

Alexis Balayre

Artificial Intelligence Assignment

School of Aerospace, Transport and Manufacturing Computational Software of Techniques Engineering

> MSc Academic Year: 2023 - 2024

> > Supervisor: Dr Jun Li 18th March 2024

Abstract

High-Performance Computing (HPC) systems are pivotal in solving complex computational problems. Leveraging such systems, this report investigates the optimization of sparse matrix-vector multiplication (SpMV) - a crucial operation in scientific computations. Two prevalent storage formats, Compressed Sparse Row (CSR) and ELLPACK, are parallelized using OpenMP and CUDA to enhance SpMV's efficiency on the CRES-CENT2 HPC cluster at Cranfield University.

The study reveals that CSR format, when parallelized with OpenMP, achieves superior performance across a majority of matrices due to efficient memory management and task distribution. CUDA parallelization exhibits significant speed-ups, especially for matrices with regular structures, indicating an intricate relationship between matrix properties and the efficiency of CSR and ELLPACK formats.

Experimental results suggest that the parallelization strategy should be selected based on matrix characteristics. For matrices with high density or regularity, CUDA outperforms OpenMP, whereas for less regular matrices, OpenMP provides sufficient speed-up. Sequential execution remains competitive for small matrices or those with unfavourable characteristics for parallelization.

This report underscores the necessity of aligning parallel programming strategies with matrix properties to fully exploit HPC capabilities, providing a foundation for future research towards more nuanced and effective computational techniques in scientific computing.

Table of Contents

Al	ostrac	et		ii
Ta	ble of	f Conte	nts	iii
Li	st of l	Figures		V
Li	st of '	Fables		vi
1	Intr	oductio	n	1
	1.1	Datase	et	1
	1.2	Signifi	cance of the Competition	1
	1.3	Evalua	ation Metric	1
2	liter	ature R	eview	3
	2.1	Basic	principles	3
	2.2	Object	Detection Technologies	3
		2.2.1	Convolutional Neural Networks (CNN)	3
		2.2.2	Region-based approaches	3
			2.2.2.1 R-CNN	3
			2.2.2.2 Fast R-CNN	3
			2.2.2.3 Faster R-CNN	4
		2.2.3	Single Processing Methods	4
			2.2.3.1 YOLO (You Only Look Once)	4
			2.2.3.2 SSD (Single Shot MultiBox Detector)	4
3	Met	hodolog	Sy.	5
	3.1	Proble	m Statement	5
	3.2	Evalua	ation metrics for Faster R-CNN	5
		3.2.1	Intersection over Union (IoU)	5
		3.2.2	Precision and Recall	5
		3.2.3	Mean Average Precision (mAP)	6
4	Resi	ults and	Discussion	7
	4.1	Result	S	7
		4.1.1	Sequential Algorithms	7
		4.1.2	OpenMP	9
			1 2 1 Chunk Size Analysis	C

			4.1.2.2 Thread Count	Analysis .									9
			4.1.2.3 Performance C	Comparison									9
		4.1.3	CUDA										12
			4.1.3.1 X Block Size	Analysis									12
			4.1.3.2 Y Block Size	Analysis									12
			4.1.3.3 Performance C	Comparison									12
		4.1.4	Overall Performance Con	mparison .						 •			14
5	Con	clusion											16
Re	feren	ces											17
A	Doci	umentat	on										18
		Project								 			18
		3	Started										19
			s Overview										19
		A.C.1	Utils.h							 			19
			A.C.1.1 convertCRStol										19
			A.C.1.2 areMatricesEq										19
			A.C.1.3 readMatrixMa	rketFile									19
			A.C.1.4 generateLarge	FatVector .									20
		A.C.2	matrixMultivectorProduc	ctCRS.h									20
			A.C.2.1 matrixMultive	ctorProduct	CRS								20
		A.C.3	matrixMultivectorProduc	tCRSOpen]	MP.h								20
			A.C.3.1 matrixMultive										20
		A.C.4	matrixMultivectorProduc										21
			A.C.4.1 matrixMultive			UDA	١.						21
		A.C.5	matrixMultivectorProduc										21
			A.C.5.1 matrixMultive										21
		A.C.6	matrixMultivectorProduc		-								21
			A.C.6.1 matrixMultive				-						21
		A.C.7	matrixMultivectorProduc										22
			A.C.7.1 matrixMultive	ctorProduct	ELLP	ACK	CU.	DA	•	 •	•	•	22
В	Sour	ce Code	S										23

