Roll	No.:																			
------	------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

National Institute of Technology, Delhi

Name of the Examination: B. Tech.

Branch

: Computer Science & Engg.

Semester : II

Title of the Course

: DATA STRUCTURES

Course Code

: CSB 102

Maximum Marke: 50

Time: 3 Hours Maximum Marks:						
	Section A : Attempt <u>ALL</u> Questions	Marks				
1.	Differentiate between primitive and non primitive data structure.	1				
2.	Describe in detail the graph traversal techniques with example.	5				
3.	What do you mean by hashing? What are the different methods of hashing? Explain in brief each method	1+1+3				
4.	What is collision resolution? Explain any two methods of collision resolution with example.	1+2+2				
	Section B : Attempt <u>ALL</u> Questions					
1.	Evaluate the following Expression : 6 , 2, 3, $^{\wedge}$, +, 7 , 2, $^{\prime}$, 5, *, -, 3 ,+	2				
2.	Write a function to return Nth node from the end of the linked list?	3				
3.	Consider the following queue of characters , where Queue is a circular array which is allocated Six memory cells : FRONT = 2 REAR = 4 Queue : _ A , C, D , E _ Find out the position of FRONT and REAR with Explanation a) Insert F b) Two letters are deleted c) ADD K,L,M d) Two letters are deleted e) Insert R f) Two Letters are deleted g) Insert S h) Two Letters are deleted i) One Letter is deleted	6				
4.	Write a algorithm to insert a number in the linked list at the following positions: a) In the beginning at the list. b) Before a specified element b) After a specified element. d) End of the list.	6				

	Section C : Attempt ALL Questions	
1.	Consider an undirected random graph of eight vertices. The probability that there is an edge between a pair of vertices is 1/2. What is the expected number of unordered cycles of length three? And justify your answer.	3
2.	The following numbers are inserted into an empty binary search tree in the given order: 10, 1, 3, 5, 15, 12, 16. What is the height of the binary search tree (the height is the maximum distance of a leaf node from the root)?	2
3.	What is the maximum height of any AVL-tree with 7 nodes? Assume that the height of a tree with a single node is 0.	2
4.	Construct a AVL tree for given values 40,42,47, 56,51, 63, 0, 5, 2, 6,1 and also count the number of total rotation.	3
5.	Write a program to delete all the leaf nodes with value equal to k in a given binary tree.	3
6.	Consider n elements that are equally distributed in k stacks. In each stack, elements of it are arranged in ascending order (min is at the top in each of the stack and then increasing downwards). Given a queue of size n in which we have to put all n elements in increasing order. Write the algorithm for given problem and what will be the time complexity of the best known algorithm?	4