Optimización y Probabilidad

Fernando Lozano

Universidad de los Andes

8 de agosto de 2014

• En el fondo de cualquier problema en ML siempre reside un problema de optimización

- En el fondo de cualquier problema en ML siempre reside un problema de optimización
- Escoger el mejor modelo (NN,SVM,...) de acuerdo a la meta de aprendizaje.

- En el fondo de cualquier problema en ML siempre reside un problema de optimización
- Escoger el mejor modelo (NN,SVM,...) de acuerdo a la meta de aprendizaje.
- Dos tipos:

- En el fondo de cualquier problema en ML siempre reside un problema de optimización
- Escoger el mejor modelo (NN,SVM,...) de acuerdo a la meta de aprendizaje.
- Dos tipos:
 - Sin restricciones.

- En el fondo de cualquier problema en ML siempre reside un problema de optimización
- Escoger el mejor modelo (NN,SVM,...) de acuerdo a la meta de aprendizaje.
- Dos tipos:
 - Sin restricciones.
 - 2 Con restricciones.

- En el fondo de cualquier problema en ML siempre reside un problema de optimización
- Escoger el mejor modelo (NN,SVM,...) de acuerdo a la meta de aprendizaje.
- Dos tipos:
 - Sin restricciones.
 - 2 Con restricciones.
- Deseable:

- En el fondo de cualquier problema en ML siempre reside un problema de optimización
- Escoger el mejor modelo (NN,SVM,...) de acuerdo a la meta de aprendizaje.
- Dos tipos:
 - Sin restricciones.
 - 2 Con restricciones.
- Deseable: convexidad.

• Suponemos que existe una relación funcional entre y y $\mathbf{x} = (x_1, x_2, \dots, x_n)$

- Suponemos que existe una relación funcional entre y y $\mathbf{x} = (x_1, x_2, \dots, x_n)$
- Conocemos mediciones $\{\mathbf{x}_i, y_i\}_{i=1}^m$ posiblemente ruidosas.

- Suponemos que existe una relación funcional entre y y $\mathbf{x} = (x_1, x_2, \dots, x_n)$
- Conocemos mediciones $\{\mathbf{x}_i, y_i\}_{i=1}^m$ posiblemente ruidosas.
- Modelo paramétrico $y = f(\mathbf{x}, \boldsymbol{\Theta})$ ($\boldsymbol{\Theta}$: Vector de parámetros).

- Suponemos que existe una relación funcional entre y y $\mathbf{x} = (x_1, x_2, \dots, x_n)$
- Conocemos mediciones $\{\mathbf{x}_i, y_i\}_{i=1}^m$ posiblemente ruidosas.
- Modelo paramétrico $y = f(\mathbf{x}, \boldsymbol{\Theta})$ ($\boldsymbol{\Theta}$: Vector de parámetros).
- Queremos resolver

$$\min_{\mathbf{\Theta}} \sum_{i=1}^{m} l(\mathbf{x}_i, y_i, f(\mathbf{x}_i, \mathbf{\Theta}))$$

Donde l(.,.) es una función de error.

- Suponemos que existe una relación funcional entre y y $\mathbf{x} = (x_1, x_2, \dots, x_n)$
- Conocemos mediciones $\{\mathbf{x}_i, y_i\}_{i=1}^m$ posiblemente ruidosas.
- Modelo paramétrico $y = f(\mathbf{x}, \boldsymbol{\Theta})$ ($\boldsymbol{\Theta}$: Vector de parámetros).
- Queremos resolver

$$\min_{\Theta} \sum_{i=1}^{m} l(\mathbf{x}_i, y_i, f(\mathbf{x}_i, \Theta))$$

Donde l(.,.) es una función de error.

• Por ejemplo:

$$\min_{\boldsymbol{\Theta}} \sum_{i=1}^{m} \left(f(\mathbf{x_i}, \boldsymbol{\Theta}) - y_i \right)^2$$

Ejemplo: Máxima Verosimilitud

• Deseamos modelar distribución de probabilidad conjunta de vector aleatorio \mathbf{x} , usando observaciones $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$.

Ejemplo: Máxima Verosimilitud

- Deseamos modelar distribución de probabilidad conjunta de vector aleatorio \mathbf{x} , usando observaciones $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$.
- Asumiendo independencia, suponemos modelo de la forma

$$L(\mathbf{\Theta}) = \prod_{i=1}^{n} p(\mathbf{x}_i | \mathbf{\Theta})$$

Ejemplo: Máxima Verosimilitud

- Deseamos modelar distribución de probabilidad conjunta de vector aleatorio \mathbf{x} , usando observaciones $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$.
- Asumiendo independencia, suponemos modelo de la forma

$$L(\mathbf{\Theta}) = \prod_{i=1}^{n} p(\mathbf{x}_i | \mathbf{\Theta})$$

Queremos resolver:

$$\max_{\mathbf{\Theta}} \left\{ \log L(\mathbf{\Theta}) \right\}$$

Por ejemplo:

• \mathbf{x} con distribución Normal, parámetro es media $\boldsymbol{\mu}$,

$$p(\mathbf{x}|\boldsymbol{\mu}) = \frac{1}{(2\pi)^{m/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

Por ejemplo:

• \mathbf{x} con distribución Normal, parámetro es media $\boldsymbol{\mu}$,

$$p(\mathbf{x}|\boldsymbol{\mu}) = \frac{1}{(2\pi)^{m/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

• Queremos resolver:

$$\min_{\boldsymbol{\mu}} \sum_{i=1}^{n} \left((\mathbf{x}_i - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}_i - \boldsymbol{\mu}) \right)$$

• Problema general:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x})$$

• Problema general:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x})$$

• Deseable que f sea una función suave: derivadas de primer y segundo orden existen y son continuas.

• Problema general:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x})$$

- Deseable que f sea una función suave: derivadas de primer y segundo orden existen y son continuas.
- Mínimo local vs. Mínimo global.

Problema general:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x})$$

- Deseable que f sea una función suave: derivadas de primer y segundo orden existen y son continuas.
- Mínimo local vs. Mínimo global.
- Convexidad.

