FANUC AC SPINDLE MOTOR @i series FANUC AC SPINDLE MOTOR @i series FANUC BUILT-IN SPINDLE MOTOR Bi series

PARAMETER MANUAL

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.

The products in this manual are controlled based on Japan's "Foreign Exchange and Foreign Trade Law". The export from Japan may be subject to an export license by the government of Japan.

Further, re-export to another country may be subject to the license of the government of the country from where the product is re-exported. Furthermore, the product may also be controlled by re-export regulations of the United States government.

Should you wish to export or re-export these products, please contact FANUC for advice.

In this manual we have tried as much as possible to describe all the various matters.

However, we cannot describe all the matters which must not be done, or which cannot be done, because there are so many possibilities.

Therefore, matters which are not especially described as possible in this manual should be regarded as "impossible".

This manual contains the program names or device names of other companies, some of which are registered trademarks of respective owners. However, these names are not followed by ® or TM in the main body.

The parameters described in this manual must be set correctly according to the relevant descriptions. If the parameters are not set correctly, vibrations and unpredictable motions can occur. When setting and updating the parameters, place top priority on safety in operation by taking actions, such as heightening the speed step by step and performing an operation so that an emergency stop can be initiated immediately, until the settings are confirmed to be appropriate.

DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

⚠ WARNING

Applied when there is a danger of the user being injured or when there is a damage of both the user being injured and the equipment being damaged if the approved procedure is not observed.

⚠ CAUTION

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

- Read this manual carefully, and store it in a safe place.

B-65280EN/06 PREFACE

PREFACE

This manual describes the parameters and functions of the FANUC servo amplifier $\alpha i/\beta i$ series spindle. This manual is divided into four parts and appendix. Part I describes the αi series spindle, Part II describes the βi series spindle, Part III describes the αCi series spindle, and Part IV describes the BiS series spindle.

Unless otherwise noted, the parameter numbers for FANUC Series 16*i* are used in the text. When using any other model, reference the corresponding parameter numbers.

The table below indicates the abbreviated model names used with the parameter numbers.

Product name	Abbreviated model name in text	Abbreviated model name in table
FANUC Series 30i	Series 30i	
FANUC Series 31i	Series 31i	30 <i>i</i>
FANUC Series 32i	Series 32i	
FANUC Series 16i	Series 16i	
FANUC Series 18i	Series 18i	16 <i>i</i>
FANUC Series 21i	Series 21i	101
FANUC Series 0i	Series 0i	
FANUC Series 15i	Series 15i	15 <i>i</i>

For detailed information indicating which model each function described in this manual can be used with, refer to the manual of each CNC. For the package specifications, in particular, refer to the CNC manual.

The manuals related to the $\alpha i/\beta i$ series spindle are listed below.

- (1) FANUC AC SPINDLE MOTOR α*i* series DESCRIPTIONS (B-65272EN)
- (2) FANUC AC SPINDLE MOTOR αCi series DESCRIPTIONS (B-65372EN)
- (3) FANUC AC SPINDLE MOTOR βi series DESCRIPTIONS (B-65312EN)
- (4) FANUC SERVO AMPLIFIER α*i* series DESCRIPTIONS (B-65282EN)
- (5) FANUC SERVO AMPLIFIER βi series DESCRIPTIONS (B-65322EN)
- (6) FANUC SERVO MOTOR αis/αi series, FANUC SPINDLE MOTOR αi series, FANUC SERVO AMPLIFIER αi series MAINTENANCE MANUAL (B-65285EN)
- (7) FANUC SERVO MOTOR βis series, FANUC SPINDLE MOTOR βi series, FANUC SERVO AMPLIFIER βi series MAINTENANCE MANUAL (B-65325EN)

PREFACE B-65280EN/06

(8) FANUC AC SPINDLE MOTOR α*i*/β*i* series FANUC BUILT-IN SPINDLE MOTOR B*i* series PARAMETER MANUAL (B-65280EN)

- (9) FANUC AC SPINDLE MOTOR $\alpha i B$ series DESCRIPTIONS (B-65292EN)
- (10) FANUC SYNCHRONOUS BUILT-IN SPINDLE MOTOR BiS series DESCRIPTIONS (B-65342 EN)

TABLE OF CONTENTS

DE	FINITI	ON OF	WARNING, CAUTION, AND NOTE	s-1
			······································	
			SPINDLE MOTOR $lpha i$ series / LT-IN SPINDLE MOTOR B i I series	
1	STA	RT-UP.		3
	1.1	STAR	T-UP PROCEDURE	4
	1.2	SPINI	DLE SERIAL INTERFACE (Optional function)	5
		1.2.1	Parameters Related to Spindle Serial Output	
		1.2.2	Automatic Spindle Parameter Initialization	6
		1.2.3	Diagnosis (Diagnosis Screen)	7
		1.2.4	Alarm	
	1.3	PARA	METERS RELATED TO DETECTORS	10
		1.3.1	List of Parameters for Detectors	
		1.3.2	Details of Parameters for Detectors	
		1.3.3	Typical Detector Configurations	21
2	EXP	LANAT	TION OF OPERATION MODES	28
	2.1	VELO	CITY CONTROL MODE	29
		2.1.1	Start-up Procedure	
		2.1.2	Overview	
		2.1.3	System Configuration	29
		2.1.4	List of I/O Signals (CNC↔PMC)	
		2.1.5 2.1.6	Related Parameters	
		2.1.7	Troubleshooting	
	2.2		TION CODER METHOD SPINDLE ORIENTATION	
			onal function)	51
		2.2.1	Start-up Procedure	
		2.2.2	Overview	52
		2.2.3	Feature	
		2.2.4	System Configuration	
		2.2.5	Stop Position Specification Method	
		2.2.6 2.2.7	I/O Signals (CNC \leftrightarrow PMC) Examples of Sequences	
		2.2.7	Related Parameters	
		2.2.9	Details of Related Parameters.	
		2.2.10	Calculating the Position Gain for Orientation	
		2.2.11	Adjusting the Orientation Stop Position Shift Parameter	
		2.2.12	Calculating the Orientation Time	72
	2.3	RIGID	TAPPING (Optional function)	74
		2.3.1	Start-up Procedure	
		232	Overview	74

		2.3.3	System Configuration	
		2.3.4	List of I/O Signals (CNC ↔ PMC)	78
		2.3.5	Sequence	80
		2.3.6	Related Parameters	81
		2.3.7	Details of Related Parameters.	
		2.3.8	Parameter Setting Procedure	
		2.3.9	Adjustment Procedure	
		2.3.10	Diagnosis (Diagnosis Screen)	
		2.3.11	Alarm	
	2.4	Cs CC	NTOURING CONTROL (Optional function)	110
		2.4.1	Start-up Procedure	110
		2.4.2	Overview	
		2.4.3	System Configuration	
		2.4.4	List of I/O Signals (CNC \leftrightarrow PMC)	
		2.4.5	Examples of Sequences	
		2.4.6	Related Parameters	
		2.4.7	Details of Related Parameters	
		2.4.8	Diagnosis (Diagnosis Screen)	129
		2.4.9	Alarm	
	2.5		DLE SYNCHRONOUS CONTROL (Optional function)	
		2.5.1	Start-up Procedure	
		2.5.2	Overview	
		2.5.3	System Configuration	
		2.5.4	Explanation of Operation	
		2.5.5	I/O Signals (CNC ↔ PMC)	
		2.5.6 2.5.7	Examples of Sequences	
		2.5.8	Details of Related Parameters.	
		2.5.9	Number of Error Pulses in Spindle Synchronous Control	
		2.5.10	Specifying a Shift Amount for Spindle Phase Synchronous Control	
		2.5.11	Diagnosis (Diagnosis Screen)	
		2.5.12	Alarm	
	2.6		IFICATIONS COMMON TO ALL OPERATION MODES	
	2.0		Overview	
		2.6.1 2.6.2	List of I/O Signals (CNC ↔ PMC)	
		2.6.2	Parameters	
		2.6.4	Details of Parameters	
		2.6.5	Diagnosis (Diagnosis Screen).	
3	I/O SI	GNAL	$S (CNC \leftrightarrow PMC) \dots$	181
	3.1	INPUT	「SIGNALS (PMC→CNC→SP)	182
		3.1.1	List of Input Signals	
		3.1.2	Explanation of Input Signals	
		3.1.3	Details of Input Signals	
	3.2	OLITP	UT SIGNALS (SP→CNC→PMC)	
	0.2	3.2.1	List of Output Signals	
		3.2.2	Explanation of Output Signals	
		3.2.3	Details of Output Signals	
			1	

4	ADJ	USTME	NT	206
	4.1	VELOC	CITY LOOP GAIN ADJUSTMENT	207
		4.1.1	Overview	
		4.1.2	Parameters	
		4.1.3	Adjustment Procedure	210
		4.1.4	Additional Information (Position Gain Adjustment)	211
	4.2	MACHI	INE RESONANCE ELIMINATION	212
		4.2.1	TCMD Filter	
		4.2.2	HRV Filter	213
		4.2.3	Disturbance Input Function	217
	4.3	AMPLI [*]	TUDE RATIO/PHASE DIFFERENCE COMPENSATION	
			FION	222
5	FUN	CTION [DESCRIPTIONS	227
	5.1		RANGE SWITCHING CONTROL (Optional function)	
	5.1	5.1.1	Overview	
		5.1.1	Series and Editions of Applicable Spindle Software	
		5.1.3	Configuration	
		5.1.4	I/O Signals (CNC \leftrightarrow PMC)	
		5.1.5	Sequence	
		5.1.6	List of Related Parameters.	
		5.1.7	Details of Related Parameters.	
		5.1.8	Parameter-specified Switching between High- and Low-speed Characte	
	5.2	SPIND	LE SWITCHING CONTROL	240
		5.2.1	Overview	240
		5.2.2	Series and Editions of Applicable Spindle Software	
		5.2.3	Configuration	
		5.2.4	Details of Specifications	
		5.2.5	Restrictions	
		5.2.6	I/O Signals (CNC↔PMC)	
		5.2.7	Sequence.	
		5.2.8 5.2.9	List of Related Parameters Details of Related Parameters	
		5.2.10	Parameter Setting Procedure	
		5.2.10	Supplementary Descriptions about Parameters	
	5.3		IENTAL COMMAND TYPE SPINDLE ORIENTATION	231
			DLE ROTATION SPEED CONTROL) (Optional function)	255
		5.3.1	Overview	
		5.3.2	Series and Editions of Applicable Spindle Software	
		5.3.3	System Configuration	256
		5.3.4	I/O Signals(CNC↔PMC)	259
		5.3.5	Examples of Sequences	261
		5.3.6	List of Related Parameters	
		5.3.7	Details of Related Parameters	264
	5.4		SPEED SPINDLE ORIENTATION (Optional function)	
		5.4.1	Overview	
		5.4.2 5.4.3	Series and Editions of Applicable Spindle Software	265 265
		741	Nystem Contiguration	765

	5.4.4	I/O Signals (CNC↔PMC)	
	5.4.5	Sequence	
	5.4.6	List of Related Parameters	
	5.4.7	Details of Related Parameters	
	5.4.8 5.4.9	Spindle Data Used in Tuning	
. .		Tuning Procedure DLE ORIENTATION DURING SPINDLE SYNCHRONIZATION	280
5.5			000
	5.5.1	ROL (Optional function)	
	5.5.1	Overview Series and Editions of Applicable Spindle Software	
	5.5.3	Specification	
	5.5.4	I/O Signals (CNC \leftrightarrow PMC)	
	5.5.5	Sequence	
	5.5.6	List of Related Parameters.	
	5.5.7	Details of Related Parameters.	
5.6	SPINE	DLE FINE ACC./DEC. (FAD) FUNCTION	298
	5.6.1	Overview	
	5.6.2	Series and Editions of Applicable Spindle Software	
	5.6.3	Block Diagram	
	5.6.4	Parameters	299
	5.6.5	Diagnosis (Diagnosis Screen)	
	5.6.6	Status Errors	
	5.6.7	Cautions	302
5.7	UNEX	PECTED DISTURBANCE TORQUE DETECTION FUNCTION	
	` .	nal function)	
	5.7.1	Overview	
	5.7.2	Series and Editions of Applicable Spindle Software	
	5.7.3	I/O Signals (CNC↔PMC)	
	5.7.4	List of Related Parameters	
	5.7.5	Details of Related Parameters.	
5 0	5.7.6	Parameter Tuning Procedure	308
5.8		DLE EGB (SPINDLE ELECTRONIC GEAR BOX)	
		nal function)	
	5.8.1	Overview	
	5.8.2	Series and Editions of Applicable Spindle Software	
	5.8.3	System Configuration	
	5.8.4	Block Diagram	
	5.8.5 5.8.6	I/O Signals (CNC ↔ PMC)	
	5.8.0 5.8.7	Examples of Sequences List of Related Parameters	
	5.8.8	Details of Related Parameters.	
	5.8.9	Diagnosis Signal Related to Spindle EGB	
	5.8.10	Status Errors Related to Spindle EGB	
	5.8.11	Alarms	
5.9		RENTIAL SPINDLE SPEED CONTROL	
3.3	5.9.1	Overview	
	5.9.2	Series and Editions of Applicable Spindle Software	
	5.9.3	Configuration	
	594	Description	324

		5.9.5	I/O Signals (CNC↔PMC)	
		5.9.6 5.9.7	Examples of Sequences List of Related Parameters	
		5.9.7 5.9.8	Details of Related Parameters	
		5.9.9	Status Errors on Differential Spindle Speed Control	
	5.10		POSITION FEEDBACK FUNCTION (Optional function)	
	0.10	5.10.1	Overview	
		5.10.2	Series and Editions of Applicable Spindle Software	
		5.10.3	Block Diagram	
		5.10.4	List of Related Parameters.	329
		5.10.5	Details of Related Parameters	
		5.10.6	Spindle Alarm	333
	5.11	TORQ	JE TANDEM CONTROL FUNCTION (Optional function)	
		5.11.1	Overview	
		5.11.2	Series and Editions of Applicable Spindle Software	
		5.11.3	System Configuration	
		5.11.4	I/O Signals (CNC \leftrightarrow PMC)	
		5.11.5	Examples of Sequences	
		5.11.6 5.11.7	Parameters	
	5.12		ETIC SENSOR METHOD SPINDLE ORIENTATION	547
	5.12		nal function)	240
		5.12.1	Overview	
		5.12.1	Series and Editions of Applicable Spindle Software	
		5.12.3	System Configuration	
		5.12.4	I/O Signals (CNC \leftrightarrow PMC)	
		5.12.5	Sequence	
		5.12.6	Parameters	
	5.13	SPIND	LE BACKLASH ACCELERATION FUNCTION (Optional function)	. 355
		5.13.1	Overview	
		5.13.2	Series and Editions of Applicable Spindle Software	
		5.13.3	Block Diagram	
		5.13.4	Parameters	
		5.13.5	Example of Adjustment	35 /
ı.	FANU	C AC	SPINDLE MOTOR $eta i$ series	
1	STAF	RT-UP		363
•	1.1		-UP PROCEDURE	
	1.2		LE SERIAL INTERFACE (Optional function)	
	1.2	1.2.1	Parameters Related to Spindle Serial Output	
		1.2.1	Automatic Spindle Parameter Initialization	
		1.2.3	Diagnosis (Diagnosis Screen).	
		1.2.4	Alarm	
	1.3	PARAN	METERS RELATED TO DETECTORS	367
		1.3.1	List of Parameters for Detectors	
		1.3.2	Details of Parameters for Detectors	
		1.3.3	Typical Detector Configurations	368

2	EXP	LANATION OF OPE	RATION MODES	372
	2.1	VELOCITY CONTRO	L MODE	373
			ure	
			ration	
		2.1.4 List of I/O Sign	als (CNC↔PMC)	373
		•	ters	
		2.1.6 Details of Relat	ed Parameters	373
			j	
	2.2	POSITION CODER N	METHOD SPINDLE ORIENTATION	
		(Optional function)		374
		2.2.1 Start-up Proced	ure	374
		2.2.2 Overview		374
		2.2.3 Feature		374
		2.2.4 System Configu	ration	374
		2.2.5 Stop Position Sp	pecification Method	376
		2.2.6 I/O Signals (CN	$(C \leftrightarrow PMC)$	376
		2.2.7 Examples of Se	quences	376
		2.2.8 Related Parame	ters	376
		2.2.9 Details of Relat	ed Parameters	376
		2.2.10 Adjusting the O	rientation Stop Position Shift Parameter	376
	2.3	RIGID TAPPING (Op	tional function)	377
			ure	
		2.3.2 Overview		377
		2.3.3 System Configu	ration	377
		•	als (CNC \leftrightarrow PMC)	
			ters	
		2.3.7 Details of Relat	ed Parameters	380
		2.3.8 Parameter Settin	ng Procedure	380
		2.3.9 Adjustment Pro	cedure	380
		2.3.10 Diagnosis (Diag	gnosis Screen)	380
		2.3.11 Alarm		380
	2.4	Cs CONTOURING C	ONTROL (Optional function)	381
		2.4.1 Start-up Proced	ure	381
		2.4.2 Overview		381
		2.4.3 System Configu	ration	381
		2.4.4 List of I/O Sign	als (CNC \leftrightarrow PMC)	382
		2.4.5 Examples of Se	quences	382
			ters	
			ed Parameters	
			gnosis Screen)	
		2.4.9 Alarm		384
	2.5		NOUS CONTROL (Optional function)	
			ure	
			ration	
		-	Operation	
		2.5.5 I/O Signals (CN	$(C \leftrightarrow PMC)$	389

		2.5.6	Examples of Sequences	
		2.5.7	Related Parameters	
		2.5.8	Details of Related Parameters	
		2.5.9	Number of Error Pulses in Spindle Synchronous Control	
		2.5.10 2.5.11	Specifying a Shift Amount for Spindle Phase Synchronous Control Diagnosis (Diagnosis Screen)	
		2.5.11	Alarm	
	2.6		IFICATIONS COMMON TO ALL OPERATION MODES	
	2.0	2.6.1	Overview	
		2.6.2	List of I/O Signals (CNC ↔ PMC)	
		2.6.3	Parameters	
		2.6.4	Details of parameters	
		2.6.5	Diagnosis (Diagnosis Screen)	390
3	I/O S	SIGNAL	S (CNC ↔ PMC)	391
	3.1		SIGNALS (PMC→CNC→SVSP)	
		3.1.1	List of Input Signals	
		3.1.2	Explanation of Input Signals	
		3.1.3	Details of input signals	392
	3.2	OUTP	UT SIGNALS (SVSP→CNC→PMC)	393
		3.2.1	List of Output Signals	
		3.2.2	Explanation of Output Signals	
		3.2.3	Details of Output Signals	393
4	ADJ	USTME	NT	394
	4.1	VELO	CITY LOOP GAIN ADJUSTMENT	395
		4.1.1	Overview	
		4.1.2	Parameters	
		4.1.3 4.1.4	Adjustment Procedure	
			· · · · · · · · · · · · · · · · · · ·	
5			DESCRIPTIONS	396
	5.1		MENTAL COMMAND TYPE SPINDLE ORIENTATION	
		•	DLE ROTATION SPEED CONTROL) (Optional function)	
		5.1.1 5.1.2	Overview	
		5.1.3	I/O Signals (CNC↔PMC)	
		5.1.4	Examples of Sequences	
		5.1.5	List of Related Parameters.	
		5.1.6	Details of Related Parameters.	400
	5.2	HIGH-	SPEED SPINDLE ORIENTATION (Optional function)	401
		5.2.1	Overview	
		5.2.2	System Configuration	
		5.2.3	I/O Signals (CNC↔PMC)	
		5.2.4 5.2.5	SequenceList of Related Parameters	
		5.2.5 5.2.6	Details of Related Parameters.	
		5.2.7	Spindle Data Used in Tuning	
		5.2.8	Tuning Procedure	

	5.3	SPINDLE FINE ACC./DEC. (FAD) FUNCTION	406
		5.3.1 Overview	
		5.3.2 Series and Editions of Applicable Spindle Software	
		5.3.3 Block Diagram	
		5.3.4 Parameters	
		5.3.6 Status Errors	
		5.3.7 Cautions	
	5.4	UNEXPECTED DISTURBANCE TORQUE DETECTION FUN	
		(Optional function)	
		5.4.1 Overview	
		5.4.2 Series and Editions of Applicable Spindle Software	
		5.4.3 I/O Signals (CNC \leftrightarrow PMC)	
		5.4.4 List of Related Parameters	
		5.4.5 Details of Related Parameters	
		5.4.6 Parameter Tuning Procedure	408
	. FAN	UC AC SPINDLE MOTOR $lpha$ C i series	
1	STA	RT-UP	411
	1.1	START-UP PROCEDURE	412
	1.2	SPINDLE SERIAL INTERFACE (Optional function)	413
		1.2.1 Parameters Related to Spindle Serial Output	
		1.2.2 Automatic Spindle Parameter Initialization	
		1.2.3 Diagnosis (Diagnosis Screen)	
		1.2.4 Alarm	414
	1.3	PARAMETERS RELATED TO DETECTORS	415
		1.3.1 List of Parameters for Detectors	415
		1.3.2 Details of Parameters for Detectors	
		1.3.3 Typical Detector Configurations	420
2	EXP	LANATION OF OPERATION MODES	422
	2.1	VELOCITY CONTROL MODE	423
		2.1.1 Start-up Procedure	
		2.1.2 Overview	
		2.1.3 System Configuration	
		2.1.4 List of I/O Signals (CNC↔PMC)	
		2.1.6 Details of Related Parameters	
		2.1.7 Troubleshooting	
	2.2	POSITION CODER METHOD SPINDLE ORIENTATION	
		(Optional function)	438
		2.2.1 Start-up Procedure	
		2.2.2 Overview	
		2.2.3 Feature	
		2.2.4 System Configuration	
		2.2.5 Stop Position Specification Method	439 440
		7. 7. 11 1/1/1911/015 13 133 STI 1813 1	440

		2.2.7 Examples of Sequences	440
		2.2.8 Related Parameters	
		2.2.9 Details of Related Parameters	442
		2.2.10 Adjusting the Orientation Stop Position Shift Parameter	446
	2.3	RIGID TAPPING (Optional function)	447
		2.3.1 Start-up Procedure	
		2.3.2 Overview	447
		2.3.3 System Configuration	448
		2.3.4 List of I/O Signals (CNC ↔ PMC)	
		2.3.5 Sequence	
		2.3.6 Related Parameters	
		2.3.7 Details of Related Parameters	
		2.3.8 Parameter Setting Procedure	
		2.3.9 Adjustment Procedure	
		2.3.10 Diagnosis (Diagnosis Screen)	
	2.4	SPINDLE SYNCHRONOUS CONTROL (Optional function)	
		2.4.1 Start-up Procedure	
		2.4.2 Overview	
		2.4.3 System Configuration	
		2.4.4 Explanation of Operation	
		2.4.5 I/O Signals (CNC ↔ PMC)	
		2.4.6 Examples of Sequences2.4.7 Related Parameters	
		2.4.8 Details of Related Parameters	
		2.4.9 Number of Error Pulses in Spindle Synchronous Control	
		2.4.10 Specifying a Shift Amount for Spindle Phase Synchronous Control	
		2.4.11 Diagnosis (Diagnosis Screen)	
		2.4.12 Alarm	
	2.5	SPECIFICATIONS COMMON TO ALL OPERATION MODES	476
		2.5.1 Overview	
		2.5.2 List of I/O Signals (CNC ↔ PMC)	
		2.5.3 Parameters	
		2.5.4 Details of parameters	
		2.5.5 Diagnosis (Diagnosis Screen)	489
3	I/O S	IGNALS (CNC ↔ PMC)	490
		•	
	3.1	INPUT SIGNALS (PMC→CNC→SPMC)	
		3.1.1 List of Input Signals	
		3.1.2 Explanation of Input Signals3.1.3 Details of Input Signals	
	3.2	OUTPUT SIGNALS (SPMC→CNC→PMC)	
		3.2.1 List of Output Signals	494
		3.2.2 Explanation of Output Signals3.2.3 Details of Output Signals	
		•	
4	ADJ	JSTMENT	
	4.1	VELOCITY LOOP GAIN ADJUSTMENT	
		4.1.1 Overview	
		4.1.2 Parameters	496

		4.1.3 Adjustment Procedure	499
		4.1.4 Additional Information (Position Gain Adjustment)	500
IV.	FAN	UC BUILT-IN SPINDLE MOTOR BiS series	
1	STAI	RT-UP	503
•	1.1	START-UP PROCEDURE	
	1.2	SPINDLE SERIAL INTERFACE (Optional function)	
	1.2	1.2.1 Parameters Related to Spindle Serial Output	
		1.2.2 Automatic Spindle Parameter Initialization	
		1.2.3 Diagnosis (Diagnosis Screen)	
		1.2.4 Alarm	
	1.3	PARAMETERS RELATED TO DETECTORS	506
		1.3.1 List of Parameters for Detectors	506
		1.3.2 Details of Parameters for Detectors	506
		1.3.3 Typical Detector Configurations	507
	1.4	SUB MODULE SM	508
		1.4.1 Overview	
		1.4.2 Series and Editions of Applicable Spindle Software	
		1.4.3 Configuration	
		1.4.4 Related Parameters	
		1.4.5 Stop Processing When a Sub Module SM Error Occurs1.4.6 Alarm and Status Error	
		1.4.7 Caution	
	1.5	MAGNETIC POLE DETECTION	
	1.0	1.5.1 Overview	
		1.5.2 Magnetic Pole Detection Operation	
		1.5.3 AMR Offset Function	
		1.5.4 I/O Signals (CNC ↔ PMC)	521
		1.5.5 Related Parameters	523
		1.5.6 Sequence	
		1.5.7 Causes of Spindle Alarm 65	
		1.5.8 Cautions	531
2	EXP	LANATION OF OPERATION MODES	532
	2.1	VELOCITY CONTROL MODE	533
		2.1.1 Start-up Procedure	533
		2.1.2 Overview	
		2.1.3 System Configuration	
		2.1.4 List of I/O Signals (CNC↔PMC)	
		2.1.5 Related Parameters	
		2.1.6 Details of Related Parameters.2.1.7 Troubleshooting	
	2.2	2.1.7 Troubleshooting POSITION CODER METHOD SPINDLE ORIENTATION	343
	2.2		F 4 4
		(Optional function)	
		2.2.1 Start-up Procedure	
		2.2.2 Overview	
		2.2.4 System Configuration	

3

	2.2.5	Stop Position Specification Method	544
	2.2.6	I/O Signals (CNC ↔ PMC)	544
	2.2.7	Examples of Sequences	
	2.2.8	Related Parameters	545
	2.2.9	Details of Related Parameters.	546
	2.2.10	Adjusting the Orientation Stop Position Shift Parameter	549
2.3	RIGID	TAPPING (Optional function)	550
	2.3.1	Start-up Procedure	550
	2.3.2	Overview	550
	2.3.3	System Configuration	550
	2.3.4	List of I/O Signals (CNC \leftrightarrow PMC)	550
	2.3.5	Sequence	550
	2.3.6	Related Parameters	551
	2.3.7	Details of Related Parameters.	553
	2.3.8	Parameter Setting Procedure	557
	2.3.9	Adjustment Procedure	557
	2.3.10	Diagnosis (Diagnosis Screen)	562
	2.3.11	Alarm	562
2.4	Cs CO	NTOURING CONTROL (Optional function)	563
	2.4.1	Start-up Procedure	563
	2.4.2	Overview	563
	2.4.3	System Configuration	563
	2.4.4	List of I/O Signals (CNC ↔ PMC)	563
	2.4.5	Examples of Sequences	563
	2.4.6	Related Parameters	564
	2.4.7	Details of Related Parameters	566
	2.4.8	Diagnosis (Diagnosis Screen)	573
	2.4.9	Alarm	573
2.5	SPIND	DLE SYNCHRONOUS CONTROL (Optional function)	574
	2.5.1	Start-up Procedure	
	2.5.2	Overview	574
	2.5.3	System Configuration	574
	2.5.4	Explanation of Operation	575
	2.5.5	I/O Signals (CNC ↔ PMC)	575
	2.5.6	Examples of Sequences	
	2.5.7	Related Parameters	576
	2.5.8	Details of Related Parameters	
	2.5.9	Number of Error Pulses in Spindle Synchronous Control	
	2.5.10	Specifying a Shift Amount for Spindle Phase Synchronous Control	
	2.5.11	Diagnosis (Diagnosis Screen)	
	2.5.12	Alarm	583
2.6	SPEC	IFICATIONS COMMON TO ALL OPERATION MODES	
	2.6.1	Overview	
	2.6.2	List of I/O Signals (CNC \leftrightarrow PMC)	
	2.6.3	Parameters	
	2.6.4	Details of Parameters	
	2.6.5	Diagnosis (Diagnosis Screen)	599
I/O S	SIGNAL	S (CNC ↔ PMC)	600
3.1		SIGNALS (PMC→CNC→SP)	
-	🔾 1		

		3.1.1 List of Input Signals	
		3.1.2 Explanation of Input Signals3.1.3 Details of Input Signals	
	2.2		
	3.2	OUTPUT SIGNALS (SP→CNC→PMC)	
		3.2.2 Explanation of Output Signals	
		3.2.3 Details of Output Signals	
4	ADJ	USTMENT	611
	4.1	VELOCITY LOOP GAIN ADJUSTMENT	612
		4.1.1 Overview	612
		4.1.2 Parameters	
		4.1.3 Adjustment Procedure	
		4.1.4 Additional Information (Position Gain Adjustment)	
	4.2	MACHINE RESONANCE ELIMINATION	
		4.2.1 TCMD Filter	
		4.2.2 HRV Filter	
	4.3	4.2.3 Disturbance Input Function	012
		FUNCTION	612
5	FUN	CTION DESCRIPTIONS	613
	5.1	SPEED RANGE SWITCHING CONTROL (Optional function)	614
	5.2	SPINDLE SWITCHING CONTROL	
	5.2	INCRMENTAL COMMAND TYPE SPINDLE ORIENTATION	0 14
	5.5		0.45
		(SPINDLE ROTATION SPEED CONTROL) (Optional function)	
		5.3.1 Overview	
		5.3.3 System Configuration	
		5.3.4 I/O Signals(CNC↔PMC)	
		5.3.5 Examples of Sequences	
		5.3.6 List of Related Parameters	
		5.3.7 Details of Related Parameters	617
	5.4	HIGH-SPEED SPINDLE ORIENTATION (Optional function)	618
		5.4.1 Overview	
		5.4.2 Series and Editions of Applicable Spindle Software	
		5.4.3 System Configuration	
		5.4.4 I/O Signals (CNC↔PMC)	
		5.4.6 List of Related Parameters	
		5.4.7 Details of Related Parameters.	
		5.4.8 Spindle Data Used in Tuning	
		5.4.9 Tuning Procedure	627
	5.5	SPINDLE ORIENTATION DURING SPINDLE SYNCHRONOUS	000
		CONTROL (Optional function)	
		5.5.1 Overview	
		5.5.3 Specification	
		1	

