NEC

PNP SILICON TRANSISTOR 2SA1458

DESCRIPTION

The 2SA1458 is designed for general purpose amplifier and high speed switching applications.

FEATURES

- High Frequency Current Gain.
- High Speed Switching.
- Small Output Capacitance.
- Low Collector Saturation Voltage.
- Complementary to the NEC 2SC3731 NPN transistor.

ABSOLUTE MAXIMUM RATINGS ($T_a = 25$ °C)

Maximum Temperatures		
Storage Temperature	55 to +1	50 °C
Junction Temperature 150	°C Max	imum
Maximum Power Dissipation (T _a = 25 °C)		
Total Power Dissipation	250	mW
Maximum Voltages and Current (T _a = 25 °C)		
V _{CBO} Collector to Base Voltage	-40	٧
V _{CEO} Collector to Emitter Voltage	-40	٧
V _{EBO} Emitter to Base Voltage	-5.0	٧
I _C Collector Current (DC)	-200	mΑ

ELECTRICAL CHARACTERISTICS (T_a = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
ton	Turn-on Time			70	ns	See Test Circuit.
t _{stg}	Storage Time		110	225	ns	See Test Circuit.
toff	Turn-off Time			300	ns	See Test Circuit.
fT	Gain Bandwidth Product	200	510		MHz	$V_{CE} = -20 \text{ V}, I_{E} = 10 \text{ mA}, f = 100 \text{ MHz}$
C _{ob}	Output Capacitance		2.5	4.5	рF	$V_{CB} = -5.0 \text{ V}, I_E = 0, f = 1 \text{ MHz}$
hFE1*	DC Current Gain	75	180	300	. -	$V_{CE} = -1.0 \text{ V}, I_{C} = -100 \text{ mA}$
hFE2*	DC Current Gain	25	100		_	$V_{CE} = -1.0 \text{ V}, I_{C} = -1.0 \text{ mA}$
V _{CE(sat)} *	Collector Saturation Voltage		-0.1	-0.4	V	$I_C = -50 \text{ mA}, I_B = -5.0 \text{ mA}$
V _{BE(sat)*}	Base Saturation Voltage		-0.80	-0.95	V	$I_C = -50 \text{ mA}, I_B = -5.0 \text{ mA}$
СВО	Collector Cutoff Current			-0.1	μА	$V_{CB} = -30 \text{ V}, 1_E = 0$
^I EBO	Emitter Cutoff Current			-0.1	μΑ	$V_{EB} = -3.0 \text{ V}, I_{C} = 0$

^{*} Pulsed PW \leq 350 μ s, Duty Cycle \leq 2 %

Classification of h_{FE1}

Rank	M	L	К
Range	75 to 150	100 to 200	150 to 300

hFE1 Test Conditions : VCE = -1.0 V, IC = -100 mA

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SWITCHING TIME TEST CIRCUIT

 $t_{off} = t_{stg} + t_{f}$