MAT331 Midterm March 06 2018

Name:

Student ID:

1. (10pts) X is a random variable with mean 3 and variance 9. Find expectation E(-X) and standard deviation Std(-2X+1).

2. (20pts) $\{X_1, X_2, \dots X_9\}$ is a sequence of IID follows a exponential distribution with parameter 1. Let $A_9 = \frac{\sum_{i=1}^9 X_i}{9}$. Use the Central Limit Theorem to find a normal density $N(\mu, \sigma^2)$ (i.e. to find μ and σ) to approximate the density of A_9 .

$$E(A_1) = \frac{1}{2}$$

3. (20pts) X follows a Normal Distribution with mean -2 and variance 1. Calculate the following values

(a)
$$P(|X+2| > 1)$$

(b)
$$E(X^2)$$

b)
$$V_{tr}(x) = E(x^{2}) - E(x)^{2} = P$$

$$E(x^{2}) = V_{tr}(x) + E(x)^{2}$$

$$= 1 + (-2)^{2} = E(x)^{2}$$

4. (20pts) Suppose you choose a real number X from the interval
$$(-\infty, 0]$$
 with a density function of the form:

$$f(x) = \begin{cases} \frac{C}{(x-1)^2}, & \text{if } x \in (-\infty, 0] \\ 0, & \text{otherwise} \end{cases}$$

where C is a constant.

0)
$$\int_{\infty}^{0} \frac{C}{(x-1)^{2}} dx = 1$$
 $-\frac{C}{(x-1)} \int_{\infty}^{0} \frac{C}{(x-1)^{2}} dx = 1$ $-\frac{C}{(x-1)^{2}} \int_{\infty}^{0} \frac{C}{(x-1)^{2}} dx = 1$ $-\frac{C}{(x-1)^{2}} \int_{\infty}^{\infty} \frac{C}{(x$

5. (15pts) The following graph shows plots of 3 normal distributions – labeled as A, B, and C. They have different standard deviations. Order them from the smallest to the largest by their standard deviations.

6. (15pts) In python, if I run the following code, what are the outputs?

	·		
.*			