List of Figures

List of Tables

4.1	Performance Comparison of CRS and ELLPACK Sequential Algorithms .	7
4.2	CRS vs ELLPACK using OpenMP	9
4.3	CRS vs ELLPACK using CUDA	13
4.4	Overall Performance Comparison	14

Chapter 1

Introduction

Accurately diagnosing thoracic abnormalities from radiographs (X-rays) represents a considerable challenge, even for experienced radiologists. The complexity and critical nature of diagnosing these anomalies requires increasingly sophisticated decision support tools. In this context, the competition organised by Vingroup's Big Data Institute, supported by Vingroup JSC and launched in August 2018, aims to promote fundamental research in data science and artificial intelligence, with a particular focus on medical image processing.

The main objective of the competition is to develop automated systems capable of locating and classifying 14 types of thoracic anomalies from chest X-ray images. This initiative underlines the need for greater precision in medical diagnosis, where current methods struggle in particular to specify the location of findings on X-ray images, potentially leading to incorrect diagnoses.

1.1 Dataset

The dataset provided to participants includes 18,000 annotated chest scans, of which 15,000 images are for training and 3,000 for evaluation. These annotations were carefully collected via VinBigData's VinLab platform from de-identified studies provided by two Vietnamese hospitals.

1.2 Significance of the Competition

This competition promises significant advances in medical diagnosis by potentially providing radiologists with a reliable secondary opinion. By automating the detection and location of chest X-ray findings, the solution aims to lighten the workload of healthcare professionals and improve diagnostic accuracy for patients, particularly benefiting those in resource-limited settings.

1.3 Evaluation Metric

The competition uses the PASCAL VOC 2010 Mean Average Precision (mAP) metric with an Intersection on Union (IoU) threshold of ¿0.4 to evaluate submissions. This metric

highlights the importance of accuracy in the detection and classification process.

Chapter 2

literature Review

Object detection is a fundamental task in computer vision that involves identifying and locating objects of different categories in an image or video. Unlike image classification, which assigns a label to the entire image, object detection aims to provide a label and bounding box for each object of interest in the image.

2.1 Basic principles

Object detection generally involves two main tasks: object classification (knowing what objects are) and object localisation (knowing where objects are). To be successful, an object detection system must be able to recognise objects under a variety of conditions, such as different sizes, viewing angles, and occlusion levels.

2.2 Object Detection Technologies

2.2.1 Convolutional Neural Networks (CNN)

CNNs are at the heart of many advances in object detection. They are particularly effective at extracting hierarchical features from images thanks to their layered structure, which includes convolutional layers, pooling layers and fully connected layers.

2.2.2 Region-based approaches

2.2.2.1 R-CNN

R-CNN (Regions with CNN features) uses proposed regions to identify potentially interesting parts of the image, then applies a CNN to each of these proposed regions to classify the objects.

2.2.2.2 Fast R-CNN

Fast R-CNN improves on R-CNN by using a more efficient architecture that shares convolution calculations across the entire image, reducing processing time.

2.2.2.3 Faster R-CNN

Faster R-CNN introduces a Region Proposal Network (RPN) that generates region proposals directly from image features, further improving detection speed and accuracy.

2.2.3 Single Processing Methods

2.2.3.1 YOLO (You Only Look Once)

YOLO divides the image into a grid and predicts bounding boxes and class probabilities for each grid cell in a single pass, offering high processing speed.

2.2.3.2 SSD (Single Shot MultiBox Detector)

SSD combines the advantages of region-based approaches and single-shot methods, using bounding boxes at different scales and aspect ratios to predict the presence of objects in the image.

Chapter 3

Methodology

3.1 Problem Statement

3.2 Evaluation metrics for Faster R-CNN

To evaluate the performance of the Faster R-CNN model in the object detection task task, several metrics are used. These metrics provide a quantitative measure of the model's ability to correctly identify and locate objects in images.

