Et lokalsøgningssystem til at løse diskrete optimeringsproblemer

Bo Stentebjerg-Hansen

Vejleder: Marco Chiarandini

Syddansk Universitet

Institut for Matematik og Datalogi

3. marts 2016

Overblik

- 1 Introduktion
- 2 Elementer i lokalsøgning
- 3 Opbygning af systemet
- 4 Experimentel evaluering

En diskret optimeringsinstans *I*:

En diskret optimeringsinstans 1:

lacksquare *n* variable f x, $f x \in \mathbb{Z}^n$

En diskret optimeringsinstans 1:

- n variable $\mathbf{x}, \mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**

En diskret optimeringsinstans 1:

- *n* variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

En diskret optimeringsinstans 1:

- \blacksquare *n* variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

```
min\{ f(x) \mid x \in feas(I) \}
```

En diskret optimeringsinstans 1:

- n variable \mathbf{x} , $\mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(I) \}$$

Kan være NP-hårde problemer

En diskret optimeringsinstans 1:

- n variable $\mathbf{x}, \mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(I) \}$$

Kan være NP-hårde problemer

Eksempel: Skemalægningsinstans

 Variable: Klasser der skal skemalægges

En diskret optimeringsinstans 1:

- *n* variable $\mathbf{x}, \mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(I) \}$$

Kan være NP-hårde problemer

- Variable: Klasser der skal skemalægges
- Betingelser: Ingen overlap, krav til lokaler, tidspunkter, osv

En diskret optimeringsinstans 1:

- *n* variable $\mathbf{x}, \mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(I) \}$$

Kan være NP-hårde problemer

- Variable: Klasser der skal skemalægges
- Betingelser: Ingen overlap, krav til lokaler, tidspunkter, osv
- Evaluering: Totale antal af mellemtimer

En diskret optimeringsinstans 1:

- n variable \mathbf{x} . $\mathbf{x} \in \mathbb{Z}^n$
- *m* betingelser **C**
- Evaluerings funktion f(x)

$$min\{ f(x) \mid x \in feas(I) \}$$

Kan være NP-hårde problemer

- Variable: Klasser der skal skemalægges
- Betingelser: Ingen overlap, krav til lokaler, tidspunkter, osv
- Evaluering: Totale antal af mellemtimer
- Bedste l\(\psi\)sning: Den l\(\psi\)sning som overholder alle betingelser og giver f\(\pi\)rrest mellemtimer

- Algoritmer til specifikke problemer

- Algoritmer til specifikke problemer
 - Approximations algorithmer

- Algoritmer til specifikke problemer
 - Approximations algorithmer
 - Dynamisk programmering

- Algoritmer til specifikke problemer
 - Approximations algorithmer
 - Dynamisk programmering
- Satisfiability solver

- Algoritmer til specifikke problemer
 - Approximations algorithmer
 - Dynamisk programmering
- Satisfiability solver
- Lineær heltalsprogramming

- Algoritmer til specifikke problemer
 - Approximations algorithmer
 - Dynamisk programmering
- Satisfiability solver
- Lineær heltalsprogramming
- Constraint Programming

- Algoritmer til specifikke problemer
 - Approximations algorithmer
 - Dynamisk programmering
- Satisfiability solver
- Lineær heltalsprogramming
- Constraint Programming
- Lokalsøgning

- Algoritmer til specifikke problemer
 - Approximations algorithmer
 - Dynamisk programmering
- Satisfiability solver
- Lineær heltalsprogramming
- Constraint Programming
- Lokalsøgning
- Flere andre

Lineær helttalsprogrammering

■ Model baseret på uligheder

Lineær helttalsprogrammering

■ Model baseret på uligheder

■ Gurobi, CPLEX, SCIP, GLPK

Lineær helttalsprogrammering

■ Model baseret på uligheder

- Gurobi, CPLEX, SCIP, GLPK
- Kan ikke altid finde en (optimal) løsning inden for rimelig tid

