#### Tree based methods

Alex Sanchez, Ferran Reverter and Esteban Vegas

Genetics Microbiology and Statistics Department. University of Barcelona

#### Outline

- Introduction to decision trees
- ② Data cleaning and preprocessing
- Pruning and optimization
- Olassification trees
- Regression trees
- © Ensemble methods and advanced topics
- Practical examples and exercises
- Conclusion and future directions

#### Motivation

- In many real-world applications, decisions need to be made based on complex, multi-dimensional data.
- One goal of statistical analysis is to provide insights and guidance to support these decisions.
- Decision trees provide a way to organize and summarize information in a way that is easy to understand and use in decision-making.

#### Examples

- A bank needs to have a way to decide if/when a customer can be granted a loan.
- A doctor may need to decide if a patient has to undergo a surgery or a less aggressive treatment.
- A company may need to decide about investing in new technologies or stay with the traditional ones.

In all those cases a decision tree may provide a structured approach to decision-making that is based on data and can be easily explained and justified.

#### An intuitive approach

Decisions are often based on asking several questions on available information whose answers induce binary splits on data that end up with some grouping or classification.



Figure 1: A doctor may classify patients at high or low cardiovascular risk using some type of decision tree

### Introducing decision trees

- A decision tree is a graphical representation of a series of decisions and their potential outcomes.
- It is obtained by recursively *stratifying* or *segmenting* the *feature space* into a number of simple regions.
- Each region (decision) corresponds to a *node* in the tree, and each potential outcome to a *branch*.
- The tree structure can be used to guide decision-making based on data.

### Types of decision trees

- Decision trees are simple yet reliable predictors that can be use for both classification or prediction
  - Classification Trees are *classifiers*, used when the response variable is categorical
  - **Regression Trees**, are *regression models* used to predict the values of a numerical response variable.

# Tree building with R

|         |           |                    | Missing                    |                      |
|---------|-----------|--------------------|----------------------------|----------------------|
| Package | Algorithm | Dataset<br>size    | data<br>handling           | Visual repr          |
| rpart   | RPART     | Medium<br>to large | Poor                       | Yes                  |
| caret   | Various   | Various            | Depends<br>on<br>algorithm | Depends on algorithm |
| tree    | CART      | Small to medium    | Poor                       | Yes                  |

# Tree building with Python

|            |                                            | Dataset            | Missing<br>data                                    | _                                          |
|------------|--------------------------------------------|--------------------|----------------------------------------------------|--------------------------------------------|
| Package    | Algorithm                                  | size               | handling                                           | Visual repr                                |
| scikit-lea | a <b>r6</b> ART,<br>ID3, C4.5              | Small to<br>medium | Poor<br>(requires<br>preprocess-<br>ing)           | Yes (plot_tree())                          |
| xgboost    | Gradient<br>Boosted<br>Trees               | Medium<br>to large | Good<br>(handles<br>missing<br>values<br>natively) | Limited<br>(requires<br>external<br>tools) |
| lightgbm   | Gradient-<br>based<br>One-Side<br>Sampling | Large              | Good<br>(handles<br>missing<br>values              | Limited (requires external tools)          |

# Building the trees

- As with any model, we aim not only at construting trees.
- We wish to build good trees and, if possible, optimal trees in some sense we decide.
- In order to build good trees we must decide
  - How to construct a tree?
  - How to optimize the tree?
  - How to evaluate it?

# Decision Trees are Supervised Learners

- Classification / Regression: Supervised Learning tasks:
- ullet There is a *learning set*  $\mathcal{L} = \{(\mathbf{X_i}, \mathbf{Y_i})\}_{i=1}^n$
- ullet And depending of Y we have:
  - Classification:  $\mathbf{X} \in \mathbb{R}^d$ ,  $Y \in \{-1, +1\}$
  - $\bullet \ \ \mathsf{Regression} \ \mathbf{X} \in \mathbb{R}^d, \quad Y \in \mathbb{R}.$

#### Trees vs Decision Trees

- A tree is a set of nodes and edges organized in a hierarchical fashion. In contrast to a graph, in a tree there are no loops.
- A decision tree is a tree where each split node stores a boolean test function to be applied to the incoming data. Each leaf stores the final answer (predictor)



#### Additional notation

- A node is denoted by t.
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- $\bullet$  The collection of all nodes in the tree is denoted T
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- A split will be denoted by s.
- The set of all splits is denoted by S.



