Intelligent Data Analysis 2020

Lecture 4 Vector Representation of Documents

Martin Russell

Objectives

- To explain vector representation of documents
- To understand cosine distance between vector representations of documents
- To understand, intuitively, how Latent Semantic
 Analysis (LSA) can
 - Discover latent topics in a corpus and represent them in terms of words
 - Achieve dimension reduction for document vectors
 - Represent words in terms of topics

Vector Notation for Documents

Suppose that we have a set of documents

$$D = \{d_1, d_2, \dots, d_N\}$$

think of this as the corpus for IR

- Suppose that the number of **different** words in the whole corpus is V (vocabulary size)
- Now suppose a document d in D contains M different terms: $\{t_{i(1)}, t_{i(2)}, \ldots, t_{i(M)}\}$
- Finally, suppose term $t_{i(\mathbf{m})}$ occurs $f_{i(\mathbf{m})}$ times

Vector Notation

• The **vector representation** vec(d) of d is the V dimensional vector:

• vec(d) is the **document vector** for d

Uniqueness

- Is the mapping between documents and vectors one-to-one?
- In other words:
 - if d_1 , d_2 are documents, is it true that $vec(d_1) = vec(d_2)$ if and only if $d_1 = d_2$?
- If λ is a scalar and $vec(d_1) = \lambda vec(d_2)$ what does this tell you about d_1 and d_2 ?

Example

- d_1 = the cat sat on the cat's mat \rightarrow cat sat mat cat
- d_2 = the dog chased the cat \rightarrow dog chase cat
- d_3 = the mouse stayed at home \rightarrow mouse stay home
- Vocabulary: Carpus M=8.
 - cat, chase, dog, home, mat, mouse, sat, stay
- To calculate the vector representations of these documents first calculate the TF-IDF weights

Example (continued)

				# 40	С	TF-10F		
	d1	d2	d3	Nd	IDF	w(t,d1)	w(t,d2)	w(t,d3)
cat	2	1		32	0.41	0.81	0.41	
chase		1		1	1.1		1.1	
dog		1		1	1.1		1.1	
home			1	1	1.1			1.1
mat	1			1	1.1	1.1		
mouse			1	1	1.1			1.1
sat	1			1	1.1	1.1		
stay			1	1	1.1			1.1

Example (Continued)

$$vec(d_1) = \begin{bmatrix} 0.81 \\ 0 \\ 0 \\ 1.1 \\ 0 \\ 1.1 \\ 0 \end{bmatrix}, vec(d_2) = \begin{bmatrix} 0.41 \\ 1.1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, vec(d_3) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1.1 \\ 0 \\ 1.1 \\ 0 \\ 1.1 \end{bmatrix},$$

Document length revisited

Recall that the length (norm) of a vector

$$x = (x_1, ..., x_N)$$

is given by:

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$$

Document length

In the case of a document vector

$$vec(d) = (0,...0, w_{i(1)d}, 0,..., 0, w_{i(2)d}, 0,...., w_{i(M)d}, 0,..., 0)$$

$$||vec(d)|| = \sqrt{w_{i(1)d}^2 + w_{i(2)d}^2 + \dots + w_{i(M)d}^2} = ||d||$$

• Where ||d|| is the length of the document d from last week's lecture

Document Similarity

- Suppose d is a document and q is a query
 - If d and q contain the same words in the same proportions, then vec(d) and vec(q) will point in the same direction
 - If d and q contain **different words**, then vec(d) and vec(q) will point in different directions
 - Intuitively, the greater the angle between vec(d) and vec(q) the less similar the document d is with the query q

Cosine similarity

Define the Cosine Similarity between document d and query q by:

$$CSim(\boldsymbol{q},\boldsymbol{d}) = \cos\theta$$

where heta is the **angle** between $extit{vec}(extbf{ extit{q}})$ and $extit{vec}(extbf{ extit{d}})$

ullet Similarly, define the **Cosine Similarity** between documents d_1 and d_2 by:

$$CSim(d_1, d_2) = \cos \theta$$

where $\, heta\,$ is the angle between $vec(d_1)$ and $vec(d_2)$

Cosine Similarity & Similarity

• Recall that if $u=(x_1,y_1)$ and $v=(x_2,y_2)$ are vectors in 2 dimensions, then

$$\cos(\theta) = \frac{x_1 x_2 + y_1 y_2}{\|u\| \|v\|} = \frac{u \cdot v}{\|u\| \|v\|}$$

In fact, this result holds for vectors in any N dimensional space

Cosine Similarity & Similarity

• Hence, if q is a query, d is a document, and θ is the angle between vec(q) and vec(d), then:

Cosine similarity $CSim(q,d) = \cos(\theta) = \frac{vec(q) \cdot vec(d)}{\|q\| \|d\|} = \frac{\sum_{t \in q \cap d} w_{tq} \cdot w_{td}}{\|q\| \|d\|}$ = Sim(q,d)Similarity

Summary

- Vectorisation of documents
- Cosine similarity is equivalent to TF-IDF similarity
- Document length revisited