Derivadas de primer y segundo orden

Gradiente:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

Derivadas de primer y segundo orden

Gradiente:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

Hessiana:

$$\nabla_{\mathbf{x}}^{2} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} \end{bmatrix}$$

Incialize \mathbf{x}_0

 $\begin{array}{c} {\rm Incialice} \ {\bf x}_0 \\ {\bf repeat} \end{array}$

Incialice \mathbf{x}_0 **repeat** Escoja dirección **d**

Incialice \mathbf{x}_0 **repeat** Escoja dirección \mathbf{d} $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}$

Algoritmo iterativo de descenso

Incialice \mathbf{x}_0 repeat Escoja dirección \mathbf{d} $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}$ until Condición de terminación.

Algoritmo iterativo de descenso

Incialice \mathbf{x}_0 repeat Escoja dirección \mathbf{d} $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}$ until Condición de terminación.

• Constante

• Constante (tasa de aprendizaje)

- Constante (tasa de aprendizaje)
- Idealmente $\alpha_k = \arg\min_{\alpha} f(\mathbf{x}_k + \alpha \mathbf{d})$

- Constante (tasa de aprendizaje)
- Idealmente $\alpha_k = \arg\min_{\alpha} f(\mathbf{x}_k + \alpha \mathbf{d}) \Rightarrow$ Algoritmos de búsqueda de línea.

- Constante (tasa de aprendizaje)
- Idealmente $\alpha_k = \arg\min_{\alpha} f(\mathbf{x}_k + \alpha \mathbf{d}) \Rightarrow$ Algoritmos de búsqueda de línea.
 - Golden Search, Fibonacci.
 - 2 Newton, ajuste cúbico.
 - Backtracking.
 - 4

Escogencia de \mathbf{d}

• Descenso de gradiente:

$$\mathbf{d}_k = -\nabla_{\mathbf{x}} f(\mathbf{x}_k)$$

• Descenso de gradiente:

$$\mathbf{d}_k = -\nabla_{\mathbf{x}} f(\mathbf{x}_k)$$

Convergencia lenta.

• Descenso de gradiente:

$$\mathbf{d}_k = -\nabla_{\mathbf{x}} f(\mathbf{x}_k)$$

► Convergencia lenta.

Simple: sólo primeras derivadas.

• Descenso de gradiente:

$$\mathbf{d}_k = -\nabla_{\mathbf{x}} f(\mathbf{x}_k)$$

Convergencia lenta.

- ► Simple: sólo primeras derivadas.
- Version estocástica/ en línea.

$$\mathbf{d}_k = -(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1} \nabla_{\mathbf{x}} f(\mathbf{x}_k)$$

$$\mathbf{d}_k = -(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1} \nabla_{\mathbf{x}} f(\mathbf{x}_k)$$

$$\mathbf{d}_k = -(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1} \nabla_{\mathbf{x}} f(\mathbf{x}_k)$$

► Convergencia rápida (orden 2).

$$\mathbf{d}_k = -(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1} \nabla_{\mathbf{x}} f(\mathbf{x}_k)$$

- ► Convergencia rápida (orden 2).
- Requiere cálculo de $(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1}$

$$\mathbf{d}_k = -(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1} \nabla_{\mathbf{x}} f(\mathbf{x}_k)$$

- ► Convergencia rápida (orden 2).
- ▶ Requiere cálculo de $(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1}$
- ▶ Frágil en el caso no convexo.

• Métodos de Quasi-Newton (BFGS,DFP).

- Métodos de Quasi-Newton (BFGS,DFP).
 - ▶ Aproximación sucesiva de $(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1}$ en términos de primeras derivadas.

- Métodos de Quasi-Newton (BFGS,DFP).
 - ▶ Aproximación sucesiva de $(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1}$ en términos de primeras derivadas.
 - ▶ Método preferido en problemas en mediana/gran escala.

- Métodos de Quasi-Newton (BFGS,DFP).
 - ▶ Aproximación sucesiva de $(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1}$ en términos de primeras derivadas.
 - Método preferido en problemas en mediana/gran escala.
- Gradiente conjugado.

- Métodos de Quasi-Newton (BFGS,DFP).
 - ▶ Aproximación sucesiva de $(\nabla_{\mathbf{x}}^2 f(\mathbf{x}_k))^{-1}$ en términos de primeras derivadas.
 - ▶ Método preferido en problemas en mediana/gran escala.
- Gradiente conjugado.
 - Versión mejorada de descenso de gradiente a bajo costo computacional.

Problemas de Optimizacion con Restricciones

$$\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$$
sujeto a
$$g_i(\mathbf{x}) \le 0, \quad i = 1, \dots, p$$

$$h_i(\mathbf{x}) = 0, \quad i = 1, \dots, m$$

Problemas de Optimizacion con Restricciones

$$\min_{\mathbf{x} \in \Omega} \quad f(\mathbf{x})$$
sujeto a
$$g_i(\mathbf{x}) \le 0, \quad i = 1, \dots, p$$

$$h_i(\mathbf{x}) = 0, \quad i = 1, \dots, m$$

- $g_i(\mathbf{x})$ Restricciones de desigualdad.
- $h_i(\mathbf{x})$ Restricciones de igualdad.

Problemas de Optimizacion con Restricciones

$$\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$$
sujeto a
$$g_i(\mathbf{x}) \le 0, \quad i = 1, \dots, p$$

$$h_i(\mathbf{x}) = 0, \quad i = 1, \dots, m$$

- $g_i(\mathbf{x})$ Restricciones de desigualdad.
- $h_i(\mathbf{x})$ Restricciones de igualdad.
- **x***: Solución óptima.

• $g_2(\mathbf{x})$ es activa en \mathbf{x}^* .

- $g_2(\mathbf{x})$ es activa en \mathbf{x}^* .
- Restricciones inactivas no influyen en condiciones para un mínimo local.

