6 Lie Derivatives

§ 6.1 Flows

Definition 6.1 (Integral curves). Let X be a vector field in \mathcal{M} . An **integral curve** x(t) of X is a curve in \mathcal{M} , whose tangent vector at x(t) is $X|_{X}$.

Given a chart (U, φ) , this means

$$\frac{\mathrm{d}x^{\mu}(t)}{\mathrm{d}t} = X^{\mu}(x(t))$$

Here, $x^{\mu}(t)$ denotes the μ -th component of $\varphi \circ x(t)^1$ and X^{μ} denotes the μ -th component of $X|_x$.

Remark. Finding an integral curve is equivalent to solving the system of ODEs with the initial condition $x_0^{\mu} = x^{\mu}(0)$. Hence, unique solution is guaranteed.

Definition 6.2 (Flows). Let $\sigma(t, x_0)$ be an integral curve of X, which passes a point x_0 at t = 0. Then σ satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}\sigma^{\mu}(t,x_0) = X^{\mu}(\sigma(t,x_0)) \text{ and } \sigma^{\mu}(0,x_0) = x_0^{\mu}$$

The map $\sigma : \mathbb{R} \times \mathcal{M} \to \mathcal{M}$ is called a **flow** generated by $X \in \mathcal{X}(\mathcal{M})$.

Remark. Flows satisfy $\sigma(t, \sigma(s, x)) = \sigma(t + s, x)$ for all t and s.

Definition 6.3. For fixed $t \in \mathbb{R}$, a flow $\sigma(t, x)$ is a *diffeomorphism* from \mathcal{M} to \mathcal{M} , $\sigma_t : \mathcal{M} \to \mathcal{M}$. σ_t is made into a *commutative group* by the following rules.

- (i) $\sigma_t \circ \sigma_s = \sigma_{t+s} = \sigma_s \circ \sigma_t$
- (ii) σ_0 is the identity map.
- (iii) $\sigma_{-t} = (\sigma_t)^{-1}$.

This group is the **one-parameter group of transformations**.

Remark. One-parameter group of transformations is *locally* isomorphic to $(\mathbb{R}, +)$, but not globally.

Fall 2024, SNU

¹abuse of notation.

Observation 6.4. With an infinitesimal ϵ ,

$$\sigma_{\epsilon}^{\mu}(x) = \sigma^{\mu}(\epsilon, x) = x^{\mu} + \epsilon X^{\mu}(x)$$

In this context, the vector field X is called the **infinitesimal generator** of σ_t . The flow σ is often referred to as the **exponentiation** of X.

$$\sigma^{\mu}(t,x) = x^{\mu} + t \frac{d}{ds} \sigma^{\mu}(s,x)|_{s=0} + \frac{t^{2}}{2!} \frac{d^{2}}{ds^{2}} |\sigma^{\mu}(s,x)|_{s=0} + \cdots$$
$$= \exp\left(t \frac{d}{ds}\right) \sigma^{\mu}(s,x)|_{s=0} = e^{tX} x_{0}^{\mu}$$

The flow satisfies the following *exponential properties*.

(i)
$$\sigma(0, x) = x = \exp(0x)x$$

(ii)
$$\frac{d\sigma(t,x)}{dt} = X \exp(tX)x$$

(iii)
$$\sigma(t,\sigma(s,x)) = \sigma(t,\exp(sX)x) = e^{tX}e^{sX}x = e^{(t+s)X}x = \sigma(t+s,x)$$

§ 6.2 Lie Derivatives

Observation 6.5. Let $\sigma(t, x)$ and $\tau(t, x)$ be two flows generated by the vector fields X and Y.

$$\frac{\mathrm{d}\sigma^{\mu}(s,x)}{\mathrm{d}s} = X^{\mu}(\sigma(s,x)) \text{ and } \frac{\mathrm{d}\tau^{\mu}(t,x)}{\mathrm{d}t} = Y^{\mu}(\sigma(t,x))$$

Then what is the change of the vector field Y along $\sigma(s, x)$?

Problem. $Y|_x$ (lives in $T_x\mathcal{M}$) and $Y|_{\sigma_{\varepsilon}(x)}$ (lives in $T_{\sigma_{\varepsilon}(x)}\mathcal{M}$) live in different spaces.

Answer. To define a sensible derivative, we first map $Y|_{\sigma_{\varepsilon}(x)}$ to $T_x\mathcal{M}$ by **pushforward map** of $\sigma_{-\varepsilon}$,

$$(\sigma_{-\epsilon})_*: T_{\sigma_{\epsilon}(x)}\mathcal{M} \to T_x\mathcal{M}$$

after which we take a difference between two vectors.

