Note Title

Claim 1: The transition graph of a defa for any infinite regular language has cycles.

Proof: Each string in the language corresponds to a walk in the dfa's transition graph. If there are no cycles, there are only finitely many walles.

Examples.
No (directed) cycles,
so finite largrage.

Has a cycle, so larguage is infinite.

Definition A string in a larguage can be pumped if we can repeat any number of while staying in the larguage.

Examples: . L = { a (bc) md: n > 3, m > 0}

most strings in this larguage can be pumped.
e.g. 'aaabcbcd' extends to

'aaabcbc...bcd'

· L = { jova programs}

every string in L containing whitespace can be pumped,

by repeating the whitespace.

· L definal by

The strings a, ab, aba cannot be pumped. The strings baback, busculud can be pumped.

Formal definition Stary S in larguage L can be pumped if we can write $S = S_1 S_2 S_3$ with S_2 nonempty, such that

5,52°53 EL for all n>0.

example: In the last example above, s=bobook can be pumped with S, = b, S_= cbc, S_= cb

[intornal versor of "simplified pumping lemma"]

Claim 2 Given an infinite, regular language L, every sufficiently long string in L can be pumped.

(proof is given later. Examples first.)

Ad strings in L with length > 9 can be pumped. eg. bbbbbbb can't be purped. ascdecdfy can be pumped.

aside code cod for can be purposed.

[Lys Lis not regular, as he will soon see].

Ever number of a's

The string and... a can be pumped.

But no... a abad... a convot be pumped.

More generally, there exitt abstraily long strings in L

that count be pumped. So L isn't regular, by claim 2.

"Simplified pumping lemna"

Formal Statement of claim Z: Let L be an infinite, regular language.

Then there exists some M > 0 such that all stanges in L, with length ZM, can be pumped.

Proof: By claim I, a transition graph for L contains a cycle. The graph is finite, so we must traverse a cycle after some maximum number of steps M. But this nears any sel with length ≥ M traverses a cycle. So we can pump s by adding any number of trips around the cycle.

Basil idea:

s is a beford

pumped version is a b (efg) and for n > 0.

We call Claim 2 the simplified Pumping Lemma. We can use it to prove that some languages wen't regular.

,	
Examples of applying the (simplified) fumping	Cemna:
Claim and isn't regular.	
proof: No strings in this language can be putte (simplified) humping Lemma, which long strings in an infinite regular	umped. This contracticts states that all sufficient larguage can be pumped
ain L= { abradea2 : 10,0 }	isn't regular.
proof: Suppose L is regular and asin for a contra funping lemma, there exists some M such length > M can be pumped. Consider the w = a6 Mcde a 2M w & L, and (w)>M, but w can't be purposing lemma.	med, writishiting the
Claim 3 (Full pumping lemma) L infinite r regular	. Then there exists M with [S] > M can be
proof: The save proof works, since the cycle or in the first M transitions.	
Example: L= { a" b" c": n, m > 0} is not	regular.
Proof: Note that the simplified Pumping Lemma is since we can always pump b's into But the Gull Pumping Lemma gives us	sn't quite good enough, a long state in L. What we recel:

Arrune L	regular. I	her have	. M such	that all	SEL with ISI	M
can be number	1 before N	. Take	$S = a^{M}$	cm. No	whe ant	
Arrune L can be pumper pump before	M avel sto	, inside	L, wintra	dicting the	- full oursing	
lemma.		J)			

Example: Java is not regular.

proof: Assume it is. Restrict attention to the alphabet (£), (3) by ignoring all other symbols. Let M from pumping lemma.

Consider the string £^M 3^m. It can't be pumped before M, contradicting the pumping lemma.