DSCI353-353m-453: Class 14a Mapping Google Trends data For Thanksgiving

2008-351-351m-451-W14a-p2-GIS-Gtrends-Thnksgvng-Maps

Roger H. French, Raymond Weiser, Sameera Nalin Venkat

29 November, 2022

Contents

14.1.4	Mapping	Google Trends data For Thanksgiving
	14.1.4.1	Install and Load Packages
	14.1.4.2	Use Google Trends to get thanksgiving trends
	14.1.4.3	Gather Interest by State
		Plot interest with the US Map by state
		Plot East Coast interest with the US Map by state
14.1.5		

14.1.4 Mapping Google Trends data For Thanksgiving

Lets use the R package usmap

- which enables incredibly easy and fast
 - creation of US maps in R.

In honor of US Thanksgiving,

- we'll use the gtrendsR package
 - to pull US Google search results
 - * on the keyword "thanksgiving"
 - and plot the popularity by state.

```
library(gtrendsR)
library(tidyverse)
```

14.1.4.1 Install and Load Packages

```
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.4.0
                    v purrr
                             0.3.5
## v tibble 3.1.8
                    v dplyr 1.0.10
## v tidyr
         1.2.1
                    v stringr 1.4.1
          2.1.3
                    v forcats 0.5.2
## v readr
## -- Conflicts -----
                                       ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
library(cdlTools)
library(usmap)
```

```
##
## Attaching package: 'usmap'
## The following object is masked from 'package:cdlTools':
##
## fips
#Set a color
orange <- "#C9592E"</pre>
```

14.1.4.2 Use Google Trends to get thanksgiving trends

• Use the gTrendsR Package

..\$ keyword

- to get the query trends for thanksgiving in the US

```
- for the past 24 hours
thanksgiving <-
  gtrendsR::gtrends(keyword = "thanksgiving", geo = "US", time = "now 1-d") # last day
glimpse(thanksgiving)
## List of 7
   $ interest_over_time :'data.frame': 179 obs. of 7 variables:
              : POSIXct[1:179], format: "2022-11-28 14:56:00" "2022-11-28 15:04:00" ...
##
     ..$ date
                : int [1:179] 100 98 97 94 99 89 95 89 85 87 ...
     ..$ hits
     ...$ keyword : chr [1:179] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
##
               : chr [1:179] "US" "US" "US" "US" ...
                : chr [1:179] "now 1-d" "now 1-d" "now 1-d" "now 1-d" ...
##
     ..$ time
     ..$ gprop : chr [1:179] "web" "web" "web" "web" ...
##
     ..$ category: int [1:179] 0 0 0 0 0 0 0 0 0 ...
##
   $ interest by country: NULL
   $ interest_by_region :'data.frame': 51 obs. of 5 variables:
##
     ...$ location: chr [1:51] "Utah" "California" "Pennsylvania" "New Jersey" ...
              : int [1:51] 100 73 73 72 71 71 71 71 70 69 ...
##
##
     ...$ keyword : chr [1:51] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
                : chr [1:51] "US" "US" "US" "US" ...
##
     ..$ gprop : chr [1:51] "web" "web" "web" "web" ...
##
    $ interest_by_dma
                        :'data.frame': 210 obs. of 5 variables:
     ..$ location: chr [1:210] "Alpena MI" "Salt Lake City UT" "Sherman TX-Ada OK" "St. Joseph MO" ...
##
##
              : int [1:210] 100 71 68 63 58 57 56 56 55 54 ...
     ..$ keyword : chr [1:210] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
##
             : chr [1:210] "US" "US" "US" "US" ...
     ..$ gprop : chr [1:210] "web" "web" "web" "web" ...
##
##
    $ interest_by_city :'data.frame': 200 obs. of 5 variables:
     ...$ location: chr [1:200] "Pottsboro" "Highland" "Maltby" "Fayetteville" ...
##
##
              : int [1:200] NA NA NA NA 100 NA 75 NA NA NA ...
     ..$ keyword : chr [1:200] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
##
                : chr [1:200] "US" "US" "US" "US" ...
##
     ..$ gprop : chr [1:200] "web" "web" "web" "web" ...
##
##
    $ related_topics
                        :'data.frame': 38 obs. of 6 variables:
                      : chr [1:38] "100" "9" "8" "6" ...
##
     ..$ subject
##
     ..$ related_topics: chr [1:38] "top" "top" "top" "top" ...
##
                  : chr [1:38] "Thanksgiving" "Thanksgiving dinner" "Day" "Turkey meat" ...
                      : chr [1:38] "US" "US" "US" "US" ...
##
     ..$ geo
```

