

Selected Topics in Visual Recognition using Deep Learning Homework 3 announcement

TA: 楊証琨, Jimmy

Ph.D. student at National Taiwan Universitiy

d08922002@ntu.edu.tw

Homework 2 reminder

- Deadline: 11/26 (one week left)
- submission:
 - Remove your duplicate submission file and rename your filename of final submission without postfix
 - Also backup your final submission file incase someone misdelete your file

Code readability: suggestion

- It's hard to reproduce the results without proper config management
- Use configuration tools such as <u>yacs config</u> or config.py to track your model config
- Develop your model code by jupyter notebook is good. But train your model with python scripts is recommended

Homework 3: Instance segmentation

- Deadline: 12/11, Thr at 23:59
 - 1. Upload your **submission file** in this <u>Google drive</u>
 - 2. Upload your **report.pdf** to E3

HW3 Introduction: Tiny PASCAL VOC dataset

- Tiny VOC dataset contains only 1,349 training images, 100 test images with 20 common object classes
- NO external data should be used and only ImageNet pre-trained model can be used
- Deal with the overfitting problem!

Process the PASCAL VOC dataset

 PASCAL VOC dataset is widely used for evaluating the detection/segmentation models

	mean	aero plane	bicycle	bird	boat	bottle	bus	car
		abla	\triangleright	\triangleright	abla	\triangleright	\triangleright	abla
RecoNet152_coco [?]	89.0	97.3	80.4	96.5	83.8	89.5	97.6	95.4
DeepLabv3+_JFT [?]	89.0	97.5	77.9	96.2	80.4	90.8	98.3	95.5
SRC-B-MachineLearningLab [?]	88.5	97.2	78.6	97.1	80.6	89.7	97.4	93.7
DeepLabv3+_AASPP [?]	88.5	97.4	80.3	97.1	80.1	89.3	97.4	94.1
SepaNet [?]	88.3	97.2	80.2	96.2	80.0	89.2	97.3	94.7
EMANet152 [?]	88.2	96.8	79.4	96.0	83.6	88.1	97.1	95.0
MSCI [?]	88.0	96.8	76.8	97.0	80.6	89.3	97.4	93.8
ExFuse [?]	87.9	96.8	80.3	97.0	82.5	87.8	96.3	92.6
DeepLabv3+ [?]	87.8	97.0	77.1	97.1	79.3	89.3	97.4	93.2
CFNet [?]	87.2	96.7	79.7	94.3	78.4	83.0	97.7	91.6
DeepLabv3-JFT [?]	86.9	96.9	73.2	95.5	78.4	86.5	96.8	90.3

Get the dataset

- Download the dataset from this <u>Google Drive</u>
- The annotations are saved in json file. You can use <u>pycocotools</u> to read the file
- See <u>data loader.ipynb</u> for more details

Upload your submission.json file here

- Free version Kaggle doesn't provide the metrics :(
- Upload you submission file into the Google Drive. We will evaluate it and return the performance on your filename
- Filename should be STUDENT_ID.json

Submission.json file format (coco style format)

- List of dictionaries, len(list) = number of detected instances in all test images. Find demo code here in *Prepare submission file*
- Each dictionary contains four keys
 - "image_id": id of test image, which is the key in "test.json", int
 - "score": probability for the class of this instance, float
 - "category_id": category id of this instance, int
 - "segmentation": Encode the mask in RLE by provide function, str

Evaluation metrics: mean Average Precision

- Widely used metric for object detection/segmentation
- Measure the average precision on different threshold and also the IoU between GT and prediction

	backbone	cascade	AP	AP_{50}	AP_{75}
Faster R-CNN	AlexNet	Х	29.4	63.2	23.7
		✓	38.9	66.5	40.5
Faster R-CNN	VGG	X	42.9	76.4	44.1
		✓	51.2	79.1	56.3
R-FCN	RetNet-50	Х	44.8	77.5	46.8
		✓	51.8	78.5	57.1
R-FCN	ResNet-101	Х	49.4	79.8	53.2
		✓	54.2	79.6	59.2

TABLE 11: Detection results on PASCAL VOC 2007 test.

Evaluation metrics: mean Average Precision

- Use mask to measure the Intersection-of-Union between predictions and ground truth
- We use average precision at IoU=0.5 to evaluate your results

Grading policy: Model performance (70 points)

- Get at least 56% (70%x0.8) by scoring over the baseline
- baseline (mAP@0.5): 0.247

Grading policy: Reports (20 points)

- Document your work (in PDF)
 - GitHub/ GitLab link of your code
 - > reference if you used code from GitHub
 - Brief introduction
 - Methodology (Data pre-process, Model architecture, Hyperparameters,...)
 - Findings or Summary

Grading policy: Code readability (10 points)

 Write beautiful Python code with <u>PEP8 guidelines</u> for readability. Base requirement: use whitespace correctly!

```
# Recommended
def function(default_parameter=5):
    # ...

# Not recommended
def function(default_parameter = 5):
    # ...
```

```
Python

# Recommended
my_list = [1, 2, 3]

# Not recommended
my_list = [1, 2, 3, ]
```

```
Python

x = 5
y = 6

# Recommended
print(x, y)

# Not recommended
print(x , y)
```


Late Policy

We will deduct a late penalty of 20 points per additional late day

For example, If you get 90% of HW but delay for two days, your

Keywords

- Beat the baseline
 - Mask R-CNN
 - Data-augmentation
 - Regularization (Dropout, L2-norm,...)

- Rank Top 3!
 - Read some paper (Instance segmentation) from CVPR2020, ECCV2020 and try to implement it!

FAQ

- Can I use any code/tools/Library from GitHub or other resources?
 - Yes! We encourage you to learn how to apply existing tools on your own task, such as <u>Keras-Mask R-CNN</u>, <u>Pytorch-maskrcnn-benchmark</u> <u>TF-object-detection-API</u>

But DO NOT copy code from your classmate!

- Why my testing results are so bad?
 - CNN model prone to overfitting with small dataset. Use some techniques such as regularization, data-augmentation to solve it!

Notice

- Check your email regularly, we will mail you if there are any updates or problems of the homework
- If you have any questions or comments for the homework, please mail me and cc Prof. Lin
 - Prof. Lin: lin@cs.nctu.edu.tw
 - > Jimmy: d08922002@ntu.edu.tw (3pm-4pm, Thur., EC118)
 - ➤ 佳諭: mylifeai1116@gmail.com (3pm-4pm, Thur., EC118)
 - > 玉霖: <u>oscar861201@gmail.com</u> (3pm-4pm, Thur., EC118)

Have fun!

