

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

I1

Analisis Funcional - MAT2555 Fecha de Entrega: 2019-09-26 Se denotará \mathcal{B} a $\{f_0\} \cup \{f_k\}_{k=1}^{\infty} \cup \{e_k\}_{k=1}^{\infty}$

Solución problema 1.a: Para ver que S_n está bien definido es suficiente y necesario ver que para toda $f \in L^2(]-\pi,\pi[)$ se tiene $S_n f \in L^2(]-\pi,\pi[)$.

$$||S_n f|| = \left| \left| \langle f_0, f \rangle f_0(s) + \sum_{k=1}^n \langle f_k, f \rangle f_k(s) + \sum_{k=1}^n \langle e_k, f \rangle e_k(s) \right| \right|$$

$$\leq |\langle f_0, f \rangle| ||f_0|| + \sum_{k=1}^n |\langle f_k, f \rangle| ||f_k|| + \sum_{k=1}^n |\langle e_k, f \rangle| ||e_k||$$

$$\leq ||f|| \left(||f_0||^2 + \sum_{k=1}^n ||f_k||^2 + \sum_{k=1}^n ||e_k||^2 \right) = ||f|| (2n+1)$$

Como $f \in L^2(]-\pi,\pi[)$ inmediatamente se tiene que $||S_nf|| < \infty$, más aún se tiene que S_n es acotado, como claramente S_n es lineal, S_n es continua. Ahora, para ver que S_n es proyección falta que $S_n^2 = S_n$ y que $\langle S_ng, f \rangle = \langle g, S_nf \rangle$. Para lo primero se ve lo siguiente:

$$\langle f_0, S_n f \rangle = \left\langle f_0, \langle f_0, f \rangle f_0(s) + \sum_{k=1}^n \langle f_k, f \rangle f_k(s) + \sum_{k=1}^n \langle e_k, f \rangle e_k(s) \right\rangle$$

$$= \langle f_0, f \rangle \langle f_0, f_0 \rangle + \sum_{k=1}^n \langle f_k, f \rangle \langle f_0, f_k \rangle + \sum_{k=1}^n \langle e_k, f \rangle \langle f_0, e_k \rangle$$

$$= \langle f_0, f \rangle$$

Lo último es porque \mathcal{B} es ortonormal, similarmente se nota lo mismo para cada elemento en \mathcal{B} con n fijo, por lo que $S_n(S_n(f)) = S_n(f)$. Para lo último, sean $g_1, g_2 \in L^2(] - \pi, \pi[)$

$$\langle S_n g_1, g_2 \rangle = \left\langle \langle f_0, g_1 \rangle f_0(s) + \sum_{k=1}^n \langle f_k, g_1 \rangle f_k(s) + \sum_{k=1}^n \langle e_k, g_1 \rangle e_k(s), g_2 \right\rangle$$

$$= \left\langle f_0, g_1 \rangle \langle f_0, g_2 \rangle + \sum_{k=1}^n \langle f_k, g_1 \rangle \langle f_k, g_2 \rangle + \sum_{k=1}^n \langle e_k, g_1 \rangle \langle e_k, g_2 \rangle$$

$$= \left\langle g_1, \langle f_0, g_2 \rangle f_0(s) + \sum_{k=1}^n \langle f_k, g_2 \rangle f_k(s) + \sum_{k=1}^n \langle e_k, g_2 \rangle e_k(s) \right\rangle = \langle g_1, S_n g_2 \rangle$$

Con lo que se tiene lo pedido.

