

CLAIMS

1. Derivatives of 1,3-diones having general formula (I):

5

(I)

wherein:

- A represents:

- 10 an aryl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, OH, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ cyanoalkyl, C₂-C₆
- 15 alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl, C₂-C₆ alkoxyalkoxyl or C₂-C₆ haloalkoxyalkoxyl
- 20 optionally substituted with a group selected from C₁-C₄ alkoxy or C₁-C₄ haloalkoxyl, C₂-C₆ alkylthioalkoxyl, C₂-C₆ haloalkylthioalkoxyl, C₃-C₁₂ dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, C₃-C₁₂ dialkylthioalkoxyl, C₃-C₁₂ dialkoxyalkoxyl, C₂-C₆

haloalkoxyhaloalkoxyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆
 alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkenyloxy, C₂-C₆
 haloalkenyloxy, C₃-C₈ alkenyloxyalkoxyl, C₃-C₈
 haloalkenyloxyalkoxyl, C₂-C₆ alkynyl, C₂-C₆
 5 haloalkynyl, C₂-C₆ alkynyloxy, C₂-C₆ haloalkynyloxy,
 C₃-C₈ alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl,
 C₃-C₁₂ acylaminoalkoxy, C₂-C₈ alkoxyiminoalkyl, C₂-C₈
 haloalkoxyiminoalkyl, C₃-C₈ alkenyloxyiminoalkyl, C₃-
 C₈ haloalkenyloxyiminoalkyl, C₃-C₈
 10 alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl,
 C₅-C₁₀ alkoxyalkynyloxy, C₆-C₁₂
 cycloalkylideneiminooxyalkyl, C₆-C₁₂
 dialkylideneiminooxyalkyl, -S(O)_mR₁, -OS(O)_tR₁,
 -SO₂NR₂R₃, -CO₂R₄, -COR₅, -CONR₆R₇, -CSNR₈R₉,
 15 -NR₁₀R₁₁, -NR₁₂COR₁₃, -NR₁₄CO₂R₁₅, -NR₁₆CONR₁₇R₁₈,
 -PO(R₁₉)₂, -Q, -ZQ₁, -(CR₂₀R₂₁)_pQ₂, -Z(CR₂₂R₂₃)_pQ₃,
 -(CR₂₄R₂₅)_pZQ₄, -(CR₂₆R₂₇)_pZ(CR₂₈R₂₉)_qQ₅,
 -(CR₃₀R₃₁)_pZ(CR₃₂R₃₃)_qZ₁Q₆, -Z₂(CR₃₄R₃₅)_p(C=Y)T,
 -Z₃(CR₃₆R₃₇)_v(CR₃₈R₃₉=CR₄₀R₄₁) (C=Y)T;
 20 or it represents a heterocyclic group selected from
 pyridyl, pyrimidyl, quinolinyl, pyrazolyl, thiazolyl,
 oxazolyl, thiienyl, furyl, benzothienyl,
 dihydrobenzothienyl, benzofuranyl,
 dihydrobenzofuranyl, benzoxazolyl, benzoxazolonyl,
 25 benzothiazolyl, benzothiazolonyl, benzoimidazolyl,

benzimidazolonyl, benzotriazolyl, chromanonyl,
chromanyl, thiochromanonyl, thiochromanyl, 3a,4-
dihydro-3H-indeno[1,2-c]isoxazolyl, 3a,4-dihydro-3H-
chromeno[4,3-c]isoxazolyl, 5,5-dioxide-3a,4-dihydro-
5 3H-thiochromeno[4,3-c]isoxazolyl, 2,3,3a,4-
tetrahydrochromeno[4,3-c]pyrazolyl, 6,6-dioxide-2,3-
dihydro-5H-[1,4]dithiino[2,3-c]thiochromenyl, 5,5-
dioxide-2,3,3a,4-tetrahydrothiochromeno[4,3-
c]pyrazolyl, 1',1'-dioxide-2',3'-dihydrospiro[1,3-
10 dioxolano-2,4'-thiochromen]-yl, 1,1,4,4-tetraoxide-
2,3-dihydro-1,4-benzodithiin-6-yl, 4,4-dioxide-2,3-
dihydro-1,4-benzoxathiin-7-yl, 1,1-dioxide-3-oxo-2,3-
dihydro-1,2-benzoisothiazol-5-yl, 4-(alkoxyimino)-
1,1-dioxide-3,4-dihydro-2H-thiochromen-6-yl, 1,1-
15 dioxide-4-oxo-3,4-dihydro-2H-thiochromen-6-yl, 2,3-
dihydro-1,4-benzoxathiin-7-yl,
with said groups optionally substituted by one or
more substituents selected from halogen, NO₂, CN,
CHO, OH, linear or branched C₁-C₆ alkyl, linear or
20 branched C₁-C₆ haloalkyl, linear or branched C₁-C₆
alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆
cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl,
C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl,
C₂-C₆ haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆
25 haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl,
:
:

C₂-C₆ alkoxyalkoxyl or C₂-C₆ haloalkoxyalkoxyl
 optionally substituted with a group selected from C₁-
 C₄ alkoxy or C₁-C₄ haloalkoxyl, C₂-C₆
 alkylthioalkoxyl, C₂-C₆ haloalkylthioalkoxyl, C₃-C₁₂
 5 dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, C₃-C₁₂
 dialkylthioalkoxyl, C₃-C₁₂ dialkoxyalkoxyl, C₂-C₆
 haloalkoxyhaloalkoxyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆
 alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkenyloxy, C₂-C₆
 haloalkenyloxy, C₃-C₈ alkenyloxyalkoxyl, C₃-C₈
 10 haloalkenyloxyalkoxyl, C₂-C₆ alkynyl, C₂-C₆
 haloalkynyl, C₂-C₆ alkynyloxy, C₂-C₆ haloalkynyloxy,
 C₃-C₈ alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl,
 C₃-C₁₂ acylaminoalkoxy, C₂-C₈ alkoxyiminoalkyl, C₂-C₈
 haloalkoxyiminoalkyl, C₃-C₈ alkenyloxyiminoalkyl, C₃-
 15 C₈ haloalkenyloxyiminoalkyl, C₃-C₈
 alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl,
 C₅-C₁₀ alkoxyalkynyloxy, C₆-C₁₂
 cycloalkylideneiminoxyalkyl, C₆-C₁₂
 dialkylideneiminoxyalkyl, -S(O)_mR₁, -OS(O)_tR₁,
 20 -SO₂NR₂R₃, -CO₂R₄, -COR₅, -CONR₆R₇, -CSNR₈R₉,
 -NR₁₀R₁₁, -NR₁₂COR₁₃, -NR₁₄CO₂R₁₅, -NR₁₆CONR₁₇R₁₈,
 -PO(R₁₉)₂, -Q, -ZQ₁, -(CR₂₀R₂₁)_pQ₂, -Z(CR₂₂R₂₃)_pQ₃,
 -(CR₂₄R₂₅)_pZQ₄, -(CR₂₆R₂₇)_pZ(CR₂₈R₂₉)_qQ₅,
 -(CR₃₀R₃₁)_pZ(CR₃₂R₃₃)_qZ₁Q₆, -Z₂(CR₃₄R₃₅)_p(C=Y)T,
 25 -Z₃(CR₃₆R₃₇)_v(CR₃₈R₃₉=CR₄₀R₄₁)(C=Y)T;

