Functions are a tool for describing the real world in mathematical terms. A function can be represented by an equation, a graph, a numerical table, or a verbal description; we will use all four representations throughout this book. This section reviews these ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level. The interest paid on a cash investment depends on the length of time the investment is held. The area of a circle depends on the radius of the circle. The distance an object travels depends on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another variable quantity, which we often call x. We say that "y is a function of x" and write this symbolically as

$$y = f(x)$$
 ("y equals f of x").

The symbol f represents the function, the letter x is the **independent variable** representing the input value to f, and y is the **dependent variable** or output value of f at x.

DEFINITION A **function** f from a set D to a set Y is a rule that assigns a *unique* value f(x) in Y to each x in D.

The set D of all possible input values is called the **domain** of the function. The set of all output values of f(x) as x varies throughout D is called the **range** of the function. The range might not include every element in the set Y. The domain and range of a function can be any sets of objects, but often in calculus they are sets of real numbers interpreted as points of a coordinate line. (In Chapters 13–16, we will encounter functions for which the elements of the sets are points in the plane, or in space.)

Often a function is given by a formula that describes how to calculate the output value from the input variable. For instance, the equation $A = \pi r^2$ is a rule that calculates the area A of a circle from its radius r. When we define a function y = f(x) with a formula and the domain is not stated explicitly or restricted by context, the domain is assumed to

FIGURE 1.1 A diagram showing a function as a kind of machine.

FIGURE 1.2 A function from a set *D* to a set *Y* assigns a unique element of *Y* to each element in *D*.

be the largest set of real x-values for which the formula gives real y-values. This is called the **natural domain** of f. If we want to restrict the domain in some way, we must say so. The domain of $y = x^2$ is the entire set of real numbers. To restrict the domain of the function to, say, positive values of x, we would write " $y = x^2$, x > 0."

Changing the domain to which we apply a formula usually changes the range as well. The range of $y=x^2$ is $[0,\infty)$. The range of $y=x^2, x\geq 2$, is the set of all numbers obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1), the range is $\{x^2|x\geq 2\}$ or $\{y|y\geq 4\}$ or $[4,\infty)$.

When the range of a function is a set of real numbers, the function is said to be **real-valued**. The domains and ranges of most real-valued functions we consider are intervals or combinations of intervals. Sometimes the range of a function is not easy to find.

A function f is like a machine that produces an output value f(x) in its range whenever we feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give an example of a function as a machine. For instance, the \sqrt{x} key on a calculator gives an output value (the square root) whenever you enter a nonnegative number x and press the \sqrt{x} key.

A function can also be pictured as an **arrow diagram** (Figure 1.2). Each arrow associates to an element of the domain D a single element in the set Y. In Figure 1.2, the arrows indicate that f(a) is associated with a, f(x) is associated with x, and so on. Notice that a function can have the same *output value* for two different input elements in the domain (as occurs with f(a) in Figure 1.2), but each input element x is assigned a *single* output value f(x).

EXAMPLE 1 Verify the natural domains and associated ranges of some simple functions. The domains in each case are the values of *x* for which the formula makes sense.

Function	Domain (x)	Range (y)
$y = x^2$	$(-\infty, \infty)$	$[0,\infty)$
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0)\cup(0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	(−∞, 4]	$[0, \infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

Solution The formula $y=x^2$ gives a real y-value for any real number x, so the domain is $(-\infty,\infty)$. The range of $y=x^2$ is $[0,\infty)$ because the square of any real number is nonnegative and every nonnegative number y is the square of its own square root: $y=\left(\sqrt{y}\right)^2$ for $y\geq 0$.

The formula y = 1/x gives a real y-value for every x except x = 0. For consistency in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1/x, the set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since y = 1/(1/y). That is, for $y \ne 0$ the number x = 1/y is the input that is assigned to the output value y.

The formula $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$. The range of $y = \sqrt{x}$ is $[0, \infty)$ because every nonnegative number is some number's square root (namely, it is the square root of its own square).

In $y = \sqrt{4-x}$, the quantity 4-x cannot be negative. That is, $4-x \ge 0$, or $x \le 4$. The formula gives nonnegative real y-values for all $x \le 4$. The range of $\sqrt{4-x}$ is $[0, \infty)$, the set of all nonnegative numbers.

The formula $y = \sqrt{1 - x^2}$ gives a real y-value for every x in the closed interval from -1 to 1. Outside this domain, $1 - x^2$ is negative and its square root is not a real number. The values of $1 - x^2$ vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of $\sqrt{1 - x^2}$ is [0, 1].

Graphs of Functions

If f is a function with domain D, its **graph** consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f. In set notation, the graph is

$$\left\{ \left(x,\,f(x)\right) \,\middle|\, x\in D\right\} .$$

The graph of the function f(x) = x + 2 is the set of points with coordinates (x, y) for which y = x + 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function f is a useful picture of its behavior. If (x, y) is a point on the graph, then y = f(x) is the height of the graph above (or below) the point x. The height may be positive or negative, depending on the sign of f(x) (Figure 1.4).

	y y $y = x + 2$
$y = x^2$	
4	/ 2 0
1	FIGURE 1.3 The graph o
0	is the set of points (x, y) for

FIGURE 1.3 The graph of f(x) = x + 2 is the set of points (x, y) for which y has the value x + 2.

FIGURE 1.4 If (x, y) lies on the graph of f, then the value y = f(x) is the height of the graph above the point x (or below x if f(x) is negative).

EXAMPLE 2 Graph the function $y = x^2$ over the interval [-2, 2].

