WHAT IS CLAIMED IS:

		ſ	1. A method for electrically stressing through a specified voltage at least one
		2	semiconductor chip on a wafer for controlled contactless burn-in, voltage screen and
		3	reliability evaluation of product wafers, said method comprising:
		4	applying said voltage to said at least one chip for the probing thereof in
		5	the absence of physically contacting the chip surface; and
		6	
		7	magnetically inducing said voltage to said at least one chip through the
~ V.		8	interposition of a mask onto which the voltage is induced and thereafter
Surv		9	conducted to electrical contacts on said wafer.
T.			
		1	2. A method as claimed in Claim 1, wherein said applied voltage produces
		2	specified voltage bias conditions by inducing the voltage for a circuit utilizing a time
	7	3	varying magnetic field which is fixed with respect to said circuit.
	11) 		
	: -1-	1	3. A method as claimed in Claim 2, wherein an electrical field which is
	## ##	2	represented by said induced voltage is based on Faraday's law setting forth that said
	ij.	3	voltage which is induced by a time rate of change of a magnetic field for said circuit
	g 44,	4	which is fixed with respect to said magnetic field.
	1 ,1		
	## ##	. 1	4. A method as claimed in Claim 1, wherein said induced voltage is obtained at a
	in i	2	top layer of said mask which is positioned on said wafer; and connections are made to
~ \J		3	said at least one chip by said mask for effectuating said burn-in without interference
2002	,	4	with the normal operation of said at least one semiconductor chip.
(X)			\
4.		1	5. A method as claimed in Claim 2, wherein said circuit comprises a loop
		2	defining an area on a wafer, said mask being positioned on said wafer so as to enclose
		3	said area and having electrical contacts for an induced voltage through said time
		4	varying magnetic field within said enclosed area.

- 1 6. A method as claimed in Claim 5, wherein said loop comprises a metallic line
- 2 on said wafer forming an open circuit having electrical contact points provided at open
- 3 ends of said circuit for producing said induced voltage.
- 1 7. A method as claimed in Claim 6, wherein said loop is of a rectangular
- 2 configuration to define a generally rectangular area on said wafer.
- 1 8. A method as claimed in Claim 6, wherein said metallic line is constituted of
- 2 copper.
- 1 9. A method as claimed in Claim 6, wherein said metallic line is constituted of
- 2 aluminum.

a C)

Sul As

- 10. A method as clamed in Claim 2, wherein said circuit comprises a circular
- 2 magnetic core having an air gap for receiving said wafer with said at least one chip
- and said mask positioned thereon; and an electrical coil for energizing said magnetic
- 4 core to produce said specified voltage bias conditions.
- 1 11. A method as claimed in Claim 10, wherein said voltage is supplied to said
- 2 electrical energizing coil from a radio frequency voltage source.
- 1 12. A method as claimed in Claim 11, wherein said circular magnetic core is
- 2 constituted of a Permalloy powder having a composition 2% by weight of Mo, 81% by
- 3 weight of *Ni* with the remainder being iron and impurities.
- 1 13. A method as claimed in Claim 10, wherein said air gap receiving said wafer
- 2 and mask is adapted to provide for the burn-in of differently sized wafers.
- 1 14. A method as claimed in Claim 10, wherein said electrical energizing coil
- 2 consists of an isolated electrical wire comprised of copper wire strands.

- 1 15. A method as claimed in Claim 10, wherein said wafer and mask are retained in
- 2 said air gap by a wafer holder consisting of a dielectric material.
- Filah 2
- 16. A method as claimed in Claim 10, wherein said magnetic core includes a plurality of said circular magnetic cores interconnected by arms, and each said core
- 3 having an air gap for receiving respectively a wafer and covering mask so as to
- 4 facilitate the simultaneous controlled burn-in of a plurality of said wafers.
- 1 17. A method as claimed in Claim 2, wherein a rectangular core of non-magnetic
- 2 material has electrical wire coils wound thereabout, said wire coils being connected to
- decal masks on a plurality of wafers positioned centrally on said core, each said decal
- 4 mask being provided to conduct a generated voltage to a chip under said mask.
- 1 18. A method as claimed in Claim 17, wherein each said coil is conducted to a
- 2 time varying voltage source so as to generate a magnetic field perpendicular to the
- 3 surface of each said wafer in the center of said non-magnetic core.
- 1 19. A method as claimed in Clam 18, wherein electrical wires extend from each
- 2 said mask to a panel for the direct measurements and verification of the direct voltages
- 3 present on each of said wafer.
- 1 20. A method as claimed in Claim 17, wherein said non-magnetic core is
- 2 constituted of wood.
- 1 21. A method as claimed in Claim 17, wherein at least nine wafers are positioned
- 2 on each core for simultaneous burn-in thereof.
- 1 22. A method as claimed in Claim 1, wherein said mask comprises an interposer
- 2 forming a decal on said wafer surface so as to protect the surface of said wafer from

- 3 direct contact with a probe during burn-in and voltage screening through electrical
- 4 stressing.
- 1 23. A method as claimed in Claim 22, wherein said method conducts the generated
- 2 burn-in voltage to said at least one chip when mountable on P+ silicon substrates.
- 1 24. A method as claimed in Claim 22, wherein said method conducts the generated
- 2 burn-in voltage to said at least one chip when mountable on P- silicon substrates.
- 1 25. A method as claimed in Claim 22, wherein said interposer is formed for 2 mounting the wafer on either P+ silicon or P- silicon substrates by the steps of:
- fixing a polyimide film to a frame to fully cover said wafer;

depositing at least on layer of a metallic film onto the polyimide film;

patterning said metallic film to provide wiring lines extending to the

edge of said wafer to facilitate measuring the induced voltage;

8

Ų

removing exposed metallic layer material at the bottom of the vias and depositing a further wiring line layer forming a ring wire loop on said wafer which is connected to said first wiring lines to facilitate applying an electrical bias to each said ring wire loop;

13

placing lead/tin bumps into each of said vias and connecting said bumps to said further wiring lines; and

16

- adjusting bump heights whereby the pattern of the bumps interiorly of
- the decal mask is a mirror-image of wire bond pads or C4 connects on
- the wafer chip which is to be burned-in.

_			
		1	26. A system for electrically stressing through a specified voltage at least one
		2	semiconductor chip on a wafer for controlled contactless burn-in, voltage screen and
		3	reliability evaluation of product wafers, said system comprising:
		4	an arrangement for applying said voltage to said at least one chip for
		5	the probing thereof in the absence of physically contacting the chip
ربه		6	surface; and
Sur		7	
AH		8	magnetically inducing said voltage to said at least one chip through the
1		9	interposition of a mask onto which the voltage is induced and thereafter
		10	conducted to electrical contacts on said wafer.
		1	27. A system as claimed in Claim 26, wherein said applied voltage produces
		2	specified voltage bias conditions by inducing the voltage for a circuit utilizing a time
4	<u>.</u>	3_	varying magnetic field which is fixed with respect to said circuit.
		1	28. A system as claimed in Claim 27, wherein an electrical field which is
	4) Li	2	represented by said induced voltage is based on Faraday's law setting forth that said
	IJ.	3	voltage which is induced by a time rate of change of a magnetic field for said circuit
	e Cj	4	which is fixed with respect to said magnetic field.
	Ųį Li		
	4)	1	29. A system as claimed in Claim 26, wherein said induced voltage is obtained at a
	Her first first, "The spirit first to	2	top layer of said mask which is positioned on said wafer; and connections are made to
	•	3	said at least one chip by said mask for effectuating said burn-in without interference
		4	with the normal operation of said at least one semiconductor chip.
. \		1	30. A system as claimed in Claim 27, wherein said circuit comprises a loop
SWY		2	defining an area on a wafer, said mask being positioned on said wafer so as to enclose
SWY		3	said area and having electrical contacts for an induced voltage through said time
1.		4	varying magnetic field within said enclosed area.

- 2 on said wafer forming an open circuit having electrical contact points provided at open
- 3 ends of said circuit for producing said induced voltage.
- 1 32. A system as claimed in Claim 31, wherein said loop is of a rectangular
- 2 configuration to define a generally rectangular area on said wafer.
- 1 33. A system as claimed in Claim 31, wherein said metallic line is constituted of
- 2 copper.
- 1 34. A system as claimed in Claim 31, wherein said metallic line is constituted of
- 2 aluminum.

