### Forza di attrito

La presenza delle forze di *attrito* fa parte dell'esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta *forza di attrito*. Può essere schematizzata come una forza tangente alla superficie.



Da un punto di vista microscopico l'attrito è dovuto alle microfusioni che si formano in corrispondenza delle asperità delle due superfici a contatto



### Attrito statico e attrito dinamico

La forza  $F_s$  necessaria a rompere le microfusioni e a far iniziare lo scorrimento è responsabile dell'*attrito statico*.

Una volta iniziato, lo scorrimento può essere mantenuto applicando una forza  $F_d$  esterna che vinca l'attrito dinamico. Di solito,  $F_s \geq F_d$ .

Il grafico rappresenta l'andamento nel tempo dell'intensità della forza di attrito quando si applica dall'esterno una forza crescente F fino a far muovere il corpo in esame



## Modello macroscopico dell'attrito

ullet La forza di attrito è con buona approssimazione *proporzionale alla reazione vincolare* N esercitata sul corpo:

$$F_s = \mu_s N, \qquad F_d = \mu_d N$$

dove  $F_s$  è il valore massimo della forza di attrito statico;  $\mu_s=$  coefficiente di attrito statico;  $\mu_d=$  coefficiente di attrito dinamico.

•  $\mu_s$ ,  $\mu_d$  sono numeri (adimensionali),  $\mu_s$ ,  $\mu_d < 1$ ; dipendono dalle superfici a contatto; per una data coppia di superfici,  $\mu_d < \mu_s$ .

## Coefficienti d'attrito

## **TABLE 5.1**

## **Coefficients of Friction**

|                             | $\mu_s$    | $\mu_k$ |
|-----------------------------|------------|---------|
| Steel on steel              | 0.74       | 0.57    |
| Aluminum on steel           | 0.61       | 0.47    |
| Copper on steel             | 0.53       | 0.36    |
| Rubber on concrete          | 1.0        | 0.8     |
| Wood on wood                | 0.25 - 0.5 | 0.2     |
| Glass on glass              | 0.94       | 0.4     |
| Waxed wood on wet snow      | 0.14       | 0.1     |
| Waxed wood on dry snow      | _          | 0.04    |
| Metal on metal (lubricated) | 0.15       | 0.06    |
| Ice on ice                  | 0.1        | 0.03    |
| Teflon on Teflon            | 0.04       | 0.04    |
| Synovial joints in humans   | 0.01       | 0.003   |

## Problemi con attrito e Legge di Newton

- $\bullet$  L'attrito è una forza, quindi va semplicemente inclusa nella somma  $\sum \vec{F}$  che appare nella Legge di Newton
- Le regole per l'attrito permettono di determinare la direzione e la grandezza delle forze di attrito



## Misura del coefficiente di attrito statico





Quando l'angolo  $\theta$  raggiunge il valore critico per cui la moneta inizia a muoversi:

$$mg\sin\theta = F_s = \mu_s mg\cos\theta$$

da cui

$$\mu_s = \tan \theta = \frac{h}{d}$$

## Esempio di applicazione

Assumendo  $\mu_s=0.5$  fra due strati di terreno, qual è il minimo angolo  $\phi$  di cui si dovrebbe ridurre la pendenza del terreno per impedirne lo scorrimento?



Soluzione:

$$\theta = 45^{\circ} - \phi \le \arctan 0.5 = 26.6^{\circ}$$

da cui  $\phi \geq 18.4^{\circ}$ 

Quanto tempo impiega una massa di 1 kg a percorrere la distanza di 10 m, partendo da ferma, lungo un piano inclinato di  $30^{\circ}$  rispetto all'orizzontale, in presenza di attrito dinamico (con coefficiente  $\mu_d=0.3$ )? Con che velocità arriva in fondo ?

