UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET

Ana Đorđević

AUTOMATSKO GENERISANJE TEST PRIMERA UZ POMOĆ STATIČKE ANALIZE I REŠAVAČA Z3

master rad

Mentor:	
dr Milena VUJOŠEVIĆ JANIČIĆ, docent Univerzitet u Beogradu, Matematički fakultet	
Članovi komisije:	
dr Filip Marić, vanredni profesor Univerzitet u Beogradu, Matematički fakultet	
dr Milan BANKOVIĆ, docent Univerzitet u Beogradu, Matematički fakultet	
Datum odbrane:	

Naslov master rada: Automatsko generisanje test primera uz pomoć statičke analize i rešavača Z3

Rezime:

Ključne reči: verifikacija softvera, testiranje softvera, SMT rešavači, Z3 rešavač, automatsko pronalaženje grešaka u programu, računarstvo

Sadržaj

1	Uvo	od	1
2	Reš	avač Z3	2
	2.1	Osnove rešavača	3
	2.2	Teorije	4
	2.3	Tipovi podataka	15
	2.4	C++ interfejs rešavača	17
3	Zak	ljučak	24
Li	terat	ura	25

Glava 1

Uvod

Glava 2

Rešavač Z3

Sistemi za analizu i verifikaciju softvera su veoma kompleksni. Njihovu osnovu predstavlja komponenta koja koristi logičke formule za opisivanja stanja i transformacija između stanja sistema. Opisivanje stanja sistema često se svodi na proveravanje zadovoljivosti formula logike prvog reda. Proveravanje zadovoljivosti formula vrši se procedurama odlučivanja u odnosu na definisanu teoriju. Formalno, zadovoljivost u odnosu na teoriju (eng. Satisfiability Modulo Theory, skraćeno SMT) problem je odlučivanja zadovoljivosti u odnosu na osnovnu teoriju T opisanu u klasičnoj logici prvog reda sa jednakošću [1]. Alati koji se koriste za rešavanje ovog problema nazivaju se SMT rešavači.

Jedan od najpoznatijih SMT rešavača je rešavač Z3 kompanije Microsoft koji se koristi za proveru zadovoljivosti logičkih formula u velikom broju teorija [7]. Z3 se najčešče koristi kao podrška drugim alatima, pre svega alatima za analizu i verifikaciju softvera. Pripada grupi SMT rešavača sa integrisanim procedurama odlučivanja.

U ovoj glavi biće opisane osnove rešavača Z3 u delu 2.1. U delu 2.2 biće opisane najvažnije teorije uključujući teoriju neinterpretiranih funkcija, teoriju linearne aritmetike, teoriju bitvektora i teoriju nizova. U delu 2.3 opisani su podržani tipovi podataka. Rešavač Z3 nudi interfejse za direktnu komunikaciju sa programskim jezicima C, C++ i Python. U delu 2.4 opisan je interfejs rešavača Z3 za komunikaciju sa programskim jezikom C++. Više materijala o podržanim interfejsima za programske jezike C, C++, Java i Python može se pronaći u literaturi [8].

2.1 Osnove rešavača

Problem zadovoljivosti (eng. Satisfiability problem, skraćeno SAT) problem je odlučivanja da li za iskaznu formulu u konjunktivnoj normalnoj formi postoji valuacija u kojoj su sve njene klauze tačne [2]. Rešavači koji se koriste za rešavanje ovog problema nazivaju se SAT rešavači. Rešavač Z3 integriše SAT rešavač zasnovan na savremenoj DPLL proceduri i veliki broj teorija. Implementiran je u programskom jeziku C++. Šematski prikaz arhitekture rešavača [7] prikazan je na slici 2.1.

Slika 2.1: Arhitektura rešavača Z3

Formule prosleđene rešavaču se najpre procesiraju upotrebom simplifikacije. Simplifikacija primenjuje algebarska pravila redukcije kao što je $p \land true \vdash p$. Pored toga, ovim procesom se vrše odgovarajuće zamene kao što je $x=4 \land q(x) \vdash x=4 \land q(4)$. Nakon simplifikacije, kompajler formira apstraktno sintaksno stablo formula čiji su čvorovi simplifikovane formule (klauze). Zatim se jezgru kongruentnog zatvorenja (eng. *Congruence closure core*) prosleđuje apstraktno sintaksno stablo.

Jezgro kongruentnog zatvorenja komunicira sa SAT rešavačem koji određuje istinitosnu vrednost klauza.

Ulazni format rešavača Z3 je definisan SMT-LIB 2.0 standardom [4]. Standard definiše jezik logičkih formula čija se zadovoljivost proverava u odnosu na neku teoriju. Cilj standarda je pojednostavljivanje jezika logičkih formula povećavanjem njihove izražajnosti i fleksibilnosti kao i obezbeđivanje zajedničkog jezika za sve SMT rešavače.

Interno, Z3 održava stek korisnički definisanih formula i deklaracija. Formule i deklaracije jednim imenom nazivamo tvrđenjima. Komandom push kreira se novi opseg i čuva se trenutna veličina steka. Komandom pop uklanjaju se sva tvrđenja i deklaracije zadate posle push-a sa kojim se komanda uparuje. Komandom assert dodaje se formula na interni stek. Skup formula na steku je zadovoljiv ako postoji interpretacija u kojoj sve formule imaju istinitosnu vrednost tačno. Ova provera se vrši komandom check-sat. U slučaju zadovoljivosti vraća se sat, u slučaju nezadovoljivosti vraća se unsat a kada rešavač ne može da proceni da li je formula zadovoljiva ili ne vraća se unknown. Komandom get-model vraća se interpretacija u kojoj su sve formule na steku tačne.

Glavni gradivni blokovi formula su konstante, funkcije i relacije. Konstante su specijalan slučaj funkcija bez parametara. Relacije su funkcije koje vraćaju povratnu vrednost tipa Boolean. Funkcije mogu uzimati argumente tipa Boolean pa se na taj način relacije mogu koristiti kao argumenti funkcija.

