

Optimal Order Strategies on the Day-Ahead Electricity Market

Martin Biel

20/9-2017

Outline

Background

Problem Description

Contribution

Optimal Strategies

Outlook on Future Work

Outline

Background

Problem Description

Contribution

Optimal Strategies

Outlook on Future Work

Background - Motivation

▶ Simulation of hydro power operations → Decision-support

Background - Motivation

- Simulation of hydro power operations → Decision-support
 - Price forecasts
 - Irregular power production: solar and wind
 - Nuclear power phase-out

Background - Motivation

- Simulation of hydro power operations → Decision-support
 - Price forecasts
 - Irregular power production: solar and wind
 - Nuclear power phase-out
- Common: Trade-off between accuracy and computation time

Figure: Simulations of hydro power operations

- Accurate models
- Fast computations

- Accurate models
 - Optimal model reductions
- Fast computations

- Accurate models
 - Optimal model reductions
- Fast computations
 - Scalable algorithms that make efficient use of commodity hardware

Backgound - Approach

Stochastic programming for hydro power operations:

- Optimal orders on the day-ahead market
- Maintenance scheduling
- Long-term investments
- Wind/solar uncertainties

Backgound - Approach

Stochastic programming for hydro power operations:

- Optimal orders on the day-ahead market
- Maintenance scheduling
- Long-term investments
- Wind/solar uncertainties

Improvements

- ► Multiple scenarios → More accurate models
- ▶ Parallel decomposition → Faster computations

Backgound - Approach

Stochastic programming for hydro power operations:

- Optimal orders on the day-ahead market
- Maintenance scheduling
- Long-term investments
- Wind/solar uncertainties

Improvements

- ► Multiple scenarios → More accurate models
- ▶ Parallel decomposition → Faster computations

Outline

Background

Problem Description

Contribution

Optimal Strategies

Outlook on Future Work

Problem Description - Scandinavian Electricity Market

Electricity markets in Scandinavia deregulated since 90s

- Norway 1991
- Sweden 1996
- ► Finland 1998
- Denmark 2000

Problem Description - Scandinavian Electricity Market

Electricity markets in Scandinavia deregulated since 90s

- Norway 1991
- Sweden 1996
- ► Finland 1998
- ▶ Denmark 2000

Energy volumes actively traded on a competitive market: Nord Pool

- Day-ahead market
- Intraday market

Market closes

Problem Description - The Day-Ahead Market

Order Types

- Single Hourly Order
 - Price independent
 - Price Dependent
- Block Order
 - Regular
 - Linked
- Exclusive Group
- Flexible Order

Problem Description - The Day-Ahead Market

Order Types

- Single Hourly Order
 - Price independent
 - Price Dependent
- Block Order
 - Regular
 - Linked
- Exclusive Group
- Flexible Order

Problem Description - Single Order

Figure: Single hourly order

Problem Description - Single Order

Figure: Interpolated energy volume for a given market price

Figure: Block order between 00:00-15:00

Figure: Rejected after market price settlement

Figure: Accepted after market price settlement

Problem Description - Optimal Order Strategies

- Optimal orders given price forecasts
- Price taking hydro power producer
- Next day production governed by hydroelectric model

Background

Problem Description

Contribution

Model Framework Stochastic Day-Ahead Model Optimization Algorithms

Optimal Strategies

Outlook on Future Work

Background

Problem Description

Contribution

Model Framework

Stochastic Day-Ahead Model Optimization Algorithms

Optimal Strategies

Outlook on Future Work

Contribution - Model Framework

Data

- Physical data of Swedish hydro power stations
 - Topologies
 - Capacitites
 - Flow times
- Financial data from Nord Pool
 - historic prices

Contribution - Model Framework

Data

- Physical data of Swedish hydro power stations
 - Topologies
 - Capacitites
 - Flow times
- Financial data from Nord Pool
 - historic prices

Julia: JuMP + StructJuMP

- Domain-specific modeling language for mathematical optimization
- Optimization models can be processed programatically

