Naïve Bayes

Exercise IV

פיתוח: ד"ר יהונתן שלר משה פרידמן

מהתפלגות לפונקציית צפיפות

מושגים - תזכורת

משתנה מקרי: פונקציה המתאימה כל אירוע אפשרי במרחב הסתברות לערך מספרי. אצלינו – מאפיין. דוגמאות:

- 1 מ"מ בדיד: זריקת מטבע אקראית. נוצר מ"מ בדיד בינארי. התאמת צד מטבע לערך 0, וצדו השני לערך \diamond
 - שתנה מקרי. מ"מ רציף: גובהו של אדם שנבחר באקראי הוא גם כן משתנה מקרי.

מרחב המדגם Ω : קבוצת כל התוצאות האפשריות בניסוי. אצלינו – אוסף הערכים המאפיינים האפשריים. דוגמאות:

- $\{0,1\}$: זריקת מטבע אקראית. מרחב המדגם *
- טמפרטורה של מים. מרחב המדגם [0,100]

מאורצ / תצפית: תוצאה נצפת מסוימת בניסוי מסוים. אצלינו – ערך מאפיין של דוגמה ב-dataset. דוגמאות:

- * התוצאה 3 בזריקת קוביה
 - גובה 1.72 של סטודנט 🌣

מושגים - תזכורת

הסתברות מאורע: מידת הסבירות שמאורע מסוים יתרחש.

.1-10 שבין מספרי שבין לקבל ערך מספרי שבין ל-1.

פונקציית צפיפות הסתברות (של משתנה מקרי) [PDF]: פונקציה המתארת את צפיפות המשתנה בכל נקודה במרחב המדגם.

- 🔹 במ"מ בדיד הצפיפות בנקודה מסוימת היא בעצם ההסתברות של המאורע (פונקצית המסה). סך כל הערכים שבפונקציית הצפיפות 🔹
- שערך שייך PDF במ"מ רציף פונקציית הצפיפות לא שווה להסתברות של קיום אירוע. אפשר לראות את ה-PDF במ"מ רציף כסבירות היחסית שערך שייך להסתברות. ערכיו אי שליליים, אך לא מוגבלים ל-1 (כמו במ"מ בדיד).

פונקצית ההתפלגות המצטברת (של משתנה מקרי) [CDF]: פונקציה הקובעת את ההסתברות למאורעות X<=a, (לכל a ממשי).

לדרשת עבור מ"מ רציף ♦

ההתפלגות (של משתנה מקרי): קובעת מהי פונקצית הצפיפות (ומהי ההסתברות של כל מאורע).

- של במשתנה מקרי בדיד בעל אוכלוסיה סופית (או במדגם-train-set) נחשב את ההסתברות (הצפיפות) בנקודה מסוימת כמספר המופעים של האירוע לחלק לסך כמות האירועים.
 - . במשתנה מקרי רציף, נמדדת בד"כ כפונקציה של הממוצע וסטיית התקן (דוגמאות בהמשך).

תרגיל 2 – מ"מ בדיד - הסתברות בסיסית – קריאת נתונים מה-train-set (או המדגם)

תרגיל 2 – תמונות מכוניות – הסתברויות בסיסיות

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

שאלה: מהי ההסתברות להמצאות מכונית אדומה?

$$p(Color = red) = \frac{5}{10} = 0.5$$
 *

שאלה: מהי ההסתברות להמצאות מכונית ספורט?

$$p(Type = Sports) = \frac{6}{10} = 0.6$$
 *

מושגים - תזכורת

התפלגות אחידה: התפלגות בה הצפיפות (סבירות) לכל מאורע היא זהה.

- \star התפלגות אחידה בדידה: ההסתברות שווה ל-1 חלקי מספר הערכים האפשריים במרחב המדגם. לדוגמה: הסתברות \star לקבלת הערך \star בקובייה הוגנת.
 - stהתפלגות אחידה רציפה. לדוגמה: נניח ש-מ"מ X מתפלג באופן אחיד בקטע [0,1]. אז פונקציית ההתפלגות המצטברת שלו:

$$F(x) = egin{cases} 0 & : \ x < 0 \ x & : \ 0 \leq x < 1 \ 1 & : \ x \geq 1. \end{cases}$$

התפלגות ברנולי: מ"מ בדיד בינארי, עם מרחב המדגם: $\{0,1\}$. 1 – מסמן הצלחה ו-0 מסמן כישלון. אם סיכוי ההצלחה הוא q, סיכוי הכישלון הוא q=1-p.

