Data 151 Project Part 2

Lilu Smith, Owen Galicia, Jack Colwell, Santiago Gutierrez Morales

Original Data and Columns

	A	В	М	N	0	Р	Q	R	S	T	U	V	W	Х	
1			LOSS-ON-IGNITION												
2	Data Point ID	Sample Type (A Horizon/Sub-Surfa ce)	Crucible ID	Crucible Mass	Crucible_Wet	Crucible_105°C =	Crucible_550°C =	Crucible_1000°C (g) =	Wet Sample (g) =	Dry Sample (g)	Mineral	Carbonate-Free Mineral Sample (g)	OM% =	SOC% (40% estimate)	
15	AH-27	A Horizon	6E	16.87	27.798	27.424	24.455	24.319	10.928	10.554	7.585	7.449	28.13%	11.2	
16	AH-27	Sub-Surface	7X	18.66	29.685	29.572	29.158	29.032	11.025	10.912	10.498	10.372	3.79%	1.5	
17	AH-6	A Horizon	RX	16.531	27.162	27.055	25.772	25.681	10.631	10.524	9.241	9.15	12.19%	4.8	
48	AH-6	Sub-Surface	8R	18.743	30.508	30.452	30.255	30.175							
49	AI-24	A Horizon	C3	16.056	27.22	26.731	22.467	22.346	11.164	10.675	6.411	6.29	39.94%	15.9	
0	AI-24	Sub-Surface	1	16.035	26.394	26.266	25.806	25.734	10.359	10.231	9.771	9.699	4.50%	1.8	
1	AI-25	A Horizon		66 18.793	29.891	29.558	27.534	27.428	11.098	10.765	8.741	8.635	18.80%	7.5	
2	AI-25	Sub-Surface	02	17.378	27.378	27.279	27.08	27.031	10	9.901	9.702	9.653	2.01%	3.0	
13	AI-27	A Horizon	K9	18.126	29.412	29.117	26.476	26.358	11.286	10.991	8.35	8.232	24.03%	9.6	
54	Al-27	Sub-Surface	DD	19.909	30.405	30.272	29.801	29.721	10.496	10.363	9.892	9.812	4.55%	1.8	
55	Al-3	A Horizon	4A	15.776	27.256	27.164	26.504	26.473	11.48	11.388	10.728	10.697	5.80%	2.3	
56	Al-3	Sub-Surface	PO	17.528	29.653	29.549	29.347	29.281	12.125	12.021	11.819	11.753	1.68%	0.6	
57	AJ-10	A Horizon	KK	20.386	30.894	30.826	30.11	30.051	10.508	10.44	9.724	9.665	6.86%	2.7	
58	AJ-10	Sub Surface	FF	19.927	31.695	31.62	31.393	31.3	11.768	11.693	11.466	11.373	1.94%	0.7	
59	AJ-12	A Horizon	G	18.346	28.984	28.876	28.295	28.198	10.638	10.53	9.949	9.852	5.52%	2.2	
30	AJ-12	Sub Surface	D2	18.785	28.764	28.672	28.441	28.355	9.979	9.887	9.656	9.57	2.34%	0.9	
31	AJ-17	A Horizon	K9	18,132	28.725	28.635	27.851	27.74	10,593	10,503	9,719	9,608	7.46%	2.9	
32	AJ-17	Sub Surface	8L	16.693	27.377	27.293	27.03	26.922	10.684	10.6	10.337	10.229	2.48%	0.9	
33	AJ-21	A Horizon	C3	16.078	26.8	26.649	25.121	25.018	10,722	10,571	9.043	8.94	14,45%	5.7	
34	AJ-21	Sub Surface	2D	15.868	26,152	26.039	25,776	25.652	10,284	10,171	9,908	9.784	2.59%	1.0	
15	AJ-24	A Horizon	LL	21,354	31,817	31.567	29.105	28.922	10,463	10,213	7.751	7,568	24,11%	9.6	
16	AJ-24	Sub Surface	1	00 18.274	28.787	28.7	28.377	28.263	10.513	10.426	10.103	9.989	3.10%	1.2	
37	AK-12	A Horizon	ww	20.038	30,618	30.341	28.03	27.923	10.58	10,303	7.992	7.885	22,43%	8.9	
18	AK-12	Sub Surface	AA	21.616	32,225	32.082	31.752	31.656	10,609	10,466	10.136	10.04	3,15%	1.2	
39	AK-21	A Horizon	UU	21.572						10.313		8.499	16,48%		
0	AK-21	Sub Surface	PO	17.598		27.871	27.561	27.47	10.41	10.273	9.963	9.872	3.02%	1.2	
71	AK-23	A Horizon	Υ	17.511				27.078	10.63	10.507		9.567	8.32%		

```
#Columns BEFORE cleaning
    for i in soil data.columns:
      print(i)
→ Data Point ID
    Sample Type (A Horizon Sub-Surface)
    A Horizon Depth (cm) (repeat value for sub-surface data)
    DRYING A Horizon Sub-surface Dried
    DRYING Bulk Density Dried
    BULK DENSITY Dry Soil (<2mm) (g)
    BULK DENSITY Gravel Mass (g)
    BULK DENSITY Rock Volume (cm^3)
    BULK DENSITY Soil Volume (cm^3)
    BULK DENSITY Bulk Density (g/cm^3)
    LOSS-ON-IGNITION Crucible ID
    LOSS-ON-IGNITION Crucible Mass (g)
    LOSS-ON-IGNITION Crucible Wet (g)
    LOSS-ON-IGNITION Crucible 105C (g)
    LOSS-ON-IGNITION Crucible 550C (g)
    LOSS-ON-IGNITION Crucible 1000C (g)
    LOSS-ON-IGNITION Wet Sample (g)
    LOSS-ON-IGNITION Dry Sample (g)
    LOSS-ON-IGNITION Mineral Sample (g)
    LOSS-ON-IGNITION Carbonate-Free Mineral Sample (g)
    LOSS-ON-IGNITION OM Percentage
    LOSS-ON-IGNITION SOC Percentage (40 Percent estimate)
    LOSS-ON-IGNITION CaCO3 Percentage
    LOSS-ON-IGNITION Estimated Carbon (kg) in horizon per sq m
    LOSS-ON-IGNITION Estimated Carbon (kg) in 10 cm per sq m
```

