П.2. Свойства равномерно сходящихся рядов

Ряд $\sum_{n=1}^{\infty}u_n(x)$ называется мажорируемым в некоторой области X, если существует такой ряд $\sum_{n=1}^{\infty}M_n$, $M_n\geq 0$, что для любого $x\in X$ выполняется неравенство $|u_1(x)|\leq M_1$; $|u_2(x)|\leq M_2$; ...; $|u_n(x)|\leq M_n$.

Теорема 12 (Признак Вейерштрасса равномерной сходимости ряда). Пусть ряд $\sum_{n=1}^{\infty}u_n(x)$ — мажорируемый в некоторой области E и мажорантный ряд $\sum_{n=1}^{\infty}M_n$ — сходящийся, то мажорируемый ряд сходится равномерно в E.

Доказательство. Ряд $\sum_{n=1}^{\infty} M_n$ сходится, следовательно, по критерию Коши для любого $\varepsilon > 0$ существует такое N, что для любого n > N и для любого натурального p выполняется неравенство $\sum_{k=n+1}^{n+p} M_n < \frac{\varepsilon}{2}$. Следовательно, $M_{n+1} + \dots + M_{n+p} > |u_{n+1}(x)| + |u_{n+2}(x)| + \dots + |u_{n+p}(x)|$. Получается, что для любого $x \in E$ выполняется $|u_{n+1}(x)| + |u_{n+2}(x)| + \dots + |u_{n+p}(x)| < \frac{\varepsilon}{2}$, а при $p \to \infty$ для любого $x \in E$ выполняется $|r_n(x)| \le \frac{\varepsilon}{2} < \varepsilon$. А так как $|u_{n+1}(x)| + u_{n+2}(x) + \dots + u_{n+p}(x)| \le |u_{n+1}(x)| + |u_{n+2}(x)| + \dots + |u_{n+p}(x)|$, то получается, что $|u_{n+1}(x)| + u_{n+2}(x) + \dots + u_{n+p}(x)| \le \frac{\varepsilon}{2} < \varepsilon$. Следовательно, ряд сходится равномерно по определению.

 ${\color{red} {\bf 3ameчaниe.}}$ Мажорируемый ряд сходится на E не только равномерно, но и абсолютно.

<u>Теорема 13.</u> Равномерно сходящийся в области *E* ряд, составленный из непрерывных функций, представляет собой функцию, непрерывную в этой области. Без доказательства.

Пример. $\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \cdots + \frac{\cos nx}{n^2} + \cdots$. Для любого $x \in R$ выполняется $\left| \frac{\cos nx}{n^2} \right| < \frac{1}{n^2}$, а $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходящийся. Следовательно, $S(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ – непрерывная функция на R.

Теорема 14. Равномерно сходящийся ряд непрерывных функций можно интегрировать почленно. Пусть дано, что ряд $u_1(t)+u_2(t)+\cdots+u_n(t)+\cdots$ равномерно сходится на E и пусть для любого n $u_n(t)$ непрерывна в E и пусть $f(t)=\sum_{n=1}^{\infty}u_n(x)$. Тогда на любом промежутке $[a;x]\in E$ выполняется $\int_a^x f(t)dt=\sum_{n=1}^{\infty}\int_a^x u_n(t)dt$. Без доказательства.

Теорема 15. Пусть ряд дифференцируемых в E функций $u_1(t) + u_2(t) + \cdots + u_n(t) + \cdots$ равномерно сходится в E и f(x) – его сумма, то $f'(x) = u_1'(x) + u_2'(x) + \cdots + u_n'(x)$. Без доказательства.

§5. Степенные ряды

Ряд вида $\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+\cdots+a_nx^n+\cdots$ называется степенным рядом. Ряд вида $\sum_{n=0}^{\infty}a_n(x-a)^n$ – тоже степенной, где a – центр ряда.

П.1. Теорема Абеля

<u> Теорема 16 (Абеля о сходимости степенного ряда).</u>

- 1) Пусть степенной ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится в точке x_0 . Тогда для любого x такого, что $|x|<|x_0|$ ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится.
- 2) Пусть степенной ряд $\sum_{n=0}^{\infty} a_n x^n$ расходится в точке x_1 . Тогда для любого x такого, что $|x|>|x_1|$ ряд $\sum_{n=0}^{\infty} a_n x^n$ расходится.

