Nom ·										

OBJECTIF:

SÉQUENCEMENT ET CONTROLE DU TEMPS

Ce système va vous apprendre à gérer des séquences d'instruction, le contrôle du temps et de bouton à l'aide d'un microcontrolleur. Ultimement, il simule les deux feux rouges situés à une intersection.

MATERIEL

- Arduino board *1
- USB cable *1
- Red M5 LED*2
- Yellow M5 LED*2

- Green M5 LED*2
- 220 Ω resistor *6
- Breadboard*1

UN SEUL FEU ROUGE

D'abord, prennez en main le cablage des LED et leur programmation avec le microcontrolleur en faisant fonctionner le montage de la figure 1.

and and the first the first tanger are the figure of	
1 Quel courant faut-il dans chaque LED ?	

Figure 1: Cablage d'un seul feu rouge

```
2 Quel tension chute aux bornes des trois LED?
   3 En déduire la valeur de chaque résistance en série avec les LED ?
    4 Quelles résistances R_R, R_V, R_J du matériel prennons-nous effectivement ?
    5 Impémenter le code suivant et résumer d'une phrase le comportement observé.
                                               // initialize digital pin 10
   int redled =10;
   int yellowled =7;
                                               // initialize digital pin 7
 2
   int greenled =4;
 3
                                               // initialize digital pin 4
   void setup() {
 4
            pinMode(redled, OUTPUT);
                                               // pin with red LED as output
5
 6
            pinMode(yellowled, OUTPUT);
                                               // pin with yellow LED as output
            pinMode(greenled, OUTPUT);
                                               // pin with green LED as output
 7
8
9
   void loop()
10
            digitalWrite(greenled, HIGH);
                                                       // turn on green LED
11
            delay(5000);
                                                       // wait 5 seconds
12
            digitalWrite (greenled, LOW);
                                                       // turn off green LED
13
14
            for (int i=0; i<3; i++) {
                                                       // blinks for 3 times
                     delay (500);
                                                       // wait 0.5 second
15
                     digitalWrite(yellowled, HIGH); // turn on yellow LED
16
                     delay (500);
                                                       // wait 0.5 second
17
                     digitalWrite(yellowled, LOW);
                                                       // turn off yellow LED
18
19
20
            delay (500);
                                                        // wait 0.5 second
            digitalWrite(redled, HIGH);
                                                       // turn on red LED
21
            delay(5000);
                                                       // wait 5 second
22
            digitalWrite(redled, LOW);
23
                                                       // turn off red LED
24
```

Constatation professeur:

6 D	écri	re l'a	algor	ithm	ie qi	uasi	mer	nt lig	ne	à liç	gne.								

Un seul feu rouge et un bouton

7 Programmer un simple feu rouge avec un bouton.

Figure 2: Feu de signalisation avec un bouton

```
int red = 10;
 1
2
   int yellow = 9;
3
   int green = 8;
4
   int button = 12;
5
6
   void setup(){
 7
       pinMode(red, OUTPUT);
8
       pinMode(yellow, OUTPUT);
9
       pinMode(green, OUTPUT);
       pinMode(button, INPUT);
10
        digitalWrite(green, HIGH);
11
12
   }
13
14
   void loop() {
        if (digitalRead(button) == HIGH){
15
            delay(15); // software debounce
16
17
            if (digitalRead(button) == HIGH) {
```

```
changeLights();
18
                 delay(15000); // wait for 15 seconds
19
20
            }
21
        }
22
   }
23
24
   void changeLights(){
        digitalWrite (green, LOW);
25
        digitalWrite(yellow, HIGH);
26
        delay(3000);
27
28
29
        digitalWrite(yellow, LOW);
30
        digitalWrite(red, HIGH);
        delay(5000);
31
32
33
        digitalWrite (red, LOW);
        digitalWrite(green, HIGH);
34
35
        delay(3000);
36
```

Constatation professeur:

8 A la fin de la fonction setup(), dans quels états sont les DEL verte, rouge et orange?
9 Combien de temps doit rester appuyé le bouton pour permettre l'instruction à la ligne 18 ?
10 Que fait l'instruction de la ligne 18 ?
11 Combien de temps resent allumées les lumières orange et rouge avant de changer ?
12 A la ligne 16, il y a écrit software debounce. Pourquoi software ? Pouquoi debounce ?
13 Quelle valeur retourne la fonction changeLights() ?