HydroModels.jl

HydroModels.jl

```
# Variables
    @variable(internal model, xt d[i = model.bids, t = model.hours] >= 0)
    @variable(internalmodel.vt[t = model.hours] >= 0)
    @variable(internal model. H[t = model, hours] >= 0)
    # Define objective
    @objective(internalmodel, Max, net profit + value of stored water)
    # Constraints
    # Load balance
    @constraint(internalmodel,loadbalance[s = model.scenarios, t = model.hours],
                 vt[s,t] + sum(vb[s,b]
                                           for b = find(A \rightarrow in(t, A), model. hours per block))
                 -H[s,t] == z up[s,t] - z do[s,t]
Bvarforsen
                  134
                        134
                                17
                                        200
                                                                         124
                                                                                      75 Liusnan
Krokstrommen
                  135
                        135
                              100
                                        200
                                                   0
                                                                  830
                                                                         130
                                                                                30
                                                                                      30 Liusnan
Langstrommen
                  136
                        136
                               48
                                        180
                                                   0
                                                                  278
                                                                         131
                                                                                25
                                                                                     40 Liusnan
Storastrommen
                  137
                        137
                                24
                                        180
                                                   0
                                                                  556
                                                                         142
                                                                                35
                                                                                      35 Liusnan
Oieforsen
                  138
                        138
                                25
                                        190
                                                   0
                                                                  278
                                                                         143
                                                                                55
                                                                                      55 Liusnan
Laforsen
                  139
                        139
                                57
                                        190
                                                   0
                                                                  830
                                                                         149
                                                                               280
                                                                                    280 Ljusnan
```

HydroModels.jl

```
# Variables
    @variable(internalmodel,xt d[i = model.bids, t = model.hours] >= 0)
    @variable(internalmodel.vt[t = model.hours] >= 0)
    @variable(internal model. H[t = model, hours] >= 0)
    # Define objective
    @objective(internalmodel, Max, net profit + value of stored water)
    # Constraints
    # Load balance
    @constraint(internalmodel,loadbalance[s = model.scenarios, t = model.hours],
                 vt[s,t] + sum(vb[s,b]
                                           for b = find(A \rightarrow in(t, A), model. hours per block))
                 -H[s,t] == z up[s,t] - z do[s,t]
Bvarforsen
                  134
                        134
                                17
                                        200
                                                                         124
                                                                                75
                                                                                      75 Liusnan
Krokstrommen
                  135
                        135
                              100
                                        200
                                                   0
                                                                  830
                                                                         130
                                                                                30
                                                                                      30 Liusnan
Langstrommen
                  136
                        136
                               48
                                        180
                                                   0
                                                                  278
                                                                         131
                                                                                25
                                                                                      40 Liusnan
Storastrommen
                  137
                        137
                                24
                                        180
                                                   0
                                                                  556
                                                                         142
                                                                                35
                                                                                      35 Liusnan
Oieforsen
                  138
                        138
                                25
                                        190
                                                   0
                                                                  278
                                                                         143
                                                                                55
                                                                                      55 Liusnan
Laforsen
                  139
                        139
                                57
                                        190
                                                   0
                                                                  830
                                                                         149
                                                                               280
                                                                                    280 Ljusnan
```

data = HydroModelData("data/plantdata.csv", "data/spotpricedata.csv")
dayahead = DayAheadModel(data,5,"Ljusnan")
plan!(dayahead)

Background

Problem Description

Contribution

Model Framework

Stochastic Day-Ahead Model

Optimization Algorithms

Optimal Strategies

Outlook on Future Work

maximize Profit + Water Value - Balance Cost

subject to Day-Ahead Orders

Physical Limitations

Economic/Legal Limitations

Day-Ahead Orders - $\mathbf{x} \in \mathcal{X}$

- ▶ Indices $t \in T := \{1, ..., 24\}, b \in B := \{b = (t_a, ..., t_b) : t_i \in T\}$
- ▶ Price independent: $x_t^i \ge 0$
- ▶ Price dependent: $0 \le x_{i,t}^d \le x_{i,t+1}^d$
- ▶ Block: $x_{j,b}^b \ge 0$

Day-Ahead Orders - $\mathbf{x} \in \mathcal{X}$

- ▶ Indices $t \in T := \{1, ..., 24\}, b \in B := \{b = (t_a, ..., t_b) : t_i \in T\}$
- ▶ Price independent: $x_t^i \ge 0$
- ▶ Price dependent: $0 \le x_{i,t}^d \le x_{i,t+1}^d$
- ▶ Block: $x_{i,b}^b \ge 0$

Scenario Outcomes - $y \in \mathcal{Y}(x, \xi)$

$$y_{t} = x_{t}^{i} + \frac{\rho_{t}^{\xi} - p_{i}}{p_{i+1} - p_{i}} x_{i+1,t}^{d} + \frac{p_{i+1} - \rho_{t}^{\xi}}{p_{i+1} - p_{i}} x_{i,t}^{d}, \quad p_{i} \leq \rho_{t}^{\xi} \leq p_{i+1}$$

$$y_{b} = \sum_{i=1}^{\overline{J}(b)} x_{j,b}, \quad \overline{J}(b) = \max \left\{ i : p_{i} \leq \frac{1}{|b|} \sum_{t \in b} \rho_{t}^{\xi} \right\}$$

