Preuve par résolution

- Procédure générale pour faire de l'inférence
 - modus ponens et l'instantiation universelle sont des cas particuliers
- Cette procédure est correcte et complète (sous certaine condition, à voir plus tard)
- On aura besoin des outils suivants :
 - la substitution
 - l'unification
 - ♦ la transformation sous forme normale conjonctive

Substitution

- On définit un littéral comme un prédicat ou la négation d'un prédicat
 - ex. : $p_1(x, y)$, $\neg p_1(x, y)$
- On définit une clause comme une disjonction de littéraux
 - ex. : $p_1(x, y) \vee p_2(x, y, z) \vee \neg p_1(x, z)$
- Une **substitution** est un ensemble (possiblement vide) de paires de la forme $x_i = t_i$ où x_i est une variable et t_i est un terme et les x_i sont **distincts**
 - \bullet ex. : { x = John, y = pere(Mary) }

Substitution

- L'application d'une substitution $\theta = \{x_1 = t_1, \dots, x_n = t_n\}$ à un littéral α donne un littéral $\alpha\theta$ obtenu de α en remplaçant **simultanément** toute occurrence de x_i par t_i dans α , pour chaque paire $x_i = t_i$.
- $\alpha\theta$ est appelé **instance** de α pour θ
 - exemple : $\alpha = p(x, y, f(a)), \quad \theta = \{y = x, x = b\}$ • $\alpha\theta = p(b, x, f(a))$
- Si C est la clause $\alpha_1 \vee ... \vee \alpha_n$, C θ est la clause $\alpha_1 \theta \vee ... \vee \alpha_n \theta$

Composition de substitutions

- Quelle serait la substitution équivalent à l'application successive de deux substitution $\theta = \{x_1 = s_1, ..., x_m = s_m\}$ et $\sigma = \{y_1 = t_1, ..., y_n = t_n\}$
 - \diamond on note une telle **composition** $\theta\sigma$
- La composition $\theta\sigma$ de θ et σ est la substitution obtenue comme suit :
 - 1. construire l'ensemble

$$\{x_1 = s_1\sigma,..., x_m = s_m\sigma, y_1 = t_1,...,y_m = t_n\}$$

en appliquant σ à tous les termes s_i

- 2. supprimer toutes les paires $y_i = t_i$ telles que $y_i \subseteq \{x_1, ..., x_m\}$
- 3. supprimer les identités, c-à-d., les paires pour lesquelles $s_i \sigma$ est devenu x_i

• Composition de $\theta = \{x = f(y), y = z\}$ et $\sigma = \{x = A, y = B, z = y\}$

• Composition de $\theta = \{x = f(y), y = z\}$ et $\sigma = \{x = A, y = B, z = y\}$ 1. $\{x = f(y), y = z, x = A, y = B, z = y\}$

• Composition de $\theta = \{x = f(y), y = z\}$ et $\sigma = \{x = A, y = B, z = y\}$ 1. $\{x = f(B), y = y, x = A, y = B, z = y\}$

Composition de $\theta = \{x = f(y), y = z\}$ et $\sigma = \{x = A, y = B, z = y\}$ 1. $\{x = f(B), y = y, x = A, y = B, z = y\}$ 2. $\{x = f(B), y = y, x = A, y = B, z = y\}$

• Composition de $\theta = \{x = f(y), y = z\}$ et $\sigma = \{x = A, y = B, z = y\}$ 1. $\{x = f(B), y = y, x = A, y = B, z = y\}$ 2. $\{x = f(B), y = y, x = A, y = B, z = y\}$

 $\{x = f(B), \frac{y = y}{A}, \frac{y = A}{A}, \frac{y = B}{A}, z = y\}$

• Composition de $\theta = \{x = f(y), y = z\}$ et $\sigma = \{x = A, y = B, z = y\}$ 1. $\{x = f(B), y = y, x = A, y = B, z = y\}$ 2. $\{\underline{x} = f(B), \underline{y} = y, \underline{x} = A, \underline{y} = B, z = y\}$ 3. $\{x = f(B), \underline{y} = y, \underline{x} = A, \underline{y} = B, z = y\}$

Résultat:
$$\theta \sigma = \{ x = f(B), z = y \}$$

Propriétés des substitutions

- La substitution identitée, notée ε, est l'ensemble vide
- $\theta \epsilon = \theta$, pour toute substitution θ
- $(\alpha\sigma)\theta = \alpha(\sigma\theta)$, pour toute clause α et substitutions θ et σ
- $(\theta \sigma) \gamma = \theta(\sigma \gamma)$, pour toutes substitutions θ , σ et γ