Projected Gradient Descent Efficiently Solves the Trust Region Subproblem

Mark Nishimura

Reese Pathak

June 13, 2018

Abstract

We show that projected gradient descent asymptotically converges to a global minimizer of the trust region subproblem. We then show that iterates shortly hit the boundary, after which consecutive iterates remain on the boundary. Conditional on a single conjectured inequality from empirical evidence we are able to show that projected gradient descent achieves the typical $O(\log(1/\varepsilon))$ rate enjoyed by smooth convex functions.

1 Introduction

Trust region methods are sequential programming procedures in which heuristics are used to approximately solve a general optimization problem through multiple constrained quadratic programs. As a subroutine, these methods formulate and solve many instances of the following trust region subproblem

minimize
$$(1/2)x^T A x + b^T x$$

subject to $||x|| \le R$ (1)

with variable $x \in \mathbf{R}^n$. The problem data are a symmetric matrix $A \in \mathbf{R}^{n \times n}$, a vector $b \in \mathbf{R}^n$, and a radius parameter R > 0. Crucially, the matrix A is possibly indefinite.

1.1 Previous works

The trust region subproblem is well-studied, and thus there many previous works worth mentioning. In earlier papers, the problem was solved either via subspace methods such as Steihaug-Toint (where no global convergence guarantees have been proven, to our knowledge), or using fast eigenvector and eigenvalue computation procedures like the Lanczos method [CGT00, EG09, GLRT99, GRT10]. More recently, however, some authors have provided convergence guarantees for this problem. For example, by reducing the trust region subproblem to a sequence of approximate eigenvector computations, Hazan and Koren [HK16] demonstrate that $\tilde{O}(1/\sqrt{\varepsilon})^1$ matrix-vector multiplies are enough to guarantee an ε -suboptimal point. In [HK17], Nguyen and Kilinç-Karzan reduce the trust region problem to a convex QCQP using eigenvector calculations, where first-order methods apply.

However, perhaps the most obvious algorithm to solve (1), is the *projected gradient method*, which we study in this paper. To our knowledge, the only previous work that analyzes the convergence properties of this procedure on (1) is [TA98], where Tao and An augment this procedure

¹We use the $\tilde{O}(\cdot)$ notation to hide logarithmic factors.

by a restarting scheme, requiring possibly O(d) restarts, which could scale poorly for large-scale problems. We also mention a recent work by Carmon and Duchi [CD16], studying the closely related problem

minimize
$$(1/2)x^T A x + b^T x + (\rho/3) ||x||_2^3$$
, (2)

in variable $x \in \mathbf{R}^n$, again with A symmetric, possibly indefinite, and parameter $\rho > 0$. The authors analyze gradient descent, proving that $\tilde{O}(1/\varepsilon)$ gradient steps are enough to output an ε -suboptimal point.

In this paper we demonstrate that the projected gradient method on (1) asymptotically converges to a global minimizer on the trust region subproblem.

1.2 Notation and classical results

In the sequel, we refer to the objective function as $f: \mathbf{R}^n \to \mathbf{R}$, given by $f(x) = (1/2)x^T A x + 2b^T x$. Additionally, the constraint set is the closed ball $\mathcal{B}(R) \triangleq \{x \in \mathbf{R}^n \mid ||x|| \leq R\}$, where $||\cdot||$ denotes the Euclidean norm. We use the notation x^* to denote the global minimum of f when it is unique, so that $x^* = \operatorname{argmin}_{x \in \mathcal{B}(R)} f(x)$. We use f^* to denote the optimal value of f, so that $f^* = \inf_{x \in \mathcal{B}(R)} f(x)$. Hence, when x^* exists, $f^* = f(x^*)$.