		I/O Signals (CNC \leftrightarrow PMC)	
	5.5.5 5.5.6	Sequence	
		Details of Related Parameters.	
5.6		E FINE ACC./DEC. (FAD) FUNCTION	
0.0	5.6.1	Overview	637
	5.6.2	Series and Editions of Applicable Spindle Software	
	5.6.3	Block Diagram	
	5.6.4	Parameters	637
	5.6.5	Diagnosis (Diagnosis Screen)	
	5.6.6	Status Errors	
5.7	5.6.7	Cautions ECTED DISTURBANCE TORQUE DETECTION FUNCTION	63 /
5.7			620
		al function) Overview	
	5.7.1	Series and Editions of Applicable Spindle Software	
		I/O Signals (CNC↔PMC)	
		List of Related Parameters.	
		Details of Related Parameters.	
	5.7.6	Parameter Tuning Procedure	640
5.8	SPINDL	LE EGB (SPINDLE ELECTRONIC GEAR BOX)	
	(Option	al function)	641
	5.8.1	Overview	641
	5.8.2	Series and Editions of Applicable Spindle Software	
	5.8.3	System Configuration	
	5.8.4	Block Diagram	
	5.8.5 5.8.6	I/O Signals (CNC \leftrightarrow PMC)	
		List of Related Parameters.	
	5.8.8	Details of Related Parameters	
		Diagnosis Signal Related to Spindle EGB	
	5.8.10	Status Errors Related to Spindle EGB.	645
	5.8.11	Alarms	645
5.9	DIFFER	RENTIAL SPINDLE SPEED CONTROL	646
5.10	DUAL F	POSITION FEEDBACK FUNCTION (Optional function)	646
5.11	TORQL	JE TANDEM CONTROL FUNCTION (Optional function)	646
5.12	MAGNE	ETIC SENSOR METHOD SPINDLE ORIENTATION	
	(Option	al function)	646
5.13	SPINDL	E BACKLASH ACCELERATION FUNCTION (Optional function).647
		Overview	
		Series and Editions of Applicable Spindle Software	
		Block Diagram	
		Parameters	
	J.1J.J	LAMINDIE OF AMINORITATION TO THE PROPERTY OF T	∪⊤/

APPENDIX

Α	SPIN	IDLE PARAMETER TABLE	651
	A.1	lpha i SERIES SPINDLE PARAMETER TABLE	652
	A.2	lphaC i SERIES SPINDLE PARAMETER TABLE	668
	A.3	BiS SERIES SPINDLE PARAMETER TABLE	672
В	LIST	OF SPINDLE PARAMETER NUMBERS	679
С	PAR	AMETER TABLE FOR EACH MOTOR MODEL	685
	C.1	SPINDLE MOTOR $\alpha i \mathrm{I}$ series	686
	C.2	SPINDLE MOTOR $lpha i I_P$ series	690
	C.3	SPINDLE MOTOR $\alpha i I_{T}$ series	692
	C.4	SPINDLE MOTOR $\alpha i I$ series (400V)	694
	C.5	SPINDLE MOTOR $\alpha i I_P$ series (400V)	696
	C.6	SPINDLE MOTOR $\alpha i I_T$ series (400V)	697
	C.7	SPINDLE MOTOR βiI series	699
	C.8	SPINDLE MOTOR $\beta i I_P$ series	701
	C.9	SPINDLE MOTOR αCi series	702
D	LIST	S OF ALARMS/STATE ERRORS	703
	D.1	LIST OF SPINDLE ALARMS	704
	D.2	LIST OF SPINDLE STATE ERRORS	707
Ε	TAB	LE OF I/O SIGNALS RELATED TO SPINDLE CONTROL	710
	E.1	αi SERIES SPINDLE	711
		E.1.1 Input Signals (PMC→CNC)	
	г о	E.1.2 Output Signals (CNC→PMC)	
	E.2	α Ci SERIES SPINDLE E.2.1 Input Signals (PMC \rightarrow CNC)	
		E.2.2 Output Signals (CNC\rightarrowPMC)	
	E.3	BIS SERIES SPINDLE	720
		E.3.1 Input Signals (PMC→CNC)	
		E.3.2 Output Signals (CNC→PMC)	
F	OBS	ERVING DATA USING THE SERVO GUIDE	725
	F.1	SERIES AND EDITIONS OF APPLICABLE SPINDLE SOFTWARE	726
	F.2	SPINDLE DATA THAT CAN BE OBSERVED USING THE SERVO	
		GUIDE	
		F.2.1 Data List	
	⊏ 3	EYAMDI E OF ORSEDVING DATA	720

G	PARAMETER SPECIFICATION DIFFERENCES BETWEEN THE αi SERIES AND αCi SERIES				
	G.1	PARAMETERS WITH DIFFERENT MEANINGS	736		
Н		AMETER SPECIFICATION DIFFERENCES BETWEEN αi SERIES AND B i S SERIES	738		
	H.1	PARAMETERS WITH DIFFERENT MEANINGS	739		

I.	FANUC AC SPINDLE MOTOR $lpha i$ series
	FANUC BUILT-IN SPINDLE MOTOR B $i\mathrm{I}$ series

1

START-UP

1.1 START-UP PROCEDURE

1.2 SPINDLE SERIAL INTERFACE

Optional function

1.2.1 Parameters Related to Spindle Serial Output

This subsection provides a list of the parameters related to spindle serial output only. For details of each parameter, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.2, "SPINDLE SERIAL OUTPUT/SPINDLE
 ANALOG OUTPUT."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.2, "SPINDLE SERIAL OUTPUT."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.2, "SPINDLE SERIAL OUTPUT/SPINDLE
 ANALOG OUTPUT."
- (d) For Series 0i "FANUC Series 0i-MODEL C CONNECTION MANUAL (FUNCTION): B-64113EN-1 Refer to Section 9.2, "SPINDLE SERIAL OUTPUT/SPINDLE ANALOG OUTPUT."

	Parameter No.		Description	
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	
	3701#1	_	Whether to use the serial interface (Set 0.)	
_		3716#0	Selection of a spindle (analog/serial) (Set 1.)	
5606#0	_		Selection of an interface (serial/analog) (Set 1.)	
	3701#4		Number of connectable serial spindles (Whether to use the second serial spindle)	
	_	3702#1	Multi-spindle control function (Whether to use the multi-spindle control function)	
5841	'		Motor number of each spindle	
	'	3717	Amplifier number of each spindle	
5845		3718	Spindle indication subscript (main spindle)	
5846		3719	Spindle indication subscript (sub-spindle)	
5850		_	Spindle number selected at power-on/reset time	

NOTE

To use the spindle serial interface, the CNC software option is required.

1.2.2 Automatic Spindle Parameter Initialization

(1) Parameter list

F	Parameter No).	Description	
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>		
5607#0	4019#7	4019#7	Function for automatically initializing spindle parameters	
3133	4133	4133	Spindle motor model code	

(2) Procedure for automatic spindle parameter initialization

Perform automatic spindle parameter initialization by following the procedure below.

<1> Set the model code for the desired motor for automatic parameter initialization.

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description		
;	3133	4133	4133	Model code		

NOTE

- 1 The control method usable with the αi series spindle is spindle HRV control only. The conventional control method is not supported.
- When using a spindle motor that has no model code, set model code "300" ("400" for a spindle motor with speed range switching control) for automatic parameter setting, then manually input data according to the parameter table for each motor model.
- <2> Set the relevant parameter to enable automatic spindle parameter initialization.

Par			
15 <i>i</i>	30 <i>i</i>	Description	
_	4019#7	4019#7	1
5607#0	_	_	0

NOTE

This bit is reset to its original value after automatic parameter initialization.

<3> Turn the CNC off, then on again. Then, the spindle parameters specified with a model code are automatically initialized.

1.2.3 Diagnosis (Diagnosis Screen)

This subsection provides a list of the diagnosis (diagnosis screen) indications related to spindle serial output only. For details, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B

 CONNECTION MANUAL (FUNCTION): B-63523EN-1

 Refer to Section 9.2, "SPINDLE SERIAL OUTPUT/SPINDLE

 ANALOG OUTPUT."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.2, "SPINDLE SERIAL OUTPUT."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.2, "SPINDLE SERIAL OUTPUT/SPINDLE
 ANALOG OUTPUT."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.2, "SPINDLE SERIAL OUTPUT/SPINDLE
 ANALOG OUTPUT."

(1) For Series 16*i*

Address	Description
400	Information including spindle control
408	Information about spindle serial output interface communication errors
409	Information about spindle serial output interface activation

(2) For Series 30i

Address	Description						
400	Information including spindle control						
408	Information about spindle serial output interface communication errors						

(3) For Series 15i

Address	Description
1500	Information about spindle serial output interface communication errors

1.2.4 Alarm

This subsection provides a list of the alarms related to spindle serial output only. For details of each alarm, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.2, "SPINDLE SERIAL OUTPUT/SPINDLE
 ANALOG OUTPUT."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.2, "SPINDLE SERIAL OUTPUT."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.2, "SPINDLE SERIAL OUTPUT/SPINDLE
 ANALOG OUTPUT."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.2, "SPINDLE SERIAL OUTPUT/SPINDLE
 ANALOG OUTPUT."

(1) For Series 16*i*

Alarm No.	Description
749	A serial communication error occurred while the system was being activated after power-on.
750	The (serial) spindle amplifier was not activated normally at power-on time.

(2) For Series 15i and Series 30i

Alarn	n No.	Description
15 <i>i</i>	30 <i>i</i>	Description
PS0223		Before a spindle to be controlled is set correctly, a command for using the spindle was executed.
SP0201		The same motor number other than 0 is set more than once in parameter No. 5841.
SP0202		A spindle number greater than the number of spindles is set in parameter No. 5850.
SP0220	SP1220	The cable connected to the serial spindle amplifier is disconnected, or no serial spindle amplifier is connected.
SP0221		The correspondence between spindle numbers and motor numbers is incorrect.
SP0225	SP1225	A CRC error (communication error) occurred in communication between the CNC and serial spindle amplifier.
SP0226	SP1226	A framing error occurred in communication between the CNC and serial spindle amplifier.
SP0227	SP1227	A receive error occurred in communication between the CNC and serial spindle amplifier.
SP0228	SP1228	A communication error occurred in communication between the CNC and serial spindle amplifier.
SP0229	_	A communication error occurred in communication between serial spindle amplifiers (between motor numbers 1 and 2 or between motor numbers 3 and 4).
_	SP1229	A communication error occurred in communication between serial spindle amplifiers (between an odd-numbered amplifier and even-numbered amplifier).
SP0230	_	The value set in parameter No. 5841 is not within the allowable range.
SP0970	_	Spindle control initialization was not terminated.

Alarr	n No.	Description						
15 <i>i</i>	30 <i>i</i>	Description						
SP0976	_	No amplifier number could be set for a serial spindle amplifier.						
SP0978	_	me-out was detected in communication with a serial spindle amplifier.						
SP0979	_	The communication sequence was incorrect in communication with a serial spindle amplifier.						
SP0980	SP1980 to SP1984	The SIC-LSI on the serial spindle amplifier side is faulty.						
SP0981		An error occurred when data was written to the SIC-LSI on the serial spindle amplifier side.						
SP0982	_	An error occurred when data was read from the SIC-LSI on the serial spindle amplifier side.						
SP0983	_	An alarm on the spindle amplifier side could not be cleared.						
SP0984		An error occurred during spindle amplifier reinitialization.						
SP0985		Automatic parameter setting failed.						
SP0987	SP1985 to SP1987	The SIC-LSI on the CNC side is faulty.						
SP0996		The assignment of spindles and spindle motors is incorrect.						
_	SP1245 to SP1247	A communication data error was detected on the CNC side.						
_	SP1976 to SP1979	An error occurred with the spindle control software.						
_	SP1988 to SP1989	An error occurred with the spindle control software.						
_	SP1996	Spindle motor assignment is incorrect. Check the parameters indicated hereafter. (No.3716,No.3717)						

1.3 PARAMETERS RELATED TO DETECTORS

NOTE

- 1 Note that the specifications of parameters related to detectors for the αi series spindle amplifiers differ from those of parameters for the α series spindle amplifiers.
- 2 The terms "motor sensor" and "spindle sensor" used in the text mean the speed/position detectors connected to the connectors described below.
 - (i) Motor sensor :
 Detector connected to connector JYA2
 (αiM sensor, αiMZ sensor, αiBZ sensor of a built-in motor, αiCZ sensor of a built-in motor)
 - (ii) Spindle sensor : Detector connected to connector JYA3 or JYA4 (αi position coder, α position coder S, separate αi BZ sensor, separate αi CZ sensor, and so forth)

1.3.1 List of Parameters for Detectors

	Parameter No.		Description		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description		
_	3706#1,0	_	Gear ratio of spindle to position coder (×1, ×2, ×4, ×8)		
5842		3720	Number of pulses of the position coder		
3000#0	4000#0	4000#0	Direction of spindle and spindle motor rotation		
3001#4	4001#4	4001#4	Spindle sensor mounting direction		
3002#3,2,1,0	4002#3,2,1,0	4002#3,2,1,0	Spindle sensor type setting		
3003#7,6,5,4	4003#7,6,5,4	4003#7,6,5,4	Setting of the number of spindle sensor gear teeth		
3004#3,2	4004#3,2	4004#3,2	External one-rotation signal (proximity switch) setting		
3006#1	4006#1	4006#1	Gear ratio increment system		
3007#5	4007#5	4007#5	Whether to detect disconnection of feedback signals		
2007#6	4007#6	4007#6	Whether to detect alarms related to position feedback signals (on		
3007#6	3007#6 4007#6		non-Cs contouring control mode)		
3010#2,1,0	4010#2,1,0	4010#2,1,0	Motor sensor type setting		
3011#2,1,0	4011#2,1,0	4011#2,1,0	Setting of the number of motor sensor gear teeth		
3016#5	4016#5	4016#5	Whether to detect alarms related to position feedback (in Cs		
3010#3	4010#3	4010#5	contouring control mode)		
3016#6	4016#6	4016#6	Whether to detect alarms related to threading feedback		
3016#7	4016#7	4016#7	Setting of the function of detecting the one-rotation signal again		
3010#1	4010#7	4010#1	each time position control mode is set.		
3394#2	4394#2	4394#2	Setting of the detection lower limit of the one-rotation signal		
3394#5	4394#5	4394#5	Whether to detect the alarm related to spindle sensor polarity		
33 34π 3	4004# 0	7007#0	erroneous setting		
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data (This data is selected by spindle		
3030 10 3039	7000 10 4009	4000 10 4009	control input signals CTH1A and CTH2A.)		
3098	4098	4098	Maximum speed for position feedback signal detection		

Parameter No.			Description			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description			
3171 3173	4171 4173	4171 4173	Denominator of arbitrary gear ratio between motor sensor and spindle (This data is selected by spindle control input signal CTH1A.)			
3172 3174	4172 4174	4172 4174	Numerator of arbitrary gear ratio between motor sensor and spindle (This data is selected by spindle control input signal CTH1A.)			
3334	4334	4334	Arbitrary number of motor sensor teeth			
3355	4355	4355	Motor sensor signal amplitude ratio compensation			
3356	4356	4356	Motor sensor signal phase difference compensation			
3357	4357	4357	Spindle sensor signal amplitude ratio compensation			
3358	4358	4358	Spindle sensor signal phase difference compensation			
3361	4361	4361	Arbitrary number of spindle sensor teeth			
3500 3502	4500 4502	4500 4502	Denominator of arbitrary gear ratio between spindle sensor and spindle (This data is selected by spindle control input signal CTH1A.)			
3501 3503	4501 4503	4501 4503	Numerator of arbitrary gear ratio between spindle sensor and spindle (This data is selected by spindle control input signal CTH1A.)			

1.3.2 Details of Parameters for Detectors

This subsection details the serial spindle parameters (in the four thousands for 16*i*, and in the four thousands for 30*i*, and in the three thousands for 15*i*) among the detector-related parameters. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3, "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION) : B-64113EN-1

CONNECTION MANUAL (FUNCTION): B-64113EN-1 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

151	101	301	#7	#6	#5	#4	#3	#2	#1	#0
3000	4000	4000								ROTA1
			•							

ROTA1 Indicates the relationship between the rotation directions of spindle and spindle motor.

0: Rotates the spindle and spindle motor in the same direction.

1: Rotates the spindle and spindle motor in the reverse direction.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3001	4001	4001				SSDIRC				

SSDIRC Indicates the mounting direction of spindle sensor.

0: Rotates the spindle and spindle sensor in the same direction.

1: Rotates the spindle and spindle sensor in the reverse direction.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3002	4002	4002					SSTYP3	SSTYP2	SSTYP1	SSTYP0

SSTYP3 to SSTYP0

Spindle sensor type

This parameter sets the type of a separate detector to be attached to the spindle (detector to be connected to connector JYA3 or JYA4).

SSTYP3	SSTYP2	SSTYP1	SSTYP0	Spindle sensor type
0	0	0	0	None (No position control function is used.)
0	0	0	1	Uses the motor sensor for position feedback
0	0	1	0	αi position coder
0	0	1	1	Separate αiBZ sensor, αiCZ sensor
0	1	0	0	α position coder S

NOTE

When using a rectangular wave phase A/B, 1024-p/rev position coder, set the same settings as for the αi position coder (0,0,1,0).

15*i* 16*i* 30*i* 3003 4003 4003

#7	#6	#5	#4	#3	#2	#1	#0
PCPL2	PCPL1	PCPL0	РСТҮРЕ				

PCPL2, PCPL1, PCPL0, PCTYPE

Gear teeth number setting of the spindle sensor

This parameter sets the number of teeth of a separate detector to be attached to the spindle (detector to be connected to connector JYA3 or JYA4).

PCPL2	PCPL1	PCPL0	PCTYPE	Gear teeth number of the spindle sensor
0	0	0	0	256λ/rev
0	0	0	1	128λ/rev
0	1	0	0	512λ/rev
0	1	0	1	64λ/rev
1	0	0	0	768λ/rev
1	0	0	1	1024λ/rev
1	1	0	0	384λ/rev

NOTE

- 1 Set "0, 0, 0, 0" when using an αi position coder (bits 3, 2, 1, 0 of No. 4002 = 0, 0, 1, 0) or an α position coder S (bits 3, 2, 1, 0 of No. 4002 = 0, 1, 0, 0).
- 2 When the motor sensor is used for position feedback (bits 3, 2, 1, 0 of No. 4002 = 0, 0, 0, 1), this parameter need not be set.

15*i* 16*i* 30*i* 3004 4004 4004

#7	#6	#5	#4	#3	#2	#1	#0
				RFTYPE	EXTRF		

EXTRF, RFTYPE

External one-rotation signal setting

This parameter sets the type of an external one-rotation signal (proximity) switch to be attached to the spindle (to be connected to connector JYA3).

RFTYPE	EXTRF	External one-rotation signal (proximity switch)
0	0	None
0	1	Detects the leading edge.
1	1	Detects the trailing edge.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3006	4006	4006							GRUNIT	

GRUNIT

Sets a gear ratio setting resolution:

0: 1/100 unit

1: 1/1000 unit

Select a gear ratio data setting resolution from the following:

- (a) Resolution based on motor rotation increased by a factor of 100 relative to one spindle rotation
- (b) Resolution based on motor rotation increased by a factor of 1000 relative to one spindle rotation

Depending on the setting of this parameter, the increment system of the parameters indicated in the table below changes.

	Parameter No.		Description		
15 <i>i</i> 16 <i>i</i>		30 <i>i</i>	Description		
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data		

NOTE

Usually, use the 1/100 unit (setting "0").

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3007	4007	4007

#7	#6	#5	#4	#3	#2	#1	#0
	PCALCH	PCLS					

PCLS Determines feedback signal disconnection detection.

0: Performs disconnection detection.

1: Does not perform disconnection detection.

When this bit is set to "0", spindle alarms 27 (Position coder signal disconnection), 73 (Motor sensor disconnection), and 84 (Spindle sensor disconnection) are checked.

NOTE

- 1 Usually, set "0".
- When adjusting the waveform of a motor/spindle sensor feedback signal, set "1" temporarily to disable disconnection detection. <u>After completion of adjustment, be sure to return the setting to "0" to enable disconnection detection.</u>

PCALCH Determines whether to use alarms related to position feedback signals (on non-Cs contouring control mode).

0: Detects alarms.

1: Does not detect alarms.

When this bit is set to "0", spindle alarms 41, 42, 47, 81, 82, 83, 85, 86, and 87 are checked.

15*i* 16*i* 30*i*3010 4010 4010

#7	#6	#5	#4	#3	#2	#1	#0
					MSTYP2	MSTYP1	MSTYP0

MSTYP2, MSTYP1, MSTYP0

Motor sensor type

This parameter sets the type of a detector built into the motor (detector to be connected to JYA2).

	MSTYP2	MSTYP1	MSTYP0	Motor sensor type
1	0	0	0	αiM sensor
	0	0	1	αi MZ, αi BZ, αi CZ sensor

15*i* 16*i* 30*i* 3011 4011 4011

#7	#6	#5	#4	#3	#2	#1	#0
					VDT3	VDT2	VDT1

VDT1 to VDT3

Gear teeth number setting of the motor sensor

This parameter sets the number of teeth of a detector built into the motor (detector to be connected to JYA2).

VDT3	VDT2	VDT1	Gear teeth number of the motor sensor
0	0	0	64λ/rev
0	0	1	128\/rev
0	1	0	256λ/rev
0	1	1	512λ/rev
1	0	0	192λ/rev
1	0	1	384λ/rev

NOTE

When using a sensor with αi CZ sensor 768 λ /rev or 1024 λ /rev, set 0,0,0 in this parameter, and set 768 or 1024 in the parameter specifying an arbitrary number of motor sensor teeth (parameter No. 4334).

Motor models and corresponding $\alpha i M$ and $\alpha i MZ$ sensors

Motor model	Number of gear teeth of the detection ring on the αi M or αi MZ sensor
α <i>i</i> Ι0.5	64λ/rev
αiI1 to αiI3	128λ/rev
lpha iI6 to $lpha i$ I50 $lpha i$ IP12 to $lpha i$ IP60	256λ/rev

15*i* 16*i* 30*i*3016 4016 4016

#7	#6	#5	#4	#3	#2	#1	#0
RFCHK3	RFCHK2	RFCHK1					

RFCHK1

Determines whether to detect alarms related to position feedback (in Cs contouring control mode).

0: Does not detect alarms.

: Detects alarms.

When this bit is set to "1", Spindle alarms 81, 82, 85, and 86 are checked.

RFCHK2 Determines whether to detect the alarm related to threading position detection signal feedback (spindle alarm 46).

0: Does not detect alarms.

1: Detects alarms.

RFCHK3 Setting of the function of detecting the one-rotation signal again each time position control mode is set.

0: The one-rotation signal is not detected each time the operating mode changes.

Once the one-rotation signal has been detected, it is not detected again until the power goes off.

1: The one-rotation signal is detected each time the operating mode changes.

15 <i>i</i>	161	301
3394	4394	4394

#7	#6	#5	#4	#3	#2	#1	#0
		A21DEN			ZPHDTC		

ZPHDTC

Sets the detection lower limit of the one-rotation signal.

- 0: The one-rotation signal is detected when the spindle speed is 10 min⁻¹ or more.
- 1: The one-rotation signal is detected regardless of the spindle speed.

NOTE

- 1 This parameter is valid with 9D50 series E (05) edition or later, 9D70 series A (01) edition or later, and 9D80 series A (01) edition or later.
- 2 This parameter is enabled when the spindle sensor is an αi position coder or α position coder S. When the spindle sensor is the αi MZ/ αi BZ/ αi CZ sensor, if the spindle speed is 10 min⁻¹ or more, the one-rotation signal is detected regardless of the setting of this parameter.

A21DEN

Whether to detect the spindle sensor polarity erroneous setting alarm (spindle alarm 21).

- 0: The spindle sensor polarity erroneous setting alarm is detected.
- 1: The spindle sensor polarity erroneous setting alarm is not detected

When the spindle sensor polarity erroneous setting alarm is incorrectly detected due to the following reasons, set this bit to disable the alarm detection.

- When the spindle is mechanically separated from the motor.
- When the belt between the spindle and the motor slips.

NOTE

This parameter is valid with 9D50 series E (05) edition or later, 9D70 series A (01) edition or later, and 9D80 series A (01) edition or later.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3056	4056	4056
3057	4057	4057
3058	4058	4058
3059	4059	4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767

Standard setting: 100

> These data are used to set the gear ratio between spindle and spindle motor.

Example:

When the spindle rotates once, set "250" as the data when the motor rotates 2.5 times.

A parameter is selected with the CTH1A and CTH2A input signals. Set the gear or clutch status to correspond to the clutch/gear signal (CTH1A, CTH2A).

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

15*i* 16*i* 30i 3098 4098 4098

Maximum speed for position feedback signal detection

Unit of data: 1min⁻¹ (Unit of 10 min⁻¹ when bit 2 (SPDUNT) of parameter No. 4006

=1)

Valid data range: 0 to 32767

Standard setting: 0

This parameter sets a maximum spindle speed that enables the

detection of a motor/spindle sensor feedback signal.

When "0" is set in this parameter, up to the maximum motor speed can

be detected.

NOTE

Usually, set "0".

30 <i>i</i>	30 <i>i</i>	16 <i>i</i>	15 <i>i</i>
Denominator of arbitrary gear ratio between motor sensor and spindle (HIGH CTH1A=	4171	4171	3171
Numerator of arbitrary gear ratio between motor sensor and spindle (HIGH) CTH1A=	4172	4172	3172
Denominator of arbitrary gear ratio between motor sensor and spindle (LOW CTH1A=	4173	4173	3173
Numerator of arbitrary gear ratio between motor sensor and spindle (LOW) CTH1A=	4174	4174	3174

Unit of data:

Valid data range: 0 to 32767

Standard setting:

0 10 3270

These parameters set conversion coefficients (numerator, denominator) for using the detection arbitrary gear ratio function (DMR function) by multiplying a motor sensor (αiM or αiMZ sensor) feedback signal by a gear ratio to produce a spindle position feedback signal.

When the spindle rotates Q times while the motor shaft rotates P times (there is no common divisor other than 1 for P and Q), settings are:

No. 4171 (No. 4173 when CTH1A = 1) = P No. 4172 (No. 4174 when CTH1A = 1) = Q

When one of these parameters is set to "0", it is assumed to be "1".

NOTE

When using the external one-rotation signal (proximity switch), use the detection arbitrary gear ratio function (DMR function) by setting an arbitrary gear ratio between the motor sensor and spindle in this parameter.

15*i* 16*i* 30*i* 3334 4334 4334

Arbitrary number of motor sensor teeth

Unit of data : 1λ /rev (Number of motor sensor teeth)

Valid data range: 0, 32 to 4096

Standard setting: 0

When the number of motor sensor teeth is other than 64, 128, 192, 256,

384, and 512, set this parameter.

When "0" is set in this parameter, the setting of bits 2, 1, 0 (VDT3,

VDT2, VDT1) of parameter No. 4011 is valid.

15*i* 16*i* 30*i*3355 4355 43553357 4357 4357

Motor sensor signal amplitude ratio compensation

Spindle sensor signal amplitude ratio compensation

Unit of data: 1% Valid data range: -8 to 8 Standard setting: 0

These parameters set an amplitude ratio compensation value for the

sensor feedback signal (phase A/B of the sinusoidal wave).

For details, refer to the Section I-4.3, "AMPLITUDE RATIO/PHASE

DIFFERENCE COMPENSATION FUNCTION."

15*i* 16*i* 30*i*3356 4356 43563358 4358 4358

Motor sensor signal phase difference compensation

Spindle sensor signal phase difference compensation

Unit of data: 1% Valid data range: -4 to 4 Standard setting: 0

These parameters set a phase difference compensation value for the

sensor signal (phase A/B of the sinusoidal wave).

For details, refer to the Section I-4.3, "AMPLITUDE RATIO/PHASE

DIFFERENCE COMPENSATION FUNCTION."

15*i* 16*i* 30*i* 3361 4361 4361

Arbitrary number of spindle sensor teeth

Unit of data : 1λ /rev (Number of spindle sensor teeth)

Valid data range: 0, 64 to 4096

Standard setting: 0

When the number of spindle sensor teeth is other than 64, 128, 256,

384, 512, and 1024 set this parameter.

When "0" is set in this parameter, the setting of bits 7, 6, 5, 4 (PCPL2,

PCPL1, PCPL0, PCTYPE) of parameter No. 4003 is valid.

15 <i>i</i>	16 <i>i</i>	
3500	4500	Denominator of arbitrary gear ratio between spindle sensor and spindle (HIGH) CTH1A=0
3501	4501	Numerator of arbitrary gear ratio between spindle sensor and spindle (HIGH) CTH1A=0
3502	4502	Denominator of arbitrary gear ratio between spindle sensor and spindle (LOW) CTH1A=1
3503	4503	Numerator of arbitrary gear ratio between spindle sensor and spindle (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting:

These parameters set conversion coefficients denominator) for using the detection arbitrary gear ratio function (DMR function) by multiplying a spindle sensor (αi position coder, α position coder S, separate αiBZ sensor, or separate αiCZ sensor) feedback signal by a gear ratio to produce a spindle position feedback signal.

