#### INTEGRATED CIRCUITS

# DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

# **74HC/HCT02**Quad 2-input NOR gate

Product specification
File under Integrated Circuits, IC06

December 1990





# **Quad 2-input NOR gate**

**74HC/HCT02** 

#### **FEATURES**

· Output capability: standard

I<sub>CC</sub> category: SSI

#### **GENERAL DESCRIPTION**

The 74HC/HCT02 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT02 provide the 2-input NOR function.

#### **QUICK REFERENCE DATA**

 $GND = 0 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$ 

| SYMBOL                              | PARAMETER                              | CONDITIONS                                  | TYP | UNIT |      |  |
|-------------------------------------|----------------------------------------|---------------------------------------------|-----|------|------|--|
| STIVIBUL                            | PARAWETER                              | CONDITIONS                                  | НС  | нст  | UNIT |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay nA, nB to nY         | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ | 7   | 9    | ns   |  |
| C <sub>I</sub>                      | input capacitance                      |                                             | 3.5 | 3.5  | pF   |  |
| C <sub>PD</sub>                     | power dissipation capacitance per gate | notes 1 and 2                               | 22  | 24   | pF   |  |

#### **Notes**

1.  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_O)$$
 where:

f<sub>i</sub> = input frequency in MHz

fo = output frequency in MHz

C<sub>L</sub> = output load capacitance in pF

V<sub>CC</sub> = supply voltage in V

$$\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$$

2. For HC the condition is  $V_I = GND$  to  $V_{CC}$ 

For HCT the condition is  $V_I = GND$  to  $V_{CC} - 1.5 \text{ V}$ 

#### **ORDERING INFORMATION**

See "74HC/HCT/HCU/HCMOS Logic Package Information".

# Quad 2-input NOR gate

# 74HC/HCT02

#### **PIN DESCRIPTION**

| PIN NO.      | SYMBOL          | NAME AND FUNCTION       |
|--------------|-----------------|-------------------------|
| 1, 4, 10, 13 | 1Y to 4Y        | data outputs            |
| 2, 5, 8, 11  | 1A to 4A        | data inputs             |
| 3, 6, 9, 12  | 1B to 4B        | data inputs             |
| 7            | GND             | ground (0 V)            |
| 14           | V <sub>CC</sub> | positive supply voltage |











Fig.5 Logic diagram (one gate).

#### **FUNCTION TABLE**

| INP | UTS | OUTPUT |  |  |  |  |  |  |  |  |
|-----|-----|--------|--|--|--|--|--|--|--|--|
| nA  | nB  | nY     |  |  |  |  |  |  |  |  |
| L   | L   | Н      |  |  |  |  |  |  |  |  |
| L   | Н   | L      |  |  |  |  |  |  |  |  |
| Н   | L   | L      |  |  |  |  |  |  |  |  |
| Н Н |     | L      |  |  |  |  |  |  |  |  |

#### **Notes**

H = HIGH voltage level
 L = LOW voltage level

Philips Semiconductors Product specification

# Quad 2-input NOR gate

74HC/HCT02

#### DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I<sub>CC</sub> category: SSI

#### **AC CHARACTERISTICS FOR 74HC**

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

| SYMBOL                              | PARAMETER                         | T <sub>amb</sub> (°C) |              |                |      |                 |      |                 | UNIT                   | TEST CONDITIONS   |           |
|-------------------------------------|-----------------------------------|-----------------------|--------------|----------------|------|-----------------|------|-----------------|------------------------|-------------------|-----------|
|                                     |                                   | 74HC                  |              |                |      |                 |      |                 |                        |                   | WAVEFORMS |
|                                     |                                   | +25                   |              | -40 to +85     |      | -40 to +125     |      | UNIT            | V <sub>CC</sub><br>(V) | WAVEFORWIS        |           |
|                                     |                                   | min.                  | typ.         | max.           | min. | max.            | min. | max.            |                        | (-,               |           |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>nA, nB to nY |                       | 25<br>9<br>7 | 90<br>18<br>15 |      | 115<br>23<br>20 |      | 135<br>27<br>23 | ns                     | 2.0<br>4.5<br>6.0 | Fig.6     |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time            |                       | 19<br>7<br>6 | 75<br>15<br>13 |      | 95<br>19<br>16  |      | 110<br>22<br>19 | ns                     | 2.0<br>4.5<br>6.0 | Fig.6     |

# Quad 2-input NOR gate

74HC/HCT02

#### DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I<sub>CC</sub> category: SSI

#### **Notes to HCT types**

The value of additional quiescent supply current ( $\Delta I_{CC}$ ) for a unit load of 1 is given in the family specifications. To determine  $\Delta I_{CC}$  per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT  | UNIT LOADCOEFFICIENT |  |  |  |  |  |
|--------|----------------------|--|--|--|--|--|
| nA, nB | 1.50                 |  |  |  |  |  |

#### **AC CHARACTERISTICS FOR 74HCT**

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

| SYMBOL                              | PARAMETER                      | T <sub>amb</sub> (°C) |      |           |      |            |      |      |                        | TEST CONDITIONS |           |  |
|-------------------------------------|--------------------------------|-----------------------|------|-----------|------|------------|------|------|------------------------|-----------------|-----------|--|
|                                     |                                | 74HCT                 |      |           |      |            |      |      |                        |                 | WAVEFORMS |  |
|                                     |                                | +25                   |      | -40 to+85 |      | -40 to+125 |      | UNIT | V <sub>CC</sub><br>(V) | WAVEFORMS       |           |  |
|                                     |                                | min.                  | typ. | max.      | min. | max.       | min. | max. |                        | (-,             |           |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay nA, nB to nY |                       | 11   | 19        |      | 24         |      | 29   | ns                     | 4.5             | Fig.6     |  |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time         |                       | 7    | 15        |      | 19         |      | 22   | ns                     | 4.5             | Fig.6     |  |

#### **AC WAVEFORMS**



Fig.6 Waveforms showing the input (nA, nB) to output (nY) propagation delays and the output transition times.

#### **PACKAGE OUTLINES**

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".