To Teach or not to Teach? Decision Making Under Uncertainty in Ad Hoc Teams

PETER STONE

Department of Computer Science The University of Texas at Austin pstone@cs.utexas.edu

SARIT KRAUS

Department of Computer Science, Institute for Advanced Computer Science University of Maryland Bar-Ilan University sarit@cs.biu.ac.il

Abstract

- Ad hoc teams: collaboration without pre-coordination
- Testbed scenario: cooperative k-armed bandit
- We characterize potentially optimal actions

Teamwork

- Typical scenario: pre-coordination
- People practice together
 - Robots given coordination languages, protocols
 - "Locker room agreement" [Stone & Veloso, '99]

Ad Hoc Teams

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

Goal: Create a good team player

- Minimal representative scenario
 - One teammate, no communication
 - Fixed and known behavior

3-armed bandit

- Agent A: teacher
 - Knows payoff distributions
 - Objective: maximize expected sum of payoffs
 - If alone, always Arm_{*}
- Agent B: learner
 - Can only pull Arm₁ or Arm₂
 - Selects arm with highest observed sample average

Assumptions

- Alternate actions (teacher first)
- Results of all actions fully observable (to both)
- Number of rounds remaining finite, known to teacher

Objective: maximize expected sum of payoffs

Formalism

- μ_i : expected payoff of Arm_i ($i \in \{1, 2, *\}$)
 - Assume $\mu_* > \mu_1 > \mu_2$: only interesting case
- n_i : number of times Arm_i has been pulled
- m_i : cumulative payoff from past pulls of Arm_i
- $\bar{x_i} = \frac{m_i}{n_i}$: observed sample average so far
- *r*: number of rounds left

Which arm should the teacher pull, as a function of r and all the μ_i , n_i , and $\bar{x_i}$?

Acknowledgements

Thanks to Yonatan Aumann, Vincent Conitzer, Reshef Meir, Daniel Stronger and members of the UT Austin Learning Agents Research Group (LARG) for helpful comments and suggestions. The research is supported in part by grants from NSF (IIS-0917122, 0705587), ONR (N00014-09-1-0658), DARPA (FA8650-08-C-7812), U.S. Army Lab (W911NF-08-1-0144), ISF (#1357/07), the FHWA (DTFH61-07-H-00030), and the Fulbright and Guggenheim Foundations.

Teacher should consider Arm₁

- Teacher Arm₁ expected value (EV):
 - Define η : probability Arm₁ returns > 8
 - Assume: $\eta > \frac{1}{2}$
 - EV: $\mu_1 + \eta \mu_1 + (1 \eta)\mu_2 > 9 + \frac{9}{2} + \frac{5}{2} = 16$
- Teacher Arm* expected value:
 - EV: $\mu_* + \mu_2 = 15$

Should teacher consider Arm₂**?**

- $\bar{x_1} < \bar{x_2} \Longrightarrow \mathbf{no}$
 - Sequence of values from Arm₂: u_0, u_1, u_2, \dots
 - Optimal from Arm₂: $u_0, a, b, c, d, e, \dots w, x, y, z$
 - $\mu_*, u_0, \mu_*, a, b, c, d, e, \dots, w, x$ Also possible:
- $\bar{x_1} > \bar{x_2} \Longrightarrow ?$
 - Subtle, but still **no**
 - Challenge: prove it!

Never teach when $\bar{x_1} > \bar{x_2}$

- Same proof
 - Sequence of values from Arm₁: v_0, v_1, v_2, \dots
 - Optimal from Arm₁: $v_0, a, b, c, d, e, \dots w, x, y, z$
 - Also possible: $\mu_*, v_0, \mu_*, a, b, c, d, e, \dots, w, x$
- Only need to consider Arm₁ when $\bar{x_1} < \bar{x_2}$
 - Depends on distributions
 - Consider binary and normal

