

Visual Perception

Lecture 1B Rigid Body Transformations

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

1.1 Cartesian coordinates, Points and Vectors

Coordinate System: Complete set of orthonormal vectors (perpendicular and unit) and coinciding in a point (origin).

Standard base vectors:

$$\hat{X}_A = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\hat{Y}_A = \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix}$$

$$\hat{Z}_A = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

right-hand frame

Reference System: Unique/World coordinate system used for referencing points, vectors and other coordinate systems

1.1 Cartesian coordinates, Points and Vectors

Coordinates of a point p in space:

Referenced with respect to {A}
$$^{A}\hat{p}_{u}\longrightarrow ^{Corresponding \ to \ object/reference \ u}$$

$$\hat{p} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = a\hat{x} + b\hat{y} + c\hat{z}$$

$$a = \hat{p} \cdot \hat{x} = p^{T} x$$

$$b = \hat{p} \cdot \hat{y} = p^{T} y$$

$$c = \hat{p} \cdot \hat{z} = p^{T} z$$

1.1 Cartesian coordinates, Points and Vectors

A "free" vector is defined by a pair of points (p,q):

$$\hat{q}_1 = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}$$
 $\hat{q}_2 = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix}$

$${}^A\hat{q} = egin{bmatrix} q_1 \ q_2 \ q_3 \end{bmatrix}$$

Coordinates of the vector v:

$${}^{A}\hat{v} = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} = \begin{bmatrix} q_{1} - p_{1} \\ q_{2} - p_{2} \\ q_{3} - p_{3} \end{bmatrix}$$

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

1.2 Inner product and Cross product

Inner product between two vectors:

$$u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \quad v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$\langle u, v \rangle \doteq u^T v = u_1 v_1 + u_2 v_2 + u_3 v_3$$

$$||u|| \doteq \sqrt{u^T u} = \sqrt{u_1^2 + u_2^2 + u_3^3}$$

$$\cos(\theta) = \frac{\langle u, v \rangle}{\|u\| \|v\|}$$

1.2 Inner product and Cross product

Cross product between two vectors:

$$u \times v \doteq \widehat{u}v, \quad u, v \in \mathbb{R}^3$$

$$\widehat{u} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

Antisymmetric matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

1.3 Translations

Translation vector:

- {B} is a translation of {A} to position ^A(3 4 3)^T.
- Coodinate axes of {B} are parallel to coordinate axes of {A}.
- The translation can be representated by vectorial addition.

$$\begin{pmatrix} A & p_x \\ A & p_y \\ A & p_z \end{pmatrix} = \begin{pmatrix} B & p_x \\ B & p_y \\ B & p_z \end{pmatrix} + \begin{pmatrix} A & o_x \\ A & o_y \\ A & o_z \end{pmatrix} = \begin{pmatrix} B & p_x + A & o_x \\ B & p_y + A & o_y \\ B & p_z + A & o_z \end{pmatrix} \qquad ; \qquad \begin{pmatrix} A & p_x \\ A & p_y \\ A & p_z \end{pmatrix} = \begin{pmatrix} B & A & A & A \\ A & P_x \\ A & P_y \\ A & P_z \end{pmatrix} = \begin{pmatrix} A & A & A & A \\ A & P_y \\ A & P_z \end{pmatrix} = \begin{pmatrix} A & A & A & A \\ A & P_y \\ A & P_z \end{pmatrix} = \begin{pmatrix} A & P_x \\ P_y \\ P_$$

1.3 Translations

Translation matrix:

Coordinates are related by: ${}^{A}p = {}^{B}p + {}^{A}o_{p}$

$$^{A}p = ^{B}p + ^{A}o_{B}$$

$$^{A}p = T(^{A}o_{B})^{B}p$$

$$T({}^{A}o_{B}) = \begin{pmatrix} 1 & 0 & 0 & {}^{A}o_{x} \\ 0 & 1 & 0 & {}^{A}o_{y} \\ 0 & 0 & 1 & {}^{A}o_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}_{B} = {}^{A}(I \quad t)_{B}$$

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

Rotation matrix:

Let {A} and {B} two ortonormal coordinate systems with the same origin and unit vectors $\{a_1, a_2, a_3\}$ $\{b_1, b_2, b_3\}$.

