

Winning Space Race with Data Science

MOOC Student August

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Methodologies

- Data Collection via Web scraping
- Data Wrangling
- Complete the EDA with Visualization
- Dashboard

All results

Predict first stage of the Falcon 9 lands successfully

Introduction

Project background and context

• Space Y wants to launch rockets with minimal costs

Problems you want to find answers

- Determine the price of each launch
- Determine if SpaceX will reuse the first stage

Methodology

Executive Summary

- Data collection methodology:
 - Using SpaceX API and Web scraping
- Perform data wrangling
 - Use flowcharts and key phrases
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - · Built, evaluated, improved, and found the best classification model

Data Collection

Describe how data sets were collected

• API will give us data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome

• Web scrape some HTML tables that contain valuable Falcon 9 launch records

Data Collection – SpaceX API

 Present your data collection with SpaceX REST calls using key phrases and flowcharts

 Add the GitHub URL of the completed SpaceX API calls notebook (must include completed code cell and outcome cell), as an external reference and peer-review purpose

Data Collection - Scraping

 Present your web scraping process using key phrases and flowcharts

 Add the GitHub URL of the completed web scraping notebook, as an external reference and peer-review purpose

Data Wrangling

Describe how data were processed

- Calculate the number of launches on each site
- Calculate the number and occurrence of each orbit
- Calculate the number and occurrence of mission outcome per orbit type
- Create a landing outcome label from outcome column
- You need to present your data wrangling process using key phrases and flowcharts
- Add the GitHub URL of your completed data wrangling related notebooks, as an external reference and peer-review purpose

EDA with Data Visualization

Summarize what charts were plotted and why you used those charts

- Visualize the relationship between Flight Number and Launch Site
- Visualize the relationship between Payload and Launch Site
- Visualize the relationship between success rate of each orbit type
- Visualize the relationship between FlightNumber and Orbit type
- Visualize the relationship between Payload and Orbit type
- Visualize the launch success yearly trend
- Add the GitHub URL of your completed EDA with data visualization notebook, as an external reference and peer-review purpose

EDA with SQL

Summarize the SQL queries you performed

- Retrieve the most recent date from the SpaceX table
- Display the minimum payload mass
- Total payload_mass_kg carried by the booster versions
- Display 5 records launched on Friday
- Unique launch sites

Add the GitHub URL of your completed EDA with SQL notebook, as an external reference and peer-review purpose

Build an Interactive Map with Folium

Summarize what map objects such as markers, circles, lines, etc. you created and added to a folium map

- Mark all launch sites on a map
- Mark the success/failed launches for each site
- Calculate the distances between a launch site to its proximities

Explain why you added those objects

Add the GitHub URL of your completed interactive map with Folium map, as an external reference and peer-review purpose

Build a Dashboard with Plotly Dash

Summarize what plots/graphs and interactions you have added to a dashboard

- Analyzing launch site geo and proximities
- Choose an optimal launch site

Explain why you added those plots and interactions

Add the GitHub URL of your completed Plotly Dash lab, as an external reference and peer-review purpose

Predictive Analysis (Classification)

Summarize how you built, evaluated, improved, and found the best performing classification model

Create 2 classes

Standardize the data, create a logistic regression object then create a GridSearchCV.

You need present your model development process using key phrases and flowchart

Add the GitHub URL of your completed predictive analysis lab, as an external reference and peer-review purpose

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Show a scatter plot of Flight Number vs. Launch Site

Show the screenshot of the scatter plot with explanations

Payload vs. Launch Site

• Show a scatter plot of Payload vs. Launch Site

• Show the screenshot of the scatter plot with explanations

Success Rate vs. Orbit Type

• Show a bar chart for the success rate of each orbit type

Show the screenshot of the scatter plot with explanations

Flight Number vs. Orbit Type

• Show a scatter point of Flight number vs. Orbit type

• Show the screenshot of the scatter plot with explanations

Payload vs. Orbit Type

• Show a scatter point of payload vs. orbit type

Show the screenshot of the scatter plot with explanations

Launch Success Yearly Trend

• Show a line chart of yearly average success rate

• Show the screenshot of the scatter plot with explanations

All Launch Site Names

• Find the names of the unique launch sites

Launch Site Names Begin with 'CCA'

