A Proof of Levin's Theorem

Craig Huneke

May 31, 2024

These are informal notes by Craig Huneke, written while he was teaching a course from the Queens Lecture notes by Gulliksen and Levin. The theorem below is stated by Vasconcelos in his book "Arithmetic of Blowup Algebras", Thm 10.3.16, and attributed to Levin-personal communication. Vasconcelos gives a proof of the easy half, but it seems that no proof of the harder half was published.

-DE

Theorem 1. Let R be a local ring, I an ideal in R of finite projective dimension. Let J be the "content" of I, i.e. the ideal of all coefficients of relations on a minimal set of generators of I. If $r = \mu(I) > pd_RR/I$ then $(I:J)^r \subset I$.

The proof depends on a lemma of Gulliksen's (Lemma 1.3.2 of Gulliksen-Levin) on the extension of derivations. If A is a differential graded R-algebra, a derivation j of A is an R- linear mapping $A\to A$ of degree w such that for $x\in A_p$, $y\in A_q$

$$j(xy) = (-1)^{wq} j(x)y + xj(y)$$

Suppose z is a cycle in A_p and $B = \{A\langle S \rangle; dS = z\}$, the algebra obtained by adjoining to A a variable to kill z. Gulliksen's lemma says that a derivation j of A of negative degree -w may be extended to B if and only if $j(d(A_{p+1})) \subset d(A_{p-w+1})$

In particular, if A is an acyclic closure of the homomorphism $R \to R/I$, (begin with the Koszul complex over R on a set of generators of I and adjoin a sequence of variables S_1, S_2, \ldots to kill all homology in degrees > 0), then an R-linear map $j: A_p \to R$ may be extended to derivation of A of degree -p if and only if j takes the p-boundaries to 0-boundaries, i.e. elements of I, but this is precisely the condition that the composite $A_p \to R \to R/I$ be a p-cocycle in $Hom_R(A, R/I)$.

This leads to the following theorem about the action of $Ext_R(R/I, R/I)$ on $Tor^R(R/I, R/I)$.

Theorem 2. Let x_1, \ldots, x_s be elements in $Ext_R^1(R/I, R/I)$ and let y_1, \ldots, y_s be elements of $Tor_1^R(R/I, R/I)$. Then

$$(x_1 \dots x_s)(y_1 \dots y_s) = \det(M)$$

where M is the $s \times s$ matrix whose i, j-th entry is $x_i y_j$

Here the product of the x_i is the Yoneda product while the product of the y_i is the usual algebra product in $Tor^R(R/I, R/I)$.

Proof. The usual way to compute the action of $Ext_R^1(R/I,R/I)$ on $Tor^R(R/I,R/I)$ is to take a representative cocyle in $Hom_R(A_1,R/I)$, lift it to a map ξ of degree -1 from $A \to A$ commuting with the differential and then apply $\xi \otimes 1$ to a cycle in $A \otimes_R (R/I)$ representing a class in $Tor^R(R/I,R/I)$. However, in this situation, we can take ξ to be a derivation so multiplication by any x_i satisfies the derivation rule. The result follows.

Theorem 3. Let $I = (t_1, \ldots, t_r)$ and let f_1, \ldots, f_r be any r 1-cocycles in $Hom_R(A, R/I)$, and T_1, \ldots, T_r a basis for A_1 with $dT_i = t_i$. (This means that for any relation $\sum_{i=1}^r a_i t_i = 0 \in R$, it is also true that $\sum_{i=1}^r a_i f_j(T_i) = 0 \in R/I$) Let $b_{ij} \in R$ represent the elements $f_i(T_j) \in R/I$ and let M be the $r \times r$ matrix with these entries. Then all subdeterminants of M of order $> pd_RR/I$ are elements of I.

Proof. Since each $dT_i \in I$, each $T_i \otimes 1$ is a 1-cycle in $A \otimes (R/I)$. Apply the theorem above.

Proof of main result. If $b_1, \ldots, b_r \in (I:J)$ the maps

$$f_i(T_j) = \begin{cases} b_i & j = i \\ 0 & j \neq i \end{cases}$$

when composed with the canonical map $R \to R/I$ become 1-cocycles in $Hom_R(A, R/I)$. The matrix M is then diagonal and the determinant is $b_1 \dots b_r \in I$ since $Tor_r^R(R/I, R/I) = 0$.