

CMPS 460 - Spring 2022

MACHINE

LEARNING

Tamer Elsayed

Image hosted by. WittySparks.com | Image source: Pixabay.com

7.b

Linear Models: Weight Regularization

Chapter 7: 7.3

Optimization Framework

Objective function

Loss function

measures how well classifier fits training data

Regularizer

prefers solutions that generalize well

$$\min_{\mathbf{w},b} L(\mathbf{w},b) = \min_{\mathbf{w},b} \sum_{n=1}^{N} \mathbb{I}(y_n(\mathbf{w}) + b) < 0) + \lambda R(\mathbf{w},b)$$

$$l(y_n, \hat{y}_n)$$

$$\lambda: \text{ parameter that continuous the importance of the importance of$$

 λ : parameter that controls the importance of the regularization term

- Different loss function approximations
 - easier to optimize
- Regularizer
 - prevents overfitting/prefers simple models.

Surrogate loss functions

• 0-1 Loss

$$\ell^{(0/1)}(y, \hat{y}) = \mathbf{1}[y\hat{y} \le 0]$$

Hinge Loss

$$\ell^{(\mathsf{hin})}(y,\hat{y}) = \max\{0, 1 - y\hat{y}\}\$$

• Logistic Loss
$$\ell^{(\log)}(y, \hat{y}) = \frac{1}{\log 2} \log (1 + \exp[-y\hat{y}])$$

Exponential loss

$$\ell^{(exp)}(y,\hat{y}) = \exp[-y\hat{y}]$$

Weight Regularization

Regularization

- A technique to improve the generalizability of a learned model.
- Without bounds on complexity of the function space, model tends to overfit training data.
- Introduces a penalty for exploring certain regions of the function space.

The Regularizer Term

Goal: find simple solutions

- Ideally, we want most entries of w to be zero, so prediction depends only on a small number of features.
- Formally, we want to minimize:

$$R^{cnt}(\mathbf{w},b) = \sum_{d=1}^{D} \mathbb{I}(w_d \neq 0)$$

- That's NP-hard!
- So we use approximations instead.
 - e.g., we encourage w_d's to be small

Norm-based Regularizers

ullet l_p norms can be used as regularizers.

$$||\mathbf{w}||_2^2 = \sum_{d=1}^D w_d^2$$

 $||\mathbf{w}||_1 = \sum_{d=1}^D |w_d|$
 $||\mathbf{w}||_p = (\sum_{d=1}^D w_d^p)^{1/p}$

Norm-based Regularizers

https://www.researchgate.net/publication/331855021 An Efficient Image Reconstruction Framework Using Total Variation Regulariz ation_with_Lp-Quasinorm_and_Group_Gradient_Sparsity/figures?lo=1

Norm-based Regularizers

ullet l_p norms can be used as regularizers.

$$||\mathbf{w}||_2^2 = \sum_{d=1}^D w_d^2$$

 $||\mathbf{w}||_1 = \sum_{d=1}^D |w_d|$
 $||\mathbf{w}||_p = (\sum_{d=1}^D w_d^p)^{1/p}$

- Smaller p favors sparse vectors w
 - i.e. most entries of w are close or equal to 0
- p < 1: norm is non convex and hard to optimize!
- ullet l_1 norm: encourages sparse w, convex, but not smooth at axis points
- l_2 norm: convex, smooth, easy to optimize