What is claimed is:

3

1	1.	A me	thod for light signal reception, comprising the
2	steps of:		
3		(A)	transmitting a light beam to a target;
4		(B)	receiving the light beam reflected from the
5			target and outputting a first received
6			signal, wherein the received signal has at
7			least one pulse;
8		(C)	eliminating pulses smaller than a reference
9			voltage level in the first received signal and
10			determining whether a pulse is higher than the
11			reference voltage level in the first received
12			signal;
13		(D)	outputting the pulse to a processor to execute
14			operational processes when the pulse in the
15			first received signal is higher than the
16			reference voltage level;
17		(E)	repeating the steps (A) and (B) to obtain a
18			second received signal when, in the first
19			received signal, no pulse is higher than the
20			reference voltage level; and
21		(F)	amplifying the second received signal and
22			outputting to the processor to execute the
23			operational processes.
1	2.	The	method as claimed in Claim 1, wherein the pulses
2	smaller th	an t	the reference voltage level are eliminated by

a comparison circuit in step (C).

Client's ref.: 911008

1

2

3

4

1

2

3

1

2

3

4

1

2

3

1

2

3

1

File: 0757-9416usf/Dennis/Steve

The method as claimed in Claim 2, wherein the second
 received signal is amplified by a gain circuit in step (F).

- 4. The method as claimed in Claim 3, wherein the gain
 circuit amplifies the second received signal non-linearly.
 - 5. The method as claimed in Claim 3, wherein the gain circuit has a feedback voltage level which is feedback from an output terminal of the gain circuit to an input terminal of the gain circuit.
 - 6. The method as claimed in Claim 3, further comprising a step of connecting the channel selection circuit to the comparison circuit or the gain circuit selectively.
 - 7. The method as claimed in Claim 1, wherein, in step (C), the pulses smaller than the reference voltage level are eliminated by a comparison/gain device operating in a comparison mode.
 - 8. The method as claimed in Claim 7, wherein the second received signal is amplified in a gain mode by the comparison/gain device.
 - 9. The method as claimed in Claim 8, wherein the comparison/gain device operating in a gain mode amplifies the second received signal non-linearly.
- 1 10. The method as claimed in Claim 8, further comprising 2 a step of switching the comparison mode or the gain mode by 3 a mode switching circuit.
 - 11. A light signal receiving device, comprising:

Client's ref.: 911008 File: 0757-9416usf/Dennis/Steve

2	a transmitter transmitting a light beam to a target;
3	a receiver receiving the light beam reflected from the
4	target and outputting a corresponding received
5	signal;
6	a comparison circuit having a reference voltage level,
7	and receiving the received signal to determine
8.	whether a pulse is higher than the reference
9	voltage level, in the received signal; and
10	a gain circuit receiving the received signal from the
11	receiver to amplify and output a corresponding
12	amplified signal.
1	12. The light signal receiving device as claimed in
2	Claim 11, further comprising:
3	a processor receiving and processing the pulse or the
4	amplified signal; and
5	a channel selection circuit electrically connecting the
6	processor to the comparison circuit or to the gain
7	circuit selectively, according to a channel
8	selection signal.
1	13. The light signal receiving device as claimed in
2	Claim 11, wherein the gain circuit has a feedback voltage level
3	which is feedback from an output terminal of the gain circuit
4	to an input terminal of the gain circuit.
1	14. A light signal receiving device, comprising:
2	a transmitter transmitting a light beam to a target;
3	a receiver receiving the light beam reflected from the
4	target and outputting a corresponding received
5	signal;

Client's ref.: 911008

1

2

3

File: 0757-9416usf/Dennis/Steve

6 a comparison/gain device receiving the received signal, 7 and processing the received signal in a comparison mode or in a gain mode; and 8 9 a mode switching device for selectively switching 10 between the comparison mode and the gain mode of 11 the comparison/gain device; 12 wherein the mode switching device provides a reference 13 voltage to the comparison/gain device when the 14 comparison/gain device is switched 15 comparison mode by the mode switching device, and 16 the comparison/gain device determines whether a 17 pulse is higher than the reference voltage level, 18 in the received signal; and the comparison/gain 19 device produces a feedback voltage and amplifies 20 the received signal to output an amplified signal 21 when the comparison/gain device is switched in the 22 gain mode by the mode switching device.

15. The light signal receiving device as claimed in Claim 14, further comprising a processor receiving and processing the pulse or the amplified signal.