1

Solución problema 1.b: Se quiere demostrar las siguientes igualdades¹:

$$(S_n f)(s) = \int_{-\pi}^{\pi} f(t) D_n(s-t) dt$$
(1)

$$\int_{-\pi}^{\pi} f(t)D_n(s-t) dt = \int_{-\pi}^{\pi} f(s-t)D_n(t) dt$$
 (2)

Comenzando por (2), se usa la siguiente sustitución u=s-t, con lo que se llega a lo siguiente:

$$\int_{-\pi}^{\pi} f(t)D_n(s-t) dt = -\int_{s+\pi}^{s-\pi} f(s-u)D_n(u) du$$
$$= \int_{s-\pi}^{s+\pi} f(s-u)D_n(u) du$$

Ahora, como $f \in \mathcal{C}^1_{2\pi}(\mathbb{R})$ y como $s + \pi - (s - \pi) = 2\pi$ se tiene que

$$\int_{s-\pi}^{s+\pi} f(s-u)D_n(u) du = \int_{-\pi}^{\pi} f(s-u)D_n(u) du$$

Con lo que se tiene (2), para (1) se usará la siguiente igualdad

$$\langle f_k, f \rangle f_k(s) + \langle e_k, f \rangle e_k(s) = \int_{-\pi}^{\pi} f(t) \cdot \frac{1}{\pi} \cos(k(s-t))$$
 (3)

Esta aparece desarrollando la expresión:

$$\langle f_k, f \rangle f_k(s) + \langle e_k, f \rangle e_k(s) = f_k(s) \int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \cos(kt) f(t) dt + e_k(s) \int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \sin(kt) f(t) dt$$

$$= \int_{-\pi}^{\pi} \frac{f(t)}{\pi} \left[\cos(ks) \cos(kt) + \sin(ks) \sin(kt) \right] dt$$

$$= \int_{-\pi}^{\pi} f(t) \cdot \frac{1}{\pi} \cos(ks - kt) dt$$

Usando (3), que $\langle f_0, f \rangle f_0 = \int_{-\pi}^{\pi} \frac{f(t)}{2\pi} dt$ y recordando que $D_n(s) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{n} \cos(ks)$ se tiene (1)

Solución problema 1.c: Dado $s \in \mathbb{R}$ fijo se quiere que $(S_n f)(s) \to f(s)$, para esto se verá

 $^{^{1}}$ i.e. $S_{n}f$ es la convolución de f y de \mathcal{D}_{n}

que la siguiente expresión tiende a 0.

$$f(s) - (S_n f)(s) \tag{4}$$

Para esto, se reescribirá usando lo siguiente:

$$f(s) - (S_n f)(s) = f(s) - \int_{-\pi}^{\pi} D_n(t) f(s-t) dt \quad \text{Por } (2)$$
$$= f(s) \int_{-\pi}^{\pi} D_n(t) dt - \int_{-\pi}^{\pi} D_n(t) f(s-t) dt$$
$$= \int_{-\pi}^{\pi} D_n(t) (f(s) - f(s-t)) dt$$

Luego tomando, $\phi_n(t) = \sin((n+1/2)t)/\sqrt{\pi}$ y $g_s(t) = \frac{f(s)-f(s-t)}{2\sqrt{\pi}\sin(t/2)}$, se quiere que $\{\phi_n(t)\}_{n\in\mathbb{N}}$ sea una familia ortonormal, que g_s sea medible y $g_s \in L^2(]-\pi,\pi[)$. Se nota que, dado las condiciones anteriores, se tiene que $f(s)-(S_nf)(s)\to 0$, ya que $\infty>\|g_s\|^2\geq \sum_{k=1}^\infty |\langle\phi_k,g_s\rangle|^2$ por la desigualdad de Parseval, con lo que se tiene que $|\langle\phi_n,g_s\rangle|^2\to 0$, más específicamente $|\langle\phi_n,g_s\rangle|\to 0$, o sea, $\int_{-\pi}^\pi \phi_n(t)g_s(t)\,\mathrm{d}t\to 0$.

