Encyclopedia of Stabilizer Code Operations

Dirk Jim Theis

Thu May 23 18:10:10 EEST 2024

Contents

1 Lattice Surgery			1	
	1.1	HERE	Code	1
	1.2	TODO) Memory	2
		1.2.1	Syndrome measurement	2
		1.2.2	Decoding	2
		1.2.3	Fixing	2
	1.3		Operations	
		1.3.1	MORE Single qubit Clifford gates	2
		1.3.2	HERE State preparation	3
2	Foo	tnotes	= Bibliography	3
1	T.s	attice	Surgery	

Lattice Surgery

1.1 **HERE** Code

- 1. Shapes
 - Textbook shape d=7: 7×7 physical qubits

 \wedge \wedge \wedge XOXOXO> $\langle OXOXOX$ XOXOXO> $\langle OXOXOX$ XOXOXO> **XOXOXO** \vee \vee \vee

• (more)

- 2. MORE "Logical contributions" of physical qubit neighborhoods
 - In the bulk: 1-(1/4+1/4+1/4+1/4)=0

O X

х о

• On an edge: 1-(1/4-1/4-1/2)=0

Χ.

0 >

• Convex corner: 1-(1/4-1/2) = 1/4

Λ

0 >

- etc
- etc
- etc

1.2 TODO Memory

- 1.2.1 Syndrome measurement
- 1.2.2 Decoding
- **1.2.3** Fixing
- 1.3 HERE Operations
- 1.3.1 MORE Single qubit Clifford gates
 - 1. Pauli- $\{X,Z\}$ gates

Transversal (Only if length of observable is odd)¹

- Space-time cost: Time = 1 cycle
- Error cost:
 - **Z**: with *virtual* Z-gate: 0
 - X, Z w/o virtual Z-gate: loads of 1-qubit gates

Virtual P Flip frame of every physical qubit & propagate

• ??? This doesn't look like it makes any sense...

Virtual L Flip sign of logical op¹

2. Pauli-Y gate

Transversal (Only if lengths of Z,X observables are both odd)¹

Apply
$$\rightarrow Z \rightarrow X \rightarrow$$
 or $\rightarrow X \rightarrow Z \rightarrow$; e.g., $X\{virt\}$, $Ztrans$

- difference is global phase
- can be done in parallel

¹arXiv:2307.03233 "Compilation of a simple chemistry application" (Riverlane)

1.3.2 HERE State preparation

- 1. MORE $\pm Z, \pm X$
 - $+\sigma$ where $\sigma \in \{Z,X\}$: for q in dataqubits: q.init($+\sigma$) EC(d times)

TODO There's sure to be a shortcut for preparing -Z and -X

2. TODO $\pm Y$

2 Footnotes = Bibliography

1. Riverlane ¹