Pitkä matematiikka 16.3.2001, ratkaisut:

- 1. Yhtälö on määritelty kun $x \neq 0, x \neq -3$. Kertomalla puolittain termillä x(x+3) saadaan yhtälö muotoon $x^2 x 3 = 0$. Sen ratkaisu on $x = \frac{1}{2}(1 \pm \sqrt{13})$.
- 2. Käyrän $y=x^3$ pisteeseen (2,8) piirretyn tangentin yhtälö on y-8=y'(2)(x-2) eli, koska $y'(x)=3x^2$, y=12x-16. Asettamalla x=0 näemme, että tangentti leikkaa y-akselin pisteessä (0,-16). Tangentti, y-akseli ja suora y=8 rajoittavat suorakulmaisen kolmion, jonka kärjet ovat pisteissä (0, -16), (0, 8) ja (2, 8). Koska kateettien pituudet ovat 16+8=24 ja 2, on kolmion ala 24.
- **3.** Vastakkaissuuntaisena \overline{a} :lle on \overline{b} muotoa $t\overline{a}$, missä t<0. Koska $|\overline{b}|=5$, saadaan t:lle yhtälö $5^2=t^2a^2=t^2(\frac{9}{4}+4)=\frac{25}{4}t^2$ eli $t^2=4$. Tämän negatiivinen ratkaisu on t=-2, joten $\overline{b}=-2(\frac{3}{2}\overline{i}-2\overline{j})=-3\overline{i}+4\overline{j}$. Jos \overline{b} asetetaan alkamaan pisteestä (4,3), saadaan \overline{b} :n loppupiste paikkavektorista $4\overline{i}+3\overline{j}+\overline{b}=\overline{i}+7\overline{j}$. Loppupiste on (1,7).
- **4.** Säiliössä on ilmaa yhden vedon jälkeen $0.95 \cdot 2.3$ kg, kahden vedon jälkeen $0.95^2 \cdot 2.3$ kg ja n:n vedon jälkeen $0.95^n \cdot 2.3$ kg. Tästä saadaan n:lle epäyhtälö $0.95^n \cdot 2.3 < 0.2$ eli $0.95^n < \frac{0.2}{2.3}$ eli $n \ln 0.95 < \ln \frac{2}{23}$ eli $n > \frac{\ln \frac{2}{23}}{\ln 0.95} \approx 47.62$. Vastaus: 48 vedon jälkeen.
- 5. Kartion akseli h, pohjan säde $\frac{1}{2}d$ ja sivujana r muodostavat suorakulmaisen kolmion, josta saadaan $r = \sqrt{16^2 + 3^2} = \sqrt{265} \approx 16,2788$ (cm). Kartion pohjaympyrän piiri on $\pi d = 6\pi$. Näin ollen vaippasektorin keskuskulmalle α pätee $\frac{\alpha}{360} = \frac{6\pi}{2\pi\sqrt{265}}$, josta $\alpha = 360 \cdot \frac{3}{\sqrt{265}} \approx 66,344$. Vastaus: Sektorin säde on 16,3 cm ja keskuskulma 66°.
- 6. Koska funktio on murtolauseke, jonka osoittaja on vakio, saavuttaa f suurimman (vast. pienimmän) arvonsa, kun nimittäjä saavuttaa pienimmän (vast. suurimman) arvonsa. Tämä taas tapahtuu, kun $\cos 2x$ saavuttaa pienimmän (suurimman) arvonsa. Tunnetusti $\cos 2x$:n pienin arvo on -1 ja suurin arvo +1. Edellinen saavutetaan, kun $2x = \pi + 2n\pi$, $n \in Z$ ja jälkimmäinen, kun $2x = 2n\pi$, $n \in Z$. Näin ollen funktion f suurin arvo on $\frac{5}{4-3}$ eli 5 ja se saavutetaan, kun $x = \frac{1}{2}\pi + n\pi$, $n \in Z$. Funktion f pienin arvo on $\frac{5}{4+3}$ eli $\frac{5}{7}$ ja se saavutetaan, kun $x = n\pi$, $n \in Z$.
