

## **MEDIÇÃO COM TRENA**



#### 1. OBJETIVO

Descrever o procedimento para medição de distância horizontal com precisão adequada utilizando a trena de fibra de vidro.

### Ao final deste experimento, você deverá ser capaz de:

- compreender a necessidade da medição da distância horizontal e conhecer os diferentes métodos de se obter essa medida;
- identificar possíveis erros no procedimento e efetuar as ações para minimização da ocorrência dos mesmos;
- selecionar os equipamentos adequados para efetuar a medição e manuseá-los de forma adequada tanto para efetuar as medidas bem como para sua conservação;
- efetuar medida de distância horizontal, mantendo alinhamento em planta exigido para a medição;
- planejar as etapas necessárias para medição de distância horizontal e, quando necessário, dividir em lances menores.

#### 2. ONDE UTILIZAR ESSES CONCEITOS?

A medição de distância horizontal através da trena de fibra de vidro é necessária para atividades expeditas e que não requeira grande precisão, presentes na engenharia civil tais como determinação de extensão de pequenos lotes, estimativa de pequenos serviços de terraplenagem e de atividades preliminares, e marcação de gabaritos de construções simples e/ou provisórias.

#### 3. O EXPERIMENTO

Neste experimento, você utilizará a trena de fibra de vidro para efetuar a medição da distância horizontal entre os pontos inicial e final, identificados através de piquetes, aplicando a tensão adequada para evitar a formação da catenária ou a deformação da trena. A medida será feita com

auxílio de balizas, que deverão ser mantidas na posição vertical com o uso de níveis de cantoneira. As balizas devem ser apoiadas sobre os piquetes e no próprio terreno quando efetuar as medidas intermediárias. Cada medida deve ser anotada e, ao final do experimento, ser somada para determinação da distância horizontal total.

### 4. SEGURANÇA

Para efetuar esse experimento, é recomendado o uso de bota ou botina de segurança, ou calçado fechado, vestimenta que cubra os membros inferiores e superiores tais como calça e camisa de manga comprida, cobertura como boné ou chapéu e uso de protetor solar. Outros equipamentos podem ser avaliados em função do terreno selecionado, tais como capacete e óculos.

### 5. CENÁRIO

Terreno que permita que seja necessário o emprego da trena em vários lances e que apresente relativa declividade para demonstrar a dificuldade de se fazer uma medição horizontal.

Bons estudos.



### Acesse o sumário:



# **MEDIÇÃO COM TRENA**

A medida de distância linear horizontal é um dos processos fundamentais da Topografia. Sem essa informação, não será possível determinar extensões, áreas e volumes. Toda uma área de conhecimento da Topografia se dedica para determinação de medidas lineares e angulares no plano horizontal, que é a planimetria.

As medidas lineares podem ser obtidas através processos direto ou indireto. As medidas diretas são obtidas através do caminhamento sobre o alinhamento a que se pretende medir utilizando diastímetros ou trenas, enquanto no processo indireto, as distâncias horizontais são obtidas através de visadas ou coordenadas, utilizando equipamentos agrupados em distanciômetros.

Os distânciômetros ópticos e mecânicos com auxílio de uma mira ou régua graduada, na qual se mede uma determinada distância vertical e através de geometria permite a estimativa da distância. Os distânciômetros eletrônicos ou trenas digitais utiliza a tecnologia laser, na qual o aparelho emite um pulso que, ao colidir com a superfície para a qual se quer medir a distância, retorna ao aparelho e pela diferença de tempo, mede-se a distância. Ainda há os receptores de geolocalização que, através determinação das coordenadas dos pontos, permite a estimativa de distância.

Entre os diastímetros ou trenas, podem ser diferenciadas pela extensão e tipo de material. As trenas curtas, com extensão até 10 metros, geralmente com lâmina para medida em aço inox e invólucro de plástico. Muito utilizado em ambientes internos, vem acompanhado de trava e ponta magnéticas. As trenas longas, com 20 metros ou mais, podem ser encontradas em aço ou fibra de vidro, sendo com invólucro (aço e fibra de vidro) ou aberto (fibra de vidro).





As trenas possuem gravação de medidas lineares comumente em milímetros, centímetros e metros. Podem ser também acompanhadas com medidas em polegadas, pés e jardas. A leitura deve ser feita com cuidado para que não haja erros durante o processo.

