REAL ANALYSIS

LECTURE NOTES

ABSTRACT. The Notes indicate what we do in the lectures. The text is from two books for Real Analysis:

- [1] Xingwei Zhou & Wenchang Sun: Real Variable Analysis, the third edition, Science Press.
- [2] Elias M. Stein & Rami Shakarchi: Real Analysis, Princeton University Press.

Lecture #1

Part 1. Preliminaries

Some basic notions in Set Theory/Euclidean Topology are introduced.

1. Sets and their operations

The union, intersection, difference, and complement of sets are well-known operations in the set theory. The following proposition is straightforward.

Proposition 1.1 (De Morgan Law). Let A_{λ} be a family of subsets of X, $\lambda \in \Lambda$. Then

$$\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)^{c} = \bigcap_{\lambda \in \Lambda} A_{\lambda}^{c},$$
$$\left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right)^{c} = \bigcup_{\lambda \in \Lambda} A_{\lambda}^{c}.$$

The notation $A\Delta B$ stands for the symmetric difference between sets A and B, defined by

$$A\Delta B = (A - B) \cup (B - A),$$

which consists of elements that belong to only one of the two sets A or B.

Proposition 1.2. $A\Delta B = A \cup B - A \cap B$; $A\Delta B = B\Delta A$.

Let $\{A_k\}_{k\geq 1}$ be a countable collection of subsets of X. We say A_1,A_2,\ldots increases to A (written as $A_n \nearrow A$), if $A_k \subset A_{k+1}$ for all k, and $A = \bigcup_{k=1}^{\infty} A_k$. Similarly, we say A_1, A_2, \ldots decreases to A (written as $A_n \searrow A$), if $A_{k+1} \subset A_k$ for all k, and $A = \bigcap_{k=1}^{\infty} A_k$. Given any countable collection of sets $\{A_k\}_{k\geq 1}$, we define

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k > n} A_k$$

and

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k > n} A_k.$$

We say $\{A_k\}_{k\geq 1}$ has a limit if $\limsup_{n\to\infty} A_n = \liminf_{n\to\infty} A_n$, and denote

$$\lim_{n \to \infty} A_n = \limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n.$$

Proposition 1.3. Let $\{A_n\}_{n\geq 1}$ be a countable collection of sets.

- (i) $x \in \limsup_{n \to \infty} A_n$ if and only if, for any n, there is a $N = N(n) \ge n$ such that $x \in A_N$. Namely there are infinitely many A_n containing x.
- (ii) $x \in \liminf_{n \to \infty} A_n$ if and only if there is a n_x such that, for any $N \ge n_x$, $x \in A_N$. Namely there are at most finitely many A_n such that $x \notin A_n$.
- (iii) $\liminf_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n$.
- (iv) If $\{A_n\}$ is increasing or decreasing, then $\{A_n\}$ has a limit and

$$\lim_{n \to \infty} A_n = \begin{cases} \bigcup_{n=1}^{\infty} A_n & \text{if } \{A_n\} \text{ is increasing,} \\ \bigcap_{n=1}^{\infty} A_n & \text{if } \{A_n\} \text{ is decreasing.} \end{cases}$$

Proof. This is a direct consequence of the definitions of $\limsup_{n\to\infty} A_n$ and $\liminf_{n\to\infty} A_n$. Let us show (iv).

Suppose $\{A_n\}$ is increasing. Then $\bigcup_{k\geq n}A_k=\bigcup_{k\geq m}A_k$ for any m and n. Hence $\limsup_{n\to\infty}A_n=\bigcup_{n\geq 1}A_n$. Clearly $\limsup_{n\to\infty}A_n=\bigcup_{n\geq 1}\bigcap_{k\geq n}A_k=\bigcup_{n\geq 1}A_n$. Therefore $\lim_{n\to\infty}=\bigcup_{n\geq 1}A_n$.

Suppose $\{A_n\}$ is decreasing. We have $\bigcap_{k\geq n} A_k = \bigcap_{k\geq m} A_k$ for any m and n, and so $\liminf_{n\to\infty} A_n = \bigcap_{n\geq 1} A_n$. On the other hand, $\limsup_{n\to\infty} A_n = \bigcap_{n\geq 1} \bigcup_{k\geq n} A_k = \bigcap_{n\geq 1} A_n$. Hence $\lim_{n\to\infty} A_n = \bigcap_{n\geq 1} A_n$.

Example 1.1. For $n \geq 1$, let $A_n = \{m/n : m \in \mathbb{Z}\}$. Find $\limsup_{n \to \infty} A_n$ and $\liminf_{n \to \infty} A_n$.