We fix the eigendecomposition of $A = UDU^T$, where $D = \mathbf{diag}(\lambda_1, \dots, \lambda_n)$, and U has orthonormal columns u_i . We impose without loss that $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$. By $\|\cdot\|_{\mathrm{op}}$, we denote the ℓ_2 -operator norm $\|M\|_{\mathrm{op}} = \sup_{\|x\|=1} \|Mx\|$, for any $M \in \mathbf{R}^{n \times n}$. A useful identity is that $\|M\|_{\mathrm{op}} = \max_i |\lambda_i(M)|$ when M is a symmetric $n \times n$ matrix. We will put $\beta \triangleq \|A\|_{\mathrm{op}}$.

Additionally, say a differentiable function $g: \mathbf{R}^n \to \mathbf{R}$ is L-smooth on convex set $C \subset \mathbf{R}^n$, provided that

$$\|\nabla g(x) - \nabla g(y)\| \le L\|x - y\|$$
 for any $x, y \in C$.

It is well known that this implies

$$g(x) - g(y) \le \nabla g(y)^T (x - y) + \frac{L}{2} ||x - y||^2$$
 for any $x, y \in C$. (3)

Equivalently, $||g(x)||_{op} \leq L$, for Lebesgue almost every $x \in C$. For nonempty, closed, convex sets $C \subset \mathbf{R}^n$, associate the projection operator $\Pi_C : \mathbf{R}^n \to C$ given by

$$\Pi_C(x) = \underset{y \in C}{\operatorname{argmin}} \left(\frac{1}{2} ||x - y||^2 \right),$$

for any $x \in \mathbf{R}^n$. In the sequel we denote by $I: \mathbf{R}^n \to \mathbf{R}^n$ the identity operator on \mathbf{R}^n .

2 Asymptotic convergence to a global minimizer

2.1 Projected gradient descent

Projected gradient descent (PGD) begins at an initialization $x^{(0)} \in \mathbf{R}^n$ and generates iterates

$$y^{(k+1)} = x^{(k)} - \eta \nabla f(x^{(k)}) \tag{4}$$

$$x^{(k+1)} = \Pi_{\mathcal{B}(R)}(y^{(k+1)}),\tag{5}$$

for nonnegative integer k and step size η . We make the following assumptions about this procedure.

Assumption 2.1. In (4), the step size η satisfies $0 < \eta < \frac{1}{\beta}$.

Assumption 2.2. The initial point satisfies $x^{(0)} = 0$.

2.2 Asymptotic convergence to a global minimizer

We begin by providing a few results, which characterize the iterates of projected gradient descent.

Lemma 2.3. Let Assumptions 2.1 and 2.2 hold. Then the iterates of gradient descent satisfy $(u_i^T x^{(k)})(u_i^T b) \leq 0$ for all i = 1, ..., n and every $k \geq 0$. 0

Proof. Evidently, the claim holds due to Assumption 2.2 when k=0. Thus, inductively assume that for some k

$$(u_i^T x^{(k)})(u_i^T b) \le 0 \qquad \text{for all } i = 1, \dots, n.$$

By definition, $x^{(k+1)} = cy^{(k+1)}$ for some $c \in (0,1]$, so it suffices to ensure $(u_i^T y^{(k+1)})(u_i^T b) \leq 0$. Using (6) along with Assumption 2.1,

$$(u_i^T y^{(k+1)})(u_i^T b) = (1 - \eta \lambda_i)(u_i^T x^{(k)})(u_i^T b) - \eta(u_i^T b)^2 \le 0,$$

since $\eta < \beta^{-1} \le \lambda_i^{-1}$, for all i = 1, ..., n. This proves the result.

The following result shows projected gradient descent is a descent method for (1).

