

Digital Signal Processing

Digital Signal Processing

Module 6: Interpolation and Sampling

#### Module Overview:



- ▶ Module 6.1: Continuous-time signals
- ► Module 6.2: Interpolation
- ► Module 6.3: Sampling
- ► Module 6.4: Aliasing
- ► Module 6.5: Interpolation and sampling in practice
- ▶ Module 6.6: Discrete-time processing of continuous-time signals



Digital Signal Processing

Digital Signal Processing

Module 6.1: The Continuous-Time Paradigm

### Overview:



- Continuous-time signals Digital Signal Martin Vetterli

  Paolo Prandoni and Martin Paolo Prandoni © 2013

### Overview:



- Continuous-time signals Digital Signal Processing Vetterli

  Paolo Prandoni and Martin Vetterli

  Paolo Prandoni 2013

### Two views of the world





Analog/continuous versus discrete/digital

### Digital processing of signals from/to the analog world



- ightharpoonup input is continuous-time: x(t)
- $\triangleright$  output is continuous-time: y(t)
- processing is on sequences: x[n], y[n]



examples: MP3, digital photography

### Digital processing of signals to the analog world



- ▶ input is discrete-time: x[n]
- ightharpoonup output is continuous-time: y(t)
- ▶ processing is on sequences: x[n], y[n]



examples: computer graphics, video games

### Digital processing of signals from the analog world



- ▶ input is continuous-time: x(t)
- ightharpoonup output is discrete-time: y[n]
- ▶ processing is on sequences: x[n], y[n]



examples: control systems, monitoring

#### Two views of the world



#### digital worldview:

- combinatorics Digital Signal Processing
   computer science Prandoni and Martin calculus
   DSP

#### analog worldview:

- distributions
- system theory

#### Two views of the world



#### digital worldview:

- sequences  $x[n] \in \ell_2(\mathbb{Z})$  gital Signal Problem Functions  $x(t) \in L_2(\mathbb{R})$ Frequency  $\omega \in [-\pi, \pi]$  Problem Functions  $x(t) \in L_2(\mathbb{R})$ 

  - ▶ DTFT:  $\ell_2(\mathbb{Z}) \mapsto L_2([-\pi, \pi])$

#### analog worldview:

- frequency  $\Omega \in \mathbb{R}$  (rad/sec)
- ightharpoonup FT:  $L_2(\mathbb{R}) \mapsto L_2(\mathbb{R})$

# Bridging the gap





### Bridging the gap





# Bridging the gap







- time: real variable t

- ⇒ signal x(t): complex functions of a real variable essing

  Finite energy:  $x(t) \in L_2(\mathbb{R})$ Finite energy:  $x(t) \in$
- energy:  $||x(t)||^2 = \langle x(t), x(t) \rangle$



- time: real variable t

- ▶ signal x(t): complex functions of a real variable essing Vetterli Finite energy:  $x(t) \in L_2(\mathbb{R})$  | Signal Properties Vetterli Finite energy:  $x(t) \in L_2(\mathbb{R})$  | Digital Signal Martin Vetterli Vetterli
- energy:  $||x(t)||^2 = \langle x(t), x(t) \rangle$



- time: real variable t

- ▶ signal x(t): complex functions of a real variable essing

  ▶ finite energy:  $x(t) \in L_2(\mathbb{R})$ ▶ inner product in  $L_2(\mathbb{R})$ Prandoni and Martin

  Prandoni and  $L_2(\mathbb{R})$ Prandoni  $L_2(\mathbb{R})$
- energy:  $||x(t)||^2 = \langle x(t), x(t) \rangle$



- time: real variable t

▶ signal 
$$x(t)$$
: complex functions of a real variable essing vetter  $y$ .

▶ finite energy:  $x(t) \in L_2(\mathbb{R})$ 

▶ inner product in  $L_2(\mathbb{R})$ 
 $\langle x(t), y(t) \rangle = \int_{-\infty}^{\infty} x^*(t)y(t)dt$ 

• energy:  $||x(t)||^2 = \langle x(t), x(t) \rangle$ 



- time: real variable t

▶ signal 
$$x(t)$$
: complex functions of a real variable essing

▶ finite energy:  $x(t) \in L_2(\mathbb{R})$ 

▶ inner product in  $L_2(\mathbb{R})$ 
 $\langle x(t), y(t) \rangle = \int_{-\infty}^{\infty} x^*(t)y(t)dt$ 

• energy:  $||x(t)||^2 = \langle x(t), x(t) \rangle$ 

### Analog LTI filters





### Analog LTI filters





### Analog LTI filters





### Fourier analysis



- lacktriangle in discrete time max angular frequency is  $\pm\pi$
- $\blacktriangleright$  in continuous time no max frequency:  $\Omega \in \mathbb{R}$
- concept is the same:

$$X(j\Omega)$$
igitas Signal Productin Veriodic

 $X(j\Omega)$ igitas Signal Production Veriodic

 $X(j\Omega)$ igitas Signal Production Veriodic

 $X(j\Omega)$ igitas Signal Production Veriodic

 $X(j\Omega)$ igitas  $X(j\Omega)$ e $X(j\Omega)$ e

### Fourier analysis



- $\blacktriangleright$  in discrete time max angular frequency is  $\pm\pi$
- $\blacktriangleright$  in continuous time no max frequency:  $\Omega \in \mathbb{R}$

same: 
$$X(j\Omega) = \frac{1}{2} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$

$$\times (t) = \frac{1}{2} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$

### Fourier analysis



- $\blacktriangleright$  in discrete time max angular frequency is  $\pm\pi$
- $\blacktriangleright$  in continuous time no max frequency:  $\Omega \in \mathbb{R}$
- concept is the same:

ime no max frequency: 
$$\Omega \in \mathbb{R}$$
 same: 
$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt \qquad \leftarrow \textit{not periodic!}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$

# Real-world frequency



- ►  $F = \frac{\Omega}{2\pi}$ , expressed in Hertz (1/s) Signal Processing Vetterli ► period  $T = \frac{1}{F} = \frac{2\pi}{\Omega}$  paolo Prandoni and (2013)

### Example







### Example





#### Convolution theorem





### A new concept: bandlimited functions



$$\Omega_N$$
-bandlimitedness:

 $Vetterli$ 
 $Vett$ 







$$\Phi(j\Omega) = G \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right)$$

$$\operatorname{Digital Signal Processing}$$

$$\operatorname{Digital Signal Processing}$$

$$\operatorname{Partin Vetterli}$$

$$\operatorname{See Module 5.5}$$

$$\operatorname{G}\frac{\Omega_N}{\pi}\operatorname{sinc}\left(\frac{\Omega_N}{\pi}t\right)$$



$$\Phi(j\Omega) = G \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right)$$

$$\varphi(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi(j\Omega) e^{j\Omega t} d\Omega$$

$$= \dots \quad \text{see Module 5.5}$$

$$= G \frac{\Omega_N}{\pi} \operatorname{sinc}\left(\frac{\Omega_N}{\pi}t\right)$$



- $\Omega_{N}$  total bandwidth:  $\Omega_{B} = 2\Omega_{N}$  define  $T_{s} = \frac{2\pi}{\Omega_{B}} = \frac{\pi}{\Omega_{N}}$ | Operation of the processing vertex is processing to the processing vertex and processing vertex is processing vertex.



$$\Phi(j\Omega) = \frac{\pi}{\Omega_N} \operatorname{rect}\left(\frac{e\Omega}{2\Omega_N}\right)^{\gamma} \operatorname{etterli}$$

$$\operatorname{pigital Sign}(\alpha) = \frac{\pi}{\Omega_N} \operatorname{rect}\left(\frac{e\Omega}{2\Omega_N}\right)^{\gamma} \operatorname{etterli}$$

$$\varphi(t) = \operatorname{sinc}\left(\frac{t}{T_s}\right)$$





# The prototypical bandlimited function





END OF MODULE 6.1

Digital Signa and Martille 6.1

Paolo Prandoni and 2013



Digital Signal Processing

Digital Signal Processing

Module 7

Paolo Prandoni and Module 7

### Overview:



- Polynomial interpolation
- Local interpolation
- Sinc interpolation

on Digital Signal Processing

Digital Signal Martin Vetterli

Digital Signal Processing

Digital Processi

### Overview:



- ▶ Polynomial interpolation
- Local interpolation
- Sinc interpolation

on Digital Signal Processing

Digital Signal Martin Vetterli

Digital Signal Processing

### Overview:



- ► Polynomial interpolation
- Local interpolation
- Sinc interpolation

ion Digital Signal Processing Vetterli Digital Signal Martin Vetterli Paolo Prandoni and Martin Vetterli © 2013