Point p is represented by vector \hat{p} in {A} and {B}

$$\begin{cases} {}^{A}\hat{p} = \begin{pmatrix} {}^{A}p_{1} & {}^{A}p_{2} & {}^{A}p_{3} \end{pmatrix}^{T} \\ {}^{B}\hat{p} = \begin{pmatrix} {}^{B}p_{1} & {}^{B}p_{2} & {}^{B}p_{3} \end{pmatrix}^{T} \\ {}^{A}\hat{p} = {}^{A}p_{1} \cdot {}^{A}\hat{a}_{1} + {}^{A}p_{2} \cdot {}^{A}\hat{a}_{2} + {}^{A}p_{3} \cdot {}^{A}\hat{a}_{3} \\ {}^{A}\hat{p} = {}^{B}p_{1} \cdot {}^{A}\hat{b}_{1} + {}^{B}p_{2} \cdot {}^{A}\hat{b}_{2} + {}^{B}p_{3} \cdot {}^{A}\hat{b}_{3} \\ \text{Consider} {}^{A}p_{k} \end{cases}$$

 $k = 3 \rightarrow^{A} p_{2} = r_{21} \cdot^{B} p_{1} + r_{22} \cdot^{B} p_{2} + r_{22} \cdot^{B} p_{3}$

$${}^{A}p_{k} = {}^{A}\hat{p} \cdot {}^{A}\hat{a}_{k} = \left[\sum_{j=1}^{3} ({}^{B}p_{j} \cdot {}^{A}\hat{b}_{j})\right] \cdot {}^{A}\hat{a}_{k} = \sum_{j=1}^{3} {}^{B}p_{j} \cdot ({}^{A}\hat{b}_{j} \cdot {}^{A}\hat{a}_{k}) = \sum_{j=1}^{3} {}^{B}p_{j} \cdot r_{kj}$$

$$k = 1 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{12} \cdot {}^{B}p_{2} + r_{13} \cdot {}^{B}p_{3}$$

$$k = 2 \rightarrow {}^{A}p_{2} = r_{21} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{22} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{12} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{12} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{B}p_{1} + r_{12} \cdot {}^{B}p_{2} + r_{23} \cdot {}^{B}p_{3}$$

$$k = 3 \rightarrow {}^{A}p_{1} = r_{11} \cdot {}^{A}p_{2} + r_{23} \cdot {}^{B}p_{3} + r_{23} \cdot {}^{B}p_{3} + r_{23} \cdot {}^{B}p_$$

Rotation matrix:

$${}^{A}R_{B} = \begin{pmatrix} \hat{a}_{1} \cdot \hat{b}_{1} & \hat{a}_{1} \cdot \hat{b}_{2} & \hat{a}_{1} \cdot \hat{b}_{3} \\ \hat{a}_{2} \cdot \hat{b}_{1} & \hat{a}_{2} \cdot \hat{b}_{2} & \hat{a}_{2} \cdot \hat{b}_{3} \\ \hat{a}_{3} \cdot \hat{b}_{1} & \hat{a}_{3} \cdot \hat{b}_{2} & \hat{a}_{3} \cdot \hat{b}_{3} \end{pmatrix}$$

$${}^{A}\hat{b}_{1} \qquad {}^{A}\hat{b}_{2} \qquad {}^{A}\hat{b}_{3}$$

$${}^{A}R_{B} = \begin{pmatrix} \hat{a}_{1} \cdot \hat{b}_{1} & \hat{a}_{1} \cdot \hat{b}_{2} & \hat{a}_{1} \cdot \hat{b}_{3} \\ \hat{a}_{2} \cdot \hat{b}_{1} & \hat{a}_{2} \cdot \hat{b}_{2} & \hat{a}_{2} \cdot \hat{b}_{3} \\ \hat{a}_{3} \cdot \hat{b}_{1} & \hat{a}_{3} \cdot \hat{b}_{2} & \hat{a}_{3} \cdot \hat{b}_{3} \end{pmatrix} {}^{B}\hat{a}_{1}$$

$${}^{B}\hat{a}_{2}$$

$${}^{B}\hat{a}_{3}$$

$$\binom{A}{A}R_B^T = {}^BR_A$$

$$R^{T}R = I$$
, $det(R) = 1$, $rank(R) = 3$

Basic Rotation matrices:

$$\begin{pmatrix}
\hat{a}_1 \cdot \hat{b}_1 & \hat{a}_1 \cdot \hat{b}_2 & \hat{a}_1 \cdot \hat{b}_3 \\
\hat{a}_2 \cdot \hat{b}_1 & \hat{a}_2 \cdot \hat{b}_2 & \hat{a}_2 \cdot \hat{b}_3 \\
\hat{a}_3 \cdot \hat{b}_1 & \hat{a}_3 \cdot \hat{b}_2 & \hat{a}_3 \cdot \hat{b}_3
\end{pmatrix}_{P} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \vartheta & -\sin \vartheta \\
0 & \sin \vartheta & \cos \vartheta
\end{pmatrix}$$

