CP5 e CP6: Nível de Rede e Nível de Rede na Internet (refs.)

- •Funções do Nível de Rede (Peterson 2021, 3.1; Tanenbaum 2011, 5.1)
- •Algoritmos de encaminhamento (Peterson 2021, 3.4; Tanenbaum 2011, 5.2)
- •Protocolos de encaminhamento (Peterson 2021, 3.4; Tanenbaum 2011, 5.6)
- •O protocolo IP (Peterson 2021, 3.3; Tanenbaum 2011, 5.6)
- •O protocolo ICMP, ARP e DHCP (Peterson 2021, 3.3; Tanenbaum 2011, 5.6)

Nível de Rede (Network Layer)

• Utiliza os serviços do nível L2 (*Data Link*), presta serviços ao nível L4 (*Transport*).

Os serviços prestados ao nível transporte devem ser independentes da tecnologia da sub-rede. O número, tipo e topologia das sub-redes que constituem o nível rede deve ser escondido ao nível transporte.

Todos os nós têm de ter pelo menos os níveis L1-L2-L3 implementados

- A unidade protocolar fundamental é o pacote (packet).
- O nível de rede preocupa-se com o percurso dos pacotes desde a origem através da rede até ao destino (end-to-end)

O percurso pode ser composto por vários nós intermédios - encaminhadores (routers).

2

Funcionalidades fundamentais do Nível de Rede

- •Expedição (*forwarding*): envio dos pacotes para o próximo nó:
 - Por inundação
 - Por consulta de uma tabela de encaminhamento (routing table). (Atenção à diferença entre os processos de expedição e de encaminhamento)
- Encaminhamento (routing): construção da tabela de encaminhamento
 - Necessita de conhecer a topologia da sub-rede (os nós) e escolher o caminho apropriado através dos nós.
 - Diferentes estratégias/algoritmos para recolher informação sobre a topologia da rede e para o cálculo do caminho através da rede.

Internet: Colecção de Subredes

O Nível de Rede na Internet

- Protocolo IPv4
- Endereços IPv4
- Protocolos de controlo da Internet
 - •ICMP
 - ARP
 - •RARP, BOOTP, DHCP
- Protocolos de encaminhamento
 - •Routing Internet Protocol (RIP)
 - Open Shortest Path First (OSPF)
 - Border Gateway Protocol (BGP)

O Protocolo IPv4

Version	IHL	Differentiated services	Differentiated services Total length						
	Identi	fication	D M F F	Fragment offset					
Time to	Time to live Protocol			Header checksum					
		Source	address						
		Destinatio	n address						
Options (0 or more words)									

Versão: max. 16 (actualmente IPv4 e IPv6))

IHL: comp. do *header* (em palavras de 32 bits)

Differentiated services: os primeiros 6 bits indicam a classe de serviço, enquanto que os últimos 2 bits indicam informação sobre congestão na rede.

Comprimento: comprimento total do datagrama (em bytes)

(Máx: 65535, Máx típico 1500, Típico 576)

Identificação: Identifica o datagrama a que pertence

DF: não fragmentar **MF:** a zero no último fragmento

Frag.offset: frag são múltiplos de 8 bytes, excepto o último

Tempo de vida: max. 255 (dec. por "salto")
Protocolo: TCP,UDP,.... [RFC1700, RFC3232]

Checksum do cabeçalho: verificado e recalculado em cada salto

Opções: (não presentes no IPv6)

Security: qual a segurança do datagrama

Strict Source Routing: indica qual o caminho completo a seguir pelo datagrama

Loose Source Routing: o datagrama tem que passar pelos nós pela ordem indicada, (pode passar por outros)

Record Route: os nós registam o seu endereco

Timestamp: os nós registam o seu endereço e o tempo (4 bytes + 4 bytes)

Fragmentação de Datagramas IP

Exercício 4.3

•Transferência de um datagrama com 4000 bytes (ID = 777) através de uma ligação com MTU = 1500 bytes => Fragmentação do datagrama em 3 fragmentos

Fragmento	Bytes	ID	Offset	Flag MF
1	Header - 20; Data - 1480	777	0	1
2	Header - 20; Data - 1480	777	185*	1
3	Header - 20; Data - 1020	777	370**	0
	(1020=4000-20-1480-1480)			

Exemplo da fragmentação de um pacote IP com 12000 bytes (incluindo o cabeçalho IP de 20 bytes) enviada através de um link com um MTU = 3300 a que se segue um link com MTU = 1300

Exercício 4.7

Considere o diagrama de rede IP/Ethernet apresentado em que a máquina A pretende enviar 1 mensagem com dimensão total de 2350 bytes para a máquina B (DF=0).

Tendo em conta os valores de MTU das redes Lan1 e Lan 2 indique todos os fragmentos que irão chegar a B considerando que os cabeçalhos IP têm sempre 20 bytes.

Classe Ende

Endereços IPv4

24


```
Classe N° redes N° hosts %
A: 128 16x10<sup>6</sup> 50
B: 16834 65x10<sup>3</sup> 25
C: 2x10<sup>6</sup> 254 12.5
```

```
A: 1.0.0.0 a 127.255.255.255
B: 128.0.0.0 a 191.255.255.255
C: 192.0.0.0 a 223.255.255.255
D: 224.0.0.0 a 239.255.255.255
E: 240.0.0.0 a 255.255.255.255
```

```
Endereço IPv4: [0.0.0.0] a [255.255.255.255]
```

Uma máquina no ISCTE: [193.136.188.1]

Uma rede classe C no ISCTE: [193.136.188.0]

Este computador: [0.0.0.0]

Uma máquina nesta rede: [0..0|host]₍₂₎

Loopback: [127.x.x.x]

Difusão local: [255.255.255.255]

Difusão numa rede distante: [net|1...1] (2)

Redes Privadas:

```
Classe A (1) - [10.0.0.0 - 10.255.255.255]

Classe B (16) - [172.16.0.0 - 172.31.255.255]

Classe C (256) - [192.168.0.0 a 192.168.255.255]
```

Subredes (subnetting)

Encaminhamento: i) Rede, ii) Subrede, iii) Estação.

Ex: Uma rede de classe B subdividida em 64 subredes.

Agrupamento de Endereços (supernetting)

- Agrupamento de vários blocos de uma determinada classe
 - Muito comum com blocos da classe C
- Atribuição de endereços
 - •Comum atribuir endereços de forma contígua
 - Definição de uma máscara de rede
 - •Primeiro endereço do bloco agregado (i.e., o endereço de rede) tem de ser divisível pelo tamanho do superbloco (=> bits de *host* todos a zero).
 - •Ex., Redes 193.168.2.0 e 193.168.3.0
 - Tamanho do superbloco: 512 endereços
 - Primeiro endereço do superbloco: 193.168.2.0 (divisível por 512)
 - Mascara de rede: 255.255.254.0

Classless Addressing

- Abandono das classes (i.e., blocos de endereços de tamanho variável)
- Condições:
 - O número de endereços num bloco é uma potência de 2
 - O primeiro endereço do bloco tem de ser divisível pelo tamanho do bloco
 - Para cada bloco deve ser definida a máscara respectiva
- Notação / (Classless InterDomain Routing):
 - w.x.y.z/n (n, tamanho do prefixo, número de 1s na máscara)
- Subnetting:
 - Continua a ser possível fazer subnetting dentro de cada rede
- Antes:
 - 1. Descobrir a Classe (4 bit)
 - 2. Descobrir a Rede (Shift 24, 16, ou 8 bits)
 - 3. Pesquisar na tabela (Classe A e B); Hash Tables (Classe C)