### Interpolation



 $x[n] \xrightarrow{\times} x(t)^{\text{essing}}$ Pfill the gaps" between samples

# Example





# Example





# Interpolation requirements



- ► make sure  $x(nT_s) = x[n]$ Digital Signal Processing

  Nartin Vetterli

  Martin Vetterli

  Prandoni and Martin Vetterli

  Paolo Prandoni and Martin Vetterli

  Paolo Prandoni and Martin Vetterli

# Interpolation requirements



- ► make sure  $x(nT_s) = x[n]$ Digital Signal Processing

  Wetterli

  Martin Vetterli

  Paolo Prandoni and Martin

  Paolo Prandoni and Pra

# Interpolation requirements



- ► make sure  $x(nT_s) = x[n]$ Digital Signal Processing Vetterli

  The make sure x(t) is smooth Prandoni and Martin Paolo Prandoni and Prandoni



- ▶ jumps (1st order discontinuities) would require the signal to move "faster than light"...
- ➤ 2nd order discontinuities would require infinite acceleration terli

  ...

  Digital Signal Martin

  Digital oni and Martin

  the interpolation should be infinitely differentiable

  - ► "natural" solution: polynomial interpolation



- ▶ jumps (1st order discontinuities) would require the signal to move "faster than light"...
- ▶ 2nd order discontinuities would require infinite acceleration
- ► ...

  Digital Signal Production

  Digital Signal Martin

  The interpolation should be infinitely differentiable partial partia
  - "natural" solution: polynomial interpolation



- ▶ jumps (1st order discontinuities) would require the signal to move "faster than light"...
- ▶ 2nd order discontinuities would require infinite acceleration
- Digital Signal Production Nartin Digital Signal Martin V

  the interpolation should heinfinitely differentiable page 13 page 13 page 14 page 1
  - "natural" solution: polynomial interpolation



- ▶ jumps (1st order discontinuities) would require the signal to move "faster than light"...
- ▶ 2nd order discontinuities would require infinite acceleration Digital Signal Produceleral
- ▶ the interpolation should be infinitely differentiable
- "natural" solution: polynomial interpolation



- ▶ jumps (1st order discontinuities) would require the signal to move "faster than light"...
- ▶ 2nd order discontinuities would require infinite acceleration terms Digital Signal Proaccelera Digital Signal Martin
- ▶ the interpolation should be infinitely differentiable
- "natural" solution: polynomial interpolation



- lacktriangleright N points o polynomial of degree (N-1)
- $p(t) = a_0 + a_1t + a_2t^2 + \ldots + a_{N-1}t^{(N-1)}$
- ► "naive" approach:

```
Digital Signal Processing

Vetterli

V
```



- ▶ N points  $\rightarrow$  polynomial of degree (N-1)
- $p(t) = a_0 + a_1t + a_2t^2 + \ldots + a_{N-1}t^{(N-1)}$

"naive" approach:

```
Digital Signal Processing

X = \frac{1}{2}

Digital Signal Processing

X = \frac{1}{2}

X = \frac{1}{2}

X = \frac{1}{2}

X = \frac{1}{2}

X = \frac{1}{2}
```



- ightharpoonup N points ightharpoonup polynomial of degree (N-1)
- $\triangleright$   $p(t) = a_0 + a_1 t + a_2 t^2 + ... + a_{N-1} t^{(N-1)}$
- "naive" approach:

$$+ a_2t^2 + \dots + a_{N-1}t^{(N-1)}$$
n:
$$pado = \begin{cases} Signal \ Processing \\ P(0) = x[0] \end{cases}$$

$$p(T_s) = x[1]$$

$$p(2T_s) = x[2]$$

$$\dots$$

$$p((N-1)T_s) = x[N-1]$$



### Without loss of generality:

- ightharpoonup consider a symmetric interval  $I_N = [-N, \dots, N]$
- ightharpoonup set  $T_s=1$

symmetric interval 
$$I_N = [-N, ..., N]$$

$$\begin{cases} p(-N) = x[-N] \\ p(-N+1) = x[-N+1] \\ ... \\ p(0) = x[0] \\ ... \\ p(N) = x[N] \end{cases}$$



#### Without loss of generality:

- ightharpoonup consider a symmetric interval  $I_N = [-N, \dots, N]$
- ightharpoonup set  $T_s=1$

symmetric interval 
$$I_N = [-N, ..., N]$$

$$\begin{cases} p(-N) = x[-N] \\ p(-N+1) = x[-N+1] \\ ... \\ p(0) = x[0] \\ ... \\ p(N) = x[N] \end{cases}$$



- ▶  $P_N$ : space of degree-2N polynomials over  $I_N$
- ▶ a basis for  $P_N$  is the family of 2N + 1 Lagrange polynomials

$$L_n^{(N)}(t) = \prod_{\substack{k=-N\\k\neq n}}^{N} \frac{t-k}{n-k} \qquad n = -N, \dots, N$$























$$\begin{array}{c} \text{Dig}_{R}(t) \stackrel{\text{dig}}{=} \sum_{n=1}^{M} \sum_{n=1}^{N} L_{n}^{(n)}(t) \\ \text{Paolo Prando} \stackrel{\text{dig}}{=} 2013 \end{array}$$



The Lagrange interpolation is the sought-after polynomial interpolation:

- $\triangleright$  polynomial of degree 2N through 2N+1 points is unique
- ▶ the Lagrangian interpolator satisfies

$$p(n) = x[n]$$
 for  $-N \le n \le N$ 

since

interpolation is the sought-after polynomial interpolation: all of degree 
$$2N$$
 through  $2N+1$  points is unique ngian interpolator satisfies 
$$p(n)=x[n] \qquad \text{for } -N \leq n \leq N$$
 
$$L_n^{(N)}(m)=\left\{\begin{array}{ll} 1 & \text{if } n=m \\ 0 & \text{if } n\neq m \end{array}\right. \qquad N\leq n, m\leq N$$

























# Lagrange interpolation





## Lagrange interpolation





#### Polynomial interpolation



#### key property:

▶ maximally smooth (infinitely many continuous derivatives)
 Irawback:
 ▶ interpolation "bricks" depend on N

## Relaxing the interpolation requirements



- ► make sure  $x(nT_s) = x[n]$ The make sure x(t) is smooth page 2013

## Relaxing the interpolation requirements



- ► make sure  $x(nT_s) = x[n]$ Digital Signal Processing

  Wetterli

  Martin Vetterli

  Paolo Prandoni and Martin

  Paolo Prandoni and Pra











$$ightharpoonup x(t) = x[\lfloor t + 0.5 \rfloor], \qquad -N \le t \le N$$

$$x(t) = \sum_{n=-N}^{N} x[n] \operatorname{rect}(t-n)$$

$$= \inf_{n=-N} x[n] \operatorname{rect}(t-n) = \inf$$

- ▶ interpolator's support is 1



► 
$$x(t) = \sum_{n=-N}^{N} x[n] \operatorname{rect}(t-n)$$

► interpolation kernel:  $i_0(t)$  Digital Signal Processing

►  $i_0(t)$ : "zero-order hope of the processing of the processing vetterling in the processing vetterling in the processing vetterling is  $i_0(t)$ : "zero-order hope of the processing vetterling is  $i_0(t)$ : "zero-order hope of the processing vetterling is  $i_0(t)$ : "zero-order hope of the processing vetterling is  $i_0(t)$ ."

