ECE 65: Components & Circuits Lab

Lecture 14

MOSFET transfer function

Reference notes: sections 4.2,4.3

Sedra & Smith (7th Ed): sections 5.3,7.1.3

Saharnaz Baghdadchi

Course map

4. Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

NMOS Transfer Function

How does v_o change when v_i is changed from 0 to $V_{\rm DD}$?

Circuit Equations:

$$v_{GS} = v_i$$

$$i_D = f(v_{GS}, v_{DS})$$

$$v_o = v_{DS} = V_{DD} - R_D i_D$$

NMOS Transfer Function

- 2) Just to the right of point A:
- o $V_{OV} = v_{GS} V_t$ is small, so i_D is small.
- $\circ v_{DS}$ = $V_{DD} R_D i_D$ is close to V_{DD}
- \circ Thus, v_{DS} > V_{OV} and NMOS is in saturation.

NMOS Transfer Function

3) As v_{GS} increases:

- $\circ V_{OV} = v_{GS} V_t$ and i_D become larger;
- o $v_{DS} = V_{DD} R_D i_D$ becomes smaller.
- \circ At point B, $v_{DS} = V_{OV}$

NMOS Functional circuits

Transition from cut-off to triode can be used to build NMOS switch circuits.

 \circ Voltage at point C (see graph) depends on NMOS parameters and the circuit (in BJT $v_o = V_{sat}$)!

We can also build NMOS logic gates similar to a BJT. But there are much better gates based on CMOS technology!

Lecture 14 reading quiz

The transistors in the below circuit are characterized by $|V_t| = 0.5 V$

 k_p = 4 mA/V^2 , $\lambda=0$. Find the labeled node voltages.

Both transistors are in saturation because $V_{GD1} = V_{GD2} = 0$

$$i_{D1} = 0.5 k_p (V_{SG1} - |V_t|)^2$$

$$i_{D1} = i_{D2} \rightarrow V_{SG1} = V_{SG2} \rightarrow V_{OV1} = V_{OV2}$$

$$i_D = 2 \ mA = 0.5 \ k_p V_{OV}^2 \rightarrow V_{OV} = 1 \ V$$

$$V_{OV} = V_{SG} - |V_t| \rightarrow V_{SG} = 1.5 V$$

$$V_{SG1} = V_{SD1} = 5 - V_1 = 1.5 V \rightarrow V_1 = 3.5 V$$

$$V_{SG2} = V_{SD2} = V_1 - V_2 = 1.5 V \rightarrow V_2 = 2 V$$

Discussion question 1.

In the below MOSFET circuit, find the node voltage V1. How large a resistor can be inserted in series with the drain while maintaining saturation? $V_t=0.5\ V$, $I=0.1\ mA$, $V_{GS}=1\ V$ Before adding the resistor,

$$V_{GS} = V_{DS} = V_1 = 1 V$$

For the MOSFET to stay in saturation, $V_{DS} \ge V_{OV}$

$$V_{DS} \geq V_{GS} - V_t$$

After adding the resistor, $V_{GS} = I \times R + V_{DS}$

$$V_{DS} \ge I \times R + V_{DS} - V_t$$
 \rightarrow $I \times R \le V_t$ \rightarrow $R \le (\frac{0.5 \text{ V}}{0.1 \text{ } mA})$

+2.5 V

$$R \leq 5 k\Omega$$

Discussion question 2.

Design the following MOSFET circuit so that the transistor operates in saturation with $I_D=0.5~mA$ and $V_D=+3~V$. Let PMOS have $V_{tp}=-1~V$, $k_p=1~mA/V^2$, $\lambda=0$.

$$I_D = 0.5 k_p (V_{OV})^2$$

$$0.5 mA = 0.5 \times (\frac{1mA}{V^2}) \times (V_{OV})^2$$

$$|V_{OV}| = 1 \ V \rightarrow V_{SG} = 1 + 1 \rightarrow V_{SG} = 2 \ V$$

$$V_{SG} = V_S - V_G = 5 - V_G = 2 V$$

$$V_G = 3 V \rightarrow \frac{R_{G2}}{R_{G2} + R_{G1}} V_{DD} = V_G = 3 V$$

Discussion question 2.

Design the following MOSFET circuit so that the transistor operates in saturation with $I_D=0.5~mA$ and $V_D=+3~V$. Let PMOS have $V_{tp}=-1~V$, $k_p=1~mA/V^2$, $\lambda=0$.

$$\frac{R_{G2}}{R_{G2} + R_{G1}} V_{DD} = V_G = 3 V$$

One possible selection is

$$R_{G2}=3\,M\Omega$$
 and $R_{G1}=2\,M\Omega$

$$R_D = \frac{V_D}{I_D} \rightarrow R_D = 6 \, k\Omega$$

