O MIN STATE OF STATE

SEQUENCE LISTING

<110> Liu, et al.

<120> Screens and Assays for Agents Useful in Controlling Parasitic Nematodes

<130> 2002630-0012

<140> 10/051,644

<141> 2002-01-18

<160> 8

<170> PatentIn Ver. 2.1

<210> 1

<211> 425

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:VAP-1 Amino Acid Sequence

-400 > 1

Met Ala Val Leu Ala Val Val Leu Leu Leu Ala Cys Leu Glu Arg Ala 1 5 10 15

Val Ala Gln Thr Phe Gly Cys Ser Asn Thr Lys Ile Asn Asp Gln Ala
20 25 30

Arg Lys Met Phe Tyr Asp Ala His Asn Asp Ala Arg Arg Ser Met Ala 35 40 45

·Lys Gly Leu Glu Pro Asn Lys Cys Gly Leu Leu Ser Gly Gly Lys Asn 50 55 60

Val Tyr Glu Leu Asn Trp Asp Cys Glu Met Glu Ala Lys Ala Gln Glu 65 70 75 80

Trp Ala Asp Gly Cys Pro Ser Ser Phe Gln Thr Phe Asp Pro Thr Trp 85 90 95

Gly Gln Asn Tyr Ala Thr Tyr Met Gly Ser Ile Ala Asp Pro Leu Pro 100 105 110

Tyr Ala Ser Met Ala Val Asn Gly Trp Trp Ser Glu Ile Arg Thr Val

120

115

Gly Leu Thr Asp Pro Asp Asn Lys Tyr Thr Asn Ser Ala Met Phe Arg 130 135 140

125

- Phe Ala Asn Met Ala Asn Gly Lys Ala Ser Ala Phe Gly Cys Ala Tyr 145 150 155 160
- Ala Leu Cys Ala Gly Lys Leu Ser Ile Asn Cys Ile Tyr Asn Lys Ile 165 170 175
- Gly Tyr Met Thr Asn Ala Ile Ile Tyr Glu Lys Gly Asp Ala Cys Thr 180 185 190
- Ser Asp Ala Glu Cys Thr Thr Tyr Ser Asp Ser Gln Cys Lys Asn Gly
 195 200 205
- Leu Cys Tyr Lys Ala Pro Gln Ala Pro Val Val Glu Thr Phe Thr Met 210 215 220
- · Cys Pro Ser Val Thr Asp Gln Ser Asp Gln Ala Arg Gln Asn Phe Leu 225 230 235 240
- Asp Thr His Asn Lys Leu Arg Thr Ser Leu Ala Lys Gly Leu Glu Ala 245 250 255
- Asp Gly Ile Ala Ala Gly Ala Phe Ala Pro Met Ala Lys Gln Met Pro 260 265 270
- Lys Leu Val Lys Tyr Ser Cys Thr Val Glu Ala Asn Ala Arg Thr Trp 275 280 285
- Ala Lys Gly Cys Leu Tyr Gln His Ser Thr Ser Ala Gln Arg Pro Gly 290 295 300
- Leu Gly Glu Asn Leu Tyr Met Ile Ser Ile Asn Asn Met Pro Lys Ile 305 310 315 320
- Gln Thr Ala Glu Asp Ser Ser Lys Ala Trp Trp Ser Glu Leu Lys Asp 325 330 335
- Phe Gly Val Gly Ser Asp Asn Ile Leu Thr Gln Ala Val Phe Asp Arg 340 345 350
- Gly Val Gly His Tyr Thr Gln Met Ala Trp Glu Gly Thr Thr Glu Ile 355 360 365
- Gly Cys Phe Val Glu Asn Cys Pro Thr Phe Thr Tyr Ser Val Cys Gln

370 375 380

Tyr Gly Pro Ala Gly Asn Tyr Met Asn Gln Leu Ile Tyr Thr Lys Gly 385 390 395 400

Ser Pro Cys Thr Ala Asp Ala Asp Cys Pro Gly Thr Gln Thr Cys Ser 405 410 415

Val Ala Glu Ala Leu Cys Val Ile Pro 420 425

<210> 2

<211> 1341

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:VAP-1 cDNA Nucleotide Sequence