# Building a tree

- A binary decision tree is built by defining a series of (recursive) splits on the feature space.
- The splits are decided in such a way that the associated learning task is attained
  - by setting thresholds on the variables values,
  - that induce paths in the tree,
- The ultimate goal of the tree is to be able to use a combination of the splits to accomplish the learning task with as small an error as possible.

#### Trees partition the space

- A tree represents a recursive splitting of the space.
  - Every node of interest corresponds to one region in the original space.
  - Two child nodes occupy two different regions.
  - Together, they yield same region as that of the parent node.
- In the end, every leaf node is assigned with a class (or value) and a test point is assigned with the class (or value) of the leaf node it lands in.



# Different splits are possible

• It is always possible to split a space in distinct ways



- Some ways perform better than other for a given task, but rarely will they be perfect.
- So we aim at combining splits to find a better rule.

# Building a decision tree

Tree building involves the following three elements:

- The selection of the splits, i.e., how do we decide which node (region) to split and how to split it?
  - How to select from the pool of candidate splits?
  - What are appropriate goodness of split criteria?
  - when to declare a node terminal and stop splitting?
- 4 How to assign each terminal node to a class
- 3 How to ensure the Tree is the best possible we can build.

#### TB 1.1 - Split selection

- To build a Tree, questions have to be generated that induce splits based on the value of a single variable.
- Ordered variable  $X_j$ :
  - Is  $X_j \leq c$ ? for all possible thresholds c.
  - Split lines: parallel to the coordinates.
- Categorical variables,  $X_j \in \{1, 2, \dots, M\}$ :
  - Is  $X_j \in A$ ?, where  $A \subseteq M$ .
- The pool of candidate splits for all p variables is formed by combining all the generated questions.
- With the pool of candidate splits, next step is to decide *which* one to use when constructing the decision tree.

# TB 1.2.1 - Goodness of Split

- Intuitively, when we split the points we want the region corresponding to each leaf node to be "pure".
- That is, we aim at regions where most points belong to the same class.
- With this goal in mind we select splits by measuring their "goodness of split" using some of the available *Impurity* fuctions introduced later.

# TB 1.2.2 - Good splits vs bad splits



# TB 1.2.3 - Measuring homogeneity

- In order to measure homogeneity, or as called here, purity, of splits we rely on different Impurity functions
- These functions allow us to quantify the extent of homogeneity for a region containing data points from possibly different classes.
  - A region will be more pure or more homogeneous the less variable is the set of points it contains.
  - In the image in TB 1.2.2 regions on the right of the image are homogeneous that is *purer* than the heterogeneous regions on the left.

### TB 1.2.4 - Impurity functions

An **impurity function** is a function  $\Phi$  defined on the set of all K-tuples of numbers  $\mathbf{p}=(p_1,\cdots,p_K)$  s.t.  $p_j\geq 0, \; \sum_{j=1}^K p_j=1$ ,

$$\Phi:(p_1,\cdots,p_K)\to [0,1]$$

with the properties:

- $\ensuremath{\mathbf{0}}$   $\Phi$  is maximum only for the uniform distribution, that is all the  $p_j$  are equal.
- ②  $\Phi$  is minimum only at points  $(1,0,\ldots,0)$ ,  $(0,1,0,\ldots,0)$ ,  $\ldots$ ,  $(0,0,\ldots,0,1)$ , i.e., when the probability of being in a certain class is 1 and 0 for all the other classes.
- $\ \ \Phi$  is a symmetric function of  $p_1,\cdots,p_K$ , i.e., if we permute  $p_j,$   $\Phi$  remains constant.

