CIRCLE

LEVEL-I

The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a circle, the condition will be 1.

(A)
$$a = b \text{ and } c = 0$$

(B) f = g and h = 0

(C)
$$a = b$$
 and $h = 0$

(D) f = g and c = 0

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a real circle if 2.

(A)
$$g^2 + f^2 - c < 0$$

(B) $q^2 + f^2 - c \ge 0$

(C) always

(D) none of these

Equation of a circle with centre (4,3) touching the circle $x^2 + y^2 = 1$ is 3.

(A)
$$x^2 + y^2 - 8x - 6y - 9 = 0$$

(B) $x^2 + y^2 - 8x - 6y + 11 = 0$
(C) $x^2 + y^2 - 8x - 6y - 11 = 0$
(D) $x^2 + y^2 - 8x - 6y + 9 = 0$

(C)
$$x^2 + y^2 - 8x - 6y - 11 = 0$$

A square is inscribed in the circle $x^2 + y^2 - 2x + 4y + 3 = 0$. Its sides are parallel to the axes. Then 4. the one vertex of the square is

(A)
$$(1 + \sqrt{2}, -2)$$

(B)
$$(1 - \sqrt{2}, -2)$$

(C)
$$(1, -2 + \sqrt{2})$$

(D) none of these

The number of common real tangents that can be drawn to the circle $x^2 + y^2 - 2x - 2y = 0$ and $x^2 + y^2 - 2x - 2y = 0$ 5. $v^2 - 8x - 8y + 14 = 0$ is______

The lines 3x - 4y + 4 = 0 and 6x - 8y - 7 = 0 are tangents to the same circle. The radius of the 6.

The straight line y = mx + c cuts the circle $x^2 + y^2 = a^2$ at real points if 7.

(A)
$$\sqrt{a^2(1+m^2)} \le |c|$$

(B)
$$\sqrt{a^2(1-m^2)} \le |c|$$

(C)
$$\sqrt{a^2(1+m^2)} \ge |c|$$

(D)
$$\sqrt{a^2(1-m^2)} \ge |c|$$

A line is drawn through a fixed point P (α, β) to cut the circle $x^2+y^2=r^2$ at A and B. Then PA.PB is 8. equal to

(A)
$$(\alpha + \beta)^2 - r^2$$

(B)
$$\alpha^2 + \beta^2 - r^2$$

(C)
$$(\alpha - \beta)^2 + r^2$$

(D) None of these

9. The locus of the centre of a circle of radius 2 units which rolls on the outside of the circle $x^2 + y^2 + 3x - 6y - 9 = 0$ is

10. The values of a and b for which the two circles:

$$x^2 + y^2 + 2(1 - a)x + 2(1 + b)y + (2 - c) = 0$$
 and $x^2 + y^2 + 2(1 + a)x + 2(1 - b)y + (2 + c) = 0$ cut orthogonally are

11. A circle of radius 2 lies in the first quadrant and touches both the axes of co-ordinates. Then the equation of the circle with centre (6, 5) and touching the above circle externally is

