2. Funkční řady Řešené příklady

2. Funkční řady

A. OBOR KONVERGENCE

Příklad 2.1. Určete obor konvergence řady

$$\sum_{k=1}^{\infty} \frac{\ln^k x}{k} = \ln x + \frac{\ln^2 x}{2} + \frac{\ln^3 x}{3} + \dots$$

Řešení. Všechny funkce

$$f_k(x) = \frac{\ln^k x}{k}$$

jsou definovány v intervalu $I=(0,\infty)$. Platí

$$\sqrt[k]{|f_k(x)|} = \sqrt[k]{\frac{|\ln^k x|}{k}} = |\ln x| \frac{1}{\sqrt[k]{k}}.$$

Protože $\lim_{k\to\infty} \sqrt[k]{k}=1$, podle limitního odmocninového kritéria řada konverguje pro $|\ln x|<1$ a nekonverguje pro $|\ln x|>1$. Dosazením hodnoty $\ln x=1$ dostáváme divergentní harmonickou řadu, a dosazením hodnoty $\ln x=-1$ pak konvergentní Leibnizovu řadu. Vyšetřovaná řada tedy konverguje, právě když $\ln x\in \langle -1,1\rangle$. Protože $\ln \frac{1}{e}=-1$, $\ln e=1$, je obor konvergence tvaru $I^*=\langle e^{-1},e\rangle$.

Příklad 2.2. Určete obor konvergence a součet řady

$$\sum_{k=1}^{\infty} \sin^k x = \sin x + \sin^2 x + \sin^3 x + \dots$$

Řešení. Daná řada je geometrická s hodnotou kvocientu $q = \sin x$. Řada tedy konverguje, právě když $|\sin x| < 1$. Tato nerovnost je splněna pro všechna reálná x, s výjimkou celočíselných lichých násobků $\pi/2$. Tedy

$$I^* = (-\infty, \infty) - \left\{ (2k+1) \frac{\pi}{2}, \; k \; \text{ je celé číslo} \right\}.$$

Součet řady je podle vzorce o součtu geometrické řady roven $\sin x/(1-\sin x)$.

Příklad 2.3. Určete obor konvergence řady $\sum_{k=1}^{\infty} \frac{1}{k^x}$.

 $\check{R}e\check{s}en\acute{i}$. Podle příkladu 1.10 řada konverguje, právě když x>1, tj. $I^*=(1,\infty)$.

Příklad 2.4. Určete obor konvergence řady $\sum_{k=1}^{\infty} \frac{1}{x^k}$.

Řešení. Protože $\frac{1}{x^k} = \left(\frac{1}{x}\right)^k$, jde o geometrickou řadu s hodnotou kvocientu $q = \frac{1}{x}$, tedy $I^* = (-\infty, -1) \cup (1, \infty)$.

Příklad 2.5. Určete obor konvergence řady $\sum_{k=1}^{\infty} \sin \frac{x}{2^k}$.

2. Funkční řady Řešené příklady

Řešení. Podle limitního podílového kritéria a užitím vzorce pro sinus dvojnásobného úhlu platí

$$\lim_{k \to \infty} \frac{|\sin \frac{x}{2^{k+1}}|}{|\sin \frac{x}{2^k}|} = \lim_{k \to \infty} \frac{\sin \frac{|x|}{2^{k+1}}}{\sin 2 \frac{|x|}{2^{k+1}}} = \lim_{k \to \infty} \frac{1}{2\cos \frac{|x|}{2^{k+1}}} = \frac{1}{2\cos 0} = \frac{1}{2} < 1$$

pro všechna reálná x, tedy $I^* = (-\infty, \infty)$.

B. Vlastnosti funkčních řad

Příklad 2.6. Ukažte, že funkční řada

$$\sum_{k=1}^{\infty} \frac{\cos kx}{2^k} = \frac{\cos x}{2} + \frac{\cos 2x}{4} + \frac{\cos 3x}{8} + \dots$$

konverguje stejnoměrně pro všechna $x \in \mathbb{R}$.

Řešení. Zřejmě platí

$$|f_k(x)| = \left|\frac{\cos kx}{2^k}\right| \le \frac{1}{2^k} =: a_k$$
 pro všechna $k = 1, 2, \dots$ a $x \in \mathbb{R}$.

