

EMISSIONS TEST REPORT

Report Number: 100990439BOX-004b Project Number: G100990439

Report Issue Date: 04/24/2013

Product Designation: ANDE-1

Standards: CFR47 FCC Part 15 Subpart C:2012 15.225,

FCC Part 15 Subpart B:2012,

IC RSS-210 Issue 8 December 2010 Annex 2.6,

RSS-Gen Issue 3 December 2010+Notice DRS 2012-DRS0126

Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719

Client:
Analogic Corporation
8 Centennial Drive
Peabody, MA 01960

Report prepared by Reviewer

Kouma Sinn / Senior Project Engineer, EMC

Jeff Goulet / EMC Manager

Report reviewed by

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested Comply with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test	
5	System Setup and Method	
6	Fundamental Radiated Emissions FCC Part 15 Subpart C:2012 15.225(a), (b), (c), (d) IC RSS-210 Issue 8 December 2010 A2.6 (a), (b), (c), (d)	Pass
7	Transmitter Spurious Emissions Below 30MHz FCC Part 15 Subpart C:2012 15.209, 15.225(d), IC RSS-210 Issue 8 December 2010 A2.6(d)	Pass
8	Transmitter Spurious Emissions Above 30MHz FCC Part 15 Subpart C:2012 15.209, 15.225(d), IC RSS-210 Issue 8 December 2010 A2.6(d)	Pass
	Receiver Spurious Emissions Below 30MHz FCC Part 15 Subpart B:2012 15.109, IC RSS-Gen Issue 3 December 2010: Section 6.0	N/A*
9	Receiver Spurious Emissions Above 30MHz FCC Part 15 Subpart B:2012 15.109, IC RSS-Gen Issue 3 December 2010: Section 6.0	Pass
10	AC Line-Conducted Emissions CFR47 FCC Part 15 Subpart B:2012, FCC Part 15:2011 Section 15.207 (a) RSS-Gen Issue 3 December 2010, 7.2.2 (Table 2) IC ICES-003 Issue 5 August 2012	Pass
11	20dB Bandwidth FCC Part 15 Subpart C:2012 15.215 IC RSS-Gen Issue 3 December 2010 Section 4.6	Pass
12	Frequency Stability FCC Part 15 Subpart C:2012 15.225(e), IC RSS-Gen Issue 3 December 2010 Section 4.7 IC RSS-210 December 2010 A2.6	Pass
13	Revision History	

^{* -} no limits below 30 MHz

Report Number: 100990439BOX-004b Issued: 04/24/2013

3 Client Information

This EUT was tested at the request of:

Company: Analogic Corporation

8 Centennial Drive Peabody, MA 01960

 Contact:
 Bernard Weinberg

 Telephone:
 (978) 326-4066

 Fax:
 (978) 977-6808

Email: bweinberg@analogic.com

4 Description of Equipment Under Test

Equipment Under Test								
Description	Manufacturer	Model Number	Serial Number					
Rapid DNA Analysis Analogic Corporation Instrument		ANDE-1	Proto 8					

Receive Date:	12/18/2012
Received Condition:	Good
Туре:	Prototype

Description of Equipment Under Test (provided by client)

The EUT is a Rapid DNA Analysis Instrument.

Equipment Under Test Power Configuration						
Rated Voltage	Rated Current	Rated Frequency	Number of Phases			
100-240VAC	15/7.5A	50/60Hz	1			

Operating modes of the EUT:

No.	Descriptions of EUT Exercising	
1	The RFID was programmed to switches between the following antennas: Front, Back, Top Front, at	Ī
	an interval of 0.001 second and then looped.	

5 System Setup and Method

	Cables									
ID	Description	Length (m)	Shielding	Ferrites	Termination					
1	AC Mains	2.5	None	None	AC Mains					
2	Video Cable	1.5	Braid	Two	Monitor					
3	Mouse Cable - USB	1.25	Braid	None	Mouse					
4	Keyboard Cable - USB	1.25	Braid	One	Keyboard					
5	Ext Hard Drive Cable - USB	0.25	Braid	None	Ext. Disk					

	Support Equipment								
Description	Manufacturer	Model Number	Serial Number						
Multisync LCD Monitor	NEC	LCD1860NX	36140037YA						
Keyboard	DELL	SK-8115	CN-0DJ331-71616-71E- 0AWA						
Mouse	Belkin	F8E812-BLK-USB	053000997						
External Harddrive	Western Digital	WDBAAA5000ABC-00	WX41A20EB027						
Monitor	HP	L1910	CNC940PGSF						

5.1 Method:

Configuration as required by ANSI C63.4-2009.