When the spindle rotates Q times while the motor shaft rotates P times (there is no common divisor other than 1 for P and Q), settings are:

No. 4500 (No. 4502 when CTH1A = 1) = P

No. 4501 (No. 4503 when CTH1A = 1) = Q

When one of these parameters is set to "0", it is assumed to be "1".

NOTE

- 1 This parameter is valid with 9D50 series F (06) edition or later, 9D70 series A (01) edition or later, and 9D80 series A (01) edition or later...
- 2 When this parameter is used in a configuration having no external one-rotation signal (proximity switch), set the following parameters.

No.4007#6=1: Alarms related to positional

feedback signals (in non-Cs mode)

are not detected.

No.4016#5=0: Alarms related to positional

feedback signals (in Cs mode) are

not detected.

1.3.3 Typical Detector Configurations

This subsection describes typical detector configurations and the parameter setting procedures for the detector configurations.

With the αi series spindle, the detector circuitry hardware is set according to the parameter setting. For this reason, an alarm such as a disconnection alarm may be output while parameters related to detectors are being set.

To initialize the hardware, after setting the parameters related to detectors, turn the power to the amplifier off once.

(1) When position control is not exercised

Parameter No.	Settings	Description					
4002 #3,2,1,0	0,0,0,0	Does not exercise position control.					
4010 #2,1,0	Depends on the detector.	Sets the type of motor sensor.					
4011 #2,1,0	Depends on the detector.	Sets the number of motor sensor gear teeth.					

(2) When the αi position coder is used

[Sample system configuration]

Parameter No.	Settings	Description
4000 #0	Depends on the configuration.	Rotation directions of the spindle and motor
4001 #4	Depends on the configuration.	Spindle sensor mounting direction
4002 #3,2,1,0	0,0,1,0	Uses the αi position coder as the spindle sensor.
4003 #7,6,5,4	0,0,0,0	Sets the number of spindle sensor gear teeth.
4010 #2,1,0	Depends on the detector.	Sets the type of motor sensor.
4011 #2,1,0	Depends on the detector.	Sets the number of motor sensor gear teeth.
4056 to 4059	Depends on the configuration.	Gear ratio between the spindle and motor

(3) When the α position coder S is used

Parameter No.	Settings	Description
4000 #0	Depends on the configuration.	Rotation directions of the spindle and motor
4001 #4	Depends on the configuration.	Spindle sensor mounting direction
4002 #3,2,1,0	0,1,0,0	Uses the α position coder S as the spindle sensor.
4003 #7,6,5,4	0,0,0,0	Sets the number of spindle sensor gear teeth.
4010 #2,1,0	Depends on the detector.	Sets the type of motor sensor.
4011 #2,1,0	Depends on the detector.	Sets the number of motor sensor gear teeth.
4056 to 4059	Depends on the configuration.	Gear ratio between the spindle and motor

(4) When the αi MZ, αi BZ, or αi CZ sensor is used

[Sample system configuration 2]

[Sample system configuration 3]

Parameter No.	Settings	Description
4000 #0	0	Rotation directions of the spindle and motor
4002 #3,2,1,0	0,0,0,1	Uses the motor sensor for position feedback.
4010 #2,1,0	0,0,1	Uses the αi MZ , αi BZ, or αi CZ sensor as
4011 #2,1,0	Depends on the detector.	the motor sensor. Sets the number of motor sensor gear teeth.
4056 to 4059	100 or 1000	Gear ratio between the spindle and motor 1:1

(5) When the separate type αiBZ sensor or separate type αiCZ sensor is used

Parameter No.	Settings	Description
4000 #0	Depends on the configuration.	Rotation directions of the spindle and motor
4001 #4	Depends on the configuration.	Spindle sensor mounting direction
4002 #3,2,1,0	0,0,1,1	Uses the αiBZ sensor or αiCZ sensor as the spindle sensor.
4003 #7,6,5,4	Depends on the detector.	Sets the number of spindle sensor gear teeth.
4010 #2,1,0	Depends on the detector.	Sets the type of motor sensor.
4011 #2,1,0	Depends on the detector.	Sets the number of motor sensor gear teeth.
4056 to 4059	Depends on the configuration.	Gear ratio between the spindle and motor

(6) When the external one-rotation signal (proximity switch) is used [Sample system configuration]

Parameter No.	Settings	Description
4000 #0	Depends on the configuration.	Rotation directions of the spindle and motor
4002 #3,2,1,0	0,0,0,1	Uses the motor sensor for position feedback.
4004 #2	1	Uses the external one-rotation signal.
4004 #3	Depends on the detector.	Sets the external one-rotation signal type.
4010 #2,1,0	Depends on the detector.	Sets the type of motor sensor.
4011 #2,1,0	Depends on the detector.	Sets the number of motor sensor gear teeth.
4056 to 4059	Depends on the configuration.	Gear ratio between the spindle and motor
4171 to 4174	Depends on the configuration.	Arbitrary gear ratio between the motor sensor and spindle

(7) When the axis on which the spindle sensor is mounted is not the spindle

Parameter No.	Settings	Description
4000 #0	Depends on the configuration.	Rotation directions of the spindle and motor
4001 #4	Depends on the configuration.	Spindle sensor mounting direction
4002 #3,2,1,0	Depends on the configuration.	Type of spindle sensor
4003 #7,6,5,4	Depends on the detector.	Sets the number of spindle sensor gear teeth.
4010 #2,1,0	0, 0, 0	Uses the $\alpha i M$ sensor as the motor sensor.
4011 #2,1,0	Depends on the detector.	Sets the number of motor sensor gear teeth.
4007 #6	1	Alarms related to positional feedback signals (in non-Cs mode) are not detected.
4016 #5	0	Alarms related to positional feedback signals (in Cs mode) are not detected.
4056 to 4059	Depends on the configuration.	Gear ratio between the spindle and motor
4500 to 4503	Depends on the configuration.	Arbitrary gear ratio between the spindle sensor and spindle

NOTE

Those functions such as the orientation function that require a one-rotation signal cannot be used.

2

EXPLANATION OF OPERATION MODES

2.1 VELOCITY CONTROL MODE

2.1.1 Start-up Procedure

2.1.2 Overview

The velocity control mode is a function for exercising velocity control to rotate the spindle motor according to a velocity command from the CNC.

NOTE

On a CNC screen (such as the spindle monitor screen and the adjustment screen), the velocity control mode is indicated as "NORMAL OPERATION MODE".

2.1.3 System Configuration

The velocity control mode is applicable to all detector configurations. For system configurations, see Subsection 1.3.3, "TYPICAL DETECTOR CONFIGURATIONS".

2.1.4 List of I/O Signals (CNC↔PMC)

This subsection provides a list of the I/O signals related to the velocity control mode only. For details of each signal, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3, "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

For details of the I/O signals common to the CNCs, see Chapter 3, "I/O SIGNALS (CNC \leftrightarrow PMC)", in Part I.

(1) Input signals(PMC→CNC)

(a) Series 16*i*

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G027				*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
Common to all axes	G028						GR2	GR1	
Common to all axes	G029		*SSTP	SOR	SAR	,			
Common to all axes	G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
1st-	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
2nd-	G034	R08I2	R07I2	R06I2	R05l2	R04I2	R03I2	R02I2	R01I2
1st-	G033	SIND	SSIN	SGN		R12I	R11I	R10I	R09I
2nd-	G035	SIND2	SSIN2	SGN2		R12I2	R11I2	R10I2	R09I2

NOTE

*1 These signals are valid in multi-spindle control.

FANUC AC SPINDLE MOTOR αi series B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiI series 2.EXPLANATION OF OPERATION MODES

(b) Series 30i

` '				#7	#6	#5	#4	#3	#2	#1	#0	
	Common to	all axes	G027				*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)	
	Common to	all axes	G028						GR2	GR1		
	Common to	all axes	G029		*SSTP	SOR	SAR					
	Common to	all axes	G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0	
		1st-	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I	
		2nd-	G034	R08I2	R07I2	R06I2	R05I2	R04I2	R03I2	R02I2	R01I2	
		1st-	G033	SIND	SSIN	SGN		R12I	R11I	R10I	R09I	
		2nd-	G035	SIND2	SSIN2	SGN2		R12I2	R11I2	R10I2	R09I2	
(c) Seri	NOTE *1 These signals are valid in multi-spindle control. (c) Series 15i											
` '				#7	#6	#5	#4	#3	#2	#1	#0	
	Common to a	all axes	G005							FIN		
									,			
		1st-	G024	RI7A	RI6A	RI5A	RI4A	RI3A	RI2A	RI1A	RI0A	
		2nd-	G232	RI7B	RI6B	RI5B	RI4B	RI3B	RI2B	RI1B	RI0B	
		1st-	G025	RISGNA			RI12A	RI11A	RI10A	RI9A	RI8A	
		2nd-	G233	RISGNB			RI12B	RI11B	RI10B	RI9B	RI8B	
		1st-	G026		GS4A	GS2A	GS1A					
		2nd-	G272		GS4B	GS2B	GS1B					
(d) Con	nmon to	CNCs										
	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0	
1st-	G227	G070	G070	MRDYA		SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA	
2nd-	G235	G074	G074	MRDYB		SFRB	SRVB	CTH1B	CTH2B	TLMHB	TLMLB	
						T			T	,	1	
1st-	G226	G071	G071				SOCNA			*ESPA		
2nd-	G234	G075	G075				SOCNB			*ESPB		
						T				<u> </u>		
1st-	G229	G072	G072				OVRA					
2nd-	G237	G076	G076				OVRB					

(2) Output signals (CNC→PMC)

(a) Series 16i

	#7	#6	#5	#4	#3	#2	#1	#0
F001				ENB				
F007						SF		
F022	S07	S06	S05	S04	S03	S02	S01	S00
F023	S15	S14	S13	S12	S11	S10	S09	S08
F024	S23	S22	S21	S20	S19	S18	S17	S16
F025	S31	S30	S29	S28	S27	S26	S25	S24
F034						GR30 (*1)	GR2O (*1)	GR10 (*1)
F036	R08O	R070	R06O	R05O	R040	R03O	R02O	R010
F037					R120	R110	R100	R09O

NOTE

*1 These signals are valid with the M series only.

(b) Series 16*i*

F001 F007 F022 F023 F024 F025 F034 F036 F037

#7	#6	#5	#4	#3	#2	#1	#0
			ENB				
					SF		
S07	S06	S05	S04	S03	S02	S01	S00
S15	S14	S13	S12	S11	S10	S09	S08
S23	S22	S21	S20	S19	S18	S17	S16
S31	S30	S29	S28	S27 S26 S25		S24	
					GR3O (*1)	GR2O (*1)	GR10 (*1)
R08O	R07O	R06O	R05O	R04O	R03O	R02O	R010
				R120	R110	R100	R09O

NOTE

*1 These signals are valid with the M series only.

FANUC AC SPINDLE MOTOR αi series B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiI series 2.EXPLANATION OF OPERATION MODES

(b) Series 15i

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	F008							SF	
Common to all axes	F020	S 7	S6	S5	S4	S3	S2	S1	S0
Common to all axes	F021	S15	S14	S13	S12	S11	S10	S09	S08
Common to all axes	F022	S23	S22	S21	S20	S19	S18	S17	S16
Common to all axes	F023	S31	S30	S29	S28	S27	S26	S25	S24
Common to all axes	F045			SRSRDY					
1st-	F010	RO7A	RO6A	RO5A	RO4A	RO3A	RO2A	RO1A	RO0A
2nd-	F320	RO7B	RO6B	RO5B	RO4B	RO3B	RO2B	RO1B	RO0B
1st-	F11	RO15A	RO14A	RO13A	RO12A	RO11A	RO11A	RO10A	RO9A
2nd-	F321	RO15B	RO14B	RO13B	RO12B	RO11B	RO11B	RO10B	RO9B
1st-	F014	MR7A	MR6A	MR5A	MR4A	MR3A	MR2A	MR1A	MR0A
2nd-	F324	MR7B	MR6B	MR5B	MR4B	MR3B	MR2B	MR1B	MR0B
1st-	F015	MR15A	MR14A	MR13A	MR12A	MR11A	MR10A	MR9A	MR8A
2nd-	F325	MR15B	MR14B	MR13B	MR12B	MR11B	MR10B	MR9B	MR8B
1st-	F234	SSPD7A	SSPD6A	SSPD5A	SSPD4A	SSPD3A	SSPD2A	SSPD1A	SSPD0A
2nd-	F250	SSPD7B	SSPD6B	SSPD5B	SSPD4B	SSPD3B	SSPD2B	SSPD1B	SSPD0B
1st-	F235	SSPD15A	SSPD14A	SSPD13A	SSPD12A	SSPD11A	SSPD10A	SSPD9A	SSPD8A
2nd-	F251	SSPD15B	SSPD14B	SSPD13B	SSPD12B	SSPD11B	SSPD10B	SSPD9B	SSPD8B
1st-	F341								SRRDYA
2nd-	F342								SRRDYB
								· · · · · · · · · · · · · · · · · · ·	

(c) Common to CNCs

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045		TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	
2nd-	F245	F049	F049		TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	

2.1.5 Related Parameters

Parameter No.			Description				
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description				
_	3705#0	3705#0	Sets SF signal output and the S code for an S command.				
_	3705#2	3705#2	Gear switch method (M series only)				
_	3705#4	3705#4	Sets SF signal output and the S code for an S command (T series only).				
	0705#5	0705#5	Sets SF signal output when constant surface speed control is exercised and				
	3705#5	3705#5	an S code is specified (M series only).				
	3705#6	3705#6	Sets SF signal output (M series only).				
_	3706#4	3706#4	Spindle gear selection method (M series only)				
_	3706#7,6	3706#7,6	Spindle speed command polarity (valid when input signal SSIN = 0)				
_	3709#0	3709#0	Number of sampling operations at spindle speed calculation time (T series only for 16i)				
_	3735	3735	Minimum clamp speed of the spindle motor (M series only)				
_	3736	3736	Maximum clamp speed of the spindle motor (M series only)				
_	3740	3740	Time until the spindle speed arrival signal is checked				
	3741	3741	Maximum spindle speed for gear 1				
_	3742	3742	Maximum spindle speed for gear 2				
_	3743	3743	Maximum spindle speed for gear 3				
_	3744	3744	Maximum spindle speed for gear 4 (T series only)				
_	3751	3751	Spindle motor speed at the switch point between gear 1 and gear 2 (M series only)				
_	3752	3752	Spindle motor speed at the switch point between gear 2 and gear 3 (M series only)				
	3772	3772	Maximum allowable spindle speed				
2031	3031	3031	Allowable number of S code characters				
2003#1		_	Sets an S code polarity.				
2204#0			Sets the display of an actual spindle speed.				
2402#6			Sets the S code specified in a block containing G92.				
			Whether to provide an indication for an alarm detected with the spindle				
5602#3		_	amplifier. (Set "0" usually.)				
5611	_		Number of sampling operations when an average spindle speed is to be				
			found.				
5612	_		Unit of spindle speed output with the DO signal				
5807#0	_	_	Enables/disables the spindle alarms (SPxxxx) of all spindles. (Set "0" usually.)				
5842		3720	Number of position coder pulses				
			Number of gear teeth on the position coder side on velocity control (for feed				
5847	_	3721	per revolution, threading, etc.)				
5848	_	3722	Number of gear teeth on the spindle side on velocity control (for feed per revolution, threading, etc.)				
5850	_	_	Spindle number to be selected at power-on/reset time				
5820#4	_	_	Sets the method of spindle speed calculation.				
3006#5	4006#5	4006#5	Sets an analog override range.				
3009#4	4009#4	4009#4	Whether to output the load detection signals (LDT1, LDT2) during acceleration/deceleration				
3009#6	4009#6	4009#6	Analog override type				
3012#7	4012#7	4012#7	Sets the spindle HRV function. (Set "1".)				
5607#0	4012#7	4012#7	Automatic spindle parameter setting function				
3352#1	4352#1	4352#1	Sets the peak hold function for load meter output.				
3020	4020	4020	Maximum motor speed				
			•				
3022	4022	4022	Speed arrival detection level				

Parameter No.			Description			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description			
3023	4023	4023	Speed detection level			
3024	4024	4024	Speed zero detection level			
3025	4025	4025	Torque limitation value			
3026	4026	4026	Load detection level 1			
3027	4027	4027	Load detection level 2			
3028	4028	4028	Output limitation pattern			
3029	4029	4029	Output limitation value			
3030	4030	4030	Soft start/stop setting time			
3040	4040	4040	Velocity loop proportional gain on the velocity control mode			
3041	4041	4041	(A parameter is selected by the PMC input signal CTH1A.)			
3048	4048	4048	Velocity loop integral gain on the velocity control mode			
3049	4049	4049	(A parameter is selected by the PMC input signal CTH1A.)			
3056 to 3050	4056 to 4059	4056 to 4050	Spindle and motor gear ratio data			
3030 10 3039	4030 10 4039	4030 10 4039	(A parameter is selected by the PMC input signals CTH1A and CTH2A.)			
3081	4081	4081	Delay time until the motor power is turned off			
3082	4082	4082	Acceleration/deceleration time			
3083	4083	4083	Motor voltage on the velocity control mode			
3136	4136	4136	Motor voltage on the velocity control mode (for low-speed characteristics)			
3171	4171	4171	Denominator of an arbitrary gear ratio between the motor sensor and			
3173	4173	4173	spindle			
3173	4173	4173	(A parameter is selected by the input signal CTH1A.)			
3172	4172	4172	Numerator of an arbitrary gear ratio between the motor sensor and spindle			
3174	4174	4174	(A parameter is selected by the input signal CTH1A.)			
3399#2	4399#2	4399#2	Specifies whether to enable the soft start/stop function when emergency			
			stop operation is performed.			
3508	4508	4508	Rate of change in acceleration at soft start/stop			

NOTE

- 1 For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part I.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part I.

2.1.6 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16*i*, and in the four thousands for 30*i*, and in the three thousands for 15*i*) among the parameters related to the velocity control mode. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3, "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3006	4006	4006

#7	#6	#5	#4	#3	#2	#1	#0
		ALGOVR					

ALGOVR

Sets a spindle analog override range.

0: 0 to 100% (standard setting value)

1: 0 to 120%

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3009	4009	4009

#7	#6	#5	#4	#3	#2	#1	#0
	OVRTYP		LDTOUT				

LDTOUT

Whether to output the load detection signals (LDT1 and LDT2) during acceleration/deceleration

- 0: Not output during acceleration/deceleration. (standard setting value)
- 1: Output (at all times) during acceleration/deceleration if the parameter-set level is exceeded.

OVRTYP Analog override type

0: Override of linear function type (standard setting value)

1: Override of quadratic function type

FANUC AC SPINDLE MOTOR αi series

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3012	4012	SPHRV							

SPHRV

Sets the spindle HRV control function.

0: Disables spindle HRV control.

1: Enables spindle HRV control. (standard setting value)

Set to "1".

NOTE

The control method usable with the αi series spindle is spindle HRV control only. The conventional control method is not supported.

16 <i>i</i>	30 <i>i</i>
4019	4019

#7	#6	#5	#4	#3	#2	#1	#0
PRLOAD							

PRLOAD

Automatic parameter setting function

- 0: Does not perform automatic parameter setting. (standard setting value)
- 1: Performs automatic parameter setting.

After setting a desired motor model code in parameter No. 4133 and setting this bit to 1, turn off the power to the CNC, then turn on the power to the CNC again. The parameters (No. 4000 to No. 4175) for the αi series spindle corresponding to the model code are automatically initialized. Upon completion of automatic setting, this bit is automatically set to 0.

NOTE

With FS15*i*, the parameter address of this function is different, namely, bit 0 of No. 5607 is used.

Moreover, note that the meanings of settings are reversed as follows.

0 : Performs automatic parameter setting.

1 : Does not perform automatic parameter setting. In this case, set a model code in parameter No.

3133.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3352	4352	4352

#7	#6	#5	#4	#3	#2	#1	#0
						PKHALW	

PKHALW

Sets the peak hold function for load meter output.

0: Does not use the peak hold function. (standard setting value)

1: Uses the peak hold function.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15*i* 16*i* 30*i* 3020 4020 4020

Maximum motor speed

1min⁻¹ (Unit of 10 min⁻¹ when bit 2 (SPDUNT) of parameter No. 4006 Unit of data:

0 to 32767 Valid data range:

Standard setting value: Depends on the motor model.

This parameter sets a maximum spindle motor speed.

⚠ WARNING

The spindle motor may rotate at the maximum spindle motor speed specified by this parameter. Therefore, this parameter must not be set to a value greater than the maximum rotation speed indicated by the specification of the spindle motor.

30*i* 15*i* 16*i* 3022 4022 4022

Speed arrival detection level

Unit of data: 0.1% 0 to 1000 Valid data range: 150 Standard setting value:

> This parameter sets a speed arrival signal (SARA) detection range. When the motor speed reaches within \pm (setting data/10)% of a

specified speed, the speed arrival signal (SARA) is set to 1.

30i 15i16*i* 3023 4023 4023

Speed detection level

Unit of data: 0.1% 0 to 1000 Valid data range: Standard setting value:

> This parameter sets a speed detection signal (SDTA) detection range. When the motor speed is (setting data/10)% of a maximum speed or

less, the speed detection signal (SDTA) is set to 1.

15*i* 16*i* 30*i* 3024 4024 4024

Speed zero detection level

Unit of data: 0.01% Valid data range: 0 to 10000

Standard setting value: 75

This parameter sets a speed zero detection signal (SSTA) detection

When the motor speed is (setting data/100)% of a maximum speed or

less, the speed zero detection signal (SSTA) is set to 1.

FANUC AC SPINDLE MOTOR αi series

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3025 4025 4025

Torque limitation value

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 50

This parameter sets a torque limitation value to be applied when the torque limitation command HIGH (TLMHA) or the torque limitation command LOW (TLMLA) is specified.

The data indicates limitation values when the maximum torque is 100%.

Torque limitation command LOW(TLMLA)	Torque limitation command HIGH(TLMHA)	Description
0	0	No torque limitation is imposed.
0	1	The torque is limited to the value set in this parameter.
1	0	The torque is limited to a half of
1	1	the value set in this parameter.

15*i* 16*i* 30*i* 3026 4026 4026

Load detection level 1

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 83

This parameter sets a load detection signal 1 (LDT1A) detection

range.

When the output of the spindle motor is (setting data)% of the maximum output or more, load detection signal 1 (LDT1A) is set to 1.

15*i* 16*i* 30*i* 3027 4027 4027

Load detection level 2

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 95

This parameter sets a load detection signal 2 (LDT2A) detection

range.

When the output of the spindle motor is (setting data)% of the maximum output or more, load detection signal 2 (LDT2A) is set to 1.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15*i* 16*i* 30*i*3028 4028 4028

Output limitation pattern

Unit of data:

Valid data range: 0 to 6 Standard setting value: 0

Select an appropriate pattern from the following:

A: Output is limited only at acceleration time and deceleration time for gradual acceleration/deceleration, and the rated output is used for steady-state rotation. (Setting data: 1, 4, or 7) (Function similar to soft start/stop)

B: Maximum output is used at acceleration time and deceleration time, and output is limited in steady-state rotation. (Setting data: 2, 5, or 8)

C: Using the same motor and amplifier, a machine with a different output specification is produced. (Setting data: 3, 6, or 9)

Description	Setting data				
Description	Pattern 1	Pattern 2	Pattern 3		
No output limitation is imposed.	0	0	0		
A. Output is limited only at acceleration time and deceleration time.	1	4	7		
B. Output is not limited at acceleration time and deceleration time, but output is limited in steady-state rotation.	2	5	8		
C. Output is limited in all operations.	3	6	9		

[Output limitation pattern 1]--- Setting data = 1, 2, 3 --- Output

$$Pout = \frac{Setting in parameter No. 4029}{100} \times Pm$$

$$Pout = \frac{Setting in parameter No. 4029}{100} \times Pm$$

[Output limitation pattern 3]--- Setting data = 7, 8, 9 ---Output

Setting in parameter No. 4029 × Nb

15*i* 30*i* 16*i* 4029 3029 4029

Output limitation value

Unit of data: 1% 0 to 100 Valid data range: 100 Standard setting value:

This parameter sets a desired limitation value, with the maximum

output (overload tolerance) being 100%.

This setting becomes valid when output is limited by setting parameter

No. 4028.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15*i* 16*i* 30*i* 3030 4030 4030

Soft start/stop setting time

Unit of data: 1min⁻¹/sec (Unit of 10min⁻¹/sec when bit 2 (SPDUNT) of parameter

No. 4006 = 1)

Valid data range: 0 to 32767

Standard setting value: 0

This parameter sets an acceleration value (speed change rate) when the soft start/stop function is enabled (when the soft start/stop signal SOCNA = 1).

NOTE

When 0 is set, the soft start/stop function is disabled.

 15i
 16i
 30i

 3040
 4040
 4040

 3041
 4041
 4041

Velocity loop proportional gain on velocity control mode (HIGH)

CTH1A=0

Velocity loop proportional gain on velocity control mode (LOW)

CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 10

This data is used to set the velocity loop proportional gain on velocity

control mode.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

 15i
 16i
 30i

 3048
 4048
 4048

 3049
 4049
 4049

Velocity loop integral gain on velocity control mode (HIGH)	CTH1A=0
Velocity loop integral gain on velocity control mode (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 10

This data is used to set the velocity loop integral gain on velocity

control mode.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

FANUC AC SPINDLE MOTOR αi series

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

161	301
4056	4056
4057	4057
4058	4058
4059	4059
	4056 4057 4058

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767 Standard setting: 100

These data are used to set the gear ratio between spindle and spindle

motor. Example:

When the spindle rotates once, set "250" as the data when the motor rotates 2.5 times.

A parameter is selected with the CTH1A and CTH2A input signals. Set the gear or clutch status to correspond to the clutch/gear signal (CTH1A, CTH2A).

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

15*i* 16*i* 30*i* 3081 4081 4081

Delay time until the motor power is turned off

Unit of data: 10ms
Valid data range: 0 to 1000
Standard setting value: 20 (200ms)

This parameter sets a period of time from the stop of the motor (detection of the speed zero detection signal SSTA set to 1) until the power to the motor is turned off if the SFR/SRV signal is off.

NOTE

When a small value is set in this parameter, the motor can coast after the power to the motor is turned off.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15*i* 16*i* 30*i* 3082 4082 4082

Setting of acceleration/deceleration time

Unit of data: 1sec
Valid data range: 0 to 255
Standard setting value: 10

This parameter sets a period of time in which alarm detection is disabled by assuming that the spindle motor is being accelerated or decelerated even if the velocity error exceeds the velocity error excess alarm (spindle alarm 02) level after start of acceleration/deceleration on the velocity control mode.

In the velocity control mode, a step-by-step speed command is specified. So, the spindle motor cannot follow up the command immediately after start of acceleration/deceleration, and the velocity error exceeds the velocity error excess alarm level. This parameter is used to prevent the velocity error excess alarm (spindle alarm 02) from being detected incorrectly immediately after start of acceleration/deceleration.

NOTE

With a machine tool such as a lathe that has a large load inertia, the acceleration/deceleration time becomes longer. In such a case, set the value corresponding to the acceleration/deceleration time of the machine in this parameter.

15*i* 16*i* 30*i* 3083 4083 4083 4136 4136 4136

Motor voltage setting on velocity control mode

Motor voltage setting on velocity control mode (for low-speed characteristics)

Unit of data: 1% Valid data range: 0 to 100

Standard setting: Depends on the motor model.

This parameter sets the motor voltage under the no-load condition in velocity control mode.

The motor voltage to be set depends the motor model, the most usual setting is 30.

If an abrupt application of a heavy load in the no-load condition lowers the motor speed, adjust this parameter to around 50 to 70 to improve the torque response characteristic.

Note that, however, setting a large value causes heating and large activation sound during no-load motor operation.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

15 <i>i</i>	161	301	
3171	4171	4171	Denominator of an arbitrary gear ratio between the motor sensor and spindle (HIGH) CTH1A=0
3172	4172	4172	Numerator of an arbitrary gear ratio between the motor sensor and spindle (HIGH) CTH1A=0
3173	4173	4173	Denominator of an arbitrary gear ratio between the motor sensor and spindle (LOW) CTH1A=1
3174	4174	4174	Numerator of an arbitrary gear ratio between the motor sensor and spindle (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value :

0

These parameters set conversion coefficients (numerator, denominator) for using the detection arbitrary gear ratio function (DMR function) by multiplying a motor sensor (αiM sensor) feedback signal by a gear ratio to produce a spindle position feedback signal. When the spindle rotates Q times while the motor shaft rotates P times (there is no common divisor other than 1 for P and Q), the settings are:

No. 4171 (No. 4173 when CTH1A = 1) = P No. 4172 (No. 4173 when CTH1A = 1) = Q

When 0 is set in any of these parameters, the setting of 1 is assumed.

NOTE

- 1 When performing feed per revolution with the detection arbitrary gear ratio function (DMR function), set an arbitrary gear ratio between the motor sensor and spindle in this parameter.
- 2 Threading using the detection arbitrary gear ratio function (DMR function) is not supported.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3399	4399	4399						SOSALW		

SOSALW

Specifies whether to enable the soft start/stop function when emergency stop operation is performed.

- 0: Disables the function when the emergency stop signal is set (*ESP = 0) or MRDY = 0. (Standard setting)
- 1: Enables the function even when the emergency stop signal is set (*ESP = 0) or MRDY = 0.

NOTE

This parameter is valid with 9D50 series O (15) edition or later, 9D70 series F (06) edition or later, and 9D80 series A (01) edition or later.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15*i* 16*i* 30*i* 3508 4508 4508

Rate of change in acceleration at soft start/stop

Unit of data: 10min⁻¹/sec² Valid data range: 0 to 32767

Standard setting:

This parameter sets the jerk (the rate of change in acceleration) when the soft start/stop function is enabled (soft start/stop signal SOCNA =

Acceleration in velocity command (min⁻¹/sec)

Starts changing velocity command issued from CNC at this point.

