DD2370 Computational Methods for Electromagnetics FEM Method in 2D – Interpolation Functions and Assembly Matrix

Stefano Markidis, KTH Royal Institute of Technology

Problem Statement

• Consider the problem of calculating the static electric potential ϕ due to electric charge density ρ_e distributed in domain Ω .

$$-\nabla \cdot (\varepsilon \nabla \varphi) = \rho_e \quad \text{on } \Omega$$

 In addition, φ must satisfy certain boundary conditions to have a unique solution. Typical boundary conditions include the Dirichlet condition and the Neumann condition, which prescribes the normal derivative of the potential.

$$\varphi = \varphi_D$$
 on Γ_D

$$\hat{n} \cdot (\varepsilon \nabla \varphi) = \kappa_N \qquad \text{on } \Gamma_N$$

FEM Formulation

- Divide the entire domain into many small subdomains = finite elements
- Seek an approximate solution in each of the subdomains.
- The commonly used subdomains are triangular elements in two dimensions and tetrahedral elements in three dimensions

Organization of this Lecture

- 1. Formulate our FEM basis functions = interpolation functions
- 2. Use Weighted Residual Method to find the coefficients (weights/amplitude) of of our interpolation

Interpolation Functions in 1D

- *Interpolation functions* which are linear on each interval, one at node *i* and zero at all other nodes.
- We seek approximate solutions that are expanded in the basis functions (in the following, f will denote this approximate solution):

$$f(x) = \sum_{j=1}^{6} f_j \varphi_j(x)$$

Moving to 2D - Potential in Triangle Element

• For example, the **potential in a triangular element** can be approximated as

Here Phi is potential, not the basis function!

$$\varphi^{(e)}(x, y) = a + bx + cy$$

 Applying this equation to each of the three vertices (nodes) of the triangular element yields

$$\varphi_1^{(e)} = a + bx_1^{(e)} + cy_1^{(e)}$$

$$\varphi_2^{(e)} = a + bx_2^{(e)} + cy_2^{(e)}$$

$$\varphi_3^{(e)} = a + bx_3^{(e)} + cy_3^{(e)}$$

Interpolating Functions I

Solving equations for a, b and c

$$\varphi_1^{(e)} = a + bx_1^{(e)} + cy_1^{(e)}$$

$$\varphi_2^{(e)} = a + bx_2^{(e)} + cy_2^{(e)}$$

$$\boldsymbol{\varphi}_{3}^{(e)} = a + bx_{3}^{(e)} + cy_{3}^{(e)}$$

$$\boldsymbol{\varphi}^{(e)}(x, y) = a + bx + cy$$

$$N_l^{(e)}(x, y) = \frac{1}{2\Delta^{(e)}} (a_l^{(e)} + b_l^{(e)} x + c_l^{(e)} y)$$
$$\Delta^{(e)} = \frac{1}{2} (b_1^{(e)} c_2^{(e)} - b_2^{(e)} c_1^{(e)})$$

Interpolation functions are going to be our basis functions!

Interpolating Functions II

- The interpolation functions, are completely determined by the coordinates of the three nodes
- It can be shown that the interpolation functions so derived have the following property

$$N_l^{(e)}(x_k^{(e)}, y_k^{(e)}) = \begin{cases} 1 & l = k \\ 0 & l \neq k \end{cases}$$

continuity on the interpolation on the node

$$N_l^{(e)}(x, y) = \frac{1}{2\Delta^{(e)}} (a_l^{(e)} + b_l^{(e)} x + c_l^{(e)} y)$$

$$a_{1}^{(e)} = x_{2}^{(e)} y_{3}^{(e)} - x_{3}^{(e)} y_{2}^{(e)}, \qquad b_{1}^{(e)} = y_{2}^{(e)} - y_{3}^{(e)}, \qquad c_{1}^{(e)} = x_{3}^{(e)} - x_{2}^{(e)}$$

$$a_{2}^{(e)} = x_{3}^{(e)} y_{1}^{(e)} - x_{1}^{(e)} y_{3}^{(e)}, \qquad b_{2}^{(e)} = y_{3}^{(e)} - y_{1}^{(e)}, \qquad c_{2}^{(e)} = x_{1}^{(e)} - x_{3}^{(e)}$$

$$a_{3}^{(e)} = x_{1}^{(e)} y_{2}^{(e)} - x_{2}^{(e)} y_{1}^{(e)}, \qquad b_{3}^{(e)} = y_{1}^{(e)} - y_{2}^{(e)}, \qquad c_{3}^{(e)} = x_{2}^{(e)} - x_{1}^{(e)}$$

$$\Delta^{(e)} = \frac{1}{2} (b_1^{(e)} c_2^{(e)} - b_2^{(e)} c_1^{(e)})$$

Also this is equivalent to area of the element, see textbook

Find Potential over the Domain

• When the potential in each element is interpolated using its values at the nodes, the potential in the entire domain can be expressed as

$$\boldsymbol{\varphi} = \sum_{j=1}^{N} N_j \boldsymbol{\varphi}_j + \sum_{j=1}^{N_D} N_j^D \boldsymbol{\varphi}_j^D$$

