

Énergétique du point matériel

Julien Cubizolles

Lycée Louis le Grand

vendredi 11 février 2022

on peut « produire » du mouvement à partir :

- on peut « produire » du mouvement à partir :
 - de chaleur (moteur à explosion)

- on peut « produire » du mouvement à partir :
 - de chaleur (moteur à explosion)
 - d'électricité (moteur électrique)

- on peut « produire » du mouvement à partir :
 - de chaleur (moteur à explosion)
 - d'électricité (moteur électrique)

- on peut « produire » du mouvement à partir :
 - de chaleur (moteur à explosion)
 - d'électricité (moteur électrique)
 - la chaleur est produite par une réaction chimique (combustion)

- on peut « produire » du mouvement à partir :
 - de chaleur (moteur à explosion)
 - d'électricité (moteur électrique)
 - la chaleur est produite par une réaction chimique (combustion)
 - l'électricité est produite par chimie (pile), réaction nucléaire (centrale), travail mécanique (éolienne, barrage), rayonnement solaire

- on peut « produire » du mouvement à partir :
 - de chaleur (moteur à explosion)
 - d'électricité (moteur électrique)
 - la chaleur est produite par une réaction chimique (combustion)
 - l'électricité est produite par chimie (pile), réaction nucléaire (centrale), travail mécanique (éolienne, barrage), rayonnement solaire
- à chaque fois, on ne «gagne rien»: une quantité donnée d'uranium, d'essence,...ne permettra pas le fonctionnement du moteur indéfiniment

- on peut « produire » du mouvement à partir :
 - de chaleur (moteur à explosion)
 - d'électricité (moteur électrique)
 - la chaleur est produite par une réaction chimique (combustion)
 - l'électricité est produite par chimie (pile), réaction nucléaire (centrale), travail mécanique (éolienne, barrage), rayonnement solaire
- à chaque fois, on ne « gagne rien » : une quantité donnée d'uranium, d'essence,...ne permettra pas le fonctionnement du moteur indéfiniment
- les vitesses atteintes par une explosion, combustion, détente d'un ressort, sont bornées mais la seule conservation de la qdm n'interdit pas d'atteindre des vitesses arbitrairement grandes

- on peut « produire » du mouvement à partir :
 - de chaleur (moteur à explosion)
 - d'électricité (moteur électrique)
 - la chaleur est produite par une réaction chimique (combustion)
 - l'électricité est produite par chimie (pile), réaction nucléaire (centrale), travail mécanique (éolienne, barrage), rayonnement solaire
- les vitesses atteintes par une explosion, combustion, détente d'un ressort, sont bornées mais la seule conservation de la qdm n'interdit pas d'atteindre des vitesses arbitrairement grandes
- il existe une autre grandeur dont la totalité est conservée et dont on ne réalise que des conversions d'une forme à l'autre : l'énergie

Puissance et travail d'une fon Énergies potentielle et mécaniq Analyse qualitative d'un système conservatif à un degré de liber États liés de faible énerc

on l'a vue en électrocinétique, en chimie...

- on l'a vue en électrocinétique, en chimie...
- on la définit et étudie l'énergie mécanique

- on l'a vue en électrocinétique, en chimie...
- on la définit et étudie l'énergie mécanique
- on la retrouvera en thermodynamique

- on l'a vue en électrocinétique, en chimie...
- on la définit et étudie l'énergie mécanique
- on la retrouvera en thermodynamique

- on l'a vue en électrocinétique, en chimie...
- on la définit et étudie l'énergie mécanique
- on la retrouvera en thermodynamique

elle permettra de déterminer des caractéristiques générales du mouvement sans résoudre d'équations différentielles :

- altitude maximale pour un lancer
- vitesse maximale pour un pendule...

- 1. Puissance et travail d'une force
- Énergies potentielle et mécanique
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

- 1. Puissance et travail d'une force
- 1.1 Définitions
- 1.2 Action motrice ou résistive d'une force
- 1.3 Théorèmes de la puissance et de l'énergie cinétiques
- Énergies potentielle et mécanique
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

ction motrice ou résistive d'une force héorèmes de la puissance et de l'énergie cinétiques

Puissance

évolution de la norme de $\vec{v}(M)$ d'un point matériel :

Définitions

Action motrice ou résistive d'une force l'héorèmes de la puissance et de l'énergie cinétiques

Puissance

évolution de la norme de $\vec{v}(M)$ d'un point matériel :

la tension d'un fil \overrightarrow{T} la fait croître si \overrightarrow{T} dans le sens de $\overrightarrow{v}(M)$

évolution de la norme de $\vec{v}(M)$ d'un point matériel :

- la tension d'un fil \overrightarrow{T} la fait croître si \overrightarrow{T} dans le sens de $\overrightarrow{v}(M)$
- décroître si \overrightarrow{T} de sens opposé à $\overrightarrow{v}(M)$

évolution de la norme de $\overrightarrow{v}(M)$ d'un point matériel :

- la tension d'un fil \overrightarrow{T} la fait croître si \overrightarrow{T} dans le sens de $\overrightarrow{v}(M)$
- décroître si \overrightarrow{T} de sens opposé à $\overrightarrow{v}(M)$
- ▶ sans effet si $\overrightarrow{T} \perp \overrightarrow{v}(M)$ (mvmt circulaire uniforme)

évolution de la norme de $\overrightarrow{v}(M)$ d'un point matériel :

- la tension d'un fil \overrightarrow{T} la fait croître si \overrightarrow{T} dans le sens de $\overrightarrow{v}(M)$
- décroître si \overrightarrow{T} de sens opposé à $\overrightarrow{v}(M)$
- ▶ sans effet si $\overrightarrow{T} \perp \overrightarrow{v}(M)$ (mvmt circulaire uniforme)

Puissance

évolution de la norme de $\vec{v}(M)$ d'un point matériel :

- la tension d'un fil \overrightarrow{T} la fait croître si \overrightarrow{T} dans le sens de $\overrightarrow{v}(M)$
- décroître si \overrightarrow{T} de sens opposé à $\overrightarrow{v}(M)$
- ▶ sans effet si $\overrightarrow{T} \perp \overrightarrow{v}(M)$ (mvmt circulaire uniforme)

Définition (Puissance)

On définit la *puissance d'une force* $\mathscr{P}_{\mathscr{R}}(\vec{F})$ exercée par une force \vec{F} sur un point matériel situé en M animé d'une vitesse $\overrightarrow{v_{\mathscr{R}}}(M)$ dans un référentiel \mathscr{R} :

$$\mathscr{P}_{\mathscr{R}}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{v_{\mathscr{R}}}(M).$$

• en Watt $1 \text{ W} = 1 \text{ N} \cdot \text{m} \cdot \text{s}^{-1} = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3}$

Puissance

Définition (Puissance)

On définit la puissance d'une force $\mathscr{P}_{\mathscr{R}}(\vec{F})$ exercée par une force \vec{F} sur un point matériel situé en M animé d'une vitesse $\overrightarrow{v_{\mathscr{R}}}(M)$ dans un référentiel ?:

$$\mathscr{P}_{\mathscr{R}}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{v_{\mathscr{R}}}(M).$$

- en Watt $1 \text{ W} = 1 \text{ N} \cdot \text{m} \cdot \text{s}^{-1} = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3}$
- grandeur instantanée, définie à chaque instant

Puissance

Définition (Puissance)

On définit la *puissance d'une force* $\mathscr{P}_{\mathscr{R}}(\vec{F})$ exercée par une force \vec{F} sur un point matériel situé en M animé d'une vitesse $\overrightarrow{v_{\mathscr{R}}}(M)$ dans un référentiel \mathscr{R} :

$$\mathscr{P}_{\mathscr{R}}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{v_{\mathscr{R}}}(M).$$

- en Watt $1 \text{ W} = 1 \text{ N} \cdot \text{m} \cdot \text{s}^{-1} = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3}$
- randeur instantanée, définie à chaque instant
- à notre échelle : 9,8W pour hisser un objet de 1kg à 1m⋅s⁻¹

Définition (Puissance)

On définit la *puissance d'une force* $\mathscr{P}_{\mathscr{R}}(\vec{F})$ exercée par une force \vec{F} sur un point matériel situé en M animé d'une vitesse $\overrightarrow{v_{\mathscr{R}}}(M)$ dans un référentiel ?:

$$\mathcal{P}_{\mathcal{R}}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{v_{\mathcal{R}}}(M).$$

- en Watt $1W = 1N \cdot m \cdot s^{-1} = 1 ka \cdot m^2 \cdot s^{-3}$
- grandeur instantanée, définie à chaque instant
- à notre échelle : 9,8 W pour hisser un objet de 1 kg à 1 m⋅s⁻¹

Travail élémentaire

Définition (Travail élémentaire)

On définit le travail *élémentaire*, noté $\delta W_{\mathcal{R}}(\vec{F})$, fourni par une force \vec{F} s'exerçant sur un point matériel pendant un intervalle de temps infinitésimal dt dans un référentiel \mathcal{R} par :

$$\delta W_{\mathcal{R}}(\overrightarrow{F}) = \mathcal{P}_{\mathcal{R}}(\overrightarrow{F}) dt.$$

Travail élémentaire

Définition (Travail élémentaire)

On définit le travail élémentaire, noté $\delta W_{\mathscr{R}}(\vec{F})$, fourni par une force \vec{F} s'exerçant sur un point matériel pendant un intervalle de temps infinitésimal dt dans un référentiel \mathcal{R} par :

$$\delta W_{\mathcal{R}}(\overrightarrow{F}) = \mathcal{P}_{\mathcal{R}}(\overrightarrow{F}) dt.$$

s'exprime en fonction du déplacement élémentaire

Expression du travail élémentaire

$$\delta W(\vec{F}) = \vec{F} \cdot d\vec{OM}.$$

Travail sur un déplacement fini

on somme les déplacements élémentaires

Définition (Travail d'une force au cours d'un déplacement fini)

Pour un déplacement *fini* d'une position M_1 à une position M_2 le long d'une courbe \mathscr{C} , le travail total est :

$$M_1 \underset{\mathscr{C}}{\overset{W}{\longrightarrow}} M_2 (\overrightarrow{F}) = \int_{M_1 \underset{\mathscr{C}}{\longrightarrow} M_2} \delta W(\overrightarrow{F}) = \int_{M_1 \underset{\mathscr{C}}{\longrightarrow} M_2} \overrightarrow{F} \cdot d\overrightarrow{OM}.$$

Travail sur un déplacement fini

on somme les déplacements élémentaires

Définition (Travail d'une force au cours d'un déplacement fini)

Pour un déplacement *fini* d'une position M_1 à une position M_2 le long d'une courbe \mathscr{C} , le travail total est :

$$M_1 \xrightarrow{W} M_2 (\overrightarrow{F}) = \int_{M_1 \xrightarrow{\mathscr{C}} M_2} \delta W(\overrightarrow{F}) = \int_{M_1 \xrightarrow{\mathscr{C}} M_2} \overrightarrow{F} \cdot d\overrightarrow{OM}.$$

• en Joule $1 J = 1 W \cdot s = 1 kg \cdot m^2 \cdot s^{-2} = 1 N \cdot m$

Travail sur un déplacement fini

on somme les déplacements élémentaires

Définition (Travail d'une force au cours d'un déplacement fini)

