1.	Given $F = {$	a→b.	b→c	$c \rightarrow \{d$	le}.	What is	the	closure	of	b
	OIT CITY	(u > 0,	0 2 0	~ / (ac , .	*** ****** ***		crosure	~	•

2. Given R(a,b,c,d,e,f). Given the following functional dependency:

 $F = \{ ab \rightarrow cdef, c \rightarrow abdef \}.$

Identify the L M R, candidate keys, prime/non prime and normal form using the table below

L	M	R	Candidate Keys	prime	Non prime	Normal Form

3. Given R(a,b,c,d,e,f). Given the following functional dependency:

 $F = \{ ab \rightarrow cdef \}$

c →abdef e→a}.

Identify the L M R, candidate keys, prime/non prime and normal form using the table below

L	M	R	Candidate Keys	prime	Non prime	Γ	Normal Form
		Ш					
						-	
		Н				1	

4. Given R(a,b,c,d,e,f,g). Given the following functional dependency:

 $F = \{ ab \rightarrow \{ cdeg, \} \}$

 $c \rightarrow abdef, d \rightarrow b$

Identify the L M R, candidate keys, prime/non prime and normal form using the table below

L	M	R	Candidate Keys	prime	Non prime		Normal Form
						1	
						1	