Elliptic Curve Cryptography

an introduction which is entirely too short

```
by Giacomo Fenzi
                  (ETH Zurich)
on 6 January 2022
```

Motivation

'It is possible to write endlessly on elliptic curves. (This is not a threat.)' Serge Lang

- Elliptic curves are everywhere in cryptography
- Coolest post quantum cryptography proposal
- Maths is banging

- Historical Notes
- Mathematical Background
- Addition on Elliptic Curves
- Discrete Logarithm and Diffie Hellman
- **Pairings**
- Isogenies

» Diophantine Equations

Historically originated in the context of solving Diophantine equations such as

$$X^n + Y^n = Z^n, X, Y, Z \in \mathbb{Z}$$

or equivalently

$$x^n + y^n = 1, \ x, y \in \mathbb{Q}$$

Often very hard, and in general undecidable¹! Let us see what we can do...

¹In fact, already undecidable with 11 integers variables!

One variable

$$a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a = 0$$

Quite easy! We can show that:

Let $\frac{p}{a} \in \mathbb{Q}$ be a solution of the above equation. Then q divides a_n and p divides a_0 .

Check the finite list of candidates.

Alternatively, solve numerically and find candidate of form $\frac{b}{dx}$

Linear and Quadratic

$$ax + by = c$$

Has infinitely many rational solution. If gcd(a, b) does not divide c, then no integers solutions. Else, infinitely many.

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

These are rational points on a conic.

- Given a rational point, all of them can be found geometrically
- Hasse principle allows us to test if a rational point exists

» Cubics

What about:

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j = 0$$
?

This is the general form of an elliptic curve! We have that

Theorem (Mordell

If the curve is non singular, and it has a rational point then the group of rational points is finitely generated

But no equivalent of Hasse principle!

Elliptic Curves \neq Ellipse

» Fields

Definition

A field $\ensuremath{\mathbb{F}}$ is set together with two operations $+,\cdot$ such that

- * \mathbb{F} is an abelian group under + with identity 0
- * $\mathbb{F} \{0\}$ is an abelian group under multiplication with identity 1.
- * For every $a,b,c\in\mathbb{F}$ we have that a(b+c)=ab+ac
- $* 0 \neq 1$

Informally, we can add, subtract, multiply and divide non zero elements.

Finite Fields

We are mostly interested in finite fields. We have that:

For every prime p, and every $n \in \mathbb{Z}^+$ there is an unique field of size p^n , which we denote by either $\mathbb{GF}(p^n)$ or \mathbb{F}_{p^n}

If n=1, then $\mathbb{F}_p=\mathbb{Z}_p$, if not we can write them as

$$\mathbb{F}_{p^n} = \frac{\mathbb{F}_p[X]}{(f(x))}$$

where f(x) is an irreducible polynomial of degree n.

Characteristic

For any field, $\operatorname{char}(\mathbb{F})$ is the least integer² ℓ such that

$$\underbrace{1+\ldots 1}_{\ell \text{ times}} = 0$$

We have that $\operatorname{char}(\mathbb{F}_{p^n}) = p$.

 $^{^{2}\}text{Or} \infty$ if no such integer exists

Field Extensions

Let k, K be two fields. If there is an homomorphism $k \to K$, we can identify k with a subfield of K. In that case, K is a **field extension** of k which we denote by $k \subseteq K$.

Given any field K we can construct the algebraic closure K which is the smallest algebraically closed extension containing K. Some examples:

$$* \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$

$$* \mathbb{F}_p \subseteq \mathbb{F}_{p^2} \subseteq \mathbb{F}_{p^3} \cdots \subseteq \overline{\mathbb{F}}_p$$

Weierstrass Form

$$ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + ex^{2} + fxy + gy^{2} + hx + iy + j = 0$$

$$\downarrow$$

$$y^{2} + axy + by = x^{3} + cx^{2} + dx + e$$

$$\downarrow \operatorname{char}(\mathbb{F}) \neq 2, 3$$

$$y^{2} = x^{3} + ax + b$$

Much easier to manage!

