

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family Silicon Errata and Data Sheet Clarification

The PIC32MZ Embedded Connectivity with Floating Point Unit (EF) family of devices that you have received conform functionally to the current Device Data Sheet (DS60001320), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) family silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (B3).

Data Sheet clarifications and corrections (if applicable) start on page 16, following the discussion of silicon issues

The silicon revision level can be identified using the current version of MPLAB[®] X IDE and Microchip's programmers, debuggers and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

For example, to identify the silicon revision level using MPLAB X IDE in conjunction with a hardware debugger:

- Using the appropriate interface, connect the device to the hardware debugger.
- 2. Open an MPLAB X IDE project.
- 3. Configure the MPLAB X IDE project for the appropriate device and hardware debugger.
- 4. Select <u>Window > Dashboard</u>, and then click the **Refresh Debug Tool Status** icon ().
- The part number and the Device and Revision ID values appear in the **Output** window

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The Device and Revision ID values for the various PIC32MZ EF Family silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

Dort Number	Device ID ⁽¹⁾	Revis	ion ID for S	ilicon Revi	sion ⁽¹⁾
Part Number	Device ID(*)	A1	А3	B2	В3
PIC32MZ0512EFE064	0x7201053				
PIC32MZ0512EFF064	0x7206053				
PIC32MZ0512EFK064	0x722E053				
PIC32MZ1024EFE064	0x7202053				
PIC32MZ1024EFF064	0x7207053				
PIC32MZ1024EFK064	0x722F053	0v4	0.43	0,46	0.47
PIC32MZ1024EFG064	0x7203053	0x1	0x3	0x6	0x7
PIC32MZ1024EFH064	0x7208053				
PIC32MZ1024EFM064	0x7230053				
PIC32MZ2048EFG064	0x7204053				
PIC32MZ2048EFH064	0x7209053				
PIC32MZ2048EFM064	0x7231053				

Note 1: Refer to the "**Memory Organization**" and "**Special Features**" chapters in the current Device Data Sheet (DS60001320) for detailed information on Device and Revision IDs for your specific device.

TABLE 1: SILICON DEVREV VALUES (CONTINUED)

Dowl Mussels on	Device ID ⁽¹⁾	Revis	ion ID for S	ilicon Revi	sion ⁽¹⁾
Part Number	Device ID(*)	A1	А3	B2	В3
PIC32MZ0512EFE100	0x720B053				
PIC32MZ0512EFF100	0x7210053				
PIC32MZ0512EFK100	0x7238053				
PIC32MZ1024EFE100	0x720C053				
PIC32MZ1024EFF100	0x7211053				
PIC32MZ1024EFK100	0x7239053	0.4	0.40	0.40	07
PIC32MZ1024EFG100	0x720D053	0x1	0x3	0x6	0x7
PIC32MZ1024EFH100	0x7212053				
PIC32MZ1024EFM100	0x723A053				
PIC32MZ2048EFG100	0x720E053				
PIC32MZ2048EFH100	0x7213053				
PIC32MZ2048EFM100	0x723B053				
PIC32MZ0512EFE124	0x7215053				
PIC32MZ0512EFF124	0x721A053				
PIC32MZ0512EFK124	0x7242053				
PIC32MZ1024EFE124	0x7216053				
PIC32MZ1024EFF124	0x721B053				
PIC32MZ1024EFK124	0x7243053	0.4	0.40	0.40	07
PIC32MZ1024EFG124	0x7217053	0x1	0x3	0x6	0x7
PIC32MZ1024EFH124	0x721C053				
PIC32MZ1024EFM124	0x7244053				
PIC32MZ2048EFG124	0x7218053				
PIC32MZ2048EFH124	0x721D053				
PIC32MZ2048EFM124	0x7245053				
PIC32MZ0512EFE144	0x721F053				
PIC32MZ0512EFF144	0x7224053				
PIC32MZ0512EFK144	0x724C053				
PIC32MZ1024EFE144	0x7220053				
PIC32MZ1024EFF144	0x7225053				
PIC32MZ1024EFK144	0x724D053	04	00	00	07
PIC32MZ1024EFG144	0x7221053	0x1	0x3	0x6	0x7
PIC32MZ1024EFH144	0x7226053				
PIC32MZ1024EFM144	0x724E053				
PIC32MZ2048EFG144	0x7222053				
PIC32MZ2048EFH144	0x7227053				
PIC32MZ2048EFM144	0x724F053				

Note 1: Refer to the "Memory Organization" and "Special Features" chapters in the current Device Data Sheet (DS60001320) for detailed information on Device and Revision IDs for your specific device.

