

NF zesilovač s obvodem MBA810

Milan Horkel

Modul univerzálního nízkofrekvenčního zesilovače s obvodem MBA810 poskytuje dostatečný výkon pro běžné domácí použití. Při požadavku na maximální výkon je třeba zesilovač opatřit chladičem

1. Technické parametry

Parametr	Hodnota	Poznámka
Napájení	9 až 16V	Maximálně 20V
Spotřeba	min cca 20mA	Dle vybuzení
Impedance reproduktoru	$\min 4\Omega$	
Výstupní výkon	max cca 5W	Záleží na napájení, impedanci reproduktoru a chlazení
Zesílení	cca 35dB (60x)	
Rozměry	41x52x29	Bez knoflíku a šroubů

2. Popis konstrukce

2.1. Zapojení modulu

Zapojení je v podstatě katalogové. Hodnoty součástek nejsou kritické. Vstupní odpor zesilovače je velký $(100k\Omega)$ a pokud se použije plastový potenciometr mohou být potíže s pronikáním rušení (zejména od silných středovlnných vysílačů). Pak je vhodnější použít (logaritmický) potenciometr o hodnotě $10k\Omega$.

Vstupní kondenzátor C1 je nepolarizovaný aby nezáleželo na stejnosměrném napětí na vstupu (modul má být univerzální). C2 a R1 určují kmitočtovou charakteristiku zesilovače a jeho zesílení. Kondenzátor C3 filtruje vnitřní napájecí napětí integrovaného obvodu. C4 usnadňuje vybuzení koncového stupně v kladných půlvlnách signálu (horní koncový tranzistor je typu NPN a pro vybuzení potřebuje napětí, které je větší než největší výstupní a to právě dodá C4). Kondenzátory C5 a C6 zajišťují kmitočtovou kompenzaci zesilovače aby nekmital. Člen C7 a R2 potlačují vysokofrekvenční zakmitávání koncového stupně. Výstupní C8 odděluje stejnosměrnou složku signálu na vývodu 12 zesilovače od reproduktoru. Na vývodu 12 je přibližně ½ napájecího napětí. C9 a C10 jsou filtrační kondenzátory napájení.

2.2. Zapojení integrovaného obvodu

Obvodů MBA810 se vyrábělo několik variant. V uvedeném zapojení fungují všechny ale je třeba dát pozor na to, že MBA810 (původní varianta) nemá tepelnou ochranu.

MBA810, MBA810A	Bez ochran	
MBA810S, MBA810AS	Tepelná ochrana	
MBA810DS, MBA810DAS	810DAS Tepelná ochrana a ochrana před přepěťovými špičkami v napájení	

Níže uvedené schéma je zapojení MBA810S/AS. Obvod tepelné ochrany je tvořen T11, T10 a D4. Při překročení dovolené teploty čipu (přesněji T11, který je umístěn blízko koncových tranzistorů T15 a T16) dojde k sepnutí T10, který zkratuje signálovou cestu z tranzistoru T9 a tím ochrání koncový stupeň před tepelným zničením. Rychlost reakce této ochrany však nestačí na přímý zkrat na výstupu při kterém se výstupní tranzistory mohou zničit.

3. Mechanická konstrukce

Modul je realizován na jednostranné desce plošných spojů a je vybaven rohovými upevňovacími šrouby s distančními sloupky. Aby se potenciometr nevylomil je uchycen do čelního panelu z kuprextitu, který je připájen k zemní ploše plošného spoje.

4. Osazení a oživení

4.1. Osazení

Před osazením si rozmyslíme, zda a jakým způsobem budeme chladit zesilovač a vyvrtáme příslušné otvory do plošného spoje. Obdobně vyvrtáme příslušnou variantu vývodů pro potenciometr. Pokud není potenciometr určen pro zapájení do plošného spoje vypomůžeme si krátkými dráty. Dle skutečného potenciometru vyrobíme i čelní panel.

4.2. Oživení

Pokud jsou součástky v pořádky není co oživovat. Při oživování používáme regulovatelný zdroj s proudovým omezením. Klidová spotřeba (bez vybuzení) je řádu 20mA. Výrazně větší hodnota znamená nějaký problém (chybu v zapojení, zkrat nebo kmitání zesilovače).

Pozor na polaritu napájení a na to, že zesilovač nemá ochranu proti zkratu na výstupu. Pokud hrozí zkrat na výstupu je vhodné do série s výstupem zařadit malý ochranný odpor (například 2Ω).