- $g_2(\mathbf{x})$ es activa en \mathbf{x}^* .
- Restricciones inactivas no influyen en condiciones para un mínimo local.
- Restricciones de igualdad son siempre activas en un punto factible.

$$\min_{\mathbf{x} \in \Omega} f_0(\mathbf{x})$$
sujeto a
$$f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$$

$$h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p$$

$$\min_{\mathbf{x} \in \Omega} f_0(\mathbf{x})$$
sujeto a
$$f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$$

$$h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p$$

$$\min_{\mathbf{x} \in \Omega} f_0(\mathbf{x})$$
sujeto a
$$f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$$

$$h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p$$

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\mathbf{x})$$

$$\min_{\mathbf{x} \in \Omega} f_0(\mathbf{x})$$
sujeto a
$$f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$$

$$h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p$$

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x})$$

$$\min_{\mathbf{x} \in \Omega} f_0(\mathbf{x})$$
sujeto a
$$f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$$

$$h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p$$

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x})$$

El Langrangiano

$$\min_{\mathbf{x} \in \Omega} f_0(\mathbf{x})$$
sujeto a
$$f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$$

$$h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p$$

• El Lagrangiano $L: (\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p) \to \mathbb{R}$,

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\mathbf{x}) + \sum_{i=1}^m \frac{\lambda_i f_i(\mathbf{x})}{\lambda_i f_i(\mathbf{x})} + \sum_{i=1}^p \frac{\nu_i h_i(\mathbf{x})}{\lambda_i f_i(\mathbf{x})}$$

• $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_m]$ y $\nu = [\nu_1, \nu_2, \dots, \nu_p]$ son las variables duales o multiplicadores de Lagrange.

- 4 ロ ト 4 回 ト 4 亘 ト 4 亘 - 夕 Q (や

$$g(\lambda, \nu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)$$
$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right)$$

$$g(\lambda, \nu) = \min_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)$$
$$= \min_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right)$$

$$g(\lambda, \nu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)$$
$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right)$$

 Definimos la función dual como el valor mínimo del Lagrangiano sobre x:

$$g(\lambda, \nu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)$$
$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right)$$

• $g(\lambda, \nu)$ es una función cóncava.

• Sea $f(\mathbf{x}^*) = p^*$.

• Sea $f(\mathbf{x}^*) = p^*$. Para cualquier $\lambda \geq 0$ y cualquier ν tenemos:

$$g(\lambda, \nu) \le p^*$$

• Sea $f(\mathbf{x}^*) = p^*$. Para cualquier $\lambda \geq 0$ y cualquier ν tenemos:

$$g(\lambda, \nu) \le p^*$$

• Sea $f(\mathbf{x}^*) = p^*$. Para cualquier $\lambda \geq 0$ y cualquier ν tenemos:

$$g(\lambda, \nu) \le p^*$$

$$\sum_{i=1}^{m} \lambda_i f_i(\mathbf{x}^\circ) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x}^\circ) \le 0$$

• Sea $f(\mathbf{x}^*) = p^*$. Para cualquier $\lambda \geq 0$ y cualquier ν tenemos:

$$g(\lambda, \nu) \le p^*$$

$$\sum_{i=1}^{m} \lambda_i f_i(\mathbf{x}^\circ) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x}^\circ) \le 0$$
$$f_0(\mathbf{x}^\circ) + \sum_{i=1}^{m} \lambda_i f_i(\mathbf{x}^\circ) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x}^\circ) \le f_0(\mathbf{x}^\circ)$$

• Sea $f(\mathbf{x}^*) = p^*$. Para cualquier $\lambda \geq 0$ y cualquier ν tenemos:

$$g(\lambda, \nu) \le p^*$$

$$\sum_{i=1}^{m} \lambda_{i} f_{i}(\mathbf{x}^{\circ}) + \sum_{i=1}^{p} \nu_{i} h_{i}(\mathbf{x}^{\circ}) \leq 0$$

$$f_{0}(\mathbf{x}^{\circ}) + \sum_{i=1}^{m} \lambda_{i} f_{i}(\mathbf{x}^{\circ}) + \sum_{i=1}^{p} \nu_{i} h_{i}(\mathbf{x}^{\circ}) \leq f_{0}(\mathbf{x}^{\circ})$$

$$g(\lambda, \nu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu) \leq L(\mathbf{x}^{\circ}, \lambda, \nu) \leq f_{0}(\mathbf{x}^{\circ})$$

• Sea $f(\mathbf{x}^*) = p^*$. Para cualquier $\lambda \geq 0$ y cualquier ν tenemos:

$$g(\lambda, \nu) \le p^*$$

• Suponga que \mathbf{x}° es un punto factible y $\lambda \geq \mathbf{0}$, entonces

$$\sum_{i=1}^{m} \lambda_{i} f_{i}(\mathbf{x}^{\circ}) + \sum_{i=1}^{p} \nu_{i} h_{i}(\mathbf{x}^{\circ}) \leq 0$$

$$\mathbf{f}_{0}(\mathbf{x}^{\circ}) + \sum_{i=1}^{m} \lambda_{i} f_{i}(\mathbf{x}^{\circ}) + \sum_{i=1}^{p} \nu_{i} h_{i}(\mathbf{x}^{\circ}) \leq \mathbf{f}_{0}(\mathbf{x}^{\circ})$$

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq L(\mathbf{x}^{\circ}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq f_{0}(\mathbf{x}^{\circ})$$

• Podemos reemplazar \mathbf{x}° por \mathbf{x}^{*} .

• Sea $f(\mathbf{x}^*) = p^*$. Para cualquier $\lambda \geq \mathbf{0}$ y cualquier ν tenemos:

$$g(\lambda, \nu) \le p^*$$

• Suponga que \mathbf{x}° es un punto factible y $\lambda \geq \mathbf{0}$, entonces

$$\sum_{i=1}^{m} \lambda_{i} f_{i}(\mathbf{x}^{\circ}) + \sum_{i=1}^{p} \nu_{i} h_{i}(\mathbf{x}^{\circ}) \leq 0$$

$$f_{0}(\mathbf{x}^{\circ}) + \sum_{i=1}^{m} \lambda_{i} f_{i}(\mathbf{x}^{\circ}) + \sum_{i=1}^{p} \nu_{i} h_{i}(\mathbf{x}^{\circ}) \leq f_{0}(\mathbf{x}^{\circ})$$

$$g(\lambda, \nu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu) \leq L(\mathbf{x}^{\circ}, \lambda, \nu) \leq f_{0}(\mathbf{x}^{\circ})$$

- Podemos reemplazar \mathbf{x}° por \mathbf{x}^{*} .
- Cota no trivial sólo si $g(\lambda, \nu) > -\infty$

(ロ) (倒) (重) (重) (重) の(()

• Note que aunque f_0 y f_i no son convexas, g es cóncava.