Pour un déplacement *fini* d'une position M_1 à une position M_2 le long d'une courbe \mathscr{C} , le travail total est :

$$M_1 \underset{\mathscr{C}}{\overset{W}{\longrightarrow}} M_2 (\overrightarrow{F}) = \int_{M_1 \underset{\mathscr{C}}{\longrightarrow} M_2} \delta W(\overrightarrow{F}) = \int_{M_1 \underset{\mathscr{C}}{\longrightarrow} M_2} \overrightarrow{F} \cdot d\overrightarrow{OM}.$$

- en Joule $1 J = 1 W \cdot s = 1 kg \cdot m^2 \cdot s^{-2} = 1 N \cdot m$
- le travail du poids d'un objet de 1 kg lors d'une chute de 1 m est 9,8 J

Travail sur un déplacement fini

on somme les déplacements élémentaires

Définition (Travail d'une force au cours d'un déplacement fini)

Pour un déplacement *fini* d'une position M_1 à une position M_2 le long d'une courbe \mathscr{C} , le travail total est :

$$M_1 \xrightarrow{W} M_2 (\overrightarrow{F}) = \int_{M_1 \xrightarrow{\mathscr{C}} M_2} \delta W(\overrightarrow{F}) = \int_{M_1 \xrightarrow{\mathscr{C}} M_2} \overrightarrow{F} \cdot d\overrightarrow{OM}.$$

- en Joule $1J = 1W \cdot s = 1kg \cdot m^2 \cdot s^{-2} = 1N \cdot m$
- le travail du poids d'un objet de 1 kg lors d'une chute de 1 m est 9,8 J
- la somme des puissances ou des travaux de plusieurs forces sur un point matériel est immédiatement égale à la puissance ou au travail de la résultante de leurs forces

- 1. Puissance et travail d'une force
- 1.1 Définitions
- 1.2 Action motrice ou résistive d'une force
- 1.3 Théorèmes de la puissance et de l'énergie cinétiques
- Énergies potentielle et mécanique
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

Définitions

Action motrice ou résistive d'une force

Théorèmes de la puissance et de l'énergie cinétiques

Définition (Caractère moteur ou résistant de l'action d'une force)

L'action d'une force est dite *motrice* (resp. *résistive*) quand la puissance de la force est *positive* (resp. *négative*), c'est-à-dire quand l'angle entre la force et la vitesse est *aigu* (resp. *obtus*). La puissance est nulle quand la force est *orthogonale* à la vitesse.

Expressions et cas particuliers

Travail élémentaire

Coordonnées cartésiennes $\delta W = \vec{F} \cdot d\vec{M} = F_x dx + F_y dy + F_z dz$ Coordonnées cylindriques $\delta W = \vec{F} \cdot d\vec{M} = F_r dr + F_\theta r d\theta + F_z dz$

Coordonnées sphériques $\delta W = \vec{F} \cdot d\vec{M} = F_r dr + F_{\theta} r d\theta + F_{\varphi} r \sin\theta d\varphi$

Expressions et cas particuliers

Travail élémentaire

Coordonnées cartésiennes $\delta W = \vec{F} \cdot d\vec{M} = F_x dx + F_y dy + F_z dz$

Coordonnées cylindriques $\delta W = \vec{F} \cdot d\vec{M} = F_r dr + F_{\theta} r d\theta + F_z dz$

Coordonnées sphériques $\delta W = \vec{F} \cdot d\vec{M} = F_r dr + F_{\theta} r d\theta + F_{\phi} r \sin\theta d\phi$

Champ de force \vec{F} uniforme

$$W(\overrightarrow{F})_{\mathscr{R}} = \int_{M_1 \xrightarrow{\sim} M_2} \overrightarrow{F} \cdot \mathrm{d} \overrightarrow{M} = \overrightarrow{F} \cdot \int_{M_1 \xrightarrow{\sim} M_2} \mathrm{d} \overrightarrow{M} = \overrightarrow{F} \cdot \overrightarrow{M_1 M_2}$$

- La puissance, et donc le travail, de la réaction normale \vec{N} d'un support immobile sont toujours nuls. C'est également le cas pour la force de tension d'un pendule.
- L'action de la force de frottement \vec{F} exercée par un milieu ou un support immobile est toujours résistive.

- La puissance, et donc le travail, de la réaction normale \overrightarrow{N} d'un support immobile sont toujours nuls. C'est également le cas pour la force de tension d'un pendule.
- L'action de la force de frottement \vec{F} exercée par un milieu ou un support immobile est toujours résistive.
- la puissance de \overrightarrow{T} est toujours
- $ightharpoonup \vec{F}$ est toujours résistive
- P est motrice (descente) ou résistive (montée)

- La puissance, et donc le travail, de la réaction normale \vec{N} d'un support immobile sont toujours nuls. C'est également le cas pour la force de tension d'un pendule.
- L'action de la force de frottement \vec{F} exercée par un milieu ou un support immobile est toujours résistive.
- § : un travail nul n'implique pas une force nulle (le travail du poids est nul sur une période)

- La puissance, et donc le travail, de la réaction normale \vec{N} d'un support immobile sont toujours nuls. C'est également le cas pour la force de tension d'un pendule.
- L'action de la force de frottement \vec{F} exercée par un milieu ou un support immobile est toujours résistive.
- \(\mathbb{g}\) : un travail nul n'implique pas une force nulle (le travail du poids est nul sur une période)
- g tout dépend du référentiel : une force de liaison ou de frottement peut par exemple être résistive ou motrice selon le référentiel d'étude

Expressions et cas particuliers

Cas de nullité

Le travail élémentaire δW est nul si et seulement si :

 $\vec{F} = \vec{0}$ (résultante nulle)

ou $\vec{v} = \vec{0}$ (point matériel immobile)

ou \vec{F} est orthogonale au mouvement : $\vec{F} \cdot \vec{v} = 0$.

- 1. Puissance et travail d'une force
- 1.1 Définitions
- 1.2 Action motrice ou résistive d'une force
- 1.3 Théorèmes de la puissance et de l'énergie cinétiques
- Énergies potentielle et mécanique
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

Énergie cinétique

on forme une grandeur scalaire caractérisant l'état de mouvement d'un PM

Définition (Énergie cinétique)

On définit *l'énergie cinétique* $\mathcal{E}_{c,\alpha}$ dans un référentiel \mathcal{R} d'un point matériel M animé dans \mathcal{R} de la vitesse $\overrightarrow{v_{\mathcal{R}}}(M)$ par :

$$\mathscr{E}_{\mathsf{C}\mathscr{R}} = \frac{1}{2} m \| \overrightarrow{v_{\mathscr{R}}}(M) \|^2 = \frac{\| \overrightarrow{p_{\mathscr{R}}}(M) \|^2}{2m}$$

même dimension que le travail

Énergie cinétique

on forme une grandeur scalaire caractérisant l'état de mouvement d'un PM

Définition (Énergie cinétique)

On définit *l'énergie cinétique* $\mathscr{E}_{C\mathscr{R}}$ dans un référentiel \mathscr{R} d'un point matériel M animé dans \mathscr{R} de la vitesse $\overrightarrow{v_{\mathscr{R}}}(M)$ par :

$$\mathcal{E}_{\mathbf{C}\mathscr{R}} = \frac{1}{2} m \|\overrightarrow{v_{\mathscr{R}}}(M)\|^2 = \frac{\|\overrightarrow{p_{\mathscr{R}}}(M)\|^2}{2m}$$

- même dimension que le travail
- dépend du référentiel

Énergie cinétique

on forme une grandeur scalaire caractérisant l'état de mouvement d'un PM

Définition (Énergie cinétique)

On définit *l'énergie cinétique* $\mathcal{E}_{c,\alpha}$ dans un référentiel \mathcal{R} d'un point matériel M animé dans \mathscr{R} de la vitesse $\overrightarrow{v_{\mathscr{R}}}(M)$ par :

$$\mathscr{E}_{\mathsf{C}\mathscr{R}} = \frac{1}{2} m \|\overrightarrow{v_{\mathscr{R}}}(M)\|^2 = \frac{\|\overrightarrow{p_{\mathscr{R}}}(M)\|^2}{2m}$$

- même dimension que le travail
- dépend du référentiel
- d'autant plus grande que la quantité de mouvement est élevée, indépendamment de la direction

Théorème de la puissance cinétique

Théorème (de la puissance cinétique)

La dérivée par rapport au temps dans un référentiel galiléen R, de l'énergie cinétique d'un point matériel M est égale à la puissance $\mathscr{P}_{\mathscr{R}_g}(\vec{F})$ dans \mathscr{R}_g de la résultante \vec{F} des forces qui lui sont appliquées :

$$\mathscr{P}_{\mathscr{R}_g}(\overrightarrow{F}) = \frac{\mathrm{d}\mathscr{E}_{\mathcal{C}\mathscr{R}_g}}{\mathrm{d}t}.$$

même structure que la loi de la quantité de mouvement :

$$\frac{\text{dgrandeur cinématique}}{\text{dt}} = \text{grandeur dynamique}$$

Théorème de la puissance cinétique

Théorème (de la puissance cinétique)

La dérivée par rapport au temps dans un référentiel galiléen \mathcal{R}_g de l'énergie cinétique d'un point matériel M est égale à la puissance $\mathscr{P}_{\mathcal{R}_g}(\vec{F})$ dans \mathcal{R}_g de la résultante \vec{F} des forces qui lui sont appliquées :

$$\mathscr{P}_{\mathscr{R}_g}(\overrightarrow{F}) = \frac{\mathrm{d}\mathscr{E}_{\mathscr{C}\mathscr{R}_g}}{\mathrm{d}t}.$$

même structure que la loi de la quantité de mouvement :

$$\frac{\text{dgrandeur cinématique}}{\text{dt}} = \text{grandeur dynamique}$$

▶ force motrice ⇔ tend à accroître ℰc

Théorème de la puissance cinétique

Théorème (de la puissance cinétique)

La dérivée par rapport au temps dans un référentiel galiléen \mathcal{R}_g de l'énergie cinétique d'un point matériel M est égale à la puissance $\mathscr{P}_{\mathcal{R}_g}(\vec{F})$ dans \mathcal{R}_g de la résultante \vec{F} des forces qui lui sont appliquées :

$$\mathscr{P}_{\mathscr{R}_g}(\overrightarrow{F}) = \frac{\mathrm{d}\mathscr{E}_{\mathscr{C}\mathscr{R}_g}}{\mathrm{d}t}.$$

même structure que la loi de la quantité de mouvement :

$$\frac{\text{dgrandeur cinématique}}{\text{d}t} = \text{grandeur dynamique}$$

- force motrice ⇔ tend à accroître ℰc
- ► force résistive ⇔ tend à diminuer ℰc

États liés de faible énergie

Théorème de l'énergie cinétique

version « intégrée » le long d'un déplacement

Théorème (de l'énergie cinétique)

