## Aufgaben für 26.10.2015: Elektromechanisches Messinstrument, Vielfachinstrument, Messen von Gleichstrom und Gleichspannung

## 1. Vielfachinstrument

Mit einem Drehspulmeßwerk (Vollausschlag 500 mV, Innenwiderstand 500  $\Omega$ ) soll ein Vielfachinstrument aufgebaut werden. Die Zenerdioden D<sub>1</sub> und D<sub>2</sub> seien ideal.



- 1.1 Wie groß muß R<sub>o</sub> gewählt werden (Begründung)?
- 1.2 Dimensionieren Sie  $R_1$ ,  $R_2$ ,  $R_3$ .
- 1.3 Dimensionieren Sie R<sub>4</sub>, R<sub>5</sub>, R<sub>6</sub>.
- 1.4 Welche Zenerdioden müssen  $D_1$  und  $D_2$  aufweisen, wenn das Drehspulinstrument leistungsmäßig maximal 10-fach überlastbar ist?

## Sowie Aufgaben 1.5-1.14 aus:

Aufgabensammlung Elektrische Messtechnik: 337 Übungsaufgaben mit Lösungen

Verlag: Vieweg+Teubner Verlag, 2014

ISBN: 978-3-658-05155-6 (Print)

978-3-658-05156-3 (Online)

Seiten: 4-16

Aufgabe 1.5: Vielfachinstrument. Ein Messgerät ( $R_{\rm m} = 700~\Omega$ ) zeigt bei einem Strom von  $I_{\rm m} = 125~\mu{\rm A}$  Vollausschlag an. Es sollen vier Strommessbereiche  $I_{\rm i}$  (0,001 A, 0,01 A, 0,1 A, 1 A) durch Wahl geeigneter Nebenwiderstände eingerichtet werden. Zusätzlich sollen durch geeignete Vorwiderstände fünf Spannungsmessbereiche  $U_{\rm i}$  ermöglicht werden (1 kV, 100 V, 10 V, 1 V, 0,1 V). Die Messbereichserweiterung erfolgt durch die in Bild 1.4 dargestellte Schaltung. Berechnen Sie die nötigen Vor- bzw. Nebenwiderstände.



Aufgabe 1.6: Stromquelle. Eine Stromquelle soll mittels eines Messwiderstandes R (Klassengenauigkeit  $f_{\rm R}$ ) und eines Strommessgerätes (Amperemeter, Innenwiderstand  $R_{\rm m}$ , Klassengenauigkeit  $f_{\rm m}$ , bezogen auf den gegebenen Endwert  $I_{\rm max}$ ) bestimmt werden. Da die Stromquelle zwei unbekannte Größen (Kurzschlussstrom  $I_{\rm k}$ , Innenwiderstand  $R_{\rm q}$ ) besitzt, sind zwei unabhängige Messungen zu ihrer Bestimmung notwendig.

- Messung 1: Direkte Messung des Stromes mit dem Strommessgerät. Die Anzeige ist I1.
  Messung 2: Der Messwiderstand R wird in Reihe mit dem Strommessgerät gelegt. Die Anzeige ist jetzt I2.
- a) Skizzieren Sie die Messschaltung. Zeichnen Sie <u>alle</u> relevanten Größen (Spannungen, Ströme, Widerstände) ein und verwenden Sie die Ersatzschaltbilder für Stromquelle und Messgerät. Zum Umschalten zwischen Messung 1 und 2 wird ein Schalter S verwendet.
- b) Geben Sie  $I_1$  für Messung 1 an.
  - c) Geben Sie  $I_2$  für Messung 2 an.
  - d) Wie groß ist  $R_{q}$ ?
  - e) Wie groß ist  $I_k$ ?
  - f) Wie groß ist der relative Messfehler  $f_{Rq}$  für den Innenwiderstand  $R_q$ ?
  - g) Wie groß ist der relative Messfehler  $f_{Ik}$  für den Kurzschlußstrom  $I_k$ ?

**Aufgabe 1.7: Lindeck-Rothe-Kompensator.** Mit dem Lindeck-Rothe-Kompensator nach Bild 1.6 kann in der sogenannten Saugschaltung eine Strommessung ohne Spannungsabfall (d.h. leistungslos) durchgeführt werden. Darin sind  $R_{\rm N}$  und  $R_{\rm V}$  bekannte Normalwiderstände.



