3000788 Intro to Comp Molec Biol

Lecture 4: Sequencing data processing

Fall 2025

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's agenda

- Sequencing data file formats
- Quality check and processing of sequencing reads
- Read-to-genome alignment

Sequencing data

FASTA format

>NC 000006.12:151654148-152129619 Homo sapiens chromosome 6, GRCh38.pl3 Primary HEADER Assembly TATTGATTTTTGTGTAAACATGTGTTTTGTATATCTATAACGAGAACTCAAGTCATACTGTAATCCTAT TTTGTAAACTGACTTTTTTCCTTTATCAGTATATCAAGATTATTTTCCCACATCATTTGACATTTTTTCT ACAGTGTAATTTAATGGCTACATTGTTTTCTATCCTATGAATATATCAAACCTATTTCTTAAAAACCCTA CTCAGGGATTTTAAAAAATAAAAACGATGTTTTAATATTATAAAGATTCAGTGAGGTATATTCTTATACG TACACATTTCTAAGGTTTGAGTTCTTACAAGATGCTGAACTAGCTAAGACTACTGGTTCTCATCTGTCAC ATAGGGAAAAATTATAGAAGGAAAACATCAAGATTTGGAAAAAATCTGTGAGAATTGTTTTGCATTAGTGT GTAGGTGTGTGTTGGGGTGGTGGCTGCAGCTTGGGGCAGAGGCCTCAGGTGTGGCTGTGGAGTGATCA SEQUENCE GGCCGTTCTCAGAGGTGAAGTCCAGGCAGTGAGGAGCTGTCTGCCAGTAGGCAGTTGAAGAAAAAAATG AGCTAGAGGAAAAAAACAAAAACAAAATCTCCTTCTAATGCTGCCAGGCTGCCGGGAGCTGGAAATGA CCACCTTCACACACACACACAGATGCTTTGAAATAAAGATAGTCACTTGACTTAGTAAAGTTTGTTGACATAAAAATATGAGAAATACCAAAGAATACAAAAAGGAAAACTTCGTTAATATTATTCAGACTTAAAATTC CAGATTGTATCAACATTAAGGGGGTTGATGAAAACATGGGAGAAAGCCAAGGGACGTGAGATCGGGCTCA ATTCTTGACTTGCTGGGGGAAGGTATCAACACAGAACTTTTAAGAATTAGAAGGCATTAAAAAGAAATAG AAATCCTGAATCAAATTGAAACAGTAAAATAAAATAGTCCAAAGATGTGTAAATATCACTATCACAAT

FASTQ format

- Header: Location of cluster on Illumina's flow cell
- Sequence
- Quality score

FASTQ for paired-end sequencing

```
File names denoted by R1 and R2 or 1 and 2
tcrseq_R2.fg ~
@M00578:762:JLPRW:1:2107:9088:4212 2:N:0:GAGTAAGA
TAACAACGGACAGATCGGCG
                                 Same read ID
-A,C@@<:@,C+CFFCFCG@
tcrseq_R1.fq
 @M00578:762:JLPRW:1:2107:9088:4212 1:N:0:GAGTAAGA
ACGGATGAACAATAAGACTGGTTCCTCTTCCAAATGTAAGTACGTAGCCTCCTCCT-
 GACCTCGCTGACAGCACAGAGATAAGTGGCTGAGTCTTCAGGCTGGGATCCTTTCTCTGTCTCTTATACACATCTCC
 GAGCCCA
C9CCCGGCGGGFGGGGE<FGGGGGGFFFGGA<@FCGGGGGGGGGGGGGFFFFF-
FE
```

Merged FASTQ for paired-end sequencing

https://drive5.com/usearch/manual8.1/merge_pair.html

- Forward & reverse reads must overlap (read length > fragment length)
- **Example**: 300bp paired-end sequencing of 16S rRNA genes

Sequencing quality score (Phred score)

ASC	II BASE=3	3 Illumina	, Io	n Torrent	, PacBio	and S	anger				
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

https://www.drive5.com/usearch/manual/quality_score.html

- Q score = $-10 \times Log_{10}$ (base call error rate)
- Base call error of 10% → Q score = +
- Base call error of $0.0001 \rightarrow Q$ score = I

Increased error toward the ends of read

ASCIT BASE-33 Illumina Ton Torrent DagBio and Sanger

ASC	TI_DMSE-3	3 IIIumiin	1, 10	n iorrent	, racbio	anu 3	anger				
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59 ;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

