HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION

Explicit method: tet us consider the following initial-boundary value problem

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 too, ocall —0

where the initial conditions are

$$2l(x_{10}) = f(x)$$

$$\frac{2l}{2t}\Big|_{t=0} = g(x) \quad 0 < x < 1$$

and the boundary conditions

$$u(0,t) = u(t)$$
 $-(3)$ $u(1,t) = \psi(t)$ $t \ge 0$

The central-difference approximations for Uxx and uttent the grid point (xm, tn) are

The equation (1) becomes

$$\frac{1}{K^{2}}(u_{m}^{n-1}-2u_{m}^{n}+u_{m}^{n+1})=\frac{c^{2}}{h^{2}}(u_{m-1}^{n}-2u_{m}^{n}+u_{m+1}^{n})$$

m, n = 0, 1,2 ...

$$\Rightarrow u_{m}^{n+1} = r^{2}u_{m-1}^{n} + 2(1-r^{2})u_{m}^{n} + r^{2}u_{m+1}^{n} - u_{m}^{n-1} - u_{m}^{n}$$
where $r = \frac{c\kappa}{h}$

The schematic diagram:

In order to stort the computations, we need the data on two previous time line.

The information required on the line t=K is obtained by using a suitable approximation to the inital condition. $\frac{\partial U}{\partial t}(x,0) = g(x)$

Using second order central approximation:

Rutting n=0 in (4):

 $U_{m} = \tau^{2} U_{m-1}^{0} + 2(1-\tau^{2}) U_{m}^{0} + \tau^{2} U_{m+1}^{0} - U_{m}^{-1}$ $= \tau^{2} f_{m-1} + 2(1-\tau^{2}) f_{m} + \tau^{2} f_{m+1} - U_{m}^{-1} - (4b)$

Eliminating u_m between $(u_a) \notin (u_b)$ we obtain the expression for u along t = K, i.e. for n = 1 as $u_m = r^2 f_{m-1} + 2(1-r^2) f_m + r^2 f_{m+1} + 2K g_m - u_m$

$$\Rightarrow u'_{m} = \frac{1}{2} \left[r^{2} f_{m-1} + 2(1-r^{2}) f_{m} + r^{2} f_{m+1} + 2 \kappa g_{m} \right]$$

This gives the values of u for n=1. For n=2,3,...
the values are obtained from (4).

The truncation error of this method is $O(h^2+K^2)$ and the formula (4) is convergent for $o< r \le 1$.

Example: Solve the wave equation

with B.C.

and I.G. $u(x,0) = \frac{1}{2} sin \pi x$

for $n = 0, 0.2, \dots, 1$ and $t = 0, 0.1, 0.2, \dots, 0.5$.

Sol: The explicit formula is

$$u_{m}^{n+1} = r^{2} u_{m-1}^{n} + 2(1-r^{2}) u_{m}^{n} + r^{2} u_{m+1}^{n} - u_{m}^{n-1}$$

$$h = 0.2 \quad K = 0.1 \quad Y = \frac{1}{h} = \frac{0.1}{0.2} = 0.5$$

B.Cs:
$$u_0^n = u_5^m = 0$$
, $n = 1,2,...5$.

Ics:
$$u_m = \pm \sin \pi \times m$$

For r = 0.5, the finit diff. scheme becomes:

$$u_m^{m+1} = 0.25 u_{m-1}^m + 1.5 u_m^m + 0.25 u_{m+1}^n - u_m^{m-1} - (1)$$

For n=0:

Um = 0.25 Um-1 + 15 Um + 0.25 Um+1 - Um

Since Um = Um, then

Um = 0.125 Um-1 + 0.75 Um + 0.125 Um+1

The above formula gives the values of u for n=1.

For n=2,3... the value are obtained form u.

See the computed values in Table 1.

t=05		0.0057	0.0093	0.0093	0.0057	ø
t=0.4 n=4	0	0.0952	0.1539	0.1539	0.0952	0
t=03 n=3	0	0.1755	0.2840	0.2840	0.1755	O
t=0.2 n=2	0	0.2391	0.3869	0.3869	0.239)	0
t=0·1 n=1	0	0.2799	o.4528	o·4528	0.2749	O
t=0 n=0	0	0.2939	0.4755	0.4755	0.2939	0
	X= 0 M=0		х= 0-4 M= 2	x=0.6 m=3	M=4 M=4	x=1 m=5