H 04 9/16

BEST AVAILABLE COPY

19 BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift 25 21 388

Aktenzeichen:

P 25 21 388.1

Ø

Anmeldetag:

14. 5.75

Offenlegungstag:

25.11.76

30 Unionspriorität:

@ 3 3

Bezeichnung:

Schaltungsanordnung zur Übertragung digitaler Daten

0

Anmelder:

Hartmann & Braun AG, 6000 Frankfurt

0

Erfinder:

Fröhlich, Randolf, Ing.(grad.); Hillebrand, Rainer, Dipl.-Ing.;

Kleegrewe, Claus, Dr.-Ing.; 5628 Heiligenhaus

7 000 17 C7 1A

13.5.1975

Hartmann & Braun Aktiengesellschaft

2521388

Schaltungsanordnung zur Übertragung digitaler Daten

Die Erfindung betrifft eine Schaltungsanordnung zur Übertragung digitaler Daten zwischen einer Leitstelle und mehreren unabhängig voneinander anwählbaren Meßstellen, bei der die Übertragung mehrerer impulskodierter Daten in einem vorzugsweise rechnergesteuerten Zyklus zeitmultiplex über einen Datenweg erfolgt.

Infolge des hohen Automatisierungsgrades und der Kompliziertheit heutiger Industrieanlagen ist es unerläßlich, den jeweiligen Prozeßablauf an vielen Stellen durch Meßeinrichtungen
zu überwachen. Die von den Meßeinrichtungen gelieferten Meßwerte
werden einer Leitstelle zugeführt und dort in übersichtlicher
Form zur Anzeige gebracht. Daneben ist in der Leitstelle meist

die Möglichkeit zur Betätigung von in der Anlage enthaltenen Stell- und Steuereinrichtungen gegeben. Die Auswertung von Meßwerten sowie die Befehlsabgabe an Stell- und Steuerein-richtungen erfolgt oft durch einen Prozeßrechner.

Dieses Verfahren zur Prozeßüberwachung und -steuerung setzt einen engen Kontakt zwischen der Leitstelle und den Meß- und Regeleinrichtungen voraus. Die Möglichkeit eines Eingriffes in den Prozeßablauf durch den Prozeßrechner oder das Bedienungspersonal der Leitstelle muß unmittelbar dann gegeben sein, wenn die Notwendigkeit eines Eingriffes anhand bestimmter Meßwerte erkannt wird.

Im einfachsten Fall ist diese Forderung dadurch zu realisieren, daß jede der Meß- und Regeleinrichtungen über eine eigene Leitung mit der Leitstelle verbunden ist. Bei diesem Verfahren ergibt sich jedoch insbesondere bei einer großen Anzahl von Meß- und Regeleinrichtungen ein hoher Verdrahtungsaufwand.

Andererseits ist es bekannt, die Abfrage von Meßwerten in einem von der Leitstelle gesteuerten Zyklus vorzunehmen und viele Daten zeitmultiplex über einen Datenweg zu übertragen. Eine Schaltungsanordnung, der dieses Prinzip zugrundeliegt und die neben der Abfrage von Meßwerten auch die Befehlsabgabe an Stell- und Steuerglieder ermöglicht, ist in der Zeitschrift "Radio Elektronik Schau", Heft 5/73 beschrieben.

Die Schaltungsanordnung besteht im wesentlichen aus mehreren Sender- und Empfängermodulen, die an verschiedenen Meßstellen installiert und über zweiadrige Leitungen mit einem Multiplexer verbunden sind. Vom Multiplexer ist eine zweiadrige, in ihrer Länge auf 3 km begrenzte Leitung zu einem in einer Leitstelle befindlichen Rechner hingeführt. Während ein Sendermodul die Übermittlung von Meßwerten zur Leitstelle übernimmt, ist ein Empfängermodul dann eingesetzt, wenn an einer Meßstelle ein Stell- oder Steuerglied zu betätigen ist. Der Multiplexer ist von der Leitstelle durch den Rechner steuerbar.

