Experimental Methods: Lecture 7

Machine Learning

Raymond Duch

June 8, 2022

University of Oxford

Road Map

- Machine Learning
- Machine Learning: BART
- BART Heterogeneous Treatment Effects
- CJBART: Conjoint Heterogeneity

Machine learning

How Machine Learning Works

- Prediction: produce predictions of y from x
 - Supervised use subset of "known" y values to train model e.g. LASSO, random forest, BART etc.
 - Unsupervised self-organised learning e.g. k-means clustering
- Discovers complex structure not specified in advance
- Fits complex and very flexible functional forms to the data
 - without simply overfitting; and
 - functions that work well out-of-sample

Performance of different machines

Table 1
Performance of Different Algorithms in Predicting House Values

	Prediction	performance (R ²)	Relative improvement over ordinary least						
	Training Hold-out		squares by quintile of house value						
Method	sample	sample	1st	2nd	3rd	4th	5th		
Ordinary least squares	47.3%	41.7% [39.7%, 43.7%]	_	-	-	-	-		
Regression tree tuned by depth	39.6%	34.5% [32.6%, 36.5%]	-11.5%	10.8%	6.4%	-14.6%	-31.8%		
LASSO	46.0%	43.3% [41.5%, 45.2%]	1.3%	11.9%	13.1%	10.1%	-1.9%		
Random forest	85.1%	45.5% [43.6%, 47.5%]	3.5%	23.6%	27.0%	17.8%	-0.5%		
Ensemble	80.4%	45.9% [44.0%, 47.9%]	4.5%	16.0%	17.9%	14.2%	7.6%		

Regression tree

A Shallow Regression Tree Predicting House Values

Note: Based on a sample from the 2011 American Housing Survey metropolitan survey. House-value predictions are in log dollars.

Improving ML-estimation: ensemble methods

Bagging:

- "Bootstrap aggregation", random samples with replacement as training data
- Reduces variance, as used in random forest methods

Boosting:

- Sequential weak-learner models, data weighted by misclassification
- Reduces bias, as used in gradient tree methods

Stacking:

- Run different estimation strategies and weight super-learner by each model's predictive capacity
- Increases predictive capacity, see Grimmer et al. (2017)

Predicting counterfactual outcomes in experimental contexts

Suppose we have 8 observations of an outcome, treatment assignment and two covariates:

у	d	Gender	Education
12	1	Female	High
13	1	Female	Low
5	0	Female	High
6	0	Female	Low
7	1	Male	High
8	1	Male	Low
7	0	Male	High
6	0	Male	Low

Table 1: Observed

у	d	Gender	Education
?	0	Female	High
?	0	Female	Low
?	1	Female	High
?	1	Female	Low
?	0	Male	High
?	0	Male	Low
?	1	Male	High
?	1	Male	Low

Table 2: Unobserved counterfactual

$$ATE_{Observed} = 10 - 6 = 4$$

Random Forest Estimation

- Random sample of data and predictors
- Take bootstrap samples with replacement of training data:

у	d	Gender	Education
12	1	Female	High
13	1	Female	Low
5	0	Female	High
5	0	Female	High
12	1	Female	High
7	0	Male	High
7	0	Male	High
6	0	Male	Low

Table 3: Sampled observations (with replacement)

