

Module 2 Lecture - Descriptive Statistics

Introduction to Statistical Methods

Quinton Quagliano, M.S., C.S.P

Department of Educational Psychology

Tá	able of Contents	
1	Overview and Introduction 1.1 Textbook Learning Objectives	3 3 3
2	Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs2.1 Introduction2.2 Stem-and-Leaf Plots2.3 Line Graphs2.4 Bar Graphs2.5 Aside on Outliers	4 4 5 6 7
3	Histograms, Frequency Polygons, and Time Series Graphs 3.1 Introduction	9 9 10 11 12
4	Measures of the Location of the Data 4.1 Introduction	13 13 14 14 15 15
5	Box Plots 5.1 Introduction	16 16
6	Measures of the Center of the Data 6.1 Introduction	17 17 18
7	Skewness and the Mean, Median, and Mode 7.1 Introduction	18 18
8	Measures of the Spread of the Data8.1 Introduction8.2 The Standard Deviation8.3 Calculating Standard Deviation by Hand8.4 Describing Points and Values with Standard Deviations8.5 Sampling Variability of Statistic	21 21 21 22 23 24

9	Cond	elusion	24
	9.1	Recap	24
	9.2	Lecture Check-in	25

1 Overview and Introduction

1.1 Textbook Learning Objectives

- Display data graphically and interpret graphs: stemplots, histograms, and box plots.
- Recognize, describe, and calculate the measures of location of data: quartiles and percentiles.
- Recognize, describe, and calculate the measures of the center of data: mean, median, and mode.
- Recognize, describe, and calculate the measures of the spread of data: variance, standard deviation, and range.

1.2 Instructor Learning Objectives

- Understand the complementary value of visual and numeric descriptions of data
- Be able to compare and contract the use cases for different metrics

1.3 Introduction

Data, in it's raw form, is very

Especially large data sets are likely to be borderline

Discuss: With the following table, try to say something meaningful about this data/explain it

Student	Q1	Q2	Q3	Q4	Q5
Student 1	1	0	1	1	0
Student 2	0	1	0	1	1
Student 3	1	1	1	0	0
Student 4	0	0	1	0	1
Student 5	1	1	0	1	1

• Realistically, we need a way to _____ our datasets in a way that capture the overarching trends in the values

- This can be done both	and via	
statistics, and often times, both!	_	

- We'll start by talking about descriptive graphs, and then later move on to statistics
- There are several common of graphs that show up in research
 - and we should be able to readily interpret them
 - Funny enough, sometimes the graphs are the most understandable part of a research paper!

Important

There is usually not only one 'right' way to graph or represent data - it may be advantageous to try multiple methods and see how they compare

 The book is filled with examples and practices to get better at navigating these, please try some of them!

2 Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs

2.1 Introduction

- In this first section, we'll look at some graphs used often to show of certain values in the data
 - Frequency is how often (or how little) a value shows up in the dataset
 - Most of these initial plots are primarily to noncontinuous, discrete data (or continuous data that is treated as discrete)
- ? Review: Which of the following is NOT quantitative data?
 - A) Hair color
 - B) Age (in years)
 - C) Height (in cms)
 - D) Total test score

Explanation:

2.2 Stem-and-Leaf Plots

 Stem-and-leaf graphs, also known as ster 	nplots , are technically a
method to represent data - but function to	visually inspect the distribution of the data.
 Stemplots a valid choice for representing _ a single variable 	, quantitative data for
 However it works restricted, and with the same decima 	if the range of values is reasonably I structure
Continuous data easier	work, but discrete data can be somewhat
 E.g., Test scores ranging from 0 - 10 	$0 \to \underline{\hspace{1cm}}!$
 E.g., Reaction time ranging from 0.50 s 	secs - 420 seconds $ ightarrow$ $\underline{\hspace{1cm}}$!
 Stemplots contain a leaf which contains th usually just the digit 	• • • • • • • • • • • • • • • • • • • •
 Then, the is ev Each number entry in a leaf represer So technically, the number of digits the of points in the data 	
Practically, stemplots are quency of valuesEspecially common in	showing distribution, skew, and fre-
 However, I do find they are audiences 	to interpret for non-statistical

• Example of test scores 0 - 100: 2, 3, 5, 6, 9, 11, 14, 15, 16, 20, 21, 23, 27, 30, 32, 38, 41, 44, 46, 53, 55, 59, 60, 62, 67, 74, 79, 81, 85, 90

Stem	Leaf
0	23569
1	1456
2	0137
3	028
4	146
5	359
6	027
7	4 9
8	15
9	0

Discuss: Try to explain why a stem-and-leaf-plot would nominal data	NOT work for qualitative,
 As you'll see in the following line and bar graphs, one don't actually aggregate or summaries the data at al 	difference is that stemplots
 One nice thing about these plots is that they actual what, so you can see the ent 	
2.3 Line Graphs	
 Line graphs are a broad family of plots that always had by a continuous line 	ve some dotted data points
 For our purpose, they are another way to visualize 	of data
 Unlike stemplots, they could technically be used for quarecommend that use) 	alitative data (but I wouldn't
- Otherwise, the same rules for	_ apply from the stemplots
 In the line plot: The height, or y-axis, represents the 	of a certain value
- The place on the x-axis represents what value's frequ	uency is
by the y-axis	

Figure 1: Frequency of Quiz Grades (0-10)

Discuss: Consider the above plot, do you feel there is anything confusing about interpreting it?