3.2.1 Intersection over Union (IoU)

Intersection over Union (IoU) is a key metric for assessing the accuracy of of the bounding boxes predicted by the model. It is defined as the ratio between the area of the intersection and the area of the union of the predicted and ground truth:

$$IoU = \frac{\text{Intersection area}}{\text{Union area}} \tag{3.1}$$

A prediction is considered correct if the IoU with a ground truth box field exceeds a certain threshold, typically set at 0.5.

3.2.2 Precision and Recall

Precision is the proportion of positive identifications that are correct, while recall is the proportion of actual ground truths that are truths that are correctly identified. They are calculated as follows:

$$Precision = \frac{TP}{TP + FP}$$
 (3.2)

$$Recall = \frac{TP}{TP + FN} \tag{3.3}$$

where TP represents true positives, FP false positives, and FN false negatives.

3.2.3 Mean Average Precision (mAP)

The mean Average Precision (mAP) is the average of the APs calculated for each class of objects over different IoU thresholds. The AP for a class is the area under the precision-recall curve, and the mAP is an average of these values for all classes:

$$mAP = \frac{1}{N} \sum_{i=1}^{N} AP_i \tag{3.4}$$

where N is the number of classes and AP_i is the Average Precision for class i.

These metrics provide a comprehensive assessment of the performance of the Faster R-CNN model, measuring how accurately the model is able to detect and locate objects in different images.

Chapter 4

Results and Discussion

4.1 Results

4.1.1 Sequential Algorithms

The following table shows the performance comparison of the sequential algorithms using the CRS and ELLPACK formats.

Table 4.1: Performance Comparison of CRS and ELLPACK Sequential Algorithms

Matrix	CRS	ELLPACK	Best Structure
Cube_Coup_dt0	6.313540	2.659870	CRS
FEM_3D_thermal1	5.939650	2.543850	CRS
ML_Laplace	6.629070	2.775640	CRS
PR02R	6.577900	2.755250	CRS
adder_dcop_32	4.481260	2.360730	CRS
af23560	5.804440	2.509250	CRS
af_1_k101	6.139610	2.608660	CRS
amazon0302	2.344020	0.968039	CRS
bcsstk17	6.256790	2.654560	CRS
cage4	0.871628	0.849791	CRS
cant	6.419710	2.687030	CRS
cavity10	6.032170	2.625250	CRS
cop20k_A	4.771770	2.155300	CRS
dc1	4.686860	2.349130	CRS
lung2	4.634780	2.319800	CRS
mac_econ_fwd500	3.684580	1.851230	CRS
mcfe	6.069120	2.634280	CRS
mhd4800a	5.474340	2.549000	CRS
mhda416	5.524470	2.516310	CRS
nlpkkt80	5.932140	2.567120	CRS
olafu	6.481010	2.724440	CRS
olm1000	4.775320	2.192310	CRS

Matrix	CRS	ELLPACK	Best Structure
raefsky2	6.556030	2.767780	CRS
rdist2	5.762990	2.465300	CRS
roadNet-PA	2.721200	1.240050	CRS
thermal 1	4.599780	2.228430	CRS
thermal2	3.206760	1.437750	CRS
thermomech_TK	3.558870	1.592880	CRS
webbase-1M	3.750440	1.888800	CRS
west2021	4.184400	2.181630	CRS

A few key observations can be made:

- CRS Dominance: For the majority of matrices tested, the CRS format systematically outperforms the ELLPACK format. This is evident for matrices such as Cube_Coup_dt0, FEM_3D_thermal1, and ML_Laplace, where CRS not only handles large matrices efficiently but also matrices with high average and maximum numbers of non-zero elements per row.
- Efficiency in Dense Matrices: The CRS format appears to be particularly efficient at handling high-density matrices (higher AVG NZR and MAX NZR), which could be attributed to its storage efficiency and the way it streamlines the multiplication process for rows with varying lengths of non-zero elements.

4.1.2 OpenMP

4.1.2.1 Chunk Size Analysis

As shown in Figures ?? and ??, the performance of the OpenMP parallel algorithms is influenced by the chunk size. For lower density matrices, the optimal chunk size is 64 for the CRS format and 32 for the ELLPACK format. For higher density matrices, the optimal chunk size is 128 or 256 for both formats.