- a) Der Messvorgang ist zu beschreiben und die Abgleichbedingung herzuleiten.
- b) Wie ergibt sich im abgeglichenen Zustand  $I_x$  aus  $I_h$ ,  $R_N$ ,  $R_V$ ?
- c) Die Normalwiderstände  $R_N$  und  $R_V$  sollen Toleranzen von 0,01 % haben, der Strommesser für  $I_h$  gehöre zur Klasse 0,2. Mit welcher maximalen relativen Abweichung bei der Bestimmung von  $I_x$  muss man rechnen?
- d) Folgende Werte seien gegeben:  $R_V = 1 \text{ k}\Omega$ ;  $R_N = 10 \text{ k}\Omega$ ;  $R_h = 17273 \Omega$ ;  $I_h = 55 \mu\text{A}$ . Der Endausschlag des Messinstruments liegt bei  $I_{h, \text{max}} = 100 \mu\text{A}$ .

Wie groß ist 
$$I_x$$
,  $|\Delta I_x|$ ,  $|\frac{\Delta I_x}{I_x}|$  in Zahlen? Wie groß ist  $U_H$ ?

Aufgabe 1.8: Messfehler bei Strommessung. Gegeben ist die in Bild 1.7 dargestellte Messschaltung. Das Strommessgerät (Innenwiderstand  $R_{\rm m}=4~\Omega$ ) zeigt einen Strom  $I_{\rm m}=50~{\rm mA}$  an, wenn  $U_0=10~{\rm V}$  und  $R_1=100~\Omega$  sind.

- a) Wie groß ist  $R_2$  und welche Leistung P wird in ihm umgesetzt?
- b) Wie groß ist der absolute systematische Messfehler  $F_1$ , der durch den endlichen Widerstand  $R_m$  des Messwerkes entsteht, und für welche Größenordnung der Widerstände  $R_1$  und  $R_2$  ist diese Messschaltung geeignet?
- Geben Sie einen Ausdruck für den relativen systematischen Messfehler  $f_{\rm I}$  in Abhängigkeit von  $R_{\rm I}$ ,  $R_{\rm 2}$  und  $R_{\rm m}$  an.
- d) Zeichnen Sie den Graphen von  $f_1(N)$  mit  $N = (R_1 + R_2)/R_m$ . Tragen Sie die Funktionswerte für N = 1 und 9 ein.
- e) Wie groß darf  $R_{\rm m}$  sein, damit der relative Fehler  $|f_{\rm l}| \le \delta = 0.5\%$  ist?



**Aufgabe 1.9: Spannungsquelle.** Mittels eines Spannungsmessgerätes (Voltmeter, Innenwiderstand  $R_{\rm m}$ , Messfehler  $f_{\rm m}$  bezogen auf den Sollwert) und eines Messwiderstandes R (Klassengenauigkeit  $f_{\rm R}$ ) soll eine Spannungsquelle bestimmt werden. Die Spannungsquelle besitzt 2 unbekannte Größen (Leerlaufspannung  $U_{\rm q}$ , Innenwiderstand  $R_{\rm q}$ ). Es sind 2 unabhängige Messungen zu ihrer Bestimmung notwendig.

- Messung 1: Direkte Messung der Spannung mit dem Spannungsmessgerät. Die Anzeige ist  $U_1$ .
- Messung 2: Der Messwiderstand R wird parallel zum Spannungsmessgerät gelegt. Die Anzeige ist jetzt  $U_2$ .
- a) Skizzieren Sie die Messschaltung. Zeichnen Sie alle relevanten Größen (Spannungen, Ströme, Widerstände) ein. Zum Umschalten zwischen Messung 1 und 2 wird ein Schalter verwendet.
- b) Berechnen Sie  $U_1$  für Messung 1.
- c) Berechnen Sie  $U_2$  für Messung 2.
- d) Wie groß ist  $R_a$ ?
- e) Wie groß ist  $U_{q}$ ?
- f) Wie groß ist der gesamte Messfehler  $f_U$  für die Leerlaufspannung  $U_q$ ?
- g) Wie groß ist der gesamte Messfehler  $f_{Rq}$  für den Innenwiderstand  $R_q$ ?

Aufgabe 1.10: Stromquelle. Mittels eines Strommessgerätes (Amperemeter, Innenwiderstand  $R_{\rm m}$ , Messfehler  $f_{\rm e}$  bezogen auf den Sollwert) und eines Messwiderstandes R (Klassengenauigkeit  $f_{\rm R}$ ) soll eine Stromquelle (Kurzschlussstrom  $I_{\rm k}$ , Innenwiderstand  $R_{\rm i}$ ) bestimmt werden. Die Stromquelle hat 2 unbekannte Größen ( $I_{\rm k}$ ,  $R_{\rm i}$ ), deshalb müssen 2 unabhängige Messungen zu ihrer Bestimmung durchgeführt werden.