TABLE 2: SILICON ISSUE SUMMARY

Madala	F 4			Affe	cted R	evisio	ns ⁽¹⁾
Module	Feature	Issue	Issue Summary	A 1	А3	B2	В3
Oscillator	Reference Clock	1.	The Reference Clock cannot divide input frequencies greater than 100 MHz.	Х	Х	Х	Х
Oscillator	Primary Oscillator Crystal	2.	Revision A1 Silicon: A crystal oscillator cannot be used as an input to the Primary Oscillator (OSC1/OSC2 pins). Revision A3 and B3 Silicon: The Primary Oscillator has been tested in a normal power-up sequence and supports specific crystal operation.	x	x	x	x
Oscillator	FRC Tuning	3.	The OSCTUN register only increases the frequency of the FRC.	X			
Secondary Oscillator	Crystal Use	4.	The Secondary Oscillator (Sosc) does not support crystal operation.	Х	Х		
Power- Saving	PMD bits	5.	Turning off REFCLK through the PMD bits causes unpredictable device behavior.		Х		
I2C	_	6.	The I ² C module does not function reliably under certain conditions.	Х	Х		
UART	Auto-baud	7.	The Auto-baud feature does not function to set the baud rate.	Х	Х	Х	Х
UART	Synchronizati on	8.	On a RX FIFO overflow, shift registers stop receiving data, which causes the UART to lose synchronization.		х	х	Х
USB	Suspend Mode	9.	The USB module will not function if the device enters Sleep mode and the USB PHY is turned off by setting the USBSSEN bit in the CFGCON register to '1'.		х	х	х
Power- Saving Modes	Sleep Mode	10.	The device may not exit Sleep mode.	Х	х		
ADC	Digital Filters	11.	Using multiple digital filters may result in data not being captured accurately.	Х	Х		
ADC	Level Trigger	12.	The ADC level trigger will not perform burst conversions in Debug mode.	Х	Х		
ADC	DNL	13.	In Differential mode, DNL for code 3072 is out of specification.	Х	Х	Х	Х
ADC	Low-voltage Operation	14.	When the operating voltage (VDD/AVDD) is below 2.5V (i.e., charge pumps are ON), only one ADC core can be used.	Х	х	х	Х
ADC	Turbo Mode	15.	Turbo mode is not functional.	Χ	Х	Х	Х
USB	Resume	16.	The USB module does not support remote wake-up.	Χ	Х	Х	Х
Oscillator	External Clock Mode	17.	The EC mode timing specifications for the Primary Oscillator (Posc) are not met.	Х			
Temperatur e Sensor	_	18.	The Temperature Sensor does not function.	Х	Х	Х	Х
ICSP	TDO	19.	The TDO pin becomes an output and toggles while programming on any ICSP [™] PGECx/PGEDx pair.	Х	Х	Х	Х
DMA	PMD bits	20.	Setting the PMD bit for DMA (PMD7<4>) does not disable clocks or the DMA peripheral.	Х	Х	Х	Х

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

TABLE 2: SILICON ISSUE SUMMARY (CONTINUED)

Modulo	Foatura	leeno	lecue Summany	Affected Revisions ⁽¹⁾					
Module	Feature	Issue	Issue Summary	A1	А3	B2	В3		
PMP	Status Bits	21.	The PMP input buffer full flag, IB0F, and the output buffer underflow, OBUF, are set as soon as the PMP is turned on in Client mode (when TTLEN = 1).	Х	х	х	Х		
Sleep	IPD	22.	A 3 mA increase occurs during Sleep mode when PB5DIV is disabled.	Х	Х	Х	Х		
SQI	RX/TX FIFO	23.	The SQI may continuously receive invalid data or fail to transmit when the SQICLKDIV is used.	Х	Х	Х	Х		
POR	GPIO	24.	Whenever VDD is less than1.75V, the I/O pin states may be indeterminate.	Х	Х				
Crypto	Partial Packet	25.	The cryptographic DMA module does not support partial packet processing.		Х	Х	Х		
Crypto	Zero Length Packet	26.	Zero length packets fail to process. The crypto DMA does not support an empty string hash.	Х	Х	Х	Х		
SPI	Block Transmission	27.	At the end of a transmission, the SRMT bit can indicate the completion of the transmission for one PBCLK even though the transmission has one block remaining.	X	x	x	х		
SQI	Special Function Registers	28.	The CPU stalls if the SQI Special Function Registers are read before the REFCLKO2 clock is enabled after a Reset.	Х	х	х	Х		
Sleep	Wake-ups	29.	Multiple sleep attempts which occur before the CPU has fully awakened, may stall the CPU until the next reset event.	Х	х	х	Х		
Security	System Bus Access	30.	The note at the end of the CFGPG register (Register no. 34-10) indicates that the CPU as system bus initiator is controlled within the CPU core is incorrect. The CPU core internal state will not control the CPU system bus initiator permission group.	×	x				
UART	High Speed Mode	31.	The UART Stop bit duration is shorter than expected in High-Speed mode (UxMODE.BRGH =1) for baud rates less than 7.5 Mbps.	Х	х	х	Х		
Reset	NMI Number	32.	The NMICNT bit field in the RNMICON register is 8 bits instead of 16 bits.	X	х				
I2C3	I2C3	33.	I ² C3 on the A3 revision is non functional.		Х				
USB	Host Disconnect Detection	34.	The USB Host module does not wake up CPU from sleep when a USB device is disconnected.	Х	х	х	х		
USB	LPM	35.	The USB Link Power Management (LPM) feature is not functional.	Х	Х	Х	Х		
USB	Host Resume	36.	The USB Host module does not send correct resume signal on the USB bus on subsequent suspend/resume sequences.	Х	х	х	х		
I2C	Speed	37.	The I ² C module does not meet low period of the SCL clock (tLOW) parameter from I ² C specification for clock frequency >= 400 kHz.	Х	х	х	х		

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

TABLE 2: SILICON ISSUE SUMMARY (CONTINUED)