Exercício 4.4

Considere dois dispositivos A e B com os seguintes endereços IP em notação CIDR:

A - 221.188.73.3/23

B - 221.188.72.2/23

- a) Indique, justificando, se os dispositivos A e B pertencem ou não à mesma rede e os respectivos endereços de rede e de difusão na rede a que pertencem.
- b) Pretende-se dividir a rede onde se encontra o dispositivo A em 8 sub-redes distintas. Nestas condições indique justificadamente:
 - i. Qual a máscara de sub-rede a ser utilizada.
 - ii. Qual a gama de endereços que podem ser atribuídos a dispositivos na sub-rede de A.

```
Address:
                                                                                     221.188.72.2
                                                                                                           11011101.10111100.0100100 0.00000010
           221.188.73.3
                                11011101.10111100.0100100 1.00000011
Address:
                                                                          Netmask:
                                                                                      255.255.254.0 = 23
                                                                                                           11111111.11111111.1111111 0.00000000
           255.255.254.0 = 23
                                11111111.11111111.1111111 0.00000000
Netmask:
                                                                                                           11011101.10111100.0100100 0.00000000
           221.188.72.0/23
                                11011101.10111100.0100100 0.00000000
                                                                          Network:
                                                                                      221.188.72.0/23
Network:
                                                                          HostMin:
                                                                                      221,188,72,1
                                                                                                           11011101.10111100.0100100 0.00000001
                                11011101.10111100.0100100 0.00000001
HostMin:
           221.188.72.1
                                                                                     221.188.73.254
                                                                                                           11011101.10111100.0100100 1.11111110
           221.188.73.254
                                                                          HostMax:
HostMax:
                                11011101.10111100.0100100 1.11111110
                                                                          Broadcast: 221.188.73.255
                                                                                                           11011101.10111100.0100100 1.11111111
Broadcast: 221.188.73.255
                                11011101.10111100.0100100 1.11111111
                                                                          Hosts/Net: 510
                                                                                                            Class C
                                 Class C
Hosts/Net: 510
```

Net A = Net B = 221.188.72.0/23 => Host A e Host B pertencem à mesma rede. Broadcast: 221.188.73.255

b) 8 sub-redes => 3 bits

```
SubNetmask:
              255.255.255.192 = 26 111111111.11111111.111111111111 000000
              221.188.73.0/26
                                     11011101.10111100.0100100<mark>1.00</mark> 000000 (Subnet 4)
Subnetwork:
HostMin:
              221.188.73.1
                                     11011101.10111100.01001001.00 000001
HostMax:
              221.188.73.62
                                     11011101.10111100.01001001.00 111110
              221.188.73.63
                                     11011101.10111100.01001001.00 111111
Broadcast:
Hosts/Net:
                                      Class C
```

Usar a aplicação ipcalc

Nota: A pertence à Sub-Net 4 (100) e B pertence à Sub-Net 0 (000)

Exercício 4.8

Considere um cenário em que a unidade mínima que uma organização pode adquirir em termos de blocos de endereços IP é um endereço de rede de classe C.

A organização A detém o endereço de rede ao qual pertence a estação com o endereço 193.168.1.151.

- a) Indique qual o número máximo de estações que pode possuir e qual o endereço de rede e de difusão nessa rede.
- b) Admitindo que pretende expandir a rede para suportar 600 estações, qual a gama de endereços que deve adquirir?

Nas condições da alínea anterior, indique qual a nova máscara de rede, o endereço de rede, o endereço de difusão e a gama de endereços que podem ser atribuídos a *hosts* (estações) na nova rede.

```
Neste caso, é necessário agrupar os seguintes endereços:
            193.168.1.151
Address:
                                   11000001.10101000.00000001. 10010111
            255.255.255.0 = 24
Netmask:
                                  11111111.11111111.11111111. 00000000
                                                                                            193.168.0.0/24
                                                                                                                Network:
Wildcard:
           0.0.0.255
                                   00000000.00000000.00000000. 11111111
                                                                                   Network:
                                                                                             193.168.1.0/24
                                                                                                                11000001.10101000.000000<mark>01. 00000000</mark> <- Endereço actual
                                                                                   Network:
                                                                                            193.168.2.0/24
                                                                                                                193.168.3.0/24
                                                                                                                11000001.10101000.000000<mark>11.0000000</mark>
                                                                                   Network:
Network:
           193.168.1.0/24
                                   11000001.10101000.00000001.00000000
HostMin:
           193.168.1.1
                                   11000001.10101000.00000001.00000001
           193.168.1.254
HostMax:
                                  11000001.10101000.00000001. 11111110
                                                                                   Nova Rede:
Broadcast: 193.168.1.255
                                   11000001.10101000.00000001. 11111111
                                                                                   Address:
                                                                                            193.168.1.151
                                                                                                                11000001.10101000.000000 01.10010111
Hosts/Net: 254
                                    Class C
                                                                                   Netmask:
                                                                                             255.255.252.0 = 22
                                                                                                               11111111.11111111.111111 00.00000000
                                                                                   Wildcard: 0.0.3.255
                                                                                                                00000000.00000000.000000 11.11111111
b)
                                                                                   Network:
                                                                                            193.168.0.0/22
                                                                                                                11000001.10101000.000000 00.00000000
                                                                                   HostMin:
                                                                                            193.168.0.1
                                                                                                                11000001.10101000.000000 00.00000001
                                                                                            193.168.3.254
                                                                                                                11000001.10101000.000000 11.11111110
                                                                                   HostMax:
N^{\circ} de bits de host mínimo = 10 (2° = 512 < \frac{600}{100} < 2^{10} = 1024) => rede /22
                                                                                   Broadcast: 193.168.3.255
                                                                                                                11000001.10101000.000000 11.11111111
                                                                                  Hosts/Net: 1022
                                                                                                                Class C
Critérios para se efectuar o agrupamento de endereços:
1. O agrupamento tem que ser efectuado em grupos de potências de 2 (i.e., 2º, 2¹, 2², ...)
   A gama de endereços do grupo tem que ser contínua
3. O primeiro endereco do grupo tem que possuir todos os bits de host a '0'
```

SCLP UNIVERSITAL

Classless InterDomain Routing (CIDR)

•Mudanças nas tabelas de encaminhamento e emparelhamento É usado *longest prefix match, i.e., n*ão existe máscara por omissão (classe)

Destino
130.134.129.4

NET
HOST
10000010.10000110.10000010.000000000 <-(/23)
10000010.10000110.10000000000 <-(/22)
130.134.128.0/22
3

10000010.10000110.10000001.00000100 (Mais longo -> /22)

10000010.10000110.10000011.00000100 (Mais longo -> /23)

Classless InterDomain Routing (CIDR)

•Entrada por omissão

Rede Destino	Saída	
120.123.43.0/24	1	
130.134.130.0/23	2	
130.134.128.0/22	3	
0.0.0.0/0	4	_

Todos os pacotes
emparelham com
esta entrada

•Redução/aumento no tamanho das tabelas de encaminhamento

Rede Destino	Saída		Rede Destino	Saída	
120.123.0.0	1	\longrightarrow	120.123.0.0/17	1	Sub-divisão
130.134.129.0	2	7	120.123.128.0/17	3	de tráfego
130.134.128.0	2		130.134.128.0/23	2	Agrupamento

Internet Control Message Protocol - ICMP

- Protocolo de Controlo da Internet
- •Teste da Internet e aviso de anomalias
- Formato de um pacote ICMP
 - •No caso de mensagens ICMP de erro os dados são a cópia do cabeçalho IP e dos primeiros bytes do fragmento que causou/sofreu o erro

Internet Control Message Protocol - ICMP

Exercício 4.5

Considere a seguinte rede na qual se apresentam duas estações e dois *routers* com os respectivos endereços IP e máscaras de rede, bem como o valor em bytes da unidade máxima de transferência (*Maximum Transfer Unit – MTU*) em cada ligação.

