ליניארית 1

שחר פרץ

6 בנובמבר 2024

ABOUT
בן 29, בוגר ארזים. סטודנט לפסיגולוגיה. מייל: kligman@mail.tau.ac.il. עדיף לפנות למתרגל לשאלות.
INTRO
הקורס מתעסק במשוואות ליניאריות, כמו שהוצגו בשיעור הקודם. משוואות ליניאריות הן כמעט המשוואות היחידות שכבני אדם נוכל לפתור באופן פשוט.
יש מגוון אובייקטים שניתנים לתיאור באמצעות אלגברה ליניארית. לדוגמה, מישור בטוך מרחב תלת ממדי. דדוקציה משאלות כאלו למשוואות ליניאריות היא כלי חזק.
ניתן לתאר מערכת משוואות ליניאריות באמצעות מטרציות (מעין טבלה). אפילו תיאור נגזרות של פונקציה ממרחב גבוהה מתוארות באמצעות אלגברה ליניארית.
תיאור כללי של הקורס:
1. שדות (בערך שליש מהקרוס)
2. מרחב וקטורי
3. העתקות ליניאריות (בהרחבה)
4. מטרציות, בהקשר למבנים שראינו קודם
5. בקורסים מתדמים נראה אובייקטים נוספים
LINEAR EUQTIONS SYSTEMS
נתבונן במשוואה הבאה:
$a_1 x_1 + a_2 x_2 = d_1$
שימו לב: בתורת הקבוצות a_1,a_2 שייכים לקבוצה כלשהי. נבחר $a_1,a_2\in A$ יהיה נם אייכים לקבוצה לשייכים לקבוצה כלשהי. נבחר $a_1,a_2\in A$ יהיה גם צורך להגדיר פעולת כפל בין a_1,a_2 שייכים לקבוצה לאוסף הפעולות האלא נקרא שדה.
הרבה מהקושי הוא הפורמליות והדקדקנות. בניית דברים מאקסיומות יכולה להיות מתעתעת. זה רלוונטי בלמידה, בש"ב ובמבחנים. לפעמים, השאלה צריכה להיות שאלת פרמול בעקרה. לכן, מומלץ לפתור דברים באופן פורמלי – זה יעזור להצלחה בקורס, ועוד יותר יעזור בעתיד.
FIELDS
4.1 הגדרה
נגדיר באופן פרמלי מה זה שדה.
a,m עם F עם ש־ F עם הקרויה פפל, נאמר ש־ $m\colon F\times F\to F$ פונקציה חיבור, פונקציה הקרויה מונקציה מונקציה פונקציה מונקציה מונקציה הקרויה מונקציה פונקציה מונקציה מונקציה ש־ $a\colon F\times F\to F$ פונקציה אם:
$a(x,y)=x+y, \ m(x,y)=x\cdot y$
$\exists x \in F. \forall y \in F. y + x = y$.1 איבר ניטרלי לחיבור: 0_F איבר האפס. נקרא לו איכר האפס. 0_F או 0_F .

2. אסוציאטיביות:

4. קיום איבר נגדי:

3. חילופיות של חיבור:

(-x) איבר נגדי של x הוא איבר נגדי

 $\forall x,y,z \in F: (x+y)+z=x+(y+z)$

 $\forall x \in F : \exists y \in F.x + y = y + x = 0_F$

 $\forall x, \in F: x + y = y + x$

 $\exists x \in F \colon \forall y \in F \colon xy = yx = y$

 $\forall x, y, z \in F : (xy) \cdot z = x \cdot (yz)$

 $\forall x, y \in F : xy = yx$

 $\forall 0 \neq x \in F \exists y \in F : .xy = yx = 1$

 $\forall x, y, z \in F \colon x(y+z) = xy + xz$

5. ניטרלי לכפל:

6. אסוציאטיביות של כפל:

7. קיום הופכי: $\label{eq:condition} \mathbf{\sigma}$ יהיה x יהיה ופכי של x יהיה x יהיה ופכי של x יהיה ופי של x יהי

8. חילופיות כפל.

9. דיסטרביוטיביות:

 $1_F \neq 0_F \tag{10}$

סימון. איבר בשדה יקרא סקלר.