Die Datenübertragung von der Leitstelle zum Multiplexer bzw. vom Multiplexer zu den Sender- und Empfängermodulen erfolgt in digitaler Form durch Stromimpulse. Da ein Sendermodul jedoch analoge Meßwerte übermitteln soll und durch die Empfängermodule analoge Befehle an Stell- und Steuerglieder ergehen sollen, ist jedem Sendermodul ein Analog-Digital-Umsetzer und jedem Empfängermodul ein Digital-Analog-Umsetzer vorgeschaltet.

Als nachteilig ist bei der beschriebenen Schaltungsanordnung anzusehen, daß zwischen jedem Sender- bzw. Empfängermodul und dem Multiplexer jeweils eine zweiadrige Leitung erforderlich ist, deren Bandbreite in keiner Weise ausgenutzt wird. Dies trifft insbesondere dann zu, wenn die Sender- bzw. Empfängermodule räumlich getrennt angeordnet sind. In einem solchen Fall ist dann zwar nur eine zweiadrige Leitung von

der Leitstelle zum Multiplexer erforderlich, doch müssen von dort mehrere, unter Umständen lange Leitungen zu den einzelnen Sender- und Empfängermodulen hingeführt werden.

Ferner muß jedem Sender- bzw. Empfängermodul die erforderliche Betriebsspannung über weitere Leitungen zugeführt werden.

Aufgabe der vorliegenden Erfindung ist es daher, eine einfache Schaltungsanordnung der obengenannten Art zu schaffen, bei der die Anzahl der erforderlichen Datenwege gegenüber bekannten Schaltungsanordnungen reduziert ist und die eine Übertragung der Versorgungsspannung von an den Meßstellen befindlichen Geräten über die bestehenden Datenwege ermöglicht, wobei gleichzeitig die Störüberwachung und die Einhaltung der Bedingungen bei explosionsgeschützten Anlagen vereinfacht wird.

Erfindungsgemäß ist diese Aufgabe dadurch gelöst, daß zur Datenübertragung und zur Stromversorgung der Meßstellen ein zweiadriger Bus eingesetzt ist, daß die Leitstelle einen Adressensender und einen Datenempfänger enthält, daß jeder Meßstelle ein Adressenempfänger und ein Datensender zugeordnet ist und daß jeder Adressenempfänger einen Vergleich zwischen einer vom Adressensender ausgesendeten Adresse und einer Festadresse durchführt und bei Übereinstimmung der Adressen den Datensender zur Meßwertausgabe veranlaßt. Eine Alternativlösung der Erfindung sieht vor, daß zur Datenübertragung und zur Stromversorgung der Meßstellen

609848/0411

ein dreiadriger Bus eingesetzt ist, daß die Leitstelle einen Adressensender und einen Datenempfänger enthält, daß jeder Meßstelle ein Adressenempfänger und ein Datensender zugeordnet ist und daß jeder Adressenempfänger einen Vergleich zwischen einer vom Adressensender ausgesendeten Adresse und einer Festadresse durchführt und bei Übereinstimmung der Adressen den Datensender zur Meßwertausgabe veranlaßt.

Die Erfindung ist anhand von Fig. 1 bis 3 der Zeichnung näher erläutert. Es zeigen:

- Fig. 1 ein vereinfachtes Blockschaltbild der Schaltungsanordnung,
- Fig. 2 ein vorteilhaftes Ausführungsbeispiel der Schaltungsanordnung und
- Fig. 3 mehrere Impulsdiagramme.

Einander entsprechende Teile sind mit dem gleichen Bezugszeichen versehen.

In Fig. 1 ist mit 1 eine Leitstelle bezeichnet, die einen Rechner 2, einen Adressensender 3, einen Datenempfänger 4 und digitale Anzeigegeräte 5 enthält. Es sind weiter mit 6 Adressenempfänger und mit 7 Datensender bezeichnet, denen analoge Meßwert \mathbf{x}_1 bis \mathbf{x}_n zugeführt sind. Die Verbindung

zwischen der Leitstelle 1 und den Meßstellen ist durch eine zweiadrige Sammelleitung 8 hergestellt, die im weiteren mit "Bus" bezeichnet ist.