- B represents a D-(R_x)_n group;

- R represents a hydrogen atom, a linear or branched C₁-C₆ alkyl group, a linear or branched C₁-C₆ haloalkyl group, a C₃-C₆ cycloalkyl or C₄-C₁₂ cycloalkylalkyl group optionally substituted with halogen atoms or C₁-C₆ alkyl or C₁-C₆ thioalkyl or C₁-C₆ alkoxy or C₂-C₆ alkoxycarbonyl groups, C₂-C₆ alkenyl groups, C₂-C₆ alkynyl groups, the latter two groups, in turn, optionally substituted with halogen atoms, a C₅-C₆ cycloalkenyl group optionally substituted with halogen atoms or C₁-C₆ alkyl groups, an aryl or arylalkyl group optionally substituted;

- R₁ and R₁₉ represent a C₁-C₆ alkyl group or a C₁-C₆ haloalkyl group, a C₃-C₆ cycloalkyl group, an aryl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl;

- m is equal to 0, 1 or 2;

- t is equal to 1 or 2;

- R₂, R₃, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₇ and R₁₈, the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally

substituted with halogen atoms, a C₁-C₆ alkoxy group, a C₃-C₆ cycloalkyl group, an arylalkyl group or an aryl group, said arylalkyl and aryl groups also optionally substituted by one or more substituents
5 selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, or they jointly represent a C₂-
10 C₅ alkylene group;

- R₄, R₅ and R₄₂ represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms, a
15 Q₇ group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆
20 alkylsulfonyl, C₂-C₆ alkoxycarbonyl;

- R₁₂, R₁₄ and R₁₆ represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₃-C₆ cycloalkyl group, a C₁-C₆ alkoxy group, a C₁-C₆ haloalkoxyl
25 group;

- R₁₃ and R₁₅ represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms, a

5 Q₇, NH₂, NH₂CN, NH₂NH₂, NHOH group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfonyl,

10 C₂-C₆ alkoxy carbonyl;

- R₂₀, R₂₁, R₂₂, R₂₃, R₂₄, R₂₅, R₂₆, R₂₇, R₂₈, R₂₉, R₃₀, R₃₁, R₃₂, R₃₃, R₃₄, R₃₅, R₃₆, R₃₇, R₃₈, R₃₉, R₄₀ and R₄₁, the same or different, represent a hydrogen atom, a

15 linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₁-C₆ alkoxy group, or the two groups attached to the same carbon atom can be joined to each other by C₂-C₅ alkylene groups, the alkylene groups can in turn be

20 substituted with C₁-C₃ alkyl groups;

- Q, Q₁, Q₂, Q₃, Q₄, Q₅, Q₆ and Q₇ represent an aryl group, a C₃-C₆ cycloalkyl group, a C₅-C₆ cycloalkenyl group, a heterocyclic group selected from triazolyl, triazolonyl, pyrazolyl, imidazolyl, imidazolidinonyl,

25 tetrazolyl, tetrazolonyl, isoxazolyl, furyl, thieryl,

pyrrolyl, pyrrolidinyl, pyrrolidinonyl, pyridyl,
pyrimidinyl, pyrimidinonyl, pyrazinyl, pyridazinyl,
oxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl,
isothiazolyl, benzoxazolyl, benzothiazolyl,
5 isoxazoliny, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-
dioxolanyl, tetrahydropyranyl, oxethanyl, oxyranyl,
thiazolidinyl, oxazolidinyl, piperidinyl,
piperidinonyl, piperazinyl, morpholinyl, thiazinyl,
tetrahydrofuranyl, dioxazolyl,
10 tetrahydrofuroisoxazolyl, 2-oxa-3-
azabicyclo[3.1.0]hex-3-enyl,
said groups optionally substituted by one or more
substituents selected from halogen, NO₂, OH, CN, CHO,
linear or branched C₁-C₆ alkyl, linear or branched C₁-
15 C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear
or branched C₁-C₆ haloalkoxy, C₁-C₆ cyanoalkyl, C₂-C₆
alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆
alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₂-C₆
haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆
20 haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl,
C₂-C₆ alkoxyalkoxy or C₂-C₆ haloalkoxyalkoxy
optionally substituted with a group selected from C₁-
C₄ alkoxy or C₁-C₄ haloalkoxy, C₂-C₆
alkylthioalkoxy, C₂-C₆ haloalkylthioalkoxy, C₃-C₁₂
25 dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, C₃-C₁₂

dialkylthioalkoxyl, C₃-C₁₂ dialkoxyalkoxyl, C₂-C₆
 haloalkoxyhaloalkoxyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆
 alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkenyloxy, C₂-C₆
 haloalkenyloxy, C₃-C₈ alkenyloxyalkoxyl, C₃-C₈
 5 haloalkenyloxyalkoxyl, C₂-C₆ alkynyl, C₂-C₆
 haloalkynyl, C₂-C₆ alkynyloxy, C₂-C₆ haloalkynyloxy,
 C₃-C₈ alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl,
 C₃-C₁₂ acylaminoalkoxy, C₂-C₈ alkoxyiminoalkyl, C₂-C₈
 haloalkoxyiminoalkyl, C₃-C₈ alkenyloxyiminoalkyl, C₃-
 10 C₈ haloalkenyloxyiminoalkyl, C₃-C₈
 alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl,
 C₅-C₁₀ alkoxyalkynyloxy, C₆-C₁₂
 cycloalkylideneiminooxyalkyl, C₆-C₁₂
 dialkylideneiminooxyalkyl, aryl optionally
 15 substituted, -S(O)_mR₁, -OS(O)_tR₁, -SO₂NR₂R₃,
 -CO₂R₄, -COR₅, -CONR₆R₇, -CSNR₈R₉, -NR₁₀R₁₁,
 -NR₁₂COR₁₃, -NR₁₄CO₂R₁₅, -NR₁₆CONR₁₇R₁₈, -PO(R₁₉)₂,
 -Z₂(CR₃₄R₃₅)_p(C=Y)T, -Z₃(CR₃₆R₃₇)_v(CR₃₈R₃₉=CR₄₀R₄₁)(C=Y)T;
 - Z, Z₁, Z₂ = O, S(O)_r;
 20 - Y = O, S;
 - r is equal to 0, 1 or 2;
 - p, q are equal to 1, 2, 3 or 4;
 - v is equal to 0 or 1;
 - Z₃ = O, S or a direct bond;

- T represents a hydrogen atom, a Z_4R_{42} group, a -
NR₄₃R₄₄ group, an aryl group or a heterocyclic group
selected from triazolyl, triazolonyl, pyrazolyl,
imidazolyl, imidazolidinonyl, tetrazolyl,
5 tetrazolonyl, pyrrolyl, pyrrolidinyl, pyrrolidinonyl,
pyridyl, pyrimidinyl, piperidinyl, piperidinonyl,
piperazinyl, morpholinyl, said groups optionally
substituted by one or more substituents selected from
halogen, NO₂, OH, CN, CHO, linear or branched C₁-C₆
10 alkyl, linear or branched C₁-C₆ haloalkyl, C₃-C₆
cycloalkyl, C₅-C₆ cycloalkenyl, linear or branched C₁-
C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-
C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆
alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆
15 alkylsulfonylalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆
haloalkylthioalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-
C₆ haloalkylsulfonylalkyl, -S(O)_mR₁;

