Les problèmes

Les 21 problèmes sont organisés en indentations de façon à indiquer la direction de la réduction servant à prouver leur NP-complétude. Par exemple, le <u>problème du sac à dos</u> a été prouvé NP-complet par une réduction à partir de celui de la <u>couverture exacte</u>.

Le nom anglais original est en majuscules.

- SATISFIABILITY : le <u>problème SAT</u> pour les formules en <u>forme normale</u> conjonctive
 - CLIQUE : le <u>problème de la clique</u> (voir aussi le <u>problème de l'ensemble</u> indépendant)
 - SET PACKING : empaquetage d'ensemble
 - VERTEX COVER : le problème de couverture de sommets
 - SET COVERING : le problème de couverture d'ensemble
 - FEEDBACK ARC SET : feedback arc set
 - FEEDBACK NODE SET: feedback vertex set
 - DIRECTED HAMILTONIAN CIRCUIT : voir <u>circuit</u>
 <u>Hamiltonien</u>
 - UNDIRECTED HAMILTONIAN CIRCUIT : voir <u>circuit Hamiltonien</u>
 - o 0-1 INTEGER PROGRAMMING : voir programmation linéaire sur les entiers
 - o 3-SAT : voir <u>problème 3-SAT</u>
 - CHROMATIC NUMBER : coloration de graphe
 - CLIQUE COVER : partition en cliques
 - EXACT COVER : couverture exacte
 - MATCHING à 3 dimensions : pairage à 3 dimensions
 - STEINER TREE : voir arbre de Steiner
 - HITTING SET : ensemble intersectant
 - KNAPSACK : problème du sac à dos
 - JOB SEQUENCING : <u>séquençage de tâches</u>
 - PARTITION : problème de partition
 - MAX-CUT : <u>problème de coupure</u> maximale