Quanto tempo impiega una massa di 1 kg a percorrere la distanza di 10 m, partendo da ferma, lungo un piano inclinato di  $30^{\circ}$  rispetto all'orizzontale, in presenza di attrito dinamico (con coefficiente  $\mu_d = 0.3$ )? Con che velocità arriva in fondo ?

#### Soluzione:

La forza normale agente sulla massa è  $mg\cos 30^\circ = 8.49$  N, la corrispondente forza di attrito  $f = \mu_d mg\cos 30^\circ = 25.5$  N. La massa subisce un'accelerazione costante  $a = g\sin 30^\circ - \mu_d g\cos 30^\circ = 2.36$   $m/s^2$ , seguendo una legge oraria  $x(t) = at^2/2$ . Per percorrere d = 10 m impiega quindi  $t = \sqrt{2d/a} = 2.91$  s. La sua velocità è data da v(t) = at, ovvero v = 6.86 m/s dopo 10 m. In generale, dopo aver percorso d, la sua velocità vale  $v = \sqrt{2ad}$ .

Una forza F=12 N spinge un blocco di peso P=5 N contro la parete. Coefficienti di attrito  $\mu_s=0.6$ ,  $\mu_d=0.4$ .



- Il blocco (inizialmente fermo) si muove?
- Esprimere la forza totale esercitata dalla parete sul blocco.

Una forza F=12 N spinge un blocco di peso P=5 N contro la parete. Coefficienti di attrito  $\mu_s=0.6$ ,  $\mu_d=0.4$ .



- Il blocco (inizialmente fermo) si muove?
- Esprimere la forza totale esercitata dalla parete sul blocco.

#### Soluzione:

Il blocco non si muove: la reazione vincolare della parete vale -12 N lungo l'asse x; la forza di attrito statico  $F\mu_s \leq 12 \cdot 0.6N = 7.2N > P$ . Lungo l'asse y, la forza di attrito  $F_s$  uguaglia la forza peso:  $F_y = +5$  N

### Moto in un fluido

- Un fluido (liquido o gas) esercita una forza di resistenza,  $\vec{R}$ , su di un oggetto che si muove in esso. La direzione di  $\vec{R}$  è opposta alla direzione  $\vec{v}$  del moto dell'oggetto relativo al fluido.
- ullet Il modulo di  $ec{R}$  dipende dal fluido e dalla forma dell'oggetto
- Il modulo di  $\vec{R}$  dipende dalla velocità dell'oggetto in modo complicato: in generale, aumenta per v crescente.
- Caso semplice: R proporzionale a v, ovvero  $\vec{R} = -b\vec{v}$ . E' una buona approssimazione per moto lento o per oggetti piccoli. Basata su di un modello in cui la resistenza è proporzionale al numero di collisioni con gli atomi del fluido, che a sua volta è proporzionale a v.

## Moto in un fluido, esempio

Caduta di un grave in un fluido, con resistenza proporzionale alla velocità:

$$mg - bv = ma$$

$$a = \frac{dv}{dt} = g - \frac{b}{m}v$$

Si tratta di un'equazione differenziale.



La velocità tende ad un valore finito  $v_l$  (velocità limite), alla quale la forze di resistenza uguaglia la forza peso:

$$mg - bv_l = 0 \quad \rightarrow \quad v_l = \frac{mg}{b}$$

## Moto in un fluido, soluzione

La soluzione dell'equazione differenziale  $a=\frac{dv}{dt}=g-\frac{b}{m}v$  con la condizione v(t=0)=0, ha la forma seguente:

$$v(t) = \frac{mg}{b} \left( 1 - e^{-bt/m} \right)$$

che possiamo riscrivere come

$$v(t) = v_l \left( 1 - e^{-t/\tau} \right)$$

dove  $\tau=m/b$  (costante di tempo) ci dà l'ordine di grandezza del tempo necessario per arrivare alla velocità limite.