Lemma 2.4. Let Assumption 2.1 hold. Then for any k > 0,

$$f(x^{(k+1)}) - f(x^{(k)}) \le \left(\frac{\beta}{2} - \frac{1}{2\eta}\right) \|x^{(k+1)} - x^{(k)}\|^2.$$

Proof. Basic manipulations imply

$$\nabla f(x^{(k)})^T (x - x^{(k)}) + \frac{1}{2\eta} \|x - x^{(k)}\|^2 = \frac{1}{2\eta} \|x - (x^{(k)} - \eta \nabla f(x^{(k)}))\|^2 - \frac{\eta}{2} \|\nabla f(x^{(k)})\|^2.$$

Thus, as $\eta > 0$ it follows that

$$\underset{x \in \mathcal{B}(R)}{\operatorname{argmin}} \left(\nabla f(x^{(k)})^T (x - x^{(k)}) + \frac{1}{2\eta} \|x - x^{(k)}\|^2 \right) = \underset{x \in \mathcal{B}(R)}{\operatorname{argmin}} \left(\frac{1}{2} \|x - (x^{(k)} - \eta \nabla f(x^{(k)}))\|^2 \right).$$

Comparing the display above to (4), (5), and the definition of $\Pi_{\mathcal{B}(R)}$,

$$x^{(k+1)} = \underset{x \in \mathcal{B}(R)}{\operatorname{argmin}} \left(\nabla f(x^{(k)})^T (x - x^{(k)}) + \frac{1}{2\eta} ||x - x^{(k)}||^2 \right). \tag{7}$$

Appealing to the β -smoothness of f and evaluating (7) at $x^{(k)} \in \mathcal{B}(R)$,

$$f(x^{(k+1)}) - f(x^{(k)}) \le \nabla f(x^{(k)})^T (x^{(k+1)} - x^{(k)}) + \frac{\beta}{2} ||x^{(k+1)} - x^{(k)}||^2 \le \left(\frac{\beta}{2} - \frac{1}{2\eta}\right) ||x^{(k+1)} - x^{(k)}||^2.$$

The following result provides a useful optimality criterion for the trust region subproblem (1).

Theorem 2.5 ([CGT00], Corollary 7.2.2.). A point $x \in \mathcal{B}(R)$ is a global minimizer of f subject to $||x|| \le R$ if and only if for some $z \ge 0$,

$$(A + zI)x = -b$$
 $A + zI \succeq 0$ $z(||x|| - R) = 0.$

Furthermore, x is unique if and only if A + zI > 0. In this case, we write $x = x^*$.

An important special case from Theorem 2.5 is that when $||x^*|| < R$, then $\nabla f(x^*) = 0$. Furthermore, with a simplifying assumption, we can provide a set of simpler optimality criterion.

Corollary 2.6. Suppose that $b^T u_1 \neq 0$. Then if for some $\tilde{x} \in \mathcal{B}(R)$ and $z \geq 0$, it holds that

$$(A + zI)\tilde{x} = -b \qquad z(\|\tilde{x}\| - R) = 0 \qquad (u_1^T \tilde{x})(u_1^T b) \le 0$$
(8)

then \tilde{x} is the unique global minimizer to f over $\mathfrak{B}(R)$, i.e., $\tilde{x} = x^*$.

Proof. Focusing on the first condition, $b^Tu_1 = -(z + \lambda_1)(u_1^T\tilde{x})$. Thus, $b^Tu_1 \neq 0$ implies that $(u_1^T\tilde{x}) \neq 0$ and $z + \lambda_1 \neq 0$, strengthening the third condition to $(u_1^T\tilde{x})(u_1^Tb) < 0$. But this implies that $z + \lambda_1 = -(u_1^Tb)(u_1^T\tilde{x})/(u_1^T\tilde{x})^2 > 0$, which implies that $z > \lambda_i$ for all i, whence A + zI > 0, establishing the result.

The assumptions along with Corollary 2.6 and Lemmas 2.3 and 2.4 give us our desired asymptotic convergence gaurantee.

Proposition 2.7 (Asymptotic convergence). Let Assumptions 2.1 and 2.2 hold, and suppose $b^T u_1 \neq 0$. Then as $k \to \infty$, the iterates of projected gradient descent satisfy $x^{(k)} \to x^*$ and $f(x^{(k)}) \downarrow f(x^*)$.

