The Law of Large Numbers

Lecturer: John Guttag

Law of Large Numbers

Law of Large Numbers

In repeated **independent tests** with the same **actual probability** p of a particular outcome in each test, the chance that the **fraction of times** that outcome occurs differs from p converges to zero as the number of trials goes to infinity.

Gambler's Fallacy

If deviations from expected behavior occur, these deviations are likely to be evened out by opposite deviations in the future.

CC-BY Image Courtesy of Don_Gato (LoFi Photography)

```
def flipPlot(minExp, maxExp):
 """Assumes minExp and maxExp positive
             integers; minExp < maxExp</pre>
    Plots results of 2**minExp to
            2**maxExp coin flips"""
 ratios = \square
 diffs = []
 xAxis = []
 for exp in range(minExp, maxExp + 1):
     xAxis.append(2**exp)
```

6.00x

```
for numFlips in xAxis:
 numHeads = 0
 for n in range(numFlips):
     if random.random() < 0.5:
         numHeads += 1
 numTails = numFlips - numHeads
 ratios.append(numHeads/float(numTails))
 diffs.append(abs(numHeads - numTails))</pre>
```

. . .

```
pylab.title('Difference Between Heads and Tails')
pylab.xlabel('Number of Flips')
pylab.ylabel('Abs(#Heads - #Tails)')
pylab.plot(xAxis, diffs)
pylab.figure()
pylab.title('Heads/Tails Ratios')
pylab.xlabel('Number of Flips')
pylab.ylabel('Heads/Tails')
pylab.plot(xAxis, ratios)
```


