CS-202 Recursion C. Papachristos Autonomous Robots Lab M University of Nevada, Reno

Course Week

Course, Projects, Labs:

Monday	Tuesday	Wednesday	Thursday	Friday	Sunday
			Lab (8 Sections)		
	CLASS		CLASS		
PASS	PASS	Project DEADLINE	LAST Project	PASS	FINAL PASS
Session	Session			Session	Session

Your 11th (& *Final*) Project will be announced today Tuesday 5/2.

A Final Sample has been announced since last week.

Your **Final** exam is next Thursday 5/9.

- A Final Sample has been announced since last week.
- Lectures, Labs, PASS sessions (with a Sunday extra), dedicated to recapitulation.

Today's Topics

Recursion

Definition of Recursion

A function is said to be Recursive, when it "calls its own self".

Inside the Function definition, there exists a call to the function itself:

```
std::string & repeat(std::ostream & os, std::string & s) {
    os << repeat(os, s) << std::endl;
    return s;
}</pre>
Note:
Intuition(s) about
problems with this
example recursive
call?
```

C++ allows recursion (as most high-level languages do)

- Can be useful as a programming technique.
- Has its own special limitations and considerations.

Recursive void Function(s)

Divide-and-Conquer is a basic Algorithm Design technique used in programming :

Break large task into subtasks.

In certain cases, we can describe *subtasks* as smaller versions of the original task:

 \triangleright When they can \rightarrow Recursion.

Recursive void Function(s)

By-Example – Task: Find a Value

Task: Search through a list for a specific value

- Subtask 1: search 1st half of list for that specific value.
- Subtask 2: search 2nd half of list for that specific value.

Subtasks are smaller versions of original task:

Same task description, but each operating on a reduced range.

When this occurs, a Recursive function can be used.

Usually results in an "algorithmically elegant" solution.

Recursive void Function(s)

```
By-Example – Task: Digits of a Number
```

Output digits of int number 1-per-line.

(i.e. 1-at-a-time, Most Significant Digit –to– Least Significant Digit)

Example call:

```
writeDigits(1234);
```

Desired Output:

1

2

3

4

Recursive void Function(s)

By-Example – Task: Digits of a Number

Output digits of int number 1-per-line. Break problem into two cases:

The "Base" case:

If the **int** number is **<10**, then output that.

The "Recursive" case:

Note:

The case where there is still processing to be done. It must be formulated in a way that matches original problem description.

If the **int** number is >=10,

formulate two Subtasks:

- a) Output digits of reduced int number 1-per-line, (clipped - omitting the last digit).
 - b) Output the last digit (which will always be <10).

Note:

The "simplest" possible case, where there is nothing more to be done.

Recursive void Function(s)

By-Example – Task: Digits of a Number

Output digits of int number 1-per-line.

- The "Base" case: If the int number is <10, then output that.
- The "Recursive" case: If the **int** number is **>=10**, formulate two Subtasks:
 - a) Output digits of reduced int number (clipped omitting the last).
 - b) Output the last digit (which will always be <10).

Example argument: 1234

Subtask a): Will process for output 123.

Subtask b): Will write-out 4.

Recursive void Function(s)

By-Example – Task: Digits of a Number

- The "Base" case: If the int number is <10, then output that.
- The "Recursive" case: If the **int** number is **>=10**, formulate two Subtasks:
 - a) Output digits of reduced int number (clipped omitting the last).
 - b) Output the last digit (which will always be <10).

```
void writeDigits (int n) {
  if (n < 10)  // base case
    cout << n << endl;
  else {      // recursive step
      writeDigits ( n / 10 );
    cout << ( n % 10 ) << endl;
  }
}</pre>
```

Recursive void Function(s)

By-Example – Task: Vertical Numbers

Tracing the Recursive call:

```
void writeDigits (int n) {
  if (n < 10)  // base case
    cout << n << endl;
  else {      // recursive step
      writeDigits ( n / 10 );
    cout << ( n % 10 ) << endl;
  }
}</pre>
```

Note:

- ➤ Notice the first three calls again (Recursive).
- Last call (Base) displays **1** and "ends" Recursion sequence.

