Functional Equations (I)

Jongmin Lim (March 2022)

1 Basic strats

- Try to get f(0) or f(1).
- Odd function? Even function? Periodic function? Injective function? Surjective function? Additive?
- Guess which functions might work, aim your strats towards them.
- If you can prove that f is linear, take f(x) = ax + b and sub it in and solve for a, b.
- Watch out! Do my substitutions make sense? Did I sub in 0 when the domain is $R_{>0}$?
- Hey I think I solved it. Let's make sure to sub it back in and check if it really is a solution.

2 How to sub

Choose things you think would simplify the equation. Try subbing in zero here and there.

- 1. $(f: \mathbb{R} \to \mathbb{R})$ f(x+y) = f(x) + y
- 2. $(f: \mathbb{R} \to \mathbb{R})$ f(x + xy + y) = f(x) + xf(y) + y

3 Cauchy Functional Equation

The Cauchy functional equation is

$$(f: \mathbb{R} \to \mathbb{R}) \ f(x+y) = f(x) + f(y)$$

We have the obvious solution f(x) = cx for $c \in \mathbb{R}$, but there can exist super weird solutions. These super weird solutions are closely packed together in the whole coordinate plane. This means that I can always find a point (x, f(x)) in any small circle I draw in the plane. In other words, if I can draw a circle which does not contain any of the points on the graph, then the solution must be nice and linear.

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ and f(x+y) = f(x) + f(y). We also have $f(x) \geq 3$ for $x \geq 6$. Find all functions.
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ and f(x+y) = f(x) + f(y). We also have $f(x^2) = f(x)^2$. Find all functions.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ and f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y). Find all functions.

4 Twiddle Take

Take the given equation, and substitute something that would change only a small part of the equation. Then, expose the change by equating the non-changed things. For example, if you have a lot of x^2 terms, try subbing -x to x. For example, if x and y are asymmetric, try swapping x and y.

- 1. $f: \mathbb{R} \to \mathbb{R} \ f(f(x)) + f(f(y)) = f(xy) xy + f(x) + y$
- 2. $f: \mathbb{R} \to \mathbb{R} \ f(x^2 + y) = x^2 + xf(y) y(x 1)$

5 Cool Canceller

Make a substitution which makes the inside of two fs on opposite sides equal.

1.
$$f: \mathbb{R} \to \mathbb{R} \ f(\frac{x+y}{2}) = f(f(x) + y) - \frac{1}{4}y$$
.

6 Injection Engine

An injective function is a function where f(a) = f(b) implies a = b.

The injection engine is a twiddle take by assuming f(a) = f(b) for some a, b and seeing what kind of relations arise between a and b. The best case scenario is when we get a = b, which is when f is injective.

1.
$$f: \mathbb{R} \to \mathbb{R} \ f(x - f(y)) = f(f(x) + f(y)) + 2y$$

Sometimes it's good to not be so greedy and show injectivity at zero.

7 Smashing Surjection

A surjective function is a function where an x exists for every y such that f(x) = y. For example, we have $f: \mathbb{R} \to \mathbb{R}$ is surjective if f(x + f(y)) = y + f(x), since we can change y to get any value on the RHS.

1.
$$f: \mathbb{R} \to \mathbb{R} \ f(xf(x) + f(x)f(y) + y - 1) = f(xf(x)) + xy + y - 1$$

8 Warning

Say you've ended up with an equation like (f(y) - y)f(y) = 0. This does NOT mean f(y) = y for all $y \in \mathbb{R}$ or f(y) = 0 for all $y \in \mathbb{R}$. It DOES mean f(y) = y or f(y) = 0 for all $y \in \mathbb{R}$.

9 Angelo's Trick

From some equation like f(f(x)) = 2x + 1, we can take f(f(f(x))) = f(2x + 1). But we also can substitute f(x) into x and get f(f(f(x))) = 2f(x) + 1. Clearly 2f(x) + 1 = f(2x + 1) looks very nice.

10 Linear Homogeneous Recurrences

Consider a recurrence of the form

$$ax_{n+2} + bx_{n+1} + cx_n = 0$$

If the quadratic equation $ax^2 + bx + c = 0$ has...

- 1. distinct roots α, β , then the general term is of the form $x_n = A\alpha^n + B\beta^n$ for some constants A, B.
- 2. a double root α , then the general term is of the form $x_n = (An + B)\alpha^n$ for some constants A, B.

You can find the constants A, B using the inital conditions.

