SolveDSGE v0.4.11 — A User Guide

Richard Dennis* University of Glasgow and CAMA

October 2021

Abstract

SolveDSGE is a Julia package for solving nonlinear Dynamic Stochastic General Equilibrium models. A variety of solution methods are available, and they are interchangable so that one solution can be used subsequently as an initialization for another allowing accurate solutions to be quickly obtained. The package can compute first-, second-, and third-order perturbation solutions and Chebyshev-based, Smolyak-based, and piecewise linear-based projection solutions. Once a model has been solved, the package can used used to simulate data and compute impulse response functions.

JEL Classification: E3, E4, E5.

^{*}Address for Correspondence: Adam Smith Business School, University of Glasgow, Main Building, University Avenue, Glasgow G12 8QQ; email: richard.dennis@glasgow.ac.uk.

1 Introduction

SolveDSGE is a framework for solving and analyzing Dynamic Stochastic General Equilibrium (DSGE) models that is implemented in the programming language Julia. SolveDSGE will solve nonlinear DSGE models using perturbation methods, producing solutions that are accurate to first, second, and third order, but this is not its focus. The package's focus is on applying projection methods to obtain solutions that are globally accurate.

Obtaining globally accurate solutions to nonlinear DSGE models is notoriously difficult. Solutions are invariably slow to obtain and model-specific characteristics are often exploited to speed up the solution process. SolveDSGE does not exploit model-specific characteristics in order to solve a model. Instead, SolveDSGE applies the same general solution strategy to all models. Nonetheless, making use of Julia's speed, SolveDSGE allows models to be solved "relatively quickly", and it provides users with an easy, unified, way of organizing and expressing their model. At the user's request, globally accurate solutions can be obtained using Chebyshev polynomials, Smolyak polynomials, or piecewise linear approximations, with the solution obtained from one approximation scheme able to be used as an initialization for the others, allowing greater speed and accuracy to be obtained via a form of homotophy.

To use SolveDSGE to solve a model, two files must be supplied. The first file (the model file) summarizes the model to be solved. The second file (the solution file) reads the model file, solves the model, and performs any post-solution analysis.

Quite a lot of time and effort has gone into writing SolveDSGE, together with the underlying modules: ChebyshevApprox, SmolyakApprox, and PiecewiseLinearApprox, but it is far from perfect. SolveDSGE may not be able to solve your model, or it may not obtain a solution quickly enough to be useful to you. You are welcome to suggest improvements to fix bugs or add functionality. At the same time, I am hopeful that you will find the package useful for your research. If it is, then please cite this User Guide and add an acknowledgement of SolveDSGE to your paper/report.

2 What types of models can be solved?

SolveDSGE is designed to solve models that can be written in the following standard form:

$$E_t\left[\mathbf{f}\left(\mathbf{x}_t, \mathbf{y}_t, \mathbf{x}_{t+1}, \mathbf{y}_{t+1}, \boldsymbol{\varepsilon}_{t+1}\right)\right] = \mathbf{0},\tag{1}$$

where \mathbf{x}_t is a vector of state variables, \mathbf{y}_t is a vector of jump variables, and $\boldsymbol{\varepsilon}_{t+1}$ is a vector of shocks. The DSGE model's first-order conditions and constraints are specified equation-by-equation. The shocks, state variables, and jump variables are defined and then SolveDSGE takes the model and expresses it in the form of equation (1) in preparation for solution. Equation (1) covers a wide set of models, but obviously not all models. In principle SolveDSGE can handle standard business cycle models of the real and new Keynesian varieties, and it can handle models with volatility shocks, but it cannot solve heterogeneous agents models, nor models with generalized Euler equation like those that emerge from discretionary policy problems or from models with quasi-geometric discounting. Allowing for models that contain generalized Euler equations is a topic for future work. Another set of models that are not fully accommodated are those where the shocks are contemporaneously correlated. Such models can be solved via the perturbation methods, but not via the projection methods (due to the techniques used for quadrature).

3 The model file

SolveDSGE requires that the model to be solved is stored in a model file. The model file is simply a text file so there is nothing particularly special about it. Every model file must contain the following five information categories: "states:", "jumps:", "shocks:", "parameters:", and "equations:"; each category name must end with a colon. Each category will begin with its name, such as "states:" and conclude with an "end". The model file can present these five categories in any order.