As trenas de aço (Figura 1) possuem como principal vantagem, a maior resistência à deformação pela tensão aplicada, o que permite maior precisão na medida e, com boa manutenção, maior durabilidade. As desvantagens são: risco de choque quando em contato com a rede elétrica. Se for torcida ou dobrada, pode-se quebrar a lâmina, inutilizando a mesma. Também sofre deformação com altas temperaturas.



Figura 1 – Trena de aço com medidas em centímetros (inferior) e polegadas (superior). Fonte: Autoria Própria (2021).

As trenas de fibra de vidro (Figura 2) praticamente não se deformam com variação de temperatura, não conduz eletricidade e são mais práticas, porém são mais sensíveis à aplicação de tensão adequada. Geralmente apresentam um custo menor para aquisição quando comparadas com as trenas de aço.







Figura 2 – Trena de fibra de vidro com medidas em centímetros (dígitos pretos) e polegadas (dígitos vermelhos).

Fonte: Autoria Própria (2021).

Devem ser inspecionadas ao início de cada dia de trabalho, para garantir que não haja deformações e/ou dobras. As trenas devem ser limpas após o final de cada dia de uso e as lâminas ou fitas não podem ser recolhidas úmidas ou molhadas sob o risco de terem a vida útil comprometida.

Apesar de ser uma atividade aparentemente simples, o processo de medida utilizando trena requer uma série de cuidados para se obter uma medida precisa, como será visto no roteiro. Convém lembrar que toda leitura é acompanhada por um desvio, inerente ao processo de medição. Por exemplo, as trenas tem gradação em milímetro, portanto o seu desvio é metade de um milímetro. A precisão do processo envolve também as características do instrumento de medida, a trena de aço possui precisão de 1 cm a cada 100m enquanto a trena de fibra possui precisão de 5 cm a cada 100m.

Por outro lado, um erro de leitura não pode ser corrigido, mas pode ser evitado através de checagem de valores e anotações.





# REFERÊNCIAS BIBLIOGRÁFICAS

TULER, Marcelo; SARAIVA, Sérgio; FLORIANO, Cleber. **Fundamentos de Topografia.**Porto Alegre: SAGAH, 2016.

SAVIETTO, Rafael. Topografia Aplicada. Porto Alegre: Sagah, 2017.



### Acesse o roteiro:



# **INSTRUÇÕES GERAIS**

- 1. Neste experimento, você irá aprimorar seus conhecimentos sobre a medição direta de distância utilizando trena de fibra de vidro e equipamentos auxiliares.
- 2. Utilize a seção "Recomendações de Acesso" para melhor aproveitamento da experiência virtual e para respostas às perguntas frequentes a respeito do VirtuaLab.
- 3. Caso não saiba como manipular o Laboratório Virtual, utilize o **"Tutorial** Virtualab" presente neste Roteiro.
- 4. Caso já possua familiaridade com o Laboratório Virtual, você encontrará as instruções para realização desta prática na subseção **"Procedimentos"**.
- 5. Ao finalizar o experimento, responda aos questionamentos da seção "Avaliação de Resultados".



# RECOMENDAÇÕES DE ACESSO

### PARA ACESSAR O VIRTUALAB

### ATENÇÃO:

O LABORATÓRIO VIRTUAL **DEVE SER ACESSADO POR COMPUTADOR**. ELE NÃO DEVE SER ACESSADO POR CELULAR OU TABLET.

O REQUISITO MÍNIMO PARA O SEU COMPUTADOR É UMA MEMÓRIA RAM DE 4 GB.

SEU PRIMEIRO ACESSO SERÁ UM POUCO MAIS LENTO, POIS ALGUNS PLUGINS SÃO BUSCADOS NO SEU NAVEGADOR. A PARTIR DO SEGUNDO ACESSO, A VELOCIDADE DE ABERTURA DOS EXPERIMENTOS SERÁ MAIS RÁPIDA.

- 1. Caso utilize o Windows 10, dê preferência ao navegador Google Chrome;
- 2. Caso utilize o Windows 7, dê preferência ao navegador Mozilla Firefox;
- 3. Feche outros programas que podem sobrecarregar o seu computador;
- 4. Verifique se o seu navegador está atualizado;
- 5. Realize teste de velocidade da internet.