Proof. It suffices to demonstrate that $x^{(k)} \to x^*$, because then the conclusion follows via continuity of f and To that end, Lemma 2.4. Lemma 2.4 and Assumption 2.1 yield the following bound for any integer $T \ge 1$,

$$\left(\frac{1}{2\eta} - \frac{\beta}{2}\right) \sum_{k=0}^{T-1} \|x^{(k+1)} - x^{(k)}\|^2 \le f(x^{(0)}) - f(x^{(T)}) \le f(x^{(0)}) - f^*. \tag{9}$$

Now, define $\phi: \mathcal{B}(R) \to \mathbf{R}^n$ by $\phi(x) = \Pi_{\mathcal{B}(R)}(x - \eta \nabla f(x)) - x$, for points $x \in \mathcal{B}(R)$. The bound in (9) implies that the displayed series is convergent as $T \to \infty$ and thus $\phi(x^{(k)}) \to 0$. Note also that the map ϕ is evidently continuous, as ∇f is β -Lipschitz and $\Pi_{\mathcal{B}(R)}$ is non-expansive, thus 1-Lipschitz.

Suppose now that $\tilde{x} \in \mathcal{B}(R)$ is a subsequential limit of $(x^{(k)})$ (indeed, one exists since this sequence is bounded), and observe by continuity $\phi(\tilde{x}) = 0$. To show that $\tilde{x} = x^*$, by Corollary 2.6, it suffices to establish the first two conditions of (8), as the third immediately holds by Lemma 2.3. Observe first that $\phi(\tilde{x}) = 0$ implies that for some $c \geq 1$,

$$\tilde{x} - \eta \nabla f(\tilde{x}) = \tilde{x} - \eta (A\tilde{x} - b) = c\tilde{x}. \tag{10}$$

Indeed, setting $z = (c-1)\eta^{-1}$, this implies that $(A+zI)\tilde{x} = -b$. If \tilde{x} lies on the boundary of $\mathcal{B}(R)$, so that $\|\tilde{x}\| = R$, then as $z \geq 0$, this establishes (8) and hence $\tilde{x} = x^*$. On the other hand, if \tilde{x} is in the interior of $\mathcal{B}(R)$, so that $\|\tilde{x}\| < R$, then $\phi(\tilde{x}) = 0$ implies that c = 1 in (10), and thus z = 0, once again establishing (8), hence also that $\tilde{x} = x^*$. As this analysis applies to any such subsequential limit \tilde{x} of the bounded sequence $(x^{(k)})$, the claim is now proven (since the iterates lie in $\mathcal{B}(R)$, which is compact).

We provide some numerical evidence demonstrating the effect of Proposition 2.7 in Figure 1.

Figure 1: Three random indefinite instances of the trust region subproblem (1), with R=1, $\eta=1/(2\|A\|_{\rm op})$ and $x^{(0)}=0$. From left to right, the eigenvalues are $\lambda=(-8,3)$, $\lambda=(-9,3)$, and $\lambda=(-7,1)$. The dots indicate iterates of projected gradient descent and the lines indicate the process $\dot{x}=-\nabla f(x)$.

3 Non-asymptotic convergence guarantees

In this section, we use the notation $\pi^{(k)} \in (0,1]$ to denote a constant such that $x^{(k)} = \pi^{(k)}y^{(k)}$. Additionally we tacitly assume that Assumptions 2.1 and 2.2 hold.

We first prove a technical result about the signs of an iterative process.

Lemma 3.1. Let $\kappa \in \mathbf{R}^n$ satisfy $\kappa_1 \leq \kappa_2 \leq \cdots \leq \kappa_n \leq 1$, and let $c^{(t)}$ denote a non-negative sequence. If $z_i^{(0)} = 0$ for all i, and

$$z_i^{(k+1)} = c^{(k)}(1 - \kappa_i)z^{(k)} + 1$$

for all k, then the following three statements hold

1. If
$$z_j^{(k)} \le c^{(k-1)} z_j^{(k-1)}$$
 then $z_j^{(k')} \le c^{(k'-1)} z_j^{(k'-1)}$ for all $k' > k$.

2. If
$$z_i^{(k+1)} \le c^{(k)} z_i^{(k)}$$
 then for all $j \ge i$, $z_j^{(k+1)} \le c^{(k)} z_j^{(k)}$.

Proof. To see (1.), it suffices to show (by induction) that the claim holds for k' = k + 1. Thus,

$$z_j^{(k+1)} - c^{(k)} z_j^{(k)} = c^{(k)} (1 - \kappa_j) \left(z_j^{(k)} - c^{(k-1)} z_j^{(k-1)} \right) \le 0,$$

by assumption and $c^{(k)} \ge 0$, $1 - \kappa_j \ge 0$.

