- 1. (a) Find the distance between points P = (-1, 1) and Q = (11, -4).
 - (b) Find the midpoint of the line segment joining the points P and Q.
- **2.** (a) Find the distance between points P = (-3, 2) and Q = (-1, 5).
 - **(b)** Find the midpoint of the line segment joining the points *P* and *Q*.
- 3. (a) Find the distance between points P = (5, -3) and Q = (-4, 7).
 - **(b)** Find the midpoint of the line segment joining the points *P* and *Q*.
- **4.** (a) Find the distance between points P = (8,3) and Q = (-8,15).
 - **(b)** Find the midpoint of the line segment joining the points *P* and *Q*.
- 5. Let P = (3, 5), Q = (7, -1) and $\vec{v} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Compute the following quantities:
 - (a) Dist(P,Q) (b) \overrightarrow{PQ} (c) $P+\overrightarrow{v}$ (d) $Q-\overrightarrow{v}$ (e) P-Q

- **6.** Let P = (4,7), Q = (5, -2) and $\vec{v} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$. Compute the following quantities:
 - (a) Dist(P,Q) (b) \overrightarrow{PQ} (c) $P+\overrightarrow{v}$ (d) $Q-\overrightarrow{v}$ (e) P-Q

- 7. Let P = (-2, 3), Q = (2, -4) and $\vec{v} = \begin{bmatrix} 5 \\ -4 \end{bmatrix}$. Compute the following quantities:
 - (a) Dist(P,Q) (b) \overrightarrow{PQ} (c) $P+\overrightarrow{v}$ (d) $Q-\overrightarrow{v}$ (e) P-Q

- **8.** Let P = (2, -3), Q = (5, 1) and $\vec{v} = \begin{bmatrix} 7 \\ -5 \end{bmatrix}$. Compute the following quantities:
 - (a) Dist(P,Q) (b) \overrightarrow{PQ} (c) $P+\overrightarrow{v}$ (d) $Q-\overrightarrow{v}$ (e) P-Q

- **9.** Let P = (1, -5), $\vec{v} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$. Compute the following quantities:

- (a) $P + \vec{v}$ (b) $P + \vec{w}$ (c) $\vec{v} + \vec{w}$ (d) $P + \vec{v} + \vec{w}$ (e) $\vec{w} \vec{v}$
- **10.** Let P = (3, -4), $\vec{v} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$. Compute the following quantities:

- (a) $P + \vec{v}$ (b) $P + \vec{w}$ (c) $\vec{v} + \vec{w}$ (d) $P + \vec{v} + \vec{w}$ (e) $\vec{w} \vec{v}$ (f) $\text{proj}_{\vec{v}}(\vec{w})$

- **11.** Let P = (-2, 3), $\vec{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}$. Compute the following quantities:

- (a) $P + \vec{v}$ (b) $P + \vec{w}$ (c) $\vec{v} + \vec{w}$ (d) $P + \vec{v} + \vec{w}$ (e) $\vec{w} \vec{v}$ (f) $\text{proj}_{\vec{v}}(\vec{w})$
- **12.** Let P = (2, -7), $\vec{v} = \begin{vmatrix} 3 \\ -2 \end{vmatrix}$ and $\vec{w} = \begin{vmatrix} -4 \\ 5 \end{vmatrix}$. Compute the following quantities:

- (a) $P + \vec{v}$ (b) $P + \vec{w}$ (c) $\vec{v} + \vec{w}$ (d) $P + \vec{v} + \vec{w}$ (e) $\vec{w} \vec{v}$ (f) $\text{proj}_{\vec{v}}(\vec{w})$
- **13.** Let $\vec{v} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$. Compute the following quantities:

- (a) $\vec{v} + \vec{w}$ (b) $\vec{w} \vec{v}$ (c) $3\vec{v} 2\vec{w}$ (d) $\frac{1}{2}(\vec{v} + \vec{w})$ (e) $||\vec{w}||$ (f) $\text{proj}_{\vec{w}}(\vec{v})$
- **14.** Let $\vec{v} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$. Compute the following quantities:

