1 Exercises

1.1

What are the orders of 3, 5, and 7, modulo 8?

All are of order 2.

1.2

What order can an integer have (mod 9)? Find an example of each.

 $\phi(9)=6$, so orders of integers (mod 9) must be divisors of 6, i.e. 1, 2, 3, and 6. $1^1\equiv 8^2\equiv 4^3\equiv 2^6\equiv 1\pmod 9$.

1.3

What is the smallest possible prime divisor of $2^{19} - 1$?

191.

1.4

Show that 3 is a primitive root of 7.

$$\phi(7) = 6$$

$$3 \equiv 3 \pmod{7}$$

$$3^2 \equiv 2 \pmod{7}$$

$$3^3 \equiv 6 \pmod{7}$$

$$3^4 \equiv 4 \pmod{7}$$

$$3^5 \equiv 5 \pmod{7}$$

$$3^6 \equiv 1 \pmod{7}$$

1.5

Find, by trial, a primitive root of 10.

3 is a primitive root of 10, as none of $3^1, 3^2, 3^3$ are $\equiv 1 \pmod{10}$, but $3^{\phi(10)} = 3^4 \equiv 1 \pmod{10}$.

1.6

Which of the integers 2, 3, ..., 25 do not have primitive roots?

8, 12, 15, 16, 20, 21, 24.

2 Problems

2.1

Find the orders of $1, 2, ..., 12 \pmod{13}$.

1 (1), 12 (2), 3 (3), 6 (4), 4 (5), 12 (6), 12 (7), 4 (8), 3 (9), 6 (10), 12 (11), 2 (12).

2.2

Find the orders of 1, 2, ..., 16 (mod 17).

1 (1), 8 (2), 16 (3), 4 (4), 16 (5), 16 (6), 16 (7), 8 (8), 8 (9), 16 (10), 16 (11), 16 (12), 4 (13), 16 (14), 8 (15), 2 (16).

2.3

One of the primitive roots of 19 is 2. Find all of the others.

The numbers from 1 to 17 that are relatively prime to 18 are 1, 5, 7, 11, 13, 17. So, the other primitive roots of 19 are $2^5 \equiv 13, 2^7 \equiv 14, 2^{11} \equiv 15, 2^{13} \equiv 3, 2^{17} \equiv 10 \pmod{19}$.

2.4

One of the primitive roots of 23 is 5. Find all of the others.

The numbers from 1 to 22 that are relatively prime to 22 are 1, 3, 5, 7, 9, 13, 15, 17, 19, 21. So, the other primitive roots of 19 are $5^3 \equiv 10, 5^5 \equiv 20, 5^7 \equiv 17, 5^9 \equiv 11, 5^{13} \equiv 21, 5^{15} \equiv 19, 5^{17} \equiv 15, 5^{19} \equiv 7, 5^{21} \equiv 14 \pmod{23}$.

2.5

What are the orders of 2, 4, 7, 8, 11, 13, and 14 (mod 15)? Does 15 have primitive roots?

4 (2), 2 (4), 4 (7), 4 (8), 2 (11), 4 (13), 2 (14). 15 does not have primitive roots.

2.6

What are the orders of 3, 7, 9, 11, 13, 17, and 19 (mod 20)? Does 20 have primitive roots?

4 (3), 4 (7), 2 (9), 2 (11), 4 (13), 4 (17), 2 (19). 20 does not have primitive roots.

2.7

Which integers have order 6 (mod 31)?

6, 26.

2.8

Which integers have order 6 (mod 37)?

11, 27.

2.9

If $a, a \neq 1$, has order $t \pmod{p}$, show that

$$a^{t-1} + a^{t-2} + \dots + 1 \equiv 0 \pmod{p}$$

Can write the sequence $a^{t-1} + a^{t-2} + \dots + 1 = \frac{a^t - 1}{a - 1}$. Since (a - 1, p) = 1, can multiply both sides of a congruence with \pmod{p} by a - 1 to leave $a^t - 1$. Since by defintion $a^t \equiv 1 \pmod{p}$, then $a^t - 1 \equiv 0 \pmod{p}$.

