群組作業, Timer

組別: 參與的成員:

- 1. (用途)定時器有很多的用途,例如上週的8個數碼管的顯示工作,就需要定時 更新顯示內容,否則燈號會熄滅。除了定時更新之外,請再舉出定時器的兩 種用途。定時中斷、定時掃描、定時檢測
- 2. (分類)要實現定時功能,除了不可程式化的硬體定時之外,還有哪兩種?軟體定時、可程式化的硬體定時。這三種之中,最耗用CPU的是軟體定時。最沒有彈性的是不可程式化的硬體定時,(Hint:兩個選項,可否程式化以及軟或硬體,找出一種可以排除的組合)
- 3. (信號來源)何種情況之下, 8051的T0/T1當作定時器使用?接受內部時鐘的信號什麼條件之下, 又轉為計數器?接受外部接腳傳入的信號
- 4. (硬體、工作原理) 參考投影片第3頁。定時器就是一系列的divide-by-2 flip-flops。而信號來源接在第一個flip-flop的Clock接腳。每個flip-flop都是在 Clock的<上昇邊、下降邊>產生變化。以3位元的定時器而言, counter的值由 111轉變為000的時候, 旗標(flag)的值會設定為1。
- 5. 有a, b, c三種方式可以讓程式知道定時器的工作情況: (a)程式讀取Timer 的值,(b)程式讀取旗標的值,或者(c)透過中斷機制。由CPU發動的是哪幾種? (a)與(b)由Timer發動的是哪幾種? (c)
- 6. (尋找相關暫存器)暫時忽略Timer 2, Timer 0與Timer 1相關的暫存器共有6個 ,請在EdSim找到這些暫存器,並且填滿下表。

,明正203111人对这三百万品,亚立实施下致。		
簡稱	用途	位址
TCON	Control	88H
TMOD	Mode	89H
TL0	Timer 0, Low Byte	8AH
TL1	Timer 1, Low Byte	8BH
TH0	Timer 0, High Byte	8CH
TH1	Timer 1, High Byte	8DH

- 7. 前述的6個暫存器之中. 哪些位元與定時器無關?TCON.0~TCON.3
- 8. 決定Timer 0扮演的是Timer 還是Counter的是那一個位元?TMOD.2
- 9. (Lab 10)請將投影片22頁的Example 2: 10K Hz Square Wave, 組譯後, 下載到LY-51S單機版做測試。請參照說明書4.9喇叭來完成硬體的連線。(注意:不能原文照抄, 程式需要修改)
- 10. (Lab 11)請將投影片23頁的Example 3: 1K Hz Square Wave, 組譯後, 下載到 LY-51S單機版做測試, 如果順利完成, 應該會聽到聲音, 請助教確認。Lab 11 可否使用Mode 2來完成?是或否都可, 原因為何?否的理由: Mode 2能夠產生的最大延遲時間為256ms, 如此產生的頻率約為2K Hz。是的理由: 所以必須搭配次數的計算, 才能產生1K Hz的方波。
- 11. (Lab 12) 請改寫Lab9的參考解答程式,原來的程式是在LOOP中,呼叫delay副程式,以造成延遲的效果。請利用定時器來改寫delay副程式。傳入的參數放在R3,代表著延遲多少毫秒。請參考投影片20頁,先製造一個1毫秒的延遲,再以R3的值來決定迴圈的次數。程式完成後,上傳繳交到TronClass。
- 12. Lab 12設計定時器程式之前, 請先思考與作好選擇:
 - a、 決定使用哪一個定時器,[T0 | T1 | T2]
 - b、 決定mode, mode [0 | 1 | 2 | 3]
 - c、 決定初值, _____
 - d、 需不需要auto-reload?[要 | 不要]

13. Lab 9與Lab 12的比較, 延遲時間比較精準的是 [9 | 12 | 一樣 | 不一定], 耗費較多CPU資源的是[9 | 12 | 一樣 | 不一定]。請說明理由, 有實例更佳。假設行程A使用迴圈產生延遲,當行程A在迴圈中打轉的時候,有可能被OS踢出, CPU轉而執行行程B, 或是發生中斷, CPU要執行ISR, 這兩種情形, 產生的延遲都會大於正確值