Week 6

Mathematics and Computational Methods for Complex Systems, 2023

Some ongoing issues

Reading mathematics

End of lecture optional practice

Reading carefully

Life skill!

Goals today

Statistics of random variables

Expected value Functions of RVs Variance Central limit theorem

Conditional probability

Independent events Bayes' law

Maths reading practice

Optional

Probability Space

Recap

Probability function:

Assigns a probability to every single event

Event space:

Sets of seating combinations

Example set:

All seating combinations where the back row is filled

Random variables

Recap

are quantitative questions about the experiment

are functions that map from outcomes to numbers

(or to any "measurable space")

Random variables example

Recap

What was the number of unfilled seats?

Purpose of a random variable

Say something quantitative about a situation we can't model fully

(e.g. lecture seating next week)

Quantify a hypothesis across unaccounted situations

(all matrices are invertible)

Practice

•
$$\sim U[-1,1]$$

Outcome space?

What type of RV is:

"Is the matrix invertible?"

Probability of event?

"Matrix is invertible"

Statistics

Summaries of a random variable

Statistical function: Random variable

Number

Expectation

How big do you think it will be?

Variance

How uncertain do you think it will be?

Expected value of a random variable How big will it be?

Average RV value over all outcomes, weighted by their probabilities

Expected value of a random variable How big will it be?

Average RV value over all outcomes, weighted by their probabilities

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega)$$

Lévy distribution How big will it be?

$$\mathbb{E}[X] = \infty$$

Google if interested

Sample of a random variable Taken from data

Experimental trial

Run the experiment once:

 $(\Omega, \mathscr{F}, \mathbb{P})$

 ω_i = outcome on trial i

 $X_i = Value \ of \ RV \ X \ on \ trial \ i$

 $EG X_i = Filled seats on week i$

Sample of a random variable Taken from data

Experimental trial

Run the experiment once:

 $(\Omega, \mathscr{F}, \mathbb{P})$

 ω_i = outcome on trial i

 $X_i = Value \ of \ RV \ X \ on \ trial \ i$

 $EG X_i = Filled seats on week i$

Spot the difference

 $X(\omega)$: RV is a function

 X_i : is a value for the function on trial i

Just like....

Sample statistic Estimate from data

Sample expected value

$$\bar{X}_N = \frac{X_1 + X_2 + \dots X_N}{N}$$

e.g. X_i = Filled seats on week i

Higher probability outcomes naturally get weighted more

True statistic

Estimate statistic from infinite data

$$\bar{X}_{\infty} = \lim_{N \to \infty} \frac{X_1 + X_2 + \dots X_N}{N}$$

$$\bar{X}_{\infty} = \mathbb{E}[X]$$
?

Never have access to infinite trials. How to calculate?

From PMF / PDF...

Recap: Uniform random variable

$$X \sim U\left(\left\{i\right\}_{i=1}^{10}\right)$$

Probability mass function of X

...calculating from PMF

Goal: evaluate following limit using PMF only

$$\frac{1}{N}(X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + \dots + X_N)$$

Probability mass function of X

...calculating from PMF

Step 1: rearrange summation according to event

$$\frac{1}{N}(X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + \dots + X_N) =$$

$$\frac{1}{N}(X_4 + X_{19} + X_7... + X_9 + X_6 + X_2... + X_{124} + X_{28} + X_{47})$$
Event:
$$X_i = 1$$

$$X_i = 1$$
Event:
$$X_i = 1$$

$$X_i = 1$$

...calculating from PMF

Step 2: substitute random variables with their outcomes

$$\frac{1}{N}(X_4 + X_{19} + X_7... + X_9 + X_6 + X_2... + X_{124} + X_{28} + X_{47})$$
Event:
$$X_i = 1$$

$$X_i = 2$$
Event:
$$X_i = 10$$

$$1 \times \frac{|\{X_i = 1\}|}{N} \longrightarrow 2 \times \frac{|\{X_i = 2\}|}{N} \longrightarrow 10 \times \frac{|\{X_i = 10\}|}{N}$$

(Cardinality: number of elements in the set $\{X_i=1\}$)

...calculating from PMF

$$\frac{1}{N}(X_4 + X_{19} + X_7... + X_9 + X_6 + X_2... + X_{124} + X_{28} + X_{47})$$
Event:
$$X_i = 1$$

$$X_i = 1$$
Event:
$$X_i = 1$$

$$X_i = 1$$

$$1 \times \frac{|\{X_i = 1\}|}{N} \qquad 1 \times \frac{|\{X_i = 2\}|}{N} \qquad \bullet \qquad \bullet \qquad 10 \times \frac{|\{X_i = 10\}|}{N}$$

How many instances of each event do we expect?

