# 计算机组成原理·实验6报告

计01 容逸朗 2020010869

### 实验过程

#### CPU 设计

具体设计如下所示:



注1: 未连线的接口与总线 / 仲裁器的接口相连,此处不再画出对应的线。

注2: 同一元件内黑色字的信号为输入,彩色字的信号为输出。

### 信号表

具体设计如下所示:

| 信号名           | 生成阶段 | 最后使用阶段 | 含义                |
|---------------|------|--------|-------------------|
| if_pc         | IF   | EX     | 当前流水线阶段指令地址       |
| if_pc4        | IF   | IF     | 不发生跳转时下一条指令的地址    |
| if_pc_next    | IF   | IF     | 下一条指令地址           |
| if_instr      | IF   | EX     | 当前流水线阶段指令         |
| id_imm        | ID   | EX     | 立即数               |
| id_rs1        | ID   | EX     | 读取寄存器编号           |
| id_rs2        | ID   | EX     | 读取寄存器编号           |
| id_rdata_a    | ID   | EX     | 读取寄存器结果           |
| id_rdata_b    | ID   | EX     | 读取寄存器结果           |
| id_rd         | ID   | WB     | 写寄存器编号            |
| id_alu_op     | ID   | EX     | ALU 操作:加、减或按指令执行  |
| id_alu_src    | ID   | EX     | ALU 输入选择:寄存器或立即数  |
| id_branch     | ID   | MEM    | 是否为跳转型指令          |
| id_mem_read   | ID   | MEM    | 是否要读内存            |
| id_mem_write  | ID   | MEM    | 是否要写内存            |
| id_mem_sel    | ID   | MEM    | 读写内存的位数           |
| id_mem_to_reg | ID   | WB     | 寄存器写入数据选择         |
| id_reg_write  | ID   | WB     | 是否要写寄存器           |
| ex_forward_a  | EX   | EX     | ALU 输入选择:寄存器或数据旁路 |
| ex_forward_b  | EX   | EX     | ALU 输入选择:寄存器或数据旁路 |
| ex_alu_op4    | EX   | EX     | ALU 操作            |
| ex_alu_a      | EX   | EX     | ALU 输入            |
| ex_alu_b      | EX   | EX     | ALU 输入            |
| ex_sel_b      | EX   | EX     | ALU 数据:寄存器或数据旁路   |
| ex_alu_out    | EX   | WB     | ALU 输出            |
| ex_pc_sum     | EX   | MEM    | 发生跳转时下一条指令的地址     |
| ex_alu_zero   | EX   | MEM    | ALU 输出是否为零        |
| mem_rdata     | MEM  | WB     | 内存读出的数据           |
| wb_wdata      | WB   | WB     | 写入寄存器堆的数据         |

#### 内存数据



#### 串口输出



## 思考题

- 1. 流水线 CPU 中,用于 branch 指令的比较器既可以放在 ID 阶段,也可以放在 EXE 阶段。放在这两个阶段 分别有什么优缺点?
- ID 阶段
  - 。 优点:提早知道分支跳转结果,在分支预测失败时要丟弃的指令数较少;
  - 。 缺点:单一周期要做的事变多,降低了 CPU 的主频。
- EXE 阶段
  - 。 优点:可以利用 ALU 的减法作比较,避免因为增加比较器所导致的额外计算时间,这种方法不会影响主频;
  - 。 缺点:分支预测失败时要丟弃的指令数较多。

# 实验总结

本次实验中,我共提交了两次评测才通过本次实验:)

- 第一次提交时由于忽略了串口部分的输出,只看到指令成功到达 0x8000008c 就以為完成了,故出错;
- 吸取了以往实验的教训,本次调试时仔细检查每一时刻的波形,若有误则更改之。

不断重复上述操作直至仿真通过,再上板测试,无误后方提交,最终通过。