Langevin's Dynamics

$$m\frac{d^2}{dt^2}\mathbf{r} = -\nabla V(\mathbf{r}) - m\gamma\frac{d}{dt}\mathbf{r} + \mathbf{R}(t)$$

 Other numerical solutions (assume interpart. interactions nearly constant within Δt [i.e. Δt is small]) by Ermak and Buckholtz (1980):

$$\mathbf{r}(t+\delta t) = \mathbf{r}(t) + c_1 \left(\frac{d\mathbf{r}}{dt}\right)_t \Delta t + c_2 \left(\frac{d^2\mathbf{r}}{dt^2}\right)_t \Delta t^2 + \Delta \mathbf{r}^G$$

$$\mathbf{v}(t+\delta t) = c_0 \left(\frac{d\mathbf{r}}{dt}\right)_t + c_1 \left(\frac{d^2\mathbf{r}}{dt^2}\right)_t \Delta t + \Delta \mathbf{v}^G$$

108

Langevin's Dynamics

• Where the vector gaussian random noise:

$$\Delta \mathbf{r}^G$$
 $\Delta \mathbf{v}^G$

· Have variance

$$\begin{split} \sigma_r^2 &= \Delta t^2 \left(\frac{k_B T}{m}\right) \frac{1}{\gamma \Delta t} \left(2 - \frac{1}{\gamma \Delta t} (3 - 4 exp(-\gamma \Delta t) + exp(-2\gamma \Delta t))\right) \\ \sigma_v^2 &= \left(\frac{k_B T}{m}\right) (1 - exp(-\gamma \Delta t)) \end{split}$$

109

Langevin's Dynamics

· And numerical coefficients:

$$c_0 = exp(-\gamma \Delta t)$$

$$c_1 = \frac{1 - c_0}{\gamma \Delta t}$$

$$c_2 = \frac{1 - c_1}{\gamma \Delta t}$$

110

Langevin's Dynamics

$$m\frac{d^2}{dt^2}\mathbf{r} = -\nabla V(\mathbf{r}) - m\gamma\frac{d}{dt}\mathbf{r} + \mathbf{R}(t)$$

 More "accurate" solutions for low γ (and interparticle forces linearly dependent on time):

$$\begin{split} \mathbf{r}(t+\delta t) &= \mathbf{r}(t) + c_1 \left(\frac{d\mathbf{r}}{dt}\right)_t \Delta t + c_2 \left(\frac{d^2\mathbf{r}}{dt^2}\right)_t \Delta t^2 + \Delta \mathbf{r}^G \\ \mathbf{v}(t+\delta t) &= c_0 \left(\frac{d\mathbf{r}}{dt}\right)_t + (c_1-c_2) \left(\frac{d^2\mathbf{r}}{dt^2}\right)_t \Delta t \\ &+ c_2 \left(\frac{d^2\mathbf{r}}{dt^2}\right)_{t+\Delta t} \Delta t + \Delta \mathbf{v}^G \end{split}$$

As $\gamma \rightarrow 0$, recover velocity Verlet

111

Monte Carlo Simulations

- · An experiment?
 - It "samples" by generating large numbers of random numbers
- · Usually two types:
 - "Simple" Monte Carlo: estimates values of integrals by generating uniform sampling of the integrand and adding it up
 - Metropolis Monte Carlo: generates a trajectory in phase space. Good for thermodynamics.

1

Early Sampling Methods

- Some deterministic mathematical problems can be treated by finding a probabilistic analogue
- Then solve this analogue by a stochastic sampling experiment
- · Early developments:
 - eighteenth-century French "naturalist." Buffon's Needle problem and geometric probability, 2l/πd
 - Italian mathematician Lazzerini (1901): needle exp. 3408 times, estimated π to accuracy of 10^{-7}

2

Simple Monte Carlo

 Estimate value of π by determining the area of one cuadrant of the circle using random numbers

Neumann, Ulam, and Metropolis (1947) Named for the Monte Carlo

Named for the Monte Carlo Casino

Simple Monte Carlo

- Generate 2 random numbers and create (x,y)
- If x²+y² ≤ 1 count it inside as a "hit"

$$\pi pprox rac{4 imes area under the curve AC}{area of the square OABC} = rac{4 au_{hit}}{ au_{shots}}$$

dem