

ARITHMETIC IN R

Created: 2021-09-07 Di 12:21

WHAT WILL YOU LEARN?

- Perform basic numerical operations
- Translate complex mathematical formulas
- Use logarithms and exponentials
- Brush up on mathematical E-notation
- Know R's special numbers
- Understand logical values and operators

ARITHMETIC OPERATORS

- 1. Parentheses: ()
- 2. Exponentiation: ^ or **
- 3. Multiplication: *
- 4. Division: /
- 5. Addition: +
- 6. Subtraction: -

FORMULA TRANSLATOR I

$$24 + 6/3 \times 5 \times 2^3 - 9$$
 (1)

- What is the result of this expression?
- Compute in your head first
- Then check in the R console

FORMULA TRANSLATOR I

$$2^{3} = 2^{3} = 8$$

 $6/3 = 2$
 $2 * 5 * 8 = 80$
 $24 + 80 = 104$
 $104 - 9 = 95$

You can check this in an R session:

- Remember the PEMDAS order
- Instead of ^ you can use **

FORMULA TRANSLATOR II

$$10^2 + \frac{3 \times 60}{8} - 3\tag{2}$$

$$\frac{5^3 \times (6-2)}{61-3+4} \tag{3}$$

$$2^{2+1} - 4 + 64^{-2^{2 \cdot 25 - \frac{1}{4}}} \tag{4}$$

$$\left(\frac{0.44 \times (1 - 0.44)}{34}\right)^{\frac{1}{2}} \tag{5}$$

- Compute the expressions (2)-(5)
- Use the R console

FORMULA TRANSLATOR II

$$10^{2} + \frac{3 \times 60}{8} - 3$$

$$\frac{5^{3} \times (6 - 2)}{61 - 3 + 4}$$

$$2^{2+1} - 4 + 64^{-2^{2 \cdot 25 - \frac{1}{4}}}$$

$$\left(\frac{0.44 \times (1 - 0.44)}{34}\right)^{\frac{1}{2}}$$

$$\frac{119.5}{8 \times 5^{3} \times (6 - 2) / (61 - 3 + 4)}{[1] \cdot 8.064516}$$

$$\frac{11}{8 \times 2^{2} \times (2 + 1) - 4 + 64^{2} \times (2 \cdot 25 - 1/4)}{[1] \cdot 16777220}$$

$$\frac{11}{8 \times (0.44 \times (1 - 0.44) / 34)^{2} \times (0.44 \times (1 - 0.44) / 34)^{2}}{[1] \cdot 0.08512966}$$

- You need parentheses in the exponent
- -2 is interpreted as -1 * 2
- What does (-1)^(1/2) return?

MATHEMATICAL FUNCTIONS

?sqrt

?log10

?exp

?pi

LOGARITHMIC TRANSFORMATION

Figure 7: Dummy data without (left) and with (right) logarithmic transformation (Source: <u>R Graph</u> <u>Gallery</u>)

See also: <u>The Economist/Off The Charts</u> <u>04/20/2021</u>

LOGARITHM RULES

- Argument x and base b must be positive
- $\forall x$: log(x, b=x)=1 since only $x^1=x$
- ullet $\,$ orall b: \log (x=1 , b) =0 since $b^0=1$

LOGARITHM PUZZLES

- Compute $log_{10}(10,000,000)$ in R
- Enter log10(10,000,000) in R
- Find the logarithm with base 10 for 10,000,010.
- Why is the result the same as before?
- Check: enter log10 (10000100)

EXPONENTIAL FUNCTION

- $ullet \ log(x) \ ext{implies} \ b=epprox 2.7182$
- Verify for x = 10, x = 2.718282, x = 0:

$$e^{ln(x)} = ln(e^x) = x$$

LOGARITHM RULES

- Argument x and base b must be positive
- $\forall x$: log(x, b=x)=1 since only $x^1=x$
- ullet $\,$ orall b: \log (x=1 , b) =0 since $b^0=1$

LOGARITHM PUZZLES

- Compute $log_{10}(10,000,000)$ in R
- Enter log10(10,000,000) in R
- Find the logarithm with base 10 for 10,000,010.
- Why is the result the same as before?
- Check: enter log10 (10000100)

EXPONENTIAL FUNCTION

- log(x) implies b=epprox 2.7182
- Verify for x = 10, x = 2.718282, x = 0:

```
\begin{equation}
\label{eqn:e}
e^{In(x)} = In(e^x)=x
\end{equation}
```

CONSTANTS

- pi($\pi pprox 3.14$)
- LETTERS and letters
- month.name and month.abb
- What about Euler's number *e*?

