# Unit 3: Fundamentals of material balances on reactive processes

#### Reminders

- Homework 2B is due on September 20
- □ AlChE panel in class on Friday, September 20
- On Monday, September 23: No in-person class (video will be posted on Canvas) and no office hours

#### **Announcements**

- Quiz 1 will be in class on Friday, September 27
- HW 3A will be due on Friday, September 27 (short)

#### **Office Hours:**

Posted here and on the Canvas homepage.

| Day       | Time           | Location      | Personnel |
|-----------|----------------|---------------|-----------|
| Monday    | 4 – 5PM        | AW Smith 147  | Duval     |
| Tuesday   | 1 -2 PM        | AW Smith, 152 | TA        |
| Wednesday | 3:30 – 4:30 PM | AW Smith, 147 | Duval     |
| Thursday  | 2:30 - 3:30 PM | AW Smith 152  | TA        |

- After today's class students should be able to:
  - Define and calculate:
    - Yield
    - Selectivity
    - Fractional conversion
    - Extent of reaction
  - Write material balances using the extent of reaction method

## **Examples of Reactive Processes**



• 
$$2NH_3 + CO_2 \rightarrow NH_2CONH_2 + H_2O$$





• 
$$C_6H_{12}O_6 \rightarrow C_2H_5OH + 2CO_2$$



• 
$$CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$$





## Stoichiometry

 Stoichiometry is the theory of proportions in which chemical species combine with each other.

$$2H_2 + O_2 \rightarrow 2H_2O$$

#### For any reaction, we should be able to answer:

- Is the stoichiometric equation balanced?
- What are the stoichiometric coefficients?
- What are the stoichiometric ratios?

## Stoichiometry exercise

The Haber process is used for the industrial production of ammonia. The reaction combines nitrogen with hydrogen.



• If 100 mol of nitrogen is fed to the reactor, how many mol of ammonia are produced?





Steel reactor from 1920s

## More jargon

$$N_2 + 3H_2 \rightarrow 2NH_3$$

- Stoichiometric proportion
  - Occurs when a ratio of moles present is equal to the ratio of the stoichiometric coefficients in a balanced EQ
- Limiting reactant
  - A reactant that is present in less than its stoichiometric proportion relative to every other reactant

## More jargon

$$N_2 + 3H_2 \rightarrow 2NH_3$$

- Excess reactant
  - A reactant that is present in more than its stoichiometric proportion relative to every other reactant
- Fractional conversion
  - Ratio of (moles reacted)/(moles fed) for a given reactant

## Even more jargon

Extent of reaction (extent of conversion)

## What do these things all have in common?

They all used acrylonitrile as a precursor!



Copolymers of acrylonitrile, styrene and butadiene



Carbon fibers come from poly(acrylonitrile) fibers



"acrylic" on clothing tags

## Unit 3: Fundamentals of material balances on reactive processes

#### **Reminders**

Monday, September 23: No in-person class (video will be posted on Canvas) and no office hours

#### **Announcements**

- Quiz 1 will be in class on Friday, September 27
- HW 3A will be due on Friday, September 27 (short)

#### Office Hours:

Posted here and on the Canvas homepage.

| Day       | Time           | Location      | Personnel |
|-----------|----------------|---------------|-----------|
| Monday    | 4 – 5PM        | AW Smith 147  | Duval     |
| Tuesday   | 1 -2 PM        | AW Smith, 152 | TA        |
| Wednesday | 3:30 – 4:30 PM | AW Smith, 147 | Duval     |
| Thursday  | 2:30 - 3:30 PM | AW Smith 152  | TA        |

Helpful sections of the book: Chapter 4 (Sections 4.6- 4.10)



- After today's class students should be able to:
  - Define and calculate:
    - Yield
    - Selectivity
    - Fractional conversion
    - Extent of reaction
  - Identify the limiting reactant
  - Write material balances using the extent of reaction method

### What do these things all have in common?

They all used acrylonitrile as a precursor!



Copolymers of acrylonitrile, styrene and butadiene



Carbon fibers come from poly(acrylonitrile) fibers



"acrylic" on clothing tags

## Unit 3: Fundamentals of material balances on reactive processes

#### **Reminders**

- Quiz 1 will be in class on Friday, September 27
- HW 3A will be due on Friday, September 27 (short)

#### **Announcements**

None

#### Office Hours:

Posted here and on the Canvas homepage.

| Day       | Time           | Location      | Personnel |
|-----------|----------------|---------------|-----------|
| Monday    | 4 – 5PM        | AW Smith 147  | Duval     |
| Tuesday   | 1 -2 PM        | AW Smith, 152 | TA        |
| Wednesday | 3:30 – 4:30 PM | AW Smith, 147 | Duval     |
| Thursday  | 2:30 - 3:30 PM | AW Smith 152  | TA        |

- After today's class students should be able to:
  - Define and calculate:
    - Yield
    - Selectivity
    - Fractional conversion
    - · Extent of reaction
  - Identify the limiting reactant
  - Write material balances using the extent of reaction method

- After today's class students should be able to:
  - Define and calculate:
    - Yield
    - Selectivity
    - Fractional conversion
    - Extent of reaction
  - Identify the limiting reactant
  - Write material balances using the extent of reaction method

# New jargon for reactive processes with recycle

- Single-pass conversion
  - Fractional conversion of the reactor

- Overall conversion
  - Fractional conversion of the whole process

# New jargon for systems with multiple chemical reactions

- Selectivity
  - $\blacksquare \frac{moles \ of \ desired \ product}{moles \ of \ undesired \ product(s)}$
- Yield
  - $\blacksquare$  moles of desired product theoretical moles of desired product
  - Theoretical moles: if no side reaction occurred, what is the maximum moles that could be produced in the given reactor

## Production of Ethylene Oxide