(i) {P1}
DF =0
TTL >= 3
L = 1000 < 1500 (é enviado um pacote)

Para o seguinte conjunto de quatro pacotes, indique, justificadamente, para cada um dos pacotes enviados pelo nó A quantos pacotes chegam ao nó B.

Ver. = 4	IHL = 5	TOS=			Comprimento Total = 1000 bytes			
	Identifica	ação = 0				DF=0	MF=0	Offset = 0
TTL	= 4	Protocol =			Checksum =			
		0	rigen	n = 19	93.13	6.32.4		
		De	stino	= 19	3.136	5.130.14	4	
Dados (980 bytes)							i)	

Ver. = 4	IHL = 5	TOS=		Comprimento Total = 2520 bytes			
	Identifica	ação = 1			DF=0	MF=0	Offset = 0
TTL	= 4	Protocol =		Checksum =			
		Origer	n = 19	3.13	6.32.4		
		Destino	= 193	3.136	5.130.1	4	
Dados (2500 bytes) ii)							ii)

Ver. = 4 IHL = 5	TOS=	Comprimento Total = 2520 bytes			Ver. = 4	IHL = 5	TOS=	Compri	mento To	otal = 2520 bytes	
Identific	ação = 2	DF=1 MF=0 Offset = 0			Identifica	ação = 3	DF=	0 MF=0	Offset = 0		
TTL = 4	Protocol =	(Checksum =			. = 1	Protocol =		Checksum =		
	Origem = 1	93.136.32.4					Origem = 1	193.136.32.	4		
	Destino = 19	3.136.130.14	ļ				Destino = 19	93.136.130	14		
	Dados (29	500 bytes)		iii)			Dados (2	2500 bytes)		iv)	

(ii) {P1a, P1b}
DF = 0
TTL ≥ 3
L = 2520 > 1500 (pacote é
fragmentado em dois:
La = 1500; Lb = 1040)

(iii) ∅
L > 1500 & DF = 1 (pacote
não pode ser fragmentado =>
é descartado)

(iv) \emptyset TTL = 1 < 3 (pacote é descartado antes de chegar ao destino)

Exercício 4.6

Considere a seguinte rede na qual se apresentam duas estações e dois *routers* com os respectivos endereços IP e máscaras de rede, bem como o valor em bytes da unidade máxima de transferência (*Maximum Transfer Unit – MTU*) em cada ligação. Considera-se ainda que os *routers R1* e *R2* utilizam o protocolo ICMP para o controlo da rede.

a) Represente os cabeçalhos IPv4 dos pacotes **enviados** pelos *routers R1 e R2* quando o nó A envia um pacote IPv4 cujo cabeçalho é representado na figura seguinte:

Ver. = 4	IHL = 5	TOS=			Comprimento Total = 2520 bytes				
	Identificação = 0					DF=0	MF=0	Offset = 0	
TTL	TTL = 4 Protocol = Checksum =					sum =			
	Origem = 193.136.32.4								
		De	stino	= 19	3.136	5.130.14	1		
Dados (2500 bytes)									

Exercício 4.6 (resolução)

	R	1	R2		
P1a		P1b	P2a	P2b	
L	1500	1040	1500	1040	
MF	1	0	1	0	
Offset	0	1480	0	1480	
TTL	3	3	2	2	
End. Orig.	193.136.32.4	193.136.32.4	193.136.32.4	193.136.32.4	
End. Dest.	193.136.130.14	193.136.130.14	193.136.130.14	193.136.130.14	

Adress Resolution Protocol - ARP

- •O endereço IP não pode ser usado para enviar tramas pois o "Data Link Layer" não os compreende. (e.g., Ethernet 48-bit)
- •É necessário mapear o endereço IP num endereço DL (e.g., Ethernet, FDDI, etc.)

$alfa \Rightarrow beta$

(alfa constrói um pacote com o endereço de destino = 193.136.188.3)

Optimizações:

- Cache ARP results for a period
- Broadcast Ethernet address at boot
- 1) Existir um ficheiro com o mapeamento entre end. IP e end. Ethernet impensável e não funciona!
- 2) ARP: i) alfa difunde: "Quem tem o endereço 193.136.188.3?"
 - ii) beta responde com E2 e alfa fica a saber que 193.136.188.3 \Leftrightarrow E2 (193.136.188.4 \Leftrightarrow E1)
 - iii) alfa constrói uma trama Ethernet para E2 com o pacote IP (193.136.188.3)

Adress Resolution Protocol - ARP (2)

alfa ⇒ omega (alfa constrói um pacote com o endereço de destino = 193.136.185.4)

Como E8 não pertence à sub-rede:

- *Opção 1 -* alfa reconhece que o endereço 193.136.185.4 é remoto e envia para o endereço Ethernet que trata todo o tráfego remoto (*gateway*) **caso típico**
- Opção 2 E4 o "router" do DCTI responde (193.136.185.4 ⇔ E4) e o tráfego para E8 vai para o "router" proxy ARP

Em ambos os casos:

- alfa constrói uma trama *Ethernet* para E4 com o pacote IP (193.136.185.4)
- O "router" retira o pacote IP da trama Ethernet e consulta a sua tabela para 193.136.185.4
- Fica a saber que para a rede 193.136.185.0 tem que ir pelo "router" 193.136.180.3
- Se não conhecer o endereço FDDI de 193.136.180.3 usa ARP para conhecer o endereço F3
- No "router" do CI o pacote IP é retirado da trama FDDI e o software IP verifica que este tem que ser entregue ao 193.136.185.4
- Caso não conheça o endereço *Ethernet* de 193.136.185.4 usa o ARP e fica a conhecer E8.
- Constrói uma trama Ethernet para E8

Protocolo ARP

- Exemplo
 - •Máquina A envia por broadcast o ARP Request
 - •Máquina B envia por unicast o ARP Reply
- •IP_A e IP_B, pertencem à mesma rede IP
- •PA_A e PA_B estão na mesma rede física

ARP Reply (unicast)

(Source MAC = PA_B; Source IP = IP_B;
 Target MAC = PA_A; Target IP = IP_A)

PA – physical address

RARP, BOOTP e DHCP

- •Obtenção de um endereço IP sendo conhecido apenas o endereço Ethernet
- •Exemplo: "boot" de uma "workstation" sem disco em que a máquina recebe uma imagem do sistema operativo a partir de um servidor remoto

«O meu endereço ethernet é ... alguém conhece o meu endereço IP ?»

