ALGEBRA PER INFORMATICA 2020-21

ESERCITAZIONE GUIDATA - 15/12/2020

Esercizio 1. Si consideri la seguente funzione

$$f: \mathbb{Z}_{35} \times \mathbb{Z}_{22} \longrightarrow \mathbb{Z}_{35} \times \mathbb{Z}_{22}$$
$$(\overline{x}, \overline{y}) \mapsto (\overline{3} \cdot \overline{x}, \overline{3} \cdot \overline{y})$$

- (1) Determinare se f è iniettiva e/o surgettiva.
- (2) Trovare (se esiste) l'inversa di f nel monoide $(X^X, \circ, \mathrm{Id}_X)$, dove $X = \mathbb{Z}_{35} \times \mathbb{Z}_{22}$.

Soluzione. Per prima cosa osserviamo che siccome MCD(3,35) = MCD(3,22) = 1, la classe di equivalenza di 3 è invertibile in \mathbb{Z}_{35} e in \mathbb{Z}_{22} . Con l'algoritmo euclideo, o con un calcolo diretto, si può determinare più precisamente che

$$\overline{3}^{-1} = \overline{12} \text{ in } \mathbb{Z}_{35} \text{ infatti } \overline{3} \cdot \overline{12} = \overline{36} = \overline{1},$$

$$\overline{3}^{-1} = \overline{15} \text{ in } \mathbb{Z}_{22} \text{ infatti } \overline{3} \cdot \overline{15} = \overline{45} = \overline{1}.$$

(1) **Iniettività.** Siano $(\overline{x}, \overline{y}), (\overline{a}, \overline{b}) \in X$ tali che $f(\overline{x}, \overline{y}) = f(\overline{a}, \overline{b})$, cioè $(\overline{3} \cdot \overline{x}, \overline{3} \cdot \overline{y}) = (\overline{3} \cdot \overline{a}, \overline{3} \cdot \overline{b})$. Moltiplicando la prima componente per $\overline{12} \in \mathbb{Z}_{35}$ e la seconda componente per $\overline{15} \in \mathbb{Z}_{22}$ si ottiene

$$(\overline{12} \cdot \overline{3} \cdot \overline{x}, \overline{15} \cdot \overline{3} \cdot \overline{y}) = (\overline{12} \cdot \overline{3} \cdot \overline{a}, \overline{15} \cdot \overline{3} \cdot \overline{b})$$

e quindi per quanto detto sopra si ha $(\bar{x}, \bar{y}) = (\bar{a}, \bar{b})$.

Surgettività. Sia $(\overline{a}, \overline{b}) \in X$. Scegliamo $(\overline{x}, \overline{y}) = (\overline{12} \cdot \overline{a}, \overline{15} \cdot \overline{b})$. Per quanto detto sopra si verifica facilmente che $f(\overline{x}, \overline{y}) = f(\overline{12} \cdot \overline{a}, \overline{15} \cdot \overline{b}) = (\overline{3} \cdot \overline{12} \cdot \overline{a}, \overline{3} \cdot \overline{15} \cdot \overline{b}) = (\overline{a}, \overline{b})$.

(2) L'inversa di f è la funzione

$$g: \mathbb{Z}_{35} \times \mathbb{Z}_{22} \longrightarrow \mathbb{Z}_{35} \times \mathbb{Z}_{22}$$
$$(\overline{x}, \overline{y}) \mapsto (\overline{12} \cdot \overline{x}, \overline{15} \cdot \overline{y})$$

La verifica che $f \circ g = g \circ f = \operatorname{Id}_X$ segue da quanto detto prima.

Esercizio 2. Sia $f: \mathbb{Z}^2 \to \mathbb{Z}$ l'applicazione data da f(x,y) = 7x + 9y.

- (1) Determinare se f è iniettiva e/o surgettiva.
- (2) Determinare $f^{-1}(0)$, $f^{-1}(3)$, $f^{-1}(\bar{f}(-1,2))$.
- (3) Trovare (se esiste) una funzione $g: \mathbb{Z} \to \mathbb{Z}^2$ tale che $f \circ g = \mathrm{Id}_{\mathbb{Z}}$.

Soluzione. (1) La funzione f è surgettiva. Infatti dato un qualunque $n \in \mathbb{Z}$ esistono sempre due interi x, y tali che 7x + 9y = n siccome $MCD(7,9) = 1 \mid n$.

