Chapter 5: The $s \times r$ Table

• Extends concepts in previous chapters to address tests of association for general $s \times r$ table

5.2 Association

5.2.1 Tests for General Association

• Example

	Neighborhood					
Party	Bayside	Highland	Longview	Sheffeld		
Democrat	221	160	360	140		
Independent	200	291	160	311		
Republican	208	106	316	97		

• General $s \times r$ table

	Respon				
Group	1	2	• • •	r	Total
1	n_{11}	n_{12}	• • •	n_{1r}	n_{1+}
2	n_{21}	n_{22}	• • •	n_{2r}	n_{2+}
•	•	•	•••	•	•
S	n_{s1}	n_{s2}	• • •	n_{sr}	n_{s+}
Total	n_{+1}	n_{+2}	• • •	n_{+r}	n

 H_0 : Distributions of response are comparable to that for randomized groups

$$\Pr\{n_{ij}\} = \frac{\prod_{i=1}^{s} n_{i+}! \prod_{j=1}^{r} n_{i+j}!}{n! \prod_{i=1}^{s} \prod_{j=1}^{r} n_{ij}!}$$

• Pearson chi-square statistic for general association

$$Q_{P} = \sum_{i=1}^{s} \sum_{j=1}^{r} \frac{\left(n_{ij} - m_{ij}\right)^{2}}{m_{ij}}$$

where
$$m_{ij} = E\{n_{ij} | H_0\} = \frac{n_{i+}n_{+j}}{n}$$

• If sample size is sufficiently large (all expected counts $m_{ij} \ge 5$), $Q_P \approx$ chi-square distribution with (s-1)(r-1) degrees of freedom. In case of 2×2 table, r = 2 and s = 2 so that Q_P has 1 d.f.

• Just as for 2×2 tables, randomization statistic Q can be written

$$Q = \frac{n-1}{n} Q_P$$

and is also \approx chi-square with (s-1)(r-1) d.f.

• Covariance structure under H_0 is

$$Cov\{n_{ij}, n_{i'j'}|H_0\} = \frac{m_{ij}(n\delta_{ii'}-n_{i'+})(n\delta_{jj'}-n_{+j'})}{n(n-1)}$$

where
$$\delta_{kk'} = 1$$
 if $k = k'$ and $\delta_{kk'} = 0$ if $k \neq k'$

• The randomization statistic Q is computed from the quadratic form:

$$Q = (\mathbf{n} - \mathbf{m})' \mathbf{A}' (\mathbf{A} \mathbf{V} \mathbf{A}')^{-1} \mathbf{A} (\mathbf{n} - \mathbf{m})$$

where
$$\mathbf{n} = (n_{11}, n_{12}, ..., n_{1r}, ..., n_{s1}, ..., n_{sr})'$$
 is

vector of observed frequencies, m is corresponding vector of expected frequencies, V is covariance matrix, and A is matrix containing scores

• Usual choice for A for testing general association is:

$$A = \begin{bmatrix} \mathbf{I}_{(r-1)}, \mathbf{0}_{(r-1)} \end{bmatrix} \otimes \begin{bmatrix} \mathbf{I}_{(s-1)}, \mathbf{0}_{(s-1)} \end{bmatrix}$$

where $\mathbf{I}_{(j-1)}$ is the $(j-1) \times (j-1)$ identity matrix, $\mathbf{0}_{(j-1)}$ is a (j-1) vector of 0's, and \otimes denotes left-hand Kronecker product (matrix on left multiplies each element of matrix on right)

• To calculate statistic *Q* for table of political party and neighborhood data included previously:

```
ods graphics on;
proc freq data=neighbor;
  weight count;
  tables party*neighborhood /
    plots=mosaicplot chisq cmh nocol nopct;
run;
ods graphics off;
(See "General Association" results)
```

- PLOTS=MOSAIC requests mosaic plot
- A mosaic plot uses tiles proportional to cell frequencies to provide a visual representation of the contingency table
 - O Horizontal space represents relative count size of the variable on the x-axis and the vertical space represents relative count size of the variable on the y-axis

Frequency Table

	Table of party by neighborhood							
party	neighborh	neighborhood						
Frequency	bayside	highland	longview	sheffeld	Total			
democrat	221	160	360	140	881			
independent	200	291	160	311	962			
republican	208	106	316	97	727			
Total	629	557	836	548	2570			

