

PCT/GB 97/01667

09/202758 5

The Patent Office Concept House Cardiff Road Newport South Wales

NP9 1RHREC'I

2 2 JUL 1997

WIPO

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

PRIORITY DOCUMENT

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed Huster Gensey

Dated 3 July 1996

THIS PAGE BLANK (USPTO)

Patents Form 1/77

tents Act 1977 de 16)

Request for grant of a patent

(See the notes on the back of this form four can also get an explanatory leaflet from the Patent Office to belp you fill in this form)

21' JUN 1996

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

1. Your reference

BP-08-1054

2. Patent application number (The Patent Office will fill in this part)

9613023.2

 Full name, address and postcode of the or of each applicant (underline all surnames)

THE MORGAN CRUCIBLE COMPANY PLC Morgan House, Madeira Walk, Windsor Berkshire SL4 1EP

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

6283122001

United Kingdom

4. Title of the invention

SALINE SOLUBLE INORGANIC FIBRES

5. Name of your agent (if you bave one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

PHILLIPS & LEIGH 7 Staple Inn Holborn London WClV 7QF

Patents ADP number (if you know it)

0001289001

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number Country Priority application number (if you know it)

Date of filing (day / month / year)

 If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' 1f:

a) any applicant named in part 3 is not an inventor, or

b) there is an inventor who is not named as an applicant, or

c) any named applicant is a corporate body.See note (d))

Yes

Patents Form 1/77

Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document

Continuation sheets of this form	_
Description	4
Claim(s)	1 3
Abstract	_
Drawing(s)	- -
10. If you are also filing any of the following, state how many against each item.	· · · · · · · · · · · · · · · · · · ·
Priority documents	-
Translations of priority documents	-
Statement of inventorship and right to grant of a patent (Patents Form 7/77)	To follow
Request for preliminary examination and search (Patents Form 9/77)	1
Request for substantive examination (Patents Form 10/77)	-
Any other documents (please specify)	- -
11.	I/We request the grant of a patent on the basis of this application.
	Signature Date 21.06.96 PHILLIPS & LEIGH
12. Name and daytime telephone number of person to contact in the United Kingdom	J.C. BOFF 0171 405 0133

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need belp to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

<u>SALINE SOLUBLE INORGANIC FIBRES</u>

This invention relates to saline soluble inorganic fibres.

Saline soluble inorganic fibres have been described in several patent specifications, see for example WO93/15028. Fibres are required to be soluble in saline solution so that inhaled or ingested fibres dissolve rather than providing a source of irritation or otherwise affecting health. WO93/15028 showed that fibres comprising SiO₂, CaO and MgO and having a silica content of greater than 58% (or greater than 58% plus 0.5 times (10-MgO) if MgO > 10wt%) had suitable shrinkage characteristics at 800°C and 1000°C to be usable as refractory materials. A further feature of WO93/15028 was the use of the percentage of non-bridging oxygens present to predict the solubility of fibres in physiological saline solution.

Various subsequent applications have described the effect of P_2O_5 and B_2O_3 on solubility - see for example WO95/29135. P_2O_5 is alleged to have a solubilising effect on such fibres.

The German government have proposed a fibre classification which turns on a variable K_1 which is defined as:

$$K_1 = \sum (Na,K,B,Ca,Mg,Ba \text{-oxide}) - 2* Al\text{-oxide}$$
 (the amounts of the oxides being expressed as weight %)

According to the proposed fibre classification if K_1 is greater than 40 the fibre concerned is deemed safe. If K_1 lies between 30 and 40 the fibre requires only minor health warnings to be made. If K_1 is less than 30 more serious marking is required. It is readily apparent that it is difficult to provide a high K_1 fibre $(K_1>40)$ while still providing a refractory fibre like that of WO93/15028 $(SiO_2>58wt\%)$, there being a very narrow window of compositions to meet.

