DATASHEET

V1.0 April.01 2012

AXP152

Enhanced Power Supply IC

目录

1	. 概述(Summary)	3
2	. 特性(Feature)	4
3	. 典型应用(Typical Application)	5
4	. 极限参数(Absolute Maximum Ratings)	7
5 .	. 电气特性(Electrical Characteristics)	7
6	. 典型特性(Typical Characteristics)	10
7	. 管脚定义(Pin Description)	12
8	. 功能框图(Functional Block Diagram)	14
9	. 控制和操作(Control and Operating)	15
	9.1 开关机和复位(Power On/Off & Reset)	15
	9.2 多路电源输出(Multi-Power Outputs)	17
	9.3 默认电压/启动时序的设置(Default Voltage/Timing Setting)	19
	9.4 多功能管脚说明(Multi-Function Pin Description)	19
	9.5 定时器(Timer)	20
	9.6 HOST 接口及中断(TWSI and IRQ)	20
	9.7 寄存器(Registers)	22
10). 封装(Package)	34

1. 概述(Summary)

AXP152 是一款高度集成的电源管理芯片,包含 4 路高效 DCDC、7 路 LDO,输出电压可灵活配置。AXP152 用于需要多路电源转换的应用场景,并可与本公司其它 PMU 配合构成完整的单芯或多芯锂电池(锂离子或锂聚合物)应用场景电源解决方案,充分满足目前日益复杂的应用处理器系统对于电源多输出、大电流、高精度的要求。

AXP152 内部集成了过压欠压保护(OVP/UVP)、过温保护(OTP)等保护功能,可充分保障供电的安全稳定。

AXP152 提供了一个两线串行通讯接口:Two Wire Serial Interface (TWSI),应用处理器可以通过这个接口设置各路输出的电压,打开/关闭某些电源输出,以及配置中断和睡眠唤醒系统。

AXP152 提供 5mm x 5mm 40-pin QFN 封装。

应用产品

- 移动互联网设备 smart Phone,
 xPad,MID 核心系统
- 数码相框, DVD 播放器, 机 顶盒, 液晶电视等家用电器
- 交换机,路由器等网络设备
- 车载多媒体设备
- 安防,远程监控等安全设备
- 其它应用处理器电路系统 Application Processor systems

管脚定义

2. 特性(Feature)

• 4 路同步降压转换器 (DC-DC)

- o DC-DC1: PFM/PWM 两种工作模式,可在 1.7-3.5V 之间部分调节,驱动能力 1A
- DC-DC2: PFM/PWM 两种工作模式,可在
 0.7-2.275V 之间调节,25mV/step,驱动能力2A,支持DVM
- o DC-DC3: PFM/PWM 两种工作模式,可在 0.7-3.5V 之间调节,50mV/step,驱动能力 1.2A
- o DC-DC4: PFM/PWM 两种工作模式,可在 0.7-3.5V 之间调节,25mV/step,驱动能力 1.2A

• 系统管理(System Management)

- o支持软关机和硬关机
- o支持外部触发源唤醒
- o支持输出电压监测
- o输出 PWROK, 用于系统复位或关机指示
- o 过/欠压保护 (OVP/UVP)
- o 过温保护 (OTP)
- o可定制时序和输出电压

• 7 路线性稳压器 (LDO)

- o LDO0:输出电压可调,驱动能力 1.5A,内部 500/900/1500mA 限流
- o RTCLDO: 1路 RTC31,输出 3.1V(可外灌)。 1路 RTC13,输出电压 1.3/1.8V 可选
- o ALDO1: Analog LDO, 1.2-3.3V 部分可调, 驱动能力 300mA
- o ALDO2: Analog LDO, 1.2-3.3V 部分可调, 驱动能力 300mA
- o DLDO1: Digtal LDO 或 Swtich, 0.7-3.5V 可调, 100mV/step, 驱动能力 300mA
- o DLDO2: Digtal LDO 或 Swtich, 0.7-3.5V 可调, 25mV/step, 驱动能力 300mA
- o GPIOLDO: low noise LDO, 1.8-3.3V 可调节, 100mV/step, 驱动能力 20mA

• 应用处理器接口(Host Interface)

- o Host 可以通过 TWSI 接口进行数据交换
- o可以灵活配置的中断及休眠管理
- o 灵活的管脚功能设置,多路 GPIO 可灵活配置
- o内置可配置计时器

3. 典型应用(Typical Application)

• 单独使用(适用于单节电池或无电池系统)

• 与本公司其它 PMU 配合使用(多芯电池供电)

4. 极限参数(Absolute Maximum Ratings)

Symbol	Description	Value	Units
LDO0IN	Input Voltage 输入电压	-0.3 to 11	V
ALDOIN	Input Voltage 输入电压	-0.3 to 6	V
T_{J}	Operating Temperature Range 工作温度	-40 to 130	$^{\circ}$ C
Ts	Storage Temperature Range 储运温度	-40 to 150	$^{\circ}\mathbb{C}$
T_{LEAD}	Maximum Soldering Temperature (at leads,10sec) 锡焊温度	300	$^{\circ}$
V_{ESD}	Maximum ESD stress voltage,Human Body Model 抗静电能力	>4000	V
P_{D}	Internal Power Dissipation 内部功率消耗耐受		mW

5. 电气特性(Electrical Characteristics)

 $V_{LDO0IN} = 5V$, $V_{ALDOIN} = 3.8V$, $T_A = 25$ °C

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
LDO0IN						
V _{IN}	LDO0IN Input Voltage		3		6.8	V
ALDOIN						
V _{IN}	ALDOIN Input Voltage		3		5.5	V
V _{UVLO}	ALDOIN Under Voltage Lockout	Default		3.3		V
Off Mode C	urrent					
I _{OFF}	OFF Mode Current	LDO0IN=ALDOIN=		1.5		4
		0V, RTC31=3.3V		15		μΑ
Logic						
$V_{\rm IL}$	Logic Low Input Voltage			0.3		V
V_{IH}	Logic High Input Voltage			2		V
TWSI						
V _{CC}	Input Supply Voltage			3.3		V
ADDRESS	TWSI Address	Default		0x60		
f_{SCK}	Clock Operating Frequency			400		kHZ
$t_{\rm f}$	Clock Data Fall Time	2.2Kohm Pull High		60		ns
t _r	Clock Data Rise Time	2.2Kohm Pull High		100		ns
DCDC			-	•		
f_{OSC}	Oscillator Frequency	Default		2.25		MHz
	•		•	•		

