Total marks – 120 Attempt Questions 1-10 All questions are of equal value

Answer each question in a SEPARATE writing booklet.

Question 1 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Write down the value of |-6|-|-12|.

2

(b) If $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, find the value of f when u = -5 and v = 7.5.

2

(c) Solve the equation $(x-3)^2 = 9$.

2

(d) Differentiate $x^5 + 4x^{-2}$.

2

(e) Sketch the curve $y = e^x$. State its range.

2

(f) If $\frac{1}{a} = \sqrt{10} - 3$, show that $a = \sqrt{10} + 3$.

Question 2 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) The definition of an odd function f(x) is given by the rule f(-x) = -f(x). 2 Show that the function $f(x) = x^5 - x^3$ is an odd function.

(b) A(0,3) $O \qquad B(2,0)$

NOT TO SCALE

C(0,-1)

In the diagram above, points A, B and C have coordinates (0,3), (2,0) and (0,-1) respectively. Also $AD \parallel BC$ and $AD \perp CD$.

Copy this diagram into your answer sheet.

- (i) Show that the gradient of the line BC is equal to $\frac{1}{2}$.
- (ii) Show that the equation of the line AD is x 2y + 6 = 0.
- (iii) Find the equation of line *CD*.
- (iv) By solving simultaneously the equations from (ii) and (iii), find the coordinates of point D.
- (v) Find the area of the quadrilateral *ABCD*.

Question 3 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) In a right angled triangle $\tan \theta = \frac{3}{4}$. Find $\sin \theta$, for $0 \le \theta \le \frac{\pi}{2}$.

viaiks

1

- (b) Differentiate the following functions:
 - (i) $\sin x \log_e x$

2

(ii) $3 \tan \frac{\pi x}{3}$

2

(c) Find:

2

(i) $\int \sin(e-x)dx$

2

2

(ii) $\int_{0}^{1} \frac{2x}{x^2 + 1} dx$, leaving answer in exact form.

3

(d) Find the equation of the normal to the curve $y = e^{4x} - 1$ at the point on the curve where x = 0.

Question 4 (12 marks) Use a SEPARATE writing booklet.

Marks

2

(a) A quadratic equation with roots α and β has the form:

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0.$$

Hence, or otherwise, form a quadratic equation whose roots are $2 + \sqrt{3}$ and $2 - \sqrt{3}$.

- (b) The first and the thirteenth terms of an arithmetic progression are 7 and 1 respectively. Calculate:
 - (i) the common difference,

2

(ii) the number of terms which have a sum of zero.

2

(c) In the diagram below triangle QRP has a right angle at R. Also $\angle RQS = 45^{\circ}$, $\angle SQP = 15^{\circ}$ and QR = RS = 2 cm.

Copy the diagram in your writing booklet.

(i) Using triangle QRS find the exact length of QS.

1

(ii) Using triangle *QRP* find the exact length of *PR* and hence the exact length of *PS*.

2

(iii) Use the Sine Rule in triangle QPS to prove that $\sin 15^{\circ} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$

Question 5 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Consider the curve given by $y = x^3 - 6x^2 + 9x + 4$.

(i) Find the coordinates of the stationary points and determine their nature.

4

(ii) Find the coordinates of any point of inflexion.

2

(iii) Sketch the curve, showing all of the above information.

2

1

(iv) Determine the values of x for which $\frac{dv}{dx} < 0$

(b) The diagram below shows the shading of a region bounded by the graph $y = 3^{x-1}$ and the lines x = 1 and x = 3.

1

(i) Copy and complete the following table giving your answer correct to three decimal places:

A 1 1.5 = 2.5 5	 $v = 3^{x-1}$	C'	_	 .)
				-

(ii) Use Simpson's Rule with five function values to approximate the shaded area to three decimal places.

Question 6 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) (i) Factorise the expression $2a^2 - 7a + 3$.

1

(ii) Hence, solve the following equation for x:

3

$$2(\log_2 x)^2 - 7(\log_2 x) + 3 = 0$$

NOT TO SCALE

ABCD is a rectangle in which AB = 40 cm and AD = 60 cm. M is the midpoint of BC and DP is perpendicular to AM.

