Concept Learning

concept

some subset of objects or events defined over a large set example.

the subset of animals that constitute birds representation of concept:

a boolean valued function defined over a large set example.

a function defined over all animals, whose value is true (1) for birds and false (0) for other animals

- learning

inducing general functions from specific training examples

- concept learning (or category learning)

acquiring the definition of general category given a sample of positive and negative training examples of category, that is, inferring a boolean-valued function from training examples of its input and output

- a concept learning task

. target concept: EnjoySport

(days on which Aldo enjoys water sport)

. hypothesis: a vector of six constraints,

specifying the value of six attributes, they are,

Sky (Sunny/Cloudy/Rainy), AirTemp (Warm/Cold),

Humidity (Normal/High), Wind (Strong/Weak),

Water (Warm/Cool), Forecast (Same/Change)

for each attribute, the hypothesis will either

? (don't care: any value is acceptable),

discrete values, or

 \emptyset (null: no value is acceptable)

example.

<?, Cold, High, ?, ?, ?>

-> "Aldo enjoys sport only on cold days with high humidity."

<?, ?, ?, ?, ?, ?>

-> "Aldo always enjoys sport." (most general hypothesis)

<0, Ø, Ø, Ø, Ø, Ø>

-> "Aldo does not enjoy sport at all." (most specific case)

. Positive and negative training examples for the target concept EnjoySport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

What is the general concept for these examples?

Given

instances X: possible days, each described by six attribute, target function c: EnjoySport $X \rightarrow \{0, 1\}$,

hypothesis H: conjunction of literals such as

<?, Cold, High, ?, ?, ?>, and

training examples D: positive and negative examples of the target function, that is,

$$< X_1, c(X_1) >, \, \cdots, \, < X_m, c(X_m) >$$
 ,

determine

a hypothesis h in H such that

$$h(x) = c(x)$$
 for all x in X .

- inductive learning hypothesis

Any hypothesis found to be approximate the target function well over a sufficiently large set training examples will also approximate the target function well over other unobserved examples.

- concept learning as search

find a hypothesis that best fits training examples search space in EnjoySport:

number of instances = $3 \cdot 2^5 = 96$ number of hypotheses = $5 \cdot 4^5 = 5120$

- general-to-specific ordering

- . Let $x \in X$ and $h \in H$. Then, x satisfies h if and only if h(x) = 1.
- . Let h_j and h_k be boolean-valued functions defined over X. Then,

 h_{j} is $\textit{more_general_than_or_equal_to}\ h_{k}$

 $(h_i \ge {}_q h_k)$ if and only if

$$(\forall x \in X)[(h_k(x) = 1) \rightarrow (h_i(x) = 1)].$$

 h_j is *(strictly) more_general_than* h_k ($h_j > {}_q h_k$)

if and only if

$$(h_j \ge {}_g h_k) \wedge \neg (h_k \ge {}_g h_j).$$

example.

 h_i =<Sunny, ?, ?, ?, ?> $>_q h_k$ =<Sunny, ?, ?, Strong, ?, ?>

- $\rightarrow h_i$ is more_general_than h_k . or
- $\rightarrow h_k$ is more_specific_than h_i .

Here, the problem is how to search the good hypothesis using this hypothesis ordering.

One of such candidates is Find-S algorithm in which the maximally specific hypothesis is searched.

- Find-S algorithm

Step 1. Initialize h to the most specific hypothesis in H, that is, $h = \langle \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing \rangle$.

Step 2. For each positive training instance x

- for each attribute constraint a_i in h if the constraint a_i in h is satisfied by x, do nothing else replace a_i in h by the next more general constraint that is satisfied by x.