Recursive void Function(s)

By-Example – Task: Vertical Numbers

Tracing the Recursive call:

```
writeDigits(1234);

writeDigits(123);

writeDigits(12);

writeDigits(1);

cout << 1 << endl;

cout << 2 << endl;

cout << 3 << endl;

cout << 4 << endl;</pre>
```

```
void writeDigits (int n) {
  if(n < 10) { cout << n << endl; }
  else{ writeDigits( n/10 );
      cout << ( n%10 ) << endl; }
}</pre>
```

How the computer performs Recursive calls:

- Pauses current function.

 (Have to know results of new Recursive call before proceeding).
- Retains information needed for current call. (They will be used later, when nested Recursive call is finished and returns).
- Proceeds to evaluate new Recursive call. (When THAT call is complete, returns to "outer" computation).

Recursion in the Broader Sense

Outline of a successful Recursive function

- One or more cases where function accomplishes its task by making one or more recursive calls to solve smaller versions of original task.

 Called "Recursive" case(s).
- One or more cases where function accomplishes its task immediately (without any more recursive calls).

 Called "Base" case(s) or "Stopping" case(s).

Infinite Recursion

Necessary consideration for a successful Recursive function

The "Base" case has to be entered eventually.
 If the algorithm doesn't guarantee that → Infinite Recursion.

(recursive calls keep getting created)

Remember:

In the writeDigits example, the Recursion stopped when a single-digit number was reached.

```
void writeDigits (int n) {
  if(n < 10) { cout << n << endl; }
  else{ writeDigits( n/10 );
      cout << ( n%10 ) << endl; }
}</pre>
```

Infinite Recursion

```
By-Example – Task: Vertical Numbers
                                                      void writeDigits (int n) {
                                                        if (n < 10) // base case
Tracing the Recursive call:
                                                          cout << n << endl;</pre>
                                                                     // recursive step
writeDigits(1234);
                                                          writeDigits ( n / 10 );
   writeDigits(123);
                                            (1234/10)
                                                          cout << ( n % 10 ) << endl;</pre>
       writeDigits(12);
                                            123/10
           writeDigits(1);
              writeDigits(0);
                writeDigits(0);
                   writeDigits(0);
                                             Note:
                                             \triangleright Missing "Base" case \rightarrow Recursion never stops.
```

The Program Stack

The Program / Execution Stack

- A specialized memory structure.
- Like stack of papers: Place new one on top,

 Remove one when possible from top.
- A Last-In-First-Out memory structure.

Program Function calls use the Program Stack.

- Each call is pushed onto the Stack.
- When the last-pushed call is completed, it is popped (removed) from the stack frame.

Program Stack & Recursion

The Program / Execution Stack

Finite memory (often also intentionally limited by default).

Recursive calls are pushed onto the Program Stack.

- When (and only when) the "Base" case returns, sequential returns of each "outer" Function call are triggered.
- A long sequence of Recursive calls fills up the Stack.
- Until the "Base" case triggers sequential returns and Stack calls start getting popped.

Stack Overflow & Recursion

Recursive calls are pushed onto the Program Stack.

- A long sequence of Recursive calls keeps adding up, until the "Base" case (if such exists) triggers sequential popping.
- Finite memory.

If stack attempts to grow beyond the physical / virtual limit:

- > Stack Overflow.
- Infinite recursion will always cause this.

```
Infinite Recursion:
   Segmentation Fault
void recurse() {
   recurse();
}
```

Recursion vs Iteration

Any task accomplished with Recursion can also be done without it.

- > Iteration can be used in place of recursion
- Iterative Algorithm: Uses a looping construct.
- Recursive Algorithm: Uses a branching structure.

Recursive solutions are often less efficient (time & space). Run slower, use more memory than Iterative solution(s).

Recursion can simplify the algorithmic solution of a problem.

Shorter, more elegant and expressive code.

Recursive Function(s) that Return a Value

Recursion can also be implemented with non-void returning functions (value of any type).

Same Technique:

- One (or more) cases where the value returned is computed by recursive calls: Should follow the formulation of "smaller" Sub-problems.
- One (or more) cases where the value returned is computed directly, without any more recursive branching.

The "Base" case.

Recursive Function(s) that Return a Value

```
By-Example – Task: Power(s)
```

Raise a number to an int n power (exponent).