The information in each category can be presented with one element per line, or with multiple elements on each line with each element separated by either a comma or a semi-colon. So if the jump variables in the model are labor, consumption, and output, then this could be presented in a variety of ways, such as:

```
jumps:
labor
consumption
output
end
or:
jumps:
labor, consumption, output
end
or:
jumps:
```

labor; consumption, output end

The first lag of a variable is denoted with a -1, so the lag of consumption is consumption (-1). Similarly the first lead of a variable is denoted with a +1, so the lead of consumption is denoted consumption (+1). The first lag of any model variable is automatically included as a state variable, second and higher lags should be given a name, defined by an equation, and included as a state variable explicitly. The package may allow higher lags to processed automatically at a later stage.

In the package, shocks refers to the innovations to the shock processes, so if the shock process is given by:

$$tech(+1) = rho * tech + sd * epsilon,$$

then "tech" will be a state variable, "epsilon" will be a shock, and "rho" and "sd" will be parameters. If the model is deterministic, then it will contain no shocks.

Every element in the equations category must contain an "=" sign, such as: "output = $exp(tech) * capital^alpha * labor^(1.0 - alpha)$ ". If the model is deterministic, or if you are only interested in a perturbation solution, then there is more flexibility regarding how the model is written. But if your model is stochastic and you are interested in a projection solution then the model must be written so that it is linear in expectations (to avid errors associated with Jensen's inequality). What does this mean? Well, taking the consumption-Euler equation as an example, in the former case you could write it as:

```
cons ^(-sigma) = betta *cons(+1) ^(-sigma) *(1.0 - delta + alpha *exp(tech(+1)) *cap(+1) ^(alpha - 1.0))
```

while in the latter case you would need to write it as two equations

$$cons^{(-sigma)} = betta*muc(+1)*(1.0 - delta + alpha*exp(tech(+1))*cap(+1)^{(alpha - 1.0)})$$

 $muc = cons^{(-sigma)}$

My recommendation is that you write all models in the second form so that all solvers can be applied to the model. In many instances the errors associated with Jensen's inequality are small—certainly smaller than the errors between the model and reality—, but for some models/parameterizations or if you are interested in risk premia and such like, then the errors can matter.

In the case of the parameters category, parameter values can (and will usually) be assigned in the model file, such as: "alpha = 0.33". However, parameters can also be assigned values at a later stage—after the model has been processed. It can be useful to assign values to parameters after the model has been processed as this facilitates estimation and allows a model to be solved for a range of parameterizations. To assign a value to a parameter after the model has been processed, only the parameter name gets listed in the parameters category: "alpha".

3.1 Example

The following is an example of a model file for the stochastic growth model:

```
states:
cap, tech
end
jumps:
cons, muc
end
shocks:
epsilon
end
parameters:
betta = 0.99
sigma = 1.1
delta = 0.025
alpha = 0.30
rho = 0.8
sd = 0.01
end
```

equations:

```
cap(+1) = (1.0 - delta)*cap + exp(tech)*cap^alpha - cons
cons^{(-sigma)} = betta*muc(+1)*(1.0 - delta + alpha*exp(tech(+1))*cap(+1)^(alpha - 1.0))
muc = cons^{(-sigma)}
tech(+1) = rho*tech + sd*epsilon
end
```

4 Solving a model

Solving a model is straightforward; it consists of the following steps:

- Read and process the model file. During the processing the order of variables in the system
 may be changed, typically the changes are to place the shocks at the top of the system. After
 processing is complete you will be told what the variable-order is. Any parameters that do
 not have values assigned are also reported.
- 2. Assign values to any parameters that were not given a value in the model file.
- 3. Solve for the model's steady state. This is actually an optional step, if the model is to be solved using a projection method, but knowing the steady state is often useful.
- 4. Specify a SolutionScheme. A SolutionScheme specifies the solution method along with any parameters needed to implement that solution method.
- 5. Solve the model according to the chosen SolutionScheme.

