

Amendments to the Specification

Please replace the paragraph beginning at line 13 of page 1 as follows:

This patent application is related to U.S. Patent Application Serial No. 09/663,607, filed September 18, 2000, now U.S. Patent No. 6,721,597, which is incorporated herein by reference.

Please replace the paragraph beginning at line 29 of page 6 as follows:

Turning now to Fig. 1, the US-ICD of the present invention is illustrated. The US-ICD consists of a curved housing 11 with a first and second end. The first end 13 is thicker than the second end 15. This thicker area houses a battery supply, capacitor and operational circuitry for the US-ICD. The circuitry will be able to monitor cardiac rhythms for tachycardia and fibrillation, and if detected, will initiate charging the capacitor and then delivering cardioversion/defibrillation energy through the two cardioversion/defibrillating electrodes 17 and 19 located on the outer surface of the two ends of the housing. Examples of such circuitry are described in U.S. Pat. Nos. 4,693,253 and 5,105,810, the entire disclosures of which are incorporated herein by reference. The circuitry can provide cardioversion/defibrillation energy in different types of wave forms. In the preferred embodiment, a 100 uF biphasic wave form is used of approximately 10-20 ms total duration and with the initial phase containing approximately 2/3 of the energy, however, any type of wave form can be utilized such as monophasic, biphasic, multiphasic or alternative waveforms as is [[mown]] known in the art.

Please replace the paragraph beginning at line 7 of page 12 as follows:

FIG. 3 schematically illustrates the method for implanting the US-ICD of the present invention. An incision 31 is made in the left anterior axillary line approximately at the level of the cardiac apex. A subcutaneous pathway 33 is then created that extends posteriorly to allow placement of the US-ICD. The incision can be anywhere on the thorax deemed reasonable by the implanting physician although in the preferred embodiment, the US-ICD of the present invention will be applied in this region. The subcutaneous pathway 33 is created medially to the inframammary crease and extends posteriorly to the left posterior axillary

line. The pathway is developed with a specially designed curved introducer [[40]]42 (see FIG. 4). The trocar has a proximal handle 41 and a curved shaft 43. The distal end 45 of the trocar is tapered to allow for dissection of the subcutaneous pathway 33 in the patient. Preferably, the trocar is cannulated having a central lumen 46 and terminating in an opening 48 at the distal end. Local anesthetic such as lidocaine can be delivered, if necessary, through the lumen or though a curved and elongated needle designed to anesthetize the path to be used for trocar insertion should general anesthesia not be employed. Once the subcutaneous pathway is developed, the US-ICD is implanted in the subcutaneous space, the skin incision is closed using standard techniques.

Amendments to the Abstract

Please replace the previous abstract as follows:

A unitary subcutaneous implantable cardioverter-defibrillator ~~is disclosed which~~ has a long thin housing in the shape of a patient's rib. The housing contains a source of electrical energy, a capacitor, and operational circuitry that senses the presence of potentially fatal heart rhythms. Provided on the housing are cardioversion/defibrillation electrodes located to deliver electrical cardioversion-defibrillation energy when the operational circuitry senses a potentially fatal heart rhythm. The unitary subcutaneous implantable cardioverter-defibrillator does not have a transvenous, intracardiac, epicardial, or subcutaneous electrode.