1. 设
$$\alpha(x) = \frac{8-x}{4+x}$$
, $\beta(x) = 2-\sqrt[3]{x}$, 当 $x \to 8$ 时,下列陈述正确的是 $\frac{1}{2}$ 单选题 (10 分)

- A. $\alpha(x)$ 与 $\beta(x)$ 为同阶非等价无穷小量
- B. $\alpha(x)$ 与 $\beta(x)$ 为等价无穷小量
- \bigcirc C. $\alpha(x)$ 是比 $\beta(x)$ 更高价的无穷小量
- \bigcirc D. $\alpha(x)$ 是比 $\beta(x)$ 更低价的无穷小量
- 2. 设f(x)在 \mathbb{R} 上严格单调有界, $\{x_n\}$ 为实数列,则下列陈述 错误的是 3选题 (10 分)
- \square A 若 $\{x_n\}$ 单调,则 $\{f(x_n)\}$ 必收敛
- □ B. 若 $\{f(x_n)\}$ 发散,则 $\{x_n\}$ 必发散
- \Box C. 若 $\{f(x_n)\}$ 单调,则 $\{x_n\}$ 必收敛
- □ D. 若 $\{x_n\}$ 发散,则 $\{f(x_n)\}$ 必发散
- 3. 下述关于极限计算 **正确**的是 ^{单选题 (10 分)}

$$\bigcap_{x \to +\infty} A. \lim_{x \to +\infty} (1+x)^{\frac{1}{x}} = e$$

$$\lim_{x \to +\infty} (1+2x)^{\frac{2}{x}} = e^2$$

$$\bigcap_{x \to +\infty} \left(1 + \frac{2}{x} \right)^x = e^2$$

$$\bigcap_{x \to +\infty} \left(1 - \frac{1}{x} \right)^{2x} = e^2$$

4. 若 $\lim_{x \to -\infty} \left(\sqrt{9x^2 + 6x + 8} - (ax + b) \right) = 1$,则:有序数组 $(a \ b) =$ _____

单选题 (10 分)

- A. (-3,-2)
- O B. (-3,-1)
- O. (3,1)
- O D. (3,0)
- 5. 函数 $f(x) = \frac{x^2 4}{(x+1)(x+2) \ln |x-1|}$ 的可去间断点共有_____个

单选题 (10 分)

- O A. 2
- O B. 1
- O C.0
- O D.3

6.
$$\lim_{x \to 0} \frac{\sqrt[4]{1 + 12x^2} - \cos x}{x^2} = \underline{\hspace{1cm}}$$

单选题 (10 分)

- O A. 5/2
- O B. 3/2
- O C.1
- O D. 7/2

^{7.} 当 $x \to 1$ 时, $\alpha(x) = \cos \frac{\pi}{2} x$ 与 $\beta(x) = A(x-1)^n$ 为等价无穷小量,则

单选题 (10 分)

$$\bigcirc$$
 A. $A = \frac{\pi}{2}, n = 1$

$$\bigcirc$$
 B. $A = \frac{\pi}{2}, n = 2$

$$\bigcirc C. A = -\frac{\pi}{2}, n = 1$$

O. D.
$$A = -\frac{\pi}{2}, n = 2$$

8.
$$\lim_{x \to \infty} x \left(\sqrt[3]{x^3 + 2x} - \sqrt[3]{x^3 - x} \right) = \underline{\qquad}$$

单选题 (10 分)

- O A. 1/2
- O B. 2/3
- O C.1
- O D. 1/3

9. 下列陈述不正确的是

多选题 (10 分)

- \bigcirc A. 若正项数列 $\{a_n\}$, $\{b_n\}$ 均发散,则 $\{a_nb_n\}$ 必发散
- \square B. 若数列 $\{a_n\}$ 收敛, $\{b_n\}$ 发散,则 $\{a_nb_n\}$ 必发散
- \bigcirc C. 若数列 $\{a_n\}$ 收敛, $\{b_n\}$ 发散,则 $\{a_n+b_n\}$ 必发散
- \square 克 若数列 $\{a_n\}$ 满足 $\lim_{n\to+\infty} |a_{n+1}-a_n|=0$ 则数列 $\{a_n\}$ 必收敛

10. 设
$$f(x)$$
 在 $x = 2$ 处连续,且 $\lim_{x \to 2} \frac{f(x)}{x - 2} = 2$ 则 $\lim_{x \to 0} \frac{f(e^{x^2} + \cos 2x)}{\ln(1 + x^2)} = \underline{\hspace{1cm}}$

单选题 (10 分)

- O A.-2
- O B.-1
- O C.2
- O D.1

仅供参考, 若有异议, 欢迎指出!