Course "Data Analysis" ModIA double degree INSA Toulouse / ENSEEIHT

Olivier Roustant

2023-09

General purpose

The aim of the course is

to analyze vector data

Remarks:

- more complex data (signal, images, text, etc.) almost always come down to vector data.
- understanding data is helpful (if not necessary) for modeling, and for interpreting model outputs.

Course functioning

To reach the aim, the course will be composed of:

- Courses on new material
- Computer labs on these materials, supported by case studies
 - Run/complete tutorials written in R and Python
 - Answer additional questions about interpretation
- Computer labs on a realistic problem → "class project"
 - Write YOUR tutorial in R
 - Explain YOUR methodology and interpretation

Evaluation

- Two individual exams, without documents (1/3 of the grade each)
 - → To test your knowledge on the program
 - → Questions on both theory and practice (interpretation)
 - → Timing. Exam #1: middle of period 2, Exam #2: end of period 3.
- The class project, by groups of 3 (1/3 of the grade)
 - → To test your know-how on a realistic case-study
 - → Deliverables: professionnal report + R code

Resource and program

Wikistat

The main resource of the course is **wikistat** (thanks Philippe Besse!), seasons 2 & 3, which is a great amount of information and experience!

Program

- Principal component analysis and applications
- Clustering: k-means, hierarchical clustering, Gaussian mixtures

Remarks:

- During labs: practice of R and Python, descriptive statistics
- Linear methods are taught in parallel in another UF.

A brief analysis of data analysis

There are a huge number of problems on data analysis. Fortunately, there are common points between them!

- A few classes of engineering questions
 - → prediction (a value, a class), anomaly detection
- A few classes of models / methods
 - → linear models, trees, random forest, aggregation, kernel methods (e.g. SVM), boosting, neural networks, ...
- A few number of traps
 - → overfitting, correlation is not causality, unfair learning

Simplified instructions for data analysis

Before using models, there are a few actions to do:

- Explore the data
 - look for outliers, visualize, understand
- Create new relevant variables or "features"
 - The most influential variables are not always given in the dataset
- Adapt the data to fit with models! (lazy but often successful!)
 - convert to numerics (algorithms use numbers)
 - reduce dimension (sampling, PCA, basis decomposition)
 - use transformations (logarithm?)
 - use embeddings (indicator variables, kernel tricks)
- Split the data in learning set / test set
 - necessary to avoid overfitting

Figure: Daily electric consumption and temperature. Source: RTE and Meteo France

Figure: Electric consumption versus temperature.

Figure: Linear models with only one predictor.

Figure: Linear models with only one predictor.

Figure: Linear model with new variables (e.g. day, off-day).

Figure: Linear model with new variables + lagged variable (ARMAX model).

Integrated circuits

Connected objects

Industrial background

- PhD thesis of Espéran Padonou(*), with STMicroelectronics.
 - ⇒ Study and production of integrated circuits.
 - ⇒ Production on circular batches called wafers.
- High quality standards and costly control steps.
 - ⇒ Probabilistic models for Advanced Process Control.

A silicon wafer

These slides are adapted from E. Padonou work

Profile Monitoring (Noorossana et al., 2011; Woodall, 2007)

- At each time stamp, fit the model $y_i = f(\mathbf{x}^{(i)})$,
- 2 Monitor the parameters of f with standard control charts,

where y_1, \ldots, y_n are measurements at the points $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$.

Designs of Experiments Response surface models Statistical Process Control DoE RSM SPC

Examples of control charts in advanced process control

A Shewhart control chart

Univariate charts

Principal components

Hotelling's T²

Profiles of wafers marked with triangles

Control chart for 506 wafers Course Data Analysis, ModIA

Control charts have been applied to the coefficients in a functional basis,

here: Zernike polynomials

Figure: Clusters found by k-means, applied on the coefficients of Fourier series

Figure: Visualization of velib stations, gathered by cluster