As a result of investigating fibre compositions that may meet the fibre classification and yet still be refractory enough to meet the standard of WO93/15028 (shrinkage of less than 3.5% at both 800°C and1000°C) the applicants have found that addition of P_2O_5 to compositions allows a broader range of refractory fibres to be produced than had previously been appreciated.

It appears that an important factor in determining the refractoriness of a fibre is the percentage of non-bridging oxygens. If this percentage is 61.4% or more (calculated on the basis of the amounts of the components SiO₂ CaO, MgO,

P₂O₅, and B₂O₃) the fibres fail shrinkage tests at 800°C and 1000°C (failure being defined as a shrinkage of 3.5% or more).

Accordingly the present invention provides the use of P₂O₅ as a component to improve the refractoriness of inorganic fibres comprising SiO₂, and CaO and/or MgO, the inorganic fibres having a composition such that the percentage of non-bridging oxygens is less than 61.4%.

The invention further provides saline soluble inorganic fibres having a shrinkage of less than 3.5% when exposed to 1000°C for 24 hours and having a shrinkage of less than 3.5% when exposed to 800°C for 24 hours, comprising:-

$$SiO_2$$
 52 - <58wt% [52 - <58+0.5×(MgO-10)wt% if MgO > 10wt%]
 CaO 22 - 40wt%
 MgO 0 - 17.5wt%
 $MgO + CaO$ < 42wt%
 P_2O_5 0.5 - 10wt%
 B_2O_3 0 - 2wt%

and in which the percentage of non-bridging oxygens calculated on the basis of the amounts of the above named components is less than 61.4%.

The percentage of non-bridging oxygens (%N.B.O.) is calculated by converting the weight percentages of SiO₂ CaO, MgO, P₂O₅, and B₂O₃ to molar amounts and inserting these amounts into the equation:-

%N.B.O.=
$$\frac{2 \times (CaO + MgO + P_2O_5 + B_2O_3)}{(2 \times SiO_2 + CaO + MgO + 5 \times P_2O_5 + 3 \times B_2O_3)} \times 100$$

The reason the amounts of CaO, MgO, P₂O₅, and B₂O₃ are doubled in the numerator to this equation is that each contributes two non-bridging oxygens. The reason terms are multiplied in the denominator to this equation is to reflect the number of oxygen atoms each molecular formula possesses.

Table 1 shows the results of shrinkage and solubility tests on compositions comprising SiO₂ CaO, MgO, P₂O₅, and B₂O₃ as main ingredients. It is clear that where the percentage of non-bridging oxygens calculated on the basis of the amounts of the above named components is greater than 61.4% (those fibres lying above line A of Table 1) the fibres fail the shrinkage tests, having shrinkages of greater than 3.5% at either or both of 800°C and 1000°C.

WO93/15028 stressed the importance of alumina content and the fibres lying between lines B and A of Table 1 show that alumina contents of greater than 1wt% are damaging to the shrinkage properties of fibres.

The applicants have also found that the combined amount of CaO and MgO is important. Those fibres lying between lines C and B have a combined CaO and MgO content of greater than 42wt% and also fail the shrinkage tests.

The fibres below line C have a percentage of non-bridging oxygens less than 61.4%, an alumina content of less than 1wt%, and a combined CaO and MgO content of less than 42wt%. All of these fibres pass the shrinkage tests. These fibres fall within the compositional ranges:-

SiO₂ 52.4 - 57.85wt% CaO 22.2 - 39.4wt% MgO 1.96 - 17.4wt% P_2O_5 0.82 - 7.8wt% P_2O_3 0 - 1.95wt% P_2O_3 < 1wt%

The solubility results presented in Table 1 were obtained by the methods described in WO93/15028 and show a high solubility for all of the fibres produced.

It can be seen that all of the fibres below line C have a K_1 of more than 35 and more than half have a K_1 of more than 40.

While the above description and the claims refer to P_2O_5 , B_2O_3 , SiO_2 , CaO and MgO it will be clear to the person skilled in the art that the pure materials need not be used and that provision of these components in combined form (e.g. provision of P_2O_5 in the form of mixed oxide phosphates) is part of the invention.