Increase in acceleration = 10 \times setting in parameter No. 4508 \times T Initial acceleration = Setting in parameter No. 4030

NOTE

- 1 This parameter is valid with 9D50 series G (07) edition or later, 9D70 series A (01) edition or later, and 9D80 series A (01) edition or later.
- 2 If 0 is set, a liner type velocity command is observed when the soft start/stop function is enabled.

2.1.7 Troubleshooting

If the spindle motor does not operate normally, take an action by referencing the items listed below according to the state of trouble. For an action to be taken when an alarm is issued, refer to the maintenance manual.

	State of trouble					
(i)	When the motor does not rotate					
(ii)	When the motor does not rotate at a specified speed					
(iii)	When the motor vibrates and makes an abnormal sound when rotating					
(iv)	When an overshoot or hunting occurs					
(v)	When the cutting capability is degraded					
(vi)	When the acceleration/deceleration time is long					

(i) When the motor does not rotate

- (1) Check the connections. (Refer to Descriptions.)
 - (a) Motor power line phase order
 - (b) Feedback signal cable connection
 - (c) DC link connection between the common power supply (PS) and spindle amplifier
- (2) Check the parameter settings.
 - (a) Parameter data for each motor model
 - (b) Detector-related parameter data (Refer to Subsec. 1.3.2 in Part I.)
 - (c) Setting of a maximum motor speed

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3020	4020	4020	Maximum motor speed

(d) Parameters related to spindle speed specification For Series 16*i*/18*i*/21*i*

"FANUC Series 16i/18i/21i-MODEL B

CONNECTION MANUAL (FUNCTION) : B-63523EN-1 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

For Series 30*i*/31*i*/32*i*

"FANUC Series 30i/31i/32i-MODEL A

CONNECTION MANUAL (FUNCTION): B-63943EN-1 Refer to Section 11.3, "SPINDLE SPEED CONTROL." For Series 15*i*

"FANUC Series 15*i*-MODEL B

CONNECTION MANUAL (FUNCTION): B-63783EN-1 Refer to Section 9.3, "SPINDLE SPEED CONTROL." For Series 0*i*

"FANUC Series 0i-MODEL C

CONNECTION MANUAL (FUNCTION): B-64113EN-1 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

- (3) Check the input signals.
 - (a) Input signals for spindle control (PMC \rightarrow CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	G227	G070	G070
2nd-	G235	G074	G074
1st-	G226	G071	G071
2nd-	G234	G075	G075

#7	#6	#5	#4	#3	#2	#1	#0
MRDYA		SFRA	SRVA				
MRDYB		SFRB	SRVB				
	-	-	-	_			_
						*ESPA	
						*ESPB	

- (4) Check the feedback signal.
 - (a) Feedback signal level (Refer to Maintenance Manual.)
 - (b) Shielding and grounding (Refer to Descriptions.)

(ii) When the motor does not rotate at a specified speed

- (1) Check the connections. (Refer to Descriptions.)
 - (a) Motor power line connection
 - (b) Feedback signal cable connection point
- (2) Check the parameter settings.
 - (a) Parameter data for each motor model
 - (b) Detector-related parameter data (Refer to Subsec. 1.3.2 in Part I.)
 - (c) Setting of a maximum motor speed

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3020	4020	4020	Maximum motor speed

(d) Parameters related to spindle speed specification

For Series 16*i*/18*i*/21*i*

"FANUC Series 16i/18i/21i-MODEL B

CONNECTION MANUAL (FUNCTION): B-63523EN-1 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

For Series 30*i*/31*i*/32*i*

"FANUC Series 30i/31i/32i-MODEL A

CONNECTION MANUAL (FUNCTION): B-63943EN-1 Refer to Section 11.3, "SPINDLE SPEED CONTROL."

For Series 15i

"FANUC Series 15i-MODEL B

CONNECTION MANUAL (FUNCTION): B-63783EN-1 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

For Series 0i

"FANUC Series 0i-MODEL C

CONNECTION MANUAL (FUNCTION) : B-64113EN-1 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

- (3) Check the feedback signal.
 - (a) Feedback signal level (Refer to Maintenance Manual.)
 - (b) Shielding and grounding (Refer to Descriptions.)

(iii) When the motor vibrates and makes an abnormal sound when rotating

- (1) Check the feedback signal.
 - (a) Feedback signal level (Refer to Maintenance Manual.)
 - (b) Shielding and grounding (Refer to Descriptions.)
- (2) Check the parameter settings.

 The velocity loop gain may be too large. Adjust the following parameters:

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	Setting data
3040	4040	4040	Velocity loop proportional gain (HIGH)	
3041	4041	4041	Velocity loop proportional gain (LOW)	Decrease the
3048	4048	4048	Velocity loop integral gain (HIGH)	setting values.
3049	4049	4049	Velocity loop integral gain (LOW)	

(3) Make a comparison with the case of motor coasting.

If vibration and sound produced when the motor coasts are extremely smaller than those produced when the motor is driven, the control circuit is faulty. If sound produced remains unchanged, the motor or the machine may be faulty. If the feedback signal cable from the motor is disconnected during motor rotation, an alarm is issued, and the motor coasts. Before performing the coasting of the motor, consult with the machine tool builder for confirmation. Depending on the sequence, the brake may be applied.

(iv) When an overshoot or hunting occurs

- (1) Check the parameter settings.
 - (a) The velocity loop gain may be too large. Adjust the following parameters:

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	Setting data
3040	4040	4040	Velocity loop proportional gain (HIGH)	
3041	4041	4041	Velocity loop proportional gain (LOW)	Decrease the
3048	4048	4048	Velocity loop integral gain (HIGH)	setting values.
3049	4049	4049	Velocity loop integral gain (LOW)	

(v) When the cutting capability is degraded

- (1) Check the parameter settings.
 - (a) Parameter data for each motor model
 - (b) Output limitation pattern and output limitation value

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	
3028	4028	4028	Output limitation pattern	
3029	4029	4029	Output limitation value	

- (2) Check the input signals.
 - (a) Torque limitation commands (TLMH, TLML)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	G227	G070	G070
2nd-	G235	G074	G074

#7	#6	#5	#4	#3	#2	#1	#0
						TLMHA	TLMLA
						TLMHB	TLMLB

- (3) Check the machine.
 - (a) Belt tension, and so forth

(vi) When the acceleration/deceleration time is long

- (1) Check the parameter settings.
 - (a) Parameter data for each motor model
 - (b) Output limitation pattern and output limitation value

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3028	4028	4028	Output limitation pattern
3029	4029	4029	Output limitation value

(c) Regenerative power limitation (Check if the same value as in the parameter table for each motor model is set.)

				,	
	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	
	3080	4080	4080	Regenerative power limitation	
	3166	4166	4166	Regenerative power limitation (for	
		4100		low-speed characteristics)	

- (2) Check the input signals.
 - (a) Torque limitation commands (TLMH, TLML)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	G227	G070	G070
2nd-	G235	G074	G074

#7	#6	#5	#4	#3	#2	#1	#0
						TLMHA	TLMLA
						TLMHB	TLMLB

2.2 POSITION CODER METHOD SPINDLE ORIENTATION

Optional function

2.2.1 Start-up Procedure

2.2.2 Overview

Unlike a function for stopping the spindle at a predetermined position mechanically, for example, by using a stopper, the spindle orientation function stops the spindle at a predetermined position by directly reading the position feedback signal from a position detector attached to the spindle of the machine.

NOTE

To use this function, the CNC software option is required.

2.2.3 Feature

- (1) Elimination of a mechanical section used for stopping at a predetermined position
 - Only a position detector needs to be connected to the spindle. A mechanical section (such as a stopper and pin) used to mechanically stop the spindle at a predetermined position for spindle orientation is unnecessary.
- (2) Reduction in orientation time
 - A spindle motor attached to the spindle is used. So, orientation is enabled directly at high speed, independently of gear shifting, thus resulting in a remarkable reduction in orientation time.
- (3) Simplified power magnetic sequence
 - The required sequence consists of only a command for stopping at a predetermined position, completion signal, and clutch/gear signal. No other signals are required. Sequences for an orientation speed command and torque limitation command are unnecessary.
- (4) Reliability
 - This function is based on a purely electric method. So, an external shock does not damage the mechanical section, thus improving reliability.
- (5) High precision and high rigidity
 - The precision and rigidity of the spindle stopping at a predetermined position are sufficiently high for tool change operation (ATC).
- (6) Workpiece positioning
 - On a lathe, a workpiece can be positioned to align the workpiece attachment/detachment direction.
- (7) Reduction in the number of processes in boring
 - When a boring process ends, the workpiece can be positioned in the same direction as the direction of spindle rotation. So, the workpiece is not damaged by the tool tip.
 - Moreover, the tool tip can be attached or detached in a constant direction relative to the workpiece, so that a program can be created easily.

2.2.4 System Configuration

The system configurations that enable the use of the position coder method orientation function are shown below.

(1) When the αi position coder is used

(2) When the α position coder S is used

(3) When the built-in motor is used

(4) When the spindle motor with built-in αi MZ sensor is used

(5) When the separate type αiBZ sensor or separate type αiCZ sensor is used

(6) When the external one-rotation signal (proximity switch) is used

NOTE

- 1 For stable detection of the one-rotation signal, fix the rotation direction (bits 3 and 2 of No. 4003) for orientation at one direction.
- 2 Set the type (bits 3 and 2 of No. 4004) of the external one-rotation signal (proximity switch).
- 3 For stable detection of the one-rotation signal, set an orientation speed (No. 4038) from 50 to 100 min⁻¹ according to the specification of the external one-rotation signal (proximity switch).
- 4 The detection of the one-rotation signal starts after the orientation speed is reached.
- 5 Set the parameters (No. 4171 to No. 4174) for the numerator/denominator of an arbitrary gear ratio between the motor sensor and spindle.

2.2.5 Stop Position Specification Method

Stop position specification method	Description
Parameter-based specification	Set the number of pulses (± 4095 pulses) from the one-rotation signal to a stop position (360° = 4096 pulses).
External setting for stop position specification	Specify the number of pulses (0 to 4095 pulses) from the one-rotation signal to a stop position with a PMC signal (360° = 4096 pulses). The sum of the number of pulses set in the parameter and the number of pulses specified with a PMC signal represents a final stop position.

2.2.6 I/O Signals (CNC \leftrightarrow PMC)

(1) Address list of Input signals (PMC \rightarrow CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070		ORCMA			CTH1A	CTH2A		
2nd-	G235	G074	G074		ORCMB			СТН1В	СТН2В		
1st-	G229	G072	G072						NRROA	ROTAA	INDXA
2nd-	G237	G076	G076						NRROB	ROTAB	INDXB
1st-	G230	G078	G078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G238	G080	G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
1st-	G231	G079	G079					SHA11	SHA10	SHA09	SHA08
2nd-	G239	G081	G081					SHB11	SHB10	SHB09	SHB08

(2) Details of input signals (PMC \rightarrow CNC)

(a) Orientation command (ORCMA)

- (i) This signal is used to stop the spindle at a predetermined position in order to change the tool or attach or detach a workpiece.
- (ii) If this signal is set to 1, the spindle, when rotating, is immediately decelerated to stop at a predetermined position.
- (iii) If an orientation command is issued for safety, set the forward/reverse spindle rotation command (SFRA/SRVA) and the speed command to 0. With these settings, the spindle does not start rotation even if ORCMA is set to 0 during tool change operation.
- (iv) Set this signal to 0 with the tool change completion signal or the workpiece attachment/detachment completion signal.
- (v) At power-on time, be sure to set the orientation command signal to 0
- (vi) If an alarm is issued or an emergency stop operation is performed during orientation, ensure that the orientation command signal is reset (to 0). At power-on time, return the ATC arm to a safe position so that the arm and associated equipment are not damaged when the spindle and tool rotate.

(b) Clutch/gear signals (CTH1A, CTH2A)

- (i) These signals are used to select spindle control parameters (position gain, gear ratio, and velocity loop gain) when there are two or more gear change stages between the spindle and spindle motor.
- (ii) Make settings as indicated in the table below according to the state of the clutch or gear. The names such as HIGH GEAR are given for convenience, and the correspondence to the actual gears is free.

CTH1A	CTH2A	
0	0	HIGH GEAR
0	1	MEDIUM HIGH GEAR
1	0	MEDIUM LOW GEAR
1	1	LOW GEAR

(c) Spindle orientation stop position change command (INDXA)

- (i) This signal is used to change to another orientation position after a spindle orientation operation is performed by stop position external setting type orientation.
 - This signal is valid when the spindle orientation command (ORCMA) = 1.
- (ii) When this signal makes a transition from 1 to 0, the spindle is oriented to the position (arbitrary position in one rotation: absolute position command) specified by new stop position data (SHA11 to 00) within one rotation.
- (iii) The direction of orientation rotation is specified by the shortcut command (NRROA) and the rotation direction command (ROTAA).
- (iv) This function is valid when the CNC parameter for the stop position external setting type orientation function is set.

(d) Spindle orientation stop position change shortcut command (NRROA)

- (i) This signal is used for shortcut (within ±180 degrees) positioning at the next stop position when a rotation direction is specified to change the orientation position after a spindle orientation operation.
- (ii) When this signal is set to 1, shortcut positioning is performed, regardless of the spindle orientation stop position change rotation direction command (ROTAA).

(e) Spindle orientation stop position change rotation direction command (ROTAA)

- (i) This signal is used to specify a rotation direction when the orientation position is successively changed to another orientation position after a spindle orientation operation. When this signal is set to 0, the spindle rotates CCW and stops. When this signal is set to 1, the spindle rotates CW and stops.
- (ii) This signal is valid when the spindle orientation stop position change shortcut command (NRROA) is set to 0.

(f) Spindle orientation external stop position command (SHA11 to SHA00)

(i) With the stop position external setting type spindle orientation function, a stop position is set. A stop position is determined by the expression indicated below. This command specifies an absolute position during one rotation.

Stop position (degrees) =
$$\frac{360}{4096} \times \sum_{i=0}^{11} (2^i \times Pi)$$

Pi = 0 when SHAi = 0. Pi = 1 when SHAi = 1.

(ii) When the stop position external setting type spindle orientation function is used, the position coder method spindle orientation stop position setting parameter (No. 4031) is invalid.

(3) Address list of output signals (CNC → PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	F229	F045	F045
2nd-	F245	F049	F049

#7	#6	#5	#4	#3	#2	#1	#0
ORARA							
ORARB							

(4) Details of output signals (CNC → PMC)

(a) Orientation completion signal (ORARA)

(i) This signal is set to 1 when the spindle stops in the neighborhood of a predetermined position (±1°, for example) after an orientation command is input.

ORARA is set to 1 when the following three conditions are satisfied:

- ORCMA="1"
- SSTA(speed zero detection signal)="1"
- The spindle is in the neighborhood of a predetermined position.

The condition for the neighborhood of a predetermined position is set using parameter No. 4075 (orientation completion signal detection level). Only when all of the three conditions are satisfied, the orientation completion signal is output. Such a state that the orientation completion signal is not output when a certain time has elapsed after the input of an orientation command is abnormal. In this case, issue an orientation alarm by detecting this state with a power magnetic sequence.

(ii) When this signal is set to 1, start a tool change operation and workpiece attachment/detachment operation.

(iii) The orientation completion signal is output when the spindle is in the neighborhood of a predetermined position. This means that this signal does not represent a complete stop signal. With some machines, the operation time for the arm to grasp the tool of the spindle may be short. In this case, insert a time (0.1 to 0.5 second) before operating the arm for ATC so that the arm grasps the tool when the spindle has stopped completely.

- (iv) This signal is set to 0, for example, when the spindle is moved out of the neighborhood of a predetermined stop position as in a case where an external force is applied. In this case, use a sequence that stops tool change operation. However, do not cancel the orientation command, but execute a tool change operation after the orientation completion signal is set to 1 again.
- (v) If the ATC of the machine has a structure that can cause a serious accident such as destruction due to a circuit failure, create a signal for indicating an automatic tool change enable area by using a proximity switch to make a double safety check with a power magnetic sequence before changing the tool.

2.2.7 Examples of Sequences

(1) Orientation command at stop time

NOTE

The rotation direction of the spindle motor can be selected by parameter settings. By default, the spindle rotates in the direction specified before the orientation command signal is issued and then it stops at a predetermined position.

(2) Orientation command during high-speed rotation

(3) Stop position external setting type spindle orientation

NOTE Set t = 50 msec or more.

Stop <1>

- Predetermined stop position based on the normal orientation command
- The rotation direction of the spindle motor is determined by parameter setting.
- After the power is turned on, the spindle rotates at the orientation speed and seizes the one-rotation signal before stopping at a predetermined position for the first time. After the first stop, the spindle stops at a predetermined position within one rotation.
- When the stop position external setting type spindle orientation function is used, the spindle stops at a predetermined position after shifting by the stop position data read on the rising edge of the spindle orientation command signal if the data of the spindle orientation stop position command SHA00-SHA11 is set after the first stop.

Stop <2>, <3>

- Predetermined stop positions based on the stop position external setting type spindle orientation function
- The rotation direction of the spindle motor depends on the spindle orientation stop position change rotation direction command (ROTAA) and the spindle orientation stop position change shortcut command (NRROA).

NOTE

The spindle orientation stop position change command INDXA is valid only when the spindle orientation command ORCMA is set to 1.

2.2.8 Related Parameters

Parameter No.			Description			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description			
3015#0	4015#0	4015#0	Specifies whether to use the spindle orientation function. (Set this bit to 1.) (The CNC software option is required.)			
5609#2	3702#3,#2	3729#0	Specifies whether to use the spindle orientation function with the stop position external setting type. (For 16i, #2: First spindle, #3: Second spindle)			
3003#0	4003#0	4003#0	Choice of orientation method (To be set to 0 for the position coder method)			
3003#3,#2	4003#3,#2	4003#3,#2	Direction of rotation in spindle orientation			
3017#7	4017#7	4017#7	Shortcut function when orientation is specified in stop state			
3031	4031	4031	Stop position for position coder method orientation (This parameter is disabled when spindle orientation with an externally set stop position or an externally set incremental command is used.)			
3042	4042	4042	Velocity loop proportional gain for orientation			
3043	4043	4043	(A parameter is selected by the CTH1A input signal.)			
3050	4050	4050	Velocity loop integral gain for orientation			
3051	4051	4051	(A parameter is selected by the CTH1A input signal.)			
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio (A parameter is selected by the CTH1A and CTH2A input signals.)			
3060 to 3063	4060 to 4063	4060 to 4063	Position gain for orientation (A parameter is selected by the CTH1A and CTH2A input signals.)			
3064	4064	4064	Rate of change in the position gain upon completion of spindle orientation			
3075	4075	4075	Detection level for the spindle orientation completion signal			
3076	4076	4076	Speed limit ratio for spindle orientation			
3077	4077	4077	Spindle orientation stop position shift			
3084	4084	4084	Motor voltage for spindle orientation			
3038	4038	4038	Spindle orientation speed			
3171	4171	4171	Denominator of an arbitrary gear ratio between the motor sensor and spindle			
3173	4173	4173	(A parameter is selected by the input signal CTH1A.)			
3172	4172	4172	Numerator of an arbitrary gear ratio between the motor sensor and spindle			
3174	4174	4174	(A parameter is selected by the input signal CTH1A.)			

- 1 For the parameters related to detectors, see the Section 1.3, "PARAMETERS RELATED TO DETECTORS" in the Part I.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part I.
- 3 When using the external one-rotation signal (proximity switch), fix the orientation-time rotation direction (bits 3 and 2 of No. 4003) at one direction.
- 4 When using the external one-rotation signal (proximity switch), set the type of the external one-rotation signal (bits 3 and 2 of No. 4004).
- 5 When using the external one-rotation signal (proximity switch), set an orientation speed from 50 to 100 min⁻¹ (No. 4038) according to the specification of the used external one-rotation signal.
- 6 When using the external one-rotation signal (proximity switch), set the numerator/denominator of an arbitrary gear ratio between the motor sensor and spindle (No. 4171 to No. 4174).

2.2.9 Details of Related Parameters

15*i* 16*i* 30*i* 3003 4003 4003

#7	#6	#5	#4	#3	#2	#1	#0
				DIRCT2	DIRCT1		PCMGSL

DIRCT2, DIRCT1

Setting of rotation direction at spindle orientation

DIRCT2	DIRCT1	Rotation direction at spindle orientation
0	0	By rotation direction immediately before (It is CCW at the power on.)
0	1	By rotation direction immediately before (It is CW at the power on.)
1	0	CCW (counterclockwise) direction looking from shaft of motor
1	1	CW (clockwise) direction looking from shaft of motor

NOTE

When using the external one-rotation signal (proximity switch), fix the orientation-time rotation direction at CCW or CW for stable detection of the one-rotation signal.

(Bits 3, 2 of No. 4003) = 1, 0 or 1, 1)

PCMGSL Selects the type of orientation.

Set this bit to 0 (orientation by a position coder).

EXTRF, RFTYPE Sets the external one-rotation signal (proximity switch).

RFTYPE	EXTRF	External one-rotation signal (proximity switch)
0	0	None
0	1	Detects the rising edge.
1	1	Detect the falling edge.

NOTE

When using the external one-rotation signal (proximity switch), set the type of the external one-rotation signal (proximity switch) by using this parameter.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#
3017	4017	4017	NRR

#7	#6	#5	#4	#3	#2	#1	#0
NRROEN							

NRROEN

Specifies whether to use the shortcut function when orientation is specified in the stop state.

0: Does not use the function.

1: Uses the function.

When this bit is set to 1, short cut operation is performed when the following conditions are satisfied:

- Bit 7 of parameter No. 4016 (RFCHK3) is set to 0.
- Zero speed detection output signal SST is set to 1.
- Shortcut command input signal NRROA is set to 1.

15*i* 16*i* 30*i*3031 4031 4031

Position coder method orientation stop position

Unit of data: 1 pulse unit (360 degrees/4096)

Valid data range: 0 to 4096

Standard setting: 0

This data is used to set the stop position of position coder method spindle orientation. It can be set at every 360 degrees/4096.

When stop position external command type orientation and incremental command external type orientation are set, this parameter

becomes invalid.

Stop position command (SHA11-SHA00) of input signal instructed

becomes valid.

15*i* 16*i* 30*i* 3038 4038 4038

Spindle orientation speed

Unit of data: 1min⁻¹ (10min⁻¹ when bit 2 of parameter No.4006(SPDUNT) is set to

1)

Valid data range: 0 to 32767

Standard setting:

: 0

This parameter sets the orientation speed at the end of the spindle. When 0 is specified for this parameter, the orientation speed is determined depending on the position gain and the motor speed limit ratio for orientation.

NOTE

When using the external one-rotation signal (proximity switch), set an orientation speed from 50 to 100 min⁻¹ according to the specification of the used external one-rotation signal (proximity switch) for stable detection of the one-rotation signal.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR Bil series B-65280EN/06

15 <i>i</i>	161	301
3042	4042	4042
3043	4043	4043

Velocity loop proportional gain on orientation (HIGH)	CTH1A=0
Velocity loop proportional gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 10

This parameter sets the velocity loop proportional gain for spindle

orientation.

When the CTH1A input signal is set to 0, proportional gain for the HIGH gear is selected. When the CTH1A input signal is set to 1,

proportional gain for the LOW gear is selected.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3050	4050	4050
3051	4051	4051

Velocity loop integral gain on orientation (HIGH)	CTH1A=0
Velocity loop integral gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 10

This parameter sets the velocity loop integral gain for spindle

orientation.

When the CTH1A input signal is set to 0, integral gain for the HIGH gear is selected. When the CTH1A input signal is set to 1, integral

gain for the LOW gear is selected.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3056	4056	4056
3057	4057	4057
3058	4058	4058
3059	4059	4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767

Standard setting: 100

These parameters set the gear ratio of the spindle motor relative to the spindle.

When the motor rotates 2.5 times, for every rotation of the spindle, for example, set 250 in the parameter.

A parameter is selected by the CTH1A and CTH2A input signals. The gear or clutch status must correspond to the status of the CTH1A and CTH2A input signals.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

15 <i>i</i>	161	301
3060	4060	4060
3061	4061	4061
3062	4062	4062
3063	4063	4063

Position gain on orientation (HIGH)	CTH1A=0, CTH2A=0
Position gain on orientation (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Position gain on orientation (MEDIUM LOW)	CTH1A=1, CTH2A=0
Position gain on orientation (LOW)	CTH1A=1, CTH2A=1

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting: 1000

These parameters set the position gain for orientation.

A parameter is selected by the CTH1A and CTH2A input signals.

15*i* 16*i* 30*i* 3064 4064 4064

Modification rate of position gain on orientation completion

Unit of data: 1% Valid data range: 0 to 799 Standard setting: 100

This data is used to set the modification rate of position gain on

spindle orientation completion.

15*i* 16*i* 30*i* 3075 4075 4075

Orientation completion signal detection level (limits of in-position)

Unit of data: ± 1 pulse unit (360 degrees/4096)

Valid data range: 0 to 100 Standard setting: 10

This data is used to set the detecting level of orientation completion

signal (ORARA).

When the spindle position is located within the setting data on orientation completion, the bit of orientation completion signal

(ORARA) in the spindle control signals is set to "1".

When the orientation command (ORCMA) is turned off (= 0), the orientation completion signal (ORARA) is set to "0".

15*i* 16*i* 30*i* 3076 4076 4076

Motor speed limit ratio on orientation

Unit of data: 1% Valid data range: 0 to 100 Standard setting: 33

This data is used to set motor speed limit ratio on orientation.

The value calculated from the position gain (No. 4060 to No. 4063) and this parameter as indicated below is used as an orientation speed and reference position return speed on servo mode (rigid tapping/spindle positioning).

Orientation speed of motor (motor speed)

 $= 60 \times \frac{\text{(Position gain)}}{100} \times \text{(Gear ratio)} \times \frac{\text{(Speed limit ratio)}}{100} [\text{min}^{-1}]$

15*i* 16*i* 30*i* 3077 4077

Orientation stop position shift value

Unit of data: ± 1 pulse unit (360 degrees/4096)

Valid data range: -4095 to 4095

Standard setting: 0

In the position coder method orientation, set this data to shift stop

position.

Spindle is shift numbers of setting pulse in CCW direction, and stops

by data (+).

15*i* 16*i* 30*i* 3084 4084 4084

Motor voltage setting on orientation

Unit of data: 1% Valid data range: 0 to 100 Standard setting: 30

30i

This parameter sets the motor voltage for orientation. Usually, set 30.

The value may vary, however, depending on the motor model.

151	101	30 <i>i</i>
3171	4171	4171
3172	4172	4172
3173	4173	4173
3174	4174	4174

16;

15;

Denominator of arbitrary gear ratio between motor sensor and spindle (HIGH)	
CTH1A=0	
	٦

Numerator of arbitrary gear ratio between motor sensor and spindle (HIGH) CTH1A=0

Denominator of arbitrary gear ratio between motor sensor and spindle (LOW)

Numerator of arbitrary gear ratio between motor sensor and spindle (LOW)

CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 0

These parameters set conversion coefficients (numerator, denominator) for using the detection arbitrary gear ratio function (DMR function) by multiplying a motor sensor (αiM or αiMZ sensor) feedback signal by a gear ratio to produce a spindle position feedback signal.

When the spindle rotates Q times while the motor shaft rotates P times (there is no common divisor other than 1 for P and Q), settings are:

No. 4171 (No. 4173 when CTH1A = 1) = P No. 4172 (No. 4174 when CTH1A = 1) = Q

When 0 is set in any of these parameters, the setting of 1 is assumed.

NOTE

When using the external one-rotation signal (proximity switch), set an arbitrary gear ratio between the motor sensor and spindle by using this parameter.

2.2.10 Calculating the Position Gain for Orientation

(1) When the spindle orientation speed (parameter No. 4038) is set to 0, the orientation speed is determined using the following expression:

 $Nori = 60 \times PG \times Rori \times GEAR$

where,

Nori: Orientation speed (motor speed) [min⁻¹]
Rori: Motor speed limit ratio for orientation

(parameter No. 4076)

PG: Position gain on orientation [sec⁻¹]

(parameter Nos. 4060 to 4063)

GEAR: Spindle-to-motor gear ratio

(parameter Nos. 4056 to 4059)

(2) The position gain for spindle orientation is obtained using the following expression:

$$PG \leq \sqrt{\left(\frac{Tm}{2\pi \times \left(Jm + Jl\right) \times Rori \times GEAR}\right)}$$

where,

PG: Position gain for orientation [sec⁻¹]

(parameter Nos. 4060 to 4063)

Tm: 30-min rated torque [Nm] for the motor when rotating

at Nori [min⁻¹]

Jm : Rotor inertia [kgm²]

Jl : Load inertia converted to motor shaft inertia [kgm²]

Rori: Motor speed limit ratio for orientation

(parameter No. 4076)

GEAR: Spindle-to-motor gear ratio

(parameter Nos. 4056 to 4059)

(3) Calculation example when motor model αi I6 is being used alone

$$Tm = \frac{7500[W]}{1500[min^{-1}] \times 0.1047} = 47.8[Nm]$$

 $Jm = 0.0179[kgm^2]$

Rori = 33[%]

$$\therefore PG \le \sqrt{\frac{47.8}{2\pi \times 0.0179 \times 0.33}} = 35.9[sec^{-1}]$$

2.2.11 Adjusting the Orientation Stop Position Shift Parameter

Adjust the orientation stop position shift parameter by following the procedure below.

- (1) Adjustment using diagnosis screen No. 445 (spindle position data display) (16*i*, 30*i*)
 - (a) Specify parameters as follows:

No.3117#1=1 (to enable the display function of diagnosis screen No. 445)

No.4016#7=0

No.4031=0 (When external signals are used for setting, set the SHA11 to SHA00 DI signals to 0.)

No.4077=0

- (b) Enter an orientation command (ORCMA) to stop orientation.
- (c) After orientation is stopped, check that diagnosis screen No. 445 displays 0.
 - Cancel the orientation command and set the emergency stop state to deactivate the motor.
- (d) Rotate the spindle manually to the position where you want the spindle to stop then read the displayed value of diagnosis screen No. 445.
- (e) Set the displayed value of (d) as the parameter data for an orientation stop position shift amount (parameter No. 4077).

