L4 Relational Algebra

Eugene Wu Fall 2015

Reading

Ramakrishnan

Sections 4.1 and 4.2

Helpful References

https://en.wikipedia.org/wiki/Relational_algebra

Overview

Last time, learned about pre-relational models an informal introduction to relational model an introduction to the SQL query language.

Learn about formal relational query languages
Relational Algebra (algebra: perform operations)
Relational Calculus (logic:are statements true?)

Keys to understanding $\,{\rm SQL}\,$ and $\,{\rm query}\,$ processing

Who Cares?

Clean query semantics & rich program analysis Helps/enables optimization

Opens up rich set of topics

Materialized views

Data lineage/provenance

Query by example

Distributed query execution

. . .

What's a Query Language?

Allows manipulation and retrieval of data from a database.

Traditionally: QL!= programming language
Doesn't need to be turing complete
Not designed for computation
Supports easy, efficient access to large databases

Recent Years

Scaling to large datasets is a reality

Query languages are a powerful way to
think about data algorithms scale
think about asynchronous/parallel programming

What's a Query Language? Action perification accountaging through the fact down and upward Part (2015) MapReduce is not the answer MapReduce is a powerful primitive to do many kinds of parallel data processing BUT Little control of data flow Fault tolerance guarantees not always necessary Simplicity leads to inefficiencies Does not interface with existing analysis software Industry has existing training in SOL SQL interface for Hadoop critical for mass adoption Tutorial at VLDB 2015 Abadi et al. http://www.slideshare.net/abadid/sqlonhadoop-tutorial

Formal Relational Query Languages

Formal basis for real languages e.g., SQL

Relational Algebra

Operational, used to represent execution plans

Relational Calculus

Logical, describes what data users want (not operational, fully declarative)

Prelims

Query is a function over relation instances

$$Q(R_1,...,R_n) = R_{result}$$

Schemas of input and output relations are fixed and well defined by the query \mathbf{Q} .

Positional vs Named field notation Position easier for formal defs one-indexed (not 0-indexed!!!)

Named more readable Both used in SQL

Prelims

Relation (for this lecture)
Instance is a set of tuples
Schema defines field names and types (domains)
Students(sid int, name text, major text, gpa int)

Howare relations different than generic sets (\mathbb{R})?

Can assume item structure due to schema

Some algebra operations (x) need to be modified

Will use this later

Relational Algebra Overview

Core 5 operations PROJECT (π) SELECT (σ) UNION (U) SET DIFFERENCE (-) CROSSPRODUCT (x)

Additional operations RENAME (p) INTERSECT (∩) JOIN (⋈) DIVIDE (/)

Instances Used Today: Library

Students, Reservations

Use positional or named field notation

Fields in query results are inherited from input relations (unless specified)

	•		,
RΙ	sid	rid	day
	1	101	10/10
	2	102	11/11

)	sid	name	gpa	age	
	4	aziz	3.2	21	
	2	barak	3	21	
	3	trump	2	88	
	5	rusty	3.5	21	

eugene 4

trump 2

age

20 21

Project

$$\pi_{\langle attr1,...\rangle}(A) = R_{result}$$

Pick out desired attributes (subset of columns)
Schema is subset of input schema in the projection list

 $\pi_{\langle a,b,c\rangle}(A)$ has output schema (a,b,c) w/ types carried over

Select

$$\sigma_{\leq p}(A) = R_{result}$$

Select subset of rows that satisfy condition *p* Won't have duplicates in result. Why? Result schema same as input

Commutatively

$$A + B = B + A$$

$$A * B = B * A$$

$$A + (B * C) = (B * C) + A$$

$$A + (B + C) = (A + B) + C$$

$$A + (B * C) = (A + B) * C$$

Commutatively

$$A + B = B + A$$

$$A * B = B * A$$

$$A + (B * C) = (B * C) + A$$

$$A + (B + C) = (A + B) + C$$

$$A + (B * C) = (A + B) * C$$

Commutatively

Does Project and Select commute?

$$\pi_{age}(\sigma_{age < 30} (SI)) = \sigma_{age < 30}(\pi_{age}(SI))$$

What about

$$\pi_{name}(\sigma_{age < 30} \; (S \, I \,))?$$

Commutatively

Does Project and Select commute?

$$\pi_{age}(\sigma_{age < 30} (SI)) = \sigma_{age < 30}(\pi_{age}(SI))$$

What about

$$\pi_{name}(\sigma_{age \leq 30} \; (S \, I)) \; != \sigma_{age \leq 30}(\pi_{name}(S \, I))$$