# TB 1.2.5 - Some Impurity Functions

The functions below are commonly used to measure impurity.

- $\bullet$  Entropy:  $\Phi_E(\mathbf{p}) = -\sum_{j=1}^K p_j \log(p_j)$  .
- $\bullet$  Gini Index:  $\Phi_G(\mathbf{p}) = 1 \sum_{j=1}^K p_j^2.$
- Misclassification rate:  $\Phi_M(\mathbf{p}) = \sum_{i=1}^K p_j (1-p_j)$ .
- In practice, only the first two are recommended because misclassification rate is not sensitive enough to differences in class probabilies.

#### TB 1.2.5 Impurity functions behavior



Node impurity functions for the two-class case. The entropy function (rescaled) is the red curve, the Gini index is the green curve, and the resubstitution estimate of the misclassification rate is the blue curve.

### TB 1.2.6 - Impurity measure of a split

• Given an impurity function  $\Phi$ , a node t, and given  $p(j \mid t)$ , the estimated posterior probability of class j given node t, the impurity measure of t, i(t), is:

$$i(t) = \phi\left(p(1\mid t), p(2\mid t), \dots, p(K\mid t)\right)$$

 That is, the impurity measure of a split (or a node) is the impurity function computed on probabilities associated (conditional) with a node.

# TB 1.2.7 - Goodness of a split

• Once we have defined i(t), we define the goodness of split s for node t, denoted by  $\Phi(s,t)$  :

$$\Phi(s,t) = \Delta i(s,t) = i(t) - p_R i\left(t_R\right) - p_L i\left(t_L\right)$$

• The best split for the single variable  $X_j$  is the one that has the largest value of  $\Phi(s,t)$  over all  $s\in\mathcal{S}_j$ , the set of possible distinct splits for  $X_j$ .

#### TB 1.2.8 - Impurity score for a node

- ullet The impurity, i(t), of a node is based solely on the estimated posterior probabilities of the classes
  - That is, it doesn't account for the size of t.
- This is done by the *impurity score* of t, defined as  $I(t)=i(t)\cdot p(t)$ , a weighted impurity measure of node t that takes into account:
  - The estimated posterior probabilities of the classes,
  - ullet The estimated proportion of data that go to node t.

# TB 1.2.9 - Applications of I(t)

- $\bullet$  I(t) can be used to:
  - Define the aggregated impurity of a tree, by adding the impurity scores of all terminal leaves.
  - Provide a weighted measure of impurity decrease for a split:  $\Delta I(s,t) = p(t)\Delta i(s,t)$ .
  - Define a criteria for stop splitting a tree (see below).

# TB 1.2.10 - Entropy as an impurity measure

• The entropy of a node, t, that is split in n child nodes  $t_1$ ,  $t_2$ , ...,  $t_n$ , is:

$$\Phi_{E}(\mathbf{p}) = H(\mathbf{t}) = -\sum_{i=1}^{n} \underbrace{P\left(t_{i}\right)}_{p_{i}} \log_{2} P\left(t_{i}\right)$$

### TB 1.2.11 - Goodness of split based on entropy

- From here, an information gain (that is impurity decrease) measure can be introduced.
- Information theoretic approach that compares
  - the entropy of the parent node before the split to
  - that of a weighted sum of the child nodes after the split where the weights are proportional to the number of observations in each node.

#### TB 1.2.12 - Information gain

• For a split s and a set of observations (a node) t, information gain is defined as:

$$IG(t,s) = \text{ (original entr.) } - \text{ ( entr. after split)}$$
 
$$IG(t,s) = H(t) - \sum_{i=1}^n \frac{|t_i|}{t} H\left(x_i\right)$$

# Example 1: Pears vs Apples

Consider the problem of designing an algorithm to automatically differentiate between apples and pears (class labels) given only their width and height measurements (features).