- ▶ interpolator's support is 1
- ▶ interpolation is not even continuous



► 
$$x(t) = \sum_{n=-N}^{N} x[n] \operatorname{rect}(t-n)$$
  
► interpolation kernel:  $i_0(t) = \operatorname{rect}(t) \operatorname{oni}$  and Martin Vetterli  
►  $i_0(t)$ : "zero-order hoped  $i_0(t)$  or  $i_0(t)$  "zero-order hoped  $i_0(t)$ " "zero-order hoped  $i_0(t)$ 

- ▶ interpolator's support is 1
- ▶ interpolation is not even continuous



► 
$$x(t) = \sum_{n=-N}^{N} x[n] \operatorname{rect}(t-n)$$
  
► interpolation kernel:  $i_0(t) = \operatorname{rect}(t) \operatorname{oni}$  and Martin Vetterli

- $ightharpoonup i_0(t)$ : "zero-order hold"
- ▶ interpolator's support is 1
- ▶ interpolation is not even continuous



► 
$$x(t) = \sum_{n=-N}^{N} x[n] \operatorname{rect}(t-n)$$
  
► interpolation kernel:  $i_0(t) = \operatorname{rect}(t) \operatorname{oni}$  and Martin Vetterli

- $ightharpoonup i_0(t)$ : "zero-order hold"
- ▶ interpolator's support is 1
- ▶ interpolation is not even continuous



► 
$$x(t) = \sum_{n=-N}^{N} x[n] \operatorname{rect}(t-n)$$
  
► interpolation kernel:  $i_0(t) = \operatorname{rect}(t)$  on and Martin Vetterli

- interpolator's support is 1
- interpolation is not even continuous



































"connect the dots" strategy

interpolation kernel: Digital and a prandoni and t paolo  $\underset{i_1(t)}{\text{Prandoni}} \underset{i_2(t)}{\text{and}} = \begin{cases} 29t \\ 0 \end{cases} |t| \leq 1$  otherwise

- ▶ interpolator's support is 2
- ▶ interpolation is continuous but derivative is not



"connect the dots" strategy

(t-n)

Example 1. Digital Signal Processing Vetterli Processing V ▶ interpolation kernel:



"connect the dots" strategy

▶ interpolation kernel:

$$i_1(t) = egin{cases} 1 - |t| & |t| \leq 1 \ 0 & ext{otherwise} \end{cases}$$



"connect the dots" strategy

► interpolation kernel:

$$i_1(t) = egin{cases} 1 & 2 & |t| & |t| \leq 1 \ 0 & ext{otherwise} \end{cases}$$

- interpolator's support is 2



"connect the dots" strategy

► 
$$x(t) = \sum_{n=-N}^{N} x[n] i_1(t-n)$$

► interpolation kernel: Digital Signal Processing Vetterli

$$paolo Prandoni and Martin Vetterli$$

$$i_1(t) = \begin{cases} 1 & \text{otherwise} \end{cases}$$

► interpolator's support is 2

$$i_1(t) = egin{cases} 1 - |t| & |t| \leq 1 \ 0 & ext{otherwise} \end{cases}$$

- interpolation is continuous but derivative is not





























#### Third-order interpolation



► 
$$x(t) = \sum_{n=-N}^{N} x[n] i_3(t-n)$$

• interpolation kernel obtained by splicing two delibric polynomials

• interpolator's support is 4 prandon © 2013

• interpolation is continuous up to second derivative

#### Third-order interpolation



► 
$$x(t) = \sum_{n=-N}^{N} x[n] i_3(t-n)$$

► interpolation kernel obtained by splicing two cubic polynomials

► interpolator's support is 4 promotion is continuous up to second derivative

#### Third-order interpolation



► 
$$x(t) = \sum_{n=-N}^{N} x[n] i_3(t-n)$$

► interpolation kernel obtained by splicing two cubic polynomials

- ► interpolator's support is 4 prondon © 2013



► 
$$x(t) = \sum_{n=-N}^{N} x[n] i_3(t-n)$$

• interpolation kernel obtained by splicing two cubic polynomials

- ► interpolator's support is 4 prondon © 2013
- ▶ interpolation is continuous up to second derivative





























#### Local interpolation schemes



$$x(t) = \sum_{\substack{n = -N \\ \text{Proposition}}}^{N} x[n] i_{c}(t \le n)$$
ents:

Paolo Prandoni and Martin

2013

 $i_c(0) = 1$ 

 $i_c(t) = 0$  for t a nonzero integer.

#### Local interpolation schemes



$$x(t) = \sum_{\substack{n = -N \\ \text{proof on and Martin}}}^{N} x[n] i_c(t \le n)$$
etterli
nts:

paolo Prandoni and Martin

© 2013

Interpolator's requirements:

- $i_c(0) = 1$
- $ightharpoonup i_c(t) = 0$  for t a nonzero integer.

#### Local interpolators





#### Local interpolators





#### Local interpolators





#### Local interpolation



#### A remarkable result:



$$\lim_{N\to\infty} L_n^{(N)}(t) = \operatorname{sinc}(t-n)^{\operatorname{rerli}}$$

$$\operatorname{Digital Signal Marian}(t-n)^{\operatorname{rerli}}$$

$$\operatorname{Digital Signal Marian}(t-n)^{\operatorname{rerli}}$$

$$\operatorname{Digital Signal Marian}(t-n)^{\operatorname{rerli}}$$
in the pional, Prandoni and global interpolation are the same!

#### A remarkable result:



$$\lim_{N\to\infty} L_n^{(N)}(t) = \operatorname{sinc}(t-n)^{\text{terli}}$$

$$\operatorname{Digital Sign and Martin}(t-n)^{\text{terli}}$$

$$\operatorname{Digital Sign and Martin}(t-n)^{\text{terli}}$$

$$\operatorname{Digital Sign and Martin}(t-n)^{\text{terli}}$$

in the limit, local and global interpolation are the same!

#### Sinc interpolation formula



$$x(t) = \sum_{n=1}^{\infty} \frac{\sum_{s=1}^{\infty} x[n] \operatorname{sinc}\left(\frac{t-nT_s}{T_s}\right)}{\sum_{s=1}^{\infty} x[n] \operatorname{sinc}\left(\frac{t-nT_s}{T_s}\right)}$$





























6.2 53









# "Proof" that $L_n^{(N)}(t) \rightarrow \operatorname{sinc}(t-n)$



- real proof is rather technical (see the book)

intuition: 
$$\operatorname{sinc}(t-n)$$
 and  $L_n^{(\infty)}(t)$  share an infinite number of zeros: 
$$\operatorname{sinc}(m-n) = \delta[m-n] = \delta[m-n] = m, n \in \mathbb{Z}, \quad -N \leq n, m \leq N$$

# "Proof" that $L_n^{(N)}(t) \rightarrow \operatorname{sinc}(t-n)$



- real proof is rather technical (see the book)
- intuition:  $\operatorname{sinc}(t-n)$  and  $L_n^{(\infty)}(t)$  share an infinite number of zeros:

$$\operatorname{sinc}(m-n) = \delta[m-n] \quad m, n \in \mathbb{Z}$$

$$L_n^{(N)}(m) = \delta[m-n] \quad m, n \in \mathbb{Z}, \quad -N \leq n, m \leq N$$

54

















# END OF MODULE 6.2 Digital Signa and Martin Et 6.2 Paolo Prandoni and Martin Et 6.2



Digital Signal Processing

Digital Signal Processing

Module 6.3: The space of bandlimited signals

#### Overview:



- Inctions Signal Processing

  Signal Processing

  Digital Signal Martin Vetterli

  The sampling Digital © 2013

   The sampling theoremaolo Prandoni © 2013

#### Overview:



- ... sampling Digital Signal Processing

  Digital Signal Martin Vetterli

  The sampling theoremaolo Prandoni and C 2013

### Overview:



- ... sampling Digital Signal Processing

  Digital Signal Martin Vetterli

  and Martin Vetterli

  Digital Signal Processing

  One of the sampling theorem of the sampling the sampl

### Overview:



- ... sampling Digital Signal Processing

  Digital Signal Martin Vetterli

  Digital Signal Processing

  → Sampling Digital Signal Processing

  → Sampling Digital Signal Processing

  → Signal Processing

  → Comparison Of Prandoni and Martin Vetterli

  → Sampling Digital Signal Processing

  → Signal Processing

  → Office Signal Processing

  → Office



#### the ingredients:

- Digital Signal Processing

  Digital Signal Martin Vetterli

  Paolo Prandoni and Martin Vetterli

  Paolo Prandoni and Martin Vetterli

  Paolo Prandoni and Martin Vetterli ▶ discrete-time signal x[n],  $n \in \mathbb{Z}$  (with DTFT  $X(e^{j\omega})$ )
- $\triangleright$  interpolation interval  $T_s$
- the sinc function

ightharpoonup a smooth, continuous-time signal  $x(t), t \in \mathbb{R}$ 



#### the ingredients:

- Digital Signal Processing

  Digital Signal Processing

  Martin Vetterli

  Paolo Prandoni and Martin Vetterli

  2013

  Paolo Prandoni C 2013 ▶ discrete-time signal x[n],  $n \in \mathbb{Z}$  (with DTFT  $X(e^{j\omega})$ )
- $\triangleright$  interpolation interval  $T_s$
- the sinc function

### the result:

a smooth, continuous-time signal  $x(t), t \in \mathbb{R}$ 



#### the ingredients:

- Digital Signal Processing

  Digital Signal Processing

  Martin Vetterli

  Paolo Prandoni and Martin

  2013

  Paolo Prandoni

  Time signal • discrete-time signal  $x[n], n \in \mathbb{Z}$  (with DTFT  $X(e^{j\omega})$ )
- $\triangleright$  interpolation interval  $T_s$
- the sinc function

#### the result:

a smooth, continuous-time signal  $x(t), t \in \mathbb{R}$ 

what does the spectrum of x(t) look like?

