

www.aduni.edu.pe

QUÍMICA

- ESTRUCTURA ATÓMICA II
- SEMANA 4

ADUNI

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- 1. Representar a un átomo mediante su símbolo del elemento, número atómico y número de masa.
- 2. Reconocer a las especies químicas como átomo, catión y anión.
- 3. Identificar a los isótopos, isótonos e isóbaros.

II. INTRODUCCIÓN

ADUNI

¿Serán importantes los iones?

Una de las funciones del Gatorade es recuperar iones (Na⁺ y K⁺) que se eliminan al practicar algún deporte.

Loros y Guacamayos comiendo arcilla que tiene alto contenido de minerales rico en iones, que les permite realizar diferentes funciones biológicas.

III. TIPOS DE NUCLIDOS

ISÓTOPOS (Hílidos)

EJEMPLO: isótopos del oxígeno

ISÓTOPOS	Z	Α	N
	8	16	8
	8	17	9
	8	18	10
Iguales			

EJERCICIO:

¿El Cl-35 y Cl-37 serán isótopos?

RPTA: si, porque al presentar el mismo símbolo, implica tener el mismo número atómico.

ISÓBAROS

EJEMPLO:

ISÓBAROS	Z	Α	N
N	11	24	13
	12	24	12
		→lgua	ales

Recordar que:

Lo correcto es afirmar, **los isóbaros** tienen igual número de masa o número másico (A).

ISÓTONOS

EJEMPLO:

ISÓTONOS	Z	Α	N
M	16	32	16
	15	31	16
•		Iguales	—

NOTA

- : Los isótopos — Propiedades químicas = Propiedades físicas ≠
- ➤ Los isóbaros → Propiedadesquímicas y físicas ≠
- ➤ Los isótonos → Propiedades químicas y físicas ≠

IV. MASA ISOTÓPICA

Es la masa relativa de un isótopo, su valor se mide en un espectrómetro de masas y su valor se expresa en unidad de masa atómica (uma).

ESTRUCTURA INTERNA DE UN ESPECTRÓMETRO DE MASA:

ISÓTOPO	MASA ISOTÓPICA (uma)
¹⁶ ₈ O	15,9949
¹⁷ 0	16,9991
¹⁸ 0	17,9991

No confundir número de masa (A), con masa isotópica, el primero se refiere a un número que indica la cantidad de nucleones fundamentales (protones y neutrones), la masa isotópica es la masa relativa de cada isótopo expresado en uma.

DECAIMIENTO RADIACTIVO

Es la descomposición espontánea de un núcleo atómico inestable (**radioisótopo**), con emisión de radiación alfa(α), beta (β), rayos gamma (γ).

En la actualidad más de 1500 radioisótopos se producen mediante la conversión de isótopos no radiactivos estables en radiactivos. Para hacer esto, un átomo estable se bombardea con partículas alfa, protones o neutrones de rápido movimiento. Cuando una de estas partículas lo absorbe un núcleo estable, el núcleo se vuelve inestable y el átomo ahora es un isótopo radiactivo (radioisótopo). El proceso de cambiar un elemento en otro se llama transmutación.

El radioisótopo Tc-99m decae mediante emisión gamma. La emisión gamma es deseable para trabajo de diagnostico porque los rayos gamma pasan a través del cuerpo hacia el equipo de detección:

$$^{99m}_{43}Tc \rightarrow ^{99}_{43}Tc + \gamma$$

- (a) Para detectar una radiación de un radioisótopo que se acumuló en un órgano se usa un escáner.
- (b) Un barrido de la tiroides muestra la acumulación de yodo 131 radiactivo en la tiroides.

Algunas formas comunes de radiación

Tipo de radiación	Sín	nbolo	Número de masa	Carga
Partícula alfa	α	⁴ ₂ He	4	2+
Partícula beta	β	$_{-1}^{0}e$	0	1 —
Positrón	$oldsymbol{eta}^+$	$^{0}_{+1}e$	0	1+
Rayo gamma	γ	0 y	0	0
Protón	${}^1_1\mathrm{H}$	l _p	1	1+
Neutrón	$\frac{1}{0}$ n	n	1	0

EJEMPLO

Escribe la ecuación nuclear completa.

$${}_{28}^{58}Ni + {}_{1}^{1}H \rightarrow ?? + {}_{2}^{4}He$$

RESOLUCIÓN

$${}_{28}^{58}Ni + {}_{1}^{1}H \rightarrow {}_{Z}^{A}E + {}_{2}^{4}He$$

Determinando el número de masa:

$$58 + 1 = A + 4 \Rightarrow A = 55$$

Determinando el número atómico:

$$28 + 1 = Z + 2 \Rightarrow Z = 27$$

Ecuación nuclear completa:

$${}_{28}^{58}Ni + {}_{1}^{1}H \rightarrow {}_{27}^{55}Co + {}_{2}^{4}He$$

	I	Aplicaciones médicas de los radioisótopos		
Isóto	po '	Vida media	Aplicación médica	
Ce-1	41 3	32.5 días	Diagnóstico de tracto gastrointestinal; medición de flujo sanguíneo al corazón	
Ga-6	7	78 horas	Visualización abdominal; detección de tumores	
Ga-6	8 6	58 min	Detección de cáncer pancreático	
P-32	4	4.3 días	Tratamiento de leucemia, exceso de glóbulos rojos, cáncer pancreático	
I-125	5 6	50 días	Tratamiento de cáncer cerebral; detección de osteoporosis	
I-131	8	3 días	Visualización de tiroides; tratamiento de enfermedad de Graves, gota e hipertiroidismo; tratamiento de tiroides y cáncer de próstata	
Sr-85	5	55 días	Detección de lesiones óseas; exploración cerebral	
Tc-99	9m 6	6 horas	Visualización de esqueleto y músculo cardiaco, cerebro, hígado, corazón, pulmones, huesos, bazo, riñones y tiroides; <i>radioisótopo más ampliamente usado en medicina nuclear</i>	

PROCESO DE IONIZACIÓN

Es el proceso en el que un átomo o una molécula gana o pierde electrones para formar iones cargados.