Solution. We have

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \{ m/k : m \in \mathbb{Z}, k \ge n \} = \mathbb{Q}.$$

For the second inequality, let $x \in \mathbb{Q}$, thus x = p/q for some $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_+$. Note that x = np/(nq). Since $nq \ge n$, we see that

$$x \in \{m/k : m \in \mathbb{Z}, k \ge n\} \ \forall n \ge 1.$$

Hence $\mathbb{Q} \subseteq \limsup_{n \to \infty} A_n$. The opposite inclusion is obvious.

Next, let x = p/q, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_+$, be such that $x \in \mathbb{Q} - \mathbb{Z}$. Without loss of generality, suppose p and q are relatively prime. Clearly $x \notin A_n$ when $n \neq kq$ for some $k \in \mathbb{Z}_+$. Hence

$$x \notin \bigcap_{k \ge n} A_k$$
, for any fixed n .

Hence $\mathbb{Q} - \mathbb{Z}$ and $\liminf_{n \to \infty} A_n$ are disjoint. On the other hand,

$$\mathbb{Z} \subseteq \liminf_{n \to \infty} A_n \subseteq \mathbb{Q}.$$

It then follows that

$$\liminf_{n \to \infty} A_n = \mathbb{Z}.$$

2. Cardinality of Sets

We say two sets A and B are equivalent (in the sense of cardinality), written as $A \sim B$, if there is a one-to-one ¹ map between A and B.

Theorem 2.1. Let $\{A_{\lambda} : \lambda \in \Lambda\}$ and $\{B_{\lambda} : \lambda \in \Lambda\}$ be two families of disjoint sets. If $A_{\lambda} \sim B_{\lambda}$ for all λ , then

$$\bigcup_{\lambda \in \Lambda} A_{\lambda} \sim \bigcup_{\lambda \in \Lambda} B_{\lambda}.$$

We say A is a finite set if A is equivalent to $\{1, 2, ..., n\}$ for some n; otherwise A is an infinite set. We say A is a countable set if A is equivalent to $\mathbb{N} = \mathbb{Z}_+$.

Theorem 2.2. The following statements hold

¹This means the map is both injective and surjective.

- (i) any infinite set contains a countable set;
- (ii) any infinite subset of a countable set is countable;
- (iii) the union of at most countably many countable sets is countable.

Example 2.1. The set of rational numbers is a countable set.

Example 2.2. Consider the set $\mathcal{I} = \{I_{\lambda}\}_{{\lambda} \in \Lambda}$, where I_{λ} are disjoint open intervals in \mathbb{R} . Then \mathcal{I} is finite or countable.

Theorem 2.3. Let A be an infinite set, and B is a countable set. Then $A \sim A \cup B$.

Proof. Let A_1 be a countable subset of A. By (iii) in Theorem 2.2, we have

$$A_1 \cup B \sim A_1$$
.

It follows from Theorem 2.1 that

$$A = (A - A_1) \cup A_1 \sim (A - A_1) \cup (A_1 \cup B) = A \cup B.$$

Example 2.3. The closed interval [0,1] is not countable.

Proof. Suppose $[0,1] = \{a_1, a_2, \dots, a_n, \dots\}$. Then we have a sequence of closed intervals, say I_k , such that

$$I_k \subseteq I_{k-1}$$
 and $a_k \notin I_k$, for all $k = 1, 2, \dots$,

where in particular we take $I_0 = [0,1]$. Clearly $\cap_{k \geq 1} I_k \neq \emptyset$. Take $\xi \in \cap_{k \geq 1} I_k$. But $\xi \neq a_n$ for any n. This shows that $\cap_{k \geq 1} I_k \not\subset [0,1]$, a contradiction.

Definition 2.1. We say A has the cardinality of the continuum if $A \sim [0,1]$.

Proposition 2.1. The set of all real numbers \mathbb{R} has the cardinality of the continuum.

Proof. It is direct to see $\mathbb{R} \sim (0,1) \sim [0,1]$. The last step is due to Theorem 2.3.

We next consider a class of sets whose elements are arrays of infinite length. Given $n \in \mathbb{Z}_+$, let \mathcal{A}_n be the set consisting of elements $\mathbf{a} = \{a_k\}_{k \geq 1}$, where $a_k \in \{0, 1, \dots, n-1\}$.

Proposition 2.2. Let $n \geq 2$. The set A_n has the cardinality of the continuum.

