Psychological Science (2020)

Predicting Real-Life Self-Control From Brain Activity Encoding the Value of Anticipated Future Outcomes

Klaus-Martin Krönke¹, Max Wolff^{1,2}, Holger Mohr¹, Anja Kräplin¹, Michael N. Smolka^{2,3}, Gerhard Bühringer^{1,4}, and Thomas Goschke^{1,3}

20.07.27 **Jihyun Hur**

The Psychology of Emotional, Behavioral, and Motivational Self-Regulation

Self-Control Theories

Dr. Roy Baumeister

https://www.cobizmag.com/5-methods-to-enh ance-your-brain-for-greater-productivity/

Dr. Wilhelm Hofmann

Dr. Angela Duckworth

(Duckworth et al., 2016)

"Self-Control as a Value-Based Choice" (Berkman et al., 2017)

Dr. Elliot Berkman

"There is nothing unique about self-control. Instead, decisions that we label self-control are merely a fuzzy subset of all value-based decisions..."

Value-Based Decision-Making

 $SV = \sum_{i} w_{i} Attribute_{i}.$ (SV: subjective value)

Background

- **1** *Self-control theories*
 - Strength model (Baumeister et al., 2007)
 - Dual-system Model (Hofmann et al., 2009)
 - Process Model (Duckworth et al., 2016)
 - Choice Model (Berkman et al., 2017; Krönke et al., 2020)
- **2** Ecological validity of lab tasks
 - Integration of behavioral measures and neural activation
 - Brain-as-predictor

Theory/Model (Key Citation)

Cybernetic Model (Carver & Scheier, 1998)

Goal Systems Theory (Kruglanski et al., 2002)

Resource Model of Self-Control

Theories of

self-regulation

(Inzlicht et al.,

in press)

Baumeister et al., 2018)

Dual Process Models

(Hofmann et al., 2009)

Process Model of Self-Control

(Duckworth et al., 2016)

Choice Models
(Berkman et al., 2017)

Trait Models of Impulse Control

(Roberts et al., 2014; Whiteside & Lynam, 2001)

Role of ventromedial prefrontal cortex (vmPFC)

3

vmPFC and Hypotheses

(Bartra et al. 2013)

A Monetary outcome

B Primary outcomes

- Encodes the subjective value of...
 - Primary (food) reward
 - Monetary reward
 - Social reinforcers
- Q1: Would it also encode the subjective value of daily behaviors?
- Q2: How would it be related to real-life self-control failures?

Authors

Dr. Klaus-Martin Krönke

- Postdoc at Technische Universität (TU) Dresden
- Self-control, fMRI

Dr. Max Wolff

- Postdoc at TU Dresden
- Self-control, stress, addiction

Dr. Thomas Goschke

- Head of the Department of Psychology at TU Dresden
- Cognitive control, affect

Method I: fMRI

Participants

- 194 young adults (225 in total)
- Exclusion:
- Neurological conditions
- Psychiatric disorders
- Eligibility for MRI

fMRI Session

Value-based Decision-Making Task

40 items X 3 times = 120 Trials (~19 min)

Strong Yes (1), Yes (2), No (3), Strong No (4)

8-mm Sphere (x = 3, y = 35, z = -11)

Post-fMRI

Questionnaire

"Rate the consequences of these activities (e.g. drink alcohol) from very positive to very negative."

long-term)

Method II: Self-Reported Measures

Daily reports

- Desire
- Desire Strength
- Conflict
- Conflict Strength
- Enactment

Self-Control Failure = Desire + Conflict + Enactment

Trait report

Brief Self-Control Scale (BSCS)

- 13 items
- High scores = high levels of trait self-control

Q1: vmPFC & Value of Daily Activities

To answer this question...

Region of Interest: vmPFC

8-mm Sphere (x = 3, y = 35, z = -11)

General Linear Model

https://www.brainvoyager.com/bv/doc/UsersGuide/StatisticalAnalysis/TheGeneralLinear Model.html

Regressors

- GLM 1: decision trials + decision value
- GLM 2: decision trials + long-term consequences, short-term consequences, interaction

Q1: vmPFC & Value of Daily Activities

percentage signal change =
$$\frac{\beta(\text{task}) \times \max(\text{HRF}) \times 100}{\beta(\text{constant})}$$
,

• To calculate the percent change of the signal in the peak voxel* compared to the baseline (or mean activation in the ROI) during the event

Result

- vmPFC encoded the value of daily activities.
- Even for **imagined** daily behaviors.

Voxel*: unit of brain region

Q2: vmPFC & Real-life Self-Control Failures

Hierarchical Linear Model

Desire and conflict strength data (level 1) were nested within participants (level 2).

Models \rightarrow to predict the frequency of self-control failures

- 1. HLM1: vmPFC by anticipated long-term and short-term consequences
- 2. HLM2: HLM1 + BSCS scores

Results

- Higher desire strength and lower conflict strength were associated with self-control failures.
- Increased percentage signal change in vmPFC modulated by the anticipated long-term consequences was associated with less self-control failures (but not for short-term).
- This result remained **even after BSCS scores were included** in the model.

Discussion

- Lab tasks and neuroimaging data can elucidate the cognitive and neural mechanisms of real-life self-control behaviors.
- vmPFC reflects the subjective value of daily activities.
- Neural signal in vmPFC modulated by anticipated long-term consequences is significantly associated with individual differences in the probability of committing self-control failures
 (→ dynamic integration process).
 - By utilizing neural data along with self-reported measures, we can better predict real-life outcomes and overcome the gap between lab measures and real-life behaviors.

Literature

- Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. *NeuroImage*, 76, 412–427. doi:10.1016/j.neuroim age.2013.02.063
- Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The strength model of self-control. *Current Directions in Psychological Science, 16,* 351–355. doi:10.1111/j.1467-8721.2007.00534.x
- Berkman, E. T., Hutcherson, C. A., Livingston, J. L., Kahn, L. E., & Inzlicht, M. (2017). Self-control as value-based choice. *Current Directions in Psychological Science*, *26*, 422–428. doi:10.1177/0963721417704394
- Duckworth, A. L., White, R. E., Matteucci, A. J., Shearer, A., & Gross, J. J. (2016). A stitch in time: Strategic self- control in high school and college students. *Journal of Educational Psychology*, *108*(3), 329–341.
- Hofmann, W., Friese, M., & Strack, F. (2009). Impulse and self-control from a dual-systems perspective. *Perspectives on Psychological Science*, *4*, 162–176. doi:10.1111/j.1745- 6924.2009.01116.x
- Inzlicht, M., Werner, K. M., Briskin, J. L., & Roberts, B. W. (in-press). Integrating models of self-regulation. *Annual Review of Psychology*.