Formula F je validna ako je vrednost valuacije true za bilo koje interpretacije funkcija i konstantnih simbola. Formula F je zadovoljiva ukoliko postoji bar jedna valuacija u kojoj je formula tačna. Da bismo odredili da li je formula F validna, rešavač Z3 proverava da li je formula $\neg F$ zadovoljiva. Ukoliko je negacija formule nezadovoljiva, onda je polazna formula validna.

2.2 Teorije

Teorije rešavača Z3 su opisane u okviru višesortne logike prvog reda sa jednakošću. Definisanjem specifične teorije, uvode se restrikcije pri definisanju formula kao i podržanih relacija i operatora koje se nad njima primenjuju. Na taj način, specijalizovane metode u odgovarajućoj teoriji mogu biti efikasnije implementirane u poređenju sa opštim slučajem. U nastavku će biti opisane teorija neinterpretiranih funkcija, teorija linearne aritmetike, teorija nelinearne aritmetike, teorija bitvektora i teorija nizova.

Teorija neinterpretiranih funkcija

Teorije obično određuju interpretaciju funkcijskih simbola. Teorija koja ne zadaje nikakva ograničenja za funkcijske simbole naziva se teorija neinterpretiranih funkcija (eng. Theory of Equality with Uninterpreted Functions, skraćeno EUF).

Kod rešavača Z3, funkcije i konstantni simboli su neinterpretirani. Ovo je kontrast u odnosu na funkcije odgovarajućih teorija. Funkcija + ima standardnu interpretaciju u teoriji aritmetike. Neinterpretirane funkcije i konstante su maksimalno fleksibilne i dozvoljavaju bilo koju interpretaciju koja je u skladu sa ograničenjima. Za razliku od programskih jezika, funkcije logike prvog reda su totalne, tj. definisane su za sve vrednosti ulaznih parametara. Na primer, deljenje 0 je dozvoljeno, ali nije specifikovano šta ono predstavlja. Teorija neinterpretiranih funkcija je odlučiva i postoji procedura odlučivanja polinomijalne vremenske složenosti. Jedna od procedura odlučivanja za ovu teoriju zasniva se na primeni algoritma Nelson-Open (eng. Nelson-Open algorithm). O ovom algoritmu može se više naći u literaturi [6].

Komandom declare-const deklariše se konstanta odgovarajuće sorte (odgovara tipu promenljive u programskim jezicima). Sorta može biti parametrizovana i u tom slučaju su specifikovana imena njenih parametara. Specifikacija sorte vrši se naredbom (define-sort [symbol] ([symbol]+)[sort]). Komandom declare-fun deklariše se funkcija. U narednom primeru koristimo pomenutu činjenicu da se validnost formule pokazuje ispitivanjem zadovoljivosti negirane formule.

Primer 1 Dokazivanje de Morganovog zakona dualnosti ispitivanjem validnosti formule: $\neg(a \land b) \Leftrightarrow (\neg a \lor \neg b)$ tako što se kao ograničenje dodaje negacija polazne formule. Z3 pronalazi da je negacija formule nezadovoljiva, pa je polazna formula tačna u svim interpretacijama.

Formula prosleđena rešavaču: (declare-const a Bool) (declare-const b Bool) (define-fun demorgan () Bool (= (and a b) (not (or (not a) (not b))))) (assert (not demorgan)) (check-sat) (get-model)

Teorija linearne aritmetike

Rešavač Z3 sadrži procedure odlučivanja za linearnu aritmetiku nad celobrojnim i realnim brojevima. Dodatni materijali o procedurama odlučivanja linearne aritmetike dostupni su u literaturi [5].

U okviru celobrojne linearne aritmetike, podržani funkcijski simboli su +, - i * pri čemu je kod množenja drugi operand konstanta. Nad funkcijskim simbolima, čiji su specijalni slučajevi konstante mogu se primenjivati relacijski operatori <, <=, > i >=.

U okviru realne linearne aritmetike, podržani funkcijski simboli su +, - i * pri čemu je kod operacije množenja drugi operand konstanta. Pored ovih podržane su operacije div i mod, uz uslov da je drugi operand konstanta različita od 0. Nad funkcijskim simbolima, čiji su specijalni slučajevi konstante mogu se primenjivati relacijski operatori <, <=, > i >=.

Rešavač Z3 ima podršku za celobrojne i realne konstante. Prethodno pomenutom komandom declare-const deklarišu se celobrojne i realne konstante. Rešavač ne vrši automatsku konverziju između celobrojnih i realnih konstanti. Ukoliko je potrebno izvršiti ovakvu konverziju koristi se funkcija to-real za konvertovanje celobrojnih u realne vrednosti. Realne konstante treba da budu zapisane sa decimalnom tačkom.

Primer 2 Naredni kod demonstrira upotrebu konstanti i funkcija. U primeru se deklariše konstanta a celobrojnog tipa i funkcija f sa parametrima tipa Int i Bool i povratnom vrednošću tipa Int. Zatim se dodaju odgovarajuća ograničenja za konstantu a i funkciju f korišćenjem operatora poređenja. Rešavač Z3 pronalazi da je

ovo tvrđenje zadovoljivo i daje prikazani model.

