APPLIED STATISTICAL ANALYSIS I Multiple linear regression

Trajche Panov, PhD panovt@tcd.ie

Department of Political Science Trinity College Dublin

November 5, 2024

Today's Agenda

- (1) Lecture recap
- (2) Tutorial exercises: What is the relationship between education and Euroscepticism?

Why do we need multiple linear regression? And what is a multiple linear regression model?

Why do we need multiple linear regression?

```
Working + Political Knowledge
```

```
## Call:
## lm(formula = polknow ~ work hours, data = samp)
## Residuals:
     Min
             10 Median
## - 7686 - 1760 - 0061 1683 10385
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.59166 1.09142 13.369
                                            <2e-16 ***
## work hours 0.06791
                          0.02640
                                    2.572
                                            0.0103 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.565 on 998 degrees of freedom
## Multiple R-squared: 0.006585, Adjusted R-squared: 0.00559
## F-statistic: 6.615 on 1 and 998 DF, p-value: 0.01025
```

0000000

Multiple linear regression

Why do we need multiple linear regression?

Figure: Education as confounder—Controlling for education is relevant, because it might drive both working hours and political knowledge. Education is causally prior to working hours.

→ Avoid omitted variable bias. Include relevant control variables (Z) which are correlated with both X and Y, and causally prior to X.

Why do we need multiple linear regression?

Figure 9.2. Venn diagram in which *X* and *Z* are correlated with *Y*, but not with each other.

"In that case – which, we have noted, is unlikely in applied research – we can safely omit consideration of Z when considering the effects of X on Y. In that figure, the relationship between X and Y – the area b – is unaffected by the presence (or absence) of Z in the model" (Kellstedt and Whitten 2018, 213).

Why do we need multiple linear regression?

Figure 9.1. Venn diagram in which X, Y, and Z are correlated.

"If, hypothetically, we erased the circle for Z from the figure, we would (incorrectly) attribute all of the area b+d to X, when in fact the d portion of the variation in Y is shared by both X and Z. This is why, when Z is related to both X and Y, if we fail to control for Z, we will end up with a biased estimate of X's effect on Y" (Kellstedt and Whitten 2018, 212).

What is a multiple linear regression model?

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_k X_{ik} + \epsilon_i$$

- α (intercept): expected value of Y when $X_1 = 0, ..., X_k = 0$.
- β₁ (coefficient): expected change in Y when X₁ increases by one unit, while controlling for the remaining independent variables in the model.
- ...
- β_k (coefficient): expected change in Y when X_k increases by one unit, while controlling for the remaining independent variables in the model.

What is a multiple linear regression model?

```
## Call:
## lm(formula = polknow ~ work hours + edu, data = samp)
## Residuals:
     Min
              10 Median
## -67835 -16733 00035 15941 106778
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.854461 1.368601 3.547 0.000408 ***
## work hours 0.006205 0.025623 0.242 0.808714
                         0.070797 \ 10.843 < 2e-16 ***
## edu
              0.767650
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.427 on 997 degrees of freedom
## Multiple R-squared: 0.1114. Adjusted R-squared: 0.1096
## F-statistic: 62.48 on 2 and 997 DF. p-value: < 2.2e-16
```

The effect of working hours disappears.

 \rightarrow Controlling for working hours, with every additional year of education, the political knowledge increases by 0.76765 scale points.

T-TEST FOR INDIVIDUAL COEFFICIENTS

What is the t-test for individual coefficients?

T-TEST FOR INDIVIDUAL COEFFICIENTS

What is the t-test for individual coefficients?

- · Null and alternative hypotheses:
 - there is no association between X and Y, $\beta = 0$ (H_0)
 - there is an association between X and Y, β = 0 (H₁)
- <u>Test statistic:</u> "measures the number of standard errors between the estimate and the H₀ value" (Agresti and Finlay 2009, 192).

$$t = \frac{\textit{Estimate of parameter - Null hypothesis value of parameter}}{\textit{Standard error of estimate}}$$

$$t = \frac{\hat{\beta} - \beta_{H_0}}{\hat{\sigma} \hat{\beta}} = \frac{\hat{\beta} - \beta_{H_0}}{\hat{\sigma} \hat{\beta}}, H_0 \text{ assumes } \beta = 0$$