| Width | Height | Fruit |  |
|-------|--------|-------|--|
| 7.1   | 7.3    | Apple |  |
| 7.9   | 7.5    | Apple |  |
| 7.4   | 7.0    | Apple |  |
| 8.2   | 7.3    | Apple |  |
| 7.6   | 6.9    | Apple |  |
| 7.8   | 8.0    | Apple |  |
| 7.0   | 7.5    | Pear  |  |
| 7.1   | 7.9    | Pear  |  |
| 6.8   | 8.0    | Pear  |  |
| 6.6   | 7.7    | Pear  |  |
| 7.3   | 8.2    | Pear  |  |
| 7.2   | 7.9    | Pear  |  |

### Example 1. Entropy Calculation



$$H(X) = -\frac{4}{7} \cdot log_2(\frac{4}{7}) - \frac{3}{7} \cdot log_2(\frac{3}{7})$$
$$= 0.4613 + 0.5239 = 0.9852$$

$$H(X) = -\frac{6}{6} \cdot \log_2(\frac{6}{6}) = 0$$



$$H(X) = -\frac{6}{6} \cdot log_2(\frac{6}{6}) = 0$$

#### Example 1. Information Gain



$$IG(X, F) = 1 - \frac{6}{12} \cdot (0) - \frac{6}{12} \cdot (0) = 1$$

- Maximizing information gain is one possible criteria to choose among splits.
- In order to avoid excessive complexity it is usually decided to stop splitting when information gain does not compensate for increase in complexity.

#### TB 1.3.2 Stop splitting criteria

In practice, stop splitting is decided when:

$$\max_{s \in S} \Delta I(s,t) < \beta,$$

#### where:

- $\Delta I$  represents the information gain associated with an optimal split s and a node t,
- and  $\beta$  is a pre-determined threshold.

## TB 1. Summary

- Decision trees are built by iteratively partitioning data into smaller regions based on feature values.
- Splits are aimed at producing purer nodes, that contains mostly data from one class.
- Homogeneity is measured by impurity functions such as Entropy, Gini Index or Misclassification rate
- The best split is chosen from candidate splits as the one that maximizes impurity reduction for example through *Information* Gain
- Tree growth continues until impurity reduction is minimal, or a predefined depth or node size threshold is reached.

## Example 2. The PIMA database

Rows: 768

 The Pima Indian Diabetes dataset contains 768 individuals (female) and 9 clinical variables.

```
Columns: 9
$ pregnant <dbl> 6, 1, 8, 1, 0, 5, 3, 10, 2, 8, 4, 10, 10,
$ glucose <dbl> 148, 85, 183, 89, 137, 116, 78, 115, 197,
$ pressure <dbl> 72, 66, 64, 66, 40, 74, 50, NA, 70, 96, 99
$ triceps <dbl> 35, 29, NA, 23, 35, NA, 32, NA, 45, NA, NA
$ insulin <dbl> NA, NA, NA, 94, 168, NA, 88, NA, 543, NA,
$ mass
        <dbl> 33.6, 26.6, 23.3, 28.1, 43.1, 25.6, 31.0,
$ pedigree <dbl> 0.627, 0.351, 0.672, 0.167, 2.288, 0.201,
          <dbl> 50, 31, 32, 21, 33, 30, 26, 29, 53, 54, 30
$ age
$ diabetes <fct> pos, neg, pos, neg, pos, neg, pos, neg, pos
```

## Example 2. Looking at the data

- These Variables are known to be related with cardiovascular diseases.
- It seems intuitive to use these variables to decide if a person is affected by diabetes

|                  | p0     | p25      | p50      | p75       | p100   | hist      |
|------------------|--------|----------|----------|-----------|--------|-----------|
| ${\tt diabetes}$ | NA     | NA       | NA       | NA        | NA     | <na></na> |
| pregnant         | 0.000  | 1.00000  | 3.0000   | 6.00000   | 17.00  |           |
| glucose          | 44.000 | 99.00000 | 117.0000 | 141.00000 | 199.00 |           |
| pressure         | 24.000 | 64.00000 | 72.0000  | 80.00000  | 122.00 |           |
| triceps          | 7.000  | 22.00000 | 29.0000  | 36.00000  | 99.00  |           |
| insulin          | 14.000 | 76.25000 | 125.0000 | 190.00000 | 846.00 |           |
| mass             | 18.200 | 27.50000 | 32.3000  | 36.60000  | 67.10  |           |
| pedigree         | 0.078  | 0.24375  | 0.3725   | 0.62625   | 2.42   |           |
| age              | 21.000 | 24.00000 | 29.0000  | 41.00000  | 81.00  |           |
|                  |        |          |          |           |        |           |

