Lecture 1 Glial cells
Nervous system - CNS + PNS
Number of neurons 10^11 or 100 Bn
Synapses: 5x10^12 or 50 Tn
Brain is made up of neurons + glials, around 50% glial cells, intermixed.
Glial numbers and complexities correlated to higher computational power
Key difference between neurons and glials: Electrical excitability
Glial cell functions:
Gildi celi idileciono.
Homeostasis of ECM
metabolic need of neurons (bloodflow) active neurons lead to greater bloodflow
myelination
Synapse formation, maintenance , and elimination.
Glials are multipotent, give rise to neuron, glia, and fibroblasts
Glidis are matapotent, give rise to fledron, glid, and fibrobiasts
Glial cell types in the CNS:
Gilai Celi types ili tile CNS.
Oligodendrocytes
Microglial
Astrocytes: Processes end on blood vessels and synapses (tripartite)
Process wrap around the synapse, contain NT receptors - Ca2+
signalling, release of gliotransmittors, modulating synapse

Gliotransmittor: glutamate d-serine, ATP, TNFa
Cannabinoid type 1 receptors (CB1R), GPCR:
Cannabinoid bind to CB1R on astrocyte - Ca2+ elevation - glutamate release from
astrocyte, lateral NMDA receptors on neurone bind Glu, internalise AMPA receptor,
reduced depol.
reduced depoi.
Astrocyte and memory: Transplantation of human glial cells into neonatal mice lead to
greater long term potentiation (memory)(Han et al, 2013)
Astrocyte and mental disease: Mice with schizophrenic astrocyte from humans show
symptoms
Glial and homeostasis: oligodendrocytes and glial cells have K+ channels and NT
transporters to clear up ECM for discrete signals
Lecture 2: Glial cells: microglia, neurotrophic theory
Astrocyte action sequences: detection of synaptic activity, release of GT (pre/post)
Influence synaptic activity(up/down), +ve/-ve feedback
Astrocyte action on blood vessels: NT from synapse bind to astrocyte, Ca signal release
vasoactive molecules e.g. prostaglandin, increase
bloodflow to active neurons
Microglia: Immune cells in the CNS, migrate into CNS during development, mature in
CNS. Cell body stationary, processes moving, surveillance mode.
can become phagocytic once activated. Release cytokines

Migrate towards injury sites. HIV reservoir. Elimination of neurons
 Formation of synapses during development: Mixed culture vs pure neuron culture:
neuronal growth observed, astrocyte signals promote synapse formation. (TGF,
cholesterol, BDNF, thrombospondin)
 Pruning of synapses at adolescence (activated most frequently are maintained), by microglia
Triici Ogiia
 During aging and disease, abnormal synapse numbers are observed.
• In summary, glial cells control the formation and elimination of brain circuits.
General Neurotrophic theory: Maintenance of neurons
Larger limbs - greater neuron numbers, less neuron death. Vice versa.
 Target organs release Neurotrophic Growth Factor (NGF) and Epidermal Growth
Factor (EGF)
Factor (EGF) • Kinesin (anterograde), Dynein (retrograde) on microtubule transmit signal between
 Kinesin (anterograde), Dynein (retrograde) on microtubule transmit signal between
 Kinesin (anterograde), Dynein (retrograde) on microtubule transmit signal between axon terminal and cell bodies. Allow cellular products between positions.
 Kinesin (anterograde), Dynein (retrograde) on microtubule transmit signal between axon terminal and cell bodies. Allow cellular products between positions. Neuronal survival signals retrograde transported to suppress default apoptosis,
 Kinesin (anterograde), Dynein (retrograde) on microtubule transmit signal between axon terminal and cell bodies. Allow cellular products between positions. Neuronal survival signals retrograde transported to suppress default apoptosis, competitive pruning.