To see (2.), fix $j \geq i$. Note that evidently $z_i^{(k)} \geq 0$ for all i, k thus

$$\frac{c^{(k)}z_j^{(k)}}{z_j^{(k+1)}} - \frac{c^{(k)}z_i^{(k)}}{z_i^{(k+1)}} = \frac{(c^{(k)})^2(\kappa_j - \kappa_i)z_j^{(k)}z_i^{(k)}}{z_i^{(k+1)}z_j^{(k+1)}} \ge 0.$$

Above, we use that $\kappa_j \geq \kappa_i$ when $j \geq i$. Hence, $c^{(k)}z_j^{(k)}/z_j^{(k+1)} \geq c^{(k)}z_i^{(k)}/z_i^{(k+1)} \geq 1$. The claim follows.

Lemma 3.2. Fix $k \in \mathbb{N}$ such that $\nabla f(x^{(k)})^T x^{(k)} \leq 0$. Then $x^{(k)}^T A \nabla f(x^{(k)}) \geq \beta x^{(k)}^T \nabla f(x^{(k)})$.

Proof. Note first that $x^{(k')} = \pi^{(k')} y^{(k')}$, thus, for all $k' \leq k$,

$$\sum_{i=1}^{n} (u_i^T y^{(k')}) (u_i^T (x^{(k')} - y^{(k'+1)})) \le 0.$$

Define the following sets for $k' \leq k$

$$I_{+}^{(k')} \triangleq \{i \in [n] : (u_i^T y^{(k')}) (u_i^T (x^{(k')} - y^{(k'+1)})) \ge 0\}$$

$$I_{-}^{(k')} \triangleq \{i \in [n] : (u_i^T y^{(k')}) (u_i^T (x^{(k')} - y^{(k'+1)})) \le 0\}.$$

Associated to these sets, define $\lambda_{+}^{(k')} = \lambda_{i}$ and $\lambda_{-}^{(k')} = \lambda_{j}$ for $i = \min I_{+}^{(k')}$, and $j = \max I_{-}^{(k')}$. Then now observe that, expanding $y^{(k)} A \nabla f(x^{(k)})$ in the eigenbasis of A,

$$y^{(k)^{T}} A \nabla f(x^{(k)}) = \frac{1}{\eta} \left(\sum_{i \in I_{+}^{(k)}} \lambda_{i}(u_{i}^{T} y^{(k)})(u_{i}^{T}(x^{(k)} - y^{(k+1)})) + \sum_{i \in I_{-}^{(k)}} \lambda_{i}(u_{i}^{T} y^{(k)})(u_{i}^{T}(x^{(k)} - y^{(k+1)})) \right)$$

$$\geq \frac{1}{\eta} \left(\lambda_{+}^{(k)} \sum_{i \in I_{+}^{(k)}} (u_{i}^{T} y^{(k)})(u_{i}^{T}(x^{(k)} - y^{(k+1)})) + \lambda_{-}^{(k)} \sum_{i \in I_{-}^{(k)}} (u_{i}^{T} y^{(k)})(u_{i}^{T}(x^{(k)} - y^{(k+1)})) \right)$$

$$\geq \lambda_{-}^{(k)} y^{(k)^{T}} \nabla f(x^{(k)}) \geq \beta y^{(k)} \nabla f(x^{(k)}).$$