מושגים - תזכורת

תוחלת: מייצגת תוצאה "צפויה" (Expected) של ניסוי זהה החוזר על עצמו פעמים רבות.

$$3.5=$$
הוגנת של קובייה הוגנת $\mu=$ $E[X]=\sum_{x\in A}P(X=x)x$

:עבור משתנה מקרי רציף

* עבור משתנה מקרי בדיד:

$$\mu = \int x \, f(x) \, dx$$

$$\operatorname{Var}(X) = \mathbb{E}((X-\mu)^2) = \mathbb{E}(X^2) - \mu^2 = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

שונות: מדד לפיזור ערכים באוכלוסייה נתונה ביחס לתוחלת שלה.

$$ext{Var}(X) = rac{1}{N} \sum_{i=1}^{N} \left(x_i - \mu
ight)^2 = \left(rac{1}{N} \sum_{i=1}^{N} x_i^2
ight) - \mu^2$$

א מ"מ בדיד, אם האוכלוסייה בגודל N:

$${
m Var}(X) = \sigma^2 = \int (x-\mu)^2 \, f(x) \, dx \, = \int x^2 \, f(x) \, dx \, - \mu^2$$

סטיית תקן: שורש השונות.

:מ רציף

התפלגות במדגם

מדגם (sample): מדגם הוא קבוצת פרטים, המהווה מודל לאוכלוסייה, שאליה היא שייכת. אצלינו – ה-train-set.

$$\overline{oldsymbol{x}} = rac{1}{N} \sum_{i=1}^N x_i$$
ממוצע במדגם:

$$s = \sqrt{rac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2}$$
 סטיית התקן במדגם:

התפלגות t מידע שנאסף במדגם. התפלגות המבוססת על מידע שנאסף במדגם.

אינסוף. שואף לאינסוף t התפלגות ב, כאשר גודל המדגם שואף לאינסוף.

תרגיל 3 - התפלגות מותנית - תרגיל בסיסי

$$P(X = x | Y = y) = P(X = x, Y = y)/P(Y = y)$$

תרגיל 3 - התפלגות מותנית - תרגיל בסיסי

$$P(X = x | Y = y) = P(X = x, Y = y)/P(Y = y)$$

	Y = 0	Y = 1	
X=0	1/9	2/9	$\begin{array}{ c c }\hline 1/3\\2/3\\ \end{array}$
X=1	$\frac{1/9}{2/9}$	4/9	2/3
	1/3	2/3	1

$$P(X=x\mid Y=y)=P(X=x,Y=y)/P(Y=y)$$
 - תזכורת $P(X=x\mid Y=y)=P(X=x,Y=y)/P(Y=y)$ איך היא נקראת? א. מהי ההסתברות של $P(X=x\mid Y=y)=P(X=x,Y=y)/P(Y=y)$ איך היא נקראת? ב. מהי ההסתברות של $P(Y=y)=P(Y=y)$

 $P(X=0 \mid Y=1)$, איך היא נקראת, מהי ההסתברות של

תרגיל 3 - התפלגות מותנית - תרגיל בסיסי - פתרון

	Y = 0	Y = 1	
X=0	1/9	2/9	1/3
X=1	$\frac{1/9}{2/9}$	4/9	$\frac{1/3}{2/3}$
	1/3	2/3	1

? איך היא נקראת P(X = 0 | Y = 1) איך היא נקראת? מהי ההסתברות של פתרון:

P(X = 1, Y = 0)=2/9 א. התפלגות משותפת.

P(Y = 1) = 2/3 ב. ההתפלגות הבלתי תלויה.