Commutatively

Does Project and Select commute?

$$\pi_{age}(\sigma_{age < 30} (SI)) = \sigma_{age < 30}(\pi_{age}(SI))$$

What about

$$\pi_{\text{name}}(\sigma_{\text{age} \le 30} \text{ (S I)}) := \sigma_{\text{age} \le 30}(\pi_{\text{name, age}}(\text{S I}))$$

Commutatively

Does Project and Select commute?

$$\pi_{age}(\sigma_{age<30} (SI)) = \sigma_{age<30}(\pi_{age}(SI))$$

What about

$$\pi_{name}(\sigma_{age < 30} \; (S \, I \,)) \; = \pi_{name}(\sigma_{age < 30}(\pi_{name, \, age}(S \, I \,)))$$

OK!

Union, Set-Difference

A op B = R_{result}

A, B must be union-compatible

Same number of fields

Result Schema borrowed from first arg (A)

Field i in each schema have same type

A(big int, poppa int) U B(thug int, life int) = ?

Union, Set-Difference

 $A op B = R_{result}$

A, B must be union-compatible

Same number of fields
Field i in each schema have same type

Result Schema borrowed from first arg (A)

A(big int, poppa int) U B(thug int, life int) = R_{result} (big int, poppa int)

Union, Intersect, Set-Difference

	S2						
sid	name	gpa	age				
4	aziz	3.2	21				
2	barak	3	21				
3	trump	2	88				
5	rusty	3.5	21				

Union, Intersect, Set-Difference

sid	name	gpa	age
4	aziz	3.2	21
2	barak	3	21
3	trump	2	88
5	rusty	3.5	21

Note on Set Difference & Performance

Notice that most operators are monotonic increasing size of inputs \Rightarrow outputs grow if $A \supseteq B \Rightarrow Q(A,T) \supseteq Q(B,T)$ can compute incrementally

Set Difference is not monotonic

if
$$A \supseteq B$$
 \rightarrow $T - A \subseteq T - B$
e.g., $5 > I$ \rightarrow $9 - 5 \subseteq 9 - I$

Set difference is blocking:

For T-S, must wait for all S tuples before any results

Cross-Product

$$A(a_1,...,a_n) \times B(a_{n+1},...,a_m) = R_{result}(a_1,...,a_m)$$

Each row of A paired with each row of B

Result schema concats A and B's fields, inherit if possible

Conflict: students and reservations have sid field

Different than mathematical "X" by flattening results: $\operatorname{math} A \times B = \{ (a, b) \mid a \subseteq A \land b \subseteq B \}$

e.g.,
$$\{1, 2\} \times \{3, 4\} = \{ (1, 3), (1, 4), (2, 3), (2, 4) \}$$

what is $\{1, 2\} \times \{3, 4\} \times \{5, 6\}$?

			С	ross	-Pr	00	duc	ct		
		5	S I						RI	
	sid	name	gpa	age			si	d	rid	day
	I	eugene	4	20			I		101	10/10
	2	barak	3	21			2		102	11/11
	3	trump	2	88						
			(sid)	name	gpa	a	ge	(sid)	rid	day
			(sid)	name eugene	gpa 4	a ₂		(sid)	rid 101	day 10/10
			. ,					. ,		
31	x R		I	eugene	4	20		I	101	10/10
SI	x R:	1 =	I 2	eugene barak	3	20 21		I I	101 101	10/10 10/10
SI	x R	1 =	2	eugene barak trump	3 2	20 21 88		I I I	101 101 101	10/10 10/10 10/10

INTERSECT (∩)

JOIN (⋈)

DIVIDE (/)

Intersect

 $A \cap B = R_{result}$

A, B must be union-compatible

Intersect

 $A \cap B = R_{result}$

A, B must be union-compatible

Can we express using core operators?

 $A \cap B = ?$

Intersect

 $A \cap B = R_{result}$

A, B must be union-compatible

Can we express using core operators?

 $A \cap B = A - ?$ (think venn diagram)

Intersect

 $A \cap B = R_{result}$

A, B must be union-compatible

Can we express using core operators?

