Langage SQL : Résumé

Thème 2 : Base de données

02

Résumé cours : Langage SQL

Programme Terminale

Contenus	Capacités attendues	Commentaires
Langage SQL : requête d'interrogation et de mise à jour d'une base de données	Identifier les composants d'une requête. Construire des requêtes 'interrogation à l'aide des clauses du langage SQL: SELECT, FROM, WHERE, JOIN Construire des requêtes d'insertion et de mise à jour à l'aide de : UPDATE, INSERT, DELETE	On peut utiliser DISTINCT, ORDER BY ou les fonctions d'agrégation sans utiliser GROUP BY et HAVING

Voir TP sur Capytal

Du modèle relationnel au SGBD

Nous allons maintenant d'aborder la partie logicielle : les SGBD (Systèmes de Gestion de Bases de Données).

Les SGBD jouent le rôle d'interface entre l'être humain et la base de données.

Par l'intermédiaire de **requêtes**, l'utilisateur va consulter ou modifier la base de données. Le SGBD est garant de l'intégrité de cette base, et prévient notamment que les modifications ne soient pas préjudiciables à la base de données.

Le langage utilisé pour communiquer avec le SGBD est le langage **SQL**, pour Structured Query Langage (pour *langage de requêtes structurées*).

Les SGBD les plus utilisés sont basés sur le modèle relationnel. Parmi eux, citons Oracle, MySQL, Microsoft SQL Server, PostgreSQL, Microsoft Access, SQLite, MariaDB...

Mais de plus en plus de SGBD **non-relationnels** sont utilisés, spécialement adaptés à des données plus diverses et moins structurées. On les retrouve sous l'appelation **NoSQL** (pour *Not only SQL*). Citons parmi eux MongoDB, Cassandra (Facebook), BigTable (Google)...

La quasi-totalité de ces SGBD fonctionnent avec un modèle client-serveur.

Nous allons travailler principalement avec le langage SQLite peut lui s'utiliser directement sans démarrer un serveur : la base de données est entièrement représentée dans le logiciel utilisant SQLite.

Création de tables

```
DROP TABLE IF EXISTS LIVRES;
CREATE TABLE LIVRES
(code INT, titre TEXT, auteur TEXT, ann_publi INT, note INT, PRIMARY KEY (code));
```

2.1. Création de la tables LIVRES

```
Requête SQL
INSERT INTO LIVRES
(code, titre, auteur, ann_publi, note)
VALUES
(1, '1984', 'Orwell', 1949, 10),
(2, 'Dune', 'Herbert', 1965, 8),
(3, 'Fondation', 'Asimov', 1951, 9),
(4, 'Le meilleur des mondes', 'Huxley', 1931, 7),
(5, 'Fahrenheit 451', 'Bradbury', 1953, 7),
(6, 'Ubik', 'K.Dick', 1969, 9),
(7, 'Chroniques martiennes', 'Bradbury', 1950, 8),
(8, 'La nuit des temps', 'Barjavel', 1968, 7),
(9, 'Blade Runner', 'K.Dick', 1968, 8),
(10, 'Les Robots', 'Asimov', 1950, 9),
(11, 'La Planète des singes', 'Boulle', 1963, 8),
(12, 'Ravage', 'Barjavel', 1943, 8),
(13, 'Le Maître du Haut Château', 'K.Dick', 1962, 8),
(14, 'Le monde des Ā', 'Van Vogt', 1945, 7),
(15, 'La Fin de l'éternité', 'Asimov', 1955, 8),
(16, 'De la Terre à la Lune', 'Verne', 1865, 10);
```

2.2. Création de la table AUTEURS

```
DROP TABLE IF EXISTS AUTEURS;
CREATE TABLE AUTEURS
(id INT, nom TEXT, prenom TEXT, ann_naissance INT, langue_ecriture TEXT, PRIMARY KEY (id)
);
```

```
Requête SQL
```

```
INSERT INTO AUTEURS
(id,nom,prenom,ann_naissance,langue_ecriture)
VALUES
(1,'Orwell','George',1903,'anglais'),
```

```
(2, 'Herbert', 'Frank', 1920, 'anglais'),
(3, 'Asimov', 'Isaac', 1920, 'anglais'),
(4, 'Huxley', 'Aldous', 1894, 'anglais'),
(5, 'Bradbury', 'Ray', 1920, 'anglais'),
(6, 'K.Dick', 'Philip', 1928, 'anglais'),
(7, 'Barjavel', 'René', 1911, 'français'),
(8, 'Boulle', 'Pierre', 1912, 'français'),
(9, 'Van Vogt', 'Alfred Elton', 1912, 'anglais'),
(10, 'Verne', 'Jules', 1828, 'français');
```

