Seminar 2

1. Calculati limita sirului $(x_n)_{n\in\mathbb{N}}$ pentru

a)
$$x_n = \sqrt{n} (\sqrt{n+1} - \sqrt{n})$$

b)
$$x_n = \frac{n + \sin n}{n}$$

a)
$$x_n = \sqrt{n} (\sqrt{n+1} - \sqrt{n})$$

b) $x_n = \frac{n+\sin n}{n+\cos n}$
c) $x_n = \frac{(\sqrt{2}+1)^n}{(\sqrt{2})^n+1}$

2. Justificati cu definitia valoarea limitelor

a)
$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

b)
$$\lim_{n \to \infty} \frac{n^2}{n+1} = \infty$$

3. Studiati convergenta sirului $(x_n)_{n\in\mathbb{N}}$ si calculati limita sa acolo unde este posibil (metode: monotonie si marginire, criteriul clestelui, subsiruri, sir fundamental)

a)
$$x_n = a^n$$
, $a \in \mathbb{R}$

b)
$$x_n = \frac{2^n}{n!}$$

c)
$$x_n = \sqrt[n]{n}$$

d)
$$r = (1 + \frac{1}{2})^{r}$$

e)
$$x_n = (1 + \frac{1}{n})$$

etode. Monotonie si marginire, criteria)
$$x_n = a^n, \quad a \in \mathbb{R}$$
b) $x_n = \frac{2^n}{n!}$
c) $x_n = \sqrt[n]{n}$
d) $x_n = \left(1 + \frac{1}{n}\right)^n$
e) $x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$
f) $x_n = \frac{\sin(1!)}{1 \cdot 2} + \frac{\sin(2!)}{2 \cdot 3} + \dots + \frac{\sin(n!)}{n \cdot (n+1)}$
g) $x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}, \quad x_1 > 0$

g)
$$x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}, \quad x_1 > 0$$

4. Determinati multimea punctelor limita, limita inferioara si limita superioara pentru sirurile

a)
$$x_n = (-1)^n n \sin \frac{n\pi}{2}$$

a)
$$x_n = (-1)^n n \sin \frac{n\pi}{2}$$

b) $x_n = \left(1 + \frac{\cos(n\pi)}{n}\right)^n$

Exercitii suplimentare

1. Justificati cu definitia valoarea limitei

$$\lim_{n \to \infty} \frac{n^3 - n}{n^3 + n} = 1$$

2. Studiati convergenta sirului $(x_n)_{n\in\mathbb{N}}$ si calculati limita sa acolo unde este posibil

a)
$$x_n = 1.99...9$$

b)
$$x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2}$$

a)
$$x_n = 1.\underbrace{99...9}_{n \text{ ori}}$$

b) $x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + ... + \frac{1}{n^2}$
c) $x_n = \frac{\sin(1)}{5} + \frac{\sin(2)}{5^2} + ... + \frac{\sin(n)}{5^n}$
d) $x_{n+1} = \sqrt{2x_n + 3}, \quad x_1 = \sqrt{3}$
e) $x_{n+1} = 1 + \frac{1}{x_n}, \quad x_1 = 1$

d)
$$x_{n+1} = \sqrt{2x_n + 3}$$
, $x_1 = \sqrt{3}$

e)
$$x_{n+1} = 1 + \frac{1}{x_n}$$
, $x_1 = 1$

- 3. Se dau sirurile $x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$ si $y_n = x_n + \frac{1}{n \, n!}$. Justificati afirmatiile a) (y_n) strict descrescator si cu limita e. b) $0 < e x_n < \frac{1}{n \, n!}$, $\forall n \in \mathbb{N}^*$

b)
$$0 < e - x_n < \frac{1}{n n!}, \quad \forall n \in \mathbb{N}^*$$

c)
$$e \notin \mathbb{Q}$$

4. Determinati multimea punctelor limita, limita inferioara si limita superioara pentru sirurile

a)
$$x_n = \frac{1}{2 + \sqrt{n}\cos(n\pi)}$$

b)
$$x_n = (\frac{n+3}{n+1})^{n \sin \frac{n\pi}{3}}$$