Construct tree from sample, using random selection of predictor variables

Tree-based logic - Tree #1

Tree-based logic – Tree #2

Random Forest: Estimating the CATE

$$\begin{pmatrix} \hat{\mathbf{y}}_{i,d=1,t=1} & \hat{\mathbf{y}}_{i,d=0,t=1} \\ 12.3 & 5 \\ 12.3 & 5 \\ 12.3 & 5 \\ 12.3 & 5 \\ 12.3 & 5 \\ 6.7 & 6.7 \\ 6.7 & 6.7 \\ 6.7 & 6.7 \\ \hline & 17ree #1 \end{pmatrix} \begin{pmatrix} Tree #2 \\ \hat{\mathbf{y}}_{i,t=2} \\ 13 \\ 9.5 \\ 13 \\ 9.5 \\ 8.5 \\ 9.5 \end{pmatrix} = \begin{pmatrix} \hat{y}_{i,d=1} & \hat{y}_{i,d=0} & \mathbf{CATE} \\ 12.7 & 9 & 3.7 \\ 10.9 & 7.3 & 3.6 \\ 12.7 & 9. & 3.7 \\ 10.9 & 7.3 & 3.6 \\ 7.6 & 7.6 & 0 \\ 8.1 & 8.1 & 0 \\ 7.6 & 7.6 & 0 \\ 8.1 & 8.1 & 0 \\ \hline & Average over trees \end{pmatrix}$$

Treatments $d \in \{0,1\}$, trees $t \in \{0,1\}$, no. of trees = TPredicted outcome given treatment assignment $d = \hat{y}_{i,d} = \frac{1}{T} \sum_{t}^{T} \hat{y}_{i,d}$

Machine Learning: BART

BART Estimation strategy

- Estimate f(x) = E(Y|x)
- Fit a sequence of "weak" tree-based regression models
- Each tree contributes a "a small and different portion of f" (Chipman et al 2010)¹
- Iterative application of sum-of-trees effectively generates a posterior probability distribution of outcomes, given covariate vector X
- From which you can recover E(Y|x) and uncertainty intervals

¹BART: Bayesian Additive Regression Trees, The Annals of Applied Statistics, 2010, Vo.4, No.1

Altered posterior probabilities given covariate values

$$\hat{y} = \frac{1}{K} \sum_{k=1}^{K} k \leftarrow f(x)$$

Estimating the CATE - overall strategy

- BART model estimation generates posterior function of f(x)
- Averaging repeat draws from posterior density generates mean outcome for each observation given its vector of predictors x_i
- x_i contains treatment assignment plus other covariates
- Predict \hat{y}_i for two matrices:
 - 1. Actual observed treatment values (plus covariates)
 - 2. Counterfactual matrix of reversed treatment assignment (1 \leftrightarrow 0) (plus same covariates)
- For each observation i, we recover two estimates: $y_{i,d=1}$ and $y_{i,d=0}$
- CATE = $y_{i,d=1} y_{i,d=0}$

Estimating the CATE - generate two test matrices

- Predictions are made using two matrices²
- Second matrix is the test dataset in the R code
- Matrices are identical except treatment assignment is reversed in second matrix

$D_{\mathbf{Obs}}$.	Gender	Education	y _{i,d}	Γ	$D_{Counter}$.	Gender	Education	y _{i,d}	1
1	Female	High	14	-	0	Female	High	7	
1	Female	Low	12		0	Female	Low	7	l
0	Female	High	4		1	Female	High	12	l
0	Female	Low	6		1	Female	Low	13	ı
1	Male	High	7		0	Male	High	8	
1	Male	Low	7		0	Male	Low	6	l
0	Male	High	8		1	Male	High	8	l
0	Male	Low	6		1	Male	Low	6	

²NB: The first, observed matrix is implicitly generated by BART since it is the initial training data (excluding observed outcome)

Estimating the CATE - rearrange matrices

- Matrices can be rearranged such that all observations in matrix 1 are d = 1 and vice versa for matrix 2
- Covariate information is constant across both matrices

$D_{Obs.}$	Gender	Education	<i>y</i> i,d=1 −	D _{Counter} .	Gender	Education	<i>y</i> i,d=0	1
1	Female	High	14	0	Female	High	7	
1	Female	Low	12	0	Female	Low	7	
1	Female	High	12	0	Female	High	4	
1	Female	Low	13	0	Female	Low	6	
1	Male	High	7	0	Male	High	8	
1	Male	Low	7	0	Male	Low	6	
1	Male	High	8	0	Male	High	8	
1	Male	Low	6	0	Male	Low	6	

