Fully Homomorphic Encryption using Ideal Lattices

by Craig Gentry

Ahmer Raza

School of Mathematical and Statistical Sciences Clemson University

April 10, 2025

Overview

- 1. Homomorphic Encryption
- 2. Somewhat Homomorphic Encryption
- 3. Bootstrapping
- 4. Fully Homomorphic Encryption

Recall a regular PKE scheme: KeyGen(λ), Encrypt(pk, π), and Decrypt(sk, ψ).

Recall a regular PKE scheme: KeyGen(λ), Encrypt(pk, π), and Decrypt(sk, ψ).

Goal: Allow anyone to evaluate a function of *t* plaintexts *without* decrypting them and *still* preserving encryption.

Recall a regular PKE scheme: KeyGen(λ), Encrypt(pk, π), and Decrypt(sk, ψ).

Goal: Allow anyone to evaluate a function of *t* plaintexts *without* decrypting them and *still* preserving encryption.

Alice (Sender) Plaintexts: π Keys: (sk, pk)

Bob (Evaluator) Arithmetic Circuit: *C* Key: pk

Recall a regular PKE scheme: KeyGen(λ), Encrypt(pk, π), and Decrypt(sk, ψ).

Goal: Allow anyone to evaluate a function of *t* plaintexts *without* decrypting them and *still* preserving encryption.

Alice (Sender) Plaintexts: π Keys: (sk, pk)

$$\boldsymbol{\pi} = (\pi_1, \dots, \pi_t)$$

 $\boldsymbol{\psi} = (\psi_1, \dots, \psi_t)$

Recall a regular PKE scheme: KeyGen(λ), Encrypt(pk, π), and Decrypt(sk, ψ).

Goal: Allow anyone to evaluate a function of *t* plaintexts *without* decrypting them and *still* preserving encryption.

Alice (Sender)
Plaintexts: π Keys: (sk, pk)

$$\boldsymbol{\pi} = (\pi_1, \dots, \pi_t)$$

 $\boldsymbol{\psi} = (\psi_1, \dots, \psi_t)$

Recall a regular PKE scheme: KeyGen(λ), Encrypt(pk, π), and Decrypt(sk, ψ).

Goal: Allow anyone to evaluate a function of *t* plaintexts *without* decrypting them and *still* preserving encryption.

Alice (Sender) Plaintexts: π Keys: (sk, pk)

$$\boldsymbol{\pi} = (\pi_1, \dots, \pi_t)$$

 $\boldsymbol{\psi} = (\psi_1, \dots, \psi_t)$

Type	Add/Multiply	Operations	Examples
Partially HE (PHE)	One	Unlimited	RSA, ElGamal, Paillier
Somewhat HE (SHE)	Both	Limited	[Gentry, 2009],
			Boneh-Goh-Nissim,
F.J. UE (FUE)	Dath	l ludiusika d	Melchor-Gaborit-Herranz
Fully HE (FHE)	Both	Unlimited	[Gentry, 2009]

[Gentry, 2009] begins with an unstable lattice-based SHE scheme, and uses **bootstrapping** to derive a FHE scheme.

Let $R = \mathbb{Z}[x]/f(x)$ be a **quotient ring**, where f(x) is a monic polynomial of degree n.

Note that $R \cong \mathbb{Z}^n$, so R and any ideal $I \subset R$ can be viewed as a lattice.

$$a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in R \quad \longleftrightarrow \quad (a_0, a_1, \dots, a_{n-1}) \in \mathbb{Z}^n$$

Let $R = \mathbb{Z}[x]/f(x)$ be a **quotient ring**, where f(x) is a monic polynomial of degree n.

Note that $R \cong \mathbb{Z}^n$, so R and any ideal $I \subset R$ can be viewed as a lattice.

$$a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in R \quad \longleftrightarrow \quad (a_0, a_1, \dots, a_{n-1}) \in \mathbb{Z}^n$$

An **ideal lattice** is any subset $I \subset R$ that is closed under addition, and closed under multiplication with R.

Example: $I = 2\mathbb{Z} = \{2k : k \in \mathbb{Z}\}$ is an ideal lattice of the ring \mathbb{Z} .

Parameters: Ring $R = \mathbb{Z}[x]/f(x)$ and basis \mathbf{B}_I of a "small" ideal lattice I. The plaintext space is R/I (cosets of I in R), meaning π is a coset ($\pi = r + I$ for some $r \in R$).

Parameters: Ring $R = \mathbb{Z}[x]/f(x)$ and basis \mathbf{B}_I of a "small" ideal lattice I. The plaintext space is R/I (cosets of I in R), meaning π is a coset ($\pi = r + I$ for some $r \in R$).

 $(\mathbf{B}_{\mathsf{sk}}, \mathbf{B}_{\mathsf{pk}}) \leftarrow \mathsf{KeyGen}$

- \mathbf{B}_{sk} is a good basis and \mathbf{B}_{pk} is a bad basis of a "big" ideal lattice J
- J is relatively prime to I, meaning I + J = R

Parameters: Ring $R = \mathbb{Z}[x]/f(x)$ and basis \mathbf{B}_I of a "small" ideal lattice I. The plaintext space is R/I (cosets of I in R), meaning π is a coset ($\pi = r + I$ for some $r \in R$).

$$(\textbf{B}_{\mathsf{sk}},\textbf{B}_{\mathsf{pk}}) \leftarrow \mathsf{KeyGen}$$

- \mathbf{B}_{sk} is a good basis and \mathbf{B}_{pk} is a bad basis of a "big" ideal lattice J
- J is relatively prime to I, meaning I + J = R

$$\psi \leftarrow \mathsf{Encrypt}(\mathbf{B}_{\mathsf{pk}}, \pi)$$

- Choose random, small representative $\pi' \in \pi + I$ with $\|\pi'\| \leq r_{\mathsf{Enc}}$
- Compute $\psi=\pi' \ \mathsf{mod} \ \mathbf{B}_{\mathsf{pk}}$, mapping to the half-open parallelepiped

$$\pi \leftarrow \mathsf{Decrypt}(\mathbf{B}_{\mathsf{sk}}, \psi)$$

- Compute $\pi' = \psi \mod \mathbf{B}_{\mathsf{sk}}$, which recovers the small representative if $\|\pi'\| \leq r_{\mathsf{Dec}}$
- Compute $\pi = \pi' \mod \mathbf{B}_I$, which obtains the proper coset in R/I

Parameters: Ring $R = \mathbb{Z}[x]/f(x)$ and basis \mathbf{B}_I of a "small" ideal lattice I. The plaintext space is R/I (cosets of I in R), meaning π is a coset ($\pi = r + I$ for some $r \in R$).

$$(\mathbf{B}_{\mathsf{sk}}, \mathbf{B}_{\mathsf{pk}}) \leftarrow \mathsf{KeyGen}$$

- \mathbf{B}_{sk} is a good basis and \mathbf{B}_{pk} is a bad basis of a "big" ideal lattice J
- J is relatively prime to I, meaning I + J = R

$$\psi \leftarrow \mathsf{Encrypt}(\mathbf{B}_{\mathsf{pk}}, \pi)$$

- Choose random, small representative $\pi' \in \pi + I$ with $\|\pi'\| \leq r_{\mathsf{Enc}}$
- Compute $\psi=\pi' \ \mathsf{mod} \ \mathbf{B}_{\mathsf{pk}}$, mapping to the half-open parallelepiped

$$\pi \leftarrow \mathsf{Decrypt}(\mathbf{B}_{\mathsf{sk}}, \psi)$$

- Compute $\pi' = \psi \mod \mathbf{B}_{\mathsf{sk}}$, which recovers the small representative if $\|\pi'\| \leq r_{\mathsf{Dec}}$
- Compute $\pi = \pi' \mod \mathbf{B}_I$, which obtains the proper coset in R/I

$$\begin{array}{l} \psi_{+} \leftarrow \mathsf{Add}(\mathbf{B}_{\mathsf{pk}}, \psi_{1}, \psi_{2}) \; \mathsf{outputs} \; (\psi_{1} + \psi_{2}) \; \mathsf{mod} \; \mathbf{B}_{\mathsf{pk}} \\ \psi_{\times} \leftarrow \mathsf{Multiply}(\mathbf{B}_{\mathsf{pk}}, \psi_{1}, \psi_{2}) \; \mathsf{outputs} \; (\psi_{1} \cdot \psi_{2}) \; \mathsf{mod} \; \mathbf{B}_{\mathsf{pk}} \end{array}$$

Encryption-decryption:

```
\begin{aligned} \mathsf{Decrypt}(\mathbf{B}_{\mathsf{sk}}, \mathsf{Encrypt}(\mathbf{B}_{\mathsf{pk}}, \pi)) &= \mathsf{Decrypt}(\mathbf{B}_{\mathsf{sk}}, \pi' \bmod \mathbf{B}_{\mathsf{pk}}) \\ &= ((\pi' \bmod \mathbf{B}_{\mathsf{pk}}) \bmod \mathbf{B}_{\mathsf{sk}}) \bmod \mathbf{B}_{\mathsf{l}} \\ &= \pi' \bmod \mathbf{B}_{\mathsf{l}} \qquad \qquad (\mathsf{if} \ \|\pi'\| \leq r_{\mathsf{Enc}}, r_{\mathsf{Dec}}) \\ &= \pi + \mathsf{l} \end{aligned}
```

