Pre and Post Fed Inflation Study

inflation_study

Imports

```
In [1]: import os
    from pathlib import Path

import pandas as pd
import numpy as np
import seaborn as sns
import pingouin as pg

In [2]: PROJECT_DIRECTORY = "./"
    CSY_DATA_DIRECTORY = os.path.join(PROJECT_DIRECTORY, "data_as_csv")
    INFLATION_DATA_CSV = "inflation.csv"

In [3]: YEAR_COLUMN = "Year"
    ANNUAL_PERCENT_CHANGE_COLUMN = "Annual Percent Change"

# will create a synthetic column "Inflation"
    INFLATION_COLUMN = "Inflation"

# alpha corresponding to 95% confidence in our statistical tests
ALPHA = 0.05
```

Load Raw Data

```
In [4]: # source https://www.minneapolisfed.org/about-us/monetary-policy/inflation-d
        df_inflation_org= pd.read_csv(Path(CSV_DATA_DIRECTORY) / INFLATION_DATA_CSV)
        df_inflation_org.columns
Out[4]: Index(['Year', 'Annual Average Index', 'Annual Percent Change'], dtype='obj
        ect')
In [5]: df inflation org.dtypes
Out[5]: Year
                                    int64
        Annual Average Index
                                 float64
        Annual Percent Change
                                  object
        dtype: object
In [6]: df inflation = df inflation org.copy()
        conversions = { ANNUAL_PERCENT_CHANGE_COLUMN: "string"}
        df_inflation = df_inflation.astype(conversions).copy()
        df inflation.convert dtypes()
```

localhost:8888/lab

5/20/24, 3:55 PM inflation_study

> df_inflation[INFLATION_COLUMN] = df_inflation[ANNUAL_PERCENT_CHANGE_COLUMN] df inflation

Out[6]:	Year	Annual Average Index	Annual Percent Chang

	Year	Annual Average Index	Annual Percent Change	Inflation
0	1801	50.0	-2.0%	-0.020
1	1802	43.0	-14.0%	-0.140
2	1803	45.0	4.7%	0.047
3	1804	45.0	0.0%	0.000
4	1805	45.0	0.0%	0.000
•••				
218	2019	768.3	1.8%	0.018
219	2020	777.7	1.2%	0.012
220	2021	814.3	4.7%	0.047
221	2022	879.4	8.0%	0.080
222	2023	915.6	4.1%	0.041

223 rows × 4 columns

```
In [7]:
       df_inflation.dtypes
```

```
Out[7]: Year
                                            int64
        Annual Average Index
                                         float64
        Annual Percent Change
                                  string[python]
                                         float64
        Inflation
        dtype: object
```

In [8]: sns.lineplot(data=df_inflation, x=YEAR_COLUMN, y=INFLATION_COLUMN)

```
df_inflation_pre_fed_1872 = df_inflation[(df_inflation[YEAR_COLUMN] <= 1913)</pre>
df_inflation_pre_fed_1801 = df_inflation[df_inflation[YEAR_COLUMN] <= 1913].</pre>
df inflation post fed = df inflation[df inflation[YEAR COLUMN] > 1913].copy(
periods = {"pre_fed_1801": df_inflation_pre_fed_1801, "pre_fed_1872": df_inf
for period_name, period_data in periods.items():
   n = period_data[INFLATION_COLUMN].count()
   mean = period_data[INFLATION_COLUMN].mean()
    std = period data[INFLATION COLUMN].std() # should actually be a populat
    print(f"{period_name} n: {n} mean: {mean} std: {std}")
```

pre_fed_1801 n: 113 mean: -0.0032831858407079647 std: 0.05643793509981763 pre_fed_1872 n: 42 mean: -0.004190476190476191 std: 0.02688842174910896 post fed n: 110 mean: 0.032681818181819 std: 0.04709699766783905

localhost:8888/lab 2/4 5/20/24, 3:55 PM inflation_study

In [9]: # do a t-tests (which will be z-tests since n > 30 for all samples def inflation_z_test(df_pre_fed: pd.DataFrame) -> pd.DataFrame: pre_fed_data_data_points = np.array(df_pre_fed[INFLATION_COLUMN]) return pg.ttest(pre_fed_data_data_points, post_fed_inflation_data_points inflation_z_test(df_inflation_pre_fed_1872)

Out[9]:			T do	of alternative	e p-va	I CI95%	cohen-d	BF10)
	T- test	-6.03097	6 127.50493	4 less	8.214053e 09	- [-inf 9 -0.03	0.866815	1.646e+06	6 0.9
In [10]:	<pre>inflation_z_test(df_inflation_pre_fed_1801)</pre>								
Out[10]:		Т	dof	alternative	p-val	CI95%	cohen-d	BF10	рс
	T-	-5.17213	215.985583	less	2.635821e-	[-inf,	0.691092	5.051e+04	0.999

-0.02]

07

Conclusion:

5/20/24, 3:55 PM inflation_study

Descriptive statistics suggests that inflation was lower pre-Fed:

- pre_fed_1801 (n=113) mean: -0.0032831858407079647 std:
 0.05643793509981763
- pre_fed_1872 (n=42) mean: -0.004190476190476191 std: 0.02688842174910896
- post_fed (n=110) mean: 0.03268181818181819 std: 0.04709699766783905

Note, however, that the standard deviation is higher pre-Fed if years from 1801 to 1913 are considered but lower if only 1872 to 1913 are considered.

Applying one-sided two sample z-tests shows that if 1872 to 1903 is considered, we can say, with 95% confidence, that inflation was at least 3% lower, on average, pre-Fed.

If 1801 to 1903 is considered, then we can say, with 95% confidence that inflation was at least 2% lower, on average, pre-Fed.

The obvious caveat is that correlation is, of course, not causation. This does not prove that there is more inflation when there is a central bank.

More speculatively, the lower inflation could be due to harsher depressions/deflationary periods pre-Fed.