

Calibration slide

These slides are meant to help with note-taking They are no substitute for lecture attendance

Smallest font

Big Data

Week 03: Map Reduce

DS-GA 1004: Big Data

Announcements

- Everyone got an HPC account now
- This week: Lab 3 (MapReduce)

HW 1 is due tomorrow (02/11)

- Quiz in lab this week
- HW2 releases this week (due 02/27)

A brief history of how we store, manage, access data

"Prehistory" (not covered in this class)

1940s

Vacuum tubes & plugboards All hardware

1950s

Punchcards "Software" (programs)

Custom software for each application / query

Custom software for each application / query

Custom software for each application / query

RDBMS takes off

Databases for commodity computers

SQL "standardizes"

Custom software for each application / query

RDBMS takes off

Databases for commodity computers

SQL "standardizes"

Reminder: Last time - RDBMS

id	Species	Era	Diet	Popular	
1	T. Rex	Cretaceous	Carnivore	True	
2	Stegosaurus	Jurassic	Herbivore	True	
3	Ankylosaurus	Cretaceous	Herbivore	False	

 relations and schemas standardize the shape of data

id	Name	Species	Internals					
1	Earl Sinclair	Megalosaurus	Puppet					
2	Grimlock	T. Rex	Robot					
3	Snarl	Stegosaurus	Robot					

SQL standardizes data interactions

DBMS hides the implementation details

• Transactions provide safety and concurrency (ACID principles)

This week

 Resolving confusions / doubts / struggles from AAA

2. Introduction to Map-Reduce (Dean & Ghemawat, 2008)

3. Assessment of Map-Reduce (DeWitt & Stonebreaker, 2008)

Confusion, Doubt, & Struggle: Keys

"Keys" are a central concept in many CS applications

We have already seen the use of keys in SQL last week,

will see keys used today in MapReduce and will see the use of keys in the future

If you do not have a CS background, you might have an unhelpful association:

Unless specified otherwise, when you see "key" in CS, think unique "ID":

Confusion, Doubt, & Struggle: Normalization (1NF)

Introduced by Cobb (1970): 5 normal forms – 1NF, 2NF, 3NF, 4NF, 5NF

Philosophy: Normalized databases avoid needless duplication of information (= redundancy)

Purpose: Normalized databases are easier to maintain and also take up less space

For instance: Every row has to be unique (to comply with 1NF)

Not normalized

Name	Major		N-number	Name	Major		
Alex	Data Science		18994092	Alex	Data Science		
Brett	Computer Science		18994093	Brett	Computer Science		
Corey	Engineering		18994094	Corey	Engineering		
Drew	Business		18994095	Drew	Business		
Emory	Mathematics		18994096	Emory	Mathematics		
Alex	Nex Data Science		18994097	Alex	Data Science		

(Primary) key

Normalized

Confusion, Doubt, & Struggle: Normalization (beyond 1NF)

The normal forms build on each other. So once it is 1NF compliant: Does it make higher NF?

All non-primary key information should fully depend on the primary key, no transitive dependencies

Heuristic: Tables should contain information about a single entity or concept and relate to each other.

N-number	Name	Major	GPA	Gender	Phone number	Tuition
18994092	Alex	Data Science	3.5	М	998-3307	\$70,000
18994093	Brett	Computer Science	3.7	F	555-5555	\$50,000
18994094	Corey	Engineering	3.8	М	998-1212	\$60,000
18994095	Drew	Business	3.3	F	123-4567	\$85,000
18994096	Emory	Mathematics	2.9	М	998-7920	\$45,000
18994097	Alex	Data Science	3.9	F	212-0000	\$70,000

Normalized?

Confusion, Doubt, & Struggle: Normalization (beyond 1NF)

A normalized version of the database from the last slide creates 3 tables that relate to each other:

Students table

Majors table

Academic records table

N-number	Name	Gender	Phone #	mID	Major	Tuition	N-number	mID	GPA
18994092	Alex	М	998-3307	1	Data Science	\$70,000	18994092	1	3.5
18994093	Brett	F	555-5555	2	Computer Science	\$50,000	18994093	2	3.7
18994094	Corey	M	998-1212			\$60,000	18994094	3	3.8
18994095	Drew	F	123-4567	3	Engineering	φου,υυυ	18994095	4	3.3
10001000	2.0	•	0 .00.	4 Business	Business	\$85,000	.000.000	· .	
18994096	Emory	М	998-7920	5			18994096	5	2.9
	,				Mathematics	\$45,000			
18994097	Alex	F	212-0000				18994097	1	3.9

Normalized?

Why create 3 tables? Why not put the tuition in the academic records table?