Recalling that $x^{(k)} = \pi^{(k)}y^{(k)}$ with $\pi^{(k)} \in (0,1]$, this proves the claim. The last inequality was obtained by assumption that $x^{(k)^T}\nabla f(x^{(k)}) \leq 0$, and that $\lambda_i \leq \lambda_n \leq \beta$ for all $i \leq n$. The penultimate inequality is due to $\lambda_-^{(k)} \leq \lambda_+^{(k)}$. To see this, it suffices to show that

$$(u_i^T y^{(k)})(u_i^T (x^{(k)} - y^{(k+1)})) \ge 0 \quad \text{implies} \quad (u_j^T y^{(k)})(u_j^T (x^{(k)} - y^{(k+1)})) \ge 0 \quad \text{for all } j \ge i \quad \ (11)$$

We prove this using Lemma 3.1. Indeed, $z_i^{(k)} = (u_j^T y^{(k)})/(-\eta u_j^T b)$ for all $k \in \mathbb{N}$. Then

$$z_j^{(k+1)} = \frac{u_j^T((I - \eta A)x^{(k)} - \eta b)}{-\eta u_j^T b} = \underbrace{\pi_{i}^{(k)}}_{\triangleq c^{(k)}} (1 - \underbrace{\eta \lambda_i}_{\triangleq \kappa_i}) z_j^{(k)} + 1.$$

Note that $z_j^{(0)} = 0$, and additionally $\eta \lambda_i = \kappa_i$ is non-decreasing in i, and bounded above by 1 since $\eta \leq 1/\beta$. Additionally, by assumption we have $c^{(k')} = \pi^{(k')} = R/\|y^{(k')}\|$, which is evidently non-negative. Thus (2.) of Lemma 3.1 implies that

$$\pi^{(k)} z_i^{(k)} - z_i^{(k+1)} \geq 0 \quad \text{implies} \quad \pi^{(k)} z_i^{(k)} - z_i^{(k+1)} \geq 0 \quad \text{for all } j \geq i.$$

Note that as $z_i^{(k)} \geq 0$, this is equivalent to the display in (11). The result is now proven.

Lemma 3.3. For all $k \geq 0$, the iterates of projected gradient descent satisfy $b^T x^{(k)} \leq 0$.

Proof. We inductively estlabish the following, stronger, result.

for all
$$i \in [n]$$
, $(u_i^T x^{(k)})(u_i^T b) \le 0$ for all $k \in \mathbf{N}$. (12)

Claim (12) evidently holds when k=0, so now suppose it holds for $k' \leq k$. Fix $i \in [n]$. Note

$$sign(u_i^T x^{(k+1)}) = sign\left(\pi^{(k+1)}((1 - \eta \lambda_i) u_i^T x^{(k)} - \eta u_i^T b)\right)$$
$$= sign((1 - \eta \lambda_i) u_i^T x^{(k)} + \eta(-u_i^T b)) = -sign(u_i^T b)$$

The final equality holds since $\pi^{(k+1)} \in (0,1]$, and the final inequality holds due to the inductive assumption. This proves Claim (12), and the result follows by summing these inequalites: $b^T x^{(k)} = \sum_{i=1}^n (x^{(k)}^T u_i)(u_i^T b) \leq 0$.

Lemma 3.4. For all $k \ge 0$, the iterates of projected gradient descent satisfy $x^{(k)^T} \nabla f(x^{(k)}) \le 0$. Furthermore, for all k, $||y^{(k+1)}|| \ge ||x^{(k)}||$.

Proof. By definition of the projected gradient descent iteration, we have

$$||y^{(k+1)}||^2 = ||x^{(k)}||^2 + \eta ||\nabla \nabla f(x^{(k)})||^2 - 2\eta \nabla f(x^{(k)})^T x^{(k)}.$$

