

Problemas Propuestos y Resueltos

Mecánica-FI2001

KIM HAUSER VAVRA¹

Versión Abril, 2010

¹e-mail: kimsanrimpoche@gmail.com

${\bf \acute{I}ndice}$

1.	Cin	emática	5
	1.1.	Problemas	5
	1.2.	Soluciones	10
2.	Dinámica		
	2.1.	Problemas	14
		2.1.1. Dinámica de Varias Partículas	24
	2.2.	Soluciones	27
3.	Tra	bajo y Energía	37
	3.1.	Problemas	37
	3.2.	Soluciones	46
4.	Equilibrio y Oscilaciones		
	4.1.	Problemas	53
		4.1.1. Oscilaciones amortiguadas	55
		4.1.2. Oscilaciones acopladas	56
		4.1.3. Oscilaciones forzadas	57
	4.2.	Soluciones	59
5 .	Fuerzas Centrales		
	5.1.	Problemas	65
	5.2.	Soluciones	70
6.	Mov	vimiento Relativo: Sistemas No Inerciales	7 4
	6.1	Problemas	7/

	6.2. Soluciones	81
7.	Sólido Rígido y Sistemas de Partículas	88
	7.1. Problemas	88
	7.2. Soluciones	94
8.	Lista de Respuestas	102

Prólogo

Lo que usted encontrará en estas páginas es una colección de problemas de Física que comprenden la utilización de las herramientas del cálculo infinitesimal y álgebra lineal, fundamentalmente. La gran mayoría de estos problemas han sido extraídos de evaluaciones del curso Mecánica (actualmente, código FI2001, del 3º semestre de Ingeniería y Ciencias, Plan común, F.C.F.M., de la Universidad de Chile) en el cual he desarrollado el cargo de Profesor Auxiliar.

Hay dos puntos que representan bien mis intenciones: 1°, que mediante la ejercitación con estos problemas, escogidos con mucha atención, el lector encuentre comprensión de las materias involucradas, y 2°, que, en la medida de lo posible, éstos representen la clase de problemas a los que, como alumno, uno podría verse enfrentado. Así es que el propósito es facilitar el estudio de cualquier estudiante de estas materias, pero este escrito podría resultar particularmente útil a los alumnos de la F.C.F.M. de la U. de Chile.

Este texto cuenta con las soluciones de algunos de los problemas que presenta. Éstas han sido redactadas por mí, algunas veces basándome en resoluciones de otras personas (profesores de cátedra, auxiliares, etc). Pese a que he buscado ser explicativo, muchas veces, al redactar, me pareció que una lectura liviana y poco profunda por parte del lector no sería suficiente para comprender su contenido; creo que es inherente al proceso del aprendizaje la necesidad de una lectura activa. En particular, si el lector encuentra partes del desarrollo que no comprende o que no son explicadas con suficiente detalle, será de gran beneficio desentrañarlas, por su cuenta o con ayuda.

Los problemas con solución en el texto son menos que los que se dejan propuestos. Esto responde a mi convicción de que una buena forma de aprender a resolver problemas de Física de este nivel es abordar los problemas, en primera instancia, sin mirar las pautas de solución. De todas formas, al final se agrega una sección de respuestas de los problemas, lo que a veces ayuda a orientarse. De cualquier manera, recomiendo enfáticamente resolver o tratar de resolver por cuenta propia los problemas que tienen pauta antes de mirar la pauta.

En la mayoría de las soluciones, usted encontrará zonas de desarrollo algebraico que explícita e intencionalmente he dejado como trabajo personal, pues considero que esto es una forma concreta de no inhibir la ejercitación; no quisiera que el texto se vuelva un compendio de cálculos de integrales, derivadas, productos cruz, etc. Busco, más bien, mostrar las líneas de razonamiento que llevan a entender y resolver los problemas.

Con el paso del tiempo, he ido encontrando diversos errores en las respuestas a los problemas y/o en la redacción de sus soluciones. He hecho el esfuerzo de corregirlos, pero no tengo dudas: siempre quedarán errores escondidos a mis ojos. Usted, probablemente, los encontrará antes que yo.

Buena suerte!!!

1. Cinemática

1.1. Problemas

P.1.1

Una partícula se mueve con rapidez v_0 constante, sobre un riel circular de radio R colocado en posición horizontal sobre una superficie también horizontal. La partícula se encuentra atada mediante una cuerda inextensible a un bloque que cuelga debajo de un agujero localizado a una distancia R/2 del centro del riel. Suponga que v_o es suficientemente pequeño para que la cuerda no se destense.

- (a) Determine la rapidez del bloque en función del ángulo θ .
- (b) Obtenga la rapidez máxima del bloque.
- (c) Determine la aceleración \vec{a} del bloque cuando la partícula que se mueve sobre el riel pasa por la posición $\theta = 0$.

P.1.2

Una partícula se mueve por el interior de un tubo de largo 2R que gira con una velocidad angular constante ω_o . La partícula inicia su movimiento desde el punto medio del tubo, desplazándose por su interior con una rapidez constante v_o respecto al mismo. Determine:

(a) El radio de curvatura de la trayectoria descrita, en función del tiempo.

(b) La distancia recorrida por la partícula desde que inicia su movimiento hasta que llega al extremo del tubo.

P.1.3

Se observa una partícula en movimiento con respecto a un sistema de referencia inercial. La trayectoria está dada por las siguientes funciones:

$$\rho = Ae^{k\theta}, \qquad z = h\rho$$

donde ρ , θ y z son las respectivas coordenadas cilíndricas (con A, k, h positivos). Suponiendo que su rapidez es constante (v_o) y conocida:

- (a) Calcule la velocidad \vec{v} de la partícula en función de θ , A, k, h y v_o .
- (b) Encuentre su aceleración \vec{a} en función de los mismos parámetros.
- (c) Pruebe que $\vec{a} \perp \vec{v}$.
- (d) Encuentre una expresión para $\theta(t)$.

P.1.4

Considere una curva espiral descrita en coordenadas esféricas por las ecuaciones:

$$r = R, \qquad \phi = N\theta,$$

donde R y N son constantes conocidas (N entero par). Una partícula se mueve sobre la espiral partiendo desde el extremo superior ($\theta = 0$) y manteniendo una velocidad angular zenital constante y conocida, $\dot{\theta} = \omega_0$. Se pide:

- (a) Utilizando coordenadas esféricas, escriba los vectores velocidad y aceleración para una posición arbitraria de la partícula sobre su trayectoria.
- (b) Determine el valor del radio de curvatura de la trayectoria en el ecuador ($\theta = 90^{\circ}$).
- (c) Encuentre una expresión para la longitud total de la espiral y para el tiempo que la partícula tarda en recorrerla. **Indicación**: De ser difícil de calcular, puede dejar expresada la integral.

Fig. P.1.4

P.1.5

La trayectoria de un punto P, en coordenadas cilíndricas, se define con:

$$\rho(t) = \rho_0,$$
 $\theta(t) =?,$ $z(t) = h - B\theta(t)$

Se sabe que $\theta(t)$ es una función monótona, $\theta(0) = 0$ y que $\dot{\theta}(0) = \omega_0$ y donde h, B y ω_0 son cantidades positivas conocidas.

- (a) Obtenga las expresiones para los vectores velocidad y aceleración en este ejemplo.
- (b) Obtenga una expresión para el vector tangente \hat{t} y para la rapidez de P. Comente sobre los signos de estas cantidades.
- (c) Obtenga expresiones para las aceleraciones centrípeta y tangencial:

$$\vec{a}(t) = \vec{a}_{cent}(t) + \vec{a}_{tq}(t)$$

(d) ¿Cuál es la función $\theta(t)$ si se sabe que la aceleración apunta todo el tiempo perpendicular al eje Z?

P.1.6

Una barra rígida de largo L se mueve apoyada en dos paredes rígidas que forman un ángulo recto entre ellas.

Suponga que el ángulo $\theta = \theta(t)$ es una función arbitraria del tiempo.

- (a) Determine el vector posición $\vec{r}(t)$, velocidad $\vec{v}(t)$ y aceleración $\vec{a}(t)$ del punto medio de la barra.
- (b) El radio de curvatura de una trayectoria se define como $\rho = v^3 / \|\vec{v} \times \vec{a}\|$. Calcule el radio de curvatura de esta trayectoria. Interprete el resultado y dibuje la trayectoria.

(c) Suponga ahora que el apoyo inferior de la barra se mueve con rapidez constante v_o a partir del momento en que la barra está en la posición vertical. Encuentre la función $\theta(t)$ que da lugar a ese movimiento.

Fig. P.1.6

P.1.7

Considere una curva espiral cónica descrita en coordenadas esféricas por las ecuaciones:

$$\theta = 45^{\circ}$$

$$\phi = 2\pi \frac{r}{R},$$

donde R es una constante conocida. Una partícula se mueve sobre la espiral partiendo desde el origen manteniendo una velocidad radial constante y conocida, $\dot{r} = c$. Se pide:

- (a) Determine la distancia radial del punto P en el cual la rapidez de la partícula es 3c.
- (b) Encuentre una expresión para la longitud total de la espiral y para el tiempo que la partícula tarda en recorrerla. **Nota:** Está bien si deja su solución en términos de una integral muy complicada.
- (c) Determine el valor del radio de curvatura de la trayectoria en el punto ${\cal P}.$

Fig. P.1.8

P.1.8

El punto de unión P entre un pistón y una biela de largo D se mueve a lo largo del eje x debido a que el cigüeñal (disco), de radio R y centro en un punto fijo O, rota a velocidad angular constante ω . En el instante t=0 la biela está horizontal ($\phi=0$, x=R+D).

- (a) Encuentre una expresión para la distancia x(t) entre P y O como función del tiempo t.
- (b) Encuentre la velocidad v(t) de P.
- (c) En la expresión para v(t) considere el caso $R \ll D$ y luego encuentre una expresión aproximada para la aceleración de P. ¿Cómo se compara la magnitud de la aceleración máxima del pistón con la aceleración del punto A?

P.1.9

Suponga que es posible excavar un túnel entre dos puntos A y B de la Tierra. La aceleración de gravedad (que apunta hacia el centro de la Tierra) al interior del tunel tiene una magnitud que es proporcional a la distancia r desde el centro de la Tierra:

$$|\vec{a}| = \frac{g}{R}r$$

donde g es la aceleración de gravedad en la superficie de la Tierra y R es el radio de la Tierra. Asumiendo que un vehículo parte del reposo en el punto A y se mueve sin roce en el interior del túnel, bajo el efecto de la gravedad, calcule:

- (a) El tiempo que requiere para llegar al punto B, que está a una distancia R del punto A, en línea recta.
- (b) La rapidez máxima del movimiento resultante.

Fig. P.1.9

1.2. Soluciones

S.1.3

(a) Dado que estamos describiendo la posición de la partícula en coordenadas cilíndricas, el vector posición es, por definición:

$$\vec{r} = \rho \hat{\rho} + z\hat{k} = Ae^{k\theta}\hat{\rho} + hAe^{k\theta}\hat{k}$$

$$\Rightarrow \dot{\vec{r}} = Ake^{k\theta}\dot{\theta}\hat{\rho} + Ae^{k\theta}\dot{\theta}\hat{\theta} + hkAe^{k\theta}\dot{\theta}\hat{k}$$

$$\Rightarrow \dot{\vec{r}} = Ae^{k\theta}\dot{\theta}(k\hat{\rho} + \hat{\theta} + hk\hat{k})$$

No conocemos aún el valor de $\dot{\theta}$, pero sabemos que la rapidez de la partícula vale siempre v_o , esto es: $||\dot{\vec{r}}|| = v_o$

$$\Rightarrow \qquad ||\dot{\vec{r}}|| = A\dot{\theta}e^{k\theta}\sqrt{k^2 + 1 + h^2k^2} = v_o$$

$$\Rightarrow \qquad A\dot{\theta}e^{k\theta} = \frac{v_o}{\sqrt{k^2 + 1 + h^2k^2}} \qquad (*)$$

$$\Rightarrow \qquad \dot{\vec{r}} = \frac{v_o}{\sqrt{k^2 + 1 + h^2k^2}}(k\hat{\rho} + \hat{\theta} + hk\hat{k})$$

(b) Con el resultado anterior, calculamos $\vec{a} = \ddot{\vec{r}}$:

$$\vec{a} = \frac{v_o}{\sqrt{k^2 + 1 + h^2 k^2}} (k\dot{\theta}\hat{\theta} - \dot{\theta}\hat{\rho})$$

$$= \frac{v_o\dot{\theta}}{\sqrt{k^2 + 1 + h^2 k^2}} (k\dot{\theta} - \hat{\rho})$$

Pero de (*): $\dot{\theta} = \frac{v_o}{Ae^{k\theta}\sqrt{k^2+1+h^2k^2}}$ (**)

$$\Rightarrow \qquad \overrightarrow{d} = \frac{{v_o}^2}{Ae^{k\theta}(k^2 + 1 + h^2k^2)}(k\hat{\theta} - \hat{\rho})$$

(c) Definamos primero, para simplificar la notación, $B \equiv v_o/\sqrt{k^2+1+h^2k^2}$. Demostrar que $\vec{a} \perp \vec{v}$ se puede hacer de dos formas, pero ambas para concluir que $\vec{a} \cdot \vec{v} = 0$. La primera, más simple, es considerar que $\vec{v} \cdot \vec{v} = v_o^2$. Así:

$$\frac{d}{dt}(\vec{v}\cdot\vec{v}) = \vec{a}\cdot\vec{v} + \vec{v}\cdot\vec{a} = 2\vec{a}\cdot\vec{v} = 0$$

La otra es calcular directamente $\vec{a} \cdot \vec{v}$:

$$\vec{a} \cdot \vec{v} = \frac{B^3}{Ae^{k\theta}} (k\hat{\theta} - \hat{\rho})(k\hat{\rho} + \hat{\theta} + hk\hat{k})$$
$$= \frac{B^3}{Ae^{k\theta}} (k - k) = 0$$
$$\therefore \vec{a} \perp \vec{v}$$

(d) Por último, de (**) tenemos que:

$$\begin{split} \dot{\theta} &= \frac{d\theta}{dt} = \frac{B}{Ae^{k\theta}} \\ \Rightarrow & e^{k\theta}d\theta = \frac{B}{A}dt \quad / \int \\ \Rightarrow & \int e^{k\theta}d\theta = \int \frac{B}{A}dt \\ \Rightarrow & \frac{e^{k\theta}}{k} = \frac{B}{A}t + c \longrightarrow \text{depende de las condiciones iniciales, que no tenemos.} \end{split}$$

Despejando θ y reemplazando el valor de B obtenemos:

$$\theta(t) = \frac{1}{k} \ln \left(\frac{kv_o}{A\sqrt{k^2 + 1 + h^2 k^2}} t + kc \right)$$

S.1.5

(a) El vector posición en coordenadas cilíndricas es $\vec{r} = \rho_o \hat{\rho} + z \hat{k}$. Pero $z = h - B\theta$. Así:

$$\vec{v} = \rho_o \dot{\theta} \hat{\theta} - B \dot{\theta} \hat{k}, \qquad \vec{a} = -\rho_o \dot{\theta}^2 \hat{\rho} + \rho \ddot{\theta} \hat{\theta} - B \ddot{\theta} \hat{k}$$

(b) $\hat{t} = \frac{\vec{v}}{\|\vec{v}\|} \text{ y } \|\vec{v}\| = \sqrt{\rho_o^2 \dot{\theta}^2 + B^2 \dot{\theta}^2} = \left| \dot{\theta} \right| \sqrt{\rho_o^2 + B^2}.$ Como $\theta(t)$ es monótona y en t = 0 $[\theta = 0 \land \dot{\theta} > 0]$ entonces $[\dot{\theta}(t) > 0, \forall t]$ $\Rightarrow \|\vec{v}\| = \dot{\theta} \sqrt{\rho_o^2 + B^2}$

$$\Longrightarrow \left[\hat{t} = \frac{\rho_o}{\sqrt{\rho_o^2 + B^2}} \hat{\theta} - \frac{B}{\sqrt{\rho_o^2 + B^2}} \hat{k} \right] \quad \text{y} \quad \left[v = \dot{\theta} \sqrt{\rho_o^2 + B^2} \right]$$

(c) Como $\vec{v} = v\hat{t}$ (coordenadas intrínsecas), $\vec{a} = \dot{v}\hat{t} + v\frac{d\hat{t}}{dt}$. Ahora, $\dot{v} = \ddot{\theta}\sqrt{\rho_o^2 + B^2}$ y $\frac{d\hat{t}}{dt} = -\frac{\rho_o}{\sqrt{\rho_o^2 + B^2}}\dot{\theta}\hat{\rho}$

$$\Longrightarrow \vec{a} = \underbrace{-\rho_o \dot{\theta}^2}_{a_{cent}} \hat{\rho} + \underbrace{\ddot{\theta} \sqrt{\rho^2 + B^2}}_{a_{tang}} \hat{t}$$

(d) Si \vec{a} apunta perpendicularmente al eje z, entonces $\vec{a} \cdot \hat{k} = 0$. Pero $\vec{a} \cdot \hat{k} = -\ddot{\theta}B = 0$ $\Rightarrow \ddot{\theta} = 0$ pues $B \neq 0$. Con esto: $\dot{\theta} = C^{te}$ y como $\dot{\theta}(0) = \omega_o \Rightarrow \dot{\theta}(t) = \omega_o$. Esto último implica que $\theta(t) = \omega_o t + c$, pero $\theta(0) = 0$, por lo tanto

$$\theta(t) = \omega_o t$$

S.1.7

Las coordenadas que definen la posición de la partícula (en el caso de "conos" suele ser muy útil el uso de coordenadas esféricas) cumplen con:

$$\theta = \pi/4;$$
 $\phi = \frac{2\pi r}{R};$ $\dot{r} = c.$

(a) La velocidad en esféricas es $\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\dot{\phi}\sin\theta\hat{\phi}$. Ahora: $\dot{\phi} = \frac{2\pi\dot{r}}{R} = \frac{2\pi c}{R}$ y sen $\theta = \sqrt{2}/2$ $\Rightarrow \vec{v} = c\hat{r} + r\frac{2\pi c}{2R}\sqrt{2}\hat{\phi}$.

Entonces $\|\vec{v}\| = \sqrt{c^2 + r^2 \frac{2\pi^2 c^2}{R^2}} = 3c$ (la última igualdad se cumple en el punto P) $\Rightarrow 9 = 1 + \frac{2r^2\pi^2}{R^2}$, de donde:

$$r = \frac{2R}{\pi}$$

(b) Se pide una expresión para la longitud y el tiempo transcurrido desde t=0 hasta que llega al punto P.

$$L_{\Gamma} = \int_{t_1}^{t_2} \left\| \frac{d\vec{r}}{dt} \right\| dt = \int_{t_1}^{t_2} \|\vec{v}\| dt = \int_{t_1}^{t_2} c\sqrt{1 + r^2 \frac{2\pi^2}{R^2}} dt.$$

Pero $\dot{r} = c$, y como r(t = 0) = 0 (parte del origen) entonces r = ct. Así:

$$L_{\Gamma} = \int_{t_1}^{t_2} c\sqrt{1 + t^2 \frac{2\pi^2 c^2}{R^2}} dt.$$

Este resultado es completo (salvo la resolución de la integral) si se conoce el tiempo t_2 en que la partícula llega a P. Como escogimos $t_1 = 0$, entonces:

$$t_2 = \int_{t_1}^{t_2} dt = \int_{r_1}^{r_2} \frac{dt}{dr} dr.$$

El teorema de la función inversa respalda entonces que: $t_2 = \int_{r_1}^{r_2} \frac{dr}{\frac{dr}{dt}} = \int_{0}^{\frac{2\alpha}{\pi}} \frac{dr}{c} = \frac{2R}{c\pi}$.

$$\Rightarrow \boxed{t_2 = \frac{2R}{c\pi}.}$$

(c) Para usar la fórmula del radio de curvatura $\rho_c = \frac{v^3}{\|\vec{v} \times \vec{a}\|}$, debemos calcular el vector aceleración en el punto P, pues la velocidad ya la tenemos. De reemplazar las coordenadas y sus derivadas en la fórmula para la aceleración en coordenadas esféricas, se obtiene que:

$$\begin{split} \vec{a}_P &= -\frac{4\pi c^2}{R} \hat{r} - \frac{4\pi c^2}{R} \hat{\theta} + \frac{2\sqrt{2}\pi c^2}{R} \hat{\phi}, \\ \vec{v}_P &= c\hat{r} + 2\sqrt{2}c\hat{\phi}, \quad \text{y} \quad v_P = |\vec{v}_P| = 3c. \end{split}$$

Al hacer el producto cruz y calcular la norma se obtiene: $\|\vec{v}_P \times \vec{a}_P\| = \frac{2\sqrt{86}\pi c^3}{R}$. Con esto, el radio de curvatura en el punto P es:

$$\rho_c = \frac{27R}{2\sqrt{86}\pi}.$$

2. Dinámica

2.1. Problemas

P.2.1

Para pasar un bulto P de masa m de un lado al otro de un río de ancho R se utiliza el método que sigue. P se ata a una cuerda de largo R que está unida al extremo de una vara de largo R. La barra se hace girar desde su posición horizontal con velocidad angular ω_0 en torno a una rótula que une la orilla del río con el otro extremo de la vara. Despreciando todo roce:

- (a) Demuestre que mientras la carga va por tierra firme la tensión de la cuerda es constante. Determine su valor.
- (b) Determine el valor de ω_0 para que P se despegue del suelo justo antes de llegar al río.

P.2.2

Una partícula P de masa m se lanza por el interior de un recipiente cilíndrico con eje vertical, radio R y altura h. El roce de P con la pared cilíndrica es despreciable; domina el roce viscoso $\vec{F}_{r.v.} = -c\vec{v}$ de P con el fluido que llena el recipiente. La partícula es lanzada en contacto con la superficie cilíndrica, con velocidad horizontal de magnitud v_0 . Determine:

- (a) La velocidad vertical v_z como función del tiempo y la función z(t).
- (b) La velocidad angular de ${\cal P}$ como función del tiempo.
- (c) Valor que debe tener el coeficiente c para que P alcance justo a dar una sola vuelta, suponiendo que el recipiente es infinitamente alto $(h \to \infty)$.

P.2.3

Considere un tubo con forma de L dentro del cual puede deslizar una cuenta de masa m. Escogiendo un sistema de coordenadas cilíndricas, un brazo del tubo coincide con el eje z. El otro se mueve girando con velocidad angular constante ω_0 , contenido siempre en el plano x-y (z=0). La cuenta es desplazada por el interior de este último brazo hacia el eje z, gracias a la acción de una cuerda que recorre el interior del tubo y es tirada en el extremo opuesto. La tracción es tal que la cuenta adquiere una velocidad constante v_0 . Considerando que inicialmente la cuenta está a una distancia R del eje z:

- (a) Determine la velocidad y aceleración de la cuenta en función de su distancia al eje de rotación ρ .
- (b) Calcule el radio de curvatura ρ_c de la trayectoria de la cuenta en función de ρ . Es importante hacer un gráfico de esta función $\rho_c(\rho)$, precisando su valor para $\rho = 0$ y su comportamiento para $\rho \to \infty$. Considere en este caso $v_0 = \lambda \omega_0 R$, con λ una constante.
- (c) Determine la tensión de la cuerda en función de ρ y la fuerza normal que la pared interior del tubo ejerce sobre la cuenta.

P.2.4

Una partícula de masa m puede deslizar sin roce por el interior de una circunferencia de radio R y eje horizontal. Se suelta desde la posición más baja, $\theta(0) = 0$, con velocidad angular $\dot{\theta}(0) = \omega_0$. Los datos son: m, R, g y ω_0 .

(a) Escriba la ecuación de movimiento (2da ley) y sepárela en ecuaciones escalares. Una de estas ecuaciones puede ser integrada una vez en forma inmediata.

(b) Integrando tal ecuación se obtiene $\dot{\theta}^2 = algo$ que tiene que ser positivo. Obtenga una desigualdad para $\cos \theta$. ¿Físicamente qué ocurriría si la desigualdad se hiciera igualdad?

- (c) Encuentre una expresión para la fuerza normal en función de los datos y de $\theta(t)$. Imponiendo que la fuerza normal apunte hacia el centro obtenga una desigualdad para $\cos \theta$. ¿Físicamente qué podría ocurrir si la desigualdad se hiciera igualdad?
- (d) ¿Para qué valor de ω_0 ambas desigualdades coinciden?
- (e) Si el dibujo representa a una partícula que desliza apoyada en el interior de un cilindro de eje horizontal, ¿bajo qué condiciones la partícula oscila respecto al punto más bajo sin despegarse jamás?
- (f) ¿Bajo qué condiciones desliza girando en un solo sentido sin despegarse jamás?

P.2.5

Considere una superficie cónica como la indicada en la figura, que se encuentra en un ambiente $sin\ gravedad$. En un cierto instante se impulsa una partícula de masa m sobre la superficie interior del cono, con una velocidad inicial v_o en dirección perpendicular a su eje. En ese momento la partícula está a una distancia r_o del vértice del cono. El roce entre la partícula y la superficie es despreciable. El ángulo entre el eje del cono y la generatriz es α .

- (a) Escriba las ecuaciones de movimiento de la partícula en un sistema de coordenadas que le parezca adecuado.
- (b) Determine la fuerza que la superficie cónica ejerce sobre la partícula cuando ésta se ha alejado hasta una distancia $r=2r_o$ del vértice del cono. Determine la rapidez de la partícula en ese momento.

Fig. P.2.6

P.2.6

Considere un sistema compuesto por un resorte y una masa que se encuentran al borde de una piscina muy profunda, como se indica en la figura. El resorte es de largo natural l_0 y constante elástica k. A éste se fija una pared móvil de masa despreciable. El sistema se prepara de tal modo que la partícula puntual de masa m se coloca junto a esta pared en su posición de compresión máxima, es decir en $x = -l_0$, según el sistema de coordenadas que se muestra en la figura, y se suelta desde el reposo. Se pide:

- (a) ¿Cuál es la condición que asegura que la masa m se moverá desde $x = -l_0$?
- (b) Encuentre el valor máximo de μ_d que permita a la masa llegar al borde de la piscina (x=0) con velocidad no nula. Entregue el valor de esta velocidad no nula.
- (c) Considere que la masa entra a la piscina inmediatamente cuando x>0. Una vez que entra, la masa experimenta una fuerza de roce viscoso lineal, de constante γ . Suponga además que no hay fuerza de empuje (la masa es puntual). Determine entonces el alcance máximo que alcanzará la masa y su velocidad límite.

P.2.7

Una partícula de masa m está ubicada sobre la superficie de una esfera de radio R, en presencia de gravedad. En el instante inicial, se lanza la partícula con una velocidad horizontal $\vec{v_0} = v_0 \hat{\phi}$, tangente a la superficie, y con un ángulo $\theta(t=0) = \pi/3$.

- (a) Encuentre la velocidad y aceleración de la partícula en función de θ .
- (b) Determine el valor del ángulo θ^* en que la partícula se despega de la superficie.

Fig. P.2.7

P.2.8

Hay un hilo enrollado alrededor de un cilindro de radio R. En la punta del hilo hay un cuerpo de masa m que se suelta, cuando $\phi = 0$, con velocidad inicial $\vec{v}(t=0) = -v_0\hat{\rho}$, perpendicular al hilo, lo que determina que el hilo se comienza a enrollar. La distancia inicial entre el cuerpo y el punto B de tangencia del hilo con el cilindro es L_0 .

No hay gravedad.

