Question 1

Show that $(\mathbb{Z}/13\mathbb{Z})^{\times} \simeq \mathbb{Z}/12\mathbb{Z}$.

Solution: Consider $x \in (\mathbb{Z}/13\mathbb{Z})^{\times}$ such that $x \neq 0$, then $x^12 \equiv 1 \pmod{13}$ by the fermat's little theorem. Therefore, there must exists an element $x^{-1} = x^11 \in (\mathbb{Z}/13\mathbb{Z})^{\times}$ by the closure of group. Hence, the order of $(\mathbb{Z}/13\mathbb{Z})^{\times}$ is 12. Then, since we know that for any element x, |x||12 by lagrange's theorem, and in $(\mathbb{Z}/13\mathbb{Z})^{\times}$, the followings hold

$$[2^{1}] \neq [1]$$

$$[2^{2}] = [4] \neq [1]$$

$$[2^{3}] = [8] \neq [1]$$

$$[2^{4}] = [3] \neq [1]$$

$$[2^{6}] = [12] \neq [1]$$

$$[2^{1}2] = [1]$$

. Therefore, the order of 2 is 12. Thus, 2 generates $(\mathbb{Z}/13\mathbb{Z})^{\times}$. This means that $(\mathbb{Z}/13\mathbb{Z})^{\times}$ is cyclic, and have the same order as $\mathbb{Z}/12\mathbb{Z}$. Thus, they are isomorphic.

Alternatively, one can construct an isomorphism $\varphi: (\mathbb{Z}/13\mathbb{Z})^{\times} \to \mathbb{Z}/12\mathbb{Z}$ by

$$\varphi([2]) = [1]$$

Which will follows that

$$\varphi([4]) = [2]$$

$$\varphi([8]) = [3]$$

$$\varphi([3]) = [4]$$

$$\varphi([6]) = [5]$$

$$\varphi([12]) = [6]$$

$$\varphi([11]) = [7]$$

$$\varphi([9]) = [8]$$

$$\varphi([5]) = [9]$$

$$\varphi([10]) = [10]$$

$$\varphi([7]) = [11]$$

$$\varphi([1]) = [0]$$

Which is a homomorphism, that is apparently surjective and injective. Therefore, φ is an isomorphism.

Question 2

Let H < G. Prove that the map $gH \mapsto Hg^{-1}$ is a bijection between the sets of left and right cosets.

Solution: Let f be a function that maps from gH to Hg^{-1} . Then firstly, for gH = g'H, we have that

$$Hg^{-1} = \left\{ \, hg^{-1} \mid h \in H \, \right\} = \left\{ \, (gh)^{-1} \mid h \in H \, \right\} = \left\{ \, (g'h)^{-1} \mid h \in H \, \right\} = Hg'^{-1}$$

So f is well-defined.

Next, for the surjectivity of f, let there be some right coset Hg. Then there must always be g^{-1} such that $f(g^{-1}H) = H(g^{-1})^{-1} = Hg$ by the property of inverse.

Lastly, for the injectivity, let consider that if Hg = Hg', then it must follows that $g' \in \{hg \mid h \in H\}$. Now, we can further deduce that

$$g'^{-1} \in \{ (hg)^{-1} \mid h \in H \} = \{ g^{-1}h \mid h \in H \}$$

So g'gH = gH, which means that g'H = gH.

Since f is a function from the set of left cosets to the set of right cosets such that f is surjective and injective, it must follows that f is a bijection between those two sets.

Question 3

Let H < G. Prove that $H \triangleleft G$ if and only if for any $g \in G$ there exists $g' \in G$ such that gH = Hg'.

Solution:

 (\Longrightarrow) :

Assume that $H \triangleleft G$. Then for any $g \in G$, we know that $gHg^{-1} = H$, so gH = Hg. Thus there exists g' = g such that gH = Hg'

(⇐=):

Assume there for any $g \in G$ there is an element $g' \in G$ such that gH = Hg'. Then, since $g \in gH$, g = hg' for some element $h \in H$. This means that $h^{-1}g = g'$ for that element $h \in H$.

Now, since gH = Hg', and $g' = h^{-1}g$, we get that $gH = Hh^{-1}g = Hg$. Thus, $gHg^{-1} = H$, which means that $H \triangleleft G$ by definition.

Question 4

Let N be a subgroup of a cyclic group G. Prove that the quotient group G/N is cyclic.

Claim 1

All subgroups of a cyclic group is cylic.

Proof: Since a cyclic group G is generated by a single element, g, then each element in the subgroup $S \leq G$ is in G, which means that it must be some power of g. Then, let $S = \{g^{a_1}, g^{a_2}, \dots\}$, so that it is possible to choose the smallest possitive a_i by the well ordering principle since |S| < |G| is always countable, here note that the only infinite cyclic group G must be isomorphic to \mathbb{Z} , so let b be that element.

With the division algorithm, we know that for any a, $g^a = g^{mb+c}$ for some integer m and $0 \le c < b$. The closure of the group asserts that g^c must be an element of S, but $0 \le c < b$, so c = 0.

Hence,
$$g^b$$
 generates S .

Solution: Firstly, let notice that a cyclic group is an abelian group, since $r^n r^m = r^{n+m} = r^m r^n$ for any r, m, n. Now, let N be a subgroup of G, then N must be cyclic as per claim 1, so N must be abelian, and thus, normal.

Then G/N is a group of the left cosets. Let $G = \langle g \rangle$. Then we know that gN generates G/N. Firstly, notice if gN = N, then $g^k N = N$ for every k, making GN = N, which means that G/N = 1 is trivially cyclic.

So we are left with the case where $gN \neq N$. Now, let N ge generated by g^n with some integer n. Then we know that $g^k N \neq N$ for any k < n since $g^k \notin N$, and moreover, $g^k \notin g^j N$ for any j < k since g generates G so there is no element g^k in $g^j N$ for all j < k < n. This asserts that all of

$$N, gN, g^2N, \dots, g^{n-1}N$$

are all pairwise different.

Moreover, if N is generated by g^n , then there must be exactly n element of G/N which are as listed above, since any element of $g^{\alpha} \in G$ is in one of the partition of the n cosets as $g^{\alpha} = g^{kn+a} \in g^a N$ for some integer k and $0 \le a < n$ by the division algorithm.

Since those n left cosets of G is all of the left cosets, we get that $G/N = \{N, gN, g^2N, \dots, g^{n-1}N\}$, and that G/N is generated by gN, thus, G/N is cyclic.

Question 5

Let H < G be a subgroup of finite index. Show that the set $\{gHg^{-1} \mid g \in G\}$ is a finite set.

Solution: Consider that since [G:H] is finite, then we can let n=[G:H], which means that the quotient group $G/H=\{g_1H,g_2H,\ldots,g_nH\}$. Now, since G/H partitions G into n partitions, we know that for $g\in G$, $gH=g_iH$ for some g_i . This means that $g=g_ih$ for some $h\in H$. Thus,

$$gHg^{-1} = g_i hHh^{-1}g_i^{-1} = g_i Hg_i^{-1}$$

From the equation, we know that $\{gHg^{-1} \mid g \in G\} = \{g_iHg_i^{-1}\}$ for previously defined g_i . Thus,

$$\left|\left\{\,gHg^{-1}\,\right\}\right| \le |G/H| = [G:H]$$

So, the set $\{gHg^{-1} \mid g \in G\}$ is a finite set.

Question 6

Let N be a normal subgroup of a finite group G. Prove that N is the unique subgroup of order |N| if gcd(|N|, [G:N]) = 1.

Solution: Let K be a normal subgroup of G with n = |K| = |N|. Then KN is must be subgroup of G since for $KN = \{kn \mid k \in K, n \in N\}$, we have that for kn and k'n' in KN, $kn(k'n')^{-1} = knn'^{-1}k'^{-1}$. But since N normal subgroup, $k'nn'^{-1}k'^{-1} \in N$, thus, $knn'^{-1}k'^{-1}$ is in KN.

Moreover, by the second isomorphism theorem, $|KN| = \frac{|K||N|}{|K \cap N|} = \frac{n^2}{|H \cap K|}$ and |KN| divides |G| by lagrange's theorem. Moreover, since $[G:N] = \frac{|G|}{n}$, we can deduce that |KN| must be n since otherwise $\gcd(n,|G|n) \neq 1$.

Since |KN| = n, we get that $|K \cap N| = n$, thus, K = N. So, N is the unique subgroup of order |N|.

Question 7

Let p be an odd prime integer. Show that $p \equiv 1 \pmod{4}$ if and only if $x^2 \equiv -1 \pmod{p}$ has an integer solution.

Solution:

 (\Longrightarrow) :

if $p \equiv 1 \pmod{4}$ then consider that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a cyclic group of order p-1. Thus, let $(\mathbb{Z}/p\mathbb{Z})^{\times}$ be generated by $\langle r \rangle$, then there exists an element, $x = r^{\frac{p-1}{4}}$ such that the order of the element is 4. Hence, $x^4 \equiv 1 \pmod{p}$ but $x^2 \not\equiv 1 \pmod{p}$, so $x^2 \equiv -1 \pmod{p}$

 (\Longleftrightarrow) :

if $x^2 \equiv -1 \pmod{p}$ for some integer x. Then $x \not\equiv 1 \pmod{p}$ and $x^3 \equiv -x \not\equiv 1 \pmod{p}$. Therefore, there exists an element $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ that is of degree 4. Now, by lagrange's theorem, 4 must divides $|(\mathbb{Z}/p\mathbb{Z})| = p - 1$. So, it follows that $p \equiv 1 \pmod{4}$.

