

Projekt Wäschespeichersysteme

Sascha Brandt, Kathlén Kohn, Kai Schäfer, Sascha Weyers

Universität Paderborn

5. Februar 2013

Inhaltsverzeichnis

Problemstellung und Vorgehen

Modellierung durch Petri-Netze

Modellierung durch Lineare Optimierung

Ergebnis und Ausblick

Problemstellung und Vorgehen

Das Projekt

- Kooperation mit Fa. Kannegiesser (Hersteller von Großwäscherei-Systemen)
- Problem: keine einheitliche Produktionsplanung möglich
- Ziel: Einführen von Mechanismen/Strategien zur Optimierung
- → Dazu: Modellierung einer Großwäscherei

Ablauf in einer Wäscherei

Beispielmodell

- zwei Arten von Wäsche (Batches)
- verschiedene Bearbeitungsschritte mit unterschiedlichen Bearbeitungsdauern
- stark vereinfachtes Modell

Parameter des Beispielmodells

- Schmutzwäschespeicher hat 10 Bahnen mit je 8 Plätzen
- zwei Waschstraßen (13 Kammern, 18 Kammern)
- sechs Trockner
- Frischwäschespeicher hat 4 Bahnen mit je 4 Plätzen
- zwei Mangeln und zwei Legemaschinen
- keine Berücksichtigung von Transportzeiten

Ziele

- Entwickeln von Ein- und Auslagerungsstrategien
- Optimierung bzgl. verschiedener Kriterien, z.B.
 - minimale Durchlaufzeit der Wäsche
 - maximale Auslastung der Maschinen
 - maximaler Durchsatz der Wäscherei
- Belegungsplan einer Wäscherei bei optimalem Durchlauf

Problemstellungen

beispielhafte Probleme:

- Wie lassen sich "Staus" vor den Trocknern vermeiden?
- Wie oft muss der Wäschetyp in der Waschstraße gewechselt werden?
- In welcher Reihenfolge wird Wäsche aus dem Schmutzwäschespeicher geführt?
- → Dazu: Finden von geeigneter Modellierung

Auswahl von Methoden

- Warteschlangen
- Lineare Optimierung
- Petri-Netze

geg.: $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{p \times n}$, $b \in \mathbb{R}^p$

ges.: $x \in \mathbb{R}^n$

Allgemeines lineares Optimierungsproblem:

$$\min c^T x$$
, s.d. $Ax < b$

Gemischt-ganzzahlige Lineare Optimierung (MILP): x muss teilweise ganzzahlig sein

Vorteile:

- Ausgabe ist ein optimaler Belegungsplan der Wäscherei
- variable Zielfunktionen möglich

Aufgabe:

 Umformungen von Gegebenheiten der Wäscherei in mathematische Formulierungen

Gefärbte Petri-Netze

Gefärbte Petri-Netze

- visuelle Darstellung einer Wäscherei möglich
- Testen/Verifizieren von Strategien
- Simulation/Analyse von mehreren Durchläufen der Wäsche

Modellierung durch Petri-Netze

Modellierung der Wäscherei

- Batches als Token
- Speicherplätze der Wäscherei als Stellen
- Vorgänge und Transportwege als Transitionen

Beispiel: Trockner

Auslagerungsstrategien aus dem Schmutzwäschespeicher

- 1. nichtdeterministisches Verhalten
- fester Grenzwert für Frotteewäsche Frotteewäsche wird aus dem Speicher geholt, wenn:
 - keine Bettwäsche verfügbar ist oder
 - Bettwäsche verfügbar ist und sich weniger Frotteewäsche in Waschstraßen und Trocknern befindet als der Grenzwert angibt
- Wahrscheinlichkeiten Aus dem Speicher wird geholt:
 - Bettwäsche (wenn vorhanden) mit Wahrscheinlichkeit q
 - ► Frotteewäsche (wenn vorhanden) mit Wahrscheinlichkeit

Analyse der Strategien

- Monitore:
 - sammeln Daten während Simulation
 - berechnen Werte aus Daten (Summen, Durchschnitte, ...)
 - berechnen Werte aus mehreren Simulationsergebnissen
- betrachtete Werte:
 - Gesamtdauer
 - Häufigkeit und Dauer von Staus
 - Anzahl Leerkammern

Modellierung durch Lineare Optimierung

- Modellierung der Wäscherei als Lineares Problem
- 2 Ansätze:
 - Modellierung mit Binärvariablen
 - Scheduling
- Gemischt-Ganzzahlige Lineare Probleme (MILP)

Vorgehensweise

- ► Beispielwäscherei mit Nebenbedingungen beschreiben
- Zielfunktion: Min. Ankunftszeit des letzten Batches im Lager
- Modellierungssprache: AMPL
- Solver:
 - NEOS-Server + Gurobi
 - CPLEX

NEOS-Server + Gurobi

- Online MILP-Solver
- begrenzte Lösungsdauer
- Probleme mit Binärvariablen
 - ▶ $a, b \in \{0, 1\}$, M sehr große Zahl
 - NB: a < b ⋅ M</p>
 - ▶ $b = 1 \Rightarrow$ immer erfüllt, $b = 0 \Rightarrow a = 0$
 - ▶ Gurobi-Solver: $b = 0.0000001 \Rightarrow b \cdot M > 1 \Rightarrow a = 1$

CPLEX

- kommerzieller MIP-Löser von IBM
- Verwendet Branch&Cut-Verfahren

Modell: Binärvariablen

Grundidee

- binäre Variablen
- Wäscherei mit logischen Ausdrücken beschreiben
- logische Ausdrücke in Nebenbedingungen umwandeln