Draw a neat sketch on your answer sheet. Hence:

(i) Prove that triangles ABM and APD are similar.

2

(ii) Calculate the length of *PD*.

- 2
- (iii) Using Pythagoras' Theorem in triangle APD show that AP = 36 cm.
- 1
- (iv) By finding the two areas of the triangles *ABM* and *APD*, prove that the area of the quadrilateral *PMCD* is 936 cm².

Questi	on 7 (12 r	marks) Use a SEPARATE writing booklet.	Marks		
(a)	Nicole and Mariana play against each other, in the third round of the Australian Open. In this tournament, the first player to win 2 sets wins the match. The probability that Nicole wins any set is 70%.				
	(i)	Find the probability that the game will last two sets only.	2		
	(ii)	Find the probability that Nicole wins the match.	2		
(b)	The num	Find the probability that Mariana wins the match. Probability that Mariana wins the match. The probability that Mariana wins the match.	7.5		
	(i)	What is the number of bacteria initially?	1		
	(ii)	Determine the number of bacteria after 20 seconds.	2		
	(iii)	After what period of time will the number of bacteria have doubled?	2		
	(iv)	At what rate is the number of bacteria increasing when $t = 20$ seconds?	2		

Question 8 (12 marks) Use a SEPARATE writing booklet.

Marks

1

(a) Sketch the graph of $y = \cos x$, for $0 \le x \le 2\pi$.

(ii) Solve the trigonometric equation $\cos x = \frac{1}{2}$, for $0 \le x \le 2\pi$.

(iii) Hence, find the values of x for which $\frac{1}{2} > \cos x$.

At time t seconds, the position x cm of a point moving in the straight

(b) At time t seconds, the position x cm of a point moving in the straight line X'OX is given by $x = at^2 + bt$ cm, where a and b are constants.

The particle passes through the origin O with velocity 16 cm / s in the positive direction at time t = 0 seconds, and after 8 seconds, it is again at O.

- (i) Find the velocity of the particle at any time, in terms of a and b.
- (ii) Find the values of the constants a and b.
- (iii) Find the time when the object is at rest.
- (iv) Find the position of the particle when it is at rest.

Question 9 (12 marks) Use a SEPARATE writing booklet.

Marks

(a)

In the diagram above PQ and RS are arcs of concentric circles with centre O. $\angle POQ = \frac{\pi}{3}$ radians and OP = 3 cm.

(i) Find the area of the sector *OPO*.

1

(ii) If OR is r cm, find the area of the sector OSR in terms of r.

2

(iii) If the shaded area is $\frac{27\pi}{6}$ cm², find the length of PS.

2

- (b) On 1 July 2005, Nadia invested \$12 000 in a bank account that paid interest at a rate of 6% p.a., compounded annually.
 - (i) How much would be in the account after the payment of interest on 1 July 2015 if no additional deposits were made?

2

(ii) In fact Nadia added \$1,000 to her account on 1 July each year, beginning on 1 July 2006. After the payment of interest and her deposit on 1 July 2015, how much was in her account?

4

(iii) Nadia's friend Ana deposited \$12,000 in an account at another bank on 1 July 2005 and made no further deposit. On 1 July 2015, the balance of her account was \$35,639.36. What was the annual rate of compound interest paid on Ana's account?

Question 10 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) (i) Simplify $\log_{10} e^{2ax}$.

1

(ii) Hence evaluate
$$\int_{0}^{a} \log_{e} e^{2ax} dx$$
.

2

(b)

The diagram above shows the graph of the parabola $y^2 = 2x$. The point A(1,4) is outside the parabola while the point P(x,y) is on the parabola as shown in the above diagram.

- (i) If *D* is the distance between the two points *A* and *P*, show that $D^2 = \left(\frac{1}{2}y^2 1\right)^2 + (y 4)^2.$
- (ii) Show that the value of D in the equation in part (i) is a minimum when y = 2.
- (iii) Show that the minimum distance between A and P is $\sqrt{5}$ units.

End of paper