

Meilenstein 2

Verlustprävention an Selbstbedienungskassen im Einzelhandel

Durchgeführt durch die Retail Data Mining GmbH

Themen für heute:

- 1. Vorbemerkung zur Datenauswertung
- 2. Grundlegende Datenanalyse
- 3. Datentransformation
- 4. Explorative Datenanalyse
- 5. Fazit und Ausblick

1. Vorbemerkung

Datenannahmen & potenzielle Verzerrungen

- Annahme: KassenSichV-konforme Daten (manipulationssicher)
- Mögliche Verzerrung: Keine negativen Schadensfälle im Datensatz
 - z. B. vergessene Ware \rightarrow theoretischer Überzahlung
 - Relevanz für Nettoverlust- und Risikobetrachtungen
- Keine ergänzenden Auditberichte oder technische Dokumentationen verfügbar

Fokus des zweiten Meilensteins

- Fokus: Datenaufbereitung, Management & EDA (Explorative Datenanalyse)
- Vorbereitung für nachfolgende Modellierungsphasen: "Exploration before prediction" solide Basis für belastbare Modelle
- Teil des iterativen Vorgehens nach DASC-PM
 - Analysen & Modelle werden bei Bedarf angepasst
 - Neue Erkenntnisse oder zusätzliche Daten → Re-Validierung möglich

2. Grundlagen

Repräsentativität

Vergleich klassifizierter ("gelabelter", d.h. "FRAUD" bzw. "NORMAL") Daten mit dem restlichen Datensatz:

Numerische Spalten (t-Tests):

	Spalte	p-Wert	Mittelwert (labeled)	Mittelwert (unlabeled)	Std-Abw (labeled)	Std-Abw (unlabeled)
3	transaction_duration	0.185389	77.807475	77.541994	73.202614	72.895636
1	n_lines	0.355874	10.603607	10.575406	11.155176	11.101239
2	customer_feedback	0.671868	9.326005	9.318636	1.699571	1.715356
0	total_amount	0.750073	98.509750	98.413698	110.079582	109.943709

(Ausschnitt für numerische Merkmale auf Basis eines t-Tests)

Fazit: gelabelte Daten sind repräsentativ für den gesamten Trainingsdatensatz

Achtung: Unterschiede zwischen Trainings- und Testdaten!

Plausibilität

- Daten im Wesentlichen konsistent, aber:
 - Komplexe Stornothematik → konnte in Meilenstein 2 nicht abschließend geklärt werden, muss in Meilenstein 3 erneut aufgenommen werden
 - Durch statische Regeln lassen sich viele als "FRAUD" deklarierte Transaktionen sehr sicher vorhersagen
- Berücksichtigung bei späterer Modellbildung

Auffälligkeit – Kundenfeedback

Wenige Werte bei Kundenfeedback und bei vorhandenen Werten extreme Ausprägung (bei Fraud mehrheitlich volle Punktzahl)

Lernkurve – Kamerasystem

- Kamerasystem anfangs nicht ausgelernt
- Spätere Daten deutlich brauchbarer
- Zu beachten bei zukünftiger Einführung eines neuen Kamerasystems oder bei einer neuen Filiale

3. Datenmanagement

Transformation der Daten

- 4 Datentabellen Tabellen in eine einzige Datentabelle überführt
- Relevante Transaktions- und Artikeldaten extrahiert bzw. berechnet
- Formatbereinigung und Überführung in analysierbare Tabellenstruktur
- Pro Transaktion eine Zeile erzeugt
- Artikelpositionen je Transaktion zu Merkmalen aggregiert

Aggregation der Daten

- Positionsdaten zu Merkmalen aggregiert (z.B. enthält Snacks, durchschnittliche Scanzeit pro Artikel etc.)
- Sowohl **kategoriale Merkmale** als auch **numerische**:
 - Tritt eine Kategorie in der Transaktion auf? Ja / nein
 - Wie viele Fälle? Anzahl
- Transformation der Produktkategorien:
 - Ist eine Produktkategorie vorhanden oder nicht (Getränke, Snacks, usw.)
- Minimum/Maximum/Mittelwert (Preis, Popularität, Zeit zwischen Scans)

Umgang mit unvollständigen Daten (1)