Find 5 records where launch sites begin with `CCA`

17]:	po	d.read	_sql_quer	y("SELECT * FRO WHERE Launch LIMIT 5;", d	_Site LIKE '(CCA%' \					
17]:		Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
	0	04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute
	1	08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute
	2	22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attemp
	3	08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-	500	LEO (ISS)	NASA (CRS)	Success	No attemp
	4	01- 03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC-	SpaceX CRS-	677	LEO (ISS)	NASA (CRS)	Success	No attemp

Total Payload Mass

Calculate the total payload carried by boosters from NASA

Average Payload Mass by F9 v1.1

Calculate the average payload mass carried by booster version F9 v1.1

First Successful Ground Landing Date

• Find the dates of the first successful landing outcome on ground pad

]:		Date	(UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing Outcome
	19	22- 12- 2015	01:29:00	F9 FT B <mark>1</mark> 019	CCAFS LC- 40	OG2 Mission 2 11 Orbcomm- OG2 satellites	2034	LEO	Orbcomm	Success	Success (ground pad)
	26	18- 07- 2016	04:45:00	F9 FT B1025.1	CCAFS LC-	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
	29	19- 02- 2017	14:39:00	*F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

]:		Date	(UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
	23	06- 05- 2016	05:21:00	F9 FT B1022	CCAFS LC- 40	JCSAT-14	4696	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
	27	14- 08- 2016	05:26:00	F9 FT B1026	CCAFS LC- 40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
	31	30- 03- 2017	22:27:00	F9 FT B1021.2	KSC LC-39A	SES-10	5300	GTO	SES	Success	Success (drone ship)
	42	11- 10- 2017	22:53:00	F9 FT B1031.2	KSC LC-39A	SES-11 / EchoStar 105	5200	GTO	SES EchoStar	Success	Success (drone ship)

Total Number of Successful and Failure Mission Outcomes

Calculate the total number of successful and failure mission outcomes

```
List the total number of successful and failure mission outcomes

In [24]: df["Mission_Outcome"].value_counts()

Out[24]: Success 98
Failure (in flight) 1
Success (payload status unclear) 1
Success (payload status unclear) 1
Success 1
Name: Mission_Outcome, dtype: int64
```

Boosters Carried Maximum Payload

• List the names of the booster which have carried the maximum payload mass

df	["PAYLO	DAD_MASS_	_KG_"].max()										
156	15600												
df	df[df["PAYLOAD_MASSKG_"] == 15600]												
	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome			
74	11- 11- 2019	14:56:00	F9 B5 B1048.4	CCAFS SLC- 40	Starlink 1 v1.0, SpaceX CRS-19	15600	LEO	SpaceX	Success	Succes			
77	07- 01- 2020	02:33:00	F9 B5 B1049.4	CCAFS SLC- 40	Starlink 2 v1.0, Crew Dragon in- flight abort t	15600	LEO	SpaceX	Success	Succes			
79	29- 01- 2020	14:07:00	F9 B5 B1051.3	CCAFS SLC- 40	Starlink 3 v1.0, Starlink 4 v1.0	15600	LEO	SpaceX	Success	Succes			
80	17- 02- 2020	15:05:00	F9 B5 B1056.4	CCAFS SLC- 40	Starlink 4 v1.0, SpaceX CRS-20	15600	LEO	SpaceX	Success	Failur			
82	18- 03- 2020	12:16:00	F9 B5 B1048.5	KSC LC-39A	Starlink 5 v1.0, Starlink 6 v1.0	15600	LEO	SpaceX	Success	Failur			
83	22- 04- 2020	19:30:00	F9 B5 B1051.4	KSC LC-39A	Starlink 6 v1.0, Crew Dragon Demo-2	15600	LEO	SpaceX	Success	Succes			
85	04- 06-	01:25:00	F9 B5 B1049.5	CCAFS SLC-	Starlink 7 v1.0, Starlink 8	15600	LEO	SpaceX, Planet	Success	Succes			

