10

15

20

WHAT IS CLAIMED IS:

- A method for removing scale deposited in a wellbore or in the near wellbore area of a subterranean formation comprising contacting said scale with an effective amount of a fluid comprising an ionic liquid, or mixture of ionic liquids, solvent for said scale.
- The method of claim 1 in which an ionic liquid of the fluid comprises nitrogencontaining cations, and anions of a Lewis acid or of a non-Lewis acid.
- The method of claim 2 in which an ionic liquid of the fluid comprises heterocyclic nitrogen-containing cations, and anions of a Lewis acid.
- The method of claim 1 in which an ionic liquid of the fluid comprises amine cations, and anions of a Lewis acid.
- The method of claim 4 in which an ionic liquid of the fluid comprises secondary amine cations, and anions of a Lewis acid.
- The method of claim 1, in which an ionic liquid of the fluid is comprised of cations having the formula

$$R_6$$
 R_5
 R_7
 R_8
 R_8

in which R_1 , R_2 , R_3 , R_4 , R_5 , and R_6 are selected from H, F, and saturated and unsaturated hydrocarbon containing from 1 to 22 carbons, respectively, with the provision that the total number of carbon atoms contained by R_1 , R_2 , R_3 , R_4 , R_5 , and R_6 does not exceed 24.

15

20

5

- 7. The method of claim 6, in which the anions are selected from BF₄; PF₆; SbF₆; CF₃SO₃; AlCl₄; RAlCl₃, wherein R is alkyl containing 1 through 8 carbon atoms; R₂AlCl₂, wherein R is alkyl containing 1 through 8 carbon atoms; CuCl₂; Cu₂Cl₃; Cu₃Cl₄; Al₂Cl₇; Al₃Cl₁₀; NO₃; (CF₃SO₂)₂N⁷; Br'; ClO₄; CH₃COO; and BPh₄.
- The method of claim 1, in which ionic liquid of the fluid is comprised of cations having the formula

$$R_4$$
 $N+$ H

in which R_3 , R_4 , and R_5 are selected from H, and saturated and unsaturated hydrocarbon containing from 1 to 22 carbons, respectively, provided that R_3 , R_4 , and R_5 are not simultaneously H, and further provided that the total number of carbon atoms contained by R_3 , R_4 , and R_5 , does not exceed 24.

- The method of claim 8, in which the anions are selected from BF₄; PF₆; SbF₆;
 CF₃SO₃; AlCl₄; RAlCl₃, wherein R is alkyl containing 1 through 8 carbon atoms;
 R₂AlCl₂, wherein R is alkyl containing 1 through 8 carbon atoms;
 CuCl₂; Cu₂Cl₃; Cu₃Cl₄; Al₂Cl₇; Al₃Cl₁₀; NO₃; (CF₃SO₂)₂N; Br; ClO₄;
 CH₃COO; and BPh₄.
 - 10. The method of claim 1, in which ionic liquid of the fluid is comprised of cations having the formula

$$R_1$$
 R_5
 R_4

in which R_1 , R_2 , R_3 , R_4 , and R_5 , are selected from H, F, and saturated and unsaturated hydrocarbon containing from 1 to 22 carbons, respectively, with the provision that the total number of carbon atoms contained by R_1 , R_2 , R_3 , R_4 , and R_5 , does not exceed 24

5

10

15

- 11. The method of claim 10 in which the anions are selected from BF₄; PF₅; SbF₆; CF₃SO₃; AlCl₄; RAlCl₃, wherein R is alkyl containing 1 through 8 carbon atoms; R₂AlCl₂, wherein R is alkyl containing 1 through 8 carbon atoms; CuCl₂; Cu₂Cl₃; Cu₃Cl₄; Al₂Cl₇; Al₃Cl₁₀; NO₃; (CF₃SO₂)₂N; Br; ClO₄; CH₃COO; and BPh₄.
 - The method of claim 1 in which the fluid further comprises a scale reducing agent.
- The method of claim 2 in which the fluid further comprises a scale reducing agent.
 - 14. The method of claim 3 in which the fluid further comprises a scale reducing agent.

20

15. A method for removing scale deposited in a wellbore or near wellbore area of a subterranean formation comprising providing precursors of an ionic liquid which react exothermically in a wellbore or near wellbore area of a subterranean formation, and allowing said precursors to react to form an ionic liquid and generate heat in said wellbore or wellbore and near wellbore area.

25

16. The method of claim 15 in which the ionic liquid formed comprises nitrogencontaining cations, and anions of a Lewis acid or of a non-Lewis acid.

20

- 17. The method of claim 16 in which the ionic liquid formed comprises heterocyclic nitrogen-containing cations, and anions of a Lewis acid.
- The method of claim 15 in which the ionic liquid formed comprises amine 18. cations, and anions of a Lewis acid. 5
 - The method of claim 18 in which the ionic liquid formed comprises secondary 19. amine cations, and anions of a Lewis acid.
- 10 20. The method of claim 1, in which ionic liquid of the fluid is comprised of cations having the formula

$$R_6$$
 R_5
 R_4
 R_6

in which R1, R2, R3, R4, and R5, are selected from H, F, and saturated and unsaturated hydrocarbon containing from 1 to 22 carbons, respectively, with the provision that the total number of carbon atoms contained by R1, R2, R3, R4, and R5, does not exceed 24

21. The method of claim 20 in which the anions are selected from BF₄; PF₆; SbF₆ ; CF₃SO₃; AlCl₄; RAlCl₃, wherein R is alkyl containing 1 through 8 carbon atoms; R2AlCl2, wherein R is alkyl containing 1 through 8 carbon atoms; $CuCl_{2};\ Cu_{2}Cl_{3};\ Cu_{3}Cl_{4};\ Al_{2}Cl_{7};\ Al_{3}Cl_{10};\ NO_{3};\ (CF_{3}SO_{2})_{2}N^{2};\ Br^{2};\ ClO_{4};$ CH3COO; and BPh4.