2.4 Bar Graphs

• Bar graphs show frequency much like stem-and-leaf and graphs, with the advantage of both being easy to interpret (even for non-scientists), while also being friendly to categorical, qualitative data as well

Figure 2: Frequency of Students by Class

Figure 3: Frequency of Students by Class and Sex

Discuss: Do you feel like the above plot could be used for numeric data? Why or why not?

the	and bar graphs - you <i>shou</i> data, if neces		ickwarus to reconstruc	
2.5 Aside on	Outliers			
from the othe – While m	so known as an extreme va rs, somehow breaking from ore commonly applied to r a single member of a qua	m the pattern of the d numeric data, it could	ata	
Important				
accepted answer	frustratingly loose term in s for just how far a point ne efully to see how any one o	eds to be removed to	be an outlier. Make	
talk more abo – In plots, in the vis	al methods naturally out statistical/numeric meth you are mainly just lookin sual pattern	nods for outliers later g for visual	ers in the data, but we	S
3 Histograr 3.1 Introducti	ns, Frequency Po on	nygons, and 11	me Series Gra	ms
•	out frequency, we inherently er, how it is spread out	y include talk about _	(of
	ove plots are fine for more lend especially well to lay	ving out continuous da	data, there are severa ata	ıl
	nsider the case of an examata complicate a stem-and	•	oints, like 80.5, how	

3.2 **Histograms**

- A **Histogram**, at first glance, looks much like a plot, as described prior.
- However, rather than use individual discrete points or labels, histograms will values by a defined interval/class/bin width, and count the frequencies of values within that bin
 - All the intervals will be the same , and we choose that width somewhat arbitrarily
 - But, its worth noting that the bin interval can have a impact on the overarching interpretation
 - See two examples of the same data represented below

Important

Smaller bin size is not always better! Especially in data that is more spread out.

Figure 4: Example of Bad Histogram (Bin width = 15)

3.3 Frequency Polygons

Important

Frequency polygons look remarkably similar to line graphs, but start from a different perspective on understanding frequency.

- Frequency polygons can be though of as a line plot that that travels through the of histogram bars
 - So frequency polygons still use those same with histograms, but don't show that on the graph itself (unless overlaid)
 - This makes them more appropriate for dealing with continuous data

3.4 Aside about Lying in Statistics

- With all of these different methods (any many more!) for resenting data, we run into an issue: accidental or purposeful misleading with graphs
 - "There are three kinds of lies: lies, damned lies, and statistics" Mark Twain (kind of, its complicated who exactly came up with this)
 - While often times taken out of context, this statement does ring true sometimes
 we owe it to our readers to be careful

Important

One of the best ways to ensure that data is represented fairly is to try to represent it via multiple different methods - these different methods will help us see slightly different dimensions and information about the distribution.

- Aim for consistency and clarity in graphing, avoiding ______ axis points, confusingly similar colors, and making sure enough information is included to understand the scale of the plot.
 - Easy tip: see if you can show the plot to someone not knowledgeable in the work and see if it makes sense to them

4 Measures of the Location of the Data

l.1 Int	troduction		
let u	v that we've covered some of us shift focus to the statistic a Remember: We don't only analyses will include both data	and numerical method use one or the of	
1 Impo	ortant		
	_		n that gets scary - don't panic! uce, don't just mindlessly apply
• Qua	artiles are used to cut nume	erical data into 4 ed	qual-sized
_ _	on the data is ordered smalle Q_1 (first quartile) is above Q_2 (second quartile) is above Q_3 (third quartile) is above	1/4 or 25% of the c ove 1/2 or 50% of tl	he data
	centiles function the same a		the data in
_	equal-sized sections For example, the at the 90t Percentiles are especially co	•	
	the 75th percentile is equiv	alent to Q_1 , 50th palent to Q_3	ercentile is equivalent to Q_2 , ar
• The			Q_2 , or, put simply, the value thats when ordered from smallest $rac{1}{2}$
larg			
_	In the case that there is no largest, we'd	actual exact middle the two mi	e value when ordered smallest i iddle-most values
_	Sample median statistic no Population median parame		
	interquartile range is the		50% or middle half of the dat
give	en as:		

