

AM

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification⁶ : C07K 14/705, C12N 15/12, 15/63, 15/70, 15/79		A1	(11) International Publication Number: WO 99/48921 (43) International Publication Date: 30 September 1999 (30.09.99)
(21) International Application Number: PCT US99 06573		(81) Designated States: JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 25 March 1999 (25.03.99)		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(30) Priority Data: 60/079,501 26 March 1998 (26.03.98) US			
(71) Applicants (for all designated States except US): THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY [US/US]; Suite 350, 900 Welch Road, Palo Alto, CA 94304 (US). N.V. ORGANON [NL/NL]; Weth, Van Eschstraat 1, P.O. Box 20, NL-5340 BH Oss (NL).			
(72) Inventors; and			
(75) Inventors/Applicants (for US only): HSUEH, Aaron, J., W. [US/US]; 25 Ryan Court, Stanford, CA 94305 (US). HSU, Sheau, Yu [-/US]; Apartment 40, 234 Escuela Avenue, Mountain View, CA 94040 (US). LIANG, Shan-Guang [CN/US]; 438 Ventura Avenue #9, Palo Alto, CA 94306 (US). VAN DER SPEK, Petrus, Johannes [NL/NL]; Bremelaan 10, NL-5342 HM Oss (NL).			
(74) Agent: FIELD, Bret, E.; Bozicevic, Field & Francis LLP, Suite 200, 285 Hamilton Avenue, Palo Alto, CA 94301 (US).			

(54) Title: NOVEL MAMMALIAN G-PROTEIN COUPLED RECEPTORS HAVING EXTRACELLULAR LEUCINE RICH REPEAT REGIONS

(57) Abstract

Isolated nucleotide compositions and sequences are provided for LGR4, LGR5 and LGR7 genes. The nucleic acid compositions find use in identifying homologous or related genes; in identifying endogenous ligands for these receptors; in producing compositions that modulate the expression or function of its encoded protein; for gene therapy; mapping functional regions of the protein; and in studying associated physiological pathways. In addition, modulation of the gene activity *in vivo* is used for prophylactic and therapeutic purposes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

NOVEL MAMMALIAN G-PROTEIN COUPLED RECEPTORS HAVING EXTRACELLULAR LEUCINE RICH REPEAT REGIONS

INTRODUCTION

5 Field of the Invention

The field of this invention is the G-protein coupled receptor family of proteins.

Background

Gonadotropins (Luteinizing hormone, LH; follicle stimulating hormone, FSH; chorionic gonadotropin, CG) and thyrotropin (TSH)) are essential for the growth and 10 differentiation of gonads and thyroid gland, respectively. These glycoprotein hormones bind specific target cell receptors on the plasma membrane to activate the cAMP-protein kinase A pathway.

The receptors for LH, FSH and TSH belong to the large G-protein-coupled, seven-trans-membrane protein family but are unique in having a large N-terminal extra-cellular 15 (ecto-) domain containing leucine-rich repeats important for interaction with large glycoprotein ligands. Studies suggest that in these receptors, the extra-cellular leucine rich repeat region serves as a "baseball glove" which efficiently catches its corresponding large hormone ligand and optimally orients it for interaction with the seven trans-membrane-helical domain of the receptor.

20 Because hormones and receptors play a prominent role in a variety of physiological processes, there is continued interest in the identification of novel receptors and their ligands, as well as the genes encoding the same.

Relevant Literature

References of interest include: el Tayar, N., "Advances in the Molecular 25 Understanding of Gonadotropins-Receptors Interactions," Mol. Cell. Endocrinol. (December 20, 1996) 125: 65-70; Bhowmick et al., "Determination of Residues Important in Hormone Binding to the Extracellular Domain of the Luteinizing Hormone/Chorionic Gonadotropin Receptor by Site-Directed Mutagenesis and Modeling," Mol. Endocrinol. (September 1996) 10: 1147-1159; Thomas et al., "Mutational Analyses of the 30 Extracellular Domain of the Full-Length Lutropin/Choriogonadotropin Receptor Suggest Leucine-Rich Repeats 1-6 are Involved in Hormone Binding," Mol. Endocrinol. (June 1996) 10:760-768; Segaloff & Ascoli, "The Gonadotropin Receptors: Insights from the

Cloning of their cDNAs." Oxf. Rev. Reprod. Biol. (1992) 14: 141-168; Braun et al., "Amino-Terminal Leucine-Rich Repeats in Gonadotropin Receptors Determine Hormone Selectivity," EMBO J (July 1991) 10: 1885-1890; and Segaloff et al., "Structure of the Lutropin/Choriogonadotropin Receptor," Recent Prog. Horm. Res. (1990) 46: 261-301.

5

SUMMARY OF THE INVENTION

Three novel mammalian G-protein coupled receptors having extra-cellular leucine rich repeat domains, i.e. LGR4, LGR5 and LGR7, and polypeptide compositions related thereto, as well as nucleotide compositions encoding the same, are provided. The subject 10 proteins, polypeptide and nucleic acid compositions find use in a variety of different applications, including the identification of homologous or related genes; the production of compositions that modulate the expression or function of the subject proteins; in the identification of endogenous ligands for the subject orphan receptors; in the generation of functional binding proteins for the neutralization of the actions of endogenous ligands; in 15 gene therapy; in mapping functional regions of the protein; and in studying associated physiological pathways. In addition, modulation of the gene activity *in vivo* is used for prophylactic and therapeutic purposes, and the like.

BRIEF DESCRIPTION OF THE FIGURES

- 20 Fig. 1 provides the nucleotide and amino acid sequence for human LGR4.
Fig. 2 provides the nucleotide and amino acid sequence for human LGR5.
Fig. 3 provides the nucleotide and amino acid sequence for human LGR7, long form.
Fig. 4 provides the nucleotide and amino acid sequence for human LGR7, short 25 form.
Fig. 5 provides an alignment comparison of the long and short forms of LGR7.
Figs. 6 provides a comparison of deduced amino acid sequence of LGR4 and 5 cDNAs and those encoding FSH and LH receptors.

30

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Novel mammalian G-protein coupled receptors having extra-cellular leucine rich repeat regions (i.e. LGR4, LGR5 and LGR7) and polypeptide compositions related thereto, as well as nucleic acid compositions encoding the same, are provided. The 5 subject polypeptide and/or nucleic acid compositions find use in a variety of different applications, including the identification of homologous or related genes; for the identification of endogenous ligands for these novel receptors; the production of compositions that modulate the expression or function of the receptors; for gene therapy; for mapping functional regions of the receptors; in studying associated physiological 10 pathways; for *in vivo* prophylactic and therapeutic purposes; as immunogens for producing antibodies; in screening for biologically active agents; and the like.

Before the subject invention is further described, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as 15 variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.

20 In this specification and the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.

25 CHARACTERIZATION OF LGR4, LGR5 AND LGR7

LGR4, LGR5 and LGR7 are novel mammalian receptors of the G-protein coupled, seven trans-membrane family of proteins, specifically the subfamily of G-protein coupled seven trans-membrane proteins which are characterized by the presence of extra-cellular leucine rich repeat regions. As such, these proteins have trans-membrane segments and 30 extra-cellular regions similar to those found in the known LH, FSH, and TSH receptors. In other words, these proteins have both a G-protein coupled seven trans-membrane region

and a leucine rich repeat extra-cellular domain. The N-terminal extra-cellular domains of these proteins also show high homology with Drosophila Slit and Toll proteins having leucine rich repeats. These proteins are expressed in diverse tissues.

- The human LGR4 gene has a nucleotide sequence as shown in SEQ ID NO:01.
- 5 The human LGR4 gene product has an amino acid sequence as shown in SEQ ID NO:02. LGR4 is expressed in a plurality of different tissue types, including ovary, testis, adrenal, placenta, liver, kidney and intestine.

The human LGR5 gene has a nucleotide sequence as shown in SEQ ID NO:03. The LGR5 gene product has an amino acid sequence as shown in SEQ ID NO:04. LGR5
10 has been found to be mainly expressed in muscle, placenta and spinal cord tissue.

The human LGR7 gene encodes multiple splicing variants, each of which contains a multitude of cysteine-rich low density lipoprotein (LDL) binding motifs at the N-terminus in addition to the leucine rich repeat region. The longer forms of LGR-7 have a higher similarity than shorter forms of LGR-7 to snail LGR in the trans-membrane domain
15 and the N-terminal LDL binding domain. The overall structure of both the long and short forms of LGR-7 is similar to that of the LH receptor. The human LGR7 short form gene has a nucleotide sequence as shown in SEQ ID NO:05. The LGR7 short form gene product has an amino acid sequence as shown in SEQ ID NO:06. The human LGR7 long form gene has a nucleotide sequence as shown in SEQ ID NO:07. The LGR7 long form
20 gene product has an amino acid sequence as shown in SEQ ID NO:08. LGR7 is expressed in multiple tissues, including testis, ovary, prostate, intestine and colon.

IDENTIFICATION OF *LGR4*, *LGR5* AND *LGR7* SEQUENCES

Homologs of *LGR4*, *LGR5* and *LGR7* are identified by any of a number of methods. A fragment of the provided cDNA may be used as a hybridization probe against
25 a cDNA library from the target organism of interest, where low stringency conditions are used. The probe may be a large fragment, or one or more short degenerate primers.

Nucleic acids having sequence similarity are detected by hybridization under low stringency conditions, for example, at 50°C and 6×SSC (0.9 M sodium chloride/0.09 M
30 sodium citrate) and remain bound when subjected to washing at 55°C in 1×SSC (0.15 M sodium chloride/0.015 M sodium citrate). Sequence identity may be determined by

hybridization under stringent conditions, for example, at 50°C or higher and 0.1×SSC (15 mM sodium chloride/01.5 mM sodium citrate). Nucleic acids having a region of substantial identity to the provided *LGR4*, *LGR5* and/or *LGR7* sequences, e.g. allelic variants, genetically altered versions of the gene, etc., bind to the provided sequences under stringent hybridization conditions. By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes. The source of homologous genes may be any species, e.g., primate species, particularly human; rodents, such as rats and mice; canines; felines; bovines; ovines; equines; yeast; nematodes; etc.

Between mammalian species, e.g., human and mouse, homologs have substantial sequence similarity, e.g. at least 75% sequence identity, usually at least 90%, more usually at least 95% between nucleotide sequences. Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, flanking region, etc. A reference sequence will usually be at least about 18 nt long, more usually at least about 30 nt long, and may extend to the complete sequence that is being compared. Algorithms for sequence analysis are known in the art, such as BLAST, described in Altschul *et al.* (1990), *J. Mol. Biol.* **215**:403-10. Unless specified otherwise, all sequence analysis numbers provided herein are as determined with the BLAST program using default settings. The sequences provided herein are essential for recognizing *LGR4*, *LGR5* and *LGR7*-related and homologous proteins in database searches.

LGR4, *LGR5* and *LGR7* NUCLEIC ACID COMPOSITIONS

Nucleic acids encoding *LGR4*, *LGR5* and *LGR7* may be cDNA or genomic DNA or a fragment thereof. The terms “*LGR4* gene,” “*LGR5* gene” and “*LGR7* gene” shall be intended to mean the open reading frame encoding specific *LGR4*, *LGR5* and *LGR7* polypeptides, and *LGR4*, *LGR5* and *LGR7* introns, as well as adjacent 5' and 3' non-coding nucleotide sequences involved in the regulation of expression, up to about 20 kb beyond the coding region, but possibly further in either direction. The gene may be introduced into an appropriate vector for extra-chromosomal maintenance or for integration into a host genome.

The term "cDNA" as used herein is intended to include all nucleic acids that share the arrangement of sequence elements found in native mature mRNA species, where sequence elements are exons and 3' and 5' non-coding regions. Normally mRNA species have contiguous exons, with the intervening introns, when present, removed by nuclear RNA splicing, to create a continuous open reading frame encoding an LGR4, LGR5 and LGR7 protein.

A genomic sequence of interest comprises the nucleic acid present between the initiation codon and the stop codon, as defined in the listed sequences, including all of the introns that are normally present in a native chromosome. It may further include the 3' and 5' untranslated regions found in the mature mRNA. It may further include specific transcriptional and translational regulatory sequences, such as promoters, enhancers, etc., including about 1 kb, but possibly more, of flanking genomic DNA at either the 5' or 3' end of the transcribed region. The genomic DNA may be isolated as a fragment of 100 kbp or smaller; and substantially free of flanking chromosomal sequence. The genomic DNA flanking the coding region, either 3' or 5', or internal regulatory sequences as sometimes found in introns, contains sequences required for proper tissue and stage specific expression.

The sequence of the 5' flanking region may be utilized for promoter elements, including enhancer binding sites, that provide for developmental regulation in tissues where *LGR4*, *LGR5* and/or *LGR7* is expressed. The tissue specific expression is useful for determining the pattern of expression, and for providing promoters that mimic the native pattern of expression. Naturally occurring polymorphisms in the promoter region are useful for determining natural variations in expression, particularly those that may be associated with disease.

Alternatively, mutations may be introduced into the promoter region to determine the effect of altering expression in experimentally defined systems. Methods for the identification of specific DNA motifs involved in the binding of transcriptional factors are known in the art, e.g. sequence similarity to known binding motifs, gel retardation studies, etc. For examples, see Blackwell *et al.* (1995), *Mol. Med.* **1**:194-205; Mortlock *et al.* (1996), *Genome Res.* **6**:327-33; and Joulin and Richard-Foy (1995), *Eur. J. Biochem.* **232**:620-626.

The regulatory sequences may be used to identify *cis* acting sequences required for transcriptional or translational regulation of *LGR4*, *LGR5* and/or *LGR7* expression, especially in different tissues or stages of development, and to identify *cis* acting sequences and *trans*-acting factors that regulate or mediate *LGR4*, *LGR* and/or *LGR7* expression. Such transcription or translational control regions may be operably linked to an *LGR4*, *LGR5* or *LGR7* gene in order to promote expression of wild type or altered *LGR4*, *LGR5* or *LGR7* or other proteins of interest in cultured cells, or in embryonic, fetal or adult tissues, and for gene therapy.

The nucleic acid compositions of the subject invention may encode all or a part of the subject polypeptides. Double or single stranded fragments may be obtained of the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, etc. For the most part, DNA fragments will be of at least 15 nt, usually at least 18 nt or 25 nt, and may be at least about 50 nt. Such small DNA fragments are useful as primers for PCR, hybridization screening probes, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide. For use in amplification reactions, such as PCR, a pair of primers will be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art. It is preferable to choose a pair of primers that will generate an amplification product of at least about 50 nt, preferably at least about 100 nt. Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages. Amplification primers hybridize to complementary strands of DNA, and will prime towards each other.

The *LGR4*, *LGR* and *LGR7* genes are isolated and obtained in substantial purity, generally as other than an intact chromosome. Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include an *LGR4*, *LGR5* or *LGR7* sequence or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant", i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

The DNA may also be used to identify expression of the gene in a biological specimen. The manner in which one probes cells for the presence of particular nucleotide

sequences, as genomic DNA or RNA, is well established in the literature and does not require elaboration here. DNA or mRNA is isolated from a cell sample. The mRNA may be amplified by RT-PCR, using reverse transcriptase to form a complementary DNA strand, followed by polymerase chain reaction amplification using primers specific for the subject DNA sequences. Alternatively, the mRNA sample is separated by gel electrophoresis, transferred to a suitable support, *e.g.* nitrocellulose, nylon, *etc.*, and then probed with a fragment of the subject DNA as a probe. Other techniques, such as oligonucleotide ligation assays, *in situ* hybridizations, and hybridization to DNA probes arrayed on a solid chip may also find use. Detection of mRNA hybridizing to the subject sequence is indicative of *LGR4*, *LGR5* and/or *LGR7* gene expression in the sample.

The sequence of an *LGR4*, *LGR5* or *LGR7* gene, including flanking promoter regions and coding regions, may be mutated in various ways known in the art to generate targeted changes in promoter strength, sequence of the encoded protein, *etc.* The DNA sequence or protein product of such a mutation will usually be substantially similar to the sequences provided herein, *i.e.* will differ by at least one nucleotide or amino acid, respectively, and may differ by at least two but not more than about ten nucleotides or amino acids. The sequence changes may be substitutions, insertions, deletions, or a combination thereof. Deletions may further include larger changes, such as deletions of a domain or exon. Other modifications of interest include epitope tagging, *e.g.* with the FLAG system, HA, *etc.* For studies of subcellular localization, fusion proteins with green fluorescent proteins (GFP) may be used.

Techniques for *in vitro* mutagenesis of cloned genes are known. Examples of protocols for site specific mutagenesis may be found in Gustin *et al.* (1993), *Biotechniques* **14**:22; Barany (1985), *Gene* **37**:111-23; Colicelli *et al.* (1985), *Mol. Gen. Genet.* **199**:537-9; and Prentki *et al.* (1984), *Gene* **29**:303-13. Methods for site specific mutagenesis can be found in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, CSH Press 1989, pp. 15.3-15.108; Weiner *et al.* (1993), *Gene* **126**:35-41; Sayers *et al.* (1992), *Biotechniques* **13**:592-6; Jones and Winistorfer (1992), *Biotechniques* **12**:528-30; Barton *et al.* (1990), *Nucleic Acids Res* **18**:7349-55; Marotti and Tomich (1989), *Gene Anal. Tech.* **6**:67-70; and Zhu (1989), *Anal Biochem* **177**:120-4. Such mutated genes may

be used to study structure-function relationships of LGR4, LGR5 and/or LGR7, or to alter properties of the protein that affect its function or regulation.

LGR4, LGR5 and LGR7 POLYPEPTIDES

5 Also provided by the subject invention are LGR4, LGR5 and LGR7 polypeptide compositions. The term polypeptide composition as used herein refers to both the full length proteins as well as portions or fragments thereof. Also included in this term are variations of the naturally occurring proteins, where such variations are homologous or substantially similar to the naturally occurring protein, be the naturally occurring protein
10 the ~~human protein, mouse protein, or protein from some other species which naturally~~ expresses an LGR4, LGR5 or LGR7 protein, usually a mammalian species. A candidate homologous protein is substantially similar to an LGR4, LGR5 or LGR7 protein of the subject invention, and therefore is an LGR4, LGR5 or LGR7 protein of the subject invention, if the candidate protein has a sequence that has at least about 80%, usually at
15 least about 90% and more usually at least about 98% sequence identity with an LGR4, LGR5 or LGR7 protein, as measured by BLAST, supra. In the following description of the subject invention, the term "LGR4, LGR5 or LGR7-protein" is used to refer not only to the human LGR4, LGR5 or LGR7 protein, but also to homologs thereof expressed in non-human species, e.g. murine, rat and other mammalian species.