5.2 EUT Block Diagram:

6 Fundamental Frequency Radiated Emissions

6.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C:2012 15.225(a), (b), (c), (d), IC RSS-210 Issue 8 December 2010 A2.6 (a), (b), (c), (d), ANSI C63.4-2009.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Report Number: 100990439BOX-004b Issued: 04/24/2013

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBuV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from dB μ V to μ V or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V/m NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
 UF = $10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \, \mu V/m$

Report Number: 100990439BOX-004b Issued: 04/24/2013

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	09/25/2012	09/25/2014
LOOP2'	LOOP ANTENNA	Empire	LP-105	905	12/17/2012	12/17/2013
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	09/28/2012	09/28/2013
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2012	10/04/2013

Software Utilized:

Name	Manufacturer	Version		
EMI Boxborough.xls	Intertek	08/27/2010		

6.3 Results:

The sample tested was found to comply.

The field strength of any emissions shall not exceed the limits as follows:

Frequency Bands	Field Stre	ngth Limits	Test Distance		
(MHz)	μV/m	dBµV/m	(meters)		
13.553 -13.567	15,848	84.00	30		
13.410 -13.553	334	50.50	30		
13.567 -13.710	334	50.50	30		
13.110 –13.410	106	40.51	30		
13.710 –14.010	106	40.51	30		
Outside of 13.110 –14.010	§15.209				

6.4 Setup Photographs:

6.5 Test Data:

Radiated Emissions

Company: Analogic Antenna & Cables: N Bands: N, LF, HF, SHF
Model #: ANDE-1 Antenna: LOOP2 E-Field 12-17-13.txt LOOP2 H-Field 12-17-13.txt

Serial #: Proto 8 Cable(s): 145-416 3mTrkB 10-04-2013.bxt NONE.

Engineers: Kouma Sinn Location: 10m Chamber Barometer: DAV004 Filter: NONE

Project #: G100990439 Date(s): 12/29/12 Standard: FCC Part 15.225 & RSS-210 Annex 2 (A2.6)

tandard: FCC Part 15.225 & RSS-210 Annex 2 (A2.6) Temp/Humidity/Pressure: 21C 18% 1000mbar

Receiver: 145-128 Limit Distance (m): 30 PreAmp: NONE. Test Distance (m): 2

PreAmp Used? (Y or N): N Voltage/Frequency: 120VAC/60Hz Frequency Range: Fund + Offset Freq.

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

	Ant.			Antenna	Cable	Pre-amp	Distance					Ī
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB]
	FCC limit @ 30 meters. Test distance at 2 meters											
PK	V	13.560	6.42	41.17	0.42	0.00	47.04	0.97	84.00	-83.03	9/30kHz	
QP	V	13.560	3.98	41.17	0.42	0.00	47.04	-1.47	84.00	-85.47	9/30kHz	
			FC	CC limit @ 3	0 meters. T	est distance	at 2 meter	s.				
	Offset	Freq., 13.41	10–13.553 I	MHz and 13	.567-13.71	0 MHz, 13.1	10-13.410	MHz and 13	3.710-14.01	0 MHz		
PK	V	13.410	-6.95	41.16	0.42	0.00	47.04	-12.41	50.50	-62.91	9/30kHz	RB, I
PK	V	13.553	-1.73	41.17	0.42	0.00	47.04	-7.18	50.50	-57.68	9/30kHz	
PK	V	13.567	-3.93	41.18	0.42	0.00	47.04	-9.38	50.50	-59.88	9/30kHz	Ī
PK	V	13.710	-4.32	41.19	0.42	0.00	47.04	-9.75	50.50	-60.25	9/30kHz	NF
PK	V	13.110	-5.39	41.14	0.41	0.00	47.04	-10.89	40.51	-51.40	9/30kHz	NF
PK	V	14.010	-4.99	41.21	0.43	0.00	47.04	-10.39	40.51	-50.90	9/30kHz	1