La variation de l'énergie cinétique dans un référentiel galiléen \mathcal{R}_g d'un point matériel M situé en M_1 à l'instant t_1 et en M_2 à l'instant t_2 est égale au travail de la résultante \overrightarrow{F} des forces qui lui sont appliquées le long du trajet $\mathscr C$ entre M_1 et M_2 :

$$\underset{t_1 \xrightarrow{} t_2}{\Delta} \mathcal{E}_{\mathcal{C}\mathcal{R}_g} = \mathcal{E}_{\mathcal{C}\mathcal{R}_g}(t_2) - \mathcal{E}_{\mathcal{C}\mathcal{R}_g}(t_1) = \int\limits_{M_1 \xrightarrow{\mathcal{C}} M_2} \overrightarrow{F} \cdot \mathrm{d}\overrightarrow{OM}.$$

informations globales entre le début et la fin du mouvement

Théorème de l'énergie cinétique

version « intégrée » le long d'un déplacement

Théorème (de l'énergie cinétique)

La variation de l'énergie cinétique dans un référentiel galiléen R, d'un point matériel M situé en M_1 à l'instant t_1 et en M_2 à l'instant t_2 est égale au travail de la résultante \overrightarrow{F} des forces qui lui sont appliquées le long du trajet \mathscr{C} entre M_1 et M_2 :

$$\underset{t_1 \xrightarrow{} t_2}{\Delta} \mathcal{E}_{\mathcal{C}\mathcal{R}_g} = \mathcal{E}_{\mathcal{C}\mathcal{R}_g}(t_2) - \mathcal{E}_{\mathcal{C}\mathcal{R}_g}(t_1) = \int\limits_{M_1 \xrightarrow{\mathcal{C}} M_2} \overrightarrow{F} \cdot \mathrm{d}\overrightarrow{OM}.$$

- informations globales entre le début et la fin du mouvement
- mais nécessité de connaître tout le mouvement entre les deux...

orces conservatives : exemples et contre-exemples nergie potentielle radient de l'énergie potentielle néorème de l'énergie mécanique onserveuences conserveuences conserveuences conserveuences conserveuences conserveuences

- 1. Puissance et travail d'une force
- 2. Énergies potentielle et mécanique
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

Forces conservatives : exemples et contre-exemples Énergie potentielle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

1. Puissance et travail d'une force

- 2. Énergies potentielle et mécanique
- 2.1 Forces conservatives : exemples et contre-exemples
- 2.2 Énergie potentielle
- 2.3 Gradient de l'énergie potentielle
- 2.4 Théorème de l'énergie mécanique
 - 2.5 Conséquences
- 2.6 Exemple d'utilisation : cas du pendule
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

Poids

$$W_{M_1 \xrightarrow{\varphi} M_2} (\overrightarrow{P}) = m \overrightarrow{g} \cdot \overrightarrow{M_1 M_2} = -mg(z_2 - z_1) = -\Delta mgz$$

Forces conservatives : exemples et contre-exemples Énergie potentitelle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

Poids

$$W_{M_1 \underset{\mathcal{C}}{\longrightarrow} M_2}(\overrightarrow{P}) = m \overrightarrow{g} \cdot \overrightarrow{M_1 M_2} = -mg(z_2 - z_1) = -\Delta mgz$$

indépendant de la courbe \mathscr{C} entre M_1 et M_2

Forces conservatives : exemples et contre-exemples Énergie potentielle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

Force de rappel élastique

$$\overrightarrow{F} = -k(\ell - \ell_0)\overrightarrow{e_r}$$
, avec $\overrightarrow{OM} = \ell \overrightarrow{e_r}$ en sphériques

- $\overrightarrow{F} = -k(\ell \ell_0)\overrightarrow{e_r}$, avec $\overrightarrow{OM} = \ell \overrightarrow{e_r}$ en sphériques
- déplacement élémentaire quelconque

$$d\overrightarrow{OM} = dr\overrightarrow{e_r} + r d\theta \overrightarrow{e_\theta} + r \sin\theta d\varphi \overrightarrow{e_\varphi}$$

- $\overrightarrow{F} = -k(\ell \ell_0)\overrightarrow{e_r}$, avec $\overrightarrow{OM} = \ell \overrightarrow{e_r}$ en sphériques
- déplacement élémentaire quelconque

$$d\overrightarrow{OM} = dr\overrightarrow{e_r} + r d\theta \overrightarrow{e_\theta} + r \sin\theta d\varphi \overrightarrow{e_\varphi}$$

le travail élémentaire se calcule selon : $\delta W(\vec{F}) = -k(\ell-\ell_0)\mathrm{d}\ell = -\mathrm{d}\left(k(\ell-\ell_0)^2/2\right) = -\mathrm{d}\left(k\Delta\ell^2/2\right) \text{ avec } \Delta\ell = \ell-\ell_0.$

- $\overrightarrow{F} = -k(\ell \ell_0)\overrightarrow{e_r}$, avec $\overrightarrow{OM} = \ell \overrightarrow{e_r}$ en sphériques
- déplacement élémentaire quelconque

$$d\overrightarrow{OM} = dr\overrightarrow{e_r} + r d\theta \overrightarrow{e_\theta} + r \sin\theta d\varphi \overrightarrow{e_\varphi}$$

le travail élémentaire se calcule selon : $\delta W(\vec{F}) = -k(\ell-\ell_0)\mathrm{d}\ell = -\mathrm{d}\left(k(\ell-\ell_0)^2/2\right) = -\mathrm{d}\left(k\Delta\ell^2/2\right) \text{ avec } \Delta\ell = \ell-\ell_0.$

- $\overrightarrow{F} = -k(\ell \ell_0)\overrightarrow{e_r}$, avec $\overrightarrow{OM} = \ell \overrightarrow{e_r}$ en sphériques
- déplacement élémentaire quelconque

$$d\overrightarrow{OM} = dr\overrightarrow{e_r} + r d\theta \overrightarrow{e_\theta} + r \sin\theta d\varphi \overrightarrow{e_\varphi}$$

le travail élémentaire se calcule selon : $\delta W(\vec{F}) = -k(\ell - \ell_0) d\ell = -d \left(k(\ell - \ell_0)^2 / 2 \right) = -d \left(k \Delta \ell^2 / 2 \right) \text{ avec}$ $\Delta \ell = \ell - \ell_0.$

$$W_{M_1 \underset{\mathscr{C}}{\longrightarrow} M_2}(\overrightarrow{F}) = -\left(k\Delta \ell_2^2/2 - k\Delta \ell_1^2/2\right) = -\Delta \left(k\Delta \ell^2/2\right)$$

indépendant de la courbe \mathscr{C} entre M_1 et M_2

Forces conservatives : exemples et contre-exemples Énergie potentielle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

Exercice : Force de frottement solide

On considère un point matériel de masse m glissant sur un plan horizontal, dans le champ de pesanteur uniforme (d'accélération \overrightarrow{g}), soumis à des forces de frottement solide caractérisées par un coefficient μ .

- 1 Déterminer les intensités des forces \vec{R}_{\perp} et \vec{R}_{\parallel} quand le point matériel glisse.
- 2 On envisage deux trajets pour le point matériel. Dans le premier, il parcourt la distance L avant de s'immobiliser. Dans le deuxième, il parcourt une distance L+D, rebondit sur un mur et repart en sens inverse pour s'immobiliser au même point que dans le premier trajet. Déterminer, pour les deux trajets, les expressions :
 - des travaux du poids et de la réaction normale \vec{R}_{\perp} ,
 - bullet du travail de la réaction tangentielle \vec{R}_{\parallel} .

Forces conservatives : exemples et contre-exemples Énergie potentielle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences Formele d'utilité dies act de conserve.

1. Puissance et travail d'une force

2. Énergies potentielle et mécanique

2.1 Forces conservatives : exemples et contre-exemples

2.2 Énergie potentielle

- 2.3 Gradient de l'énergie potentielle
- 2.4 Théorème de l'énergie mécanique
- 2.5 Conséquences
- 2.6 Exemple d'utilisation : cas du pendule
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

États liés de faible énergie

Aradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

Définition (Force conservative)

Une force \vec{F} est dite *conservative* si son travail $W_{M_1 \to M_2}(\vec{F})$ sur un point matériel se déplaçant d'un point M_1 à un point M_2 ne dépend pas de la trajectoire suivie de M_1 à M_2 mais uniquement des points extrêmaux M_1 et M_2 .

àradient de l'énergie potentielle l'héorème de l'énergie mécanique conséquences

Définition (Force conservative)

Une force \vec{F} est dite *conservative* si son travail $W_{M_1 \to M_2}(\vec{F})$ sur un point matériel se déplaçant d'un point M_1 à un point M_2 ne dépend pas de la trajectoire suivie de M_1 à M_2 mais uniquement des points extrêmaux M_1 et M_2 .

De manière équivalente : $W(\vec{F}) = 0$ sur toute trajectoire fermée.

Forces conservatives : exemples et contre-exemples Énergie potentielle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

Énergie potentielle

le travail de \overrightarrow{F} conservative, $W_{M_0 \to M}(\overrightarrow{F})$ ne dépend que de M et M_0 , pas de la courbe $\mathscr C$: c'est une fonction de M si M_0 est fixé

Énergie potentielle

le travail de \overrightarrow{F} conservative, $W_{M_0 \to M}(\overrightarrow{F})$ ne dépend que de M et M_0 , pas de la courbe $\mathscr C$: c'est une fonction de M si M_0 est fixé

Définition (Énergie potentielle)

On peut associer à la force \overrightarrow{F} conservative une énergie potentielle $\mathscr{E}_{\mathrm{pot}}(M)$, fonction uniquement de la position M d'un point matériel soumis à \overrightarrow{F} , définie par :

$$\mathscr{E}_{\mathrm{pot}}(M) = -W_{M_0 \to M}(\vec{F}) = -\int_{M_0}^{M} \vec{F} \cdot d\vec{M},$$

où M_0 est un point quelconque. On dit que \overrightarrow{F} « moins » dérive de l'énergie potentielle $\mathcal{E}_{\mathrm{pot}}$.

Puissance et travail d'une force Énergies potentielle et mécanique Analyse qualitative d'un système conservatif à un degré de liberté États liés de faible éneroie Forces conservatives : exemples et contre-exemples Énergie potentielle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

en J

Forces conservatives : exemples et contre-exemples Énergie potentielle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

- en J
- ► cas de plusieurs forces conservatives : $\mathscr{E}_{pot}(M) = \sum_{i} \mathscr{E}_{pot}(M)_{F_i}$

Forces conservatives : exemples et contre-exemples Énergie potentielle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

- en J
- ► cas de plusieurs forces conservatives : $\mathscr{E}_{pot}(M) = \sum_{i} \mathscr{E}_{pot}(M)_{F_i}$

- ▶ en J
- ► cas de plusieurs forces conservatives : $\mathscr{E}_{pot}(M) = \sum_{i} \mathscr{E}_{pot}(M)_{F_i}$

Définition à une constante près

L'énergie potentielle est définie à une constante près.

Forces conservatives : exemples et contre-exemples Énergie potentielle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

- ► en J
- ► cas de plusieurs forces conservatives : $\mathscr{E}_{pot}(M) = \sum_{i} \mathscr{E}_{pot}(M)_{F_i}$

Définition à une constante près

L'énergie potentielle est définie à une constante près.

Un choix différent de point M_0 rajoute une constante à $\mathscr{E}_{\mathrm{pot}}$ mais $W = -\Delta \mathscr{E}_{\mathrm{pot}}$ reste indépendant du choix de M_0 .