Enhanced Power Supply IC

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
DCDC1						
I _{VIN1}	Input Current	PFM Mode		4.5		<u> </u>
		$I_{DC1OUT} = 0$		45		μΑ
I_{LIM1}	PMOS Switch Current Limit	PWM Mode		1600		mA
I _{DC1OUT}	Available Output Current	PWM Mode		1000		mA
V _{DC1OUT}	Output Voltage		1.7	3.3	3.5	V
DCDC2					•	
I _{VIN2}	Input Current	PFM Mode		20		4
		$I_{DC2OUT} = 0$		20		μΑ
I _{LIM2}	PMOS Switch Current Limit	PWM Mode		2400		mA
I _{DC2OUT}	Available Output Current	PWM Mode		2000		mA
V _{DC2OUT}	Output Voltage Range		0.7	1.25	2.275	V
DCDC3		<u> </u>			•	
I _{VIN3}	Input Current	PFM Mode		4.5		A
		$I_{DC3OUT} = 0$		45		uA
I _{LIM3}	PMOS Switch Current Limit	PWM Mode		1600		mA
I _{DC3OUT}	Available Output Current	PWM Mode		1200		mA
V _{DC3OUT}	Output Voltage Range		0.7	2.5	3.5	V
DCDC4						
I _{VIN4}	Input Current	PFM Mode		4.5		
		$I_{DC3OUT} = 0$		45		uA
I _{LIM4}	PMOS Switch Current Limit	PWM Mode		1600		mA
I _{DC3OUT}	Available Output Current	PWM Mode		1200		mA
V _{DC3OUT}	Output Voltage Range		0.7	1.25	3.5	V
LDO0		1				
				5		
17	Output Valtage	I —1 A	10/	3.3	10/	V
$ m V_{LDO0}$	Output Voltage	$I_{LDO1}=1 \text{ mA}$	-1%	2.8	1%	·
				2.5		
				Not		
I_{Limit}	Output Current Limited			1500		mA
Limit	Output Current Emitted			900		1117 \$
				500		
I_Q	Quiescent Current			55		μΑ
R_{DSON}	V_{LDO0} =5V, I_{LDO0} not limited	PIN to PIN,LDO0IN to LDO0		200		mΩ
RTC31						
V _{RTC31}	Output Voltage	I _{RTC31} =1mA	-1%	3.1	1%	V
I _{RTC31}	Output Current			30		mA

Enhanced Power Supply IC

GTT 57 07	Pro corporation	GOVENING	3.500	-		
SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
RTC13	1	T		1	1	,
V_{RTC13}	Output Voltage	I _{RTC31} =1mA	-1%	1.3 1.8	1%	V
I _{RTC13}	Output Current			30		mA
ALDO1				•	•	
V _{ALDO1}	Output Voltage	I _{ALDO1} =1mA	-1%	3	1%	V
I _{ALDO1}	Output Current			300		mA
I_Q	Quiescent Current			55		μΑ
PSRR	Power Supply Rejection Ratio	V _{ALDOIN} =4.2V,Vo=1.8V, I _{ALDOI} =10mA, 1KHz		85		dB
e_N	Output Noise,<20KHz	V _{ALDOIN} =3.6V,V ₀ =1.8V , I ₀ =60mA		43		μV_{RMS}
ALDO2						
V_{ALDO2}	Output Voltage	I _{ALDO2} =1mA	-1%	1.2	1%	V
I_{ALDO2}	Output Current			300		mA
I_Q	Quiescent Current			55		μΑ
PSRR	Power Supply Rejection Ratio	V _{ALDOIN} =4.2V,Vo=1.8V, I _{ALDO2} =10mA, 1KHz		81		dB
e_N	Output Noise,<20KHz	V _{ALDOIN} =3.6V,Vo=1.8V , Io=60mA		38		μV_{RMS}
DLDO1						
V_{DLDO1}	Output Voltage	I _{DLDO1} =1mA	-1%	2.8	1%	V
I_{DLDO1}	Output Current			300		mA
I_Q	Quiescent Current			55		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDOIN} =4.2V,Vo=1.8V, I _{DLDO1} =10mA, 1KHz		55		dB
DLDO2				•	•	•
V_{DLDO2}	Output Voltage	I _{DLDO2} =1mA	-1%	1.8	1%	V
I_{DLDO2}	Output Current			300		mA
I_Q	Quiescent Current			55		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDOIN} =4.2V,V ₀ =1.8V, I _{DLDO2} =10mA, 1KHz		55		dB
GPIOLDO	1			1	1	<u> </u>
V _{GPIOLDO}	Output Voltage	I _{GPIOLDO} =1mA	-1%	2.8	1%	V
I _{GPIOLDO}	Output Current			20		mA
I_Q	Quiescent Current			123		μΑ
e_N	Output Noise,<20KHz	V _{ALDOIN} =3.6V,Vo=1.8V , Io=60mA		37		μV_{RMS}

6. 典型特性(Typical Characteristics)

DCDC Efficiency vs. Load(3.8Vin)

DC-DC Load Transient(Typical:DCDC2 0.3~0.7A)

DC-DC Ripple

V_{REF} vs Temperature

7. 管脚定义(Pin Description)

