> Tanaka Masaki

Introduction

Fictitious Pla

What's Fictitious Play? Matching Pennis Game

Program

Program Code Figures

Explanation

Conclution

Python Program for Fictitious Play Matching Pennies Game

Tanaka Masaki

The University of Tokyo

Tanaka Masaki

Introduction

Fictitious Plan

What's Fictitious Play? Matching Pennis Game

Program

Program Code Figures

Explanation

Conclution

Introduction

- Fictitious Play のシミュレーションプログラム
- 使用言語は Python
- プレイするゲームは "Matching Pennis Game"

> Tanaka Masaki

Introduction

What's Fictitious Play? Matching Pennis

Program
Program Code

Figures
Explanation

Conclution

What's Fictitious Play?

- 戦略形ゲームが、t = 1, 2, ... の各期にプレイされる
- 他のプレーヤーの戦略に対する予測
 - $\rightarrow t$ 期の他のプレーヤーは、1 期から t-1 期に選択した分布 に等しい確率で各純粋戦略を選択する
- この予測の下で、各プレイヤーがそれに対する最適反応戦略を選択
- このような動学モデルを "Fictitious Play" と呼ぶ。

> Tanaka Masaki

Introduction

What's Fictitious Play? Matching Pennis

Program Code

Figures Explanation

Conclution

What's Fictitious Play?

- t期において、プレーヤー0は…
 - ・ プレーヤー 1 が確率 $1 x_0(t)$ で行動 0 をとる
 - ・ プレーヤー 1 が確率 $x_0(t)$ で行動 1 をとる

と予測しているものとする

- プレーヤー1に対しても同様
- この下で、期待利得が最大になるように行動を決定する (期待利得が等しい場合は等確率で選ぶ)
- なお、この $x_0(t)$ を「プレーヤー 0 の、t 時点におけるプレイヤー 1 の行動に関する信念 (belief)」と呼ぶこととする

> Tanaka Masaki

Introduction

Fictitious Pl

What's Fictitious Play? Matching Pennis Game

Program

Program Code Figures

Explanation

Conclution

What's Fictitious Play?

- 初期信念 $x_0(0)$ は [0,1] 上の一様分布に従ってランダムに与えられる。
- 各 $t \ge 1$ 時点において、プレーヤー 1 が過去とった行動を $a_1(0), \ldots, a_1(t-1)$ とすると、

$$x_0(t) = \frac{x_0(0) + a_1(0) + a_1(1) + \dots + a_1(t-1)}{t+1}$$
 (1)

と書ける

> Tanaka Masaki

Introduction

Fictitious Pl

What's Fictitious Play? Matching Pennis Game

Program

Program Cod

Explanation

Conclution

What's Fictitious Play?

ここで (1) 式は、

$$x_0(t+1) = \frac{x_0(0) + a_1(0) + a_1(1) + \dots + a_1(t)}{t+2}$$

$$= \frac{(t+1)x_0(t) + a_1(t)}{t+2}$$

$$= x_0(t) + \frac{1}{t+2}(a_1(t) - x_0(t))$$

と再帰的に書ける

Tanaka Masaki

Introduction

What's Fictitious Play? Matching Pennis

Program Cod Figures

Explanation

Conclution

What's Fictitious Play?

つまり、

$$x_0(t+1) = x_0(t) + \frac{1}{t+2}(a_1(t) - x_0(t))$$

 $x_1(t+1) = x_1(t) + \frac{1}{t+2}(a_0(t) - x_1(t))$

という連立1階漸化式を考えれば良いことになる。

- ただし、
 - $x_0(0), x_1(0) \sim Uniform[0, 1]$
 - ・ $a_0(t)$ は $x_0(t)$ に対する最適反応
 - ・ $a_1(t)$ は $x_1(t)$ に対する最適反応
 - ・ 最適反応が複数ある場合は等確率でランダムに選ぶ

> Tanaka Masaki

Introduction

Fictitious Play

What's Fictitious Play? Matching Pennis Game

Program Code

Figures Explanation

Explanation

Conclution

Matching Pennis Game

 次のような利得表を持つ "Matching Pennis Game" を例と して考える

	行動 0	行動 1
行動 0	1,-1	-1,1
行動 1	-1,1	1,-1

```
Python
Program for
Fictitious Play
```

