Lecture 2: Atomic Data Types/Homogeneous vectors

Wim R.M. Cardoen, PhD

Contents

1	\mathbf{R}	Objects	2
	1.1	Examples	2
2	\mathbf{Ato}	omic Data Types	4
	2.1	The core/atomic data types	4
		2.1.1 Examples	4
	2.2	Operations on atomic data types	6
		2.2.1 Examples	6
3	Ato	omic vectors	8
	3.1	Creation of atomic vectors	8
		3.1.1 Examples	8
	3.2	Operations on vectors: element-wise	10
		3.2.1 Examples	10
	3.3	Retrieving elements of vectors	11
		3.3.1 Examples	11
	3.4	Hash tables	13
		3.4.1 Examples	14
	3.5	NA (Not Available values)	15
		3.5.1 Examples	15
	3.6	Alia	15
4	Ma	trices & Arrays	15
		· · · · · · · · · · · · · · · · · · ·	16
			17
		•	17
		•	17
			17
			17
R	can b	be summarized in three principles (John M. Chambers, 2016)	
		verything that exists in R is an object. verything that happens in R is a function call.	

 \bullet Interfaces to other languages are a part of R.

1 R Objects

- An object in R is (internally) represented as a pair: (symbol, value).
- A **symbol** is assigned a **value** by the use of an arrow pointing to the left (<-).
- There are less favored ways:
 - A simple equality sign (=).
 - Using the **assign()** function.

1.1 Examples

• Clean up the global environment i.e. remove all objects from the current R environment. STRONGLY RECOMMENDED!

```
rm(list=ls())
ls()
```

character(0)

• preferred way to assign variables

```
x <- 5.0
x
```

[1] 5

• alternative 1: mainly used to assign default function arguments

```
y = 5.0
y
```

[1] 5

```
mysamplevariance <- function(x, av=0){

n <- length(x)
if(n>1){
    return(1.0/(n-1)*sum((x-av)^2))
}
else{
    stop("ERROR:: Dividing by zero (n==1) || (n==0) ")
}

x <- rnorm(10)
mysamplevariance(x)</pre>
```

```
## [1] 1.393502
```

```
mysamplevariance(x,mean(x))
```

[1] 1.09379

```
var(x)
## [1] 1.09379

• alternative 2: even less used
assign("z", 5.0)
z

## [1] 5

• functions are objects
f <- mean
f

## function (x, ...)
## UseMethod("mean")
## <bytecode: 0x55a1838adf70>
## <environment: namespace:base>
val <- f(1:10)
val
## [1] 5.5</pre>
```

2 Atomic Data Types

Nothing exists except atoms and empty space; everything else is opinion. (Democritos)

2.1 The core/atomic data types

```
• R has the following 6 atomic data types:
```

```
- logical (i.e. boolean)
```

- integer
- double
- character (i.e. string)
- complex
- raw (i.e. byte)

The latter 2 types (i.e. complex and especially raw) are less common.

The **typeof()** function determines the **INTERNAL** storage/type of an R object.

2.1.1 Examples

• boolean/logical values: either TRUE or FALSE

```
x1 <- TRUE
x1

## [1] TRUE

typeof(x1)

## [1] "logical"</pre>
```

• integer values $(\in \mathbb{Z})$:

```
x2 <- 3L
x2
```

```
## [1] 3
typeof(x2)
```

[1] "integer"

```
• double (precision) values:

x3 <- 3.14

x3

## [1] 3.14

typeof(x3)
```

```
## [1] "double"
```

• character values/strings

```
x4 <- "Hello world"
x4

## [1] "Hello world"

typeof(x4)

## [1] "character"

• complex values (∈ ℂ):
x5 <- 2.0 + 3i
x5

## [1] 2+3i
typeof(x5)

## [1] "complex"</pre>
```

2.2 Operations on atomic data types

```
• logical operators: ==, !=, &&, ||, !
   • numerical operators: +, -, *, /, ^, ** (same as the caret), but also:
       integer division: %/%
       - modulo operation: %%
       − Note: matrix multiplication will be performed using %*%
   • character/string manipulation:
       - nchar():
       - paste():
       - cat():
       - sprintf():
       - substr():
       - strsplit():
       - Note: Specialized R libraries were developed to manipulate strings e.g. stringr
   • explicit cast/conversion: https://data-flair.training/blogs/r-string-manipulation/
       as.{logical, integer, double, complex, character}()
   • explicit test of the type of a variable:
        is.{logical, integer, double, complex, character}()
2.2.1
       Examples
   • Logical operators:
x <-3
y <-7
(x <= 3) && (y == 7)
## [1] TRUE
! (y<7)
## [1] TRUE
   • Mathematical operations
2**4
## [1] 16
7%%4
## [1] 3
7/4
## [1] 1.75
7%/%4
## [1] 1
```

