第4章 朴素贝叶斯法

主要内容

- 朴素贝叶斯法的学习和分类
- 朴素贝叶斯法的参数估计

4.1朴素贝叶斯法的学习和分类

最大似然估计:

假设外观相同的两个箱子,甲箱中有99个白球,1个黑球,乙箱中有99个黑球,1个白球,若某次取出来的是白球,请问最有可能是从哪个箱子取出的?

基本思想

首先基于**特征条件的独立**假设,学习输入/输出的联合概率; 然后基于此模型,对于给定输入x,利用贝叶斯定理,求出**后验概率最大** 的输出y。

1、基本方法

输入空间X \in Rn为n维向量的集合,输出空间为类标记集合Y={c₁,c₂,..c_n},输入特征向量x \in X,输出为类标签y \in Y,X是在输入空间上的随机向量,Y是在输出空间Y上的随机变量,P(X,Y)是X和Y的联合概率分布,训练数据集T={(x₁,y₁), (x₂,y₂),...(x_N,y_N)},由P(X,Y)独立同分布产生。

朴素贝叶斯通过训练数据集学习联合概率分布 $P(X,Y=c_k)$ 。

学习先验概率分布 $P(Y=c_k), k=1,2,...$ K和条件概率分布 $P(X=x|Y=c_k)$ 。

$$P(X, Y=c_k) = P(Y=c_k) P(X=x|Y=c_k)$$

$$= P(Y=c_k) P(X^{(1)}=x^{(1)}, X^{(2)}=x^{(2)},...X^{(n)}=x^{(n)}|Y=c_k)$$

M

条件概率分布 $P(X=x|Y=c_k)$ 是 n维的条件概率,有指数级的参数,求解困难假设 $x^{(j)}$ 可能值有 S_j 个,j=1,2 ,…n,Y可能取值有K个,参数个数 $K\prod_{i=1}^n S_j$

条件独立性假设:
$$P(X = x \mid Y = c_k)$$

$$= P(X^{(1)} = x^{(1)}, X^{(2)} = x^{(2)}, \dots X^{(n)} = x^{(n)} \mid Y = c_k)$$

$$= \prod_{i=1}^{n} P(X^{(i)} = x^{(i)} \mid Y = c_k)$$

条件独立性假设:说明用于分类的特征,在类别确定的条件下是条件独立的。简化了朴素贝叶斯法,牺牲了分类准确性。

后验概率P(Y=c_k|X=x)的计算:

$$P(Y = c_k \mid X = x) = \frac{P(X = x \mid Y = c_k)P(Y = c_k)}{\sum_{k} P(X = x \mid Y = c_k)P(Y = c_k)}$$

代入独立假设条件

代入独立假设条件
$$P(Y = c_k \mid X = x) = \frac{P(Y = c_k)\Pi_j P(X^{(j)} = x^{(j)} \mid Y = c_k)}{\sum_k P(Y = c_k)\Pi_j P(X^{(j)} = x^{(j)} \mid Y = c_k)}$$

朴素贝叶斯分类器

$$y = f(x) = \arg \max_{c_k} -$$

素贝叶斯分类器

$$y = f(x) = \arg\max_{c_k} \frac{P(Y = c_k)\Pi_j P(X^{(j)} = x^{(j)} | Y = c_k)}{\sum_k P(Y = c_k)\Pi_j P(X^{(j)} = x^{(j)} | Y = c_k)}$$

对于所有的ck,,分母都相同。

$$y = \arg \max_{c_k} P(Y = c_k) \prod_{j} P(X^{(j)} = x^{(j)} | Y = c_k)$$

3

2、后验概率最大化

朴素贝叶斯法将实例分到后验概率最大的类中,等价于期望风险最小化,假设选择0-1损失函数,f(X)为决策函数:

$$L(Y, f(X)) = \begin{cases} 1, Y \neq f(X) \\ 0, Y = f(X) \end{cases}$$

期望风险函数

$$R_{exp}(f) = E[L(Y, f(X))]$$

条件期望

$$R_{exp}(f) = E_{X} \sum_{k=1}^{K} [L(c_{k}, f(X))] P(c_{k} \mid X)$$

.