Heuristic for this class: When in doubt, make a new table, that uses the keys of other tables

Confusion, Doubt, & Struggle: Index

- Building an index is a core CS topic.
- Given the scale of the data we're working with, the need for speed is always a consideration.
- At first pass, an index makes things faster.
- An index makes things faster because it specifically speeds up
- search, allowing to find relevant information faster.
- An index is a data structure that has to be built. • It is effectively a lookup table, just like the index in a book (that's the
- analogy why it is called an index in the first place, same reason) An index still has to be searched, but it is usually much faster to search
- the index instead of all (the rows of) the data.
- So an index provides a shortcut that narrows down our search space. • It tells us where to jump to, which is particularly helpful if all
- similar/relevant data is located in the same neighborhood. There are many implementations, for instance clustered index vs.
- non-clustered index.
- Sample Query:

JAVA language, 9 JAVASCRIPT language, 9

JULIA language, 9

 \mathbf{K}

Kaiser window, <u>146</u>, <u>146f</u>, <u>149–150</u>

Kernel, <u>119–120</u>

L1 regulatization, 214

L2 regulatization, 214

Lasso methods, 214

Lasso regressions, See L1 regulatization

Latency to first spike, <u>53</u>, <u>55</u>, <u>79–80</u> LDA, See Linear discriminant analysis (LDA)

Leak conductance, 162

leaky_integrate_and_fire method, 167

len function, 63-64

LFPs, See Local field potentials (LFPs)

Linear discriminant analysis (LDA), 225

Linear regression, 195, 195

Linearization process, 32, 34

linearizedSpikeTimes cell array, 101, 102

list comprehension, 65

CREATE INDEX idx column name ON table name(column name);

NOW

MapReduce mapreduce Map-Reduce map reduce

I have a working knowledge of Hadoop (defined as using it regularly on the job or other activities, e.g. research) to the point where I would claim to be "proficient" or "fluent" in it on a resume, and could answer most questions that might come up during a technical interview without looking anything up

A typical use case: Google's Ngram Viewer

Challenge: A tremendous collection of documents needs to be searched to do something like this

Is a relational database a good way to implement such an application?

Why Map Reduce was created

- •All of the algorithmic steps to implement word counts are simple/straightforward
- •Where does the complexity come from?
- •"Quantity has a quality of its own" (Thomas Callaghan, 1979)

- All of the complexity comes from doing this task at overwhelming scale.
- Map Reduce provides a standard, usable way to handle this complexity.

Google's Motivation: text indexing

- Say you have N documents (with N very large, e.g. the web),
 and you want to construct an index: words → documents
- On a single machine, this process takes $\Omega(N)$ time
- Observation: this problem is (almost) embarrassingly parallel
 - Whether any word appears in a document is **independent** of other documents
 - We should be able to process documents independently and combine the results

Text indexing continued

- You could have multiple computers write to a shared database
 - With M machines, can we lower the time to $\Omega(N/M)$? \leftarrow Goal
- You need to find some way to distribute work (data?) and aggregate results
- Map-Reduce (Dean & Ghemawat, 2004) provides a framework for this
- Hadoop (2008-) provides an open source implementation of Map-Reduce
 - ... and supporting infrastructure for distributed computing

The philosophy of MapReduce

Why do such a thing?

"Data Locality"

Power through restrictions and constraints

This is going to be a general theme in this class / field

File systems

Flexibility maxing:

Content / Format can be anything

Any computation can be applied

Storage can be modified in any way

HDFS

Why map-reduce?

Distributed programming is really difficult!

• If we restrict how we program, parallelism becomes easier

The map and reduce operations are surprisingly powerful!

Why "map" and "reduce", specifically?

- These are common operations in functional programming
 - o E.g.: LISP, Haskell, Scala...
- **map**(function f, values $[x_1, x_2, ..., x_n]$) $\to [f(x_1), f(x_2), ..., f(x_n)]$
 - o **map**: function, list \rightarrow list
 - f is applied element-wise
 - o This allows for parallelism, if list elements are independent
- reduce(function g, values $[x_1, x_2, ..., x_n]) \rightarrow g(x_1, reduce(g, [x_2, ..., x_n]))$
 - o reduce : function, list → item
 - g is applied recursively to pairs of items

MapReduce: Conceptual framework

- You (the programmer) provide two functions of this form: mapper and reducer
 - These can be arbitrarily complex, but simpler is better!
- The mapper consumes inputs, produces/"emits" outputs of the form: (key, value)
- The **reducer** consumes a single **key** and list of **values**, and produces **values**
 - Reducer is not applied recursively like in functional programming
 - "reducer" is just a suggestive name borrowed from this framework (as an analogy)

Map-Reduce flow

1. Map phase

- a. Distribute data to mappers
- b. Generate intermediate results (*key*, *value*)

2. Sort / shuffle phase

- a. Assign intermediate results to reducers (by *key*)
- b. Move data from mappers to reducers

3. Reduce phase

a. Execute reducers and collect output

The MapReduce algorithm (essential schematic)

Little movement of data and no communication between computational units = massively scalable due to parallelization → "finish in reasonable time"

Potential for confusion: Key shuffle vs. grouping by identity?

The classic use case: Word counts

It implements the philosophy / framework of **DEI**

Again: Why do we restrict ourselves to "mappers" and "reducers" only?

