# Subnet Mask

Dr. Kiran M IT Dept., NITK

#### **Previous Session**

Different Classes of IP address.

```
Class A 1.0.0.0 to 126.0.0.0.
```

- o Class B 128.0.0.0 191.225.0.0
- o Class C 192.0.0.0 223.255.255.0
- Class D 224.0.0.0 239.255.255.255
- Class E 240.0.0.0 255.255.255.255
- Why Different Classes?
  - Some need more networks and less systems in the each networks.
  - Others need more systems in a network and less number of networks.
- @NITK: We need more networks (LANs in each department and offices) and less number of systems in each LAN.

### **Subnet Masking**

- When a packet comes @ router
  - Router has to find out where the received packet should be forwarded.
  - Which is the nearest path to reach the destination network?
  - Remember
- Used by the router.
- Used to bifurcate network address and host address in a given IP address.

### Subnet Masking Example

| 8 bit | 7 bit | 6 bit | 5 bit | 4 bit | 3 bit | 2 bit | 1 bit |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 128   | 64    | 32    | 16    | 8     | 4     | 2     | 1     |

# 10.0.0.1 Binary Version

| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 |    |
|-----|----|----|----|---|---|---|---|----|
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |    |
| 0   | 0  | 0  | 0  | 1 | 0 | 1 | 0 | 10 |
| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0  |
| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0  |
| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 1 | 1  |



#### Subnet Mask for Different Classes of IP Address



10.0.0.1 - Class A IP Address - 255.0.0.0

Image Source: Internet

# 255.0.0.0 Binary Version

| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 |     |
|-----|----|----|----|---|---|---|---|-----|
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |     |
| 1   | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 255 |
| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0   |
| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0   |
| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0   |



#### Binary AND Operation of IP and Subnet Mask



10.0.0.1

255.0.0.0

### Binary AND Operation of IP and Subnet Mask



10.0.0.0

### Another Example

- Sow how router extracts network address from 216.3.128.28
- Class C Address
- 255.255.255.0 Subnet Mask

| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 |     |
|-----|----|----|----|---|---|---|---|-----|
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |     |
| 1   | 1  | 0  | 1  | 1 | 0 | 0 | 0 | 216 |



| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 |     |
|-----|----|----|----|---|---|---|---|-----|
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |     |
| 1   | 1  | 0  | 1  | 1 | 0 | 0 | 0 | 216 |
| 0   | 0  | 0  | 0  | 0 | 0 | 1 | 1 | 3   |



| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 |     |
|-----|----|----|----|---|---|---|---|-----|
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |     |
| 1   | 1  | 0  | 1  | 1 | 0 | 0 | 0 | 216 |
| 0   | 0  | 0  | 0  | 0 | 0 | 1 | 1 | 3   |
| 1   | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 128 |

|--|

| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 |     |
|-----|----|----|----|---|---|---|---|-----|
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |     |
| 1   | 1  | 0  | 1  | 1 | 0 | 0 | 0 | 216 |
| 0   | 0  | 0  | 0  | 0 | 0 | 1 | 1 | 3   |
| 1   | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 128 |
| 0   | 0  | 0  | 1  | 1 | 1 | 0 | 0 | 28  |

| 1   1   0   1   1   0   0   0   0   0 | 1 | 1 | 0 | 1 | 1 ( | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
|---------------------------------------|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|---------------------------------------|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

# 255.255.255.0 Binary Version

| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 |     |
|-----|----|----|----|---|---|---|---|-----|
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |     |
| 1   | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 255 |
| 1   | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 255 |
| 1   | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 255 |
| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0   |

|  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|--|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|--|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

#### Binary AND Operation of IP and Subnet Mask



216.3.128.0

#### Class C - 192.0.0.0 to 223.255.255.0

- Small Scale Networks (LANs)
- It supports total 2,097,150 networks.
- Total Systems/Hosts per network 254
- Subnet Mask
  - o **255.255.255.0**
- What if I need another 200 more networks?
  - $\circ$  20,97,150 + 100 = 20,97,350

What if, if I need another 200 networks in Class C?

Borrow some bits from the host part.



- If I borrow the host bits,
  - The number of systems in each network reduces.
- We can reduce the number of systems in each LAN and increase the no. of networks accordingly.
- Class Less Inter Domain Routing (CIDR)

#### 216.128.3.0/28 - CIDR

216. 128. 3. 0 / 28

N/W Address

$$8 + 8 + 8 = 24$$

Remaining 4 Bits are borrowed from host part to make 28 bits.



#### What about the Subnet Mask?

No class is followed

Hence, 255.255.2 can not be used, though the address is an Class C address



255.255.255.(128 + 64 + 32 + 16)

255.255.255.240

#### 216.128.3.0/28

How many additional networks are possible?

How many IP addresses is possible in each network?

- 2<sup>n</sup> total additional Networks are possible
  - where n is the total no. of bits borrowed.
- 2<sup>n</sup> total systems can be connected in each network
  - where n is the total no. remaining bits in the host part.

- 2<sup>n</sup> total additional Networks are possible
  - o Bits borrowed 4
  - 2<sup>4</sup> 16 networks
- 2<sup>n</sup> total hosts possible in each network
  - o Bits remaining in host part 4
  - o 2<sup>4</sup> 16 systems in each network.

- 2<sup>n</sup> total IP Address (host) possible in each network
  - Bits remaining in host part 4
  - 2<sup>4</sup> 16 host in each network.
- How ?

We can use only 14 Addresses in each network.

0 0 0 0 Network Address

0001

0011

0110

0101

0110

1000

1010

1100

1101

1110

1 1 1 1 Broadcast Address