Mosaic Plot

Pearson Chi-Square

STATISTICS	FOR	TABLE	0F	PARTY	BY	NEI	HOOD
						_	_

Statistic	DF	Value	Prob
Chi-Square	6	273.919	0.001
Likelihood Ratio Chi-Square	6	282.327	0.001
Mantel-Haenszel Chi-Square	1	0.812	0.367
Phi Coefficient		0.326	
Contingency Coefficient		0.310	
Cramer's V		0.231	

Randomization Q

SUMMARY STATISTICS FOR PARTY BY NEI_HOOD

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	0.812	0.3674
2	Row Mean Scores Differ	2	13.894	0.0010
3	General Association	6	273.812	<.0001

5.2.2 Mean Score Test

		Hours of Relief					
Treatment	0	1	2	3	4		
Placebo	6	9	6	3	1		
Standard	1	4	6	6	8		
Test	2	5	6	8	6		

• Now A is chosen to assign scores to response levels and compare resulting linear functions of scores for (s-1) groups to their expected values

$$oldsymbol{A} = egin{bmatrix} oldsymbol{a}' & oldsymbol{0}' & oldsymbol{0}' & \cdots & oldsymbol{0}' & oldsymbol{0}' & \cdots & oldsymbol{0}' & oldsymbol{0}' & \cdots & oldsymbol{a}' & oldsymbol{0}' & oldsymbol{0}' & \cdots & oldsymbol{a}' & oldsymbol{0}' \end{bmatrix}$$

where $a' = (0 \ 1 \ 2 \ 3 \ 4)$ for the above table if actual values were used as scores. With this choice of A, the randomization Q becomes the mean score statistic Q_S

• The mean score statistic can be written as:

$$Q_{S} = \frac{(n-1)\sum_{i=1}^{s} n_{i+} (\bar{f}_{i} - \mu_{\mathbf{a}})^{2}}{nv_{a}}$$

where
$$\overline{f}_i = \sum_{j=1}^r \frac{a_j n_{ij}}{n_{i+}}$$
 with expected value

$$\mu_a = E\left\{\overline{f_i} \middle| H_0\right\} = \sum_{j=1}^r \frac{a_j n_{+j}}{n}$$
, and variance

$$v_a = \sum_{j=1}^r \left(a_j - \mu_a\right)^2 \left(\frac{n_{+j}}{n}\right)$$

proc freq data=pain;
 weight count;
 tables treatment*hours / cmh nocol nopct;
 run; (See "Row Mean Scores Differ" results)

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)							
Statistic	Alternative Hypothesis	DF	Value	Prob			
1	Nonzero Correlation	1	8.0668	0.0045			
2	Row Mean Scores Differ	2	13.7346	0.0010			
3	General Association	8	14.4030	0.0718			

7.2 Kruskal-Wallis Test

• Kruskal-Wallis test (1952) is generalization of twosample Wilcoxon-Mann-Whitney test to three or more groups:

H₀: Distribution of response variable is same in multiple independently sampled populations
 vs H₁: Location difference among populations

- Kruskal-Wallis test can be used whenever one-way analysis of variance model is appropriate
- For small samples: can use EXACT statement in NPAR1WAY procedure, or StatXact package (Mehta and Patel 1991)

- For larger samples (at least 5 obs per group): p-value approximated using asymptotic chi-square distribution with s-1 degrees of freedom (s is number of groups), which is Mantel-Haenszel mean score statistic with rank scores
- Example: Data from study of anecubital vein cortisol levels at time of delivery in pregnant women. Are median cortisol levels different among three groups of women?