Lecture 3: The Brain
General brain plan in all species: Forebrain, midbrain, hindbrain(&cerebellum)
Forebrain: Telencephalon + Diencephalon (Prosencephalon)
Midbrain: Mesencephalon
Pons and cerebellum: Metencephalon
Medulla Oblongata: Myelencephalon (Hindbrain: Rhombencephalon)
Anatomical axises: Rostral-Caudal horizontal in forebrain, dorsal-ventral vertical,
reversed in the brainstem and spinal cord.
Axis created by brain flexures: Cervical, cephalic and potine flexures
Planes of sections:
Horizontal
Sagittal: Anterior-Posterior along the midline
Transverse: Dorsal-Ventral (vertical in forebrain, horizontal in brainstem)
Brain anatomy
 Grey and White matters: Cerebral cortex (peripheral grey matter cell body), Axons
myelinated are white matters. Deep thalamus area are grey matter.
• Meninges:
 Dura mater: Fibrous material, Falx cerebri lines longitudinal fissure, tentorium
cerebelli wrap around the cerebellum.
 Arachnoid mater: contain CSF, extend into sulci,

 Pia mater: One cell thick lines the undulations of the brain, perivascular space
contribute to CSF formation.
Ventricles: Derived from the hollow neural tube, contain cerebrospinal fluid
 Two lateral ventricles in the telencephalon - interventricular foramen into 3rd
 Third ventricle in the mesencephalon - cerebral aqueduct into 4th
Fourth ventricle in the brainstem.
Diencephalon (part of the forebrain):
 Consist of epithalamus, thalamus, hypothalamus and optic nerve (CNII)
Pineal gland (Epiphysis) associated with epithalamus, pituitary gland (hypophysis)
with hypothalamus.
Pineal - Production of melatonin
 Hypothalamus contain many nucleus, CNII, pituitary (Anterior and Posterior)
Posterior/Neurohypophysis: paraventricular and supraoptic nucleus extend into
pituitary. Anterior/adenohypophysis: neurosecretory neurone into pituitary.
Midbrain, pons and medulla
 Peduncles are connections between brain structures, 4 brainstem-cerebellum
 Midbrain dorsal to the pons and medulla: consist of superior and inferior tectum or
colliculi, red nucleus and substantia nigra
Brainstem cranial nerves
 All cranial nerves except I and II originate in the brainstem.
 Sensory/motor/mixed functions.

Lecture 4: The brain (again)
Cerebral cortex: 4 lobes each side, 8 lobes total
Frontal, Parietal, Temporal, Occipital lobes
Fissure/Sulcus - depression, Gyrus - ridges
Longitudinal cerebral fissure between hemisphere.
Lateral sulcus top of temporal lobe
Central sulcus between frontal and parietal lobe
Cortex neuronal structure
 Cortical neurones input via dendritic spines, output via axons
 Arrangement: Either
 Layered (cortex, cerebellum, hippocampus) separation of input/output layers
 nuclear (spinal cord, hypothalamus), allow more interdendritic interactions
Cerebral cortex contain 6 layers, except the hippocampus
 Cerebral cortex contain pyramidal neurones. With spiny dendrites
No cell bodies in the first layer (molecular layer)
 Special functional areas on the cerebral cortex:
Broca's area: Speech generation (Left hemisphere only)
 Wernicke's area: Speech understanding (left hemisphere only), lateralisation of
 Handedness, more dexterity with one side, also related to lateralisation

Cortex white matter key tracts:
 Corpus callosum: tract between cerebral cortexes connect two hemisphere
Optic radiations, thalamus to the visual cortex
 Internal capsule: Cerebral cortex to spinal cord via motor areas
Hippocampus: medial to lateral ventricle's inferior horns
 6 layer cerebral cortex transition to 3 layered archicortex
 CA1-4 areas, and parahippocampal areas of subiculum and entorhinal cortex
 UCL John O'Keefe discovered place cells, responsible for spatial navigation
Basal ganglia: Deep within the cerebral cortex, lateral to superior horn of lateral
ventricles.
 Consist of caudate, putamen, globus pallidus, subthalamic nucleus
Thalamus: Relay centre to the cortex, processing

Lecture 5: Membrane potential
Neurotransmitters at the synapse - graded response - after integration AP.
Across the membrane: High Na and Cl outside, high K inside.
More K leak channels than Na leak channels, negative protein inside, positive Na outside
Electrostatic gradient and concentration determines the reversal potential at which there
will be no net current
In nernst equation for positive ions, conc outside/conc inside
For negative ions such as chloride, conc inside/conc outside
Setting up and maintaining the membrane potential: NaK ATPase. KinSout.
Also from differential permeability.
Excitatory Post Synaptic Potential are graded if under the threshold
All or nothing AP dependent on voltage gated sodium channels
Hyperpolarisation independent from voltage gated Na channel, voltage gated and leak K
channels
Voltage gated Na channel
Selectivity pore: recognise only Na ions