## Key facts about the sinc



$$\varphi(t) = \operatorname{sinc}\left(\frac{t}{T_s}\right) \longleftrightarrow \Phi(j\Omega) = \frac{\pi}{\Omega_N} \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right)$$

$$T_s = \frac{\pi}{\Omega_N} \operatorname{rect}\left(\frac{1}{2\Omega_N}\right)$$

$$\Omega_N = \frac{\pi}{T_s}$$

## Key facts about the sinc







$$x(t) = \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t + nT_s}{T_s}\right)$$
paolo Pranco (2013)



$$X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

$$= \int_{-\infty}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}}^{\infty} \sum_{\substack{i,j \in \Omega_{n} = -\infty \\ n = -\infty}$$



$$X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

$$= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t + nT_s}{T_s}\right) e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x[n] \left(\frac{\pi}{\Omega_N}\right) \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right) e^{-jnT_s\Omega}$$



$$X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

$$= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t-nT_s}{T_s}\right) e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x[n] \int_{-\infty}^{\infty} \operatorname{sinc}\left(\frac{t-nT_s}{T_s}\right) e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x[n] \left(\frac{\pi}{\Omega_N}\right) \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right) e^{-jnT_s\Omega}$$



$$X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

$$= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right) e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x[n] \int_{-\infty}^{\infty} \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right) e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x[n] \left(\frac{\pi}{\Omega_N}\right) \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right) e^{-jnT_s\Omega}$$



$$X(j\Omega) = \sum_{n=-\infty}^{\infty} x[n] \left(\frac{\pi}{\Omega_N}\right) \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right) e^{-jnT_s\Omega}$$

$$= \left(\frac{\pi}{\Omega_N}\right) \operatorname{rect}\left(\frac{\pi}{2\Omega_N}\right) \operatorname{rect}\left(\frac{\pi}{2\Omega_N}\right) e^{-jnT_s\Omega}$$

$$= \left(\frac{\pi}{2\Omega_N}\right) \operatorname{rect}\left(\frac{\pi}{2\Omega_N}\right) \operatorname{rect}\left(\frac{\pi}{2\Omega_N}\right) e^{-jnT_s\Omega}$$

$$= \left(\frac{\pi}{2\Omega_N}\right) \operatorname{rect}\left(\frac{\pi}{2\Omega_N}\right) \operatorname{rect}\left(\frac{\pi}{2\Omega_N}\right) e^{-jnT_s\Omega}$$

$$= \left(\frac{\pi}{2\Omega_N}\right) \times \left(e^{j\pi(\Omega/\Omega_N)}\right) \quad \text{for } |\Omega| \le \Omega_N$$
otherwise



$$X(j\Omega) = \sum_{n=-\infty}^{\infty} x[n] \left(\frac{\pi}{\Omega_N}\right) \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right) e^{-jnT_s\Omega}$$

$$= \left(\frac{\pi}{\Omega_N}\right) \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right) \sum_{n=-\infty}^{\infty} x[n] e^{-j(\pi/\Omega_N)\Omega_n}$$

$$= \begin{cases} (\pi/\Omega_N) \times (e^{j\pi(\Omega/\Omega_N)}) & \text{for } |\Omega| \leq \Omega_N \\ 0 & \text{otherwise} \end{cases}$$



$$X(j\Omega) = \sum_{n=-\infty}^{\infty} x[n] \left(\frac{\pi}{\Omega_N}\right) \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right) e^{-jnT_s\Omega}$$

$$= \left(\frac{\pi}{\Omega_N}\right) \operatorname{rect}\left(\frac{\Omega}{2\Omega_N}\right) \sum_{n=-\infty}^{\infty} x[n] e^{-j(\pi/\Omega_N)\Omega n}$$

$$= \begin{cases} (\pi/\Omega_N) X(e^{j\pi(\Omega/\Omega_N)}) & \text{for } |\Omega| \leq \Omega_N \\ 0 & \text{otherwise} \end{cases}$$















- ►  $X(j\Omega)$  is  $\Omega_N$ -bandlimited, with  $\Omega_N = \pi/T_s$  processing

   fast interpolation ( $T_s$  small) This is performed and property of the slow interpolation ( $T_s$  large) promotion of the spectrum.

  - (for those who remember...) it's like changing the speed of a record player



- $X(j\Omega)$  is  $\Omega_N$ -bandlimited, with  $\Omega_N = \pi/T_{sprocessing}$  vertering fast interpolation  $(T_s \text{ small}) \rightarrow \text{wider spectrum}$
- ▶ slow interpolation  $(T_s | \text{large})_{promarrower}$  spectrum
- (for those who remember...) it's like changing the speed of a record player



- $X(j\Omega)$  is  $\Omega_N$ -bandlimited, with  $\Omega_N = \pi/T_{sprocessing}$  vertering fast interpolation  $(T_s \text{ small}) \rightarrow \text{wider spectrum}$
- ightharpoonup slow interpolation ( $T_s$  large) ightharpoonup narrower spectrum
- (for those who remember...) it's like changing the speed of a record player



- $X(j\Omega)$  is  $\Omega_N$ -bandlimited, with  $\Omega_N = \pi/T_{sprocessing}$  vertering fast interpolation  $(T_s \text{ small}) \rightarrow \text{wider spectrum}$
- ightharpoonup slow interpolation ( $T_s$  large) ightharpoonup narrower spectrum
- ▶ (for those who remember...) it's like changing the speed of a record player

# Space of bandlimited functions



# Space of bandlimited functions



$$x[n] \in \ell_2(\mathbb{Z})$$

Digital Signal And Markin  $x(t) \in L_2(\mathbb{R})$ 
 $\Omega_N$ -BL

## Let's lighten the notation



Digital Signal Processing Vetterli And Martin Vetterli and Martin Vetterli and Martin Vetterli and Prandoni and Martin 2013 (derivations in the general case are in the book)

### The road to the sampling theorem



#### claims:

- the space of  $\pi$ -bandlimited functions is a Hilbert space Vetterli
- the functions  $\varphi^{(n)}(t) = \text{sinc}(t)$ , with  $\eta \in \mathbb{Z}$ , form a basis for the space if x(t) is  $\pi$ -BL, the sequence  $\varphi(n) = x(n)$ , with  $n \in \mathbb{Z}$ , is a sufficient representation (i.e. we can reconstruct Q(t) from x[n])

### The road to the sampling theorem



#### claims:

- the space of  $\pi$ -bandlimited functions is a Hilbert space  $\sqrt{e^{tterli}}$
- ► the functions  $\varphi^{(n)}(t) = \operatorname{sinc}(t+n)$ , with  $n \in \mathbb{Z}$ , form a basis for the space ► if x(t) is  $\pi$ -BL, the sequence x(n) = x(n), with  $n \in \mathbb{Z}$ , is a sufficient representation (i.e. we can reconstruct Q(t) from x[n])

### The road to the sampling theorem



#### claims:

- the space of  $\pi$ -bandlimited functions is a Hilbert space  $\sqrt{e^{tterli}}$
- ▶ the functions  $\varphi^{(n)}(t) = \operatorname{sinc}(t-n)$ , with  $n \in \mathbb{Z}$ , form a basis for the space
- if x(t) is  $\pi$ -BL, the sequence x[n] = x(n), with  $n \in \mathbb{Z}$ , is a sufficient representation (i.e. we can reconstruct x(t) from x[n])

