Machine Learning

Recommendation

Jeff Abrahamson

août 2019

Recommendation

Definition

Given data about a user, his environment, and some items of interest (*training data*), determine items to recommend.

Definition

Given data about a user, his environment, and some items of interest (*training data*), determine items to recommend.

We don't have to find the $\max k$.

It's enough to find k within some $\max n$.

Examples

- Amazon
- Google News (or Le Monde)
- Facebook
- Medical testing
- App Store / Google Play
- Youtube
- Advertising
- Netflix, last.fm, Spotify, Pandora, . . .
- Browser (URL recommendations)
- Search

Client Value Proposition

- Find opportunities
- Reduce choice
- Explore options
- Discover long tails
- Recreation

Provider Value Proposition

- Offer a unique or additional service (beyond competitors)
- Customer trust and loyalty
- Increase sales, CTR, conversions
- Better understand customers

Recommendation

Content-based filtering (filtrage basée sur le contenu)	More things similar to what I like
Collaborative filtering (filtrage collaboratif)	More of what other peo- ple who like what I like like
Knowledge-based filtering (filtrage basée sur connaissance)	More of what I need.

Content-based filtering

More things similar to what I like Plus de ce qui ressemble à ce que j'aime

Advantages

- No need for community
- Possible to compare items

Disadvantages

- Understand content
- Cold start problem
- Serendipity

Collaborative filtering

More of what other people who like what I like like Plus de ce que d'autres qui aiment ce que j'aime aiment

Advantages

- need to understand content
- Serendipity
- Learn market

Disadvantages

- User feedback
- Cold start problem (users)
- Cold start problem (items)

Knowledge-based filtering

More of what I need Plus de ce qu'il faut

Advantages

- Deterministic
- Certainty
- Cold start problem
- Market knowledge

Disadvantages

- Studies to bootstrap
- Static model, doesn't learn from trends

- Users (utilisateurs)
- Items (objets)

- Users (utilisateurs)
- Items (objets)

The goal is to fill in the blanks.

Example: books sales at Amazon.

But thousands or millions of columns and rows.

- Users (utilisateurs)
- Items (objets)

The goal is to fill in the blanks.

Example: film advice at Netflix.

But thousands or millions of columns and rows.

How do we make the matrix?

- Ask users
- Observe users

That's usually expensive...

Examples:

- Films \Rightarrow ?
- Books \Rightarrow ?
- News \Rightarrow ?
- Images ⇒ ?

Examples:

- Films \Rightarrow ?
- Books \Rightarrow ?
- News \Rightarrow ?
- Images \Rightarrow ?

Films:

Content: acters, directors, year (decade, etc.), length

Collaborative: seen, opinion (1-5), when seen relative to release

Examples:

- Films \Rightarrow ?
- Books \Rightarrow ?
- News \Rightarrow ?
- Images \Rightarrow ?

Books:

Content: authers, genre, year (decade, etc.), number of pages, content (very difficult)

Collaborative: read, opinion (1-5), how read

Examples:

- Films \Rightarrow ?
- Books \Rightarrow ?
- News \Rightarrow ?
- Images \Rightarrow ?

News:

Content: source, section, TF-IDF word vectors

Collaborative:

Examples:

- Films \Rightarrow ?
- Books \Rightarrow ?
- News \Rightarrow ?
- Images \Rightarrow ?

Images:

Content:

Collaborative:

Examples:

- Films \Rightarrow ?
- Books \Rightarrow ?
- News \Rightarrow ?
- Images \Rightarrow ?

Also: user profile, user behavior

Mathematics

Vectors

Similarity

Similarity: Jaccard Index

or: Indice de Jaccard, Jaccard similarity coefficient

Similarity:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Similarity: Jaccard Index

Similarity:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Distance:

$$J_{\delta}(A,B)=1-J(A,B)$$

or: mesure cosinus, similarité cosinus

Similarity:

$$\cos\theta = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel}$$

Similarity:

$$S_C(A, B) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel}$$

Similarity:

$$S_C(A, B) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel}$$

Distance:

$$\textit{D}_{\textit{C}}(\textit{A},\textit{B}) = 1 - \textit{S}_{\textit{C}}(\textit{A},\textit{B})$$

Similarity:

$$S_C(A, B) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel}$$

Distance:

$$D_C(A,B) = 1 - S_C(A,B)$$

We only consider non-empty components in the vector.