Elliptic Curves

Definition

Let $\mathbb F$ be a field. An elliptic curve E defined over a field $\mathbb F$ (denoted by $E/\mathbb F)$ is given by

$$E: y^2 = x^3 + ax + b$$

for $a,b\in\mathbb{F}$. For any extension $\mathbb{F}\subseteq\mathbb{E}$ we define

$$E(\mathbb{E}) = \left\{ (x,y) \in \mathbb{E} \times \mathbb{E} \mid y^2 = x^3 + ax + b \right\} \cup \{\infty\}$$

Mathematicians are often interested with $E(\mathbb{Q}) \subseteq E(\mathbb{R}) \subseteq E(\mathbb{C})$ but we mostly consider the finite case.

» Some elliptic curves (In $E(\mathbb{R})$ since they look better...)

TODO: One singular with cusp, one node and three non singular

Fundamental Quantities

Let $E: u^2 = x^3 + ax + b$ be an elliptic curve.

The **discriminant** of E is

$$\Delta = -16(4a^3 + 27b^2)$$

A curve is **singular** if $\Delta = 0$.

If E is non-singular the j-invariant of E is

$$j(E) = -1728 \frac{(4A)^3}{\Delta}$$

Let E, E' be two elliptic curves over K. Then $E \cong E'$ if and only if j(E) = j(E').

Elliptic Curves 00000000

» The Group Law

TODO: Picture group law

» The Group Law: Formulae

Let $E:y^2=x^3+ax+b$ be an elliptic curve. Let $P_i=(x_i,y_i)\in E(K).$ Define

$$-P_0 = (x_0, -y_0)$$

Now, for $P_1 + P_2$:

- * If $x_1=x_2$ and $y_1=-y_2$, then $P_1+P_2=\infty$
- * If $P_1=\infty$ then $P_1+P_2=P_2$, and viceversa.
- * Let $x_3 = \lambda^2 x_1 x_2$, $y_3 = \lambda(x_1 x_3) y_1$ where λ is defined as:

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & x_1 \neq x_2\\ \frac{3x_1^2 + a}{2y_1}, & \text{otherwise} \end{cases}$$

This makes E into an abelian group with identity ∞

Scalar multiplication

For $n > 0, P \in E$ we write $[n]P = \underbrace{P + \cdots + P}$. We then extend

n times the notation by letting $[0]P = \infty$ and [-n]P = [n](-P).

Note that we can compute [n]P in $\Theta(\log n)$ group operations using square and multiply.

For $m \in \mathbb{Z}$ we can define a map $[m]: E \to E$ accordingly, and write:

$$E[m] \coloneqq \ker[m]$$

to be the m-torsion subgroup of E.

Number of Points on a curve

Heuristically, we expect $\approx q+1$ points

Let E be an elliptic curve defined over \mathbb{F}_a .

$$|\#E(\mathbb{F}_q) - q - 1| \le 2\sqrt{q}$$

Exact value can be efficiently found using Schoof's algorithm in $O((\log q)^8)$.

Discrete Logarithm

Cryptography relies on hardness assumptions.

Definition

Let $\mathrm{Gen}(1^\lambda)$ be a p.p.t. algorithm that returns a group description $\mathbb{G}=(+,P,q)$, where $\mathbb{G}=\langle P\rangle$ and $q=\#\mathbb{G}$. For an attacker \mathcal{A} , define

$$\mathsf{Adv}^{\mathsf{dlp}}_{\mathcal{A}}(\lambda) = \Pr\left[\mathcal{A}\left(1^{\lambda}, \mathbb{G}, [k]P\right) = k \, \middle| \, \substack{\mathbb{G} \leftarrow \$ \, \mathsf{Gen}(1^{\lambda}) \\ k \leftarrow \$ \, \mathbb{Z}_q} \right]$$

We say that the **discrete logarithm assumption** hold with respect to Gen if, for every p.p.t. attacker \mathcal{A} , $\mathsf{Adv}^{\mathrm{dlp}}_{\mathcal{A}}(\cdot)$ is negligible.

Related Assumptions

In practice, we make stronger assumptions, such as Computational Diffie Hellman and Decisional Diffie Hellman.

- * CHD: From [x]P, [y]P compute [xy]P
- * DDH: Distinguish (P, [x]P, [y]P, [xy]P) from (P, [x]P, [y]P, [z]P)

In fact, pairings make DDH easy on elliptic curves!

$$DDH \le_R CDH \le_R {}^3DLP$$

Representation matters! $\mathbb{Z}_{p-1} \cong \mathbb{Z}_p^*$ as groups but the discrete logarithm is trivial in the former, assumed hard in the latter.