Na página a seguir, apresentamos as duas principais dúvidas na utilização dos Laboratórios Virtuais. Caso elas não se apliquem ao seu problema, consulte a nossa seção de "Perguntas Frequentes", disponível em: <a href="https://algetec.movidesk.com/kb/pt-br/">https://algetec.movidesk.com/kb/pt-br/</a>

Neste mesmo link, você poderá **usar o chat** ou **abrir um chamado** para o contato com nossa central de suporte. Se preferir, utilize os QR CODEs para um contato direto por Whatsapp (8h às 18h) ou para direcionamento para a central de suporte. Conte conosco!







### PERGUNTAS FREQUENTES

#### 1) O laboratório virtual está lento, o que devo fazer?

- a) No Google Chrome, clique em "Configurações" -> "Avançado" -> "Sistema" -> "Utilizar aceleração de hardware sempre que estiver disponível". Habilite a opção e reinicie o navegador.
- b) Verifique as configurações do driver de vídeo ou equivalente. Na área de trabalho, clique com o botão direito do mouse. Escolha "Configurações gráficas" e procure pela configuração de performance. Escolha a opção de máximo desempenho.

Obs.: Os atalhos e procedimentos podem variar de acordo com o driver de vídeo instalado na máquina.

- c) Feche outros aplicativos e abas que podem sobrecarregar o seu computador.
- d) Verifique o uso do disco no Gerenciador de Tarefas (Ctrl + Shift + Esc) -> "Detalhes". Se estiver em 100%, feche outros aplicativos ou reinicie o computador.



#### 2) O laboratório apresentou tela preta, como proceder?

- a) No Google Chrome, clique em "Configurações" -> "Avançado" -> "Sistema" -> "Utilizar aceleração de hardware sempre que estiver disponível". Habilite a opção e reinicie o navegador. Caso persista, desative a opção e tente novamente.
- b) Verifique as configurações do driver de vídeo ou equivalente. Na área de trabalho, clique com o botão direito do mouse. Escolha "Configurações gráficas" e procure pela configuração de performance. Escolha a opção de máximo desempenho.

Obs.: Os atalhos e procedimentos podem variar de acordo com o driver de vídeo instalado na máquina.

c) Verifique se o navegador está atualizado.

ALGETEC – SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO
CEP: 40260-215 Fone: 71 3272-3504
E-mail: contato@algetec.com.br | Site: www.algetec.com.br



# DESCRIÇÃO DO LABORATÓRIO

### MATERIAIS NECESSÁRIOS

- Piquete de marcação;
- Martelo de borracha;
- Baliza;
- Nível cantoneira;
- Trena de fibra de vidro;
- Tachinha de cobre;
- Ficha topográfica.

### **PROCEDIMENTOS**

#### 1. DEMARCANDO COM PIQUETES

Insira os piquetes nos pontos A e B do terreno e, sobre eles, insira uma tachinha de cobre para referência.

#### 2. ALINHANDO AS MEDIDAS ESCALONADAS

Posicione uma baliza sobre a tachinha que está localizada no piquete do ponto A e, nela, posicione o nível de cantoneira. Realize o nivelamento da baliza A utilizando o

LABORATÓRIO DE TOPOGRAFIA MEDIÇÃO COM TRENA

SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO

nível da cantoneira. Posicione uma baliza sobre a tachinha que está localizada no

piquete do ponto B e, nela, posicione o nível de cantoneira. Realize o nivelamento

da baliza B utilizando o nível da cantoneira.

3. POSICIONANDO A BALIZA INTERMEDIÁRIA

Posicione uma baliza no ponto de abertura máximo da trena, este será o ponto

intermediário. Retorne com a trena para a mesa, vá até o nível de cantoneira que

está na baliza do ponto B e o posicione na baliza intermediária, após isso, realize o

nivelamento da baliza e insira uma ficha topográfica na posição da baliza

intermediária.

4. REALIZANDO A LEITURA DAS MEDIDAS ESCALONADAS

Utilize a trena para medir a distância entre a baliza A e a baliza intermediária.

Depois, meça a distância entre a baliza intermediária e a baliza B. Lembrando de

aplicar tensão adequada na trena durante as medições visando evitar o efeito

catenária.

5. AVALIANDO OS RESULTADOS

Siga para a seção "Avaliação dos Resultados", localizada na página 07 deste roteiro,

e responda de acordo com o que foi observado no experimento, associando também

com os conhecimentos aprendidos sobre o tema.

