Lógica CC 2024/2025

0. Indução e recursão

- 1. Seja S o subconjunto de $\mathbb{Q}\setminus\{0\}$ definido indutivamente pelas 3 regras apresentadas de seguida: (1) $1 \in S$; (2) $2 \in S$; (3) $q \in S \implies \frac{1}{q} \in S$.
 - a) Dê exemplos de elementos de S.
 - b) Mostre que o conjunto $\left\{\frac{1}{2},2\right\}$ é fechado para a operação $f:\mathbb{Q}\setminus\{0\}\to\mathbb{Q}\setminus\{0\}$ tal que $f(q)=\frac{1}{q}$, para qualquer $q\in\mathbb{Q}\setminus\{0\}$.
 - c) Determine o conjunto S.
- 2. Seja $A = \{a, b, c, d\}$ e seja $f: A \times A \rightarrow A$ a operação em A definida pela tabela

Seja B o subconjunto de A definido indutivamente pelas duas condições: (1) $b \in B$; (2) se $x, x' \in B$ então $f(x, x') \in B$.

- a) Prove que $c \in B$.
- b) Determine os subconjuntos de A que têm o elemento b e são fechados para f.
- c) Determine B.
- 3. Apresente definições indutivas de cada um dos conjuntos que se seguem:
 - a) Conjunto dos naturais múltiplos de 5.
 - b) Conjunto dos números inteiros.
 - c) Conjunto das palavras sobre o alfabeto $A = \{0, 1\}$ cujo comprimento é ímpar.
 - d) Conjunto das palavras sobre o alfabeto $A = \{a, b\}$ que têm um número par de ocorrências do símbolo a.
- 4. Seja $A = \{1, 2, 3\}$ e seja G o subconjunto de A^* dado pela seguinte definição indutiva:
 - (1) $1 \in G$;
 - (2) se $x \in G$ então $2x \in G$, para todo $x \in A^*$;
 - (3) se $x, y \in G$ então $3xy \in G$, para todos $x, y \in A^*$.

Considere ainda a função $S: G \longrightarrow \mathbb{N}$ definida, por recursão estrutural, do seguinte modo:

- S(1) = 1;
- para todo $x \in G$, S(2x) = 2 + S(x);
- para todos $x, y \in G$, S(3xy) = 3 + S(x) + S(y).
- a) Para cada letra $a \in A$, indique uma palavra $u \in G$ cuja primeira letra seja a.
- b) Mostre que $v = 3213211 \in G$.
- c) Defina por recursão estrutural a função $C:G\longrightarrow \mathbb{N}$ tal que, para todo $x\in G$, C(x) é o comprimento da palavra x.
- d) Calcule S(3211) e C(3211).
- e) Enuncie o Princípio de Indução Estrutural para G.
- f) Mostre que, para todo $x \in G$,
 - i) S(x) é ímpar;
 - ii) $C(x) \leq S(x)$.