#### Ex. 2. Building a classification tree

- We wish to predict the probability of individuals in being diabete-positive or negative.
  - We start building a tree with all the variables

```
library(rpart)
model1 <- rpart(diabetes ~., data = PimaIndiansDiabetes2)</pre>
```

## Ex.2. Plotting the tree (1)



## Ex. 2. Plotting the tree (Nicer)



## TB 2 - Class Assignment

- The decision tree classifies new data points as follows.
  - We let a data point pass down the tree and see which leaf node it lands in.
  - The class of the leaf node is assigned to the new data point.
     Basically, all the points that land in the same leaf node will be given the same class.
  - This is similar to k-means or any prototype method.

## TB 2.1 - Class Assignment Rules

- A class assignment rule assigns a class  $j=1,\cdots,K$  to every terminal (leaf) node  $t\in \tilde{T}.$
- The class is assigned to node t is denoted by  $\kappa(t)$ ,
  - E.g., if  $\kappa(t)=2$ , all the points in node t would be assigned to class 2.
- If we use 0-1 loss, the class assignment rule picks the class with maximum posterior probability:

$$\kappa(t) = \arg\max_{j} p(j \mid t)$$

- Let's assume we have built a tree and have the classes assigned for the leaf nodes.
- Goal: estimate the classification error rate for this tree.
- We use the *resubstitution estimate* r(t) for the probability of misclassification, given that a case falls into node t. This is:

$$r(t) = 1 - \max_{j} p(j \mid t) = 1 - p(\kappa(t) \mid t)$$

# TB 2.3. Estimating the error rate (2)

- Denote R(t) = r(t)p(t), that is the miscclassification error rate weighted by the probability of the node.
- $\bullet$  The resubstitution estimation for the overall misclassification rate R(T) of the tree classifier T is:

$$R(T) = \sum_{t \in \tilde{T}} R(t)$$

#### Example 2: Individual prediction

Consider individuals 521 and 562

|     | pregnant | glucose | pressure | triceps | ınsulın | ${\tt mass}$ | pedigree |
|-----|----------|---------|----------|---------|---------|--------------|----------|
| 521 | 2        | 68      | 70       | 32      | 66      | 25.0         | 0.18     |
| 562 | 0        | 198     | 66       | 32      | 274     | 41.3         | 0.502    |

521 562

neg pos

Levels: neg pos

- If we follow individuals 521 and 562 along the tree, we reach the same prediction.
- The tree provides not only a classification but also an explanation.

#### Example 2: How accurate is the model?

• It is straightforward to obtain a simple performance measure.

```
predicted.classes<- predict(model1, PimaIndiansDiabetes2,
mean(predicted.classes == PimaIndiansDiabetes2$diabetes)</pre>
```

[1] 0.8294271

#### Example 2: Is the Tree optimal?

- The question becomes harder when we go back and ask if we obtained the best possible tree.
- In order to answer this question we must study tree construction in more detail.

## TB 3.1 Optimizing the Tree

- Trees obtained by looking for optimal splits tend to overfit: good for the data in the tree, but generalize badly and tend to fail more in predictions.
- In order to reduce complexity and overfitting, while keeping the tree as good as possible, tree pruning may be applied.
- Pruning works removing branches that are unlikely to improve the accuracy of the model on new data.