Num	Name	Type	Condition	Function Description
1	GPIO1	IO	REG91[2:0]	GPIO1
2	PWRON	I		Power On-Off key input, Internal 100k pull high to APS
3	DC3SET	I		Set the default output voltage for DCDC3
4	VIN2	PI		DCDC2 input source
5	LX2	Ю		Inductor Pin for DCDC2
6	PGND2	G		NMOS Ground for DCDC2
7	DCDC2	I		DCDC2 feedback pin
8	DLDO1	О		Output Pin of DLDO1
9	DLDO2	О		Output Pin of DLDO2
10	DLDOIN	PI		DLDO1/2 input source
11	DCDC3	I		DCDC3 feedback pin
12	VIN3	PI		DCDC3 input source
13	LX3	IO		Inductor Pin for DCDC3
14	PGND3	G		NMOS Ground for DCDC3
15	VINT	PO		Internal logic power, 2.5V
16	N_RSTO	О		Output enable signal for external power module
17	RTC13	О		RTC power output for HOST RTC block
18	RTC31	IO		RTC power output or input for HOST RTC block
19	ALDOIN	PI		Power supply for analog and ALDO1/2
20	VREF	О		Internal reference voltage
21	ALDO2	PO		Output Pin of ALDO2
22	ALDO1	PO		Output Pin of ALDO1
23	PWREN	IO		Enable input for some power module ,could be configed for
	T WILLI	10		GPIO3(REG93[3:0])
24	GPIO2	IO	REG92[2:0]	GPIO2
25	DCDC4	I		DCDC4 feedback pin
26	PGND4	G		DCDC4 input source
27	LX4	IO		Inductor Pin for DCDC4
28	VIN4	PI		NMOS Ground for DCDC4
29	LDO0IN	PI		LDO0 input source
30	LDO0EN	I		Enable input for LDO0
31	IRQ	IO		IRQ output
32	LDO0	PO		Output Pin of LDO0
33	PWROK	О		Power Good Indication OutPut
34	SDA	IO		Data pin for serial interface, normally it connect a 2.2K
				resistor to 3.3V I/O power
35	SCK	I		it is the Clock pin for serial interface, normally it connect a

AXP152

Enhanced Power Supply IC

				2.2K resistor to 3.3V I/O power
36	PGND1	G		NMOS Ground for DCDC1
37	LX1	IO		Inductor Pin for DCDC1
38	VIN1	PI		DCDC1 input source
39	DCDC1	I		DCDC1 feedback pin
40	GPIO0	IO	REG90[2:0]	GPIO0
41	EP(GND)	G		Exposed Pad, need to connect to system ground

8. 功能框图(Functional Block Diagram)

9. 控制和操作(Control and Operating)

当 AXP152 工作时, TWSI 接口 SCK/SDA 管脚上拉到系统 IO 电源,则 Host 可以通过此接口对 AXP152 的工作状态进行灵活的调整和监视,并可获得丰富的信息。

某些简单的应用可能不需要使用 I2C 接口,则可以把 SCK 和 ALDOIN 短接,芯片将在开机过程中识别为 stand alone MODE(即 SIEN=0)。而在正常应用情况下,SCK 没有和 ALDOIN 短接,而是和系统 IO电源 VCC 接有 K 级上拉电阻,此时 IC 处于 Host Control MODE(即 SIEN=1)。

注: "Host"指的是应用系统的主处理器。

9.1 开关机和复位(Power On/Off & Reset)

开关机按键(POK)

AXP152的PWRON管脚到GND之间可以连接一个按键,作为独立的开关机键Power On/off Key(POK)或休眠/唤醒按键。AXP152可以自动识别这个按键的"长按"和"短按"并做出相应的反应。

几个开机源(Power on Source)

- 1、ALDOIN 来临:
- 2、POK 按键时间超过 ONLEVEL:
- 3、若 REG8F [7]=1,且 SIEN=1,IRQ 出现超过 16ms 的低电平。

注: SIEN 标志 I2C 通信接口是否可用, 1: 可用: 0: 不可用。

开机(Power On)

当有符合要求 ALDOIN(大于 V_{OFF} 且经过 16ms debounce)接入时,AXP152 会自动开机(ALDOIN 接入时是否自动开机可根据客户需求改写)。

在一般应用情况下,可通过 PWRON 按键开机(关机情况下 POK 按键时间超过 ONLEVEL)。在实际应用中,Host 的定时(Alarm)输出信号也可以连接到 PWRON—与 POK 并联,Alarm 信号有效(低电平)时相当于 POK 按下,也可以将 AXP152 开机。

开机后,DC-DC 和 LDO 将按照设定的时序顺序软启动(时序可根据客户需求改写),启动完成后可由 Host 或是通过 PWREN 管脚打开/关闭相应电源。

关机(Power Off)

POK"长按"时间大于 IRQLEVEL 时,在 POK 中断服务程序中,Host 可将"寄存器 REG32H[7]"写入"1"来通知 AXP152 进入关机状态。AXP152 进入关机状态时会关掉除 RTCLDO 之外的所有电源输出。

有下列情况, AXP152 会自动关机:

- 1、当 SIEN=0 时, POK 长度大于 IRQLEVEL; 当 SIEN=1 时, POK 长度大于 OFFLEVEL;
- 2、输入电压 LDO0IN>6.8V, 过压保护;
- 3、输入电压 ALDOIN<V_{OFF}(该电压可通过 REG31 [2:0]设置,默认 3.3V),低电保护;

Enhanced Power Supply IC

- 4、负载过大引起电源的输出电压过低,过负载保护(是否自动关机可根据客户需求改写);
- 5、IC 温度过高,过温保护;

AXP152 的自动保护机制,可以避免应用系统异常时发生被供电器件的不可逆转损坏,从而保护整个系统。

休眠和唤醒(Sleep and wakeup)

在开机的情况下,如果系统需要进入 Sleep 模式,并将其中某一路或几路电源输出关闭,则可由 REG31[3] 控制, 决定是否由 LDO0IN low go high IRQ(REG48_[6])、 POKNIRQ(REG4A_[5])、 POKLIRQ(REG49_[0])或 GPIO0/1/2/3 input edge IRQ(REG4A_[3:0])等触发 wakeup,让 PMU 将各路输出电源开关状态恢复到 REG31[3]被写'1'前的状态并将电压恢复为默认值,各路被关闭的电源依次按照规定的上电时序进行恢复。

注意:请确保应用中用于 wakeup 的 IRQ 对应 enable 位为有效,否则将不能唤醒!如下为 Sleep 和 wakeup 模式下其控制流程。

系统复位功能和输出监控功能 (PWROK)

AXP152 的 PWROK 可以作为应用系统的复位信号。在 AXP152 的开机过程中, PWROK 输出低电平, 当各路电源的输出电压稳定达到预设值后, PWROK 会被拉高, 从而实现应用系统的上电复位。

在应用系统正常工作过程中,AXP152 一直监视各路输出的电压和负载状况,并且在过负载或是欠电压的情况下,PWROK 立刻输出低电平,复位应用系统,防止误动作以及可能的数据错误。

9.2 多路电源输出(Multi-Power Outputs)

AXP152	的提供的多路输出电压及功能列	表加下
AXPI52	的提供的多路输出电压及切配列	衣如「

输出通路	类型	默认电压	应用举例	驱动能力
DCDC1	BUCK	可设置	3.3V I/O	1000 mA
DCDC2	BUCK	可设置	1.25Vcore	2000 mA
DCDC3	BUCK	可设置	1.5Vddr	1200 mA
DCDC4	BUCK	可设置	1.25Vcpu	1200 mA
RTCLDO	LDO	3.1/1.3/1.8	RTC	30 mA
LDO0	LDO	可设置		
ALDO1	LDO	可设置		300 mA
ALDO2	LDO	可设置		300 mA
DLDO1	LDO	可设置		300 mA
DLDO2	LDO	可设置		300 mA
LDO_{IO0}	LDO	可设置		20 mA

AXP152 包含 4 路同步降压型 DC-DC、7 路 LDO、多种启动时序及控制方式。DC-DC 的工作频率默认为 2.25MHz,可以通过设置寄存器来调整,外围可使用小型电感和电容元件。4 个 DC-DC 都可以设置成 PWM 模式或自动模式(由 AXP152 根据负载的大小自动切换),参见"寄存器 REG80H"。

DC-DC1/2/3/4

DCDC1 输出电压范围为 1.7-3.5V, DCDC2 输出电压为 0.7-2.275V, DCDC3/4 输出电压范围为 0.7-3.5V 可由寄存器设置(参见"寄存器 REG23H 26H 27H 2BH")。

DCDC1/2/3/4 输出电容推荐使用 10uF X7R 以上小 ESR 陶瓷电容; 当输出电压设置为 2.5V 以上时,推荐使用 2.2uH 电感,在 2.5V 以下时,推荐使用 3.3uH 电感,其中电感饱和电流需大于此电源通路最大需求电流的 50%以上。

如下是推荐电感电容列表:

电感		
型号	电流规格	直流内阻
Panasonic ELL4G2R2NA	2100mA@2.2uH	55mOhm

Enhanced Power Supply IC

Panasonic ELL4G3R3NA	1900mA@3.3uH	55mOhm				
Magic SCTG5020-2R2M	4100mA@2.2uH	42 mOhm				
Magic SCTG5020-3R3M	3400mA@3.3uH	55 mOhm				
电容	电容					
型号	温度特性	容差				
TDK C2012X5R0J475K	X5R/X7R	10%@4.7uF				
TDK C2012X5R0J106K	X5R/X7R	10%@10uF				
Murata GRM31E71A475K	X7R	10%@4.7uF				
Murata GRM21E71A106K	X7R	10%@10uF				
Murata GRM31E71A106K	X7R	10%@10uF				

RTCLDO

RTCLDO31/13 永远开启,可以为应用系统的实时时钟电路(RTC)提供不间断的电源,可根据系统需要选取输出电压 3.1V/1.3V/1.8V, 其驱动能力为 30mA。

LD00

LDO0 即可作为 LDO 供电也可作为电源开关。LDO0EN 为 LDO0 使能,当 LDO0EN 为低电平时也可通过写寄存器打开 LDO0(REG15H[7])。作为 LDO 时输出电压可调(REG15H[4:5]),驱动能力 1.5A。作为限流开关时,内部可设 500/900/1500mA 限流,默认不限流(REG15H[0:1])。

ALDO1/2

ALDO1/2 采用了低噪声设计,可以为应用系统的模拟电路提供电源,其驱动能力为 300mA。

DLDO1/2

DLDO1/2 可以为应用系统的数字电路提供电源, 其驱动能力为 300mA。

GPIOLDO

GPIOLDO 也采用了低噪声的设计,输出驱动能力为 20mA。

软启动(Soft Start)

所有 DC-DC 和 LDO 都支持软启动的输出建立方式,避免启动时电流的突然变化对输入通路的冲击。

自诊断:负载监测与限流保护

所有 DC-DC 和 LDO 都有负载监测和限流功能,当负载电流超过其驱动能力时,各输出电压都会下降,以保护内部电路。4 个 DC-DC 输出电压低于设定电压的 85%时,AXP152 自动关机。

Enhanced Power Supply IC

所有 DC-DC 不需要外部的肖特基二极管和电阻分压反馈电路。如果应用中不需要用到某个 DC-DC,只需要将对应的 LX 管脚悬空即可。

9.3 默认电压/启动时序的设置(Default Voltage/Timing Setting)

AXP152 可定制各路电源的默认电压、启动时序等。

启动时序:共包含 8 级启动,即 0-7,其中第 7 级表示上电默认不启动此路电源。其他 0-6 级分别表示第 1-7 步启动此路电源。同时可设置每步启动时间间隔,可选范围为 1、4、16、32ms。

默认电压设置:除 DCDC3 外,每一路 DCDC/LDO 可设置范围包含输出范围内除最低档电压外的所有电压。DCDC3 默认电压由芯片内部设定值和 DC3SET 共同决定,具体值如下:

芯片内部设定值	DC3SET 接 VINT	DC3SET 接地	DC3SET floating
0	1.8V	1.5V	1.2V
1	3.3V	2.8V	2.5V

9.4 多功能管脚说明(Multi-Function Pin Description)

GPIO[3:0]

可作为 GPIO[3:0]、LDO、PWM 输出等,具体参见 REG90H-9DH 说明。

PWREN

默认作为 PWREN,可控制部分输出的使能,具体控制哪几路输出可根据客户需求改写。该引脚可通过寄存器配置为 GP103,应用中该引脚作为 GP10 时建议上拉到 RTC31。

N_RSTO

在与我司其它产品构成多节电池解决方案时,该引脚用于控制外部的高压转 5V 芯片。开机时,先将该引脚置为高电平,等待电源稳定后再启动各输出模块;关机时,需等到各路输出都已关闭并 delay 8ms 后才能将该引脚置为低电平。不使用该功能时将该引脚悬空即可。

IRQ

此管脚为 IRQ 状态指示管脚,当有中断发生时,其输出拉低通知 HOST 进行中断处理,上拉到系统 IO 电源。IRQ 开机功能:若 REG8F [7]=1,且 I2C 接口有效,IRQ 出现超过 16ms 的低电平时芯片将开机。