Question 8

Find all homomorphisms from S_3 to $\mathbb{Z}/3\mathbb{Z}$.

Solution: Note that we write the operator of both group using \cdot , abbrieviate using juxtaposition, and using x^n to denotes repeated operation even for $\mathbb{Z}/3\mathbb{Z}$.

Let us consider f as the homomorphism from S_3 of $\mathbb{Z}/3\mathbb{Z}$. Trivially, we know that f(id) = 0. Next, let us consider f((12)) = x, then it must follows that $x^2 = 0$ since $(12)^2 = 0$. And as there is no element $x \neq 0$ in ZMod[3] such that $x^2 = 0$. (As $1^2 = 2$ and $2^2 = 1$). So f((12)) = 0. Similar argument can be applied for (13) and (23) yielding that f((12)) = f((23)) = f((13)) = 0.

Next, let us consider the remaining two element of S_3 , namely (123) and (132). We know that (123) = (13)(23) and (132) = (12)(13). So, $f((123)) = f((13)(23)) = 0 \cdot 0 = 0$, and similarly, $f((132)) = f((12)(13)) = 0 \cdot 0 = 0$. Thus, $f(x) = 0 \quad \forall x \in S_3$. is the only homomorphism from S_3 to $\mathbb{Z}/3\mathbb{Z}$.

Question 9

Show that the quotient group \mathbb{R}/\mathbb{Z} is isomorphic to the unit circle $\{z \in \mathbb{C} \mid |z| = 1\}$.

Solution: Consider φ to be a epimorphism from \mathbb{R} to the unit circle $\{z \in \mathbb{C} \mid |z| = 1\}$, with the following definition.

$$\varphi: x \mapsto f(x) = \cos(2\pi x) + i\sin(2\pi x)$$

Now, we will show that φ is well defined. Consider some x = x' be a real number. Then it follows that $\cos(2\pi x) = \cos(2\pi x')$ and $\sin(2\pi x) = \sin(2\pi x')$ by the definition of the cos and sin functions. Hence, f(x) = f(x'), so φ is well-defined.

To show the surjectivity, let $z=(a+bi)\in\{z\in\mathbb{C}\mid |z|=1\}$. Now, we know that $|z|=\sqrt{a^2+b^2}\geq a$, so $a\leq 1$ and $b\leq 1$. Moreover, $1-a^2=b^2$. So, it is possible to find such θ for which $a=\cos\theta$. This will ensure that $1-a^2=b^2=1-\cos^2\theta=\sin^2\theta$. So, $z=(a+bi)=\cos\theta+i\sin\theta=f(\theta)$ for some $\theta\in\mathbb{R}$. Hence, φ is surjective.

Lastly, consider the kernel $\ker \varphi = \{x \mid f(x) = 1\}$. Then we know that f(x) = 1 if and only if $\cos(2\pi x) = 1$ and $\sin(2\pi x) = 0$. This occur if and only if $x \in \mathbb{Z}$ holds, by the periodicity of the functions. Hence, $\ker \varphi = \mathbb{Z}$.

Therefore, by the first isomorphism theorem, we have that $\mathbb{R}/\mathbb{Z} \simeq \{z \in \mathbb{C} \mid |z| = 1\}.$

Question 10

Find the class equation for D_{2n} when $n \in \mathbb{Z}$ with $n \geq 3$.

Solution: Firstly, consider that an element g of D_{2n} can always be written in the form of $f^i r^j$ for $i \in \{0,1\}$ and $j \in \{0,1,\ldots,n-1\}$. Now, consider the conjugacy classes of D_{2n} .

