3. (12 punti) Dimostra che se B è un linguaggio regolare, allora il linguaggio

2, = 2 (ST. AUFA3500) VN=VC (ST. VAMABUL) RN (E-NFA) N=NFA, NFA2) > CHUSO P012 LWG. L5G9CAS (SN= F) > FUE DI PDA PRODUCE REGOVE OFL TRO:

(PDA = CFG) 5> QA AsaBe (STRUTTURA SPECULARS) GENORAUS 74. WISNI 75661 -5 -> As N 7520 -Aa > E > CASO 1 - Aa > a A (J(9,0)), a -A > a Ba A->BC / CEG Bac Dc

2. (12 punti) Date due stringhe u e v, diciamo che u è una permutazione di v se u ha gli stessi simboli di v con ugual numero di occorrenze, ma eventualmente in un ordine diverso. Per esempio, le stringhe 01011,e 00111 sono entrambe permutazioni di 11001.

Dimostra che il seguente linguaggio non è regolare:

$$L_2 = \{uv \mid u, v \in \{0, 1\}^* \in u \text{ è una permutazione di } v\}.$$

 (12 punti) Se L è un linguaggio sull'alfabeto {0,1}, la rotazione a sinistra di L è l'insieme delle stringhe

$$\mathrm{ROL}(L) = \{ wa \mid aw \in L, w \in \{0,1\}^*, a \in \{0,1\} \}.$$

Per esempio, se $L = \{0,01,010,10100\}$, allora $ROL(L) = \{0,10,100,01001\}$. Dimostra che se L è regolare allora anche ROL(L) è regolare.

->
$$90 \text{ mizers} \rightarrow F)$$

$$AE 90' = 91EB \rightarrow ...$$

$$AE 91' = 82EB \rightarrow ...$$

DFA per a⁻¹L:

• A = $(Q, \Sigma, \delta, \delta(q_0,a), F)$ dove $\delta(q_0,a)$ è il nuovo stato iniziale

DFA per {a}:

• B = $(\{q_1, q_2\}, \Sigma, \delta', q_1, \{q_2\}) \cos \delta'(q_1, a) = q_2$

Concatenazione A º B:

- Stati: $Q \cup \{q_1, q_2\}$
- **Iniziale:** δ(qo,a)
- **Finali:** {q2}
- Transizioni:
 - Mantieni transizioni di A
 - **Per ogni** $\mathbf{f} \in \mathbf{F}$: $\delta''(\mathbf{f}, \boldsymbol{\varepsilon}) = q_1 (\boldsymbol{\varepsilon}$ -transizione)
 - $\delta''(q_1, a) = q_2$

"Lo stato finale dell'uno è l'inizio dell'altro":

A: $q_0' \rightarrow^* f \in F --\epsilon--> q_1 --a--> q_2 \in F'$ (riconosce w) (riconosce a)

Risultato finale: $ROL(L) = U_{a \in \{0,1\}} L(A_a \circ B_a)$

Transizioni:

- 1. "Indovina e sposta": $\delta'(q_0, b) = \{(\delta(q_0, b), b)\}\ per\ b \in \{0,1\}$
 - Non-deterministicamente indovina che b è il simbolo da spostare
- 2. Simula normalmente: $\delta'((q,a), c) = \{(\delta(q,c), a)\} \text{ per } c \in \{0,1\}$
 - Continua simulazione "ricordando" che a deve essere verificato alla fine
- 3. **Verifica finale:** Accetta in (f,a) se dopo aver letto wa, siamo in stato f e il simbolo memorizzato è a

Meccanismo:

```
Input: wa

↓
Indovina a, simula su w, verifica che δ*(q₀,aw) ∈ F
```

Non esiste costruzione "naturale" che preservi la struttura originale.

Ecco perché:

- I linguaggi regolari NON sono chiusi sotto alcune rotazioni
- ROL funziona solo per costruzioni "artificiali" (quotient)
- Il non-determinismo serve proprio per gestire questi shift

- *1.67 Let the *rotational closure* of language A be $RC(A) = \{yx | xy \in A\}$.
 - **a.** Show that for any language A, we have RC(A) = RC(RC(A)).
 - **b.** Show that the class of regular languages is closed under rotational closure.

