Matemática Discreta

Escola de Artes, Ciências e Humanidades - USP Profa Dra. Karla Lima email:ksampaiolima@usp.br

Theorem 49.12

Let G be a connected graph and suppose $e \in E(G)$ is a cut edge of G. Then G - e has exactly two components.

Let P be an (a, b)-path in G. Because there is no (a, b)-path in G - e, we know P must traverse the edge e. Suppose x and y are the endpoints of the edge e, and without loss of generality, the path P traverses e in the order x, then y; that is,

$$P = a \sim \cdots \sim x \sim y \sim \cdots \sim b.$$

Similarly, since G is connected, there is a path Q from c to a that must use the edge e = xy. Which vertex, x or y, appears first on Q as we travel from c to a?

Theorem 49.12

Let G be a connected graph and suppose $e \in E(G)$ is a cut edge of G. Then G - e has exactly two components.

If x appears before y on the (c, a)-path Q, then notice that we have, in G - e, a walk from c to a. Use the (c, x)-portion of Q, concatenated with the (x, a)-portion of P^{-1} . This yields a (c, a)-walk in G - e and hence a (c, a)-path in G - e (by Lemma 49.7). This, however, is a contradiction, because a and c are in separate components of G - e.

Theorem 49.12

Let G be a connected graph and suppose $e \in E(G)$ is a cut edge of G. Then G - e has exactly two components.

If y appears before x on the (c, a)-path Q, then notice that we have, in G - e, a walk from c to b. Concatenate that (c, y)-section of Q with the (y, b)-section of P. This walk does not use the edge e. Therefore there is a (c, a)-walk in G - e and hence (Lemma 49.7) a (c, a)-walk in G - e. This contradicts the fact that in G - e we have c and b in separate components.

Theorem 49.12

Let G be a connected graph and suppose $e \in E(G)$ is a cut edge of G. Then G - e has exactly two components.

Therefore G - e has at most two components.

Definition 50.1

(Cycle) A cycle is a walk of length at least three in which the first and last vertex are the same, but no other vertices are repeated.

Definition 50.1

(Cycle) A cycle is a walk of length at least three in which the first and last vertex are the same, but no other vertices are repeated.

The term *cycle* also refers to a (sub)graph consisting of the vertices and edges of such a walk. In other words, a cycle is a graph of the form G = (V, E) where

$$V = \{v_1, v_2, \dots, v_n\}$$
 and $E = \{v_1 v_2, v_2 v_3, \dots, v_{n-1} v_n, v_n v_1\}.$

Definition 50.1

The term *cycle* also refers to a (sub)graph consisting of the vertices and edges of such a walk. In other words, a cycle is a graph of the form G = (V, E) where

$$V = \{v_1, v_2, \dots, v_n\}$$
 and $E = \{v_1 v_2, v_2 v_3, \dots, v_{n-1} v_n, v_n v_1\}.$

A cycle (graph) on n vertices is denoted C_n .

Forests and Trees

Definition 50.2

(**Forest**) Let G be a graph. If G contains no cycles, then we call G acyclic. Alternatively, we call G a forest.

Definition 50.3

(**Tree**) A *tree* is a connected, acyclic graph.

Properties of Trees

Theorem 50.4

Let T be a tree. For any two vertices a and b in V(T), there is a unique (a, b)-path. Conversely, if G is a graph with the property that for any two vertices u, v, there is exactly one (u, v)-path, then G must be a tree.

- (⇒) Suppose T is a tree and let $a, b \in V(T)$. We need to prove that there is a unique (a, b)-path in T. We have two things to prove:
 - Existence: The path exists.
 - Uniqueness: There can be only one such path.

Properties of Trees

Theorem 50.4

Let T be a tree. For any two vertices a and b in V(T), there is a unique (a, b)-path.

Conversely, if G is a graph with the property that for any two vertices u, v, there is exactly one (u, v)-path, then G must be a tree.

Properties of Trees

Theorem 50.5

Let G be a connected graph. Then G is a tree if and only if every edge of G is a cut edge.

Properties of Trees

Leaves

Definition 50.6

(**Leaf**) A *leaf* of a graph is a vertex of degree 1.

Leaves are also called *end vertices* or *pendant vertices*. The tree in the figure has four leaves (marked).

Leaves

Theorem 50.7 Every tree with at least two vertices has a leaf.

Proposition 50.8 Let T be a tree and let v be a leaf of T. Then T - v is a tree.

Theorem 50.9 Let T be a tree with $n \ge 1$ vertices. Then T has n-1 edges.

Spanning Trees

Definition 50.10

(**Spanning tree**) Let *G* be a graph. A *spanning tree* of *G* is a spanning subgraph of *G* that is a tree.

Spanning Trees

Theorem 50.11

A graph has a spanning tree if and only if it is connected.

Proof. (\Leftarrow) Suppose G has a spanning tree T. We want to show that G is connected. Let $u, v \in V(G)$. Since T is spanning, we have V(T) = V(G), and so $u, v \in V(T)$. Since T is connected, there is a (u, v)-path P in T. Since T is a subgraph of G, P is a (u, v)-path of G. Therefore G is connected.

 (\Rightarrow) Suppose G is connected. Let T be a spanning connected subgraph of G with the least number of edges.

We claim that T is a tree. By construction, T is connected. Furthermore, we claim that every edge of T is a cut edge. Otherwise, if $e \in E(T)$ were not a cut edge of T, then T - e would be a smaller spanning connected subgraph of $G. \Rightarrow \Leftarrow$ Therefore every edge of T is a cut edge. Hence (Theorem 50.5) T is a tree, and so G has a spanning tree.

Spanning Trees

Theorem 50.12

Let G be a connected graph on $n \ge 1$ vertices. Then G is a tree if and only if G has exactly n-1 edges.

Proof. (\Rightarrow) This was shown in Theorem 50.9.

(\Leftarrow) Suppose *G* is a connected graph with *n* vertices and *n* − 1 edges. By Theorem 50.11, we know that *G* has a spanning tree *T*; that is, *T* is a tree, V(T) = V(G), and $E(T) \subseteq E(G)$. Note, however, that

$$|E(T)| = |V(T)| - 1 = |V(G)| - 1 = |E(G)|$$

so we actually have E(T) = E(G). Therefore G = T (i.e., G is a tree).