# CMPUT 175 Introduction to Foundations of Computing

Searching

### **Objectives**

- Introduce two techniques for searching for an element in a collection
- Learn sequential search algorithm.
- Learn the binary search algorithm for ordered collections
- Learn how to evaluate the complexity of an algorithm and compare between algorithms

#### **Outline of Lecture**

- Review the simple list examples
- Sequential search approach
- Complexity of sequential search
- Binary search approach
- Complexity of binary search
- Compare sequential search and binary search

#### Array Example

# Find the largest element in a list of numbers

```
markList = [50, 37, 71, 99, 63]
```

max = markList[0]

for index in range(1,len(markList)):

if (markList[index] > max):

max = markList[index]

print("highest mark=",max)

#### markList

| 50         | 0 |
|------------|---|
| 37         | 1 |
| <b>7</b> 1 | 2 |
| •99        | 3 |
| 63         | 4 |

index=4

max

99

#### Array Example2

```
# Find the index of the largest element in a list of numbers

markList = [50, 37, 71, 99, 63]

indexOfMax = 0

for index in range(1,len(markList)):

if (markList[index] > markList[indexOfMax]):

indexOfMax = index

print("index of highest mark=",indexOfMax)
```

#### markList

| 50 | $\mid 0$ |
|----|----------|
| 37 | 1        |
| 71 | 2        |
| 99 | 3        |
| 63 | 4        |

$$index = 4$$

indexOfMax

3

#### **Outline of Lecture**

- Review the simple list examples
- Sequential search approach
- Complexity of sequential search
- Binary search approach
- Complexity of binary search
- Compare sequential search and binary search

#### The Search Problem



- Given a container, find the index of a particular element, called the key.
- Technique applies for lists, arrays, files, etc.
- Applications: information retrieval, database querying, etc.

30

| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|----|----|----|----|----|----|----|----|----|----|
| 25 | 50 | 10 | 95 | 75 | 30 | 70 | 55 | 60 | 80 |

Element sought for

Collection

### Sequential Search

 Compare the key to each element in turn, until the correct element is found, and return its index.





#### Sequential Search Code

Compare all elements of the collection until we find the key.

```
# a sequential search code (first tentative)
def sequential_search(data, key):
  found = False
  index = 0
  while ( not found ):
     if ( key == data[index] ):
       found = True
     else:
       index = index + 1
                                     Could be a
  return index
                                    problem here
```

#### Element not found

- We must take into account that the key we are searching for may not be in the list.
- In this case we must return a special index, say -1.



# Search Algorithm

INPUT: data: list of int; key: int;
OUTPUT: index : an int such that
 data[index] == key if key is in data,
 or -1 if key is not stored in data.

#### Method:

- 1. index = 0; found=false;
- 2. While (not found and index < data.length) check similarity data[index] and key index = index + 1
- 3. if not found then index = -1;

```
a sequential search method
def sequential_search(data, key) :
  found = False
  index = 0
  while ( not found and index < len(data) ):
    if ( key == data[index] ):
      found = True
    else:
                            Revised Sequential
      index = index + 1
                                 Search Code
  if (not found):
```

index = -1

return index

#### **Outline of Lecture**

- Review the simple list examples
- Sequential search approach
- Complexity of sequential search
- Binary search approach
- Complexity of binary search
- Compare sequential search and binary search

### **Complexity Analysis**

- How efficient is this algorithm?
- In general if we have an algorithm that does something with *n* objects, we want to express the time efficiency of the algorithm as a function of *n*.
- Such an expression is called the time complexity of the algorithm.
- In the case of search, we can count the number of comparison operations between the key and the elements.

# Worst, Best and Average cases

- In fact, we usually have multiple expressions:
  - the worst case complexity,
  - the best case complexity
  - the average case complexity.

### Complexity of Sequential Search

- How many comparison operations are required for a sequential search of an n-element container?
- $\bullet$  In the worst case  $\rightarrow$  n.
- In the best case  $\rightarrow$  1.

- Key not in container or last position Key is in first position in container
- In the average case:  $\frac{1+2+3+...+n}{n} = \frac{n(n+1)}{2n} = \frac{(n+1)}{2}$
- In this case, we say the complexity of Search is in the order of n, denoted as O(n).
- Can we improve this algorithm?

#### **Outline of Lecture**

- Review the simple list examples
- Sequential search approach
- Complexity of sequential search
- Binary search approach
- Complexity of binary search
- Compare sequential search and binary search

#### **Binary Search**

- If the elements are <u>ordered</u>, we can do better.
- Guess the middle and adjust accordingly.





### Binary Search Algorithm



March 14, 2022

© Osmar R. Zaïane: University of Alberta

19

#### **Strategy of Binary Search:**

Given an ordered list of integers, and a value of integer, search for the value in the array using an approach of **Divide and Conquer**.



