Álgebra II. Hoja de ejercicios 2: Ideales Universidad de El Salvador, ciclo par 2018

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2@googlegroups.com.

Ejercicio 1. Sea R un anillo conmutativo y G un grupo. Consideremos el homomorfismo

$$\epsilon \colon R[G] \twoheadrightarrow R$$
, $\sum_{g \in G} a_g g \mapsto \sum_{g \in G} a_g$.

- 1) Demuestre que el ideal $I_G := \ker \epsilon$ está generado por los elementos g e para $g \in G$. Este se llama el **ideal** de aumento.
- 2) En particular, si $G = C_n = \{e, g, ..., g^{n-1}\}$ es el grupo cíclico de orden n generado por g, demuestre que $\ker \epsilon$ está generado por el elemento g e.

Ideales

Ejercicio 2. *Sea* R *un anillo* y $S \subseteq R$ *un subanillo.*

- 1) Demuestre que para todo ideal $I \subseteq R$ (izquierdo, derecho, bilateral) la intersección $I \cap S$ es un ideal en S (izquierdo, derecho, bilateral).
- 2) Encuentre un ejemplo de $S \subset R$ donde no todos los ideales de S son de la forma $I \cap S$.

Ejercicio 3. Sea R un anillo y sean I, J, K ideales bilaterales. Demuestre que I(J+K) = IJ + IK y(I+J)K = IK + JK.

Ejercicio 4. Sea R un anillo. Para un ideal izquierdo $I \subseteq R$ definamos el **aniquilador** por

Ann
$$I := \{ r \in R \mid rx = 0 \text{ para todo } x \in I \}.$$

Demuestre que esto es un ideal bilateral en R.

Ejercicio 5. Sea R un anillo commutativo y $M_n(R)$ el anillo de matrices correspondiente.

- 1) Sea $I \subseteq R$ un ideal. Denotemos por $M_n(I)$ el conjunto de las matrices que tienen como sus entradas elementos de I. Verifique que $M_n(I)$ es un ideal bilateral en $M_n(R)$.
- 2) Sea $J \subseteq M_n(R)$ un ideal bilateral. Sea I el conjunto de los coeficientes que aparecen en la entrada (1,1) de las matrices que pertenecen a J. Demuestre que I es un ideal en R.
- 3) Demuestre que $J = M_n(I)$. (Use las mismas ideas que ocupamos en clase para encontrar los ideales bilaterales en $M_n(k)$.)

Entonces, todo ideal en el anillo de matrices $M_n(R)$ es de la forma $M_n(I)$ para algún ideal $I \subseteq R$.

Nilradical y radical

Ejercicio 6. *Sea R un anillo conmutativo.*

1) Demuestre que el conjunto de nilpotentes

$$N(R) := \{x \in R \mid x^n = 0 \text{ para algún } n = 1, 2, 3, \ldots \}$$

es un ideal en R. Este se llama el nilradical de R.

2) Demuestre que en el anillo no conmutativo $M_n(R)$ los nilpotentes no forman un ideal.

Ejercicio 7. Sea R un anillo commutativo. Supongamos que el nilradical de R es finitamente generado; es decir, $N(R) = (x_1, ..., x_n)$ donde x_i son algunos nilpotentes. Demuestre que en este caso N(R) es un **ideal nilpotente**:

$$N(R)^m := \underbrace{N(R)\cdots N(R)}_{m} = 0$$

para algún m = 1, 2, 3, ...

Ejercicio 8. Sea R un anillo conmutativo y sea $I \subset R$ un ideal. Demuestre que

$$\sqrt{I} := \{x \in R \mid x^n \in I \text{ para algún } n = 1, 2, 3, \ldots\}$$

es también un ideal en R, llamado el **radical** de I. (Note que el nilradical $N(R) = \sqrt{(0)}$ es un caso particular.)

Operaciones I y V

Los últimos dos ejercicios son opcionales.

Ejercicio 9 (*). Sea k un cuerpo. Sean J, J_1 , J_2 ideales en $k[X_1, ..., X_n]$ y sean X, Y subconjuntos de $\mathbb{A}^n(k)$. Demuestre las siguientes relaciones.

0)
$$I(\emptyset) = k[X_1, ..., X_n], V(0) = \mathbb{A}^n(k), V(1) = V(k[X_1, ..., X_n]) = \emptyset.$$

- 1) Si $J_1 \subseteq J_2$, entonces $V(J_2) \subseteq V(J_1)$.
- 2) Si $X \subseteq Y$, entonces $I(Y) \subseteq I(X)$.
- 3) $V(I) = V(\sqrt{I})$.
- 4) $J \subseteq \sqrt{J} \subseteq IV(J)$. Demuestre que la inclusión es estricta para $J = (X^2 + 1) \subset \mathbb{R}[X]$.
- 5) $X \subseteq VI(X)$.
- 6) VIV(I) = V(I) y IVI(X) = I(X).

Ejercicio 10 (**).

- 1) Demuestre que $I(\mathbb{A}^n(k)) = (0)$ si k es un cuerpo infinito.
- 2) Note que $X^p X \in I(\mathbb{A}^1(\mathbb{F}_p))$, así que esto es falso para cuerpos finitos.