Proyecto Optimización

Oscar Diaz y Samuel Villada

April 2025

Modelo de Optimización basado en Rutas Completas

Variables de Decisión

.

$$x_r = \begin{cases} 1, & \text{si se escoge la ruta completa } r \in \mathcal{R} \\ 0, & \text{en otro caso} \end{cases}$$

Parámetros

- $\mathcal{R} = \{r_1, r_2, \dots, r_m\}$: Conjunto de rutas completas factibles.
- $(i,j) \in r$: Par de nodos consecutivos en la ruta r.
- d_j : Demanda del punto de venta j.
- CT: Capacidad máxima del vehículo.
- $P_a(ij)$, $P_t(ij)$, P_w : Probabilidades de accidente, tráfico y lluvia en el arco $i \to j$.
- K_{ij} : Proporción del trayecto efectivamente completado en la ruta $i \to j$ (ver siguiente sección).
- C_r : Costo total de desviación esperada de la ruta r, definido como:

$$C_r = \sum_{(i,j)\in r} [(1 - K_{ij}) + P_a(ij) + P_t(ij) + P_w]$$

Cálculo del parámetro K_{ij}

Para cada arco (i, j) presente en una ruta $r \in \mathcal{R}$, se define el parámetro K_{ij} como el cociente entre la longitud efectivamente recorrida que coincide con el camino planeado y la longitud total del camino planeado, es decir:

$$K_{ij} = \frac{\operatorname{longitud}(H^{\operatorname{real}}_{ij} \cap H^{\operatorname{plan}}_{ij})}{\operatorname{longitud}(H^{\operatorname{plan}}_{ij})}$$

Donde:

- H_{ij}^{plan} : trayecto planificado entre los nodos i y j, expresado como secuencia de arcos sobre la red vial.
- H_{ij}^{real} : trayecto efectivamente recorrido entre los nodos i y j, obtenido mediante simulación o recolección de datos reales (por ejemplo, utilizando OSMnx en Python).
- La intersección $H^{\rm real}_{ij}\cap H^{\rm plan}_{ij}$ representa los tramos efectivamente cumplidos del plan inicial.

Este parámetro mide la proporción del trayecto planeado que fue realmente recorrido sin desvíos. Un valor de $K_{ij}=1$ indica que el camino se completó según lo planeado, mientras que un valor menor implica desviaciones en el trayecto.

Función Objetivo

$$\min T = \sum_{r \in \mathcal{R}} C_r \cdot x_r \tag{1}$$

Restricciones

1. Selección de una única ruta:

$$\sum_{r \in \mathcal{R}} x_r = 1$$

2. Restricción de capacidad:

$$\sum_{r \in \mathcal{R}} \left(\sum_{j \in r} d_j \right) \cdot x_r \le CT$$