- Feedback: nur in 7,6 % der Fälle vorhanden
 - Transformation zu kategorialen Ausprägungen (sehr gut, gut, mittel, schlecht, überhaupt vorhanden)
- 11.479 Fälle mit fehlenden Werten für mittlere und maximale Zeit zwischen Scans
 - Ursache: Nur ein Scan vorhanden
 - Ersetzt durch Mittelwert

Umgang mit unvollständigen Daten

- 114 Fälle mit fehlenden Werten des Kamerasystems
 - Ersetzt durch den Modus

- Ein Fall mit mehreren fehlenden Spaltenwerten aufgrund fehlender Produkt-ID \rightarrow entfernt
- Da wir nur die klassifizierten Daten betrachten → **keine Veränderung der nicht-klassifizierten Daten**

4. Explorative Analyse

Übersicht

- 4 Schritte in der explorativen Datenanalyse:
 - Verteilungsanalyse und Ausreißer numerischer Attribute
 - Analyse kategorialer Attribute
 - Nichtlineare Zusammenhänge zwischen Attributen und Schadenshöhe
 - Regressionsmodellierung

Numerische Merkmale von FRAUD (1)

- Transaktionen mit Schaden (damage > 0):
 - höhere Warenkorbsummen
 - mehr gekaufte Artikel (n_lines)
 - längere Transaktionsdauer
- Merkmale sind stark korreliert
- Interpretation:
 - Mit wachsendem Warenkorb steigt die Komplexität
 - Fehler wie falsches Scannen oder vergessene Artikel werden wahrscheinlicher

Numerische Merkmale von FRAUD (2)

- Transaktionen mit Schaden (damage > 0):
 - deutlich höhere calculated_price_difference (Differenz zwischen Summe der Einzelpreise und Kassensumme)
 - calculated_price_difference als potenziell starker Prädiktor für Verluste

Numerische Merkmale von FRAUD (3): Bezahlter Preis ≠ Nominalpreis

- Nominalpreis einer Position: Menge bzw. Gewicht multipliziert mit dem Nominalpreis des Artikels gemäss Produkttabelle
- Nominalpreis einer Transaktion: Summe der Nominalpreise aller nicht-stornierten Artikel
- Häufige Abweichungen
- Zwei definierte Merkmale:
 - Differenz vorhanden (ja/nein)
 - Absolute Höhe der Differenz

Numerische Merkmale von FRAUD (4)

- Transaktionen mit Schaden (damage > 0):
 - enthalten häufiger hochpreisige Einzelartikel
 - breitere Streuung bei der mittleren Zeit zwischen Scans

Verteilung von max product price nach Schadenhöhe

Verteilung von mean time between scans nach Schadenhöhe

Numerische Merkmale: Extremwerte

• Für alle numerischen Features wurde der **Z-Score** berechnet

- Nutzen: Identifikation systematisch auffälliger Attribute
- Interpretation: Extremwerte nicht als Rauschen, sondern als potenziell erklärungsstark anzusehen

feature	outliers_abs_zscore>3
calculated_price_difference	3273
popularity_max	3193
total_amount	2962
ransaction_duration_seconds	2947
n_lines	2906
max_time_between_scans	2204
time_from_last_scan_to_end	2167
damage	2111
max_product_price	2073
mean_time_between_scans	1386
time_to_first_scan	949
popularity_min	161
days_since_sco_introduction	0

Numerische Merkmale: Signifikanz

- t-Test als Entscheidungskriterium, welche Prädiktoren signifikant sind
- Zusätzlich Analyse, wie viel mit dem Prädiktor erklärt werden kann (Relevanz)

feature	significance 🍜	relevance 🔻
payment_medium	sehr signifikant	sehr relevant
hour	sehr signifikant	weniger relevant
has_voided	sehr signifikant	weniger relevant
n_voided	sehr signifikant	weniger relevant
has_camera_detected_wrong_produc	sehr signifikant	weniger relevant
calculated_price_difference	sehr signifikant	sehr relevant
has_positive_price_difference	sehr signifikant	weniger relevant
has_snacks	sehr signifikant	weniger relevant

Kategoriale Merkmale von Fraud (1)

