

Docol é o nome da marca registada pela SSAB Swedish Steel para os seus produtos de chapa laminada a frio, incorporando uma vasta gama que vai desde os aços macios para estampagem e quinagem, até aos aços de alto limite elástico. O desenvolvimento tecnológico contínuo tem levado ao aparecimento de novos materiais, e os aços de alta resistência Docol da SSAB Swedish Steel são bons exemplos desta tendência. Os aços de alto limite elástico estão disponíveis em diversas qualidades com diferentes propriedades. Esta brochura tem o objectivo de o ajudar na selecção da qualidade do aço mais apropriada às suas necessidades: aquele que melhor se enquadra ao seu produto.

INDICE:

- **4–5 Docol chapa laminada a frio** Gama de produtos
- **6–7 Aços macios** DC01, DC03, DC04, DC05, DC 06 e Docol 4D
- 8–17 Aços de alto limite elástico
 Docol YP (8), Docol LA (8), Docol DP/DL (10),
 Docol RP/BH (12), DocolWear (14), DOCOL S (14) e
 Docol W resistente à corrosão
- 18–19 Aços para têmpera

 Docol Aços para cementação (18), Docol aços ao carbono,

 Docol aco ao boro
- **20–21 Qualidade e Acabamento Superficial**Qualidade da superfície A e B, acabamento da superfície
- **22–23 Tolerâncias**Espessura, perpendicularidade, planicidade
- **24–25 Outras informações técnicas**Envelhecimento, soldabilidade, lubrificação/protecção
- 26–27 Serviço de Apoio Técnico ao Cliente Ferramentas modernas de análise, cursos e seminários, manuais, amostras de chapas de aço para ensaio, informação sobre o material, recomendações para encomenda.

Chapa de aço laminada a frio Docol

Docol é o nome da marca registada pela SSAB Swedish Steel para a chapa laminada a frio. A matéria-prima utilizada na produção destas chapas de aço é uma banda previamente laminada na nossa linha de laminagem a quente. Esta banda é depois decapada e laminada a frio para se obter chapas mais finas, com tolerâncias de espessura mais apertadas. Finalmente, o material é recozido e laminado superficialmente para se atingir as propriedades mecânicas exigidas, bem como a planicidade e o acabamento superficial desejado.

A chapa de aço laminada a frio é utilizada numa grande variedade de aplicações, incluindo aquelas em que os produtos deverão ser pintados ou receber um tratamento superficial. Peças para veículos, refrigeradores, aparelhos de iluminação, radiadores eléctricos e radiadores de água são produtos típicos, produzidos a partir de chapa de aço laminada a frio.

Poder-se-á dizer que este tipo de chapa é o material mais usado actualmente, dada a sua formabilidade e soldabilidade. O acabamento superficial desta chapa é também propícia a diversos tipos de revestimentos.

Passos mais importantes no processo de laminagem a frio

Decapagem: após a banda de aço ter sido laminada a quente, a sua superfície fica coberta com uma película de óxido de ferro, conhecida por calamina. Para evitar que a calamina danifique a superfície, esta é removida através de um processo químico de decapagem, durante a laminagem a frio que se processa numa fase posterior.

Laminagem a frio: este processo reduz o material para a sua espessura final. Um cuidadoso processo de controlo durante a laminagem a frio possibilita que os parâmetros de produção sejam controlados com elevada exactidão. A espessura e a planicidade poderão, assim, ser mantidas dentro de tolerâncias muito apertadas.

Tratamento térmico e laminagem superficial: é aqui que são dadas as propriedades mecânicas exigidas ao material, bem como o acabamento superficial. Simultaneamente, o material é inspeccionado para estar em conformidade com os requisitos específicos de cada Cliente.

Gama de acos

A gama de produtos divide-se em três grupos principais. Além dos aços macios comerciais, destinados às várias operações de conformação, tal como a estampagem e a quinagem, a gama inclui, igualmente, os aços de alto limite elástico e os aços para tratamento térmico.

Aços macios

DC01 - Radiador

DC03 –Armários de distribuição eléctrica

DC04 – Extintor

DC05 - Reforços e suportes de fixação

DC06 – Estruturas de portas de automóveis

Aços de alto limite elástico

Docol YP – Aços microligados

Docol DP/DL – Aços de dupla fase

Docol RP/BH - Aço refosforizado

Docol W – Aços resistentes à corrosão atmosférica

Docol S – Fitas para embalagem

Docol WR-Aço resistente ao desgaste

Aços para témpera

Aços para cementação, aços com elevado teor de carbono e aço ao boro

Aços macios

DC01

Aço de aplicação geral, para operações simples de conformação, estampagem e quinagem.

DC03

Aço apropriado para operações de conformação já com algum grau de dificuldade.

DC04

Aço adequado a aplicações cujas exigências se baseiam nas propriedades da conformação, especificamente com boa plasticidade.

DC05

Aço adequado para conformação avançada, com óptimo desempenho de alongamento.

DC06

Aço apropriado para estampagem profunda, com óptimo alongamento.

Docol 4D

Aço apropriado para estampagem extremamente profunda. Apresenta excelentes propriedades, tanto nas operações de alongamento, como na utilização com serra-chapas.

Para Galvanização a quente:

A gama de aços macios, com a excepção do Docol 4D e DC 06, pode ser fornecida com composições químicas apropriadas para a galvanização a quente após estampagem.

Aço destinado à esmaltagem:

Aços segundo as normas europeias EN 10209. Aços DC01 EK e DC04EK possuem as propriedades químicas necessárias para a esmaltagem convencional de duas camadas e para esmaltagem directa com uma camada aderente. As propriedades mecânicas do DC01EK e DC04 EK são as mesmas do DC01 e DC04 respectivamente.

Este triciclo é um bom exemplo da aplicação do Docol 280 YP seleccionado pelo seu peso reduzido, pela sua resistência e conformabilidade.

