Web caches/ cookies and the DNS

CE 352, Computer Networks
Salem Al-Agtash

Lecture 5

Slides are adapted from Computer Networking: A Top Down Approach, 7th Edition © J.F Kurose and K.W. Ross

Recap (Internet Protocol Stack)

L7: Application				
L6: Presentation	HTTP(S)	SSH	Email (IMAP/POP)	
L ₅ : Session				
L4: Transport	TCP	UDP		
L3: Network	IP			
L2: Data link	MPLS Ethernet	802.11 Wi-Fi	CAN bus	USB
L1: Physical	Ethernet	002.11 WI-FI	CAN DUS	USB

Recap (Persistent vs no-persistent http)

Topics of today

- Part1
 - 1- Stateless and stateful web servers
 - 2- Cookies to maintain state in stateless protocol
 - 3- Uses of cookies
 - 4- Web caches and caching examples

Part2

- 1- What is a DNS and its hierarchy
- 2- The DNS 13 root name servers
- 3- The TLD authoritative servers
- 4- The local DNS name server
- 5- The DNS name resolution example
- 6- DNS records: host and dig commands
- 7- DNS caching and updating records
- 8- DNS properties and attacks

Cookies: State in a Stateless Protocol

Client-side state maintenance

- Client stores small state on behalf of server
- Client sends state in future requests to the server

Can provide authentication

Cookies: keeping "state"

Web sites and client browser use cookies to maintain some state between transactions

four components:

- cookie header line of HTTP response message
- cookie header line in next HTTP request message
- cookie file kept on user's host, managed by user's browser
- 4) back-end database at Web site

Use of cookies

what cookies can be used for:

- authorization
- shopping carts
- recommendations
- user session state (Web e-mail)

aside

cookies and privacy:

- cookies permit sites to learn a lot about you
- third party persistent cookies (tracking cookies) allow common identity (cookie value) to be tracked across multiple web sites to sites

Web caches (proxy server)

- Responding to client requests without involving origin server
- Web users
 - Availability and fast downloads
- Web content providers
 - More users, cost-effective infrastructure, and non-congested network

Why Web caching?

- reduce response time for client request
 - cache is closer to client
- reduce traffic on an institution's access link
- Internet is dense with caches
 - enables "poor" content providers to more effectively deliver content

- Proxies: Caching and replication
- Content delivery networks (CDN): economies of scale

Caching example:

assumptions:

- avg request rate from browsers to origin servers:1.5Mbps
- RTT from institutional router to any origin server: 2 sec
- access link rate: 1.54 Mbps

consequences:

- LAN utilization:?
- access link utilization:?
- total delay =

Caching example:

assumptions:

- avg request rate from browsers to origin servers:1.5Mbps
- RTT from institutional router to any origin server: 2 sec
- access link rate: 1.54 Mbps

consequences:

- LAN utilization: (1.5Mbps)/1 Gbps = 0.15%
- access link utilization: 1.5 Mbps/1.54Mbps = 97%
- total delay = Internet delay + access delay + LAN delay

Assuming local access 0.01 sec, then: total delay = 2 + 0.1 = 2.01 sec As access link approaches 100% utilization, link upgrade in needed for users to get better internet response!

This delay becomes very large when the link approached 100% utilization, unacceptable for institution's users. So: Either upgrade the link or install a local cache

Install local cache

- suppose cache hit rate is 0.4
 - 40% requests satisfied at cache, 60% requests satisfied at origin
- access link utilization:
 - 60% of requests use access link
- data rate to browsers over access link =?

- utilization =?
- total delay =?

Install local cache

- suppose cache hit rate is 0.4
 - 40% requests satisfied at cache, 60% requests satisfied at at origin
- access link utilization:
 - 60% of requests use access link
- data rate to browsers over access link
 - = 0.6*1.50 Mbps = .9 Mbps
- utilization = 0.9/1.54 = 58%
- total delay
 = o.6 * (delay from origin servers) + o.4
 * (delay when satisfied at cache)

Assuming local access 0.01 sec, then: total delay = 0.6(2.01) + 0.4(0.1) = 1.21 sec So with no link upgrade, users still get better internet response!

