Comprehensive Study Guide for Chemistry Exam 2

Chapter 5: Ionic and Covalent Compounds

Ionic vs. Molecular Compounds

- Ionic Compound: A compound formed from the electrostatic attraction between a **metal cation** (positive ion) and a **nonmetal anion** (negative ion). Electrons are transferred from the metal to the nonmetal. Example: NaCl (Sodium is a metal, Chlorine is a nonmetal).
- Molecular (Covalent) Compound: A compound formed from the sharing of electrons between two or more nonmetals. Example: H₂O (Hydrogen and Oxygen are both nonmetals).

Practice: Classifying Ionic Compounds

- 1. Classify MgCl₂: Magnesium (Mg) is a Group 2 metal. Chlorine (Cl) is a Group 17 nonmetal. This is a metal-nonmetal combination, so it is ionic.
- 2. Classify $FePO_4$: Iron (Fe) is a transition metal. Phosphate (PO_4^{3-}) is a polyatomic anion. The compound consists of a metal cation and an anion, making it **ionic**.
- 3. Classify K₃N: Potassium (K) is a Group 1 metal. Nitrogen (N) is a Group 15 nonmetal. This is a metal-nonmetal combination, so it is **ionic**.
- 4. Classify $CuSO_4$: Copper (Cu) is a transition metal. Sulfate (SO_4^{2-}) is a polyatomic anion. The compound is formed between a metal cation and an anion, making it **ionic**.
- 5. Classify NH₄Cl: Ammonium (NH₄⁺) is a polyatomic cation (composed of nonmetals). Chloride (Cl⁻) is a nonmetal anion. Even though it's made entirely of nonmetals, the bond is between a cation and an anion, so it is classified as **ionic**.

Practice: Classifying Molecular Compounds

- 1. Classify CO₂: Carbon (C) is a nonmetal. Oxygen (O) is a nonmetal. This is a nonmetal-nonmetal combination, so it is **molecular**.
- 2. Classify P_4O_{10} : Phosphorus (P) is a nonmetal. Oxygen (O) is a nonmetal. This is a nonmetal-nonmetal combination, so it is **molecular**.
- 3. Classify S₂Cl₄: Sulfur (S) is a nonmetal. Chlorine (Cl) is a nonmetal. This is a nonmetal-nonmetal combination, so it is **molecular**.
- 4. **Classify NBr₃:** Nitrogen (N) is a nonmetal. Bromine (Br) is a nonmetal. This is a nonmetal-nonmetal combination, so it is **molecular**.
- 5. Classify H₂S: Hydrogen (H) is a nonmetal. Sulfur (S) is a nonmetal. This is a nonmetal-nonmetal combination, so it is molecular.

Lattice Energy

• **Definition:** Lattice energy is a measure of the stability of an ionic solid. It is the energy released when gaseous ions combine to form one mole of a solid ionic compound. A higher lattice energy indicates a stronger ionic bond and a more stable compound.

- Trends: Lattice energy is governed by Coulomb's Law: $E \propto \frac{|Q_1 \times Q_2|}{d}$
 - Ionic Charge (Q): Lattice energy increases dramatically as the magnitude of the ionic charges increases. This is the most important factor.
 - Ionic Radius (distance, d): Lattice energy decreases as the size of the ions increases (because the distance between their centers increases).