: chr [1:38] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...

```
..$ category : int [1:38] 0 0 0 0 0 0 0 0 0 ...
##
##
    ..- attr(*, "reshapeLong")=List of 4
##
    ...$ varying:List of 1
     .. .. ..- attr(*, "v.names")= chr "value"
##
    .. .. ..- attr(*, "times")= chr "top"
##
    .. ..$ v.names: chr "value"
    ....$ idvar : chr "id"
    .. .. $\timevar: \chr \"related_topics"
##
##
   $ related_queries :'data.frame': 50 obs. of 6 variables:
    ..$ subject : chr [1:50] "100" "88" "58" "57" ...
##
    ..$ related_topics: chr [1:50] "top" "top" "top" "top" ...
    ..$ value : chr [1:50] "thanksgiving 2022" "thanksgiving day" "turkey thanksgiving" "turkey
##
                     : chr [1:50] "US" "US" "US" "US" ...
##
    ..$ geo
##
                     : chr [1:50] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
    ..$ category : int [1:50] 0 0 0 0 0 0 0 0 0 ...
##
    ..- attr(*, "reshapeLong")=List of 4
##
##
    ....$ varying:List of 1
    .. .. - attr(*, "v.names")= chr "value"
##
    .. .. - attr(*, "times")= chr "top"
##
##
    .. ..$ v.names: chr "value"
##
    .. ..$ idvar : chr "id"
    .. .. $\timevar: \chr \"related_topics"
## - attr(*, "class")= chr [1:2] "gtrends" "list"
thanksgiving_2021 <-
 gtrends(keyword = "thanksgiving", geo = "US", time = "2021-11-23 2021-11-25", tz = 0 ) # last year
glimpse(thanksgiving 2021)
## List of 7
## $ interest_over_time :'data.frame': 3 obs. of 7 variables:
    ..$ date : POSIXct[1:3], format: "2021-11-23" "2021-11-24" ...
    ..$ hits : int [1:3] 14 25 100
     ..$ keyword : chr [1:3] "thanksgiving" "thanksgiving" "thanksgiving"
              : chr [1:3] "US" "US" "US"
    ..$ time : chr [1:3] "2021-11-23 2021-11-25" "2021-11-23 2021-11-25" "2021-11-25" "2021-11-23 2021-11-25"
##
    ..$ gprop : chr [1:3] "web" "web" "web"
##
    ..$ category: int [1:3] 0 0 0
##
   $ interest_by_country: NULL
## $ interest_by_region :'data.frame': 51 obs. of 5 variables:
    ..$ location: chr [1:51] "Florida" "North Carolina" "New Hampshire" "Massachusetts" ...
##
    ..$ hits : int [1:51] 100 95 93 90 90 90 89 89 88 88 ...
##
    ..$ keyword : chr [1:51] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
##
    ..$ geo : chr [1:51] "US" "US" "US" "US" ...
    ..$ gprop : chr [1:51] "web" "web" "web" "web" ...
##
   $ interest by dma
                        :'data.frame': 210 obs. of 5 variables:
    ..$ location: chr [1:210] "Orlando-Daytona Beach-Melbourne FL" "Miami-Ft. Lauderdale FL" "Panama C
##
    ..$ hits : int [1:210] 100 97 94 92 90 90 90 89 89 88 ...
     ..$ keyword : chr [1:210] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
##
    ..$ geo : chr [1:210] "US" "US" "US" "US" ...
    ..$ gprop : chr [1:210] "web" "web" "web" "web" ...
   $ interest_by_city :'data.frame': 200 obs. of 5 variables:
    ..$ location: chr [1:200] "Sylvania" "Stockton" "Saint Simons Island" "Nicholasville" ...
##
##
    ... hits : int [1:200] NA ...
    ...$ keyword : chr [1:200] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
```

```
..$ geo : chr [1:200] "US" "US" "US" "US" ...
##
       ..$ gprop : chr [1:200] "web" "web" "web" "web" ...
##
## $ related_topics
                                       :'data.frame': 20 obs. of 6 variables:
        ..$ subject : chr [1:20] "100" "14" "7" "6" ...
##
        ..$ related_topics: chr [1:20] "top" "top" "top" "top" ...
##
        ..$ value : chr [1:20] "Thanksgiving" "History" "Macy's Thanksgiving Day Parade" "Thanksgi
##
                                   : chr [1:20] "US" "US" "US" "US" ...
        ..$ geo
        ..$ keyword : chr [1:20] "thanksgiving" "thanksgiv
        ..$ keyword
##
##
##
        ..- attr(*, "reshapeLong")=List of 4
        ....$ varying:List of 1
        .. .. ..- attr(*, "v.names")= chr "value"
##
        .. .. - attr(*, "times")= chr "top"
        .. ..$ v.names: chr "value"
##
##
        ....$ idvar : chr "id"
##
       ....$ timevar: chr "related_topics"
      $ related_queries :'data.frame': 50 obs. of 6 variables:
##
        ..$ subject : chr [1:50] "100" "97" "87" "86" ...
##
        ..$ related_topics: chr [1:50] "top" "top" "top" "top" ...
##
        ..$ value : chr [1:50] "history of thanksgiving" "thanksgiving history" "happy thanksgiving
       ##
##
                                   : chr [1:50] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
        ..$ category : int [1:50] 0 0 0 0 0 0 0 0 0 0 ...
##
        ..- attr(*, "reshapeLong")=List of 4
##
        .. .. $ varying:List of 1
        .. .. ..- attr(*, "v.names")= chr "value"
        .. .. ..- attr(*, "times")= chr "top"
##
        .. ..$ v.names: chr "value"
        .. ..$ idvar : chr "id"
        .. ..$ timevar: chr "related_topics"
## - attr(*, "class")= chr [1:2] "gtrends" "list"
thanksgiving_2020 <-
   gtrends(keyword = "thanksgiving", geo = "US", time = "2020-11-26 2020-11-27") # 2nd year
glimpse(thanksgiving_2020)
## List of 7
## $ interest_over_time :'data.frame': 2 obs. of 7 variables:
        ..$ date : POSIXct[1:2], format: "2020-11-26" "2020-11-27"
        ..$ hits : int [1:2] 100 21
##
        ..$ keyword : chr [1:2] "thanksgiving" "thanksgiving"
        ..$ geo : chr [1:2] "US" "US"
##
        ..$ time : chr [1:2] "2020-11-26 2020-11-27" "2020-11-26 2020-11-27"
        ..$ gprop : chr [1:2] "web" "web"
##
       ..$ category: int [1:2] 0 0
##
      $ interest_by_country: NULL
## $ interest_by_region :'data.frame': 51 obs. of 5 variables:
        ..$ location: chr [1:51] "Florida" "Hawaii" "Maryland" "Texas" ...
##
        ..$ hits : int [1:51] 100 98 92 90 89 89 88 87 86 86 ...
