MACHINE LEARNING: when big data is not enough

Filip Wójcik

Data scientist, senior .NET developer

Wrocław University lecturer

filip.wojcik@outlook.com

What is machine learning? (1/4)

What is machine learning? (2/4)

What is machine learning? (3/4)

Data volumes are increasing

Need to process massive amounts of data

Data analysis processes automation

What is machine learning? (4/4)

Big data

- Large volumes of data storage
 & processing
- Highly parallelized algorithms
- Sophisticated architecture
- Hardware-related (clusters, nodes, server machines)

Machine learning

- Smart data processing methods
- Domain-agnostic
- Technology-agnostic
- Hardware-agnostic
- Predictions and modelling
- Strongly related to statistics

Machine learning tools

Machine learning use cases (1/2)

Machine learning use cases (1/2)

Machine learning use cases (2/2)

- Cannot be interpreter by humans
- Their internal structure is complicated and is hard to understand
- Mostly very sophisticated mathematically
- "Justifications" of predictions are purely mathematical

Easily interpretable

 Can be translated to human-friendly form

Not so sophisticated mathematically

"Black box" methods "White box" methods

Key data structures (1/3)

Data Frame Key data structures (2/3)

Data Frame Key data structures (3/3)

Company	Financial instruments	Status	Revenue
Company X	Equities	Open	0.6
Company Y	Corporate Bonds	Open	0.03
Company Z	Structure hybrid	Closed	0.02

Company	Financial instruments	Status	Revenue
001	001	1	0.6
010	010	1	0.03
100	100	0	0.02

Supervised learning (1/3)

Two data sets

- Training– known "answers", given to algorithm
- Test– known "answers", not given to algorithm

"Teacher/oracle"

- Objective rating function
- Checks the algorithm progress

Learning based on the experience

- Application of teachers/oracle suggestions to improve score
- Avoiding overfitting

Supervised learning (2/3)

Supervised learning (3/3)

Supervised learning Decision trees (1/5)

General approach

- Uses structured data
- Recursive top-down approach: divide and conquer, based on the best-promising attributes
- Can use numerical and discrete data as well

Pros

- Very flexible
- Easy to implement
- Easy to interpret by humans
- Can be translated to easy-to-read rules and included in reports/documentations

Supervised learning Decision trees (2/5)

Calculate the entropy/chaos of entry data Divide data using Create decision node, and add child the attributes that links. Process reduce the chaos children recursively mostly Select attribute Divide the data with biggest chaos using selected attribute reduction

Supervised learning Decision trees (3/5)

client	hotel	addons	money_spent	offer
business	Hilton	trip	40,000	deluxe
business	Hilton	full board	38,000	deluxe
business	Hilton	trip	40,000	deluxe
middle class	Meta	none	800	basic
middle class	Meta	meal	900	basic
manager	Meta	spa	1,500	premium

Value	Count	%
Deluxe	3	0.5
Basic	2	0.333
Premium	1	0.16666

Supervise	d learning	J
Decision t	rees (4/5)	

client	hotel	addons	money_spent	offer
business	Hilton	trip	40,000	deluxe
business	Hilton	full board	38,000	deluxe
business	Hilton	trip	40,000	deluxe
middle class	Meta	none	800	basic
middle class	Meta	meal	900	basic
manager	Meta	spa	1,500	premium

False

Client == business?

hotel addons money_spent offer

Hilton trip 40,000 deluxe

Hilton full board 38,000 deluxe

Hilton trip 40,000 deluxe

True

	,		
hotel	addons	money_spent	offer
Meta	none	800	basic
Meta	meal	900	basic
Meta	spa	1,500	premium

Supervised learning Decision trees (5/5)

Unsupervised learning

Unsupervised learning

One data set

- Single set of data
- No "good answers" provided (in most cases)

No teacher/oracle

- No option to evaluate prediction against "correct answers"
- Algorithm evaluation based on similarity measures/chaos measures/etc.

Algorithm operates on data on its own

- Algorithm explores the possible data partitioning
- Algorithm maintains its internal error measures

Unsupervised learning Association analysis (1/3)

General approach

- Ordered data
- Searching for coincidences/correlations in data

Features

- Works only with nominal data or discretized (binned)/thresholded numeric data
- Easy to implement
- Flexible
- Easy to interpret by humans
- Can significantly reduce the amount of irrelevant features

Unsupervised learning Association analysis (2/3)

Transaction number		Products
1.	1. 2.	Soya milk Salad
2.	2. 3.	Salad Walnuts Wine Bread
3.		Walnuts Wine
4.	2.	Salad Soya milk Walnuts Wine
5.	2. 3.	Salad Soya milk Walnuts Juice

Frequent items	support
Soya, salad	0.4
Soya, salad, walnuts	0.4
Salad	0.6

Implications	support
Soya => walnuts	0.4
Soya => salad	0.4
Soya, Walnuts, Wine => juice	0.4

Unsupervised learning Association analysis (3/3)

ML lecutures

Pracical examples & code

Math & theory

THANKYOU!