Practice Problems: Ranking by Lattice Energy

- 1. Arrange in order of increasing lattice energy: KCl, SrS, RbI.
 - Charges: KCl (+1,-1), SrS (+2,-2), RbI (+1,-1).
 - Analysis: SrS has the highest product of charges (—+2 × -2— = 4), so it will have the highest lattice energy. Both KCl and RbI have a charge product of 1. Between them, Rb⁺ is larger than K⁺ and I⁻ is larger than Cl⁻. Therefore, the distance in RbI is greater, giving it a lower lattice energy than KCl.
 - Answer: RbI ; KCl ; SrS
- 2. Arrange in order of increasing lattice energy: AlF₃, AlCl₃, AlBr₃.
 - Charges: All compounds involve Al³⁺ and a halide ion (X⁻). The charge factor is the same for all.
 - Radius: The size of the anions increases down the group: F⁻ ; Cl⁻ ; Br⁻.
 - Conclusion: Since lattice energy is inversely proportional to ionic radius, the compound with the smallest anion (AlF₃) will have the highest lattice energy.
 - Answer: AlBr₃; AlCl₃; AlF₃
- 3. Which has the higher lattice energy: NaF or MgO?
 - Charges: NaF has (+1, -1) ions. MgO has (+2, -2) ions.
 - Conclusion: The product of charges for MgO (4) is much greater than for NaF (1). This charge difference is the dominant factor, making the lattice energy of MgO significantly higher.
- 4. Arrange in order of increasing lattice energy: MgCl₂, BeCl₂, CaCl₂.
 - Charges: All compounds contain a Group 2 cation (+2) and chloride anions (-1). The charge factor is the same.
 - Radius: The size of the cations increases down the group: Be^{2+} ; Mg^{2+} ; Ca^{2+} .
 - Conclusion: The compound with the smallest cation (BeCl₂) has the smallest distance between ions and thus the highest lattice energy.
 - Answer: CaCl₂; MgCl₂; BeCl₂
- 5. Arrange in order of increasing lattice energy: NaCl, MgS, AlP.
 - Charges: NaCl (+1, -1), MgS (+2, -2), AlP (+3, -3).
 - Conclusion: The product of the ionic charges increases significantly (1, 4, 9). This is the dominant factor.
 - Answer: NaCl; MgS; AlP

Predicting Ionic Formulas (Criss-Cross Method)

To Do: Predict the chemical formula of an ionic compound by balancing the charges. The total positive charge from the cations must equal the total negative charge from the anions. The "criss-cross" method is a shortcut: the magnitude of the charge on one ion becomes the subscript for the other ion. Always simplify the subscripts to the smallest whole-number ratio.

Practice Problems: Predicting Formulas

- 1. Formula for Aluminum Oxide: Aluminum (Group 13) is Al^{3+} . Oxide (Group 16) is O^{2-} . Crisscrossing the charges gives Al_2O_3 .
- 2. Formula for Magnesium Nitride: Magnesium (Group 2) is Mg^{2+} . Nitride (Group 15) is N^{3-} . Criss-crossing the charges gives $\mathrm{Mg}_3\mathrm{N}_2$.
- 3. Formula for Scandium (III) Hydroxide: Scandium (III) is Sc^{3+} . Hydroxide is the polyatomic ion OH^- . Criss-crossing gives $Sc(OH)_3$. Parentheses are required around the polyatomic ion. The formula is $Sc(OH)_3$.
- 4. Formula for Tin (IV) Sulfate: Tin (IV) is Sn^{4+} . Sulfate is SO_4^{2-} . Criss-crossing gives $\operatorname{Sn}_2(\operatorname{SO}_4)_4$. The subscripts (2 and 4) can be simplified by dividing by 2. The final formula is $\operatorname{Sn}(\operatorname{SO}_4)_2$.
- 5. Formula for Ammonium Phosphate: Ammonium is NH_4^+ . Phosphate is PO_4^{3-} . Criss-crossing gives $(NH_4)_3PO_4$. The formula is $(NH_4)_3PO_4$.