 $Rot(\theta, y)$

$$\begin{pmatrix}
\hat{a}_1 \cdot \hat{b}_1 & \hat{a}_1 \cdot \hat{b}_2 & \hat{a}_1 \cdot \hat{b}_3 \\
\hat{a}_2 \cdot \hat{b}_1 & \hat{a}_2 \cdot \hat{b}_2 & \hat{a}_2 \cdot \hat{b}_3 \\
\hat{a}_3 \cdot \hat{b}_1 & \hat{a}_3 \cdot \hat{b}_2 & \hat{a}_3 \cdot \hat{b}_3
\end{pmatrix}_{R} = \begin{pmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix}$$

 $Rot(\theta, z)$

$$\begin{pmatrix}
\hat{a}_{1} \cdot \hat{b}_{1} & \hat{a}_{1} \cdot \hat{b}_{2} & \hat{a}_{1} \cdot \hat{b}_{3} \\
\hat{a}_{2} \cdot \hat{b}_{1} & \hat{a}_{2} \cdot \hat{b}_{2} & \hat{a}_{2} \cdot \hat{b}_{3} \\
\hat{a}_{3} \cdot \hat{b}_{1} & \hat{a}_{3} \cdot \hat{b}_{2} & \hat{a}_{3} \cdot \hat{b}_{3}
\end{pmatrix}_{R} = \begin{pmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Rotation matrix:

Coordinates are related by:

$$^{A}p = {}^{A}R_{B}^{B}p$$

$$^{A}p = T(^{A}R_{B})^{B}p$$

$$T({}^{A}R_{B}) = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}_{B} = {}^{A} \begin{pmatrix} R & 0 \\ 0 & 1 \end{pmatrix}_{B}$$

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

1.5 Homogeneous coordinates

Translation matrix:

Coordinates are related by: ${}^{A}p = {}^{B}p + {}^{A}o_{p}$

$$^{A}p = ^{B}p + ^{A}o_{B}$$

$$^{A}p = T(^{A}o_{B})^{B}p$$

$$T({}^{A}o_{B}) = \begin{pmatrix} 1 & 0 & 0 & {}^{A}o_{x} \\ 0 & 1 & 0 & {}^{A}o_{y} \\ 0 & 0 & 1 & {}^{A}o_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}_{B} = {}^{A}(I \quad t)_{B}$$

Rotation matrix:

Coordinates are related by: ${}^{A}p = {}^{A}R_{R} {}^{B}p$

$$^{A}p = {}^{A}R_{B}$$
 ^{B}p

$$^{A}p = T(^{A}R_{B})^{B}p$$

$$T({}^{A}R_{B}) = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}_{B} = {}^{A} \begin{pmatrix} R & 0 \\ 0 & 1 \end{pmatrix}_{B}$$

1.5 Homogeneous coordinates

$$^{A}p = {}^{A}T_{B}$$
 ^{B}p

Composed matrix:
$${}^{A}p = {}^{A}T_{B} {}^{B}p$$

$${}^{A}T_{B} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & {}^{A}o_{x} \\ r_{21} & r_{22} & r_{23} & {}^{A}o_{y} \\ r_{31} & r_{32} & r_{33} & {}^{A}o_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}_{B} = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}_{B} = \begin{bmatrix} R & t \end{bmatrix}$$

Point:
$${}^{A}p = \begin{bmatrix} {}^{A}p_x \\ {}^{A}p_y \\ {}^{A}p_z \\ 1 \end{bmatrix}$$

$${}^{A}v = \begin{bmatrix} {}^{A}v_x \\ {}^{A}v_y \\ {}^{A}v_z \\ 0 \end{bmatrix}$$

$$\mathbf{A} \mathbf{v} = \begin{bmatrix} \mathbf{A} \mathbf{v}_{\mathbf{x}} \\ \mathbf{A} \mathbf{v}_{\mathbf{y}} \\ \mathbf{A} \mathbf{v}_{\mathbf{z}} \\ \mathbf{0} \end{bmatrix}$$