Dimensões das chapas				
Espessura em mm Comprimento mm				
	min.	máx.		
0.40-3.00	1000	8000		

Nota: entre as duas dimensões da chapa, considera-se a mais pequena como largura, enquanto que a maior é considerada como comprimento.

Propriedades Mecánicas*							
Tipo de Aço	Limite Elástico R _{p0.2} N/mm ² máx.	Tensão de ruptura R _m N/mm² minmáx.	Alongamento A ₈₀ % min.	r ₉₀ ° min.	n _{90°} min.		
DC01	280	270-410	28	_	_		
DC03	240	270-370	34	1.3	_		
DC04	210	270-350	38	1.6	0.18		
DC05	180	270-330	40	1.9	0.20		
				r̄ min	n min		
DC06	180	270-350	38	1.8	0.22		
Docol 4D	140	250-330	40	2.0	0.24		

^{*}Provete retirado na direcção perpendicular ao sentido da laminagem

Composição Química (valores típicos) em %							
Tipo de Aço	C (%)	Mn (%)	P (%)	S (%)	N (%)	AI (%)	Ti (%)
DC01	0.05	0.20	0.01	0.01	0.003	0.04	_
DC03	0.05	0.20	0.01	0.01	0.003	0.04	_
DC04	0.02	0.20	0.01	0.01	0.003	0.04	_
DC05	0.02	0.20	0.01	0.01	0.005	0.05	_
DC06/Docol 4D	0.002	0.15	0.01	0.01	0.003	0.04	0.065

Aços de alto limite elástico

Dentro dos aços de alto limite elástico, existem diferentes subdivisões. Os aços podem ser seleccionados, tendo em vista as propriedades mais vantajosas, tais como:

- Excelente capacidade de conformação em relação à sua elevada resistência
- Boas propriedades de resistência às intempéries (resistência à corrosão atmosférica)
- Boa resistência ao desgaste.
- Boa resistência ao impacto e aos choques
- Boas propriedades magnéticas

Os aços de alto limite elástico Docol são muitas vezes utilizados para diminuir o peso de um produto, sem diminuir a sua resistência, ou, para aumentar a resistência sem aumentar o peso.

Docol YP

Estes aços são apropriados para a estampagem. Os aços YP são caracterizados por uma elevada tensão de cedên-

cia, combinada com uma boa formabilidade. A elevada resistência é conseguida em parte, através da adição de pequenas quantidades de nióbio.

A homogeneidade das propriedades mecânicas dos aços YP Docol é muito boa. São garantidas propriedades (mecânicas e químicas) entre os valores mínimos e máximos especificados pelas normas.

As designações dos tipos de aço são baseadas na tensão de cedência mínima garantida.

Se necessário, a SSAB Swedish Steel poderá fornecer aos seus clientes aços de baixa liga equivalentes, igualmente conhecidos por Docol LA, em conformidade com a EN 10268.

Docol LA tem tensões de cedência garantidas entre

limites mínimos e máximos. A tensão de ruptura é garantida apenas quanto ao seu limite mínimo.

Aços YP para galvanização a quente

Docol 220 YP, Docol 280 YP e Docol 350 YP podem ser fornecidos com uma composição química modificada, para serem adequados à galvanização a quente.

Dim. para o corte em chapas				
Espessura mm Comprim. mm				
0.40-3.00	1000-8000			

Dimensões des bobines Docol 220 YP/Docol 240 LA 3.0 2.8 2.6 2.4 2.2 2.0 Espessara (mm) 1.6 1.4 1.2 1.2 1.2 1.0 0.8 0.6 0.4 0.2 1000 1200 1400 1600 Largura (mm)

Propriedades Mecánicas*						
Tipo de Aço	Tensão de cedéncia R _{el} N/mm ² minmáx.	Tensão de ruptura R _m N/mm² minmáx.	Alongamento A ₈₀ % min.	Raio de quinagem 180°		
Docol 220 YP	220–290	330-400	30	0xt		
Docol 260 YP	260-340	350-450	24	0xt		
Docol 280 YP	280-350	370-450	26	0xt		
Docol 300 YP	300-380	380-480	22	Oxt		
Docol 340 YP	340-440	410-530	20	Oxt		
Docol 350 YP	350-440	410-510	22	0xt		
Docol 380 YP	380-500	460-650	18	0.25xt		
Docol 420 YP	420-540	480-620	16	0.25xt		
Docol 500 YP	500-620	570-710	12	0.5xt		

^{*}Provete retirado na direcção perpendicular ao sentido de laminagem $t=\mbox{espessura}$ da chapa

Composição Quimica em %							
Tipo de Aço	C (%)	Si (%)	Mn (%)	P (%)	S (%)	AI (%)	Nb (%)
Docol 220 YP	0.05	0.01	0.20	0.01	0.01	0.05	_
Docol 260 YP	0.05	0.01	0.40	0.01	0.01	0.04	0.01
Docol 280 YP	0.05	0.01	0.40	0.01	0.01	0.04	0.01
Docol 300 YP	0.05	0.01	0.40	0.01	0.01	0.04	0.01
Docol 340 YP	0.05	0.01	0.40	0.01	0.01	0.04	0.03
Docol 350 YP	0.05	0.01	0.40	0.01	0.01	0.04	0.03
Docol 380 YP	0.05	0.01	0.50	0.01	0.01	0.04	0.05
Docol 420 YP	0.05	0.20	0.60	0.01	0.01	0.04	0.04
Docol 500 YP	0.06	0.40	1.20	0.01	0.005	0.04	0.05

Propriedades Mecánicas*							
Tipo de Aço	Tensão de cedéncia R _{el} N/mm ² minmáx.	Tensão de ruptura R _m N/mm² min.	Alongamento A ₈₀ % min.	Raio de quinagem a 180°			
Docol 240 LA Docol 280 LA Docol 320 LA Docol 360 LA Docol 400 LA	240–310 280–360 320–410 360–460 400–500	340 370 400 430 460	27 24 22 20 18	0xt 0xt 0xt 0.25xt 0.25xt			

^{*} Provete retirado na direcção perpendicular ao sentido de laminagem

Docol DP/DL

Docol DP e Docol DL são aços de dupla fase. Os aços são sujeitos a um tratamento térmico especial na linha de recozimento contínuo, na qual se produz uma micro estrutura de duas fases. A ferrite é a fase que confere propriedades únicas de conformação, e a martensite é a fase da qual advém a resistência. O aumento da resistência é proporcional ao aumento da percentagem de martensite na microestrutura.

