Introduction to Digital Communications Fall 2007

Instructor: R. Michael Buehrer Lecture #13: Introduction to Digital Bandpass Modulation

Analog and Digital Communications

Overview

- Modulation is the process for transferring information using EM waves
- Baseband systems information signal modulates a baseband pulse stream
 - Up until this point we have considered this modulation
- Bandpass systems information modulates a sinusoid
 - Necessary to allow frequency division multiplexing/multiple access
- We now consider a sinusoidal carrier signal
 - Analog AM, FM (3614)
 - Digital PSK, FSK, ASK (in the next 2-3 weeks)
- What to read Section 7.1

 The objective of today's lecture is to introduce digital sinusoidal carrier modulation

- Modulation is defined as a process where an information-bearing signal causes changes to some characteristic of a carrier signal.
- The carrier signal can be either a pulse stream (a series of pulses in time) as in baseband communications or a sinusoid as in bandpass communications
- We first examined pulse modulation but will now consider sinusoidal carrier modulation

Types of Sinusoidal Modulation

 In general, time-varying modulation of a sinusoid can be written as

$$s(t) = A(t)\cos(2\pi f_c t + \theta(t))$$

- f_c the nominal carrier frequency
- A(t) time varying amplitude
- $\theta(t)$ time varying angle
- The information-bearing signal can be used to modulate (change) the amplitude or the angle of the sinusoid
 - The receiver can then recover the original information by examining the amplitude or angle of the received sinusoid

Types of Sinusoidal Modulation

- Amplitude Modulation
 - The amplitude of the carrier is varied according to the message signal
 - Let $F_{AM}(m(t))$ be the function or mapping of the message to the amplitude:

$$s(t) = F_{AM}(m(t))\cos(2\pi f_c t)$$

- Angle Modulation
 - The angle of the carrier is varied according to the message of the signal
 - Frequency modulation message directly affects the carrier frequency $s(t) = A_c \cos \left(2\pi \left[f_c + F_{FM}\left(m(t)\right)\right]t\right)$
 - Phase modulation message directly affects the carrier phase $s(t) = A_c \cos \left(2\pi f_c t + F_{PM} \left(m(t) \right) \right)$

Analog vs. Digital Modulation

- Whether the modulation scheme is analog or digital depends on the message signal
 - If the message takes on a continuum of values, we have analog modulation
 - If the message (not the waveform but the information) takes on a discrete number of values, we have digital modulation
- Types of analog modulation
 - Amplitude modulation (AM) broadcast radio
 - Phase modulation (PM) not widely used
 - Frequency modulation (FM) broadcast radio, TV, original cell phones

 Recall the signal for Large Carrier Amplitude Modulation or simply AM

$$s(t) = A_c \left[1 + k_a m(t) \right] \cos(2\pi f_c t)$$

s(t) = transmit signal, m(t) is the analog message signal, k_a is a sensitivity constant and f_c is the carrier frequency (assumed to be much greater than the bandwidth of the signal)

 For Double-Sideband Suppressed Carrier (DSBSC) AM

$$s(t) = A_c k_a m(t) \cos(2\pi f_c t)$$

Example $- k_a = 0.75$, max{m(t)} = 1

Message signal

Modulated carrier

Example $- k_a = 0.75$, max{m(t)} = 1

Close-upMessage signal

8.0 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Time (sec)

Modulated carrier

Digital Versions of AM

 If the message signal m(t) is digital, e.g., a unipolar NRZ line code, we have

This is simply Binary Amplitude Shift Keying (BASK)

Example – DSB-SC with Digital Message

Note phase change. This is simply BPSK

- If m(t) is a unipolar NRZ line code and we use DSB-SC AM we end up with the digital scheme known as Binary Amplitude Shift Keying (BASK)
 - Could also get BASK with Polar NRZ line code and regular large carrier AM with 50% modulation
- If m(t) is a polar NRZ line code and we use DSB-SC AM we end up with the digital scheme known as Binary Phase Shift Keying (BPSK)
 - Note that "negative" amplitudes are really phase changes

- A bandpass signal is one whose frequency content is concentrated about some center frequency f_c .
- Additionally, for bandpass signals, if W is the bandwidth of the signal, we assume that

$$f_c >> W$$

- This means that the message signal changes much more slowly than the carrier
- No overlap between positive and negative frequencies
- Complex baseband notation can be applied (to be discussed next class)

- Symbol signal transmitted over one symbol interval (equal to a bit interval in binary modulation)
 - Example: linear modulation (where symbol is line code times the carrier)

$$s(t) = A_c b(t) \cos(2\pi f_c t + \phi_c) \quad 0 \le t \le T_b$$

b(t) represent the data bits

• Often we typically define the amplitude of the carrier A_c , in terms of the bit duration T_b such that it has unit energy during one bit/symbol time

$$A_c = \sqrt{\frac{2}{T_b}}$$

• For linear modulation this results in

$$\begin{split} s(t) &= \sqrt{\frac{2}{T_b}} b(t) \cos \left(2\pi f_c t + \phi_c\right) \\ &= b(t) c(t) \\ \text{RM Buehrer Virginia Tech} \end{split}$$

