See back cover for an English translation of this cover

91164M

Te Mātauranga Matū, Kaupae 2, 2012

91164M Te whakaatu māramatanga ki te honohono, te hanganga, ngā āhuatanga me ngā huringa pūngao

9.30 i te ata Rātū 20 Whiringa-ā-rangi 2012 Whiwhinga: Rima

Paetae	Paetae Kaiaka	Paetae Kairangi
Te whakaatu māramatanga ki te honohono, te hanganga, ngā āhuatanga me ngā huringa pūngao.	Te whakaatu māramatanga hōhonu ki te honohono, te hanganga, ngā āhuatanga me ngā huringa pūngao.	Te whakaatu māramatanga matawhānui ki te honohono, te hanganga, ngā āhuatanga me ngā huringa pūngao.

Tirohia mehemea e ōrite ana te Tau Ākonga ā-Motu (NSN) kei tō pepa whakauru ki te tau kei runga ake nei.

Me whakautu e koe ngā pātai KATOA kei roto i te pukapuka nei.

He taka pūmotu kua whakaritea ki te Pukaiti Rauemi L2-CHEMMR.

Ki te hiahia koe ki ētahi atu wāhi hei tuhituhi whakautu, whakamahia te wāhi wātea kei muri i te pukapuka nei, ka āta tohu ai i ngā tau pātai.

Tirohia mehemea kei roto nei ngā whārangi 2–19 e raupapa tika ana, ā, kāore hoki he whārangi wātea.

HOATU TE PUKAPUKA NEI KI TE KAIWHAKAHAERE HEI TE MUTUNGA O TE WHAKAMĀTAUTAU.

TAPEKE

PĀTAI TUATAHI

(a) Tāngia te hanganga a Lewis (he hoahoa tongi irahiko) mō ia rāpoi ngota e whai ake nei:

Te Rāpoi Ngota	PCl ₃	CO_2	H ₂ S
Te hanganga a Lewis			

(b) E whakaatu ana te tūtohi e whai ake i ngā hanganga a Lewis me ngā koki honohono mō ngā rāpoi ngota SO_2 me te H_2CO .

Te Rāpoi Ngota	SO_2	H ₂ CO
Te hanganga a Lewis	<u>;</u> 0 ::	H. .C.::O. H
Te koki honohono āwhiwhi e rawhi ana i te ngota pūwaenga		120°

Whakamāramahia te take e whai āhua rerekē ēnei rāpoi ngota, engari he ōrite te koki honohono āwhiwhi.

I roto i tō whakautu me whakauru e koe:

- $ng\bar{a}$ \bar{a} hua o te SO_2 me te H_2CO
- ngā take e whakariterite ai i te āhua o ia rāpoi ngota
- he whakamārama he aha i ōrite ai te koki honohono āwhiwhi mā te kōrero mō te raupapa o ngā irahiko mō ia rāpoi ngota.

MĀ TE KAIMĀKA ANAKE

You are advised to spend 60 minutes answering the questions in this booklet.

ASSESSOR'S USE ONLY

QUESTION ONE

(a) Draw the Lewis structure (electron dot diagram) for each of the following molecules.

Molecule	PCl ₃	CO_2	H ₂ S
Lewis structure			

(b) The following table shows the Lewis structures and bond angles for the molecules SO_2 and H_2CO .

Molecule	SO_2	H ₂ CO
Lewis structure	Ö	H
Approximate bond angle around the central atom	120°	120°

Explain why these molecules have different shapes, but have the same approximate bond angle.

In your answer you should include:

- the shapes of SO₂ and H₂CO
- factors which determine the shape of each molecule
- an explanation of why the approximate bond angle is the same by referring to the arrangement of electrons for each molecule.

ASSESSOR'S
USE ONLY

(c) E whakaaturia ana ngā hoahoa ahu-3 o ētahi rāpoi ngota e rua i raro nei.

Porohitatia te kupu e whakamārama ana i te **pitoruatanga** o ia rāpoi ngota $\mathbf{CBr_4}$ me te $\mathbf{CH_3Br}$.

CBr ₄	Pitorua	Pitokore	
$\mathrm{CH_{3}Br}$	Pitorua	Pitokore	
Mō ia rāpoi ngota, pa	ırahautia tō kōwhiring	a.	

ASSESSOR'S USE ONLY

(c) The 3-dimensional diagrams of two molecules are shown below.

Circle the word that describes the polarity of each of the molecules CBr_4 and CH_3Br .

CBr ₄	Polar	Non-polar	
CH_3Br	Polar	Non-polar	
For each molecule, ju	stify your choice.		

MĀ TE KAIMĀKA ANAKE

PĀTAI TUARUA

(a) Whakaotihia te tūtohi i raro mā te tuhi mai i te momo korakora me te momo honohono (tōpana kume) i waenga i ngā korakora mō ia matū.

Matū	Momo korakora	Tōpana kume i waenga i ngā korakora
Haukini, NH ₃		
Konutea, Zn		
Takawai hāorarua, SiO ₂		

(b)	He ira rewa tō te takawai hāorarua o te 1770°C.				
	Whakamāramatia mai te take e teitei ake te ira rewa o te takawai hāorarua mā te kōrero mō ngā korakora me ngā tōpana kei waenga i ngā korakora i roto i te totoka.				