- Z₄ = O, S or a direct bond;

- R₄₃ and R₄₄, the same or different, represent a
20 hydrogen atom, a linear or branched C₁-C₆ alkyl group
in turn optionally substituted with halogen atoms, a
C₃-C₆ alkenyl group in turn optionally substituted
with halogen atoms, a Q₇ group, an arylalkyl group
optionally substituted by one or more substituents
25 selected from halogen, NO₂, CN, CHO, linear or

branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxy carbonyl, or they jointly represent a C₂-5 C₅ alkylene chain;

- D represents:

a heterocyclic group of the heteroaryl or heterocyclic type, in all the above cases the heterocycle can be mono or polycyclic and can be connected to the rest of the structure either through one of its carbon atoms or, when possible, through one of its nitrogen atoms;

10 or it represents a mono or polycyclic aryl group, in this latter case, the group can also be partially 15 saturated;

- R_x represents a substituent selected from hydrogen, halogen, NO₂, CN, CHO, OH, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ 20 haloalkoxy, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ 25 alkylsulfonylalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl, C₂-C₆ alkoxyalkoxy or C₂-C₆ haloalkoxyalkoxy optionally substituted with a

group selected from C₁-C₄ alkoxyl or C₁-C₄
haloalkoxyl, C₂-C₆ haloalkylthioalkoxyl, C₃-C₁₂
dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, C₃-C₁₂
dialkylthioalkoxyl, C₃-C₁₂ dialkoxyalkoxyl, C₂-C₆
5 haloalkoxyhaloalkoxyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆
alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkenyloxy, C₂-C₆
haloalkenyloxy, C₃-C₈ alkenyloxyalkoxyl, C₃-C₈
haloalkenyloxyalkoxyl, C₂-C₆ alkynyl, C₂-C₆
haloalkynyl, C₂-C₆ alkynyloxy, C₂-C₆ haloalkynyloxy,
10 C₃-C₈ alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl,
C₃-C₁₂ acylaminoalkoxy, C₂-C₈ alkoxyiminoalkyl, C₂-C₈
haloalkoxyiminoalkyl, C₃-C₈ alkenyloxyiminoalkyl, C₃-
C₈ haloalkenyloxyiminoalkyl, C₃-C₈
alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl,
15 C₅-C₁₀ alkoxyalkynyloxy, C₆-C₁₂
cycloalkylideneiminooxyalkyl, C₆-C₁₂
dialkylideneiminooxyalkyl, -S(O)_mR₁, -OS(O)_tR₁,
-SO₂NR₂R₃, -CO₂R₄, -COR₅, -CONR₆R₇, -CSNR₈R₉,
-NR₁₀R₁₁, -NR₁₂COR₁₃, -NR₁₄CO₂R₁₅, -NR₁₆CONR₁₇R₁₈,
20 -PO(R₁₉)₂, -Q, -ZQ₁, -(CR₂₀R₂₁)_pQ₂, -Z(CR₂₂R₂₃)_pQ₃,
-(CR₂₄R₂₅)_pZQ₄, -(CR₂₆R₂₇)_pZ(CR₂₈R₂₉)_qQ₅,
-(CR₃₀R₃₁)_pZ(CR₃₂R₃₃)_qZ₁Q₆, -Z₂(CR₃₄R₃₅)_p(C=Y)T,
-Z₃(CR₃₆R₃₇)_v(CR₃₈R₃₉=CR₄₀R₄₁) (C=Y)T;
if several R_x groups are present, these can be the
25 same or different;

- n = 1-9;

excluding the following compounds having general formula (I) wherein A, B and R have the following meanings:

- 5 A=4-chlorophenyl, B=1-methylimidazol-2-yl, R=H;
A=4-nitrophenyl, B=1-(2-hydroxyethyl)-5-nitroimidazol-2-yl, R=H;
A=phenyl, B=1H-benzimidazol-2-yl, R=C₂H₅;
A=phenyl, B=4H-1-benzopyran-4-yl, R=CH₃;
- 10 A=4-nitrophenyl, B=3-(4-methylphenyl)-1,2,4-oxadiazol-5-yl, R=CH₃;
A=phenyl, B=4-chloro-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl, R=CH₃;
A=phenyl, B=2-acetyl-1,2,3,4-tetrahydroisoquinolin-1-yl, R=C₂H₅;
- 15 A=2-hydroxy-4-methoxyphenyl, B=thiazol-4-yl, R=CH₃;
A=phenyl, B=2,5-diphenyl-1,3-oxathiol-2-yl, R=CH₃;
A=4-nitrophenyl, B=4,6-bis(dimethylamino)-1,3,5-triazin-2-yl, R=CH₃;
- 20 A=phenyl, B=furan-2-yl, R=CH₃;
A=phenyl, B=1,3-dithian-2-yl, R=CH₃;
A=phenyl, B=4-chlorothien-2-yl, R=H;
A=phenyl, B=5-bromothien-2-yl, R=H;
- 25 A=phenyl, B=5-methylthien-2-yl, R=H;
A=phenyl, B=6-phenylpyrazin-2-yl, R=CH₃;

A=phenyl, B=3,4-dihydro-3-methyl-2-oxo-2H-1,3-benzo-
oxazin-4-yl, R=CH₃;

A=phenyl, B=benzothiazol-2-yl, R=CH₃;

A=2-hydroxy-4-methoxyphenyl, B=2-phenylthiazol-4-yl,
5 R=CH₃;

A=phenyl, B=5-methylfuran-2-yl, R=CH₃;

A=phenyl, B=3-(4-methylphenyl)-1,2,4-oxadiazol-5-yl,
R=CH₃;

A=phenyl, B=tetrahydrofuran-2-yl, R=CH₃;

10 A=phenyl, B=2,3-dihydro-3-hydroxy-2-oxo-1H-indol-3-
yl, R=CH₃,

A=phenyl, B=4-chloro-1-methyl-2,5-dioxo-2,5-dihydro-
pyrrol-3-yl, R=CH₃;

A=phenyl, B=2-trifluoroacetyl-1,2,3,4-tetrahydroiso-
15 quinolin-1-yl, R=C₂H₅;

A=phenyl, B=2-acetyl-1,2,3,4-tetrahydroisoquinolin-1-
yl, R=CH₃;

A=4-nitrophenyl, B=2-(4-nitrophenyl)-3,5,6-triphenyl-
pyridin-4-yl, R=CH₃;

20 A=phenyl, B=4,6-bis(dimethylamino)-1,3,5-triazin-2-
yl, R=CH₃;

A=phenyl, B=4-methoxy-5-tert-butoxycarbonyl-1H-pyrro-
2-yl, R=CH₃;

A=phenyl, B=1,3-dihydro-3-oxo-isobenzofuran-1-yl,
25 R=CH₃;