- N denotes the total number of nodes at which the potential is unknown, and N_D denotes the number of nodes on Γ_D where the potential is given.
- ϕ_j denotes the value of the potential (our unknown) at node j and N_j is the corresponding interpolation or basis function; ϕ_j^D and N_j^D denote the corresponding quantities associated with Γ_D .

Interpolation Functions III

- ϕ_j denotes the value of the potential at node j and N_j is the corresponding interpolation or basis function
- This interpolation function comprises the interpolation functions in all the elements that are directly connected to the associated node

Until now it was only about picking it up the FEM functions!

Let's apply the Weighted Residual Method to the Poisson Equation

Inner Product with Test Functions

$$-\int_{\Omega} w_i \left[\nabla \cdot (\varepsilon \nabla \varphi)\right] d\Omega = \int_{\Omega} w_i \rho_e \, d\Omega$$
 Vector identity
$$w_i \left[\nabla \cdot (\varepsilon \nabla \varphi)\right] = \nabla \cdot (w_i \varepsilon \nabla \varphi) - \varepsilon \nabla \varphi \cdot \nabla w_i$$

Gauss Theorem

$$\int_{\Omega} \nabla \cdot (w_i \varepsilon \nabla \varphi) d\Omega = \oint_{\Gamma} \hat{n} \cdot (w_i \varepsilon \nabla \varphi) d\Gamma$$

$$\begin{split} \int_{\Omega} \boldsymbol{\varepsilon} \nabla w_i \cdot \nabla \boldsymbol{\varphi} \, d\Omega &= \int_{\Omega} w_i \rho_e \, d\Omega + \oint_{\Gamma} \hat{\boldsymbol{n}} \cdot (\boldsymbol{\varepsilon} \nabla \boldsymbol{\varphi}) w_i \, d\Gamma \\ &\qquad \qquad \hat{\boldsymbol{n}} \cdot (\boldsymbol{\varepsilon} \nabla \boldsymbol{\varphi}) = \kappa_N \qquad \text{on } \Gamma_N \end{split}$$

Weak-Form Representation

The corresponding solution is called the weak- form solution, which satisfies our Eqs. in the <u>weighted</u> <u>average sense</u>

Galerkin Method

• Using Galerkin's method, we choose

$$w_i = N_i$$
 $i = 1, 2, ..., N$

• where N_i is the interpolation function associated with unknown ϕ_i

$$\begin{split} w_i &= N_i \qquad i = 1, 2, \dots, N \\ \int_{\Omega} \varepsilon \nabla w_i \cdot \nabla \varphi \, d\Omega &= \int_{\Omega} w_i \rho_e \, d\Omega + \int_{\Gamma_D} \hat{n} \cdot (\varepsilon \nabla \varphi) w_i \, d\Gamma + \int_{\Gamma_N} \kappa_N w_i \, d\Gamma . \\ & = \sum_{j=1}^N \varphi_j \int_{\Omega} \varepsilon \nabla N_i \cdot \nabla N_j \, d\Omega = \int_{\Omega} \rho_e N_i \, d\Omega + \int_{\Gamma_N} \kappa_N N_i \, d\Gamma - \sum_{j=1}^{N_D} \varphi_j^D \int_{\Omega} \varepsilon \nabla N_i \cdot \nabla N_j^D \, d\Omega \end{split}$$

$$\varphi &= \sum_{i=1}^N N_j \varphi_j + \sum_{i=1}^{N_D} N_j^D \varphi_j^D$$

Our Linear System to Solve

$$\sum_{j=1}^{N} \varphi_{j} \int_{\Omega} \varepsilon \nabla N_{i} \cdot \nabla N_{j} d\Omega = \int_{\Omega} \rho_{e} N_{i} d\Omega + \int_{\Gamma_{N}} \kappa_{N} N_{i} d\Gamma - \sum_{j=1}^{N_{D}} \varphi_{j}^{D} \int_{\Omega} \varepsilon \nabla N_{i} \cdot \nabla N_{j}^{D} d\Omega$$