REDUCCIÓN

Proceso de ganancia de electrones.

$$0 + 2e^- \rightarrow 0^{2-}$$

$$N + 3e^- \rightarrow N^{3-}$$

OXIDACIÓN

Proceso que involucra pérdida electrones.

$$Al \to Al^{3+} + 3e^{-}$$

$$Fe^{2+} \rightarrow Fe^{3+} + 1e^{-}$$

El ion O²⁻ también lo podemos representar como O⁼; O⁻²

Algunas sustancias al disolverse en agua se ionizan parcial (\leftrightarrows) o totalmente (\neg) , a ellas se les denomina electrolitos:

V.

Es una especie con carga eléctrica neta positiva o negativa, que se generan por la pérdida o ganancia de electrones.

CATIÓN O ION POSITIVO (Eq+):

• Se forma cuando un átomo pierde electrones, a dicho proceso se le denomina oxidación.

ION	#°e-= Z - q	DENOMINA
	23	Catión trivalente
	28	Catión monovalente

ANIÓN O ION NEGATIVO (Eq-

Se forma cuando) un átomo gana electrones, a dicho proceso se le denomina reducción.

ION	#e-= Z - q	DENOMINA
	36	Anión monovalente
	10	Anión trivalente

EJEMPLO

Determine el número atómico del ion _ZA³– si posee 18 electrones.

RESOLUCIÓN

Nos piden determinar el número atómico (Z), tener en cuenta que #e-=Z-q

$$18 = Z - (-3)$$

$$\therefore Z = 15$$

EJEMPLO

Si un anión monoatómico divalente tiene 16 protones y 18 neutrones. Determine el número de partículas subatómicas fundamentales.

RESOLUCIÓN

$$#p^{+}= 16= Z$$

$${}_{16}^{A}E^{2}$$
 #n°=18 \Rightarrow A - 16 = 18
A= 34
#e-=Z-q
#e-=16-(-2)
#e-=18

#partículas subatómicas fundamentales: #p++ #e-+ # n°

La anemia ferropénica ocurre cuando el cuerpo no tiene suficiente cantidad de hierro. El hierro ayuda a producir glóbulos rojos. La anemia por deficiencia de hierro es la forma más común de anemia, el tratamiento para esta enfermedad es consumir suplementos que contengan ion Fe²⁺. (Número atómico=26). Respecto a ese ion, indique las proposiciones correctas.

- I. El ion mencionado es un catión divalente.
- II. Presenta 28 electrones.
- III. Si su número de masa es 56, entonces presenta 30 neutrones.
- A) I y II

- B) solo III
- C) I y III

D) solo II

E) I, II y III

I. CORRECTA

El ion es un catión divalente porque su carga (q) es igual a 2+.

II. INCORRECTA

$$#e^{-} = Z - (q) = 26 - (+2) = 24.$$

III. CORRECTA

$$#n^{\circ} = A - Z = 56 - 26 = 30.$$

Respuesta: I y III

Clave: C

CURSO DE QUÍMICA

Un catión trivalente es isoelectrónico con un anión divalente y presentan un total de 37 protones. Determine la carga nuclear del catión.

A) 21

B) 24

C) 25

D) 18

E) 20

RESOLUCIÓN

Sean los iones: $\mathbf{z_1} R^{3+}$ y $\mathbf{z_2} W^{2-}$

$$Z_1 R^{3}$$

$$z_2W^{2-}$$

Nos piden **Z**₁

Dato:

$$\mathbf{z_1} R^{3+}$$
 y $\mathbf{z_2} W^{2-}$ son isoelectrónicos

$$z_1 - (+3) = z_2 - (-2)$$

$$z_1 - z_2 = 5$$

Dato: $z_1 + z_2 = 37$

Resolvemos la ecuaciones sumando miembro a miembro:

$$z_1 - z_2 = 5$$
 $z_1 + z_2 = 37$
 $2z_1 = 42 \rightarrow z_1 = 21$

Respuesta: 21

Clave: A

Si el ion E²⁺ posee 14 electrones, determine el número de electrones para el ion E^{2-} .

A) 12

B) 15

C) 16

D) 17

E) 18

RESOLUCIÓN

Nos piden hallar el numero de electrones del ion E^{2} .

Dato:

$$\#e^{-}(_{Z}E^{2+})=14$$

Sabemos que: $\#e^{-}(_{Z}E^{2+})=Z-2$

Entonces : Z-2 = 14

Z = 16

Piden : $\#e^{-}(_{Z}E^{2-})$

Sabemos que: $\#e^{-}(_{Z}E^{2-})=Z+2$

Entonces: $\#e^{-}(_{Z}E^{2-})=16+2$

$$\#e^{-}(_{Z}E^{2-})=18$$

Respuesta: 18

Clave: E

Un catión monovalente tiene igual número de masa con el $^{39}_{18}$ Ar y a la vez tiene igual número de neutrones con el $^{40}_{20}$ Ca. Determine el número de electrones del catión.

A) 18

B) 20

C) 21

D) 16

RESOLUCIÓN

E) 17

ADUNI

Nos piden determinar el numero de electrones del cation.

Analizamos la información:

www.aduni.edu.pe