Step 3. Output h.

example.

 h_0 =< \varnothing , \varnothing , \varnothing , \varnothing , \varnothing , \varnothing , \varnothing >. x_1 =<Sunny, Warm, Normal, Strong, Warm, Same>+ h_1 =<Sunny, Warm, Normal, Strong, Warm, Same>+ x_2 =<Sunny, Warm, High, Strong, Warm, Same>+ h_2 =<Sunny, Warm, ?, Strong, Warm, Same>- x_3 =<Rainy, Cold, High, Strong, Warm, Change>- h_3 = h_2 x_4 =<Sunny, Warm, High, Strong, Cool, Change>+ h_4 =<Sunny, Warm, ?, Strong, ?, ?>

Hypothesis space searched by Find-S algorithm

 $x_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle, + \\ x_2 = \langle Sunny \ Warm \ High \ Strong \ Warm \ Same \rangle, + \\ x_3 = \langle Rainy \ Cold \ High \ Strong \ Warm \ Change \rangle, -$

 $x_{\Delta} = \langle Sunny \ Warm \ High \ Strong \ Cool \ Change \rangle, +$

 $\begin{array}{l} h_0 = <\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing>\\ h_1 = <Sunny \ Warm \ Normal \ Strong \ Warn \ h_2 = <Sunny \ Warm \ ? \ Strong \ Warm \ Samble \ h_3 = <Sunny \ Warm \ ? \ Strong \ Warm \ Samble \ h_4 = <Sunny \ Warm \ ? \ Strong \ ? \ ? > \end{array}$

- problem in Find-S algorithm

- . can't tell whether it has the learned concept.
- . can't tell when training data are inconsistent.
- . picks a maximally specific h.
- . depending on H, there might be several.
 - -> Find-S algorithm only uses the positive examples.
 - -> We better find *the proper hypothesis space* rather than a specific hypothesis.
 - -> the concept of version spaces

version spaces

- . A hypothesis h is *consistent* with a set of training examples D of target concept c if and only if h(x)=c(x) for each training example < x, c(x) > in D, that is,
 - Consistent $(h,D) \equiv (\forall x < x, c(x) > \in D) \ h(x) = c(x).$
- . The version space, VS_{HD} with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D, that is,

$$VS_{HD} \equiv \{h \in H | Consistent(h, D)\}.$$

. representation

The general boundary G of VS_{HD} is the set of its maximally general members, that is,

$$G \equiv \big\{g \in H | \ \mathit{Consistent}(g, D) \land (\neg \, \exists \, g^{'} \in \mathit{H}) ((g^{'} >_{\mathit{q}} g) \land \mathit{Consistent}(g^{'}, D)) \big\}.$$

The specific boundary S of VS_{HD} is the set of its maximally specific members, that is,

$$S \equiv \left\{ s \in H | \textit{Consistent}(s, D) \land (\neg \exists s^{'} \in \textit{H}) ((s > {_{\textit{g}}} s^{'}) \land \textit{Consistent}(s^{'}, D)) \right\}.$$

Every member of $\mathit{VS}_{\mathit{HD}}$ lies between these boundaries, that is,

$$VS_{HD} \equiv \{h \in H | (\exists s \in S)(\exists g \in G)(g \ge {}_g h \ge {}_g s)\}.$$

Example Version Space

- CE (Candidate Elimination) algorithm

Step 1. Initialize G and S as

$$G = \{\langle ?, ?, ?, ?, ?, ?\rangle\}$$
 and $S = \{\langle \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing\rangle\}$.

- Step 2. For each training sample d, do
 - if d is a positive sample,
 - (1) remove from G any hypothesis that is inconsistent with d.
 - (2) for each hypothesis s in S that is inconsistent with d,
 - 1) remove s from S.
 - 2) add to S all minimal generalizations h of s such that
 - (i) h is consistent with d, and
 - (ii) some member of G is more general than h.
 - 3) remove from S any hypothesis that is more general than another hypothesis in S.

- if d is a negative sample,
 - (1) remove from S any hypothesis that is inconsistent with d.
 - (2) for each hypothesis g in G that is inconsistent with d,
 - 1) remove q from G.
 - 2) add to G all minimal specifications of h of g such that
 - (i) h is inconsistent with d, and
 - (ii) some member of S is more specific than h.
 - (3) remove from G any hypothesis that is less general than another hypothesis in G.