...calculating from PMF

$$\lim_{N \to \infty} \frac{|\{X = i\}|}{N} = \mathbb{P}[X = i]$$

(Law of large numbers)

"If you do enough trials, the proportion of times an event happen gets infinitely close to the probability of the event"

...calculating from PMF

$$\frac{1}{N} \sum_{i=1}^{N} X_i = \dots$$

$$1 \times \frac{|\{X_i = 1\}|}{N} \longrightarrow 2 \times \frac{|\{X_i = 2\}|}{N} \longrightarrow 10 \times \frac{|\{X_i = 10\}|}{N}$$

$$1 \times \mathbb{P}[X = 1]$$

$$2 \times \mathbb{P}[X=2]$$

$$10 \times \mathbb{P}[X = 10]$$

...calculating from PMF

$$\frac{1}{N} \sum_{i=1}^{N} X_i = \dots$$

$$\frac{1}{N} \sum_{i=1}^{N} X_i = \dots \qquad \dots = \sum_{i=1}^{10} \frac{i}{N} = 5.5$$

$$1 \times \frac{|\{X_i = 1\}|}{N}$$

$$1 \times \frac{|\{X_i = 1\}|}{N} \longrightarrow 2 \times \frac{|\{X_i = 2\}|}{N} \longrightarrow 10 \times \frac{|\{X_i = 10\}|}{N}$$

$$10 \times \frac{|\{X_i = 10\}|}{N}$$

$$1 \times \mathbb{P}[X = 1]$$

$$2 \times \mathbb{P}[X = 2]$$

$$10 \times \mathbb{P}[X = 10]$$

Summary

$$\lim_{N \to \infty} \frac{1}{N} (X_4 + X_{19} + X_7 \dots + X_9 + X_6 + X_2 \dots + X_{124} + X_{28} + X_{47})$$
Event:
$$X_i = 1$$

$$X_i = 1$$
Event:
$$X_i = 1$$

$$X_i = 1$$

$$1 \times \frac{|\{X_i = 1\}|}{N} \qquad 2 \times \frac{|\{X_i = 2\}|}{N} \qquad \bullet \qquad \bullet \qquad 10 \times \frac{|\{X_i = 10\}|}{N}$$

$$= \sum_{i=1}^{10} x \times \mathbb{P}[X = x]$$

Generalising the formula

(discrete random variables)

$$\mathbb{E}[X] = \sum_{i=1}^{10} x \times \mathbb{P}[X = x]$$

$$\downarrow$$

$$\mathbb{E}[X] = \sum_{x \in \text{Supp}(X)} x f_X(x)$$

Probability mass function

Practice

Formula for expected value?

$$support(X) = \{1,2,...,6\}$$

$$\mathbb{E}[X] = \sum_{i=1}^{6} i \times \mathbb{P}[i] = \sum_{i=1}^{6} \frac{i}{6}$$

Expectation of function of random variable

What's the mean of h(X) over many trials?

$$\bar{h}_{N}(X) = \frac{1}{N} \sum_{i=1}^{N} h(X_{i})$$

$$\mathbb{E}[h(X)] = \lim_{N \to \infty} \bar{h}_{N}(X)$$

Expectation of function of random variable

What's the mean of h(X) over many trials?

$$\mathbb{E}[h(X)] = \sum_{x \in \text{Supp}(X)} h(x) f_X(x)$$

Show for yourself (follow logic of slides for $\mathbb{E}[X]$)

$$\bar{h}_{N}(X) = \frac{1}{N} \sum_{i=1}^{N} h(X_{i})$$

$$\mathbb{E}[h(X)] = \lim_{N \to \infty} \bar{h}_{N}(X)$$

Practice

Formula for $\mathbb{E}[X^2]$?

$$\mathbb{E}[h(X)] = \sum_{x \in \text{Supp}(X)} h(x) f_X(x)$$

Practice

Formula for $\mathbb{E}[X^2]$?

$$support(X) = \{1,2,...,6\}$$

$$\mathbb{E}[X^2] = \sum_{i=1}^{6} i^2 \times \mathbb{P}[X = i]$$
$$= \sum_{i=1}^{6} \frac{i^2}{6} = 15\frac{1}{6}$$

$$\mathbb{E}[X] = 3.5$$

$$\mathbb{E}[X]^2 = 12 \frac{1}{4}$$

Getting intuition on expectations

Let's consider $X \sim U(\{-1,1\})$

$$\mathbb{E}[X]$$
?

$$\mathbb{E}[X^2]$$
?

