Cálculo Numérico

Introducción

Victorio E. Sonzogni

CIMEC Centro Internacional de Métodos Computacionales en Ingeniería INTEC, CONICET-UNL, FICH, Santa Fe, Argentina

Cálculo Numérico- p

¿ Por qué cálculo numérico?

Supóngase una tarea demandada a un ingeniero: predecir cuánto se deforma una viga

El cálculo en ingeniería

La evaluación de magnitudes que cuantifiquen el estado mecánico de estructuras, piezas industriales, recursos naturales, tejidos orgánicos, etc. puede efectuarse por algunas de las siguientes maneras:

- Experimental
- Analítica (Teórica)
- Numérica

Cálculo Numérico- p

Primer gran ingeniero

Arquimedes 287-212 a.c

- principio hidrostática
- palanca
- tornillo
- lacksquare π

Mundo griego

Aristóteles (384, 322 a.c.)

- conocimiento empírico, basado en la observación
- filosofía
- postulados de Aristóteles: → casi 2000 años
- lógica
- herramientas matemáticas: geometría

Cálculo Numérico- p

Método experimental

Galileo (1564-1642)

- introdujo método experimental y dió paso al método científico
- resistencia de materiales, cinemática, astronomía, . . .
- (limitadas posibilidades experimentales y de cálculo)
- el método experimental → resolver nuestro problema

Cálculo infinitesimal

Sir Isaac Newton 1642-1727

- matemático, físico y experimentador
- junto a (pero separadamente de) Gottfried Leibnitz (1646-1716) creador de cálculo infinitesimal
- importantes aportes en matemática, mecánica, óptica,

. . .

Cálculo Numérico- p

Solución analítica de prob. físico-mecánicos

 las magnitudes (propiedades, estado) pueden ser medidas y representadas como variables dependientes de otras (funciones)

Lord Kelvin (1824-1907): cuando se puede medir aquello de que se habla, y expresarlo en números, se sabe algo de ello; pero nuestro saber es deficiente e insatisfactorio mientras no podamos expresarlo en números

- leyes o condiciones a cumplir → ecuaciones
- problema matemático que describe el comportamiento
 - ecuación (diferencial)
 - condiciones de contorno

Solución analítica de prob. físico-mecánicos

- importante desarrollo durante los siglos XVIII y XIX
- Euler (1707-1783); Lagrange (1736-1813);
 Navier (1785-1836); Gauss (1777-1855);
 Stokes (1819-1903); Laplace (1749-1827);
 Fourier (1758-1830); . . .
- solución elegante
- puede obtenerse para algunos casos (sencillos)

Cálculo Numérico- p

Solución analítica

Teoría de vigas

Ecuación diferencial (válida en toda la longitud):

$$\frac{d^4w(x)}{dx^4} = \frac{q}{EI}$$

Condiciones de contorno:

• en
$$x = L$$
 $\frac{d^2w}{dx^2} = 0$ (momento nulo)

• en
$$x = L$$
 $\frac{d^3w}{dx^3} = \frac{P}{EI}$ (fuerza cortante = f. externa)

La solución analítica es: $w(x)=\frac{P}{EI}\left(\frac{1}{2}Lx^2-\frac{1}{6}x^3\right)$ y la flecha $f=w(L)=\frac{1}{3}\frac{PL^3}{EI}$

Problemas con solución analítica

- muchos problemas pueden resolverse analíticamente
- pero ellos se limitan a geometrías sencillas, con condiciones de contorno sencillas, etc.
- **.** . . .
- en la mayoría de los casos prácticos no tenemos solución analítica . . . !

Cálculo Numérico- p. 1

Métodos numéricos

Por ejemplo: hallar una integral definida El área bajo la curva puedo obtenerla por integración.

$$A = \int_{a}^{b} f(x)dx$$

Métodos numéricos

Si no puedo integrar esa función, puedo aproximar el área computando las áreas de estos rectángulos:

$$\hat{A} = \sum_{i=1}^{n} f(x_i) \Delta x$$

Cálculo Numérico-p. 1

Métodos numéricos

- Grecia (antes de la era cristiana)
 Reemplazo de una curva por una poligonal. Cálculo de π
- Lord Rayleigh (1870) Técnicas variacionales para problemas de vibración. Reemplaza la función incógnita por una serie de funciones conocidas y coeficientes incógnitas.
- Ritz (1909) Extendió la idea de Rayleigh a otros tipos de problemas (electrodinámica). Método de Rayleigh-Ritz. Precisa un funcional.

Método de Rayleigh-Ritz

Lord Rayleigh (John W. Strutt) (1842-1919), Nobel 1904

Walter Ritz (1978-1909)

aproximación

$$\hat{u}(x) = \sum_{i=1}^{n} \phi_i(x) \ a_i$$

ullet calcula a_i por minimización del funcional

Cálculo Numérico- p. 1

Métodos numéricos

Galerkin (1915)
 Minimización del error: residuos ponderados.

Boris Grigorievich Galerkin (1871-1945)

... y muchos otros ...

El cálculo numérico

La metodología para realizar una simulación numérica implica:

- Desarrollo de un modelo matemático → problema matemático
- Solución numérica del problema matemático
- Desarrollo de software para la solución numérica
- Verificación de los métodos numéricos con casos simples
- Validación del modelo matemático con resultados experimentales
- Utilización práctica para predecir comportamiento.

Cálculo Numérico- p. 1

Aproximaciones

