experimentos: Em síntese, tratam-se de dez experimentos, um para cada questão, que consistem em escolher a alternativa "V"OU "F", ou seja $n(A_n)=2$ para cada experimento.
- **Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2, 3, ..., 10 apresentam, respectivamente, n_1 , n_2 , n_3 , ..., n_{10} resultados possíveis, logo o experimento composto 1, 2, 3, ..., 10 possuem, nessa ordem, $n_1 \times n_2 \times n_3 \times ... \times n_4$ ou $2 \times 2 \times 2 \times ... \times 2 = 2^{10} = 1024$ resultados possíveis.
- ⑤ Conclusão: A prova poderá ser respondida de 1024 maneiras distintas.
- **B9** Quantos números de telefone de seis dígitos podem ser formados com os dígitos 1, 2, 3, 4, 5, 6 e 7, de modo que os três primeiros dígitos sejam distintos?
 - ① **O que contar?:** Tratam-se de 6 experimentos, escolher cada um dos algarismos de telefone a ser formado, respeitando as restrições abaixo.
 - ② Restrições do(s) Experimento(s):
 - a) Os três primeiros algarismos do número de telefone devem ser distintos.

Figura 4: [Questão B9, pág.159] - Esquema - Quantos números podemos formar?

- **Experimentos:** Em síntese, tratam-se de seis experimentos: Escolher um algarismo dentre os dígitos 1, 2, 3, 4, 5, 6 e 7.
- **4** Cálculo:
 - a) Atuamos primeiro nos três primeiros algarismos que possuem restrições. A primeira posição pode ser ocupada por 7 dos disgitos disponíveis. A segunda possição poderá ser ocupada por 6 algarismos(7-1), a terceira por 5 (7-2), já que eles devem ser distintos (restrição "a").
 - a) As demais posições do número de telefone não possuem restrição. Elas podem receber quaisquer dos dígitos 1, 2, 3, 4, 5, 6 e 7, disponíveis.
- ⑤ Pelo princípio fundamental da contagem (PFC), as posições podem ser preenchidas conforme a figura 4.
- © Conclusão: Podem ser formados 72.030 telefones diferentes obedecendo os critérios do enunciado da questão.

- **B10** Uma placa de automóvel é formada por três letras seguidas de quatro algarismos, por exemplo: "BNP 0339". Quantas placas podem ser formadas com pelo menos um algarismo não-nulo, dispondo-se das 26 letras do alfabeto e dos dez algarismos do sistema decimal? (Incluímos as letras Y, W e K.)
 - ① **O que contar?:** Tratam-se de 2 experimentos. E_1 = Escolher três as letras para a placa do automóvel. E_2 = Escolher 4 números para a placa, respeitando as restrições do enunciado da questão.

2 Restrições do(s) Experimento(s):

a) A parte numérica da placa deve conter, pelo menos um algarismo não-nulo (1,2,3,4,5,6,7,8 e 9), ou seja, existem três situações distintas que devem ser tratadas: A parte numérica da placa deve conter três algarismos zero, dois algarismos zero ou um algarismo zero, mas não os quatro algarismos zero.

Figura 5: [Questão B10, pág.159] - Formar placas com pelo menos um dígito não-nulo.

B11 Qual o número de divisores naturais de $n = 2^4 \times 3^3 \times 5$?

- ① **Que contar?** A partir da fatoração $2^4 \times 3^3 \times 5 = 2160$, podemos construir uma lista de divisores possíveis. Qualquer número que pode ser escrito através do produto $2^x \times 3^y \times 5^z$, com $x \in \{0,1,2,3,4\}$, $y \in \{0,1,2,3\}$ e $z \in \{0,1\}$, é um divisor de 2160, ou seja, se dividirmos o número 2160 por $2^x \times 3^y \times 5^z$ ocorrerá divisão exata (com resto zero). Em resumo, qualquer número $b, b \in \mathbb{N}$, será divisor de um número $a, a \in \mathbb{N}$, se na divisão $\frac{a}{b}$, o resto for zero.
- ② Experimento 1: E_1 = Escolher o expoente para o fator 2 em $2^x \times 3^y \times 5^z$. Com $x \in \{0, 1, 2, 3, 4\}$, esse experimento possui $n(E_1) = n_1 = 5$ resultados possíveis.
- ③ **Experimento 2:** E_2 = Escolher o expoente para o **fator 3** em $2^x \times 3^y \times 5^z$. Com $y \in \{0, 1, 2, 3\}$, esse experimento possui $n(E_2) = n_2 = 4$ resultados possíveis.
- **Experimento 3:** E_3 = Escolher o expoente para o **fator 5** em $2^x \times 3^y \times 5^z$. Com $z \in \{0, 1\}$, esse experimento possui $n(E_3) = n_3 = 2$ resultados possíveis.
- © Cálculo: Pelo princípio fundamental da contagem (PFC), o experimento E_1 possui n_1 resultados possíveis, o experimento E_2 possui n_2 resultados possíveis e o experimento E_3 possui n_3 resultados possíveis, logo o experimento composto E_1 , E_2 e E_3 , nessa ordem, apresenta $n_1 \times n_2 \times n_3$ resultados possíveis, ou seja, $5 \times 4 \times 2 = 40$ resultados possíveis.
- **© Conclusão:** Existem 40 divisores naturais de $2^4 \times 3^3 \times 5 = 2160$.