Arms with Binary Distributions

1 with probability p0 with probability 1-p m_i = number of 1's so far

One round left: r = 1

- Consider teaching if:
 - 1. $\bar{x_1} < \bar{x_2} \equiv \frac{m_1}{n_1} < \frac{m_2}{n_2}$
 - 2. It could help: $\frac{m_1+1}{n_1+1} > \frac{m_2}{n_2}$
- Teacher Arm_{*} expected value: $p_* + p_2$
- Teacher Arm₁ expected value: $p_1 + p_1 * p_1 + (1 p_1)p_2$
 - **Teach iff conditions 1, 2, and** $p_* p_1 < p_1(p_1 p_2)$

Multiple Rounds Left: $r \geq 2$

- Polynomial algorithm finds optimal teacher action
 - Takes starting values M_1, N_1, M_2, N_2 and R
- Dynamic programming
 - Works backwards from r = 1
 - Considers all reachable values of m_1, n_1, m_2, n_2
- $O(r^5)$ in both memory and runtime
- Generalizes to arm payoffs with any discrete distribution

Testing an Ad-hoc Team Player [AAAI'10]

Evaluate(a_0 , a_1 , A, D)

- ullet Initialize performance (reward) counters r_0 and r_1 for agents a_0 and a_1 respectively to $r_0 = r_1 = 0$.
- - Sample a task *d* from *D*.
 - Randomly draw a subset of agents B, $|B| \ge 2$, from Asuch that $E[s(B,d)] \ge s_{min}$.
 - Randomly select one agent $b \in B$ to remove from the team to create the team B^- .
 - Increment r_0 by $s(\{a_0\} \cup B^-, d)$.
 - Increment r_1 by $s(\{a_1\} \cup B^-, d)$.
- If $r_0 > r_1$ then we conclude that a_0 is a better ad-hoc team player than a_1 in domain D over the set of possible teammates A.

Arms with Normal Distributions

 $N(\mu, \sigma)$

One round left: r = 1

- Cost of teaching: $\mu_* \mu_1$
- Benefit of teaching if successful: $\mu_1 \mu_2$
- $(\bar{x_1} < \bar{x_2})$ • Probability it's successful: $1 - \Phi_{\mu_1,\sigma_1}(\bar{x_2}(n_1+1) - \bar{x_1}n_1)$
- Cumulative prob. that pulling Arm₁ causes $\bar{x_1} > \bar{x_2}$
 - **Teach iff** $1 \Phi_{\mu_1,\sigma_1}(\bar{x_2}(n_1+1) \bar{x_1}n_1) > \frac{\mu_* \mu_1}{\mu_1 \mu_2}$

Multiple Rounds Left: $r \geq 2$

- Can solve computationally nested integral
- Not exactly, nor efficiently
- Is there an efficient algorithm?

Experiments

- Evaluated teacher heuristics
 - 1. Never teach
 - 2. Teach iff $\bar{x_1} < \bar{x_2}$
 - 3. Teach iff it would be optimal to teach if r = 1
 - None dominates
- ullet Looked for patterns in optimal action as a function of r
 - Conjecture: teach when $r = 1 \Longrightarrow$ teach when r = 2
 - False! (binary and normal)

More than 3 arms

- Additional arms for teacher make no difference
 - Ignore all but the best
- Additional learner arms: most results generalize naturally
 - Never teach with Arm_z (Arm_1 - Arm_{z-1} possible)
 - Never teach with Arm, when $\bar{x}_i > \bar{x}_i, \forall i \neq i$ - **Surprising:** May be best to teach with Arm_j for j > i(teach with Arm₂, even though $\bar{x}_1 > \bar{x}_2 > \bar{x}_3$)

Open Questions

- What if the teacher doesn't know the distributions?
 - Exploration vs. exploitation vs. teaching
- What if the learner isn't greedy: explores on its own?
- How does this extend to the infinite (discounted) case? • What if there are multiple learners?

Related Work

(Full references are in the paper)

- Ad hoc human teams [Just, Kildare]
- Softare agents to support human teams [Tambe, Sycara]
- Teacher not embedded [Brafman, Tennenholtz]
- Environment design [Zhang]
- *k*-armed bandits [Lin, Kleinberg]
- Multiagent reinforcement learning [Claus, Schaerf] • Iterated game theory [with Kaminka, Rosenschein]

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

