Optimiza	ation Algorithm Notes	
	D. M	
Depu Meng		
Feb. 2019		
1 Introduction to O	ptimization Algorithms	
1.1 Goal of the Course		
- Understand foundations	of optimization	
 Understand foundations of optimization Learn to analyze widely used optimization algorithms 		
Be familiar with implementation of optimization algorithms		
Be familiar with implem	entation of optimization algorithms	
1.2 Topics Involved		
TT	*	
Unconstrained optimizatConstrained optimization		
Constrained optimizationConvex optimization	1	
Sparse optimization		
Sparse optimizationStochastic optimization		
 Stochastic optimization Combinational optimizat 	ion	
- Global optimization		
Grosur optimization		
1.3 Basic Concepts		
Droblem Definition Find t	the value of the decision variable s.t. o	shipative funa
tion is maximized/minimized		objective func-
tion is maximized, minimized	under certain conditions.	
	$\min f(x)$	(1)
	$s.t.x \in \mathcal{S} \subset \mathbb{R}^n$	(2)
		(2)
Here, we call S feasible region	n.	
We often denote constrained optimization Problem as		
	$\min f(x)$	(3)
s.	f(x) = 0, i = 1,, n	(4)
	$b_i(x) = 0, i \in 1,, m$	(5)
	· · · · · · · · · · · · · · · · · · ·	(*)
Definition 1. Global Optim	vality. For global optimal value $x^* \in \mathcal{S}$	3,
	$f(x^*) \le f(x), \forall x \in \mathcal{S}$	(6)

Definition 2. Local Optimality. For local optimal value $x^* \in \mathcal{S}$, $\exists U(x^*)$, such that

$$f(x^*) \le f(x), \forall x \in \mathcal{S} \cap U(x^*)$$
 (7)

Definition 3. Feasible direction. Let $x \in \mathcal{S}$, $d \in \mathbb{R}^n$ is a non-zero vector. if $\exists \delta > 0$, such that

$$x + \lambda d \in \mathcal{S}, \forall \lambda \in (0, \delta)$$
 (8)

Then d is a **feasible direction** at x. We denote F(x,S) as the set of feasible directions at x.

Definition 4. Descent direction. $f(x): \mathbb{R}^n \to \mathbb{R}, x \in \mathbb{R}^n, d$ is a non-zero vector. If $\exists \delta > 0$, such that

$$f(x + \lambda d) < f(x), \forall \lambda \in (0, \delta)$$
(9)

Then d is a **descent direction** at x. We denote $D(x, f) = \{d | \nabla f(x)^T d < 0\}$ as the set of descent direction at x.

1.4 Optimal Conditions

Unconstrained Optimization

First-order necessary condition: f(x) is differentiable at x,

$$\nabla f(x) = 0 \tag{10}$$

Second-order necessary condition: f(x) is second-order differentiable at x,

$$\nabla f(x) = 0 \tag{11}$$

$$\nabla^2 f(x) > 0 \tag{12}$$

$$\nabla^2 f(x) \ge 0 \tag{12}$$

Constrained Optimization

Theorem 1. Fritz-John Condition For constrained optimization problem

For constrained optimization problem

$$\min f(x) \tag{13}$$

$$s.t. \quad g_i(x) \ge 0, i = 1, ..., n$$
 (14)

$$h_i(x) = 0, i \in 1, ..., m$$
 (15)

Denote $I(x) = \{i \in \{1,...,n\} | g_i(x) = 0\}$. For $x \in \mathcal{S}$, f and $g_i, i \in I(x)$ is differentiable at x, $h_j(x)$ is continuously differentiable at x. If x is local optimal, then there exists non-trivial $\lambda_0, \lambda_i \geq 0, i \in I(x)$ and μ_j , such that

$$\lambda_0 \bigtriangledown f(x) - \sum_{i \in I(x)} \lambda_i \bigtriangledown g_i(x) - \sum_{j=1}^m \mu_j \bigtriangledown h_j(x) = 0$$
 (16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

such that $\sum_{i=1}^{m} \nabla \mu_j h_j(x) = 0$ Let $\lambda_0, \lambda_i, i \in I(x) = 0$, then (13) holds. (ii) If $\{ \nabla h_i(x) \}$ is linearly independent, Denote $F_a = F(x, a) = \{d \mid \nabla g_i(x)^T d > 0, i \in I(x)\}$ If x is a optimal value, then appearently $F(x,\mathcal{S}) \cap D(x,f) = \emptyset$. Due to the

