Cours PRB222

Option sur Spread

Enjeu

Ce sujet propose le calcul du prix d'une option sur spread (différence de deux prix) par technique de Monte Carlo dans le cadre du modèle de Black & Scholes. Nous nous interessons en premier lieu au calcul théorique dans le cas particulier de l'option à strike nul, que nous confrontons ensuite au calcul par Monte Carlo. Nous étudions ensuite le cas général de strike non nul pour leçuel il n'existe pas de formule fermée.

Notes.

- Lors des simulations numériques, on utilisera uniquement un générateur de nombres aléatoires de loi Uniforme.
- Pour les formules analytiques, on pourra utiliser la fonction de répartition de la loi Normale centrée réduite, dont une approximation numérique est donnée en annexe.

Modèle

On considère un modèle de Black Scholes en dimension 2. On pose $S(t)=(S_1(t),S_2(t))$ le vecteur des cours des actifs risqués au temps t. Soit $W=(W_1(t),W_2(t))_{t\geq 0}$ un mouvement Brownien sous probabilité Risque Neutre de matrice de correlation $\Gamma=\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ avec $-1<\rho<1$. Soit r le taux d'intérêt (supposé constant), $\sigma=(\sigma_1,\sigma_2)$ le vecteur des volatilités (supposées constantes) et $(S_{1,0},S_{2,0})$ le vecteur des valeurs initiales des actifs (supposées déterministes). Nous supposons la dynamique du cours de l'actif i suivante

$$\begin{array}{rcl} dS_i(t) & = & S_i(t) \left(r dt + \sigma_i dW_i(t) \right) \\ (S_1(0), S_2(0)) & = & (S_{1,0}, S_{2,0}) > (0,0) \end{array}$$

Q1) Calculer S(t).

Option d'échange

Une option d'échange confère à son possesseur le droit d'échanger un actif contre un autre (éventuellement pondérés). Le prix de cette option est donc dans notre modèle

$$P = e^{-rT} \mathbb{E}[(\alpha S_1(T) - \beta S_2(T))_+]$$
(1)

sous probabilité Risque Neutre.

- Q2) Calculer P analytiquement (indication : montrer que $W_2(t) \stackrel{L}{=} \rho W_1(t) + \sqrt{1-\rho^2}W_3(t)$ avec $W_3(t)$ indépendant de $W_1(t)$, puis utiliser le théorème de Girsanov).
- Q3) Proposer une méthode pour simuler W(T). Implémenter la calcul de P par une méthode de Monte Carlo classique. On choisira pour les applications $\sigma = (0.25, 0.3), \ \alpha S_{1,0} = \beta S_{2,0} = 1, \ \rho = 0.5$ (sauf pour Q6), r = 0.01 et T = 2 ans. Les volatilités et <u>le</u> taux sont annuels.
- Q4) Implémenter le calcul de P par une méthode de Monte Carlo utilisant une technique de réduction de variance basée sur le conditionnement.
- Q5) Comparer les variances empiriques (des estimateurs) obtenues en fonction du nombre de trajectoires pour chacun des deux estimateurs de P. Tracer sur le même graphique les estimateurs de P en fonction du nombre de trajectoires ainsi que leurs intervalles de confiance asymptotique à 90%.
- Q6) Choisir un nombre de trajectoires pour lequel l'estimation (avec réduction de variance seulement) est assez précise (préciser votre critère) et tracer le prix de l'option en fonction de ρ pour $\rho \in]-1,1[$ (garder les autres paramètres). Commenter.

Option sur Spread

Une option sur Spread confère à son possesseur le droit d'acheter ou de vendre la différence des 2 actifs (éventuellement pondérés) à un prix fixé à l'avance. Ces options sont trés communes sur les marchés matières premières, les raffineries par exemple produisent des pétroles raffinés à partir de pétroles bruts, leurs chiffre d'affaire repose principalement sur le spread entre les deux (crack spread). Le prix de cette option est donc dans notre modèle

$$P = e^{-rT} \mathbb{E}[(\alpha S_1(T) - \beta S_2(T) - K)_+]$$
 (2)

sous probabilité Risque Neutre. K pouvant être négatif.

- Q7) Implémenter le calcul de P par une méthode de Monte Carlo utilisant une technique de réduction de variance basée sur le conditionnement On choisira pour les applications $\sigma = (0.25, 0.3)$, $\alpha S_{1,0} = 1.2$, $\beta S_{2,0} = 1$, K = 0.2 (sauf pour Q13 et Q14), $\rho = 0.5$ (sauf pour Q9), r = 0.01 et T = 2 ans.
- Q8) Tracer l'estimateurs de P en fonction du nombre de trajectoires ainsi que son intervalle de confiance asymptotique à 90%.
- Q9) Choisir un nombre de trajectoires pour lequel l'estimation est précise et tracer le prix de l'option en fonction de ρ pour $\rho \in]-1,1[$ (garder les autres paramètres). Commenter.
- Q10) Tracer l'estimateur de P (avec réduction variance) ainsi que son intervalle de confiance asymptotique à 90% en fonction de K pour $K \in [-1,1]$ (garder les autres paramètres). Commenter.
 - Q11) Calculer analytiquement

$$e^{-rT}\mathbb{E}[(\alpha S_1(T) - \beta S_2(T) - K)_+] - e^{-rT}\mathbb{E}[(\beta S_2(T) - \alpha S_1(T) + K)_+]$$

En déduire une méthode de réduction de variance par variables de contrôle. Illustrer graphiquement cette méthode.

- Q12) Tracer enfin le prix de l'option en fonction de σ pour $\sigma \in [0, 0.8]^2$, $\rho = 0.5$ (garder les autres paramètres). Commenter.
- Q13) Déduire des questions précédentes le prix thérorique d'un forward sur Best Of dont le PayOff est

$$\max(S_1(T), S_2(T)) - K$$

On choisira alors K=1.

- Q14) Implémenter le calcul du prix du forward sur Best Of par une méthode de Monte Carlo et comparer au resultat obtenu à la question précédente.
- Q15) Utiliser l'option d'échange comme variable de contrôle pour calculer le prix de l'option sur spread. Illustrer graphiquement cette méthode.

ANNEXE

Approximation de Abramowitz & Stegun de la fonction de distribution d'une Gaussienne centrée réduite : $\forall x>0$,

$$\frac{1}{\sqrt{211}} \int_{-\infty}^{x} e^{-\frac{1}{2}u^{2}} du = 1 - \frac{1}{\sqrt{211}} e^{-\frac{1}{2}x^{2}} \left(b_{1}t + b_{2}t^{2} + b_{3}t^{3} + b_{4}t^{4} + b_{5}t^{5} \right) + \epsilon(x)$$

avec $t = \frac{1}{1+b_0x}$ et

$$\begin{cases} b0 &= 0.2316419 \\ b1 &= 0.319381530 \\ b2 &= -0.356563782 \\ b3 &= 1.781477937 \\ b4 &= -1.821255978 \\ b5 &= 1.330274429 \end{cases}$$

et où $|\epsilon(x)| < 7.5 \cdot 10^{-8}$.