2015 Launch Records

• List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

	df:	3										
2]:		Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome	Year
	13	2015- 10-01	09:47:00	F9 v1.1 B1012	CCAFS LC-	SpaceX CRS-5	2395	LEO (ISS)	NASA (CRS)	Success	Failure (drone ship)	2015
	16	2015- 04-14	20:10:00	F9 v1.1 B1015	CCAFS LC-	SpaceX CRS-6	1898	LEO (ISS)	NASA (CRS)	Success	Failure (drone ship)	2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

```
Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-
         20, in descending order
In [33]:
          df4 = df[df["Date"].between("2010-04-06","2017-03-20")]
In [34]:
          df4["Landing Outcome"].value counts()
Out[34]: No attempt
                                     10
          Failure (drone ship)
          Success (ground pad)
          Success (drone ship)
                                     5
          Controlled (ocean)
          Failure (parachute)
          Uncontrolled (ocean)
          Precluded (drone ship)
          Name: Landing _Outcome, dtype: int64
```


Mark all launch sites on a map

• Explore the generated folium map and make a proper screenshot to include all launch sites' location markers on a global map

Mark the success/failed launches for each site on the map

 Explore the folium map and make a proper screenshot to show the colorlabeled launch outcomes on the map

Calculate the distances between a launch site to its proximities

• Explore the generated folium map and show the screenshot of a selected launch site to its proximities such as railway, highway, coastline, with distance calculated and displayed

Launch success count for all sites

• Show the screenshot of launch success count for all sites, in a piechart

Launch site with highest launch success ratio

• Show the screenshot of the piechart for the launch site with highest launch success ratio

Payload vs. Launch Outcome scatter plot for all sites

• Show screenshots of Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

• Explain the important elements and findings on the screenshot, such as which payload range or booster version have the largest success rate, etc.

Classification Accuracy

• Visualize the built model accuracy for all built classification models, in a bar chart

```
Create a logistic regression object then create a GridSearchCV object logreg cv with cv = 10. Fit the object to find the best parameters
         from the dictionary parameters .
          parameters ={ 'C':[0.01,0.1,1],
                        'penalty':['12'],
                        'solver':['lbfgs']}
          parameters ={"C":[0.01,0.1,1], 'penalty':['l2'], 'solver':['lbfgs']}# l1 lasso l2 ridge
          lr=LogisticRegression()
          logreg cv = GridSearchCV(estimator=lr, param grid=parameters,cv=10)
In [27]:
          logreg cv.fit(X train,y train);
         We output the GridSearchCV object for logistic regression. We display the best parameters using the data attribute best_params_ and
         the accuracy on the validation data using the data attribute best score .
          print("tuned hpyerparameters : (best parameters) ",logreg cv.best params )
          print("accuracy :",logreg cv.best score )
        tuned hpyerparameters :(best parameters) {'C': 0.01, 'penalty': '12', 'solver': 'lbfgs'}
        accuracy: 0.8464285714285713
```

Find which model has the highest classification accuracy

Confusion Matrix

Show the confusion matrix of the best performing model with an explanation

Conclusions

- Predicting Falcon 9's first-stage landing success can optimize SpaceX's operations and reduce launch costs.
- By leveraging historical data, we can develop accurate models to forecast landing outcomes.
- This prediction model provides valuable insights into reusability, benefiting both SpaceX and its competitors.
- With continuous improvement, this model could revolutionize cost estimation and efficiency in spaceflight.

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