 $F_h = F(x, h) = \{d \mid \nabla h_i(x)^T d = 0, i = 1, ..., m\}$

Proof. (i) If $\{ \nabla h_i(x) \}$ is linearly dependent, then there exists non-trivial μ_i ,

 $\begin{cases} \nabla f(x)^T d < 0 \\ \nabla g_i(x)^T d > 0, i \in I(x) \\ \nabla h_i(x)^T d = 0, j = 1, ..., m \end{cases}$

 $A = \{ \nabla f(x)^T, -\nabla g_i(x) \}^T, i \in I(x) \}$

 $\begin{cases} A^T d < 0 \\ B^T d = 0 \end{cases}$

 $S_1 = \left\{ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} | y_1 = A^T d, y_2 = B^T d, d \in \mathbb{R}^n \right\}$

 $B = \{ - \nabla h_i(x) \}, j = 1, ..., m$

independence of $\{ \nabla h_i(x) \}$, we have $F_q \cap F_h \subset F(x, \mathcal{S})$, then $F_a \cap F_b \cap D(x, f) = \emptyset$

that is

has no solution. Let

Then (21) is equivalent to

has no solution.

Denote

 $S_2 = \left\{ \left(\frac{y_1}{u_2} \right) | y_1 < 0, y_2 = 0 \right\}$

Theorem: $\exists \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$, such that

 $p_1^T A^T d + p_2^T B^T d \ge p_1^T y_1 + p_2^T y_2, \forall d \in \mathbb{R}^n, \forall \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in CL(S_2)$

 S_1, S_2 are non-trivial convex sets, and $S_1 \cap S_2 = \emptyset$. From Hyperplane Separation

(27)

 Let $y_2 = 0, d = 0, y_1 < 0$, we have

1.5

$$p_{1} \geq 0 \tag{28}$$

$$137$$

$$138$$

$$139 \qquad \text{Let } \binom{y_{1}}{y_{2}} = \binom{0}{0} \in CL(S_{2}) \text{ So that}$$

$$140$$

$$141 \qquad (p_{1}^{T}A^{T} + p_{2}^{T}B^{T})d \geq 0 \tag{29}$$

$$(Ap_{1} + Bp_{2})^{T}d \geq 0 \tag{30}$$

$$143$$

$$144 \qquad \text{Let } d = -(Ap_{1} + Bp_{2}), \text{ we have}$$

$$145$$

$$146 \qquad Ap_{1} + Bp_{2} = 0 \tag{31}$$

$$147$$

$$148 \qquad \text{From above, we have}$$

 $\begin{cases} Ap_1 + Bp_2 = 0\\ p_1 > 0 \end{cases}$

is differentiable at x, $h_i(x)$ is continuously differentiable at x. $\{\nabla g_i(x), i \in$

Let $p_1 = {\lambda_0, ..., \lambda_{I(x)}}, p_2 = {\mu_1, ..., \mu_m}, i.e.,$ $\begin{cases} \lambda_0 \bigtriangledown f(x) - \sum_{i \in I(x)} \lambda_i \bigtriangledown g_i(x) - \sum_{j=1}^m \mu_j \bigtriangledown h_j(x) = 0 \\ \lambda_i > 0 \end{cases}$

Theorem 2. Kuhn-Tucker Condition

For constrained optimization problem $\min f(x)$ s.t. $q_i(x) > 0, i = 1, ..., n$ $h_i(x) = 0, i \in 1, ..., m$ Denote $I(x) = \{i \in \{1,...,n\} | g_i(x) = 0\}$. For $x \in S$, f and $g_i, i \in I(x)$

 $I(x); \nabla h_i(x), j = 1, ..., m$ is linearly independent. If x is local optimal, then $\exists \lambda_i \geq 0 \text{ and } \mu_i, \text{ such that }$ $\nabla f(x) - \sum_{i \in I(x)} \lambda_i \nabla g_i(x) - \sum_{i=1}^m \mu_j \nabla h_j(x) = 0$

Descent function

Definition 5. Descent function. Denote solution set $\Omega \in X$, A is an algorithm

on $X, \psi: X \to \mathbb{R}$. If

Then ψ is a **descent function** of (Ω, \mathcal{A}) .