Primer 3 Naredni kod ilustruje pronalaženje interpretacija celobrojnih i realnih konstanti. Interpretacija se svodi na pridruživanje brojeva svakoj konstanti. Ograničenja sadrže pomenute aritmetičke operatore. Rešavač vraća zadovoljivost tvrđenja i dobijeni model prikazujemo u nastavku.

```
Izlaz:
Formula prosleđena rešavaču:
(declare-const a Int)
                                                     sat
(declare-const b Int)
                                                      (model
                                                         (define-fun \ b \ () \ Int \ 0)
(declare-const c Int)
                                                         (define-fun a () Int 1)
(declare-const d Real)
                                                         (define-fun\ e\ ()\ Real\ 4.0)
(declare-const e Real)
(assert (> e (+ (to real (+ a b)) 2.0)))
                                                         (define-fun \ c \ () \ Int \ 0)
                                                         (define-fun d () Real (/ 1.0
(assert (= d (+ (to real c) 0.5)))
(check-sat)
                                                         (2.0)
(qet-model)
```

Takođe, postoji uslovni operator (if-then-else operator). Na primer, izraz (ite (and (= x!1 11) (= x!2 false)) 21 0) ima vrednost 21 kada je promenljiva x!1 jednaka 11, a promenljiva x!2 ima vrednost False. U suprotnom, vraća se 0.

U slučaju deljenja, može se koristiti ite (if-then-else) operator i na taj način se može dodeliti interpretacija u slučaju deljenja nulom.

Mogu se konstruisati novi operatori, korišćenjem define-fun konstruktora. Ovo je zapravo makro, pa će rešavač vršiti odgovarajuće zamene.

Primer 4 Kod definiše operator deljenja tako da rezultat bude specifikovan i kada je delilac 0. Uvode se dve konstante realnog tipa i primenjuje se definisani operator. Z3 rešavač pronalazi nezadovoljivost tvrđenja s obzirom da operator mydiv vraća 0

pa relacija poređenja ne može biti tačna.

```
Formula prosleđena rešavaču:

(define-fun \ mydiv \ ((x \ Real) \ (y \ Real)) \ Real

(if \ (not \ (= y \ 0.0)) \ (/ \ x \ y) \ 0.0))

(declare-const \ a \ Real)

(declare-const \ b \ Real)

(assert \ (>= (mydiv \ a \ b) \ 1.0))

(assert \ (= b \ 0.0))

(check-sat)
```

Teorija nelinearne aritmetike

Formula predstavlja formulu nelinearne aritmetike ako je oblika (* t s), pri čemu t i s nisu linearnog oblika. Nelinearna celobrojna aritmetika je neodlučiva, tj. ne postoji procedura koja za proizvoljan ulaz vraća odgovor sat ili unsat. U najvećem broju slučajeva, Z3 vraća kao rezultat unknown. Za nelinearne probleme, rešavač Z3 koristi posebne metode odlučivanja zasnovane na Grebnerovim bazama.

Primer 5 Primer ilustruje rešavanje nelinearnih problema sa celobrojnim i realnim konstantama. Kada su prisutna samo nelinearna ograničenja nad realnim konstantama, Z3 koristi posebne metode odlučivanja.

```
Formula prosleđena rešavaču:
                                             Izlaz:
(declare-const a Int)
                                             sat
(assert (> (* a a) 3))
                                             (model
(check-sat)
                                                (define-fun\ a\ ()\ Int\ (-\ 8))
(qet-model)
(declare-const b Real)
(declare-const c Real)
                                             unsat
(assert (= (+ (* b b b) (* b c)) 3.0))
(check-sat)
                                             sat
(declare-const b Real)
                                             (model
                                                (define-fun b () Real (/ 1.0 8.0))
(declare-const c Real)
(assert (= (+ (*b b b) (*b c)) 3.0))
                                                (define-fun c () Real (/ 15.0 64.0))
(check-sat)
(get-model)
```

Teorija bitvektora

Rešavač Z3 podržava vektore proizvoljne dužine. (_ BitVec n) je sorta bitvektora čija je dužina n. Bitvektor literali se mogu definisati koristeći binarnu, decimalnu ili heksadecimalnu notaciju. U binarnom i heksadecimalnom slučaju, veličina bitvektora je određena brojem karaktera. Na primer, literal #b010 u binarnom formatu je bitvektor dužine 3. Kako konstanta a u heksadecimalnom formatu odgovara vrednosti 10, literal #x0a je bitvektor veličine 10. Veličina bitvektora mora biti specifikovana u decimalnom formatu. Na primer, reprezentacija (_ bv10 32) je bitvektor dužine 32 sa vrednošću 10. Podrazumevano, Z3 predstavlja bitvektore u heksadecimalnom formatu ukoliko je dužina bitvektora umnožak broja 4 a u suprotnom u binarnom formatu. Komanda (set-option :pp.bv-literals false) se može koristiti za predstavljanje literala bitvektora u decimalnom formatu. Više materijala o procedurama odlučivanja za teoriju bitvektora može se naći u literaturi [3].

Primer 6 Navodimo različite načine predstavljanja bitvektora. Ukoliko zapis počinje sa #b, bitvektor se zapisuje u binarnom formatu. Ukoliko zapis počinje sa #x, bitvektor se zapisuje u heksadecimalnom formatu. U oba slučaja, nakon specifikacije formata, zapisuje se dužina vektora. Drugi način zapisa počinje skraćenicom bv, navođenjem vrednosti i na kraju dužine. Komandom (display t) štampa se izraz t.

Formula prosleđena rešavaču: Izlaz: (display #b0100)#x4(display (_ bv20 8)) #x14 $(display\ (_\ bv20\ 7))$ #b0010100 (display #x0a)#x0a(set-option :pp.bv-literals false) (bv44)(display #b0100) (bv20 8) $(display (_ bv20 8))$ (_ bv20 7) (display (_ bv20 7)) (_ bv10 8) (display #x0a)

Pri korišćenju operatora nad bitvektorima, mora se eksplicitno navesti tip operatora. Zapravo, za svaki operator podržane su dve varijante za rad sa označenenim i neoznačenim operandima. Ovo je kontrast u odnosu na programske jezike u kojima kompajler na osnovu argumenata implicitno određuje tip operacije (označena

ili neoznačena varijanta).