• Voltage sensitive domain series of +ve charged amino acid residues detect voltage

change	
 Activation gate: activate and open at threshold voltages 	
Inactivation gate: ball and chain mechanism closes the channel after act gate opens	
• Inactivation gate. Dan and chain mechanism closes the chainler after act gate opens	

Lecture 6: Spinal cord structure
Cerebellum
Folds in the cerebellum called folia instead of sulcus
• Three layers: Molecular(few cell bodies), Piriform(cell bodies of purkinje cells),
Granular(cell bodies, granule cells)
Output from Purkinje cells, input onto dendritic tree of purkinje cells
Purkinje cells have elaborate dendritic fibres but only in one plane
• Input: climbing fibres up into the purkinje tree, parallel fibres perpendicular to purkinje
plane, both granule cells.
Spinal cord:
Entire cord + brain wrapped by dura sheath
• 8 cervical nerves, 12 Thoracic, 5 Lumbar, 5 Sacral, 1 Coccyx.
White matter on the outside, grey matter inside. As descend down SC, white
decrease.
Greater grey matter in cervical and lumbosacral, due to greater sensitivity
Dorsal side has sulcus, ventral side has fissure, funiculus beside the lateral
invagination
Commissure regions dorsal + ventral, axon cross over.
Dorsal root: sensory, cell body within dorsal root ganglion outside SC.
Ventral root: Cell body within the horn

Dermatomes: each sensory areas of the skin correspond to specific spinal nerve, derived
from different somites, referred pain from viscera to dermatomes.
Within the grey matter it is also split into layers called Rexed's laminae, numbered with
roman numerals (dorsal to ventral)
Circuits:
• Local circuit: monosynaptic simple reflex & antagonist inhibition with one additional
synapse
 Ascending tract: Dorsal column(sensory input), spinocerebellar tract(lateral, to
cerebellum), spinothalamic(lateral to ventral horn, to thalamus)
Descending tract: lateral corticospinal tract (lateral to lateral horn), anterior
corticospinal (lateral to ventral fissure)
Ascending tract decussation(crossing) at SC: Dorsal column does not, spinalcerebellar
partially cross, spinothalamic cross at SC.
Descending tract decussation at SC: lateral corticospinal tract crossed at caudal medulla,
not anterior corticospinal tract.

Lecture 7: Synaptic transmission
Larger dendritic spine - more EPSP receptors, (AMPA), stronger synaptic transmission
At post synaptic terminal contains: AMPA, NMDA, SNAREs (vesicle and target)
V-SNARE (e.g. synaptobrevin, VAMP), t-SNARE (e.g. syntaxin, SNAP25), does not cause
fusion
chaperones proteins pull vesicle and membrane, change shape allow fusion.
Each vesicle is 35-50nm, synaptic cleft 20nm. 100mM in vesicle, 1mM in synapse.
Ionotropic receptors (post synaptic) (fast<1ms)
Glutamate receptors (AMPA & NMDA)
• Glutalilate receptors (AMI A & NINDA)
 AMPA(monovalent): open upon glutamate binding, Na+ influx, inward current,
EPSC (-ve) (antagonist: CNQX and DNQX)
 NMDA(divalent): open upon glutamate binding, Mg2+ ion blocks, if large enough
depol, Mg2+ moves out, Na+, Ca2+ influx, K+ efflux. Antagonist: AP5 and
MK801(only if open)are antagonists
GABA/glycine
• GADA, grycine
 GABA: open to chloride ions, reversal potential lower than resting(~70mV), influx,
hyperpol.
 Inhibitory post synaptic potential (reverse potential at -85mV)

Currents:
 Reflect the flow of positive ions, EPSC(inward flow of positive ions)represented as a
downward line.
IPSC represented as upward curve, more likely caused by GABA release.
Current-Voltage curve:
• voltage on X-axis, current on y-axis
• AMPA: total reversal potential at AMPA at 0mV (permeable to both K+ and Na+)
at resting potential -70mV, far from reverse potential of Na+, inward flow of Na.
• GABA: Reverse potential at -85mV, chloride influx at resting -75mV, positive current.
• NMDA: Permeable to Na, K, Ca. Reversal potential at 0mV, extracellular magnesium
block, if depolarise beyond threshold, open channel
Slope of the IV curve is determined by the channel conductance (greater current at every
potential)

