E6 - Prismes et cylindres

E.1 Ci-dessous est représenté un cube en perspective cavalière:

Reproduire ce cube en perspective cavalière sur l'espace laissé libre à droite.

E.2 Quatre représentations de parallélépipèdes rectangles en perspective cavalière sont données de manière incomplète ci-dessous:

Tracer les traits continus et en pointillés manquants afin de compléter leurs perspectives cavalières.

E.3 On considère le parallélépipède ci-dessous:

- 1 Donner le volume de ce pavé droit.
- 2 Déterminer l'aire totale de toutes les faces de ce pavé droit.

E.4 On considère le prisme droit *ABCDEF* représenté cidessous :

- 1 Quelle est la nature de la base de ce prisme droit?
- 2 a Combien d'arêtes comporte ce prisme droit?
 - **b** Combien de faces comporte ce prisme droit?

E.5 On considère les deux prismes droits ABCDEF et GHIJKLMNOPQRSTUV représentés ci-dessous:

- 1 Préciser la nature de la base de chacun de ces prismes droits.
- 2 Donner le nombre de sommets, d'arêtes et de faces de chacun de ces prismes droits.

E.6 On considère les quatre solides ci-dessous représentés en perspective cavalière:

Parmi les solides présentés ci-dessus, lesquels sont des prismes droits. On précisera la nature de la base des prismes droits.

E.7 On considère les quatre solides ci-dessous:

- 1 Pour chacun des solides, donner le nombre de sommets, d'arêtes et de faces.
- 2 Parmi les solides représentés, lesquels sont des prismes droits? Pour ceux-ci, préciser la nature de la base.
- E.8 On considère les deux patrons ci-dessous:

Ces deux patrons permettent de construire un prisme droit.

- 1 a Préciser la nature de la base de chacun de ces prismes droits.
 - (b) Pour chacun de ces prismes droits, de quelles natures sont les faces du prisme droit?
- 2 Pour chacun des solides construits à partir de ces deux patrons , répondre aux questions suivantes :
 - (a) Avec quel segment coïncidera le segment [EF]?
 - (b) Avec quels points coïncidera le point J?

E.9 Justifier que les deux figures ci-dessous ne sont pas les patrons de prismes droits:

E.10 Ci-dessous est donné le patron d'un cylindre:

Déterminer la surface totale de ce cylindre.

Indication:

- on utilisera la valeur approchée $\pi \approx 3,14$
- on donnera le résultat au millimètre-carré près

E.11 On considère le prisme droit ABCDEF représenté cidessous :

- 1 Quelle est la nature de la base de ce prisme droit?
- (2) (a) Combien d'arêtes comporte ce prisme droit?
 - **b** Combien de faces comporte ce prisme droit?
- 3 De plus, le triangle ABC est rectangle en C et on a les mesures suivantes:

$$AB=7.8\,cm~;~AC=3\,cm~;~BC=7.2\,cm~;~AD=3\,cm$$
 Déterminer le volume du prisme droit $ABCDEF.$

E.12 Afin de construire sa piscine, Oumar a creusé dans son jardin un trou en forme de pavé droit et dont les dimensions

$$L = 12 \, m$$
 ; $\ell = 8 \, m$; $h = 2 \, m$

sont:

Il construit des murs sur les faces latérales d'épaisseur $30\,cm$ ainsi qu'un sol d'une épaisseur également de $30\,cm$.

Déterminer le volume de béton nécessaire pour cette construction.

E.13 Pour fabriquer un puits dans son jardin, M^{mme} Martin a besoin d'acheter du béton.

À l'aide des caractéristiques du cylindre, déterminer le volume du béton nécessaire à la construction de ce puits arrondi au centimètre-cube près.

Caractéristique d'un cylindre:

- \bullet diamètre intérieur : $90\,cm$
- $\bullet \;$ diamètre extérieur : $101\,cm$
- hauteur: $50 \, cm$

Rappel:

volume du cylindre = π × rayon × rayon × hauteur

Indication: on utilisera: $\pi \approx 3.14$

E.14 Un macaron est composé de deux biscuits et d'une couche de crème. Cette couche de crème peut être assimilée à un cylindre de rayon $20 \, mm$ et de hauteur $5 \, mm$.

- 1 Vérifier que le volume de crème contenu dans un macaron est $2000\pi mm^3$.
- 2 Alexis a dans son saladier $30 c\ell$ de crème. Combien de macarons peut-il confectionner?

Rappel: $1 \ell = 1 dm^3$

Indication: on utilisera $\pi \approx 3{,}1416$

E.15

Ci-contre est représenté un cylindre dont la hauteur mesure $5\,cm$ et le rayon du disque de base mesure $2\,cm$.

Une partie du cylindre est représentée grisée; elle est formée par l'intersection de deux demi-plans passant par l'axe de révolution du cylindre et formant un angle de 100° .

- 1 Déterminer le volume du cylindre.
- 2 Par proportionnalité, déterminer le volume de la partie grisée arrondi au dixième de centimètre carré près.

Indication: on utilisera: $\pi \approx 3{,}1416$

E.16

1 Découper le patron ci-dessous, puis construire le prime droit associé:

(On laissera les traits et noms des points à l'extérieur du prisme droit)

- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
 - (a) Quel segment coïncidera avec le segment [BI]?
 - $oxed{b}$ Quel segment coïncidera avec le segment [AD]?
 - © Quels points coïncideront avec le point A?
 - \bigcirc Quels points coïncideront avec le point J?

E.17

1 Découper le patron ci-dessous, puis construire le prime droit associé:

 $(On\ laissera\ les\ traits\ et\ noms\ des\ points\ \grave{a}\ l'ext\'erieur\ du\\prisme\ droit)$

- 2 Une fois le solide construit, répondre aux questions suivantes :
 - (a) Quel segment coïncidera avec le segment [AD]?
 - $oxed{b}$ Quel segment coïncidera avec le segment [AB] coïncide avec quel autre segment?
 - © Quels points coïncideront avec le point G?
 - \bigcirc Quel point coïncidera avec le point E?
- E.18 Ci-dessous est donné le patron d'un cylindre:

Découper, puis construire le cylindre à partir de ce patron.