U skladu sa prethodno navedenom činjenicom, teorija bitvektora ima na raspolaganju različite verzije aritmetičkih operacija za označene i neoznačene operande. Za rad sa bitvektorima od aritmetičkih operacija definisane su operacije sabiranja, oduzimanja, određivanje negacije (zapisivanja broja u komplementu invertovanjem svih bitova polaznog broja), množenja, izračunavanja modula pri deljenju, šiftovanje u levo kao i označeno i neoznačeno šiftovanje u desno. Podržane su sledeće logičke operacije: disjunkcija, konjunkcija, unarna negacija, negacija konjunkcije i negacija disjunkcije. Definisane su različite relacije nad bitvektorima kao što su <=, <, >=, >=, >.

Primer 7 Ovaj primer ilustruje aritmetičke operacije nad bitvektorima. Podržane aritmetičke operacije su sabiranje (bvadd), oduzimanje (bvsub), unarna negacija (bvneg), množenje (bvmul), računanje modula (bvmod), šiftovanje ulevo (bvshl), neoznačeno (logičko) šiftovanje udesno (bvlshr) i označeno (aritmetičko) šiftovanje udesno (bvashr). Od logičkih operacija postoji podrška za disjunkciju (bvor), konjunkciju (bvand), ekskluzivnu disjunkciju (bvxor), negaciju disjunkcije (bvnor), negaciju konjunkcije (bvnand) i negaciju ekskluzivne disjunkcije (bvnxor). Komandom (simplify t) prikazuje se jednostavniji izraz ekvivalentan izrazu t ukoliko postoji.

Formula prosleđena rešavaču:	Izlaz:
$(simplify\ (bvadd\ \#x07\ \#x03))$	#x0a
$(simplify\ (bvsub\ \#x07\ \#x03))$	#x04
$(simplify \ (bvneg \ \#x07))$	#xf9
$(simplify\ (bvmul\ \#x07\ \#x03))$	#x15
$(simplify\ (bvsmod\ \#x07\ \#x03))$	#x01
$(simplify \ (bvshl \ \#x07 \ \#x03))$	#x38
$(simplify \ (bvlshr \ \#xf0 \ \#x03))$	#x1e
$(simplify\ (bvashr\ \#xf0\ \#x03))$	$\#x\!f\!e$
$(simplify\ (bvor\ \#x6\ \#x3))$	#x7
$(simplify\ (bvand\ \#x6\ \#x3))$	#x2
$(simplify\ (bvxor\ \#x6))$	#x9
$(simplify\ (bvnand\ \#x6\ \#x3))$	#xd
$(simplify\ (bvnor\ \#x6\ \#x3))$	#x8
$(simplify\ (bvxnor\ \#x6\ \#x3))$	#xa

Primer 8 Postoji brz način da se proveri da li su brojevi fiksne dužine stepeni

dvojke. Ispostavlja se da je bitvektor x stepen dvojke ako i samo ako je vrednost izraza $x \wedge (x - 1)$ jednaka 0. Dodaje se negacija ove jednakosti kao tvrđenja i vrši se proveravanje za bitvektore vrednosti 0, 1, 2, 4 i 8. U svim slučajevima brojevi su stepeni dvojke pa Z3 rešavač vraća nezadovoljivost.

```
Formula prosleđena rešavaču:
                                                                 Izlaz:
(define-fun is-power-of-two
                                                                 unsat
   ((x (\_BitVec 4))) Bool
   (= \#x0 \ (bvand \ x \ (bvsub \ x \ \#x1)))
(declare-const a (_ BitVec 4))
(assert
   (not \ (= \ (is\text{-}power\text{-}of\text{-}two\ a)
      (or (= a \# x0)
         (= a \# x1)
         (= a \# x2)
         (= a \# x4)
         (= a \# x8)
     ))
(check-sat)
```

Primer 9 Primer ilustruje upotrebu relacija nad bitvektorima. Podržane relacije uključuju neoznačene i označene verzije za operatore <, <=, > i >=. Neoznačene varijante počinju nazivom bvu, a u nastavku sledi ime relacije. Na primer, relacija <= nad neoznačenim brojevima zadaje se komandom bvule, a relacija > nad neoznačenim brojevima komandom bvugt. Označene varijante počinju nazivom bvs, a u nastavku ponovo sledi ime relacije. Na primer, relacija >= nad neoznačenim brojevima zadaje se komandom bvsge, a relacija < nad označenim brojevima komandom bvslt.

Formula prosleđena rešavaču:	Izlaz:
$(simplify \ (bvule \ \#x0a \ \#xf0))$	true
$(simplify \ (bvult \ \#x0a \ \#xf0))$	true
$(simplify\ (bvuge\ \#x0a\ \#xf0))$	false
$(simplify \ (bvugt \ \#x0a \ \#xf0))$	false
$(simplify \ (bvsle \ \#x0a \ \#xf0))$	false
$(simplify \ (bvslt \ \#x0a \ \#xf0))$	false
$(simplify \ (bvsge \ \#x0a \ \#xf0))$	true
$(simplify \ (bvsgt \ \#x0a \ \#xf0))$	true

Rešavač Z3 nudi funkcije za promenu načina reprezentacije brojeva. Moguće su konverzije reprezentacije brojeva linearne aritmetike u reprezentaciju bitvektora i obrnuto. Ovaj rezultat može se postići naredbama:

```
(define b (int2bv[32] z))
(define c (bv2int[Int] x))
```

Primer 10 Primer poredi bitvektore koristeći označene i neoznačene verzije operatora. Označeno poređenje, kao što je bvsle, uzima u obzir znak bitvektora za poređenje, dok neoznačeno poređenje tretira bitvektor kao prirodan broj. Z3 rešavač pronalazi da je tvrđenje zadovoljivo i daje prikazani model.

```
Formula prosleđena rešavaču:
(declare-const\ a\ (\_\ BitVec\ 4))
(declare-const\ b\ (\_\ BitVec\ 4))
(assert\ (not\ (=\ (bvule\ a\ b)\ (bvsle\ a\ b)))
(check-sat)
(define-fun\ b\ ()\ (\_\ BitVec\ 4)\ \#x0)
(get-model)
```

Teorija nizova

Osnovnu teoriju nizova karakterišu select i store naredbe. Komandom (select a i) vraća se vrednost na poziciji i u nizu a, dok se izrazom (store a i v) formira novi niz, identičan nizu a pri čemu se na poziciji i nalazi vrednost v. Z3 sadrži procedure odlučivanja za osnovnu teoriju nizova. Dva niza su jednaka ukoliko su vrednosti svih elemenata na odgovarajućim pozicijama jednake.