Lecture 8: Motor control
Reflex: stereotyped response without signal integration
Motor neurone arrangement in the ventral horn in spinal cord:
a-motor neurones for proximal muscles - more medial, distal muscle - more lateral
a-motor neurones for flexor - close to central canal, extensor - distal
Each muscle tissue is innervated by group of neurones - motor neuron pool
Each neuron innervate several muscle fibres - motor unit
Each nearon innervate several masele libres mises and
Motor neuron recruitment: Size principle
 As signal increase, smaller motor units recruited first before larger ones
Smaller motor neurons with smaller diameter, greater resistance, easier to depol.
Proprioception:
• 1a afferent neurones and 1b afferent neurones are intrafusal, within spindles.
• 1a afferent neurone detect presence of velocity of change(tonicphasic), 1b afferent
detect presence of change. (Phasic)
Extrafusal fibres are force generating, innervated by a-motor neurons,
Intrafusal fibres are detection, innervated by gamma-motor neurones to change length
accordingly.

Stretch reflex:
 Stretch applied on muscle fibre, 1a afferent detect, send signal to SC
о о о о о о о о о о о о о о о о о о о
• a-gamma co-activation, a-MN shorten muscle, gamma-MN shorten spindle, maintain
sensitivity
• 1a inhibitory interneuron reciprocal signalling - inhibition of antagonist muscle
Co-contraction of agonist & antagonist when expecting load, inhibition modulated by
descending signal from the brain.
Artificial stimulation:
• External stimulation - stimulate 1a afferent with largest diameter (most ion channel)
Trigger stretch reflex (Hoffman H reflex)
• Larger stimulus - Motor neuron stimulation (M-wave), before H reflex
Larger stimulus - M wave only, antidromic cancel H reflex.
, , , , , , , , , , , , , , , , , , ,
Golgi tendon organ:
Tension sensing 1b afferent, detect presence of stretch.
Clasp knife reflex, inhibit agonist if tension too great.
• 1b interneuron integrate signal from αδ-pain receptor, brain, highly modulated.
Cross-extension reflex: Withdrawl of limb lead to extension of the other limb via
internaurones in the SC

Lecture 9
Ohms Law: Relationship between synaptic current, membrane resistance and potential
Inhibitory channels decrease resistance (e.g. GABA channels increase Cl
permeability)
 Greater synaptic drive - more NT released, greater current.
, . , . , . , . , . , . , . , . , . , .
Metabotropic receptors (slow >50ms), (GPCR)
E.g. mGluR, GABAb
Types of GPCRs:
Gs: activate adenylyl cyclase - increase cAMP - activate PKA
• Gi: inhibit adenylyl cyclase - decrease cAMP - less PKA
 Gq: activate phospholipase C(PLC), convert PIP2 into DAG and IP3, activate PKC and
calmodulin
GDP replaced by GTP when ligand binds
E.g. GABAb binding - Gi, inhibit calcium channels (less NT) and activate K channels (less
resistance, hyperpol)
Two types of integration: spatial(space) and temporal(time)
dendritic filtering result in decrease in amplitude and increase in delay of signal
Capacitance: ability to store charge and release, larger SA, greater C

Synaptic plasticity: Frequent and strong signals lead to greater efficacy.	

Lecture 10: Voluntary Control 🕱

Structures responsible for voluntary motor control in the cerebral cortex: (Ant-post)
Prefrontal cortex
 Premotor cortex: premotor area(PM), supplementary motor area(SMA)
Primary motor cortex (M1), followed by central sulci
Somatosensory Cortex (S1)
• Broadmann area 5 then 7
Thalamus - cortical pathways (Thalamocortical pathways):
Thalamus supply the cortex with signals,
Ventral anterior nucleus - premotor area
Ventral lateral nucleus - supplementary motor area.
Corticospinal tract
 Neurons in the primary motor cortex (M1) project motor signal
Signal via internal capsule to brainstem, lower limb more medial
Decussation at lower medulla into lateral corticospinal tract, some to anterior CS tract
Convergence: Many motor neurones can innervate one muscle tissue
Divergence: Motor neurone from the cortex innervate many interneuron pools and MNs
Some neurones codes for dynamic muscles, while others code for static force

