Monte-Carlo Tree Search in Verification of Markov Decision Processes

LiVe 2018: 2nd Workshop on Learning in Verification

 $\underline{\text{Pranav Ashok}}^1$, Tomáš Brázdil 2 , Jan Křetínský 1 and Ondřej Slámečka 2 April 20, 2018

¹Technical University of Munich, Germany

²Masaryk University, Brno, Czech Republic

Motivation

Problem

Computing the maximum probability of reaching a set of goal states in a Markov Decision Process

- Traditional approaches: Value/Strategy Iteration and LP
- New approaches inspired by learning (BRTDP etc.)
- Successful AI techniques such as Monte-Carlo Tree Search

Contributions

Develop a spectrum of algorithms based on MCTS and pit them against each other

Markov Decision Process (MDPs)

Reachability Objective

Probability of reaching a set of goal states under the best possible choice of actions

$$P_{max} = \sup_{\sigma \in \mathcal{S}} \mathbb{P}^{\sigma}[\lozenge G]$$

Value Iteration

Bellman Equations

$$V(s) = \begin{cases} 1 & \text{if } s = 1 \\ 0 & \text{if } s = 0 \\ \max_{a} \sum_{s' \in S} P(s, a, s') \cdot V(s') & \text{otherwise} \end{cases}$$

Solving the above iteratively is known as Value Iteration

- $V_0(s) = 0$ for all $s \neq 1$
- V_n computed from V_{n-1}

Bounded Value Iteration¹

Standard VI: Convergence in limit, but no stopping criterion

An easy remedy for this is to run two value iterations

- 1. VI initialized with $V_0(s) = 0$ (except $V_0(1) = 1$)
- 2. VI initialized with $V_0(s) = 1$ (except $V_0(o) = 0$)

¹Idea explored by McMahan et. al. 2005 and Haddad et. al. 2014

Asynchronous VI

Convergence Theorem

To ensure convergence, every state must be updated infinitely often

 \implies lot of freedom in choosing the order of updates

Bounded Real-time Dynamic Programming (BRTDP) ^{2,3}

- Used to compute ε -optimal strategy (and value)
- Every state has a L/U bound on probability of reaching goal
- Repeatedly samples paths from initial state
- Back-propagates values along the path using VI operator

²McMahan et. al., Bounded Real-Time Dynamic Programming, ICML '05

 $^{^3}$ Brazdil et. al., Verification of Markov Decision Processes using Learning Algorithms, ATVA '14

- 1. Next choice based on greatest U bound
- 2. Resolve probabilities randomly
- 3. Back-propagate info using bellman updates

- 1. Next choice based on greatest U bound
- 2. Resolve probabilities randomly
- 3. Back-propagate info using bellman updates

- 1. Next choice based on greatest U bound
- 2. Resolve probabilities randomly
- 3. Back-propagate info using bellman updates

- 1. Next choice based on greatest U bound
- 2. Resolve probabilities randomly
- 3. Back-propagate info using bellman updates

- 1. Next choice based on greatest U bound
- 2. Resolve probabilities randomly
- 3. Back-propagate info using bellman updates

- 1. Next choice based on greatest U bound
- 2. Resolve probabilities randomly
- 3. Back-propagate info using bellman updates

- 1. Next choice based on greatest U bound
- 2. Resolve probabilities randomly
- 3. Back-propagate info using bellman updates

- 1. Next choice based on greatest U bound
- 2. Resolve probabilities randomly
- 3. Back-propagate info using bellman updates

Timeline

1987 Idea explored by Bruce Abramson in his PhD Thesis
1992 Employed in a Go program by Bernd Brügmann
2006 Rémi Coulom coins the term Monte-Carlo Tree Search
2008 MoGo starts winning against strong amateur players
2016 AlphaGo beats Lee Sedol

Select using tree policy

Expand and add one or more children

Roll-out simulations using roll-out policy

Backup values to the root

MCTS: The four stages

Instantiation: Tree Policy

Tree Policy

Picks the state from which roll-out/simulation is run

Upper Confidence Bound

proportion of successful rollouts
$$UCB(t) = \frac{v_t}{n_t} + C \sqrt{\frac{\ln n_{\mathrm{parent}(t)}}{n_t}}$$
 exploration encouraging term

Pick successor with greatest UCB value

Instantiation: Roll-out Policy

Option 1: Less-informed

Random roll-outs: uniform policy

Option 2: More-informed

BRTDP style: pick action with greatest upper bound

Instantiation: Roll-out Policy

Option 1: Less-informed

Random roll-outs: uniform policy

Option 2: More-informed

BRTDP style: pick action with greatest upper bound

For sake of guarantees, maintain and backup L/U bounds for all states on roll-out

Spectrum of MCTS based algorithms

Spectrum of algorithms ranging from pure MCTS to pure BRTDP

	MCTS	BMCTS	MCTS- BRTDP	BRTDP- UCB	BRTDP
Tree Policy	UCB	UCB	UCB	UCB	11
Roll-out Policy	Uniform	Uniform	BRTDP	UCB	U
Roll-out Backup	_	L, U	L, U	L, U	L. U
Tree Backup	_	L, U	L, U		L, U

Experiments

Benchmark	BMCTS	MCTS- BRTDP	BRTDP- UCB	BRTDP	VI
consensus	5.55	6.48	7.47	6.15	1.13
leader	18.67	15.79	16.33	15.06	8.94
mer	_	4.79	_	3.63	_
firewire	0.07	0.08	0.09	0.09	6.99
wlan	0.09	0.07	0.08	0.08	_
zeroconf	0.93	0.20	0.59	0.20	_
comp-firewire	9.36	9.55	_	_	20.77
comp-wlan	2.51	2.25	_	_	_
comp-zeroconf	_	29.55	_	_	_
branch-firewire	0.09	0.09	0.02	0.09	9.33
branch-wlan	0.10	0.08	0.09	0.07	_
branch-zeroconf	25.90	30.78	35.67	38.14	_

Special Models

Special Models

branch-zeroconf

Special Models

composition-zeroconf

Summary

Observations about MCTS-based techniques

- 1. Can handle rare events better (if tree encompasses it)
- 2. Performs good when degree of non-determinism is low
- 3. Sometimes the tree overhead does not justify ditching BRTDP

Summary

Observations about MCTS-based techniques

- 1. Can handle rare events better (if tree encompasses it)
- 2. Performs good when degree of non-determinism is low
- 3. Sometimes the tree overhead does not justify ditching BRTDP

Take-away message

- 1. Exploration + exploitation \implies more problems solvable (in reasonable time)
- 2. Benefits from starting sampling away from the initial state

Summary

Observations about MCTS-based techniques

- 1. Can handle rare events better (if tree encompasses it)
- 2. Performs good when degree of non-determinism is low
- 3. Sometimes the tree overhead does not justify ditching BRTDP

Take-away message

- 1. Exploration + exploitation \implies more problems solvable (in reasonable time)
- 2. Benefits from starting sampling away from the initial state

Future Work

- 1. MCTS with non-UCB policies
- 2. Sampling from non-initial states (without MCTS)