In problem 1, I fit a normal distribution and a generalized T distribution the data and calculated the VaR and ES.

	Normal	Т
VaR	0.0813	0.0765
ES	0.1007	0.1086

And the graph shows below

Problem 1

Problem 2

In problem 2, I created a library and wrote test cases for those functions.

Covariance estimation techniques: I used DailyReturn.csv to check if it works, and the output is correct

Non PSD fixes for correlation matrices: I wrote near_psd() and Highams's method, and the output is correct.

```
near_psd() method is correct
Higham's method is correct
```

Simulation Methods: I wrote direct simulation and PCA simulation, and the output is correct.

```
Direct Simulation Matrix
[[-0.00811716 -0.00531047  0.01492209 ... -0.00304445  0.01075656  0.01445133]
[-0.01555851  0.00428843 -0.01114583 ...  0.01875819 -0.01504508  -0.00394743]
[-0.03996249  0.00128814  0.04358945 ...  0.02402729  0.01747918  0.03920063]
```

VaR calculation methods (all discussed): I use historic method and VaR calculation for Normal Distribution, the answers are correct, using the previous problem data sets.

```
VaR For Historic method:
0.02803599095
VaR For Normal Distribution:
0.030971175654799614
```

ES calculation: Using the previous data set, I check that the ES calculation is correct.

ES calculation is 0.1167766978856219

In problem 3, I used the function that calculate VaR and ES in my library created in problem 2. After fitting a generalized T model to each stock and calculate the VaR and ES of each portfolio and total, the answers are:

	A	В	С	Total
VaR	1960.2054	1811.5893	1592.7413	3088.9572
ES	2468.8770	2320.6709	2044.9239	3890.4365

The results are all smaller than the VaR I calculated from problem 3 from Week 4.