DSM LAB REPORT - 4

Group 14: Aaryan Nakul Shah (2024113014)

Lab 4: Multiplexers and De-multiplexers

Objective:

To design assemble and test a (4:1) Multiplexer and (1:4) De-multiplexer using basic logic gates

Part A: To design a 4:1 Multiplexer

Objective:

To design a 4:1 Multiplexer using basic logic gates.

Components Used:

Digital Test Kit, Hex Inverter, Triple input AND gate, Quad OR gate, and wires

Reference Circuit:

Procedure:

- 1. Connect the VCC and GND of the Digital Test Kit to the VCC and GND Pins of the ICs.
- 2. Connections were made as depicted in the reference circuit.

Tinkercad Simulation:

https://www.tinkercad.com/things/3VGWGHkWOh0-dsmlab4exp1?sharecode=YQm4DgE0ltEGQ_G4uqREKJ_Nc--mnib8FghPg5f2JdQ

Output:

Conclusion:

A 4:1 multiplexer has been successfully designed with inputs I1 to I4 and selection lines S0 and S1, producing a single output. The following equation was used to design the multiplexer based on observations from the truth table:

• Output = I1S0'S1' + I2S1'S0 + I3S1S0' + I4S1S0

S1	S0	OUTPUT	
0	0	l1	
0	1	12	
1	0	l3	
1	1	14	

Part B: To design a 1:4 De-Multiplexer

Objective:

To design a 1:4 De-Multiplexer using basic logic gates.

Components Used:

Digital Test Kit, Hex Inverter, Triple input AND gate, and wires

Reference Circuit:

Procedure:

- Connect the VCC and GND of the Digital Test Kit to the VCC and GND Pins of the ICs.
- 2. Connections were made as depicted in the reference circuit.

Tinkercad Simulation:

https://www.tinkercad.com/things/d2QXvbOnkav-dsmlab4exp2?sharecode=wONYd1rHcar8DSj-ODgJSpfNlhvG_p-3miGZYJLHTm0

Output:

Conclusion:

A 1:4 De-Multiplexer has been designed with outputs labelled Output1 to Output4, having selection lines S0 and S1, and a single input. The De-Multiplexer design was based on observations from the truth table and the following equation was used:

- Output = IS0'S1' + IS1'S0 + IS1S0' + IS1S0
- Output1 = IS0'S1', Output2 = IS1'S0, Output3 = IS1S0', Output4 = IS1S0

S1	S0	OUTPUT		
0	0	Output1		
0	1	Output2		
1	0	Output3		
1	1	Output4		

Part C: To design a 1:4 De-Multiplexer

Objective:

To assemble and test the (4:1) Multiplexer and (1:4) De-Multiplexer.

Components Used:

Digital Test Kit, Multiplexer IC, De-Multiplexer IC, and wires

Reference Circuit:

Procedure:

- Connect the VCC and GND of the Digital Test Kit to the VCC and GND Pins of the ICs.
- 2. The strobe 1G is an enabler for the MUX IC, it needs to be connected to the GND of the Digital test kit.

- 3. Then connect the input pins of the MUX IC to the Digital Test Kit as shown in the reference diagram.
- 4. Connect the output of the MUX IC to the strobe 1G of the De-MUX IC and connect the GND of the De-MUX IC to the GND of the Digital Test Kit.
- 5. Lastly, connect the De-MUX IC output pins to the Digital Test Kit display points.

Tinkercad Simulation:

https://www.tinkercad.com/things/lTPjJy41ikY-dsmlab4exp3?sharecode=ybxeqYuMHsJxZZD-4ig8Sf0gwLtRLhFNWXxzKGqPaRA

Output:

Conclusion:

We infer that the (4:1) MUX and the (1:4) De-MUX are successfully working as seen in the following truth table:

S0	S1	01	O2	О3	O4
0	0	l1	0	0	0
0	1	0	12	0	0
1	0	0	0	13	0
1	1	0	0	0	14