

Jean-Samuel Leboeuf

Communiquer efficacement ses résultats (featuring LaTeX)

La communication scientifique

Les résultats doivent être convaincants et faciles à comprendre

Communication efficace

Pour être convaincants, il faut :

Des données pertinentes à l'hypothèse

Pour être faciles à comprendre, il faut :

- Éviter les données ambigües
- Éviter les éléments superflus

On peut appliquer le principe de « coût initial négatif »

Plan

1. Le principe de coût initial négatif

- 2. Les tableaux
- 3. Les graphiques

Principes premiers Les couleurs

Valeur intrinsèque

Le coût initial négatif

Présentation des résultats

- Condensé de données disparates
- Comparaisons quantitatives
- Valeurs exactes

Visualisation des données

- Comparaison qualitative
- Extraction de tendances

Deux types de tableaux

Tableau de communication :

- Résumé utile des informations
- Concis et facile à lire
- Ne contient pas toutes les informations (coût initial négatif)
- Met en évidence des différences ponctuelles
- Se retrouve dans le corps d'un document

Tableau de compilation :

- Contient toutes les informations recueillies
- Longs et plates à lire
- Devrait se retrouver dans l'annexe d'un document

Les tableaux de communication

ResNet-50 (He et al., 2016)	76.9
ViT-B-16 (Dosovitskiy et al., 2021)	77.9
ResNet-50 (RGB+FF)	73.5
ViT-B-16 (RGB+FF)	76.7
Transformer (64x64)	57.0
Perceiver	76.4

Table 1. Top-1 validation accuracy (in %) on ImageNet. Methods shown in red exploit domain-specific grid structure, while methods in blue do not. The first block reports standard performance from

Tiré de l'article « Perceiver : General Perception with Iterative Attention » par DeepMind (Google)

Table 1. Top-1 validation accuracy on ImageNet. Blablabla...

Model	Top-1 (%)		Uses grid
Wodel	No FF	FF	C BOD BITG
ResNet-50	76.9	73.5	yes
ViT-B-16	77.9	76.7	yes
Transformer	_	57.0	no
Perceiver	_	76.4	no

Conseils généraux

- ► Tableau ≠ grille :
 - Lignes horizontales : début, fin et entre les sections seulement
 - ▶ JAMAIS de lignes verticales : ajuster l'espace entre les colonnes
- Étiquettes des colonnes avec unités et abbréviations limitées
- ► Titre au-dessus du tableau avec explications
- Éviter les répétitions
- Citer dans le titre ou le texte
- Mettre en évidence une seule chose à la fois
- Éviter les couleurs
- Référer au tableau explicitement dans le texte
- Aligner les chiffres à droite, le texte à gauche

Tableaux professionnels avec LaTeX

Les packages :

- booktabs : Redéfinit entièrement les tableaux
- multicol et multirow : Fusionner des cellules

Les lignes :

- \toprule et \bottomrule pour les lignes du haut et du bas
- \midrule pour les lignes entre sections
- \cmidrule(lr){<col début>-<col fin>} pour les lignes partielles

Les cellules fusionnées :

- \multirow{<n rangées>}{*}[<y shift>]{<contenu>} pour les rangées
- \multicolumn{<n col>}{c}{<contenu>} pour les colonnes

Tableaux professionnels avec LaTeX

Les colonnes:

@{\hskip<distance>} pour ajuster la distance entre deux colonnes

Le titre :

- \caption{<titre>} pour le titre
- \vspace{<distance>} pour ajuster la distance entre le titre et le tableau

Outil d'aide à la génération de tableaux :

- https://www.tablesgenerator.com/
- python2latex (Création du code LaTeX à partir de numpy arrays)

Exemple

```
\usepackage{booktabs}
\begin{table}
\caption{Top-1 validation accuracy on ImageNet.}
\label{tab:top1_imagenet}
\vspace{3pt}
\begin{tabular}{10{\hskip5pt}r0{\hskip10pt}r0{\hskip5pt}c}
\toprule
\cmidrule(r){2-3}
& No FF & FF & \\
\midrule
ResNet-50 & 76.9 & 73.5 & yes\\
ViT-B-16 & \textbf{77.9} & 76.7 & yes\\
Transformer & --- & 57.0 & no\\
Perceiver & --- & 76.4 & no\\
\bottomrule
\end{tabular}
\end{table}
```

Les graphiques

- Condensé de données disparates
- Comparaisons quantitatives
- Valeurs exactes

- Visualisation des données
- Comparaison qualitative
- Extraction de tendances

Principes premiers d'une figure

- 1. Représentation fidèle, non-trompeuse et sans distorsions
- 2. Représentation claire et évidente
- 3. Représentation facile à analyser et à comparer

Représentation fidèle

Représentation claire

(smoothed rate of change from the date before to the date of

- Le cerveau est poche pour comparer des aires et des distances
- Le cerveau est bon pour comparer des positions

Guide général de style

Les axes :

- En bas et à gauche seulement
- Étiquettes avec unité
- Discrétisation modérée (5 à 10)
- Police de taille similaire au texte
- Grille aérée et pâle; pas de fond

Le titre :

- Préférablement sous la figure
- Numérotée et référencée dans le texte
- Explications spécifiques non redondantes

Guide pour les courbes

- Éviter les légendes si possibles
- Couleurs pour différencier les courbes
- Lignes pleines, discontinues ou pointillées pour différencier les familles de courbes

Figure 1. Exemple d'un diagramme à courbes. La légende est remplacée par une étiquette placée à la fin des courbes, ce qui facilite la lecture du graphique.

