Algebra per Informatica

Esame 28/06/2023

Svolgere nel foglio di consegna i seguenti esercizi motivando chiaramente le risposte.

Esercizio 1. Siano dati i seguenti insiemi

$$A = \{f : \mathbb{Z}_5 \to \mathbb{Z}_5\}, \quad B = \{f : \mathbb{Z}_5 \to \mathbb{Z}_5 \mid \text{iniettiva}\}, \quad C = \{f : \mathbb{Z}_5 \to \mathbb{Z}_5 \mid f(\overline{0}) = f(\overline{1})\}.$$

Calcolare la cardinalità degli insiemi seguenti: $A \cap B$, $B \cap C$, $B \cup C$, $A \times B$.

Soluzione. Per prima cosa calcoliamo le cardinalità di A, B, e C. L'insieme A è costituito da tutte le funzioni $\mathbb{Z}_5 \to \mathbb{Z}_5$, cioè $A = \mathbb{Z}_5^{\mathbb{Z}_5}$, e quindi $|A| = 5^5 = 3125$. Le funzioni iniettive $\mathbb{Z}_5 \to \mathbb{Z}_5$ sono $|B| = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$. Infine, per contare le funzioni in C, consideriamo che abbiamo 5 possibili scelte per il valore di $f(\overline{0}) = f(\overline{1})$, 5 per il valore di $f(\overline{2})$, 5 per $f(\overline{3})$, e 5 per $f(\overline{4})$. Quindi abbiamo $|C| = 5^4 = 625$.

- 1. Siccome $B \subseteq A$, abbiamo $|A \cap B| = |B| = 120$.
- 2. Calcoliamo la cardinalità di $B \cap C$. Abbiamo

$$B \cap C = \{ f : \mathbb{Z}_5 \to \mathbb{Z}_5 \mid f \text{ è iniettiva, } f(\overline{0}) = f(\overline{1}) \}.$$

Siccome una funzione f tale che $f(\overline{0}) = f(\overline{1})$ è necessariamente non iniettiva, abbiamo che $B \cap C = \emptyset$. Pertanto $|B \cap C| = 0$.

- 3. Calcoliamo $|B \cup C| = |B| + |C| |B \cap C| = 120 + 5^4 0 = 745.$
- 4. Calcoliamo $|A \times B| = |A| \cdot |B| = 5^5 \cdot 120 = 375\,000.$

Esercizio 2. Sia $f: \mathbb{Z}^2 \to \mathbb{Z}$ l'applicazione data da f(x,y) = 18x - 27y.

- 1. Determinare se f è iniettiva e/o surgettiva.
- 2. Determinare $f^{-1}(0)$, $f^{-1}(3)$, $f^{-1}(9)$.

Soluzione. Si ricordi che l'equazione diofantea ax + by = c ha soluzioni intere se e soltanto se $\mathrm{MCD}(a,b) \mid c$. Inoltre, se $(x_0,y_0) \in \mathbb{Z}^2$ è una soluzione dell'equazione diofantea ax + by = c con $\mathrm{MCD}(a,b) = 1$, allora tutte le soluzioni si scrivono come $(x,y) = (x_0 + bk, y_0 - ak)$ al variare di $k \in \mathbb{Z}$. In questo caso, siccome $\mathrm{MCD}(18,27) = 9$ abbiamo che l'equazione diofantea 18x - 27y = c ha soluzioni se e soltanto se $9 \mid c$.

- 1. La funzione f non è surgettiva in quanto $f^{-1}(1) = \{(x,y) \in \mathbb{Z}^2 : 18x 27y = 1\} = \emptyset$ siccome l'equazione diofantea 18x 27y = 1 non ha soluzioni intere per quanto detto precedentemente. Analogamente f non è iniettiva, si consideri ad esempio f(27,18) = 0 = f(0,0).
- 2. Calcoliamo le controimmagini richieste.
 - $f^{-1}(0) = \{(x,y) \in \mathbb{Z}^2 : 18x 27y = 0\} = \{(x,y) \in \mathbb{Z}^2 : 2x 3y = 0\}$. Una soluzione particolare dell'equazione diofantea 2x 3y = 0 è data da $(x_0, y_0) = (0,0)$. Pertanto abbiamo

$$f^{-1}(0) = \{(-3k, -2k) : k \in \mathbb{Z}\}.$$

- Siccome $9 \nmid 3$, l'equazione diofantea 18x 27y = 3 non ha soluzioni e quindi $f^{-1}(3) = \emptyset$.
- $f^{-1}(9) = \{(x,y) \in \mathbb{Z}^2 : 18x 27y = 9\} = \{(x,y) \in \mathbb{Z}^2 : 2x 3y = 1\}$. Una soluzione particolare dell'equazione diofantea 2x 3y = 1 è data da $(x_0, y_0) = (-1, -1)$. Pertanto abbiamo

