苏州大学<u>《模拟电路》</u>课程试卷 (A)卷 共 5 页

考试形式: 开卷 2020年6月

	学院_光电科学与工程学院_	_年级 <u>2019 级</u>	专业	光电&电子&测控_	
	学号	_姓名	成绩		
一、填空题(每空 2 分,共 20 分)					
	1. P 型半导体是在本征半导体中加入元素杂质后形成的。				
	2. 电路分析中,若设定硅二极管正向-	导通时电压为 0V,贝	引此模型为	模型。	
	3. 半导体二极管,按其结构的不同可分为点接触型和。				
	4. 放大电路的基本分析方法,包括图解分析法和。				
	5. 工作在放大区的某三极管,当其基格	及电流 $I_{\scriptscriptstyle B}$ 从 40 μA 增	增大到 60 μA 时	,集电极电流 I_{C} 相应地从	
	1.5 mA 变为 2.3 mA,则该三极管的放大倍数 $oldsymbol{eta}$ 为。				
	6. N 沟道型 MOSFET 工	作时,其栅源电压必	须为正。		
	7. 差分式放大电路中,两个输入信号;	之差称为	信号。		
	8. 反馈放大电路中,使得净输入信号的变化得到增强的反馈称为反馈。				
	9. 正弦波振荡电路的振荡条件是	o			
	10. 固定式三端集成稳压器 79L12 的输出电压 $V_0 =V$ 。				

二、分析计算题(共七小题,总计80分)

11. 电路如图所示,已知 $v_i = 5\sin \omega t$ (V),二极管 D1、D2 的导通电压均为 0.7V。画出输出电压 v_o 的 波形。**注意:**波形需要标注幅值;详细写明分析过程,否则不得分。(8 分)

12. 如图所示电路中,二极管 D1 和 D2 均是理想的。(1) 求输出端电压 V_o 的值;(2) 当输出端接入 $4k\Omega$ 的负载电阻时,求出流过 R_L 的电流大小并指明方向。(7分)

13. 某两个运算放大器所构成的电路,如图所示。

分析当输入直流电压 Vi 在 $0\sim12V$ 变化时,电路输出端电压 Vo1 和 Vo2 的变化情况。(10 分)

14. 电路如图所示,假设运放是理想的,求输出电压 v_o 的表达式。(8分)

- 15. (1) 判断所给电路(a) 的级间反馈组态(注意:需要指明反馈网络,并写出具体的判断过程);
 - (2) 直接在所给的图(b)中进行连线,接入信号源和反馈,使得整个电路的输出信号保持稳定,并且增大电路的输入电阻,减小电路的输出电阻。需要写明其中的分析设计过程。(15分)

16. 差分式放大电路如图所示, $R_{b1}=R_{b2}=1k\Omega$, $R_{e1}=R_{e2}=100\Omega$, $\beta=80$,电流源的动态输出电阻 $r_o=100k\Omega$ 。(1)画出该电路的差模小信号等效电路;(2)求当 $v_{i1}=0.01$ V, $v_{i2}=-0.01$ V, c_1 、 c_2 间接入 5.6kΩ 的负载电阻 R_L 时,输出电压 $v_o=v_{o1}-v_{o2}$ 的值;(3)求电路的差模输入电阻 R_{id} 和双端输出时输出电阻 R_o 。(15 分)

17. 场效应管 T_1 和 BJT 晶体管 T_2 所组成的两级放大电路如图所示。已知 $g_m = 0.8$ mA/V, $r_{be} = 1.2$ k Ω , $\beta = 100$ 。(1)说明 T_1 和 T_2 所组成的电路组态;(2)画出组合放大电路的小信号等效电路;(3)求两级组合放大电路的电压增益 A_v 、输入电阻 R_i 和输出电阻 R_o 。(17 分)

