CSE206C DESIGN AND ANALYSIS OF ALGORITHMS

B. Tech. Semester – IV (Computer Science and Engg.)

w.e.f. 2019-2020

L	Т	Ρ	Credits	Class Work	•	25 Marks
3	0	0	3	Examination	•	75 Marks
				Total	•	100Marks
				Duration of Examination		3 Hours

Course Objectives:

- 1. To analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms.
- 2. To apply the algorithms and design techniques to solve problems.
- 3. To explain the major graph algorithms and their analyses and to employ graphs to model engineering problems.
- To understand the concepts of tractable and intractable problems and the classes P, NP and NP-complete problems.

UNIT-I

Introduction: Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem.

UNIT-II

Fundamental Algorithmic Strategies: Brute-Force, Greedy, Dynamic Programming, Branch-and-Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving, Bin Packing, Knap Sack TSP. Heuristics-characteristics and their application domains.

UNIT-III

Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.

UNIT-IV

Tractable and Intractable Problems: Computability of Algorithms, Computability classes – P, NP, NP-complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques.

Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP - P SPACE