Example:

Value displayed in No. 445 When when orientation is stopped = $0 \Rightarrow$ the spindle is rotated manually in the emergency stop state = 1024

Value to be specified in the parameter No. 4077 = 1024

- 1 The display function of diagnosis screen No. 445 is a maintenance function. After completion of adjustment, return the setting of bit 1 of parameter No. 3117 to 0.
- 2 The FS15*i* does not have the spindle position data display function.

(2) Adjustment using the spindle check board

(a) Specify parameters as follows:

No.4016#7=0

No.4031=0 (When external signals are used for setting, set the SHA11 to SHA00 DI signals to 0.) No.4077=0

(b) To display the position coder counter under position control, set the following on the spindle check board:

d-01=295

d-02=0

d-03=0

d-04=0

- (c) Enter an orientation command (ORCMA) to stop orientation.
- (d) Once orientation stops, check that 00000 is displayed.

 Cancel the orientation command and set the emergency stop state to deactivate the motor.
- (e) Manually position the spindle to the position where you want the spindle to stop. Then, read the displayed value.
- (f) Set the displayed value of (5) as the parameter data for an orientation stop position shift amount.

Example:

 Value displayed when the spindle is positioned manually after deactivating the motor = 01024

Value to be specified in the parameter No. 4077 = 1024

2.2.12 Calculating the Orientation Time

The time required for orientation differs between the first orientation (before the one-rotation signal has first been detected) and the second and subsequent orientations (once the one-rotation signal has been detected).

(1) Before the one-rotation signal has first been detected(first orientation)

The time, from the input of an orientation command until orientation stops, is divided into four periods.

In the following figure, A indicates that the motor in the stop state starts rotating and is accelerated to the orientation speed. B indicates that the already rotating motor is decelerated to the orientation speed.

t₁: Time required to achieve orientation speed Nori [sec]

t₂: Time from the detection of a one-rotation signal (0 to 1 rotation) after Nori is achieved, until the number of pulses output before the next one-rotation signal has been checked [sec]

t₃: Time from the completion of the checking of the number of pulses until deceleration starts [sec]

t₄: Time from the start of deceleration until orientation is completed [sec]

(a) Normally, t₁ is measured on the actual machine.

Orientation speed Nori [min⁻¹] is calculated from position gain PG [sec⁻¹] and the motor speed limit ratio for orientation Rori.

 $Nori = PG \times 60 \times Rori$

(b) t₂ is the time required for the motor to rotate one to two turns at orientation speed Nori [min⁻¹].

$$\begin{split} &\frac{1\times 60}{\text{Nori}} \leq t_2 \leq \frac{2\times 60}{\text{Nori}} \\ &\therefore \frac{1}{\text{PG} \times \text{Rori}} \leq t_2 \leq \frac{2}{\text{PG} \times \text{Rori}} \end{split}$$

(c) t₃ is the time required for the motor to rotate zero to one turns at orientation speed Nori [min⁻¹].

$$\frac{0 \times 60}{\text{Nori}} \le t_3 \le \frac{1 \times 60}{\text{Nori}}$$
$$\therefore 0 \le t_3 \le \frac{1}{\text{PG} \times \text{Rori}}$$

280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

(d) t₄ is the time from the start of deceleration until orientation has been completed.

Let the orientation completion width be within ± 10 pulses. Then, t_4 can be calculated as follows:

$$t_4 = \frac{1}{PG} \times ln \frac{4096 \times Rori}{10}$$

(e) Therefore, the orientation time $t[sec](=t_1+t_2+t_3+t_4)$ can be expressed as follows:

$$\begin{split} &t_1 = \frac{1}{PG \times Rori} + \frac{1}{PG} \ln \frac{4096 \times Rori}{10} \leq t \leq t_1 + \frac{3}{PG \times Rori} \\ &+ \frac{1}{PG} \ln \frac{4096 \times Rori}{10} \end{split}$$

- (2) Once the one-rotation signal has been detected (second and subsequent orientations)
 - (a) Once the one-rotation signal has been detected, the time required to detect the signal is no longer necessary. Therefore, when orientation is started from the rotating state, orientation time t[sec](=t₁+t₃+t₄) is expressed as follows:

$$t_1 = \frac{1}{PG} \ln \frac{4096 \times Rori}{10} \leq t \leq t_1 + \frac{1}{PG \times Rori} + \frac{1}{PG} \ln \frac{4096 \times Rori}{10}$$

(b) Whenever orientation is started from the stop state, orientation must be completed and the stop state entered within one rotation. In this case, the orientation time t [sec] is expressed as follows:

is expressed as follows:
$$0 \le t \le \frac{1 - Rori}{PG \times Rori} + \frac{1}{PG} \ln \frac{4096 \times Rori}{10}$$

(3) Calculation examples

Time required to achieve the orientation speed $t_1 = 0.5$ [sec] Position gain PG = 20 [sec⁻¹]

Motor speed limit for orientation Rori = 0.33 = 33%

(a) Orientation time before the one-rotation signal has been

$$\begin{split} 0.5 + \frac{1}{20 \times 0.33} + \frac{1}{20} \times ln & \frac{4096 \times 0.33}{10} \leq t \leq 0.5 + \frac{3}{20 \times 0.33} \\ + \frac{1}{20} \times ln & \frac{4096 \times 0.33}{10} \end{split}$$

 $\therefore 0.896[sec] \le t \le 1.196[sec]$

(b) Orientation time when orientation is started from the rotating state (once the one-rotation signal has been detected)

$$0.5 + \frac{1}{20} \times \ln \frac{4096 \times 0.33}{10} \le t \le 0.5 + \frac{1}{20 \times 0.33} + \frac{1}{20} \times \ln \frac{4096 \times 0.33}{10}$$

 $0.746[sec] \le t \le 0.896[sec]$

(c) Orientation time when orientation is started from the stop state (once the one-rotation signal has been detected)

$$0 \le t \le \frac{1 - 0.33}{20 \times 0.33} + \frac{1}{20} \ln \frac{4096 \times 0.33}{10}$$

 $\therefore 0[sec] \le t \le 0.346[sec]$

2.3 RIGID TAPPING

Optional function

2.3.1 Start-up Procedure

A. Check that operation in the velocity control mode is enabled.

B. Prepare and check the rigid tapping ladder program.

- C. Set up the detector-related parameters according to the system configuration.
- Specify to use the spndile sensor and spindle motor.
- Specify the rotation direction of the spindle and motor and that of the spindle and position coder.
- Set up the gear ratio between the spindle and motor.
- Specify an arbitrary gear ratio (for rigid tapping that uses a signal from the built-in sensor when the gear ratio between the spindle and motor is not 1:1).
- D. Adjust the parameters according to the adjustment procedure.
- Maximum rotation speed and acceleration/deceleration time constant for rigid tapping
- Position gain for rigid tapping
- Velocity loop proportional and integral gains for rigid tapping
- Motor voltage for rigid tapping
- Motor activation delay

E. Check the precision by actually performing cutting.
If there is a problem with the precision of the machine, adjust the acceleration/deceleration time constant and velocity loop gains again.

2.3.2 Overview

Rigid tapping is a function for performing high-precision tapping by exercising position control so that the spindle rotation is synchronized with tapping axis feed at all times.

This subsection describes the specifications of the rigid tapping function related to the serial spindle.

NOTE

To use this function, the CNC software option is required.

2.3.3 System Configuration

The system configurations that enable the use of rigid tapping are shown below.

(1) When the αi position coder is used

(2) When the α position coder S is used

(3) When the built-in motor is used

(4) When the spindle motor with built-in αi M sensor (or αi MZ sensor) is used

- 1 When performing rigid tapping by using a signal from the sensor built into the motor as a position feedback signal, use one of the following functions if the gear ratio between the motor and spindle is other than 1:1
 - (a) Detection arbitrary gear ratio function (DMR function)
 - (b) Command arbitrary gear ratio function (CMR function)
- 2 When using the detection arbitrary gear ratio function (DMR function), set the following:
 - Parameters (No. 4171 to No. 4174) for the numerator/denominator of an arbitrary gear ratio between the motor sensor and spindle
- 3 When using the detection arbitrary gear ratio function (DMR function) with a motor containing a built-in αi MZ sensor, set bit 6 of No. 4007 to 1 so that the alarms related to the position feedback signal (when non-Cs contouring control is exercised) are not detected.
- 4 When using the command arbitrary gear ratio function (CMR function) with FS16*i*, set the following:
 - Enable the setting of an arbitrary gear ratio between the spindle and position coder (bit 1 of No. 5200 = 1).
 - Enable the setting of the command arbitrary gear ratio function (CMR) on rigid tapping (bit 7 of No. 4006 = 1).
 - Set the parameters for specifying the number of gear teeth on the spindle side (No. 5221 to No. 5224).
 - Set the parameters for specifying the number of gear teeth on the position coder side (No. 5231 to No. 5234).
- 5 Reference position return can be performed when the spindle is directly connected to the motor or when the spindle is connected to the motor at a ratio of 1:1.

(5) When the separate type αiBZ sensor or separate type αiCZ sensor is used

(6) When the external one-rotation signal (proximity switch) is used

- 1 When using the external one-rotation signal (proximity switch), use the detection arbitrary gear ratio function (DMR function).
- 2 When using the detection arbitrary gear ratio function (DMR function), set the following:
 - Parameters (No. 4171 to No. 4174) for the numerator/denominator of an arbitrary gear ratio between the motor sensor and spindle
- 3 Set the type of the external one-rotation signal (proximity switch) (bits 3 and 2 of No. 4004).
- 4 For stable detection of the one-rotation signal, set a reference position return speed (No. 4074) from 50 to 100 min⁻¹ according to the specification of the used external one-rotation signal (proximity switch).
- 5 When orientation based on the external one-rotation signal is used together, match the reference position return speed and direction with the orientation speed and direction.

2.3.4 List of I/O Signals (CNC \leftrightarrow PMC)

This subsection provides a list of the I/O signals related to rigid tapping only. For details of each signal, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.11, "RIGID TAPPING."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.11, "RIGID TAPPING."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.8, "RIGID TAPPING."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.10, "RIGID TAPPING."

For details of the I/O signals common to the CNCs, see Chapter 3, "I/O SIGNALS (CNC \leftrightarrow PMC)", in Part I.

(1) Input signals (PMC \rightarrow CNC)

(a) Series 16i

	#7	#6	#5	#4	#3	#2	#1	#0
G027							SWS2 (*1)	SWS1 (*1)
G028						GR2	GR1	
G029					,			GR21 (*2)
G061								RGTAP

- The rigid tapping of the second spindle is available by the multi-spindle control function.
 When SWS1 is set to 1 (regardless of whether SWS2 is set to 0 or 1), rigid tapping is performed
 - SWS2 is set to 0 or 1), rigid tapping is performed using the 1st spindle. When SWS1 is set to 0, and SWS2 is set to 1, rigid tapping is performed using the 2nd spindle.
- 2 This signal is used when the rigid tapping of the second spindle.
 - According to the GR21 signal, the individual gear parameters for gear 1 or 2, also used for the 1st spindle, are selected.

(b) Series 30i

NOTE

- The rigid tapping of the second spindle is available by the multi-spindle control function. When SWS1 is set to 1 (regardless of whether SWS2 is set to 0 or 1), rigid tapping is performed using the 1st spindle. When SWS1 is set to 0, and SWS2 is set to 1, rigid tapping is performed using the 2nd spindle.
- 2 This signal is used when the rigid tapping of the second spindle.

(c) Series 15i

#7 #6 #5 #4 #3 #2 #1 #0

1st- G026
2nd- G272

#7 #6 #5 #4 #3 #2 #1 #0

SPSTPA
SPSTPB

(c) Common to CNCs

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	G227	G070	G070
2nd-	G235	G074	G074

#7	#6	#5	#4	#3	#2	#1	#0
		SFRA	SRVA	CTH1A	CTH2A		
		SFRB	SRVB	CTH1B	CTH2B		

(2) Output signals (CNC \rightarrow PMC)

(a) Series 16*i*

NOTE

*1 These signals are effective when M series.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

(b) Series 30i

NOTE

*1 These signals are effective when M series.

(c) Series 15i

	#7	#6	#5	#4	#3	#2	#1	#0
F040				RTAP				
F155			•			RSPC	RSPM	RSPP

2.3.5 Sequence

For a rigid tapping sequence, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.11, "RIGID TAPPING."
- (b) For Series 30i/31i/32i "FANUC Series 30i/31i/32i-MODEL A CONNECTION MANUAL (FUNCTION): B-63943EN-1 Refer to Section 11.11, "RIGID TAPPING."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.8, "RIGID TAPPING."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.10, "RIGID TAPPING."

2.3.6 Related Parameters

	Parameter No.		Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
-	5210	5210	M code of rigid tapping command
5606#6	5202#0	5202#0	Whether to perform orientation (reference position return) when starting
3000#0	(M series only)	3202#0	rigid tapping
	3706#1,0		Gear ratio between spindle and position coder, 1:1, 1:2, 1:4, 1:8
_	3707#1,0		
5842	-	3720	Number of pulse of the position coder
-	5200#1	-	Selection of arbitrary gear ratio between spindle and position coder
5852	5221	5221	
5855	5222	5222	Teeth number of spindle side at arbitrary gear ratio (command) setting
5858	5223	5223	(16i/30i: No. 5224 is used for the T series only.)
5861	5224	5224	
5851	5231	5231	
5854	5232	5232	Teeth number of position coder side at arbitrary gear ratio (command)
5857	5233	5233	setting (16 <i>i</i> /30 <i>i</i> : No. 5234 is used for the T series only.)
5860	5234	5234	
3065 to 3068	5280	5280	Position gain of tapping axis at rigid tapping (16 <i>i</i> /30 <i>i</i> : No. 5284 is used for
	5281 to 5284	5281 to 5284	the T series only.)
5605#1	-	-	Acc/Dec type (Set to 1.)
	5241	5241	
5711	5242	5242	Spindle maximum speed at rigid tapping (16 <i>i</i> /30 <i>i</i> : No. 5244 is used for the
3711	5243	5243	T series only.)
	5244	5244	
5605#2	-	-	
5757	-	-	Spindle speed for determining an acceleration value for cutting feed on
5886	-	-	rigid tapping
5889	-	-	
5892	-	-	
5605#2	5261	5261	
5751	5262	5262	
5886	5263	5263	Acc/Dec time constant (16 <i>i</i> /30 <i>i</i> : No. 5264 is used for the T series only.)
5889	5264	5264	
5892	3204	5204	
5605#2			
5752	_	_	
5885		-	FL speed for spindle and drilling axis acceleration/deceleration on rigid
5888		-	tapping
5891	_	_	
5894			
-	5200#4	5200#4	Override selection at extracting
5883	5211	5211	Override value at extracting
_	5201#2	5201#2	Time constant at extracting (No. 5274 is used for the T series only.)
	5271 to 5274	5271 to 5274	
-	-	5203#2	Feed-forward function at rigid tapping
1827	5300	5300	In-position width of tapping axis
5875	5301	5301	In-position width of spindle
1837	5310 5341	5310	Allowable level of position error of tapping axis at moving
5876	5311	5311	Allowable level of position error of spindle at moving
1829	5312	5312	Allowable level of position error of tapping axis at stop
5877	5313	5313	Allowable level of position error of spindle at stop

	Parameter No		Description	
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	
5853 5856 5859 5862	5321 to 5324	5321 to 5324	Backlash of spindle (16 <i>i</i> : No. 5322 and No. 5324 are used for the T series only. 30 <i>i</i> : No. 5324 is used for the T series only.)	
-	5203#5	5203#5	Selection of the bell-shaped acceleration/deceleration function for rigid tapping (the CNC software option (bell-shaped acceleration/deceleration for rigid tapping) is required.)	
- - -	5365 5366 5367	5365 5366 5367 5368	Bell-shaped acceleration/deceleration time constant for rigid tapping (For the 16 <i>i</i> , the relevant parameters are valid with the M series only. For the 30 <i>i</i> , parameter No. 5368 is valid with the T series only.)	
3000#4	4000#4	4000#4	Reference position return direction on servo mode	
3002#5	4002#5	4002#5	Whether to enable the rotation direction signal (SFR/SRV) on servo mode	
3006#7	4006#7	4006#7	Setting of the command arbitrary gear ratio function (CMR) on rigid tapping	
3016#4	3016#4 4016#4 4016#4 Setting related to the control characteristics on Cs contouring conservo mode			
-	-	4037	Velocity loop feed-forward coefficient	
3044	4044	4044	Velocity loop proportional gain on servo mode/spindle synchronous	
3045	4045	4045	control (It is selected by input signal CTH1A/B.)	
3052	4052	4052	Velocity loop integral gain on servo mode/spindle synchronous control	
3053	4053	4053	(It is selected by input signal CTH1A/B.)	
3056 to 3059	4056 to 4059	4056 to 4059	Gear ratio between spindle and motor (It is selected by input signal CTH1A or CTH2A)	
3065 to 3068	4065 to 4068	4065 to 4068	Spindle position gain on servo mode/spindle synchronous control (It is selected by input signal CTH1A or CTH2A)	
3073	4073	4073	Grid shift amount on servo mode	
3074	4074	4074	Reference position return speed on Cs contouring control/servo mode	
3091	4091	4091	Position gain change ratio at reference position return time on servo mode	
3085	4085	4085	Motor voltage (for high-speed characteristics) on servo mode/spindle synchronous control	
3137	4137	4137	Motor voltage (for low-speed characteristics) on servo mode/spindle synchronous control	
3099	4099	4099	Delay time for stable motor excitation	
3171	4171	4171	Denominator of an arbitrary gear ratio between the motor sensor and	
3173	4173	4173	spindle (A parameter is selected by the input signal CTH1A.)	
3172	4172	4172	Numerator of an arbitrary gear ratio between the motor sensor and	
3174	4174	4174	spindle (A parameter is selected by the input signal CTH1A.)	
-	-	4344	Advanced preview feed-forward coefficient	

- 1 For the parameters related to detectors, see Section 1.3, "PARAMETERS RELATED TO DETECTORS" in the Part I.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part I.

2.3.7 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16*i*, and in the four thousands for 30*i*, and in the three thousands for 15*i*) among the parameters related to rigid tapping. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.11, "RIGID TAPPING."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.11, "RIGID TAPPING."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.8, "RIGID TAPPING."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.10, "RIGID TAPPING."

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3
3000	4000	4000				RETSV	

RETSV Reference position return direction on servo mode (rigid tapping/spindle positioning)

0: The spindle performs a reference position return operation in the CCW(counterclockwise) direction.

#1

1: The spindle performs a reference position return operation in the CW(clockwise) direction.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3002	4002	4002			SVMDRT					

SVMDRT

Whether to enable the rotation direction signal (SFR/SRV) function on servo mode (rigid tapping/spindle positioning)

0: Enables the rotation direction function.

If a move command from the CNC is positive (+),

- (a) The spindle rotates in the CCW direction when the input signal SFR (bit 5 of G70) = 1.
- (b) The spindle rotates in the CW direction when the input signal SRV (bit 4 of G70) = 1.
- : Disables the rotation direction function.

 If a move command from the CNC is positive (+), the spindle rotates in the CCW direction when the input signal SFR = 1 or SRV = 1.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3006	4006	4006	RGTCMR							

RGTCMR

Sets the command arbitrary gear ratio function (CMR) on rigid tapping.

0: Disables the command arbitrary gear ratio function.

1: Enables the specified arbitrary gear ratio function.

Set this parameter to 1 when rigid tapping is performed using a signal from the sensor built-into the motor as a position feedback signal and the gear ratio between the motor and spindle is other than 1:1.

When using the command arbitrary gear ratio function (CMR function), set the following as well:

- Enabling an arbitrary gear ratio between the spindle and position coder (bit 1 of No. 5200 = 1)
- Parameters for the number of gear teeth on the spindle side (No. 5221 to No. 5224)
- Parameters for the number of gear teeth on the position coder side (No. 5231 to No. 5234)

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3016	4016	4016				IDLPTN				

IDLPTN

Sets control characteristics on Cs contouring control and servo mode (rigid tapping).

Usually, set this parameter to 0.

Set this bit to 1 when setting a value less than 100 as the motor voltage on Cs contouring control (No. 4086) or as the motor voltage on servo mode (No. 4085).

- - 30*i* - - 4037

Velocity loop feed-forward coefficient

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 0

This parameter sets a velocity loop feed-forward coefficient for using feed-forward control. Set the result of calculation of the following expression:

Setting = 214466 \times [spindle inertia + rotor inertia](kg·m²)

Maximum motor torque (N·m)

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3044	4044	4044	Velocity loop proportional gain on servo mode/spindle synchronous control (HIGH)
3045	4045	4045	Velocity loop proportional gain on servo mode/spindle synchronous control (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 10

These parameters set a velocity loop proportional gain on servo mode (rigid tapping/spindle positioning) or spindle synchronous control. When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

i 30i	30 <i>i</i>	16 <i>i</i>	15 <i>i</i>
Velocity loop integral gain on servo mode/spindle synchronous control (HIGH)	4052	4052	3052
CTH1A=	4002	4032	3032
Velocity loop integral gain on servo mode/spindle synchronous control (LOW)	4053	4053	3053
CTH1A=	.000	.000	0000

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 10

These parameters set a velocity loop integral gain on servo mode (rigid tapping/spindle positioning) or spindle synchronous control. When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

151	161	301		
3056	4056	4056	Gear ratio (HIGH)	CTH1A=0, CTH2A=0
3057	4057	4057	Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
3058	4058	4058	Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
3059	4059	4059	Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767 Standard setting: 100

These data are used to set the gear ratio between spindle and spindle

motor. Example:

When the spindle rotates once, set "250" as the data when the

motor rotates 2.5 times.

A parameter is selected with the CTH1A and CTH2A input signals. Set the gear or clutch status to correspond to the clutch/gear signal (CTH1A, CTH2A) in input signals.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

30i	30 <i>i</i>	16 <i>i</i>	15 <i>i</i>
Spindle position gain on servo mode/spindle synchronous control (HIGH) CTH1A=0, CTH2A=	4065	4065	3065
Spindle position gain on servo mode/spindle synchronous control (MEDIUM HIGH) CTH1A=0, CTH2A=	4066	4066	3066
Spindle position gain on servo mode/spindle synchronous control (MEDIUM LOW) CTH1A=1, CTH2A=	4067	4067	3067
Spindle position gain on servo mode/spindle synchronous control (LOW) CTH1A=1, CTH2A=	4068	4068	3068
	'-		

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting value: 1000

These parameters set a position gain on servo mode (rigid

tapping/spindle positioning) or spindle synchronous control.

A parameter is selected according to the input signals CTH1A and

CTH2A.

15*i* 16*i* 30*i* 3073 4073 4073

Grid shift amount on servo mode

Unit of data: 1 pulse unit (360 degrees/4096)

Valid data range: 0 to 4095 Standard setting value: 0

This parameter is used to shift the reference position on servo mode

(rigid tapping/spindle positioning).

The reference position of the spindle is shifted in the CCW direction

by the specified number of pulses.

FANUC AC SPINDLE MOTOR αi series B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiI series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3074 4074 4074

Reference position return speed on Cs contouring control/servo mode

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting value :

0

• When 0 is set

The value calculated from the position gain (No. 4065 to No. 4068) and orientation-time speed limit ratio (No. 4076) as indicated below is used as a reference position return speed on servo mode (rigid tapping/spindle positioning). Reference position return speed (motor speed) =

$$60 \times \frac{\text{Position gain}}{100} \times \text{Gear ratio} \times \frac{\text{Speed limit ratio}}{100} \text{ [min}^{-1]}$$

• When a value other than 0 is set

The value set in this parameter is used as a reference position return speed on servo mode (rigid tapping/spindle positioning).

NOTE

When using the external one-rotation signal (proximity switch), set a reference position return speed from 50 to 100 min⁻¹ according to the specification of the used external one-rotation signal (proximity switch) for stable detection of the one-rotation signal.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3085	4085	4085

3137 4137 4137

Motor voltage (for high-speed characteristics) on servo mode/ spindle synchronous control

Motor voltage (for low-speed characteristics) on servo mode/ spindle synchronous control

Unit of data: 1%
Valid data range: 0 to 100

Standard setting value : Depends on the motor model.

These parameters set a motor voltage on servo mode (rigid tapping, spindle positioning, and so forth). When performing rigid tapping, set 100 usually.

When setting a value less than 100, set bit 4 of No. 4016 to 1 as the setting of control characteristics on Cs contouring control/servo mode.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15*i* 16*i* 30*i* 3091 4091 4091

Position gain change ratio at reference position return time on servo mode

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 100

This parameter sets a position gain change ratio at reference position return time on servo mode (rigid tapping, spindle positioning, and so

forth).

NOTE

An overshoot can occur at reference position return time for a cause such as an excessively high reference position return speed and an excessively large spindle inertia. In this case, an overshoot can be avoided by setting a small value in this parameter.

15*i* 16*i* 30*i* 3099 4099

Delay time for stable motor excitation

Unit of data: 1ms id data range: 0 to 32767

Valid data range: 0 to 3276

Standard setting value: 0

This parameter sets a period of time required until motor excitation becomes stable on rigid tapping or Cs contouring control.

NOTE

In switching from the velocity control mode to rigid tapping mode, the stop time excessive error alarm can be issued intermittently.

This is because the excitation state of the spindle motor changes abruptly, and therefore a transient state occurs in the motor, thus moving the motor shaft slightly.

In such a case, set this parameter. In general, set a value from about 300 to 400 (300 to 400 msec).

FANUC AC SPINDLE MOTOR αi series B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiI series 2.EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3171	4171	4171	Denominator of an arbitrary gear ratio between the motor sensor and spindle (HIGH) CTH1A=0
3172	4172	4172	Numerator of an arbitrary gear ratio between the motor sensor and spindle
0112	3112 4112 4112		(HIGH) CTH1A=0
3173	4173	4173	Denominator of an arbitrary gear ratio between the motor sensor and spindle
			(LOW) CTH1A=1
3174	4174	4174	Numerator of an arbitrary gear ratio between the motor sensor and spindle
0111			(LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: (

These parameters set conversion coefficients (numerator, denominator) for using the detection arbitrary gear ratio function (DMR function) by multiplying a motor sensor (αiM sensor or αiMZ sensor) feedback signal by a gear ratio to produce a spindle position feedback signal.

When the spindle rotates Q times while the motor shaft rotates P times (there is no common divisor other than 1 for P and Q), the settings are:

No. 4171 (No. 4173 when CTH1A = 1) = P No. 4172 (No. 4174 when CTH1A = 1) = Q

When 0 is set in any of these parameters, the setting of 1 is assumed.

NOTE

When using the external one-rotation signal (proximity switch), use the detection arbitrary gear ratio function (DMR function) by setting an arbitrary gear ratio between the motor sensor and spindle with this parameter.

15*i* 16*i* 30*i*

Advanced preview feed-forward coefficient

Unit of data: 0.01% Valid data range: 0 to 10000

Standard setting value:

This parameter sets a feed-forward coefficient for using feed-forward control. Set the same value as for the servo axis simultaneously subjected to interpolation.

2.3.8 Parameter Setting Procedure

(1) Command arbitrary gear ratio (CMR)

(a) For a configuration in which the sensor built into the motor is used for position detection and the gear ratio between the spindle and motor is not 1:1, as shown in sample system configuration 2 below, the command arbitrary gear ratio (CMR) is used.

[Sample system configuration 1]

When the position detector is connected to the spindle at a ratio of 1:1, the command arbitrary gear ratio (CMR) function is not used.

[Sample system configuration 2]

When the sensor built into the motor is used as the position detector in a configuration in which the gear ratio between the spindle and motor is not 1:1, the command arbitrary gear ratio (CMR) function is used.

NOTE

This system configuration also enables the detection arbitrary gear ratio function (DMR function) to be used.

[Sample system configuration 3]

When orientation by the external one-rotation signal is used in a configuration in which the gear ratio between the spindle and motor is not 1:1, the detection arbitrary gear ratio function (DMR function) is used, and the command arbitrary gear ratio function (CMR function) is not used.

(b) To use the command arbitrary gear ratio (CMR), set the following parameters:

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Setting data
3006#7	4006#7	4006#7	1

The command arbitrary gear ratio (CMR) is not used.

Rigid tapping is performed using the command arbitrary gear ratio (CMR) with the sensor built into the motor.

(c) Set the parameters to enable the command arbitrary gear ratio (arbitrary gear ratio between the spindle and position coder).

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Setting data
-	5200#1	-	1

(d) Set the parameter "the arbitrary gear ratio between the spindle and the position coder" according to each CNC.

[Series 16*i*]

Set the gear teeth number of the spindle side.

Each parameter is selected according to the gear selection signal.

Standard machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and machining [M series] with surface speed constant option: GR2, GR1

Second spindle of turning [T series]: GR21

(Multi-spindle control option is needed)

Standard machining [M series]

Gear signal			Parameter No.	
GR10	GR2O	GR3O	Parameter No.	
1	0	0	5221	
0	1	0	5222	
0	0	1	5223	

Turning [T series] and machining [M series] with surface speed constant

Gear signal		Parameter No.		
1st	. sp	2nd. sp	Parameter No.	
GR1	GR2	GR21	T series M series	
0	0	0	5221	
1	0	1	5222	
0	1	-	5223	
1	1	-	5224 5223	

(2) Set the gear teeth number of the position coder side.

Each parameter is selected according to the gear selection signal.

Standard machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and machining[M series] with surface speed constant option: GR2, GR1

Second spindle of turning [T series]: GR21

(Multi-spindle control option is needed)

Standard machining [M series]

Gear signal			Darameter No.	
GR10	GR2O	GR3O	Parameter No.	
1	0	0	5231	
0	1	0	5232	
0	0	1	5233	

Turning [T series] and machining [M series] with surface speed constant

Gear signal		Parameter No.		
1st	1st. sp 2nd. sp		Parameter No.	
GR1	GR2	GR21	T series M series	
0	0	0	5231	
1	0	1	5232	
0	1	i	5233	
1	1	-	5234 5233	

[Series 30i]

(1) Set the gear teeth number of the spindle side.