Kouma Sinn 43 Test Personnel(s): Test Date(s): 12/29/2012 Supervising Engineer: (Where Applicable) Test Levels: Per section 6.3 FCC 15.225, IC RSS-210 Product Standard: Ambient Temperature: 21 °C 120VAC/60Hz 18 % Input Voltage: Relative Humidity: Pretest Verification w/ Atmospheric Pressure: 1000 mbars Ambient Signals or

Deviations, Additions, or Exclusions: None

Ambient Signals

BB Source:

7 Transmitter Spurious Emissions Below 30MHz

7.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C:2012, 15.209, 15.225(d), IC RSS-210 Issue 8 December 2010 A2.6(d), ANSI C63.4-2009.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dBuV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V/m NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
 UF = $10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \, \mu V/m$

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	09/25/2012	09/25/2014
LOOP2'	LOOP ANTENNA	Empire	LP-105	905	12/17/2012	12/17/2013
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	09/28/2012	09/28/2013
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2012	10/04/2013
LOOP1'	LOOP ANTENNA	Empire	LG-105	61	08/18/2012	08/18/2013

Software Utilized:

Name	Manufacturer	Version		
EMI Boxborough.xls	Intertek	08/27/2010		

7.3 Results:

The sample tested was found to comply.

The field strength of any emissions shall not exceed the limits as follows:

FCC Part 15.209

Frequency	Fi	eld Strength	Test Distance
(MHz)	μV/m	dBμV/m	(meters)
0.009-0.490	2400/F(kHz)	20*Log(2400/F(kHz))	300
0.490-1.705	24000/F(kHz)	20*Log(24000/F(kHz))	30
1.705–30.0	30.00	29.54	30

Note: The emission limits for the bands 9-90kHz and 110-490kHz are based on measurements employing an average detector.

IC RSS-210 A2.6(d): emissions outside the band 13.110-14.010 MHz must not exceed 30 microvolts/m (29.5 dB μ V/m) at 30 m.

7.4 Setup Photographs:

7.5 Test Data:

				9-150	KHZ Radi	ated Emis	ssions					
Company: A	Analogic						Antonno	a & Cables:	LF	Panda: N	I E UE QUE	
Model #:										Bands: N, LF, HF, SHF		
								Loop1 08-18		Loop1 08-18-13 1m H.txt		
Serial #:					I		. ,	145-416 3mTrkB 1	0-04-2013.txt	NONE.		
Engineers:	Kouma Sinn			Location:	10m Chamber	Barometer:	DAV004		Filter:	NONE		
Project #:	G1009904	39	Date(s):	12/29/12								
Standard:	FCC Part	15.225 & R	SS-210 Anı	nex 2 (A2.6	:.6) Temp/Hur			dity/Pressure:	21C	18%	1000mbar	
Receiver:				Limit Distance (m): 30								
PreAmp:	eAmp: NONE.				stance (m):	2						
PreAmp Used? (Y or N): N			N	Voltage/Frequency: 120VA			C/60Hz	Frequer	ncy Range:	9kHz-	-150kHz	
Ne	et = Readir	ng (dBuV/m) + Antenna	a Factor (dE	31/m) + Cal	ble Loss (dl	3) - Pream	p Factor (dl	3) - Distand	e Factor (dB)	
Peak:	PK Quasi-	-Peak: QP A	verage: AVG	RMS: RMS	; NF = Nois	e Floor, RB	= Restricted	Band; Band	dwidth deno	ted as RBV	V/VBW	
	Ant.			Antenna	Cable	Pre-amp	Distance					
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		
•				FCC lim	it = 2400/F	(kHz) @ 30	meters.	•	•		•	
PK	V	0.019	0.90	61.11	0.04	0.00	47.04	15.00	42.03	-27.03	200/300H	
PK	V	0.047	10.81	53.38	0.06	0.00	47.04	17.21	34.16	-16.95	200/300H	
PK	V	0.127	-7.13	48.65	0.09	0.00	47.04	-5.43	25.53	-30.96	200/300H	