T-TEST FOR INDIVIDUAL COEFFICIENTS

What is the conclusion? P-value < 0.05, We can reject H_0 with an error probability (p-value) of essentially 0%. \rightarrow There is an association between house selling price and size

Table 3.5 Regression Output for Supervisor Performance Data

Variable	Coefficient	s.e.	t-Test	p-value
Constant	10.787	11.5890	0.93	0.3616
X_1	0.613	0.1610	3.81	0.0009
X_2	-0.073	0.1357	-0.54	0.5956
X_3	0.320	0.1685	1.90	0.0699
X_4	0.081	0.2215	0.37	0.7155
X_5	0.038	0.1470	0.26	0.7963
X_6	-0.217	0.1782	-1.22	0.2356
n = 30	$R^2 = 0.73$	$R_a^2 = 0.66$	$\hat{\sigma} = 7.068$	df = 23

Table 3.2 Description of Variables in Supervisor Performance Data

Variable	Description				
Y	Overall rating of job being done by supervisor				
X_1	Handles employee complaints				
X_2	Does not allow special privileges				
X_3	Opportunity to learn new things				
X_4	Raises based on performance				
X_5	Too critical of poor performance				
X_6	Rate of advancing to better jobs				

<u>General set-up</u>: Test whether reduced model (RM) is adequate (H_0) or full model (FM) is adequate (H_1) .

The reduced model is nested within the full model \rightarrow compare "the goodness of fit that is obtained when using the full model, to the goodness of fit that results using the reduced model".

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$$

(Chatterjee and Hadi 2015, 71–72)

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$$

- * Sum of squared errors (SSE), denotes lack of fit → SSE(RM) – SSE(FM) "represents the increase in the residual sum of squares due to fitting the reduced model".
- * We use the ratio, weighted by "respective degrees of freedom to compensate for the different number of parameters involved in the two models".
- * p=number of IVs full model, n=number of observations, k=number of paraneters reduced model

(Chatterjee and Hadi 2015, 71-72)

Two versions of the F-test

- 1. "All the regression coefficients are zero".
- 2. "Some of the regression coefficients are zero".

(Chatterjee and Hadi 2015, 71)

What is the F-test for all coefficients?

"All the regression coefficients are zero."

- * Reduced model (RM): $Y = \beta_0 + \epsilon$ all slopes are equal to zero, $\beta_k = 0$ (H_0) \rightarrow the null model performs better
- * Full model (FM): $Y = \beta_0 + \beta_1 X_1 + ... + \beta_\rho X_\rho \epsilon$ at least one slope is different from zero, $\beta_\rho = 0$ (H_1) \rightarrow the full model performs better

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)} = \frac{[SST - SSE]/p}{SSE/(n-p-1)} = \frac{SSR/p}{SSE/(n-p-1)}$$

"Because the least squares estimate of β_0 in the reduced model is \overline{y} , the residual sum of squares from the reduced model is SSE(RM)=SST." "reduced model has one regression parameter and the full model has p+1 regression parameter". "Because SST=SSR+SSE, we can replace SST-SSE by SSR"

(Chatterjee and Hadi 2015, 73)

Table 3.5 Regression Output for Supervisor Performance Data

Variable	Coefficient	s.e.	t-Test	p-value
Constant	10.787	11.5890	0.93	0.3616
X_1	0.613	0.1610	3.81	0.0009
X_2	-0.073	0.1357	-0.54	0.5956
X_3	0.320	0.1685	1.90	0.0699
X_4	0.081	0.2215	0.37	0.7155
X_5	0.038	0.1470	0.26	0.7963
X_6	-0.217	0.1782	-1.22	0.2356
n = 30	$R^2 = 0.73$	$R_a^2 = 0.66$	$\hat{\sigma} = 7.068$	df = 23

Table 3.7 Supervisor Performance Data: Analysis of Variance (ANOVA) Table

Source	Sum of Squares	ďť	Mean Square	F-Test 10.5	
Regression	3147.97	6	524.661		
Residuals	1149.00	23	49.9565		

$$F = \frac{SSR/p}{SSE/(n-p-1)} = \frac{3147.97/6}{1149.00/23} = 10.50$$

How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

(Chatterjee and Hadi 2015, 75)

What is the conclusion? P-value < 0.05, We can reject H_0 with an error probability (p-value) of essentially 0%. \rightarrow The full model performs better, "not all β 's can be taken as zero"

(Chatterjee and Hadi 2015, 75).

