Aseguramiento de la Calidad del Software Tarea #1

André Arroyo Piedra 2015073657 Bryan Vargas 2015011562

Juan Villacis 2016201681

1 de septiembre del 2018

1 Introduccion

Este documento tiene como fin plantear las caracteristicas y atributos de calidad definidos por el ISO-9126, con el fin de asegurar la calidad del producto. Además se incluirán métricas para evaluar tales atributos y se incluira una lista de herramientas para aplicar las metricas.

2 Identificación de los atributos y su prioridad

A continuacion se mostrara un cuadro con las caracteristicas y atributos de calidad con los que debe contar el software, ademas se agregara un nivel de prioridad a cada atributo.

Caracteristicas externas e internas			
Caracteristica	Atributo	Prioridad	Justificacion
	Exactitud	Н	Los resultados tienen que ser precisos ya que en
Funcionalidad			el ambito de salud un resultado inexacto puede
			tener consecuencias problematicas para los pa-
			cientes
	Cumplimiento de	Н	Es importante que cumpla sus funciones para que
	Funcionalidad		los usuarios puedan hacer un uso correcto de las
			imagenes y puedan investigar de una manera mas
			fiable
	Adecuación	L	Brindarle un adecuado grupo de funcionalidades
			al usuario es importante para la satisfaccion y co-
			modidad de este a la hora de utilizar el programa
	Madurez	H	Es importante que el sistema no sufra fallos, ya
Fiabilidad			que un error podria poner en juego la salud de
			una persona
	Tolerancia a fallos	Н	EL sistema no puede generar fallos o al menos
			si presenta alguno sucede rara vez y se recupera
			rapidamente

	Capacidad de Re-	M	Este software es capaz de recuperarse de un error
	cuperación		facilmente sin inconvenientes
	Capacidad de ser	L	Debe ser un programa que sea facil de compren-
Usabilidad	entendido		der, sin necesidad de recurrir a las explicaciones
			de este constantemente
	Capacidad de ser	M	No debe tener una complicidad alta para el
	operado		usuario, debe ser amigable con el usuario y tener
			una interfaz sencilla y apegada a sus necesidades
	Capacidad de ser	L	Debe ser un software que no lleve una curva
	aprendido		de aprendizaje alta para una persona con
			conocimientos ya adquiridos sobre el tema de seg-
			mentacion de celulas
Eficiencia	Comportamiento	H	Que la capacidad del sistema para completar el
Billeteneta	temporal		procesamiento de la imagen sea rápido y eficaz
			sin perder calidad en el resultado
	Utilizacion de re-	L	El programa no requiere muchos recursos para
	cursos		cumplir con su función
	Capacidad para ser	M	Si se puede determinar de una manera sencilla
Mantenibilidad	analizado		los posibles comportamientos que va a tener el
			software al ser modificado se podrá planificar de
			una manera mas sencilla los cambios que se deban
		2.5	aplicar
	Estabilidad	M	La importancia de este atributo es que si se
			cumple la aplicacion tendra una manera con-
			stante de comportamiento y esto permite que los
		2.5	usuarios no lidien con situaciones inesperadas
	Capacidad para ser	M	Es importante poder hacer cambios en el software
	modificado	2.5	sin causar deterioros en otras partes del sistema
D + 1 - 1 - 1	Adaptabilidad	M	Este Software será capaz de adaptarse a los cam-
Portabilidad			bios referentes al entorno donde se use sin necesi-
	T 4 1 1 11 1 1	M	dad de muchos cambios
	Instalabilidad	M	El programa puede ser instalado en varios en-
	G :1 1	т	tornos de facil manera
	Capacidad para ser	L	Será muy sencillo pero tendra la capacidad de
	reemplazado		reemplazar o ser reemplazado por otros sistemas
			por esta caracteristica de sencillez

3 Identificación de las métricas

En este cuadro se van a plantear las metricas que se utilizaran en cada atributo para evaluar su calidad y ademas se pondra un valor en el cual se considere aceptable.