Module	Feature	Issue	Issue Summany	Affe	cted R	evisio	ns ⁽¹⁾
Module	reature	issue	Issue Summary	A 1	А3	B2	В3
System Bus	Speed	38.	When SYSCLK >184 MHz and Flash Wait states = 2, device operation does not conform to published PROGRAM FLASH MEMORY WAIT STATES specification.			х	х
ADC	External VREF	39.	Excessive current flows through the VREF- pin when external voltage reference is used, and voltage on the VREF- pin is greater than AVss.	Х	х	Х	Х
USB	FIFO	40.	Writing '1' to the FLUSH bit (USBIENCSRx<19>, where x =1-7) does not flush the TX FIFO and reset the TX FIFO pointer.	X	х	х	х
EBI	FBIRDYx pin as GPIO	41.	EBIRDYEN1 bit (CFGEBIC<25>), EBIRDYEN2 bit (CFGEBIC<26>), EBIRDYEN3 bit (CFGEBIC<27>) are not functional and always set to '1'.	X		х	х
DMA	Channel Destination Half Full Interrupt	42.	DMA Channel Destination Half Full interrupt can trigger twice.	X	х	x	х
Device	Peripheral Bus x Clock Divisor Control	43.	Cannot wake-up from sleep by pin change interrupt.	Х	х	х	х
Timer2-9	Match	44.	If timer match coincides with entry into sleep mode, timer event triggers and interrupt may not occur.	X	Х	Х	Х
Flash - RTSP	RTSP	45.	Run-Time Self Programming of Configuration Words is not functional.	Х	Х	Х	Х

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note:

This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (**B3**).

1. Module: Oscillator

The Reference Module cannot divide input frequencies greater than 100 MHz. Therefore, SYSCLK cannot be divided if the SYSCLK operates at frequencies greater than 100 MHz.

Work around

Instead of using SYSCLK, use PBCLK1 as the input, which is limited to 100 MHz and is synchronized to SYSCLK.

Alternatively, do not divide the SYSCLK and allow the destination peripheral (i.e., SQI, SPI) to divide it as needed. To do this, set the RODIV<14:0> bits and the ROTRIM<8:0> bits to '0'.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Х	Х		

2. Module: Oscillator

Revision A1 Silicon: A crystal oscillator cannot be used as an input to the Primary Oscillator (Posc) pins OSC1 and OSC2.

Silicon Work around

Use an external clock or the Internal FRC Oscillator.

Revision A3 and B3 Silicon: The Posc has been tested in a normal power-up sequence and supports specific crystal operation.

Silicon Work around 1

The Primary Oscillator (Posc) has been characterized to operate at 8 MHz, 12 MHz, and 24 MHz when the circuit in Figure 1 is implemented, and the operating conditions listed in Table 3 are met.

FIGURE 1: Posc CRYSTAL CIRCUIT

TABLE 3: CRYSTAL SPECIFICATIONS

Crystal Frequency (see Note 1)	Series Resistor (Rs)	Posc Gain Setting POSCGAIN<1:0> (DEVCFG0<20:19>)	Posc Boost Setting POSCBOOST (DEVCFG0<21>)
8 MHz	2 kΩ	'0b00 (GAIN_0)	'0b1 (ON)
12 MHz	1 kΩ	'0b00 (GAIN_0)	'0b1 (ON)
24 MHz	0 kΩ	'0b00 (GAIN_0))	'0b1 (ON)

Note 1: Using any other crystal frequency will require special component selection and characterization.

2: A parallel resistor (RP) should not be used to increase the gain of the POSC.

Silicon Work around 2

Alternatively, use an external clock or the Internal FRC oscillator.

	A1	А3	B2	В3		
ĺ	Χ	Χ	Χ	Χ		

3. Module: Oscillator

The OSCTUN register only increases the frequency of the FRC, which results in the TUN<5:0> bits (OSCTUN<5:0>) functioning as follows:

TUN<5:0>: FRC Oscillator Tuning bits

111111 = Center frequency +4%

111110 =

.

•

000001 =

000000 = Center frequency; Oscillator runs at nominal frequency (8 MHz)

Work around

None.

Affected Silicon Revisions

A 1	А3	B2	В3		
Х					

4. Module: Secondary Oscillator

A crystal oscillator cannot be used as the input to the Secondary Oscillator (Sosc) pins SOSCI and SOSCO.

Silicon Work around

Use an external clock source (32,768 Hz) applied to the SOSCO pin with the FSOSCEN bit (DEVCFG1<6>) set to '0' (i.e., the Sosc is disabled through the Configuration Word) for a real-time clock base; otherwise, use the internal LPRC for non-precision requirements.

Affected Silicon Revisions

A 1	А3	B2	В3		
Х	Х				

5. Module: Power-Saving

Turning off the REFCLK modules through the PMD bits causes unpredictable behavior.

Work around

None. Do not disable the REFCLK modules through the PMD bits.

A1	А3	B2	В3		
Χ	Χ				

6. Module: I²C

Indeterminate I²C module behavior may result when data rates > 100 kHz and/or continuous sequential data transfers > 500 bytes are used.

The potential false intermittent error signals can result in one of the following error conditions, which are listed in order of decreasing frequency:

False Error Condition 1:

False Host Bus Collision Detect (Host-mode only) – The error is indicated through the BCL bit (I2CxSTAT<10>).

False Error Condition 2:

Receive Overflow (Host or Client modes) – The error is indicated through the I2COV bit (I2CxSTAT<20>).

• False Error Condition 3:

Suspended I^2C Module Operations (Host or Client modes) – I^2C transactions in progress are inadvertently suspended without error indications.

