A Formalization of an extension of the substitution lemma in Coq

Flávio L. C. de Moura Maria Julia

April 10, 2023

1 The substitution lemma for the metasubstitution

In the pure λ -calculus, the substitution lemma is probably the first non trivial property. In our framework, we have defined two different substitution operation, namely, the metasubstitution denoted by [x:=u]t and the explicit substitution that has n_sub as a constructor. In what follows, we present the main steps of our proof of the substitution lemma for the metasubstitution operation:

```
Lemma m\_subst\_lemma: \forall e1 \ e2 \ x \ e3 \ y, \ x \neq y \rightarrow x \ `notin' \ (fv\_nom \ e3) \rightarrow
 ([y := e3]([x := e2]e1)) = a ([x := ([y := e3]e2)]([y := e3]e1)).
Lemma m\_subst\_lemma: \forall e1 \ e2 \ e3 \ x \ y, \ x \neq y \rightarrow x \ `notin' \ (fv\_nom \ e3) \rightarrow
   aeq (m\_subst \ e3 \ y \ (m\_subst \ e2 \ x \ e1)) \ (m\_subst \ (m\_subst \ e3 \ y \ e2) \ x \ (m\_subst \ e3 \ y \ e1)).
Fixpoint f_pix (t: n_sexp): n_sexp :=
   match t with
   (n_-sub\ (n_-var\ x)\ y\ e) \Rightarrow if\ x == y\ then\ e\ else\ (n_-var\ x)
   (n\_sub\ (n\_abs\ x\ e1)\ y\ e2) \Rightarrow
         let (z,_{-}) :=
             atom\_fresh\ (fv\_nom\ (n\_abs\ x\ e1)\ `union`\ fv\_nom\ e2\ `union`\ \{\{y\}\}\})\ in
         (n\_abs\ z\ (n\_sub\ (swap\ x\ z\ e1)\ y\ e2))
   \mid (n\_sub \ (n\_app \ e1 \ e2) \ y \ e3) \Rightarrow (n\_app \ (n\_sub \ e1 \ y \ e3) \ (n\_sub \ e2 \ y \ e3))
   |  \rightarrow t
   end.
Inductive pix : n\_sexp \rightarrow n\_sexp \rightarrow Prop :=
one\_step: \forall t, pix t (f\_pix t).
Inductive betapi: n\_sexp \rightarrow n\_sexp \rightarrow Prop :=
|b\_rule: \forall t \ u, \ betax \ t \ u \rightarrow betapi \ t \ u
|x_rule: \forall t \ u, \ pix \ t \ u \rightarrow betapi \ t \ u.
Inductive ctx (R: n\_sexp \rightarrow n\_sexp \rightarrow Prop): n\_sexp \rightarrow n\_sexp \rightarrow Prop :=
   step\_aeq: \forall e1 \ e2, \ aeq \ e1 \ e2 \rightarrow ctx \ R \ e1 \ e2
   step\_redex: \forall (e1\ e2\ e3\ e4:\ n\_sexp),\ aeq\ e1\ e2 \rightarrow R\ e2\ e3 \rightarrow aeq\ e3\ e4 \rightarrow ctx\ R\ e1\ e4
  |step\_abs\_in: \forall (e \ e': \ n\_sexp) \ (x: \ atom), \ ctx \ R \ e \ e' \rightarrow ctx \ R \ (n\_abs \ x \ e) \ (n\_abs \ x \ e')
```

```
| step\_app\_left: \forall (e1 e1' e2: n\_sexp), ctx R e1 e1' \rightarrow ctx R (n\_app e1 e2) (n\_app e1' e2) | step\_app\_right: \forall (e1 e2 e2': n\_sexp), ctx R e2 e2' \rightarrow ctx R (n\_app e1 e2) (n\_app e1 e2') | step\_sub\_left: \forall (e1 e1' e2: n\_sexp) (x: atom), ctx R e1 e1' \rightarrow ctx R (n\_sub e1 x e2) (n\_sub e1' x e2) | step\_sub\_right: \forall (e1 e2 e2': n\_sexp) (x:atom), ctx R e2 e2' \rightarrow ctx R (n\_sub e1 x e2) (n\_sub e1 x e2').
```

Definition $lx \ t \ u := ctx \ betapi \ t \ u$.

Lemma $step_abs_eq$: \forall (e1 e2: n_sexp) (y: atom), \exists (z: atom) (e: n_sexp), $refltrans_aeq$ (ctx pix) (n_sub (n_abs y e1) y e2) (n_abs z e) \land (n_abs z e = a n_abs y e1).

```
Lemma step\_redex\_R : \forall (R : n\_sexp \rightarrow n\_sexp \rightarrow \texttt{Prop}) \ e1 \ e2,
R \ e1 \ e2 \rightarrow ctx \ R \ e1 \ e2.
```

1.1 Capture-avoiding substitution

We need to use size to define capture avoiding substitution. Because we sometimes swap the name of the bound variable, this function is *not* structurally recursive. So, we add an extra argument to the function that decreases with each recursive call.