#### **Binary Search Code**

Divide in 2 between lower and upper bounds until we find the key.

```
# a binary search code of ordered array (first tentative)
def binary_search( data, key ) :
  found = False
  low = 0
  high=len(data)-1
  while ( not found ):
     guess = (high+low)//2
                                                 Could be a
     if ( key == data[guess] ):
                                                problem here
        found = True
     else:
       if (key < data[guess]):</pre>
          high=guess-1
        else:
          low = guess+1
  return guess
```

#### Element not found



# Element not found (con't)

| 35 |    |    | IG       | H            |    |    |    |    |    |      |                    |
|----|----|----|----------|--------------|----|----|----|----|----|------|--------------------|
|    | 0  | 1  | 2        | 3            | 4  | 5  | 6  | 7  | 8  | 9    |                    |
|    | 10 | 25 | 30       | 50           | 55 | 60 | 70 | 75 | 80 | 95   | low = guess + 1    |
|    |    |    |          | GI           |    |    |    |    | g  | uess | = ( + high) / 2    |
|    |    | 1  | 2        | 2            | 1  | 5  | 6  | 7  | 0  | 9    |                    |
|    | U  | 1  | <i>L</i> | 3            | 4  |    | 6  |    | 8  |      |                    |
|    | 10 | 25 | 30       | 50           | 55 | 60 | 70 | 75 | 80 | 95   | high = guess - 1   |
|    |    |    | H        | $\mathbf{G}$ |    |    |    |    | g  | uess | = (han + high) / 2 |
|    |    |    |          |              |    | _  |    | _  |    |      |                    |
|    | 0  | 1  | 2        | 3            | 4  | 5  | 6  | 7  | 8  | 9    |                    |
|    | 10 | 25 | 30       | 50           | 55 | 60 | 70 | 75 | 80 | 95   | - nigh             |

#### Binary Search Algorithm

```
INPUT: data: list of ordered int; key: int;
OUTPUT: index: an int such that
            data[index] = key if key is in data,
            or -1 if key is not stored in data.
Method:
   1. lower = 0; upper = length;
   2. While ( not found && low < =upper )
         index = (lower + upper) / 2;
         check similarity data[index] and key
         if similar then found, otherwise
              if key < data[index]
                     upper = index-1;
              else lower = index +1;
   3. If (data[index] != key) index = -1;
```

```
a binary search code of ordered array
def binary_search( data, key ) :
  found = False
  low = 0
  high=len(data)-1
  while ( not found and low<=high):
    guess = \frac{\text{high+low}}{2}
    if ( key == data[guess] ):
       found = True
     else:
       if (key < data[guess]):</pre>
         high=guess-1
       else:
                                    Revised Binary
         low = guess+1
  if (not found):
                                       Search Code
     guess=-1
  return guess
```

#### **Outline of Lecture**

- Review the simple list examples
- Sequential search approach
- Complexity of sequential search
- Binary search approach
- Complexity of binary search
- Compare sequential search and binary search

#### Worst-case Binary Search

- Each time we guess, we divide the list in half:
- In the worst case:
  - 10 elements, make guess 1, then
  - 5 elements, make guess 2, then
  - 2 elements, make guess 3, then
  - 1 element, make guess 4, done



#### Worst-case Binary Search (con't)

- With 10 elements we needed 4 guesses
- If there were 15 elements:
  - 15 elements, make guess 1, then
  - 7 elements, make guess 2, then
  - 3 elements, make guess 3, then
  - 1 elements, make guess 4, done
- These results are the same, but if we have from 16 to 31 elements it takes 5 guesses.
- This formula is:  $\lfloor log_2(n) + 1 \rfloor$
- log<sub>2</sub> (n) is the number of times you have to divide n by 2 to get 1

# Average-case Binary Search

- If there were 15 elements:
  - 1 element takes 1 guess
  - 2 elements take 2 guesses
  - 4 elements take 3 guesses
  - 8 elements take 4 guesses



The average is:

$$\frac{(1*1)+(2*2)+(4*3)+(8*4)}{15} = \frac{49}{15} \approx 3$$

The average case is about one less than the worst case, so this is: |log<sub>2</sub>(n)|

#### **Time Complexity of Binary Search**

The number of comparisons is proportional to the height of the following search tree:



#### **Outline of Lecture**

- Review the simple list examples
- Sequential search approach
- Complexity of sequential search
- Binary search approach
- Complexity of binary search
- Compare sequential search and binary search

# Sequential and Binary Search

For average and worst case sequential search, it takes:  $\frac{(n+1)}{2}$  and n.

• For average and worst case binary search, it takes:  $\lfloor log_2(n) \rfloor$  and  $\lfloor log_2(n) + 1 \rfloor$ 

| list  | Sequential | Sequential | Binary  | Binary | Datia |
|-------|------------|------------|---------|--------|-------|
| size  | average    | worst      | average | worst  | Ratio |
| 10    | 6          | 10         | 3       | 4      | 2     |
| 100   | 51         | 100        | 6       | 7      | 8     |
| 1000  | 501        | 1000       | 9       | 10     | 55    |
| 10000 | 5001       | 10000      | 13      | 14     | 384   |