PWROK

系统复位信号(上拉到系统 I0 电源)。关机时下拉,当开机且各路电源输出稳定后经过一定时间延时该引脚停止下拉。

9.5 定时器(Timer)

AXP152 包含一个内部定时器,通过设置寄存器 REG8AH[6:0]可改变计时器值,其最低分辨率为分钟(Minute),计时器超时后将置位 REG8AH[7],并发出 IRQ(REG42H [7])。

9.6 HOST 接口及中断(TWSI and IRQ)

图 1:Single Read and Write

图 2:Multi Read and Write

Host 可以通过 TWSI 接口访问 AXP152 的寄存器, 其操作时序如上图所示, 支持标准 100KHz 或 400KHz 频率, 最高速度可达 1.2MHz, 同时支持连读/写操作, 设备地址为 61H(读)和 60H(写)。(该地址的 bit2/1 可根据客户需要改写, 参见寄存器 REG100[3:2])

在某些特定事件发生时,AXP152 通过拉低 IRQ 的中断机制来提醒 Host,并将中断状态保存在中断状态寄存器中(参见寄存器 REG48H、寄存器 REG49H、寄存器 REG4AH),向相应的状态寄存器位写 1则清除相应的中断,当无中断事件时,IRQ 输出拉高(通过外部上拉 51K 电阻)。每个中断都可以通过中断控制寄存器来屏蔽(参见寄存器 REG40H、寄存器 REG41H、寄存器 REG42H)。

位置	中断号	含义
寄存器 48H[7]		保留,不可更改
寄存器 48H[6]	IRQ1	LDO0IN 接入 IRQ
寄存器 48H[5]	IRQ2	LDO0IN 移出 IRQ
寄存器 48H[4]		保留,不可更改
寄存器 48H[3]	IRQ3	ALDOIN 接入 IRQ
寄存器 48H[2]	IRQ4	ALDOIN 移出 IRQ
寄存器 48H[1]		保留,不可更改
寄存器 48H[0]		保留,不可更改
寄存器 49H[7]		保留,不可更改
寄存器 49H[6]		保留,不可更改
寄存器 49H[5]	IRQ5	DCDC1 输出电压低于 90% IRQ
寄存器 49H[4]	IRQ6	DCDC2 输出电压低于 90% IRQ
寄存器 49H[3]	IRQ7	DCDC3 输出电压低于 90% IRQ

Enhanced Power Supply IC

寄存器 49H[2]	IRQ8	DCDC4 输出电压低于 90% IRQ
寄存器 49H[1]	IRQ9	短按键 IRQ
寄存器 49H[0]	IRQ10	长按键 IRQ
寄存器 4AH[7]	IRQ11	计时器超时 IRQ
寄存器 4AH[6]	IRQ12	按键上升沿 IRQ
寄存器 4AH[5]	IRQ13	按键下降沿 IRQ
寄存器 4AH[4]		保留,不可更改
寄存器 4AH[3]	IRQ14	GPIO3 输入边沿 IRQ
寄存器 4AH[2]	IRQ15	GPIO2 输入边沿 IRQ
寄存器 4AH[1]	IRQ16	GPIO1 输入边沿 IRQ
寄存器 4AH[0]	IRQ17	GPIO0 输入边沿 IRQ

9.7 寄存器(Registers)

第1组,电源控制类

地址	寄存器描述	R/W	默认值
01	电源模式/开机源指示寄存器	R	
12	DC-DC1/2/3/4 & ALDO1/2&DLDO1/2 开关控制寄存器	R/W	OTP
13	ALDO1/2 工作模式控制寄存器	R/W	00H
15	LDO0 控制寄存器	R/W	00H
23	DC-DC2 电压设置寄存器	R/W	OTP
25	DC-DC2 电压斜率参数设置寄存器	R/W	00H
26	DC-DC1 电压设置寄存器	R/W	OTP
27	DC-DC3 电压设置寄存器	R/W	OTP
28	ALDO1/2 电压设置寄存器	R/W	OTP
29	DLDO1 电压设置寄存器	R/W	OTP
2A	DLDO2 电压设置寄存器	R/W	OTP
2B	DCDC4 电压设置寄存器	R/W	OTP
31	电源恢复和 Voff 电压设置寄存器	R/W	07H
32	关机和关机时序控制寄存器	R/W	00H
36	POK 参数设置寄存器	R/W	9DH
37	DCDC 工作频率设置寄存器	R/W	OTP
80	DCDC 工作模式设置寄存器	R/W	00Н
81	内部泄放和输出监视器控制寄存器	R/W	FDH
8A	定时器控制寄存器	R/W	00Н
8F	IRQ PIN 开机和过温关机控制寄存器	R/W	01H

第2组,GPIO控制类

地址	寄存器描述	R/W	默认值
90	GPIO0 控制寄存器	R/W	07H
91	GPIO1 控制寄存器	R/W	07H
92	GPIO2 控制寄存器	R/W	07H
93	GPIO3 控制寄存器	R/W	07H
96	GPIO2 LDO 模式电压控制寄存器	R/W	0AH
97	GPIO[3:0]输入信号寄存器	R/W	00H
98	PWM0 频率设置寄存器	R/W	00H
99	PWM0 占空比设置寄存器 1	R/W	16H
9A	PWM0 占空比设置寄存器 2	R/W	0BH
9B	PWM1 频率设置寄存器	R/W	00H
9C	PWM1 占空比设置寄存器 1	R/W	16H
9D	PWM1 占空比设置寄存器 2	R/W	0BH

第3组,中断控制类

地址	寄存器描述	R/W	默认值
40	IRQ 使能控制寄存器 1	R/W	00H
41	IRQ 使能控制寄存器 2	R/W	03H
42	IRQ 使能控制寄存器 3	R/W	00H
48	IRQ 状态寄存器 1	R/W	00H
49	IRQ 状态寄存器 2	R/W	00H
4A	IRQ 状态寄存器 3	R/W	00Н

REG 01H:电源工作模式以及开机源指示

Bit	描述	R/W
7-6	保留,不可更改	R
5	LDO0EN 为高时 LDO0IN 状态指示位	R
	0:无 LDO0IN 输入(<3.5V); 1:有 LDO0IN 输入(>3.8V)	
4	串行接口状态(SIEN)	R
	0:不使能; 1: 使能	
3	IRQ pin 触发开机指示	R
2	PWRON 正常按键触发开机指示	R
1	保留,不可更改	R
0	ALDOIN 上升沿触发开机指示	R