$$\sum_{i=1}^{N} K_{ij} \varphi_{j} = b_{i} \qquad i = 1, 2, ..., N$$

$$K_{ij} = \int_{\Omega} \varepsilon \nabla N_i \cdot \nabla N_j \, d\Omega$$

$$K_{ij} = \int_{\Omega} \varepsilon \nabla N_i \cdot \nabla N_j \, d\Omega \qquad \qquad b_i = \int_{\Omega} \rho_e N_i \, d\Omega + \int_{\Gamma_N} \kappa_N N_i \, d\Gamma - \sum_{i=1}^{N_D} \varphi_j^D \int_{\Omega} \varepsilon \nabla N_i \cdot \nabla N_j^D \, d\Omega$$

$$[K]\{\varphi\} = \{b\}$$

Matrix Entry = Sum Over Elements

ullet In the actual implementation of the finite element method, we rewrite K_{ij} as

$$K_{ij} = \int_{\Omega} \varepsilon \nabla N_i \cdot \nabla N_j \, d\Omega$$

$$K_{ij} = \sum_{e=1}^{M} \int_{\Omega^{(e)}} \varepsilon \nabla N_i \cdot \nabla N_j \, d\Omega$$

• where $\Omega(e)$ denotes the domain of element e and M denotes the total number of elements in Ω .

Assembly of Matrix K

$$K_{ij} = \sum_{e=1}^{M} \int_{\Omega^{(e)}} \varepsilon \nabla N_i \cdot \nabla N_j \, d\Omega$$

- We can process elements one by one and calculate the contribution of each element to K.
 - This process is called assembly.

Connectivity Array/Matrix

- To facilitate the assembly we define a connectivity array for each finite element mesh
 - the relation between the element numbers and the node numbers.
 - This connectivity array can be defined as n(3,e) where e = 1, 2, . . . , M
 - The value of n(1,e) is assigned as the node number of the first node in element e
 - n (2, e) the node number of the second node in element e

• ...

Connectivity Array/Matrix

We number both element and nodes

e	n(1, e)	n(2, e)	n(3, e)
1	1	4	3
2	4	7	3
3	3	7	6
4	7	9	6
5	2	4	1
6	2	5	4
7	5	7	4
8	5	8	7
9	7	8	9

- The numbering in this connectivity array is not **unique**. For instance, the nodes in the first element can be numbered as 4, 3, 1 or 3, 1, 4.
- Numbering does not affect the result as long as the nodes are numbered counterclockwise

 $\Delta^{(e)} = \frac{1}{2} (b_1^{(e)} c_2^{(e)} - b_2^{(e)} c_1^{(e)}) > 0$

What "Meshing" means in FEM Methods?

- 1. Build connectivity matrix
 - element index → node global indices
- 2. Build a node to coordinate matrix
 - node global index → coordinate
- Remember we need coordinate points for creating interpolation functions!
- We provide a 2D mesh for your assignment: check these structures

Assuming that i = n(l,e) and j = n(k,e)

Only the elements that are connected to nodes i and j have non-trivial contributions to the value of Kii

where I, k = 1, 2, 3

$$K_{ij} = \sum_{\Omega^{(e)}}^{M} \mathcal{E} \nabla N_i \cdot \nabla N_j \, d\Omega \quad \longrightarrow \quad$$

$$K_{ij} = \sum_{e=1}^{M} \int_{\Omega^{(e)}} \varepsilon \nabla N_{l}^{(e)} \cdot \nabla N_{k}^{(e)} d\Omega$$

$$K_{ij} = \sum_{e=1}^{M} \int_{\Omega^{(e)}} \varepsilon \nabla N_i \cdot \nabla N_j \, d\Omega \qquad \qquad K_{ij} = \sum_{e=1}^{M} \int_{\Omega^{(e)}} \varepsilon \nabla N_l^{(e)} \cdot \nabla N_k^{(e)} d\Omega \qquad \longrightarrow \qquad K_{lk}^{(e)} = \int_{\Omega^{(e)}} \varepsilon \nabla N_l^{(e)} \cdot \nabla N_k^{(e)} d\Omega$$

Once each K_{lk} is calculated, it is added to K_{ii} where the values of i and j are given by i=n(l,e) and j=n(k,e)

Integral to be Evaluated

The integral can be evaluated either numerically or analytically

$$K_{lk}^{(e)} = \int_{\Omega^{(e)}} \varepsilon \nabla N_l^{(e)} \cdot \nabla N_k^{(e)} d\Omega$$