Codifica di Huffman

Claudio Mirolo

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università di Udine, via delle Scienze 206 – Udine claudio.mirolo@uniud.it

Corso di Programmazione

La definizione di informatica che prediligo è che si tratta dello studio degli algoritmi [...].

Un programma è una particolare rappresentazione di un algoritmo, esattamente nello stesso senso in cui il termine "dato" si riferisce a una particolare rappresentazione di "informazione".

Forse la scoperta più significativa determinata dall'avvento del computer sarà che gli algoritmi, come oggetti di studio, sono straordinariamente ricchi di proprietà interessanti; inoltre, un punto di vista algoritmico costutuisce un modo utile di organizzare la conoscenza in generale.

La definizione di informatica che prediligo è che si tratta dello studio degli algoritmi [...]. Un programma è una particolare rappresentazione di un algoritmo, esattamente nello stesso senso in cui il termine "dato" si riferisce a una particolare rappresentazione di "informazione".

Forse la scoperta più significativa determinata dall'avvento del computer sarà che gli algoritmi, come oggetti di studio, sono straordinariamente ricchi di proprietà interessanti; inoltre, un punto di vista algoritmico costutuisce un modo utile di organizzare la conoscenza in generale.

La definizione di informatica che prediligo è che si tratta dello studio degli algoritmi [...]. Un programma è una particolare rappresentazione di un algoritmo, esattamente nello stesso senso in cui il termine "dato" si riferisce a una particolare rappresentazione di "informazione".

Forse la scoperta più significativa determinata dall'avvento del computer sarà che gli algoritmi, come oggetti di studio, sono straordinariamente ricchi di proprietà interessanti;

inoltre, un punto di vista algoritmico costutuisce un modo utile

di organizzare la conoscenza in generale.

La definizione di informatica che prediligo è che si tratta dello studio degli algoritmi [...]. Un programma è una particolare rappresentazione di un algoritmo, esattamente nello stesso senso in cui il termine "dato" si riferisce a una particolare rappresentazione di "informazione".

Forse la scoperta più significativa determinata dall'avvento del computer sarà che gli algoritmi, come oggetti di studio, sono straordinariamente ricchi di proprietà interessanti; inoltre, un punto di vista algoritmico costutuisce un modo utile di organizzare la conoscenza in generale.

Codifica di Huffman: Inventarsi nuovo spazio...

• Sequenza di 12 basi nucleiche (pretesto):

ATTCTACCTTGT

Codifica binaria standard (stile ASCII)
 due bit per distinguere fra quattro simboli:

• Rappresentazione della sequenza (24 bit):

Sequenza di 12 basi nucleiche (pretesto):

ATTCTACCTTGT

- Codifica binaria standard (stile ASCII)
 due bit per distinguere fra quattro simboli:
 - A 00 T 01
 - T 01
 C 10
 G 11
- Rappresentazione della sequenza (24 bit):

Sequenza di 12 basi nucleiche (pretesto):

ATTCTACCTTGT

Codifica binaria standard (stile ASCII)
 — due bit per distinguere fra quattro simboli:

Α	00
Т	01
С	10
G	11

• Rappresentazione della sequenza (24 bit):

Sequenza di 12 basi nucleiche (pretesto):

ATTCTACCTTGT

- Codifica binaria standard (stile ASCII)
 due bit per distinguere fra quattro simboli:
 - A 00 T 01 C 10 G 11

Rappresentazione della sequenza (24 bit):

 Peso dei simboli = numero di occorrenze (o frequenza) coppie simbolo/peso ordinate per peso crescente:

 Peso dei simboli = numero di occorrenze (o frequenza) coppie simbolo/peso ordinate per peso crescente:

Peso dei simboli = numero di occorrenze (o frequenza)
 coppie simbolo/peso ordinate per peso crescente:

$$< \checkmark$$
 : 1+2 = 3, **C**:3, **T**:6 > **G**

$$< \checkmark$$
 : 3+3 = 6, **T**:6 > **C G A**

 Peso dei simboli = numero di occorrenze (o frequenza) coppie simbolo/peso ordinate per peso crescente:

Albero di Huffman:

 Codice definito dal percorso attraverso l'albero per raggiungere il simbolo (0 = sinistra, 1 = destra)

Albero di Huffman:

 Codice definito dal percorso attraverso l'albero per raggiungere il simbolo (0 = sinistra, 1 = destra)

Albero di Huffman:

 Codice definito dal percorso attraverso l'albero per raggiungere il simbolo (0 = sinistra, 1 = destra):

A	001
Т	1
С	01
G	000

Albero di Huffman:

 Codice definito dal percorso attraverso l'albero per raggiungere il simbolo (0 = sinistra, 1 = destra):

