Week5: Sensors

Dan Goldsmith

November 7, 2017

Overview

Talking about Sensors

- A bit of electronics
- How do we get the micro-controller to talk to our sensors?
- Different types of sensors

Stuff

Sensors (Physical / Background)

What is a Sensor?

A sensor is a converter that measures a physical quantity and converts it into a signal that can be read by an observer or instrument.

What is a Sensor?

While the wikipedia statement is accurate...

- We are learning about pervasive computing
 - Using electronics to measure and process phenomena
 - Therefore it is important that our sensors convert to a signal that can be understood by a computer.

Data flows

Analog or Digital?

- We live in an Analog world:
 - Infinite Spectrum of Colors we can see
 - Infinite Number of Sounds / Tones we can here
- Digital signals are Discrete or Finite meaning there are a limited set of values (2, 255, 1024 etc.)

Analog or Digital?

23:59:59

Signals

- In computing signals are defined as time-varying elements that convey information
 - Generally this is voltage (However some use Current)
- Used to send and receive information between devices
- Can be transmitted over Wire / Radio etc.

Differences

Analog

- Continuous
- Infinite range of values (higher accuracy?)
- Can be harder to work with electronically

Digital

- Discrete
- Finite range of values
- Not as exact but easier to work with

Analog Sensors and Signals

Analog Signals

- Time-VS-Signal graph should be smooth, with an "infinite" number of states
- Can also have negative values

Analog Sensors

- Return an output (usually a voltage) that varies depending on the state it is measuring
- Think of the Temperature sensor in the simulator:
 - Low temperature == Low Voltage
 - High temperature == High Voltage

Analog to Digital conversion

- But aren't computers Binary??
- We need to convert these values to Digital before the micro controller can understand them.
 - Process know as Analog To Digital Conversion (ADC)
 - Uses a separate IC
 - A2D converters accuracy is given a number of Bits (the resolution)

Analog to Digital Conversion:

- A number of 'slots' given by the Resolution of the ADC
- Voltage is mapped between the High and Low Reference voltages
 - Generally between 0 and the voltage the circuit is running at

Analog to Digital conversion:

Consider the 8 bit ADC on the Arduino:

- Has $2^8 == 256$ 'slots'
- Voltage range of 0-5v
 - Thus each 'slot' is 0.019v

What happens to our Signal

- The signal is now quantized
- Steps between values

Factors to Consider with Analog sensors

- Generally easy to get the voltage (read from an ADC pin)
- Will need converting from voltage to value
- Depending on the output voltages of the sensor(s) we can lose accuracy

Digital Signals

Digital Signals

- "Binary" ON-OFF signal
- No negative values

Digital Sensors

- Talk in the same binary "language" as our Microcontroller
- If its just On and Off are we stuck with switches?
 - Sensor has processing capabilities
 - We ask the sensor to provide the value

Digital Sensors

- Moving the ADC onto the Sensor has some benefits
 - Resolution can be defined by the sensor (rather than other hardware)
 - Removes the need for a separate ADC in micro-controller
 - Any conversion to "real world" units can be done on the device.

Communicating with Digital sensors

- Switches are easy, just On and Off.
- Well understood Standards for Digital Communication.
 - Serial
 - SPI
 - |2C
- Most of these are "wrapped" in Arduino Function Calls

"Serial" Communications

- Data is transmitted as a steam of bits (01001010...)
- Sender dictates the speed data is transmitted (asynchronous)
- Data is encoded using well known scheme
- Examples:
 - Sending data between Arduino and PC (Ascii Encoded)

Considerations of Serial

- Benefits
 - A simple method of sending between two devices
 - Only 2 wires required
- Drawbacks
 - Crossed Wires (Tx -> Rx not Tx -> Tx)
 - Baud Rate mismatch
 - Bus Contention (running more than one device)

SPI

- Uses separate lines for data and a clock
 - Ensures both sides are in sync
- Allows multiple devices using chip select lines

SPI

Multiple Slaves

Considerations of SPI

- Pros
 - Faster than Serial
 - Simple to implement in hardware
 - Supports multiple devices
- Cons
 - Requires many signal lines
 - Master must control communication
 - Communication need to be well defined in advance

I²C / TWI

- Inter-Integrated Circuit Protocol / Two wire Interface.
 - Designed to allow multiple "slave" sensors
 - Requires less wires that SPI
 - Uses slave addresses to control communication

Considerations of I²C

- Pros
 - Two Wires
 - Multiple Master / Slave
 - Complex Communication possible
- Cons
 - More Complex IC than SPI
 - Proprietary (though Phillips have "opened" it)?
 - Needs consistent logic levels (ie all 5v)

Dont Panic

- You shouldn't have to write a driver:
 - Most of the Sensors we have are Analog
 - Simple Libraries / Drivers for the Digital Sensors

Examples of Sensors