

Modelos de sistemas dinámicos

Estudiamos ahora los sistemas de control cuando se tiene en cuenta el tiempo, en contraposición al *estado estable*, que es cuando la función de transferencia no cambia en el tiempo. El estudio lo acotamos a los sistemas de primer orden.

Funciones de transferencia de elementos dinámicos.

Dado un sistema basico como el de la figura, de primer órden, representado por la ecuación diferencial:

$$a_1 * d \Theta_0 / d_t + a_0 * \Theta_0 = b_0 * \Theta_t$$

La transformada de Laplace en $\Theta_0=0$; t=0 es: $a_1*s*\Theta_o(s)+a_0*\Theta_0(s)=b_0*\Theta_i(s)$, y la función de transferencia G(s) queda como:

$$G(s)=b_0/(a_1*s+a_0)$$

Si dividimos por a₀ , y reordenamos:

 $G(s)=(b_0/a_0)/((a_1/a_0)*s+1)$, donde podemos identificar $G_{ss}=b_0/a_0$ es la función de transferencia en estado estable, que podemos denominar también como solo "G", para no confundir las "s" de Laplace. Y, por otro lado $\tau=a_1/a_0$. Finalmente nos queda como expresión general:

$$G(s)=G/(\tau*s+1)$$

Es la forma general que adopta la relación *entrada* – *salida* en el dominio de Laplace.

Respuesta a la función escalón.

 $G(s)=G/(\tau*s+1)$ Consideramos el sistema de primer orden cuando la entrada es un función escalón, entonces, la TL (transformada de Laplace) de salida es:

$$G(s)$$
 x TL de la entrada.
 $G/(\tau*s+1)$ x TL de la entrada.
 $G/(\tau*s+1)*1/s$ Dividiendo por Tau
 $G*(1/\tau)/s*(s+1/\tau)$

Esto, en el dominio de Laplace es de la forma a/s*(s+a), donde $a=1/\tau$, por lo tanto, la solución en el dominio del tiempo es: $\Theta_0 = G*(1-e^{(-t/\tau)})$, y generalizando para un escalón de magnitud "A" queda: $\Theta_0 = A*G*(1-e^{(-t/\tau)})$, según grafico de la izquierda.

Respuesta a la función rampa.

Siguiendo el mismo método anterior:

$$G(s)$$
 x TL de la entrada.
 $G/(\tau*s+1)$ x TL de la entrada.
 $G/(\tau*s+1)*1/s^2$ Dividiendo por Tau

$$G*(1/\tau)/s^2*(s+1/\tau)$$

Esto, en el dominio de Laplace es de la forma $a/s^2*(s+a)$, donde $a=1/\tau$, por lo tanto, la solución en el dominio del tiempo es:

 $t-(1-e^{(-a*t)})/a$, y $a=1/\tau$, por lo tanto se puede expresar como:

 $\Theta_0 = G * (t - \tau * (1 - e^{(-t/\tau)}))$, y para una rampa de pendiente A es:

$$\Theta_0 = G * A * (t - \tau * (1 - e^{(-t/\tau)}))$$

Respuesta a la función impulso

Siguiendo el mismo método:

G(s) x TL de la entrada.

 $G/(\tau * s + 1)$ x TL de la entrada.

Para el impulso unitario, en t=0, la TL es 1, entonces

 $G/(\tau *s+1)$ x 1 de la entrada, queda:

$$G/(\tau *s+1)$$

dividiendo por tau:

$$G*(1/\tau)/(s+1/\tau)$$

es de la forma: 1/s+a, por lo tanto:

$$\Theta_0 = G * (1 - \tau) * e^{(-t/\tau)}$$

para un impulso de magnitud A:

$$\Theta_0 = G * A * (1 - \tau) * e^{(-t/\tau)}$$

