Guía Nº 2: Acondicionamiento Acústico 2011

Prof. Andrés Barrera A.

<u>INDICACION</u>: Utilice la siguiente tabla de materiales para resolver los siguientes ejercicios de la guía.

Material	Densidad volumétrica ρ [Kg/m³]	Módulo de Young E [N/m²]	Factor de amortiguamiento η
Acero, Fierro	7700	1,95 x 10 ⁺¹¹	0,0001
Aluminio	2700	7,1 x 10 ⁺¹⁰	0,001
Concreto	2600	2,5 x 10 ⁺¹⁰	0,01
Ladrillo	2100	2,5 x 10 ⁺¹⁰	0,01
Madera aglomerada	600	1,27 x 10 ⁺⁰⁹	0,01
Volcanita	875	2,23 x 10 ⁺⁰⁹	0,063
Plomo	11300	1,7 x 10 ⁺¹⁰	0,0005
Vidrio	2400	8,7 x 10 ⁺¹⁰	0,0006

- 1) Estimar la pérdida por transmisión en bandas de octava entre 125 Hz y 4000 Hz de un tabique doble formado por una estructura de madera aglomerada de 12 mm y 25 mm a cada lado, estando ambas placas a una distancia de 12 cm.
- a) Proyecte el aislamiento aplicando el modelo de Sharp sin conexiones mecánicas.
- b) Proyecte el aislamiento aplicando el modelo de Sharp gráfico con conexiones línea-línea, sabiendo que la distancia entre los pies derechos será de 40 centímetros.
- Se midió el espectro de aislamiento acústico aplicando norma ISO 140-4 por bandas de octava, sobre un muro de concreto de 10 cm de espesor (ver Tabla adjunta).

Frecuencia [Hz]	125	250	500	1000	2000
R' [dB]	30	32	35	40	45

Se pide:

- a) Determinar el Índice de Reducción Sonora Aparente Ponderado (R'w) del concreto, usando el método de bandas de octava según norma ISO 717-1.
- b) Determinar los términos de adaptación de espectro (C,Ctr) según ISO717-1.
- c) Este valor de aislamiento a ruido aéreo, ¿Cumple con lo establecido en el D.S. Nº 47/1992 MINVU?
- 3) Una máquina genera un nivel de presión sonora a 1 metro según la tabla adjunta.

Frecuencia [Hz]	125	250	500	1000	2000	4000
Nivel de Presión Sonora a 1m de la máquina [dB	75	80	85	95	95	85
Ponderación A [dB]	-16,1	-8,6	-3,2	0	1,2	1,0

Se requiere diseñar un encierro acústico que reduzca el nivel de presión sonora emitido de tal forma que:

i. El nivel de presión al aplicar el encierro se reduce hasta llegar al menos a 80 dB(A)

Guía Nº 2: Acondicionamiento Acústico 2011

Prof. Andrés Barrera A.

- ii. El encierro está formado por un panel doble hecho de placas de acero de 0,3 mm y 0,5mm, completamente relleno de lana de vidrio.
- El encierro debe tener una frecuencia de resonancia masa-aire-masa de al menos 125 Hz.

Proponga el sistema de encierro que cumpla con las condiciones exigidas, bajo supuesto de inexistencias de conexiones mecánicas y de campo libre al exterior (es decir, Lp2 = Lp1 - TL - 6 dB).

4) Una sala de 6 × 4,3 × 3,1 m tiene dos ventanas a la calle de 1,5 × 1,5 m en una de sus paredes largas. La sala tiene un tiempo de reverberación igual a 0,7 segundos, el cual es aproximadamente constante para todo el rango de frecuencias. La pared que da a la calle es de ladrillo de 12 cm salvo las ventanas, que son ventanas dobles de vidrio de 4 mm y 8 mm separados a 10 cm.

Frecuencia [Hz]	125	250	500	1000	2000	4000
Nivel de ruido de tráfico a 1m de la fachada [dB]	72	67	64	72	72	62
Tiempo de reverberación del estudio [seg]	0,7	0,7	0,7	0,7	0,7	0,7
Ponderación A [dB]	-16,1	-8,6	-3,2	0	1,2	1,0

- a) Calcular la pérdida por transmisión promedio de la pared que da a la calle entre 125Hz y 4000Hz.
- b) Determinar el nivel de presión sonora por banda de octava entre 125 y 4000Hz al interior de la sala con las ventanas cerradas.
- c) Determinar el nivel de presión sonora en dB(A) al interior de la sala con las ventanas cerradas.

Guía Nº 2: Acondicionamiento Acústico 2011 Prof. Andrés Barrera A.