4.1.2.2 Thread Count Analysis

As shown in Figures ?? and ??, the performance of the OpenMP parallel algorithms is influenced by the number of threads. As more threads are used, the performance improves up to a certain point, after which the performance starts to stagnate due to the overhead of managing the threads.

4.1.2.3 Performance Comparison

Table 4.2: CRS vs ELLPACK using OpenMP

Matrix	CRS	ELLPACK	Best Structure	Speedup
Cube_Coup_dt0	29.0243	27.0415	CRS	4.597152
FEM_3D_thermal1	22.5277	19.9711	CRS	3.792766
ML_Laplace	33.2766	31.9121	CRS	5.019799
PR02R	32.5086	30.2968	CRS	4.942094
adder_dcop_32	5.12204	4.83417	CRS	1.142991
af23560	21.7606	18.9078	CRS	3.748958
af_1_k101	26.067	23.4946	CRS	4.245709
amazon0302	7.29883	5.23835	CRS	3.113809
bcsstk17	25.5293	23.3597	CRS	4.080255
cage4	0.385164	0.334653	CRS	0.441890
cant	29.7794	27.6956	CRS	4.638745
cavity10	19.0148	16.7258	CRS	3.152232
cop20k_A	19.5918	17.8729	CRS	4.105772
dc1	10.4524	9.39085	CRS	2.230150
lung2	8.832	6.85328	CRS	1.905592
mac_econ_fwd500	10.5515	8.84879	CRS	2.863691
mcfe	12.6097	11.8456	CRS	2.077682
mhd4800a	18.3501	16.1582	CRS	3.352021
mhda416	7.06099	6.80262	CRS	1.278130
nlpkkt80	24.4853	21.694	CRS	4.127566
olafu	29.966	27.9111	CRS	4.623662
olm1000	2.95895	2.1558	CRS	0.619634
raefsky2	27.8548	25.7504	CRS	4.248730
rdist2	15.5283	12.2527	CRS	2.694487

Matrix	CRS	ELLPACK	Best Structure	Speedup
roadNet-PA	4.63584	3.01227	CRS	1.703601
thermal1	11.7254	8.83925	CRS	2.549122
thermal2	8.84723	6.75174	CRS	2.758931
thermomech_TK	10.9908	8.10205	CRS	3.088284
webbase-1M	6.11469	5.10783	CRS	1.630393
west2021	3.89256	2.92762	CRS	0.930255

The performance evaluation of the CRS and ELLPACK formats, when parallelized with OpenMP, shows a preference for CRS in a majority of cases. This trend, indicated by a frequent superiority of the CRS format, highlights its suitability for OpenMP's parallelization capabilities, probably due to more optimal memory management and task distribution between threads.

The observed speed-up factor varies significantly between matrices, with particularly remarkable speed-ups for matrices such as *Cube_Coup_dt0* and *FEM_3D_thermal1*, highlighting the potential for improving performance via OpenMP's parallel optimisation.

Special cases such as *cage4* and *olm1000* show lower speed-ups, revealing the limits of parallelization for certain matrix structures. The influence of matrix density and size is also notable, with high densities and large fat vectors favouring the CRS format more, illustrating its effectiveness in processing large workloads under OpenMP.

4.1.3 CUDA

4.1.3.1 X Block Size Analysis

As shown in Figures ??, ??, the performance of the CUDA parallel algorithms is influenced by the X block size. For the CRS format, the optimal X block size is 16 most matrices, while for the ELLPACK format, the optimal X block size is 16 or even 8 for some matrices with higher density.

4.1.3.2 Y Block Size Analysis

As shown in Figures ?? and ??, the performance of the CUDA parallel algorithms is influenced by the Y block size. For the CRS format, the optimal Y block size is 16 for most matrices, while for the ELLPACK format, the optimal Y block size is 16 or 4 for some matrices with higher density.