Movement control: The hierarchy:
 Primary Motor Cortex receive signal from PM(external cue) & SMA(intrinsic learnt),S1
 PM receive signal from prefrontal cortex, visual area 5(position), 7(property), and
cerebellum(via thalamus VLN)
 SMA receive signal from prefrontal cortex, basal ganglia(via thalamus VAN)
F. S.
Cerebellum
Input: Mossy fibres into the cerebral cortex, climbing fibre from medulla olives
Spinal cord: proprioception, pain, temperature etc
 Vestibular system: balance, head movement
 Pontine nucleus: Efferent copy from corticospinal pathway
Tomanication and copy from controlopinal patients,
Output: Different areas of cortex - different internal nucleus - different spinal tracts
• Lateral cortex - dentate nucleus - PMC and M1 via thalamus
 Corticospinal pathway, influence voluntary movements
 Medial cortex - Globulous & Enboliform nucleus - Red nucleus (midbrain) - Spinal cord
 Rubrospinal pathway, influence ongoing motor movements
 Medial cortex - fastigial nucleus - Vestibular nuclei - Spinal cord / Optic nerve
 Vestibulospinal pathway, influence posture and eye movements
vestibulospinal pacifically, influence posture and eye movements

Cerebellum adjustment of movement:
Imaginative model within the cerebellum
Efferent copy from mossy fibre and climbing fibre - cortex, outcome predicted
 Action adjusted according to imaginative model, sent via rubrospinal tract
If actual outcome different from prediction, adjust model
Basal Ganglia: Group of nucleus in Diencephalon & midbrain: determine action
• Direct pathway: Cortex -> Striatum - Globus pallidus ext - thalamus -> SMA
 Two GABA-ergic synapse: overall excitatory effect
• Indirect pathway: Cortex -> Striatum - Globus pallidus int - subthalamic nucleus ->
Globus pallidus ext - thalamus ->SMA
Three GABA-ergic synapse: overall inhibitory effect
Dopamine effect: D1 excitatory receptor on direct pathway, D2 inhibitory receptor on
indirect pathway
Action selection: Lateral inhibition by cortical inputs, strongest input expressed and
inhibit all other actions.

Retina synaptic pathways: ON and OFF pathways in rod and cone cells
Cone cells have many different bipolar cells for colour and ON/OFF,
ON bipolar cell have mGluR inhibitory receptors: light - less Glu - more depol
OFF bipolar cell have AMPA excitatory receptors: light - more Glu - less depol
• Rod cells uses amacrine cells to integrate ON/OFF pathways to cone cells, mGluR on AC
ON amacrine cells have gap junction with cone BP, light - less Glu - more depol
passed to cone BP
OFF amacrine cells release inhibitory glycine, light - less Glu - more depol then
glycine, less depol on cone BP
Cone bipolar cells form synapse with root ganglion cells, amount of glutamate release
determines RATE of action potential, not a graded response.

Visual defects:
 Red L cone defect: protan, causes protanopia, insensitivity to red green and yellow
Green M cone defect: Deutan, cause deutanopia, insensitivity to red green yellow
Blue S cone defect: Tritan, causes Tritanopia, insensitivity to Blue and green
Myopia: shortsightedness
Hyperopia: far sightedness

Lecture 12: Sensory systems and hearing
Receptor transduction: external stimulus to action potentials
 Strength of the stimulus determines the amplitude of receptor potential
Amplitude of receptor potential determines frequency of action potential (frequency)
coding) after exceeding threshold potential.
Tonic & phasic: rate of change of stimulus / presence of stimulus
Spontaneous firing rate allow on off signals
Vestibular systems: sensory rotation of head
Three semi-circular canal organs, one utricle, one saccule
 Utricle in the horizontal direction(back/forward), saccule in vertical direction(up/
down), linear sensory
Three semi-circular canal for rotation sensory
within the canals
 Sensory receptor cells connected to nerves, have hairs on luminal surface
 Gelatinous cupula top of the hair, orient to the same direction
 Movement occur, one increase firing rate, one decrease
Sensory receptor in vestibular semicircular canal
Hair cells actin rich stereocilia in a stair case manner, tallest contain microtubule
 Cadherin 23/15 between hair, pulling open channel, K influx, Ca entry, NT release.