Die Schaltungsanordnung zeichnet sich durch folgende Wirkungsweise aus: Aufgrund eines Auslösesignals des Rechners 2 erzeugt der Adressensender 3 eine aus Impulsen bestehende Adresse und leitet diese sämtlichen am Bus 8 angeschlossenen Adressenempfängern 6 zu. Jeder Adressenempfänger 6 führt nun einen Vergleich zwischen der ausgesendeten Adresse und einer ihm zugeordneten Festadresse durch. Wird die Identität der beiden Adressen festgestellt, so erhält der Datensender 7 einen Freigabeimpuls, der die Abgabe des jeweiligen Meßwertes x, an den Bus 8 bewirkt. Die Übertragung des Meßwertes x, erfolgt ebenfalls in impulskodierter Form, Der in der Leitstelle 1 enthaltene Datenempfänger 4 führt nun die Dekodierung der Impulskombination durch, so daß der jeweilige Meßwert x_i durch eines der digitalen Anzeigegeräte 5 zur Anzeige gebracht werden kann. Die Abfragefolge der Meßwerte x_1 bis x_n wird in dem dargestellten Ausführungsbeispiel durch den Rechner 2 bestimmt, der jedoch durch eine einfachere Ablaufsteuerung ersetzbar ist; gleichzeitig ist eine Handanwahl der Adressenempfänger 6 durch das Bedienungspersonal der Leitstelle 1 möglich.

Die beschriebene Schaltungsanordnung bezieht sich aus Gründen der Übersichtlichkeit nur auf ein System zur Abfrage von Meß-werten. Die Anwendungsmöglichkeiten der Schaltungsanordnung

sind aber keineswegs auf dieses Beispiel beschränkt. Vielmehr kann sie zur Übertragung weiterer Daten (Anforderung von Meldungen, Befehlsabgabe an Steuerglieder, Ansteuerung von Stellgliedern) herangezogen werden. Eine derartig hohe Ausnutzung des zweiadrigen Busses 8 gestattet den Aufbau einer Schaltungsanordnung der obengenannten Art mit einem Minimum an Verdrahtung und bringt daher auch wesentliche Vereinfachungen bei der Planung und der Störüberwachung mit sich.

Der Adressensender 3 besteht gemäß Fig. 2 aus einem Oszillator 9, einem Schieberegister lo, einem Adressenspeicher 11, einer logischen Schaltung 12, einem elektronischen Umschalter 13 und einem Impulszähler 14. Die Aussendung einer Adresse wird durch ein Auslösesignal des Rechners 2 eingeleitet. Dieses Auslösesignal hat die Übergabe einer Adresse aus dem Adressenspeicher 11 in das Schieberegister lo zur Folge. Der Adressenspeicher 11 erhält vom Rechner 2 die Adressen aller am Bus 8 angeschlossenen Adressenempfänger 6, Die Impulse des Oszillators 9 bestimmen den Schiebetakt des Schieberegisters lo und sind durch eine logische Schaltung 12 mit den Ausgangssignalen des Schieberegisters lo verknüpft. Am Ausgang der logischen Schaltung 12 entsteht eine Impulsserie bestehend aus Einzelimpulsen unterschiedlicher Länge, die bei konstanter Frequenz des Oszillators 9 nur von der dem Schieberegister lo übergebenen Adresse abhängig ist. Ein Beispiel für eine Impulsserie ist in Fig. 3a dargestellt. Die Ausgangsspannung der logischen Schaltung 12 ist dort mit U[a]

bezeichnet. Den unterschiedlich langen Impulsen sind unterschiedliche logische Wertigkeiten zugeordnet. Beispielsweise kann die Festlegung getroffen werden, daß ein langer Impuls die Wertigkeit "1" und ein kurzer Impuls die Wertigkeit "0" besitzt. Der Ausgang der logischen Schaltung 12 steht in Verbindung mit einem elektronischen Umschalter 13, der den Bus 8 im Ruhezustand an eine Versorgungsspannung U schaltet. Bei der Aussendung einer Adresse vermindert der elektronische. Umschalter 13 die Versorgungsspannung U für die Länge der Adressenimpulse um eine Spannung U₁; der zeitliche Verlauf der Ausgangsspannung U₆ des Umschalters 13 ist in Fig. 3b wiedergegeben. Hier weist die Spannung U₁ die gleiche Größe wie die Versorgungsspannung U auf.