Note: All three false error conditions are recoverable in software.

Revision A1 Silicon Work around 1

False Error Condition 1:

Clear the Host Bus Collision Detect (BCL bit (I2CxSTAT<10>), after the bus returns to an Idle state. The software can monitor the S bit (I2CxSTAT<3>) and the P bit (I2CxSTAT<4>) to wait for an Idle bus. When the software services the bus collision Interrupt Service Routine and the I²C bus is free, the software can resume communication by asserting a new Start condition.

False Error Condition 2:

Clear the Receive Overflow Status flag I2COV bit (I2CxSTAT<20>), and then resume normal operation.

False Error Condition 3:

First, initialize a Timer to slightly greater than the worst case I²C transaction cycle, (i.e., from Start-to-Stop, including the sum of all other application PC flow latencies, calls, interrupts, etc.). Exact timing is not required, rather just long enough so that a normal transaction is not interrupted. Prior to the beginning of each transaction, start the timer. Be sure to stop and reset the timer after completion of each successful I²C transaction.

Revision A1 Silicon Work around 2

Instead of using the hardware I²C module, use a software "bit-bang" implementation.

Revision A3 Silicon Work around

The work arounds described for revision A1 silicon will also work for silicon revision A3, with the exception of I2C3, as I2C3 must use a software "bit-bang" implementation.

A 1	А3	B2	В3		
Χ	Χ				

7. Module: UART

The UART automatic baud rate feature is intended to set the baud rate during run-time based on external data input. However, this feature does not function.

Work around

None.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Χ	Χ		

8. Module: UART

During a RX FIFO overflow condition, the shift register stops receiving data. This causes the UART to lose synchronization with the serial data stream. The only way to recover from this is to turn the UART OFF and ON until it synchronizes. This could require several OFF/ON sequences.

Work arounds

Work around 1:

Avoid the RX overrun condition by ensuring that the UARTx module has a high enough interrupt priority such that other peripheral interrupt processing latencies do not exceed the time to overrun the UART RX buffer based on the application baud rate. Alternately or in addition to, set the URXISEL bits in the UxSTA register to generate an earlier RX interrupt based on RX FIFO fill status to buy more time for interrupt latency processing requirements.

Work around 2:

If avoiding RX FIFO overruns is not possible, implement an ACK/NAK software handshake protocol to repeat lost packet transfers after restoring the UART synchronization.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Χ	Χ		

9. Module: USB

The USB module will not function if the device enters Sleep mode and the USB PHY is turned off by setting the USBSSEN bit in the CFGCON register to '1'.

Work around

Keep the USB PHY operational in Sleep mode by setting the USBSSEN bit to '0'.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Χ	Χ		

10. Module: Power-Saving Modes

The device may not exit Sleep mode when Flash is powered down through the FSLEEP bit in the DEVCFG0/ADEVCFG0 Configuration register.

Work around

Enable Flash in Sleep mode by clearing the Flash Sleep Mode Configuration bit, FSLEEP, in the DEVCFG0/ADEVCFG0 Configuration register.

Affected Silicon Revisions

A1	А3	B2	В3		
Χ	Χ				

11. Module: ADC

When using multiple digital filters, the filters may not capture data correctly when the assigned data sources are ready at the same time.

Work around

Only one digital filter may be used at a time.

Affected Silicon Revisions

A1	А3	B2	В3		
Χ	Χ				

12. Module: ADC

The ADC level trigger will not perform burst conversions in Debug mode.

Work around

Do not use Debug mode with the ADC level trigger.

Affected Silicon Revisions

	A1	А3	B2	В3		
ĺ	Χ	Х				

13. Module: ADC

In Differential mode, code 3072 has a DNL of +3.

Work around

None.

A1	А3	B2	В3		
Χ	Χ	Χ	Χ		

14. Module: ADC

When the operating voltage (VDD/AVDD) is below 2.5V (i.e., charge pumps are ON), only one ADC core can be used.

Work around

None.

Affected Silicon Revisions

A1	А3	B2	В3		
Х	Χ	Χ	Χ		

15. Module: ADC

Turbo mode is not functional when two channels are linked for the purpose of increasing throughput.

Work around

None.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Х	Χ		

16. Module: USB

The USB module does not support remote wakeup through the USBRIE bit (USBCRCON<1>).

Work around

None.

USB descriptors must inform the host that the device does not support remote wake-up.

Affected Silicon Revisions

A1	А3	B2	В3		
Χ	Х	Х	Х		

17. Module: Oscillator

The Primary Oscillator in EC mode only functions up to 24 MHz

Work around

None.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ					

18. Module: Temperature Sensor

The temperature sensor does not function.

Work around

None.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Χ	Χ		

19. Module: ICSP

Regardless of other functions shared on the TDO pin, the TDO function becomes an active output and toggles while programming on any ICSP PGECx/PGEDx pair.

Work around

None.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Χ	Χ		

20. Module: DMA

Setting the PMD bit for DMA (PMD7<4>) does not disable clocks or the DMA peripheral.

Work around

None.

A 1	А3	B2	В3		
Χ	Х	Х	Х		

21. Module: PMP

The PMP input buffer full flag, IB0F, and the output buffer underflow, OBUF, are set as soon as the PMP is turned on in Client mode (when TTLEN = 1).

Work around

After PMP initial initialization is complete, and before the PMP and interrupts are enabled, clear the TTLEN bits in user software.