Nomenclature Practice (Mixed Types)

Practice: Naming Compounds

- 1. Name Fe₂(SO₄)₃: Ionic. SO₄ is sulfate (-2 charge). Total negative is -6. Two Fe ions must balance this, so each is Fe³⁺. Name: Iron (III) sulfate.
- 2. Name P₂S₅: Molecular. Two phosphorus, five sulfur. Name: Diphosphorus pentasulfide.
- 3. Name HBr(aq): Acid. Binary acid (H + nonmetal). Rule: hydro- + (nonmetal root) + -ic acid. Name: Hydrobromic acid.
- 4. Name CuSO_{4·5}H₂O: Hydrate. Name the ionic part first: CuSO₄ is Copper (II) sulfate. The prefix for 5 is "penta-". Name: Copper (II) sulfate pentahydrate.
- 5. Name HNO₂(aq): Acid. Oxoacid. The anion is NO₂ (nitrite). Rule: Anions ending in "-ite" become "-ous acid". Name: Nitrous acid.

Practice: Writing Formulas from Names

- 1. Formula for Chromium (VI) oxide: Ionic. Cr^{6+} and O^{2-} . Criss-cross and simplify: $Cr_2O_6 \rightarrow CrO_3$.
- 2. Formula for Dinitrogen trioxide: Molecular. "di-" = 2 Nitrogen. "tri-" = 3 Oxygen. Formula: N_2O_3 .
- 3. Formula for Perchloric acid: Oxoacid. "-ic acid" comes from an "-ate" anion. Perchlorate is ClO_4^- . Balance with H^+ . Formula: $HClO_4$.
- 4. Formula for Magnesium sulfate heptahydrate: Ionic hydrate. Magnesium is Mg²⁺. Sulfate is SO₄²⁻. They combine 1:1 to form MgSO₄. "hepta-" means 7 waters. Formula: MgSO₄·₇H₂O.
- 5. Formula for Vanadium (V) chloride: Ionic. V⁵⁺ and Cl⁻. Criss-cross. Formula: VCl₅.

Empirical vs. Molecular Formulas

Practice: Deducing Empirical Formulas

- 1. **Dextrose (Molecular Formula C₆H₁₂O₆):** Divide subscripts (6, 12, 6) by their greatest common divisor (6). Empirical Formula: **CH₂O**.
- 2. Adenine (Molecular Formula $C_5H_5N_5$): Divide subscripts (5, 5, 5) by 5. Empirical Formula: CHN.

- 3. Nitrous Oxide (Molecular Formula N₂O): Subscripts (2, 1) are already in their simplest whole-number ratio. Empirical Formula: N₂O.
- Octane (Molecular Formula C₈H₁₈): Divide subscripts (8, 18) by their greatest common divisor
 (2). Empirical Formula: C₄H₉.
- 5. **Hydrogen Peroxide (Molecular Formula H₂O₂):** Divide subscripts (2, 2) by 2. Empirical Formula: **HO**.

Molar Mass and Percent Composition

- Molar Mass: The mass in grams of one mole of a substance (g/mol). Calculated by summing the atomic masses of all atoms in the formula.
- Percent Composition: The percentage by mass of each element in a compound.

$$\%$$
 mass of element = $\frac{(n \times \text{molar mass of element})}{\text{molar mass of compound}} \times 100\%$

Practice: Molar Mass & Percent Composition

1. Calculate the molar mass of Barium Acetate, Ba(C₂H₃O₂)₂.

$$1(137.33\,\mathrm{g/mol}) + 4(12.01\,\mathrm{g/mol}) + 6(1.008\,\mathrm{g/mol}) + 4(16.00\,\mathrm{g/mol}) = 255.42\,\mathrm{g/mol}$$

- 2. Calculate the mass percent of nitrogen in ammonium nitrate (NH₄NO₃).
 - Molar Mass: 2(14.01 g/mol) + 4(1.008 g/mol) + 3(16.00 g/mol) = 80.05 g/mol
 - Percent N: $\frac{2 \times 14.01 \text{ g/mol}}{80.05 \text{ g/mol}} \times 100\% = 35.0\%$
- 3. Calculate the molar mass of Ibuprofen $(C_{13}H_{18}O_2)$.

$$13(12.01 \,\mathrm{g/mol}) + 18(1.008 \,\mathrm{g/mol}) + 2(16.00 \,\mathrm{g/mol}) = 206.28 \,\mathrm{g/mol}$$

