CSE 40622 Cryptography, Spring 2018 Written Assignment 05 (Lecture 14)

Name: Jasmine Walker

1. (20 pts) Formally define the second pre-image resistance and pre-image resistance of hash functions by designing a game and showing the relationship between the adversary's advantage and a negligible function of the security parameter. In other words, try to mimic what I did in Definition 2.

Answer:

For second pre-image resistance, the game is:

- The challenger chooses the security parameter 1^k and a seed $s \leftarrow KeyGen(1^k)$ for some key generation function KeyGen. The challenger also chooses some x. The challenger publishes 1^k , s, and x.
- The adversary chooses a x' which does not equal x.

If for all PPTA \mathcal{A} there exists some negligible function negl(k) such that the following is true, we say H(.,.) is second pre-image resistant.

$$Adv_{secpre}^{\mathcal{A}} = Pr[H(x,s) = H(x',s) | x \neq x', x' \leftarrow \mathcal{A}(1^k,s)] \leq negl(k)$$

where Adv_{secpre}^{A} denotes the adversary's advantage.

For pre-image resistance, the game is:

- The challenger chooses the security parameter 1^k and a seed $s \leftarrow KeyGen(1^k)$ for some key generation function KeyGen. The challenger also chooses some x and computes H(x,s). The challenger publishes 1^k , s, and H(x,s).
- The adversary chooses a x'.

If for all PPTA \mathcal{A} there exists some negligible function negl(k) such that the following is true, we say H(.,.) is pre-image resistant.

$$Adv_{pre}^{\mathcal{A}} = Pr[H(x,s) = H(x',s) | x' \leftarrow \mathcal{A}(1^k,s)] \leq negl(k)$$

where $Adv_{pre}^{\mathcal{A}}$ denotes the adversary's advantage.