# Moto in un fluido (2)

Per oggetti non piccoli che si muovono a velocità elevate (per esempio: oggetto che cade in aria) la forza resistente R è circa proporzionale a  $v^2$  invece che a v. Si può scrivere

$$R = \frac{1}{2}C\rho Av^2,$$

dove C è un coefficiente di resistenza aerodinamica,  $\rho$  la densità del fluido, A l'area efficace (della sezione trasversale alla direzione di moto).

La velocità limite per un corpo che cade liberamente in aria è data dalla relazione

$$mg - \frac{1}{2}C\rho Av_l^2 = 0 \quad \rightarrow \quad v_l = \sqrt{\frac{2mg}{CA\rho}}.$$

L'equazione del moto si può risolvere per separazione delle variabili.

## Forze in moto circolare uniforme

- ullet Una forza  $ec{F}_r$  è diretta verso il centro del cerchio
- ullet Questa forza è associata ad un'accelerazione,  $\vec{a}_c$
- Applicando la II Legge di Newton lungo la direzione radiale si ottiene:

$$F_r = ma_c = \frac{mv^2}{r}$$



## Forza centripeta

- Una forza che provoca un'accelerazione centripeta (forza centripeta) agisce nella direzione del centro del cerchio
- Questa forza produce un cambiamento nella direzione del vettore velocità e un moto circolare
- Se tale forza sparisce, l'oggetto si muove con moto uniforme nella direzione tangente al cerchio



La forza centripeta *non* è un nuovo tipo di forza: è una forza come le altre, che ha come effetto un moto circolare.

### Moto di un'automobile

- La forza che accelera un'automobile è la forza di attrito dal suolo!
- Il motore applica una forza sulle ruote
- Il fondo delle ruote applica forze in direzione contraria al moto sulla superfice stradale, mentre la reazione (della strada sulle ruote) produce il moto in avanti dell'automobile

...e in curva?

# **Curva orizzontale (piatta)**

- La forza centripeta è data da una forza di attrito statico!
- La velocità massima alla quale l'automobile può affrontare la curva è data da

$$\frac{mv^2}{r} \le \mu_s mg \to v \le \sqrt{\mu_s gr}$$

 Notare come questa non dipenda dalla massa dell'automobile.





## Curva sopraelevata

Per quale valore di  $\theta$  i passeggeri non risentono forze laterale? ciò avviene quando la forza centripeta è interamente data dalla componente orizzontale  $n_x$  della reazione vincolare della strada  $\vec{n}$ :

$$n_y = n\cos\theta = mg,$$

$$n_x = n\sin\theta = \frac{mv^2}{r}$$



Da qui si ricava  $\tan\theta=\frac{v^2}{rg}$ . Notare la direzione della forza centripeta: è orizzontale, non parallela al piano inclinato!

## **Pendolo Conico**



$$T\cos\theta = mg, \quad T\sin\theta = \frac{mv^2}{r}$$

Dividiamo la seconda relazione per la prima:

$$\tan \theta = \frac{v^2}{rg}, \qquad v = \sqrt{rg \tan \theta} = \sqrt{Lg \sin \theta \tan \theta}$$

### Giro della morte

Qual è la forza esercitata dal seggiolino sul pilota nel punto più basso e nel punto più alto del giro (in unità di mg del pilota)? Si assuma che la velocità v resti costante per tutto il giro.



# Giro della morte (2)

Nei due punti, bot e top:

$$n_{bot} - mg = \frac{mv^2}{r} \rightarrow \frac{n_{bot}}{mg} = \frac{v^2}{gr} + 1$$
 $n_{top} + mg = \frac{mv^2}{r} \rightarrow \frac{n_{top}}{mg} = \frac{v^2}{gr} - 1$ 

Dati: 
$$v=225$$
 m/s,  $r=2.7$  km,  $\frac{v^2}{gr}=1.91$ , da cui:  $n_{bot}=2.91mg$ ,  $n_{top}=0.91mg$ .