États liés de faible énergie

Forces conservatives: exemples et contre-exemples Énergie potentielle

Gradient de l'énergie potentielle

Théorème de l'énergie mécanique

Example d'utilisation : ann du pandula

Travail d'une force conservative

Travail d'une force conservative

Le travail d'une force \vec{F} conservative sur un point matériel se déplaçant de la position M_1 à la position M_2 est alors égal à la *diminution* d'énergie potentielle entre M_1 et M_2 :

$$\underset{M_1 \to M_2}{W}(\overrightarrow{F}) = \mathscr{E}_{\mathsf{pot},\overrightarrow{F}}(M_1) - \mathscr{E}_{\mathsf{pot},\overrightarrow{F}}(M_2).$$

États liés de faible énergie

Forces conservatives: exemples et contre-exemples Énergie potentielle

Gradient de l'énergie potentielle

Théorème de l'énergie mécanique

Example d'utilisation : ann du pandula

Travail d'une force conservative

Travail d'une force conservative

Le travail d'une force \vec{F} conservative sur un point matériel se déplaçant de la position M_1 à la position M_2 est alors égal à la *diminution* d'énergie potentielle entre M_1 et M_2 :

$$\underset{M_1 \to M_2}{W}(\overrightarrow{F}) = \mathscr{E}_{\mathsf{pot},\overrightarrow{F}}(M_1) - \mathscr{E}_{\mathsf{pot},\overrightarrow{F}}(M_2).$$

Travail d'une force conservative

🙎 notations très importantes

▶ depot représente la variation élémentaire d'une grandeur définie en tout point :

$$\int_{M_0}^{M_1} d\mathcal{E}_{pot} = \Delta \mathcal{E}_{pot} = \mathcal{E}_{pot}(M_1) - \mathcal{E}_{pot}(M_0)$$

Travail d'une force conservative

🙎 notations très importantes

▶ dêpot représente la variation élémentaire d'une grandeur définie en tout point :

$$\int_{M_0}^{M_1} d\mathcal{E}_{pot} = \Delta \mathcal{E}_{pot} = \mathcal{E}_{pot}(M_1) - \mathcal{E}_{pot}(M_0)$$

δW représente un travail infinitésimal mais :

$$\int_{M_0 \xrightarrow{\mathscr{C}} M_1} \delta W = W_{M_0 \xrightarrow{\mathscr{C}} M_1}$$

qui n'est pas nécessairement de la forme $f(M_1) - f(0)$

États liés de faible énergie

Forces conservatives : exemples et contre-exemple Énergie potentielle

Gradient de l'énergie potentielle

onséquences

Cas d'un système à un degré de liberté

Énergie potentielle pour un mouvement à un degré de liberté

On associe à $\vec{F} = F_x \vec{e_x}$ une énergie potentielle $\mathscr{E}_{pot}(x)$ telle que :

$$F_x = -\frac{\mathrm{d}\mathscr{E}_{\mathsf{pot}}}{\mathrm{d}x}.$$

Le travail de \overrightarrow{F} de la position x_1 à la position x_2 est :

$$W_{x_1 \to x_2}(\overrightarrow{F}) = \mathscr{E}_{\mathsf{pot}}(x_1) - \mathscr{E}_{\mathsf{pot}}(x_2) = \int_{x_1}^{x_2} F_x \, \mathrm{d}x.$$

États liés de faible énergie

Forces conservatives : exemples et contre-exemple
Énergie potentielle

radient de l'énergie potentielle héorème de l'énergie mécaniq

vomnla d'utilisation : aca du nandula

Cas d'un système à un degré de liberté

Énergie potentielle pour un mouvement à un degré de liberté

On associe à $\vec{F} = F_x \vec{e_x}$ une énergie potentielle $\mathscr{E}_{pot}(x)$ telle que :

$$F_x = -\frac{\mathrm{d}\mathscr{E}_{\mathsf{pot}}}{\mathrm{d}x}.$$

Le travail de \vec{F} de la position x_1 à la position x_2 est :

$$W_{x_1 \to x_2}(\overrightarrow{F}) = \mathscr{E}_{\mathsf{pot}}(x_1) - \mathscr{E}_{\mathsf{pot}}(x_2) = \int_{x_1}^{x_2} F_x \, \mathrm{d}x.$$

on utilisera parfois $\frac{\mathrm{d}\mathscr{E}_{\mathrm{pot}}}{\mathrm{d}\theta}$, avec θ un angle : qui n'est alors pas homogène à une force.

Forces conservatives : exemples et contre-exemple Énergie potentielle

Gradient de l'énergie potentielle Théorème de l'énergie mécanique

Exemples

Poids

$$\mathcal{E}_{\mathrm{pot}}(M) = mg(z - z_0),$$

avec z l'altitude ($\overrightarrow{e_z}$ de sens opposé à \overrightarrow{g}), z_0 est l'altitude où \mathscr{E}_{pot} est nulle.

États liés de faible énergie

Énergie potentielle

Exemples

Poids

$$\mathcal{E}_{\mathrm{pot}}(M) = mg(z - z_0),$$

avec z l'altitude ($\overrightarrow{e_z}$ de sens opposé à \overrightarrow{g}), z_0 est l'altitude où \mathscr{E}_{pot} est nulle.

Ressort idéal unidimensionnel

$$\mathscr{E}_{\text{pot}}(\ell) = \frac{1}{2}k(\ell - \ell_0)^2,$$

toujours nulle pour $\ell = \ell_0$ par convention.

1. Puissance et travail d'une force

2. Énergies potentielle et mécanique

- 2.1 Forces conservatives: exemples et contre-exemples
- 2.2 Énergie potentielle
- 2.3 Gradient de l'énergie potentielle
- 2.4 Théorème de l'énergie mécanique
- 2.5 Conséquences
- 2.6 Exemple d'utilisation : cas du pendule
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

Gradient d'un champ scalaire

- une force est un vecteur, une énergie est un champ scalaire
- comment « dériver » une fonction scalaire pour obtenir un champ de force ?

Gradient d'un champ scalaire

Définition (Gradient d'un champ scalaire)

Soit $M \mapsto E(M)$ un champ scalaire. Son gradient, noté $\overline{\operatorname{grad}}E$ est le champ vectoriel $M \mapsto \overline{\operatorname{grad}}E(M)$ tel que, au voisinage de tout point M:

$$dE(M) = \overrightarrow{\operatorname{grad}} E \cdot \overrightarrow{\operatorname{d}OM}.$$

Gradient d'un champ scalaire

Définition (Gradient d'un champ scalaire)

Soit $M \mapsto E(M)$ un champ scalaire. Son gradient, noté $\overrightarrow{\operatorname{grad}}E$ est le champ vectoriel $M \mapsto \overrightarrow{\operatorname{grad}}E(M)$ tel que, au voisinage de tout point M:

$$dE(M) = \overrightarrow{grad}E \cdot \overrightarrow{dOM}$$
.

Orientation du gadient

Le gradient $\overrightarrow{\operatorname{grad}}E$ est orthogonal aux surfaces dites « iso-E » définies par $E=\operatorname{cste}$.

Gradient d'un champ scalaire

Définition (Gradient d'un champ scalaire)

Soit $M \mapsto E(M)$ un champ scalaire. Son gradient, noté $\overrightarrow{\operatorname{grad}}E$ est le champ vectoriel $M \mapsto \overrightarrow{\operatorname{grad}}E(M)$ tel que, au voisinage de tout point M:

$$dE(M) = \overrightarrow{grad}E \cdot \overrightarrow{dOM}$$
.

Orientation du gadient

Le gradient $\overline{\operatorname{grad}}E$ est orthogonal aux surfaces dites « iso-E » définies par $E=\operatorname{cste}$.

la direction et le sens du gradient disent dans quel sens se déplacer pour voir croître F

- son intensité donne le taux de variation par unité de longueur
- autres exemples : gradient de température dans l'atmosphère, de densité d'étoiles dans une galaxie

rces conservatives : exemples et contre-exemples ergie potentielle

Gradient de l'énergie potentielle

Théorème de l'énergie mécanique Conséquences

Cas d'une force conservative

Dérivation de l'énergie potentielle

Le champ d'une force conservative $\overrightarrow{F}(M)$ dérive de son énergie potentielle $\mathscr{E}_{\mathrm{pot}}(M)$ selon :

$$\overrightarrow{F}(M) = -\overrightarrow{\operatorname{grad}}\mathscr{E}_{\operatorname{pot}}(M).$$

Cas d'une force conservative

Dérivation de l'énergie potentielle

Le champ d'une force conservative $\overrightarrow{F}(M)$ dérive de son énergie potentielle $\mathscr{E}_{\rm pot}(M)$ selon :

$$\overrightarrow{F}(M) = -\overrightarrow{\operatorname{grad}}\mathscr{E}_{\operatorname{pot}}(M).$$

- par définition du travail d'une force
- attention au signe –
- ▶ orthogonal aux surfaces d'ℰ_{pot} constante

orces conservatives : exemples et contre-exemples nergie potentielle

Gradient de l'énergie potentielle

Théorème de l'énergie mécanique Conséquences

Cas d'une force conservative

Dérivation de l'énergie potentielle

Le champ d'une force conservative $\overrightarrow{F}(M)$ dérive de son énergie potentielle $\mathscr{E}_{\mathrm{pot}}(M)$ selon :

$$\overrightarrow{F}(M) = -\overrightarrow{\operatorname{grad}}\mathscr{E}_{\operatorname{pot}}(M).$$

Cas du poids

Le poids est le gradient de l'énergie potentielle $\mathcal{E}_{pot} = mgz$. Les surfaces iso-énergétiques sont des plans horizontaux.

