(III) Los valores de f en los puntos críticos son: $f(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2}$ del paso (I) y del paso (II),

$$f\left(\mathbf{c}\left(\frac{\pi}{4}\right)\right) = f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = 2 - \sqrt{2},$$

$$f\left(\mathbf{c}\left(\frac{5\pi}{4}\right)\right) = f\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = 2 + \sqrt{2},$$

У

$$f(\mathbf{c}(0)) = f(\mathbf{c}(2\pi)) = f(0,1) = 1.$$

(IV) Comparando todos los valores $\frac{1}{2}$, $2-\sqrt{2}$, $2+\sqrt{2}$, 1, está claro que el mínimo absoluto es $\frac{1}{2}$ y el máximo absoluto es $2+\sqrt{2}$.

En la Sección 3.4 vamos a considerar una generalización de la estrategia para determinar los puntos de máximo y de mínimo absolutos en regiones U en \mathbb{R}^n .

Ejercicios

En los Ejercicios 1 a 16 hallar los puntos críticos de la función dada y determinar después si se trata de puntos de máximo local, de mínimo local o de silla.

1.
$$f(x,y) = x^2 - y^2 + xy$$

2.
$$f(x,y) = x^2 + y^2 - xy$$

3.
$$f(x,y) = x^2 + y^2 + 2xy$$

4.
$$f(x,y) = x^2 + y^2 + 3xy$$

5.
$$f(x,y) = e^{1+x^2-y^2}$$

6.
$$f(x,y) = x^2 - 3xy + 5x - 2y + 6y^2 + 8y^2 +$$

7.
$$f(x,y) = 3x^2 + 2xy + 2x + y^2 + y + 4$$

8.
$$f(x,y) = \text{sen}(x^2 + y^2)$$
 [considerar únicamente el punto crítico $(0,0)$]

9.
$$f(x,y) = \cos(x^2 + y^2)$$
 [considerar únicamente los tres puntos críticos $(0,0), (\sqrt{\pi/2}, \sqrt{\pi/2})$ y $(0,\sqrt{\pi})$]

10.
$$f(x,y) = y + x \operatorname{sen} y$$

11.
$$f(x,y) = e^x \cos y$$

12.
$$f(x,y) = (x-y)(xy-1)$$

13.
$$f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$$

14.
$$f(x,y) = \log(2 + \sin xy)$$

15.
$$f(x,y) = x \sin y$$

16.
$$f(x,y) = (x+y)(xy+1)$$

17. Hallar todos los puntos de extremo local de
$$f(x,y) = 8y^3 + 12x^2 - 24xy.$$

18. Sea
$$f(x, y, z) = x^2 + y^2 + z^2 + kyz$$
.

- (a) Verificar que (0, 0, 0) es un punto crítico para f.
- (b) Hallar todos los valores de k tales que f tiene un punto de mínimo local en (0, 0, 0).

19. Determinar y clasificar todos los puntos críticos de
$$f(x,y)=\frac{1}{3}x^3+\frac{1}{3}y^3-\frac{1}{2}x^2-\frac{5}{2}y^2+6y+10.$$

20. Supongamos que (4, 2) es un punto crítico para la función f(x, y) de clase C^2 . En cada caso, determinar si (4, 2) es un punto de máximo local, de mínimo local o de silla.