Making the Most of Regression

POST 8000 – Foundations of Social Science Research for Public Policy

Steven V. Miller

Department of Political Science

Discuss tricks to improve the information you can extract from a regression model.

Making the Most of Regression

Regression modelling is also storytelling.

- Your audience is not going to 100% understand what you're doing.
- That won't stop them from asking questions.

There's something you need to tell them from your model.

Make sure you tell them!

Think of this like "Chekhov's gun."

- If it's in your model, be prepared to explain it.
- If you have to explain it, make it as intuitive as possible.

Two Quickies

Here are two recurring things a lay audience will ask:

- 1. What is the "constant" or "y-intercept?"
- 2. Do bigger coefficients mean bigger effects relative to other coefficients?

The Problem of the Constant

You know by now the "constant" or "y-intercept" is not a coefficient.

• It's just an estimate of y when all xs are set to 0.

Your audience is going to want to interpret it.

• Worse yet: it's going to want to interpret something that probably makes no sense as you've been doing it.

What's a Bigger Effect?

Your coefficients will rarely, if ever, share a common scale.

- Absent a common scale, comparing regression coefficients is a fool's exercise.
- Coefficients are in part a function of the scale.
 - i.e. binary IVs will typically have larger coefficients (saying nothing of significance).

You and your audience will want to compare regression coefficients.

However, your presentation will probably preclude this.

A Simple Illustration

Let's illustrate this with a simple data set in post8000r.

EASV16 %>% select(state, percoled, gdp16, sunempr12md, trumpshare)

##	# 1	A tibble: 52 x 5				
##		state	percoled	gdp16	sunempr12md	trumpshare
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Alabama	24.7	203830.	-0.2	62.1
##	2	Alaska	29.6	49363.	0.3	51.3
##	3	Arizona	28.9	311091	-0.600	48.7
##	4	Arkansas	22.4	120375.	-0.6	60.6
##	5	California	32.9	2657798.	-0.300	31.6
##	6	Colorado	39.9	329368.	-0.6	43.3
##	7	Connecticut	38.6	263696.	-0.700	40.9
##	8	Delaware	31	69550.	-0.2	41.9
##	9	District of Columbia	56.8	129826.	-0.5	4.07
##	10	Florida	28.6	938774.	-0.400	49.0
##	#	with 42 more rows				

A Simple Illustration

Let's see if we can model the share of the vote Trump received (trumpshare) with four variables:

- the percent of the state (25 and older) with a college diploma (percoled).
- the GDP of the state in 2016 (gdp16).
- Whether the state is in the South (south).
- The 12-month difference in the state unemployment rate for Nov. 2016 (sunempr12md).
 - Higher values = rising unemployment relative to point from Nov. 2015.

Note: this is clearly a simple exercise and we'll ignore some other model problems.

- e.g. DC is a huge outlier, which is why we'll ignore it.
- Probably should logarithmically transform the GDP variables too.

The Statistical Model

term	estimate	std.error	statistic	p.value
(Intercept)	88.8449574	6.3246455	14.047421	0.0000000
percoled	-1.2017423	0.2017189	-5.957511	0.0000004
sunempr12md	7.9977018	2.5329840	3.157423	0.0028404
gdp16	-0.0000056	0.0000020	-2.802234	0.0074587
south	3.2570357	2.1140976	1.540627	0.1304109

Describing This Model

Here's how you would describe what you see here:

- A one-unit increase in % of the state with a college diploma decreases the Trump vote share by -1.20 percentage points.
- A one-unit increase in the state's GDP decreases Trump's vote share by -.000005 points.
- A one-unit increase in the state unemployment change increases Trump's vote share by 7.99 points.
- Being in the South increases Trump's vote share by 3.25 points.
- All but the South dummy are statistically significant (albeit one at a lower threshold).

However, there are several unsatisfying things about this model output.