Sélection de données

3.1. ◆ Requête basique : SELECT, FROM

```
Requête SQL

SELECT *
FROM LIVRES
```

code	titre	id_auteur	ann_publi	note
1	1984	1	1949	10
2	Dune	2	1965	8
3	Fondation	3	1951	9
4	Le meilleur des mondes	4	1931	7
5	Fahrenheit 451	5	1953	7
6	Ubik	6	1969	9
7	Chroniques martiennes	5	1950	8
8	La nuit des temps	7	1968	7
9	Blade Runner	6	1968	8
10	Les Robots	3	1950	9
11	La Planète des singes	8	1963	8
12	Ravage	7	1943	8
13	Le Maître du Haut Château	6	1962	8
14	Le monde des Ā	9	1945	7
15	La Fin de l'éternité	3	1955	8
16	De la Terre à la Lune	10	1865	10

Requête SQL SELECT titre, auteur, note FROM LIVRES

titre	auteur	note
1984	Orwell	10
Dune	Herbert	8
Fondation	Asimov	9
Le meilleur des mondes	Huxley	7

titre	e auteur	note
Fahrenheit 451	Bradbury	7
Ubik	K.Dick	9
Chroniques martiennes	Bradbury	8
La nuit des temps	Barjavel	7
Blade Runner	K.Dick	8
Les Robots	Asimov	9
La Planète des singes	Boulle	8
Ravage	Barjavel	8
Le Maître du Haut Château	ı K.Dick	8
Le monde des Ā	Van Vogt	7
La Fin de l'éternité	Asimov	8
De la Terre à la Lune	Verne	10

3.2. ◆ Requête basique : SELECT, FROM, WHERE

Requête SQL

SELECT titre, ann_publi FROM LIVRES WHERE auteur='Asimov'

titre ann_publi
Fondation 1951
Les Robots 1950
La Fin de l'éternité 1955

Requête SQL

SELECT *
FROM LIVRES
WHERE auteur='Asimov'

code	titre	auteur	ann_publi	note
3	Fondation	Asimov	1951	9
10	Les Robots	Asimov	1950	9
15	La Fin de l'éternité	Asimov	1955	8

🗀 Requête SQL

SELECT auteur,titre, ann_publi
FROM LIVRES
WHERE auteur='Asimov' AND note>=9

auteur	titre	ann_publi
Asimov	Fondation	1951

auteur	titre	ann_publi
Asimov	Les Robots	1950

4. 🗢 Renommage : AS

Pour rendre l'affichage plus "lisible" on peut renommer les colonnes : AS

• Commande:

```
Requête SQL

SELECT titre, auteur, ann_publi AS publication
FROM LIVRES
WHERE ann_publi >= 1945;
```

• Traduction:

Lors de l'affichage du résulats et dans la suite de la requête (important), la colonne "ann_publi" est renommée "publication".

```
Requête SQL

SELECT titre, auteur, ann_publi AS publication
FROM livres
WHERE ann_publi >= 1945;
```

titre	auteur	publication
1984	Orwell	1949
Dune	Herbert	1965
Fondation	Asimov	1951
Fahrenheit 451	Bradbury	1953
Ubik	K.Dick	1969
Chroniques martiennes	Bradbury	1950
La nuit des temps	Barjavel	1968
Blade Runner	K.Dick	1968
Les Robots	Asimov	1950
La Planète des singes	Boulle	1963
Le Maître du Haut Château	K.Dick	1962
Le monde des Ā	Van Vogt	1945
La Fin de l'éternité	Asimov	1955

4.1. ◆ Mettre dans l'ordre les réponses la clause ORDER BY

Il est aussi possible de rajouter la clause SQL ORDER BY afin d'obtenir les résultats classés dans un ordre précis.

☐ Requête SQL

SELECT titre
FROM LIVRES
WHERE auteur='K.Dick' ORDER BY ann_publi

titre

Le Maître du Haut Château Blade Runner Ubik

M Remarques :

• Comportement par défaut : Si le paramètre ASC ou DESC est omis, le classement se fait par ordre croissant (donc ASC est le paramètre par défaut).