 $\psi(u) < \psi(x), \quad \forall x \notin \Omega, u \in \mathcal{A}(x)$ $\psi(y) < \psi(x), \quad \forall x \in \Omega, y \in \mathcal{A}(x)$

(38)(39)

(32)

(33)

(34)

(35)

(36)

(37)

1.6 Convergence of Algorithm	
Theorem 3. A is an algorithm on X, Ω is the solution set, $x^{(0)} \in X$. If $x^{(k)} \in X$	
Ω , then the iteration stops. Otherwise set $x^{(k+1)} = \mathcal{A}(x^{(k)}), k :=$	= k + 1. If
$-\{x^{(k)}\}$ in a compact subset of X	
- $\{x^{\vee}\}\$ in a compact subset of Λ - There exists a continuous function ψ , ψ is a descent function of (Ω, A)	
- \mathcal{A} is closed on Ω^C	, (12, 0 t)
	_
Then, any convergent subsequence of $\{x^{(k)}\}\ $ converges to $x, x \in$	Ω .
Proof.	
v	
1.7 Search Methods	
Search Methods	
Line Search	
Generate $d^{(k)}$ from $x^{(k)}$,	
$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$	(40)
$x = x + \alpha_k a$	(40)
search α_k in 1-D space.	
Trust Region	
Generate local model $Q_k(s)$ of $x^{(k)}$,	
$s^{(k)} = \arg\min Q_k(s)$	(41)
$x^{(k+1)} = x^{(k)} + s^{(k)}$	` ′
$x^{(\kappa+1)} = x^{(\kappa)} + s^{(\kappa)}$	(42)

2 Unconstrained Optimization

2.1 Gradient Based Methods

 $\min_{x \in \mathbb{R}^n} f(x) \tag{43}$

Algorithm 1: Example of gradient based algorithm

2.2 Determine Search Direction

First-order gradient method

For unconstrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x) \tag{44}$$

We have

$$f(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + O(\|x - x^{(k)}\|^2)$$
 (45)

Set $d^{(k)} = - \nabla f(x^{(k)})$, when α_k is sufficiently small,

$$f(x^{(k)} + \alpha_k d^{(k)}) < f(x^{(k)})$$
(46)

Second-order gradient method – Newton Direction

$$f(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)})$$

$$+ \frac{1}{2} (x - x^{(k)})^T \nabla^2 f(x^{(k)}) (x - x^{(k)}) + O(\|x - x^{(k)}\|^3)$$
(48)

Set $d^{(k)} = -G_k^{-1} \nabla f(x^{(k)})$, where $G_k = \nabla^2 f(x^{(k)})$, i.e., Hesse matrix of f at $x^{(k)}$.

2.3 Determine Step Factor – Line Search

$$\min_{\alpha \ge 0} \varphi(\alpha) = f(x^{(k)} + \alpha d^{(k)}) \tag{49}$$

271	Solve Line Search problem in finite iterations.		271
272	Inexact Line Search		272
273	In some cases, the exact solution of Line Search is not necessary, so we can		273
274	use inexace line search to improve algorithm efficiency.		274
275	Goldstein Conditions		275
276			276
277	$\varphi(\alpha) \le \varphi(0) + \rho \alpha \varphi'(0)$	(50)	277
278	$\varphi(\alpha) \ge \varphi(0) + (1 - \rho)\alpha\varphi'(0)$	(51)	278
279	$\varphi(\alpha) = \varphi(0) + (1 - p)\alpha\varphi(0)$	(31)	279
280	where $\rho \in (\frac{1}{2}, 1)$ is a fixed parameter.		280
281	However, the downside of Goldstein Conditions is that the optimal value		
282	might not lie in the valid area.		282
283	Wolfe-Powell Conditions		283
284	Woije-1 Owell Conditions		284
285	$\varphi(\alpha) \le \varphi(0) + \rho \alpha \varphi'(0)$	(52)	285
286		` /	286
287	$\varphi'(\alpha) \ge \sigma \varphi'(0)$	(53)	287
200			200

 $\theta^{(k)} \le \frac{\pi}{2} - \mu$

2.4 Global Convergence

where $\sigma \in (\rho, 1)$.

Exact Line Search

Theorem 4. Assume $\nabla f(x)$ exists and uniformly continuous on level set $L(x^{(0)}) =$

$$\{x|f(x) \leq f(x^{(0)})\}$$
. Denote $\theta^{(k)}$ as the angle between $d^{(k)}$ and $-\nabla f(x^{(k)})$.

- Goldstein Conditions - Wolfe-Powell Conditions

Then, there exists k, such that $\nabla f(x^{(k)}) = 0$, or $f(x^{(k)}) \to 0$ or $f(x^{(k)}) \to -\infty$.

Proof.

Steepest Descent Method 2.5

Steepest Descent Method is a Line Search Method.

 $x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)})$

(55)

(54)

```
Algorithm 2: Steepest Descent Algorithm
  Data: Termination error \epsilon, cost function f
  x^{(0)} \in \mathbb{R}^n, k := 0:
  while \parallel g^{(k)} \parallel \geq \epsilon \operatorname{do} 
\mid d^{(k)} = -q^{(k)};
       solve \min_{\alpha_k > 0} f(x^{(k)} + \alpha_k d^{(k)}):
       x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, \ k := k+1;
       Compute q^{(k)} = \nabla f(x^{(k)})
  end
  Steepest Descent Method has linear convergence rate generally.
```

Newton Method 2.6

Newton Method is also a Line Search Method.

$$f(x^{(k)} + s) \approx q^{(k)}(s)f(x^{(k)}) + g^{(k)^T}s + \frac{1}{2}s^TG_ks$$

 $s = G_1^{-1} q^{(k)}$

Notice that
$$G_k^{-1}g^{(k)}$$
 is the Newton Direction.

where $q^{(k)} = \nabla f(x^{(k)})$, $G_k = \nabla^2 f(x^{(k)})$. To minimize $q^{(k)}(s)$, we have

Analysis on quadratic function

For positive definite quadratic function

$$f(x) = \frac{1}{2}x^T G x - c^T x \tag{58}$$

(56)

(57)

In this case, $\nabla^2 f(x) = G$. Let $H_0 = G^{-1}$, then we have

$$d^{(0)} = H_0 \nabla f(x^{(0)})$$

$$= G^{-1}(Gx^{(0)} - c)$$
(59)

$$= r^{(0)} - G^{-1}c \tag{61}$$

$$=x^{(0)} - G^{-1}c (61)$$

$$=x^{(0)} - x^* (62)$$

So that Newton Method can reach global optimal in 1 iteration for quadratic functions.

For general non-linear functions, if we follow

 $x^{(k+1)} = x^{(k)} - G_{-1}^{-1} q^{(k)}$

$$x^{(k+1)} = x^{(k)} - G_k^{-1} g^{(k)} (63)$$

we called it Newton Method.

Convergence Rate of Newton Method

Theorem 5. $f \in C^2$, $x^{(k)}$ is sufficiently closed to optimal point x^* , where $\nabla f(x^*) = 0$. If $\nabla^2 f(x^*)$ is positive definite, Hesse matrix of f satisfies Lipschitz Condition, i.e., $\exists \beta > 0$, such that for all (i,j),

$$|G_{ij}(x) - G_{ij}(y)| \le \beta \parallel x - y \parallel$$
 (64)

Then $\{x^{(k)}\} \to x^*$, and have quadratic convergence rate.

Proof. Denote $q(x) = \nabla f(x)$, then we have

$$g(x - h) = g(x) - G(x)h + O(\|h\|^2)$$
(65)

Let $x = x^{(k)}$, $h = h^{(k)} = x^{(k)} - x^*$, then

$$g(x^*) = g(x^{(k)}) - G(x^{(k)})(h^{(k)}) + O(\|h^{(k)}\|^2) = 0$$
(66)

From Lipschitz Condition, we can easily get $G(x^{(k)})^{-1}$ is finite. Then we left multiply $G(x^{(k)})^{-1}$ to Equation (66)

$$0 = G(x^{(k)})^{-1}g(x^{(k)}) - h^{(k)} + O(\|h^{(k)}\|^2)$$
(67)

$$= x^* - x^{(k)} + G(x^{(k)})^{-1} q(x^{(k)}) + O(\|h^{(k)}\|^2)$$
(68)

$$= x^* - x^{(k+1)} + O(\|h^{(k)}\|^2)$$
(69)

$$= -h^{(k+1)} + O(\|h^{(k)}\|^2)$$
(70)

,

i.e.,

$$||h^{(k+1)}|| = O(||h^{(k)}||^2)$$
 (71)

2.7 Quasi-Newton Methods

Newton Method has a fast convergence rate. However, Newton Method requires second-order derivative, if Hesse matrix is not positive definite, Newton Method might not work well.

In order to overcome the above difficulties, Quasi-Newton Method is introduced. Its basic idea is that: Using second-order derivative free matrix H_k to approximate $G(x^{(k)})^{-1}$. Denote $s^{(k)} = x^{(k+1)} - x^{(k)}$, $y^{(k)} = \nabla f(x^{(k+1)}) - \nabla f(x^{(k)})$, then we have

$$\nabla^2 f(x^{(k)}) s^{(k)} \approx y^{(k)} \tag{72}$$

or

$$\nabla^2 f(x^{(k)})^{-1} y^{(k)} \approx s^{(k)}$$
 (73)

So we need to construct H_{k+1} such that

$$H_{k+1}y^{(k)} \approx s^{(k)} \tag{74}$$

or

$$y^{(k)} \approx B_{k+1} s^{(k)} \tag{75}$$

we called (74), (75) Quasi-Newton Conditions or Secant Conditions.