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

Algorithm

Example 1

$$T = I$$

$$T = I \cdot Trans(^{A}o)$$
o
 $T = Trans(^{A}o) \cdot I$

T = I

$$T = Trans(^{A}o) \cdot I \cdot Rot(\hat{y}_{2}, 90)$$

$$\begin{vmatrix}
\cos \alpha & 0 & \sin \alpha & 0 \\
0 & 1 & 0 & 0 \\
-\sin \alpha & 0 & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{vmatrix} = \begin{vmatrix}
\cos \alpha & 0 & \sin \alpha & {}^{A}o_{x} \\
0 & 1 & 0 & {}^{A}o_{y} \\
-\sin \alpha & 0 & \cos \alpha & {}^{A}o_{z} \\
0 & 0 & 0 & 1
\end{vmatrix}$$

$$\alpha = 90$$

$${}^{A}o = \begin{pmatrix} 3 & 3 & 3 & 1 \end{pmatrix}^{T}$$

$$\Rightarrow T = \begin{pmatrix} 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & 3 \\ -1 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}_{R}$$

$$T = I \cdot Trans(^{A}o)$$

$$O$$

$$T = Trans(^{A}o) \cdot I$$

Be careful !!!

The result is different if the rotation is around the fixed axis (and not around the mobile axis)

Example 2

Be careful !!!

The result is different if the rotation is about the fixed axis (and not about the mobile axis)

Be careful !!!

The result is different if the rotation is about the fixed axis (and not about the mobile axis)

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

1.7 Inverse transformation

Homogeneous Inverse Transformation

$$T = \begin{pmatrix} R & p \\ 0 & 0 & 0 & 1 \end{pmatrix} \implies T^{-1} = \begin{pmatrix} R^{T} & -R^{T} \cdot p \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Example:

$$T = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \Rightarrow T^{-1} = \begin{pmatrix} 0 & 1 & 0 & -2 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$-R^{T} \quad p = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ -2 \end{pmatrix}$$

1.7 Inverse transformation

The homogeneous transformation that maps {B} with respect to {A}, is ${}^{A}T_{B}$. What are the coordinates of the point ${}^{A}p=(0,1,0)$ with respect the coordinate system {B}?

$$T = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \Rightarrow T^{-1} = \begin{pmatrix} 0 & 1 & 0 & -2 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad T^{-1} \cdot \begin{pmatrix} A \\ 0 \\ 1 \\ 0 \\ -2 \\ 1 \end{pmatrix} \stackrel{B}{=} \begin{pmatrix} -1 \\ 0 \\ -2 \\ 1 \end{pmatrix}$$

Then,

$$T^{-1} \cdot \begin{pmatrix} A \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -2 \\ 1 \end{pmatrix}$$

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

1.8 Parametrization of a Rotation matrix

RPY angles: Roll, Pitch and yaw

$$R(^{A}Z, \beta_{1})R(^{A}Y, \beta_{2})R(^{A}X, \beta_{3}) = \begin{pmatrix} \cos \beta_{1} & -\sin \beta_{1} & 0 \\ \sin \beta_{1} & \cos \beta_{1} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \beta_{2} & 0 & \sin \beta_{2} \\ 0 & 1 & 0 \\ -\sin \beta_{2} & 0 & \cos \beta_{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \beta_{3} & -\sin \beta_{3} \\ 0 & \sin \beta_{3} & \cos \beta_{3} \end{pmatrix}$$

Euler angles: ZYZ, ...

$$R(^{B}Z, \beta_{1})R(^{B}Y, \beta_{2})R(^{B}Z, \beta_{3}) = \begin{pmatrix} \cos \beta_{1} & -\sin \beta_{1} & 0 \\ \sin \beta_{1} & \cos \beta_{1} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \beta_{2} & 0 & \sin \beta_{2} \\ 0 & 1 & 0 \\ -\sin \beta_{2} & 0 & \cos \beta_{2} \end{pmatrix} \begin{pmatrix} \cos \beta_{3} & -\sin \beta_{3} & 0 \\ \sin \beta_{3} & \cos \beta_{3} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1.8 Parametrization of a Rotation matrix

