$11a_{64} (K11a_{64})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -5u^{49} - 9u^{48} + \dots + b + 4, \ 3u^{49} + 4u^{48} + \dots + 2a - 1, \ u^{50} + 3u^{49} + \dots + 9u^2 - 1 \rangle$$

 $I_2^u = \langle b, \ a^2 - a + 1, \ u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 52 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -5u^{49} - 9u^{48} + \dots + b + 4, \ 3u^{49} + 4u^{48} + \dots + 2a - 1, \ u^{50} + 3u^{49} + \dots + 9u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{3}{2}u^{49} - 2u^{48} + \dots + \frac{1}{2}u + \frac{1}{2} \\ 5u^{49} + 9u^{48} + \dots + 4u - 4 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{49} + u^{48} + \dots + \frac{1}{2}u + \frac{1}{2} \\ -u^{16} + 6u^{14} + \dots - 6u^{3} + 4u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{5}{2}u^{49} + 4u^{48} + \dots + \frac{1}{2}u - \frac{1}{2} \\ -\frac{1}{2}u^{49} - u^{48} + \dots - \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{9}{2}u^{49} - 8u^{48} + \dots - \frac{5}{2}u + \frac{5}{2} \\ -2u^{49} - 3u^{48} + \dots - 8u^{2} + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{9}{2}u^{49} - 8u^{48} + \dots - \frac{5}{2}u + \frac{5}{2} \\ -2u^{49} - 3u^{48} + \dots - 8u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-18u^{49} 27u^{48} + \cdots 2u + 25$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{50} + 2u^{49} + \dots - 3u + 1$
c_2, c_5	$u^{50} + 18u^{49} + \dots + u + 1$
c_3,c_8	$u^{50} + u^{49} + \dots + 4u - 4$
c_6, c_{10}, c_{11}	$u^{50} + 3u^{49} + \dots + 9u^2 - 1$
c_7, c_9	$u^{50} - 15u^{49} + \dots - 104u + 16$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{50} + 18y^{49} + \dots + y + 1$
c_2, c_5	$y^{50} + 30y^{49} + \dots - 119y + 1$
c_3, c_8	$y^{50} - 15y^{49} + \dots - 104y + 16$
c_6, c_{10}, c_{11}	$y^{50} - 41y^{49} + \dots - 18y + 1$
c_7, c_9	$y^{50} + 37y^{49} + \dots - 3360y + 256$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.087890 + 0.165328I		
a = 0.139852 - 0.213211I	1.40881 + 0.77400I	6.94609 + 0.I
b = 0.645187 - 0.289728I		
u = 1.087890 - 0.165328I		
a = 0.139852 + 0.213211I	1.40881 - 0.77400I	6.94609 + 0.I
b = 0.645187 + 0.289728I		
u = 0.126757 + 0.868356I		
a = -1.47159 - 0.94278I	-2.73323 + 9.52065I	5.03643 - 7.69857I
b = -1.22103 - 1.33662I		
u = 0.126757 - 0.868356I		
a = -1.47159 + 0.94278I	-2.73323 - 9.52065I	5.03643 + 7.69857I
b = -1.22103 + 1.33662I		
u = 0.133262 + 0.831170I		
a = 1.011800 + 0.474392I	-1.38173 + 4.04307I	7.01868 - 3.20265I
b = 0.865719 + 1.020570I		
u = 0.133262 - 0.831170I		
a = 1.011800 - 0.474392I	-1.38173 - 4.04307I	7.01868 + 3.20265I
b = 0.865719 - 1.020570I		
u = 1.096200 + 0.388771I		
a = -0.323801 - 0.626772I	1.57629 + 0.36486I	0
b = 0.168381 + 0.406270I		
u = 1.096200 - 0.388771I		
a = -0.323801 + 0.626772I	1.57629 - 0.36486I	0
b = 0.168381 - 0.406270I		
u = 0.047274 + 0.835322I		
a = 0.00341 - 1.47071I	-7.20082 + 2.98868I	0.09209 - 2.99503I
b = -0.19335 - 1.77874I		