Os aços Docol DP/DL são caracterizados por uma baixa relação entre a tensão de cedência e a tensão de ruptura, que permite uma boa deformação plástica durante a operação de conformação.

Nos aços DL, a diferença entre a tensão de cedência e a tensão de ruptura é ainda maior do que nos aços DP. Por isso, os aços DL estão mais aptos à conformação do que os aços DP.A tensão de ruptura final do produto acabado é

conseguida através do encruamento por deformação plástica durante a estampagem, e pelo encruamento térmico, durante o processo de pintura.

Os números que designam os aços, especificam a tensão de ruptura mínima de cada um deles.

Docol DP/DL+ZE

Os aços DP/DL laminados a frio, 500 DL, 600 DL, 800 DL, 1000 DP, 1000 DZ, 1200 DP e 1400 DP, estão disponíveis com espessuras de zinco de entre 2.5 e 10 μ m por face.

Dimensões da banda em bobines

Dimensões para o corte de chapas					
Espessura (mm) Comprimento (mm)					
0.40-3.00	1000-8000				

Propriedades Mecánicas*					
Tipo de Aço	Tensão de Cedéncia R _{p0.2} N/mm ² min.–méx.	Tensão de cedéncia após encruamentos mecánico e termico R _{p2.0} +BH**N/mm² min.	Tensão de ruptura R _m N/mm² min.–máx.	Alongamento A ₈₀ % min.	
Docol 500 DP	300-(390)	400	500-600	20	
Docol 500 DL***	230-	_	500-600	25	
Docol 600 DP	350-(440)	500	600-700	16	
Docol 600 DL	280-(360)	420	600-700	20	
Docol 800 DP	500-(650)	650	800-950	8	
Docol 800 DL***	390-	_	800-950	13	
Docol 1000 DP	700-(950)	850	1000-1200	5	
Docol 1000 DL***	550-	_	1000-1200	8	
Docol 1200 DP	950-(1200)	1150	1200-1400	4	
Docol 1400 DP	1150–(1400)	1350	1400–1600	3	

^{*} Provete retirado na direcção perpendicular ao sentido de laminagem

 $^{^{\}star\star\star} materiais\ em\ desenvolvimento$

Composição Química em %							
Tipo de Aço	C (%)	Si (%)	Mn (%)	P (%)	S (%)	AI (%)	Nb (%)
Docol 500 DP	0.08	0.30	0.65	0.015	0.01	0.04	_
Docol 500 DL***	0.07	0.20	1.80	0.015	0.002	0.04	-
Docol 600 DP	0.11	0.40	0.90	0.015	0.005	0.04	-
Docol 600 DL	0.10	0.40	1.50	0.015	0.002	0.04	-
Docol 800 DP	0.13	0.20	1.50	0.015	0.002	0.04	0.015
Docol 800 DL***	0.14	0.20	1.70	0.015	0.002	0.04	0.015
Docol 1000 DP	0.15	0.50	1.50	0.015	0.002	0.04	0.015
Docol 1000 DL***	0.15	0.50	1.50	0.015	0.002	0.04	0.015
Docol 1200 DP	0.11	0.20	1.60	0.015	0.002	0.04	0.015
Docol 1400 DP	0.17	0.50	1.60	0.015	0.002	0.04	0.015

Um novo modelo de chassis para um carrinho mais confortável, produzido pela empresa Emmaljunga. Tubagem em aço de extra alto limite elástico que fornece um elevado nível de elasticidade, fazendo com que o carrinho seja mais confortável. Conseguiu-se, igualmente, uma redução no custo de produção.

^{**} BH = encruamento mecânico após 2% de deformação plástica e aquecimento a 170°C durante 20 min

Docol RP/BH

Docol RP é um aço de elevada resistência de liga fosforosa conhecido por aço refosforizado e adequado para estampar. Docol RP é caracterizado por uma excelente aptidão para a conformação combinada com uma elevada resistência. A resistência final da peça acabada é conseguida por encruamento mecânico durante a estampagem.

Docol BH é também um aço refosforizado com excelente aptidão para a conformação, contudo, neste tipo de aço, a resistência final da peça acabada deve-se a dois processos: encruamento durante a estampagem e encruamento térmico durante o processo de pintura.

Os números que designam os aços especificam a tensão de cedência mínima garantida.

A necessidade de se conseguirem carros mais eficientes, a nível do combustível, e mais seguros, levou ao recurso crescente de aços de alto limite elástico. Actualmente, os aços Docol são largamente aplicados na indústria automóvel.

Dimensões para o corte de chapas		
Espessura mm	Comprimento mm min.–máx.	
0.40-3.00	1000-8000	

 $Nota: Entre \ as \ duas \ dimensões \ da \ chapa, considera - se \ a \ mais \ pequena \ coho \ largura, enquanto \ que \ a \ maior \ \'e$ considerada como comprimento.

