DS n°3 : Fiche de calculs

	Durée : 60 m	inutes, calculatrices et documents inte	rdits	
Nom et prénom :			Note:	
Porter d	lirectement l	les réponses sur la feuille, sans	justification.	,
Calculs d'intégra	ales et de p	rimitives		
Calculer les intégrale	es suivantes.			
$\int_0^{\pi/2}$	$\frac{\sin(x)}{\cos^4(x)} \mathrm{d}x =$			(1)
$\int_0^1 (2x^2 - x +$	$-1)e^{2x+1} dx =$			(2)
$\int_0^{1/2} A$	$\arcsin(x) \mathrm{d}x =$			(3)
$\int_0^1 \frac{1}{3\epsilon}$	$\frac{1}{e^{-x} + e^x} \mathrm{d}x =$			(4)
Équations différe	entielles			
On considère l'équat homogène associée à		le $(\mathscr{E}): y' + \operatorname{th}(x)y = x$. L'ensemble	des solutions de	e l'équation
				(5)
et une solution parti	culière de (\mathcal{E})	est		
				(6)
L'unique solution de	(\mathscr{E}) vérifiant y	y(1) = 0 est		
				(7)

(8)

et une solution particulière de (\mathcal{F}) est

(9)

Ensembles, applications

Compléter: $\mathscr{P}(\mathscr{P}(\{\varnothing\})) =$ (10)

Soit $f: \mathbb{R} \to \mathbb{R}$. $x \mapsto \frac{1-x^2}{1+x^2}$.

Cette application est-elle injective (répondre «**Oui**» ou «**Non**»)?

(11)

Déterminer l'image de f:

 $\operatorname{Im}(f) = \boxed{ . (12)}$

Déterminer un intervalle I de \mathbb{R} sur lequel f réalise une bijection sur son image (i.e. f réalise une bijection de I sur Im(f)).

 $I = \boxed{ } \tag{13}$

Calcul matriciel

Soit $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$. Avec $B = A - I_3$, calculer: $A^{42} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ (14)

Soit $A = \begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix}$. On admet que cette matrice est inversible, calculer son inverse :

$$A^{-1} = \boxed{ \qquad \qquad }$$

$$-\mathbf{FIN} -$$