Given:

The transfer function between e_o and e_i is:

$$\left(e_i\left(-\frac{R_f}{R_i}\right) - K_e\omega\right)\left(\frac{1}{Ls+R}\right)(K_t)\left(\frac{1}{Js+B}\right) = \omega$$

Since the input is simulated to be DC, $Ls \approx Js \approx 0$, and solve for relationship between e_i and ω :

$$\begin{split} \frac{RB\omega}{K_t} + K_e\omega &= e_i \left(-\frac{R_f}{R_i} \right) \\ \omega \left(\frac{RB}{K_t} + K_e \right) &= e_i (-\frac{R_f}{R_i}) \\ K_{tach}\omega &= e_o = \frac{K_{tach}e_i (-\frac{R_f}{R_i})}{\left(\frac{RB}{K_t} + K_e \right)} \end{split}$$

From which, I solved for K_t :

$$\begin{split} e_o\left(\frac{RB}{K_t} + K_e\right) &= K_{tach}e_i\left(-\frac{R_f}{R_i}\right) \\ \frac{RB}{K_t} + K_e &= \frac{K_{tach}e_i\left(-\frac{R_f}{R_i}\right)}{e_o} \\ \frac{RB}{K_t} &= \frac{K_{tach}e_i\left(-\frac{R_f}{R_i}\right)}{e_o} - K_e \\ \frac{\frac{K_t}{RB}}{RB} &= \frac{1}{\frac{K_{tach}e_i\left(-\frac{R_f}{R_i}\right)}{e_o} - K_e} \\ K_t &= \frac{RB}{\frac{K_{tach}e_i\left(-\frac{R_f}{R_i}\right)}{e_o} - K_e} = \frac{RB}{K_{tach}\left(\frac{e_i}{e_o}\right)\left(-\frac{R_f}{R_i}\right) - K_e} \end{split}$$

I expect to get a constant K_t for all values of $e_o = e_{tach}$ and e_i = Input voltage (1 – 10 V).