	Propriedades Mecánicas*						
Tipo de Aço	Tensão de cedéncia R _{p0.2} / R _{el} N/mm ² minmáx.	Tensão de cedéncia após encrua- mentos mecánico e termico R _{p2.0} +BH** N/mm ² min.	Tensão de ruptura R _m N/mm ² minmáx.	Alongamento A ₈₀ % min.			
Docol 220 RP	220-280	-	340-420	30			
Docol 260 RP	260-320	_	380-460	28			
Docol 300 RP	300-360	_	420-500	26			
Docol 220 BH	220–280	270	340-420	30			
Docol 260 BH	260-320	310	380-460	28			
Docol 300 BH	300-360	360	420-500	26			

Provete retirado na direcção perpendicular ao sentido de laminagem
 BH = encruamento mecânico após 2% de deformação plástica e aquecimento a 170°C durante 20 min

	Composição Química em %						
Tipo de Aço C Si Mn P S Al (%) (%) (%) (%)							
Docol 220 RP/BH Docol 260 RP/BH Docol 300 RP/BH	0.04 0.04 0.05	0.01 0.01 0.20	0.30 0.50 0.60	0.06 0.09 0.11	0.01 0.01 0.01	0.04 0.04 0.04	

Docol Wear

Docol Wear é um aço laminado a frio, resistente ao desgaste. O material é sujeito a tratamento inicial de recozimento, depois é endurecido por têmpera e, finalmente, revenido numa linha de recozimento contínuo. Docol Wear está indicado para aplicações com desgaste abrasivo por partículas duras, como pedras, areia e grãos. Os números que designam os aços especificam o valor típico de dureza Vickers.

Docol S

Os aços para as cintas de embalagem em Docol 800S e Docol 930 são fornecidos temperados e revenidos. Docol S é caracterizado pelo seu alto limite elástico, combinado com uma boa formabilidade e quinagem.

Dimensão de banda em bobines

Dimensões para o corte de chapas						
Tipo de Aço Espessura mm Comprimento m						
Docol 450 Wear	0.50-2.0	1000-8000				

Docol Wear é aplicado em diversas peças de máquinas agrícolas, uma vez que estão sujeitas a um desgaste muito grande.

Dureza (valores tipicos)							
Tipo de Aço	Dureza						
	Brinell Rockwell Vickers						
Docol 450 Wear	440	43	456				

Composição Química (valores típicos) em %								
Tipo de Aço	(%)	Si (%)	Mn (%)	P (%)	S (%)	AI (%)	Nb (%)	
Docol 450 Wear	0.17	0.50	1.60	0.015	0.002	0.04	0.015	

Propriedades Mecánicas* (valores típicos)							
Tipo de Aço	Tensão de cedéncia	Tensão de ruptura	Alongamento				
	R _{p0.2} N/mm ²	R _m N/mm²	A ₅ %				
Docol 800S	660	850	20				
Docol 930S	890	1070	14				

^{*} Provete retirado no sentido da laminagem

Composição Química em %						
Tipo de Aço	(%)	Si (%)	Mn (%)	P (%)	S (%)	AI (%)
Docol 800S/ Docol 930S	0.15	0.50	1.50	0.015	0.005	0.04

Docol W

Docol W são aços resistentes à corrosão atmosférica.Numa fase inicial, estes aços corroem-se da mesma forma que os aços normais de carbono. Contudo, numa fase posterior, forma-se uma película uniforme de óxido na superfície da chapa de aço. Esta película é formada devido a concentrações adequadas de Cu, Cr, P e Si no aço. A película de óxido permanece firmemente na sua superfície e evita que a corrosão penetre, causando a corrosão do aço. Para além de possuir uma boa resistência à corrosão, Docol W é também caracterizado por uma boa capacidade de conformação e resistência ao choque.

Docol W está disponível em dois níveis de resistência, com valores mínimos de tensão de cedência de 355 N/mm² e 700 N/mm².

Dimensões pa	ıra o corte em chapa
Espessura mm	Comprimento mm Docol 355W Docol 700W
0.50-2.00	1000-8000

Propriedades Mecánicas*							
Tipo de Aço	Tensão de cedéncia	Tensão de ruptura	Alongamento				
	R _{p0.2} /R _{eL} N/mm ²	R _m N/mm²	A ₈₀ %				
	min.	min.	min.				
Docol 355W	355	450**	20				
Docol 700W	700	800	5				

^{*} Provete retirado na direcção perpendicular ao sentido de laminagem

 $^{^{\}star\star}$ A tensão de ruptura não está em conformidade com a EN 10155

Composição Química em %									
Tipo de Aço	C	Si	Mn	P	S	Cu	Cr	AI	Nb
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Docol 355W	0.05	0.30	0.35	0.08	0.01	0.30	0.60	0.04	-
Docol 700W	0.13	0.50	1.20	0.015	0.002	0.40	0.50	0.04	0.015

Dimensões de banda em bobines Docol C10, C15, 16MnCr5, 17Cr3 Docol 20MnB5, 30MnB5, 27MnCrB5 3.0 2.8 2.6 2.4 2.2 Expessaria (mm) 1.8 1.6 1.4 1.2 2.0 1.2 1.0 0.8 0.6 0.4 0.2 600 1000 1200 1400 1600 800 Largura (mm)

Aços para têmpera

Os tipos de aço para têmpera, existentes no grupo de aços Docol, são caracterizados quer pela sua boa formabilidade, quer pelo facto da alta resistência e dureza serem conseguidas pela têmpera e revenido dos produtos acabados.

Docol – Aços para cementação

Estes aços são produzidos de acordo com a EN 10132-2, e caracterizam-se quer pela sua formabilidade, quer pela possibilidade de fornecer à peça acabada uma superfície dura, enquanto que o núcleo do material permanece com a dureza inicial inalterada.

