Структура билета

Билет состоит из 6 вопросов.

- 1. Дать определение или сформулировать теорему / утверждение
- 2. Сформулировать и доказать теорему / утверждение
- 3. Доказать одну из теорем исчисления высказываний
- 4. Задание на тему «Исчисление предикатов»
- 5. Задание на тему «Рекурсивные функции»
- 6. Задание на тему «Машина Тьюринга»

Список определений и теорем, приводимых без доказательства

- 1. Исчисление предикатов
- 2. Интерпретация теории
- 3. Выполнимая формула
- 4. Тождественно истинная формула в интерпретации
- 5. Общезначимая формула
- 6. Ослабленная теорема о дедукции для исчисления предикатов
- 7. Теорема Гёделя о полноте
- 8. Частичная арифметическая функция (ЧАФ)
- 9. Схема композиции ЧАФ
- 10. Схема примитивной рекурсии для ЧАФ
- 11. Кусочная схема задания ЧАФ
- 12. Схема минимизации для ЧАФ
- 13. Схема возвратной рекурсии
- 14. Примитивно рекурсивная функция, частичная рекурсивная функция
- 15. Общерекурсивная функция
- 16. Машина Тьюринга
- 17. Вычисление машиной Тьюринга частичной арифметической функции
- 18. Взаимно однозначная нумерация машин Тьюринга
- 19. Применимость машин Тьюринга
- 20. Самоприменимая машина Тьюринга
- 21. Тезис Тьюринга
- 22. Тезис Черча

Теоремы исчисления высказываний

Задание №3 является теоретическим. Для доказательства можно использовать аксиомы:

A1
$$A \rightarrow (B \rightarrow A)$$

A2
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

A3
$$(\overline{B} \rightarrow A) \rightarrow ((\overline{B} \rightarrow \overline{A}) \rightarrow B)$$

и правило вывода Modus Ponens. При доказательстве каждой теоремы можно использовать теоремы с меньшими номерами:

1)
$$\overline{A} \rightarrow A$$
 2) $A \rightarrow \overline{A}$ 3) $\overline{A} \rightarrow (A \rightarrow B)$ 4) $(\overline{B} \rightarrow \overline{A}) \rightarrow (A \rightarrow B)$ 5) $(A \rightarrow B) \rightarrow (\overline{B} \rightarrow \overline{A})$

6) $(A \rightarrow B) \rightarrow ((\overline{A} \rightarrow B) \rightarrow B)$ 7) $A \rightarrow (\overline{B} \rightarrow \overline{A} \rightarrow \overline{B})$

Список теорем/утверждений

1. Примитивная рекурсивность арифметических функций:
$$+(a,b) = a+b; *(a,b) = ab;$$
 $\land (a,b) = a^b; \quad \div(a,b) = \begin{cases} a-b, & ecnu\,a > b, \\ 0, & ecnu\,a \leq b; \end{cases}$ $sg(x) = \begin{cases} 1, & ecnu\,x = 0, \\ 0, & unave; \end{cases}$ $\overline{sg}(x) = 1 - sg(x);$

- 4. Частичная рекурсивность функций: -(a, b) = a b; $\operatorname{div}(a, b) = |a/b|$; нигде не определенная функция w(x)
- 5. Теорема о примитивной рекурсивности суммы.
- 6. Теорема о примитивной рекурсивности произведения.
- 7. Теорема о мажорировании неявной функции.
- 8. Теорема о примитивной рекурсивности кусочно заданной функции.
- 9. Примитивная рекурсивность функций: $\widetilde{\operatorname{div}}(x,y) = \begin{cases} 0, & \textit{если } y = 0, \\ [x/y], & \textit{если } y > 0; \end{cases}$

$$\widetilde{\mathrm{mod}}(x,y) = \begin{cases} 0, & \textit{если } y = 0, \\ x \, \textit{mod } y \, \textit{при } y > 0; \end{cases}$$
 (здесь $x \, \mathrm{mod} \, y - \mathrm{остаток}$ от деления $x \, \mathrm{нa} \, y$);

$$\widetilde{\mathrm{mod}}(x,y) = \begin{cases} 0, & \textit{если } y = 0, \\ x \, \textit{mod } y \, \textit{при } y > 0; \end{cases}$$
 (здесь $x \, \mathrm{mod } y - \mathrm{остаток} \ \mathrm{от} \ \mathsf{деления} \ x \ \mathsf{на} \ y$);
$$|(x,y) = \begin{cases} 1, & \textit{если } x \, \mathsf{делимся} \ \mathsf{на} \ y, \\ 0 & \textit{в противном случае}; \end{cases} \quad \chi_p(x) = \begin{cases} 1, & \textit{если } x - \textit{простое число}, \\ 0 & \textit{в противном случае}; \end{cases} \quad n_p(x) - \mathsf{число} \ \mathsf{простыx}$$

чисел р в пределах 0 ; <math>p(n) - n-е простое число; ex(n, y) – максимальный показатель eстепени $p(n)^e$, на которую делится число у.

