Random walk model of order 2 (RW2)

Parametrization

The random walk model of order 2 (RW2) for the Gaussian vector $\mathbf{x} = (x_1, \dots, x_n)$ is constructed assuming independent second-orderincrements:

$$\Delta^2 x_i = x_i - 2 \ x_{i+1} + x_{i+2} \sim \mathcal{N}(0, \tau^{-1})$$

The density for **x** is derived from its n-2 second-order increments as

$$\pi(\mathbf{x}|\tau) \propto \tau^{(n-2)/2} \exp\left\{-\frac{\tau}{2} \sum (\Delta^2 x_i)^2\right\}$$
 (1)

$$= \tau^{(n-2)/2} \exp\left\{-\frac{1}{2}\mathbf{x}^T \mathbf{Q} \mathbf{x}\right\}$$
 (2)

where $\mathbf{Q} = \tau \mathbf{R}$ and \mathbf{R} is the structure matrix reflecting the neighbourhood structure of the model. It is also possible to define a *cyclic* version of the RW2 model.

Hyperparameters

The precision parameter τ is represented as

$$\theta = \log \tau$$

and the prior is defined on θ .

Specification

The RW2 model is specified inside the f() function as

The (optional) argument values is a numeric or factor vector giving the values assumed by the covariate for which we want the effect to be estimated. See the example for RW1 for an application.

Example

```
n=100
z=seq(0,6,length.out=n)
y=sin(z)+rnorm(n,mean=0,sd=0.5)
data=data.frame(y=y,z=z)

formula=y~f(z,model="rw2",prior="loggamma",param=c(1,0.01))
result=inla(formula,data=data,family="gaussian")
```

Notes

The RW2 is a intrinsic random field with rank deficiency of 2. There exist also support to define irregular RW2 models.