1 Class - Introduction to Eigenvalues and Eigenvectors

1.1 Introduction of the course: Linear Algebra III, IV

- instructor: Jan Brezina (Faculty of Arts and Science)
- email: brezina@artsci.kyushu-u.ac.jp
- room: Center zone 3, No. 3601

Aim of class

- basic terminology and computation necessary for other subjects
- essential understanding of concepts explains motivation and applications
- advanced working with abstract structures enhances problem solving skills
 Style of class
- challenge based learning (pre-class preparation, in class peer review, short lecturing time)
- class style merits
 - does not make you sleepy
 - personalized learning
 - deeper understanding through discussion
 - self-reading, self-understanding, self-learning is a whole life process

Class preparation

- students attempt to solve challenges at home before the class
- students learn all the terminology and theory necessary to solve the challenges
- students report their progress through challenge bot by **rating the difficulty** of the challenge they solved/attempted to solve
- failure to provide rating (repeatedly) will influence your final score
- if you are **not coming** to a class (for whatever reason), use the command **class xx no** to let the challenge bot know before 11:00 am of the day of that class (**xx** stands for the number of the class)
- failure to provide attendance (repeatedly) will influence your final score

Class flow

• before entering the classroom (after 11:00 am of the day of the class) use the command class **xx** to check your assigned seat and sit accordingly

	Part	Duration	Content
•	I	$60 \min$	pair work on last weeks challenges
	II	30 min	lecture on a new topic

• Part I

- students discuss solutions of last week challenges in an assigned pair
- pairs will agree on a solution for each challenge
- only after that, pairs will compare their solution with a solution provided by the instructor
- the instructor is available for consultation at all time
- sometimes a short (5 10 min) test happens in the beginning of the class

• Part II

- lecture style overview of the next topic
- lecture provides a guideline on main points to be learned
- we shall combine blackboard and video presentations
- challenges on the next topic are published
- the duration times or class structure might change without prior notice depending on our needs
- links to solutions of tests will be published in C1 LAF Course info and solutions to tests challenge after the class
- if you find any mistake in challenges, solutions, software or have any other feedback please let me know

Class materials

- structurally we will follow Linear Algebra: A Modern Introduction (4th edition) by David Poole
- any source in any language you find and like (online classes like Khan Academy for example)

Grading

- A D is a pass, F is a fail
- depending on a person meet the minimum requirement (D) is enough or want to learn something (A-C) your choice

Course grading

midterm exam	30%
final exam	30%
short tests	30%
attitude	10%

- midterm exam (60 minutes) November 28th
- final exam (90 minutes) February 6th
- short tests

- 6 short tests, an average of 5 best tests count towards the grade
- in the beginning of some classes, 5 10 minutes (don't be late not to lose time)
- if you can't do short tests it indicates you don't follow the class properly and you should work harder (midterm or final won't be much better!)

• active class participation/preparation expected

- math can't be cramped, prepare little by little for each week
- \bullet do as much work as \mathbf{you} need
- reexamination is possible only under very special circumstances
- timely and polite communication with the instructor is a key to solving any issue Consultation
- students are always welcome for consultations
- setup an appointment (personally, by email)
- preferably come in group
- consult with classmates

1.2 Class schedule Room: 1307

3rd October	Thursday	13:00-14:30	1st class	
10th October	Thursday	13:00-14:30	2nd class	
17th October	Thursday	13:00-14:30	3rd class	1st test
31th October	Thursday	13:00-14:30	4th class	
7th November	Thursday	13:00-14:30	5th class	2nd test
14th November	Thursday	13:00-14:30	6th class	
21th November	Thursday	13:00-14:30	7th class	3rd test
28th November	Thursday	13:00-14:30	8th class	Midterm exam
5th December	Thursday	13:00-14:30	9th class	
12th December	Thursday	13:00-14:30	10th class	
19th December	Thursday	13:00-14:30	11th class	4th test
9th January	Thursday	13:00-14:30	12th class	
16th January	Thursday	13:00-14:30	13th class	5th test
23th January	Thursday	13:00-14:30	14th class	
30th January	Thursday	13:00-14:30	15th class	6th test
6th February	Thursday	13:00-14:30	Final exam	

1.3 Class challenges

- C1 Course Info and Solutions to Tests
- C2 Introduction to Eigenvalues and Eigenvectors