 Pushing from other direction closes the cation channels, hyperpol.
• adaptations
adaptationio
Adaptation (phasictonic) current decrease overtime, decrease in AP frequency
 Cadherin links resets when held, desensitisation, similar to gamma motor neurone

Lecture 13: Hearing
Human hearing range: 20-20000 Hz, most sensitive at 1000-4000Hz, having lowest
auditory threshold, lowest loudness needed.
additory threshold, lowest loadiness fieddear
Decibels: sound pressure levels: 20log(Pt/Pr), Pt is the testing sound, Pr is reference/
threshold, 10 times increase when increase by 20dB.
threshold, 10 times increase when increase by 20db.
Outer ear: connected to midear by tympanic membrane(eardrum)
 Pinna around the outside, concha outside semi-covering the canal, meatus next to
the canal.
• The outer ear structures amplifies sound by 10-15 dB, unique structure provide
localisation of sound.
Midear: air filled compartment behind eardrum, eustachian tube to nasal canal
 Three bones: malleus, incus, stapes, connected to oval window
Three bones. maneus, meus, stapes, connected to ovar window
 Tensor tympani is a muscle provide reflex, adapt to loud sounds
Impedance matching by the ossicles:
► large tympanic drum-small oval window: amplification of pressure (20dB gain)
 Larger pressure compensate impedance from air to fluid filled cochlea.
• midear dysfunction: conduction deafness, inner ear: nerve deafness

• Inner ear:
 Cochlea: fluid filled compartment, 2.5 coils in human. Three compartments, from
top down: Scala tympani, Scala media, Scala vestibuli
 Sensory epithelium on basilar membrane on scala media.
Tonotopy: Basilar membrane at different locations of cochlea tuned to be sensitive.
towards specific frequency, due to increasing diameter (wider membrane, less stiff)
Three rows of outer hair cells, one row of inner hair cell connect to most nerve
cells. Basilar membrane move, hair rub against tectorial membrane, receptor
potential.
Auditory nerve fibres
 Type I auditory fibres connect to specific inner hair cells - tonotopic map in the
brain, type II connect to outer hair cells
Phase locking occur, maximum AP curve at around 3000Hz

Lecture 14: Visual processing From the retinal ganglion cells into the visual cortex • Receptive field: each ganglion has a space in which presence of stimulus lead to electrical response size measured by angle of which to fovea. Centre and surround areas of receptive field have opposite response to light. Depending on ON/OFF ganglion type. Higher sensitivity to contrast. Horizontal cells connected photoreceptor cells allow lateral inhibition. HCs have excitatory glutamate receptor, and release GABA to central photoreceptors. Create opposite effect. ON ganglion: light increase, central Glu decrease, peripheral Glu decrease, GABA decrease, central Glu increase. • Two types of ganglion cell populations midget: small receptor field, mostly in fovea, sustained tonic response to light Parasol: large cell large field, around the retina, phasic response to light Specific type of parvocellular ganglion: colour opponency: R-G, G-R, (RG)-B No colour opponency in magnocellular ganglions Each population of ganglion cells arranged in their own mosaic pattern within the

same retinal surface area. Allow parallel processing of info received by the area.

Visual processing: retina to the cortex
superior colliculus(visual tectum in the midbrain)
 Lateral geniculate nucleus: route to the visual cortex from the thalamus
 Retinal ganglion cells bifurcate at the optic chiasm, nasal half of neurons crosses.
 Lateral geniculate nucleus relay info to cortex, based on layer(parvo/magno, L/R)
• Then into primary visual cortex V1
Within the visual cortex
 Ascending info arrive at layer 4
 Info to other layer(radial), to other cortex horizontal connection
• Info (L/R) not separated in layer 4, monocular neuron only receive from one eye.
Functional mapping
The image is mapped onto different region of cortex
 Elongated ON/OFF region in visual cortex, small width, different angle, detect angle
of edges. Same angled cells arranged in orientation columns vertically.
Cortical receptive field types
Simple cells: have preference to orientation, but require exact location of line
 Complex cells: preference to orientation, does not require exact location
 Direction selectivity: cortical receptor regions cell also show preference to
directions
In summary: each area of cortex correspond to certain area on retina, retinal

topographically. With different columnar receptor areas to detect different	features.