A=phenyl, B=(5-methoxycarbonylmethyl)thien-2-yl, R=H;
A=phenyl, B=4-methylthien-2-yl, R=H;
A=phenyl, B=1,4-dihydro-1-methyl-3-nitroquinolin-4-
yl, R=H;

5 A=phenyl, B=thien-2-yl, R=H;
A=phenyl, B=6-methylbenzothiazol-2-yl, R=CH₃;
A=2-methoxycarbonylphenyl, B=phenyl, R=CH₃;
A=2-benzyloxy-4-methoxyphenyl, B=2,3,4-
trimethoxyphenyl, R=H;

10 A=4,5-dimethoxy-2-nitrophenyl, B=3,4-dimethoxyphenyl,
R=H;
A=2-nitrophenyl, B=phenyl, R=H;
A=2,4,5-trimethoxyphenyl, B=4-methoxyphenyl, R=H;
A=4-bromophenyl, B=phenyl, R=H;

15 A=4-bromophenyl, B=2,4-dinitrophenyl, R=CH₃;
A=4-chlorophenyl, B=phenyl, R=H;
A=2,4-dibenzylxy-5-methoxyphenyl, B=1,3-benzodioxol-
5-yl, R=H;

A=2,4-dibenzylxyphenyl, B=1,3-benzodioxol-5-yl, R=H;

20 A=4-methoxyphenyl, B=2-carboxyphenyl, R=H;
A=4-methylphenyl, B=2,4-dinitrophenyl, R=CH₃;
A=4-hydroxy-3-methoxyphenyl, B=4-hydroxy-3-
methoxyphenyl, R=H;

A=2-nitrophenyl, B=4-methylphenyl, R=H;

25 A=4-chlorophenyl, B=4-chlorophenyl, R=H;

A=2,4-diacetoxyphenyl, B=phenyl, R=CH₃;

A=3-methoxyphenyl, B=phenyl, R=C₂R₅;

A=4-nitrophenyl, B=phenyl, R=H;

A=2-nitrophenyl, B=4-n-butoxyphenyl, R=H;

5 A=2-nitro-4-chlorophenyl, B=4-methylphenyl, R=H;
A=phenyl, B=8-carboxynaphthalenyl, R=CH₃;

A=2,5-dimethoxyphenyl, B=2-hydroxyphenyl, R=C₂R₅;

A=4-fluorophenyl, B=2-nitro-4-trifluoromethylphenyl,
R=CH₃;

10 A=3-chloro-4-methylphenyl, B=2,4-dinitrophenyl,
R=CH₃;

A=2-nitro-4-chlorophenyl, B=phenyl, R=H;

A=4,5-dimethoxy-2-nitrophenyl, B=4-methylphenyl, R=H;

A=2-carboxy-6-nitrophenyl, B=phenyl, R=CH₃;

15 A=2,4,5-trimethoxyphenyl, B=3-methoxyphenyl, R=H;
A=phenyl, B=4-bromophenyl, R=H;

A=6-benzylxy-2,3,4-trimethoxyphenyl, B=1,3-benzodioxol-5-yl, R=H;

A=4,5-dimethoxy-2-nitrophenyl, B=4-methoxyphenyl,

20 R=H;
A=4,5-dimethoxy-2-nitrophenyl, B=4-chlorophenyl, R=H;
A=2,4-dibenzylxyphenyl, B=4-methoxyphenyl, R=H;
A=4-methylphenyl, B=4-methylphenyl, R=H;
A=4-dimethylaminophenyl, B=phenyl, R=H;

25 A=4-methoxyphenyl, B=phenyl, R=H;

A=4,5-dichloro-2-nitrophenyl, B=4-chlorophenyl, R=H;
A=2-nitrophenyl, B=4-methoxyphenyl, R=H;
A=phenyl, B=2,5-dimethoxycarbonylaminophenyl, R=CH₃;
A=4-hydroxy-4-methoxyphenyl, B=2-methoxyphenyl, R=H;
5 A=phenyl, B=4-methylphenyl, R=H;
A=2-nitrophenyl, B=4-ethoxyphenyl, R=H;
A=2-nitro-4-chlorophenyl, B=4-methoxyphenyl, R=H;
A=4-chlorophenyl, B=phenyl, R=C₂H₅;
A=2-t-butoxycarbonyl-5-ethyl-4-methoxyphenyl, B=2,3-
10 dihydro-7-methyl-1,4-benzodioxin-6-yl, R=t-butyl;
A=phenyl, B=2-nitro-4-trifluoromethylphenyl, R=CH₃;
A=3,4-dichlorophenyl, B=2,4-dinitrophenyl, R=CH₃;
A=4,5-dichloro-2-nitrophenyl, B=4-methoxyphenyl, R=H;
A=4-methoxy-2-nitrophenyl, B=4-methylphenyl, R=H;
15 A=phenyl, B=anthracene-9-yl, R=CH₃;
A=phenyl, B=4-methoxyphenyl, R=H;
A=2,4,5-trimethoxyphenyl, B=phenyl, R=H;
A=2,4-diacetoxyphenyl, B=2,4,5-trimethoxyphenyl,
R=CH₃;
20 A=2-hydroxyphenyl, B=phenyl, R=H;
A=4-methoxy-2-nitrophenyl, B=phenyl, R=H;
A=4,5-dimethoxy-2-nitrophenyl, B=phenyl, R=H;
A=2,4-dinitrophenyl, B=phenyl, R=CH₃;
A=phenyl, B=phenyl, R=CH₃;
25 A=phenyl, B=4-dimethylaminophenyl, R=H;

A=phenyl, B=2,4-dinitrophenyl, R=CH₃;
A=4,5-dichloro-2-nitrophenyl, B=4-methylphenyl, R=H;
A=4-bromophenyl, B=phenyl, R=CH₃;
A=2-(4-methylphenylsulfonyloxy)-6-methoxyphenyl,
5 B=phenyl, R=H;
A=4-methylsulfonylphenyl, B=2-methoxyphenyl, R=CH₃;
A=4-methoxyphenyl, B=4-methoxyphenyl, R=CH₃;
A=phenyl, B=4-chlorophenyl, R=H;
A=2-nitrophenyl, B=4-nitrophenyl, R=H;
10 A=phenyl, B=phenyl, R=H;
A=2,4-dimethoxyphenyl, B=4-methoxyphenyl, R=H;
A=2-nitrophenyl, B=4-n-hexyloxyphenyl, R=H;
A=4-methoxy-2-nitrophenyl, B=4-methoxyphenyl, R=H;
A=phenyl, B=9-carboxyphenanthren-10-yl, R=CH₃;
15 A=phenyl, B=phenyl, R=CH₃;
A=3,4-dimethoxyphenyl, B=3,4-dimethoxyphenyl, R=H;
A=2,4-dimethoxyphenyl, B=phenyl, R=H;
A=phenyl, B=2-hydroxy-3,4,6-trimethyl-5-
methoxyphenyl, R=CH₃;
20 A=4-chloro-2-nitrophenyl, B=4-chlorophenyl, R=H;
A=2-nitrophenyl, B=4-chlorophenyl, R=H;
A=2,4,5-trimethoxyphenyl, B=3,4-dimethoxyphenyl, R=H;
A=4-chlorophenyl, B=2,4-dinitrophenyl, R=CH₃;
A=4,5-dichloro-2-nitrophenyl, B=phenyl, R=H;
25 A=4-methoxyphenyl, B=phenyl, R=CH₃;