³In fact equivalent

Why elliptic curves?

Assumption	Group	Best Algorithm	pprox Complexity
RSA	\mathbb{Z}_N	Number Field Sieve	$\exp(c^3\sqrt{\log N})$
DLP	\mathbb{F}_p^*	Number Field Sieve	$\exp(c^3\sqrt{\log p})$
DLP	$E(\mathbf{F}_p)$	Pollard Rho	\sqrt{p}

Best known attacks against ECC are generic attacks

- * Shorter keysizes ($\approx 256 \text{ vs}^4 3072 \text{ bits}$)
- * Faster computation⁵

⁴For 128 bits of security

⁵against other DLP schemes and private RSA ops

EC Diffie Hellman Key Exchange

Let E be an elliptic curve over \mathbb{F}_q . Let p be a large prime dividing $\#E(\mathbb{F}_q)$ and P a point of order p.

Diffie Hellman

Alice	Bob	
$x \leftarrow \mathbb{Z}_q$	$y \leftarrow \mathbb{Z}_q$	
$Q_A = [x]P$	$Q_B = [y]P$	
Q	$\xrightarrow{P_A}$	
⟨C _e) _B	
$K = [x]Q_B$	$K = [y]Q_A$	

Correctness follows since:

$$K = [x]Q_B = [x][y]P = [xy]P = [y][x]P = [y]Q_A = K$$

Easy Elliptic Curves

DLP is not equally hard on every curve!

- * Singular curves over \mathbb{F}_p . Equivalent to DLP in \mathbb{F}_p^* or \mathbb{F}_p^+
- Curves and subgroups with small embedding degree. E.g. supersingular and anomalous curves
- Curves that admit pairings to small finite fields.
- * Curves defined over \mathbb{F}_{n^k} for k with small factors. GHS Method, Diem's Analysis.

⁶Or in some small extension

Pollard Rho

Collision search for $f: S \to S$. Let $x_0 \in S$, $x_n = f(x_{n-1})$.

0000000

TODO: Insert image

Expected $\sqrt{\pi \# S/2}$ calls to f, constant memory.

» Pollard Rho

Let G be a group of order N. We want to find k s.t. [k]P=Q. Split $G=A\sqcup B\sqcup C$ with $\#A\approx \#B\approx \#C$. Define

$$f(X) = \begin{cases} P + X, & X \in A \\ [2]X, & X \in B \\ Q + X, & X \in C \end{cases}$$

Let $X_0=\infty$, then $X_i=[\alpha_i]P+[\beta_i]Q$ and we can track α_i,β_i . A collision $X_j=X_{j+\ell}$ with $\gcd(\beta_{j+\ell}-\beta_j,N)=1$ allows us to solve the DLP with

$$k \equiv \frac{\alpha_j - \alpha_{j+\ell}}{\beta_{j+\ell} - \beta_j} \pmod{N}$$

» Pairings

Definition

Let \mathbb{G}, \mathbb{G}_T be two groups. A **pairing** is a map $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ that is:

* Non degenerate:

$$e(S,T) = 1 \ \forall S \in \mathbb{G} \implies T = 0_{\mathbb{G}}$$

* Bilinear:

$$e(S_1 + S_2, T) = e(S_1, T)e(S_2, T)$$

$$e(S, T_1 + T_2) = e(S, T_1)e(S_2, T_2)$$

* Alternating:

$$e(T,T)=1$$

» Weil Pairing

Every elliptic curve ${\cal E}$ over ${\cal K}$ admits an efficiently computable pairing

$$e_m: E[m] \times E[m] \to \mu_m$$

where μ_m is the group of m-th root of unity. In degenerate on cyclic subgroups of E[m], so use modified Weil pairing

$$\langle \cdot, \cdot \rangle : E[m] \times E[m] \to \mu_m$$

 $\langle P, Q \rangle = e_m(S, \phi(Q))$

For $\phi: E \to E$ a distorsion map⁷

⁷If it exists

BLS Signatures

Let \mathbb{G}, \mathbb{G}_T be cyclic groups of prime order p. Let P be a generator of \mathbb{G} , and e a non degenerate pairing. Also, let $H:\{0,1\}^*\to\mathbb{G}$