4.1.3.3 Performance Comparison

Table 4.3: CRS vs ELLPACK using CUDA

Matrix	CRS	ELLPACK	Best Structure	Speedup
amazon0302	12.3120	10.4822	CRS	5.252515
cage4	0.033586	0.031649	CRS	0.038533
lung2	10.2714	9.81548	CRS	2.216157
mac_econ_fwd500	15.6609	15.4014	CRS	4.250389
mhd4800a	21.9362	21.4274	CRS	4.007095
olm1000	1.89504	1.48348	CRS	0.396840
raefsky2	70.6624	69.7615	CRS	10.778230
roadNet-PA	8.07317	5.84257	CRS	2.966768
thermal1	15.5753	13.318	CRS	3.386097
thermal2	19.2541	17.0523	CRS	6.004222
thermomech_TK	15.3241	14.2953	CRS	4.305889
west2021	2.66929	2.26954	CRS	0.637915
Cube_Coup_dt0	111.963	113.348	ELLPACK	17.953161
FEM_3D_thermal1	32.0555	33.4671	ELLPACK	5.634524
ML_Laplace	176.774	188.886	ELLPACK	28.493590
PR02R	135.828	146.651	ELLPACK	22.294501
adder_dcop_32	1.20824	4.12316	ELLPACK	0.920089
af23560	29.2923	29.4083	ELLPACK	5.066518
af_1_k101	79.1365	80.4176	ELLPACK	13.098161
bcsstk17	42.2982	45.3715	ELLPACK	7.251562
cant	99.3766	110.127	ELLPACK	17.154513
cavity10	21.571	23.0165	ELLPACK	3.815625
cop20k_A	46.062	47.6264	ELLPACK	9.980867
dc1	0.733577	14.7532	ELLPACK	3.147779
mcfe	10.5186	11.2408	ELLPACK	1.852130
mhda416	4.46372	4.6875	ELLPACK	0.848498
nlpkkt80	67.4344	67.5926	ELLPACK	11.394303
olafu	66.3819	69.052	ELLPACK	10.654512
rdist2	15.0779	15.7503	ELLPACK	2.733008
webbase-1M	8.04237	8.68042	ELLPACK	2.314507

The results of parallelizing the CRS and ELLPACK algorithms with CUDA show a strong preference for the CRS format on certain matrices (such as *amazon0302*, *lung2*, and *thermal1*), attributable to better sparsity management and memory access patterns optimized for GPUs. In contrast, ELLPACK shows superior performance for matrices with regular structures, such as *Cube_Coup_dt0* and *ML_Laplace*, due to more uniform memory access.

The variability of the speed-up factor between matrices highlights the importance of the specific structure of the matrix in the relative efficiency of CRS and ELLPACK under CUDA. In particular, symmetric and dense arrays tend to favour ELLPACK, highlighting the significant role of density and symmetry in the performance of the formats.

4.1.4 Overall Performance Comparison

Table 4.4: Overall Performance Comparison

Matrix	Best Performance	Best Structure	Best Method	Speedup
amazon0302	12.3120	CRS	CUDA	5.252515
lung2	10.2714	CRS	CUDA	2.216157
mac_econ_fwd500	15.6609	CRS	CUDA	4.250389
mhd4800a	21.9362	CRS	CUDA	4.007095
raefsky2	70.6624	CRS	CUDA	10.778230
roadNet-PA	8.07317	CRS	CUDA	2.966768
thermal1	15.5753	CRS	CUDA	3.386097
thermal2	19.2541	CRS	CUDA	6.004222
thermomech_TK	15.3241	CRS	CUDA	4.305889
Cube_Coup_dt0	113.348	ELLPACK	CUDA	17.953161
FEM_3D_thermal1	33.4671	ELLPACK	CUDA	5.634524
ML_Laplace	188.886	ELLPACK	CUDA	28.493590
PR02R	146.651	ELLPACK	CUDA	22.294501
af23560	29.4083	ELLPACK	CUDA	5.066518
af_1_k101	80.4176	ELLPACK	CUDA	13.098161
bcsstk17	45.3715	ELLPACK	CUDA	7.251562
cant	110.127	ELLPACK	CUDA	17.154513
cavity10	23.0165	ELLPACK	CUDA	3.815625
cop20k_A	47.6264	ELLPACK	CUDA	9.980867
dc1	14.7532	ELLPACK	CUDA	3.147779
nlpkkt80	67.5926	ELLPACK	CUDA	11.394303
olafu	69.0520	ELLPACK	CUDA	10.654512
rdist2	15.7503	ELLPACK	CUDA	2.733008
webbase-1M	8.68042	ELLPACK	CUDA	2.314507
adder_dcop_32	5.12204	CRS	OpenMP	1.142991
mcfe	12.6097	CRS	OpenMP	2.077682
mhda416	7.06099	CRS	OpenMP	1.278130
cage4	0.871628	CRS	Serial	1.000000
olm1000	4.77532	CRS	Serial	1.000000
west2021	4.1844	CRS	Serial	1.000000