Propriedades Mecánicas (em estado recozido)								
Tipo de Aço	Tensão de cedéncia R _{p0.2} N/mm ² min.	Tensão de ruptura R _m N/mm ² max.	Alonga- mento A ₈₀ % min.	Dureza HV máx.				
Docol C10	345	430	26	135				
Docol C15	360	450	25	140				
Docol 16MnCr5	420	550	21	170				
Docol 17Cr3	420	550	21	170				

Composição Química em %							
Tipo de Aço C (%) Si (%) Mn (%) P (%) S (%) Cr (%) min-máx min-máx máx máx min-máx							
Docol C10	0.07-0.13	0.15-0.35	0.30-0.60	0.025	0.025	max 0.40	
Docol C15	0.12-0.18	0.15-0.35	0.30-0.60	0.025	0.025	max 0.40	
Docol 16MnCr5	0.14-0.19	0.15-0.35	1.00-1.30	0.025	0.025	0.80-1.00	
Docol 17Cr3	0.14-0.20	0.15-0.35	0.60-0.90	0.025	0.025	0.70-1.00	

O aço para têmpera, com elevado teor de carbono, permite que os sapatos de senhora mantenham a sua forma inicial sem se deformarem.

Docol – Aços com elevada teor de carbono

São produzidos em conformidade com a EN 10132. Os aços são caracterizados por uma boa formabilidade e procuram alcançar uma elevada dureza através de têmpera e revenido.

Pro Tipo de Aço	priedades Mecánicas (em estado recozido) Tensão de ced. Tensão de ruptura Alongamento Dureza R _{p0.2} N/mm² R _m N/mm² A ₈₀ % HV máx. min. máx.						
Docol C22	400	500	22	155			
Docol C35	430	540	19	170			
Docol C45	455	570	18	180			
Docol C55	480	600	17	185			
Docol C60	495	620	17	195			
Docol C67	510	640	16	200			
Docol C75	510	640	15	200			
Docol 42CrMo4	480	620	15	195			
Docol 51CrV4	550	700	13	220			

Propriedades Químicas (valores típicos) em %									
Tipo de Aço C (%) minmáx.				Mn (%) P (%) minmáx. máx.		Cr (%) minmáx.			
Docol C22	0.17-0.24	0.15-0.35	0.40-0.70	0.025	0.025	0.20-0.40			
Docol C35	0.32-0.39	0.15-0.35	0.50-0.80	0.025	0.025	0.20-0.40			
Docol C45	0.42-0.50	0.15-0.35	0.50-0.80	0.025	0.025	0.20-0.40			
Docol C55	0.52-0.60	0.15-0.35	0.60-0.90	0.025	0.025	0.20-0.40			
Docol C60	0.57-0.65	0.15-0.35	0.60-0.90	0.025	0.025	0.20-0.40			
Docol C67	0.65-0.73	0.15-0.35	0.60-0.90	0.025	0.025	0.20-0.40			
Docol C75	0.70-0.80	0.15-0.35	0.60-0.90	0.025	0.025	0.20-0.40			
Docol 42CrMo4	0.38-0.45	0.15-0.35	0.60-0.90	0.025	0.025	0.90-1.20			
Docol 51CrV4	0.47-0.55	0.15-0.35	0.70-1.10	0.025	0.025	0.90-1.20			

Docol – Aços ao boro

Estão disponíveis em versões que estão em conformidade com a EN 10083-3. Os aços são caracterizados por uma boa formabilidade e soldabilidade, e podem ser facilmente endurecidos com têmpera. O revenido é muitas vezes desnecessário.

	Propr	iedades Mecánica	as (valores tipicos)		
Tipo de Aço	Estado	Tensão de cedéncia R _{p0.2} N/mm ²	Tensão de ruptura R _m N/mm ²	Alongamento A ₈₀ %	Dureza HRC
Docol 20MnB5	Recozido Temperado em água Temperado em óleo	350	500 1480 1360	28	46 43
Docol 30MnB5	Recozido Temperado em água Temperado em óleo	350	500 1845 1675	28	53 50
Docol 38MnB5	Recozido Temperado em água Temperado em óleo	350	500 2050 1845	28	56 53
Docol 27MnCrB5	Recozido Temperado em água Temperado em óleo	400	550 1735 1575	25	51 48
Docol 33MnCrB5	Recozido Temperado em água Temperado em óleo	400	550 1845 1675	25	53 50
Docol 39MnCrB6	Recozido Temperado em água Temperado em óleo	400	550 1980 1795	25	55 52

Composição Química em %									
Tipo de Aço C (%) Si (%) Mn (%) P (%) S (%) Cr (%) B (%) minmáx. máx. máx. máx. minmáx. min									
Docol 20MnB5	0.17-0.23	0.40	1.10-1.40	0.030	0.015	0.10-0.30	0.0008-0.0050		
Docol 30MnB5	0.27-0.33	0.40	1.15-1.45	0.030	0.015	0.10-0.30	0.0008-0.0050		
Docol 38MnB5	0.36-0.42	0.40	1.15-1.45	0.030	0.015	0.10-0.30	0.0008-0.0050		
Docol 27MnCrB5	0.24-0.30	0.40	1.10-1.40	0.030	0.015	0.30-0.60	0.0008-0.0050		
Docol 33MnCrB5	0.30-0.36	0.40	1.20-1.50	0.030	0.015	0.30-0.60	0.0008-0.0050		
Docol 39MnCrB6	0.36-0.42	0.40	1.40-1.70	0.030	0.015	0.30-0.60	0.0008-0.0050		

Qualidade e Acabamento Superficial

Qualidade de Superficie A

Admite defeitos que não afectem a formabilidade, os processos de revestimentos e a sua qualidade. Exemplo destes pequenos defeitos são poros, marcas leves, riscos e uma leve descoloração.

Qualidade de Superficie B

Um dos lados deverá ter uma superfície isenta de defeitos, para que não afectem a aparência da superfície apóspintura ou electrozincagem. O outro lado da chapa deverá, pelo menos, corresponder às exigências da qualidade de superfície A.

Se o material for fornecido em bobines, é aceitável uma proporção de defeitos maior do que se for em chapa.

