Math Statistics Weekly HW 5

Ozaner Hansha

October 16, 2020

Question 1

Suppose we have a population described by a Poisson distribution with paramter λ . That is, with pdf $f(x;\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$ for a nonnegative integer x.

Part a: Compute the Fisher information about λ for a single observation X.

Solution: The Fisher information $\mathcal{I}(\lambda)$ is given by:

$$\mathcal{I}(\lambda) = E\left[\left(\frac{\partial}{\partial\lambda}\ln f(X;\lambda)\right)^2\right] \qquad \text{(def. of Fisher information)}$$

$$= E\left[\left(\frac{\partial}{\partial\lambda}\ln\frac{\lambda^X e^{-\lambda}}{X!}\right)^2\right]$$

$$= E\left[\left(\frac{\partial}{\partial\lambda}\left(X\ln\lambda - \lambda - \ln X!\right)\right)^2\right]$$

$$= E\left[\left(\frac{X}{\lambda} - 1\right)^2\right]$$

$$= \operatorname{Var}\left(\frac{X}{\lambda}\right) \qquad \text{(def. of variance } (E[X/\mu_X] = 1))$$

$$= \frac{1}{\lambda^2}\operatorname{Var}(X)$$

$$= \frac{\lambda}{\lambda^2} = \boxed{\frac{1}{\lambda}}$$

Part b: Show that the sample mean \bar{X} (for sample size $n \in \mathbb{Z}^+$) is a minimum variance unbiased estimator for λ

Solution: First we will prove that our estimator is unbiased by showing that its mean equals λ :

$$E[\bar{X}] = E\left[\frac{\sum_{i=1}^{n} X_{i}}{n}\right]$$
 (def. of \bar{X})
$$= \frac{\sum_{i=1}^{n} E[X_{i}]}{n}$$
 (linearity of expectation)
$$= \frac{\sum_{i=1}^{n} \lambda}{n}$$
 ($X_{i} \sim \text{Pois}(\lambda)$)
$$= \frac{n\lambda}{n} = [\lambda]$$

Now recall that if the following is satisfied then \bar{X} is an MVU estimator:

$$\operatorname{Var}(\bar{X}) = \frac{1}{n\mathcal{I}(\lambda)}$$

Where each $X_i \sim \text{Pois}(\lambda)$ is i.i.d. And indeed the above does hold:

$$\operatorname{Var}(\bar{X}) = \operatorname{Var}\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)$$

$$= \operatorname{Var}\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)$$

$$= \frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}(X_{i})$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \lambda$$

$$= \frac{n\lambda}{n^{2}} = \frac{1}{n(1/\lambda)} = \frac{1}{n\mathcal{I}(\lambda)}$$
(Mare independent)
$$(X_{i} \sim \operatorname{Pois}(\lambda))$$

$$= \frac{n\lambda}{n^{2}} = \frac{1}{n(1/\lambda)} = \frac{1}{n\mathcal{I}(\lambda)}$$
(part a)

And so, \bar{X} is a MVU estimator for λ .

Question 2

Problem: If $\hat{\Theta}$ is an unbiased estimator for θ , is $\hat{\Theta}^2$ is an unbiased estimator for θ^2 ?

Solution: No. Consider a population X with mean μ and variance σ^2 . Recall that the sample mean (for sample size n) is an unbiased estimator of a population's mean μ :

$$E[\bar{X}] = \mu$$

However, we find that $E[\bar{X}^2] \neq \mu^2$:

$$\begin{aligned} \operatorname{Var}(\bar{X}) &= E[\bar{X}^2] - E[\bar{X}]^2 \\ &E[\bar{X}^2] = \operatorname{Var}(\bar{X}) + E[\bar{X}]^2 \\ &= \frac{\sigma^2}{n} + \mu^2 \\ &\neq \mu^2 \end{aligned} \qquad \text{(mean/variance of sample mean)}$$

And so, as we have shown, it is not necessarily the case that the square of an unbiased estimator is itself an unbiased estimator of the parameter squared.

Question 3

Problem: Suppose that we have a population with known mean μ and unknown variance σ^2 . Show that $\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{n}$ is an unbiased estimator for σ^2 .

Solution: Note the following chain of equalities:

$$E\left[\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{n}\right] = \frac{1}{n} \sum_{i=1}^{n} E\left[(X_i - \mu)^2\right]$$
 (linearity of expectation)

$$= \frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}(X_i)$$
 (def. of variance)

$$= \frac{1}{n} \sum_{i=1}^{n} \sigma^2$$
 (def. σ^2)

$$= \frac{n\sigma^2}{n} = \sigma^2$$

And so, since the mean of this estimator is indeed the parameter σ^2 , it is unbiased.

Question 4

Problem: Show that $\bar{X}^2 - \frac{S^2}{n}$ is an unbiased estimator for μ^2 .

Solution: Now consider the following chain of equalities:

$$E\left[\bar{X}^2 - \frac{S^2}{n}\right] = E[\bar{X}^2] - \frac{E[S^2]}{n}$$
 (linearity of expectation)

$$= \operatorname{Var}(\bar{X}) + E[\bar{X}]^2 - \frac{E[S^2]}{n}$$
 ($E[\bar{X}^2] = \operatorname{Var}(\bar{X}) + E[\bar{X}]^2$)

$$= \frac{\sigma^2}{n} + \mu^2 - \frac{\sigma^2}{n}$$
 ($E[S^2] = \sigma^2$)

$$= \mu^2$$

And so, since the mean of this estimator is indeed the parameter μ^2 , it is unbiased.

Where S^2 is the corrected sample variance $\frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2$.