- 4. Calculate the mass percent of carbon in propane (C_3H_8) .
 - Molar Mass: $3(12.01 \,\mathrm{g/mol}) + 8(1.008 \,\mathrm{g/mol}) = 44.09 \,\mathrm{g/mol}$
 - Percent C: $\frac{3 \times 12.01 \, \text{g/mol}}{44.09 \, \text{g/mol}} \times 100\% = 81.7\%$
- 5. How many moles are in 25.0 g of calcium nitrate, Ca(NO₃)₂?
 - Molar Mass: 40.08 + 2(14.01) + 6(16.00) = 164.1 g/mol
 - Moles: $25.0 \text{ g} \times \frac{1 \text{ mol}}{164.1 \text{ g}} = 0.152 \text{ mol}$

Chapter 8: Chemical Reactions

Balancing Equations and Classifying Reactions

Practice: Balancing and Classifying

- 1. _ Ca(OH)_2(aq) + _ Al_2(SO_4)_3(aq) -; _ CaSO_4(s) + _ Al(OH)_3(s)
 - Balance: Balance the polyatomic ions first. There are 3 SO₄ on the left, so put a 3 in front of CaSO₄. This creates 3 Ca, so put a 3 in front of Ca(OH)₂. Now there are 6 OH groups on the left, so put a 2 in front of Al(OH)₃ to balance the OH and the Al.
 - Answer: $3 \operatorname{Ca}(OH)_2 + \operatorname{Al}_2(SO_4)_3 \longrightarrow 3 \operatorname{CaSO}_4 + 2 \operatorname{Al}(OH)_3$
 - Classification: Two ionic compounds swap ions. This is Double Replacement.

2.
$$_{-}$$
Mg(s) + $_{-}$ Fe₂O₃(s) -; $_{-}$ Fe(s) + $_{-}$ MgO(s)

- Balance: Balance Fe first by placing a 2 in front of Fe. Balance O by placing a 3 in front of MgO. This creates 3 Mg, so place a 3 in front of Mg.
- Answer: $3 \text{Mg(s)} + \text{Fe}_2 O_3(s) \longrightarrow 2 \text{Fe(s)} + 3 \text{MgO(s)}$
- Classification: Magnesium replaces iron in the compound. This is Single Replacement.
- 3. $C_2H_4(g) + O_2(g) CO_2(g) + H_2O(g)$
 - Balance: Balance C: 2 CO₂. Balance H: 2 H₂O. Count O on right: $2 \times 2 + 2 \times 1 = 6$. Balance O on left: $3 O_2$.
 - Answer: $C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(g)$
 - Classification: Hydrocarbon reacts with oxygen. This is Combustion.
- 4. $PbSO_4(s) 2 PbSO_3(s) + O_2(g)$
 - Balance: Balance Pb and S (they are 1:1). Balance O. There are 4 on left, 5 on right. Double the lead compounds to get an even number of oxygens.
 - Answer: $2 \text{PbSO}_4(s) \longrightarrow 2 \text{PbSO}_3(s) + O_2(g)$
 - Classification: One compound breaks into multiple products. This is **Decomposition**.
- $5. P_2O_5(s) + H_2O(l) H_3PO_4(aq)$
 - Balance: Balance P by putting a 2 in front of H₃PO₄. This gives 6 H, so put a 3 in front of H₂O. Check O: 5 + 3 = 8 on left, $2 \times 4 = 8$ on right. It is balanced.
 - Answer: $P_2O_5(s) + 3H_2O(l) \longrightarrow 2H_3PO_4(aq)$
 - Classification: Two reactants form one product. This is Synthesis (Combination).

