

Università degli Studi di Genova

Fondamenti dell'Elaborazione di Segnali e Immagini

Lorenzo Vaccarecci

Indice

T	Intr	roduzione 2
	1.1	Segnali 1D e 2D
		1.1.1 Segnali 1D
		1.1.2 Segnali 2D
	1.2	Segnali a tempo continuo o discreto
		1.2.1 Segnali a tempo continuo
		1.2.2 Segnali a tempo discreto
	1.3	Segnali a valori continui o discreti
		1.3.1 Segnali a valori continui
		1.3.2 Segnali a valori discreti
	1.4	Analogico e digitale
	1.5	Campionamento
		1.5.1 Frequenza ideale di campionamento
	1.6	Quantizzazione
	1.7	Riepilogo digitalizzazione
	1.8	Ripasso: trasformazioni di segnali (1D)
		1.8.1 Traslazione
		1.8.2 Scalatura
		1.8.3 Segnali "notevoli"
		1.8.4 Treno di impulsi equispaziati
2	La t	trasformata di Fourier 8
_	2.1	Introduzione
	2.2	Matematicamente
		2.2.1 Trasformata di Fourier Discreta
	2.3	Conclusione

Capitolo 1

Introduzione

1.1 Segnali 1D e 2D

1.1.1 Segnali 1D

Un segnale 1D descrive una grandezza fisica che varia nel tempo, e può essere visto come una funzione di una variabile indipendente:

$$g = f(t)$$

dove g è il valore della grandezza fisica (variabile **dipendente**), f è la funzione (continua o discreta) e t è la variabile indipendente.

Esempi di segnali 1D sono:

- Segnali audio: come ad esempio la musica o il parlato.
- Segnali ECG
- Segnali EEG
- Sensori inerziali
- •

1.1.2 Segnali 2D

Un segnale 2D descrive una grandezza fisica che varia nello spazio, e può essere visto come una funzione di due variabili indipendenti.

Esempi di segnali 2D sono:

- Immagini: utilizzeremo questo termine per indicare una foto a colori o a scala di grigi (ci concentreremo su queste).
- Immagini biomediche: come ad esempio le radiografie, le ecografie oppure quelle di una risonanza.
- Immagini termiche
- Immagini satellitari
- Immagini microscopiche
- . . .

Ciò che hanno in comunque tutte queste immagini è che hanno una matrice di pixel che rappresenta qualcosa, nel nostro caso ogni pixel rappresenta l'intensità luminosa nella posizione (r, c) della matrice.

1.2 Segnali a tempo continuo o discreto

$$g = f(t)$$

1.2.1 Segnali a tempo continuo

Nei segnali a tempo continuo t assume valori reali

Figura 1.1: Posso conoscere il valore del segnale in ogni istante di tempo

1.2.2 Segnali a tempo discreto

Nei segnali a tempo discreto t assume valori in un sottoinsieme discreto dei numeri reali, come risultato di un'operazione chiamata **campionamento**.

Figura 1.2: Posso conoscere il valore del segnale in certi istanti di tempo

1.3 Segnali a valori continui o discreti

1.3.1 Segnali a valori continui

Nei segnali a valori continui g assume valori reali.

1.3.2 Segnali a valori discreti

Nei segnali a valori discreti g assume valori in un sottoinsieme discreto dei numeri reali, come risultato di un'operazione chiamata **quantizzazione**.

Figura 1.3: In rosso i valori discreti di g

1.4 Analogico e digitale

- Segnali analogici: sono continui sia nel tempo che nei valori.
- Segnali digitali: sono discreti sia nel tempo che nei valori.

Figura 1.4: Segnale analogico in blu e segnale digitale in rosso

1.5 Campionamento

$$v_s = \frac{1}{\tau}$$

Dove v_s è la frequenza di campionamento e τ è l'ampiezza dell'intervallo di campionamento. Ovviamente se τ si avvicina a 0 allora il grafico risultante $f(n\tau)$ sarà più preciso (e vicino a quello continuo) ma userà più risorse per memorizzare i dati.