### The space $\pi$ -BL



- lacktriangle clearly a vector space because  $\pi ext{-BL}\subset L_2(\mathbb{R})$  (and linear combinations of  $\pi ext{-BL}$  functions ► inner product is standard in ingital Signal Production

  Completeness... that's more delicate © 2013

### The space $\pi$ -BL



- ▶ clearly a vector space because  $\pi$ -BL  $\subset L_2(\mathbb{R})$  (and linear combinations of  $\pi$ -BL functions are  $\pi$ -BL functions)
- lacktriangle inner product is standard inner product in  $L_2(\mathbb{R})$
- completeness... that's more delicate

### The space $\pi$ -BL



- ▶ clearly a vector space because  $\pi$ -BL  $\subset L_2(\mathbb{R})$  (and linear combinations of  $\pi$ -BL functions are  $\pi$ -BL functions)
- ▶ inner product is standard inner product in  $L_2(\mathbb{R})$
- ▶ completeness... that's more delicate

### The space of $\pi$ -BL functions



#### recap:

inner product:

$$\langle x(t), y(t) \rangle = \int_{-\infty}^{\infty} x^*(t)y(t)dt$$

$$(x*y)(t) = \langle x^*(\tau), y(t-\tau) \rangle$$

convolution:

$$(x*y)(t) = \langle x^*(\tau), y(t-\tau) \rangle$$



$$\varphi^{(n)}(t) = \operatorname{sinc}(t-n), \qquad n \in \mathbb{Z}$$

$$\langle \varphi^{(n)}(t), \varphi^{(m)}(t) \rangle = \langle \varphi^{(0)}(t, m), \varphi^{(0)}(t, m) \rangle^{(n)}$$

$$\text{Digital Signor } (h, h), \varphi^{(0)}(m-t) \rangle$$

$$\text{Paralogorizant} (m-t) dt$$

$$= \int_{-\infty}^{\infty} \operatorname{sinc}(\tau) \operatorname{sinc}((m-n) - \tau) d\tau$$

$$= (\operatorname{sinc} * \operatorname{sinc})(m-n)$$



$$\varphi^{(n)}(t) = \operatorname{sinc}(t-n), \qquad n \in \mathbb{Z}$$

$$\langle \varphi^{(n)}(t), \varphi^{(m)}(t) \rangle = \langle \varphi^{(0)}(t-n), \varphi^{(0)}(t-m) \rangle$$

$$\varphi^{(0)}(t+n), \varphi^{(0)}(m-t) \rangle$$

$$\varphi^{(0)}(t-n), \varphi^{(0)}(m-t) \rangle$$

$$\varphi^{(0)}(t-n), \varphi^{(0)}(m-t) \rangle$$

$$\varphi^{(0)}(m-t) \rangle$$



$$\varphi^{(n)}(t) = \operatorname{sinc}(t-n), \qquad n \in \mathbb{Z}$$

$$\langle \varphi^{(n)}(t), \varphi^{(m)}(t) \rangle = \langle \varphi^{(0)}(t-n), \varphi^{(0)}(t+m) \rangle$$

$$= \langle \varphi^{(0)}(t+n), \varphi^{(0)}(m-t) \rangle$$

$$= \int_{-\infty}^{\infty} \operatorname{sinc}(t-n) \operatorname{sinc}(m-t) dt$$

$$= (\operatorname{sinc} * \operatorname{sinc})(m-n)$$

3



$$\varphi^{(n)}(t) = \operatorname{sinc}(t-n), \qquad n \in \mathbb{Z}$$

$$\langle \varphi^{(n)}(t), \varphi^{(m)}(t) \rangle = \langle \varphi^{(0)}(t-n), \varphi^{(0)}(t-m) \rangle$$

$$= \langle \varphi^{(0)}(t-n), \varphi^{(0)}(m-t) \rangle$$

$$= \int_{-\infty}^{\infty} \operatorname{sinc}(t-n) \operatorname{sinc}(m-t) dt$$

$$= \int_{-\infty}^{\infty} \operatorname{sinc}(\tau) \operatorname{sinc}((m-n) - \tau) d\tau$$

$$= (\operatorname{sinc} * \operatorname{sinc})(m-n)$$



$$\varphi^{(n)}(t) = \operatorname{sinc}(t - n), \qquad n \in \mathbb{Z}$$

$$\langle \varphi^{(n)}(t), \varphi^{(m)}(t) \rangle = \langle \varphi^{(0)}(t - n), \varphi^{(0)}(t - m) \rangle$$

$$= \langle \varphi^{(0)}(t - n), \varphi^{(0)}(m - t) \rangle$$

$$= \int_{-\infty}^{\infty} \operatorname{sinc}(t - n) \operatorname{sinc}(m - t) dt$$

$$= \int_{-\infty}^{\infty} \operatorname{sinc}(\tau) \operatorname{sinc}((m - n) - \tau) d\tau$$

$$= (\operatorname{sinc} * \operatorname{sinc})(m - n)$$



now use the convolution theorem knowing that:

$$\begin{aligned} \mathsf{FT} \left\{ \mathsf{sinc}(t) \right\} &= \mathsf{rect} \left( \frac{\Omega}{2\pi} \right) \\ (\mathsf{sinc} * \mathsf{sinc}) (m + n) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \mathsf{rect} \left( \frac{\Omega}{2\pi} \right) \right]^2 e^{j\Omega(m-n)} d\Omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\Omega(m-n)} d\Omega \\ &= \begin{cases} 1 & \mathsf{for} \ m = n \\ 0 & \mathsf{otherwise} \end{cases} \end{aligned}$$



now use the convolution theorem knowing that:

$$\begin{aligned} \mathsf{FT} \left\{ \mathsf{sinc}(t) \right\} &= \mathsf{rect} \left( \frac{\Omega}{2\pi} \right) \\ (\mathsf{sinc} * \mathsf{sinc})(m + n) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \mathsf{rect} \left( \frac{\Omega}{2\pi} \right) \right]^2 \, e^{j\Omega(m-n)} d\Omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\Omega(m-n)} d\Omega \\ &= \begin{cases} 1 & \text{for } m = n \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$



now use the convolution theorem knowing that:

$$\begin{aligned} \mathsf{FT} \left\{ \mathsf{sinc}(t) \right\} &= \mathsf{rect} \left( \frac{\Omega}{2\pi} \right) \\ (\mathsf{sinc} * \mathsf{sinc})(m + n) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \mathsf{rect} \left( \frac{\Omega}{2\pi} \right) \right]^2 \, e^{j\Omega(m-n)} d\Omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\Omega(m-n)} d\Omega \\ &= \begin{cases} 1 & \text{for } m = n \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$



for any  $x(t) \in \pi$ -BL:

$$\langle \varphi^{(n)}(t), x(t) \rangle = \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= \langle \operatorname{sinc}(n-t), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t)$$



for any  $x(t) \in \pi$ -BL:

$$\langle \varphi^{(n)}(t), x(t) \rangle = \langle \operatorname{sinc}(t-n), x(t) \rangle = \langle \operatorname{sinc}(n-t), x(t) \rangle$$

$$= (\operatorname{sinc} * x)(n)$$

$$= (\operatorname{sinc} *$$



for any  $x(t) \in \pi$ -BL:

$$\langle \varphi^{(n)}(t), x(t) \rangle = \langle \operatorname{sinc}(t - n), x(t) \rangle = \langle \operatorname{sinc}(n - t), x(t) \rangle$$

$$= (\operatorname{sinc} * x)(n)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{\Omega}{2\pi}\right) X(j\Omega) e^{j\Omega n} d\Omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega n} d\Omega$$

$$= x(n)$$



for any  $x(t) \in \pi$ -BL:

$$\langle \varphi^{(n)}(t), x(t) \rangle = \langle \operatorname{sinc}(t - n), x(t) \rangle = \langle \operatorname{sinc}(n - t), x(t) \rangle$$

$$= (\operatorname{sinc} * x)(n)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{\Omega}{2\pi}\right) X(j\Omega) e^{j\Omega n} d\Omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega n} d\Omega$$

$$= x(n)$$



for any 
$$x(t) \in \pi$$
-BL:

$$\langle \varphi^{(n)}(t), x(t) \rangle = \langle \operatorname{sinc}(t - n), x(t) \rangle = \langle \operatorname{sinc}(n - t), x(t) \rangle$$

$$= (\operatorname{sinc} * x)(n)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{\Omega}{2\pi}\right) X(j\Omega) e^{j\Omega n} d\Omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega n} d\Omega$$

$$= x(n)$$

# Sampling as a basis expansion, $\pi$ -BL



#### Analysis formula:

Analysis formula: 
$$x[n] = \langle \operatorname{sinc}(t-n), x(t) \rangle$$

# Sampling as a basis expansion, $\Omega_N$ -BL



#### Analysis formula:

$$x[n] = \langle \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right), x(t) \rangle = T_s x(nT_s)$$

$$x(t) = \frac{1}{T_s} \sum_{n = -\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right)$$

$$x(t) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right)$$

#### The sampling theorem



- $\triangleright$  the space of  $\Omega_N$ -bandlimited functions is a Hilbert space
- set  $T_s=\pi/\Omega_N$  the functions  $\varphi^{(n)}(t)=\mathrm{sinc}((t-nT_s)/T_s)$  form a basis for the space
- for any  $x(t) \in \Omega_N$ -BL the coefficients in the sinc basis are the (scaled) samples  $T_s \times (nT_s)$