Majorantní řada $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k$ je konvergentní geometrická řada s kvocientem $q = \frac{1}{2}$, tedy podle Weierstrassova kritéria konverguje funkční řada $\sum_{k=1}^{\infty} \frac{\cos kx}{2^k}$ stejnoměrně (a také absolutně) na celé reálné ose

Příklad 2.7. Funkce s(x) je definována vztahem

$$s(x) = \sum_{k=1}^{\infty} \frac{k}{e^{kx}} = e^{-x} + 2e^{-2x} + 3e^{-3x} + \dots, \qquad x > 0.$$

Ukažte, že s(x) je definovaná a spojitá pro všechna x>0, a vypočtěte $\int_{\ln 2}^{\ln 3} s(x) dx$.

Řešení. Nejprve ukážeme, že daná funkční řada konverguje stejnoměrně na každém intervalu $\langle \omega, \infty \rangle$, kde $\omega > 0$ je libovolné reálné číslo. Zřejmě

$$|f_k(x)| = \left|\frac{k}{e^{kx}}\right| \le \frac{k}{e^{k\omega}}, \quad x \in \langle \omega, \infty \rangle, \quad k = 1, 2, \dots$$

Majorantní číselná řada konverguje např. podle limitního odmocninového kritéria, neboť $e^{\omega} > 1$. Podle Weierstrassova kritéria proto daná řada konverguje stejnoměrně na každém intervalu $\langle \omega, \infty \rangle$, a součtová funkce s(x) je spojitá pro všechna x > 0. Stejnoměrná konvergence řady umožňuje navíc záměnu sumace a integrace, a platí tedy

$$\int_{\ln 2}^{\ln 3} s(x) dx = \int_{\ln 2}^{\ln 3} \left(\sum_{k=1}^{\infty} k e^{-kx} \right) dx = \sum_{k=1}^{\infty} \int_{\ln 2}^{\ln 3} k e^{-kx} dx = -\sum_{k=1}^{\infty} \left[e^{-kx} \right]_{\ln 2}^{\ln 3}$$
$$= -\sum_{k=1}^{\infty} (3^{-k} - 2^{-k}) = \sum_{k=1}^{\infty} \left(\frac{1}{2} \right)^k - \sum_{k=1}^{\infty} \left(\frac{1}{3} \right)^k = 1 - \frac{1}{2} = \frac{1}{2}.$$

Příklad 2.8. Rozhodněte o spojitosti funkce $\sum_{k=1}^{\infty} \frac{\ln(1+kx)}{kx^k}$.

ÚM FSI VUT v Brně 12

Řešené příklady 2. Funkční řady

Rešení. Nejprve posoudíme, zda a kde řada konverguje stejnoměrně. Protože definiční obor k-tého členu řady je $(-\frac{1}{k},\infty)-\{0\}$, řadu uvažujeme pouze pro x>0. Pro tato x platí $\ln(1+kx)\leq kx$ (nakreslete si obrázek), tedy

$$\left| \frac{\ln(1+kx)}{kx^k} \right| \le \frac{1}{x^{k-1}} \, .$$

Uvažujeme-li pouze $x \geq \omega > 1$, pak $\left| \frac{\ln(1+kx)}{kx^k} \right| \leq \frac{1}{\omega^{k-1}}$ a pro tato x řada konverguje stejnoměrně podle Weierstrassova kritéria (ověřte předpoklady). Pro zbývající x, (tj. pro $x \in (0,1)$) řada nekonverguje. Řada tedy konverguje stejnoměrně (a její součet je proto spojitou funkcí) na každém intervalu (ω, ∞) , kde $\omega > 1$.

Příklad 2.9. Pomocí derivace řady člen po členu určete součet řady $\sum_{k=1}^{\infty} \frac{e^{kx}}{k}$ včetně určení oboru konvergence.