A=2,4-dibenzylxyphenyl, B=3,4-dimethoxyphenyl, R=H;

A=4-methylthiophenyl, B=4-methoxyphenyl, R=CH₃;

A=phenyl, B=phenyl, R=C₂H₅;

A=4-methoxyphenyl, B=2,4-dinitrophenyl, R=CH₃;

5 A=2-nitrophenyl, B=3-chlorophenyl, R=H;

A=2-nitrophenyl, B=3,4-dimethoxyphenyl, R=H;

A=4-methoxyphenyl, B=4-methoxyphenyl, R=H;

A=2-hydroxyphenyl, B=4-methoxyphenyl, R=H;

A=phenyl, B=2,5-bis(phenacylamino)phenyl, R=CH₃;

10 A=4-nitrophenyl, B=4-methylphenyl, R=H;

A=2-nitrophenyl, B=4-n-pentyloxyphenyl, R=H;

A=4-methoxy-2-nitrophenyl, B=4-chlorophenyl, R=H;

A=phenyl, B=2-carboxynaphthalen-1-yl, R=CH₃.

2. The derivatives according to claim 1,
 15 characterized in that the compound having formula (I)
 are present as tautomeric and/or isomeric forms, pure
 or as blends of tautomeric and/or isomeric forms, in
 any proportion whatsoever.

3. Use of derivatives of 1,3-diones having
 20 general formula (I):

wherein:

- A represents:

an aryl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, OH,

- 5 linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₂-C₆
- 10 haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl, C₂-C₆ alkoxyalkoxy or C₂-C₆ haloalkoxyalkoxy possibly substituted with a C₁-C₄ alkoxy or C₁-C₄ haloalkoxy group, C₂-C₆ alkylthioalkoxy, C₂-C₆
- 15 haloalkylthioalkoxy, C₃-C₁₂ dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, C₃-C₁₂ dialkylthioalkoxy, C₃-C₁₂ dialkoxyalkoxy, C₂-C₆ haloalkoxyhaloalkoxy, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₃-C₈
- 20 alkenyloxyalkoxy, C₃-C₈ haloalkenyloxyalkoxy, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₂-C₆ alkynyloxy, C₂-C₆ haloalkynyloxy, C₃-C₈ alkynyloxyalkoxy, C₃-C₈ haloalkynyloxyalkoxy, C₃-C₁₂ acylaminoalkoxy, C₂-C₈ alkoxyiminoalkyl, C₂-C₈ haloalkoxyiminoalkyl, C₃-C₈
- 25 alkenyloxyiminoalkyl, C₃-C₈ haloalkenyloxyiminoalkyl,

C₃-C₈ alkynyloxyiminoalkyl, C₃-C₈
 haloalkynyloxyiminoalkyl, C₅-C₁₀ alkoxyalkynyloxy, C₆-C₁₂
 C₆-C₁₂ cycloalkylideneiminooxyalkyl, C₆-C₁₂
 dialkylideneiminooxyalkyl, -S(O)_mR₁, -OS(O)_tR₁,
 5 -SO₂NR₂R₃, -CO₂R₄, -COR₅, -CONR₆R₇, -CSNR₈R₉,
 -NR₁₀R₁₁, -NR₁₂COR₁₃, -NR₁₄CO₂R₁₅, -NR₁₆CONR₁₇R₁₈,
 -PO(R₁₉)₂, -Q, -ZQ₁, -(CR₂₀R₂₁)_pQ₂, -Z(CR₂₂R₂₃)_pQ₃,
 -(CR₂₄R₂₅)_pZQ₄, -(CR₂₆R₂₇)_pZ(CR₂₈R₂₉)_qQ₅,
 10 -(CR₃₀R₃₁)_pZ(CR₃₂R₃₃)_qZ₁Q₆, -Z₂(CR₃₄R₃₅)_p(C=Y)T,
 -Z₃(CR₃₆R₃₇)_v(CR₃₈R₃₉=CR₄₀R₄₁) (C=Y)T;
 or represents a heterocyclic group selected from
 pyridyl, pyrimidyl, quinolinyl, pyrazolyl, thiazolyl,
 oxazolyl, thienyl, furyl, benzothienyl,
 dihydrobenzothienyl, benzofuranyl,
 15 dihydrobenzofuranyl, benzoxazolyl, benzoxazolonyl,
 benzothiazolyl, benzothiazolonyl, benzoimidazolyl,
 benzoimidazolonyl, benzotriazolyl, chromanonyl,
 chromanyl, thiochromanonyl, thiochromanyl, 3a,4-
 dihydro-3H-indeno[1,2-c]isoxazolyl, 3a,4-dihydro-3H-
 20 chromeno[4,3-c]isoxazolyl, 5,5-dioxide-3a,4-dihydro-
 3H-thiochromeno[4,3-c]isoxazolyl, 2,3,3a,4-
 tetrahydrochromeno[4,3-c]pyrazolyl, 6,6-dioxide-2,3-
 dihydro-5H-[1,4]dithiino[2,3-c]thiochromenyl, 5,5-
 dioxide-2,3,3a,4-tetrahydrothiochromeno[4,3-
 25 c]pyrazolyl, 1',1'-dioxide-2',3'-dihydrospiro[1,3-

dioxolane-2,4'-thiochromen]-yl, 1,1,4,4-tetraoxide-
2,3-dihydro-1,4-benzodithiin-6-yl 4,4-dioxide-2,3-
dihydro-1,4-benzoxathiin-7-yl, 1,1-dioxide-3-oxo-2,3-
dihydro-1,2-benzoisothiazol-5-yl, 4-(alkoxyimino)-
5 1,1-dioxide-3,4-dihydro-2H-thiochromen-6-yl, 1,1-
dioxide-4-oxo-3,4-dihydro-2H-thiochromen-6-yl, 2,3-
dihydro-1,4-benzoxathiin-7-yl,
with all these groups possibly substituted by one or
more substituents selected from halogen, NO₂, CN,
10 CHO, OH, linear or branched C₁-C₆ alkyl, linear or
branched C₁-C₆ haloalkyl, linear or branched C₁-C₆
alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆
cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl,
C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl,
15 C₂-C₆ haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆
haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl,
C₂-C₆ alkoxyalkoxyl or C₂-C₆ haloalkoxyalkoxyl,
possibly substituted with a C₁-C₄ alkoxy or C₁-C₄
haloalkoxyl group, C₂-C₆ alkylthioalkoxyl, C₂-C₆
20 haloalkylthioalkoxyl, C₃-C₁₂ dialkoxyalkyl, C₃-C₁₂
dialkylthioalkyl, C₃-C₁₂ dialkylthioalkoxyl, C₃-C₁₂
dialkoxyalkoxyl, C₂-C₆ haloalkoxyhaloalkoxyl, C₃-C₁₀
alkoxyalkoxyalkyl, C₂-C₆ alkenyl,
C₂-C₆ haloalkenyl, C₂-C₆ alkenyloxy, C₂-C₆
25 haloalkenyloxy, C₃-C₈ alkenyloxyalkoxyl, C₃-C₈

