Analise Matemática B

FICHA 7A MIECOM

Gradiente, Derivadas Direccionais, Funções Impícitas, Plano Tangente, Recta Normal, Fórmula de Taylor

- 1. Determine o campo vectorial gradiente (grad $f = \overrightarrow{\nabla} f$) da função f(x,y) = xy.
- 2. Determine o gradiente (grad $f = \overrightarrow{\nabla} f$) da função $f(x,y) = x^2 + y^2(1+\sin x)$ no ponto $(a,b) = (\pi,2)$.
- 3. Calcule a derivada dirigida da função $f(x,y,z) = \left(\frac{x}{y}\right)^z$ no ponto (1,1,1) na direcção do vector $\vec{u} = 2\vec{e}_1 + 2\vec{e}_2 2\vec{e}_3$.
- 4. Seja $f(x, y, z) = \sin\left(\frac{xz}{x^2 + y^2}\right)$.
 - (a) Determine a função vectorial $\overrightarrow{\nabla} f$.
 - (b) Calcule $\overrightarrow{\nabla} f(2,1,0)$.
 - (c) Qual a taxa de variação de f no ponto (2,1,0) segundo o vector (1,1,1)?
- 5. Sabendo que $D_{\vec{u}}f(a,b) = \vec{u}.\overrightarrow{\nabla}f(a,b) = \|\overrightarrow{\nabla}f(a,b)\|.\cos\phi$ onde ϕ é o ângulo entre os vectores \vec{u} e $\overrightarrow{\nabla}f(a,b)$:
 - (a) qual a direcção segundo a qual f tem maior taxa de crescimento? Nessa direcção, qual a taxa de variação?
 - (b) qual a direcção segundo a qual f tem menor taxa de decrescimento? Nessa direcção, qual a taxa de variação?
 - (c) qual a direcção segundo a qual f tem taxa de variação nula?
- 6. Diga para que valores de k a equação $x+2yx+3z^2+x^2z=1$ define z implicitamente como função de x e y na vizinhança do ponto (1,0,k).
- 7. Considere a equação $1 + y = x^2 \ln y$.
 - (a) Mostre que a equação dada define y como função implícita de x numa vizinhança do ponto $(\sqrt{2},1)$.
 - (b) Determine $\frac{dy}{dx}(\sqrt{2})$ e $\frac{d^2y}{dx^2}(\sqrt{2})$.
- 8. Considere a equação $1 \cos(x + 2y + z) = 2x + y 3z$.
 - (a) Mostre que a equação dada define z como função implícita de x e y numa vizinhança do ponto (0,0,0).
 - (b) Determine $\frac{\partial z}{\partial x}(0,0,0)$ e $\frac{\partial z}{\partial y}(0,0,0)$

- 9. Calcule a equação do plano tangente à superfície $x^3+2xy^2-7z^3+3y+1=0$ no ponto P=(1,1,1).
- 10. Prove que o plano tangente à superfície $z=x^2-y^2$ no ponto P=(a,b,c) é intersectado pelo eixo dos ZZ no ponto em que z=-c.
- 11. Determine a equação da recta normal à superfície $x^2 yz + 3y^2 = 2xz^2 8z$ no ponto (1,2,-1).
- 12. Em que ponto da recta determinada na pergunta anterior encontra o plano x + 3y 2z = 10?
- 13. Determine polinómio de Taylor de grau 2 para a função $f(x,y) = \frac{1}{2+x-2y}$ em torno do ponto (2,1).
- 14. Determine um polinómio de 2^o grau aproximado à função $f(x,y)=\sqrt{x^2+y^2}$, em torno do ponto (6,8) e use-o para estimar $\sqrt{(6,02)^2+(7,97)^2}$.
- 15. Determine polinómio de Taylor de grau 3 para a função $f(x,y) = e^{x+2y}$ em torno do ponto (0,0).