- (a) $\vec{v} + \vec{w}$ (b) $\vec{w} \vec{v}$ (c) $3\vec{v} 2\vec{w}$ (d) $\frac{1}{2}(\vec{v} + \vec{w})$ (e) $||\vec{w}||$ (f) $\text{proj}_{\vec{w}}(\vec{v})$
- **15.** Let $\vec{v} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$. Compute the following quantities:

- (a) $\vec{v} + \vec{w}$ (b) $\vec{w} \vec{v}$ (c) $3\vec{v} 2\vec{w}$ (d) $\frac{1}{2}(\vec{v} + \vec{w})$ (e) $||\vec{w}||$ (f) $\text{proj}_{\vec{w}}(\vec{v})$
- **16.** Let $\vec{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$. Compute the following quantities:

- (a) $\vec{v} + \vec{w}$ (b) $\vec{w} \vec{v}$ (c) $3\vec{v} 2\vec{w}$ (d) $\frac{1}{2}(\vec{v} + \vec{w})$ (e) $||\vec{w}||$ (f) $\text{proj}_{\vec{w}}(\vec{v})$
- **17.** Let $\vec{u} = \begin{vmatrix} 3 \\ -2 \end{vmatrix}$, $\vec{v} = \begin{vmatrix} 1 \\ 5 \end{vmatrix}$ and $\vec{w} = \begin{vmatrix} -2 \\ 4 \end{vmatrix}$. Find: **(a)** $2\vec{v} 3(\vec{u} + \vec{w})$ **(b)** $\|\vec{v}\|$

- (c) a unit vector in the direction of \vec{v} .
- (d) a unit vector perpendicular to \vec{v} .
- **18.** Let $\vec{u} = \begin{vmatrix} 2 \\ 5 \end{vmatrix}$, $\vec{v} = \begin{vmatrix} -4 \\ 3 \end{vmatrix}$ and $\vec{w} = \begin{vmatrix} -1 \\ 7 \end{vmatrix}$. Find: **(a)** $2\vec{v} 3(\vec{u} + \vec{w})$ **(b)** $\|\vec{v}\|$

- (c) a unit vector in the direction of \vec{v} .
- (d) a unit vector perpendicular to \vec{v} .

19. Let
$$\vec{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} -12 \\ 5 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Find: **(a)** $2\vec{v} - 3(\vec{u} + \vec{w})$ **(b)** $\|\vec{v}\|$

- (c) a unit vector in the direction of \vec{v} .
- (d) a unit vector perpendicular to \vec{v} .

20. Let
$$\vec{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} -8 \\ 6 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$. Find: **(a)** $2\vec{v} - 3(\vec{u} + \vec{w})$ **(b)** $\|\vec{v}\|$

- (c) a unit vector in the direction of \vec{v} .
- (d) a unit vector perpendicular to \vec{v} .
- **21.** (a) Find a unit vector in the direction of $\vec{u} = \begin{bmatrix} -5 \\ 12 \end{bmatrix}$.

 (b) Find a unit vector in the direction of $\vec{v} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$.

 (c) Find a unit vector in the direction of $\vec{w} = \begin{bmatrix} 3 \\ -4 \\ 12 \end{bmatrix}$.

 (d) Find two unit vectors perpendicular to $\vec{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
- **22.** (a) Find a unit vector in the direction of $\vec{u} = \begin{bmatrix} -24 \\ 7 \end{bmatrix}$.
 - **(b)** Find a unit vector in the direction of $\vec{v} = \begin{bmatrix} 30 \\ -24 \end{bmatrix}$.
 - (c) Find a unit vector in the direction of $\vec{w} = \begin{bmatrix} 3 \\ -4 \\ 7 \end{bmatrix}$.
 - (d) Find two unit vectors perpendicular to $\vec{a} = \begin{bmatrix} 4 \\ -2 \\ 2 \end{bmatrix}$.

- **23.** (a) Find a unit vector in the direction of $\vec{u} = \begin{bmatrix} -8 \\ 15 \end{bmatrix}$.

