

## Part 8.4: Mean and Standard Deviation

You may have also noticed that on the formula sheet we are given the formulas for the mean ( $\mu = \lambda$ ) and the standard deviation ( $\sigma = \sqrt{\lambda}$ ). We can use these to very quickly work out the standard deviation, as obviously the mean is already given to us in most situations. Let's look at an example:

## Example

My car has broken down 10 times in the last 8 years. What is the mean and the standard deviation for the number of times it is likely to break down in the next year?

## **Answer**

Well... we know from previously the average number of breakdowns is  $\frac{10}{8} = 1.25$  and the standard deviation is  $\sigma = \sqrt{\lambda} = \sqrt{1.25} = 1.118$  (4sf).

## Exercise 8.4

- The number of worms per m<sup>2</sup> of garden is on average 35. Calculate the mean and standard deviation for the number of worms in:
  - a.  $1 \text{ m}^2$ .
  - b.  $5 \text{ m}^2$ .
  - c. 10 m<sup>2</sup>.
- 2. The number of detentions given out at a school is approximately 20 per day. Calculate the mean and standard deviation for the number of detentions in:
  - a. 1 day.
  - b. 1 week (5 days).
  - c. 1 term (10 weeks).

- 3. There have been 10 accidents on a 2km stretch of motorway in the last year. Calculate the mean and standard deviation for the number of accidents in:
  - a. 1 year.
  - b. 1 week.
  - c. 1 month.
- 4. The number of sandwiches that I eat for lunch is on average 2.5. Calculate the mean and standard deviation for the number of sandwiches I eat in:
  - a. 1 day.
  - b. 1 week (7 days).
  - c. 1 month (30 days).