Puissance et travail d'une force Énergies potentielle et mécanique ne conservatif à un degré de liberté Forces conservatives : exemples et contre-exemples Énergie potentielle Gradient de l'énergie potentielle Théorème de l'énergie mécanique Conséquences

Expressions

Expressions

▶ à 1D on avait
$$F_x = -\frac{\mathrm{d}\mathscr{E}_{\mathrm{pot}}(x)}{\mathrm{d}x}$$

Expressions

- ▶ à 1D on avait $F_x = -\frac{\mathrm{d}\mathscr{E}_{\mathrm{pot}}(x)}{\mathrm{d}x}$
- ightharpoonup à 3D, \overrightarrow{F} s'exprime toujours à l'aide des dérivées de $\mathscr{E}_{\mathrm{pot}}$ par rapport aux différentes coordonnées

États liés de faible énergie

Énergie potentielle

Gradient de l'énergie potentielle

l'heoreme de l'energie mecanique Conséquences

Expressions

Expressions du gradient

Les composantes d'une force conservative sont :

coordonnées cartésiennes :

$$\overrightarrow{F} = -\operatorname{grad} \mathcal{E}_{\mathrm{pot}}(x, y, z) = -\left(\frac{\partial \mathcal{E}_{\mathrm{pot}}}{\partial x}\overrightarrow{e_x} + \frac{\partial \mathcal{E}_{\mathrm{pot}}}{\partial y}\overrightarrow{e_y} + \frac{\partial \mathcal{E}_{\mathrm{pot}}}{\partial z}\overrightarrow{e_z}\right)$$

coordonnées cylindriques :

$$\overrightarrow{F} = - \operatorname{grad} \mathscr{E}_{\mathrm{pot}}(r,\theta,z) = - \left(\frac{\partial \mathscr{E}_{\mathrm{pot}}}{\partial r} \overrightarrow{e_r} + \frac{1}{r} \frac{\partial \mathscr{E}_{\mathrm{pot}}}{\partial \theta} \overrightarrow{e_\theta} + \frac{\partial \mathscr{E}_{\mathrm{pot}}}{\partial z} \overrightarrow{e_z} \right)$$

coordonnées sphériques :
$$\overrightarrow{F} = -\overline{\text{grad}}\mathcal{E}_{\text{pot}}(r,\theta,\varphi) = -\left(\frac{\partial \mathcal{E}_{\text{pot}}}{\partial r}\overrightarrow{e_r} + \frac{1}{r}\frac{\partial \mathcal{E}_{\text{pot}}}{\partial \theta}\overrightarrow{e_\theta} + \frac{1}{r\sin(\theta)}\frac{\partial \mathcal{E}_{\text{pot}}}{\partial \theta}\overrightarrow{e_\varphi}\right)$$

rces conservatives : exemples et contre-exemples ergie potentielle

Gradient de l'énergie potentielle

Théorème de l'énergie mécanique Conséquences

Exemples fondamentaux

Énergie potentielle de gravitation

L'énergie potentielle de gravitation entre deux masses ponctuelles M_1, m_1 et M_2, m_2 distantes de r_{12} a pour expression :

$$\mathcal{E}_{\text{potgrav}} = -\frac{\mathcal{G}m_1m_2}{r_{12}}.$$

Gradient de l'énergie potentielle

Exemples fondamentaux

Énergie potentielle de gravitation

L'énergie potentielle de gravitation entre deux masses ponctuelles M_1, m_1 et M_2, m_2 distantes de r_{12} a pour expression :

$$\mathcal{E}_{\text{pot}grav} = -\frac{\mathcal{G}m_1m_2}{r_{12}}.$$

Énergie potentielle élastique

L'énergie potentielle d'interaction entre deux masses distantes de r_{12} reliées par un ressort de raideur k et de longueur à vide ℓ_0 a pour expression:

$$\mathcal{E}_{\text{pot\'elas}} = \frac{1}{2}k (r_{12} - \ell_0)^2$$

Forces conservatives : exemples et contre-exemple Énergie potentielle Gradient de l'énergie potentielle

Théorème de l'énergie mécanique Conséquences

Exemples fondamentaux

Énergie potentielle de gravitation

L'énergie potentielle de gravitation entre deux masses ponctuelles M_1, m_1 et M_2, m_2 distantes de r_{12} a pour expression :

$$\mathcal{E}_{\text{pot}grav} = -\frac{\mathcal{G}m_1m_2}{r_{12}}.$$

Énergie potentielle élastique

L'énergie potentielle d'interaction entre deux masses distantes de r_{12} reliées par un ressort de raideur k et de longueur à vide ℓ_0 a pour expression :

$$\mathscr{E}_{\text{pot\'elas}} = \frac{1}{2}k \left(r_{12} - \ell_0\right)^2$$

on a fait les choix les plus raisonnables pour la constante

Exemples fondamentaux

Énergie potentielle de gravitation

L'énergie potentielle de gravitation entre deux masses ponctuelles M_1, m_1 et M_2, m_2 distantes de r_{12} a pour expression :

$$\mathcal{E}_{\text{pot}_{\text{grav}}} = -\frac{\mathcal{G}m_1m_2}{r_{12}}.$$

Énergie potentielle élastique

L'énergie potentielle d'interaction entre deux masses distantes de r_{12} reliées par un ressort de raideur k et de longueur à vide ℓ_0 a pour expression :

$$\mathscr{E}_{\text{pot\'elas}} = \frac{1}{2} k \left(r_{12} - \ell_0 \right)^2$$

on a fait les choix les plus raisonnables pour la constante

valables même si les deux objets sont en mouvement

Exemples fondamentaux

Énergie potentielle de gravitation

L'énergie potentielle de gravitation entre deux masses ponctuelles M_1, m_1 et M_2, m_2 distantes de r_{12} a pour expression :

$$\mathcal{E}_{\text{pot}_{\text{grav}}} = -\frac{\mathcal{G}m_1m_2}{r_{12}}.$$

Énergie potentielle élastique

L'énergie potentielle d'interaction entre deux masses distantes de r_{12} reliées par un ressort de raideur k et de longueur à vide ℓ_0 a pour expression :

$$\mathscr{E}_{\text{pot\'elas}} = \frac{1}{2} k \left(r_{12} - \ell_0 \right)^2$$

on a fait les choix les plus raisonnables pour la constante

valables même si les deux objets sont en mouvement

Exercice

Un point matériel est placé dans un champ de force \vec{F} dérivant de l'énergie potentielle :

$$\mathscr{E}_{\text{pot}} = \frac{\mathscr{E}_{\text{pot}_0}}{\ell^3} \left(x^4 + y^4 \right)$$

- 1 Déterminer l'expression de la force \vec{F} . À quelle condition portant sur les constantes $\mathscr{E}_{\text{pot}_0}$ et ℓ sera-t-elle attractive?
- 2 Dans ce cas, préciser le vecteur \overrightarrow{F} aux points $(\ell;0)$; $(0;-\ell)$ et $(\ell;\ell)$.

1. Puissance et travail d'une force

2. Énergies potentielle et mécanique

- 2.1 Forces conservatives: exemples et contre-exemples
- 2.2 Énergie potentielle
- 2.3 Gradient de l'énergie potentielle
- 2.4 Théorème de l'énergie mécanique
- 2.5 Conséquences
- 2.6 Exemple d'utilisation : cas du pendule
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

Construction

on cherche à définir une constante du mouvement.

Construction

on cherche à définir une constante du mouvement.

Définition (Énergie mécanique)

On définit l'énergie mécanique $\mathscr{E}_{m\mathscr{R}}$ d'un point matériel situé en M dans un référentiel \mathscr{R} , soumis à des forces conservatives auxquelles est associée une énergie potentielle $\mathscr{E}_{pot}(M)$ par :

$$\mathscr{E}_{\mathsf{m}\mathscr{R}} = \mathscr{E}_{\mathsf{pot}}(M) + \mathscr{E}_{\mathsf{cin}\mathscr{R}}.$$

définie à une constante près comme & pot

Construction

on cherche à définir une constante du mouvement.

Définition (Énergie mécanique)

On définit l'énergie mécanique $\mathscr{E}_{m\mathscr{R}}$ d'un point matériel situé en M dans un référentiel \mathscr{R} , soumis à des forces conservatives auxquelles est associée une énergie potentielle $\mathscr{E}_{pot}(M)$ par :

$$\mathscr{E}_{\mathsf{m}\mathscr{R}} = \mathscr{E}_{\mathsf{pot}}(M) + \mathscr{E}_{\mathsf{cin}\mathscr{R}}.$$

- définie à une constante près comme & pot
- dépend du référentiel comme &c

Analyse qualitative d'un système conservatif à un degré de liberté États liés de faible énergie

Théorème

expression locale:

Théorème (de l'énergie mécanique (forme locale))

Dans un référentiel galiléen \mathcal{R}_g , la variation de l'énergie mécanique d'un point matériel est égale au seul travail des forces non conservatives.

En notant \mathcal{P}_{nc} leur puissance, on a à chaque instant :

$$\left(\frac{\mathrm{d}\mathscr{E}_{m\mathscr{R}_g}}{\mathrm{d}t}\right)_{\mathscr{R}_g} = \mathscr{P}_{nc}.$$

Théorème

expression globale

Théorème (de l'énergie mécanique (forme globale))

En notant $W_{\rm nc}$ le travail total de ces forces non conservatives entre

un instant où le point matériel est en M_1 , animé dans \mathcal{R}_g d'une vitesse de norme v_1 , et un autre instant où il est en M_2 animé d'une vitesse de norme v_2 , on a :

$$\Delta \mathcal{E}_{m_{\mathcal{R}_g}} = \left(\frac{1}{2}mv_2^2 + \mathcal{E}_{pot}(M_2)\right) - \left(\frac{1}{2}mv_1^2 + \mathcal{E}_{pot}(M_1)\right) = \underset{M_1 \xrightarrow{\omega} M_2}{W_{nc}}.$$

Interprétation

simple réécriture du théorème de l'énergie cinétique :

$$\mathscr{E}_{\mathbf{C}}$$
: $\Delta\mathscr{E}_{\mathbf{C}} = W(\overrightarrow{F}_{\mathsf{conservatives}}) + W(\overrightarrow{F}_{\mathsf{non conservatives}})$

$$\mathscr{E}_{\mathrm{m}}$$
: $\Delta\mathscr{E}_{\mathrm{C}} - W(\overrightarrow{F}_{\mathrm{conservatives}}) = W(\overrightarrow{F}_{\mathrm{non conservatives}})$

Interprétation

simple réécriture du théorème de l'énergie cinétique :

$$\mathscr{E}_{\mathbf{C}}$$
: $\Delta\mathscr{E}_{\mathbf{C}} = W(\overrightarrow{F}_{\mathsf{conservatives}}) + W(\overrightarrow{F}_{\mathsf{non conservatives}})$

$$\mathscr{E}_{\mathrm{m}}$$
: $\Delta\mathscr{E}_{\mathrm{C}} - W(\overrightarrow{F}_{\mathrm{conservatives}}) = W(\overrightarrow{F}_{\mathrm{non conservatives}})$

1. Puissance et travail d'une force

2. Énergies potentielle et mécanique

- 2.1 Forces conservatives: exemples et contre-exemples
- 2.2 Énergie potentielle
- 2.3 Gradient de l'énergie potentielle
- 2.4 Théorème de l'énergie mécanique

2.5 Conséquences

- 2.6 Exemple d'utilisation : cas du pendule
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

Système conservatif

Définition (Système conservatif)

Un système dont l'énergie mécanique se conserve est dit *conservatif*. Pour un tel système l'équation :

Conséquences

$$\mathcal{E}_{\mathsf{m}} = cste = \mathcal{E}_{\mathsf{m}0}$$

est nommée intégrale première du mouvement.

rces conservatives : exemples et contre-exemples ergie potentielle adient de l'énergie potentielle

Conséquences

Système conservatif

Définition (Système conservatif)

Un système dont l'énergie mécanique se conserve est dit *conservatif*. Pour un tel système l'équation :

$$\mathcal{E}_{\mathsf{m}} = cste = \mathcal{E}_{\mathsf{m}0}$$

est nommée intégrale première du mouvement.

Système conservatif

Définition (Système conservatif)

Un système dont l'énergie mécanique se conserve est dit *conservatif*. Pour un tel système l'équation :

$$\mathcal{E}_{\mathsf{m}} = cste = \mathcal{E}_{\mathsf{m}0}$$

est nommée intégrale première du mouvement.

réalisé si toutes les forces non conservatives ne travaillent pas (liaisons sans frottement par exemple)

Système conservatif

Définition (Système conservatif)

Un système dont l'énergie mécanique se conserve est dit *conservatif*. Pour un tel système l'équation :

$$\mathcal{E}_{\mathsf{m}} = cste = \mathcal{E}_{\mathsf{m}0}$$

est nommée intégrale première du mouvement.