A 1	А3	B2	В3		
Χ	Χ	Χ	Χ		

22. Module: Sleep

If the ON bit (PB5DIV<15>) = 0 and PBCLK5 is disabled, a 3 mA increase in Sleep IPD current occurs.

Work around

Do not disable PBCLK5 before entering Sleep mode

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Χ	Х		

23. Module: SQI

When the SQI clock divider is used (by setting CLKDIV \neq 0), any one of the following error conditions may occur on some of the devices, which are depending on the DDRMODE setting:

- With DDRMODE = 0, the SQI fails in reception only.
- With DDRMODE = 1, the SQI may fail in both reception and transmission.

Work around

Set the CLKDIV bits to '0' and use the REFCLK02 as the SQI base clock.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Χ	Χ		

24. Module: POR

Whenever VDD is less than 1.75V, the I/O pin state and logic level may be indeterminate.

Work around

None.

Affected Silicon Revisions

A1	А3	В2	В3		
Х	Χ				

25. Module: Crypto

Attempting to run part of a cryptographic packet through the peripheral may not result in a usable initial vector for continuing the cryptographic operation.

Work around

Do not interrupt a cryptographic operation with another, instead, always process a hash completely.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Х	Х	Х		

26. Module: Crypto

Using the crypto DMA on an empty hash string will cause the peripheral to time out and not return a valid hash.

Work around

Use the fixed known hash of the empty string.

Affected Silicon Revisions

Ī	A1	А3	B2	В3		
Ī	Χ	Χ	Χ	Χ		

27. Module: SPI

Just before the last block of a transmission is shifted out to the SPI pins, the SRMT bit may incorrectly indicate that the transmission is done. However, this does not affect the Transmit Buffer Empty Interrupt (STXISEL = 0).

Work around

Use the interrupt notification rather than polling the SRMT bit to determine when a transmission has completed.

A1	А3	B2	В3		
Χ	Χ	Χ	Χ		

28. Module: SQI

Read access to SQI SFRs stalls the CPU when REFCLKO2 is disabled.

Work around

None.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Χ	Χ		

29. Module: Sleep

Multiple sleep attempts (WAIT instruction with OSCCON<4>=1) which occur within 20 μ s of a wake event, before the CPU has fully awakened, can cause the CPU to stall until a Power-on Reset (POR) event.

Work around

Ensure that at least 20 µs elapse before attempting to put the CPU to sleep (WAIT instruction with OSCCON<4>=1) after it awakens from a previous sleep.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Х	Х	Х		

30. Module: Security

The note at the end of the CFGPG register (Register no. 34-10) indicates that the CPU as a system bus initiator is controlled within the CPU core is incorrect. The CPU core internal state will not control the CPU system bus initiator permission group.

Work around

Use the CFGPG register reserved bits <1:0> to control the permission group ID of the CPU as a system bus initiator.

- 11 = Initiator is assigned to permission group 3
- 10 = Initiator is assigned to permission group 2
- 01 = Initiator is assigned to permission group 1
- 00 = Initiator is assigned to permission group 0

Also, the reserved bits <:14:12> of the DEVCFG0 and ADEVCFG0 registers can be used to control the permission group ID of the CPU in Debug mode, as in:

- 1xx = Allow CPU access to permission group 2 permission regions
- x1x = Allow CPU access to permission group 1 permission regions
- xx1 = Allow CPU access to permission group 0 permission regions
- 0xx = Deny CPU access to permission group 2

permission regions

- x0x = Deny CPU access to permission group 1 permission regions
- xx0 = Deny CPU access to permission group 0 permission regions

When the CPU is in Debug mode and CFGPG<1:0> are set to a denied permission group as defined by the DEVCFG0<14:12>, the transaction request is assigned Group 3 permissions.

Affected Silicon Revisions

A	1	А3	B2	В3		
2	X	Х				

31. Module: UART

The UART TX Stop bit duration is shorter than the expected in High-Speed mode (BRGH (UxMODE<3>) = 1) for baud rates less than 7.5 Mbps.

Work around

For baud rates less than 7.5 Mbps, operate the UART in Standard-Speed mode, that is, BRGH (UxMODE<3>) =0. For baud rates greater than 7.5 Mbps operate the UART in High-Speed mode, that is, BRGH (UxMODE<3>) =1.

A 1	А3	B2	В3		
Χ	Χ	Χ	Χ		

32. Module: Reset

The NMICNT bit field in the RNMICON register is 8 bits instead of 16 bits. It has limited to values 0 through 255.

Work around

The user must update the NMICNT register immediately upon entry into NMI ISR in their code with an 8-bit value not to exceed 0xFF. If the user needs to extend the NMI reset event >257 clock counts, the NMICNT register can be updated many times as required inside the NMI to ensure users NMI routine can complete before the pending reset.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Х				

33. Module: I2C3

I2C3 on the A3 revision is non functional.

Work around

Silicon revision A3 I2C3 must use a software "bit-bang" implementation.

Affected Silicon Revisions

A 1	А3	B2	В3		
	Χ				

34. Module: USB

The USB Host module does not wake up CPU from sleep when a USB device is disconnected.

Work around

None.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Х	Х	Х		

35. Module: USB

The USB Link Power Management (LPM) feature is not functional.

Work around

None.