ALGETEC – SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO CEP: 40260-215 Fone: 71 3272-3504

E-mail: contato@algetec.com.br | Site: www.algetec.com.br



# **AVALIAÇÃO DOS RESULTADOS**

1. Qual a consequência de não aplicar tensão na trena?

2. O que a não utilização da baliza em alinhamento correto pode acarretar?

ALGETEC – SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO CEP: 40260-215 Fone: 71 3272-3504

 $\hbox{E-mail: contato@algetec.com.br} \hspace{0.2cm} | \hspace{0.2cm} \hbox{Site: www.algetec.com.br}$ 





## **TUTORIAL VIRTUALAB**

### 1. DEMARCANDO COM PIQUETES

Se aproxime da mesa 1 clicando com o botão esquerdo do mouse na câmera com o nome "Mesa 1" localizada dentro do painel de visualização no canto superior esquerdo da tela. Se preferir, também pode ser utilizado o atalho do teclado "Alt+2".



ALGETEC – SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO CEP: 40260-215 Fone: 71 3272-3504

E-mail: contato@algetec.com.br | Site: www.algetec.com.br



Insira um piquete de marcação no ponto A clicando com botão direito do mouse sobre os piquetes e selecionando a opção "Inserir no ponto A".



Após fixar o piquete no ponto A, retorne para a mesa 1 clicando com o botão esquerdo do mouse na câmera com o nome "Mesa 1" ou através do atalho do teclado "Alt+2".





Insira um piquete de marcação no ponto B clicando com botão direito do mouse sobre o piquete e selecionando a opção "Inserir no ponto B".



Após fixar o piquete no ponto B, retorne para a mesa 1 clicando com o botão esquerdo do mouse na câmera com o nome "Mesa 1" ou através do atalho do teclado "Alt+2".





Insira uma tachinha de cobre no ponto A clicando com botão direito do mouse sobre a tachinha e selecionando a opção "Inserir no ponto A".



Retorne para a mesa 1 e insira a tachinha de cobre no ponto B clicando com botão direito do mouse sobre a tachinha e selecionando a opção "Inserir no ponto B".





### 2. ALINHANDO AS MEDIDAS ESCALONADAS

Visualize a mesa 1 clicando com o botão esquerdo do mouse na câmera com o nome "Mesa 1" ou através do atalho do teclado "Alt+2". Ou ainda, se preferir, visualize a mesa 2 clicando com o botão esquerdo do mouse na câmera com o nome "Mesa 2" ou através do atalho do teclado "Alt+3".



ALGETEC – SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO CEP: 40260-215 Fone: 71 3272-3504

 $\hbox{E-mail: contato@algetec.com.br} \hspace{0.2cm} | \hspace{0.2cm} \hbox{Site: www.algetec.com.br}$ 



Posicione uma baliza sobre a tachinha que está localizada no piquete do ponto A clicando com botão direito do mouse sobre uma baliza e selecionando a opção "Posicionar no piquete A".



Visualize a mesa 1 e insira o nível de cantoneira na baliza do ponto A clicando sobre o nível e selecionando a opção "Posicionar em A".





Após posicionar, realize o ajuste clicando com botão direito do mouse sobre o nível e selecionando a opção "Ajustar baliza", ao selecionar essa opção, uma janela para ajuste será mostrada no lado direito da tela.



Mova a baliza utilizando as setas brancas dentro da janela de controle. A pequena bola cinza indica a posição onde a baliza está e a circunferência preta indica onde ela deve ficar.





Feche a janela de ajuste do nível clicando com botão esquerdo do mouse no "X" do canto superior direito.



Visualize a mesa 1 clicando com o botão esquerdo do mouse na câmera com o nome "Mesa 1" ou através do atalho do teclado "Alt+2". Ou ainda, se preferir, visualize a mesa 2 clicando com o botão esquerdo do mouse na câmera com o nome "Mesa 2" ou através do atalho do teclado "Alt+3".





Posicione uma baliza sobre a tachinha que está localizada no piquete do ponto B clicando com botão direito do mouse sobre uma baliza e selecionando a opção "Posicionar no piquete B".



Visualize a baliza localizada no ponto A clicando com o botão esquerdo do mouse na câmera com o nome "Ponto A" ou através do atalho do teclado "Alt+5".





Insira o nível de cantoneira na baliza do ponto B clicando sobre o nível e selecionando a opção "Posicionar em B".



Repita o procedimento utilizado para ajustar a baliza do ponto A para realizar o ajuste da baliza do ponto B.

17

E-mail: contato@algetec.com.br | Site: www.algetec.com.br



## 3. POSICIONANDO A BALIZA INTERMEDIÁRIA

Retorne para a mesa 2 clicando com o botão esquerdo do mouse na câmera com o nome "Mesa 2" ou através do atalho do teclado "Alt+3".