Thus, to prove the claim it would be sufficient to show inductively that $x^{(k)}^T \nabla f(x^{(k)}) \leq 0$. The basis of induction is clear as the statement trivially holds at $x^{(0)} = 0$. Suppose the claim holds for k, and note it suffices to demonstrate $y^{(k+1)}^T \nabla f(x^{(k+1)}) \leq 0$. For all k, denote $0 < \pi^{(k)} \leq 1$ such that $\pi^{(k)} y^{(k)} = x^{(k)}$. Lemma 3.3 implies

$$y^{(k+1)^{T}} \nabla f(x^{(k+1)}) \leq \pi^{(k)} \left(x^{(k)^{T}} \nabla f(x^{(k)}) - \eta x^{(k)^{T}} A \nabla f(x^{(k)}) - \eta \|\nabla f(x^{(k)})\|^{2} + \eta^{2} \nabla f(x^{(k)})^{T} A \nabla f(x^{(k)}) \right)$$
$$\leq -\pi^{(k)} (\eta - \eta^{2} \beta) \|f(x^{(k)})\|^{2} + \pi^{(k)} (1 - \eta \beta) x^{(k)^{T}} \nabla f(x^{(k)}) \leq 0$$

The penultimate inequality is due Lemma 3.2, and the final inequality is because $\eta \leq 1/\beta$.

Lemma 3.4 immediately implies the following claim.

Corollary 3.5. Suppose an iterate of projected gradient descent satisfies $x^{(\tau)} \in \partial \mathcal{B}(R)$ for some $\tau \in \mathbf{N}$. Then $x^{(t)} \in \partial \mathcal{B}(R)$ for all $t \geq \tau$.

Proof. Lemma 3.4 implies $||y^{(\tau+1)}||^2 \ge ||x^{(\tau)}||^2 \ge R^2$, thus $x^{(\tau+1)} \in \partial B(R)$. The claim now follows via induction.

In words, once an iterate hits the boundary, all subsequent iterates remain on the boundary. We believe this result is relevant. Figure 2 demonstrates the effect of iterates remaining on the boundary; empirically we observe exponential convergence, characteristic of gradient descent on smooth, convex functions.

The following result bounds the time to the boundary.

Claim 3.6. Suppose that $\lambda_1 < 0$, and $b^T u_1 \neq 0$. Then after $O\left(\frac{R|\lambda_1|}{|b^T u_1| \log(1-\eta\lambda_1)}\right)$ iterations, the iterates of projected gradient descent lie on the boundary.

Figure 2: Two regimes of convergence, before and after hitting the boundary.

Proof. Suppose that for k iterations, $||y^{(k)}||^2 < R^2$. Then, as $x^{(0)} = 0$, we have

$$y^{(k)} = -\eta \sum_{t=0}^{k-1} (I - \eta A)^t b = -\eta \sum_{i=1}^n \left(\sum_{t=0}^{k-1} (1 - \eta \lambda_i)^t \right) b^T u_i u_i$$

Hence,

$$||y^{(k)}||^2 = \sum_{i=1}^n \frac{(b^T u_i)^2}{\lambda_i^2} (1 - (1 - \eta \lambda_i)^k)^2 \ge \frac{(b^T u_1)^2}{\lambda_1^2} (1 - (1 - \eta \lambda_1)^k)^2.$$

Setting the right-hand side to R^2 , one obtains that if $k \geq 1 + \frac{R|\lambda_1|}{|b^T u_1|(\log(1-\eta\lambda_1))}$, then the display above is larger than R^2 . Thus, the claim now follows via Corollary 3.5.

Lemma 3.7. Let $\tau^{\mathrm{bd}} = \min\{k : x^{(k)} \in \partial \mathcal{B}(R)\}$. If for some $\delta > 0$, and for all $k \geq \tau^{\mathrm{bd}}$ it holds that $(x^{\star} - x^{(k+1)})^T x^{\star} \leq (1 - \eta \delta)(x^{\star} - x^k)^T x^{\star}$, then $x^{(t)}$ is $\varepsilon > 0$ -suboptimal provided that $t \geq \tau^{\mathrm{bd}} + \frac{1}{\eta \delta} \log(2R^2(z+\beta)/\varepsilon)$.

