Aplikasi Aljabar Boolean(Jemakmun)

1. Jaringan Pensaklaran (Switching Network)

Saklar adalah objek yang mempunyai dua buah keadaan: buka dan tutup.

Tiga bentuk gerbang paling sederhana:

- 1. a x bOutput b hanya ada jika dan hanya jika x dibuka $\Rightarrow x$
- 2. a x y bOutput b hanya ada jika dan hanya jika x dan y dibuka $\Rightarrow xy$
- 3. a x c x c x c x

Output c hanya ada jika dan hanya jika x atau y dibuka \Rightarrow x + y

Contoh rangkaian pensaklaran pada rangkaian listrik:

1. Saklar dalam hubungan SERI: logika AND

2. Saklar dalam hubungan PARALEL: logika OR

Contoh. Nyatakan rangkaian pensaklaran pada gambar di bawah ini dalam ekspresi Boolean.

<u>Jawab</u>: x'y + (x' + xy)z + x(y + y'z + z)

2. Rangkaian Digital Elektronik

Contoh. Nyatakan fungsi f(x, y, z) = xy + x'y ke dalam rangkaian logika.

Jawab: (a) Cara pertama

(b) Cara kedua

(b) Cara ketiga

Gerbang turunan

 $x \rightarrow y \rightarrow x \rightarrow y$

Gerbang NAND

Gerbang XOR

Gerbang NOR

Gerbang XNOR

$$x$$
 y
— $(x + y)'$ ekivalen dengan x
 y
— $(x + y)'$

$$x'$$
 y' ekivalen dengan y $(x+y)'$

$$x'$$
 y' ekivalen dengan y' y' y' y'

Penyederhanaan Fungsi Boolean

Contoh.
$$f(x, y) = x'y + xy' + y'$$

disederhanakan menjadi

$$f(x, y) = x' + y'$$

Penyederhanaan fungsi Boolean dapat dilakukan dengan 3 cara:

- 1. Secara aljabar
- 2. Menggunakan Peta Karnaugh
- 3. Menggunakan metode Quine Mc Cluskey (metode Tabulasi)

1. Penyederhanaan Secara Aljabar

Contoh:

1.
$$f(x, y) = x + x'y$$

= $(x + x')(x + y)$
= $1 \cdot (x + y)$
= $x + y$

2. Peta Karnaugh

a. Peta Karnaugh dengan dua peubah

$$\begin{array}{c|cccc}
 & y \\
 & 0 & 1 \\
\hline
 m_0 & m_1 & x & 0 & x'y' & x'y \\
\hline
 m_2 & m_3 & 1 & xy' & xy
\end{array}$$

b. Peta dengan tiga peubah

Contoh. Diberikan tabel kebenaran, gambarkan Peta Karnaugh.

x	у	Z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

	yz 00	01	11	10
<i>x</i> 0	0	0	0	1
1	0	0	1	1

ь. Peta dengan empat peubah

					yz			
				_	00	01	11	10
m_0	m_1	m_3	m_2	wx 00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
m_4	m_5	m_7	m_6	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
m_{12}	m_{13}	m_{15}	m_{14}	11	wxy'z'	wxy'z	wxyz	wxyz'
m_8	<i>m</i> ₉	m_{11}	m_{10}	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

Contoh. Diberikan tabel kebenaran, gambarkan Peta Karnaugh.