Tanaka Masaki

Introduction

What's Fictitious Play? Matching Pennis Game

Progra

Program Code Figures

Conclution

```
import matplotlib.pyplot as plt
import random
cycles = 2000
# number of cycles in one simulation
times = 100
# number of simulations
profits = [[1,-1], [-1, 1], [-1,1], [1, -1]]
# matrix of profits
x0 = random.uniform(0, 1)
# the beginning belief of player0
x1 = random.uniform(0, 1)
# the beginning belief of player1
num = 0
#saving png/pdf images
    with the name "fictitious_hist[num].png/pdf"
#if num = None, images won't be saved
```

```
Python
Program for
Fictitious Play
```

Tanaka Masaki

Introduction

Fictitious Pla

What's Fictitious Play? Matching Pennis Game

Progra

Program Code Figures

Conclution

```
last_x0_values = \Pi
for t in range(times):
  x0 values = \Pi
  x1 values = []
  for c in range(cycles):
    x0_values.append(x0)
    x1_values.append(x1)
    # decision of player0's act at c
    if profits[0][0]*(1-x0)+profits[1][0]*x0
         > profits[2][0]*(1-x0)+profits[3][0]*x0:
       a0 = 0
    elif profits[0][0]*(1-x0)+profits[1][0]*x0
        < profits[2][0]*(1-x0)+profits[3][0]*x0:</pre>
       a0 = 1
    else:
       a0 = random.choice([0,1])
```

> Tanaka Masaki

Introduction

What's Fictitious Play? Matching Pennis Game

Program

Program Code Figures

Conclution

```
# decision of player1's act at c
   if profits[0][1]*(1-x1)+profits[2][1]*x1
        > profits[1][1]*(1-x1)+profits[3][1]*x1:
     a1 = 0
   elif profits[0][1]*(1-x1)+profits[2][1]*x1
        < profits[1][1]*(1-x1)+profits[3][1]*x1:</pre>
     a1 = 1
   else:
     a1 = random.choice([0,1])
   if c< cycles :
      #updating beliefs
      x0 = (a1 + x0*(t+1))/(t+2)
      x1 = (a0 + x1*(t+1))/(t+2)
last_x0_values.append(x0)
```

Tanaka Masaki

Introduction

What's Fictitious Play? Matching Pennis Game

Program Code

Figures
Explanation

Conclution

```
plt.subplot()
plt.hist(last_x0_values, facecolor='b'
                         , label='x O(T-1)')
plt.xlim(0, 1)
plt.ylim(0, 100)
plt.legend()
if num != None:
    plt.savefig('fictitious_hist'
                         + str(num) + '.png')
    plt.savefig('fictitious_hist'
                         + str(num) + '.pdf')
plt.show()
```

> Tanaka Masaki

Introduction

Fictitious Pla

What's Fictitious Play? Matching Pennis Game

Program

Program Cod Figures

Explanatio

Conclution

Figures

- 両プレーヤーの信念がどのように推移しているか?
- 2000 サイクルの "Matching Pennis Game"

> Tanaka Masaki

Introduction

Fictitious Pla What's

What's Fictitious Play? Matching Pennis Game

Program Co

Figures Explanation

Conclution

Figures

- プレーヤー 0 が最終的にそのような信念に辿り着いたのか?
- 2000 サイクルの "Matching Pennis Game" を 100 回行って集計

> Tanaka Masaki

Introduction

What's Fictitious Play? Matching Pennis Game

Program Code

Explanation

Conclution

Explanation of the Code

- 次のサイクルを繰り返すことで、"Fictitious Play"を実現
 - ・ 保持している信念をリストに登録
 - · その信念をもとに期待利得を計算し、その期の行動を決定 する
 - ・ その期における相手の行動を踏まえて、信念を更新
- 保持している信念の登録を期首に持ってきている理由
 - → 初期信念の抜け落ち・最終期に更新された信念の誤登録を 防ぐため

> Tanaka Masaki

Introduction

What's Fictitious Play? Matching Pennis

Program

Program Code Figures Explanation

Conclution

Conclution : Further Improvements

- 利得表を行列として読み込ませるようにすれば、全体的に スッキリする。
 - ・ 期待利得も行列の掛け算で計算可能
- 期待利得の計算を行って、その期の行動を決める過程は、 関数化すべき