Each parameter is selected according to the gear selection signal. Standard machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and machining [M series] with surface speed

constant option : GR2, GR1 Second spindle : GR21, GR21

(Multi-spindle control option is needed)

Standard machining [M series]

Gear signal			Parameter No.	
GR10	GR2O	GR3O	Parameter No.	
1	0	0	5221	
0	1	0	5222	
0	0	1	5223	

Turning [T series] and machining [M series] with surface speed constant

Gear signal		Parameter No.	
GRs1* GRs2*		T series	M series
0	0	5221	
1	0	5222	
0	1	5223	
1	1	5224 5223	

First spindle: GR1, GR2 / Second spindle: GR21, GR22

(2) Set the gear teeth number of the position coder side.

Each parameter is selected according to the gear selection signal. Standard machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and machining[M series] with surface speed

constant option: GR2, GR1 Second spindle: GR21, GR21

(Multi-spindle control option is needed)

Standard machining [M series]

Gear signal			Parameter No.	
GR10	GR2O	GR3O	Parameter No.	
1	0	0	5231	
0	1	0	5232	
0	0	1	5233	

Turning [T series] and machining [M series] with surface speed constant

Gear signal		Parameter No.	
GRs1* GRs2*		T series M serie	
0	0	5231	
1	0	5232	
0	1	5233	
1	1	5234 5233	

* First spindle: GR1, GR2 / Second spindle: GR21, GR22

[Series 15*i*]

Gear signal		Parameter No.	
CTH1A	CTH2A	Gear teeth number of spindle side	Gear teeth number of position coder side
0	0	5852	5851
0	1	5855	5854
1	0	5858	5857
1	1	5861	5860

(2) Gear ratio between the spindle and the motor

The loop gain constant (position gain constant) parameter is not used in the αi series (serial) spindle system.

"Gear ratio between the spindle and the motor" parameter should be set instead of it.

Each parameter is selected according to the gear selection signal (CTH1A/B, CTH2A/B).

[1st. sp]

Gear signal			Parameter No.		
CTH1A	CTH2A	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
0	0	3056 (S1)	4056 (S1)	4056 (S1)	
0	1	3057 (S1)	4057 (S1)	4057 (S1)	
1	0	3058 (S1)	4058 (S1)	4058 (S1)	
1	1	3059 (S1)	4059 (S1)	4059 (S1)	

[2nd. sp]

Gear signal			Parameter No.		
CTH1B	CTH2B	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
0	0	3056 (S2)	4056 (S2)	4056 (S2)	
0	1	3057 (S2)	4057 (S2)	4057 (S2)	
1	0	3058 (S2)	4058 (S2)	4058 (S2)	
1	1	3059 (S2)	4059 (S2)	4059 (S2)	

(3) Position gain

In rigid tapping, the tapping axis and spindle are controlled to be synchronized. So, the position gains of the tapping axis and spindle must be set to the same value.

[Series 16*i*]

The position gain parameter of the tapping axis in the rigid tapping is selected as follows according to the gear selection signal.

Standard machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and machining [M series] with surface speed constant option: GR2, GR1

Second spindle of turning [T series]: GR21 (Multi-spindle control option is needed)

Standard machining [M series]

G	ear sign	Parameter No.	
GR10	GR2O	GR3O	Parameter No.
			5280 ^(*1)
1	0	0	5281
0	1	0	5282
0	0	1	5283

Turning [T series] and machining [M series] with surface speed constant

Gear signal			Parameter No.	
1st	1st. sp 2nd. sp		Faraille	eter NO.
GR1	GR2	GR21	T series	M series
			528	0 ^(*1)
0	0	0	52	81
1	0	1	52	82
0	1		52	83
1	1		5284	5283

NOTE

*1 When this parameter is "0", each gear parameter becomes valid.

When this parameter is not "0", each gear parameter becomes invalid, and this parameter is always used.

The position gain parameter of the spindle in the rigid tapping is selected as follows according to the gear selection signal (CTH1A/B, CTH2A/B). (This is common T series and M series)

[1st. sp]

[iot. op]			
Gear	signal	Parameter No.	
CTH1A	CTH2A	Farailletei NO.	
0	0	4065 (S1)	
0	1	4066 (S1)	
1	0	4067 (S1)	
1	1	4068 (S1)	

[2nd. sp]

Gear	signal	Parameter No.
CTH1B CTH2B		Farailletei NO.
0	0	4065 (S2)
0	1	4066 (S2)
1	0	4067 (S2)
1	1	4068 (S2)

⚠ CAUTION

Take care to input the gear selection signal GR1, GR2, GR21, GR10, GR20, GR30 and CTH1A/B, CTH2A/B according to the real gear state in order to get the same position gain of the tapping axis and that of the spindle, because GR1, GR2, GR21, GR10, GR20, GR30 and CTH1A/B, CTH2A/B are inputted independently.

[Series 30i]

The position gain parameter of the tapping axis in the rigid tapping is selected as follows according to the gear selection signal.

Standard machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and machining [M series] with surface speed constant option : GR2, GR1

Second spindle: GR22, GR21(Multi-spindle control option is needed)

Standard machining [M series]

G	ear sign	Parameter No.	
GR10	GR2O	GR3O	Parameter No.
1	0	0	5231
0	1	0	5232
0	0	1	5233

Turning [T series] and machining [M series] with surface speed constant

Gear signal		Parame	eter No.
GRs1* GRs2*		T series	M series
		528	0 ^(*1)
0	0	52	81
1	0	52	82
0	1	52	83
1	1	5284	5283

^{*} First spindle: GR1, GR2 / Second spindle: GR21, GR22

NOTE

*1 When this parameter is "0", each gear parameter becomes valid.

When this parameter is not "0", each gear parameter becomes invalid, and this parameter is always used.

The position gain parameter of the spindle in the rigid tapping is selected as follows according to the gear selection signal (CTH1A/B, CTH2A/B). (This is common T series and M series)

[1st. sp]

Gear	signal	Parameter No.
CTH1A	CTH2A	raiailletei No.
0	0	4065 (S1)
0	1	4066 (S1)
1	0	4067 (S1)
1	1	4068 (S1)

[2nd. sp]

Gear	signal	Parameter No.
CTH1B	CTH2B	Farailletei NO.
0	0	4065 (S2)
0	1	4066 (S2)
1	0	4067 (S2)
1	1	4068 (S2)

⚠ CAUTION

Take care to input the gear selection signal GR1, GR2, GR21, GR22, GR10, GR20, GR30 and CTH1A/B, CTH2A/B according to the real gear state in order to get the same position gain of the tapping axis and that of the spindle, because GR1, GR2, GR21, GR22, GR10, GR20, GR30 and CTH1A/B, CTH2A/B are inputted independently.

[Series 15*i*]

In the rigid tapping, the same parameter address data is used for the position gain of the tapping axis and the spindle.

Each position gain is selected as follows according to the gear selection signal (CTH1A, CTH2A).

Gear	signal	Parameter No.
CTH1A	CTH2A	Parameter No.
0	0	3065
0	1	3066
1	0	3067
1	1	3068

(4) Acceleration/deceleration time constant

[Series 16*i*]

(1) Each parameter can be set for each gear and is selected according to the gear selection signal.

By setting the following parameter, the different time constant between the cutting in and cutting out (extracting) becomes available.

5201 #2

0: The same time constant between cutting in and out. (No. 5261 to 5264)

1: The different time constant between cutting in and

Cutting in : No. 5261 to 5264 Cutting out: No. 5271 to 5274

Standard Machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and Machining [M series] with surface speed constant: GR2, GR1

2nd. sp of Turning [T series] : GR21 (Multi- spindle control option is needed)

Standard machining [M series]

Gear signal			Time constant	Time constant	Spindle max.	
GR10	GR2O	GR3O	(Cutting in) Parameter No.	(Cutting out) Parameter No.	speed at rigid tapping Parameter No.	
1	0	0	5261	5271	5241	
0	1	0	5262	5272	5242	
0	0	1	5263	5273	5243	

Turning [T series] and machining [M series] with surface speed constant

Gear signal 1st. sp 2nd. s		2nd. sp	Time constant (Cutting in) Parameter No.	Time constant (Cutting out) Parameter No.	Spindle max rigid ta Parame	pping
GR1	GR2	GR21	Parameter No.	Parameter No.	T/TT series	M series
0	0	0	5261	5271	5241	5241
1	0	1	5262	5272	5242	5242
0	1	-	5263	5273	5243	5243
1	1	-	5264 ^(*1)	5274 ^(*1)	5244 ^(*1)	-

NOTE

*1 This is not available for Machining (M series).

(2) The override at extracting.

5200 #4

0: The override at extracting is not valid.

1: The override at extracting is valid. (Set override value at No. 5211)

[Series 30*i*]

(1) Each parameter can be set for each gear and is selected according to the gear selection signal.

By setting the following parameter, the different time constant between the cutting in and cutting out (extracting) becomes available.

5201 #2

0: The same time constant between cutting in and out. (No. 5261 to 5264)

1: The different time constant between cutting in and

Cutting in : No. 5261 to 5264 Cutting out: No. 5271 to 5274

Standard Machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and Machining [M series] with surface speed

constant: GR2, GR1

2nd. sp : GR21, GR21 (Multi-spindle control option is needed)

Standard machining [M series]

Gear signal			Time constant	Time constant	Spindle max.	
GR10	GR2O	GR3O	(Cutting in) Parameter No.	(Cutting in) (Cutting out)		
1	0	0	5261	5271	5241	
0	1	0	5262	5272	5242	
0	0	1	5263	5273	5243	

Turning [T series] and machining [M series] with surface speed constant

Gear signal		Time constant (Cutting in) Parameter No.	Time constant (Cutting out) Parameter No.	Spindle max. speed at rigid tapping Parameter No.	
GRs1*	GRs2*	Parameter No.	Farameter No.	T series M s	M series
0	0	5261	5271	5241	5241
1	0	5262	5272	5242	5242
0	1	5263	5273	5243	5243
1	1	5264 ^(*1)	5274 ^(*1)	5244 ^(*1)	-

First spindle: GR1, GR2 / Second spindle: GR21, GR22

NOTE

*1 This is not available for Machining (M series).

(2) The override at extracting.

5200 #4

0: The override at extracting is not valid.

1: The override at extracting is valid. (Set override value at No. 5211)

[Series 15*i*]

(1) Acc/Dec type

5605 #1

0: Exponential type Acc/Dec

1: Linear type Acc/Dec

NOTE

Usually, linear type acceleration/deceleration (bit 1 of No. 5605 = 1) is used.

- (2) Set Acc/Dec the time constant of the rigid tapping mode.
 - <1> The time constant is a fixed value if bit 2 of parameter No. 5605 = 0.

Acc/Dec time constant	5751
Spindle speed	5757

<2> When bit 2 of parameter No.5605 is set to 1, one of the four acceleration/deceleration time constants is selected, depending on the spindle speed.

	Spindle speed	Acc/Dec time constant
Gear 1	5886	5884
Gear 2	5889	5887
Gear 3	5892	5890
Gear 4	-	5893

2.3.9 Adjustment Procedure

(1) Parameters used for adjustment

The table below lists and describes the parameters used for adjusting rigid tapping.

Parameter No. (FS16i)	Description
5241 to 5244	Maximum spindle speed on rigid tapping (Depends on the GR signal. No.5244 is for the T series only.)
5261 to 5264	Acceleration/deceleration time constant on rigid tapping (Depends on the GR signal. No.5264 is for the T series only.)
5280 to 5284	Position gain of tapping axis on rigid tapping (No.5280 is for all gears. No.5281 to No.5284 depend on the GR signal. No.5284 is for T series only.)
4065 to 4068	Spindle position gain on rigid tapping (depends on CTH1A and CTH2A signals)
4044 to 4045	Velocity loop proportional gain on rigid tapping (depends on CTH1A signal)
4052 to 4053	Velocity loop integral gain on rigid tapping (depends on CTH1A signal)
4085	Motor voltage on rigid tapping (for high speed characteristics) (Specify 100).
4137	Motor voltage on rigid tapping (for low speed characteristics) (Specify 100).
4099	Delay time for motor excitation. (Specify a value around 300 to 400).
4016#4	Control properties settings on rigid tapping. (Set "0" as normal.)

NOTE

When the maximum speed for rigid tapping (in terms of motor axis) is higher than the base speed of the spindle motor, set a value less than 100 as the motor voltage (No. 4085, No. 4137) for rigid tapping according to the following expression:

Motor voltage (%)=

Spindle motor base speed

Maximum speed for rigid tapping (in terms of motor axis)

In this case, also set bit 4 of No. 4016 to 1 as the setting of control characteristics on rigid tapping.

(2) Spindle data used for adjustment

Adjust the parameters while observing the motor speed, torque command, velocity error, synchronous error, and other waveform by using a spindle check board and oscilloscope or SERVO GUIDE. The table below lists spindle check board settings for observing the waveform.

Check board setting address		Settings	Observing data
Output to CH1	Output to CH2	J -	3
d-05	d-09	25	Valanity arror
d-06	d-10	12	Velocity error ±128 min ⁻¹ at ±5 V
d-07	d-11	0	±256min ⁻¹ at ±5 V if d-06 (d-10) is set to 13
d-08	d-12	1	±23011iii1 at ±3 v ii d-00 (d-10) is set to 13
d-05	d-09	90	Torque command
d-06	d-10	7	Maximum positive/negative torque command at ±5 V
d-07	d-11	0	Maximum positive/negative torque command at ±2.5 V
d-08	d-12	1	if d-06 (d-10) is set to 8
d-05	d-09	68	Synchronous error (value converted for the spindle:
d-06	d-10	0	4096 pulses/rev)
d-07	d-11	0	±128 pulses at ±5 V ±256 pulses at ±5 V if d-06 (d-10) is set to 1
d-08	d-12	1	±512 pulses at ±5 V if d-06 (d-10) is set to 1
d-05	d-09	19	Motor speed
d-06	d-10	18	±8192 min ⁻¹ at ±5 V
d-07	d-11	0	±4096 min ⁻¹ at ±5 V if d-06 (d-10) is set to 17
d-08	d-12	1	$\pm 2048 \text{ min}^{-1}$ at $\pm 5 \text{ V}$ if d-06 (d-10) is set to 16

NOTE

When observing the synchronous error of Series 16*i*, set the following parameters:

No. 3700, #7 = 1:

Uses the synchronous error output (maintenance function).

(Return the setting to 0 after the observation is completed.)

No. 5203, #7 = 1:

Sets a synchronous error update cycle. (Return the setting to 0 after the observation is completed.)

No. 5204, #0 = 0:

Displays the synchronous error on the diagnosis screen.

(3) Adjustment procedure

(3)-1 Specifying an acceleration/deceleration time constant (1): Specifying a provisional value

Before optimizing the acceleration/deceleration time constant, adjust the gain to improve the response. Following (a) or (b) below, specify a provisional acceleration/deceleration time constant according to the target maximum speed.

(a) Specifying a provisional time constant according to the velocity waveform in actual acceleration/deceleration

Observe the motor velocity waveform (velocity control mode) in acceleration up to the maximum rigid tapping speed. Specify such a provisional time constant that the inclination (acceleration) during rigid tapping acceleration becomes about a half of the inclination of a tangent to the motor velocity waveform near the location of maximum speed. See the sample waveform shown below.

- Nr. Maximum rigid tapping speed (No. 5241 to 5244) 4000 min⁻¹ in this example
- ta: Time of acceleration by the maximum torque at Nr About 400 ms in this example
- tr. Rigid tapping acceleration/deceleration time constant (No. 5261 to 5264) 800 ms, which is two times ta, in this example

In this example, the maximum rigid tapping speed Nr is set to 4000 min⁻¹. To determine the acceleration/deceleration time constant, the motor velocity waveform in acceleration up to 4000 min⁻¹ is observed. If the acceleration is performed with the maximum motor torque at 4000 min⁻¹, the acceleration time ta needed to attain 4000 min⁻¹ is about 400 ms, as shown above. This is the minimum value of acceleration/deceleration time constant tr, which can be specified without consideration of cutting load. A time constant that can be specified in consideration of cutting load is usually about 1.2 to 1.5 times this value. As a provisional value for gain adjustment, approximately double (800 ms) is specified here.

(b) Specifying a value calculated from the relationship between the maximum torque and spindle inertia

Specify an acceleration/deceleration time constant calculated from the following expression:

$$tr[\text{ms}] = \frac{Jm[\text{kgm}^2] + JL[\text{kgm}^2]}{T\max(Nr)[\text{Nm}]} \times \frac{2\pi}{60} \times Nr[\text{min}^{-1}] \times GR \times 1000 \times 2$$

tr[ms]: Acceleration/deceleration time constant on rigid

tapping (No. 5261 to 5264)

Nr[min⁻¹]: Maximum spindle speed on rigid tapping (No. 5241

to 5244)

GR: Spindle-motor gear ratio (Motor rotation per spindle

rotation)

Tmax(Nr) [Nm]: Maximum torque of spindle motor at *Nr*

 $Jm[kgm^2]$: Rotor inertia of spindle motor

JL[kgm²]: Spindle load inertia(converted for the motor shaft)

(3)-2 Specifying a position gain

Specify an initial value of about 2000(20 sec⁻¹) to 3000(30 sec⁻¹), then adjust the value as needed. Basically, specify identical values for the spindle and tapping axis.

After specifying the position gain, check whether the spindle is operating as designed. For that purpose, check that the position error (value displayed on the CNC screen) during stable rotation at the maximum speed is almost the same as the theoretical value. This theoretical value is calculated as shown below. If the theoretical value is substantially different, re-check the parameters related to position gain, gear ratio, and detector.

$$Perr(Nr)[pulse] = \frac{Nr[\min^{-1}]}{60} \times 4096[pulse/rev] \times \frac{1}{PG[\sec^{-1}]}$$

Perr(Nr) [pulse]:Position error in stable rotation at NrNr [min-1]:Maximum speed on rigid tappingPG [sec-1]:Position gain on rigid tapping

If the gear ratio is 1:1 at $Nr=4000 \text{ min}^{-1}$ and $PG=3000 \text{ (30 sec}^{-1})$, the position error in stable rigid tapping at Nr is calculated as follows:

$$Perr(Nr) = \frac{4000}{60} \times 4096 \times \frac{1}{30} = 9102[pulse]$$

(3)-3 Specifying a velocity loop gain

Refer to Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT" for details of the velocity loop proportional/integral gain. Adjust the velocity loop proportional/integral gain so that the velocity error decreases.

During the adjustment, observe the velocity error and motor speed. Sample waveforms before and after the adjustment are shown below:

(a) Waveform before adjustment (No. 4044 = 10, No. 4052 = 10)

(b) Waveform after adjustment (No. 4044 = 20, No. 4052 = 60)

(3)-4 Specifying an acceleration/deceleration time constant (2) : Specifying an optimum value

Observing the torque command and motor speed, make a final adjustment of the time constant. Adjust the time constant in consideration of the actual cutting load, so that the peak torque at air cut becomes about 70% to 80% (3.5 to 4.0 V) of the maximum value. Sample waveforms before and after the adjustment are shown below:

(a) Waveform before adjustment (No. 5261 = 800)

(b) Waveform after adjustment (No. 5261 = 480)

(3)-5 Checking the synchronous error

The spindle adjustment ends when the adjustments described in above procedures are completed. After the spindle adjustment, check the synchronous error between the spindle and servo axis, which will be an index of rigid tapping precision.

The synchronous error is a difference between the spindle position error and the servo axis position error converted for the spindle.

SYNCER[pulse] = PERsp[pulse] - PERsv[pulse]

SYNCER [pulse]:Synchronous error

(4096 pulses per spindle rotation)

PERsp [pulse]:Spindle position error

PERsv [pulse]: Servo axis position error converted for the spindle

2.3.10 Diagnosis (Diagnosis Screen)

This subsection provides a list of the diagnosis (diagnosis screen) indications related to rigid tapping only. For details, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.11, "RIGID TAPPING."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.11, "RIGID TAPPING."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.8, "RIGID TAPPING."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.10, "RIGID TAPPING."

(1) Series 16*i*

Address	Description	Unit
0300	Position error pulse of the tapping axis (error)	Pulse
0450	Position error pulse of the spindle (error)	Pulse
0451	Interpolation pulse of the spindle	Pulse
0454	Integrated interpolation pulse of the spindle	Pulse
0455	Difference of move command converted for the spindle (instantaneous)	Pulse
0456	Difference of position error converted for the spindle (instantaneous)	Pulse
0457	(In terms of spindle) Width of synchronous error (maximum)	Pulse

NOTE

The data indicated below is displayed only when bit 0 (DGN) of parameter No. 5204 is set to 0. Usually, set 0.

0455 : Difference of move command converted for the spindle (instantaneous)

0456 : Difference of position error converted for the spindle (instantaneous)

0457 : (In terms of spindle) Width of synchronous error (maximum)

(2) Series 30*i*

Address	Description	Unit
0300	Position error pulse of the tapping axis (error)	Pulse
0450	Position error pulse of the spindle (error)	Pulse
0451	Interpolation pulse of the spindle	Pulse
0454	Integrated interpolation pulse of the spindle	Pulse
0455	Difference of move command converted for the spindle (instantaneous)	Pulse
0456	Difference of position error converted for the spindle (instantaneous)	Pulse
0457	(In terms of spindle) Width of synchronous error (maximum)	Pulse

NOTE

The data indicated below is displayed only when bit 0 (DGN) of parameter No. 5204 is set to 0. Usually, set 0.

0455 : Difference of move command converted for the spindle (instantaneous)

0456 : Difference of position error converted for the spindle (instantaneous)

0457 : (In terms of spindle) Width of synchronous error (maximum)

(3) Series 15*i*

Address	Description	Unit
1600	Position error pulse of the spindle (instantaneous)	Pulse
1601	Position error pulse of the spindle (maximum)	Pulse
1602	Position error pulse of the tapping axis (instantaneous)	Pulse
1603	Position error pulse of the tapping axis (maximum)	Pulse
1604	(Value converted for the spindle) Width of synchronous error (instantaneous)	Pulse
1605	(Value converted for the spindle) Width of synchronous error (maximum)	Pulse

2.3.11 Alarm

This subsection provides a list of the alarms related to rigid tapping only. For details, refer to the Connection Manual (Function) of each CNC.

(a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
CONNECTION MANUAL (FUNCTION): B-63523EN-1
Refer to Section 9.11, "RIGID TAPPING."

(b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
CONNECTION MANUAL (FUNCTION): B-63943EN-1
Refer to Section 11.11, "RIGID TAPPING."

(c) For Series 15*i*"FANUC Series 15*i*-MODEL B
CONNECTION MANUAL (FUNCTION): B-63783EN-1
Refer to Section 9.8, "RIGID TAPPING."

(d) For Series 0*i*"FANUC Series 0*i*-MODEL C
CONNECTION MANUAL (FUNCTION): B-64113EN-1
Refer to Section 9.10, "RIGID TAPPING."

(1) Series 16*i*

(a) Program error (P/S Alarm)

Alarm number	Description
200	S command is over the range or not inputted.
201	F command is not inputted.
202	The interpolation pulse for the spindle is over the range
203	The commanded place of M29 or S command is not proper.
204	The axis move command is inserted between M29 and G84 (G74).
	The rigid mode input signal is not ON during G84 (G74) although M29 is commanded.
205	The rigid mode DI signal does not go ON.
	The rigid mode input signal goes OFF during the rigid tapping.
206	The plane change is commanded during the rigid tapping. (M series only)
207	In rigid tapping, the lead is too short or too long. (M series only)

(b) Servo alarm

Alarm number	Description						
410	The position error of the tapping axis or the spindle at stop exceeds the alarm level.						
411	The position error of the tapping axis or the spindle at moving exceeds the alarm level.						
413	Tapping axis LSI overflow (error counter overflow)						
740	Position error at rest on the spindle side is larger than the predetermined value (No. 5313).						
741	The positional deviation during movement on the spindle side is larger than the setting of No. 5311.						
742	Spindle LSI overflow (error counter overflow)						

(2) Series 30*i*

(a) Program error (P/S Alarm)

Alarm number	Description				
PS0200	S command is over the range or not inputted.				
PS0201	F command is not inputted.				
PS0202	The interpolation pulse for the spindle is over the range				
PS0203	The commanded place of M29 or S command is not proper.				
PS0204	The axis move command is inserted between M29 and G84 (G74).				
	The rigid mode input signal is not ON during G84 (G74) although M29 is commanded.				
PS0205	The rigid mode DI signal does not go ON.				
	The rigid mode input signal goes OFF during the rigid tapping.				
PS0206	The plane change is commanded during the rigid tapping. (M series only)				
PS0207	In rigid tapping, the lead is too short or too long. (M series only)				

(b) Servo alarm

Alarm number	Description
SV0410	The position error of the tapping axis or the spindle at stop exceeds the alarm level.
SV0411	The position error of the tapping axis or the spindle at moving exceeds the alarm level.
SV0413	Tapping axis LSI overflow (error counter overflow)
SP0740	Position error at rest on the spindle side is larger than the predetermined value (No. 5313).
SP0741	The positional deviation during movement on the spindle side is larger than the setting of No.
SP0741	5311, or the synchronous error is larger than the setting of No. 5214.
SP0742	Spindle LSI overflow (error counter overflow)

(2) Series 15*i*

(a) Program error (P/S Alarm)

Alarm number	Description
PS0223	An attempt was made to execute an instruction that uses the spindle although the spindle to be
1 00220	controlled has not been set correctly.
PS0531	When the feedrate instruction contains valid data below the decimal point, the alarm is set and
. 0000.	the F code contains valid data below the decimal point.
PS0532	When the feedrate instruction contains valid data below the decimal point, the alarm is set and
. 00002	the E code contains valid data below the decimal point.
PS0533	The feedrate for the hole drilling axis calculated from the F and S codes is too slow in the feed
1 00000	per single rotation mode (G95).
PS0534	The feedrate for the hole drilling axis calculated from the F and S codes is too fast in the feed
1 00001	per rotation mode (G95).
PS0535	The feedrate for the hole drilling axis calculated from the E and S codes is too slow in the feed
1 00000	per rotation mode (G95).
PS0536	The feedrate for the hole drilling axis calculated from the E and S codes is too fast in the feed
1 00000	per rotation mode (G95).
PS0537	The speed obtained by applying override to the F instruction is too slow.
PS0538	The speed obtained by applying override to the F instruction is too fast.
PS0539	The speed obtained by applying override to the E instruction is too slow.
PS0540	The speed obtained by applying override to the E instruction is too fast.
PS0541	"0" has been instructed as the S code.
PS0542	"0" has been instructed as the feedrate (E code).
PS0543	The gear ratio between the spindle and position coder, or the set position coder number of
1 00070	pulses is illegal in the spindle position function and the rigid tapping function.
PS0544	The value specified with the S command exceeds the maximum spindle speed.

FANUC AC SPINDLE MOTOR αi series B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiI series 2.EXPLANATION OF OPERATION MODES

(b) Spindle alarm (SP alarm)

Alarm number	Description
SP0224	The spindle-position coder gear ratio was incorrect.
SP0231	The position error during spindle rotation was greater than the value set in parameter (No.5876).
SP0232	The position error during spindle stop was greater than the value set in parameter (No.5877).
SP0233	The error counter/speed instruction value of the position coder overflowed.
SP0234	Grid shift overflowed.
SP0235	The orientation (reference position return) speed is too fast.
SP0238	An attempt was made to change the spindle mode during the rigid tapping mode.

2.4 Cs CONTOURING CONTROL

Optional function

2.4.1 Start-up Procedure

H. Adjust and check the Cs contouring control servo system.

(Check the operation in jog mode, rapid traverse mode, handle mode, and other modes.)

G. Check the direction of spindle rotation in Cs contouring control mode.- Parameter specifying the direction of rotation for a positive (+) motion

- Position gain in Cs contouring control mode
- Velocity loop proportional gain in Cs contouring control mode
- Velocity integral gain in Cs contouring control mode
- Motor voltage in Cs contouring control mode
- Disturbance torque compensating constant (acceleration feedback gain)
- Spindle speed feedback gain

command

I. End of operation check in Cs contouring control mode

2.4.2 Overview

Cs contouring control is a function for exercising position control by handling the spindle as a CNC controlled axis with an αi MZ sensor, αi BZ sensor, αi CZ sensor, or α position coder S.

This function enables positioning and interpolation with another servo axis. This means that linear interpolation, circular interpolation, and so forth can be specified between the spindle and a servo axis.

NOTE

To use this function, the CNC software option is required.

2.4.3 System Configuration

The system configurations that enable the use of the Cs contouring control function are shown below.

(1) When the α position coder S is used

(2) When the built-in motor is used

(3) When the spindle motor with built-in lpha iMZ sensor is used

(4) When the separate type αi BZ sensor or separate type αi CZ sensor is used

2.4.4 List of I/O Signals (CNC \leftrightarrow PMC)

This subsection provides a list of the I/O signals related to Cs contouring control only. For details of each signal, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.9, "Cs CONTOUR CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.9, "Cs CONTOUR CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7, "Cs CONTOUR CONTROL."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.8, "Cs CONTOUR CONTROL."

For details of the I/O signals common to the CNCs, see Chapter 3, "I/O SIGNALS \leftrightarrow CNC (PMC)", in Part I.

(1) Input signals (PMC \rightarrow CNC)

(a) Series 16i

	#7	#6	#5	#4	#3	#2	#1	#0
G027	CON							
G028						GR2	GR1	

(b) Series 30i

	#/	#6	#5	#4	#3	#2	#1	#0
G027	CON							
G028						GR2	GR1	

(c) Series 15*i*

_	#7	#6	#5	#4	#3	#2	#1	#0
	SCNTR1							
	SCNTR2							
	:							

:

G067 G071

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

(d) Common to CNCs

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070			SFRA	SRVA	CTH1A	CTH2A		
2nd-	G235	G074	G074			SFRB	SRVB	СТН1В	CTH2B		
							_				
1st-	G226	G071	G071			INTGA					
2nd-	G234	G075	G075			INTGB					

(2) Output signals (CNC \rightarrow PMC)

(a) Series 16i

	#7	#6	#5	#4	#3	#2	#1	#0
F034						GR30 (*1)	GR2O (*1)	GR10 (*1)
F044							FSCSL	
F094	ZP8	ZP7	ZP6	ZP5	ZP4	ZP3	ZP2	ZP1

NOTE

1* These signals are valid with the M series only.