What is the F-test for some coefficients?

"Some of the regression coefficients are zero".

- * Reduced model (RM): Y = β₀ + β₁X₁ + β₃X₃ + ε subset of slopes is equal to zero, β_k = 0 (H₀) → the reduced model performs better
- * Full model (FM): $Y = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p \epsilon$ at least one slope in the subset is different from zero, $\beta_p = 0$ $(H_1) \rightarrow$ the full model performs better

$$F = \frac{[SSE(RM)-SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$$

(Chatterjee and Hadi 2015, 77)

Table 3.5 Regression Output for Supervisor Performance Data

Variable	Coefficient	s.e.	t-Test	p-value
Constant	10.787	11.5890	0.93	0.3616
X_1	0.613	0.1610	3.81	0.0009
X_2	-0.073	0.1357	-0.54	0.5956
X_3	0.320	0.1685	1.90	0.0699
X_4	0.081	0.2215	0.37	0.7155
X_5	0.038	0.1470	0.26	0.7963
X_6	-0.217	0.1782	-1.22	0.2356
n = 30	$R^2 = 0.73$	$R_a^2 = 0.66$	$\hat{\sigma} = 7.068$	df = 23

Table 3.7 Supervisor Performance Data: Analysis of Variance (ANOVA) Table

Source	Sum of Squares	df	Mean Square	F-Tes
Regression	3147.97	6	524.661	10.5
Residuals	1149.00	23	49.9565	

(Chatterjee and Hadi 2015, 75)

Table 3.8 Regression Output from the Regression of Y on X_1 and X_2

		ANOVA Table			
Source	Sum of Squares	df	Mean Square	F-Test	
Regression	3042.32	2	1521.1600	32.7	
Residuals	1254.65	27	46.4685		
8	C	oefficients Table			
Variable	Coefficient	s.e.	f-Test	p-value	
Constant	9.8709	7.0610	1.40	0.1735	
X_1	0.6435	0.1185	5.43	< 0.0001	
X_3	0.2112	0.1344	1.57	0.1278	
n = 30	$R^2 = 0.708$	$R_a^2 = 0.686$	$\hat{\sigma} = 6.817$	df = 27	

$$F = \frac{[1254.65 - 1149]/4}{1149/23} = 0.0528$$

How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

(Chatterjee and Hadi 2015, 76)

What is the conclusion? P-value > 0.05, We cannot reject H_0 . \rightarrow The reduced model performs better. "The variables X_1 and X_3 together explain the variation in Y as adequately as the full set of six variables" (Chatterjee and Hadi 2015, 77).

What is the reference category?

Environmental Performance_i = $\alpha + \beta_1 * Regime Type_i$

What is the reference category?

Dummy variables should take value 0 and 1 for easy interpretation \rightarrow Re-code existing variables.

```
1 # Import data from Quality of Government dataset
2 qog_data <- read.csv("qog_bas_cs_jan21.csv")
3
4 # Generate dummy variable for regime type as factor variable - democracy
5 # vdem_polyarchy ranges between 0 and 1; cutoff at 0.7
6 # Countries with score equal or above 0.7 are democracies, those below autocracies
7 qog_data$democracy <- factor(ifelse(qog_data$vdem_polyarchy >= 0.7, 1, 0))
8
9 # Define levels of democracy in factor variable
10 levels(qog_data$democracy) <- c("Autocracy", "Democracy")
11
12 # Summarize generated dummy variable
13 summary(qog_data$democracy)</pre>
```

```
## Autocracy Democracy NA's ## 119 54 21
```

What is the reference category?

```
# Generate dummy variable for regime type as factor variable - autocracy
qog_data$autocracy <- factor(ifelse(qog_data$vdem_polyarchy < 0.7, 1, 0))

# Define levels of autocracy in factor variable
levels(qog_data$autocracy) <- c("Democracy", "Autocracy")

# Print first 10 rows in dataset
head(qog_data[c("democracy", "autocracy")], 10)
```

	democracy	autocracy
1	0 Autocracy	1 Autocracy
2	0 Autocracy	1 Autocracy
3	0 Autocracy	1 Autocracy
4	<na></na>	<na></na>
5	0 Autocracy	1 Autocracy
6	<na></na>	<na></na>
7	0 Autocracy	1 Autocracy
8	1 Democracy	0 Democracy
9	1 Democracy	0 Democracy
10	1 Democracy	0 Democracy

What happens if we run:

Environmental Performance = $\alpha + \beta_1 Democracy + \beta_2 Autocracy + \epsilon_i$

What is the reference category?