% N.B.O.		% N.B.O.		68.5%	68.1%	68.0%	66.1%	64.7%	64.3%	64.1%	63.9%	63.7%	63.0%	63.0%	62.6%	62.6%	62.2%	61.9%	61.4% A	\$6.0%	58.4% B	58.8%	60.3% C	57.5%	60.0%		\$9.0%	59.0%	59.0% 58.0% 58.8%	59.0% 58.0% 58.8% 58.2%	59.0% 58.0% 58.8% 58.2% 61.0%	59.095 58.095 58.896 58.296 61.096	59.095 58.095 58.295 61.095 55.495 60.896	59.095 58.095 58.295 61.095 55.495 55.296 55.495	59.095 58.095 58.295 61.095 55.495 55.296 55.296 58.795	59.095 58.095 58.295 61.095 55.495 60.896 57.795	59.095 58.095 58.295 61.095 55.495 60.896 57.795 54.596	59.095 58.095 58.295 61.095 55.495 60.896 57.296 57.795 54.596
1961	CaO+MgO	60.1	CaO! MgO	44.14	43.47	44.20	44.11	42.37	41.83	. 41.40	43.94	44.18	41.95	39.23	42.27	42.40	42.59	39.58	38.23	36.40	39.70	42.38	42.20	41.36	40.84		40.28	40.28	40.28	40.28 40.25 40.19	40.28 40.25 40.19 40.12 39.60	40.28 40.15 40.12 39.60 39.56	40.28 40.19 40.19 39.60 39.56	40.28 40.19 40.19 39.60 39.56 39.45	40.28 40.19 40.12 39.60 39.56 39.45 38.94	40.28 40.15 40.12 39.60 39.56 39.45 38.94	40.28 40.15 40.12 39.60 39.56 39.45 38.94 38.87	40.28 40.15 40.12 39.60 39.45 39.45 38.94 38.87
	Total		Total	328	367	323	355	317	331	362	306	310	338	335	361	356	327	350	320	582	310	262	300	262	361		. 289	315	315	315	327 327 344 359	315 327 344 349 292	315 327 344 359 292 316	289 315 327 344 359 292 316	289 315 327 344 359 292 316 284	289 315 327 344 359 292 316 284 327	289 315 327 344 359 292 316 284 337 291	289 315 327 344 359 292 316 337 337 312
	B203		B2O3	-								,													20				12	12	12	12 6	12 6	12 6 9 12	12 6 9 12	12 6 9 12	12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	12 12 12 23 16 9 23
(bpm)	SiO2	(mdd)	SiO2	177	193	174	200	169	180	191	161	861	161	188	207	200	504	141	152	140	159	506	208	500	161	172	_	188	188	188	188 187 192 197	188 187 192 197	188 187 192 197 173	188 187 192 197 175 167	188 187 192 197 175 167 203	188 187 197 175 175 203 203	188 187 197 175 167 203 203 175	188 187 192 197 175 167 203 203 175 194 194
Solubility (ppm)	MgO	Solubility (ppm)	MgO	86	115	76	9/	06	98	106	32	62	69	117	72	17	35	166	132	74	69	10	34	=	09	52		25	99	\$1 66 65	51 66 63	51 66 63 104	51 66 63 104 25	56 66 67 70 70 70 70 70 70 70 70 70 70 70 70 70	51 66 63 104 23 33	51 65 63 70 70 70 70 70 80 80 80 80 80 80 80 80 80 80 80 80 80	25 20 20 20 20 20 20 20 20 20 20 20 20 20	25 26 27 27 28 28 28 28 28
	CaO	1	CaC	53	\$9	55	79	88	99	65	83	82	78	30	82	88	88	43	36	72	82	92	58	72	8.7	65	ì	92	92	76 62 75	76 62 75 88	76 62 73 83 83	76 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 2 8 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	62 73 83 88 83 88 83 88 83 88 83 88 83 88 83 88 83 88 83 88 88	5 2 2 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 2 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	76 78 78 83 83 73 73 74 75 76 76 76 76 76 76 76 76 76 76 76 76 76
Shrinkage	800°C 1000°C	Shrinkage	800°C 1000°C	0.04	38.8	39.1		161	4.77	5.39	43.8		3.92	5.26	30.1	29.7	5.03	29.5	15.5		3.61		35.5	2.04	2.32	2.76	1 70	\ \ -	1.84	1.84	1.84	1.84 1.81 2.14 1.40	1.84 1.81 2.14 1.40 3.05	1.81 1.81 2.14 1.40 3.05	1.81 1.81 2.14 1.40 3.05 1.93	1.84 1.81 2.14 1.40 3.05 1.93 1.77	1.84 1.81 2.14 1.40 3.05 1.93 1.53 2.39	1.84 1.81 2.14 1.40 3.05 1.93 1.77 1.53 2.39