$$(A) (x-6)^2 + (y-5)^2 = 4$$

(B)
$$(x-6)^2 + (y-5)^2 = 9$$

(D) none of these

(A)
$$(x-6)^2 + (y-5)^2 = 4$$

(C) $(x-6)^2 + (y-5)^2 = 36$

(D) none of these

12.	Two circles $x^2 + y^2 - 2x - 3 = 0$ and $x^2 + y^2$ (A) they touch each other (C) one lies inside the other	² - 4x - 6y - 8 = 0 are such that (B) they intersect each other (D) each lies outside the other
13.	The least distance of point (10, 7) from the (A) 10 (C) 5	e circle $x^2 + y^2 - 4x - 2y - 20 = 0$ is (B) 15 (D) none of these
14.	The number of common tangents to the circ (A) 2 (C) 4	les $x^2 + y^2 - x = 0$ and $x^2 + y^2 + x = 0$ is (B) 1 (D) 3
15.	The radius of the circle passing through the $x + 2y = 4$ is (A) 10 (C) 6	point (2, 6) two of whose diameters are x + y = 6 and (B) $2\sqrt{5}$ (D) 4
16.	The intercept on the line $y = x$ by the circle AB as diameter is (A) $x^2 + y^2 + x + y = 0$ (C) $x^2 + y^2 - 3x + y = 0$	$x^2 + y^2 - 2x = 0$ is AB. The equation of the circle with (B) $x^2 + y^2 = x + y$ (D) none of these
17.	Equation of tangent to the circle $x^2 + y^2 + 2x$ (A) $x = 0$ (C) $xy = 0$	x - 2y + 1 = 0 at $(0, 1)(B) y = 0(D) none of these$
18.	The equation $x^2 + y^2 - 2x + 4y + 5 = 0$ repre (A) a point (C) a circle	sents (B) a pair of straight lines (D) none of these
19.	The equation of the chord of the circle $x^2 + y$ (A) $x + y = 2$ (C) $x - 2y + 1 = 0$	y^2 – 4x = 0 which is bisected at the point (1, 1) is (B) 3x – y = 2 (D) x – y = 0
20.	The line $\lambda x + \mu y = 1$ is a normal to the circle (A) $5\lambda - 6\mu = 4$ (C) $4 + 6\mu = 5\lambda$	$2x^{2} + 2y^{2} - 5x + 6y - 1 = 0$ if (B) $4 + 5\mu = 6\lambda$ (D) none of these
21.	The locus of the point (3h+2, k), where (h, k (A) a hyperbola (C) a parabola) lies on the circle x ² +y ² = 1 is (B) a circle (D) an ellipse

LEVEL-II

1.	The centre of the circle passing through the (A) $\left(\frac{3}{2}, \frac{1}{2}\right)$	e points (0, 0), (1, 0) and touching the circle $x^2+y^2=9$ is (B) $\left(\frac{1}{2}, \frac{3}{2}\right)$
	(C) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(D) $\left(\frac{1}{2}, -\sqrt{2}\right)$
2.	The coordinates of mid point of the ch $x^2 + y^2 - 6x + 2y - 54 = 0$ are (A) (1, 4) (C) (4, 1)	nord cut off by $2x - 5y + 18 = 0$ by the circle (B) $(2, 4)$ (D) $(1, 1)$
3.	Equation of tangent drawn from origin to the (A) $x = 0$	
4.	If 2 circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2$ (A) 2 < r < 8 (C) r = 2	(B) $y = 0$ (D) $(h^2 - r^2)x + 2rhy = 0$ $x^2 - 8x + 2y + 8 = 0$ intersect at 2 distinct points, then (B) $r > 2$ (D) $r < 2$
5.	The equation of circle passing through $x^2 + y^2 - 6x + 8y - 16 = 0$, $x^2 + y^2 + 4x - 2y$ (A) $x^2 + y^2 - 4x + 6y + 24 = 0$ (C) $3x^2 + 3y^2 - 5x + 7y - 19 = 0$	(1, -3) and the points common to the two circles $-8 = 0$ is (B) $2x^2 + 2y^2 + 3x + y - 20 = 0$ (D) none of these
6.	The common chord of $x^2 + y^2 - 4x - 4y = 0$ are (A) $\frac{\pi}{6}$	and $x^2 + y^2 = 16$ subtends at the origin an angle equal to (B) $\frac{\pi}{4}$
	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$
7.	The locus of the centre of the circle which also touches the y-axis is given by the equal (A) $x^2 - 6x - 10y + 14 = 0$ (C) $y^2 - 6x - 10y + 14 = 0$	n touches externally the circle $x^2+y^2-6x-6y+14=0$ and ations (B) $x^2 - 10x - 6y + 14 = 0$ (D) $y^2 - 10x - 6y + 14 = 0$
8.	point Q on the x-axis, then length of PQ is	+ $2x + 2y = 7$ meets the straight line $3x - 4y = 15$ at a
	(A) $3\sqrt{7}$ (C) $2\sqrt{7}$	(B) $4\sqrt{7}$ (D) $\sqrt{7}$
9.	line $x + 2y = 0$ and intersecting the circle a	
	(A) $\frac{a^2}{\sqrt{5}}$ (C) $\frac{a^2}{\sqrt{3}}$	(B) $\frac{a^3}{\sqrt{5}}$ (D) $\frac{a^3}{\sqrt{3}}$
	(C) $\frac{a^2}{\sqrt{3}}$	(D) $\frac{a^3}{\sqrt{3}}$

