Machine Learning.

Kalman Filtering (KF):

Covariance metrix

 $x_{k+1} = +x_k + w_k, \quad \omega_k \sim N(0, 0)$

 $Z_k = H x_k + v_k$, $v_k \sim N(o, R_k)$

Corariance motific

2K: Estimetion on 2K once we get ZK

ûk: " " before getting Zk.

Kalman Filter Reconsine Algorithm:

Kalman Crain:
$$K_{K} = P_{K} \mathcal{H} \left(\mathcal{H} P_{K} \mathcal{H}^{T} + R \right)$$

Updak Estimate:
$$\hat{z}_{K} = \hat{z}_{K} + k_{K}(I - k_{K}H)\hat{p}_{K}$$

Update Covariance:
$$P_K = (I - k_k H) P_K$$

 $\left| \frac{\chi[n+i]}{\chi[n+i]} \right| = A\chi[n] + Bu[n] + Gw[n] : State Eq.$ $\frac{y[n]}{|x|} = \frac{C}{2[n]} + \frac{Du[n]}{|x|} + \frac{V[n]}{|x|}$: Measurement Ex. $\omega E \sim N(0, Q)$ Q: 2.3 $\gamma E \sim N(0, R)$ R: 1Grenerete a random number from a normal Gaussian distribution N(a,b) -> a+Vb randn 3 + randn N(3,1).

3 + randn(5,1)

 $3+\sqrt{10} \text{ rand}()$ N(3,10).