$\underline{\mathbf{Maths}}$: Algebra

Contents

1	Loi	de composition interne :
	1.1	Définition
	1.2	Propriétés
2	Gro	oupes 2
	2.1	Définition (groupe)
	2.2	Définition (sous-groupe)
3	Anı	neaux 3
	3.1	Définition (anneau)
	3.2	Diviseur de zéro
	3.3	Anneau intègre
	3.4	Propriétés
	3.5	Définition (sous-anneau)
4	Cor	ps 4
	4.1	Définition (corps)
	4.2	Définition (sous-corps)
5	Mo	rphismes 4
	5.1	Morphismes de groupes
		5.1.1 Définition
		5.1.2 Propriétés
	5.2	Noyau
		5.2.1 Définition
		5.2.2 Propriétés
	5.3	Morphismes d'anneaux

1 Loi de composition interne:

1.1 Définition

Loi * de composition interne sur X:

$$\begin{array}{cccc} * & : & X^2 & \longrightarrow & X \\ & (x,y) & \longmapsto & x*y \end{array}$$

1.2 Propriétés

Pour une LCI $* \in X^X$:

- Associativité : $\forall (x, y, z) \in X^3, \ x*(y*z) = (x*y)*z$
- Commutativité : $\forall (x,y) \in X^2, \ x * y = y * x$
- Élément neutre : $\exists e \in X \mid \forall x \in X, \ x * e = e * x = x$
- Élément régulier : $\exists a \in X \mid \forall (x,y) \in X^2$, $\begin{cases} a*x = a*y \Rightarrow x = y & \text{régulier à gauche} \\ x*a = y*a \Rightarrow x = y & \text{régulier à droite} \end{cases}$
- Symétrie : $x \in X$ est symétrisable $\Leftrightarrow \exists x' \in X \mid x * x' = x' * x = e$
- Stabilité : $Y \in \mathcal{P}(X)$ stable par $* \Leftrightarrow \forall (x,y) \in Y^2, \ x * y \in Y$

2 Groupes

2.1 Définition (groupe)

Le couple (G, *) est un groupe si :

- $G \neq \emptyset$
- $\forall (x,y) \in G^2, \ x * y \in G$ (* LCI)
- $\forall (x, y, z) \in G^3$, x * (y * z) = (x * y) * z (* associative)
- $\exists e \in G \mid \forall x \in G, \ x * e = e * x = x$ (élément neutre)
- $\forall x \in G, \ \exists x' \in G \mid x' * x = x * x' = e$ (Tout élément est symétrisable)

On note $x^{-1} = x'$.

Le groupe (G, *) est dit abélien si * est commutative.

2.2 Définition (sous-groupe)

H est un sous-groupe de (G,*) si :

- $H \in \mathcal{P}(G) \setminus \{\emptyset\}$
- $\bullet \ \forall (x,y) \in H^2, \ x * y \in H \quad (H \ \mathrm{stable \ par} \ *)$
- $\forall x \in H, \ x^{-1} \in H$ (H stable par passage au symétrique)

3 Anneaux

3.1 Définition (anneau)

Le triplet (A, \oplus, \otimes) est un anneau si :

- (A, \oplus) est un groupe abélien
- $\bullet \ \forall (x,y) \in A^2, \ x \otimes y \in A$

- $(\otimes LCI sur A)$
- $\bullet \ \forall (x,y,z) \in A^3, \ x \otimes (y \otimes z) = (x \otimes y) \otimes z$
- $(\otimes associative)$

• $\exists e \in A \mid \forall x \in A, \ x \otimes e = e \otimes x = x$

- $(\otimes admet un élément neutre)$
- $\forall (x, y, z) \in A^3$, $\begin{cases} x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z) \\ (y \oplus z) \otimes x = (y \otimes x) \oplus (z \otimes x) \end{cases}$
- $(\otimes \text{ distributive sur } \oplus)$

L'élément neutre de \oplus est noté 0.

L'élément neutre de \otimes est noté 1.

Le symétrique de $x \in A$ par \oplus est noté -x, et appelé opposé.

Le symétrique de $x \in A$ par \otimes , s'il existe, est noté x^{-1} , et appelé inverse.