- The "Base" case: If the int n power is 0, then result is 1. $(x^0 = 1, x \in \mathbb{R})$
- The "Recursive" case: If the int n number is >0, formulate Subtasks:
 - a) Raise number to the **int n-1** power.
 - b) Return the result of that, multiplied by the number itself.

```
Example call: float power (float x, int n) \rightarrow power (2,3); (2<sup>3</sup>) Subtask a): Will calculate power (2,2); (2<sup>2</sup>). Subtask b): Will return 2*power (2,2); (2 * 2<sup>2</sup> = 2<sup>3</sup>).
```

Recursive Function(s) that Return a Value

By-Example – Task: Power(s)

- The "Base" case: If the int n power is 0, then the result is 1.
- The "Recursive" case: If the int n number is >0, formulate Subtasks:
 - a) Raise number to the **int n-1** power.
 - b) Return the result of that, multiplied by the number itself.

```
float power (float x, [int n) {
  if (n<0) { cout << "Illegal argument";</pre>
            exit(1); }
  if (n>0) // recursive case
    return ( power(x, n-1) * x );
           // base case
    return 1;
```

Recursive Function(s) that Return a Value

By-Example – Task: Power(s)

Tracing the Recursive call:

```
power(2, 3);
   power(2, 2);
                             (2, 3-1)
       power(2, 1); <=</pre>
                             (2, 2-1)
          power(2, 0);
                             (2, 1-1)
          return 1;
       return 1 * 2;
   return 2 * 2;
return 4 * 2;
```

```
float power (float x, [int n) {
  if (n<0) { exit(1); }</pre>
  if (n>0) // recursive case
    return ( power (x, n-1) * x );
           // base case
  else
    return 1;
```

Note:

- First three calls are Recursive cases.
- Then reaches the Base case and "ends" Recursion branching.
- ➤ Values are returned "up" as Stack gets "popped".

Recursive Function(s) that Return a Value

```
By-Example – Task: Factorial(s)
```

Calculate an **int** \mathbf{x} number's Factorial (n!).

- The "Base" case: If the int x number is 0, then result is 1. (0! = 1)
- The "Recursive" case: If the int x number is >0, formulate Subtasks:
 - a) Calculate the **int x-1** number's Factorial.
 - b) Return the result of that, multiplied by the number itself.

```
Example call: int factorial (int x) \rightarrow factorial (4); (4!)
Subtask a): Will calculate factorial (3); (3!).
Subtask b): Will return 4*factorial (3); (4 * 3! = 4!).
```

Recursive Function(s) that Return a Value

By-Example – Task: Factorial(s)

- The "Base" case: If the int x number is 0, then result is 1.
- The "Recursive" case: If the int x number is >0, formulate Subtasks:
 - a) Calculate the **int x-1** number's Factorial.
 - b) Return the result of that, multiplied by the number itself.

```
int factorial [(int x)] {
    // base case
    if (x == 0) return 1;

    // recursive case
    return x * factorial (x - 1);
}
```

Recursive Function(s) that Return a Value

By-Example – Task: Factorial(s)

Tracing the Recursive call:

```
factorial(4);
   factorial(3);
      factorial(2);
         factorial(1);
          factorial (0)
           return 1;
         return 1 * 1;
      return 1 * 2;
   return 2
return
```

```
int factorial (int x) {
if (x == 0) return 1;
return x * factorial (x - 1);
}
```

Note: All important ideas of Recursion are here.

- "Base" (or "Stopping") case:
- ➤ Code first tests for stopping condition.
- Provides a direct (non-recursive) solution.
- "Recursive" case
- Expresses solution to problem in two (or more) smaller parts
- Invokes itself (factorial) to compute (at least one of) the smaller parts, which eventually reaches the "Base" case.

Thinking Recursively

Recursive Design Techniques

Often in designing the Recursive Algorithm, there is no need to try and trace entire recursive sequence.

Can design by checking 3 properties:

- No Infinite Recursion.
- Base (Stopping) cases return correct values.
- Recursive cases return correct values.

Recursive Design Techniques

By-Example – Task: Power(s)

- 3 Properties:
- a) No Infinite Recursion:
- > 2nd argument decreases by 1 each call.
- Eventually must get to Base case of 1.
- b) Base case returns correct value:
- power (x,0) is Base case, correctly returns 1.
- c) Recursive calls correct:
- For n>1, power (x,n) returns power (x,n-1)*x
- \triangleright Plug in some values \rightarrow correct.

Recursive Function(s) that Return a Value

By-Example – Task: Greatest Common Divisor

Calculate the int a and int b numbers' GCD (int g).