##
        ...$ keyword : chr [1:51] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
        ..$ geo : chr [1:51] "US" "US" "US" "US" ...
       ..$ gprop : chr [1:51] "web" "web" "web" "web" ...
##
      $ interest_by_dma
                                         :'data.frame': 210 obs. of 5 variables:
     ..$ location: chr [1:210] "Miami-Ft. Lauderdale FL" "North Platte NE" "Tampa-St. Petersburg (Saras
```

```
##
     ..$ hits : int [1:210] 100 99 98 98 97 97 96 96 96 95 ...
    ... keyword : chr [1:210] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
##
    ..$ geo : chr [1:210] "US" "US" "US" "US" ...
##
     ..$ gprop : chr [1:210] "web" "web" "web" "web"
##
##
   $ interest_by_city :'data.frame': 200 obs. of 5 variables:
    ...$ location: chr [1:200] "Richmond West" "Pullman" "Saint Michael" "Maitland" ...
##
    ...$ hits : int [1:200] NA ...
     ..$ keyword : chr [1:200] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
##
                : chr [1:200] "US" "US" "US" "US" ...
##
##
    ..$ gprop : chr [1:200] "web" "web" "web" "web" ...
   $ related_topics
                       :'data.frame': 24 obs. of 6 variables:
                     : chr [1:24] "100" "20" "7" "7" ...
##
    ..$ subject
    ..$ related_topics: chr [1:24] "top" "top" "top" "top" ...
##
    ..$ value : chr [1:24] "Thanksgiving" "History" "Happiness" "Macy's Thanksgiving Day Parad
##
                     : chr [1:24] "US" "US" "US" "US" ...
##
    ..$ geo
                      : chr [1:24] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
##
     ..$ keyword
    ..$ category : int [1:24] 0 0 0 0 0 0 0 0 0 ...
##
    ..- attr(*, "reshapeLong")=List of 4
##
##
     ....$ varying:List of 1
    .. .. ..- attr(*, "v.names")= chr "value"
##
##
    .. .. ..- attr(*, "times")= chr "top"
##
    .. ..$ v.names: chr "value"
    ....$ idvar : chr "id"
##
    .. .. $ timevar: chr "related_topics"
##
   $ related queries :'data.frame': 50 obs. of 6 variables:
##
    ..$ subject : chr [1:50] "100" "99" "83" "71" ...
##
     ..$ related_topics: chr [1:50] "top" "top" "top" "top" ...
    ..$ value : chr [1:50] "thanksgiving history" "history of thanksgiving" "open on thanksgiv
##
                     : chr [1:50] "US" "US" "US" "US" ...
##
    ..$ geo
                     chr [1:50] "thanksgiving" "thanksgiving" "thanksgiving" "thanksgiving" ...
##
    ..$ keyword
                  : int [1:50] 0 0 0 0 0 0 0 0 0 ...
##
     ..$ category
##
    ..- attr(*, "reshapeLong")=List of 4
    ....$ varying:List of 1
##
     .. .. ..- attr(*, "v.names")= chr "value"
##
    .. .. ..- attr(*, "times")= chr "top"
##
##
    .. ..$ v.names: chr "value"
##
    ....$ idvar : chr "id"
##
    .. ..$ timevar: chr "related_topics"
   - attr(*, "class")= chr [1:2] "gtrends" "list"
```

