LWE and cryptography

June 6, 2019

Originally as an attempt to solve lattice problems

- Originally as an attempt to solve lattice problems
- Worst-case lattice problems reduce to LWE

- Originally as an attempt to solve lattice problems
- Worst-case lattice problems reduce to LWE
- Need new encryption schemes that are at least as hard to break as problems difficult for quantum computers

- Originally as an attempt to solve lattice problems
- Worst-case lattice problems reduce to LWE
- Need new encryption schemes that are at least as hard to break as problems difficult for quantum computers
- LWE fits the bill

Intuition of LWE

$$14s_1 + 15s_2 + 5s_3 + 2s_4 \approx 8 \pmod{17}$$
 $13s_1 + 14s_2 + 14s_3 + 6s_4 \approx 16 \pmod{17}$
 $6s_1 + 10s_2 + 13s_3 + s_4 \approx 3 \pmod{17}$
 $10s_1 + 4s_2 + 12s_3 + 16s_4 \approx 12 \pmod{17}$
 $9s_1 + 5s_2 + 9s_3 + 6s_4 \approx 9 \pmod{17}$
 $3s_1 + 6s_2 + 4s_3 + 5s_4 \approx 16 \pmod{17}$
 \vdots
 $6s_1 + 7s_2 + 16s_3 + 2s_4 \approx 3 \pmod{17}$

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

ullet Pick $ec{a} \in \mathbb{Z}_q^n$ uniformly randomly

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

- Pick $\vec{a} \in \mathbb{Z}_q^n$ uniformly randomly
- ullet Pick e according to χ

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

- Pick $\vec{a} \in \mathbb{Z}_q^n$ uniformly randomly
- ullet Pick e according to χ
- Output $(\vec{a}, \langle \vec{a}, \vec{s} \rangle + e)$

Definition (LWE)

Given samples from $A_{\vec{s},\chi}$,

• Search version: Find \vec{s} .

Definition (LWE)

Given samples from $A_{\vec{s},\chi}$,

- Search version: Find \vec{s} .
- Decision version: Distinguish between $A_{\vec{s},\chi}$ and the uniform distribution.

Search to decision reduction

GSW's LWE formulation

1 Take the rows of A as $b_i || \vec{a}_i$ instead

GSW's LWE formulation

- **1** Take the rows of A as $b_i ||\vec{a}_i|$ instead
- 2 Redefine \vec{s} as $(1, -\vec{s})$

GSW's LWE formulation

- **1** Take the rows of A as $b_i || \vec{a}_i$ instead
- 2 Redefine \vec{s} as $(1, -\vec{s})$
- **3** Either A is uniform, or $\exists \vec{s}$ with first coefficient 1 s.t. $A\vec{s} = \vec{e}$, where \vec{e} comes from χ .

Two parties who may have never communicated before may securely exchange information, by using the tools below:

• pk: "public key", used for encryption

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to \mathcal{U}$

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to U$
- sk: "secret key", used for decryption

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to \mathcal{U}$
- sk: "secret key", used for decryption
- $\mathsf{Dec}_{sk}:U o\Sigma^*$

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to \mathcal{U}$
- sk: "secret key", used for decryption
- $\mathsf{Dec}_{sk}:U o\Sigma^*$
- $Dec_{sk} \circ Enc_{pk}(x, r) = x$ with overwhelming probability over r

Typical use of such a scheme:

• Alice generates (pk, sk)

- Alice generates (pk, sk)
- Alice sends pk to Bob

- Alice generates (pk, sk)
- Alice sends pk to Bob
- Sob encrypts his message using pk

- Alice generates (pk, sk)
- Alice sends pk to Bob
- Sob encrypts his message using pk
- Bob sends the ciphertext to Alice

- Alice generates (pk, sk)
- Alice sends pk to Bob
- Sob encrypts his message using pk
- Bob sends the ciphertext to Alice
- Alice decrypts it using sk

Safety

What does it mean for an encryption scheme to be "safe"?