Nota: Las coordenadas cilíndricas en este problema persiguen al punto de tangencia B, y es conveniente escribir el vector posición como: $\vec{r} = R\hat{\rho} + L(t)\hat{\phi}$.

- (a) Determine la ecuación de movimiento para la distancia L(t) correspondiente a la longitud de hilo que queda por enrollar en el tiempo t (distancia entre los puntos B y la posición de la masa).
- (b) Obtenga la velocidad angular $\dot{\phi}$ en función de ϕ .
- (c) Suponiendo que el hilo se corta si la tensión sobrepasa el valor T_{max} , obtenga el valor de ϕ en el momento del corte.

P.2.9

Una partícula P de masa m puede moverse solo por un riel horizontal circunferencial de radio R, en ausencia de gravedad.

El único tipo de roce que hay es roce viscoso lineal, $\vec{F}_{r.v.} = -c\vec{v}$.

(a) Determine el valor que debe tener v_0 para que P se detenga justo cuando ha avanzado media vuelta.

P.2.10

Considere una bolita de masa m ensartada en una barra de manera que puede deslizar sin roce por ella. La masa está atada mediante un resorte, de constante elástica k y largo natural l_o , a un extremo de la barra, y esta última, a su vez, gira c/r al mismo extremo en un plano horizontal con velocidad angular ω constante. En t=0 la bolita se suelta con el resorte comprimido en $l_o/2$ y $\dot{\rho}(0)=0$:

- (a) ¿Qué relación deben cumplir m, k y ω para que la bolita realice un movimiento armónico simple a lo largo de la barra?
- (b) Determine la compresión del resorte como función del tiempo.

P.2.11

Un bloque B de masa m está apoyado en una superficie plana con la cual tiene coeficientes de roce estático y dinámico μ_e y μ_d . El bloque está además unido a un resorte (constante elástica k y largo natural l_o) cuyo otro extremo está fijo a la superficie (figura). Inicialmente el resorte está con su largo natural. La superficie se vá inclinando muy lentamente a partir de la posición horizontal ($\alpha = 0$). Siempre es cierto que $\mu_e > \mu_d$.

(a) ¿Cuál es el ángulo máximo $\alpha*$ antes que B deslice?

(b) Suponiendo que cuando $\alpha = \alpha *$, se deja de mover la superficie plana y el bloque comienza a deslizar, determine el máximo estiramiento del resorte y determine la máxima rapidez que alcanza B durante el movimiento.

(c) Determine si, una vez alcanzado el estiramiento máximo, B permanece en reposo o si se debiera satisfacer una condición especial para que eso ocurra.

Fig P.2.12

P.2.12

Un anillo de masa m desciende, debido a su propio peso, por un alambre de forma helicoidal de radio R_o y paso tal que $z=h-\phi R_1$. No hay roce anillo-alambre, pero sí hay roce viscoso: el anillo es frenado por un roce viscoso lineal $\vec{F}_{rvl}=-c\vec{v}$.

La condición inicial es $\phi(0) = 0$, z(0) = h y $\dot{\phi}(0) = 0$ y la aceleración de gravedad es g.

- (a) Obtenga el vector unitario tangente \hat{t} de la trayectoria y la expresión más general posible para la fuerza normal \vec{N} .
- (b) Descomponga la ecuación (vectorial) de movimiento en ecuaciones escalares.
- (c) De las ecuaciones anteriores obtenga la forma explícita de $\omega(t)=\dot{\phi}(t)$ en función de los datos: $m,\,R_o,\,R_1,\,c$ y g.

P.2.13

Una partícula de masa m está atada a 2 cuerdas independientes de igual largo, cuyos otros extremos están fijos a los puntos A y B, separados entre sí una distancia H (ver figura). La partícula rota en torno al eje vertical AB, manteniéndose en el plano horizontal ubicado a media distancia entre ambos puntos.

(a) Determine el mínimo valor de la velocidad angular ω que le permite a la partícula mantener un movimiento circular uniforme con ambas cuerdas tensas (Datos: m, g, H).

• Importante: En las partes b) y c) los puntos A y B se transforman en orificios a través de los cuales las 2 cuerdas pueden ser recogidas en forma controlada.

- (b) Si ambas cuerdas son recogidas a una tasa igual y constante, $\dot{L} = -v_o$, muestre que $\ddot{r} \propto r^{-3}$. Obtenga la constante de proporcionalidad.
- (c) Si en el recogimiento de las cuerdas se observa que, cuando r=H, la velocidad angular de la partícula es $2\sqrt{\frac{g}{H}}$, determine la velocidad angular y la tensión de cada cuerda cuando r=H/2.

P.2.14

Una partícula P es lanzada hacia arriba deslizando, **en ausencia de roce**, por la línea helicoidal definida en coordenadas cilíndricas por

$$\rho = 4b, \qquad z = 3b\phi.$$

En t=0, la partícula P está en $\phi = 0$, z = 0 y con $\dot{\phi}(0) = \omega$.

- (a) Obtenga y escriba expresiones para el vector posición, velocidad y aceleración de P.
- (b) Obtenga la rapidez y el vector unitario tangente a la trayectoria.
- (c) Escriba la ecuación de movimiento y úsela para deducir de ella el tiempo que P tarda en detenerse.
- (b) Escriba la fuerza normal como una función vectorial explícita en el tiempo.

P.2.15

Si la partícula de la figura parte desde el punto $\theta=0$ con rapidez inicial v_o , determine el ángulo θ máximo que alcanza en el semi-cilindro estando contínuamente adherida a el. Considere que no existe roce.

P.2.16

Considere una partícula de masa m que desliza **sin roce** por el interior de una superficie cónica, **en presencia de gravedad**. En coordenadas esféricas, la superficie queda definida por:

$$\frac{r_o}{2} \leq r \leq 2r_o, \qquad \theta = \alpha, \qquad 0 \leq \phi < 2\pi,$$

Fig. P.2.16

La partícula es lanzada con una velocidad inicial horizontal $\vec{v_o} = v_o \hat{\phi}$, cuando $r = r_o$.

Se desea conocer las condiciones que debe cumplir v_o para que la partícula nunca se salga de la superficie del cono (en efecto, podría salirse por abajo o por arriba).

(a) Escriba la ecuación de movimiento y sepárela en las ecuaciones escalares. Encuentre $\dot{\phi}$ en función de r.

- (b) Encuentre \dot{r}^2 en función de r.
- (c) ¿Cuál es el máximo valor de v_o tal que la partícula no se escape por arriba?
- (d) ¿Cuál es el mínimo valor de v_o tal que la partícula no se escape por abajo?

Dé, entonces, el rango de valores que puede tomar v_o para que la partícula nunca se escape de la superficie cónica.

2.1.1. Dinámica de Varias Partículas

P.2.17

Tres varas ideales (perfectamente rígidas y de masa despreciable) forman un triángulo equilátero de lado D. El vértice O está fijo en el techo mientras que los otros dos vértices tienen partículas de masa m. El sistema oscila, en el plano del dibujo, en torno al punto fijo O. La condición inicial es $\phi(0) = \phi_o$ y $\dot{\phi}(0) = 0$. En lo que sigue puede usar, por cada fuerza \vec{F} que desconozca, la forma $\vec{F} = f\hat{f}$, donde f es un escalar desconocido y \hat{f} sí debiera ser conocido.

- (a) Obtenga las expresiones para los momentos angulares $\vec{\ell}_O$, $\vec{\ell}_O^{(G)}$ y $\vec{\ell}_G$ sin hacer uso de la relación que existe entre estos tres vectores.
- (b) Obtenga los torques $\vec{\tau}_O$, $\vec{\tau}_O^{(G)}$ y $\vec{\tau}_G$ sin hacer uso de la relación que existe entre estos tres vectores y escriba las ecuaciones a las que conduce cada una de las tres ecuaciones del tipo $\dot{\vec{\ell}} = \vec{\tau}$.
- (c) Encuentre la(s) condición(es) para que las ecuaciones anteriores sean consistentes entre sí.
- (d) Integre una vez la ecuación a la que todas se redujeron.
- (e) Escriba la ecuación de movimiento (2^{da} ley) del centro de masa y, usando esto con todo lo anterior, obtenga en forma totalmente explícita la fuerza externa total. Escriba además, la fuerza (función de ϕ) que el techo ejerce para mantener fijo al punto O.

Fig. P.2.17

P.2.18

Una barra rígida ideal sin masa de largo L = a + b puede girar en un plano vertical en torno a un punto fijo O que separa a la barra en un brazo de largo a y otro de largo b. En los extremos de la barra hay partículas de masas m_1 y m_2 .

- (a) Determine el momento angular y el torque, con respecto a O, del sistema.
- (b) De lo anterior obtenga la ecuación dinámica para el ángulo ϕ , e intégrela una vez.
- (c) Si el sistema es soltado desde el reposo con $\phi \approx 0$, ¿este se acerca o se aleja de $\phi = 0$?

P.2.19

Dos partículas, de masas m_1 y m_2 , que están unidas por una cuerda de largo d, se mueven sin roce por el interior de un tubo. El tubo está unido de manera perpendicular a un eje que gira con velocidad angular constante Ω . Inicialmente se suelta al sistema con movimiento nulo con respecto al tubo y con la masa m_1 a una distancia R del eje.

- (a) Escriba las ecuaciones de movimiento y sepárelas en ecuaciones escalares.
- (b) Resuelva estas ecuaciones y encuentre las distancias de las partículas al eje, ρ_1 y ρ_2 , como funciones explícitas del tiempo.
- (c) Calcule el valor de la tensión de la cuerda.

P.2.20

Considere un sistema de dos masas m y 2m, respectivamente, unidas por una cuerda inextensible de largo L y colocadas sobre una superficie horizontal entre dos paredes paralelas, como se infica n la figura. El roce con la dupercficie es despreciable. Inicialmente, la línea que une a las dos partículas es perpendicular a las 2 paredes. Se da un impulso a la partícula de masa 2m, de modo que su velocidad inicial es v_o , paralela a las paredes. Determine:

(a) el tiempo que transcurre antes de que alguna de las dos masas choque con una de las paredes, y

(b) la tensión de la cuerda justo antes del impacto.

P.2.21

Considere dos partículas de masa m cada una, unidas por una barra de largo L. El sistema se encuentra en equilibrio en la posición vertical, en el borde de una superficie horizontal ubicada en z=0, como se indica en la figura. En t=0 la partícula 1 (inferior) se impulsa en forma horizontal con rapidez v_o .

- (a) Determine el ángulo θ que la barra forma con la vertical y la velocidad vertical del centro de masa (\dot{z}_{CM}) en función del tiempo.
- (b) Determine la velocidad vertical de la partícula $1 (\dot{z}_1)$ en función del tiempo. ¿Para qué condición de v_o la partícula 1 puede en algún momento ascender (es decir, tener $\dot{z}_1 > 0$)?
- (c) Determine la magnitud de la fuerza que la barra ejerce sobre las partículas mientras el sistema cae.

DINÁMICA 2.2Soluciones

2.2. Soluciones

S.2.2

Fig. S.2.2

Comenzamos por elegir un sistema de coordenadas cilíndricas con origen tal que la coordenada z sea nula en el fondo del cilindro. Con esto el vector posición inicialmente queda: $\vec{r} = R\hat{\rho} + h\hat{k}$. La posición, velocidad y aceleración para cualquier instante está determinada entonces por los vectores:

$$\vec{r} = R\hat{\rho} + z\hat{k}, \quad \vec{v} = R\dot{\theta}\hat{\theta} + \dot{z}\hat{k}, \quad \vec{a} = -R\dot{\theta}^2\hat{\rho} + R\ddot{\theta}\hat{\theta} + \ddot{z}\hat{k}$$

Las fuerzas existentes son el roce viscoso, de la forma $\vec{F}_{r.v.} = -c\vec{v}$, la normal $\vec{N} = -N\hat{\rho}$, y el peso $m\vec{q} = -mg\hat{k}$. Reemplazando \vec{v} en la expresión para el roce viscoso, las ecuaciones escalares de movimiento quedan:

$$\hat{\rho}) \qquad -mR\dot{\theta}^2 = -N$$

$$\begin{array}{ll} \hat{\rho}) & -mR\dot{\theta}^2 = -N \\ \hat{\theta}) & mR\ddot{\theta} = -cR\dot{\theta} \longrightarrow Integrable \end{array}$$

$$\hat{k}$$
) $m\ddot{z} = -mg - c\dot{z} \longrightarrow Integrable$

Buscamos $\vec{v}_z(t) = \dot{z}(t)\hat{k}$, que sale de integrar la ecuación \hat{k}):

$$\frac{d\dot{z}}{dt} = -(g + \frac{c}{m}\dot{z}) \quad \Rightarrow \quad \frac{d\dot{z}}{g + \frac{c}{m}\dot{z}} = -dt \quad / \int_{\dot{z}_o=0}^{\dot{z}(t)} \int_{t_o=0}^{t} dt dt dt$$

$$\Rightarrow \quad \frac{m}{c}\ln(1 + \frac{c}{mg}\dot{z}) = -t$$

$$\therefore \quad \left[\dot{z}(t) = \frac{mg}{c}\left[e^{-\frac{c}{m}t} - 1\right]\right]$$

Para encontrar z(t) integramos $\dot{z}(t)$:

$$dz = \frac{mg}{c} \left[e^{-\frac{c}{m}t} - 1 \right] dt \quad / \int_{z_o=h}^{z(t)} \int_{t_o=0}^t dt \qquad \Rightarrow \quad z(t) = h - \left[\frac{m^2g}{c^2} e^{-\frac{c}{m}t} \right]_0^t - \frac{mg}{c}t$$

$$\therefore \quad z(t) = h - \frac{mg}{c}t - \frac{m^2g}{c^2} \left[e^{-\frac{c}{m}t} - 1 \right]$$

(b) Para calcular la velocidad angular $\dot{\theta}$, integramos $\hat{\theta}$):

$$\frac{d\dot{\theta}}{\dot{\theta}} = -\frac{c}{m}dt / \int_{\dot{\theta}_o = \frac{v_o}{R}}^{\dot{\theta}} , \int_{t_o = 0}^{t}$$

$$\Rightarrow \ln\left[\frac{R\dot{\theta}}{v_o}\right] = -\frac{c}{m}t$$

$$\therefore \quad \dot{\theta}(t) = \frac{v_o}{R}e^{-\frac{c}{m}t} \quad (*)$$

(c) La condición a imponer para que dé sólo una vuelta $(\theta_f - \theta_i = 2\pi)$, suponiendo que $(h \to \infty)$, es que también el tiempo que demora en caer hasta el fondo del cilindro será infinito $(t \to \infty)$. Así, podemos integrar la ecuación (*):

$$d\theta = \frac{v_o}{R}e^{-\frac{c}{m}t}dt / \int_{\theta=0}^{\theta=2\pi} \int_{t=o}^{t=\infty}$$

$$\Rightarrow 2\pi = -\frac{v_o m}{Rc} \left[e^{-\frac{c}{m}t}\right]_0^{\infty} = 0 + \frac{mv_o}{Rc}$$

$$\therefore \left[c = \frac{mv_o}{2\pi R}\right]$$

S.2.11

Comenzamos por definir un sistema de referencia como el que se muestra en la figura, con **origen en la posición inicial del bloque**. Según eso, $\vec{g} = g \sin \alpha \hat{\imath} - g \cos \alpha \hat{\jmath}$ y la fuerza total sobre el bloque (mientras esté bajando o en reposo) se escribirá como:

$$\vec{F} = m\vec{g} + N\hat{\jmath} - kx\hat{\imath} - \vec{f}_{\mu}\hat{\imath},$$

donde μ será el coeficiente de roce estático o dinámico dependiendo de la situación. Si el bloque va cuesta arriba, $\vec{f}_{\mu_d} = + f_{\mu_d} \hat{\imath}$.

Recordemos entonces las condiciones del problema: resorte inicialmente en su largo natural (x=0), y el bloque sin velocidad inicial. Actúa el roce estático con el plano, i.e, aún no se ha sobrepasado el límite en el que el bloque desliza. El plano se va inclinando MUY lentamente: eso quiere decir (quizás el enunciado debe ser más explícito en esto) que podemos asumir que $\dot{\alpha}$ y $\ddot{\alpha}$ son tan pequeños que cada instante se puede considerar como una situación estática en que el plano no se inclina.

Ya con estas consideraciones, podemos hacer suma de fuerzas, en la situación estática para el bloque –en x=0–, y para un ángulo α arbitrario. Entonces:

$$\Sigma F_y$$
: $-mg\cos\alpha + N = 0$
 ΣF_x : $mg\sin\alpha - f_{\mu_e} = 0$

Usando ambas ecuaciones y recordando que $f_{\mu_e} \leq \mu_e ||\vec{N}|| = \mu_e mg \cos \alpha$, obtenemos que:

$$mg \operatorname{sen} \alpha \leq \mu_e mg \cos \alpha$$

La condición de **estar a punto** de deslizar corresponde a la igualdad en la ecuación anterior, pues la fuerza de roce estático estará a un paso de ceder. Para ese instante límite, se tendrá que el ángulo de deslizamiento α^* cumple con

$$\alpha^* = \arctan \mu_e.$$

(b) Ahora la situación es que el bloque ha comenzado a deslizar sobre la superficie, que se mantendrá desde ahora con una inclinación α^* .

Es fundamental en este punto ² replantear la ecuación de movimiento. Ahora:

$$\hat{i}) \quad m\ddot{x} = -kx - f_{\mu_d} + mg \sec \alpha^*$$

$$\hat{j}) \quad mg \cos \alpha^* = N$$

$$con \quad f_{\mu_d} = \mu_d mg \cos \alpha^*$$

$$\Rightarrow \ddot{x} = \frac{d\dot{x}}{dx}\dot{x} = -\frac{k}{m}x + g(\sec \alpha^* - \mu_d \cos \alpha^*)$$

$$\Rightarrow \int_0^{\dot{x}} \dot{x}d\dot{x} = \int_0^x \left[-\frac{k}{m}x + g(\sec \alpha^* - \mu_d \cos \alpha^*) \right] dx$$

$$\Rightarrow \frac{\dot{x}^2}{2} = -\frac{k}{2m}x^2 + g(\sec \alpha^* - \mu_d \cos \alpha^*)x$$

Antes de seguir, recordaré que α^* es un valor que cumple la ecuación sen $\alpha^* = \mu_e \cos \alpha^*$, y por lo tanto:

$$\frac{\dot{x}^2}{2} = -\frac{k}{2m}x^2 + g\cos\alpha^*(\mu_e - \mu_d)x. \tag{*}$$

Como queremos buscar para qué valor de x el bloque se detiene, i.e, $\dot{x} = 0$,

$$\left(-\frac{k}{2m}x + g\cos\alpha^*(\mu_e - \mu_d)\right)x = 0$$

²En general, para fijar ideas, he intentado representar como una "discontinuidad" este cambio cualitativo en el estado de un sistema, en cuanto a la intuición que nos llevará realmente a cuestionar si podemos seguir usando o no la ecuación de movimiento que escribimos en la parte (a). Este análisis es en general necesario cuando, en presencia de fricción, ocurre un cambio de sentido en el movimiento.

La solución nula indica el primer instante con velocidad nula (al momento de partir). La otra solución da:

$$x_{max} = \frac{2mg}{k}(\mu_e - \mu_d)\cos\alpha^*.$$

Este valor es positivo gracias a que $\mu_e > \mu_d$ (hasta donde conzco, esto ocurre en la gran mayoría de los casos).

Por último, como conocemos \dot{x} en función de x, para calcular la velocidad máxima durante el movimiento descendiente volvamos a la ecuación $\ddot{x} = -\frac{k}{m}x + g\cos\alpha^*(\mu_e - \mu_d)$, y calculemos para qué valor \bar{x} se cumple $\ddot{x}(\bar{x}) = 0$ (que es la condición para que \dot{x} sea máximo).

$$0 = -\frac{k}{m}\bar{x} + g\cos\alpha^*(\mu_e - \mu_d) \quad \Rightarrow \quad \bar{x} = \frac{mg}{k}\cos\alpha^*(\mu_e - \mu_d)$$

Finalmente reemplazamos \bar{x} en (*), para obtener:

$$x_{max} = \sqrt{\frac{m}{k}} g \cos \alpha^* (\mu_e - \mu_d).$$

(c) Queremos saber si es necesaria alguna condición para que, una vez que se alcanza x_{max} , el bloque permanezca en reposo. Responder esto de manera rigurosa requiere de un análisis bastante complejo. Si bien es largo, el mejor argumento que he encontrado es el que sigue. Calcularemos cuál es el máximo valor de δ tal que el bloque no se mueva si es dejado en reposo con un estiramiento del resorte $x = \delta$ (siempre con $\alpha = \alpha^*$), para finalmente comparar δ_{max} con x_{max} .

En este punto hagamos el siguiente análisis: supongamos, sólo por un momento, que no existiera roce en la situación. La única posición de equilibrio posible (es decir, si dejo el bloque en reposo, permanece en reposo) sería aquella en que:

$$\ddot{x}(\delta_{eq}) = 0 \quad \Rightarrow \quad mg \operatorname{sen} \alpha^* - k\delta_{eq} = 0 \quad \Rightarrow \quad \delta_{eq} = \frac{mg}{k} \operatorname{sen} \alpha^* = \frac{mg}{k} \mu_e \cos \alpha^*$$

Luego, volviendo a nuestra situación con roce, si se deja al bloque en $x = \delta_{eq}$ y en resposo, se tendrá que $f_{\mu_e} = 0$ (por decirlo así, "no hace falta" fuerza de roce).

Entonces ahora debemos hacer un análisis que consta de tres casos, poniendo atención en el sentido en el que actúa \vec{f}_{μ_e} :

- caso (i) $\delta = \delta_{eq}$. Es el caso trivial. $\vec{f}_{\mu_e} = 0$. El bloque permanece en reposo sin restricción alguna; es más, ni siquiera es necesaria la existencia de una fuerza de roce estático.
- caso (ii) $\delta < \delta_{eq}$. En este caso, el resorte aún intenta tirar al bloque cuesta arriba, pero la componente del peso que apunta cuesta abajo es mayor, por lo tanto el roce estático

debe apuntar cuesta arriba para lograr el equilibrio.

 $\Rightarrow \vec{f}_{\mu_e} = -f_{\mu_e}\hat{\imath}$. Entonces si queremos que se quede en reposo en $x = \delta$, i.e., $\ddot{x} = 0$:

$$\Rightarrow 0 = -k\delta + mg \operatorname{sen} \alpha^* - f_{\mu_e} = -k\delta + mg\mu_e \cos \alpha^* - f_{\mu_e} \quad \Rightarrow \quad f_{\mu_e} = mg\mu_e \cos \alpha^* - k\delta$$

Como $\delta > 0$, en este caso siempre se tendrá que $f_{\mu_e} \leq \mu_e N = mg \cos \alpha^* \mu_e$.

... No hace falta ninguna condición para que permanezca en reposo.

caso (iii) $\delta > \delta_{eq}$. En este caso la componente del peso, cuesta abajo, es menor que la fuerza del resorte, cuesta arriba, entonces para mantener el equilibrio, el roce estático debe apuntar cuesta abajo.

$$\Rightarrow \vec{f}_{\mu_e} = +f_{\mu_e}\hat{\imath}$$
. Luego, para que $\ddot{x}(x=\delta) = 0$:

$$\Rightarrow 0 = -k\delta + mg \operatorname{sen} \alpha^* + f_{\mu_e} = -k\delta + mg\mu_e \cos \alpha^* + f_{\mu_e} \quad \Rightarrow \quad f_{\mu_e} = k\delta - mg\mu_e \cos \alpha^*$$

Entonces, que se cumpla $f_{\mu_e} \leq \mu_e mg \cos \alpha^* \quad \Leftrightarrow \quad \delta \leq \frac{2mg}{k} \mu_e \cos \alpha^*$.

$$\Rightarrow \delta_{max} = \frac{2mg}{k} \mu_e \cos \alpha^*$$

Este δ_{max} es el máximo estiramiento posible para el cual, si se deja el bloque en reposo, se mantendrá en reposo.

Los casos (i) y (ii) no exigen condiciones. En cambio, el caso (iii) exige que $x_{max} < \delta_{max}$ para que el bloque permanezca en resposo. Y de la parte (b) obtuvimos:

$$x_{max} = \frac{2mg}{k}(\mu_e - \mu_d)\cos\alpha^* < \delta_{max}$$

 \therefore No hace falta ninguna condición (en ninguno de los 3 casos) para que el bloque permanezca en reposo si se detiene en $x=x_{max}$.

S.2.12

Lo primero que se debe hacer es definir un sistema de referencia (indicado en la figura) al cual le asociamos un sistema de coordenadas cilíndricas, y escribimos el vector posición que cumple la restricción física del anillo: éste desliza por la hélice.

$$\vec{r} = R_o \hat{\rho} + (h - \phi R_1) \hat{k}$$

Entonces:

$$\vec{v} = R_o \dot{\phi} \hat{\phi} - \dot{\phi} R_1 \hat{k}$$

$$\hat{t} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{R_o}{\sqrt{R_o^2 + R_1^2}} \hat{\phi} - \frac{R_1}{\sqrt{R_o^2 + R_1^2}} \hat{k}.$$

La normal, como siempre, debe ser perpendicular al alambre helicoidal, y esto –que para muchas personas es difícil de visualizar– significa que la normal tiene componentes en $\hat{\rho}$, $\hat{\phi}$ y \hat{k} : $\vec{N} = N_{\rho}\hat{\rho} + N_{\phi}\hat{\phi} + N_{k}\hat{k}$.

