MATH 330 – HW #25

Cristobal Forno

December 6, 2017

Proposition 11.7: The rational number $\frac{m}{n} \in \mathbb{Q}$ is positive if and only if either m > 0 and n > 0, or m < 0 and n < 0.

Proof: Assume that m>0 and n>0, where $m,n\in\mathbb{Z}$. Proposition 8.40(i) implies that $n,\frac{1}{n},m$, and $\frac{1}{m}$ all have the same sign. Since both m and n are positive, then $\frac{m}{n}=m\cdot\frac{1}{n}>0$, by Axiom 8.26(ii). If m<0 and n<0, then -m>0 and -n>0. Which implies $-\frac{1}{n}>0$.

If m < 0 and n < 0, then -m > 0 and -n > 0. Which implies $-\frac{1}{n} > 0$. Since -m > 0 and $-\frac{1}{n} > 0$, the multiplication of two negative real numbers is positive, so $\frac{m}{n}$ is positive.

Conversely, suppose that m and n have opposite signs. Again, Proposition 8.40(i) implies that n and $\frac{1}{n}$ have the same sign, so m and $\frac{1}{n}$ have opposite signs. If m>0 and $\frac{1}{n}<0$, then $\frac{m}{n}<0$ and if m<0 and $\frac{1}{n}>0$, then $\frac{m}{n}<0$, both by Prop. 8.32(iii). In both cases, $\frac{m}{n}$ is negative. \square