- réalisé si toutes les forces non conservatives ne travaillent pas (liaisons sans frottement par exemple)
- on verra en thermodynamique que les variations d'énergie mécanique sont compensées par d'autres formes d'énergie, pour que l'énergie totale soit conservée

Système conservatif

Définition (Système conservatif)

Un système dont l'énergie mécanique se conserve est dit *conservatif*. Pour un tel système l'équation :

$$\mathcal{E}_{\mathsf{m}} = cste = \mathcal{E}_{\mathsf{m}0}$$

est nommée intégrale première du mouvement.

- réalisé si toutes les forces non conservatives ne travaillent pas (liaisons sans frottement par exemple)
- on verra en thermodynamique que les variations d'énergie mécanique sont compensées par d'autres formes d'énergie, pour que l'énergie totale soit conservée

orces conservatives : exemples et contre-exemple: nergie potentielle radient de l'énergie potentielle

Conséquences

) I'

Système conservatif

Définition (Système conservatif)

Un système dont l'énergie mécanique se conserve est dit *conservatif*. Pour un tel système l'équation :

$$\mathcal{E}_{\mathsf{m}} = cste = \mathcal{E}_{\mathsf{m}0}$$

est nommée intégrale première du mouvement.

Vitesse pour un système conservatif

Pour un système conservatif, la vitesse du point matériel s'exprime en fonction de sa position selon :

$$v^2 = \frac{2}{m} \left(\mathcal{E}_{\text{m0}} - \mathcal{E}_{\text{pot}}(M) \right)$$

Influence de forces de frottement

Effet des frottements sur l'énergie mécanique

Quand les seules forces non conservatives auxquelles il est soumis sont de frottement, l'énergie mécanique ne peut que diminuer :

$$\frac{\mathrm{d}\mathscr{E}_{\mathsf{m}}}{\mathrm{d}t} \le 0. \tag{1}$$

Interprétation de l'énergie potentielle

Interprétation de l'énergie potentielle

Interprétation de l'énergie potentielle

Interprétation de l'énergie potentielle

Pour un système conservatif :

$$d\mathscr{E}_{cin} = -d\mathscr{E}_{pot}$$
.

Interprétation de l'énergie potentielle

Interprétation de l'énergie potentielle

Pour un système conservatif :

$$d\mathscr{E}_{\text{cin}} = -d\mathscr{E}_{pot}.$$

Une diminution de \mathcal{E}_{cin} permet d'emmagasiner de l'énergie potentielle qui pourra être restituée sous forme cinétique.

Interprétation de l'énergie potentielle

Interprétation de l'énergie potentielle

Interprétation de l'énergie potentielle

- m lancée vers le haut : v² diminue et ℰ_{pot} = mgz augmente.
- ▶ à la redescente, \mathcal{E}_{pot} diminue et v^2 augmente.

Exemples/analogies dans d'autres domaines

- $\mathscr{E}_{pot} = \frac{1}{2}Cu^2$ pour un condensateur, $\mathscr{E}_{cin} = \frac{1}{2}Li^2$ pour une bobine, l'effet Joule est effet dissipatif, non conservatif
- Énergie stockée sous forme chimique dans une batterie, libérée dans un moteur en partie sous forme cinétique et en partie sous forme de chaleur
- Énergie stockée sous forme chimique dans un explosif, libérée en partie sous forme cinétique et en partie sous forme de chaleur lors de son explosion

1. Puissance et travail d'une force

2. Énergies potentielle et mécanique

- 2.1 Forces conservatives: exemples et contre-exemples
- 2.2 Énergie potentielle
- 2.3 Gradient de l'énergie potentielle
- 2.4 Théorème de l'énergie mécanique
- 2.5 Conséquences
- 2.6 Exemple d'utilisation : cas du pendule
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

Caractéristiques du mouvement

- pas limité au mouvement plan, pas nécessaire de savoir résoudre l'équadiff
- $\theta = (-\overrightarrow{e_z}, \overrightarrow{OM})$ **2** sphériques d'axe $-\overrightarrow{e_z}$

$$\mathcal{E}_{\mathsf{m}} = \frac{1}{2} m v^2 + mg\ell \left(1 - \cos\left(\theta\right)\right) = \mathcal{E}_{\mathsf{m}i}.$$

Caractéristiques du mouvement

- pas limité au mouvement plan, pas nécessaire de savoir résoudre l'équadiff
- $\theta = (-\overrightarrow{e_z}, \overrightarrow{OM})$ **2** sphériques d'axe $-\overrightarrow{e_z}$

$$\mathscr{E}_{\mathsf{m}} = \frac{1}{2} m v^2 + m g \ell \left(1 - \cos \left(\theta \right) \right) = \mathscr{E}_{\mathsf{m}i}.$$

Borne supérieure sur la vitesse

$$v \le \sqrt{2\mathcal{E}_{\mathsf{m}i}/m} \equiv v_{\mathsf{max}}$$

 $v = v_{\text{max}}$ pour $\theta = 0$ si elle est atteinte

Caractéristiques du mouvement

- pas limité au mouvement plan, pas nécessaire de savoir résoudre l'équadiff
- $\theta = (-\overrightarrow{e_z}, \overrightarrow{OM})$ **2** sphériques d'axe $-\overrightarrow{e_z}$

$$\mathscr{E}_{\mathsf{m}} = \frac{1}{2} m v^2 + mg\ell \left(1 - \cos \left(\theta \right) \right) = \mathscr{E}_{\mathsf{m}_i}.$$

Borne supérieure sur la vitesse

$$v \le \sqrt{2\mathcal{E}_{\mathsf{m}i}/m} \equiv v_{\mathsf{max}}$$

 $v = v_{\text{max}}$ pour $\theta = 0$ si elle est atteinte

Borne supérieure sur l'altitude

$$z \leq z_0 + \mathcal{E}_{m_i}/(mg) \equiv z_{\max}$$

v = 0 en $z = z_{\text{max}}$ si elle est atteinte

Caractéristiques du mouvement

- pas limité au mouvement plan, pas nécessaire de savoir résoudre l'équadiff
- $\theta = (-\overrightarrow{e_z}, \overrightarrow{OM})$ \mathfrak{Z} sphériques d'axe $-\overrightarrow{e_z}$

$$\mathscr{E}_{\mathsf{m}} = \frac{1}{2} m v^2 + mg\ell \left(1 - \cos \left(\theta \right) \right) = \mathscr{E}_{\mathsf{m}i}.$$

Borne supérieure sur la vitesse

$$v \le \sqrt{2\mathcal{E}_{mi}/m} \equiv v_{max}$$

 $v = v_{\text{max}}$ pour $\theta = 0$ si elle est atteinte

Borne supérieure sur l'altitude

$$z \leq z_0 + \mathcal{E}_{m_i}/(mg) \equiv z_{\max}$$

v = 0 en $z = z_{\text{max}}$ si elle est atteinte

Vitesse en fonction de l'altitude.

$$v = \sqrt{2\mathcal{E}_{m_i}/m - g\ell(1 - \cos(\theta))}$$

v toujours la même quand on repasse par la même altitude

orces conservatives : exemples et contre-exemples nergie potentielle radient de l'énergie potentielle

Conséquences

Evample d'utilisation : one du pandula

Mouvement plan : équations du mouvement

Intégrale première du mouvement :

$$\frac{1}{2}m\ell^2\dot{\theta}^2 + mg\ell(1 - \cos\theta) = \mathcal{E}_{\mathsf{m}i}$$

soit:

$$\dot{\theta}\ddot{\theta} + \dot{\theta}\frac{g}{\ell}\sin\theta = 0 \rightarrow \ddot{\theta} + \omega_0^2\sin\theta = 0,$$

avec $\omega_0 \equiv \sqrt{g/l}$.

Mouvement plan : équations du mouvement

Intégrale première du mouvement :

$$\frac{1}{2}m\ell^2\dot{\theta}^2 + mg\ell(1 - \cos\theta) = \mathcal{E}_{\mathsf{m}i}$$

soit:

$$\dot{\theta}\ddot{\theta} + \dot{\theta}\frac{g}{\ell}\sin\theta = 0 \rightarrow \ddot{\theta} + \omega_0^2\sin\theta = 0,$$

avec $\omega_0 \equiv \sqrt{g/l}$.

Sans faire intervenir \vec{T} . \mathbf{Z} reste à vérifier qu'elle ne s'annule pas ie que le fil reste tendu.

Estimation de l'effet des frottements

▶ boule de masse $m = 2.6 \cdot 10^2$ g, r = 2.0 cm $\ell = 1.0$ m

- ▶ boule de masse $m = 2.6 \cdot 10^2 \, \text{g}$, $r = 2.0 \, \text{cm} \, \ell = 1.0 \, \text{m}$
- lâchée sans vitesse fil tendu de $\theta = \pi/2$

- ▶ boule de masse $m = 2.6 \cdot 10^2 \,\mathrm{g}$, $r = 2.0 \,\mathrm{cm} \,\ell = 1.0 \,\mathrm{m}$
- lâchée sans vitesse fil tendu de $\theta = \pi/2$
- sans frottement :

rces conservatives : exemples et contre-exemple ergie potentielle adient de l'énergie potentielle

Consequences

- ▶ boule de masse $m = 2.6 \cdot 10^2$ g, r = 2.0 cm $\ell = 1.0$ m
- lâchée sans vitesse fil tendu de $\theta = \pi/2$
- sans frottement :
 - ightharpoonup oscillations en $\pm \pi/2$

- ▶ boule de masse $m = 2.6 \cdot 10^2 \, \text{g}$, $r = 2.0 \, \text{cm} \, \ell = 1.0 \, \text{m}$
- lâchée sans vitesse fil tendu de $\theta = \pi/2$
- sans frottement :
 - ightharpoonup oscillations en $\pm \pi/2$
 - $v_{\text{max}}(\theta = 0) = \sqrt{2gl} = 4.4 \,\text{m} \cdot \text{s}^{-1}$

- ▶ boule de masse $m = 2.6 \cdot 10^2 \, \text{g}$, $r = 2.0 \, \text{cm} \, \ell = 1.0 \, \text{m}$
- lâchée sans vitesse fil tendu de $\theta = \pi/2$
- sans frottement :
 - oscillations en $\pm \pi/2$
 - $v_{\text{max}}(\theta = 0) = \sqrt{2gl} = 4.4 \,\text{m} \cdot \text{s}^{-1}$
 - $\mathcal{E}_{mi} = mgl = 2.5 J$

- ▶ boule de masse $m = 2.6 \cdot 10^2$ g, r = 2.0 cm $\ell = 1.0$ m
- lâchée sans vitesse fil tendu de $\theta = \pi/2$
- sans frottement :
 - oscillations en $\pm \pi/2$
 - $v_{\text{max}}(\theta = 0) = \sqrt{2gl} = 4.4 \,\text{m} \cdot \text{s}^{-1}$
 - $\mathcal{E}_{m_i} = mgl = 2,5 J$
- frottements avec l'air : $\|\vec{F}\| = \alpha v^2$, avec $\alpha = 1.0 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{s}^2 \cdot \mathrm{m}^{-2}$