• String operations

```
s <- "Hello"
nchar(s)
## [1] 5
news <- paste(s,"World")</pre>
## [1] "Hello World"
sprintf("My new string:%20s\n", news)
## [1] "My new string:
                                Hello World\n"
city <- "Witwatersrand"</pre>
substr(city,4,8)
## [1] "water"
  • Conversion and testing of types
s <- "Hello World"
is.character(s)
## [1] TRUE
s1 <- "-500"
is.character(s1)
## [1] TRUE
s2 <- as.double(s1)
is.character(s2)
## [1] FALSE
is.double(s2)
## [1] TRUE
s3 <- as.complex(s2)
## [1] -500+0i
sqrt(s3)
## [1] 0+22.36068i
```

3 Atomic vectors

- An **atomic** vector is a data structure containing elements of **only one atomic** data type. Therefore, an atomic vector is **homogeneous**.
- Atomic vectors are stored in a **linear** fashion.
- R does NOT have scalars:
 - An atomic vector of **length 1** plays the role of a scalar.
 - Vectors of **length 0** also exist (and they have some use!).
- A **list** is a vector not necessarily of the atomic type.

A list is also known as a **recursive/generic** vector (vide infra).

3.1 Creation of atomic vectors

Atomic vectors can be created in a multiple ways:

- Use of the **vector()** function.
- Use of the **c()** function (**c** stands for concatenate).
- Use of the column operator:
- Use of the **seq()** and **rep()** functions.

The length of a vector can be retrieved using the **length()** function.

3.1.1 Examples

```
• use of the vector() function:

x <- vector() # Empty vector (Default:'logical')

x ## logical(0)
length(x)

## [1] 0
typeof(x)

## [1] "logical"

x <- vector(mode="complex", length=4)

x ## [1] 0+0i 0+0i 0+0i 0+0i
length(x)

## [1] 4

x ## [1] 4

x ## [1] 4-0i 0+0i 0+0i 0+0i

x [1] <- 4

x ## [1] 4+0i 0+0i 0+0i 0+0i
```

```
• use of the c() function:
x1 \leftarrow c(3, 2, 5.2, 7)
## [1] 3.0 2.0 5.2 7.0
x2 < -c(8, 12, 13)
x2
## [1] 8 12 13
x3 \leftarrow c(x2, x1)
## [1] 8.0 12.0 13.0 3.0 2.0 5.2 7.0
x4 <- c(FALSE,TRUE,FALSE)</pre>
x4
## [1] FALSE TRUE FALSE
x5 <- c("Hello", "Salt", "Lake", "City")
x5
## [1] "Hello" "Salt" "Lake" "City"
  • use of the column operator:
y1 <- 1:10
у1
## [1] 1 2 3 4 5 6 7 8 9 10
y2 <- 5:-5
у2
## [1] 5 4 3 2 1 0 -1 -2 -3 -4 -5
y3 <- 2.3:10
## [1] 2.3 3.3 4.3 5.3 6.3 7.3 8.3 9.3
y4 <- 2.0*7:1
у4
## [1] 14 12 10 8 6 4 2
y5 <- 1:7-1
у5
## [1] 0 1 2 3 4 5 6
  • seq() and rep() functions
z1 <- seq(from=1, to=15, by=3)</pre>
## [1] 1 4 7 10 13
```

```
z2 <- seq(from=-2,to=5,length=4)
z2

## [1] -2.0000000     0.3333333     2.6666667     5.0000000

z3 <- rep(c(3,2,4), time=2)
z3

## [1] 3 2 4 3 2 4

z4 <- rep(c(3,2,4), each=3)
z4

## [1] 3 3 3 2 2 2 4 4 4

z5 <- rep(c(1,7), each=2, time=3)
z5

## [1] 1 1 7 7 1 1 7 7 1 1 7 7
length(z5)

## [1] 12</pre>
```

3.2 Operations on vectors: element-wise

- All operations on vectors in R happen element by element (cfr. NumPy).
- Vector Recycling:

If 2 vectors of **different** lengths are involved in an operation, the **shortest vector** will be repeated until all elements of the longest vector are matched. A message will be sent to the stdout.

3.2.1 Examples

```
x <- -3:3

x

## [1] -3 -2 -1 0 1 2 3

y <- 1:7

y

## [1] 1 2 3 4 5 6 7

xy <- x*y

xy

## [1] -3 -4 -3 0 5 12 21

xpy <- x^y

xpy

## [1] -3 4 -1 0 1 64 2187
```

```
x <- 0:10
y <- 1:2
length(x)

## [1] 11
length(y)

## [1] 2
x

## [1] 0 1 2 3 4 5 6 7 8 9 10
y

## [1] 1 2
x+y

## Warning in x + y: longer object length is not a multiple of shorter object
## length
## [1] 1 3 3 5 5 7 7 9 9 11 11</pre>
```

3.3 Retrieving elements of vectors

- Indexing: starts at 1 (not 0 like C/C++, Python, Java,) see also: Edsger Dijkstra: Why numbering should start at zero
- Use of vector with indices to extract values.
- Advanced features:
 - use of boolean values to extract values.
 - the membership operator: %in%.
 - the deselect/omit operator: -
 - which(): returns the indices for which the condition is true.
 - **any**()/**all**() functions.
 - * any(): TRUE if at least 1 value is true
 - * all(): TRUE if all values are true