Para demostrar que $\{\phi_n\}_{n\in\mathbb{N}}$ es una familia ortonormal, sean $n,k\in\mathbb{N}$ distintos entre sí, luego se ve $\langle \phi_n,\phi_k\rangle$:

$$\int_{-\pi}^{\pi} \phi_n(t)\phi_k(t) dt = \int_{-\pi}^{\pi} \sin((n+1/2)t)\sin((k+1/2)t)/\pi dt$$

$$= \int_{-\pi}^{\pi} \frac{1}{2\pi} \cdot (\cos(t(n-k)) - \cos(t(n+k+1))) dt$$

$$= \frac{1}{2\pi} \left(\frac{\sin(t(n-k))}{n-k} - \frac{\sin(t(n+k+1))}{n+k+1} \right) \Big|_{-\pi}^{\pi}$$

Se recuerda que $n, k \in \mathbb{N}$, por lo que $\langle \phi_n, \phi_k \rangle = 0$. Ahora, si es que n = k, se tiene lo siguiente:

$$\langle \phi_n, \phi_n \rangle = \int_{-\pi}^{\pi} \frac{1}{2\pi} \left(1 - \cos(t(2n+1)) \right) dt$$
$$= 1 - \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(t(2n+1)) dt$$
$$= 1$$

Por lo que $\{\phi_n\}$ es una familia ortonormal. Ahora, para que g_s sea medible es suficiente que las discontinuidades que aparezcan por $\sin(t/2)$ sean removibles². Para esto se nota que sus

 $^{^2}$ i.e. si g_s discontinua en x_0 que exista $\lim_{x\to x_0}g_s(x)$

únicas posibles discontinuidades son en $t = 2\pi k$ con $k \in \mathbb{Z}$, y ya que f es periódica, se ve que es suficiente que la discontinuidad en t = 0 sea removible.

$$\lim_{t \to 0} \frac{f(s) - f(s - t)}{2\sqrt{\pi}\sin(t/2)} = \lim_{t \to 0} \frac{f'(s - t)}{\sqrt{\pi}\cos(t/2)} = \frac{f'(s)}{\sqrt{\pi}}$$

Con lo que se tiene que $||g_s|| < \infty$ y más aún, g_s es medible.

Solución problema 1.d: Se quiere que $\langle f_k, f \rangle = -\frac{1}{k} \langle e_k, f' \rangle$ y que $\langle e_k, f \rangle = \frac{1}{k} \langle f_k, f' \rangle$. Para el primero se escribe la integral y se usa integración por partes:

$$\langle f_k, f \rangle = \int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \cos(ks) f(s) \, ds$$

$$= \frac{1}{\sqrt{\pi}} \left(\frac{\sin(ks)}{k} \cdot f(s) \right) \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{1}{k\sqrt{\pi}} f'(s) \sin(ks) \, ds$$

$$= \frac{1}{\sqrt{\pi}} \left(\frac{\sin(ks)}{k} \cdot f(s) \right) \Big|_{-\pi}^{\pi} - \frac{1}{k} \langle e_k, f' \rangle$$

Como $k \in \mathbb{N}$ se tiene que $\sin(k\pi) = 0$ y $\sin(-k\pi) = 0$, por lo que $\langle f_k, f \rangle = \frac{1}{k} \langle e_k, f \rangle$. Similarmente:

$$\langle e_k, f \rangle = \int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \sin(ks) f(s) \, \mathrm{d}s$$

$$= -\frac{1}{\sqrt{\pi}} \left(\frac{\cos(ks)}{k} \cdot f(s) \right) \Big|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \frac{1}{k\sqrt{\pi}} f'(s) \cos(ks) \, \mathrm{d}s$$

$$= -\frac{1}{\sqrt{\pi}} \left(\frac{\cos(ks)}{k} \cdot f(s) \right) \Big|_{\pi}^{\pi} + \frac{1}{k} \langle f_k, f' \rangle$$

Como $k \in \mathbb{N}$ se tiene que $\cos(k\pi) = 1$ y $\cos(-k\pi) = 1$, junto con que $f(-\pi + 2\pi) = f(\pi)$ se tiene que $\langle e_k, f \rangle = \frac{1}{k} \langle f_k, f' \rangle$. Además se pide demostrar que $S_n f$ es una sucesión de Cauchy, para esto, sean $n, m \in \mathbb{N}$ y s.p.d.g. sea n > m, entonces:

$$(S_n f - S_m f)(s) = \sum_{k=m+1}^n \langle f_k, f \rangle f_k + \langle e_k, f \rangle e_k = \sum_{k=m+1}^n \frac{1}{k} (\langle f_k, f' \rangle e_k - \langle e_k, f' \rangle f_k)$$

