Analyse Discriminante Linéaire - OVA

Analyse Discriminante Linéaire (LDA) - One-Versus-All (OVA)

Théorie

L'Analyse Discriminante Linéaire (LDA) est une technique de classification qui cherche à trouver une combinaison linéaire de caractéristiques maximisant la séparation entre les classes.

L'approche **One-Versus-All (OVA)** consiste à entraı̂ner un modèle pour chaque classe, en distinguant chaque classe des autres combinées.

Hyperparamètres

Nous allons tester les hyperparamètres suivants : - Régularisation (shrinkage) : contrôle la variance de la covariance estimée (valeurs entre 0 et 1). - Standardisation des données : normalisation des features avant l'entraînement.

Exemple en Python

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# Chargement des ensembles de données
```

```
train_data = pd.read_csv('covertype_train.csv')
val_data = pd.read_csv('covertype_val.csv')
test_data = pd.read_csv('covertype_test.csv')
# Préparation des données
X_train = train_data.drop('Cover_Type', axis=1)
y_train = train_data['Cover_Type']
X_val = val_data.drop('Cover_Type', axis=1)
y_val = val_data['Cover_Type']
X_test = test_data.drop('Cover_Type', axis=1)
y_test = test_data['Cover_Type']
# Standardisation des données
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val)
X_test = scaler.transform(X_test)
# Recherche des meilleurs hyperparamètres
shrinkage_values = np.linspace(0, 1, 10)
train_accuracies = []
val_accuracies = []
for shrinkage in shrinkage_values:
    lda_ova = OneVsRestClassifier(LinearDiscriminantAnalysis(solver='lsqr', shrinkage=shrinkage)
    lda_ova.fit(X_train, y_train)
    y_train_pred = lda_ova.predict(X_train)
    y_val_pred = lda_ova.predict(X_val)
    train_accuracies.append(accuracy_score(y_train, y_train_pred))
    val_accuracies.append(accuracy_score(y_val, y_val_pred))
# Sélection du meilleur shrinkage
best_shrinkage = shrinkage_values[val_accuracies.index(max(val_accuracies))]
print(f"Meilleur shrinkage LDA (OVA): {best_shrinkage}")
# Affichage du graphique
plt.figure(figsize=(8, 6))
plt.plot(shrinkage_values, train_accuracies, marker='o', linestyle='dashed', label='Train Ac
```

```
plt.plot(shrinkage_values, val_accuracies, marker='s', linestyle='dashed', label='Validation
plt.xlabel("Shrinkage")
plt.ylabel("Précision")
plt.title("Impact du shrinkage sur la performance de LDA (OVA)")
plt.legend()
plt.show()
# Modèle final avec le meilleur shrinkage
lda_ova = OneVsRestClassifier(LinearDiscriminantAnalysis(solver='lsqr', shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage=best_shrinkage
lda_ova.fit(X_train, y_train)
y_test_pred = lda_ova.predict(X_test)
# Affichage de la matrice de confusion
conf_matrix = confusion_matrix(y_test, y_test_pred)
print("\nMatrice de confusion (OVA) :")
print(conf_matrix)
print("\nÉvaluation sur l'ensemble de test")
print(classification_report(y_test, y_test_pred))
```

Meilleur shrinkage LDA (OVA): 0.0

	_			
Matrica	40	confusion	$(\cap M)$	
natifice	ue	COLLINGTON	(UVA)	

[[1	L035	478	2	0	6	6	181]
	396	1710	47	12	12	73	11]
	0	16	211	17	1	36	0]
	0	0	5	12	0	4	0]
[2	57	12	0	1	2	0]
[0	24	69	2	4	45	0]
Γ	24	0	0	0	0	0	135]]

Évaluation sur l'ensemble de test

	precision	recarr	II SCOLE	suppor t
1	0.71	0.61	0.65	1708
2	0.75	0.76	0.75	2261
3	0.61	0.75	0.67	281

4	0.28	0.57	0.38	21
5	0.04	0.01	0.02	74
6	0.27	0.31	0.29	144
7	0.41	0.85	0.56	159
accuracy			0.68	4648
macro avg	0.44	0.55	0.47	4648
weighted avg	0.69	0.68	0.68	4648