

Universidade Federal Rural De Pernambuco Unidade Acadêmica De Garanhuns Curso: Bacharelado Em Ciência Da Computação Disciplina: Cálculo Numérico e Computacional Docente: Mario Sansuke Maranhão Watanabe Discentes:

Igor Mauro Silva de Almeida Lucas Siqueira de Araújo

RELATÓRIO

Considerando que as máquinas não conseguem resolver integrais de maneira analítica, conforme estudado em disciplinas como o Cálculo para Computação II, foi-se desenvolvidos métodos numéricos para resolução de tais problemas em máquinas.

O problema proposto descreve a situação de um engenheiro civil que precisa calcular a área de uma seção de profundidade de um rio através de pontos discretos conforme a tabela abaixo:

X	F(X)
0	0,0
2	1,8
4	2,0
6	4,0
8	4,0
10	6,0
12	4,0
14	3,6
16	3,4
18	2,8
20	0,0

Para poder integrar os pontos descritos na tabela acima, foi-se implementados dois métodos diferentes, o método dos trapézios e o método 1/3 de Simpson.

O método do trapézio foi implementado o algoritmo obedecendo à equação descrita abaixo:

$$I = h\left[\frac{f(x_0)}{2} + f(x_1) + f(x_2) + \dots + f(x_{n-1}) + \frac{f(x_n)}{2}\right]$$
$$h = \frac{b-a}{n}$$

Já o método do 1/3 de Simpson foi implementado obedecendo à seguinte formula:

$$I = \frac{h}{3} [f(x_0) + f(x_n) + 4(f(x_1) + f(x_3) + \dots + f(x_{n-1})) + 2(f(x_2) + f(x_4) + \dots + f(x_{n-2}))]$$

$$h = \frac{b-a}{n}$$

Nesse cenário, ao executar os algoritmos nesses pontos obtemos o resultado descrito na tabela seguinte:

Método dos Trapézios	63.2
Método do 1/3 de Simpson	66.399999999999

Por fim, o método do 1/3 de Simpson demonstrou-se mais preciso que os dos trapézios, uma vez que a aproximação dele é entre três pontos, ou seja, uma curva não de dois pontos como o método dos trapézios, ou seja, uma reta. Como o problema proposto contém diversas curvas, o método do 1/3 de Simpson será mais preciso que o dos trapézios.

Garanhuns 02 de Dezembro de 2019.