

Isolating the Effects of HOV Weaving: A Trajectory-Based Microsimulation Approach

presented to
MOMO Conference

September 15, 2025

presented by

Cambridge Systematics, Inc.
Shaghayegh (Rira) Shabanian

Background and Motivation

- Caltrans' HOV degradation report, submitted annually to FHWA
- Must identify root causes and recommend corrective actions
- Weaving impacts are difficult to assess using data alone

Methodology Overview

- Literature review on modeling (HOV) weaving
- Pre-screening potential corridors
- Tool selection
- Detailed simulation
- Alterative analysis

Pre-screening

- Primary Assessment
 - » Initial assessment by Caltrans
 - » Continuous access
 - » No direct connector
- Secondary Assessment
 - » Detector coverage and health
 - » Ramp volumes
 - » HCS operational analysis
 - » Video coverage

Selected Segment

I-5 Northbound between Sand Canyon and Red Hill, between 1:00 to 8:00 pm.

- » Severe degradation
- » Weaving determined as a cause in past 2 reports
- » High ramp volume
- » LOS of E in HCS analysis
- » Good CCTV camera coverage
- » Acceptable PeMS coverage

I-5 Northbound – PM Peak Period

						PM % of Days		
	_	_	_	PM Days With	PM Days Speed	Speed < 45	_	PM Degradation
os Postm 🔻	Station #	Name 🐣	PM Avg Spee ▼	Data 💌	< 45 mph	mph 💌	PM Degrade(▼	Level
96.308	1204859	SAND CANYON 2	25.3	118	92	78%	Yes	Extremely Degraded
96.758	1204876	N OF SAND CNYN	19.6	118	102	86%	Yes	Extremely Degraded
97.338	1204922	JEFFREY 1	17.5	129	120	93%	Yes	Extremely Degraded
97.408	1204935	JEFFREY 2	16.5	129	122	95%	Yes	Extremely Degraded
98.058	1204956	YALE	17.0	129	122	95%	Yes	Extremely Degraded
99.801	1205043	JAMBOREE 1	14.6	129	124	96%	Yes	Extremely Degraded
100.351	1205086	TUSTIN RANCH	22.7	125	120	96%	Yes	Extremely Degraded
102.251	1208975	B ST	23.5	129	124	96%	Yes	Extremely Degraded
102.651	1209011	N OF 55	22.7	48	46	96%	Yes	Extremely Degraded
103.151	1209693	1ST	30.9	48	46	96%	Yes	Extremely Degraded
103.481	1209727	4TH	34.9	39	38	97%	Yes	Extremely Degraded
103.851	1212047	GRAND 1	41.4	48	43	90%	Yes	Extremely Degraded
106.451	1210034	LA VETA	25.9	124	118	95%	Yes	Extremely Degraded
106.651	1212013	N OF 57*	25.9	122	116	95%	Yes	Extremely Degraded
106.851	1212142	CHAPMAN 1	31.0	122	118	97%	Yes	Extremely Degraded
107.251	1205373	CHAPMAN 2	36.8	122	112	92%	Yes	Extremely Degraded
107.351	1212268	STATE COLLEGE	35.2	121	116	96%	Yes	Extremely Degraded

Selected Tool

Compared TransModeler, Aimsun and Vissim for:

- » Literature on weaving analysis / Lane changing behavior
- » Lane-based calibration
- » Modeling HOV's preference

Functionality	Vissim	TModeler	Aimsun
Having separate user classes for GP and HOV	~	~	/
Controlling violation for open access HOV	Shold test	Shold test	Shold test
Controlling HOV Lane Utilization	×	<u>~</u>	×
Location-based driving behavior	~	~	~
Replicating lane changing density by location	Shold test	Shold test	Shold test
Controlling lane utilization by heavy vehicles	~	~	~

Data Sources

- Travel Demand Model
- PeMS
- Truck counts
- Intersection and ramp Count
- Observed origin-destination data
- Vehicle occupancy data
- Signal timing
- Ramp metering rate
- Videos
- Crash data

Data Cross-Validation

- Volume: Ramp volume discrepancy between PeMS and observed OD data; videos and field checks confirmed volume from OD data
- > Truck use: Allowed on right 2 lanes, but video shows heavy use of 3rd lane
- Speed: PeMS indicated GP lanes faster than HOV, video showed opposite

Calibration Summary

- Iterative process between ODME and driving behavior
- Adjusted:
 - » Car following: longer headways
 - » Lane changing: shorter look ahead distance
 - » speed distribution across lanes
 - » Lane utilization: forced some of through traffic to use the most left GP lane
 - » HOV lane utilization: increased bias towards using HOV
 - » Jam density: adjusted based on videos of queued vehicles

Calibration Summary

OD Comparison – 3:00 to 4:00 pm

Calibration Summary

Lane Level Fundamental Diagram

Scenarios Tested

- Five scenarios based on direct access between HOV lane and ramps
 - » Alternative 1: direct access everywhere but to major ramp SR-55
 - » Alternative 2: direct access everywhere
 - » Alternative 3: direct access at SR-55 and selected ramps
 - » Alternative 4: direct access only at SR-55
 - » Alternative 5: converted continuous access to limited access

Performance Measures

Corridor travel time and delay

FIGURE 4.15: TOTAL VEHICLE-HOURS OF DELAY BY SCENARIO

Performance Measures

Number of lane changes from and to HOV

FIGURE 4.19: TOTAL LANES CHANGED DURING HOV MOVEMENTS, BY SCENARIO

FIGURE 4.18: HOV LANE MOVEMENTS BY TYPE

Conclusion

- Simulation can help to isolate and quantify the effect of weaving
- Pre-screening is valuable, with potential data-driven approaches
- Data cross-validation proved essential, guiding key calibration decisions

