В силу монотонности функции a^x , пределы (конечные или бесконечные) $\lim_{x\to +\infty} a^x$ и $\lim_{x\to -\infty} a^x$ существуют, следовательно, достаточно доказать, что

$$\lim_{n \to \infty} a^{x_n} = +\infty, \lim_{n \to \infty} a^{x'_n} = 0$$

для каких-либо произвольных фиксированных последовательностей $x_n \to +\infty$ и $x_n' = -\infty$, например для последовательностей $x_n = n, x_n'' = -n, n = 1, 2, \dots$

По предположению, a>1, т.е. $a=1+\alpha$, где $\alpha>0$. Поэтому, согласно неравенству Бернулли (см. лемму в п. 4.9), $a^n=(1+\alpha)^n>n\alpha$, и так как $\lim_{n\to\infty}n\alpha=+\infty$, то и $\lim_{n\to\infty}a^n=+\infty$. Отсюда

$$\lim_{n \to \infty} a^{-n} = \frac{1}{\lim_{n \to \infty} a^n} = 0.$$

Тем самым равенство (7.18) при a > 1 доказано.

Если теперь 0 < < 1, то b = 1/a > 1 и

$$\lim_{x \to +\infty} a^x = \lim_{x \to +\infty} \left(\frac{1}{b}\right)^x = \frac{1}{\lim_{x \to +\infty} b^x} = 0.$$

$$\lim_{x \to -\infty} a^x = \frac{1}{\lim_{x \to +\infty} b^x} = +\infty. \square$$

З а м е ч а н и е 1. Множество всех значений функции a^x , $a>0, a\neq 0$, составляет множество всех положительных действительных чисел, поэтому, в частности, при любом $x\in \mathbf{R}$ имеет место неравенство $a^x>0$.

3 а м е ч а н и е 2. Если a>0,b>0, то для любого $x\in {\pmb R}$ справедливо равенство

$$(ab)^x = a^x b^x.$$

Действительно, если $r_n \to x, r_n \in \mathbf{Q}, n = 1, 2, ...,$ то

$$(ab)^{x} = \lim_{n \to \infty} (ab)^{r_n} = \lim_{n \to \infty} a^{r_n} b^{r_n} =$$
$$= \lim_{n \to \infty} a^{r_n} \lim_{n \to \infty} b^{r_n} = a^{x} b^{x}. \square$$

УПРАЖНЕНИЕ. Пусть a>0,b>0. Доказать, что для любого $x\in R$ имеет место равенство $\left(\frac{a}{b}\right)^x=\frac{a^x}{b^x}$.

3 а м е ч а н и е 3. Если г — рациональное число и r>0, то $0^r=0$, и, следовательно, для любого действительного числа x>0 существует предел $\lim_{r\to x,r\in \pmb{Q}}0^r=0$. Поэтому при x>0 определение (7.5) можно распространить и на случай a=0, причем будет иметь место равенство $0^x=0,x>0$.

Отметим, что в области действительных чисел возведению нуля в неположительную степень: $0^x, x < 0$ — нельзя приписать смысла.

Пусть а — положительное число, не равное единице. Из элементарной математики известно, что операция, обратная возведению в степень и ставящая в соответствие данному числу x>0 такое число у, что $a^y=x$ (если, конечно, указанное у существует), называется логарифмированием по основанию а. Число у называется логарифмом числа х по основанию а и обозначается через $\log_a x$. Таким образом, по определению,

$$a^{\log_a x} = x(a > 0, a \neq 1). \tag{7.19}$$

Определение 3. Функция, ставящая в соответствие каждому числу x его логарифм $\log_a x$ по основанию a (a>0, $a\neq 1$), если этот логарифм существует, называется логарифмической функцией $=\log_a x$.

Логарифмическая функция по основанию 10 обозначается символом \lg , а по основанию e — символом \ln ; $\ln x$ называется натуральным логарифмом числа \mathbf{x} .

TEOPEMA 4. Функция $y = \log_a x, a > 0, a \neq 1$, определена на множестве всех x > 0 и является на этом множестве строго монотонной (возрастающей при a > 1 и убывающей при a < 1) непрерывной функцией. Она имеет следующие свойства: $1^0 \cdot \log_a x_1 x_2 = \log_a x_1 + \log_a x_2, x_1 > 0, x_2 > 0.$ $2^0 \cdot \log_a x^\alpha = \alpha \log_a x, x > 0, \alpha \in \mathbf{R}$.