

Introduction to Estimation of Distribution Algorithms

Jiri Ocenasek

May 2004

Context

Data mining

- Knowledge extraction from databases
- Example: Customer's cards in shops

Bayesian network

An Example:

Another example:

Bayesian network - cont'd.

- Formal definition: B = (G, L)
 - G .. Dependency graph (DAG)
 - Vertices correspond to random variables
 - Edges capture dependencies

 \mathcal{L} .. Conditional probabilities $p(X_i|P_i)$ - quantitative part

Bayesian network encodes a joint probability distribution

$$p(X) = \prod_{i=0}^{n-1} p(X_i | \Pi_i)$$

 $X=(X_0, X_1, ..., X_{n-1})$ is a vector of variables, P_i is the set of parents of X_i

*Each variable X_i is independent of its nondescendants XP_i , given its parents P_i in \mathcal{G} "

Construction of Bayesian networks

- Dependency graph fixed
 - Only conditional probabilities are estimated

$$p(x_i | \boldsymbol{p_i}) \approx \frac{m(x_i, \boldsymbol{p_i})}{m(\boldsymbol{p_i})}$$

- $m(p_i)$... the number of individuals in the population having variables P_i set to concrete value p_i
- $m(x_i, p_i)$... the number of individuals in the population having variables P_i set to concrete value p_i and X_i equal to concrete value x_i
- Dependency graph is not given
 - More complex task:
 - Search the space of possible dependency graphs (NP-hard problem)
 - Each hypothesis about the dependency graph has to be evaluated
 - For each evaluation the conditional probabilities have to be estimated

Incremental construction of a Bayesian network

```
Start with an empty network B;
while any edge can be added do
begin
  for each edge that can be added do
  begin
    compute the metrics of the network B' that
     can be constructed from B by adding this
     edge;
  end
  add the edge giving the highest improvement
     to the network B;
end
```

- Constraints
 - Acyclicity
 - Model complexity penalty

How to evaluate the quality of Bayesian networks?

The posterior probability of a Bayesian network B given data D can be computed by applying Bayes theorem as:

$$p(B|D) = p(D|B) p(B) / p(D).$$

The higher the p(B|D), the more likely the network B is a correct model of the data. Therefore, the value of p(B|D) can be used to score different networks and measure their quality. Since we are interested in comparing different networks (hypotheses) for a fixed data set D, we can eliminate the denominator.

p(B) is a "prior" probability of B p(D|B) is expressed e.g. by Bayes - Dirichlet metrics

Bayesian Dirichlet metrics

A closed form of p(D|B) derived by Heckerman (under some additional assumptions about the parameters):

$$p(D \mid B) = \prod_{i=0}^{n-1} \prod_{\mathbf{p_i}} \frac{\Gamma(m'(\mathbf{p_i}))}{\Gamma(m(\mathbf{p_i}) + m'(\mathbf{p_i}))} \prod_{x_i} \frac{\Gamma(m(x_i, \mathbf{p_i}) + m'(x_i, \mathbf{p_i}))}{\Gamma(m'(x_i, \mathbf{p_i}))}$$

In the variant K2:

An example of Bayesian Dirichlet metrics usage

Part of BN:

$$X_1 \dots X_7; \quad \Pi_1 = \{X_{2}, X_5\}$$

Population:

X2

X5

X7

 1		0	 1	
 0		0	 0	
 1		0	 1	
 1		1	 1	• • •
 0		0	 0	
 0		1	 0	
 0		0	 1	
 1		1	 0	
 0		0	 0	
 0	•••	1	 0	

\boldsymbol{p}_i	X_i	$m(x_i, \boldsymbol{p}_i)$	$m(\boldsymbol{p}_i)$	
00	0	3) 4	
00	1	1	} 4	
01	0	2) .	
01	1	none	} 2	
10	0	none) .	
10	1	2	} 2	
11	0	1		
	1	1	} 2	

..cont'd

 X_7 part

 Incremental adding of edges – only part of the score has to be recomputed

Another alternatives for scoring functions

Minimum Description Length score (MDL):

$$DL(\mathcal{G}, D) = DL_{graph}(\mathcal{G}) + \sum_{i=0}^{n-1} DL_{tab}(X_i, ?_i) + N\sum_{i=0}^{n-1} H(X_i \mid ?_i)$$

- Bayesian Information Criterion (BIC)
 - Equivalent to MDL when we ignore the description of dependency graph
- Information Gain
- Mutual Information
- . . .