4.1 Reading the model and solving for its steady state

To read and process a model file we simply supply the path/filename to the process_model() function, for example:

```
process model("c:/desktop/model.txt")
```

The processed model is saved in the same folder as the model file, which in then retrieved and stored in a structure:

```
dsge = retrieve \ processed \ model("c:/desktop/model \ processed.txt")
```

When the model is processed the package may report that one of more parameters do not have values assigned (the parameter names are listed). If this is the case, then values must be assigned to these parameters before the model can be solved. This is simple to do through the assign parameters() function:

```
dsge = assign \ parameters(dsge, params)
```

where params is a vector containing the needed values in the order that the parameters were earlier listed. (The name of the model generated by the assign_parameters() function does not need to be the same as the model fed into the function, and will generally be different.) We can then solve for the model's steady state as follows:

```
ss\_obj = compute\_steady\_state(dsge,tol,maxiters)
ss = ss\_obj.zero
```

where dsge is the model whose steady state is to be computed, tol is a convergence tolerance, and maxiters is an integer specifying the maximum number of iterations before the function exits. ss_obj is a structure containing the steady state and information regarding convergence. The steady state vector itself is extracted from this structure in the second line (above).

4.2 Specifying a SolutionScheme

To solve a model a SolutionScheme must be supplied. A SolutionScheme specifies the solution method and the parameters upon which that solution method relies. The solution methods in SolveDSGE are either perturbation methods or projection methods. Accordingly, the Solution-Schemes can be divided into PerturbationSchemes and ProjectionSchemes. We present each in turn.

4.2.1 PerturbationSchemes

To solve a model using a perturbation method requires and PerturbationScheme. Regardless of the model or the order of the perturbation, a PerturbationScheme is a structure with three fields: the point about which to perturb the model (generally the steady state), a cutoff parameter that separates unstable from stable eigenvalues (eigenvalues whose modulus is greater than cutoff are placed in the model's unstable block), and the order of the perturbation. For a first-order perturbation, a typical PerturbationScheme might be the following

```
cutoff = 1.0

N = PerturbationScheme(ss, cutoff, "first")
```

while those for second and third order perturbations might be

```
NN = PerturbationScheme(ss, cutoff, "second") and NNN = PerturbationScheme(ss, cutoff, "third")
```

The method used to compute a first-order perturbation follows Klein (2000), that for a second-order perturbation follows Gomme and Klein (2011), while that for a third-order perturbation follows Binning (2013) with a refinement from Levintal (2017). At this point, perturbation solutions higher than third order are not supported.

4.2.2 ProjectionSchemes

ProjectionSchemes are either ChebyshevSchemes, SmolyakSchemes, or PiecewiseLinearSchemes, and for each of these there is a stochastic (for stochastic models) and a deterministic (for deterministic models) version. The SolutionScheme for the deterministic case is a special case of the stochastic one, so we focus on the stochastic case in what follows.

ChebyshevSchemes Solutions based on Chebyshev polynomials rely on and make use of all of the functionality of the module ChebyshevApprox. This means that an arbitrary number of state variables can be accommodated (if you have enough time!) and both tenser-product and complete polynomials can be used. A stochastic ChebyshevScheme requires the following arguments:

- initial_guess This will usually be a vector containing the model's steady state. It is used as the initial guess at the solution in the case where an initializing solution is not provided (see the section on model solution below).
- node_generator This is the name of the function used to generate the nodes for the Chebyshev polynomial. Possible options include: chebyshev nodes and chebyshev extrema.
- node_number This gives the number of nodes to be used for each state variable. If there is only one state variables then node_number will be an integer. When there are two or more state variables it will be a vector of integers.
- num_quad_nodes This is an integer specifying the number of quadrature points used to compute expectations.

- order This defines the order of the Chebyshev polynomial to be used in the approximating functions. For a complete polynomial order will be an integer; for a tenser-product polynomial order will be a vector of integers.
- domain This contains the domain for the state variables over which the solution is obtained. Domain will be a 2—element vector in the one-state-variable case and a 2 × n array in the n-state-variable case, with the first row of the array containing the upper values of the domain and the second row containing the lower values of the domain. If an initializing solution is provided, then the domain associated with that initializing solution can be used by setting domain to an empty array, Float64[].
- tol_fix_point_solver This specifies the tolerance to be used in the inner loop to determine convergence at each solution node.
- tol_variables This specifies the tolerance to be used in the outer loop to determine convergence of the overall solution.
- maxiters This is an integer specifying the maximum number of outer-loop iterations before the solution exits.