#### The sampling theorem



- $\triangleright$  the space of  $\Omega_N$ -bandlimited functions is a Hilbert space
- set  $T_s=\pi/\Omega_N$  the functions  $\varphi^{(n)}(t)=\mathrm{sinc}((t-nT_s)/T_s)$  form a basis for the space
- for any  $x(t) \in \Omega_N$ -BL the coefficients in the sinc basis are the (scaled) samples  $T_s \times (nT_s)$

for any  $x(t) \in \Omega_N$ -BL, a sufficient representation is the sequence  $x[n] = x(nT_s)$ 

# The sampling theorem, corollary



for any  $x(t) \in \Omega_N$ -BL redshifticienty essentation is the sequence  $Pao\{\Phi_n\} = x(nT_s) \text{ for any } T_s \leq \pi/\Omega_N$  $ightharpoonup \Omega_N$ -BL  $\subset \Omega$ -BL for any  $\Omega > \Omega_N$ 

## The sampling theorem, corollary



 $ightharpoonup \Omega_N$ -BL  $\subset \Omega$ -BL for any  $\Omega > \Omega_N$ 

 $x[n] = x(nT_s)$  for any  $T_s \le \pi/\Omega_N$ 

#### The sampling theorem, in hertz



any signal x(t) bandlimited to  $F_N$  Hz can be sampled with no loss of information using a sampling frequency  $F_s \geq 2F_N$  (i.e. a sampling period  $T_s \leq 1/2F_N$ )

END OF MODULE 6.3

Digital Signa and Martin Paolo Prandoni and 2013



Digital Signal Processing

Digital Signal Processing

Module 6.4: Sampling and Aliasing - Introduction

#### Overview:



- "Raw" sampling
- Sinusoidal aliasing

g

ng

Digital Signal Processing
Vetterli

Paolo Prandoni and Martin Vetterli

Paolo Prandoni and Martin

#### Overview:



- "Raw" sampling
- Sinusoidal aliasing

g

ng

Digital Signal Processing
Vetterli

Paolo Prandoni and Martin Vetterli

O 2013

# Sinc Sampling



$$x[n] = \langle \operatorname{sinc} \left( \frac{t - nT_s}{T_s} \right) s x(t) \rangle$$

$$pigital \ signal \ Processor \ Vetter II$$

$$paolo \ Prandoni \ and \ Martin \ Vetter II$$

$$paolo \ Prandoni \ 2013$$

# Sinc Sampling



 $x[n] = (\operatorname{sinc}_{T_s} * x)(nT_s)_{i,j}$   $\operatorname{Digital Signal Processin Vetterli}_{i,j}$   $\operatorname{Digital Signal Martin Vetterli}_{i,j}$   $\operatorname{Digital Signal Processin Vetterli}_{i,j}$ 

# Sinc Sampling





# "Raw" Sampling





# Remember the wagonwheel effect?



Digital Signal Processin Vetterli Paolo Prandoni and Martin Vetterli © 2013



$$x(t) = e^{j\Omega_0 t}$$

- $x(t)=e^{j\Omega_0t}$   $* always periodic, period $T=2\pi/\Omega_0$ signal Processing Vetterli <math display="block"> * all angular speeds are allowed random = 0.013$   $* FT \{e^{j\Omega_0t}\} = 2\pi\delta(\Omega-\Omega_0)$   $* bandlimited to $\Omega_0$$



$$x(t)=e^{j\Omega_0t}$$

- $x(t)=e^{j\Omega_0t}$   $\Rightarrow \text{ always periodic, period } T=2\pi/\Omega_0 \text{ and Martin Vetterli}$   $\Rightarrow \text{ all angular speeds are allowed random}$   $\Rightarrow \text{ all } T=2\pi\delta(\Omega) \text{ and } T=2\pi\delta(\Omega)$



$$x(t) = e^{j\Omega_0 t}$$

- $x(t)=e^{j\Omega_0t}$  always periodic, period  $T=2\pi/\Omega_0$  and Martin Vetterli all angular speeds are allowed random (2013)  $\mathrm{FT}\left\{e^{j\Omega_0t}\right\}=2\pi\delta(\Omega-\Omega_0)$  addimited to  $\Omega$



$$x(t) = e^{j\Omega_0 t}$$

- $x(t)=e^{j\Omega_0t}$  always periodic, period  $T=2\pi/\Omega_0$  and Martin Vetterli all angular speeds are allowed random =20.3 FT  $\left\{e^{j\Omega_0t}\right\}=2\pi\delta(\Omega-\Omega_0)$  and with vetterli always periodic, period =20.3 relative to =20.3





#### Raw samples of the continuous-time complex exponential



$$x[n] = e^{i\Omega_0 T_s n} ssing$$

$$pigital Signal Processing Vetter II$$

$$pigital Signal Martin Vetter II$$

$$pigital Signal Martin Vetter II$$

- raw samples are snapshots at regular intervals of the rotating point
- resulting digital frequency is  $\omega_0 = \Omega_0 T_s$

#### Raw samples of the continuous-time complex exponential



$$x[n] = e^{i\Omega_0 T_s n} ssing$$

$$x[n] = e^{i\Omega_0 T_s n} ssing$$

$$yetter in Vetter in Vett$$

- raw samples are snapshots at regular intervals of the rotating point
- lacktriangleright resulting digital frequency is  $\omega_0=\Omega_0\,T_s$

## When $T_s < \pi/\Omega_0$ , $\omega_0 < \pi$ ...





# When $\pi/\Omega_0 < T_s < 2\pi/\Omega_0$ , $\pi < \omega_0 < 2\pi$ ...





# When $\pi/\Omega_0 < T_s < 2\pi/\Omega_0$ , $\pi < \omega_0 < 2\pi$ ...





# When $\pi/\Omega_0 < T_s < 2\pi/\Omega_0, \ \pi < \omega_0 < 2\pi...$





#### When $\pi/\Omega_0 < T_s < 2\pi/\Omega_0$ , $\pi < \omega_0 < 2\pi$ ...





### When $\pi/\Omega_0 < T_s < 2\pi/\Omega_0$ , $\pi < \omega_0 < 2\pi$ ...





# When $\pi/\Omega_0 < T_s < 2\pi/\Omega_0, \ \pi < \omega_0 < 2\pi...$





















#### When $T_s > 2\pi/\Omega_0$ , $\omega_0 > 2\pi$ ...





#### When $T_s > 2\pi/\Omega_0$ , $\omega_0 > 2\pi$ ...





# Aliasing





#### Aliasing



$$x(t) = e^{j\Omega_0 t}$$

sampling period

 $x(t)=\mathrm{e}^{j\Omega_0t}$  digital frequency  $\hat{x}(t)$ 

$$\begin{array}{lll} T_s < \pi/\Omega_0 & 0 < \omega_0 < \pi & e^{j\Omega_0 t} \\ \pi/\Omega_0 < T_s < 2\pi/\Omega_0 & \pi < \omega_0 < 2\pi & e^{j\Omega_1 t}, & \Omega_1 = \Omega_0 - 2\pi/T_s \\ T_s > 2\pi/\Omega_0 & \omega_0 > 2\pi & e^{j\Omega_2 t}, & \Omega_2 = \Omega_0 \mod(2\pi/T_s) \end{array}$$

