

MATHAGO

Schularbeit

Matrizen und Gozintographen

Die Mathago Schularbeit besteht aus 6 kurzen Aufgaben (Ankreuzaufgaben, Grundkompetenzen, etc.) und 2 bis 3 längeren Textaufgaben. Diese stammen aus dem Aufgabenpool und den Kompensationsprüfungen des BMBWF. Die Punkteverteilung sieht wie folgt aus:

22 – 24 Punkte	Sehr Gut
19 – 21 Punkte	Gut
16 – 18 Punkte	Befriedigend
12 – 15 Punkte	Genügend
0 – 11 Punkte	Nicht Genügend

Aufgabe 1 (2 Punkte)

Der Produktionsablauf wird verändert. Die quadratische Matrix \boldsymbol{A} beschreibt die Produktionsverflechtungen zwischen den reinen Puddingsorten, den Mischsorten und den Packungen (in der Reihenfolge S, V, M_1 , M_2 , K, G).

Neu dabei sind: $a_{16} = 0,50$ und $a_{26} = 0,25$.

1) Zeichnen Sie diese beiden neuen Verflechtungen im nachstehenden Gozinto-Graphen ein.

Aufgabe 2 (2 Punkte)

Das Schokoladeeis und das Vanilleeis werden für die Nachspeisen Früchtebecher und Bananensplit verwendet.

Die dazu jeweils benötigten Eisportionen sind in der nachstehenden Tabelle angegeben.

	Früchtebecher E_1	Bananensplit E_2
Schokoladeeis Z_1	2	0
Vanilleeis Z_2	1	3

Die Verflechtung kann auch durch einen Gozinto-Graphen dargestellt werden.

1) Tragen Sie im obigen unvollständigen Gozinto-Graphen die fehlenden Zahlen in die entsprechenden Kästchen ein.

Aufgabe 3 (2 Punkte)

Ein Unternehmen produziert die zwei Handymodelle H_1 und H_2 .

Dabei werden die beiden Mikrochip-Sorten M_1 und M_2 benötigt.

Für die Produktion der Mikrochips werden unter anderem die Rohstoffe Silicium (R_1) und Kupfer (R_2) benötigt.

Die nachstehende Tabelle, die der Matrix **R** entspricht, beschreibt den Mengenbedarf an Rohstoffen (in ME) für die Herstellung je eines Stücks der beiden Mikrochip-Sorten.

	M_1	M ₂
R_1	5	7
R_2	1	2

Die nachstehende Tabelle, die der Matrix **S** entspricht, beschreibt den Mengenbedarf an Mikrochips (in Stück) für die Herstellung je eines Stücks der beiden Handymodelle.

	H_1	H_2
$M_{\scriptscriptstyle 1}$	5	1
M ₂	0	4

Die Anzahlen der täglich produzierten Handys der Handymodelle H_1 und H_2 können durch den Vektor $\overrightarrow{x} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ dargestellt werden.

Die Preise pro ME für die Rohstoffe R_1 und R_2 können durch den Vektor $\overrightarrow{\boldsymbol{p}} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ dargestellt werden.

Ermitteln Sie die Zeilen- und die Spaltenanzahl der Matrix $\overrightarrow{p}^{\top} \cdot R \cdot S \cdot \overrightarrow{x}$.

Zeilenanzahl: _____

Spaltenanzahl:

Aufgabe 4 (2 Punkte)

Der Prozess der Handyproduktion wird geändert. Die neue Verflechtung zwischen den Rohstoffen, den Mikrochips und den Handymodellen kann durch die nachstehende Tabelle beschrieben werden.

	$R_{\scriptscriptstyle 1}$	R_2	M_1	M_2	H_1	H_2
R_1	0	0	5	7	6	0
R_2	0	0	1	2	0	0
M_1	0	0	0	0	5	1
M_2	0	0	0	0	0	4
H_1	0	0	0	0	0	0
H_2	0	0	0	0	0	0

1) Vervollständigen Sie den nachstehenden Gozinto-Graphen so, dass er den beschriebenen Sachverhalt wiedergibt.

Aufgabe 5 (2 Punkte)

Mischsorten und den Packungen.

