Algebra 1 Homework 3 Lee Fisher 2017-09-09

1. Page 40 #2. Consider $\phi: G \to H$ an isomorphism. Let $x \in G$ with |x| = n. This means $x^n = 1_G$. Therefore $\phi(x^n) = \phi(1_G)$, and since ϕ is an isomorphism we have $\phi(x)^n = 1_H$. So the order of $\phi(x)$ is at most n.

To prove the order is equal to n suppose there is a k < n for which $\phi(x)^k = 1_H$, this means $\phi(x^k) = 1_H$ and that $x^k = \phi^{-1}(1_H)$. Finally $x^k = 1$ which contradicts |x| = n. So $|\phi(x)| = |x|$.

If ϕ is only a homomorphism we don't get this result. Take $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_{\not\models}, +)$ by $\phi(x) = x \mod 2$. ϕ is a homomorphism but $|1| = \infty$ and $|\phi(1)| = 2$.

2. Page 40 #3. Let $\phi : G \to H$ be an isomorphism. Consider $a, b \in G$. We have $\phi(a)\phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a)$. So $\text{Im}(\phi)$ is commutative. Because ϕ is a bijection we have $\text{Im}(\phi) = H$, so H is abelian.

For the other direction note that ϕ^{-1} is also an isomorphism, and therefore if H is abelian then G will be abelian by the same argument.

More generally, if $\phi: G \to H$ is a homomorphism and G is abelian then H will be abelian provided $\text{Im}(\phi) = H$. In other words, so ϕ must be onto to ensure that if G is abelian, then so is H.

3. Page 40 #4. Consider the multiplicative groups $\mathbb{R} - 0$ and $\mathbb{C} - 0$. Consider, for sake of contradiction, an isomorpism $\phi : \mathbb{C} - 0 \to \mathbb{R} - 0$. Now, $\phi(i) \in \mathbb{R} - 0$. Say $\phi(i) = x$, then we have $\phi(i)^2 = x^2$, which means $x^2 = \phi(-1)$.

We will now prove $\phi(-1) = -1$. We have $\phi(-1)^2 = \phi(1) = 1$. This means $\phi(-1)$ equals either 1 or -1. If $\phi(-1) = 1$ then $\phi(-1) = \phi(1)$ which contradicts ϕ being one to one. So, since $\phi(-1) = -1$ we have $x^2 = -1$, where x is real. This equation has no solutions over the real numbers, this contradicts ϕ being well defined. Thus the multiplicative groups $\mathbb{C} - 0$ and $\mathbb{R} - 0$ are not isomorphic.

- 4. Page 40 #7. D_8 and Q_8 are not isomorphic. D_8 has 4 elements of order 2 (V,H,D,D') while Q_8 has only one element of order 2 (-1).
- 5. Page 40 #17. Let G be a map and consider the map $\phi: G \to G$ by $\phi(g) = g^{-1}$.

 \rightarrow Suppose ϕ is a homomorphism. Consider $a,b\in G$ then we have $b^{-1}a^{-1}=(ab)^{-1}=\phi(ab)=\phi(a)\phi(b)=a^{-1}b^{-1}$. So $b^{-1}a^{-1}=a^{-1}b^{-1}$ for all $a,b\in G$. Thus G is abelian.

 \leftarrow Suppose G is abelian. Consider $a,b\in G$. We have $\phi(ab)=(ab)^{-1}=b^{-1}a^{-1}=a^{-1}b^{-1}=\phi(a)\phi(b)$. Thus ϕ is a homomorphism.

1

6. Page 41 #25.

• Consider a vector in polar coordinates, and the product:

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} r\cos(\phi) \\ r\sin(\phi) \end{bmatrix} = \begin{bmatrix} r\cos(\phi)\cos(\theta) - r\sin(\phi)\sin(\theta) \\ r\cos(\phi)\sin(\theta) + r\sin(\phi)\cos(\theta) \end{bmatrix}$$
(1)

$$= \begin{bmatrix} r\cos(\phi + \theta) \\ r\sin(\phi + \theta) \end{bmatrix} \tag{2}$$

(3)

Multiplication by this matrix will rotate a vector in \mathbb{R}^2 through an angle of θ .

• We need to show that ϕ respects the group structure of D_{2n} to prove that ϕ is a homomorphism. We need that $\phi(r)^n = \phi(s)^2 = I$ and that $\phi(s)\phi(r) = \phi(r)^{-1}\phi(s)$.

