

Threat Modeling Microsoft STRIDE

Prof Federica Paci

Threat Modeling

- Techniques used
 - to model and analyze technology systems and services
 - to understand how that system or service might be attacked,
 - the measures or controls needed to manage the risk posed by such attacks
- Threat modelling techniques are best applied to inform the design and development phases of a technology system or service life cycle

Threat Modeling

- What are we working on?
- What can go wrong?
- What are we going to do about it?
- Did we do a good enough job?

- Popular threat modeling technique by Microsoft
- Focus on what an attacker is trying to achieve
- Endorsed by Security Touchpoints, OWASP's CLASP and Microsoft's SDL
- Taught in security certification programs like CSSLP
- Widely used in industry
- Require little security expertise

The Process in a Nutshell

Illustrative Example: PetShop

Use Case: Famebook social network

- Famebook is social network, where online users share personal information such as relationship status, pictures, and comments with their friends.
- Alice is a registered user of Famebook
- Each time Alice updates her friends list, she first connects to the social network's web portal
- The portal communicates with the social network's server, and eventually, the friendship information of Alice and all other users of that social network is stored in a database

Step 1: Create Data Flow Diagrams (model the system)

- A DFD is a graphical representation of the system under review
 - Model how data enters, leaves and traverses software components
 - Shows all data sources and destinations
 - Show all relevant processes that the data goes through
- Good DFDs are critical to threat modeling!!

Diagram Elements

External Entity

- People
- Other systems
- Microsoft.com

Process

- DLLs
- EXEs
- COM object
- Components
 - Services
- Web Services
 - Assemblies

Data Flow

- Function call
- Network traffic
- RemoteProcedure Call (RPC)

Data Store

- Database
- File
- Registry
- SharedMemory
- Queue / Stack

Trust Boundary

- Process boundary
- File system

Pet Shop Context Diagram

DFDs Decomposition

- Iterate over processes, data stores, and see where they need to be broken down
- Initially draw a context diagram
 - Very high-level; software and external entities interacting with it
- Then, draw a level 1 diagram
 - High level; major business processes
- Then processes can be further decomposed in level 2 diagrams
- And so on till no further decomposition is possible

Pet Shop Level 1 Diagram

Pet Shop Level 2 Diagram

Exercise 1 – Step 1- Create the data flow diagram

- Build the DFD of the Famebook social network
- Time: 10 minutes

Step 2: Identify Threats

Experts can brainstorm

How to do this without being an expert?

Use STRIDE to step through the diagram elements

Get specific about threat manifestation

Threat Property we want

Spoofing Authentication

Tampering Integrity

Repudiation

Information Disclosure Confidentiality

Denial of Service Availability

Elevation of Privilege Authorization

Threat: Spoofing

Threat Spoofing

Property Authentication

Definition Impersonating something or someone else

Example Pretending to be any of billg, microsoft.com, or

ntdll.dll

Threat: Tampering

Threat Tampering

Property Integrity

Definition Modifying data or code

Example Modifying a DLL on disk or DVD, or a packet as

it traverses the LAN

Threat: Repudiation

Threat Repudiation

Property Non-Repudiation

Definition Claiming to have not performed

an action

Example "I didn't send that email," "I didn't modify that

file," "I certainly didn't visit that Web site, dear!"

Threat: Information Disclosure

Threat Information Disclosure

Property Confidentiality

Definition Exposing information to someone not

authorized to see it

Example Allowing someone to read the Windows source

code; publishing a list of customers to a Web

site

Threat: Denial of Service

Threat Denial of Service

Property Availability

Definition Deny or degrade service to users

Example Crashing Windows or a Web site, sending a

packet and absorbing seconds of CPU time, or

routing packets into a black hole

Threat: Elevation of Privilege

Threat Elevation of Privilege (EoP)

Property Authorization

Definition Gain capabilities without proper authorization

Example Allowing a remote Internet user to run

commands is the classic example, but going

from a "Limited User" to "Admin" is also EoP

Map STRIDE to DFD Elements

Map STRIDE to DFD Elements: An Example

Threat Type	DFD Elements
Spoofing	External Entities: Pet Shop Customer Processes: Web application, Order processor
Tampering	Processes: Web application, Order processor Data stores: Audit-log data, Data Flows: Pet Shop Customer to Web application,
Repudiation	External Entities: Pet Shop Customer
Information Disclosure	Data stores: Audit-log data, Data Flows: Pet Shop Customer to Web application,
Denial of Service	Data stores: Audit-log data, Data Flows: Pet Shop Customer to Web application,
Elevation of Privileges	Processes: Web application, Order processor

