MultiLayer Perceptrons (Çok Katmanlı Algılayıcılar) Backpropagation (Geriye Yayınım Alg)

DEVAM

Minima and Maxima

go to next section

7

1

Minima

Strong (Local) Minimum

The point \mathbf{x}^* is a strong minimum of $F(\mathbf{x})$ if a scalar $\delta > 0$ exists, such that $F(\mathbf{x}^*) < F(\mathbf{x}^* + \Delta \mathbf{x})$ for all $\Delta \mathbf{x}$ such that $\delta > \|\Delta \mathbf{x}\| > 0$.

Global Minimum

The point \mathbf{x}^* is a unique global minimum of $F(\mathbf{x})$ if $F(\mathbf{x}^*) < F(\mathbf{x}^* + \Delta \mathbf{x})$ for all $\Delta \mathbf{x} \neq \mathbf{0}$.

8

Weak Minimum

The point \mathbf{x}^* is a weak minimum of $F(\mathbf{x})$ if it is not a strong minimum, and a scalar $\delta > 0$ exists, such that $F(\mathbf{x}^*) \leq F(\mathbf{x}^* + \Delta \mathbf{x})$ for all $\Delta \mathbf{x}$ such that $\delta > |\Delta \mathbf{x}| > 0$.

Scalar Example

9

Optimality Conditions

What are the conditions that need to be satisfied for minima?

Show using the Taylor series that the necessary condition for a minimum point (strong or weak) is:

$$\nabla F(\mathbf{x})\Big|_{\mathbf{X}=\mathbf{X}^*}=\mathbf{0}$$

12

Gradient Descent

Delta Rule for Adaline (Linear Activation)

Backpropagation for MLP

15

Stochastic Approximation to Steepest Descent

Instead of updating every weight until all examples have been observed, we update on every example:

 $\nabla w_i \cong \eta$ (t-o) x_i (not summing through all the patterns!)

In this case we update the weights "incrementally".

Remarks:

-When there are multiple local minima stochastic gradient descent may avoid the problem of getting stuck on a local minimum.

-Standard gradient descent needs more computation but can be used with a larger step size.

20

Learning algorithm using the Delta Rule

Algorithm for learning using the delta rule:

- 1. Assign random values to the weight vector
- 2. Continue until the stopping condition is met
 - a) Initialize each ∇w_i to zero

b) For each example p:

Update ∇w_i : $\nabla w_i += (t_p - o_p) x_i$

c) Update w_i:

 $w_i = w_i + \eta \nabla w_i$

3. Until error is small

. .

20 21

Difficulties with Gradient Descent

There are two main difficulties with the gradient descent method:

- 1. Convergence to a minimum may take a long time.
- 2. There is no guarantee we will find the global minimum.

22

Backpropagation Algorithm

General Activation Function

23

22 23

Chain Rule

$$\frac{df(n(w))}{dw} = \frac{df(n)}{dn} \times \frac{dn(w)}{dw}$$

Example:

$$f(n(w)) = \cos(e^{2w}) \qquad f(n) = \cos(n)$$

$$\frac{df(n(w))}{dw} = \frac{df(n)}{dn} \times \frac{dn(w)}{dw} = (-\sin(n))(2e^{2w}) = (-\sin(e^{2w}))(2e^{2w})$$

Application to Gradient Calculation

$$\frac{\partial \hat{F}}{\partial w_{i,j}^{m}} = \frac{\partial \hat{F}}{\partial n_{i}^{m}} \times \frac{\partial n_{i}^{m}}{\partial w_{i,j}^{m}}$$

$$\frac{\partial \hat{F}}{\partial b_i^m} = \frac{\partial \hat{F}}{\partial n_i^m} \times \frac{\partial n_i^m}{\partial b_i^m}$$

Transfer Function Derivatives

$$f^{\bullet}(n) = \frac{d}{dn} \left(\frac{1}{1 + e^{-n}}\right) = \frac{e^{-n}}{(1 + e^{-n})^2} = \left(1 - \frac{1}{1 + e^{-n}}\right) \left(\frac{1}{1 + e^{-n}}\right) = (1 - a)(a)$$

$$f^{\prime(n)} = \frac{d}{dn}(n) = 1$$

26

25 26

Backpropagation

To calculate the partial derivative of E_p (error on pattern p) w.r.t a given weight w_{ji} , we have to consider whether this is the weight of an output or hidden node:

If w_{ii} is an **output** node weight:

$$\frac{dE_p}{dw_{ji}} = \frac{dE}{do_j} \times \frac{do_j}{dnet_j} \times \frac{dnet_j}{dw_{ji}}$$

$$\frac{dE_p}{dw_{ji}} = -(t_j - o_j) \times f'(net_j) \times o_i$$

Note that o_i

Note that o_i is the input to node j.

 $E_p = (t_p - o_p)^2$

 $(p_p)^2$

Backpropagation

If w_{ii} is a **hidden** node weight:

$$\frac{dE_p}{dw_{ji}} = \frac{dE}{do_j} \times \frac{do_j}{dnet_j} \times \frac{dnet_j}{dw_{ji}}$$

 $= \frac{dE}{do_j} \times f'(net_j) \times o_i$

28

 $neij = \sum_{i} O(w_{ji})$ $o:= f(v_{i}ot_{i})$

28

27

Next: Issues and Variations on Backpropagation