 Bruger søgetræer + propagation til at finde en løsning

- Bruger søgetræer + propagation til at finde en løsning
- Mere naturlig formulering af problemer

- Bruger søgetræer + propagation til at finde en løsning
- Mere naturlig formulering af problemer
- Flere muligheder for at modeller et problem

- Bruger søgetræer + propagation til at finde en løsning
- Mere naturlig formulering af problemer
- Flere muligheder for at modeller et problem
- Men mindre egnet til optimeringsproblemer

- Bruger søgetræer + propagation til at finde en løsning
- Mere naturlig formulering af problemer
- Flere muligheder for at modeller et problem
- Men mindre egnet til optimeringsproblemer
- Fx Gecode, CHIP, Prolog

■ "Trial and error" teknik

- "Trial and error" teknik
- Alle variable skal have en værdi først

_			_			_		_				_	_		_			_	_	
2	6	3	7	8	9	4	1	5				6	8	4	7	3	5	1	2	9
5	8	9	4	1	3	7	6	2				5	1	2	4	6	9	3	7	8
1	4	7	2	5	6	8	9	3				7	9	3	2	1	8	4	5	6
7	9	8	6	2	1	5	3	4				4	2	5	9	7	6	8	1	3
4	5	1	8	3	7	9	2	6				8	3	1	5	2	4	9	6	7
6	3	2	5	9	4	1	8	7				9	7	6	1	8	3	2	4	5
3	1	5	9	4	2	6	7	8	2	3	4	1	5	9	3	4	7	6	8	2
9	7	4	3	6	8	2	5	1	6	7	9	3	4	8	6	5	2	7	9	1
8	2	6	1	7	5	3	4	9	5	8	1	2	6	7	8	9	1	5	3	4
			_			7	6	2	4	9	3	5	8	1				_		
						1	8	3	7	6	5	9	2	4						
						5	9	4	1	2	8	6	7	3	1					
1	2	5	7	8	9	4	3	6	9	5	7	8	1	2	5	3	4	6	7	9
6	7	9	3	2	4	8	1	5	3	4	2	7	9	6	1	2	8	3	4	5
3	4	8	1	5	6	9	2	7	8	1	6	4	3	5	6	7	9	1	2	8
4	6	2	5	3	7	1	9	8	Т			6	4	1	8	5	7	2	9	3
7	5	3	9	1	8	6	4	2				5	2	8	3	9	1	4	6	7
8	9	1	4	6	2	5	7	3				3	7	9	2	4	6	5	8	1
	1	4	6	7	5	3	8	9				1	5	7	9	6	2	8	3	4
2			_		-	-	-	-				2	8	4	7	1	3	9	-	6
2	3	7	8	9	1	12	6	4											5	

- "Trial and error" teknik
- Alle variable skal have en værdi først
- Delt op implicitte og bløde betingelser

- "Trial and error" teknik
- Alle variable skal have en værdi først
- Delt op implicitte og bløde betingelser
- Ændre få variable ad gangen og beregner effekten.

																				_
2	6	3	7	8	9	4	1	5				6	8	4	7	3	5	1	2	9
5	8	9	4	1	3	7	6	2				5	1	2	4	6	9	3	7	8
1	4	7	2	5	6	8	9	3				7	9	3	2	1	8	4	5	6
7	9	8	6	2	1	5	3	4	1			4	2	5	9	7	6	8	1	3
4	5	1	8	3	7	9	2	6				8	3	1	5	2	4	9	6	7
6	3	2	5	9	4	1	8	7				9	7	6	1	8	3	2	4	5
3	1	5	9	4	2	6	7	8	2	3	4	1	5	9	3	4	7	6	8	2
9	7	4	3	6	8	2	5	1	6	7	9	3	4	8	6	5	2	7	9	1
8	2	6	1	7	5	3	4	9	5	8	1	2	6	7	8	9	1	5	3	4
							6	2	4	9	3	5	8	1				_		
							8	3 7 6 5 9 2 4												
						5	9	4	1	2	8	6	7	3	1					
1	2	5	7	8	9	4	3	6	9	5	7	8	1	2	5	3	4	6	7	9
6	7	9	3	2	4	8	1	5	3	4	2	7	9	6	1	2	8	3	4	5
3	4	8	1	5	6	9	2	7	8	1	6	4	3	5	6	7	9	1	2	8
4	6	2	5	3	7	1	9	8	Г			6	4	1	8	5	7	2	9	3
7	5	3	9	1	8	6	4	2				5	2	8	3	9	1	4	6	7
8	9	1	4	6	2	5	7	3				3	7	9	2	4	6	5	8	1
2	1	4	6	7	5	3	8	9				1	5	7	9	6	2	8	3	4
5	3	7	8	9	1	2	6	4				2	8	4	7	1	3	9	5	6
9	8	6	2	4	3	7	5	1				9	6	3	4	8	5	7	1	2