- 7. Massa on normaalisti jakautunut, $\underline{x} \sim N(204, 6)$. Tällöin $\underline{z} = \frac{1}{6}(x 204) \sim N(1, 0)$. Todennäköisyys, että pakkauksen massa on alle 200 g, on $P(\underline{x} < 200) = P(\underline{z} < -\frac{2}{3}) = \Phi(-\frac{2}{3}) = 1 \Phi(\frac{2}{3}) \approx 1 0.7475 = 0.2525$. Todennäköisyys, että keksipakkauksen massa on välillä 200 g 210 g, on $P(200 \le \underline{x} \le 210) = P(x \le 210) P(x < 200) = P(\underline{z} \le 1) P(\underline{z} < -\frac{2}{3}) = \Phi(1) + \Phi(\frac{2}{3}) 1 \approx 0.8413 + 0.7475 1 = 0.5888$. Vastaus: Pakkauksista 25 % on alle 200 g ja 59 % on välillä 200 g 210 g.
- 8. Jos toinen kateetti on suoralla y=ax, on toinen kateetti suoralla $y=-a^{-1}x$. Edellinen suora leikkaa paraabelia pisteessä (a,a^2) ja jälkimmäinen pisteessä $(-a^{-1},a^{-2})$. Hypotenuusa on näiden kahden pisteen kautta kulkevalla suoralla, jonka yhtälö on $y-a^2=\frac{a^2-a^{-2}}{a+a^{-1}}(x-a)$ eli $y=(a-a^{-1})x+1$. Suora, ja sen mukana hypotenuusa, leikkaa y-akselia pisteessä (0,1) kaikilla arvoilla a. Näin ollen jokaisen tällaisen kolmion hypotenuusa leikkaa y-akselia samassa pisteessä, joka on (0,1).

- 9. Välillä [0,1] on $f(x) = \int_0^x (x-t)dt + \int_x^1 (t-x)dt = -\int_0^x \frac{1}{2}(x-t)^2 + \int_x^1 \frac{1}{2}(t-x)^2 = \frac{1}{2}(x^2+(1-x)^2) = x^2-x+\frac{1}{2}=(x-\frac{1}{2})^2+\frac{1}{4}$. Vastaavasti välillä [1,2] on $f(x)=\int_0^1 (x-t)dt = \int_0^1 \frac{1}{2}(x-t)^2 = x-\frac{1}{2}$. Funktion kuvaaja koostuu välillä [0,1] ylöspäin aukeavasta paraabelinkaaresta, jonka huippu on pisteessä $(\frac{1}{2},\frac{1}{4})$, ja jolle $f(0)=f(1)=\frac{1}{2}$ sekä välillä [1,2] janasta pisteestä $(1,\frac{1}{2})$ pisteeseen $(2,\frac{3}{2})$. Tämän perusteella funktion pienin arvo välillä [0,2] on $\frac{1}{4}$ ja suurin arvo $\frac{3}{2}$.
- **10.** Funktio $f: \mathbb{R} \to \mathbb{R}, f(x) = x$ on pariton, sillä f(-x) = -x = -f(x). Funktio on kasvava \mathbb{R} :ssä, sillä jos x < y, niin f(x) = x < y = f(y). Funktio $f: \mathbb{R} \to \mathbb{R}$, f(x) = -x on myös pariton, sillä f(-x) = x = -f(x). Tämä funktio ei ole kasvava \mathbb{R} :ssä, sillä jos x < y, niin f(x) = -x > -y = f(y). Jos $f: \mathbb{R} \to \mathbb{R}$ on pariton, niin -f(0) = f(-0) = f(0), josta seuraa, että f(0) = 0. Jos f on lisäksi jatkuva, niin $\lim_{x\to 0} f(x) = f(0) = 0$.
- 11. Olkoon pallon säde r_1 . Pallon sisällä olevan kuution lävistäjä on $2r_1$. Jos kuution särmä on a_1 , on $a_1^2 + 2a_1^2 = (2r_1)^2$, josta saadaan $a_1 = 2r_1/\sqrt{3}$. Jos nyt kuution sisään asetetaan taas pallo, on sen säde $r_2 = \frac{1}{2}a_1 = r_1/\sqrt{3}$. **a)** Kahden peräkkäisen pallon säteiden suhde on $r_2/r_1 = 1/\sqrt{3}$. Tämä ei riipu pallojen säteistä, joten säteet muodostavat geometrisen jonon suhdeluvulla $1/\sqrt{3}$. **b)** Perättäisten pallojen pintaalojen suhde on niiden säteiden suhteen neliö eli 1/3. Koska tämä ei riipu palloista, muodostavat pinta-alat geometrisen jonon suhdeluvulla 1/3. **c)** Perättäisten pallojen tilavuuksien suhde on säteiden suhteen kuutio eli $1/(3\sqrt{3})$. Koska tämä ei riipu palloista, muodostavat tilavuudet geometrisen jonon suhdeluvulla $1/(3\sqrt{3})$.