 $P(X = 0 \mid Y = 1) = (2/9)/(2/3) = 1/3$. ג. התפלגות מותנית

תרגיל 4 – חוק בייס והנחת חוסר התלות

תרגיל 4

	Age	Hobby	Weather	Buy Computer?
1	Young	Sport	Cold	"Yes"
2	Young	Sport	Cold	"Yes"
3	Young	Sport	Cold	"No"
4	Old	Sport	Hot	"Yes"
5	Old	Sport	Hot	"Yes"
6	Old	Paint	Hot	"No"
7	Old	Paint	Cold	"Yes"
8	Old	Paint	Cold	"Yes"
9	Young	Paint	Hot	"No"
10	Young	Sport	Hot	"No"

נתונה קבוצת האימון הבאה:

נדרשת הערכת Yes/No עבור:

Age = "Young" Hobby = "Paint" Weather = "Cold"

תרגיל 4 - פתרון

- אנו צריכים לחשב את ההסתברויות הבאות *
- P("yes" | Age = "Young", Hobby = "Paint", Weather = "Cold") *
- P("no" | Age = "Young", Hobby = "Paint", Weather = "Cold") *

אונבחר את ההערכה עם ההסתברות הגבוהה יותר

MAP = Maximum a posteriori (estimation)

השייך c_i אייך מבור כל סיווג $(x_1,x_2,x_3,\dots x_n)$, נעריך את ההסתברות עבור כל סיווג $(x_1,x_2,x_3,\dots x_n)$ השייך לקבוצה C ונבחר את הסיווג עם ההסתברות הגבוהה ביותר.

$$P(c_1 | x_1, x_2, x_3, ..., x_n) *$$

$$P(c_2 | x_1, x_2, x_3, ..., x_n) *$$

$$P(c_3 | x_1, x_2, x_3, ..., x_n) *$$

.. .

$$h_{MAP} = \underset{c \in C}{\operatorname{arg\,max}} P(c \mid X)$$

כלומר, נבחר את הקטגוריה c, המקיימת

תרגיל 4 - פתרון

$$h_{MAP} = \arg\max_{c \in C} P(c \mid X)$$

- אנו צריכים לחשב את ההסתברויות הבאות
- P("yes" | Age = "Young", Hobby = "Paint", Weather = "Cold") *
- P("no" | Age = "Young", Hobby = "Paint", Weather = "Cold") *

- אונבחר את ההערכה עם ההסתברות הגבוהה יותר
 - שנשתמש בהנחת בייס לאי תלות בין המאפיינים

חוק בייס והנחת חוסר התלות

בגלל הנחת חוסר התלות בין המאפיינים:

$$P(x_1, x_2, x_D \mid c) = P(x_1 \mid c)P(x_2 \mid c)P(x_3 \mid c)...P(x_D \mid c) = \prod_{i=1}^{D} P(x_i \mid c)$$

תרגיל 4 - פתרון

	Age	Hobby	Weather	Buy Computer?
1	Young	Sport	Cold	"Yes"
2	Young	Sport	Cold	"Yes"
3	Old	Sport	Hot	"Yes"
4	Old	Sport	Hot	"Yes"
5	Old	Paint	Cold	"Yes"
6	Old	Paint	Cold	"Yes"

נפצל לשתי טבלאות: טבלת YES טבלת NO

	Age	Hobby	Weather	Buy Computer?
1	Young	Sport	Cold	"No"
2	Old	Paint	Hot	"No"
3	Young	Paint	Hot	"No"
4	Young	Sport	Hot	"No"

$P(c | x_1, x_2, x_D) = \frac{P(c)P(x_1, x_2, x_D | c)}{P(x_1, x_2, x_D)}$ "yes" - פתרון נחשב את ההסתברות ל-

P("yes" | Age = "Young", Hobby = "Paint", Weather = "Cold") =

P("yes") × P(Age = "Young", Hobby = "Paint", Weather = "Cold" | "yes")/K

P("yes") × P(Age = "Young" | "yes") × P(Hobby = "Paint" | "yes") × P(Weather = "Cold" | "yes")/K

K = P(Age = "Young", Hobby = "Paint", Weather = "Cold")

$$P(Age = "Young" | "yes") = P(Hobby = "Paint" | "yes") = P(Weather = "cold" | "yes") = P(Hobby = "Paint" \land "yes") / P("yes") = P(Weather = "cold" \land "yes") / P("yes") / P("yes") = P(Weather = "cold" \land "yes") / P("yes") / P("$$