•RARP (Reverse Address Resolution Protocol):

• Utiliza a difusão limitada para aceder ao servidor RARP (não passa pelos *routers*) => É necessário um servidor RARP em cada rede

•BOOTP (Bootstrap Protocol):

- Utiliza mensagens UDP que são encaminhadas pelos routers
- Requer configuração manual das tabelas que mapeiam os endereços IP em endereços Ethernet

•DHCP (Dynamic Host Configuration Protocol):

- Evolução do protocolo BOOTP
- Permite configuração automática e manual

DHCP (2)

- •Protocolo cliente/servidor de nível aplicação
 - Configuração do cliente
 - e.g., endereço IP, máscara rede, IP router, servidor DNS
 - Pode ser utilizado para outros parâmetros que não relacionados com o IP
 - Exemplos: TIME OFFSET, Localização geográfica, Printer server
- Dois tipos de entradas na base de dados do servidor
 - Entradas estáticas (pares cliente/parâmetros fixos)
 - Entradas dinâmicas: conjunto de endereços disponíveis
- Arquitectura do DHCP
 - Pode existir mais de um servidor de DHCP por rede
 - Um servidor DHCP pode servir várias redes (DHCP relay)

DHCP: Diagrama de estados/Mensagens

Obtenção de configuração via Relay Agent

Router com Relay Agent:

- As mensagens DHCP enviadas pelo cliente em Broadcast (e.g. DHCP Discover) são re-enviadas pelo router com Relay Agent em mensagens Unicast dirigidas ao(s) servidor(es) DHCP
- O endereço IP do Relay Agent é o endereço IP do interface do router que está na rede do cliente DHCP
- Como sabe o servidor DHCP em que rede está o cliente ?

ACK		Broadcast	Unicast
Exemplo DHCP Discover	Pacote IP (end. origem)	0.0.0.0	IP interface 1 router
Exemple Differ Discover	Pacote IP (end. destino)	255.255.255	IP server DHCP
2024-2025	Mensagem DHCP (Relay Agent)	0.0.0.0	IP interface 1 router

Exercício 4.11

Uma empresa possui o endereço de rede classe C 194.120.10.0 e necessita de criar 4 sub-redes para:

- o departamento A com 110 máquinas,
- o departamento B com 32 máquinas,
- o departamento C com 20 máquinas e
- o departamento D com 8 máquinas.

Usando o menor número de endereços possível indique, para cada departamento, os endereços de rede, máscara e o número máximo de endereços disponíveis (incluindo rede e difusão) por departamento?

Departamento	N° maquinas	Endereço de Rede	reço de Rede Máscara	
Α	110	194.120.10.0	/25	128
В	32	194.120.10.128	/26	64
С	20	194.120.10.192	/27	32
D	8	194.120.10.224	/28	16

Ficam a sobrar <u>16</u> endereços por atribuir.

30

Exercício 4.11 (resolução)

```
Address:
            194.120.10.0
                                 11000010.01111000.00001010.00000000
            255.255.255.0 = 24
Netmask:
                                 11111111.11111111.11111111. 00000000
Wildcard:
            0.0.0.255
                                 00000000.00000000.00000000. 11111111
=>
Network:
            194.120.10.0/24
                                 11000010.01111000.00001010.00000000
HostMin:
            194.120.10.1
                                 11000010.01111000.00001010.00000001
HostMax:
            194,120,10,254
                                 11000010.01111000.00001010. 11111110
Broadcast: 194,120,10,255
                                 11000010.01111000.00001010. 11111111
Hosts/Net: 254
                                 Class C
```

1. Requested size: 120 hosts

```
Netmask:
            255.255.255.128 = 25 11111111.1111111.11111111.1 0000000
Network:
            194.120.10.0/25
                                 11000010.01111000.00001010.0 0000000
HostMin:
            194.120.10.1
                                 11000010.01111000.00001010.0 0000001
HostMax:
            194.120.10.126
                                 11000010.01111000.00001010.0 1111110
Broadcast:
            194.120.10.127
                                 11000010.01111000.00001010.0 1111111
Hosts/Net: 126
                                 Class C
```

2. Requested size: 32 hosts

```
Netmask:
            255.255.255.192 = 26 11111111.1111111.11111111.11 000000
Network:
            194.120.10.128/26
                                  11000010.01111000.00001010.10 000000
            194.120.10.129
HostMin:
                                  11000010.01111000.00001010.10 000001
HostMax:
            194.120.10.190
                                  11000010.01111000.00001010.10 111110
Broadcast:
            194,120,10,191
                                  11000010.01111000.00001010.10 111111
Hosts/Net:
                                  Class C
```

Needed size: 240 addresses. Used network: 194.120.10.0/24 Unused: 194.120.10.240/28

3. Requested size: 20 hosts

```
Netmask:
            255.255.255.224 = 27 11111111.1111111.11111111.111 00000
Network:
            194.120.10.192/27
                                  11000010.01111000.00001010.110 00000
HostMin:
            194.120.10.193
                                  11000010.01111000.00001010.110 00001
HostMax:
            194.120.10.222
                                  11000010.01111000.00001010.110 11110
Broadcast:
            194.120.10.223
                                  11000010.01111000.00001010.110 11111
Hosts/Net:
                                  Class C
```

4. Requested size: 8 hosts

```
Netmask:
            255.255.255.240 = 28 11111111.11111111.11111111.1111 0000
Network:
            194.120.10.224/28
                                  11000010.01111000.00001010.1110 0000
            194.120.10.225
HostMin:
                                  11000010.01111000.00001010.1110 0001
HostMax:
            194.120.10.238
                                  11000010.01111000.00001010.1110 1110
Broadcast:
            194.120.10.239
                                  11000010.01111000.00001010.1110 1111
Hosts/Net:
            14
                                  Class C
```

Exercício 4.12

Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o default gateway (router, na figura, de ligação à Internet).

a) Preencha a tabela dos endereços IP das interfaces <u>série</u> indicadas dos *routers*, nas redes definidas:

a)
---	---

Interface	IP address	CIDR	(Network)
R1s0	193.2.2.1 /30		193.2.2.0
R2s0			
R2s1	192.168.1.2	/30	192.168.1.0
R3s0			
R3s1			
R4s0	192.168.1.5	/30	192.168.1.4

32

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (*router*, na figura, de ligação à Internet).

a) Preencha a tabela dos endereços IP das interfaces <u>série</u> indicadas dos *routers*, nas redes definidas:

a)

Interface	IP address	CIDR	(Network)
R1s0	193.2.2.1	/30	193.2.2.0
R2s0	193.2.2.2	/30	193.2.2.0
R2s1	192.168.1.2	/30	192.168.1.0
R3s0	192.168.1.1	/30	192.168.1.0
R3s1	192.168.1.6	/30	192.168.1.4
R4s0	192.168.1.5	/30	192.168.1.4

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (*router*, na figura, de ligação à Internet).

b) Preencha tabela a dos endereços de rede redistribuindo o endereco de rede global 10.10.8.0/23 pelas redes N1 a N6, sem desperdiçar endereços, que permita minimizar as tabelas de R1s0=193.2.2.1/30 encaminhamento dos As redes deverão satisfazer os endereços IP indicados na figura.

b)

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo os valores indicados assim com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (*router*, na figura, de ligação à Internet).

b) Preencha tabela a dos endereços de rede redistribuindo o endereco de rede global 10.10.8.0/23 pelas redes N1 a N6, sem desperdiçar endereços, que permita minimizar as tabelas de R1s0=193.2.2.1/30 encaminhamento dos As redes deverão satisfazer os endereços IP indicados na figura.

b)	Network	Network address	CIDR	Broadcast address	Max. interfaces
	Rede N2	10.10.8.64	/26	10.10.8.127	62

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (*router*, na figura, de ligação à Internet).

b) Preencha tabela a dos endereços de rede redistribuindo o endereco de rede global 10.10.8.0/23 pelas redes N1 a N6, sem desperdiçar endereços, que permita minimizar as tabelas de R1s0=193.2.2.1/30 encaminhamento dos As redes deverão satisfazer os endereços IP indicados na figura.