Nanopore FAST₅ format

```
HDF5 "/home3/ont/lambda fc1/downloads/pass/vgb 20170110 FNFAB46402 MN19940 sequencing run lambdacontrol 10012017 23602 ch9 read939 strand.fast5" {
DATASET "/Raw/Reads/Read 939/Signal" {
   DATATYPE H5T STD I16LE
   DATASPACE SIMPLE { ( 142677 ) / ( H5S UNLIMITED ) }
   DATA {
      1216, 653, 494, 487, 468, 478, 510, 535, 506, 454, 476, 483, 475, 488,
      472, 505, 474, 474, 488, 485, 480, 493, 481, 479, 485, 481, 472, 491, 493,
      480, 480, 487, 477, 500, 484, 488, 486, 493, 458, 480, 491, 487, 477, 489,
      478, 485, 476, 489, 486, 488, 490, 480, 480, 484, 493, 475, 486, 477, 478,
      489, 481, 482, 492, 480, 474, 486, 426, 483, 508, 486, 487, 479, 476, 486,
      473, 485, 487, 484, 456, 485, 484, 466, 466, 483, 484, 484, 474, 480, 498,
      481, 484, 483, 477, 479, 473, 488, 482, 480, 478, 496, 479, 490, 489, 483,
      487, 473, 477, 479, 478, 480, 474, 475, 472, 475, 486, 498, 503, 481, 493,
GROUP "/Raw/Reads/Read 939" {
                                         ATTRIBUTE "read id" {
                                                                                         https://bioinformatics.cvr.ac.uk/exploring-the-fast5-format/
   ATTRIBUTE "duration"
                                            DATATYPE H5T STRING {
      DATATYPE H5T STD U32LE
                                               STRSIZE 37;
      DATASPACE SCALAR
                                               STRPAD H5T STR NULLTERM;
                                               CSET H5T CSET ASCII;
      DATA {
      (0): 142677
                                               CTYPE H5T C S1;
```

- Ion flow rate data through each nanopore, with time stamps
- FAST5 is an HDF5 file (a specialized compression for scientific datasets)

Quality check for sequencing data

FastQC tool

Measure	Value
Filename	small_rna.fastq.gz
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	250000
Sequences flagged as poor quality	0
Sequence length	100
%GC	45

Check number of reads and read length

Summary

Per tile sequence quality

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Base calling quality

Per base sequence quality

№FastQC Report

Summary

Per base sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Duplicated reads

Sequence Duplication Levels

№FastQC Report

Summary

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Overrepresented sequences

Possible adapter read-through

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
TGAGGTAGTAGATTGTATAGTTAGATCGGAAGAGCACACGTCTGAACTCC	10865	4.346	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
TAGCTTATCAGACTGATGTTGACAGATCGGAAGAGCACACGTCTGAACTC	10845	4.338	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
TCTTTGGTTATCTAGCTGTATGAGATCGGAAGAGCACACGTCTGAACTCC	7062	2.824799999999998	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
TCTTTGGTTATCTAGCTGTATGAAGATCGGAAGAGCACACGTCTGAACTC	4056	1.622399999999998	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
TGAGGTAGTAGTTTGTGCTGTTAGATCGGAAGAGCACACGTCTGAACTCC	3737	1.4948	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
TGAGGTAGTAGTTTGTACAGTTAGATCGGAAGAGCACACGTCTGAACTCC	3549	1.4196	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
TGAGGTAGTAGGTTATGGTTAGATCGGAAGAGCACACGTCTGAACTCC	2931	1.1724	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
AACCCGTAGATCCGATCTTGTAGATCGGAAGAGCACACGTCTGAACTCCA	1910	0.764	Illumina Multiplexing PCR Primer 2.01 (100% over 29bp)
CGCGACCTCAGATCAGACGTAGATCGGAAGAGCACACGTCTGAACTCCAG	1749	0.6996	Illumina Multiplexing PCR Primer 2.01 (100% over 30bp)
TGAGGTAGTAGGTTATAGTTAGATCGGAAGAGCACACGTCTGAACTCC	1647	0.6588	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
TCTTTGGTTATCTAGCTGTATAGATCGGAAGAGCACACGTCTGAACTCCA	1622	0.6487999999999999	Illumina Multiplexing PCR Primer 2.01 (100% over 29bp)
TAGCTTATCAGACTGATGTTGATAGATCGGAAGAGCACACGTCTGAACTC	1328	0.5312	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
TTCAAGTAATCCAGGATAGGCTAGATCGGAAGAGCACACGTCTGAACTCC	1248	0.4992	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
AGCAGCATTGTACAGGGCTATGAAGATCGGAAGAGCACACGTCTGAACTC	1248	0.4992	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)

Check whether reads contain sequencing adapter Must be removed!