u = 0.047274 - 0.835322I		
a = 0.00341 + 1.47071I	-7.20082 - 2.98868I	0.09209 + 2.99503I
b = -0.19335 + 1.77874I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.136100 + 0.443889I		
a = 0.860244 + 0.826310I	0.35735 - 4.82997I	0
b = 0.311641 - 0.759236I		
u = 1.136100 - 0.443889I		
a = 0.860244 - 0.826310I	0.35735 + 4.82997I	0
b = 0.311641 + 0.759236I		
u = -0.039568 + 0.776582I		
a = 1.63186 - 0.95120I	-3.45504 - 3.62076I	3.32917 + 2.61098I
b = 0.93537 - 1.48672I		
u = -0.039568 - 0.776582I		
a = 1.63186 + 0.95120I	-3.45504 + 3.62076I	3.32917 - 2.61098I
b = 0.93537 + 1.48672I		
u = 0.566666 + 0.530676I		
a = 1.15612 + 0.89658I	3.39308 - 0.60483I	12.63177 - 0.83622I
b = 0.785797 + 0.191841I		
u = 0.566666 - 0.530676I		
a = 1.15612 - 0.89658I	3.39308 + 0.60483I	12.63177 + 0.83622I
b = 0.785797 - 0.191841I		
u = 0.490724 + 0.589200I		
a = -0.95926 - 1.35644I	3.13688 + 4.70114I	11.25136 - 7.35452I
b = -0.676569 - 0.417065I		
u = 0.490724 - 0.589200I		
a = -0.95926 + 1.35644I	3.13688 - 4.70114I	11.25136 + 7.35452I
b = -0.676569 + 0.417065I		
u = -1.260390 + 0.078461I		
a = -0.689828 - 0.574408I	2.80671 - 3.20550I	0
b = 0.592579 - 0.232734I		
u = -1.260390 - 0.078461I		
a = -0.689828 + 0.574408I	2.80671 + 3.20550I	0
b = 0.592579 + 0.232734I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.015463 + 0.734978I		
a = -0.963235 + 0.305603I	-1.96381 + 1.49641I	5.67052 - 2.83851I
b = -0.523840 + 1.031980I		
u = 0.015463 - 0.734978I		
a = -0.963235 - 0.305603I	-1.96381 - 1.49641I	5.67052 + 2.83851I
b = -0.523840 - 1.031980I		
u = -1.241070 + 0.324695I		
a = -0.822795 + 0.783089I	0.243412 - 0.350536I	0
b = 0.089700 - 0.769159I		
u = -1.241070 - 0.324695I		
a = -0.822795 - 0.783089I	0.243412 + 0.350536I	0
b = 0.089700 + 0.769159I		
u = 1.224770 + 0.385024I		
a = 0.859798 - 0.298010I	-3.57195 + 1.39688I	0
b = -0.74436 - 1.63598I		
u = 1.224770 - 0.385024I		
a = 0.859798 + 0.298010I	-3.57195 - 1.39688I	0
b = -0.74436 + 1.63598I		
u = 1.274810 + 0.306801I		
a = 0.023714 + 0.698294I	1.95830 + 2.25536I	0
b = 2.16911 + 1.11902I		
u = 1.274810 - 0.306801I		
a = 0.023714 - 0.698294I	1.95830 - 2.25536I	0
b = 2.16911 - 1.11902I		
u = 1.311800 + 0.024858I		
a = 0.171282 - 0.913457I	5.15830 + 2.67468I	0
b = 0.44051 - 2.72877I		
u = 1.311800 - 0.024858I		
a = 0.171282 + 0.913457I	5.15830 - 2.67468I	0
b = 0.44051 + 2.72877I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.32705		
a = 0.308792	5.84071	0
b = -1.01507		
u = -1.290930 + 0.313969I		
a = 0.384785 - 0.354450I	2.12444 - 5.28818I	0
b = -0.676082 + 0.534271I		
u = -1.290930 - 0.313969I		
a = 0.384785 + 0.354450I	2.12444 + 5.28818I	0
b = -0.676082 - 0.534271I		
u = 1.297340 + 0.337432I		
a = 0.180485 - 1.100720I	0.72091 + 7.64132I	0
b = -2.31845 - 1.85146I		
u = 1.297340 - 0.337432I		
a = 0.180485 + 1.100720I	0.72091 - 7.64132I	0
b = -2.31845 + 1.85146I		
u = -1.302710 + 0.373085I		
a = -0.869978 - 0.369291I	-2.98615 - 7.33040I	0