20 The subject gene may be employed for producing all or portions of LGR4, LGR5 and LGR7 polypeptides. By "LGR4 polypeptide/protein", "LGR5 polypeptide/protein," and "LGR7 polypeptide/protein" is meant an amino acid sequence encoded by an open reading frame (ORF) of *LGR4*, *LGR5* and *LGR7* genes, including the full-length native polypeptide and fragments thereof, particularly biologically active fragments and/or
25 fragments corresponding to functional domains, e.g. extra-cellular regions; and including fusions of the subject polypeptides to other proteins or parts thereof, e.g. chimeric proteins. For expression, an expression cassette may be employed. The expression vector will provide a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control
30 of the transcriptional initiation region, and a transcriptional and translational termination

region. These control regions may be native to an *LGR4*, *LGR5* or *LGR7* gene, or may be derived from exogenous sources.

Expression vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences encoding

- 5 heterologous proteins. A selectable marker operative in the expression host may be present. Expression vectors may be used for the production of fusion proteins, where the exogenous fusion peptide provides additional functionality, i.e. increased protein synthesis, stability, reactivity with defined antisera, an enzyme marker, e.g. β -galactosidase, etc.

- 10 Expression cassettes may be prepared comprising a transcription initiation region, the gene or fragment thereof, and a transcriptional termination region. Of particular interest is the use of sequences that allow for the expression of functional epitopes or domains, usually at least about 8 amino acids in length, more usually at least about 15 amino acids in length, to about 25 amino acids, and up to the complete open reading frame
15 of the gene. After introduction of the DNA, the cells containing the construct may be selected by means of a selectable marker, the cells expanded and then used for expression.

LGR4, *LGR5* or *LGR7* polypeptides may be expressed in prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. For large scale production of the protein, a unicellular organism, such as *E.*

- 20 *coli*, *B. subtilis*, *S. cerevisiae*, insect cells in combination with baculovirus vectors, or cells of a higher organism such as vertebrates, particularly mammals, e.g. COS 7 cells, may be used as the expression host cells. In some situations, it is desirable to express the *LGR4*, *LGR5* or *LGR7* gene in eukaryotic cells, where the *LGR4*, *LGR5* or *LGR7* protein will benefit from native folding and post-translational modifications. Small peptides can also
25 be synthesized in the laboratory. Polypeptides that are subsets of the complete *LGR4*, *LGR5* or *LGR7* sequence may be used to identify and investigate parts of the protein important for function or to raise antibodies directed against these regions.

- For production of the extracellular domain of the *LGR4*, *LGR5* or *LGR7* receptor, the anchored receptor approach as described in Osuga et al, Mol. Endocrinol. (1997) 11: 30 1659-1668 may be employed. Likewise, the chimeric receptor approach described in Kudo et al. J Biol. Chem. (1996) 271: 22470-22478 may be used.

Such peptides find use in the identification of endogenous ligands and in drug screening for agonists and antagonists using methods described in Osuga, *supra*. Solubilized extracellular domains find use as therapeutic agents, e.g. in the neutralization of the action of endogenous ligands.

5 With the availability of the protein or fragments thereof in large amounts, by employing an expression host, the protein may be isolated and purified in accordance with conventional ways. A lysate may be prepared of the expression host and the lysate purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, or other purification technique. The purified protein will generally be at
10 least about 80% pure, preferably at least about 90% pure, and may be up to and including 100% pure. Pure is intended to mean free of other proteins, as well as cellular debris.

The expressed LGR4, LGR5 and LGR7 polypeptides are useful for the production of antibodies, where short fragments provide for antibodies specific for the particular polypeptide, and larger fragments or the entire protein allow for the production of
15 antibodies over the surface of the polypeptide. Antibodies may be raised to the wild-type or variant forms of LGR4, LGR5 or LGR7. Antibodies may be raised to isolated peptides corresponding to these domains, or to the native protein.

Antibodies are prepared in accordance with conventional ways, where the expressed polypeptide or protein is used as an immunogen, by itself or conjugated to
20 known immunogenic carriers, e.g. KLH, pre-S HBsAg, other viral or eukaryotic proteins, or the like. Various adjuvants may be employed, with a series of injections, as appropriate. Both polyclonal and monoclonal antibodies may be produced. For monoclonal antibodies, after one or more booster injections, the spleen is isolated, the lymphocytes immortalized by cell fusion, and then screened for high affinity antibody
25 binding. The immortalized cells, *i.e.* hybridomas, producing the desired antibodies may then be expanded. For further description, see Monoclonal Antibodies: A Laboratory Manual, Harlow and Lane eds., Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, 1988. If desired, the mRNA encoding the heavy and light chains may be isolated and mutagenized by cloning in *E. coli*, and the heavy and light chains mixed to
30 further enhance the affinity of the antibody. Alternatives to *in vivo* immunization as a

method of raising antibodies include binding to phage "display" libraries, usually in conjunction with *in vitro* affinity maturation.

DIAGNOSTIC USES

5 The subject nucleic acid and/or polypeptide compositions may be used to analyze a patient sample for the presence of polymorphisms associated with a disease state or genetic predisposition to a disease state. Biochemical studies may be performed to determine whether a sequence polymorphism in an *LGR4*, *LGR5* or *LGR7* coding region or control regions is associated with disease. Disease associated polymorphisms may include
10 deletion or truncation of the gene, mutations that alter expression level, that affect the activity of the protein, and the like.

Changes in the promoter or enhancer sequence that may affect expression levels of *LGR4*, *LGR5* or *LGR7* can be compared to expression levels of the normal allele by various methods known in the art. Methods for determining promoter or enhancer
15 strength include quantitation of the expressed natural protein; insertion of the variant control element into a vector with a reporter gene such as β -galactosidase, luciferase, chloramphenicol acetyltransferase, etc., that provides for convenient quantitation; and the like.

A number of methods are available for analyzing nucleic acids for the presence of
20 a specific sequence, e.g. a disease associated polymorphism. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. Cells that express *LGR4*, *LGR5* or *LGR7* may be used as a source of mRNA, which may be assayed directly or reverse transcribed into cDNA for analysis. The nucleic acid may be amplified
25 by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki, *et al.* (1985), *Science* 239:487, and a review of techniques may be found in Sambrook, *et al.* Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2–
14.33. Alternatively, various methods are known in the art that utilize oligonucleotide
30 ligation as a means of detecting polymorphisms, for examples see Riley *et al.* (1990),

Nucl. Acids Res. **18**:2887-2890; and Delahunty *et al.* (1996), *Am. J. Hum. Genet.* **58**:1239-1246.

A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, *e.g.* fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, *e.g.* ^{32}P , ^{35}S , ^3H ; *etc.* The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, *etc.* having a high affinity binding partner, *e.g.* avidin, specific antibodies, *etc.*, where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.

The sample nucleic acid, *e.g.* amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods, and the sequence of bases compared to a wild-type *LGR4*, *LGR5* or *LGR7* sequence. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, *etc.* The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in US 5,445,934, or in WO 95/35505 (the disclosures of which are herein incorporated by reference), may also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease, the sample is digested with that endonuclease, and the products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels.

Screening for mutations in *LGR4*, *LGR5* or *LGR7* may be based on the functional or antigenic characteristics of the protein. Protein truncation assays are useful in detecting

deletions that may affect the biological activity of the protein. Various immunoassays designed to detect polymorphisms in LGR4, LGR5 or LGR7 proteins may be used in screening. Where many diverse genetic mutations lead to a particular disease phenotype, functional protein assays have proven to be effective screening tools. The activity of the 5 encoded LGR4, LGR5 or LGR7 protein may be determined by comparison with the wild-type protein.

Antibodies specific for LGR4, LGR5 or LGR7 proteins may be used in staining or in immunoassays. Samples, as used herein, include biological fluids such as semen, blood, cerebrospinal fluid, tears, saliva, lymph, dialysis fluid and the like; organ or tissue 10 culture derived fluids; and fluids extracted from physiological tissues. Also included in the term are derivatives and fractions of such fluids. The cells may be dissociated, in the case of solid tissues, or tissue sections may be analyzed. Alternatively a lysate of the cells may be prepared.

Diagnosis may be performed by a number of methods to determine the absence or 15 presence or altered amounts of normal or abnormal LGR4, LGR5 or LGR7 in patient cells. For example, detection may utilize staining of cells or histological sections, performed in accordance with conventional methods. Cells are permeabilized to stain cytoplasmic molecules. The antibodies of interest are added to the cell sample, and incubated for a period of time sufficient to allow binding to the epitope, usually at least 20 about 10 minutes. The antibody may be labeled with radioisotopes, enzymes, fluorescers, chemiluminescers, or other labels for direct detection. Alternatively, a second stage antibody or reagent is used to amplify the signal. Such reagents are well known in the art. For example, the primary antibody may be conjugated to biotin, with horseradish peroxidase-conjugated avidin added as a second stage reagent. Alternatively, the 25 secondary antibody conjugated to a fluorescent compound, *e.g.* fluorescein, rhodamine, Texas red, *etc.* Final detection uses a substrate that undergoes a color change in the presence of the peroxidase. The absence or presence of antibody binding may be determined by various methods, including flow cytometry of dissociated cells, microscopy, radiography, scintillation counting, *etc.*

30 Diagnostic screening may also be performed for polymorphisms that are genetically linked to a disease predisposition, particularly through the use of microsatellite

markers or single nucleotide polymorphisms. Frequently the microsatellite polymorphism itself is not phenotypically expressed, but is linked to sequences that result in a disease predisposition. However, in some cases the microsatellite sequence itself may affect gene expression. Microsatellite linkage analysis may be performed alone, or in combination 5 with direct detection of polymorphisms, as described above. The use of microsatellite markers for genotyping is well documented. For examples, see Mansfield *et al.* (1994), *Genomics* 24:225-233; Ziegler *et al.* (1992), *Genomics* 14:1026-1031; Dib *et al.*, *supra*.

MODULATION OF *LGR4*, *LGR5* and *LGR7* GENE EXPRESSION

10 The *LGR4*, *LGR5* or *LGR7* genes, gene fragments, or the *LGR4*, *LGR5* or *LGR7* protein or protein fragments, are useful in gene therapy to treat disorders associated with *LGR4*, *LGR5* or *LGR7* defects. Expression vectors may be used to introduce the *LGR4*, *LGR5* or *LGR7* gene into a cell. Such vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences. 15 Transcription cassettes may be prepared comprising a transcription initiation region, the target gene or fragment thereof, and a transcriptional termination region. The transcription cassettes may be introduced into a variety of vectors, e.g. plasmid; retrovirus, e.g. lentivirus; adenovirus; and the like, where the vectors are able to transiently or stably be maintained in the cells, usually for a period of at least about one day, more usually for a 20 period of at least about several days to several weeks.

The gene or *LGR4*, *LGR5* or *LGR7* protein may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth *et al.* (1992), *Anal Biochem* 205:365-368. The DNA may be coated onto gold 25 microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in the literature (see, for example, Tang *et al.* (1992), *Nature* 356:152-154), where gold microprojectiles are coated with the *LGR4*, *LGR5* or *LGR7* DNA, then bombarded into skin cells.

Antisense molecules can be used to down-regulate expression of *LGR4*, *LGR5*, or 30 *LGR7* in cells. The anti-sense reagent may be antisense oligonucleotides (ODN), particularly synthetic ODN having chemical modifications from native nucleic acids, or

nucleic acid constructs that express such anti-sense molecules as RNA. The antisense sequence is complementary to the mRNA of the targeted gene, and inhibits expression of the targeted gene products. Antisense molecules inhibit gene expression through various mechanisms, e.g. by reducing the amount of mRNA available for translation, through activation of RNase H, or steric hindrance. One or a combination of antisense molecules may be administered, where a combination may comprise multiple different sequences.

Antisense molecules may be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule. Alternatively, the antisense molecule is a synthetic oligonucleotide. Antisense oligonucleotides will generally be at least about 7, usually at least about 12, more usually at least about 20 nucleotides in length, and not more than about 500, usually not more than about 50, more usually not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, specificity, including absence of cross-reactivity, and the like. It has been found that short oligonucleotides, of from 7 to 8 bases in length, can be strong and selective inhibitors of gene expression (see Wagner *et al.* (1996), *Nature Biotechnol.* 14:840-844).

A specific region or regions of the endogenous sense strand mRNA sequence is chosen to be complemented by the antisense sequence. Selection of a specific sequence for the oligonucleotide may use an empirical method, where several candidate sequences are assayed for inhibition of expression of the target gene in an *in vitro* or animal model. A combination of sequences may also be used, where several regions of the mRNA sequence are selected for antisense complementation.

Antisense oligonucleotides may be chemically synthesized by methods known in the art (see Wagner *et al.* (1993), *supra*, and Milligan *et al.*, *supra*.) Preferred oligonucleotides are chemically modified from the native phosphodiester structure, in order to increase their intracellular stability and binding affinity. A number of such modifications have been described in the literature, which alter the chemistry of the backbone, sugars or heterocyclic bases.

Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur;

phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3'-O'-5'-S-phosphorothioate, 3'-S-5'-O-phosphorothioate, 3'-CH₂-5'-O-phosphonate and 3'-NH-5'-O-phosphoroamide. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage. Sugar modifications are also used to enhance stability and affinity. The α -anomer of deoxyribose may be used, where the base is inverted with respect to the natural β -anomer. The 2'-OH of the ribose sugar may be altered to form 2'-O-methyl or 2'-O-allyl sugars, which provides resistance to degradation without comprising affinity. Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2'-deoxycytidine and 5-bromo-2'-deoxycytidine for deoxycytidine. 5-propynyl-2'-deoxyuridine and 5-propynyl-2'-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.

As an alternative to anti-sense inhibitors, catalytic nucleic acid compounds, e.g. 15 ribozymes, anti-sense conjugates, etc. may be used to inhibit gene expression. Ribozymes may be synthesized *in vitro* and administered to the patient, or may be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (for example, see International patent application WO 9523225, and Beigelman *et al.* (1995), *Nucl. Acids Res.* **23**:4434-42). Examples of oligonucleotides with catalytic activity are 20 described in WO 9506764. Conjugates of anti-sense ODN with a metal complex, e.g. terpyridylCu(II), capable of mediating mRNA hydrolysis are described in Bashkin *et al.* (1995), *Appl. Biochem. Biotechnol.* **54**:43-56.

25 GENETICALLY ALTERED CELL OR ANIMAL MODELS FOR LGR4, LGR5 AND LGR7
FUNCTION

The subject nucleic acids can be used to generate transgenic, non-human animals or site specific gene modifications in cell lines. Transgenic animals may be made through homologous recombination, where the normal *LGR4*, *LGR5* or *LGR7* locus is altered. 30 Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, and the like.

The modified cells or animals are useful in the study of *LGR4*, *LGR5* and/or *LGR7* function and regulation. For example, a series of small deletions and/or substitutions may be made in the host's native *LGR4*, *LGR5* or *LGR7* gene to determine the role of different exons. Of interest is the use of *LGR4*, *LGR5* or *LGR7* to construct transgenic animal models for disease states. Specific constructs of interest include anti-sense *LGR4*, *LGR5* or *LGR7*, which will block *LGR4*, *LGR5* or *LGR7* expression, expression of dominant negative *LGR4*, *LGR5* or *LGR7* mutations, and over-expression of *LGR4*, *LGR5* or *LGR7* genes. Where an *LGR4*, *LGR5* or *LGR7* sequence is introduced, the introduced sequence may be either a complete or partial sequence of an *LGR4*, *LGR5* or *LGR7* gene native to the host, or may be a complete or partial *LGR4*, *LGR5* or *LGR7* sequence that is exogenous to the host animal, e.g., a human *LGR4*, *LGR5* or *LGR7* sequence. A detectable marker, such as *lac Z* may be introduced into the *LGR4*, *LGR5* or *LGR7* locus, where upregulation of *LGR4*, *LGR5* or *LGR7* expression will result in an easily detected change in phenotype.

One may also provide for expression of the *LGR4*, *LGR5* or *LGR7* gene or variants thereof in cells or tissues where it is not normally expressed, at levels not normally present in such cells or tissues, or at abnormal times of development. By providing expression of *LGR4*, *LGR5* or *LGR7* protein in cells in which it is not normally produced, one can induce changes in cell behavior, e.g. through *LGR4*, *LGR5* or *LGR7* mediated activity.

DNA constructs for homologous recombination will comprise at least a portion of the *LGR4*, *LGR5* or *LGR7* gene, which may or may not be native to the species of the host animal, wherein the gene has the desired genetic modification(s), and includes regions of homology to the target locus. DNA constructs for random integration need not include regions of homology to mediate recombination. Conveniently, markers for positive and negative selection are included. Methods for generating cells having targeted gene modifications through homologous recombination are known in the art. For various techniques for transfecting mammalian cells, see Keown *et al.* (1990), *Meth. Enzymol.* 185:527-537.

For embryonic stem (ES) cells, an ES cell line may be employed, or embryonic cells may be obtained freshly from a host, e.g. mouse, rat, guinea pig, etc. Such cells are grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia

inhibiting factor (LIF). When ES or embryonic cells have been transformed, they may be used to produce transgenic animals. After transformation, the cells are plated onto a feeder layer in an appropriate medium. Cells containing the construct may be detected by employing a selective medium. After sufficient time for colonies to grow, they are picked 5 and analyzed for the occurrence of homologous recombination or integration of the construct. Those colonies that are positive may then be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old superovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of 10 pseudopregnant females. Females are then allowed to go to term and the resulting offspring screened for the construct. By providing for a different phenotype of the blastocyst and the genetically modified cells, chimeric progeny can be readily detected.

The chimeric animals are screened for the presence of the modified gene and males and females having the modification are mated to produce homozygous progeny. If the 15 gene alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in *in vitro* culture. The transgenic animals may be any non-human mammal, such as laboratory animals, domestic animals, etc. The transgenic animals may be used in functional studies, drug screening, *etc.*, *e.g.* to determine the effect of a candidate drug on *LGR4*, *LGR5* or *LGR7* or related 20 gene activation *etc.*

IN VITRO MODELS FOR LGR4, LGR5 OR LGR7 FUNCTION

The availability of a number of components in the G-protein coupled receptor family, as previously described, allows *in vitro* reconstruction of the processes or systems 25 in which members of this family operate. Two or more of the components, such as the isolated receptor and a potential ligand therefore, may be combined *in vitro*, and the behavior assessed in terms of activation of transcription of specific target sequences; modification of protein components, *e.g.* proteolytic processing, phosphorylation, methylation, *etc.*; ability of different protein components to bind to each other. The 30 components may be modified by sequence deletion, substitution, *etc.* to determine the functional role of specific domains.

