Math 115 Definitions

- 1. The product of sets $A \times B$ is the Cartesian product of the sets, where $A \times B = \{(a,b) \mid a \in A, b \in B\}.$
- 2. A relation on a set A is a subset of $A \times A$. Elaborately, a relation on a set A takes two values from A and puts them into a class based on how they are compared.
- 3. A relation is reflexive if for any $a \in A$, aRa, symmetric if $aRb \implies bRa$, and transitive if $aRb \wedge bRc \implies aRc$, where $b, c \in A$.
- 4. A relation on a set A is an equivalence relation if it is reflexive, symmetric, and transitive. An equivalence class of an element $a \in A$ is the set $\{x \in A \mid a \sim x\}$, which is the set of all members that are in a's equivalence class.
- 5. A partition of a set A is a collection of disjoint subsets of A (with each subset nonempty) such that their union is A.
- 6. a and b are relatively prime if gcd(a, b) = 1.
- 7. The integers b_1, \ldots, b_n are relatively prime if $\gcd(b_1, \ldots, b_n) = 1$. They are pairwise relatively prime if $\gcd(b_i, b_j) = 1$ for all $i \neq j$.
- 8. A prime number is an integer at least two whose factors are 1 and itself. A composite number is a number that isn't prime.
- 9. The prime factorization of a number n is denoted $\prod_p p^{\alpha(p)}$, where this product symbolizes the product of all primes and the function α returns the exponent of a prime when considering that prime as its input.
- 10. A congruence class (modulo m) is a set of all integers that are congruent modulo m.

- 11. A complete residue system (modulo m) is a set of integers r_1, \ldots, r_n such that any integer x is congruent modulo m to exactly of the r_i 's.
- 12. A reduced residue system (modulo m) is a set of integers s_1, \ldots, s_k coprime to m such that any integer coprime to m is congruent modulo m to exactly one of the s_i 's.
- 13. Euler's totient function, $\phi(m)$, returns the number of elements in a reduced residue system modulo m. Equivalently, $\phi(m)$ is the number of integers t, with $0 < t \le m$, such that t is coprime to m.
- 14. Consider the integers modulo m. Then, take the integer a in modulo m. Then, a has a unique inverse (modulo m) a^{-1} such that $aa^{-1} \equiv 1 \pmod{m}$.
- 15. A Gaussian integer is a complex number of the form a + bi, where $a, b \in \mathbb{Z}$.
- 16. $\mathbb{Z}[x]$ is the set of all polynomials with integer coefficients.
- 17. The number of solutions to the congruence $f(x) \equiv g(x) \pmod{m}$ is the number of congruence classes that satisfy $f(x) g(x) \equiv 0 \pmod{m}$.
- 18. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, with $a_i \in \mathbb{Z}$ for all i. The degree of the congruence $f(x) \equiv 0 \pmod{m}$ is the highest value of i such that $m \nmid a_i$, and undefined if $m \mid a_i$ for all i. To find the degree of the congruence $f(x) = g(x) \pmod{m}$ (with $f, g \in \mathbb{Z}[x]$), find the degree of $(f g)(x) \equiv 0 \pmod{m}$.
- 19. A polynomial-time algorithm is an algorithm whose run time is a polynomial function of the length of its input.
- 20. A weak probable prime to the base a is a number p > 1 that satisfies $a^{p-1} \equiv 1 \pmod{p}$. A weak pseudoprime to the base a is a number p > 1 that satisfies $a^{p-1} \equiv 1 \pmod{p}$ but p is composite.
- 21. Consider the following algorithm:
 - (a) Find j and d odd such that $m-1=2^{j}d$.
 - (b) If $a^d \equiv \pm 1 \pmod{m}$, then m is a strong probable prime, stop.

- (c) Square a^d to get a^{2d} . If $a^{2d} \equiv 1 \pmod{m}$, then m is composite. If $a^{2d} \equiv -1 \pmod{m}$, then m is a strong probable prime, stop.
- (d) Repeat this procedure for the list $a^{4d}, \ldots, a^{2^{j-1}d}$.
- (e) If the procedure has not yet terminated, m is composite.

If the test is inconclusive, then m is composite. m is a strong pseudoprime to the base a if the test with m is conclusive but m is both odd and composite.