## TB 3.2 Pruning methods

- There are different pruning methods, but the most common one is the cost-complexity pruning algorithm, also known as the weakest link pruning.
- The algorithm works by adding a penalty term to the misclassification rate of the terminal nodes:

$$R_{\alpha}(T) = R(T) + \alpha |T|$$

where  $\alpha$  is the parameter that controls the trade-off between tree complexity and accuracy.

# TB 3.3 Cost complexity pruning

- Start by building a large tree that overfits the data.
- Then, use cross-validation to estimate the optimal value of alpha that minimizes the generalization error.
- Finally, prune the tree by removing the branches that have a smaller improvement in impurity than the penalty term multiplied by alpha.
- Iterate the process until no more branches can be pruned, or until a minimum tree size is reached.

#### Regression modelling with trees

- When the response variable is numeric, decision trees are regression trees.
- Option of choice for distinct reasons
  - The relation between response and potential explanatory variables is not linear.
  - Perform automatic variable selection.
  - Easy to interpret, visualize, explain.
  - Robust to outliers and can handle missing data

## Classification vs Regression Trees

| Aspect       | Regression Trees               | Classification Trees     |  |
|--------------|--------------------------------|--------------------------|--|
| Outcome var. | Continuous                     | Categorical              |  |
| type         |                                |                          |  |
| Goal         | To predict a numerical value   | To predict a class label |  |
| Splitting    | Mean Squared Error,            | Gini Impurity, Entropy,  |  |
| criteria     | Mean Abs. Error                | etc.                     |  |
| Leaf node    | Mean or median of the          | Mode or majority class   |  |
| prediction   | target variable in that region | of the target variable   |  |
| Examples of  | Predicting housing             | Predicting customer      |  |
| use cases    | prices, predicting stock       | churn, predicting        |  |
|              | prices                         | high/low risk in diease  |  |
| Evaluation   | Mean Squared Error,            | Accuracy, Precision,     |  |
| metric       | Mean Absolute Error,           | Recall, F1-score, etc.   |  |
|              | R-square                       | <□▶ <週≯ <필≯ <필≯ < 글      |  |
|              |                                |                          |  |

#### Regression tree example

- The airquality dataset from the datasets package contains daily air quality measurements in New York from May through September of 1973 (153 days).
- The main variables include:
  - Ozone: the mean ozone (in parts per billion) ...
  - Solar.R: the solar radiation (in Langleys) ...
  - Wind: the average wind speed (in mph) ...
  - Temp: the maximum daily temperature (°F) ...
- Main goal : Predict ozone concentration.

#### Non linear relationships!

```
aq <- datasets::airquality
color <- adjustcolor("forestgreen", alpha.f = 0.5)
ps <- function(x, y, ...) { # custom panel function
   panel.smooth(x, y, col = color, col.smooth = "black", cer
}
pairs(aq, cex = 0.7, upper.panel = ps, col = color)</pre>
```



# Building the tree (1): Splitting

- Consider:
  - all predictors  $X_1, \dots, X_n$ , and
  - all values of cutpoint s for each predictor and
- For each predictor find boxes  $R_1, \dots, R_J$  that minimize the RSS, given by:

$$\sum_{j=1}^{J} \sum_{i \in R_j} \left( y_i - \hat{y}_{R_j} \right)^2$$

where  $\hat{y}_{R_s}$  is the mean response for the training observations within the j th box.

# Building the tree (2): Splitting

• To do this, define the pair of half-planes

$$R_1(j,s) = \left\{ X \mid X_j < s \right\} \text{ and } R_2(j,s) = \left\{ X \mid X_j \geq s \right\}$$

and seek the value of j and s that minimize the equation:

$$\sum_{i: x_i \in R_1(j,s)} \left( y_i - \hat{y}_{R_1} \right)^2 + \sum_{i: x_i \in R_2(j,s)} \left( y_i - \hat{y}_{R_2} \right)^2.$$