Summary

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Read trimming

Quality trimming

- Remove bases from each end until a minimum quality is reached
 - Or remove <u>a specific number</u> of bases
- Lose some reads but lead to better results

Mohsen, A. et al. BMC Bioinformatics 20:581 (2019)

Adapter trimming

List of known sequencing adapters

h	main • Trimmomatic / adapters /
•	TonyBolger Parallel Compression
••	
	NexteraPE-PE.fa
	TruSeq2-PE.fa
	TruSeq2-SE.fa
	TruSeq3-PE-2.fa
	TruSeq3-PE.fa
	TruSeq3-SE.fa

https://www.ecseq.com/support/ngs/trimming-adapter-sequences-is-it-necessary

Example of read trimming command

- Use 4 CPU threads
- Output to trimmed reads to .trimmed files
- Output discarded reads to un.trimmed files
 - Length became too short after trimming
- Remove adapter sequences listed in **SRR_adapters.fa**
- Check quality score in a sliding window
 - Average Phred score <= 20 among 4 consecutive nucleotides

Deduplication

Duplicated reads from technical error

- Same DNA molecule amplified into adjacent clusters in flow cells
- A large cluster was erroneously read as two clusters

Duplicated reads likely came from the same DNA

```
(x, y) coordinate on the flow cell

@SIM:1:FCX:1:15:6329:1045:GATTACT+GTCTTAAC 1:N:0:ATCCGA

TCGCACTCAACGCCCTGCATATGACAAGACAGAATC

+
<>;##=><9=AAAAAAAAAAAA9#:<#<;<<<????#=
```

- Reads with identical sequences or mapped positions on the genomes
 - Unlikely to generate multiple identical DNA fragments by chance
 - Retain only one read for each group
- **Illumina**: Nearby cluster coordinates in the header

Problems caused by duplicated reads

- Lead to incorrect frequency estimates
 - Gene expression level
 - Variant allele frequency
- Many tools can de-duplicate reads
 - Perform after alignment
 - No extra parameters required

```
java -jar picard.jar MarkDuplicates \
    I=input.bam \
    O=marked_duplicates.bam \
    M=marked_dup_metrics.txt
```

samtools markdup positionsort.bam markdup.bam

GATK workflow

The Genome Analysis Toolkit (GATK)

- Developed by Broad Institute since 2010
- Core software uses Java language, with plugins from R and Python
- Industry standard for variant calling workflow

GATK data processing steps

- Performed after sequence alignment
- Key steps:
 - Mark duplicates
 - Split reads based on N (unknown base)
 - AACTANCTGAGA → AACTA and CTGAGA
 - Recalibrate quality scores
 - Identify systematic error and apply correction
 - **Example**: 1% more error after reading AAA
 - **Example**: 2% more error after position 120
 - Trained using common variants as truth

Sequence alignment: Read-to-genome

Dynamic programming alone is not enough

Dynamic programming matrix:

Aligning a 150 bp read to a human genome would create a 150 by 3 x10⁹ table!

10 million reads = 10 million searches

Optimum alignment scores 11:

We need a faster strategy

Indexing

FM index by Ben Langmead

- The genome is static \rightarrow We can preprocess beforehand and reuse
- Indexing create a lookup table like alphabetical order in dictionary
 - Generate all possible short DNA fragments and sort

Suffix array

Reference Sequence

ATTGCAGTCCG

- Suffix = ending part of a string
- Organize suffixes in an easily searchable data structure
- Also record the start positions

AGTCCG 6 **ATTGCAGTCCG CAGTCCG** 9 CCG CG 10 **GCAGTCCG** GTCCG **TCCG TGCAGTCCG** TTGCAGTCCG 2

Burrows-Wheeler transform

Burrows, M. and Wheeler, D.J. A block sorting lossless data compression algorithm. 1994