10.	The equation of the circle of radius $\sqrt{2}$ which (A) $x^2 + y^2 - 4x + 2y + 3 = 0$ (C) $x^2 + y^2 - 2x + 4y + 3 = 0$	ch touches the line $x + y = 1$ at $(2, -1)$ is (B) $x^2 + y^2 + 6x + 7 = 0$ (D) none of these
11.	If the co-ordinates of one end of a diamet then the co-ordinates of the other end are (A) (5, 3) (C) (1, -8)	ers of the circle $x^2 + y^2 - 8x - 4y + c = 0$ are $(-3, 2)$, (B) $(6, 3)$ (D) $(11, 2)$
12.	The equation of the locus of the centre of (A) $x^2 = 4y$ (C) $y^2 = 4x$	circles touching the y-axis and circle $x^2 + y^2 - 2x = 0$ is (B) $x^2 = -4y$ (S) $y^2 = -4x$
13.	The angle between a pair of tangents draw $x^2 + y^2 + 4x - 6y + 9 \sin^2\theta + 13 \cos^2\theta = 0$ is (A) $x^2 + y^2 + 4x - 6y + 4 = 0$ (C) $x^2 + y^2 + 4x - 6y - 4 = 0$	20. The equation of the locus of P is
14.	The number of common tangents to the circ (A) 1 (C) 3	cles $x^2 + y^2 - 6x - 14y + 48 = 0$ and $x^2 + y^2 - 6x = 0$ is (B) 2 (D) 4
15.	circle $x^2 + y^2 = 9$ is	through the intersection of the line $x + y = 1$ and the (B) $x^2 + y^2 - x - y - 8 = 0$ (D) none of these
16.	A, B, C, D are the points of intersection with bx + ay = ab then (A) A, B, C, D are concyclic (C) A, B, C, D forms a rhombus	the co-ordinate axes of the lines ax + by = ab and (B) A,B,C,D forms a parallelogram (D) None of these
17.	If the lines $2x - 3y - 5 = 0$ and $3x-4y = 7$ at the equation of the circle is (A) $x^2+y^2+2x-2y-62 = 0$ (C) $x^2+y^2-2x+2y-47 = 0$	are diameters of a circle of area 154 square units, then $(B) x^2+y^2+2ax-2y-47=0$ $(D) x^2+y^2-2x+2y-62=0$
18.	The equation of the circle whose diameter and $x^2+y^2+3x+4y+2=0$ is (A) $x^2+y^2+8x+10y+2=0$ (C) $2x^2+2y^2+6x-2y-1=0$	is the common chord of the circle $x^2+y^2+3x+2y+1=0$ (B) $x^2+y^2-5x+4y+7=0$ (D) None of these
19.	The length of the tangent from any point of circles $5x^2 + 5y^2 - 24x + 32y + 75 = 0$ and $5x + 5y + $	on the circle $15x^2 + 15y^2 - 48x + 64y = 0$ to the two $6x^2 + 5y^2 - 48x + 64y + 300 = 0$ are in the ratio of (B) 2 : 3 (D) None of these
20.	The tangents drawn from the origin to the c (A) $h = r$ (C) $r^2 + h^2 = 1$	ircle $x^2+y^2-2rx-2hy+h^2=0$ are perpendicular if (B) $h=-r$ (D) $r^2=h^25$.

29. If the chord of contact of tangents drawn from a point on the circle $x^2 + y^2 = a^2$ to the circle $x^2 + y^2 = b^2$ touches the circle $x^2 + y^2 = c^2$, a, b, c> 0, then a, b, c are related as

30. The triangle PQR is inscribed in the circle $x^2 + y^2 = 25$. If Q and R have co-ordinates (3, 4) and (-4, 3) respectively, then \angle QPR is equal to