The DNS: domain name system

Internet hosts, routers:

- IP address (32 or 128 bits) used for addressing datagrams
- "name", e.g., www.yahoo.com used by humans

Domain Name System:

- distributed database implemented in hierarchy of many name servers
- application-layer protocol: hosts, name servers communicate to resolve names (address/name translation)

handles many trillions of queries/day:

- many more reads than writes
- performance matters: almost every Internet transaction interacts with DNS msecs count!

DNS hierarchy

- DNS name space is divided into zones.
- Each zone contains some part of the tree and contains name servers holding information about the that zone

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approximation:

- client queries amazon.com DNS server to get IP address for www.amazon.com
- client queries .com DNS server to get amazon.com DNS server

client queries root server to find .com DNS server

DNS: root name servers (1)

13 root servers (labeled A – M) http://www.root-servers.org/ contacted by local name server that can not resolve name root name server:

- contacts authoritative name server if name mapping not known
- gets mapping
- returns mapping to local name server

TLD (2), authoritative (3) servers

top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name (4) server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
- has local cache of recent nameto-address translation pairs (but may be out of date!)
- acts as proxy, forwards query into hierarchy

DNS name resolution example

- Client--server interaction on UDP Port 53
- host at cse.nyu.edu wants IP address for gaia.cs.umass.edu
- iterative query:
 - contacted server replies with name of server to contact
 - "I don't know this name, but ask this server"
 - Widely used in practice
- recursive query:
 - puts burden of name resolution on contacted name server
 - heavy load at upper levels of hierarchy?

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

Туре	Meaning	Value	
SOA	Start of Authority	Parameters for this zone	
Α	IP address of a host	32-Bit integer	
MX	Mail exchange	Priority, domain willing to accept e-mail	
NS	Name Server	Name of a server for this domain	
CNAME	Canonical name	Domain name	
PTR	Pointer	Alias for an IP address	
HINFO	Host description	CPU and OS in ASCII	
TXT	Text	Uninterpreted ASCII text	

host – a www.gju.edu.jo

```
$host -a www.gju.edu.jo
Trying "www.gju.edu.jo"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 32587
;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 1
;; QUESTION SECTION:
;www.gju.edu.jo. IN ANY
:: ANSWER SECTION:
www.giu.edu.jo. 1140 IN A 87.236.233.242
;; AUTHORITY SECTION:
gju.edu.jo. 1543 IN NS dns1.junet.edu.jo.
gju.edu.jo. 1543 IN NS mail-relay.gju.edu.jo.
gju.edu.jo. 1543 IN NS ns1.gju.edu.jo.
```

;; ADDITIONAL SECTION: ns1.giu.edu.jo. 1753 IN A 87.236.233.230

Received 132 bytes from fe80::1%5#53 in 7 ms

Try:

dig www.gju.edu.jo dig www.gju.edu.jo any dig www.gju.edu.jo MX dig www.gju.edu.jo SOA

Inserting records into DNS

- Example: new startup "Network Utopia"
- Get a block of space from ISP
 - e.g. 220.44.8.128/25
- Register networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide registrar with names and IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server:
 - (networkutopia.com, dns1.networkutopia.com, NS)
 - (dns1.networkutopia.com, 220.44.8.129, A)
- create authoritative server dns1.networkutopia.com:
 - type A record for www.networkuptopia.com;
 - type MX record for networkutopia.com

DNS: caching, updating records

- Performing DNS queries takes time
- Caching can reduce overhead
 - •once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time "time to live" (TTL)
- TLD servers typically cached in local name servers thus root name servers not often visited
 - •cached entries may be *out-of-date* (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internetwide until all TTLs expire
- •update/notify mechanisms proposed IETF standard RFC 2136

DNS properties and attacks

- Important properties of DNS
 - Easy unique naming and reasonable trust model
 - Caching lends scalability and performance
- "Distributed Denial of Service" DDoS attacks
 - bombard root servers with traffic
 - local DNS servers cache IPs of TLD servers, allowing root server bypass
 - bombard TLD servers, potentially more dangerous
- redirect attacks
 - man-in-middle, Intercept queries
 - DNS poisoning
 - Send fake records to DNS server, which caches
- exploit DNS for DDoS
 - send queries with spoofed source address: target IP
 - requires amplification

Summary

Today:

- Web caches and cookies
- Caching example
- The DNS
- DNS records
- DNS properties and attacks

Canvas discussion:

- Reflection
- Exit ticket

Next time:

- Read 2.3 and 2.5 of K&R
- follow on Canvas! Material and announcements

Any questions?