On définit : $\forall (x,y) \in A^2, xy = x \otimes y.$

On définit : $A^* = \{x \in A \mid \exists y \in A \mid xy = 1\}$

L'anneau $(A, +, \times)$ est dit abélien si \times est commutative.

3.2 Diviseur de zéro

Soit $(A, +, \times)$ un anneau.

Alors $x \in A$ est un diviseur de zéro si $\begin{cases} x \neq 0 \\ \exists y \in A \setminus \{0\} \mid xy = 0 \text{ ou } yx = 0 \end{cases}$

3.3 Anneau intègre

Un anneau
$$(A,+,\times)$$
 est intègre si
$$\begin{cases} A\neq\{0\}\\ \forall (x,y)\in A^2,\ xy=yx\\ \forall (x,y)\in A^2,\ xy=0\Rightarrow (x=0\ \text{ou}\ y=0) \end{cases}$$

3.4 Propriétés

Soit $(A, +, \times)$ un anneau. Alors :

• (A^*, \times) est un groupe

•
$$\forall (x,y) \in A^{*2}, \begin{cases} xy \in A^* \\ (xy)^{-1} = y^{-1}x^{-1} \end{cases}$$

•
$$\forall (a,b) \in A^2 \mid ab = ba, \ \forall n \in \mathbb{N},$$

$$\begin{cases} (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \\ a^n - b^n = (a-b) \sum_{k=0}^{n-1} a^k b^{n-1-k} \end{cases}$$

3.5 Définition (sous-anneau)

B est un sous-anneau de $(A, +, \times)$ si :

- B est un sous-groupe de (A, +)
- $1 \in B$
- $\forall (x,y) \in B^2, xy \in B$

4 Corps

4.1 Définition (corps)

Le triplet $(K, +, \times)$ est un corps si

- \bullet $(K, +, \times)$ est un anneau abélien
 - $\bullet \ \exists x,y \in K \mid x \neq y$

(K contient au moins deux éléments)

 $\bullet \ K^* = K \setminus \{0\}$

(Tous les éléments sauf 0 sont inversibles)

4.2 Définition (sous-corps)

C est un sous-corps de $(K, +, \times)$ si :

- C est un sous-anneau de $(K, +, \times)$
- $\bullet \ \forall x \in C \setminus \{0\}, \ x^{-1} \in C$

(C stable par passage à l'inverse)

5 Morphismes

5.1 Morphismes de groupes

5.1.1 Définition

Soient (G, *) et (G', *') deux groupes.

 \bullet Un morphisme de groupes de G vers G' est une fonction

$$f: G \longrightarrow G' \mid \forall (x,y) \in G, \ f(x*y) = f(x)*' f(y)$$

- Un isomorphisme de groupes est un morphisme de groupes bijectif.
- Un automorphisme de groupes est un isomorphisme de groupes d'un groupe dans lui-même.

5.1.2 Propriétés

Soient (G, *), (G', *') deux groupes, e, e' leurs éléments neutres respectifs, et f un morphisme de groupes de G vers G'.

- f(e) = e'
- $\forall x \in G, \ f(x^{-1}) = \left(f(x)\right)^{-1}$
- La composition de deux morphismes de groupes est un morphisme de groupes.

5.2 Noyau

5.2.1 Définition

Soient (G, *), (G', *') deux groupes, f un morphisme de groupes de G vers G' et e' l'élément neutre de (G', *').

Le noyau de f est :

$$Ker(f) = f^{-1}(\{e'\}) = \{x \in G \mid f(x) = e'\}$$

5.2.2 Propriétés

Soient (G,*), (G',*') deux groupes, f un morphisme de groupes de G vers G' et e l'élément neutre de (G,*).

Alors:

$$f$$
 injective $\Leftrightarrow \operatorname{Ker}(f) = \{e\}$

5.3 Morphismes d'anneaux

Soient $(A, +, \times)$ et $(B, +', \times')$ deux anneaux.

• Un morphisme d'anneaux de $(A, +, \times)$ vers $(B, +', \times')$ est un morphisme de groupes de (A, +) vers (B, +') tel que :

$$\forall (x,y) \in A, \begin{cases} f(xy) = f(x)f(y) \\ f(1) = 1 \end{cases}$$

• Un isomorphisme d'anneaux est un morphisme d'anneaux bijectifs.