Drug screening may be performed using an *in vitro* model, a genetically altered cell or animal, purified LGR4, LGR5 or LGR7 protein, as well as fragments or portions thereof, e.g. solubilized extra-cellular domain or chimeric receptor proteins comprising the LGR4, LGR5 or LGR7 extra-cellular domain. One can identify ligands or substrates that bind to and modulate the action of LGR4, LGR5 or LGR7. Areas of investigation include the development of agents that beneficially counter abnormalities related to LGR4, LGR5 or LGR7 and the use of such agents in the therapy.

Drug screening identifies agents that modulate the activity of LGR4, LGR5 or LGR7 function in abnormal cells. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled *in vitro* protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, and the like. The purified protein may also be used for determination of three-dimensional crystal structure, which can be used for modeling intermolecular interactions, such as GTP binding, etc.

The term "agent" as used herein describes any molecule, e.g. protein or pharmaceutical, with the capability of altering or mimicking the physiological function of LGR4, LGR5 or LGR7. Generally a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e. at zero concentration or below the level of detection.

In some embodiments, candidate agents encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.

Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides and oligopeptides. Alternatively, 5 libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and may be used to produce combinatorial libraries. Known pharmacological agents may be subjected to directed or random chemical modifications. 10 such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs.

Of particular interest in certain embodiments are peptidic agents based on LGR4, LGR5 or LGR7, e.g. solubilized extra-cellular domain or chimeric receptor proteins comprising the LGR4, LGR5 or LGR7 extra-cellular domain, where such agents 15 neutralize the activity of endogenous LGR4, LGR5 or LGR7 ligands, e.g. hormones.

Where the screening assay is a binding assay, one or more of the molecules may be joined to a label, where the label can directly or indirectly provide a detectable signal. Various labels include radioisotopes, fluorescers, chemiluminescers, enzymes, specific 20 binding molecules, particles, e.g. magnetic particles, and the like. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin etc. For the specific binding members, the complementary member would normally be labeled with a molecule that provides for detection, in accordance with known procedures.

A variety of other reagents may be included in the screening assay. These include 25 reagents like salts, neutral proteins, e.g. albumin, detergents, etc., that are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Reagents that improve the efficiency of the assay, such as protease inhibitors, nuclease 30 inhibitors, anti-microbial agents, etc., may be used. The mixture of components are added in any order that provides for the requisite binding. Incubations are performed at any suitable temperature, typically between 4 and 40°C. Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high-throughput screening. Typically between 0.1 and 1 hours will be sufficient.

Other assays of interest detect agents that mimic LGR4, LGR5 or LGR7 function. For example, an expression construct comprising an *LGR4*, *LGR5* or *LGR7* gene may be introduced into a cell line under conditions that allow expression. The level of LGR4, LGR5 or LGR7 activity is determined by a functional assay, as previously described. In 5 one screening assay, the ability of candidate agents to inhibit or enhance LGR4, LGR5 or LGR7 function is determined. Alternatively, candidate agents are added to a cell that lacks functional LGR4, LGR5 or LGR7, and screened for the ability to reproduce LGR4, LGR5 or LGR7 activity in a functional assay.

The compounds having the desired pharmacological activity may be administered 10 in a physiologically acceptable carrier to a host for treatment, *etc.* The compounds may also be used to enhance *LGR4*, *LGR5* or *LGR7* function. The inhibitory agents may be administered in a variety of ways, orally, topically, parenterally *e.g.* subcutaneously, intraperitoneally, by viral infection, intravascularly, *etc.* Topical treatments are of particular interest. Depending upon the manner of introduction, the compounds may be 15 formulated in a variety of ways. The concentration of therapeutically active compound in the formulation may vary from about 0.1-100 wt.%.

The pharmaceutical compositions can be prepared in various forms, such as granules, tablets, pills, suppositories, capsules, suspensions, salves, lotions and the like. Pharmaceutical grade organic or inorganic carriers and/or diluents suitable for oral and 20 topical use can be used to make up compositions containing the therapeutically-active compounds. Diluents known to the art include aqueous media, vegetable and animal oils and fats. Stabilizing agents, wetting and emulsifying agents, salts for varying the osmotic pressure or buffers for securing an adequate pH value, and skin penetration enhancers can be used as auxiliary agents.

25

EXPERIMENTAL

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. 30 Efforts have been made to ensure accuracy with respect to the numbers used (*e.g.* amounts, temperature, concentrations, *etc.*) but some experimental errors and deviations

should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.

5 **Example 1. Identification of LGR4 and LGR5**

Human sequences related to the sea anemone and *Drosophila* glycoprotein hormone receptors were identified from the expression sequence tag database (dbEST) at the National Center for Biotechnology Information by using the BLAST server with the BLOSUM62 protein comparison matrix (Altschul SF *et al*, Nucleic Acids Res (1997) 10:3389-3402). Human ESTs showing high homology to two non-overlapping regions of the gonadotropin receptors were identified. Clones AA312798 and AA298810 were found to encode transmembrane four to five of the putative receptor LGR4 whereas AA460529 and AA424098 encode transmembrane two to three of the putative receptor LGR5. Using these ESTs to further search the GenBank EST division database. 15 overlapping EST sequences were aligned to obtain the longest open reading frame (ORF) for these receptors.

Based on the longest human ORF, specific primers were designed for PCR amplification of LGR4 and LGR5 cDNA fragments from rat ovary and human placenta, respectively. After hybridization with labeled EST clones and confirmation of DNA sequences by dideoxy DNA sequencing, specific receptor fragments isolated were used to design primers to prepare sub-cDNA libraries enriched with specific receptor cDNAs. For 5' extension, reverse transcription was performed using rat ovarian and human placenta mRNA preparations and receptor-specific primers. Following second strand synthesis, the enriched cDNA pool was tailed at 5'-ends with specific adaptor sequences to allow further 25 PCR amplification. For 3' extension, rat ovarian or human placenta mRNAs were reversed transcribed using oligo-dT, followed by second strand synthesis using receptor-specific primers and adaptor tailing. These mini-libraries were further used as templates for PCR amplification of upstream or downstream cDNAs specific for each receptor using internal primers. PCR products with a strong hybridization signal to each receptor cDNA 30 fragment were subcloned into the pUC18 or pcDNA3 vectors. After screening of these sublibraries based on colony hybridization using specific receptor probes, clones with 5'-

or 3'-sequences of the putative receptors were identified and isolated for DNA sequencing. As needed, the procedure was repeated up to three times to generate cDNAs encoding the complete ORF of each putative receptor for sequence analysis and for the expression of receptor proteins in eukaryotic cells. The entire coding sequences of each gene were also amplified with specific primers flanking the entire ORF in independent experiments. At least three independent PCR clones were sequenced to verify the authenticity of coding sequences. The nucleotide sequence of LGR4, as well as the amino acid sequence of the product encoded by the ORF thereof, is provided in Fig. 1. The nucleotide sequence of LGR5, as well as the amino acid sequence of the product encoded by the ORF thereof, is provided in Fig. 2.

Example 2. Comparison of deduced amino acid sequence of LGR4 and 5 cDNAs and those encoding FSH and LH receptors.

Sequence alignment of LGR4 and LGR5 with known human glycoprotein hormone receptors was performed and the results are shown in Fig. 6. Shaded residues are identical in at least two of the four receptor proteins shown.

Example 3. Expression pattern of LGR4 and 5 mRNA transcripts in different tissues.

For northern blot analysis, poly (A)+-selected RNA from different human tissues was hybridized with a ³²P-labeled cDNA probes. After washing, the blots were exposed to X-ray films at -70C for five days. Subsequent hybridization with a beta-actin cDNA probe was performed to estimate nucleic acid loading (8 h exposure). LGR4 was shown to be expressed in placenta, ovary, testis, adrenal, spinal cord, thyroid, stomach, trachea, heart, pancreas, kidney, prostate and spleen while LGR5 was shown to be expressed in the skeletal muscle, placenta, spinal cord, brain, adrenal, colon, stomach, ovary and bone marrow.

30

Example 4. Chromosomal localization of LGR4 and 5 in human.

Using genomic fragments of LGR4 (~100 Kb) and LGR5 (>100 Kb) as probes, chromosomal localization of these genes were detected using the FISH method to banded DNA in chromosomal 5q34-35.1 and 12q15, respectively.

5

Example 5. Identification of LGR7.

Analysis of EST databases has revealed a novel LGR closely related to a G protein-coupled receptor from pond snail (*Lymnaea stagnalis*, accession no. 481946). Because the snail G-protein coupled receptor shared the leucine-rich repeat ectodomain and seven transmembrane region characteristics of mammalian LGRs, the novel EST sequence could encode either a homologue of snail receptor or a novel mammalian LGR. For the isolation of LGR7 cDNA, a Clontech Marathon-ready testis cDNA pool was used as the template for 5' and 3' RACE with adapter and gene-specific primers. Sequence analysis of the RACE products showed that LGR7 gene encode at least two splicing variants differ at the N-terminus. The nucleotide sequence of the long variant, as well as the amino acid sequence of the product encoded by the ORF thereof, is provided in Fig. 3; while the nucleotide sequence of the short variant, as well as the amino acid sequence of the ORF thereof, is provided in Fig. 4. Both variants contain a classical C-terminal 7-transmembrane region and a leucine-rich repeat ectodomain flanked by cysteine rich regions found in other mammalian LGRs. The long form LGR7 contains extra 35 amino acids in the N-terminal cysteine rich region as compared to the short form LGR7. Of interest, analysis of the LGR7 ORF from either variant showed that its tertiary structure resembles that of mammalian LGRs instead of the snail receptor, which shares the greatest identity in the transmembrane region. These findings suggest that LGR7 and snail receptor diverged early during evolution and LGR7 perhaps adopted new function in higher organisms.

Based on the LGR7 cDNA sequence, we further identified a human genomic DNA fragment (AQ053279) in the genomic survey sequence division of GenBank that contains part of the LGR7 gene. The authenticity of this genomic clone was confirmed by Southern blot hybridization and the genomic clone was used as the probe to identify the chromosomal localization for LGR7 gene.

It is evident from the above discussion and results that three novel mammalian G-protein coupled receptors, as well as a nucleic acids encoding the same, are provided by the subject invention. The inventions described above find use in a variety of applications, including research and therapeutic applications.

5

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The publications discussed herein are provided solely for their disclosure prior to the filing date of the 10 present application. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such a disclosure by virtue of prior invention.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily 15 apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

WHAT IS CLAIMED IS:

1. An isolated nucleic acid encoding a mammalian protein selected from the group consisting of LGR4, LGR5 or LGR7.

5

2. An isolated nucleic acid according to Claim 1, wherein said mammalian protein has the amino acid sequence of SEQ ID NO:2, SEQ ID NO:04, SEQ ID NO:06 or SEQ ID NO:08.

10

3. An isolated nucleic acid according to Claim 1, wherein said mammalian protein has an amino acid sequence that is substantially identical to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:04, SEQ ID NO:06 or SEQ ID NO:08.

15

4. An isolated nucleic acid according to Claim 1, wherein the nucleotide sequence of said nucleic acid has the sequence selected from the group consisting of: (a) SEQ ID NO:1 or the complementary sequence thereof; (b) SEQ ID NO:03 or the complementary sequence thereof; (c) SEQ ID NO:05 or the complementary sequence thereof; and (d) SEQ ID NO:07 or the complementary sequence thereof.

20

5. An isolated nucleic acid comprising at least 18 contiguous nucleotides of the sequence selected from the group consisting of: (a) SEQ ID NO:1 or the complementary sequence thereof; (b) SEQ ID NO:03 or the complementary sequence thereof; (c) SEQ ID NO:05 or the complementary sequence thereof; and (d) SEQ ID NO:07 or the complementary sequence thereof.

25

6. An isolated nucleic acid comprising at least 50 contiguous nucleotides of the sequence selected from the group consisting of: (a) SEQ ID NO:1 or the complementary sequence thereof; (b) SEQ ID NO:03 or the complementary sequence thereof; (c) SEQ ID NO:05 or the complementary sequence thereof; and (d) SEQ ID NO:07 or the complementary sequence thereof.

7. An isolated nucleic acid that hybridizes under stringent conditions to a nucleic acid having the nucleotide sequence selected from the group consisting of: (a) SEQ ID NO:1 or the complementary sequence thereof; (b) SEQ ID NO:03 or the complementary sequence thereof; (c) SEQ ID NO:05 or the complementary sequence thereof; and (d) SEQ ID NO:07 or the complementary sequence thereof.

8. An expression cassette comprising a transcriptional initiation region functional in an expression host, a nucleic acid having a sequence of the isolated nucleic acid according to Claim 1 under the transcriptional regulation of said transcriptional initiation region, and a transcriptional termination region functional in said expression host.

9. A cell comprising an expression cassette according to Claim 8 as part of an extrachromosomal element or integrated into the genome of a host cell as a result of introduction of said expression cassette into said host cell, and the cellular progeny of said host cell.

10. A method for producing a mammalian protein selected from the group consisting of LGR4, LGR5 and LGR7, said method comprising:

growing a cell according to Claim 9, whereby said mammalian protein is expressed; and

isolating said protein substantially free of other proteins.

11. A purified polypeptide composition comprising at least 50 weight % of the protein present as a mammalian protein selected from the group consisting of LGR4, LGR5 and LGR7, or a fragment thereof.

12. An antibody binding specifically to a mammalian protein selected from the group consisting of LGR4, LGR5 and LGR7.

13. The antibody of Claim 12, wherein said antibody is a monoclonal antibody.
14. A non-human transgenic animal model for *LGR4*, *LGR5* or *LGR7* gene function, wherein said transgenic animal comprises an introduced alteration in an *LGR4*,
5 *LGR5* or *LGR7* gene.
15. The animal model of claim 14, wherein said animal is heterozygous for said introduced alteration.
- 10 16. The animal model of claim 14, wherein said animal is homozygous for said introduced alteration.
- 15 17. The animal model of claim 14, wherein said introduced alteration is a knockout of endogenous *LGR4*, *LGR5* or *LGR7* gene expression.
18. A method of screening a sample for the presence of a ligand for a receptor selected from the group consisting of *LGR4*, *LGR5* and *LGR7*, said method comprising:
contacting said sample with a receptor selected from the group consisting of *LGR4*, *LGR5* and *LGR7* or a mimetic thereof, and
20 detecting the presence of a binding event between said receptor and ligand in said sample.

>LGR4 nucleotide sequence (SEQ ID NO.01)

>LGR4 amino acid sequence (SEQ ID NO:02)

MPGPGLLCLFLAIGLLGSAGPSGAAPLCAAFPSCSDGDRVDCSGKGLTAVPEGLSAFTQALDISMNNITQLFEDAFKSFP
FLEELQLAGNDLSSLIHPKALSGCLKEHLWITLQNNQLETVPSEAIHGLSALQSLRISANHITSVPEDSFEGIVQLRHLLWLD
NSLTEVTFEPPLSNLPTLQALTLALNNISSIFIAFTNLSSLLVVLHLLHNNIKIKSLSQHCFDGLDNLETLDLNINNYLDEFFQA
IKALPSLKELGPHNSNISVIPEGAFGGNFLLFTIHYLDNPLSFVGNSAFHMLSDLRLCLVIRGASLVQWFPILTGTVHIESL
TILTGTWISSIPDMLCQNQKMLFTLLELSYNNIIFLPSFNGCRALEEIEISLQFNQISLIKENTFQGLTSLRILFLSRNLIREJH
SGAFAKLGTITNLDVSFNELTSFPTECNLGLNQLKLVGNFKLKDALAARCANLAEISLSPVYAYQCCAFWGCDSLCKLMTEC
NSPQEHSNTKEKGATDAANVTSTAEEHSIIIIHCTESTGAFKPCYEYLGSWMIRLTWVFIFLVALLFNLLVILTVFASC
SSLFASKLFIGLISVSNLLMGIYTGILTFLEAVSWFFAEFGIWWTGSGCKVAGSLAVPSESSEAVFLLTIAAVEFSVFAH
DLMKHGHSHLFQFOVAALLALLGAAVAGCFFELFHGGQYSASFCLCPFFTGETPSLGFVTLVLLNSLAFLMMAIIYTKLY
CNLEKEPLSENSISSVIKHVAWLIFTNCIIFCFVAFFSFAPLITAISISEIMKSVTLIFFPLPACLNPVLYVFFNPKFKE
DWKLLKFVTRKHGSVSISQSQQCGCECDFYIDCGMYSHLQGNLTVCDCCESFLITKPVSKHLIKCHSCPVLTAASCCR
PEAYWSDCGTQSAHSDYADEEDSFVSELSSDQVCAACRFYDSPGFPLVRKAYNLOVED

FIG. 1

>Nucleotide sequence of LGR5 (total 2082 nucleotides) (SEQ ID NO:03)

CTACATCTCCATAACAATAGAATCCACTCCCTGGAAAGAACATGCTTGATGGGCTCCACAGCCTAGAGACTTTAGATTAA
 AATTACAATAACCTTGTGATGAATTCCCCACTGCAATTAGGACACTCTCCAACCTAAAGGAACTAGGATTTCATAGCAACAAAT
 ATCAGGTCGATAACCTGAGAAAGCATTGTAGGCAACCCCTCTTATTACAATACATTCTATGACAATCCCATCCAATT
 GTTGGGAGATCTGCTTTCAACATTACCTGAACTAAGAACACTGACTCTGAATGGTGCCTCACAAATAACTGAATTTCCT
 GATTAACTGGAACCTGGAGAGTCTGACTTTAACCTGGAGCACAGATCTCATCTCTCCTCAAACCCTGCAAT
 CAGTTACCTAATCTCCAAGTGTAGATCTGCTTACAACCTATTAGAAGATTACCCAGTTTTCAGTCTGCCAAAAGCTT
 CAGAAAATTGACCTAACAGACATAATGAAATCTACGAAATTAAAGTTGACACTTCCAGCAGTTGCTTAGCCTCGATCGCTG
 AATTGGCTTGGAACAAAATTGCTATTATTACCCCCAATGCATTTCACTTGCATCCCTAATAAGCTGGACCTATCG
 TCCAACCTCCTGTCGCTTTCTATAACTGGGTTACATGGTTAACCTAACTTAAACAGGAAATCATGCCCTACAG
 AGCTGGATATCATCTGAAAACCTTCCAGAACTCAAGGXATAGAAATGCCCTATGCTTACCAAGTGTGCATTGGAGTG
 TGTGAGAATGCCCTATAAGATTCTAATCAATGGAATAAGGTGACAACAGCAGTATGGACGACCTTCATAAGAAAGATGCT
 GGAATGTTCAAGGCTCAAGATGAACGTGACCTTGAAGATTCTGCTTGACTTGAGGAAGACCTGAAAGCCCTTCATTCA
 GTGCAGTGGTACACCTTCCCCAGGCCCTTCAAACCCCTGTAACACCTGCTTGATGGCTGGCTGATCAGAATTGGAGTGTGG
 ACCATAGCAGTTCTGGCACTTACTTGTAAATGCTTGGTACTTCACAGTTTCAAGTCCCCTCTGTACATTCCCCCATT
 AAACCTTAAATTGGGTCACTCGCAGCAGTGAACATGCTCACGGGAGTCTCCAGTGCCTGCTGGCTGGATGCGTTC
 ACTTTGGCAGCTTGCACGACATGGTGCCTGGAGAATGGGGTGGTGCATGTCATTGGTTTTGTCATTTT
 GCTTCAGAACATCTGTTCTGCTTACTCTGCAGCCCTGGAGCGTGGGTCTCTGTGAAATATCTGCAAATTTGAA
 ACGAAAGCTCCATTCTAGCCTGAAAGTAATCATTGCTCTGCCCCCTGTCGGCTTGCACCATGGCCGCAGTCCCTG
 CTGGGTGGCAGCAAGTATGGCGCTCCCTCTGCCTGCTTGGGAGGCCAGCACCATGGCTACATGGTC
 GCTCTCATCTGCTCAATTCCCTTGCTTCTCATGATGACCATTGCTACACCAAGCTACTGCAATTGGACAAGGGAA
 GACCTGGAGAATATTGGACTGCTATGGTAAACACATTGCCCTGTTGCTTCAACACTGCACTCTAAACTGCCCT
 GTGGCTTCTGCTCTCTCTTTAATAAACCTTACATTATCAGTCTGAAAGTAATTAAAGTTATCCTTCTGGTGGTA
 GTCCCACCTCTGCATGTCTCAATCCCCTCTACATCTGTTCAATCCTCACTTAAAGGAGATCTGGTGGAGA
 AAGCAAACCTACGTCTGGACAAGATCAAACACCAAGCTGATGTCATTAACTCTGATGTCGAAAAACAGTCTGT
 GACTCAACTCAAGCCTGGTAACCTTACCAAGCTCCAGCATCACTTATGACCTGCCCTCCAGTCCGTGCCATCACCAGCT
 TATCCAGTGAAGAGCTGCCATCTTCCCTGTGGATTGTCCATGTCTCTAA

