Boosting

Christian Peters January 29, 2021

What you will know

ightarrow The idea behind boosting

 \rightarrow How to create a strong and efficient learning algorithm

 \rightarrow What is AdaBoost and why is it so successful?

Let's talk about training a model

How to train a machine learning model

What we have learned so far...

- \cdot We have to pick a hypothesis class ${\cal H}$
- \mathcal{H} can't be too complex (VC dim needs to be finite)
- · We need enough training data (more than some threshold $m_{\mathcal{H}}$)
- Then we use ERM to pick the best $h \in \mathcal{H}$ that minimizes the empirical error

But there is one problem...

ERM can be hard.

- Depending on \mathcal{H} , the optimization problem can become arbitrarily complex
- e.g. implementing ERM for halfspaces in the non-separable case is computationally hard (chapter 9)
- · For many interesting classes, it is infeasible to implement ERM
 - Solving the optimization problem takes forever

...so what can we do?

A first idea...

Idea: Use simpler hypothesis classes where ERM isn't hard.

- Problem: Simple classes can be too "weak" to estimate all relationships in the data
 - → Can lead to underfitting and poor performance
- Approximation error is high (\rightarrow B/C tradeoff)
- · Still, these classes can be useful for us
 - · If the resulting hypothesis is at least better than random

Let's call ERM on a simple class a **weak learner**. We will formally define it later...

The idea behind boosting

Why not combine a lot of weak learners? Can this give us an efficient strong learner?

- · This theoretical question is the origin of boosting
- It was first raised in 1988 by Kearns and Valiant [2]
- The first (practical) answer was given in 1995 by Freund and Schapire [1]
 - → It is YES!
- The result is AdaBoost, a widely popular and award winning algorithm
 - · We will take a look at this later...

But first, let's get back to weak learning.

Weak Learnability

Weak Learnability

Weak Learnability

AdaBoost

AdaBoost

AdaBoost

Conclusion

Conclusion

Conclusion

References i

Y. Freund and R. E. Schapire.

A decision-theoretic generalization of on-line learning and an application to boosting.

Journal of Computer and System Sciences, 55(1):119 – 139, 1997.

M. Kearns and L. G. Valiant.

Learning boolean formulae or finite automata is as hard as factoring.

Technical Report TR 14-88, Harvard University Aiken Computation Laboratory, 1988.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press, 2014.