DEUX FEUX ROUGES

Pour l'exercice, implémentons des feux de croisement avec le séquencement qu'ils ont aux étatsunis. Ce séquencement est précisé dans la figure 4. Décrire ce qui change par rapport aux feux rouges français.

15 Implémenter ce code et le cablage de la figure 3.

Figure 3: Cablage de deux feux rouges à une intersection

```
1
   int red1 = 10;
 2
   int yellow1 = 9;
3
   int green1 = 8;
   int red2 = 13;
4
5
   int yellow2 = 12;
6
   int green2 = 11;
7
8
   void setup(){
       pinMode(red1, OUTPUT);
9
       pinMode(yellow1, OUTPUT);
10
       pinMode(green1, OUTPUT);
11
12
       pinMode(red2, OUTPUT);
13
       pinMode(yellow2, OUTPUT);
14
       pinMode(green2, OUTPUT);
15
   }
16
17
18
   void loop(){
19
        changeLights();
20
        delay(15000);
21
   }
22
23
   void changeLights(){
24
        // turn both yellows on
25
        digitalWrite (green1, LOW);
        digitalWrite(yellow1, HIGH);
26
27
        digitalWrite(yellow2, HIGH);
28
        delay (5000);
29
        // turn both yellows off, and opposite green and red
30
31
        digitalWrite(yellow1, LOW);
        digitalWrite(red1, HIGH);
32
```

Timeline (seconds)	Busy Bunny Lane Cycle	Lazy Tortoise Ave Cycle	Comments						
0	GREEN	RED							
1	GREEN	RED							
2	GREEN	RED							
3	GREEN	RED							
4	GREEN	RED	Busy Bunny Lane has its traffic						
5	GREEN	RED							
6	GREEN	RED	flowing. Lazy Tortoise Ave has it traffic waiting for its turn.						
7	GREEN	RED	traine waiting for its tarn.						
8	GREEN	GREEN RED							
9	GREEN	RED							
10	GREEN	RED							
11	GREEN	RED							
12	AMBER	RED	Busy Bunny Lane is about to stop						
13	AMBER	RED	traffic. Lazy Tortoise Ave still waits						
14	AMBER	RED	for its turn.						
15	RED	RED	Dead period for both streets						
16	RED	RED	(prevents accidents).						
17	RED	GREEN							
18	RED	GREEN	Lazy Tortoise Ave has its traffic						
19	RED	GREEN	flowing. Busy Bunny Lane Ave has its traffic waiting for its turn.						
20	RED	GREEN	danic waiting for its turn.						
21	RED	AMBER	Lazy Tortoise Ave is about to stop its						
22	RED	AMBER	traffic. Busy Bunny Lane still waits						
23	RED	AMBER	for its turn.						
24	RED	RED	Dead period for both streets						
25	RED	RED	(prevents accidents).						

Figure 4: sequencement des feux rouges aux états-unis.

```
33
       digitalWrite (yellow2, LOW);
34
        digitalWrite (red2, LOW);
35
        digitalWrite(green2, HIGH);
36
       delay(5000);
37
        // both yellows on again
38
39
        digitalWrite(yellow1, HIGH);
40
        digitalWrite(yellow2, HIGH);
        digitalWrite(green2, LOW);
41
42
       delay(3000);
43
44
        // turn both yellows off, and opposite green and red
        digitalWrite(green1, HIGH);
45
46
        digitalWrite(yellow1, LOW);
47
       digitalWrite (red1, LOW);
        digitalWrite(yellow2, LOW);
48
49
        digitalWrite(red2, HIGH);
50
       delay(5000);
51
```

Constatation professeur: