ZYNQ7000 开发平台 用户手册

AX7021 开发板

文档版本控制

文档版本	修改内容记录
REV1.0	创建文档。
REV1.1	修正了 B34_L15_N/P 的对应管脚。
REV1.2	修正了CON4 的PIN43脚为E20

目录

文档	版本控	制	•••••	2
—、	开发	支板简介	•••••	6
_,	AC	7021B 核心板	•••••	8
	(—)	简介 错误!	未定义书签	
	(<u></u>)	ZYNQ 芯片 错误!	未定义书签	
	(三)	DDR3 DRAM错误!	未定义书签	
	(四)	QSPI Flash错误!	未定义书签	
	(五)	eMMC Flash错误!	未定义书签	
	(<u>``</u> \)	时钟配置 错误!	未定义书签	
	(七)	USB 转串口 错误!	未定义书签	
	(八)	LED 灯 错误!	未定义书签	
	(九)	复位按键 错误!	未定义书签	
	(十)	JTAG 接口 错误!	未定义书签	
	(+-)	拨码开关配置 错误!	未定义书签	
	(+=)	电源 错误!	未定义书签	
	(十三)	结构图 错误!	未定义书签	
	(十四)	连接器管脚定义		27
三、	扩展	そ板		33
	(—)	简介		33
	(<u></u>	干兆以太网接口		34
	(三)	USB2.0 Host 接口		39
	(四)	HDMI 输出接口	4	41
	(五)	USB 转串口	4	43
	$(\overline{\nearrow})$	SD 卡槽	4	44
	(七)	JTAG 接口	4	46
	(八)	LED 灯	4	47
	(九)	用户按键	4	47
	(+)	扩展口	4	48
	(+-)	供电电源		52

,			_	
1			_	
ı	. ,	1		نے ا

芯驿电子科技(上海)有限公司基于 XILINX ZYNQ7000 开发平台的开发板(型号: AX7021)2017 款正式发布了正式发布了,为了让您对此开发平台可以快速了解,我们编写了此用户手册。

这款 ZYNQ7000 FPGA 开发平台采用核心板加扩展板的模式,方便用户对核心板的二次 开发利用。核心板使用 XILINX 的 Zynq7000 SOC 芯片的解决方案,它采用 ARM+FPGA SOC 技术将双核 ARM Cortex-A9 和 FPGA 可编程逻辑集成在一颗芯片上。另外核心板上含有 2 片共 1GB 高速 DDR3 SDRAM 芯片,1 片 8GB 的 eMMC 存储芯片和 1 片 256Mb 的 QSPI FLASH 芯片。

在底板设计上我们为用户扩展了丰富的外围接口,比如 5 路干兆以太网接口,4 路 USB2.0 HOST 接口,1 路 HDMI 输出接口,Uart 通信接口,SD 卡座,40 针扩展接口等等。满足用户各种以太网高速数据交换,数据存储,视频传输处理以及工业控制的要求,是一款"专业级"的 ZYNQ 开发平台。为高速以太网数据传输和交换,数据处理的前期验证和后期应用提供了可能。相信这样的一款产品非常适合从事 ZYNQ 开发的学生、工程师等群体。

一、开发板简介

在这里,对这款 AX7021 ZYNQ 开发平台进行简单的功能介绍。

开发板的整个结构,继承了我们一贯的核心板+扩展板的模式来设计的。核心板和扩展板之间使用高速板间连接器连接。

核心板主要由 ZYNQ7020 + 2 个 DDR3 + eMMC + QSPI FLASH 的最小系统构成,承担 ZYNQ 系统的高速数据处理和存储的功能, ZYNQ7020 和两片 DDR3 之间的数据位宽为32 位,两片 DDR3 容量高达 1GB。8GB的 eMMC FLASH 存储芯片和 256Mb的 QSPI FLASH用来静态存储 ZYNQ 的操作系统、文件系统及用户数据,用户可以通过核心板上的拨码开关来选择不同的启动方式。 ZYNQ7020 采用 Xilinx 公司的 Zynq7000 系列的芯片,型号为XC7Z020-2CLG484I。 ZYNQ7020 芯片可分成处理器系统部分 Processor System (PS)和可编程逻辑部分 Programmable Logic (PL)。

底板为核心板扩展了丰富的外围接口,其中包含 5 路干兆以太网接口、4 路 USB2.0 HOST接口、1 路 HDMI输出接口、1 路 SD Card接口、1 路 UART USB接口、1 路 SD 卡接口、2路 40针的扩展口和一些按键 LED。

下图为整个开发系统的结构示意图:

通过这个示意图,我们可以看到,我们这个开发平台所能含有的接口和功能。

● ZYNQ7000 核心板

由 XC7Z020+1GB DDR3+8GB eMMC FLASH + 256Mb QSPI FLASH 组成,另外有两个晶振提供时钟,一个是 33.3333MHz 提供给 PS 系统,另一个是 50MHz 提供给 PL 逻辑。

● 千兆以太网接口

5 路 10/100M/1000M 以太网 RJ45 接口,用于和电脑或其它网络设备进行以太网数据交换。网络接口芯片采用 Micrel 公司的 KSZ9031 工业级 GPHY 芯片,1 路以太网连接到 ZYNQ 芯片的 PS 端,4 路以太网连接到 ZYNQ 芯片的 PL 端。

● HDMI 显示输出

1 路 HDMI 输出接口,我们选用了 Silion Image 公司的 SIL9134 HDMI 编码芯片,最高支持 1080P@60Hz 输出,支持 3D 输出。

● USB Uart 接口

2路 Uart 转 USB 接口,用于和电脑通信,方便用户调试。1路在核心板上,核心板独立工作是使用, 1路在底板上,整板调试时使用。串口芯片采用 Silicon Labs CP2102GM 的 USB-UAR 芯片, USB 接口采用 MINI USB 接口。

● Micro SD 卡座

1路 Micro SD 卡座,用于存储操作系统镜像和文件系统。

● 40 针扩展口

2个40针2.54mm间距的扩展口,可以外接黑金的各种模块(双目摄像头,TFT LCD 屏, 高速 AD 模块等等)。扩展口包含5V电源1路,3.3V电源2路,地3路,IO口34路。

● USB JTAG □

1个 JTAG 调试接口,采用 MINI USB 接口,用户可以通过 USB 线及板载的 JTAG 电路对 ZYNQ 系统进行调试和下载。

● LED灯

9 个发光二极管 LED,核心板上6 个,底板上3 个。核心板上1 个电源指示灯;1 个 DONE 配置指示灯;2 个用户指示灯和2 个串口收发指示灯。底板上有1 个电源指示灯和2 个用户指示灯。

● 按键

3个按键,1个复位按键在核心板上,2个用户按键在底板上。

二、 AC7021B 核心板

(一) 简介

AC7021B(**核心板型号,下同**)核心板,ZYNQ芯片是基于 XILINX 公司的 ZYNQ7000 系列的 XC7Z020-2CLG484I。ZYNQ芯片的 PS 系统集成了两个 ARM Cortex™-A9 处理器,AMBA®互连,内部存储器,外部存储器接口和外设。ZYNQ芯片的 FPGA 内部含有丰富的可编程逻辑单元,DSP和内部 RAM。

这款核心板使用了 2 片 SK Hynix 公司的 H5TQ4G63AFR-PBI 这款 DDR3 芯片,每片 DDR 的容量为 4Gbit; 2 片 DDR 芯片组合成 32bit 的数据总线宽度, ZYNQ 和 DDR3 之间的读写数据时钟频率高达 533Mhz;这样的配置,可以满足系统的高带宽的数据处理的需求。

为了和底板连接,这款核心板的 4 个板对板连接器扩展出了 PS 端的 USB 接口,干兆以太网接口,SD 卡接口及其它剩余的 MIO 口。以及 PL 端的 BANK13, BANK33, BAN34 和 BANK35 的几乎所有 IO 口(198 个),其中 BANK33 和 BANK34 的 IO 的电平可以通过更换核心板上的 LDO 芯片来修改,满足用户不用电平接口的要求。对于需要大量 IO 的用户,此核心板将是不错的选择。而且 IO 连接部分,ZYNQ 芯片到接口之间走线做了等长和差分处理,并且核心板尺寸仅为 60*60 (mm),对于二次开发来说,非常适合。

AC7021B 核心板正面图

AC7021B 核心板背面图

(二) ZYNQ 芯片

开发板使用的是 Xilinx 公司的 Zynq7000 系列的芯片,型号为 XC7Z020-2CLG484I。芯片的 PS 系统集成了两个 ARM Cortex™-A9 处理器,AMBA®互连,内部存储器,外部存储器接口和外设。这些外设主要包括 USB 总线接口,以太网接口,SD/SDIO 接口,I2C 总线接口,CAN 总线接口,UART 接口,GPIO 等。PS 可以独立运行并在上电或复位下启动。ZYNQ7000 芯片的总体框图如图 2-2-1 所示

图2-2-1 ZYNQ7000芯片的总体框图

其中 PS 系统部分的主要参数如下:

- 基于 ARM 双核 CortexA9 的应用处理器, ARM-v7 架构 高达 1GHz
- 每个 CPU 32KB 1 级指令和数据缓存,512KB 2 级缓存 2 个 CPU 共享
- 片上 boot ROM 和 256KB 片内 RAM
- 外部存储接口, 支持 16/32 bit DDR2、DDR3 接口
- 两个千兆网卡支持:发散-聚集 DMA , GMII , RGMII , SGMII 接口
- 两个 USB2.0 OTG 接口,每个最多支持 12 节点
- 两个 CAN2.0B 总线接口
- 两个 SD 卡、SDIO、MMC 兼容控制器
- 2 个 SPI, 2 个 UARTs, 2 个 I2C 接口
- 4组 32bit GPIO, 54(32+22)作为 PS 系统 IO, 64连接到 PL
- PS 内和 PS 到 PL 的高带宽连接

其中 PL 逻辑部分的主要参数如下:

- 逻辑单元 Logic Cells: 85K;
- 查找表 LUTs: 53,200
- 触发器(flip-flops):106,400
- 乘法器 18x25MACCs: 220;
- Block RAM: 4.9Mb;
- 两个 AD 转换器,可以测量片上电压、温度感应和高达 17 外部差分输入通道, 1MBPS

XC7Z020-2CLG484I 芯片的速度等级为-2,工业级,封装为 BGA484,引脚间距为 0.8mm, ZYNQ7000 系列的具体的芯片型号定义如下图 2-2-2 所示。

图2-2-2 ZYNQ型号命名规则定义

图 2-2-3 为开发板所用的 XC7Z020 芯片实物图。

图2-2-3 XC7Z020芯片实物

(三) DDR3 DRAM

AC7021B核心板上配有两片美光公司的DDR3 SDRAM芯片(共计1GB),型号为MT41K256M16TW-107(兼容H5TQ4G63AFR-PBI)。DDR3 SDRAM的总线宽度共为32bit。DDR3 SDRAM的最高运行速度可达533MHz(数据速率1066Mbps)。该DDR3存储系统直接

连接到了ZYNQ处理系统(PS)的BANK 502的存储器接口上。DDR3 SDRAM的具体配置如下表2-3-1所示。

表5-1	DDR3	SDRAN	/配置
1C -	0013		

位 号	芯片型号	容量	厂家
U5,U6	MT41K256M16TW-107	256M x 16bit	美光

DDR3 的硬件设计需要严格考虑信号完整性,我们在电路设计和 PCB 设计的时候已经充分考虑了匹配电阻/终端电阻,走线阻抗控制,走线等长控制, 保证 DDR3 的高速稳定的工作。DDR3 DRAM 的硬件连接方式如图 2-3-1 所示:

图2-3-1 DDR3 DRAM原理图部分

DDR3 DRAM 引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号
DDR3_DQS0_P	PS_DDR_DQS_P0_502	C2
DDR3_DQS0_N	PS_DDR_DQS_N0_502	D2
DDR3_DQS1_P	PS_DDR_DQS_P1_502	H2
DDR3_DQS1_N	PS_DDR_DQS_N1_502	J2
DDR3_DQS2_P	PS_DDR_DQS_P2_502	N2
DDR3_DQS2_N	PS_DDR_DQS_N2_502	P2
DDR3_DQS3_P	PS_DDR_DQS_P3_502	V2

DDR3_DQS4_N	PS_DDR_DQS_N3_502	W2
DDR3_D0	PS_DDR_DQ0_502	D1
DDR3_D1	PS_DDR_DQ1_502	C3
DDR3_D2	PS_DDR_DQ2_502	B2
DDR3_D3	PS_DDR_DQ3_502	D3
DDR3_D4	PS_DDR_DQ4_502	E 3
DDR3_D5	PS_DDR_DQ5_502	E1
DDR3_D6	PS_DDR_DQ6_502	F2
DDR3_D7	PS_DDR_DQ7_502	F1
DDR3_D8	PS_DDR_DQ8_502	G2
DDR3_D9	PS_DDR_DQ9_502	G1
DDR3_D10	PS_DDR_DQ10_502	L1
DDR3_D11	PS_DDR_DQ11_502	L2
DDR3_D12	PS_DDR_DQ12_502	L3
DDR3_D13	PS_DDR_DQ13_502	K1
DDR3_D14	PS_DDR_DQ14_502	J1
DDR3_D15	PS_DDR_DQ15_502	К3
DDR3_D16	PS_DDR_DQ16_502	M1
DDR3_D17	PS_DDR_DQ17_502	Т3
DDR3_D18	PS_DDR_DQ18_502	N3
DDR3_D19	PS_DDR_DQ19_502	T1
DDR3_D20	PS_DDR_DQ20_502	R3
DDR3_D21	PS_DDR_DQ21_502	T2
DDR3_D22	PS_DDR_DQ22_502	M2
DDR3_D23	PS_DDR_DQ23_502	R1
DDR3_D24	PS_DDR_DQ24_502	AA3
DDR3_D25	PS_DDR_DQ25_502	U1
DDR3_D26	PS_DDR_DQ26_502	AA1
DDR3_D27	PS_DDR_DQ27_502	U2
DDR3_D28	PS_DDR_DQ28_502	W1
DDR3_D29	PS_DDR_DQ29_502	Y 3
DDR3_D30	PS_DDR_DQ30_502	W3

DDR3_D31	PS_DDR_DQ31_502	Y1
DDR3_DM0	PS_DDR_DM0_502	B1
DDR3_DM1	PS_DDR_DM1_502	H3
DDR3_DM2	PS_DDR_DM2_502	P1
DDR3_DM3	PS_DDR_DM3_502	AA2
DDR3_A0	PS_DDR_A0_502	M4
DDR3_A1	PS_DDR_A1_502	M5
DDR3_A2	PS_DDR_A2_502	K4
DDR3_A3	PS_DDR_A3_502	L4
DDR3_A4	PS_DDR_A4_502	K6
DDR3_A5	PS_DDR_A5_502	K5
DDR3_A6	PS_DDR_A6_502	J7
DDR3_A7	PS_DDR_A7_502	J6
DDR3_A8	PS_DDR_A8_502	J5
DDR3_A9	PS_DDR_A9_502	H5
DDR3_A10	PS_DDR_A10_502	J3
DDR3_A11	PS_DDR_A11_502	G5
DDR3_A12	PS_DDR_A12_502	H4
DDR3_A13	PS_DDR_A13_502	F4
DDR3_A14	PS_DDR_A14_502	G4
DDR3_BA0	PS_DDR_BA0_502	L7
DDR3_BA1	PS_DDR_BA1_502	L6
DDR3_BA2	PS_DDR_BA2_502	M6
DDR3_S0	PS_DDR_CS_B_502	P6
DDR3_RAS	PS_DDR_RAS_B_502	R5
DDR3_CAS	PS_DDR_CAS_B_502	P3
DDR3_WE	PS_DDR_WE_B_502	R4
DDR3_ODT	PS_DDR_ODT_502	P5
DDR3_RESET	PS_DDR_DRST_B_502	F3
DDR3_CLK0_P	PS_DDR_CKP_502	N4
DDR3_CLK0_N	PS_DDR_CKN_502	N5
DDR3_CKE	PS_DDR_CKE_502	V3

(四) QSPI Flash

核心板配有一片 256MBit 大小的 Quad-SPI FLASH 芯片,型号为 W25Q256FVEI,它使用 3.3V CMOS 电压标准。由于 QSPI FLASH 的非易失特性,在使用中,它可以作为系统的启动设备来存储系统的启动镜像。这些镜像主要包括 FPGA 的 bit 文件、ARM 的应用程序代码以及其它的用户数据文件。QSPI FLASH 的具体型号和相关参数见表 2-4-1。

位 号	芯片类型	容量	厂家
U7	W25Q256FVEI	32M Byte	Winbond

表2-4-1 QSPI Flash的型号和参数

QSPI FLASH 连接到 ZYNQ 芯片的 PS 部分 BANK500 的 GPIO 口上,在系统设计中需要配置这些 PS 端的 GPIO 口功能为 QSPI FLASH 接口。为图 2-4-1 为 QSPI Flash 在原理图中的部分。

图 2-4-1 QSPI Flash 连接示意图

图 2-4-2 为 QSPI Flash 的实物图

2-4-2 为 QSPI Flash 的实物图

配置芯片引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号
QSPI_SCK	PS_MIO6_500	A4
QSPI_CS	PS_MIO1_500	A1
QSPI_D0	PS_MIO2_500	A2
QSPI_D1	PS_MIO3_500	F6
QSPI_D2	PS_MIO4_500	E4
QSPI_D3	PS_MIO5_500	A3

(五) eMMC Flash

核心板配有一片大容量的8GB大小的eMMC FLASH芯片,型号为MTFC8GAKAJCN-4MIT,它支持JEDEC e-MMC V5.0标准的HS-MMC接口,电平支持1.8V或者3.3V。eMMC FLASH和ZYNQ连接的数据宽度为4bit。由于eMMC FLASH的大容量和非易失特性,在ZYNQ系统使用中,它可以作为系统大容量的存储设备,比如存储ARM的应用程序、系统文件以及其它的用户数据文件。eMMC FLASH的具体型号和相关参数见表2-5-1。

位 号	芯片类型	容量	厂家
U33	MTFC8GAKAJCN-4MIT	8G Byte	TOSHIBA

表2-5-1 eMMC Flash的型号和参数

eMMC FLASH 连接到 ZYNQ 芯片的 PS 部分 BANK501 的 GPIO 口上,在系统设计中需

要配置这些 PS 端的 GPIO 口功能为 SD 接口。为图 2-5-1 为 eMMC Flash 在原理图中的部分。 U1

图 2-5-1 eMMC Flash 连接示意图

图 2-5-2 为 eMMC Flash 的实物图

2-5-2 为 eMMC Flash 的实物图

配置芯片引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号
MMC_CCLK	PS_MIO48_501	D11
MMC_CMD	PS_MIO47_501	B10
MMC_D0	PS_MIO46_501	D12
MMC_D1	PS_MIO49_501	C14
MMC_D2	PS_MIO50_501	D13
MMC_D3	PS_MIO51_501	C10

(六) 时钟配置

AC7021B 核心板上分别为 PS 系统和 PL 逻辑部分提供了有源时钟, 使 PS 系统和 PL 逻辑可以单独工作。

PS 系统时钟源

ZYNQ 芯片通过开发板上的 X1 晶振为 PS 部分提供 33.333MHz 的时钟输入。时钟的输入连接到 ZYNQ 芯片的 BANK500 的 PS_CLK_500 的管脚上。其原理图如图 2-6-1 所示:

图 2-6-1 PS 部分的有源晶振

时钟引脚分配:

信号名称	ZYNQ 引脚
PS_CLK_500	F7

4.2 PL 系统时钟源

AC7021B 核心板上提供了单端 50MHz 的 PL 系统时钟源, 3.3V 供电。晶振输出连接到 FPGA BANK13 的全局时钟(MRCC), 这个 GCLK 可以用来驱动 FPGA 内的用户逻辑电路。该时钟源的原理图如图 2-6-3 所示

图 2-6-3 PL系统时钟源

PL 时钟引脚分配:

信号名称	ZYNQ 引脚
PL_GCLK	Y9

(七) USB 转串口

为了 AC7021B 核心板单独工作和调试 ,我们为核心板配备了一个 Uart 转 USB 接口。用于核心板单独供电和调试。转换芯片采用 Silicon Labs CP2102GM 的 USB-UAR 芯片, USB接口采用 MINI USB 接口,可以用一根 USB 线将它连接到上 PC 的 USB 口进行核心板的单独供电和串口数据通信 。

USB Uart 电路设计的示意图如下图所示:

2-7-1 USB 转串口示意图

同时对串口信号设置了 2 个 PCB 上丝印为 RX 和 TX 的 LED 指示灯(D5 和 D6), RX 和 TX LED 灯会指示串口是否有数据接受或者是否有数据发出,如下图所示,

2-7-3 USB 转串口信号指示灯

UART 转串口的 ZYNQ 引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
UART_RXD	PS_MIO14_500	В6	Uart数据输入
UART_TXD	PS_MIO15_500	E6	Uart数据输出

(八) LED 灯

AC7021B 核心板上有 6 个红色 LED 灯,其中 1 个是电源指示灯(PWR),1 个是配置 LED 灯(DONE),2 个是用户 LED 灯(LED1~LED2),另外两个是 UART 的发送接收指示灯(TX,RX)。当核心板供电后,电源指示灯会亮起;当 FPGA 配置程序后,配置 LED 灯会亮起。2 个用户 LED 灯一个连接到 PS 的 MIO 上,一个连接到 PL 的 IO 上,用户可以通过程序来控制亮和灭,当连接用户 LED 灯的 IO 电压为高时,用户 LED 灯熄灭,当连接 IO 电压为低时,用户 LED 会被点亮。LED 灯硬件连接的示意图如图 2-8-1 所示:

图 2-8-1 核心板 LED 灯硬件连接示意图

图 2-8-2 为核心板上的 LED 灯实物图

图 2-8-2 核心板的 LED 灯实物图

用户 LED 灯的引脚分配

信号名称	ZYNQ 引脚名	ZYNQ 管脚号	备注
MIO0_LED	PS_MIO0_500	G6	用户LED1灯
PL_LED	IO_0_13	R7	用户LED2灯

(九) 复位按键

AC7021B 核心板上有一个复位按键 RESET 和电路,复位信号连接到 ZYNQ 芯片 PS 复位管脚上,用户可以使用这个复位按键来复位 ZYNQ 系统。复位按键按下,复位芯片会产生低电平的复位信号给 ZYNQ 芯片。 复位按键和复位芯片连接的示意图如图 2-9-1 所示:

图 2-9-1 复位按键连接示意图

图 2-9-2 为复位按键和复位电路的实物图

图 2-9-2 复位按键实物图

复位按键的 ZYNQ 管脚分配

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
PS_POR_B	PS_POR_B_500	B5	ZYNQ系统复位信号

(十) JTAG 接口

在 AC7021B 核心板上我们也预留了 JTAG 的测试座 J1, 用来核心板单独 JTAG 下载和调试,图 2-10-1 就是 JTAG 口的原理图部分,其中涉及到 TMS,TDI,TDO,TCK,GND,+3.3V 这六个信号。

图 2-10-1 核心板原理图中 JTAG 接口部分

核心板上 JTAG 接口 J1 采用 6 针的 2.54mm 间距的单排测试孔,用户如果需要在核心板上用 JTAG 连接调试的话,需要焊接 6 针的单排排针。图 2-10-2 为 JTAG 接口在开发板上的实物图

图 2-10-2 JTAG 接口实物图

(十一) 拨码开关配置

AC7021B 核心板上有一个 2 位的拨码开关 SW1 用来配置 ZYNQ 系统的启动模式。AC7021B 系统开发平台支持三种启动模式。这三种启动模式分别是 JTAG 调试模式, QSPI FLASH 和 SD 卡启动模式。XC7Z020 芯片上电后会检测响应 MIO 口(MIO5 和 MIO4)的电平来决定那种启动模式。用户可以通过核心板上的拨码开关 SW1 来选择不同的启动模式。SW1 启动模式配置如下表 2-11-1 所示。

SW1	拨码位置 (1,2)	MIO5,MIO4电平	启动模式
N SW1	ON、ON	0、0	JTAG
	OFF、OFF	1, 1	SD卡
	OFF、ON	1, 0	QSPI FLASH

表2-11-1 SW1启动模式配置

(十二) 电源

AC7021B 核心板供电电压为 DC5V,单独使用时通过 Mini USB 接口供电,连接底板时通过底板供电,请注意不要 Mini USB 和底板同时供电,以免造成损坏。板上的电源设计示意图如下图 2-12-1 所示:

图 2-12-1 原理图中电源接口部分

开发板通过+5V 供电,通过四路 DC/DC 电源芯片 TPS54620 和 TLV62130RGT 转化成+1.0V,+1.8V,+1.5V,+3.3V 四路电源,+1.0V 输出电流可高达 5A, 其它 3 路电源为3A。通过一路 LDO SPX3819M5-2-5 产生 VCCIO 2.5V 电源, VCCIO 2.5V 电源只要是预留给 FPGA 的 BANK33, BANK34 的 BANK 电源,用户可以通过 2 个 0 欧姆电阻(R74,R79)来选择 BANK33 和 BANK34 的电源。默认开发板上 R74 是安装的,R79 的电阻是不安装的,所以 BANK33,BANK34 的电源是+3.3V 的。用户可以通过更换电阻,使得 BANK33,34 的 IO 输出 2.5V 的电压标准。1.5V 通过 TI 的 TPS51200 生成 DDR3 需要的 VTT 和 VREF 电压。各个电源分配的功能如下表所示:

电源	功能	
+1.0V	ZYNQ PS 和 PL 部分的内核电压	

+1.8V	ZYNQ PS 和 PL 部分辅助电压 ,BANK501		
	IO 电压 , eMMC		
12.21/	ZYNQ Bank0,Bank500 , Bank13 ,		
+3.3V	Bank35 的 VCCIO, QSIP FLASH, Clock 晶振		
+1.5V	DDR3, ZYNQ Bank501		
VREF, VTT (+0.75V)	DDR3		
VCCIO(+2.5V)	预留为 ZYNQ Bank33, Bank34		

因为 ZYNQ FPGA 的电源有上电顺序的要求,在电路设计中,我们已经按照 芯片的电源 要求设计,上电依次为 $+1.0V->+1.8V->(+1.5\ V_X+3.3V_X)$ VCCIO)的电路设计,保证芯片的正常工作。

(十三) 结构图

正面图 (Top View)

(十四) 连接器管脚定义

核心板一共扩展出 4 个高速扩展口,使用 4 个 80Pin 的板间连接器(CON1~CON4)和底板连接,连接器的 PIN 脚间距为 0.5mm(连接器型号 AXK580137YG,底板对应的连接器型号为 AXK680337YG)。其中 CON1连接电源输入, PS 的 MIO 信号和 JTAG 信号, CON2~CON4连接 PL 的 BANK13, BANK33, BANK34, BANK35的 IO 信号。 BANK33和 BANK34的 IO 电平可以通过更换板上的 LDO 芯片(U12)来改变电平标准,默认是 3.3V。

CON1 连接器的引脚分配

CON1 管脚	信号名称	ZYNQ 引脚 号	CON1 管脚	信 号 名称	ZYNQ 引脚 号
1	+5V	-	2	+5V	-
3	+5V	-	4	+5V	-
5	+5V	-	6	+5V	-
7	+5V	-	8	+5V	-
9	GND	-	10	GND	-
11	PS_MIO13	A6	12	ETH_TXD0	E9
13	PS_MIO12	C 5	14	ETH_TXD1	A7
15	-	-	16	ETH_TXD2	E10
17	-	-	18	ETH_TXD3	A8
19	GND	-	20	GND	-
21	-	-	22	ETH_TXCK	D6
23	-	-	24	ETH_TXCTL	F11
25	-	-	26	ETH_RXD3	A13
27	-	-	28	ETH_RXD2	F12
29	GND	-	30	GND	-
31	PS_MIO7	D5	32	ETH_RXD1	В7
33	PS_MIO8	E 5	34	ETH_RXD0	E11
35	PS_MIO9	C4	36	ETH_RXCTL	D7
37	PS_MIO11	B4	38	ETH_RXCK	A14
39	GND	-	40	GND	-
41	-	-	42	ETH_MDC	D10

43	-	-	44	ETH_MDIO	C12
45	-	-	46	OTG_STP	A11
47	-	-	48	OTG_DIR	E8
49	GND	-	50	GND	-
51	XADC_VP	L11	52	OTG_CLK	A9
53	XADC_VN	M12	54	OTG_NXT	F9
55	-	-	56	OTG_DATA0	C 7
57	PS_MIO10	G7	58	OTG_DATA1	G 13
59	GND	-	60	GND	-
61	SD_CLK	E14	62	OTG_DATA2	B12
63	SD_D1	B11	64	OTG_DATA3	F14
65	SD_D0	D8	66	OTG_DATA4	A12
67	SD_CMD	C8	68	OTG_DATA5	B14
69	GND	-	70	GND	-
71	SD_D3	В9	72	OTG_DATA6	F13
73	SD_D2	E13	74	OTG_DATA7	C13
75	-	-	76	-	-
77	FPGA_TMS	G12	78	FPGA_TCK	G11
79	FPGA_TDO	G14	80	FPGA_TDI	H13

CON2 连接器的引脚分配

CON2 管脚	信号名称	ZYNQ 引脚	CON2 管脚	信号名称	ZYNQ 引脚
		号			号
1	B13_L1_N	V9	2	B33_L4_N	W21
3	B13_L1_P	V10	4	B33_L4_P	W20
5	B33_L10_P	AB19	6	B33_L3_N	W22
7	B33_L10_N	AB20	8	B33_L3_P	V22
9	GND	-	10	GND	-
11	B13_L4_N	W12	12	B33_L2_N	U22
13	B13_L4_P	V12	14	B33_L2_P	T22
15	B34_L6_N	M16	16	B13_L5_N	U11
17	B34_L6_P	M15	18	B13_L5_P	U12

19	GND	-	20	GND	-
21	B13_L12_N	Y8	22	B33_IO25	U14
23	B13_IO25	U7	24	B34_IO25	R15
25	B13_L23_N	W7	26	B13_L6_P	U10
27	B13_L23_P	V7	28	B13_L6_N	U9
29	GND	-	30	GND	-
31	B13_L13_N	Y5	32	B13_L19_N	Т6
33	B13_L13_P	Y6	34	B13_L19_P	R6
35	B13_L24_N	W5	36	B13_L22_P	U6
37	B13_L24_P	W6	38	B13_L22_N	U5
39	GND	-	40	GND	-
41	B33_L11_P	Y19	42	B13_L20_P	T4
43	B33_L11_N	AA19	44	B13_L20_N	U4
45	B33_L5_P	U20	46	B13_L3_P	W11
47	B33_L5_N	V20	48	B13_L3_N	W10
49	GND	-	50	GND	-
51	B33_L1_P	T21	52	B13_L10_P	Y11
53	B33_L1_N	U21	54	B13_L10_N	Y10
55	B13_L7_P	AA12	56	B13_L2_P	V8
57	B13_L7_N	AB12	58	B13_L2_N	W8
59	GND	-	60	GND	-
61	B13_L8_N	AB11	62	B13_L14_P	AA7
63	B13_L8_P	AA11	64	B13_L14_N	AA6
65	B13_L9_N	AB9	66	B13_L16_P	AB5
67	B13_L9_P	AB10	68	B13_L16_N	AB4
69	GND	-	70	GND	-
71	B13_L11_N	AA8	72	B13_L18_N	AA4
73	B13_L11_P	AA9	74	B13_L18_P	Y4
75	B13_L17_N	AB6	76	B13_L15_P	AB2
77	B13_L17_P	AB7	78	B13_L15_N	AB1
79	B13_L21_N	V4	80	B13_L21_P	V5

CON3 连接器的引脚分配

CON3 管脚	信号名称	ZYNQ 引脚 号	CON3 管脚	信号名称	ZYNQ 引脚 号
1	B34_L2_P	J16	2	B34_L12_N	L19
3	B34_L2_N	J17	4	B34_L12_P	L18
5	B34_L11_P	K19	6	B34_L10_N	L22
7	B34_L11_N	K20	8	B34_L10_P	L21
9	GND	-	10	GND	-
11	B34_L7_P	J18	12	B34_L3_N	L16
13	B34_L7_N	K18	14	B34_L3_P	K16
15	B34_L1_P	J15	16	B34_L15_N	M22
17	B34_L1_N	K15	18	B34_L15_P	M21
19	GND	-	20	GND	-
21	B34_L17_P	R20	22	B34_L16_P	N22
23	B34_L17_N	R21	24	B34_L16_N	P22
25	B34_L14_N	N20	26	B34_L20_N	P18
27	B34_L14_P	N19	28	B34_L20_P	P17
29	GND	-	30	GND	-
31	B34_L5_N	N18	32	B34_L13_P	M19
33	B34_L5_P	N17	34	B34_L13_N	M20
35	B33_L9_P	Y20	36	B34_L21_N	T17
37	B33_L9_N	Y21	38	B34_L21_P	T16
39	GND	-	40	GND	-
41	B33_L8_P	AA21	42	B33_L6_N	V19
43	B33_L8_N	AB21	44	B33_L6_P	V18
45	B33_L12_N	AA18	46	B33_L16_P	U17
47	B33_L12_P	Y18	48	B33_L16_N	V17
49	GND	-	50	GND	-
51	B33_L13_P	W17	52	B33_L17_N	AB17
53	B33_L13_N	W18	54	B33_L17_P	AA17
55	B33_L18_N	AB16	56	B33_L7_P	AA22
57	B33_L18_P	AA16	58	B33_L7_N	AB22

59	GND	-	60	GND	-
61	B33_L21_N	Y15	62	B33_L19_N V15	
63	B33_L21_P	W15	64	B33_L19_P V1	
65	B33_L24_P	AB14	66	B33_L15_N U16	
67	B33_L24_N	AB15	68	B33_L15_P U1	
69	GND	-	70	GND -	
71	B33_L23_N	AA13	72	B33_L14_P W1	
73	B33_L23_P	Y13	74	B33_L14_N	Y16
75	B33_L20_N	W13	76	B33_L22_P Y1	
77	B33_L20_P	V13	78	B33_L22_N AA1	
79	B34_IO0	H15	80	B33_IO0	U19

CON4 连接器的引脚分配

CON4 管脚	信号名称	ZYNQ 引脚	CON4 管脚 信号名称		ZYNQ 引脚
		号			号
1	B35_L7_N	B15	2	B35_L9_P	A16
3	B35_L7_P	C15	4	B35_L9_N	A17
5	B35_L8_P	B16	6	B35_L10_P	A18
7	B35_L8_N	B17	8	B35_L10_N	A19
9	GND	-	10	GND	-
11	B35_L11_N	C18	12	B35_L15_P	A21
13	B35_L11_P	C17	14	B35_L15_N	A22
15	B35_L13_N	B20	16	B35_L18_N	B22
17	B35_L13_P	B19	18	B35_L18_P	B21
19	GND	-	20	GND	-
21	B35_L14_N	C20	22	B35_L16_N	C22
23	B35_L14_P	D20	24	B35_L16_P	D22
25	B35_L12_P	D18	26	B35_L17_N	D21
27	B35_L12_N	C19	28	B35_L17_P	E21
29	GND	-	30	GND	-
31	B35_L2_N	D17	32	B35_L23_N	F22
33	B35_L2_P	D16	34	B35_L23_P	F21
35	B35_L1_N	E16	36	B35_L22_N	G21

37	B35_L1_P	F16	38	B35_L22_P	G20
39	GND	-	40	GND	-
41	B35_L21_P	E19	42	B34_L8_N	J22
43	B35_L21_N	E20	44	B34_L8_P	J21
45	B35_L24_P	H22	46	B35_L20_N	F19
47	B35_L24_N	G22	48	B35_L20_P	G19
49	GND	-	50	GND	-
51	B35_L6_P	G17	52	B35_L19_N	H20
53	B35_L6_N	F17	54	B35_L19_P	H19
55	B35_L4_P	G15	56	B34_L9_P	J20
57	B35_L4_N	G16	58	B34_L9_N	K21
59	GND	-	60	GND	-
61	B35_L3_N	D15	62	B35_IO25	H18
63	B35_L3_P	E15	64	B35_IO0	H17
65	B34_L24_N	R16	66	B34_L4_P	L17
67	B34_L24_P	P16	68	B34_L4_N	M17
69	GND	-	70	GND	-
71	B34_L23_P	R18	72	B34_L18_N	P21
73	B34_L23_N	T18	74	B34_L18_P	P20
75	B35_L5_P	F18	76	B34_L22_P	R19
77	B35_L5_N	E18	78	B34_L22_N	T19
79	B34_L19_P	N15	80	B34_L19_N	P15

三、扩展板

(一)简介

通过前面的功能简介,我们可以了解到扩展板部分的功能

- 5路 10/100M/1000M 以太网 RJ-45接口
- 1路 HDMI 输出显示接口
- 4路 USB HOST 接口
- 1路 USB Uart 通信接口
- 1路 SD 卡接口
- 2路40针扩展口
- JTAG 调试接口
- 2 个独立按键
- 2 个用户 LED 灯