(A) $\pi/2$

(B) $\pi/3$

(C) $\pi/4$

(D) $\pi/6$

31.	If the circle $x^2 + y^2 + 2x + 2ky + 6 = 0$ and x^2 (A) 2 or $3/2$ (C) 2 or $-3/2$	$(2^2 + y^2 + 2ky + k = 0)$ intersect ortohogonally, then k is $(B) -2$ or $-3/2$ (D) none of these
32.	If the tangent to the circle $x^2 + y^2 = 5$ at the $x^2 + y^2 - 8x + 6y + 20 = 0$, then its point of c (A) (3, 1) (C) (3, -1)	point (1, -2) also touches the circle ontact is (B) (-3, 1) (D) (-3, -1)
33.	of intersection of the circles $y^2 + y^2 - 2y - 4y$	on the line $x + 2y - 3 = 0$ and passing through the point $+ 1 = 0$ and $x^2 + y^2 - 4x - 2y + 1 = 0$ is (B) $x^2 + y^2 - 3x + 4 = 0$ (D) $x^2 + y^2 + 2x - 4y + 4 = 0$
34.	Two circles $x^2 + y^2 = 6$ and $x^2 + y^2 - 6x + 8$ their point of intersection and the point (1, 1 (A) $x^2 + y^2 + x - y = 0$ (C) $x^2 + y^2 - 4y + 2 = 0$	= 0 are given. Then the equation of the circle through) is (B) $x^2 + y^2 - 3x + 1 = 0$ (D) none of these
35.	Given that the circles $x^2 + y^2 - 2x + 6y + 6$ to their common tangents is (A) $x = 3$ (C) $7x - 12y - 21 = 0$	= 0 and $x^2 + y^2 - 5x + 6y + 15 = 0$ touch, the equation (B) $y = 6$ (D) $7x + 12y + 21 = 0$
36.	If an equilateral triangle is inscribed in the c (A) ${\rm k}/\sqrt{3}$ (C) k	ircle $x^2 + y^2 = k^2$, the length of each side is equal to (B) $k\sqrt{3}$ (D) $2k$
37.	The equation of the circle through the origin and cutting intercepts of length 2 and 3 from the positive sides of x and y is	
38.	If the circle $x^2+y^2+4x+22y+c=0$ bisects then $c-d$ is equal to (A) 60 (C) 40	ne circumference of the circle $x^2 + y^2 - 2x + 8y + d = 0$ (B) 50 (D) 56
39.	If an equilateral triangle is inscribed in the c	ircle $x^2 + y^2 = 25$ then length of its each side is
	(A) $5\sqrt{2}$	(B) $\frac{5\sqrt{3}}{2}$
	(C) $5\sqrt{3}$	(D) none of these
40.	If the co-ordinates at one end of a diameter of the circle $x^2 + y^2 - 8x - 4y + c = 0$ are (11, 2) then the co-ordinates at the other end are (A) (3, 2) (B) (-3, -2) (C) (-3, 2) (D) (3, -2)	
41.	$S_1 = x^2 + y^2 = 9$, $S_2 = x^2 + y^2 - 8x - 6y + n^2$ tangent then the number of possible value of (A) 7 (C) 9	= 0 , $n \in Z$. If the two circle have exactly two common of n is (B) 8 (D) 10

