HKS SUP-135 Lab 1: Introductory Statistical Concepts and Statistical Computing

Matt Khinda

2/3/2023

Question 1: Histogram

Question 2: Mean

The mean income for the sample is \$70499.94

Question 3: Conditional Variables

3a: Below the mean

3b: Percent below mean

The percent of children below the mean income is 59.60627%

3c: Why is it not 50%?

Because the incomes (shown in the histogram above) are not evenly distributed.

Question 4: Median

The median income is \$58750

Question 5: Standard Deviation

One stanard deviation is equal to \$59552.02

Question 6: Within 1 or 2 Standard Deviations

The percent of children within one standard deviation is 78.67299%.

The percent of children within two standard deviations is 94.8961%.

Question 7: Percentile Ranks

7a: Rank incomes

7b: Sort by rank

## # A tibble: 5,486 x 20											
##		id_num l	kid_i~1	incar~2	child~3	${\tt child~4}$	child~5	paren~6	mothe~7	fathe~8	female
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	46	0	0	12	0	NA	0	8	12	0
##	2	80	0	0	11	0	NA	30000	12	12	0
##	3	92	0	0	12	0	NA	37600	10	12	0
##	4	227	0	1	8	0	NA	6014	14	12	1
##	5	344	0	0	12	0	NA	25000	12	16	0
##	6	452	0	0	10	0	NA	19500	12	12	1
##	7	453	0	0	7	0	NA	19500	12	12	1
##	8	570	0	0	11	0	NA	96000	12	12	1
##	9	710	0	0	17	1	1000	55300	13	14	1
##	10	817	0	1	10	0	NA	8594	14	12	0
##	#	with	5,476 m	nore rows	s, 10 mor	re varial	oles: bla	ack <dbl< td=""><td>>, hispar</td><td>nic <dbl< td=""><td>>,</td></dbl<></td></dbl<>	>, hispar	nic <dbl< td=""><td>>,</td></dbl<>	>,
шш	ш		/127 -		121121	0011	- /31.75		/111		

white <dbl>, region <dbl+lbl>, age2015 <dbl>, cohort <dbl>,

below_mean <dbl>, sd1 <dbl>, sd2 <dbl>, kid_inc_rank <dbl>, and abbreviated

variable names 1: kid_income, 2: incarcerated, 3: child_education,

4: child_college, 5: child_sat, 6: parent_inc, 7: mother_education,

8: father_education

7c: Normalize rank

7d: Browse the data

Question 8: Percentile Rank Distribution

8a: Plot percentile rank distribution

8b: Validate percentile rank mean and median

The mean percentile rank is 50.08672 while the median percentile rank is 50.1141

Question 9: Relationships

Linear correlation

Non-linear correlation

Question 10: Randomization

10a: Generate and assign random values

10b: Determine treatment group status

There are 1684 observations in the treatment group and 1649 observations in the control group.

10c: Treatment Group

```
## # A tibble: 1 x 44
##
     id_num_mean kid_inco~1 incar~2 child~3 child~4 child~5 paren~6 mothe~7 fathe~8
##
           <dbl>
                      <dbl>
                              <dbl>
                                       <dbl>
                                               <dbl>
                                                       <dbl>
                                                                <dbl>
                                                                        <dbl>
                                                                                <dbl>
           2899.
                     78437.
                                               0.327
                                                              53605.
                                                                         13.1
                                                                                 13.1
## 1
                             0.0962
                                        14.0
                                                          NA
     ... with 35 more variables: female_mean <dbl>, black_mean <dbl>,
## #
       hispanic_mean <dbl>, white_mean <dbl>, region_mean <dbl>,
## #
       age2015_mean <dbl>, cohort_mean <dbl>, below_mean_mean <dbl>,
## #
       sd1_mean <dbl>, sd2_mean <dbl>, kid_inc_rank_mean <dbl>,
## #
       rand_val_mean <dbl>, treatment_group_mean <dbl>, id_num_sd <dbl>,
## #
       kid_income_sd <dbl>, incarcerated_sd <dbl>, child_education_sd <dbl>,
       child_college_sd <dbl>, child_sat_sd <dbl>, parent_inc_sd <dbl>, ...
```

Control Group

```
# A tibble: 1 x 44
     id_num_mean kid_inco~1 incar~2 child~3 child~4 child~5 paren~6 mothe~7 fathe~8
##
##
            <dbl>
                       <dbl>
                                <dbl>
                                         <dbl>
                                                 <dbl>
                                                          <dbl>
                                                                  <dbl>
                                                                           <dbl>
                                                                                   <dbl>
           2873.
                      78001.
                              0.0837
                                         14.1
                                                 0.355
                                                                 54651.
                                                                            12.9
                                                                                    13.0
## 1
                                                             NA
```

```
## # ... with 35 more variables: female_mean <dbl>, black_mean <dbl>,
## # hispanic_mean <dbl>, white_mean <dbl>, region_mean <dbl>,
## # age2015_mean <dbl>, cohort_mean <dbl>, below_mean_mean <dbl>,
## # sd1_mean <dbl>, sd2_mean <dbl>, kid_inc_rank_mean <dbl>,
## # rand_val_mean <dbl>, treatment_group_mean <dbl>, id_num_sd <dbl>,
## # kid_income_sd <dbl>, incarcerated_sd <dbl>, child_education_sd <dbl>,
## # child_college_sd <dbl>, child_sat_sd <dbl>, parent_inc_sd <dbl>, ...
```

10d: Google form submisson [submitted]

10e: What is the purpose of random assignment in an experiment? Random assignment seeks to reduce or eliminate selection bias either on the part of participants (in the case of opt-in trials) or the researchers (in the case of researcher selection). For this reason, I would prefer to use random assignment to best achieve comparability.