Medición de la calidad					
Caracteristica	Atributo	Métrica	Valores aceptables		
Funcionalidad	Exactitud	Cantidad de resultados que esten dentro del valor esperado	Este valor se ve determinado por la precision y exacti- tud del modelo us- ado para hacer la clasificación		
	Cumplimiento de Funcionalidad	Cantidad de errores encontrados en las diferentes funciones del sis- tema	Los errores no deben de aparecer mas del 20% de las veces que se corra la aplicación, para cumplir con el principio de Pareto		
	Adecuación	Cantidad de funcionalidades principales y extra que tenga el software	Debe tener todas las funcionalidades necesarias para cumplir las tareas propuestas como minimo, ademas puede tener funcionalidades que ayuden a mejorar la experiencia con el usuario		
Fiabilidad	Madurez	Cantidad de funciones con manejo de fallos	La totalidad de las funciones críticas deben manejar fal- los correctamente		
	Tolerancia a fallos	Cantidad de funciones sin fallo alguno	Al menos un 80% de las funciones no deben de tener fallos, esto se debe al principio de Pareto		
	Capacidad de Re- cuperación	Cantidad de errores corregidos correctamente	Un 90% de los errores deben ser corregidos correc- tamente		
Usabilidad	Capacidad de ser entendido	Tiempo que les toma a los usuarios comprender la aplicación	El usuario no debe de tardar mas de 20 minutos para en- tender el software		

	Capacidad de ser operado	Tiempo en que el usuario tarda en hacer una funcion	Deberia ser menor a 10 minutos para preparar el ambi- ente y menor a un 40% del tiempo ac- tual requerido para hacer la clasifica- cion
	Capacidad de ser aprendido	Cantidad de errores cometidos despues de haberles dado una ex- plicación previa de la aplicación	Menos de 5 errores en promedio
Eficiencia	Comportamiento temporal	Tiempo requerido para completar el proceso sin afectar la eficacia	El programa es ca- paz de terminar el proceso en tan solo 10 minutos
	Utilización de recursos	MB de memoria necesarios para ejecutar la aplicacion	La aplicacion no debe ocupar más de 400MB en memoria, lo que equivale al 10% de la memoria principal de un computador de escazos recursos
Mantenibilidad	Capacidad para ser analizado	Lapso de tiempo que se dura en verificar el sistema al ser modifi- cado	Debe ser menor a 8 horas, lo que equiv- ale a un dia de tra- bajo
	Estabilidad	Lapso de tiempo en el que el sis- tema se mantiene trabajando de la misma manera sin mostrar er- rores o cambios inesperados	El sistema debe ser capaz de manten- erse activo durante al menos 20 dias luego de un fallo
	Capacidad para ser modificado	Cantidad de cambios que hay que realizar en el sistema para modificar una funcionalidad o caracteristica	Se debe modificar menos de un 10% de el sistema fuera de esa funcionali- dad a cambiar
Portabilidad	Adaptabilidad	Tiempo que soporta el sistema en mantenerse funcionando ape- sar de los cambios de sortware en el tiempo	EL programa debe servir por más de 10 años

Instalabilidad	Cantidad de máquinas diferentes	Debe ser posi-
	donde puede ser instalado	ble instalarse en
		cualquier sistema
		operativo apartir
		de windows 7 y en
		cualquier sistema
		linux
Capacidad para ser	Cantidad de aplicaciones que po-	Al menos debe ex-
reemplazado	drian cumplir con las mismas	istir una aplicacion
	funciones	para cada función
		del programa

4 Definición del plan de evaluación de las métricas

4.1 Decripcion de metricas planteadas

A continuación se describiran las metricas mencionadas en la tabla 2.

- 1. Exactitud: Se correra la aplicación y se contara cuantas veces estuvo dentro del rango aceptable.
- 2. Cumplimiento de Funcionalidad: Se correran todas las funcionalidades del sistema y se contabilizara cuantos y en cuales funciones se encuentran errores.
- 3. AdecuaciónL Se hara un conteo de las funcionalidades que completen de manera correcta el objetivo de la aplicacion

4. Madurez:

Se colocaran dentro de las funciones parametros incorrectos para evaluar cuantas de estas soportan estos errores.