- ▶ boule de masse $m = 2.6 \cdot 10^2$ g, r = 2.0 cm $\ell = 1.0$ m
- lâchée sans vitesse fil tendu de $\theta = \pi/2$
- sans frottement :
 - oscillations en $\pm \pi/2$
 - $v_{\text{max}}(\theta = 0) = \sqrt{2gl} = 4.4 \,\text{m} \cdot \text{s}^{-1}$
 - $\mathcal{E}_{m_i} = mgl = 2,5 J$
- frottements avec l'air : $\|\vec{F}\| = \alpha v^2$, avec $\alpha = 1.0 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{s}^2 \cdot \mathrm{m}^{-2}$

- ▶ boule de masse $m = 2.6 \cdot 10^2 \,\mathrm{g}$, $r = 2.0 \,\mathrm{cm} \ \ell = 1.0 \,\mathrm{m}$
- lâchée sans vitesse fil tendu de $\theta = \pi/2$
- sans frottement :
 - ightharpoonup oscillations en $\pm \pi/2$

$$v_{\text{max}}(\theta = 0) = \sqrt{2gl} = 4.4 \,\text{m} \cdot \text{s}^{-1}$$

$$\mathcal{E}_{mi} = mgl = 2.5 J$$

• frottements avec l'air : $\|\vec{F}\| = \alpha v^2$, avec $\alpha = 1.0 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{s}^2 \cdot \mathrm{m}^{-2}$

on majore l'effet des frottements

 $F \le \alpha v_{\text{max}}^2$

- ▶ boule de masse $m = 2.6 \cdot 10^2$ g, r = 2.0 cm $\ell = 1.0$ m
- lâchée sans vitesse fil tendu de $\theta = \pi/2$
- sans frottement :
 - \triangleright oscillations en $+\pi/2$
 - $v_{\text{max}}(\theta = 0) = \sqrt{2gl} = 4.4 \,\text{m} \cdot \text{s}^{-1}$
 - \triangleright $\mathcal{E}_{mi} = mgl = 2.5 J$
- frottements avec l'air : $\|\overrightarrow{F}\| = \alpha v^2$, avec $\alpha = 1.0 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{s}^2 \cdot \mathrm{m}^{-2}$

on majore l'effet des frottements

- $F \le \alpha v_{\text{max}}^2$
- entre deux sommets successifs de la trajectoire (avec $\theta_1 \leq \theta_2$):

$$\mathcal{E}_{\mathsf{m}}(t_{2}) - \mathcal{E}_{\mathsf{m}}(t_{1}) = \underset{\theta_{1} \to \theta_{2}}{W}(\overrightarrow{F}) = \int_{\theta_{1}}^{\theta_{2}} \overrightarrow{F} \cdot \ell \, \mathrm{d}\theta \overrightarrow{e_{\theta}} = -\int_{\theta_{1}}^{\theta_{2}} \|\overrightarrow{F}\| \ell \, \mathrm{d}\theta$$

$$\leq -\alpha v_{\max}^{2} \int_{\theta_{1}}^{\theta_{2}} \ell \, \mathrm{d}\theta \leq -\alpha v_{\max}^{2} \pi \ell = -6, 1 \cdot 10^{-2} \, \mathrm{J}$$

$$\theta_{1} \qquad \qquad \qquad \theta_{1} \qquad \qquad \theta_{2} \qquad \qquad \theta_{3} \qquad \qquad \theta_{4} \qquad \qquad$$

- ▶ boule de masse $m = 2.6 \cdot 10^2$ g, r = 2.0 cm $\ell = 1.0$ m
- lâchée sans vitesse fil tendu de $\theta = \pi/2$
- sans frottement :
 - \triangleright oscillations en $+\pi/2$
 - $v_{\text{max}}(\theta = 0) = \sqrt{2gl} = 4.4 \,\text{m} \cdot \text{s}^{-1}$
 - \triangleright $\mathcal{E}_{mi} = mgl = 2.5 J$
- frottements avec l'air : $\|\overrightarrow{F}\| = \alpha v^2$, avec $\alpha = 1.0 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{s}^2 \cdot \mathrm{m}^{-2}$

on majore l'effet des frottements

- $F \le \alpha v_{\text{max}}^2$
- entre deux sommets successifs de la trajectoire (avec $\theta_1 \leq \theta_2$):

$$\mathcal{E}_{\mathsf{m}}(t_{2}) - \mathcal{E}_{\mathsf{m}}(t_{1}) = \underset{\theta_{1} \to \theta_{2}}{W}(\overrightarrow{F}) = \int_{\theta_{1}}^{\theta_{2}} \overrightarrow{F} \cdot \ell \, \mathrm{d}\theta \overrightarrow{e_{\theta}} = -\int_{\theta_{1}}^{\theta_{2}} \|\overrightarrow{F}\| \ell \, \mathrm{d}\theta$$

$$\leq -\alpha v_{\max}^{2} \int_{\theta_{1}}^{\theta_{2}} \ell \, \mathrm{d}\theta \leq -\alpha v_{\max}^{2} \pi \ell = -6, 1 \cdot 10^{-2} \, \mathrm{J}$$

$$\theta_{1} \qquad \qquad \qquad \theta_{1} \qquad \qquad \theta_{2} \qquad \qquad \theta_{3} \qquad \qquad \theta_{4} \qquad \qquad$$

- ▶ boule de masse $m = 2.6 \cdot 10^2$ g, r = 2.0 cm $\ell = 1.0$ m
- lâchée sans vitesse fil tendu de $\theta = \pi/2$
- sans frottement :
 - \triangleright oscillations en $+\pi/2$
 - $v_{\text{max}}(\theta = 0) = \sqrt{2gl} = 4.4 \,\text{m} \cdot \text{s}^{-1}$
 - \triangleright $\mathcal{E}_{mi} = mgl = 2.5 J$
- frottements avec l'air : $\|\overrightarrow{F}\| = \alpha v^2$, avec $\alpha = 1.0 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{s}^2 \cdot \mathrm{m}^{-2}$

on majore l'effet des frottements

- $F \le \alpha v_{\text{max}}^2$
- entre deux sommets successifs de la trajectoire (avec $\theta_1 \leq \theta_2$):

$$\mathcal{E}_{\mathsf{m}}(t_{2}) - \mathcal{E}_{\mathsf{m}}(t_{1}) = \underset{\theta_{1} \to \theta_{2}}{W}(\overrightarrow{F}) = \int_{\theta_{1}}^{\theta_{2}} \overrightarrow{F} \cdot \ell \, \mathrm{d}\theta \overrightarrow{e_{\theta}} = -\int_{\theta_{1}}^{\theta_{2}} \|\overrightarrow{F}\| \ell \, \mathrm{d}\theta$$

$$\leq -\alpha v_{\max}^{2} \int_{\theta_{1}}^{\theta_{2}} \ell \, \mathrm{d}\theta \leq -\alpha v_{\max}^{2} \pi \ell = -6, 1 \cdot 10^{-2} \, \mathrm{J}$$

$$\theta_{1} \qquad \qquad \qquad \theta_{1} \qquad \qquad \theta_{2} \qquad \qquad \theta_{3} \qquad \qquad \theta_{4} \qquad \qquad$$

- 1. Puissance et travail d'une force
- Énergies potentielle et mécanique
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

- 1. Puissance et travail d'une force
- 2. Énergies potentielle et mécanique
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 3.1 Interprétation de la courbe de \mathscr{E}_{pot}
- 3.2 Topographie
- 3.3 Positions d'équilibre
- 4. États liés de faible énergie

▶ ℰpot(x) dépend uniquement du champ de force

- ▶ ℰpot(x) dépend uniquement du champ de force
- ► E_{m0} dépend des conditions initiales

- ▶ ℰpot(x) dépend uniquement du champ de force
- \[
 \mathscr{E}_{m0}\] dépend des conditions initiales
 \[
 \]
- $\mathscr{E}_{\text{cin}} = \mathscr{E}_{\text{m0}} \mathscr{E}_{\text{pot}}(x) \ge 0$: mouvement contraint dans les zones où $\mathscr{E}_{\text{pot}}(x) \le \mathscr{E}_{\text{m0}}$

- ▶ ℰpot(x) dépend uniquement du champ de force
- \[
 \mathscr{E}_{m0}\] dépend des conditions initiales
 \[
 \]
- $\mathscr{E}_{\text{cin}} = \mathscr{E}_{\text{m0}} \mathscr{E}_{\text{pot}}(x) \ge 0$: mouvement contraint dans les zones où $\mathscr{E}_{\text{pot}}(x) \le \mathscr{E}_{\text{m0}}$

- \triangleright $\mathscr{E}_{pot}(x)$ dépend uniquement du champ de force
- \triangleright \mathscr{E}_{m0} dépend des conditions initiales
- $\mathscr{E}_{\text{cin}} = \mathscr{E}_{\text{m0}} \mathscr{E}_{\text{pot}}(x) \ge 0$: mouvement contraint dans les zones où $\mathscr{E}_{\text{pot}}(x) \le \mathscr{E}_{\text{m0}}$

mouvement entre x_{min} et x_{max}

mouvement au delà de x'_{\min}

États liés et de diffusion

Définition (États liés et de diffusion)

Un système conservatif est dit :

- dans un état lié si le mouvement est contraint dans une région finie de l'espace,
- dans un état de diffusion si le mouvement peut s'étendre jusqu'à l'infini.

- 1. Puissance et travail d'une force
- 2. Énergies potentielle et mécanique
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 3.1 Interprétation de la courbe de \mathcal{E}_{pot}
- 3.2 Topographie
- 3.3 Positions d'équilibre
- 4. États liés de faible énergie

Topographie

barrière de potentiel : il faut posséder $\mathcal{E}_{c} \geqslant \mathcal{E}_{0}$ pour la franchir, sinon rebroussement

puits de potentiel :

- la profondeur du puits est \mathcal{E}_0
- lfaut posséder ℰc ≥ ℰ₀ pour en sortir et être dans un état de diffusion
- sinon oscillations périodique en l'absence de frottement, d'amplitude décroissante s'il y a des forces de frottement

- 1. Puissance et travail d'une force
- 2. Énergies potentielle et mécanique
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 3.1 Interprétation de la courbe de $\mathscr{E}_{\mathsf{pot}}$
- 3.2 Topographie
- 3.3 Positions d'équilibre
- 4. États liés de faible énergie

Positions d'équilibre

Caractérisation

Les positions dites *d'équilibre* où un point matériel soumis à la force conservative \overrightarrow{F} dans \mathcal{R}_g galiléen peut être en équilibre sont les points M_{eq} tels que $\overrightarrow{F} = \overrightarrow{0}$.

Une position M_{eq} d'équilibre est dite :

stable si la force qui s'exerce sur un P.M. proche de $M_{\rm eq}$ tend à le ramener vers $M_{\rm eq}$,

instable sinon.