2.10

If g and h are primitive roots of an odd prime p, then $g \equiv h^k \pmod{p}$ for some integer k. Show that k is odd.

Proved in the text that if h is a primitive root of p, then the least residue of h^k is a primitive root of p if and only if (k, p - 1) = 1. Also know that 2|p - 1, since p is an odd prime. If also had 2|k, then (k, p - 1) would be at least 2.

2.11

Show that if g and h are the primitive roots of an odd prime p, then the last residue of gh is not a primitive root of p.

Know that $g \equiv h^k \pmod{p}$ with an odd k from previous exercise. Then $gh \equiv h^{k+1} \pmod{p}$. Since k+1 and p-1 are both even, then $(k+1,p-1) \neq 1$, so gh cannot be a primitive root of p.

2.12

If g, h, and k are primitive roots of p, is the least residue of ghk always a primitive root of p?

```
Again write g \equiv k^m, h \equiv k^n, and ghk \equiv k^{m+n+1}, with m+n+1 odd. Can one have (m+n+1,p-1) \neq 1?
```

2.13

Show that if a has order 3 \pmod{p} , then a+1 has order 6 \pmod{p} .

```
a^3 - 1 = (a - 1)(a^2 + a + 1) \equiv 0 \pmod{p}. Notice that (a + 1)^3 = a^3 + 3a^2 + 3a + 1 \equiv 3(a^2 + a + 1) - 1 \equiv -1 \pmod{p}. So (a + 1)^6 \equiv 1 \pmod{p}. So, 6 must be a multiple of the order of a + 1. We already showed it can't be 3. For 1, a + 1 \equiv 2 \pmod{p}. For 2, (a + 1)^2 = a^2 + 2a + 1 = a^2 + a + 1 + a \equiv a \not\equiv 1 \pmod{p}.
```

2.14

If p and q are odd primes and $q \mid a^p + 1$, show that either $q \mid a + 1$ or q = 2kp + 1 for some integer k.

If $q|a^p+1$, can write $a^p\equiv -1\pmod q$. This means that $a^{2p}\equiv 1\pmod q$, and the order of a must divide 2p. We can eliminate 1, because if $a\equiv 1\pmod q$, then $a^p\equiv 1\pmod q$, which was directly contradicted above. For the same reason, we can eliminate an order of p. So, a can have either an order of 2 or 2p. If it's 2, then $a^2\equiv 1\pmod q$, so have $rq=a^2-1=(a+1)(a-1)$. Since we know that $a\not\equiv 1\pmod q$, that means q|a+1. If it is 2p, then $2p|\phi(q)$, i.e. 2p|q-1. Then q=2kp+1.

2.15

Suppose that a has order 4 (mod p). What is the least residue of $(a+1)^4$ (mod p)?

Know that $a^2 \equiv -1 \pmod{p}$ - can see this by writing $kp = (a^2 + 1)(a^2 - 1)$ and observing that $p \nmid a^2 - 1$ (or the order of a would be 2, not 4), so $p|a^2 - 1$. Expanding, $(a+1)^4 = a^4 + 4a^3 + 6a^2 + 4a^1 + 1 \equiv 1 - 4a - 6 + 4a + 1 \equiv -4 \pmod{p}$.

2.16

Show that $131071 = 2^{17} - 1$ is prime.

By the corollary from the text, any divisor of $2^p - 1$ must be of the form 2*17*k + 1. If 131071 is composite, it will have a divisor that is $\leq \sqrt{131071} \approx 360$. Furthermore, one of its divisors must be prime. That leaves us with candidates: 103, 137, 239, 307. None of these divides 131071.

2.17

Show that $(2^{19} + 1)/3$ is prime.