- 5. Tolerancia a fallos: Se probara haciendo correr la aplicación repetidamente, todas las funciones pasaran por este proceso para contabilizar cuantas de estas no presentan ningun error.
- 6. Capacidad de Recuperacion: Esto sera alcanzado haciendo funcionar el sistema de manera que sea obligado a fallar, así se tomara el tiempo que tarda en recuperarse de los fallos.
- 7. Capacidad de ser entendido: Se contara el tiempo en el que el usuario tarda en leer la especificación de como se utiliza la aplicación y cuanto tiempo dura en hacer varias funciones sin consultar del todo la documentación
- 8. Capacidad de ser operado: Se asigna una tarea a un usuario y se toma el tiempo que le tomo realizarla. Esto se repite con varios usuarios y se toma el promedio de todos.

- 9. Capacidad de de ser aprendido: Esto se logra contando que tantos errores comete un usuario al aprender a utilizar la aplicacion luego de explicarles como funciona. Se ponen varios usuarios a utilizar el sistema y se estima un promedio de errores cometidos entre todos.
- 10. Comportamiento temporal: Se pondrá la aplicación a prueba ya sea con un cronometro o una aplicacion como por ejemplo TRACKINGTIME y así ver cuanto dura esta en completar su tarea
- 11. Utilizacion de recursos: En el momento de correr la aplicacion se utilizara una aplicacion por ejemplo HWMonitor, que nos permite ver el estado de temperatura y energia entre otras más y así saber cuanto esta consumiendo esta aplicación en el tema de recursos.
- 12. Capacidad para ser analizado: Conteo de tiempo de lo que dura un programador en planificar un cambio que se deba aplicar
- 13. Estabilidad: Esto se puede comprobar simplemente tomando nota de la cantidad de veces que el sistema sufre un fallo en un lapso de tiempo, especialmente medido en semanas o meses.
- 14. Capacidad para ser modificado: Si se requiere hacer un cambio se contabiliza la cantidad de modificaciones fuera de la funcionalidad a cambiar
- 15. Adaptabilidad: Se evalua en un lapso de tiempo al sacar la aplicación, que tanto ha sido afectada por los cambios normales al avanzar la tecnologia.
- 16. Instalabilidad: Se instala la aplicación en varias maquinas y así se puede saber en cuantas se pudo intalar y poner a funcionar correctamente.
- 17. Capacidad para ser reemplazado: Se evalua junto con otras aplicaciones similares y se revisa si entre ellas es posible compartir funcionales y asi saber que tan posible es reemplazar o que sea reemplazada por otra.

4.2 Herramientas de evaluación

Herramientas para medir el cumplimiento correcto de las metricas propuestas y verificar la correctitud de entregables:

- 1. Sonarqube: Detecta errores en el codigo, olores del software (malas practicas), vulnerabilidad en la seguridad y analiza el codigo con todos los posibles caminos para determinar pulgas.
- 2. Metrics 3: Análisis estático del código fuente de un proyecto (análisis ci-clométrico, etc.)
- 3. EclEmma Características: Permite saber el porcentaje de cubrimiento decódigo que se realiza en una ejecución o serie de ejecuciones.
- 4. Junit: Permite diseñar y verificar automáticamente conjuntos de pruebas.

- 5. Selenium: Automatiza pruebas realizadas desde una GUI.
- 6. Fortify: Encuentra fallos de seguridad.
- 7. Manejo de requerimientos: Requiew.
- 8. Star UML, zohoprojects, VisualParadigm, Visio : Documentación de requerimientos, casos de uso, diagramas de componentes y UML.
- 9. Encuestas y Observaciones: Con esto se pueden analizar resultados de la utilizacion del software del usuario
- 10. Observacion: Para medir algunas métricas de calidad se debera emplear en algunos casos la observación

5 Conclusión

A partir de esta informacion se podra analizar, contabilizar y utilizar esta informacion para tener una mejor vision y resultados del software en el que se esta trabajando.