Marque a distância máxima que a trena consegue medir a partir da baliza do ponto A clicando sobre a trena com botão direito do mouse e selecionando a opção "Distância Máxima".



ALGETEC – SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO CEP: 40260-215 Fone: 71 3272-3504

E-mail: contato@algetec.com.br | Site: www.algetec.com.br



Retorne para a mesa e posicione a baliza no ponto intermediário clicando com botão direito do mouse sobre a baliza e selecionando a opção "Posicionar no Intermediário".



Visualize o ponto A clicando com o botão esquerdo do mouse na câmera com o nome "Ponto A" ou através do atalho do teclado "Alt+5".





Retorne com a trena para a mesa clicando com botão direito do mouse sobre ela e selecionando a opção "Retornar para a mesa".



Vá até o nível de cantoneira que está na baliza do ponto B clicando com o botão esquerdo do mouse na câmera com o nome "Ponto B" ou através do atalho do teclado "Alt+6".





Insira o nível de cantoneira na baliza do ponto intermediário clicando sobre o nível e selecionando a opção "Posicionar em Intermediário".



Repita o procedimento utilizado para ajustar a baliza do ponto A e B para realizar o ajuste da baliza do ponto Intermediário.

Visualize a mesa 2 clicando com o botão esquerdo do mouse na câmera com o nome "Mesa 2" ou através do atalho do teclado "Alt+3".





Insira a ficha topográfica no ponto intermediário clicando sobre a ficha e selecionando a opção "Inserir uma ficha topográfica".





# 4. REALIZANDO A LEITURA DAS MEDIDAS ESCALONADAS

Visualize a mesa 2 clicando com o botão esquerdo do mouse na câmera com o nome "Mesa 2" ou através do atalho do teclado "Alt+3".



Meça a distância entre a baliza A e a baliza intermediária clicando com botão direito do mouse sobre a trena e selecionando a opção "Distância entre A e Intermediária".



ALGETEC – SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO CEP: 40260-215 Fone: 71 3272-3504

E-mail: contato@algetec.com.br | Site: www.algetec.com.br



Veja o valor medido clicando com botão direito do mouse sobre a trena e selecionando a opção "Inspecionar trena". Após isso, aparecerá uma janela com uma visão ampliada da trena.



Após anotar o valor, feche a janela clicando com botão esquerdo do mouse no "X" no canto superior direito.



E-mail: contato@algetec.com.br | Site: www.algetec.com.br



Aplique tensão na trena clicando sobre ela com botão direito do mouse e selecionando a opção "Aplicar Tensão".



Veja o valor medido novamente clicando sobre a trena com botão direito do mouse e escolhendo a opção "Inspecionar trena". Anote o valor e feche a janela de visualização da trena.





Realize a medição entre a distância entre o ponto Intermediário e o ponto B clicando sobre a trena e selecionando a opção "Distância entre Intermediária e B".



Repita o procedimento e meça a distância entre o ponto B e o ponto intermediário, lembrando de aplicar tensão na trena.



### 5. AVALIANDO OS RESULTADOS

Siga para a seção "Avaliação dos Resultados", localizada na página 07 deste roteiro, e responda de acordo com o que foi observado no experimento, associando também com os conhecimentos aprendidos sobre o tema.

ALGETEC – SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO CEP: 40260-215 Fone: 71 3272-3504

 $\hbox{E-mail: contato@algetec.com.br} \hspace{0.2cm} | \hspace{0.2cm} \hbox{Site: www.algetec.com.br}$ 