Proof. We shall show that $A_n \sim (0,1]$. For any $x \in (0,1]$, there is a unique $k_1 \in [1,n]$ such that

$$\frac{k_1 - 1}{n} < x \le \frac{k_1}{n}.$$

Let $x_1 = x - \frac{k_1 - 1}{n}$. Then $x_1 \in (0, \frac{1}{n})$. There is a unique $k_2 \in [1, n]$ such that

$$\frac{k_2 - 1}{n^2} < x_1 \le \frac{k_2}{n^2}.$$

Next let $x_2 = x_1 - \frac{k_2-1}{n^2}$. We see that $x_2 \in (0, \frac{1}{n^2})$ and so there is a unique $k_3 \in [1, n]$ such that

$$\frac{k_3 - 1}{n^3} < x_2 \le \frac{k_3}{n^3}.$$

Repeat the above procedure. We obtain a sequence of $k_i \in [1, n]$ (here i = 1, 2, ...) such that if

$$x_i = x_{i-1} - \frac{k_i - 1}{n^i},$$

where in particular $x_0 = x$, then

$$\frac{k_{i+1} - 1}{n^{i+1}} < x_i \le \frac{k_{i+1}}{n^{i+1}}.$$

It thus follows that

$$\sum_{i=1}^{m} \frac{k_i - 1}{n^i} < x \le \sum_{i=1}^{m-1} \frac{k_i - 1}{n^i} + \frac{k_m}{n^m}, \text{ for any } m \ge 1.$$

Let $a_i = k_i - 1$. Sending $m \to \infty$, we infer that

$$(2.1) x = \sum_{i=1}^{\infty} \frac{a_i}{n^i}.$$

This yields a one-to-one mapping f between (0,1] and \mathcal{A}_n , namely

$$f(x) = \{a_1, a_2, \cdots, a_i, \cdots\},\$$

where a_i 's are such that (2.1) holds.

Given a set X, we denote by 2^X the set of all subsets of X.

Proposition 2.3. Set $2^{\mathbb{N}}$ has the cardinality of the continuum.

Proof. Let $A \in 2^{\mathbb{N}}$. Given any $n \geq 1$, we take

$$a_n = \begin{cases} 1, & n \in A, \\ 0, & n \in \mathbb{N} - A. \end{cases}$$

Then $f(A) = \{a_1, a_2, \dots, a_n, \dots\}$ is an one-to-one mapping between $2^{\mathbb{N}}$ and \mathcal{A}_1 , thus completing the proof by Proposition 2.1.

Theorem 2.4. Let $\{X_i\}_{i\geq 1}$ be a collection of sets with $X_i \sim [0,1]$ for all $i \in \mathbb{N}$. Then $X = \prod_{i=1}^{\infty} X_i$ has continuum.

Proof. By Proposition 2.2,

$$X \sim \prod_{i=1}^{\infty} \mathcal{A}_1.$$

Given $x = (x_1, x_2, \dots, x_n, \dots) \in \prod_{i=1}^{\infty} \mathcal{A}_1$, we write $x_i = (x_i^1, x_i^2, \dots, x_i^n, \dots)$. Let us define $y \in \mathcal{A}_1$ by setting

$$y = (x_1^1, x_2^1, x_1^2, x_1^2, x_2^1, x_2^2, x_1^3, \cdots, x_n^1, x_{n-1}^2, \cdots, x_1^n, \cdots).$$

This yields a mapping $f: \prod_{i=1}^{\infty} A_1 \to A_1$, by y = f(x). It is not hard to see that f is one-to-one. Hence

$$X \sim \prod_{i=1}^{\infty} \mathcal{A}_1 \sim \mathcal{A}_1 \sim [0,1].$$

The last relation is due to Proposition 2.2.

As a corollary, \mathbb{R}^n has the cardinality of the continuum.

The cardinalities of sets can be compared. Theorem below is a tool for this.

Theorem 2.5. Let A_0, A_1, A_2 be sets such that

$$A_2 \subset A_1 \subset A_0$$
.

If $A_0 \sim A_2$, then $A_0 \sim A_1$.

Proof. Let $h: A_0 \to A_2$ be a one-to-one mapping. Define, for $n = 1, 2, 3, \ldots$,

$$A_{n+2} = h(A_n) = \begin{cases} h^k(A_1), & \text{if } n = 2k - 1, \\ h^k(A_2), & \text{if } n = 2k. \end{cases}$$

We thus obtain a sequence of sets A_3, A_4, A_5, \dots , which are subsets of A_2 , and

$$A_n \sim A_{n+2}, \ n = 1, 2, 3, \dots$$

Since $A_1 \subset A_0$, we have $A_3 = h(A_1) \subset h(A_0) = A_2$. In general, one can check that $A_{i+1} \subset A_i$, for all $i = 0, 1, 2, \ldots$