- Im Folgenden einige graphische Gegenüberstellungen von FRAUD / NORMAL anhand kategorialer Variablen
- Insbesondere bestimmte Produktkategorien kommen hier besonders häufig vor, ebenso:
 - Wurde mehrheitlich bar bezahlt
 - Hat das Kamerasystem Auffälligkeiten bemerkt

Kategoriale Merkmale: Monat

Kategoriale Merkmale: Wochentag

Kategoriale Merkmale: Tageszeit

Kategoriale Merkmale: Produktkategorie

Kategoriale Merkmale: Kamerasystem

Häufigkeit nach Kategorie has_camera_detected_wrong_product_high_certainty

Kategoriale Merkmale: Zahlungsmittel

Häufigkeit nach Kategorie payment_medium

Kategoriale Merkmale: Signifikanz

- Chi²-Test als Entscheidungskriterium, welche Prädiktoren signifikant sind
- Zusätzlich Analyse, wie viel mit dem Prädiktor erklärt werden kann (Relevanz)

• •		-	
feature	w.	significance 🔻	relevance 🎹
payment_medium		sehr signifikant	sehr relevant
calculated_price_difference		sehr signifikant	weniger relevant
has_positive_price_difference		sehr signifikant	sehr relevant

Nichtlineare Zusammenhänge

- Zur Analyse nichtlinearer Zusammenhänge zwischen numerischen Attributen und Schadenshöhe zwei Ansätze:
 - LOWESS-Glättung zur visuellen Trendbewertung
 - Spearman & Pearson-Korrelation zur quantitativen Bewertung
- Ergebnisse: Die meisten Merkmale zeigen keine klare nichtlineare Beziehung. Lediglich zwei Merkmale zeigen komplexere Beziehung zur Schadenshöhe.

Regressionsanalyse: Multivariate Analyse

- Multivariate Modellbildung mit Reduktion (schrittweise Entfernen nicht relevanter Attribute)
- Getrennte Betrachtung für Zielgrößen:
 - Logistische Regression: FRAUD / NORMAL
 - Klassische Regression: Schadenshöhe
- Aufteilung der Daten in eine Trainingsmenge (80%) und eine Validierungsmenge (20%). Bewertung anhand der Performance auf beiden Mengen.

Regressionsanalyse: Auswertung

- Prognosegüte bei Klassifikation ist verzerrt durch die vielen Nicht-Schadensfälle; bei ausgewogenem Datensatz bessere Performance
- Geringe Vorhersagbarkeit der Schadenshöhe
 - Breite Streuung der Schadensbeträge
 - Großer Anteil an Null-Schäden → Verteilung verzerrt
- Komplexere Modelle mit Interaktionen:
 - Verbesserung auf Trainingsdaten, aber
 - Kein Zugewinn auf Testdaten → Überanpassung

Label-Modell: Damage-Modell: Accuracy Test: 0.974 R² Test: 0.137 Accuracy Train: 0.974 R² Train: 0.136 Confusion Matrix Test: RMSF Test: 1.754 Predicted 0.0 1.0 RMSE Train: 1.721 Actual 0.0 28646 1.0 712 204 Confusion Matrix Train: Predicted 0.0 1.0 Actual 0.0 114498 182 1.0 2860 879

5. Ausblick

Fazit des zweiten Meilensteins

- Daten sind **plausibel und konsistent** (Stornothematik noch zu klären)
- Relevante Merkmale wurden extrahiert und statistische analysiert
- Daten eignen sich für weiteren Modellaufbau
- Komplexere Verfahren notwendig, um durchgehend gute Prognosegüte sowohl bei der Klassifikation als auch der Schadensvorhersage gut abzuschneiden

Nächste Schritte

- **Dreistufiges Modell** auf Grundlage der aktuellen Datenerkenntnisse:
 - 1. Statische Anwendung gewisser Erkennungsregeln
 - 2. Klassifikationsalgorithmus zur Erkennung von fehlerhaften Transaktionen
 - 3. Modell für Schätzung der Schadenshöhe im Falle fehlerhafter Transaktionen (ansonsten prognostiziere Schaden=0)
 - Einbau der **Bewertungsfunktion** in Regeln für manuelle Kontrollen

Netz oder

klassische

Regression

Vielen Dank für Ihre Aufmerksamkeit!

Fragen & Anregungen?