36

L. X	Network	Network address	CIDR	Broadcast address	Max. interfaces
b)	Rede N1				
	Rede N2	10.10.8.64	/26	10.10.8.127	62
	Rede N3				
	Rede N4				
	Rede N5				
2024-2	Rede N6				
	Série R1-R2	193.2.2.0	/30	193.2.2.3	2
	Série R2-R3	192.168.1.0	/30	192.168.1.3	2
	Série R3-R4	192.168.1.4	/30	192.168.1.7	2

JSCLe UNIVERSITAR

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (router, na figura, de ligação à Internet).

b) Preencha a tabela dos endereços de rede redistribuindo o endereço de rede global 10.10.8.0/23 pelas redes N1 a N6, sem desperdiçar endereços, que permita minimizar as tabelas de encaminhamento dos routers. R1s0=193.2.2.1/30 R2s1=192.168.1.2/30 As redes deverão satisfazer os R4s0=192.168.1.5/30

endereços IP indicados na figura.

b)

Network	Network address	CIDR	Broadcast address	Max. interfaces
Rede N1	10.10.8.0	/26	10.10.8.63	62
Rede N2	10.10.8.64	/26	10.10.8.127	62
Rede N3	10.10.8.128	/26	10.10.8.191	62
Rede N4	10.10.8.192	/26	10.10.8.255	62
Rede N5	10.10.9.0	/25	10.10.9.127	126
Rede N6	10.10.9.128	/25	10.10.9.255	126
Série R1-R2	193.2.2.0	/30	193.2.2.3	2
Série R2-R3	192.168.1.0	/30	192.168.1.3	2
Série R3-R4	192.168.1.4	/30	192.168.1.7	2

iscte NSTITUTO

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (router, na figura, de ligação à Internet).

Atribua endereços respetivas máscaras e indique o default gateway das máquinas das redes indicadas, para estarem de acordo com OS endereços atribuídos na alínea b) Atribua endereços OS baixos aos PCs e OS elevados aos routers.

c)	Interface	IP address	CIDR	(Network)
	R1s0	193.2.2.1	/30	193.2.2.0
	R2s0	193.2.2.2	/30	193.2.2.0
	R2s1	192.168.1.2	/30	192.168.1.0
	R3s0	192.168.1.1	/30	192.168.1.0
	R3s1	192.168.1.6	/30	192.168.1.4
	R4s0	192.168.1.5	/30	192.168.1.4

Interface	IP address	CIDR	(Network)
R2e0	10.10.8.126	/26	10.10.8.64
R2e1	10.10.8.62	/26	10.10.8.0
R3e0	10.10.8.190	/26	10.10.8.128
R3e1	10.10.8.254	/26	10.10.8.192
R4e0	10.10.9.126	/25	10.10.9.0
R4e1	10.10.9.254	/25	10.10.9.128

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (*router*, na figura, de ligação à Internet).

SCCE INSTITUTOR

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (*router*, na figura, de ligação à Internet).

Atribua endereços respetivas máscaras e indique o default gateway das máquinas indicadas, das redes para estarem de acordo com OS endereços atribuídos na alínea b) Atribua endereços OS baixos aos PCs e OS elevados aos routers.

c)

Host	IP address	CIDR	Gateway	(Network)
Α	10.10.8.1	/26	10.10.8.62	10.10.8.0
В	10.10.8.129	/26	10.10.8.190	10.10.8.128
С	10.10.9.1	/25	10.10.9.126	10.10.9.0
D	10.10.8.65	/26	10.10.8.126	10.10.8.64
E	10.10.8.193	/26	10.10.8.254	10.10.8.192
F	10.10.9.129	/25	10.10.9.254	10.10.9.128

Scte UNIVERSITY DE L'INSTITUTO

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (*router*, na figura, de ligação à Internet).

Atribua endereços IP respetivas máscaras e indique o default gateway das máquinas redes indicadas, das para de acordo com estarem OS endereços atribuídos na alínea b) Atribua endereços OS mais PCs e baixos aos mais OS elevados aos routers.

Host	IP address	CIDR	Gateway
D	10.10.8.65	/26	10.10.8.126

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (*router*, na figura, de ligação à Internet).

d) Indique a tabela de encaminhamento completa do router <u>R2</u> indicando a rota de default gateway.

d)

		N1 A	N3 B	C N5
•				
)	Internet	R2 e1	\e0	e0
,	R1s0_	s0 s1		s1 s0 R4
	R1s0=193.2.2.1/30	e0	/ e1	/e1
	R2s1=192.168.1.2/30	N2	N4 /	N6 /
	R4s0=192.168.1.5/30	D =10.10	0.8.65/26 E	F

Network Address	CIDR	Next Hop	(Type)	(Interface)
10.10.8.0 (N1)	/26		Connected	R2e1
10.10.8.64 (N2)	/26		Connected	R2e0
10.10.8.128 (N3)	/26	192.168.1.1 (R3s0)	Static	R2s1
10.10.8.192 (N4)	/26	192.168.1.1 (R3s0)	Static	R2s1
10.10.9.0 (N5)	/25	192.168.1.1 (R3s0)	Static	R2s1
10.10.9.128 (N6)	/25	192.168.1.1 (R3s0)	Static	R2s1
193.2.2.0 (R1-R2)	/30		Connected	R2s0
192.168.1.0 (R2-R3)	/30		Connected	R2s1
192.168.1.4 (R3-R4)	/30	192.168.1.1(R3s0)	Static	R2s1 ⁴²
0.0.0.0 (default)	/0	193.2.2.1 (R1s0)	Static	R2s0

d)

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (*router*, na figura, de ligação à Internet).

d) Indique a tabela de encaminhamento completa do router <u>R2</u> indicando a rota de default gateway.

 Network
 CIDR
 Next hop

 10.10.8.128 (N3)
 /26
 192.168.1.1 (R3s0)

 0.0.0.0 (default)
 /0
 193.2.2.1 (R1s0)

R2

Exercício 4.12- Considere a seguinte rede da figura. A gama de endereços da rede 10.10.8.0/23 encontra-se distribuída pelas sub-redes N1 a N6. Os endereços das ligações série deverão estar de acordo com os valores indicados assim como com o endereço IP do PC "D". Os PCs A a F estão configurados nas redes a que estão ligados incluindo o *default gateway* (router, na figura, de ligação à Internet).

e) Indique tabela de encaminhamento do router R2 devidamente sumarizada.

Network Address	CIDR	Next Hop	(Type)	(Interface)
10.10.8.0 (N1)	/26		Connected	R2e1
10.10.8.64 (N2)	/26		Connected	R2e0
10.10.8.128 (N3 e N4)	/25	192.168.1.1 (R3s0)	Static	R2s1
10.10.9.0 (N5 e N6)	/24	192.168.1.1 (R3s0)	Static	R2s1
193.2.2.0 (R1-R2)	/30		Connected	R2s0
192.168.1.0 (R2-R3)	/30		Connected	R2s1
192.168.1.4 (R3-R4)	/30	192.168.1.1(R3s0)	Static	R2s1
0.0.0.0 (default)	/0	193.2.2.1 (R1s0)	Static	R2s0

Utiliza os serviços do nível L2 (Data Link), presta serviços ao nível L4 (Transport).
 Os serviços prestados ao nível transporte devem ser independentes da tecnologia da sub-rede.
 O número, tipo e topologia das sub-redes que constituem o nível rede deve ser escondido ao nível transporte.