<400> 2

atggcggtat tagcagtggt actacttcta gcatgcctgg agagagcggt tgcacagacg 60 tteggetget etaacaccaa gatcaatgac caggetegta agatgtteta tgatgeteac 120 aatgatgcaa gacgaagcat ggctaaaggg cttgagccaa acaagtgcgg actcttatct 180 ggtggaaaga atgtttatga attgaattgg gattgcgaga tggaagcaaa agctcaggaa 240 tgggcagacg gatgtcccag ctctttccag acatttgatc caacatgggg gcagaactac 300 gegaegtaca tgggategat tgetgateeg ettecataeg ettecatgge tgttaatggg 360 tggtggtcgg aaattagaac cgtaggactt acggatcctg ataacaagta cactaacagt 420 gcaatgttcc gatttgctaa tatggcaaat ggtaaagctt cagcttttgg atgtgcatac 480 gcgttgtgcg caggaaaact atccatcaat tgcatttaca acaagatagg atacatgacc 540 aatgctatca tttatgaaaa aggagatgcc tgtaccagtg acgctgaatg caccacctac 600 tcagactcac aatgcaaaaa cggtctttgc tataaggcac ctcaagctcc agtcgttgag 660 actttcacaa tgtgcccttc ggtcacggac cagtcggatc aggcgcgtca aaacttcttg 720 gacacccata acaaattgcg tacaagcctt gccaagggac ttgaagctga tqgaattgcc 780 gctggagcat ttgcaccaat ggccaagcaa atgccaaaac tggtaaaata cagctgcaca 840 gttgaagcaa acgccagaac atgggcaaaa ggatgccttt accagcattc aacaagcgca 900 cagagaccag gactcggtga aaatctttat atgatcagca ttaacaacat gcctaaaatt 960 caaaccgcgg aggactcctc aaaggcttgg tggtccgagt tgaaaqactt cqqagtcqqt 1020 totgacaaca ttotgaccca agcagttttt gatogtggeg ttggacatta cacacaaatg 1080 gcatgggaag gaactactga aattggatgt tttgtggaga attgtccaac attcacttat 1140 tccgtatgcc aatatggtcc agcgggaaac tacatgaacc aactaatcta taccaagggc 1200 tcaccatgca cagctgacgc cgattgccca ggaacccaga catgcagtgt cqctqaaqca 1260 ttatgtgtta tcccttagta aattttctat gcaactcttt gaaagtcata ataaatatqc 1320 aaaaattaaa aaaaaaaaaa a 1341

<21	1> 4 2> P	RT													
<21	3> A	rtif	icia	l Se	quen	ce									
<22 <22	3 > D		ipti Sequ			tifi	cial	Seq	uenc	e : VA	P-2	Amin	0		
<40	0 > 3														
Met 1	Asn	Val	Val	Leu 5	Ser	Ala	Val	Thr	Leu 10	Phe	Leu	Ile	Phe	Arg 15	Tyr
Ala	Gln	Thr	Val 20	Asn	Ile	Glu	Gly	Ser 25	Gly	Gly	Asn	Asp	Glu 30	Leu	Leu
Glu	Gln	Asn 35	Val	Trp	Asn	Asp	Val 40	Asp	Asp	Lys	Val	Val 45	Glu	Ala	Leu
Gly	Gly 50	Leu	Asp	Asp	Glu	Leu 55	Leu	Thr	Glu	His	Val 60	Cys	Asn	Lys	Ser
Thr 65	Ile	Thr	Gln	Leu	Gln 70	Gln	Glu	Ile	Ile	Leu 75	Thr	Thr	His	Asn	Glu 80
Leu	Arg	Arg	Ser	Leu 85	Ala	Phe	Gly	Lys	Gln 90	Arg	Asn	Гуs	Arg	Gly 95	Leu
Met	Asn	Gly	Ala 100	Arg	Asn	Met	Tyr	Lys 105	Leu	Asp	Trp	Asp	Cys 110	Glu	Leu
Ala	Ser	Leu 115	Ala	Ala	Asn	Trp	Ser 120	Thr	Ser	Cys	Pro	Gln 125	His	Phe	Met
Pro	Gln 130	Ser	Val	Leu	Gly	Ser 135	Asn	Ala	Gln	Leu	Phe 140	Lys	Arg	Phe	Tyr
Phe 145	Tyr	Phe	Asp	Gly	His 150	Asp	Ser	Thr	Val	His 155	Met	Arg	Asn	Ala	Met 160
Lys	Tyr	Trp	Trp	Gln 165	Gln	Gly	Glu	Glu	Lys 170	Gly	Asn	Glu	Asp	Gln 175	Lys

