

CLAIMS

Now, therefore, the following is claimed:

- 1 1. A computer system for processing instructions of a computer program,
2 comprising:
 - 3 a plurality of pipelines configured to process and execute said instructions; and
 - 4 a scoreboard coupled to said pipeline, said scoreboard having a plurality of
 - 5 multi-bit registers, said scoreboard configured to receive a register identifier from one
 - 6 of said pipelines and to change a first bit in one of said multi-bit registers in response
 - 7 to said register identifier, said first bit indicating whether a pending write to a register
 - 8 identified by said register identifier exists, said register identifier associated with one
 - 9 of said instructions processed by said pipeline, said scoreboard further configured to
 - 10 receive data associated with said one instruction and to change a second bit in said one
 - 11 register based on said received data.
- 1 2, The system of claim 1, wherein said data associated with said one
2 instruction includes a speculative bit.
- 1 3. The system of claim 1, wherein said one instruction is a load
2 instruction and said data associated with said one instruction is indicative of which
3 memory locations have been searched in response to said one instruction.
- 1 4. The system of claim 3, further comprising circuitry configured to detect
2 whether said one instruction can be canceled based on said second bit.

1 5. The system of claim 1, further comprising circuitry coupled to said
2 scoreboard, said circuitry configured to detect a data hazard based on said first and
3 second bits.

1 6. The system of claim 5, wherein said second bit indicates whether said
2 one instruction is speculative, said circuitry further configured to detect whether
3 another instruction being processed by one of said pipelines utilizes said register
4 identified by said register identifier and to modify said second bit in response to said
5 other instruction.

1 7. The system of claim 5, wherein said circuitry is further configured to
2 modify said second bit.

1 8. A method for processing instructions of a computer program,
2 comprising the steps of:
3 providing a pipeline and a scoreboard, said scoreboard including a plurality of
4 multi-bit registers;
5 processing one of said instructions via said pipeline;
6 transmitting a register identifier defined by said one instruction to said
7 scoreboard;
8 changing a first bit in one of said multi-bit registers based on said register
9 identifier;
10 transmitting data associated with said one instruction to said scoreboard;
11 changing a second bit in said one register based on said data; and
12 detecting that data produced via execution of said one instruction is
13 unavailable; and
14 performing said changing a first bit step in response to said step of detecting
15 that data produced via execution of said one instruction is unavailable.

1 9. The method of claim 8, further comprising the step of detecting a data
2 hazard based on said first and second bits.

1 10. The method of claim 8, further comprising the step of indicating, via
2 said second bit, a speculative state of said one instruction.

1 11. The method of claim 8, further comprising the steps of:
2 detecting whether another instruction, when executed, utilizes a register
3 identified by said register identifier; and
4 changing said second bit based on said detecting whether another instruction
5 utilizes said register step.

1 12. The method of claim 8, further comprising the steps of:
2 retiring said one instruction; and
3 performing said changing a first bit step in response to said retiring step.

1 13. The method of claim 8, wherein said processing step further includes
2 the step of executing said one instruction and said method further includes the steps
3 of:
4 receiving data produced in response to said executing step; and
5 changing said first bit in response to said receiving step.

1 14. The method of claim 8, further comprising the steps of:
2 retrieving data in response to said one instruction; and
3 indicating, via said second bit, how far said retrieving step has progressed.

1 15. The method of claim 14, further comprising the steps of:
2 detecting whether said one instruction can be canceled based on said second
3 bit; and
4 canceling said one instruction based on said detecting whether said one
5 instruction can be canceled step.

1 16. The method of claim 8, further comprising the steps of:
2 selecting said one register based on said register identifier; and
3 performing said changing a first bit step in response to said selecting step.

1 17. The method of claim 16, further comprising the step of:
2 performing said changing a second bit step in response to said selecting step.

1 18. A method for processing instructions of a computer program,
2 comprising the steps of:
3 providing at least one pipeline and a scoreboard, said scoreboard including at
4 least one multi-bit register;
5 processing at least one instruction via said one pipeline;
6 identifying a register based on a register identifier defined by said one
7 instruction;
8 detecting whether data produced via execution of said one instruction has been
9 written to said register identified in said identifying step;
10 transmitting said register identifier to said scoreboard in response to a
11 detection in said detecting step that said data produced via execution of said one
12 instruction has yet to be written to said register identified in said identifying step;
13 changing a first bit in said one register based on said register identifier
14 transmitted in said transmitting said register identifier step;
15 receiving, at said scoreboard, data associated with said one instruction;
16 changing a second bit in said one register based on said data received in said
17 receiving step; and

18 detecting a data hazard based on said first and second bits.

- 1 19. The method of claim 18, further comprising the steps of:
 - 2 retiring said one instruction; and
 - 3 performing said changing a first bit step in response to said retiring step.