Homework: Simplified Waves

Hayden Atchley

2 October 2023

10.3

A uniform freeway link x_1x_3 is 6 km long. Node x_2 is the midpoint of x_1x_3 . Table 1 gives data where D1, D2, and D3 are cumulative traffic counts at nodes x_1 , x_2 , and x_3 , respectively. The flow-density relationship in Figure 1 applies uniformly on x_1x_3 .

Figure 1: Flow-density relationship for freeway segment.

The cumulative vehicle count at x_2 at 9:01 is given by

$$N(9:01,x_2) = \min \left\{ N^{\mathrm{up}}(9:01,x_2), N^{\mathrm{Q}}(9:01,x_2), N^{\mathrm{dn}}(9:01,x_2) \right\}.$$

This equation is solved in three parts:

Table 1: Traffic Counts on Freeway Segment

Time	D1	D2	D3
08:50	1,965	1,950	1,551
08:51	1,970	1,957	1,555
08:52	1,978	1,961	1,560
08:53	1,982	1,968	1,566
08:54	1,987	1,973	1,571
08:55	1,991	1,980	1,578
08:56	1,996	1,984	1,583
08:57	2,000	1,990	1,589
08:58	2,008	1,996	1,594
08:59	2,012	2,000	1,600
09:00	2,018	2,005	1,605
09:01	2,024		1,610

 N^{up}

$$\begin{split} N^{\mathrm{up}}(9:01,x_2) &= N\bigg(9:01 - \frac{x_2 - x_1}{w_f}, x_1\bigg) \\ &= N\bigg(9:01 - \frac{3 \text{ km}}{90 \text{ km/h}}, x_1\bigg) \\ &= N(9:01 - 0:02 = 8:59, x_1) \\ &= 2012. \end{split}$$

 $N^{\mathbf{Q}}$

$$\begin{split} N^{\mathrm{Q}}(9:&01,x_2) = N(9:&00,x_2) + q_m \Delta t \\ &= 2005 + 2160 \text{ vph} \times \frac{1 \text{ hr}}{60 \text{ min}} \\ &= 2005 + 36 \\ \text{(b)} &= 2041. \end{split}$$

 N^{dn}

Note that
$$N^{\mathrm{dn}}(9:01,x_2)=N\left(t-\frac{x_3-x_2}{w_b},x_2\right)+K_2(x_3-x_2).$$

$$K_2(x_3-x_2)=K\times 3 \text{ km}$$

$$=150\times 3$$

$$=450.$$

$$N\left(t-\frac{x_3-x_2}{w_b},x_2\right)=N\left(9:01-\frac{3 \text{ km}}{20 \text{ km/h}},x_3\right)$$

$$=N(9:01-0:09=8:52,x_3)$$

$$(\mathrm{d}) =1560.$$

 $N^{dn}(9:01, x_2)$ is therefore equal to 450 + 1560 = 2010.

 N_2

 $N(9:01,x_2)$ is then the minimum of $N^{\rm up}=2012,\,N^{\rm Q}=2041,\,{\rm and}\,\,N^{\rm dn}=2010,\,{\rm which}$ is 2010. Therefore, (e) $N(9:01,x_2)=2010.$