CSE100: Design and Analysis of Algorithms Lecture 22 – More Dynamic Programming (cont)

Apr 14th 2022

Longest Common Subsequences, Knapsack, and (if time) Independent Sets in Trees

Last Lecture (review) Programming!

- Dynamic programming is an algorithm design paradigm.
- Basic idea:
 - Identify optimal sub-structure
 - Optimum to the big problem is built out of optima of small sub-problems
 - Take advantage of overlapping sub-problems
 - Only solve each sub-problem once, then use it again and again
 - Keep track of the solutions to sub-problems in a table as you build to the final solution.

Today

- Examples of dynamic programming:
 - 1. Longest common subsequence
 - 2. Knapsack problem
 - Two versions!
 - 3. Independent sets in trees
 - If we have time...
 - (If not the slides will be there as a reference)

Longest Common Subsequence (review)

- Subsequence:
 - BDFH is a subsequence of ABCDEFGH
- If X and Y are sequences, a **common subsequence** is a sequence which is a subsequence of both.
 - BDFH is a common subsequence of ABCDEFGH and of ABDFGHI
- A longest common subsequence...
 - ...is a common subsequence that is longest.
 - The longest common subsequence of ABCDEFGH and ABDFGHI is ABDFGH.

Recipe for applying Dynamic Programming (review)

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Step 1: Optimal substructure (review)

Prefixes:

Notation: denote this prefix **ACGC** by Y₄

Our sub-problems will be finding LCS's of prefixes to X and Y.

Let C[i, j] = length_of_LCS(X_i, Y_i) **Examples:**

Recipe for applying Dynamic Programming

- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Goal

 Write C[i,j] in terms of the solutions to smaller subproblems

Two cases

Case 1:
$$X_i[i] = Yj[j]$$

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let C[i, j] = length_of_LCS(X_i, Y_i)

- Then C[i, j] = 1 + C[i-1, j-1].
- because $LCS(X_i, Y_i) = LCS(X_{i-1}, Y_{i-1})$ followed by A

CSE 100 L22 9

Two cases

Case 2: $X_i[i] \neq Y_i[j]$

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let C[i, j] = length_of_LCS(X_i, Y_j)

- Then $C[i, j] = max\{C[i-1, j], C[i, j-1]\}.$
 - either $LCS(X_i, Y_i) = LCS(X_{i-1}, Y_i)$ and \top is not involved,
 - or $LCS(X_i, Y_i) = LCS(X_i, Y_{i-1})$ and A is not involved,
 - (maybe both are not involved, that's covered by the "or").

Recursive formulation of the optimal solution

• $C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } Xi[i] = Yj[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } Xi[i] \neq Yj[j] \text{ and } i,j > 0 \end{cases}$

X_i A C G G A Y_i A C G C T T A

CSE 100 L22 11

Case 1

Case 2

χ_iACGGTT

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.

- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

LCS DP

- LCS(X, Y):
 - C[i,0] = C[0,j] = 0 for all i = 0,...,m, j=0,...n.
 - **For** i = 1,...,m and j = 1,...,n:
 - If $X_i[i] = Y_j[j]$:
 - C[i,j] = C[i-1,j-1] + 1
 - Else:
 - C[i,j] = max{ C[i,j-1], C[i-1,j] }
 - Return C[m,n]

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } Xi[i] = Yj[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } Xi[i] \neq Yj[j] \text{ and } i,j > 0 \end{cases}$$

Running time: O(nm)

0	0	0	0	0
0				
0				
0				
0				
0				

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } Xi[i] = Yj[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } Xi[i] \neq Yj[j] \text{ and } i,j > 0 \end{cases}$$

CSE 100 L22 14

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

So the LCS of X and Y has length 3.

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } Xi[i] = Yj[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } Xi[i] \neq Yj[j] \text{ and } i,j > 0 \end{cases}$$

CSE 100 L22 15

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

 $C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$

X A C G G A
Y A C T G

	Y		
Α	С	Т	G

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

$$\begin{array}{l}
\mathbf{3} \\
C[i,j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\
\max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0
\end{array}$$

• Once we've filled this in, we can work backwards.

