يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۱۸

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

- تاکنون با اتوماتای متناهی آشنا شدهایم (متناظر با زبان منظم).
- همانطور که بیان کردیم بسیاری از زبانها نیاز به حافظه نامحدود دارند. مانند زبان زیر که یک CFL است:

$$\{a^nb^n \mid n \ge 0\}$$

- اکنون قصد داریم اتوموتنی معرفی کنیم که CFL را تشخیص دهد.
- بنابراین به همان NFA یک stack با حافظه نامحدود اضافه میکنیم.

Pushdown automata are equivalent in power to context-free grammars. This equivalence is useful because it gives us two options for proving that a language is context free. We can give either a context-free grammar generating it or a pushdown automaton recognizing it. Certain languages are more easily described in terms of generators, whereas others are more easily described by recognizers.

○ پشته از اصل LIFO پیروی کرده و دو عملگر اصلی push و pop دارد.

در هر گام، معمولا یک سمبل از ورودی و یک سمبل از پشته خوانده میشود، سپس ضمن بروزرسانی
 حالت اتوماتا، معمولا یک سمبل هم در پشته نوشته میشود یا بروز میشود یا .

- قصد داریم مانند FA، برای PDA نیز دیاگرام رسم کنیم.
- برای همین منظور، هر فلش شامل یک سه تایی است: سمبل ورودی، سمبل پاپ شده/ سمبل پوش شده.
 - مثال:

0x/1

readSymbol , poppedSymbol / pushedSymbol

 Δ از سمبل Δ یا Φ برای نشان دادن انتهای رشته ورودی یا Φ کردن از یک پشته خالی استفاده میکنیم.

از ε برای نشان دادن نخواندن هیچ سمبلی از ورودی یا pop/push نکردن از پشته استفاده میکنیم.

یک PDA، نامعین است و میتواند چند گزینه برای حرکت داشته باشد (ممکن است برخی شاخهها بمیرند و تنها کافی است یکی پس از اتمام خواندن رشته ورودی به حالت پذیرش برسد):

الفباي ورودي: 0,1

الفباي ورودي: 0,1

الفباي ورودي: 0,1

الفباي ورودي: 0,1

الفباي ورودي: 0,1

$$\{0^n 1^n \mid n > 0\}$$

 $0,1,(\Delta)$ الفباى ورودى:

x, (Δ) الفباى پشته:

$$\{0^n 1^n \mid n \ge 0\}$$

الفباي ورودي: 0,1

الفباي پشته: \$,0

 $\{w \in \{(,)\}^* \mid w \text{ is in a balaned form}\}$

$$S \to (S) \mid SS \mid \varepsilon$$

تعریف فرمال اتوماتای پشتهای

اضافه کردن سمبل برای پشته:

input alphabet Σ and a stack alphabet Γ .

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\} \text{ and } \Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}.$$

تعریف فرمال اتوماتای پشتهای

DEFINITION 2.13

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

مفهوم پذیرش در PDA

A pushdown automaton $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ computes as follows. It accepts input w if w can be written as $w=w_1w_2\cdots w_m$, where each $w_i\in\Sigma_\varepsilon$ and sequences of states $r_0,r_1,\ldots,r_m\in Q$ and strings $s_0,s_1,\ldots,s_m\in\Gamma^*$ exist that satisfy the following three conditions. The strings s_i represent the sequence of stack contents that M has on the accepting branch of the computation.

- 1. $r_0 = q_0$ and $s_0 = \varepsilon$. This condition signifies that M starts out properly, in the start state and with an empty stack.
- 2. For i = 0, ..., m 1, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^*$. This condition states that M moves properly according to the state, stack, and next input symbol.
- 3. $r_m \in F$. This condition states that an accept state occurs at the input end.

EXAMPLE 2.14

The following is the formal description of the PDA (page 112) that recognizes the language $\{0^n 1^n | n \ge 0\}$. Let M_1 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where

$$Q = \{q_1, q_2, q_3, q_4\},\$$

$$\Sigma = \{0,1\},$$

$$\Gamma = \{0, \$\},$$

$$F = \{q_1, q_4\}, \text{ and }$$

 δ is given by the following table, wherein blank entries signify \emptyset .

$$\delta \colon Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon}).$$

$$\delta(q_{1}, \epsilon, \epsilon) = \{(q_{2}, \$)\}$$

$$q_{1} \xrightarrow{\varepsilon, \varepsilon \to \$} q_{2} \xrightarrow{1, 0 \to \varepsilon}$$

$$q_{4} \xrightarrow{\varepsilon, \$ \to \varepsilon} q_{3} \xrightarrow{1, 0 \to \varepsilon}$$

$$q_{4} \xrightarrow{q_{1}} \{(q_{2}, 0)\} \qquad \{(q_{3}, \varepsilon)\} \qquad \{(q_{4}, \varepsilon)\}$$

$$q_{4} \xrightarrow{q_{3}} q_{4} \qquad \{(q_{4}, \varepsilon)\}$$

تعریف (Linz)

where q is the state of the control unit, w is the unread part of the input string, and u is the stack contents (with the leftmost symbol indicating the top of the stack), is called an **instantaneous description** of a pushdown automaton.

تعریف (Linz)

A move from one instantaneous description to another will be denoted by the symbol \vdash ; thus

$$(q_1, aw, bx) \vdash (q_2, w, yx)$$

is possible if and only if

$$(q_2, y) \in \delta(q_1, a, b)$$
.

Moves involving an arbitrary number of steps will be denoted by \vdash . The expression

$$(q_1, w_1, x_1) \stackrel{*}{\vdash} (q_2, w_2, x_2)$$

indicates a possible configuration change over a number of steps.¹

تعریف (Linz)

DEFINITION 7.2

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be a nondeterministic pushdown automaton. The language accepted by M is the set

$$L(M) = \left\{ w \in \Sigma^* : (q_0, w, z) \stackrel{*}{\vdash}_M (p, \lambda, u), p \in F, u \in \Gamma^* \right\}.$$

In words, the language accepted by M is the set of all strings that can put M into a final state at the end of the string. The final stack content u is irrelevant to this definition of acceptance.

 $z \in \Gamma$ is the stack start symbol,

EXAMPLE 2.18

In this example we give a PDA M_3 recognizing the language $\{ww^{\mathcal{R}}|w\in\{0,1\}^*\}$. Recall that $w^{\mathcal{R}}$ means w written backwards. The informal description and state diagram of the PDA follow.