只需对X=x逐个极小化,得:

$$f(x) = \arg \min_{y \in Y} \sum_{k=1}^{K} [L(c_k, y)] P(c_k \mid X = x)$$

$$= \arg \min_{y \in Y} \sum_{k=1}^{K} P(y \neq c_k \mid X = x)$$

$$= \arg \min_{y \in Y} \sum_{k=1}^{K} (1 - P(y = c_k \mid X = x))$$

$$= \arg \max_{y \in Y} \sum_{k=1}^{K} P(y = c_k \mid X = x)$$

后验概率最大化准则:

$$f(x) = \arg\max_{c_k} P(c_k \mid X = x)$$

4.2朴素贝叶斯法的参数估计

м

1、极大似然估计

先验概率 $P(Y=c_k)$ 的极大似然估计:

$$P(Y = c_k) = \frac{\sum_{i=1}^{N} I(y_i = c_k)}{N}, k = 1,2,...K$$

设第j个特征 $\mathbf{x}^{(j)}$ 可能取值的集合为 $\{\mathbf{a}_{j1},\mathbf{a}_{j2},...\mathbf{a}_{jSj}\}$,条件概率的极大似然估计:

$$P(X^{(j)} = a_{j1} | Y = c_{k}) = \frac{\sum_{i=1}^{N} I(x_{i}^{(j)} = a_{jl}, y_{i} = c_{k})}{\sum_{i=1}^{N} I(y_{i} = c_{k})}$$

j=1,2,..n; $I=1,2,..S_j$;k=1,2,..K, $x_i^{(j)}$ 是第i个样本的第j个特征, a_{ii} 是第j个特征可能取的第l个值

2 学习与公

2、学习与分类算法

输入:训练数据T={(x₁,y₁),(x₂,y₂),...(x_N,y_N)} , 其中x_i=(x_i⁽¹⁾, x_i⁽²⁾,... x_i⁽ⁿ⁾)^T, x_i^(j) 是第i个样本的第j个特征 , x_i^(j) ∈{a_{j1},a_{j2},...a_{jsj}} , a_{jl}是第j个特征可能取得第I个值 , j=1,2 , ...n , I=1,2 , ...S_i,y_i∈{c₁,c₂,...c_k} , 实例x ;

输出:实例x的分类

(1) 计算先验概率和条件概率

$$P(Y = c_k) = \frac{\sum_{i=1}^{N} I(y_i = c_k)}{N}, k = 1,2,...K$$

$$P(X^{(j)} = a_{j1} | Y = c_{k}) = \frac{\sum_{i=1}^{N} I(x_{i}^{(j)} = a_{j1}, y_{i} = c_{k})}{\sum_{i=1}^{N} I(y_{i} = c_{k})}$$

$$j=1,2,..n$$
; $l=1,2,..S_j$; $k=1,2,..K$

M

(2) 对于给定实例x=(x_i⁽¹⁾, x_i⁽²⁾,... x_i⁽ⁿ⁾)^T, 计算

$$P(Y = c_k) \prod_{j=1}^{n} P(X^{(j)} = X^{(j)} | Y = c_k)$$
 k=1,2,..K

(3)确定实例x的类

$$y = arg \max_{c_k} P(Y = c_k) \prod_{j=1} P(X^{(j)} = x^{(j)} | Y = c_k)$$

٧

3、贝叶斯估计

用极大似然估计可能会出现所要估计的概率值为0的情况,这时会影响到后验概率的计算结果,使分类产生偏差.解决这一问题的方法是采用贝叶斯估计

条件概率的贝叶斯估计和先验概率的贝叶斯估计

$$P_{\lambda}(X^{(j)} = a_{j1} | Y = c_{k}) = \frac{\sum_{i=1}^{N} I(x_{i}^{(j)} = a_{j1}, y_{i} = c_{k}) + \lambda}{\sum_{i=1}^{N} I(y_{i} = c_{k}) + S_{j}\lambda}$$

$$P_{\lambda}(Y = c_k) = \frac{\sum_{i=1}^{N} I(y_i = c_k) + \lambda}{N + K\lambda}$$

$$j=1,2,..n$$
; $l=1,2,..S_j$; $k=1,2,..K$

【例4.1】用训练数据学习一个朴素贝叶斯分类器,并确定x=(2,S)T的类标记y,X(1),X(2)为特征,取值的集合分别为 $A1=\{1,2,3\}$, $A2=\{S,M,L\}$,Y为类标记, $Y \in C=\{1,-1\}$ 。按照拉普拉斯平滑估计概率($\lambda=1$)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X ⁽¹⁾	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3
X ⁽²⁾	S	М	М	S	S	S	М	M	L	L	L	M	M	L	L
Υ	-1	-1	1	1	-1	-1	-1	1	1	1	1	1	1	1	1