				150 kHz -	30 MHz F	Radiated I	Emissions	3				
Company:	Analogic						Antenna	& Cables:	N	Bands: N,	LF, HF, SHF	
Model #:	ANDE-1						Antenna:	LOOP2 E-Field	l 12-17-13.txt	LOOP2 H-Fie	d 12-17-13.txt	
Serial #:	Proto 8						Cable(s):	145-416 3mTrkB 1	0-04-2013.txt	NONE.		
Engineers:						10m Chamber	Barometer:	DAV004		Filter:	NONE	
Project #:	G1009904	39	Date(s):	12/29/12								
Standard:	FCC Part	15.225 & R	SS-210 An	nex 2 (A2.6)		Temp/Humid	lity/Pressure:	21C	18%	1000mbar	
Receiver:	145-128	5-128 Limit Distance (m): 30										
PreAmp:	reAmp: NONE.			Test Dis	stance (m):	2						
Pr	eAmp Use	d? (Y or N):	N	Voltage/I	Frequency:	120VA	C/60Hz	Frequer	ncy Range:	150kHz	z-30MHz	
N	et = Readii	ng (dBuV/m)	+ Antenna	a Factor (dE	31/m) + Cal	ble Loss (d	B) - Pream	Factor (di	3) - Distanc	e Factor (d	dB)	
Peak	: PK Quasi	-Peak: QP A	verage: AVC	RMS: RMS	; NF = Nois	Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW					V/VBW	
	Ant.			Antenna	Cable	Pre-amp	Distance					
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		
	•	FCC	. Limit @ 3	30 meters.	Test distar	nce at 2 me	ters. Spuri	ous Emissi	ons			
QP	V	13.410	-6.95	41.16	0.42	0.00	47.04	-12.41	50.50	-62.91	9/30kHz	NF
QP	V	13.710	-4.32	41.19	0.42	0.00	47.04	-9.75	50.50	-60.25	9/30kHz	NF
QP	V	13.110	-5.39	41.14	0.41	0.00	47.04	-10.89	40.51	-51.40	9/30kHz	NF
QP	V	14.010	-4.99	41.21	0.43	0.00	47.04	-10.39	40.51	-50.90	9/30kHz	NF
Qi	V	10.000	-5.19	41.50	0.35	0.00	47.04	-10.38	29.54	-39.92	9/30kHz	NF
QP		07.400	-3.07	40.08	0.63	0.00	47.04	-9.41	29.54	-38.95	9/30kHz	NF
	V	27.120	-3.07	+0.00	0.00	1 0.00	-					

Report Number: 100990439BOX-004b	Issued: 04/24/2013

Test Personnel(s):	Kouma Sinn 43	Test Date(s):	12/29/2012	
Supervising Engineer:				
(Where Applicable)	N/A	Test Levels:	Per section 7.3	
Product Standard:	FCC 15.225, IC RSS-210	Ambient Temperature:	21 °C	•
Input Voltage:	120VAC/60Hz	Relative Humidity:	18 %	
Pretest Verification w/		Atmospheric Pressure:	1000 mbars	
Ambient Signals or				
BB Source:	Ambient Signals			

Deviations, Additions, or Exclusions: None

8 Transmitter Spurious Above 30MHz

8.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C:2012, 15.209, 15.225(d), IC RSS-210 Issue 8 December 2010 A2.6(d), ANSI C63.4-2009.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dBuV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V/m NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
 UF = $10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \, \mu V/m$

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	09/25/2012	09/25/2014
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	09/04/2012	09/04/2013
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	09/28/2012	09/28/2013
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2012	10/04/2013
145003'	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/04/2012	10/04/2013

Software Utilized:

Name	Manufacturer	Version		
C5	Teseq	5.26.46.46		

8.3 Results:

The sample tested was found to Comply.

The field strength of any emissions shall not exceed the limits as follows:

FCC Part 15.209

Frequency	Field	I Strength	Test Distance
(MHz)	μV/m	dBμV/m	(meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3

IC RSS-210 A2.6(d): emissions outside the band 13.110-14.010 MHz must not exceed 30 microvolts/m (29.5 dB μ V/m) at 30 m (49.5 dB μ V/m at 3m)

Since the IC RSS-210 limits are less stringent than the FCC 15.209 limits under 960 MHz, the FCC limits were used.