 $\min \mathbf{x}^T \mathbf{x}$ sujeto a $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

$$L(\mathbf{x}, \boldsymbol{\nu})$$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

$$L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} +$$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

$$L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

• El Lagrangiano:

$$L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

 \bullet Podemos hallar la función dual minimizando con respecto a ${\bf x}$:

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

• El Lagrangiano:

$$L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

 \bullet Podemos hallar la función dual minimizando con respecto a \mathbf{x} :

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) =$$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

• El Lagrangiano:

$$L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

 \bullet Podemos hallar la función dual minimizando con respecto a $\mathbf{x}:$

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = 2\mathbf{x} + \mathbf{A}^T \boldsymbol{\nu}$$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

• El Lagrangiano:

$$L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

 \bullet Podemos hallar la función dual minimizando con respecto a ${\bf x}$:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = 2\mathbf{x} + \mathbf{A}^T \boldsymbol{\nu} = 0$$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

• El Lagrangiano:

$$L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

Podemos hallar la función dual minimizando con respecto a x:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = 2\mathbf{x} + \mathbf{A}^T \boldsymbol{\nu} = 0 \Rightarrow \mathbf{x} = -\frac{1}{2} \mathbf{A}^T \boldsymbol{\nu}$$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

• El Lagrangiano:

$$L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

Podemos hallar la función dual minimizando con respecto a x:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = 2\mathbf{x} + \mathbf{A}^T \boldsymbol{\nu} = 0 \Rightarrow \mathbf{x} = -\frac{1}{2} \mathbf{A}^T \boldsymbol{\nu}$$

Reemplazando:

$$g(\boldsymbol{\nu}) = L(-\frac{1}{2}\mathbf{A}^T\boldsymbol{\nu}, \boldsymbol{\nu})$$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

• El Lagrangiano:

$$L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

 \bullet Podemos hallar la función dual minimizando con respecto a ${\bf x}$:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = 2\mathbf{x} + \mathbf{A}^T \boldsymbol{\nu} = 0 \Rightarrow \mathbf{x} = -\frac{1}{2} \mathbf{A}^T \boldsymbol{\nu}$$

Reemplazando:

$$g(\boldsymbol{\nu}) = L(-\frac{1}{2}\mathbf{A}^T\boldsymbol{\nu}, \boldsymbol{\nu}) = -\frac{1}{4}\boldsymbol{\nu}^T(\mathbf{A}\mathbf{A}^T)\boldsymbol{\nu} - \mathbf{b}^T\boldsymbol{\nu}$$

$$\min \mathbf{x}^T \mathbf{x}$$
 sujeto a $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{p \times n}$

• El Lagrangiano:

$$L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

ullet Podemos hallar la función dual minimizando con respecto a ${f x}$:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = 2\mathbf{x} + \mathbf{A}^T \boldsymbol{\nu} = 0 \Rightarrow \mathbf{x} = -\frac{1}{2} \mathbf{A}^T \boldsymbol{\nu}$$

Reemplazando:

$$g(\boldsymbol{\nu}) = L(-\frac{1}{2}\mathbf{A}^T\boldsymbol{\nu}, \boldsymbol{\nu}) = -\frac{1}{4}\boldsymbol{\nu}^T(\mathbf{A}\mathbf{A}^T)\boldsymbol{\nu} - \mathbf{b}^T\boldsymbol{\nu}$$

Función cuadrática cóncava.

• Para cada (λ, ν) con $\lambda > 0$, la función dual de Lagrange nos da una cota inferior de p^* .

- Para cada (λ, ν) con $\lambda > 0$, la función dual de Lagrange nos da una cota inferior de p^* .
- Cuál es la mejor cota inferior que podemos obtener?

- Para cada (λ, ν) con $\lambda > 0$, la función dual de Lagrange nos da una cota inferior de p^* .
- Cuál es la mejor cota inferior que podemos obtener?
- Problema de optimización:

$$\begin{array}{ll}
\text{máx} & g(\lambda, \nu) \\
\text{sujeto a} & \lambda \geq 0
\end{array}$$

- Para cada (λ, ν) con $\lambda > 0$, la función dual de Lagrange nos da una cota inferior de p^* .
- Cuál es la mejor cota inferior que podemos obtener?
- Problema de optimización:

$$\begin{array}{ll}
\text{máx} & g(\lambda, \nu) \\
\text{sujeto a} & \lambda \geq 0
\end{array}$$

• Este es el problema dual de Lagrange asociado al problema primal original.

- Para cada (λ, ν) con $\lambda > 0$, la función dual de Lagrange nos da una cota inferior de p^* .
- Cuál es la mejor cota inferior que podemos obtener?
- Problema de optimización:

$$\begin{array}{ll}
\text{máx} & g(\lambda, \nu) \\
\text{sujeto a} & \lambda \geq 0
\end{array}$$

- Este es el problema dual de Lagrange asociado al problema primal original.
- (λ, ν) es factible en el dual si $\lambda \geq 0$ y $g(\lambda, \nu) > -\infty$.

El Problema Dual de Lagrange

- Para cada (λ, ν) con $\lambda > 0$, la función dual de Lagrange nos da una cota inferior de p^* .
- Cuál es la mejor cota inferior que podemos obtener?
- Problema de optimización:

$$\begin{array}{ll}
\text{máx} & g(\lambda, \nu) \\
\text{sujeto a} & \lambda \geq 0
\end{array}$$

- Este es el problema dual de Lagrange asociado al problema primal original.
- (λ, ν) es factible en el dual si $\lambda \geq 0$ y $g(\lambda, \nu) > -\infty$.
- Soluci Ûn Ûptima dual (λ^*, ν^*) (multiplicadores de Lagrange óptimos).