Prior class distribution:

$$P("yes") = 0.6$$

("yes") × P(Age = "Young" | "yes") × P(Hobby = "Paint" | "yes") × P(Weather = "Cold" | "yes")/K = $\frac{6}{10} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} = \frac{12}{270} = 0.04$

$$P(x_1, x_2,x_D \mid c) = P(x_1 \mid c)P(x_2 \mid c)P(x_3 \mid c)...P(x_D \mid c) = \prod_{i=1}^{D} P(x_i \mid c)$$

תרגיל 4 – פתרון נחשב את ההסתברות ל- "no"

```
P("no" | Age = "Young", Hobby = "Paint", Weather = "Cold") =
P("no") × P(Age = "Young", Hobby = "Paint", Weather = "Cold"|"no")/K
P("no") × P(Age = "Young"|"no") × P(Hobby = "Paint"|"no") × P(Weather = "Cold"|"no")/K

K = P(Age = "Young", Hobby = "Paint", Weather = "Cold")
```

$$P(Age = "Young" | "no") =$$

$$P(Age = "Young" \land "no") / P("no") =$$

$$\frac{3}{4}$$

```
P(Hobby = "Pa \text{ int"} | "no") =
P(Hobby = "Pa \text{ int"} \land "no") / P("no") =
\frac{2}{4}
```

$$P(Weather = "cold" | "no") =$$

$$P(Weather = "cold" \land "no") / P("no") =$$

$$\frac{1}{4}$$

Prior class distribution:

$$P("no") = 0.4$$

("no") × P(Age = "Young" | "no") × P(Hobby = "Paint" | "no") × P(Weather = "Cold" | "no")/K
$$= \frac{4}{10} \times \frac{3}{4} \times \frac{2}{4} \times \frac{1}{4} = \frac{24}{640} = 0.0375$$

תרגיל 4 – פתרון בחירת הקטגוריה

- * P("yes" | Age = "Young", Hobby = "Paint", Weather = "Cold") =0.04
- * P("no" | Age = "Young", Hobby = "Paint", Weather = "Cold") = 0.0375

Predict - YES

פונקצית לוג

תכונות:

- פונקציית לוג של שברים תהיה שלילית, אך היא שומרת על הסדר, והיא גם מונוטונית עולה.
 - $\log(x^*y) = \log(x) + \log(y)$ •

לכן, נרצה לעבוד עם חיבור לוגים, במקום מכפלת שברים (של הסתברויות).

מדוע?

תרגיל 4ב - סימולציית סיווג – מ"מ בדיד - פתרון

("yes")
$$\times$$
 P(Age = "Young"|"yes") \times P(Hobby = "Paint"|"yes") \times P(Weather = "Cold"|"yes")/K =

$$=\frac{6}{10} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} = \frac{12}{270} = 0.04$$

וכעת נשתמש ב-log

$$log(0.6) + log(0.333) + log(0.333) + log(0.666) = -1.352$$

$$("no") \times P(Age = "Young"|"no") \times P(Hobby = "Paint"|"no") \times P(Weather = "Cold"|"no")/K =$$

$$=\frac{4}{10} \times \frac{3}{4} \times \frac{2}{4} \times \frac{1}{4} = \frac{24}{640} = 0.0375$$

וכעת נשתמש ב-log

$$log(0.4) + log(0.75) + log(0.5) + log(0.25) = -1.4259$$

שלב הסיווג (המשך):

במקום חישוב מכפלת הסתברויות יכולנו גם להוציא log

תרגיל 5 - סימולציית סיווג – מ"מ בדיד

מסווג Naïve Bayes עבור מ"מ בדיד - תזכורת

• Train Naïve Bayes (given data for X and Y) for each* value y_k estimate $\pi_k \equiv P(Y=y_k)$ for each* value x_{ij} of each attribute X_i estimate $\theta_{ijk} \equiv P(X_i=x_{ij}|Y=y_k)$

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

 $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$

^{*} probabilities must sum to 1, so need estimate only n-1 of these...

תרגיל 5 - סימולציית סיווג – מ"מ בדיד

Red, Domestic, SUV נתונות 10 דוגמאות של רכבים, צריך לבנות מסווג שיחליט אם רכב מסוג * יש סבירות גבוהה שיגנב. להלן הנתונים

Example No.	Color	Type	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

תרגיל 5 - סימולציית סיווג – מ"מ בדיד מה עושים?

