



### Plan de la présentation

- 1) Problématique d'Olist
- 2) Description des données Olist
- 3) Feature engineering, exploration, nettoyage des données
- 4) Segmentation des clients par des modèles d'apprentissage non supervisé :
  - a) modèles testés
  - b) k-means
- 5) Stabilité dans le temps du modèle retenu
- 6) Description des segments identifiés
- 7) Conclusion

# Problématique d'Olist

**Contexte** : société brésilienne SaaS (software as a service) qui facilite l'accès aux « market places » pour des sociétés de vente en ligne.

Objectif d'Olist : disposer d'une segmentation des clients qui achètent en ligne.

#### Missions confiées :

- aider les équipes d'Olist à comprendre les différents types d'utilisateurs.
- proposer une segmentation exploitable et facile d'utilisation pour l'équipe marketing.
- évaluer la fréquence à laquelle la segmentation doit être mise à jour.

# Présentation des données

**Source**: <a href="https://www.kaggle.com/olistbr/brazilian-ecommerce">https://www.kaggle.com/olistbr/brazilian-ecommerce</a>

| Fichiers .csv  | Variables réutilisées                                             | Nb de lignes |  |  |
|----------------|-------------------------------------------------------------------|--------------|--|--|
| Orders         | order_id, customer_id                                             | 99441        |  |  |
| Customers      | customer_id, customer_unique_id                                   | 99441        |  |  |
| Order reviews  | order_id, review_score                                            | 99441        |  |  |
| Order payments | order_id, payment_sequential, payment_installments, payment_value | 99440        |  |  |
| Items          | 1                                                                 | 112650       |  |  |
| Geolocation    | 1                                                                 | 19015        |  |  |
| Translation    | 1                                                                 | 71           |  |  |
| Products       | 1                                                                 | 32951        |  |  |
| Sellers        | / 3095                                                            |              |  |  |

Note: nb de clients uniques = 96096

# Séparation des données en 6 trimestres

Séparation en 6 trimestres (pour tester la stabilité des partitionnements obtenus)



| Trimestre | Nombre d'ordres |
|-----------|-----------------|
| 1         | 8210            |
| 2         | 11408           |
| 3         | 15154           |
| 4         | 20786           |
| 5         | 21302           |
| 6         | 19567           |

# Feature engineering

Inspiré par la segmentation RFM (récence, fréquence, montant).

Création des variables suivantes (calculées sur un trimestre et sur un client unique) :

- **récence** : durée (j) entre le dernier achat du trimestre et la fin du trimestre (pour un client, pour un trimestre).
- fréquence : nombre de commandes (pour un client, pour un trimestre).
- montant total: somme des commandes (pour un client, pour un trimestre) en reals.
- montant moyen : montant total / fréquence (pour un client, pour un trimestre).
- installments: moyenne du nombre d'installments par commande (pour un client, pour un trimestre).

### Variables retenues pour l'apprentissage non supervisé

Dans une phase préliminaire (incluant l'exploration de données) :

- récence,
- nb de commandes moyen,
- montant total,
- montant moyen,
- nb d'installments moyen,
- review score moyen.

Finalement (pour l'apprentissage supervisé) :

- récence,
- nb de commandes moyen,
- montant total,
- montant moyen,
- nb d'installments moyen,
- review score moyen.

Résultats dans la présentation : sans récence (sauf mentions particulières)

### Données utilisées

On travaille avec un dataset par trimestre (6 datasets en tout).