Estimating the CATE - recover CATE

- CATE = $\hat{y}_{i,d=1} \hat{y}_{i,d=0}$
- To check for treatment heterogeneity, append covariate information since this is constant across two matrices³

$$\begin{pmatrix} \hat{y}_{i,d=1} \\ 14 \\ 12 \\ 12 \\ 13 \\ 7 \\ 7 \\ 7 \\ 7 \\ 6 \\ 7 \end{pmatrix} - \begin{pmatrix} \hat{y}_{i,d=0} \\ 7 \\ 7 \\ 6 \\ 7 \end{pmatrix} = \begin{pmatrix} CATE & Gender & Education \\ 7 & Female & High \\ 5 & Female & Low \\ 8 & Female & High \\ 7 & Female & Low \\ -1 & Male & High \\ 1 & Male & Low \\ -2 & Male & High \\ 1 & Male & Low \end{pmatrix}$$

³NB: all observations are predicted from posterior draws; red numbers indicate predictions using counterfactual treatment assignment

BART: Heterogeneous

Treatment Effects

Machine learning, heterogeneity and experimental measurement

error

Data Generation

- Costs declining significantly
- Convenience samples are the norm
- Proliferation of data generation modes
- Democratic

There are Costs: Camerer et al 2018 Nature

Some Observations

- How do you know you have this experimental measurement error?
- You typically have no clue as to whether its an issue
- Note: this has nothing to do with external validity/representative sample/etc.

Micro-replications can help

- Maybe....
- But what micro-replication?
- In which micro-replication should you invest your research dollars?
- Multi- rather than single-mode replications are more informative of experimental measurement error

The Experimental Mode or Context

Modes and Experimental Measurement Error

- do modes exaggerate measurement error, i.e., $ME_k > 0$
- resulting in $ATE_k^* = (ATE_T + ME_k)$
- multi-mode replication design may be informative when:
 - $ME_k \neq ME_{k'}$ and
 - there is a reasonably high probability the researcher can distinguish low from high error modes

Multiple-mode Replication Simulation

Change in expected error (relative to single mode sampling)

-40 -20 0 20

Illustrate: Lying Experiment (Duch Laroze Zakharov 2018)

- Outcome of interest: Lying about income from RET
- Treatment: Deduction rate that make it more expensive to lie
- Expectation: Lying declines if deduction rates rise

Lying Experiment Design (Duch Laroze Zakharov 2018

- 3 different tax rates (10%, 20% and 30%)
- Fixed at the group level
- Taxes are redistributed equally among group members
- Public good
- No excludability
- No social gains/losses
- No audits or fines
- 10 rounds
- Paid for one of them at random
- Fixed groups of 4 participants
- Random matching at the beginning

Design: each round

- RET: solve as many additions as possible in 60 sec
- two random two-digit numbers
- Information individual gross profit (before tax)
- Declare their income (to be taxed)
- Information individual net profit (after tax and redistribution)
- Differentiated by profit, tax and redistribution

Lying Experiments

Conventional GLM Estimation

					=
		Мо	ode		_
	Lab	Online Lab	Online UK	Mturk	_
Ability Rank	-0.500***	-0.163***	-0.163**	-0.120***	
	(0.036)	(0.045)	(0.071)	(0.037)	
20% Deduction	-0.123***				
	(0.024)				
30% Deduction	-0.128***	-0.184***	0.042	0.018	
	(0.025)	(0.025)	(0.038)	(0.021)	
No Audit	-0.334***	-0.127^{***}	-0.155***	0.011	
	(0.023)	(0.026)	(0.036)	(0.024)	
Age	0.012***	0.007**	-0.0002	0.002**	
	(0.002)	(0.003)	(0.001)	(0.001)	
Gender	0.002	0.100***	-0.022	-0.004	2
	(0.022)	(0.025)	(0.035)	(0.020)	

BART Estimation

- Bayesian estimation strategy using tree-logic
- Highly flexible estimation strategy