Fixpoint subst_rec (n:nat) (t:n_sexp) (u :n_sexp) (x:atom) : n_sexp := match n with — $0 = \xi$ t — S m = ξ match t with — n_var y = ξ if (x == y) then u else t — n_abs y t1 = ξ if (x == y) then t else let (z,_) := atom_fresh (fv_nom u 'union' fv_nom t 'union' 1) in n_abs z (subst_rec m (swap y z t1) u x) — n_app t1 t2 = ξ n_app (subst_rec m t1 u x) (subst_rec m t2 u x) — n_sub t1 y t2 = ξ if (x == y) then n_sub t1 y (subst_rec m t2 u x) else let (z,_) := atom_fresh (fv_nom u 'union' fv_nom t 'union' 2) in n_sub (subst_rec m (swap y z t1) u x) z (subst_rec m t2 u x) end end.

Our real substitution function uses the size of the size of the term as that extra argument.

Definition m_subst (u : n_sexp) (x:atom) (t:n_sexp) := subst_rec (size t) t u x. Notation "x := u t" := (m_subst u x t) (at level 60).

Lemma m_subst_var_eq : forall u x, $x := u(n_var x) = u$. Proof. intros. unfold m_subst. simpl. rewrite eq_dec_refl. reflexivity. Qed.

Lemma m_subst_var_neq : forall u x y, x $; y - y := u(n_var x) = n_var x$. Proof. intros. unfold m_subst. simpl. destruct (y == x) eqn:Hxy.

- subst. contradiction.
- reflexivity.

Qed.

Lemma m_subst_abs : forall u x y t , m_subst u x (n_abs y t) = if (x == y) then (n_abs y t) else let (z,_) := atom_fresh (fv_nom u 'union' fv_nom (n_abs y t) 'union' 3) in n_abs z (m_subst u x (swap y z t)). Proof. intros. case (x == y).

• intros. unfold m_subst. rewrite e. simpl. case (y == y).

 $[\]frac{1}{2}$ x

 $[\]frac{\mathbf{x}}{\mathbf{x}}$

- - trivial.
- - unfold not. intros. assert (y = y). { reflexivity. } contradiction.
- intros. unfold m_subst. simpl. case (x == y).
 - - intros. contradiction.
 - - intros. pose proof AtomSetImpl.union_1. assert (forall z, size t = size (swap y z t)). { intros. case (y == z).
 - * intros. rewrite e. rewrite swap_id. reflexivity.
 - * intros. rewrite swap_size_eq. reflexivity.
 - } destruct (atom_fresh (Metatheory.union (fv_nom u) (Metatheory.union (remove y (fv_nom t)) (singleton x)))). specialize (H0 x0). rewrite H0. reflexivity.

Qed.

Corollary m_subst_abs_eq : for all u x t, $x := u(n_abs x t) = n_abs x t$. Proof. intros u x t. pose proof m_subst_abs. specialize (H u x x t). rewrite eq_dec_refl in H. assumption. Qed.

Corollary m_subst_abs_neq: forall u x y t, x ;; y -; let (z,_) := atom_fresh (fv_nom u 'union' fv_nom (n_abs y t) 'union' 4) in $x := u(n_abs y t) = n_abs z$ (x := u(swap y z t)). Proof. intros u x y t H. pose proof m_subst_abs. specialize (H0 u x y t). destruct (x == y) eqn:Hx.

- subst. contradiction.
- destruct (atom_fresh (Metatheory.union (fv_nom u) (Metatheory.union (fv_nom (n_abs y t)) (singleton x)))). assumption.

Qed.

Lemma m_subst_notin : forall t u x, x 'notin' fv_nom t -i x := ut = t. Proof. induction t.

- intros u x' H. unfold m_subst. simpl in *. apply notin_singleton_1' in H. destruct (x' == x) eqn:Hx. + subst. contradiction. + reflexivity.
- intros u x' H. simpl in *.

•

•

intros. unfold m_subst. simpl. destruct (y == x) eqn:Hxy.

- subst. contradiction.
- reflexivity.

Qed.

Lemma m_subst_lemma: forall e1 e2 e3 x y, x \not \not $y - \not$ x 'notin' (fv_nom e3) - \not (y := e3(x := e2e1)) =a (x := ([y := e3]e2)(y := e3e1)). Proof.

induction e1 using n_sexp_size_induction.

generalize dependent e1. intro e1; case e1 as z | z e11 | e11 e12 | e11 z e12.

 $^{^4}$ x

- intros IH e2 e3 x y Hneq Hfv. destruct (x == z) eqn:Hxz. + subst. rewrite (m_subst_var_neq e3 z y). * repeat rewrite m_subst_var_eq. apply aeq_refl. * assumption. + rewrite m_subst_var_neq. * subst. apply aeq_sym. pose proof subst_fresh_eq. change (subst_rec (size e3) e3 (subst_rec (size e2) e2 e3 z) x) with (m_subst (m_subst e3 z e2) x e3). apply H. assumption. * apply aeq_sym. change (subst_rec (size (n_var z)) (n_var z) (subst_rec (size e2) e2 e3 y) x) with (m_subst (m_subst e3 y e2) x (n_var z)). apply subst_fresh_eq. simpl. apply notin_singleton_2. intro H. subst. contradiction.
- intros IH e2 e3 x y Hneq Hfv. unfold m_subst at 2 3. simpl. destruct (x == z) eqn:Hxz. + subst. change (subst_rec (size (m_subst e3 y (n_abs z e11))) (m_subst e3 y (n_abs z e11)) (m_subst e3 y e2) z) with (m_subst (m_subst e3 y e2) z (m_subst e3 y (n_abs z e11))). rewrite subst_abs_eq. +