### Exemple:

extrait du tableau des données pour le trimestre 6 :

| récence | nb_commandes | montant_total | montant_moyen | installments | review_score |
|---------|--------------|---------------|---------------|--------------|--------------|
| 80.53   | 1.0          | 40.36         | 40.36         | 4.0          | 4.0          |
| 33.51   | 1.0          | 201.34        | 201.34        | 3.0          | 5.0          |
| 60.25   | 1.0          | 137.70        | 137.70        | 10.0         | 4.0          |
| 34.17   | 1.0          | 83.79         | 83.79         | 8.0          | 5.0          |
| 11.62   | 2.0          | 244.14        | 122.07        | 1.5          | 4.0          |
| 1.11    | 1.0          | 22.29         | 22.29         | 1.0          | 5.0          |
| 79.08   | 1.0          | 61.96         | 61.96         | 4.0          | 4.0          |
| 10.05   | 1.0          | 118.98        | 118.98        | 6.0          | 5.0          |
| 5.29    | 1.0          | 60.05         | 60.05         | 1.0          | 5.0          |
| 48.55   | 1.0          | 83.26         | 83.26         | 1.0          | 5.0          |

19058 lignes (1 ligne par client unique)

# Exploration – analyse monovariée

Données complètes et absence de données aberrantes pour les 6 datasets (trimestres)

Distribution des variables : exemple représentatif (trimestre 6) :













A chaque trimestre : 98 à 99% des clients qui passent une commande n'en passent qu'une seule.

# Exploration – Matrice de corrélation linéaire (r, Pearson)

Exemple représentatif : trimestre 6



Très forte corrélation linéaire (r = 0.97 à 99 selon trimestre) entre montant total et montant moyen. Corrélation linéaire faible (r = 0.30 à 0.37 à selon trimestre) entre entre le nb moyen d'installments et les montants.

Très faible corrélation linéaire (|r| < 0.1) entre les autres paires de variables

# Exploration – analyse en composantes principales

Etude des corrélations entre les 6 variables utilisées - éboulis des valeurs propres :



→ répartition des pourcentages d'inertie avec un ratio 2 / 1 / 1 / 1 / 1 / 0 entre les axes.

(data utilisée : trimestre 6)

# Exploration – analyse en composantes principales

### Cercles des corrélations (plans factoriels) :







Les variables suivantes sont principalement projetées selon les axes :

- montant total → F1.
- montant moven  $\rightarrow$  F1.
- nb de commandes → F2 et F4.
- récence → -F2 et F4.
- review score  $\rightarrow$  -F3.
- installments  $\rightarrow$  -F5.

# Nettoyage des données

### Dans les données analysées :

- Absence de donnée aberrante ou atypique.
- Absence de valeur manquante.
- Doublons dans les review scores :
  - ⇒ nettoyage par conservation des reviews les plus récentes pour chaque commande.

# Apprentissage non supervisé - généralités

#### Modules utilisés:

- scikit-learn.
- scipy (clustering hiérarchique agglomératif).

### Analyse de la stabilité des segments au cours du temps :

- comparaison des 6 datasets / trimestres créés.
- métrique privilégiée pour tester la stabilité des clusters : index de Rand ajusté (ARI).

### Variables utilisées (rappel) :

- nb de commandes,
- montant total,
- montant moyen,
- nb d'installments moyen,
- review score moyen,
- récence

Toutes les variables ont été centrées et réduites (StandardScaler) pour la phase d'apprentissage.

# Apprentissage non supervisé – modèles testés

| Modèle                                 | Vitesse de<br>calcul pour<br>nos datasets | Stabilité de la<br>convergence<br>du modèle | Outil<br>« predict »         | Répartition<br>équilibrée des<br>clusters<br>(choix métier) | Conclusion :<br>modèle retenu |
|----------------------------------------|-------------------------------------------|---------------------------------------------|------------------------------|-------------------------------------------------------------|-------------------------------|
| k-means                                | Elevée                                    | Non                                         | Oui                          | Oui                                                         | Oui                           |
| Classification ascendante hiérarchique | Suffisante<br>(! RAM)                     | Oui                                         | Non<br>(sklearn et<br>scipy) | Oui                                                         | Non                           |
| Affinity propagation                   | Trop lente<br>(CA > O(n <sup>3</sup> ))   | Non                                         | Oui                          | Oui                                                         | Non                           |
| Mean Shift                             | Suffisante                                | n.d.                                        | Oui                          | Non                                                         | Non                           |
| BIRCH                                  | Très élevée                               | n.d.                                        | Oui                          | Non                                                         | Non                           |

### Outil « predict » du modèle :

- pour calculer à quel cluster appartient un nouveau client.
- indispensable pour tester la stabilité des clusters.

