Анализ, 4 семестр

Михаил Пирогов записал со слов лектора А. А. Лодкина

3 июня 2017 г.

Глава 1 Теория меры

Билет 1: Алгебры и σ -алгебры множеств.

Определение 1.1. Пусть X – некоторое множество. Тогда $\mathcal{A} \subset 2^X$ называется *алгеброй*, если выполняются следующие условия:

- 1. \emptyset , $X \in \mathcal{A}$.
- 2. $A, B \in \mathcal{A} \Rightarrow A \cup B, A \cap B, A \setminus B \in \mathcal{A}$.

Упражнение 1. Пусть $\mathcal{A} \subset 2^X$ – алгебра, $|\mathcal{A}| < \infty$. Тогда $|\mathcal{A}| = 2^n$ для некоторого n.

Доказательство. Так как $X \in \mathcal{A}$, каждый элемент X содержится как минимум в одном элементе \mathcal{A} . Пусть A(x) – пересечение всех множеств из \mathcal{A} , содержащих x. Понятно, что A(x) непусто, т.к. $x \in A(x)$. Разобьём дальнейшее доказательство на несколько пунктов:

- 1. Мы определили A(x), как наименьшее по включению множество, удовлетворяющее некоторому свойству. Поэтому у него есть эквивалентное определение: A(x) такое множество, что если $x \in B \in \mathcal{A}$, то $A(x) \subset B^{-1}$.
- 2. Введём отношение на X: пусть $x \sim y$, если A(x) = A(y). Очевидно, что это отношение эквивалентности. Докажем, что $x \sim y \Leftrightarrow y \in A(x)$.
 - Пусть $y \in A(x)$. Предположим, что $A(y) \neq A(x)$. Тогда выполняется минимум одно из двух утверждений: либо A(y) содержит элемент, которого нет в A(x), либо наоборот. Пусть первое. Тогда $B = A(x) \cap A(y)$ элемент \mathcal{A} , который содержит y и строго меньше A(y), чего не может быть. Пусть второе. Тогда если A(y) не содержит x, то $A(x) \setminus A(y)$ является элементом \mathcal{A} , содержащим x, а если содержит, то снова $A(x) \cap A(y)$ является таким элементом. Причём строго меньшим, чем A(x), что опять ведёт нас к противоречию.
 - Пусть A(x) = A(y). Предположим, что $y \notin A(x)$. Но тогда $y \notin A(y)$, что точно ложь.
- 3. Разобьём X на классы эквивалентности по отношению \sim ; обозначим множество этих классов $\hat{\mathcal{A}}$. Понятно, что $|\hat{\mathcal{A}}| < \infty$, ведь $\hat{\mathcal{A}} \subset \mathcal{A}$. Пусть $B \in \mathcal{A}$ и $\hat{B} \in \hat{\mathcal{B}}$. Докажем, что если $B \cap \hat{B} \neq \emptyset$, то $B \cap \hat{B} = \hat{B}$.
 - Предположим противное: пусть $x \in B \cap \hat{B}$ и $y \in \hat{B} \setminus B$. Из определения отношения эквивалентности понятно, что $\hat{B} = A(x) = A(y)$. Но заметим тогда, что $\hat{B} \setminus B$ множество из \mathcal{A} , содержащее y и строго меньшее \hat{B} , чего не может быть.
- 4. Из сделанного нетрудно увидеть, что любое $B \in \mathcal{A}$ можно представить, как объединение множеств из $\hat{\mathcal{A}}$: просто для каждого $b \in B$ взять A(b) и объединить их все. При этом понятно, что любое объединение множеств из $\hat{\mathcal{A}}$ лежит в A. Т.к. элементы $\hat{\mathcal{A}}$ не пересекаются, нетрудно увидеть, что отображение, сопоставляющее множеству $\mathcal{B} \subset \hat{\mathcal{A}}$ объединение всех его элементов есть биекция биекция между множествами $2^{\hat{\mathcal{A}}}$ и \mathcal{A} . Поэтому количество элементов \mathcal{A} имеет искомый вид.

Примеры привести не очень сложно, не будем здесь на этом останавливаться.

 $[\]overline{}^1$ Заметим, что мы существенно испльзуем конечность ${\mathcal A}$ каждый раз, когда говорим, что $A(x)\in {\mathcal A}!$

ГЛАВА 1. ТЕОРИЯ МЕРЫ

Определение 1.2. σ -алгеброй называется алгебра, замкнутая относительно счётных объединений и пересечений.

Определение 1.3. Пусть $\mathcal{E} \subset 2^X$. Тогда наименьншая σ -алгебра, содержащая \mathcal{E} , называется борелевской оболочкой \mathcal{E} и обозначается $\sigma(\mathcal{E})$. (Ссылаясь на факт, который уже упоминался в упражнении, заметим, что $\sigma(\mathcal{E})$ совпадает с пересечением всех σ -алгебр, содержащих E).

Лемма 1.1. Если $\mathcal{E}_2 \subset \sigma(\mathcal{E}_1)$, то $\sigma(\mathcal{E}_2) \subset \sigma(\mathcal{E}_1)$.

Доказательство. Из определения борелевской оболочки понятно, что

$$\mathcal{E}_2 \subset \sigma(\mathcal{E}_1) \Rightarrow \sigma(\mathcal{E}_2) \subset \sigma(\sigma(\mathcal{E}_1)).$$

При этом понятно, что правая часть равна $\sigma(\mathcal{E}_1)$, чего нам и надо.

Билет 2: Борелевская σ -алгебра.

Определение 2.1. Пусть \mathcal{O}_n – множество всех открытых множеств в \mathbb{R}^n . Тогда σ -алгебра $\sigma(\mathcal{O}_n)$ называется борелевской.

Определение 2.2. Назовём n-мерной ячейкой такое подмножество \mathbb{R}^n :

$$n = 1 \Rightarrow \Delta = \begin{cases} [a, b), [a, \infty); \\ (-\infty, b), (-\infty, \infty); \end{cases}$$
$$n > 1 \Rightarrow \Delta = \prod_{i=1}^{k} \Delta_{i},$$

где Δ_i – одномерные ячейки.

Определение 2.3. Назовём n-мерной алгеброй ячеек множество

$$\operatorname{Cell}_n = \left\{ \bigcup_{i=1}^k \Delta_i \,\middle|\, k \in \mathbb{N} \right\},$$

где Δ_i – ячейки.

Утверждение 2.1. Cell_n – действительно алгебра.

Доказательство. Чтобы сделать, нужно увидеть, что пересечение ячеек – ячейка, а потом представить пересечение объединений, как объединение пересечений.

Теорема 2.1. $\sigma(Cell_n) = \sigma(\mathcal{O}_n)$.

Доказательство. Зная последний результат из предыдущего билета, имеем возможность доказывать, что

$$Cell_n \subset \sigma(\mathcal{O}_n)$$
 и $\mathcal{O}_n \subset \sigma(Cell_n)$.

