MATH 602(HOMEWORK 1)

HIDENORI SHINOHARA

Exercise. 1

- Let $p \in V(I \cap J)$. For any $\sum_{i=1}^n f_i g_i \in IJ$, we have $f_i g_i \in I \cap J$ for each i. Thus $(\sum_{i=1}^n f_i g_i)(p) = 0$, so $p \in V(IJ)$. Let $p \in V(IJ)$. Let $f \in I \cap J$. Then $f^2 \in IJ$, so $(f(p))^2 = 0$. Thus f(p) = 0, so $p \in V(I \cap J)$. Therefore, $V(I \cap J) = V(IJ)$.
 - Let $p \in V(I) \cup V(J)$. Then either all polynomials in I vanish at p or all polynomials in J vanish at p. Thus all the polynomials in the intersection must vanish at p. Thus $V(I) \cup V(J) \subset V(I \cap J)$. On the other hand, let $p \in V(I \cap J) \setminus (V(I) \cup V(J))$. If no such element exists, we are done. Then every polynomial in the intersection vanishes at p. Let $f \in I$ and $g \in J$ be polynomials that do not vanish at p. Then $fg \in I \cap J$, so (fg)(p) = 0. However, this is impossible because $f(p) \neq 0$ and $g(p) \neq 0$. Therefore, $V(I) \cup V(J) = V(I \cap J)$.
- $p \in V(I+J)$ if and only if $\forall f \in I+J, f(p)=0$ if and only if $\forall f \in I, f(p)=0$ and $\forall f \in J, f(p)=0$ if and only if $p \in V(I) \cap V(J)$.
- If every polynomial in *J* vanishes at a point, every polynomial in *I* must vanish at that point.
- If a polynomial vanishes in Y, then it must vanish in X.
- TODO

Exercise. 2

•

$$y \in (I_1 + I_2)^e \iff y \in f(I_1 + I_2)B$$

 $\iff \exists x_1, x_2 \in I_1, I_2, b \in B, y = f(x_1 + x_2)b$
 $\iff \exists x_1, x_2 \in I_1, I_2, b \in B, y = f(x_1)b + f(x_2)b$
 $\iff y \in I_1^e + I_2^e.$

•

$$y \in (I_1 \cap I_2)^e \implies y \in f(I_1 \cap I_2)B$$

$$\implies \exists x \in I_1 \cap I_2, b \in B, y = f(x)b$$

$$\implies (\exists x \in I_1, b \in B, y = f(x)b) \text{ and } (\exists x \in I_2, b \in B, y = f(x)b)$$

$$\implies y \in I_1^e, y \in I_2^e$$

$$\implies y \in I_1^e \cap I_2^e.$$

• $(I_1I_2)^e = f(I_1I_2)B = (f(I_1)f(I_2))B = (f(I_1)B)(f(I_2)B)$. $f(I_1)f(I_2) = f(I_1I_2)$ because the product of two ideals consists of a finite sum of elements and f preserves finite sums.

- Let $x \in J_1^c + J_2^c$. Then $x \in f^{-1}(J_1) + f^{-1}(J_2)$. Then x = a + b where $a \in f^{-1}(J_1)$ and $b \in f^{-1}(J_2)$. This implies x = a + b where $f(a) \in J_1$ and $f(b) \in J_2$. Then, $f(x) = f(a + b) = f(a) + f(b) \in J_1 + J_2$, so $x \in f^{-1}(J_1 + J_2)$.
- $f^{-1}(J_1 \cap J_2) = f^{-1}(J_1) \cap f^{-1}(J_2)$ from set theory.
- Let $\sum_{i=1}^{n} a_i b_i \in J_1^c J_2^c$ where $a_i \in J_1^c$ and $b_i \in J_2^c$. Then $f(a_i) \in J_1$ and $f(b_i) \in J_2$. Thus $\sum f(a_i) f(b_i) \in J_1 J_2$. Since f preserves product and addition, $f(\sum a_i b_i) \in J_1 J_2$. Thus $\sum a_i b_i \in f^{-1}(J_1 J_2) = (J_1 J_2)^c$.

Exercise. 3 (I:J) is nonempty because $0 \in (I:J)$. (I:J) is closed under addition, and for all $x \in R$, $rJ \subset I \implies x(rJ) = r(xJ) = rJ \subset I$. Thus (I:J) is an ideal.