5. 略 La clause DISTINCT

Il est possible d'éviter les doublons grâce à la clause DISTINCT

☐ Requête SQL

SELECT auteur FROM LIVRES

auteu

Orwell

Herbert

Asimov

Huxley

Bradbury

K.Dick

Bradbury

Barjavel

K.Dick

Asimov

Boulle

Barjavel

K.Dick

Van Vogt

Asimov

Verne

Requête SQL

SELECT DISTINCT auteur
FROM LIVRES

auteur

Orwell

Herbert

Asimov

Huxley

Bradbury

K.Dick

Barjavel

Boulle

Van Vogt

Verne

5.1. ◆ La clause LIKE

On veut les titres de la table «livre» dont le titre contient la chaîne de caractères "Astérix". Le symbole % est un joker qui peut symboliser n'importe quelle chaîne de caractères.

```
Requête SQL

SELECT titre
FROM livres
WHERE titre LIKE 'F%';
```

permet d'obtenir les titres de livres commençant par F

```
Requête SQL

SELECT titre
FROM livres
WHERE titre LIKE '%s';
```

permet d'obtenir les titres de livres finissant par s

```
Requête SQL

SELECT titre
FROM livres
WHERE titre LIKE 'F%';
```

titre Fondation Fahrenheit 451

☐ Requête SQL

```
SELECT titre
FROM livres
WHERE titre LIKE '%s';
```

titre

Le meilleur des mondes

Chroniques martiennes

La nuit des temps

Les Robots

La Planète des singes

6. Opérations sur les données : sélection avec agrégation

Les requêtes effectuées jusqu'ici ont juste sélectionné des données grâce à différents filtres : aucune action à partir de ces données n'a été effectuée.

Nous allons maintenant effectuer des opérations à partir des données sélectionnées.

On appelle ces opérations des opérations d'agrégation.

7. 🔷 La clause COUNT

On veut compter le nombre d'enregistrements de la tables livres publiés en 1968.

```
Requête SQL

SELECT COUNT(*) AS total
FROM livres
WHERE ann_publi=1968;
```

total 2

8. 🔷 La clause : SUM - Additionner

Commande :

```
Requête SQL

SELECT SUM(ann_publi) AS somme

FROM livres

WHERE auteur LIKE "F%";
```

• Traduction:

On veut additionner les années des livres de la tables livres commençant par F.

Le résultat sera le seul élément d'une colonne nommée «somme». Attention : dans notre cas précis, ce calcul n'a

aucun sens...

9. 🔷 La clause : AVG - Moyenne''

On veut calculer la moyenne des notes des livres de la table livres de l'auteur "Bradbury". Le résultat sera le seul élément d'une colonne nommée «moyenne».

```
Requête SQL

SELECT AVG(note) AS note moyenne
FROM livres
WHERE auteur="Bradbury";
```

```
moyenne
7.5
```

9.1. ◆ La clause : MIN, MAX - Trouver les extremums:

· Commande:

```
Requête SQL

SELECT MIN(note) AS minimum

FROM livres;
```

auteur	titre	minimum
Huxley	Le meilleur des mondes	7

10. Des recherches croisées sur les tables : les jointures

Nous avons 2 tables, grâce aux jointures nous allons pouvoir associer ces 2 tables dans une même requête.

Repartons sur la bases LIVRES légèrement modifiées.

```
DROP TABLE IF EXISTS LIVRES;
CREATE TABLE LIVRES
(code INT, titre TEXT, id_auteur TEXT, ann_publi INT, note INT, PRIMARY KEY (code,id_auteur));
```

```
☐ Requête SQL
```

```
INSERT INTO LIVRES
(code,titre,id_auteur,ann_publi,note)
VALUES
```

```
(1, '1984', 1, 1949, 10),
 (2, 'Dune', 2, 1965, 8),
 (3, 'Fondation', 3, 1951, 9),
 (4, 'Le meilleur des mondes', 4, 1931, 7),
 (5, 'Fahrenheit 451', 5, 1953, 7),
 (6, 'Ubik', 6, 1969, 9),
 (7, 'Chroniques martiennes', 5, 1950, 8),
 (8, 'La nuit des temps', 7, 1968, 7),
 (9, 'Blade Runner', 6, 1968, 8),
 (10, 'Les Robots', 3, 1950, 9),
 (11, 'La Planète des singes', 8, 1963, 8),
 (12, 'Ravage', 7, 1943, 8),
 (13, 'Le Maître du Haut Château', 6, 1962, 8),
 (14, 'Le monde des \bar{A}', 9, 1945, 7),
 (15, 'La Fin de l'éternité', 3, 1955, 8),
 (16, 'De la Terre à la Lune', 10, 1865, 10);
```

10.1. → Jointures simples

En général, les jointures consistent à associer des lignes de 2 tables. Elles permettent d'établir un lien entre 2 tables.

