Taylor approximation

Taylor Expansion에 대해 이해한다. 어떤 함수가 주어질 떄 특정 점에서 이 함수에 대해 근사를 하는 것이다. 이를 특정한 점에서의 first order taylor approximation $\hat{f}(x)=f(z)+f'(z)(x-z)$ 로 정의가 된다.

import library

```
In [1]:
```

```
import numpy as np
import matplotlib.image as img
import matplotlib.pyplot as plt
from matplotlib import cm
import matplotlib.colors as colors
```

define a function f(x) = cos(x)

x가 input일 때 output y cosx가 output y가 되도록한다.

In [2]:

define the derivative f'(x) of function f(x)

In [3]:

define the first order Taylor approxation of the function at $oldsymbol{x}_0$

• $\hat{f}(x) = f(x_0) + f'(x_0)(x - x_0)$

In [4]:

functions for presenting the results

```
In [5]:
```

```
def function_result_01():
    x = np.linspace(-10, 10, 100)
    y = function(x)

plt.figure(figsize=(8,6))
    plt.plot(x, y, 'b')
    plt.xlim([-10, 10])
    plt.ylim([-10, 10])
    plt.show()
```

function_result_01() : cos(x)

In [6]:

function_result_02() : cos(x) 미분함수 그리기, -sin(x)

In [7]:

function_result_03() : x에 대해 cos(x), 1에서의 근사함수 그리기

In [8]:

function_result_04() : -1, 1에 대한 cos(x) 값 출력

In [9]:

function_result_05() : -1, 1에 대해 cos(x) 미분 함수에 대한 값 출력

Define function result 01 - 05

results

In [10]:

[RESULT 03]

[RESULT 04]

value1 = 0.5403023058681398

value2 = 0.5403023058681398

[RESULT 05]

value1 = 0.8414709848078965

value2 = -0.8414709848078965