Environmental Performance $_i = \alpha + \beta_1 Democracy_i + \beta_2 Auocracy_i + \epsilon_i$

```
1 # Fit regression model
2 m1_trap <- lm(epi_epi ~ democracy + autocracy , data = qog _data)
3
4 # Print results
5 summary(m1_trap)</pre>
```

```
lm(formula = epi epi ~ democracy + autocracy, data = gog data)
Residuals:
    Min
            10 Median
                            30
                                   Max
-34.107 -8.860 -0.610 9.293 26.190
Coefficients: (1 not defined because of singularities)
           Estimate Std. Error t value Pr(>|t|)
             39.610
                         1.138
                                 34.80
                                         <2e-16 ***
(Intercept)
             22.098
                         2.002
                                 11.04
                                         <2e-16 ***
democracy1
autocracv1
                 NA
                            NA
                                    NA
                                            NA
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Violates assumption of no perfect multicollinearity (essentially a data problem) \rightarrow One category needs to be excluded = reference category. Interpretation of the model is relative to the reference category.

How to include binary independent variables in multiple linear regression?

Environmental Performance; = $\alpha + \beta_1 * Regime Type_i + \beta_2 * Income_i$

```
## Call:
## lm(epi epi ~ democracy + income, data = gog data)
## Residuals:
      Min
               10 Median
                                      Max
## -53.563 -6.502
                    0.498
                            6.773 20.198
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      35.3027
                                  1.1269 31.327 < 2e-16 ***
## democracyDemocracy 16.5270 1.8409
                                           8.978 9.08e-16 ***
                       3.5793
                                  0.4266
                                           8.390 2.92e-14 ***
## income
## ---
## Signif. codes:
## 0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1
## Residual standard error: 9.982 on 154 degrees of freedom
     (37 observations deleted due to missingness)
## Multiple R-squared: 0.6175, Adjusted ## R-squared:
## F-statistic: 124.3 on 2 and 154 DF, p-value: < 2.2e-16
```

In comparison to autocracies (= reference category), democracies have a 16.5270 scale point higher score on the Environmental Performance Index, under control of income.

$$\hat{Y_i} = \alpha + \beta_1 * Regime Type_i + \beta_2 * Income_i$$

Model for Autocracies:

$$Y_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

$$\hat{Y}_i = 35.303 + (16.527 *0) + (3.579 *Income_i)$$

$$Y_i = 35.303 + (3.579 * Income_i)$$

Model for Democracies:

$$Y_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

$$\hat{Y}_i = 35.303 + (16.527 *1) + (3.579 *Income_i)$$

$$\hat{Y}_i = 51.83 + (3.579 * Income_i)$$

How to select the reference category?

How to select the reference category?

```
# Run regression model with democracy variable
m1_dem <- lm(epi_epi ~ income + democracy, data = qog_data)

# Run regression model with autocracy variable
m1_aut <- lm(epi_epi ~ income + autocracy, data = qog_data)

# Get regression table with stargazer
stargazer(m1_dem, m1_aut)</pre>
```

	Dependent variable:				
	e	pi <u>-</u> epi			
	(1)	(2)			
income	3.579***	3.579***			
democracy1	(0.427) 16.527*** (1.841)	(0.427)			
autocracy1	(110 11)	-16.527***			
Constant	35.303*** (1.127)	(1.841) 51.830*** (1.892)			
Observations R ²	157	157			
	0.618	0.618			
Adjusted R ² F Statistic (df = 2; 154)	0.613 124.331	0.613 124.331			
Note:	*p<0.1; **p<	<0.05; ****p<0.01			

How to select the reference category?

Model 1 for Autocracies:

$$Y_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

$$\hat{Y}_i = 35.303 + (16.527 * 0) + (3.579 * Income_i)$$

$$\hat{Y}_i = 35.303 + (3.579 * Income_i)$$

Model 2 for Autocracies:

$$\hat{Y}_{i} = 51.830 + (-16.527 * Regime Type_{i}) + (3.579 * Income_{i})$$

$$\hat{Y}_i = 51.830 + (-16.527 *1) + (3.579 *Income_i)$$

$$\hat{Y}_i = 35.303 + (3.579 * Income_i)$$

→ Mathematically identical models.

How do we select the reference category?

How to select the reference category?

