From Shapley Values to Explainable Al

Kyle Vedder - GRASP Game Theory Seminar

Video of this talk can be found at https://www.youtube.com/watch?v=4Rkhslz14Yc

Background Definitions

- Permutation order does matter
- Combination order does not matter
- Power Set Set of all subsets of a given set
 - Every combination of a given set or its subsets

Introduction to Shapley Values

Shapley Values

- Developed in the 1950s
 by Lloyd Shapley
- Helped win him the 2012
 Nobel Prize in Economics along with Alvin Roth

Source: Wikipedia "Lloyd Shapley"

Farmer Example

- Fixed group of farmers work together to grow wheat
- Collaboration causes better (or worse) total yield of wheat than working individually
- How do you assign "credit" to each farmer?

Farmer Example - "Credit"

- Sum over each farmer's credit is total wheat
 - "Efficiency"
- Farmer who contributes nothing get none
 - "Dummy"
- Equal contributions get equal credit
 - "Symmetry"

Farmer Example - "Credit" cont.

- If two harvests involving the same farmers merge, then the joint harvest credit is the sum of the farmer's individual harvest credits
 - "Linearity"

Shapley Values

are these "credit" values

Shapley Values are these "credit" values

Any "credit" systems that uphold these properties must be Shapley Values!

- Let *F* be the set of farmers {1,2,...,*p*}
- Assume we have model $v: S_{\sigma} \mapsto \mathbb{R}$
 - Input: $S \subseteq F$, σ is ordering of S
 - Output: Real value corresponding to wheat output
 - \blacksquare Farmers added in the order of σ
 - Different σ might change output

- To compute credit of farmer $i \in \{1,2,...p\}$:
 - For every <u>permutation</u> of farmers that aren't i, sum the difference between wheat output with i and without i (marginal value of i)

permutations

$$\phi_{i} = \frac{1}{|F|!} \sum_{\substack{S \subseteq F \setminus \{i\} \\ \text{Credit}}} \sum_{\sigma} \left(v\left(S_{\sigma} \cup \{i\}\right) - v\left(S_{\sigma}\right)\right)$$
Normalize by # permutations

#P Hard

"As hard as the counting problems associated with NP hard problems" e.g. #SAT, exact Bayes net inference, matrix permanent

Glove Game Example

- Goal is to form maximal pairs of gloves
 - P1 has L, P2 has L, P3 has R
- v(S) = 1 if S is $\{1,3\}, \{2,3\}, \{1,2,3\}, 0$ otherwise

$\mathrm{Order}R$	Marginal Contribution of P1
1, 2, 3	$v(\{1\}) - v(\varnothing) = 0 - 0 = 0$
1, 3, 2	$v(\{1\})-v(\varnothing)=0-0=0$
2,1,3	$v(\{1,2\}) - v(\{2\}) = 0 - 0 = 0$
2,3,1	$v(\{1,2,3\}) - v(\{2,3\}) = 1 - 1 = 0$
3,1,2	$v(\{1,3\}) - v(\{3\}) = 1 - 0 = 1$
3, 2, 1	$v(\{1,2,3\}) - v(\{2,3\}) = 1 - 1 = 0$

Thus:

$$\circ$$
 $\phi_1 = \frac{1}{6}$

$$\phi_2 = \frac{1}{6}$$

From: https://en.wikipedia.org/wiki/Shapley-value#Glove-game

Glove Game Example

- Goal is to form maximal pairs of gloves
 - P1 has L, P2 has L, P3 has R
- v(S) = 1 if S is $\{1,3\}, \{2,3\}, \{1,2,3\}, 0$ otherwise

${\rm Order}\ R$	Marginal Contribution of P1
1, 2, 3	$v(\{1\}) - v(\varnothing) = 0 - 0 = 0$
1,3,2	$v(\{1\})-v(\varnothing)=0-0=0$
2,1,3	$v(\{1,2\}) - v(\{2\}) = 0 - 0 = 0$
2,3,1	$v(\{1,2,3\}) - v(\{2,3\}) = 1 - 1 = 0$
3,1,2	$v(\{1,3\})-v(\{3\})=1-0=1$
3, 2, 1	$v(\{1,2,3\}) - v(\{2,3\}) = 1 - 1 = 0$