 $\check{R}e\check{s}en\acute{i}$. Platí $\lim_{k\to\infty}\sqrt[k]{\left|\frac{\mathrm{e}^{kx}}{k}\right|}=e^x<1\Leftrightarrow x<0$. Protože pro x=0 je daná řada harmonická (tedy divergentní), platí $I^*\stackrel{\cdot}{=} (-\infty,0)$. Abychom mohli řadu derivovat člen po členu, vyšetřeme stejnoměrnou konvergenci řad $\sum_{k=1}^{\infty} f_k(x)$ a $\sum_{k=1}^{\infty} f'_k(x)$.

Pro nederivovanou řadu platí

$$\left|\frac{\mathrm{e}^{kx}}{k}\right| \leq \frac{\mathrm{e}^{k\omega}}{k}\,, \quad \omega < 0 \text{ (libovoln\'e \'e\'islo men\'s\'i jak 0)}\,.$$

Číselná řada na pravé straně nerovnosti konverguje (lze snadno ověřit limitním odmocninovým nebo podílovým kritériem – limita vyjde e^{ω} , což je číslo menší jak jedna). Podle Weierstrassova kritéria tedy řada $\sum_{k=1}^{\infty} \frac{e^{kx}}{k}$

konverguje stejnoměrně na každém zprava uzavřeném intervalu $(-\infty,\omega)$, kde $\omega < 0$. Pro řadu derivací máme $\sum_{k=1}^{\infty} f_k'(x) = \sum_{k=1}^{\infty} e^{kx} = \sum_{k=1}^{\infty} (e^x)^k$, což je geometrická řada s kvocientem e^x .

Pro její členy platí

$$|e^{kx}| \le e^{k\omega}$$
, kde $|x| \le \omega$ $(\omega > 0)$.

Majorantní číselná řada $\sum_{k=1}^{\infty} \mathrm{e}^{k\omega}$ je geometrická řada s kvocientem e^{ω} , která konverguje, je-li $\mathrm{e}^{\omega} < 1$, tedy $\omega < 0$. Oborem stejnoměrné konvergence řady $\sum_{k=1}^{\infty} \mathrm{e}^{kx}$ je tedy opět každý interval $(-\infty, \omega)$, kde $\omega < 0$.

Označíme-li součet dané řady s(x), pak derivací člen po členu máme

$$s'(x) = \sum_{k=1}^{\infty} \left(\frac{e^{kx}}{k}\right)' = \sum_{k=1}^{\infty} e^{kx} = \sum_{k=1}^{\infty} (e^x)^k = \frac{e^x}{1 - e^x}.$$

Odtud pak integrací

$$s(x) = \int \frac{e^x}{1 - e^x} dx = -\ln(1 - e^x) + C,$$

kde integrační konstantu určíme dosazením vhodného bodu do řady $\sum_{k=1}^{\infty} \frac{e^{kx}}{k}$ a do funkce s(x) a porovnáme levou stranu s pravou. Tento bod je volen s ohledem na to, abychom uměli vzniklou číselnou řadu sečíst. V našem případě je to zřejmě jedině bod $-\infty$. Odtud

$$L = \sum_{k=1}^{\infty} \lim_{x \to -\infty} \frac{\mathrm{e}^{kx}}{k} = \sum_{k=1}^{\infty} 0 = 0$$
$$P = \lim_{x \to -\infty} s(x) = -\lim_{x \to -\infty} \ln(1 - \mathrm{e}^x) + C = 0 + C.$$

Z rovnosti 0 = 0 + C plyne C = 0. Celkově tedy

$$\sum_{k=1}^{\infty} \frac{\mathrm{e}^{kx}}{k} = -\ln(1 - \mathrm{e}^x) \text{ na intervalu } (-\infty, 0).$$

Poznámka. Všimněme si, že zatímco oborem konvergence byl interval $I^* = (-\infty, 0)$, oborem stejnoměrné konvergence je pouze každý zprava uzavřený podinterval $I^{\star\star} = (-\infty, \omega)$, kde $\omega < 0$. Tvrzení o vlastnostech stejnoměrně konvergentních řad by mohla svádět k tomu, že například součtová funkce bude spojitá pouze na intervalu $I^{\star\star}$. Vidíme ovšem, že tato funkce je spojitá na celém intervalu I^{\star} . Intuitivně, číslo ω může být libovolně blízko nalevo od nuly, a tedy funkční hodnota nemůže nikam "uskočit".

ÚM FSI VUT v Brně 13