Todos os nós têm de ter pelo menos os níveis L1-L2-L3 implementados

- A unidade protocolar fundamental é o pacote (packet).
- O nível de rede preocupa-se com o percurso dos pacotes desde a origem através da rede até ao destino (end-to-end)

O percurso pode ser composto por vários nós intermédios - encaminhadores (routers).

45

Recordando: Funcionalidades fundamentais do Nível de Rede

- Expedição (forwarding): envio dos pacotes para o próximo nó:
 - Por inundação
 - Por consulta de uma tabela de encaminhamento (routing table). (Atenção à diferença entre os processos de expedição e de routing)
- Encaminhamento (routing): construção da tabela de encaminhamento
 - Necessita de conhecer a topologia da sub-rede (os nós) e escolher o caminho apropriado através dos nós.
 - Diferentes estratégias/algoritmos para recolher informação sobre a topologia da rede e para o cálculo do caminho através da rede.

Expedição por Inundação (Flooding)

- •Cada pacote é enviado para todas as saídas menos para aquela de onde veio (gera *n* cópias).
- •Convém limitar o número de cópias (ilimitada no caso de ciclos na rede), várias opções:
 - Cada nó mantém uma lista, para cada nó de origem, com o número de sequência dos pacotes enviados por esse nó, um pacote que pertença à lista não é encaminhado de novo.
 - Cada pacote mantém uma lista de todos os nós que já visitou.
 - Contador (Time-to-live, TTL) no cabeçalho que é decrementado em cada salto. Idealmente o contador deverá ser inicializado com o número de saltos para ir da origem ao destino ou, no pior caso, com o tamanho máximo da rede.
- Variante Inundação selectiva: cada pacote apenas é enviado para as saídas com direcção ao destino (aprendido).
- A inundação ao utilizar todos os caminhos usa também e sempre o caminho mais curto.
- •Muito interessantes para: aplicações no domínio militar (robustez) e em aplicações com bases de dados distribuídas que necessitam de ser actualizadas (necessidade de enviar para todos).

Algoritmos de Encaminhamento

- O nível de rede tem que escolher o caminho entre a origem e o destino podendo envolver múltiplos saltos *Encaminhamento dos Pacotes*:
- Os algoritmos para geração das tabelas de encaminhamento podem ser:
 - Não Adaptativos (encaminhamento estático).
 - Tabelas construídas manualmente.
 - Não escalável, muito sujeito a erros.
 - Adaptativos (encaminhamento dinâmico).
 - Tabelas construídas automaticamente com informação trocada entre os nós.
 - O algoritmo para a construção das tabelas deverá ser: correcto, simples, robusto, estável, justo e óptimo.

Os critérios de optimalidade podem incluir: minimizar o tempo de atraso, minimizar o número de saltos, minimizar o custo financeiro, e maximizar o desempenho da rede.

Princípio de Optimização (Bellman, 1957)

•Se o nó B pertence ao caminho óptimo do nó A para o nó C então o caminho óptimo de B para C é o mesmo quer seja de B para C quer de A para C.

A c1 B c2 C Corolário:

Prova por absurdo:

Se existir caminho melhor entre B e C que c2, ele seria usado conjuntamente com c1 para melhorar o desempenho de A para C logo c1 e c2 não seriam óptimos

O cálculo do caminho mais curto pode ser feito de forma incremental, dinâmica.

•O conjunto de caminhos óptimos de todas as origens para um dado destino designa-se por árvore de escoamento "sink tree" (não é necessariamente única).

Algoritmo do Caminho Mais Curto de Dijkstra (1959) (1)

Algoritmo para calcular o melhor caminho para um destino a partir de qualquer nó.

Grafo (orientado): G=(V, E), V nós da rede, E arcos etiquetados com o "custo", w, entre nós.

Condição: Para todos os arcos (u,v), $w(u,v) \ge 0$ (i.e., todos os custos são não-negativos).

```
DISJKSTRA (G, w, s)
/* Inicialização */
S \leftarrow \{\}
Q \leftarrow V[G]
d_{Q} \ {\rm (s)} \leftarrow^{\infty}
d_s = 0
while (Q \neq \{\})
   u \leftarrow min_d(Q)
   Q \leftarrow Q \setminus \{u\}
   S \leftarrow S \cup \{u\}
   /* Actualização dos vizinhos*/
   for each v \in Adj[u]
           if (d_v > d_u + w(u, v))
                  d_{v} = d_{u} + w(u, v)
```

```
m{s}; nó destino m{S}; nós "resolvidos" m{Q}; nós "por resolver" ordernados por d_u m{d}_u: distância "actual" de m{u} para m{s}
```


cte

Algoritmo do Caminho Mais Curto de Dijkstra (2)

DISJKSTRA(G, w, s=A)

```
S \leftarrow \{\}
Q \leftarrow V[G]
d_{Q \setminus \{s\}} \leftarrow \infty
d_{s} = 0
```


$$s = A$$

 $S \leftarrow \{\}$
 $Q \leftarrow \{A,B,C,D,E\}$

$$\begin{array}{l} u \leftarrow \min_{d}(Q) = A \\ S \leftarrow \{A\} \\ Q \leftarrow \{B,C,D,E\} \\ Adj_{Q}[u] \leftarrow \{B,D,E\} \end{array}$$

Algoritmo do Caminho Mais Curto de Dijkstra (3)

A escolha entre B e D como o próximo nó <u>u</u> é arbitrária.

Se a escolha tivesse sido outra poderia resultar numa árvore de escoamento diferente, no entanto seriam igualmente óptimas (i.e., nenhuma seria melhor que a outra).

Algoritmo do Caminho Mais Curto de Dijkstra (4)

2024-2025

Algoritmo do Caminho Mais Curto de Dijkstra (5)

Calculada a árvore de escoamento para o nó A.

Essa entrada pode ser actualizada na tabela de encaminhamento de todos os outros nós.

Nó D

Próximo

D

Nó A		
Destino	Próximo	
Α	Α	
В	-	
С	1	
D	1	
Е	-	

Destino

Α

В

С

D E

Nó B	
Destino	Próximo
Α	Α
В	-
С	-
D	-
Е	-

Nó E		
Destino	Próximo	
Α	D	
В	-	
С	-	
D	-	
E	-	

Questão em aberto:

Como é que cada nó conhece a topologia completa da rede?

Encaminhamento Baseado no Estado da Ligação (*Link State Routing*)

- 1. Descobrir os vizinhos e seus endereços "Hello": ⇒ nomes globais e únicos.
- 2. Medir o atraso ou custo para cada vizinho "Echo": Com resposta imediata mede o tempo de ida e volta, contanto ou não com o tempo da fila espera mede ou não a carga da rede.
- 3. Construir o pacote com a informação apreendida: periodicamente ou quando algo de importante ocorre, e.g., nó fora de serviço/em serviço.
- 4. Envio do pacote para todos os nós "Inundação":
 - Loops ⇒ campo com número de sequência de 4 bytes.
 - Erros no número de sequência ou reinicialização de um nó \Rightarrow campo com a idade (*TTL*) decrementada pelos nós que percorre; se a idade = 0 o pacote é descartado.
 - Os pacotes não são transmitidos de imediato => pacotes duplicados e pacotes mais antigos são descartados.
 - Os pacotes são todos confirmados para protecção contra erros.
- **5. Calcular o caminho mais curto:** depois de cada nó ter recebido um conjunto completo de pacotes executa um algoritmo, e.g., Dijkstra, e actualiza as suas tabelas de encaminhamento.

Problemas: dimensão das tabelas; tempo de cálculo; é necessário que os nós sejam "bem comportados".