- 22. A Carmichael number is a composite number m which is a weak pseudoprime to the base a for all integers a coprime to m.
- 23. p^{α} exactly divides n (denote: $p^{\alpha} || n$) if $p^{\alpha} | n$ but $p^{\alpha+1} \nmid n$.
- 24. Root of $f \in \mathbb{Z}[x]$ modulo m. Let $f \in \mathbb{Z}[x]$ and let $m \in \mathbb{Z}_{>0}$. Then, a root of f modulo m is an integer a such that $f(a) \equiv 0 \pmod{m}$.
- 25. Monic Polynomial. A polynomial in $\mathbb{C}[x]$ (or $\mathbb{Z}[x]$) is monic if (it is nonzero) its leading coefficient is 1.
- 26. $\mathbb{Z}/m\mathbb{Z}$. This is the set of congruence classes modulo m.
- 27. $(\mathbb{Z}/m\mathbb{Z})^*$ This set is defined to be the set $\{\tilde{a} \in \mathbb{Z} : \gcd(a, m) = 1\}$. This set is well-defined and contains $\phi(m)$ elements.
- 28. Order of a modulo m. Let $a \in \mathbb{Z}$ and $m \in \mathbb{Z}_{>0}$ with gcd(a, m) = 1. Then the order of a modulo m is the smallest integer h > 0 such that $a^h \equiv 1 \pmod{m}$. If $gcd(a, m) \neq 1$, then the order of a modulo m is undefined.
- 29. **Primitive root modulo** m. A primitive root modulo m is an integer g whose order modulo m is $\phi(m)$.
- 30. Quadratic residue modulo m. Let $m \in \mathbb{Z}_{>0}$. A quadratic residue modulo m is an integer a coprime to m such that $x^2 \equiv a \pmod{m}$ has a solution.

- 31. Quadratic non-residue modulo m. Let $m \in \mathbb{Z}_{>0}$. A quadratic non-residue modulo m is an integer a coprime to m such that $x^2 \equiv a \pmod{m}$ does not have a solution.
- 32. **Legendre Symbol**, $\left(\frac{a}{p}\right)$. Let $a \in \mathbb{Z}$. Then, $\left(\frac{a}{p}\right)$ is defined to be 1 if a is a quadratic residue modulo p, -1 if a is a quadratic non-residue modulo p, and 0 if $p \mid a$.
- 33. **Jacobi Symbol**, $\left(\frac{P}{Q}\right)$. Let Q be an odd positive integer with prime factors $Q = q_1 \cdot \dots \cdot q_s$, where all the q_i are odd primes, not necessarily distinct. Then, the Jacobi Symbol $\left(\frac{P}{Q}\right)$ is defined by:

$$\left(\frac{P}{Q}\right) = \prod_{j=1}^{s} \left(\frac{P}{q_j}\right)$$

where $\left(\frac{P}{q_j}\right)$ is the Legendre Symbol.

- 34. **Binary Quadratic Form.** A binary quadratic form is a polynomial of the form $ax^2 + bxy + cy^2$, where x, y are the variables, and a, b, c are the coefficients.
- 35. Binary Quadratic Form represents n. A binary quadratic form f = f(x, y) represents an integer n if $f(x_0, y_0) = n$ for some $x_0, y_0 \in \mathbb{Z}$ with $(x_0, y_0) \neq (0, 0)$.
- 36. Binary Quadratic Form properly represents n. The binary quadratic form $f = f(x_0, y_0)$ properly represents n if $f(x_0, y_0) = n$ with $x_0, y_0 \in \mathbb{Z}$ relatively prime.
- 37. **Discriminant of a binary quadratic form.** The discriminant of a binary quadratic form $ax^2 + bxy + cy^2$ is the quantity $d = b^2 4ac$.
- 38. **Types of binary quadratic forms.** A binary quadratic form f(x, y) is:
 - (a) indefinite if it takes on both positive and negative values.
 - (b) positive semidefinite if $f(x_0, y_0) \ge 0$ for all x_0, y_0 .
 - (c) positive definite if $f(x_0, y_0) > 0$ for all x_0, y_0 with $(x_0, y_0) \neq (0, 0)$.

- (d) negative semidefinite if $f(x_0, y_0) \leq 0$ for all x_0, y_0 .
- (e) negative definite if $f(x_0, y_0) < 0$ for all x_0, y_0 with $(x_0, y_0) \neq (0, 0)$.
- (f) definite if it is positive definite or negative definite.
- (g) semidefinite if positive semidefinite or negative semidefinite.

(note: we let $x_0, y_0 \in \mathbb{R}, \mathbb{Q}, \mathbb{Z}$).

- 39. T_M , where M is a 2x2 matrix. Given a 2x2 matrix M, let T_M : $\mathbb{R}^2 \to \mathbb{R}^2 \text{ be the function } \begin{pmatrix} x \\ y \end{pmatrix} \mapsto M \begin{pmatrix} x \\ y \end{pmatrix}. \text{ In other words, if } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \text{ then } T_M \begin{pmatrix} x \\ y \end{pmatrix} = (ax + by, cx + dy).$
- 40. **Modular group**, Γ . The modular group Γ is the set $\Gamma = \{2x2 \text{ matrices with integer entries and determinant 1}.$
- 41. **Determinant of a matrix** M. If $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then the determinant of M is given by $\det M = ad bc$.
- 42. M takes f to g. A matrix $M \in \Gamma$ takes f to g (where f and g are forms) if $f \circ T_M = g$.
- 43. **Equivalent Forms.** The forms f and g are equivalent if $\exists M \in \Gamma$ that takes f to g.
- 44. Reduced binary quadratic form. Let $f(x,y) = ax^2 + bxy + cy^2$ be a form whose discriminant is not a perfect square. Then, f is reduced if $-|a| < b \le |a| < |c|$ or $0 \le b \le |a| = |c|$.
- 45. Class number of d. Let $d \in \mathbb{Z}$, not a perfect square. Then the class number of d is the number of equivalence classes of forms of discriminant d, excluding classes of negative definite forms (if d < 0). The class number is denoted H(d).
- 46. Automorph of f. Let f be a positive definite form. Then, an automorph of f is a matrix $M \in \Gamma$ that takes f to itself.