### Again, with a simple sinusoid and using hertz



$$x(t) = \cos(2\pi F_0 t)$$
 $x[n] = x(nT_s) = \cos(\omega_0 n)$ 
 $x(t) = \cos(2\pi F_0 t)$ 
 $x[n] = x(nT_s) = \cos(\omega_0 n)$ 
 $x[n] = x(nT_s) = \cos(\omega_0 n)$ 

# Sampling a Sinusoid



| sampling frequency | digital frequency result                                     |
|--------------------|--------------------------------------------------------------|
|                    | I Process Vetter                                             |
| $F_s > 2F_0$       | $0<\omega_0<\pi$                                             |
| $F_s = 2F_0$       | $\omega_0 = \pi$ max digital frequency: $x[n] = (-1)^n$      |
| $F_0 < F_s < 2F_0$ | $\pi < \omega_0 < 2\pi$ negative frequency $\omega_0 - 2\pi$ |
| $F_s < F_0$        | $\omega_0 > 2\pi$ full aliasing: $\omega_0 \mod 2\pi$        |

4



$$x(t) = \cos(6\pi t) \qquad (F_0 = 3Hz)$$





$$x(t) = \cos(6\pi t) \qquad (F_0 = 3Hz)$$



 $\Gamma_s = 2.9 \Pi Z$ 



$$x(t) = \cos(6\pi t) \qquad (F_0 = 3Hz)$$





$$x(t) = \cos(6\pi t) \qquad (F_0 = 3Hz)$$





$$x(t) = \cos(6\pi t) \qquad (F_0 = 3Hz)$$



END OF MODULE 6.4

Digital Signard Martine 6.4

Paolo Prandoni and Martine 2013



Digital Signal Processing

Digital Signal Processing

Module 6.5: Same

#### Overview:



- Aliasing for arbitrary spectra
- Examples

Digital Signal Processing

Digital Signal Martin Vetterli

and Martin Vetterli

Paolo Prandoni and Martin

© 2013

#### Overview:



- ► Aliasing for arbitrary spectra
- Examples

Digital Signal Processing

Digital Signal Martin Vetterli

Digital Signal Martin Vetterli

O 2013

## Raw-sampling an arbitrary signal





# Raw-sampling an arbitrary signal







- lacksquare pick  $T_s$  (and set  $\Omega_N=\pi/T_s$ )
- ▶ pick  $\Omega_0 < \Omega_N$





- lacksquare pick  $T_s$  (and set  $\Omega_N=\pi/T_s$ )
- ▶ pick  $\Omega_0 < \Omega_N$





- lacksquare pick  $T_s$  (and set  $\Omega_N=\pi/T_s$ )
- ▶ pick  $\Omega_0 < \Omega_N$





- lacksquare pick  $T_s$  (and set  $\Omega_N=\pi/T_s$ )
- ▶ pick  $\Omega_0 < \Omega_N$





- lacksquare pick  $T_s$  (and set  $\Omega_N=\pi/T_s$ )
- ▶ pick  $\Omega_0 < \Omega_N$





- pick  $T_s$  (and set  $\Omega_N = \pi/T_s$ )
- ▶ pick  $\Omega_0 < \Omega_N$



## Spectrum of raw-sampled signals



start with the inverse Fourier Transform

Fourier Transform
$$x[n] = x_c(nT_s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_c(j\Omega) e^{j\Omega nT_s} d\Omega$$

#### Spectrum of raw-sampled signals



frequencies  $2\Omega_{N}$  apart will be aliased, so split the integration interval

$$x[n] = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \int_{(2k+1)\Omega_N}^{(2k+1)\Omega_N} X_c(j\Omega) e^{j\Omega n T_s} d\Omega$$



























with a change of variable and using  $e^{j(\Omega+2k\Omega_N)T_sn}=e^{j\Omega T_sn}$ :

$$x[n] = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \int_{-\Omega_N}^{\Omega_N} X_c(j(\Omega - 2k\Omega_N)) e^{j\Omega nT_s} d\Omega$$

$$= \frac{1}{2\pi} \int_{-\Omega_N}^{\Omega_N} \left[ \sum_{k=-\infty}^{\infty} X_c(j(\Omega - 2k\Omega_N)) \right] e^{j\Omega nT_s} d\Omega$$



periodization of the spectrum; define:

$$ilde{X}_c(j\Omega) = \sum_{k=-\infty}^{\infty} X_c(j(\Omega + 2k\Omega_N))$$
 $ilde{X}_c(j\Omega + 2k\Omega_N)$ 
 $ilde{X}_c(j\Omega + 2k\Omega_N)$ 
 $ilde{X}_c(j\Omega) = \sum_{k=-\infty}^{\infty} X_c(j\Omega) e^{j\Omega n T_s} d\Omega$ 

so that:

$$x[n] = rac{1}{2\pi} \int_{-\Omega_N}^{\Omega_N} \tilde{X}_c(j\Omega) e^{j\Omega \, n T_s} d\Omega$$



set  $\omega = \Omega T_s$ :

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{T_s} \tilde{X}_c \left( j \frac{\omega}{T_s} \right) e^{j\omega n} d\omega$$

$$= IDTFT \left\{ \frac{1}{T_s} \tilde{X}_c \left( j \frac{\omega}{T_s} \right) \right\}$$

$$X(e^{j\omega}) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_c \left( j \frac{\omega}{T_s} - j \frac{2\pi k}{T_s} \right)$$



































































#### given a sampling period $T_s$

- $\triangleright$  if the signal is bandlimited to  $\pi/T_s$  or less, raw sampling is fine (i.e. equivalent to sinc if the signal is not bandlimited, two isolices: Martin Vettern

  bandlimit via a lowpass Dight in the production of the sampling)

  or, raw sample the production of the sampling of the samplin



#### given a sampling period $T_s$

- $\triangleright$  if the signal is bandlimited to  $\pi/T_s$  or less, raw sampling is fine (i.e. equivalent to sinc ▶ if the signal is not bandlimited, two choices: Martin Vetterill

  • bandlimit via a lownassiality of the signal is not bandlimit via a lownassiality of the signal is not bandlimit via a lownassiality of the signal is not bandlimit via a lownassiality of the signal is not bandlimit via a lownassiality of the signal is not bandlimit via a lownassiality of the signal is not bandlimited.
- - bandlimit via a lowpass Biller in the point involves time domain before sampling (i.e. sinc sampling)
  - or, raw sample the signal and incur aliasing



#### given a sampling period $T_s$

- $\triangleright$  if the signal is bandlimited to  $\pi/T_s$  or less, raw sampling is fine (i.e. equivalent to sinc if the signal is not bandlimited, two choices: Martin Vetter
   bandlimit via a lowness stidility
- - bandlimit via a lowpass filter in the continuous-time domain before sampling (i.e. sinc sampling)
  - or, raw sample the signal and incur aliasing



#### given a sampling period $T_s$

- $\triangleright$  if the signal is bandlimited to  $\pi/T_s$  or less, raw sampling is fine (i.e. equivalent to sinc if the signal is not bandlimited, two choices: Martin Vetter
   bandlimit via a lowpose stight.
- - bandlimit via a lowpass filter in the continuous-time domain before sampling (i.e. sinc sampling)
  - or, raw sample the signal and incur aliasing



#### given a sampling period $T_s$

- $\triangleright$  if the signal is bandlimited to  $\pi/T_s$  or less, raw sampling is fine (i.e. equivalent to sinc ▶ if the signal is not bandlimited, two choices: Martin
   ▶ bandlimit via a lowness fill
- - bandlimit via a lowpass filter in the continuous-time domain before sampling (i.e. sinc sampling)
  - or, raw sample the signal and incur aliasing
- aliasing sounds horrible, so usually we choose to bandlimit in continuous time

# Sinc Sampling and Interpolation

$$\hat{x}[n] = \langle \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right), x(t) \rangle = (\operatorname{sinc}_{T_s} * x)(nT_s)$$

$$\begin{array}{c} \operatorname{pigital Signal Processing} \\ \operatorname{pigital Signal Martin} \\ \operatorname{paolo Prandoni} \\ \operatorname{c} 2013 \end{array}$$

## Sinc Sampling and Interpolation



$$\hat{x}[n] = \langle \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right), x(t) \rangle = (\operatorname{sinc}_{T_s} * x)(nT_s)$$

$$\hat{x}(t) = \sum_{n} x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right) \text{ detain}$$

$$\hat{x}(t) = \sum_{n} x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right) \text{ detain}$$