Exceptionally high performance is observed for certain matrices under CUDA, such as *Cube_Coup_dt0* and *ML_Laplace*, revealing the match between certain data structures and GPU optimisation. On the other hand, OpenMP shows a moderate advantage for specific matrices, such as *adder_dcop_32* and *mcfe*, offering a significant performance improvement without the need for specialised hardware, thanks to parallelization on shared memory architectures.

However, matrices of small size or with characteristics less favourable to parallelization, such as *cage4*, *olm1000*, and *west2021*, show no significant improvement with

OpenMP or CUDA, indicating that for some cases sequential execution remains the most suitable method.

These observations lead to the conclusion that the choice between CRS and ELLPACK formats, as well as the decision to use sequential execution, OpenMP or CUDA, should be informed by the specific properties of the matrices in question. Optimisation of the calculation parameters and careful evaluation of the data characteristics are essential to maximise the efficiency of operations on hollow matrices.

Chapter 5

Conclusion

In summary, this report explored the performance of the CSR and ELLPACK formats for fat vector multiplication of hollow matrices using the OpenMP and CUDA parallel programming paradigms. The results show a marked preference for the CSR format when parallelized with OpenMP, which is probably due to more efficient memory management and optimal task distribution between threads. On the other hand, CUDA performance is strongly influenced by the sparsity and structural regularity of matrices, with symmetric and dense matrices seemingly favouring the ELLPACK format.

The benefits of using CUDA on GPU architectures have been demonstrated, particularly for arrays that align well with memory access models optimised for these devices. However, it is clear that the benefits of parallelization with CUDA or OpenMP are closely related to the specific characteristics of the arrays in question, and that a sequential approach may be preferable for small arrays or those with patterns less conducive to parallelization.

These findings underline the importance of a thorough analysis of data structures and computational parameters to maximise the efficiency of operations on hollow matrices. Ultimately, the choice between CSR and ELLPACK formats, as well as the decision to use sequential execution, OpenMP or CUDA, must be informed by the specific properties of the matrices. Such a nuanced understanding will further optimise the performance of the scientific and engineering applications that depend on these intensive computations.

References

Appendix A

Documentation

Appendix A.A Project tree

```
Source Code/
    CRS/
         matrix Multivector Product CRS.cpp
         matrixMultivectorProductCRS.h
         matrixMultivectorProductCRSCUDA.cu
         matrix Multivector Product CRSCUDA\ .\ h
        matrix Multivector Product CRSOpen MP.cpp\\
         matrix Multivector Product CRSOpen MP.\ h
    ELLPACK/
        matrix Multivector Product ELL PACK\ .\ cpp
         matrixMultivectorProductELLPACK.h
        matrix Multivector Product ELLPACK CUDA\ .\ cu
         matrixMultivectorProductELLPACKCUDA.h
        matrix Multivector Product ELLPACK Open MP. cpp\\
        matrix Multivector Product ELL PACK Open MP.\ h
    scripts/
        cuda.sub
        openMP.sub
         parseCudaResults.sh\\
        parseOpenMPResults.sh
    cudaUtils.cuh
    makefile
    Matrix Definitions.h
    runCuda.cpp
    runOpenMP.cpp
    utils.h
    utils.cpp
results/
    images/
    CUDA. csv
    CUDA. ipynb
    OpenMP.csv
    OpenMP.ipynb
```

Appendix A.B Getting Started

To run the program, follow these steps:

- 1. Install the required compilers and libraries:
 - OpenMP: Install the GNU Compiler Collection (GCC) and OpenMP (?).
 - **CUDA:** Install the NVIDIA CUDA Toolkit (?).
- 2. Compile the files using the following command: make all.
- 3. Run the programs:
 - OpenMP: ./runOpenMP.o
 - CUDA: ./runCuda.o

Appendix A.C Methods Overview

A.C.1 Utils.h

A.C.1.1 convertCRStoELLPACK

Description: Read a sparse matrix from a Matrix Market file.