Text: an application of cosine similarity

- Vectors of word frequencies
- Frequency ⇒ significance

- Vectors of word frequencies
- Frequency ⇒ significance
- Term Frequency Inverse Document Frequency

$$TF_{ij} = rac{f_{ij}}{\max_k f_{kj}}$$
 $IDF_l = \log_2\left(rac{N}{n_i}
ight)$ $TF\text{-}IDF_{ij} = TF_{ij} \cdot IDF_i$

with:

 f_{ii} = frequency of word i in document j

N = number of documents

 n_i = number of documents in which we find word i

$$TF_{ij} = rac{f_{ij}}{\max_k f_{kj}}$$
 $IDF_l = \log_2\left(rac{N}{n_i}
ight)$ $TF\text{-}IDF_{ij} = TF_{ij} \cdot IDF_i$

with:

 f_{ii} = frequency of word i in document j

N = number of documents

 n_i = number of documents in which we find word i

IDF is a mesure of how much information a word carries

TF-IDF tells us which words best characterise a document

$$TF_{ij} = rac{f_{ij}}{\max_k f_{kj}}$$
 $IDF_I = \log_2\left(rac{N}{n_i}
ight)$ $TF\text{-}IDF_{ij} = TF_{ij} \cdot IDF_i$

with:

 f_{ij} = frequency of word i in document j

N = number of documents

 n_i = number of documents in which we find word i

IDF is a mesure of how much information a word carries

TF-IDF tells us which words best characterise a document

Variation: boolean, log, stop word filtering
Copyright 2019 Jeff Abrahamson, for private use by course students only

Content-Based Filtering

	<i>I</i> ₁	I_2	I_3	I_4	I_5	I_6	I_7	
U_1	3				2	4		
U_2			5	1	4		3	
U_3		2		5	1	5		

More things similar to what I like Plus de ce qui ressemble à ce que j'aime

Content-Based Filtering

	<i>I</i> ₁	I_2	I_3	I_4	<i>I</i> 5	I_6	I_7	
U_1	3				2	4		
U_2			5	1	4		3	
U_3		2		5	1	5		

More things similar to what I like Plus de ce qui ressemble à ce que j'aime

Then, we can cluster (regroupement, partitionnement de données), etc.

Content-Based Filtering

Based on item profiles

- More stable (in principle)
- $O(n^2)$ (but often less, items often aren't categorised together)
- Can reduce to threshold
- Can pre-calculate, queries become faster

Collaborative Filtering

More of what other people who like what I like like Plus de ce que d'autres qui aiment ce que j'aime aiment

Collaborative Filtering

User profile

Collaborative Filtering

Item profile

- Propose items based on users
- Propose users based on items

- Propose items based on users
- Propose users based on items

But remember: 2 items being similar ⇒ 2 users similar.

- Propose items based on users
- Propose users based on items

But remember: 2 items being similar ⇒ 2 users similar.

Thought experiment: consider comparing people vs comparing objects.

- Propose items based on users
- Propose users based on items

To estimate $m_{u,i}$,

- Find k users like Uu
- Find *k* items like *l_i*

- Find k users like U_u , take $\frac{1}{k} \sum_{j=1}^k m_{u_j,i}$
- Find k items like I_i , take $\frac{1}{k} \sum_{j=1}^k m_{u,i_j}$

- Find k users like U_u , take $\frac{1}{k} \sum_{j=1}^k m_{u_j,i}$
- Find k items like I_i , take $\frac{1}{k} \sum_{j=1}^k m_{u,i_j}$

We have to compute the entire line (or the part which is likely to be important)

- Find k users like U_u , take $\frac{1}{k} \sum_{j=1}^k m_{u_j,i}$
- Find k items like I_i , take $\frac{1}{k} \sum_{j=1}^k m_{u,i_j}$

Once we've computed U_u , the other k users lets us take a shortcut.

