Kuwait University Faculty of Science Computer Science Department CS 301: Algorithms Design and Analysis Summer 2021/2022

Name: Ghazi Najeeb Al-Abbar

ID: 2181148914

Assignment #2

Date: 7th of July, 2022

Question 1:

a) Let c, $n_0 \ge 0$, then there exists a function g(n), f(n) Such that:

$$O(g(n)) = \{ f(n) \mid 0 \le f(n) \le c \cdot g(n), \forall n \ge n_0 \}$$

- b) Let c_1 , c_2 , $n_0 \geq 0$, then there exists a function g(n), f(n) Such that: $\Theta(g(n)) = \{ f(n) \mid 0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n), \ \forall n \geq n_0 \}$
- c) Let c, $n_0 \ge 0$, then there exists a function g(n), f(n) Such that:

$$\mathbf{\Omega}(f(n)) = \{ f(n) \mid 0 \le c \cdot g(n) \le f(n), \forall n \ge n_0 \}$$

- d) Given a certain algorithm, the best case scenario (in terms of time complexity) is a set of inputs that provide the least amount of time.
- e) Given a certain algorithm, the worst case scenario (in terms of time complexity) is a set of inputs that provide the most amount of time
- f) Given a certain algorithm, the average case (in terms of time complexity) is a means of calculating the average time needed using inputs with their respective probabilities.

Question 2:

Expression	Dominating term	Big O
$5 + 0.001n^30.025n$	$0.001n^3$	$O(n^3)$
$n! + n^n$	n^n	$O(n^n)$
$2^{3^2} + 3^{2^n}$	9 ⁿ	0(9 ⁿ)
$n^2 log(n) + n(log(n))^2$	$n^2 log(n)$	$O(n^2 log(n))$
$nlog(n) + 9^{9999999999}$	nlog(n)	O(nlog(n))

Big O's sorted from smallest to largest:

$$O(nlog(n)), O(n^2log(n)), O(n^3), O(9^n), O(n^n)$$

Question 3:

a)
$$T(n) = 2T(\frac{n}{4}) + 1$$

- .: Since a > bd, then Case 3 applies
- (T(n) = O(n69ba) = O(Nn)

b)
$$T(n) = 2 T(\frac{n}{4}) + n^{2}$$

- Since 2; a = bd, then case I applies
- .: T(n) = O(In log(n))

(c)
$$T(n) = 2T(\frac{n}{4}) + n$$

- .: Since a < bd, then case 2 applies
- , T(n) = O(n)

: Since a < bd, then Case 2 applies

$$T(n) = O(n^2)$$

Question 4:

$$T(2) = T(2-1)+1 = T(1)+1 = 1+1 = 2$$

 $T(3) = T(3-1)+1 = T(2)+1 = 2+1 = 3$
 $T(4) = T(4-1)+1 = T(3)+1 = 3+1 = 4$

: from the following results, The assumption is: T(n)=n

Proof:

Inductive Step.

Assume that T(n) = n is true $\forall n \ge 1$, then T(n+1) = n+1 is also true $\forall n \ge 1$

$$T(n+1) = T(n) + 1 \Rightarrow T(n+1) = n+1 - 2$$

: from
$$O$$
, O , $T(n) = n$, $\forall n > 1$ is true P

| b)
$$T(n) = T(n-1) + n$$
, $T(1) = 10$
 $T(2) = T(2-1) + 2 = T(1) + 2 = 12$
 $T(3) = T(3-1) + 3 = T(2) + 3 = 15$
 $T(4) = T(3) + 4 = 19$

| Bd doind backwards from $T(4)$, We det:

 $T(4) = T(3) + 4 = T(2) + 3 + 4 = T(1) + 2 + 3 + 4 = 10 + 2 + 3 + 4$

| We can assume that $T(n) = 10 + (\sum_{i=1}^{n} i) - 1$

ufor further simplification, We det:

 $T(n) = \frac{n(n+1) + 18}{2}$

| Proof:

| Base Stef: $(n=1)$
 $T(1) = \frac{(1)(1+1)+18}{2} = \frac{2+18}{2} = \frac{20}{2} = 10$

| Inductive Stef:

| Assume that $T(n) = \frac{n(n+1)+18}{2}$ is true $\forall n \ge 1$, then

 $T(n+1) = \frac{(n+1)(n+2)+18}{2}$ is also true $\forall n \ge 1$
 $\therefore T(n+1) = T(n) + n+1 = \frac{n(n+1)+18}{2} + n+1 = \frac{n(n+1)+18}{2} + 2(n+1)$
 $= \frac{n(n+1)+2n+2+18}{2} = \frac{n^2+n+2n+2+18}{2} = \frac{n^2+3n+2+18}{2} = \frac{n(n+2)+18}{2} = \frac{n(n+$

