-	- ILALKA)	考以日期		
	MK 43/11	7	4 1115133017	

		. 10	-	
15)		-	Ji	总分
775		-		-

- t. 人为截面积, 并设R1, R2, R3 均为线性液剂, 被位过程的输入量为 Q1、流出量为 Q2、Q3、液位 H 为被控
- 列写过程的微分方程组。
- 画出过程的方框图:
- 求出过程的传递函数。

III 1

(本题共 15 分) 一加热炉出口温度控制系统.. 图取温度对象的过程为, 当系统稳定时, 在温 2制舞上作一3%的阶跃变化。输出温度记录如下表。

- 1			٠
	7		
	•	w.	
	•	Э.	۰

t/s	0	2	4	6	8	10	12	14	16	18	20
h/mm	270.0	270.0	267.0	264.7	262.7	261.0	259.5	258.4	257.8	257.0	256.5
t/s	22	24	26	28	30	32	34	36	38	40	
h/mm	256.0	255.7	255.4	255.2	255.1	255.0	255.0	255.0	255.0	255.0	

と整定 PI 参数(假定变送器量程为 200-300℃)

(本题共 15 分) 考虑图 2 中的 4 个串联储罐,工艺介质的出口温度 $heta_i$ 为被控变量,加热景

B操纵变量, F_{i 和} B_{i2} 为干扰。

-) 在设计市级控制时,最合适的剧变量应选在何处,试与选择其它变量的情况相比较;
-) 在工艺图上表示该串级系统,并而出相应的方框图。
- 确定网的开闭形式及控制器的正反作用。

五、(本題共 20 分) 在某生产过程中。需使参与反应的甲、乙两种物料流量保持一定比值, 若已 知正常操作时,甲物料流量 $Q_i = 7m^3/h$,采用孔板测量并配用差压变送器,其测量范围为 $0 \sim 10 m^3/h$, 乙物料流量 $Q_2 = 250 L/h$, 相应的测量范围为 $0 \sim 300 L/h$,

- (1) 设计保持 Q₂ / Q₁ 恒定且使参与反应的两物料总量稳定的比值控制系统:
- (2) 如果采用 DDZ-III 型仪表,试求在流量和测量信号分别成线性和非线性关系时仪表的比值 系数 Ki
- (3) 选择该比值控制系统的控制阀的开闭形式以及控制器的正反作用。

六、(本題共20分)两种料液混合系统如图4所示,两种料液经调和罐均匀混合后送出,要求对 混合液的流量和浓度进行控制。假设该调和过程的稳态工作点为 $Q_0(u_{10},u_{20},y_{10},y_{20})$,其中,

$$u_{10} = 80$$
, $u_{20} = 20$, $y_{10} = 100$, $y_{20} = 64\%$, $c_{10} = 75\%$, $c_{20} = 20\%$

- (1) 求出两种料液混合系统的相对增益矩阵;
- 选择两种料液混合系统的变量配对并通出多回路 PID 控制方案示意图: (2)
- 给出两种料液混合系统前馈补偿解稿方案。 (3)

