# iPark: Intelligent Parking

#### Members: Guide:

Kushagra (2000271530029) Abhinav Sajjan (2000271530006) Himanshu Mishra (2000271530024) Shreyashi Jaiswal (2000271530056) Mr. Samender Singh

# Project VIVA Presentation

# Outline

Contents of the presentation

- Introduction
- Tools and Technology Utilised
- System Overview & Architecture
- Results
- Conclusion
- Demonstration

# Introduction

### Introduction

- Project Goal: Develop an autonomous parking system using Reinforcement Learning (RL) within a Unity simulation environment.
- Background: The rapid development in AI and ML technologies has significant applications in the automotive industry, especially in autonomous driving and parking.
- Identification of the Problem:
  - Traditional parking methods are time-consuming and inefficient.
  - Increasing urbanization demands better parking solutions.

## Introduction Contd.

#### • Significance:

- Reduces time spent on parking.
- Enhances user convenience and traffic flow.
- Contributes to the development of fully autonomous vehicles.

#### • Objectives:

- Create an RL model capable of autonomous parking.
- Implement diverse and realistic parking scenarios in Unity.
- Train and evaluate the RL agent's performance.
- Provide a scalable solution for real-world applications.
- Note: For more details, refer to the report PDF file Chapter 1.



# Tools and Technologies Utilised

# Tools and Technologies Utilised

#### Reinforcement Learning Algorithms:

- Proximal Policy Optimization (PPO):
  - Advantages:
    - Stability: PPO is designed to maintain stability and reliability during training by limiting the update step size.
    - Simplicity: Easier to implement compared to other RL algorithms.
    - Performance: Often performs well across a range of tasks due to its robust training mechanism.
  - Mechanism:
    - Uses a clipped objective function to ensure the new policy does not deviate significantly from the old policy.
    - Balances exploration and exploitation effectively.
  - Suitability for iPark: Effective in environments with discrete and continuous actions, making it versatile for different parking scenarios.

# Tools and Technologies Utilised Contd.

#### Soft Actor-Critic (SAC):

#### • Advantages:

- Sample Efficiency: SAC is known for its high sample efficiency, making it suitable for environments with continuous action spaces.
- Entropy Regularization: Encourages exploration by adding an entropy term to the reward, which helps in learning diverse behaviors.
- o Performance: Generally achieves state-of-the-art results in continuous control tasks.

#### Mechanism:

- Uses both value and policy networks, optimizing them simultaneously.
- Incorporates a stochastic policy that improves exploration and robustness.

# Tools and Technologies Utilised Contd.

- Simulation Environment:
  - Unity3D Game Engine: A powerful cross-platform engine used for developing simulations and games.
  - Unity Editor: A component of Unity for designing and developing interactive 3D content.
  - Unity ML-Agents Framework: A toolkit for creating intelligent agents using RL within the Unity platform.
- Note: For more details, refer to the report PDF file Chapter 3.

# System Overview & Architecture

# System Overview & Architecture

#### System Components:

- RL Training Module: Implements RL algorithms for training the parking agent.
- Simulation Environment: Uses Unity to create realistic parking scenarios for training and testing.
- User Interface (UI) Component: Provides an interactive UI for users to interact with the system and visualize results.
- Performance Metrics Component: Tracks and analyzes the performance of the parking agent.

# System Overview & Architecture Contd.

#### Project Environment:

- Unity Engine: Central platform for creating and running the simulations.
- C-Sharp (C#) Programming Language: Used for scripting and developing components within Unity.
- Visual Studio: Integrated development environment (IDE) used for coding and debugging.
- GitHub: Version control platform for managing code and collaboration.

# System Overview & Architecture Contd.

- Project Concept:
  - Working Concept: The RL agent learns to navigate and park in various scenarios by interacting with the environment and receiving feedback.
  - Design & Development of Components: Includes the creation of simulation environments, agent behaviors, and performance tracking systems.
  - Amalgamation of Components: Integration of all system components to create a cohesive and functional autonomous parking system.
- Note: For more details, refer to the report PDF file chapter 4.

