Abstract Algebra Homework 7

Joe Loser

March 18, 2016

This problem set includes problems 10.3 numbers 4*d*), 11.3 numbers 7,16,17 and 11.4 number 5.

4) Let T be the group of nonsingular upper triangular 2×2 matrices with entries in \mathbb{R} . Let U consist of matrices of the form

 $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$

where $x \in \mathbb{R}$.

4d) Show that T/U is abelian.

<u>Proof</u>: Note that we have already showed that U is normal in T in part 4c). To show that T/U is abelian, we need to show that (AU)(BU) = (BU)(AU) for all $A, B \in T$.

Let $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ and let $B = \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix}$. Then we have that

$$AB = \begin{pmatrix} aa' & ab' + bc' \\ 0 & cc' \end{pmatrix}$$

and

$$BA = \begin{pmatrix} a'a & a'b + b'c \\ 0 & c'c \end{pmatrix}.$$

This shows that $AB \neq BA$ in general. However, we want to show that (AU)(BU) = (BU)(AU). Note that (AU)(BU) = ABU and (BU)(AU) = BAU since U is normal. Let $C = \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \in U$ where $z \in \mathbb{R}$. Then we have that

$$ABU = \begin{pmatrix} aa' & z(ab' + bc') \\ 0 & cc' \end{pmatrix}$$

and

$$BAU = \begin{pmatrix} a'a & z(a'b+b'c) \\ 0 & c'c \end{pmatrix}.$$

Notice that aa' = a'a and cc' = c'c since $a, a', c, c' \in \mathbb{R}$. So we see that ABU and BAU only differ in the upper right entry. This does not matter though since U is matrices of the form

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$

where $x \in \mathbb{R}$. Notice that both z(ab' + bc') and $z(a'b + b'c) \in \mathbb{R}$. Thus, AB and BA define the same coset in U, meaning that ABU = BAU. Thus T/U is abelian.

- 7) In the group \mathbb{Z}_{24} , let $H = \langle 4 \rangle$ and $N = \langle 6 \rangle$.
- a) List the elements in H + N and $H \cap N$.

Solution: We have that

$$H + N = \{h + n \mid h \in H \text{ and } n \in N\}$$

$$= \{h + n \mid h \in \langle 4 \rangle \text{ and } n \in \langle 6 \rangle\}$$

$$= \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22\}$$

$$= \langle 2 \rangle$$

We also see that $H \cap N = \{0, 12\}.$

Remarks: Note that $H + N = \langle \gcd(4, 6) \rangle$ in \mathbb{Z}_{24} and also that $H \cap N = \langle \operatorname{lcm}(4, 6) \rangle \mathbb{Z}$ in \mathbb{Z}_{24} .

b) List the cosets in HN/N, showing the elements in each coset.

Solution: We know that

$$(H+N)/N := \{g+n | g \in H+N\}.$$

So we see that the cosets that partition H + N are the following:

$$0 + N = \{0, 6, 12, 18\}$$
$$2 + N = \{2, 8, 14, 20\}$$
$$4 + N = \{4, 10, 16, 22\}$$

c) List the costs in $H/(H \cap N)$, showing the elements in each coset.

Solution: We know that

$$H/(H \cap N) := \{aH \cap N \mid a \in H\}.$$

So we see that the cosets that partition the group *H* are the following:

$$0 + H \cap N = \{0, 12\}$$
$$4 + H \cap N = \{4, 16\}$$
$$8 + H \cap N = \{8, 20\}$$

d) Give the correspondence between (H+N)/N and $H/(H\cap N)$ described in the proof of the Second Isomorphism Theorem.

<u>Solution</u>: Recall that all subgroups of an abelian group are normal. Since \mathbb{Z}_{24} is an abelian group, we have that H and N are normal in \mathbb{Z}_{24} . So we can apply the Second Isomorphism Theorem which tells us

$$H/(H \cap N) \cong (H+N)/N$$
.

16) If H and K are normal subgroups of G and $H \cap K = \{e\}$, prove that G is isomorphic to a subgroup of $G/H \times G/K$.

<u>Proof</u>: To show that *G* is isomorphic to a subgroup of $G/H \times G/K$, we need to define a function ϕ and show it is a group homomorphism. Then we will show that $\ker \phi = \{e\}$ and use the First Isomorphism Theorem.

Let ϕ : $G \mapsto G/H \times G/K$ be defined as $\phi(g) = (gH, gK)$. Clearly the function ϕ is well-defined. We now need to show this is indeed a group homomorphism. Let $a, b \in G$. Then

$$\phi(ab) = (abH, abK)$$
$$= (aH, aK)(bH, bK)$$
$$= \phi(a)\phi(b).$$

So ϕ is a homomorphism. From the First Isomorphism Theorem, we know that

$$G/\ker\phi\cong\phi(G)$$
.