Sin embargo, la única forma de escribir una normal realmente factible, es decir, **perpendicular al alambre**, es que se cumpla la ecuación dada por $\vec{N} \cdot \hat{t} = 0$,

$$\Rightarrow \frac{N_{\phi}R_o}{\sqrt{R_o^2 + R_1^2}} - \frac{N_k R_1}{\sqrt{R_o^2 + R_1^2}} = 0 \qquad \Rightarrow \boxed{N_{\phi} = \frac{R_1}{R_o} N_k}$$

(b) La aceleración y la fuerza total son: $\vec{a} = R_o \ddot{\phi} \hat{\phi} - R_o \dot{\phi}^2 \hat{\rho} - R_1 \ddot{\phi} \hat{k}$ y $\vec{F} = -mg\hat{k} + N_\rho \hat{\rho} + \frac{R_1}{R_o} N_k \hat{\phi} + N_k \hat{k} - cR_o \dot{\phi} \hat{\phi} + cR_1 \dot{\phi} \hat{k}$. Separado en ecuaciones escalares, queda:

$$\hat{\rho}) -mR_o\dot{\phi}^2 = N_\rho$$

$$\hat{\phi}) mR_o\ddot{\phi} = \frac{N_k R_1}{R_o} - cR_o\dot{\phi}$$

$$\hat{k}) -mR_1\ddot{\phi} = -mg + N_k + cR_1\dot{\phi}$$

(c) Como debemos calcular $\dot{\phi}(t)$, entonces debemos buscar una ecuación integrable en la que no tengamos coeficientes desconocidos. Más explícitamente, no podemos integrar ninguna de estas ecuaciones pues no sabemos cómo varían N_{ρ} y N_{k} en función de las coordenadas o del tiempo. Buscamos una ecuación integrable despejando N_{k} de la ecuación \hat{k}) y reemplazándola en $\hat{\phi}$), lo que dá:

$$\ddot{\phi} = \frac{gR_1}{R_o^2 + R_1^2} - \frac{c}{m}\dot{\phi}$$

$$\Rightarrow \frac{d\dot{\phi}}{dt} = \frac{gR_1}{R_o^2 + R_1^2} - \frac{c}{m}\dot{\phi}$$

$$\Rightarrow \int_0^{\dot{\phi}} \frac{d\dot{\phi}}{\frac{R_1}{R_o^2 + R_1^2}g - \frac{c}{m}\dot{\phi}} = \int_0^t dt$$

$$\Rightarrow \frac{m}{c} \int_0^{\dot{\phi}} \frac{d\dot{\phi}}{\frac{R_1}{R_o^2 + R_1^2} \frac{mg}{c} - \dot{\phi}} = t$$

$$\Rightarrow -\frac{m}{c} \ln \left[\frac{R_1}{R_o^2 + R_1^2} \frac{mg}{c} - \dot{\phi} \right]_0^{\dot{\phi}} = t$$

$$\Rightarrow \ln \left[1 - \frac{R_0^2 + R_1^2}{gR_1} \frac{c}{m} \dot{\phi} \right] = -\frac{c}{m} t$$

$$\Rightarrow 1 - \frac{R_0^2 + R_1^2}{gR_1} \frac{c}{m} \dot{\phi} = e^{-\frac{c}{m} t}$$

$$|\dot{\phi}(t)| = \frac{m}{c} \frac{gR_1}{R_o^2 + R_1^2} \left[1 - e^{-\frac{c}{m} t} \right].$$

S.2.17

En este problema será muy útil tener definidas las coordenadas polares que se muestran en la figura, asociadas al ángulo ϕ que define cualquier posición del sistema. Bajo este sistema de coordenadas, podemos descomponer \vec{g} y escribir la posición de las masas 1 y 2 desde el origen O.

$$\begin{split} \vec{g} &= \cos \phi \hat{\rho} - \sin \phi \hat{\phi} \\ \vec{r}_{1_O} &= \frac{\sqrt{3}}{2} D \hat{\rho} - \frac{1}{2} D \hat{\phi}, \quad \vec{r}_{2_O} &= \frac{\sqrt{3}}{2} D \hat{\rho} + \frac{1}{2} D \hat{\phi} \end{split}$$

También tendremos que tener la posición del centro de masa G y la posición de cada partícula vista desde G como origen:

$$\vec{r}_G = \frac{\sqrt{3}}{2} D \hat{\rho}, \quad \vec{r}_{1_G} = -\frac{D}{2} \hat{\phi}, \quad \vec{r}_{2_G} = \frac{D}{2} \hat{\phi}.$$

Dejo al estudiante el cálculo explícito de $\vec{\ell}_O$, $\vec{\ell}_O^{(G)}$ y $\vec{\ell}_G$, advirtiendo con énfasis que es necesario conocer a cabalidad su significado: el subíndice indica con respecto a qué punto estoy midiento los vectores posición de las partículas. El superíndice (G) quiere decir que se calcula como si el sistema fuera una sola partícula en G con la masa de todo el sistema (en este caso 2m). Estos cálculos entregan:

$$\vec{\ell_O} = \sum m\vec{r_{i_O}} \times \vec{v_{i_O}} = 2mD^2\dot{\phi}\hat{k}$$

$$\vec{\ell_O}^{(G)} = 2mD^2\frac{3}{4}\dot{\phi}\hat{k} = \frac{3}{2}mD^2\dot{\phi}\hat{k}$$

$$\vec{\ell_G} = \frac{1}{2}mD^2\dot{\phi}\hat{k}$$

(b)
$$\vec{\tau}_O = \Sigma \vec{r}_{i_O} \times \vec{F}_{ext(i)}, \quad \vec{\tau}_O^G = \vec{r}_G \times \vec{F}_{ext}, \quad \vec{\tau}_G = \Sigma \vec{r}_{i_G} \times \vec{F}_{ext(i)}.$$

Debe notarse en este punto que la tensión de la barra que une las dos masas es una fuerza interna, que no altera la dinámica del sistema; comprobar lo anterior puede ser de gran utilidad para la comprensión del lector.

Lo que aún nos falta escribir son las tensiones T_1 y T_2 según las coordenadas que estamos usando.

$$\vec{T}_1 = -T_1 \cos(\pi/6)\hat{\rho} + T_1 \sin(\pi/6)\hat{\phi}, \quad \vec{T}_2 = -T_2 \cos(\pi/6)\hat{\rho} - T_2 \sin(\pi/6)\hat{\phi}.$$

De esta manera, las fuerzas externas sobre la partícula i (omitiendo el aporte de la tensión interna) y la fuerza total externa son:

$$\vec{F}_{ext(i)} = m\vec{g} + \vec{T}_i, \quad \vec{F}_{ext} = \vec{F}_{ext(1)} + \vec{F}_{ext(2)}$$

y, por lo tanto, los torques resultan:

$$\vec{\tau}_O = -\sqrt{3}Dmg \operatorname{sen} \phi \hat{k}$$

$$\vec{\tau}_O^{(G)} = (-\sqrt{3}Dmg \operatorname{sen} \phi + \frac{\sqrt{3}}{4}D(T_1 - T_2))\hat{k}$$

$$\vec{\tau}_G = \frac{\sqrt{3}}{4}D(T_2 - T_1)\hat{k}$$

Haciendo $\dot{\vec{\ell}} = \vec{\tau}$ (*) para cada caso:

$$(*)_{O} 2mD^{2}\ddot{\phi} = -\sqrt{3}Dmg \operatorname{sen} \phi$$

$$(*)_{O}^{(G)} \frac{3}{2}mD^{2}\ddot{\phi} = (-\sqrt{3}Dmg \operatorname{sen} \phi + \frac{\sqrt{3}}{4}D(T_{1} - T_{2}))$$

$$(*)_{G} \frac{1}{2}mD^{2}\ddot{\phi} = \frac{\sqrt{3}}{4}D(T_{2} - T_{1})$$

- (c) De las ecuaciones anteriores se deduce que, para cualquier valor de ϕ , $T_1 T_2 = mg \operatorname{sen} \phi$.
- (d) Con la ecuación anterior, las 3 ecuaciones son equivalentes a la primera: $\ddot{\phi} = -\frac{\sqrt{3}}{2} \frac{g}{D} \sin \phi$. Entonces,

$$\dot{\phi}\frac{d\dot{\phi}}{d\phi} = -\frac{\sqrt{3}}{2}\frac{g}{D}\operatorname{sen}\phi \quad \Rightarrow \quad \int_{\dot{\phi}_{\sigma}}^{\dot{\phi}}\dot{\phi}d\dot{\phi} = -\frac{\sqrt{3}}{2}\frac{g}{D}\int_{\phi_{g}}^{\phi}\operatorname{sen}\phi d\phi,$$

lo que con las condiciones iniciales $\dot{\phi}(0) = \dot{\phi}_o = 0$ y $\phi(0) = \phi_o$ implica:

$$\dot{\phi}^2 = \frac{g\sqrt{3}}{D}(\cos\phi - \cos\phi_o)$$

(e) La 2ª ley de Newton para el centro de masa G es: $\vec{F}_{EXT} = M\vec{A}_G$, donde, en este caso, M = 2m y $\vec{A}_G = \ddot{\vec{r}}_G = -\frac{D\sqrt{3}}{2}\dot{\phi}^2\hat{\rho} + \frac{D\sqrt{3}}{2}\ddot{\phi}\hat{\phi}$. La fuerza externa total sobre el sistema son las tensiones \vec{T}_1 y \vec{T}_2 y la gravedad que actúa

sobre cada masa, $\vec{F}_{EXT} = \vec{T}_1 + \vec{T}_2 + 2m\vec{g}$.

Separada ya en ecuaciones escalares según $\hat{\rho}$ y $\hat{\phi}$ la ecuación de movimiento es:

$$\hat{\rho}$$
) $-\frac{\sqrt{3}}{2}(T_1 + T_2) + 2mg\cos\phi = -D\sqrt{3}m\dot{\phi}^2$

$$\hat{\phi}) \quad \frac{1}{2}(T_1 - T_2) - 2mg \operatorname{sen} \phi = D\sqrt{3}m\ddot{\phi}$$

La ecuación $\hat{\phi}$) es equivalente a la ecuación $(*)_O^{(G)}$. Si miramos la parte (d), podemos reemplazar $\dot{\phi}^2$ en $\hat{\rho}$), y junto con la ecuación de la parte (c), tendremos el sistema de ecuaciones para T_1 y T_2 , cuya solución es:

$$T_1 = \frac{mg}{2} \sin \phi + \frac{5\sqrt{3}mg}{3} \cos \phi - \sqrt{3}mg \cos \phi_o$$

$$T_2 = -\frac{mg}{2} \sin \phi + \frac{5\sqrt{3}mg}{3} \cos \phi - \sqrt{3}mg \cos \phi_o$$

Bajo la asumida suposición de que las barras transmiten la tensión de manera instantánea, tendremos que la reacción del techo debe ser, simplemente $\vec{F}_T = -\vec{T}_1 - \vec{T}_2$.

3. Trabajo y Energía

3.1. Problemas

P.3.1

Un anillo de masa m se encuentra inserto en una barra vertical. El anillo está unido mediante un resorte ideal de constante elástica k y largo natural nulo a un punto fijo P ubicado a una distancia D de la barra. El anillo está inicialmente en reposo en el punto O, tal que el resorte se encuentra horizontal (ver figura). La rugosidad de la barra aumenta desde el punto O hacia abajo, lo que se modela con un coeficiente de roce dinámico variable en la forma $\mu_d = ay$ donde a es una constante conocida e y es la distancia a lo largo de la barra medida desde el punto O hacia abajo.

- (a) Muestre que la normal ejercida por la barra sobre el anillo es constante y determine su valor.
- (b) Determine hasta qué distancia y_{max} desciende el anillo.
- (c) Indique el trabajo realizado por cada una de las fuerzas que actúan sobre el anillo en el recorrido descrito en la parte (b).

P.3.2

Una partícula P de masa m se mueve sin roce sobre la superficie exterior de un cono de ángulo $\pi/4$. El sistema está muy lejos de la Tierra, no hay peso. P comienza su movimiento a distancia r_o del vértice (ver figura P.3.2), con velocidad perpendicular al eje Z y velocidad angular $\dot{\phi}(0) = \omega_o$.

3.1 Problemas

Aparte de la normal, hay una fuerza de atracción que el eje Z ejerce sobre la partícula. En coordenadas cilíndricas esta fuerza es

$$\vec{f} = -B\frac{\hat{\rho}}{\rho^2} \tag{1}$$

donde B es una constante conocida suficientemente grande para que, dadas las condiciones iniciales, P no pueda despegarse del cono.

- (a) Encuentre la velocidad angular $\dot{\phi}$ de P en función de la coordenada esférica r.
- (b) Determine si \vec{f} es o no conservativa.
- (c) Escriba la energía mecánica total en términos de \dot{r} y r.
- (d) ¿Existen soluciones en que la coordenada esférica r está acotada entre dos valores, r_{min} y r_{max} ?

P.3.3

Una masa puntual m se encuentra bajo la acción de un campo gravitatorio de una esfera de radio R, la cual tiene un túnel que la atraviesa como se indica en la figura. La esfera tiene una masa M conocida y, por lo tanto, una densidad $\rho = 3M/(4\pi R^3)$ también conocida. Considere que se cumple M >> m y que no hay fuerzas externas. Suponga además que la masa m parte desde el reposo en $r = \infty$.

(a) Determine la magnitud y direción de la fuerza gravitacional que ejerce la masa M sobre la masa puntual m en función de la distancia r entre la masa m y el centro O de la esfera, para ambos casos r > R y $r \le R$.

Nota: Para $r \leq R$ considere que solamente la masa $M_e(r)$ al interior de una esfera de radio r actúa sobre la masa puntual. Además, puede considerar que esta masa efectiva se comporta como una masa puntual que se ubica en el centro O.

- (b) ¿Cuál es la rapidez v_s de la masa m cuando pasa por la superficie de la masa M?
- (c) ¿Cuál es la rapidez v_o de la masa m cuando pasa por el centro O de la esfera de masa M?

Una partícula de masa m desliza sin roce por una rampa cuya forma está definida por la ecuación:

$$\left[\frac{x-a}{a}\right]^2 + \left[\frac{y-b}{b}\right]^2 = 1$$

La partícula parte desde el reposo en el punto A y al alcanzar el punto B sigue deslizando sobre una superficie horizontal rugosa de largo d para finalmente chocar con la plataforma de masa despreciable que está fija a dos resortes, como se indica en la figura. Como resultado del impacto, la partícula se detiene cuando los resortes de comprimen una distancia δ . Considerando que la constante elástica de ambos resortes es k, calcule el coeficiente de roce cinético μ que debe existir entre la partícula y la superficie horizontal.

P.3.5

Una partícula puntual que se mueve por una circunferencia de radio a es atraída por un punto C de la misma, por una fuerza de módulo $F = k/r^2$, donde r es la distancia al punto C. Determine el trabajo de la fuerza al ir la partícula del punto A, diametralmente opuesto a C, a un punto B ubicado a medio camino entre C y A, también en la circunferencia.

P.3.6

Un bloque de masa m se lanza por una superficie horizontal rugosa con una velocidad inicial v_o . El bloque está atado al extremo de un resorte de largo natural L_o y constante elástica k, como se muestra en la figura. En el instante inicial, el resorte se encuentra sin elongación ni compresión (en su largo natural).

Determine el coeficiente de roce cinético μ_c , si se sabe que el bloque se detiene luego de avanzar una distancia δ_{max} .

Sobre un plano horizontal liso desliza una partícula de masa m, empujada por una barra que gira con respecto a un punto fijo con velocidad angular ω_o con respecto a uno de sus extremos. La partícula tiene roce sólo con la barra, y está caracterizado por coeficientes de roce estático μ_e y dinámico μ_d . En la condición inicial la partícula se encuentra a una distancia ρ_o del eje de rotación y en reposo relativo respecto de la barra.

- (a) Encuentre una expresión para la distancia de la partícula al eje de rotación, en función del tiempo, $\rho(t)$.
- (b) Determine el trabajo que realiza la fuerza normal desde el momento inicial hasta que la partícula alcanza una distancia ρ_1 con respecto al centro de giro.

P.3.8

Dos partículas de igual masa m están unidas por una cuerda ideal de largo 2R. El sistema se suelta a partir del reposo, con la cuerda en posición horizontal, estirada y sin tensión. En ese instante el tope P, fijo con respecto al suelo, se encuentra a una distancia R por debajo del punto medio de la cuerda. Se sabe que el tope puede soportar una fuerza máxima de (7/2)mg. Determime el ángulo en el instante que se rompe el tope.

P.3.9

Una partícula P de masa m desliza sin roce por el interior de un cono invertido. El cono tiene eje vertical, vértice abajo y ángulo característico $\theta = \pi/3$. La partícula está unida a un hilo, siempre tenso, que pasa por el vértice del cono. La tensión T es tal que la distancia entre la partícula y el vértice disminuye en la forma: $r_o - v_o t$. En el instante inicial P está a distancia r_o del vértice girando de modo que $\dot{\phi}(0) = \omega_o$, en torno al eje central.

- (a) Reduzca la segunda ley de Newton a tres ecuaciones escalares e indique la dependencia explícita en t de cada una de las coordenadas de P.
- (b) Obtenga la condición que debe cumplirse para que el hilo esté tenso en el instante inicial.
- (c) Obtenga el trabajo W_T de la tensión T desde el momento inicial hasta el instante t_1 en que la distancia de P al vértice es la mitad de la inicial. Explique el significado físico del signo de este trabajo.
- (d) Obtenga la energía cinética en un instante t arbitrario y de ahí obtenga la diferencia K_1-K_0 entre la energía cinética final $(t = t_1)$ y la inicial (t = 0). ¿Cuánto vale $K_1 - K_0 - W_T$? ¿Por qué?

Fig. P.3.9

Una partícula de masa m se mueve con rapidez constante v_o por el exterior de un semicilindro horizontal de radio R. Además del peso y la fuerza normal que ejerce la superficie, la partícula está sometida a otras dos fuerzas. La primera es una fuerza \vec{F}_1 que está descrita por la expresión:

$$\vec{F}_1 = -c(xz^2\hat{\imath} + x^2z\hat{k})$$

donde c es una constante conocida y las coordenadas x, z se miden respecto al origen O. La otra fuerza, \vec{F}_2 , para la cual no se cuenta con una expresión explícita, es la que permite que la partícula se mueva con rapidez constante en su trayectoria desde el origen O a la cúspide C. Se pide:

- (a) Mostrar que la fuerza \vec{F}_1 es conservativa.
- (b) Determinar una expresión para el potencial asociado a \vec{F}_1 .
- (c) Determinar el trabajo efectuado por la fuerza \vec{F}_2 en el trayecto de O hasta la cúspide C.

Considere un cuerpo con la forma de un anillo de radio R, cuya masa total M se encuentra uniformemente distribuida en toda su extensión. Una partícula de masa m se encuentra atrapada por la fuerza de atracción gravitacional que ejerce este cuerpo, moviéndose a lo largo de la línea recta perpendicular al plano del anillo y que pasa por su centro (ver figura). Suponga que M >> m, de modo que el anillo no es afectado por la prescencia de la masa pequeña m.

(a) Mostrar que la fuerza de atracción sobre la partícula tiene la expresión:

$$\vec{F}(z) = -\frac{GMmz}{(z^2 + R^2)^{\frac{3}{2}}}\hat{k},$$

donde la coordenada z y \hat{k} se indican en la figura.

- (b) Si la partícula está inicialmente en reposo en z = R, calcule su velocidad cuando cruza el plano del anillo (z = 0).
- (c) Suponga que además de la fuerza de gravitación existe una fuerza no conservativa

$$\vec{F}_{nc} = -\epsilon F_{nc}(z)\hat{k},$$

donde $F_{nc}(z) > 0$ y ϵ es el signo de \dot{z} . Esta fuerza se opone entonces al movimiento de la masa m. Dada la misma condición inicial que en la parte (b), determine la función $F_{nc}(z)$ de modo que la masa m llega al plano del anillo (z=0) con velocidad nula.

Indicación. Para la parte (a), calcule la componente de la fuerza de atracción en la dirección \hat{k} generada por un elemento dM del anillo, y luego integre sobre el anillo para conocer la fuerza total de atracción.

P.3.12

Considere un carro de funicular de masa m que se mueve desde el punto A, de máxima velocidad de descenso, hasta el punto B en que se detiene. El movimiento ocurre sobre un riel recto de

largo L que forma un ángulo β con la horizontal. El carro cuenta con un motor que le ejerce una fuerza paralela al riel, tal que su posición a lo largo del riel sea $x(t) = L \operatorname{sen}(\frac{\pi t}{2T})$, donde T es una constante conocida.

Se deben considerar, adicionalmente, los efectos de un roce dinámico entre el carro y el riel, cuyo coeficiente es μ , y una fuerza de roce viscoso con el aire, que apunta en dirección contraria al movimiento, con la forma $\vec{F}_{rv} = -c\vec{v}$, donde c es una constante conocida.

 \bullet Calcule el trabajo efectuado por el motor en el descenso del carro desde A a B. ¿Puede ser nulo este trabajo? Explique su respuesta.

P.3.13

Considere un sistema con dos bloques, de masa m cada uno, unidos por cuerda ideal que pasa por una polea también ideal ubicada en el borde de una superficie horizontal de largo d. Uno de los bloques puede deslizar sobre la superficie, con la cual tiene un coeficiente de roce cinético variable, de la forma $\mu_c = ax$. En la expresión anterior, a es una constante **desconocida**. Inicialmente, se deja sobre la superficie al bloque, en reposo y en la posición x = 0, donde comienza su movimiento (ver figura). Determine el valor de la constante a tal que el bloque se detenga justo en el borde opuesto de la superficie.

P.3.14

En el instante inicial se tiene un bloque de masa m deslizando por un plano horizontal con velocidad v_o . Hay dos fuerzas que van frenando al bloque: una fuerza de roce deslizante (bloque-plano), caracterizada por un coeficiente de roce μ , y el roce viscoso lineal (bloque-aire), caracterizado por un coeficiente de roce c. Para hacer más sencillas las expresiones, suponga que v_o está dado por

$$v_o = \frac{\mu mg}{c},$$

donde g es la aceleración de gravedad.

- (a) Determine la velocidad v(t) como función explícita del tiempo y de ella obtenga el instante t_{max} en que el bloque se detiene.
- (b) Determine la distancia que alcanza a recorrer el bloque hasta detenerse.
- (c) Determine separadamente el trabajo que hace cada una de las dos fuerzas de roce desde el instante inicial hasta que el bloque se detiene. Comente sobre el significado de la suma de estos dos trabajos.

Considere un bloque de masa m que circula por el interior de una superficie cilíndrica de radio R y eje vertical. El bloque también se encuentra apoyado en el suelo, con el cual no tiene roce. Sin embargo, el contacto del bloque con la pared cilíndrica está caracterizado por un coeficiente de roce cinético μ . Inicialmente, el bloque se lanza con una rapidez v_o , como lo indica la figura. Se pide determinar:

- (a) La velocidad angular del bloque en función del ángulo recorrido, $\dot{\phi}(\phi)$.
- (b) La velocidad angular del bloque en función del tiempo, $\dot{\phi}(t)$.
- (c) ¿Cuánto tiempo tarda el bloque en detenerse? ¿Qué ángulo recorre entre el instante inicial y el instante final en que se detiene?
- (d) Calcule, **por definición**, el trabajo realizado por la fuerza de roce cinético entre el instante inicial y el instante en que el bloque se detiene.

Fig. P.3.15

P.3.16

Una partícula de masa m desliza sin roce sobre un plano horizontal infinito. En algún punto del plano hay un orificio por el cual pasa una cuerda ideal, que recoge a la partícula hacia el orificio. El recogimiento se realiza externamente a velocidad constante, v_o (ver figura). En el instante inicial, la partícula se encuentra a una distancia ρ_0 del orificio y con una velocidad angular ϕ_o .

- (a) Considerando coordenadas polares en el plano, calcule $\dot{\phi}(\rho)$. Hint: exprese ρa_{ϕ} como una derivada total con respecto al tiempo.
- (b) Calcule la tensión de la cuerda en función de la distancia de la partícula al orificio, $T(\rho)$. ¿Qué ocurre con el valor de la tensión a medida que la cuerda es recogida y la partícula se acerca al orificio?
- (c) Calcule, por dos caminos distintos, el trabajo que realiza la tensión de la cuerda entre el instante inicial y el instante en el cual la partícula se encuentra a una distancia ρ_1 del orificio.

3.2. Soluciones

S.3.2

(a) Para encontrar la velocidad angular $\dot{\phi}$ en función de r hay que ver que, ya sea escribiendo la fuerza \vec{f} en coordenadas cilíndricas (como está dada en el enunciado) o en coordenadas esféricas, se tendrá que la componente según $\hat{\phi}$ es cero. Entonces, por la 2^a ley de Newton,

$$a_{\phi} = 0 = \frac{1}{r \operatorname{sen} \theta} \frac{d}{dt} (r^2 \dot{\phi} \operatorname{sen}^2 \theta)$$

y como $\theta = 3\pi/4$ \Rightarrow $r^2\dot{\phi} = constante = r_o^2\dot{\phi}_o = r_o^2\omega_o$. De lo anterior:

$$\dot{\phi} = \frac{r_o^2 \omega_o}{r^2} \,.$$

(b) Hay varias formas de demostrar que esta fuerza es conservativa. La primera es calcular las derivadas cruzadas, para lo cual debemos escribir la fuerza en coordenadas cartesianas³. Para hacerlo, notemos que $\vec{f} = -\frac{B}{\rho^2}\hat{\rho} = -\frac{B}{\rho^3}\vec{\rho}$, donde estamos definiendo $\vec{\rho} \equiv \rho\hat{\rho} = x\hat{\imath} + y\hat{\jmath}$. Tomando en cuenta que $\rho = \sqrt{x^2 + y^2}$, se obtiene:

$$f_x = -\frac{Bx}{\sqrt{x^2 + y^2}}, \quad f_y = -\frac{By}{\sqrt{x^2 + y^2}}, \quad f_z = 0$$

Es directo demostrar que $\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$.

Eso significa que existe un potencial escalar U tal que $\vec{f} = -\vec{\nabla}U$. Ahora, en coordenadas cartesianas, $\vec{\nabla}U = \frac{\partial U}{\partial x}\hat{\imath} + \frac{\partial U}{\partial y}\hat{\jmath} + \frac{\partial U}{\partial z}\hat{k}$. Para llegar a la función U se puede hacer una integración, poniendo atención en que las derivadas son parciales, sin embargo, es muy útil tratar de adivinar lo que uno imagina que debería ser U, y luego corroborar que es la función correcta. En este caso, se comprueba fácilmente que

$$U = -\frac{B}{\sqrt{x^2 + y^2}} = -\frac{B}{\rho}.$$

Es importante notar que encontrar el potencial escalar U es suficiente para demostrar que f es conservativa, y que tiene la ventaja evidente de que, valga la redundancia, se encuentra el potencial, cosa que no se logra mostrando que las derivadas cruzadas de \bar{f}

 $^{^3}$ La razón de que esto no sea válido para cualquier sistema de coordenadas tiene que ver con el operador $\vec{\nabla} \times (\cdot)$. La condición para que exista una función escalar U tal que $\vec{f} = -\vec{\nabla} U$ es que $\vec{\nabla} \times \vec{f} = 0$, lo que en coordenadas cartesianas se escribe $(\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z})\hat{\imath} - (\frac{\partial f_z}{\partial x} - \frac{\partial f_x}{\partial z})\hat{\jmath} + (\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y})\hat{k} = 0$; en otras coordenadas, el rotor es distinto y no se puede extender el concepto de las "derivadas cruzadas". Se demuestra que para cualquier función escalar A, $\vec{\nabla} \times (\vec{\nabla} A) = 0$

son iguales.

He dejado una última alternativa —la más simple— al final sólo porque en un curso de mecánica no es necesariamente conocido que, en coordenadas cilíndricas, el gradiente se escribe $\nabla U = \frac{\partial U}{\partial \rho} \hat{\rho} + \frac{1}{\rho} \frac{\partial U}{\partial \phi} \hat{\phi} + \frac{\partial U}{\partial z} \hat{k}$.

Como $\vec{f} = -\frac{B}{\rho^2}\hat{\rho} = -\vec{\nabla}U$ $\Rightarrow U = U(\rho)$, es decir, U sólo depende de la coordenada ρ . Luego,

$$-\frac{\partial U}{\partial \rho} = -\frac{B}{\rho^2} \quad \Rightarrow \quad U = -\frac{B}{\rho}.$$

(c) La energía total (constante, pues la normal no hace trabajo) será entonces E = K + U, donde $K = \frac{1}{2}m\vec{v}\cdot\vec{v}$, y U es el potencial escalar asociado a \vec{f} , que ya encontramos. En coordenadas esféricas, $\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\dot{\phi}\sin\theta\hat{\phi} = \dot{r}\hat{r} + r\dot{\phi}\frac{\sqrt{2}}{2}\hat{\phi}$.

Reemplazando la expresión que se tiene para $\dot{\phi}$ y recordando que, en este caso, $\rho = r/\sqrt{2}$,

$$E = \frac{1}{2}m\dot{r}^2 + \frac{mr_o^4\omega_o^2}{4r^2} - \frac{\sqrt{2}B}{r}.$$

(d) Si existen, los valores r_{min} y r_{max} que acotan a la coordenada r son, en general, denominados puntos de retorno. Y por razones que debieran ser obvias, la coordenada r alcanza mínimos o máximos cuando su derivada se anula. Buscamos, por lo tanto, valores de r para los cuales $\dot{r}=0$.