>amino acid sequence of LGR5 (total 693 amino acids) (SEQ ID NO:04)

LHLHNNRIHSLGKCFDGLHSLETLDLNYYNNLDEFPTAIRTLSNLKELGFHNSNNIRSIPKECAFVGNPSLITIHFYDNPIQF
 VGRSAFQHLPRLRTLTLNGASQITEFPDLTGTANLESLTGTGAQISSLPQTVCNQLPNLVLDLSYNLLEDLPSFSVCQKL
 QKIDLRHNEIYEIKVDTFQQLLRSLSLNLAWNKIAIIHPNAFSTLPSLIKLDLSSNLLSSFPITGLHGLTHLKLGNHALQ
 SWISSENPELKVIEMPYAYQCQAFGVCENAVYKISNQNWKGDNNSMDDLHKKDAGMFQAQDERDLEDFLLDFEEDLKLHS
 VQCSPSPGPFPKPCHELLDGWLIRIGWVTIAVLALTCNALVTSTVRSPLYISPIKLLIGVIAAVNMLTVSSAVLAGVD
 TFGSFARHGAWWENGVGCHIVGFLSIFASESSVFLLTLAALERGSVKYSAKFETKAPFSSLKVIIILLCALLALTMAAVPL
 LGGSKYGAPlPLPFGEPMSTMGYVALILLNSLCFLMMTIAYTKLYCNLDKGDELNIWDCMSVKHIALLFTNCILNCP
 VAFLSFSSLINLTFISPEVIKFILLVVVPLPACLNPLLYILFNPHFKEDLVSRLRKQTYVWTRSKHPSLMSINSDDVEKQSC
 DSTQALVFTSSSITYDLPPSSVPSPAYPVTESCHLSSVAFVPCL

FIG. 2

>Final LGR7 (LGR7-Long variant) full length sequence (2467 nt) (SEQ ID NO:05).

GAAAGGAGGAAGAAAAAGAGGAATGGAAAGAGACAGAGAAAGGAATGGACTTGAAGGAGGGAGGACTGCTTT
 STAAGTGTAAAGATTGCAGACAGAAATAGCACACACAACCACACTGTGAGCTGTATGCAGATTCAAGAACAAATT
 TTGCTCACTTTCTTAATCAGTTGCTCAGATAGAAGGAAATGACATCTGGTTCTGTCTTCATCTACATCTTAATTT
 TGGAAATATTTTCTCATGGGGTGACAGGATGTCAAGTGTCCCTGGCTATTCCCCTGGAAACATCACAA
 AGTGCTGCCTCAGCTCCTGCACGTGTAACGGTGTGGACGACTGCAGGAAATCAGGCCATGAGGACAACGTGGAGAC
 AACATGGATGGTCCATGCAATTGACAAATATTGCCAGTTACTACAAAATGACTTCCAATATCCTTTGAGGC
 AGAAACACCTGAATGTTGGTGGTTCTGTGCCAGTCAATGTCTTGCAAGGCTGGAGCTGACTGTGATGAAA
 CCAATTACGAGCTGTTCCATGGTTCTTCAAATGTGACTGCAATGTCACTTCAGTGGAACTTAATAAGAAAGCTT
 CCTCCTGATTGCTCAAGAATTATCATGATCTTCAAAGCTGTACCTGCAAAACAAATAAGATTACATCCATCTCCAT
 CTATGCTTCAAGAGGACTGAATAGCCTACTAAACTGTATCTCAGTCATAACAGAATAACCTTCTGAAGGCCGGTG
 TTTTGAAAGATCTCACAGACTAGAATGGCTGATAATTGAAGATAATCACCTCAGTCGAATTCCCCACAAACATT
 TATGGACTAAATTCTCTTATTCTTAGTCTGTGATAAACGTCTCACCGTTACCTGATAAAACCTCTGTCA
 ACACATGCCAAGACTACATTGGCTGGACCTTGAAGGCAACCATATCCATAATTAAAGAAATTGACTTTATTTC
 GCAGTAATTAACTGTTTAGTGTGAGGAAAACAAATTAACTAAATGAAATTACTTTGCACCTCTCCAG
 AAACTGGATGAATTGGATTAGGAAGTAATAAGATTGAAAATCTTCCACCGCTTATATTCAAGGACCTGAAGGAGCT
 GTCACAAATTGAATCTTCTATAATCCAATCCAGAAAATTCAAGCAAACCAATTGATTATCTGTCAAACACTCAAGT
 CTCTCAGCCTAGAAGGGATTGAAATTCAAATATCCAACAAAGGATGTTAGACCTTATGAACTCTCTCACATA
 TATTAAAGAAATTCCAGTACTGTGGGTATGCACCATGTTGCAGCTGTAAACCAAACACTGATGGAATTTCATC
 TCTAGAGAATCTTGGCAAGCATTATTCAAGAGGTATTGTCTGGTTGTATCTGCAGTTACCTGCTTGGAAACA
 TTTTGTCATTGCAATGCGACCTTATATCAGGTCTGAGAACAGCTGTATGCCATGTCATCTCTCTGT
 GCGACTGCTTAATGGGAATATATTATTCTGTGATGGAGGCTTGCACCTAAAGTTCTGTGGAGAATAACATAAGCA
 TGCAGCTGTGGATGGAGAGTACTCATTGTCAGCTGTAGGATCTTGGCATTCTGTCACAGAAGTATCAGTT
 TACTGTTAACATTCTGACATTGAAAATACATCTGATTGTCTATCTGTTAGATGTGTGAGACCTGGAAAATGCA
 AGAACAAATTACAGTTCTGATTCATTTGGATTACTGGTTTATAGTGGCTTCATCCATTGAGCAATAAGGAATT
 TTTCAAAAATCACTATGGCACCAATGGAGTATGCTCCCTCTTCATTCAAGAATACAGAAAGTATTGGAGGCCAGA
 TTTATTCACTGGCAATTCTTCTGGTATTAAATTGGCGCATTATCATCATAGTTTCTCTATGGAAGCATGTT
 TATAGTGTTCATCAAAGTGCATAACAGCAACTGAAATACGGAATCAAGTTAAAAGAGATGATCCTTGGCAAACG
 TTTTTCTTATAGTATTCTGATGCAATTGCTGGATACCCATTGGTAGTGAATTCTTCACTGCTTCAG
 TAGAAATACAGGTACCATACCTCTGGTAGTGTATTATTCTGCCATTAAACAGTGTCTGAACCCAATTCTC
 TATACTCTGACCAAGACCATTAAAGAAATGATTCATCGGTTTGGTATAACTACAGACAAAGAAAATCTATGGA
 CAGCAAAGCTCAGAAAACATATGCTCCATCATTCACTGGTGGAAATGTGGCACTGCAGGAGATGCCACCTGAGT
 TAATGAAGCGGACCTTTCACATACCCCTGTGAAATGTCACTGATTCTCAATCACGAGACTCAATTCTATTCA
 TGA

>Final LGR7 (LGR7-long variant, total 757 amino acids)(SEQ ID NO:06)

MTSGSVFFYILIFGKYFSHGGGQDVCKSLGYFPCGNITKCLPQLLHCNGVDCGNQADENCGDNNNGWSMQFDKYFA
 SYYKMTSQYPFEATPECLVGSPVQCLCQGLELDCDETNLRAVPSVSSNVTAMSLQWNLIRKLPPDCFKNYHDLOK
 LYLNQNNKITSISIYAFRGLNSLTKLYLSHNRIFLKPGVFEDLHRLEWLTIEDNHLRSRISPPFTYGLNSLILLVLMN
 NVLTRLPDKPLCQHMPRLHWLDLEGNIHNLRLNTFICCSNLTVLVMRKNNKINHLENNTFAPLQKLDDELDLGSNKIE
 NLPPLIFKDLKELSQLNLSYNPIQKIQANQFDYLVKLKSLLEGIEISNIQQRMFRPLMNLSHIYFKKFQYCGYAPH
 VRSCKPNTDGISSLNLASIQRVFVWVVAUTCFGNIIFVICMRPYIRSENKLYAMSIIISLCCADCLMGYIYLFIG
 GFDLKFRGEYNKHAQLWMESTHCQLVGSLAILSTEVSVLLTFLTLEYKICIVYPFRCVRPGKCRTITVLILIWTG
 FIVAFIPLSNKEFFKNYYGTNGVCFPLHSEDTESIGAQIYSVAIFLGINLAIFIIVFSYGSMFYSVHQSAITATEI
 RNQVKKEMILAKRFFFIVFTDALCWIPIFIYVVKFLSLLQVEIPGTITSWVVIPLPINSALNPILYTLTRPFKEMIH
 RFWNYRQRKSMDSKGQKTYAPSFIWVEMPLQEMPPLEMKPDLFTYPEMSLISQSTRLNSYS*

FIG. 3

>Final LGR7 (LGR7-Short variant) full length sequence (3584 nt)(SEQ ID NO:07)

CTGCTTTGTAACTGCTAAAGATTGCAGACAGAAAATAGCACACACACCGCTGTGAGCTGTATGCGATTGAGAAACCAAGA
 CCAAAATTTTGCTCACTTTCATTAATCAGTTGCTCAGATAGAAGGAAATGACATCTGTTCTGTCTTCTTCTACATCT
 TAAATTTCGAAAATATTTCATGGGGGTGGACAGGGATCTCAAGTGTCTCCTTGGCTATTTCCTGTGGAACT
 ATCACAAGTGTGCTGCCCTCAAGCTCTGCACTGTAAACGGGTGTGACGACTGGGGAACTCAGGCCATGAGGACAACGT
 GTGGTGTGCTTTGTGCCAGTGCTATGTTGCCAGGTCTGGAACTTGAGCTGGATGAAACCAATTAAAGAGTGTCCAT
 CGGTTCTCAAATGTGACTGAAATGTGAACTTAAAGAAACCTTCTCCTGATTGTTCAAGAAT
 TATCATGATCTCAGAACGCTGACCTGAAACAAATAAGATTACATCTCTCATCTATGCTTCAAGAGACTGAA
 TAGCCTTACTAAACTGTATCTAGTCATAACAGAATAACCTTCTGAAGCCGGGTGTTTGAGAGATCTTACAGAC
 TAGAATGGCTGATAATTGAAGATAATCACCTCAGTCGAATTTCGGCACCAACATTIACTGGACTAAATTCTCTTATT
 CTCTTAGCTCTGATGAATAACGTCCTCACCCGTTIACCTGATAAAACCTCTGTCAACACATGCCAAGACTACATTG
 GCTGGACCTTGAAGGCAACCATACTCATAATTAAAGAAATTGACTTTTATTCCTGCAAGTAATTAAACTGTTTAG
 TGATGAGGAAAACAAAATTAAATCACTTAAATGAAAATACTTTGACCTCTCCAGAAACTGGATGAAATTGATTAA
 GGAAGTAATAAGATTGAAAATTTCACCGCTTATATTCAAGGACCTGAAGGAGCTGTCAACAATTGAACTTCTCCTA
 TAATCCAACTCAGAAAATTCAAGCAAACCAATTGATTATCTGTCAAACTCAAGTCTCTCAGCTAGAAGGGATTG
 AAATTTCAAATATCAACAAAGGATGTTAGACCTTTGATCTCTCACATATATTAAAGAAATTCTCAGTAC
 TGTTGGTATGACCCACATGTTGGCAGCTGAAACCAAACACTGATGGAATTTCATCTCTAGAGAAATCTTGGCAAG
 CATTATTGAGAGTATTGCTGGGTTGTATCTGCAAGTACTGTTGCTGAGTACATGTTGAAACATTGTCATTGCGAC
 TTATATCAGGTCTGAGAACAGCTGTATGCCATGTCAATCATTCTCTGCTGCGACTGCTTAATGGGATA
 TATTATTCATGCTGATCGGAGGCTTGACCTAAAGTTCTGAGGAAATACAATAAGCATGCGCAGCTGAGTGGAGAG
 TACTCATGTCAGCTGAGGATCTTGGCATTCTGTCCACAGAAGTACAGTTTACTGTTAACATTCTGACAT
 TGGAAAATAACATCTGCATTGCTATCCTTTAGATGTTGAGACCTGAAAATGCAAGAACAAATTACAGTCTGATT
 CTCATTGGATTACTGGTTTATAGTGGCTTCATCCATTGAGCAATAAGGAAATTTCAAAAACTACTATGGCAG
 CAATGGAAATGCTCCCTCTCATTCAAGAAGATAACAGAAAGTATTGGAGCCCAGATTTCAGTGGCAATTTC
 TTGGTATTAATTGGCCGCATTATCATCATAGTTTCTATGGAAGCATGTTTATAGTGTTCATCAAAGTGC
 ATAACAGCAACTGAAATACGGAATCAAGTTAAAAAGAGATGATCCTTGCACACGTTTTCTTATAGTATTAC
 TGATGCATTATGCTGGATAACCCATTGGTAGTGAATTCTTCACTGCTCAGGTAGAAATACCGGTACCAAA
 CCTCTTGGTAGTGATTTTATTCTGCCATTAAACAGTGTCTGAAACCAATTCTCTATACTCTGACCACAAAGACCA
 TTAAAGAAATGATTGATCGGTTTGGTATAACTACAGACAAAGAAAATCTATGGACAGCAAAAGGTCAAGAAACATA
 TGCTCCATCATTGATCTGGGGTGGAAATGTGGCCACTGCAGGGAGATGCCACCTGAGTTAATGAAGCCGGACCTTCA
 CATAACCTGTGAAATGTCATGATTTCTCAATCAACGAGACTCAATTCTTATTGACTGACTCTGAAATTCTT
 TCTTCAGAGAAATACTGTGGGGGTGCTCATGAGGGATTACTGTTGATGAAATGAAATACCACAAAATTAAATT
 AATAATACTAAGATAAAATTTCAGGACATGAGGAAAATAAAATGACTAATGCTTACAAAGGGAAAGTAA
 TTATATGAAATAATGTATATATTAGTAGACATTGCTATGAAATTAAAGAGAAACTACTTCACTGAAATTCT
 CATTCTTCTAACATGCAATTGAGTACCCACTACTATGTGCATAGCATTGCAATATAGTCCTGAAAGTAGACAGT
 GCAGAACCTTCAATCTGTAGATAGTGTAAATGACAAAAGACTACAAAGTCCATCTGCAGTTCTAGTTAAAG
 TAGAGCTTACCTGTCATGTGCATCAGCAAGAATCATAGGCACCTTTAAATAAAGGTTAAAGGTTGAAATACTCA
 GTGTATTGCACTGAGAAAATGTCTGACTGTTGCAAAATAATTCTGTTAAGAATCCATCTTACCTCTCTT
 AAGTTCTAACACTTGGAGGCCAACACATATTAACTAAAGGATGCTTGTAGAAACTCAAAACAGCA
 CTTCTTGGCACTCCTGCCAGTTCTCTTGTAAATGAAACATCATCATGGAATTGGAAAGGAGAGTA
 TGAGTACGGAGAGAAGTGGATCAGAAAACATAGAATGAGGATAAACATTACATTAGTGGAAACTCTGAAATAAA
 TCCTTGATTGTCAGTTAATGATTTCAACAAAGGATGCCAACACAAAAGGCTTCAACAAACCGTCTGTTTA
 AGAACAGACCTAACGAGGCCAACACATATTAACTAAAGGATGCTTGTAGAAATCTCAGTAAAGCA
 GTTAAAGAAAAGAGCTGGAATGCAGTGTGATTAGGAACTTAATTCTAGGAAGGAAAGGTCTGTATGACACATT
 CACTTTAAGCAGAAAATCTTCTCAAGAAAATGACTTTACTTCTCTTGCAGTGCAGCAGTGGAGATAACTAACTT
 TTTAATGTTGTTCTCTAGTCAGTTATTAGNATTGCTTCAATGTGAAACACAAAATGGAATCNAACATAATGC
 CCTTATTGAAATATAGTTGATAGNTTGTGAAACACAAAATGGAATCNAACATAATGC

>Final LGR7-S ORF (722 amino acids) (SEQ ID NO:08)