Shri	300°C	Shri	J₀008	10.0	23.9	46.8	49.1	3.62	3.71	3.63	45.2	12.90	3.24	5.72	2.55	3.38	3.41	1 .23.3	10.9	32.1	3.07	45.9	.	1.74	1.20	1.89	1.40											
2	-	Z	-	14.0	13.0	13.9	12 44.1	15 42.3	35 41.5	0.14 21.0	15 43.6	15 44.0	35 41.8	39.4	15 42.0	12 42.1	15 42.5	39.4	38.4	32.6	37.3	15 42.0	15 42.0	0.14 20	35 42.5	15 40.2	12 40.1	-										
į	SrO		SrO	0.0 - 0.05	5 < 0.05	30.0 > 50	0.05 < 0.05	05 < 0.05	\$ < 0.05	1 < 0.05	8 < 0.05	05 < 0.05	\$ < 0.05	05 < 0.05	05 0.05	0 < 0.05	3 < 0.05	6 < 0.05	05 < 0.05	05 <0.05	05 <0.05	7 < 0.05	05 < 0.05	05 < 0.05	0.0 > 0.05	0.0 > 0.05												
	3 ZrO2	1	3 ZrO2	< 0.05	7 0.15	7 < 0.05	2 < 0.05	5 < 0.05	5 0.25	0.21	6 0.38	\$ < 0.05	\$ 0.25	7 < 0.05	5 < 0.05	0.10	6 0.13	1 0.46	< 0.05	8 <0.05	<0.05	9 0.17	< 0.05	1 <0.05	6 <0.05	\$ < 0.0\$									<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
ent)	Fe203	ent)	Fe203	0.17	0.17	0.17	0.17	0.16	0.15	0.14	0.16	0.15	0.15	0.17	0.15	0.16	0.16	0.14	0.16	1.38	0.26	0.19	0.15	0.21	91.0	0.15	0.15											
ght percent)	B203	ght percent)	B2O3		~					<u>~</u>				2			_	<u>ئ</u>	5	50.0>	/ <0.05	-			1.88		_	1 1 2			· 							
2	K20	₩. Ve	K20	0.05	<0.05	0.05	90.0	0.05	0.03	< 0.05	0.07	0.07	0.05	. 0.05	0.06	90:0	01.0	. 0.05	< 0.05	0.05	0.07	0.12	0.07	0.10	0.07	0.05	0.07	0.07						· · · · · · · · · · · · · · · · · · ·				
No I	Na2O	idon (XI	Na2O	0.30	0.31	0.25	0.42	0.28	0.26	0.30	0.42	9+:0	0.45	5 0.13	0.31	0.31	0.43	0.29	0.15	0.28	0.29	0.39	0.46		0:30	0.32	0.31	0.32	_	0.33	0.33	0.31				·	·	
Compos	AIZO3	Compos	A1203	0.25	0.38	0.28	0.26	0.21	0.31	0.33	0.40	0.34	0.30	. 0.05	0.32	0.32	0.31	0.25	< 0.05	2.06	1.38	0.43	0.39	0.45	0.27	0.21	0.25			0.27	0.27	0.27				<u> </u>		*
Chemical Composition (XRF - Weight	P2O5 SiO2 AI2O3 Na2O K2O I	hendeal	SiO2	51.69	50.42	\$2.54	\$1.59	\$4,46	53.85	52.72	51.22	52.23	51.96	57.2	53.52	54.14	\$1.22	52.58	58.18	54.8	56.6	55.09	54.19	55.25	55.63	\$5.65	57.3			57.13								<u> </u>
			P205		5.10	2.51	3.39	2.48	3.31	4.91	3.41	2.57	4.90	3.26	3.36		5.05	6.70	3.29	4.89	1.62	1.23	2.54	_	0.85	3.34	1.68		_	0.30								
	NgO		NgO		18.66	3 19.07	3 12.27	8 17.89	4 17.78	71.71	5.54	2 5.56	3 11.01	8 27.95	3 11.35	5 11.35	9 5.70	69'91 6	7 27.85	6.11.9	7	9 2.09	2 5.58	L_	9.48	3 10.45			9 0					_				
!	CaO		CaC	24.95	24.81	25.13	31.83	24.48	24.04	24.22	38.39	38.62	1 30.93	11.28	30.93	31.05	36.89	22.89	10.37	24.9	1 28.7	40.29		<u> </u>	31.36	29.83	30.44		2 30.55	_								
Code	LTP	Code	T.1	17'8	1.1129	LTP11	1.7716	1.TP10	LTP4	LTP 5	LTP17	1.1723	LTP14	LTP13	LTP12	LTP20	LTP15	LTP 3	LTP 7	LTP52	LTPS1	L1P29	LTP21	1.TP30	L.TP41	LTP 6	LTP34	1.TP43	1.TP42		LTP47	LTP47 LTP38	LTP47 LTP38 LTP2	LTP47 LTP38 LTP 2 LTP 2 LTP39	LTP47 LTP38 LTP 2 LTP39 LTP30	LTP47 LTP38 LTP 2 LTP39 LTP 1 LTP48	CIP47 CIP38 CIP2 CIP2 CIP3C CIP3C CIP4C CIP4C CIP4C CIP4C	LTP47 LTP38 LTP2 LTP39 LTP39 LTP1 LTP48 LTP48 LTP40 LTP40