Next Day Production - $h \in \mathcal{H}(y)$

- Indices *p* ∈ *P* := {All power stations operable by the producer}
- ▶ Water discharge/spillage: $0 \le Q_{p,t} \le \overline{Q}_p$, $S_{p,t} \ge 0$
- ▶ Reservoir content: $0 \le M_{p,t} \le \overline{M}_p$
- ▶ Energy production: $H_{p,t} \ge 0$
- ▶ Local inflow/outflow: V_p
- ▶ Power imbalances: $z_t^+, z_t^- \ge 0$

Next Day Production - $h \in \mathcal{H}(y)$

- Indices *p* ∈ *P* := {All power stations operable by the producer}
- ▶ Water discharge/spillage: $0 \le Q_{p,t} \le \overline{Q}_p$, $S_{p,t} \ge 0$
- ▶ Reservoir content: $0 \le M_{p,t} \le \overline{M}_p$
- ▶ Energy production: $H_{p,t} \ge 0$
- ► Local inflow/outflow: *V*_p
- ▶ Power imbalances: $z_t^+, z_t^- \ge 0$

Load Balance

$$L(\mathbf{y}, \mathbf{h}) : y_t + \sum_{b \in B: t \in b} y_b - \sum_{p} H_t = z_t^+ - z_t^-$$

Figure: Piecewise linear production equivalent

Hydro power production

$$ightarrow extit{H}_{ extit{p},t} = \sum_{ extit{s}} \mu_{ extit{p}, extit{s}} extit{Q}_{ extit{p},t, extit{s}}$$

Figure: Piecewise linear production equivalent

Hydro power production

$$o extcolor{H}_{p,t} = \sum_{m{s}} \mu_{p,m{s}} Q_{p,t,m{s}}$$

Figure: Piecewise linear production equivalent

Hydrological balance

$$M_{p,t} = M_{p,t-1} - Q_{p,t} - S_{p,t} + \sum_{p_q \in Q_u} Q_{p_q,t- au_{p_q}} + \sum_{p_s \in S_u} S_{p_s,t- au_{p_s}} + V_p$$

Water value

$$extbf{W}(\mathbf{h}) = \lambda_f \sum_{oldsymbol{p}} extbf{M}_{oldsymbol{p}, 24} \sum_{oldsymbol{p}_q \in Q_d, s} \mu_{oldsymbol{p}_q, s}$$

Water value

$$extbf{W}(\mathbf{h}) = \lambda_f \sum_{oldsymbol{p}} extbf{M}_{oldsymbol{p}, 24} \sum_{oldsymbol{p}_q \in Q_d, s} \mu_{oldsymbol{p}_q, s}$$

Profit

$$\Pi(\mathbf{y}) = \sum_{t} \rho_t^{\xi} \mathbf{y}_t + \sum_{b} |b| \bar{\rho}_b^{\xi} \mathbf{y}_b - \sum_{t} (\lambda_t^+ \mathbf{z}_t^+ - \lambda_t^- \mathbf{z}_t^-)$$

Water value

$$W(\mathbf{h}) = \lambda_f \sum_{p} M_{p,24} \sum_{p_q \in Q_d,s} \mu_{p_q,s}$$

Profit

$$\Pi(\mathbf{y}) = \sum_{t} \rho_t^{\xi} y_t + \sum_{b} |b| \bar{\rho}_b^{\xi} y_b - \sum_{t} (\lambda_t^+ z_t^+ - \lambda_t^- z_t^-)$$

Objective

$$Q(\mathbf{y}, \mathbf{h}, \xi) = W(\mathbf{h}) + \Pi(\mathbf{y})$$

Complete Model

$$\begin{aligned} & \min \, \mathbb{E}_{\xi} \left[Q(\mathbf{y}, \mathbf{h}, \xi) \right] \\ & \text{s.t.} \, \, \mathbf{x} \in \mathcal{X} \\ & \mathbf{y} \in \mathcal{Y}(\mathbf{x}, \xi) \\ & \mathbf{h} \in \mathcal{H}(\mathbf{y}) \\ & \mathit{L}(\mathbf{y}, \mathbf{h}) = 0 \end{aligned}$$

Outline

Background

Problem Description

Contribution

Model Framework Stochastic Day-Ahead Model

Optimization Algorithms

Optimal Strategies

Outlook on Future Work

Benders decomposition for stochastic programming

Benders decomposition for stochastic programming

L-Shaped [Van Slyke,Wets]

Benders decomposition for stochastic programming

- L-Shaped [Van Slyke,Wets]
- Regularized Decomposition [Ruszczyński]

