

Revisiting Deep Intrinsic Image Decompositions

Qingnan Fan¹, Jiaolong Yang², Gang Hua², Baoquan Chen^{3,4}, David Wipf² ¹Shandong University ²Microsoft Research ³Shenzhen Research Institute, Shandong University, ⁴Peking University Research 微软亚洲研究院

Codes and model: https://github.com/fqnchina/IntrinsicImage

Problem Definition: Albedo Input

Challenges:

Densely labeled data (MIT and MPI-Sintel dataset)

Proposed framework:

- > Shared network structure:
 - Direct intrinsic image estimation (Direct Intrinsic Net)
 - Sparse guidance map prediction (Guidance Network)
 - Reflectance image flattening module (Domain Filter)
- > Flexibly supervised loss layers
 - MSE for densely labeled data
 - Hinge loss for pairwise comparison data

Contribution:

- The first deep architecture that is capable of achieving state-of-the-art results when applied on each major benchmark (IIW, MPI-Sintel and MIT datasets).
- Substantial improvement via joint training multiple datasets.

Microsoft

