

USE A SUPERVISED MACHINE LEARNING APPROACH TO INFER A MAPPING FUNCTION F THAT TRANSFORMS THE INPUT FEATURES VECTOR FOR EACH PRODUCT OF THE TRAINING SUBSET OF PRODUCTS TO THE CORRESPONDING AT LEAST ONE PROPERTY FOR EACH PRODUCT OF THE TRAINING SUBSET OF PRODUCTS

160

IDENTIFY BUILDING BLOCK SETS FOR A PLURALITY OF ADDITIONAL PRODUCTS OF THE COMBINATORIAL LIBRARY

170

FORM INPUT FEATURES VECTORS FOR THE PLURALITY OF ADDITIONAL PRODUCTS FROM THE BUILDING BLOCK SETS FOR THE PLURALITY OF ADDITIONAL PRODUCTS

180

TRANSFORM THE INPUT FEATURES VECTORS FOR THE PLURALITY OF ADDITIONAL PRODUCTS USING THE MAPPING FUNCTION F TO OBTAIN AT LEAST ONE ESTIMATE PROPERTY FOR EACH OF THE PLURALITY OF ADDITIONAL PRODUCTS

190

F16, 2

MISO	Test R ²			0.823									0.942	0.934	0.936	0.950										
MISO	Training R ²			0.822									0.943	Cr.938	0.939	0.950										
	Test R ²		966'0	0.614	0.997	0.997	0.997	0.995	0.973	926.0	0.957	0.910	0.843	0.673	0.554	0.457	0.987	0.993	0.980	0.997	0.998	966.0	0.994	0.982	0.951	0.905
SISO	Γ raining $ m R^2$	0.996	0.995	0.603	966'0	966.0	966.0	0.994	0.971	0.974	0.956	0.909	0.837	999.0	0.563	0.447	0.988	0.993	0.978	966.0	766.0	966.0	0.993	0.981	0.952	0.907
	Descriptor	No. atoms	No. bonds	No. elements	Molecular weight	Chi 0	Chi path 1	Chi path 2	Chi path 3	Chi path 4	Chi path 5	Chi path 6	Chi path 7	Chi path 8	Chi path 9	Chi path 10	Chi cluster 3	Chi cluster 4	Chi path/cluster 4	Val chi 0	Val chi path 1	Val chi path 2	Val chi path 3	Val chi path 4	Val chi path 5	Val chi path 6
ļ.	Index	1	2	Ċ.	4	; 5	9	7	8	6	10	11	. 12	53	.: 41	15	16	7.7	18	61 .	20	21	22	23	24	25

F16. 9A

ĥ

MISO	${ m Test} \ { m R}^2$	0.905	0.889	0.910	0.920																					
MISO	$ootnote{Training}{\mathbb{R}^2}$	0.961	0.890	0.910	0.921																					
SISO	$_{\rm R^2}^{\rm Test}$	0.775	0.621	0.328	0.201	0.994	0.993	0.989	1.000	1.000	0.978	0.995	0.999	1.000	0.999	0.998	1.000	1.000	966.0	0.995	0.998	1.000	0.998	0.980	0.997	0.990
SISO	Training R ²	0.773	0.619	0.349	0.222	0.994	0.993	0.988	1.000	1.000	0.979	0.995	0.999	1.000	0.999	0.999	1.000	1.000	0.994	0.994	0.998	1.000	0.997	986'0	0.996	0.66.0
	Descriptor	Val chi path 7	Val chi path 8	Val chi path 9	Val chi path 10	Val chi cluster 3	Val chi cluster 4	Val chi path/cluster 4	Chi chain 3	Chi chain 4	Chi chain 5	Chi chain 6	Chi chain 7	Chi chain 8	Chi chain 9	Chi chain 10	val chi chain 3	val chi chain 4	val chi chain 5	val chi chain 6	val chi chain 7	val chi chain 8	val chi chain 9	val chi chain 10	subgraph count path 2	subgraph count path 3
	Index	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	4.8	49	50

F16. 9B

rz.