- Precondition: For parameters of function call **a** > **b** has to hold. Swap **a** and **b** if **a** < **b**.
- The "Base" case: If the residual of **a** % **b** == **0**, then result is **b** (greatest).
- The "Recursive" case: If not, then formulate Subtasks:
 - Only possible for a number $\mathbf{r} < \mathbf{b}$ to be the GCD (since it is not \mathbf{b} itself -checked in the base case-, and if it is larger it can't be its divisor). Also, if \mathbf{r} is an integer divisor, $\mathbf{b} \ \ \mathbf{r} == \mathbf{0}$ has to hold.
 - a) Make \mathbf{r} be the residual of $\mathbf{r} = \mathbf{a} \% \mathbf{b}$.
 - b) Check to see if is the GCD of **b** and **r** (if it satisfies the Base case).

Recursive Function(s) that Return a Value

By-Example – Task: Greatest Common Divisor

- The "Base" case: If the residual of a % b == 0, then result is b (greatest).
- The "Recursive" case: If not, formulate Subtasks:
 - a) Make \mathbf{r} be the residual of $\mathbf{r} = \mathbf{a} % \mathbf{b}$.
 - b) Check to see if is the GCD of **b** and **r** (if it satisfies the Base case).

```
Note:
Assumes a > b.

int gcd (int a, int b) {

if (b == 0) // base case

return a;

else{ // recursive case

return gcd (b, a % b);

}

Note:

Base case formulation is written out to require 1 extra Recursive call.
```

Recursive Function(s) that Return a Value

By-Example – Task: Greatest Common Divisor

Tracing the Recursive call:

```
gcd(54, 28);
   gcd(24, 6);
                          (24, 54\%24)
       gcd(6, 0);
                          (6, \overline{24\%6})
       return 6;
   return 6;
return 6;
```



```
int gcd (int a, int b) {
  if (b == 0)
    return a;
  else{
    return gcd (b, a % b);
```

Note:

- > Euclid's Algorithm.
- Find greatest common measuring unit between two lengths.

Recursive Function(s) that Return a Value

By-Example – Task: Fibonacci Sequence

Calculate the Fibonacci sequence of an int n number.

Sequence is Recursive:
$$f(n) = \begin{cases} 0 & \text{if } n = 0 \text{ (1)} \\ 1 & \text{if } n = 1 \text{ (2)} \\ f(n-2) + f(n-1) & \text{if } n > 1 \text{ (3)} \end{cases}$$

- The "Base" case: Two base cases, (1) and (2).
- The "Recursive" case: Multiple-branch (f (...) ... f (...) Recursive call, (3).

Recursive Function(s) that Return a Value

By-Example – Task: Fibonacci Sequence

```
The "Base" case(s): If n==0 \rightarrow 0, If n==1 \rightarrow 1.
The "Recursive" case: Otherwise, formulate Subtasks:
                             a) Calculate fib (n-2), calculate fib (n-1).
                                                                             Note:
                             b) Return their sum.
                                                                              Intuition(s) about
Note:
                    int fib (int n) {
                                                                              problems with this
Assumes n > 0.
                       if (n > 1)
                                                                              example?
                         return fib |(n-1)| + fib |(n-2)|;
                                                                    Note:
                       else
                                                                    Both base cases formulated with
                         return n;
                                                                    a single statement.
```

Recursive Function(s) that Return a Value

Backtracking & Recursive Function(s)

By-Example – Task: Depth-First Search

Start at the root of a tree or graph, and explore as far deep) as possible along each branch before Backtracking.

- Algorithm follows one path as far as it can go.
- Backs up to the last point at which a different path could have been chosen.
- Follows that path as far as it can go.
- The "Base" case: End-of path / no subsequent Nodes available.
- The "Recursive" case: Pick a branch / next Node, follow it for one step.

Backtracking & Recursive Function(s)

By-Example – Task: Depth-First Search

The "Base" case: End-of path / no subsequent Nodes available.

The "Recursive" case: Pick a(nother) branch / next Node, follow one step.

Backtracking & Recursive Function(s)

By-Example – Task: Maximum Depth of Binary Tree

The "Base" case: End-of path: Start a counter (will increase upwards).

The "Recursive" case: Maximum downwards Depth of that Node.

- a) Follow left & right Nodes and get their corresponding Max Depth.
- b) Return the Max of these two, incremented by one (the current Node).