Recall: Genetic Algorithms

Problem decomposability

An example: Automotive design

Motivation for Estimation of Distribution Algorithms

Disruption of subsolutions:

Schema Theorem

- Schema example H: * * * 0 * 1 * * 0 *
 - Chromozome length n=10
 - Schema order o(H)=3
 - Schema defining length $\delta(H)=5$
- Schema Theorem
 - Proportionate selection & one-point crossover with probability p_c and mutation with probability p_m :

$$\langle m(H,t+1)\rangle \ge m(H,t) \frac{f(H,t)}{\overline{f}(t)} \left[1 - p_c \frac{\mathbf{d}(H)}{n-1} - p_m o(H) \right]$$

Some functions are deceptive for GAs

Additively decomposable functions:

$$f(\mathbf{X}) = \sum_{i=0}^{l-1} f_k(S_i)$$

An example: f₃ deceptive

Triplet	000	001	010	011	100	101	110	111
f ₃	0,9	0,8	0,8	0	0,8	0	0	1

$$1**: \frac{0.8+0+0+1}{4} = 0.45$$

$$0**: \frac{0.9+0.8+0.8+0}{4} = 0.625$$

How datamining can help to improve GAs?

- Genes are treated as random variables
- The relationships between genes are captures in the form of probabilistic model

Classical GA P Bayesian Optimization Algorithm

Building block detection & preservation

Main Idea

- Probabilistic model preserves significant combinations of parameters
 - Model complexity should be penalized to avoid overtraining (duplication of individuals)
- Selection is the source of progress
- Model complexity issues
 - Too complex model ⇒ parent population is nearly reproduced
 - Too coarse model ⇒ higher order dependencies are ignored (problem considered nearly separable)

Predecessors of BOA

- The Univariate Marginal Distribution Algorithm (UMDA)
- The Mutual Information Maximization for Input Clustering (MIMIC)
- Combining Optimizers with Mutual Information Trees (COMIT)
- The Bivariate Marginal Distribution Algorithm (BMDA)
- The Learning Factorized Distribution Algorithm (LFDA)
- The Extended compact Genetic Algorithm (EcGA)

The Estimation of Bayesian Network Algorithm (EBNA)

Recent advancements - hierarchical BOA

Example of Bayesian network with decision trees

The advantages of decision trees

- Decision trees / graphs are more efficient:
 - Can capture longer building blocks
 - Are more robust

X_0	\mathbf{X}_1	X_2	p(X3 X0,X1,X2)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	0.00
1	0	0	0.05
1	0	1	0.20
1	1	0	0.95
1	1	1	0.95

Top-down building of decision trees

Population:

Split on
$$x_0$$
:
 $\begin{vmatrix} x_3=0 & x_3=1 \\ x_0=0 & 2 & 2 \\ x_0=1 & 1 & 3 \end{vmatrix}$
 $x_0 = 1,40$

Sub-population $x_1=1$:

Sub-population $x_1=0$:

Top-down building of decision trees - cont'd: The resulting decision tree

Avoiding cycles

 While constructing all the trees simultaneously, cycles have to be avoided

Mixed decision trees

Compatible with discrete and continuous domains

Mixed Bayesian Optimization Algorithm

- Discretization of continuous parameters is an integral part of the learning process.
- 2-level approach:
 - The dependencies are detected using the discretized variables and they are used to partition the search space into subspaces where no correlation appears
 - The Gaussian kernel distribution is used in each subspace to approximate the underlying distribution

Example of probabilistic model in continuous domain (Mixed BOA)

- Decision trees imply conditional factorization
- Example 2 continuous genes:

 $P(X_1, X_2)$ is factorized as $P(X_1, X_2) = P(X_1) \cdot P(X_2 | X_1)$.

 $P(X_1)$ is described by the density function $\rho_1(X_1)$ and $P(X_2|X_1)$ by the density function $\rho_2(X_2|X_1)$, with $\rho_2(X_2|X_1) = \rho_{21}(X_2)$ if $X_1 < 0.45$ and $\rho_2(X_2|X_1) = \rho_{22}(X_2)$ if $X_1 \ge 0.45$

Disadvantages of Model building

Time profile:

Solution: model building can be performed in parallel – up to O(n) speedup

CPU2

 $x_1 = 0 = 1$ $x_2 = 0 = 0$ $x_2 = 0 = 0$ $x_2 = 0 = 0$ $x_3 = 0 = 0$ $x_4 = 0 = 0$

CPU 0

 Uses the information from individuals in a pairwise manner In EDA the information from all individuals is aggregated in the model

- Sensitive to the ordering of parameters
- Not sensitive to the ordering of parameters

Recombination is fast

 Model building takes time (but can be parallelized)

References

- Holland, J.: Adaptation in Natural and Artificial Systems, Ann Arbor: University of Michigan Press, 1975.
- Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addision-Wesley Publishing Company, 1989.
- Larrañaga, P., Lozano, J. A. (eds.): Estimation of Distribution Algorithms.
 A new Tool for Evolutionary Computation. Kluwer Academic Publishers,
 2002.
- Pelikan, M., Goldberg, D.E., Lobo, F.: A Survey of Optimization by Building and Using Probabilistic Models. IlliGAL Report No. 99018, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 1999.