Project: Exploring Weather Trends

By: Abhinav Jha

1. What tools did you use for each step? (Python, SQL, Excel, etc)

- a. I used two SQL queries to extract my data from the database:
 - i. Global Data:

```
SELECT *
FROM global_data
```

ii. Local Data: (for San Jose, CA)

```
SELECT year, city, avg_temp
FROM city_data
WHERE city = 'San Jose'
```

- b. I exported the data to CSV files using
 Download CSV the link
- I used MS Excel to convert the CSV file to XSLX file, calculate the moving average and create the charts.

2. How did you calculate the moving average?

I tried 7, 10, 20-year moving averages to see which average is better to smooth out data. To calculate the moving average in MS Excel, I used the AVERAGE function (the same approach as in the lesson) as shown below:

Figure 1: 7-year Moving Average

Figure 2: 10-year Moving Average

Abhinav Jha Data Analyst Project: Explore Weather

Figure 3: 20-year Moving Average

3. What were your key considerations when deciding how to visualize the trends?

The key consideration was to determine the timeframe for data visualization; Looking at the local temperature data for San Jose, the data covers the period between **1849** to **2013**, where in the global temperature data covers the period between **1750** and **2015**. Therefore, the analysis was performed for the range between **1849** to **2013**. To make sure local and global temperature data is mapped correctly, I used VLOOKUP to retrieve the global temperature data worksheet into the local data worksheet.

Another consideration was to adjust the starting point for each chart as follows:

- 7-year moving average starting point: 1855 (1849 + 7) See figure 6
- 10-year moving average starting point: 1858 (1849 + 10) See figure 5
- 20-year moving average starting point: 1868 (1849 + 20) See figure 4

To help assess the data variance and frequency of change between global and local temperature levels, I calculated the following:

- The Global & Local annual change percentage:

The Local/Global temp. average difference:

1	A		В	G	L	
1	year	*	Loc_avg_temp -	Glo_avg_temp -	Difference -	
2	1849		14.12	7.98	=B2-G2	
3	1850		13.8	7.9	5.90	
4	1851		14.39	8.18	6.21	
5	1852		13.81	8.1	5.71	
6	1853		14.4	8.04	6.36	
7	1854		13 98	8 21	5.77	

Also, I used Pivot table to calculate the Max, Min, Average, Standard Deviation, High/Low (%) change as follows:

All the calculations above were summarized in table 1 and table 2 below

Observations:

- The San Jose is hotter than the global temperature (please refer to Min, Max and Avg. columns in the table below)
- The local (San Jose) and global temperature levels are both increasing.
- The global moving average experiences less fluctuations than the local moving average in San Jose.
- The global temperature levels have a smaller variance than the local temperature changes.
- To determine the slope, we used the Linear TREND function for the local and global temperature data, we got the following the following equations:

By comparing the two slopes (0.0049) & (0.0049) & (0.0033), we note the local trend is increasing more rapidly than the global trend.

- The highest difference between local and global temperature is 7.20 °. This was recorded in year 1864; where the lowest difference between local and global temperature is 4.84 °. this was recorded in year 1998 (see figure 7)

	Min	Max	Avg.	SD	highest Inc. (%)	Lowest Dec. (%)	Avg. Change
San Jose	13.22	16.23 °	14.5 °	0.505	9.907 %	- 8.698 %	0.152 %
Global	7.56 ^c	9.73 °	8.55 c	0.460	7.275%	- 7.475 %	0.146 %

Table 1: Global Vs. Local (Summary 1)

Highest	Lowest
Difference	Difference
7.20 °	4.86 ^c

Table 2: Highest & Lowest Average Difference

Abhinav Jha Data Analyst Project: Explore Weather

Figure 4: 20-year Moving Average Comparison

Abhinav Jha Data Analyst Project: Explore Weather

Figure 6: 7-year Moving Average Comparison