# Pré Teste

- O objetivo da Topografia é descrever uma porção limitada da superfície terrestre de forma estruturada. A Topografia se divide em planimetria e altimetria, sendo que a primeira consiste em:
- A) Estudo das medidas angulares planas.
- B) Procedimentos necessários para determinar as medidas no plano vertical.
- C) Estudo dos meios necessários para determinar os ângulos e distâncias no plano horizontal.
  - Para a Topografia, são necessários diversos equipamentos para efetuar as medidas
- 2) necessárias para a definição de localização. Sobre os equipamentos utilizados em Topografia, assinale alternativa correta sobre os diastímetros e os distanciômetros.
- A) Os diastímetros e os distanciômetros são sinônimos de equipamentos para efetuar medidas angulares no plano horizontal.
- **B)** Os diastímetros são equipamentos para determinar medidas lineares de forma direta enquanto os distanciômetros são equipamentos usados para determinar medidas lineares através do percurso do alinhamento.
- C) Os diastímetros são equipamentos utilizados para determinar medidas lineares de forma direta. Os distanciômetros são equipamentos usados para determinar medidas lineares de forma indireta.
  - Os diastímetros ou trenas podem ser divididos em função do comprimento e do material.
- 3) Dadas essas características e as possíveis aplicações, assinale a alternativa correta.
- A) As trenas curtas geralmente são feitas de aço, recomendada para uso interno, com pequenas dimensões, porém longe da rede de energia elétrica.
- **B)** As trenas curtas geralmente são feitas de fibras de vidro, que é um material mais durável e com maior precisão, pois são menos afetadas pela variação de temperatura.
- C) As trenas longas geralmente possuem 20 metros ou mais e só são encontradas em fibra de vidro, que é material mais durável e preciso quando comparada a possível trena feita de aço.
- Os diastímetros ou trenas têm grande aplicação na topografia. São equipamentos básicos
- 4) para efetuar medidas. Assinale a alternativa correta sobre as trenas.
- A) A trena de fibra de vidro é um distanciômetro que necessita de caminhamento ao longo do alinhamento.
- **B)** A trena de aço possui maior flexibilidade e resistência quando comparada à trena de fibra de vidro.
- C) A trena de fibra de vidro possui maior resistência à intempérie quando comparada à trena de aço.
- Todo processo de medida está sujeito a erros e com as trenas não é diferente. De forma 5) geral, as trenas possuem as mesmas unidades de medida, porém composto de materiais

diferentes. Sobre o conceito de erro, assinale a alternativa correta.

- A) A trena de aço é um equipamento que possui menor desvio que a trena de fibra de vidro.
- B) A trena de fibra de vidro é um equipamento menos preciso que a trena de aço.
- C) A precisão da trena independe do material de fabricação.



### Acesse o laboratório:

Conteúdo interativo disponível na plataforma de ensino!

# Pós Teste

- À primeira vista, o processo de medição de distância horizontal aparenta ser simples, porém requer algumas práticas para se atingir a precisão adequada. Sobre este processo é correto afirmar que:
- A) a distância horizontal só pode ser determinada através do uso do nível de bolha.
- B) a distância inclinada é inferior à distância horizontal.
- C) a distância horizontal é inferior à distância inclinada.
- 2) Na planimetria, é comum se deparar com a necessidade de se medir alinhamentos extensos, como limites de lotes, áreas de terrapleno ou locação de obras de drenagem, maiores que o comprimento da trena disponível. Nestes casos, recomenda-se:
- **A)** separar em lances menores, com extensão máxima igual à da trena e efetuar a medição da distância horizontal dos lances separadamente.
- **B)** utilizar somente distanciômetros para visadas longas ou para determinação de coordenadas.
- C) utilizar diastímetros de visada longa ou para determinação de coordenadas.
- 3) Ao efetuar medidas de distância horizontal em alinhamentos extensos, maior que o comprimento da trena, deve-se atentar ao alinhamento horizontal. Sobre essa observação, é correto afirmar que:
- A) uma vez garantida a distância horizontal, também se garante o alinhamento horizontal.
- B) ao se dividir o alinhamento em lances menores, o erro devido à falta de alinhamento horizontal é desprezível.
- C) o alinhamento horizontal pode ser apurado através da orientação feita com auxílio das balizas extremas.
- 4) A aplicação da tensão adequada ao puxar a trena de fibra de vidro é necessária para correta determinação da distância horizontal. Sobre essa observação, assinale a alternativa correta:

- **A)** a aplicação da tensão excessiva provocará a catenária, ou seja, estreitamento da trena e consequente extensão da trena.
- **B)** a aplicação de tensão excessiva pode provocar alongamento da fita e a distância que passa a ser medida é a distância inclinada.
- C) a distância inclinada é medida em relação à posição da fita ao plano horizontal e não em relação à tensão aplicada.
- 5) A baliza e o nível de cantoneira são equipamentos que auxiliam na medição de distância horizontal. Sobre esse equipamento é correto afirmar que:
- A) a baliza é obrigatória nessa atividade enquanto o nível de cantoneira pode ser dispensado caso o operador seja experiente.
- B) o nível de cantoneira auxilia a verticalizar a baliza, através da referência da bolha circular.
- C) o nível de cantoneira permite visualizar a fita da trena na posição horizontal, através da referência da bolha circular.