COM2109 Automata

Robert Hierons

Regular Expressions

Regular Expressions

Instead of an automaton, one can use a RE to describe a regular language

Example:
$$(a+b\cdot c)^*$$
 = also written: $(a+b\circ c)^*$ $(a+bc)^*$

describes the language

$$\{a,bc\}$$
* = $\{e,a,bc,aa,abc,bca,...\}$

Recursive Definition

Primitive regular expressions: Æ, e, a

Given regular expressions r_1 and r_2

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression (syntactically incorrect):
$$(a+b+)$$

Other regular expressions:

$$\sum * \sum *1 \qquad (0\sum *) \cup (\sum *1)$$

$$(a \cup b \cdot c)* \qquad \sum \sum *1 = \sum^{+}1 \text{ more}$$

times

Precedence rules, line in arithmetic: 2*3+4 is not the same as 2*(3+4)

```
In REs, unless we have (), precedence:

+ * . + (union)

Examples:

(a+bc)*

(a+b)c*

a+ba*
```

Why do we care about RE?

- Programs involving text:
 - Search for strings that follow certain patterns, e.g. negative words in product reviews: il-, im-, in-, ir-, non-, un-
 - E.g.: happy vs unhappy
 - Part of modern languages like Perl and Python, plus AWK and GREP in Unix
- · Compilers for programming languages:
 - Tokens (variable names and constants)
 may be described by REs, based on which
 automatic systems can generate a lexical
 analyzer first step of a compiler

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

Example

$$L((a+b\times c)^*) = \{e, a, bc, aa, abc, bca, \dots\}$$

Definition

For primitive regular expressions:

$$L(\mathcal{A}) = \mathcal{A}$$

$$L\left(\mathcal{e}\right) = \left\{\mathcal{e}\right\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

$$L((r_1)) = L(r_1)$$

Regular expression:
$$(a+b) \cdot a^*$$

 $L((a+b) \cdot a^*) = L((a+b)) L(a^*)$
 $= L(a+b) L(a^*)$
 $= (L(a) \cup L(b)) (L(a))^*$
 $= (\{a\} \dot{E} \{b\}) (\{a\})^*$
 $= \{a,b\} \{e,a,aa,aaa,...\}$
 $= \{a,aa,aaa,...,b,ba,baa,...\}$

Regular expression
$$r = (a+b)*(a+bb)$$

$$= (\{a\} \stackrel{\triangleright}{\to} \{b\}) * (\{a\} \stackrel{\triangleright}{\to} \{bb\})$$
$$= (\{a,b\}) * (\{a,bb\})$$

$$L(r) = \{a, bb, aa, abb, ba, bbb, \dots\}$$

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression
$$r = (0+1)*00(0+1)*$$

$$L(r) = \{ all strings containing substring 00 \}$$

Regular expression
$$r = (1+01)*(0+e)$$

$$L(r) = \{???\}$$

Regular expression
$$r = (1+01)*(0+e)$$

 $L(r) = \{ all strings without substring 00 \}$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if $L(r_1) = L(r_2)$

 $L = \{ all strings without substring 00 \}$

$$r_1 = (1+01)*(0+e)$$

$$r_2 = (1*011*)*(0+e)+1*(0+e)$$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expressions

Regular Expressions and Regular Languages (and thus, Finite Automata!)

REs and DFA/NFA are equivalent in their description power: RE can be converted into finite automata that recognizes the same (regular) language and vice versa.

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages

Proof:

```
Languages
Generated by
Regular Expressions

Regular
Languages
```

If a language is described by a RE, then it is regular

If a language is regular, then it described by a RE

Proof - Part 1

Languages
Generated by
Regular Expressions
Regular Expressions

If a language is described by a RE, then it is regular For any regular expression $\it r$ the language $\it L(\it r)$ is regular

Proof by induction: inductive proof means defining RE in terms of smaller REs

Induction Basis

Primitive Regular Expressions: Æ, e, a Corresponding

NFAs

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{e\} = L(e)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

Suppose

that for regular expressions r_1 and r_2 , $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step

We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1*)$$

$$L((r_1))$$

Are regular Languages

By the definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

26

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

$$L(r_1)$$
 and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union
$$L(r_1) \cup L(r_2)$$

Concatenation $L(r_1) L(r_2)$
Star $(L(r_1))*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

ly a regular language

Are regular languages

is trivially a regular language (by induction hypothesis)

Using the regular closure of these operations, we can construct recursively the NFA M that accepts L(M) = L(r)

Example: $r = r_1 + r_2$

$$L(M_1) = L(r_1)$$

$$L(M_2) = L(r_2)$$

Proof - Part 2 Languages Generated by Regular Expressions Regular Expressions

If a language is regular, then it described by a RE

For any regular language L there is a regular expression r with L(r) = L

We will convert an NFA that accepts L to a regular expression

Since L is regular, there is an NFA that accepts it

Can assume it has a single final state (for many initial/final states, it is a '+' of expressions for each start/final pair)

From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions

Another Example:

Transition labels are regular expressions

Transition labels are regular expressions

Resulting Regular Expression:

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

In General

Removing a state: q_{j} q_i qaae*d*ce***b* ce*d q_{j} q_i ae*b

By repeating the process until two states are left, the resulting graph is

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

 $L(r) = L(M) = L$

End of Proof-Part 2

Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

(DFA, NFA, or Regular Expression)