An example of a stochastic ChebyshevScheme is:

```
C = ChebyshevSchemeStoch(ss, chebyshev nodes, [21,21], 9, 4, [0.1 30.0; -0.1 20.0], 1e-8, 1e-6, 1000)
```

In the deterministic case the number of quadrature nodes is not needed, i.e.,

```
Cdet = ChebyshevSchemeDet(ss, chebyshev nodes, [21,21], 4, [0.1 30.0; -0.1 20.0], 1e-8, 1e-6, 1000)
```

SmolyakSchemes Underlying the Smolyak polynomial based solution is the module SmolyakApprox. This module allows for both isotropic polynomials and ansiotropic polynomials and several different methods for producing nodes. SolveDSGE exploits all of this functionality. A stochastic SmolyakScheme requires the following arguments:

• initial_guess — This will usually be a vector containing the model's steady state. It is used as the initial guess at the solution in the case where an initializing solution is not provided (see the section on model solution below).

- node_generator —This is the name of the function used to generate the nodes for the Smolyak polynomial. Possible options include: chebyshev gauss lobatto and clenshaw curtis equidistant
- num_quad_nodes This is an integer specifying the number of quadrature points used to compute expectations.
- layer This is an integer (isotropic case) or a vector of integers (ansiotropic case) specifying the number of layers to be used in the approximation.
- domain This contains the domain for the state variables over which the solution is obtained. Domain will be a 2—element vector in the one-state-variable case and a 2 × n array in the n-state-variable case, with the first row of the array containing the upper values of the domain and the second row containing the lower values of the domain. If an initializing solution is provided, then the domain associated with that initializing solution can be used by setting domain to an empty array, Float64[].
- tol_fix_point_solver This specifies the tolerance to be used in the inner loop to determine convergence at each solution node.
- tol_variables This specifies the tolerance to be used in the outer loop to determine convergence of the overall solution.
- maxiters This is an integer specifying the maximum number of outer-loop iterations before the solution exits.

An example of a stochastic SmolyakScheme is:

```
S = SmolyakSchemeStoch(ss, chebyshev gauss lobatto, 9.3, [0.1, 30.0; -0.1, 20.0], 1e-8, 1e-6, 1000)
```

In the deterministic case the number of quadrature nodes is not needed, i.e.,

```
Sdet = SmolyakSchemeDet(ss, chebyshev\_gauss\_lobatto, 3, [0.1\ 30.0;\ -0.1\ 20.0], 1e-8, 1e-6, 1000)
```

PiecewiseLinearSchemes To obtain piecewise linear solutions, SolveDSGE employs the module PiecewiseLinearApprox, which allows approximations over an arbitrary number of state variables. A stochastic PiecewiseLinearScheme requires the following arguments:

- initial_guess This will usually be a vector containing the model's steady state. It is used as the initial guess at the solution in the case where an initializing solution is not provided (see the section on model solution below).
- node_number This gives the number of nodes to be used for each state variable. If there is only one state variables then node_number will be an integer. When there are two or more state variables it will be a vector of integers.
- num_quad_nodes This is an integer specifying the number of quadrature points used to compute expectations.
- domain This contains the domain for the state variables over which the solution is obtained. Domain will be a 2—element vector in the one-state-variable case and a 2 × n array in the n-state-variable case, with the first row of the array containing the upper values of the domain and the second row containing the lower values of the domain. If an initializing solution is provided, then the domain associated with that initializing solution can be used by setting domain to an empty array, Float64[].
- tol_fix_point_solver This specifies the tolerance to be used in the inner loop to determine convergence at each solution node.
- tol_variables This specifies the tolerance to be used in the outer loop to determine convergence of the overall solution.
- maxiters This is an integer specifying the maximum number of outer-loop iterations before the solution exits.

