In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import linear_model
from sklearn import metrics
```

In [2]:

```
data = pd.read_csv("insurance.csv")
data.head()
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [5]:

```
# checking for null values
data.isna().sum()

# plotting heatmap for NaN values
sns.heatmap(data.isna())
```

Out[5]:

<matplotlib.axes._subplots.AxesSubplot at 0x41f81872b0>

In [8]:

```
# Plotting age distribution
sns.distplot(data.age)
plt.title("Age Distribution")
```

Out[8]:

Text(0.5, 1.0, 'Age Distribution')

Age Distribution 0.040 0.035

In [15]:

```
# Plotting sex distribution
sns.countplot(data.sex)
```

Out[15]:

<matplotlib.axes. subplots.AxesSubplot at 0x41fa302860>

In [21]:

```
# Label Encoding data for Linear Regression

from sklearn.preprocessing import LabelEncoder
sex_le = LabelEncoder()
smoker_le = LabelEncoder()
region_le = LabelEncoder()
```

In [22]:

```
data.sex = sex_le.fit_transform(data.sex)
data.smoker = smoker_le.fit_transform(data.smoker)
data.region = region_le.fit_transform(data.region)
```

In [23]:

```
data.head()
```

Out[23]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	3	16884.92400
1	18	1	33.770	1	0	2	1725.55230
2	28	1	33.000	3	0	2	4449.46200
3	33	1	22.705	0	0	1	21984.47061
4	32	1	28.880	0	0	1	3866.85520

In [24]:

```
x train = data.drop('charges', axis = 'columns')
y_train = data.charges
In [25]:
lin_reg_model = linear_model.LinearRegression()
In [26]:
lin reg model.fit(x train, y train)
Out[26]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [27]:
# making predictions on the training data itself
y_pred = lin_reg_model.predict(x_train)
In [30]:
# finding R squared for our model
r_squared = metrics.r2_score(y_train, y_pred)
r_squared
Out[30]:
0.7507372027994939
In [41]:
import numpy as np
test = np.array([42,0,30,1,0,1]).reshape(1,-1)
prediction = lin_reg_model.predict(test)
print('The insurance cost is USD', prediction[0])
```

The insurance cost is USD 9093.480167062426