$$\frac{\operatorname{Gen}(1^{\lambda})}{x \leftarrow \$ \mathbb{Z}_{p}} \frac{\operatorname{Sign}(sk, m)}{Q \leftarrow H(m)}$$

$$pk \coloneqq [x]P \qquad \sigma \leftarrow [x]Q$$

$$sk \coloneqq x \qquad \text{return } \sigma$$

$$\operatorname{return}(pk, sk)$$

$$\operatorname{Verify}(pk, m, \sigma)$$

$$\operatorname{return} e(\sigma, P) =_{?} e(H(m), [x]P)$$

Correctness by:

$$e(\sigma, P) = e([x]Q, P) = e(Q, P)^x = e(Q, [x]P) = e(H(m), [x]P)$$

Discrete logarithms, RSA, and pairings broken by Shor's algorithm

Elliptic Curves 0000000000

Discrete logarithms, RSA, and pairings broken by Shor's algorithm

Elliptic Curves 000000000

* Can we recover?

Discrete logarithms, RSA, and pairings broken by Shor's algorithm

000000000

- * Can we recover?
- * Yes, lattices, codes, multinear maps...

Discrete logarithms, RSA, and pairings broken by Shor's algorithm

000000000

- * Can we recover?
- * Yes, lattices, codes, multinear maps...
- Isogenies!

» Isogenies

"Nice maps" between elliptic curves.

Definition

Let E_1, E_2 be elliptic curves. An **isogeny** is a morphism

$$\phi: E_1 \to E_2$$

with $\phi(\infty) = \infty$. If $\phi(E_1) \neq \{\infty\}$, E_1 is **isogenous** to E_2 .

For example, the curves $y^2=x^3+x$ and $y^2=x^3-3x+3$ are isogenous over \mathbb{F}_{71} via the isogeny

$$(x,y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, y \cdot \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3}\right)$$

Properties of isogenies

- Each isogeny is also a group homomorphism
- * The map $[m]: E \to E$ is an isogeny
- * You can compose isogenies
- Each isogeny has a degree, and it is multiplicative $deg(\phi \circ \psi) = deg(\phi) deg(\psi)$
- * Each isogeny $\phi: E_1 \to E_2$ has a unique dual $\hat{\phi}: E_2 \to E_1$ such that

$$\phi \circ \hat{\phi} = [\deg(\phi)]$$

* An isogeny between two Weierstrass curves has the form

$$(x,y) \mapsto \left(\frac{f}{h^2}(x), y \cdot \frac{g}{h^3}(x)\right)$$

Separable and Inseparable Isogenies

Let $E/k: y^2 = x^3 + ax + b$, with char(k) = p. Define $E^{(p^r)}: u^2 = x^3 + a^{p^r}x + b^{p^r}$. The map:

$$\pi: E \to E^{(p^r)}, (x, y) \mapsto \left(x^{p^r}, y^{p^r}\right)$$

is the (p^r) -Frobenius isogeny. Note if $k = \mathbb{F}_{p^r}$ then $E^{(p^r)} = E$

If an isogeny factors trough a Frobenius isogeny it is inseparable. We are mostly concerned with the separable case.

Kernel and Velu

There is a one to one correspondence between finite subgroups of elliptic curves and separable isogenies from that curve, up to post-compostion with isomorphisms

kernels ←→ isogenies

Let E/k, with k a finite field. For any subgroup $H \leq E$ we can find an isogeny with kernel H in $\Theta(\#H)$ using Velu's formulas. We denote the target of that isogeny by E/H

Computing large degree isogenies

For crypto, we want to compute isogeny of large degree i.e. with large kernels. Velu's formulas are too slow.

» Isogeny Problems

It is easy to find out if two curves are isogenous

Theorem

Two curves E_1, E_2 over a finite field k are isogenous over k if and only if $\#E_1(k) = \#E_2(k)$.

Finding the isogeny is dramatically harder

Resources

- * J.H. Silverman, The Arithmetic of Elliptic Curves
- J.H. Silverman, J.T. Tate, Rational Points on Elliptic Curves
- D.A. Cox, Primes of the form $x^2 + ny^2$
- * L. Panny, notes: [intro] [isogenies problems]