Die Versorgungsspannung U ist auf die Betriebsspannung der Adressenempfänger 6 und Datensender 7 abgestimmt. Eine an jeder Meßstelle befindliche Speisetrennschaltung 15 sorgt während des Aussendens einer Adresse dafür, daß den Adressenempfängern 6 und Datensendern 7 die erforderliche Betriebsspannung unterbrechungsfrei zugeführt ist.

Ein Adressenempfänger 6 enthält eine Adressenverdrahtung 16, einen Vergleicher 17, ein Schieberegister 18, eine monostabile Kippstufe 19 und eine Trennschaltung 20. Eine bei dem Adressenempfänger 6 eintreffende Adresse wird zunächst durch die Trennschaltung 20 so umgeformt, daß sie wieder mit der ursprünglich durch die logische Schaltung 12 des Adressensenders 3 erzeugten Form (Fig. 3a) übereinstimmt. Der Ausgang der Trennschaltung 20

ist mit einem Schieberegister 18 und mit einer monostabilen Kippstufe 19 verbunden. Die monostabile Kippstufe 19 spricht auf jede Anstiegsflanke der aus der Trennschaltung 20 gelangenden Impulse an und liefert nach Ablauf einer bestimmten Laufzeit einen Einleseimpuls zum Schieberegister 18, so daß die Adresse schrittweise in das Schieberegister 18 übertragen wird. Nach dem Einlesen der vollständigen Adresse prüft ein Vergleicher 17, ob die eingelesene Adresse mit der Festadresse der Adressenverdrahtung 16 übereinstimmt. Stellt der Vergleicher 17 eine übereinstimmung fest, so gibt er einen Erkennungsimpuls an den Datensender 7 ab.

Der Datensender 7 enthält einen Analog-Digital-Umsetzer 21, einen Meßwertspeicher 22 und eine logische Schaltung 23. Daneben ist mit 24 eine Trennschaltung, mit 25 ein Spannung-Strom-Umsetzer und mit 26 ein Oszillator bezeichnet.

Ein analoger Meßwert x_i wird in bestimmten Zeitabständen im Analog-Digital-Umsetzer 21 digitalisiert und in einem Meßwertspeicher 22 festgehalten. Ein Erkennungsimpuls des Adressenempfängers 6 löst die Meßwertausgabe dadurch aus, daß der Inhalt des Meßwertspeichers 22 schrittweise an die logische Schaltung 23 abgegeben wird. Der logischen Schaltung 23 sind außerdem Impulse eines Oszillators 26 zugeführt. Der Oszillator 26 kann außer mit der logischen Schaltung 23 auch mit dem Meßwertspeicher 21 und über Frequenzteiler mit dem Analog-Digital-Umsetzer 21 verbunden sein, so daß er gleichfalls die Zeitabstände bestimmt,nach denen eine Digitalisierung des Meßwertes x_i

erfolgt und außerdem die schrittweise Ausgabe des gespeicherten Meßwertes $\mathbf{x_i}$ steuert. Anstelle des Meßwertspeichers 22 ist auch eine Schaltung einsetzbar, die den parallel am Analog-Digital-Umsetzer 21 anstehenden Meßwert $\mathbf{x_i}$ zyklisch in eine serielle Form überführt.

Ähnlich wie bei der Adressenerzeugung liefert die logische Schaltung 23 eine Impulsserie aus Einzelimpulsen unterschiedlicher Länge, die den Meßwert x_i darstellt. Diese Impulsserie wird über die Trennschaltung 24 dem Spannung-Strom-Umsetzer 25 zugeführt, der der Versorgungsspannung U bei jedem Einzelimpuls einen Strom I von bestimmter Größe entnimmt.

