Assignment

Kevin Guillen

MATH — Class — Quarter

Problem 5.1 Writing $z = re^{i \operatorname{Arg} z}$, show that, where $n \in \mathbb{Z}_{>0}$

$$\log(z^{1/n}) = \frac{1}{n} \ln r + i \left(\frac{\operatorname{Arg} z + 2(pn+k)\pi}{n} \right), \quad p \in \mathbb{Z}, \ k = 0, \dots, n-1.$$

Now, after writing

$$\frac{1}{n}\log z = \frac{1}{n}\ln r + i\left(\frac{\operatorname{Arg}z + 2q\pi}{n}\right), \quad q \in \mathbb{Z},$$

show that we have equality of sets

$$\log(z^{1/n}) = \frac{1}{n} \log z$$

Proof. First recall from Example 9.9 that $z^{1/n} = e^{\log(z)/n}$. So expanding we have,

$$\begin{split} \log(z^{1/n}) &= \log(e^{\log(z)/n}) & \text{Apply Prop. 9.3(2)} \\ &= \frac{\log z}{n} + 2p\pi i & p \in \mathbb{Z} \\ &= \frac{1}{n} \ln r + \frac{i \operatorname{Arg} z + 2k\pi i}{n} + 2p\pi i & k \in \mathbb{Z} \\ &= \frac{1}{n} \ln r + \frac{i \operatorname{Arg} z + 2k\pi i}{n} + \frac{2p\pi i n}{n} & \\ &= \frac{1}{n} \ln r + i \left(\frac{\operatorname{Arg} z + 2(pn + k)\pi}{n} \right) & p \in \mathbb{Z}, k \in \{0, \dots, n-1\} \end{split}$$

giving us the desired expression.

Problem 5.2

(a) Find real valued functions $u, v : \mathbb{R}^2 \to \mathbb{R}$ such that $\cos z = u(x,y) + iv(x,y)$.

Solution.

(b) Show that $e^{\overline{z}} = \overline{e^z}$ and $\cos \overline{z} = \overline{\cos z}$.

Solution.

(c) Show that $e^{iz} = \cos z + i \sin z$, and prove $\sin \overline{z} = \overline{\sin z}$.

Problem 5.3

(a) Verify that $(z^{\alpha})^{n} = z^{n\alpha}$ for $z \neq 0$ and $n \in \mathbb{Z}$.

Solution. \Box

(b) Find a counterexample to the statement: $(z^{\alpha})^{\beta} = z^{\alpha\beta}$, where $z \neq 0$ and $\alpha, \beta \in \mathbb{C}$.

Problem 5.4 Determine the points at which the following functions are holomorphic. Find its derivative at those points.

(a) $f(z) = e^{\overline{z}}$.

Solution.

(b) $g(z) = \cos \overline{z}$.

Solution.

(c) $a(z) = \frac{\text{Log}(2z - i)}{z^2 + 1}$.

Problem 5.5 Find all complex values <i>z</i> satisfying the given equation.	
(a) $\cos z = 4$	
Solution.	
(b) $\cos z = i \sin z$	
Solution.	

Prob	lem 5.6 Let $z \in \mathbb{C}$.
(a)	Prove that $ 1^z $ is single-valued if and only if $\text{Im } z = 0$.
	Solution.
(b)	Find a necessary and sufficient condition for $\left i^{iz}\right $ to be single-valued.
	Solution.
(c)	Show by counterexample that the statement is false: $1^z \text{ is single-valued if and only if } \operatorname{Im} z = 0.$

Collaborators:

References:

• [Book(s): Title, Author]

• [Online: Link]

• [Notes: Link]

Fin.