Lecture 15: Nerve regeneration
Neuronal damage in the axon: Repair possible in the PNS not the CNS
May be intrinsic reasons / environmental cues.
Neuronal growth: from the growth cone
Growth mode: end of axon is actin rich growth cone, microtubule provide axonal
transport, (anterograde kinesin retrograde dynein), actin myosin interaction extend
process
Transmission mode: release of NT
Determining factor: location of injury, not cell body.
 Difference in the glial cells, Schwann in PNS, oligodendrocyte in CNS
 In PNS, schwann cell(myelinating) and remak cell(non-myelinating) provide poor
regeneration
However during injury, transform to repair schwann cells, strong regen support
Changes in schwann cells:
Trophic support: GDNF, BDNF, NGF
Break down of myelin, macrophage and autophage of myelin
Elongation of cells produce regen tract
In humans long distance, slow growth of axon, chronic denervation, dysfunctional
Regeneration molecules concentration decrease over time. Target tissue also degenerate

 CNS regeneration: less ability to regenerate, inhibitory environment
Astrocyte enlarge
 Oligodendrocyte do not break down myelin, prevented by myelin asso. molecules
 Microglia accumulate at injury site - glial scar, no growth beyond this
• stat3 prevent glial scar formation, but increase in neuronal death
also less activation of regenerative associated genes
Both CNS and PNS are regenerative in natal stage
Regen attempts: stabilising microtubule, graft, transplant of embryonic neuron

Lecture 16-19: HD, PD, SC, AD, ASD
Huntington's, Parkinson's, Schizophrenia, Alzheimer's, Autism
Striatal Medium spiny neurons(MSN) have dendritic spines that form many synapses
Grey type I: excitatory, thicker post synaptic membrane.
Grey type II: inhibitory, symmetrical synapse
Dopaminergic neurones form many synapses within the striatum
Dopartificing it fieurones form many synapses within the striatum
Huntington's
Hyperkinesia
 Characteristic: enlarged lateral ventricle, degeneration of marginal caudate and
putamen nucleus
 Autosomal dominant on chromosome 4, Huntingtin protein code by huntington
gene, with glutamine CAG repeats on exon 1 or N-terminus, length of repeat more
than 34 lead to higher risk and earlier onset
Affect direct pathway first, then indirect pathway in the BG, decrease
messenger
 Neuron death in striatum, less inhibition on thalamus, hyperkinesia

Parkinson's disease
 Akinesia, shaking palsy, scooped posture
 Characteristic: cell death in the substantia nigra, Presence of Lewy body,
filamentous protein within of a-synuclein
∘ a-synuclein proteins coded by synuclein gene, contain 7 N-terminal repeats,
missense mutation and gene duplication lead to PD
Ventralateral cell death in substantia nigra compacta, which cells contain
Lewy bodies.
 Less stimulation on direct pathway, less inhibition on indirect pathway -
akinesia
 Rescued by dopamine agonist (restore), electrical inhibition of subthalamic
nucleus (inhibit indirect pathway)

Schizophrenia
 Positive symptoms: hallucination, delusion, disorganised thought
Negative symptoms: Reduced speech, Lack of motivation
 Cognitive:poor memory, poor learning ability, verbal fluency
Characteristic: Enlarged lateral ventricles, reduced cortical size and grey
matter, occur before onset. NO CELL DEATH, abnormal white matter/
neuronal migration
 Dopamine increase lead to loss of singular focus - delusions
 Treated using Thorazine/chlorpromazine (antipsychotic), reduce positive
symptom via blocking D2 dopamine receptor in indirect pathway
 NMDA hypo function also lead to psychosis symptom
treated using NMDA agonist D-serine, glycine.
 Decrease in synapse number (may correlate to decrease in cortical volume)
 Genetic factors: Glutamate receptor variants, microdeletions, no single
deterministic gene

 Alzheimer's
 Dementia, loss of memory, spatial memory, eventual visual problem
 Begin in the medial temporal lobe (hippocampus, entorhinal cortex,
amygdala
Characteristic: enlarged lateral ventricles, decrease cortical volume,
extracellular β-amyloid plaque, Tau neurofilament tangles
 Genetic factors: Autosomal dominant on Chromosome 21
 Mutation of Amyloid precursor protein (APP)
 Plaque contain C-terminus fragment of APP-mutation in cleavage protein
presenilin 1 and 2, miscleavage
Trisomy 21 down's syndrome - overexpression of APP
- Apolipoprotein ε4 allele
 single gene for tau, alt spliced, 3 repeat/4 repeats, bind to microtubule
 Hyperphosphorylated tau
 Patients with apoE2/E2 genotype less likely to develop AD
 High β-amyloid plaque but no tau