(b) Series 30*i*

NOTE

F064 F068

F067 F071 1* These signals are valid with the M series only.

(c) Series 15*i*

#	ŧ7	#6	#5	#4	#3	#2	#1	#0
								ZP1
								ZP2
								:
MSC	NTR1						,	
MSC	NTR2							
	:							

2.4.5 Examples of Sequences

(Example 1) During normal operation

NOTE

- 1 In Cs contouring control mode, reset the spindle speed command (specify S0) for safety.
- When the spindle is clamped to perform machining such as drilling after positioning based on Cs contouring control, the spindle may be clamped at a position slighted shifted from the specified position. In such a case, the velocity loop integral function attempts to move the spindle to the specified position, so that an excessively high current can flow through the motor. To prevent this, turn on (set to 1) the velocity integral control signal (INTGA) to disable the velocity loop integral function, or turn off the power to the motor with the servo-off signal.
- 3 In Cs contouring control, do not perform spindle gear switching. Be sure to perform spindle gear switching, if needed, on the velocity control mode.
- 4 For Cs contouring control, use either of the SFR and SRV signals.
- 5 In the Cs contouring control mode, do not change the SFR (SRV) signal.

(Example 2) When a spindle alarm is issued

NOTE

- 1 If a spindle alarm is issued, release the Cs contouring control mode. Resetting the alarm without releasing the mode and restarting operation may cause a miss positioning.
- 2 With the following series and editions, the alarm reset signal is valid only in the velocity control mode (in other modes, inputting the alarm reset signal does not release the alarm):

9D50 series P (16) edition or later 9D70 series G (07) edition or later 9D80 series A (01) edition or later

2.4.6 Related Parameters

	December No.		
15 <i>i</i>	Parameter No. 16 <i>i</i>	30 <i>i</i>	Description
			NATI - the section of
1005#0	1005#0	1005#0	Whether to use the reference position return function
1005#2	-	-	Sets automatic reference position return (G28). (Set "0".)
1005#3	-	ī	Set workpiece coordinate system preset at automatic reference position return time. (Set "1".)
1600#2,#1,#0	1006#2	1006#2	Sets a linear axis/rotation axis. (Set "1".)
1600#3	-	-	Sets a radius for a move command/rotation axis. (Set "0".)
1804#7	-	-	Sets a Cs contouring control axis with a serial spindle. (Set "1".)
2203#1	-	-	Sets machine position display on the CRT. (Set "1".)
-	3700#1	3700#1	Specifies whether to enable the reference position return function for the first G00 command received after switching to Cs contouring control.
	2712#2	2712#2	-
- 4040	3712#2	3712#2	Sets the Cs axis coordinate establishment function.
1012	1004	1013	Increment system
#3,#2,#1,#0	#1,#0	#3,#2,#1,#0	(Usually, set and use IS-B.)
1020	1020	1020	Program axis name
4000	1022	1022	Sets an axis of the basic coordinate system. (Set "0".)
1023	1023	1023	Servo axis number (Set "-1".)
1028	-	-	Spindle number of Cs contouring control axis
1260	-	1260	Movement per rotation of rotation axis (Set "360.0".)
1420	1420	1420	Rapid traverse rate
1620	1620	1620	Linear acceleration/deceleration time constant for rapid feed
1820	1820	1820	Command multiplication (Usually, set "2" [= CMR 1].)
5879	1826	1826	In-position width
5880	1828	1828	Position error limit during movement
5881	1829	1829	Position error limit when stopped
5882	-	-	Position error limit when the servo system is off
5609#0	-	-	Sets a position gain for a servo axis subject to interpolation with the Cs contouring control axis. ("0": Automatically set, "1": Not automatically set. Usually, set "0".)
	3900	3900	(0 : Automatically Sct. 1 : Not automatically Sct. Osually, Sct. 0 :)
	3910	3910	
_	3920	3920	Servo axis number subject to interpolation with the Cs contouring control
	3930	3930	axis
	3940	3940	
		3901 to 3904	
		3911 to 3914	
_	3921 to 3924		Position gain of a servo axis subject to interpolation with the Cs contouring
	3931 to 3934		control axis
		3941 to 3944	
5843	_	-	Number of pulses of position detector for Cs contouring control
			Spindle rotation direction for a positive motion command on Cs contouring
3000#1	4000#1	4000#1	control mode
3000#3	4000#3	4000#3	Direction of reference position return when the system enters Cs contouring control mode
3002#4	4002#4	4002#4	Whether to use the rotation direction signal (SFR/SRV) function on Cs
2005#0	4005#0	4005#0	contouring control
3005#0	4005#0	4005#0	Sets the detection unit for Cs contouring control.
3016#3	4016#3	4016#3	Sets the smoothing function in feed-forward control.
3016#4	4016#4	4016#4	Sets control characteristics on Cs contouring control/servo mode.
3021	4021	4021	Maximum spindle speed on Cs contouring control mode

Parameter No.			Description				
15 <i>i</i>	5 <i>i</i> 16 <i>i</i> 30 <i>i</i>		Description				
3036	4036	-	Feed-forward coefficient				
3037	4037	4037	Velocity loop feed-forward coefficient				
3046	4046	4046	Velocity loop proportional gain on Cs contouring control mode				
3047	4047	4047	(A parameter is selected by the CTH1A input signal sent from the PMC.)				
3054	4054	4054	Velocity loop integral gain on Cs contouring control mode				
3055	4055	4055	(A parameter is selected by the CTH1A input signal sent from the PMC.)				
3056 to 3059	4056 to 4059		Spindle-to-motor gear ratio (A parameter is selected by the CTH1A and CTH2A input signals sent from the PMC.)				
3069 to 3072	4069 to 4072	4069 to 4072	Position gain for axes subject to Cs contouring control (A parameter is selected by the CTH1A input signal sent from the PMC.)				
3074	4074	4074	Feedrate for reference position return on Cs contouring control mode or servo mode				
3086	4086	4086	Motor voltage on Cs contouring control mode				
3092	4092	4092	Rate of change in the position gain when reference position return is performed on Cs contouring control mode				
3094	4094	4094	Disturbance torque compensating constant (acceleration feedback gain)				
3097	4097	4097	Spindle speed feedback gain				
3099	4099	4099	Motor excitation delay				
3131	4131	4131	Velocity detection filter time constant (on Cs contouring control)				
3135	4135	4135	Grid shift on Cs contouring control mode				
3162	4162	4162	Velocity loop integral gain for cutting feed on Cs contouring control				
3163	4163	4163	(A parameter is selected by the PMC input signal CTH1A.)				
-	-	4344	Advanced preview feed-forward coefficient				
-	4353#5	4353#5	Sets the Cs axis position data transfer function.				
3406	4406	4406	Acceleration/deceleration time constant for Cs control reference position return				

NOTE

- 1 For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part I.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part I.

2.4.7 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16*i*, in the four thousands for 30*i*, and in the three thousands for 15*i*) among the parameters related to Cs contouring control. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.9, "Cs CONTOUR CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.9, "Cs CONTOUR CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7, "Cs CONTOUR CONTROL."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.8, "Cs CONTOUR CONTROL."

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3000	4000	4000					RETRN		ROTA2	

ROTA2 Indicates the spindle direction by the move command (+). (Only effective on Cs contouring control)

- 0: When the value of a move command from the CNC is positive (+), the spindle rotates in the CCW direction.
- 1: When the value of a move command from the CNC is positive (+), the spindle rotates in the CW direction.

Change the setting of this parameter when changing the rotation direction of the spindle on Cs contouring control.

RETRN Indicates the reference position return direction on Cs contouring control.

- 0: Returns the spindle from the CCW direction to the reference position (counter clockwise direction).
- 1: Returns the spindle from the CW direction to the reference position (clockwise direction).

FANUC AC SPINDLE MOTOR αi series

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR Bil series B-65280EN/06

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3002	4002	4002				CSDRCT				

Whether to use the rotation direction signal (SFR/SRV) on Cs **CSDRCT** contouring control

- Rotation direction function enabled
 - (1) When bit 1 (ROTA2) of No. 4000 = 0, and the value of a move command from the CNC is positive (+)
 - The spindle rotates counterclockwise when input signal SFR(G70#5) is set to 1.
 - (b) The spindle rotates clockwise when input signal SRV(G70#4) is set to 1.
 - (2) When bit 1 (ROTA2) of No. 4000 = 1, and the value of a move command from the CNC is positive (+)
 - (a) The spindle rotates clockwise when input signal SFR(G70#5) is set to 1.
 - (b) The spindle rotates counterclockwise when input signal SRV(G70#4) is set to 1.
- 1: Rotation direction function disabled

The rotation direction function of the SFR/SRV signal is disabled. Only the function for enabling spindle motor excitation is available.

- (1) When bit 1 (ROTA2) of parameter No. 4000 is set to 0 When the value of a move command from the CNC is positive (+), and SFR/SRV = 1, the spindle rotates in the CCW direction.
- (2) When bit 1 (ROTA2) of parameter No. 4000 is set to 1 When the value of a move command from the CNC is positive (+), and SFR/SRV = 1, the spindle rotates in the CW direction.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3005	4005	4005								CS360M

CS360M Sets the detection unit for Cs contouring control.

> $0: 0.001^{\circ}$ 0.0001°

Set 0 usually. When a αiCZ sensor is used as the position detector and the setting unit IS-C is used, set 1.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3016	4016	4016				IDLPTN	FFSMTH			

FFSMTH Specifies whether to use the smoothing function under feed-forward control.

Don't use the smoothing function.

Uses the smoothing function.

This bit specifies whether to use the smoothing function under feed-forward control on Cs contouring control mode.

FANUC AC SPINDLE MOTOR αi series

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

IDLPTN Specifies the control characteristic on Cs contouring control mode or

servo mode (rigid tapping mode).

Normally, set this bit to 0.

Set this bit to 1 when setting a value less than 100 as the motor voltage on Cs contouring control (No. 4086) or as the motor voltage

on servo mode (No. 4085).

15*i* 16*i* 30*i* 3021 4021 4021

Maximum speed on Cs contouring control mode

Unit of data: 1min⁻¹ (10min⁻¹ when parameter No.4006#2 (SPDUNT) is set to 1)

Valid data range: 0 to 32767 Standard setting: 100

This parameter specifies the maximum speed of a spindle operating on

Cs contouring control mode.

When 0 is specified as the parameter for the feedrate for reference position return on Cs contouring control mode (parameter No. 4074), reference position return is performed at the speed specified as the

maximum speed in this parameter.

15*i* 16*i* 30*i* 3036 4036 -

Feed-forward coefficient

Unit of data: 1%
Valid data range: 0 to 100
Standard setting: 0

Set the feed-forward coefficient when feed-forward control is

executed on Cs contouring control.

15*i* 16*i* 30*i* 3037 4037 4037

Velocity loop feed-forward coefficient

Unit of data:

Valid data range: 0 to 32767

Standard setting: 0

Set a velocity loop feed-forward coefficient when feed-forward control is executed on Cs contouring control. Use the following

expression to determine a value to be set:

Setting = 214466 × [spindle inertia + rotor inertia](kg·m²)

Maximum motor torque (N·m)

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15i16i30464046Velocity loop proportional gain on Cs contouring control (HIGH)CTH1A=030474047Velocity loop proportional gain on Cs contouring control (LOW)CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 30

These parameters specify the proportional gains of the velocity loop

on Cs contouring control mode.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

 15i
 16i
 30i

 3054
 4054
 4054

 3055
 4055
 4055

 Velocity loop integral gain on Cs contouring control (HIGH)
 CTH1A=0

 Velocity loop integral gain on Cs contouring control (LOW)
 CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 50

These parameters specify the integral gains of the velocity loop for Cs

contouring control mode.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

15*i* 16*i* 30*i* 3056 4056 4056 3057 4057 4057 3058 4058 4058 3059 4059 4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767

Standard setting: 100

These parameters set the gear ratio of the spindle motor to the spindle. When the motor rotates 2.5 times for every rotation of the spindle, for example, set 250 in the parameter.

A parameter is selected by the CTH1A and CTH2A input signals. The gear or clutch status must correspond to the status of the CTH1A and CTH2A input signals.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle does not stop but keeps rotating at the time of orientation. So, be sure to set a proper gear ratio.

FANUC AC SPINDLE MOTOR αi series

FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3069	4069	4069
3070	4070	4070
3071	4071	4071
3072	4072	4072

Position gain on Cs contouring control (HIGH)	CTH1A=0, CTH2A=0
Position gain on Cs contouring control (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Position gain on Cs contouring control (MEDIUM LOW)	CTH1A=1, CTH2A=0
Position gain on Cs contouring control (LOW)	CTH1A=1, CTH2A=1

0.01sec⁻¹ Unit of data: 0 to 32767 Valid data range: Standard setting: 3000

These parameters specify the position gains used on Cs contouring

control mode.

A parameter is selected by the input signals CTH1A and CTH2A.

30*i* 15*i* 16*i* 4074 3074 4074

Speed for return to reference position on Cs contouring control mode/servo mode

1min⁻¹ Unit of data: 0 to 32767 Valid data range: 0

Standard setting:

When 0 is set

The value set in No. 4021 (maximum spindle speed) is used as a reference position return speed on Cs contouring control.

When a value other than 0 is set The value set in this parameter is used as a reference position return speed on Cs contouring control.

NOTE

An overshoot can occur at reference position return time for a cause such as an excessively high reference position return speed by setting the parameter No. 4021 (maximum spindle speed on Cs contouring control mode). In this case, set this parameter.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15*i* 16*i* 30*i* 3086 4086 4086

Motor voltage setting on Cs contouring control

Unit of data: 1% Valid data range: 0 to 100 Standard setting: 100

Set the motor voltage to "100", when Cs contouring control is in

operation.

NOTE

When the maximum speed on Cs contouring control (in terms of motor shaft) is higher than the base speed of the spindle motor, set a value less than 100 in this parameter according to the following expression:

Motor voltage (%)=100× Spindle motor base speed

Maximum speed in Cs contouring control

(in terms of motor shaft)

In this case, also set bit 4 of No. 4016 to 1 as the setting of control characteristics on Cs contouring control.

15*i* 16*i* 30*i*

3092 4092 4092

The reduction rate of position loop gain in returning to the reference position on Cs contouring mode

Unit of data: 1%
Valid data range: 0 to 100
Standard setting: 100

This parameter specifies a rate of change in the position gain used for

reference position return on Cs contouring control mode.

NOTE

An overshoot can occur at reference position return time for a cause such as an excessively high reference position return speed and an excessively large spindle inertia. In this case, an overshoot can be avoided by setting a small value in this parameter.

FANUC AC SPINDLE MOTOR αi series B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiI series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3094 4094 4094

The constant of the torque disturbance compensating (Acceleration feedback gain)

Unit of data:

Valid data range: 0 to 32767

Standard setting: (

This parameter specifies the constant for compensating for a disturbance torque on Cs contouring control mode.

NOTE

By setting this parameter, stability in cutting can be improved.

In this parameter, set a value from 500 to 2000.

Do not set a value exceeding 4000.

15*i* 16*i* 30*i* 3097 4097 4097

Spindle speed feedback gain

Unit of data:

Valid data range: 0 to 32767

Standard setting:

This parameter is set to feed back spindle speed and compensate for torque disturbance on Cs contouring control in systems where spindles and spindle motors are linked by gears or belts.

NOTE

When a belt is used to connect the spindle with the motor, control stability may be improved by feeding back the spindle speed.

In this parameter, set about the same value (10 to 50) as specified in parameter No. 4046 (velocity loop proportional gain), or a smaller value.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15*i* 16*i* 30*i* 4099 3099 4099

Delay time for motor excitation

Unit of data: 1ms Valid data range: 0 to 32767

Standard setting:

This parameter specifies the time required to achieve stable motor excitation on rigid tapping mode or Cs contouring control mode.

NOTE

At the time of switching from the velocity control mode to Cs contouring control mode, the stop time excessive error alarm can be issued intermittently. This is because the excitation state of the spindle motor changes abruptly, and therefore a transient state occurs in the motor, thus moving the motor shaft slightly.

In such a case, set this parameter. In general, set a value from about 300 to 400 (300 to 400 msec).

15*i* 16*i* 30*i* 3131 4131 4131

Velocity detection filter time constant (on Cs contouring control)

Unit of data: $0.1 \mathrm{ms}$ 0 to 10000 Valid data range:

Standard setting value:

This parameter sets a filter time constant for the velocity feedback signal on Cs contouring control. Usually, set 0.

15*i* 30i16*i* 3135 4135 4135

Grid shift amount on Cs contouring control

Unit of data: 1 pulse unit (=0.001°) (0.0001° when bit 0 (CS360M) of parameter No.

4005 is set to 1)

Valid data range: -360000 to +360000

(-3,600,000 to +3,600,000 when bit 0 (CS360M) of parameter No.

4005 is set to 1)

Standard setting value:

Use this parameter to shift the machine reference position on Cs

contouring control.

The machine reference position of the spindle shifts by the set number

of pulses in the CCW direction.

FANUC AC SPINDLE MOTOR αi series

FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

16*i* 30*i* 15*i* Velocity loop integral gain for cutting feed on Cs contouring control(HIGH) 3162 4162 4162 Velocity loop integral gain for cutting feed on Cs contouring control(LOW) 3163 4163 4163

Unit of data:

Valid data range: 0 to 32767

Standard setting value:

These parameters set a velocity loop integral gain for cutting feed

CTH1A=0

CTH1A=1

(G01, G02, G03) on Cs contouring control.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

NOTE

When 0 is set in these parameters, the values set in No. 4054 and No. 4055 (velocity loop integral gain on Cs contouring control) are valid.

30i15i16*i* 4344

Advanced preview feed-forward coefficient

Unit of data: 0.01% Valid data range: 0 to 10000

Standard setting value:

This parameter sets a feed-forward coefficient for exercising

feed-forward control when Cs contouring control is used.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
-	4353	4353			CSPTRE					

CSPTRE

Sets the Cs axis position data transfer function.

Disables the Cs axis position data transfer function.

Enables the Cs axis position data transfer function.

Set this parameter to 1 when using the Cs axis coordinate establishment function.

NOTE

This parameter is valid with 9D50 series G (07) edition or later, 9D70 series A (01) edition or later, and 9D80 series A (01) edition or later.

15*i* 16*i* 30*i* 3406 4406 4406

Acceleration/deceleration time constant at return to the reference position in Cs contouring control

Unit of data: 1msec Valid data range: 0 to 32767

Standard setting:

This parameter sets the acceleration to be used for returning to the reference position in Cs contouring control. Use of this parameter can reduce the shock due to acceleration/deceleration during return to the reference position. The spindle speed command during return to the reference position is then given as follows:

Start of reference position return

NOTE

- 1 When 0 is set in this parameter, a velocity command is assumed as follows.
 - Before detecting the one-rotation signal: Reference position return speed (step-type velocity command)
 - After detecting the one-rotation signal: Distance to the reference position × Position gain
- This parameter is enabled when soft start/stop signal SOCNA is 1.

2.4.8 Diagnosis (Diagnosis Screen)

	Address		Description	11.24
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	Unit
-	0418	-	Position error value of the first spindle	Pulse
1540	-	0418	Position error value of the spindle	Pulse

2.4.9 Alarm

This subsection provides a list of the alarms related to Cs contouring control only. For details of alarms, refer to the Connection Manual (Function) of each CNC.

(a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B

CONNECTION MANUAL (FUNCTION): B-63523EN-1

Refer to Section 9.9, "Cs CONTOUR CONTROL."

(b) For Series 30*i*/31*i*/32*i*

"FANUC Series 30*i*/31*i*/32*i*-MODEL A CONNECTION MANUAL (FUNCTION) : B-63943EN-1 Refer to Section 11.9, "Cs CONTOUR CONTROL."

(c) For Series 15i

"FANUC Series 15*i*-MODEL B CONNECTION MANUAL (FUNCTION) : B-63783EN-1 Refer to Section 9.7, "Cs CONTOUR CONTROL."

(d) For Series 0i

"FANUC Series 0*i*-MODEL C CONNECTION MANUAL (FUNCTION) : B-64113EN-1 Refer to Section 9.8, "Cs CONTOUR CONTROL."

(1) Series 16*i*

Alarm No.	Description
194	Cs contouring control is specified in serial spindle synchronous control mode.
197	A move command was issued from a program when the input signal CON (bit 7 of G027) is off.
751	An alarm was issued on the serial spindle amplifier side.
752	Switching to Cs contouring control mode is not terminated normally.

(2) Series 30*i*

Alarm No.	Description
PS0194	Cs contouring control is specified in serial spindle synchronous control mode.
PS0197	A move command was issued from a program when the input signal CON (bit 7 of G027) is off.
SP0752	Switching to Cs contouring control mode is not terminated normally.

(3) Series 15*i*

Alarm No.	Description
PS0571	A move command for Cs contouring control was issued for an axis not placed on Cs contouring control mode.
PS0572	A Cs contouring control axis command was issued for an axis in motion.

2.5 SPINDLE SYNCHRONOUS CONTROL

Optional function

2.5.1 Start-up Procedure

- H. Check that the error pulse difference between the spindles is within $\pm 5\,$ pulses.
 - Position gain for spindle synchronous control
 - Spindle-to-motor gear ratio data
 - Velocity loop proportional gain for spindle synchronous control
 - Velocity loop integral gain for spindle synchronous control
 - Incomplete integration coefficient
 - Bell-shaped acceleration/deceleration time constant for spindle synchronous control
 - Motor voltage for spindle synchronous control
- I. Check the operation of spindle phase synchronization control.
 - Shift amount for spindle phase synchronization
 - Compensation data for spindle phase synchronization
- J. End the checking of spindle synchronous control operation.

2.5.2 Overview

When, on a machine (such as a lathe) that has two facing spindles, workpiece seizure is to be switched from the first spindle to the second spindle during spindle rotation, or acceleration/deceleration is performed while the first spindle and second spindle hold a workpiece, the two spindles must rotate at the same speed.

When the seizure of a uniquely shaped workpiece is to be switched from one spindle to the other, the two spindles must have the same spindle rotation phase (angular displacement).

The spindle synchronous control function exercises synchronous control between two spindles in these cases.

! CAUTION

- 1 To use this function, the CNC software option is required.
- 2 This function cannot be used with FANUC Series 15*i*.

2.5.3 System Configuration

The system configurations that enable the use of the spindle synchronous control function are shown below.

NOTE

- 1 Spindle synchronous control between spindles each having a different detector configuration is possible.
- 2 Spindle synchronous control between different path is possible. For details, see below: Section 9.12, "SPINDLE SYNCHRONOUS CONTROL", in FANUC Series 16i/18i/21i –MODEL B CONNECTION MANUAL (FUNCTION) (B-63523EN-1) Section 11.13, "SPINDLE SYNCHRONOUS CONTROL", in FANUC Series 30i/31i/32i –MODEL A CONNECTION MANUAL (FUNCTION) (B-63943EN-1)

(1) When the αi position coder is used

(2) When the α position coder S is used

(3) When the built-in motor is used

(4) When the spindle motor with built-in αi MZ sensor is used

(5) When the separate type αiBZ sensor or separate type αiCZ sensor is used

(6) When the external one-rotation signal (proximity switch) is used

NOTE

- 1 When using the external one-rotation signal (proximity switch), use the detection arbitrary gear ratio function (DMR function).
- 2 When using the detection arbitrary gear ratio function (DMR function), set the following:
 - Parameters (No. 4171 to No. 4174) for the numerator/denominator of an arbitrary gear ratio between the motor sensor and spindle
- 3 Set the type of the external one-rotation signal (proximity switch) (bits 3 and 2 of No. 4004).
- 4 For stable detection of the one-rotation signal, detect the one-rotation signal by performing spindle orientation before entering spindle synchronous control mode.

For orientation based on the external one-rotation signal, see Section 2.2, "POSITION CODER METHOD ORIENTATION", in Part I.

2.5.4 Explanation of Operation

- (i) If spindle synchronous control is commanded when the two spindles are rotating at different speeds (including stop state), the two spindles are accelerated or decelerated to the commanded speed then enter synchronous control state.
- (ii) If the synchronous speed command is changed after synchronous control state is entered, the spindles are accelerated or decelerated to the new commanded speed with the parameter-set acceleration while synchronous control state is held. If the synchronous speed command is 0 min⁻¹, the spindles stops in synchronism.
- (iii) If spindle synchronous control at a synchronous speed of 0 min⁻¹ is commanded when the spindles are in stop state, each spindle automatically makes two to three turns to detect the position coder one-rotation signal (as a preparation for spindle phase synchronous control), then enters synchronous control state.

 Next, when the synchronous speed command is changed, the spindles are accelerated with the parameter-set acceleration while synchronous control state is held, until the speed command is changed.
- (iv) When the seizure of a uniquely shaped workpiece needs to be switched between the two spindles, the rotation phase (angular displacement) of one spindle must match that of the other. If a spindle phase synchronous control command is entered when the two spindles are rotating in synchronous control state, each spindle is controlled to have the parameter-set rotation phase (a momentary speed change occurs at this time), then enters synchronous control state again.
 - A rotation phase match can be secured by matching the reference positions of the two spindles by parameter setting beforehand.
- (v) If the two spindles enter synchronous control state at a specified synchronous speed of 0 min⁻¹, and a phase synchronous control command is then entered, each spindle rotates and stops to achieve a parameter-set phase. This operation is performed as if spindle positioning (spindle orientation) is performed while the spindles are stopped. As a result, the reference position of one spindle matches that of the other (phase synchronization). If the synchronous speed command is changed after the two spindles seize a uniquely shaped workpiece, the two spindles are
- acceleration while synchronous control state is held.

 (vi) Even in the state where the two spindles are seizing a workpiece in synchronous control state, constant surface speed control can
 - be exercised. However, even if a speed change greater than the parameter-set acceleration is commanded, the speed changes within the parameter-set acceleration.

accelerated to the new specified speed with the parameter-set

(vii) Do not change the rotation direction command (SFRA, SRVA) during synchronous control.

NOTE

For details, see below:

Section 9.12, "SPINDLE SYNCHRONOUS CONTROL", in FANUC Series 16*i*/18*i*/21*i* -MODEL B CONNECTION MANUAL (FUNCTION) (B-63523EN-1).

Section 11.13, "SPINDLE SYNCHRONOUS CONTROL", in FANUC Series 30*i*/31*i*/32*i* –MODEL A CONNECTION MANUAL (FUNCTION) (B-63943EN-1) Section 9.11, "SPINDLE SYNCHRONOUS CONTROL", in FANUC Series 0*i* -MODEL C CONNECTION MANUAL (FUNCTION) (B-64113EN-1).

2.5.5 I/O Signals (CNC \leftrightarrow PMC)

(1) Address list of input signals (PMC \rightarrow CNC)

	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G038	G038					SPPHS	SPSYC		
Common to all axes	G032	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
Common to all axes	G033	G033			SSGN		R12I	R11I	R10I	R09I
1st-	G070	G070			SFRA	SRVA	CTH1A	CTH2A		
2nd-	G074	G074			SFRB	SRVB	СТН1В	CTH2B		
1st-	G071	G071			INTGA					
2nd-	G075	G075			INTGB					

(2) Details of input signals (CNC → PMC)

(a) Spindle synchronous control signal SPSYC

[Function] Specifies switching to spindle synchronous control mode.

[Operation] When this signal is set to 1, spindle synchronous control mode is set.

When this signal is set to 0, spindle synchronous control mode is cancelled.

(b) Spindle phase synchronous control signal SPPHS

[Function] Specifies spindle phase synchronous control mode (phase matching).

- (i) This function is valid when the spindle synchronous control signal SPSYC is 1.
- (ii) After the spindle synchronous speed control completion signal FSPSY is set to 1, specify this signal.
- (iii) A spindle phase synchronous control operation is performed on the rising edge of this signal. So, the phase once matched is not shifted by setting this signal to 0.

However, a phase matching operation is performed when this signal is changed from 0 to 1 again.

[Operation] When this signal makes a transition from 0 to 1, spindle phase synchronous control is exercised.

(c) Velocity integral control signal INTGA

[Function] [Operation]

Enables or disables velocity integral control.

When this signal is set to 1

⇒ The velocity loop integral function is disabled. This has the same effect as the setting of a velocity loop integral gain of 0.

When this signal is set to 0

⇒ The velocity loop integral function is enabled.

NOTE

- When the two spindles seize the same workpiece, a spindle may be fixed at a position slightly displaced from the specified position because the two spindles are mechanically connected. In this case, an excessively high current can flow
 - because the velocity loop integral function attempts to return the spindle to the specified position. To prevent this, turn on (set to 1) the velocity integral control signal INTGA to disable the velocity loop integral function if the two spindles are mechanically connected.
- When the velocity integral control signal INTGA is turned on (set to 1), the velocity loop integral function is disabled. So, an increased synchronous error can occur. When the two spindles do not seize the same workpiece, turn off (set to 0) the velocity integral control signal INTGA to enable the velocity loop integral function.

(3) Address list of output signals (CNC \rightarrow PMC)

	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	F044	F044				SYCAL	FSPPH	FSPSY		
1st-	F045	F045					SARA			
2nd-	F049	F049					SARB			

(4) Details of output signals (CNC \rightarrow PMC)

(a) Spindle synchronous speed control completion signal FSPSY

[Function]

Posts that spindle synchronous control (speed synchronization) is completed.

[Output condition]

This signal is set to 1 when the following condition is satisfied:

(i) This signal is output when the two spindles have reached the speed corresponding to a specified spindle synchronous speed and the speed difference between the two spindles is equal to or less than the value set in parameter No. 4033 on spindle synchronous control mode.

This signal is set to 0 when any of the following conditions is satisfied:

- (i) The two spindles have not reached the speed corresponding to a specified spindle synchronous speed on spindle synchronous control mode.
- (ii) The speed difference between the two spindles is greater than the value set in parameter No. 4033 on spindle synchronous control mode.
- (iii) Spindle synchronous control mode is not set.

NOTE

Even if this signal is set to 1 once, this signal is set to 0 when the speed difference becomes equal to or greater than the value set in parameter No. 4033 for a cause such as cutting load variation.

