Vorlesung 3

Digitaler Zwilling

• digitale Darstellung eines realen Objekts oder Systems (materiell oder immateriell)

Integrationsansätze

- **Datenintegration:** Datenbestände von mehreren Informationssystemen werden zentral gespeichert (nicht mehrfach)
- Funktionsintegration: mehrere Funktionen werden in einem Informationssystem gebündelt
- Prozess- oder Vorgangsintegration: Prozesse folgender Funktionalitäten sind nahtlos miteinander verbunden (Schnittstellen)

SAP

- Kundenauftrag wird erfasst
- automatisches Ausführen von: Bestellung der Rohmaterialien, Erzeugung von Fertigungsaufträgen, Übermittlung an die Finanzplanung
- Rollen & Rechte verteilen

ERP Systeme

- \rightarrow integrierte betriebswirtschaftliche Softwarelösungen, die eine Vielzahl Geschäftsprozesse eines Unternehmens abdecken
 - hohe Datenintegration: zentrale Datenbank
 - hohe Funktions- und Prozessintegration: Schnittstellen

Informationssysteme in der Praxis: Enterprise Ressource Planning (ERP)

Systembereitstellung – Goldene Regeln

Softwareindustrie

- Nutzen eines Programms steigt mit Anzahl der Nutzer
- keine Vervielfältigungskosten: Software kann mehrfach verkauft werden ohne Mehraufwand
- kein Wertverlust durch Gebrauch

Make or Buy

Eigenentwickelte Software ("Make")

- Nahezu vollständige Abdeckung unternehmensspezifischer Anforderungen
- vollständige Integration in die Gesamtheit bereits implementierter Anwendungen
- Kosten für Anpassung und Einführung entfallen weitestgehend

Fremdentwickelte Software ("**Buy**")

- Eliminierung der Entwicklungszeiten durch rasche Produktverfügbarkeit
- Reduzierung der Einführungsund Übergangszeit im Vergleich zu Individual-Software
- Gewährleistung der Weiterentwicklung durch den Anbieter
- Unabhängigkeit der Programmentwicklung von der Verfügbarkeit der IT-Ressourcen

Nutzenkategorien von Informationssystemen

	monetär bewertbar	nicht monetär bewertbar
quantifizierbarer Nutzen	Verkürzung von Bearbeitungszeiten Abbau von Überstunden Materialeinsparung Personalreduzierung	Schnellere Angebotsbearbeitung Weniger Terminüberschreitungen Höherer Servicegrad Weniger Kundenreklamationen
nicht quantifizierbarer Nutzen		Erhöhung der Datenaktualität Verbesserte Informationen Gesteigertes Unternehmensimage Erweiterte Märkte und Geschäftsfelder

Anwendungslebenszyklus

- Entwicklung
- Einführung
- Wachstum
- Sättigung/Reife
- Rückgang
- Abschaffung

Planung eines Softwareentwicklungsprozesses

- Anforderungsanalyse und Erstellung einer Spezifikation
- Design
- Entwicklung
- Test und Integration

- Auslieferung des Produkts
- Wartung und Support

Strukturgetriebene Softwareentwicklung: **Spiralmodell**

Wiederholender Durchlauf von Entwicklungsphasen in Iterationen von jeweils 4 Schritten mit kontinuierlicher Bereitstellung von Prototypen.

- (1) Analyse: Definition von Rahmenbedingungen, Zielen, Anforderungen und Lösungsalternativen, Freigabe zur Umsetzung
- (2) Evaluierung: Evaluierung der umgesetzten Lösungsalternativen. Darauf basierend Erkennung von Risiken und Erarbeitung adäquater Strategien zur Vermeidung der Bisiken
- (3) Realisierung: Definition und anschließende Realisierung des Vorgehens, basierend auf den identifizierten Risiken.
- (4) Planung: Review der vorangegangenen Schritte und Planung der nächsten Iteration

Prinzipien agiler Softwareentwicklung

- Transparenz und Geschwindigkeit der Entwicklung erhöhen
- Fehler minimieren
- Kommunikation und Interaktion!

SCRUM

- Modell der agilen Softwareentwicklung
- Transparenz, Überprüfung und Anpassung
- grober, zeitlicher Rahmen wird definiert und dann angepasst
- Teams sind selbstorganisiert \rightarrow Daily Meetings

DevOps

- Development + Operations
- Ziel: in sich veränderden Umgebungen mit schlanken und flexiblen Software-Entwicklungsprozessen schnell zu reagieren

DevOps zur Integration von Entwicklung und Betrieb

Limitationen und Herausforderungen von DevOps

- Flexibilität
- Automatisierung
- Lean-Prinzipien \rightarrow System optimieren
- Alignment-Herausforderung \rightarrow Überwachung der wichtigsten Indikatoren
- Kultur- und Wissensaustausch

"Magisches Dreieck" des Projektmanagements

Proprietäre vs. Open Source Software

Traditionelle Informationssysteme	Open Source Informationssysteme
Entwicklung durch Softwareunternehmen	Entwicklung durch Programmierer verschiedener Organisationen und Freiwillige
Quellcode verbleibt im Softwareunternehmen	Quellcode der Software ist öffentlich zugänglich
Verbesserungen und Fehlerbehebungen langwieriger	Zügige Verbesserungen und Fehlerbehebungen möglich
Lizenzmodelle: Organisationen erwerben Lizenz zum Betrieb der Software	Keine Lizenzkosten
Spezifische Kundenanpassung nicht möglich	Möglichkeit der Kundenanpassung gegeben

Vorgehen zur Softwareauswahl

- Ist-Analyse
- Definition der Anforderung
- Marktanalyse
- Vergleich der Angebote
- $\bullet \ \ Vertragsverhandlung$

IT-Outsourcing: Vor- und Nachteile

Nachteile Verlust der ManagementKontrolle Abhängigkeit vom Dienstleister Sicherheitsrisiken und geringe Kontrolle über Datengut Hoher Kommunikationsaufwand Verlust des Know-Hows