Ejemplo

• Primal:

$$\min_{\mathbf{x}} \mathbf{x}^T \mathbf{x} \quad \text{sujeto a} \quad \mathbf{A} \mathbf{x} = \mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{p \times n}$$

Dual

$$\max_{\boldsymbol{\nu}} -\frac{1}{4}\boldsymbol{\nu}(\mathbf{A}\mathbf{A}^T)\boldsymbol{\nu} - \mathbf{b}^T\boldsymbol{\nu}$$

$$d^* \le p^*$$

• Sea $d^* = g(\lambda^*, \nu^*)$, entonces,

$$d^* \le p^*$$

• $p^* - d^*$ es la brecha de dualidad óptima.

$$d^* \le p^*$$

- $p^* d^*$ es la brecha de dualidad óptima.
- Si la brecha de dualidad óptima es cero $(d^* = p^*)$ tenemos dualidad fuerte.

$$d^* \le p^*$$

- $p^* d^*$ es la brecha de dualidad óptima.
- Si la brecha de dualidad óptima es cero $(d^* = p^*)$ tenemos dualidad fuerte.
- Dualidad fuerte: condiciones de Karush-Kuhn-Tucker.

$$d^* \le p^*$$

- $p^* d^*$ es la brecha de dualidad óptima.
- Si la brecha de dualidad óptima es cero $(d^* = p^*)$ tenemos dualidad fuerte.
- Dualidad fuerte: condiciones de Karush-Kuhn-Tucker.
- Métodos de solución.

$$d^* \le p^*$$

- $p^* d^*$ es la brecha de dualidad óptima.
- Si la brecha de dualidad óptima es cero $(d^* = p^*)$ tenemos dualidad fuerte.
- Dualidad fuerte: condiciones de Karush-Kuhn-Tucker.
- Métodos de solución.
- Tenemos dualidad fuerte, por ejemplo cuando se minimiza una función convexa en un poliedro convexo.

• Suponga que tenemos $p^* = d^*$.

- Suponga que tenemos $p^* = d^*$.
- Tenemos:

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

- Suponga que tenemos $p^* = d^*$.
- Tenemos:

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}) \right)$$

- Suponga que tenemos $p^* = d^*$.
- Tenemos:

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}) \right)$$

$$\leq f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}^*)$$

- Suponga que tenemos $p^* = d^*$.
- Tenemos:

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}) \right)$$

$$\leq f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}^*)$$

$$\leq f_0(\mathbf{x}^*)$$

- Suponga que tenemos $p^* = d^*$.
- Tenemos:

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}) \right)$$

$$\leq f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}^*)$$

$$\leq f_0(\mathbf{x}^*)$$

- Suponga que tenemos $p^* = d^*$.
- Tenemos:

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}) \right)$$

$$= f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}^*)$$

$$= f_0(\mathbf{x}^*)$$

- Suponga que tenemos $p^* = d^*$.
- Tenemos:

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}) \right)$$

$$= f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}^*)$$

$$= f_0(\mathbf{x}^*)$$

• \mathbf{x}^* minimiza $L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ sobre \mathbf{x} .

- Suponga que tenemos $p^* = d^*$.
- Tenemos:

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}) \right)$$

$$= f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}^*)$$

$$= f_0(\mathbf{x}^*)$$

- \mathbf{x}^* minimiza $L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ sobre \mathbf{x} .
- $\bullet \sum_{i=1}^{m} \lambda_i^* f_i(\mathbf{x}^*) = 0$

$$\sum_{i=1}^{m} \lambda_i^* f_i(\mathbf{x}^*) = 0$$

como

$$\sum_{i=1}^{m} \lambda_i^* f_i(\mathbf{x}^*) = 0$$

como

$$\lambda_i^* > 0 \Rightarrow f_i(\mathbf{x}^*) = 0$$

$$\sum_{i=1}^{m} \lambda_i^* f_i(\mathbf{x}^*) = 0$$

como

$$\lambda_i^* > 0 \Rightarrow f_i(\mathbf{x}^*) = 0$$

 $^{\rm O}$

$$f_i(\mathbf{x}^*) < 0 \Rightarrow \lambda_i^* = 0$$

$$\sum_{i=1}^{m} \lambda_i^* f_i(\mathbf{x}^*) = 0$$

como

$$\lambda_i^* > 0 \Rightarrow f_i(\mathbf{x}^*) = 0$$

O

$$f_i(\mathbf{x}^*) < 0 \Rightarrow \lambda_i^* = 0$$

• Es decir, el *i*-ésimo multiplicador de Lagrange es cero, a no ser que la restricción correspondiente sea activa

• Suponga $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ differenciables.

- Suponga $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ differenciables.
- En un par de puntos óptimos para el primal (\mathbf{x}^*) y el dual $(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$, se cumplen las siguientes condiciones:

- Suponga $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ differenciables.
- En un par de puntos óptimos para el primal (\mathbf{x}^*) y el dual $(\lambda^*, \boldsymbol{\nu}^*)$, se cumplen las siguientes condiciones:

$$f_i(\mathbf{x}^*) \le 0, \quad i = 1, \dots, m.$$

- Suponga $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ differenciables.
- En un par de puntos óptimos para el primal (\mathbf{x}^*) y el dual $(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$, se cumplen las siguientes condiciones:

$$f_i(\mathbf{x}^*) \le 0, \quad i = 1, \dots, m.$$

 $h_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, p.$

- Suponga $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ differenciables.
- En un par de puntos óptimos para el primal (\mathbf{x}^*) y el dual $(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$, se cumplen las siguientes condiciones:

$$f_i(\mathbf{x}^*) \le 0, \quad i = 1, ..., m.$$

 $h_i(\mathbf{x}^*) = 0, \quad i = 1, ..., p.$
 $\lambda_i^* \ge 0, \quad i = 1, ..., m.$

- Suponga $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ differenciables.
- En un par de puntos óptimos para el primal (\mathbf{x}^*) y el dual $(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$, se cumplen las siguientes condiciones:

$$f_i(\mathbf{x}^*) \le 0, \quad i = 1, ..., m.$$

 $h_i(\mathbf{x}^*) = 0, \quad i = 1, ..., p.$
 $\lambda_i^* \ge 0, \quad i = 1, ..., m.$
 $\lambda_i^* f_i(\mathbf{x}^*) = 0, \quad i = 1, ..., m.$

- Suponga $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ differenciables.
- En un par de puntos óptimos para el primal (\mathbf{x}^*) y el dual $(\lambda^*, \boldsymbol{\nu}^*)$, se cumplen las siguientes condiciones:

$$f_i(\mathbf{x}^*) \le 0, \quad i = 1, ..., m.$$

 $h_i(\mathbf{x}^*) = 0, \quad i = 1, ..., p.$
 $\lambda_i^* \ge 0, \quad i = 1, ..., m.$
 $\lambda_i^* f_i(\mathbf{x}^*) = 0, \quad i = 1, ..., m.$

$$\nabla f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(\mathbf{x}^*) = 0$$