Benders decomposition for stochastic programming

- L-Shaped [Van Slyke,Wets]
- Regularized Decomposition [Ruszczyński]
- Trust-Region L-Shaped [Linderoth, Wright]

Benders decomposition for stochastic programming

- L-Shaped [Van Slyke,Wets]
- Regularized Decomposition [Ruszczyński]
- Trust-Region L-Shaped [Linderoth, Wright]

LShaped.jl

```
ls = LShapedSolver(model,x0)
rls = RegularizedLShapedSolver(model,x0)
trls = TrustRegionLShapedSolver(model,x0)
```


The algorithms are cutting-plane methods:

- Solve subproblems and generate cutting-planes
- Update and resolve a master problem

$$\min \quad c^T x + \mathbb{E}_{\xi} \left[\min_{y \in \mathcal{Y}(x)} Q(y, \xi) \right] \qquad \min \quad c^T x + \sum_{i=1}^n \theta_i$$
s.t. $x \in \mathcal{X}$ \rightarrow s.t. $x \in \mathcal{X}$ $\partial Q_i x + \theta_i = q_i$

The algorithms are cutting-plane methods:

- Solve subproblems and generate cutting-planes
- Update and resolve a master problem

$$\begin{array}{lll} \min & c^T x + \mathbb{E}_{\xi} \left[\min_{y \in \mathcal{Y}(x)} Q(y, \xi) \right] & \min & c^T x + \sum_{i=1}^n \theta_i \\ \text{s.t.} & x \in \mathcal{X} & \rightarrow \text{s.t.} & x \in \mathcal{X} \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$$

Readily extendable to asynchronous variants

- Master problem is solved on a master node
- Subproblems are distributed among workers

Idea to exploit structure and make use of commodity hardware

Idea to exploit structure and make use of commodity hardware

Linear subproblems have the same underlying matrix structure

Idea to exploit structure and make use of commodity hardware

- Linear subproblems have the same underlying matrix structure
 - LU factorize once and store on GPU
 - Reuse for efficient linear solves during simplex iterations

Contribution - Summary

- HydroModels.jl
 - Possible to extend to other models of hydro power operations
- Day-Ahead Model
 - Optimization formulation
 - Visualization tools
- LShaped.jl
 - 3 fully implemented serial L-Shaped variants
 - 1 parallel implementation (work in progress)

Contribution - Summary

- HydroModels.jl
 - Possible to extend to other models of hydro power operations
 - Modular
- Day-Ahead Model
 - Optimization formulation
 - Visualization tools
- LShaped.jl
 - 3 fully implemented serial L-Shaped variants
 - 1 parallel implementation (work in progress)
 - Modular

Outline

Background

Problem Description

Contribution

Optimal Strategies

Example 1: Ljusnan Example 2: All rivers

Outlook on Future Work

Outline

Background

Problem Description

Contribution

Optimal Strategies

Example 1: Ljusnan Example 2: All rivers

Outlook on Future Work

Figure: Courtesy of VRF (http://www.vattenreglering.se/)

Example 1: Ljusnan

- ▶ 21 power stations
- ▶ 5 price curves from historic data

Example 1: Ljusnan

- 21 power stations
- 5 price curves from historic data

Day-Ahead model with:

- 9305 linear constraints
- ▶ 18274 variables

Example 1: Single Order

Figure: Single order during the first hour

Figure: All single orders in optimal strategy

Figure: Single order outcome of optimal strategy, for a given price curve

Figure: All block orders in optimal strategy

Figure: Block order outcome of optimal strategy, for a given price curve

Figure: Energy production in all scenarios

Outline

Background

Problem Description

Contribution

Optimal Strategies

Example 1: Ljusnan

Example 2: All rivers

Outlook on Future Work

Example 2: All rivers

- ▶ 257 power stations
- 20 price curves from historic data

Example 2: All rivers

- 257 power stations
- 20 price curves from historic data

Day-Ahead model with:

- 376700 linear constraints
- ▶ 748043 variables

Figure: All single orders in optimal strategy

Figure: All block orders in optimal strategy

Figure: Single order outcomes of optimal strategy, for 4 different price curves

Figure: Block order outcomes of optimal strategy, for two given price curves

Figure: Energy production in all scenarios

Outline

Background

Problem Description

Contribution

Optimal Strategies

Outlook on Future Work

Model framework

Day-Ahead Model

Model framework

▶ Implement more models of hydro power operations

Day-Ahead Model

Model framework

Implement more models of hydro power operations

Day-Ahead Model

- Generate price curves from statistic model
- Allow varying order prices

Model framework

Implement more models of hydro power operations

Day-Ahead Model

- Generate price curves from statistic model
- Allow varying order prices

- Finish parallel variants
- Evaluate on day-ahead model