lunedì 25 maggio 2020

10:55

DEFINIZIONI:

Massa: resistenza alle variazioni di velocità opposta all'azione di una forza *Forza*: quantità vettoriale che descrive le interazioni tra corpi [Newton]

Lavoro: prodotto scalare di forza per spostamento [Joule]

se v = cost., L = 0 (I principio: forze = 0)

se F non cost., allora integrale per trovare lavoro

Energia: qualifica la capacità di compiere un lavoro [Joule]

e. cinetica $K = 1/2 \text{ mv}^2$

Potenza: lavoro prodotto nell'unità di tempo, o prodotto scalare tra forza e velocità [Watt]

Forze conservative: il lavoro dipende solo dalla posizione iniziale e finale

Forza elettrica (forza di Coulomb): F = k $q_1 q_2 / r^2 | K = 8.99 \times 10^9 [Nm^2/c^2]$ o $1/4\pi e_0 | e_0 = 8.85 \times 10^{-12} [c^2/Nm^2]$

Campo elettrico: rapporto tra la forza esercitata dalla carica e la carica stessa

Potenziale elettrico: rapporto tra l'energia potenziale e la carica

Quantità di moto: p = mv (vettoriale)

Forza impulsiva: forza molto elevata che avviene su tempi brevi. F = dp/dt

TEOREMI

I legge di Newton: Se la risultante delle forze che agiscono su un corpo è nulla,

il corpo rimane nel suo stato di quiete o di moto rettilineo uniforme.

Il legge di Newton: Se la risultante delle forze è diversa da 0, si produce un'accelerazione

proporzionale alla risultante delle forze che agiscono sul corpo. F = ma

III legge di Newton (Azione e reazione): se vi sono due corpi che interagiscono, ognuno di essi

esercita sull'altro una forza uguale e contraria. Fab = - Fba

Legge di conservazione dell'energia meccanica: la quantità totale di energia in un sistema isolato non varia nel tempo.

Teo dell'energia cinetica (delle forze vive): il lavoro totale eseguito su un corpo è uguale alla variazione della sua energia cinetica $L_{tot} = \Delta K = 1/2 \text{ m} \Delta v^2$

Teo dell'energia generalizzato: Se sono presenti forze non conservative, la ΔE è uguale al lavoro delle E non conservative

Teorema di Gauss: Il flusso del campo elettrico attraverso una superficie chiusa è uguale alla carica all'interno della superficie fratto la costante dielettrica e₀

Meccanica

Piano inclinato

 $x = x_0 + v_0 t + 1/2 a_0 t^2$

 $v = v_0 + a_0 t$

 $t_f = \sqrt{2L/a_0} = 1/\sin\theta \sqrt{2h/g}$

 $v_f = g \sin\theta tf = \sqrt{2gh}$

Attriti

 $|f_s| = |f_{ext}|$ $|f_d| = \mu_d N$

Legge oraria

v = dx/dt $a = d^2x/dt^2$

Proiettile

Componente x moto rettilineo uniforme

 $x = x_0 + v_0 \cos\theta t$

Componente y moto unif. accelerato

 $y = y_0 + v_0 \sin\theta t - 1/2 gt^2$ Risultato: *moto parabolico*

Altezza max se $\theta = 90^{\circ}$

Gittata (distanza) max se θ = 45°

Elettrostatica

 $F = Ke q_1q_2/r^2$

 $E = Keq/r^2 \mid E = F/q_0$

Ue =Ke q1q0/r

V = U/q0

Dipolo elettrico

somma delle cariche agenti

Sfera carica cava

simmetria sferica

$$\sigma = Q/A$$
 $A = 4\pi r^2$

Fuori:

$$E = Q/e_0 4\pi r^2 V = Q/e_0 4\pi r$$

Dentro:

$$E = 0$$
 $V = Q/e_0 4\pi r_0$

Dentro la sfera i punti sono equipotenziali

Sfera carica piena

simmetria sferica

0 - 0 M | M - 4/2 = r3

Risultato: moto parabolico

Altezza max se θ = 90°

Gittata (distanza) max se θ = 45°

Fune

Tutte le forze sono in equilibrio

Carrucola

Permette di cambiare il verso della forza esercitata

Gravitazione

 $Fg = - GMm/r^2 r^4$

 $\Delta U = - GMm (1/\Delta r) \rightarrow U = -G Mm/r$

Traiettorie circolari

K = -1/2 U

Etot = -1/2 G Mm/r

 $v_{fuga} = \sqrt{2}GM/r$ (implica $E_{tot} = 0$)

Sfera carica piena

simmetria sferica

$$\rho = Q/V \quad V = 4/3\pi r^3$$

Se fuori: come prima

Se dentro:

$$E = \rho/3e_0 r V = Q/8\pi e_0 r_0^3 (3r_0^2 - r^2)$$

Filo infinito carico

simmetria radiale

 $\lambda = Q/L$

 $E = \lambda/2\pi e_0 r$

Piano infinito carico

simmetria di riflessione rispetto al piano

 $\sigma = Q/A$

 $E = \sigma/2e_0$

Condensatore

$$E = 0$$
 (ext) $E = 2x$ piano $= \sigma/e0$

Molla

Legge di Hooke: $F_e = -k \Delta x$

Lavoro: 1/2 k Δx²

E. potenziale: $U = 1/2 kx^2$

Compressione molla: $x_f = V(m/k) v_0$

Oscillatore armonico omega0 = VK/m

T = 2pi/omega0 = 2pi vm/K

Pendolo

omega $0 = \sqrt{g/l}$

T = 2pi/omega0 = 2pi VI/g

 $\theta t = A\cos(om0 t + solP)$

Carrello

J = pf - pi = mvf - (-mvi) = m(vf + vi)

Urto elastico

Si conserva sia qMoto che eCinetica

 $m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}$

 $1/2 m_1 v_{1i}^2 + 1/2 m_2 v_{2i}^2 = 1/2 m_1 v_{1f}^2 + 1/2 m_2 v_{2f}^2$

Urto completamente anelastico

Si conserva solo la qMoto $| v_{1f} = v_{2f}$

 $m_1v_{1i} + m_2v_{2i} = (m_1 + m_2)v_f$