For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. However, readability is more than just programming style. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. There are many approaches to the Software development process. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Many applications use a mix of several languages in their construction and use. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Use of a static code analysis tool can help detect some possible problems. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Use of a static code analysis tool can help detect some possible problems. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Integrated development environments (IDEs) aim to integrate all such help. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Also, specific user environment and usage history can make it difficult to reproduce the problem. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. It is usually easier to code in "high-level" languages than in "low-level" ones. Different programming languages support different styles of programming (called programming paradigms). Different programming languages support different styles of programming (called programming paradigms).