(b) Show that the class of regular languages is closed under rotational closure.

Solution. Let A be an arbitrary regular language and $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ be a DFA that recognizes A. To prove that RC(A) is also regular, we construct from M_A (as a building block) an NFA N that recognizes RC(A). We first elaborate on the basic ideas and then give a formal definition for N.

Suppose N is given an input w = yx for some $x, y \in \Sigma^*$ such that $xy \in A$. Let q_x be the state in which M_A ends up after reading x. Starting from q_x , M_A should end at some final state after reading y. For N to accept w, we let N simulate M_A from q_x and, after reading y and reaching a final state, make an epsilon transition (which needs to be added to M_A) to the initial state q_A of M_A and continue simulating M_A with the rest of the input. If N eventually ends up at q_x , then the input w is of the correct form of yx such that $xy \in A$. Any state of M_A may act as q_x . For N to start

and finish the simulation at the same state, we need $|Q_A|$ copies of M_A , one for each state in Q_A , with an epsilon transition added from every final state to the initial state. To start the simulation of M_A from any state, N has an epsilon transition from its initial state to every state of M_A .

So,
$$N = (Q_A \times Q_A \cup \{q_0\}, \Sigma_{\varepsilon}, \delta, q_0, \bigcup_{q \in Q_A} \{(q, q)\})$$
, where

$$\begin{cases} \delta(q_0,\varepsilon) = \bigcup_{q \in Q_A} \{(q,q)\} \\ \delta((q_1,q_2),a) = \{(q,q_2) \mid \delta_A(q_1,a) = q\} & q_1,q_2 \in Q_A \text{ and } a \in \Sigma \\ \delta((q_1,q_2),\varepsilon) = \{(q_A,q_2)\} & q_1 \in F_A \text{ and } q_2 \in Q_A \\ \delta(q,a) = \emptyset & \text{otherwise} \end{cases}$$

3. (12 punti) Mostra che per ogni PDA P esiste un PDA P_2 con due soli stati tale che $L(P_2) = L(P)$. Suggerimento: usate la pila per tenere traccia dello stato di P.

Dato $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, costruisco $P_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, s_0, Z_{20}, F_2)$:

$$\forall P, PDAP \Rightarrow \exists P_2 \subset \frac{1}{2} \text{ sown } L(P_2) = L(P)$$

INPUT

Componenti di P2:

Stati:
$$Q_2 = \{s_1, s_2\}$$
 (solo 2 stati!)

Alfabeto pila: $\Gamma_2 = Q \times \Gamma$ (coppie [stato, simbolo])

Stato iniziale: so = s1

Simbolo pila iniziale: $Z_{20} = [q_0, Z_0]$

Stati finali:
$$F_2 = \{s_2\}$$

POP

RUSH

STACK PUSH

STACK PUSH

 $E_1 E_2 \rightarrow E_1 E_2 \rightarrow E_2 E_2 \rightarrow E_1 E_2 \rightarrow E_1 E_2 \rightarrow E_2 E_2 \rightarrow E_1 E_2 \rightarrow E_2 E_2 \rightarrow E_1 E_2 \rightarrow E_2 E_2 \rightarrow E_2 E_2 \rightarrow E_1 E_2 \rightarrow E_2 E_2 \rightarrow E_2 E_2 \rightarrow E_1 E_2 \rightarrow E_2 E_2 \rightarrow E_2 E_2 \rightarrow E_2 E_2 \rightarrow E_1 E_2 \rightarrow E_2 E_2 \rightarrow$

2. (12 punti) Considera l'alfabeto $\Sigma = \{0, 1\}$, e sia L_2 l'insieme di tutte le stringhe che contengono almeno un 1 nella loro prima metà:

 $L_2 = \{uv \mid u \in \Sigma^* 1 \Sigma^*, v \in \Sigma^* \in |u| \le |v|\}.$

$$W = xy^{2}z = 10^{2} \text{ k-p+2p}$$

$$= 10^{2}$$