### Plan de la présentation k-means :

- 1) comparaison de scores de silhouette
- 2) comparaison de silhouettes
- 3) stabilité inter-trimestres des partitions obtenues
- 4) partitionnement retenu
- 5) description des personas
- 6) représentation des segments sur un pair plot
- 7) stabilité du k-means par rapport à l'initialisation

#### Scores de silhouette :



 $\rightarrow$  Qualité des partitions : k=3 > k=2 >> k=6 > k=5 > k=4 > ...

### Silhouette (exemple représentatif : trimestre 6) :

k=2 et k=3 : qualité du partitionnement mais **mauvaise répartition** (partitions déséquilibrées)

k=5 et k=6 : **compromis** entre la qualité du partitionnement et la répartition



#### Stabilité inter-trimestres des clusters :

Objectif : déterminer si un cluster observé le <u>trimestre n-1</u> est de nouveau identifié au <u>trimestre n</u> par l'algorithme k-means.

### Méthodologie retenue :

- 1) entrainer l'algorithme avec les données du trimestre n-1,
- 2) prédiction des labels des data du trimestre n avec le modèle de clustering du trimestre n-1
- 3) partitionner séparément les données du <u>trimestre n</u> (avec hyperparamètres identiques)
- 4) comparer (par ARI) les 2 partitionnements obtenus (pour trimestre n).

### Exemple de prédictions pour k=6 :

labels du trimestre 2 prédits avec un modèle entrainé sur les data du trimestre 1 : ARI = 0.97

#### Stabilité inter-trimestres des clusters :





- $\rightarrow$  stabilité d'un trimestre au suivant très bonnes (ARI  $\ge 0.95$ ) pour k = 4, k = 5 et k = 6.
- → stabilité insuffisante si prédiction réalisée avec partitionnement du trimestre n-2
- ⇒ Proposition de contrat de maintenance trimestrielle

### Nombre de partitions retenues :

Meilleurs partitionnements obtenus avec k=5 et k=6 (stabilité inter-trimestres, scores de silhouette) ⇒ on choisit k=6 (plus de clusters que k=5, et score de silhouette supérieur)

# **Pair plot** (trimestre 6) des clients dans les plans définis par les variables utilisées

| Cluster | Descriptif persona                                                    |  |  |
|---------|-----------------------------------------------------------------------|--|--|
| A       | Client typique (petit montant, peu<br>d'installments, très satisfait) |  |  |
| B       | A payé en un grand nombre de fois                                     |  |  |
| C       | Insatisfait                                                           |  |  |
| D       | A passé une grosse commande                                           |  |  |
| E       | A passé 2 commandes ou plus durant<br>le trimestre                    |  |  |
| F       | A passé une très grosse commande                                      |  |  |



Personas (les valeurs numériques du tableau correspondent au trimestre 6) :

| Résultats du partitionnement |                                                                       | Variables utilisées pour le partitionnement / centroïdes obtenus |                 |                  |                  |                   |              |
|------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|-----------------|------------------|------------------|-------------------|--------------|
| Cluster                      | Descriptif client                                                     | Proportion (%)                                                   | Nb de commandes | Montant<br>total | Montant<br>moyen | Install-<br>ments | Review score |
| A                            | Client typique (petit montant, peu<br>d'installments, très satisfait) | 63.2                                                             | 1.00            | 112              | 112              | 1.7               | 4.8          |
| B                            | Paie en un grand nombre de fois                                       | 16.0                                                             | 1.00            | 199              | 199              | 7.2               | 4.6          |
| C                            | Insatisfait                                                           | 15.8                                                             | 1.00            | 133              | 133              | 2.4               | 1.9          |
| D                            | A passé une grosse commande                                           | 3.4                                                              | 1.00            | 835              | 835              | 6.0               | 4.1          |
| E                            | A passé plus de 2 commandes durant<br>le trimestre                    | 1.2                                                              | 2.04            | 331              | 158              | 2.8               | 4.2          |
| F                            | A passé une très grosse commande                                      | 0.5                                                              | 1.02            | 2571             | 2496             | 6.9               | 3.8          |

<sup>→</sup> valeurs des centroïdes et proportions différentes d'un trimestre à l'autre, personas strictement identiques.