4.2 A Formula for Finding the Kth Percentile

- Often times, we want to know what _____ corresponds to a certain percentile in a dataset
 - We can use the following formula to calculate this

$$i = \frac{k}{100} * (n+1)$$

- · Where:
 - $\,i$ is the index or rank of the value when ordered smallest to largest
 - k is the k^{th} percentile
 - -n is the total number of data points
- If i ends up being between two integers, i.e., a decimal, then we up and down to the nearest ranks and take the average of their integers
 - It's worth mentioning this is just one of ______ procedures for finding the k^{th} percentile...
- For a formula like this, it is easiest to approach it algebraically, just inserting the chosen values over the letters in the formula

Discuss: Try writing out this same equation, replacing k with 20 and n with 12 - could you solve it from here?

4.2.1 Example

Dataset: 5, 6, 7, 8, 9 (ordered smallest to largest)

Prompt: What value corresponds to the 70th percentile?

$$i = \frac{70}{100} * (5+1)$$

$$i = 0.70 * 6$$

$$i = 4.2$$

We round i up and down to the 4th and 5th ranks, which correspond to values 8 and 9 in the dataset, their average is 8.5 \rightarrow 70th percentile

? If I wanted to find what value corresponds to Q_2 what k would I use in this formula?

- A) 10
- B) 20
- C) 25
- D) 50

Explanation:

4.3 A Formula for Finding the Percentile of a Value in a Data Set

• We can go the _____ direction to figure out what a specific datapoint's percentile is

$$\frac{x+0.5y}{n} * 100$$

- · Where:
 - -x is the number of data points up to and NOT including the point of interest
 - y the number of occurrences of the values of interest
 - -n is the total number of data points
- Like the prior formula, this is just one procedure, you may run into others in the wild

4.3.1 Example

Dataset: 5, 6, 7, 8, 9 (ordered smallest to largest)

Prompt: What percentile is value '8' at?

$$\frac{3+0.5(1)}{5}*100$$

$$\frac{3.5}{5} * 100$$

 $70 \rightarrow percentile$

 WAIT! Didn't we just say that 8.5 is the 70th percent Yes, that is because these formulas are only 	tile in the last example? , and work
 poorly in small datasets There are several slight variations on calculatin is what we will use for this class 	g these, but the formulas above
4.4 Interpreting Percentiles, Quartiles, and	Median
 As a simple check, always ensure your values are largest when calculating percentiles, quartiles, and t 	he median
ullet Smaller percentiles/quartiles $ o$	values in the data set
• Q_2 = 50th percentile = median	
Discuss: If quartiles split the data into 4 equal section quantiles	ns, how many sections are in

5 Box Plots

5.1 Introduction

- Going to take a quick trip back to
 - Boxplots are useful for representing information about the quartiles, percentiles,
 and all in a single plot
 - Also called box-and-whisker plots (may be the preferred name for the cat-lovers like myself)
- The centerline of a box plot represents a median, edges of the box represent Q_1 and Q_3 (i.e., the box is the IQR), the whiskers usually extend to the farthest values

Figure 7: Boxplot example

6 Measures of the Center of the Data

6.1 Introduction

- There are several ways for us to represent the _____ of the dataset, often collectively referred to as **measures of central tendency**.
 - We already discussed the median, but also have mean and the mode of the data
 - is often what we refer to when we say average, and is taken by the sum of all the numbers in the data divided by the number of data points
 - is the most frequently occurring value in the data

Important

We are going to introduce several different notations for statistics and parameters - if you forgot the difference between those two terms, go review module 1!

Means

- Our sample mean statistic will be represented as \bar{x} (pronounced x bar)
- Our population mean parameter will be represented as μ (pronounced mew)
- Recall that \bar{x} is meant as an estimate of μ !
- This same notion can be applied to any sample statistic and population parameter.
- The sample mean is calculated with:

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

Modes

There is not a very useful formula for finding the mode, but realistically all you need to do is a bar plot and find the ______ bar (for the highest frequency)

6.2 The Law of Large Numbers and the Mean

- As a general rule, as the sample size (n) grows, \bar{x} and μ converge this is true of most statistic parameter relationships
 - This is related to the central limit theorem, to be discussed slightly later
 - However, this also explains why bigger samples are often treated as
 in a lot of scientific research because the sample statistics better approximate
 the parameters

Discuss: Review: Try explaining, from Module 1, why a more representative statistic is a good thing for our research?

