Chapter 5: Quadratic Reciprocity

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 5.2. Show that the number of solutions to $x^2 \equiv a(p)$ is given by 1 + (a/p).

p is an odd prime.

Proof.

- (1) If $x \equiv t(p)$ is a solution of the equation $x^2 \equiv a(p)$, then $x \equiv -t(p)$ is also a solution. Notice that $t \not\equiv -t(p)$ if $t \not\equiv 0(p)$ by using the fact that p is odd.
- (2) (Lemma 4.1.) Let $f(x) \in k[x]$, k a field. Suppose that $\deg f(x) = n$. Then f has at most n distinct roots.
- (3) If a = 0, then $x^2 \equiv 0$ (p) has only one solution $x \equiv 0$ (p), or 1 + (a/p) solution (where (a/p) = 0 in this case).
- (4) If $a \neq 0$ is a quadratic residue mod p, then by (1)(2) the equation $x^2 \equiv a(p)$ has exactly 2 solutions, or 1 + (a/p) solutions (where (a/p) = 1 in this case).
- (5) If a is not a quadratic residue mod p, then there is no solutions of the equation $x^2 \equiv a(p)$, or 1 + (a/p) solutions (where (a/p) = -1 in this case).

By (3)(4)(5), in any case the number of solutions to $x^2 \equiv a(p)$ is given by 1 + (a/p). \square

Exercise 5.4. Prove that $\sum_{a=1}^{p-1} (a/p) = 0$.

Note.
$$\sum_{a=0}^{p-1} (a/p) = 0$$
 since $(0/p) = 0$.

Proof. There are as many residues as nonresidues mod p (Corollary to Proposition 5.1.2). \square

Exercise 5.5. Prove that $\sum_{x=0}^{p-1} \left(\frac{ax+b}{p}\right) = 0$ provided that $p \nmid a$.

Proof. Since x (x = 1, ..., p - 1) is a reduced residue system modulo p, ax (x = 1, ..., p - 1) is again a reduced residue system modulo p if $p \nmid a$ (Exercise

3.6). Hence

$$\sum_{x=1}^{p-1} \left(\frac{ax}{p} \right) = 0.$$

Note that $\left(\frac{0}{p}\right) = 0$, and thus $0 = \sum_{x=0}^{p-1} \left(\frac{ax}{p}\right) = \sum_{x=0}^{p-1} \left(\frac{a(x+a^{-1}b)}{p}\right) = \sum_{x=0}^{p-1} \left(\frac{ax+b}{p}\right)$.

Exercise 5.6. Show that the number of solutions to $x^2 - y^2 \equiv a(p)$ is given by

$$\sum_{y=0}^{p-1} \left(1 + \left(\frac{y^2 + a}{p} \right) \right).$$

Proof. Write $x^2 \equiv y^2 + a(p)$. For every fixed $y = 0, \ldots, p-1$, the number of solutions x to $x^2 \equiv y^2 + a(p)$ is given by $1 + \left(\frac{y^2 + a}{p}\right)$ (Exercise 5.2). Hence, the number of solutions (x, y) to $x^2 - y^2 \equiv a(p)$ is

$$\sum_{y=0}^{p-1} \left(1 + \left(\frac{y^2 + a}{p} \right) \right).$$

Exercise 5.7. By calculating directly show that the number of solutions to $x^2 - y^2 \equiv a(p)$ is p - 1 if $p \nmid a$ and 2p - 1 if $p \mid a$. (Hint: Use the change of variables u = x + y, v = x - y.)

Proof (Hint). Write $(x+y)(x-y) \equiv a(p)$ or $uv \equiv a(p)$ where u = x+y, v = x-y. For any a, either $a \equiv 0$ (p) or $a \not\equiv 0$ (p).

- (1) $a \equiv 0$ (p). Then u = 0 or v = 0. Consider three possible cases (may be overlapped).
 - (a) u = 0, or x + y = 0. In this case, the number of solutions is p. $(x = k, y = -k \text{ for } k = 0, \dots, p 1.)$
 - (b) v = 0. Similar to (a), the number of solutions is p. $(x = k, y = k \text{ for } k = 0, \dots, p 1.)$
 - (c) u = v = 0. x = y = 0.

By (a)(b)(c), there are 2p-1 solutions to $x^2-y^2\equiv 0$ (p).

(2) $a \not\equiv 0$ (p). $u \not= 0$ and $v \not= 0$. For each u = k for $k = 1, \ldots, p - 1$, there is one unique $v = ak^{-1}$ such that $uv \equiv a$ (p). Solve u and v to get $(x,y) = (2^{-1}(k+ak^{-1}), 2^{-1}(k-ak^{-1})) \in \mathbb{Z}/p\mathbb{Z}$ for $k = 1, \ldots, p - 1$. So there are p-1 solutions to $x^2 - y^2 \equiv a$ (p) where $a \not\equiv 0$ (p).

By (1)(2), the result holds. \square

Exercise 5.8. Combining the results of Exercise 5.6 and 5.7 show that

$$\sum_{y=0}^{p-1} \left(\frac{y^2 + a}{p} \right) = \begin{cases} -1, & \text{if } p \nmid a, \\ p-1, & \text{if } p \mid a. \end{cases}$$

Proof. By Exercise 5.6 and 5.7,

$$\sum_{y=0}^{p-1} \left(1 + \left(\frac{y^2 + a}{p} \right) \right) = \begin{cases} p-1, & \text{if } p \nmid a, \\ 2p-1, & \text{if } p \mid a. \end{cases}$$

Hence the result holds. \Box