Real Analysis Homework Chapter 1. Measure theory

Due Date: 9/23

National Taiwan University, Department of Mathematics R06221012 Yueh-Chou Lee

September 23, 2019

Recall Theorem 1.3:

Every open subset \mathcal{O} of \mathbb{R} can be writen uniquely as a countable union of disjoint open intervals.

Exercise of 9/11:

1. Please prove the uniqueness of Theorem 1.3.

Proof.

Suppose that open subset \mathcal{O} of \mathbb{R} can be writen in two different countable union of disjoint open intervals \mathcal{I} and $\widetilde{\mathcal{I}}$.

Fixed $x \in \mathcal{O}$, and

$$\mathcal{I}_x = \bigcup_{y \in Y} (\mathcal{I}_x \cap \widetilde{\mathcal{I}}_y).$$

Then $\bigcup_{y\in Y} (\mathcal{I}_x \cap \widetilde{\mathcal{I}}_y)$ are disjoint open subsets of \mathcal{I}_x .

But \mathcal{I}_x is connected. So $\mathcal{I}_x \cap \widetilde{\mathcal{I}}_y \neq \emptyset$, and thus $\mathcal{I}_x \cap \widetilde{\mathcal{I}}_y = \mathcal{I}_x$ for some $\widetilde{\mathcal{I}}_y$, that is $\mathcal{I}_x \subseteq \widetilde{\mathcal{I}}_y$.

Then prove similarly that for each $y \in Y$, there must be exactly one x so that $\widetilde{\mathcal{I}}_y \subseteq \mathcal{I}_x$ and $\widetilde{\mathcal{I}}_y \cap \mathcal{I}_{x'} = \emptyset$ if $x' \neq x$.

Recall Definition:

Let $E \in \mathbb{R}^n$ and $\{Q_k\}$ be the covering of E and Q_k be the closed cubes, then we define that

Jordan outer meaure:
$$\sigma(E) = \inf_{N \in \mathbb{N}} \sum_{k=1}^{N} |Q_k|$$

and

Lebesgue outer meaure:
$$m_*(E) = \inf_{\{Q_k\}: \text{ countable set}} \sum_{k=1}^{\infty} |Q_k|$$

Exercise of 9/16:

2. Let R be a rectangle in \mathbb{R}^n . Prove $\sigma(R) = |R| = m_*(R)$.

Proof.

(1) Prove $\sigma(R) = |R|$.

By Example 2 in the text book (p.11), we know that $|R| \leq \sigma(R)$.

To obtain the reverse inequality, consider a grid in \mathbb{R}^d formed by cubes of side length 1/k.

Then, if Q consists of the (finite) collection of all cubes entirely contained in R, and Q' is the (finite) collection of all cubes that intersect R and the complement of R.

Note that $R \subset \bigcup_{i=1, Q \in (Q \cup Q')}^{N} Q_i$. Also, a simple argument yields

$$\sum_{i=1}^{N} |Q_i| \le |R|.$$

Moreover, there are $O(k^{d-1})$ cubes in \mathcal{Q}' and these cubes have volume k^{-d} , so that

$$\sum_{i=1}^{N} |Q| = O(1/k)$$
. Hence

$$\sum_{i=1}^{N} |Q| \le |R| + O(1/k),$$

and letting k tend to infinity yields $\sigma(R) \leq |R|$.

Therefore, $\sigma(R) = |R|$.

(2) Prove $m_*(R) = |R|$.

By Example 2 in the text book (p.11), we know that $|R| \leq m_*(R)$.

To obtain the reverse inequality, consider a grid in \mathbb{R}^d formed by cubes of side length 1/k.

Then, if \mathcal{Q} consists of the (finite) collection of all cubes entirely contained in R, and \mathcal{Q}' is the (finite) collection of all cubes that intersect R and the complement of R.

Note that $R \subset \bigcup_{Q \in (\mathcal{Q} \cup \mathcal{Q}')} Q$. Also, a simple argument yields

$$\sum_{q \in \mathcal{Q}} |Q| \le |R|.$$

Moreover, there are $O(k^{d-1})$ cubes in \mathcal{Q}' and these cubes have volume k^{-d} , so that $\sum_{Q\in\mathcal{Q}'}|Q|=O(1/k)$. Hence

$$\sum_{Q \in (\mathcal{Q} \cup \mathcal{Q}')} |Q| \le |R| + O(1/k),$$

and letting k tend to infinity yields $m_*(R) \leq |R|$.

Therefore, $m_*(R) = |R|$.

By (1) and (2), then $\sigma(R) = |R| = m_*(R)$.

