Introduction to Artificial Intelligence, Fall & Winter 2022 College of Computer Science, Zhejiang University Reference Solutions for Problem Set 2

丁尧相

2023年1月5日

Problem 1.1. 给定四个逻辑变量 A, B, C, D,下列命题对应的模型 (model) 各有多少个?

- $B \vee C$.
- $\neg A \lor \neg B \lor \neg C \lor \neg D$.
- $(A \Rightarrow B) \land A \land \neg B \land C \land D$.

参考解答: 3, 15, 0.

Problem 1.2.

- 将下面的命题转换为析取范式 (disjunctions):
 - 1. $A \iff (B \lor E)$
 - 2. $E \Rightarrow D$.
 - 3. $C \wedge F \Rightarrow \neg B$.
 - 4. $E \Rightarrow B$.
 - 5. $B \Rightarrow F$.
 - 6. $B \Rightarrow C$.
- 假定上述命题为真, 试采用 resolution 方法证明 $\neg A \land \neg B$.

参考解答:

- (1) $(\neg A \lor B \lor E) \land (\neg (B \lor E) \lor A)$, (2) $\neg E \lor D$, (3) $\neg (C \land F) \lor \neg B$, (4) $\neg E \lor B$, (5) $\neg B \lor F$, (6) $\neg B \lor C$.
- 由上述六个式子都为真,可知 (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) 为真。其中,对 (3)(5)(6) 同时运用 resolution 可知 ¬B 为真。进而由 (4) 知 ¬E 为真。进而由 (1) 的第一个析取式知 ¬A 为真。

Problem 1.3. (***) 2-CNF 指每个析取式都包含两个变量的命题,例如 $(A \lor B) \land (B \lor C) \land (C \lor D)$. 3-CNF 同理。请回答下述问题:

- 对于 n 个逻辑变量,最多可以构成多少个逻辑上不等价的 2-CNF?
- 利用上一问结果,证明 resolution 算法能够在多项式复杂度内求解任何 2-CNF 的 SAT 问题。
- 对于 3-CNF, 是否仍有上一问的结论?

参考解答:

- 通过观察,可以发现由最多 n 个逻辑变量 A_1, A_2, \ldots, A_n 组成的 2-CNF 只能表示这样的逻辑式 子: $X_1 \wedge X_2 \wedge \cdots \wedge X_k \wedge (X_{k+1} \vee X_{k+2}) \wedge (X_{k+3} \vee X_{k+4}) \wedge \cdots \wedge (X_{k+2k'-1} \vee X_{k+2k'})$,其中 $k+2k' \leq n$,每个 X 均为一个逻辑变量 A 或其否 $\neg A$ 。特别地,一个式子中的所有 X 都必须代表不同的逻辑变量。设 n 个变量中有 k 个不属于析取式部分,则对应的逻辑式有 $A_n(k) = 3^k \binom{n}{k} \frac{(n-k)!}{((n-k)/2)!} 2^{(n-k)/2}$ 个(当 n-k 为偶数)或 $A_n(k) = 3^k \binom{n}{k} \frac{(n-k-1)!}{((n-k-1)/2)!} 2^{(n-k-1)/2}$ (当 n-k 为奇数)。进而全部的逻辑式有 $[\sum_{k=0}^n A_n(k)] 1$ 个。
- 首先观察到上一问中形式的逻辑式可以在 O(n) 复杂度内直接找出 SAT 解。同时,又观察到任何 2-CNF 都可以在多项式时间内化简为上述形式的逻辑式,或在化简过程中证明无解。因而知 2-SAT 问题存在多项式时间算法。
- 3-CNF 并不一定能化简成第一问中形式的逻辑式。因而 3-SAT 无法用上述方法证明存在多项式 解。事实上, 3-SAT 问题是 NP-完全的。

Problem 2.1. 考虑倒车入库问题,给定 8 个变量"油门"、"刹车"、"停车"、"挂倒档"、"到达位置"、"打方向"、"熄火"、"入库成功",并假设这些都是二元真值变量(只有"真"和"假"两个值)。

- 请设计一个 Bayesian net (BN),利用上述变量表示倒车入库问题。
- 基于该 BN, 计算 p(人库成功 | 挂倒挡 = False, 油门 = True) 的概率。
- 在该 BN 中,"油门"和"刹车"是否是独立或条件独立的? 若条件独立,其条件包括那些(个)变量?

参考解答: 重点是注意各变量间的依赖关系,例如只有挂倒挡才能踩油门,到达位置才能刹车,停车后才能熄火,等。

Problem 2.2. 对于图 1 中的三个 BN, 下面的结论是否成立? 请给出论证。

- $F_1 \perp \!\!\!\perp F_2 | N$
- $F_1 \perp \!\!\! \perp N|M_1$

图 1: Problem 2 的 BN.

参考解答:

- 只有图 (ii) 成立。
- 只有图 (i) 成立。

Problem 2.3. (***) 请举出一个 Simpson's paradox 的例子,并尝试画出对应的 BN 来解释悖论产生的原因。

参考解答: Simpson's paradox 的出现,关键在于在分析因果关系时,是否存在潜在因素对待分析的原因和结果变量发生作用,如结石问题中,结石大小可能影响。