- Find k users like U_u , take $\frac{1}{k} \sum_{j=1}^k m_{u_j,i}$
- Find k items like I_i , take $\frac{1}{k} \sum_{j=1}^k m_{u,i_j}$

For I_i , we have to compute most of the I_j before we can fill in a single line. But item-item filters are often more reliable.

- Find k users like U_u , take $\frac{1}{k} \sum_{j=1}^k m_{u_j,i}$
- Find k items like I_i , take $\frac{1}{k} \sum_{j=1}^k m_{u,i_j}$

In any case, we can mostly precompute in advance.

Utility Matrix

The matrix is sparse.

 \implies clustering \implies reduced matrix

Utility Matrix

The matrix is sparse.

 \implies clustering \implies reduced matrix

Estimate on the reduced matrix, then take items and users as representative for the cluster.

Observations:

Clustering is expensive, reduces quality

Observations:

Dimension reduction reduces quality

Observations:

Users interact with very few items

Observations:

Rapid response desirable

Scales independent of the number of users or of items

- Online
- Offline

G. Linden, B. Smith, J. York, *Amazon.com Recommendations: Item-to-Item Collaborative Filtering*, Internet Computing (7, 1), 22 Jan 2003.

Offline (Precomputation)

```
for each item I<sub>1</sub> to sell do
    for each user C who has purchased I1 do
        for each item I2 bought by C do
            (I_1, I_2)++
    end
    for each item lo do
        S_{l_1,l_2} \leftarrow S(l_1,l_2)
    end
end
```

Slope One

Linear regression on user opinions (ratings)

Daniel Lemire and Anna Maclachlan, *Slope One Predictors for Online Rating-Based Collaborative Filtering*, Proceedings of SIAM Data Mining (SDM) 2005.

Slope One: algorithm

Offline:

 $\begin{array}{l} \textbf{for } chaque \ \textit{I}_i, \ \textit{I}_j \ \textbf{do} \\ & \mathcal{U} \leftarrow \{ \text{users who have expressed an opinion on } \textit{I}_i, \textit{I}_j \} \\ & \text{dev}_{i,j} \leftarrow \frac{1}{\parallel \mathcal{U} \parallel} \sum_{u \in \mathcal{U}} (r_u(i) - r_u(j)) \\ & \textbf{end} \end{array}$

Online (for u):

$$\mathcal{V} \leftarrow \{j \mid u \text{ has expressed an opinion on } I_j\}$$

$$r_u(i) \leftarrow \frac{1}{\parallel \mathcal{V} \parallel} \sum_{u \in \mathcal{V}} (\text{dev}_{i,j} - r_u(j))$$

$$M = U\Sigma V^*$$

$$\begin{pmatrix} a_1 & \cdots & a_m \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \text{scalar}$$

$$\begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} \begin{pmatrix} b_1 & \cdots & b_n \end{pmatrix} = \begin{pmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & & \vdots \\ c_{m,1} & \cdots & c_{m,n} \end{pmatrix}$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} \end{pmatrix} \begin{pmatrix} b_{1,1} & \cdots & b_{1,n} \\ b_{2,1} & \cdots & b_{2,n} \\ b_{3,1} & \cdots & b_{3,n} \end{pmatrix} = \begin{pmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & & \vdots \\ c_{m,1} & \cdots & c_{m,n} \end{pmatrix}$$

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,k} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,k} \end{pmatrix} \begin{pmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & & \vdots \\ c_{k,1} & \cdots & c_{k,n} \end{pmatrix} = \begin{pmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & & \vdots \\ c_{m,1} & \cdots & c_{m,n} \end{pmatrix}$$

Challenges

- How do we measure success?
- What are our features?

Clustering

- kNN
- Curse of Dimensionality
- Scalability

Clustering

- kNN k-Nearest Neighbor
- Curse of Dimensionality
- Scalability 10⁷ clients, 10⁶ objets