The Problem of the Constant

To start: the intercept suggests Trump's vote share is expected to be 88.84% in a state where:

- No one graduated from college, AND
- There was no change from Nov. 2015 in the unemployment rate, AND
- The state isn't in the South, AND
- the GDP of the state is zero.

Constants/y-intercepts come standard in model output, but this parameter is useless as it is.

• You won't ever observe a case like this.

The Problem of the Coefficients

What's the biggest effect, as a magnitude? You won't know.

• percoled is the most precise, but that's not magnitude.

All variables work on a different scale.

- percoled has a minimum of 20.8 (WV) and a maximum of 90.5 (DC).
- gdp16 has a minimum of 31,659 (VT) and a maximum of 2,657,798 (CA).
- sunempr12md has a minimum of -1 (NV) and a maximum of .4 (OH).
- south is a dummy/fixed effect and can only be 0 or 1.

A Solution: Scaling (by Two Standard Deviations)

Statisticians recommend scaling your *non-binary* IVs, but Gelman (2008) has a better idea: scale by two standard deviations instead of just one.

- The transformed variable will have a mean of 0 and a SD of .5
- Regression coefficient would communicate estimated change in y for change across ~47.7% of data in x.

Sometimes this is what you want to communicate:

- i.e. do you really care about the effect of age going from 20 to 21? Or 50 to 51?
- Don't you want something larger/more substantive to communicate across the range of the data?

The Added Benefit of Scaling by Two Standard Deviations

Gelman (2008) notes that scaling by 2 SDs instead of 1 puts non-binary IVs on a (roughly) common scale with binary IVs.

- Assume a dummy IV d with a 50/50 split. Then: p(d=1)=.5.
- Then, the SD equals .5 ($\sqrt{.5*.5} = \sqrt{.25} = .5$)
- We can directly compare this dummy variable with our new standardized input variable!

This works well in most cases, except when p(d=1) is really small.

• e.g.
$$p(d=1)=.25$$
, then $\sqrt{.25*.75}=.4330127$

14/39

How to Scale by Two Standard Deviations

The process looks similar to how to calculate a z-score (with the obvious change in the denominator).

- rescale() in the arm package will do it.
- r2sd() in my stevemisc package will do it.

You could also do it manually.

```
rescale <- function(x) { (x - mean(x, na.rm=T))/(2*sd(x, na.rm=T)) }
```

How to Scale by Two Standard Deviations

```
EASV16 %>%
    # we'll use the custom function we just wrote in this document.
    mutate at(vars("percoled", "gdp16", "sunempr12md"),
              list(z = \mbox{"rescale}(.))) \%>\%
    rename at(vars(contains(" z")),
              ~paste("z", gsub(" z", "", .), sep = " ") ) -> EASV16
# Observe
mean(EASV16$z_percoled)
## [1] 1.185419e-16
sd(EASV16$z_percoled)
## [1] 0.5
```

An Improved Statistical Model

term	estimate	std.error	statistic	p.value
(Intercept)	47.657768	1.104007	43.167978	0.0000000
z_percoled	-14.937893	2.507405	-5.957511	0.0000004
z_sunempr12md	5.779390	1.830414	3.157423	0.0028404
z_gdp16	-5.230100	1.866404	-2.802234	0.0074587
south	3.257036	2.114098	1.540627	0.1304109

Interpreting an Improved Statistical Model

- The typical state not in the South had an estimated Trump vote share of 47.65%. The intercept is much more informative.
 - Caveat: states are weighted equally, even as there are more Californians than South Carolinians.
 - i.e. you could've added Trump's SC votes to his CA tally and he's still lose CA by >3 million votes.
- The education variable looks to have the largest effect when everything is on a mostly common scale.
 - i.e. the effect of going from, say, a standard deviation below the mean to a standard deviation above the mean is an estimated decrease in Trump's vote share by 14.93 points.
- The unemployment variable and the GDP variable look to have similar magnitude effects (albeit in absolute terms).