REG 12H:电源输出控制

Bit		描述	R/W	默认值
7	DC-DC1 开关控制		RW	
6	DC-DC2 开关控制		RW	
5	DC-DC3 开关控制		RW	
4	DC-DC4 开关控制	 0:关闭;1:打开	RW	ОТР
3	ALDO1 开关控制	0.XMJ,1.117]	RW	OIF
2	ALDO2 开关控制		RW	
1	DLDO1 开关控制		RW	
0	DLDO2 开关控制		RW	

REG 13H: ALDO1/2 工作模式控制寄存器

Bit		描述	R/W	默认值
7-4	无			
3	ALDO1 工作模式控制	0:低噪声模式	RW	0
2	ALDO2 工作模式控制	1:低功耗模式	RW	0
1-0	保留,不可更改		RW	00

REG 15H:LDO0 控制寄存器

Bit	描述			默认值
7	LDO0 使能	0:不使能;1:使能;	RW	0
/	LDOO 使配	LDO0EN 接 LDO0IN 时不起作用		
6	保留,不可更改		RW	0
5	LDO0 电压控制 bit1	00:5V; 01:3.3V; 10:2.8V; 11:2.5V	RW	0
4	LDO0 电压控制 bit0	00.3 v, 01.3.3 v, 10.2.8 v, 11.2.3 v	RW	0
3-2	保留,不可更改		RW	0
1	LDO0 限流设置 bit1	00:不限流; 01:1500mA; 10:900mA;	RW	0
0	LDO0 限流设置 bit0	11: 500mA	RW	0

REG 23H:DC-DC2 输出电压设置

Bit	描述		R/W	默认值
7-6	保留,不可更改		RW	0
5~0	DC-DC2 输出电压设置 bit5~0	0.7-2.275V, 25mV/step	RW	OTP

REG 25H:DC-DC2 动态电压调节参数设置

Bit	描述		R/W	默认值
7-4	无			
3	保留,不可更改		RW	0
2	DC-DC2 DVM 功能使能控制	0:不使能;1:使能	RW	0
1	保留,不可更改		RW	0
0	DC-DC2 DVM 电压变化斜率控制	0: 25mV/15.625us=1.6mV/us	RW	0
U	DC-DC2 DVM 电压文化料率控制	1: 25mV/31.250us=0.8mV/us	KW	U

REG 26H:DC-DC1 输出电压设置

Bit		描述	R/W	默认值
7-4	无			
3	DC-DC1 输出电压设置 bit3	0000:1.7V;0001:1.8V;0010:1.9V;0011:2.0V;	RW	
2	DC-DC1 输出电压设置 bit2	0100:2.1V;0101:2.4V;0110:2.5V;0111:2.6V;	RW	ОТР
1	DC-DC1 输出电压设置 bit1	1000:2.7V;1001:2.8V;1010:3.0V;1011:3.1V;	RW	OIF
0	DC-DC1 输出电压设置 bit0	1100:3.2V;1101:3.3V;1110:3.4V;1111:3.5V;	RW	

REG 27H:DC-DC3 输出电压设置

Bit		描述		默认值
7-6	保留,不可更改	R留,不可更改		0
5	DC-DC3 输出电压设置 bit5~0	0.7-3.5V, 50mV/step	RW	OTP& DC3SET

REG 28H:ALDO1/2 输出电压设置

Bit		描述	R/W	默认值
7	ALDO1 输出电压设置 bit3	0000:1.2V;0001:1.3V;0010:1.4V;0011:1.5V;	RW	
6	ALDO1 输出电压设置 bit2	0100:1.6V;0101:1.7V;0110:1.8V;0111:1.9V;	RW	
5	ALDO1 输出电压设置 bit1	1000:2.0V;1001:2.5V;1010:2.7V;1011:2.8V;	RW	
4	ALDO1 输出电压设置 bit0	1100:3.0V;1101:3.1V;1110:3.2V;1111:3.3V;	RW	ОТР
3	ALDO2 输出电压设置 bit3	0000:1.2V;0001:1.3V;0010:1.4V;0011:1.5V;	RW	OIF
2	ALDO2 输出电压设置 bit2	0100:1.6V;0101:1.7V;0110:1.8V;0111:1.9V;	RW	
1	ALDO2 输出电压设置 bit1	1000:2.0V;1001:2.5V;1010:2.7V;1011:2.8V;	RW	
0	ALDO2 输出电压设置 bit0	1100:3.0V;1101:3.1V;1110:3.2V;1111:3.3V;	RW	

REG 29H:DLDO1 电压控制

Bit	描述		R/W	默认值
7	DLDO1 模式控制	0:LDO 模式,输出电压由 bit[4:0]控制; 1:Switch 模式,输出电压接近 DLDOIN	RW	0
6~5	保留,不可更改		RW	0
4~0	DLDO1 输出电压控制 bit4~0	0.7~3.5V,100mV/step	RW	OTP

REG 2AH:DLDO2 电压控制

Bit	描述		R/W	默认值
7	DLDO2 模式控制	0:LDO 模式,输出电压由 bit[4:0]控制; 1:Switch 模式,输出电压接近 DLDOIN	RW	0
6~5	保留,不可更改		RW	0
4~0	DLDO2 输出电压控制 bit4~0	0.7~3.5V,100mV/step	RW	OTP

REG 2BH:DCDC4 电压控制

Bit	描述		R/W	默认值
7	保留,不可更改		RW	0
6~0	DCDC4 输出电压控制 bit6~0	0.7~3.5V,25mV/step	RW	OTP

REG 31H: 电源恢复和 Voff 电压设置

Bit	描述		R/W	默认值
7	电源恢复时 PWROK 是否拉低	0:不拉低 1:在 wakeup 期间拉低	RW	0
6~4	保留,不可更改		RW	000
3	电源恢复功能使能	0:不使能; 1:使能 对本 bit 写 1 即可复位	RW	0
2	V _{OFF} 电压设置 bit2	000-2 637-001-2 737-010-2 837-011-2 037		
1	V _{OFF} 电压设置 bit1	000:2.6V;001:2.7V;010:2.8V;011:2.9V 100:3.0V;101:3.1V;110:3.2V;111:3.3V	RW	111
0	V _{OFF} 电压设置 bit0	100.3.0 v,101.3.1 v,110.3.2 v,111.3.3 v		