• Commande:

```
Requête SQL

SELECT *
FROM LIVRES
INNER JOIN AUTEURS ON LIVRES.id_auteur = AUTEURS.id
```

• Traduction: Comme plusieurs tables sont appelées, nous préfixons chaque colonne avec le nom de la table.

code	titre	id_auteur	ann_publi	note	id	nom	prenom	ann_naissance	langue_ecriture
1	1984	1	1949	10	1	Orwell	George	1903	anglais
2	Dune	2	1965	8	2	Herbert	Frank	1920	anglais
3	Fondation	3	1951	9	3	Asimov	Isaac	1920	anglais
4	Le meilleur des mondes	4	1931	7	4	Huxley	Aldous	1894	anglais
5	Fahrenheit 451	5	1953	7	5	Bradbury	Ray	1920	anglais
6	Ubik	6	1969	9	6	K.Dick	Philip	1928	anglais
7	Chroniques martiennes	5	1950	8	5	Bradbury	Ray	1920	anglais
8	La nuit des temps	7	1968	7	7	Barjavel	René	1911	français
9	Blade Runner	6	1968	8	6	K.Dick	Philip	1928	anglais
10	Les Robots	3	1950	9	3	Asimov	Isaac	1920	anglais
11	La Planète des singes	8	1963	8	8	Boulle	Pierre	1912	français
12	Ravage	7	1943	8	7	Barjavel	René	1911	français
13	Le Maître du Haut Château	6	1962	8	6	K.Dick	Philip	1928	anglais
14	Le monde des Ā	9	1945	7	9	Van Vogt	Alfred Elton	1912	anglais
15	La Fin de l'éternité	3	1955	8	3	Asimov	Isaac	1920	anglais
16	De la Terre à la Lune	10	1865	10	10	Verne	Jules	1828	français

Des informations (id et id_auteur) sont en double.

On peut être plus précis.

☐ Requête SQL

SELECT AUTEURS.nom, LIVRES.titre, LIVRES.note, AUTEURS.ann_naissance AS Naissance, LIVRES.ann_publi AS Publication, AUTEURS.langue_ecriture AS Langue FROM LIVRES
INNER JOIN AUTEURS ON LIVRES.id_auteur = AUTEURS.id
ORDER BY AUTEURS.nom

nom	titre	note	Naissance	Publication	Langue
Asimov	Fondation	9	1920	1951	anglais
Asimov	Les Robots	9	1920	1950	anglais
Asimov	La Fin de l'éternité	8	1920	1955	anglais
Barjavel	La nuit des temps	7	1911	1968	français
Barjavel	Ravage	8	1911	1943	français
Boulle	La Planète des singes	8	1912	1963	français
Bradbury	Fahrenheit 451	7	1920	1953	anglais
Bradbury	Chroniques martiennes	8	1920	1950	anglais
Herbert	Dune	8	1920	1965	anglais
Huxley	Le meilleur des mondes	7	1894	1931	anglais
K.Dick	Ubik	9	1928	1969	anglais
K.Dick	Blade Runner	8	1928	1968	anglais
K.Dick	Le Maître du Haut Château	8	1928	1962	anglais
Orwell	1984	10	1903	1949	anglais
Van Vogt	Le monde des Ā	7	1912	1945	anglais
Verne	De la Terre à la Lune	10	1828	1865	français

11. Modifications d'une base

11.1. **❖** INSERT

Insérer les données suivantes dans la base Auteurs:

Requête SQL

INSERT INTO LIVRES
(code, titre, id_auteur, ann_publi, note)
VALUES
(17, 'Hypérion', 'Simmons', 1989, 8)

11.2. **◆ UPDATE**

☐ Requête SQL

```
UPDATE LIVRES
SET note=7
WHERE titre = 'Hypérion'
```

11.3. **◆ DELETE**

☐ Requête SQL

DELETE FROM LIVRES WHERE titre='Hypérion'