Pattern Recognition - Fall 2024

Homework 1

Due date: Tuesday, November 05, 2024

1. **Section 2.1**

(20 %) Consider a two-class classification problem. Given the class-conditional probability density functions

$$p(x|\omega_1) \sim N(-1,4)$$

 $p(x|\omega_2) \sim N(2,3)$

with $P(\omega_1) = 0.6$ and $P(\omega_2) = 0.4$. Please specify the decision regions based on Bayesian decision theory.

2. Section 2.4, Problem 14(b)

In many pattern classification problems one has the option either to assign the pattern to one of c classes, or to reject it as being unrecognizable. If the cost for rejects is not too high, rejection may be a desirable action. Let

$$\lambda(\alpha_i|\omega_j) = \begin{cases} 0 & i = j \quad i, j = 1, \dots, c \\ \lambda_r & i = c + 1 \\ \lambda_s & \text{otherwise,} \end{cases}$$

where λ_r is the loss incurred for choosing the (c+1)th action, rejection, and λ_s is the loss incurred for making any substitution error.

- (b) (20 %) Plot the conditional risks and the decision regions for the two-category one-dimensional case having
 - $p(x|\omega_1) \sim N(1,1)$
 - $p(x|\omega_2) \sim N(-1,1)$
 - $P(\omega_1) = P(\omega_2) = 1/2$, and
 - $\lambda_r/\lambda_s = 1/4$.

3. **Section 2.6**

Consider the problem of classifying 10 samples from Table 1. Assume that the underlying distributions are normal. For each category, the mean vector and the covariance matrix are given by

$$\boldsymbol{\mu} = \frac{1}{10} \sum_{k=1}^{10} \mathbf{x}_k$$

$$\boldsymbol{\Sigma} = \frac{1}{10} \sum_{k=1}^{10} (\mathbf{x}_k - \boldsymbol{\mu}) (\mathbf{x}_k - \boldsymbol{\mu})^t$$

where \mathbf{x}_k denotes the k-th samples in that category.

(a) (10 %) Assume that the prior probabilities for each category are as follows:

$$P(\omega_1) = 0.2$$
, $P(\omega_2) = 0.3$, $P(\omega_3) = 0.5$

Determine mean vectors and covariance matrices for these three categories using x_1 and x_2 feature values.

- (b) (10 %) Calculate the percentage of misclassified samples.
- (c) (20 %) Repeat all of the above, but now use three feature values (i.e., x_1, x_2 , and x_3).

Table 1: Computer exercise 2 relies on the following data.

	ω_1			ω_2			ω_3		
sample	x_1	x_2	x_3	x_1	x_2	x_3	x_1	x_2	x_3
1	-5.01	-8.12	-3.68	-0.91	-0.18	-0.05	5.35	2.26	8.13
2	-5.43	-3.48	-3.54	1.30	-2.06	-3.53	5.12	3.22	-2.66
3	1.08	-5.52	1.66	-7.75	-4.54	-0.95	-1.34	-5.31	-9.87
4	0.86	-3.78	-4.11	-5.47	0.50	3.92	4.48	3.42	5.19
5	-2.67	0.63	7.39	6.14	5.72	-4.85	7.11	2.39	9.21
6	4.94	3.29	2.08	3.60	1.26	4.36	7.17	4.33	-0.98
7	-2.51	2.09	-2.59	5.37	-4.63	-3.65	5.75	3.97	6.65
8	-2.25	-2.13	-6.94	7.18	1.46	-6.66	0.77	0.27	2.41
9	5.56	2.86	-2.26	-7.39	1.17	6.30	0.90	-0.43	-8.71
10	1.03	-3.33	4.33	-7.50	-6.32	-0.31	3.52	-0.36	6.43

4. Section 2.8.3

Suppose we have the data points and the corresponding labels stored in the file "roc_data.mat".

- (a) (10 %) Write your own code to plot the receiver operating characteristic (ROC) curve.
- (b) (10 %) Write your own code to determine the area under the ROC curve (often referred to as AUC).