To recover individual estimates of treatment effect:

- Assume binary treatment
- Run BART on experimental data (the training set) to generate both model and predicted outcomes for observed data
- Invert treatment assignment of all observations, and pass through model (test set) to generate set of counterfactual predictions
- For each individual, i, $CATE = Y_{i,D=1} Y_{i,D=0}$

BART: R Code

```
# Separate outcome and training data
y <- df$report.rate
train <- df[,-1]
# Gen. test data where those treated become untreated, for use in calculating ITT
test <- train
test$treat.het <- ifelse(test$treat.het == 1,0,ifelse(test$treat.het == 0,1,NA))
# Run BART for predicted values of observed and synthetic observations
bart.out <- bart(x.train = train, v.train = v. x.test = test)
# Recover CATE estimates and format into dataframe
CATE <- c(bart.out$yhat.train.mean[train$treat.het == 1] - bart.out$yhat.test.mean[test$treat.het == 0],
          bart.out$vhat.test.mean[test$treat.het == 1] - bart.out$vhat.train.mean[train$treat.het == 0])
CATE df <- data.frame(CATE = CATE)
covars <- rbind(train[train$treat.het == 1,c(2:5)], test[test$treat.het==1,c(2:5)])
CATE_df <- cbind(CATE_df,covars)
CATE df <- CATE df[order(CATE df$CATE).]
CATE_df$id <- c(1:length(CATE))
```

All replication code available at https://github.com/rayduch/Experimental-Modes-and-Heterogeneity

Conjoint Heterogeneity

Duch et al CANDOUR Vaccination Prioritization

Subset Data on Ideology (AMCE for Income)

Selected profiles with "Lowest 20% income"

Nested Conjoint Causal Quantities

Table 1. Nested causal quantities in a conjoint experiment

Subject	Round	Profile	Attribute		$y \mid$	$y_{l'}$			
1	1	1	Α		1	0	OMCE RMCE))
1	1	2	В		0	1	KIVICE	IMCE	l
1	2	1	Α		0	0	,	IMCE	l
1	2	2	Α		1	0		J	AMCE
÷	÷	÷	÷	٠.	:	:			
N	2	1	В		0	1			l
N	2	2	Α		1	1			J

Estimation: Step 1

Use BART to model potential heterogeneity in the observed experimental data defined as:

$$P(Y_{ijk} = 1 | T_{ijk}, X_i) = f(T_{ijk}, X_i) \approx \hat{f}(T_{ijk}, X_i),$$

where

- \bullet Y_{ijk} is the observed binary outcome
- T_{ijk} is the vector of treatment assignments across the L
 attributes,
- X_i is the vector of covariate information for subject i considering profile j in round k of the experiment. f is some unknown true data generating process,
- \hat{f} is an estimated model of that function.

Estimation Step 2

Using the final trained model (\hat{f}) , we predict counterfactual outcomes (i.e. whether the profile was selected or not) changing the value of attribute-levels.

- Specifically, to recover a vector of OMCE estimates of attribute-level I₁,
- we take z draws from the predicted posterior using a "test" matrix which is identical to the training dataset,
- except each element in the column corresponding to attribute / is set to the value l₁

OMCE

Finally, therefore, to recover a parameter estimate of the OMCE, we simply average these z predictions for each observation to yield a vector of observation-level effects:

$$\mathsf{OMCE} = \hat{\tau}_{ijkl} = \frac{1}{z} \left(\hat{f}(T_{ijkl} = I_1, X_i) - \hat{f}(T_{ijkl} = I_0, X_i) \right).$$

Step 3

Finally, the IMCE estimates can then be calculated by averaging the OMCEs for each individual *i*:

$$\mathsf{IMCE} = \hat{\tau}_{il} = \frac{1}{J \times K} \sum_{i}^{K} \sum_{j}^{J} \hat{\tau}_{ijkl}.$$

Influence Heat Map

COVID Ideology Income

Zhirkov