Getting intuition on expectations

Expectations don't play nicely with nonlinearities!

$$\mathbb{E}[X] = 0$$

$$\mathbb{E}[X^2] = 1$$

Expectation satisfies linearity

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y] \qquad \forall a, b \in \mathbb{R}$$

(For any real numbers a and b)

Examples

$$\mathbb{E}\left[\sum_{i} a_{i} X_{i}\right] = \sum_{i} a_{i} \mathbb{E}\left[X_{i}\right] \quad \forall a_{i} \in \mathbb{R}$$

$$\mathbb{E}[XY] \neq \mathbb{E}[X]\mathbb{E}[Y]$$
 if X and Y are both random variables

Summarising random variables

How big is a random variable (on average)

Expected value: $\mathbb{E}[X]$ or $\mu(X)$

How variable is a random variable (on average)

Variance: Var[X] or $\sigma^2(X)$

Conceptualising variance

How far does a random variable usually fall from its expected value?

How much uncertainty in the random variable?

$$\mathbb{E}[(X - \mathbb{E}[X])^2]$$

Conceptualising variance

How far does a random variable usually fall from its expected value?

How much uncertainty in the random variable?

$$\mathbb{E}[(X - \mathbb{E}[X])^2]$$

Variance of an example random variable

Let's consider $X \sim U(\{-1,1\})$ again

$$\mathbb{E}[(X - \mathbb{E}[X])^2]?$$

Variance of an example random variable

Let's consider $X \sim U(\{-1,1\})$ again

$$\mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] = 1$$

Algebra on the expected value

$$\mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$= \mathbb{E}\left[X^2 - 2X\mathbb{E}[X] + \mathbb{E}[X]^2\right]$$

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X\mathbb{E}[X]] + \mathbb{E}[\mathbb{E}[X]^2]$$

(Linearity of expectation)

Algebra on the expected value

How to simplify $\mathbb{E}[\mathbb{E}[X]]$ and similar?

Well $\mathbb{E}[X]$ is a real number, so can apply linearity!

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X\mathbb{E}[X]] + \mathbb{E}[\mathbb{E}[X]^2]$$

Algebra on the expected value

How to simplify $\mathbb{E}[\mathbb{E}[X]]$ and similar?

Well $\mathbb{E}[X]$ is a real number, so can apply linearity!

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X\mathbb{E}[X]] + \mathbb{E}[\mathbb{E}[X]^2]$$

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X]^2 + \mathbb{E}[X]^2\mathbb{E}[1]$$

Two equivalent expressions for the variance

$$\mathbb{E}[(X - \mathbb{E}[X])^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X\mathbb{E}[X]] + \mathbb{E}[\mathbb{E}[X]^2]$$

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X]^2 + \mathbb{E}[X]^2\mathbb{E}[1]$$

Algebra on the variance

Homework

Use linearity of expectation to convince yourself that:

$$Var(cX) = c^{2}Var(X)$$

$$c \in \mathbb{R}$$

Approximate continuous random variable with an improving series of discrete random variables

Discrete RV only takes values in the centre of each rectangle

 $\{\hat{X}_j\}_{j=1}^{\infty} = \text{sequence of discrete random}$ variables approximating X

Discrete RV only takes values in the centre of each rectangle

$$\hat{X}_1 = 0 \text{ if } X \in [-1,1]$$

$$\hat{X}_{10} = 0 \text{ if } X \in [-0.1,0.1]$$

 $\{\hat{X}_j\}_{j=1}^{\infty} = \text{sequence of discrete random}$ variables approximating X

$$\mathbb{P}[\hat{X}_j = x] \approx \int_{L_i^j}^{U_i^j} f_X(x) \ dx$$

$$[L_i^j, U_i^j]$$
: i^{th} rectangle j^{th} approximation

 $\{\hat{X}_j\}_{j=1}^{\infty} = \text{sequence of discrete random}$ variables approximating X

$$\mathbb{E}[\hat{X}_j] = \sum_{\text{supp}(\hat{X}_j)} x \mathbb{P}[\hat{X}_j = x] \quad \bullet \quad \mathbb{E}[X] = \int_{\text{supp}(X)} x f_X(x) \, dx$$

Probability density function

$$\mathbb{E}[X] = \int_{\text{supp}(X)} x f_X(x) \ dx$$

Probability density function

Hard, optional homework

Prove above identity by formalising intuition of previous three slides

Easier homework

What's the highest value a PDF can theoretically take?

Gaussian random variable are special

"X is a Gaussian with mean μ and variance σ^2 "

Gaussian random variable are special

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

(Don't have to remember)

Single trial

Bernoulli RV: X is 3

What is the PMF for the mean of X over e.g. 100 trials?

Single trial

Bernoulli RV: X is 3

What is the PDF for the mean of X over e.g. 100 trials?

More generally...

Random variables depend on single experiments

What about their expectation over groups of *independent* experiments?

Random variables depend on single experiments

What about their expectation over groups of *independent* experiments?

Arbitrary random variable X:

$$\mathbb{E}[X] = \mu \qquad \text{Var}[X] = \sigma^2$$

 $\{X_1...X_n\}$ are i.i.d.