Это даст нам утверждение теоремы.

Первое включение очевидно: можно представить любую ячейку, как пересечение вложенных прямоугольников, например. Поэтому и с объединением проблем не будет.

Чтобы доказать второе, рассмотрим сначала ячейки с целыми вершинами, назовём их ячей-ками первого ранга. Побив каждую из них на 2^n частей (поделив каждую сторону на 2), получим ячейки второго ранга, продолжая процесс — ячейки ранга n. Пусть U — произвольное открытое множество, а U_k — объединение всех ячеек ранга k, пересекающих U.

Рассмотрим x – произвольную точку не из U. Т.к. U открыто, существует такое ε , что

$$B_{\varepsilon}(x) \cap U = \varnothing$$
.

Заметим однако, что если ячейка ранга k, то её сторона равна 2^{1-k} , а значит, диагональ —

$$\sqrt{n} \, 2^{1-k}$$
.

Эта последовательность стремится к нулю при k стремящемся к бесконечности, поэтому можно сделать так, что диагональ ячейки станет меньше, чем ε , при всех k>K. Из этого будет следовать, что при k>K $x\notin U_k$.

Отсюда ясно, что

$$U = \bigcap_{k=1}^{\infty} U_k \Rightarrow U \in \sigma(\mathsf{Cell}_n) \Rightarrow \mathcal{O} \subset \sigma(\mathsf{Cell}_n).$$

Утверждение 2.2. Борелевской σ -алгебре принадлежат множества следующих типов:

- 1. Точки.
- 2. Открытые, замкнутые.
- 3. Не более чем счётные.
- 4. Счётные пересечения открытых множеств множества типа G_{δ} .
- 5. Счётные объединения замкнутых множества типа F_{σ} .
- 6. Счётные объединения множеств типа G_{δ} множества типа $G_{\delta\sigma}$.
- 7. Счётные пересечения множеств типа F_{σ} множества типа $F_{\sigma\delta}$.

Билет 3: Мера на алгебре. Примеры мер.

Определение 3.1. Пусть X – множество, \mathcal{A} – алгебра на X. Тогда мерой на \mathcal{A} называется отображение μ : $\mathcal{A} \to [0, \infty]$, удовлетворяющее двум свойствам:

- 1. $\mu(\emptyset) = 0$.
- 2. Если $\{A_k\}_{k=1}^\infty$ семейство дизъюнктных 2 множеств из $\mathcal{A},$ то

$$\mu\left(\bigsqcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k).$$

Пример 3.1. Пусть $\mathcal{A} = 2^X$, и $a \in X$ – произвольная точка. Введём меру

$$\mu(A) = \begin{cases} 1, \ a \in A, \\ 0, \ a \notin A. \end{cases}$$

Проверка аксиом. Первое свойство, конечно, выполняется; чтобы проверить второе, можно увидеть, что в семействе дизъюнктных множеств точка может содержаться лишь в одном из них. □

Такая мера называется дельта-мерой, атомической мерой или мерой Дирака, обозначается, как δ_a . В физике порой рассматривается (на $\mathbb R$), как интеграл от дельта-функции Дирака — такой функции, что она равна нулю всюду, кроме a, а интеграл по всей прямой от неё равен 1.

Пример 3.2. В той же ситуации вместо точки a зафиксируем не более, чем счётное множество точек $\{a_k\}$. Меру определим, как

$$\mu(A) = \sum_{k} m_k \delta_{a_k}(A),$$

где m_k – некторые фиксированные неотрицательные вещественные числа, веса. Такая мера называетсямолекулярной.

²Попарно непересекающихся друг с другом. Если в объединении участвует семейство дизъюнктных множеств, то будем его обозначать ⊔ вместо ∪, забывая упоминать дизъюнктность.

Проверка аксиом. Первая снова тривиальна, вторая следует из счётной аддитивности дельтамеры (на самом деле, тут нужно воспользоваться теоремой о перестановке/группировке членов в абсолютно сходящемся ряде; т.к. всё положительно, никакой условной сходимости тут не бывает, и при перестановке/группировке членов сохраняется как сходимость, так и расходимость). □

Пример 3.3. В той же ситуации пусть

$$\mu(A) = |A|$$
.

Билет 4: Свойства меры

Свойство 4.1 (Монотонность). Пусть $A, B \in \mathcal{A}, A \subset B$. Тогда $\mu(A) \leqslant \mu(B)$.

Доказательство.

$$\mu(B) = \mu(A) + \mu(B \setminus A) \geqslant \mu(A).$$

Свойство 4.2. Пусть $A, B \in \mathcal{A}, A \subset B, \mu B < \infty$. Тогда $\mu(B \setminus A) = \mu B - \mu A$.

Доказательство.

$$\mu(B) = \mu(A) + \mu(B \setminus A) \Rightarrow \mu(B \setminus A) = \mu(B) - \mu(A).$$

Условие $\mu(B) < \infty$ было использовано, когда мы вычли $\mu(A)$ из двух частей равенства; действительно, по предыдущему свойству $\mu(A) \leqslant \mu(B) < \infty$, поэтому $\mu(A)$ можно вычитать. 3

Свойство 4.3 (Усиленная монотонность). Пусть $A_1, ..., A_n, B \in \mathcal{A}, A_1, ..., A_n \subset B$, причём множества A_k дизъюнктные. Тогда

$$\sum_{k=1}^{n} \mu(A_k) \leqslant \mu(B).$$

Доказательство. Очевидно.

Свойство 4.4 (Полуаддитивность). Пусть $A_1, ..., A_n, B \in \mathcal{A}, B \subset \cup A_k$. Тогда

$$\mu(B) \leqslant \sum_{k=1}^{n} \mu(A_k).$$

Доказательство. Введём семейство множеств:

$$C_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i, \ 1 \leqslant k \leqslant n.$$

Нетрудно понять, что они дизъюнктны; при этом

$$\bigsqcup_{k=1}^{n} C_k = \bigcup A_k,$$

потому что никаких точек извне $\cup A_k$ в это объединение точно попасть не может, а для любой точки a из $\cup A_k$ можно взять наименьшее k_0 такое, что $a \in A_{k_0}$; тогда $a \in C_{k_0}$.

Из этого следует, что B можно представить, как

$$B = \bigsqcup_{k=1}^{n} B \cap C_k = \bigsqcup_{k=1}^{n} D_k.$$

Заметим, что

$$\mu(D_k) = \mu(B \cap C_k) \leqslant \mu(C_k) \leqslant \mu(A_k).$$

Поэтому и

$$\mu(B) = \sum_{k=1}^{n} \mu(D_k) \leqslant \sum_{k=1}^{n} \mu(A_k).$$

 $^{^3}$ Не достаточно ли потребовать, что $\mu(A) < \infty$?