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

 Once we've filled this in, we can work backwards.

That 3 must have come from the 3 above it.

Trom the 3 above it.
$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

This 3 came from that 2 – we found a match!

$$C[i,j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\
\max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0
\end{cases}$$

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

That 2 may as well have come from this other 2.

3
$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

CSE 100 L22 22

Α

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

G

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

3
$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

CSE 100 L22 24

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

This is the LCS!

3
$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

Finding an LCS

- See CLRS for pseudocode
- Takes time O(mn) to fill the table
- Takes time O(n + m) on top of that to recover the LCS
 - We walk up and left in an n-by-m array
 - We can only do that for n + m steps.
- Altogether, we can find LCS(X,Y) in time O(mn).

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

This pseudocode actually isn't so bad

- If we are only interested in the length of the LCS we can do a bit better on space:
 - Since we go across the table one-row-at-a-time, we can only keep two rows if we want.
- If we want to recover the LCS, we need to keep the whole table.
- Can we do better than O(mn) time?
 - A bit better.
 - By a log factor or so.
 - But doing much better (polynomially better) is an open problem!
 - If you can do it let us know:D

What have we learned?

We can find LCS(X,Y) in time O(nm)

- We went through the steps of coming up with a dynamic programming algorithm.
 - We kept a 2-dimensional table, breaking down the problem by decrementing the length of X and Y.

Example 2: Knapsack Problem

We have n items with weights and values:

 Item:
 <th

- And we have a knapsack:
 - it can only carry so much weight:

Capacity: 10

Capacity: 10

Item:

Value:

Weight:

4

3

11

35

20 8

14

13

Unbounded Knapsack:

- Suppose I have infinite copies of all of the items.
- What's the most valuable way to fill the knapsack?

Total weight: 10 Total value: 42

• 0/1 Knapsack:

- Suppose I have only one copy of each item.
- What's the most valuable way to fill the knapsack?

Total weight: 9
Total value: 35

Some notation

Item:

Weight:

 W_1

 W_2

 W_3

• • •

 W_r

Value:

 V_1

 V_2

 V_3

V

Capacity: W

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Optimal substructure

- Sub-problems:
 - Unbounded Knapsack with a smaller knapsack.

K[x] = value you can fit in a knapsack of capacity x

First solve the problem for small knapsacks

Then larger knapsacks

Then larger knapsacks

Optimal substructure

Suppose this is an optimal solution for capacity x:

Say that the optimal solution contains at least one copy of some item labelled i.

Capacity x Value V

Then this is optimal for capacity x - w_i:

Why?

Capacity x – w_i Value V - v_i

Optimal substructure

Suppose this is an optimal solution for capacity x:

Say that the optimal solution contains at least one copy of item i.

Capacity x Value V

Then this is optimal for capacity x - w_i:

If I could do better than the second solution, then adding a turtle to that improvement would improve the first solution.

Capacity $x - w_i$ Value V - v_i

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Recursive relationship

• Let K[x] be the optimal value for capacity x.

$$K[x] = \max_i \left\{ \begin{array}{c} + \\ \downarrow \downarrow \downarrow \\ \end{array} \right\}$$
 The maximum is over all i so that $w_i \leq x$ Optimal way to fill the smaller knapsack

$$K[x] = max_i \{ K[x - w_i] + v_i \}$$

- (And K[x] = 0 if the maximum is empty).
 - That is, if there are no i so that $w_i \leq x$

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

CSE 100 L22 39

Let's write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - return K[W]

Running time: O(nW)

Why does this work?
Because our recursive relationship makes sense.

Can we do better?

- Writing down W takes log(W) bits.
- Writing down all n weights takes at most nlog(W) bits.
- Input size: nlog(W).
 - Maybe we could have an algorithm that runs in time O(nlog(W)) instead of O(nW)?
 - Or even O(n¹⁰⁰⁰⁰⁰⁰ log¹⁰⁰⁰⁰⁰⁰(W))?