Primer 11 Definišemo tri konstante x, y i z celobrojnog tipa. Neka je a1 niz celobrojnih vrednosti. Tada je ograničenje (and (= (select a1 x) x) (= (store a1 x y)

a1)) zadovoljivo kada je element niza a na poziciji x jednak definisanoj konstanti x i u slučaju kada su konstante x i y jednake. Rešavač Z3 vraća zadovoljivost zadatog tvrđenja i odgovarajući model.

```
Formula prosleđena rešavaču:
                                                  Izlaz:
(declare-const\ x\ Int)
                                                  sat
(declare-const y Int)
                                                  (model
(declare-const\ z\ Int)
                                                     (define-fun y () Int 1)
(declare-const a1 (Array Int Int))
                                                     (define-fun a1 () (Array Int Int)
(assert (= (select \ a1 \ x) \ x))
                                                        (as-array k!0)
(assert (= (store \ a1 \ x \ y) \ a1))
(check-sat)
                                                     (define-fun \ x \ () \ Int \ 1)
(get-model)
                                                     (define-fun k!0
                                                        ((x!1 Int)) Int (ite (= x!1 1) 1 0)
```

Konstantni nizovi

Nizovi sa konstantnim vrednostima mogu se specifikovati koristeći const konstrukciju. Prilikom upotrebe const konstrukcije rešavač Z3 ne može da odluči kog tipa su elementi niza pa se on mora eksplicitno navesti. Interpretacija nizova je slična interpretaciji funkcija. Z3 koristi konstrukciju (_ as-array f) za određivanje interpretacije niza. Ako je niz a jednak rezultatu konstrukcije (_ as-array f), tada za svaki indeks i, vrednost (select a i) odgovara vrednosti (f i).

Primer 12 Definišemo konstantni niz m celobrojnog tipa i dve celobrojne konstante a i i. Uvodimo ograničenje da niz m sadrži samo jedinice. Z3 pronalazi da je ovo tvrdjenje zadovoljivo i daje prikazani model.

Formula prosleđena rešavaču:

```
(declare-const m (Array Int Int))
(declare-const a Int)
(declare-const i Int)
(assert (= m ((as const (Array Int Int)) 1)))
(assert (= a (select m i)))
(check-sat)
(get-model)
```

Izlaz:

Primena map funkcije na nizove

Rešavač Z3 obezbeđuje primenu parametrizovane funkcije map na nizove. Funkcijom map omogućava se primena proizvoljnih funkcija na sve elemente niza.

Primer 13 Definišemo dva konstantna niza a i b tipa Boolean i dokazujemo da važi svojstvo $\neg(a \land b) \Leftrightarrow (\neg a \lor \neg b)$ primenom funkcije map na sve elemente nizova. Kao ograničenje dodajemo negaciju prethodno navedene formule. Rešavač Z3 vraća nezadovoljivost negirane formule, odakle zaključujemo da je polazna formula validna.

Formula prosleđena rešavaču:

```
Izlaz:
```

unsat

Nad nizovima se mogu vršiti slične operacije kao i nad skupovima. Rešavač Z3 ima podršku za računanje unije, preseka i razlike dva niza. Ovi operatori se tumače na isti način kao i u teoriji skupova. Za nizove a i b, pomenuti operatori mogu se koristiti navođenjem komandi:

(union a b); kreiranje unije dva niza kao skupa

```
(intersect a b); kreiranje preseka dva niza kao skupa
(difference a b); kreiranje razlike dva niza kao skupa
```

2.3 Tipovi podataka

Algebarski tipovi podataka omogućavaju specifikaciju uobičajnih struktura podataka. Slogovi, torke i skalari (enumeracijski tipovi) spadaju u algebarske tipove podataka. Primena algebarskih tipova podataka može se generalizovati. Mogu se koristiti za specifikovanje konačnih listi, stabala i rekurzivnih struktura.

Slogovi

Slog se specifikuje kao tip podataka sa jednim konstruktorom i proizvoljnim brojem elemenata sloga. Rešavač Z3 ne dozvoljava povećavanje broja argumenata sloga nakon njegovog definisanja. Važi svojstvo da su dva sloga jednaka samo ako su im svi argumenti jednaki.

Primer 14 Pokazujemo svojstvo da su dva sloga jednaka ako i samo ako su im svi argumenti jednaki. Uvodimo parametarski tip Pair, sa konstruktorom mk-pair i dva argumenta kojima se može pristupiti koristeći selektorske funkcije first i second. Definišemo dva sloga p1 i p2, čija su oba podatka celobrojnog tipa. Dodajemo ograničenja da su slogovi p1 i p2 jednaki kao i ograničenje koje se odnosi na drugi element sloga. Rešavač Z3 u prvom slučaju vraća zadovoljivost formule i odgovarajući model. Dodavanjem ograničenja da prvi elementi slogova nisu jednaki korišćenjem selektorske funkcije first, tvrđenje postaje nezadovoljivo.