E-NOTATION

Positive Powers of 10

$$10^1 = 10$$

$$10^2 = 100$$

$$10^3 = 1,000$$

$$10^4 = 10,000$$

etc.

Negative Powers of 10

$$10^{-1} = \frac{1}{10} = 0.1$$

$$10^{-2} = \frac{1}{100} = 0.01$$

$$10^{-3} = \frac{1}{1,000} = 0.001$$

$$10^{-4} = \frac{1}{10,000} = 0.0001$$
etc.

Calcworkshop.com

Scientific Notation is Based on Powers of 10

EXAMPLES

$$10\,000 = 10 \times 10 \times 10 \times 10 \times 10 = 1 \times 10^5 =$$
 1eR+05

7.45678389e12 =
$$7.45678389 \times 10^{12}$$
 = $745.678389 \times 10^{10}$

e = 271828182845e-11

 $=271828182845\times 10^{-11}$

BE THE COMPUTER!

- Enter 100 000 000
- Enter exp(1000) and (-1)/0
- Enter sqrt(-1)

MATH HELP IN R

- ?Arithmetic
- ?Math
- ?Comparison etc.

TO INFINITY AND BEYOND

SPECIAL NUMBERS

- Inf for positive infinity (∞)
- - Inf for negative infinity $(-\infty)$
- NaN for "not-a-number" (not displayable)
- NA for "not available" (missing value)

BE THE COMPUTER!

Inf+1	Inf-1
Inf/Inf	Inf-Inf
NA	NA+NA
NaN	NaN+NaN

SPECIAL FUNCTIONS

is.finite(Inf)	<pre>is.infinite(Inf)</pre>
is.finite(NA)	is.na(NA)
is.nan(NaN)	is.nan(NA)

BE THE COMPUTER!

- Enter 10^309
- Subtract $\sqrt{2}^2$ from 2

LOGICAL VALUES AND OPERATORS

BE THE COMPUTER!

Т	= TRUE
F	= FALSE
T <- FALSE	=> ?
F <- TRUE	=> ?

LOGICAL OPERATORS

There are three logical operators in R:

! for "not": 1 != 1

& for "and": $\sim (1==1) \& (1==2)$

| for "or": (1==2)|(1!=1)

BE THE COMPUTER!

sqrt(2)^2
sqrt(2)^2 == 2
all.equal(sqrt(2)^2, 2)
identical(sqrt(2)^2, 2)

CONCEPT SUMMARY

- In R mathematical expressions are evaluated according to the PEMDAS rule.
- The natural logarithm ln(x) is the inverse of the exponential function e^x .
- In the scientific or e-notation, numbers are expressed as positive or negative multiples of 10.
- Each positive or negative multiple shifts the digital point to the right or left, respectively.
- Infinity Inf, not-a-number NaN, and not available numbers NA are special values in R.

CODE SUMMARY

CODE	DESCRIPTION
log(x=,b=)	logarithm of x, base b
exp(x)	e^x , exp[onential] of x
is.finite(x)	tests for finiteness of x
is.nan(x)	checks if x is not-a-number
is.na(x)	checks if x is not available
all.equal(x,y)	tests near equality
<pre>identical(x,y)</pre>	tests exact equality
1e2, 1e-2	$10^2=100, 10^{-2}=rac{1}{100}$

THANK YOU! QUESTIONS?

REFERENCES

Richard Cotton (2013). <u>Learning R.</u> O'Reilly Media. Tilman M. Davies (2016). <u>The Book of R. (No Starch Press).</u>

Rafael A. Irizarry (2020). <u>Introduction to Data Science</u> (also: CRC Press, 2019). Norman Matloff (2020). <u>fasteR: Fast Lane to</u>

Learning R!.