Safety

What does it mean for an encryption scheme to be "safe"?

 Chosen plaintext attack (CPA): The "intuitive" definition. An (efficient) adversary who's able to encrypt anything shouldn't be able to decrypt anything.

Safety

What does it mean for an encryption scheme to be "safe"?

- Chosen plaintext attack (CPA): The "intuitive" definition. An (efficient) adversary who's able to encrypt anything shouldn't be able to decrypt anything.
- Adaptive chosen-ciphertext attack (CCA2): A stronger definition. An (efficient) adversary who's also able to decrypt anything but the target, still cannot decrypt the target.

A cryptographic scheme is malleable if $\exists f: \Sigma^* \to \Sigma^*$ efficiently invertible, an entity given pk and $\operatorname{Enc}_{pk}(x)$ can evaluate $\operatorname{Enc}_{pk}(f(x))$.

A cryptographic scheme is malleable if $\exists f: \Sigma^* \to \Sigma^*$ efficiently invertible, an entity given pk and $\operatorname{Enc}_{pk}(x)$ can evaluate $\operatorname{Enc}_{pk}(f(x))$.

• CCA2 implies non-malleability

A cryptographic scheme is malleable if $\exists f: \Sigma^* \to \Sigma^*$ efficiently invertible, an entity given pk and $\operatorname{Enc}_{pk}(x)$ can evaluate $\operatorname{Enc}_{pk}(f(x))$.

- CCA2 implies non-malleability
- Has many flavors (malleable under CPA vs CCA)

A cryptographic scheme is malleable if $\exists f: \Sigma^* \to \Sigma^*$ efficiently invertible, an entity given pk and $\operatorname{Enc}_{pk}(x)$ can evaluate $\operatorname{Enc}_{pk}(f(x))$.

- CCA2 implies non-malleability
- Has many flavors (malleable under CPA vs CCA)
- Is this always a bad property to have?

Homomorphic encryption

Let someone else do the computation for you. Useful when that "someone else" is quantum!

Homomorphic encryption

Let someone else do the computation for you. Useful when that "someone else" is quantum!

Alice generates (pk, sk, evk)

- Alice generates (pk, sk, evk)
- 2 Alice encrypts her message using *pk*

- Alice generates (pk, sk, evk)
- Alice encrypts her message using pk
- Alice sends evk and the ciphertext to Bob

- Alice generates (pk, sk, evk)
- Alice encrypts her message using pk
- Alice sends evk and the ciphertext to Bob
- Bob runs computations on the ciphertext

- Alice generates (pk, sk, evk)
- Alice encrypts her message using pk
- Alice sends evk and the ciphertext to Bob
- Observe Bob runs computations on the ciphertext
- Sob sends the encrypted result back to Alice

- Alice generates (pk, sk, evk)
- Alice encrypts her message using pk
- Alice sends evk and the ciphertext to Bob
- Oberus computations on the ciphertext
- Sob sends the encrypted result back to Alice
- Alice decrypts it using *sk*.

Intuitive idea as follows:

ullet private key $ec{v}$ is a vector

- private key \vec{v} is a vector
- ullet ciphertexts are matrices with $ec{v}$ approximately as an eigenvector

- private key \vec{v} is a vector
- ullet ciphertexts are matrices with $ec{v}$ approximately as an eigenvector
- plaintexts are corresponding approximate eigenvalues

- private key \vec{v} is a vector
- ullet ciphertexts are matrices with $ec{v}$ approximately as an eigenvector
- plaintexts are corresponding approximate eigenvalues
- $(C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$

- private key \vec{v} is a vector
- ullet ciphertexts are matrices with $ec{v}$ approximately as an eigenvector
- plaintexts are corresponding approximate eigenvalues
- $\bullet (C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$
- $(C_1C_2)\vec{v}\approx(\lambda_1\lambda_2)\vec{v}$

- private key \vec{v} is a vector
- ullet ciphertexts are matrices with $ec{v}$ approximately as an eigenvector
- plaintexts are corresponding approximate eigenvalues
- $(C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$
- $(C_1C_2)\vec{v}\approx(\lambda_1\lambda_2)\vec{v}$
- When plaintexts are booleans, $I_N C_1C_2$ encodes NAND.

