1. Slika prikazuje usmjerivač u jednofaznom mosnom spoju opterećen jako induktivnim trošilom (RL), takvim da je $\omega \cdot L >> R$ (struja trošila je nevalovita). Sve su komponente sklopa idealne. Izračunajte struju trošila I_d za kut upravljanja tiristora $\alpha = 40^\circ$ i efektivnu vrijednost napona mreže $U_S = 230$ V, frekvencije $f_S = 50$ Hz. Skicirajte valne oblike napona i struje izmjeničnog izvora (u_S , i_S) i napona i struje trošila (u_d , i_d). Otpor R iznosi R = 5 Ω .

Rješenja upišite u za to predviđen prostor.

2. Jednofazni mosni spoj na slici radi kao izmjenjivač s <u>pravokutnom modulacijom širine impulsa</u>, opterećen omskoinduktivnim trošilom ($\omega \cdot L >> R$). Izračunajte efektivnu vrijednost osnovnog harmonika $I_{\rm ef,\ 1}$ struje trošila i ukupnu efektivnu vrijednost struje trošila, do uključivo petog harmonika $I_{\rm ef.}$ Nacrtajte valne oblike napona i struje trošila ($u_{\rm d}$, $i_{\rm d}$). U valnom obliku struje trošila označite parove ventila koji vode.

$$U_{\rm B} = 150 {\rm \ V},$$

 $R = 5 \Omega$,

L = 50 mH,

f = 5000 Hz.

3. Nacrtajte shemu PWM pretvarača u jednofaznom mosnom spoju s omsko-induktivnim (R-L) trošilom u za to predviđen prostor. Sklopke pretvarača crtajte kao kombinaciju poluvodičkih ventila, ne kao mehaničke sklopke. Na sklopci 1 označite referentni smjer struje i referentni polaritet napona. Frekvencija sklopki je f = 2000 Hz, a tranzistor T_1 vodi $t_{T1} = 3 \cdot 10^{-4}$ s. Za zadani faktor vođenja izračunajte srednju vrijednost struje trošila za iznos otpora $R = 25~\Omega$ te iznos napona istosmjernog iznosa $U_B = 100~V$ za slučaj bipolarne i unipolarne modulacije širine impulsa. Pretpostavite da je iznos induktiviteta dovoljno velik da osigurava nevalovitu struju trošila. U za to predviđen prostor nacrtajte valne oblike struje i napona trošila, <u>uz označene referentne smjerove</u>.

$u_d ightharpoonup $			$I_{ m d,\; bip} =$
i_d			$I_{ m d,unip} =$
		t	
$\begin{bmatrix} u_d \\ i_d \end{bmatrix}$			
·u			
			
		t	