$$r^{\alpha} \cdot r^{j} = r^{\alpha+j}$$

$$= r^{j} \cdot r^{\alpha}$$

$$r^{\alpha} \cdot fr^{j} = fr^{\alpha-j}$$

$$= fr^{j} \cdot r^{\alpha-2j}$$

$$fr^{\alpha} \cdot r^{j} = fr^{\alpha+j}$$

$$= r^{-\alpha-j}f$$

$$= r^{j} \cdot r^{-\alpha-2j}f$$

$$= r^{j} \cdot fr^{\alpha+2j}$$

$$fr^{\alpha} \cdot fr^{j} = ffr^{-\alpha}r^{j}$$

$$= ffr^{-j}r^{-\alpha+2j}$$

$$= fr^{j} \cdot fr^{-\alpha+2j}$$

From this, we split the problem into two cases of whether n is odd or even. We first discuss the scenario where n is odd. If n is odd, then we can make a conjugacy class of r^k as $\{r^k, r^{-k}\}$ since $\forall k, r^k \neq r^{-k}$ as n is odd. and the class containing fr must contain fr^{-1} and thus, contains fr^j for all $0 \leq j < n$. We could write the conjugacy classes of D_{2n} as

$$\{1\}, \{r, r^{-1}\}, \{r^2, r^{-2}\}, \dots, \{r^{\frac{n-1}{2}}, r^{\frac{n+1}{2}}\}, \{f, fr, \dots, fr^{n-1}\}$$

Now, since all of the conjugacy classes, except for {1} has 2 or more elements, the center of the group is {1}.

Since the class equation is

$$|D_{2n}| = |Z(D_{2n}| + [D_{2n} : C_{D_{2n}}(x)]$$

we need to find the centralizer of x for x in each class. Firstly, consider $x = r^{\alpha}$, then the centralizer $C_{D_{2n}}(x)$ is any r^{j} since they commute. But not fr^{j} since as shown above, r^{α} and fr^{j} only if $r^{\alpha} = r^{\alpha-2j}$, which is when j = 0. And the centralizer of x = f contains just f and 1 since $f \cdot r^{j} = r^{j} \cdot fr^{2j}$ and $f \cdot fr^{j} = fr^{j} \cdot fr^{2j}$. Since the index $[D_{2n} : C_{D_{2n}}(x)] = \frac{2n}{|C_{D_{2n}}(x)|}$, we get the following class equation.

$$|D_{2n}| = 1 + \frac{2n}{n} + \dots + \frac{2n}{n} + \frac{2n}{2}$$

Where there is exactly $\frac{n-1}{2}$ numbers of $\frac{2n}{n}$ as there is $\frac{n-1}{2}$ classes of $\{r^i, r^{-i}\}$, the number 1 represents the size of the center, and the number $\frac{2n}{2}$ is the index of the class that contain f.

Now, for the case that n is even. we can deduce the conjugacy classes by similar arguments, fr and fr^{-1} is not in the same conjugacy class. This is because i and n-i will always be the same parity since n is even. This makes it so that fr^i and fr^{n-i} is of different parity, thus is in different class. As fr and fr^{-1} is not in the same class, the structure changed to

$$\{1\}, \{r, r^{-1}\}, \{r^2, r^{-2}\}, \ldots, \{r^{\frac{n}{2}}, r^{-\frac{n}{2}}\}, \{f, fr^2, \ldots, f^{n-2}\}, \{fr, fr^3, \ldots, fr^{n-1}\}$$

Now, since $\frac{n}{2} = n - \frac{n}{2}$, we get another element in the center $Z(D_{2n})$. Then, let us consider the centralizer of each representative of the classes. Firstly, notice that the centralizer of r^j remains the same except for $r^{\frac{n}{2}}$ which is in the

center. Now, for $C_{D_{2n}}(f)$, we know that f commutes with 1, f and $r^{\frac{n}{2}}$ and $fr^{\frac{n}{2}}$ from the above equations. Since $f \cdot fr^{\frac{n}{2}} = fr^{\frac{n}{2}} \cdot fr^{-0+2\frac{n}{2}}$. Moreover, the equation above omit no extra solution apart from this 4 solutions as $f = fr^{2j}$ only at $j = \frac{n}{2}$ or j = 0. Similarly, for the centralizer $C_{D_{2n}}(fr)$, we know that fr commutes with 1, fr, $r^{\frac{n}{2}}$ and $fr^{\frac{n}{2}+1}$. And this are the only four solutions to the equation by similar arguments, which is that $fr = fr^{-1+2j}$ solves only at $j = 1, \frac{n}{2} + 1$, and fr^{1+2j} solves only at $j = 0, \frac{n}{2}$.

This makes the class equation of this case to be

$$|D_{2n}| = 2 + \frac{2n}{n} + \dots + \frac{2n}{n} + \frac{2n}{4} + \frac{2n}{4}$$

Where the number 2 represents the size of the center, $\frac{n-2}{2}$ numbers of $\frac{2n}{n}=2$ are the indices of each of the classes in the form $\{r^j, r^{-j}\}$ from $j=1,\ldots,n-2$, and two numbers of $\frac{2n}{4}$ are the indices of the classes with f and fr, ie. the class of fr^j for even and odd j respectively.