

# VIENNA UNIVERSITY OF TECHNOLOGY

### FACULTY OF PHYSICS

LABORATORY III

# Laboratory Report

Electron Spin Resonance

Authors: Raul Wagner Martin Kronberger Group 301 **Supervisor:** Someone

conducted on: 04 June 2025

### 1 Resonanceabsorbtion of a passive HF-Osscilator

### 1.1 Setup



Figure 1: Experimental setup

- Connect the ESR base unit to the ESR operating unit via a 6-pin cable and set the rotary potentiometer to maximum sensitivity.
- Plug in the 30–75 MHz plug-in coil and connect the ammeter to output I via an adapter cable (measurement range 100  $\mu$ A).
- Position the coil of the passive resonant circuit coaxially opposite the plug-in coil and connect via a BNC/4 mm measurement cable to channel I of the dual-channel oscilloscope.

#### 1.2 Procedure

- Set the variable capacitor of the passive resonant circuit to position Skt. = 3/6.
- Adjust the minimum frequency on the ESR base unit.
- At the operating frequency, measure and record:
  - the frequency,
  - the voltage  $U_2$  of the "passive" coil on the oscilloscope,
  - and the voltage  $U_1 = 56 \mathrm{k}\Omega \cdot I_1$  of the RF coil.
- Increase the frequency stepwise and repeat the measurement.
- Perform additional measurement series with Skt. = 2/6 and 1/6.
- Remove the passive resonant circuit and record another measurement series.

# 1.3 Measurement values

| freq / MHz | $U_2 / V$ |
|------------|-----------|
| 11.5       | 1         |
| 12         | 1.01      |
| 12.5       | 1.15      |
| 13         | 1.2       |
| 13.5       | 1.4       |
| 14         | 1.6       |
| 14.5       | 1.8       |
| 15         | 2.2       |
| 15.5       | 2.35      |
| 16         | 2.2       |
| 16.5       | 2         |
| 17         | 1.8       |
| 17.5       | 1.25      |
| 18         | 1         |
| 18.5       | 0.8       |
| 19         | 0.7       |

Table 1: Tab. 1: Spannungen  $U_2$  und  $U_1$ bei Skt. =  $3/6\,$ 

| freq / MHz | U <sub>2</sub> / V |
|------------|--------------------|
| 11.5       | 0.8                |
| 12.5       | 0.85               |
| 13.5       | 0.9                |
| 14.5       | 0.97               |
| 15.5       | 1.05               |
| 16.5       | 1.2                |
| 17         | 1.3                |
| 17.5       | 1.4                |
| 18         | 1.5                |
| 18.5       | 1.6                |
| 19         | 1.7                |
| 19.5       | 1.6                |
| 20         | 1.5                |
| 20.5       | 1.35               |
| 21         | 0.95               |
| 21.5       | 0.8                |

Table 2: Tab. 2: Spannungen  $U_2$  und  $U_1$  bei Skt. = 2/6

| freq / MHz | $U_2 / V$ |
|------------|-----------|
| 18         | 0.75      |
| 19         | 0.8       |
| 20         | 0.85      |
| 21         | 0.9       |
| 22         | 0.95      |
| 23         | 1         |
| 23.5       | 1.05      |
| 24         | 1.1       |
| 24.5       | 1.15      |
| 25         | 1.1       |
| 25.5       | 1.05      |
| 26         | 1         |
| 26.5       | 0.95      |
| 27         | 0.9       |
| 27.5       | 0.8       |

Table 3: Tab. 3: Spannungen  $U_2$  und  $U_1$  bei Skt. =  $1/6\,$ 

Es konnte ebenso die Messreihe mit keinem passiven nicht durchgeführt werden!



Figure 2: The resonance frequencies  $f_n$  can be determined by measuring voltage peaks in the passive coil voltage  $U_2(f)$ . The measurement apparatus for the current through the active coil was broken. Thus, the active voltage  $U_1(f)$  couldn't be determined. It would usually correspond to a damped oscillation thus creating corresponding local minima in  $U_1$  at the same resonace frequencies

### 1.4 Data

### 2 Electronspinresonance on DPPH

### 2.1 Setup



Figure 3: Experimental setup



Figure 4: Experimental setup

The experimental setup is shown in Fig. 4 and 5.

- Place the Helmholtz coils parallel to each other at a center distance of 6.8 cm (equal to the mean radius r).
- Connect both Helmholtz coils in series with the ammeter to the ESR operating unit.
- Connect the ESR base unit to the ESR operating unit via a 6-pin cable.
- Connect output Y of the ESR operating unit via a BNC cable to channel I of the dual-channel oscilloscope, and output X to channel II.