haloalkenyloxyalkoxyl, C₂-C₆ alkynyl, C₂-C₆
 haloalkynyl, C₂-C₆ alkynyloxy, C₂-C₆ haloalkynyloxy,
 C₃-C₈ alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl,
 C₃-C₁₂ acylaminoalkoxy, C₂-C₈ alkoxyiminoalkyl, C₂-C₈
 5 haloalkoxyiminoalkyl, C₃-C₈ alkenyloxyiminoalkyl, C₃-
 C₈ haloalkenyloxyiminoalkyl, C₃-C₈
 alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl,
 C₅-C₁₀ alkoxyalkynyloxy, C₆-C₁₂
 cycloalkylideneiminooxyalkyl, C₆-C₁₂
 10 dialkylideneiminooxyalkyl, -S(O)_mR₁, -OS(O)_tR₁,
 -SO₂NR₂R₃, -CO₂R₄, -COR₅, -CONR₆R₇, -CSNR₈R₉,
 -NR₁₀R₁₁, -NR₁₂COR₁₃, -NR₁₄CO₂R₁₅, -NR₁₆CONR₁₇R₁₈,
 -PO(R₁₉)₂, -Q, -ZQ₁, -(CR₂₀R₂₁)_pQ₂, -Z(CR₂₂R₂₃)_pQ₃,
 -(CR₂₄R₂₅)_pZQ₄, -(CR₂₆R₂₇)_pZ(CR₂₈R₂₉)_qQ₅,
 15 -(CR₃₀R₃₁)_pZ(CR₃₂R₃₃)_qZ₁Q₆, -Z₂(CR₃₄R₃₅)_p(C=Y)T,
 -Z₃(CR₃₆R₃₇)_v(CR₃₈R₃₉=CR₄₀R₄₁)(C=Y)T;
 - B represents a D-(R_x)_n group;
 - R represents a hydrogen atom, a linear or
 branched C₁-C₆ alkyl group, a linear or branched C₁-C₆
 20 haloalkyl group, a C₃-C₆ cycloalkyl group or a C₄-C₁₂
 cycloalkylalkyl group possibly substituted with
 halogen atoms or C₁-C₆ alkyl or C₁-C₆ thioalkyl or C₁-
 C₆ alkoxy or C₂-C₆ alkoxy carbonyl groups, alkenyl C₂-
 C₆ groups, alkynyl C₂-C₆ groups, the latter two
 25 groups, in turn, possibly substituted with halogen

atoms, a C₅-C₆ cycloalkenyl group possibly substituted with halogen atoms or C₁-C₆ alkyl groups, an aryl or arylalkyl group optionally substituted;

- R₁ and R₁₉, represent a C₁-C₆ alkyl or C₁-C₆ haloalkyl group, a C₃-C₆ cycloalkyl group, an aryl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxy carbonyl;

- m is equal to 0, 1 or 2;

- t is equal to 1 or 2;

- R₂, R₃, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₇ and R₁₈, the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn possibly substituted with halogen atoms, a C₁-C₆ alkoxy group, a C₃-C₆ cycloalkyl group, an arylalkyl group or an aryl group, said arylalkyl or aryl groups also optionally substituted with one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfonyl,

C₂-C₆ alkoxy carbonyl or, together, represent a C₂-C₅ alkylene chain;

- R₄, R₅ and R₄₂, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn possibly

5 substituted with halogen atoms, a C₃-C₆ alkenyl group in turn possibly substituted with halogen atoms, a Q₇ group, an arylalkyl group possibly substituted with one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or
10 branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxy carbonyl;

- R₁₂, R₁₄ and R₁₆, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn possibly
15 substituted with halogen atoms, a C₃-C₆ cycloalkyl group, a C₁-C₆ alkoxy group, a C₁-C₆ haloalkoxy group;

- R₁₃ and R₁₅, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn possibly
20 substituted with halogen atoms, a C₃-C₆ alkenyl group, in turn possibly substituted with halogen atoms, a Q₇ group, NH₂, NHCN, NHNH₂, NHOH, an arylalkyl group possibly substituted with one or more substituents selected from halogen, NO₂, CN, CHO,
25 linear or branched C₁-C₆ alkyl, linear or branched C₁-

C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxy carbonyl;

- R₂₀, R₂₁, R₂₂, R₂₃, R₂₄, R₂₅, R₂₆, R₂₇, R₂₈, R₂₉, R₃₀, R₃₁,

5 R₃₂, R₃₃, R₃₄, R₃₅, R₃₆, R₃₇, R₃₈, R₃₉, R₄₀ and R₄₁, the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₁-C₆ alkoxy group, or the two groups attached to the same 10 carbon atom can be joined to each other by C₂-C₅ alkylene groups, the alkylene groups can in turn be substituted with C₁-C₃ alkyl groups;

- Q, Q₁, Q₂, Q₃, Q₄, Q₅, Q₆ and Q₇ represent an aryl group, a C₃-C₆ cycloalkyl group, C₅-C₆ cycloalkenyl,

15 heterocyclic group selected from triazolyl, triazolonyl, pyrazolyl, imidazolyl, imidazolydinonyl, tetrazolyl, tetrazolonyl, isoxazolyl, furyl, thieryl, pyrrolyl, pyrrolidinyl, pyrrolidinonyl, pyridyl, pyrimidinyl, pyrimidinonyl, pyrazinyl, pyridazinyl, 20 oxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl, isothiazolyl, benzoxazolyl, benzothiazolyl, isoxazolinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-dioxolanyl, tetrahydropyranyl, oxethanyl, oxyranyl, thiazolidinyl, oxazolidinyl, piperidinyl, 25 piperidinonyl, piperazinyl, morpholinyl, thiazinyl,

tetrahydrofuranyl, dioxazolyl,
tetrahydrofuroisoxazolyl, 2-oxa-3-
azabicyclo[3.1.0]hex-3-enyl,
said groups optionally substituted by one or more
5 substituents selected from halogen, NO₂, CN, CHO,
linear or branched C₁-C₆ alkyl, linear or branched C₁-
C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear
or branched C₁-C₆ haloalkoxy, C₁-C₆ cyanoalkyl, C₂-C₆
alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆
10 alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₂-C₆
haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆
haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl,
C₂-C₆ alkoxyalkoxy or C₂-C₆ haloalkoxyalkoxy
optionally substituted with a group selected from C₁-
15 C₄ alkoxy or C₁-C₄ haloalkoxy, C₂-C₆
alkylthioalkoxy, C₂-C₆ haloalkylthioalkoxy, C₃-C₁₂
dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, C₃-C₁₂
dialkylthioalkoxy, C₃-C₁₂ dialkoxyalkoxy, C₂-C₆
haloalkoxyhaloalkoxy, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆
20 alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkenyloxy, C₂-C₆
haloalkenyloxy, C₃-C₈ alkenyloxyalkoxy, C₃-C₈
haloalkenyloxyalkoxy, C₂-C₆ alkynyl, C₂-C₆
haloalkynyl, C₂-C₆ alkynylloxy, C₂-C₆ haloalkynylloxy,
C₃-C₈ alkynylloxyalkoxy, C₃-C₈ haloalkynylloxyalkoxy,
25 C₃-C₁₂ acylaminoalkoxy, C₂-C₈ alkoxyiminoalkyl, C₂-C₈

haloalkoxyiminoalkyl, C₃-C₈ alkenyloxyiminoalkyl, C₃-C₈ haloalkenyloxyiminoalkyl, C₃-C₈ alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl, C₅-C₁₀ alkoxyalkynyloxy, C₆-C₁₂