Group I: elective C-section

Group II: emergency C-section (induced labor)

Group III: vaginal or C-section (spontaneous)

Group I		Grou	ıp II	Group III		
Patient	Level	Patient	Level	Patient	Level	
1	262	1	465	1	343	
2	307	2	501	2	772	
3	211	3	455	3	207	
4	323	4	355	4	1048	
5	454	5	468	5	838	
6	339	6	362	6	687	
7	304					
8	154					
9	287					
10	356					

• To compare the three groups using the Kruskal-Wallis test, compute the Mantel-Haenszel mean score statistic with rank scores:

- Results show the three groups of subjects differ with respect to cortisol level (row mean score chi-square = 9.232, 2 df, p = 0.010)
- Can also use NPAR1WAY and WILCOXON option

5.2.3 Correlation Test

	Washability					
Treatment	Low	Med	High	Total		
Water	27	14	5	46		
Standard	10	17	26	53		
Super	5	12	50	67		

• Now A is chosen to assign scores both to levels of response variable and grouping variable to obtain Q_{CS}

$$\mathbf{A} = [\mathbf{a}' \otimes \mathbf{c}'] = [a_1c_1, ..., a_rc_1, ..., a_rc_s]$$

where $\mathbf{a'} = (a_1, a_2, ..., a_r)$ are scores for response levels, and $\mathbf{c'} = (c_1, c_2, ..., c_s)$ are scores for levels of grouping variable, and \mathbf{A} has dimension $1 \times sr$

```
proc freq order=data;
  weight count;
  tables treatment*washability / chisq cmh nocol nopct;
run;
```

Summary Statistics for treatment by washability							
Cochran-Mantel-Haenszel Statistics (Based on Table Scores)							
Statistic	Alternative Hypothesis	DF	Value	Prob			
1	Nonzero Correlation	1	50.6016	<.0001			
2	Row Mean Scores Differ	2	52.7786	<.0001			
3	General Association	4	54.7560	<.0001			

5.3 Exact Tests for Association

	Advertising Source						
Type of Car	TV	Magazine	Paper	Radio	Total		
Sedan	4	0	0	2	6		
Sporty	0	3	3	4	10		
Utility	5	5	2	2	14		

- Sample size does not meet requirements for usual tests of association via Pearson or randomization χ^2
- proc freq data=market;
 weight count;
 table car*AdSource / norow nocol nopct;
 exact fisher pchi lrchi;
 run;

Exact Test Results

Chi-Square	11.5984
)F	6
Asymptotic Pr > ChiSq	0.0716
Exact Pr >= ChiSq	0.0664
Likelihood Ratio Chi-Sq ————————————————————————————————————	16.3095
•	101000
DF	6
DF Asymptotic Pr > ChiSq	6 0.0122
DF Asymptotic Pr > ChiSq	6 0.0122
DF	6 0.0122 0.0272
DF Asymptotic Pr > ChiSq Exact Pr >= ChiSq	6 0.0122 0.0272 est

5.3.2 Test of Correlation

• Exact *p*-values are available for the correlation test for the case when both the rows and columns of a table are ordinally scaled.

Dose	Response				
in Mg	Poor	Fair	Good	Excellent	Total
25	1	1	1	0	3
50	1	2	1	1	5
75	0	0	2	2	4
100	0	0	7	0	7

• Since both rows and columns can be considered ordinal, the type of association is linear and the correlation MH statistic is suitable. However, note that there are several zero/small cells.

• Compute exact *p*-value (sum of the exact *p*-values associated with the tables where the test statistic is larger than the one we observe):

```
proc freq data=disorder;
  weight count;
  tables dose*outcome / nocol norow nopct measures;
   exact mhchi;
run;
```

Exact Results for Correlation MH

Mante	l-Haenszel Chi-Squar	e Test
Chi-Se	quare	3.9314
DF		1
Asymp ⁻	totic Pr > ChiSq	0.0474
Exact	Pr >= ChiSq	0.0488
	Sample Size = 19)

5.4.1 Ordinal Measures of Association

- Can be useful when data do not lie on an obvious scale, but are ordinal in nature
- Examples:
 - Spearman rank correlation coefficient is produced by substituting ranks as variable values for the Pearson correlation coefficient
 - Gamma, Kendall's tau-b, Stuart's tau-c, and Somers' D statistics are based on concordant and discordant pairs
- To compute, request MEASURES option:

```
proc freq order=data;
   weight count;
   tables treatment*washability/measures noprint nocol nopct cl;
run;
```