MTSGSVFFYILIFGKYFSHGGGQDVKCSLGYPFCGNITKCLPQLLHCNGVDDCGNQADEDNCVVLQEMSLPGLEL
 DWMKPFTSPSVSSNVNTAMSLQWNLIRKLPPDCFKNYHDLQKLDLQNNKITSISIYAFRGLNSLTKLYLSHNRTFL
 KPGVFEDLHRLEWLIEDNHLSRISPPFYGLNSLILLVLMNNVLTRLPDKPLCQHMPRLHWLDLEGNNHIIHNLRLNT
 FISCSNLTVLVMRKNIKINHLNENTFAPLQKLDELDI.GSNKIEI.PPI.TFKDI.KELSQLNLSYNPIOKIOANOFDYLV
 FLKSLSLLEGIEISNIQQRMFRLPMNLSHIYFKKFQYCGYAPHVRSCPKNTDGISSLENLLASIIQRVFWVVSAVTC
 FGNIFVICMRPYIIRSENKLYAMSIIISLCCADCLMGIYLFLVIGGFDLKFRGEYNKHAQLWMESTHQLVGSIALSTE
 VSVLLLTFLTLEKYICIVYPFRCVRPGKCRTITVLILIWTGIVAFIPLSNKEFFKNYYGTNGVCFPLHSEDTESI
 GAQIYSVAIFLGINLAIFIIVFSYGSMFYSVHQSAITATEIRNQVKEMILAKRFFFIVFTDALCWIPIFVVFKFLS
 LLQVEIPGTITSWVVFILPINSALNPILYTLTRPFKEMIHRFWYNTYRQRKSMDSKGQKTYAPSFIWEMWPLQEM
 PPELMKFDLFTYPCEMSLISQSTRLNSYS*

5/8

>Alignment of LGR7-L with LGR7-S

Query=LGR7-L

Sbjct=LGR7-S

Query: 1 MTSGSVFFYILIFGKYFSHGGGQDVKCSLGYFPCGNITKCLPQLLHCNGVDDCGNQADED 60
Sbjct: 1 MTSGSVFFYILIFGKYFSHGGGQDVKCSLGYFPCGNITKCLPQLLHCNGVDDCGNQADED 60

Query: 61 NCGDNNNGWSMQFDKYFASYYKMTSQYPFEAETPECLVGSPVPQCLCQ---GLELDCTEN 117
Sbjct: 61 NC-----V V C C GLELD +
Sbjct: 61 NC-----VVVLCQCMSLPGLELDWMKP- 82

Query: 118 LRAVPSVSSNTAMSLQWNLIRKLPPDCFKNYHDLQKLYLQNNKITSISIYAFRGLNSLT 177
+VPSVSSNTAMSLQWNLIRKLPPDCFKNYHDLQKLYLQNNKITSISIYAFRGLNSLT
Sbjct: 83 FTSVPSVSSNTAMSLQWNLIRKLPPDCFKNYHDLQKLDLQNNKITSISIYAFRGLNSLT 142

Query: 178 KLYLSHNRITFLKPGVFEDLHRLEWLIIEDNHLSRISPPTFYGLNSLILLVLMNNVLTRL 237
KLYLSHNRITFLKPGVFEDLHRLEWLIIEDNHLSRISPPTFYGLNSLILLVLMNNVLTRL
Sbjct: 143 KLYLSHNRITFLKPGVFEDLHRLEWLIIEDNHLSRISPPTFYGLNSLILLVLMNNVLTRL 202

Query: 238 PDKPLCQHMPRLHWLDLEGNHIIHNLRNLTFISCSNLTVLVMRKNKINHLNENTFAPLQL 297
PDKPLCQHMPRLHWLDLEGNHIIHNLRNLTFISCSNLTVLVMRKNKINHLNENTFAPLQL
Sbjct: 203 PDKPLCQHMPRLHWLDLEGNHIIHNLRNLTFISCSNLTVLVMRKNKINHLNENTFAPLQL 262

Query: 298 DELDLGSNKIENLPPPLFKDLKELSQLNLSYNPIQKIQANQFDYLVKLKSLSLEGIEISN 357
DELDLGSNKIENLPPPLFKDLKELSQLNLSYNPIQKIQANQFDYLVKLKSLSLEGIEISN
Sbjct: 263 DELDLGSNKIENLPPPLFKDLKELSQLNLSYNPIQKIQANQFDYLVKLKSLSLEGIEISN 322

Query: 358 IQQRMFRLMNLSHIYFKKFQYCGYAPHVRSCPKNTDGIISSLENLLASIIQRVFVWWUSA 417
IQQRMFRLMNLSHIYFKKFQYCGYAPHVRSCPKNTDGIISSLENLLASIIQRVFVWWUSA
Sbjct: 323 IQQRMFRLMNLSHIYFKKFQYCGYAPHVRSCPKNTDGIISSLENLLASIIQRVFVWWUSA 382

Query: 418 VTCFGNIFVICMRPYIRSENKLYAMSIISLCCADCLMGIYLFVIGGFDLKFRGEYNKHAQ 477
VTCFGNIFVICMRPYIRSENKLYAMSIISLCCADCLMGIYLFVIGGFDLKFRGEYNKHAQ
Sbjct: 383 VTCFGNIFVICMRPYIRSENKLYAMSIISLCCADCLMGIYLFVIGGFDLKFRGEYNKHAQ 442

Query: 478 LWMESTHQCQLVGLSAILSTEVSVLLLTFLTLEKYICIVYPFRCVRPGKCRTITVLILIWI 537
LWMESTHQCQLVGLSAILSTEVSVLLLTFLTLEKYICIVYPFRCVRPGKCRTITVLILIWI
Sbjct: 443 LWMESTHQCQLVGLSAILSTEVSVLLLTFLTLEKYICIVYPFRCVRPGKCRTITVLILIWI 502

Query: 538 TGFIVAFIPLSNKEFFKNYYGTNGVCFPLHSEDTESIGAQIYSVAIFLGINLAIFIIVF 597
TGFIVAFIPLSNKEFFKNYYGTNGVCFPLHSEDTESIGAQIYSVAIFLGINLAIFIIVF
Sbjct: 503 TGFIVAFIPLSNKEFFKNYYGTNGVCFPLHSEDTESIGAQIYSVAIFLGINLAIFIIVF 562

Query: 598 SYGSMFYSVHQSAITATEIRNQVKKEMILAKRFFFIVFTDALCWIPIFVVKFLSLLQVEI 657
SYGSMFYSVHQSAITATEIRNQVKKEMILAKRFFFIVFTDALCWIPIFVVKFLSLLQVEI
Sbjct: 563 SYGSMFYSVHQSAITATEIRNQVKKEMILAKRFFFIVFTDALCWIPIFVVKFLSLLQVEI 622

Query: 658 PGTITSWVVIPLPINSALNPILYTLTTRPFKEMIHRFWNYRQRKSMDSKGQKTYAPSF 717
PGTITSWVVIPLPINSALNPILYTLTTRPFKEMIHRFWNYRQRKSMDSKGQKTYAPSF
Sbjct: 623 PGTITSWVVIPLPINSALNPILYTLTTRPFKEMIHRFWNYRQRKSMDSKGQKTYAPSF 682

Query: 718 IWVEMWPLQEMPPPELMKPDLFTYPCEMSLISQSTRLNSYS 757
IWVEMWPLQEMPPPELMKPDLFTYPCEMSLISQSTRLNSYS
Sbjct: 683 IWVEMWPLQEMPPPELMKPDLFTYPCEMSLISQSTRLNSYS 722

FIG. 5

6 8
FIG. 6

Signal peptide

LGR4	MPGPLGLLCFLALGLLGSAGPSGA
LGR5	MDTSRLGVLLSLPVLLQLATG
LHR	MKQRFSALQLLKLLLLLQPPLPRA
FSHR	MALLLVSLLAFLSLGSG
TSHR	MRPADLLQLVLLLDLPRDLGG

N-flank cysteine-rich sequence

LGR4	APPL AA-P S DGDR----RVD SGKGLTAVPEGLSAFTQA
LGR5	GSSPRSGVLLRG P-TH H EPDGRMLLRVD SDLGLSELPNSNLSVFTSY
LHR	LREAL P-EP N VPDG--ALR-- PGPTAGLTR
FSHR	HHRI H SNRVFL----- QESKVTEIPSDLPRNAIE
TSHR	MG SSPP E HQEED---FRVT KDIQRIPSLPPSTQT

Leucine-rich repeats

LGR4	DISMNNITQLPED KSFPPFLEELQLAGN -- SL HPKALSG KE KVLTLO -- Q
LGR5	DLSMNNISQLPNPLPSLHFLEELRLAGNA-- TY PKGA TG YS KVMLMQ -- Q
LHR	SLAYLPVKVI PSQ RGLNEVIKIEISQI S- ER EANA DN LN SEILIQ TK -
FSHR	RFVLTKLRVIQKG SGFGDLEKIEISQN V- EV EADV SN PK HEIRIEKAN -
TSHR	KLIETHLRTIPSH SNLPNISRIYVSI- VT QQLESHS YN SKVTHIEIR TR -
<hr/>	
LGR4	RTV- SE IHG SA QS RLDA H- TSV EDS--FEGLVQLRH WLD S-L- EV VR
LGR5	RHV- TE LON RS QS RLDA H- SYV P-SC-FSGLHSLRH WLD A-L- E VQ
LHR	RYIE -G FIN PG KY SIC- TG RKF DVTKVFSSESNF- EIC LHI- T GN
FSHR	LYIN -E FQN PN QY LIS- TG KHL DVHK-IHSLQKVL- DIQ INIH - ERN
TSHR	TYID -D LKE PL KF GIF- TGLKMF DLT K-VYSTDIFFI EIT PYM- S VN
<hr/>	
LGR4	PLSN P-TLQA T AL NISSIPDF T LSS VV H HN K-IKSLSQHC D LDN-LE
LGR5	A RS S-ALQAMT AL KIHHIPDY G LSSWVV H HN R-IHSLGKKC D LHS-LE
LHR	A QGMNNNESVT K YG GFEEVQSH - GTT TS E KE VHLEKMHNGA R A-TGPK
FSHR	S VG SFESVI W NK GIQEIHNC - GTQ DE N SD NNLEELPNDV H A-SGPV
TSHR	A QG CNETLT K YN GFTSVQGY - GTK DAVY NK KYLTVIDKDA G VYSGPS
<hr/>	
LGR4	T LNYNYLDEF Q-AIKA PS KELGFHSNSISVI D-GA GGNPL RTIH - DNPLS
LGR5	T LNYNNLDEF T-AIRT SN KELGFHSNNIRSI E-KA VGNPS ITIHF- DNPIQ
LHR	T ISSTKLQAL SYGLESIQR I-ATS-SYSLKKL SRET V-N-- LEAT T -----
FSHR	I ISRTRIHS L SYGLE N KK R-ARSTYN-LKKL TLEKLVA--- MEAS T -----
TSHR	L VSQTSVTAL SKGLEH KE I-ARNTWT-LKKL LSLS LH--- TRAD S -----
<hr/>	
LGR4	FVGNSAFHNLSLDHCLVIRGASLVQWFPNLTGTGHLESLTGTKISSIPDDLCQNQKML
LGR5	FVGRSAFQHLPELRTLTLNGASQITEFPDLTGTAQISSLPPQTCVNQLPNL
LHR	-----
FSHR	-----
TSHR	-----

7 / 8

LGR4 RTLDLSYNIRDLPSFNGCRALEEISLQRNQISLIKENTFQQLTSRLILDLSRNLI
 LGR5 QVLDLSYNLLEDLPSFSVCQKLQKIDLRHNEIYEIKVDTFQQLLRLSLNLAWNKIA
 LHR -----
 FSHR -----
 TSHR -----

LGR4 SGAFAKLGTITNLDVSFNELTSFPTEGLNGLNQLK
 LGR5 PNAFSTLPSLIKLDLSSNLLSSFPITGLHGLTHLK
 LHR -----
 FSHR -----
 TSHR -----

C-flank cysteine-rich sequence

LGR4 LVGNFKLKDALAARDFANLRSLSV YAYQ WGCDSLCKLNTEEDNSPQEHSVTK
 LGR5 LTGNHALQSLISSENFPPELKVIEM YAYQ GVCENAYKISNQWNKGDNSSMDDLHKK
 LHR ----- --SH RNLPTKEQNFSHSISENFSKQCCESTVR
 FSHR ----- --SH ANWRRQISELHPICNKSIILRQEVDYMT
 TSHR ----- --SH KNQKKIRGILESALMCNESSMQSLRQK

LGR4 TDAANVTSTAENE HS-----
 LGR5 DAGMFQAQDERDL DF-----
 LHR KVSNKTLYSSMLA SE-----
 FSHR QTRGQRSSLAEVN SS-----
 TSHR SVNALNSPLHQEY ENLGDSIVGYKEKSFKQDTHNNAHYYVFFEEQEDEIIGFGQELKNP

LGR4 ----- QIIIH T STGA K YLLGSWMI
 LGR5 ----- LLDFEEDLKAHLHSVQ S SPGP K HLLDGWLI
 LHR ----- LSGWDYELYGFCLPKTPR- A EPDA N DIMGYDFL
 FSHR YSRGFDMTYTEFDYDLCNEVVDVT S KPDA N DIMGYNIL
 TSHR QEETLQAFDSHYDYTICGDSEDMV T KSDE N DIMGYKFL

Transmembrane**TM 1****TM 2**

LGR4 LTV F FLV LLF LL ILTVAFA CSS PASKLFIGLISVSNLLM IYTGILTFL AVSW
 LGR5 IGV T AV LTC AL TSTVFR PLYISPIKL IGVIAAVNMLT VSSAVL G AF F
 LHR VLI L NI IMG MT LFVLLT RYK TVPRF MCNLSFADFCM LYLLLI S SQ K
 FSHR VLI F SI ITG II LVILTT QYK TVPRF MCNLAFADLCI IYLLLI S IH K
 TSHR IVV FVSL LLG VF LLILLT HYK NVPRF MCNLAFADFCM MYLLLI S LY H

TM 3

LGR4 GRFAEFG W E S KV SLA S SA FL LAAV SVFAKDLMKHGKSSH QF
 LGR5 GSFARHGAW EN V HVI LSI S FL LAA GFSVKYSAKFET APFSSL
 LHR GQYYNHA D Q S ST FT L YT VIT WHTITYAIHLDQ LR HA
 FSHR SQYHNYA D Q A DA FT L YT AIT WHTITHAMQLDC VQ HA
 TSHR SEYYNHA D Q P NT FT L YT VIT WYAITFAMRLDR IR HA

FIG. 6 (CONT)

5 8

TM 4

LGR4	QVAALLALLGAAVAGOF	FHGGQ SASPL	FPTGETPSLGFTVTLVL	SL LLMA
LGR5	KVIILLCALLALTM AV	L G K GASPL	LPFGEPMSTMG MVALIL	SLC LMMT
LHR	ILIMLGGWLFSSLI ML	V V N MKVSI F	MDVETTLSQV ILTILI	W FIIC
FSHF	ASVMVMGWFIAFAA LF IF I S	MKVSI MDIDSPSQL VMSSLV	VL VVIC	
TSHR	CAIMVGGWVCCFL L	V I S AKVSI MDTETPLALA IVFVLT	IV VIVC	

TM 5

LGR4	II T L CNL-EKEDLENSQSSVI	HV W	NCIFFC VA FSFAPLITAIS SPEI
LGR5	IA T L CNL-DKGDLERI CSMV HI	L L	NCILNC VA LSF SLINLTF SPEV
LHR	AC I I FAVRNPELMATNK TKIA KM I		DFTCMA IS FAI AAFKVPL TVTN
FSHF	GC IHI LTVRNPNISSSS TRIA RM M		DFLCMA IS FAI ASLKVPV TVSK
TSHR	CCHV I ITVRNPQYNGDK TKIA RM V		DFICMA IS YAL AILNKPL TVSN

TM 7

LGR4	M SVTLI F LPA L	V VF N	
LGR5	I FI LVVV LPA L	L IL N	
LHR	S VL VL Y INS A	F AI T	
FSHF	A IL VL H INS A	F AI T	
TSHR	S IL VL Y LNS A	F AI T	

C-terminal tail

LGR4	PK KE WKL KRRVTRKHGSVSVSISSEQGGCGEQDFYYDCGMYSHLQGNLTVCDCCESFL	
LGR5	PH KE LVS RKQTYVWTRSCHKPSLMSINSDDVEKQSCDSTQALVTFTSSSITYDLPPSS	
LHR	KT QR FFL LSKFGCCKRAELYRRKDFSAYTSNCKNGFTGSNPKSQSTLKLSTLHCQG	
FSHF	KN RR FFI LSKCGCYEMQAQIYRTETSSTVHNTHPRNGHCSSAPRVTVNGSTYILVPLS	
TSHR	KA QR VFI LSKFGICKRQAQAYRGQRVPPKNSTDIQVQKVTHDMRQGLHNMEDVYELI	
LGR4	LTKPVSKHLIKSHSCPVLTAASCQRPEAYWSDCGTQSADYADEEDSFVSDSSDQVQA	
LGR5	VPSPAYPVTESCHLSSVAFVPCL	
LHR	TALLDKTRYTEC	
FSHF	HLAQN	
TSHR	ENSHLTPKKQGQISEEYMQTVL	
LGR4	CGRACFYQSRGFPLVRYAYNLQRVRD	

FIG. 6 (CONT)

SEQUENCE LISTING

<110> Hsueh, Aaron
 Hsu, Yu Sheau
 Liand, Shan-Guang
 van der Spek, Petrus Johannes

<120> Novel Mammalian G-Protein Coupled
 Receptors Having Extracellular Leucine Rich Repeat Regions

