Работа 4.3.2

Дифракция света на звуковой волне в жидкости

Работу выполнил Матренин Василий Б01-006

Цель работы: изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

В работе используются: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

1 Теория

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света.

Показатель п преломления изменятеся по закону:

$$n = n_0 \left(1 + m \cos \Omega x \right),\tag{1}$$

где $\Omega=2\pi/\Lambda$ - волновое число УЗ волны, m - глубина модуляции n (m « 1). Фаза Φ колебаний световой волны на задней стенке кюветы:

$$\Phi = \Phi_0 \left(1 + m \cos \Omega x \right) \tag{2}$$

(3)

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами Θ , соответствующими максимумам дифракции Фраунгофера (см рис. 1):

Рис 1. Дифракционная картина

Длинна УЗ волны высчитывается по формуле

$$\Lambda = m \frac{\lambda F}{l_m} \tag{4}$$

2 Схема установки

1. Определение скорости УЗ волны по дифф картине:

Рис 2. Схема установки 1

2. Определение скорости УЗ волны методом темного поля:

 $Puc\ 3.\ Схема\ установки\ 2$

3 Ход работы

3.1 Параметры установки

Параметры установки:

- $\bullet\,$ фокусное расстояние объектива F = 30 см
- Цена деления микрометрического винта на микроскопе d=4 мкм
- $\bullet\,$ Частота проявления дифракционной решетки $\nu_0=1.17~\mathrm{M}\Gamma$ ц

3.2 Эксперементальные данные

Положения дифф максимумов X_m при $\nu=1.17$ МГц представлены в таблице 1.

Table 1

m	-4	-3	-2	-1	0	1	2	3	4
X_m , MKM	-604	-452	-304	-152	0	148	292	440	588

Положения дифф максимумов X_m при $\nu=1.28$ МГц представлены в таблице 2.

Table 2

m	-3	-2	-1	0	1	2	3
X_m , MKM	-496	-328	-160	0	164	348	516

Положения дифф максимумов X_m при $\nu=1.40$ МГц представлены в таблице 3.

Table 3

m	-3	-2	-1	0	1	2	3
X_m , MKM	-544	-360	-180	0	184	368	548

Положения дифф максимумов X_m при $\nu=1.55$ МГц представлены в таблице 4.

Table 4

m	-3	-2	-1	0	1	2	3
X_m , mkm	-596	-392	-196	0	196	404	600

3.3 Графики

Графики для зависимостей $X_m(m)$ представлены на рисунках 3 - 6.

Puc 4. График для $u=1.17\, ext{MFu}
otag$

 $Puc\ 5.\ \Gamma pa \phi u \kappa\ \partial$ ля $u=1.28\ M \Gamma u$

 $Puc\ 6.\ \Gamma pa \phi u\kappa\ \partial$ ля $u=1.40\ M \Gamma u$

Puc 7. $\Gamma pa \phi u \kappa \ \partial \mathcal{M} \nu = 1.55 \ M \Gamma u$

3.4 Построение зависимости $\Lambda(1/\nu)$

Коэффициенты пропорциональности для зависимостей $X_m(m)$ и значения Λ для различных частот представлены в таблице 5.

Table 5

ν , М Γ ц	τ , MKM	Λ , mkm
1.17	149	1289
1.28	168	1141
1.40	182	1055
1.55	199	965

График для зависимости $\Lambda(1/\nu)$ представлен на рисунке 7.

Puc 8. $\Gamma pa \phi u \kappa \Lambda(1/\nu)$

Из к-та наклона графика получаем скорость распространения УЗ в воде: $V_{\rm V3} = (1498 \pm 50)~{\rm m/c}.$

4 Вывод

В работе изучена дифракция света на аккустической решетке. Построены графики для зависимостей $X_m(m)$ при четырех разных частотах. Так же получена зависимость $\Lambda(1/\nu)$. Рассчитаны длинны волн УЗ и скорость его распространения в воде.