Interpreting an Improved Statistical Model

Notice what didn't change.

- Scaling the other variables doesn't change the binary IVs.
- The *t*-statistics doen't change either even as the coefficients and standard errors change.

Readable Regression Tables

Remember: your analysis should be as easily interpretable as possible.

- I should get a preliminary glimpse of effect size from a regression.
- Your *y*-intercept should be meaningful.

Standardizing variables helps.

- Creates meaningful zeroes (i.e. the mean).
- Coefficients communicate magnitude changes in x.
- Standardizing by two SDs allows for easy comparison with binary predictors.

Satisfy Your Audience

You need to relate your analysis to both me and your grandma.

- I will obviously know/care more about technical details.
- Grandma may not, but she may be a more important audience than me.

Her inquiries are likely be understandable. Examples from the above analysis:

- What's Trump's expected vote share in a better-educated Southern state?
- What's Trump's expected vote share in a better-educated state whose unemployment rate increased?

These are perfectly reasonable questions to ask of your analysis.

• If your presentation isn't prepared to answer her questions, you're not doing your job.

Statistical Presentations

Statistical presentations should:

- 1. Convey precise estimates of quantities of interest.
- 2. Include reasonable estimates of *uncertainty* around those estimates.
- 3. Require little specialized knowledge to understand Nos. 1 and 2.
- 4. Not bombard the audience with superfluous information.

We will do this with post-estimation simulation using draws from a multivariate normal distribution (King et al. 2000).

Estimating Uncertainty with Simulation

Any statistical model has a stochastic and systematic component.

• Stochastic: $Y_i \sim f(y_i \,|\, \theta_i, \alpha)$ • Systematic: $\theta_i = g(x_i, \beta)$

For a simple OLS model (i.e. a linear regression):

$$Y_i = N(\mu_i, \sigma^2)$$

$$\mu_i = X_i \beta$$

Understanding our Uncertainty

We have two types of uncertainty.

1. Estimation uncertainty

• Represents systematic components; can be reduced by increasing sample size.

2. Fundamental uncertainty

• Represents stochastic component; exists no matter what (but can be modeled).

Getting our Parameter Vector

We want a **simulated parameter vector**, denoted as:

$$\hat{\gamma} \sim vec(\hat{\beta}, \hat{\alpha})$$

Central limit theorem says with a large enough sample and bounded variance:

$$\tilde{\gamma} \sim N(\hat{\gamma}, \hat{V}(\hat{\gamma}))$$

In other words: distribution of quantities of interest will follow a multivariate normal distribution with mean equal to $\hat{\gamma}$, the simulated parameter vector.

25/39

Getting our Quantities of Interest

This is a mouthful! Let's break the process down step-by-step.

- 1. Run your regression. Get your results.
- 2. Choose values of explanatory variable (as you see fit).
- 3. Obtain simulated parameter vector from estimating systematic component.
- 4. Simulate the outcome by taking random draw from the stochastic component.

Do this \it{m} times (typically \it{m} = 1000) to estimate full probability distribution of \it{Y}_{c} .

How Do You Do This?

There are a variety of packages that can do this:

- Zelig is primarily responsible for this movement.
- sim() in the arm package can make simulations from a multivariate normal distribution.
- tidybayes is a go-to for Bayesian approaches (which give you these for free anyway).
 - That's next week, though.

My approach leans on arm::sim().

- This is the foundation for my get_sims() function in stevemisc.
 - However, I wrote that for mixed effects models and will tweak it soon for you.

A Quantity of Interest

What's Trump's expected vote share in a better-educated Southern state?

• What about relative to non-Southern states?

Here's how to approach doing this.

- Caveat: this is obviously a low-powered cross-sectional, observational data set of a prominent event where proper nouns matter.
- But: the approach is still informative for a wide variety of applications.

Create a New Data Frame

First, create a new data frame that match these parameters.