8.4 Setup Photograph:

8.5 Plots/Data:

Test Information

User Entry Radiated - FCC15 Class B @ 10m Analogic ANDE-1, 120VAC, Tx mode (with HP Monitor) 21C

Test Information Test Details
Test:
Project:
Test Notes:
Temperature:
Humidity:
Tested by: 15%, 1001mbar Tested by: Test Started: Kouma Sinn 30 Dec 2012 19 : 50

Prescan Emission Graph

Measured Peak Value Measured Quasi Peak Value

Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data

Additional Information

Swept Quasi Peak Data

Swept Average Data

Emissions Test Data Trace1: Measured Peak

Frequency(Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	(
439.914228816 M	31.66	16.700	-24.329				189	2.07	120 k	
900.046092625 M	33.93	22.201	-22.810				7	1.31	120 k	
479.933066092 M	34.41	17.897	-24.444				217	1.45	120 k	
199.960320281 M	35.45	12.896	-24.410				160	1.04	120 k	
160.017635309 M	35.67	12.300	-24.906				135	1.09	120 k	
39.177955922 M	35.57	14.693	-26.313			1	192	1.05	120 k	

Trace2: Measured Quasi Peak

Frequency(Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
439.914228816 M	26.55 ´	16.700	-24.329	35.540	-8.99		189	2.07	120 k	
39.177955922 M	21.82	14.693	-26.313	29.540	-7.72		192	1.05	120 k	
479.933066092 M	29.71	17.897	-24.444	35.540	-5.83	<u>-</u>	217	1.45	120 k	
900.046092625 M	30.10	22.201	-22.810	35.540	-5.44		7	1.31	120 k	
199.960320281 M	31.34	12.896	-24.410	33.040	-1.70	1	160	1.04	120 k	
160 017635309 M	32 66	12 300	-24 906	33 040	-0.38	i	135	1 09	120 k	

Trace3: Measured Average

Frequency(Hz)	(dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)
39.177955922 M	12.64	14.693	-26.313				192	1.05	120 k
439.914228816 M	20.78	16.700	-24.329				189	2.07	120 k
479.933066092 M	23.14	17.897	-24.444				217	1.45	120 k
199.960320281 M	26.53	12.896	-24.410				160	1.04	120 k
900.046092625 M	28.18	22.201	-22.810				7	1.31	120 k
160.017635309 M	28.63	12.300	-24.906				135	1.09	120 k

Comment

Comment

Azimuth Plots

All Polarities Azimuth (Degrees)

Turntable Plots

Issued: 04/24/2013

Turntable Plot (439.914228816 MHz)

Level (dBuV/m)

Report Number: 100990439BOX-004b

Issued: 04/24/2013

Turntable Plot (900.046092625 MHz)

Test Personnel: Kouma Sinn 43 Supervising/Reviewing Engineer: FCC 15.225, IC RSS-210 Product Standard: Input Voltage: 120VAC/60Hz

Ambient Signals

Test Date: 12/30/2012 Per section 8.3 Test Levels: Performance Criteria: N/A Ambient Temperature: 21 °C Relative Humidity: 15 % Atmospheric Pressure: 1001 mbars

Deviations, Additions, or Exclusions: None

Signals or BB Source:

Pretest Verification w/ Ambient

9 Receiver Spurious Emissions Above 30MHz

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart B:2012, 15.109, IC RSS-Gen Issue 3 December 2010: Section 6.0, ANSI C63.4-2009.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBuV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from dB μ V to μ V or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V/m NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
 UF = $10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \, \mu V/m$

Report Number: 100990439BOX-004b Issued: 04/24/2013

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	09/25/2012	09/25/2014
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	09/04/2012	09/04/2013
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	09/28/2012	09/28/2013
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2012	10/04/2013
145003'	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/04/2012	10/04/2013

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	5.26.46.46

9.3 Results:

The sample tested was found to Comply.