- Open problem!
 - (But probably the answer is no...otherwise P = NP)

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Let's write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - return K[W]

Let's write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS[0] = Ø

- for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x − w_i] ∪ { item i }

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS[0] = Ø
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

Item:
Weight:

1
2
3

Value: 1

4

Capacity: 4

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS $[0] = \emptyset$
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

Item:

Weight: Value:

1

2

(

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS $[0] = \emptyset$
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] \cup { item i }
 - return ITEMS[W]

Item:

Weight:

Value:

1

2

4

Capacity: 4

$$ITEMS[2] = ITEMS[0] +$$

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS $[0] = \emptyset$
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] \cup { item i }
 - return ITEMS[W]

Item:
Weight:

1
2
3

Value: 1 4

Capacity: 4

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS $[0] = \emptyset$
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

Item:
Weight:

1
2
3

Value: 1 4 6

Capacity: 4

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS[0] = Ø
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }

return ITEMS[W]

Weight: 2 3

Value: 1 4 6

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - $ITEMS[0] = \emptyset$
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:

Weight:

Value:

- $K[x] = \max\{K[x], K[x w_i] + v_i\}$
- If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
- return ITEMS[W]

Item:

4

$$ITEMS[4] = ITEMS[2] +$$

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS $[0] = \emptyset$
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

Item:
Weight:

1
2
3

Value: 1 4 6

Capacity: 4

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable (Pass)

What have we learned?

- We can solve unbounded knapsack in time O(nW).
 - If there are n items and our knapsack has capacity W.

- We again went through the steps to create DP solution:
 - We kept a one-dimensional table, creating smaller problems by making the knapsack smaller.

Capacity: 10

Weight:

Item:

6

2

4

3

11

Value:

20

8

14

13

35

Unbounded Knapsack:

- Suppose I have infinite copies of all of the items.
- What's the most valuable way to fill the knapsack?

Total weight: 10 Total value: 42

0/1 Knapsack:

- Suppose I have only one copy of each item.
- What's the most valuable way to fill the knapsack?

Total weight: 9 Total value: 35

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Optimal substructure: try 1

- Sub-problems:
 - Unbounded Knapsack with a smaller knapsack.

First solve the problem for small knapsacks

Then larger knapsacks

Then larger knapsacks

CSE 100 L22 57

This won't quite work...

- We are only allowed one copy of each item.
- The sub-problem needs to "know" what items we've used and what we haven't.

Optimal substructure: try 2

• Sub-problems:

• 0/1 Knapsack with fewer items.

First solve the problem with few items

We'll still increase the size of the knapsacks.

(We'll keep a two-dimensional table).

Our sub-problems:

Indexed by x and j

First j items

Capacity x

K[x,j] = optimal solution for a knapsack of size x using only the first j items.

Relationship between sub-problems

• Want to write K[x,j] in terms of smaller sub-problems.

Capacity x

K[x,j] = optimal solution for a knapsack of size x using only the first j items.

- Case 1: Optimal solution for j items does not use item j.
- Case 2: Optimal solution for j items does use item j.

First j items

Capacity x

K[x,j] = optimal solution for a knapsack of size x using only the first j items.

• Case 1: Optimal solution for j items does not use item j.

What lower-indexed problem should we solve to solve this problem?

• Case 1: Optimal solution for j items does not use item j.

• Then this is an optimal solution for j-1 items:

• Case 2: Optimal solution for j items uses item j.

Capacity x Value V

Use only the first j items

What lower-indexed problem should we solve to solve this problem?

• Case 2: Optimal solution for j items uses item j.

• Then this is an optimal solution for j-1 items and a

smaller knapsack:

Capacity $x - w_j$ Value $V - v_j$ Use only the first j-1 items.

Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Recursive relationship

- Let K[x,j] be the optimal value for:
 - capacity x,
 - with j items.

$$K[x,j] = \max\{K[x, j-1], K[x - w_{j, j-1}] + v_{j}\}$$

• (And K[x,0] = 0 and K[0,j] = 0).

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

CSE 100 L22 69

Next lecture

Greedy algorithms!

Gordon Geckko in Wall Street (1987)

