Process	Biochemical reaction	Formulation	Description
Gross primary production (GPP)	$106CO_2 + 16HNO_3 + H_3PO_4 +$ $122H_2O+(sunlight)$ $\rightarrow (CH_2O)_{106}(NH_3)_{16}H_3PO_4 + 138O_2$ Nutrient limitation for phytoplankton growth $nlim = \frac{NO_3 + NH_4}{NO_3 + NH_4 + K_N} \times \frac{PO_4}{PO_4 + K_{PO_4}}$ $\times \frac{DSi}{DSi + K_{Si}}$	$GPP = P_{max}^{B}(T) \times nlim \times phytoplankton$ $\times \int_{H}^{0} 1 - exp\left(-\frac{\alpha}{P_{max}^{B}(T)} \times I(0)\right) \times exp(-K_{D} \cdot H) dz$ $P_{max}^{B}: photosynthesis rate$ $nlim: Nutrient limitation for phytoplankton growth$	GPP refers to the total rate of organic carbon production by phytoplankton based on the rate of photosynthesis $I(0)$: solar radiation K_D : Light extinction coefficient H: water depth
Net primary production (NPP)	NPP is the rate of phytoplankton produces biomass which already subtract the respiration of primary producers, including: $k_{\rm excr}$ phytoplankton excretion $k_{\rm growth}$ growth constants of phytoplankton $k_{\rm maint}$ phytoplanktonic maintenance	$NPP = \frac{GPP}{H} \times (1 - k_{excr}) \times (1 - k_{growth}) - k_{maint}(T) \times phytoplankton$	NPP is GPP minus the autotrophs' respiration rate (i.e., only by the primary producers).
Nitrification	$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$	$N = k_{\text{nit}}(T) \times \frac{\text{NH}_4}{\text{NH}_4 + K_{\text{NH}_4}} \times \frac{\text{O}_2}{\text{O}_2 + K_{\text{O}_2,\text{nit}}}$ $k_{\text{nit}}(T) \text{ maximum rate constant}$ $K_{\text{NH}_4} \text{ half-saturation constants}$	Under aerobic conditions, ammonia is oxidized to nitrite and nitrate via nitrification
Denitrification	94.4HNO ₃ + (CH ₂ O) ₁₀₆ (NH ₃) ₁₆ (H ₃ PO ₄) → 106CO ₂ + 55.2N ₂ + H ₃ PO ₄ + 177.2H ₂ O	$D = k_{\text{denit}}(T) \times \frac{\text{TOC}}{\text{TOC} + K_{\text{TOC}}} \times \frac{\text{NO}_3}{\text{NO}_3 + K_{\text{NO}_3}} \times \frac{K_{\text{in,O}_2}}{\text{O}_2 + K_{\text{in,O}_2}}$	Under anaerobic conditions, nitrate is reduced to gas forms as N ₂ , N ₂ O while organic P is degraded to inorganic PO ₄ ³ -
Aerobic degradation (respiration)	$1380_2 + (CH_2O)_{106}(NH_3)_{16}(H_3PO_4)$ $\rightarrow 106CO_2 + 16HNO_3 + H_3PO_4 + 122H_2O$	$R = k_{\text{OX}}(T) \cdot \frac{\text{TOC}}{\text{TOC} + K_{\text{TOC}}} \cdot \frac{O_2}{O_2 + K_{O_2, \text{ox}}}$	Degradation of organic carbon in the aerobic condition that converts into inorganic matters

Phytoplankton = NPP - Phytoplankton mortality
DSi = NPP of Diatom = NPP x Redfield ratio for silica (15/106)
NH₄⁺ = Aerobic degradation - Nitrification - NPP_{NO3}
NO₃ = Nitrification - Denitrification - NPP_{NO3}

TOC = Phytoplankton mortality – Aerobic degradation – Denitrification
O₂ = Oxygen air exchange + NPP – Aerobic degradation – Nitrification
PO₄³⁻ = Aerobic degradation + Denitrification – NPP_{PO4} – PO4 adsorption