Para esto, tengamos en cuenta dos cosas con respecto a la última expresión para la energía:

1. Dado que la energía se conserva (la única fuerza no conservativa, \vec{N} , no realiza trabajo), y como inicialmente $\dot{r}=0$ y $r=r_o$, la energía vale siempre:

$$E = \frac{mr_o^4\omega_o^2}{4r_o^2} - \frac{\sqrt{2}B}{r_o}$$

2. Cualquier punto de retorno r hace que $\dot{r}=0$, es decir:

$$E = \frac{mr_o^4\omega_o^2}{4r^2} - \frac{\sqrt{2}B}{r}$$

Entonces, de estas dos ecuaciones,

$$\frac{mr_o^4\omega_o^2}{4r_o^2} - \frac{\sqrt{2}B}{r_o} = \frac{mr_o^4\omega_o^2}{4r^2} - \frac{\sqrt{2}B}{r}$$

$$\Leftrightarrow \frac{mr_o^4\omega_o^2}{4} \left(\frac{1}{r_o^2} - \frac{1}{r^2}\right) - \sqrt{2}B\left(\frac{1}{r_o} - \frac{1}{r}\right) = 0$$

$$\Leftrightarrow \left(\frac{1}{r_o} - \frac{1}{r}\right) \left[\frac{mr_o^4\omega_o^2}{4} \left(\frac{1}{r_o} + \frac{1}{r}\right) - \sqrt{2}B\right] = 0$$

De esta última ecuación, se desprenden las soluciones:

Se concluye lo siguiente:

La primera solución tenía que ser r_o . La segunda tiene sentido físico $(r_2 > 0)$ sólo si se cumple:

$$B > \frac{mr_o^3 \omega_o^2}{4\sqrt{2}}.$$

$\overline{S.3.5}$

Usaremos las coordenadas polares para un sistema de referencia con origen en el centro de la circunferencia. El ángulo θ crece en el sentido en que se mueve la partícula, y vale cero cuando la partícula se encuentra en el punto A. Además, $\rho = a$.

La magnitud de la fuerza atractiva está dada en el enunciado, $F = k/r^2$, donde r es la distancia entre C y la partícula. Del dibujo debemos encontrar, entonces, la dirección de la fuerza atractiva y el valor de r en función de θ y de los datos.

Para el valor de r usamos el teorema del coseno, notando que el ángulo correspondiente es $\pi - \theta$:

$$r^{2} = a^{2} + a^{2} - 2a^{2}\cos(\pi - \theta) = 2a^{2}(1 + \cos\theta)$$

La proyección de la fuerza \vec{F} en el sistema polar elegido queda:

$$\vec{F} = -\frac{k}{r^2}\cos(\theta/2)\hat{\rho} + \frac{k}{r^2}\sin(\theta/2)\hat{\theta}$$

El desarrollo que estamos haciendo tiene sentido si queremos calcular el trabajo entre el punto A y el B por la definición de trabajo $(W_A^B = \int_{\vec{r}_A}^{\vec{r}_B} \vec{F} \cdot d\vec{r})$. Debe notarse que la fuerza en cuestión es conservativa, pues es una fuerza central (con centro de atracción en C) y depende explícitamente sólo de la coordenada r, por lo tanto si se busca la función potencial correspondiente, el trabajo de \vec{F} entre A y B se obtiene con la fórmula $W_{total} = \Delta K$, pues como $E = c^{te}$, $\Delta K = -\Delta U$. El trabajo pedido ES el trabajo total porque la fuerza normal no trabaja $(\vec{N} \perp d\vec{r})$.

Para calcular la integral de trabajo, noten que el radio es siempre constante. Por eso, $d\rho = 0$. Luego, al diferenciar $\vec{r} = \rho \hat{\rho}$, se obtiene $d\vec{r} = a\hat{\theta}d\theta$. Así:

$$\vec{F} \cdot d\vec{r} = \frac{ak}{r^2} \operatorname{sen}(\theta/2) d\theta = \frac{ak \operatorname{sen}(\theta/2)}{2a^2 (1 + \cos \theta)} d\theta$$

$$\Rightarrow W_A^B = \frac{k}{2a} \int_0^{\pi/2} \frac{\sin(\theta/2)}{1 + \cos\theta} d\theta$$

Sólo falta notar que:

$$\cos \theta = 2\cos^2(\theta/2) - 1 \implies 1 + \cos \theta = 2\cos^2(\theta/2)$$

y que

$$\frac{\operatorname{sen}(\theta/2)}{2\cos^{2}(\theta/2)} = \frac{d}{d\theta} \left(\frac{1}{\cos(\theta/2)}\right)$$

$$\Rightarrow W_{A}^{B} = \frac{k}{2a} \left[\frac{1}{\cos(\theta/2)}\right]_{0}^{\pi/2} = \frac{k}{2a} \left[\sqrt{2} - 1\right]$$

$$\therefore W_{A}^{B} = \frac{k}{2a} \left[\sqrt{2} - 1\right]$$

S.3.9

(a) La geometría del problema nos permite elegir coordenadas esféricas para la descripción del movimiento. Las fuerzas actuando sobre la partícula son como lo muestra la figura.

$$\vec{N} = -N\hat{\theta}$$

$$\vec{T} = -T\hat{r}$$

$$m\vec{g} = -mg\cos\theta\hat{r} + mg\sin\theta\hat{\theta}$$

Por otra parte, la aceleración en coordenadas esféricas es $\vec{a} = (\ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2\theta)\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2 \sin\theta\cos\theta)\hat{\theta} + \frac{1}{r\sin\theta}\frac{d}{dt}(r^2\dot{\phi}\sin^2\theta)\hat{\phi}.$

Con respecto a las coordenadas, del enunciado tenemos directamente que $\boxed{r=r_o-v_ot} \quad \Rightarrow \dot{r}=-v_o, \quad \ddot{r}=0, \ \text{y} \ \boxed{\theta=\pi/3} \quad \Rightarrow \quad \dot{\theta}=\ddot{\theta}=0.$

De esa forma la ecuación de movimiento, separada en ecuaciones escalares, queda:

$$\hat{r}) \quad T = m(r_o - v_o t) \dot{\phi}^2 \frac{3}{4} - \frac{mg}{2}$$

$$\hat{\theta}) \quad N = \frac{\sqrt{3}}{2} mg + m(r_o - v_o t) \dot{\phi}^2 \frac{\sqrt{3}}{4}$$

$$\hat{\phi}) \quad \frac{d}{dt} (r^2 \dot{\phi} \operatorname{sen}^2 \theta) = 0$$

De la ecuación $\hat{\phi}$) obtenemos que, como el término dentro de la derivada debe ser constante, entonces en particular se puede evaluar en t=0:

$$(r_o - v_o t)^2 \dot{\phi} = r_o^2 \omega_o \quad \Rightarrow \quad \dot{\phi} = \frac{r_o^2 \omega_o}{(r_o - v_o t)^2}$$

Por lo tanto, si escogemos que $\phi(t=0)=0$,

$$\phi(t) = \frac{r_o^2 \omega_o}{v_o} \frac{1}{(r_o - v_o t)} - \frac{r_o \omega_o}{v_o}$$

(b) Si evaluamos la ecuación \hat{r}) para t=0, obtenemos que: $T(0)=\frac{3}{4}mr_o\omega_o^2-\frac{mg}{2}$. Luego, si se desea que en el instante inicial el hilo esté tenso, debe imponerse que T(0)>0, lo que entrega la condición:

$$r_o\omega_o^2 > \frac{2}{3}g.$$

(c) A grandes rasgos, siempre hay dos formas de calcular el trabajo que realiza una fuerza: (i) por definición $(W_F = \int \vec{F} \cdot d\vec{r})$, y (ii) a través de los teoremas $[W_{total} = K_f - K_i, W_{nc} = E_f - E_i]$. En ocasiones será útil deducir también lo siguiente a partir de los teoremas:

$$W_{total} = W_c + W_{nc}$$
 $\Rightarrow W_c = W_{total} - W_{nc} = K_f - K_i - (E_f - E_i)$
 $\Rightarrow W_c = U_i - U_f,$

donde W_c es el trabajo de todas las fuerzas conservativas y U es la suma de los potenciales asociados a cada fuerza conservativa.

Forma (i): Para calcular el trabajo por definición, debemos primero conocer $d\vec{r}$. Para esto, notamos que, en coordenadas esféricas:

$$\frac{d\vec{r}}{dt} = \frac{dr}{dt}\hat{r} + r\frac{d\theta}{dt}\hat{\theta} + r\frac{d\phi}{dt}\operatorname{sen}\theta\hat{\phi}$$

Esto lo señalo como ayuda intuitiva para entender que:

$$d\vec{r} = dr\hat{r} + rd\theta\hat{\theta} + rd\phi \sin\theta\hat{\phi}$$

Ahora, como $\theta = \pi/3$ se mantiene constante, $d\theta = 0$. Así,

$$d\vec{r} = dr\hat{r} + rd\phi \operatorname{sen} \theta \hat{\phi}.$$

Por otro lado, debemos recordar, de la parte (a), que $r = r_o - v_o t$, y $\dot{\phi} = \frac{r_o^2 \omega_o}{r^2}$. Entonces, de la ecuación (\hat{r}) , la tensión es:

$$T = \frac{mrr_o^4\omega_o^2}{r^4} \frac{3}{4} - \frac{mg}{2} = \frac{mr_o^4\omega_o^2}{r^3} \frac{3}{4} - \frac{mg}{2}$$

$$\Rightarrow \vec{T} = -\left(\frac{mr_o^4\omega_o^2}{r^3} \frac{3}{4} - \frac{mg}{2}\right)\hat{r}$$

$$\Rightarrow W_T = \int \vec{T} \cdot d\vec{r} = -\int_{r_o}^{r_o/2} \left(\frac{mr_o^4\omega_o^2}{r^3} \frac{3}{4} - \frac{mg}{2}\right) dr$$

$$\therefore W_T = \frac{9}{8}mr_o^2\omega_o^2 - \frac{mgr_o}{4}.$$

Notar que si se cumple la condición de la parte (b), este trabajo es positivo, como tiene que ser.

Forma (ii): En este problema, tenemos 3 fuerzas actuando sobre la partícula. Entonces,

$$W_{total} = W_{mg} + W_T + W_N.$$

Pero $\vec{N} \perp d\vec{r} \implies W_N = 0$.

Así, calcularemos $W_T = W_{total} - W_{mg}$, con $W_{total} = K_f - K_i$ y $W_{mg} = U_i - U_f$, donde U es la energía potencial gravitacional.

Dado que $\vec{g} = -gk$, salvo una constante aditiva, U(z) = mgz, con z = 0 en el vértice del cono. Recordando la relación entre coordenadas esféricas y cartesianas, $z = r\cos\theta$, para $r_i = r_o$ y $r_f = r_o/2$, tendremos $z_i = r_o/2$ y $z_f = r_o/4$ respectivamente. Entonces,

$$W_{mg} = U(z_i) - U(z_f) = mg(r_o/2 - r_o/4) \implies W_{mg} = \frac{mgr_o}{4}.$$

Ahora, para el trabajo total necesitamos la energía cinética, y para ello la velocidad.

$$\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\dot{\phi}\sin\theta\hat{\phi} = -v_o\hat{r} + \frac{r_o^2\omega_o}{r}\sin\theta\hat{\phi}$$

Así,

$$K_i = \frac{1}{2}mv_i^2 = \frac{1}{2}m(v_o^2 + r_o^2\omega_o^2\frac{3}{4})$$

$$K_f = \frac{1}{2}mv_f^2 = \frac{1}{2}m(v_o^2 + 3r_o^2\omega_o^2)$$

$$\Rightarrow W_{total} = \frac{9}{8}mr_o^2\omega_o^2$$

y por lo tanto,

$$W_T = \frac{9}{8} m r_o^2 \omega_o^2 - \frac{mgr_o}{4}.$$

(d) Al responder de ambas formas la parte (c) hemos respondido parte de la (d). Ya escribimos la velocidad para un r cualquiera, por lo que sólo basta reemplazar $r = r_o - v_o t$, para obtener que:

$$K(t) = \frac{1}{2}m\left(v_o^2 + \frac{3}{4}\frac{r_o^4\omega_o^2}{(r_o - v_o t)^2}\right).$$

También obtuvimos ya la diferencia de energía cinética, que corresponde al trabajo total:

$$K_f - K_i = \frac{9}{8} m r_o^2 \omega_o^2.$$

Con todo lo dicho, incluso sin hacer cálculos el alumno debe ser capaz de reconocer que, en virtud de que $W_N=0,\,K_f-K_i-W_T$ corresponde al trabajo del peso W_{mg} .

4. Equilibrio y Oscilaciones

4.1. Problemas

P.4.1

Un resorte de constante elástica k y largo natural b tiene una partícula de masa m en un extremo, mientras que el otro extremo está fijo a una pared en un punto Q. Una barra ideal (masa despreciable) de largo $\sqrt{2}b$ está sujeta en un extremo a una rótula, a distancia $\sqrt{2}b$ bajo Q como lo indica la figura. En el otro extremo la barra está fija a la partícula de masa m.

- (a) ¿Cuánto debe valer m para que $\phi = \pi/2$ se un punto de equilibrio estable del sistema?
- (b) Obtenga la frecuencia angular de pequeñas oscilaciones en torno a ese punto de equilibrio.

P.4.2

Se tiene una barra sin masa que puede rotar libremente en torno a su punto medio, fijo en O. En los extremos de la barra hay dos masas m, las cuales a su vez están unidas a resortes idénticos de constante elástica k y largo natural l_o . Considere que $D=4l_o$ y $L=2l_o$. El movimiento ocurre en **ausencia** de gravedad.

- (a) Determine los puntos de equilibrio del sistema y su estabilidad.
- (b) Si el sistema es soltado desde una configuración cercana al único equilibrio estable, calcule la frecuencia de pequeñas oscilaciones.

4.1 Problemas

(c) Considere, por último, que el sistema es sumergido en un medio viscoso de manera tal que la masa inferior experimenta una fuerza del tipo $\vec{F} = -\gamma \vec{v}$, con $\gamma < \sqrt{mk}$, mientras que la superior se sigue moviendo libremente. Determine el movimiento (para pequeñas perturbaciones) que sigue el sistema en tal caso.

Indicación: Escriba la energía en aproximación de pequeñas oscilaciones y obtenga la ecuación de movimiento:

$$\frac{dE}{dt} = \vec{F}^{nc} \cdot \vec{v}$$

P.4.3

Considere un anillo de masa m que desliza sin roce a lo largo de una barra horizontal. El anillo está atado a un resorte (L_o, k) cuyo otro extremo está fijo, a una distancia D de la barra. Determine puntos de equilibrio y período de pequeñas oscilaciones.

P.4.4

Por un alambre semicircunferencial de radio R desliza el extremo de una barra ideal de masa nula que puede girar libremente en torno a un eje fijo en el centro de curvatura O del alambre. Los extremos de la barra poseen masas m y 2m, como se muestra, y a esta última están unidos los extremos de dos resortes iguales de largo natural $l_o = R$ y constante elástica $k = \frac{\sqrt{2}mg}{\pi R^2}(2R - d)$, con 2R > d, que van a lo largo del alambre.

- (a) Encontrar los puntos de equilibrio y analizar estabilidad.
- (b) Demostrar que en este caso, la frecuencia de peq. osc. en torno al punto de equilibrio estable es: $\omega^2=\sqrt{2}\left[\frac{2}{\pi}-\frac{1}{2}\right]\frac{2R-d}{2R^2+d^2}g$

P.4.5

Un hilo de largo L que está sujeto a un punto A pasa por una masa libre m (puede deslizar por el hilo sin roce), pasa por una polea fija B y luego termina vertical, teniendo en su otro extremo otra partícula de masa m. La parte vertical del hilo tiene un largo y variable, como sugiere la figura. La masa libre se mantiene siempre equidistante de los puntos A y B pero puede subir o bajar, de modo que los tres puntos siempre forman un triángulo isósceles. La distancia entre A y B es D.

- (a) Obtenga una relación entre la posición vertical y de la masa de la izquierda y la posición vertical x de la masa central para luego obtener la energía potencial asociada a este sistema. Obtenga valor(es) de x para posicion(es) de equilibrio. Describa su estabilidad.
- (b) Escriba la energía cinética K del sistema en función de x y de \dot{x} .
- (c) Obtenga la expresión aproximada para K en torno a la(s) posicion(es) de equilibrio y obtenga la(s) frecuencia(s) de pequeñas oscilaciones.

4.1.1. Oscilaciones amortiguadas

P.4.6

Una esfera de masa m tiene un agujero que le permite deslizar sin roce a lo largo de una barra rígida dispuesta horizontalmente que rota con velocidad angular ω_o constante. La esfera está unida al eje de rotación mediante un resorte (k, l_o) .

Por alguna razón, se ejerce sobre la esfera una fuerza de roce viscoso, de la forma $\vec{F}_v = -c\dot{\rho}\hat{\rho}$. La esfera se libera en reposo relativo a la barra con el **resorte no deformado**. Determine $\rho(t)$ para todos los valores posibles de c. Suponga que $\frac{k}{m} > \omega_o^2$.

4.1.2. Oscilaciones acopladas

P.4.7

Dos partículas de igual masa m están unidas por un resorte de constante elástica k. Una de las partículas está unida al techo por otro resorte idéntico, también de constante elástica k, y la otra partícula cuelga libremente. Considere movimiento vertical solamente.

- (a) Escriba las ecuaciones de movimiento para este sistema.
- (b) Calcule las frecuencias propias del sistema.
- (c) Determine los modos normales del sistema y describalos cualitativamente.

P.4.8

Dos masas iguales que deslizan sin roce por un riel circunferencial de radio R, se encuentran acopladas por dos resortes iguales, de constante elástica k y largo natural l_o . Suponga que el plano definido por el círculo es perpendicular a la gravedad, de modo que ésta no afecta la dinámica de las masas.

- (a) Determine la configuración de equilibrio.
- (b) Calcule las frecuencias propias de oscilación.
- (c) Determine los modos propios de oscilación. ¿A qué tipo de movimiento corresponde cada uno?

P.4.9

Una cuerda de largo 3a y de masa despreciable tiene adosadas dos masas iguales m, una en la posición a y la otra en 2a a partir de la pared (ver figura). No hay gravedad.

Suponga que la componente horizontal de la tensión de la cuerda, τ , es constante, y que sólo hay desplazamientos transversales, es decir, sólo hay movimiento en el eje vertical del dibujo, y las posiciones horizontales permanecen constantes.

- (a) Escriba las ecuaciones de movimiento aproximadas para las dos masas.
- (b) Calcule las frecuencias propias de oscilación.
- (c) Determine los modos normales y descríbalos cualitativamente.

4.1.3. Oscilaciones forzadas

P.4.10

Considere un bloque de masa m que está apoyado sobre un resorte de constante k y largo natural l_o , bajo la acción de la gravedad. El punto B de donde se sostiene el resorte se encuentra en t = 0 al nivel de la mesa.

- (a) Encuentre la altura de equilibrio de la masa.
- (b) En t=0, cuando la masa está quieta y en la posición de equilibrio, el punto B comienza a oscilar verticalmente. El movimiento de B puede ser descrito como $\vec{r}_B(t) = A_o \sin(\omega t) \hat{\jmath}$. Encuentre la ecuación que describe el movimiento de la masa.
- (c) Resuelva la ecuación de movimiento para las condiciones iniciales dadas.
- (d) Manteniendo la amplitud A_o fija, considere que la frecuencia ω es menor que la frecuencia de resonancia. ¿Cuál es la frecuencia máxima para que la masa nunca choque con la mesa?

P.4.11

Un carro de largo $2l_c$ y masa M puede deslizar sin roce por un riel de largo L. El carro tiene fijo, a cada lado, uno de los extremos de un resorte ideal (masa nula), de constante elástica k y largo natural l_o . El extremo libre de cada resorte se fija a dos paredes ubicadas en los extremos del riel. Se tiene, así, un sistema resorte-carro-resorte.

Sobre el carro se monta un motor, capaz de hacer girar con velocidad angular Ω un brazo de masa despreciable y largo R en cuyo extremo hay una masa m (ver figura). En la práctica, Ω puede ser controlada conectando el motor a una fuente de voltaje variable, pero para sus cálculos considere que Ω es constante. Puede suponer que inicialmente el brazo-masa se encuentra horizontal y hacia la derecha.

- (a) Encuentre la posición del centro de masa del sistema, en función de la coordenada x del centro del carro, medida desde la pared izquierda del riel. Escriba la 2° ley de Newton para el centro de masa.
- (b) Resuelva la E.D.O. resultante para x(t), usando como condiciones iniciales que $\dot{x}(0) = 0$ y que el sistema parte en el punto de equilibrio x(0) = L/2.
- (c) Tome el límite de x(t) cuando Ω tiende a la frecuencia de resonancia ω_o , que usted debe identificar. Puede serle útil la Regla de L'Hôpital.

Fig. P.4.11

4.2. Soluciones

S.4.5

(a) La relación para x e y viene del hecho suponer que el hilo es ideal (inextensible y sin masa). Así, a partir de la geometría, observamos que x, y y el largo total del hilo, L, cumplen la relación:

Con la relación anterior, podemos escribir el potencial gravitacional de ambas masas sólo en función de x:

$$U(x) = -mgx - mgy$$

$$\Rightarrow U(x) = -mg(x + L - \sqrt{D^2 + 4x^2}).$$

Las posiciones de equilibrio se buscan haciendo $\frac{dU}{dx}(x_{eq}) = 0$,

$$\frac{dU}{dx}(x_{eq}) = -mg + \frac{4mgx_{eq}}{\sqrt{D^2 + 4x_{eq}^2}} = 0$$

$$\Rightarrow x_{eq} = \pm \frac{D}{2\sqrt{3}}$$

Es claro que $x_{eq}=-\frac{D}{2\sqrt{3}}$ no es una solución física factible, pues en esa posición la cuerda no puede estar tensa. Así:

$$\Rightarrow \boxed{x_{eq} = \frac{D}{2\sqrt{3}}}.$$

Para la estabilidad evaluamos x_{eq} en $\frac{d^2U}{dx^2}$:

$$\frac{d^2U}{dx^2}(x_{eq}) = \frac{4mgD^2}{(D^2 + 4x_{eq}^2)^{3/2}} \qquad \Rightarrow \qquad \boxed{\frac{d^2U}{dx^2}(x_{eq}) = \frac{3\sqrt{3}mg}{2D}}$$

Como $\frac{d^2U}{dx^2}(x_{eq}) > 0$, entonces x_{eq} es una posición de equilibrio estable.

(b) La energía cinética es la suma de las energías cinéticas de cada masa:

$$K = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}m\dot{y}^2$$

Para encontrar \dot{y} en función de x y \dot{x} volvemos a la relación encontrada en la parte (a). Derivando esa relación c/r al tiempo obtenemos:

$$\dot{y} = -\frac{4x\dot{x}}{\sqrt{D^2 + 4x^2}} \quad \Rightarrow \quad \dot{y}^2 = \left(\frac{16x^2}{D^2 + 4x^2}\right)\dot{x}^2$$

$$\Rightarrow \boxed{K = \frac{1}{2}m\left(\frac{D^2 + 20x^2}{D^2 + 4x^2}\right)\dot{x}^2}.$$

(c) Este es un problema atípico en que la energía cinética no depende únicamente de la derivada temporal de la coordenada (\dot{x} en este caso), sino también de la coordenada misma (x en este caso).

Cuando se tiene un sistema con un grado de libertad (es decir, descriptible por una sola coordenada, digamos ϕ) y la energía mecánica total queda escrita como: $E = \frac{1}{2}\alpha\dot{\phi}^2 + U(\phi)$. En particular, la energía cinética queda $K = \frac{1}{2}\alpha\dot{\phi}^2$, con α =constante. En tal caso, la frecuencia de pequeñas oscilaciones en torno a un punto de equilibrio estable, ϕ_{eq} , se escribe como:

$$\omega_{p.o.}^2 = \frac{\frac{d^2U}{d\phi^2}(\phi_{eq})}{\alpha}$$

Este es un caso en que α no es una constante, pues depende de la coordenada x. En esta solución se propone como aceptable usar como aproximación $\alpha(x) \approx \alpha(x_{eq})$, para luego aplicar la fórmula anterior. Sin embargo, se deja constancia de que existe un método mejor para resolver el problema. Quien escribe reconoce no manejar de manera correcta tal método, y es sólo por eso que, en esta versión, se mantendrá lo propuesto más arriba. La aproximación simple mencionada pide evaluar $\alpha(x_{eq})$:

$$\alpha(x) = m\left(\frac{D^2 + 20x^2}{D^2 + 4x^2}\right) \approx \alpha(x_{eq}) = 2m,$$

por lo tanto, usando el valor de $\frac{d^2U}{dx^2}(x_{eq})$ encontrado en la parte (a):

$$\Rightarrow \left| \omega_{p.o.}^2 = \frac{3\sqrt{3}g}{4D} \right|.$$

S.4.7

(a) Comenzamos definiendo las coordenadas x_1 y x_2 que representan la posición vertical, a partir del techo, de las masas 1 y 2, respectivamente. Entonces, si se define $\hat{\imath}$ según el sentido en que apunta la gravedad, la ecuación de movimiento según $\hat{\imath}$ queda, para cada masa:

Fig. S.4.7

$$masa 1: m\ddot{x}_1 = mg - k(x_1 - l_o) + k(x_2 - x_1 - l_o)$$

$$masa \ 2: \ m\ddot{x}_2 = mg - k(x_2 - x_1 - lo)$$

(b) Notemos que, con un poco más de trabajo, las ecuaciones anteriores quedan como sigue:

$$\ddot{x}_1 = \frac{k}{m}(x_2 - 2x_1) + g, \qquad \ddot{x}_2 = -k(x_2 - x_1) + g + \frac{kl_o}{m}$$

Así, estas ecuaciones acopladas se pueden escribir en la forma matricial:

$$\begin{pmatrix} \ddot{x}_1 \\ x_2 \end{pmatrix} = \frac{k}{m} \begin{bmatrix} -2 & 1 \\ 1 & -1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} g \\ g + \frac{kl_o}{m} \end{pmatrix}$$

Este sistema lineal, luego de definir $\vec{X} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, lo expresamos de la forma:

$$\ddot{\vec{X}} = M\vec{X} + \vec{C},$$

y así podemos remarcar lo siguiente: toda la información de este sistema relacionada con los modos y frecuencias propias de oscilación está contenida en la matriz M, siendo, en este aspecto, totalmente irrelevante el vector constante

$$\vec{C} = \left(\begin{array}{c} g \\ g + \frac{kl_o}{m} \end{array}\right).^4$$

 $^{{}^4}$ Gracias a que las ecuaciones para las masas son l.i. (no son redundantes), entonces las filas de la matriz M son l.i., y por lo tanto M es invertible. Entonces es claro que una solución particular del sistema inhomogéneo $\ddot{\vec{X}} = M\vec{X} + \vec{C}$ es la solución constante $\vec{X}_p = -M^{-1}\vec{C}$. De esta forma, la solución general para este sistema será la solución de la ecuación homogénea, \vec{X}_h , más una solución particular **constante**. Es por eso que, en términos de las oscilaciones cuyas frecuencias propias y modos normales buscamos, sólo nos interesa la ecuación homogénea.

Buscar frecuencias propias de oscilación significa buscar soluciones en que todas las coordenadas del sistema oscilan con la misma frecuencia (x_1 y x_2 en este caso), lo que se expresa como $\vec{X} = e^{i\omega t}\vec{X}_o$. Entonces se prueba esta solución en la ecuación homogénea:

$$\ddot{\vec{X}} = (i\omega)^2 e^{i\omega t} \vec{X}_o \qquad \Rightarrow -\omega^2 \vec{X}_o = M \vec{X}_o$$

Esta es la ecuación de valores y vectores propios de la matriz M, donde $\vec{v} = \vec{X}_o$ es un vector propio asociado al valor propio $\lambda = -\omega^2$.