Izlaz:

```
Formula prosleđena rešavaču:
```

```
(declare-datatypes (T1 T2)
                                                     sat
 (Pair (mk-pair (first T1) (second T2))))
                                                      (model
(declare-const p1 (Pair Int Int))
                                                         (define-fun p1 () (Pair Int Int)
(declare-const p2 (Pair Int Int))
                                                           (mk-pair 0 21)
(assert (= p1 p2))
(assert (> (second p1) 20))
                                                         (define-fun p2 () (Pair Int Int)
(check-sat)
                                                           (mk-pair 0 21)
(qet-model)
(assert\ (not\ (=\ (first\ p1)\ (first\ p2))))
                                                     unsat
(check-sat)
```

Skalari (tipovi enumeracije)

Sorta skalara je sorta konačnog domena. Elementi konačnog domena se tretiraju kao različite konstante. Na primer, neka je S skalarni tip sa tri vrednosti A, B i C. Moguće je da tri konstante skalarnog tipa S budu različite. Ovo svojstvo ne može važiti u slučaju četiri konstante.

Primer 15 Prilikom deklaracije skalarnog tipa podataka, navodi se broj različitih elemenata domena, u ovom primeru tri i pokazuje se nezadovoljivost tvrđenja sa četiri različita elementa domena.

```
Formula prosleđena rešavaču:
                                                                      Izlaz:
(declare-datatypes () ((S A B C)))
                                                                      sat
(declare\text{-}const\ x\ S)
                                                                      (model
(declare\text{-}const\ y\ S)
                                                                          (define-fun \ z \ () \ S \ A)
(declare\text{-}const\ z\ S)
                                                                          (define-fun\ y\ ()\ S\ B)
(declare\text{-}const\ u\ S)
                                                                          (define-fun \ x \ () \ S \ C)
(assert\ (distinct\ x\ y\ z))
(check-sat)
                                                                      unsat
(get-model)
(assert\ (distinct\ x\ y\ z\ u))
(check-sat)
```

Rekurzivni tipovi podataka

Deklaracija rekurzivnog tipa podataka uključuje sebe direktno kao komponentu. Standardni primer rekurzivnog tipa podataka je lista. Lista celobrojnih vrednosti sa imenom list može se deklarisati naredbom:

```
(declare-datatypes ((list (nil) (cons (hd Int) (tl list))))
```

Rešavaš Z3 ima ugrađenu podršku za liste korišćenjem ključne reči List. Prazna lista se definiše korišćenjem klučne reči nil a konstruktor insert se koristi za dodavanje elemenata u listu. Selektori head i tail se definišu na uobičajan način.

Primer 16 Deklarišemo tri liste l1, l2 i l3 sa celobrojnim vrednostima, kao i celobrojnu konstantu x. Dodaju se ograničenja za prve elemente listi l1 i l2 korišćenjem selektora. Pored toga, dodaje se ograničenje da liste l1 i l2 nisu jednake, tj. da nisu svi elementi na odgovarajućim pozicijama u listama jednaki. U listu l2 dodaje se

konstanta x. Rešavač Z3 vraća zadovoljivost tvrđenja i dobijeni model prikazujemo u nastavku.

```
Formula prosleđena rešavaču:
                                             Izlaz:
(declare-const l1 (List Int))
                                             sat
(declare-const l2 (List Int))
                                             (model
(declare-const l3 (List Int))
                                                (define-fun l3 () (List Int)
(declare-const \ x \ Int)
                                                (insert 101 (insert 0 (insert 1 nil)))
(assert\ (not\ (=l1\ nil)))
                                                (define-fun \ x \ () \ Int \ 101)
(assert\ (not\ (=l2\ nil)))
                                                (define-fun l1 () (List Int) (insert 0 nil))
(assert (= (head l1) (head l2)))
                                                (define-fun l2 () (List Int) (insert 0
(assert\ (not\ (=l1\ l2)))
                                                   (insert 1 nil))
(assert (= l3 (insert x l2)))
(assert (> x \ 100))
(check-sat)
(get-model)
```

U prethodnom primeru, uvode se ograničenja da su liste l1 i l2 različite od nil. Vrši se uvođenje ovih ograničenja jer interpretacija selektora head i tail nije specifikovana u slučaju praznih lista.

2.4 C++ interfejs rešavača

C++ interfejs prema rešavaču Z3 obezbeđuje različite strukture podataka, klase i funkcije koje su potrebne za direktnu komunikaciju C++ aplikacije sa rešavačem. Neke od najbitnijih klasa biće opisane u nastavku, dok se kompletan opis interfejsa može naći na internetu [9].

Klasa Z3_sort koristi se za definisanje tipa izraza. Prilikom definisanja izraza navodi se tip kako bi bio poznat skup vrednosti koje mu se mogu dodeliti kao i skup dozvoljenih metoda. Sorte izraza definisane su tipom enumeracije. Neke od najvažnijih sorti su Z3_BOOL_SORT, Z3_INT_SORT, Z3_REAL_SORT, Z3_BV_SORT i Z3_ARRAY_SORT. Određivanje sorte izraza vrši se funkcijom sort_kind() sa povratnom vrednošću tipa enumeracije. Za proveru pripadnosti izraza sorti, koriste se funkcije is_bool(), is_int(), is_real(), is_array() i is_bv(). Sorte različitih izraza se mogu porediti korišćenjem operatora jednakosti.

Za upravljanje objektima interfejsa kao i za globalno konfigurisanje koristi se klasa context. Klasa sadrži konstruktor bez argumenata. Upotrebom klase context, mogu se detektovati različite vrste grešaka u korišćenju C++ API-ja. Greške su definisane tipom enumeracije Z3_ERROR_CODE. Neke od konstanti enumeracije su Z3_OK, Z3_SORT_ERROR, Z3_INVALID_USAGE i Z3_INTERNAL_FATAL. Kontekst omogućava kreiranje konstanti metodama bool_const(), int_const(), real_const() i bv_const(). Definisanje različitih sorti omogućeno je metodama bool_sort(), int_sort(), real_sort(), bv_sort() i array_sort().