10.1 Example 1

Solve $a_{n+2} = 3a_{n+1} - 2a_n$, where $a_0 = 0$, $a_1 = 1$. We solve the quadratic

$$x^{2} - 3x + 2 = 0$$
$$(x - 1)(x - 2) = 0$$

The general solution to the recurrence is $a_n = A2^n + B1^n$ for some constants A and B. Since $a_0 = A + B = 0$ and $a_1 = 2A + B = 1$, we conclude that A = 1, B = -1. Hence, the solution to this recurrence is $a_n = 2^n - 1$.

10.2 Example 2

Solve $a_{n+2} = 4a_{n+1} - 4a_n$, where $a_0 = 1$, $a_1 = 6$.

The quadratic is $(x-2)^2 = 0$. The general solution is $a_n = (A+Bn)2^n$ for some constants A, B, where we deduce A = 1 and B = 2 via the initial conditions. Thus, the solution is $a_n = (1+2n)2^n$.

10.3 Problems:

- 1. $a_{n+2} = -a_{n+1} + 2a_n$ and $a_n > 0$ for all $n \in \mathbb{N}$. Show that a_n is a constant sequence.
- 2. $2a_{n+2} = 5a_{n+1} 3a_n$ and $n \in \mathbb{Z}$. Show that a_n must be a constant sequence.

11 Problems

1.
$$(f: \mathbb{R} \to \mathbb{R}) \ 2f(x) + f(1-x) = 3x^2 - 2x + 1$$

2.
$$(f : \mathbb{R} \to \mathbb{R}) \ f(x^2 + y) = f(x)^2 + f(y)$$

3.
$$(f: \mathbb{R} \to \mathbb{R})$$
 $f\left(\frac{x+f(x)}{2} + y\right) = f(x) + y$

4.
$$(f: \mathbb{R} \to \mathbb{R}) f\left(\frac{x + f(x)}{2} + f(y)\right) = f(x) + y$$

5.
$$(f: \mathbb{R} \to \mathbb{R}) f(y)^2 = f(x^2 + yf(y)) - xf(x) + x^2(f(y) - y)$$

6.
$$(f: \mathbb{R} \to \mathbb{R}) \ f(y + 2xf(x)) = f(2f(x)^2 - y) + 2y$$

7.
$$(f: \mathbb{Z} \to \mathbb{Z})$$
 $f(f(n)) = n+1$

8.
$$(f: \mathbb{Z} \to \mathbb{Z}) \ 7f(x) = 3f(f(x)) + 2x$$

9.
$$(f: \mathbb{R}^+ \to \mathbb{R}^+)$$
 Let $a, b \in \mathbb{R}^+$ be fixed numbers. Solve $f(f(x)) + af(x) = b(a+b)x$

10.
$$(f: \mathbb{R}^+ \to \mathbb{R}^+)$$
 $(x+y)f(2yf(x)+f(y)) = x^3f(yf(x))$ (2016 Tset)

11.
$$(f : \mathbb{R} \to \mathbb{R}) \ f(x^2 + yf(x)) = xf(x+y)$$

12.
$$(f: \mathbb{Z}^+ \to \mathbb{Z}^+)$$
 $f(n+1) > f(n)$ and $f(f(n)) = 3n$

13.
$$(f : \mathbb{R} \to \mathbb{R}) \ f(xf(x) + f(y)) = f(x)^2 + y$$

14.
$$(f: \mathbb{R} \to \mathbb{R})$$
 $f(x+y) = f(x)f(y) + xy$

15.
$$(f: \mathbb{Q}^+ \to \mathbb{Q}^+)$$
 $f(f(x)^2 y) = x^3 f(xy)$ (2010 ISL A5)

16.
$$(f: \mathbb{R} \to \mathbb{R}) f(x) + f\left(1 - \frac{1}{x}\right) = \arctan x \text{ (Putnam 2016)}$$

17.
$$(f: \mathbb{R} \to \mathbb{R}) \ f(x+f(y)) = f(y-x) + 2x(f(y+1)-y)$$

18.
$$(f: \mathbb{Z} \to \mathbb{Z}) f(y+f(x)) = f(x-y) + y(f(y+1) - f(y-1))$$
 (2016 TST)

19.
$$(f: \mathbb{R} \to \mathbb{R}) f(x^3 + y^3 + xy) = x^2 f(x) + y^2 f(y) + f(xy)$$

20.
$$(f: \mathbb{R} \to \mathbb{R})$$
 $f(f(x) + f(y) + f(z)) = f(f(z) + 2xy) + f(f(x) - f(y)) + 2f(xz - yz)$