Modell: Binärvariablen

Beispiel

Stationsreihenfolge einhalten

- ▶ Batch *b*, Stationen *s*, *s'*, Zeitpunkt $t \in \mathbb{N}_0$
- ▶ Binärvariable $\Delta_{s,b,t} \in \{0,1\}$
- ▶ Parameter $\varphi_{s,s'} \in \{0,1\}$
- ▶ $\Delta_{s,b,t} = 1 \Leftrightarrow b \text{ in } s \text{ zum Zeitpunkt } t$
- $\varphi_{s,s'} = 1 \Leftrightarrow s'$ Nachfolger von s
- ▶ logische Bedingung: $\Delta_{s,b,t} \land \Delta_{s',b,t+1} \Rightarrow \varphi_{s,s'}$
- ▶ LP-Nebenbedingung: $\Delta_{s,b,t} + \Delta_{s',b,t+1} \leq 1 + \varphi_{s,s'}$

Modell: Binärvariablen

Problem

- Unverhältnismäßig großer Zeitaufwand
- 2 Batches: ca. 1 Minute
- 3 Batches: ca. 5 Minuten
- 4 Batches: ca. 20 Minuten
- Unterschiedliche Algorithmusparameter keine Verbesserung
- Ansatz verworfen

Scheduling allgemein

- Menge von Aufträgen kostengünstig mit begrenzter Anzahl Ressourcen bearbeiten
- Zeitplan bzw. Maschinenbelegungsplan erstellen

Grundidee

► Reihenfolgen geschickt modellieren mit reellen Variablen

Beispiel

Stationsreihenfolge

- ▶ Batch *b*, Stationen $S := \{1, ..., n\}$
- ▶ Entscheidungsvariable $\Theta_{b,s} \in \mathbb{R}_{\geq 0}$: Ankunftszeit von b an $s \in S$
- ▶ Parameter $\tau_{b,s} \in \mathbb{R}_{\geq 0}$: Bearbeitungsdauer von b an $s \in S$
- ► LP-Nebenbedingungen:

$$\Theta_{b,2} \ge \Theta_{b,1} + \tau_{b,1}, \ \Theta_{b,3} \ge \Theta_{b,2} + \tau_{b,2}, \ \Theta_{b,4} \ge \Theta_{b,3} + \tau_{b,3}, \dots$$

Modell

Zielfunktion

Minimiere max. Fertigstellungszeitpunkt aller Batches

Parameter

- Mindestbearbeitungszeit pro Wäschetyp und Maschine
- Rüstzeiten an Maschinen

Variablen

- Ankunftszeitpunkte der Batches an den Maschinen
- weitere technische Hilfsvariablen

Modell

Nebenbedingungen

- ► Einhaltung der Reihenfolge der Stationen
- Festlegung/Einhaltung der Batchreihenfolge
- ► Einhaltung des Waschmaschinentaktes
- Einhaltung von Leerkammern (Rüstzeiten)
- Einhaltung der Mindestbearbeitungszeit
- Festlegung der zuständigen Maschine pro Station

- schneller als Binärvariablen-Modell
- 4 Batches: ca. 1 Minute
- 7 Batches: ca. 45 Minuten
- 8 Batches: ca. 24 Stunden
- Finden einer guten Lösung jedoch schneller

Ergebnis und Ausblick

Petri-Netze

- ▶ 192 Batches Bettwäsche (= 60%)
- ▶ 128 Batches Frotteewäsche (= 40%)
- 3 verschiedene Strategien
- "Erhebung" der Daten: Monitore
- 100 Simulationsdurchläufe je Parametergruppe

Erinnerung: Strategien

- Strategie 1
 Nichtdeterministisches Verhalten
- Strategie 2 Frotteewäsche gdw. weniger als $w \in \{1, ..., 37\}$ Batches Frotteewäsche gerade verarbeitet werden,
- Strategie 3
 Bettwäsche erreicht Waschstr. mit WK $\frac{p}{10}$, $p \in \{1, ..., 9\}$

Durchschnittliche Gesamtdauer

Durchschnittliche Gesamtdauer

Standardabweichung Gesamtdauer

Durchschnittliche Anzahl Leerkammern

Lineare Optimierung

- Ausgabe: optimaler Belegungsplan
- verwendeter Löser: CPLEX
- Binärvariablen-Ansatz
 - Anzahl der Variablen explodiert (über 1 Mio. bei 4 Batches)
 - Berechnung mit 4 Batches dauert bereits über 1200s
- Scheduling-Ansatz
 - schneller als Binärvariablen-Ansatz (4 Batches in ca. 80s)
 - wird im Folgenden betrachtet

Ausgabe: Belegungsplan (Beispiel für 10 Batches)

Laufzeitverhalten des Lösers (CPLEX)

Fazit

- Petri-Netze
 - Strategie 1 (nichtdeterministisch)
 - konkurrenzfähige Gesamtdauer, wenige Leerkammern
 - hohe Anzahl und Dauer von Staus
 - Strategie 2 (Berücksichtigung aktueller Belegung)
 - kurze Gesamtdauer, wenige Leerkammern
 - , instabil" für kleine w, viele und lange Staus
 - Strategie 3 (WK-basiert)
 - kurze Gesamtdauer und wenige, kurze Staus
 - sehr viele I eerkammern
- Lineare Optimierung
 - optimale Belegung, aber sehr viel Rechenzeit benötigt

Ausblick

Kombination beider Ansätze denkbar:

- Petri-Netze
 - Ausgabe: Leistungsgrößen durch Simulation
 - Sehr gut geeignet zum Testen von Strategien
- Lineare Optimierung
 - Ausgabe: Optimaler Belegungsplan
 - Lösen des LP dauert lange
- Erkennen von Strategien aus Belegungsplan
- Simulation und Test mit Petri-Netz
- Umsetzung in Steuerungssystem der Wäscherei