Encryption-decryption:

$$\begin{aligned} \mathsf{Decrypt}(\mathbf{B}_{\mathsf{sk}}, \mathsf{Encrypt}(\mathbf{B}_{\mathsf{pk}}, \pi)) &= \mathsf{Decrypt}(\mathbf{B}_{\mathsf{sk}}, \pi' \; \mathsf{mod} \; \mathbf{B}_{\mathsf{pk}}) \\ &= ((\pi' \; \mathsf{mod} \; \mathbf{B}_{\mathsf{pk}}) \; \mathsf{mod} \; \mathbf{B}_{\mathsf{sk}}) \; \mathsf{mod} \; \mathbf{B}_{\mathsf{l}} \\ &= \pi' \; \mathsf{mod} \; \mathbf{B}_{\mathsf{l}} \\ &= \pi + \mathsf{l} \end{aligned} \qquad \qquad (\mathsf{if} \; \|\pi'\| \leq \mathit{r}_{\mathsf{Enc}}, \mathit{r}_{\mathsf{Dec}})$$

 $\mathsf{Add}(\mathbf{B}_{\mathsf{pk}},\psi_1,\psi_2)$ can be decrypted if $\pi_1'+\pi_2'$ is in the \mathbf{B}_{sk} parallelepiped.

$$\|\pi_1' + \pi_2'\| \le \|\pi_1'\| + \|\pi_1'\| \le 2 \cdot r_{\mathsf{Dec}}$$

Multiply($\mathbf{B}_{pk}, \psi_1, \psi_2$) can be decrypted if $\pi'_1 \cdot \pi'_2$ is in the \mathbf{B}_{sk} parallelepiped.

$$\|\pi_1' \cdot \pi_2'\| \le \gamma_{\mathsf{Multiply}}(R) \cdot \|\pi_1'\| \cdot \|\pi_1'\|$$

Bootstrapping

Key idea: What if the scheme could homomorphically evaluate its own decryption circuit?

Bootstrapping

Key idea: What if the scheme could homomorphically evaluate its own decryption circuit?

3 modifications to SHE scheme:

- 1. Simplify $\mathsf{Decrypt}(\mathbf{B}_{\mathsf{sk}}, \psi) = (\psi \bmod \mathbf{B}_{\mathsf{sk}}) \bmod \mathbf{B}_{\mathsf{l}}$ to $\mathsf{Decrypt}(\mathbf{v}_{\mathsf{sk}}, \psi) = (\psi \mathbf{v}_{\mathsf{sk}} \times \psi) \bmod 2$
- 2. Reduce decryption radius $r_{\rm Dec} \to r_{\rm Dec}/2$. This means ψ is required to be within $r_{\rm Dec}/2$ of a lattice point.
- 3. Use a hint to "squash" the decryption: the encrypter helps with computing the decryption even before messages are received.

Alice (Sender) Plaintexts: π Keys: (sk, pk)

$$\boldsymbol{\pi} = (\pi_1, \dots, \pi_t)$$

 $\boldsymbol{\psi} = (\psi_1, \dots, \psi_t)$

Bob (Evaluator) Arithmetic Circuit: *C* Key: pk

Alice (Sender) Plaintexts: π Keys: (sk, pk)

$$\psi_{\mathsf{sk}} = \mathsf{Encrypt}(\mathsf{pk}, \mathsf{sk}) \ oldsymbol{\psi} = \mathsf{Encrypt}(\mathsf{pk}, oldsymbol{\pi})$$

 $\psi = \mathsf{Evaluate}(\mathsf{pk}, C_{i...i+k}, \psi)$ $\psi = \mathsf{Refresh}(\psi_{\mathsf{sk}}, \psi)$ \dots

Alice (Sender)
Plaintexts: π Keys: (sk, pk)

$$\boldsymbol{\pi} = (\pi_1, \dots, \pi_t)$$

 $\boldsymbol{\psi} = (\psi_1, \dots, \psi_t)$

References

Gentry, C. (2009).

Fully homomorphic encryption using ideal lattices.

In *Proceedings of the forty-first annual ACM symposium on Theory of computing*, STOC '09, pages 169–178, New York, NY, USA. Association for Computing Machinery.