- Lemma: Let a, b, c be ideas. If $\forall x \in a, xb \subset c$, then $ab \subset c$. Proof: Let $\sum a_i b_i \in ab$ be given. Then each $a_i b_i \in c$. Since c is closed under addition, $\sum a_i b_i \in c$. Therefore, $ab \subset c$.
- Let $x \in a$. Then $\forall y \in b, xy \in a$ since a is an ideal. Then $xb \subset a$, so $x \in (a : b)$.
- For all $x \in (a:b)$, $xb \subset a$. By the Lemma above, $(a:b)b \subset a$.
- Let $x \in ((a:b):c)$. Then $xc \subset (a:b)$. For all $xz \in xc, (xz)b \subset a$. Therefore, $(xc)b \subset a$ by the Lemma above. Then $x(cb) \subset a$, so $x(bc) \subset a$. Hence, $x \in (a:bc)$.

On the other hand, suppose $x \in (a:bc)$. Then $x(bc) \subset a$. $x(bc) \subset a \implies (xb)c \subset a \implies xb \subset (a:c) \implies x \in ((a:c):b)$.

Therefore, ((a : b) : c) = (a : bc).

We showed that ((a:b):c) = (a:bc). This implies (a:cb) = ((a:c):b). Since (a:bc) = (a:cb), we have ((a:b):c) = (a:bc) = (a:cb) = ((a:c):b).

• For any $x \in A$,

$$x \in (\cap_i a_i : b) \iff xb \subset \cap_i a_i$$

$$\iff \forall i, xb \subset a_i$$

$$\iff \forall i, x \subset (a_i : b)$$

$$\iff x \subset \cap_i (a_i : b).$$

• For any $x \in A$,

$$x \in (a : \sum_{i} b_{i}) \iff x(\sum_{i} b_{i}) \subset a$$

 $\implies \forall i, xb_{i} \subset a$
 $\iff \forall i, x \subset (a : b_{i})$
 $\iff x \subset \cap_{i} (a : b_{i}).$

Therefore, it suffices to show that $\forall i, xb_i \subset a \implies x(\sum_i b_i) \subset a$. Let $y_{i_1} + \cdots + y_{i_n} \in \sum_i b_i$ be given where $y_{i_j} \in b_{i_j}$. For each j, since $xb_{i_j} \subset a$, $xy_{i_j} \in a$. Since a is closed under finite addition, $xy_{i_1} + \cdots + xy_{i_n} \in a$. Therefore, $\forall i, xb_i \subset a \implies x(\sum_i b_i) \subset a$, so $(a : \sum_i b_i) = \cap_i (a : b_i)$.

• Let $bf(x) \in (a_1 : a_2)^e$ where $b \in B$ and $x \in (a_1 : a_2)$.

$$xa_{2} \subset a_{1} \implies f(xa_{2}) \subset f(a_{1})$$

$$\implies f(x)f(a_{2}) \subset f(a_{1})$$

$$\implies B(f(x)f(a_{2})) \subset Bf(a_{1})$$

$$\implies f(x)(Bf(a_{2})) \subset Bf(a_{1})$$

$$\implies f(x)a_{2}^{e} \subset a_{1}^{e}$$

$$\implies f(x) \in (a_{1}^{e} : a_{2}^{e})$$

$$\implies bf(x) \in (a_{1}^{e} : a_{2}^{e}).$$

$$x \in (b_{1} : b_{2})^{c} \implies f(x) \in (b_{1} : b_{2})$$

$$\implies f(x)b_{2} \in b_{1}$$

$$\implies f^{-1}(f(x)b_{2}) \subset f^{-1}(b_{1})$$

$$\implies xf^{-1}(b_{2}) \subset f^{-1}(b_{1})$$

$$\implies xf^{-1}(b_{2}) \subset f^{-1}(b_{1})$$

$$\implies x \in (f^{-1}(b_{1}) : f^{-1}(b_{2}))$$

$$\implies x \in (b_{1}^{e} : b_{2}^{e}).$$

Exercise. (Problem 4) Let $f = \sum_{i=1}^{m} a_i x^i$, $g = \sum_{i=1}^{n} b_i x^i \notin p[x]$. Let m', n' be the smallest integer such that $a_{m'}, b_{n'} \notin p[x]$. Such m', n' must exist because $f, g \notin p[x]$. Then the coefficient of $x^{m'+n'}$ in fg is $\sum_{i=0}^{m'+n'} a_i b_{m'+n'-i}$. Then $a_i b_{m'+n'-i} \in p$ if and only if $i \neq m'$. The coefficient of $x^{m'+n'}$ in fg is not in p[x]. Therefore, $fg \notin p[x]$, so p[x] is a prime ideal.

(0) is a maximal ideal of Q. However, (0) is not a maximal ideal in $\mathbb{Q}[x]$ because (x) is a proper ideal of $\mathbb{Q}[x]$ that properly contains (0).

Exercise. (Problem 5) TODO

Exercise. (Problem 6) $(1+x)(1-x+x^2+...+(-x)^{n-1})=1+(-x)^n=1-0=1$.