 - (b) Find a unit vector in the direction of $\vec{v} = \begin{bmatrix} 20 \\ -21 \end{bmatrix}$. (c) Find a unit vector in the direction of $\vec{w} = \begin{bmatrix} 12 \\ -21 \\ 28 \end{bmatrix}$. (d) Find two unit vectors perpendicular to $\vec{a} = \begin{bmatrix} 21 \\ -12 \\ 16 \end{bmatrix}$.
- **24.** (a) Find a unit vector in the direction of $\vec{u} = \begin{bmatrix} -12 \\ 16 \end{bmatrix}$.
 - **(b)** Find a unit vector in the direction of $\vec{v} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$.
 - (c) Find a unit vector in the direction of $\vec{w} = \begin{bmatrix} 2 \\ -3 \\ 6 \end{bmatrix}$.
 - (d) Find two unit vectors perpendicular to $\vec{a} = \begin{bmatrix} 3 \\ 5 \\ -7 \end{bmatrix}$.
- **25.** Let P = (2, 1), Q = (5, 1) and R = (3, 4).
 - (a) Find the midpoints M_{PQ} and M_{PR} of segments \overline{PQ} and \overline{PR} .
 - **(b)** Find the midpoint M of the segment $\overline{M}_{PO} M_{PR}$.
 - (c) Express \overrightarrow{PM} in terms of the vectors \overrightarrow{PQ} and \overrightarrow{PR} : $a \cdot \overrightarrow{PQ} + b \cdot \overrightarrow{PR} = \overrightarrow{PM}$ [Illustrate this with a picture]
- **26.** Let P = (1, 3), Q = (5, 1) and R = (4, 6).
 - (a) Find the midpoints M_{PQ} and M_{PR} of segments \overline{PQ} and \overline{PR} .
 - **(b)** Find the midpoint M of the segment $\overline{M}_{PO}R$.
 - (c) Express \overrightarrow{PM} in terms of the vectors \overrightarrow{PQ} and \overrightarrow{PR} : $a \cdot \overrightarrow{PQ} + b \cdot \overrightarrow{PR} = \overrightarrow{PM}$ [Illustrate this with a picture]

- **27.** Let P = (2, 5), Q = (4, -1) and R = (5, 2).
 - (a) Find the midpoints M_{PQ} and M_{PR} of segments \overline{PQ} and \overline{PR} .
 - **(b)** Find the midpoint M of the segment $\overline{M}_{PR}Q$.
 - (c) Express \overrightarrow{PM} in terms of the vectors \overrightarrow{PQ} and \overrightarrow{PR} : $a \cdot \overrightarrow{PQ} + b \cdot \overrightarrow{PR} = \overrightarrow{PM}$ [Illustrate this with a picture]
- **28.** Let P = (4, 6), Q = (0, -2) and R = (-4, 2).
 - (d) Find the midpoints M_{PQ} and M_{PR} of segments \overline{PQ} and \overline{PR} .
 - (e) Find the midpoint M of the segment $\overline{M_{PO} R}$.
 - (f) Express \overrightarrow{PM} in terms of the vectors \overrightarrow{PQ} and \overrightarrow{PR} : $a \cdot \overrightarrow{PQ} + b \cdot \overrightarrow{PR} = \overrightarrow{PM}$ [Illustrate this with a picture]
- **29.** Let $\vec{u} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$. Compute the following quantities:

- (a) $2\vec{u} + 3\vec{v}$ (b) $3\vec{u} 2\vec{v} + \vec{w}$ (c) $\vec{u} \cdot \vec{v}$ (d) $\vec{v} \cdot \vec{w}$ (e) $(2\vec{u} + 3\vec{v}) \cdot \vec{w}$
- **30.** Let $\vec{u} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 6 \\ 9 \end{bmatrix}$. Compute the following quantities:

- (a) $2\vec{u} + 3\vec{v}$ (b) $3\vec{u} 2\vec{v} + \vec{w}$ (c) $\vec{u} \cdot \vec{v}$ (d) $\vec{u} \cdot \vec{w}$ (e) $(2\vec{w} + 3\vec{v}) \cdot \vec{u}$
- **31.** Let $\vec{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \vec{v} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Compute the following quantities:

- (a) $2\vec{u} + 3\vec{v}$ (b) $3\vec{u} 2\vec{v} + \vec{w}$ (c) $\vec{u} \cdot \vec{v}$ (d) $\vec{u} \cdot \vec{w}$ (e) $(2\vec{w} + 3\vec{v}) \cdot \vec{u}$
- **32.** Let $\vec{u} = \begin{bmatrix} 2 \\ -5 \end{bmatrix} \vec{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Compute the following quantities:

- (a) $2\vec{u} + 3\vec{v}$ (b) $3\vec{u} 2\vec{v} + \vec{w}$ (c) $\vec{u} \cdot \vec{v}$ (d) $\vec{u} \cdot \vec{w}$ (e) $(2\vec{w} + 3\vec{v}) \cdot \vec{u}$
- **33.** Find the angles between the following pairs of vectors:
 - (a) $\begin{bmatrix} 7 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$ (b) $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ (c) $\begin{bmatrix} 9 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$

- (d) $\begin{vmatrix} 6 \\ -2 \end{vmatrix}$ and $\begin{vmatrix} -12 \\ 4 \end{vmatrix}$ (e) $\begin{vmatrix} 7 \\ -1 \end{vmatrix}$ and $\begin{vmatrix} 3 \\ 3 \end{vmatrix}$

34. Find the angles between the following pairs of vectors:

(a)
$$\begin{bmatrix} 8 \\ -2 \end{bmatrix}$$
 and $\begin{bmatrix} -1 \\ 5 \end{bmatrix}$

(a)
$$\begin{bmatrix} 8 \\ -2 \end{bmatrix}$$
 and $\begin{bmatrix} -1 \\ 5 \end{bmatrix}$ (b) $\begin{bmatrix} -4 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} -5 \\ 1 \end{bmatrix}$ (c) $\begin{bmatrix} -8 \\ 12 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$

(c)
$$\begin{bmatrix} -8 \\ 12 \end{bmatrix}$$
 and $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$

(**d**)
$$\begin{bmatrix} 6 \\ -2 \end{bmatrix}$$
 and $\begin{bmatrix} 3 \\ 9 \end{bmatrix}$

(d)
$$\begin{bmatrix} 6 \\ -2 \end{bmatrix}$$
 and $\begin{bmatrix} 3 \\ 9 \end{bmatrix}$ (e) $\begin{bmatrix} 8 \\ -2 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$

35. Find the angles between the following pairs of vectors:

(a)
$$\begin{bmatrix} 8 \\ -2 \end{bmatrix}$$
 and $\begin{bmatrix} 7 \\ 2 \end{bmatrix}$

(a)
$$\begin{bmatrix} 8 \\ -2 \end{bmatrix}$$
 and $\begin{bmatrix} 7 \\ 2 \end{bmatrix}$ (b) $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 12 \\ -6 \end{bmatrix}$ (c) $\begin{bmatrix} -3 \\ 11 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ -3 \end{bmatrix}$

(c)
$$\begin{bmatrix} -3 \\ 11 \end{bmatrix}$$
 and $\begin{bmatrix} 4 \\ -3 \end{bmatrix}$

(d)
$$\begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
 and $\begin{bmatrix} -5 \\ 1 \end{bmatrix}$

(d)
$$\begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
 and $\begin{bmatrix} -5 \\ 1 \end{bmatrix}$ (e) $\begin{bmatrix} 6 \\ -10 \end{bmatrix}$ and $\begin{bmatrix} 15 \\ 9 \end{bmatrix}$

36. Find the angles between the following pairs of vectors:

(a)
$$\begin{bmatrix} 5 \\ -2 \end{bmatrix}$$
 and $\begin{bmatrix} 6 \\ 1 \end{bmatrix}$

(b)
$$\begin{bmatrix} -10 \\ 6 \end{bmatrix}$$
 and $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$

