Droites et vecteurs

1. Géométrie

La *distance* entre $A(x_A, y_A)$ et $B(x_B, y_B)$ est $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$. Le *milieu* M de [AB] a pour coordonnées $\left(\frac{x_A + y_A}{2}, \frac{x_B + y_B}{2}\right)$.

2. Vecteurs

Si $A(x_A, y_A)$ et $B(x_B, y_B)$ sont deux points du plan, le *vecteur* de A à B est $\overrightarrow{AB} = (x_B - x_A, y_B - y_A).$ La norme d'un vecteur $\overrightarrow{v} = (x, y)$ est $\|\overrightarrow{v}\| = \sqrt{x^2 + y^2}$.

Soient $\overrightarrow{u} = (x, y)$ et $\overrightarrow{v} = (x', y')$ deux vecteurs et $k \in \mathbb{R}$.

Addition. $\overrightarrow{u} + \overrightarrow{v} = (x + x', y + y')$.

Multiplication par un scalaire. $k \overrightarrow{u} = (kx, ky)$.

Opposé. $-\overrightarrow{u} = (-x, -y)$. Produit scalaire. $\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$.

 $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$ où θ est l'angle entre \vec{u} et \vec{v} .

$$\|\vec{v}\|^2 = \vec{v} \cdot \vec{v}$$

Vecteurs orthogonaux. Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si $\overrightarrow{u} \cdot \overrightarrow{v} =$ 0.

Si $\overrightarrow{u} = (a, b)$ alors $\overrightarrow{n} = (-b, a)$ est un vecteur orthogonal à \overrightarrow{v} . Vecteurs colinéaires. Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires (ou parallèles) si il existe $k \in \mathbb{R}$ tel que $\overrightarrow{u} = k\overrightarrow{v}$ (ou $\overrightarrow{v} = k\overrightarrow{u}$). $\overrightarrow{u} = (a, b)$ et $\overrightarrow{v} = (c, d)$ sont colinéaires si et seulement si ad - bc = 0.

On note $\det(\overrightarrow{u}, \overrightarrow{v}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ le **déterminant**.

3. Droites

Équation cartésienne.

$$ax + by + c = 0$$

avec a, b et c des nombres réels (et a et b non tous les deux nuls). Vecteur directeur. $\overrightarrow{v} = (-b, a)$ est un vecteur directeur de la droite d'équation ax + by + c = 0

Vecteur normal. $\overrightarrow{n}=(a,b)$ est un vecteur normal à la droite d'équation ax + by + c = 0.

Équation réduite.

$$y = ax + b$$

avec a et b des nombres réels (et a non nul).

- a est la pente ou coefficient directeur,
- b est l'ordonnée à l'origine.

Si $A(x_A, y_A)$ et $B(x_B, y_B)$ sont deux points de la droite, alors $a = \frac{y_B - y_A}{x_B - x_A}$. On trouve ensuite l'ordonnée à l'origine à l'aide de la relation $y_A = ax_A + b$. Équation paramétrique.

$$\begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \end{cases}$$

avec $A(x_A, y_A)$ un point de la droite et $\overrightarrow{v} = (\alpha, \beta)$ un vecteur directeur de la droite.

Droites parallèles. Deux droites sont parallèles si et seulement si leurs vecteurs directeurs sont colinéaires. Ainsi ax + by + c = 0 et ax' + by' + c' = 0sont deux droites parallèles si et seulement si $\det(\binom{-b}{a},\binom{-b'}{a'})=0$ c'està-dire

$$ab'-a'b=0$$

Droites perpendiculaires. Deux droites sont perpendiculaires si et seulement si leurs vecteurs directeurs sont orthogonaux. Ainsi ax + by + c = 0et ax' + by' + c' = 0 sont deux droites perpendiculaires si et seulement si

$$aa' + bb' = 0.$$