Institute of Information Technology (IIT) Jahangirnagar University

Course Code: MICT 5402

Course Title: Advanced Machine Learning

Assignment - 02

Submitted to:

Jesmin Akhter Professor IIT, JU

Submitted by:

Name: Md. Shakil Hossain Roll No: 1061 MSc 2nd Semester IIT, JU

Submission Date: 23/06/2025

Example 01:

Forward Propagation

Input,
$$x_1 = 1$$
, $x_2 = 1$

Hidden Layer,
$$T_3 = (0.5 \times 1) + (-0.3 \times 1) + 0.6$$

= 0.8

$$I_4 = \le \omega_1 x_1 + b$$

= $(0.2 \times 1) + (0.5 \times 1) + (-0.4)$
= 0.3

Now,
$$O_3 = \frac{1}{1+e^{-0.8}} = 0.69$$

 $O_4 = \frac{1}{1+e^{-0.3}} = 0.5744$

output Layer,
$$I_5 = (0_3 \times 0.1) + (0_4 \times 0.3) + b_5$$

= $(0.69 \times 0.1) + (0.5744 \times 0.3) + 0.8$
= 1.04132

$$0_5 = \frac{1}{1 + e^{-1.04132}} = 0.7391$$

:. Eppop =
$$tanget - 0_5$$

= $0 - 0.7391$
= -0.7391

Output Layer Ennon,
$$E_5 = 0.5 \times (1-0.5) \times (1-0.5) \times (1-0.7391) \times (0-0.7391)$$

= 0.7391×(1-0.7391) ×(0-0.7391)

Hidden Layer Ennon,
$$E_3 = 0.3 \times (1-0.3) \times (E_5 \times W_{35})$$

= 0.69 \times (1-0.69) \times (-0.14252\times 0.1)
= -0.00304

$$E_{4} = 0_{4} \times (1-0_{4}) \left(E_{5} \times W_{45}\right)$$

$$= 0.5744 \times (1-0.5744) \left(-0.14252 \times 0.33\right)$$

$$= -0.01045$$

Update weight,

$$W(new) = W(old) + \Delta Wij$$

$$= W(old) + \Omega \times \delta j \times O j$$
Learning nate ennon term output

$$W_{13} (new) = 0.5 + (0.5 \times x_1 \times E_3)$$

$$= 0.5 + (0.5 \times 1 \times -0.00304)$$

$$= 0.49848$$

$$W_{14}(new) = 0.2 + (0.5 \times X_{1} \times E_{4})$$

= 0.2 + (0.5 \times 1 \times -0.0 1045)
= 0.194775

 $W_{23}(new) = -0.3 + (0.5 \times 1 \times 0.00304) = -0.30152$ $W_{24}(new) = 0.5 + (0.5 \times 1 \times -0.01045) = 0.494775$ $W_{35}(new) = 0.1 + (0.5 \times 0.69 \times 0.14252) = 0.05083$ $W_{45}(new) = 0.3 + (0.5 \times 0.5744 \times -0.14252) = 0.259$ Update the bias by hew = bj (01d) + 0×6 j

$$b_3 (new) = 0.6 + (0.5 \times E_3)$$

 $= 0.6 + (0.5 \times -0.00304) = 0.59848$
 $b_4 (new) = -0.4 + (0.5 \times -0.01045) = -0.4052$
 $b_5 (new) = 0.8 + (0.5 \times -0.14252) = 0.72874$

Forward Propagation

Hidden Layen,
$$1j' = (1 \times 0.498) + (1 \times -0.301) + 0.59$$

= 0.787

$$T_4' = (1 \times 0.195) + (1 \times 0.494) + (-0.405)$$

= 0.284

$$03' = \frac{1}{11e^{-0787}} = 0.687$$

$$04' = \frac{1}{1 + e^{-0.284}} = 0.5705$$

Output Layen,
$$T_5' = (0.687 \times 0.0508) + (0.5705 \times 0.259)$$

+ 0.728

$$= 0.91065$$

$$0_5' = \frac{1}{1 + e^{-0.91065}} = 0.713$$

ret, the actual output of y is 0.5 and tearming nate is 1.

Forward fass: compute output for y3. y4 and y5

WM14 = 494 X1 = 1x(-0 0083) X0 32 = -0 cc383

W14 (nrw) = -0.00283+0.4 = 0.393 3

Similarly, update all other weights

								1
i	Ĺ.	wij	زك	7;	لر	VP	dard wij	\setminus
1	3	0.3	-0.00265	Ø.35	1	0	093]	_\
2	3	0.8	-0.00265	0.9	1	C	1.7396	
1	4	0.4	-0.0082	0.33	1		6.3371	
2	4	0.6	-0.0067	0.9	1		0.5326	
3	5	0.3	-0.0406	0.6	3 /	3 \	6.2724	
	5	0.9	-0.0406	0.663	3	1	0.873	1
4		-	1					

Forward Pass: compute output forn you ya and be

$$y_3 = \frac{1}{1 + e^{-0.7525}} = 0.6797$$

$$92 = (0.3971 \times 0.35 + 0.5926 \times 0.9) = 0.6723$$

$$y_4 = \frac{1}{1+e^{-0.6323}} = 0.6620$$

$$34 = 1 + e^{-6.6323}$$

$$3 = (0.2724 \times 0.6793) + (0.8731 \times 0.6620) = 0.7631$$

mant .

Mullilayer Perception Network

Problem-03:

Actual Ortput = 1

Assume that the actual output of y is a and tearring nate is 0.9.

Forward By: Compute output for
$$y_4$$
, y_5 and y_6

$$a_4 = w_{14} \times x_1 + w_{24} \times x_2 + w_{34} \times x_3 + 0_4$$

$$= 0.2 \times 1 + 0.4 \times 0 + (-0.5 \times 1) + (-0.4) = -a_2$$

$$o(114) = \frac{1}{1+e^{0.3}} = 0.332$$

$$Q_5 = (-0.3 \times 1) + (0.1 \times 0) + (0.2 \times 1) + 0.2 = 0.1$$

$$O(H_5) = \frac{1}{1 + e^{-0.1}} = 0.525$$

Backward pass: Compute 84,85 and 86

For output unit:

For hidden mit:

compute new weights

$$\Delta w_{46} = \eta_{6} y_{4} = 0.9 \times 0.1311 \times 0.332$$

= 0.03913

milaris operate all other weight						
i	j	wij	ું કા	3)	<i>y</i>)	lupdate wis
4	6	-0.3	0.1311	0332	0.9	-0.263
5	6	-02	0.1311	0.525	019	-0·13g
1	14	0.2	-0.0083	1	0.9	0.192
1	5	-03	-0.0065	1	0.9	-0.306
2	9	0.4	-0.0083	0	0.9	0.4
	5	0.1	-0.0065	0	وره	0.1
3	9	-0.5	-0.0083	1	و ۵۰	-0.508
.	5	٥٠ي	-0.0065 ;	3	و ۵۰	0.194

Simila	ply epdak	truis weight	J	
a)	Trains dj	Sj	Ŋ	redated Cj
36	0.1	0.1311	وره	0.218
54-	0.2	-0.0065	0.9	0.194
21_	-04	K 800.0-	و ٥٠	-0.408

[Finnward Mss: Complex output for y4 , y5 and y6 cy = 0.192 x 1+ 0.4 x 0+ (-0.50 e x)) + (-0.408) = -0.229

3c = -0.3c6x1 + 0.4x0 + 0.194x4 + 0.194 = 0.081 $3(145) = \frac{1}{1+e^{-c.c5}L} = 0.520$

9: = -0.261 x0.327 + (-0.138 x 0.520) + 0.218 =0.06

Evrey = 9+moser - Ac = 0.482

THE END