Свойство 4.5 (Непрерывность меры снизу). Пусть $\{A_k\}_{k=1}^\infty$ – такое семейство множеств из \mathcal{A} , что $A_k \subset A_{k+1}$, и

$$A = \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}.$$

Тогда $\mu(A) = \lim \mu(A_k)$.

Доказательство. Пусть $C_k=A_k\setminus A_{k-1}$, причём $A_0=\varnothing$ и $k\geqslant 1$. Тогда нетрудно увидеть, что C_k дизъюнктны, и

$$A_k = \bigsqcup_{i=1}^k C_k.$$

При этом

$$A = \bigsqcup_{i=1}^{\infty} C_k.$$

Но тогда искомое утверждение очевидно из второй аксиомы меры и определения суммы ряда.

Свойство 4.6 (Непрерывность меры сверху). Пусть $\{A_k\}_{k=1}^\infty$ – такое семейство множеств из \mathcal{A} , что $A_k\supset A_{k+1},\ \mu A_1<\infty$ и

$$B = \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}.$$

Тогда $\mu(B) = \lim \mu(A_k)$.

Доказательство. Пусть $B_k=A_{k-1}\setminus A_k$, причём $A_0=\varnothing$ и $k\geqslant 1$. Тогда нетрудно увидеть, что B_k дизъюнктны, и

$$A_k \sqcup \bigsqcup_{i=1}^k B_k = A_1.$$

При этом

$$A \sqcup \bigsqcup_{i=1}^{\infty} B_k = A_1.$$

Конечность всех мер позволяет завершить доказательство так же, как в прошлый раз, перенеся суммы рядов вправо и перейдя к пределу. \Box

Теорема 4.1. Если мера конечно-аддитивна и непрерывна снизу (или сверху), то она счётноаддитивна.

Билет 5: Объём в \mathbb{R}^n . Мера Лебега и её свойства.

Определение 5.1. Объёмом ячейки $\Delta = \sqcap \Delta_i$ в \mathbb{R}^n называется

$$v_n(\Delta) = \prod_{i=1}^n |\Delta_i|.$$

Аналогично определим и объём открытых/замкнутых прямоугольников для удобства.

Утверждение 5.1. Любой элемент $Cell_n$ можно представить, как дизъюнктное объединение ячеек (разбить на ячейки).

Набросок доказательства. Кажется, делается двойной индукцией по количеству ячеек. Предполагаем сначала, что мы научились объединение n прямоугольников представлять в виде дизъюнктного объединения нескольких ячеек. После этого делаем переход: доказываем, что если добавить (n+1)-ю ячейку, то всё равно получится.

Чтобы доказать переход, вновь применяем индукцию. Предположим, что мы доказали, что можем представить в виде дизъюнктного объединения объединение ячейки и дизъюнктного

объединения k ячеек. А потом новый переход: добавляем (k+1)-ю. Здесь удобно рассматривать «сетчатую» конструкцию разбиения: на пути индукции всё время поддерживать разбиение таким, чтобы все разрезающие линии кончались на границе какой-нибудь из объединяемых в данный момент ячеек. $\hfill \Box$

Определение 5.2. Объёмом элемента $Cell_n$ называется сумма объёмов ячеек, входящих в его разбиение.

Утверждение 5.2 (Корректность). Объём элемента $Cell_n$ не зависит от выбора разбиения.

Hабросок доказательства. Обсудим сначала случай n=2. Проделаем с разбиением операции как на картинке, проверив, что объём в смысле нашего определения сохранится:

Если у нас было какое-то другое разбиение, мы получим какое-то другое разбиение на столбцы. После этого не очень трудно доказать, что два разбиения на столбцы задают одинкаовые объёмы: нужно просто нанести и те, и те линии, а после доказать, что «суммарное» разбиение задаёт тот же объём.

В n-мерном случае нужно действовать индукцией по размерности: основания «столбцов» будут многомерные, а независимость от разбиения для n-1 будет использоваться, когда мы будем смотреть на разбиения оснований. $\hfill \Box$

Теорема 5.1. Объём – конечно-аддитивная функция на $Cell_n$.

Доказательство. Теперь это очевидно: если в дизъюнктном объединении множеств из $Cell_n$ разбить каждый элемент на ячейки, то мы получим разбиение объединения на ячейки; а в конечных суммах ассоциативность точно работает.

Теорема 5.2. Объём – счётно-аддитивная функция на $Cell_n$.

Доказательство. Переформулируем утверждение: $A, A_1, ... \in \mathsf{Cell}_n, \sqcup A_i = A$. Доказать хочется, что

$$\sum_{k=1}^{\infty} v_n(A_k) = v_n(A).$$

Рассмотрим сначала частный случай: пусть $A=\Delta$ и $A_k=\Delta_k$ – ячейки.

1. Пусть Δ — ограниченная ячейка в $\mathbb{R}^n,\ \varepsilon>0$. Тогда можно взять замкнутый параллелепипед $\Delta'\subset\Delta$ и открытый $\Delta''\supset\Delta$ такие, что

$$v_n(\Delta) - v_n(\Delta') < \varepsilon \text{ if } v_n(\Delta'') - v_n(\Delta) < \varepsilon.$$

Явно они будут выглядеть, как

$$\Delta = \prod_{k=1}^{n} [a_k, b_k),$$

$$\Delta' = \prod_{k=1}^{n} \left[a_k, b_k - \frac{1}{i} \right],$$

$$\Delta'' = \prod_{k=1}^{n} \left(a_k + \frac{1}{i}, b_k \right),$$

Проделаем это для ячеек Δ и Δ_k :

$$\forall \varepsilon > 0 \; \exists \; \Delta' \subset \Delta : v_n(\Delta') > v_n(\Delta) - \varepsilon$$
$$\forall k \; \exists \; \Delta_k \subset \Delta_k'' : v_n(\Delta_k'') < v_n(\Delta_k) + \frac{\varepsilon}{2^k}.$$

Заметим, что

$$\Delta'$$
 $\subset \Delta = igsqcup_{k=1}^\infty \Delta_k \subset igsqcup_{k=1}^\infty \Delta_k''$.

По определению компакта

$$\Delta' \subset \bigcup_{k=1}^N \Delta''_k.$$

Теперь запишем объёмы:

$$v_n(\Delta') \leqslant v_n\left(\bigcup_{k=1}^N \Delta_k''\right) \leqslant \sum_{k=1}^N v_n(\Delta_k'') < \sum_{k=1}^N v_n(\Delta_k) + \sum_{k=1}^N \frac{\varepsilon}{2^k} < \sum_{k=1}^N v_n(\Delta_k) + \varepsilon.$$

Используя неравенство для $v_n(\Delta')$ запишем

$$v_n(\Delta) < \sum_{k=1}^N v_n(\Delta_k) + 2\varepsilon.$$

Устремляя ε к нулю и увеличивая сумму в правой части, имеем

$$v_n(\Delta) \leqslant \sum_{k=1}^{\infty} v_n(\Delta_k).$$

С другой стороны,

$$\bigsqcup_{k=1}^{N} \Delta_k \subset \Delta \Rightarrow \sum_{k=1}^{N} v_n(\Delta_k) \leqslant v_n(\Delta) \Rightarrow \sum_{k=1}^{\infty} v_n(\Delta_k) \leqslant v_n(\Delta).$$

Поэтому на самом деле имеет место равенство.

