Computational Photography Assignment 3

Single Michael 08-917-445

Task 1

Def(Linear) Given two measurable function f and g and α , $\beta \in \mathbb{C}$. An operator \mathcal{F} is called *linear* if the following identity holds true:

$$\mathcal{F}\left\{\alpha f + \beta g\right\}(x) = \alpha \mathcal{F}\left\{f\right\}(x) + \beta \mathcal{F}\left\{g\right\}(x) \tag{1}$$

Def(Shift Invariant) Given a measurable function f. An operator \mathcal{F} is called *shift invariant* if the following identity holds true:

$$\mathcal{F}\left\{S_{\delta}f\right\}(x) = S_{\delta}(\mathcal{F}\left\{f\right\})(x) \tag{2}$$

where the shift operator S_{δ} is defined as the following:

$$S_{\delta}(f)(x) = f(x+\delta) \tag{3}$$

For any given function f and small number $\delta \in \mathbb{R}$.

Note that notational convention the operation notion for any operator F, we write F(f)(x) instead of F(f(x)). In words we apply the operator F (i.e. the functional F) to the function f. Thus is would even be possible to omit the argument x. However to make the reasoning clear, I will keep it.

Therefore, directly applying the definition from equation 3 to equation 2 we can also define the property shift invariant as the following:

$$\mathcal{F}\left\{S_{\delta}(f(x))\right\} := \mathcal{F}\left\{f(x+\delta)\right\} = S_{\delta}(\mathcal{F}\left\{f\right\}(x) \tag{4}$$

Relying on the definitions of the equations before, equation 4 and equation 1 let I solved this task,

(a) $\mathcal{F}\left\{f\right\}(x) = e^{f(x)}$ is not linear and is shift invariant.

Show: \mathcal{F} is not linear

Proof.

$$\mathcal{F}\left\{\alpha f + \beta g\right\}(x) = e^{\alpha f(x) + \beta g(x)}$$

$$= e^{\alpha f(x)} e^{\beta g(x)}$$

$$\neq \alpha e^{f(x)} + \beta e^{g(x)}$$

$$= \alpha \mathcal{F}\left\{f\right\}(x) + \beta \mathcal{F}\left\{g\right\}(y)$$

Show \mathcal{F} is shift invariant

Proof.

a = a

(b) $\mathcal{F}\{f\}(x) = s$ is not linear and is shift invariant.

Show \mathcal{F} is linear

Proof.

a = a

	Show	\mathcal{F} is shift invariant	
	Proof.	a = a	
(c)		f(x) = s is not linear and is shift invariant.	
	Show	\mathcal{F} is $linear$	
	Proof.	a = a	
	Show	\mathcal{F} is shift invariant	
	Proof.	a = a	
(d)	$\mathcal{F}\left\{f ight\}$	f(x) = s is not linear and is shift invariant.	
	Show	${\cal F}$ is $\it linear$	
	Proof.	a = a	
	Show	\mathcal{F} is shift invariant	
	Proof.	a = a	
(e)	$\mathcal{F}\left\{f\right\}$	f(x) = s is not linear and is shift invariant.	

	Show	${\cal F}$ is $linear$	
	Proof.	a = a	
		$\omega = \omega$	
	Show	\mathcal{F} is shift invariant	
	Proof.	a = a	
(f)	$\mathcal{F}\left\{f\right\}$	f(x) = s is not linear and is shift invariant.	
	Show	${\cal F}$ is $linear$	
	Proof.		
		a = a	
	Show	\mathcal{F} is shift invariant	
	Proof.		
		a = a	
(g)	$\mathcal{F}\left\{f\right\}$	f(x) = s is not linear and is shift invariant.	
	Show	\mathcal{F} is $linear$	
	Proof.		
		a = a	

Show \mathcal{F} is shift invariant a = a $(h) \mathcal{F}\{f\}(x) = s \text{ is not linear and is shift invariant.}$ Show \mathcal{F} is linear a = a a = a Show \mathcal{F} is shift invariant a = a a = a

Task 2

Given an $m \times n$ monochromatic (i.e. there is only one color-channel) Image I. Give an algorithm how to apply box-filtering on this image. Furthermore analyse the asymptotic complexity of this algorithm.

Algorithm 1 Moving Average box filter

```
Input:
              Grayscale Image I with resolution m \times n
Output:
              Box filtered Image Image \hat{I}
Procedures: getDimensions(Image), zeros(height, width)
  1: [h, w] = qetDimensions(I)
  2: \hat{I} = zeros(h, w)
  3: r = \left\lceil \frac{w-1}{2} \right\rceil
  4: Foreach Pixel p \in Image I do
         contribution=0\\
  5:
         Foreach Pixel p_n \in r - Neighborhood \mathcal{N}_r(p) do
  6:
  7:
             contribution = contribution + I(p + p_n)
  8:
         \hat{I}(p) = \frac{contribution}{1}
  9:
```

Remarks:

10: end for

- By pixels in the Algorithm 1 we are referring to the coordinates of the pixel in the image. Therefore p corresponds to the x and y coordinates of pixel p in the Image I.
- I(p) denotes accessing the pixel-(color)-values in the images at the position of the pixel p in the image I.
- $\mathcal{N}_r(p)$ denotes the neighborhood with radius r around a given pixel p. In the context of pixel-coordinates, think of it as a box-grid, centred at the pixel coordinates of p. This grid has a radius of r. This means there are r neighbors (pixel-coordinates in the grid) below, on top, on the left and on the right of p.
- Our algorithm can easily be extended for color Images by simply applying the same algorithm
 to each color-channel separately.
- The assumption of being provided by a m by n can easily be extended for the case when $n \neq m$. This only will affect the computation of the radius r in algorithm 1. Computing $\lceil 0.5 \cdot \left(\left\lceil \frac{m-1}{2} \right\rceil + \left\lceil \frac{n-1}{2} \right\rceil \right) \rceil$ would be a valid option in order to compute r.
- If w (i.e. n) is odd, then $\lceil \frac{w-1}{2} \rceil$ is equal to $\frac{w-1}{2}$.
- The procedure getDimensions returns the width-and height resolution of a provided Image.
- The procedure zeros creates a new image with the provided resolutions.

Aysmptotic Complexity

Task 3

Task 4

Task 5

Task 6