<130> SUN-84PCT

<160> 8

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 2856

<212> DNA

<213> human

<400> 1

atgcggggcc	cgttagggct	gctctgttcc	ctcgccctgg	ggctgctcgg	ctcgccgggg	60
cccaggggg	cgggccggcc	tctctgcgcg	gcgcctgtca	gctgcacagg	cgaccgtcgg	120
gtggactgt	ccggaaaggg	gttgacggcc	gtacccggagg	gtctcagcgc	cttcacccaa	180
gcactggata	tcagtagaa	caatacacc	cagttaccag	aagatgcatt	taagagtttc	240
ccatTTtag	aggagctaca	actggctgtt	aacgaccttt	ctcttatcca	tccaaaagcc	300
ttgtctggc	tgaaaagaact	caaagtctta	acactccaga	ataatcaatt	gagaacagtg	360
cccagtgaag	ccattcacgg	actgagtgtt	ttgcagtctt	tacgcttaqa	tgccaaaccat	420
attaccttag	tcggagga	cagttttgaa	gggcttgc	agttacgca	tctgtggctg	480
gatgacaaca	gcitgacgga	agtgcggcgt	cgtccccctca	gcaacctgccc	aaccctgcag	540
gcgctgaccc	tggctctcaa	caacatctca	agcatccctg	acttgccttt	caccAACCTT	600
tcaagcttgg	tggttctgca	tctgcataaac	aataaaatta	aaagcctcag	tcaacactgt	660
tttgcgttgg	tagataaacct	ggaaaccttgc	gacttgaatt	acaattactt	ggatgagttt	720
cctcaggcta	ttaaagccct	tcccagccctt	aaagagctgg	gatttcacag	taattctatt	780
tctgttattt	ctgatggagc	atttgggtgtt	aatccactqc	taqaactat	tcattttgtat	840
gataateccc	tgtcttttgt	ggggaaactca	gcattttcaca	acotgtctga	tctgcattgc	900
ttagtcattt	ctgggtcaag	cctgggtcaag	ttggtccccca	atctgacccg	aactgtccat	960
ttggagagtc	taaccttgac	agggacaaaa	ataaagcagca	tacctgtatga	tctgtgccaa	1020
aaccaaaaaya	tgcgtaggac	tctggactta	tcttataaca	atataaagaga	ccttccaagt	1080
ttaatgggtt	gtcggtcatt	gaaagaaaatt	tcatgtcagc	gtaatcaaatt	ctccctaata	1140
aaggaaaata	cttttcaagg	cctaacaatct	ctaaggattt	tagatctgag	tagaaaacctg	1200
atccgtgaaa	tccacagtgg	agcttttgcg	aagcttggga	caattactaa	cctggatgtta	1260
agtttcaatg	aattaacttc	atttcctacg	gaaggcctaa	atgggctcaa	tcaactaaag	1320
cttggggta	acttcaagct	gaaagacgcc	ttggcagcca	gagactttgc	taatctcagg	1380
tctctatcag	taccatatgt	ttatcagttt	tgtgcatttt	gggggtgtga	ctctttatgc	1440
aaattaaaca	cagaagataa	cagcccccaa	gaacacagtgc	tgacaaaaaa	gaaagggtgt	1500
acagatgcag	caaatgtcac	cagcactgt	gagaacgaag	aacatagc	aataattatc	1560
cactgtacac	cttcaacagg	tgctttcaag	ccctgtgaat	atttactggg	aagotggatg	1620
attcgcccta	cagtgtggtt	cattttctgt	gtcgcttgc	ttttcaactt	getttgtcatt	1680
ttaacaqgtt	ttcgcttta	ttcatcaact	cctggcttca	aacttctcat	aggcttgatt	1740
tctgtgtata	acttactcat	gggcacatcat	actggcatcc	ttacttttct	tgatgtgttg	1800
tcctggggcc	gatTTGCCGA	atTTGGCATT	TGGTJGGAAA	CTGGCAGCGG	CTGCAAGGTA	1860
gccgggtctc	TGGCAGTCCT	CTCTCAQAG	AGCGJTGAT	TCTTAAAC	ACTGGCAGCT	1920
gtggaaagaa	GTGTATTGC	AAAGGATTTG	ATQAAACACG	GGAAGAGCAG	TCACCTCAGA	1980
cagttccagg	TGGCCGCCCT	CTTAGCTTTG	CTGGGTGCCG	CAGTGGCAGG	CTGCTTCCCC	2040
ctttccacag	gagggcaata	ttctgcacatg	CCCTTGTGTT	TGCCGTTCCC	TACAGGAGAA	2100

ttccatgtt tttttttt tttttttt ttatattttt	1100
ttggccatca ttttttttt tttttttt ttatattttt	1120
tccacatgtt cttttttt tttttttt ttatattttt	1140
ttccatgtt cttttttt tttttttt ttatattttt	1160
ttatattttt ttatattttt ttatattttt ttatattttt	1180
ttatattttt ttatattttt ttatattttt ttatattttt	1200
ttatattttt ttatattttt ttatattttt ttatattttt	1220
ttatattttt ttatattttt ttatattttt ttatattttt	1240
ttatattttt ttatattttt ttatattttt ttatattttt	1260
ttatattttt ttatattttt ttatattttt ttatattttt	1280
ttatattttt ttatattttt ttatattttt ttatattttt	1300
ttatattttt ttatattttt ttatattttt ttatattttt	1320
ttatattttt ttatattttt ttatattttt ttatattttt	1340
ttatattttt ttatattttt ttatattttt ttatattttt	1360
ttatattttt ttatattttt ttatattttt ttatattttt	1380
ttatattttt ttatattttt ttatattttt ttatattttt	1400
ttatattttt ttatattttt ttatattttt ttatattttt	1420
ttatattttt ttatattttt ttatattttt ttatattttt	1440
ttatattttt ttatattttt ttatattttt ttatattttt	1460
ttatattttt ttatattttt ttatattttt ttatattttt	1480
ttatattttt ttatattttt ttatattttt ttatattttt	1500
ttatattttt ttatattttt ttatattttt ttatattttt	1520
ttatattttt ttatattttt ttatattttt ttatattttt	1540
ttatattttt ttatattttt ttatattttt ttatattttt	1560
ttatattttt ttatattttt ttatattttt ttatattttt	1580
ttatattttt ttatattttt ttatattttt ttatattttt	1600
ttatattttt ttatattttt ttatattttt ttatattttt	1620
ttatattttt ttatattttt ttatattttt ttatattttt	1640
ttatattttt ttatattttt ttatattttt ttatattttt	1660
ttatattttt ttatattttt ttatattttt ttatattttt	1680
ttatattttt ttatattttt ttatattttt ttatattttt	1700
ttatattttt ttatattttt ttatattttt ttatattttt	1720
ttatattttt ttatattttt ttatattttt ttatattttt	1740
ttatattttt ttatattttt ttatattttt ttatattttt	1760
ttatattttt ttatattttt ttatattttt ttatattttt	1780
ttatattttt ttatattttt ttatattttt ttatattttt	1800
ttatattttt ttatattttt ttatattttt ttatattttt	1820
ttatattttt ttatattttt ttatattttt ttatattttt	1840
ttatattttt ttatattttt ttatattttt ttatattttt	1860
ttatattttt ttatattttt ttatattttt ttatattttt	1880
ttatattttt ttatattttt ttatattttt ttatattttt	1900
ttatattttt ttatattttt ttatattttt ttatattttt	1920
ttatattttt ttatattttt ttatattttt ttatattttt	1940
ttatattttt ttatattttt ttatattttt ttatattttt	1960
ttatattttt ttatattttt ttatattttt ttatattttt	1980
ttatattttt ttatattttt ttatattttt ttatattttt	2000
ttatattttt ttatattttt ttatattttt ttatattttt	2020
ttatattttt ttatattttt ttatattttt ttatattttt	2040
ttatattttt ttatattttt ttatattttt ttatattttt	2060
ttatattttt ttatattttt ttatattttt ttatattttt	2080
ttatattttt ttatattttt ttatattttt ttatattttt	2100
ttatattttt ttatattttt ttatattttt ttatattttt	2120
ttatattttt ttatattttt ttatattttt ttatattttt	2140
ttatattttt ttatattttt ttatattttt ttatattttt	2160
ttatattttt ttatattttt ttatattttt ttatattttt	2180
ttatattttt ttatattttt ttatattttt ttatattttt	2200
ttatattttt ttatattttt ttatattttt ttatattttt	2220
ttatattttt ttatattttt ttatattttt ttatattttt	2240
ttatattttt ttatattttt ttatattttt ttatattttt	2260
ttatattttt ttatattttt ttatattttt ttatattttt	2280
ttatattttt ttatattttt ttatattttt ttatattttt	2300
ttatattttt ttatattttt ttatattttt ttatattttt	2320
ttatattttt ttatattttt ttatattttt ttatattttt	2340
ttatattttt ttatattttt ttatattttt ttatattttt	2360
ttatattttt ttatattttt ttatattttt ttatattttt	2380
ttatattttt ttatattttt ttatattttt ttatattttt	2400
ttatattttt ttatattttt ttatattttt ttatattttt	2420
ttatattttt ttatattttt ttatattttt ttatattttt	2440
ttatattttt ttatattttt ttatattttt ttatattttt	2460
ttatattttt ttatattttt ttatattttt ttatattttt	2480
ttatattttt ttatattttt ttatattttt ttatattttt	2500
ttatattttt ttatattttt ttatattttt ttatattttt	2520
ttatattttt ttatattttt ttatattttt ttatattttt	2540
ttatattttt ttatattttt ttatattttt ttatattttt	2560
ttatattttt ttatattttt ttatattttt ttatattttt	2580
ttatattttt ttatattttt ttatattttt ttatattttt	2600
ttatattttt ttatattttt ttatattttt ttatattttt	2620
ttatattttt ttatattttt ttatattttt ttatattttt	2640
ttatattttt ttatattttt ttatattttt ttatattttt	2660
ttatattttt ttatattttt ttatattttt ttatattttt	2680
ttatattttt ttatattttt ttatattttt ttatattttt	2700
ttatattttt ttatattttt ttatattttt ttatattttt	2720
ttatattttt ttatattttt ttatattttt ttatattttt	2740
ttatattttt ttatattttt ttatattttt ttatattttt	2760
ttatattttt ttatattttt ttatattttt ttatattttt	2780
ttatattttt ttatattttt ttatattttt ttatattttt	2800
ttatattttt ttatattttt ttatattttt ttatattttt	2820
ttatattttt ttatattttt ttatattttt ttatattttt	2840
ttatattttt ttatattttt ttatattttt ttatattttt	2860
ttatattttt ttatattttt ttatattttt ttatattttt	2880
ttatattttt ttatattttt ttatattttt ttatattttt	2900
ttatattttt ttatattttt ttatattttt ttatattttt	2920
ttatattttt ttatattttt ttatattttt ttatattttt	2940
ttatattttt ttatattttt ttatattttt ttatattttt	2960
ttatattttt ttatattttt ttatattttt ttatattttt	2980
ttatattttt ttatattttt ttatattttt ttatattttt	3000

210 .

211 . 951

212 . PRT

213 . human

.4000 . 1

Met Pro Gly Pro Leu Gly Leu Leu Cys Phe Leu Ala Leu Gly Leu Leu	
1	10
Gly Ser Ala Gly Pro Ser Gly Ala Ala Pro Pro Leu Cys Ala Ala Pro	
20	25
Cys Ser Cys Asp Gly Asp Arg Arg Val Asp Cys Ser Gly Lys Gly Leu	
30	35
Thr Ala Val Irc Glu Gly Leu Ser Ala Phe Thr Gln Ala Leu Asp Ile	
40	50
Ser Met Asn Asn Ile Thr Sln Leu Pro Glu Asp Ala Phe Lys Ser Phe	
60	70
Pro Phe Leu Glu Glu Leu Gln Leu Ala Gly Asn Asp Leu Ser Leu Ile	
80	90
His Pro Lys Ala Leu Ser Gly Leu Lys Glu Leu Lys Val Leu Thr Leu	
100	105
Sln Asn Asn Gln Leu Arg Thr Val Pro Ser Glu Ala Ile His Gly Leu	
110	120
Ser Ala Leu Gln Ser Leu Arg Leu Asp Ala Asn His Ile Thr Ser Val	
130	135
Irc Glu Asp Ser Phe Gln Gly Leu Val Gln Leu Arg His Leu Trp Leu	
140	145
Asp Asp Asn Ser Leu Thr Gln Val Pro Val Arg Phe Leu Ser Asn Leu	
150	165
Irc Thr Leu Gln Ala Leu Thr Leu Ala Leu Asn Asn Ile Ser Ser Ile	
170	180
Irc Asp Phe Ala Phe Thr Asn Leu Ser Ser Leu Val Val Leu His Leu	
190	195
His Asn Asn Lys Ile Iys Ser Leu Ser Gln His Cys Phe Asp Gly Leu	
200	210
Asp Asn Leu Glu Thr Leu Asp Leu Asn Tyr Asn Tyr Leu Asp Glu Phe	
220	230
Irc Gln Ala Ile Iys Ala Leu Phe Ser Leu Iys Glu Leu Gly Irc His	
240	245
Ser Asn Ser Ile Ser Val Ile Phe Asp Gly Ala Phe Gly Gly Asn Pro	
250	260
Leu Leu Arg Thr Ile His Leu Tyr Asp Asn Pro Leu Ser Phe Val Gly	
270	275
Asn Ser Ala Phe His Asn Leu Ser Asp Leu His Cys Leu Val Ile Arg	
280	285
290	295

Gly Asn Ser Leu Val Gln Trp Phe Pro Asn Ile Ile Thr Asp Val Val His
 305 310 315 320
 Leu Glu Ser Leu Thr Ile Thr Gly Thr Lys Ile Ser Ser Ile Pro Asp
 325 330 335
 Asp Leu Cys Gln Asn Gln Lys Met Leu Arg Thr Leu Asp Leu Ser Tyr
 340 345 350
 Asn Asn Ile Arg Asp Leu Pro Ser Phe Asn Gly Tys Arg Ala Leu Glu
 355 360 365
 Glu Ile Ser Leu Gln Arg Asn Gln Ile Ser Leu Ile Lys Glu Asn Thr
 370 375 380
 Phe Gin Gly Leu Thr Ser Leu Arg Ile Leu Asp Leu Ser Arg Asn Leu
 385 390 395 400
 Ile Arg Glu Ile His Ser Gly Ala Phe Ala Lys Leu Gly Thr Ile Thr
 405 410 415
 Asn Leu Asp Val Ser Phe Asn Glu Leu Thr Ser Phe Pro Thr Glu Gly
 420 425 430
 Leu Asn Gly Leu Asn Gln Leu Lys Leu Val Gly Asn Phe Lys Leu Lys
 435 440 445
 Asp Ala Leu Ala Ala Arg Asp Phe Ala Asn Leu Arg Ser Leu Ser Val
 450 455 460
 Pro Tyr Ala Tyr Gin Cys Cys Ala Phe Trp Gly Cys Asp Ser Leu Cys
 465 470 475 480
 Lys Leu Asn Thr Glu Asp Asn Ser Pro Gin Glu His Ser Val Thr Lys
 485 490 495
 Glu Lys Gly Ala Thr Asp Ala Ala Asn Val Thr Ser Thr Ala Glu Asn
 500 505 510
 Glu Glu His Ser Gin Ile Ile His Cys Thr Pro Ser Thr Gly Ala
 515 520 525
 Phe Lys Pro Cys Glu Tyr Leu Leu Gly Ser Trp Met Ile Arg Leu Thr
 530 535 540
 Val Trp Phe Ile Phe Leu Val Ala Leu Leu Phe Asn Leu Leu Val Ile
 545 550 555 560
 Leu Thr Val Phe Ala Ser Cys Ser Ser Leu Pro Ala Ser Lys Leu Phe
 565 570 575
 Ile Gly Leu Ile Ser Val Ser Asn Leu Leu Met Gly Ile Tyr Thr Gly
 580 585 590
 Ile Leu Thr Phe Leu Asp Ala Val Ser Trp Gly Arg Phe Ala Glu Phe
 595 600 605
 Gly Ile Trp Trp Glu Thr Gly Ser Gly Cys Lys Val Ala Gly Ser Leu
 610 615 620
 Ala Val Phe Ser Ser Glu Ser Ala Val Phe Leu Leu Thr Leu Ala Ala
 625 630 635 640
 Val Glu Arg Ser Val Phe Ala Lys Asp Leu Met Lys His Gly Lys Ser
 645 650 655
 Ser His Leu Arg Gln Phe Gln Val Ala Ala Leu Leu Ala Leu Gly
 660 665 670
 Ala Ala Val Ala Gly Cys Phe Pro Leu Phe His Gly Gln Tyr Ser
 675 680 685
 Ala Ser Pro Leu Cys Leu Pro Phe Pro Thr Gly Glu Thr Pro Ser Leu
 690 695 700
 Gly Phe Thr Val Thr Leu Val Leu Leu Asn Ser Leu Ala Phe Leu Leu
 705 710 715 720
 Met Ala Ile Ile Tyr Thr Lys Leu Tyr Cys Asn Leu Glu Lys Glu Asp
 725 730 735
 Leu Ser Glu Asn Ser Gln Ser Ser Val Ile Lys His Val Ala Trp Leu
 740 745 750
 Ile Phe Thr Asn Cys Ile Phe Phe Cys Pro Val Ala Phe Phe Ser Phe
 755 760 765

Ser His Val Ile Pro Ala Lys Ser Phe Asp Ile Val Leu Met Lys Ser
 810
 Val Thr Ile Ile Pro Ile Ile Lys Ile Asp Val Asp Pro Val Leu
 815
 Lys Val Ile Ile Ala Asp Lys Ile Ile Asp Ile Ile Leu Leu Lys
 820
 Arg Asp Val Thr Arg Lys His Gly Ser Val Ser Val Val Ile Ser Ser
 825
 830
 Gln Gly Gly Pro Gly Glu Glu Asp Phe Tyr Tyr Asp Cys Gly Met Tyr
 835
 840
 Ser His Leu Gln Gly Asn Leu Thr Val Cys Asp Cys Cys Glu Ser Phe
 845
 850
 Leu Leu Thr Lys Pro Val Ser Cys Lys His Leu Ile Lys Ser His Ser
 855
 860
 Cys Ile Val Leu Thr Ala Ala Ser Cys Gln Arg Pro Glu Ala Tyr Trp
 865
 870
 Ser Asp Cys Gly Thr Gln Ser Ala His Ser Asp Tyr Ala Asp Glu Glu
 875
 880
 Asp Asp Thr Val Ser Asp Ser Ser Asp Gln Val Glu Ala Cys Gly Arg
 885
 890
 Ala Lys Phe Tyr Gln Ser Arg Gly Phe Pro Leu Val Arg Tyr Ala Tyr
 895
 900
 Arg Ile Gln Arg Val Arg Asp
 905

1. 1. 3
- 1. 2082
- 1. DNA
- 1. human

3. CONCLUSION

ataacaatacg aatccactcc ctgggaaaga aatgttttca tgggcacccac
aaaccttggc tttagattt aaattacaat aaccttgatq aattcccaac tgcaatttagg
aaatgtttttt acttaaadda actagqatbt catadcaaca statcgqtc qataacctgag
aaatccatgt taggcaaccs ttcttttati acaatacacat tctatgacaa tccccatccaa
ttttttttttt catatidottt tcaacattta ctgtgactaa caacactqas tttgaatqgt
aaatccatggc taactgadtt tcttgattta ctgtggactq caaaccttga qagtctgact
ttatctttttt cacatdttc atcttttctt caaaccctt ctcaatcactt acctaatactt
aaatgtgtttt atctgttctt caaaccatttta caagatttac caatttttt aatgtgtccaa
aaatccatgg aauattqacst aadacataat gaaaatctacq aaattuaaqg tggacactttr
aaatccatggc tttagcttccg atcgctqaat ttggjcttgga acaaatttgc tattattcac
aaatccatgtt tttccactttt qccatccctt aaaaaacttgc accttacgtc caaccccttg
ttatctttttt ctataacttgc ttatcatactt ttaactcaet taaaatiaac aggaaaateat
gtcttccada gctggatatac atctgaaaaac ttccadadaac tcaaggthat agaaaatgtt
ttatcttttcc agtgcgtgtgc atttqqaqtg tttqaaatg cctataaqtat ttctaatbaa
ttatctttttt atqacaacaacg cagttatqdcg gacccatca taaaagatgc tggaaatgtt
caatccatgg atdaacactt aattttaaat ttctgttgc attttggatg adacactggaaa
ggcccttccatt caatgcgttgc ttccacatttcc ccaggccccctt tcaacccctq taaacacttia
cttgcatttttgg qgctgtatca aattttacttq tggacccatad caatttttqgc acttactttat
aaatcttttgc tgacttccaa agtttttcaaa tccatctctt acatitccccca tattaaactt
ttatcttttttgc tccatccatggc aatgaaacatq ttccacggqag tttccatqgc ttttgttgc
gttgcatttttgc ggttcaacttt tggccactttt ccggccatca tttccatqgc gggaaatgg
tttgcatttttgc atatcttttgc ttttttqtc atttttqgtt caatdtcatc ttttttccat
tttgcatttttgc cagcccttgcg ggttgggttc ttgtgtttaaat atttgcacaa atttqaaacs
aaatcttccat ttcttgcattt gaaaataate atttttcttgc tttccatqgc gggcccttgc
atqggccatgg tttcccttgcg ggttggccatc aatgtatggcg tttccatqgc ttttgttgc
tttgcatttttgc cggccatccatc cccatggccg tacatqgttc tttccatqgc ttttgttgc
tttgcatttttgc tccatdtccatc cttcccttgc accaaacttgc acttcaatttt
ggcccttgcg ggttggccatc atatttgcg tttccatqgc ttttgttgc ttttgttgc