Mouvement à un degré de liberté

Tangente horizontale

L'énergie potentielle présente une tangente horizontale en un point d'équilibre :

$$\left(\frac{\mathrm{d}\mathscr{E}_{\mathrm{pot}}(x)}{\mathrm{d}x}\right)_{M \in \mathbf{Q}} = 0$$

Le point M_{eq} d'abscisse x_{eq} est une position d'équilibre stable si et seulement si :

 $\mathscr{E}_{\mathrm{pot}}(x)$ localement *minimale* en x_{eq}

Si
$$\frac{d^2 \mathscr{E}_{pot}(x_{eq})}{dx^2} \neq 0$$
, cette condition correspond à :

$$\frac{\mathrm{d}^2 \mathcal{E}_{\mathrm{pot}}(x)}{\mathrm{d}x^2} x_{\mathrm{eq}} > 0.$$

Équilibres et stabilité

- \rightarrow équilibre stable en x_s
- ightharpoonup équilibre instable en x_i

Profondeur des puits

les équilibres stables (aux points S) définissent des puits de potentiel

Profondeur des puits

- les équilibres stables (aux points S) définissent des puits de potentiel
- la profondeur de chacun des puits est différente

- Puissance et travail d'une force
- Énergies potentielle et mécanique
- 3. Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie

- 1. Puissance et travail d'une force
- Énergies potentielle et mécanique
- Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie
- 4.1 Approximation harmonique
- 4.2 Portrait de phase d'un système conservatif à un degré de liberté

 système conservatif à un degré de liberté, décrit par une énergie potentielle \(\mathcal{E}_{pot}(x) \)

- système conservatif à un degré de liberté, décrit par une énergie potentielle *E*_{pot}(x)
- ▶ possédant une position d'équilibre stable en x_{eq} : $\mathscr{E}_{pot}(x)$ admet un minimum local en x_{eq} : $\left(\frac{\mathrm{d}\mathscr{E}_{pot}}{\mathrm{d}x}\right)_{x_{eq}}$ =0 et

$$\left(\frac{\mathrm{d}^2 \mathcal{E}_{\mathrm{pot}}}{\mathrm{d}x^2}\right)_{x_{\mathrm{eq}}} \ge 0$$

- système conservatif à un degré de liberté, décrit par une énergie potentielle *E*_{pot}(x)
- ▶ possédant une position d'équilibre stable en x_{eq} : $\mathscr{E}_{pot}(x)$ admet un minimum local en x_{eq} : $\left(\frac{\mathrm{d}\mathscr{E}_{pot}}{\mathrm{d}x}\right)_{x_{eq}}$ =0 et

$$\left(\frac{\mathrm{d}^2 \mathcal{E}_{\mathrm{pot}}}{\mathrm{d}x^2}\right)_{x_{\mathrm{eq}}} \ge 0$$

- système conservatif à un degré de liberté, décrit par une énergie potentielle \(\mathcal{E}_{pot}(x) \)
- ▶ possédant une position d'équilibre stable en x_{eq} : $\mathscr{E}_{pot}(x)$ admet un minimum local en x_{eq} : $\left(\frac{\mathrm{d}\mathscr{E}_{pot}}{\mathrm{d}x}\right)_{x_{eq}}$ =0 et

$$\left(\frac{\mathrm{d}^2\mathscr{E}_{\mathrm{pot}}}{\mathrm{d}x^2}\right)_{x_{\mathrm{eq}}} \geqslant 0$$

 $\mathcal{E}_{pot}(x)$ $DL_{xeq}^{2}(x)$ x

Si $\left(\frac{d^2\mathscr{E}_{pot}}{dt^2}\right)_{x \in G}$ >0, DL au terme non nul d'ordre le plus bas :

- système conservatif à un degré de liberté, décrit par une énergie potentielle &pot(x)
- ▶ possédant une position d'équilibre stable en x_{eq} : $\mathscr{E}_{pot}(x)$ admet un minimum local en x_{eq} : $\left(\frac{d\mathscr{E}_{pot}}{dx}\right)_{x_{eq}}$ =0 et

$$\left(\frac{\mathrm{d}^2 \mathcal{E}_{\mathrm{pot}}}{\mathrm{d}x^2}\right)_{x_{\mathrm{eq}}} \geqslant 0$$

Si $\left(\frac{d^2\mathscr{E}_{pot}}{dx^2}\right)_{r,a}$ >0, DL au terme non nul d'ordre le plus bas :

$$\mathcal{E}_{\text{pot}}(x) \simeq \mathcal{E}_{\text{pot}}(x_{\text{eq}}) + 0 \times (x - x_{\text{eq}}) + \frac{1}{2} \left(\frac{\mathrm{d}^2 \mathcal{E}_{\text{pot}}}{\mathrm{d} x^2} \right)_{x_{\text{eq}}} (x - x_{\text{eq}})^2$$

Approximation harmonique

Voisinage d'une position d'équilibre stable

Le mouvement d'un point matériel de masse m au voisinage d'une position d'équilibre stable en $x = x_{eq}$ est harmonique de pulsation

$$\omega_0 = \sqrt{\left(\frac{\mathrm{d}^2 \mathscr{E}_{\mathsf{pot}}}{\mathrm{d} x^2}\right)_{x_{\mathsf{eq}}} / m}.$$

L'amplitude des oscillations, notée X_m , et le maximum du module de la vitesse atteinte, noté v_m vérifient : $\omega_0 X_m = v_m$.

La trajectoire dans l'espace des phases est une ellipse parcourue dans le sens horaire.

Approximation harmonique

Oscillations anharmoniques

si
$$\left(\frac{d^2\mathscr{E}_{pot}}{dx^2}\right)_{x_{eq}}=0$$
, on pousse le DL au terme non nul d'ordre (>2) le plus bas

Oscillations anharmoniques

si
$$\left(\frac{d^2\mathscr{E}_{pot}}{dx^2}\right)_{x_{eq}} = 0$$
, on pousse le DL au terme non nul d'ordre (>2) le

plus bas

stable si :

l'ordre n du plus bas terme non nul est pair

$$\qquad \left(\frac{\mathrm{d}^n \mathcal{E}_{\mathsf{pot}}}{\mathrm{d} x^n} \right)_{x_{\mathsf{eq}}} > 0$$

Oscillations anharmoniques

si
$$\left(\frac{d^2\mathcal{E}_{pot}}{dx^2}\right)_{x_{eq}} = 0$$
, on pousse le DL au terme non nul d'ordre (>2) le

plus bas

stable si:

- ► l'ordre n du plus bas terme non nul est pair
- $\qquad \left(\frac{\mathrm{d}^n \mathscr{E}_{\mathsf{pot}}}{\mathrm{d} x^n} \right)_{x_{\mathsf{eq}}} > 0$

oscillations anharmoniques, en particulier non isochrones

- 1. Puissance et travail d'une force
- 2. Énergies potentielle et mécanique
- Analyse qualitative d'un système conservatif à un degré de liberté
- 4. États liés de faible énergie
- 4.1 Approximation harmonique
- 4.2 Portrait de phase d'un système conservatif à un degré de liberté

$$\dot{x} = \pm \sqrt{\frac{2}{m} (\mathcal{E}_{m0} - \mathcal{E}_{pot}(x))}$$

- État lié : tourne autour des positions d'équilibre stable (x_s) (ie minimums d' \mathcal{E}_{pot}) dans le sens horaire. Trajectoire fermée, périodique $(\mathcal{E}_{mC}, \mathcal{E}_{mD})$
- ► État de diffusion : pas périodique (ℰ_{mR})
- Position d'équilibre instable (x_i) : point col où se rejoignent plusieurs trajectoires

$$\dot{x} = \pm \sqrt{\frac{2}{m} (\mathcal{E}_{m0} - \mathcal{E}_{pot}(x))}$$

- État lié : tourne autour des positions d'équilibre stable (x_s) (ie minimums d' \mathcal{E}_{pot}) dans le sens horaire. Trajectoire fermée, périodique $(\mathcal{E}_{mC}, \mathcal{E}_{mD})$
- ► État de diffusion : pas périodique (ℰ_{mB})
- Position d'équilibre instable
 (x_i) : point col où se rejoignent plusieurs trajectoires

$$\dot{x} = \pm \sqrt{\frac{2}{m} (\mathcal{E}_{m0} - \mathcal{E}_{pot}(x))}$$

- État lié : tourne autour des positions d'équilibre stable (x_s) (ie minimums d' \mathcal{E}_{pot}) dans le sens horaire. Trajectoire fermée, périodique $(\mathcal{E}_{mC}, \mathcal{E}_{mD})$
- État de diffusion : pas périodique (*E*_{mB})
- Position d'équilibre instable (x_i) : point col où se rejoignent plusieurs trajectoires

$$\dot{x} = \pm \sqrt{\frac{2}{m} (\mathcal{E}_{m0} - \mathcal{E}_{pot}(x))}$$

- État lié : tourne autour des positions d'équilibre stable (x_s) (ie minimums d' \mathcal{E}_{pot}) dans le sens horaire. Trajectoire fermée, périodique $(\mathcal{E}_{mC}, \mathcal{E}_{mD})$
- État de diffusion : pas périodique (\mathscr{E}_{mB})
- Position d'équilibre instable
 (x_i) : point col où se rejoignent plusieurs trajectoires

$$\dot{x} = \pm \sqrt{\frac{2}{m} (\mathcal{E}_{m0} - \mathcal{E}_{pot}(x))}$$

- État lié : tourne autour des positions d'équilibre stable (x_s) (ie minimums d' \mathscr{E}_{pot}) dans le sens horaire. Trajectoire fermée, périodique $(\mathscr{E}_{mC}, \mathscr{E}_{mD})$
- État de diffusion : pas périodique (\mathcal{E}_{mB})
- Position d'équilibre instable
 (x_i) : point col où se rejoignent
 plusieurs trajectoires

Puissance et travail d'une force Énergies potentielle et mécanique Analyse qualitative d'un système conservatif à un degré de liberté États liés de faible énergie

Portrait de phase d'un système conservatif à un degré de liberté

La symétrie traduit la réversibilité du mouvement.

Définition (Système réversible)

Un système mécanique est dit *réversible* si pour tout mouvement $(t, \overrightarrow{OM}(t), \overrightarrow{v}(t))$ vérifiant les équations du mouvement, le mouvement dit *renversé*,

- ▶ paramétré par t' tel que $\frac{dt'}{dt} = -1$,
- avec $(\overrightarrow{OM}_{\mathsf{renv}}(t') = \overrightarrow{OM}(t), \overrightarrow{v}_{\mathsf{renv}}(t') = -\overrightarrow{v}(t))$

vérifie également les équations du mouvement.

La symétrie traduit la réversibilité du mouvement.

Définition (Système réversible)

Un système mécanique est dit *réversible* si pour tout mouvement $(t, \overrightarrow{OM}(t), \overrightarrow{v}(t))$ vérifiant les équations du mouvement, le mouvement dit *renversé*,

- ▶ paramétré par t' tel que $\frac{dt'}{dt} = -1$,
- avec $(\overrightarrow{OM}_{\mathsf{renv}}(t') = \overrightarrow{OM}(t), \overrightarrow{v}_{\mathsf{renv}}(t') = -\overrightarrow{v}(t))$

vérifie également les équations du mouvement.

Théorème

Un système conservatif est réversible.

▶ Le mouvement renversé correspond au « film passé à l'envers »

Théorème

Un système conservatif est réversible.

- Le mouvement renversé correspond au « film passé à l'envers »
- Les frottements entraînent l'irréversibilité.

Indispensable

- travail et puissance : définition, théorèmes
- poids et ressort : énergies potentielles
- définition du gradient, cas des forces conservatives
- exemples fondamentaux d'énergie mécanique
- espace des phases : points de rebroussement, barrières et puits de potentiel.