An example of a stochastic PiecewiseLinearScheme is:

```
P = PiecewiseLinearStoch(ss, [21,21], 9, [0.1\ 30.0;\ -0.1\ 20.0], 1e-8, 1e-6, 1000)
```

In the deterministic case the number of quadrature nodes is not needed, i.e.,

```
Pdet = PiecewiseLinearDet(ss, [21,21], [0.1\ 30.0;\ -0.1\ 20.0], 1e-8, 1e-6, 1000)
```

4.3 Model solution

Once a SolutionScheme is specified we are in a position to solve the model. In order to do so we use the solve_model() function, which takes either two or three arguments. For a perturbation

solution solve_model() requires two arguments: the model to be solved and the SolutionScheme, as follows:

```
soln\_first\_order = solve\_model(dsge,N) soln\_second\_order = solve\_model(dsge,NN) soln\_third\_order = solve\_model(dsge,NNN)
```

Alternatively, for a projection solution solve_model() takes either two, three, or four arguments. To provide a concrete example, suppose we wish to solve our model using Chebyshev polynomials. If we want the projection solution to be initialized using the steady state, then solve_model() requires only two arguments: the model to be solved and the SolutionScheme:

```
soln \ chebyshev = solve \ model(dsge, C)
```

If we want the projection solution to be initialized using the third-order perturbation solution, then solve_model() requires three arguments: the model to be solved, the initializing solution, and the SolutionScheme:

```
soln \ chebyshev = solve \ model(dsge, soln \ third \ order, C)
```

Although this example uses a third-order perturbation as the initializing solution, any solution (first-order, second-order, third-order, Chebyshev, Smolyak, or piecewise linear) can be used.

Finally, the routines for obtaining projection solutions have multi-threaded variants where the final argument in the function is an integer specifying the number of threads to be used. For example:

```
soln\_chebyshev = solve\_model(dsge, C, 4) soln\_chebyshev = solve\_model(dsge, soln\_third\_order, C, 4)
```

would solve the model using 4 threads. Before using these multi-threaded functions you will need to know how many threads are available on your computer (Threads.nthreads()). Note, that there is an overhead to using multi-threading so these functions may not always solve your model more quickly and it is often the case that better performance can be achieved by not using all available threads.

4.3.1 A comment on third-order perturbation

Sometimes it can be useful to add skewness to the shocks, but this is not easy to do through the model file. If you want your shocks to be skewed, then you can access the third order perturbation solution by calling:

$$soln\ third\ order = solve\ third\ order(dsge,NNN,skewness)$$

where skewness is a 2D array containing the skewness coefficients. If there is only one shock, then the skewness array is:

$$skewness = E [\epsilon_1 \epsilon_1 \epsilon_1].$$

If there are two shocks, then the skewness array is:

$$skewness = E \left[\begin{array}{cccc} \epsilon_1 \epsilon_1 \epsilon_1 & \epsilon_1 \epsilon_2 & \epsilon_1 \epsilon_2 \epsilon_1 & \epsilon_1 \epsilon_2 \epsilon_2 \\ \epsilon_2 \epsilon_1 \epsilon_1 & \epsilon_2 \epsilon_1 \epsilon_2 & \epsilon_2 \epsilon_2 \epsilon_1 & \epsilon_2 \epsilon_2 \epsilon_2 \end{array} \right].$$

Etc.

4.3.2 Solution structures

When a model is solved the solution is returned in the form of a structure. The exact structure returned depends on the solution method.

First-order perturbation The first-order perturbation solution takes the following form:

$$\mathbf{x}_{t+1} = \mathbf{h}_{\mathbf{x}} \mathbf{x}_t + \mathbf{k} \epsilon_{t+1},$$

 $\mathbf{y}_t = \mathbf{g}_{\mathbf{x}} \mathbf{x}_t.$

The solution structure for a stochastic first-order perturbation has the following fields:

- hbar The steady state of the state variables
- hx The first-order coefficients in the state-transition equation
- k The loading matrix on the shocks in the state-transition equation.
- gbar The steady state of the jump variables
- gx The first-order coefficients in the jump's equation
- sigma An identy matrix

- grc The number of eigenvalues with modulus greater than cutoff.
- Soln_type Either "determinate", "indeterminate", or "unstable".

The solution to a deterministic model has the same fields as the stochastic solution with the exceptions of \mathbf{k} and sigma.