5 cycloalkylideneiminooxyalkyl, C₆-C₁₂ dialkylideneiminooxyalkyl, aryl optionally substituted, -S(O)_mR₁, -OS(O)_tR₁, -SO₂NR₂R₃, -CO₂R₄, -COR₅, -CONR₆R₇, -CSNR₈R₉, -NR₁₀R₁₁, -NR₁₂COR₁₃, -NR₁₄CO₂R₁₅, -NR₁₆CONR₁₇R₁₈, -PO(R₁₉)₂,

10 -Z₂(CR₃₄R₃₅)_p(C=Y)T, -Z₃(CR₃₆R₃₇)_v(CR₃₈R₃₉=CR₄₀R₄₁)(C=Y)T;

- Z, Z₁, Z₂ = O, S(O)_r;
- Y = O, S;
- r is equal to 0, 1 or 2;
- p, q are equal to 1, 2, 3 or 4;

15 -v is equal to 0 or 1;

- Z₃ = O, S or a direct bond;
- T represents a hydrogen atom, a Z₄R₄₂ group, a -NR₄₃R₄₄ group, an aryl group or a heterocyclic group selected from triazolyl, triazolonyl, pyrazolyl,

20 imidazolyl, imidazolidinonyl, tetrazolyl, tetrazolonyl, pyrrolyl, pyrrolidinyl, pyrrolidinonyl, pyridyl, pyrimidinyl, piperidinyl, piperidinonyl, piperazinyl, morpholinyl, said groups optionally substituted by one or more substituents selected from

25 halogen, NO₂, OH, CN, CHO, linear or branched C₁-C₆

alkyl, linear or branched C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₅-C₆ cycloalkenyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆

5 alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl, -S(O)_mR₁;

- Z₄ = O, S or a direct bond;

10 - R₄₃ and R₄₄, the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms, a Q₇ group, an arylalkyl group

15 optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfonyl,

20 C₂-C₆ alkoxy carbonyl, or they jointly represent a C₂-C₅ alkylene chain;

- D represents:

a heterocyclic group of the heteroaryl or heterocyclic type, in all the above cases the

25 heterocycle can be mono or polycyclic and can be

connected to the rest of the structure either through one of its carbon atoms or, when possible, through one of its nitrogen atoms;

or it represents a mono or polycyclic aryl group, in 5 this latter case, the group can also be partially saturated;

- Rx represents a substituent selected from hydrogen, halogen, NO₂, CN, CHO, OH, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or 10 branched C₁-C₆ alkoxy, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ 15 alkylsulfonylalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl, C₂-C₆ 20 alkoxyalkoxyl or C₂-C₆ haloalkoxyalkoxyl optionally substituted with a group selected from C₁-C₄ alkoxy or C₁-C₄ haloalkoxyl, C₂-C₆ alkylthioalkoxyl, C₂-C₆ 25 haloalkylthioalkoxyl, C₃-C₁₂ dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, C₃-C₁₂ dialkylthioalkoxyl, C₂-C₆ haloalkoxyhaloalkoxyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkenyloxy, C₂-C₆ 30 haloalkenyloxy, C₃-C₈ alkenyloxyalkoxyl, C₂-C₆ haloalkenyloxyalkoxyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₂-C₆ alkynyloxy, C₂-C₆

haloalkynyloxy, C₃-C₈ alkynyloxyalkoxyl, C₃-C₈
 haloalkynyloxyalkoxyl, C₃-C₁₂ acylaminoalkoxy, C₂-C₈
 alkoxyiminoalkyl, C₂-C₈ haloalkoxyiminoalkyl, C₃-C₈
 alkenyloxyiminoalkyl, C₃-C₈ haloalkenyloxyiminoalkyl,
 5 C₃-C₈ alkynyloxyiminoalkyl, C₃-C₈
 haloalkynyloxyiminoalkyl, C₅-C₁₀ alkoxyalkynyloxy, C₆-C₁₂
 cycloalkylideneiminooxyalkyl, C₆-C₁₂
 dialkylideneiminooxyalkyl, -S(O)_mR₁, -OS(O)_tR₁,
 -SO₂NR₂R₃, -CO₂R₄, -COR₅, -CONR₆R₇, -CSNR₈R₉,
 10 -NR₁₀R₁₁, -NR₁₂COR₁₃, -NR₁₄CO₂R₁₅, -NR₁₆CONR₁₇R₁₈,
 -PO(R₁₉)₂, -Q, -ZQ₁, -(CR₂₀R₂₁)_pQ₂, -Z(CR₂₂R₂₃)_pQ₃,
 -(CR₂₄R₂₅)_pZQ₄, -(CR₂₆R₂₇)_pZ(CR₂₈R₂₉)_qQ₅,
 -(CR₃₀R₃₁)_pZ(CR₃₂R₃₃)_qZ₁Q₆, -Z₂(CR₃₄R₃₅)_p(C=Y)T,
 -Z₃(CR₃₆R₃₇)_v(CR₃₈R₃₉=CR₄₀R₄₁)(C=Y)T;
 15 if several R_x groups are present, these can be the
 same or different;
 - n = 1-9;
 and of the relevant salts which have agronomical
 compatibility, as herbicides.
 20 4. Use according to claim 3, for the control
 under pre-emergence and post-emergence of
 monocotyledon and dicotyledon weeds.
 5. Use of derivatives of 1,3-diones having general
 formula (I):

(I)

wherein:

5 - A, B and R have the meanings defined according to claim 3, and of the relevant salts pharmaceutically acceptable as medicaments.

6. A process for the preparation of the compounds having general formula (I) according to any 10 of the claims 1 to 3, characterized in that it includes a reaction of a carbonyl compound having general formula (II) with a compound having general formula (III), according to the reaction scheme 1

Scheme 1:

15

wherein

- A, B and R have the meanings previously defined;
- L₁ represents a suitable leaving group such as, for example, a halogen atom, a CN group, an imidazol-
1-yl group, an R_LO-¹ group wherein R_L represents a C₁-C₄ alkyl group or a phenyl group optionally

substituted, or it represents an $R_{L1}COO-$ group wherein R_{L1} represents a hydrogen atom, a C₁-C₄ alkyl or haloalkyl group, a phenyl group optionally substituted or an A group.

5 7. The process for the preparation of the compounds having general formula (I) according to any of the claims 1 to 3, characterized in that it includes a reaction of a carbonyl compound having general formula (IV) with a compound having general
10 formula (V), according to the reaction scheme 2

Scheme 2:

wherein

- A, B and R have the meanings previously defined;
- L_2 represents a suitable leaving group such as,
15 for example, a halogen atom, a CN group, an imidazol-1-yl group, an R_LO- group wherein R_L represents a C₁-C₄ alkyl group or a phenyl group optionally substituted, or it represents an $R_{L1}COO-$ group wherein R_{L1} represents a hydrogen atom, a C₁-C₄ alkyl
20 or haloalkyl group, a phenyl group optionally substituted or an R group.

