Tipos de redondeo:

			Simétrico	Simétrico
	Corte	Exceso	Simétrico estadistica	Simétri.co distancia
a) 1,5834 (10)	1,583	1,584	1,583	1,583
		,		
6) 1,6666 (10)	1,666	1,667	1,667	1,667
c) 1, 10011 _(z)	1,100	1,101	1, 101	1,101
		(1,102)-		
d) 1, 10110 ₍₂₎	1, 10 1	(1,102) ₇ 1,110	1, 110	1, 101
e) 1,56859 ₍₁₀₎	1,568	1,569	1,569	1,569
)	,
	solo quito s otros #s	Sumar 1	<u> </u>	
			25 → queda ig	val 25 - gueda
			$\geq 5 \rightarrow \text{SVma}^{-1}$	igual
			(para binario se suma cuando sigue un 1).	>5-> suma1 =5, miro la cipra
			Ü	después del 5, si es
				par queda ignal, si es imper somo 1.

Decimales correctos

A un número en notación decimal x se le determina como 2 correcto hasta d decimales si x cumple que

$$\hat{\chi} - 0,5 \times 10^{-d} \angle \chi \leq \hat{\chi} + 0,5 \times 10^{-d}$$

Sea E=(x-x). Se dice que un nomen x tiene d decimales conjectos si se comple que E = 0,5 x10-9

Exemplos:

1) Determine los decimales correctos para 2 y en caso de estar mal escrito, escribirlo bien-

d)
$$\chi = 0.55555 \pm 0.4 \times 10^{-2}$$

$$F = 0,4 \times 10^{-2}$$

$$\longrightarrow 0,4 \leq 0,5 \rightarrow \text{ Cumple la def.}$$

$$\longrightarrow 0,4 \leq 0,5 \rightarrow \text{ decimales correctos.}$$

$$\text{Entonces} \quad \chi = 0,56 \pm 0,4 \times 10^{-2}$$

Se hace oon redonded simetrico distancia

$$E=0.8 \times 10^{-4}$$

0,8 \times 0,5 \seconvierte
0,08 \times 0,08 \times 0,08 \times 0,8 \times 0,8

Southerces $x = 8,900 \pm 0,08 \times 10^{-3}$

$$x = 8,8999 \pm 0,8 \times 10^{-4}$$

Corfe:

$$S=6,66066\pm0,5\times10^{-3}$$
 $S=6,6666\pm0,5\times10^{-3}$
 $S=6,667\pm0,5\times10^{-3}$
 $S=6,6667\pm0,5\times10^{-3}$
 $S=6,666$

Cifras significativas

1. Détermine las C.S. de los signientes números:

al0,00009 -> 1 Cipra s.

b) 12, 121100 -> 8 cipras s.

c) 055, 55005 -> 7 cipras s.

d) 0, 1111 -> A Cipras 5.

* Redonder simétrico > | E| < 5×10-K

2. Determine la cantidad de c.s. de los signientes números y escribirlos bien.

a)
$$\hat{\chi} = 77,7772$$
 $\epsilon = 0,9 \times 10^{-2}$
 $\hat{\chi} = 78$ $\epsilon = 0,9 \times 10^{-2}$
 $\hat{\chi} = 78$

6)
$$\hat{\chi} = 9,999000$$
 $E = 1,2 \times 10^{-5}$
 $\hat{\chi} = 9,9990$ $E = 1,2 \times 10^{-5}$
 $\hat{\chi} = 9,9990$

C)
$$\hat{\chi}=111, 111$$
 $\epsilon=11\times 10^{-5}$ $11\times 5 \rightarrow 1, 1\times 10^{-4} \rightarrow K=4$ $\hat{\chi}=111,1$

d)
$$\hat{\chi} = 0,0005$$
 $E = 5 \times 10^{-3}$
 $0,00050$ $K = 2$

Por corte -> (E) < 10 × 10-1

Taka,

1) Realizar ayb por corte.

2) Realizar los ejercicios de decimales correctos pero con cipras significativar (hallar E)

Números en el computador

-> solo 10 entiende en binario punto plotante normalizada.

Números máquina:

Los PC's trabajan sus operacioner con #s máquina, estos dependen del alma cenamiento propio de la RAM.

Un # real se almacena como # máquina siguiendo un conjunto de convexsiones.

c'Como pasar de real a máquina?

- 1) Definir el almacenamiento y la cantidad de bits para la mantisa y el exponente.
- 2) Convertir el decimal a binario.
- 3) Convertir el binario a Flotante normalizado.
- 4) Convertir el exponente a bindrio
- 5) Escribir el número máquina.

Ejemplo:

Détermine el # máquina 88,88 para una máquina de 11 bits, distribuida así:

- → 1 bit para el signo de la mantisa (1→+,0→-)
- > 1 bit para el signo del exponente
- -> 6 bits para la mantisa (+1 ghost)
- -> 3 bits para el exponente

Nota:

No todo # finito en decimal es finito en binario y vice versa.

- 2) 1011000, 111000... (Rapid tables)
- 3)0,1011000111000 x27
- 4) Pasamos 7 a binario -> 111 Lo 0, 1011000111000 x 2¹¹¹

Losolo lo pusimos
por el ejemplo, peno de ahora en
adelante no lo ponemos porquemos
en flotante normalizado el H alspués
de la coma no puede ser o ent se que siempre