- "Trial and error" teknik
- Alle variable skal have en værdi først
- Delt op implicitte og bløde betingelser
- Ændre få variable ad gangen og beregner effekten.
- Kan ikke garantere optimalitet

_												_			_					_
2	6	3	7	8	9	4	1	5				6	8	4	7	3	5	1	2	9
5	8	9	4	1	3	7	6	2				5	1	2	4	6	9	3	7	8
1	4	7	2	5	6	8	9	3				7	9	3	2	1	8	4	5	6
7	9	8	6	2	1	5	3	4				4	2	5	9	7	6	8	1	3
4	5	1	8	3	7	9	2	6				8	3	1	5	2	4	9	6	7
6	3	2	5	9	4	1	8	7				9	7	6	1	8	3	2	4	5
3	1	5	9	4	2	6	7	8	2	3	4	1	5	9	3	4	7	6	8	2
9	7	4	3	6	8	2	5	1	6	7	9	3	4	8	6	5	2	7	9	1
8	2	6	1	7	5	3	4	9	5	8	1	2	6	7	8	9	1	5	3	4
						7	6	2	4	9	3	5	8	1						
						1	8	3	7	6	5	9	2	4						
						5	9	4	1	2	8	6	7	3						
1	2	5	7	8	9	4	3	6	9	5	7	8	1	2	5	3	4	6	7	9
6	7	9	3	2	4	8	1	5	3	4	2	7	9	6	1	2	8	3	4	5
3	4	8	1	5	6	9	2	7	8	1	6	4	3	5	6	7	9	1	2	8
4	6	2	5	3	7	1	9	8	Г			6	4	1	8	5	7	2	9	3
7	5	3	9	1	8	6	4	2				5	2	8	3	9	1	4	6	7
8	9	1	4	6	2	5	7	3				3	7	9	2	4	6	5	8	1
2	1	4	6	7	5	3	8	9				1	5	7	9	6	2	8	3	4
5	3	7	8	9	1	2	6	4				2	8	4	7	1	3	9	5	6
9	8	6	2	4	3	7	5	1				9	6	3	4	8	5	7	1	2

- "Trial and error" teknik
- Alle variable skal have en værdi først
- Delt op implicitte og bløde betingelser
- Ændre få variable ad gangen og beregner effekten.
- Kan ikke garantere optimalitet
- Ofte implementeret for fra til specifikke problemer.

Sammensætning af løsningsmetoder

1 LocalSolver ¹

¹http://www.localsolver.com/

Sammensætning af løsningsmetoder

- 1 LocalSolver ¹
 - Matematisk modellering

¹http://www.localsolver.com/

- 1 LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering

¹http://www.localsolver.com/

- 1 LocalSolver 1
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver

¹http://www.localsolver.com/

- 1 LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- 2 EasyLocal++ ²

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

- 1 LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- EasyLocal++ 2
 - Lokalsøgningsalgoritmer implementeret

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

- 1 LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- EasyLocal++ 2
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

- LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- 2 EasyLocal++ ²
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges

3 Comet ³

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

³Constrainted-Based Local Search, P. Hentenryck & L. Michel

- LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- 2 EasyLocal++ ²
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges

- 3 Comet ³
 - Først betingelsesbaseret lokalsøgningssystem

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

³Constrainted-Based Local Search, P. Hentenryck & L. Michel

- LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- EasyLocal++ 2
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges

- Comet ³
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

³Constrainted-Based Local Search, P. Hentenryck & L. Michel

- LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- EasyLocal++ 2
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges

- Comet ³
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

³Constrainted-Based Local Search, P. Hentenryck & L. Michel

- LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- **2** EasyLocal++ ²
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges

- Comet ³
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelse
 - Ikke længere vedligeholdt
- 4 OscaR ⁴

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

³Constrainted-Based Local Search, P. Hentenryck & L. Michel

⁴http://oscarlib.bitbucket.org/cbls.html

- LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- **2** EasyLocal++ ²
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges

- Comet ³
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelseIkke længere vedligeholdt
- 4 OscaR ⁴
 - Inspireret af Comet

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

³Constrainted-Based Local Search, P. Hentenryck & L. Michel

⁴http://oscarlib.bitbucket.org/cbls.html

- LocalSolver ¹
 - Matematisk modellering
 - Lineær- og heltalsprogrammering
 - Kommerciel Solver
- **2** EasyLocal++ ²
 - Lokalsøgningsalgoritmer implementeret
 - Bruger definere hvilke der skal bruges

- Comet ³
 - Først betingelsesbaseret lokalsøgningssystem
 - Mulighed for udvidelseIkke længere vedligeholdt
- 4 OscaR 4
 - Inspireret af Comet
 - Forholdsvis nyt

⁴http://oscarlib.bitbucket.org/cbls.html

¹http://www.localsolver.com/

²https://bitbucket.org/satt/easylocal-3

³Constrainted-Based Local Search, P. Hentenryck & L. Michel

■ Kombinerer CP og lokalsøgning på en ny måde:

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke kun modelleringsmæssigt

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke kun modelleringsmæssigt
 - Ikke som "large scale neighborhood search"

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke kun modelleringsmæssigt
 - Ikke som "large scale neighborhood search"
- Undersøger effekten af (offline) CP domæne reducering

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke kun modelleringsmæssigt
 - Ikke som "large scale neighborhood search"
- Undersøger effekten af (offline) CP domæne reducering
- Bruger CP som konstruktions heuristik

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke kun modelleringsmæssigt
 - Ikke som "large scale neighborhood search"
- Undersøger effekten af (offline) CP domæne reducering
- Bruger CP som konstruktions heuristik
- Tester effekten af envejsbetingelser

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke kun modelleringsmæssigt
 - Ikke som "large scale neighborhood search"
- Undersøger effekten af (offline) CP domæne reducering
- Bruger CP som konstruktions heuristik
- Tester effekten af envejsbetingelser
- Introducerer en ny evalueringsmetode

- Kombinerer CP og lokalsøgning på en ny måde:
 - Ikke kun modelleringsmæssigt
 - Ikke som "large scale neighborhood search"
- Undersøger effekten af (offline) CP domæne reducering
- Bruger CP som konstruktions heuristik
- Tester effekten af envejsbetingelser
- Introducerer en ny evalueringsmetode
 - Leksikografisk vægtning

Modellering:

Modellering:

■ Variable:

løsningsrepræsentation, search space S(I)

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser
 - Implicitte betingelser

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser
 - Implicitte betingelser
- Evaluerings funktion: kvaliteten af en løsning

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser
 - Implicitte betingelser
- Evaluerings funktion: kvaliteten af en løsning

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser
 - Implicitte betingelser
- Evaluerings funktion: kvaliteten af en løsning

Søgning:

■ Neighborhood

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser
 - Implicitte betingelser
- Evaluerings funktion: kvaliteten af en løsning

- Neighborhood
- Konstruktions heuristik

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser
 - Implicitte betingelser
- Evaluerings funktion: kvaliteten af en løsning