We know that $\theta = 2\pi/n$ and that $\phi(r)$ is a rotation matrix through and angle of θ . If we multiply two rotation matrices together we will add their angles. So from this, we have $\phi(r)^n = I$.

To show $\phi(s)^2 = I$ is a simple calculation:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Done. For the last part we need $\phi(s)\phi(r) = \phi(r)^{-1}\phi(s)$. So, for the left hand side we have:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = \begin{bmatrix} \sin(\theta) & \cos(\theta) \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$$

And for the right hand side we have:

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \sin(\theta) & \cos(\theta) \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$$

So $\phi(r)$ and $\phi(s)$ satisfy all the relations that generate D_{2n} . This means ϕ will be a homomorphism from D_{2n} to $GL_2(\mathbb{R})$.

- In the previous part I showed that $\phi(r)$ and $\phi(s)$ satisfy all the relations that the generators for D_{2n} satisfy. This means the image of ϕ will be isomorphic to D_{2n} (with isomorphism ϕ). So we know ϕ must be injective, otherwise $|Im(\phi)| < |D_{2n}|$ which we know is impossible.
- 7. Page 41 #26. In the same way as the last problem we will show that $\phi(i)$ and $\phi(j)$ satisfy all the same relations as i and j satisfy as generators of Q_8 . That is: $\phi(i)^4 = I$, $\phi(i)^2 = \phi(j)^2$, and $\phi(j)^{-1}\phi(i)\phi(j) = \phi(i)^{-1}$.

The first one is easy; since $\phi(i)$ is diagonal we have $\phi(i)^2 = -I$ and $(\phi(i)^2)^2 = \phi(i)^4 = I$. We get the second one almost as easily:

$$\phi(j)^2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \phi(i)^2$$

Then we have to prove the third relation:

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -\sqrt{-1} \\ -\sqrt{-1} & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -\sqrt{-1} & 0 \\ 0 & \sqrt{-1} \end{bmatrix}$$

This proves it. We know that $\phi(i)$ and $\phi(j)$ as elements of $GL_2(\mathbb{C})$ satisfy all the relations that generate Q_8 . So just like before, ϕ will be an injective homomorphism, and the image of ϕ will be isomorphic to Q_8 .

8. Page 48 #3 We'll do both parts by constructing the Cayley tables.

Table 1: The Other Subset						
0	1	r^2	s	sr^2		
1	1	r^2	s	sr^2		
r^2	r^2	1	sr^2	s		
s	s	sr^2	1	r^2		
sr^2	sr^2	s	r^2	1		

Table 2: One Subset						
0	1	r^2	sr	sr^3		
1	1	r^2	sr	sr^3		
r^2	r^2	1	sr^3	sr		
sr	sr	sr^3	1	r^2		
sr^3	sr^3	sr	r^2	1		

Because their Cayley Tables are both tables of groups of order 4, these sets must be subgroups.

- 9. Page 48 #10(a). Let H and K be subgroups of G. Consider $H \cap K$. To prove $H \cap K$ is a subgroup we will show it is closed under multiplication and inverses. Let $x \in H \cap K$, because $x \in H$ and H is a subgroup $x^{-1} \in H$; likewise $x^{-1} \in K$. Therefore $x^{-1} \in H \cap K$.
 - Consider $x, y \in H \cap K$. Well, $x, y \in H$ so $xy \in H$, likewise $xy \in K$. So we have $xy \in H \cap K$. We conclude $H \cap K$ is a subgroup.
- 10. Page 60 #1. Find all the subgroups of $Z_45 = \langle x \rangle$, giving a generator for each. Z_45 has subgroups of order 45, 15, 9, 5, 3, and 1. To generate these subgroups we can do it in this order: $|\langle 1 \rangle| = 45$, $|\langle 3 \rangle| = 15$, $|\langle 5 \rangle| = 9$, $|\langle 15 \rangle| = 3$, $|\langle 0 \rangle| = 1$. The picture of subgroup containment looks like this.

Figure 1: Subgroups of \mathbb{Z}_{45}

- 11. Page 60 #3. The generators of $\mathbb{Z}/48\mathbb{Z}$ will be numbers less than 48 and relatively prime with 48. These are 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, and 47.
- 12. Page 60 #12(a). $Z_2 \times Z_2$ is not cyclic. The group has order 4 but the orders of its elements are: |(0,0)| = 1, |(1,0)| = 2, |(1,1)| = 2, and |(0,1)| = 2. $Z_2 \times Z_2$ has no elements of order 4 so it is not cyclic.