Backtracking & Recursive Function(s)

By-Example – Task: Maximum Depth of Binary Tree

- The "Base" case: End-of path: Start a counter (will increase upwards).
- The "Recursive" case: Maximum downwards Depth of that Node.
 - a) Follow left & right Nodes and get their corresponding Max Depth.
 - b) Return the Max of these two, incremented by one (the current Node).

```
int depth [(Node * node) {
  if (node == NULL) // base case
    return 0;

// recursive case
  return (1 + max( depth (node->left) , depth (node->right) ));
}
```

Backtracking & Recursive Function(s)

By-Example – Task: Maximum Depth of Binary Tree

Note:

Returned numbers are evaluated from the bottom and upwards (backtracking).

```
int depth (Node * node) {
  if (node == NULL)
    return 0;
  return (1 + max ( depth (node->left), depth (node->right)
```


Recursive Function(s) that Return a Value (continued)

By-Example – Task: Binary Search

Find (int i index of) a given int v Value inside a Sorted List.

- The "Base" case: If number at int i index is the same as v, found it!
- The "Recursive" case: If not, formulate Subtasks:
 - a) Split List in two halves, and determine in which one it lies. (The List is *Sorted*!)
 - b) Search only that half to Find (i index of) the v Value Recursively. (Until Base case is encountered!)

Note: Binary Search → Extremely fast compared with Sequential Search

➤ Half of the array eliminated at start, then a quarter, then 1/8, etc...

For a Sorted Array of 100 elements Binary Search never needs more than 7 comparisons!

Logarithmic efficiency O(log n)

Recursive Function(s) that Return a Value (continued)

Pseudocode for Binary Search

```
int a[Some_Size_Value];
ALGORITHM TO SEARCH a[first] THROUGH a[last]
 //Precondition:
 //a[first]<= a[first + 1] <= a[first + 2] <=... <= a[last]
TO LOCATE THE VALUE KEY:
                                                                      Note:
 if (first > last) //A stopping case
                                                                      Array/List/Set etc... has to be Sorted!
     found = false;
 else
     mid = approximate midpoint between first and last;
     if (key == a[mid]) //A stopping case
         found = false;
         location = mid;
     else if key < a[mid] //A case with recursion
         search a[first] through a[mid - 1];
     else if key > a[mid] //A case with recursion
         search a[mid + 1] through a[last];
```

Recursive Function(s) that Return a Value (continued)

Execution of the Function search

Tail Recursion

Tail-Recursive methods

There exists one recursive call at the very end of the method. Examples: Recursive Factorial, Recursive Euclid's algorithm.

C++ compilers can detect and optimize Tail-Recursion by refactoring it into iterative code

- More efficient since it does not create new instances onto the Call Stack and in many cases can avoid redundant calculations.
- Called Tail-Call Optimization, or TCO.

Extra(s)

Task: Towers of Hanoi

"At the beginning of time a group of monks in Hanoi were tasked with moving a set of 64 disks of different sizes between three pegs, according to these rules:

- No disk may ever be placed above a smaller disk
- > The starting position has all the disks, in descending order of size, stacked on the first peg.
- The ending position has all the disks in the same order, stacked on the third peg.

An optimal solution for n disks requires 2n-1 moves (=18,446,744,073,709,551,616)

Extra(s)

Task: Towers of Hanoi

Recursive solution:

For any n > 1, the problem can be solved optimally in this way:

- \triangleright Number the disks from **1** (smallest on the top) to **n** (largest at the bottom).
- Solve the problem for **n-1** disks, starting at the start post and ending at the "extra" post.
- The remaining disk will be the largest one. Move it to the finish "target" post.

Then solve the problem for the **n-1** disks, moving from the "extra" post to the "target" post.

Apply Recursively until $\mathbf{n} = \mathbf{0}$. Base case:

Move $\mathbf{0}$ disks

Extra(s)

Task: Compile-time Factorial with Recursion & Template Metaprogramming

```
Note:
template <int N>
struct Factorial {
    enum { value = N * Factorial<N - 1>::value };
                                                        integral-type e.g. enum)
};
                                                        Note:
template <>
struct Factorial<0> {
    enum { value = 1 };
};
int main()
    int x = Factorial < 4 > :: value; // == 24
    int y = Factorial<0>::value; // == 1
```

Recursive templated Compile-Time evaluation of **value** (has to be of

Template Specialization for Base case, (there is no "Compile-time if" to check for Base case condition).

> At least not until C++17, static if is coming...

CS-202 Time for Questions! CS-202 C. Papachristos