2. Для неограниченной ячейки интересна лишь гипотетическая ситуация, в которой $v_n(\Delta) = \infty$, а сумма оказывается конечной (а значит, и все Δ_k ограниченные). Для неё вроде работает примерно та же оценка, что и в первом случае.

Понятно, что разбивать сразу можно на ячейки, а не на элементы Cell_n , потому что каждый из них разбивается на конечное число ячеек. Чтобы A тожн сделать ячейкой, нужно разбить его не конечное число ячеек, а потом немного изменить разбиения составных частей, чтобы каждая из этих ячеек разбивалась на составные ячейки составных частей. Лень.

Поэтому объём – мера на алгебре $Cell_n$.

Определение 5.3. Мера μ на σ -алгебре $\mathcal A$ называется полной, если для любого $A\in \mathcal A$ такого, что $\mu(A)=0$ верно, что $\forall B\subset A$ $\mu(B)=0$.

Определение 5.4. Мера на алгебре ${\mathcal A}$ называется σ -конечной, если существуют X_k такие, что $\mu(X_k)<\infty$ и

$$\bigcup_{k=1}^{\infty} X_k = X.$$

Например, уже введённый объём v_n – σ -конечная мера.

Определение 5.5. Пусть $\mathcal{A}_1\subset\mathcal{A}_2$ – алгебры, и $\mu_1,\,\mu_2$ – меры на них. Тогда μ_2 называют продолжением $\mu_1,\,$ если $\mu_2|_{\mathcal{A}_1}=\mu_1.$

Теорема 5.3 (Лебега-Каратеодори). Пусть $\mu - \sigma$ -конечная мера на алгебре \mathcal{A} . Тогда:

- 1. Существуют её полные продолжения на σ -алгебры.
- 2. Среди них есть единственное продолжение $\overline{\mu}$ такое, что если μ' полное продолжение μ , то $\overline{\mu}$ – полное продолжение μ' . Его называют *стандартным*.

Набросок доказательства.

1. Построим функцию $\mu^*: 2^X \to [0, \infty]$ таким образом:

$$\mu^*(E) = \inf \left\{ \sum_{k=1}^{\infty} \mu(A_k) \middle| \{A_k\}_{k=1}^{\infty} \subset \mathcal{A}, \bigcup_{k=1}^{\infty} A_k \supset E \right\}.$$

Она называется внешней мерой для меры μ , но мерой не является: ей не хватает счётной аддитивности.

2. $E \subset X$ называют хорошо разбивающим, если $\forall A \in \mathcal{A} \ \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E)$. Можно доказать, что класс хорошо разбивающих множеств $\overline{\mathcal{A}}$ является σ -алгеброй, а μ^* – мерой и является стандартным продолжением μ .

Определение 5.6. *Мера Лебега* λ_n на \mathbb{R}^n – стандартное продолжение объёма. σ -алгебра, на которой она определена, обозначается \mathcal{M}_n .

Свойство 5.1. Все борелевские множества измеримы по Лебегу.

Доказательство. σ -алгебра борелевских множеств – наименьшая, содержащая Cell_n , поэтому она содержится в \mathcal{M}_n .

Свойство 5.2. Мера Лебега точки – ноль.

Доказательство. Это следует из того, что внешняя мера точки ноль, потому что существует сколь угодно малая ячейка, которая её содержит.

Свойство 5.3. Конечные и счётные множества имеют нулевую меру Лебега.

Доказательство. Из-за счётной аддитивности.

Свойство 5.4. Пусть $L \subset \mathbb{R}^n$ – линейное подпространство размерности меньше, чем n. Тогда его мера Лебега равна нулю.

Доказательство. Нужно покрыть ячейками и сделать оценку.

Свойство 5.5. (Регулярность) Пусть $A \in \mathcal{M}_n, \ \varepsilon > 0$. Тогда найдутся открытое G и замкнутое Fтакие, что

$$F \subset A \subset G, \ \lambda_n(G \setminus A) < \varepsilon, \ \lambda_n(A \setminus F) < \varepsilon.$$

Доказательство. В случае, когда E ограничено, это совсем просто: нужно взять покрывающий набор ячеек из определения внешней меры, и каждую ячейку приблизить открытым параллелипипедом, а потом провернуть оценку. Чтобы получить замкнутое множество, придётся повторить это для дополнения E относительно какого-нибудь куба, содержащего E.

Для бесконечных надо доказать!

Билет 6: Измеримость функции относительно σ -алгебры. Свойства измеримых функций.

Определение 6.1. Функция $f: X \to \mathbb{R}$ называется измеримой относительно σ -алгебры \mathcal{A} , если для любого промежутка $\Delta \in \mathbb{R}$ $f^{-1}(\Delta) \in \mathcal{A}$.

Определение 6.2. Множества вида $X[f < a] = \{x \in X \mid f(x) < a\}$ – множества Лебега 1 типа, а $X[f \leqslant a], \ X[f > a], \ X[f \geqslant a] - 2, \ 3,$ и 4 соответственно.

Теорема 6.1. Чтобы функция f была измерима относительно \mathcal{A} , достаточно, чтобы все множества одного из четырёх типов Лебега лежали в \mathcal{A} .

Доказательство.

1. $1 \to 2$:

$$X[f \leqslant a] = \bigcup_{k=1}^{\infty} X\left[f < a - \frac{1}{k}\right].$$

- 2. $2 \rightarrow 3$: $X[f > a] = X \setminus X[f \leqslant a]$.
- 3. $3 \rightarrow 4$: так же, как $1 \rightarrow 2$.
- 4. $4 \rightarrow 1$: так же, как $2 \rightarrow 3$.

Имея множества Лебега всех четырёх типов, нетрудно получить из них все промежутки.

Лемма 6.1. Любое открытое множество $G \subset \mathbb{R}^n$ представимо, как счётное объединение ячеек.

Доказательство. Возьмём около каждой рациональной точки G окрестность в форме параллелипипеда, лежащую в G. Понятно, что из того, что множество рациональных точек всюду плотно, следует, что мы получили счётное открытое покрытие G.

В свою очередь, любой открытый параллелипипед легко представить, как объединение счётного количества ячеек. А счётное объединение счётных объединений – счётное объединение.

Теорема 6.2. Пусть функции $f_1, ..., f_n$: $X \to \mathbb{R}$ измеримы, а функция $g: \mathbb{R}^n \to \mathbb{R}$ непрерывна. Тогда функция $\varphi = g \circ f: X \to \mathbb{R}$ измерима.

