

Refaktorisierung einer Architekturanalyse für Vertraulichkeit

Praktikum Ingeneursgemäße Softwareentwicklung

Alina Valta | 10. März 2022

Betreuer: Frederik Reiche

Motivation

Komponenten basierte Softwareentwicklung:

- Wiederverwendbare Komponenten
- Komposition von Komponenten

Vertraulichkeitsanalyse (Kramer, Hecker, Greiner u. a. 2017)

- Vertrauliche Daten überschreiten Komponenten-Grenzen
- Probleme auf Architekturebene erkennen
- ⇒ kompositorische Analyse notwendig

Vertraulichkeitsanalyse	Entfernen Profil-Mechanismus	Information Modellierung	PCM2Prolog	Evaluierung	Fazit	Literatur
●0000	00	00	00	00	0	

Vertraulichkeitsanalyse

Architekturebene

dataSet(2).
parametersAndDataPair(8).
parameterSources(8,[return]).
dataTargets(8,[5,6,7,4]).

isInSecureWithRespectTo(guest)
+ accessibleParameters(guest,return(getId))
+ linkSataAccessibleBy(guest,wireless)
| | + linkAccessibleBy(guest,wireless)
| | | + linkLocation(wireless) | | | '-

Palladio Component Model

Confidentiality Model

Prolog Prädikate

Analyse Ergebnis

Confidentiality4CBSE1

PCM2Prolog²

Haskalladio

¹https://github.com/KASTEL-SCBS/Confidentiality4CBSE

²https://github.com/KASTEL-SCBS/PCM2Prolog

Vertraulichkeitsanalyse Ent

Entfernen Profil-Mechanismus

Information Modellierung

PCM2Prolog

Evaluierung Fa

locationsAccessibleBy(quest)

Fazit

Vertraulichkeitsmodellierung

DataSet

Datenfluss

- Menge an Ein- und Ausgabedaten von Komponenten
- Trennung nach Benutzergruppen, Zweck der Informationen, ...

InformationFlow

- Ordnet Daten DataSets zu
- Art der Daten:
 - Parameter
 - Rückgabewert

Aufruf der Funktion	Tilgittoriei [] geti ilgittoriei s(nequestibata requestibata)		
Größe von Parametern			

Vertraulichkeitsmodellierung

ConnectionType

Ressourcen

 Hat ein ResourceContainer zusätzlich mögliche Verbindungen?

SharingType

Laufen auf dem ResourceContainer noch andere Programme?

Encryption

Werden Daten unverschlüsselt übertragen?

Vertraulichkeitsanalyse	Entfernen Profil-Mechanismus	Information Modellierung	PCM2Prolog	Evaluierung	Fazit	Literatur
000•0	00	00	00	00	0	

Vertraulichkeitsmodellierung

Maßnahmen und Angreifer

Location

Geographische Orte oder Sicherheitslevel

TamperProtection

Maßnahmen gegen Manipulation

Angreifer und Benutzer des Systems

- Welche DataSets dürfen bekannt sein?
- Welche TamperProtections kann/will der Angreifer umgehen?
- Zu welchen Locations hat der Angreifer Zugriff?

Vertraulichkeitsanalyse	Entfernen Profil-Mechanismus	Information Modellierung	PCM2Prolog	Evaluierung	Fazit	Literatur
0000	00	00	00	00	0	

Bisheriges Modell

Profil-Mechanismus

Confidentiality Modell:

 Definiert Klassen zum Modellieren von DataSet, Maßnahmen, Angreifer, ...

Confidentiality Profil:

- Verbindet PCM Elemente und Confidentiality Modell
- Zusammenfassung von mehreren Stereotypen
 - Stereotyp erweitert eine oder mehrere PCM Klassen
 - Stereotyp hat Referenzen zu Elementen aus dem Confidentiality Modell
- ⇒ Probleme mit Eclipse und unübersichtlich

Abb: Beispiel Stereotyp

Vertraulichkeitsanalyse	
00000	

Bisheriges Modell

Profil-Mechanismus

Confidentiality Modell:

 Definiert Klassen zum Modellieren von DataSet, Maßnahmen, Angreifer, ...

Confidentiality Profil:

- Verbindet PCM Elemente und Confidentiality Modell
- Zusammenfassung von mehreren Stereotypen
 - Stereotyp erweitert eine oder mehrere PCM Klassen
 - Stereotyp hat Referenzen zu Elementen aus dem Confidentiality Modell
- ⇒ Probleme mit Eclipse und unübersichtlich

- Neue Modell Klassen
- Existierende Klassen erweitern
- Referenz zu PCM Elementen

10.03.2022

Entfernen Profil-Mechanismus

Beispiel InformationFlow

Abb: InformationFlow Stereotyp kann auf Signaturen und Interfaces angewandt werden

AbstractInformationFlow 📑 information : Information ■ InterfaceInformationFlow ■ SignatureInformationFlow → appliedTo : OperationInterface ⇒ appliedTo : OperationSignature

Abb: Modell nach Entfernen des Stereotyps Information Klasse ersetzt ParameterAndDataPair

Vertraulichkeitsanalyse

Entfernen Profil-Mechanismus 0

Information Modellierung

PCM2Prolog 00

Evaluierung

Fazit

Bisheriges Modell

Information Modellierung

Modellieren der Ein- und Ausgabedaten von Komponenten

- Zuordnung von DataSets und Daten einer Operation erfolgt über Strings
 - "requestData"
 - "\return"
 - "\call"
 - "*"
 - "sizeof(*)"
- Probleme:
 - implizite Referenzen
 - Syntax muss bekannt sein
 - Verwechslungsgefahr bei gleichnamigen Parametern
- ⇒ soll explizit modelliert werden