Stoichiometry and Limiting Reactants

- Stoichiometry: Using the mole ratios from a balanced chemical equation to calculate the amounts of reactants consumed or products formed.
- Limiting Reactant: The reactant that is completely consumed first in a reaction, thereby limiting the amount of product that can be formed.
- Theoretical Yield: The maximum amount of product that can be produced from the given amounts of reactants, calculated based on the limiting reactant.
- Percent Yield: The ratio of the actual yield (the amount of product actually obtained) to the theoretical yield, expressed as a percentage.

Practice: Limiting Reactant, Yield, and Excess

- 1. **Problem:** Given $2 \text{ Na} + \text{Br}_2 \longrightarrow 2 \text{ NaBr}$. If you have 46.0 g of Na and 150.0 g of Br₂, what is the theoretical yield of NaBr?
 - Molar Masses: $Na = 22.99 \, g/mol$, $Br_2 = 159.8 \, g/mol$, $NaBr = 102.89 \, g/mol$.

 - From Na: $46.0 \text{ g Na} \times \frac{1 \text{ mol Na}}{22.99 \text{ g}} \times \frac{2 \text{ mol NaBr}}{2 \text{ mol Na}} \times \frac{102.89 \text{ g NaBr}}{1 \text{ mol NaBr}} = 206 \text{ g NaBr}$ From Br₂: $150.0 \text{ g Br}_2 \times \frac{1 \text{ mol Br}_2}{159.8 \text{ g}} \times \frac{2 \text{ mol NaBr}}{1 \text{ mol NaBr}} \times \frac{102.89 \text{ g NaBr}}{1 \text{ mol NaBr}} = 193 \text{ g NaBr}$
 - Conclusion: Br₂ is the limiting reactant. The theoretical yield is 193 g NaBr.
- 2. Using the previous problem, if only 175 g of NaBr were produced, what is the percent yield?

Percent Yield =
$$\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\% = \frac{175 \text{ g}}{193 \text{ g}} \times 100\% = 90.7\%$$

- 3. Using the same problem, how many grams of the excess reactant (Na) are left over?
 - Na Used: 150.0 g Br $_2\times\frac{1\ \mathrm{mol\ Br}_2}{159.8\ \mathrm{g}}\times\frac{2\ \mathrm{mol\ Na}}{1\ \mathrm{mol\ Br}_2}\times\frac{22.99\ \mathrm{g\ Na}}{1\ \mathrm{mol\ Na}}=43.2$ g Na used

- Na Left: 46.0 g initial 43.2 g used = 2.8 g Na
- 4. For $8 \text{ Ba} + S_8 \longrightarrow 8 \text{ BaS}$, if you have 50.0 g Ba and 50.0 g S_8 , which is the limiting reactant?
 - Molar Masses: Ba = $137.33 \, \text{g/mol}$, $S_8 = 256.56 \, \text{g/mol}$.
 - Moles Ba: $50.0 \text{ g}/137.33 \text{ g/mol} \approx 0.364 \text{ mol}$ Ba. Moles BaS it can make: 0.364 mol.
 - Moles S₈: 50.0 g/256.56 g/mol \approx 0.195 mol S₈. Moles BaS it can make: $0.195 \times 8 = 1.56$ mol.
 - Conclusion: Barium produces fewer moles of product, so Ba is the limiting reactant.
- 5. For $2H_2 + O_2 \longrightarrow 2H_2O$, you react 10.0 g H_2 with 64.0 g O_2 . What is the theoretical yield of water?
 - Molar Masses: $H_2=2.016\,\mathrm{g/mol},\,O_2=32.00\,\mathrm{g/mol},\,H_2O=18.02\,\mathrm{g/mol}.$
 - From H₂: $10.0 \text{ g H}_2 \times \frac{1 \text{ mol H}_2}{2.016 \text{ g}} \times \frac{2 \text{ mol H}_2\text{O}}{2 \text{ mol H}_2} \times 18.02 \frac{\text{g}}{\text{mol}} = 89.4 \text{ g H}_2\text{O}$
 - From O₂: 64.0 g $O_2 \times \frac{1 \text{ mol } O_2}{32.00 \text{ g}} \times \frac{2 \text{ mol } H_2O}{1 \text{ mol } O_2} \times 18.02 \frac{\text{g}}{\text{mol}} = 72.1 \text{ g } H_2O$