4.2 דוגמאות

4.2.1 הרציונליים

 \mathbb{Q} נבתונן ב־ \mathbb{Q} . הרציונלים, הם שדה. קבוצתם היא בערך:

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \neq 0 \in \mathbb{Z} \right\}$$

 $x\in\mathbb{Z}$ את $x\in\mathbb{Z}$ את את שלנו יעיל את שלנו יעיל את $x\in\mathbb{Q}$ הוא השדה המינימלי המכיל את $x\in\mathbb{Z}$ משהו בסגנון, ניקח $x\in\mathbb{Z}$, נסמנו ובהתאם השדה שלנו יעיל את $x\in\mathbb{Z}$ כי ניקח את $x\in\mathbb{Z}$ משהו בקורס הזה. $y\in y\in\mathbb{Z}$

 $rac{2}{3}=rac{4}{6}$ יחידה (ומשפיע על חוסר הפורמליות בנתון לעיל). הרי אל יחידה (ומשפיע שימו לב – ב־

4.2.2

גם $\mathbb R$ הם שדה. גם בשדה הזה הסימון לא יחיד. 1=...99999 (כי ככה מגדירים באנליזה). בנייה פורמלית בלי אקסיומת החסם העליון – ען=ם ארז.

4.2.3 המרוכבים

. גם $\mathbb{R}^2=\mathbb{C}^2$ גם שדה. הם סגורים אלגברית, כלומר לכל משוואה יש פתרון. נזהה את $\mathbb{R}^2=\mathbb{C}^2$ נסמן את (1,0) אם איבר היחידה, ונגדיר:

$$(x,y) + (z,w) = (z+x,y+w), \ (x,z) \cdot (z,w) = (xz-yw,xw+yz)$$

|z|=|z|=|z|=|z|=|z| נסמן $|z|=\sqrt{z\cdot z}$ נסמן (0,1) נקבל $|z|=\sqrt{z\cdot z}$ נסמן (0,1) נסמן (0,1) נקבל (0,1) נקבל (0,1) נקבל (0,1) נקבל (1,2) נקבל (1,2) נקבל (1,3) נקבל

 $f(x)=a_nx^n\dots a_0$ נסמן מחוכבים, נסמן מרוכב עם מרוכב היכותן פולינום בהינתן פולינום (ראה עברי - בהינתן פולינום בהיכות) אז $\exists z\in\mathbb{C}\colon f(z)=0$

4.2.4 תתי קבוצות של המרוכבים

:מתברר, ש־ $\{a,b\}$ הוא גם שדה. אם זאת $\mathbb{R}_{>0}$ הוא אינו שדה. אם זאת $\mathbb{Q}\cup\{i\}$ ים הוא גם שדה. אם זאת מתברר, ש־

	a	b	+	a	b
a	a	a	a	a	b
b	a	b	b	b	a

. שדה $\mathbb{F}=\{0,1\}$ אז $0_F=a,q_F=b$ ונגדיר

4.3 טענות על שדות

משפטים.

- ניטרלי לחיבור הוא יחיד.
 - $\forall a \in F.0 \cdot a = 0 \bullet$
 - ניטרלי לכפל הוא יחיד.
- $a=(-1)\cdot a$ לכל $a\in F$ האיבר הנגדי יחיד וגם $a\in F$
 - . לכל $a \in F$ לכל $a \in F$

הוכחה (1). נניח בשלילה $x,y\in F$ כך ששניהם ניטרליים לחיבור, ונראה x=y

$$x = x + y = y$$

כי y ניטרלי לחיבור, וכי x ניטרלי לחיבור. סתירה.

הוכחה (ג). יהיa=0, נראה $a\in F$. ואכן:

$$0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$$

(חוקי מח"ע) .0=0 (חוקי מח"ע) -(0a

 $a \in F$ וניקח $a \in F$ הוכחה (3). יהי

$$b = b + 0 = b + (a + c) = (b + a) + c = 0 + c = c$$

הוכחה (4). נראה כי $a=(-1)\cdot a$ הוא נגדי ל- $a=(-1)\cdot a$, ולכן

$$a + (-1) \cdot a = a \cdot (1 + (-1)) = a \cdot 0 = 0$$

הופכיים. $b,c\in F$ הופכיים, $0
eq a \in F$ הופכיים.

$$b = b \cdot (a \cdot c) = (b \cdot a) \cdot c = c$$

4.4 טענות נוספות

. אדה F כאשר $a,b,c,d\in F$ יהיו

$$(b=0 \lor a=0) \iff ab=0$$

$$b = c \iff a + b = a + c$$
 .2

$$b=c\iff ab=ac$$
 אם 3

הוכחה (1).