Izrazi koji se formiraju pripadaju klasi expr. Z3 izraz se koristi za predstavljanje formula i termova. Formula je proizvoljan izraz sorte Boolean. Sadrži konstruktor čiji je argument objekat klase context. Konstanti izrazi mogu se definisati metodama bool_const(), int_const() i real_const(). Za dobijanje izraza na zadatoj poziciji u skupu izraza koristi se metoda at(expr const &index). Provera da li podizraz predstavlja deo drugog izraza vrši se metodom contains(expr const &s). Za dobijanje pojednostavljenog izraza ekvivalentnog polaznom koristi se metoda simplify() ukoliko takav izraz postoji. Za dobijanje pojednostavljenog izraza može se navesti i skup parametara koji se prosleđuju Z3 simplifikatoru. Zamenu vektora izraza drugim vektorom vrši se metodom substitute(expr_vector const &source, expr_vector const &destination).

Postoji veliki broj metoda i operatora koji se koriste za izgradnju složenih izraza. Neke od podržanih logičkih operacija su konjunkcija, disjunkcija, implikacija, negacija konjunkcije i negacija disjunkcije. Konjunkcija vektora izraza vrši se metodom mk_and(expr_vector const &args). Disjunkcija vektora izraza vrši se metodom mk_or(expr_vector const &args). Implikacija dva izraza vrši se metodom implies(expr const &a, expr const &b). Negacija konjunkcije dva izraza vrši se metodom nand(expr const &a, expr const &b). Negacija disjunkcije dva izraza vrši se metodom nor(expr const &a, expr const &b). Nad izrazima se mogu primenjivati relacijski operatori ==, !=, <, <=, >, >= pri čemu izrazi moraju biti odgovarajuće sorte kako bi poređenje bilo moguće. Nadovezivanje dva izraza vrši se metodom concat(expr const &a, expr const &b). Može se vršiti i nadovezivanje vektora izraza. Kombinovanjem pomenutih metoda i operatora mogu se graditi izrazi proizvoljne složenosti.

Funkcije predstavljaju osnovne gradivne blokove. Definicija funkcije vrši se objektima klase func_decl. Korišćenjem ove klase definišu se interpretirane i ne-interpretirane funkcije rešavača Z3. Povratne vrednosti funkcija određene su ti-

pom enumeracije Z3_decl_kind. Neke od konstanti enumeracije su Z3_OP_TRUE, Z3_OP_FALSE, Z3_OP_REAL, Z3_OP_INT i Z3_OP_ARRAY. Dobijanje imena funkcijskog simbola vrši se metodom name(). Određivanje arnosti funkcijskog simbola vrši se metodom arity(). Određivanje sorte i-tog parametra funkcijskog simbola određuje se metodom domain(unsigned i).

U okviru C++ interfejsa, teorije rešavača Z3 zadate su semantički navođenjem modela. Ova podrška implementirana je klasom model. Sadrži konstruktor čiji je argument objekat klase kontekst. Interpretacija izraza definisanog u modelu dobija se korišćenjem metode eval(expr const &n). Metodom get_func_decl(unsigned i) dobija se i-ti funkcijski simbol modela. Metodom get_const_decl(unsigned i) dobija se interpretacija i-te konstante modela. Metodom num_consts() dobija se broj konstanti datog modela kao funkcijskih simbola arnosti 0. Metodom num_funcs() dobija se broj funkcijskih simbola arnosti veće od 0. Metodom size() vraća se broj funkcijskih simbola modela. Poređenje modela vrši se operatorom jednakosti. Dva modela su jednaka ukoliko su im jednake interpretacije svih funkcijskih simbola. Za ispisivanje modela, koristi se funkcija Z3_model_to_string čiji su argumenti objekti klasa context i model.

Sa Z3 rešavačem komunicira se korišćenjem objekta klase solver. Objekat klase solver inicijalizuje se vrednostima objekta klase context. Osnovni metodi klase solver su add, check i get_model. Metodom add(expr const &e) dodaje se ograničenje koje se prosleđuje rešavaču. Metodom check() proverava se zadovoljivost ograničenja prosleđenih rešavaču. Metodom get_model() vraća se model definisan ograničenjima ukoliko postoji. Pre korišćenja metode get_model(), mora se pozvati metod check(). Metodom assertions() vraća se vektor ograničenja prosleđenih rešavaču. Ograničenja se mogu čitati iz fajla i iz stringa, korišćenjem metoda from_file(char const *file) i from_string(char const *s). Uklanjanje svih ograničenja prosleđenih rešavaču vrši se metodom reset().

Primer 17 ilustruje kreiranje bulovskih izraza i jednostavne formule i prikazuje kako se kreira i upotrebljava klasa kontekst i klasa solver. U ovom primeru, ilustrovano je dodavanje ogranicenje u solver metodom add i proveravanje njegove zadovoljivosti metodom check.

Primer 17 Primer demonstrira važenje De Morganovog zakona dokazivanjem formule iz primera 1. Pokazuje se nezadovoljivost negirane formule. U zavisnosti od rezultata štampa se odgovarajuća poruka.

1 void demorgan() {

```
2
       context c;
3
       expr x = c.bool const("x");
       expr y = c.bool const("y");
4
       expr e = (!(x \&\& y)) == (!x // !y);
6
7
       solver s(c);
       s.add(!e);
8
9
       switch (s.check()) {
10
                      std::cout << "Formula je validna"; break;</pre>
       case unsat:
11
                      std::cout << "Formula nije validna"; break;</pre>
       case sat:
12
       case unknown: std::cout << "Rezultat je nepoznat"; break;</pre>
13
       }
14
15 }
```

Primer 18 ilustruje kreiranje celobrojnih konstanti i jednostavne neinterpretirane funkcije upotrebom klase func_decl. Ilustruje se kreiranje složenijeg izraza upotrebom metode implies koji odgovara logičkom operatoru implikacije. Složeniji izraz prosleđuje se solveru i proverava se njegova zadovoljivost.