- Suponga $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ differenciables.
- En un par de puntos óptimos para el primal (\mathbf{x}^*) y el dual $(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$, se cumplen las siguientes condiciones:

$$f_i(\mathbf{x}^*) \le 0, \quad i = 1, \dots, m.$$

$$h_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, p.$$

$$\lambda_i^* \ge 0, \quad i = 1, \dots, m.$$

$$\lambda_i^* f_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, m.$$

$$\nabla f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(\mathbf{x}^*) = 0$$

• En cualquier problema de optimización con funciones objetivo y de restricciones diferenciables, para el cual se tenga dualidad fuerte, cualquier par de puntos óptimos del primal y el dual deben satisfacer las condiciones de KKT.

• Suponga ahora que el problema primal es convexo.

- Suponga ahora que el problema primal es convexo.
- Suponga que $(\tilde{\mathbf{x}}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ satisfacen KKT:

$$f_{i}(\tilde{\mathbf{x}}) \leq 0, \quad i = 1, \dots, m.$$

$$h_{i}(\tilde{\mathbf{x}}) = 0, \quad i = 1, \dots, p.$$

$$\tilde{\lambda}_{i} \geq 0, \quad i = 1, \dots, m.$$

$$\tilde{\lambda}_{i} f_{i}(\tilde{\mathbf{x}}) = 0, \quad i = 1, \dots, m.$$

$$\nabla f_{0}(\tilde{\mathbf{x}}) + \sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla f_{i}(\tilde{\mathbf{x}}) + \sum_{i=1}^{p} \tilde{\nu}_{i} \nabla h_{i}(\tilde{\mathbf{x}}) = 0$$

- Suponga ahora que el problema primal es convexo.
- Suponga que $(\tilde{\mathbf{x}}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ satisfacen KKT:

$$f_{i}(\tilde{\mathbf{x}}) \leq 0, \quad i = 1, \dots, m.$$

$$h_{i}(\tilde{\mathbf{x}}) = 0, \quad i = 1, \dots, p.$$

$$\tilde{\lambda}_{i} \geq 0, \quad i = 1, \dots, m.$$

$$\tilde{\lambda}_{i} f_{i}(\tilde{\mathbf{x}}) = 0, \quad i = 1, \dots, m.$$

$$\nabla f_{0}(\tilde{\mathbf{x}}) + \sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla f_{i}(\tilde{\mathbf{x}}) + \sum_{i=1}^{p} \tilde{\nu}_{i} \nabla h_{i}(\tilde{\mathbf{x}}) = 0$$

• $\tilde{\mathbf{x}}$ es factible,

- Suponga ahora que el problema primal es convexo.
- Suponga que $(\tilde{\mathbf{x}}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ satisfacen KKT:

$$f_{i}(\tilde{\mathbf{x}}) \leq 0, \quad i = 1, \dots, m.$$

$$h_{i}(\tilde{\mathbf{x}}) = 0, \quad i = 1, \dots, p.$$

$$\tilde{\lambda}_{i} \geq 0, \quad i = 1, \dots, m.$$

$$\tilde{\lambda}_{i} f_{i}(\tilde{\mathbf{x}}) = 0, \quad i = 1, \dots, m.$$

$$\nabla f_{0}(\tilde{\mathbf{x}}) + \sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla f_{i}(\tilde{\mathbf{x}}) + \sum_{i=1}^{p} \tilde{\nu}_{i} \nabla h_{i}(\tilde{\mathbf{x}}) = 0$$

• $\tilde{\mathbf{x}}$ es factible, $L(\mathbf{x}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ es convexo en \mathbf{x} ,

- Suponga ahora que el problema primal es convexo.
- Suponga que $(\tilde{\mathbf{x}}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ satisfacen KKT:

$$f_{i}(\tilde{\mathbf{x}}) \leq 0, \quad i = 1, \dots, m.$$

$$h_{i}(\tilde{\mathbf{x}}) = 0, \quad i = 1, \dots, p.$$

$$\tilde{\lambda}_{i} \geq 0, \quad i = 1, \dots, m.$$

$$\tilde{\lambda}_{i} f_{i}(\tilde{\mathbf{x}}) = 0, \quad i = 1, \dots, m.$$

$$\nabla f_{0}(\tilde{\mathbf{x}}) + \sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla f_{i}(\tilde{\mathbf{x}}) + \sum_{i=1}^{p} \tilde{\nu}_{i} \nabla h_{i}(\tilde{\mathbf{x}}) = 0$$

• $\tilde{\mathbf{x}}$ es factible, $L(\mathbf{x}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ es convexo en \mathbf{x} , \mathbf{y} $\tilde{\mathbf{x}}$ minimiza $L(\mathbf{x}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$.

$$g(\tilde{\boldsymbol{\lambda}},\tilde{\boldsymbol{\nu}}) = L(\tilde{\mathbf{x}},\tilde{\boldsymbol{\lambda}},\tilde{\boldsymbol{\nu}})$$

$$g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{\mathbf{x}}, \tilde{\lambda}, \tilde{\nu})$$

$$= f_0(\tilde{\mathbf{x}}) + \sum_{i=1}^m \tilde{\lambda}_i f_i(\tilde{\mathbf{x}}) + \sum_{i=1}^p \tilde{\nu}_i h_i(\tilde{\mathbf{x}})$$

$$g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{\mathbf{x}}, \tilde{\lambda}, \tilde{\nu})$$

$$= f_0(\tilde{\mathbf{x}}) + \sum_{i=1}^m \tilde{\lambda}_i f_i(\tilde{\mathbf{x}}) + \sum_{i=1}^p \tilde{\nu}_i h_i(\tilde{\mathbf{x}})$$

$$= f_0(\tilde{\mathbf{x}})$$

$$g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{\mathbf{x}}, \tilde{\lambda}, \tilde{\nu})$$

$$= f_0(\tilde{\mathbf{x}}) + \sum_{i=1}^m \tilde{\lambda}_i f_i(\tilde{\mathbf{x}}) + \sum_{i=1}^p \tilde{\nu}_i h_i(\tilde{\mathbf{x}})$$

$$= f_0(\tilde{\mathbf{x}})$$

• Es decir $\tilde{\mathbf{x}}$ y $(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ tienen brecha de dualidad cero.