1.5.1 Frequenza ideale di campionamento

Bisogna stare attenti a non campionare a frequenze troppo basse, altrimenti si incorre nel fenomeno chiamato **punto di rottura** ossia il grafico risultante apparirà diverso da quello originale.

Come possiamo vedere dalla figura l'ultimo grafico risulta essere diverso da quello azzurro (originale), questo perché la frequenza di campionamento non è sufficientemente alta in questo caso si è verificato un punto di rottura.

1.6 Quantizzazione

Partendo da una funzione $f(n\tau)$ quantizziamo i valori associando ad ogni valore x il valore numerico xk che è più vicino ad x.

1.7 Riepilogo digitalizzazione

1.8 Ripasso: trasformazioni di segnali (1D)

1.8.1 Traslazione

$$f(t-t_0)$$

1.8.2 Scalatura

$$f(\alpha t)$$

• $\alpha > 1$: compressione

• $0 < \alpha < 1$: rilassamento

1.8.3 Segnali "notevoli"

• Segnale rettangolare:

$$f(t) = \begin{cases} 1 & |t| < \frac{1}{2} \\ 0 & |t| > \frac{1}{2} \end{cases}$$

• Segnale gradino:

$$f(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$$

• Segnale impulsivo (o delta di Dirac):

$$\delta(t) = \begin{cases} \infty & t = 0\\ 0 & t \neq 0 \end{cases}$$

1.8.4 Treno di impulsi equispaziati

$$\delta_r(t) = \sum_{n=-\infty}^{+\infty} \delta(t - n\tau)$$

Campionamento

Moltiplichiamo il segnale f(t) per il treno di impulsi equispaziati e otteniamo:

$$f_s(t) = f(t) \cdot \delta_r(t) = \sum_{n=-\infty}^{+\infty} f(n\tau)\delta(t-n\tau)$$

7

Capitolo 2

La trasformata di Fourier

2.1 Introduzione

Le funzioni continue e periodiche possono essere rappresentate come somme (pesate) di seni e coseni e grazie alla serie di Fourier possiamo ottenere una rappresentazione alternativa del segnale periodico e uno strumento utile per approssimarlo (con compressione e riduzione del rumore).

Perchè Fourier? Per capire meglio il segnale.

Figura 2.1: A sinistra il segnale originale, a destra la sua rappresentazione come somma di una sinusoide e una cosinusoide

Una funzione continua e periodica può essere descritta attraverso una serie di sinusoidi e possiamo considerare una rappresentazione alternativa del segnale l'insieme dei coefficienti (pesi) dei sinusoidi.

Immagine qui

2.2 Matematicamente

Consideriamo una funzione f(t) continua e periodica di periodo τ

$$f(t) = a_0 + \sum_{k=1}^{+\infty} \left(a_k \cos\left(\frac{2\pi kt}{\tau}\right) + b_k \sin\left(\frac{2\pi kt}{\tau}\right) \right)$$

Dove a e b sono i coefficienti.

Riscriviamo applicando la formula di Eulero $e^{j\theta} = \cos(\theta) + j\sin(\theta)$ dove $j = \sqrt{-1}$ immaginario:

$$f(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j\frac{2\pi kt}{\tau}}$$

$$c_k = \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t) e^{-j\frac{2\pi kt}{\tau}} dt$$

2.2.1 Trasformata di Fourier Discreta

N.B.: f(t) funzione continua, f[n] funzione discreta.

$$f[n] = \sum_{k=0}^{N-1} F[k] e^{j\frac{2\pi kn}{N}}$$

Dove $F[x] \equiv c_k$. La sommatoria è finita perchè nel caso di funzione discreta non mi occorrono infiniti sinusoidi per ricostruire tutti i dettagli.

Data una funzione discreta e finita f[n] con N campioni, la sua **DFT** è

$$F(k) = \sum_{n=0}^{N-1} f[n]e^{-j\frac{2\pi kn}{N}}$$

2.3 Conclusione

Nonostante la definizione di DFT appena fornita sia calcolabile $(O(n^2))$, esistono algoritmi per calcolare la DFT in modo efficiente $(O(n \log_2 n))$, menzoniamo la Fast Fourier Transform (FFT).