10

20

 The method of claim 15 in which an ionic liquid formed is comprised of cations having the formula

$$R_4$$
 N_+ H

in which R₃, R₄, and R₅ are selected from H, and saturated and unsaturated hydrocarbon containing from 1 to 22 carbons, respectively, provided that R₅, R₄, and R₅ are not simultaneously H, and further provided that the total number of carbon atoms contained by R₃, R₄, and R₅, does not exceed 24.

- 23. The method of claim 22 in which the anions are selected from BF₄; PF₆; SbF₆; CF₃SO₃; AlCl₄; RAlCl₅, wherein R is alkyl containing 1 through 8 carbon atoms; R₂AlCl₂, wherein R is alkyl containing 1 through 8 carbon atoms; CuCl₂; Cu₂Cl₃; Cu₂Cl₄; Al₂Cl₇; Al₃Cl₁₀; NO₃; (CF₃SO₂)₂N; Br; ClO₄; CH₃COO; and BPh₄.
- 5 24. The method of claim 15 in which the ionic liquid formed is comprised of cations having the formula

$$R_1$$
 R_2
 R_3
 R_5
 R_4

in which R_1 , R_2 , R_3 , R_4 , and R_5 , are selected from H, F, and saturated and unsaturated hydrocarbon containing from 1 to 22 carbons, respectively, with the provision that the total number of carbon atoms contained by R_1 , R_2 , R_3 , R_4 , and R_5 , does not exceed 24.

20

5

- 25. The method of claim 24 in which the anions are selected from BF4-; PF6-; SbF6-; CF3SO3-; AlCl4-; RAlCl3-, wherein R is alkyl containing 1 through 8 carbon atoms; R2AlCl2-, wherein R is alkyl containing 1 through 8 carbon atoms; CuCl2-; Cu2Cl3-; Cu₃Cl₄; Al₂Cl₁₇; Al₃Cl₁₆; NO₃; (CF₃SO₂)₂N'; Br'; ClO₄; CH₄COO'; and BPh₄.
- The method of claim 15 in which the ionic liquid formed further comprises a scale reducing agent.
- 10 27. The method of claim 16 in which the ionic liquid formed further comprises a scale reducing agent.
 - The method of claim 17 in which the ionic liquid formed further comprises a scale reducing agent.
 - 29. The method of any one of claims 1 through 14 in which the ionic liquid, or at least one member of the mixture thereof, is reactive with water, and the ionic liquid or mixture thereof is contacted with an aqueous liquid in the wellbore or near wellbore area.
 - 30. The method of any one of claims 15 through 28 in which the ionic liquid formed is reactive with water, and the ionic liquid formed is contacted with an aqueous liquid in the wellbore or near wellbore area.
- 25 31. The method of claim 2 wherein the cations have the formula

5

wherein R₁ is -CH₃, and R₂ is -CH₂CH₃.

- 32. The method of claim 1 wherein the cations and anions are in the ratio of 1:1.
- The method of claim 1 in which the anions are selected from the group consisting of of [Al₂Cl₂] and [AlCl₄], and the cations have the formula

wherein R₁ is -CH₃, and R₂ is -CH₂CH₃.

- 34. The method of claim 1 in which the anion is [Al₂Cl₇].
- The method of any one of claims 1 through 14, in which said ionic liquid is substantially pure.
- 36. The method of claim 1 in which the cations are selected from imidazolium, pyridinium, and tetraalkylammonium ions.
- The method of claim 1 in which said ionic liquid is trimethylammonium heptachlorodialuminate.
 - 38. The method of claim 8 in which the ionic liquid comprises triethylamine dialuminum heptachloride.
- 25 39. The method of claim 1 in which the fluid further comprises a strong acid or super acid.

20

25

5

- 40. A composition comprising an ionic liquid, or mixture of ionic liquids, disposed in an encapsulant material adapted for controlled release of the ionic liquid, or mixture thereof.
- 41. The composition of claim 41 in which the ionic liquid or liquids of the fluid comprise nitrogen-containing cations, and anions of a Lewis acid or of a non-Lewis acid.
- 10 42. A composition comprising a precursor of an ionic liquid disposed in an encapsulant material adapted for controlled release of the precursor.
 - 43. A method for removing scale deposited in a wellbore or near wellbore area of a subterranean formation comprising providing an effective amount of an encapsulated fluid in the wellbore or near wellbore area, and releasing or allowing the fluid to be released in the wellbore or near wellbore area, the fluid comprising an ionic liquid, a mixture of ionic liquids, or precursors of an ionic fluid.
 - 44. The method of claim 43 in which an ionic liquid of the fluid comprises nitrogen-containing cations, and anions of a Lewis acid or of a non-Lewis acid.
 - 45. A method of dissolving BaSO, scale comprising contacting the BaSO, scale with a fluid comprising an ionic liquid or mixture of ionic liquids.
 - 46. A method of dissolving sludge comprising contacting the sludge with a fluid comprising an ionic liquid or mixture of ionic liquids.