Asn Arg Phe Tyr Ala Arg Arg Asn Tyr Phe Gly Trp Ala Asn Met Ala

Lys Gly Lys Thr Tyr Arg Val Gly Cys Ser Tyr Ile Met Cys Gly Asp

Gly Glu Ser Ala Leu Phe Thr Cys Leu Tyr Asn Glu Lys Ala Gln Cys Glu Lys Glu Met Ile Tyr Glu Asn Gly Lys Pro Cys Cys Glu Asp Lys Asp Cys Phe Thr Tyr Pro Gly Ser Lys Cys Leu Val Pro Glu Gly Leu Cys Gln Ala Pro Ser Met Val Lys Asp Asp Gly Gly Ser Phe Gln Cys Asp Asn Ser Leu Val Ser Asp Val Thr Arg Asn Phe Thr Leu Glu Gln His Asn Phe Tyr Arg Ser Arg Leu Ala Lys Gly Phe Glu Trp Asn Gly Glu Thr Asn Thr Ser Gln Pro Lys Ala Ser Gln Met Ile Lys Met Glu Tyr Asp Cys Met Leu Glu Arg Phe Ala Gln Asn Trp Ala Asn Asn Cys Val Phe Ala His Ser Ala His Tyr Glu Arg Pro Asn Gln Gly Gln Asn Leu Tyr Met Ser Ser Phe Ser Asn Pro Asp Pro Arg Ser Leu Ile His Thr Ala Val Glu Lys Trp Trp Gln Glu Leu Glu Glu Phe Gly Thr Pro Ile Asp Asn Val Leu Thr Pro Glu Leu Trp Asp Leu Lys Gly Lys Ala Ile Gly His Tyr Thr Gln Met Ala Trp Asp Arg Thr Tyr Arg Leu Gly Cys Gly Ile Ala Asn Cys Pro Lys Met Ser Tyr Val Val Cys His Tyr Gly Pro Ala Gly Asn Arg Lys Asn Asn Lys Ile Tyr Glu Ile Gly Asp Pro Cys Glu Val Asp Asp Cys Pro Ile Gly Thr Asp Cys Glu Lys

Thr Thr Ser Leu Cys Val Ile Ser Lys 465 470 <210> 4 <211> 1422 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: VAP-2 cDNA Nucleotide Sequence <400> 4 atgaacgtgg teettteege tgteaetett tttettattt ttegatatge geagactgtg 60 aatatagaag gcagtggagg aaatgatgag cttcttgagc agaacgtgtg gaacgatgta 120 gacgacaagg ttgtagaagc acttggtggt cttgatgatg aactgctaac cgaacatgtg 180 tgtaacaaat caacgatcac tcagctacag caggagatca tcttgacaac ccacaatgaa 240 ttacgaagat cattggcttt cygaaagcaa agaaacaaga gaggtctcat gaacggtgcg 300 agaaatatgt ataaactgga ttgggattgt gaactggcat cacttgcagc caattggtca 360 acctectgee etcageaett tatgeegeaa teggtaettg getceaaege teagettttt 420 aagogtttct atttttattt tgatgggcac gactctactg tacatatgcg aaacgcgatg 480 aagtattggt ggcagcaagg tgaagaaaaa ggcaatgagg atcagaaaaa tagattctat 540 gccagacgaa attattttgg atgggcaaac atggcaaaag gaaaaacata tcgagttgga 600 tgctcgtata ttatgtgcgg cgacggtgaa tctgcacttt tcacttgtct ttataacgaa 660 aaagcccaat gcgaaaaaga aatgatttac gaaaatggaa aaccctgctg tgaggataaa 720 gactgtttca catatccagg atcaaaatgt ttagtacctg aaggattatg tcaagcacct 780 tctatggtaa aggatgatgg aggaagtttc caatgtgata actcccttgt gtcagatgtc 840 accegeaatt teaetttgga geaacacaat ttttatagat etegtettge aaaaggtttt 900 gaatggaatg gagaaacaaa cacttcccag ccaaaqgcta qtcaaatgat caaaatqqaq 960 tatgactgca tgttggaacg gtttgcacaa aactgggcaa ataattgcgt ttttgcacac 1020 teggeacatt acgaaagacc gaatcagggt cagaatetet acatgagtte tttetcaaac 1080 cctgatccta gaagccttat acatacggcc gtcgagaagt ggtggcagga attggaggag 1140 ttcggtactc caattgataa cgttctgaca cccgaattgt gggatttgaa agggaaagcg 1200 ataggacatt acactcagat ggcctgggat cgtacttacc gtcttggttg tggaatcgca 1260 aactgtccga agatgtcgta cgtggtttgt cactatgggc cagcaggcaa cagaaagaac 1320 aataaaatct atgaaatcgg ggatccttgc gaagtcgatg atgattgccc gattggaaca 1380 gattgtgaaa agacaacttc tttatgtgtg atctcaaaat aa 1422 <210> 5 <211> 218 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Clustal W Alignment of VAP-1, VAP-2, and Selected Other

