

Aerial Pathfinding Reconnaissance

Jason Gilman, Max Griffith, Mark Johnson, Dilanka Weerasinghe

Background

Observation: Autonomous vehicles suffer from a variety of issues:

- Ground vehicles rely heavily on expensive sensors.
- Aerial drones lack meaningful capacity.

Solution: Combine strengths with a hybrid approach.

Overview

To prototype this relationship, we have developed this architecture:

Four distinct elements

- Aerial drone
- Land drone
- User interface
- Compute host

Goal: Use aerial recon to navigate an otherwise-blind vehicle.

Data Collection & Drone Control

Microcontroller

 Use stm32 to control Pixhawk flight controller and onboard mapping sensors.

 Subsystem will gather telemetry and imaging data to relay to desktop application.

 Using ArduPilot Mission Planner to monitor drone and set path.

After processing Land drone will follow path.

stm32 Nucleo with to Pixhawk controller

Computer Vision & Mapping

Four step approach:

- 1. Filter out moving objects
- 2. Infer depth from stereographic views
- Derive an elevation differential field
- 4. Delineate obstacles by vehicle parameters

Focus is on avoiding a pure ML solution. Why?

- Reduces runtime compute cost
- Allows for configurability (No black-box design!)

Pathfinding & Drone Detection

- Input Boolean map
- Input Color Image
- Search image for drone and decide distances of indices
- Design greedy algorithm to specify path taken by drone
- Use specified path to send drone instructions for land movement

Why greedy algorithm?

Save runtime cost of program

1	1	0	1
1	1	1	0
1	0	1	0
0	0	1	1

Device Networking & UI

- UI integrated into desktop application
- Communication through wireless local area networks
- Optional utilization of TAMU GPU servers

Execution & Validation Plans

- Execution plan divided into week by week milestones
- Unit tests created for validation plan

Subsystem	Week 7 5-Oct-20	Week 9 19-Oct-20	Week 11 2-Nov-20	Week 14 23-Nov-20
Data Collection & Drone Control	Finalize and order parts	Aerial and land drones built	Data retrieval from aerial drone	Autonomous drone flight
Dilanka				
Computer Vision & Mapping	Estimate depth on path sections	Merge depth estimates with map	Derive gradient field from elevation map	Implement obstacle delineation
Mark	300110113	with map	Cicvation map	
Pathfinding & Drone				
Detection	Increased python coding skills	Error handling for path detection	Program movement of land drone	Land drone path mapped and instructions created
Max	-			
Device Networking & UI	Basic client/server	Flight mapping	Communication with drone	Package software/create installer
Jason	interaction	functionality	servers	actuago contivaro, ordato incluiior

Questions?