Definition 6.6 (Lie derivatives). The **Lie derivative** of a vector field Y along the flow σ of X is defined by

$$\mathcal{L}_{X}Y \equiv \lim_{\epsilon \to 0} \frac{1}{\epsilon} [(\sigma_{-\epsilon})_{*}Y|_{\sigma_{\epsilon}(x)} - Y|_{x}]$$

∽[ૄ]∾

Observation 6.7. Let (U, φ) be a chart with the coordinates x^{μ} and

$$X = X^{\mu} \frac{\partial}{\partial x^{\mu}}, Y = Y^{\mu} \frac{\partial}{\partial x^{\mu}}$$

be vector fields defined on *U*. Here, we use *coordinate basis*

$$\frac{\partial}{\partial x^{\mu}} := e_{\mu}|_{x}$$

where RHS denotes the basis vector at x. Then from **Observation 6.4**,

$$Y|_{\sigma_{\varepsilon}(x)} = Y^{\mu}(x^{\nu} + \varepsilon X^{\nu}(x)) \cdot e_{\mu}|_{x + \varepsilon X} \simeq [Y^{\mu}(x) + \varepsilon X^{\nu}(x)\partial_{\nu}Y^{\mu}(x)]e_{\mu}|_{x + \varepsilon X}$$

Now map this vector defined at $\sigma_{\epsilon}(x)$ to x by $(\sigma_{-\epsilon})_*: T_{\sigma_{\epsilon}(x)}\mathcal{M} \to T_x\mathcal{M}$.

$$\begin{split} (\sigma_{-\epsilon})_* Y|_{\sigma_{\epsilon}(x)} &= [Y^{\mu}(x) + \epsilon X^{\lambda}(x) \partial_{\lambda} Y^{\mu}(x)] \frac{\partial x^{\nu}}{\partial (\sigma_{\epsilon}(x))^{\mu}} e_{\nu}|_{x} \\ &= [Y^{\mu}(x) + \epsilon X^{\lambda}(x) \partial_{\lambda} Y^{\mu}(x)] [\delta_{\mu}{}^{\nu} - \epsilon \partial_{\mu} X^{\nu}] e_{\nu}|_{x} \\ &= \underbrace{Y^{\mu}(x) e_{\mu}|_{x}}_{Y|_{x}} + \epsilon [X^{\mu}(x) \partial_{\mu} Y^{\nu}(x) - Y^{\nu}(x) \partial_{\mu} X^{\nu}(x)] e_{\nu}|_{x} + \mathcal{O}(\epsilon^{2}) \end{split}$$

Since

$$\frac{\partial x^{\nu}}{\partial (\sigma_{\epsilon}(x))^{\mu}} = \frac{\partial (\sigma_{-\epsilon}(x))^{\nu}}{\partial x^{\mu}} = \partial_{\mu}[x^{\nu} - \epsilon X^{\nu}] = \delta_{\mu}{}^{\nu} - \epsilon \partial_{\mu} X^{\nu}$$

In conclusion,

$$\mathcal{L}_X Y = [X^{\mu} \partial_{\mu} Y^{\nu} - Y^{\mu} \partial_{\mu} X^{\nu}] e_{\nu}$$

This is how we differentiate the vector field on the manifolds.

Definition 6.8 (Lie brackets). Let $X = X^{\mu} \partial_{\mu}$ and $Y = Y^{\mu} \partial_{\mu}$ be vector fields in \mathcal{M} . The **Lie bracket** is defined by

$$[X,Y]f = X[Y[f]] - Y[X[f]] \quad (f \in \mathcal{F}(\mathcal{M}))$$

Then

$$\begin{split} [X,Y]f &= X^{\mu}\partial_{\mu}(Y^{\nu}\partial_{\nu}f) - Y^{\mu}\partial_{\mu}(X^{\nu}\partial_{\nu}f) \\ &= X^{\mu}(\partial_{\mu}Y^{\nu})(\partial_{\nu}f) + X^{\mu}Y^{\nu}\partial_{\mu}\partial_{\nu}f - Y^{\mu}(\partial_{\mu}X^{\nu})(\partial_{\nu}f) - X^{\nu}Y^{\mu}\partial_{\mu}\partial_{\nu}f \\ &= (X^{\mu}\partial_{\mu}Y^{\nu} - Y^{\mu}\partial_{\mu}X^{\nu})\partial_{\nu} \cdot f = \mathcal{L}_{X}Y \cdot f \end{split}$$

Hence, Lie derivative is equivalent to Lie bracket.

$$\mathcal{L}_X Y = [X, Y]$$