Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Dimensionality Reduction and Images**

Class Logistics and Agenda

Logistics:

- Lab grading...
- Next Time: Flipped Module
- Do quiz one after this lecture!!
- Turn in one per team (HTML), please include team member names from canvas

Agenda

- Common Feature Extraction Methods for Images
- Begin Town Hall, if time

Class Overview, by topic

Last time...

E1	E2
0.85	0.85
0.52	-0.52

37.1	-6.7
-6.7	43.9

	A1	A2
1	66	33.6
2	54	26.6
3	69	23.3
4	73	28.1
5	61	43.1
6	62	25.6

	A1	A2
1	1.83	3.55
2	-10.1	-3.45
3	4.83	-6.75
4	8.83	-1.95
5	-3.17	13.05
6	-2.17	-4.45
Z	ero m	nean

- an image can be represented in many ways.
- most common format is a matrix of pixels

Review: Image Representation, Features

Problem: need to represent image as table data

need a compact representation

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Review: Image Representation, Features

Problem: need to represent image as table data

need a compact representation

Solution: row concatenation (also, vectorizing)

. . .

Dimension Reduction with Images

Demo

"Refresher" Demo

Images Representation in PCA and Randomized PCA

04. Dimension Reduction and Images. ipynb

Features of Images

Extracting Features: Convolution

- For images:
 - kernel (matrix of values)
 - slide kernel across image, pixel by pixel
 - multiply and accumulate

This Example:

3x3 Kernel (dark)
Ignoring edges of input
Input Image is 5x5
Output is then 3x3

Convolution

$$\sum \left(\mathbf{I} \left[i \pm \frac{r}{2}, j \pm \frac{c}{2} \right] \odot \mathbf{k} \right) = \mathbf{O}[i, j] \quad \text{output image at pixel } i, j$$

usually r=c

input image slice centered in i,j kernel of size, $r \times c$ with range $r \times c$

0	0	0	0	0	0	0	0	0
0	1	2	3	4	12	9	8	0
0	5	2	3	4	12	9	8	0
0	5	2	1	4	10	9	8	0
0	7	2	1	4	12	7	8	0
0	7	2	1	4	14	9	8	0
0	5	2	3	4	12	7	8	0
0	5	2	1	4	12	9	8	0
0	0	0	0	0	0	0	0	0

input image, I

0	0	0
2	3	4
2	3	4
_		_
1	2	1
1 2	2	1 2

kernel filter, k 3x3

20	21	36			
			•••	•••	

output image, O

Convolution Examples

Vertical Edges

-1	0	1
-1	0	1
-1	0	1

Self test:

0	0	0	What does this do?
1	0	0	A. move left pixel to center

C. blur

Sharpen -1

B. move right to center

Common operations

DAISY: same features, regardless of orientation

- 1. Select *u,v* pixel location in image and radius
- 2. Take histogram of average gradient magnitudes in circle for each orientation $\tilde{h}_{\Sigma}(u,v)$
- 3. Select circles in a ring, R
- 4. For each circle on the ring, take another histogram $\tilde{h}_{\Sigma}(\mathbf{l}_{O}(u,v,R_{1}))$
- 5. Repeat for more rings
- 6. Save all histograms as "descriptors" $[\tilde{h}_{\Sigma}(\cdot), \tilde{h}_{\Sigma}(\mathbf{l}_{1}(\cdot, R_{1})), \tilde{h}_{\Sigma}(\mathbf{l}_{2}(\cdot, R_{1}))...]$
- 7. Can concatenate descriptors as "feature" vector at that pixel location

lessor Fric C. Larson

Efficient DAISY, Orient x Circle Radius convolutions

Daisy Operator at u_0, v_0 is Concatenated ||Histograms||

$$\mathcal{D}(u_0, v_0) =$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0,v_0),$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0, v_0, R_1)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0, v_0, R_1)), \\ \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0, v_0, R_2)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0, v_0, R_2)),$$

one convolution per orientation

one convolve per ring size

take normalized histogram of magnitudes

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \begin{bmatrix} \mathbf{G}_1^{\Sigma}(u,v), \dots, \mathbf{G}_H^{\Sigma}(u,v) \end{bmatrix}^{\top}$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE

An intuition for the future: DAISY workflow

Hyper Parameters in DAISY, need selection

Params

step, radius, num rings, num histograms per ring, orientations, bins per histogram

More Image Processing

Gradients
DAISY
(if time)Gabor Filter Banks

Other Tutorials:

http://scikit-image.org/docs/dev/auto_examples/

Common operations: Gabor filter Banks (if time)

common used for texture classification

Matching versus Bag of Features

 Not a difference of vectors, but a percentage of matching points

SURF, ORB, SIFT, DAISY

Feature Matching

Matching test image to source dataset

- 1. Choose src image from dataset
- 2. Take keypoints of src image
- 3. Take keypoints of test image
- 4. For each kp in src:
 - 1. Match with closest kp in test
 - 2. How to define match?
- 5. Count number of matches between images
- 6. Determine if src and test are similar based on number of matches
- 7. Repeat for new src image in dataset
- 8. Once all images measured, choose best match as the target for the test image

match_descriptors

skinage.feature. match_descriptors (descriptors1, descriptors2, metric=None, p=2, max distance=inf, cross_check=True, max_ratio=1.0)

Brute-force matching of descriptors.

For each descriptor in the first set this matcher finds the closest descriptor in the second set (and vice-versa in the case of enabled cross-checking).

[source]