La funzione
$$f$$
 non è iniettiva. Si noti ad esempio che

$$f(8,-6) = 8 \cdot 7 - 6 \cdot 9 = 2 = -7 + 9 = f(-1,1).$$

- (2) Si ricordi che se $(x_0, y_0) \in \mathbb{Z}^2$ è una soluzione dell'equazione diofantea ax + by = c con MCD(a,b) = 1, allora tutte le soluzioni si scrivono come $(x,y) = (x_0 + bk, y_0 ak)$ al variare di $k \in \mathbb{Z}$.
 - $f^{-1}(0) = \{(x,y) \in \mathbb{Z}^2 : 7x + 9y = 0\}$. Siccome una soluzione particolare di 7x + 9y = 0 è data da $(x_0, y_0) = (0, 0)$, si ha

$$f^{-1}(0) = \{(9k, -7k) : k \in \mathbb{Z}\}.$$

• $f^{-1}(3) = \{(x,y) \in \mathbb{Z}^2 : 7x + 9y = 3\}$. Per determinare una soluzione particolare di 7x + 9y = 3 utilizziamo l'algoritmo euclideo

$$9 = 1 \cdot 7 + 2$$
$$7 = 3 \cdot 2 + 1$$

e la conseguente identità di Bezout $1 = 4 \cdot 7 - 3 \cdot 9$, da cui ricaviamo $3 = 12 \cdot 7 - 9 \cdot 9$. Pertanto $(x_0, y_0) = (12, -9)$ e quindi

$$f^{-1}(3) = \{(12+9k, -9-7k) : k \in \mathbb{Z}\}.$$

• $f^{-1}(f(-1,2)) = f^{-1}(11) = \{(x,y) \in \mathbb{Z}^2 : 7x + 9y = 11\}$. Dall'identità di Bezout precedentemente ricavata otteniamo $11 = 44 \cdot 7 - 33 \cdot 9$. Pertanto $(x_0, y_0) = (44, -33)$ e quindi

$$f^{-1}(11) = \{(44+9k, -33-7k) : k \in \mathbb{Z}\}.$$

(3) Prendendo spunto dall'identità di Bezout $1=4\cdot 7-3\cdot 9$, definiamo $g:\mathbb{Z}\to\mathbb{Z}^2$ tale che g(k)=(4k,-3k). Verifichiamo che $f\circ g=\mathrm{Id}_\mathbb{Z}$. Per un qualunque $k\in\mathbb{Z}$ abbiamo

$$(f \circ g)(k) = f(g(k)) = f(4k, -3k) = 7 \cdot 4k - 9 \cdot 3k = 28k - 27k = k = \operatorname{Id}_{\mathbb{Z}}(k).$$

Esercizio 3. Si consideri \mathbb{Z}_{25} .

- (1) Calcolare $\overline{6}^{303}$
- (2) Determinare l'ordine dei seguenti elementi del gruppo degli elementi invertibili $(U(\mathbb{Z}_{25}), \cdot, \overline{1})$:

$$\overline{6}$$
, $\overline{24}$, $\overline{11}$, $\overline{7}$.

Soluzione. Per prima cosa calcoliamo $\varphi(25) = 20$ e ricordiamo che per il teorema di Eulero, dato $x \in \mathbb{Z}$ tale che MCD(x, 25) = 1 allora $\bar{x}^{20} = \bar{1}$ in \mathbb{Z}_{25} .

(1) Consideriamo la divisione euclidea $303 = 15 \cdot 20 + 3$, abbiamo pertanto

$$\overline{6}^{303} = \overline{6}^{15 \cdot 20 + 3} = \left(\overline{6}^{20}\right)^{15} \cdot \overline{6}^{3} = \overline{1} \cdot \overline{6}^{3} = \overline{6}^{2} \cdot \overline{6} = \overline{36} \cdot \overline{6} = \overline{11} \cdot \overline{6} = \overline{16}.$$

- (2) Ricordiamo che l'ordine moltiplicativo di un elemento in $U(\mathbb{Z}_{25})$ dev'essere un divisore dell'ordine $|U(\mathbb{Z}_{25})| = \varphi(25) = 20$.
 - Abbiamo già calcolato $\overline{6}^2 = \overline{11}$ e $\overline{6}^3 = \overline{16}$. Calcoliamo $\overline{6}^4 = \overline{6}^3 \cdot \overline{6} = \overline{16} \cdot \overline{6} = \overline{96} = \overline{-4} = \overline{21}$ e $\overline{6}^5 = \overline{6}^4 \cdot \overline{6} = \overline{21} \cdot \overline{6} = \overline{126} = \overline{1}$. Pertanto $\overline{6}^1 = \overline{6}^1 = \overline{6}$
 - Si vede facilmente che $\overline{24} = \overline{-1}$ e quindi $\overline{24}^2 = (\overline{-1}) \cdot (\overline{-1}) = \overline{1}$. Pertanto ord $(\overline{24}) = 2$.

Notare che sapendo che ord $(\overline{6}) = 5$ nel punto (1) si sarebbe potuto effettuare la divisione euclidea di 303 per 5 anzichè per 20.