Fix $q=2^{I}$, N=kI, define the following functions on \mathbb{Z}_{q}^{*} . Easier to understand with examples with I=4, k=3, N=12.

• BitDecomp $(1001_2, 0010_2, 1100_2) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0)$

- BitDecomp $(1001_2, 0010_2, 1100_2) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0)$
- BitDecomp⁻¹ $(1,0,0,1,0,0,1,0,1,1,0,0) = (1001_2,0010_2,1100_2)$

- BitDecomp $(1001_2, 0010_2, 1100_2) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0)$
- BitDecomp⁻¹ $(1,0,0,1,0,0,1,0,1,1,0,0) = (1001_2,0010_2,1100_2)$
- BitDecomp⁻¹ $(0, 0, 10_2, 0, 0, 1, 10_2, 1, 11_2, 0, 1, 1) = (0100_2, 1001_2, 1011_2)$

- BitDecomp $(1001_2, 0010_2, 1100_2) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0)$
- BitDecomp⁻¹ $(1,0,0,1,0,0,1,0,1,1,0,0) = (1001_2,0010_2,1100_2)$
- BitDecomp⁻¹ $(0, 0, 10_2, 0, 0, 1, 10_2, 1, 11_2, 0, 1, 1) = (0100_2, 1001_2, 1011_2)$
- Flatten = $BitDecomp \circ BitDecomp^{-1}$

- BitDecomp $(1001_2, 0010_2, 1100_2) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0)$
- BitDecomp⁻¹ $(1,0,0,1,0,0,1,0,1,1,0,0) = (1001_2,0010_2,1100_2)$
- BitDecomp⁻¹ $(0, 0, 10_2, 0, 0, 1, 10_2, 1, 11_2, 0, 1, 1) = (0100_2, 1001_2, 1011_2)$
- Flatten = $BitDecomp \circ BitDecomp^{-1}$
- Powersof2 $(11_2, 0_2, 1_2) = (11_2, 110_2, 1100_2, 11000_2, 0_2, 0_2, 0_2, 0_2, 1_2, 10_2, 1000_2, 1000_2)$


```
\begin{aligned} \mathsf{Flatten} \big( 110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2 \big) \end{aligned}
```

$$\begin{aligned} \mathsf{Flatten} \big(110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2 \big) \end{aligned}$$

$$= \mathsf{BitDecomp} \circ \mathsf{BitDecomp}^{-1}(110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2)$$

Flatten(
$$110_2, 101_2, 1_2, 11_2, 110_2, 101_2, 1_2, 11_2, 110_2, 101_2, 1_2, 11_2$$
)

= BitDecomp o BitDecomp⁻¹($110_2, 10$

$$= \mathsf{BitDecomp} \circ \mathsf{BitDecomp}^{-1} (110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2)$$

$$= \mathsf{BitDecomp} \big(110000_2 + 10100_2 + 10_2 + 11_2, \\ 110000_2 + 10100_2 + 10_2 + 11_2, \\ 110000_2 + 10100_2 + 10_2 + 11_2 \big)$$

```
= \mathsf{BitDecomp}(1001001_2, \\ 1001001_2, \\ 1001001_2)
```

```
= \mathsf{BitDecomp}(1001001_2, \\ 1001001_2, \\ 1001001_2)
```

 $= \mathsf{BitDecomp}(1001_2, 1001_2, 1001_2)$

$$= \mathsf{BitDecomp}(1001001_2, \\ 1001001_2, \\ 1001001_2)$$

$$= \mathsf{BitDecomp}(1001_2, 1001_2, 1001_2)$$

= (1,0,0,1,1,0,0,1,1,0,0,1)

GSW's tools cont.

