## Задача D. Операции

Имя входного файла: oper.in
Имя выходного файла: oper.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Пекка учится арифметике и недавно узнал о десятичных периодических дробях. Но работать с ними он пока не умеет, поэтому просит Вас помочь ему найти сумму двух десятичных периодических дробей.

#### Формат входного файла

Входной файл состоит из двух строк. В каждой строке задано одно число, которое представлено в виде (num1[.[num2][(num3)]]), где num1— целая часть, num2— дробная непериодическая часть, и num3— дробная периодическая часть числа. Скобки [] означают необязательность присутствия их содержимого. Строки из цифр num1, num2, num3 состоят не более, чем из трех символов, и не менее, чем из одного символа. num1 не может содержать лишних нулей слева (т.е. запись 00.7(6) или 01.5 недопустима). В записи десятичных дробей есть только цифры и символы '(', ')', '.'.

#### Формат выходного файла

В первой строке файла выведите сумму представленных во входном файле чисел в виде рациональной дроби вида p/q, где p и q — взаимно простые натуральные числа (т.е. такие, что их наибольший общий делитель равен единице). Числа не могут содержать лишние нули слева. Гарантируется, что ответ всегда существует.

#### Примеры

| oper.in          | oper.out |
|------------------|----------|
| 0.7(6)<br>2.4(3) | 16/5     |
| 1.5<br>0.(9)     | 5/2      |
| 2 0.03(3)        | 61/30    |

## Задача Е. Кенгуренок Лео

Имя входного файла: leo.in
Имя выходного файла: leo.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Заколдованный магом кенгуренок Лео очнулся в тесном Каньоне. Перед его глазами предстала неприступная стена, поблизости — грозные остатки выветренных тысячелетиями скал. Он быстро понял, что злые силы лишили его возможности шагать или поворачиваться. «Да, но я могу совершать прыжки вбок!» — гениальная идея посетила его животный, но очень сообразительный мозг. И мужественный Лео, превозмогая страх и боль, решил спастись — его миссия была крайне важна для всего Мира. Он должен добраться до края Каньона, передвигаясь только влево и вправо прыжками через и на каменные столбы, жалко напоминающие очертания некогда великих и нерушимых скал.

Но Лео знал свои возможности — он всего лишь кенгуру. А обыкновенные кенгуру не умеют мыслить логически и планировать свои действия. Обыкновенные кенгуру... Уже отчаявшись и впав в полную апатию, он нашел просвет в железном занавесе, отделяющем его от столь желанного выполнения Великой Миссии. Он вспомнил о людях...

Осмотревшись, неприспособленной лапой Лео начертил схему Каньона на заранее очищенной от иголок кожуре кактуса, пустил ее по ветру и стал ждать и надеяться на то, что его послание кто-нибудь получит и поможет ему.

Это послание попало к Вам в руки. Спасите кенгуру!

Изучив послание, Вы пришли к выводу, что на кожуре представлен план Каньона в сечении, проходящем через местоположение Лео, в единственно возможном направлении его передвижения. Края Каньона слева и справа от Лео имеют одинаковую высоту и являются отвесными скалами, внутри Каньона находится несколько каменных столбов, сечения которых имеют форму прямо-угольников с параллельными или перпендикулярными земле сторонами. Высота краев Каньона и размеры каждого столба известны.

Внутри Каньона Лео может перемещаться только прыжками. Траектория прыжка заколдованного Лео состоит из трех отрезков: вертикального подъема из точки его расположения на высоту p, горизонтального перемещения на q единиц влево или вправо и последовательного вертикального спуска из этой точки не более, чем на r единиц. Числа p, q и r — натуральные, причем сумма p и q равна заданной величине n. Ни один из отрезков траектории прыжка Лео не может пересекать границы столбов внутри каньона или касаться их. Следующий прыжок начинается в точке приземления. Для того, чтобы выбраться из Каньона, Лео достаточно попасть в точку левее или правее его краев.