Se busca entonces los valores de λ tales que $det(M - \lambda I) = 0$:

$$\Leftrightarrow \left(\frac{2k}{m} + \lambda\right) \left(\frac{k}{m} + \lambda\right) - \left(\frac{k}{m}\right)^2 = 0$$

$$\Leftrightarrow \lambda^2 + \frac{3k}{m}\lambda + \left(\frac{k}{m}\right)^2 = 0$$

$$\Leftrightarrow \lambda = \frac{-3 \pm \sqrt{5}}{2} \frac{k}{m}$$

$$\therefore \left[\omega_1^2 = \frac{3 + \sqrt{5}}{2} \frac{k}{m}\right], \qquad \left[\omega_2^2 = \frac{3 - \sqrt{5}}{2} \frac{k}{m}\right]$$

(c) Para obtener los modos normales de oscilación, buscamos los vectores propios \vec{v}_i asociados a los valores propios $\lambda_i = -\omega_i^2$, a través de la ecuación $(M - \lambda_i I)\vec{v}_i = 0$. Realizando el álgebra correspondiente, se llega a los siguientes vectores propios (no normalizados):

$$\boxed{ \vec{v_1} = \left(\begin{array}{c} 1 \\ \frac{1-\sqrt{5}}{2} \end{array} \right) }, \qquad \boxed{ \vec{v_2} = \left(\begin{array}{c} 1 \\ \frac{1+\sqrt{5}}{2} \end{array} \right) }.$$

Notar que la segunda componente de \vec{v}_1 , $\frac{1-\sqrt{5}}{2}$, es negativa, y la primera es positiva, por lo tanto, para la frecuencia propia ω_1 , el sistema oscila en contrafase, es decir, mientras una masa sube, la otra baja o viceversa. Para \vec{v}_2 , ambas componentes tienen igual signo, lo que significa que si el sistema oscila con frecuencia ω_2 , ambas masas suben o ambas bajan.

⁵En general, la ecuación de valores y vectores propios se expresa $M\vec{v}=\lambda\vec{v}$, y por lo tanto, la condición para encontrar soluciones no triviales para \vec{v} es que $det(M-\lambda I)=0$, pues de esa forma, $M-\lambda I$ es una matriz no invertible y así se descarta la solución $\vec{v}=0$. En términos de ω^2 , la ecuación característica está dada por $det(M+\omega^2 I)=0$.

S.4.10

(a) Definamos la altura del bloque, medida desde el suelo, como y. Para calcular la altura de equilibrio se puede hacer "suma de fuerzas igual a cero", o a través de la energía potencial total. Por el segundo método,

$$U(y) = mgy + \frac{1}{2}k(y - lo)^2$$

Para encontrar el
$$y$$
 de equilibrio, $\frac{dU}{dy}(y_{eq}) = 0 \Rightarrow y_{eq} = l_o - \frac{mg}{k}$.

(b) Considerando ahora que la base se mueve de acuerdo a $y_B = A_o \operatorname{sen}(\omega t)$, la ecuación de movimiento para el bloque queda:

$$m\ddot{y} = -k((y - y_B) - l_o) - mg \Rightarrow \boxed{m\ddot{y} + ky = k(l_o - \frac{mg}{k}) + kA_o \operatorname{sen}(\omega t)}.$$

(c) Si definimos $\omega_o^2 = \frac{k}{m}$, y recordando que $y_{eq} = l_o - \frac{mg}{k}$, la ecuación anterior la podemos escribir como:

$$\ddot{y} + \omega_o^2(y - y_{eq}) = \omega_o^2 A_o \operatorname{sen}(\omega t)$$

La resolución de esta ecuación es menos trabajosa si se hace el cambio de variables:

$$\xi = y - y_{eq} \longrightarrow \ddot{\xi} = \ddot{y},$$

de manera que la ecuación queda:

$$\ddot{\xi} + \omega_o^2 \xi = \omega_o^2 A_o \operatorname{sen}(\omega t)$$

Sabemos que la solución general de esta E.D.O. es igual a la solución de la ecuación homogénea más una solución particular.

Ec. homogénea:
$$\ddot{\xi}_h + \omega_o^2 \xi_h = 0 \implies \xi_h(t) = \xi_o \operatorname{sen}(\omega_o t + \delta)$$

Por su parte, la particular se encuentra intentando una solución de la forma:

$$\xi_p(t) = D \operatorname{sen}(\omega t),$$

lo que se reemplaza en la ecuación inhomogénea para conocer el valor de D:

$$-\omega^2 D \operatorname{sen}(\omega t) + \omega_o^2 D \operatorname{sen}(\omega t) = \omega_o^2 A_o \operatorname{sen}(\omega t) \quad \Rightarrow \quad D = \frac{\omega_o^2 A_o}{\omega_o^2 - \omega^2}$$

$$\therefore \qquad \xi_p(t) = \frac{\omega_o^2 A_o}{\omega_o^2 - \omega^2} \operatorname{sen}(\omega t)$$

Con todo, la solución general de la ecuación inhomogénea es:

$$\xi(t) = \xi_h(t) + \xi_p(t) = \xi_o \operatorname{sen}(\omega_o t + \delta) + \frac{\omega_o^2 A_o}{\omega_o^2 - \omega^2} \operatorname{sen}(\omega t)$$

Ahora debemos aplicar las condiciones iniciales para conocer ξ_o y δ . Hay que ser cuidadosos pues las C.I. las conocemos para la variable y, por lo tanto es necesario reescribirlas para la variable ξ :

$$y(0) = y_{eq} \iff \xi(0) = 0 \longrightarrow \delta = 0$$

$$\dot{y}(0) = 0 \iff \dot{\xi}(0) = 0 \longrightarrow \xi_o = -\frac{\omega_o \omega A_o}{\omega_o^2 - \omega^2}$$

$$\Rightarrow \xi(t) = \frac{\omega_o A_o}{\omega_o^2 - \omega^2} \left[\omega_o \operatorname{sen}(\omega t) - \omega \operatorname{sen}(\omega_o t) \right]$$

Finalmente, $y(t) = \xi(t) + y_{eq}$

$$y(t) = \frac{\omega_o A_o}{\omega_o^2 - \omega^2} \left[\omega_o \operatorname{sen}(\omega t) - \omega \operatorname{sen}(\omega_o t) \right] + l_o - \frac{mg}{k}.$$

(d) La condición para que el bloque no choque con la mesa es equivalente a preguntarse si puede ocurrir que y=0, e imponer una restricción a partir de eso. En nuestro problema hemos supuesto implícitamente que la altura de equilibrio está **sobre** el suelo (lógico), es decir, que $l_o - \frac{mg}{k} > 0$. Por otra parte, el enunciado nos dice que $\omega < \omega_o$, luego $\omega_o^2 - \omega^2 > 0$. Así, tenemos que poner atención en la función $f(t) = [\omega_o \operatorname{sen}(\omega t) - \omega \operatorname{sen}(\omega_o t)]$: el máximo valor que toma esta función es $f(t^+) = \omega_o + \omega$, mientras que el mínimo es $f(t^-) = -(\omega_o + \omega)$. Nos preocupa que f(t) sea muy negativa, pues de ser así, y(t) podría anularse. El peor caso es, justamente, que $f(t^-) = -(\omega_o + \omega)$.

Imponemos, entonces, que $y(t^-) = 0$:

$$-\frac{\omega_o A_o}{\omega_o^2 - \omega^2} \left[\omega_o + \omega \right] + l_o - \frac{mg}{k} = 0$$

$$\Rightarrow \frac{\omega_o A_o}{\omega_o - \omega} = l_o - \frac{mg}{k}$$

De donde se despeja que el máximo valor, menor que ω_o , que puede tomar ω de manera que el bloque no choque con el suelo es:

$$\omega_{max} = \omega_o \left(1 - \frac{A_o}{l_o - \frac{mg}{k}} \right).$$

De este resultado se observa que si $A_o > l_o - \frac{mg}{k}$, no es posible evitar que el bloque choque. Esto tiene mucho sentido, pues A_o es la amplitud con que oscila el punto B.

5. Fuerzas Centrales

5.1. Problemas

P.5.1

Considere una partícula de masa m que se mueve en un campo de fuerza de atracción central $\vec{F} = -c\hat{r}$, donde c es una constante positiva (note que la magnitud de la fuerza es constante).

- (a) Demuestre que la partícula no puede escapar de este campo de atracción.
- (b) Si se verifica que la partícula se encuentra en una órbita circular de radio $r = r_o$, determine el período de pequeñas oscilaciones que experimenta la distancia entre la partícula y el centro de atracción cuando la partícula sufre una pequeña perturbación radial.
- (c) Suponga que la partícula se encuentra en la órbita circunferencial de la parte (b) y, como resultado de un impulso radial, en dirección opuesta al centro de atracción, la partícula queda en una órbita tal que su distancia máxima al centro de atracción es $2r_o$. Determine cuánto aumenta la energía mecánica total de la partícula como resultado de este impulso.

P.5.2

Desde la tierra se desea lanzar un satélite en órbita parabólica y para ello se procede como sigue. Primero se coloca en una órbita circunferencial de radio R. En un punto B de esta órbita se dispara sus cohetes tangencialmente y queda en una órbita elíptica cuyo radio mínimo es R. Al alcanzar su radio máximo (punto A), se dispara nuevamente en forma tangencial sus cohetes, alcanzando la rapidez que obtuvo en B y queda en órbita parabólica. Se pide determinar:

- (a) La rapidez del satélite en su órbita circunferencial.
- (b) Excentricidad de la órbita elíptica (o sencillamente el cuociente entre los radios máximo y mínimo).
- (c) Velocidades en A y B en el caso de la órbita elíptica.

Puede considerar como datos: G, la masa M de la tierra y el radio R.

P.5.3

Por un plano horizontal desliza sin roce una parícula de masa m unida a un hilo. Éste pasa por un agujero y termina unido a un resorte de constante elástica k verticalmente debajo del agujero. Cuando el resorte está en su largo natural, la partícula está justo en el agujero. En lo que sigue se pide estudiar la dinámica de la partícula cuando es soltada a una distancia ρ_o del agujero y con una velocidad perpendicular al hilo, de magnitud v_o .

- (a) Determine la ecuación de movimiento.
- (b) Encuentre la relación entre ρ_o y v_o para que la órbita sea circunferencial.
- (c) Obtenga la frecuencia de pequeñas oscilaciones en torno a esta órbita circunferencial.
- (d) Determine si en aproximación de pequeñas oscilaciones la órbita es cerrada.

P.5.4

Una partícula de masa m está sometida a la fuerza central que proviene de la energía potencial:

$$U(r) = a^2 \ln \frac{r}{r_o}$$

- (a) Determine el radio r_c de la órbita circunferencial caracterizada por una velocidad angular ω_o conocida y no nula. Determine también el momento angular l_o asociado a ella.
- (b) Determine la frecuencia $\omega_{p.o.}$ de las pequeñas oscilaciones del valor de r(t) en torno a $r=r_c$ cuando la órbita es levemente no circunferencial pero tiene el mismo valor l_o del momento angular. ¿Cuanto vale $\omega_o/\omega_{p.o.}$?¿Se trata de una órbita cerrada?

P.5.5

(Nota: Si bien la fuerza total en este problema no es una fuerza central, conviene resolverlo haciendo uso de los mismos conceptos de potencial efectivo y energía que los usados en los problemas de fuerzas centrales.)

Una partícula de masa m desliza sin roce por el interior de un embudo de eje vertical, cuya superficie se puede representar con la expresión $z(\rho) = -L^2/\rho$, donde L es una constante conocida y ρ es la coordenada radial cilíndrica. Si en la condición inicial la partícula está a distancia L del eje del embudo (ver figura), y tiene una velocidad tangente a la superficie, horizontal de magnitud v_o , se pide:

- (a) Determinar el valor de v_o tal que la partícula se mantenga rotando siempre a la misma altura.
- (b) Si v_o tiene un valor igual a la mitad del encontrado en (a) determine la altura mínima a la que llega la partícula en su movimiento.

P.5.6

Una nave de masa m se aproxima a Marte (de masa M) en una órbita AB parabólica. Cuando la nave alcanza el punto B de mínima distancia a Marte, frena usando sus cohetes y pasa a una órbita elíptica tan bien calculada que amartiza en un punto C, opuesto a B, en forma tangencial. Los datos son m, M, r_B y el radio R_M de Marte. Obtenga:

- (a) La velocidad de la nave en B justo antes de frenar.
- (b) La energía cuando la nave está en su órbita elíptica.

(c) La velocidad con que llega a C.

P.5.7

Considere una partícula de masa m que se mueve en órbita circular de radio ρ_o alrededor de un punto desde el cual se ejerce una fuerza de atracción de magnitud:

$$f(\rho) = k/\rho^3$$

- (a) Si en un cierto instante se le da un impulso radial a la partícula de modo que adquiere instantáneamente una velocidad radial $\dot{\rho} = v_1$, determine a qué valor tiende la rapidez de la partícula cuando el tiempo tiende a infinito.
- (b) Si a partir de la situación descrita inicialmente (la partícula se mueve en órbita circular) se acelera instantáneamente la partícula en su dirección de movimiento, de modo de duplicar la rapidez que tenía en órbita circular, dibuje un diagrama esquemático del potencial efectivo resultante después del impulso y calcule a qué valor tiende la rapidez de la partícula en la medida que se aleja del origen (en otras palabras, cuando ρ tiende a infinito).

P.5.8

Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo:

$$\vec{F} = -\alpha r^n \qquad \alpha > 0$$

El valor del momentum angular $\ell = mr^2\dot{\phi}$ es conocido.

- (a) Obtenga el potencial efectivo asociado a esta fuerza y grafíquelo para el caso n>0.
- (b) Calcule el radio de la órbita circular y determine el período de pequeñas oscilaciones en torno a esa órbita.
- (c) Determine para qué valores de n se obtienen órbitas cerradas, es decir, el cociente entre el período de la órbita circular y el período de pequeñas oscilaciones en torno a esa órbita circular debe ser un número racional. Grafíque una de estas órbitas.

P.5.9

Una masa puntual m, que yace sobre un plano, está conectada a un punto fijo en el plano O a través de un resorte de constante elástica k y largo natural nulo.

- (a) Usando coordenadas polares en el plano, encuentre las ecuaciones de movimiento.
- (b) Encuentre el potencial efectivo y grafíquelo.

(c) Obtenga los puntos de equilibrio del potencial efectivo y estudie las pequeñas oscilaciones en torno a esos puntos, dando las frecuencias propias de oscilación. Dibuje la órbita que hace la partícula en el plano.

Fig. P.5.9

5.2. Soluciones

S.5.1

(a) La fuerza central atractiva del problema tiene un potencial asociado que debiera ser fácil adivinar:

$$\vec{F} = -c\hat{r} = -\frac{\partial(cr)}{\partial r}\hat{r} = -\vec{\nabla}(cr) \quad \Rightarrow \quad U(r) = cr$$

Ya con esto, hay dos cosas muy útiles que podemos afirmar:

- \bullet La fuerza total \vec{F} es conservativa -pues proviene de un potencial- y, por lo tanto, la energía mecánica total E se conserva.
- La fuerza total \vec{F} es central -no hace torque- y, por lo tanto, el momentum angular $\vec{\ell} = m\vec{r} \times \vec{v} = mr^2 \dot{\phi} \hat{k}$ es constante⁶.

Con las anteriores dos características de este sistema, se busca el potencial efectivo, que se define a partir de la ecuación de la energía mecánica E = K + U(r). En coordenadas polares:

$$K = \frac{1}{2}mv^2 = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2)$$

Sin embargo, como la fuerza es central, $\ell = cte = mr^2\dot{\phi}$, por lo que, despejando $\dot{\phi}$ y reemplazando en K, se obtiene:

$$E = \frac{1}{2}m\dot{r}^2 + \frac{\ell^2}{2mr^2} + U(r)$$

Hay que notar que este procedimiento, válido para cualquier fuerza **central** con un potencial U(r) asociado, **permite transformar un problema bidimensional** (r, ϕ) en uno unidimensional⁷ (sólo r).

Se define entonces, el potencial efectivo $U_{ef}(r) = \frac{\ell^2}{2mr^2} + U(r)$. El primer término es conocido como "barrera centrífuga". Referidas a este nuevo potencial, existen 3 propiedades importantes que destacar:

(i) Los mínimos o máximos de $U_{ef}(r_c)$, corresponden a puntos de **equilibrio para la coordenada** r: si se deja orbitando un cuerpo en $r = r_c$, con $\dot{r} = 0$, entonces permanecerá en ese estado, describiendo una órbita circunferencial de radio r_c .

⁶Por definición, si una fuerza es central, se escribe como $\vec{F} = F(r)\hat{r} \implies \vec{\tau} = \vec{r} \times \vec{F} = r\hat{r} \times F\hat{r} = 0$. Por lo tanto, $\frac{d\vec{\ell}}{dt} = \vec{\tau} = 0$. Así, $\vec{\ell}$ es constante, lo que significa que el movimiento está siempre contenido en un plano. De ahí que se escogen las coordenadas polares r y ϕ para la descripción del movimiento.

⁷Se dice que el problema queda unidimensional porque la ecuación resultante es una ecuación para r y \dot{r} , es decir, sólo aparece la función r(t) y ya no aparece $\phi(t)$.

- (ii) Si se hace una pequeña perurbación radial de la órbita circunferencial de un cuerpo, éste oscilará radialmente en torno a $r=r_c$ siempre y cuando $\frac{d^2}{dr^2}U_{ef}(r_c)>0$ (estable en r_c). En ese caso, la frecuencia angular de pequeñas oscilaciones radiales se calcula como $\omega_{p.o.}^2=\frac{\frac{d^2}{dr^2}U_{ef}(r_c)}{m}$.
- (iii) (Lea con atención y paciencia, y ayúdese del gráfico que sigue) Si de la ecuación de la energía mecánica se despeja \dot{r}^2 , se obtiene $\dot{r}^2 = \frac{2}{m} [E U_{ef}(r)]$. Aquí se vé que siempre debe cumplirse $E \geq U_{ef}(r)$; de otra manera se tendría $\dot{r}^2 < 0$. Los puntos para los cuales $E = U_{ef}(r^*)$ (que no siempre existen!!) son llamados **puntos de retorno**, pues hacen que \dot{r} cambie de signo (pasando por cero cuando $r = r^*$). Si para una órbita particular $(E, \ell, m \text{ y } U(r))$ existen dos puntos de retorno, r_-^* y r_+^* , entonces se dirá que la órbita es ligada, y el cuerpo orbitante siempre se mantendrá con $r \in [r_-^*, r_+^*]$. Órbitas que no poseen dos puntos de retorno son llamadas, por más obvio que sea, órbitas **no ligadas**.

Volviendo de este pequeño resumen a nuestro problema, tenemos el potencial efectivo $U_{ef}(r) = \frac{\ell^2}{2mr^2} + cr$. Se grafica $U_{ef}(r)$, para concluir:

A partir del gráfico vemos que, **en este problema**, para cualquier valor de E, siempre existirán dos puntos de retorno r_{-}^{*} y r_{+}^{*} . Por lo tanto, las órbitas son ligadas, o lo que es lo mismo, la partícula no puede escapar de este campo de atracción.

(b) La órbita circunferencial es de radio r_o si

$$\frac{dU_{ef}}{dr}(r_o) = -\frac{\ell^2}{mr_o^3} + c = 0 \quad \Rightarrow \quad \ell^2 = cmr_o^3$$

Así, reemplazamos ℓ^2 en $\frac{d^2}{dr^2}U_{ef}(r_o)$ para obtener:

$$\frac{d^2}{dr^2}U_{ef}(r_o) = \frac{3\ell^2}{mr_o^4} = \frac{3c}{r_o}$$

$$\Rightarrow \boxed{\omega_{p.o.}^2 = \frac{3c}{mr_o}}$$

(c) Queremos calcular el aumento de energía mecánica total. Para ello, primero calculemos la energía inicial de la órbita circunferencial ($\dot{r}=0$):

$$E_i = \frac{\ell^2}{2mr_o^2} + cr_o = \frac{cr_o}{2} + cr_o \quad \Rightarrow \quad E_i = \frac{3}{2}cr_o$$

Para conocer el valor de la energía final, lo único que hace falta es notar que **el impulso es radial**, y esto quiere decir que el momentum angular l no cambia después del impulso (para mayor claridad, recuerde que un impulso es una fuerza aplicada por un Δt , y si esa fuerza actúa radialmente, entonces no realiza torque!!).

Finalmente, evaluamos nuestra energía final en el momento de máximo radio $2r_o$, es decir, cuando $\dot{r}=0$:

$$E_f = \frac{\ell^2}{2m(2r_o)^2} + 2cr_o = \frac{cr_o}{8} + 2cr_o = \frac{17}{8}cr_o$$

Por lo tanto, el aumento de energía total es

$$E_f - E_i = \frac{17}{8}cr_o - \frac{3}{2}cr_o$$

$$\therefore \boxed{E_f - E_i = \frac{5}{8}cr_o}$$

S.5.6

(a) La trayectoria inicial AB es parabólica, por lo tanto, $\epsilon^2 = 1$, o, lo que es lo mismo, E = 0. Por otra parte, la energía mecánica total es

$$E = \frac{1}{2}mv^2 - \frac{GMm}{r} = 0$$

Así, la velocidad en B se despeja evaluando $r=r_B$, lo que dá:

$$v_B^2 = \frac{2GM}{r_B}.$$

(b) Para continuar, hay que tener claro que:

• La energía total cambia pues, de un momento a otro -es decir, para un mismo radio r-, la rapidez cambia.

• Como el frenado es un impulso tangencial, el momentum angular cambia; no se puede calcular usando v_B de la parte (a).

Para la órbita elíptica resultante, es decir, entre B y C, la energía y el momentum angular se mantendrán constantes.

Recordemos que, gracias a que la fuerza total es central, podemos escribir la energía mecánica total nueva como:

$$E' = \frac{1}{2}m\dot{r}^2 + \frac{\ell^2}{2mr^2} - \frac{GMm}{r}$$

Acá es imprescindible notar que en los puntos B y C, $\dot{r}=0$. Así, tenemos la siguiente igualdad:

$$E' = \frac{\ell^2}{2mr_B^2} - \frac{GMm}{r_B} = \frac{\ell^2}{2mR_M^2} - \frac{GMm}{R_M},$$

donde se ha usado que $r_C = R_M$. A partir de la igualdad anterior, es fácil despejar ℓ^2 , lo que entrega:

$$\ell^2 = \frac{R_M r_B}{R_M + r_B} 2GMm^2$$

Reemplazando ℓ^2 en la expresión $E' = \frac{\ell^2}{2mr^2} - \frac{GMm}{r}$, con $r = r_B$ o $r = R_M$, se obtiene que:

$$E' = -\frac{GMm}{R_M + r_B}.$$

(c) La velocidad en C se puede obtener directamente de la ecuación $E' = \frac{1}{2}mv_C^2 - \frac{GMm}{R_M}$. Sin embargo, existe otra manera, que muestro acá como complemento: En los puntos en que la velocidad es perpendicular al vector posición ($B \ y \ C$ en particular),

o equivalentemente, en los puntos en que $\dot{r}=0$, se cumple que $\ell=mrv$. Así:

$$\ell^2 = m^2 R_M^2 v_C^2 = \frac{R_M r_B}{R_M + r_B} 2GMm^2$$

$$\therefore \boxed{v_C^2 = \frac{r_B}{R_M} \frac{2GM}{(R_M + r_B)}}.$$

6. Movimiento Relativo: Sistemas No Inerciales

6.1. Problemas

P.6.1

Una plataforma de ancho 2L, rota en el plano de la figura con velocidad angular constante ω alrededor de un punto O, mediante un brazo de largo R, de modo que el piso de la plataforma se mantiene siempre horizontal. Al centro de la plataforma se deposita un bloque de masa m-que tiene roce nulo con la plataforma- en un momento en que el brazo de largo R está en posición horizontal.

Suponga R suficientemente pequeño como para que el bloque no choque contra los extremos de la plataforma.

- (a) Encuentre el desplazamiento máximo que experimenta el bloque sobre la plataforma (distancia máxima al centro de la plataforma).
- (b) Determine cuál es el valor máximo de la velocidad angular ω para que el bloque no se despegue de la plataforma.

P.6.2

Considere un péndulo simple de largo L y masa m que cuelga de un anillo que se puede mover libremente a lo largo de una barra horizontal. Estando el péndulo en reposo, se impulsa el anillo con una aceleración a_o constante a lo largo de la barra. Determine:

(a) Máxima desviación del péndulo con respecto a la vertical.

(b) Tensión máxima que experimenta la cuerda y el ángulo con respecto a la vertical donde ésta se alcanza.

P.6.3

Considere el sistema Sol-Tierra, con la masa del Sol mucho mayor a la de la Tierra, M >> m, ambos sujetos únicamente a la fuerza de gravitación mutua. Defina un sistema de referencia inercial S con origen en el centro del Sol, de vectores unitarios $(\hat{i}, \hat{j}, \hat{k})$. Defina también un sistema de referencia no inercial S', con el mismo origen pero con vectores unitarios $(\hat{i}', \hat{j}', \hat{k}')$ (por simplicidad los vectores \hat{k} y \hat{k}' no están indicados en la figura). El sistema de referencia S' es tal que su eje x' está fijo a la Tierra y por lo tanto rota con respecto a los ejes coordenados del sistema S según $\vec{\omega} = \dot{\phi}(t)\hat{k}$.

Demuestre que usando la ecuación de movimiento en el sistema de referencia no inercial S', se pueden deducir las ecuaciones diferenciales del problema de gravitación del sistema Sol-Tierra, esto es:

$$\frac{d}{dt}(mr^2\dot{\phi}) = 0$$

$$m\ddot{r} = -\frac{GMm}{r^2} + \frac{l^2}{mr^3}$$

P.6.4

Un anillo de masa m se encuentra inserto en un aro circular vertical de radio R. El aro se encuentra soldado a una barra horizontal OP de largo R que lo hace girar con velocidad angular constante $\vec{\Omega}_o$ respecto a un eje vertical que pasa por O. Un resorte ideal de constante elástica k y largo natural nulo liga, a través del aro, al anillo con el punto P. Se pide:

(a) Determinar la magnitud de la velocidad angular Ω_o si el anillo permanece en reposo relativo al aro cuando se encuentra ubicado en el punto A (el punto más alto del aro).

6.1 Problemas 6 MOVIMIENTO RELATIVO: SISTEMAS NO INERCIALES

- (b) Determinar la rapidez relativa al aro mínima que el anillo debe tener en el punto A para que, en su movimiento, alcance a llegar al punto B (punto opuesto a P).
- (c) Para la condición de **(b)**, determinar la(s) fuerza(s) que el aro ejerce sobre el anillo en los puntos A y B.

P.6.5

Una circunferencia de radio ρ_o , en un plano vertical, gira en torno a un eje fijo con velocidad angular ω . El centro de la cicunferencia describe, en su giro, una circunferencia de radio R. El plano de la circunferencia se mantiene siempre perpendicular al vector \vec{R} de la figura. Una partícula de masa m puede deslizar sin roce por la circunferencia de radio ρ_o .

El problema es describir la ecuación de movimiento para esta partícula y sus propiedades. Para hacerlo puede escoger el sistema de referencia S' que desee.