# Interaction Between Components



Fig 3.2 Interaction between components

## Data Flow



Fig 4.4 Data Flow Diagram

# Results

## Results

• Evaluation Tests: Conducted multiple tests to evaluate the efficiency and effectiveness of the parking agent.

#### • Key Metrics:

Success Rate: The percentage of successful parking attempts.

#### • Performance:

- Efficiency ranged from 78.57% to 89.38%.
- Highest efficiency model achieved 89.38%.

## Results Contd.

- Graphs & Analysis: Included detailed graphs and analysis to illustrate the agent's performance over time.
- Note: For more details, refer to the report PDF file chapter 5.

# Conclusion

## Conclusion

• Achievements: Successfully developed a robust RL-based autonomous parking system.

#### • Future Enhancements:

- Integration with Real-World Vehicles: Implementing the system in actual cars to test and improve real-world performance.
- Advanced Driver Assistance Systems (ADAS): Enhancing the system to work in conjunction with ADAS for better safety and efficiency.
- More Diverse Scenarios: Including more complex parking scenarios such as multi-level parking structures.
- Emerging Technologies: Leveraging technologies like Vehicle-to-Infrastructure (V2I) communication for better decision-making.

## Conclusion Contd.

- Project Impact: Demonstrates significant advancements in autonomous parking technology.
- Potential: Paves the way for safer, more efficient, and more convenient parking experiences.
- Contributions: Adds to the body of knowledge in machine learning applications for autonomous vehicles.
- Note: For more details, refer to the report PDF file chapter 6.

# Demonstration

Video present on the pendrive.

# References

## References

- Joy Zhang (2021). A hands-on introduction to deep reinforcement learning using Unity ML-Agents. Coder One.
   <a href="https://www.gocoder.one/blog/hands-on-introduction-to-deep-reinforcement-learning">https://www.gocoder.one/blog/hands-on-introduction-to-deep-reinforcement-learning</a>
- Code Monkey (2021). Machine Learning AI in Unity (ML-Agents). YouTube. <a href="https://tinyurl.com/ykjpwqdk">https://tinyurl.com/ykjpwqdk</a>
- U. T. (2022). Unity-Technologies/ml-agents. GitHub. <a href="https://github.com/Unity-Technologies/ml-agents">https://github.com/Unity-Technologies/ml-agents</a>
- U. T. (2022). ML-Agents Toolkit Overview <a href="https://unity-technologies.github.io/ml-agents/ML-Agents-Overview/">https://unity-technologies.github.io/ml-agents/ML-Agents-Overview/</a>

## References Contd.

- Andres Leonardo Bayona (2023). Comparative Study of SAC and PPO in Multi-Agent Reinforcement Learning Using Unity ML-Agents (Universidad de los Andes). <a href="https://repositorio.uniandes.edu.co/server/api/core/bitstreams/cadff679-f3f3-43fa-a543-d6313c0a4932/content">https://repositorio.uniandes.edu.co/server/api/core/bitstreams/cadff679-f3f3-43fa-a543-d6313c0a4932/content</a>
- Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao, Y., Henry, H., Mattar, M., Lange, D. (2020). Unity: A General Platform for Intelligent Agents (arXiv:1809.02627). arXiv. <a href="http://arxiv.org/abs/1809.02627">http://arxiv.org/abs/1809.02627</a>
- Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. (2017). Proximal Policy Optimization Algorithms (arXiv:1707.06347). arXiv. <a href="http://arxiv.org/abs/1707.0634735">http://arxiv.org/abs/1707.0634735</a>
- ABL. (2023, May 30). PPO vs SAC [Video]. YouTube. https://www.voutube.com/watch?v=ZtdtpRmoFSE

## References Contd.

- Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. (2019b). Quantifying generalization in reinforcement learning. (arXiv:1812.02341). arXiv. <a href="https://arxiv.org/abs/1812.02341">https://arxiv.org/abs/1812.02341</a>
- Lample, G. and Chaplot, D. S. (2017). Playing fps games with deep reinforcement learning. AAAI. <a href="https://ojs.aaai.org/index.php/AAAI/article/view/1082736">https://ojs.aaai.org/index.php/AAAI/article/view/1082736</a>
- Note: For more details, refer to the references section of the report PDF file.

# Thank You!

Questions?