

연세대학교 인공지능학과 석사과정 조우현

포트폴리오

MAVL: A Multilingual Audio-Video Lyrics Dataset for Animated Song Translation

Woohyun Cho¹, Youngmin Kim¹, Sunghyun Lee¹, Youngjae Yu²*

¹Yonsei University, ²Seoul National University

*: Corresponding Author

Introduction: The Challenges of Lyrics Translation

- Text Alone is Not Enough.
- Especially in animated musicals, songs are closely tied to specific scenes, characters' expressions, and actions.
- Existing text-based translation often misses this Audio-Visual Context.

That's why I made MAVL dataset

- Multilingual Audio-Video Lyrics Benchmark
- MAVL is the first multimodal parallel dataset for animated song translation research.
- Multilingual Support: English, Spanish, French, Japanese, Korean (5 languages)
- Multimodal Composition: The three elements of Lyrics (Text), Song (Audio), and Video are precisely synchronized.
- Scale: Includes extensive data for a total of 228 songs.

Language	# Songs	# Video	# Sections	# Lines
English	228	228	1,923	6,623
Spanish	201	181	1,595	5,739
French	158	143	1,421	4,821
Japanese	138	114	1,264	4,280
Korean	133	117	1,138	3,974

MAVL Collection Pipeline

- I've made the automatic pipeline to find animation songs metadata on Last.fm and to use the metadata for lyrics crawling on genius.com and lyricstranslate.com
- And manually aligned the lyrics across the languages manually, and across audio and videos automatically using Whisper-based tool, Stable-ts.

SylAVL-CoT Pipeline

- Using MAVL Benchmark, I evaluated my new audio-video lyrics translation framework, SylAVL-CoT.
- This framework utilizes the audio and video data with Gemini using Chain-of-Thoughts prompt, to fully utilize Gemini's potential at lyrics translation.

Revisiting Residual Connection: Orthogonal Updates for Stable and Efficient Deep Networks

Giyoung Oh¹, **Woohyun Cho¹**, Siyeol Kim¹, Suhwan Choi², Youngjae Yu³*

¹Yonsei University, ²Maum Al ³Seoul National University

*: Corresponding Author

Motivation

- What if We apply residual connection with only with orthogonal component?
- Does it help improving the performance of the model by stabilizing the training?

Figure 1: Intuition behind our orthogonal residual update. Left: The standard residual update adds the full output of module $f(x_n)$ to the input stream x_n . Right: Our proposed update first decomposes the module output $f(x_n)$ into a component parallel to x_n $(f_{||})$ and a component orthogonal to x_n (f_{\perp}) . We then discard $f_{||}$ and add only the orthogonal component f_{\perp} to the stream.

What I did for the project

- For the ablation studies, I trained the image classification models, where I changed the model architecture during the training to see on which architecture, the model performs the best.
- The model performed the best when it starts training with orthogonal architecture and ends with linear (original architecture).

Table 3: Mean \pm std. of top-1 (Acc@1) and top-5 (Acc@5) accuracy (%) from 5 independent runs for ViT-S, evaluating adaptability to connection type changes. Models are trained for 300 epochs (**Start Arch.**) then another 300 epochs (**End Arch.**) on the same dataset, with connections (Linear 'L' or Orthogonal 'O') potentially switched. Compared are $L \rightarrow L$, $L \rightarrow O$, $O \rightarrow L$, and $O \rightarrow O$ on CIFAR-10, CIFAR-100, and Tiny ImageNet. Results are averaged over the final epochs of the **End Arch.** phase.

Dataset	$\textbf{Start Arch.}{\rightarrow} \textbf{End Arch.}$	Acc@1 (%)	Acc@5 (%)
CIFAR-10	$\begin{array}{ccc} \text{Linear} & \rightarrow \text{Linear} \\ \text{Linear} & \rightarrow \text{Orthogonal} \\ \text{Orthogonal} & \rightarrow \text{Linear} \\ \text{Orthogonal} & \rightarrow \text{Orthogonal} \end{array}$	92.78 ± 0.06 92.88 ± 0.14 93.89 ± 0.12 94.10 ± 0.12	99.74±0.03 99.72±0.03 99.75 ±0.04 99.73 ±0.04
CIFAR-100	$\begin{array}{ccc} \text{Linear} & \rightarrow \text{Linear} \\ \text{Linear} & \rightarrow \text{Orthogonal} \\ \text{Orthogonal} & \rightarrow \text{Linear} \\ \text{Orthogonal} & \rightarrow \text{Orthogonal} \end{array}$	74.22 ± 0.13 74.02 ± 0.24 75.63 ± 0.17 75.38 ± 0.35	92.26 ± 0.13 91.96 ± 0.17 92.91 ± 0.17 92.20 ± 0.13
TinyImageNet	$\begin{array}{ccc} \text{Linear} & \rightarrow \text{Linear} \\ \text{Linear} & \rightarrow \text{Orthogonal} \\ \text{Orthogonal} & \rightarrow \text{Linear} \\ \text{Orthogonal} & \rightarrow \text{Orthogonal} \end{array}$	53.24±0.13 52.14±0.18 54.58 ±0.10 53.88±0.29	75.25 ± 0.21 74.20 ± 0.20 76.45 ± 0.24 75.34 ± 0.23

What I did for the project

- For the ablation studies, I trained the image classification models, where I changed the model architecture during the training to see on which architecture, the model performs the best.
- The model performed the best when it starts training with orthogonal architecture and ends with linear (original architecture).

(c) Tiny ImageNet, Acc@1

Thank You