-			SISO	SISO	MISO	MISO
	Index	Descriptor	Training R ²	$^{ m Test}_{ m R}^2$	${ m Training} \ { m R}^2$	Test R ²
·	51	subgraph count path 4	0.957	0.960		
1	52	subgraph count path 5	0.914	0.918		
	53	subgraph count path 6	0.837	0.844	0.909	0.905
•—	54	subgraph count path 7	0.752	0.770	0.892	0.887
Ь	55	subgraph count path 8	0.582	0.599	0.907	0.906
·	56	subgraph count path 9	0.446	0.448	0.933	0.932
I	57	subgraph count path 10	0.366	0.383	0.947	0.945
	58	subgraph count cluster 3	0.994	0.995		
L	59	subgraph count cluster 4	0.991	0.991		
L	09	subgraph count path/cluster 4	0.980	0.980		
	61	subgraph count ring 3	1.000	1.000		
نــــا	. 62	subgraph count ring 4	1.000	1.000		
نــــا	63.	subgraph count ring 5	0.995	0.995		
	64	subgraph count ring 6	0.994	0.995		
لــــا	65	subgraph count ring 7	1.000	1.000		
	.99	subgraph count ring 8	1.000	1.000		
	<i>.</i> 29	subgraph count ring 9	1.000	1.000		
	89	subgraph count ring 10	0.999	0.999		
	69	kappa 0	0.980	0.980		
L	7.0	kappa 1	0.991	0.992		
L	71	kappa 2	0.907	0.908		
·	72	'kappa 3	0.709	0.710	0.806	0.799
	73	kappa alpha 1	0.987	0.987	•	
L	74	kappa alpha 2	0.895	0.897	0.960	0.955
I	75.	kappa alpha 3	0.685	989.0	0.774	0.770
1						

F16. 90

		Coro	COLO	MICO	MISO
, .		OSIS · · ·	SISO.	Treining	Test
ľ ndev	Descriptor	Training R ²	\mathbb{R}^2	\mathbb{R}^2	\mathbb{R}^2
76		0.967	0.965		
77	total Wiener path no.	0.903	0.892	•	
78	Shannon Index	0.911	0.911		
79	total no. of paths	0.939	0.932		
08	Bonchev-Trinajstić IdW index	0.958	0.955		
	Bonchev-Trinajstić mean IdW		0.972		
07	Deschar Trinsictif IdC index	0.979	0.978		
70	Bonchev-Trinaistić mean IdC				
83	index	. 0.793	0.773	0.737	0.759
84	Wiener parity no.	0.988	0.989		
85	Platt Fno.	0.996	0.997		
. 98	Delta partition l	0.996	0:996		
87	Delta partition 2	0.992	0.992		
88	· Delta partition 3	0.997	0.997	į	
68	Delta partition 4	0.995	966.0	,	
06	Delta partition 5 ¹	1.000	1.000		
61	Delta partition 6 ¹	1.000	1.000		
92	No. H	0.996	0.997		
93	No. B1.	1.000	1.000		
94	No. C	0.997	0.998		
95	No. N	0.995	0.995		
96	No. O	0.994	0.993		
16	No. F	0.996	0.996		
86	No. Si ¹	1.000	1.000		
66	No. P	0.999	0.999		

F/6. 9D

		SISO	OSIS	OSIM	MISO
		Training	. Test	Training	Test
Index	Descriptor	\mathbb{R}^2	R²	R*	<u>*</u>
100	No. S	. 0.997	0.999		
101	No. CI	0.997	0.997		
102	No. Ge ¹	1.000	1.000		
103	No. As ¹	1.000	1.000		
104	No. Se ¹	1.000	1.000		
105	No. Br	1.000	1.000		
106	No. I	1.000	1.000		
107	No. halogens	0.997	0.998		
108	Total topological state 1	0.924	0.918		
109	Total topological state 2	0.947	0.945		
110	Total topological state 3	0.904	0.888		
111	Total topological state 4	0.956	0.956		
112	Total topological state 5	0.852	0.826	0.915	0.907
113	Total topological state 6	0.980	0.980		
114	Total topological state 7	0.832	0.790	0.914	0.898
115	Total topological state 8	0.988	0.988		
116	Total topological state 9	0.913	0.909		
117	Total topological state 10	0.922	0.918		

F16. 9E

$\overline{}$	1											
PC-MISO	Identity	%98	83%	84%	16%	83%	75%	77%	84%	86%	87%	
PC-MISO	Similarity	0.486	0.244	0.660	0.186	0.334	0.209	0.283	0.275	0.470	0.464	
SISO/MISO	Identity	%69	56%	64%	%09	82%	58%	72%	73%	74%	266	
SISO/MISO	Similarity	0.501	0.279	0.680	0.213	0.335	0.224	0.291	0.288	0.481	0.470	
Direct	Similarity	0.480	0.238	0.655	0.179	0.327	0.201	0.274	0.268	0.464	0.460	
Random	Similarity	1.754	1.158	1.664	1.291	1.763	1.196	1.294	1.385	1.694	1.613	
Lead			2	3	4	. 5.	9	. 7		6	. 10	

F16. 10

F16, 12

FIG. 13