Der zeitliche Verlauf des über den Bus 8 fließenden Stromes I ist in Fig. 3d dargestellt. Hier ist mit I, der Versorgungsstrom zu den Meßstellen und mit I max die Amplitude der Stromimpulse bezeichnet. Bis zum Zeitpunkt t, fließt der Versorgungsstrom I, über den Bus 8. Zum Zeitpunkt t, beginnt nach Fig. 3a und 3b die Übertragung einer Adresse durch impulsförmiges Abschalten der Versorgungsspannung U. Dieses Abschalten der Versorgungsspannung U hat gleichzeitig die Unterbrechung des Versorgungsstromes I_v zur Folge. Zum Zeitpunkt t, beginnt der Datensender 7 mit der Übertragung eines Meßwertes x_i durch das Erzeugen von Stromimpulsen I_{max} , die dem normalerweise zu den Meßstellen fließenden Versorgungsstrom I, überlagert sind. Dieser Strom durchfließt im Datenempfänger 4 einen Strom-Spannung-Umsetzer 27, der die Stromimpulse mit der Amplitude I_{max} erkennt und in entsprechend lange Spannungsimpulse umsetzt.

Der Datenempfänger 4 enthält ferner einen Schalter 28, ein Schieberegister 29, eine monostabile Kippstufe 30, eine bistabile Kippstufe 31, einen Vielfach-Umschalter 32 und eine der Zahl der Meßstellen entsprechende Anzahl von Meßwertspeichern 33.

Bei der Aussendung eines Meßwertes x_i durch den Datensender 7 ist der Schalter 28 geschlossen, so daß die durch den Strom-Spannung-Umsetzer 27 erzeugten Spannungsimpulse zum Schieberegister 29 und zu der monostabilen Kippstufe 30 gelangen. Die Spannungsimpulse werden in das Schieberegister 29 eingelesen, wobei die monostabile Kippschaltung 30 den Einlesetakt aus den Spannungsimpulsen ableitet. Der Ausgang des Schieberegisters 29 ist über einen Vielfach-Umschalter 32 mit einer der Zahl der Meßstellen entsprechenden Anzahl von Meßwertspeichern 33 und digitalen Anzeigegeräten 5 verbunden, die nach den Einlesen der Impulsserie den Meßwert x_i zur Anzeige bringen.

Durch den Schalter 28 ist sichergestellt, daß keine vom Adressensender 3 ausgesendete Adresse vom Datenempfänger 4 aufgenommen wird. Der Schalter 28 ist im Ruhezustand geschlossen und wird durch die bistabile Kippstufe 31 sofort geöffnet, wenn der Rechner 2 die Aussendung einer Adresse einleitet. Während der Adressenerzeugung im Adressensender 3 zählt ein Impulszähler 14 die Anzahl der Adressenimpulse. Besteht eine Adresse beispielsweise aus vier Einzelimpulsen,

so gibt der Impulszähler 14 nach dem Erkennen des vierten Impulses ein Signal an die bistabile Kippstufe 31 des Datenempfängers 4 ab. Das Ausgangssignal der bistabilen Kippstufe 31 schließt nun den Schalter 28 und bewirkt die Aufnahmebereitschaft des Datenempfängers 4 für einen Meßwert $\mathbf{x_i}$. Der zeitliche Verlauf der Schalterstellung geht aus Fig. 3c hervor.

Eine eindeutige Unterscheidungsmöglichkeit zwischen den von der Leitstelle 1 ausgesendeten Daten und den Antworten der Datensender 7 ist dadurch gegeben, daß die von der Leitstelle 1 ausgesendeten Daten als Spannungsimpulse und die Antwortdaten als Stromimpulse über den Bus 8 übertragen werden.

1

Sollen mit der Schaltungsanordnung neben Adressen und Meßwerten auch Stell- und Steuerbefehle übertragen werden, so
ist eine geringfügige Abänderung des Aufrufverfahrens notwendig, um Verwechslungen der genannten Daten auszuschließen.
Dies kann dadurch sichergestellt werden, daß die Eingänge der
Adressenempfänger 6 normalerweise gesperrt sind und erst durch
eine der Adresse vorausgehende Impulsserie oder einen langen
Impuls freigeschaltet werden. Hat ein Adressenempfänger 6
eine Adresse erkannt, so sind alle anderen Adresseneingänge
wieder blockiert.