Namely $\{A_n\}$ is decreasing. We then take

$$A_{-1} = \bigcap_{n=0}^{\infty} A_n,$$

thus

$$(2.2) A_0 = A_2 \bigcup (A_0 - A_2) = A_4 \bigcup (A_2 - A_4) \bigcup (A_0 - A_2) = \dots = A_{-1} \bigcup_{n=0}^{\infty} (A_{2n} - A_{2n+2}),$$

and similarly

(2.3)
$$A_1 = A_{-1} \bigcup_{n=0}^{\infty} (A_{2n+1} - A_{2n+3}).$$

Since $\{A_n\}$ is decreasing, we obtain $A_{2n+2} - A_{2n+3} = h(A_{2n} - A_{2n+1})$, namely

$$A_{2n+2} - A_{2n+3} \sim A_{2n} - A_{2n+1}, \quad n = 0, 1, 2, \dots$$

It then follows by Theorem 2.1 that

$$A_{2n+1} - A_{2n+3} = (A_{2n+1} - A_{2n+2}) \cup (A_{2n+2} - A_{2n+3})$$

$$\sim (A_{2n+1} - A_{2n+2}) \cup (A_{2n} - A_{2n+1})$$

$$= A_{2n} - A_{2n+2}.$$

Then, using Theorem 2.1, we conclude from (2.2) and (2.3) that

$$A_0 = A_{-1} \bigcup_{n=0}^{\infty} (A_{2n} - A_{2n+2}) \sim A_{-1} \bigcup_{n=0}^{\infty} (A_{2n+1} - A_{2n+3}) = A_1.$$

Given two sets A and B, we say

- Card(A) = Card(B) if $A \sim B$;
- $Card(A) \leq Card(B)$ if A is equivalent to a subset of B;
- $\operatorname{Card}(A) < \operatorname{Card}(B)$ if $\operatorname{Card}(A) \leq \operatorname{Card}(B)$ and $\operatorname{Card}(A) \neq \operatorname{Card}(B)$.

This yields an order for sets.

Theorem 2.6. Let A and B be sets. Then

(i)
$$Card(A) \leq Card(A)$$
;

- (ii) if $Card(A) \leq Card(B)$ and $Card(B) \leq Card(C)$, then $Card(A) \leq Card(C)$;
- (iii) if $Card(A) \leq Card(B)$ and $Card(B) \leq Card(A)$, then Card(A) = Card(B).

Proof. We only prove (iii). By definition, let $B_1 \subset B$ and $A_1 \subset A$ be such that

$$(2.4) A \sim B_1 \text{ and } B \sim A_1$$

Denote by h a one-to-one map from B to A_1 . Using $B_1 \subset B$,

$$B_1 \sim A_2 := h(B_1) \subset A_1$$
.

Hence $A_2 \subset A_1 \subset A$ and $A_2 \sim B_1 \sim A$. By Theorem 2.5, $A_1 \sim A$. By (2.4), $B \sim A$.

By the above comparison principle, we have the following result.

Example 2.4. Let C([0,1]) be the set of all continuous functions on [0,1]. Then C([0,1]) has the cardinality of the continuum.

Proof. Let $f_{\lambda}:[0,1]\to\mathbb{R}$ be the function such that $f_{\lambda}(x)=\lambda$. Clearly

$$(2.5) [0,1] \sim \{f_{\lambda}\}_{0 \leq \lambda \leq 1} \subset C([0,1]) \Longrightarrow \operatorname{Card}([0,1]) \leq \operatorname{Card}(C([0,1])).$$

On the other hand, given a $f \in C([0,1])$, let

$$X = X(f) = (f(r_1), f(r_2), \cdots, f(r_n), \cdots)$$

where $\{r_k\}_{k\geq 1}$ is the set of all rational numbers in [0, 1]. Thus we define a mapping

$$X: C([0,1]) \to \mathbb{R}^{\infty} := \prod_{i=1}^{\infty} R_i$$
, with $R_i = \mathbb{R}$ for all i .

By the continuity, if $f, g \in C([0,1])$ and $f \neq g$, then $X(f) \neq X(g)$. Hence X is injective and so

(2.6)
$$\operatorname{Card}(C([0,1])) \le \operatorname{Card}(\mathbb{R}^{\infty}) = \operatorname{Card}([0,1]).$$

The last equality follows from Theorem 2.4.

In view of Theorem 2.6, we deduce that $C([0,1]) \sim [0,1]$ by (2.5) and (2.6).

Next we show that the cardinality can be "arbitrarily large".

Theorem 2.7. For any set X, there holds $Card(X) < Card(2^X)$.

Proof. Obviously $X \sim \{\{x\}\}_{x \in X} \subset 2^X$. Hence $\operatorname{Card}(X) \leq \operatorname{Card}(2^X)$. For completing the proof, we suppose by contradiction there is a one-to-one map $f: X \to 2^X$. Let

$$X^* = \{ x \in X : \ x \notin f(x) \}.$$

Since X^* is a subset of X, there is a x^* such that $f(x^*) = X^*$.

If $x^* \in f(x^*) = X^*$, then by the definition of X^* we have $x^* \notin X^*$; if $x^* \notin f(x^*) = X^*$, then by the definition again we obtain $x^* \in X^*$; arriving contradictions for both cases.