- Neighborhood
- Konstruktions heuristik
- Lokalsøgning

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser
 - Implicitte betingelser
- Evaluerings funktion: kvaliteten af en løsning

- Neighborhood
- Konstruktions heuristik
- Lokalsøgning
- Metaheuristikker

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser
 - Implicitte betingelser
- Evaluerings funktion: kvaliteten af en løsning

- Neighborhood
- Konstruktions heuristik
- Lokalsøgning
- Metaheuristikker
 - Tabu søgning

Modellering:

- Variable: løsningsrepræsentation, search space *S*(*I*)
- Betingelser:
 - Bløde betingelser
 - Envejsbetingelser
 - Implicitte betingelser
- Evaluerings funktion: kvaliteten af en løsning

- Neighborhood
- Konstruktions heuristik
- Lokalsøgning
- Metaheuristikker
 - Tabu søgning
 - Iterativ lokalsøgning

Binære optimeringsproblemer

$$min\left\{\sum\limits_{j=1}^n c_jx_j\mid \sum\limits_{j=1}^n a_{ij}x_j\leq b_j\;,\;\;orall i\in\{1..m\}
ight\}$$

Binære optimeringsproblemer

$$\min \left\{ \sum_{j=1}^{n} c_{j} x_{j} \mid \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{j} , \ \forall i \in \{1..m\} \right\}$$
Minimize $z = 2x_{1} + x_{2} + x_{3}$
subject to
$$-x_{1} + 2x_{2} \leq 1$$

$$x_{1} + x_{2} + x_{3} = 2$$

$$x_{1}, x_{2}, x_{3} \in \{0, 1\}$$

Binære optimeringsproblemer

$$\min \left\{ \sum_{j=1}^{n} c_{j} x_{j} \mid \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{j} , \ \forall i \in \{1..m\} \right\}$$
 Minimize $z = 2x_{1} + x_{2} + x_{3}$ subject to
$$-x_{1} + 2x_{2} \leq 1$$

$$x_{1} + x_{2} + x_{3} = 2$$

$$x_{1}, x_{2}, x_{3} \in \{0, 1\}$$

 Mange problemer kan modelleres som binære optimeringsproblemer

Binære optimeringsproblemer

$$\min \left\{ \sum_{j=1}^{n} c_{j} x_{j} \mid \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{j} , \forall i \in \{1..m\} \right\}$$
Minimize $z = 2x_{1} + x_{2} + x_{3}$
subject to $-x_{1} + 2x_{2} \leq 1$
 $x_{1} + x_{2} + x_{3} = 2$
 $x_{1}, x_{2}, x_{3} \in \{0, 1\}$

 Mange problemer kan modelleres som binære optimeringsproblemer Fx: traveling salesman problem, knapsack, vertex cover, ...

Binære optimeringsproblemer

$$\min \left\{ \sum_{j=1}^{n} c_{j} x_{j} \mid \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{j} , \forall i \in \{1..m\} \right\}$$
Minimize $z = 2x_{1} + x_{2} + x_{3}$
subject to $-x_{1} + 2x_{2} \leq 1$
 $x_{1} + x_{2} + x_{3} = 2$
 $x_{1}, x_{2}, x_{3} \in \{0, 1\}$

 Mange problemer kan modelleres som binære optimeringsproblemer Fx: traveling salesman problem, knapsack, vertex cover, ...

Bliver oprettet i systemet med *linear*: linear(int[] coefficients, Variable[] variables, int relation, int ub, int priority)

Find en startløsning:

Find en startløsning:

Opret variable og begrænsninger

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi
- Find en gyldig løsning

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi
- Find en gyldig løsning
 - til 50 % af betingelserne

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi
- Find en gyldig løsning
 - til 50 % af betingelserne
 - til 25 % af betingelserne

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi
- Find en gyldig løsning
 - til 50 % af betingelserne
 - til 25 % af betingelserne
 - til 12,5 % af betingelserne

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi
- Find en gyldig løsning
 - til 50 % af betingelserne
 - til 25 % af betingelserne
 - til 12,5 % af betingelserne
 - Tilfældig tildeling af værdi inden for domæne