Null rows:

Before data cleaning

```
Data Point ID
Sample Type (A Horizon Sub-Surface)
A Horizon Depth (cm) (repeat value for sub-surface data)
                                                               137
DRYING A Horizon Sub-surface Dried
DRYING Bulk Density Dried
BULK DENSITY Dry Soil (<2mm) (g)
                                                               103
BULK DENSITY Gravel Mass (g)
                                                               103
BULK DENSITY Rock Volume (cm^3)
                                                               103
BULK DENSITY Soil Volume (cm^3)
                                                               103
BULK DENSITY Bulk Density (g/cm^3)
                                                               103
LOSS-ON-IGNITION Crucible ID
LOSS-ON-IGNITION Crucible Mass (g)
LOSS-ON-IGNITION Crucible Wet (g)
LOSS-ON-IGNITION Crucible 105C (g)
LOSS-ON-IGNITION Crucible 550C (g)
LOSS-ON-IGNITION Crucible 1000C (g)
LOSS-ON-IGNITION Wet Sample (g)
LOSS-ON-IGNITION Dry Sample (g)
LOSS-ON-IGNITION Mineral Sample (g)
LOSS-ON-IGNITION Carbonate-Free Mineral Sample (g)
LOSS-ON-IGNITION OM Percentage
LOSS-ON-IGNITION SOC Percentage (40 Percent estimate)
LOSS-ON-IGNITION CaCO3 Percentage
LOSS-ON-IGNITION Estimated Carbon (kg) in horizon per sq m
LOSS-ON-IGNITION Estimated Carbon (kg) in 10 cm per sq m
dtype: int64
```

After data cleaning

```
Data Point ID
Sample Type (A Horizon Sub-Surface)
BULK DENSITY Dry Soil (<2mm) (g)
BULK DENSITY Gravel Mass (g)
BULK DENSITY Rock Volume (cm^3)
BULK DENSITY Soil Volume (cm^3)
BULK DENSITY Bulk Density (g/cm^3)
LOSS-ON-IGNITION Crucible Mass (g)
LOSS-ON-IGNITION Crucible Wet (g)
LOSS-ON-IGNITION Crucible 105C (g)
LOSS-ON-IGNITION Crucible 550C (g)
LOSS-ON-IGNITION Crucible 1000C (g)
LOSS-ON-IGNITION Wet Sample (g)
LOSS-ON-IGNITION Dry Sample (g)
LOSS-ON-IGNITION Mineral Sample (g)
LOSS-ON-IGNITION Carbonate-Free Mineral Sample (g)
LOSS-ON-IGNITION OM Percentage
LOSS-ON-IGNITION SOC Percentage (40 Percent estimate)
LOSS-ON-IGNITION CaCO3 Percentage
LOSS-ON-IGNITION Estimated Carbon (kg) in horizon per sq m
LOSS-ON-IGNITION Estimated Carbon (kg) in 10 cm per sq m
dtype: int64
```

Data Cleaning

- Removed most of the omitted data because we can't do much with empty data cells
- Added formulas to cells where the functions weren't applied
- Dropped 3 rows with missing values in all columns (the data was not able to be collected in the field for those entries)