(a)
$$\begin{bmatrix} 5 \\ -2 \end{bmatrix}$$
 and $\begin{bmatrix} 6 \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} -10 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$ (c) $\begin{bmatrix} -3 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ -10 \end{bmatrix}$

(**d**)
$$\begin{bmatrix} 1 \\ -4 \end{bmatrix}$$
 and $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$

(d)
$$\begin{bmatrix} 1 \\ -4 \end{bmatrix}$$
 and $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$ (e) $\begin{bmatrix} -1 \\ -5 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$

37. Let P = (2, 3), Q = (-2, 4) and R = (-3, -2).

- (a) Find the area of $\triangle PQR$
- (b) Find the angles of $\triangle PQR$
- (c) Find the lengths of the sides of $\triangle PQR$
- (d) Find the base of the altitude from Q, using a projection vector.

38. Let P = (4, 1), Q = (-3, 5) and R = (-6, -2).

- (a) Find the area of $\triangle PQR$
- (b) Find the angles of $\triangle PQR$
- (c) Find the lengths of the sides of $\triangle PQR$
- (d) Find the base of the altitude from Q, using a projection vector.

39. Let P = (2, 3), Q = (8, 7) and R = (3, 8).

- (a) Find the area of $\triangle PQR$
- **(b)** Find the angles of $\triangle PQR$
- (c) Find the lengths of the sides of $\triangle PQR$
- (d) Find the base of the altitude from Q, using a projection vector.

- **40.** Let P = (-1, 7), Q = (2, 1) and R = (7, 4).
 - (a) Find the area of $\triangle PQR$ (b) Find the angles of $\triangle PQR$
 - (c) Find the lengths of the sides of $\triangle PQR$
 - (d) Find the base of the altitude from Q, using a projection vector.
- **41.** Use the law of cosines to find the angle between the lines x + 4y = 7 and 2x 3y = 3 [Hint: First find the point of intersection of the two lines, call it P. Then check that the points Q = (7, 0) and R = (0, -1) are each on one of the lines.

Use these three points, i.e. ΔPQR , and the law of cosines to compute the angle.]

42. Use the law of cosines to find the angle between the lines 2x-3y=-5 and 5x-y=7 [Hint: First find the point of intersection of the two lines, call it *P*. Then check that the points Q=(8,7) and R=(3,8) are each on one of the lines.

Use these three points, i.e. $\triangle PQR$, and the law of cosines to compute the angle.]

43. Use the law of cosines to find the angle between the lines 2x + y = 5 and 3x - 5y = 1 [Hint: First find the point of intersection of the two lines, call it Q. Then check that the points P = (-1, 7) and R = (7, 4) are each on one of the lines.

Use these three points, i.e. ΔPQR , and the law of cosines to compute the angle.]

44. Use the law of cosines to find the angle between the lines 5x + y = 7 and 3x + 2y = 7 [Hint: First find the point of intersection of the two lines, call it *P*. Then check that the points Q = (0, 7) and R = (-1, 5) are each on one of the lines.

Use these three points, i.e. ΔPQR , and the law of cosines to compute the angle.]

- **45.** (a) Graph in one picture the points P = (2, 3), Q = (-1, 5) and R = (2, -3).
 - (b) Compute the distances: dist(P, Q), dist(P, R) and dist(Q, R).
 - (c) Compute the angles of the triangle $\triangle PQR$, using the law of cosines and the lengths you computed in part (b).
- **46.** (a) Graph in one picture the points P = (2, 1), Q = (-1, 7) and R = (7, 4).
 - **(b)** Compute the distances: dist(P, Q), dist(P, R) and dist(Q, R).
 - (c) Compute the angles of the triangle $\triangle PQR$, using the law of cosines and the lengths you computed in part (b).