```
# Run regression model with democracy variable
m1 <- lm(epi_epi ~ income + democracy, data = qog _data)

# Get regression table with stargazer
stargazer(m1)</pre>
```

Dependent variable:
ep i_epi
16.527***
(1.841) 3.579***
3.579***
(0.427)
35.303***
(1.127)
157
0.618
0.613
124.331***
*p<0.1; **p<0.05; ***p<0.01

In comparison to autocracies (= reference category), democracies have a 16.5270 scale point higher score on the Environmental Performance Index, under control of income.

How to include categorical independent variables with more than two levels?

Country	X_{region}	Country	X_{region}	Country	X_{Asia}	X_{EE}	X_{LA}	X_{MENA}	X _{Sub-Saharan}
Afghanistan	Asia	Afghanistan	2	Afghanistan	1	0	0	0	0
Albania	EE	Albania	3	Albania	0	1	0	0	0
Algeria	MENA	Algeria	5	Algeria	0	0	0	1	0
Argentina	LA	Argentina	4	Argentina	0	0	1	0	0
Australia	Advanced	Australia	1	Australia	0	0	0	0	0
:	:	:	:	:	1	:	:	:	:

School enrollment rate = $\alpha + \beta_1 Democracy_i + \beta_2 Region_{EE} + \beta_3 Region_{LA} + \beta_4 Region_{MENA} + \beta_5 Region_{Sub-Saharan} + \varepsilon_i$

- → Include binary/dummy variables for all levels minus one (=reference category).
- α (intercept): expected value of Y when $X_k = 0$
- β (coefficient): expected change in Y for X = 1, in comparison to reference category

→ Convert into factor variable, then R automatically generates dummy variables, with first level as reference category (or change with relevel-function).

```
# Code dummy variables on the fly
2 # specify region Sub-Saharan Africa = reference category
  lm <- Im(primary ser ~ democracy + relevel(as factor(region), ref="Sub-Saharan")</pre>
        Africa''), data = paglavan2021)
  # Print model output
6 summary (Im)
  Call
  lm(formula = primary ser ~ democracy + relevel(as.factor(region).
      ref = "Sub-Saharan Africa"), data = paglayan 2021)
  Coefficients:
                                                            Estimate Std. Error t value Pr(>|t|)
                                                                         1.796 26.754 < 2e-16 ***
  (Intercept)
                                                             48 0 60
                                                             41.291
                                                                         1.351 30.557 < 2e-16 ***
  democracy
  ref = "Sub-Saharan Africa") Advanced Economies
                                                             3.063
                                                                         2 143 1 429 0 15 300 7
  ref = "Sub-Saharan Africa")Asia and the Pacific
                                                             - 9 10 1
                                                                         2.437 - 3.734 0.000192 ***
  ref = "Sub-Saharan Africa") Eastern Europe
                                                             12.991
                                                                         2.825
                                                                                4.599 4.46e-06
  ref = "Sub-Saharan Africa")Latin America and the Caribbean
                                                            - 13 0 90
                                                                         2073 -6315 320e-10 ***
  ref = "Sub-Saharan Africa" )Middle East and North Africa
                                                              4 389
                                                                         2.695
                                                                                1629 0103515
```

Under control of regime type, Eastern Europe has a student enrollment rate of 12.991 percentage points higher than Sub-Saharan Africa.

Education (X) — Euroscepticism (Y)

*Hypothesis*₁: The higher the years of education, the lower the level of Euroscepticism.

*Hypothesis*₂: The higher the income, the lower the level of Euroscepticism. → Economic dimension

*Hypothesis*₃: The higher the trust in politics, the lower the level of Euroscepticism. \rightarrow Political dimension

Hypothesis₃: The more positive attitudes towards immigration, the lower the level of Euroscepticism. → Cultural dimension

References I

Kellstedt, Paul M., and Guy D. Whitten. 2018. *The fundamentals of political science research*. Cambridge: Cambridge University Press.