Optimization and Computational Linear Algebra for Data Science Lecture 6: Singular value decomposition

Léo MIOLANE · leo.miolane@gmail.com

May 15, 2019

Warning: This material is not meant to be lecture notes. It only gathers the main concepts and results from the lecture, without any additional explanation, motivation, examples, figures...

1 Eigenvalues and eigenvectors

Definition 1.1

Let $A \in \mathbb{R}^{n \times n}$. A **non-zero** vector $v \in \mathbb{R}^n$ is said to be an eigenvector of A is there exists $\lambda \in \mathbb{R}$ such that

$$Av = \lambda v$$
.

The scalar λ is called the eigenvalue (of A) associated to v.

Theorem 1.1 (Spectral Theorem)

Let $A \in \mathbb{R}^{n \times n}$ be a **symmetric** matrix. Then there is a orthonormal basis of \mathbb{R}^n composed of eigenvectors of A.

Given an $n \times n$ symmetric matrix A, Theorem 1.1 tells us that one can find an orthonormal basis (v_1, \ldots, v_n) of \mathbb{R}^n and scalars $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that for all $i \in \{1, \ldots, n\}$,

$$Av_i = \lambda_i v_i$$
.

Let P be the $n \times n$ matrix whose columns are v_1, \ldots, v_n . Since (v_1, \ldots, v_n) is an orthonormal basis, we get that P is an orthogonal matrix. Let $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$ and compute

$$AP = A \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} = \begin{pmatrix} | & | & & | \\ Av_1 & Av_2 & \cdots & Av_n \\ | & | & & | \end{pmatrix} = \begin{pmatrix} | & | & & | \\ \lambda_1 v_1 & \lambda_2 v_2 & \cdots & \lambda_n v_n \\ | & | & & | \end{pmatrix} = PD.$$

By multiplying by P^{T} on both sides, we get $APP^{\mathsf{T}} = PDP^{\mathsf{T}}$. Recall now that P is orthogonal, therefore $PP^{\mathsf{T}} = \mathrm{Id}_n$. We conclude that $A = PDP^{\mathsf{T}}$.

Theorem 1.2 (Spectral Theorem, matrix formulation)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there exists an orthogonal matrix P and a diagonal matrix D of sizes $n \times n$, such that

$$A = PDP^{\mathsf{T}}.$$

Proposition 1.1

Let A be a $n \times n$ symmetric matrix and let $\lambda_1 \ge \cdots \ge \lambda_n$ be its n eigenvalues and v_1, \ldots, v_n be the associated orthonormal family of eigenvectors. Then

$$v_1 = \arg\max_{\|v\|=1} v^{\mathsf{T}} A v$$
, and for $k = 2, \dots n$, $v_k = \arg\max_{\|v\|=1, v \perp v_1, \dots, v_{k-1}} v^{\mathsf{T}} A v$.

Remark 1.1. Applying the proposition above to the matrix -A which is symmetric with eigenvalues $-\lambda_n \ge \cdots \ge -\lambda_1$ and associated eigenvectors v_n, \ldots, v_1 , we get

$$v_n = \underset{\|v\|=1}{\arg\min} v^{\mathsf{T}} A v$$
, and for $k = 1, \dots, n-1$ $v_k = \underset{\|v\|=1, v \perp v_{k+1}, \dots, v_n}{\arg\min} v^{\mathsf{T}} A v$.

2 Singular value decomposition

Let $a_1, \ldots, a_n \in \mathbb{R}^d$ be n points in d dimension.

The goal of Singular Value Decomposition (SVD) is to find the k-dimensional subspace (for k = 1, ..., n) that fits "the best" these n data points. By "best", we mean here the k-dimensional subspace S that minimize the sum of the square distances to the n points:

minimize
$$\sum_{i=1}^{n} d(a_i, S)^2$$
 with respect to S subspace of dimension k . (1)