b = 1.05915 - 1.45675I		
u = -1.302710 - 0.373085I		
a = -0.869978 + 0.369291I	-2.98615 + 7.33040I	0
b = 1.05915 + 1.45675I		
u = -1.352760 + 0.362996I		
a = 0.035493 + 0.735238I	3.29225 - 8.34439I	0
b = -2.06776 + 0.99691I		
u = -1.352760 - 0.362996I		
a = 0.035493 - 0.735238I	3.29225 + 8.34439I	0
b = -2.06776 - 0.99691I		
u = -1.356030 + 0.382707I		
a = -0.148346 - 1.113900I	1.9302 - 14.0131I	0
b = 2.30162 - 1.44569I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.356030 - 0.382707I		
a = -0.148346 + 1.113900I	1.9302 + 14.0131I	0
b = 2.30162 + 1.44569I		
u = -1.41586 + 0.11171I		
a = -0.068754 + 0.864041I	9.73666 - 1.34570I	0
b = -1.19732 + 1.43891I		
u = -1.41586 - 0.11171I		
a = -0.068754 - 0.864041I	9.73666 + 1.34570I	0
b = -1.19732 - 1.43891I		
u = -1.41536 + 0.14641I		
a = -0.125925 - 0.999357I	9.27302 - 7.09927I	0
b = 0.70733 - 1.72091I		
u = -1.41536 - 0.14641I		
a = -0.125925 + 0.999357I	9.27302 + 7.09927I	0
b = 0.70733 + 1.72091I		
u = 0.104654 + 0.432324I		
a = -0.39489 - 1.38867I	-1.18724 + 1.58310I	1.45548 - 5.77798I
b = -0.504003 - 0.064352I		
u = 0.104654 - 0.432324I		
a = -0.39489 + 1.38867I	-1.18724 - 1.58310I	1.45548 + 5.77798I
b = -0.504003 + 0.064352I		
u = 0.375797		
a = -0.231356	0.739246	14.0540
b = 0.443920		
u = -0.263398 + 0.099445I		
a = -0.15916 - 3.77330I	0.39231 - 2.25929I	1.99740 + 3.42645I
b = -0.163758 - 0.657660I		
u = -0.263398 - 0.099445I		
a = -0.15916 + 3.77330I	0.39231 + 2.25929I	1.99740 - 3.42645I
b = -0.163758 + 0.657660I		

II.
$$I_2^u = \langle b, a^2 - a + 1, u - 1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a-1\\1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a \\ -a \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4a + 7

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$u^2 + u + 1$
$c_3, c_7, c_8 \ c_9$	u^2
c_4	$u^2 - u + 1$
c_6	$(u+1)^2$
c_{10}, c_{11}	$(u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$y^2 + y + 1$
c_3, c_7, c_8 c_9	y^2
c_6, c_{10}, c_{11}	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	0.500000 + 0.866025I	1.64493 - 2.02988I	9.00000 + 3.46410I
b =	0		
u =	1.00000		
a =	0.500000 - 0.866025I	1.64493 + 2.02988I	9.00000 - 3.46410I
b =	0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^2 + u + 1)(u^{50} + 2u^{49} + \dots - 3u + 1)$
c_2, c_5	$(u^2 + u + 1)(u^{50} + 18u^{49} + \dots + u + 1)$
c_3, c_8	$u^2(u^{50} + u^{49} + \dots + 4u - 4)$
c_4	$(u^2 - u + 1)(u^{50} + 2u^{49} + \dots - 3u + 1)$
c_6	$((u+1)^2)(u^{50}+3u^{49}+\cdots+9u^2-1)$
c_7, c_9	$u^2(u^{50} - 15u^{49} + \dots - 104u + 16)$
c_{10}, c_{11}	$((u-1)^2)(u^{50} + 3u^{49} + \dots + 9u^2 - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^2 + y + 1)(y^{50} + 18y^{49} + \dots + y + 1)$
c_2, c_5	$(y^2 + y + 1)(y^{50} + 30y^{49} + \dots - 119y + 1)$
c_3, c_8	$y^2(y^{50} - 15y^{49} + \dots - 104y + 16)$
c_6, c_{10}, c_{11}	$((y-1)^2)(y^{50}-41y^{49}+\cdots-18y+1)$
c_{7}, c_{9}	$y^2(y^{50} + 37y^{49} + \dots - 3360y + 256)$