Second-order perturbation The second-order perturbation solution takes the following form:

$$\mathbf{x}_{t+1} = \mathbf{h}_{\mathbf{x}} \mathbf{x}_t + \frac{1}{2} \mathbf{h}_{\mathbf{s}\mathbf{s}} + \frac{1}{2} \left(\mathbf{I} \otimes \mathbf{x}_t \right) \mathbf{h}_{\mathbf{x}\mathbf{x}} \left(\mathbf{I} \otimes \mathbf{x}_t \right) + \mathbf{k} \boldsymbol{\epsilon}_{t+1},$$

$$\mathbf{y}_t = \mathbf{g}_{\mathbf{x}} \mathbf{x}_t + \frac{1}{2} \mathbf{g}_{\mathbf{s}\mathbf{s}} + \frac{1}{2} \left(\mathbf{I} \otimes \mathbf{x}_t \right) \mathbf{g}_{\mathbf{x}\mathbf{x}} \left(\mathbf{I} \otimes \mathbf{x}_t \right).$$

The solution structure for a stochastic second-order perturbation has the following fields:

- hbar The steady state of the state variables
- hx The first-order coefficients in the state-transition equation
- hss The second-order stochastic adjustment to the mean in the state-transion equation
- hxx The second-order coefficients in the state-transition equation
- ullet k The loading matrix on the shocks in the state-transition equation.
- gbar The steady state of the jump variables
- gx The first-order coefficients in the jump's equation
- gss The second-order stochastic adjustment to the mean in the jump's equation
- gxx The second-order coefficients in the jump's equation
- sigma An identy matrix
- grc The number of eigenvalues with modulus greater than cutoff.
- Soln_type Either "determinate", "indeterminate", or "unstable".

The solution to a deterministic model has the same fields as the stochastic solution with the exceptions of $\mathbf{h_{ss}}$, \mathbf{k} , $\mathbf{g_{ss}}$, and sigma.

Third-order perturbation The third-order perturbation solution takes the following form:

$$\mathbf{x}_{t+1} = \mathbf{h_x} \mathbf{x}_t + \frac{1}{2} \mathbf{h_{ss}} + \frac{1}{2} \mathbf{h_{xx}} \left(\mathbf{x}_t \otimes \mathbf{x}_t \right) + \frac{1}{6} \mathbf{h_{sss}} + \frac{3}{6} \mathbf{h_{ssx}} \mathbf{x}_t + \frac{1}{6} \mathbf{h_{xxx}} \left(\mathbf{x}_t \otimes \mathbf{x}_t \otimes \mathbf{x}_t \right) + \mathbf{k} \boldsymbol{\epsilon}_{t+1},$$

$$\mathbf{y}_t = \mathbf{g_x} \mathbf{x}_t + \frac{1}{2} \mathbf{g_{ss}} + \frac{1}{2} \mathbf{g_{xx}} \left(\mathbf{x}_t \otimes \mathbf{x}_t \right) + \frac{1}{6} \mathbf{g_{sss}} + \frac{3}{6} \mathbf{g_{ssx}} \mathbf{x}_t + \frac{1}{6} \mathbf{g_{xxx}} \left(\mathbf{x}_t \otimes \mathbf{x}_t \otimes \mathbf{x}_t \right).$$

The solution structure for a stochastic third-order perturbation has the following fields:

- hbar The steady state of the state variables
- hx The first-order coefficients in the state-transition equation
- hss The second-order stochastic adjustment to the mean in the state-transion equation
- hxx The second-order coefficients in the state-transition equation
- hsss The third-order stochastic adjustment for skewness to the mean in the state-transition equation
- hssx The volatility adjustment to the state-transition equation
- hxxx The third-order coefficients in the state-transition equation
- k The loading matrix on the shocks in the state-transition equation.
- gbar The steady state of the jump variables
- gx The first-order coefficients in the jump's equation
- gss The second-order stochastic adjustment of the mean in the jump's equation
- gxx The second-order coefficients in the jump's equation
- gsss The third-order stochastic adjustment for skewness to the mean in the jump's equation
- gssx The volatility adjustment to the jump's equation
- gxxx The third-order coefficients in the jump's equation
- sigma An identy matrix
- grc The number of eigenvalues with modulus greater than cutoff.
- Soln_type Either "determinate", "indeterminate", or "unstable".

The solution to a deterministic model has the same fields as the stochastic solution with the exceptions of $\mathbf{h_{ss}}$, $\mathbf{h_{sss}}$, $\mathbf{h_{sss}}$, $\mathbf{k_{sss}}$, $\mathbf{g_{ss}}$, $\mathbf{g_{sss}}$, $\mathbf{g_{sss}}$, and sigma.

