Deep Reinforcement Learning

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics in Deep RL

- 1. Q-learning target function as a table
- 2. Learning Q as a function
- 3. Simple versus deep reinforcement learning
- 4. Deep Q Network for Atari Breakout
- 5. The Gym framework for RL
- 6. Research frontiers of RL

Definitions for Q Learning & Grid world

r(s,a)(Immediate Reward)

$$V^{\pi}(s_{t}) = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots = \sum_{i=0}^{\infty} \gamma^{i} r_{i+1}$$

 $V^*(s)$ (Maximum Discounted Cumulative Reward)

Q(s,a)values

Definition

Recurrent
$$Q(s,a) = r(s,a) + \gamma \max_{a'} Q(\delta(s,a),a')$$

$$Q(s,a) = r(s,a) + \gamma V * (\delta(s,a))$$

$$V^*(s) = \max_{a'} Q(s, a')$$

One **Optimal** policy

$$\pi^*(s) = \arg\max_{\pi} [r(s, a) + \gamma V^*(\delta(s, a))]$$

$$\pi^*(s) = \arg\max_{\pi} Q(s, a)$$

Q Learning table updates

- The target function is a lookup table
 - With a distinct table entry for every state-action pair

Q-Learning table of states by actions that is initialized to zero, then each cell \Box is updated through training.

Training rule (deterministic case):

$$\hat{Q}(s,a) = r(s,a) + \gamma \max_{a'} \hat{Q}(s,a')$$

 $Q(s,a) = r + \gamma max_{a'}Q(s',a')$

is called Bellman's equation:

Which says, maximum future reward is immediate reward plus maximum future reward for next state

Training rule (non-deterministic case):

$$\left|\hat{Q}_{\scriptscriptstyle n}(s,a) \leftarrow (1-\alpha_{\scriptscriptstyle n})\hat{Q}_{\scriptscriptstyle n-1}(s,a) + \alpha_{\scriptscriptstyle n} \Big[r + \gamma \max_{\scriptscriptstyle a'} \hat{Q}_{\scriptscriptstyle n-1}(s',a')\Big]\right|$$

Iterative Q-learning using Bellman eqn

initialize Q[numstates,numactions] arbitrarily observe initial state s repeat

select and carry out an action a observe reward r and new state s'

$$\begin{aligned} \mathrm{Q}[\mathrm{s},\mathrm{a}] &= \mathrm{Q}[\mathrm{s},\mathrm{a}] + \alpha(\mathrm{r} + \gamma \mathrm{maxa'} \; \mathrm{Q}[\mathrm{s'},\mathrm{a'}] \; \text{-} \; \mathrm{Q}[\mathrm{s},\mathrm{a}]) \\ \mathrm{s} &= \mathrm{s'} \end{aligned}$$

until terminated

 α is a learning rate that controls how much of the difference between previous Q-value and newly proposed Q-value is taken into account. When $\alpha=1$, then two Q[s,a]-s cancel and the update is exactly the same as Bellman equation $Q(s,a)=r+\gamma max_{a'}Q(s',a')$

Q-Learning is Rote Learning

- Target function is an explict entry for each state-action pair
 - It makes no attempt to estimate the Q value for unseen action-state pairs
 - By generalizing from those that have been seen
- Rote learning inherent in convergence theorem
 - Relies on every (s,a) pair visited infinitely often
 - An unrealistic assumption for large or infinite spaces
- More practical RL systems combine ML function approximation methods with Q learning rules

Learning Q as a function

- Replace \hat{Q} table with a neural net or other generalizer
 - Using each $\hat{Q}(s,a)$ update as a training example
 - Encode s and a as inputs and train network to output target values of Q given by the training rules

Deterministic:
$$\left|\hat{Q}(s,a) = r(s,a) + \gamma \max_{a'} \hat{Q}(s,a')\right|$$

Nondeterministic:

$$\left|\hat{Q}_{\scriptscriptstyle n}(s,a) \leftarrow (1-\alpha_{\scriptscriptstyle n})\hat{Q}_{\scriptscriptstyle n-1}(s,a) + \alpha_{\scriptscriptstyle n} \Big[r + \gamma \max_{\scriptscriptstyle a'} \hat{Q}_{\scriptscriptstyle n-1}(s',a')\Big]\right|$$

Loss **Function:**

$$L = \frac{1}{2} [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]^2$$
 Target Prediction

Simple ML v Deep Learning

1. Simple Machine Learning (e.g., SVM)

2. Deep Learning (e.g., Neural Net using CNN)

Gradient descent using Backward error propagation for computing gradients

Simple RL vs Deep RL

1. Simple Reinforcement Learning (Q Table Learning)

2. Deep Reinforcement Learning (Q Function Learning)

Sriha

Deep Q Network for Atari Breakout

The game:

- You control a paddle at the bottom of screen
- Bounce the ball back to clear all the bricks in upper half of screen
- Each time you hit a brick, it disappears and you get a reward

https://arxiv.org/abs/1312.5602

Neural network to play Breakout

- Input to network: screen images
- Output would be three actions:
 - left, right or press fire (to launch the ball).
- Can treat it as a classification problem
 - Given a game screen decide: left, right or fire
 - we could record game sessions using players,
 - But that's not how we learn.
 - Don't need a million times which move to choose at each screen.
 - Just need occasional feedback that we did the right thing and can then figure out everything else ourselves
- This is the task of reinforcement learning

What is state in Atari breakout?

- Game specific representation
 - Location of paddle
 - Location and direction of the ball
 - Existence of each individual brick
- More general representation
 - Screen pixels would contain all relevant information except speed and direction of ball
 - Two consecutive screens would cover these as well

Role of deep learning

- If we take four last screen images,
- Resize them to 84 × 84
- Convert to grayscale with 256 gray levels
 - we would have $256^{84\times84\times4} \approx 10^{67970}$ game states
- Deep learning to the rescue
 - They are exceptionally good in coming up with good features for highly structured data

Alternative architectures for Breakout

Naiive architecture

More optimal architecture

Loss Function

 Q-values can be any real values, which makes it a regression task, that can be optimized with a simple squared error loss.

Deep Q Network for Breakout

Layer	Input	Filter size	Stride	Num filters	Activation	Output
conv1	84x84x4	8×8	4	32	ReLU	20x20x32
conv2	20x20x32	4×4	2	64	ReLU	9x9x64
conv3	9x9x64	3×3	1	64	ReLU	7x7x64
fc4	7x7x64			512	ReLU	512
fc5	512			18	Linear	18

Q Table Update Rule

- Given a transition $\langle s, a, r, s' \rangle$
- 1. Do a feedforward pass for the current state s to get predicted Q-values for all actions.
- 2. Do a feedforward pass for the next state s' and calculate maximum over all network outputs $\max_{a'} Q(s,a)$
- 3. Set Q-value target for action a to $r+ \gamma \max_{a'} Q(s,a)$ (use the max calculated in step 2). For all other actions, set the Q-value target to the same as originally returned from step 1, making the error 0 for those outputs.
- 4. Update the weights using backpropagation.

Experience Replay

- Approximation of Q-values using non-linear functions is not very stable
 - A bag of tricks needed for convergence
 - Also, it takes a long time, a week on a single GPU
- Most important trick is experience replay
 - During gameplay all experiences $\langle s, a, r, s \rangle$ are stored in a replay memory
 - During training, random samples from memory are used instead of the most recent transition. This breaks the similarity of subsequent training samples
 - Human gameplay experiences can also be used

Q-learning using experience replay

- initialize replay memory D
- initialize action-value function Q with random weights
- observe initial state s
- repeat
 - select an action a
 - with probability ε select a random action
 - otherwise select $a = \operatorname{argmaxa'Q(s,a')}$
 - carry out action a observe reward r and new state s' store experience <s, a, r, s'> in replay memory D
 - sample random transitions <ss, aa, rr, ss'> from replay memory D
 - calculate target for each minibatch transition
 - if ss' is terminal state then tt = rr
 - otherwise $tt = rr + \gamma \max(ss', aa')$
 - train the Q network using (tt Q(ss, aa))^2 as loss
 - s = s'
- until terminated

Gym

- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- It supports teaching agents everything from walking to playing games like Pong or Pinball
- It is compatible with any numerical computation library, such as TensorFlow or Theano
 - To get started, you'll need to have Python 3.5+
 installed. Simply install gym using pip:
 - pip install gym

Other research topics in RL

- Case where state only partially observable
- Design optimal exploration strategies
- Extend to continuous action, state
 - https://arxiv.org/abs/1509.02971
- Learn and use $\hat{\delta}: S \times A \rightarrow S$
- Double Q-learning,
 Prioritized Experience Replay,
 Dueling Network Architecture

Final comments on Deep RL

- Because our Q-function is initialized randomly, it initially outputs complete garbage
 - We use this garbage (the maximum Q-value of the next state) as targets for the network, only occasionally folding in a tiny reward
- How could it learn anything meaningful at all?
 - The fact is, that it does
- Watching them figure it out is like observing an animal in the wild- a rewarding experience by itself