* אין נתון כזה בטבלה, צריך לחשב הסתברויות:

P(yes | Red & SUV & Domestic) הופש לחשב את *
P(no | Red & SUV & Domestic).

ונמצא מה יותר סביר..

?איך עושים זאת

תרגיל 5 - סימולציית סיווג – מ"מ בדיד מה עושים?

P(yes | Red & SUV & Domestic) = P(yes) * P(red | yes) * P(SUV | yes) * P(Domestic | Yes)

ובאופן דומה לגבי ההסתברות ל"לא".

$$P(yes) = 5/10 = 0.5$$

$$P(\text{red} | \text{yes}) = 3/5 = 0.6$$

$$P(suv | yes) = 1/5 = 0.2$$

$$P(domestic | yes) = 2/5 = 0.4$$

$$P(no) = 5/10 = 0.5$$

$$P(red | no) = 2/5 = 0.4$$

$$P(suv | no) = 3/5 = 0.6$$

$$P(domestic | no) = 3/5 = 0.6$$

תרגיל 5 - סימולציית סיווג – מ"מ בדיד מה עושים? המשך..

```
P(yes | Red & SUV & Domestic) = P(yes) * P(red | yes) * P(SUV | yes) * P(Domestic | Yes) = 0.5 * .6 * .2 * .4 = 0.024
```

ובאופן דומה לגבי ההסתברות ל"לא".

```
P(no | Red & SUV & Domestic) = P(no) * P(red | no) * P(SUV | no) * P(Domestic | no) = 0.5 * .4 * .6 * .6 = 0.072
```

ומכאן ש:

P(no) > P(yes) and thus classified as "no"

תרגיל 5ב - סימולציית סיווג – מ"מ רציף - פתרון

```
P(yes | Red & SUV & Domestic) = P(yes) * P(red | yes) * P(SUV | yes) * P(Domestic | Yes)=
```

וכעת נשתמש ב-log

$$log(0.5) + log(0.6) + log(0.2) + log(0.4) = -1.619$$

P(no | Red & SUV & Domestic) = P(no) * P(red | no) * P(SUV | no) * P(Domestic | no) = = 0.5 * 0.4 * 0.6 * 0.6 = **0.072**

וכעת נשתמש ב-log

$$log(0.5) + log(0.4) + log(0.6) + log(0.6) = -1.142$$

שלב הסיווג (המשך):

במקום חישוב מכפלת הסתברויות יכולנו גם להוציא log

(evaluation) תרגול שערוך המודל

תרגיל 6 – שיערוך המודל

נדרשתם לכתוב מסווג לזיהוי סטודנטים שיסיימו בהצטיינות קורס "למידת מכונה".

אימנתם את המסווג מבדיקת המסווג על נתוני הסטודנטים משנת תש"פ (2019-2020) ובדקתם על נתוני תשפ"א (2020-2021).

אגיליתם שמתוך 215 סטודנטים שלקחו את הקורס, המסווג אמר על 55 שיסיימו בהצטיינות, אך בפועל רק 40 מתוכם אכן סיימו בהצטיינות והיו עוד 5 אחרים שהמסווג פספס.

למסווג הנ"ל confusion matrix בנו

error-rate -ו , accuracy שבו א

(לערך החיובי של הקטגוריה) recall -ו precision אחשבו

	Predicted	Predicted
	Yes	No
Actual Yes	40	5
Actual No	15	155

Accuracy =
$$(40+155)/215 = 90.7\%$$

error-rate = $(5+15)/215 = 9.3\%$
Precision = $40/(40+15) = 72.7\%$
Recall = $40/(40+5) = 88.9\%$

תרגיל 7 – שיערוך המודל

ו accuracy, precision, error_rate למסווג הר"מ וחשב עבורו confusion matrix למסווג הר"מ וחשב א confusion matrix למסווג הר"מ וחשב צבורו.

* Y Actual

Y Predicted

	Predicted	Predicted
	Yes	No
Actual Yes	4	1
Actual No	3	2

Accuracy = (4+2)/10 = 60%

0

Error Rate = (1+3)/10 = 40%

Precision = 4/(4+3) = 57.1%

Recall = 4/(4+1) = 80%