7 Skewness and the Mean, Median, and Mode

7.1 Introduction

• In a perfectly _____ distribution, the mean, median, and mode will all be equal or close to one another

Figure 8: Symmetrical histogram

- · But, often our data will be in one direction or another
 - Left skew is when most of our values are to the right, with a tail extending to the left
 - Right skew is when most of our values are grouped to the left, with a tail extending to the right

Important

It is easy to get tripped up on describing the direction of skew; they key thing to remember is that the direction of the skew is the direction of the tail!

Figure 10: Right-skewed histogram

300

200

0

10

20

Value

Important

We will revisit skew later when talking about assumptions for inferential tests, as it can cause issues there

8 Measures of the Spread of the Data

8.1 Introduction

Important

There are more measures of dispersion than what we will discuss in the class - for various reasons they are not as popular as standard deviation and less often used in research and equations

8.2 The Standard Deviation

- Each number in a dataset has a **deviation**, or how _____ away it is from the mean
 - This is calculated simply as the _____ between the value and the sample mean of the data
 - $-x-\bar{x}$ or
 - $-x_i-\bar{x}$
- By far, the most important and most used way to describe the of all the data is the **standard deviation**
 - Sample standard deviation statistic: \boldsymbol{s}
 - Population standard deviation parameter: σ
- To calculate the standard deviation, we first will calculate the variation, which is just the standard deviation
 - Sample variation statistic: s^2
 - Population variation parameter: σ^2
 - The variance can be described as the average of the squares of deviations (what a mouthful!)
 - The variation (for sample) formula is:

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

- Where:
 - \boldsymbol{x} is any given single value from the sample data
 - \bar{x} is the mean of the sample
 - -n is the number of data points in the sample data

- \sum is the summation sign, saying we will add together whatever is in the parentheses
- · Let's break it down:
 - $(x \bar{x}) \rightarrow$ The deviations
 - $(\ldots)^2$ $\stackrel{\cdot}{\to}$ The squares of the deviations
 - $-\frac{\sum ...}{n-1}$ The average of the squares of deviations \rightarrow or variance!
- The standard deviation (for sample) formula then is:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

• Only difference here is that we are taking the square root of the whole thing, really we can just leave it as:

$$s = \sqrt{s^2}$$

Discuss: Here, I only show the sample-version of the formulas, whereas the book also shows the population-versions, why set our focus this way?

8.3 Calculating Standard Deviation by Hand

While not necessary with computers and calculators, it can be useful to work out statistics "by hand" for learning how they work. For example:

Dataset: 1, 2, 3, 4, 5

Size of sample: n=5

Sample Mean:

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$3 = \frac{1+2+3+4+5}{5}$$

Sample Variation:

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Hint: whenever you see a \sum sign, follow this tabular procedure

X	x - xbar	(x-xbar)^2
1	1 - 3	-2^2
2	2 - 3	-1^2
3	3 - 3	0^2
4	4 - 3	1^2
5	5 - 3	2^2
	Sum	10

$$2.5 = \frac{10}{5 - 1}$$

Sample Standard Deviation:

$$s = \sqrt{s^2}$$

$$1.58 = \sqrt{2.5}$$

8.4 Describing Points and Values with Standard Deviations

- Much like describing a specific value with a percentile, we may want to describe how far away from the ______ a certain point is, and we can do so using the standard deviation
- We can do this with what are called z-scores with the following formula for sample:

$$z = \frac{x - \bar{x}}{}$$

• Where: x is a individual data value of interest s is the standard deviation

By hand (pulling from last example):

$$-0.63 = \frac{2-3}{1.58}$$

We could then say that the value of 2 is -0.63 standard deviations away from the mean of 3

	same dataset
Z-scores are often used in conjunction with	a topic we'll revisit
when we describe the normal distribution in module	6
8.5 Sampling Variability of Statistic	
- As montioned prior different	from the same nonulation of
As mentioned prior, different interest will not be exactly the same.	_ from the same population of
interest will not be exactly the same - Thus, their data, means, standard deviations w - If we were to take many	
interest will not be exactly the same - Thus, their data, means, standard deviations v - If we were to take many variation across all of them	- vill all be somewhat different samples, we would see slight
interest will not be exactly the same - Thus, their data, means, standard deviations w - If we were to take many	vill all be somewhat different samples, we would see slight of their parameters

9 Conclusion

9.1 Recap

- Understanding our data first starts with describing it, and we can accomplish that both through informative graphs and statistics
- The various graphs show slightly different information, and multiple options may be used simultaneously to more thoroughly show the characteristics of the data
- Measures of central tendency and dispersion can succinctly describe the center of data, and how spread out it is, respectively
- The statistics we calculate on our sample are meant to accurately estimate the parameters of the population distribution, but that only works if our sample is representative and our data unbiased!

• Outliers and discussion on skew will return later when we are talking about their impact on inferential statistics, but don't worry too much about that yet!

9.2 Lecture Check-in

• Make sure to complete and submit the lecture check-in