CREDIT CARD
FRAUD
DETECTION

ABOUT THE STUDY

The aim of the study is to create a model that can flag Fraudulent transaction

- DATA FROM KAGGLE: <u>Credit Card Fraud Detection | Kaggle</u>
- EDA IN PYTHON
- MODEL DEVELOPMENT IN PYTHON
- PACKAGES USED: numpy, pandas, matplotlib.pyplot ,seaborn,sklearn.preprocessing,sklearn.model_selection,statsmodels.api,sklearn.tree,statsmodels.s tats.outliers_influence,
 - sklearn.ensemble,sklearn.linear_model,sklearn.svm,sklearn.neighbors,sklearn.tree,sklearn.ensemble,collections, sklearn.metrics,sklearn.pipeline,imblearn.pipeline,imblearn.over_sampling,imblearn

THE DATA STRUCTURE

Before correction

- The data was heavily imbalanced: 492 Frauds among 284807 datapoints
- Had around thirty-one variables: thirty of them PCA and rest normal.
- Skewed distributions
- No Null Values or any prominent anomalies.
- Y= 'Class'
 1=FRAUD,0=NON-FRAUD
 ,X= rest of the variables

After correction

- Created a subset of data with 492 Frauds and 492 Non-Frauds.
- Scale Time and Amount to make it normally distributed.
- Use Stratified Kfold to split the original data to train and test
- Created a correlation heatmap on the balanced dataset.
- Run VIF and decision Forrest to identify the most important predictors.

INSIGHTS FROM BALANCED DATA

- By performing EDA of subset-data i.e. New_df, the relation between the variables became more legible.
- The dimension was reduced in different iterations using VIF, Decision Tree and Random Forrest Classification.
- Based on the dimension reduction techniques, the variables
 'Class','V4','V10','V11','V12','V14','V16','V17','V19','V20','V27','scaled_
 amount','scaled_time' are selected for the formulating the model

Model on Balanced Data

Classifier	CROSS VALIDATION SCORE	TESTING SCORE
LogisticRegression	94.0 %	93.90%
KNeighborsClassifier	93.0 %	92.89%
Support Vector Classifier	93.0 %	93.4%
DecisionTreeClassifier	90.0 %	88.83%

Logistic Regression:						
	precision	recall	f1-score	support		
9	0.90 0.97	0.97 0.92	0.93 0.94	87 110		
-	0.97	0.52	0.54	110		
accuracy			0.94	197		
macro avg	0.94	0.94	0.94	197		
weighted avg	0.94	0.94	0.94	197		
KNears Neighb	ors:					
	precision	recall	f1-score	support		
9	0.88	0.97	0.92	87		
1	0.97	0.90	0.93	110		
accuracy			0.93	197		
macro avg	0.93	0.93	0.93	197		
weighted avg	0.93	0.93	0.93	197		
Support Vecto	or Classifier	• :				
	precision		f1-score	support		
8	0.89	0.98	0.93	87		
1	0.98	0.90	0.94	110		
accuracy			0.93	197		
macro avg	0.93	0.94	0.93	197		
weighted avg	0.94	0.93	0.93	197		
Decision tree	classifier:	*				
	precision	recall	f1-score	support		
9	0.89	0.98	0.93	87		
1	0.98	0.90	0.94	110		
accuracy			0.93	197		
macro avg	0.93	0.94	0.93	197		
weighted avg	0.94	0.93	0.93	197		

Model on Balanced Data

- We decided to go with Logistic regression.
- For fitting the model on Original data SMOTE Technique was adopted.
- SMOTE creates synthetic points from the minority class in order to reach an equal balance between the minority and majority class. Location of the synthetic points: SMOTE picks the distance between the closest neighbors of the minority class, in between these distances it creates synthetic points. Final Effect: More information is retained since we didn't have to delete any rows unlike in random under sampling

IMPLEMENTING SMOTE IN LOGISTIC REGRESSION

accuracy: 0.9425100695767785 precision: 0.061068551743605 recall: 0.9162934112301201

f1: 0.11271073613773068

Model is too picky: it flags some genuine transaction if they exhibit some anomaly

labels = ['No Fraud', 'Fraud']
smote_prediction = Log_regg.predict(original_Xtest)
print(classification_report(original_Ytest, smote_prediction, target_names=labels))

	precision	recall	f1-score	support	
No Fraud	1.00	0.99	0.99	56863	
Fraud	0.11	0.85	0.19	98	
accuracy			0.99	56961	
macro avg	0.55	0.92	0.59	56961	
weighted avg	1.00	0.99	0.99	56961	

What did we learn?

- learned how to fix an Imbalance data
- learned about SMOTE.
- learned pick out important predictor variables.

THANK YOU!