W	Х	у	Z	f(w, x, y, z)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0 0 0 0 0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

		yz 00	01	11	10
wx	00	0	1	0	1
	01	0	0	1	1
	11	0	0	0	1
	10	0	0	0	0

Teknik Minimisasi Fungsi Boolean dengan Peta Karnaugh

1. Pasangan: dua buah 1 yang bertetangga

		9z 00	01	1 1	1 0
wx	00	0	0	0	0
	01	0	0	0	0
	11	0	0	1	1
	10	0	0	0	0

Sebelum disederhanakan: f(w, x, y, z) = wxyz + wxyz' Hasil Penyederhanaan: f(w, x, y, z) = wxy

Bukti secara aljabar:

$$f(w, x, y, z) = wxyz + wxyz'$$

$$= wxy(z + z')$$

$$= wxy(1)$$

$$= wxy$$

2. *Kuad*: empat buah 1 yang bertetangga

01	0	0	0	0
11		1	1	
10	0	0	0	0

Sebelum disederhanakan: f(w, x, y, z) = wxy'z' + wxyz + wxyz + wxyz'Hasil penyederhanaan: f(w, x, y, z) = wx

Bukti secara aljabar:

$$f(w, x, y, z) = wxy' + wxy$$

$$= wx(z' + z)$$

$$= wx(1)$$

$$= wx$$

	9z 00	01	11	10
wx 00	0	0	0	0
01	0	0	0	0
11 9	1	1	1	
10	0	0	0	0

Contoh lain:

Sebelum disederhanakan: f(w, x, y, z) = wxy'z' + wxy'z + wx'y'z' + wx'y'z*Hasil penyederhanaan*: f(w, x, y, z) = wy' 3. Oktet: delapan buah 1 yang bertetangga

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	1 1	1	1	1	1
	1 0	1	1	1	1

Sebelum disederhanakan: f(a, b, c, d) = wxy'z' + wxy'z + wxyz + wxyz' + wx'y'z' + wx'yz + wx'yz + wx'yz'

Hasil penyederhanaan: f(w, x, y, z) = w

Bukti secara aljabar:

$$f(w, x, y, z) = wy' + wy$$
$$= w(y' + y)$$
$$= w$$

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	11	1	1	1	1
	10	1	1	1	1

Contoh 5.11. Sederhanakan fungsi Boolean f(x, y, z) = x'yz + xy'z' + xyz + xyz'.

Jawab:

Peta Karnaugh untuk fungsi tersebut adalah:

		yz 00	01	11	10	
х	0			\bigcap		
	1	1		1	1	_

Hasil penyederhanaan: f(x, y, z) = yz + xz'

Contoh 5.12. Andaikan suatu tabel kebenaran telah diterjemahkan ke dalam Peta Karnaugh. Sederhanakan fungsi Boolean yang bersesuaian sesederhana mungkin.

		<i>yz</i> 00	01	11	10	
wx	00	0			1	
	01	0	0	0	1	
	11	1	1	0	1	
	10	1	1	0	1	

<u>Jawab</u>: (lihat Peta Karnaugh) f(w, x, y, z) = wy' + yz' + w'x'z

Contoh 5.13. Minimisasi fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini.

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0	1	0	0
	11	1		1	1
	10	1	1	1	_1_

<u>Jawab</u>: (lihat Peta Karnaugh) f(w, x, y, z) = w + xy'z

Jika penyelesaian Contoh 5.13 adalah seperti di bawah ini:

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0		0	0
	11	1	1	1	1
	10	1	1	1	1

maka fungsi Boolean hasil penyederhanaan adalah

$$f(w, x, y, z) = w + w'xy'z$$
 (jumlah literal = 5)

yang ternyata masih belum sederhana dibandingkan f(w, x, y, z) = w + xy'z (jumlah literal = 4).

SOAL-SOAL YANG HARUS DIKERJAKAN DAN JAWABAN HARUS DIKIRIMKAN SEBELUM BATAS WAKTU YANG SUDAH DITENTUKAN

1. Carilah komplemen dari fungsi Boolean berikut;

a.
$$f(w,x,y,z) = x'z + w'xy' + wyz + w'xy$$

b.
$$f(x,y,z) = xy + x'y'z' + x'yz'$$

2. Gambarkan rangkaian pensaklaran yang menyatakan ekspresi Boolean:

a.
$$xy + xy'z + y(x'+z) + y'z'$$