Доказательство.

- 1) Пусть ряд $\sum_{n=0}^{\infty} a_n x_0^n$ сходится. Тогда его общий член стремится к нулю $\lim_{n\to\infty} a_n x_0^n = 0$. Тогда существует такое M>0, что для любого n выполняется $|a_n x_0^n| < M$. Рассмотрим ряд $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 \frac{x}{x_0} x_0 + a_2 \left(\frac{x}{x_0}\right)^2 x_0^2 + \cdots + a_n \left(\frac{x}{x_0}\right)^n x_0^n + \cdots$. Теперь рассмотрим ряд, состоящий из абсолютных величин $|a_0| + \left|\frac{x}{x_0}\right| |a_1 x_0| + \left|\frac{x}{x_0}\right|^2 |a_2 x_0^2| + \cdots + \left|\frac{x}{x_0}\right|^n |a_n x_0^n| + \cdots$. Все правые модули, как уже было сказано, меньше M. Тогда этот ряд можно смажорировать так, что для любого n будет выполняться $\left|\frac{x}{x_0}\right|^n |a_n x_0^n| < \left|\frac{x}{x_0}\right|^n M$. $\left|\frac{x}{x_0}\right|^n M$ геометрическая прогрессия с $q = \left|\frac{x}{x_0}\right| < 1$. Тогда, по признаку сравнения ряд $\sum_{n=1}^{\infty} |a_n x^n|$ сходится абсолютно и, следовательно, сходится.
- 2) От противного. Если расходится в точке x_1 и сходится в точках $|x| > |x_1|$, то по первому пункту должен сойтись и в точке x_1 . Противоречие. Следовательно, расходится в точках $|x| > |x_1|$.

П.2. Радиус сходимости степенного ряда

Рассмотрим сходящийся в точке x_0 степенной ряд $\sum_{n=0}^{\infty} a_n x^n$. Тогда он сходится по теореме Абеля в любой точке $|x|<|x_0|$. По второй части теоремы Абеля, пусть ряд расходится в некоторой точке $|x_1|>|x_0|$. Тогда в любой точке $|x|>|x_0|$ ряд будет расходящимся. Теперь проверим на расходимость в точке $x_2=\frac{x_0+x_1}{2}$. Теперь отрезок с неизвестной сходимостью уменьшился в два раза. Так можно продолжать до бесконечности, постоянно уменьшая неизвестный отрезок. Можно перейти к пределу. Пусть существует предел $\lim_{k\to\infty} x_k=R$. Получаем, что для любого |x|< R ряд сходится, а для любого |x|>R ряд расходится. Число R называется радиусом сходимости степенного ряда, интервал (-R;R) — интервалом сходимости. Точки $x=\pm R$ необходимо проверять самостоятельно.

Замечание. Радиус сходимости можно ввести и для степенного ряда вида $\sum_{n=0}^{\infty} a_n (x-a)^n$. Его областью сходимости будет (a-R;a+R).

Правило определения радиуса сходимости

1) С использованием признака Даламбера.

<u>Теорема 17.</u> Пусть существует предел $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=q$. Тогда $R=\frac{1}{q}$ (включая 0, если $q=+\infty$ и ∞ , если q=0).

<u>Доказательство.</u> Пусть $u_n=|a_nx^n|$ и $u_0+u_1+u_2+\cdots+u_n$ — ряд, состоящий из абсолютных величин. Рассмотрим предел $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right||x|=q|x|$. По признаку Даламбера ряд сходится, если q|x|<1. Получаем, что $|x|<\frac{1}{q}$, т.е. $R=\frac{1}{q}$.

2) С использованием радикального признака Коши.

<u>Теорема 18.</u> Пусть существует предел $\lim_{n\to\infty} \sqrt[n]{|a_n|} = q$. Тогда $R = \frac{1}{q}$ (включая 0, если $q = +\infty$ и ∞ , если q = 0).

<u>Доказательство.</u> Аналогично предыдущему доказательству, рассмотрим предел $\lim_{n \to \infty} \sqrt[n]{|a_n x^n|} = |x| \lim_{n \to \infty} \sqrt[n]{|a_n|} = q|x|$. По радикальному признаку Коши ряд сходится, если q|x| < 1. Получаем, что $|x| < \frac{1}{q}$, т.е. $R = \frac{1}{q}$.