By extension of the prompt of exercise 14, for a number to divide $2^p + 1$, it must either be equal to 3 or must have the form 2kp + 1. Presumably, we know 3 divides $3|2^{19} + 1$ if we believe that $(2^{19} + 1)/3 \in \mathbb{Z}$. That leaves us with candidates of the form 2 * 19 * k + 1 = 38 * k + 1. By a similar logic as before, one of these must be of the form 3q, where q is a prime.

2.18

If g is a primitive root of p, show that two consecutive powers of g have consecutive least residues. That is, show that there exists k such that $g^{k+1} \equiv g^k + 1 \pmod{p}$.

Rewrite the congruence as $g^k(g-1) \equiv 1 \pmod{p}$. Since g is a primitive root of p, there exists a k such that $g^k = x$ for any x in 1, 2, 3, ..., p-1. Also know that g-1 can only be $\equiv 0 \pmod{p}$ if $\phi(p) = p-1 = 1$, i.e. p=2, but 2 has no primitive roots, so we can exclude it. Furthermore, since (g-1,p)=1, we know that $x(g-1)\equiv 1 \pmod{p}$ must have exactly one solution, and that solution must be in 1, ..., p-1.

2.19

If g is a primitive root of p, show that no three consecutive powers of g have consecutive least residues. That is, show that $g^{k+2} \equiv g^{k+1} + 1 \equiv g^k + 2 \pmod{p}$ is impossible for any k.

Notice that the last two parts of the congruence boil down to $g^k(g-1) \equiv 1 \pmod p$, as in the previous exercise. Now consider only the first and third parts of the congruence, $g^{k+2} \equiv g^k + 2 \pmod p$. This can be rewritten as $g^k(g^2-1) = g^k(g+1)(g-1) \equiv 2 \pmod p$. Since $g^k(g-1) \equiv 1 \pmod p$ must hold for the whole thing to hold, the last congruence would require $g+1 \equiv 2$, or $g \equiv 1 \pmod p$. But, since g is a primitive root of p, no power of g lesser than g^{p-1} is g 1 (mod g).

2.20

- (a) Show that if m is a number having primitive roots, then the product of the positive integers less than or equal to m and relatively prime to it is congruent to -1 \pmod{m} .
- (b) Show that the result in (a) is not always true if m does not have primitive roots.
- (a) Know from the text that numbers with primitive roots must be of the form $1, 2, 4, p^e$, and $2p^e$.
- For 1, the statement holds, because any digit +1 is divisible by 1.
- For 2, the statement holds because $1 \equiv -1 \pmod{2}$.
- For 4, the statement holds because $1 * 3 \equiv -1 \pmod{4}$.

For p, every integer from 1 to p-1 is relatively prime to p. We can thus write the product as (p-1)!, which we know from Wilson's Theorem is $\equiv -1 \pmod{p}$.

Now consider p^e with e > 1. For even p, i.e. p = 2, the product must consist of only odd integers, so adding 1 to whatever this product is will produce an even number. Now handle odd p. The product of the integers up to p-1 is the familiar (p-1)!. Then we have sequences of integers from kp+1 to (k+1)p-1. Notice that (mod p), this is the same as a sequence of 1 to p-1. We have p^{e-1} such sequences, which we've shown are all individually $\equiv -1 \pmod{p}$. Since p odd, $p^{e-1}*-1 \equiv -1 \pmod{p}$. For 2p, the product of integers must exclude all even ones, and thus looks like 1*3*...*(p-1)*(p+2)*(p+4)*...*(2p-1). If you take the p+2k terms \pmod{p} , these "fill in" the dropped even terms of the product up to p, so we're left with $(p-1) \equiv -1 \pmod{p}$.

For $2p^e$, the argument is the same as for p^e with odd p.

(b) The product for 8 is 1*3*5*7=105, which is $\equiv 1 \pmod{8}$.