解: A1={1,2,3}, A2={S,M,L}, C={1,-1}, 计算条件概率和先验概率下的贝叶斯估计:

$$P_{\lambda}(Y = c_{k}) = \frac{\sum_{i=1}^{N} I(y_{i} = c_{k}) + \lambda}{N + K\lambda}$$

$$P(Y=1)=10/17$$
, $P(Y=-1)=7/17$

$$P_{\lambda}(X^{(j)} = a_{j1} | Y = c_{k}) = \frac{\sum_{i=1}^{N} I(x_{i}^{(j)} = a_{j1}, y_{i} = c_{k}) + \lambda}{\sum_{i=1}^{N} I(y_{i} = c_{k}) + S_{j}\lambda}$$

$$P(X^{(1)}=1|Y=1)=3/12$$
, $P(X^{(1)}=1|Y=1)=4/12$, $P(X^{(1)}=1|Y=1)=5/12$

$$P(X^{(2)}=S|Y=1)=2/12$$
, $P(X^{(2)}=M|Y=1)=5/12$, $P(X^{(2)}=L|Y=1)=5/12$

【例4.1】用训练数据学习一个朴素贝叶斯分类器,并确定x=(2,S)T的类标记y,X(1),X(2)为特征,取值的集合分别为 $A1=\{1,2,3\}$, $A2=\{S,M,L\}$,Y为类标记, $Y \in C=\{1,-1\}$ 。按照拉普拉斯平滑估计概率($\lambda=1$)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X ⁽¹⁾	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3
X ⁽²⁾	S	М	М	S	S	S	М	М	L	L	L	M	М	L	L
Υ	-1	-1	1	1	-1	-1	-1	1	1	1	1	1	1	1	1

$$P(X^{(1)}=1|Y=-1)=4/9$$
, $P(X^{(1)}=1|Y=-1)=3/9$, $P(X^{(1)}=1|Y=-1)=2/9$
 $P(X^{(2)}=S|Y=-1)=4/9$, $P(X^{(2)}=M|Y=-1)=3/9$, $P(X^{(2)}=L|Y=-1)=2/9$

对于给定x=(2,S)^T计算:

$$P(Y=1)P(X^{(1)}=2|Y=1) P(X^{(2)}=S|Y=1)=0.0327$$

 $P(Y=-1)P(X^{(1)}=2|Y=-1) P(X^{(2)}=S|Y=-1)=0.0610$

由于P(Y=-1)P(X⁽¹⁾=2|Y=-1) P(X⁽²⁾=S|Y=-1)值最大,所以y=-1

M

伯努利模型

在伯努利模型中,每个特征的取值是布尔型的(true和false),或者1和0。 即一个特征有在一个样本中是否出现。

先验概率p(c)=属于类c样本总数/整个训练样本的样本总数

类条件概率p(tk|c)=(类c下包含特征tk的样本总数+1)/(类c下的样本总数+2)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X ⁽¹⁾	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3
X ⁽²⁾	S	М	М	S	S	S	М	М	L	L	L	М	М	L	L
Υ	-1	-1	1	1	-1	-1	-1	1	1	1	1	1	1	1	1

$$P(Y=1)=?$$
, $P(Y=-1)=?$

$$P(X^{(1)}=1|Y=1)=?$$
, $P(X^{(1)}=1|Y=1)=?$, $P(X^{(1)}=1|Y=1)=?$

$$P(X^{(2)}=S|Y=1)=?$$
, $P(X^{(2)}=M|Y=1)=?$, $P(X^{(2)}=L|Y=1)=?$

高斯模型

假设男性和女性的身高、体重和脚掌是正态分布,通过样本分别计算出均值 μ 和方差 σ^2

身高(英寸)→	体重(磅)↩	脚掌(英寸)。	性别↩
6₽	180₽	12 🕫	男↩
5.92₽	190₽	11 0	男↩
5.98₽	170₽	12 🕫	男↩
5.92₽	165₽	10₽	男↩
5₽	100₽	6₽	女₽
5.5₽	150₽	8₽	女↩
5.42₽	130₽	7₽	女↩

预测某人身高为6英尺,体重179磅,脚掌10英寸的性别。则:

p(height|male) =
$$\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(6-\mu)^2}{2\sigma^2}}$$

据此可以求出其他特征的类条件概率,从而最终推断出该人是男性还是女性。

朴素贝叶斯分类的优缺点

优点:

- (1) 算法逻辑简单,易于实现
- (2)分类过程中时,开销小(假设特征相互独立,只会涉及到二维存储)

缺点:

在属性个数比较多或者属性之间相关性较大时,分类效果不好。