RPY angles:

$$R({}^{A}Z, \beta_{1})R({}^{A}Y, \beta_{2})R({}^{A}X, \beta_{3}) = \begin{pmatrix} \cos \beta_{1} & -\sin \beta_{1} & 0 \\ \sin \beta_{1} & \cos \beta_{1} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \beta_{2} & 0 & \sin \beta_{2} \\ 0 & 1 & 0 \\ -\sin \beta_{2} & 0 & \cos \beta_{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \beta_{3} & -\sin \beta_{3} \\ 0 & \sin \beta_{3} & \cos \beta_{3} \end{pmatrix} = \begin{pmatrix} \cos \beta_{1} & -\sin \beta_{1} & 0 \\ \sin \beta_{1} & \cos \beta_{1} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \beta_{2} & \sin \beta_{2} \sin \beta_{3} & -\sin \beta_{2} \cos \beta_{3} \\ 0 & \cos \beta_{3} & -\sin \beta_{3} \\ -\sin \beta_{2} & \cos \beta_{2} \sin \beta_{3} & \cos \beta_{2} \cos \beta_{3} \end{pmatrix} = \begin{pmatrix} \cos \beta_{1} \cos \beta_{2} & \cos \beta_{1} \sin \beta_{2} \cos \beta_{3} & \sin \beta_{1} \sin \beta_{3} - \cos \beta_{1} \sin \beta_{2} \cos \beta_{3} \\ \cos \beta_{1} \cos \beta_{2} & \cos \beta_{1} \sin \beta_{2} \sin \beta_{3} - \sin \beta_{1} \cos \beta_{3} & \sin \beta_{1} \sin \beta_{3} - \cos \beta_{1} \sin \beta_{2} \cos \beta_{3} \end{pmatrix}$$

$$\begin{vmatrix} \cos \beta_1 \cos \beta_2 & \cos \beta_1 \sin \beta_2 \sin \beta_3 - \sin \beta_1 \cos \beta_3 & \sin \beta_1 \sin \beta_3 - \cos \beta_1 \sin \beta_2 \cos \beta_3 \\ \sin \beta_1 \cos \beta_2 & \sin \beta_1 \sin \beta_2 \sin \beta_3 + \cos \beta_1 \cos \beta_3 & -\sin \beta_1 \sin \beta_2 \cos \beta_3 - \cos \beta_1 \sin \beta_3 \\ -\sin \beta_2 & \cos \beta_2 \sin \beta_3 & \cos \beta_2 \cos \beta_3 \end{vmatrix}$$

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

Given a Rotation Matrix R, we decide the parametrization

$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} = \begin{pmatrix} \cos \beta_1 \cos \beta_2 & \cos \beta_1 \sin \beta_2 \sin \beta_3 - \sin \beta_1 \cos \beta_3 & \sin \beta_1 \sin \beta_3 - \cos \beta_1 \sin \beta_2 \cos \beta_3 \\ \sin \beta_1 \cos \beta_2 & \sin \beta_1 \sin \beta_2 \sin \beta_3 + \cos \beta_1 \cos \beta_3 & -\sin \beta_1 \sin \beta_2 \cos \beta_3 - \cos \beta_1 \sin \beta_3 \\ -\sin \beta_2 & \cos \beta_2 \sin \beta_3 & \cos \beta_2 \cos \beta_3 \end{pmatrix}$$

And we can extract the angles from that parametrization

$$\beta_2 = \operatorname{asin}(r_{31})$$

$$\beta_3 = \operatorname{asin}(r_{32}/\cos\beta_2)$$

$$\beta_1 = \operatorname{atan}(r_{12}/r_{11})$$

Given a Rotation Matrix R, we decide the parametrization

$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} = \begin{pmatrix} \cos \beta_1 \cos \beta_2 & \cos \beta_1 \sin \beta_2 \sin \beta_3 - \sin \beta_1 \cos \beta_3 & \sin \beta_1 \sin \beta_3 - \cos \beta_1 \sin \beta_2 \cos \beta_3 \\ \sin \beta_1 \cos \beta_2 & \sin \beta_1 \sin \beta_2 \sin \beta_3 + \cos \beta_1 \cos \beta_3 & -\sin \beta_1 \sin \beta_2 \cos \beta_3 - \cos \beta_1 \sin \beta_3 \\ -\sin \beta_2 & \cos \beta_2 \sin \beta_3 & \cos \beta_2 \cos \beta_3 \end{pmatrix}$$

And we can extract the angles from that parametrization

$$\beta_2 = \operatorname{asin}(r_{31})$$

$$\beta_3 = \operatorname{asin}(r_{32}/\cos\beta_2)$$

$$\beta_1 = \operatorname{atan}(r_{12}/r_{11})$$

$$cos(\beta) = cos(-\beta)$$

 $sin(\beta) = sin(\beta + \pi/2)$
 $atan(\beta) = atan(\beta + \pi)$

Angles are defined partially Angles in the $(0,2\pi)$ rang are desired

atan2(s,c)

