Learning Representations of Text using Neural Networks

Tomáš Mikolov Joint work with Ilya Sutskever, Kai Chen, Greg Corrado, Jeff Dean, Quoc Le, Thomas Strohmann

Google Research

NIPS Deep Learning Workshop 2013

Overview

- Distributed Representations of Text
- Efficient learning
- Linguistic regularities
- Examples
- Translation of words and phrases
- Available resources

Representations of Text

Representation of text is very important for performance of many real-world applications. The most common techniques are:

- Local representations
 - N-grams
 - Bag-of-words
 - 1-of-N coding
- Continuous representations,
 - Latent Semantic Analysis
 - Latent Dirichlet Allocation
 - Distributed Representations vs Distributional, but not exclusive

Distributed Representations

- Distributed representations of words can be obtained from various neural network based language models:
 - Feedforward neural net language model
 - Recurrent neural net language model

Yet another representation paradigm: contextual representation e.g. Bert

Feedforward Neural Net Language Model

- Four-gram neural net language model architecture (Bengio 2001)
- The training is done using stochastic gradient descent and backpropagation
- The word vectors are in matrix U

Efficient Learning

- The training complexity of the feedforward NNLM is high:
 - Propagation from projection layer to the hidden layer
 - Softmax in the output layer
- Using this model just for obtaining the word vectors is very inefficient

Efficient Learning

- The full softmax can be replaced by:
 - Hierarchical softmax (Morin and Bengio)
 - Hinge loss (Collobert and Weston)
 - Noise contrastive estimation (Mnih et al.)
 - Negative sampling (our work)
- We can further remove the hidden layer: for large models, this can provide additional speedup 1000x
 - Continuous bag-of-words model
 - Continuous skip-gram model

Skip-gram Architecture

Predicts the surrounding words given the current word

Continuous Bag-of-words Architecture

Predicts the current word given the context

Efficient Learning - Summary

- Efficient multi-threaded implementation of the new models greatly reduces the training complexity
- The training speed is in order of 100K 5M words per second
- Quality of word representations improves significantly with more training data

Linguistic Regularities in Word Vector Space

 The word vector space implicitly encodes many regularities among words

Linguistic Regularities in Word Vector Space

- The resulting distributed representations of words contain surprisingly a lot of syntactic and semantic information
- There are multiple degrees of similarity among words:
 - KING is similar to QUEEN as MAN is similar to WOMAN
 - KING is similar to KINGS as MAN is similar to MEN
- Simple vector operations with the word vectors provide very intuitive results

Linguistic Regularities - Results

- Regularity of the learned word vector space is evaluated using test set with about 20K questions
- The test set contains both syntactic and semantic questions
- We measure TOP1 accuracy (input words are removed during search)
- We compare our models to previously published word vectors

Linguistic Regularities - Results

Model	Vector	Training	Training	Accuracy
	Dimensionality	Words	Time	[%]
Collobert NNLM	50	660M	2 months	11
Turian NNLM	200	37M	few weeks	2
Mnih NNLM	100	37M	7 days	9
Mikolov RNNLM	640	320M	weeks	25
Huang NNLM	50	990M	weeks	13
Our NNLM	100	6B	2.5 days	51
Skip-gram (hier.s.)	1000	6B	hours	66
CBOW (negative)	300	1.5B	minutes	72

Linguistic Regularities in Word Vector Space

Expression	Nearest token	
Paris - France + Italy	Rome	
bigger - big + cold	colder	
sushi - Japan + Germany	bratwurst	
Cu - copper + gold	Au	
Windows - Microsoft + Google	Android	
Montreal Canadiens - Montreal + Toronto	Toronto Maple Leafs	

Performance on Rare Words

- Word vectors from neural networks were previously criticized for their poor performance on rare words
- Scaling up training data set size helps to improve performance on rare words
- For evaluation of progress, we have used data set from Luong et al.: Better word representations with recursive neural networks for morphology, CoNLL 2013

Performance on Rare Words - Results

Model	Correlation with Human Ratings	
	(Spearman's rank correlation)	
Collobert NNLM	0.28	
Collobert NNLM + Morphology features	0.34	
CBOW (100B)	0.50	

Rare Words - Examples of Nearest Neighbours

	Redmond	Havel	graffiti	capitulate
	conyers	plauen	cheesecake	abdicate
Collobert NNLM	lubbock	dzerzhinsky	gossip	accede
	keene	osterreich	dioramas	rearm
	McCarthy	Jewell	gunfire	-
Turian NNLM	Alston	Arzu	emotion	-
	Cousins	Ovitz	impunity	-
	Podhurst	Pontiff	anaesthetics	Mavericks
Mnih NNLM	Harlang	Pinochet	monkeys	planning
	Agarwal	Rodionov	Jews	hesitated
	Redmond Wash.	Vaclav Havel	spray paint	capitulation
Skip-gram	Redmond Washington	president Vaclav Havel	grafitti	capitulated
(phrases)	Microsoft	Velvet Revolution	taggers	capitulating

From Words to Phrases and Beyond

- Often we want to represent more than just individual words: phrases, queries, sentences
- The vector representation of a query can be obtained by:
 - Forming the phrases
 - Adding the vectors together

From Words to Phrases and Beyond

- Example query: restaurants in mountain view that are not very good
- Forming the phrases:
 restaurants in (mountain view) that are (not very good)
- Adding the vectors:
 restaurants + in + (mountain view) + that + are + (not very good)
- Very simple and efficient
- Will not work well for long sentences or documents

Compositionality by Vector Addition

Expression	Nearest tokens	
Czech + currency	koruna, Czech crown, Polish zloty, CTK	
Vietnam + capital	Hanoi, Ho Chi Minh City, Viet Nam, Vietnamese	
German + airlines	airline Lufthansa, carrier Lufthansa, flag carrier Lufthansa	
Russian + river	Moscow, Volga River, upriver, Russia	
French + actress	Juliette Binoche, Vanessa Paradis, Charlotte Gainsbourg	

- We can visualize the word vectors by projecting them to 2D space
- PCA can be used for dimensionality reduction
- Although a lot of information is lost, the regular structure is often visible

Machine Translation

- Word vectors should have similar structure when trained on comparable corpora
- This should hold even for corpora in different languages

Machine Tanslation - English to Spanish

• The figures were manually rotated and scaled

Machine Translation

- For translation from one vector space to another, we need to learn a linear projection (will perform rotation and scaling)
- Small starting dictionary can be used to train the linear projection
- Then, we can translate any word that was seen in the monolingual data

MT - Accuracy of English to Spanish translation

Machine Translation

- When applied to English to Spanish word translation, the accuracy is above 90% for the most confident translations
- Can work for any language pair (we tried English to Vietnamese)
- More details in paper: Exploiting similarities among languages for machine translation

Available Resources

The project webpage is code.google.com/p/word2vec

- open-source code
- pretrained word vectors (model for common words and phrases will be uploaded soon)
- links to the papers