(二)千兆以太网接口

AX7021 底板上有 5 路干兆以太网接口,其中 1 路以太网接口是连接的 PS 系统端,另外 4 路以太网接口是连接到 PL 的逻辑 IO 口上。连接到 PL 端的 4 路干兆以太网接口需要通过程序调用 IP 挂载到 ZYNQ 的 AXI 总线系统上。

以太网芯片采用 Micrel 公司的 KSZ9031RNX 以太网 PHY 芯片为用户提供网络通信服务。 PS 端的以太网 PHY 芯片是连接到 ZYNQ 的 PS 端 BANK501 的 GPIO 接口上。PL 端的的以太网 PHY 芯片是连接到 BANK33和 BANK34 的 IO 上。KSZ9031RNX 芯片支持 10/100/1000 Mbps 网络传输速率,通过 RGMII 接口跟 Zynq7000 系统的 MAC 层进行数据通信。 KSZ9031RNX 支持MDI/MDX 自适应,各种速度自适应,Master/Slave 自适应,支持 MDIO总线进行 PHY 的寄存器管理。

KSZ9031RNX上电会检测一些特定的IO的电平状态,从而确定自己的工作模式。表 3-2-1 描述了 GPHY 芯片上电之后的默认设定信息。

配置 Pin 脚	说明	配置值	
PHYAD[2:0] MDIO/MDC 模式的 PHY 地址		PHY Address 为 011	
CLK125_EN	使能 125Mhz 时钟输出选择	使能	
LED_MODE LED 灯模式配置		单个 LED 灯模式	
MODE0~MODE3	链路自适应和全双工配置	10/100/1000 自适应,兼容金	
		双工、半双工	

表 3-2-1PHY 芯片默认配置值

当网络连接到干兆以太网时, ZYNQ 和 PHY 芯片 KSZ9031RNX 的数据传输时通过 RGMII 总线通信,传输时钟为 125Mhz,数据在时钟的上升沿和下降样采样。

当网络连接到百兆以太网时, ZYNQ和 PHY芯片 KSZ9031RNX的数据传输时通过RMII总线通信,传输时钟为25Mhz。数据在时钟的上升沿和下降样采样。

图 3-2-1 为 ZYNQ PS 端 1 路以太网 PHY 芯片连接示意图:

图 3-2-1 ZYNQ PS 系统与 GPHY 连接示意图

图 3-2-2 为 ZYNQ PL 端 4 路以太网 PHY 芯片连接示意图:

图 3-2-2 ZYNQ PL 端与 4 个 GPHY 连接示意图

图 3-2-3 为 PS 端以太网 GPHY 芯片的实物图

图 3-2-3 PS 端以太网 GPHY 芯片和接口实物图

图 3-2-4 为 PL 端以太网 GPHY 芯片的实物图

图 3-2-4 PL 端以太网 GPHY 芯片和接口实物图

PS 端第一路干兆以太网引脚分配如下:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
PHY1_TXCK	PS_MIO16_501	D6	RGMII 发送时钟
PHY1_TXD0	PS_MIO17_501	E 9	发送数据 bit 0

PHY1_TXD1	PS_MIO18_501	A7	发送数据 bit1
PHY1_TXD2	PS_MIO19_501	E10	发送数据 bit2
PHY1_TXD3	PS_MIO20_501	A8	发送数据 bit3
PHY1_TXCTL	PS_MIO21_501	F11	发送使能信号
PHY1_RXCK	PS_MIO22_501	A14	RGMII 接收时钟
PHY1_RXD0	PS_MIO23_501	E11	接收数据 BitO
PHY1_RXD1	PS_MIO24_501	В7	接收数据 Bit1
PHY1_RXD2	PS_MIO25_501	F12	接收数据 Bit2
PHY1_RXD3	PS_MIO26_501	A13	接收数据 Bit3
PHY1_RXCTL	PS_MIO27_501	D7	接收数据有效信号
PHY1_MDC	PS_MIO52_501	D10	MDIO 管理时钟
PHY1_MDIO	PS_MIO53_501	C12	MDIO 管理数据
PHY1_RESET	PS_MIO7_500	D5	复位信号

PL 端第二路干兆以太网引脚分配如下:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
PHY2_TXCK	B34_L17_N	R21	RGMII 发送时钟
PHY2_TXD0	B34_L5_P	N17	发送数据 bit 0
PHY2_TXD1	B34_L5_N	N18	发送数据 bit1
PHY2_TXD2	B34_L14_P	N19	发送数据 bit2
PHY2_TXD3	B34_L14_N	N20	发送数据 bit3
PHY2_TXCTL	B34_L17_P	R20	发送使能信号
PHY2_RXCK	B34_L11_P	K19	RGMII 接收时钟
PHY2_RXD0	B34_L7_P	J18	接收数据 BitO
PHY2_RXD1	B34_L7_N	K18	接收数据 Bit1
PHY2_RXD2	B34_L1_P	J15	接收数据 Bit2
PHY2_RXD3	B34_L1_N	K15	接收数据 Bit3
PHY2_RXCTL	B34_L11_N	K20	接收数据有效信号
PHY2_MDC	B34_L2_N	J17	MDIO 管理时钟
PHY2_MDIO	B34_L2_P	J16	MDIO 管理数据
PHY2_RESET	B34_L12_N	L19	复位信号

PL 端第三路干兆以太网引脚分配如下:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
PHY3_TXCK	B34_L3_P	K16	RGMII 发送时钟
PHY3_TXD0	B34_L12_P	L18	发送数据 bit 0
PHY3_TXD1	B34_L10_N	L22	发送数据 bit1
PHY3_TXD2	B34_L10_P	L21	发送数据 bit2
PHY3_TXD3	B34_L3_N	L16	发送数据 bit3
PHY3_TXCTL	B34_L15_N	M22	发送使能信号
PHY3_RXCK	B34_L13_P	M19	RGMII 接收时钟
PHY3_RXD0	B34_L20_N	P18	接收数据 Bit0
PHY3_RXD1	B34_L16_N	P22	接收数据 Bit1
PHY3_RXD2	B34_L16_P	N22	接收数据 Bit2
PHY3_RXD3	B34_L15_P	M21	接收数据 Bit3
PHY3_RXCTL	B34_L20_P	P17	接收数据有效信号
PHY3_MDC	B34_L13_N	M20	MDIO 管理时钟
PHY3_MDIO	B34_L21_N	T17	MDIO 管理数据
PHY3_RESET	B34_L21_P	T16	复位信号

PL 端第四路干兆以太网引脚分配如下:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
PHY4_TXCK	B33_L17_P	AA17	RGMII 发送时钟
PHY4_TXD0	B33_L6_P	V18	发送数据 bit 0
PHY4_TXD1	B33_L16_P	U17	发送数据 bit1
PHY4_TXD2	B33_L16_N	V17	发送数据 bit2
PHY4_TXD3	B33_L17_N	AB17	发送数据 bit3
PHY4_TXCTL	B33_L7_P	AA22	发送使能信号
PHY4_RXCK	B33_L14_P	W16	RGMII 接收时钟
PHY4_RXD0	B33_L15_N	U16	接收数据 BitO
PHY4_RXD1	B33_L19_P	V14	接收数据 Bit1
PHY4_RXD2	B33_L19_N	V15	接收数据 Bit2
PHY4_RXD3	B33_L7_N	AB22	接收数据 Bit3
PHY4_RXCTL	B33_L15_P	U15	接收数据有效信号

PHY4_MDC	B33_L14_N	Y16	MDIO 管理时钟
PHY4_MDIO	B33_L22_P	Y14	MDIO 管理数据
PHY4_RESET	B33_L22_N	AA14	复位信 号