Exemplos: Open Shortest Path First (OSPF), Intermediate System - Intermediate System (IS-IS).

Link State Routing (2)

Pacotes construídos pelos diferentes nós:

Source: A
Seq: 15
Age: 6
B, 2
D, 2
E, 5

Source: B
Seq: 10
Age: 6
A, 2
C, 5
E, 2

Source: C	Source: D
Seq: 14	<i>Seq:</i> 16
Age: 6	Age: 6
B, 5	A, 2
E, 1	E, 2
B, 5	A, 2

Source: E
Seq: 12
Age: 6
A, 5
В, 2
C, 1
D, 2

Melhorias para a redução de mensagens desnecessárias no processo de *flooding*.

- •Não enviar mensagens com número de sequência inferior.
- Esperar algum tempo antes de fazer flooding (não enviar por onde se recebeu).
 - Ex. estado no nó B ao fim de 3 e 6 unidades de tempo.

Source	Seq.	Age	SendTo		Co	nfirm	Го	
			Α	С	E	Α	С	E
Α	15	6	0	1	1	1	0	0
С	14	6	1	1	0	0	0	1
D	15	5	0	0	0	0	0	0
E	12	6	1	1	0	0	0	1

Source	Seq.	Age	9	SendTo			nfirm	Го
			Α	С	E	Α	С	E
Α	15	6	0	1	0	1	0	1
С	14	6	1	0	0	0	1	1
D	16	6	0	1	0	1	0	1
E	12	6	0	0	0	1	1	1

Exercício 4.1

Indique a estrutura e os valores para o primeiro pacote com i um dos nós.

Indique todos os tipos de pacotes recebidos e enviados pelo

Toutse' Bre' com B.C

Well.

Bello

Gels

Gels

Bello

Bel

Encaminhamento Baseado no Vector Distância (*Distance Vector Routing*)

- •A informação de encaminhamento em cada nó é uma tabela (vector) com a melhor distância para cada destino e a linha a usar (em vez da distância pode ser o nº de saltos, o comprimento da fila de espera, o atraso ou outro).
- •De x em x segundos (e.g., 30s) cada nó envia uma lista dos "atrasos" estimados para cada destino e recebe a mesma informação dos seus vizinhos.
- •Com base nestas tabelas decide qual o vizinho mais vantajoso para encaminhar um determinado pacote para um dado destino, i.e., cria a tabela de encaminhamento.

Ex.: ARPANET, Internet (RIP-Routing Information Protocol), DECnet, Novell's IPX AppleTalk, Cisco 2024-2025

Informação no nó D	VECTO: RECEB		(A,E)	NOVA ESTIM	IATIVA
		Α	Ε	TEMPO	SAIDA
	Α	0	4	2	Α
	В	2	2	3	Е
	С	7	1	2	Е
	D	2	1	0	D
	Е	5	0	1	Е
Custo	medido	2	1		
pel	o nó D				

Distance Vector Routing: Count-to-Infinity

•Propaga as boas notícias depressa, mas as más são propagadas devagar (Problema Count-to-Infinity).

-		^		•		,	
Dı	IST	ลเ	าด	เล	ao	no	Α

В	С	D	
∞	∞	8	nó A fora de serviço
∞	∞	∞	nó A em serviço
1	∞	∞	após primeira lista
1	2	∞	após segunda lista

Distância ao nó A

В	С	D	
1	2	3	nó A em serviço
1	2	3	nó A fora de serviço
3	2	3	após primeira lista
3	4	3	após segunda lista
5	4	5	após terceira lista
5	6	5	após quarta lista
7	6	7	após quinta lista

Encaminhamento Hierárquico

- •Numa rede de grandes dimensões não é viável que todos os nós conheçam todos os nós.
- •Divide-se a rede em níveis. Quantos ? É outro problema.
- •Cada sub-rede tem conhecimento dos seus nós e a saída para as restantes sub-redes.
- •O encaminhamento pode ser subóptimo para alguns destinos, e.g., de 1A para 3B

	Dest.	Linha	Saltos
	1A	-	-
	1B	1B	1
	1C	1C	1
	2A	1C	3
	2B	1C	2
	2C	1C	3
	3A	1C	4
<	3B	1B	4
	3C	1C	4
	3D	1C	3
	4A	1B	2
	4B	1B	3
	4C	1B	3

Dest.	Linha	Saltos
1A	-	-
1B	1B	1
1C	1C	1
2	1C	2
3	1C	3
4	1B	2

Exercício 4.2

Considere a seguinte rede na qual se utiliza o algoritmo de encaminhamento baseado no vector distância (*Distance Vector Routing*). O comprimento de cada ligação é de 10 km e o atraso de propagação é de 5 µs/km. Assuma que o custo de cada ligação é definido pelo tempo de transferência (i.e., tempo de transmissão mais tempo de propagação) de uma mensagem de tamanho médio igual a 125 bytes.

- a) Mostre a evolução das tabelas de encaminhamento assim como os vectores trocados até se atingir um ponto de estabilidade.
- b) Indique como poderia, mesmo sem calcular os vectores trocados e a actualização das tabelas de encaminhamento, determinar o número de trocas de vectores que garante:
- i. A conectividade do nó D com todos os outros nós.
- ii. Que é conhecido por D o próximo nó do caminho óptimo, bem como o seu custo, para todos os outros nós.
- c) Compare, justificando, os algoritmos de encaminhamento *Link State Routing* e *Distance Vector Routing* em termos do tempo que demoram as tabelas de encaminhamento a adaptar-se a alterações na rede quando uma ligação deixa de estar em actividade.

Exercício 4.2 a)

Passo I. Medidas por cada nó.

(Colocar o custo em cada uma das ligações)

Nó A							
	Vectores Recebidos Tabela Local						
Destino	В	С	D	Custo	Próximo		
А				0	Α		
В				1050	В		
С				150	С		
D				1050	D		
Medido	1050	150	1050				

Nó B					
	Vectores Recebidos		Vectores Recebidos Tabela Local		a Local
Destino	Α	С	Custo	Próximo	
Α			1050	Α	
В			0	В	
С			150	С	
D			8	-	
Medido	1050	150			

Nó C				
	Vectores Recebidos		Tabelo	Local
Destino	Α	В	Custo	Próximo
Α			150	Α
В			150	В
С			0	С
D			8	-
Medido	150	150		

Nó D			
	Vectores	Tabela Local	
Destino	Α	Custo	Próximo
Α		1050	Α
В		∞	-
С		∞	-
D		0	D
Medido	1050		

(Os vectores são os custos já aprendidos por cada nó e enviados para os seus vizinhos)

Α		
Α	0	
В	1050	
С	150	
D	1050	

В		
Α	1050	
В	0	
С	150	
D	8	

<i>C</i>		
А	150	
В	150	
С	0	
D	∞	

D		
А	1050	
В	∞	
С	∞	
D	0	

Passo II. Actualização baseada nos vectores recebidos.

