## Chapter 6 Sequence and Series

1

(1998-2 Marks)

(1990-2 Marks)

(1992 - 2 Marks)

(1994)

c)  $n + 2^{-n} - 1$  d)  $2^n + 1$ 

c) an irrational number

d) a prime number

c) a, b, c are in G.P.

d) a, b, c are in H.P.

ee24btech11014 - Deepak

1) Sum of the first *n* terms of the series  $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$  is equal to

3) If  $\log_e(a+c)$ ,  $\log_e(a-c)$ ,  $\log_e(a-2b+c)$  are in A.P.,then

a)  $2^n - n - 1$  b)  $1 - 2^{-n}$ 

2) The number log<sub>2</sub>7 is

a) a, b, c are in A.P.

b)  $a^2, b^2, c^2$  are in A.P.

 $h_{10} = 3$ , then  $a_4h_7$  is

a) an integerb) a rational number



4) Let  $a_1, a_2, \dots a_{10}$  be in A.P. and  $h_1, h_2, \dots h_{10}$  be in H.P. If  $a_1 = h_1 = 2$  and  $a_{10} = 1$ 

(2001S)

(2001S)

d) 6, -32

d) 13

|                                                                                                                                                                                                                                                                                                                                                                  | then the value of $a$ is                                                                                                                                                                                                 |                             |                                                              |                                       | 2S) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------|---------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                  | a) $\frac{1}{2\sqrt{2}}$                                                                                                                                                                                                 | b) $\frac{1}{2\sqrt{3}}$    | c) $\frac{1}{2} - \frac{1}{\sqrt{3}}$                        | d) $\frac{1}{2} - \frac{1}{\sqrt{2}}$ |     |
| 11)                                                                                                                                                                                                                                                                                                                                                              | 1) An infinite G.P. has first term $'x'$ and sum $'5'$ then $x$ belongs to (2004S)                                                                                                                                       |                             |                                                              |                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                  | a) $x < -10$                                                                                                                                                                                                             | b) $-10 < x < 0$            | c) $0 < x < 10$                                              | d) $x > 10$                           |     |
| 12)                                                                                                                                                                                                                                                                                                                                                              | 2) In the quadratic equation $ax^2 + bx + c = 0$ , $\triangle = b^2 - 4ac$ and $\alpha + \beta, \alpha^2 + \beta^2, \alpha^3 + \beta^3$ are in G.P. where $\alpha, \beta$ are root of $ax^2 + bx + c = 0$ , then (2005S) |                             |                                                              |                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                  | a) △ ≠ 0                                                                                                                                                                                                                 | b) $b \triangle = 0$        | c) $c\triangle = 0$                                          | d) $\triangle = 0$                    |     |
| 13)                                                                                                                                                                                                                                                                                                                                                              | 3) In the sum of first $n$ terms of an A.P. is $cn^2$ , then the sum of squares of these $n$ terms is (2009)                                                                                                             |                             |                                                              |                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                  | a) $\frac{n(4n^2-1)c^2}{6}$                                                                                                                                                                                              | b) $\frac{n(4n^2+1)c^2}{3}$ | c) $\frac{n(4n^2-1)c^2}{3}$                                  | d) $\frac{n(4n^2+1)c^2}{6}$           |     |
| 14)                                                                                                                                                                                                                                                                                                                                                              | Let $a_1, a_2, a_3,$ be in harmonic progression with $a_1 = 5$ and $a_{20} = 25$ . The least positive integer $n$ for which $a_n < 0$ is (2012)                                                                          |                             |                                                              |                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                  | a) 22                                                                                                                                                                                                                    | b) 23                       | c) 24                                                        | d) 25                                 |     |
| 15) Let $b_i > 1$ for $i = 1, 2,, 101$ . Suppose $\log_e b_1, \log_e b_2,, \log_e b_{101}$ are in Arithmetic Progression (A.P.) with the common difference $\log_e 2$ . Suppose $a_1, a_2,, a_{101}$ are in A.P. such that $a_1 = b_1$ and $a_{51} = b_{51}$ . If $t = b_1 + b_2 + \cdots + b_{51}$ and $s = a_1 + a_2 + \cdots + a_{53}$ , then (JEE Adv. 2016) |                                                                                                                                                                                                                          |                             |                                                              |                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                  | a) $s > t$ and $a_{101} > l$<br>b) $s > t$ and $a_{101} < l$                                                                                                                                                             |                             | c) $s < t$ and $a_{101} > t$<br>d) $s < t$ and $a_{101} < t$ |                                       |     |

c) -6,3

9) If the sum of the first 2n terms of the A.P.  $2, 5, 8, \ldots$ , is equal to the sum of the first

10) Suppose a, b, c are in A.P. and  $a^2, b^2, c^2$  are in G.P. if a < b < c and a + b + c = 3/2,

c) in G.P.

d) in H.P.

c) 11

8) Let the positive numbers a, b, c, d be in A.P. Then abc, abd, acd, bcd are

b) -2,3

n terms of the A.P. 57, 59, 61, ..., then n equals

b) 12

a) -2, -32

b) in A.P.

a) 10

a) NOT in A.P./G.P./H.P