Proof. Let $\tau := \tau^{\text{bd}}$. That f is β -smooth implies that

$$f(x^{(k+\tau)}) - f^* \le \nabla f(x^*)^T (x^{(k+\tau)} - x^*) + \frac{\beta}{2} ||x^* - x^{(k+\tau)}||^2 \le (z+\beta)(x^* - x^{(k)})^T x^*.$$

Hence, by hypothesis and because $(1 + \alpha) \leq e^{\alpha}$ when $\alpha \in \mathbf{R}$,

$$f(x^{(k+\tau)}) - f^* \le 2R^2(z+\beta)(1-\eta\delta)^k \le 2R^2(z+\beta)e^{-\eta\delta k}$$
.

Thus, when $t \ge \tau^{\text{bd}} + \frac{1}{n\delta} \log(2R^2(z+\beta)/\varepsilon)$, $x^{(t)}$ is ε suboptimal: $f(x^{(t)}) - f^* \le \varepsilon$.

We believe that the in the previous lemma you can set $\delta = O(1/(z + \lambda_1))$, but this is at best a conjecture requiring a proof.

Lemma 3.8. In the notation of Lemma 3.7, for all $k \ge \tau^{\text{bd}}$, $(x^* - x^{(k+1)})^T x^* \le \left(1 - \frac{\eta(z + \lambda_1)}{1 + 2\eta\beta + \eta z}\right) (x^* - x^{(k)})^T x^*$.

Proof. Note first that $\pi^{(k)} = R/\|y^{(k)}\|$ and $\|y^{(k)}\| \le R(1 + 2\eta(\beta + z) + \eta z)$, thus $\pi^{(k)} \ge 1/(1 + 2\eta(\beta + z) + \eta z)$. Set $A_s := A + zI$ (where z is the optimal Lagrange multiplier), and note

$$(x^{\star} - x^{(k+1)})^{T} x^{\star} = \pi^{(k+1)} (x^{\star} - x^{(k)})^{T} x^{\star} + (1 - \pi^{(k+1)}) x^{\star T} x^{\star} + \pi^{(k+1)} \eta x^{(k)}^{T} A x^{\star} - \pi^{(k+1)} \eta x^{\star T} A_{s} x^{\star}$$

$$\leq \pi^{(k+1)} (x^{\star} - x^{(k)})^{T} x^{\star} + (1 - \pi^{(k+1)} (1 + \eta(z + \lambda_{1}))) x^{\star T} x^{\star} + \pi^{(k+1)} \eta x^{(k)}^{T} A x^{\star}$$

Note that
$$Ax^* = A_s x^* - z x^* = -(b + z x^*)$$

References

- [CD16] Yair Carmon and John C. Duchi. Gradient descent efficiently finds the cubic-regularized non-convex Newton step. *CoRR*, abs/1612.00547, 2016.
- [CGT00] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. *Trust-region methods*. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.
- [EG09] Jennifer B. Erway and Philip E. Gill. A subspace minimization method for the trust-region step. SIAM Journal on Optimization, 20(3):1439–1461, 2009.
- [GLRT99] Nicholas I. M. Gould, Stefano Lucidi, Massimo Roma, and Philippe L. Toint. Solving the trust-region subproblem using the Lanczos method. SIAM Journal on Optimization, 9(2):504–525, 1999.
- [GRT10] Nicholas I. M. Gould, Daniel P. Robinson, and H. Sue Thorne. On solving trust-region and other regularized subproblems in optimization. *Math. Program. Comput.*, 2(1):21–57, 2010.
- [HK16] Elad Hazan and Tomer Koren. A linear-time algorithm for trust region problems. *Math. Program.*, 158(1-2):363–381, 2016.
- [HK17] Nam Ho-Nguyen and Fatma Kilinç-Karzan. A second-order cone based approach for solving the trust-region subproblem and its variants. SIAM Journal on Optimization, 27(3):1485–1512, 2017.
- [TA98] Pham Dinh Tao and Le Thi Hoai An. A D.C. optimization algorithm for solving the trust-region subproblem. SIAM Journal on Optimization, 8(2):476–505, 1998.