Example Trace (initialize G and S)

Example Trace (Example 1 and 2)

$$S_{0}: \boxed{\{<\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing\}\}}$$

$$S_{1}: \boxed{\{\}\}}$$

$$S_{2}: \boxed{\{\}}$$

Training examples:

- 1. < Sunny, Warm, Normal, Strong, Warm, Same >, Enjoy Sport = Yes
- 2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

Example Trace (Example 3)

$$S_2, S_3: [\{ \langle Sunny, Warm, ?, Strong, Warm, Same \rangle \}]$$

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

Example Trace (Example 4)

Training Example:

4. < Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

Example Trace (The Final Version Space)

The final version space for the EnjoySport concept learning problem

How should these be classified?

- CE algorithm will converge toward the hypothesis that correctly describes the target concept, provided
 - (1) no errors in training examples (no noise)
 - (2) target concept is included in the hypothesis space H.

- inductive bias

. In EnjoySport, ${\cal H}$ contains only conjunction of attribute values, that is, the disjunctive target concepts such as

$$< Sunny, ?, ?, ?, ?, ? > \lor < Cloudy, ?, ?, ?, ?, ? >$$

can not be described.

. If $H^{'}$ contains conjunction, disjunction, negation over H, $|H^{'}| \gg |H| \rightarrow$ large number of samples are required to generalize hypotheses due to large version space.

example (EnjoySport):

 $|X|=3\cdot 2^5=96$ distinctive instances $|H|=5\cdot 4^5=5120$ syntactically distinctive hypotheses or $1+4\cdot 3^5=973$ semantically distinctive hypotheses $|H^{'}|=2^{|X|}=2^{96}\approx 10^{28}$ distinctive hypotheses

. A learner that makes no apriori assumptions regarding the identity of the target space has no rational basis for classifying any unseen instances.

So we need some assumption on $H. \rightarrow$ inductive bias

. inductive inference

Let

L: an arbitrary learning algorithm,

C: an arbitrary target concept,

 $D_{\!\scriptscriptstyle c} = < x, c(x) >$: an arbitrary set of training data, and

 $L(x_i,D_c)$: classification that L assigns to x_i (new instance) after learning D_c .

Then, inductive inference step performed by L is described by $(D_c \wedge x_i) > L(x_i, D_c)$.

ightarrow $L(x_i,D_c)$ is inductively inferred from $(D_c \wedge x_i)$.

. The inductive bias of L is any minimal set of assertion B such that for any target concept c and corresponding training examples D_c

$$(\forall x_i \in X)((B \land D_c \land x_i) \vdash L(x_i, D_c))$$

ightarrow for all x_i , $L(x_i,D_c)$ follows deductively from $(B\wedge D_c\wedge x_i)$ or we can say that $L(x_i,D_c)$ is provable from $(B\wedge D_c\wedge x_i)$.

- inductive bias and equivalent deductive system

- examples of inductive bias
 - . Rote learner: store examples, classify x if and only of it matches previously observed samples \rightarrow *no inductive bias*.
 - . CE algorithm: the target concept c is contained in the given hypothesis space H, that is, $c \in H$. Because, if $c \in H$, the inductive inference performed by CE algorithm can be proved deductively:
 - (1) $c \in H \vdash c \in VS_{HD}$.
 - (2) $L(x_i,D_c)$ is defined to be the unanimous vote of all hypotheses in VS_{HD_c} .
 - (3) Therefore, $c(x_i) = L(x_i, D_c)$.

- . Find-S algorithm:
 - (1) $c \in H$
 - (2) All instances are negative instances unless the opposite is entailed by its other knowledge. This implies that *only* the positive instances are meaningful for the target concept.

Reference: T. Mitchell, "Machine Learning," Chapter 2.