Ahora, se desarrolla cada termino de la siguiente manera:

$$\langle f_k, f' \rangle e_k(t) - \langle e_k, f' \rangle f_k(t) = \frac{1}{\pi} \left(\sin(kt) \int_{-\pi}^{\pi} \cos(ks) f'(s) \, \mathrm{d}s - \cos(kt) \int_{-\pi}^{\pi} \sin(ks) f'(s) \, \mathrm{d}s \right)$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f'(s) \left(\sin(kt) \cos(ks) - \cos(kt) \sin(ks) \right) \, \mathrm{d}s$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f'(s) \sin(k(t-s)) \, \mathrm{d}s$$

$$= \frac{1}{\pi} \langle f', \sin(k(t-s)) \rangle$$

$$= \frac{1}{\pi} \langle f', \sin(ks) \rangle$$

Con esto se llega a lo siguiente:

$$(S_n f - S_m f)(t) = \frac{1}{\pi} \left\langle f'(s), \sum_{k=m+1}^n \frac{\sin(ks)}{k} \right\rangle$$

Ahora, se usa la desigualdad de Cauchy-Schwarz y se tiene que

$$|(S_n f - S_m f)(s)| \le \frac{1}{\pi} ||f'|| \left\| \sum_{k=m+1}^n \frac{\sin(ks)}{k} \right\| = C_{n,m}$$

Como $\sum_{k=1}^{\infty} \frac{\sin(ks)}{k}$ es una serie de funciones convergente, se tiene que existe $N \in \mathbb{N}$ to $n, m > N \implies C_{n,m} < \varepsilon$, por lo que se tiene que $S_n f$ es una sucesión de Cauchy. Por lo que se tiene que $S_n f$ converge uniformemente a f en \mathbb{R} .

Solución problema 1.e: Se quiere que \mathcal{B} sea una base ortonormal completa, en otras palabras que si para $f \in L^2(]-\pi,\pi[)$ se tiene que $\forall b \in \mathcal{B} \langle f,b \rangle = 0$ entonces f=0. Para esto, se nota que es suficiente que para $f \in L^2(]-\pi,\pi[)$ se tenga $||f-S_nf|| \to 0$, ya que si $\langle f,b \rangle = 0$ para todo $b \in \mathcal{B}$ entonces $S_n f = 0$ para todo $n \in \mathbb{N}$, por lo que $||f|| \to 0$, pero esto implicaría que f=0. Ahora, para demostrar que $||f-S_n f|| \to 0$ recordamos que por la pregunta anterior se tiene que si $g \in \mathcal{C}^1_{2\pi}(\mathbb{R})$ entonces sup $|g-S_n g| \to 0$, por lo que específicamente $||g-S_n g|| \to 0$. Usando lo anterior, y que $\mathcal{C}^1_{2\pi}(\mathbb{R})$ es denso en $L^2(]-\pi,\pi[)$, se tiene que existe $g \in \mathcal{C}^1_{2\pi}(\mathbb{R})$ y $n \in \mathbb{N}$ tal que

$$||f - g|| < \frac{\varepsilon}{3}$$
 $||g - S_n g|| < \frac{\varepsilon}{3}$

Se nota además que, como S_n es proyección ortogonal, $||S_n|| \le 1^3$ por lo que $||S_nf - S_ng|| \le ||S_n|| \, ||f - g|| < \frac{\varepsilon}{3}$. Juntando las tres expresiones se tiene lo siguiente:

$$||f - S_n f|| \le ||f - g|| + ||g - S_n g|| + ||S_n g - S_n f|| < 3 \cdot \frac{\varepsilon}{3} = \varepsilon$$

Con lo que se tiene que $||f - S_n f|| \to 0$, consiguiendo lo pedido.

 $\overline{\|S_n f\|^2 = \langle S_n f, S_n f \rangle = \langle S_n^2 f, f = \langle S_n, f \rangle \leq \|S_n\| \|f\| \rangle} \implies \|S_n\| \leq \|f\|$