Acabamento Superficial

A aparência da superfície da chapa de aço laminada a frio está directamente ligada à topografia da superfície da chapa. Esta topografia afecta as características de atrito quando a chapa é trabalhada, e também influencia a qualidade do revestimento subsequente. O acabamento da superfície pode ser classificada em brilhante, semi-brilhante, normal ou rugosa.

O material será entregue com uma aparência normal, se no acto da encomenda não se especificar outras exigências.

Aparéncia da Superficie	ncia da Superficie Simbolo	
Brilhante	b	R _a ≤0.4 μm
Semi-brilhante	g	R _a ≤0.9 μm
Normal	m	0,6 μ m < R _a ≤1.9 μ m
Rugoso	r	R _a >1.6 μm

Vários produtos e equipamentos de linha branca ou para iluminação, exigem uma qualidade de acabamento superficial elevada, de modo a assegurar que o processo de tratamento final da superfície seja homogéneo e tenha bons resultados.

Tolerâncias segundo a EN 10131

Tolerâncias na largura

Tolerância Normal: +4/−0 (≤1200 mm de e xtensão)

- +5/-0 (>1200 mm -
- ≤1500 mm de extensão)

Aplica-se, a menos que especificado de outra forma.

Tolerâncias Aproximadas: +2/−0 (600−≤1500 mm de extensão)

Tolerâncias

Os equipamentos e os siste-

mas de controlo avançados

possui, permitem assegurar

e uma grande repetibilidade

de produção. Trata-se de um

benefício para os Clientes,

tolerâncias apertadas. Para

cujos processos exigem

outros Clientes, permite

aproveitar a maior área

dícios ou aparas.

possível de chapa de cada

tonelada, e assim rentabilizar

a matéria-prima, sem desper-

tolerâncias bastante apertadas

que a SSAB Swedish Steel

Tolerâncias de planicidade

A tabela especifica o desvio máximo permitido (altura vertical) de acordo com a norma EN 10131, quando a chapa está assente numa superfície horizontal plana. Os valores na coluna com a designação "Planicidade Normal" aplicam-se a chapas cortadas transversalmente, com equipamento de endireitar adequado.

A menos que se especifique, a chapa é entregue com planicidade normal.

Requisitos de planicidade de acordo com a norma EN 101 31 são aplicáveis a materiais com uma tensão de cedência <360 N/mm².

Para materiais com uma tensão de cedência >360 N/mm², os requisitos de planicidade devem ser especificados na encomenda.

Rectilismo

Comprimento de referéncia mm	t _{max}
5000	15
1000	2

t_{max} aplica-se a ambos comprimentos de referência, localizados aleatoriamente na chapa

Até 0.2 % do comprimento da chapa

Tolerâncias de Espessura

Espessura Nominal, mm	Tolerância normal para largura nominal, ≤1200 >1200 ≤1500			
>0.35 ≤0.40	±0.04	±0.05		
>0.40 ≤0.60	±0.05	±0.06		
>0.60 ≤0.80	±0.06	±0.07		
>0.80 ≤1.00	±0.07	±0.08		
>1.00 ≤1.20	±0.08	±0.09		
>1.20 ≤1.60	±0.10	±0.11		
>1.60 ≤2.00	±0.12	±0.13		
>2.00 ≤2.50	±0.14	±0.15		
>2.50 ≤3.00	±0.16	±0.17		

Fornecimentos efectuados com toleráncias normais, a menos que se especifique de outro modo. A espessura é medida numa distància de pelo menos 40mm da extremidade da chapa.

Tolerâncias no comprimento (Chapas cortadas transversalmente)

<2000 mm +6/-0 mm \ge 2000 mm +0.3% do comprimento nominal/-0 mm

Perpendicularidade (Chapas cortadas transversalmente)

Até 1% da largura nominal da chapa.

Planicidade

Espessura, mm	Largura, mm	Desvio máximo Planicidade normal	o, mm Planicidade melhorada	
-0.70	-1200	12	5	
	(1200)-1500	15	6	
(-0.70)-1.20	-1200	10	4	
	(1200)-1500	12	5	
(1.20)-3.00	-1200	8	3	
	(1200)–1500	10	4	

	Espessura, mm	Largura, mm	Desvio máximo Planicidade normal	, mm Planicidade melhorada
1	-0.70	-1200	15	8
1		(1200)-1500	18	9
1	(-0.70) -1.20	-1200	13	6
1		(1200)-1500	15	8
1	(1.20) - 3.00	-1200	10	5
		(1200)–1500	13	6

Para materiales con límite elástico \geq 360 N/mm2 se especificará el nivel de planitud requerido.

Outras informações técnicas

Envelhecimento

As propriedades de estampagem dos diversos aços macios, laminados a frio, declinam com o tempo. O risco da ocorrência de ruptura por estampagem aumenta. A chapa de aço laminada a frio, destinada à estampagem, não deverá, por isso, ser armazenada mais tempo do que o necessário antes da sua utilização.

Os aços DC06 e Docol 4D são ligados com pequenas quantidades de titânio, o que resulta num material que não envelhece e que retém as suas propriedades de estampagem por um longo período de tempo.

Soldabilidade

Todos os aços descritos neste catálogo são adequados às

operações de soldadura. As soldaduras por resistência (por pontos e contínua) poderão ser realizadas sem dificuldade. A soldadura por fusão (MIG/MAG) também não oferece dificuldades, excepto para chapas muito finas, devido ao empeno que poderá provocar.

A soldadura por arco submerso em atmosfera controlada é benéfica, devido à baixa indução de calor e pode ser usada em chapa até 0.7 mm de espessura.

A soldadura por eléctrodos poderá ser usada em chapa até 1mm de espessura.

Protecção com óleo

A chapa é normalmente protegida por uma camada de óleo anti-corrosivo antes daentrega. Se especificado pelo Cliente, poderá utilizar-se, em alternativa, um óleo de estampagem anti-corrosivo.