Bei der beschriebenen und bei bekannten Schaltungsanordnungen ist eine Störung des Busses durch einen Kurzschluß oder eine Leitungstrennung nicht auszuschließen. Zur Vermeidung derartiger Störungen kann es zweckmäßig sein, die Verbindung zwischen der Leitstelle und den Adressenempfängern über zwei unabhängige Busse herzustellen. Zur Entkopplung der beiden Busse sind den Eingängen der Adressenempfänger Dioden vorgeschaltet. Tritt nun in einem der Busse z.B. ein Kurzschluß auf, so steht nach der Umschaltung auf den zweiten, betriebsfähigen Bus ein ungestörter Datenweg zur Verfügung. Eine Übertragung der Störung auf den zweiten Bus ist durch die Dioden verhindert.

Eine laufende Überwachung der Funktionsfähigkeit der beiden Busse kann dadurch erfolgen, daß die Leitstelle eine alternierende Umschaltung von einem Bus auf den anderen vornimmt. Ferner kann die Schaltungsanordnung zur Erhöhung der Sicherheit so programmiert sein, daß jeder Adressenempfänger das Erkennen seiner Adresse durch die Rücksendung seiner Adresse an die Leitstelle bestätigt und daß jeder Datensender die gleiche Information mehrmals aussendet.

Die Kodierung der von den Datensendern ausgesendeten Daten erfolgt zweckmäßigerweise im BCD-Kode, der direkte Anzeigemöglichkeiten bietet (BCD-7 Segmentanzeige) und es erlaubt, handelsübliche Analog-Digital-Umsetzer zu verwenden. Die Sicherung eines übertragenden Meßwertes läßt sich z.B. dadurch realisieren, daß jede BCD-kodierte Dezimalziffer durch ein Prüfbit (Parity Check) abgesichert ist.

Die Stromaufnahme der am Bus angeschlossenen Adressenempfänger und Datensender ist durch die Verwendung von
CMOS-Digitalschaltkreisen so eingeschränkt, daß etwa zehn
Meßstellen an einem Bus in der Schutzart Eigensicherheit
betreibbar sind. Die Meßstellen können an beliebigen Stellen
des Busses angeschlossen werden. Im Normalfall ist die Länge
des Busses auf etwa 1 km begrenzt; sind ohne Eigensicherheit
längere Busse erforderlich, so müssen Zwischenverstärker
eingesetzt oder größere Versorgungsspannungen U verwendet
werden.

Grundsätzlich besteht bei der beschriebenen Schaltungsanordnung die Möglichkeit, den zweiadrigen Bus durch einen
dreiadrigen Bus zu ersetzen. In diesem Fall ist eine Ader
von den Adressen und der Versorgungsspannung beaufschlagt,
während die Meßwerte auf einer separaten Ader übertragen
werden. Es lassen sich auch Meßwerte und die Versorgungsspannung gemeinsam auf einer Ader bei separater Adressenader übertragen. Die dritte Ader führt jeweils ein Bezugspotential. Der Einsatz eines dreiadrigen Busses bietet
eine Möglichkeit zur Vereinfachung der Schaltungsanordnung,
da sich beispielsweise die beschriebene Verriegelung des
Datenempfängers gegen Adressen erübrigt. Außerdem lassen
sich bei einem dreiadrigen Bus Adressen sowie Meßdaten als
Norm-Spannungsimpulse übertragen.

Grundsätzlich ist es bei Verwendung eines dreiadrigen
Busses auch möglich, die Adressen und die Meßwerte auf
der ersten Ader, die Versorgungsspannung auf der zweiten
Ader und das Bezugspotential auf der dritten Ader zu
führen.