REG 32H: 关机和关机时序控制

Bit		描述	R/W	默认值
7	关机控制	写 1 即关闭芯片并自动复位本 bit	RW	0
6~3	保留,不可更改		RW	0000
2	关机时序控制	0:所有输出同时掉电 1:各路输出按上电时序反向掉电	RW	0
1~0	保留,不可更改		RW	00

REG 36H: POK 设置

Bit		描述	R/W	默认值
7~6	ONLEVEL 设置 bit1~0	00:128ms; 01:3s; 10:1s; 11:2s;	RW	10
5~4	IRQLEVEL 设置 bit1~0	00:1s; 01:1.5s; 10:2s; 11:2.5s;	RW	01
3	当 POK 大于 OFFLEVEL 时是否 关机	0:不使能;1:使能	RW	1
2	上电完成与 PWROK 信号输出间 的延时控制	0:8ms 1:64ms	RW	1
1~0	OFFLEVEL 设置	00:4s; 01:6s; 10:8s; 11:10s	RW	01

REG 37H: DCDC 频率控制

Bit	描述		R/W	默认值
7	DCDC 展频功能使能	0:不使能;1:使能	RW	OTP
6	DCDC 展频范围控制	0:50KHz 1:100KHz	RW	OTP
5~4	保留,不可更改		RW	00
3~0	DCDC 工作频率设置 bit3~0	每步 5%	RW	1000

REG 80H: DCDC 工作模式控制

Bit		描述		默认值
7~4	保留,不可更改		RW	0000
3	DCDC1 PFM/PWM 模式控制		RW	0
2	DCDC2 PFM/PWM 模式控制	0:自动切换	RW	0
1	DCDC3 PFM/PWM 模式控制	1:始终为 PWM 模式	RW	0
0	DCDC4 PFM/PWM 模式控制		RW	0

REG 81H: 内部泄放和输出监视器控制

Bit		描述	R/W	默认值
7	DCDC/LDO 内部泄放使能	0:不使能;1:使能	RW	1
6	保留,不可更改		RW	1
5	DCDC1 输出低于 85%自动关机		RW	
4	DCDC2 输出低于 85%自动关机	0:不使能:1:使能	RW	1
3	DCDC3 输出低于 85%自动关机	0.小气度形,1.气度形	RW	1
2	DCDC4 输出低于 85%自动关机		RW	
1~0	DCDC1/2/3/4 输 出 监 视 器	00:62us;01:124us;10:186us;11:248us	RW	01
1~0	debounce 时间设置	00.02us,01.124us,10.180us,11.248us	KW	01

REG 8AH: 计时器控制

Bit	描述		R/W	默认值
7	计时器 time out 状态	写1将复位计时器状态	RW	0
6~0	计时时间设置	0~2 ⁷ -1 min,设置为 0 将关闭计时器	RW	0000000

REG 8FH: IRQ PIN 开机和过温关机控制

Bit		描述	R/W	默认值
7	IRQ Pin 开机功能使能	0:不使能;1:使能	RW	0
6~3	保留,不可更改		RW	0000
2	过温关机使能	0:不使能;1:使能	RW	0
1~0	过温关机门限设置	00:106℃ 01:118℃ 10:130℃ 11:144℃	RW	01

REG 90H: GPIO0 控制

Bit	描述		R/W	默认值
7	GPIO0作为 digital input 时上升沿	0:不使能;1:使能	RW	0
/	触发 IRQ 和 wakeup 使能	0.7、1文形、1.7文形	Kvv	U
6	GPIO0作为 digital input 时下降沿	0:不使能;1:使能	RW	0
0	触发 IRQ 和 wakeup 使能	0.小ছ形,1.使形	Kvv	
5~3	保留,不可更改		RW	000
		000:输出下拉; 001:输出上拉(DCDC1)		
2~0	GPIO0 功能控制 bit2~0	010:PWM0 输出(高电平为 DCDC1)	RW	111
		011:数字输入; 100~111:浮空		

REG 91H: GPIO1 控制

Bit		描述	R/W	默认值
7	GPIO1 作为 digital input 时上升沿	0:不使能; 1:使能	RW	0
/	触发 IRQ 和 wakeup 使能	0.不宜起, 1.使起	KW	U
6	GPIO1 作为 digital input 时下降沿	0:不使能; 1:使能	DW	0
0	触发 IRQ 和 wakeup 使能		RW	U
5~3	保留,不可更改		RW	000
		000:输出下拉		
2~0	 GPIO1 功能控制 bit2~0	001:输出上拉(DCDC1)	RW	111
2~0	GPIOI 功能空前 bit2~0	010:PWM1 输出(高电平为 DCDC1)		
		011:数字输入; 100~111:浮空		

REG 92H: GPIO2(SYSEN)控制

Bit	描述		R/W	默认值
7	GPIO2 作为 digital input 时上升沿触发 IRQ 和 wakeup 使能	0:不使能; 1:使能	RW	0
6	GPIO2 作为 digital input 时下降沿 触发 IRQ 和 wakeup 使能	0:不使能; 1:使能	RW	0
5~3	保留,不可更改		RW	000
2~0	GPIO2 功能控制 bit2~0	000:输出下拉; 001:浮空 010:低噪声 LDO 011:数字输入; 100~111:浮空	RW	111

REG 93H: GPIO3(PWREN)控制

Bit		描述	R/W	默认值
7	GPIO3 作为 digital input 时上升沿	 0:不使能; 1:使能	RW	0
	触发 IRQ 和 wakeup 使能	The pene,		
6	GPIO3 作为 digital input 时下降沿	0. 不体化 1. 体化	RW	0
6	触发 IRQ 和 wakeup 使能	0:不使能; 1:使能	KW	0
5~4	保留,不可更改		RW	00
3	GPIO3 Pin 功能选择	0:PWREN 功能; 1:GPIO3	RW	0
		000:输出下拉; 001:浮空		
2~0	 GPIO3 功能控制 bit2~0	010:浮空	DW	111
2~0	GP1O3 功能控制 blt2~0	011:数字输入	RW	111
		100~111:浮空		