Since $\phi(G)$ is a subgroup of $G/H \times G/K$ and we want to show $G \cong \phi(G)$, it suffices for us to show that $\ker \phi = \{e\}$, i.e. $\ker \phi = H \cap K$.

Let $g \in \ker \phi$. Then $\phi(g) = (gH, gK) = (H, K)$. That is, gH = H and gK = K. Thus $g \in H \cap K$ and we have that $\ker \phi \subset H \cap K$. Contrarily, if $g \in H \cap K$ then we clearly see that $\phi(g) = (gH, gK) = (H, K)$ so that $H \cap K \subset \ker \phi$. Thus $\ker \phi = H \cap K$.

Since we have shown that $\ker \phi = H \cap K$, i.e. ϕ is one-to-one, we have proven that

$$G \cong \phi(G)$$

which is a subgroup of $G/H \times G/K$.

17) Let $\phi: G_1 \mapsto G_2$ be a surjective group homomorphism. Let H_1 be a normal subgroup of G_1 and suppose that $\phi(H_1) = H_2$. Prove or disprove that $G_1/H_1 \cong G_2/H_2$.

Proof: We will disprove that $G_1/H_1 \cong G_2/H_2$ by giving a counterexample.

Let $G_1 = \mathbb{Z}$, $G_2 = \mathbb{Z}$, $H_1 = 2\mathbb{Z}$, $H_2 = 3\mathbb{Z}$. Then we see that obviously $G_1 \cong G_2$ and $H_1 \cong \mathbb{Z} \cong H_2$. However, for the quotient groups, we have that

$$G_1/H_1 = \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}_2$$

and

$$G_2/H_2 = \mathbb{Z}/3\mathbb{Z} \cong Z_3$$
.

So $G_1/H_1 \ncong G_2/H_2$. We have not explicitly defined our surjective group homomorphism ϕ yet.

All possible homomorphisms from $\mathbb{Z} \mapsto \mathbb{Z}$ are determined by the image of the generator, i.e. 1. So suppose then that $\phi(1) = n$ for $n \in \mathbb{Z}$. Then the homomorphism is

$$\phi(k) = \phi(k \cdot 1)$$
$$= k\phi(1)$$
$$= kn$$

for all $k \in \mathbb{Z}$. Thus, *all* of the possible homomorphisms from $\mathbb{Z} \mapsto \mathbb{Z}$ are of the form $\phi_n : \mathbb{Z} \mapsto \mathbb{Z}$ defined by $\phi_n(k) = kn$ for all $k, n \in \mathbb{Z}$. However, for the purposes of this problem, we are only interested in homomorphisms of \mathbb{Z} onto \mathbb{Z} . Since \mathbb{Z} only has two generators: 1 and -1, we have that the two possible onto homomorphisms are

$$\phi_1 : \mathbb{Z} \mapsto \mathbb{Z}; \phi_1(k) = k$$

$$\phi_{-1} : \mathbb{Z} \mapsto \mathbb{Z}; \phi_{-1}(k) = -k.$$

Since we have constructed a specific example showing that $G_1/H_1 \cong G_2/H_2$ does not always hold, we are done.

5) Let G be a group and let i_g be an inner automorphism of G and define a map $G \mapsto Aut(G)$ by $g \mapsto i_g$. Prove that this map is a homomorphism with image Inn(G) and kernel Z(G). Use this result to conclude that

$$G/Z(G) \cong Inn(G)$$

<u>Proof</u>: Recall that $i_g(x) := gxg^{-1}$. We first show that the map is a homomorphism. Let $a, b \in G$. Then

$$i_{ab}(x) = (ab)x(ab)^{-1}$$

$$= abxb^{-1}a^{-1}$$

$$= a(bxb^{-1})a^{-1}$$

$$= i_a(i_b(x))$$

$$= (i_ai_b)(x)$$

Since $i_{ab} = i_a i_b$ our map is a homomorphism.

By definition, we know that Inn(G) is the set of inner automorphisms:

$$Inn(G) := \{i_g \mid g \in G\}.$$

So clearly the image for our homomorphism is Inn(G) by definition. Next, we show that the kernel of this homomorphism is Z(G), the center of G.

$$\{a \in G \mid i_a(x) = x \quad \forall x \in G\} = \{a \in G \mid axa^{-1} = x \quad \forall x \in G\}$$
$$= \{a \in G \mid ax = xa \quad \forall x \in G\}$$
$$= Z(G)$$

By the First Isomorphism Theorem, we conclude that

$$G/Z(G) \cong Inn(G)$$
.