

Congratulations! You passed!

Grade Latest Submission received 100% Grade 100%

To pass 78% or higher

Go to next item

1. Which of the following represents the derivative of a function f(x) (check all that apply)?

1/1 point

- \square F(x)
- ✓ Correct!
- $\Box f'(x^2)$
- df(x)
- **⊘** Correct

Correct! This is known as the Leibniz notation.

- $\Box \frac{f(x)}{df(x)}$
- 2. Consider the graph of the following function f(x).

1/1 point

Regarding **its derivative**, f'(x), where $\ x \in [0,5]$: (check all that apply)

- ightharpoonup f'(x) has three zeros, i.e., f'(x)=0 three times.
- \bigcirc Correct Correct f has two local minima and one local maximum in the interval.
- f'(1) < 0.
- \bigodot Correct Correct! f is decreasing when x=1, therefore its derivative must be negative at this point.
- f'(4) > 0.

⊘ Correct

Correct. f is increasing when x=4, therefore its derivative must be positive at this point.

3. What is the derivative of $3x^3-2x+1$?

1/1 point

- $\bigcirc 3x^2-2$
- $\bigcirc 9x^2-2+1$
- $\bigcirc 9x^{3}-1$
- Suppose you have a game where you toss a coin 20 times and win if you get, in this exact order, 16 heads and 4
 tails. However, in this game, you can choose any coin and toss it 20 times.

1/1 point

Which of the following functions you need to maximize in order to find the best coin for this game? Consider p being the probability of a given coin being heads.

- \bigcirc 16 log(p) + 4 log(p)
- $\bigcirc \ 4\log(p) + 16\log(1-p)$
- $\bigcirc \ 4\log(1-p) + 16\log(1-p)$
- **⊘** Correct

Correct! The probability of having 16 heads is p^{16} and the probability of having 4 tails is $(1-p)^4$, therefore the total desired probability is $l(p)=p^{16}(1-p)^4$. As you saw in the lecture $\frac{\text{Cost Functions in machine Learning - Part II}}{\text{cost Functions in machine Learning - Part II}} \, \mathbb{C}^2$, the same value that maximizes l, also maximizes $\log l$ and $\log l = 16\log(p) + 4\log(1-p)$.

5. Let f(x) be a real valued function with the following graph. In the interval [0,7], how many zeros has its derivative f'(x)?

1/1 point

5

⊘ Correct

Correct! Since f has 3 local minima and 2 local maxima in the desired interval, it must have 5 zeros. You can review the lecture <u>Introduction to Optimization</u> [2] to get more details.

6. If f(x) and g(x) are differentiable functions, then the derivative of f(x)g(x) is given by:

1/1 point

$$\bigcirc \ f'(x) \cdot g'(x) + f(x) \cdot g(x)$$

$$\bigcirc \ f'(x) \cdot g(x) – f(x) \cdot g'(x)$$

	○ Correct Correct!	
7.	The rate of change of $f(x)=x^2+3$ at $x=6$ is:	1/1poi
	12	
	\odot Correct $f'(x)=2x$, therefore $f'(6)=2\cdot 6=12$.	
8.	Let $f(x)$ be a positive real function and $g(x) = \log f(x)$.	1/1poi
	Check all that apply.	
	$igvee$ If x_{max} is a point where $f(x_{max})$ is a local maximum, then $g(x_{max})$ is also a local maximum .	
	\odot Correct Correct! When applying the function log to f , even though we change its shape, the maximum points will remain the same, since \log is a crescent function!	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	lacksquare If $f(x)$ is differentiable, then so is $g(x)$.	
	Correct Correct The result of composing two differentiable functions is differentiable, by the chain rule .	
9.	Using the chain rule, the derivative of e^{-x} is:	1/1 poi
	$\bigcirc \ e^{-x}$	
	$\bigcirc -e^x$	
	$left(left) = e^{-x}$	
	$\bigcirc \ e^x$	
	○ Correct Correct!	

 $\bigcirc f'(x) \cdot g'(x)$