### 2.2 Procedure

#### Determination of the Resonance Magnetic Field $B_0$

- Insert the 15–30 MHz plug-in coil and place the DPPH sample centrally.
- Switch on the ESR base unit and position it so that the plug-in coil with DPPH sample is in the center of the Helmholtz-coil pair (see Fig. 5).
- Set the resonance frequency  $\nu = 15$  MHz.
- Set the modulation amplitude  $U_{\mathrm{mod}}$  to the second scale division.
- Set the phase shift to 0°.
- Operate the oscilloscope in dual-channel mode:
  - Dual on
  - ▶ Time base  $2\frac{ms}{cm}$
  - Amplitude I and II  $0.5\frac{V}{cm}$  AC
- Slowly increase the DC voltage  $U_0$  to the Helmholtz coils until the resonance signals are equidistant (see Fig. 6).
- Switch the oscilloscope to XY mode and adjust the phase shift so that the two resonance peaks coincide (see Fig. 3).
- Vary  $U_0$  until the resonance signal is symmetric, keeping the modulation voltage as low as possible.
- Measure the DC current  $2I_0$  through the Helmholtz-coil pair and record it together with the resonance frequency  $\nu$ .
- Increase  $\nu$  by 5 MHz and adjust  $U_0$  to reestablish resonance.
- Again measure and record the current  $2I_0$ .
- Continue raising  $\nu$  in 5 MHz steps (switch to the 30–75 MHz coil at 30 MHz, and to the 75–130 MHz coil at 75 MHz) and repeat the measurements.

#### Determination of the Half-Width $\delta B_0$

- Operate the oscilloscope in XY mode:
  - Amplitude II  $0.5\frac{V}{cm}$  AC
- Reestablish the resonance condition for  $\nu = 50$  MHz (middle plug-in coil).

- Vary the modulation voltage  $U_{\rm mod}$  until the resonance trace spans the full screen width (10 cm) in the X-direction.
- Switch the ammeter to AC mode and measure the effective current  $2I_{
  m mod}$  corresponding to  $U_{
  m mod}$ .
- Increase the X-deflection, read off the width  $\Delta U$  of the resonance peak at half its height, and record it.

### 2.3 Measurement values

| ν / MHz | $2\mathrm{I}_{\mathrm{0}}$ / A | Steckspule             |
|---------|--------------------------------|------------------------|
| 30      | 0.53                           | middle                 |
| 35      | 0.63                           | middle                 |
| 40      | 0.71                           | middle                 |
| 45      | 0.79                           | middle                 |
| 50      | 0.89                           | middle                 |
| 55      | 0.97                           | middle                 |
| 60      | 1.06                           | middle                 |
| 65      | 1.15                           | middle                 |
| 70      | 1.23                           | middle                 |
| 75      | 1.33                           | middle                 |
| 80      | 1.41                           | middle                 |
| 80      | 1.53                           | $\operatorname{small}$ |
| 90      | 1.65                           | $\operatorname{small}$ |
| 95      | 1.67                           | small                  |
| 100     | 1.7                            | $\operatorname{small}$ |
| 105     | 1.74                           | small                  |
| 110     | 1.79                           | small                  |
| 115     | 2.05                           | small                  |
| 120     | 2.16                           | small                  |

Table 4: Tab. 1: Stromstärke  $2I_0$  in Abhängigkeit von der Frequenz  $\nu$  des Wechselfeldes

| ν / MHz | $\mathrm{B}_\mathrm{0}\ /\ \mathrm{mT}$ |
|---------|-----------------------------------------|
| 30      | 1.12                                    |
| 35      | 1.33                                    |
| 40      | 1.5                                     |
| 45      | 1.67                                    |
| 50      | 1.88                                    |
| 55      | 2.05                                    |
| 60      | 2.24                                    |
| 65      | 2.43                                    |
| 70      | 2.6                                     |
| 75      | 2.81                                    |
| 80      | 2.98                                    |
| 80      | 3.24                                    |
| 90      | 3.49                                    |
| 95      | 3.53                                    |
| 100     | 3.6                                     |
| 105     | 3.68                                    |
| 110     | 3.79                                    |
| 115     | 4.34                                    |
| 120     | 4.57                                    |

Table 5: Tab. 2: Magnetfeld  $B_0$  in Abhängigkeit von der Frequenz  $\nu$  des Wechselfeldes



Abgelesene halbwertsbreite:

 $\delta U = 0.95 \mathrm{V}$ 

 $\delta I = 0.078 \mathrm{A}$ 

 $\delta B_0 = 0.33~\mathrm{mT}$ 

Slope: 27.19  $\frac{\text{MHz}}{\text{mT}}$ 

Gfactor:

# Laboratory Work III - Electron Spin Resonance

g = 1.9426

from literature:

g=2,0036

# **2.4** Data