Fall 2007

Analog and Digital Communications

Proof:

$$\begin{split} E_c &= \int_0^{T_b} c^2(t) dt \\ &= \int_0^{T_b} \left(\sqrt{\frac{2}{T_b}} \cos(2\pi f_c t + \phi) \right)^2 dt \\ &= \frac{2}{T_b} \int_0^{T_b} \cos^2(2\pi f_c t + \phi) dt \\ &= \frac{2}{T_b} \int_0^{T_b} dt + \frac{2}{T_b} \int_0^{T_b} \cos(4\pi f_c t + \phi) dt \\ &\approx 1 \end{split}$$

$$f_c>>$$
 B $lpha$ 1/T $_{
m b}$
$$\int\limits_0^{T_b}\cos\left(4\pi f_c t + \phi\right)dt \approx 0$$
 "Bandpass Assumption"

Energy per Bit

- The performance of various modulation schemes is compared based on the bit error rate performance for a received energy per bit, E_b
- Since the carrier has unit energy, E_b is determined by the data waveform

$$\begin{split} E_b &= \int\limits_0^{T_b} s^2\left(t\right) dt \\ &= \int\limits_0^{T_b} \left(\sqrt{\frac{2}{T_b}} b\left(t\right) \cos\left(2\pi f_c t + \phi\right)\right)^2 dt \\ &= \frac{2}{T_b} \int\limits_0^{T_b} b^2\left(t\right) \cos^2\left(2\pi f_c t + \phi\right) dt \\ &= \frac{2}{T_b} \frac{1}{2} \int\limits_0^{T_b} b^2\left(t\right) dt + \frac{2}{T_b} \frac{1}{2} \int\limits_0^{T_b} b^2\left(t\right) \cos\left(4\pi f_c t + \phi\right) dt \\ &\approx \frac{1}{T_b} \int\limits_0^{T_b} b^2\left(t\right) dt \end{split}$$
RM Buehrer Virginia Tech Fall 2007

Since $f_c >> W$, b(t) remains constant over one cycle of the carrier $\int_{r_b}^{r_b} b^2(t) \cos(4\pi f_c t + \phi) dt \approx 0$ "Bandpass Assumption"

Types of Binary Digital Modulation

$$\sqrt{\frac{2}{T_b}} \underbrace{A_d(t)}_{\substack{\text{data} \\ \text{modulation}}} \cos \left(2\pi f_c t + \underbrace{\theta_d(t)}_{\substack{\text{data} \\ \text{modulation}}} + \phi_c \right)$$

Binary Amplitude Shift Keying (BASK)

$$\sqrt{\frac{2}{T_b}}\underbrace{b(t)}_{\text{data}}\cos(2\pi f_c t + \phi_c)$$

Binary Phase Shift Keying (BPSK)

$$\sqrt{\frac{2}{T_b}}\cos\left(2\pi f_c t + \underbrace{b(t)}_{\text{data}}\pi + \phi_c\right)$$

• Binary Frequency Shift Keying (BFSK)
$$\sqrt{\frac{2}{T_b}}\cos\left(2\pi\left(f_c + \Delta f\underbrace{b(t)}_{\text{data}}\right)t + \phi_c\right)$$

- At the receiver we "demodulate" the signal (i.e., retrieve the data) by mixing the received signal to baseband for further processing
- This requires a local replica of the carrier wave
- If the phase of our local carrier wave is made to be equal to the incoming wave, our receiver is *coherent*.
 - Requires phase tracking circuitry
- If the phase is not the same, our receiver is *non-coherent*
 - Less complex

Received signal
$$\sqrt{\frac{2}{T_b}} \underbrace{\frac{A_d(t)}{\text{data}}}_{\substack{\text{modulation}}} \cos \left(2\pi f_c t + \underbrace{\theta_d(t)}_{\substack{\text{data} \\ \text{modulation}}} + \phi_c\right)$$

Local carrier

$$\sqrt{\frac{2}{T_b}}\cos(2\pi f_c t + \phi_r)$$

For a coherent receiver

$$\phi_r = \phi_c$$

19

In-class drill

- Today we have introduced digital sinusoidal modulation
- Digital schemes are similar to old analog modulation schemes with the analog message replaced with a digital message signal
- We will assume bandpass signals where the bandwidth is much lower than the carrier frequency
- In the coming weeks we will study various modulation schemes, receiver structures and their bit error rate performance