Chebyshev solution The solution structure for the Chebyshev solution has the following fields:

- variables A vector of arrays containing the solution for each variable
- weights A vector of arrays containing the weights for the Chebyshev polynomials
- nodes A vector of vectors containing the Chebyshev nodes
- order The order of the Chebyshev polynomials
- domain The domain for the state variables
- k Innovation loading matrix
- iteration count The number of iterations needed to achieve convergence
- node generator The function used to generate the nodes

The solution to a deterministic model has the same fields with the exception of sigma.

Smolyak solution The solution structure for the Smolyak solution has the following fields:

- variables A vector of arrays containing the solution for each variable
- weights: A vector of vectors containing the weights for the polynomials
- grid A matrix containing the Smolyak grid
- multi-index A matrix containing the multi-index underlying the polynominals
- layer The number of layers in the approximation
- domain The domain for the state variables
- k Innovation loading matrix
- iteration_count The number of iterations needed to achieve convergence
- node generator The function used to generate the nodes

The solution to a deterministic model has the same fields with the exception of sigma.

Piecewise linear solution The solution structure for the piecewise linear solution has the following fields:

- variables A vector of arrays containing the solution for each variable
- nodes A vector of vectors containing the nodes
- domain The domain for the state variables
- k Innovation loading matrix
- iteration count The number of iterations needed to achieve convergence

The solution to a deterministic model has the same fildls with the exception of sigma.

5 Post-solution analysis

Once you have solved your model there are many things that you might want to use the solution for. Some of the more obvious things, such as simulating data from the solution and computing impulse response functions have been built into SolveDSGE to make things easier for you.

5.1 Simulation

To simulate data from a model's solution the function to use is simulate(), whose arguments are a model solution, an initial state, and the number of observations to simulate. An optimal final argument is the seed for the random number generator. An example of simulate() in action would be:

```
data \ states, \ data \ jumps = simulate(soln, [0.0, 25.0], 100000)
```

As this example makes clear, the simulate function returns two 2D arrays. The first array contains simulated data for the state variables, the second array contains simulated data for the jump variables. The simulate function can be applied to both stochastic and deterministic models.

5.2 Impulse response functions

Impulse responses are obtained using the impulses() function, which takes three arguments: the model solution, the length of the impulse response function (number of periods), the nature of the perturbation to apply, and the number of repetitions to use for the Monte Carlo integration. The method used to compute the impulses draws on Potter (2000). Responses to both a positive and a

negative innovation are generated. An optimal final argument is the seed for the random number generator. For a model with two shocks, an example of impulses() in use would be:

```
pos\ responses,\ neg\ responses = impulses(soln, 50, [2, 0], 10000)
```

which applies a two standard deviation impulse to the first shock and no impulse to the second shock. For the nonlinear solutions (second-order perturbation, third-order perturbation, and the projection-based solutions) the initial state is "integrated-out" via a Monte Carlo that averages over draws taken from the unconditional distribution of the state variables. At this stage in the package's development, the impulses need to be computed one perturbation at a time; this will probably change at some point.

5.3 PDFs and CDFs

SolveDSGE contains functions for approximating the probability density function and the cumulative distribution function of a variable, where the approximation is based on Fourier series (Kronmal and Tarter, 1968). Most of the functionality relates to the univariate case, but some functionality is included to approximate and evaluate the PDF in the multivariate case.

5.3.1 Univariate

To approximate the probability density function and evaluate the approximated function at a point the function is:

```
f = approximate \ density(sample,point,order,lower\_bound,upper\_bound)
```

where *sample* is a vector of data, *point* is the value at which the PDF is evaluated, *order* is the order of the Fourier series approximation, and *lower_bound* and *upper_bound* specify the support over which the PDF is constructed. If an approximation of the entire PDF is sought, then the function is:

```
nodesf, f = approximate\_density(sample, order, lower\_bound, upper\_bound)
```

Similarly, the cumulative distribution function is approximated and evaluated at a point using the function:

```
F = approximate \ distribution(sample, point, order, lower \ bound, upper \ bound)
```

where *sample* is a vector of data, *point* is the value at which the CDF is evaluated, *order* is the order of the Fourier series approximation, and *lower_bound* and *upper_bound* specify the support over which the CDF is constructed. If an approximation of the entire CDF is sought, then the function is:

```
nodesF, F = approximate \ distribution(sample, order, lower \ bound, upper \ bound)
```