Thus:

$$\circ$$
 $\phi_1 = \frac{1}{6}$

$$\circ$$
 $\phi_2 = \frac{1}{6}$

Linearity

From: https://en.wikipedia.org/wiki/Shapley-value#Glove-game

- Let *F* be the set of farmers {1,2,...,*p*}
- Assume we have model $f: S \mapsto \mathbb{R}$
 - Input: $S \subseteq F$
 - Output: Real value corresponding to wheat output
 - Averaged over result for every ordering of farmers
 - Hides some combinatorics
 - If order doesn't matter, can save computation

- To compute credit of farmer $i \in \{1,2,...p\}$:
 - For every <u>permutation</u> of farmers that aren't i, sum the difference between wheat output with i and without i (marginal value of i)
 - Implement via f evaluated on every <u>combination</u> of farmers; let f handle the ordering

without Farmer i

Benefits of Shapley Values

- Efficiency
- Dummy
- Symmetry
- Linearity

Problems with Computing SVs

- Computation is #P Hard
 - Very expensive in practice
- Must be able to include/exclude farmers and get a meaningful real value
 - Our How do we do this for non-artificial games?

From Shapley Values to SHAP Values

SHAP Values

- <u>SH</u>apley <u>A</u>dditive ex<u>P</u>lanations
 - Introduced by Lundberg et. al. 2017
- Tackles the problems of SV computation
 - Data table to bypass full definition of v
 - Data structures to speed computation
- Extends SVs to apply to general ML

SHAP From Tables

T =

	F1	F2	•••	Fp	Yield (y)
	1	4	•••	7	27
N {	1	4	•••	1	9
	0	0	•••	3	8

R

R

SHAP From Tables

- f: partial assignment of p features $\mapsto \mathbb{R}$
 - Assignment means feature value
 - Need to handle the unassigned features

SHAP From Tables - Example

• $f({F1 = 1}) = ?$

F1	F2	•••	Fp	Yield (y)
1	4	•••	7	27
1	4	•••	1	9
0	0	•••	3	8

SHAP From Tables - Nominal

• $f({F1 = 1}) = avg(T | F1 = 1, F2 = 0, ..., Fp = 0)$

F1	F2	•••	Fp	Yield (y)
1	4	•••	7	27
1	4	•••	1	9
0	0	•••	3	8

SHAP From Tables - Nominal

- Might not have table entries
- Not guaranteed to uphold any Shapley properties

SHAP From Tables - Marginal

• $f({F1 = 1}) = avg(T | F1 = 1)$

F1	F2	•••	Fp	Yield (y)
1	4	•••	7	27
1	4	•••	1	9
0	0	• • •	3	8

SHAP From Tables - Marginal

- Proposed by Lundberg et. al. 2017
- Impacted by sparsity
 - Conditional dist. might differ from full dist.
 - Distribution can collapse with real-world (noisy) data
- Upholds Efficiency and Symmetry, not Dummy and Linearity
 - Sundararajan et. al. 2019

SHAP From Tables - Interventional

• $f({F1 = 1}) = avg(T | do(F1 = 1))$

F1	F2	•••	Fp	Yield (y)
1	4	•••	7	27
1	4	•••	1	9
1	0	•••	3	8

SHAP From Tables - Interventional

- Proposed by Janzing et. al. 2019
- do notation by Judea Pearl
 - Breaks feature correlations
 - Implies that the model is causal
- Upholds Efficiency, Dummy, Linearity, not Symmetry

do notation

- Assumes model is causal
- Y | X1 = v

≠

 $Y \mid do(X1 = v)$

 $Y \mid X1 = v$

From Janzing et. al. 2019

 $Y \mid do(X1 = v)$

SHAP From Tables - Interventional

- Proposed by Janzing et. al. 2019
- do notation by Judea Pearl
 - Breaks feature correlations
 - Implies that the model is causal
- Upholds Efficiency, Dummy, Linearity, not Symmetry

T =

	F1	F2	•••	Fp	У
	1	4	•••	7	27
N {	1	4	•••	1	9
	0	0	•••	3	8
		~			

R

R

Ν

	F1	F2	•••	Fp	У
	$\phi_{1,1}$	$\phi_{1,2}$	•••	$\phi_{1,p}$	12.33
}				$\varphi_{2,p}$	-5.66
	$\phi_{3,1}$			$\phi_{3,p}$	-6.66

Sum of $|\phi|$ for each feature

Making SHAP Tractable

Tractability

- Enabled more flexible definitions of f
 - Forgo some guarantees for flexible definition
- Need to fix runtime

Data Structures for faster SHAP

- TreeSHAP
 - Lundberg et. al. 2020
- Supports Marginal
 - Impl. supports interventional
- Open source impl.