$$g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{\mathbf{x}}, \tilde{\lambda}, \tilde{\nu})$$

$$= f_0(\tilde{\mathbf{x}}) + \sum_{i=1}^m \tilde{\lambda}_i f_i(\tilde{\mathbf{x}}) + \sum_{i=1}^p \tilde{\nu}_i h_i(\tilde{\mathbf{x}})$$

$$= f_0(\tilde{\mathbf{x}})$$

- Es decir $\tilde{\mathbf{x}}$ y $(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ tienen brecha de dualidad cero.
- $\tilde{\mathbf{x}}$ y $(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ son óptimos para el primal y el dual.

$$g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{\mathbf{x}}, \tilde{\lambda}, \tilde{\nu})$$

$$= f_0(\tilde{\mathbf{x}}) + \sum_{i=1}^m \tilde{\lambda}_i f_i(\tilde{\mathbf{x}}) + \sum_{i=1}^p \tilde{\nu}_i h_i(\tilde{\mathbf{x}})$$

$$= f_0(\tilde{\mathbf{x}})$$

- Es decir $\tilde{\mathbf{x}}$ y $(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ tienen brecha de dualidad cero.
- $\tilde{\mathbf{x}}$ y $(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$ son óptimos para el primal y el dual.
- En cualquier problema de optimización convexo con funciones objetivo y de restricciones diferenciables, cualquier par de puntos que satisfagan KKT son óptimos para el primal y el dual.

Teorema

Sea X una variable aleatoria con $X \ge 0$ casi seguramente, y a > 0.

Teorema

Sea X una variable aleatoria con $X \ge 0$ casi seguramente, y a > 0. Entonces:

$$\mathbf{P}\left[X \ge a\right] \le \frac{\mathbf{E}\left[X\right]}{a}$$

Teorema

Sea X una variable aleatoria con $X \ge 0$ casi seguramente, y a > 0. Entonces:

$$\mathbf{P}\left[X \ge a\right] \le \frac{\mathbf{E}\left[X\right]}{a}$$

Teorema

Sea X una variable aleatoria con $X \ge 0$ casi seguramente, y a > 0. Entonces:

$$\mathbf{P}\left[X \ge a\right] \le \frac{\mathbf{E}\left[X\right]}{a}$$

$$\mathbf{P}\left[X\geq a\right]$$

Teorema

Sea X una variable aleatoria con $X \ge 0$ casi seguramente, y a > 0. Entonces:

$$\mathbf{P}\left[X \ge a\right] \le \frac{\mathbf{E}\left[X\right]}{a}$$

$$\mathbf{P}\left[X\geq a\right] = \mathbf{E}\left[I_{\left\{X\geq a\right\}}\right]$$

Teorema

Sea X una variable aleatoria con $X \ge 0$ casi seguramente, y a > 0. Entonces:

$$\mathbf{P}\left[X \ge a\right] \le \frac{\mathbf{E}\left[X\right]}{a}$$

$$\mathbf{P}\left[X \ge a\right] = \mathbf{E}\left[I_{\{X \ge a\}}\right] \le \mathbf{E}\left[\frac{X}{a}\right]$$

Teorema

Sea X una variable aleatoria con $X \ge 0$ casi seguramente, y a > 0. Entonces:

$$\mathbf{P}\left[X \ge a\right] \le \frac{\mathbf{E}\left[X\right]}{a}$$

$$\mathbf{P}\left[X \ge a\right] = \mathbf{E}\left[I_{\{X \ge a\}}\right] \le \mathbf{E}\left[\frac{X}{a}\right] = \frac{\mathbf{E}\left[X\right]}{a}$$

Teorema

Sea X una variable aleatoria con $\mathbf{E}[X] = \mu$, $\mathbf{E}[(X - \mu)^2] = \sigma^2$.

Teorema

Sea X una variable aleatoria con $\mathbf{E}[X] = \mu$, $\mathbf{E}[(X - \mu)^2] = \sigma^2$. Entonces $\forall a > 0$

$$\mathbf{P}\left[|X - \mu| \ge a\right] \le \frac{\sigma^2}{a^2}$$

Teorema

Sea X una variable aleatoria con $\mathbf{E}[X] = \mu$, $\mathbf{E}[(X - \mu)^2] = \sigma^2$. Entonces $\forall a > 0$

$$\mathbf{P}\left[|X - \mu| \ge a\right] \le \frac{\sigma^2}{a^2}$$

$$\mathbf{P}\left[|X - \mu| \ge a\right]$$

Teorema

Sea X una variable aleatoria con $\mathbf{E}[X] = \mu$, $\mathbf{E}[(X - \mu)^2] = \sigma^2$. Entonces $\forall a > 0$

$$\mathbf{P}\left[|X - \mu| \ge a\right] \le \frac{\sigma^2}{a^2}$$

$$\mathbf{P}[|X - \mu| \ge a] = \mathbf{P}[|X - \mu|^2 \ge a^2]$$

Teorema

Sea X una variable aleatoria con $\mathbf{E}[X] = \mu$, $\mathbf{E}[(X - \mu)^2] = \sigma^2$. Entonces $\forall a > 0$

$$\mathbf{P}\left[|X - \mu| \ge a\right] \le \frac{\sigma^2}{a^2}$$

$$\mathbf{P}[|X - \mu| \ge a] = \mathbf{P}\left[|X - \mu|^2 \ge a^2\right] \le \frac{\sigma^2}{a^2}$$
Markov

Teorema

Sean X_1, X_2, \ldots, X_n variables aleatorias independientes, con

Teorema

Sean X_1, X_2, \ldots, X_n variables aleatorias independientes, con

• $\mathbf{E}[X_j] = 0 \ para \ j = 1, \dots, n.$

Teorema

Sean X_1, X_2, \ldots, X_n variables aleatorias independientes, con

- $\mathbf{E}[X_j] = 0 \ para \ j = 1, \dots, n.$
- $a_j \leq X_j \leq b_j$, con $a_j, b_j \in \mathbb{R}$ para $j = 1, \dots, n$.