14.1.4.3 Gather Interest by State

- Select the data frame
 - for interest by state and
 - * then convert the names of the states to FIPS codes
 - * FIPS codes are
 - · 2 characters for state,
 - · 5 characters for county

The usmap package

• requires the data in FIPS format.

To gather the FIPS data,

• use the usmap::fips() function

```
    to convert state name to code
```

fips function reference

```
thanksgivingStates$fips <- fips(thanksgivingStates$location)
glimpse(thanksgivingStates$fips)

## chr [1:51] "49" "06" "42" "34" "25" "35" "48" "17" "11" "44" "39" "33" ...
thanksgivingStates_2021 <- thanksgiving_2021$interest_by_region

thanksgivingStates_2021$fips <- fips(thanksgivingStates_2021$location)

thanksgivingStates_2020 <- thanksgiving_2020$interest_by_region

thanksgivingStates_2020$fips <- fips(thanksgivingStates_2020$location)
```

14.1.4.4 Plot interest with the US Map by state

- Create a US heatmap
 - with google search popularity* for the keyword "thanksgiving"

```
plot_usmap(
    data = thanksgivingStates,
    values = "hits",
    color = orange,
    labels = TRUE
) +
    scale_fill_continuous(
        low = "white",
        high = orange,
        name = "Popularity",
        label = scales::comma
) +
    theme(legend.position = "right") +
    theme(panel.background = element_rect(colour = "black")) +
    labs(title = "Popularity of Thanksgiving this Year, Google Search by State", caption = "Source: @litt")
```

Popularity of Thanksgiving this Year, Google Search by State

And for last year, 2020?

```
plot_usmap(
    data = thanksgivingStates_2021,
    values = "hits",
    color = orange,
    labels = TRUE
) +
    scale_fill_continuous(
        low = "white",
        high = orange,
        name = "Popularity",
        label = scales::comma
) +
    theme(legend.position = "right") +
    theme(panel.background = element_rect(colour = "black")) +
    labs(title = "Popularity of Thanksgiving 2021, Google Search by State", caption = "Source: @littlemis")
```

Popularity of Thanksgiving 2021, Google Search by State

Source: @littlemissdata

And for two years ago, 2020?

```
plot_usmap(
    data = thanksgivingStates_2020,
    values = "hits",
    color = orange,
    labels = TRUE
) +
    scale_fill_continuous(
        low = "white",
        high = orange,
        name = "Popularity",
        label = scales::comma
) +
    theme(legend.position = "right") +
    theme(panel.background = element_rect(colour = "black")) +
    labs(title = "Popularity of Thanksgiving in 2020, Google Search by State", caption = "Source: @littles.")
```

Popularity of Thanksgiving in 2020, Google Search by State

Source: @littlemissdata

We can clearly see from the graphs above,

- differences between two years ago, last year and now.
 - about how excited people were for thanksgiving
- Lets look at the east coast
 - Now and Last Year at this time

14.1.4.5 Plot East Coast interest with the US Map by state

- Drill in on the seemingly most popular regions
 - using the "include" parameter* in the plot usmap() function.

Regional divisions can be found in the docs here

For this year

```
plot_usmap(
  data = thanksgivingStates,
  values = "hits",
  include = c(.south_atlantic, .east_north_central),
  color = orange,
  labels = TRUE
) +
  scale_fill_continuous(
   low = "white",
   high = orange,
   name = "Popularity",
   label = scales::comma
) +
  theme(legend.position = "right") +
```

```
theme(panel.background = element_rect(colour = "black")) +
labs(title = "US East Coast Popularity of Thanksgiving 2021 Google Search", caption = "Source: @little")
```

US East Coast Popularity of Thanksgiving 2021 Google Search

Source: @littlemissdata

And last year, 2021.

```
plot_usmap(
    data = thanksgivingStates_2021,
    values = "hits",
    include = c(.south_atlantic, .east_north_central),
    color = orange,
    labels = TRUE
) +
    scale_fill_continuous(
        low = "white",
        high = orange,
        name = "Popularity",
        label = scales::comma
) +
    theme(legend.position = "right") +
    theme(panel.background = element_rect(colour = "black")) +
    labs(title = "US East Coast Popularity of Thanksgiving 2021 Google Search", caption = "Source: @little")
```

US East Coast Popularity of Thanksgiving 2021 Google Search

Source: @littlemissdata

And two years ago, 2020.

```
plot_usmap(
    data = thanksgivingStates_2020,
    values = "hits",
    include = c(.south_atlantic, .east_north_central),
    color = orange,
    labels = TRUE
) +
    scale_fill_continuous(
        low = "white",
        high = orange,
        name = "Popularity",
        label = scales::comma
) +
    theme(legend.position = "right") +
    theme(panel.background = element_rect(colour = "black")) +
    labs(title = "US East Coast Popularity of Thanksgiving 2020 Google Search", caption = "Source: @little")
```

US East Coast Popularity of Thanksgiving 2020 Google Search

14.1.5 Links

Laura Ellis, "Easy US Maps in R - Thanksgiving Edition", 11/27/2019 -
 https://www.littlemissdata.com/b \log/usmap