Statistics Review Chapter 3, with 2.5/2.6

EC200: Econometrics and Applications

Learning objectives

- ▶ Understand and use key vocabulary (Chapter 3)
- ► Construct confidence intervals
- ► Conduct one and two-sided hypothesis tests
 - ightharpoonup Using z- and t- distributions
 - ▶ Interpret *p*-values

Statistics Review

- 1 Finite sample properties of estimators
- 2 Confidence intervals
- 3 Hypothesis testing
 - Overview
 - P-values

Random sampling

Simple random sampling

Definition

Method of choosing a set of observations (sample) from a population, such that each member is **equally likely** to be included.

We label each of n observations as $Y_1, Y_2, ... Y_n$

Independent and identically distributed (i.i.d.)

Definition

When $Y_1, Y_2, \dots Y_n$ are

- 1 drawn from the same distribution (identical), and
- 2 are independent (conditional = marginal distribution)

With simple random sampling, the random variables Y_i are i.i.d.

Finite sample properties of estimators

- ▶ An estimator of a population parameter is a random variable that depends on sample information, whose value approximates this parameter
- ▶ A specific value of that random variable is an estimate.

Example 1

Draw a sample of size n from a population, with parameter μ . One useful estimator:

$$\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

 \bar{Y} is an estimator, and \bar{y} is the estimate. A sampling distribution is the distribution of an estimator.

Law of large numbers

Law of large numbers

Definition

If Y_i , i = 1, ..., n is i.i.d, with $E(Y_i) = \mu_Y$ and if large outliers are unlikely (if $var(Y_i) = \sigma_Y^2 < \infty$), then

$$\bar{Y} \stackrel{p}{\longrightarrow} \mu_Y$$

That is, \bar{Y} "converges in probability" to μ_Y . Alternatively, we can say that \bar{Y} "is consistent" for μ_Y

Central limit theorem

Central limit theorem

Central limit theorem

Definition

- ▶ Let $X_1, X_2, ... X_n$ be a set of n independent random variables with identical distributions with mean μ and variance σ^2 , and \bar{X} is the mean of these random variables
- \triangleright As n becomes large, the distribution of

$$Z = \frac{\bar{X} - \mu_X}{\sigma_{\bar{X}}}$$

approaches the standard normal distribution (is "asymptotically normal")

Characteristics of point estimators

We evaluate how good an estimator is based on its bias and efficiency:

- ▶ Bias: Difference between the expectation of the estimator and the parameter
- ► Efficiency: Variance of the estimator how much it differs from the true parameter

Bias

Let $\hat{\theta}$ be an estimator of parameter θ :

Bias Definition

The difference between the expectation of the estimator and the parameter

$$Bias(\hat{\theta}) = E[\hat{\theta}] - \theta$$

The bias of an unbiased estimator is 0.

Unbiasedness

 $\hat{\theta_1}$ is an unbiased estimator, $\hat{\theta_2}$ is biased:

Efficiency

- ▶ Often, there are several unbiased estimators.
- ▶ Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ . Then, $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$ if

$$Var(\hat{\theta_1}) < Var(\hat{\theta_2})$$

Confidence limits for μ

Confidence interval:

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where $z_{\alpha/2}$ is the normal distribution value for the probability of $\alpha/2$ in each tail

If σ unknown, then use the t distribution instead

Finding $z_{\alpha/2}$

Consider a 95% confidence interval:

CI Example

Example 2

A sample of 11 circuits from a large, normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.

Determine a 95% confidence interval for the true mean resistance of the population.

CI Example

A sample of 11 circuits from a large, normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Find a 95% CI for the true mean resistance of the population.

1 List what we know:

$$n = 11$$
 $\bar{x} = 2.20$ $\sigma = 0.35$ $\alpha = 0.05$

population normal

2 List what we want to find:

$$\bar{x} \pm z \frac{\sigma}{\sqrt{n}}$$

CI Example

A sample of 11 circuits from a large, normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Find a 95% CI for the true mean resistance of the population.

- Find the right value of $z_{\alpha/2}$: $\alpha = 0.05 \Rightarrow z_{0.05/2} \Rightarrow P(Z < z_{0.025}) = 0.975 \Rightarrow z_{0.025} = 1.96$
- 4 Plug in remaining values:

$$95\%CI = 2.20 \pm 1.96 \frac{0.35}{\sqrt{11}}$$
$$= 2.20 \pm 0.2068$$
$$1.9932 < \mu < 2.4068$$

Concepts of hypothesis testing

A hypothesis is a claim (assumption) about a population parameter:

- One sample: The mean monthly cell phone bill in Vermont is $\mu = \$52$.
- ► Two sample: The mean monthly cell phone bill in Vermont equals the mean monthly cell phone bill in Massachusetts.