5.4 Decision rules, laws-of-motion

The model's solution can be used to construct functions of the state that govern the behavior of the jump variables (decision rules) and the future outcomes for the state variables (laws-of-motion or state-transition functions). These functions are produced by calling the $state_space_eqm()$ function with the model as the only input, i.e.,

```
eqm_dyn = state\_space\_eqm(soln\_third\_order)
or
eqm_dyn = state\_space\_eqm(solna)
```

Then the decision rule function and the state-transition function are accessed via

```
dec\_rule = eqm.dyn.g

state\_trans = eqm\_dyn.h
```

The former of these (dec_rule) is a function of the state (a vector) while the latter (state_trans) is a function of the state (a vector) for deterministic models and a function of the state (a vector) and the shocks (a vector) for stochastic models.

5.5 Evaluating accuracy

SolveDSGE.jl offers two ways to think about solution accuracy. The first way is to compare two solutions and assess the magnitudes of any differences. This facilitates an adaptive approach to approximation and it allows robustness of the solution to be assessed across approximation schemes. When comparing two models, SolveDSGE looks at the predicted values for the jump variables, returning the maximum absolute difference for each jump variable found for a random sample of 100,000 realizations of the state variables. We compare two solution according to:

```
errors = compare \ solutions(solna, solnb, domain, seed)
```

where *solna* and *solnb* are the two solutions to be compared, *domain* is the domain for the state variables over which the comparison takes place, and *seed* is an optional argument that sets the seed for the random number generator.

The second way of assessing solution accurage is through traditional Euler-equation errors. In the case of a perturbation solution, we compute the Euler-equation errors through:

```
e_errors, states = euler_errors(dsge,soln_first_order,domain,ndraws,seed)
and in the case of a projection solution, through:
e_errors, states = euler_errors(dsge,solna,ndraws,seed)
```

In each case, e_errors is a 2D matrix containing the Euler-errors, dsge is the model, ndraws is an integer for the number of random points in the domain to be analyzed, and seed is an (optional) seed for the random number generator. For a perturbation solution, the domain to be used needs to be supplied, while for a projection solution the domain is taken from that used to solve the model. In the case of the stochatic growth model presented earlier, approximation takes place in only one equation (the consumption Euler-equation) so e_errors is a $1 \times ndraws$ matrix. states is a matrix containing the points in the domain that were randomly chosen to be analyzed.

References

- [1] Andreasen, M., Fernández-Villaverde, J., and J. Rubio-Ramirez, (2017), "The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications", Review of Economic Studies, 0, pp. 1—49.
- [2] Binning, A., (2013), "Third-Order Approximation of Dynamic Models Without the Use of Tensors", Norges Bank Working Paper 2013–13.
- [3] Gomme, P., and P. Klein, (2011), "Second-Order Approximation of Dynamic Models Without the Use of Tensors", *Journal of Economic Dynamics and Control*, 35, pp. 604—615.
- [4] Judd, K. (1992), "Projection Methods for Solving Aggregate Growth Models", Journal of Economic Theory, 58, pp.410—452.

- [5] Judd, K., Maliar, L., Maliar, S., and R. Valero, (2014), "Smolyak Method for Solving Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain", Journal of Economic Dynamics and Control, 44, pp. 92—123.
- [6] Judd, K., Maliar, L., Maliar, S., and I. Tsener, (2017), "How to Solve Dynamic Stochastic Models Computing Expectations just Once", *Quantitative Economics*, 8, pp.851—893.
- [7] Klein, P., (2000), "Using the Generalized Schur Form to Solve a Multivariate Linear Rational Expectations Model", *Journal of Economic Dynamics and Control*, 24, pp. 1405—1423.
- [8] Kronmal, R., and M. Tarter, (1968), "The Estimation of Probability Densities and Cumulatives by Fourier Series Methods", Journal of the American Statistical Association, 63, 323, pp.925– 952.
- [9] Levintal, O., (2017), "Fifth-Order Perturbation Solution to DSGE models", Journal of Economic Dynamics and Control, 80, pp. 1–16.
- [10] Potter, S., (2000), "Nonlinear Impulse Response Functions", Journal of Economic Dynamics and Control, 24, pp. 1425—1446.