

Lecture: Machine Learning for Data Science

Winter semester 2021/22

Lecture 13: Unsupervised learning —EM clustering

Prof. Dr. Eirini Ntoutsi

Clustering topics covered in this lecture

- Partitioning-based clustering
 - □ k-Means, k-Medoids
- Hierarchical clustering
- Density-based clustering
- Grid-based clustering
- Soft clustering
- Clustering evaluation

Outline

- Soft vs Hard clustering
- EM-clustering
- Things you should know from this lecture & reading material

Soft clustering

- What if clusters are overlapping?
 - Hard to tell which cluster is right for an instance
 - Maybe we should try to remain uncertain
- Soft clustering allows instances to belong to more than one clusters
 - the membership probabilities must sum to 1.0
- Mixture models are a probabilistically-grounded way of doing soft clustering
 - Each cluster corresponds to a probability distribution
 - Typically a Gaussian or multinomial
 - the parameters of the distribution comprise the cluster description
- How do we find the parameters of the distributions?
 - Expectation Maximization (EM) algorithm [Dempster, Laird and Rubin, 1977]

Gaussian Mixture Models

- Let a dataset D of instances to be clustered
 - □ In the general case, instances are d-dimensional vectors $x = (x_1, ..., x_d)$
- Each cluster is represented via a Gaussian distribution
- So D is generated via a mixture of k Gaussian distributions

Univariate case (Univariate Gaussian)

- Each cluster is represented via a Gaussian distribution
- In the simplest case, we assume univariate instances
- Each cluster c is a univariate Gaussian distribution described via
 - \square mean μ_c (expected value in c)
 - \square variance σ_c^2 (the average of the squared differences from the mean)
 - standard deviation σ_c (the square root of variance)
- Probability density function of a Gaussian distribution

$$P(x \mid c) = \frac{1}{\sqrt{2\pi\sigma_c^2}} e^{-\frac{1}{2} \cdot (x - \mu_c)^2 / \sigma_c^2}$$

Source: http://en.wikipedia.org/wiki/Normal_distribution

For a numerical feature X, for which we have a sample $x_1,...,x_n$ we can easily compute the parameters of the Gaussian $1 \frac{n}{2}$ $1 \frac{n}{2}$

 $\mu = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$ $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$

(See also Lecture 2 on basic data descriptors)

Multivariate case (Multivariate Gaussian)

- Each cluster is represented via a Gaussian distribution
- In the general case, instances are d-dimensional vectors $x = (x_1, ..., x_d)$
- Each cluster c is a multivariate Gaussian distribution represented via
 - \square mean μ_c (expected value of each attributes *i* in *c*) \rightarrow this is a vector
 - \Box d x d covariance matrix Σ_c (how correlated are attributes (i,j) in c)
 - $| \Sigma_c |$ matrix determinant
- Probability density function of a Gaussian distribution

Multivariate case (Multivariate Gaussian)

- For a dataset D of K-dimensional instances, we can compute the parameters of the Gaussian
- μ is the mean vector

$$\mu = [\mu^1, \mu^2, ..., \mu^d]$$

 \Box where μ^{j} is the mean value w.r.t. dimension j

$$\mu^{j} = \frac{1}{n} \cdot \sum_{i=1}^{n} x^{j}_{i}$$

$$\mathbf{D} = \begin{pmatrix} & X_1 & X_2 & \cdots & X_d \\ \mathbf{x}_1 & x_{11} & x_{12} & \cdots & x_{1d} \\ \mathbf{x}_2 & x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_n & x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix}$$

- $d \times d$ covariance matrix Σ whose (i,j) entry is the covariance between attributes i and j
- The covariance of two random variables x and y is given by

$$\sigma(x,y) = rac{1}{n-1} \sum_{i=1}^n \left(x_i - ar{x}
ight) (y_i - ar{y})$$

$$\begin{pmatrix} \sigma(x,x) & \sigma(x,y) \\ \sigma(y,x) & \sigma(y,y) \end{pmatrix}$$

• The variance σ^2 of a variable x can be expressed as $\sigma(x,x)$

How to compute the parameters of the Gaussians: A small example

- Suppose we have 6 points & we know they come from 2 Gaussian models (red, green)
 - Can we estimate the parameters of the Gaussian?
 - Yes, based on the point assignments

How to compute the parameters of the Gaussians: A small example

- What if we don't know which points came from which source? We still know that the points came from 2 Gaussian sources, but we don't know the assignments
 - Can we estimate the parameters of the Gaussian?