9.4 Setup Photographs:

Additional Information

9.5 Test Data:

Test Information

User Entry Radiated - FCC15 Class B @ 10m Analogic Test Details Test: Project:

ANDE-1, 120VAC, Rx mode (with HP Monitor)

Test Notes: Temperature: Humidity: 21C 15%, 1001mbar

Tested by: Test Started: Kouma Sinn 30 Dec 2012 20 : 27

Prescan Emission Graph

Measured Peak Value Swept Peak Data Measured Quasi Peak Value Swept Quasi Peak Data Measured Average Value Swept Average Data Maximum Value of Mast and Turntable

Emissions T	est D	ata
--------------------	-------	-----

Frequency(Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
439.870942242 M	32.34	16.700	-24.329				201	1.46	120 k	
79.911623026 M	27.99	7.500	-25.814				82	2.58	120 k	
199.911422485 M	32.40	12.891	-24.411			İ	159	1.05	120 k	
480.036472906 M	35.07	17.901	-24.444				206	1.55	120 k	
159.974348735 M	34.64	12.300	-24.906				150	1.05	120 k	
39.160521108 M	35.28	14.704	-26.313				182	1.04	120 k	

Trace2: Measured Quasi Peak

Frequency(Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
439.870942242 M	25.81 ´	16.700	-24.329	35.540	-9.73		201	1.46	120 k	
39.160521108 M	21.52	14.704	-26.313	29.540	-8.02		182	1.04	120 k	
79.911623026 M	23.02	7.500	-25.814	29.540	-6.52	İ	82	2.58	120 k	
199.911422485 M	27.13	12.891	-24.411	33.040	-5.91		159	1.05	120 k	
480.036472906 M	31.46	17.901	-24.444	35.540	-4.08		206	1.55	120 k	
159.974348735 M	31.71	12.300	-24.906	33.040	-1.33		150	1.05	120 k	

Trace3: Measured Average

Frequency(Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
39.160521108 M	12.10	14.704	-26.313				182	1.04	120 k	
79.911623026 M	17.34	7.500	-25.814			İ	82	2.58	120 k	
439.870942242 M	19.48	16.700	-24.329				201	1.46	120 k	
199.911422485 M	21.18	12.891	-24.411				159	1.05	120 k	
480.036472906 M	25.01	17.901	-24.444				206	1.55	120 k	
159.974348735 M	28.19	12.300	-24.906			1	150	1.05	120 k	

Azimuth Plots

All Polarities Azimuth (Degrees)

Turntable Plots

Issued: 04/24/2013

Level (dBuV/m)

Report Number: 100990439BOX-004b

Issued: 04/24/2013

Turntable Plot (480.036472906 MHz)

Test Personnel: Kouma Sinn Supervising/Reviewing Engineer: Product Standard: FCC 15.225, IC RSS-210 Input Voltage: 120VAC/60Hz

Signals or BB Source: Ambient Signals

Test Levels: Per section 9.3 Ambient Temperature: 21 °C Relative Humidity: 15 % Atmospheric Pressure: 1001 mbars

Test Date: 12/30/2012

Deviations, Additions, or Exclusions: None

Pretest Verification w/ Ambient

10 Line Conducted Emissions

10.1 Method

Tests are performed in accordance with FCC CFR47 Part 15 Subpart B, CISPR 11, ICES-003, RSS-Gen, and ANSI C 63.4:2009.

TEST SITE: 10m Chamber Building Bumpout

<u>The EMC Lab</u> has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

<u>The AMAP Building and Lab</u> includes general lab space that can be used for testing where a shielded/enclosed environment is not required.

Measurement Uncertainty

For conducted emissions, $U_{\it lab}$ (3.1 dB in worst case) < $U_{\it CISPR}$ (3.6 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculations

The following is how net line-conducted readings were determined:

```
NF = RF + LF + CF + AF

Where NF = Net Reading in dB\mu V

RF = Reading from receiver in dB\mu V

LF = LISN Correction Factor in dB

CF = Cable Correction Factor in dB

AF = Attenuator Loss Factor in dB
```

To convert from $dB\mu V$ to μV or mV the following was used:

```
UF = 10^{(NF/20)} where UF = Net Reading in \muV NF = Net Reading in dB\muV
```

Example:

NF = RF + LF + CF + AF =
$$28.5 + 0.2 + 0.4 + 20.0 = 49.1 \ dB\mu V$$
 UF = $10^{(49.1 \ dB\mu V / 20)} = 285.1 \ \mu V/m$

