

Sistemas Operativos II

Segurança e SD (parte 3)

Algoritmos de Autenticação

autenticação de um ou dois interlocutores/peers/participantes

Algoritmos

- Needham-Schroeder
- Kerberos
- Baseados em Tickets e challenges (desafios)
 - Ticket: mensagem encriptada pelo <u>Servidor de Autenticação</u> com uma chave do *principal*. Contém a identidade do <u>interlocutor</u> e a chave secreta gerada para usar na sessão.
 - Challenge: transmissão de informação (ticket) de forma a que só o verdadeiro destinatário possa ler. O processo é encarado como um desafio, porque:
 - Vencer o desafio é conseguir decifrar a informação (e continuar o processo)
 - os atacantes são afastados/eliminados e não conseguem avançar

Algoritmos de Autenticação: Needham-Schroeder

1978, com o surgimento dos network file services

há um servidor de autenticação, S, que conhece a identificação e a chave secreta de cada *principal* no sistema

Essa chave secreta é conhecida <u>apenas</u> pelo *principal* e pelo servidor **S**, servindo para autenticação do *principal* junto do servidor e para cifrar mensagens entre os mesmos

Nonce: valor inteiro que se adiciona a uma mensagem para demonstrar que é (ou que não é) recente

Algoritmos de Autenticação: Needham-Schroeder

Header	Message	Notes
1. A->S:	A, B, N_A	A requests S to supply a key for communication with B.
2. S->A:	$\{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_B}\}_{K_A}$	S returns a message encrypted in A's secret key, containing a newly generated key K_{AB} (session key) and a 'ticket' encrypted in B's secret key. The nonce N_A demonstrates that the message was sent in response to the preceding one. A believes that S sent the message because only S knows A's secret key.
3. A->B:	$\{K_{AB}, A\}_{K_B}$	A sends the 'ticket' to B.
4. B->A:	$\{N^{}_{\scriptscriptstyle B}\}_{\scriptscriptstyle K_{\!AB}}$	B decrypts the ticket and uses the new key K_{AB} to encrypt another nonce N_B .
5. A->B:	$\{N_B - 1\}_{KAB}$	A demonstrates to B that it was the sender of the previous message by returning an agreed transformation of N_B .

dificuldade: S ter conhecimento prévio das chaves de A e B

vulnerabilidade: B não sabe se (3) é recente ou um *replay*

solução: usar um timestamp t à mensagem {Kab,A,t}Kb ; assim B pode verificar se a mensagem é atual (kerberos)

- MIT, fim dos anos 80
- Objetos envolvidos
 - Ticket: para um cliente apresentar a um servidor (TGS ou de um serviço), prova que o cliente fez uma autenticação recente junto do Kerberos.
 - Inclui identificação do **cliente**, data e hora de expiração (ou **periodo de validade**) e uma **session key** para usar entre cliente e servidor.
 - O ticket é **encriptado** com a chave secreta do <u>interlocutor do cliente</u> (o próximo servidor a que se ligará)
 - O Ticket pode ter uma duração de várias horas... para diversas interações cliente/servidor
 - ◆ Token de Autenticação: construída pelo cliente para apresentar a um servidor e provar a sua identidade. Pode ser usada uma só vez. Inclui identificador do cliente e um timestamp, tudo encriptado com a session key
 - Session Key/Chave de Sessão: chave secreta gerada pelo Kerberos para um cliente comunicar (com encriptação) com um servidor, e também para encriptar as Tokens de Autenticação

- 1- o primeiro nível de autenticação (AS) consiste numa verificação segura de utilizador/password. O cliente pede ao servidor de autenticação A que lhe forneça um *Ticket* para a comunicação com o servidor TGS
- 2- Em resposta obtém um ticket e a chave de sessão para comunicar com o TGS, tudo encriptado com a sua chave secreta.
 - Esta mensagem inclui um Nonce encriptado com Kc, o que significa que é proveniente do servidor.
 - O Ticket está encriptado com a chave do servidor TGS, contendo:
 - identidades C e TGS
 - timestamps de validade
 - chave de sessão entre C e TGS, Kct