Exercise 2 – Step 2 - Identify Threats

- Work in pairs
- List the elements of the following DFD diagram
- Use the table to map elements to STRIDE threat types
 - The table is meant to support you in the identification of the threat that apply to a specific DFD element type
 - Ask yourself if a threat type is applicable to the DFD element in the system you are analysing
- Time: 10 min

```
Sproofing: EE User P: portale, server

Tampering: P: portale, server, SNDB DF: user to portale

Repudiation: P: portale

Information Disclosure: P: portale, Server, SNDB DF: user to portale

Denaid of Service: P: portale, server, SNDB DF: user to portale

Elevation of privilege P: Portale, Server
```

Step 2: Refine threats with tree threat patterns

- Generic threat types are refined into concrete threats via trees
- AND/OR composition of threats
- STRIDE provides 12 threat tree patterns
 - 1 threat tree for Spoofing
 - 3 threat trees for Tampering
 - 1 threat trees for Repudiation
 - 3 threat trees for Information Disclosure
 - 3 threat trees for Denial of Service
 - 1 threat tree for Elevation of Privileges

Spoofing an External Entity or Process

Tampering with a Process

Tampering with a Data Flow

Tampering with a Data Store

11/26/2023

Repudiation

11/26/2023

Information Disclosure of a Process

Information Disclosure of a Data Flow

Information Disclosure of a Data Store

DoS against a Process

DoS against a Data Flow

DoS against a Data Store

Elevation of Privilege

Refining threats – An Example

DFD Element	Threat Type	Threat
Pet Shop Customer to Web application	Information Disclosure (I)	Observe message – No Message Confidentiality
Audit Log Data Store	Tampering (T)	Tampering with Data Store – Weak Protection
Order Processor	Elevation of Privileges (EoP)	Leverage Insufficient Authorization

Step 2: Assess the Risks

- Risk level given by the combination of likelihood and impact
- 4 Possible Risk Levels
 - 1 very high must be fixed during development phase
 - 2 high must be fixed during development phase
 - 3 medium must be fixed before the product becomes a release candidate
 - 4 low should be fixed only if time permits

How do you assess the risks?

- Microsoft SDL Requirement phase requires to specify bug bars
- A bug bar classifies threats based on the impact that they have
- First the bug is assigned a STRIDE threat category
- Then a risk level is associated with the threat based on
 - Server application versus client application.
 - Local versus remote accessibility
 - Accessibility to anonymous versus authenticated users
 - Accessibility to authenticated users versus administrators
 - The degree of user interaction required
 - In the case of an information disclosure threat, whether the data is personally identifiable information (PII) or is sensitive data
 - In the case of a DoS attack, whether the application continues service or is non func- tional once an attack stops

STRIDE Threat Type	Client/Server	Scope	Risk Level
Spoofing		Ability for attacker to present a UI that is different from but visually identical to the UI that users must rely on to make valid trust decisions in a default/common scenario	
	Server	Computer connecting to server is able to masquerade as a different user or computer of his or her choice <i>using a protocol</i> that is designed and marketed to provide strong authentication.	2

STRIDE Threat Type	Client/Server	Scope	Risk Level
Spoofing	Client	Ability for attacker to present a UI that is different from but visually identical to the UI that users are accustomed to trust in a specific scenario.	3
	Server	Client user or computer is able to masquerade as a different, random user or computer using a protocol that is designed and marketed to provide strong authentication.	3

STRIDE Threat Type	Client/Server	Scope	Risk Level
Tampering/Repudiation	Client/Server	Permanent modification of any user data or data used to make trust decisions in a common or default scenario that persists after restarting the OS/application.	2
	Server	Temporary modification of data in a common or default scenario that does not persist after restarting the OS/application.	3
	Client	Temporary modification of any data that does not persist after restarting the OS/application.	4

