Geometría Diferencial 2021

Lista 03

03.marzo.2021

1. Mostrar que la ecuación del plano tangente en $\mathbf{p}=(x_0,y_0,z_0)$ a una superficie regular S:f(x,y,z)=0, con 0 un valor regular de f es

$$f_x(\mathbf{p})(x-x_0) + f_y(\mathbf{p})(y-y_0) + f_z(\mathbf{p})(z-z_0) = 0.$$

¿Cómo queda la ecuación del plano tangente en el caso de una superfície regular de la forma z = f(x,y)?

2. Pruebe que las normales a una superficie parametrizada de la forma

$$\mathbf{x}(u,v) = (f(u)\cos v, f(u)\sin v, g(u)), \quad f(u) \neq 0, \ g'(u) \neq 0,$$

pasan todas por el eje Oz.

- 3. Un punto crítico de una función diferenciable $f: S \to \mathbb{R}$ definida sobre una superficie regular S es un punto $\mathbf{p} \in S$ tal que $Df(\mathbf{p}) = 0$.
 - a) Si $f: S \to \mathbb{R}$ es dada por $f(\mathbf{p}) = |\mathbf{p} \mathbf{p}_0|$, con $\mathbf{p}_0 \notin S$, mostrar que \mathbf{p} es punto crítico de f si, y sólo si, la recta de \mathbf{p} a \mathbf{p}_0 es normal a S.
 - b) Si $h: S \to \mathbb{R}$ es dada por $h(\mathbf{p}) = \mathbf{p} \cdot \mathbf{v}$, $\mathbf{v} \in \mathbb{R}^3$ vector unitario, mostrar que \mathbf{p} es punto crítico de f si, y sólo si, \mathbf{v} es un vector normal a S en \mathbf{p} .
- 4. Obtenga la primera forma fundamental de la parametrización de la esfera S^2 dada por la proyección estereográfica.

5. Muestre que el área A de una región limitada R sobre la superficie z=f(x,y), con f diferenciable, es

$$A = \iint_{Q} \sqrt{1 + f_x^2 + f_y^2} \, dx \, dy,$$

donde Q es la proyección ortogonal de R sobre el plano Oxy.

- 6. Las curvas coordenadas de una parametrización $\mathbf{x}(u,v)$ de S constituyen una red de Tchebyshev si las longitudes de los lados opuestos de cualquier cuadrilátero formado por ellas son iguales.
 - a) Pruebe una condición necesaria y sufieciente para que esto suceda es que

$$\frac{\partial E}{\partial v} = 0$$
 y $\frac{\partial G}{\partial u} = 0$.

- b) Mostrar que si las curvas coordenadas forman una red de Tchebyshev, entonces es posible reparametrizar la vecindad coordenada de tal forma que E=1, $F=\cos\theta$ y G=1.
- 7. Sea S una superficie de revolución y $C: I \to \mathbb{R}^2$ su curva generatriz (en el plano Oxz). Sea S la longitud de arco de la curva, y denotamos por $\rho = \rho(s)$ la distancia del punto correspondiente C(s) al eje de rotación.
 - a) Mostrar el Teorema de Pappus: El área de S está dada por

$$A = 2\pi \int_0^L \rho(s) \, ds,$$

donde L es la longitud de la curva C.

- b) Aplicar la parte (a) para calcular el área de la superficie de un toro.
- 8. El gradiente de una función diferenciable $f:S \to \mathbb{R}$ definida sobre una superficie regular $S \subset \mathbb{R}^3$ es la aplicación diferenciable $\nabla f: S \to \mathbb{R}^3$ que asocia a cada punto $\mathbf{p} \in S$ un vector $\nabla f(\mathbf{p}) \in T_{\mathbf{p}}S$ tal que

$$\langle \nabla f(\mathbf{p}), \mathbf{v} \rangle_{\mathbf{p}} = Df(\mathbf{p}) \cdot \mathbf{v}, \quad \forall \mathbf{v} \in T_{\mathbf{p}} S.$$

Demuestre que si E, F, G son los coeficientes de la primera forma fundamental en una parametrización $\mathbf{x}: U \subseteq \mathbb{R}^2 \to S$, entonces el gradiente $\nabla f(\mathbf{p})$ en $\mathbf{x}(U)$ está dado por

$$\nabla f = \frac{f_u G - f_v F}{EG - F^2} \mathbf{x}_u + \frac{f_v E - f_u F}{EG - F^2} \mathbf{x}_v.$$

En particular, si $S = \mathbb{R}^2$, con coordenadas x, y, entonces

$$\nabla f = f_x \mathbf{e}_1 + f_u \mathbf{e}_2.$$

- 9. La orientación puede no ser preservada por difeomorfismos.
 - Sea $\varphi: S_1 \to S_2$ un difeomorfismo entre superficies.
 - a) Muestre que S_1 es orientable si, y sólo si, S_2 es orientable.
 - b) Considera la aplicación antípoda $\varphi: S^2 \to S^2$ dada por $\varphi(\mathbf{p}) = -\mathbf{p}$. Utilizar esta aplicación para mostrar que en (a), la orientación inducida por φ puede ser distinta de la original.
- 10. Mostrar que la botella de Klein K no es orientable. Para ello, puede considerar el siguiente modelo de la botella de Klein:

$$\mathbb{K} = [0,1] \times [0,1] / \sim$$
, donde $(u,0) \sim (u,1)$, y $(0,v) \sim (1,1-v)$,

u otro modelo similar, como se ilustra en la Figura 1.

Figure 1: Botella de Klein. (a) como superficien en \mathbb{R}^3 , (b) como espacio cociente.