MAYER-VIETORIS

Theorem A,B
$$\subseteq X$$
 interiors cover X . There is long exact Seq :

... $\rightarrow H_n(A \cap B) \longrightarrow H_n(A) \oplus H_n(B) \longrightarrow H_n(X) \longrightarrow H_{n-1}(A \cap B) \longrightarrow ...$

$$\begin{array}{cccc}
x = X^{A} + X^{B} & \longrightarrow & 9X^{A} \\
\times & & \longrightarrow & \times -A \\
\times & & \longrightarrow & \times \oplus -\times
\end{array}$$

- · Reduced version formally identical.
- Mayer-Vietoris is abelian version of Van Kampen: For AnB path conn $MV \Rightarrow H_1(X) = H_1(A) \oplus H_1(B) / H_1(AnB)$

Examples ①
$$X = S^n$$
 A, $B = (neighborhoods of) hemispheres: $\widetilde{H}_i(A) \oplus \widetilde{H}_i(B) = O \ \forall \ i$.

 $\Rightarrow \widetilde{H}_i(S^n) \cong \widetilde{H}_{i-1}(S^{n-1})$$

② X = Klein bottle
$$A,B = (nbhdsof)$$
 Möbius bands
 $A,B,AnB = S^{1}$ → $O \rightarrow H_{2}(X) \rightarrow H_{1}(AnB) \rightarrow H_{1}(A) \oplus H_{1}(B) \rightarrow H_{1}(K) \rightarrow O$
 $1 \mapsto 2 \oplus -2$

EXCISION

Theorem. Let $Z \subseteq A \subseteq X$ closure $Z \subseteq$ interior A(3) Then $(X - A^2, A - Z) \longrightarrow (X, A)$ induces an isomorphism on homology.

Equivalently: $A, B \subseteq X$, interiors cover X. $(B, AnB) \hookrightarrow (X,A)$ induces \cong on I-1*translation B=X-Z, Z=X-B.

APPLICATION: Invariance of Domain

Theorem: If nonempty open sets $U \subseteq \mathbb{R}^m$, $V \subseteq \mathbb{R}^n$ are homeomorphic, then m = n.

Proof: Let $x \in U$. $H_k(U, U-x) \cong H_k(\mathbb{R}^m, \mathbb{R}^m-x)$ by Excision. Long exact seq. for $(\mathbb{R}^m, \mathbb{R}^m-x)$: $W_k(\mathbb{R}^m) \longrightarrow W_k(\mathbb{R}^m, \mathbb{R}^m-x) \longrightarrow W_{k-1}(\mathbb{R}^m-x) \longrightarrow W_{k-1}(\mathbb{R}^m-x)$ But $W_{k-1}(\mathbb{R}^m-x) \cong W_{k-1}(\mathbb{R}^m-x)$ since \mathbb{R}^m-x ref. to \mathbb{R}^m-x .

Thus: $W_k(U, U-x) = \begin{cases} \mathbb{Z} & k=m \\ 0 & o.w. \end{cases}$ In other words, can detect $w \in \mathbb{R}^m$ from homology groups.

Excision also used to show $H_n(X,A) \cong \widetilde{H}_n(X/A)$, so Theorem 2 implies Theorem 1. See Hotcher Prop 2.22

Kemains to prove Excision and Mayer-Victors.

dea: Subdivide.

Another homology: X = space

 $U = \{U_j\}$ collection of subspaces whose interiors cover X.

Cn(X) = chains Eniti so each ti has image in some Uj

 $\partial(C_n^u(X)) \subseteq C_{n-1}^u(X) \longrightarrow \text{chain complex}$

 $\rightarrow H_{n}^{u}(X)$

Prop: Hn(X) = Hn(X)

Specifically, there is a subdivision operator $\rho: C_n(X) \rightarrow C_n^u(X)$

that is a chain homotopy inverse to $L: C_n^u(X) \to C_n(X)$.

Proof of Excision. To show $H_n(B,AnB) \cong H_n(X,A)$.

Let U= {A,B}

Note $C_n^{u}(A)$ naturally identified with $C_n(A)$. by p and ℓ .

$$\Rightarrow \frac{C_n^u(X)}{C_n(A)} \xrightarrow{C_n(X)} \frac{C_n(X)}{C_n(A)}$$

induces isomorphism $H_n^u(X,A) \cong H_n(X,A)$.

Cn(B)/Cn(AnB) - Cn(X)/Cn(A)

obviously an isomorphism: both are free on simplices lying in B but not A. So Hn(B, AnB) = Hn(X, A).

Proof of Mayer-Vietoris. Recall
$$X = A \cup B$$
.
Let $U = \{A,B\}$
There is a short exact seq. of chain complexes:
 $O \longrightarrow Cn(AnB) \longrightarrow Cn(A) \oplus Cn(B) \longrightarrow Cn(X) \longrightarrow O$
 $X \longmapsto X \oplus -X$

x -> x -x XOY -> X+Y

-- long exact seq. in homology as before. Substituting $H_n(X)$ for $H_n^n(X)$ (Proposition) ~> Mayer-Vieton's sequence.

 \square

A description of 2: Hn(X) -> Hn-1 (AnB): x & Hn(X) rep. by cycle Z Z= x+y X & Cn(A), y & Cn(B) $\partial x = -\partial y$ since $\partial z = 0$. Set dx = dx.

Proof of Prop.

Let S = barycentric subdivision.

First show S is a chain homotopy equiv.

then take $P = S^N$.

Want T: Cn(X) - Cn+1(X) s.t. Ta+aT=S-id.

i.e. for any simplex & want (n+1)-chain To with

boundary SOT- J- TOT

n=1

Do not case on all 3 sides. Then join all simplices to barycenter on top.