C)
$$T(n) = T(n-1) + 2n^2$$
, $T(1) = 10$; Theorem

 $T(2) = T(1) + 2(2)^2 = 10 + 8 = 18$
 $T(3) = T(2) + 2(3)^2 = 18 + 18 = 36$
 $T(4) = T(3) + 2(4)^2 = 36 + 32 = 68$

2. By Joing backwards from $T(4)$, we get:

 $T(4) = T(3) \neq 2(4)^2 = T(2) + 2(3)^2 + 2(4)^2 = T(1) + 2(2)^2 + 2(3)^2 + 2(4)^2 = 10 + 2(2^2 + 3^2 + 4^2) = 7(4) = 8 + 2(1^2 + 2^2 + 3^2 + 4^2)$

2. We can assume that $T(n) = 8 + \frac{n(n+1)(2n+1)}{3}$

Proof:

Base Step: $(n=1)$
 $T(1) = 8 + \frac{1(1+1)(2+1)}{3} = 8 + \frac{6}{3} = 8 + 2 = 10$

Inductive Step:

Assume that $T(n) = \frac{n(n+1)(2n+1)}{3} + 8$ is true $\forall n \geq 1$, then $T(n+1)(m+2)(2n+3)$ is also true $\forall n \geq 1$

 $T(n+1) = T(n) + 2(n+1)^2 = 8 + \frac{n(n+1)(2n+1)}{2} + 2(n^2+2n+1)$

:. from (i, (2), T(n)= 8+ n(n+1)(2n+1) \ \text{Vn} \ge 1

 $= 8 + \frac{2n^3 + 3n^2 + n + 6n^2 + 12n + 6}{3} = \frac{2n^3 + 9n^2 + 13n + 6}{3} + 8 = 8 + \frac{(n+1)(n+2)(2n+3)}{3}$

0

$$T(2) = 2 T(1) = 2(1) = 2$$

 $T(3) = 2 T(2) = 2(2) = 2^{2}$
 $T(4) = 2T(2) = 2(2) = 3$

$$T(4) = 2T(3) = 2(2^2) = 2^3$$

.: from the Previous results, We can assume that $T(n) = 2^{n-1}$

Proof:

Inductive Step:

Assume that $T(n)=2^{n-1}$ is true $\forall n \ge 1$, then $T(n+1)=2^n$ must also be true $\forall n \ge 1$

$$T(n+1) = 2T(n) = 2(2^{n-1}) = 2^{n-1+1} = 2^{n} - 2$$

e)
$$T(3^n) = T(3^n/3) + 1$$
, $T(1) = 1$

Let
$$X=3^n$$
, then $T(X)=T(\frac{x}{3})+1$

By using The tree method:

$$T(x)$$

$$T(\frac{x}{3})$$

$$T(\frac{x}{3^2})$$

$$T(\frac{x}{3^3})$$

$$\vdots$$

$$T(\frac{x}{3^i})$$

Stopping Case:
$$\frac{X}{3i} = 1 \Rightarrow 3^{i} = X \Rightarrow \log_{3} 3^{i} = \log_{3} X \Rightarrow i = \log_{3} X$$

$$\lim_{i=0}^{\log_{3} X} 1 = \log_{3} X + 1$$
Since $3^{n} = X$, then the Glosed form

Will be $T(n) = n + 1 \forall n \geq 0$

Proof:

Base Step: (n=0)

T(0)=0+1=1 _ 0

Inductive Step:

Assume that T(n)=n+1 is true $\forall n \geq 0$, then T(n+1)=n+2 is also true $\forall n \geq 0$

: X(u, v)= T(3") + 1

= T(n)+1=(n+1)+1= n+2 - 0

: from O. O. T(n)= n+1 is true \n > 0

Question 5:

- a) f(n) = O(g(n)) because as n increases, f(n) will keep decreasing as opposed to g(n) which will keep increasing.
- b) f(n) = O(g(n)) since $O(n \cdot log(n))$ is always greater than O(log(n)) when n gets very large
- c) f(n) = O(g(n)) since 2^n is always greater than $n(\log(n))^2 \forall n \geq 1$
- d) f(n) = O(g(n)) and g(n) = O(f(n)) since they both have the same dominating term and both increase roughly as much
- e) f(n) = O(g(n)) and g(n) = O(f(n)) since they are both linear and roughlt have are always withing the same range
- f) g(n) = O(f(n)) since n^n is always much greater n!
- g) g(n) = O(f(n)) since 2^n is always greater than n^2 when n is very large