DEI: "Divide Et Impera" (Divide and rule, since ~90 BC)
The map function is "embarrassingly parallel" – it is applied to the piece of the (divided) input data independent of others (also stateless)
→ No need for communication between mappers.

The **reduce** function is an aggregator and relies on associativity: **Associativity**: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ – order of operations matters not

This ensures that partial results can be merged in any order without affecting the final outcome (critical as order is not guaranteed).

Determinism: Same inputs yield same outputs, without side effects.

Scalability: If all true → easily achieved by adding processing nodes

Just CS use cases or are there also DS ones?

A large

sales

What would the **splitting** stage look like here?

What would the **mapping** stage look like here?

What would the **keyShuffle** stage look like here?

What would the **reducer** stage look like here?

Working with Map-Reduce: Practical considerations

Some tips...

- Don't use floating point / real numbers for keys
 - Keys need to hash consistently, and floating point equivalence is not guaranteed
 - Use integers, strings, or tuples for keys
- Keep map and reduce simple!
 - Avoid loops if possible
 - Let sort do the work for you
- Compare your algorithm's complexity to the simple / single-core solution
 - Think about all resources: time, storage, and communication!

Key → reducer assignment

All values for a given key k go to exactly one reducer

Conversely:

A reducer acting on key *k* needs to see **all associated values**

This will have consequences!

Key-skew and idempotence

What happens when the intermediate key distribution is unbalanced?

All values for the same key must go to the same reducer

- Different reducers will have different work loads
- This is called key skew (or data skew)
 - It's a bad thing!
 - Bad because it it is the source of much delay

One strategy to handle key-skew: Combiners

- Key-skew leads to high latency
 - Reducer time scales (at least) like # values per key
- Lots of keys ⇒ lots of communication
 - Shuffling data is expensive!
- We can sometimes simplify the reducer's job by having mappers pre-emptively reduce (combine) intermediary data before shuffling.
- Necessary: Multiple mappers live on the same machine.

Combiner example: word count

mapper(doc_id, doc_contents): **for** word **in** doc contents: emit word, 1 reducer(word, counts): total count = 0 for count in counts: total count += count emit total count

combiner(word, counts):
 partial_count = 0
 for count in counts:
 partial_count += count
 emit word, partial_count

Mapper node

This works because summation is commutative and associative:

$$A + B = B + A$$

$$A + B + C = (A + B) + C$$

When that happens, you can re-use the **reducer** code as a **combiner**!

What a combiner looks like in our specific example

Heuristics for using MapReduce well

Have fewer mappers than inputs

- Have fewer reducers than intermediate keys
- Combiners can help, but sometimes a fancier mapping is better
- Sometimes you can be clever with sorting to reduce communication

Summary

- The Map-Reduce framework simplifies how we think about distributed computation (empowering through constraint), making it much more accessible
- MR was critical to the development of large-scale data analysis – particularly in the 2nd half of the 2000s.
- But it's not without drawbacks...

Assessment of MapReduce From a historical CS perspective From a modern DS perspective

1. Too low-level: MapReduce has no concept of a schema

The key concerns from a CS perspective (the Stonebraker criticisms)

- 2. Poor implementation: No index like RDBMS, keys = filenames
 - 3. Not novel: previous systems used partitioning and
 - aggregation
- 4. Missing important features: transactions, integrity constraints, views. It's not a database.
- 5. No DBMS compatibility: MapReduce ignores the rest of the ecosystem (DeWitt & Stonebraker, 2008)

Why was map-reduce so successful?

 DW&S raise valid points, so why was MapReduce as transformational as it was?

- Some possible reasons:
 - Simplicity: "map" and "reduce" are powerful abstractions, and often easy to write
 - Many jobs are single-shot: not worth building elaborate DB infrastructure

Some very real problems with MapReduce

Latency and scheduling

Intermediate storage

- Not everything fits nicely in map-reduce
 - o Iterative algorithms (e.g., gradient descent) are especially painful
 - Interactive processes (visualization, exploration) are too

MapReduce is *not* a general purpose distributed computation engine...

- Due to its severe constraints / simplifications
- ... but it can still do a lot!
- Algorithms with clear parallelism and no/little looping are okay
- It works best for "one-and-done" "ballistic" tasks
- Iterative or recursive algorithms ... not so much
 - Gradient descent (and other ML approaches, e.g. alternating least squares)

What's the role of map-reduce today?

- MapReduce is great for large $\Omega(N)$ batch jobs that run infrequently, e.g.:
 - Data transformation / feature extraction
 - Index / data-structure construction
- It's not so great for iterative or interactive (DS) jobs:
 - Machine learning (training)
 - Search and retrieval
 - Data exploration

So why do we study map-reduce?

- It's historically important! (A big step in the history of distributed computing)
- It's a **useful way of thinking** about breaking down problems into parts that can be parallelized (distributed paradigm)
- The **Hadoop ecosystem** is much bigger than map-reduce (more on this in coming weeks)
- You may inherit legacy code.

Next week

 The Hadoop distributed filesystem (HDFS) to manage distributed storage

• Lab 3: HDFS

Q&R

