Questions de cours.

- Produit de deux matrices élémentaires.
- Transposée du produit de deux matrices. Généralisation à la transposée d'un produit fini de matrices (carrés)
- Formule de Leibniz pour les polynômes.
- Dérivées successives de X^n .
- Si $P \in \mathbf{R}[X]$, alors $z \in \mathbf{C}$ est racine de P ssi \overline{z} est racine de P. Lorsque c'est le cas, montrer que z et \overline{z} ont la même multiplicité.

 Exercice 10. $M_n(\mathbf{R})$.

Exercices.

Exercice 1. Soit $n \in \mathbf{N}^*$. On se donne N une matrice nilpotente de $M_n(\mathbf{C})$.

- 1. Montrer que I-N est inversible et calculer son inverse.
- 2. Soit $A \in M_n(\mathbf{C})$. On suppose que A et N commutent. Montrer que A est inversible si et seulement si A + N est inversible.

Exercice 2. Montrer que A définie ci dessous est inversible et calculer son inverse.

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 1 & -1 \end{array}\right)$$

Exercice 3. Chercher les matrices $M \in M_2(\mathbf{C})$ vérifiant $M^2 = I_2$.

Exercice 4. On considère :

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

Montrer que A est inversible et calculer A^n pour $n \in \mathbb{N}$ puis $n \in \mathbb{Z}$.

Exercice 5. Déterminer une condition nécessaire et suffisante pour que le produit de deux matrices symétriques soit une matrice symétrique.

Exercice 6. Montrer que toute matrice de $M_n(\mathbf{R})$ s'écrit de façon unique comme la somme d'une matrice symétrique et d'une matrice antisymétrique.

Exercice 7. Soient A et B deux matrices nilpotentes. On suppose qu'elles commutent. Montrer que A + B est nilpotente.

Exercice 8. On considère A une matrice antisymétrique réelle de taille n.

- 1. Montrer que $X^T A X = 0$ pour tout $X \in M_{n,1}(\mathbf{R})$.
- 2. En déduire que $I_n + A$ est inversible.
- 3. Montrer que $M = (I_n A)(I_n + A)^{-1}$ est orthogonale, c'est à dire que $M^T M = I_n$.

Exercice 9. Soit $A, B \in M_n(\mathbf{R})$. On suppose que $AB + BA = 0_n$. Proposer une formule de développement pour $(A + B)^n$.

Exercice 10. Déterminer les matrices A qui commutent avec toutes les matrices de $M_n(\mathbf{R})$.

Exercice 11. Décomposer $X^4 + 2X^3 - 2X - 2$ en facteur irréductibles dans $\mathbf{R}[X]$.

Exercice 12. Décomposer $X^4 + 1$ en facteur irréductibles dans $\mathbf{R}[X]$.

Exercice 13. Soit $\alpha \in]0, \pi[$. Décomposer $X^{2n} - 2\cos(\alpha)X^n + 1$ en facteur irréductibles dans $\mathbf{C}[X]$.

Exercice 14. Déterminer les polynômes de $\mathbf{R}[X]$ vérifiant : P(X+1) + P(X) = 0.

Exercice 15. Calculer le quotient Q et le reste R de la division euclidienne de A par B dans chacun des des cas suivants :

1.
$$A = 2X^4 + X^3 - X^2 - X - 1$$
 et $B = X^3 + X^2 + X - 3$

2.
$$A = X^4 - 4X^3 - 9X^2 + 27X + 38$$
 et $B = X^2 - X - 7$

3.
$$A = X^5 - X^2 + 2$$
 et $B = X^2 + 1$

Exercices 16. Soit $P \in \mathbf{C}[X]$. Calculer le reste de de la division euclidienne de P par (X-a)(X-b), puis celui de P par $(X-a)^2$. (a,b) sont deux complexes distincts)

Exercice 17. Pour $n \in \mathbb{N}$, on pose

$$f_n: x \in [-1, 1] \longmapsto \cos(n \arccos(x))$$

- 1. Donner une expression simple de f_0 , f_1 et f_2 .
- 2. Pour $n \in \mathbf{N}^*$ et $x \in [-1,1]$, exprimer $f_{n+1}(x) + f_{n-1}(x)$ en fonction de $f_n(x)$.
- 3. En déduire qu'il existe une unique suite de polynômes (T_n) dont les fonctions polynomiale associées coïncident avec les f_n sur [-1,1].
- 4. Déterminer le degré et le coefficient dominant de T_n pour tout $n \in \mathbf{N}$.
- 5. Montrer que T_n est scindé à racine simple sur [-1, 1].

Ces polynômes particuliers ont un nom : les polynômes de Tchebychev.