	(A) 4 (C) $\pm 4\sqrt{2}$	(B) $4\sqrt{2}$ (D) 8
43.	The locus of the middle point of chord of ler (A) a straight line	eigth 4 of the circle $x^2 + y^2 = 16$ is (B) a circle of radius 2
	(C) a circle of radius of radius $2\sqrt{3}$	(D) an ellipse
44.	The number of points with integral coordina (A) 43 (C) 45	tes that are interior to the circle $x^2 + y^2 = 16$ is (B) 49 (D) 51
45.	If equation of circle is $ax^2 + (2a - 3)y^2 - 4x - (A)(2, 0)$ (C) (-2/3, 0)	-1 = 0, then its centre is (B) (2/3, 0) (D) none of these
46. The shortest distance between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 10x - 10y + 41 = 0$		2 +y 2 = 1 and x^{2} +y 2 -10x -10y+ 41 = 0 is
	(A) $\sqrt{41-1}$ (C) $\sqrt{41}$	(B) 0 (D) 5 $\sqrt{2}$ – 4
47.	Two circles $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2$	
	(A) $a^2 + b^2 = c^2$	(B) $\frac{1}{c} = \frac{1}{a^2} + \frac{1}{b^2}$
	(C) $\frac{1}{c^2} = \frac{1}{a^2} + \frac{1}{b^2}$	(D) $c^2 = 4b^2(a^2 - c)$
48.		circle $x^2 + y^2 = 2ax$, then the equation of the circle, of
	which this chord is a diameter, is (A) $2(x^2+y^2) - 5a(x+2y) = 0$	(B) $x^2+y^2-2a(x+2y)=0$
	(C) $5(x^2+y^2) - 2a(x+2y) = 0$	(D) none of these.
49.	PA is tangent to $x^2 + y^2 = a^2$ and PB is tangent to $x^2 + y^2 = b^2$ (b > a). If $\angle APB = \frac{\pi}{2}$, then locus	
	of point 'P' is (A) $x^2 - y^2 = a^2 + b^2$ (C) $x^2 + y^2 = a^2 + b^2$	(B) $x^2 + y^2 = b^2 - a^2$
	(C) $x^2 + y^2 = a^2 + b^2$	(D) none of these
50. $f(x, y) = x^2 + y^2 + 2ax + 2by + c = 0$ represents a circle. If $f(x, 0) = 0$ has equal roots and $f(0, y) = 0$ has 2 and 3 as its roots, then centre of circle is		
	(A) $\left(2, \frac{5}{2}\right)$	(B) $\left(-2, -\frac{5}{2}\right)$
	(C) data are not sufficient	(D) data are inconsistent
51.	Tangents PA and PB are drawn to $x^2+y^2=4$ from the point P(3, 0). Area of triangle PAB is equal to	

(B) $\frac{1}{3}\sqrt{5}$ sq. units

(D) $\frac{20}{3}\sqrt{5}$ sq. units

If the common chord of $x^2 + (y - \lambda)^2 = 16$ and $x^2 + y^2 = 16$ subtends a right angle at the origin

(B) $4\sqrt{2}$

42.

then $\boldsymbol{\lambda}$ is equal to

(A) $\frac{5}{9}\sqrt{5}$ sq. units

(C) $\frac{10}{9}\sqrt{5}$ sq. units

- 52. Radius of bigger circle touching the circle $x^2+y^2-4x-4y+4=0$ and both the co-ordinate axes is
 - (A) $3 + 2\sqrt{2}$

(B) $2(3+2\sqrt{2})$

(C) $6 + 2\sqrt{2}$

- (D) $2(6+2\sqrt{2})$
- 53. The lines $3x 4y + \lambda = 0$ and $6x 8y + \mu = 0$ are tangents to the same circle. The radius of the circle is
 - (A) $\left| \frac{2\lambda \mu}{20} \right|$

(B) $\left| \frac{2\mu - \lambda}{20} \right|$

(C) $\left| \frac{2\lambda + \mu}{20} \right|$

(D) none of these.

LEVEL-III

A circle of radius 5 units touches both the axes and lies in the first quadrant. If the circle makes 1. one complete roll on x-axis along the positive direction of x-axis, then its equation in the new position is

(A)
$$x^2 + y^2 + 20\pi x - 10y + 100\pi^2 = 0$$
 (B) $x^2 + y^2 + 20\pi x + 10y + 100\pi^2 = 0$ (C) $x^2 + y^2 - 20\pi x - 10y + 100\pi^2 = 0$ (D) none of these

(B)
$$x^2 + y^2 + 20\pi x + 10y + 100\pi^2 = 0$$

(C)
$$x^2 + y^2 - 20\pi x - 10y + 100\pi^2 = 0$$

- Let AB be a chord of circle $x^2 + y^2 = 3$ which subtends 45^0 angle at P where P is any moving point 2. on the circle. The locus of centroid of $\triangle PAB$ is

(A)
$$\left(x - \frac{1}{3}\right)^2 + \left(y - \frac{1}{3}\right)^2 = \frac{1}{3}$$

(B)
$$\left(x + \frac{1}{\sqrt{3}}\right)^2 + \left(y + \frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3}$$

(C)
$$\left(x - \frac{1}{\sqrt{3}}\right)^2 + \left(y - \frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3}$$