<sup>→</sup> segmentation permettant de réaliser un marketing différencié.

### Explication de l'omission de la récence :

|                           | Avec récence | Sans récence |
|---------------------------|--------------|--------------|
| Score de silhouette       | 0.32         | 0.48         |
| Stabilité inter-trimestre | 92%          | 96%          |

Conditions: k-means, k=6, moyenne des 6 trimestres.

⇒ Amélioration du score de silhouette et de la stabilité inter-trimestres par omission de la récence

### Stabilité du k-means par rapport à l'initialisation :

Objectif : déterminer si l'algorithme k-means converge vers les mêmes clusters avec des initialisations différentes.

### Méthodologie retenue :

1) Utilisation des conditions d'initialisation par défaut de KMeans() de sklearn (avec *init='k-means++'*), mais avec *n\_init=1* (un seul run).

- 2) Réalisation de 1000 runs de KMeans (initialisations aléatoires).
- 3) Run étalon = run de plus basse inertie.
- 4) Calcul des ARI des partitionnements pour chaque run par rapport au run étalon.
- 5) Tracé de l'histogramme des ARI.

### Stabilité du k-means par rapport à l'initialisation :

Exemple (trimestre 6):



→ Pour k = 6 : convergence fréquente vers le partitionnement de plus basse inertie.

### Stabilité du k-means par rapport à l'initialisation :

Données du trimestre 6 (résultats similaires pour autres trimestres) :





k=2 et k=3 → convergence moins fréquente vers le partitionnement de plus basse inertie. k entre 4 et 10 → convergence fréquente vers le partitionnement de plus basse inertie. **Solution retenue** pour s'assurer d'avoir le partitionnement de plus basse inertie : toutes les modélisations k-means ont été réalisées avec **n\_iter=100** (100 runs).

# Bilan de l'apprentissage non supervisé

#### 5 variables utilisées :

- nb de commandes moyen,
- montant total,
- montant moyen,
- nb d'installments moyen,
- review score moyen.

#### Modèles testés mais non retenus :

- Classification ascendante hiérarchique
- Affinity propagation
- Mean Shift
- BIRCH

### Modèle retenu et ses hyperparamètres :

- k-means
- -k = 6
- hyperparamètres par défaut de sci-kit learn (sauf : n\_init = 100, tol = 1e-10)

### Conclusion

#### **Dataset Olist:**

Données de qualité (absence de valeurs manquantes ou aberrantes)

Feature engineering nécessaire pour extraire des variables métier pertinentes pour une analyse marketing Taille du dataset suffisante pour :

- mettre au point un modèle d'apprentissage supervisé.
- tester la stabilité du modèle au cours du temps.

5 modèles testés. Modèle retenu : k-means.

Partitionnement en 6 segments :

| Segment | Descriptif persona                                                 |  |  |
|---------|--------------------------------------------------------------------|--|--|
| A       | Client typique (petit montant, peu d'installments, très satisfait) |  |  |
| B       | A payé en un grand nombre de fois                                  |  |  |
| C       | Insatisfait                                                        |  |  |
| D       | A passé une grosse commande                                        |  |  |
| E       | A passé 2 commandes ou plus durant le trimestre                    |  |  |
| F       | A passé une très grosse commande                                   |  |  |

Modèle de partitionnement stable d'un trimestre à l'autre mais pas au-delà

⇒ Proposition de contrat de maintenance trimestrielle