QUESTION TWO

ASSESSOR'S USE ONLY

(a) Complete the table below by stating the type of particle and the bonding (attractive forces) between the particles for each of the substances.

Substance	Type of particle	Attractive forces between particles
Ammonia, NH ₃		
Zinc, Zn		
Silicon dioxide, SiO ₂		

(b)	Silicon dioxide has a melting point of 1770°C.	

Explain why silicon dioxide has a high melting point by referring to the particles and the forces between the particles in the solid.			

PĀTAI TUATORU

(a) Whakamahia ai ētahi muratahi i te haurehu mewaro, CH₄, hei kora. Ko te tauhohenga mō te ngingiha o te mewaro i roto i te muratahi e whakaaturia ana i te **Whārite Tuatahi** i raro nei.

Whārite Tuatahi:

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

 $\Delta_{\rm r} H = -889 \text{ kJ mol}^{-1}$

Ina pā tēnei tauhohe, ka wāhia he honohono, ka hangaia hoki he honohono.

Tuhia ko ēhea ngā honohono ka wāhia, ko ēhea ngā honohono ka hangaia i te wā o te tauhohe.

Ngā honohono ka wāhia:

Ngā honohono ka hangaia:

(b) Tātaihia te pūngao ka puta ina tahuna te mewaro 128 g.

 $M(CH_4) = 16.0 \text{ g mol}^{-1}.$

(c) E whakaaturia ana i raro nei i te **Whārite Tuarua** te whārite mō te wai e koropupū ana i te 100°C.

Whārite Tuarua:

 $H_2O(\ell) \rightarrow H_2O(g)$

 $\Delta_r H = 40.7 \text{ kJ mol}^{-1}$

Whakamāramahia te take he pauwera tēnei whārite.

Me whakahāngai e koe ngā huringa pūngao ki ngā honohono tauwhāiti e wāhia ana, e hangaia ana hoki.

QUESTION THREE

ASSESSOR'S USE ONLY

(a) Some Bunsen burners use methane gas, CH₄, as a fuel. The reaction for the combustion of methane in a Bunsen burner is shown in **Equation One** below.

Equation One: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

 $\Delta_r H = -889 \text{ kJ mol}^{-1}$

When this reaction occurs, bonds are broken and bonds are formed.

State which bonds are broken and which bonds are formed during the reaction.

Bonds broken:

Bonds formed:

(b) Calculate the energy released when 128 g of methane is burnt.

 $M (CH_4) = 16.0 \text{ g mol}^{-1}.$

(c) The equation for water boiling at 100°C is shown below in **Equation Two**.

Equation Two: $H_2O(\ell) \rightarrow H_2O(g)$

 $\Delta_r H = 40.7 \text{ kJ mol}^{-1}$

Explain why this equation is endothermic.

You should relate the energy changes that are occurring to the specific bonds being broken or formed.

(d) Ka whakawerahia e tētahi ākonga tētahi rahinga wai 72.0 g ki te 100°C mā te whakamahi i tētahi muratahi.

MĀ TE KAIMĀKA ANAKE

Kātahi ka korohūtia e te ākonga te wai.

Tātaihia te papatipu o te haurehu mewaro, $\mathrm{CH_4}$, e hiahiatia ana hei ngingiha i roto i tētahi muratahi kia korohū ai te wai e 72.0 g.

$$M(H_2O) = 18.0 \text{ g mol}^{-1}$$
.

I tō whakautu me:

- whakamahi te **Whārite Tuarua** hei whakatau i te rahinga pūngao e hiahiatia kia korohū ai te wai
- whakamahi te **Whārite Tuatahi** hei whakatau i te papatipu o te mewaro e hiahiatia ana kia hua ake te rahinga pūngao e hiahiatia

ū ki te whakaa	o v	no no pombo	Y ·	

MĀ TE
MĀ TE KAIMĀR ANAKI
1

(d) A student heats 72.0 g of water to 100°C using a Bunsen burner.

The student then boils the water.

Calculate the mass of methane gas, $\mathrm{CH_4}$, that would need to be combusted in a Bunsen burner to boil the 72.0 g of water.

$$M(H_2O) = 18.0 \text{ g mol}^{-1}$$
.

In your answer you will need to:

- use **Equation Two** to determine the amount of energy required to boil the water
- use **Equation One** to determine the mass of methane needed to produce the required amount of energy

assume that no energy is lost to the surrounding environment.				

ASSESSOI USE ONL
USE ONL
1

		He puka anō mēnā ka hiahiatia.	
TAU PĀTAI		Tuhia te (ngā) tau pātai mēnā e hāngai ana.	
PATAI			

ASSESSOR'S USE ONLY

		Extra paper if required.	
QUESTION		Write the question number(s) if applicable.	
QUESTION NUMBER	l	, .,	

English translation of the wording on the front cover

Level 2 Chemistry, 2012

91164 Demonstrate understanding of bonding, structure, properties and energy changes

9.30 am Tuesday 20 November 2012 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of bonding, structure, properties and energy changes.	Demonstrate in-depth understanding of bonding, structure, properties and energy changes.	Demonstrate comprehensive understanding of bonding, structure, properties and energy changes.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L2–CHEMR.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–19 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.