3.3.1 Examples

• Use of a simple index:

```
x <- seq(2,100,by=15)
x[4]
## [1] 47
x[1]
## [1] 2</pre>
```

• Select several indices at once using vectors:

```
## [1] 2 17 32 47 62 77 92
x[3:5]
## [1] 32 47 62
x[c(1,3,5,7)]
## [1] 2 32 62 92
x[seq(1,7,by=2)]
## [1] 2 32 62 92
  • Extraction via booleans (i.e. retain only those values that are equal to TRUE):
X
## [1] 2 17 32 47 62 77 92
x>45
## [1] FALSE FALSE FALSE TRUE TRUE TRUE
x[x>45]
## [1] 47 62 77 92
  • Use of the %in% operator:
## [1] 2 17 32 47 62 77 92
10 %in% x
## [1] FALSE
62 %in% x
## [1] TRUE
c(32,33,43) %in% x
## [1] TRUE FALSE FALSE
!(c(32,33,43) \%in\% x)
## [1] FALSE TRUE TRUE
  • Negate/filter out the elements with negative indices:
## [1] 2 17 32 47 62 77 92
```

```
x[-c(2,4,6)]

## [1] 2 32 62 92

z <- x[-1] - x[-length(x)]

z

## [1] 15 15 15 15 15 15
```

• The which() function returns only those indices of which the condition/expression is true.

```
vecnum <- rnorm(n=10)</pre>
vecnum
##
  which(vecnum>1.0)
## integer(0)
  • Use of the any()/all() functions.
y \le seq(0,100,by=10)
## [1] 2 17 32 47 62 77 92
у
  [1]
       0 10 20 30 40 50 60 70 80 90 100
any(x<y)
## Warning in x < y: longer object length is not a multiple of shorter object
## length
## [1] TRUE
all(x[6:7]>y[2:3])
## [1] TRUE
```

3.4 Hash tables

A hash table is a data structure which implements an associative array or dictionary. It is an abstract data which maps data to keys.

• There are several ways to create one:

Sample 10 numbers from N(0,1)

- Map names to an existing vector
- Add names when creating the vector
- To remove the map, map the names to NULL

3.4.1 Examples

• Creation of 2 independent vectors

```
capitals <- c("Albany", "Providence", "Hartford", "Boston", "Montpelier", "Concord", "Augusta")</pre>
states <- c("NY", "RI", "CT", "MA", "VT", "NH", "ME")
capitals
## [1] "Albany"
                     "Providence" "Hartford"
                                                               "Montpelier"
                                                 "Boston"
## [6] "Concord"
                     "Augusta"
states
## [1] "NY" "RI" "CT" "MA" "VT" "NH" "ME"
capitals[3]
## [1] "Hartford"
  • Create the hashtable/dictionary
# Method 1
names(capitals) <- states</pre>
capitals
##
             NY
                           RI
                                         CT
                                                       MA
                                                                                   NH
       "Albany" "Providence"
                                                 "Boston" "Montpelier"
##
                                 "Hartford"
                                                                           "Concord"
##
      "Augusta"
##
capitals["MA"]
##
         MA
## "Boston"
names(capitals)
## [1] "NY" "RI" "CT" "MA" "VT" "NH" "ME"
# Method 2
phonecode <- c("801"="SLC", "206"="Seattle", "307"="Wyoming")</pre>
phonecode
##
                    206
                               307
         801
       "SLC" "Seattle" "Wyoming"
phonecode["801"]
     801
```

• Dissociate the 2 vectors

"SLC"

```
names(capitals) <- NULL capitals
```

```
## [1] "Albany" "Providence" "Hartford" "Boston" "Montpelier"
## [6] "Concord" "Augusta"
```

3.5 NA (Not Available values)

- NA: stands for 'Not Available'/Missing values
- has length of 1.
- is.na(): test all elements of a vector for NA values.
- some functions e.g. mean() return NA when an instance of NA is present.

3.5.1 Examples

• Check of the NA availability

```
x <- c(NA, 1, 2, NA) is.na(x)
```

```
## [1] TRUE FALSE FALSE TRUE
```

• Functions on a vector containing NA

```
mean(x)
```

```
## [1] NA
mean(x, na.rm=TRUE)
```

[1] 1.5

3.6 Alia

Still to be developed!

- boolean: Vector operators vs. unique value
- && vs. &.
- || vs. |.
- xor()

4 Matrices & Arrays

- Attributes
- Matrices & arrays
- Matrix multiplication

4.1 Other

- Special types:

 Factors

 Date

 - Time
- NA, NaN, NULL
- Logical operators:

Other topics on Data structures

- List
- Dataframe & Tibble
- IO (read.csv, read.file)
- Names
- Subsetting, [[]] vs. []

Conditionals & Loops

- if, else, else if switch and elseif
- for
- while
- repeat
- return()

Environments

- search(), attach, detach
- library

Functions

- lexical scoping
- simple functions
- args(), formals()
- default arg, ...
- lazy evaluation
- closure
- anonymous functions
- make your own operators
- loop functions: {l,s,m}apply, split

Capita selecta

• profiling, debugging