B12 Qual o número de divisores naturais de n = 504?

- ① **Que contar?** A partir da fatoração do número $504 = 2^3 \times 3^2 \times 7$, podemos construir uma lista de divisores possíveis. Qualquer número que pode ser escrito através do produto $2^x \times 3^y \times 5^z$, com $x \in \{0,1,2,3\}$, $y \in \{0,1,2\}$ e $z \in \{0,1\}$, é um divisor de 504, ou seja, se dividirmos o número 504 por $2^x \times 3^y \times 7^z$ ocorrerá divisão exata (com resto zero). Em resumo, qualquer número $b,b \in \mathbb{N}$, será divisor de um número $a,a \in \mathbb{N}$, se na divisão $\frac{a}{b}$, o resto for zero.
- ② Experimento 1: E_1 = Escolher o expoente para o fator 2 em $2^x \times 3^y \times 5^z$. Com $x \in \{0, 1, 2, 3\}$, esse experimento possui $n(E_1) = n_1 = 4$ resultados possíveis.
- ③ Experimento 2: E_2 = Escolher o expoente para o fator 3 em $2^x \times 3^y \times 5^z$. Com $y \in \{0, 1, 2\}$, esse experimento possui $n(E_2) = n_2 = 3$ resultados possíveis.
- **Experimento 3:** E_3 = Escolher o expoente para o **fator 7** em $2^x \times 3^y \times 5^z$. Com $z \in \{0, 1\}$, esse experimento possui $n(E_3) = n_3 = 2$ resultados possíveis.
- ⑤ Cálculo: Pelo princípio fundamental da contagem (PFC), o experimento E_1 possui n_1 resultados possíveis, o experimento E_2 possui n_2 resultados possíveis e o experimento E_3 possui n_3 resultados possíveis, logo o experimento composto E_1, E_2 e E_3 , nessa ordem, apresenta $n_1 \times n_2 \times n_3$ resultados possíveis, ou seja, $4 \times 3 \times 2 = 24$ resultados possíveis.
- **© Conclusão:** Existem 24 divisores naturais de $2^3 \times 3^2 \times 7 = 504$.

4 Exercícios Complementares

C1 Quantas funções bijetoras têm domínio $A = \{1, 2, 3, 4\}$ e contradomínio $B = \{5, 6, 7, 8\}$?

Discussão Conceitual Sobre Funções Bijetoras

A função bijetora, também chamada bijetiva, é um tipo de função matemática que relaciona cada elemento do domínio A a um elemento diferente no contradomínio B.

Além disto, todo elemento do contradomínio B é imagem de A.

$$CD(f) = Im(f)$$

Em resumo, todo elemento de B recebe uma única flecha de A (**função injetora**). Não sobra elementos no contradomínio B (**função sobrejetora**). A correspondência entre os elementos dos dois conjuntos é biunívoca¹.

Figura 6: [Questão C1, pág.160 1/2] - O que é uma função bijetora?

Fonte: Autor

Vamos descobrir **quantas funções bijetoras poderemos formar**. Para isso, considere a figura 7

Figura 7: [Questão C1, pág.160 2/2] - Diagrama de Venn do enunciado da questão

¹Importante notar que o **domínio** e o **contradomínio** apresentam <u>o mesmo número de elementos</u>