Teorema

Sean X_1, X_2, \ldots, X_n variables aleatorias independientes, con

- $\mathbf{E}[X_j] = 0 \ para \ j = 1, \dots, n.$
- $a_j \leq X_j \leq b_j$, con $a_j, b_j \in \mathbb{R}$ para $j = 1, \dots, n$.

entonces:

$$\mathbf{P}\left[\sum_{j=1}^{n} X_j \ge \epsilon\right] \le \exp\left(-\frac{2\epsilon^2}{\sum_{j=1}^{n} (b_j - a_j)^2}\right)$$
$$\mathbf{P}\left[\sum_{j=1}^{n} X_j \le -\epsilon\right] \le \exp\left(-\frac{2\epsilon^2}{\sum_{j=1}^{n} (b_j - a_j)^2}\right)$$

Teorema

Sean X_1, X_2, \ldots, X_n variables aleatorias independientes, con

- $\mathbf{E}[X_i] = 0 \ para \ j = 1, \dots, n.$
- $a_j \leq X_j \leq b_j$, con $a_j, b_j \in \mathbb{R}$ para $j = 1, \dots, n$.

entonces:

$$\mathbf{P}\left[\sum_{j=1}^{n} X_j \ge \epsilon\right] \le \exp\left(-\frac{2\epsilon^2}{\sum_{j=1}^{n} (b_j - a_j)^2}\right)$$

$$\mathbf{P}\left[\sum_{j=1}^{n} X_j \le -\epsilon\right] \le \exp\left(-\frac{2\epsilon^2}{\sum_{j=1}^{n} (b_j - a_j)^2}\right)$$

o combinando:

$$\mathbf{P}\left[\left|\sum_{j=1}^{n} X_{j}\right| \ge \epsilon\right] \le 2 \exp\left(-\frac{2\epsilon^{2}}{\sum_{j=1}^{n} (b_{j} - a_{j})^{2}}\right)$$

•
$$X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$$

- $X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$
- $\bullet \ \frac{(X_j-p)}{n} \in$

- $X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$
- $\bullet \ \frac{(X_j p)}{n} \in \left\{ -\frac{p}{n}, \frac{1 p}{n} \right\}$

- $X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$
- $\frac{(X_j-p)}{n} \in \left\{-\frac{p}{n}, \frac{1-p}{n}\right\} \Rightarrow b_j a_j =$

- $X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$
- $\frac{(X_j p)}{n} \in \left\{ -\frac{p}{n}, \frac{1 p}{n} \right\} \Rightarrow b_j a_j = \frac{1}{n}$

- $X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$
- $\frac{(X_j p)}{n} \in \left\{ -\frac{p}{n}, \frac{1 p}{n} \right\} \Rightarrow b_j a_j = \frac{1}{n}$
- Por Hoeffding:

- $X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$
- $\frac{(X_j p)}{n} \in \left\{ -\frac{p}{n}, \frac{1-p}{n} \right\} \Rightarrow b_j a_j = \frac{1}{n}$
- Por Hoeffding:

$$\mathbf{P}\left[\frac{1}{n}\sum_{j=1}^{n}X_{j}-p\geq\varepsilon\right]\leq e^{-2\epsilon^{2}n}$$

У

$$\mathbf{P}\left[\frac{1}{n}\sum_{j=1}^{n}X_{j}-p\leq-\varepsilon\right]\leq e^{-2\epsilon^{2}n}$$

- $X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$
- $\frac{(X_j p)}{n} \in \left\{ -\frac{p}{n}, \frac{1 p}{n} \right\} \Rightarrow b_j a_j = \frac{1}{n}$
- Por Hoeffding:

$$\mathbf{P}\left[\frac{1}{n}\sum_{j=1}^{n}X_{j}-p\geq\varepsilon\right]\leq e^{-2\epsilon^{2}n}$$

У

$$\mathbf{P}\left[\frac{1}{n}\sum_{j=1}^{n}X_{j}-p\leq-\varepsilon\right]\leq e^{-2\epsilon^{2}n}$$

• Estas son las cotas de Chernoff en forma aditiva.

 \bullet Moneda, estimar probabilidad p de que salga cara.

- \bullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} =$ número de caras en n lanzadas.

- \bullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} = \text{número de caras en } n \text{ lanzadas.}$
- Cuántas veces tenemos que lanzar la moneda para garantizar con confianza 1δ que el estimativo \hat{p} no difiera en más de ϵ de p?

- ullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} =$ número de caras en n lanzadas.
- Cuántas veces tenemos que lanzar la moneda para garantizar con confianza 1δ que el estimativo \hat{p} no difiera en más de ϵ de p?
- Usando cotas de Chernoff:

$$\mathbf{P}\left[|p - \hat{p}| \ge \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

- \bullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} =$ número de caras en n lanzadas.
- Cuántas veces tenemos que lanzar la moneda para garantizar con confianza 1δ que el estimativo \hat{p} no difiera en más de ϵ de p?
- Usando cotas de Chernoff:

$$\mathbf{P}\left[|p - \hat{p}| \ge \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

Queremos $2e^{-2\epsilon^2 n} = \delta$

- \bullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} =$ número de caras en n lanzadas.
- Cuántas veces tenemos que lanzar la moneda para garantizar con confianza 1δ que el estimativo \hat{p} no difiera en más de ϵ de p?
- Usando cotas de Chernoff:

$$\mathbf{P}\left[|p - \hat{p}| \ge \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

Queremos $2e^{-2\epsilon^2 n} = \delta$ o despejando $n = \frac{1}{2\epsilon^2} \ln \frac{2}{\delta}$.

- \bullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} =$ número de caras en n lanzadas.
- Cuántas veces tenemos que lanzar la moneda para garantizar con confianza 1δ que el estimativo \hat{p} no difiera en más de ϵ de p?
- Usando cotas de Chernoff:

$$\mathbf{P}\left[|p - \hat{p}| \ge \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

Queremos $2e^{-2\epsilon^2 n} = \delta$ o despejando $n = \frac{1}{2\epsilon^2} \ln \frac{2}{\delta}$.

 \bullet Por ejemplo para confianza del 95 % y precisión 0,05 debemos lanzar la moneda ~ 738 veces.