CLAIMS

- 1. The use of P₂O₅ as a component to improve the refractoriness of inorganic fibres comprising SiO₂, and CaO and/or MgO, to produce inorganic fibres having a composition such that the percentage of non-bridging oxygens is less than 61.4% and having a shrinkage of less than 3.5% when exposed to 1000°C for 24 hours and having a shrinkage of less than 3.5% when exposed to 800°C for 24 hours.
- 2. Saline soluble inorganic fibres having a shrinkage of less than 3.5% when exposed to 1000°C for 24 hours and having a shrinkage of less than 3.5% when exposed to 800°C for 24 hours, comprising:-

$$SiO_2$$
 52 - <58wt% [52 - <58+0.5×(MgO-10)wt% if MgO > 10wt%]
 CaO 22 - 40wt%
 MgO 0 - 17.5wt%
 $MgO + CaO$ < 42wt%
 P_2O_5 0.5 - 10wt%
 B_2O_3 0 - 2wt%

and in which the percentage of non-bridging oxygens calculated on the basis of the amounts of the above named components is less than 61.4%.

3. Saline soluble inorganic fibres as claimed in claim 2 in which the fibres have a composition:-

SiO₂ 52.4 - 57.85wt% CaO 22.2 - 39.4wt% MgO 1.96 - 17.4wt% P_2O_5 0.82 - 7.8wt% B_2O_3 0 - 1.95wt% Al.O₃ <1wt% PCT NO: CBGT /01667

FORM 7517- 20.6.57

Agant Endl. pe il carpy

THIS PAGE BLANK (USPTO)