<210> 4
<211> 693
<212> PRT
<213> human

400 · 4

Val Ala Val Ile Lys Asn Leu Thr Val Asn Asn Leu Val Ile Val Thr Val
 395 400
 Phe Asn Ser Ile Lys Tyr Ile Val Pro Ile Lys Leu Leu Ile Gly Val
 405 410 415
 Ile Ala Ala Val Asn Met Leu Thr Asp Val Ser Ser Ala Val Leu Ala
 420 425 430
 Gly Val Asp Ala Phe Thr Ile Val Ser Phe Ala Asn His Gly Ala Trp
 435 440 445
 Trp Ala Asn Asp Val Gly Lys His Val Ile Gly Ile Leu Ser Ile Phe
 450 455 460
 Ala Ser Glu Ser Ser Val Phe Leu Leu Thr Leu Ala Ala Leu Glu Asn
 465 470 475
 Gly Phe Ser Val Lys Tyr Ser Ala Lys Phe Glu Thr Lys Ala Pro Phe
 480 485 490
 Ser Ser Leu Lys Val Ile Ile Leu Leu Cys Ala Leu Leu Ala Leu Thr
 495 500 505 510
 Met Ala Ala Val Pro Leu Leu Lys Gly Ser Lys Tyr Gly Ala Ser Pro
 515 520 525
 Leu Cys Leu Pro Leu Pro Phe Gly Glu Pro Ser Thr Met Gly Tyr Met
 530 535 540
 Val Ala Leu Ile Leu Leu Asn Ser Leu Cys Phe Leu Met Met Thr Ile
 545 550 555 560
 Ala Tyr Thr Lys Leu Tyr Cys Asn Leu Asp Lys Gly Asp Leu Glu Asn
 565 570 575
 Ile Trp Asp Cys Ser Met Val Lys His Ile Ala Leu Leu Leu Phe Thr
 580 585 590
 Asn Cys Ile Leu Asn Cys Pro Val Ala Phe Leu Ser Phe Ser Ser Leu
 595 600 605
 Ile Asn Leu Thr Phe Ile Ser Pro Glu Val Ile Lys Phe Ile Leu Leu
 610 615 620
 Val Val Val Pro Leu Pro Ala Cys Leu Asn Pro Leu Leu Tyr Ile Leu
 625 630 635 640
 Phe Asn Pro His Phe Lys Glu Asp Leu Val Ser Leu Arg Lys Gln Thr
 645 650 655
 Tyr Val Trp Thr Arg Ser Lys His Pro Ser Leu Met Ser Ile Asn Ser
 660 665 670
 Asp Asp Val Glu Lys Gln Ser Cys Asp Ser Thr Gln Ala Leu Val Thr
 675 680 685
 Phe Thr Ser Ser Ile Thr Tyr Asp Leu Pro Pro Ser Ser Val Pro
 690 695 700
 Ser Pro Ala Tyr Pro Val Thr Glu Ser Cys His Leu Ser Ser Val Ala
 705 710 715
 Phe Val Pro Cys Leu
 720 725
 730 735
 740 745
 750 755
 760 765
 770 775
 780 785
 790 795
 800 805
 810 815
 820 825
 830 835
 840 845
 850 855
 860 865
 870 875
 880 885
 890 895
 900 905
 910 915
 920 925
 930 935
 940 945
 950 955
 960 965
 970 975
 980 985
 990 995
 1000 1005
 1010 1015
 1020 1025
 1030 1035
 1040 1045
 1050 1055
 1060 1065
 1070 1075
 1080 1085
 1090 1095
 1100 1105
 1110 1115
 1120 1125
 1130 1135
 1140 1145
 1150 1155
 1160 1165
 1170 1175
 1180 1185
 1190 1195
 1200 1205
 1210 1215
 1220 1225
 1230 1235
 1240 1245
 1250 1255
 1260 1265
 1270 1275
 1280 1285
 1290 1295
 1300 1305
 1310 1315
 1320 1325
 1330 1335
 1340 1345
 1350 1355
 1360 1365
 1370 1375
 1380 1385
 1390 1395
 1400 1405
 1410 1415
 1420 1425
 1430 1435
 1440 1445
 1450 1455
 1460 1465
 1470 1475
 1480 1485
 1490 1495
 1500 1505
 1510 1515
 1520 1525
 1530 1535
 1540 1545
 1550 1555
 1560 1565
 1570 1575
 1580 1585
 1590 1595
 1600 1605
 1610 1615
 1620 1625
 1630 1635
 1640 1645
 1650 1655
 1660 1665
 1670 1675
 1680 1685
 1690 1695
 1700 1705
 1710 1715
 1720 1725
 1730 1735
 1740 1745
 1750 1755
 1760 1765
 1770 1775
 1780 1785
 1790 1795
 1800 1805
 1810 1815
 1820 1825
 1830 1835
 1840 1845
 1850 1855
 1860 1865
 1870 1875
 1880 1885
 1890 1895
 1900 1905
 1910 1915
 1920 1925
 1930 1935
 1940 1945
 1950 1955
 1960 1965
 1970 1975
 1980 1985
 1990 1995
 2000 2005
 2010 2015
 2020 2025
 2030 2035
 2040 2045
 2050 2055
 2060 2065
 2070 2075
 2080 2085
 2090 2095
 2100 2105
 2110 2115
 2120 2125
 2130 2135
 2140 2145
 2150 2155
 2160 2165
 2170 2175
 2180 2185
 2190 2195
 2200 2205
 2210 2215
 2220 2225
 2230 2235
 2240 2245
 2250 2255
 2260 2265
 2270 2275
 2280 2285
 2290 2295
 2300 2305
 2310 2315
 2320 2325
 2330 2335
 2340 2345
 2350 2355
 2360 2365
 2370 2375
 2380 2385
 2390 2395
 2400 2405
 2410 2415
 2420 2425
 2430 2435
 2440 2445
 2450 2455
 2460 2465
 2470 2475
 2480 2485
 2490 2495
 2500 2505
 2510 2515
 2520 2525
 2530 2535
 2540 2545
 2550 2555
 2560 2565
 2570 2575
 2580 2585
 2590 2595
 2600 2605
 2610 2615
 2620 2625
 2630 2635
 2640 2645
 2650 2655
 2660 2665
 2670 2675
 2680 2685
 2690 2695
 2700 2705
 2710 2715
 2720 2725
 2730 2735
 2740 2745
 2750 2755
 2760 2765
 2770 2775
 2780 2785
 2790 2795
 2800 2805
 2810 2815
 2820 2825
 2830 2835
 2840 2845
 2850 2855
 2860 2865
 2870 2875
 2880 2885
 2890 2895
 2900 2905
 2910 2915
 2920 2925
 2930 2935
 2940 2945
 2950 2955
 2960 2965
 2970 2975
 2980 2985
 2990 2995
 3000 3005
 3010 3015
 3020 3025
 3030 3035
 3040 3045
 3050 3055
 3060 3065
 3070 3075
 3080 3085
 3090 3095
 3100 3105
 3110 3115
 3120 3125
 3130 3135
 3140 3145
 3150 3155
 3160 3165
 3170 3175
 3180 3185
 3190 3195
 3200 3205
 3210 3215
 3220 3225
 3230 3235
 3240 3245
 3250 3255
 3260 3265
 3270 3275
 3280 3285
 3290 3295
 3300 3305
 3310 3315
 3320 3325
 3330 3335
 3340 3345
 3350 3355
 3360 3365
 3370 3375
 3380 3385
 3390 3395
 3400 3405
 3410 3415
 3420 3425
 3430 3435
 3440 3445
 3450 3455
 3460 3465
 3470 3475
 3480 3485
 3490 3495
 3500 3505
 3510 3515
 3520 3525
 3530 3535
 3540 3545
 3550 3555
 3560 3565
 3570 3575
 3580 3585
 3590 3595
 3600 3605
 3610 3615
 3620 3625
 3630 3635
 3640 3645
 3650 3655
 3660 3665
 3670 3675
 3680 3685
 3690 3695
 3700 3705
 3710 3715
 3720 3725
 3730 3735
 3740 3745
 3750 3755
 3760 3765
 3770 3775
 3780 3785
 3790 3795
 3800 3805
 3810 3815
 3820 3825
 3830 3835
 3840 3845
 3850 3855
 3860 3865
 3870 3875
 3880 3885
 3890 3895
 3900 3905
 3910 3915
 3920 3925
 3930 3935
 3940 3945
 3950 3955
 3960 3965
 3970 3975
 3980 3985
 3990 3995
 4000 4005
 4010 4015
 4020 4025
 4030 4035
 4040 4045
 4050 4055
 4060 4065
 4070 4075
 4080 4085
 4090 4095
 4100 4105
 4110 4115
 4120 4125
 4130 4135
 4140 4145
 4150 4155
 4160 4165
 4170 4175
 4180 4185
 4190 4195
 4200 4205
 4210 4215
 4220 4225
 4230 4235
 4240 4245
 4250 4255
 4260 4265
 4270 4275
 4280 4285
 4290 4295
 4300 4305
 4310 4315
 4320 4325
 4330 4335
 4340 4345
 4350 4355
 4360 4365
 4370 4375
 4380 4385
 4390 4395
 4400 4405
 4410 4415
 4420 4425
 4430 4435
 4440 4445
 4450 4455
 4460 4465
 4470 4475
 4480 4485
 4490 4495
 4500 4505
 4510 4515
 4520 4525
 4530 4535
 4540 4545
 4550 4555
 4560 4565
 4570 4575
 4580 4585
 4590 4595
 4600 4605
 4610 4615
 4620 4625
 4630 4635
 4640 4645
 4650 4655
 4660 4665
 4670 4675
 4680 4685
 4690 4695
 4700 4705
 4710 4715
 4720 4725
 4730 4735
 4740 4745
 4750 4755
 4760 4765
 4770 4775
 4780 4785
 4790 4795
 4800 4805
 4810 4815
 4820 4825
 4830 4835
 4840 4845
 4850 4855
 4860 4865
 4870 4875
 4880 4885
 4890 4895
 4900 4905
 4910 4915
 4920 4925
 4930 4935
 4940 4945
 4950 4955
 4960 4965
 4970 4975
 4980 4985
 4990 4995
 5000 5005
 5010 5015
 5020 5025
 5030 5035
 5040 5045
 5050 5055
 5060 5065
 5070 5075
 5080 5085
 5090 5095
 5100 5105
 5110 5115
 5120 5125
 5130 5135
 5140 5145
 5150 5155
 5160 5165
 5170 5175
 5180 5185
 5190 5195
 5200 5205
 5210 5215
 5220 5225
 5230 5235
 5240 5245
 5250 5255
 5260 5265
 5270 5275
 5280 5285
 5290 5295
 5300 5305
 5310 5315
 5320 5325
 5330 5335
 5340 5345
 5350 5355
 5360 5365
 5370 5375
 5380 5385
 5390 5395
 5400 5405
 5410 5415
 5420 5425
 5430 5435
 5440 5445
 5450 5455
 5460 5465
 5470 5475
 5480 5485
 5490 5495
 5500 5505
 5510 5515
 5520 5525
 5530 5535
 5540 5545
 5550 5555
 5560 5565
 5570 5575
 5580 5585
 5590 5595
 5600 5605
 5610 5615
 5620 5625
 5630 5635
 5640 5645
 5650 5655
 5660 5665
 5670 5675
 5680 5685
 5690 5695
 5700 5705
 5710 5715
 5720 5725
 5730 5735
 5740 5745
 5750 5755
 5760 5765
 5770 5775
 5780 5785
 5790 5795
 5800 5805
 5810 5815
 5820 5825
 5830 5835
 5840 5845
 5850 5855
 5860 5865
 5870 5875
 5880 5885
 5890 5895
 5900 5905
 5910 5915
 5920 5925
 5930 5935
 5940 5945
 5950 5955
 5960 5965
 5970 5975
 5980 5985
 5990 5995
 6000 6005
 6010 6015
 6020 6025
 6030 6035
 6040 6045
 6050 6055
 6060 6065
 6070 6075
 6080 6085
 6090 6095
 6100 6105
 6110 6115
 6120 6125
 6130 6135
 6140 6145
 6150 6155
 6160 6165
 6170 6175
 6180 6185
 6190 6195
 6200 6205
 6210 6215
 6220 6225
 6230 6235
 6240 6245
 6250 6255
 6260 6265
 6270 6275
 6280 6285
 6290 6295
 6300 6305
 6310 6315
 6320 6325
 6330 6335
 6340 6345
 6350 6355
 6360 6365
 6370 6375
 6380 6385
 6390 6395
 6400 6405
 6410 6415
 6420 6425
 6430 6435
 6440 6445
 6450 6455
 6460 6465
 6470 6475
 6480 6485
 6490 6495
 6500 6505
 6510 6515
 6520 6525
 6530 6535
 6540 6545
 6550 6555
 6560 6565
 6570 6575
 6580 6585
 6590 6595
 6600 6605
 6610 6615
 6620 6625
 6630 6635
 6640 6645
 6650 6655
 6660 6665
 6670 6675
 6680 6685
 6690 6695
 6700 6705
 6710 6715
 6720 6725
 6730 6735
 6740 6745
 6750 6755
 6760 6765
 6770 6775
 6780 6785
 6790 6795
 6800 6805
 6810 6815
 6820 6825
 6830 6835
 6840 6845
 6850 6855
 6860 6865
 6870 6875
 6880 6885
 6890 6895
 6900 6905
 6910 6915
 6920 6925
 6930 6935
 6940 6945
 6950 6955
 6960 6965
 6970 6975
 6980 6985
 6990 6995
 7000 7005
 7010 7015
 7020 7025
 7030 7035
 7040 7045
 7050 7055
 7060 7065
 7070 7075
 7080 7085
 7090 7095
 7100 7105
 7110 7115
 7120 7125
 7130 7135
 7140 7145
 7150 7155
 7160 7165
 7170 7175
 7180 7185
 7190 7195
 7200 7205
 7210 7215
 7220 7225
 7230 7235
 7240 7245
 7250 7255
 7260 7265
 7270 7275
 7280 7285
 7290 7295
 7300 7305
 7310 7315
 7320 7325
 7330 7335
 7340 7345
 7350 7355
 7360 7365
 7370 7375
 7380 7385
 7390 7395
 7400 7405
 7410 7415
 7420 7425
 7430 7435
 7440 7445
 7450 7455
 7460 7465
 7470 7475
 7480 7485
 7490 7495
 7500 7505
 7510 7515
 7520 7525
 7530 7535
 7540 7545
 7550 7555
 7560 7565
 7570 7575
 7580 7585
 7590 7595
 7600 7605
 7610 7615
 7620 7625
 7630 7635
 7640 7645
 7650 7655
 7660 7665
 7670 7675
 7680 7685
 7690 7695
 7700 7705
 7710 7715
 7720 7725
 7730 7735
 7740 7745
 7750 7755
 7760 7765
 7770 7775
 7780 7785
 7790 7795
 7800 7805
 7810 7815
 7820 7825
 7830 7835
 7840 7845
 7850 7855
 7860 7865
 7870 7875
 7880 7885
 7890 7895
 7900 7905
 7910 7915
 7920 7925
 7930 7935
 7940 7945
 7950 7955
 7960 7965
 7970 7975
 7980 7985
 7990 7995
 8000 8005
 8010 8015
 8020 8025
 8030 8035
 8040 8045
 8050 8055
 8060 8065
 8070 8075
 8080 8085
 8090 8095
 8100 8105
 8110 8115
 8120 8125
 8130 8135
 8140 8145
 8150 8155
 8160 8165
 8170 8175
 8180 8185
 8190 8195
 8200 8205
 8210 8215
 8220 8225
 8230 8235
 8240 8245
 8250 8255
 8260 8265
 8270 8275
 8280 8285
 8290 8295
 8300 8305
 8310 8315
 8320 8325
 8330 8335
 8340 8345
 8350 8355
 8360 8365
 8370 8375
 8380 8385
 8390 8395
 8400 8405
 8410 8415
 8420 8425
 8430 8435
 8440 8445
 8450 8455
 8460 8465
 8470 8475
 8480 8485
 8490 8495
 8500 8505
 8510 8515
 8520 8525
 8530 8535
 8540 8545
 8550 8555
 8560 8565
 8570 8575
 8580 8585
 8590 8595
 8600 8605
 8610 8615
 8620 8625
 8630 8635
 8640 8645
 8650 8655
 8660 8665
 8670 8675
 8680 8685
 8690 8695
 8700 8705
 8710 8715
 8720 8725
 8730 8735
 8740 8745
 8

<210> 6
<211> 757
<212> PRT
<213> human

<400> 5

```

Met Thr Ser Gly Ser Val Phe Phe Tyr Ile Leu Ile Phe Gly Lys Tyr
   1          5          10          15
Phe Ser His Gly Gly Gln Asp Val Lys Cys Ser Leu Gly Tyr Phe
   20          25          30
Pro Cys Gly Asn Ile Thr Lys Cys Leu Pro Gln Leu Leu His Cys Asn
   35          40          45
Gly Val Asp Asp Cys Gly Asn Gln Ala Asp Glu Asp Asn Cys Gly Asp
   50          55          60
Asn Asn Gly Trp Ser Met Gln Phe Asp Lys Tyr Phe Ala Ser Tyr Tyr
   65          70          75          80
Lys Met Thr Ser Gln Tyr Pro Phe Glu Ala Glu Thr Pro Glu Cys Leu
   85          90          95
Val Gly Ser Val Pro Val Gln Cys Leu Cys Gln Gly Leu Glu Leu Asp
  100          105          110
Cys Asp Glu Thr Asn Leu Arg Ala Val Pro Ser Val Ser Ser Asn Val
  115          120          125
Thr Ala Met Ser Leu Gln Trp Asn Leu Ile Arg Lys Leu Pro Pro Asp
  130          135          140