Peso das bobines

Conforme especificado pelo Cliente, mas sempre inferior a 24 toneladas.

Diametro das bobines

Diâmetro interior = 610 mm Diâmetro exterior = até 2000 mm

Embalagem

Veja a nossa brochura sobre embalagem.

Cada entrega é cuidadosamente inspeccionada, em relação às dimensões e aos pesos, antes de ser carregada em vagão de comboio ou camão.

Designação nova	Aços Macios Designação nova Designação anterior							
EN 10130	Suécia	Alemanha	Grâ Br.		Finlândia	Itália	Fananha	lanão
EN 10130	SS 14 XXXX	DIN 1623	BS 1449	França NF A 36-401	SFS 600	UNI 5866	Espanha UNI 36-086	Japão
DC01	1142	St 12	CR4	TC	CR 2	Fe P01	AP 01	SPCD
DC03	1146	St 13	CR2	E	CR 3	0	AP 03	SPCE
DC04	1147	St 14	CR1	ES	CR 4	Fe P04	AP 04	SPCEN
DC05	-	St 14	-	_	-	_	_	-
DC06	_	_	-	_	_	_	_	_
Docol 4D	_	-	-	_	_	_	_	_

Qualidade da Superfície									
A	32	3	GP	χ	11	MA	Χ	GP	
В	42	5	FF	Z	12	MB	Χ	FF	FF

Aços de Alto Limite Elástico						
Tipo de aço	Simbolo	Rugosidad Superficial				
Brillante	b	R _a ≤0.4 μm				
Semi-brillante	g	R _a ≤0.9 μm				
Normal	m	$0.6 \mu \text{m} < R_a \le 1.9 \mu \text{m}$				
Rugoso	r	R _a >1.6 μm				

	Aços de Alto Limite Elástico								
Tipo de Aço SSAB Tunnplåt	SS 14xxx	BS 1449	SEW 093	SEW 094	NF A36-203	EN 10268	EN 10155		
Docol 220 RP	_	_	_	ZStE 220 P	_	_	_		
Docol 260 RP	_	_	-	ZStE 260 P	-	-	_		
Docol 300 RP	_	_	_	ZStE 300 P	-	_	_		
Docol 220 BH	_	_	-	ZStE 220 BH	-	-	_		
Docol 260 BH	_	_	_	ZStE 260 BH	-	_	_		
Docol 300 BH	_	_	_	ZStE 300 BH	_	_	_		
Docol 220 YP	1316	CR37/23	_	_	-	_	_		
Docol 240 YP	_	_	_	_	-	_	_		
Docol 240 LA	_	_	_	_	-	H 240 LA	_		
Docol 260 YP	_	_	ZStE 260	-	-	-	_		
Docol 280 YP	1426	_	_	_	E 275 D	_	_		
Docol 280 LA	_	_	_	_	_	H 280 LA	_		
Docol 300 YP	_	CR40/30	ZStE 300	_	-	_	_		
Docol 320 LA	_	_	_	_	_	H 320 LA	_		
Docol 340 YP	_	_	ZStE 340	-	E 335 D	-	_		
Docol 350 YP	2136	CR43/35	_	_	_	_	_		
Docol 360 LA	_	_	_	_	_	H 360 LA	_		
Docol 380 YP	_	_	ZStE 380	-	_	-	_		
Docol 400 LA	_	_	_	_	_	H 400 LA	_		
Docol 420 YP	_	_	ZStE 420	-	E 430 D	_	_		
Docol 500 YP	_	_	_	_	E 490 D	_	_		
Docol 355 W	_	-	-	-	-	_	JOWP		

Serviço de Apoio Técnico ao Cliente

Os especialistas da SSAB Swedish Steel, e a sua longa experiência com aços laminados a frio, estão à disposição dos Clientes.

Estes especialistas do
Serviço de Apoio Técnico ao
Cliente, possuem uma ampla
experiência em materiais e
engenharia de produção.
Poderá obter respostas
imediatas a questões de foro
técnico através dos seguintes
contactos: telef. +46 243
72929, e-mail
teknisk.kundservice@ssab.com
(Suécia); telef. 256 371 610,
e-mail info.pt@ssab.com
(Portugal).

Os nossos Engenheiros de Aplicações são especialistas em conformação, processos de união, tratamentos de superfície.

Disponha das nossas ferramentas de análise!

A SSAB Swedish Steel utiliza as ferramentas mais modernas para auxiliar os seus Clientes na selecção do aço indicado, para o projecto mais apropriado. Nestas ferramentas estão incluídas:

A análise pelo método de elementos finitos (FEM) pode ser usada para simular todas as fases do desenvolvimento de uma peça, tais como a selecção do tipo de aço, a forma da platina, o processo de produção e a geometria final da peça. A análise FEM também poderá ser utilizada para calcular a absorção de energia de uma peça no caso de um acidente. Muitas das variantes de concepção (ferramentas, raio, espessura e tipo de aço) poderão ser simuladas no computador para assim se encontrar a solução perfeita.

ASAME é um equipamento que nos permite verificar rapidamente se um Cliente conseguiu a combinação certa entre um tipo de aço e a geometria final da peça. ASAME mede a distribuição da deformação em peças estampadas. Esta deformação é recolhida por câmaras e processada

A análise FME mostra que as tensões no material são demasiado elevadas em vários pontos.

Após algumas modificações relativamente simples de geometria, e do processo de produção, a análise demonstra que a peça satisfaz todas as exigências.

num programa informático complexo que, rapidamente, descreve como as ferramentas, os processos produtivos e o projecto final afectam o material. ASAME pode lidar com análises muito detalhadas de operações de conformação muito complexas.