- (a) Defina claramente el sistema S' escogido y calcule las fuerzas centrífuga, de Coriolis y transversal que actúan sobre la partícula.
- (b) Obtenga la ecuación de movimiento completa y de ella obtenga una ecuación -sin coeficientes desconocidos- para el ángulo ϕ de la forma:

$$\ddot{\phi} = f(\phi) \tag{2}$$

(c) Discuta bajo qué condiciones la posición $\phi = 0$ es estable/inestable y, en los casos en que $\phi = 0$ sea estable, obtenga la frecuencia de pequeñas oscilaciones en torno a ese ángulo.

P.6.6

Un aro de radio R se hace girar con velocidad angular constante ω_o en un plano horizontal alrededor de un eje vertical que pasa por un punto del aro. Un anillo de masa m puede deslizar sin roce a lo largo del aro. Estando el anillo en una posición diametralmente opuesta al eje de rotación, se le dá una velocidad v_o relativa al aro, en la misma dirección de giro.

• Determine el valor mínimo de la rapidez v_o para que el anillo llegue hasta el eje.

P.6.7

Un anillo puntual de masa m puede deslizar sin roce sobre un aro de radio a de masa despreciable. Este aro gira con velocidad angular $\vec{\omega} = \omega \hat{k}$ en torno a un eje que se encuentra a una distancia d del eje contenido en el plano del aro que pasa por su centro (estos ejes tienen asociados direcciones \hat{k} y \hat{k}' respectivamente, como se muestra en la figura).

- (a) Encuentre la ecuación que describe el movimiento de la masa como también las ecuaciones que determinan las reacciones del aro sobre la masa.
- (b) Determine los puntos de equilibrio de la masa con respecto al sistema móvil.
- (c) Para aquellos puntos de equilibrio estable, determine la frecuencia de pequeñas oscilaciones.

P.6.8

Una partícula P de masa m se mueve sin roce por el borde exterior de un cilindro de radio R y eje vertical. El cilindro y la partícula están sobre una plataforma horizontal que rota con velocidad angular constante $\vec{\Omega} = \Omega \hat{k}$ ($\Omega > 0$) en torno a un punto fijo O ubicado a una distancia 2R del centro del cilindro (punto O). Si se designa ϕ al ángulo OO'P, la partícula inicia su movimiento en la posición $\phi = 0$, con una velocidad angular inicial positiva, pero muy pequeña. Se pide:

- (a) Encontrar una expresión para la velocidad angular $\dot{\phi}$ (para cualquier instante previo a la separación).
- (b) Determinar una ecuación para el ángulo ϕ_s en que la partícula se separa del cilindro.

P.6.9

En un ambiente sin gravedad considere un anillo de masa m que desliza sin roce a lo largo de una barra. El anillo está unido a una partícula de masa m, a través de una cuerda de largo L, como se muestra en la figura. En el instante inicial, con la cuerda completamente extendida y la partícula colocada junto a la barra, se imprime una velocidad v_o a esta última, en dirección perpendicular a la barra.

- (a) Determine la velocidad angular $\dot{\phi}$ de la cuerda, en función del ángulo ϕ que forma con la barra.
- (b) Determine la fuerza que la barra ejerce sobre el anillo cuando el ángulo que forma la cuerda con la barra es igual a $\frac{\pi}{2}$.

6.1 Problemas 6 MOVIMIENTO RELATIVO: SISTEMAS NO INERCIALES

P.6.10

Considere una estructura horizontal formada por un tubo de largo 2L, y una barra de largo L, que gira con velocidad angular constante ω_o con respecto a un eje vertical, en la forma indicada en la figura. En el interior del tubo se encuentran dos partículas de masa m cada una, unidas por una cuerda de largo L, y en equilibrio respecto al tubo. No hay roce.

- (a) Determine la tensión de la cuerda.
- (b) Si en un cierto instante la cuerda se rompe, calcule la velocidad de ambas partículas, relativas al tubo, en el instante que escapan de él.
- (c) Calcule la velocidad absoluta de ambas partículas en ese instante.

P.6.11

En un sitio de latitud α sobre la Tierra, una partícula se mueve libremente, sin roce, sobre un plano horizontal. Las únicas fuerzas que actúan sobre ella en el sistema de referencia Tierra son su peso (gravedad local, es decir, $\vec{g}_{local} \perp$ plano), la fuerza normal y la fuerza de Coriolis. Suponga que el movimiento ocurre de modo que se pueda despreciar que la latitud cambia. (Latitud es el ángulo entre el vector posición y el plano ecuatorial. En este problema α se expresa en radianes.)

- (a) Explique qué se entiende por ḡ_{local} y el papel de la fuerza centrífuga descrita en el sistema de referencia S' fijo a la Tierra. Puesto que en unidades MKS R_T = 6·10⁶ y Ω_T = 7·10⁻⁵, determine si la corrección a g = 9,8 en el ecuador es aproximadamente: (i) 3 por ciento, (ii) 1 por ciento, (iii) 3 por mil ó (iv) 1 por mil. Esta corrección ¿es mayor o menor en latitudes mayores? En las preguntas que siguen, suponga que este efecto es despreciable: que la gravedad apunta hacia el centro de la tierra y que nuestro planeta es una esfera.
- (b) Escriba la ecuación de movimiento de la partícula y de ella obtenga cómo varía $v'^2 \equiv \vec{v}' \cdot \vec{v}'$ en el tiempo.
- (c) Usando coordenadas cartesianas sobre el plano de movimiento la velocidad se puede escribir $\vec{v}' = v(t)(\hat{i}'\cos\beta + \hat{j}'\sin\beta)$. A partir de la respuesta de (b) debiera saber sobre v(t). Encuentre una ecuación para $\beta(t)$. En particular encuentre una expresión para $\dot{\beta}$ donde debe aparecer al menos Ω_T y la latitud.
- (d) Si se conoce la rapidez inicial $v_o = v(0)$, describa la órbita de la partícula, en particular su radio de curvatura en cada punto.

Fig P.6.11

P.6.12

Considere una caja de base rectangular (lados $2l_o$ y $4l_o$) que rota con velocidad angular constante Ω_o respecto de un eje vertical (la base de la caja está en posición horizontal) que pasa por su vértice A, como muestra la figura. Por el interior de la caja una partícula de masa m se mueve con roce despreciable, atada a un resorte ideal de constante elástica k y largo natural l_o , cuyo otro extremo está fijo al vértice B.

- (a) Determine la velocidad angular de la caja ($\Omega_o = ?$) tal que la partícula tenga un punto de equilibrio estable en el punto D, ubicado en el punto medio entre los vértices B y C. En este caso, determine la frecuencia de las pequeñas oscilaciones en torno a D.
- (b) Si la partícula es liberada desde el reposo (relativo a la caja) en el vértice C, determine a qué distancia de B ella se separa de la pared BC (considere para Ω_o el valor determinado en (a)).

6.2. Soluciones

Notación

Se usará la siguiente notación y nomenclatura para este capítulo:

- S.R. \longrightarrow sistema de referencia.
- S.I. \longrightarrow sistema de referencia inercial.
- S.N.I. \longrightarrow sistema de referencia no inercial
- \circ Los S.I. son denotados por S (con origen O) mientras que un S.N.I. se denotará por S' (con origen O').
- \vec{r}' , \vec{v}' y $\vec{a}' \longrightarrow$ vector posición y sus derivadas temporales **en el sistema** S'.
- $\vec{R} \longrightarrow \text{vector de posición de } O' \text{ c/r a } S.$
- $\vec{\Omega}$ vector velocidad angular de los ejes cartesianos de S' c/r a los ejes cartesianos de S.
- $\vec{F} \longrightarrow$ suma de todas las fuerzas inerciales.

Con lo anterior la ecuación de movimiento para sistemas no inerciales se expresa:

$$m\vec{a}' = \vec{F} - m\ddot{\vec{R}} - m\vec{\Omega} \times (\vec{\Omega} \times \vec{r}') - 2m\vec{\Omega} \times \vec{v}' - m\dot{\vec{\Omega}} \times \vec{r}'$$

Nota. Es muy sano aclarar la diferencia entre sistema de referencia y sistema de coordenadas. Un sistema de referencia se define a partir de un origen, digamos O, y de sus 3 ejes cartesianos $(\hat{x}, \hat{y}, \hat{z})$. Un sistema de coordenadas está siempre **asociado** a los ejes cartesianos de algún S.R. Pero un sistema de coordenadas **no es** un S.R. Por lo tanto, la pregunta '¿un sistema de coordenadas es inercial o no?', simplemente, carece de sentido.

S.6.1

(a) Una buena elección de S.R. es definir uno en el centro O de la circunferencia descrita por el movimiento (éste es inercial) y otro no inercial con origen en O', punto medio de la plataforma, como se muestra en la figura. Así,

Con esta elección de S.R:

$$\vec{\Omega} = 0$$
, y $\vec{r}' = x'\hat{\imath} \Rightarrow \vec{v}' = \dot{x}'\hat{\imath} \Rightarrow \vec{a}' = \ddot{x}'\hat{\imath}$.

Notando además que $\vec{F} = N\hat{\jmath} - mq\hat{\jmath}$, la ec. de mov. para S.N.I. resulta:

$$\begin{split} m\ddot{x}\hat{\imath} &= (N-mg)\hat{\jmath} + mR\omega^2\cos\theta\hat{\imath} + mR\omega^2\sin\theta\hat{\jmath} \\ \Rightarrow &\hat{\imath}) \quad m\ddot{x} &= mR\omega^2\cos\theta \\ &\hat{\jmath}) \quad N &= mg - mR\omega^2\sin\theta \end{split}$$

La ecuación \hat{i}) se puede integrar dos veces, con las condiciones iniciales $\dot{x}' = 0$ y x' = 0 (y usando también que $\theta(0) = 0$), obteniéndose:

$$\dot{x}' = R\omega \operatorname{sen} \theta$$

 $x' = R(1 - \cos \theta)$

De lo anterior se desprende que $x'_{max} = 2R$

Nota. Este resultado tiene tanto de correcto como de obvio. En el S.I., la velocidad inicial en el eje x es nula, y no hay fuerzas actuando en el eje x (no hay roce). Entonces la posición x (en S) es constante, y por lo tanto el desplazamiento total DEBE ser 2R.

(b) Para que la partícula no se despegue se debe imponer que $N(\theta) > 0$, $\forall \theta$. La situación mas restrictiva ocurre cuando sen $\theta = 1$, luego la condición resulta:

$$mg - mR\omega^2 > 0$$
 $\Rightarrow \omega^2 < \frac{g}{R}$

S.6.2

(a) La elección de S y S' se muestra en la figura. Además, para una descripción sana de la partícula en el sistema S', definimos coordenadas polares en S', tal como se muestra. Con estas definiciones $(\hat{\imath}, \hat{\jmath}) = (-\hat{\imath}', -\hat{\jmath}')$ y además:

Dado que necesitamos dejar todo expresado en un solo sistema de coordenadas, debemos expresar $\hat{\imath}(\hat{\rho}, \hat{\theta})$ y $\hat{\jmath}(\hat{\rho}, \hat{\theta})$:

$$\hat{i} = -\sin\theta \hat{\rho} - \cos\theta \hat{\theta}$$
$$\hat{j} = -\cos\theta \hat{\rho} + \sin\theta \hat{\theta}$$

La ecuación para sistemas no inerciales resulta:

$$-mL\dot{\theta}^2\hat{\rho} + mL\ddot{\theta}\hat{\theta} = -T\hat{\rho} + mg\cos\theta\hat{\rho} - mg\sin\theta\hat{\theta} + ma_o\sin\theta\hat{\rho} + ma_o\cos\theta\hat{\theta}$$

$$\Rightarrow \hat{\rho}) \qquad -mL\dot{\theta}^2 = ma_o \sin \theta - T + mg \cos \theta$$
$$\hat{\theta}) \qquad mL\ddot{\theta} = ma_o \cos \theta - mg \sin \theta$$

Escribiendo $\ddot{\theta} = \dot{\theta} \frac{d\dot{\theta}}{d\theta}$, al integrar la ecuación $\hat{\theta}$) obtenemos:

$$\dot{\theta}^2 = \frac{2a_o}{L} \operatorname{sen} \theta + \frac{2g}{L} (\cos \theta - 1)$$

, donde se usó las C.I. $\theta(0) = \dot{\theta}(0) = 0$. Para un ángulo de desviación máximo se tendrá velocidad angular nula, esto es, $\dot{\theta}^2 = 0 \Rightarrow \theta_{max}$, lo que entrega la ecuación para θ :

$$a_o \operatorname{sen} \theta = g - g \cos \theta \Rightarrow \frac{a_o}{g} \operatorname{sen} \theta - 1 = -\cos \theta / ()^2$$

 $\Rightarrow \operatorname{sen}^2 \theta (1 + \frac{a_o^2}{g^2}) = \frac{2a_o}{g} \operatorname{sen} \theta$

Dos soluciones de esta ecuación son $\theta=0$ (ciertamente no es la que buscamos) y $\theta=\pi$ (infactible, pues hace que $\dot{\theta}^2<0$). La única solución restante es $\sec\theta_{max}=\frac{2a_og}{g^2+a_o^2}$.

6.2 Soluciones 6 MOVIMIENTO RELATIVO: SISTEMAS NO INERCIALES

(b) Si se reemplazaa $\dot{\theta}^2$ en la ecuación $\hat{\rho}$) se obtiene:

$$T(\theta) = mg \cos \theta + ma_o \sin \theta + 2m(a_o \sin \theta + g \cos \theta - g)$$

$$= 3ma_o \sin \theta + 3mg \cos \theta - 2mg$$

$$\frac{dT}{d\theta} = 0 \Rightarrow \tan \theta^* = \frac{a_o}{g} \Rightarrow \boxed{\theta^* = \arctan(\frac{a_o}{g})}$$

$$\Rightarrow \boxed{T_{max} = 3ma_o \sin\left(\arctan(\frac{a_o}{g})\right) + 3mg \cos\left(\arctan(\frac{a_o}{g})\right) - 2mg}$$

S.6.3

Con la elección de S.R. propuesta en el enunciado, tenemos:

•
$$\vec{\Omega} = \dot{\phi}(t)\hat{k}$$
 $\Rightarrow \dot{\vec{\Omega}} = \ddot{\phi}(t)\hat{k}$
• $\vec{R} = 0$ $\Rightarrow \ddot{\vec{R}} = 0$
• $\vec{r}' = r\hat{\imath}', \quad \Rightarrow \vec{v}' = \dot{r}\hat{\imath}', \quad \Rightarrow \quad \vec{a}' = \ddot{r}\hat{\imath}'$
• $\vec{F} = -\frac{GMm}{r^2}\hat{\imath}'$

Calculemos ahora las fuerzas Centrífuga, de Coriolis y transversal:

•
$$\vec{\Omega} \times (\vec{\Omega} \times \vec{r}') = \dot{\phi} \hat{k}' \times (\dot{\phi} \hat{k}' \times r \hat{i}') = -r \dot{\phi}^2 \hat{i}'$$

•
$$2\vec{\Omega} \times \vec{v}' = 2(\dot{\phi}\hat{k}' \times \dot{r}\hat{\imath}') = 2\dot{r}\dot{\phi}\hat{\jmath}'$$

•
$$\dot{\vec{\Omega}} \times \vec{r'} = \ddot{\phi}\hat{k'} \times r\hat{\imath}' = r\ddot{\phi}\hat{\jmath}'$$

Con todo, la ec. de mov. para S.N.I. resulta:

$$\begin{split} m\ddot{r}\hat{i}' &= -\frac{GMm}{r^2}\hat{i}' + mr\dot{\phi}^2\hat{i} - 2m\dot{r}\dot{\phi}\hat{j}' - mr\ddot{\phi}\hat{j}' \\ \hat{j}') & 2m\dot{r}\dot{\phi} + mr\ddot{\phi} = 0 \quad \Leftrightarrow \quad \frac{1}{r}\frac{d}{dt}\left(mr^2\dot{\phi}\right) = 0 \\ \Rightarrow & \left[\frac{d}{dt}\left(mr^2\dot{\phi}\right) = 0\right] \quad \Rightarrow \quad mr^2\dot{\phi} = \ell \quad \Rightarrow \quad r\dot{\phi}^2 = \frac{\ell^2}{m^2r^3} \\ \hat{i}') & m\ddot{r} = -\frac{GMm}{r^2} + mr\dot{\phi}^2 = -\frac{GMm}{r^2} + \frac{\ell^2}{mr^3} \\ \Rightarrow & \left[m\ddot{r} = -\frac{GMm}{r^2} + \frac{\ell^2}{mr^3}\right] \end{split}$$

S.6.11

(a) La gravedad local se entiende como el valor y dirección efectiva de la fuerza que siente un cuerpo en la tierra debido a la suma del efecto de la gravedad \vec{g} y de la fuerza centrífuga (¿cuales fuerzas no inerciales?) que aparece gracias a la rotación de la Tierra en torno a su eje, $\vec{\Omega}$. Debido a que, en el caso de la Tierra, el segundo término es mucho más pequeño, la fuerza gravitatoria sólo se desvía un pequeño ángulo, dando origen así a la forma ligeramente ovalada que posee el planeta.

Para comparar la magnitud de las fuerzas mencionadas, se debe comparar g con $\Omega_T^2 R_T$. A partir del enunciado:

$$g = 9.8 \frac{m}{s^2};$$
 $\Omega_T^2 R_T = 49 \cdot 10^{-10} \cdot 6 \cdot 10^6 \approx 0.03 \frac{m}{s^2}.$

Así,

$$\frac{\Omega_T^2 R_T}{q} \approx \frac{0.03}{9.8} \approx \frac{3}{1000},$$

es decir, esta corrección es aproximadamente de un 0,3 % o 3 por mil.

(b) Recuerde que, tal como señala el enunciado, consideraremos que la Tierra es una esfera y que no hay tal diferencia entre \vec{g} y \vec{g}_{local} . El S.N.I. que usaremos es el plano del movimiento que, no debe olvidarse, es solidario a la tierra. El origen del S.I. es el centro de la Tierra, el cual se supone en reposo.

Fig. S.6.11

La ecuación general de movimiento en un S.N.I. es:

$$m\vec{a}' = \vec{F} - m\ddot{\vec{R}} - m\vec{\Omega} \times (\vec{\Omega} \times \vec{r}') - 2m\vec{\Omega} \times \vec{v}' - m\dot{\vec{\Omega}} \times \vec{r}'$$

Pero los términos $m\vec{R}$ y $m\vec{\Omega} \times (\vec{\Omega} \times \vec{r}')$ son despreciables, ya que:

- $\vec{R} = -R_T \cos \alpha \Omega_T^2 \hat{\rho}$, donde $\hat{\rho} = \hat{k}' \cos \alpha \hat{j}' \sin \alpha$, por lo tanto $m\vec{R}$ es despreciable comparado con $m\vec{g}$ (nótese que la corrección es aún menor para latitudes mayores, pues $\cos \frac{\pi}{2} = 0$).
- $\vec{\Omega} \times (\vec{\Omega} \times \vec{r}')$ es tanto menor que el otro término, puesto que es proporcional a $r'\Omega_T^2 << R_T\Omega_T^2$, ya que, para que la aproximación de que la partícula se mueve en un plano sea válida, debe cumplirse que $r' << R_T$.

Además, $\dot{\vec{\Omega}} = 0$ y $\vec{F} = -mg\hat{k}' + N\hat{k}'$, por lo tanto la ecuación de movimiento queda:

$$\boxed{m\vec{a}' = -mg\hat{k}' + N\hat{k}' - 2m\vec{\Omega} \times \vec{v}'}.$$

Si en esta ecuación hacemos producto punto con \vec{v}' , recordando que este vector está contenido en el plano del movimiento, i.e., $\vec{v}' \perp \hat{k}'$, obtenemos:

$$m\vec{a}' \cdot \vec{v}' = 0 \Leftrightarrow \frac{m}{2} \frac{d}{dt} (\vec{v}' \cdot \vec{v}') = 0 \qquad \Rightarrow \boxed{v'^2 = cte}.$$

(c) Ahora que sabemos que $v'^2 = cte$, si escribimos $\vec{v}' = v(t)(\hat{\imath}'\cos\beta + \hat{\jmath}'\sin\beta)$ entonces se debe cumplir que $v(t) = v(0) = v_o$ (estamos usando ya lo que nos proponen en la parte (d)).

Entonces tendremos que: $\vec{a}' = v_o(-\hat{i}' \sin \beta + \hat{j}' \cos \beta)\dot{\beta}$. Por otra parte, podemos calcular el término de coriolis, notando que $\vec{\Omega} = \Omega_T \hat{k}$ y $\hat{k} = \hat{j}' \cos \alpha + \hat{k}' \sin \alpha$ (ver Figura S.6.11). Así:

$$\vec{\Omega} \times \vec{v}' = \Omega_T v_o(\hat{j}' \cos \alpha + \hat{k}' \sin \alpha) \times (\hat{i}' \cos \beta + \hat{j}' \sin \beta) = \Omega_T v_o(-\hat{k}' \cos \alpha \cos \beta + \hat{j}' \sin \alpha \cos \beta - \hat{i}' \sin \alpha \sin \beta).$$

Si reemplazamos todo esto en la ecuación de movimiento, y separando en ecuaciones escalares:

$$i'$$
) $-mv_o\dot{\beta} \operatorname{sen}\beta = 2m\Omega_T v_o \operatorname{sen}\alpha \operatorname{sen}\beta$

$$\hat{j}'$$
) $mv_o\dot{\beta}\cos\beta = -2m\Omega_T v_o\sin\alpha\cos\beta$

$$\hat{k}'$$
) $0 = -mg + N + 2m\Omega_T v_o \cos \alpha \cos \beta$

Notemos, para concluir, que las dos primeras ecuaciones son equivalentes a $\dot{\beta} = -2\Omega_T \sin \alpha$

6.2 Soluciones 6 MOVIMIENTO RELATIVO: SISTEMAS NO INERCIALES

(d) Del resultado anterior, se concluye que $\beta(t) = -(2\Omega_T \sin \alpha)t + \beta_o$. Entonces, ahora conocemos la velocidad para cada instante de tiempo:

$$\vec{v}' = v_o(\hat{\imath}' \cos \beta(t) + \hat{\jmath}' \sin \beta(t)), \text{ o bien},$$

$$\dot{x}' = v_o \cos \beta(t)$$

$$\dot{y}' = v_o \sin \beta(t)$$

Integrando las velocidades, obtenemos las posiciones:

$$x(t) = -\frac{v_o}{2\Omega_T \operatorname{sen} \alpha} \operatorname{sen} \beta(t) + x_o$$
$$y(t) = \frac{v_o}{2\Omega_T \operatorname{sen} \alpha} \cos \beta(t) + y_o$$

Acá, x_o e y_o salen de las condiciones iniciales $(x_o = x(0) \text{ pero } y_o \neq y(0))$. Se concluye que corresponde a una trayectoria circunferencial con radio de curvatura $\rho_c = \frac{v_o}{2\Omega_T \sin \alpha}$. Si escogemos $\beta_o = x_o = y_o = 0$, el centro de la circunferencia es el punto (0,0) y el punto de partida de la partícula es $(0, \frac{v_o}{2\Omega_T \sin \alpha})$. Si el plano se mira desde arriba (desde afuera de la Tierra), el movimiento es en sentido horario.

7. Sólido Rígido y Sistemas de Partículas

7.1. Problemas

P.7.1

Considere una lámina cuadrada homogénea de lado a y masa M que puede girar sin roce alrederor de un eje horizontal fijo y perpendicular a la lámina, que pasa por uno de sus vértices (O). Inicialmente, la lámina se encuentra en reposo sujeta por un hilo, como se indica en la figura adjunta.

- (a) Calcule la tensión del hilo.
- (b) En cierto instante se corta el hilo y la lámina comienza a girar alrededor del eje O. Determine la máxima velocidad angular que alcanza la lámina.
- (c) Si la lámina cuelga libremente del eje, determine el período de pequeñas oscilaciones alrededor de la posición de equilibrio.

Nota: El momento de inercia de la lámina alrededor de un eje paralelo a O, pero que pasa por el centro de la lámina es: $I_G = \frac{Ma^2}{6}$.

P.7.2

En un ambiente **sin gravedad** considere un anillo de masa m que desliza sin roce a lo largo de una barra. El anillo está unido a una partícula de masa m, a través de una cuerda de largo L, como se muestra en la figura. En el instante inicial, con la cuerda completamente extendida y la partícula colocada junto a la barra, se imprime una velocidad v_o a esta última, en dirección perpendicular a la barra.

- (a) Determine la velocidad angular $\dot{\phi}$ de la cuerda, en función del ángulo ϕ que forma con la barra.
- (b) Determine la fuerza que la barra ejerce sobre el anillo cuando el ángulo que forma la cuerda con la barra es igual a $\frac{\pi}{2}$.

Tres partículas de masa m están en los vértices de un rectángulo de $a \times b$, con $a = \sqrt{3}b$, formado por varas ideales de masa despreciable. El cuarto vértice está fijo a un punto P (ver figura). El rectángulo puede girar en torno a un eje que pasa por P y es perpendicular a la figura.

- (a) Obtenga el momento de inercia $I_{P,\hat{n}}$ del sistema donde \hat{n} es un vector unitario perpendicular al plano del rectángulo.
- (b) Usando $I_{P,\hat{n}}$ escriba la energía cinética y el momento angular del sistema.
- (c) Obtenga la energía potencial $U(\alpha)$ debido al peso y determine el valor α_o par el cual U tiene un mínimo. Defina $\phi \equiv \alpha - \alpha_o$ y reescriba Ucomo función de ϕ en la forma más simplificada posible.
- (d) Determine la frecuencia de pequeñas oscilaciones del sistema.

Nota: $I_{P,\hat{n}}$ es el momento de inercia de un sólido con respecto a un eje \hat{n} que pasa por el punto P, es decir, cuando $\vec{\Omega} = \Omega \hat{n}$. En su forma discreta, se escribe como $I_{P,\hat{n}} = \sum_{a} m_a (r_a^2 - (\vec{r}_a \cdot \hat{n})^2);$ también se puede usar (es equivalente) $I_{P,\hat{n}} = \sum_{a} m_a (\vec{r}_a \times \hat{n}) \cdot (\vec{r}_a \times \hat{n})$.

Fig. P.7.3

Fig. P.7.4

Un disco de radio R, masa total M y momento de inercia $I = \frac{MR^2}{\alpha}$ con respecto al punto de apoyo P ($\alpha < 1$), cae, sin deslizar, desde el borde P de una mesa, como lo sugiere la figura. En el instante inicial, $\phi = 0$ y $\dot{\phi} = 0$.

- (a) Determine $\dot{\phi}$ en función de ϕ .
- (b) Determine las componentes de la fuerza de contacto como función de ϕ (es decir, la reacción en el punto P, en sus componentes, Normal y Roce).
- (c) Si se sabe que comienza a deslizar cuando $\phi = 30^{\circ}$, obtenga el valor del coeficiente de roce estático. Asegúrese de que para ese valor de ϕ aún el cuerpo no se despega.

P.7.5

Se tiene un alambre ideal (unidimensional) con forma de semicircunferencia de radio R y densidad lineal uniforme $\lambda = M/L$, donde $L = \pi R$ es el largo del alambre y M es su masa. El alambre está limitado a moverse manteniendo fijos sus extremos (y todos los puntos de la linea (eje X) que los une).

- (a) Calcule la matriz de inercia $I_{ij} = \lambda \int_0^L (r^2 \delta_{ij} x_i x_j) ds$ con respecto al centro de curvatura P. El ds es el elemento de arco.
- (b) Determine el momento angular genérico de este sistema que rota en torno al eje X = X'.
- (c) Determine el torque debido al peso ($\vec{g} = g\hat{k}$, de acuerdo a la figura) y escriba la ecuación dinámica que rige el movimiento de este cuerpo que oscila rotando en torno al eje X. Obtenga la frecuencia angular de las pequeñas oscilaciones.

