Ethernet

 \longrightarrow copper, fiber

Types (some just historical):

- 10Base2 (ThinNet): coax, segment length 200 m, 30 nodes/segment
- 10Base5 (ThickNet): coax, segment length 500 m, 100 nodes/segment
- 10Base-T: twisted pair, segment length 100 m, 1024 nodes/segment
- 100Base-T (Fast Ethernet): category 5 UTP, fiber (also 100VG-AnyLAN)
- Gigabit & 10 Gbps Ethernet: fiber, category 5 UTP
- 100 Gbps Ethernet

Connectivity example (stone age):

- ullet single-homed vs. multi-homed
- unique 48-bit Ethernet address per NIC
- physical network: bus vs. hub vs. switch
 - \rightarrow very old vs. old vs. not-so-old
 - \rightarrow today: switched Ethernet

High-speed Ethernets have shorter network diameter

- 2500 m for 10 Mbps Ethernet
- 200 m for 100 Mbps Ethernet
- even shorter for 1 Gbps Ethernet
 - \rightarrow unless fully switched (later discussion)
 - → distance limitations: due to Ethernet protocol
 - → creates complications for long-haul
 - → e.g., tens, hundreds, or thousands of miles
 - \longrightarrow 1, 10, 100 Gbps: tier-1 backbone speeds
 - \longrightarrow also multiples of 1 and 10 Gbps

DIX Ethernet frame:

IEEE 802.3 Ethernet frame:

- → IEEE 802.2 LLC (Logical Link Control)
- \longrightarrow two Ethernet types co-exist (802.3 dominant)

Ethernet MAC protocol: CSMA/CD

• MA (Multiple Access): multiple nodes are allowed simultaneous access

- \rightarrow just send
- CS (Carrier Sense): can detect if some other node is using the link
 - \rightarrow rule: if busy, wait until channel is not busy
 - \rightarrow works well in small areas: why?
- CD (Collision Detection): can detect if collision due to concurrent transmission has occured
 - \rightarrow rule: if collision, retry later
 - \rightarrow key question: when is later?
 - → collision detection: more difficult in wireless environments

Collision detection mechanism:

Bi-directional signal propagation

- \rightarrow terminator absorbs signal: prevent bounce back
- \rightarrow can hear different signal from one transmitted

Collision: 2 stations

 \rightarrow while transmitting data frame, hears collided signal

 \rightarrow data frame cannot be too small

- \rightarrow meet in the middle: best-case
- \rightarrow why?

Worst-case collision scenario:

- $\longrightarrow \tau$: one-way propagation delay
- sender needs to wait 2τ sec before detecting collision \rightarrow time for echo to bounce back
- for 2500 m length, 51.2 μ s round-trip time (2 τ)
- \bullet enforce 51.2 μ s slot time
- at 10 Mbps, 512 bits: minimum frame size
 - \rightarrow assures collision detection
 - \rightarrow wireless collision detection: why more difficult?

Transmit at least 512 bits

$$\longrightarrow$$
 6+6+2+46+4=64 B=512 bits

When to retry upon collision: use exponential backoff

- 1. Wait for random $0 \le X \le 51.2 \ \mu s$ before 1st retry
- 2. Two consecutive collisions: wait for random $0 \le X \le 102.4 \ \mu s$ before 2nd retry
- 3. Three consecutive collisions: wait for random $0 \le X \le 204.8 \ \mu s$ before 3rd retry
- 2. i consecutive collisions: wait for $0 \le X \le 2^{i-1} 51.2 \ \mu s$ before next attempt
- 3. Give up if i > 16
- \rightarrow a form of stop-and-wait
- \rightarrow what's the ACK?
- \rightarrow guaranteed reliability?
- \rightarrow why exponential backoff?

Today: switched Ethernet

- not bus anymore but switch
 - → contention moved from bus to "single point"
 - \rightarrow switch: a computer
- Ethernet frames are logically scheduled
 - \rightarrow buffering, who goes first (FIFO, priority)
- no more physical collision
 - \rightarrow instead: buffer overflow

Diagram of 4-port switch:

- \rightarrow output buffered switch
- \rightarrow switches: both input and output buffers
- \rightarrow switching fabric: hardware
- → functions: pure hardware, firmware, processes in OS
- \rightarrow e.g., Cisco's router OS: IOS (Internet OS)

Note: a switch has nothing to do with CSMA/CD

- \rightarrow it's not a shared bus medium with physical collisions
- \rightarrow what does "switched" Ethernet mean?

Issue of backward compatibility:

- Ethernet switch emulates CSMA/CD
 - \rightarrow interoperate with legacy systems
 - \rightarrow host's CSMA/CD NIC card cannot tell difference
 - \rightarrow as if connected to a bus
- upon buffer overflow: send collision signal
 - \rightarrow switch emulates collision
 - \rightarrow transparent to legacy NIC
 - → facilitates incremental deployment

Internet: new technology must respect legacy

- \rightarrow otherwise deployment is difficult
- \rightarrow key requirement of any practical solution

Long distance Ethernet: e.g., 1000Base-LX

 \longrightarrow what about length limit of CSMA/CD?

Medium-haul GigE/10GigE (802.3ae): 500m, 5km, 40km

- solution: disable CSMA/CD
 - \rightarrow switch-to-switch: disable at both ends
 - → purely point-to-point link
 - → backward compatibility: not an issue anymore
- flow control
 - \rightarrow send pause frame to prevent buffer overflow

QoS: IEEE 802.3p

- → frame tagging conveys priority
- → priority classes supported at switches
- → useful for VoIP (voice-over-IP)

Note: today's Ethernet is a hybrid mix of switch, CSMA/CD, short- and long-distance LAN

- → would not have been designed this way
- \longrightarrow result of legacy-respecting incremental changes