Calibre de radiação na gravitação

Davi C. Rodrigues Universidade Federal do Espírito Santo Vitória, ES - Brazil

- Parte da disciplina Relatividade Geral -

• Para eletrodinâmica, $A'_a = A_a + \partial_a \Lambda$ é uma transformação de calibre, sendo Λ campo escalar arbitrário.

- Essa transformação é uma invariância das equações de campo, pois F_{ab} é invariante perante essa transformação.
- É fácil ver que o calibre de Lorenz (ou Lorentz, ver 10.1109/MAP.1991.5672647), dado por $\partial^a A_a = 0$ é acessível, pois $\partial^a A_a' = \partial^a A_a + \Box \Lambda$, logo, fixando $\Box \Lambda = -\partial^a A_a$ encontra-se o calibre de Lorenz.

Nota-se também que esse calibre deixa uma simetria residual. Embora dado um A^a arbitrário sempre exista Λ tal que $\partial^a A_a = 0$; essa solução para Λ não é única.

- Nota-se também que esse calibre deixa uma simetria residual. Embora dado um A^a arbitrário sempre exista Λ tal que $\partial^a A_a = 0$; essa solução para Λ não é única.
- A saber, considere $\Lambda' = \Lambda + \lambda$, em que $\square \lambda = 0$. Logo $\square \Lambda' = \square \Lambda$.
- Mesmo para condições de contorno fixadas no infinito espacial, ou em alguma outra superfície, $\square \lambda = 0$ possui soluções não triviais (ondas).
- O que é necessário para fixar Λ completamente?

- Para uma eq. de Laplace ou Poisson, basta providenciar as condições de contorno numa dada superfície fechada, mas isso não ocorre para a eq. de onda.
- Tal como num problema da corda vibrante, fornecer as condições de contorno nas extremidades não é suficiente para determinar sua posição em cada ponto e cada instante. Para obter uma solução específica, necessita-se também das condições iniciais, ou seja, especificar $\Lambda(t_0,x)$ e $\dot{\Lambda}(t_0,x)$

- No calibre de Lorenz, a condição $A_0=0$ só tem chance de fazer sentido se $J_0=0$, pois nesse calibre $\prod A_b \propto J_b$.
- Assumiremos que $J_0 = 0$ a partir de agora.

- Para qualquer A_0 que satisfaça a equação de campo $\Box A_0 = 0$, podemos usar a simetria de calibre residual para definir $A_0' = A_0 + \dot{\lambda}$. Nota-se que para qualquer λ teremos $\Box A_0' = 0$.
- Como A_0 e λ satisfazem a mesma equação diferencial, existe λ tal que $A_0'=0$.
- A demonstração acima é suficiente para garantir a acessibilidade do calibre $\partial^i A_i = 0$ e $A_0 = 0$ (Calibre de radiação)
- Demonstra-se também que o calibre de radiação quebra (fixa) completamente a simetria de calibre no vácuo.

- Demonstra-se também que o calibre de radiação quebra (fixa) completamente a simetria de calibre no vácuo.
- Se um campo f(x, t) satisfaz $\Box f = 0$, a solução explícita de f(x, t) pode ser obtida dando:
 - i) condições de contorno em dada superfície no espaço (problema análogo ao da unicidade das soluções da eq. de Laplace);
 - \blacktriangleright ii) condições iniciais para f tais que especifiquem f e \dot{f} em dado instante.
- Não lidamos explicitamente com as condições de contorno, mas estamos sempre assumindo que podem ser dadas. O procedimento de fixar λ que vimos fixa as condições iniciais de λ . A saber, num dado instante t_0 seja
 - $\lambda(x,t_0) = -A_0(x,t_0)$. Logo $A_0'(x,t_0) = 0$. Consequentemente, devido ao calibre de Lorenz,
- Ou seja, o calibre de radiação fixa a solução de λ , logo fixa completamente a transformação de calibre.

Contexto e Definições

- Consideraremos expansão me primeira ordem em γ (campo fraco) em que $g_{ab}=\eta_{ab}+\gamma_{ab}$
- Estando fixada a métrica de fundo, há transformações de γ_{ab} que não tem impacto geométrico/físico, pois podem ser interpretadas como transformações de coordenadas da métrica de fundo (Minkowski).
- Perante mudanças de coordenadas (ou difeomorfismos) geradas por um campo vetorial ξ^{μ} , o fundo se transforma como

$$\eta'_{\mu\nu} = \eta_{\mu\nu} + \mathcal{L}_{\xi} \eta_{\mu\nu} = \eta_{\mu\nu} + \partial_{\mu} \xi_{\nu} + \partial_{\nu} \xi_{\mu}.$$

- Assumindo que o fundo está fixo num dado sistema de coordenadas, um difeomorfismo não alteraria $\eta_{\mu\nu}$, mas: $\gamma'_{\mu\nu}=\gamma_{\mu\nu}+\partial_{\mu}\xi_{\nu}+\partial_{\nu}\xi_{\mu}$
- Sendo $\bar{\gamma}_{ab} \equiv \gamma_{ab} \frac{1}{2} \eta_{ab} \gamma$, verifica-se que o calibre transverso (que é às vezes referido como de Lorenz/Lorentz) é acessível, $\partial^a \bar{\gamma}_{ab} = 0$.

Calibre transverso • Sendo $\bar{\gamma}_{ab} \equiv \gamma_{ab} - \frac{1}{2} \eta_{ab} \gamma$, verifica-se que o calibre transverso (que é às vezes referido como de Lorenz/Lorentz) é acessível, $\partial^a \bar{\gamma}_{ab} = 0$.

• A verificação da acessibilidade é direta. O objetivo é demonstrar que existe um campo vetorial ξ^a tal que $\partial^a \bar{\gamma}'_{ab} = 0$. Verifica-se que ξ^a precisa satisfazer uma eq. de onda nãohomogênea, logo é possível.

Exercício: Encontre explicitamente a eq. que ξ^a deve satisfazer (a resolução está logo a seguir...)

Ressalta-se que o calibre transverso não fixa por completo a simetria de calibre, há uma simetria residual associada à parte homogênea da eq. diferencial que ξ^a deve satisfazer.

Calibre transverso

• Nota-se que $\partial^a \gamma'_{ab} = \partial^a \gamma_{ab} + \Box \xi_b + \partial_b \partial^a \xi_a$, consequentemente a condição $\partial^a \gamma_{ab} = 0$ é possível desde que exista ξ_b que satisfaça

$$\Box \xi_b + \partial_b \partial^a \xi_a = -\partial^a \gamma_{ab}$$

- É possível garantir isso a partir da equação acima? É mais conveniente trabalharmos com $\bar{\gamma}_{ab}$.
- Nota-se que $\partial^a \bar{\gamma}'_{ab} = \partial^a \bar{\gamma}_{ab} + \Box \xi_b$, logo $\partial^a \bar{\gamma}'_{ab} = 0$ requer $\Box \xi_b = -\partial^a \bar{\gamma}_{ab}$