

Étude de fonction

L'étude des variations d'une fonction f peut être formulée de plusieurs manières mais dans tous les cas, il faudra :

- 1. justifier que la fonction f est dérivable. Soit parce qu'elle est polynomiale, somme ou produits de fonctions dérivables (les fonctions usuelles vues dans le cours) ou encore quotient de fonctions dérivables tant que le dénominateur ne s'annule pas.
- **2.** calculer la dérivée de f et en déterminer le signe.

Si la question demande d'indiquer les variations ou la monotonie, il n'est pas nécessaire (en général) de faire le tableau de variations avec les limites.

Si la question parle d'un tableau de variations à construire, il faut alors y inclure les limites sauf dans le cas où le sujet mentionne explicitement de ne pas le faire.

Signe d'un polynôme du premier ou second degré

1. Pour un polynôme ax + b avec $a \ne 0$:

X	$-\infty$		$-\frac{b}{a}$		+∞
ax + b		signe de <i>a</i>	0	signe de $-a$	

- **2.** Pour un polynôme $ax^2 + bx + c$ avec $a \ne 0$:
 - \implies Si $\Delta = b^2 4ac > 0$, il y a deux racines réelles distinctes $x_1 < x_2$:

x	$-\infty$		x_1		x_2		+∞
ax^2+bx+c		signe de <i>a</i>	0	signe de <i>-a</i>	0	signe de <i>a</i>	

 \implies Si $\Delta = b^2 - 4ac = 0$, il y a une racine réelle double x_0 :

x	$-\infty$		x_0		+∞
ax^2+bx+c		signe de <i>a</i>	0	signe de <i>a</i>	

 \implies Si $\Delta = b^2 - 4ac < 0$, il n'y a pas de racine réelle :

x	-∞	+∞
ax^2+bx+c	signe de <i>a</i>	

Limites usuelles

$$\lim_{x \to +\infty} x^2 = +\infty \quad \lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} x^3 = +\infty \quad \lim_{x \to -\infty} x^3 = -\infty$$

$$\lim_{x \to +\infty} x^n = +\infty \quad \lim_{x \to -\infty} x^n = +\infty \text{ pour n pair}$$

$$\lim_{x \to +\infty} x^n = +\infty \quad \lim_{x \to -\infty} x^n = -\infty \text{ pour n impair}$$

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \quad \lim_{x \to -\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} e^x = +\infty \quad \lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

$$\lim_{x \to +\infty} \ln(x) = -\infty$$

Formes indéterminées

Les formes indéterminées sont les suivantes :

$$\infty - \infty$$
 $0 \times \infty$ $\frac{\infty}{\infty}$ $\frac{0}{0}$

Croissances comparées

Pour $n \in \mathbb{N}$, $n \ge 1$:

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

$$\lim_{x \to -\infty} x^n e^x = 0$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$

$$\lim_{x \to 0^+} x^n \ln(x) = 0$$

Pour comparer des fonctions exponentielles ensembles ou des fonctions logarithmes ensembles, on factorisera par la plus grande puissance de la fonction.

	D	érivées u	suelles	
f(x)	f'(x)	D_f	$D_{f'}$	Conditions
k	0	\mathbb{R}	\mathbb{R}	$k\in\mathbb{R}$
ax + b	a	\mathbb{R}	\mathbb{R}	$a,b\in\mathbb{R}$
x^2	2 <i>x</i>	\mathbb{R}	\mathbb{R}	
x^3	$3x^2$	\mathbb{R}	R	
x^n	nx^{n-1}	\mathbb{R}	\mathbb{R}	$n \in \mathbb{N}$
$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	ℝ*	\mathbb{R}^*	$n \in \mathbb{N}^*$
$\frac{1}{x}$	$-\frac{1}{x^2}$		ℝ*	
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	[0;+∞[]0;+∞[
ln(x)	$\frac{1}{x}$	\mathbb{R}^*	\mathbb{R}^*	
e^x	e^x	\mathbb{R}	\mathbb{R}	

\bigcirc	Opé	erations sur les	dérivées
	f	f'	Conditions
	u+v	u' + v'	
	ku	ku'	k réel
	u-v	u'-v'	
	$u \times v$	$u' \times v + u \times v'$	
	$\frac{1}{u}$	$-\frac{u'}{u2}$	<i>u</i> ≠ 0
	$\frac{u}{v}$	$\frac{u'v-uv'}{v^2}$	<i>υ</i> ≠ 0
	e ^u	u'e ^u	

$\stackrel{\wedge}{\hookrightarrow}$		Dérivée	s de composées		
	Fonction f	définie sur	Dérivée f^\prime	définie sur	
	\sqrt{u}	$u(x) \ge 0$	$\frac{u'}{2\sqrt{u}}$	u(x) > 0	
	u^n	\mathbb{R} si $n \in \mathbb{N}^*$	$nu'(x)u^{n-1}$	R	
	$u^{-n} = \frac{1}{u^n}$	$u(x) \neq 0 \text{ si } n \in \mathbb{N}^*$	$-nu'(x)u(x)^{-n-1} = \frac{-nu'(x)}{u^{n+1}(x)}$	$u(x) \neq 0$	
	$f(x) = e^u$	R	$f'(x) = u'e^u$	R	

\Diamond

Convexité et concavité

- **1.** Soit f une fonction deux fois dérivable sur un intervalle I:
 - f est convexe si et seulement $f''(x) \ge 0 \ \forall x \in I$.
 - $\implies f$ est concave si et seulement $f''(x) \le 0 \ \forall x \in I$.
- **2.** Soit *f* une fonction dérivable sur *I*.

L'expression de la tangente en $x = a \in I$ à la courbe représentant f est :

$$y = f'(a)(x - a) + f(a)$$

 \implies si f est convexe sur I:

$$\forall x \in I, \ f(x) \ge f'(a)(x-a) + f(a)$$

 \implies si f est concave sur I:

$$\forall x \in I, \ f(x) \le f'(a)(x-a) + f(a)$$

Théorème des valeurs intermédiaires

- 1. Soit f une fonction continue sur [a; b] avec f(a) et f(b) de signes différents, le TVI nous permet de dire qu'il existe au moins une valeur $\alpha \in]a; b[$ telle que $f(\alpha) = 0$.
- **2.** Soit f une fonction continue et monotone sur [a;b] avec f(a) et f(b) de signes différents, le TVI nous permet de dire qu'il existe une unique valeur $\alpha \in]a;b[$ telle que $f(\alpha)=0$.
- 3. Les deux situations précédentes fonctionnent également si a ou b sont $-\infty$ ou $+\infty$, il suffit alors que les limites aux bornes soient de signes différents.

Equations particulières

1. Pour $b \in \mathbb{R}$:

$$ln(x) = b \Leftrightarrow x = e^b$$

2. Pour b > 0:

$$e^x = b \Leftrightarrow x = \ln(b)$$

3. Equation produit nul:

$$a(x) \times b(x) = 0 \Leftrightarrow a(x) = 0 \text{ ou } b(x) = 0$$

4. Equation inverse, pour $a, b \neq 0$:

$$\frac{1}{x} = \frac{a}{b} \Leftrightarrow x = \frac{b}{a}$$

5