- 10. Теорема о схеме возвратной рекурсии.
- 11. Теорема о самоприменимости машин Тьюринга.
- 12. Теорема о неразрешимости исчисления предикатов

Примеры заданий на тему "Исчисление предикатов"

- 1) Является ли формулой исчисления предикатов следующее слово в алфавите исчисления предикатов? Ответ обосновать.
- а) $\neg(\forall x(A(x))) \rightarrow \exists y(\neg A(y))$, где A предикатный символ;
- б) $\neg (\forall x A(x)) \rightarrow \exists y (\neg A(x,y))$, где A предикатный символ;
- в) $\neg (\forall x (A(y))) \rightarrow \exists y (\neg A(y))$, где A одноместный предикатный символ.
- 2) Перечислить свободные и связанные переменные в формуле. Для связанных переменных указать область действия квантора.

$$\exists y (\forall x A(x,y,z) \rightarrow B(y)) \rightarrow \exists t B(z,t)$$

- 3) Доказать выводимость формулы исчисления предикатов:
- a) $\forall x (\forall y (A(x,y))) \rightarrow \forall y (\forall x (A(x,y)))$;
- 6) $\exists x (\exists v (A(x,v))) \rightarrow \exists v (\exists x (A(x,v)))$:
- B) $\exists x (\forall y (A(x,y))) \rightarrow \forall y (\exists x (A(x,y)));$

- Γ) $\neg (\forall x (\neg A(x)) \rightarrow A(y)).$
- 4) Для следующего утверждения на естественном языке составить формулу исчисления предикатов и привести интерпретацию, в которой составленная формула равносильно утверждению
- а) Не существует максимального натурального числа
- б) Наименьшее значение функции f(x) всегда больше наибольшего значения функции g(x)
- в) Минимальное значение функции f(x) всегда больше максимального значения функции g(x)
- г) Не существует максимального простого числа
- д) Существует последовательность $a \, n + b$ простых чисел произвольной конечной длины
- е) Любое четное натуральное число можно представить как сумму ровно двух простых чисел

Примеры заданий на тему "Рекурсивные функции"

1) Доказать примитивную рекурсивность функций:

a)
$$f(x,y) = \begin{cases} 0 & npu x + y > 2; \\ 1 & в противном случае. \end{cases}$$

б)
$$f(x,y) = \begin{cases} 0 & npu(x+1) \cdot y > 5; \\ 1 & в противном случае. \end{cases}$$

в)
$$f(x,y) = \begin{cases} 0 & \text{при } x > 2u \ y > 3; \\ 1 & \text{в противном случае.} \end{cases}$$

$$\Gamma$$
) $f(x) = x!$

д)
$$f(0) = 0$$
, $f(1) = 1$, $f(n + 2) = f(n + 1) + f([(n + 2)/2])$;

e)
$$f(x, y) = \min(x, y);$$

ж)
$$f(x, y) = \max(x, y)$$
;

3)
$$f(x, y) = |x - y|$$
;

- и) $\varphi(x)$ количество натуральных чисел, меньших x, взаимно простых с x.
- 2) Доказать частичную рекурсивность функций:
- а) Нигде не определённая функция $w(x_1,...,x_n)$;

6)
$$f(x) = x - 5$$
;

B)
$$f(x) = [2 / x];$$

г) f(x), не определённая при x > 5, и равная x для $x \le 5$;

Примеры задач по теме "Машина Тьюринга"

1. Пусть на ленте записана конфигурация: ...000111...10111...10...0111...1000... . $n_{,e}$ диниц $n_{,e}$ диниц $n_{,e}$ диниц $n_{,e}$ диниц

Написать машину Тьюринга, стартующую в состоянии q1 с крайней левой единицы, заменяющую все 1 на 0 и останавливающуюся на крайнем правом нуле

- 3. Построить машину Тьюринга, корректно вычисляющую функции:
- a) f(x) = x + 1;
- б) f(x) = x + 3;
- в) f(x) = x 3, если x > 2, или 0, если x < 3;
- $\Gamma) f(x, y) = x + y;$
- д) $f(x) = x \mod 2$;
- e) f(x) = HOД(x, 2);
- 4. Построить протокол работы машины Тьюринга, созданной для задания 3.