### Формат входного файла

Первая строка входного файла содержит шесть разделенных пробелами целых чисел в следующем порядке:  $-10\,000 \le A \le 0,\ 0 < B \le 10\,000$  — координаты левого и правого краев Каньона,  $0 \le H \le 1\,000$  — их высота,  $2 \le n \le 1\,000$  — сумма длин двух первых отрезков траектории,  $0 < r \le 1\,000$  — верхняя граница величины третьего отрезка, а также  $0 \le m < 20\,000$  — количество столбов внутри Каньона.

В последующих m строках находятся целые числа  $-10\,000 \le X_i < Y_i \le 10\,000$  — координаты краев i-ого столба и  $0 \le Z_i \le 1\,000$  — его высота. Никакие два столба не пересекаются, но могут касаться друг друга и краев каньона. Изначально кенгуру находится вне всех столбов, в точке каньона с координатой 0.5 и высотой 0.

### Формат выходного файла

В выходной файл выведите единственное целое число — наименьшее количество прыжков, необходимых для того, чтобы выбраться из каньона. Если будет установлено, что Лео не сможет выбраться из Каньона, то выведите число 0.

# Примеры

| leo.in       | leo.out |
|--------------|---------|
| -2 2 3 4 2 1 | 2       |
| -1 0 2       |         |
| -2 4 4 3 1 3 | 4       |
| 1 2 1        |         |
| 2 3 2        |         |
| 3 4 3        |         |

# Рисунок ко второму примеру



# Пояснение ко второму примеру

Кенгуру делает 4 прыжка, каждый вверх на 2 и вправо на 1.

## Задача F. Студенческие годы Пекки

Имя входного файла: train.in
Имя выходного файла: train.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Пекка вырос, стал студентом, и подрабатывает в свободное от учебы время на разгрузке железнодорожных вагонов. Ему требуется погрузить товары из одного состава в другой, стоящий рядом на параллельном пути.

Известно, какой товар находится в каждом из вагонов первого состава, и какой товар должен быть в каждом из вагонов второго состава. Товар из любого вагона первого состава легко перегрузить в стоящий напротив вагон второго состава с помощью транспортера. Проблема в том, что порядок вагонов первого состава может не соответствовать порядку вагонов второго состава.

Чтобы правильно поместить груз из одного вагона первого состава в вагон второго состава, Пекка может сдвигать (но только вперед — под горку) какой-либо из составов на длину одного вагона, выпив для этого баночку энергетического напитка.

Пекка очень заботится о своем здоровье и не хочет злоупотреблять энергетической жидкостью. Помогите Пекке определить, какое минимальное количество баночек напитка ему потребуется выпить для того, чтобы перегрузить все товары из первого состава.

Считается, что:

- Все вагоны одинаковой длины.
- Каждому типу товара соответствует определенное слово его название ("Oil", "Wood" и т. д.)
- Количество разгружаемых вагонов первого состава с товарами любого типа совпадает с количеством загружаемых вагонов второго состава для товаров такого же типа.
- Может быть несколько вагонов первого состава с одинаковым типом товара. При этом любой из них можно перегружать в соответствующие вагоны второго состава (но только полностью).
- Если вагон первого состава с определенным типом товара встал рядом с вагоном второго состава, предназначенного для данного типа груза, то Пекка может как осуществить перегрузку, так и отказаться от нее.
- Изначально составы стоят таким образом, что первый вагон первого состава стоит рядом с первым вагоном второго состава, а последний вагон первого состава рядом с последним вагоном второго состава.

### Формат входного файла

В первой строке входного файла записано количество вагонов в составах N ( $1 \le N \le 100\,000$ ). Далее следуют N строк, описывающих вагоны первого состава в порядке, в котором они соединены в состав. В каждой строке записано название груза, находящегося в соответствующем вагоне. Название содержит от одной до десяти больших и маленьких букв латинского алфавита. Названия считаются одинаковыми, если они совпадают с учетом регистра (например, "0il" и "0il" — разные грузы). Затем записаны N строк, аналогичным образом описывающих вагоны второго состава.

## Формат выходного файла

Выведите минимальное количество баночек энергетического напитка, которые потребуются Пекке для того, чтобы осуществить погрузку.

### Пример

| train.in | train.out |
|----------|-----------|
| 3        | 4         |
| Oil      |           |
| Wood     |           |
| Grain    |           |
| Wood     |           |
| Grain    |           |
| Oil      |           |