Abb: Zuordnung von Daten und DataSets über Strings im ursprünglichen Modell

Vertraulichkeitsanalyse Entfernen Profil-Mechanismus Information Modellierung PCM2Prolog Evaluierung Fazit Literatur ooooo oo oo oo

Informations-Modellierung

String durch Referenz ersetzten

Abb: Zuordnung von Daten und DataSets über Strings im ursprünglichen Modell

Abb: Modellierung der Information als eigene Klassen im neuen Modell

Vertraulichkeitsanalyse

Entfernen Profil-Mechanismus

Information Modellierung

PCM2Prolog

Evaluierung

Fazit

PCM2Prolog

Modellinstanz zu Prolog Code

- Geschrieben in Xtend
- Reflective-API wird verwendet um Entitäten auf Prolog Prädikate abzubilden
- Filter bestimmt relevante Entitäten und Referenzen.

Abb: Beispiel Modellinstanz

Filter Entitäten: ParameterAndDataPair. DataSet

Filter Referenzen: id, dataTargets

parametersAndDataPair(10). parameterSources(10,[return]). dataTargets(10,[5]).

Abb: Prolog Prädikate für diese

Modell-Instanz

dataSet(5).

Vertraulichkeitsanalyse

Entfernen Profil-Mechanismus

Information Modellierung

PCM2Prolog

Evaluierung

Fazit

PCM2Prolog

Anpassungen

Anderungen des Modells sollen sich nicht auf den Prolog Code auswirken

Dispatch-Methoden für Entitäten, die nicht automatisch generiert werden können

```
def dispatch String generateDeeplyCorrectly(EObject e) { return super.generateDeeply(e) }
def dispatch String generateDeeplyCorrectly(AbstractResourceProtection rp) \{...\}
```

- Richtung der ursprüngliche Stereotypen Referenzen
 - vorher: PCM → Modell (über Stereotyp) ietzt: $\mathsf{Modell} \to \mathsf{PCM}$
 - Map für jeden früheren Stereotyp
 - Key: PCM Element, Value: Set an Ids
 - Beim Verarbeiten der Confidentiality Klassen wird die Map gefüllt
 - Am Ende: erzeuge Prädikate aus den Map Elementen

Vertraulichkeitsanalyse	Entfernen Profil-Mechanismus	Information Modellierung	PCM2Prolog	Evaluierung	Fazit	Literatur
00000	00	00	0	00	0	

Evaluierung

Automatisch Überprüfung der Ergebnisse

Modellierung der Beispiel Projekte mit dem neuen Modell:

Gleiche Ids verwenden

Automatischer Vergleich des Prolog Codes:

- Prolog Datei vorverarbeiten:
 - Listen innerhalb von Prädikaten sortieren:

```
prädikatName(5, ["b","c","a"]). ⇒
prädikatName(5, ["a","b","c"]).
```

- Zeilen der Datei sortieren
- Leerzeilen entfernen
- Ausgabe mit diff vergleichen

Evaluierung

Ergebnisse

Fazit

Literatur

Projekte cloudscenario-minimized und iflowexample ::

Gleicher Prolog Code konnte generiert werden

Grenzen der Refaktorisierung

- Kommentare
- Wiederverwendung von Hilfsklassen (z.B. ParameterAndDataPairs) nicht mehr möglich
 - → PrologCode ändert sich
- ⇒ Bis auf die Wiederverwendung von Hilfsklassen können alle Modellinstanzen in das neue Modell übertragen werden, ohne dass der Prolog Code sich ändert.

Vertraulichkeitsanalyse Entfernen Profil-Mechanismus Information Modellierung PCM2Prolog Evaluierung

¹https://github.com/KASTEL-SCBS/Examples4SCBS/tree/master/bundles/edu.kit.kastel.scbs.cloudscenario-minimized

²https://github.com/KASTEL-SCBS/Examples4SCBS/tree/master/bundles/edu.kit.kastel.scbs.iflowexample

Fazit

Problem:

- Profil-Mechanismus + Eclipse
- String Referenzen

Vorgehen:

- Neue Modell Klassen statt Stereotypen
- Explizite Referenzen statt Strings
- PCM2Prolog angepasst um Prolog Code nicht zu verändern

Idee:

Refaktorisierung des Modells

Ergebnis:

- Erfolgreiche Refaktorisierung zweier Beispiel Projekte
- Gleicher Prolog Code bis auf die Wiederverwendung von Hilfsklassen

10.03.2022

Referenzen

Max E. Kramer, Martin Hecker, Simon Greiner u. a. *Model-Driven Specification and Analysis of Confidentiality in Component-Based Systems*. Techn. Ber. Karlsruhe: Karlsruhe Institute of Technology, Department of Informatics, 2017. DOI: 10.5445/IR/1000076957. URL: http://dx.doi.org/10.5445/IR/1000076957%20[Titel%20anhand%20dieser%20D0I%20in%20Citavi-

Projekt%20%C3%BCbernehmen].

Max E. Kramer, Martin Hecker und Frederik Reiche. *PCM2Prolog*. https://github.com/KASTEL-SCBS/PCM2Prolog.git.

Max E. Kramer, Martin Hecker und Kateryna Yurchenko. *Examples4SCBS*. https://github.com/KASTEL-SCBS/Examples4SCBS.git.

Max E. Kramer, Heiko Klare u. a. *Confidentiality4CBSE*. https://github.com/KASTEL-SCBS/Confidentiality4CBSE.git.

Vertraulichkeitsanalyse

Entfernen Profil-Mechanismus

Information Modellierung

PCM2Prolog

Evaluierung

Fazit