Polytech Nice Sophia - 2019/2020

DS1 - MAM3 - MI1

25/10/19 - Durée 1h30

Les notations sont celles du cours. Calculatrices et documents non autorisés.

Question de Cours. (4 points)

Enoncer clairement (hypothèses, conclusions) le théorème de convergence dominée de Lebesgue.

Exercice 1. (5 points)

On définit, pour tout $n \in \mathbb{N}^*$, la suite : $u_n = \int_0^n \left(1 - \frac{x}{n}\right)^n \cos x \ dx$.

Calculer $\lim_{n\to\infty} u_n$.

(Les théorèmes utilisés devront être clairement rappelés, les hypothèses soigneusement vérifiées et les conclusions mises en évidence.)

Exercice 2. (7 points)

Soit *I* un intervalle réel.

- 1. Montrer que, si les fonctions f et g appartiennent à $L^2(I)$ alors, le produit $fg \in L^1(I)$.
- 2. Montrer qu'on a alors :

$$\left(\int_{I} |f(t)g(t)|dt\right)^{2} \leq \left(\int_{I} |f(t)|^{2} dt\right) \left(\int_{I} |g(t)|^{2} dt\right)$$

- 3. En déduire que si I est borné alors on a l'inclusion $L^2(I) \subset L^1(I)$.
- 4. Donner deux fonctions f et g (différentes de la fonction $x \mapsto \frac{1}{\sqrt{x}}$) définies sur un intervalle réel I (à préciser) telles que $f \in L^1(I)$ et $g \in L^1(I)$ mais le produit $fg \notin L^1(I)$. Démontrer toutes vos assertions.
- 5. Montrer que la fonction f définie ci-dessous appartient à $L^p([1, +\infty[), pour \ 1 \le p \le +\infty])$

$$f(x) = \frac{1}{x(1 + |\ln x|)^2}$$

Exercice 3. (4 points)

Soit t > 0.

Montrer que la fonction $x \to \left(\frac{\sin x}{x}\right) e^{-tx}$ est Lebesgue-intégrable sur \mathbb{R}^{*+} .

	Very Pow Muno Hise (ii)	another be theorems de convergence 1P(x)= (1-x)" x (x) con(x) < 0-x x (x)	100 / 100 / 100 HOL	On prend allors:	a g(x)= exp(x) ; bxcll	la fonction g esse lebesque-intéprable sur	• On considere despace mesure	The Dr. Diego Hope de. Himmen do	Convertence dominée sont fate laites.	On a alors les conclusions:	(i) f(x)=excence). Kow extintegrable	10,401 Suc 112.	Hes comme product dure function (ii) lim (1-2) cas(x) dx = lim (1-2) yours	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The contribution of econorder	1 1 6 1 11	
DS 1- MI1- 44/20	Exa: the Not Un= ("11- 2)" contribut Vertions & layer these (ii)	On amplique le théorème de convergence	domine de lebesque ité dan la	question de cours, dan le cadre:	E=12; SE= OS(12) et pe est la mesura g(2)= exp(2) + Vxc/R	de lebergue rue IK. Ventiration des Purpotheres.	On considere despace mesure	(1R, MIN), hi mesure de lahesque dan 12)	· Or hose: Unem*	Pu(x)=(1-2)" X(x) coo(x) . Their	74/07	(i) (Buly est use fulle de Pontious morma-	Hes comme product dune function mesurable? has use Insteam	Continue (1-2) (co)(x) fur IR	am O(2) 1: (1 ×)"V(x) (c)(x)	1276 64 CX = CM (X-1) CON	= excos(x)/(x); Grenz
and the second second	Question de Cours.	Then de convergence dominée de	Lebesque	Soit (E; SE; M) un espare mesure	Hyps Chare:	(i) (fi), suite de fliver meruches sui E	belle que:	Note on the service	5	positive sur = telle que:	14,001 5 g(04) th=1,2,1, 1 ppx6E	anchisims:	(i) fest integrable rus E				