Nematode VA Proteins.

20

<400> 5															
Met	Phe	Ser	Pro	Val	Ile	Val	Ser	Val	Ile	Phe	Thr	Ile	Ala	Phe	Cys
1				5					10					15	
.		_	_	- 1	_			_,	~1	_	_	_	_	~ 1	
Asp	Ala	ser	Pro	Ala	Arg	Asp	GIA	Pne	GIY	Cys	ser	Asn	ser	Gly	Пe

Thr Asp Lys Asp Arg Gln Ala Phe Leu Asp Phe His Asn Asn Ala Arg 35 40 45

25

30

- Arg Arg Val Ala Lys Gly Val Glu Asp Ser Asn Ser Gly Lys Leu Asn 50 55 60
- Pro Ala Lys Asn Met Tyr Lys Leu Ser Trp Asp Cys Ala Met Glu Gln 65 70 75 80
- Gln Leu Cln Asp Ala Ile Gln Ser Cys Pro Ser Ala Phe Ala Gly Ile 85 90 95
- Gln Gly Val Ala Gln Asn Val Met Ser Trp Ser Ser Ser Gly Gly Phe
 100 105 110
- Pro Asp Pro Ser Val Lys Ile Glu Gln Thr Leu Ser Gly Trp Trp Ser 115 120 125
- Gly Ala Lys Lys Asn Gly Val Gly Pro Asp Asn Lys Tyr Asn Gly Gly
 130 135 140
- Gly Leu Phe Ala Phe Ser Asn Met Val Tyr Ser Glu Thr Thr Lys Leu 145 150 155 160
- Gly Cys Ala Tyr Lys Val Cys Gly Thr Lys Leu Ala Val Ser Cys Ile 165 170 175
- Tyr Asn Gly Val Gly Tyr Ile Thr Asn Gln Pro Met Trp Glu Thr Gly
 180 185 190
- Gln Ala Cys Lys Thr Gly Ala Asp Cys Ser Thr Tyr Lys Asn Ser Gly
 195 200 205
- Cys Glu Asp Gly Leu Cys Thr Lys Gly Pro 210 215

<210> 6 <211> 205

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Clustal W Alignment of VAP-1, VAP-2, and selected other nematode VA Proteins.

<400> 6

Asp Val Pro Glu Thr Asn Gln Gln Cys Pro Ser Asn Thr Gly Met Thr

1 5 10 15

Asp Ser Val Arg Asp Thr Phe Leu Val His Asn Glu Phe Arg Ser Ser
20 25 30

Val Ala Arg Gly Leu Glu Pro Asp Ala Leu Gly Gly Asn Ala Pro Lys 35 40 45

Ala Ala Lys Met Leu Lys Met Val Tyr Asp Cys Glu Val Glu Ala Ser 50 55 60

Ala Ile Arg His Gly Asn Lys Cys Val Tyr Gln His Ser His Gly Glu
65 70 75 80

Asp Arg Pro Gly Leu Gly Glu Asn Ile Tyr Lys Thr Ser Val Leu Lys 85 90 95

Phe Asp Lys Asn Lys Ala Ala Lys Gln Ala Ser Gln Leu Trp Trp Asn 100 105 110

Glu Leu Lys Glu Phe Gly Val Gly Pro Ser Asn Val Leu Thr Thr Ala 115 120 125

Leu Trp Asn Arg Pro Gly Met Gln Ile Gly His Tyr Thr Gln Met Ala 130 135 140

Trp Asp Thr Thr Tyr Lys Leu Gly Cys Ala Val Val Phe Cys Asn Asp 145 150 155 160

Phe Thr Phe Gly Val Cys Gln Tyr Gly Pro Gly Gly Asn Tyr Met Gly 165 170 175

His Val Ile Tyr Thr Met Gly Gln Pro Cys Ser Gln Cys Ser Pro Gly
180 185 190

Ala Thr Cys Ser Val Thr Glu Gly Leu Cys Ser Ala Pro 195 200 205 <210> 7

<211> 207

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Clustal W Alignment of VAP-1, VAP-2, and selected other nematode VA proteins.