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi
- Find en gyldig løsning
 - til 50 % af betingelserne
 - til 25 % af betingelserne
 - til 12,5 % af betingelserne
 - Tilfældig tildeling af værdi inden for domæne

Behandling af betingelser:

Invarianter: Variable defineret af betingelser

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi
- Find en gyldig løsning
 - til 50 % af betingelserne
 - til 25 % af betingelserne
 - til 12,5 % af betingelserne
 - Tilfældig tildeling af værdi inden for domæne

- Invarianter: Variable defineret af betingelser
- 2 Graf over afhængighed

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi
- Find en gyldig løsning
 - til 50 % af betingelserne
 - til 25 % af betingelserne
 - til 12,5 % af betingelserne
 - Tilfældig tildeling af værdi inden for domæne

- Invarianter: Variable defineret af betingelser
- 2 Graf over afhængighed
- 3 Auxiliary invarianter: Betingelser behandlet som invarianter

Find en startløsning:

- Opret variable og begrænsninger
- Domæne reducering lavet af Gecode
- Oprettelse af søgningsstrategi
- Find en gyldig løsning
 - til 50 % af betingelserne
 - til 25 % af betingelserne
 - til 12.5 % af betingelserne
 - Tilfældig tildeling af værdi inden for domæne

- Invarianter: Variable defineret af betingelser
- 2 Graf over afhængighed
- Auxiliary invarianter: Betingelser behandlet som invarianter
- 4 Topologisk sortering af invarianter

■ Betingelses bestemt om envejsbetingelse kan laves

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$
- $x_3 x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 1$

 x_2

*X*₃

 \subset

*x*₄

*X*₅

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$
- $x_3 x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 1$

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$
- $x_3 x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 1$

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$
- $x_3 x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 1$

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$
- $x_3 x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 1$

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$

$$x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$$

■ Færre mulige løsninger der skal undersøges

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$

$$x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$$

- Færre mulige løsninger der skal undersøges
- Bruger lidt mere tid på at evaluere en løsning

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$
- $x_3 x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 1$

- Færre mulige løsninger der skal undersøges
- Bruger lidt mere tid på at evaluere en løsning
- x_3 er gjort afhængig af x_1 og x_2

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$

$$x_3 - x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 - 1$$

- Færre mulige løsninger der skal undersøges
- Bruger lidt mere tid på at evaluere en løsning
- x_3 er gjort afhængig af x_1 og x_2
- x_4 indirekte afhængig af x_1 og x_2

- Betingelses bestemt om envejsbetingelse kan laves
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_3 = x_1 + x_2 1$
- $x_3 x_4 + x_5 = 1 \Leftrightarrow x_4 = x_3 + x_5 1$

- Færre mulige løsninger der skal undersøges
- Bruger lidt mere tid på at evaluere en løsning
- \blacksquare x_3 er gjort afhængig af x_1 og x_2
- x_4 indirekte afhængig af x_1 og x_2
- Variable valgt efter udgående kanter og antallet af betingelser den optræder i

$$y_1 = x_1 - y_3$$

$$y_2 = y_1$$

$$y_3 = x_2 + y_2 - 1$$

$$x_1, x_2 \in \{0, 1\}$$

$$y_1, y_2, y_3 \in \{0, 1\}$$

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$1 \rightarrow 0 \rightarrow 0$$

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$1 \qquad 0 \qquad 0$$

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$1 \rightarrow 0 \rightarrow 0$$

$$\begin{array}{c} y_1 = x_1 - y_3 \\ y_2 = y_1 \\ y_3 = x_2 + y_2 - 1 \\ x_1, x_2 \in \{0, 1\} \\ y_1, y_2, y_3 \in \{0, 1\} \\ x_1 & y_1 \\ \hline 1 & 1 \\ x_2 & y_3 \\ \hline 1 & 0 & 1 \\ \end{array}$$

$$\begin{array}{c} y_1 = x_1 - y_3 \\ y_2 = y_1 \\ y_3 = x_2 + y_2 - 1 \\ x_1, x_2 \in \{0, 1\} \\ y_1, y_2, y_3 \in \{0, 1\} \\ x_1 & y_1 \\ \hline 1 & 1 \\ x_2 & y_3 \\ \hline 1 & 1 \\ \end{array}$$