Some basic properties

• $\langle \mathsf{BitDecomp}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle = \langle \vec{a}, \vec{b} \rangle$

GSW's tools cont.

Some basic properties

- $\langle \mathsf{BitDecomp}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle = \langle \vec{a}, \vec{b} \rangle$
- ullet $\langle ec{a}, \mathsf{Powersof2}(ec{b})
 angle = \langle \mathsf{BitDecomp}^{-1}(ec{a}), ec{b}
 angle$

GSW's tools cont.

Some basic properties

- $\langle \mathsf{BitDecomp}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle = \langle \vec{a}, \vec{b} \rangle$
- ullet $\langle ec{a}, \mathsf{Powersof2}(ec{b})
 angle = \langle \mathsf{BitDecomp}^{-1}(ec{a}), ec{b}
 angle$
- = $\langle \mathsf{Flatten}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle$

Choose the following parameters:

• q of $\kappa(\lambda, L)$ bits

- q of $\kappa(\lambda, L)$ bits
- $n(\lambda, L)$ lattice dimension parameter

- q of $\kappa(\lambda, L)$ bits
- $n(\lambda, L)$ lattice dimension parameter
- Error distribution $\chi(\lambda, L)$

- q of $\kappa(\lambda, L)$ bits
- $n(\lambda, L)$ lattice dimension parameter
- Error distribution $\chi(\lambda, L)$
- $m(\lambda, L) \in O(n \log q)$

- q of $\kappa(\lambda, L)$ bits
- $n(\lambda, L)$ lattice dimension parameter
- Error distribution $\chi(\lambda, L)$
- $m(\lambda, L) \in O(n \log q)$
- $l = 1 + \log q$

- q of $\kappa(\lambda, L)$ bits
- $n(\lambda, L)$ lattice dimension parameter
- Error distribution $\chi(\lambda, L)$
- $m(\lambda, L) \in O(n \log q)$
- $I = 1 + \log q$
- $N = (n+1) \times I$

GSW's Construction - Secret Keygen

• Sample $\vec{t} \leftarrow \mathbb{Z}_q^n$ uniformly. This represents the solution of the LWE system of equations.

GSW's Construction - Secret Keygen

- Sample $\vec{t} \leftarrow \mathbb{Z}_q^n$ uniformly. This represents the solution of the LWE system of equations.

GSW's Construction - Secret Keygen

- Sample $\vec{t} \leftarrow \mathbb{Z}_q^n$ uniformly. This represents the solution of the LWE system of equations.
- $\text{Output } sk = \vec{s} = 1 || \vec{t} \in \mathbb{Z}_q^{n+1}$

1 Generate $B \leftarrow \mathbb{Z}_q^{m \times n}$ uniformly

- **1** Generate $B \leftarrow \mathbb{Z}_q^{m \times n}$ uniformly
- ② Sample $\vec{e} \leftarrow \chi$

- ② Sample $\vec{e} \leftarrow \chi$

- $\textbf{ 9} \ \, \mathsf{Generate} \ \, B \leftarrow \mathbb{Z}_q^{m \times n} \ \, \mathsf{uniformly}$
- ② Sample $\vec{e} \leftarrow \chi$
- **3** Set pk as \vec{b} on the first column, followed by the columns of B.

- $\textbf{9} \ \, \mathsf{Generate} \ \, B \leftarrow \mathbb{Z}_q^{m \times n} \ \, \mathsf{uniformly}$
- ② Sample $\vec{e} \leftarrow \chi$
- **3** Set pk as \vec{b} on the first column, followed by the columns of B.
- **o** Observe that $A\vec{s} = \vec{e}$

GSW's Construction - Encryption

Input: μ

References

- O. Regev. The Learning with Errors Problem.
- C. Gentry, A. Sahai, B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based.