- **47.** (a) Graph in one picture the points P = (3, 2), Q = (5, 0) and R = (2, -1).
 - (b) Compute the distances: dist(P, Q), dist(P, R) and dist(Q, R).
 - (c) Compute the angles of the triangle $\triangle PQR$, using the law of cosines and the lengths you computed in part (b).
- **48.** (a) Graph in one picture the points P = (3, 2), Q = (1, 5) and R = (2, -3).
 - (b) Compute the distances: dist(P, Q), dist(P, R) and dist(Q, R).
 - (c) Compute the angles of the triangle $\triangle PQR$, using the law of cosines and the lengths you computed in part (b).
- **49.** Let $\vec{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.
 - (a) Find the coordinates of the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $2\vec{w}$ and $\vec{v} \vec{u} + 2\vec{w}$.
 - **(b)** Graph in one picture the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $2\vec{w}$ and $\vec{v} \vec{u} + 2\vec{w}$.
 - (c) Compute the dot products $\vec{u} \cdot \vec{v}$, $(\vec{u} + \vec{v}) \cdot (2\vec{w})$ and $(\vec{u} + \vec{v}) \cdot (\vec{v} \vec{u} + 2\vec{w})$.
 - (d) Compute the angle between the vectors \vec{u} and \vec{v} .
 - (e) Using the dot product find the angle between the vectors $\vec{v} \vec{u}$ and $\vec{w} \vec{u}$. How does this compare to the angle $\angle QPR$ in $\triangle PQR$ from problem 45. Explain.
- **50.** Let $\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$.
 - (a) Find the coordinates of the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $2\vec{w}$ and $\vec{v} \vec{u} + 2\vec{w}$.
 - **(b)** Graph in one picture the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $2\vec{w}$ and $\vec{v} \vec{u} + 2\vec{w}$.
 - (c) Compute the dot products $\vec{u} \cdot \vec{v}$, $(\vec{u} + \vec{v}) \cdot (2\vec{w})$ and $(\vec{u} + \vec{v}) \cdot (\vec{v} \vec{u} + 2\vec{w})$.
 - (d) Compute the angle between the vectors \vec{u} and \vec{v} .
 - (e) Using the dot product find the angle between the vectors $\vec{v} \vec{u}$ and $\vec{w} \vec{u}$. How does this compare to the angle $\angle QPR$ in $\triangle PQR$ from problem 46. Explain.
- **51.** Let $\vec{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.
 - (a) Find the coordinates of the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $-3\vec{w}$ and $\vec{u} + \vec{v} 3\vec{w}$.
 - **(b)** Graph in **one** picture the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $2\vec{w}$ and $\vec{v} \vec{u} + 2\vec{w}$.
 - (c) Compute the dot products $\vec{u} \cdot \vec{w}$, $(\vec{u} + \vec{v}) \cdot (-3\vec{w})$ and $(\vec{u} \vec{v}) \cdot (\vec{u} \vec{v} 3\vec{w})$.
 - (d) Compute the angle between the vectors \vec{u} and \vec{v} .
 - (e) Using the dot product find the angle between the vectors $\vec{v} \vec{u}$ and $\vec{w} \vec{u}$. How does this compare to the angle $\angle QPR$ in $\triangle PQR$ from problem 48. Explain.

52. Let
$$\vec{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

- (a) Find the coordinates of the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $-3\vec{w}$ and $\vec{u} + \vec{v} 3\vec{w}$.
- **(b)** Graph in **one** picture the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $2\vec{w}$ and $\vec{v} \vec{u} + 2\vec{w}$.
- (c) Compute the dot products $\vec{u} \cdot \vec{w}$, $(\vec{u} + \vec{v}) \cdot (-3\vec{w})$ and $(\vec{u} \vec{v}) \cdot (\vec{u} \vec{v} 3\vec{w})$.
- (d) Compute the angle between the vectors \vec{u} and \vec{v} .
- (e) Using the dot product find the angle between the vectors $\vec{v} \vec{u}$ and $\vec{w} \vec{u}$. How does this compare to the angle $\angle QPR$ in $\triangle PQR$ from problem 47. Explain.
- **53.** (a) Find two vectors that are perpendicular to $\vec{u} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$.
 - **(b)** Give a geometric interpretation of the set of all vectors perpendicular to $\vec{u} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$.
 - (c) Find four vectors that are perpendicular to $\vec{v} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$.
 - (d) Give a geometric interpretation of the set of all vectors perpendicular to $\vec{u} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$.
- **54.** (a) Find two vectors that are perpendicular to $\vec{u} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$.
 - **(b)** Give a geometric interpretation of the set of all vectors perpendicular to $\vec{u} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$.
 - (c) Find four vectors that are perpendicular to $\vec{v} = \begin{bmatrix} 3 \\ 4 \\ 12 \end{bmatrix}$.
 - (d) Give a geometric interpretation of the set of all vectors perpendicular to $\vec{u} = \begin{bmatrix} 3 \\ 4 \\ 12 \end{bmatrix}$.
- **55.** Find two vectors that are perpendicular to $\vec{u} = \begin{bmatrix} -7 \\ 2 \end{bmatrix}$.
 - **(b)** Give a geometric interpretation of the set of all vectors perpendicular to $\vec{u} = \begin{bmatrix} -7 \\ 2 \end{bmatrix}$.