Доказательство. Т.к. функция g непрерывна, $G = \mathbb{R}^n[g < a]$ – открытое множество. Его можно представить, как

$$G = \bigcup_{k=1}^{\infty} \Delta_k,$$

где Δ_k — ячейки. Тогда

$$X[\varphi < a] = f^{-1}(G) = \bigcup_{k=1}^{\infty} f^{-1}(\Delta_k).$$

Пусть

$$\Delta_k = \prod_{i=1}^n [a_i, b_i).$$

Тогда

$$f^{-1}(\Delta_k) = \bigcap_{i=1}^n X[a_i \leqslant f_i < b_i].$$

Поэтому

$$X[\varphi < a] = \bigcup_{k=1}^{\infty} \bigcap_{i=1}^{n} X[a_i^{(k)} \le f_i < b_i^{(k)}].$$

Это измеримое множество.

Теорема 6.3. f, g измеримы \Rightarrow измеримы $f+g, f-g, fg, <math>\frac{f}{g}, |f|, \lambda f, f \lor g = \max\{f, g\}, f \land g = \min\{f, g\}, f^n.$

Доказательство. Довольно очевидное следствие предыдущей теоремы.

Теорема 6.4. Если $\{f_i\}_{i=1}^{\infty}$ измеримы, то измеримы и $\sup f_i$, $\inf f_i$, $\liminf f_i$, $\liminf f_i$.

Доказательство.

1.
$$g = \sup f_i$$
; $X[g \leqslant a] = X[\forall i \ f_i \leqslant a] = \bigcap_{i=1}^{\infty} X[f_i \leqslant a]$.

2. Инфимум – аналогично.

3.
$$g = \lim_{x \to \infty} f_i \Rightarrow (g(x) \leqslant a \Leftrightarrow \exists N : \forall i > N \ f_i(x) \leqslant a) \Rightarrow X[g \leqslant a] = \bigcup_{N=1}^{\infty} \bigcap_{i=N+1}^{\infty} X[f_i(x) \leqslant a].$$

4. Верхний и нижний пределы – пределы инфимумов и супремумов, поэтому эти результаты следуют из уже доказанного.

Определение 6.3. $f: X \to \mathbb{R}$ называется *простой* (относительно \mathcal{A} ,) если она измерима относительно \mathcal{A} и принимает конечное число значений.

Определение 6.4. *Индикатором* множества E называется функция

$$\mathbb{1}_E(x) = \begin{cases} 1, & x \in E, \\ 0, & x \notin E. \end{cases}$$

Утверждение 6.1. Индикатор E прост (измерим) тогда и только тогда, когда измеримо E.

Утверждение 6.2. Пусть f – функция, которая принимает значения $\{a_i\}_{i=1}^N$ на множествах E_i . Тогда

$$f = \sum_{i=1}^{N} a_i \mathbb{1}_{f^{-1}(a_i)} = \sum_{i=1}^{N} a_i \mathbb{1}_{E_i}.$$

Утверждение 6.3. Функция f, принимающая конечное число значений, проста (измерима) тогда и только тогда, когда множества E_i измеримы.

Теорема 6.5. Если $\{f_i\}_{i=1}^\infty$ – последовательность простых функций, имеющая предел, то этот предел измерим.

Теорема 6.6. Пусть f – неотрицательная измеримая функция. Тогда найдётся неубывающая последовательность $\{\varphi_i\}_{i=1}^\infty$ простых функций, которая поточечно сходится к f.

Доказательство. Разобъём $[0,+\infty)$ следующим образом:

$$[0,\infty) = \bigsqcup_{k=0}^{n^2} \Delta_k,$$

где

$$\Delta_k = \begin{cases} \left[\frac{k}{n}, \frac{k+1}{n}\right], \ 0 \leqslant k < n^2, \\ [n, \infty), \ k = n^2. \end{cases}$$

Пусть
$$e_k = f^{-1}(\Delta_k) \in \mathcal{A}, \; c_k = \min \Delta_k = \frac{k}{n}$$
 и

$$\psi_n = \sum_{k=0}^{n^2} c_k \mathbb{1}_{e_k}.$$

Рассмотрим $x \in e_k$. Начиная с некоторого n эта точка точно попадёт в e_k с $k < n^2$. Значение $f(x) \in \Delta_k = \left[c_k, \, c_k + \frac{1}{n}\right]$, поэтому

$$|f(x) - \psi_n(x)| \leqslant \frac{1}{n}$$

начиная с некоторого n. Отсюда следует поточечная сходимость.

Чтобы сделать последовательность функций неубывающей, сохранив сходимость, введём

$$\varphi_n = \max\{\psi_1, ..., \psi_n\}.$$

Сходимость сохранится, т.к.

$$f - \frac{1}{n} \leqslant \psi_n \leqslant \varphi_n \leqslant f.$$

Билет 7: Определение интеграла по мере. Свойства интеграла от неотрицательных функций.

Определение 7.1. Пусть f – простая, и представлена, как

$$\sum_{k=1}^{p} c_k \mathbb{1}_{E_k}.$$

Тогда

$$\int\limits_{Y} f \, \mathrm{d}\mu = \sum_{k=1}^{p} c_k \, \mu(E_k).$$

Если $A \in \mathcal{A}$, то

$$\int f \, \mathrm{d}\mu = \sum_{k=1}^p c_k \, \mu(E_k \cap A).$$

Утверждение 7.1. Если f – простая на X, то

$$\int\limits_A f \,\mathrm{d}\mu = \int\limits_Y f \,\mathbb{1}_A \,\mathrm{d}\mu.$$

Доказательство.

$$f \, \mathbb{1}_A = \mathbb{1}_A \sum_{k=1}^p c_k \mathbb{1}_{E_k} = \sum_{k=1}^p c_k \mathbb{1}_{E_k \cap A}.$$

Определение 7.2. Пусть f — измеримая, неотрицательная функция. Тогда

$$\int\limits_X f \, \mathrm{d}\mu = \sup \left\{ \int\limits_X g \, \mathrm{d}\mu \, \bigg| \, g - \mathrm{простая}, \, \, 0 \leqslant g \leqslant f \right\}$$

При этом

$$\int\limits_A f \,\mathrm{d}\mu = \int\limits_V f \,\mathbb{1}_A \,\mathrm{d}\mu.$$

В следующих свойствах функции измеримые и неотрицательные.

Свойство 7.1.

$$0\leqslant f\leqslant g\Rightarrow\int\limits_Xf\,\mathrm{d}\mu\leqslant\int\limits_Xg\,\mathrm{d}\mu.$$

Доказательство. Очевидно из определения, для g супремум берётся по большему множеству функций.

Свойство 7.2.

$$A \subset B \subset X \Rightarrow \int_B f \, \mathrm{d}\mu \leqslant \int_A f \, \mathrm{d}\mu.$$

Доказательство. Следует из предыдущего свойства.