Problem of tan⁻¹:

$$-\frac{\pi}{2} \le \tan^{-1}(t) \le \frac{\pi}{2} \Rightarrow \exists \theta_1 \ne \theta_2 / \tan(\theta_1) = \tan(\theta_2)$$

Solution:
$$\begin{cases} c > 0 \\ Q - I, Q - IV \end{cases} \Rightarrow \operatorname{atan2}(s, c) = \tan^{-1} \left(\frac{s}{c}\right)$$

$$\cot 2(s, c) = \begin{cases} c = 0 \\ Q - I, Q - IV \end{cases} \Rightarrow \operatorname{atan2}(s, c) = \operatorname{sgn}(s) \cdot \frac{\pi}{2}$$

$$\begin{cases} c < 0 \\ Q - II, Q - III \end{cases} \Rightarrow \operatorname{atan2}(s, c) = \tan^{-1} \left(\frac{s}{c}\right) + \operatorname{sgn}(s) \cdot \pi$$

Given a Rotation Matrix R, we decide the parametrization

$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} = \begin{pmatrix} \cos \beta_1 \cos \beta_2 & \cos \beta_1 \sin \beta_2 \sin \beta_3 - \sin \beta_1 \cos \beta_3 & \sin \beta_1 \sin \beta_3 - \cos \beta_1 \sin \beta_2 \cos \beta_3 \\ \sin \beta_1 \cos \beta_2 & \sin \beta_1 \sin \beta_2 \sin \beta_3 + \cos \beta_1 \cos \beta_3 & -\sin \beta_1 \sin \beta_2 \cos \beta_3 - \cos \beta_1 \sin \beta_3 \\ -\sin \beta_2 & \cos \beta_2 \sin \beta_3 & \cos \beta_2 \cos \beta_3 \end{pmatrix}$$

And we can extract the angles from that parametrization

$$\beta_{2} = a\sin(r_{31})$$

$$\beta_{3} = a\tan(r_{32}, r_{33})$$

$$\beta_{1} = a\tan(r_{12}, r_{11})$$

$$\beta_{2} = a\tan(r_{12}, r_{11})$$

$$\beta_{2} = a\tan(r_{12}, r_{11})$$

$$\beta_3 = \text{atan2}(r_{32}, r_{33})$$

$$\beta_1 = \text{atan2}(r_{21}, r_{11})$$

$$\beta_2 = \text{atan2}(-r_{31}, r_{32} / \sin \beta_3)$$

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

1.10 Computing the closest rotation matrix

Any mxn matrix M can be expressed in terms of its Singular Value Decomposition as:

$$M = UDV^T; SVD(M) = UDV^T$$

where:

U is an nxn rotation matrix, V is an mxm rotation matrix, and D is an mxn diagonal matrix (i.e off-diagonals are all 0).

1.10 Computing the closest rotation matrix

M is 3x3, the inverse of M is,

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

$$M^{-1} = (UDV^T)^{-1} = V(UD)^{-1} = VD^{-1}U^T$$

where:

$$D^{-1} = \begin{pmatrix} 1/\lambda_1 & 0 & 0\\ 0 & 1/\lambda_2 & 0\\ 0 & 0 & 1/\lambda_3 \end{pmatrix}$$

U is an 3x3 rotation matrix,

V is an 3x3 rotation matrix, and

D is an 3x3 diagonal matrix (i.e off-diagonals are all 0).

M is a Rotation Matrix if D is a Rotation matrix, i.e. its elements are unitarian.

$$SVD(M) = U \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} V^T$$

$$R = U \begin{pmatrix} \operatorname{sgn}(\lambda_1) & 0 & 0 \\ 0 & \operatorname{sgn}(\lambda_2) & 0 \\ 0 & 0 & \operatorname{sgn}(\lambda_3) \end{pmatrix} V^T$$

sgn(x)=1 if x>0; sgn(x)=-1 if x<0

- 1.1 Cartesian coordinates, Points and Vectors.
- 1.2 Inner product and Cross product
- 1.3 Translations
- 1.4 Rotations
- 1.5 Homogeneous coordinates
- 1.6 Composition of transformations
- 1.7 Inverse transformation
- 1.8 Parametrization of a Rotation matrix
- 1.9 Extracting the rotation angles of a Rotation matrix
- 1.10 Computing the closest rotation matrix of a noisy rotation matrix

