Customer Churn
Prediction
Project

Machine Learning
Models for
Telecom Industry

https://github.com/Berothely/phase3project.git

Project Introduction

 This project addresses customer churn prediction for a telecom company. Churn, the phenomenon of customers discontinuing a service, directly impacts long-term profitability. The goal is to leverage customer behavioral and service data to predict churn and provide actionable insights.

Objectives

1

- Build models to predict whether a customer will churn

2

- Compare Logistic Regression and Random Forest performance 3

Provide insights for retention strategies 4

Ensure interpretability and business applicability

```
arrivor_mod = modifier_ob/
  mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
irror_mod.use_x = True
irror_mod.use_y = False
lrror_mod.use_z = False
 operation == "MIRROR_Y"
lrror_mod.use_x = False
 lrror_mod.use_y = True
lrror_mod.use_z = False
  operation == "MIRROR_Z"
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
  election at the end -add
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.action
   "Selected" + str(modification
   rror ob.select = 0
   bpy.context.selected_obj
  ata.objects[one.name].se
 int("please select exaction
     OPERATOR CLASSES
      mirror to the selected
    ect.mirror_mirror_x"
  ext.active_object is not
```

Data Understanding

- Dataset includes customer demographics, account information, and service usage.
- Total records: Telecom customer data
- Features: Categorical and numerical variables
- Target: Churn (Yes/No)

Data Preparation

- Handled missing values and inconsistencies
- - Encoded categorical variables
- Scaled numerical features
- Addressed class imbalance

Models Applied

1. Logistic Regression: Interpretable baseline model

2. Random Forest: Ensemble method with higher predictive power

Model Training & Evaluation

- Hyperparameter tuning with RandomizedSearchCV

- Evaluated using Accuracy, Precision, Recall, F1-score, ROC-AUC

Confusion matrix and classification report generated

Results & Comparison

- Logistic Regression:
- Provided interpretability via coefficients
- Random Forest:
- Higher performance
- - Feature importance insights
- Both models compared using standard metrics.

Business Insights

- Key drivers of churn identified

- Enables proactive retention strategies

- Practical recommendations for telecom management

ons

Business

Recommendati

Retention Programs

Design loyalty programs, personalized offers, and discounts targeted at customers with high churn risk.

Offer bundle packages (internet + phone + TV) to increase switching costs and retain customers longer.

Improve Customer Service

Enhance call center responsiveness and problem resolution speed.

Provide proactive customer support for those showing signs of dissatisfaction.

Data-Driven Marketing

Use churn predictions to segment customers and focus marketing efforts on at-risk groups.

Implement personalized communication (emails, SMS, calls) to keep at-risk customers engaged.

Product & Service Optimization

Regularly review service quality (network reliability, pricing fairness).

Offer flexible contracts (month-to-month, upgrade/downgrade options) to reduce customer frustration.

Customer Feedback Integration

Collect and analyze feedback from churners to identify service gaps.

Adapt retention strategies continuously based on customer insights.

Recommendations

- Use the tuned Logistic Regression with SMOTE pipeline as a baseline predictive model for churn detection.
- Complement the analysis with more complex models (e.g., Random Forest, Gradient Boosting, XGBoost) to potentially improve predictive power.
- Continuously monitor model performance and retrain periodically as customer behaviors evolve.
- Beyond modeling, telecom management should:
 - Develop targeted retention strategies for at-risk customers flagged by the model.
 - Offer incentives (discounts, loyalty programs) to customers with high churn probability.
 - Use churn predictions to prioritize customer support efforts where they have the highest impact.

Graph1
confusion
matrix of
the linear
regression
model

accuracy: 0.7811

roc_auc score: 0.8345

conf_matrix:

Graph2

Graph3 class_report of random forest

.9]:

	precision	recall	f1-score	support
0	0.973262	0.964664	0.968944	566.000000
1	0.811321	0.851485	0.830918	101.000000
ассигасу	0.947526	0.947526	0.947526	0.947526
macro avg	0.892291	0.908075	0.899931	667.000000
weighted avg	0.948740	0.947526	0.948044	667.000000

Conclusion

- This project demonstrates how machine learning can effectively predict churn.
- Random Forest outperformed Logistic Regression in predictive accuracy.
- The insights generated can help reduce customer churn and improve long-term profitability.