REG 96H: GPIO2 LDO 模式电压控制

Bit		描述	R/W	默认值
7~4	无			
3~0	GPIOLDO 输出电压设置 bit3~0	0000:1.8V;0001:1.9V;0010:2.0V;0011:2.1V; 0100:2.2V;0101:2.3V;0110:2.4V;0111:2.5V; 1000:2.6V;1001:2.7V;1010:2.8V;1011:2.9V; 1100:3.0V;1101:3.1V;1110:3.2V;1111:3.3V;	RW	1010

REG 97H: GPIO[3:0]输入信号

Bit	描述	R/W	默认值
7~4	无		
3	GPIO3 数字输入信号	R	0
2	GPIO2 数字输入信号	R	0
1	GPIO1 数字输入信号	R	0
0	GPIO0 数字输入信号	R	0

REG 98H: PWM0 频率设置

Bit	描述		R/W	默认值
7~0	PWM0 输出频率设置(X0)	可设置为 0~255	RW	00H

REG 99H: PWM0 占空比分母设置

Bit		描述	R/W	默认值
7~0	PWM0 输出占空比分母设置(Y0)	可设置为 1~255	RW	16H

REG 9AH: PWM0 占空比分子设置

Bit		描述	R/W	默认值
7~0	PWM0 输出占空比分子设置(Z0)	可设置为 0~Y0	RW	0BH

注: PWM0输出频率 = 2.25MHz/(X0+1)/Y0 PWM0输出占空比 = Z0/Y0

REG 9BH: PWM1 频率设置

Bit		描述	R/W	默认值
7~0	PWM1 输出频率设置(X1)	可设置为 0~255	RW	00H

REG 9CH: PWM1 占空比分母设置

Bit		描述	R/W	默认值
7~0	PWM1 输出占空比分母设置(Y1)	可设置为 1~255	RW	16H

REG 9DH: PWM1 占空比分子设置

Bit	描述		R/W	默认值
7~0	PWM1 输出占空比分子设置(Z1)	可设置为 0~Y1	RW	0BH

注: PWM1输出频率 = 2.25MHz/(X1+1)/Y1 PWM1输出占空比 = Z1/Y1

REG 40H: IRQ 使能 1

Bit	描述	R/W	默认值
7	保留,不可更改	RW	0
6	LDO0IN 接入 IRQ 使能(LDO0EN 连接到 LDO0IN)	RW	0
5	LDO0IN 移出 IRQ 使能(LDO0EN 连接到 LDO0IN)	RW	0
4	保留,不可更改	RW	0
3	ALDOIN 接入 IRQ 使能	RW	0
2	ALDOIN 移出 IRQ 使能	RW	0
1	保留,不可更改	RW	0
0	保留,不可更改	RW	0

REG 41H: IRQ 使能 2

Bit	描述	R/W	默认值
7	保留,不可更改	RW	0
6	保留,不可更改	RW	0
5	DCDC1 输出电压低于 90% IRQ 使能	RW	0
4	DCDC2 输出电压低于 90% IRQ 使能	RW	0
3	DCDC3 输出电压低于 90% IRQ 使能	RW	0
2	DCDC4 输出电压低于 90% IRQ 使能	RW	0
1	短按键 IRQ 使能	RW	1
0	长按键 IRQ 使能	RW	1

REG 42H: IRQ 使能 3

Bit	描述	R/W	默认值
7	计时器超时 IRQ 使能	RW	0
6	按键上升沿 IRQ 使能	RW	0
5	按键下降沿 IRQ 使能	RW	0
4	保留,不可更改	RW	0
3	GPIO3 输入边沿 IRQ 使能	RW	0
2	GPIO2 输入边沿 IRQ 使能	RW	0
1	GPIO1 输入边沿 IRQ 使能	RW	0
0	GPIO0 输入边沿 IRQ 使能	RW	0

REG 48H: IRQ 状态 1

Bit	描述	R/W	默认值
7	保留,不可更改	RW	0
6	LDO0IN 接入 IRQ,写 1 将清除 IRQ 状态	RW	0
5	LDO0IN 移出 IRQ,写 1 将清除 IRQ 状态	RW	0
4	保留,不可更改	RW	0
3	ALDOIN 接入 IRQ,写 1 将清除 IRQ 状态	RW	0
2	ALDOIN 移出 IRQ,写 1 将清除 IRQ 状态	RW	0
1	保留,不可更改	RW	0
0	保留,不可更改	RW	0

REG 49H: IRQ 状态 2

Bit	描述	R/W	默认值
7	保留,不可更改	RW	0
6	保留,不可更改	RW	0
5	DCDC1 输出电压低于 90% IRQ,写 1 将清除 IRQ 状态	RW	0
4	DCDC2 输出电压低于 90% IRQ,写 1 将清除 IRQ 状态	RW	0
3	DCDC3 输出电压低于 90% IRQ,写 1 将清除 IRQ 状态	RW	0
2	DCDC4 输出电压低于 90% IRQ,写 1 将清除 IRQ 状态	RW	0
1	短按键 IRQ,写 1 将清除 IRQ 状态	RW	0
0	长按键 IRQ,写 1 将清除 IRQ 状态	RW	0

REG 4AH: IRQ 状态 3

Bit	描述	R/W	默认值
7	计时器超时 IRQ,写 1 将清除 IRQ 状态	RW	0
6	按键上升沿 IRQ,写 1 将清除 IRQ 状态	RW	0
5	按键下降沿 IRQ,写 1 将清除 IRQ 状态	RW	0
4	保留,不可更改	RW	0
3	GPIO3 输入边沿 IRQ,写 1 将清除 IRQ 状态	RW	0
2	GPIO2 输入边沿 IRQ,写 1 将清除 IRQ 状态	RW	0
1	GPIO1 输入边沿 IRQ,写 1 将清除 IRQ 状态	RW	0
0	GPIO0 输入边沿 IRQ,写 1 将清除 IRQ 状态	RW	0

10. 封装(Package)

© 2012 X-Powers Limited - All rights reserved

X-Powers cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a X-Powers product. No circuit patent licenses, copyrights, or other intellectual property rights are implied. X-Powers reserves the right to make changes to the specifications and products at any time without notice.