

Trabajo Práctico Nº3 Ecuaciones no-lineales

93.54 Métodos Numéricos Grupo N°4

Legajo N°	Nombre	
61428	Kevin Amiel Wahle	
61430	Francisco Basili	
61431	Nicolás Bustelo	

Métodos	Numéricos -	Grupo	4
		O. 4 P O	

ITBA

Índice

1.	Introducción	2
2.	Función solver(L,I,n)	2
3.	Función graphRvL()	2
4.	Anexo 4.1. Código completo en Python	3

1. Introducción

El objetivo de este informe es presentar y explicar el funcionamiento de un programa realizado en *Python*, el cual consiste en encontrar la solución a una ecuación no-lineal.

- 2. Función solver(L,I,n)
- 3. Función graphRvL()

4. Anexo

4.1. Código completo en Python

```
-----
             +mri.py+
2 # @file
3 # @brief
              +Ecuaciones no-lineales+
4 # @author +Grupo 4+
8 # LIBRARIES
10 from termios import NL1
11 import numpy as np
12 import pandas as pd
13 import matplotlib.pyplot as plt
14 import math as mt
17 # FUNCTION DEF
19 # Resolución de ecuaciones no-lineales
20 def solver(L,1,n):
     mu = 4 * np.pi * 10**(-7) # Permeabilidad del vacío
      r = 1 # Radio del solenoide en metros
22
      L = ((mu * n**2 * np.pi * r**2) / (1**2)) * (np.sqrt(r**2 + 1**2) - r)
23
     #Hacer la función que resuelva la ecuación!
24
25
26
      return r
27
28 def graphRL():
      1 = 0.2 # Longitud del solenoide en metros
      L = np.linspace(1e-9,100e-9,1000) # Inductancia del solenoide H
30
      N1 = 10
31
      N2 = 100
32
     N3 = 1000
33
34
35
     r1 = solver(L, 1, N1)
     r2 = solver(L,1,N2)
36
37
     r3 = solver(L,1,N3)
38
      plt.plot(L,r1, label = 'N = 10')
39
      plt.plot(L,r2, label = 'N = 100')
      plt.plot(L,r3, label = 'N = 1000')
41
      plt.xlabel('Inductancia [H]')
42
      plt.ylabel('Radio [m]')
43
      plt.title('Radio vs Inductancia')
44
45
      plt.legend()
  plt.show()
46
```