Introduction to Deep Reinforcement Learning https://github.com/racousin/rl_introduction

Raphael Cousin

January 11, 2024

Raphael Cousin January 11, 2024

1/33

Reinforcement Learning Objective

RL aims to optimize decision-making in environments without a known transition model P.

Objective

Find the optimal policy π^* , that maximizes the expected return, $J(\pi)$:

$$\pi^* = \arg \max_{\pi} J(\pi)$$

$$J(\pi) = \mathbb{E}_{\tau \sim \pi}[G(\tau)] = \int_{\tau} \mathbb{P}(\tau|\pi)G(\tau)$$

Raphael Cousin January 11, 2024 2/33

First Glossary of RL

- Model free/ Model based
- Q-learning/Policy Optimization
- On-policy/Off-policy
- ϵ -Greedy

Raphael Cousin January 11, 2024 3/33

Overview of RL Algorithms

- Model free: learn the policy π^* directly
- Model based: use an environment model P^* to learn π^*

Raphael Cousin January 11, 2024 4/33

Key Strategies in Model-Free RL

• **Q-learning:** Learn the action-value function Q to determine the best action given a state:

$$\pi(s) = \arg\max_{a \in \mathcal{A}} Q_{\pi}(s, a)$$

• Policy Optimization: Directly learn the policy π that maximizes the expected return.

Raphael Cousin January 11, 2024 5/33

Exploration-Exploitation

Knowledge of the environment comes from interaction. There are trade-offs to be made between using what we know and further exploration.

Raphael Cousin January 11, 2024 6/33

The ϵ -Greedy Strategy

The ϵ -greedy strategy is a simple yet effective method for balancing exploration and exploitation by choosing:

Given a state s, at step t the policy π is defined as:

- With probability ϵ , choose an action at random (exploration).
- With probability 1ϵ , choose the action with the highest estimated value (exploitation).

Raphael Cousin January 11, 2024 7/33

Definition

- On-policy: Directly learns from and improves the policy it executes.
- Off-policy: Learns a different policy from the executed one, allowing for learning from observations.

Raphael Cousin January 11, 2024 8/33

Second Glossary of RL

- Monte-Carlo
- Temporal difference
- SARSA
- Q-learning

Raphael Cousin January 11, 2024 9/33

Monte-Carlo

- To evaluate $V_{\pi}(s) = E_{\tau \sim \pi}[G_t | s_t = s]$
- Generate an episode with the policy π $S_1, A_1, R_2, \dots, S_T$ to compute $G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$.
- The empirical value function is : $V_{\pi}(s) = \frac{\sum_{t=1}^{T} \mathbb{1}[S_t = s]G_t}{\sum_{t=1}^{T} \mathbb{1}[S_t = s]}$
- As, well, the empirical action-value function is:
- $Q_{\pi}(s, a) = \frac{\sum_{t=1}^{T} \mathbb{1}[S_t = s, A_t = a]G_t}{\sum_{t=1}^{T} \mathbb{1}[S_t = s, A_t = a]}$

Raphael Cousin January 11, 2024 10 / 33

Monte-Carlo Algorithm

Initialize Q $Q(s, a) \forall s, a$.

- Generate an episode with the policy π (extract from Q ϵ -greedy)
- ② Update Q using the episode:

$$q_{\pi}(s, a) = \frac{\sum_{t=1}^{T} \left(\mathbb{1}[S_{t} = s, A_{t} = a] \sum_{k=0}^{T-t-1} \gamma^{k} R_{t+k+1} \right)}{\sum_{t=1}^{T} \mathbb{1}[S_{t} = s, A_{t} = a]}$$

3 Iterate

Raphael Cousin January 11, 2024 11 / 33

Visual Steps in Monte Carlo

2. Evaluate Q

1. Generate episode following $\arg\max Q(s,a)$

3. Iterate

Temporal Difference (TD)

Monte Carlo and dynamic programming ideas, using bootstrapping for value updates.

• Bellman equations:

$$V(S_t) = \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) | S_t = s]$$
$$Q(s, a) = \mathbb{E}[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

- TD Target: unbiased estimate:
 - $V(S_t)$: $R_{t+1} + \gamma V(S_{t+1})$
 - $Q(S_t, A_t)$: $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$

Raphael Cousin January 11, 2024 13/33

Value function estimation with TD Learning

TD Error (δ_t)

The difference between the TD target and the current value estimate:

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

Update Rule

Incrementally update the state value with the learning rate (α) :

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

Raphael Cousin January 11, 2024 14 / 33

Action-Value function estimation with TD Learning

TD Error (δ_t)

The difference between the TD target and the current value estimate:

$$\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$$

Update Rule

Incrementally update the state value with the learning rate (α) :

$$Q(S_t) \leftarrow Q(S_t) + \alpha \delta_t$$

Raphael Cousin January 11, 2024 15 / 33

SARSA Algorithm

Initialize Q function $Q(s, a) \forall s, a$ $S_t = \text{initial state}$, act with π (extract from Q ϵ -greedy) to get A_t, R_{t+1}, S_{t+1}

- **1** Act with π (extract from Q ϵ -greedy) to get $A_{t+1}, R_{t+2}, S_{t+2}$
- ② Update Q using the observation step: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) Q(S_t, A_t))$
- 3 Iterate

Raphael Cousin January 11, 2024 16 / 33

Visual Steps in SARSA

3. Choose action $a_4 = \arg \max Q(s_4, a)$

2. Update $Q(s_2, a_2)$ with $r_3 + \gamma Q(s_3, a_3)$

4. Update $Q(s_3, a_3)$ with $r_4 + \gamma Q(s_4, a_4)$

Q-learning

Remember

$$Q_{\pi^*}(S_t, A_t) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} Q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