 $A \cap B = A - (A - B)$

theta (θ) Join

 $A \bowtie_{c} B = \sigma_{c}(A \times B)$

Most general form

Result schema same as cross product

Often far more efficient to compute than cross product Commutative

 $(A\bowtie_c B)\bowtie_c C = A\bowtie_c (B\bowtie_c C)$

Equi-Join

 $A\bowtie_{attr} B = A\bowtie_{Aattr = Battr} B$

Special case where the condition is attribute equality Result schema only keeps one copy of equality fields Natural Join ($A \bowtie B$):

Equijoin on all shared fields

Division Let us have relations A(x,y), B(y) A/B = { <x> | ∃ <x,y> ∈ A ∀ A <y> ∈ B} Good to ponder, not supported in most systems (why?) Find all students that have reserved all books A/B = all x (students) s.t.for every y (reservation), <x,y> ∈ A Generalization y can be a list of fields in B x U y is fields in A

Is A/B a Fundamental Operation?

No. Shorthand like Joins

joins so common, it's natively supported

Hint: Find all xs not 'disqualified' by some y in B.

x value is disqualified if by attaching y value from B,
we obtain an x,y tuple that is not in A.

Names of students that reserved book 2 $\pi_{name}(\sigma_{rid=2}\left(R1\right)\bowtie SI)$ Equivalent $\begin{array}{c} p(Tmp1,\sigma_{rid=2}\left(R1\right))\\ p(Tmp2,Tmp1\bowtie SI)\\ \pi_{name}(Tmp2) \end{array}$ $\pi_{name}(\sigma_{rid=2}\left(R1\bowtie SI\right))$

Names of students that reserved db books

Book(bid, type) Reserve(sid, bid) Student(sid)

Need to join with Instructors to access role $\pi_{name}(\sigma_{type='db'}(Book)\bowtie Reserve\bowtie Student)$ More efficient query $\pi_{name}(\pi_{sid}((\pi_{cid}\sigma_{type='db'}(Book))\bowtie Reserve)\bowtie Student)$ Query optimizer can find the more efficient query!

Students that reserved DB or HCl book

- I. Find all DB or HCI books
- 2. Find students that reserved one of those books

 $p(tmp, (\sigma_{type='DB'\ v\ type='HCI'}(Book))$ $\pi_{name}(tmp\bowtie Reserve\bowtie Student)$

Alternatives

define tmp using UNION (how?) what if we replaced v with ^ in the query?

Students that reserved a DB and HCI book

Does previous approach work?

 $p(tmp, (\sigma_{type='DB'^{type='HCI'}}(Book))$ $\pi_{name}(tmp \bowtie Reserve \bowtie Student)$

Students that reserved a DB and HCI book

Does previous approach work?

- I. Find students that reserved DB books
- 2. Find students that reversed HCI books
- 3. Intersection

$$\begin{split} &p(\mathsf{tmpDB}, \pi_{\mathsf{sid}}(\sigma_{\mathsf{typ}\,\mathsf{e}^{=}\mathsf{'DB'}} \; \mathsf{Book}) \bowtie \mathsf{Reserve}) \\ &p(\mathsf{tmpHCI}, \pi_{\mathsf{sid}}(\sigma_{\mathsf{typ}\,\mathsf{e}^{=}\mathsf{'HCI'}} \; \mathsf{Book}) \bowtie \mathsf{Reserve}) \\ &\pi_{\mathsf{name}}((\mathsf{tmpDB} \cap \mathsf{tmpHCI}) \bowtie \mathsf{Student}) \end{split}$$

Is the intersection always allowed? What if it projected book name?

Students that reserved all books

Use division
Be careful with schemas of inputs to / !

 $\begin{array}{c} p(tmp,(\pi_{sid,bid} \; Reserves) \; / \; (\pi_{bid} Books)) \\ \pi_{name}(tmp \bowtie Student) \end{array}$

What if want students that reserved all horror books?

 $p(tmp, (\pi_{sid,bid} Reserves) / (\pi_{bid}(\sigma_{type="horror'} Book)))$

Let's step back

Relational algebra is expressiveness benchmark
A language equal in expressiveness as relational algebra is relationally complete

But has limitations

nulls

aggregation

recursion

duplicates

What can we do with RA?

Query by example

Here's my data and examples of the result, generate the query for me

Novel relationally complete interfaces

GestureDB. Nandi et al.

Summary

Relational Algebra (RA) operators

Operators are closed (inputs & outputs are relations)

Multiple Relational Algebra queries can have same semantics (always return same results)

Forms basis for optimizations

Next Time

Relational Calculus