- 3- C comunica com servidor TGS, enviando
 - um Token de Autenticação, encriptado com chave secreta Kct
 - o ticket para TGS
 - a identificação do servidor S para o qual pretende um Ticket
 - nounce
- 4- TGS verifica o ticket apresentado. Se é válido então gera uma chave de sessão Kcs e devolve:
 - chave de sessão Kcs e nounce, encriptados com Kct
 - ticket* para S (*encriptado com chave secreta do servidor S, Ks)

- 5- C comunica com o servidor S (do serviço pretendido), enviando:
 - token de autenticação, cifrado com a chave de sessão secreta Kcs
 - ticket para S, cifrado com Ks (secreta do servidor S)
 - nonce, encriptado com Kcs
 - o pedido ao servidor
 - (encriptado com Kcs quando se requer confidencialidade)
- 6- S responde. A resposta pode incluir:
 - o nonce N, encriptado com Kcs
 - (para <u>autenticação do servidor</u>, opcional)

- muito semelhante ao protocolo Needham and Schroeder, com a adição de timestamps (inteiros para data e hora para os nounces), para:
 - prevenir message replaying (reenvio de mensagens antigas interceptadas na rede) ou aproveitamento de Tickets anteriores encontrados em memória...
 - atribuir um limite temporal (lifetime) aos tickets, facilitando a revogação de direitos a um utilizador

Autenticação para pessoas nos dias de hoje

- A autenticação por login+password é insuficiente em sistemas críticos
 - Se A sabe a password de B, poderá aceder ao seu perfil...
- Autenticação Multifactor (Multi-factor authentication (MFA))
 - Combinar password com outro elemento diferente, em cada autenticação
 - Outro elemento: código enviado por SMS, impressão digital (...)

- https://www.nist.gov/itl/applied-cybersecurity/tig/back-basics-multi-factor-authentication
- https://www.google.com/landing/2step/index.html

WiFi Protected Access (WPA)

- Protocolo de segurança para rede sem fios
 - Evita ataques do tipo replay
 - Pacotes têm um contador (nonce) que facilita deteção de duplicados
- Temporal Key Integrity Protocol (TKIP)
 - Protocolo de cifra baseado na troca frequente de chave
 - WEP tinha chaves fixas
 - Prevê bits de verificação da integridade da mensagem
 - Message Integrity Check (MIC/MAC) de 64 bits
- WiFi Protected Access II (WPA2)
 - Evolução de WPA
 - Counter Cipher Mode Protocol
 - Mais seguro que o TKIP de WPA
 - Block Cipher
 - AES e chaves de 128 bits

MSCHAP-v2

- Microsoft Challenge-Handshake Authentication Protocol, version 2
 - Usado em autenticação RADIUS, WPA-Enterprise e VPNs
 - Autenticação de ambas as partes na comunicação
 - Chaves diferentes para a cifra no envio e recepção de dados
 - Chaves geradas com base na password do cliente e num valor arbitrário
 - Em cada sessão a chave é diferente
 - Processo de autenticação
 - <- Authenticator Challenge
 - Peer Response/Challenge ->
 - Success/Authenticator Response
 - If authenticator Response verification succeeds, call continue

RADIUS

Remote Authentication Dial In User Service (RADIUS)

Assinaturas Digitais

Dificuldades

- documentos digitais
 - fáceis de copiar e modificar
- o emissor pode deliberadamente divulgar a chave privada e alegar que não é o autor da mensagem (repúdio)
- Garantias desejáveis:
 - autenticidade de um documento (integridade)
 - impossibilidade de forjar uma assinatura (autenticação)
 - não repúdio

Assinaturas Digitais

- M pode ser assinado por A
 - encriptar uma cópia de M com a chave Ka
 - anexar o ciphertext e um identificador de A a M
 - documento M assinado: M,A,[M]_{ka}
- Verificação (de M,A,[M]_{ka}) permite verificar
 - a origem (existia a chave correspondente, secreta ou privada)
 - o conteúdo não foi alterado
- A verificação da assinatura depende da criptografia usada:
 - chave secreta: só pode ser verificada por quem possuir a chave secreta
 - chave pública: verificada por qualquer principal com a chave pública do signer
 - mais usadas