"Independent, identically distributed" (remember abbreviation)

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Average outcome over groups of *n* experiments

Central Limit Theorem

$$\bar{X}_n \to^d \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
 regardless of X_i distribution

Caveat

How large should *n* be for the Central Limit Approximation to be reasonable?

Pragmatic: n=30

Theoretical: arbitrarily large! (depends on how 'non-Gaussian' X is)

Central Limit Theorem

$$\bar{X}_n \to^d \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
 regardless of X_i distribution

Single trial

Bernoulli RV: X is 3

What is the PDF for the mean of X over e.g. 100 trials?

Is height approximately normally (gaussian) distributed?

Is the average height of each MSc course normally distributed?

Conditional probability

Other events are still uncertain, but their probability has changed

Y: first seat in back row filled?

Z: all seats unfilled?

$$B = \{ \text{ roll } \geq 5 \}$$

$$A = \{ \text{ roll is odd} \}$$

 $\mathbb{P}[A \mid B]$?

"Probability of A given B"

$$B = \{ \text{roll } \geq 5 \}$$

$$A = \{ \text{ roll is odd} \}$$

 $\mathbb{P}[A \mid B]$?

"Probability of A given B"

New Probability Space when Event B occurred

New set of outcomes in which event A happens: $A \cap B$

New set of all possible outcomes: *B*

New Probability Space when Event B occurred

New set of outcomes in which event A happens: $A \cap B$

New set of all possible outcomes: *B*

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Law of conditional probability

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Independent events

$$\mathbb{P}[A \mid B] = \mathbb{P}[A]$$

$$\Rightarrow \mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$$

Independent events?

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Independent events?

Can exclusive events (no intersection) ever be independent?

$$\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$$

Independent events?

$$\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$$

...only if one of their initial probabilities are zero

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(B \mid A)\mathbb{P}[A]}{\mathbb{P}(B)}$$

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(B \mid A)\mathbb{P}[A]}{\mathbb{P}(B)}$$

$$\mathbb{P}[B \mid A] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[A]}$$

$$\mathbb{P}[A \cap B] = \mathbb{P}[B | A] \mathbb{P}[A]$$

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(B \mid A)\mathbb{P}[A]}{\mathbb{P}(B)}$$

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$

 $\mathbb{P}[A \cap B] = \mathbb{P}[A \mid B] \mathbb{P}[B]$

$A \mid B$:

$$\mathbb{P}[A \cap B] = \mathbb{P}[A \mid B] \mathbb{P}[B]$$

$$\mathbb{P}[A \mid B] \mathbb{P}[B]$$

 $\mathbb{P}[B|A]\mathbb{P}[A]$

$$B \mid A$$
:

$$\mathbb{P}[A \cap B] = \mathbb{P}[B | A] \mathbb{P}[A]$$

$$A \mid B$$
:

$$\mathbb{P}[A \cap B] = \mathbb{P}[A \mid B] \mathbb{P}[B]$$

$$B \mid A$$
:

$$\mathbb{P}[A \cap B] = \mathbb{P}[B | A] \mathbb{P}[A]$$

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(B \mid A)\mathbb{P}[A]}{\mathbb{P}(B)}$$

$$\mathbb{P}[A \mid B] \mathbb{P}[B]$$

$$\mathbb{P}[B|A]\mathbb{P}[A]$$

Bayes' Theorem is useful

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(B \mid A)\mathbb{P}[A]}{\mathbb{P}(B)}$$

Probability of COVID | sore throat?

Probability of COVID = 1%

Probability of sore throat = 5%

Percentage of Covid patients with sore throat = 30%

Bayes' Theorem is useful

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(B \mid A)\mathbb{P}[A]}{\mathbb{P}(B)}$$

Probability of COVID | sore throat?

$$=\frac{0.3\times0.01}{0.05}$$

Probability of COVID = 1%

Probability of sore throat = 5%

Percentage of Covid patients with sore throat = 30%

Bayes' Theorem is useful

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN:

BAYESIAN STATISTICIAN:

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)}$$

Reading mathematics

For any $A \in \mathbb{R}^{m \times n}$, where $m, n \in \mathbb{N}$: $\ker(A) = \{x : Ax = 0\}$

Definition

The span of a set of vectors

Consider a vector space V, with associated field K (usually $K=\mathbb{R}$). Pick two elements $e_1,e_2\in V$. Consider the set

$$S = \{v \in V : v = \alpha_1 e_1 + \alpha_2 e_2, \text{ where } \alpha_1, \alpha_2 \in K\}$$

1. S is known as the **span** of the vectors e_1 and e_2 .

Reading mathematics

Let K be a field:

$$K[x] = \{a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n \mid a_i \in K\}$$

$$K[x]_{\leq N} = \{a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n \mid 0 \leq n \leq N, a_i \in K\}$$