<400> 7

Met Asn Tyr Leu Leu Leu Val Val Ala Leu Ala Val Gly Cys Ser Ala 1 5 10 15

Asp Phe Gly Ser Ser Gly Gln Asn Gly Ile Ile Asn Ala His Asn Thr
20 25 30

Leu Arg Ser Lys Ile Ala Lys Gly Thr Tyr Val Ala Lys Gly Thr Gln
35 40 45

Lys Ser Pro Gly Thr Asn Leu Leu Lys Met Lys Trp Asp Ser Ala Val 50 55 60

Ala Ala Ser Ala Gln Asn Tyr Ala Asn Gly Cys Pro Thr Gly His Ser 65 70 75 80

Gly Asp Ala Gly Leu Gly Glu Asn Leu Tyr Trp Tyr Trp Thr Ser Gly 85 90 95

Ser Leu Gly Asp Leu Asn Gln Tyr Gly Ser Ala Ala Ser Ala Ser Trp 100 105 110

Glu Lys Glu Phe Gln Asp Tyr Gly Trp Lys Ser Asn Leu Met Thr Ile 115 120 125

Asp Leu Phe Asn Thr Gly Ile Gly His Ala Thr Gln Met Ala Trp Ala 130 135 140

Lys Ser Asn Leu Ile Gly Cys Gly Val Lys Asp Cys Gly Arg Asp Ser 145 150 155 160

Asn Gly Leu Asn Lys Val Thr Val Val Cys Gln Tyr Lys Pro Gln Gly 165 170 175

Asn Phe Ile Asn Gln Tyr Ile Tyr Val Ser Gly Ala Thr Cys Ser Gly 180 185 190 Cys Pro Ser Gly Thr Ser Cys Glu Thr Ser Thr Gly Leu Cys Val

<210> 8

<211> 231

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Clustal W Alignment of VAP-1, VAP-2, and selected other nematode VA proteins.

<400> 8

Met Ser Asn Lys Leu Ile Ile Ser Ile Leu Ile Leu Thr Ile Ile Tyr

1 5 10 15

Thr Val Val Asn Ser Leu Thr Val Pro Giu Gln Asn Ala Val Val Asp
20 25 30

Cys Ile Asn Lys Tyr Arg Ser Gln Leu Ala Asn Gly Lys Thr Lys Asn 35 40 45

Lys Asn Gly Gly Asn Phe Pro Ser Gly Lys Asp Ile Leu Glu Val Ser 50 55 60

Tyr Ser Lys Asp Leu Glu Lys Ser Ala Gln Arg Trp Ala Asn Lys Cys
65 70 75 80

Ile Phe Asp His Asn Gly Thr Asp Leu Tyr Ser Gly Gly Lys Phe Tyr

85 90 95

Gly Glu Asn Leu Tyr Leu Asp Gly Asp Phe Glu His Lys Asn Ile Thr 100 105 110

Gln Leu Met Ile Asp Ala Cys Asn Ala Trp Trp Gly Glu Ser Thr Thr 115 120 125

Asp Gly Val Pro Pro Ser Trp Ile Asn Asn Phe Leu Pro Thr Asp Asn 130 135 140

Lys Glu Asn Asp Glu Lys Phe Glu Ala Val Gly His Trp Thr Gln Met 145 150 155 160

Ala Trp Ala Lys Thr Tyr Gln Ile Gly Cys Ala Leu Lys Val Cys His 165 170 175 Lys Pro Asp Cys Asn Gly Asn Leu Ile Asp Cys Arg Tyr Tyr Pro Gly 180 185 190

Gly Asn Gly Met Gly Ser Pro Ile Tyr Gln Gln Gly Lys Pro Ala Ser 195 200 205

Gly Cys Gly Lys Ala Gly Pro Ser Thr Lys Tyr Ser Gly Leu Cys Lys 210 215 220

Pro Asp Pro His Gln Asn Asn 225 230