Cursos e Seminários

A SSAB Tunnplat organiza regularmente cursos e seminários sobre as vantagens dos aços laminados a frio, como por exemplo:

Curso sobre Fabrico de Aço Fornece conhecimento fundamental sobre a produção do aço, as propriedades e as aplicações dos diferentes tipos de aço.

Seminários que fornecem um conhecimento profundo sobre projecto, processos de produção, conformação, processos de união, aplicados aos aços de elevada resistência. Seminários à medida das necessidades das empresas.

Manuais

Os nossos manuais descrevem, com alguma profundidade, as muitas oportunidades oferecidas pelos aços laminados a frio:

"The Sheet Steel Handbook" (Manual da Chapa de Aço) fornece informação sobre dimensões e projectos, bem como conselhos destinados à engenharia de produção.

"The Sheet Steel Forming Handbook" (Manual de comformação de Chapa de Aço) fornece extensa informação sobre a conformação plástica.

Chapas para ensaios

Encomende amostras do nosso stock de chapa para ensaios, e descubra como um novo tipo de aço se pode adequar ao seu equipamento de produção e ao produto final.

Informação sobre materiaais

Informação adicional sobre todos os nossos tipos de aço de alto limite elástico, e a forma de os utilizar e trabalhar, é apresentada nas nossa: brochuras com os títulos *Alto Limite Elástico, Extra Alto Limite Elástico e Ultra Alto Limite Elástico.*

Certificação

SSAB Tunnplat está certificada pela SS-EN ISO 9001:2000, ISO/TS 16949:2002 e SS-EN ISO 14001:1996.

Visite os nossos sites! www.ssab.pt www.ssabtunnplat.com www.businessteel.com www.steelprize.com

Recomendações para a sua encomenda

A quantidade de cada item da encomenda resulta da multiplicação de 18 Kg/mm pela largura de banda ou chapa. Ao fazer a sua encomenda, lembre-se que deverá especificar sempre as suas exigências ou requisitos, nomea damente sobre:

 Tipo de aço (descrição, a nossa designação, n.º da norma, etc)

- Adequação para galvanização a quente
- Adequação para esmaltagem
- Qualidade de superfície
- Aparência da superfície
- Rugosidade da superfície
- Dimensões, incluindo tolerâncias
- Bordos cortados, ou não
- Quantidade

- Prazo de entrega
- Protecção com óleo de estampagem anticorrosivo
- Peso máx. e/ou min. do malote
- Tamanho da bobine máx.
 e/ou min. (peso e/ou diâmetro exterior)
- Embalagem
- Certificado de ensaio
- Outros requisitos

A SSAB Swedish Steel é o maior fabricante de chapa de aço da Escandinávia e um líder na Europa, quando se fala em desenvolvimento de aços extra e ultra- resistentes.

A SSAB Tunnplat, membro do SSAB Swedish Steel Group, tem um volume de negócios de mil milhões de euros e emprega cerca de 4400 pessoas na Suécia. A produção anual desta empresa é de mais de 2.8 milhões de toneladas de chapa de aço.

A SSAB Swedish Steel possui uma política ambiental que envolve melhoramentos contínuos nas condições ambientais dos processos e equipamentos. A melhoria contínua dos nossos aços tem como objectivo, minimizar os impactos ambientais que lhes são inerentes, ao longo dos ciclos de vida de cada um deles.

Nas nossas linhas de produção fabricamos os seguintes aços:

DOMEX*

Chapa de aço laminada a quente

Docol

Chapa de aço laminada a frio

DOGAL

Chapa de aço galvanizada a quente

PRELAQ

Chapa de aço pré-pintada

Marcas registadas da SSAB Tunnplåt.

Ajudamos os nossos Clientes na selecção do aço mais adequado, para melhorar a sua competitividade. A nossa aposta está na qualidade dos nossos produtos, na confiança do nosso fornecimento, e na flexibilidade do nosso Serviço de Apoio Técnico ao Cliente.

ssabtunnplat.com

SSAB Swedish Steel Portugal

Rua São Nicolau N. 2, Sala 407 PT-4520-248 Santa Maria da Feira Tel + 351 256 371 610 Fax + 351 256 371 619 info.pt@ssab.com ssab.ot

SSAB Tunnplåt AB

SE-781 84 Borlänge Sweden Tel +46 243 700 00 Fax +46 243 720 00 office@ssabtunnplat.com

Denmark

SSAB Svensk Stål A/S Tel +45 4320 5000 ssab.dk

Finland

OY SSAB Svenskt Stål AB Tel +358-9-686 6030 ssab.fi

France

SSAB Swedish Steel SA Tel +33 1 55 61 91 00 ssab fr

Germany

SSAB Swedish Steel GmbH Tel +49 211 91 25-0 Tel +49 711 6 87 84-0 ssab.de

Great Britain

SSAB Swedish Steel Ltd Tel +44 1905 795794 swedishsteel.co.uk

Italy

SSAB Swedish Steel S.p.A Tel +39 030 90 58 811 ssab.it

The Netherlands

SSAB Swedish Steel BV Tel +31 24 67 90 550 ssah nl

Norway

SSAB Svensk Stål A/S Tel +47 23 11 85 80 ssab.no

Poland

SSAB Swedish Steel Sp. z o.o. Tel +48 602 72 59 85

Portugal

SSAB Swedish Steel Tel +351 256 371 610 ssab.pt

Spain

SSAB Swedish Steel SL Tel +34 91 300 5422 ssab.es

AZI

SSAB Swedish Steel Inc Tel +1 412-269 21 20 swedishsteel.us

Brazil

SSAB Swedish Steel, Ltda. Tel: +55 41 3014 9070 ssab.com.br

South Africa

SSAB Swedish Steel Pty Ltd Tel +27 11 827 0311 swedishsteel.co.za

China

SSAB Swedish Steel Tel +86 10 6466 3441 swedishsteel cn

Korea

SSAB Swedish Steel Ltd Tel +822 761 6172