Report Number: 100990439BOX-004b Issued: 04/24/2013

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	09/25/2012	09/25/2014
145015'	LISN: 50 Ohm/50 microHenry	Solar Electronics	9252-50-R-24-BNC	971617	02/06/2012	02/06/2013
DS26A'	Attenuator, 20dB	Mini Circuits	20dB, 50 ohm	DS26A	10/04/2012	10/04/2013
CBLBNC2012-2'	50 Ohm Coaxial Cable	Pomona	RG-58 C/U	CBLBNC2012-2	09/14/2012	09/14/2013
ROS002'	9kHz to 3GHz EMI Test Receiver	Rohde & Schwartz	ESCI 1166.5950K03	100067	06/13/2012	06/13/2013

Software Utilized:

Name	Manufacturer	Version
C5 Emissions	TESEQ	5.26.46.46

10.3 Results:

The sample tested was found to Comply.

10.4 Setup Photographs:

10.5 Plots/Data:

120VAC/60Hz

Test Information User Entry
LISN - FCC15 Class B
Analogic G100990439
120V/60Hz; ANDE-1; RFID On; 1 mH common mode choke post input fiter Test Details Additional Information

Test:

Project: Test Notes:

Temperature: Humidity: Tested by: 22c 23%, 1009 mB Nick A. 21 Dec 2012 00 : 10 Test Started:

Prescan Emission Graph

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data

Swept Quasi Peak Data

Swept Average Data

Emissions Test Data

Trace2: Measure	d Quasi Peak							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
375.0 k	22.64	0.101	20.744	58.389	-35.75	9 k ` ´		N
12.138 M	27.87	0.278	20.597	60.000	-32.13	9 k		N
180.0 k	41.64	0.122	20.732	64.486	-22.85	9 k		N
252.0 k	42.78	0.110	20.737	61.691	-18.91	9 k		L1
210.0 k	46.75	0.118	20.734	63.205	-16.45	9 k		N
213.0 k	48.68	0.117	20.734	63.088	-14.41	9 k		N
Trace3: Measure	ed Average							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE

RBW(Hz) Comment	LINE
0.14	
9 K	N
9 k	N
9 k	N
9 k	N
9 k	L1
9 k	N
	9 k 9 k 9 k

Report Number: 100990439BOX-004b Issued: 04/24/2013

Test Date: 12/21/2012 Test Personnel: Nicholas Abbondante Supervising/Reviewing Engineer: (Where Applicable) N/A ICES-003, Product Standard: FCC Part 15 Subpart B Test Levels: See tables Input Voltage: 120VAC/60Hz Pretest Verification w/ 22 °C Ambient Temperature: Ambient Signals or BB Source: Relative Humidity: 23 % Yes Atmospheric Pressure: 1009 mbars

Deviations, Additions, or Exclusions: None

11 20dB Bandwidth

11.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C:2012, 15.215, IC RSS-Gen Issue 3 December 2010 Section 4.6, ANSI C63.4-2009.

TEST SITE: AMAP Lab

<u>The EMC Lab</u> has two Semi-anechoic Chambers and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

<u>The AMAP Building and Lab</u> includes general lab space that can be used for testing where a shielded/enclosed environment is not required.

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV001'	Weather Station	Davis Instruments	7400	PE80519A61	08/28/2012	08/28/2014
HEW42'	HARMONIC/FLICKER TEST SYSTEM	Hewlett Packard	6843A	3531A00114	05/02/2012	05/02/2014
ROS001'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	02/10/2012	02/10/2013
148012'	Temp/Humidity Chamber	Envirotronics	SH27C	08015563S11263	10/18/2012	10/18/2013
147237'	DMM	Fluke	85III	73760202	06/13/2012	06/13/2013
MEG005'	High Frequency Cable	Megaphase	TM40-K1K1-197	8148601-001	02/07/2012	02/07/2013

Software Utilized:

Name	Manufacturer	Version
None		

11.3 Results:

The sample tested was found to Comply. The 20 dB bandwidth remains within the assigned band.