Определение 7.3. Пусть f – произвольная измеримая функция. Определим

$$f_{+} = \max\{f(x), 0\}, f_{-} = \max\{-f(x), 0\}.$$

Тогда

$$\int\limits_X f \,\mathrm{d}\mu = \int\limits_X f_+ \,\mathrm{d}\mu - \int\limits_X f_- \,\mathrm{d}\mu.$$

Определение 7.4. f называется *суммируемой* на X, если интеграл от неё конечен. Семейство суммируемых функций обозначается, как $L(X, \mu)$.

Билет 8: Теорема Беппо Леви.

Теорема 8.1. Пусть $\{f_n\}_{n=1}^{\infty}$ – неубывающая последовательность измеримых неотрицательных функций, и $f=\lim f_n$. Тогда

$$\int\limits_X f\,\mathrm{d}\mu=\lim\int\limits_X f_n\,\mathrm{d}\mu.$$

Доказательство.

$$\begin{split} f_n \leqslant f \Rightarrow \int\limits_X f_n \, \mathrm{d}\mu \leqslant \int\limits_X f \, \mathrm{d}\mu, \\ f_n \leqslant f_{n+1} \Rightarrow \int\limits_X f_n \, \mathrm{d}\mu \leqslant \int\limits_X f_{n+1} \, \mathrm{d}\mu \Rightarrow \exists \lim \int\limits_X f_n \, \mathrm{d}\mu = L. \end{split}$$

Из этих двух утверждений следует, что

$$L \leqslant \int_X f \, \mathrm{d}\mu.$$

Теперь проверим неравенство в другую сторону. По определению

$$\int\limits_{Y} f \, \mathrm{d}\mu = \sup\limits_{\varphi} \int\limits_{Y} \varphi \, \mathrm{d}\mu,$$

где φ – неотрицательные простые функции, не превосходящие f. Рассмотрим какую-нибудь φ :

$$\varphi = \sum_{k=1}^{p} c_k \mathbb{1}_{E_k},$$

причём $c_k\geqslant 0$. Примем $c_0=0$; тогда понятно, что $E_0=\varnothing\Leftrightarrow\varphi>0$. Возьмём $\varepsilon\colon 0<\varepsilon<\min\{c_1,...,c_p\}$ и

$$\varphi_{\varepsilon} = 0 \cdot \mathbb{1}_{E_0} + \sum_{k=1}^{p} (c_k - \varepsilon) \mathbb{1}_{E_k}.$$

Рассмотрим $X_n = X[f_n \geqslant \varphi_{\varepsilon}]$. Понятно, что $E_0 \subset X_n$.

Т.к. $f_n \to f$, для любой точки x найдётся n такое, что $f_n(x) > \varphi_{\varepsilon}(x)$, т.е.

$$\forall x \; \exists \, n : x \in X_n.$$

Поэтому

$$\bigcup_{n=1}^{\infty} X_n = X.$$

Т.к. последовательность неубывающая, $X_n \subset X_{n+1} \Rightarrow \mu(X_n) \xrightarrow{n \to \infty} \mu(X)$. Вообще, для любого измеримого A верно, что $\mu(A \cap X_n) \xrightarrow{n \to \infty} \mu(A)$.

$$\int\limits_X f_n \, \mathrm{d}\mu \geqslant \int\limits_{X_n} f_n \, \mathrm{d}\mu \geqslant \int\limits_{X_n} \varphi_\varepsilon \, \mathrm{d}\mu = \sum_{k=1}^p (c_k - \varepsilon) \, \mu(X_n \cap E_k).$$

Устремляя n к бесконечности и ε к нулю, получим

$$L \geqslant \sum_{k=1}^{p} c_k \, \mu(E_k) = \int_{X} \varphi \, \mathrm{d}\mu.$$

Переходя к супремуму, получим

$$L\geqslant\int\limits_Xf\,\mathrm{d}\mu.$$

Значит, на самом деле есть равенство.

Свойство 8.1. Пусть f,g – измеримые и неотрицательные функции. Тогда

$$\int\limits_X (f+g)\,\mathrm{d}\mu = \int\limits_X f\,\mathrm{d}\mu + \int\limits_X g\,\mathrm{d}\mu.$$

Доказательство. Нужно сначала проверить для простых функций, записав их через индикаторы и повозившись с суммами. После этого в общем случае можно выделить возрастающие последовательности простых функций, которые сходятся к f и g и воспользоваться теоремой Леви. \square

Свойство 8.2.

$$\int\limits_X \lambda f \,\mathrm{d}\mu = \lambda \int\limits_X f \,\mathrm{d}\mu.$$

Доказательство. Аналогично.

Билет 9: Свойства интеграла от суммируемых функций.

Свойство 9.1. Пусть f, g – суммируемые, $f \leqslant g$. Тогда

$$\int\limits_{Y} f \, \mathrm{d}\mu \leqslant \int\limits_{Y} g \, \mathrm{d}\mu.$$

Доказательство. Расписать положительную и отрицательную части и свести к свойству для неотрицательных функций; суммируемость нужна, чтобы не вычитать бесконечность из неравенства.

Свойство 9.2. ⁴ Пусть f, g – суммируемые. Тогда

$$\int\limits_X f + g \,\mathrm{d}\mu \leqslant \int\limits_X f \,\mathrm{d}\mu + \int\limits_X g \,\mathrm{d}\mu.$$

 $^{^4}$ В конспекте был \pm , но это ведь следует из умножения на константу? И, кстати, нужна ли тут вообще суммируемость, или это верно, даже когда интеграл расходится?

Доказательство. Аналогично.

Свойство 9.3. Если f – суммируемая, то

$$\int\limits_X \lambda f \,\mathrm{d}\mu = \lambda \int\limits_X f \,\mathrm{d}\mu.$$

Доказательство. Аналогично.

Свойство 9.4. Пусть $f, g \in L, |f| \leqslant g \Rightarrow |\int f| \leqslant \int g$.

Доказательство.

$$|f| \leqslant g \Rightarrow f \leqslant g \land -f \leqslant g \Rightarrow \left(\int f \leqslant \int g \right) \land \left(-\int f \leqslant \int g \right) \Rightarrow \left| \int f \right| \leqslant \int g.$$

Свойство 9.5. $\left| \int f \right| \leqslant \int |f|$.

Доказательство. Очевидно следует из предыдущего.

Свойство 9.6. $f \in L \Leftrightarrow |f| \in L$.

Доказательство. ←:

$$|f| = f_+ + f_- \Rightarrow 0 \leqslant f_{\pm} \leqslant |f| \Rightarrow 0 \leqslant \int f_{\pm} \leqslant \int |f|.$$

 \Rightarrow : Если f суммируема, то суммируемы и $f_{\pm},$ а |f| – их сумма.