- Messung 1: Direkte Messung des Stromes an der Stromquelle mit dem Strommessgerät. Die Anzeige des Strommessgerätes ist  $I_1$ .
- Messung 2: Der Messwiderstand R wird parallel zum Strommessgerät geschaltet (Parallelwiderstand). Jetzt hat das Strommessgerät die Anzeige  $I_2$ .
- a) Skizzieren Sie die Messschaltung. Zeichnen Sie alle relevanten Größen (Ströme, Widerstände) ein. Zum Umschalten zwischen den beiden Messungen verwenden sie einen Umschalter.
- b) Berechnen Sie  $I_1$  für Messung 1.
- c) Berechnen Sie  $I_2$  für Messung 2.
- d) Wie groß ist der Kurzschlussstrom  $I_k$ ?
- e) Wie groß ist der Innenwiderstand  $R_i$ ?
- f) Wie groß ist der relative Gesamtfehler  $f_1$  für den Kurzschlussstrom  $I_k$ ?
- g) Wie groß ist der maximal mögliche, relative Gesamtfehler  $f_{I,max}$  für den Kurzschlussstrom  $I_k$ ?
- h) Berechnen Sie  $I_k$ ,  $R_i$ ,  $f_1$  und  $f_{I, max}$  für  $I_1 = 10$  mA,  $I_2 = 6$  mA,  $R_m = 400$   $\Omega$ , R = 600  $\Omega$ ,  $f_R = +1\%$ ,  $f_e = -1\%$ .

**Aufgabe 1.11: Stromquelle.** Mit Hilfe eines Spannungsmessgerätes soll eine Stromquelle (Kurzschlussstrom  $I_k$  und Innenwiderstand  $R_q$ ) bestimmt werden (Bild 1.11). Gegeben sind

- Voltmeter mit der Klassengenauigkeit 0,2 (f = 0,2%), bezogen auf den Messbereichsendwert  $U_{\rm e}$  = 200 V) und dem Innenwiderstand  $R_{\rm m}$  = 2 k $\Omega$ ,
- Messwiderstand  $R = 1 \text{ k}\Omega$ ,  $f_R = \pm 1 \%$ .

Der absolute Fehler ist über die Gesamtanzeige des Voltmeters konstant. Das Voltmeter zeigt

- in der Schalterstellung 1:  $U_I = 100 \text{ V}$  und
- in der Schalterstellung 2:  $U_2 = 50 \text{ V}$  an.
- a) Wie groß ist der Innenwiderstand  $R_{a}$ ?
- b) Wie groß ist der Kurzschlussstrom  $I_k$ ?
- c) Geben Sie die Zahlenwerte für  $R_a$  und  $I_k$  an.
- d) Wie groß ist der maximal mögliche, relative Gesamtfehler  $f_{Rq}$  von  $R_q$ ?
- e) Wie groß ist der maximal mögliche, relative Gesamtfehler  $f_{lk}$  von  $I_k$ ?
- f) Geben Sie die Zahlenwerte für die Gesamtfehler  $f_{Rq}$  und  $f_{Ik}$  an.

Aufgabe 1.12: Vielfachinstrument. Bei dem in Bild 1.12 dargestellten Vielfachmessinstrument beträgt der Widerstand des Netzwerks zwischen den Buchsen 0 und 3  $R_{\rm ges}$  = 120 Ω. Der Messwerksstrom beträgt bei Vollausschlag  $I_{\rm m}$  = 10 μA. Der kleinste Spannungsmessbereich (Buchse 3) hat einen Wert von  $U_3$  = 6 mV.

- a) Wie groß ist der Strommessbereich  $I_3$  an Buchse 3?
- b) Man berechne den Vorwiderstand  $R_{V1}$ .
- c) Wie groß ist der Widerstand  $R_s$ , der das Messwerk dämpft. Eine ideale Stromquelle ist an der Strombuchse 0 und 3 angebracht; der Innenwiderstand der Stromquelle ist unendlich? Wie groß wird  $R_s$  bei Einspeisung in einem anderen Strombuchsenpaar?
- d) Wie groß sind die Widerstände  $R_{N1}$ ,  $R_{N2}$  und  $R_{N3}$ ?
- e) Wie groß müssen die Widerstände  $R_{V2}$  und  $R_{V3}$  bemessen werden?



**Aufgabe 1.13:** Gegeben ist das in Bild 1.13 dargestellte Ersatzschaltbild für die Kompensationsmessung einer Spannung  $U_{\rm x}$ .

- a) Geben Sie die Kompensationsbedingung an:  $U_x = f(R_k, I_H)$ .
- b) Berechnen Sie die Empfindlichkeit S für die Schaltung.

$$S = \frac{d\alpha}{dU_{x}} = f(R_{i}, R_{g}, R_{k}, R_{ges}, c_{i})$$

Für das Strommessgerät gilt  $\alpha = c_i I_g$  mit der Geräte-Konstanten  $c_i$ .

