EE5609 – Matrix Theory 2023 Practice Set 1

Lakshmi Prasad Natarajan

Solutions are not to be returned

Reading Exercise

- 1. Geometry of some 2-D linear transformations.
 - Inspect and understand Tables 1 to 4 in Chapter 1 of David Lay's textbook.
- 2. Terminology related to linear transformations.

From Section 1.8 of David Lay, learn about domain, codomain, image and range.

From Section 1.9 of David Lay, learn about *onto* and *one-to-one* functions. An onto function is also called *surjective*, and a one-to-one function is also called *injective*. A function that is both onto and one-to-one is called a *one-to-one correspondence* or a *bijection* or *invertible*.

3. Geometric transformations

Section 7.1 of Boyd & Vandenberghe.

4. Selector matrices

Section 7.2 of Boyd & Vandenberghe.

5. Discrete-time convolution as matrix-vector multiplication.

Section 7.4 of Boyd & Vandenberghe.

Practice Set

Notation: Bold lower case letters will denote column vectors, and bold upper case letters are matrices. The symbol \mathbb{F} denotes either \mathbb{R} or \mathbb{C} .

- 1. Questions from Boyd & Vandenberge's textbook.
 - (a) Chapter 6, Exercise Problems: 6.6, 6.7, 6.11, 6.13.
 - (b) Chapter 7, Exercise Problems: 7.1 to 7.4.
 - (c) Chapter 10, Exercise Problems: 10.1 to 10.6.
- 2. Give examples of linear transformations that are:
 - (a) one-to-one but not onto.
 - (b) onto but not one-to-one.
 - (c) both onto and one-to-one (i.e., invertible).
- 3. Suppose $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a function that reflects a point about the following straight line passing through the origin:

$$x_2 = x_1 \tan(\theta)$$
.

Using the fact that f is a linear function find the matrix corresponding to f.

4. Suppose $\mathbf{A} \in \mathbb{F}^{m \times n}$. Is the function that maps $\mathbf{x} \in \mathbb{F}^n$ to $\mathbf{A}\mathbf{x} \in \mathbb{F}^m$ linear?

5. Suppose
$$\mathbf{A} \in \mathbb{F}^{m \times n}$$
. For $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \in \mathbb{F}^m$ let
$$\begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix} \mathbf{A}.$$

Define the function
$$f$$
 as $f(\mathbf{x}) = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$.

Prove that f is linear and find the matrix corresponding to f.

- 6. Determine if the following functions are linear. Support your answer with mathematical reasoning.
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}$, where $f(\boldsymbol{x}) = \max\{x_1, x_2\}$.
 - (b) $f: \mathbb{F} \to \mathbb{F}^2$, where $f(x) = \begin{bmatrix} x \\ a \end{bmatrix}$. For which choices of $a \in \mathbb{F}$ is f linear, and for which choices of a is f non-linear?
 - (c) $f: \mathbb{C}^2 \to \mathbb{C}^2$, where $f(\boldsymbol{x}) = \begin{bmatrix} \operatorname{Real}(x_1) \\ \operatorname{Real}(x_2) \end{bmatrix}$. Use $\mathbb{F} = \mathbb{C}$.