In this case we have for all $i \in \{1, ..., n\}$,

$$d(a_i, S)^2 = ||a_i - P_S(a_i)||^2 = ||a_i||^2 - ||P_S(a_i)||^2,$$

by Pythagorean Theorem (recall that $P_S(a_i) \perp (a_i - P_S(a_i))$). Since v_1 is of unit norm, $P_S(a_i) = \langle v_1, a_i \rangle v_1$, hence:

$$d(a_i, S)^2 = ||a_i||^2 - \langle v_1, a_i \rangle^2.$$

Minimizing (1) is therefore equivalent to maximize

$$\sum_{i=1}^{n} \|P_S(a_i)\|^2. \tag{2}$$

Let us fix an orthonormal basis (v_1, \ldots, v_k) of S. Then for all $x \in \mathbb{R}^d$, $P_S(x) = \langle v_1, x \rangle v_1 + \cdots + \langle v_k, x \rangle v_k$, hence

$$\sum_{i=1}^{n} \|P_S(a_i)\|^2 = \sum_{i=1}^{n} \sum_{j=1}^{k} \langle a_i, v_j \rangle^2 = \|Av_1\|^2 + \dots + \|Av_k\|^2, \tag{3}$$

where A is the $n \times d$ matrix whose rows are a_1, \ldots, a_n . Consequently, minimizing (1) is equivalent to maximizing (3) over all orthonormal families (v_1, \ldots, v_k) .

For k = 1, a subspace of dimension 1 that minimizes (1) is therefore $Span(v_1)$ where

$$v_1 \stackrel{\text{def}}{=} \underset{\|v\|=1}{\arg\max} \|Av\|. \tag{4}$$

If we now want to solve the problem for k = 2, a natural candidate for the subspace S would be $S = \text{Span}(v_1, v_2)$ where

$$v_2 \stackrel{\text{def}}{=} \underset{\|v\|=1, \, v \perp v_1}{\arg \max} \|Av\|. \tag{5}$$

We can follow this greedy strategy for k = 3, ..., n and define recursively

$$v_k \stackrel{\text{def}}{=} \underset{\|v\|=1, \ v \perp v_1, \dots, v_{k-1}}{\arg \max} \|Av\|. \tag{6}$$

Definition 2.1

- The vectors v_1, \ldots, v_n are called singular vectors of the matrix A.
- The non-negative numbers $\sigma_k \stackrel{\text{def}}{=} ||Av_k||$ are called the singular values of A.

Of course (4)-(6) admits many other maximizers (for instance $-v_k$), so the singular vectors are not uniquely defined.

It is not a priori obvious (except for k = 1) that $S = \operatorname{Span}(v_1, \dots, v_k)$ is a minimizer of (1) over all the subspaces of dimension k. We need the following lemma.

Lemma 2.1

Let $k \in \{2, ..., k\}$. Assume that $(v_1, ..., v_{k-1})$ is an orthonormal family that maximizes (3). Define

$$v_k = \underset{\|v\|=1, v \perp \text{Span}(v_1, \dots, v_{k-1})}{\arg \max} \|Av\|.$$

Then (v_1, \ldots, v_k) is an orthonormal family and $\operatorname{Span}(v_1, \ldots, v_k)$ minimizes (1), i.e. (v_1, \ldots, v_k) maximizes (3).

Proof. Let S be a subspace of dimension k. Let (w_1, \ldots, w_k) be an orthonormal basis of S such that $w_k \perp \operatorname{Span}(v_1, \ldots, v_{k-1})$. By definition of v_k , we have $||Aw_k|| \leq ||Av_k||$. We also assumed that (v_1, \ldots, v_k) maximizes (3), so

$$||Av_1||^2 + \dots + ||Av_{k-1}||^2 \ge ||Aw_1||^2 + \dots + ||Aw_{k-1}||^2.$$

We conclude that

$$||Av_1||^2 + \dots + ||Av_k||^2 \ge ||Aw_1||^2 + \dots + ||Aw_k||^2$$

so
$$(v_1, \ldots, v_k)$$
 maximizes (3).

Using Lemma 2.1 we get by induction:

Proposition 2.1

Let v_1, \ldots, v_n be singular vectors of A defined by (4)-(6). Then for all $k \in \{1, \ldots, n\}$, the subspace $\operatorname{Span}(v_1, \ldots, v_k)$ is a solution of (1).