Primer 18 Primer demonstrira upotrebu neinterpretiranih funkcija dokazivanjem formule x = y => g(x) = g(y). Dodaje se negacija prethodno navedene formule. U zavisnosti od rezultata, štampa se odgovarajuća poruka.

```
void primer_sa_neinterpretiranim_funkcijama() {
2
      context c;
      expr x = c.int\_const("x");
3
      expry
                 = c.int const("y");
4
      sort I = c.int_sort();
5
      func\_decl\ g = function("g", I, I);
6
      solver s(c);
8
      expr \ e = implies(x == y, g(x) == g(y));
9
      s. add(!e);
10
      if (s. check() = unsat)
11
          std::cout << "dokazano";
12
      else
13
          std::cout << "nije dokazano";</pre>
14
15 }
```

U primeru 19 korišćenjem metode get_model pristupa se modelu koji je solver vratio. Vrši se evaluacija izraza dobijenih iz modela primenom metode eval.

Primer 19 Rešavaču se prosleđuju jednostavna ograničenja nad konstantama. Zatim se vrši evaluacija jednostavnih izraza nad konstantama definisanih u modelu.

```
void eval_primer() {
       context c;
2
       expr x = c.int const("x");
       expr y = c.int\_const("y");
4
       solver s(c);
5
      s.add(x < y);
7
      s.add(x > 2);
8
       std::cout << s.check() << "|n";
9
10
11
       model m = s.get\_model();
       std::cout << "Model:" << m;
12
       std :: cout << "x+y = " << m. eval(x+y);
13
14 }
```

Primer 20 ilustruje pronalaženje interpretacija konstanti modela za problem linearne aritmetike uvođenjem ograničenja. Korišćenjem klase func_decl, za svaku od konstanti kao funkcijskih simbola arnosti 0 ispisuje se njeno ime i dodeljena vrednost.

Primer 20 Primer ispisuje imena i interpretacije konstanti modela korišćenjem funkcije arity klase func_decl.

```
void primer linearne aritmetike() {
       context c;
2
       expr x = c.int\_const("x");
3
       expr y = c.int const("y");
4
       solver s(c);
       s.add(x >= 1);
6
       s.add(y < x + 3);
       model \ m = s.get\_model();
8
9
      for(unsigned \ i = 0; \ i < m. \ size(); \ i++) \ \{
10
           func\_decl\ v = m[i];
11
           assert(v.arity() == 0);
12
           std::cout << v.name() << "=" << m.get\_const\_interp(v);
13
```

Primer 21 ilustruje pronalaženje interpretacija realnih konstanti modela za problem nelinearne aritmetike uvođenjem ograničenja. Interpretacija realnih konstanti ispisuje se u celobrojnom i realnom formatu korišćenjem opcija za konfigurisanje formata ispisa klase context.

Primer 21 Primer ispisuje imena i interpretacije realnih konstanti modela korišćenjem funkcije arity klase func_decl.

```
void primer_nelinearne_aritmetike() {
2
       context c;
       expr x = c.real const("x");
3
       expr y = c.real\_const("y");
4
       expr z = c.real const("z");
6
       solver s(c);
7
       s.add(x*x + y*y == 1);
8
       s. add(x*x*x + z*z*z < c. real val("1/2"));
9
10
       std::cout << s.check();
11
       model m = s.get model();
12
       std :: cout << m;
13
14
      for(unsigned \ i = 0; \ i < m. \ size(); \ i++) \ \{
15
           func decl v = m/i/;
16
           assert(v.arity() == 0);
17
           std::cout << v.name() << "=" << m.get\_const\_interp(v);
18
19
20
21
```

Primer 22 ilustruje pronalaženje interpretacija konstanti koje imaju bitvektorsku reprezentaciju korišćenjem metode bv_const klase context. Parametri ove metode su ime i broj mesta za zapisivanje konstante. Za svaku od konstanti ispisuje se njeno ime i dodeljena vrednost.

Primer 22 Primer ispisuje imena i interpretacije konstantni predstavljenih bitvektorom dužine 32.

```
1 \ \ void \ \ primer\_sa\_bitvektorima() \ \{
      context c;
      expr x = c.bv\_const("x", 32);
3
       expr y = c.bv\_const("y", 32);
      solver s(c);
6
      s.add((x ^ y) - 103 == x * y);
      std::cout << s.check();
      std::cout << s.get\_model();
9
10
      for(unsigned i = 0; i < m. size(); i++)
11
           func\_decl\ v = m[i];
12
           assert(v.arity() == 0);
13
           std::cout << v.name() << "=" << m.get_const_interp(v);
14
15
16 }
```

Glava 3

Zaključak

Literatura

- [1] C. Barrett i R. Sebastiani. Satisfiability Modulo Theories, Frontiers in Artificial Intelligence and Applications. 1987, str. 825–885.
- [2] Armin Biere i Marijin Heule. *Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.* 2009.
- [3] J. Levitt C. Barrett D. Dill. A decision procedure for bit-vector arithmetic. 1998, str. 522–527.
- [4] Aaron Stump Clark Barrett. The SMT-LIB Standard version 2.0. 2013.
- [5] B. Dutertre i L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). 2006.
- [6] R. W. House i T. Rado. A Generalization of Nelson-Open's Algorithm for Obtaining Prime Implicants.
- [7] Leonardo de Moura i Nikolaj Bjorner. Z3 An Efficient SMT Solver, Microsoft Research. 2008, str. 337–340.
- [8] Microsoft Research. Automatically generated documentation for the Z3 APIs. http://z3prover.github.io/api/html/index.html. 2016.
- [9] Microsoft Research. Automatically generated documentation for the Z3 C++ API. https://z3prover.github.io/api/html/group_cppapi.html. 2016.

Biografija autora