• Calcoliamo soltanto le potenze $\overline{11}^d$ con $d \mid 20$.

$$\overline{11}^2 = \overline{121} = \overline{-4},$$

$$\overline{11}^4 = (\overline{-4})^2 = \overline{16},$$

$$\overline{11}^5 = \overline{11}^4 \cdot \overline{11} = \overline{16} \cdot \overline{11} = \overline{176} = \overline{1}.$$

Pertanto ord $(\overline{11}) = 5$.

• Calcoliamo soltanto le potenze $\overline{7}^d$ con $d \mid 20$.

$$\overline{7}^2 = \overline{49} = \overline{-1},$$

$$\overline{7}^4 = (\overline{7}^2)^2 = (\overline{-1})^2 = \overline{1}.$$

Pertanto ord $(\overline{7}) = 4$.

Esercizio 4. Si consideri il gruppo $G = \{f : \mathbb{Z} \to \mathbb{Z} \text{ bigettiva}\}$ con l'operazione di composizione. Per ogni $k \in \mathbb{Z}$, definiamo il sottoinsieme

$$H_k = \{ f \in G : f(3) = k \}.$$

(1) Determinare per quali $k \in \mathbb{Z}$ il sottoinsieme H_k è un sottogruppo di G.

Sia $f \in G$ la funzione definita da $f(x) = x + 1 \ \forall x \in \mathbb{Z}$.

- (2) Per ciascuno dei $k \in \mathbb{Z}$ determinati in (1), trovare un elemento $h \in G$ diverso da f e appartenente alla classe laterale sinistra $f \circ H_k$.
- (3) Per ciascuno dei $k \in \mathbb{Z}$ determinati in (1), trovare un elemento $g \in G$ tale che $g \circ H_k \neq f \circ H_k$.
- **Soluzione.** (1) Affinchè H_k sia un sottogruppo di G è necessario che l'elemento neutro di G, la funzione identità $\mathrm{Id}_{\mathbb{Z}}$, appartenga ad H_k . Siccome $\mathrm{Id}_{\mathbb{Z}}(3)=3$, l'unico $k\in\mathbb{Z}$ per cui $\mathrm{Id}_{\mathbb{Z}}\in H_k$ è k=3. Sia pertanto k=3, verifichiamo che H_3 è un sottogruppo di G. Abbiamo già verificato che $\mathrm{Id}_{\mathbb{Z}}\in H_3$. Siano adesso $f,g\in H_3$, verifichiamo che $f\circ g\in H_3$. Ci basta calcolare

$$(f \circ g)(3) = f(g(3)) = f(3) = 3.$$

Infine, consideriamo $f \in H_3$ e la sua inversa $f^{-1} \in G$. Mostriamo che $f^{-1} \in H_3$, cioè che $f^{-1}(3) = 3$. Ricordiamo che per definizione di inversa abbiamo $(f^{-1} \circ f)(3) = \operatorname{Id}_{\mathbb{Z}}(3) = 3$, ma d'altra parte $(f^{-1} \circ f)(3) = f^{-1}(f(3)) = f^{-1}(3)$ siccome f(3) = 3. Mettendo insieme le due uguaglianze otteniamo $f^{-1}(3) = 3$ come richiesto.

(2) Fissiamo k = 3. La classe laterale sinistra di f modulo H_3 è definita come

$$f \circ H_3 = \{ h \in G : h \sim_S f \},$$

dove la relazione d'equivalenza \sim_S è data da

$$h \sim_S f \iff h^{-1} \circ f \in H_3 \iff h^{-1}(f(3)) = 3 \iff h^{-1}(4) = 3.$$

La prima doppia freccia è la definizione di \sim_S , la seconda segue dalla definizione di H_3 , e la terza doppia implicazione è dovuta al fatto che f(3) = 3 + 1 = 4.

Per trovare un elemento $h \in f \circ H_3$ ci basta quindi trovare una funzione $h : \mathbb{Z} \to \mathbb{Z}$ bigettiva la cui inversa h^{-1} assume il valore 3 in 4. Scegliamo h(x) = -x + 7. Si verifica facilmente che h è bigettiva con inversa $h^{-1} = h$. Inoltre $h^{-1}(4) = h(4) = -4 + 7 = 3$. Pertanto $h \in f \circ H_3$.

(3) Fissiamo k=3. Dato $g\in G$ si ha che $g\circ H_3\neq f\circ H_3$ se e soltanto se $g\not\sim_S f$. Ragionando come al punto (2), abbiamo quindi

$$g \not\sim_S f \iff g^{-1} \circ f \not\in H_3 \iff g^{-1}(f(3)) \neq 3 \iff g^{-1}(4) \neq 3.$$

Cerchiamo pertanto una funzione bigettiva $g: \mathbb{Z} \to \mathbb{Z}$ per cui $g^{-1}(4) \neq 3$. Scegliamo g(x) = x+2. La sua inversa è $g^{-1}(x) = x-2$ e si ha $g^{-1}(4) = 4-2 = 2 \neq 3$. Quindi $g \circ H_3 \neq f \circ H_3$ come richiesto.