Fig. P.7.5b

P.7.6

Una lámina circular de radio R, densidad homogénea y masa total M puede moverse en su propio plano, en torno a un punto fijo P de su perímetro.

- (a) Obtenga el momento de inercia de la lámina con respecto al eje, perpendicular a la lámina, que pasa por el centro del círculo.
- (b) Obtenga el momento de inercia de la lámina con respecto al eje, perpendicular a la lámina, que pasa por el punto P.
- (c) Determine la frecuencia de pequeñas oscilaciones del péndulo que tiene su punto fijo en P, como lo señala la figura.

Obtenga las ecuaciones de movimiento para los dos casos de la figura: un cuadrado de lado a y densidad uniforme $\sigma = \frac{M}{a^2}$, que oscila en ambos casos **en torno al eje indicado en la figura por una línea cortada** (hay gravedad):

- (a) En torno a una de sus aristas.
- (b) Con tan sólo un vértice fijo.

P.7.8

Considere una semiesfera de masa M y radio R que inicialmente está en reposo, con su base vertical y apoyada sobre una pared y un piso horizontal liso como se muestra en la primera figura. La semiesfera, sometida a la gravedad, se libera y comienza a acelerar angularmente debido al torque producido por el peso. Note que mientras la semiesfera permanezca apoyada sobre la pared, el centro de la base C permanece en reposo. Después de haber rotado cierto ángulo, la semiesfera pierde el contacto con la pared y continuará deslizando y oscilando como se muestra en la tercera figura. Se pide:

- (a) Determinar el ángulo θ de la segunda figura donde se pierde el contacto.
- (b) La rapidez de G (centro de masa) en ese instante.
- (c) $\dot{\theta}$ en ese instante, que es el valor inicial para el movimiento siguiente.

(d) Considerando que después del despegue la componente horizontal de la velocidad de G es constante igual al valor calculado en (b), escriba la expresión para la energía constante y su valor y de allí demuestre que los extremos de θ de la tercera figura satisfacen la ecuación $\cos \theta = \frac{45}{128}$.

Datos: $\overline{CG} = \frac{3}{8}R$, $I_C = \frac{2}{5}MR^2$, $I_G = \frac{83}{320}MR^2$

P.7.9

Un cilindro de radio a y masa m se encuentra en el punto más alto de un semicilindro de radio R, con la cual tiene un coeficiente de roce estático μ_e . En cierto instante, el cilindro es sacado de su punto de equilibrio y comienza a rodar sin resbalar sobre el semicilindro.

- (a) Plantee las ecuaciones de movimiento del centro de masa del cilindro mientras que éste rueda sin resbalar.
- (b) Encuentre la velocidad del centro del cilindro en función de θ mientras que rueda sin resbalar.
- (c) Determine una ecuación para el ángulo crítico θ_c donde el cilindro empieza a resbalar.

Considere un conjunto de tres partículas de masas m, 2m y 2m formando un triángulo equilátero. Las partículas están unidas por barras de masa despreciable y largo b. Este sistema, inicialmente en reposo, es impactado por una cuarta partícula de masa m que se mueve, en el instante del choque, con una velocidad v_o horizontal. Por efecto del choque, las dos partículas de masa m quedan pegadas y el sistema tiende a volcarse de forma tal que la partícula basal en el punto P no desliza debido al roce estático con la superficie.

- (a) La velocidad angular y la aceleración angular del sistema justo después del choque.
- (b) Determine el valor máximo de v_o para que el sistema no alcance a volcarse.

P.7.11

Un disco homogéneo de radio a y masa M rueda sin resbalar sobre una superficie cilíndrica de eje horizontal y radio R, como se muestra en la figura.

- (a) Escriba las ecuaciones de movimiento para el centro de masa del disco.
- (b) Determine el período de las pequeñas oscilaciones en torno a la posición de equilibrio estable.

7.2. Soluciones

S.7.6

Se presentan acá dos formas de resolver este problema. La primera de ellas, podría decirse, es una forma particular y directa de solución, mientras que la segunda es más general y se adjunta acá debido a que, pese a que es bastante más larga que la primera, permite una comprensión más profunda del significado y utilidad de la matriz de inercia y otros conceptos relacionados, como momento angular, velocidad angular de un cuerpo rígido y el Teorema de Steiner, entre otros.

Valga como preámbulo para ambas soluciones lo siguiente:

- Que la densidad de la lámina circular sea homogénea (notar que se trata de una densidad superficial σ , con unidades de masa por unidad de área), significa que hay una relación unívoca entre la masa M de la lámina y su área $A = \pi R^2$, a saber, si el área aumenta una cantidad infinitesimal dA, la cantidad, también infinitesimal, en que aumenta la masa de la lámina está dada por $\frac{dm}{dA} = \frac{M}{A} = \sigma$. Esto sirve para el cálculo de momentos de inercia y de componentes de la matriz de inercia, pues el diferencial de masa cumple con: $dm = \sigma dA$.
- El Teorema de Steiner o de ejes paralelos, tiene una forma particular y una general.
 - o Si hablamos de momentos de inercia (la forma particular), se tendrá que:

$$I_P = I_G + Md^2,$$

donde I_G es el momento de inercia del cuerpo rígido calculado con respecto a un eje \hat{e} que pasa por el centro de masa G del cuerpo. I_P es el momento de inercia calculado con respecto a un eje \hat{e}' paralelo a \hat{e} que pasa por un punto P del cuerpo (notar que el punto P no está necesariamente dentro del cuerpo). "d" es la distancia perpendicular entre el eje \hat{e} y \hat{e}' , y M es la masa total del cuerpo.

o Si hablamos de matriz de inercia (la forma general), que siempre se calcula con respecto a un sistema de referencia $S \to (O, \hat{x}, \hat{y}, \hat{z})$ necesariamente determinado (la primera componente en esta notación indica que el origen de tal sistema S es el punto O), entonces se tendrá que:

$$I_{ij}^{P} = I_{ij}^{G} + M(R_G^2 \delta_{ij} - R_{Gi} R_{Gj})$$
con $i, j = \{1, 2, 3\}.$

Acá, I_{ij}^G es la componente de la fila i y columna j de la matriz de inercia del cuerpo rígido, calculada con respecto a un sistema de referencia $S \to (G, \hat{x}, \hat{y}, \hat{z})$, con G = centro de masa. I_{ij}^P es análogo, pero calculada para el sistema $S' \to (P, \hat{x}', \hat{y}', \hat{z}')$, y se debe cumplir que $\hat{x} \parallel \hat{x}', \hat{y} \parallel \hat{y}'$ y $\hat{z} \parallel \hat{z}'$. El vector $\vec{R}_G = \overrightarrow{PG} = (R_{G1}, R_{G2}, R_{G3})$ y M es la masa total del cuerpo. La delta de Kronecker, δ_{ij} vale 0 si $i \neq j$ y 1 si i = j.

• El momento angular de un cuerpo rígido, calculado con respecto a un sistema cualquiera $S \to (P, \hat{x}, \hat{y}, \hat{z})$, si se conoce la matriz de inercia I_P calculada en ese sistema, es simplemente $\vec{\ell}_P = I_P \vec{\Omega}$, donde $\vec{\Omega}$ es la velocidad angular del cuerpo rígido con respecto al sistema S (tiene el mismo significado que en el capítulo anterior de Sistemas no Inerciales y Movimiento Relativo).

Forma (i)

(a) Para calcular el momento de inercia de la lámina con respecto al eje perpendicular a la lámina, que pasa por su centro, usamos coordenadas polares en el plano de la lámina. El momento de inercia se calcula entonces como:

$$I_G=\int \rho^2 dm,\, {\rm y} \ {\rm tal} \ {\rm como} \ {\rm se} \ {\rm se\~nala} \ {\rm en} \ {\rm el} \ {\rm pre\'ambulo},$$

$$dm=\frac{M}{\pi R^2}dA,\, {\rm donde},\, {\rm ya} \ {\rm que} \ {\rm trabajamos} \ {\rm en} \ {\rm polares},\, dA=\rho d\phi d\rho$$

Por supuesto, se debe integrar sobre toda la lámina, por lo tanto:

$$I_G = \frac{M}{\pi R^2} \int_0^R \int_0^{2\pi} \rho^3 d\phi d\rho$$

$$\Rightarrow I_G = \frac{MR^2}{2}.$$

(b) Usamos el teorema de Steiner para momentos de inercia:

$$I_P = I_G + Md^2 = \frac{MR^2}{2} + MR^2$$

$$I_P = \frac{3}{2}MR^2.$$

(c) Para calcular la frecuencia de pequeñas oscilaciones, podemos recordar que, siempre que tengamos una ecuación diferencial de la forma $\ddot{\theta} = f(\theta)$, si θ_{eq} es una posición de equilibrio (es decir, si $f(\theta_{eq}) = 0$), y si además es una posición de equilibrio estable, lo que se determina con la condición $\frac{df}{d\theta}(\theta_{eq}) < 0$, entonces la frecuencia de pequeñas oscilaciones en torno a ese punto de equilibrio estable es $\omega^2 = -\frac{df}{d\theta}(\theta_{eq})$.

Lo que hemos de ser capaces de reconocer es que podemos obtener una ecuación diferencial de esa forma usando la ecuación de torque y momento angular con respecto al punto P.

Si consideramos el vector unitario \hat{k} saliendo del plano del dibujo, perpendicular a la lámina, entonces podemos escribir que:

$$\begin{aligned} \vec{\tau}_P &= -MgR \sin \theta \hat{k} \\ \vec{\ell}_P &= I_P \dot{\theta} \hat{k} \\ \Rightarrow & \frac{3}{2} MR^2 \ddot{\theta} = -MgR \sin \theta \\ \Rightarrow & \ddot{\theta} = -\frac{2}{3} \frac{g}{R} \sin \theta. \end{aligned}$$

Así, de acuerdo a lo dicho, y dado que corresponde usar $\theta=0$ como el punto de equilibrio estable,

$$\omega^2 = \frac{2}{3} \frac{g}{R}.$$

Forma (ii)

Al resolver el problema de una forma más general, lo que haremos es calcular la matriz de inercia de la lámina con respecto al centro de masa, I_G . Luego usaremos la forma general del teorema de Steiner para trasladarnos al punto P y obtener I_P .

En primer lugar, recordemos que la matriz de inercia depende del sistema de referencia que se use. Esto debe tenerse definido con la mayor claridad al momento de calcular. Entonces, nuestros cálculos los haremos considerando los sistemas de referencia que se muestran en la siguiente figura:

La matriz de inercia se calcula, para cada componente, como:

$$I_{ij} = \int (r^2 \delta_{ij} - x_i x_j) dm$$
, donde $x_1 = x$, $x_2 = y$ y $x_3 = z$; $r^2 = x^2 + y^2 + z^2$.

Tal como dijimos, en este caso $dm = \frac{M}{\pi R^2} dA$. Y es muy útil hacer la integración en coordenadas polares, por lo que vale la pena recordar las relaciones:

$$x = \rho \cos \phi$$
, $y = \rho \sin \phi$ y en este caso particular, $z = 0$.

Además, en este caso calculamos para el sistema S, con origen en G. Así:

$$I_{11}^{G} = \frac{M}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2\pi} (\rho^{2} - \rho^{2} \cos^{2} \phi) \rho d\phi d\rho = \frac{M}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2\pi} \rho^{3} \sin^{2} \phi d\phi d\rho \Rightarrow \boxed{I_{11}^{G} = \frac{MR^{2}}{4}}.$$

$$I_{22}^{G} = \frac{M}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2\pi} (\rho^{2} - \rho^{2} \sin^{2} \phi) \rho d\phi d\rho = \frac{M}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2\pi} \rho^{3} \cos^{2} \phi d\phi d\rho = I_{11}^{G} \Rightarrow \boxed{I_{22}^{G} = \frac{MR^{2}}{4}}.$$

$$I_{33}^{G} = \frac{M}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2\pi} (\rho^{2} - 0) \rho d\phi d\rho = \frac{M}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2\pi} \rho^{3} d\phi d\rho \Rightarrow \boxed{I_{33}^{G} = \frac{MR^{2}}{2}}.$$

Para el cálculo de las componentes que no están en la diagonal, primero hay que recordar que la matriz de inercia es simétrica. Así, sólo hace falta calcular 3 componentes (I_{12} , I_{13} y I_{23}). Por otra parte, para estas componentes no diagonales, $\delta_{ij} = 0$, pues en estos casos $i \neq j$. De manera que es directo que I_{13} e I_{23} se anulan pues en ambas el integrando está multiplicado por $x_3 = z = 0$. Para I_{12} , que también se anula, la razón es distinta:

$$I_{12}^G = \frac{M}{\pi R^2} \int\limits_0^R \int\limits_0^{2\pi} (0 - \rho^2 \sin\phi \cos\phi) \rho d\phi d\rho = -\frac{MR^2}{4\pi} \int\limits_0^{2\pi} \sin\phi \cos\phi d\phi = 0, \text{ porque sen } \phi \text{ y } \cos\phi \\ \text{son ortogonales en el intervalo } [0,2\pi]^8 \Rightarrow \boxed{I_{12}^G = I_{13}^G = I_{23}^G = 0}.$$

Por lo tanto,

$$I_{ij}^G = \begin{bmatrix} \frac{MR^2}{4} & 0 & 0\\ 0 & \frac{MR^2}{4} & 0\\ 0 & 0 & \frac{MR^2}{2} \end{bmatrix}.$$

⁸Es fácil hacer el cálculo si se recuerda que sen $\phi \cos \phi = \frac{\sin 2\phi}{2}$.

Entonces el teorema general de Steiner dice: $I_{ij}^P = I_{ij}^G + M(R_G^2 \delta_{ij} - R_{Gi} R_{Gj})$, y en este caso, $\overrightarrow{R_G} = \overrightarrow{PG} = (0, -R, 0)$, así:

$$M(R_G^2 \delta_{ij} - R_{Gi} R_{Gj}) = \begin{bmatrix} MR^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & MR^2 \end{bmatrix} \Rightarrow \begin{bmatrix} I_{ij}^P = \begin{bmatrix} \frac{5}{4} MR^2 & 0 & 0 \\ 0 & \frac{1}{4} MR^2 & 0 \\ 0 & 0 & \frac{3}{2} MR^2 \end{bmatrix}.$$

Para obtener la ecuación dinámica de la cual obtenemos la frecuencia de pequeñas oscilaciones pedida en (c), de nuevo usamos que $\dot{\vec{\ell}_P} = \vec{\tau}_P$. El torque está calculado en la **Forma (i)**. Ahora el momento angular se calcula como $\vec{\ell}_P = I_P \vec{\Omega}$, y $\vec{\Omega} = \dot{\theta} \hat{k}$, así:

$$\vec{\ell}_P = \begin{bmatrix} \frac{5}{4}MR^2 & 0 & 0\\ 0 & \frac{1}{4}MR^2 & 0\\ 0 & 0 & \frac{3}{2}MR^2 \end{bmatrix} \begin{pmatrix} 0\\ 0\\ \dot{\theta} \end{pmatrix} = \frac{3}{2}MR^2\dot{\theta}\hat{k}.$$

Este resultado es el mismo que el obtenido en la Forma (i).

S.7.9

(a) En primer lugar, por la geometría de las fuerzas que actúan sobre el cilindro, será natural escoger las coordenadas cilíndricas asociadas al semicilindro mayor, haciendo corresponder el ángulo polar con el ángulo θ mostrado en la figura.

Las ecuaciones para el centro de masa G son:

$$\Sigma \vec{F}_{externas} = m \vec{A}_G \qquad (*)$$

$$\vec{\tau}_G = \frac{d}{dt} \left(I_G \vec{\Omega} \right) \quad (**)$$

En nuestro caso, debemos considerar la Normal, el Roce y el Peso como fuerzas externas:

$$\Sigma \vec{F}_{externas} = N\hat{\rho} + f_{\mu_e}\hat{\theta} + mg(\operatorname{sen}\theta\hat{\theta} - \cos\theta\hat{\rho})$$
 y además, $\vec{A}_G = -(R+a)\dot{\theta}^2\hat{\rho} + (R+a)\ddot{\theta}\hat{\theta}$

Así, las ecuaciones escalares correspondientes a (*) quedan:

$$\hat{\rho}) \quad N - mg \cos \theta = -m(R+a)\dot{\theta}^2$$

$$\hat{\theta}) \quad f_{\mu_e} + mg \sin \theta = m(R+a)\ddot{\theta}$$

Ahora usamos la ecuación de torque con respecto al centro de masa, con lo que entramos en un punto muy relevante: $\vec{\Omega}$. A primera vista, es común pensar que $\vec{\Omega} = \dot{\theta}\hat{k}$, simplemente. Pero eso no es correcto. Para aclararlo, vale la pena definir el contexto en el cual se puede usar la ecuación de torque con respecto al centro de masa (**):

- ullet El punto centro de masa G puede estar acelerado y aún así la fórmula es correcta.
- Cualquier rotación del sólido $(\vec{\Omega})$ debe ser medida en relación a un sistema de referencia cuvos ejes cartesianos $NO\ ROTAN$.

El siguiente es un razonamiento que permite estbalecer la relación entre θ y la velocidad angular del cilindro con respecto a su centro, cuyo módulo designaremos por $\dot{\phi}$, de tal manera que $\vec{\Omega} = \dot{\phi}\hat{k}$ (ver Figura 7.9). Tal relación se conoce como Condición de Rodar Sin Resbalar (C.R.S.R.).

Consideremos un sistema de referencia con origen en el centro del cilindro y que NO rota solidariamente al cilindro, sino que mantiene la orientación de sus ejes sin variar con respecto a un sistema "fijo al laboratorio". Este sistema cumpliría, entonces, con las condiciones para poder aplicar la fórmula (**).

Considere ahora un punto fijo al cilindro (marcado como un punto negro en la Figura 7.9), que inicialmente se encuentra en contacto con el semicilindro. A medida que el cilindro rota, y el centro del cilindro se traslada un ángulo θ , el punto en cuestión gira un ángulo ϕ con respecto al sistema fijo al centro del cilindro. Así, $\dot{\phi}$ es la velocidad angular del cilindro con respecto al sistema de referencia descrito al comienzo de esta explicación (fijo al centro del cilindro, pero sin rotar solidario a él).

Fig. S.7.9: Condición de Rodar sin Resbalar

Ahora, mientras el cilindro rueda sin resbalar, debe cumplirse que los tramos marcados con línea gruesa en la figura dentro del recuadro son iguales. De manera que la relación entre θ y ϕ queda:

$$R\theta = a(\phi - \theta)$$

 $\phi = \frac{1}{a}(R+a)\theta$ (C.R.S.R.)

Derivando dos veces la relación anterior, se obtiene:

$$\ddot{\phi} = \frac{1}{a}(R+a)\ddot{\theta}$$

Ahora podemos usar la ecuación (**), primero notando que, con respecto al centro de masa, la única fuerza que hace torque es el roce y, segundo, recordando que en la ecuación (*) pusimos que f_{μ_e} apunta en el sentido de $\hat{\theta}$ y que, por lo tanto, el torque que hace el roce apunta contrariamente al sentido en que $\ddot{\phi}$ es positivo. Además, se sabe que $I_G = \frac{1}{2}ma^2$, así:

$$-f_{\mu_e}a = \frac{1}{2}ma^2\ddot{\phi}$$

$$-f_{\mu_e}a = \frac{1}{2}ma(R+a)\ddot{\theta}$$

Despejando f_{μ_e} y reemplazando en la ecuación $\hat{\theta}$), se obtiene:

$$-\frac{1}{2}m(R+a)\ddot{\theta} + mg \sin \theta = m(R+a)\ddot{\theta}$$

$$\Rightarrow \qquad \left[\ddot{\theta} = \frac{2}{3}\frac{g}{(R+a)} \sin \theta\right]$$

(b) La última ecuación se puede integrar directamente, considerando para los límites de integración que el cilindro es levemente perturbado desde el reposo desde la posición en que $\theta = 0$.

$$\int_{0}^{\dot{\theta}} \dot{\theta} d\dot{\theta} = \int_{0}^{\theta} \frac{2}{3} \frac{g}{(R+a)} \sin \theta d\theta$$

$$\Rightarrow \qquad \left[\dot{\theta}^{2} = \frac{4}{3} \frac{g}{(R+a)} (1 - \cos \theta) \right]$$

La velocidad del centro del cilindro es, por lo tanto, $v(\theta) = \sqrt{\frac{4}{3}g(R+a)(1-\cos\theta)}$.

(c) Ahora, para que el cilindro comience a resbalar sabemos que debe alcanzarse un ángulo θ_c para el cual se cumpla que $f_{\mu_e} = \mu_e N$. Entonces volvemos a utilizar las ecuaciones $\hat{\rho}$) y $\hat{\theta}$) pero ahora, al revés que antes, reemplazando $\ddot{\theta}(\theta)$ y $\dot{\theta}^2(\theta)$ obtenidos en las partes (a) y (b).

$$\hat{\rho}) \quad N - mg\cos\theta = -\frac{4}{3}mg(1 - \cos\theta)$$

$$\hat{\theta}) \quad f_{\mu_e} + mg\sin\theta = \frac{2}{3}mg\sin\theta$$

Reemplazando f_{μ_e} por $\mu_e N$ y despejando N de ambas ecuaciones, se obtiene:

$$7\cos\theta_c - \frac{1}{\mu_e}\sin\theta_c - 4 = 0.$$

Usted se preguntará si no podría ocurrir que el ángulo para el cuál la normal se anula, es decir, cuando el cilindro se despega de la superficie del semicilindro, sea menor que el ángulo que satisface la relación encontrada antes; de esta manera el cilindro nunca resbalaría. Pero usted puede concluir que el ángulo θ en el cual se despega es mayor que el ángulo θ_c para el cual resbala. Basta imponer $N(\theta^*) = 0$ en la última ecuación ρ) y comparar.

8. Lista de Respuestas

La pulcritud de esta lista de respuestas no tiene más garantías que la especial atención con que he resuelto los problemas para encontrar sus soluciones. Ya he corregido bastantes errores y seguro hay más.

1. Cinemática

R.1.1 (a)
$$v(\theta) = \frac{\sin \theta}{\sqrt{5 + 4\cos \theta}} v_o;$$
 (b) $\vec{v}_{max} = \frac{v_o}{2} \hat{k};$ (c) $\vec{a}(\theta = 0) = -\frac{v_o^2}{3R} \hat{k};$

$$\underline{R.1.2} \quad \textbf{(a)} \quad \rho_c = \frac{v_o}{\omega_o} \frac{\left(1 + (\frac{R}{v_o} + t)^2 \omega_o^2\right)^{3/2}}{2 + (\frac{R}{v_o} + t)^2 \omega_o^2}; \quad \textbf{(b)} \quad D = L_{\Gamma} = \int_{0}^{t_2 = \frac{R}{v_o}} v_o \sqrt{1 + (\frac{R}{v_o} + t)^2 \omega_o^2} dt;$$

[R.1.3] (a)
$$\dot{\vec{r}} = \frac{v_o}{\sqrt{k^2 + 1 + h^2 k^2}} (k\hat{\rho} + \hat{\theta} + hk\hat{k});$$
 (b) $\vec{a} = \frac{v_o^2}{Ae^{k\theta}(k^2 + 1 + h^2 k^2)} (k\hat{\theta} - \hat{\rho});$ (c)...
(d) $\theta(t) = \frac{1}{k} \ln \left(\frac{kv_o}{A\sqrt{k^2 + 1 + h^2 k^2}} t + kc \right);$

R.1.4 (a)
$$\vec{v} = R\omega_o(\hat{\theta} + N \operatorname{sen} \theta \hat{\phi}), \quad \vec{a} = -R\omega_o^2(1 + N^2 \operatorname{sen}^2 \theta)\hat{r} - R\omega_o^2N^2 \operatorname{sen} \theta \cos \theta \hat{\theta} + 2R\omega_o^2N \cos \theta \hat{\phi};$$

(b) $\rho_c(\theta = \pi/2) = R$; (c) $L_{\Gamma} = R \int_0^{\pi} \sqrt{1 + N^2 \operatorname{sen}^2 \theta} d\theta, \quad t_f = \pi/\omega_o;$

[R.1.5] (a)
$$\vec{v} = \rho_o \dot{\theta} \hat{\theta} - B \dot{\theta} \hat{k}$$
, $\vec{a} = -\rho_o \dot{\theta}^2 \hat{\rho} + \rho_o \ddot{\theta} \hat{\theta} - B \ddot{\theta} \hat{k}$ (b) $\vec{t} = \frac{\rho_o}{\sqrt{\rho_o^2 + B^2}} \hat{\theta} - \frac{B}{\sqrt{\rho_o^2 + B^2}} \hat{k}$, $v(t) = \dot{\theta} \sqrt{\rho_o^2 + B^2}$; (c) $\vec{a} = \ddot{\theta} \sqrt{\rho_o^2 + B^2} \hat{t} - \rho_o \dot{\theta}^2 \hat{\rho}$; (d) $\theta(t) = \omega_o t$;

R.1.6 (b)
$$\rho_c = L/2$$
; (c) $\theta(t) = \arcsin(\frac{v_o}{L}t)$;

R.1.7 (a)
$$r^* = \frac{2R}{\pi}$$
; (b) $L_{\Gamma} = \int_{0}^{t_2 = \frac{2R}{c\pi}} c\sqrt{1 + t^2 \frac{2\pi^2 c^2}{R^2}} dt$, $t_2 = \frac{2R}{\pi c}$; (c) $\rho_c = \frac{27R}{2\sqrt{86\pi}}$;

$$\boxed{ \textbf{R.1.8} } \quad \textbf{(a)} \quad x(t) = R\cos(\omega t) + \sqrt{D^2 - R^2 \sin^2(\omega t)}; \textbf{(b)} \quad v(t) = -R\omega \sin(\omega t) \left[1 + \frac{R\cos(\omega t)}{\sqrt{D^2 - R^2 \sin^2(\omega t)}} \right];$$

$$\textbf{(c)} \quad v(t) \approx -R\omega \sin(\omega t), \quad a(t) \approx -R\omega^2 \cos(\omega t);$$

R.1.9 (a)
$$T = \pi \sqrt{R/g}$$
; (b) $\dot{x}_{max} = \sqrt{Rg}/2$;

2. Dinámica

[R.2.1] (a)
$$T = 2mR\omega_o^2$$
; (b) $\omega_o^2 = \frac{g}{\sqrt{3}R}$;

[R.2.2] (a)
$$\dot{z}(t) = \frac{mg}{c} \left[e^{-\frac{c}{m}t} - 1 \right];$$
 (b) $\dot{\theta}(t) = \frac{v_o}{R} e^{-\frac{c}{m}t};$ (c) $c = \frac{mv_o}{2\pi R};$

[R.2.3] (a)
$$\vec{v} = -v_o \hat{\rho} + \rho \omega_o \hat{\theta}$$
, $\vec{a} = -\rho \omega_o^2 \hat{\rho} - 2v_o \omega_o \hat{\theta}$; (b) $\rho_c = \frac{[\lambda^2 R^2 + \rho^2]^{3/2}}{2\lambda^2 R^2 + \rho^2}$; (c) $T = m\rho \omega_o^2$, $N = -2mv_o \omega_o$;

R.2.4 (b)
$$\cos \theta \ge 1 - \frac{R\omega_o^2}{2g}$$
; (c) $N(\theta) = 3mg\cos\theta - 2mg + mR\omega_o^2$, $\cos \theta \ge \frac{2}{3} - \frac{R\omega_o^2}{3g}$; (d) $\omega_o = \sqrt{\frac{2g}{R}}$; (e) $\omega_o^2 \le \frac{2g}{R}$; (f) $\omega_o^2 \ge \frac{5g}{R}$;