Solution Make a table of *xy*-pairs that satisfy the equation $y = x^2$. Plot the points (x, y) whose coordinates appear in the table, and draw a *smooth* curve (labeled with its equation) through the plotted points (see Figure 1.5).

How do we know that the graph of $y = x^2$ doesn't look like one of these curves?

-2

0

1

 $\frac{3}{2}$

2

1

9

 $\overline{4}$

4

FIGURE 1.5 Graph of the function in Example 2.

To find out, we could plot more points. But how would we then connect *them*? The basic question still remains: How do we know for sure what the graph looks like between the points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile, we will have to settle for plotting points and connecting them as best we can.

Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula and visually by a graph (Example 2). Another way to represent a function is **numerically**, through a table of values. Numerical representations are often used by engineers and experimental scientists. From an appropriate table of values, a graph of the function can be obtained using the method illustrated in Example 2, possibly with the aid of a computer. The graph consisting of only the points in the table is called a **scatterplot**.

EXAMPLE 3 Musical notes are pressure waves in the air. The data associated with Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note produced by a tuning fork. The table provides a representation of the pressure function (in micropascals) over time. If we first make a scatterplot and then connect the data points (t, p) from the table, we obtain the graph shown in the figure.

Time	Pressure	Time	Pressure
0.00091	-0.080	0.00362	0.217
0.00108	0.200	0.00379	0.480
0.00125	0.480	0.00398	0.681
0.00144	0.693	0.00416	0.810
0.00162	0.816	0.00435	0.827
0.00180	0.844	0.00453	0.749
0.00198	0.771	0.00471	0.581
0.00216	0.603	0.00489	0.346
0.00234	0.368	0.00507	0.077
0.00253	0.099	0.00525	-0.164
0.00271	-0.141	0.00543	-0.320
0.00289	-0.309	0.00562	-0.354
0.00307	-0.348	0.00579	-0.248
0.00325	-0.248	0.00598	-0.035
0.00344	-0.041		

FIGURE 1.6 A smooth curve through the plotted points gives a graph of the pressure function represented by the accompanying tabled data (Example 3).

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function f can have only one value f(x) for each x in its domain, so *no vertical* line can intersect the graph of a function more than once. If a is in the domain of the function f, then the vertical line x = a will intersect the graph of f at the single point (a, f(a)).

A circle cannot be the graph of a function, since some vertical lines intersect the circle twice. The circle graphed in Figure 1.7a, however, contains the graphs of two functions of x, namely the upper semicircle defined by the function $f(x) = \sqrt{1 - x^2}$ and the lower semicircle defined by the function $g(x) = -\sqrt{1 - x^2}$ (Figures 1.7b and 1.7c).

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts of its domain. One example is the **absolute value function**

$$|x| = \begin{cases} x, & x \ge 0 & \text{First formula} \\ -x, & x < 0 & \text{Second formula} \end{cases}$$

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper semicircle is the graph of the function $f(x) = \sqrt{1 - x^2}$. (c) The lower semicircle is the graph of the function $g(x) = -\sqrt{1 - x^2}$.

whose graph is given in Figure 1.8. The right-hand side of the equation means that the function equals x if $x \ge 0$, and equals -x if x < 0. Piecewise-defined functions often arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4 The function

$$f(x) = \begin{cases} -x, & x < 0 & \text{First formula} \\ x^2, & 0 \le x \le 1 & \text{Second formula} \\ 1, & x > 1 & \text{Third formula} \end{cases}$$

is defined on the entire real line but has values given by different formulas, depending on the position of x. The values of f are given by y = -x when x < 0, $y = x^2$ when $0 \le x \le 1$, and y = 1 when x > 1. The function, however, is *just one function* whose domain is the entire set of real numbers (Figure 1.9).

$$\begin{bmatrix} 2.4 \end{bmatrix} = 2,$$
 $\begin{bmatrix} 1.9 \end{bmatrix} = 1,$ $\begin{bmatrix} 0 \end{bmatrix} = 0,$ $\begin{bmatrix} -1.2 \end{bmatrix} = -2,$ $\begin{bmatrix} 2 \end{bmatrix} = 2,$ $\begin{bmatrix} 0.2 \end{bmatrix} = 0,$ $\begin{bmatrix} -0.3 \end{bmatrix} = -1,$ $\begin{bmatrix} -2 \end{bmatrix} = -2.$

EXAMPLE 6 The function whose value at any number x is the *smallest integer greater than or equal to x* is called the **least integer function** or the **integer ceiling function**. It is denoted $\lceil x \rceil$. Figure 1.11 shows the graph. For positive values of x, this function might represent, for example, the cost of parking x hours in a parking lot that charges \$1 for each hour or part of an hour.

If the graph of a function climbs or rises as you move from left to right, we say that the function is *increasing*. If the graph descends or falls as you move from left to right, the function is *decreasing*.

- 1. If $f(x_2) > f(x_1)$ whenever $x_1 < x_2$, then f is said to be increasing on I.
- **2.** If $f(x_2) < f(x_1)$ whenever $x_1 < x_2$, then f is said to be **decreasing** on I.

FIGURE 1.8 The absolute value function has domain $(-\infty, \infty)$ and range $[0, \infty)$.

FIGURE 1.9 To graph the function y = f(x) shown here, we apply different formulas to different parts of its domain (Example 4).

FIGURE 1.10 The graph of the greatest integer function $y = \lfloor x \rfloor$ lies on or below the line y = x, so it provides an integer floor for x (Example 5).