Лабораторная работа 2 — Дифференциальный привод

В задании 1 нет необходимости использовать Python, все вычисления производятся на листке.

1. Передвижение

Робот с дифференциальным приводом начинает движение из положения x=1.0 m, y=2.0 m, $\theta=\pi/2$ и должен переместиться в положение x=1.5 m, y=2.0 m, $\theta=\pi/2$. Движение происходит посредством управляющих команд (v_l — скорость левого колеса, v_r — скорость правого колеса, t — время движения).

- (a) Какое минимальное количество управляющих команд (наборов v_l, v_r, t) необходимо для приведения робота в желаемое положение?
- (b) Какова длина кратчайшей траектории в этих условиях?
- (c) Пусть максимальная скорость каждого колеса составляет v, расстояние между ними равно l и возможно использование произвольного числа управляющих команд. Какая последовательность управляющих команд приведет робота в желаемое положение по кратчайшей траектории?
- (d) Какова длина этой траектории?

Примечание: под длиной траектории понимается пройденное по траектории расстояние.

2. Кинематика дифференциального привода

Напишите на функцию, которая реализует прямую кинематику для дифференциального привода.

(а) Функция должна выглядеть следующим образом:

```
def diffdrive(x, y, theta, v_l, v_r, t, l) :
return x_n, y_n, theta n
```

где x, y и θ — положение робота, v_l и v_r — скорость левого и правого колеса соответственно, t — время движения, l — расстояние между колесами робота. Выход функции — новое положение робота x_n, y_n и θ_n .

- (b) После достижения положения x=1.5 m, y=2.0 m, $\theta=\pi/2$ робот выполняет последовательность команд:
 - i) $c_1 = (v_l = 0.3 \text{ m/s}, v_r = 0.3 \text{ m/s}, t = 3 \text{ s})$
 - ii) $c_2 = (v_l = 0.1 \text{ m/s}, v_r = -0.1 \text{ m/s}, t = 1 \text{ s})$
 - iii) $c_3 = (v_l = 0.2 \text{ m/s}, v_r = 0 \text{ m/s}, t = 2 \text{ s})$

Используя функцию diffdrive, вычислите положение робота после выполнения каждой команды (расстояние l между колесами робота составляет 0.5 m).

Отобразите получившиеся положения (вместе с начальным) на графике в виде набора векторов.