- (c) Find four vectors that are perpendicular to $\vec{v} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.
- (d) Give a geometric interpretation of the set of all vectors perpendicular to $\vec{u} = \begin{bmatrix} 2 \\ -3 \\ 7 \end{bmatrix}$.
- **56.** A parallelogram with sides of equal length is called a **rhombus**. Show that the diagonals of a rhombus are perpendicular.

(*Hint*: Use two vectors \vec{u} and \vec{v} as adjacent sides and build the rhombus. Then, find the diagonals in terms of those vectors and use dot products)

- **57.** Find the orthogonal projection of $\vec{u} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ onto $\vec{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.
- **58.** Find the orthogonal projection of $\vec{u} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$ onto $\vec{v} = \begin{bmatrix} 8 \\ -6 \end{bmatrix}$.
- **59.** Find the orthogonal projection of $\vec{u} = \begin{vmatrix} -1 \\ -2 \end{vmatrix}$ onto $\vec{v} = \begin{vmatrix} 3 \\ 1 \end{vmatrix}$.
- **60.** Find the orthogonal projection of $\vec{u} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ onto $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
- **61.** Find the orthogonal projection of $\vec{u} = \begin{bmatrix} 3 \\ 4 \\ 12 \end{bmatrix}$ onto $\vec{v} = \begin{bmatrix} 6 \\ 8 \\ 0 \end{bmatrix}$. **62.** Find the orthogonal projection of $\vec{u} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$ onto $\vec{v} = \begin{bmatrix} 6 \\ 8 \\ 0 \end{bmatrix}$.
- **63.** Find the orthogonal projection of $\vec{u} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$ onto $\vec{v} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$

- **64.** Find the orthogonal projection of $\vec{u} = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$ onto $\vec{v} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$
- **65.** Show that for any three vectors $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$, and $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$
 - $\mathbf{a)} \quad (\vec{v} + \vec{w}) \cdot \vec{u} = \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u}$
 - **b**) $\vec{v} \cdot (t \vec{w}) = t(\vec{v} \cdot \vec{w})$ [where t is a scalar.]
 - c) Is $(\vec{v} \vec{w}) \cdot (\vec{v} + \vec{w}) = \vec{v}^2 \vec{w}^2$?
- **66.** Show that for the vectors $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$.
 - a) $\operatorname{proj}_{\vec{v}}(\vec{w}) \parallel \vec{v}$
 - **b**) $(\vec{w} \operatorname{proj}_{\vec{v}}(\vec{w})) \perp \vec{v}$
- **67.** Show that for the vectors $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$.
 - a) $\operatorname{proj}_{\vec{v}}(\vec{w}) \parallel \vec{v}$
 - **b**) $(\vec{w} \operatorname{proj}_{\vec{v}}(\vec{w})) \perp \vec{v}$
- **68.** In general for $\vec{v}, \vec{w} \in \mathbb{R}^n$ show that
 - a) $\operatorname{proj}_{\vec{v}}(\vec{w}) \parallel \vec{v}$
 - **b**) $(\vec{w} \text{proj}_{\vec{v}}(\vec{w})) \perp \vec{v}$