Algorithm 3: Quasi-Newton Algorithm

Data: Cost function f $x^{(0)} \in \mathbb{R}^n, H_0 = I, k := 0;$

while some conditions do

 $d^{(k)} = -H_k q^{(k)}$;

solve $\min_{\alpha_k>0} f(x^{(k)} + \alpha_k d^{(k)})$: $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$:

generate H_{k+1} , k := k+1

end

How to generate H_k

 H_k is the approximation matrix in kth iteration, we want to generate H_{k+1} from H_k

Symmetric Rank 1

Assume

$$H_{k+1} = H_k + a\mathbf{u}\mathbf{u}^T, \quad a \in \mathbb{R}, \mathbf{u} \in \mathbb{R}^n$$
 (76)

From the Quasi-Newton Conditions, we have

$$H_{k+1}\mathbf{y}^{(k)} = \mathbf{s}^{(k)} \tag{77}$$

$$H_k \mathbf{y}^{(k)} + a \mathbf{u} \mathbf{u}^T \mathbf{y}^{(k)} = \mathbf{s}^{(k)}$$
(78)

$$H_k \mathbf{y}^{(k)} + a \mathbf{u}^T \mathbf{y}^{(k)} \mathbf{u} = \mathbf{s}^{(k)}$$
(79)

Let $\mathbf{u} = \mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)}$, $a = \frac{1}{\mathbf{u}^T \mathbf{v}}$, clearly this is a solution of the equation. Here we have

$$H_{k+1} = \frac{(\mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)})(\mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)})^T}{(\mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)})^T \mathbf{y}^{(k)}}$$
(80)

(79) is Symmetric Rank 1 Update. The problem of Symmetric Rank 1 Update is that the positive-definite property of H_k can not be preserved.

Symmetric Rank 2 Update

Assume

$$H_{k+1} = H_k + a\mathbf{u}\mathbf{u}^T + b\mathbf{v}\mathbf{v}^T, \quad a, b \in \mathbb{R}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$
 (81)

such that Quasi-Newton Conditions stand. We can find a solution of $a, b, \mathbf{u}, \mathbf{v}$ that is

$$\begin{cases} \mathbf{u} = \mathbf{s}^{(k)}, & a\mathbf{u}^T\mathbf{y} = 1\\ \mathbf{v} = H_k \mathbf{v}^{(k)}, & b\mathbf{v}^T\mathbf{v} = -1 \end{cases}$$
(82)

So that we have

$$H_{k+1} = H_k + \frac{\mathbf{s}^{(k)}\mathbf{s}^{(k)T}}{\mathbf{s}^{(k)T}\mathbf{v}^{(k)}} - \frac{H_k\mathbf{y}^{(k)}\mathbf{y}^{(k)T}H_k}{\mathbf{v}^{(k)T}H_k\mathbf{v}^{(k)}}$$
(83)

We called (83) the DFP (Davidon-Fletcher-Powell) update.

From Quasi-Newton Condition (75), we can get the BFGS (Broyden-Fletcher-Goldfarb-Shanno) update

$$B_{k+1}^{(BFGS)} = B_k + \frac{\mathbf{y}^{(k)}\mathbf{y}^{(k)T}}{\mathbf{y}^{(k)T}\mathbf{s}^{(k)}} - \frac{B_k\mathbf{s}^{(k)}\mathbf{s}^{(k)T}B_k}{\mathbf{s}^{(k)T}B_k\mathbf{s}^{(k)}}$$
(84)

Inverse of SR1 update

Theorem 6 (Sherman-Morrison). $A \in \mathbb{R}^n \times \mathbb{R}^n$ is a non-singular matrix, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. If $1 + \mathbf{v}^T A^{-1} \mathbf{u} \neq 0$, then SR1 update of A is non-singular, and its inverse can be represented as

$$(A + a\mathbf{u}\mathbf{v}^{T})^{-1} = A^{-1} - \frac{A^{-1}\mathbf{u}\mathbf{v}^{T}A^{-1}}{1 + \mathbf{v}^{T}A^{-1}\mathbf{u}}$$
(85)

2.8 Conjugate Gradient Method

2.9 Trust Region Method