```

Val Phe Iys Asn Ser Ile Asn Leu Val Ile Tyr Asn Asn Asn
 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
 Lys Ile Thr Ser Ile Ser Ile Tyr Ala Ile Asn Gly Leu Asn Ser Leu
 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
 Tyr Ile Leu Tyr Ile Ile Asn Asn Asn Ile Thr Phe Ile Iys Pro Gly
 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
 Val Phe Ala Asp Leu His Asn Ile Asn Ile Ile Ile Glu Asp Asn
 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
 His Leu Ser Asn Ile Ser Ile Ile Thr Phe Tyr Gly Ile Asn Ser Leu
 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
 Ile Leu Leu Val Leu Met Asn Asn Asn Val Leu Thr Arg Leu Pro Asp Lys
 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
 Pro Leu Cys Gln His Met Pro Arg Leu His Trp Leu Asp Leu Glu Gly
 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
 Asn His Ile His Asn Leu Asn Asn Leu Thr Phe Ile Ser Iys Ser Asn
 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
 Leu Thr Val Leu Val Met Arg Lys Asn Iys Ile Asn His Leu Asn Glu
 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
 Asn Thr Phe Ala Pro Leu Gln Lys Leu Asp Glu Leu Asp Leu Gly Ser
 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
 Asn Lys Ile Glu Asn Leu Pro Leu Ile Phe Asp Leu Lys Glu
 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
 Leu Ser Gln Leu Asn Leu Ser Tyr Asn Pro Ile Gln Lys Ile Gln Ala
 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
 Asn Gln Phe Asp Tyr Leu Val Lys Leu Lys Ser Leu Ser Leu Glu Gly
 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
 Ile Glu Ile Ser Asn Ile Gln Gln Arg Met Phe Arg Pro Leu Met Asn
 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
 Leu Ser His Ile Tyr Phe Lys Lys Ile Gln Tyr Cys Gly Tyr Ala Pro
 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
 His Val Arg Ser Cys Lys Pro Asn Thr Asp Gly Ile Ser Ser Leu Glu
 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
 Asn Leu Leu Ala Ser Ile Ile Gln Arg Val Phe Val Trp Val Val Ser
 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
 Ala Val Thr Cys Phe Gly Asn Ile Phe Val Ile Cys Met Arg Pro Tyr
 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
 Ile Asn Ser Glu Asn Lys Leu Tyr Ala Met Ser Ile Ile Ser Leu Cys
 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
 Lys Ala Asp Cys Leu Met Gly Ile Tyr Ile Phe Val Ile Gly Ile Phe
 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
 Asp Leu Lys Phe Asn Gly Glu Tyr Asn Lys His Ala Gln Leu Trp Met
 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
 Glu Ser Thr His Gln Ile Val Gly Ser Leu Ala Ile Leu Ser Thr
 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
 Glu Val Ser Val Leu Leu Thr Phe Leu Thr Leu Glu Lys Tyr Ile
 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
 Cys Ile Val Tyr Pro Phe Asn Cys Val Asn Pro Gly Lys Cys Asn Thr
 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
 Ile Thr Val Leu Ile Leu Ile Trp Ile Thr Gly Phe Ile Val Ala Phe
 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
 Ile Pro Leu Ser Asn Iys Glu Phe Phe Lys Asn Tyr Tyr Gly Thr Asn
 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
 Gly Val Cys Phe Pro Leu His Ser Gln Asp Thr Glu Ser Ile Gly Ala
 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 591 592
 Gln Ile Tyr Ser Val Ala Ile Phe Leu Gly Ile Asn Leu Ala Ala Phe
 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
 Ile Ile Ile Val Phe Ser Tyr Gly Ser Met Phe Tyr Ser Val His Glu
 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

Ser Ala Ile Thr Ala Thr Glu Ile Arg Asn Glu Val Lys Glu Met
 610 615 620
 Ile Leu Ala Lys Arg Phe Phe Phe Ile Val Phe Thr Asp Ala Leu Cys
 625 630 635 640
 Trp Ile Pro Ile Phe Val Val Lys Phe Leu Ser Leu Leu Gln Val Glu
 645 650 655
 Ile Pro Gly Thr Ile Thr Ser Trp Val Val Ile Phe Ile Leu Pro Ile
 660 665 670
 Asn Ser Ala Leu Asn Pro Ile Leu Tyr Thr Leu Thr Thr Arg Pro Phe
 675 680 685
 Lys Glu Met Ile His Arg Phe Trp Tyr Asn Tyr Arg Gln Arg Lys Ser
 690 695 700
 Met Asp Ser Lys Gly Glu Lys Thr Tyr Ala Pro Ser Phe Ile Trp Val
 705 710 715 720
 Glu Met Trp Pro Leu Gln Glu Met Pro Pro Glu Leu Met Lys Pro Asp
 725 730 735
 Leu Phe Thr Tyr Pro Cys Glu Met Ser Leu Ile Ser Gln Ser Thr Arg
 740 745 750
 Leu Asn Ser Tyr Ser
 755

- 210: 7
- 211: 3584
- 212: DNA
- 213: human

• 400: 7

ctgctttgt	aactgtctaaga	ttgcagacag	aaatagcaca	caaccactgt	gagctgtatg	60
cgattca	ccaaagacca	aattttgttc	actttcatta	atcagttgt	cagatagaag	120
aaaatgac	atctgttctgt	cttcttctac	atcttaattt	ttggaaaata	tttttctcat	180
gggggtgg	aggatgtcaa	gtgtcccc	ggctatttcc	cctgtggaa	catcacaaag	240
tgcttgc	ctgttgtcga	ctgttaacgg	gtggacgact	gcggaaat	ggccgtatgag	300
gacaactgt	tggtgggtt	gtgcacgtgc	atgtcttgc	caggtctgga	gcttgactgg	360
atgaaacc	ttacgagtgt	tccatcggt	tcttcaaatg	tqatgtcaat	gtcacttc	420
tggaaactt	aa taagaaaact	tcctctgtat	tgcttcaaga	attatcatga	tcttcagaag	480
ctggac	cttgcataat	gattacatcc	atctccatct	atgttttc	aggactgaat	540
agccttac	aactgtatct	cagtcataac	agaataaact	tcttgaagcc	gggtgtttt	600
gaagatct	acagactaga	atggctgata	attgaadata	atcacctcg	tcaatttcc	660
ccaccaac	atttatggact	aaatcttt	attctcttag	tcttgcataa	taacgtctc	720
acccttia	ctgataaaac	tcttgtca	cacatgc	gactacattg	gctggactt	780
gaaggca	atatccataa	tttaagaaat	tttgcattt	tttctgcag	taattttaact	840
gtttttagt	qa tgagaaaaa	caaaaattat	cacttaatg	aaaatacttt	tgcacctctc	900
cagaaact	atgaatttgg	ttttaggaat	aataaaggat	aaaatcttc	accgcttata	960
ttcaagg	atggagat	gtcacaaattt	aatcttct	ataatccaat	caagaaaaatt	1020
caagcaaa	acc aatttgat	tcttgc	ctcaagtctc	tcagcctaga	agggattgaa	1080
atttcaaa	ata tccaaacaa	tcaacaaat	cttcttatg	atctctctca	catatatattt	1140
aagaaattt	cc agtactgtgg	gtatgcacca	catgttc	gctgtaaacc	aaacactgtat	1200
gaaattt	at ctctagagaa	tctttggca	agcattattt	agagagtatt	tgtctgggtt	1260
gtatctgc	at taccgttt	tggaaacatt	tttgcattt	gcatgcgacc	ttatatcagg	1320
tctgagaac	a gctgtatgc	atgtcaatc	at tctctct	gctgtgccga	ctgcttaatg	1380
gaaatatt	tattcgttat	cgaggcctt	gacctaaat	tctgtggaga	atacaataag	1440
catgcgc	tg tggatg	gactactcat	tgtcagctt	tagatctt	ggccattctg	1500
tccacaga	at cagtttt	actgttaaca	tttctgacat	ttggaaaata	catctgcatt	1560
gtctatc	tttagatgtqt	gagacctgga	aaatgc	caattacagt	tctgattctc	1620
atttggat	tttgcattt	agtgc	atccatg	gcaataagga	atttttcaaa	1680
aactactat	g caccatagg	agtatgtt	cctcttcat	cagaagatac	agaaagatatt	1740
ggagccc	aga tttattc	ggcaattttt	tttggatatta	atttggccgc	atttatcatc	1800
atagttttt	cctatggaaq	catgttttat	agtgttcatc	aaagtgc	ccat aacagcaact	1860
gaaatac	gga atcaagtt	aaaagagat	atccttgcca	aacgtttttt	ctttatagta	1920

- 210: 8
- 211: 722
- 212: PRT
- 213: human

```

> 4000 8
Met Thr Ser Gly Ser Val Phe Phe Tyr Ile Leu Ile Phe Gly Lys Tyr
    1           9           10          11
Phe Ser His Gly Gly Gly Gln Asp Val Lys Cys Ser Leu Gly Tyr Phe
    20          28          29          30
Pro Cys Gly Asn Ile Thr Lys Cys Leu Pro Gln Leu Leu His Cys Asn
    35          40          41          45
Gly Val Asp Asp Cys Gly Asn Gln Ala Asp Gln Asp Asn Cys Val Val
    50          55          60
Val Leu Cys Gln Cys Met Ser Leu Pro Gln Leu Glu Leu Asp Trp Met
    65          70          75          80
Lys Pro Phe Thr Ser Val Pro Ser Val Ser Ser Asn Val Thr Ala Met
    85          90          95
Ser Leu Gln Trp Asn Leu Ile Arg Lys Leu Pro Pro Asp Cys Phe Lys
    100         105         110
Asn Tyr His Asp Leu Gln Lys Leu Asp Leu Gln Asn Asn Lys Ile Thr
    115         120         125
Ser Ile Ser Ile Tyr Ala Phe Arg Gly Leu Asn Ser Leu Thr Lys Leu
    130         135         140
Tyr Leu Ser His Asn Arg Ile Thr Phe Leu Lys Pro Gly Val Phe Glu
    145         150         155         160
Asp Leu His Arg Leu Glu Trp Leu Ile Ile Glu Asp Asn His Leu Ser
    165         170         175
Arg Ile Ser Pro Pro Thr Phe Tyr Gly Leu Asn Ser Leu Ile Leu Leu
    180         185         190

```

Val Leu Met Asn Arg Val Leu Thr Arg Leu Ile Asp Arg Pro Leu Cys
 180 190 195
 Glu His Met Ile Arg Leu His Trp Leu Asp Leu Glu Gly Asn His Ile
 210 215 220
 His Asn Leu Arg Asn Leu Thr Phe Ile Ser Cys Ser Asn Leu Thr Val
 220 230 235 240
 Leu Val Met Arg Ile Asn Lys Ile Asn His Leu Asn Glu Asn Thr Phe
 245 250 255
 Ala Pro Leu Gln Lys Leu Asp Glu Leu Asp Leu Gly Ser Asn Lys Ile
 260 265 270
 Glu Asn Leu Pro Pro Leu Ile Phe Lys Asp Leu Lys Glu Leu Ser Gln
 275 280 285
 Leu Asn Leu Ser Tyr Asn Pro Ile Gln Lys Ile Gln Ala Asn Gln Phe
 290 295 300
 Asp Tyr Leu Val Lys Leu Lys Ser Leu Ser Leu Glu Gly Ile Glu Ile
 305 310 315 320
 Ser Asn Ile Gln Gln Arg Met Phe Arg Pro Leu Met Asn Leu Ser His
 325 330 335
 Ile Tyr Phe Lys Lys Phe Gln Tyr Cys Gly Tyr Ala Pro His Val Arg
 340 345 350
 Ser Cys Lys Pro Asn Thr Asp Gly Ile Ser Ser Leu Glu Asn Leu Leu
 355 360 365
 Ala Ser Ile Ile Gln Arg Val Phe Val Trp Val Val Ser Ala Val Thr
 370 375 380
 Cys Phe Gly Asn Ile Phe Val Ile Cys Met Arg Pro Tyr Ile Arg Ser
 385 390 395 400
 Glu Asn Lys Leu Tyr Ala Met Ser Ile Ile Ser Leu Cys Cys Ala Asp
 405 410 415
 Cys Leu Met Gly Ile Tyr Leu Phe Val Ile Gly Gly Phe Asp Leu Lys
 420 425 430
 Phe Arg Gly Glu Tyr Asn Lys His Ala Gln Leu Trp Met Glu Ser Thr
 435 440 445
 His Cys Gln Leu Val Gly Ser Leu Ala Ile Leu Ser Thr Glu Val Ser
 450 455 460
 Val Leu Leu Leu Thr Phe Leu Thr Leu Glu Lys Tyr Ile Cys Ile Val
 465 470 475 480
 Tyr Pro Phe Arg Cys Val Arg Pro Gly Lys Cys Arg Thr Ile Thr Val
 485 490 495
 Leu Ile Leu Ile Trp Ile Thr Gly Phe Ile Val Ala Phe Ile Pro Leu
 500 505 510
 Ser Asn Lys Glu Phe Phe Lys Asn Tyr Tyr Gly Thr Asn Glu Val Cys
 515 520 525
 Phe Pro Leu His Ser Glu Asp Thr Glu Ser Ile Gly Ala Gln Ile Tyr
 530 535 540
 Ser Val Ala Ile Phe Leu Gly Ile Asn Leu Ala Ala Phe Ile Ile Ile
 545 550 555 560
 Val Phe Ser Tyr Gly Ser Met Phe Tyr Ser Val His Gln Ser Ala Ile
 565 570 575
 Thr Ala Thr Glu Ile Arg Asn Gln Val Lys Lys Glu Met Ile Leu Ala
 580 585 590
 Lys Arg Phe Phe Phe Ile Val Phe Thr Asp Ala Leu Cys Trp Ile Pro
 595 600 605
 Ile Phe Val Val Lys Phe Leu Ser Leu Leu Gln Val Glu Ile Pro Gly
 610 615 620
 Thr Ile Thr Ser Trp Val Val Ile Phe Ile Leu Pro Ile Asn Ser Ala
 625 630 635 640
 Leu Asn Pro Ile Leu Tyr Thr Leu Thr Thr Arg Pro Phe Lys Glu Met
 645 650 655

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/06573

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :C07K 14/705; C12N 15/12, 15/63, 15/70, 15/79
US CL :530/350, 435/69.1, 252.3, 254.11, 320.1, 325

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 530/350; 435/69.1, 252.3, 254.11, 320.1, 325

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, Biosis, Medline, WPI
search terms: G-protein coupled receptor, Leucine rich repeats, Gonadotropin receptor, Thyrotropin receptor

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5,614,363 A (CONE) 25 March 1997, entire document.	1-11
X, P ----- Y, P	US 5,858,716 A (ELSHOURBAGY et al.) 12 January 1999, columns 20-30, entire document.	11 ----- 1-10
X -- Y	HWANG et al. Analysis of Expressed Sequence Tags from a Fetal Human Heart cDNA Library. Genomics. 1995, Vol. 30, pages 293-298, entire document.	5, 7, 11 ----- 1-4, 6, 8-10

Further documents are listed in the continuation of Box C.

See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "B" earlier document published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed "A" document member of the same patent family

Date of the actual completion of the international search

11 JUNE 1999

Date of mailing of the international search report

02 AUG 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Faxsimile No. (703) 305-3230

Authorized officer

Sally P. Teng

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No
PCT/US99/06573

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claims 1-11, drawn to nucleic acids encoding LGR4, the LGR4 polypeptide, and method of using the LGR4 nucleic acid.

Group II, claims 1-11, drawn to nucleic acids encoding LGR5, the LGR5 polypeptide and method of using the LGR5 nucleic acid.

Group III, claims 1-11, drawn to nucleic acid encoding LGR6, the LGR6 polypeptide, and method of using the LGR6 nucleic acid.

Group IV, claims 12 and 13, drawn to antibody that binds to LGR4.

Group V, claims 12 and 13, drawn to antibody that binds to LGR5.

Group VI, claims 12 and 13, drawn to antibody that binds to LGR7.

Group VII, claims 14-17, drawn to transgenic animal model containing an altered LGR4 gene.

Group VIII, claims 14-17, drawn to transgenic animal model containing an altered LGR5 gene

Group IX, claims 14-17, drawn to transgenic animal model containing an altered LGR7 gene

Group X, claim 18, drawn to a method of screening for a ligand for LGR4.

Group XI, claim 18, drawn to a method of screening for a ligand for LGR5.

Group XII, claim 18, drawn to a method of screening for a ligand for LGR7.

Each of the claims 1-18 is in three different groups because LGR4, LGR5, and LGR7 are structurally and functionally distinct polypeptides.

The inventions listed as Groups I-XII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The special technical feature of Group I is the nucleic acid sequence encoding LGR4. The special technical feature of Group II is the nucleic acid sequence encoding LGR5. The special technical feature of Group III is the nucleic acid sequence encoding LGR7. The special technical feature of Group IV is the antibody that binds to LGR4 but does not have the amino acid sequence of LGR4. The special technical feature of Group V is the antibody that binds to LGR5 but does not have the amino acid sequence of LGR5. The special technical feature of Group VI is the antibody that binds to LGR6 but does not have the amino acid sequence of LGR6. The special technical feature of Group VII is a transgenic animal containing an altered LGR4 gene. The special technical feature of Group VIII is a transgenic animal containing an altered LGR5 gene. The special technical feature of Group IX is a transgenic animal containing an altered LGR7 gene. The special technical feature of Group X is a method of screening for a ligand that binds LGR4. The special technical feature of Group XI is a method of screening for a ligand that binds LGR5. The special technical feature of Group XII is a method of screening for a ligand that binds LGR7. The special technical feature of each group is not the same or does not correspond to the special technical feature of any other group because the products of Groups I-IX are structurally and functionally distinct and the methods of Groups I-III and X-XII are distinct methods of using different starting reagent for accomplishing different goals. The groups are not linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/06573

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	HSU et al. Charcterization of Two LGR Genes Homologous to Gonadotropin and Thyrotropin Receptors with Extracellular Leucine-Rich Repeats and a G Protein-Coupled, Seven Transmembrane Region. Molecular Endocrinology. December 1998, Vol. 12, No. 12, pages 1830-1845, especially pages 1831-1837.	1-11