- c) Eine Spannungsquelle von  $U_{\rm x}=1~{\rm V}$  soll kontrolliert werden. Das Strommessgerät hat eine Gerätekonstante von  $c_{\rm i}=10^7~{\rm mm/A}$ . Die Hilfsspannung  $U_{\rm H}$  beträgt 4 V, der Hilfsstrom  $I_{\rm H}=100~{\rm \mu A}$ . Berechnen Sie den Gesamtwiderstand  $R_{\rm ges}$ . Geben Sie den Kompensationswiderstand  $R_{\rm k}$  an. Berechnen Sie die Empfindlichkeit S mit  $R_{\rm i}\approx 0$  und  $R_{\rm g}=500~{\rm \Omega}$ .
- d) Bestimmen Sie das Minimum der Empfindlichkeit aus b). Beachten Sie dabei, dass  $R_i$  und  $R_g$  konstant bleiben, d. h., berechnen Sie die Bedingung für die Variablen  $R_{ges}$  und  $R_b$ .
- e) Geben Sie den maximal möglichen, relativen Fehler für die Bestimmung von  $U_x$  an:

$$f = \left| \frac{\Delta U_{\mathbf{x}}}{U_{\mathbf{x}}} \right|$$

f) Bei einer zweifachen Kompensation wird der Hilfsstrom  $I_{\rm H}$  mit einem Spannungsnormal  $U_{\rm N}$  und einem Präzisionswiderstand  $R_{\rm N}$  eingestellt. Geben Sie den maximal möglichen, relativen Fehler für die Bestimmung von  $U_{\rm x}$  an, wenn die Toleranz des Spannungsnormals  $10^{-4}$  und die Toleranz der beiden Einstellwiderstände  $R_{\rm k}$  und  $R_{\rm N}$   $2\cdot 10^{-4}$  beträgt.



**Aufgabe 1.14: Spannungsquelle.** Mit Hilfe eines Spannungsmessgerätes (Voltmeter) soll eine Spannungsquelle (Leerlaufspannung  $U_q$  und Innenwiderstand  $R_q$ ) bestimmt werden. Gegeben sind

- ein Voltmeter mit der Klassengenauigkeit  $f_e$  (bezogen auf den Messbereichsendwert  $U_e$ ) und dem Innenwiderstand  $R_m$ , sowie
- ein Messwiderstand R mit dem relativen Fehler  $f_R$  (Klassengenauigkeit).

Die Ersatzschaltung eines Voltmeters besteht aus der Parallelschaltung des Innenwiderstandes  $R_{\rm m}$  und eines Anzeigeinstrumentes ( $U_{\rm m}=0...U_{\rm e}$ ) mit unendlich hohem Innenwiderstand. Der absolute Fehler  $\Delta$   $U_{\rm e}$  des Voltmeters ist über den gesamten Messbereich konstant.

Die Spannungsquelle hat zwei unbekannte Größen ( $U_q$ ,  $R_q$ ), deshalb müssen zwei unabhängige Messungen zu ihrer Bestimmung durchgeführt werden.

- Messung 1: Direkte Messung der Spannung an der Spannungsquelle mit dem Voltmeter. Die Anzeige des Voltmeters ist  $U_1$ .
- Messung 2: Indirekte Messung an der Spannungsquelle mit dem Messwiderstand R, der als Vorwiderstand von das Voltmeter geschaltet ist. Die Anzeige des Voltmeters ist jetzt  $U_2$ .
- Skizzieren Sie die Messschaltung. Zeichnen Sie alle relevanten Größen (Spannungen, Widerstände) ein. Zum Umschalten zwischen den beiden Messungen verwenden Sie einen Umschalter.
- b) Berechnen Sie  $U_1$  für die Messung 1 in Abhängigkeit von  $U_q$ ,  $R_q$  und  $R_m$ .
- Berechnen Sie  $U_2$  für die Messung 2 in Abhängigkeit von  $U_a$ ,  $R_a$ ,  $R_m$  und R.
- d) Wie groß ist der Innenwiderstand  $R_a$ ?
- e) Wie groß ist die Leerlaufspannung  $U_q$ ?
- f) Wie groß ist der maximal mögliche, relative Gesamtfehler  $f_{Rq}$  von  $R_q$  mit  $f_e$  und  $f_R$ ?
- g) Wie groß ist der maximal mögliche, relative Gesamtfehler  $f_{Uq}$  von  $U_q$  mit  $f_e$  und  $f_R$ ?
- h) Zahlenwerte: Berechnen Sie  $R_q$ ,  $U_q$ ,  $f_{Rq}$  und  $f_{Uq}$  mit  $R = 100 \text{ k}\Omega$ ,  $R_m = 50 \text{ k}\Omega$ ,  $U_1 = 10 \text{ V}$ ,  $U_2 = 5 \text{ V}$ ,  $f_R = 1 \%$ ,  $f_e = 0.5 \%$  und  $U_e = 10 \text{ V}$ .