STRIDE Threat Type	Client/Server	Scope	Risk Level
Information Disclosure	Client/Server	Disclosure of PII (email addresses, phone numbers, credit card information)	2
	Client/Server	Attacker can locate and read information from anywhere on the system	2
	Client/Server	Attacker can locate and read information from known locations	3
	Client Server	Any untargeted information disclosure including runtime data	4

STRIDE Threat Type	Client/Server	Scope	Risk Level
Denial of Service	Glient	Requires reinstallation of system and/or components	2
	Client	Requires cold reboot or causes Blue Screen/Bug Check	3
	Client	Temporary DoS: restart of application	4
	Server	Anonymous user sends a small amount of data	2
	Server	Authenticated permanent DoS	3

STRIDE Threat Type	Client/Server	Scope	Risk Level
Elevation of Privilege	Client/Server	Remote user with the ability to execute arbitrary code	1
	Client	Local, low-privilege user can elevate himself to another user, administrator or local system	2
	Server	Local authenticated user has the ability to execute arbitrary code or obtain more privilege than intended	2

Assessing Risks: An example

DFD Element	Threat Type	Threat	Risk Level
Pet Shop Customer to Web application	Information Disclosure (I)	Observe message – No Message Confidentiality	1
Audit Log Data Store	Repudiation(R)	Tampering with Data Store – Weak Protection	1
Order Processor	Elevation of Privileges (EoP)	Leverage Insufficient Authorization	1

Exercise4: Part 2 – Refine Threats and Assess Risks

- 1. For each identified threat type to a DFD element
 - Refine into a concrete threat
 - 2. Assess the risk of the threat (from 1 to 4)

Time: 10 minutes User Sproofing Guessed

Tampering Information Disclosure SN DB Devial of Service

Step 3: Plan for Mitigations

- Four ways to address threats
 - 1. Do Nothing
 - 2. Remove the feature
 - 3. Accept vulnerability in design
 - 4. Counter the threats with technology
 - ✓ Use list of mitigation technologies

Threat

Property

Spoofing

Authentication

To authenticate principals:

- MFA
- Kerberos authentication
- PKI systems, such as SSL or TLS and certificates
- •IPSec
- Digitally signed packets

To authenticate code or data:

- Digital signatures
- Message authentication codes
- Hashes

Threat Property

Tampering Integrity

Windows Vista mandatory integrity controls

• ACLs

Digital signatures

Message authentication codes

Threat Property

Repudiation

Nonrepudiation

- Strong authentication
- Secure logging and auditing
- Digital signatures
- Secure time stamps
- Trusted third parties

Threat Property

Information
Disclosure

Confidentiality

- Encryption
- ACLs

Threat Property

Denial of Availability • ACLs

Service • Filtering
• Quotas
• Authorization
• High-availability designs

Threat Property

Elevation of

Privilege

Authorization

- ACLs
- Group or role membership
- Privilege ownership
- Permissions
- Input validation

Example – Step 3 - Plan for Mitigations

DFD Element	Threat Type	Threat	Mitigation
Pet Shop Customer to Web application		Observe message	SSL/TLS
Audit Log Data Store	R	Bypass protection scheme	ACL and MAC
Order Processor	EoP	Leverage Insufficient Authorization	ACL

Step 4: Validating Threat Models

Validate the whole threat model

Does diagram match final code?

Are threats enumerated?

Minimum: STRIDE per element that touches a trust boundary

Is each threat mitigated?

Are mitigations done right?

Summary

- Threat modeling helps to find and proactively mitigate security design flaws before the system is built
- Microsoft STRIDE is a systematic process to identify and mitigate security design flaws
- It can be use by non security experts
 - taxonomy of threats
 - threats tree patterns
 - standard mitigations for threats

Recommended Readings

- Threat modeling https://www.ncsc.gov.uk/collection/risk-management/threat-modelling
- M. Howard and S. Lipner. The Security Development Life Cycle, 2006. Chapters 9 and 22
- Threat Modeling Available at: https://www.owasp.org/index.php/Application_Threat_Modeling
- Threat Modeling Lessons from Star Wars (and Elsewhere): Available at: https://www.youtube.com/watch?v=KLpgaoD8ySM