Seismic Model

Max Fisch, Justin Turcotte

October 2024

Contents

1	\mathbf{Seis}	smic Model															2										
	1.1	Damped Oscillator												2													
		1.1.1	Equations .																								2

Seismic Model 1

Damped Oscillator 1.1

1.1.1 Equations

Kelvin Voight Model from [1]. x(t) is the displacement function (measured), σ is stress, ϵ is strain

$$F = f_e + f_v = kx + k' \frac{\partial x}{\partial t} \tag{1}$$

$$\frac{d^2x}{dt^2} = -k_p \frac{dx}{dt} - kx + F$$

$$\sigma = \sigma_1 + \sigma_2 = \mu \epsilon + \eta \dot{\epsilon}$$
(2)
(3)

$$\sigma = \sigma_1 + \sigma_2 = \mu \epsilon + \eta \dot{\epsilon} \tag{3}$$

$$\epsilon(t) = \epsilon(0)e^{-t/t_0} + \frac{1}{\eta} \int_0^t \sigma(\theta)e^{-(t-\theta)/t_0} d\theta \tag{4}$$

References

[1] Ari Ben-Menahem and Sarva Jit Singh. Seismic waves and sources. Springer Science & Business Media, 2012