Affected Silicon Revisions

A1	А3	B2	В3		
Χ	Х	Х	Х		

36. Module: USB

The USB Host module will send a correct resume signal on the first suspend or sleep sequence, but not on subsequent suspend or sleep sequences.

Work around

None.

Affected Silicon Revisions

A1	А3	B2	В3		
Χ	Х	Х	Х		

37. Module: I²C

The I^2C host module does not meet low period of the SCL clock (tLOW) parameter from I^2C specification for clock frequency >= 400 kHz.

Work around

None.

A 1	А3	B2	В3		
Х	Х	Х	Х		

38. Module: System Bus

Device operation does not conform to published PROGRAM FLASH MEMORY WAIT STATES specification of the following:

Required Flash Wait States	SYSCLK	Units
With ECC:		
2 Wait states	120 < SYSCLK ≤ 200	MHz
Without ECC:		
2 Wait states	140 < SYSCLK ≤ 200	MHz

This may result in undetermined device operation.

Work around

Configure the device to the following specification:

Required Flash Wait States	SYSCLK	Units
With ECC:		
2 Wait states	120 < SYSCLK ≤ 184	MHz
3 Wait states	184 < SYSCLK ≤ 200	
Without ECC:		
2 Wait states	140 < SYSCLK ≤ 184	MHz
3 Wait states	184 < SYSCLK ≤ 200	

Increasing Flash wait states in the user application from 2 to 3 will impact the CPU performance by <2% if the cache is enabled.

Affected Silicon Revisions

A1	А3	B2	В3		
		Х	Χ		

39. Module: ADC

Excessive current flows through the VREF- pin when the external voltage reference is used, and the voltage on the VREF- pin is greater than AVss.

Work around

Connect the VREF- pin to AVss. Input dynamic range can be changed after varying voltage on the VREF+ pin.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Χ	Χ	Χ		

40. Module: USB

Writing '1' to the FLUSH bit (USBIENCSRx <19>, where x = 1-7) does not flush the TX FIFO and reset the TX FIFO pointer. As a result, the TXPKTRDY bit (USBIENCSRx <16>, where x =1-7) is not cleared and the USB interrupt is not generated.

Work around

To clear the TX FIFO, simultaneously set the FLUSH bit (USBIENCSRx <19>, where x = 1-7) and clear the TXPKTRDY bit (USBIENCSRx <16>, where x = 1-7). This sequence must be repeated twice to flush the FIFO.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Х	Х	Χ		

41. Module: EBI

The EBIRDYEN1 bit (CFGEBIC <25>), EBIRDYEN2 bit (CFGEBIC <26>), EBIRDYEN3 bit (CFGEBIC <27>) are not functional and always set to '1'.

Work around

None.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ		Χ	Χ		

42. Module: DMA

If the DMA Channel Destination Half Full Interrupt Enable bit is set (DCHxINT.CHDIE = 1), the Channel Destination Half Full Interrupt Flag (DCHxINT.CHDHIF) bit can trigger twice. When the DCHxINT.CHDHIF bit triggers at n/2 byte and is cleared immediately by software, the DCHxINT.CHDHIF bit can trigger at ((n/2) + 1) byte also.

Work around

Clear the DCHxINT.CHDHIF bit along with the Channel Block Transfer Complete Interrupt Flag (DCHxINT.CHBCIF) bit.

A 1	А3	B2	В3		
Χ	Х	Х	Х		

43. Module: Device

When the Peripheral Bus x Clock Divisor Control bits (PBxDIV.PBDIV) are greater or equal to three and the device is set in Sleep mode, the device cannot be woken up by a pin change interrupt.

Work around

Change the PBxDIV.PBDIV bits to equal or less than two before entering Sleep mode, then return PBxDIV.PBDIV to the required value after waking up from Sleep mode.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Х	Х	Х		

44. Module: Timer2-9

If timer match coincides with entry into Sleep mode, timer event triggers and interrupt may not occur.

Work around

None.

Affected Silicon Revisions

A 1	А3	B2	В3		
Χ	Х	Х	Х		

45. Module: Flash - RTSP

Run-Time Self Programming of Configuration Words is not functional.

Work around

None.

A 1	А3	B2	В3		
Х	Х	Х	Х		

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS60001320H):

Note:

Corrections in tables are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

1. Module: Ethernet

In Table 2. "Pin Names for 64-pin QFN and TQFP Devices" of the current data sheet, the AECRSDV signal was erroneously omitted from the pin number 44 and added to the pin number 62. The correct assignment is shown in bold type in the following table.

64-PIN QFN⁽⁴⁾ AND TQFP (TOP VIEW)

PIC32MZ0512EF(E/F/K)064 PIC32MZ1024EF(G/H/M)064 PIC32MZ1024EF(E/F/K)064 PIC32MZ2048EF(G/H/M)064

Pin#	Full Pin Name
1	AN17/ETXEN/RPE5/PMD5/RE5
2	AN16/ETXD0/PMD6/RE6
3	AN15/ETXD1/PMD7/RE7
4	AN14/C1IND/RPG6/SCK2/PMA5/RG6
5	AN13/C1INC/RPG7/SDA4/PMA4/RG7
6	AN12/C2IND/RPG8/SCL4/PMA3/RG8
7	Vss
8	VDD
9	MCLR
10	AN11/C2INC/RPG9/PMA2/RG9
11	AN45/C1INA/RPB5/RB5
12	AN4/C1INB/RB4
13	AN3/C2INA/RPB3/RB3
14	AN2/C2INB/RPB2/RB2
15	PGEC1/VREF-/CVREF-/AN1/RPB1/RB1
16	PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0
17	PGEC2/AN46/RPB6/RB6
18	PGED2/AN47/RPB7/RB7
19	AVDD
20	AVss
21	AN48/RPB8/PMA10/RB8
22	AN49/RPB9/PMA7/RB9
23	TMS/CVREFOUT/AN5/RPB10/PMA13/RB10
24	TDO/AN6/PMA12/RB11
25	Vss
26	VDD
27	TCK/AN7/PMA11/RB12
28	TDI/AN8/RB13