#### Building the tree (3): Prediction

- Once the regions have been created we predict the response using the mean of the training observations in the region to which that observation belongs.
- In the example, for an observation belonging to the shaded region, the prediction would be:



$$\hat{y} = \frac{1}{4}(y_2 + y_3 + y_5 + y_9)$$



## Example: A regression tree

```
Regression tree:
tree::tree(formula = Ozone ~ ., data = aq_train, split = "d
Variables actually used in tree construction:
[1] "Temp" "Wind" "Solar.R" "Day"
```

Distribution of residuals:

Number of terminal nodes: 8

Residual mean deviance: 285.6 = 21420 / 75

Min. 1st Qu. Median Mean ⟨3rd⟨Qu.⟨≅⟩ ⟨≅Max‡ ୬०९℃

## Example: Plot the tree



# Prunning the tree (1)

- As before, cost-complexity prunning can be applied
- We consider a sequence of trees indexed by a nonnegative tuning parameter  $\alpha$ .
- For each value of  $\alpha$  there corresponds a subtree  $T\subset T_0$  such that:

$$\sum_{m=1}^{|T|} \sum_{y_i \in R_m} \left( y_i - \hat{y}_{R_m} \right)^2 + \alpha |T| \quad (*)$$

is as small as possible.

#### Tuning parameter $\alpha$

- $oldsymbol{lpha}$  controls a trade-off between the subtree's complexity and its fit to the training data.
- When  $\alpha = 0$ , then the subtree T will simply equal  $T_0$ .
- As  $\alpha$  increases, there is a price to pay for having a tree with many terminal nodes, and so (\*) will tend to be minimized for a smaller subtree.
- Equation (\*1) is reminiscent of the lasso.
- ullet lpha can be chosen by cross-validation .

# Optimizing the tree $(\alpha)$

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- ② Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of  $\alpha$ .
- ① Use K-fold cross-validation to choose  $\alpha$ . That is, divide the training observations into K folds. For each  $k=1,\ldots,K$ :
  - lacksquare Repeat Steps 1 and 2 on all but the k th fold of the training data.
  - **②** Evaluate the mean squared prediction error on the data in the left-out k th fold, as a function of  $\alpha$ .

Average the results for each value of  $\alpha$ . Pick  $\alpha$  to minimize the average error.

Return the subtree from Step 2 that corresponds to the
 chosen value of α

#### Example: Prune the tree

```
Regression tree:

tree::tree(formula = Ozone ~ ., data = aq_train, split = "c
Variables actually used in tree construction:

[1] "Temp" "Wind" "Solar.R" "Day"

Number of terminal nodes: 8
```

Residual mean deviance: 285.6 = 21420 / 75

Distribution of residuals:

Min. 1st Qu. Median Mean ⟨3rd⟨Qu.⟨≅⟩ ⟨≅Max‡ ୬०९℃

#### Trees have many advantages

- Trees are very easy to explain to people.
- Decision trees may be seen as good mirrors of human decision-making.
- Trees can be displayed graphically, and are easily interpreted even by a non-expert.
- Trees can easily handle qualitative predictors without the need to create dummy variables.

#### But they come at a price

- Trees generally do not have the same level of predictive accuracy as sorne of the other regression and classification approaches.
- Additionally, trees can be very non-robust: a small change in the data can cause a large change in the final estimated tree.

#### References

- A. Criminisi, J. Shotton and E. Konukoglu (2011) Decision Forests for Classification, Regression ... Microsoft Research technical report TR-2011-114
- Efron, B., Hastie T. (2016) Computer Age Statistical Inference. Cambridge University Press. Web site
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013).
   An introduction to statistical learning (Vol. 112). Springer.
   Web site

# Complementary references

- Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.
- Brandon M. Greenwell (202) Tree-Based Methods for Statistical Learning in R. 1st Edition. Chapman and Hall/CRC DOI: https://doi.org/10.1201/9781003089032
- Genuer R., Poggi, J.M. (2020) Random Forests with R. Springer ed. (UseR!)

#### Resources

- Applied Data Mining and Statistical Learning (Penn Statte-University)
- R for statistical learning
- CART Model: Decision Tree Essentials
- An Introduction to Recursive Partitioning Using the RPART Routines