$$f^{-1}(9) = \{(-1 - 3k, -1 - 2k) : k \in \mathbb{Z}\}.$$

Esercizio 3. Si consideri l'insieme C dotato della seguente relazione d'ordine:

$$z \triangleleft w \iff (\Re(z) \leq \Re(w) \text{ AND } \Im(z) \leq \Im(w)),$$

dove $\Re(-)$ denota la parte reale e $\Im(-)$ denota la parte immaginaria.

Sia $A = \{i, 2, \sqrt{2}, 5 + 3i, 3i, 1 - 3i\} \subseteq \mathbb{C}$. Si determinino (se esistono) massimo, minimo, elementi minimali ed elementi massimali, estremo inferiore ed estremo superiore di A nel poset $(\mathbb{C}, \triangleleft)$.

Soluzione. Osserviamo che con l'usuale identificazione di \mathbb{C} con \mathbb{R}^2 data da

$$a + ib \in \mathbb{C} \longleftrightarrow (a, b) \in \mathbb{R}^2,$$

l'ordine \triangleleft coincide con l'ordine prodotto $\leq \times \leq$. Pertanto, abbiamo il seguente diagramma di Hasse che rappresenta la struttura del poset A (dove l'ordine \triangleleft procede dal basso verso l'alto):

Si vede che A ha un massimo in 5+3i, che è quindi l'unico elemento massimale. Siccome A ammette massimo, esso coincide con l'estremo superiore. Ci sono due elementi minimali non confrontabili 1-3i e i, pertanto A non ammette minimo. L'insieme dei minoranti di A è dato da

$$\{z = a + ib \in \mathbb{C} \mid (z \triangleleft 1 - 3i) \text{ AND } (z \triangleleft i)\} = \{z = a + ib \in \mathbb{C} \mid (a \leq 0) \text{ AND } (b \leq -3)\}.$$

Tale insieme ha un massimo in 0-3i=-3i che pertanto è l'estremo inferiore. Ricapitolando, abbiamo

$$\max A = \sup A = 5 + 3i$$
, $\nexists \min A$, $\inf A = -3i$.

Esercizio 4. Si consideri \mathbb{Z}_{24} .

- 1. Calcolare $\overline{11}^{2025}$.
- 2. Determinare l'ordine dei seguenti elementi del gruppo degli elementi invertibili $(U(\mathbb{Z}_{24}), \cdot, \overline{1})$:

$$\overline{1}$$
, $\overline{7}$, $\overline{11}$, $\overline{13}$.

Soluzione. Per prima cosa calcoliamo $\varphi(24)=8$ e ricordiamo che per il teorema di Eulero, dato $x\in\mathbb{Z}$ tale che $\mathrm{MCD}(x,24)=1$ allora $\overline{x}^8=\overline{1}$ in \mathbb{Z}_{24} .

1. Consideriamo la divisione euclidea $2025 = 253 \cdot 8 + 1$, abbiamo pertanto

$$\overline{11}^{1025} = \overline{11}^{253 \cdot 8 + 1} = \left(\overline{11}^8\right)^{253} \cdot \overline{11}^1 = \overline{1} \cdot \overline{11}^1 = \overline{11}.$$

- 2. Ricordiamo che l'ordine moltiplicativo di un elemento \overline{x} in $U(\mathbb{Z}_{24})$ dev'essere un divisore dell'ordine $|U(\mathbb{Z}_{24})| = \varphi(24) = 8$. Pertanto calcoliamo soltanto le potenze \overline{x}^d con d = 1, 2, 4, 8.
 - $\overline{1}$ è l'elemento neutro del gruppo $U(\mathbb{Z}_{24})$, quindi $\operatorname{ord}(\overline{1}) = 1$.
 - Calcoliamo $\overline{7}^2 = \overline{49} = \overline{48} + \overline{1} = \overline{1}$. Pertanto, abbiamo $\operatorname{ord}(\overline{7}) = 2$.
 - Calcoliamo $\overline{11}^2 = \overline{121} = \overline{120} + \overline{1} = \overline{1}$. Pertanto, abbiamo $\operatorname{ord}(\overline{11}) = 2$.
 - Calcoliamo $\overline{13}^2 = \overline{169} = \overline{168} + \overline{1} = \overline{1}$. Pertanto, abbiamo $\operatorname{ord}(\overline{13}) = 2$.