Pin#	Full Pin Name
33	VBUS
34	VUSB3V3
35	Vss
36	D-
37	D+
38	RPF3/USBID/RF3
39	VDD
40	Vss
41	RPF4/SDA5/PMA9/RF4
42	RPF5/SCL5/PMA8/RF5
43	AERXD0/ETXD2/RPD9/SDA1/PMCS2/PMA15/RD9
44	AECRSDV/ECOL/RPD10/SCL1/SCK4/RD10
45	AERXCLK/AEREFCLK/ECRS/RPD11/PMCS1/PMA14/RD11
46	AERXD1/ETXD3/RPD0/RTCC/INT0/RD0
47	SOSCI/RPC13/RC13
48	SOSCO/RPC14/T1CK/RC14
49	EMDIO/AEMDIO/RPD1/SCK1/RD1
50	ETXERR/AETXEN/RPD2/SDA3/RD2
51	AERXERR/ETXCLK/RPD3/SCL3/RD3
52	SQICS0/RPD4/PMWR/RD4
53	SQICS1/RPD5/PMRD/RD5
54	VDD
55	Vss
56	ERXD3/AETXD1/RPF0/RF0
57	TRCLK/SQICLK/ERXD2/AETXD0/RPF1/RF1
58	TRD0/SQID0/ERXD1/PMD0/RE0
59	Vss
60	VDD

Note

- 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.
- 2: Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O Ports" for more information.
- 3: Shaded pins are 5V tolerant.
- 4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

64-PIN QFN⁽⁴⁾ AND TQFP (TOP VIEW)

PIC32MZ0512EF(E/F/K)064 PIC32MZ1024EF(G/H/M)064 PIC32MZ1024EF(E/F/K)064 PIC32MZ2048EF(G/H/M)064

Pin#	Full Pin Name					
29	AN9/RPB14/SCK3/PMA1/RB14					
30	N10/EMDC/AEMDC/RPB15/OCFB/PMA0/RB15					
31	OSC1/CLKI/RC12					
32	OSC2/CLKO/RC15					

Pin#	Full Pin Name					
61	TRD1/SQID1/ERXD0/PMD1/RE1					
62	TRD2/SQID2/ERXDV/ECRSDV/PMD2/RE2					
63	TRD3/SQID3/ERXCLK/EREFCLK/RPE3/PMD3/RE3					
64	AN18/ERXERR/PMD4/RE4					

Note

- : The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.
- 2: Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O Ports" for more information.
- 3: Shaded pins are 5V tolerant.
- 4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

2. Module: Ethernet

In 64-pin QFN/TQFP column of Table 1-19. "Alternate Ethernet RMII Pinout I/O Descriptions" of the current data sheet, the AECRSDV signal was erroneously assigned to the pin number 62 instead of the pin number 44. The correct assignment is shown in bold type in the following table.

			Pin Nur	mber						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	100-pin TFBGA	124-pin VTLA	144-pin TQFP/ LQFP	144-pin TFBGA	Pin Type	Buffer Type	Description	
AERXD0	43	18	А3	_	_	_	I	ST	Alternate Ethernet Receive Data 0	
AERXD1	46	19	A4	_	_		I	ST	Alternate Ethernet Receive Data 1	
AERXERR	51	1	A9	_	_	_	I	ST	Alternate Ethernet Receive Error Input	
AETXD0	57	47	J2	_	_	_	0	_	Alternate Ethernet Transmit Data 0	
AETXD1	56	48	J1	_	_	_	0	_	Alternate Ethernet Transmit Data 1	
AEMDC	30	70	K8	_	_	_	0	_	Alternate Ethernet Management Data Clock	
AEMDIO	49	71	J8	_	_	_	I/O	_	Alternate Ethernet Management Data	
AETXEN	50	67	J6	_	_	_	0	_	Alternate Ethernet Transmit Enable	
AEREFCLK	45	16	D4	_	_	_	I	ST	Alternate Ethernet Reference Clock	
AECRSDV	44	12	C5	_	_	_	1	ST	Alternate Ethernet Carrier Sense Data Valid	

Legend: CMOS = CMOS-compatible input or output
ST = Schmitt Trigger input with CMOS levels
TTL = Transistor-transistor Logic input buffer

Analog = Analog input
O = Output
PPS = Peripheral Pin Select

P = Power I = Input

3. Module: EBI

The minimum values from Table 37-47. "EBI Timing Requirements" in the current product Data Sheet was erroneous. The correct values are listed in the table below:

TABLE 3-1: EBI TIMING REQUIREMENTS⁽¹⁾

AC CHA	RACTER	RISTICS	Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param. No. Symbol Characteristic Min. Typ. Max. Units Cor							Conditions	
EB10	TEBICLK	Internal EBI Clock Period (PBCLK8)	10	_	_	ns	_	
EB11	TEBIRC	EBI Read Cycle Time (TRC<5:0>)	30	_	_	ns	_	
EB12	TEBIPRC	EBI Page Read Cycle Time (TPRC<3:0>)	30	_	_	ns	_	
EB13	TEBIAS	EBI Write Address Setup (TAS<1:0>)	15	_	_	ns	_	
EB14	TEBIWP	EBI Write Pulse Width (TWP<5:0>)	25	ı	ı	ns	_	
EB15	TEBIWR	EBI Write Recovery Time (TWR<1:0>)	15	ı	ı	ns	_	
EB16	ТЕВІСО	EBI Output Control Signal Delay	_	_	5	ns	See Note 2	
EB17	TEBIDO	EBI Output Data Signal Delay	-	_	5	ns	See Note 2	
EB18	TEBIDS	EBI Input Data Setup	10			ns	See Note 2	
EB19	TEBIDH	EBI Input Data Hold	3	_	_	ns	See Note 2, 3	

Note 1: EBI Timings Requirements data are from simulation.

- 2: Maximum pin capacitance = 10 pF.
- **3:** Hold time from EBI Address change is 0 ns.

4. Module: IVREF DC Characteristics

The DC characteristics of IVREF, as shown in Table 37-14, have been updated (shown in **bold**):

TABLE 3-2: DC CHARACTERISTICS

Param. No.	Symbol	Characteristics	Minimum	Typical	Maximum	Units	Comments
D305	IV REF	Internal Voltage	1.182	1.214	1.245	V	-
		Reference					

APPENDIX A: REVISION HISTORY

Rev A Document (7/2015)

Initial release of this document issued for revision A1 silicon, which includes silicon issues 1. Module: (Oscillator), 2. Module: (Oscillator), 3. Module: (Oscillator), 4. Module: (Secondary Oscillator), 5. Module: (Power-Saving), 6. Module: (I2C), 7. Module: (UART), 8. Module: (UART), 9. Module: (USB), and Power-Saving Modes.

Rev B Document (4/2016)

Added silicon issues 11. Module: (ADC) and 12. Module: (ADC).

Updated silicon issues 2. Module: (Oscillator) and 10. Module: (Power-Saving Modes).

Rev C Document (7/2016)

Updated to include silicon revision A3.

Updated silicon issues 2. Module: (Oscillator), 6. Module: (I2C), and 11. Module: (ADC).

Added silicon issues 13. Module: (ADC), 14. Module: (ADC), 15. Module: (ADC), and 16. Module: (USB).

Added data sheet clarifications 1. Module: (Resets) and 2. Module: (Interrupt Controller).

Rev D Document (9/2016)

Updated Figure 1 and Table 3 in silicon issue 2. Module: (Oscillator).

Added silicon issues 17. Module: (Oscillator) and 18. Module: (Temperature Sensor).

Added data sheet clarification 3. Module: (External Clock Timing Requirements).

Rev E Document (3/2018)

Internal release, minor content edits gone into this release.

Rev F Document (4/2018)

Added silicon issues: 19. Module: (ICSP), 20. Module: (DMA), 21. Module: (PMP), 22. Module: (Sleep), 23. Module: (SQI), 24. Module: (POR), 25. Module: (Crypto), 26. Module: (Crypto), 27. Module: (SPI), 28. Module: (SQI), and 29. Module: (Sleep).

All data sheet clarifications were removed.

Rev G Document (6/2018)

Updated to include silicon revision B2.

Added silicon issue 30. Module: Security.

Rev H Document (9/2018)

Added Silicon issues: 31. Module: UART.

Rev J Document (2/2019)

Added Silicon Issue 32. Module: Reset.

Added Data Sheet Clarifications: 1. Module:Ethernet, Appendix A:Revision History, and 33. Module:I2C3.

Updated Silicon Issue 2. Module:Oscillator.

Rev K Document (01/2020)

Added Silicon Issues 34. Module:USB, 35. Module:USB, 36. Module:USB, and 37. Module:I2C

Updated Silicon issue 28. Module:SQI.

All data sheet clarifications were removed.

Rev. L Document (06/2020)

Added silicon Issue 38. Module:System Bus.

Updated silicon issue 24. Module:POR.

Rev. M Document (09/2020)

Added Data Sheet Clarifications 1. Module:Ethernet, and 2. Module:Ethernet.

Updated TABLE 2:Silicon Issue Summary for issue 1 to include revision B2 silicon

Rev. N Document (05/2021)

Terminology for "Master" and "Slave" was updated to "Host" and "Client" respectively. This change may not be reflected in all associated Microchip documentation. For more information, contact a Microchip sales representative.

Added a new Data Sheet Clarification for 3. Module: EBI.

Added the following new silicon issues:

- 39. Module: (ADC)
- 40. Module: (USB)
- 41. Module: (EBI)
- 42. Module: (DMA)
- 43. Module: (Device)
- 44. Module: (Timer2-9)

Rev. P Document (03/2022)

The following Data Sheet clarifications were added:

• 4. Module:IVREF DC Characteristics

Rev. Q Document (07/2022)

The following errata were added in this revision:

• 45. Module: (Flash - RTSP)

Rev. R Document (04/2023)

The following updates were performed for this revision:

• Updated the Silicon revision to B3 throughout the document

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach. Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2378-6

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-5983 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian

Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910

Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820