After cleaning checks

```
missing values = soil data.isnull().sum()
print(missing values)
Data Point ID
                                                                 0
Sample Type (A Horizon Sub-Surface)
BULK DENSITY Dry Soil (<2mm) (g)
                                                               100
BULK DENSITY Gravel Mass (g)
                                                               100
BULK DENSITY Rock Volume (cm^3)
                                                               100
BULK DENSITY Soil Volume (cm^3)
                                                               100
BULK DENSITY Bulk Density (g/cm^3)
                                                               100
LOSS-ON-IGNITION Crucible Mass (g)
LOSS-ON-IGNITION Crucible Wet (g)
LOSS-ON-IGNITION Crucible 105C (g)
LOSS-ON-IGNITION Crucible 550C (g)
LOSS-ON-IGNITION Crucible 1000C (g)
LOSS-ON-IGNITION Wet Sample (g)
LOSS-ON-IGNITION Dry Sample (g)
LOSS-ON-IGNITION Mineral Sample (g)
LOSS-ON-IGNITION Carbonate-Free Mineral Sample (g)
LOSS-ON-IGNITION OM Percentage
LOSS-ON-IGNITION SOC Percentage (40 Percent estimate)
LOSS-ON-IGNITION CaCO3 Percentage
LOSS-ON-IGNITION Estimated Carbon (kg) in horizon per sq m
                                                                 0
LOSS-ON-IGNITION Estimated Carbon (kg) in 10 cm per sq m
dtype: int64
```

Reason for Data Split

- Bulk density is a measurement that can only be taken in the A horizon and therefore there will be missing data for the subsurface horizon in the complete dataset
- Broke the data into two subsets. One containing the sampling points (only A horizon measurements) with bulk density measurement, and the other containing the remaining data.

Five Number Summary

- Added a five number summary to see the overall distribution of the data
 - Need data to be normally distributed for statistical tests done later

[]		BULK DENSITY Rock Volume (cm^3) BUL	LK DENSITY Soil Volume (cm^3) \
→ ▼	count	103.000000	103.000000
<u> </u>	mean	0.488915	89.988954
	std	0.871011	0.871011
	min	0.000000	85.336359
	25%	0.000000	89.870321
	50%	0.092075	90.385793
	75%	0.607547	90.477868
	max	5.141509	90.477868
		BULK DENSITY Bulk Density (g/cm^3)	LOSS-ON-IGNITION_Crucible_Mass_(g) \
	count	103.000000	203.000000
	mean	0.827584	18.508246
	std	0.288345	2.307860
	min	0.290644	15.426000
	m1n 25%	0.581457	16.526000
	50%	0.846359	18.314000
	45000		
	75%	1.055345	19.983000
	max	1.380538	25.556000
		LOSS-ON-IGNITION_Crucible_Wet_(g)	LOSS-ON-IGNITION_Crucible_105C_(g) \
	count	203.000000	203.000000
	mean	29.091941	28.980138
	std	2.371093	2.372316
	min	24.227000	24.092000
	25%	27.175500	27.080000
	50%	28.725000	28.635000
	75%	30.609000	30.481500
	max	37.566000	37.454000
		LOSS-ON-IGNITION_Crucible_550C_(g)	\
	count	203.000000	
	mean	28.322576	
	std	2.498194	
	min	22.467000	
	25%	26.532000	
	50%	28.026000	
	75%	30.099500	
	max	36.800000	
		LOSS-ON-IGNITION Crucible 1000C (g)	LOSS-ON-IGNITION Wet Sample (g) \
	count	203.000000	201.000000
	mean	28.244365	10.579234
	std	2.503733	0.663191
	min	22.346000	5.739000
	25%	26.468500	10.284000
		20.400300	10.20-000
	50%	27.960000	10.517000

Correlation Matrix

Correlation matrix of every category in our data.

- Most of the categories have a weak correlation, but there are a good number of categories that correlated with each other extremely well
- Some of this is expected, as some variables are just mathematic conversions of the other variables

Our Choices of Predicted Models

Although the correlation matrix gives us an idea on which categories are significant, we will still need to run ANOVA analysis with the highly correlated variables to see which specific categories have a true significance on making the soil suitable for agriculture.

Difficulties

- Knowing which variables to look at
 - Soil has a lot of complex interdependencies and majority of the group is not skilled in this area
- Cleaning the data
 - Had to figure out why some entries did not have a value
 - Cells had missing functions applied

Remaining Work Schedule

10/18-11/13:

- Make a draft of our model, and start typing up the research paper
- Work on the final draft of our report and demonstrate our modeling skills and efforts

11/13-12/10:

- Continue to work on research paper and final presentation slides.
- Complete them and make them look presentable and clean up the whole project.

Questions?