Measures of Association

Statistics for Table of	of treatme	ant by wash	nahility	
Statistics for Table C	or creating	ent by wasi	lability	
			Q.	5%
Statistic	Value	ASE	Confidence	
Gamma	0.6974	0.0636	0.5728	0.8221
Kendall's Tau-b	0.4969	0.0553	0.3885	0.6053
Stuart's Tau-c	0.4803	0.0545	0.3734	0.5872
Somers' D C R	0.4864	0.0542	0.3802	0.5926
Somers' D R C	0.5077	0.0572	0.3956	0.6197
Pearson Correlation	0.5538	0.0590	0.4382	0.6693
Spearman Correlation	0.5479	0.0596	0.4311	0.6648
Lambda Asymmetric C R	0.2588	0.0573	0.1465	0.3711
Lambda Asymmetric R\C	0.2727	0.0673	0.1409	0.4046
Lambda Symmetric	0.2663	0.0559	0.1567	0.3759
Uncertainty Coefficient C R	0.1668	0.0389	0.0906	0.2431
Uncertainty Coefficient R C	0.1609	0.0372	0.0880	0.2339
Uncertainty Coefficient Symmetric	0.1638	0.0380	0.0893	0.2383

5.4.2 Exact Tests for Ordinal Measures of Association

• Can also test whether a particular measure is equal to zero. In the case of correlation coefficients, we can produce exact *p*-values.

	Parental Interference				
Grades	Low	Medium	High	Total	
1-2	3	1	0	4	
3-4	3	2	1	6	
5-6	1	3	2	6	

```
proc freq order=data data=soccer;
   weight count;
   tables grades*degree / nocol nopct norow;
   exact scorr;
run;
```

Spearman Correlation Coefficient and Hypothesis Test for Spearman's Rank Test

Statistics for Table of grades by degree

Spearman Correlation Coefficient

Correlatio	n (r)		0.4878
ASE			0.1843
95% Lower	Conf	Limit	0.1265
95% Upper	Conf	Limit	0.8491

Test of HO: Correlation = 0

Exact Test One-sided Pr >= r 0.0354 Two-sided Pr >= |r| 0.0637

Sample Size = 16

5.5 Observer Agreement

- Important to evaluate observer agreement to understand possible contributions to measurement error, and as part of evaluation of testing new instruments and procedures
- Contingency table: rows are ratings of one observer and columns are ratings of another observer. Cells on diagonal represent cases where observers agree

• Diagnostic classification of multiple sclerosis patients into one of four diagnostic classes:

New Orleans	Wini	nipeg N	Veurol	logist
Neurologist	1	2	3	4
1	38	5	0	1
2	33	11	3	0
3	10	14	5	6
4	3	7	3	10

• Suppose π_{ij} is probability of subject being classified in *i*th category by first observer and *j*th category by second observer. Then:

$$\prod_0 = \sum \pi_{ii}$$

is the probability that observers agree. If ratings are independent, probability of agreement is

$$\prod_e = \sum \pi_{i+} \pi_{+i}$$

So $\Pi_o - \Pi_e$ is amount of agreement beyond that expected by chance. The *kappa coefficient* (Cohen 1960) is defined as

$$\kappa = \frac{\prod_0 - \prod_e}{1 - \prod_e},$$

 $\kappa = 1$ when there is perfect agreement, $\kappa = 0$ when agreement equals that expected by chance

• If interested in taking into account those disagreements just one category away, there is a weighted form of kappa statistic which allows assigning weights, or scores, to various categories

Weighted *k*

$$\mathcal{K}_{w} = rac{\sum \sum w_{ij} \pi_{ij} - \sum \sum w_{ij} \pi_{i+} \pi_{+j}}{1 - \sum \sum_{ij} w_{ij} \pi_{i+} \pi_{+j}},$$

where w_{ij} represents weights with values between 0 and 1. One possible set of weights is

$$w_{ij} = 1 - \frac{|\operatorname{score}(i) - \operatorname{score}(j)|}{\operatorname{score}(dim) - \operatorname{score}(1)}$$

where score(i) is the score for *i*th row, score(j) is score for *j*th column, and *dim* is dimension of $s \times s$ table.

```
ods graphics on;
proc freq;
  weight count;
  tables no_rater*w_rater / agree norow nocol nopct;
run;
ods graphics off;
```

Winnipeg Data

Table of no_rater by w_rater						
no_rater	w_rate	er				
Frequency	1	2	3	4	Total	
1	38	5	0	1	44	
2	33	11	3	0	47	
3	10	14	5	6	35	
4	3	7	3	10	23	
Total	84	37	11	17	149	