Свойство 9.7. $f \in L, \mu X \leqslant \infty, \ |f| \leqslant M \Rightarrow \left| \int f \, \mathrm{d}\mu \right| \leqslant M \mu(X).$

Доказательство.

$$\left| \int f \, \mathrm{d} \mu \right| \leqslant \int |f| \, \mathrm{d} \mu \leqslant \int M \, \mathrm{d} \mu \leqslant M \mu(X).$$

Билет 10: Счётная аддитивность интеграла.

Теорема 10.1. Пусть f — измеримая функция, причём либо $f\geqslant 0$, либо $f\in L$. Тогда для любых измеримых $A,\,A_1,\,\dots$ таких, что $A=\sqcup A_k$ верно, что

$$\int\limits_A f = \sum_{k=1}^\infty \int\limits_{A_k} f.$$

Доказательство.

1. Пусть $f \geqslant 0$. Тогда

$$\int\limits_A f = \int\limits_X f \, \mathbb{1}_A, \int\limits_{A_n} f = \int\limits_X f \, \mathbb{1}_{A_n}.$$

При этом

$$\sum_{n=1}^{\infty}\mathbb{1}_{A_n}=\mathbb{1}_A\Rightarrow f\,\mathbb{1}_A=\sum_{n=1}^{\infty}f\,\mathbb{1}_{A_n}$$

Рассмотрим частичные суммы:

$$S_N = \sum_{n=1}^N f \, \mathbb{1}_{A_n}.$$

Понятно, что они образуют неубывающую неотрицательную последовательность, сходящуюся к $f\,\mathbb{1}_A$, поэтому из теоремы Леви

$$\int f \, \mathbb{1}_A = \lim \int S_n = \lim \int \sum_{n=1}^N f \, \mathbb{1}_{A_n} = \lim \sum_{n=1}^N \int_{A_n} f = \sum_{n=1}^\infty \int_{A_n} f.$$

2. Пусть теперь $f \in L$. Тогда просто расписать через f_{\pm} и воспользоваться первым пунктом.

Билет 11: Абсолютная неперывность интеграла

Теорема 11.1. Пусть $f \in L$. Тогда

Доказательство.

1. Если f ограничена, то найдётся M такое, что $|f|\leqslant M$. Тогда

$$\left|\int\limits_A f
ight| \leqslant M \mu(A) \leqslant arepsilon$$
 при $\delta = rac{arepsilon}{M}.$

2. Пусть теперь $f \in L$ и всё. Тогда $|f| \in L$, и

$$\int\limits_X |f| = \sup\limits_g \int\limits_X g.$$

g – простая, а потому ограниченная.

$$orall arepsilon > 0$$
 \exists простая $g, \ 0 \leqslant g \leqslant |f|$: $\int\limits_X |f| - \int\limits_X g < rac{arepsilon}{2}.$

Используя ограниченность g, находим по любому ε такую δ , что

$$\mu(A) < \delta \Rightarrow \int_A g < \frac{\varepsilon}{2}.$$

Отсюда мгновенно получается искомая оценка:

$$\left|\int\limits_A f\right|\leqslant \int\limits_A |f|=\int\limits_A g+\int\limits_A \left(|f|-g\right)<\varepsilon.$$

Билет 12: Вычисление интеграла от непрерывной функции по мере Лебега.

Теорема 12.1. Пусть $f \in C([a,b])$ и λ – мера Лебега. Тогда f суммируема и

$$\int_{[a,\,b]} f \, \mathrm{d}\lambda = \int_a^b f.$$

Доказательство.

- 1. Сначала докажем, что f измерима по Лебегу. Заметим, что $f^{-1}\big((-\infty,\,a)\big)$ открытое множество, т.е. измеримое множество. А значит и функция f измерима.
- 2. |f| ограничен, т.к. f непрерывная функция на компакте, поэтому

$$\int\limits_{[a,\,b]}|f|\,\mathrm{d}\lambda\leqslant\int\limits_{[a,\,b]}M\,\mathrm{d}\lambda\leqslant M(b-a).$$

Значит, |f| — суммируемая функция, а значит, и f — суммируемая функция.

3. Рассмотрим функцию

$$F(x) = \int_{[a, x]} f \, \mathrm{d}\lambda.$$

Она определена, поскольку все интегралы будут конечны. Хочется доказать, что она дифференцируема.

Запишем, что значит непрерывность функции:

$$\forall \varepsilon > 0 \ \exists \ \delta : |\Delta x| < \delta \Rightarrow \forall t \in (x - \Delta x, \ x + \Delta x) \ f(t) \in (f(x) - \varepsilon, \ f(x) + \varepsilon).$$

Отсюда следует, что

$$\Delta x (f(x) - \varepsilon) \leqslant \int_{(x, x + \Delta x]} f \, d\lambda \leqslant \Delta x (f(x) + \varepsilon).$$

Разделив на Δx и подставив интеграл посередине, получаем, что

$$\forall \varepsilon > 0 \ \exists \ \delta : |\Delta x| < \delta \Rightarrow \left| \frac{F(x + \Delta x) - F(x)}{\Delta x} - f(x) \right| < \varepsilon.$$

Но это значит, что F'(x) = f(x)! Поэтому значение нашего интеграла будет такое же, как по Риману.

Билет 13: Сравнение подходов Римана и Лебега

Есть три разных способа определить интеграл на отрезке:

1. (подход Ньютона-Лейбница) Если f непрерывна и F – её первообразная, то

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a),$$

2. (подход Римана)

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{\max\{\Delta x_i\} \to 0} \sum_{i=0}^{n+1} f(\xi_i) \Delta x_i, \ \xi_i \in [x_i, \, x_{i+1}], \ \Delta x_i = x_{i+1} - x_i.$$

3. Наше текущее определение интеграла по мере.

Пример 13.1. Функция Дирихле $f: X = [0, 1] \to \mathbb{R}$:

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

Интеграл по Риману от неё не существует, потому что при сколь угодно малом ранге разбиения можно выбрать в каждом промежутке все ξ_i рациональными, и тогда значение суммы Римана будет равно длине отрезка, или иррациональными, и тогда значение суммы будет равно нулю. Поэтому предела этих сумм при ранге разбиения, стремящемся к нулю, не существует.

При этом f является простой функцией: она принимает два значения, при этом одно из них — на счётном (а значит, измеримом) множестве точек. Поэтому и его дополнение тоже измеримо — его мера равна 1. Поэтому интеграл Лебега от этой функции будет равен 1.

В суммировании по Риману основной принцип — разбить промежуток интегрирования на малые участки. В суммировании по Лебегу, напротив, на промежутки бьётся область значений, а промежуток интегрирования оказывается разбит на множества произвольной формы. Вид этой конструкции для интеграла Лебега подробно продемонстрирован в билете 6, в доказательстве теоремы о существовании сходящейся последовательности из простых функций.