Chapter 9: Solution Chemistry

Molarity, Dilutions, and pH

Practice Problems: Molarity, Dilution, and pH

- 1. **Molarity:** A 3.5 mL solution of Pb(C₂H₃O₂)₄ contains 0.067 g of solute. What is the molarity?
 - Molar Mass: $Pb(C_2H_3O_2)_4 = 443.4 \,g/mol.$
 - Moles: $0.067 \text{ g} \times \frac{1 \text{ mol}}{443.4 \text{ g}} \approx 1.51 \times 10^{-4} \text{ mol}$
 - Volume: $3.5 \,\mathrm{mL} = 0.0035 \,\mathrm{L}$.
 - Molarity: $M = \frac{1.51 \times 10^{-4} \text{ mol}}{0.0035 \text{ L}} = 0.043 \text{ M}$
- 2. **Dilution:** How much water must be added to $500.0\,\mathrm{mL}$ of a $2.4\,\mathrm{M}$ KCl solution to make a $1.0\,\mathrm{M}$ solution?
 - Find Final Volume (V_2): $V_2 = \frac{M_1 V_1}{M_2} = \frac{(2.4 \text{ M})(500.0 \text{ mL})}{1.0 \text{ M}} = 1200 \text{ mL}$
 - Water Added: This is the difference between the final and initial volumes: 1200 mL-500.0 mL = 700 mL
- 3. **pH:** A solution has a pH of 4.120. Find its $[H_3O=]$ concentration.

$$[\mathrm{H_{3}O} \equiv] = 10^{-\mathrm{pH}} = 10^{-4.120} = \textbf{7.59} \ \times 10^{-5} M \textbf{7.59}$$

(3 decimal places in pH \rightarrow 3 sig figs in concentration).

- 4. **Molarity:** How many grams of RbOH (Molar Mass = $102.48\,\mathrm{g/mol}$) are in $35.0\,\mathrm{mL}$ of a $5.50\,\mathrm{M}$ solution?
 - Find Moles: $n = M \times V = (5.50 \frac{\text{mol}}{\text{L}}) \times (0.0350 \text{ L}) = 0.1925 \text{ mol RbOH}$
 - Find Grams: $0.1925 \text{ mol} \times 102.48 \frac{\text{g}}{\text{mol}} = 19.7 \text{ g}$
- 5. **Dilution:** What is the concentration of a solution prepared by diluting $25.0\,\mathrm{mL}$ of $18.0\,\mathrm{M}$ sulfuric acid to a final volume of $1.50\,\mathrm{L}$?

6

$$M_2 = \frac{M_1 V_1}{V_2} = \frac{(18.0 \text{ M})(0.0250 \text{ L})}{1.50 \text{ L}} = \mathbf{0.300 \text{ M}}$$

Topics From Provided Materials NOT on the Exam

Based on the instructions provided in Exam 2 study topics.txt, certain topics covered in the Chapter 9 materials are for a future exam and will **not** be on this one. You do not need to study the following:

- Electrolytes: The classification of compounds as strong, weak, or nonelectrolytes (Electrolytes and molecular_ionic equations.pdf).
- Solubility Rules: Memorizing and applying the general solubility rules for ionic compounds in water.
- Molecular and Ionic Equations: Writing complete ionic and net ionic equations by identifying spectator ions.
- Oxidation-Reduction (Redox) Reactions: All topics from the Oxidation states and redox reactions.pdf document, including:
 - Assigning oxidation states (oxidation numbers).
 - Identifying species that are oxidized or reduced.
 - Identifying oxidizing and reducing agents.
 - Balancing redox reactions using the half-reaction method.
 - The Activity Series for predicting single replacement reactions.

width=!,height=!,pages=-