Exercise of 9/18:

- 3. Theorem 1.3 states that every open set in \mathbb{R} is the disjoint union of open intervals. The analogue in \mathbb{R}^d , $d \geq 2$, is generally false. Prove the following:
 - (a) An open disc in \mathbb{R}^2 is not the disjoint union of open rectangles. [Hint: What happens to the boundary of any of these rectangles?]

(b) An open connected set Ω is the disjoint union of open rectangles if and only if Ω is itself an open rectangle.

Proof.

(a) Suppose for a contradiction that an open disc $\mathcal{O} \subset \mathbb{R}^2$ and $\mathcal{O} = \bigcup_{n \in \mathbb{N}} R_n$ where R_n are the open rectangles and $R_i \cap R_j = \emptyset$ for $i \neq j$.

Choose some open rectangle $R_1 \in \mathcal{O}$ and let $x \in \partial R_1$. Then, for all $\epsilon > 0$, $B(x, \epsilon) \cap R_1 \neq \emptyset$ and $B(x, \epsilon) \cap R_1^c \neq \emptyset$. Hence, $x \notin R_1$, and so there must be an open rectangle $R_2 \in \mathcal{O}$ with $x \in R_2$. This implies that there is $\epsilon_0 > 0$ such that $B(x, \epsilon_0) \subset R_2$.

By our previous observation, $B(x, \epsilon_0) \cap R_1 \neq \emptyset$. Taken together, then $R_1 \cap R_2 \neq \emptyset$, which is a contradiction with the fact that \mathcal{O} is the disjoint union of open rectangles.

(b) (\Rightarrow) Let Ω be the disjoint union of open rectangles. Suppose, to the contrary, that Ω is not itself an open rectangle.

Then, Ω contains at least two open rectangles. By the argument in part (a), so these rectangles cannot be disjoint, which is a contradiction. Hence, it must be that Ω is itself an open rectangle.

- (\Leftarrow) Let Ω be an open rectangle. Then Ω is the disjoint union of a single open rectangle.
- 4. At the start of the theory, one might define the outer measure by taking coverings by rectangles instead of cubes. More precisely, we define

$$m_*^{\mathcal{R}}(E) = \inf \sum_{j=1}^{\infty} |R_j|,$$

where the inf is now taken over all countable coverings $E \subset \bigcup_{j=1}^{\infty} \mathcal{R}_j$ by (closed) rectangles.

Show that this approach gives rise to the same theory of measure developed in the text, by proving that $m_*(E) = m_*^{\mathcal{R}}(E)$ for every subset E of \mathbb{R}^d .

[Hint: Use Lemma 1.1.]

Proof.

(1) Let E be some subset of \mathbb{R}^d .

First, we begin by considering the outer measure of E, given by $m_*(E) = \inf \sum_{j=1}^{\infty} |Q_j|$. Consider any covering of E by closed cubes $E \subset \bigcup_{j=1}^{\infty} Q_j$.

For each Q_j with side length l_j , we can pick the rectangle R_j , whose sides have length $r_1 = l + \frac{\epsilon}{j} l^{d-1}$ and $r_k = l$ for every other side. Then $R_j \supset E_j$ and

$$|R_j| = |Q_j| + \frac{\epsilon}{2^j}.$$

So

$$\sum_{j=1}^{\infty} |Q_j| < \sum_{j=1}^{\infty} |R_j| = \sum_{j=1}^{\infty} |Q_j| + \epsilon.$$

Passing to the infimum gives

$$m_*^R(E) \le \sum_{j=1}^{\infty} |R_j| \le m_*(E) + \epsilon.$$

Then letting $\epsilon \to 0$ gives $m_*^R(E) \le m_*(E)$.

(2) Now begin with a covering of E by rectangles R_j . Then we divide \mathbb{R}^n into a grid of cubes with side length $\frac{1}{k}$. Then we can define $Q_{j,k}$ to be the set of rectangles that have non-empty intersection with R_j .

We need to be precise about how much extra measure these cubes add. We know that there are Ck^{d-1} that could intersect partially intersect R_j for some suitably large C. The total volume these add is $\frac{C}{k}$ and so if $k \geq 2^j C$, then the total volume is less than $\frac{\epsilon}{2^j}$.

That is

$$\sum_{k} |Q_{j,k}| \le |R_j| + \frac{\epsilon}{2^j}.$$

Then

$$\sum_{j} |R_{j}| \le \sum_{j} \sum_{k} |Q_{j,k}| \le \sum_{j} |R_{j}| + \epsilon.$$

Letting $\epsilon \to 0$ again gives $m_*(E) \le m_*^R(E)$.

By (1) and (2), then $m_*(E) = m_*^{\mathcal{R}}(E)$.