- 15. Seiten Beschreibung
 - 8 Ansprüche
 - 3 Blatt Zeichnungen mit 3 Figuren

- 2. Schaltungsanordnung zur Übertragung digitaler Daten

 zwischen einer Leitstelle und mehreren unabhängig voneinander anwählbaren Meßstellen, bei der die Übertragung
 mehrerer impulskodierter Daten in einem vorzugsweise
 rechnergesteuerten Zyklus zeitmultiplex über einen Datenweg erfolgt, dadurch gekennzeichnet, daß zur Datenübertragung und zur Stromversorgung der Meßstellen ein zweiadriger Bus (8) eingesetzt ist, daß die Leitstelle (1)
 einen Adressensender (3) und einen Datenempfänger (4)
 enthält, daß jeder Meßstelle ein Adressenempfänger (6)
 und ein Datensender (7) zugeordnet ist und daß jeder
 Adressensender (3) ausgesendeten Adresse und einer Festadresse durchführt und bei Übereinstimmung der Adressen
 den Datensender (7) zur Meßwertausgabe veranlaßt.
- 2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Eingänge der Adressenempfänger (6) im Ruhezustand gesperrt sind, daß einer vom Adressensender (3) ausgesendeten Adresse eine festgelegte Impulsfolge oder ein langer Impuls vorausgeht, der die Freischaltung aller Adressenempfänger (6) bewirkt und daß nach den Einlesen der Adresse in einen bestimmten Adressenempfänger (6) alle anderen Adresseneingänge blockiert sind.

- 3. Schaltungsanordnung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß der Bus (8) im Ruhebetrieb die Versorgungsspannung (U) der Adressenempfänger (6) und Datensender (7) führt, daß eine Adresse aus mehreren der Versorgungsspannung (U) überlagerten Spannungsimpulsen vom Betrag U; zusammengesetzt ist, daß Speisetrennschaltungen (15) die Versorgungsspannung (U) an den Meßstellen konstant halten und daß Meßwerte (x₁ bis x_n) als Stromimpulse zur Leitstelle gelangen.
- 4. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß neben dem Bus (8) ein zweiter, unabhängiger
 Bus vorgesehen ist, daß den Eingängen der Adressenempfänger (6) zur Entkopplung der Busse Dioden vorgeschaltet sind und daß bei der Störung eines Busses
 eine automatische Umschaltung auf den betriebsfähigen
 Bus erfolgt.
- 5. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß ein analoger Meßwert x_i in bestimmten Zeitabständen durch einen Analog-Digital-Umsetzer (21) digitalisiert und schrittweise in einen Meßwertspeicher (22) eingelesen wird.

- -6-18
- 6. Schaltungsanordnung nach Anspruch 5, dadurch gekennzeichnet, daß ein analoger Meßwert x_i durch einen
 Analog-Digital-Umsetzer (21) mit parallelem Datenausgang digitalisiert wird und daß als Meßwertspeicher
 (22) eine Schaltung eingesetzt ist, die den digitalisierten Meßwert x_i zyklisch in eine serielle Form
 bringt.
- 7. Schaltungsanordnung zur Übertragung digitaler Daten zwischen einer Leitstelle und mehreren unabhängig voneinander anwählbaren Meßstellen, bei der die Übertragung mehrerer impulskodierter Daten in einem vorzugsweise rechnergesteuerten Zyklus zeitmultiplex über einen Datenweg erfolgt, dadurch gekennzeichnet, daß zur Datenübertragung und zur Stromversorgung der Meßstellen ein dreiadriger Bus (8) eingesetzt ist, daß die Leitstelle (1) einen Adressensender (3) und einen Datenempfänger (4) enthält, daß jeder Meßstelle ein Adressenempfänger (6) und ein Datensender (7) zugeordnet ist, daß jeder Andressenempfänger (6) einen Vergleich zwischen einer vom Adressensender (3) ausgesendeten Adresse und einer Pestadresse durchführt und bei Übereinstimmung der Adressen den Datensender (7) zur Meßwertausgabe veranlaßt.
- 8. Schaltungsanordnung nach Anspruch 7, dadurch gekennzeichnet, daß Adressen und Meßwerte über eigene Adern
 übertragen werden, daß die Versorgungsspannung U einer
 dieser beiden Andern überlagert ist und daß die dritte
 Ader ein Bezugspotential führt.

609848/0411

(

H04Q

9-16

AT:14.05.1975 OT:25.11.1976

609848/0411

€

0

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)