Билет 14: Сравнение интеграла по мере с несобственным интегралом

Определение 14.1 (Напоминание). Пусть f непрерывна на $[a,\,b)$. Тогда несобственный интеграл по этому промежутку —

$$\int_{a}^{b} f = \lim_{x \to b-0} \int_{a}^{x} f.$$

Теорема 14.1. Пусть непрерывная f либо неотрицательна, либо суммируема на [a, b), тогда

$$\int_{[a,b)} f \, \mathrm{d}\lambda = \int_a^{\to b} f.$$

Доказательство. Рассмотрим

$$F(x) = \int_{[a, x]} f.$$

Понятно, что⁵

$$\lim_{x \to b} F(x) = \int_{a}^{b} f,$$

потому что мы уже доказали, что интегралы по отрезку от непрерывной функции по Лебегу и по Риману совпадают.

Нужно доказать, что

$$\lim_{x \to b} F(x) = \int_{[a,b)} f.$$

Если f суммируема, то это следует из теоремы об абсолютной непрерывности интеграла Лебега (и существование предела оказывается совсем очевидным).

Рассмотрим случай, когда f неотрицательна, но не суммируема. Мы знаем, что интеграл Лебега от неё по [a,b) равен $+\infty$, и нужно лишь доказать, что предел F(x) существует и не может быть конечен. Существует он потому, что F(x) будет функцией возрастающей. Конечным же он быть не может, потому что это противоречило бы теореме Леви, что сейчас и покажем.

Возьмём последовательность точек $\{x_n\}_{n=1}^\infty$ из [a,b), сходящуюся к b. Заметим, что

$$\lim \int\limits_{[a,\,x_n]} f \,\mathrm{d}\lambda = \lim \int\limits_{[a,\,b)} f \,\mathbb{1}_{[a,\,x_n]} \,\mathrm{d}\lambda.$$

Функции $f\,\mathbb{1}_{[a,\,x_n]}$ образуют неубывющую неотрицательную последовательность, сходящуюся к f, поэтому по теореме Леви этот предел будет равен как раз $+\infty$.

 $^{^{5}}$ Если этот предел существует.

Пример 14.1. Условно сходящийся интеграл

$$\int_{0}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x$$

не представим в виде интеграла по мере, потому что для этой функции этот интеграл просто не определён: f_+ и f_- одновременно не являются суммируемыми, что плохо.

Билет 15: Интеграл по дискретной мере и по мере, задаваемой плотностью

Определение 15.1. Пусть X – множество, $\mathcal{A}=2^X$ и есть не более чем счётные множества $\{a_i\}\in X$ и $\{m_i\}\in \mathbb{R}$. Тогда дискретная мера задаётся, как

$$\mu(E) = \sum_{i} m_i \delta_{a_i}(E).$$

Лемма 15.1. Интеграл от любой (измеримой) функции по множеству E нулевой меры равен нулю.

Доказательство. Для начала можно заметить, что для простых функций это точно так. Действительно, пусть

$$f = \sum_{k=1}^{p} a_k \mathbb{1}_{E_k}.$$

Тогда

$$\int\limits_E \sum_{k=1}^p a_k \mathbb{1}_{E_k} = \sum_{k=1}^p a_k \int\limits_Y \underbrace{\mathbb{1}_{E_k \cap E}}_{=0} = 0.$$

Но тогда понятно, что для неотрицательных функций это тоже будет верно, потому что супремум нулей ноль. Ещё более очевидно, что для произвольных измеримых функций ничего не изменится. □

Лемма 15.2. Интеграл от измеримой функции f по множеству a равен $f(a)\mu(\{a\})$.

Доказательство.

$$\int\limits_{\{a\}} f = \int\limits_X f \, \mathbb{1}_{\{a\}} = \int\limits_X f(a) \, \mathbb{1}_{\{a\}} = f(a) \int\limits_X \mathbb{1}_{\{a\}} = f(a) \, \mu(\{a\}).$$

Теорема 15.1. Пусть $f: X \to \mathbb{R}$ либо неотрицательна, либо суммируема относительно дискретной меры. Тогда

$$\int\limits_{Y} f \, \mathrm{d}\mu = \sum\limits_{k} f(a_k) m_k.$$

Доказательство. Во-первых понятно, что относительно дискретной меры все функции измеримы. Во-вторых, если $E = X \setminus \{a_k\}$, можно записать

$$\int\limits_X f \,\mathrm{d}\mu = \int\limits_E f \,\mathrm{d}\mu + \sum\limits_k \int\limits_{\{a_k\}} f \,\mathrm{d}\mu = \sum\limits_k f(a_k) m_k.$$

Неотрицательность или суммируемость использовалась для счётной аддитивности.

Утверждение 15.1. Для дискретной меры суммируемость функции равносильна абсолютной сходимости ряда, записанного в предыдущей теореме.

Доказательство. Суммируемость функции равносильна суммируемости её модуля. Модуль же функция неотрицательная, для него выполняется предыдущая теорема, и интеграл от него равен сумме из модулей. Значит, и их сходимости равносильны. □

Пример 15.1. Если, например, взять $X=\mathbb{N},\ a_k=k$ и $m_k=1$, то мера будет обозначать просто сумму значений функции в точках. Функция из \mathbb{N} в \mathbb{R} – ряд, а суммируемость – абсолютная сходимость.

Определение 15.2. Пусть X – пространство с мерой μ , и есть измеримая неотрицательная функция ρ : $X \to \mathbb{R}$. Тогда можно ввести меру

$$\nu(E) = \int_{E} \rho \, \mathrm{d}\mu.$$

Утверждение 15.2. ν и правда мера.

Доказательство. Первая аксиома очевидна, а вторая следует из теоремы о счётной аддитивности интеграла — ведь наша ρ неотрицательна.

Теорема 15.2. Пусть f измерима на X и либо неотрицательна, либо суммируема относительно ν . Тогда

$$\int_{X} f \, \mathrm{d}\nu = \int_{X} f \rho \, \mathrm{d}\mu.$$

Доказательство.

1. Пусть сначала f – простая:

$$f = \sum_{k=1}^{p} a_k \mathbb{1}_{E_k}.$$

Тогда

$$\int\limits_X f \,\mathrm{d}\nu = \sum_{k=1}^p a_k \nu(E_k) = \sum_{k=1}^p a_k \int\limits_{E_k} \rho \,\mathrm{d}\mu = \sum_{k=1}^p a_k \int\limits_X \mathbb{1}_{E_k} \,\rho \,\mathrm{d}\mu = \int\limits_X f \rho \,\mathrm{d}\mu.$$

- 2. Если f измеримая неотрицательная, можно выделить неубывающую неотрицательную последовательность простых, сходящуюся к ней. От умножения на g она этих свойств не потеряет, поэтому равенство благополучно перенесётся по теореме Леви.
- 3. Ну и для произвольной суммируемой нужно просто написать.

Определение 15.3. ρ называют плотностью меры ν относительно меры μ .

Пример 15.2. Например, мера Коши с

$$\rho = \frac{1}{1 + x^2}.$$