- BWT tends to group the same character consecutively
 - Make the data easier to describe/compress: ab2a\$a2
- BWT is reversible: can recover the original position

Genome-scale alignment

- Use BWT to index the genome
- 20x smaller memory than simple indexing for human genome
- 30x faster search speed

The need for gapped alignment

Non-homologous chromosomes exchange segments

A read can span a long genomic region due to translocation (DNA) or splicing (RNA)

Gapped alignment

- Split read into two segments
- Align each segment separately → Look for nearby hits

Typical genome alignment commands

- Bowtie2

- Index a genome database (FASTA file)
 bowtie-build GRCh38.fasta GRCh38 db
- Perform alignment
 bowtie -x GRCh38_db -1 sample1_R1.fastq -2 sample1_R2.fastq
 -sam --threads 8 sample1.sam

- BWA

- Index a genome
 bwa index GRCh38.fasta
- Perform alignment
 bwa mem sample1_R1.fastq sample1_R2.fastq > sample1.sam

Sequence alignment results

Sequence Alignment Map (SAM)

```
Sort Order = by genomic coordinate
QHD VN:1.6 SO:coordinate
                       SN = reference sequence's name (FASTA header)
                       LN = reference sequence's length
@SQ SN:ref LN:45
r001
     99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG
r003 0 ref 9 30 5S6M
                     * O O GCCTAAGCTAA
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                                O TAGGC
                          = 7 -39 CAGCGGCAT
r001
     147 ref 37 30 9M
```

- r001 = read name (from sequencing FASTQ)
- ref = reference sequence name (from genomic FASTA)
- 7 = first position on the reference sequence
- $30 = Mapping quality score = -10 x Log_{10}(error)$
- 8M2I4M1D3M = CIGAR string = matches, insertion, deletion information

SAM file manipulation

- Sequence alignment results can be sorted, indexed, filtered, and zipped
- BAM is a zipped version of SAM (~40% of the size)
- Sorting and indexing makes alignment results in BAM file easier to be located and analyzed
- Performed with samtools

Integrated Genomics Viewer (IGV)

Pileup format

Sequence	Position	Reference Base	Read Count	Read Results	Quality
seq1	272	Т	24	,.\$,+.	<<<+;<<<<<<<<<<<<<<
seq1	273	Т	23	,A	<<<;<<<<<<<<<<<+
seq1	274	Т	23	,.\$,	7<7;<;<<<<<<<<<
seq1	275	A	23	,\$,1.	<+;9*<<<<<<<<
seq1	276	G	22	Т,,.,,.,,,,,	33;+<<7=7<<7<&<<1;<<6<
seq1	277	Т	22	,	+7<;<<<<<&<=<<:;<<&<
seq1	278	G	23	,^k.	%38*<<;<7<<7<=<<<;<<<<
seq1	279	С	23	AT,,.,,.,,,,,	75&<<<<<<<<

Image from wikipedia

- Focus on each base pair position
 - Summarize match, mismatch, and gap from multiple reads

Long-read data handling

Assembly-polish

- With long-read,
 assembly was
 performed before
 alignment to genome
- Polishing = correct
 error using raw
 signals and consensus
 sequences from
 multiple reads

Assembler	Long read polisher 1	Long read polisher 2	Short read polisher	Median number of nucleotide errors across genome
Unicycler	Racon_4x	medaka	NextPolish_4x	5
Flye	Raxon_4x	medaka	NextPolish_4x	6
Unicycler	medaka	None	NextPolish_4x	6
Flye	medaka	None	NextPolish_4x	7
Unicycler	medaka	None	POLCA_4x	7

Luan, T. et al. BMC Genomics 25:679 (2024)

QC with NanoPlot

https://gigabaseorgigabyte.wordpress.com/2017/06/01/example-gallery-of-nanoplot/

- Read length and quality scores

Nanopore polishing algorithms and tools

- Many tools: Nanopolish, Medaka, Racon, etc.
- Consensus sequence called by performing multiple sequence alignment among reads
- Repeatedly edit the consensus sequence and compare theoretical signal to the observed signal, maximizing the probability
- Polish using long-read or short-read data (if available)

Seed-and-chain alignment for long-read data

Sahlin, K. et al. Genome Biology 24:133 (2023)

Minimap2: Index unique DNA subsequences (minimizers)

Any question?

See you next time