Parameters:

- SparseMatrixCRS &crsMatrix: The CRS matrix to convert.
- SparseMatrixELLPACK &ellpackMatrix: The ELLPACK matrix to convert to.

A.C.1.2 areMatricesEqual

Description: Compares two matrices for equality within a specified tolerance.

Parameters:

- FatVector &mat1: First matrix.
- FatVector &mat2: Second matrix.
- double tolerance: Tolerance for comparison.

Returns: bool: True if matrices are equal within the tolerance, false otherwise.

A.C.1.3 readMatrixMarketFile

Description: Reads a matrix from a Matrix Market file into a sparse matrix format.

- std::string &filename: Name of the Matrix Market file.
- SparseMatrixCRS &matrix: Sparse matrix to read into.

A.C.1.4 generateLargeFatVector

Description: Generates a random Fat Vector with specified dimensions.

Parameters:

- FatVector &fatVector: Fat vector to generate.
- int n: Number of rows.
- int k: Number of columns.

A.C.2 matrixMultivectorProductCRS.h

A.C.2.1 matrixMultivectorProductCRS

Description: Perform the matrix-vector multiplication in the CRS format.

Parameters:

- SparseMatrixCRS &sparseMatrix: Sparse matrix in CRS format.
- FatVector &fatVector: Fat vector.
- FatVector &result: Result of the multiplication.
- int testNumber: Number of iterations for the performance measurement

A.C.3 matrixMultivectorProductCRSOpenMP.h

A.C.3.1 matrixMultivectorProductCRSOpenMP

Description: Perform the matrix-vector multiplication in the CRS format using OpenMP

- SparseMatrixCRS &sparseMatrix: Sparse matrix in CRS format.
- FatVector &fatVector: Fat vector.
- FatVector &result: Result of the multiplication.
- int testNumber: Number of iterations for the performance measurement
- int numThreads: Number of threads to use.
- int chunkSize: Chunk size for the parallelization.

A.C.4 matrixMultivectorProductCRSCUDA.h

A.C.4.1 matrixMultivectorProductCRSCUDA

Description: Perform the matrix-vector multiplication in the CRS format using CUDA

Parameters:

- SparseMatrixCRS &sparseMatrix: Sparse matrix in CRS format.
- FatVector &fatVector: Fat vector.
- FatVector &result: Result of the multiplication.
- int testNumber: Number of iterations for the performance measurement
- int xBlockSize: X block size for the parallelization.
- int yBlockSize: Y block size for the parallelization.

A.C.5 matrixMultivectorProductELLPACK.h

A.C.5.1 matrixMultivectorProductELLPACK

Description: Perform the matrix-vector multiplication in the ELLPACK format.

Parameters:

- SparseMatrixELLPACK &sparseMatrix: Sparse matrix in ELLPACK format.
- FatVector &fatVector: Fat vector.
- FatVector &result: Result of the multiplication.
- int testNumber: Number of iterations for the performance measurement

A.C.6 matrixMultivectorProductELLPACKOpenMP.h

A.C.6.1 matrixMultivectorProductELLPACKOpenMP

Description: Perform the matrix-vector multiplication in the ELLPACK format using OpenMP

- SparseMatrixELLPACK &sparseMatrix: Sparse matrix in ELLPACK format.
- FatVector &fatVector: Fat vector.
- FatVector &result: Result of the multiplication.
- int testNumber: Number of iterations for the performance measurement
- int numThreads: Number of threads to use.
- int chunkSize: Chunk size for the parallelization.

A.C.7 matrixMultivectorProductELLPACKCUDA.h

A.C.7.1 matrixMultivectorProductELLPACKCUDA

Description: Perform the matrix-vector multiplication in the ELLPACK format using CUDA

- SparseMatrixELLPACK &sparseMatrix: Sparse matrix in ELLPACK format.
- FatVector &fatVector: Fat vector.
- FatVector &result: Result of the multiplication.
- int testNumber: Number of iterations for the performance measurement
- int xBlockSize: X block size for the parallelization.
- int yBlockSize: Y block size for the parallelization.

Appendix B

Source Codes