

Data Science with R (Data Analytics)

Data Visualization

Copyright @NYC Data Science Academy, Supstat Inc.

| All Rights Reserved

Outline

This lecture will explore the application of primary drawing functions and advanced drawing functions in R as well as a general understanding of the methods of data exploration by visualization.

Case study: Analyzing NBA data with graphics

Outline:

- Introduction to data visualization
- Various visualization functions in R

We'll start by looking at a dataset with four paired variables to explore the most basic of visualizations: the scatterplot.

```
data = read.table('data/anscombe.txt', header=TRUE)
data = data[ ,-1]
str(data)
```

```
'data.frame': 11 obs. of 8 variables:

$ x1: int 10 8 13 9 11 14 6 4 12 7 ...

$ x2: int 10 8 13 9 11 14 6 4 12 7 ...

$ x3: int 10 8 13 9 11 14 6 4 12 7 ...

$ x4: int 8 8 8 8 8 8 8 19 8 8 ...

$ y1: num 8.04 6.95 7.58 8.81 8.33 ...

$ y2: num 9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ...

$ y3: num 7.46 6.77 12.74 7.11 7.81 ...

$ y4: num 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ...
```

Let's first calculate some statistical indicators. First calculate the mean of each variable, and then calculate the correlation coefficient between each pairing.

colMeans(data)

x1 x2 x3 x4 y1 y2 y3 y4 9.0 9.0 9.0 9.0 7.5 7.5 7.5

sapply(1:4, function(x) cor(data[,x], data[,x+4]))

[1] 0.8164205 0.8162365 0.8162867 0.8165214

Let's now plot the data to see how well our mean and correlation indicators summarize the relationships between and .

```
oldpar <- par()
par(mfcol=c(2,2)) #prepare frame for 4 plots
for (x in 1:4) {
  plot(data[,x], data[,x+4], pch=19)
  abline(lm(data[,x+4] ~ data[,x]))
}
par(oldpar)</pre>
```


Some basic principles

- First, determine the target/goal of your visualizations
 - Exploratory visualization
 - Explanatory visualization
- Understand the characteristics of the data and your audience
 - Which variables are important and interesting?
 - Consider the background and goals of the audience
- ❖ Be concise while still conveying enough information

Visualization functions in R

Mapping graphic elements

- Coordinate position
- Line
- Size
- Color
- Shape
- Text

Visualization packages in R

- graphics
- lattice
- ggplot2

Elementary plotting: Scatterplot

plot(dist ~ speed, data=cars)

Elementary plotting: Line Graph

Elementary plotting: Vertical Density Lines

plot(cars\$dist, type='h') #h for 'histogram-like'

Elementary plotting: Histogram

hist(cars\$dist)

Histogram of cars\$dist


```
#install.packages("lattice")
library(lattice)
num <- sample(1:3, size=50, replace=TRUE)
barchart(table(num), horizontal=FALSE)</pre>
```


#note the pipe (|) used to group plot results by a categorical variable $\ensuremath{\mathsf{stripplot}}(\sim \ensuremath{\mathsf{Sepal.Length}} \mid \ensuremath{\mathsf{Species}}, \ensuremath{\mathsf{data}} = \ensuremath{\mathsf{iris}}, \ensuremath{\mathsf{layout}} = \ensuremath{\mathsf{c}}(1,3))$

#specifying groups as an argument differentiates categories by color densityplot(~ Sepal.Length, groups=Species, data=iris, plot.points=FALSE)

#boxplots are useful for summarizing data
bwplot(Species ~ Sepal.Length, data=iris)

#scatterplots can also be color coded by category
xyplot(Sepal.Width ~ Sepal.Length, groups=Species, data=iris)

#examining pairwise relationships:
splom(iris[1:4])

Scatter Plot Matrix

histogram(~ Sepal.Length | Species, data=iris, layout=c(1,3))

Three-dimensional graphs in *lattice*

Three-dimensional graphs in *lattice*