- 12. Kymmenjärjestelmässä 7-järjestelmän luku 11_7 on $1 \cdot 7 + 1 = 8$. Vastaavasti 111_7 on kymmenjärjestelmässä $7^2 + 7 + 1 = 57$ ja 1111_7 on $7^3 + 7^2 + 7 + 1 = 400$. Koska kymmenjärjestelmän luku $11_{10} = 1 \cdot 7 + 4$, on sen esitys 7-järjestelmässä 14_7 . Vastaavasti $111_{10} = 2 \cdot 7^2 + 7 + 6$ ja $1111_{10} = 3 \cdot 7^3 + 7^2 + 4 \cdot 7 + 5$, joten niiden esitykset 7-järjestelmässä ovat 216_7 ja 3145_7 .
- 13. Tehtävän mukaan $x_1 = 1$, $x_2 = \sqrt{2x_1}$, $x_3 = \sqrt{2x_2}$ ja $x_4 = \sqrt{2x_3}$. Rekursiokaava on siten $x_1 = 1, x_{n+1} = \sqrt{2x_n}$, n = 1, 2, 3, ... Toisaalta $x_n = 2^{s(n)}$, missä $s(n) = \sum_{k=1}^{n-1} 2^{-k}$, n = 2, 3, ... Perustelu: Koska $x_2 = 2^{\frac{1}{2}}$, väite pätee arvolla n = 2. Jos väite pätee arvolla n = j, niin $x_{j+1} = \sqrt{2x_j} = 2^{\frac{1}{2}} \cdot 2^{\frac{1}{2}s(j)} = 2^{\frac{1}{2}(1+s(j))}$, missä $\frac{1}{2}(1+s(j)) = \sum_{k=1}^{j} 2^{-k} = s(j+1)$. Siis $x_{j+1} = 2^{s(j+1)}$. On osoitettu, että $x_n = 2^{s(n)}$. Edelleen $\lim_{n \to \infty} s_n = \sum_{k=1}^{\infty} 2^{-k} = 1$ (geometrisen sarjan summa), joten $\lim_{n \to \infty} x_n = 2^1 = 2$.
- 14. Kompleksiluvun z=x+iy liittoluku on $\overline{z}=x-iy$. Kompleksilukujen $z_1=x_1+iy_1$ ja $z_2=x_2+iy_2$ tulo on $z_1z_2=x_1x_2-y_1y_2+i(x_1y_2+x_2y_1)$. Tämän perusteella $\overline{z}_1\overline{z}_2=x_1x_2-y_1y_2-i(x_1y_2+x_2y_1)=\overline{z_1}\overline{z_2}$. Lopuksi, jos z=x+iy, on $z^2+\overline{z}+1=x^2-y^2+x+1+i(2xy-y)$. Tämä on nolla vain jos sekä reaaliosa $x^2-y^2+x+1=0$ että imaginaariosa y(2x-1)=0. Jälkimmäinen toteutuu, jos y=0 tai $x=\frac{1}{2}$. Jos y=0, on reaaliosa $x^2+x+1=(x+\frac{1}{2})^2+\frac{3}{4}$. Tämä on aina positiivinen, joten yhtälöllä ei ole ratkaisuja arvolla y=0. Jos $x=\frac{1}{2}$, on reaaliosa $y^2-\frac{7}{4}$. Tämä on nolla, kun $y=\pm\frac{1}{2}\sqrt{7}$. Siis yhtälön ratkaisut ovat $z=\frac{1}{2}(1\pm i\sqrt{7})$.
- 15. Integroimalla separoidusta muodosta $\frac{dP}{\sqrt{P}} = -4dt$ saadaan yleinen ratkaisu $2\sqrt{P} = -4t + 2C$ eli $P(t) = (C 2t)^2$. Alussa oli 1100 kalaa, joten P(0) = 1100. Toisaalta $P(0) = C^2$, joten $C = 10\sqrt{11}$. Kalat ovat kuolleet, kun $0 = P(t) = (10\sqrt{11} 2t)^2$. Tästä saadaan $t = 5\sqrt{11} \approx 16,583$. Vastaus: Kalat ovat kuolleet 17 viikon kuluttua.