• Autism
 Social ability deficit, restricted repetitive movement
 Hyperexpansion of brain surface area, overgrowth of brain volume.
Caused by polygenic risk facter
GWAS reveals low risk from common polymorphism mutation
Higher risk from rare gene number variance mutation
 monogenetic mutation: fragile X, Rett syndrome, Tuberous sclerosis
 Disruption in synaptic formation: neurexin, neuroligin and shank3

Practicals
H-reflex practical
 Co-contraction allow smooth movements, motor command override agonist-
antagonist inhibition. 1a inhibitory interneuron integration.
 Co-contraction allow stability, anticipate loads, allow learning of movement.
 Tendon tap reflex triggers muscle spindle receptors.
Electrical stimulation:
 Large diameter 1a afferent stimulated first, then α-efferent motor neuron
<u>Vision</u>
• Accomodation: change focus to different distances. Power: 1/near(m) - 1/far(m)
 Cornea fixed, 70% accomodative power
Lens change shape, 20D when relaxed, 40D when contract.
Refractive errors
 Myopia: shortsightedness, focus on front of retina, biconcave lens required with
perscription of -1/far point(m)
 Hyperopia: farsightedness, focus behind the retina, biconvex lens.
Tryperopia. Tarsigniceuness, rocus beninu trie retina, biconvex iens.
Presbyopia: stiff lens due to old age. Ciliary muscle cant contract, lens remain
relaxed, far sightedness, require biconvex positive lens
• Acuity
 Snellen chart viewed at 6m, Acuity = distance(6m) / lowest row.

• Astigmatism: different curvature on different axis of cornea/retina, treated with
cylindrical lens.
Blind spot: optic disc, nasal to the fovea
Perimetry: 170 degrees horizontally, 60 degrees stereoptic.
Retinofugal pathway:
Nasal side of optic nerve cross at optic chiasm, before entering lateral graniculate Output Description:
nucleus of thalamus, and onto visual cortex.
 Crossed over optic nerve carry signal from opposite visual field.
 Right visual cortex process left visual field, left v1 cortex process right field
Colour blindess: Protanopia(R/L), Deutanopia(G/M), Tritanopia(B/S)

Neuroanatomy and histology
Distinguish between astrocyte and oligodendrocyte processes:
Astrocyte processes near synapses, no microtubule.
Oligodendrocytes have darker appearances.
CNS&PNS differences,
• myelinated axons in PNS associated with cells, in CNS oligodendrocyte processes
myelinate axons, not within cells.
 More loosely arranged in PNS compared to CNS.
 Schwann cells form myelin sheath for one internode.
Astrocyte in white matter - fibroastrocyte, grey matter protoplasm astrocytes
 CNS contain separate unmyelinated axons, in PNS unmyelinated axon around
remak cells.
Brain structures:
 Cerebellum-brainstem connection: Superior peduncles(midbrain), mideum
peduncles(pons), inferior peduncles(medulla)

<u>Hearing</u>
 Primary cues of sound localisation: Interaurral time difference, level difference,
spectual cues(pinna)
 ILD and ITD determine left right, and direction on horizontal plane
 Spectral cues determine elevation and front/back, pinna create spectual notch,
lower amplitude at specific frequency.
 Low frequency - Interaural time difference, diffraction so no level difference
High frequency - Interaural level difference, head blocks sound, phase locking fails
at high frequency.
• ITD threshold: 75% correct time difference - 50% correct time difference, from
complete random guess to detection, smallest change in delay.
• Spatial threshold: Different angles correspond to different ITD, smallest angle change
that can be reliably detected.
• Maximum ITD: time for sound to travel around the head: 2πr/2c, c=sound speed
<u>Cockroach</u>
Biphasic recording derive from sodium, recording electrode more negative than
reference: negative overall signal
Difference in size of signal due to diameter of axon and distance from axon.
Conduction time is distance of two peaks of biphasic.