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{2} \qquad y_{3} \qquad y_{2}$$

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{2} \qquad y_{3} \qquad y_{2}$$

Identificering af kredse:

■ Dybde først lignende algoritme, af Tarjan O(V + E)

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{2} \qquad y_{3} \qquad y_{2}$$

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{1} \qquad x_{2}$$

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant → genskaber en variable fra hver SCC

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{2} \qquad y_{3} \qquad y_{2}$$

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant \rightarrow genskaber en variable fra hver SCC
 - Vælger invariant efter antal indgående kanter

$$y_{1} = x_{1} - y_{3}$$

$$y_{2} = y_{1}$$

$$y_{3} = x_{2} + y_{2} - 1$$

$$x_{1}, x_{2} \in \{0, 1\}$$

$$y_{1}, y_{2}, y_{3} \in \{0, 1\}$$

$$x_{1} \qquad y_{1}$$

$$x_{2} \qquad y_{3} \qquad y_{2}$$

$$x_{1} \qquad x_{1} \qquad x_{2}$$

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant \rightarrow genskaber en variable fra hver SCC
 - Vælger invariant efter antal indgående kanter
- Gentager indtil ingen stærke sammenhængskomponenter er fundet

- Dybde først lignende algoritme, af Tarjan O(V + E)
 - Finder stærke sammenhængskomponenter (SCC)
 - Fjerne en invariant \rightarrow genskaber en variable fra hver SCC
 - Vælger invariant efter antal indgående kanter
- Gentager indtil ingen stærke sammenhængskomponenter er fundet
- Ikke minimalt antal invarianter der fjernes

 Betingelser som ikke er brugt til at definere variable.

- Betingelser som ikke er brugt til at definere variable.
- Betingelses specifik oprettelse af invarianter.

- Betingelser som ikke er brugt til at definere variable.
- Betingelses specifik oprettelse af invarianter.
- Tilføj invarianter til grafen.

- Betingelser som ikke er brugt til at definere variable.
- Betingelses specifik oprettelse af invarianter.
- Tilføj invarianter til grafen.
- Invarianter til summering af overtrædelse betingelser.

- Betingelser som ikke er brugt til at definere variable.
- Betingelses specifik oprettelse af invarianter.
- Tilføj invarianter til grafen.
- Invarianter til summering af overtrædelse betingelser.

- Betingelser som ikke er brugt til at definere variable.
- Betingelses specifik oprettelse af invarianter.
- Tilføj invarianter til grafen.
- Invarianter til summering af overtrædelse betingelser.

For en linear betingelsen:

■ Summering af venstresiden:

$$\underbrace{x_1 + 2x_2 - x_3}_{W_1} \le 2$$

- Betingelser som ikke er brugt til at definere variable.
- Betingelses specifik oprettelse af invarianter.
- Tilføj invarianter til grafen.
- Invarianter til summering af overtrædelse betingelser.

For en linear betingelsen:

■ Summering af venstresiden:

$$\underbrace{x_1 + 2x_2 - x_3}_{w_1} \le 2$$

■ Overtrædelse af betingelsen:

$$\underbrace{w_1 \leq 2}_{w_2}$$

$$w_2 = \begin{cases} w_1 - 2, & \text{if } w_1 > 2. \\ 0, & \text{otherwise.} \end{cases}$$

Variable

■ Lav ordning af invarianter til når de skal opdateres.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

- Lav ordning af invarianter til når de skal opdateres.
- Forhindre flere opdateringer af samme invariant.
- Ordningen kan laves med dybde først søgning i grafen.
- Opret en liste for hver uafhængig variable.

Experimentel evaluering

Test og resultater