Kappa Statistics

STATISTICS FOR TABLE OF NO_RATER BY W_RATER

Test of Symmetry

Statistic = 46.749 DF = 6 Prob = 0.001

Kappa Coefficients

Statistic	Value	ASE	95% Confider	nce Bounds
Simple Kappa	0.208	0.050	0.109	0.307
Weighted Kappa	0.380	0.052	0.278	0.481

Agreement Plot

5.5.2 Exact *p*-values for the Kappa Statistic

Example: Two raters evaluating the same 24 people:

Rater	Rater Two			
One	1	2	3	4
1	4	0	1	0
2	0	2	6	1
3	1	0	2	1
4	0	2	1	3

```
proc freq data=pilot;
  weight count;
  tables rater1*rater2 / norow nocol nopct;
  exact kappa;
run;
```

Exact Results for Kappa Test

Statistics for Table of rater1 by rater2

Simple Kappa Coefficient

Kappa (K)	0.2989
ASE	0.1286
95% Lower Conf Limit	0.0469
95% Upper Conf Limit	0.5509

Test of H0: Kappa = 0

ASE under	H0	0.1066
Z		2.8032
One-sided	Pr > Z	0.0025
Two-sided	Pr > Z	0.0051

5.6 Test for Ordered Differences

- You may be interested in testing against an ordered alternative: Are mean scores strictly increasing (or decreasing) across the levels of the row variable?
- Jonckheere-Terpstra test is designed to test the null hypothesis that the distribution of the ordered responses is the same across the various rows of a table
 - Detects whether there are differences in

$$d_1 \le d_2 \le \dots \le d_s$$
 or $d_s \ge d_{s-1} \ge \dots \ge d_1$

where d_i represents the *i*th group effect

Jonckheere-Terpstra Test

Ordered Categories for Response

Ordered Groups	j = 1	2	• • •	r	Total
i = 1	n_{11}	n_{12}	• • •	n_{1r}	n_{1+}
2	n_{21}	n_{22}	• • •	n_{2r}	n_{2+}
:	•	•	•••	•	•
\boldsymbol{S}	n_{s1}	n_{s2}	• • •	n_{sr}	n_{s+}
Total	n_{+1}	n_{+2}	• • •	n_{+r}	\overline{n}

Let
$$U_{ii'} = \sum_{j=1}^{r} n_{ij} \left\{ \sum_{j'=j}^{r} n_{i'j'} - 0.5n_{i'j} \right\}$$

= Mann - Whitney Statistic for i < i'

 $J = \sum_{1 \le i < s} \sum_{i \le s} U_{ii'}$ to test null hypothesis H_0 of equality of distributions for the s groups with power against a progressive shift of the distributions (i.e., as i increases, the higher categories become progressively more likely and the lower ones become less likely, or vice versa.)

For situations with sufficiently large sample sizes (e.g., all $n_{i+} \ge 10$),

$$Z = \left\{ J - E(J|H_0) \right\} / \left\{ Var(J|H_0) \right\}^{1/2}$$

approximately has the standard normal distribution with expected value 0 and variance 1. When sample sizes are not large, exact p-values can be used to evaluate J. Computations for J are possible through the JT option of PROC FREQ.

Computations for $s \times r$ Table

	Severity			
Operation	Moderate	Slight	None	Total
gre	16	38	53	107
v + h	12	40	58	110
v + a	13	23	68	104
v + d	7	28	61	96

The following statements request the analysis for the dumping syndrome data.

```
data operate ;
   input trt $ severity $ count @@ ;
datalines;
gre moderate 16 gre slight 38 gre none 53
v+h moderate 12 v+h slight 40 v+h none 58
v+a moderate 13 v+a slight 23 v+a none 68
v+d moderate 7 v+d slight 28 v+d none 61
proc freq data=operate order=data ;
  weight count ;
  tables trt*severity / scores=rank norow nocol
                           nopct jt;
run;
```

```
Statistics for Table of trt by severity

Jonckheere-Terpstra Test

Statistic 35697.0000

Z 2.5712

One-sided Pr > Z 0.0051

Two-sided Pr > |Z| 0.0101

Sample Size = 417
```

• Exact version of the Jonckheere-Terpstra test is available by specifying the option JT in an EXACT statement