8. The process for the preparation of the compounds having general formula (I) according to any of the claims 1 to 3, characterized in that it includes a reaction of a 1,3-dicarbonyl compound 5 having general formula (VI) with a compound having general formula (VII), according to the reaction scheme 3

Scheme 3:

wherein

- 10 - A, B and R have the meanings previously defined;
- X represents a halogen atom, an $R_{L2}SO_2O^-$ group, wherein R_{L2} represents a C_1-C_4 alkyl or haloalkyl group, a phenyl group optionally substituted by C_1-C_4 alkyl groups, or it represents an $R_{L3}SO_2^-$ group,
- 15 wherein R_{L3} represents a C_1-C_4 alkyl or haloalkyl group.

9. The process according to any of the claims from 6 to 8, characterized in that the reaction is carried out in the presence of one or more inert 20 organic solvents and in the presence of an organic or

inorganic base, at a temperature ranging from -80°C to the boiling temperature of the reaction mix.

10. The process according to claim 9, characterized in that the reaction is carried out in
5 two separate phases.

11. A method for the control of weeds in agricultural crops, by the application of compounds having general formula (I):

10

(I)

wherein:

- A, B and R have the meanings according to claim

15 3.

12. The method according to claim 11, characterized in that the quantity of compound having formula (I) to be applied ranges from 1 g to 4,000 g per hectare.

20 13. Herbicidal compositions containing, as active principle, one or more compounds having general formula (I):

(I)

wherein:

5 - A, B and R have the meanings according to claim
3, possibly also as a blend of tautomers and/or
isomers.

10 14. The herbicidal compositions according to
claim 13, including other active principles
compatible with the compounds having general formula
(I), such as other herbicides, fungicides,
insecticides, acaricides, fertilizers, etc..

15 15. The herbicidal compositions according to
claim 14, characterized in that the additional
herbicides are selected from:

acetochlor, acifluorfen, aclonifen, AKH-7088,
alachlor, aloxydim, ametryn, amicarbazone,
amidosulfuron, amitrole, anilofos, asulam, atrazine,
azafenidin, azimsulfuron, aziprotryne, BAS 670 H, BAY
20 MKH 6561, beflubutamid, benazolin, benfluralin,
benfuresate, bensulfuron, bensulide, bentazone,
benzfendizone, benzobicyclon, benzofenap,
benzthiazuron, bifenoxy, bilanafos, bispyribac-sodium,
bromacil, bromobutide, bromofenoxim, bromoxynil,

butachlor, butafenacil, butamifos, butenachlor,
butralin, butoxydim, butylate, cafenstrole,
carbetamide, carfentrazone-ethyl, chlomethoxyfen,
chloramben, chlorbromuron, chlorbufam, chlorflurenol,
5 chloridazon, chlorimuron, chlornitrofen,
chlorotoluron, chloroxuron, chlorpropham,
chlorsulfuron, chlorthal, chlorthiamid, cinidon
ethyl, cinmethylin, cinosulfuron, clethodim,
clodinafop, clomazone, clomeprop, clopyralid,
10 cloransulam-methyl, cumyluron (JC-940), cyanazine,
cycloate, cyclosulfamuron, cycloxydim, cyhalofop-
butyl, 2,4-D, 2,4-DB, daimuron, dalapon, desmedipham,
desmetryn, dicamba, dichlobenil, dichlorprop,
dichlorprop-P, diclofop, diclosulam, diethatyl,
15 difenoxuron, difenzoquat, diflufenican,
diflufenzopyr, dimefuron, dimepiperate, dimethachlor,
dimethametryn, dimethenamid, dinitramine, dinosseb,
dinoseb acetate, dinoterb, diphenamid, dipropetryn,
diquat, dithiopyr, 1-diuron, eglinazine, endothal,
20 EPTC, espropcarb, ethalfluralin, ethametsulfuron-
methyl, ethidimuron, ethiozin (SMY 1500),
ethofumesate, ethoxyfen-ethyl (HC-252),
ethoxysulfuron, etobenzanid (HW 52), fenoxaprop,
fenoxaprop-P, fentrazamide, fenuron, flamprop,
25 flamprop-M, flazasulfuron, florasulam, fluazifop,

fluazifop-P, fluazolate (JV 485), flucarbazone-sodium, fluchloralin, flufenacet, flufenpyr ethyl, flumetsulam, flumiclorac-pentyl, flumioxazin, flumipropin, fluometuron, fluoroglycofen,
5 fluoronitrofen, flupoxam, fluproanate, flupyrsulfuron, flurenol, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, furyloxyfen, glufosinate, glyphosate, halosulfuron-methyl, haloxyfop,
10 haloxyfop-P-methyl, hexazinone, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodosulfuron, ioxynil, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapryifop, KPP-421,
15 lactofen, lenacil, linuron, LS830556, MCPA, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mesosulfuron, mesotrione, metamitron, metazachlor, methabenzthiazuron, methazole, methoprottryne, methyldymron, metobenzuron, metobromuron,
20 metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, molinate, monalide, monolinuron, naproanilide, napropamide, naptalam, NC-330, neburon, nicosulfuron, nipyrapclofen, norflurazon, orbencarb, oryzalin, oxadiargyl,
25 oxadiaxon, oxasulfuron, oxaziclofone, oxyfluorfen,

paraquat, pebulate, pendimethalin, penoxsulam,
pentanochlor, pentozazone, pethoxamid,, phenmedipham,
picloram, picolinafen, piperophos, pretilachlor,
primisulfuron, prodiamine, profluazol, proglinazine,
5 prometon, prometryne, propachlor, propanil,
propaquizafofop, propazine, propham, propisochlor,
propyzamide, prosulfocarb, prosulfuron, pyraclonil,
pyraflufen-ethyl, pyrazogyl (HAS-961), pyrazolynate,
pyrazosulfuron, pyrazoxyfen, pyribenzoxim,
10 pyributicarb, pyridafol, pyridate, pyriftalid,
pyriminobac-methyl, pyrithiobac-sodium, quinclorac,
quinmerac, quizalofop, quizalofop-P, rimsulfuron,
sethoxydim, siduron, simazine, simetryn, sulcotrione,
sulfentrazone, sulfometuron-methyl, sulfosulfuron,
15 2,3,6-TBA, TCA-sodium, tebutam, tebuthiuron,
tepraloxydim, terbacil, terbumeton, terbutyl-azine,
terbutryn, thenylchlor, thiazafluron, thiazopyr,
thidiazimin, thifensulfuron-methyl, thiobencarb,
tiocarbazil, tioclorm, tralkoxydim, tri-allate,
20 triasulfuron, triaziflam, tribenuron, triclopyr,
triethylazine, trifloxysulfuron, trifluralin,
triflusulfuron-methyl, tritosulfuron, UBI-C4874,
vernolate.

16. The compositions according to any of the claims 13-15, characterized in that the concentration of active substance ranges from 1 to 90%.