- 47. w(f). The number of automorphs of a positive definite form f is written as w(f).
- 48. **Arithmetic Function.** An arithmetic function is a function $f: \mathbb{Z}_{>0} \to \mathbb{C}$.
- 49. **Multiplicative Function.** A multiplicative function is a function (not the zero function) with f(mn) = f(m)f(n) for all coprime $m, n \in \mathbb{Z}_{>0}$.
- 50. Totally Multiplicative Function. A totally multiplicative function is an arithmetic function, not the zero function, f(mn) = f(m)f(n) for all $m, n \in \mathbb{Z}_{>0}$.
- 51. $d(n), \sigma(n), \sigma_k(n), \omega(n), \Omega(n)$. Let $n \in \mathbb{Z}_{>0}$. Then define:
 - (a) d(n) to be the number of positive divisors of n.
 - (b) $\sigma(n)$ to be the sum of the positive divisors of n.
 - (c) $\sigma_k(n)$ to be the sum of the k^{th} powers of the positive divisors of n
 - (d) $\omega(n)$ to be the number of distinct primes dividing n.
 - (e) $\Omega(n)$ to be the number of primes dividing n, counting multiplicity.
- 52. **Möbius Function**, μ . The Möbius function is the arithmetic function $\mu: \mathbb{Z}_{>0} \to \mathbb{Z}$ defined by $\mu(n) = (-1)^{\omega(n)}$ if n is square-free and $\mu(n) = 0$ if otherwise.
- 53. **Finite Continued Fraction.** A finite continued fraction is something of the form:

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1}}}.$$

$$\vdots$$

- 54. Finite Simple Continued Fraction. Let $\langle x_0, \ldots, x_n \rangle$ be a finite continued fraction. It is a finite simple continued fraction if $x_0, \ldots, x_n \in \mathbb{Z}$.
- 55. Infinite Simple Continued Fraction. An infinite simple continued fractions is an expansion $\langle a_0, a_1, \ldots \rangle$ with $a_i \in \mathbb{Z}$ for all $i \geq 0$ and $a_i > 0$ for all i > 0.

- 56. Value of an Infinite Simple Continued Fraction. The value of an infinite simple continued fraction is $\lim_{n\to\infty}\langle a_0,\ldots,a_n\rangle$.
- 57. n^{th} convergent of infinite simple continued fraction. This is defined to be $r_n = \langle a_0, \dots, a_n \rangle = \frac{h_n}{k_n}$.
- 58. Fractional Part $\{x\}$ of $x \in \mathbb{R}$. Let $x \in \mathbb{R}$. The fractional part of x is defined to be $x \{x\}$, where $\{\}$ is the greatest-integer function.
- 59. Distance ||x|| from $x \in \mathbb{R}$ to the nearest integer. Let $x \in \mathbb{R}$. Then, this quantity is defined to be $||x|| = \min\{\{-x\}, \{x\}\}\} \in [0, \frac{1}{2}]$.
- 60. **Periodic Continued Fraction.** An infinite simple continued fraction $\langle a_0, a_1, \ldots \rangle$ is periodic if there is an integer n > 0 such that $a_{r+n} = a_r$ for all sufficiently large r.
- 61. Purely Periodic Continued Fraction. An infinite simple continued fraction $\langle a_0, a_1, \ldots \rangle$ is purely periodic if $a_{r+n} = a_r$ for all $r \geq 0$.
- 62. Quadratic Irrational. A quadratic irrational is a real number which is irrational which is a zero of a quadratic polynomial (nonzero) with integer coefficients.
- 63. Conjugate of Quadratic Irrational. Let $d \in \mathbb{Z}$, not a perfect square. Then, the conjugate of a quadratic irrational $r + s\sqrt{d}$ (with $r, s \in \mathbb{Q}$) is $r s\sqrt{d}$.
- 64. **Pell's Equation.** This is the equation $x^2 dy^2 = N$, where $d, N \in \mathbb{Z}$ and we are looking for solutions in integers x, y.
- 65. Positive Solution of Pell's Equation. A positive solution of Pell's equation is one where x > 0 and y > 0.