Resolução da Questão

- ① **O que contar?** Quantas funções bijetoras poderemos formar.
- ② **Restrições do(s) Experimento(s):** A função deve ser bijetora.
 - a) Cada elemento do domínio A só pode ser levado a um elemento do contradomínio
 B (Para ser uma relação do tipo função)
 - b) Cada elemento do contradomínio B só pode estar ligado a um elemento do domínio A (função injetora)
 - c) Não pode sobrar elementos no contradomínio B (função sobrejetora)
- ③ **Experimento 1:** E_1 = Para o primeiro elemento do domínio "1" em A, devemos escolher um elemento do contradomínio em B de forma a respeitar a restrição do enununciado da questão. Essa escolha gera $n_1 = 4$ possibilidades de escolha no contradomínio.
- **Experimento 2:** E_2 = Para o segundo elemento do domínio "2" em A, devemos escolher um elemento do contradomínio em B de forma a respeitar a restrição do enununciado da questão. Essa escolha gera $n_2 = 3$ possibilidades de escolha no contradomínio, pois um elemento já foram escolhida no E_1 .
- ⑤ Experimento 3: E_3 = Para o terceiro elemento do domínio "3" em A, devemos escolher um elemento do contradomínio em B de forma a respeitar a restrição do enununciado da questão. Essa escolha gera $n_3 = 2$ possibilidades de escolha no contradomínio, pois dois elementos já foram escolhidos no E_1 e E_2 .
- © Experimento 4: E_4 = Para o quarto elemento do domínio "4" em A, devemos escolher um elemento do contradomínio em B de forma a respeitar a restrição do enununciado da questão. Essa escolha gera $n_4=1$ possibilidade de escolha no contradomínio, pois três elementos já foram escolhidos no E_1 e E_2 e E_3 .
- ⑤ Cálculo: Pelo princípio fundamental da contagem (PFC), o experimento E_1 possui n_1 resultados possíveis, o experimento E_2 possui n_2 resultados possíveis, o experimento E_3 possui n_3 resultados possíveis e o experimento E_4 possui n_4 resultados possíveis, logo o experimento composto E_1 , E_2 , E_3 e E_4 , nessa ordem, apresenta $n_1 \times n_2 \times n_3 \times n_4$ resultados possíveis, ou seja, $4 \times 3 \times 2 \times 1 = 24$ resultados possíveis.
- **© Conclusão:** Podemos formar 24 funções bijetoras com os conjuntos A e B (domínio e contradomínio, respectivamente).
- C2 Quantas funções injetoras podem ser definidas em $A = \{1, 2, 3, 4\}$ com imagens em $B = \{a, b, c, d, e, f\}$?
- C3 Quantos subconjuntos tem o conjunto $A = \{a, b, c, d, e\}$?
- C4 O número $n=2^x\times 3^4\times 5^2$, com $x\in\mathbb{N}$, possui sessenta divisores naturais. Determine x.
- C5 Quamos números naturais pares de quatro algarismos podem ser formados com os algarismos 1, 2, 3, 4 e 5?
- **C6** Quantos números naturais pares de quatro algarismos distintos podem ser formados com os algarismos 1, 2, 3, 4 e 5?
- C7 Quantos números naturais maiores do que 400 de três algarismos podem ser formados com os algarismos 1, 2, 4, 5 e 6?
- **C8** Quantos números naturais maiores do que 400 e de três algarismos distintos podem ser formados com os algarismos 1, 2, 4, 5 e 6?

5 Questões de Vestibulares

- **V1** (UFRS) Dum ponto A a um ponto B existem cinco caminhos; de B a um terceiro ponto C existem seis caminhos, e de C a um quarto ponto D existem também seis caminhos. Quantos caminhos existem para ir do ponto A ao ponto D, passando por B e C?
 - a) 17
 - b) 30
 - c) 180
 - d) 680
 - e) 4080
- **V2** (FGV-SP) Antes de 1990 as placas de automóveis eram constituídas de duas leuas seguidas de quarto algarismos. Quantas placas desse tipo, diferentes, podem ser formadas com as vogais do afabeto e algarismos pares?
 - a) 400
 - b) 31250
 - c) 7812
 - d) 15625
 - e) n.d.a.
- **V2** (Vunesp) Os jomais noticiaram que, a partir de 1990, o código de placas dos automóveis particulares seda constituído por três letras seguidas de quatro algarismos, admitindo-se repetições. Usando-se 26 letras e dez algarismos, o maior número possível de placas desse tipo em que figuram pelo menos uma lona R e pelo menos uma letra C é:
 - a) $32 \times 35 \times 10^4$
 - b) $3 \times 2 \times 26 \times 10^4$
 - c) $3 \times 26 \times 10^4$
 - d) $325 \times 24 \times 23 \times 10^4$
 - e) $41 \times 6 \times 10^4$
- **V2** (PUC-MG) Considerando os elementos do conjunto A = 10, 1, 2, 4, 5, 6, 7, 91, quantos números inteiros de cinco algarismos distintos, maiores que 64000, podem ser formados?
- **V2** (Cesgranrio) Considere todos os n números pares positivos, de quatro dígitos distintos, formados com os algarismos I, 2, 3 e 4. Então n é:
 - a) 10
 - b) 12
 - c) 16
 - d) 18
 - e) 24