Guide pour les nuages de points

- Formes et couleurs pour distinguer les catégories
- Opacité pour les données superposées
- Pour une troisième variable : utiliser une colormap, pas la taille des points

Figure 1. Exemple d'un nuage de point avec deux types de points. De la transparence est utilisée pour voir les points superposés.

Guide pour les diagrammes à bandes

- Repères verticaux non-nécessaires
- Axe vertical commence à l'origine
- Données près de la bande
- Bandes en ordre croissant
- Bandes à l'horizontal si les étiquettes ne rentrent pas (ne pas pivoter le texte)

Figure 1. Exemple d'un diagramme à bandes avec des catégories.

Guide pour les « heatmaps »

- Se lit comme une matrice : origine en haut à droite
- Carte de couleurs :
 - Séquentielle pour marquer l'intensité
 - Divergente pour marquer la différence p/r à une valeur de référence
- Blanc pour les données non pertinentes
- Annotations pour les données pertinentes

Figure 1. Exemple d'une « heatmap » pour l'attention d'un réseau pendant la traduction. Seuls les points d'intérêts sont annotés.

Guide pour les violons

- « Boîte à moustaches ++ »
- Permet d'identifier les modes.
- Peuvent être groupés comme les diagrammes à bandes
- Normaliser l'aire, pas la largeur

Attribut

Figure 1. Exemple d'un diagramme à violons pour la distribution des attributs du jeu de données iris. Les lignes intérieures correspondent à un box plot.

En résumé

- Favoriser les graphiques qui reposent sur le positionnement
- Ne pas surcharger le graphiques
- Annoter sur la figure plutôt qu'utiliser une légende
- Soyez constant dans le style entre les figures

Références utiles :

Guide de visualisation de données de Material

Outils

LaTeX:

- Nativement avec les packages <u>TikZ</u> et <u>PGFPLOTS</u>
- À partir de Python avec python2latex ou tikzplotlib

Python:

- matplotlib avec seaborn
 - PDF seulement, pas de PNG ou JPEG
 - ► Attention à la taille du texte
 - Les paramètres par défaut sont mauvais

Les couleurs

Esthétique

Représenter un spectre

Différencier des catégories

Mettre en évidence

▶ Difficile de comparer des couleurs semblables

- Difficile de comparer des couleurs semblables
- Perception affectée par les couleurs environnantes

- ▶ Difficile de comparer des couleurs semblables
- Perception affectée par les couleurs environnantes

- ▶ Difficile de comparer des couleurs semblables
- Perception affectée par les couleurs environnantes
- Les moniteurs et les imprimantes donnent des rendues différents

- Difficile de comparer des couleurs semblables
- Perception affectée par les couleurs environnantes
- Les moniteurs et les imprimantes donnent des rendues différents
- Sort mal en tons de gris

- Difficile de comparer des couleurs semblables
- Perception affectée par les couleurs environnantes
- Les moniteurs et les imprimantes donnent des rendues différents
- Sort mal en tons de gris
- Pire encore... tous les humains ne perçoivent pas les couleurs de la

même manière

Les daltoniens

Environ un homme sur 10 est daltonien.

Les palettes de couleurs

	Qualitative	Séquentielle	Divergente
Continues			
Discrètes			
Utilité	Catégories	Intensité	Déviation
Propriétés	1 teinte par catégorie	1 teinte; le blanc marque le neutre	2 teintes; le blanc marque le neutre
Faiblesses	Daltonisme, tons de gris	Difficile à analyser, af- fecté par les couleurs environnantes	Difficile à analyser, af- fecté par les couleurs environnantes
Mitigations	Varier la luminosité, annoter	Échelle perceptuelle- ment linéaire, annoter	Échelle perceptuelle- ment linéaire, annoter

En résumé

La couleur constitue un moyen utile, mais plus ou moins fidèle de transmettre l'information.

Pour mitiger les faiblesses :

- Complémenter l'information (ex. annotations, formes)
- Palettes « colorblind-safe »
- Luminosités perceptuellement différentes

Outils:

- ColorBrewer pour des palettes éprouvées
- Coblis : Simulateur de daltonisme pour vérifier vos figures