PL 端第五路干兆以太网引脚分配如下:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
PHY5_TXCK	B33_L24_N	AB15	RGMII 发送时钟
PHY5_TXD0	B33_L20_P	V13	发送数据 bit 0
PHY5_TXD1	B33_L20_N	W13	发送数据 bit1
PHY5_TXD2	B33_L23_P	Y13	发送数据 bit2
PHY5_TXD3	B33_L23_N	AA13	发送数据 bit3
PHY5_TXCTL	B33_L24_P	AB14	发送使能信号
PHY5_RXCK	B33_L13_P	W17	RGMII 接收时钟
PHY5_RXD0	B33_L18_N	AB16	接收数据 BitO
PHY5_RXD1	B33_L18_P	AA16	接收数据 Bit1
PHY5_RXD2	B33_L21_N	Y15	接收数据 Bit2
PHY5_RXD3	B33_L21_P	W15	接收数据 Bit3
PHY5_RXCTL	B33_L13_N	W18	接收数据有效信号
PHY5_MDC	B33_L12_P	Y18	MDIO 管理时钟
PHY5_MDIO	B33_L12_N	AA18	MDIO 管理数据
PHY5_RESET	B33_L6_N	V19	复位信号

(三) USB2.0 Host 接口

AX7021底板上有4个USB2.0 HOST接口, USB2.0收发器采用的是一个1.8V的, 高速的支持ULPI标准接口的USB3320C-EZK芯片, 再通过一个USB HUB芯片USB2514扩展出4路 USB HOST接口。ZYNQ的USB总线接口和USB3320C-EZK收发器相连接,实现高速的USB2.0 Host模式的数据通信。USB3320C的USB的数据和控制信号连接到ZYNQ芯片PS端的BANK501的IO口上, USB接口差分信号(DP/DM)连接到USB2514芯片扩展出4个USB接口。2个24MHz的晶振为分别为USB3320C和USB2514芯片提供系统时钟。

USB 接口为扁型 USB 接口(USB Type A),方便用户同时连接不同的 USB Slave 外设(比如 USB 鼠标和 USB 键盘)。另外底板也为每个 USB 接口提供了+5V 的电源。

ZYNQ处理器和USB3320C-EZK芯片及USB2514芯片连接的示意图如3-3-1所示:

图 3-3-1 Zynq7000 和 USB 芯片间连接示意图

图 3-3-2 为 USB2.0 芯片和接口的实物图,其中 USB 接口使用的是双 USB 接口。

图 6-7 USB2.0 部分的实物图

USB2.0 引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
OTG_DATA4	PS_MIO28_501	A12	USB 数据 Bit4
OTG_DIR	PS_MIO29_501	E8	USB 数据方向信号
OTG_STP	PS_MIO30_501	A11	USB 停止信号
OTG_NXT	PS_MIO31_501	F9	USB 下一数据信号

OTG_DATA0	PS_MIO32_501	C 7	USB 数据 Bit0
OTG_DATA1	PS_MIO33_501	G13	USB 数据 Bit1
OTG_DATA2	PS_MIO34_501	B12	USB 数据 Bit2
OTG_DATA3	PS_MIO35_501	F14	USB 数据 Bit3
OTG_CLK	PS_MIO36_501	A 9	USB 时钟信号
OTG_DATA5	PS_MIO37_501	B14	USB 数据 Bit5
OTG_DATA6	PS_MIO38_501	F13	USB 数据 Bit6
OTG_DATA7	PS_MIO39_501	C13	USB 数据 Bit7
OTG_RESETN	PS_MIO8_500	E 5	USB 复位信号

(四) HDMI 输出接口

HDMI 输出接口的实现,是选用 Silion Image 公司的 SIL9134 HDMI (DVI) 编码芯片,最高支持 1080P@60Hz 输出,支持 3D 输出。

其中, SIL9134的视频数字接口, 音频数字接口和 I2C 配置接口和 ZYNQ7000 PL 部分的 BANK35 IO 相连, ZYNQ7000 系统通过 I2C 管脚来对 SIL9134 进行初始化和控制操作。 SIL9134 芯片和 ZYNQ7000的硬件连接示意图如下图 3-4-1 所示:

图 3-4-2 为 HDMI 芯片和接口的实物图,

图 3-4-2 HDMI 接口实物图

ZYNQ 的引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
9134_CLK	B35_L4_N	G16	9134 视频信号时钟
9134_HS	B35_L21_P	E19	9134 视频信号行同步
9134_VS	B35_L1_P	F16	9134视频信号列同步
9134_DE	B35_L21_N	E20	9134 视频信号有效
9134_D[0]	B35_L24_P	H22	9134 视频信号数据 0
9134_D[1]	B35_L24_N	G22	9134 视频信号数据 1
9134_D[2]	B35_L6_P	G17	9134 视频信号数据 2
9134_D[3]	B35_L6_N	F17	9134 视频信号数据 3
9134_D[4]	B35_L4_P	G15	9134 视频信号数据 4
9134_D[5]	B35_L3_N	D15	9134 视频信号数据 5
9134_D[6]	B35_L3_P	E15	9134 视频信号数据 6
9134_D[7]	B35_L5_P	F18	9134 视频信号数据 7
9134_D[8]	B35_L5_N	E18	9134 视频信号数据 8
9134_D[9]	B35_IO0	H17	9134 视频信号数据 9
9134_D[10]	B35_IO25	H18	9134 视频信号数据 10
9134_D[11]	B35_L19_P	H19	9134 视频信号数据 11
9134_D[12]	B35_L19_N	H20	9134 视频信号数据 12
9134_D[13]	B35_L20_P	G19	9134 视频信号数据 13
9134_D[14]	B35_L20_N	F19	9134 视频信号数据 14
9134_D[15]	B35_L22_P	G20	9134 视频信号数据 15
9134_D[16]	B35_L22_N	G21	9134 视频信号数据 16
9134_D[17]	B35_L23_P	F21	9134 视频信号数据 17

9134_D[18]	B35_L23_N	F22	9134 视频信号数据 18
9134_D[19]	B35_L17_P	E21	9134 视频信号数据 19
9134_D[20]	B35_L17_N	D21	9134 视频信号数据 20
9134_D[21]	B35_L16_P	D22	9134 视频信号数据 21
9134_D[22]	B35_L16_N	C22	9134 视频信号数据 22
9134_D[23]	B35_L18_P	B21	9134 视频信号数据 23
9134_SCK	B35_L13_P	B19	9134 音频接口 I2S 时钟
9134_SPDIF	B35_L1_N	E16	9134 音频 S/PDIF 输入
9134_MCLK	B35_L2_P	D16	9134 音频输入主时钟
9134_WS	B35_L14_N	C20	9134 音频接口 I2S 字选择
9134_SD0	B35_L14_P	D20	9134 音频接口 I2S 数据
9134_SD1	B35_L12_P	D18	9134 音频接口 I2S 数据
9134_SD2	B35_L12_N	C19	9134 音频接口 I2S 数据
9134_SD3	B35_L2_N	D17	9134 音频接口 I2S 数据
9134_nRESET	B35_L11_P	C17	9134 复位信号
9134_INT	B35_L13_N	B20	9134 中断信号
9134_SCL	B35_L18_N	B22	9134 IIC 控制时钟
9134_SDA	B35_L15_N	A22	9134 IIC 控制数据

(五) USB 转串口

AX7021 底板上也配有串口接口,用于 ZYNQ7000 系统的整体调试, 转换芯片采用 Silicon Labs CP2102GM 的 USB-UAR 芯片, USB 接口采用 MINI USB 接口,可以用一根 USB 线将它连接到上 PC 的 USB 口进行核心板的单独供电和串口数据通信 。

USB Uart 电路设计的示意图如下图 3-5-1 所示:

3-5-1 USB 转串口示意图

下图 3-5-2 为 USB 转串口的实物图

3-5-2 USB 转串口实物图

UART 转串口的 ZYNQ 引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
UART_RXD	PS_MIO13_500	A6	Uart数据输入
UART_TXD	PS_MIO12_500	C 5	Uart数据输出

(六) SD 卡槽

AX7021底板包含了一个Micro型的SD卡接口,以提供用户访问SD卡存储器,用于存储 ZYNQ芯片的BOOT程序,Linux操作系统内核,文件系统以及其它的用户数据文件。

SDIO信号与ZYNQ的PS BANK501的IO信号相连,因为该BANK的VCCMIO设置为1.8V,但SD卡的数据电平为3.3V,我们这里通过TXS02612电平转换器来连接。Zynq7000 PS和SD

卡连接器的原理图如图3-6-1所示。

图 3-6-1 SD 卡连接示意图

图 3-6-2 为开发板上 SD 卡槽实物图

图 3-6-2 SD 卡槽实物图

SD 卡槽引脚分配

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
SD_CLK	PS_MIO40	E14	SD时钟信号
SD_CMD	PS_MIO41	C8	SD命令信号
SD_D0	PS_MIO42	D8	SD数据Data0
SD_D1	PS_MIO43	B11	SD数据Data1
SD_D2	PS_MIO44	E13	SD数据Data2
SD_D3	PS_MIO45	В9	SD数据Data3
SD_CD	PS_MIO10	G7	SD卡插入信号

(七) JTAG 接口

在 AX7021 底板上已经集成了 JTAG 的下载调试电路, 所以用户无需购买额外的 Xilinx下载器。只要一根 USB 线就能进行 ZYNQ 的开发和调试了。在开发板上通过一个 FTDI 的 USB 桥接芯片 FT232HL 实现 PC 的 USB 和 ZYNQ 的 JTAG 调试信号 TCK,TDO,TMS,TDI 进行数据通信。图 3-7-1 为开发板上 JTAG 口的原理图部分:

图3-7-1 原理图中JTAG接口部分

在 AX7021 开发板上, JTAG 接口的形式是 USB 接口方式的, 用户可以通过我们提供的 USB 线连接 PC 和 JTAG 接口进行 ZYNQ 的系统调试。

图3-7-2 JTAG接口实物图

(八) LED 灯

AX7021 底板上有 3 个红色 LED 灯,其中 1 个是电源指示灯(PWR), 2 个是用户 LED 灯 (LED1~LED2)。当底板供电后,电源指示灯会亮起; 2 个用户 LED 灯一个连接到 PS 的 MIO 上,一个连接到 PL 的 IO 上,用户可以通过程序来控制亮和灭,当连接用户 LED 灯的 IO 电压为高时,用户 LED 灯熄灭,当连接 IO 电压为低时,用户 LED 会被点亮。LED 灯硬件连接的示意图如图 3-8-1 所示:

图 3-8-1 底板 LED 灯硬件连接示意图

图 3-8-2 为底板上的 LED 灯实物图

图 3-8-2 底板的 LED 灯实物图

底板用户 LED 灯的引脚分配

信号名称	ZYNQ 引脚名	ZYNQ 管脚号	备注
PS_LED	PS_MIO9_500	C4	用户LED1灯
PL_LED	B35_L9_P	A16	用户LED2灯

(九)用户按键

AX7021 底板上有 2 个用户按键 KEY1 和 KEY2, KEY1 连接到 ZYNQ 芯片 PS 的 MIO 管脚上, KEY2 连接到 ZYNQ 芯片 PL 的 IO 管脚上。按键按下,信号为低,ZYNQ 芯片就是检测到低电平来判断按键是否按下。用户按键连接的示意图如图 3-9-1 所示:

图 3-9-1 用户按键连接示意图

图 3-9-2 为用户按键在底板的实物图

图 2-9-2 用户按键实物图

用户按键的 ZYNQ 管脚分配

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
PS_KEY	PS_MIO11_500	B4	PS端的用户按键
PL_KEY	B35_L9_N	A17	PL端的用户按键

(十) 扩展口

AX7021 底板预留了 2 个 2.54mm 标准间距的 40 针的扩展口 J15 和 J16,用于连接黑金的各个模块或者用户自己设计的外面电路,扩展口有 40 个信号,其中,5V 电源 1 路,3.3V 电源 2 路,地 3 路,IO 口 34 路。切勿 IO 直接跟 5V 设备直接连接,以免烧坏 ZYNQ7000芯片。如果要接 5V 设备,需要接电平转换芯片。

在扩展口和 ZYNQ7000 连接之间串联了 33 欧姆的排阻 ,用于保护 ZYNQ7000 芯片以免外界电压或电流过高造成损坏 , 扩展口(J15)的电路如下图 3-10-1 所示

图 3-10-1 扩展口 J15 原理图

下图为 J4 扩展口实物图,扩展口的 Pin39, Pin40 已经在板上标示出。

图 3-10-2 扩展口 J15 实物图

J15 扩展口 ZYNQ 的引脚分配

引脚编号	ZYNQ 引脚	引脚编号	ZYNQ 引脚
1	GND	2	+5V
3	T21	4	U21
5	U20	6	V20
7	Y19	8	AA19
9	J21	10	J22
11	K21	12	J20
13	P16	14	R16
15	M17	16	L17
17	T18	18	R18
19	P20	20	P21

21	T19	22	R19
23	P15	24	N15
25	M16	26	M15
27	AB19	28	AB20
29	W22	30	V22
31	W21	32	W20
33	AA21	34	AB21
35	Y21	36	Y20
37	GND	38	GND
39	+3.3V	40	+3.3V

扩展口(J16)的电路如下图 3-10-3 所示

图 3-10-3 扩展口 J16 原理图

下图为 J16 扩展口实物图,扩展口的 Pin1, Pin2 已经在板上标示出。

图 3-10-4 扩展口 J16 实物图

J16 扩展口 ZYNQ 的引脚分配

引脚编号	ZYNQ 引脚	引脚编 号	ZYNQ 引脚
1	GND	2	+5V
3	V12	4	W12
5	U12	6	U11
7	U9	8	U10
9	T6	10	R6
11	U5	12	U6
13	U4	14	T4
15	W10	16	W11
17	Y10	18	Y11
19	W8	20	V8
21	AA6	22	AA7
23	AA11	24	AB11
25	AB4	26	AB5
27	AB1	28	AB2
29	Y4	30	AA4
31	AB10	32	AB9
33	AA9	34	AA8
35	AB7	36	AB6
37	GND	38	GND
39	+3.3V	40	+3.3V

(十一) 供电电源

开发板的电源输入电压为 DC12V,请使用开发板自带的电源,不要用其他规格的电源,以免损坏开发板。底板上通过 1 路 DC/DC 电源芯片 MP2303 和 3 路 DC/DC 电源芯片 MP1482 转换成+5V,+1.2V,+3.3V 和 1.8V 四路电源。因为+5V 电源通过板间连接器给核心板供电,所以 DCDC 电源的电流输出为 3A,其它 3 路电源电流输出为 2A。另外板上还有一路 LDO 芯片,默认输出是 3.3V,如果核心板的 BANK33,BANK34 的 BANK 电源更换成其它电压电平,底板上的这个 LDO 芯片输出也需要相应的修改。

扩展上的电源设计如下图 3-11-1 所示:

图 3-11-1 底板电源原理图

图 3-11-2 为底板上电源电路的实物图

图 3-14-2 扩展板电源电路实物图 (1.2V/5V/3.3V)

图 3-14-2 扩展板电源电路实物图 (1.8V)

(十二) 底板结构图

正面图 (Top View)