Sums Convergent under the p-adic Norm

Matt McCarthy

June 2016

Problem. Show that

$$\sum_{n=0}^{\infty} 2^n = -1$$

under the 2-adic metric.

1 Background

In order to talk about limits, we first need to understand the concept of a metric.

Definition 1 (Metric Space). Let X be a non-empty set and let $d: X \times X \to \mathbb{R}$ be a function. Then d is a *metric* on X if all of the following hold.

- 1. For all $x, y \in X$, $d(x, y) \ge 0$.
- 2. For all $x, y \in X$, d(x, y) = 0 iff x = y.
- 3. For all $x, y \in X$, d(x, y) = d(y, x).
- 4. For all $x, y, z \in X$, $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality).

If d is a metric on X, then we say (X, d) forms a metric space.

After defining the metric space, we can consider whether or not a sequence in that space converges.

Definition 2 (Convergent Sequence). Let (X,d) be a metric space and let $(a_n)_{n\in\mathbb{N}}\subseteq X$ and let $a\in X$. We say a_n is a converges to a if for all $\varepsilon>0$, there exists an $N\in\mathbb{N}$ such that $d(a_n,a)<\varepsilon$ for all $n\geq N$. If such an a exists, we say a_n is convergent in X.

Furthermore, if a sequence is convergent in a metric space, it is also Cauchy in that space.

Definition 3 (Cauchy Sequence). Let (X, d) be a metric space and let $(a_n)_{n \in \mathbb{N}} \subseteq X$. We say a_n is a Cauchy sequence if for all $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $d(a_n, a_m) < \varepsilon$ for all $n, m \ge N$.

While convergent implies Cauchy, the other way does not always hold. For example in \mathbb{Q} under the Euclidean metric (d(x,y)=|x-y|), the sequence defined by $(1+1/n)^n$ is Cauchy but not convergent. However, if we move to \mathbb{R} , $(1+1/n)^n$ converges to e. Cauchy sequences are sequences that *should* be convergent in our space. If they are not, then we need to move to what is called the completion of the metric space.

Definition 4 (Complete Metric Space). Let (X, d) be a metric space. We say X is *complete* if all Cauchy sequences in X converge in X.

Theorem 1. Let (X,d) be a metric space. Then X has a unique completion, C(X,d), up to isometry.

Now that we have enough background in analysis, lets talk about the p-adic numbers. Before we can define the p-adic's, we need to introduce the p-adic ordinal and p-adic absolute value first.

Definition 5 (p-adic Ordinal). Let p be a prime and let $a \in \mathbb{Z}$ be nonzero. Then the p-adic ordinal of a, denoted ord_p a, is defined as

$$\operatorname{ord}_{p} a = \max\{n \text{ s.t. } p^{n} | a\}.$$

Furthermore, for any nonzero $x = b/c \in \mathbb{Q}$,

$$\operatorname{ord}_{p} x = \operatorname{ord}_{p} a - \operatorname{ord}_{p} b.$$

Using the definition of p-adic ordinal, we now provide the definition of the p-adic absolute value.

Definition 6 (p-adic absolute value). Let p be a prime and $x \in \mathbb{Q}$. Then the p-adic norm of x, denoted $|x|_p$, is defined as

$$|x|_p = \begin{cases} p^{-\operatorname{ord}_p x} & x \neq 0\\ 0 & x = 0. \end{cases}$$

While an absolute value is not a metric in and of itself, it generates a metric. Just like the regular absolute value generates the metric d(x,y) = |x-y|, the p-adic absolute value uses $|x-y|_p$ as a metric. With this, we can define the p-adic numbers.

Definition 7 (p-adic Numbers). The set of p-adic numbers is the completion of the metric space $(\mathbb{Q}, |\cdot|_p)$.

Additionally, \mathbb{Q}_p satisfies a stronger version of the triangle inequality, that is the distance between any two elements is no more than the maximum of the distances to a third element.

Theorem 2 (Strong Triangle Inequality). For all $x, y \in \mathbb{Q}_p$, $|x+y|_p \le \max\{|x|_p, |y|_p\}$.

2 Solution

Problem. Show that

$$\sum_{n=0}^{\infty} 2^n = -1$$

under the 2-adic norm.

To start our solution, we prove that if a sequence in \mathbb{Q}_p converges to 0 under the *p*-adic metric, the infinite sum of all of its terms is convergent in \mathbb{Q}_p .

Theorem 3. Let $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{Q}_p$ such that $a_n\to 0$. Then $\sum_{n=0}^{\infty}a_n$ converges in \mathbb{Q}_p .

Proof. Let $\varepsilon > 0$ be given. Since $a_n \to 0$, there exists an $N \in \mathbb{N}$ such that $|a_n| < \varepsilon$. Force $n \ge m \ge N$. Consider $|\sum_{k=0}^n a_k - \sum_{k=0}^m |p|$.

$$\left| \sum_{k=0}^{n} a_k - \sum_{k=0}^{m} \right|_p a_k = \left| \sum_{k=m+1}^{n} a_k \right|_p$$

Thus, by the strong triangle inequality,

$$\left| \sum_{k=0}^{n} a_k - \sum_{k=0}^{m} a_k \right|_p \le \max_{m+1 \le k \le n} \{|a_k|_p\}.$$

However, we know that for each $k \geq N$, $|a_k|_p < \varepsilon$. Therefore,

$$\left| \sum_{k=0}^{n} a_k - \sum_{k=0}^{m} a_k \right|_{p} < \varepsilon$$

and $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$ is Cauchy in \mathbb{Q}_p . Since \mathbb{Q}_p is defined as a complete metric space, $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$ converges in \mathbb{Q}_p .

Now, in order to show that $\sum_{n=0}^{\infty} 2^n$ converges with respect to the *p*-adic metric, we show that $2^n \to 0$ with respect to the *p*-adic metric.

Lemma 4. Under the 2-adic metric, $2^n \to 0$.

Proof. Let $\varepsilon > 0$ be given. Without loss of generality, assume $\varepsilon < 1$. Thus, $\lg \varepsilon < 0$. Take $N > -\lg \varepsilon$ and let $n \ge N$. Then

$$|2^n|_2 = 2^{-n} \le 2^{-N} < 2^{\lg \varepsilon} = \varepsilon.$$

Therefore, $2^n \to 0$ under $|\cdot|_2$.

From here, we do some algebraic manipulation to find the limit point.

Proposition 5. In \mathbb{Q}_2 ,

$$\sum_{n=0}^{\infty} 2^n = -1.$$

Proof. Since $2^n \to 0$, $\sum_{n=0}^{\infty} 2^n$ converges to some $S \in \mathbb{Q}_p$. Consider S.

$$S = \sum_{n=0}^{\infty} 2^n = 1 + \sum_{n=1}^{\infty} 2^n = 1 + 2\sum_{n=1}^{\infty} 2^{n-1} = 1 + 2\sum_{n=0}^{\infty} 2^n = 1 + 2S$$

Solving for S yields,

$$S = -1$$
.

References

[1] Neal Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions. Springer. ISBN: 9781461270140.