	Nó A				
	Vect	ores Receb	idos	Tabelo	a Local
Destino	В	С	D	Custo	Próximo
A /	1050	150	1050	0	Α
В	0	150	∞	300	С
c \	150	0	∞	150	С
D	~	∞	0	1050	D
Medido	1050	150	1050		

Nó B				
	Vectores	Recebidos	Tabel	a Local
Destino	Α	С	Custo	Próximo
Α	0	150	300	С
В	1050	150	0	В
С	150	0	150	С
D	1050	8	2100	Α
Medido	1050	150		

Nó C				
	Vectores	Recebidos	Tabelo	Local
Destino	Α	В	Custo	Próximo
Α	0	1050	150	Α
В	1050	0	150	В
С	150	150	0	С
D	1050	8	1200	Α
Medido	150	150		

Nó D			
	Vectores	Tabelo	a Local
Destino	Α	Custo	Próximo
А	0	1050	Α
В	1050	2100	Α
С	150	1200	Α
D	1050	0	D
Medido	1050		

(Os vectores são os custos já aprendidos por cada nó e enviados para os seus vizinhos)

A		
А	0	
В	300	
С	150	
D	1050	

В		
Α	300	
В	0	
С	150	
D	2100	

<i>C</i>		
Α	150	
В	150	
С	0	
D	1200	

D		
Α	1050	
В	2100	
С	1200	
D	0	

Passo III. Actualização baseada nos vectores recebidos.

Nó A					
	Vec	tores Receb	idos	Tabelo	a Local
Destino	В	С	D	Custo	Próximo
Α	300	150	1050	0	Α
В	0	150	2100	300	С
С	150	0	1200	150	С
D	2100	1200	0	1050	D
Medido	1050	150	1050		

Nó B				
	Vectores Recebidos		Tabelo	a Local
Destino	Α	С	Custo	Próximo
Α	0	150	300	С
В	300	150	0	В
С	150	0	150	С
D	1050	1200	1350	С
Medido	1050	150		

Nó C				
	Vectores Recebidos		Tabelo	Local
Destino	Α	В	Custo	Próximo
Α	0	300	150	Α
В	300	0	150	В
С	150	150	0	С
D	1050	2100	1200	Α
Medido	150	150		

Nó D			
	Vectores Tabela Local		a Local
Destino	Α	Custo	Próximo
Α	0	1050	Α
В	300	1350	Α
С	150	1200	Α
D	1050	0	D
Medido	1050		

Visão Geral dos Protocolos de Routing

- RIP Protocolo de routing interior com base no vector distância
- IGRP Protocolo de routing interior da Cisco com base no vector distância
- OSPF Protocolo de routing interior com base no estado das ligações
- EIGRP Protocolo de routing interior da Cisco com base no vector distância
- BGP Protocolo de routing exterior com base no vector distância

Routing dentro de sistemas autónomos (AS - Autonomous Systems): 3 tipos

- Static routing
 - Apenas usado em domínios muito pequenos
- Distance vector routing
 - •RIP: Routing Information Protocol
 - Menos usado, mas, apesar das suas limitações, é bastante fácil de configurar em domínios pequenos
 - •IGRP: Interior Gateway Routing Protocol (substituído pelo EIGRP)
 - Protocolo proprietário da Cisco que tenta resolver alguns problemas do RIP
- Link-state routing
 - OSPF: Open Shortest Path First
 - · Largamente usado em grandes redes
 - •IS-IS: Intermediate System- Intermediate System
 - Largamente usado por ISPs
 - Multiprotocolo (OSPF usa apenas IP)

ISCLE INSTITUTO INSTITUTO DE LISBODA

RIP (1)

- Baseado no algoritmo Distance Vector Routing
- Popularizado pela distribuição BSD-UNIX em 1982
- Versão 1 (1988): https://tools.ietf.org/html/rfc1058
- Versão 2 (1998): https://tools.ietf.org/html/rfc2453
- Métricas de distância : n° de hops (max = 15 hops)
- Tipos de mensagens
 - Request
 - Pede a tabela de encaminhamento a nós vizinhos. Indica se deve obter uma dada subrede, ou toda a tabela
 - Response
 - Enviado por um dispositivo, para anunciar informação local da sua tabela de encaminhamento. Estes anúncios com os vectores de distância são enviados nas seguintes circunstâncias:
 - Automaticamente e aleatoriamente a cada 30 seg (aproximadamente)
 - Como resposta a um Request gerado por outro nó RIP
 - Se o triggered update for suportado, sempre que um custo mudar

67

RIP (2)

•Response:

- enviados via segmentos UDP, limitados a 512 bytes
- pode ser apenas um sumário da tabela de encaminhamento do router
 - lista até 25 destinos de rede dentro do AS
- Para cada rede destino, a mensagem:
 - Indica o prefixo IP
 - Contem a distância entre o seu nó e o destino
- A tabela local é actualizada se com os anúncios (Response) recebidos for possível determinar um caminho mais curto

There may be between 1 and 25 (inclusive) RIP entries. A RIP-1 entry has the following format:

0 1 2 3 4 5 6 7 8 9 (
address family ident			
	IPv4 ad	dress (4)	
[must be	zero (4)	
[must be	zero (4)	
ļ	metr	ic (4)	

Field sizes are given in octets. Unless otherwise specified, fields contain binary integers, in network byte order, with the most-significant octet first (big-endian). Each tick mark represents one bit.

RIP (3)

- Temporizadores (timers)
 - O RIP usa vários temporizadores na sua operação:
 - *Update interval* é o intervalo de tempo entre *routing updates*, por defeito é 30 s.
 - *Timeout interval* se um caminho não é actualizado durante um intervalo de tempo igual ao *timeout interval* (e.g., 180 s), então esse caminho é marcado como inválido e é removido da tabela de encaminhamento. Um caminho também pode ser retirado da tabela se a métrica chegar a infinito (i.e., 16 hops). No entanto, o caminho inválido permanece na tabela durante um determinado intervalo para que os vizinhos possam ser notificados que o caminho foi retirado. Este intervalo de tempo é o *hold-down interval*. Só depois do *hold-down interval* expirar é que o caminho é eliminado da tabela.
 - *Hold-down interval* intervalo de tempo que o caminho inválido tem que permanecer na tabela de encaminhamento.

RIP: Exemplo (1)

Rede destino	Próximo router	Num. de hops ao dest.
W	A	2
y	В	2
Z	В	7
X		1
••••	• • • •	••••

RIP: Exemplo (2)

RIP: Falha de ligação e Recuperação

- Como lidar com falhas nas ligações?
 - Existe um temporizador
 - se nenhum anúncio é escutado após 180s --> vizinho/ligação declarada em baixo
 - Rotas via vizinhos invalidadas
 - Tabela de encaminhamento recalculada
 - Novos anúncios devem ser enviados aos vizinhos
 - Vizinhos por sua vez enviam novos anúncios (se as tabelas mudarem)
- •Como evitar o problema da contagem para o infinito? (recordar slide 59)
 - ·Limitar a distância máxima entre routers
 - infinito > 15 (considera-se infinito um custo igual a 16)
 - Split horizon
 - O router A não anuncia ao router B os caminhos pelos quais envia pacotes via B
 - Split horizon with poison reverse
 - Informação de custos, enviada a vizinhos, de caminhos que passem por eles é indicada como infinito (custo = 16)
 - Route poison
 - Mal uma rota falha, envia imediatamente custo infinito, e não espera 180s

RIP - limitações

- •Limite no custo dos caminhos caminho com custo máximo de 15. Diâmetro máximo da rede!
- •Atualizações de tabelas de forma intensiva problema em ligações de capacidade reduzida.
- •Convergência relativamente lenta algoritmo de vector de distâncias; depende de temporizadores para iniciar os anúncios.

CP5 e CP6: Nível de Rede e Nível de Rede na Internet (Exercícios)

- Sebenta de Exercícios e Aplicações
 - Capítulo 4
- •Questões de provas escritas
 - •Ver plataforma de e-learning com provas de anos anteriores.
- Mini-teste
 - •Mini-teste para avaliação na plataforma de e-learning.

74