2

Sulv

35. A system as clamed in Claim 27, wherein said circuit comprises a circular

- 2 magnetic core having an air gap for receiving said wafer with said at least one chip
- and said mask positioned thereon; and an electrical coil for energizing said magnetic
- 4 core to produce said specified voltage bias conditions.
- 1 36. A system as claimed in Claim 35, wherein said voltage is supplied to said
 - electrical energizing coil from a radio frequency voltage source.

T. C. 155

#1

- 1 37. A system as claimed in Claim 36, wherein said circular magnetic core is
- 2 constituted of a Permalloy powder having a composition 2% by weight of Mo, 81% by
- 3 weight of Ni with the remainder being iron and impurities.
- 1 38. A system as claimed in Claim 35, wherein said air gap receiving said wafer
- and mask is adapted to provide for the burn-in of differently sized wafers.
- 1 39. A system as claimed in Claim 35, wherein said electrical energizing coil
- 2 consists of an isolated electrical wire comprised of copper wire strands.

- 1 40. A system as claimed in Claim 35, wherein said wafer and mask are retained in
- 2 said air gap by a wafer holder consisting of a dielectric material.
- 1 41. A system as claimed in Claim 35, wherein said magnetic core includes a
- 2 plurality of said circular magnetic cores interconnected by arms, and each said core
- 3 having an air gap for receiving respectively a wafer and covering mask so as to
- 4 facilitate the simultaneous controlled burn-in of a plurality of said wafers.
- 1 42. A system as claimed in Claim 27, wherein a rectangular core of non-magnetic
- 2 material has electrical wire coils wound thereabout, said wire coils being connected to
- decal masks on a plurality of wafers positioned centrally on said core, each said decal
- 4 mask being provided to conduct a generated voltage to a chip under said mask.
- 1 43. A system as claimed in Claim 42, wherein each said coil is conducted to a time
- 2 varying voltage source so as to generate a magnetic field perpendicular to the surface
- 3 of each said wafer in the center of said non-magnetic core.
- 1 44. A system as claimed in Clam 43, wherein electrical wires extend from each
- 2 said mask to a panel for the direct measurements and verification of the direct voltages
- 3 present on each of said wafer.
- 1 45. A system as claimed in Claim 42, wherein said non-magnetic core is
- 2 constituted of wood.
- 1 46. A system as claimed in Claim 42, wherein at least nine wafers are positioned
- 2 on each core for simultaneous burn-in thereof.
- 1 47. A system as claimed in Claim 26, wherein said mask comprises an interposer
- 2 forming a decal on said wafer surface so as to protect the surface of said wafer from

4 stressing. A system as claimed in Claim 47, wherein said method conducts the generated 1 48. burn-in voltage to said at least one chip when mountable on P+ silicon substrates. 2 49. A system as claimed in Claim 47, wherein said method conducts the generated 1 burn-in voltage to said at least one chip when mountable on P- silicon substrates. 2 A system as claimed in Claim 47, wherein said interposer is formed for 50. 1 mounting the wafer on either P+ silicon or P- silicon substrates by means of: 2 fixing a polyimide film to a frame to fully cover said wafer; 3 4 depositing at least on layer of a metallic film onto the polyimide film; 5 patterning said metallic film to provide wiring lines extending to the 6 1 7 edge of said wafer to facilitate measuring the induced voltage; 41 ļ. 8 U removing exposed metallic layer material at the bottom of the vias and 9 # ### ### depositing a further wiring line layer forming a ring wire loop on said 10 wafer which is connected to said first wiring lines to facilitate applying 11 . 41 T 12 an electrical bias to each said ring wire loop; 13 placing lead/tin bumps into each of said vias and connecting said 14 15 bumps to said further wiring lines; and 16 adjusting bump heights whereby the pattern of the bumps interiorly of 17 the decal mask is a mirror-image of wire bond pads or C4 connects on 18 19 the wafer chip which is to be burned-in.

direct contact with a probe during burn-in and voltage screening through electrical

3