### Sinc Sampling and Interpolation



$$\hat{x}[n] = \langle \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right), x(t) \rangle = (\operatorname{sinc}_{T_s} * x)(nT_s)$$

$$\hat{x}(t) = \sum_{n} x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right) \operatorname{dessing}$$



### Least squares approximation with sinc sampling and interpolation





## Least squares approximation with sinc sampling and interpolation





### Least squares approximation with sinc sampling and interpolation





































END OF MODULE 6.5

Digital Signa and Martine Prandoni and Martine Prando



# Digital Signal Processing

Module 6.6: Discrete-time Processing and Continuous-time Signals

#### Overview:



- ► Impulse invariance
- Duality
- Examples

Digital Signal Processing

Digital Signal Processing

Nartin Vetterli

and Martin Vetterli

Paolo Prandoni and Martin

2013

#### Overview:



- ► Impulse invariance
- Duality
- Examples

nce

Digital Signal Processing

Digital Signal Martin Vetterli

and Martin Vetterli

Paolo Prandoni and Martin

© 2013

#### Overview:



- ► Impulse invariance
- Duality
- Examples

nce

Digital Signal Processing

Digital Signal Martin Vetterli

and Martin

Paolo Prandoni and 2013

















$$X(e^{j\omega}) = \frac{1}{T_s} X_c \left( j \frac{\omega}{T_s} \right)$$





$$X(e^{j\omega}) = \frac{1}{T_s} X_c \left( j \frac{\omega}{T_s} \right)$$

$$Y(e^{j\omega}) = X(e^{j\omega}) H(e^{j\omega})$$





$$X(e^{j\omega}) = \frac{1}{T_s} X_c \left( j \frac{\omega}{T_s} \right)$$

$$Y(e^{j\omega}) = X(e^{j\omega}) H(e^{j\omega})$$

$$Y_c(j\Omega) = T_s Y(e^{j\Omega T_s})$$



 $Y_c(j\Omega) = X_c(j\Omega) H(e^{j\pi\Omega/\Omega_N})$ Paolo Prandoni

2013



```
Digit H_c(j\Omega) = H(e^{j\pi\Omega/\Omega_N})

Paolo Prandoni al (2013
```































design a discrete-time filter to isolate a band of frequencies between 4000 and 5000Hz; input signals are bandlimited to 7KHz.



- ightharpoonup 7KHz band limit  $\Rightarrow$  we can use any sampling frequency above 14KHz



- ightharpoonup 7KHz band limit  $\Rightarrow$  we can use any sampling frequency above 14KHz

- we need a bandpass with a lowpass with a lowpass with property bandwidth start with a lowpass with property bandwidth property bandwidth and bandwidth property bandwidth between the start with a lowpass with curoff 500Hz © 2013



- ▶ 7KHz band limit ⇒ we can use any sampling frequency above 14KHz
- ullet pick  $F_s=16 extit{KHz}$  so that  $\Omega_N=2\pi\cdot 8000$  rad/s
- ▶ we need a bandpass with a 1000Hz bandwidth
- start with a lowpass with cutoff 500Hz © 2013
- ▶ modulate it to center it around 4500Hz



- ▶ 7KHz band limit ⇒ we can use any sampling frequency above 14KHz
- ullet pick  $F_s=16 extit{KHz}$  so that  $\Omega_N=2\pi\cdot 8000$  rad/s
- ▶ we need a bandpass with a 1000Hz bandwidth
- ▶ start with a lowpass with cutoff 500Hz
- ▶ modulate it to center it around 4500Hz



- ▶ 7KHz band limit ⇒ we can use any sampling frequency above 14KHz
- ullet pick  $F_s=16 extit{KHz}$  so that  $\Omega_{ extit{N}}=2\pi\cdot 8000$  rad/s
- ▶ we need a bandpass with a 1000Hz bandwidth
- ▶ start with a lowpass with cutoff 500Hz
- ▶ modulate it to center it around 4500Hz









# Impulse invariance







$$\omega_c = \pi \frac{\Omega_c}{\Omega_N} = \pi \frac{500}{8000} = 0.0625\pi$$

- $\omega_0 = \pi \frac{4500}{8000} = 0.5625\pi$   $\Rightarrow \text{ design an FIR lowpass with cutoff and Martin Practice of the lasing your favorite method multiply the impulse perponse by <math>2\cos\omega_0 n$



$$\omega_c = \pi \frac{\Omega_c}{\Omega_N} = \pi \frac{500}{8000} = 0.0625\pi$$

$$\omega_0 = \pi \frac{4500}{8000} = 0.5625\pi$$



119

$$\omega_c = \pi \frac{\Omega_c}{\Omega_N} = \pi \frac{500}{8000} = 0.0625\pi$$

- $\omega_c = \pi \frac{\Omega_c}{\Omega_N} = \pi \frac{500}{8000} = 0.0625\pi$   $\omega_0 = \pi \frac{4500}{8000} = 0.5625\pi$  design an FIR lowpass with cutoff  $\omega_c$  using your favorite method



$$\omega_c = \pi \frac{\Omega_c}{\Omega_N} = \pi \frac{500}{8000} = 0.0625\pi$$

- $\omega_c = \pi \frac{\Omega_c}{\Omega_N} = \pi \frac{500}{8000} = 0.0625\pi$   $\omega_0 = \pi \frac{4500}{8000} = 0.5625\pi$  design an FIR lowpass with cutoff  $\omega_c$  using your favorite method
- multiply the impulse response by  $2\cos\omega_0 n$

















$$X_c(j\Omega) = X(e^{j\Omega})$$





- $Y_c(j\Omega) = X_c(j\Omega)H_c(j\Omega)$





- $Y_c(j\Omega) = X_c(j\Omega)H_c(j\Omega)$
- ▶ LTI systems cannot change the bandwidth  $\Rightarrow Y(e^{j\omega}) = Y_c(j\omega)$



```
\begin{array}{c} \text{Digi} Y(e^{j\omega}) = X(e^{j\omega}) H_c(j\omega) \\ \text{Paolo Prandoni} & 2013 \end{array}
```



```
Digital H(e) Digit
```























$$H(e^{j\omega}) = e^{-j\omega d}$$
 vetter

- $H(e^{j\omega}) = e^{-j\omega d} \sin \theta$   $\downarrow \text{ if } d \in \mathbb{Z}, \text{ simple delay } \text{ Digital Signal Martin}$   $\downarrow \text{ if } d \notin \mathbb{Z}, h[n] = \text{sinc}(n-d).\text{Prandoni}$

# By duality





# By duality





- $\triangleright$  y[n] is the sampled interpolation of x[n] delayed by d



























- ▶ to delay a discrete-time signal by a fraction of a sample we need an ideal filter!
- ▶ efficient time-variant approximations exist (see Module 11)

#### Example: differentiator



$$H(e^{j\omega})=j\omega_{\rm essing}$$
 
$$Vetter is signal Processing Vetter in Vetter is signal Processing Vetter is signal Processing Vetter in Vetter in Vetter is signal Processing Vetter in Vetter in Vetter is signal Processing Vetter in Ve$$

- in discrete time...

# By duality





### By duality





- $Y_c(j\Omega) = j\Omega X_c(j\Omega)$
- $y_c(t) = x'_c(t)$
- y[n] is the sampled interpolation of x[n], differentiated

# Digital differentiator, magnitude response







# Digital differentiator, phase response



$$H(e^{j\omega})=j\omega$$



# Digital differentiator, impulse response



$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} j\omega e^{j\omega n} d\omega$$

$$= \begin{cases} 0 & n = 0 \\ \frac{(-1)^n}{n} & n \neq 0 \end{cases}$$

# Digital differentiator, impulse response





# Digital differentiator



- the digital differentiator is again an ideal filter!
   many approximations exist with a second Martin Paolo Prando © 2013

#### Wrap up



- ► Continuous-time processing of discrete-time sequences
- ▶ Discrete-time processing of continuous-time signals
- Jumping back and forth using sampling and interpolation
- ▶ In practice: Many applications of processing continuous-time signals in discrete time!

END OF MODULE 6.6

Digital Signa Martine 6.6

Paolo Prandoni and Martine 2013

# END OF MODULE 6 Digital Sign and Martin People Prandoni and Martin People Prandoni and Martin People Peopl