⇒ הוכחנו מקודם.

ab=0, אם a=0, סיימנו. אחרת, $a\neq 0$, נראה כיa=0

$$b = 1 \cdot b = (a^{-1} \cdot a)b = a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0 = 0$$

a+b=a+c אז נוסיף a לשני האגפים ונקבל b=c אם \Longrightarrow .(2).

$$a+a+b=-a+a+c$$
 ולכן $a+a+b=-a+a+c$ ולכן , $a+b=c+d$

:דרך אחרת לעשות זאת, היא

$$b = 0 + b = (-a + a) + b = -a + (a + b) = -a + (a + c) = c$$

a-b=a-c אז $b=c \implies$.(3).

באופן דומה:

$$b = 1 \cdot b = (a^{-1}a)b = a^{-1} \cdot (ab) = a^{-1} \cdot (ac) = (a^{-1} \cdot a)c = 1 \cdot c = c$$

5.1 חשבון מודולרי

המטרה: לראות איך חשבון מודולרי מייצג שדות סופיים.

:הוא: $x,y\in\mathbb{Z}$ אם אוגות על זוגות נגדיר אז נגדיר טבעי, אז טבעי, אם הגדרה. אם או

$$x \equiv y \mod n \iff \exists k \in \mathbb{N}.x - y = nk$$

 $\{\langle x,y
angle \in \mathbb{Z}^2 \mid \exists k \in \mathbb{Z}. x-y=nk \} = \equiv_n$ זהו יחס שקילות, שיוגדר באמצעות

. למה. אם $n \geq 1$, או שקילות $x \equiv y \mod n$ או הוכחנו עם נטלי. אם $n \geq 1$

x ב האקילות של - $[x]_n=\{y\in\mathbb{Z}\mid x\equiv y\mod n\}$ נגדיר $x\in\mathbb{Z},\ \mathbb{Z}
ightarrow n$ ב מחלקת השקילות של ...

טענה. $[x]_n = \{x+nk \mid k \in \mathbb{Z}\}$ טענה.

5.1.1 דוגמאות

יהי $1 \geq n \geq 1$, אז:

$$[0]_n = \{\dots, -2n, n, 0, n, 2n \cdots || n \in \mathbb{N}_+ \}$$

$$[1]_n = \{\dots, 1-n, 1, 1+n\dots\}$$
 (2)

$$[n]_1 = [0] \tag{3}$$

$$[n+1] = [1]_n \tag{4}$$

5.2 טענות נוספות

- כל שתי מחלקות שקילו תשוות או זרות
- $\{0,\ldots n-1\}$ בכל מחלקת שקילות יש בדיוק אחד מבין •

הוכחה (ו). יהיו $[a]\subseteq [b]\subseteq a$ מחלקות שקילות. אם $a\cap [b]=a$ סיימנו. אחרת, קיים $a\cap [b]=a$ נראה ש $a\cap [a]$ ומסימטריה נקבל שוויון. $a\cap [b]=a$ והחיתוך $a\mod a$ ע"י $a\mod a$ ע"י $a\mod a$ ע"י $a\mod a$ והחיתוך $a\mod a$ והחיתוך $a\mod a$ והחיתוך $a\mod a$ ומרטנזיטיביות. $a\mod a$ ומרטנזיטיביות.

 $c\in\{0,\dots,n-1\}$. נראה ש־ $a\in\mathbb{Z}$, $[a]_n$ נסתכל על $i\in\{0,\dots,n-1\}$ צ.ל. קיום $a\in\mathbb{Z}$, קיום $i\in\{0,\dots,n-1\}$ כך ש־ $i\in\{0,\dots,n-1\}$ נשים לב ש־ $a\in\mathbb{Z}$, אזי:

$$0 = a - \frac{a}{n} \le c = a - \left\lfloor \frac{a}{n} \right\rfloor n < a - \left(\frac{a}{n} - 1 \right) n = n$$

: נקבל: $[a]_n$ מהשייכות ל- $[a]_n$ מהשייכות ל- $[a]_n$ נקבל: מראה יחידות. יהיו יהיו יהיו $[a]_n$ וגם יהיו וגם יהיו יחידות. יהיו

$$r_1 \equiv a \equiv r_2 \mod n \implies r_1 - r_2$$

. מתירה אי־שוויון אי־שוויון וניצחנו. ולכן $0 \leq r_1 - r_2 < n$ ואכן וניצחנו. אי־שוויון וניצחנו. ולכן $r_1 > r_2 < r_1$

5.3 חידה

תהי הקבוצה $m\iff n$ והפעולות מודולו, צ.ל. ששדה $\{[0],\ldots,[n-1]\}=F$ ראשוני.