- What if we knew the parameters of the Gaussians (μ_c, Σ_c) ?
 - Could we guess whether a point is more likely to come from the red or green Gaussian?
 - Yes!

$$P(x \mid c) = \frac{1}{\sqrt{(2\pi)^d \mid \Sigma_c \mid}} e^{-\frac{1}{2} \cdot (x - \mu_c)^T \cdot \Sigma_c^{-1} \cdot (x - \mu_c)}$$

Outline

- Soft vs Hard clustering
- EM-clustering
- Things you should know from this lecture & reading material

Expectation Maximization (EM) idea

- Chicken-egg problem
 - □ We need the parameters of the green and red Gaussians to guess the source of each point
 - □ We need to know the sources of the points to estimate the parameters of the Gaussian sources
- EM algorithm
 - Start with two randomly placed Gaussians (μ_c, Σ_c)
 - Two alternating steps:
 - E-step ("Expectation"):
 - For each instance, what is the probability of coming from each Gaussian (under the current estimate of the model)?
 - This is a soft assignment (probability)
 - M-step ("Maximization"):
 - \square re-estimate the model parameters (μ_c, Σ_c) based on the assignments
 - Until convergence

Gaussian Mixture Models

- Let D be a dataset of d-dimensional instances.
- Let *k* sources, $\{c_1, c_2, ..., c_k\}$
- If the instances in D are generated in an independent manner from the k sources, the probability of the dataset D(|D|=N) is just the product of the probabilities of each instance x_i in D:

$$\mathcal{L} = \prod_{i=1}^{N} P(x_i) = \prod_{i=1}^{N} \sum_{l=1}^{k} P(c_l) P(x_i|c_l)$$

- We want to find the distribution parameters that maximize the likelihood
- We use the EM algorithm to estimate the parameters

EM algorithm 1/3

- Initialize
- Two alternating steps:
 - E-step ("Expectation"): re-estimate the cluster assignments under the current estimate of the model
 - M-step ("Maximization"): re-estimate the model parameters under the current assignment
- Until convergence

EM algorithm 2/3

- E-step ("Expectation"):
 - re-estimate the cluster assignments under the current estimate of the model
 - \Box For each object, calculate the probability of the object being generated by each cluster c_l

$$P^{new}(c_l|x_i) = P(c_l)P(x_i|c_l)$$

• where $P(x_i | c_i)$ is given by the probability density function of the Gaussian distribution

EM algorithm 3/3

- M-step ("Maximization"): re-estimate the model parameters under the current assignment
- Cluster density/prior: % of instances coming from c₁

$$P^{new}(c_l) = \frac{1}{N} \sum_{i=1}^{N} P^{new}(c_l|x_i)$$

• Cluster means: expected value for each attribute coming from c_i

$$\mu_l^{new} = \frac{\sum_{i=1}^N x_i P^{new}(c_l|x_i)}{\sum_{i=1}^N P^{new}(c_l|x_i)}$$

• Cluster covariances: how correlated are attributes in c_l

$$\Sigma_{l}^{new} = \frac{\sum_{i=1}^{N} (x_i - \mu_{l}^{new})(x_i - \mu_{l}^{new})' P^{new}(c_l | x_i)}{\sum_{i=1}^{N} P^{new}(c_l | x_i)}$$

EM (Gaussian Mixture Models) overview

- EM clustering: A soft clustering method
 - membership probabilities of instances to different clusters
- Each cluster corresponds to a probability distribution
 - □ e.g., Gaussian → Gaussian mixture models
 - the parameters of the distribution comprise the cluster description
- We use EM to find the parameters of the distributions

EM and k-Means

- EM is similar to the k-Means algorithm
- E-step (EM) → assign each object to a cluster step (k-Means)
 - □ In EM each object is assigned to a cluster with a probability, in k-Means the assignment is hard
- M-step (EM) \rightarrow compute cluster centroids step (k-Means)
 - □ In EM, the computation of the mean also considers the fact that each object belong to a distribution with a certain probability, in k-Means hard assignments of points are considered.
- The cluster representation is different
 - In k-Means: each cluster is represented via a centroid
 - In EM: each cluster is represented viaa probability distribution (Gaussian)
- There exist papers that discuss how are they related, e.g., k-Means is a Variational EM Approximation
 of Gaussian Mixture Models, https://arxiv.org/pdf/1704.04812.pdf

Soft-clustering vs Hierarchical clustering

In hierarchical clustering, an instance belongs to more than one clusters in the hierarchy, still this is a hard assignment. In soft clustering, an instance belongs to all clusters with some probability. This is a flat clustering.

Outline

- Soft vs Hard clustering
- EM-clustering
- Things you should know from this lecture & reading material

Overview and Reading

- Soft-clustering
- EM clustering
- Reading
 - Tan P.-N., Steinbach M., Kumar V book, Chapter 8.
 - □ Data Clustering: A Review, https://www.cs.rutgers.edu/~mlittman/courses/lightai03/jain99data.pdf
 - □ Nando de Freitas youtube video: https://www.youtube.com/watch?v=voN8omBe2r4