- So $R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$ is an unbiased estimate for $Q(S_t, A_t)$
- $R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$ is called the Q target.
- α improvement:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t))$$

January 11, 2024 18 / 33

Q-learning Algorithm

Initialize Q function $Q(s, a) \forall s, a$ $S_t = \text{initial state}$

- Act with π (extract from Q ϵ -greedy) to get A_t, R_{t+1}, S_{t+1}
- ② Update Q using the observation step: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max Q(S_{t+1}, a) - Q(S_t, A_t))$
- Iterate

Raphael Cousin January 11, 2024 19 / 33

Visual Steps in Q-Learning

3. Choose action $a_4 = \arg \max Q(s_4, a)$

2. Update $Q(s_3, a_3)$ with $r_4 + \gamma(s_4, a)$

4. Update $Q(s_4, a_4)$ with $r_5 + \gamma(s_4, a)$

Temporal Difference

Coding session

Third Glossary of RL

- Reinforce/VPG
- Deep Q-learning
- Actor-Critic

Raphael Cousin January 11, 2024 22 / 33

Limitations of Traditional Q Learning

Q Learning faces challenges when scaling to complex problems:

- High-dimensional state spaces lead to slow convergence.
- Inapplicable to environments with continuous action spaces.

Raphael Cousin January 11, 2024 23 / 33

Deep Q Learning Overview

Deep Q Learning extends Q Learning by using neural networks:

- Parametrize Q function with θ , $Q_{\theta}: S \times A \to \mathbb{R}$.
- Objective: Find θ^* that approximates the optimal Q function.
- Define Q target as: $y = R_{t+1} + \gamma \max_{a'} Q_{\theta}(S_{t+1}, a')$.
- Minimize loss (e.g., MSE): $L(\theta) = \mathbb{E}_{s,a \sim Q}[(y Q(s, a, \theta))^2].$

Raphael Cousin January 11, 2024 24 / 33

Executing the Deep Q Learning Algorithm

Steps to implement Deep Q Learning:

- For current state S_t , compute $Q_{\theta}(S_t, a)$ for all actions.
- **2** Take action A_t with highest Q value, observe reward and next state.
- **3** Compute target y for S_{t+1} and minimize loss $L(\theta)$.
- **4** Iterate to refine θ towards optimal.

Raphael Cousin January 11, 2024 25 / 33

Improving Deep Q Learning Stability

Key techniques for enhancing DQL:

- Experience Replay: Store transitions $(S_t, A_t, R_{t+1}, S_{t+1})$ and sample randomly to break correlation in sequences.
- Target Network: Use a separate, slowly updated network to stabilize targets.
- Additional Improvements: Epsilon decay for exploration, reward clipping, Double Q Learning to reduce overestimation.

Raphael Cousin January 11, 2024 26 / 33

Coding session Deep Q - learning

Policy Optimization

- Parametrization of policy, π_{θ} .
- We aim to maximize the expected return $J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}}[G(\tau)]$.
- Gradient ascent: $\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\pi_{\theta})|_{\theta_k}.$
- We can proof that: $\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} [\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) G(\tau)]$ https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

Raphael Cousin January 11, 2024 28 / 33

Reinforce/VPG algorithm

Initialize policy π_{θ}

- Generate episodes $\mathcal{D} = \{\tau_i\}_{i=1,\dots,N}$ with the policy π_{θ}
- 2 Compute gradient approximation $\hat{\nabla} = \frac{1}{|\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) G_{t}$
- **3** Update policy (apply gradient ascent) $\theta \leftarrow \theta + \alpha \hat{\nabla}$
- Iterate

Raphael Cousin January 11, 2024 29 / 33

Introduction to Actor-Critic Models

Actor-Critic models combine the benefits of policy-based and value-based approaches:

- The **Actor** updates the policy distribution in the direction suggested by the **Critic**.
- The **Critic** estimates the value function (V or Q) to critique the actions taken by the Actor.
- This interaction enhances learning by using the Critic's value function to reduce the variance in policy gradient estimates.

Raphael Cousin January 11, 2024 30/33

Policy Gradient in Actor-Critic

The policy gradient in Actor-Critic models can be written as:

$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \Phi_{t} \right]$$

Where Φ_t represents:

- Total return G_t .
- Advantage function: $R_{t+1} V(s_t)$ or $R_{t+1} Q(s_t, a_t)$.

Using Φ_t improves policy updates by evaluating actions more effectively.

Raphael Cousin January 11, 2024 31 / 33

Actor-Critic Algorithm Steps

Implementing the Actor-Critic algorithm involves:

- Initializing parameters for both the Actor (θ) and the Critic (ϕ) .
- 2 For each episode:
 - Generate an action A_t using the current policy π_{θ_t} .
 - Update the Actor by applying gradient ascent using the Critic's feedback.
 - Update the Critic by minimizing the difference between estimated and actual returns.
- Repeat the process to refine both Actor and Critic.

Raphael Cousin January 11, 2024 32 / 33

References

Course:

```
http://incompleteideas.net/book/the-book-2nd.html
https://lilianweng.github.io/lil-log/2018/02/19/
a-long-peek-into-reinforcement-learning.html
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/
https://github.com/kengz/awesome-deep-rl
Framework:
https://spinningup.openai.com/en/latest/
https://gym.openai.com/envs/#atari
```

https://github.com/deepmind/bsuite

Raphael Cousin January 11, 2024 33 / 33