Create a New Data Frame

newdat

##		z_percoled	south	z_sunempr12md	z_gdp16	trumpshare
##	1	0	0	0	0	(
##	2	0	1	0	0	(
##	3	1	0	0	0	(
##	4	1	1	0	0	(

Create a Model Matrix from the Model and this new data.frame

MM <- model.matrix(terms(M2),newdat)</pre>

Get Simulations of Model Parameters via arm::sim()

```
set.seed(8675309) # Jenny, I got your number
simM2 <- arm::sim(M2, n.sims = 1000)</pre>
```

Here's a Glimpse of These Simulated Betas

```
as_tibble(coef(simM2)[1:5,])
```

```
## # A tibble: 5 x 5
##
    `(Intercept)` z_percoled z_sunempr12md z_gdp16
                                              south
##
           <dbl>
                     <dbl>
                                 <dbl>
                                        <dbl>
                                              <dbl>
            48.0
                   -17.8
                                 7.16 -5.55 2.36
## 1
                                 3.16 -7.02 0.498
## 2
            48.9 -15.1
## 3
            48.3 -16.9
                                 6.64 -5.61 0.510
## 4
            50.2 -15.9
                               4.49 -3.61 -1.61
            48.9
                    -16.3
                                 6.51 -4.60 2.68
## 5
```

Calculate/Store Quantities of Interest

```
# Create blank Sims object
Sims <- tibble(y = numeric(),</pre>
               sim = numeric())
# For the 1,000 sims we have...
for(i in (1:1000)) {
  hold me <- NULL # blank hold me object
  # matrix multiplication from our model matrix with simulated coefs
  yi <- MM %*% coef(simM2)[i,]</pre>
  # note which of the 1.000 simulations it is.
  sim <-rep(i, length (vi))</pre>
  # cbind the QIs with the simulation indicator
  hold_me <- as_tibble(cbind(yi, sim)) %>% rename(y = V1) #
  # Bind the simulations together...
  Sims <- bind_rows(Sims, hold_me)
```

Calculate/Store Quantities of Interest

Sims

```
## # A tibble: 4,000 x 2
##
            sim
## <dbl> <dbl>
## 1 48.0
##
   2 50.4
## 3 30.2
##
   4 32.6
##
   5 48.9
##
   6 49.4
## 7 33.8
## 8 34.3
   9 48.3
##
## 10 48.8
## # ... with 3,990 more rows
```

Remember What You're Looking At

Next, take inventory of what you're looking at based on the newdat object.

```
newdat %>%
    # replicate newdat 1000 times for our 1000 sims
    slice(rep(row_number(), 1000)) %>%
    # bind_col
    bind_cols(Sims, .) -> Sims
```

Summarize As You See Fit

The world is your oyster when you do these post-estimation simulations.

```
Sims %>%
   group by(south, z percoled) %>%
   summarize(mean = mean(y),
             lwr = quantile(y, .025),
             upr = quantile(v, .975))
## # A tibble: 4 \times 5
## # Groups: south [2]
##
    south z percoled mean lwr
                                  upr
##
    <dbl>
               <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1
                   0 47.8 45.6 50.1
## 2
                   1 32.8 27.6 38.2
## 3
                   0 50.9 47.1 54.6
                 1 35.9 28.7 43.5
## 4
```

Conclusion

Regression provides all-else-equal effect sizes across the range of the data.

- You can extract meaningful quantities of interest from regression output itself.
- Typically, you'll need more to answer substantive questions and provide meaningful quantities of interest.
- You can help yourself by scaling your non-binary inputs by two SDs.

Post-estimation simulation from a multivariate normal distribution does this.

- When you start doing this yourselves, be prepared to provide quantities of interest for your audience.
- Never forget: you're trying to tell a story. Tell it well.

Table of Contents

Making the Most of Regression
Introduction
Scaling by Two Standard Deviations
Quantities of Interest
Conclusion