R.2.5 (b)
$$\vec{N} = -\frac{mv_o^2}{8r_o \tan \alpha} \hat{\theta}, \ v = v_o;$$

R.2.6 (a)
$$\mu < \frac{kl_o}{mg}$$
; (b) $\dot{x}_f^2 = \frac{k}{m}l_o^2 - 2\mu_d g l_o$, con $\mu_d < \frac{kl_o}{2mg}$; (c) $x_{max} = \frac{m\dot{x}_f}{\gamma}$, $v_{lim} = \dot{y}_{lim} = -\frac{mg}{\gamma}$;

R.2.7 (a)
$$\vec{v} = R\dot{\theta}\hat{\theta} + \frac{\sqrt{3}v_o}{2\sin\theta}\hat{\phi}, \ a_r = -\frac{3v_o^2}{4R\sin^2\theta} - R\dot{\theta}^2, \ a_\theta = g\sin\theta, \ a_\phi = 0,$$
donde $\dot{\theta} = \sqrt{\frac{3v_o^2}{4R^2}(\frac{4}{3} - \frac{1}{\sin^2\theta}) + \frac{g}{R}(1 - 2\cos\theta)}; \$ (b) $\cos\theta^* = \frac{1}{3}(1 + \frac{v_o^2}{gR});$

[R.2.8] (a)
$$\dot{L} = -\frac{v_o R}{L}$$
; (b) $\dot{\phi} = \frac{v_o}{L_o - R\phi}$; (c) $\phi^* = \frac{1}{R}(L_o - \frac{mv_o^2}{T_{max}})$;

| R.2.9 | **(a)**
$$v_o = \pi R \frac{c}{m}$$
;

R.2.10 (a)
$$\omega^2 < \frac{k}{m}$$
; (b) $\rho(t) = -\frac{l_o}{2} \frac{k + m\omega^2}{k - m\omega^2} \cos(\omega t) + \frac{kl_o}{k - m\omega^2}$, compresión= $l_o - \rho(t)$;

R.2.11 (a) $\alpha^* = \arctan \mu_e$; (b) $x_{max} = \frac{2mg}{k}(\mu_e - \mu_d)\cos \alpha^*$, $\dot{x}_{max} = \sqrt{\frac{m}{k}}g\cos \alpha^*(\mu_e - \mu_d)$; (c) No hace falta ninguna condición para que se mantenga en x_{max} ;

$$\boxed{ \textbf{R.2.12} } \quad \textbf{(a)} \ \ \hat{t} = \frac{R_o}{\sqrt{R_o^2 + R_1^2}} \hat{\phi} - \frac{R_1}{\sqrt{R_o^2 + R_1^2}} \hat{k}, \ \vec{N} = N_\rho \hat{\rho} + \frac{R_1}{R_o} N_k \hat{\phi} + N_k \hat{k}; \ \textbf{(c)} \ \ \dot{\phi}(t) = \frac{m}{c} \frac{g R_1}{R_o^2 + R_1^2} \left[1 - e^{-\frac{c}{m}t} \right];$$

R.2.13 (a)
$$\omega = \sqrt{\frac{2g}{H}}$$
; (b) $\ddot{r} = -\frac{H^2 v_o^2}{r^3}$; (c) $\dot{\phi}(r = H/2) = 8\sqrt{\frac{g}{H}}$, $T_A = 4\sqrt{2}m[\frac{v_o^2}{H} + 4g]$, $T_B = 4\sqrt{2}m[\frac{v_o^2}{H} + 4g] - \frac{\sqrt{2}}{2}mg$;

[R.2.14] (a)
$$\vec{r} = 4b\hat{\rho} - 3b\phi\hat{k}$$
, $\vec{v} = 4b\dot{\phi}\hat{\phi} - 3b\dot{\phi}\hat{k}$, $\vec{d} = -4b\dot{\phi}^2\hat{\rho} + 4b\ddot{\phi}\hat{\phi} + 3b\ddot{\phi}\hat{k}$; (b) $v = 5b\dot{\phi}$, $\hat{t} = \frac{4}{5}\hat{\phi} + \frac{3}{5}\hat{k}$; (c) $t^* = \frac{25}{3}\frac{b}{a}\omega$; (d) $\vec{N} = -4mb(\omega - \frac{3}{25}\frac{g}{b}t)^2\hat{\rho} - \frac{12}{25}mg\hat{\phi} + \frac{16}{25}mg\hat{k}$;

R.2.15
$$\theta^* = \arccos(\frac{2}{3} - \frac{v_o^2}{3qR});$$

[R.2.16] (a)
$$\dot{\phi}(r) = \frac{r_o v_o}{r^2 \sin \alpha}$$
; (b) $\dot{r}^2(r) = (r_o v_o)^2 (\frac{1}{r_o^2} - \frac{1}{r^2}) - 2g \cos \alpha (r - r_o)$; (c) $v_{omax} = \sqrt{\frac{8}{3}} r_o g \cos \alpha$; (d) $v_{omin} = \sqrt{\frac{1}{3}} r_o g \cos \alpha$;

[R.2.17] (a)
$$\vec{\ell}_O = 2mD^2\dot{\phi}\hat{k}, \ \vec{\ell}_O^{(G)} = \frac{3}{2}mD^2\dot{\phi}\hat{k}, \ \vec{\ell}_G = \frac{1}{2}mD^2\dot{\phi}\hat{k};$$
 (b) $\vec{\tau}_O = -\sqrt{3}Dmg \sec \phi \hat{k}, \ \vec{\tau}_O^{(G)} = (-\sqrt{3}Dmg \sec \phi + \frac{\sqrt{3}}{4}D(T_1 - T_2))\hat{k}, \ \vec{\tau}_G = \frac{\sqrt{3}}{4}D(T_2 - T_1)\hat{k};$ (c) $T_1 - T_2 = mg \sec \phi;$ (d) $\dot{\phi}^2 = \frac{g\sqrt{3}}{D}(\cos \phi - \cos \phi_o);$ (e) $T_1 = \frac{mg}{2} \sec \phi + \frac{5\sqrt{3}mg}{3} \cos \phi - \sqrt{3}mg \cos \phi_o, \ \vec{F}_T = -\vec{T}_1 - \vec{T}_2;$

[R.2.18] (a)
$$\vec{L_O} = \dot{\phi}(am_1 + bm_2)\hat{k}$$
, $\vec{\tau_O} = g \sin \phi(bm_2 - am_1)\hat{k}$;
(b) $\ddot{\phi} = -(\frac{am_1 - bm_2}{am_1 + bm_2})g \sin \phi$, $\dot{\phi}^2 = \dot{\phi}_o^2 - 2(\frac{am_1 - bm_2}{am_1 + bm_2})g(\cos \phi_o - \cos \phi)$; (c) Se acerca si $am_1 > bm_2$, y se aleja si no;

R.2.19 (b)
$$\rho_1(t) = (R + \frac{m_2}{M}d)\cosh(\Omega t) - \frac{m_2}{M}d; \ \rho_2(t) = \rho_1(t) + d; \ (c) \ T = \frac{m_1 m_2 d}{m_1^2 + m_2^2}\Omega^2;$$

R.2.20 (a)
$$t^* = \frac{2\pi L}{3v_o}$$
; (b) $T = \frac{2}{3} \frac{mv_o^2}{L}$;

R.2.21 (a)
$$\theta(t) = \frac{v_o}{L}t$$
; $\dot{Z}_{CM} = -gt$; (b) $\dot{z}_1(t) = -gt + \frac{v_o}{2}\operatorname{sen}(\frac{v_o}{L}t)$; condición: $v_o^2 > 2Lg$; (c) $T = \frac{mv_o^2}{2L}$;

3. Trabajo y Energía

R.3.1 (a)
$$N = kD$$
; (b) $y_{max} = \frac{2mg}{k(aD+1)}$; (c) $W_N = 0$, $W_{f_{roce}} = -\frac{2aDm^2g^2}{k(aD+1)^2}$, $W_{res} = -\frac{2m^2g^2}{k(aD+1)^2}$, $W_{mg} = -\frac{2m^2g^2}{k(aD+1)^2}$;

R.3.2 (a)
$$\dot{\phi} = \frac{r_o^2 \omega_o}{r^2}$$
; (b) $U = -\frac{B}{\rho}$; (c) $E = \frac{1}{2}m\dot{r}^2 + \frac{mr_o^4 \omega_o^2}{4r^2} - \frac{\sqrt{2}B}{r}$; (d) $r_1 = r_o$, $r_2 = \frac{r_o}{\frac{4\sqrt{2}B}{mr_o^2 \omega_o^2} - 1}$;

$$\begin{array}{|l|c|c|c|c|}
\hline \text{R.3.3} & \textbf{(a)} \ \vec{F}(r) = \begin{cases}
 & -\frac{GMm}{r^2}\hat{r} & \textbf{si} & r > R \\
 & & \\
 & -\frac{GMm}{R^3}r\hat{r} & \textbf{si} & r \le R
\end{cases}; \textbf{(b)} \ v_s = \sqrt{\frac{2GM}{R}}; \textbf{(c)} \ v_o = \sqrt{\frac{3GM}{R}};$$

R.3.4 (a)
$$\mu = \frac{b}{d} - \frac{k\delta^2}{mgd}$$
;

[R.3.5] (a)
$$W_A^B = \frac{k}{2a} \left[\sqrt{2} - 1 \right];$$

R.3.6 (a)
$$\mu_c = \frac{mv_o^2 - k\delta_{max}^2}{2mq\delta_{max}};$$

$$\begin{array}{ll}
\boxed{\text{R.3.7}} & \textbf{(a)} \ \rho(t) = -\frac{\lambda_2}{\lambda_1 - \lambda_2} \rho_o e^{\lambda_1 t} + \frac{\lambda_1}{\lambda_1 - \lambda_2} \rho_o e^{\lambda_2 t}, \\
& \textbf{donde} \ \lambda_1 = -\mu_d \omega_o + \omega_o \sqrt{1 + \mu_d^2}, \ \lambda_2 = -\mu_d \omega_o - \omega_o \sqrt{1 + \mu_d^2}; \ \textbf{(b)} \ W_N = m \omega_o^2 (\rho_1^2 - \rho_o^2);
\end{array}$$

[R.3.8] (a)
$$\phi^* = \pi/6$$
;

[R.3.9] (a)
$$r = r_o - v_o t$$
, $\theta = \pi/3$, $\phi(t) = \frac{r_o^2 \omega_o}{v_o} \frac{1}{(r_o - v_o t)} - \frac{r_o \omega_o}{v_o}$; (b) $r_o \omega_o^2 > \frac{2}{3}g$; (c) $W_T = \frac{9}{8} m r_o^2 \omega_o^2 - \frac{mgr_o}{4}$; (d) $K(t) = \frac{1}{2} m (v_o^2 + \frac{3}{4} \frac{r_o^4 \omega_o^2}{(r_o - v_o t)^2})$, $K_f - K_i = \frac{9}{8} m r_o^2 \omega_o^2$, $K_f - K_i - W_T = W_{mg}$;

R.3.10 **(b)**
$$U_1(x,z) = \frac{cx^2z^2}{2}$$
; **(c)** $W_{F_2} = \frac{cR^4}{2} + mgR$;

R.3.11 **(b)**
$$\vec{v}(z=0) = -\sqrt{\frac{GM}{R}(2-\sqrt{2})}\hat{k};$$

R.3.12
$$W_{motor} = -mgL \operatorname{sen} \beta + \mu mgL \operatorname{cos} \beta + \frac{c\pi^2 L^2}{8T} - \frac{m\pi^2 L^2}{8T^2};$$

[R.3.13]
$$a = \frac{2}{d}$$
;

R.3.14 (a)
$$v(t) = \frac{\mu mg}{c} [2 \exp(-\frac{c}{m}t) - 1], \ t_{max} = \frac{m}{c} \ln 2;$$
 (b) $x_{max} = \frac{\mu m^2 g}{c^2} [1 - \ln 2];$ (c) $W_{\mu} = -m(\frac{\mu mg}{c})^2 [1 - \ln 2], \ W_c = m(\frac{\mu mg}{c})^2 [\frac{1}{2} - \ln 2],$ la suma de estos trabajos es la pérdida total de energía del sistema;

R.3.15 (a) $\dot{\phi}(\phi) = \frac{v_o}{R} e^{-\mu \phi}$; (b) $\dot{\phi}(t) = \frac{1}{\mu t + \frac{R}{v_o}}$; (c) El bloque tarda un tiempo infinito en detenerse y recurre un ángulo también infinito; (d) $W_{\mu} = \frac{m v_o^2}{2}$ (se debe calcular a partir de la definición de trabajo $W = \int \vec{F} \cdot d\vec{r}$);

R.3.16 (a) $\dot{\phi}(\rho) = \frac{\rho_o^2 \dot{\phi}_o}{\rho^2}$; (b) $T(\rho) = \frac{m\rho_o^4 \dot{\phi}_o^2}{\rho^3}$; (c) $W_T = \frac{m\rho_o^4 \dot{\phi}_o^2}{2} (\frac{1}{\rho_1^2} - \frac{1}{\rho_o^2})$, se puede calcular por definición y a partir del trabajo de las fuerzas no conservativas: $W_T = \Delta E$;

4. Equilibrio y Oscilaciones

R.4.1 (a)
$$m = \frac{kb}{q\sqrt{2}}$$
; (b) $\omega_{p0.o.}^2 = \frac{k}{4m}$;

R.4.2 (a)
$$\theta_1 = 0 \rightarrow \textbf{Estable}, \ \theta_2 = \pi \rightarrow \textbf{Inestable}; \ \textbf{(b)} \ \omega_{p.o.}^2[\theta_1] = \frac{k}{m};$$
 (c) $\theta(t) = e^{-\frac{\gamma}{2m}t}[A\cos(\sqrt{\frac{k}{m} - (\frac{\gamma}{2m})^2}t + \delta)]$: sub-amortiguamiento;

R.4.3 Si
$$l_o < D$$
: $x_{eq} = 0 \rightarrow$ Estable; $\omega_{p.o.}^2 = \frac{k}{m}(1 - \frac{l_o}{D})$; Si $l_o > D$: $x_{eq} = 0 \rightarrow$ Inestable, $x_{eq} = \pm \sqrt{l_o^2 - D^2} \rightarrow$ Estable; $\omega_{p.o.}^2 = \frac{k}{m}(1 - \frac{D^2}{l_o^2})$;

R.4.4 (a)
$$\theta_1 = 0 \rightarrow \textbf{Inestable}; \ \theta_2 = \pm \frac{\pi}{4} \rightarrow \textbf{Estables};$$

[R.4.5] (a)
$$x_{eq} = \frac{D}{2\sqrt{3}}$$
; (b) $K = \frac{1}{2}m\left(\frac{D^2 + 20x^2}{D^2 + 4x^2}\right)\dot{x}^2$; (c) $\omega_{p.o.}^2 = \frac{3\sqrt{3}g}{4D}$;

$$R.4.6$$
 -;

R.4.7 (a)
$$m\ddot{x}_1 = mg - k(x_1 - l_o) + k(x_2 - x_1 - lo), \ m\ddot{x}_2 = mg - k(x_2 - x_1 - lo);$$
 (b) $\omega_1^2 = \frac{3 + \sqrt{5}}{2} \frac{k}{m}, \ \omega_2^2 = \frac{3 - \sqrt{5}}{2} \frac{k}{m};$ (c) $\vec{v}_1 = (1, \frac{1 - \sqrt{5}}{2}) \ \vec{v}_2 = (1, \frac{1 + \sqrt{5}}{2});$

R.4.8 (a) Equilibrio:
$$\theta_1 = \theta_2$$
; (b) $\omega_1^2 = 0$, $\omega_2^2 = \frac{4k}{m}$; (c) $\vec{v}_1 = (1,1)$, $\vec{v}_2 = (1,-1)$;

R.4.9 (a)
$$m\ddot{y}_1 = -2\frac{\tau}{a}y_1 + \frac{\tau}{a}y_2$$
, $m\ddot{y}_2 = -2\frac{\tau}{a}y_2 + \frac{\tau}{a}y_1$; (b) $\omega_1^2 = \frac{3\tau}{ma}$, $\omega_2^2 = \frac{\tau}{ma}$; (c) $\vec{v}_1 = (1, -1)$, $\vec{v}_2 = (1, 1)$;

R.4.10 (a)
$$y_{eq} = l_o - \frac{mg}{k}$$
; (b) $\ddot{y} + \frac{k}{m}(y - y_{eq}) = \frac{k}{m}A_o \operatorname{sen}(\omega t)$, $\omega_o = \frac{k}{m}$; (c) $y(t) = \frac{\omega_o A_o}{\omega_o^2 - \omega^2}[\omega_o \operatorname{sen}(\omega t) - \omega \operatorname{sen}(\omega_o t)] + y_{eq}$; (d) $\omega_{max} = \omega_o (1 - \frac{A_o}{lo - \frac{mg}{lo}})$;

$$\begin{array}{ll} \hline \textbf{R.4.11} & \textbf{(a)} \ X_{CM} = x + \frac{m}{M+m}R\cos(\Omega t), \ Y_{CM} = \frac{m}{M+m}R\sin(\Omega t), \\ \ddot{x} + \frac{2k}{M+m}x = \frac{kL}{M+m} + \frac{m}{M+m}R\Omega^2\cos(\Omega t); \\ \textbf{(b)} \ x(t) = \frac{m}{M+m}\frac{R\Omega^2}{(\Omega_o^2 - \Omega^2)}(\cos(\Omega t) - \cos(\Omega_o t)) + \frac{L}{2}, \ \Omega_o \equiv \sqrt{\frac{2k}{M+m}}; \ \textbf{(c)} \ x[\Omega = \Omega_o] = \frac{mR\Omega_o}{2(M+m)}t\sin(\Omega_o t) + \frac{L}{2}; \end{array}$$

5. Fuerzas Centrales

[R.5.1] **(b)**
$$\omega_{p.o.}^2 = \frac{3c}{mr_o}$$
; **(c)** $\Delta E = \frac{5}{8}cr_o$;

[R.5.2] (a)
$$v_o = \sqrt{GM/R}$$
; (b) $\frac{r_{max}}{R} = \frac{1+\sqrt{5}}{2}$; (c) $v_A^2 = \frac{16GM}{R(1+\sqrt{5})^3}$; $v_B^2 = \frac{4GM}{R(1+\sqrt{5})}$;

$$\boxed{\text{R.5.3}} \quad \textbf{(a)} \ \ddot{\rho} = \frac{\rho_o^2 v_o^2}{\rho^3} - \frac{k}{m} \rho; \ \textbf{(b)} \ \rho_o = \sqrt{\frac{m v_o^2}{k}}; \ \textbf{(c)} \ \omega_{p.o.} = \sqrt{\frac{4k}{m}}; \ \textbf{(d)} \ \frac{\omega_o}{\omega_{p.o.}} = \frac{1}{2} \quad \therefore \text{ es cerrada};$$

$$\boxed{\text{R.5.4}} \quad \text{(a) } r_c = \frac{a}{\omega_o \sqrt{m}}, \ \ell_o = \frac{a^2}{\omega_o}; \ \text{(b)} \ \omega_{p.o.}^2 = 2\omega_o^2, \ \frac{\omega_o}{\omega_{p.o.}} = \frac{1}{\sqrt{2}} \quad \therefore \text{ no es una órbita cerrada;}$$

[R.5.5] (a)
$$v_o = \sqrt{gL}$$
; (b) $z_{min} = -7L$;

R.5.6 (a)
$$v_B^2 = \frac{2GM}{r_B}$$
; (b) $E' = -\frac{GMm}{R_M + r_B}$; (c) $v_C^2 = \frac{r_B}{R_M} \frac{2GM}{(R_M + r_B)}$;

$$\boxed{\text{R.5.7}}$$
 (a) $v \stackrel{t \to \infty}{\longrightarrow} v_1$; (b) $v \stackrel{t \to \infty}{\longrightarrow} \frac{1}{\rho_0} \sqrt{\frac{k}{m}}$;

[R.5.8] **(a)**
$$U_{ef}(r) = \frac{\ell^2}{2mr^2} + \frac{\alpha}{n+1}r^{n+1}$$
; **(b)** $r_c = \sqrt[n+3]{\frac{\ell^2}{\alpha m}}, \ \omega_{p.o.}^2 = \frac{3l^2}{m^2}(\frac{\alpha m}{\ell^2})^{\frac{4}{n+3}} + \frac{n\alpha}{m}(\frac{\ell^2}{\alpha m})^{\frac{n-1}{n+3}}$; **(c)** $n_k = n_{k-1} + 2^{(k-1)} + 5, \ n_o = 1; \ n_k = 1, 6, 13, 22, 33, 46...$;

R.5.9 (a)
$$m(\ddot{\rho} - \rho \dot{\phi}^2) = -k\rho$$
, $F_{\phi} = 0 \Rightarrow \dot{\phi} = \frac{\ell}{m\rho^2}$; (b) $U_{ef}(\rho) = \frac{\ell^2}{2m\rho^2} + \frac{1}{2}k\rho^2$; (c) $\rho_c = \sqrt[4]{\frac{\ell^2}{mk}}$, $\omega_{p.o.}^2 = \frac{4k}{m}$;

6. Movimiento Relativo: Sistemas No Inerciales

[R.6.1] (a)
$$2R$$
; (b) $\omega^2 < \frac{g}{R}$;

$$\boxed{\text{R.6.2}} \quad \textbf{(a)} \, \sin \theta_{max} = \frac{2a_o g}{g^2 + a_o^2}; \textbf{(b)} \, \theta^* = \arctan(\frac{a_o}{g}); T_{max} = 3ma_o \, \text{sen}(\arctan(\frac{a_o}{g})) + 3mg \, \text{cos}(\arctan(\frac{a_o}{g})) - 2mg;$$

R.6.5 (b)
$$\ddot{\phi} = \sin \phi (\omega^2 \cos \phi - \frac{g}{\rho_o})$$
; (c) $\phi = 0$ es pto. de equilibrio estable si $\omega^2 < \frac{g}{\rho_o}$. En ese caso: $\omega_{p.o.}^2 = \frac{g}{\rho_o} - \omega^2$;

$$R.6.6$$
 $v_o = 2\omega R$;

- R.6.7 (a) $ma\ddot{\theta}' = m\omega^2\cos\theta'(a\sin\theta' + d)$; (b) $\theta'_{1,2} = \pm\pi/2$, estables, $\theta'_3 = \arcsin(-\frac{d}{a})$, inestable; (c) $\omega^2_{p.o.}[\theta'_1] = \omega^2(1 + \frac{d}{a}), \ \omega^2_{p.o.}[\theta'_2] = \omega^2(1 \frac{d}{a})$;
- R.6.8 (a) $\dot{\phi}^2 = 4\Omega^2 (1 \cos \phi)$; (b) $\frac{3}{2} \cos \phi_s \frac{5}{4} \sqrt{1 \cos \phi_s} = 0$;
- [R.6.9] (a) $\dot{\phi}(\phi) = \frac{v_o}{L} \sqrt{\frac{2}{2-\text{sen}^2 \phi}}$; (b) $N(\pi/2) = \frac{2mv_o^2}{L}$;
- R.6.11 (a) 3 por mil, la correción es menor en latitudes mayores; (b) $m\vec{a}' = -mg\hat{k}' + N\hat{k}' 2m\vec{\Omega} \times \vec{v}'$, $v^2 = cte$; (c) $\dot{\beta} = -2\Omega_T \sin\alpha$; (d) La trayectoria es una circunferencia con radio de curvatura $\rho_c = \frac{v_o}{2\Omega_T \sin\alpha}$.
- R.6.12 (a) $\Omega_o^2 = \frac{k}{2m}$; $\omega_{p.o.}^2 = \frac{k}{2m}$; (b) Se separa cuando llega a una distancia $x' = (2 + \sqrt{3})l_o$ del punto B;

7. Sólido Rígido y Sistemas de partículas

- [R.7.1] (a) $T = \frac{Mg}{2}$; (b) $\dot{\phi}_{max}^2 = 2\omega^2(1 + \frac{\sqrt{2}}{2})$, donde se ha definido $\omega^2 = \frac{3\sqrt{2}g}{4a}$; (c) $T_{p.o.} = \frac{2\pi}{\omega}$;
- [R.7.2] (a) $\dot{\phi}(\phi) = \frac{v_o}{L} \sqrt{\frac{2}{2-\sin^2 \phi}}$; (b) $N(\pi/2) = \frac{2mv_o^2}{L}$;
- R.7.3 (a) $I_{P,\hat{n}} = 8mb^2$; (b) $K = 4mb^2\dot{\alpha}^2$, $l_P = 8mb^2\dot{\alpha}$; (c) $U(\alpha) = -2mbg(\sqrt{3}\sin\alpha + \cos\alpha)$, $\alpha_o = \pi/3$, $U(\phi) = -4mbg\cos\phi$; (d) $\omega^2 = \frac{g}{2b}$;
- R.7.4 (c) $\ddot{\theta} = -\frac{4g}{\pi R} \operatorname{sen} \theta$; $\omega_{p.o.}^2 = \frac{4g}{\pi R}$;
- $\begin{array}{|c|c|c|c|c|c|}
 \hline \text{R.7.5} & \textbf{(a)} \ I_{ij} = \begin{bmatrix} \frac{MR^2}{2} & 0 & 0 \\ 0 & MR^2 & 0 \\ 0 & 0 & \frac{MR^2}{2} \end{bmatrix}; \textbf{(b)} \ \vec{L}_o = \frac{MR^2}{2} \dot{\theta} \hat{x}'; \textbf{(c)} \ \vec{\tau}_o = -Mg \frac{2R}{\pi} \sin \theta \hat{x}', \ \ddot{\theta} = -\frac{4}{\pi} \frac{g}{R} \sin \theta;
 \end{array}$
- R.7.6 (a) $I_G = \frac{MR^2}{2}$; (b) $I_P = \frac{3MR^2}{2}$; (c) $\omega^2 = \frac{2g}{3R}$;
- R.7.7 (a) $\ddot{\phi} = -\frac{3}{2} \frac{g}{a} \operatorname{sen} \phi$; (b) $\ddot{\phi} = -\frac{6\sqrt{2}}{t} \frac{g}{a} \operatorname{sen} \phi$;
- R.7.8 (a) $\theta = \frac{\pi}{2}$; (b) $V_G = \frac{3R}{8} \sqrt{\frac{15g}{8R}}$; (c) $\dot{\theta} = \sqrt{\frac{15g}{8R}}$; (d) $E = \frac{1}{2} M (V_{Gx}^2 + V_{Gy}^2) + \frac{1}{2} I_G \dot{\theta}^2 M g \frac{3}{8} R \cos \theta$;
- [R.7.9] (a) $\hat{\rho}$) $-m(R+a)\dot{\theta}^2 = N mg\cos\theta$, $\hat{\theta}$) $m(R+a)\ddot{\theta} = f_{\mu} + mg\sin\theta$; (b) $v(\theta) = \sqrt{\frac{4}{3}g(R+a)(1-\cos\theta)}$; (c) $7\cos\theta_c \frac{1}{\mu_c}\sin\theta_c 4 = 0$;
- R.7.10 (a) $\dot{\theta}_o = \frac{\sqrt{3}}{8} \frac{v_o}{b}, \ddot{\theta}_o = -\frac{3}{4} \frac{g}{b};$ (b) $v_o^2 = \frac{32}{\sqrt{3}} gb;$