Prove the following propositions. Format your proof so each step of the proof is on its own line; each line should still be a complete sentence. Below, I have entered a nonsensical proof as a model.

Proposition 1. Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$, then a or b is even.

Proof.

Suppose $a^2 + b^2 = c^2$ and it's not the case that a or b is even.

Therefore, a and b are both odd.

So a = 2x + 1 and b = 2y + 1 for some integers x and y.

Either c is even or odd.

Case 1: c is even.

Then c = 2z for some integer x.

The expression $a^2 + b^2 = c^2$ becomes $(2x + 1)^2 + (2y + 1)^2 = 4z^2$.

Expanding the expression yields $4x^2 + 4x + 1 + 4y^2 + 4y + 1 = 4z^2$.

Factoring yields $4(x^2 + y^2 + x + y) + 2 = 4z^2$.

Simplifying the expression shows 4k + 2 = 4j where k and j are the integers $x^2 + y^2 + x + y$ and $4z^2$ respectfully.

Observe that 2 = 4(k - j), thus 4|2.

We have arrived at contradiction.

Case 2: c is odd.

Then c = 2z + 1 for some integer x.

The expression $a^2 + b^2 = c^2$ becomes $(2x+1)^2 + (2y+1)^2 = (2z+1)^2$.

Expanded and factored yields $2(2x^2 + 2x + 2y^2 + 2y + 1) = 2(2z^2 + 2z) + 1$

Simplifying the expression shows that 2k = 2j + 1 for integers k and j.

Therefore, an even number equals an odd number.

We have arrived at contradiction.

Proposition 2. Suppose $x, y \in \mathbb{Z}$. If x + y is even, then x and y have the same parity.

Proof.

Suppose x and y do not have the same parity.

Then x is even and y odd without loss of generality.

So x = 2a and y = 2b + 1 for some integers a and b.

The expression x + y becomes 2a + 2b + 1 = 2(a + b) + 1.

Therefore x + y = 2m + 1 where m is the integer a + b.

So, x + y is odd.

Proposition 3. If $a \equiv b \pmod{n}$, then gcd(a, n) = gcd(b, n).

Proof.

Suppose $a \equiv b \pmod{n}$.

Then n|(a-b).

Then nx = a - b for some integer x.

The division algorithm states that:

 $a = nq_1 + r_1$ where $q_1, r_1 \in \mathbb{Z}$ where $0 \le r_1 < n$.

 $b = nq_2 + r_2$ where $q_2, r_2 \in \mathbb{Z}$ where $0 \le r_2 < n$.

So, $nx = nq_1 + r_1 - nq_2 - r_2$

 $= n(q_1 - q_2) + r_1 - r_2$

Observe that $r_1 - r_2$ must be some multiple of n in order for the equality to hold.

So, $ny = r_1 - r_2$.

However, $-n < r_1 - r_2 < n$, so the only possible multiple is 0.

So, $n(0) = 0 = r_1 - r_2 \implies r_1 = r_2$.

Therefore they share the same remainder.

Moving forward: $r = r_1 = r_2$.

Continuing,

$$a = nq_1 + r$$

$$b = nq_2 + r$$

n and r may share prime factors, we can factor these out and replace them with their product p:

$$a = p(n'q_1 + r')$$

$$b = p(n'q_2 + r')$$

Where n = n'p and r = r'p.

Make note that p|a, p|b, and p|n.

Lemma: If n' and r' are coprime, then gcd(n'q + r', n') = 1 where $q \in \{q_1, q_2\}$.

Suppose $gcd(n'q + r', n') \neq 1$.

Then gcd(n'q + r', n') > 1.

So, n'q + r' and n' share some common divisor d.

It follows that d|n'q + r' and d|n'.

Expanded, this is $dm_1 = n'q + r'$ and $dm_2 = n'$.

Substituting n', $dm_1 = n'q + r' \implies dm_1 = dm_2q + r'$.

Isolation r', we get $r' = dm_1 - dm_2 q \implies r' = d(m_1 - m_2 q)$.

Thus, $dm_3 = r'$ where m_3 is the integer $m_1 - m_2 q$.

So, d|r'.

Because d|r' and d|n' for some d > 0. r' and n' cannot be coprime.

Therefore, gcd(n'q + r', n') = 1 where q equals q_1 or q_2 , because n' and r' are coprime.

Because n'q + r' and n' share no more common factors and p(n'q + r') is equal to a or b, gcd(a, n) = p and gcd(b, n) = p.

So gcd(a, n) = gcd(b, n).