Α	001
Т	1
С	01
G	000

Albero di Huffman:

Rappresentazione "compressa" della sequenza (21 bit):

A T T C T A C C T T G T

Albero di Huffman:

Rappresentazione "compressa" della sequenza (21 bit):

A T T C T A C C T T G T

Albero di Huffman:

Rappresentazione "compressa" della sequenza (21 bit):

A T T C T A C C T T G T

Albero di Huffman:

Rappresentazione "compressa" della sequenza (21 bit):

A T T C T A C C T T G T0011101100101011110001

Testo con 4 vocali e 4 consonanti:

ILTEATROALLIETALASERATA

Codifica binaria standard (stile ASCII)
 tre bit per distinguere fra otto lettere

• Rappresentazione della sequenza (69 bit):

Testo con 4 vocali e 4 consonanti:

ILTEATROALLIETALASERATA

Codifica binaria standard (stile ASCII)
 tre bit per distinguere fra otto lettere:

Α	000
E	001
	010
0	011

L	100
R	101
S	110
Т	111

Rappresentazione della sequenza (69 bit):

Testo con 4 vocali e 4 consonanti:

ILTEATROALLIETALASERATA

Codifica binaria standard (stile ASCII)
 tre bit per distinguere fra otto lettere:

Α	000
Е	001
I	010
0	011

L	100
R	101
S	110
Т	111

Rappresentazione della sequenza (69 bit):

Testo con 4 vocali e 4 consonanti:

ILTEATROALLIETALASERATA

- Codifica binaria standard (stile ASCII)
 - tre bit per distinguere fra otto lettere:

Α	000
Е	001
I	010
0	011

L	100
R	101
S	110
Т	111

Rappresentazione della sequenza (69 bit):

• Lettere e pesi = numeri di occorrenze:

```
<O:?, S:?, I:?, R:?, E:?, L:?, T:?, A:?>
```

$$<$$
 \searrow : 2, 1:2, **R**:2, **E**:3, **L**:4, **T**:4, **A**:6>

• Lettere e pesi = numeri di occorrenze:

$$< 0:1, S:1, I:2, R:2, E:3, L:4, T:4, A:6>$$

$$<$$
 \searrow : 2, 1:2, **R**:2, **E**:3, **L**:4, **T**:4, **A**:6>

• Lettere e pesi = numeri di occorrenze:

$$< 0:1, S:1, I:2, R:2, E:3, L:4, T:4, A:6 >$$

• Lettere e pesi = numeri di occorrenze:

$$< 0:1, S:1, I:2, R:2, E:3, L:4, T:4, A:6>$$

$$<$$
 \searrow : 2, I:2, R:2, E:3, L:4, T:4, A:6 > 0 S

• Lettere e pesi = numeri di occorrenze:

$$< 0:1, S:1, I:2, R:2, E:3, L:4, T:4, A:6>$$

Costruzione dell'albero di Huffman:

Costruzione dell'albero di Huffman:

Costruzione dell'albero di Huffman:

Α	
Е	
I	
0	
L	
R	
S	
Т	

Α	10
Е	
I	
0	
L	
R	
S	
T	

Α	10
E	011
I	
0	

L	
R	
S	
Т	

Α	10
Е	011
ı	1101
0	

L	
R	
S	
Т	

Α	10
Е	011
ı	1101
0	11000

L	
R	
S	
Т	

Α	10
Е	011
I	1101
0	11000

L	111
R	
S	
Т	

A	10
E	011
I	1101
0	11000

L	111
_	0.10
R	010
_	
S	
т —	

Α	10
E	011
I	1101
0	11000

L	111
R	010
S	11001
Т	

Α	10
Е	011
I	1101
0	11000

L	111
R	010
S	11001
Т	00

Codifica del testo:

ILTEATROALLIETALASERATA

Codifica di Huffman:

Rappresentazione della sequenza (65 bit):

Codifica del testo:

ILTEATROALLIETALASERATA

Codifica di Huffman:

Α	10
Е	011
	1101
0	11000

L	111
R	010
S	11001
Т	00

Rappresentazione della sequenza (65 bit):

Codifica del testo:

ILTEATROALLIETALASERATA

Codifica di Huffman:

Α	10
Е	011
I	1101
0	11000

L	111
R	010
S	11001
Т	00

Rappresentazione della sequenza (65 bit):

Codifica del testo:

ILTEATROALLIETALASERATA

Codifica di Huffman:

Α	10
Е	011
I	1101
0	11000

L	111
R	010
S	11001
Т	00

Rappresentazione della sequenza (65 bit):

Decodifica?

The End...

Domande?