11.4 Setup Photographs:

11.5 Test Data:

Deviations, Additions, or Exclusions: None

BB Source: Ambient Signals

Ambient Signals or

12 Frequency Stability

12.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C:2012, 15.225(e), IC RSS-Gen Issue 3 December 2010 Section 4.7, IC RSS-210 December 2010 A2.6, ANSI C63.4-2003.

TEST SITE: AMAP lab

<u>The EMC Lab</u> has two Semi-anechoic Chambers and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

<u>The AMAP Building and Lab</u> includes general lab space that can be used for testing where a shielded/enclosed environment is not required.

12.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV001'	Weather Station	Davis Instruments	7400	PE80519A61	08/28/2012	08/28/2014
HEW42'	HARMONIC/FLICKER TEST SYSTEM	Hewlett Packard	6843A	3531A00114	05/02/2012	05/02/2014
ROS001'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	02/10/2012	02/10/2013
148012'	Temp/Humidity Chamber	Envirotronics	SH27C	08015563S11263	10/18/2012	10/18/2013
147237'	DMM	Fluke	85III	73760202	06/13/2012	06/13/2013
MEG005'	High Frequency Cable	Megaphase	TM40-K1K1-197	8148601-001	02/07/2012	02/07/2013

Software Utilized:

Name	Manufacturer	Version
C5 Emissions	TESEQ	5.26.46.46
EMI Boxborough.xls	Intertek	08/27/2010

12.3 Results:

The sample tested was found to Comply.

The fundamental frequency shall remain within $\pm 0.01\%$ of the operating frequency over a temperature variation of -30 degrees to +50 degrees. Voltage variations of $\pm 15\%$ were also performed.

12.4 Setup Photographs:

12.5 Test Data:

Powered by 120VAC/60Hz at 20 °C

Date: 30.DEC.2012 15:00:55

Report Number: 100990439BOX-004b Issued: 04/24/2013

				ı	Frequenc	y Stabilit	y			
Campar	A mala ai -						Took Country	nnant Hard		
						Test Equipment Used:				
Model #:							ROS001	HEW42		
Serial #:							148-012	147237		
Engineer(s):	Kouma Si	nn			Location:	AMAP Lab	MEG005			
Project #:	G1009904	39	Date(s):	12/30/12						
Standard:	FCC Part	15 Subpart	C Section 15	5.225 & RSS	3-210 Annex	(2 (A2.6)				
		Limit:	100	PPM						
		Nominal								
		f:	13.56	MHz			Voltage:	120	AC	
		Voltage	Frequency	Deviation			Temp	Frequency	Deviation	
	%	Volts	MHz	kHz	Limit kHz		Celsius	MHz	kHz	Limit kHz
	-15%	102	13.559107	-0.02565	1.36		-30	13.559102	0.012	1.36
	-10%	108	13.559107	-0.02565	1.36		-20	13.559115	0.025	1.36
	-5%	114	13.559133	0	1.36		-10	13.559111	0.021	1.36
	+0%	120	13.559133	0	1.36		0	13.559093	0.003	1.36
	+5%	126	13.559107	-0.02565	1.36		10	13.559090	0	1.36
	+10%	132	13.559107	-0.02565	1.36		20	13.559090	0	1.36
	+15%	138	13.559133	0	1.36		30	13.559115	0.025	1.36
							40	13.559106	0.016	1.36
							50	13.559081	-0.009	1.36

Test Personnel(s):	Kouma Sinn 45	Test Date(s):	12/30/2012	
Supervising Engineer:				
(Where Applicable)	N/A	Test Levels:	Per section 12.3	
Product Standard:	FCC 15.225, IC RSS-210	Ambient Temperature:	20 °C	
Input Voltage:	See test data	Relative Humidity:	10 %	
Pretest Verification w/		Atmospheric Pressure:	996 mbars	
Ambient Signals or		·		—
BB Source:	Ambient Signals			

Deviations, Additions, or Exclusions: None

Report Number: 100990439BOX-004b Issued: 04/24/2013

13 Revision History

Revision Level	Date	Report Number	Notes
0	12/30/2012	100990439BOX-004	Original Issue
1	01/02/2013	100990439BOX-004a	Typo corrections
2	04/24/2013	100990439BOX-004b	Changed product description from 'DNA Sequencer' to 'Rapid DNA Analysis Instrument'