Der Produktionsprozess wird auf andere Puddingsorten erweitert. Aus a reinen Puddingsorten werden b verschiedene Mischsorten produziert, die wiederum in c verschiedenen Packungsgrößen abgepackt werden. Die quadratische Matrix \boldsymbol{B} beschreibt die Produktionsverflechtungen zwischen den reinen Puddingsorten, den

 Ordnen Sie den beiden Eigenschaften von B jeweils die zutreffende Berechnung aus A bis D zu.

Anzahl der Matrixelemente von B	
Anzahl der Zeilen von B	

А	a·b·c
В	a+b+c
С	$(a+b+c)\cdot 2$
D	$(a + b + c)^2$

Aufgabe 6 (2 Punkte)

Ein Produktionsbetrieb stellt aus den 3 Rohstoffen R_1 , R_2 und R_3 zunächst die 2 Zwischenprodukte Z_1 und Z_2 und aus diesen die 2 Endprodukte E_1 und E_2 her.

Der nachstehend dargestellte Gozinto-Graph beschreibt die Verflechtung von Rohstoffen, Zwischenprodukten und Endprodukten. Er gibt die Menge an Rohstoffen in ME an, die für jeweils 1 ME der Zwischenprodukte benötigt wird. Er gibt weiters die Menge an Zwischenprodukten in ME an, die für jeweils 1 ME der Endprodukte benötigt wird.

 Erstellen Sie eine Matrix A, die den Mengenbedarf an Rohstoffen für die Herstellung der Zwischenprodukte beschreibt.

Aufgabe 7 (6 Punkte)

Aus reinen Puddingsorten werden verschiedene Mischsorten produziert. Diese werden in verschiedenen Packungen verkauft. Der nachstehende Gozinto-Graph bildet diesen Produktionsprozess ab.

S ... reiner Schokoladepudding (in Litern)

V ... reiner Vanillepudding (in Litern)

*M*_→ ... Mischsorte 1: Schokoladepudding mit Vanille-Sprenkeln (in Bechern)

M₂ ... Mischsorte 2: Vanillepudding mit Schoko-Sprenkeln (in Bechern)

K ... Kleinpackungen (in Stück)

G ... Großpackungen (in Stück)

- 1) Ermitteln Sie den Prozentsatz an Schokoladepudding in einem Becher M_1 .
- 2) Übertragen Sie den Gozinto-Graphen in 2 Matrizen, die den Mengenbedarf an reinen Puddingsorten für die Mischsorten bzw. den Mengenbedarf an Mischsorten für die Packungen beschreiben.

Ein Supermarkt bestellt 300 Klein- und 200 Großpackungen.

3) Ermitteln Sie die dafür jeweils benötigte Menge an Schokolade- und Vanillepudding in Litern.

Aufgabe 8 (6 Punkte)

In einem Betrieb werden Seifen hergestellt und verpackt. Zur Herstellung von Seife werden die Rohstoffe Sheabutter (R_1), verschiedene Öle (R_2) und Natronlauge (R_3) verwendet.

In einer Produktionsschiene werden die beiden Seifen S_1 und S_2 hergestellt.

1. Produktionsstufe:

Für 1 ME von S_1 benötigt man 35 ME von R_1 , 80 ME von R_2 und 15 ME von R_3 . Für 1 ME von S_2 benötigt man 50 ME von S_2 und 6 ME von S_3 .

2. Produktionsstufe:

Beide Seifen werden in den 2 unterschiedlichen Packungen P_1 und P_2 zum Kauf angeboten. In 1 Packung P_1 befinden sich 2 ME von S_1 und 1 ME von S_2 . In 1 Packung P_2 befinden sich 2 ME von S_1 und 3 ME von S_2 .

 Veranschaulichen Sie die Produktionsverflechtung von den Rohstoffen bis zu den Packungen als Gozinto-Graph.

- 2) Erstellen Sie die beiden Matrizen, die die einzelnen Produktionsstufen beschreiben.
- 3) Ermitteln Sie die Matrix A, die den Mengenbedarf an Rohstoffen für die Zusammenstellung der Packungen beschreibt.