Assinatura Digital com Chave Pública

- Vantagens
 - simplicidade
 - dispensa comunicação prévia entre os intervenientes
- A encriptação é feita com a chave privada
 - o objetivo <u>não é a</u>

 confidencialidade da
 mensagem

Assinatura com Chave Secreta - MAC

- Algoritmo simétrico de encriptação
- Dificuldades
 - requer processo seguro para transmitir a chave secreta até ao verifier
 - pode ser necessário verificar a assinatura numa fase posterior à sua criação e por verifiers que o signer não conhece e a quem não dá a chave
 - a partilha da chave secreta traz fraqueza: um detentor da chave pode forjar a assinatura do signer original
- Vantagem: performance (não há encriptação)
 - funções de hash são 3 a 10 x mais rápido que alg. simétricos

Assinaturas Digitais com Chave Pública e MACs

 AD de chave pública são uma solução mais conveniente na maioria dos casos

Exceção:

- utilização de um canal seguro para transmitir mensagens não encriptadas mas para as quais é necessário verificar a autenticidade
- canal seguro permite a transmissão de chave secreta para uso nestas AD "de baixo custo computacional" - Message Authentication Codes* (MAC)
 - Também referidos como MIC (Message Integrity Check)

Assinaturas digitais de chave pública

- Exemplo: as assinaturas que fazemos com:
 - Cartão do Cidadão
 - Chave Móvel Digital (um serviço inovador de desmaterialização)
- Na prática: assinaturas da mesma pessoa, em cada opção acima, usarão pares de chaves diferentes, mas o relevante é a validade das mesmas
 - No CC usam a chave privada inerente ao CC
 - Na CMD, usam outra chave privada associada ao cidadão, mas na posse do estado, alojada centralmente no serviço, e usada mediante autenticação

Certificados Digitais

certificado de chave pública para o Banco de Bob

1. Certificate type. Public key

2. *Name*: Bob's Bank

3. Public key: K_{Bpub}

4. *Certifying authority* Fred – The Bankers Federation

5. Signature $\{Digest(field\ 2 + field\ 3)\}_{K_{Fpriv}}$

Formato do Certificado X509

Subject Distinguished Name, Public Key

Issuer Distinguished Name, Signature

Period of validity Not Before Date, Not After Date

Administrative information Version, Serial Number

Extended Information

- usados em processos de autenticação e ligações SSL
- verificação da autenticidade um certificado:
 - obter a chave pública do issuer (e tem de se acreditar no issuer)
 - validar a assinatura digital do certificado (1)
- outras validações
 - Validade (2)
 - Tipo de utilização (3)
 - Listas de Revogação (4)

Considerações sobre Segurança

•Desempenho de algoritmos de Encriptação Simétrica e Digest

	Key size/hash size (bits)	PRB optimized 90 MHz Pentium 1 (Mbytes/s)	Crypto++ 2.1 GHz Pentium 4 (Mbytes/s)
TEA	128	_	23.801
DES	56	2.113	21.340
Triple-DES	112	0.775	9.848
IDEA	128	1.219	18.963
AES	128		61.010
AES	192	_	53.145
AES	256	<u></u>	48.229
MD5	128	17.025	216.674
SHA-1	160	_	67.977

Considerações sobre Segurança

•o tamanho da chave influencia o tempo/custo computacional necessário para um ataque de força bruta

•a verdadeira força está no algoritmo criptográfico, no modo como ofusca o plaintext

Referências

- Informações diversas e curiosidades
 - http://www.openssl.org
 - http://www.insecure.org
 - http://csrc.nist.gov/nissc/
 - Listas: BugTrack, VulnWatch...
- Referência Recomendada para aprofundar conhecimentos:

Applied Cryptography

Second Edition Bruce Schneier John Wiley & Sons, 1996 ISBN 0-471-11709-9

Nota: os ataques com base em 'engenharia social' são cada vez mais frequentes