Setting up hypotheses

- Null hypothesis (H_0) states the assumption (numerical) to be tested
- ▶ Alternative hypothesis (H_1) is the "opposite" of the null
- ▶ Determine whether there is enough evidence to reject the null hypothesis.
- ▶ Example: The average number of TV sets in U.S. homes equals three $(H_0 : \mu = 3, H_1 : \mu \neq 3)$.

$$H_0: \mu = 3$$

One-tail tests

In many cases, the alternative hypothesis focuses on one particular direction.

▶ Does fuel additive *increase* gas mileage?

$$H_0: \mu \le 10.5$$

 $H_1: \mu > 10.5$

Upper-tail test since alternative hypothesis focused on upper tail.

▶ Does cholesterol drug *lower* LDL levels from average of 145?

$$H_0: \mu \ge 145$$

 $H_1: \mu < 145$

Lower-tail test since alternative hypothesis focused on lower tail.

Two-tail tests

Sometimes, we don't have a specific direction in mind.

► Were average U.S. stock market returns affected by Hurricane Katrina, compared to their usual average of 4%?

$$H_0: \mu = 4$$

 $H_1: \mu \neq 4$

Two-tailed test since we reject if stock returns are very high or very low

Level of significance, α

- ► Significance level defines the unlikely values of the sample statistic, the rejection region, if the null hypothesis is true
- ▶ Designated by α (level of significance) usually $\alpha = 0.01, 0.05, 0.10$
- Selected by researcher at beginning
- ▶ Determines the critical value of the test

Step-by-step

- **1** Set up H_0 and H_1
- 2 Determine *t*-statistic:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

- 3 Compare test statistic to critical value(s) c, depends on α and one vs. two-sided test
 - a Upper tail: Reject H_0 if t > c
 - b Lower tail: Reject H_0 if t < -c
 - c Two tailed: Reject H_0 if |t| > c
- 4 Reject or do not reject H_0

Test statistics and critical values

We essentially "convert" our estimate to the t-distribution:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

If we know σ or as n gets large, the t distribution converges to a standard normal (z) distribution.

P-values

P-values

P-value Definition

The largest significance level at which we could carry out a hypothesis test and still fail to reject the null hypotheses.

- ► Also called "observed level of significance"
- ▶ Smallest value of α for which we can reject H_0

Example: Hypothesis test for mean

Example 3

A phone industry manager things that customer monthly cell phone bills have increased and now average over \$52 per month.

- ► The company wishes to test this claim, so it surveys 150 customers.
- ► The average phone bill is \$53.10 per month, with a standard deviation of \$10.
- ➤ Test the null hypothesis that bills have not increased at the 5% level.

Example: Hypothesis test for mean

- Write down what we know:
 - $\mu_0 = 52 \ s = 10, \ n = 150$
 - $\alpha = 0.5, \bar{x} = 53.1$
- 2 Set up hypotheses:
 - ▶ H_0 : $\mu \le 52$
 - ▶ H_1 : $\mu > 52 \rightarrow what manager wants to prove$
 - ightharpoonup This is an upper tail test

Example: Hypothesis test for mean

- 3 Since we have a upper-tail test, we will reject if we have a t-test statistic greater than t_{α} .
- **4** Decision rule: Reject H_0 if $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}} > 1.96$
- 5 Reject or do not reject:

$$z = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{53.1 - 52}{10/\sqrt{150}} = 1.347$$

DO NOT REJECT H_0

Oalculate the p-value

- $5.1 \Leftarrow \text{ onvert } \bar{x} \text{ to test statistics}$
- 🛂 Calculate p-value

$$3119.0 - 1 = (38.1)A - 1 = (748.1 < S)A$$

 $3890.0 =$

significance level of 0.0885 or higher. Do not reject, as $\alpha = 0.05 < 0.085 = p$. Can reject only at

000000

Hypothesis testing

P-values

Summary

- 1 Finite sample properties of estimators
- 2 Confidence intervals
- 3 Hypothesis testing
 - Overview
 - P-values