- (D) none of these
- Two circles, each radius 5, have a common tangent at (1, 1) whose equation is 3x +4y 7=0 then 3. their centre are

$$(A) (4, -5), (-2,3)$$

(B)
$$(4, -3), (-2, 5)$$

$$(C)$$
 $(4, 5), (-2, -3)$

- (D) none of these
- The equation of the circle of radius $2\sqrt{2}$ whose centre lies on the line x y = 0 and which 4. touches the line x + y = 4 and whose centre's co-ordinates satisfy the inequality x + y > 4 is

(A)
$$x^2 + y^2 - 8x - 8y + 24 = 0$$

(B)
$$x^2 + y^2 = 8$$

(C)
$$x^2 + y^2 - 8x + 8y + 24 = 0$$

(B)
$$x^2 + y^2 = 8$$

(D) $x^2 + y^2 + 8x + 8y + 24 = 0$

5. The circle passing through distinct point (1, t), (t, 1) and (t, t) for all values of t, passes through the point

$$(A) (-1, -1)$$

$$(D)$$
 $(-1, 1)$

- The equation of the locus of the midpoints of the chords of the circle $4x^2 + 4y^2 12x + 4y + 1 = 0$ 6. that subtends an angle $\frac{2\pi}{3}$ at its centre is _____
- The area of the triangle formed by the positive x-axis and the normal and tangent to the circle 7. $x^{2} + y^{2} = 4$ at the point (1, $\sqrt{3}$) is ____
- 8. A circle is inscribed in an equilateral triangle of side a. the area of any square inscribed in this circle is
- Tangents OP and OQ are drawn from the origin 'O' to the circle $x^2+y^2+2gx+2fy+c=0$. Then the 9. equation of the circumcircle of the triangle OPQ is

(A)
$$x^2+y^2+2gx+2fy = 0$$

(B)
$$x^2+y^2+gx+fy = 0$$

(D) $x^2+y^2-2gx-2fy = 0$

(C)
$$x^2+y^2-gx-fy=0$$

(D)
$$x^2+y^2-2gx-2fy = 0$$

The locus of the mid points of the chords of the circle $x^2+y^2+4x-6y-12=0$ which subtends an 10. angle of $\frac{\pi}{2}$ radians at its centre is

(A)
$$(x+2)^2 + (y-3)^2 = 6.25$$

(B)
$$(x-2)^2+(y+3)^2=6.25$$

(D) $(x+2)^2+(y+3)^2=18.75$

(C)
$$(x+2)^2+(y-3)^2=18.75$$

(D)
$$(x+2)^2+(y+3)^2=18.75$$

(C) $a_1a_2 < 0$, c < 0

(D) $a_1a_2 < 0$, c > 0

ANSWERS

LEVEL -I

1. 5.

B 3/4

3. D 7. A

4.

D

В

C 2. B 3/4 $\left(x + \frac{3}{2}\right)^2 + \left(y - 3\right)^2 = \frac{169}{4}$ 9.

10. a = b = 0

11. В

12. C

13.

D

15. Α

16. В

17. Α 21.

14. 18. С

19. D 20. Α

LEVEL -II

1. 5. D D 2. 6.

Α D 3. 7. Α D

A C 4. 8.

9. Α 10. С 11. D

С 12.

13. D

14. D 15. В

Α 16. 20. Α

17. С В 21.

18. С 22. Α 19. 23. A C

24. Α

25. В 26. С 27. Α

28. В 32. В

G.P. 29. 33.

30. С 34.

31. D 35.

В 36.

 $(x-1)^2 + (y-\frac{3}{2})^2 = \frac{13}{4}$ 37.

38. В

39. С

40. C

41.

42. С

С 43.

44.

45. В 46. D 47. 51. D

C 48.

С 49. 52.

D 50. 53.

LEVEL -III

1.

D

4. Α

В 5.

2. C 3. C 6. $\left(x - \frac{3}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 = \frac{9}{4}$

 $2\sqrt{3}$ units 7.

В

Α

 $\left(\frac{1}{6}\right)a^2$ 8.

9.

10. С

Α

В

11. С В 12. D

13. 17. 14. 18.

15. 19.

A, C 16. 20.