(b) Spindle phase synchronous control completion signal FSPPH

[Function]

Posts that spindle phase synchronous control (phase matching) is completed.

[Output condition]

This signal is set to 1 when the following condition is satisfied:

This signal is output when phase matching is completed with the spindle phase synchronous control signal (the error pulse difference between the two spindles is equal to or less than the value set in parameter No. 4810) after the two spindles have reached the speed corresponding to a specified spindle synchronous speed on spindle synchronous control mode.

This signal is set to 0 when any of the following conditions is satisfied:

- Phase matching between the two spindles is not completed on spindle synchronous control mode. The error pulse difference between the two spindles is greater than the value set in parameter No. 4810 on spindle synchronous control mode.
- (ii) Spindle phase synchronous control mode is not set.

NOTE

Even if this signal is set to 1 once, this signal is set to 0 when the speed difference becomes equal to or greater than the value set in parameter No. 4033 for a cause such as cutting load variation.

(c) Phase error monitoring signal SYCAL

[Function]

Posts that the error pulse difference between the two spindles is greater than the parameter-set value on spindle synchronous control mode.

[Output condition]

This signal is set to 1 when the following condition is satisfied:

The error pulse difference between the two spindles after spindle synchronous control is completed is greater than the value set in parameter No. 4811 on spindle synchronous control mode.

This signal is set to 0 when any of the following conditions is satisfied:

- The error pulse difference between the two spindles is equal to or less than the value set in parameter No. 4811 on spindle synchronous control mode.
- (ii) Spindle phase synchronous control mode is not set.

NOTE

Use this signal to take an action if an error such as an excessive synchronous error occurs for a cause on spindle synchronous control mode.

2.5.6 Examples of Sequences

(1) While spindle 1 is rotating, spindle 2 is accelerated for synchronization with spindle 1, and phase matching is performed. Then, the synchronous speed is also changed for acceleration/deceleration synchronization.

- (i) The spindle synchronous speed command signal is input to set the spindle synchronous control signal SPSYC to 1.
- (ii) The spindle synchronous speed control completion signal FSPSY set to 1 is awaited.
- (iii) The spindle phase synchronous control signal SPPHS is set to 1.
- (iv) The spindle phase synchronous control completion signal FSPPH set to 1 is awaited.

NOTE

- 1 When the spindle phase synchronous control signal is input, the spindle synchronous speed control completion signal is once set to 0, then is set to 1 again upon completion of phase synchronization.
- 2 Set the spindle forward rotation command SFR (or the spindle reverse rotation command SRV) to 1 at all times during spindle synchronous control.

(2) Spindle 1 and spindle 2 perform phase matching in stop state, then are accelerated in synchronism.

Next, spindle 1 and spindle 2 are decelerated to a stop in synchronism.

- (i) The spindle synchronous speed command signal is set to 0, and the spindle synchronous control signal SPSYC is set to 1.
- (ii) The spindle synchronous speed control completion signal FSPSY set to 1 is awaited.
- (iii) The spindle phase synchronous control signal SPPHS is set to 1.
- (iv) The spindle phase synchronous control completion signal FSPPH set to 1 is awaited.
- (v) The spindle synchronous speed command signal is input.
- (vi) The spindle synchronous speed command signal is set to 0.
- (vii) The speed zero detection signal of both spindles set to 1 is awaited.
- (viii) The spindle phase synchronous control signal SPPHS is set to 0 and the spindle synchronous control signal SPSYC is set to 0, then the forward rotation command SFR of both spindles is set to 0.

NOTE

If the mode is switched to the spindle synchronous control mode when a one-rotation signal is undetected, a one-rotation signal detection operation is automatically performed. So, the spindle automatically makes 2 to 3 turns even if such turns are not attempted. If both spindles are mechanically connected with each other and one-rotation signal detection operation is disabled, or spindle phase synchronous control is not exercised, automatic detection can be disabled by setting bit 3 of parameter No. 4006.

(3) When the velocity integral control signal is used

NOTE

Turn on (set to 1) the velocity integral control signal INTGA only when the two spindles are seizing the same workpiece. If the signal is turned on (set to 1) in other cases, the velocity loop integral function is disabled. So, an increased synchronous error can result.

(4) When phase synchronous control is performed without automatically detecting the one-rotation signal (Parameter No. 4006#3=1)

- *1 When a spindle synchronous command is input, the one-rotation signal detection operation is not performed, and the spindle is stopped.
- *2 During rotation at a speed of several ten min⁻¹ or higher, the one-rotation signal is detected automatically, and the position coder one-rotation signal detection status signal is set to 1.
- *3 Before inputting the phase synchronous command, check that the position coder one-rotation signal detection status signals of both spindles have been set to 1.

2.5.7 Related Parameters

Paramet	ter No.	Description					
16 <i>i</i>	30 <i>i</i>						
4800#0	-	Direction of rotation of the 1st spindle motor while synchronous control is applied					
4800#1	-	Direction of rotation of the 2nd spindle motor while synchronous control is applied					
-	4801#0	Direction of rotation of each spindle motor while synchronous control is applied					
4040	4040	Error pulse difference between the two spindles for which to output the spindle phase					
4810	4810	synchronous control completion signal					
4811	4811	Error pulse difference between the two spindles for which to output the phase					
4011	4011	synchronous error monitor signal (SYCAL)					
4002#6	4002#6	Whether to enable the rotation direction signal (SFR/SRV) function on spindle					
4002#0	4002#0	synchronous control					
4006#1	4006#1	Gear ratio increment system					
4006#3	4006#3	Setting for disabling automatic one-rotation signal detection at spindle synchronous					
.0000		control mode switching time					
4032	4032	Acceleration used for spindle synchronous control					
		(The same value must be set for both the 1st and 2nd spindles.)					
4033	4033	Spindle synchronous speed arrival level					
4034	4034	Shift amount for spindle phase synchronous control					
4035	4035	Compensation data for spindle phase synchronous control					
4044	4044	Velocity loop proportional gain for spindle synchronous control					
4045	4045	(A parameter is selected by the CTH1A PMC input signal.)					
4052	4052	Velocity loop integral gain for spindle synchronous control					
4053	4053	(A parameter is selected by the CTH1A PMC input signal.)					
4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data					
4030 10 4039	4030 10 4039	(A parameter is selected by the CTH1A and CTH2A PMC input signals.)					
		Position gain for spindle synchronous control					
4065 to 4068	4065 to 4068	(The same value must be specified for both the 1st and 2nd spindles.)					
		(A parameter is selected by the CTH1A and CTH2A PMC input signals.)					
4085	4085	Motor voltage for spindle synchronous control					
4171	4171	Denominator of arbitrary gear ratio between motor sensor and spindle					
4173	4173	(This data is selected by spindle control input signals CTH1A.)					
4172	4172	Numerator of arbitrary gear ratio between motor sensor and spindle					
4174	4174	(This data is selected by spindle control input signals CTH1A.)					
		Magnetic flux switching point used for calculating an acceleration/deceleration time					
4336	4336	constant used for spindle synchronous control					
		(The same value must be specified for both the 1st and 2nd spindles.)					
4240	4240	Bell-shaped acceleration/deceleration time constant for spindle synchronous control					
4340	4340	(The same value must be specified for both the first and second spindles.)					
4346	4346	Incomplete integration coefficient					
4515	4515	Excessive speed deviation alarm detection level on spindle synchronous control					
	4516	Excessive positional deviation alarm detection level on spindle synchronous control					

NOTE

- 1 For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part I.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part I.

2.5.8 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16*i* and 30*i*) among the parameters related to spindle synchronous control. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i

 "FANUC Series 16i/18i/21i-MODEL B

 CONNECTION MANUAL (FUNCTION): B-63523EN-1

 Refer to Section 9.12, "SPINDLE SYNCHRONOUS CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.13, "SPINDLE SYNCHRONOUS CONTROL."
- (c) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.11, "SPINDLE SYNCHRONOUS CONTROL."

16 <i>i</i>	30	#7	#6	#5	#4	#3	#2	#1	#0
4002	4002		SYCDRT						

SYCDRT Whether to enable the rotation direction signal (SFR/SRV) function on spindle synchronous control

0: Enables the rotation direction function.

If a move command from the CNC is positive (+),

- (a) The spindle rotates in the CCW (counterclockwise) direction when the input signal SFR (bit 5 of G70) = 1.
- (b) The spindle rotates in the CW (clockwise) direction when the input signal SRV (bit 4 of G70) = 1.
- 1: Disables the rotation direction function.

If a move command from the CNC is positive (+), the spindle rotates in the CCW (counterclockwise) direction when the input signal SFR = 1 or SRV = 1.

16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
4006	4006					SYCREF		GRUNIT	

GRUNIT Sets a gear ratio setting resolution:

0: 1/100 unit

1: 1/1000 unit

Select a gear ratio data setting resolution from the following:

- (a) Resolution based on motor speed increased by a factor of 100 relative to one spindle rotation
- (b) Resolution based on motor speed increased by a factor of 1000 relative to one spindle rotation

Depending on the setting of this parameter, the increment system of the parameters indicated in the table below changes.

Parameter No.		Description	
16 <i>i</i>	30 <i>i</i>	Description	
4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data	

NOTE

- 1 Usually, use the 1/100 unit (setting "0").
- When the 1/100 unit is set as the gear ratio setting resolution (with the bit set to 0), a steady-state synchronous error may be indicated due to the fraction of the gear ratio. In such a case, the synchronous error can be

In such a case, the synchronous error can be improved when the 1/1000 unit is set as the gear ratio setting resolution (with the bit set to 1).

SYCREF

Setting for function performing automatic detection of the one-rotation signal on spindle synchronous control

0: Automatic detection of the one-rotation signal carried out

1: Automatic detection of the one-rotation signal not carried out. (When spindle phase synchronous control is not carried out)

When the mode is switched to spindle synchronous control mode after power-on, the two spindles automatically perform a one-rotation signal detection operation. So, the spindles automatically make two to three turns even if such turns are not intended.

This operation is required because the one-rotation signal must be detected to enable spindle phase synchronous control.

If the two spindles are mechanically connected to disable each spindle from performing a one-rotation signal detection operation, or if spindle phase synchronous control is not exercised, the operation above can be disabled by setting this bit to 1.

When this parameter is set to "1", check that the one-rotation signal has been detected for both spindles (output signal PC1DTA = 1) before applying the spindle phase synchronous control signal (SPPHS).

If the one-rotation signal is not detected, specify a speed of several ten min⁻¹ or higher in spindle synchronous control mode, and wait until the one-rotation signal is detected. (See sequence example (4).)

FANUC AC SPINDLE MOTOR αi series

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

16*i* 4032

Acceleration at spindle synchronous control

Unit of data: 1min⁻¹/sec (when parameter No. 4006#2 (SPDUNT) = 1, 10 min⁻¹)

Valid data range: 0 to 32767

Standard setting: 0

This parameter sets an acceleration value for linear acceleration/deceleration when the synchronous speed command for spindle synchronous control is changed.

NOTE

- 1 Set exactly the same data for 1st spindle and 2nd spindle. When different data is set, synchronization between the two spindles is not guaranteed.
- 2 When this parameter is set to 0, motor doesn't accelerate/decelerate, so, be sure to set proper value in this parameter.

16*i* 30*i* 4033

Spindle synchronous speed arrival level

Unit of data: 1min⁻¹ (when parameter No. 4006#2 (SPDUNT) = 1, 10 min⁻¹)

Valid data range: 0 to 32767

Standard setting: 10

For the synchronous speed command at spindle synchronous control, if the error of the respective spindle motor speeds are within the setting level, the spindle synchronous control complete signal

(FSPSY) becomes "1".

16*i* 30*i*4034 4034

Shift amount at spindle phase synchronous control

Unit of data: 1 pulse unit (360 degrees/4096)

Valid data range: 0 to 4095

Standard setting: 0

Sets the shift amount from the reference position (one-rotation signal)

at spindle phase synchronous control.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

16*i* 30*i* 4035 4035

Spindle phase synchronous compensation data

1 pulse/2msec Unit of data: 0 to 4095 Valid data range: Standard setting: 10

This parameter reduces speed fluctuations when aligning phase of

spindles in spindle phase synchronous control.

When this parameter is "0", since the phase alignment amount is only issued once, the position error quickly becomes large, and there are

large speed changes on phase alignment.

It is possible to perform smooth phase alignments through issuing separate commands for phase alignment amounts for the number of 2

msec pulses set in this parameter.

16*i* 30*i*

4044 4044

4045 4045 Velocity loop proportional gain on spindle synchronous control (HIGH)

CTH1A=0

Velocity loop proportional gain on spindle synchronous control (LOW)

CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 10

This sets velocity loop proportional gain on spindle synchronous

control.

It is selected HIGH when CTH1A=0 of input signal, and It is selected

LOW when CTH1A=1 of input signal.

16*i* 30*i*

4052 4052

4053 4053

Velocity loop integral gain on spindle synchronous control (HIGH) CTH1A=0 Velocity loop integral gain on spindle synchronous control (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 10

> This sets velocity loop integral gain on spindle synchronous control. It is selected HIGH when CTH1A=0 of input signal, and It is selected

LOW when CTH1A=1 of input signal.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

16 <i>i</i>	30i		
4056	4056	Gear ratio (HIGH)	CTH1A=0, CTH2A=0
4057	4057	Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
4058	4058	Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
4059	4059	Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767 Standard setting: 100

These parameters set the gear ratio of the spindle motor to the spindle. When the motor rotates 2.5 times for each turn of the spindle, for example, set 250 in the parameter.

A parameter is selected by the CTH1A and CTH2A input signals. The gear or clutch status must correspond to the status of the CTH1A and CTH2A input signals.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle does not stop but keeps rotating at the time of orientation. So, be sure to set a proper gear ratio.

101	30 <i>i</i>	
4065	4065	
4066	4066	
4067	4067	
4068	4068	

16;

Position gain on synchronous control (HIGH)	CTH1A=0, CTH2A=0
Position gain on synchronous control (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Position gain on synchronous control (MEDIUM LOW)	CTH1A=1, CTH2A=0
Position gain on synchronous control (LOW)	CTH1A=1, CTH2A=1

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting: 1000

This sets position gain in spindle synchronous control. It is selected by

CTH1A or CTH2A of input signal.

16*i* 30*i*4085 4085

Motor voltage setting on spindle synchronous control

Unit of data: 1% Valid data range: 0 to 100

Standard setting: Depend on motor model.

Set a motor voltage for spindle synchronous control.

NOTE

Usually, set the same value as for the setting of a motor voltage (No. 4083) on the velocity control mode.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

30 <i>i</i>	30 <i>i</i>	16 <i>i</i>
Denominator of arbitrary gear ratio between motor sensor and spindle (HIGH	4171	4171
CTH1A=	7171	7171
Numerator of arbitrary gear ratio between motor sensor and spindle (HIGH)	4172	4172
CTH1A=		
Denominator of arbitrary gear ratio between motor sensor and spindle (LOW)	4173	4173
CTH1A=		
Numerator of arbitrary gear ratio between motor sensor and spindle (LOW)	1171	4174
CTH1A=	71/7	71/4

Unit of data:

Valid data range: 0 to 32767

Standard setting: 0

These parameters set conversion coefficients (numerator, denominator) for using the detection arbitrary gear ratio function (DMR function) by multiplying a motor sensor (αiM or αiMZ sensor) feedback signal by a gear ratio to produce a spindle position feedback signal.

When the spindle rotates Q times while the motor shaft rotates P times (there is no common divisor other than 1 for P and Q), settings are:

No. 4171 (No. 4173 when CTH1A = 1) = P No. 4172 (No. 4174 when CTH1A = 1) = Q

When 0 is set in any of these parameters, the setting of 1 is assumed.

NOTE

When using the external one-rotation signal (proximity switch), set the detection arbitrary gear ratio (DMR) between the motor sensor and spindle by using this parameter.

FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

16*i* 30*i* 4336 4336

Acceleration switch point on spindle synchronous control

Unit of data

 1min^{-1} (when parameter No. 4006#2 (SPDUNT) = 1, 10 min⁻¹)

Valid data range: Standard setting:

0 to 32767

The acceleration for spindle synchronous control changes according to the speed set in this parameter as follows:

Area where the spindle speed does not exceed the speed set in this parameter

The acceleration for spindle synchronous control is constant (as set in parameter No. 4032).

Area where the spindle speed exceeds the speed set in this parameter

The acceleration for spindle synchronous control decreases in inverse proportion to the speed.

NOTE

- 1 Set the same data for the first spindle and second spindle. If different data is set, synchronization between the two spindles is not guaranteed.
- 2 When this parameter is set to 0, linear acceleration/deceleration (constant acceleration) is performed.

16*i* 30*i*

4340 4340

Bell-shaped acceleration/deceleration time constant for spindle synchronous control

Unit of data: 1msec Valid data range: 0 to 512

Standard setting:

This parameter sets a bell-shaped acceleration/deceleration time constant for spindle synchronous control.

This parameter is applied to the move command after "Acceleration at spindle synchronous control" (parameter No. 4032) is applied.

When this parameter is set, the spindle synchronous speed control completion signal (FSPSY), output when the synchronous speed is first reached after the spindle synchronous control mode is entered, is delayed by the set time.

NOTE

Set the same data for the first spindle and second spindle. If different data is set, synchronization between the two spindles is not guaranteed.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR Bil series B-65280EN/06

16*i* 30*i*4346 4346

Incomplete integration coefficient

Unit of data:

Valid data range: 0 to 32767

Standard setting: 0

Set this parameter to use incomplete integration for velocity loop

integration control.

NOTE

Usually, this parameter need not be adjusted.

16*i* 30*i* 4515

Excessive speed deviation alarm detection level on spindle synchronous control

Unit of data: 1min⁻¹ (10min⁻¹ when bit 2 (SPDUNT) of parameter No. 4006 is set to

1)

Valid data range: 0 to 32767

Standard setting: 0

This parameter sets a level for detecting the excessive speed deviation alarm under spindle synchronous control.

If the positional deviation (position error) or the difference between the speed command for the spindle end calculated from the position gain and the actual spindle speed exceeds the value set in this parameter in the spindle synchronous control mode, the excessive speed deviation alarm under spindle synchronous control (spindle alarm C8) is detected. When this parameter is set to 0, alarm detection is disabled.

If the speed integration control signal (INTG) is used, the speed deviation increases for a cause such as acceleration/deceleration and cutting load. The spindle speed deviation that causes torque command saturation is indicated below. Set an alarm level by using a calculated value as a guideline. (During spindle synchronous control, ensure that torque command saturation does not take place.)

Spindle speed deviation [min⁻¹] = $1024 \times A / P \times B / G$ where

I	No.4006#1	No.4009#0	Α	В
I	0	0	1	100
	0	1	16	100
	1	0	1	1000
	1	1	16	1000

P: Velocity loop proportional gain on spindle synchronous control (No.4044, 4045)

G: Gear ratio (No.4056 to 4059)

NOTE

This parameter is valid with 9D50 series N (14) edition or later, 9D70 series D (04) edition or later, and 9D80 series A (01) edition or later.

FANUC AC SPINDLE MOTOR αi series B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiI series 2.EXPLANATION OF OPERATION MODES

16*i* 30*i*

4516 4516

Excessive positional deviation alarm detection level on spindle synchronous control

Unit of data: 100 pulses (weight of 4096 pulses/rev)

Valid data range: 0 to 32767

Standard setting: 0

This parameter sets a level for detecting the excessive positional deviation alarm under spindle synchronous control.

If the positional deviation (position error) exceeds the value set in this parameter in the spindle synchronous control mode, the excessive positional deviation alarm under spindle synchronous control (spindle alarm C9) is detected. When this parameter is set to 0, alarm detection is disabled.

As an alarm level, set a value greater than the positional deviation (position error) equivalent to the spindle speed specified in the spindle synchronous control mode. The positional deviation equivalent to the spindle speed can be calculated from the following expression:

Positional deviation [pulse]

= Spindle speed [min⁻¹] / $60 \times 4096 \times 100$ / PG where

PG: Position gain on synchronous control (Nos.4065 to 4068)

NOTE

This parameter is valid with 9D50 series N (14) edition or later, 9D70 series D (04) edition or later, and 9D80 series A (01) edition or later.

2.5.9 Number of Error Pulses in Spindle Synchronous Control

This subsection describes the method of calculating the number of error pulses (position error) of each spindle on spindle synchronous control mode, and also describes the items to be checked when a calculated value differs from the actual number of error pulses.

(1) Calculating the number of error pulses on spindle synchronous control

When the spindle is rotating at a constant speed, the number of error pulses is calculated as follows:

Number of error pulses (pulse) =

$$4096(\text{pulse/rev}) \times \frac{\text{Spindle synchronization speed(min}^{-1})}{60(\text{sec})} \times \frac{1}{\text{Position gain(sec}^{-1})}$$

Example:

When spindle synchronous speed = 1000 min^{-1} , and position gain = 20 sec^{-1}

Number of error pulses =
$$4096 \times \frac{1000}{60} \times \frac{1}{20} = Approx.3413$$
 (pulse)

(2) Checking the number of error pulses on spindle synchronous control

If the number of error pulses on spindle synchronous control checked by diagnosis (diagnosis screen) differs greatly from the calculated value, check the following:

- (a) Spindle speed (This can be checked using the actual rotation speed indication of the CNC.)
- (b) Motor speed indication on the spindle monitor screen or the spindle check board
- (c) Actual gear ratio between the spindle and motor found from the spindle speed and motor speed checked by (a) and (b)
- (d) Spindle-to-motor gear ratio parameters (Nos. 4056 to 4059)
- (e) Position gain parameters (Nos. 4065 to 4068)
- (f) How the gear selection signals (CTH1A, CTH2A) are used for selection (This item can be checked on the spindle motor screen or the PMC signal status screen.)

NOTE

When the 1/100 unit is set as the gear ratio setting resolution (with bit 1 of No. 4006 set to 0), the actual number of error pulses may differ from the calculated value by several pulses due to the fraction of the gear ratio.

In such a case, the difference between the actual number of error pulses and the calculated value can be decreased when the 1/1000 unit is set as the gear ratio setting resolution (with bit 1 of No. 4006 set to 1).

2.5.10 Specifying a Shift Amount for Spindle Phase Synchronous Control

The following describes an example of determining the shift amount for phase synchronization in synchronous control of the spindle phase.

- (1) Apply synchronous control of the spindle phase by setting the following:
 - (a) SFR (or SRV)=1 for the 1st and 2nd spindles: M03 (M04)
 - (b) Spindle synchronous speed command = 0 min⁻¹: S0
 - (c) For the 1st and 2nd spindles, set 0 in the parameter (No.4034) for the shift amount for spindle phase synchronous control.
- (2) After establishing spindle phase synchronization, set SFR/SRV for the 2nd spindle to 0 (to deactivate the motor).

 The motor for the 2nd spindle is placed in power-off state at this

time, so that the 2nd spindle can be rotated manually.

- (3) Rotate the 2nd spindle manually from the position of (1) to the position for spindle phase synchronization, then check the number of error pulses between the spindles (No. 416) on the diagnosis (diagnosis screen).
 - This value serves as data to be set in the parameter for the shift amount used for spindle phase synchronous control.
- (4) Set the number of pulses found by (3) as shift amount parameter data (No. 4034) for spindle phase synchronous control of the 2nd spindle.
 - In general, set 0 in the parameter for the shift amount for spindle phase synchronous control for the 1st spindle.
- (5) After canceling the spindle synchronous control command, perform another spindle phase synchronization operation, according to the following settings, to check that phase synchronization has been established as expected:
 - (a) SFR (or SRV)=1 for the 1st and 2nd spindles: M03 (M04)
 - (b) Spindle synchronous speed command = 0 min⁻¹: S0

2.5.11 Diagnosis (Diagnosis Screen)

Add	ress	Description	Unit
16 <i>i</i>	30 <i>i</i>	Description	Oilit
0414	-	Position error on spindle synchronous control mode (1st spindle)	Pulse
0415	-	Position error on spindle synchronous control mode (2nd spindle)	Pulse
0416	-	Absolute value of a synchronous error between the 1st spindle and 2nd spindle	Pulse
-	0418	Positional error of each spindle in spindle synchronous control mode	Pulse
-	0425	Synchronous error of each spindle in spindle synchronous control mode	Pulse

2.5.12 Alarm

This subsection provides a list of the alarms related to spindle synchronous control only. For details of alarms, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i

 "FANUC Series 16i/18i/21i-MODEL B

 CONNECTION MANUAL (FUNCTION): B-63523EN-1

 Refer to Section 9.12, "SPINDLE SYNCHRONOUS CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A

 CONNECTION MANUAL (FUNCTION): B-63943EN-1

 Refer to Section 11.13, "SPINDLE SYNCHRONOUS CONTROL."
- (c) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.11, "SPINDLE SYNCHRONOUS CONTROL."

(1) Series 16*i*

Alarm No.	Description
194	Cs contouring control is specified in serial spindle synchronous
134	control mode.

(2) Series 30i

Alarm No.	Alarm No. Description								
PS194	Cs contouring control is specified in serial spindle synchronous								
F319 4	control mode.								

2.6 SPECIFICATIONS COMMON TO ALL OPERATION MODES

2.6.1 Overview

This section describes the I/O signals (CNC \leftrightarrow PMC), parameters, diagnosis signals, and alarms common to all operation modes.

2.6.2 List of I/O Signals (CNC \leftrightarrow PMC)

This subsection provides a list of the I/O signals related to spindle speed control only. For details of each signal, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3, "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

For details of the I/O signals common to the CNCs, see Chapter 3, "I/O SIGNALS (CNC \leftrightarrow PMC)", in Part I.

(1) Input signals (PMC \rightarrow CNC)

(a) Series 16i

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G027				*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
Common to all axes	G028						GR2	GR1	
Common to all axes	G029		*SSTP	SOR	SAR	·			
Common to all axes	G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
1st-	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
2nd-	G034	R08I2	R07I2	R06I2	R05l2	R04I2	R03I2	R02I2	R01I2
1st-	G033	SIND	SSIN	SGN		R12I	R11I	R10I	R09I
2nd-	G035	SIND2	SSIN2	SGN2		R12I2	R11I2	R10I2	R09I2

NOTE

*1 These signals are valid in multi-spindle control.

(b) Series 30i

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G027				*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
Common to all axes	G028						GR2	GR1	
Common to all axes	G029		*SSTP	SOR	SAR				
Common to all axes	G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
1st-	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
2nd-	G034	R08I2	R07I2	R06I2	R05l2	R04I2	R03I2	R02I2	R01I2
1st-	G033	SIND	SSIN	SGN		R12I	R11I	R10I	R09I
2nd-	G035	SIND2	SSIN2	SGN2		R12I2	R11I2	R10I2	R09I2

NOTE

*1 These signals are valid in multi-spindle control.

FANUC AC SPINDLE MOTOR αi series B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiI series 2.EXPLANATION OF OPERATION MODES

(c) Series 15i

				#7	#6	#5	#4	#3	#2	#1	#0
	Common to	all axes	G005							FIN	
									•		-
		1st-	G024	RI7A	RI6A	RI5A	RI4A	RI3A	RI2A	RI1A	RI0A
		2nd-	G232	RI7B	RI6B	RI5B	RI4B	RI3B	RI2B	RI1B	RI0B
		1st-	G025	RISGNA			RI12A	RI11A	RI10A	RI9A	RI8A
		2nd-	G233	RISGNB			RI12B	RI11B	RI10B	RI9B	RI8B
					•						
		1st-	G026		GS4A	GS2A	GS1A				
		2nd-	G272		GS4B	GS2B	GS1B				
				•		-	-	-"			
(d) Com	mon to	CNCs									
	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070	MRDYA		SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA
2nd-	G235	G074	G074	MRDYB		SFRB	SRVB	CTH1B	CTH2B	TLMHB	TLMLB
						_		_			
1st-	G226	G071	G071							*ESPA	ARSTA
2nd-	G234	G075	G075							*ESPB	ARSTB
									· ·		
1st-	G228	G073	G073				DSCNA		MPOFA		

(2) Output signals (CNC \rightarrow PMC)

(a) Series 16i

	#7	#6	#5	#4	#3	#2	#1	#0
F001				ENB				
F007						SF		
F022	S07	S06	S05	S04	S03	S02	S01	S00
F023	S15	S14	S13	S12	S11	S10	S09	S08
F024	S23	S22	S21	S20	S19	S18	S17	S16
F025	S31	S30	S29	S28	S27	S26	S25	S24
F034						GR30 (*1)	GR2O (*1)	GR10 (*1)
F036	R08O	R070	R06O	R05O	R040	R03O	R02O	R010
F037					R120	R110	R100	R09O

NOTE

F001 F007 F022 F023 F024 F025 F034 F036 F037 *1 These signals are valid with the M series only.

(b) Series 30i

	#7	#6	#5	#4	#3	#2	#1	#0
				ENB				
			•			SF		
:	S07	S06	S05	S04	S03	S02	S01	S00
;	S15	S14	S13	S12	S11	S10	S09	S08
;	S23	S22	S21	S20	S19	S18	S17	S16
;	S31	S30	S29	S28	S27	S26	S25	S24
						GR3O (*1)	GR2O (*1)	GR10 (*1)
R	080	R07O	R06O	R05O	R040	R03O	R02O	R010
					R120	R110	R100	R09O

NOTE

*1 These signals are valid with the M series only.

FANUC AC SPINDLE MOTOR αi series B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiI series 2.EXPLANATION OF OPERATION MODES

(c) Series 15i

(c) Octio	3 101										
				#7	#6	#5	#4	#3	#2	#1	#0
(Common to a	ll axes	F008							SF	
(Common to a	ll axes	F020	S 7	S6	S5	S4	S3	S2	S1	S0
(Common to a	ll axes	F021	S15	S14	S13	S12	S11	S10	S09	S08
(Common to a	ll axes	F022	S23	S22	S21	S20	S19	S18	S17	S16
(Common to a	ll axes	F023	S31	S30	S29	S28	S27	S26	S25	S24
(Common to a	ll axes	F045			SRSRDY					
							_				
		1st-	F010	RO7A	RO6A	RO5A	RO4A	RO3A	RO2A	RO1A	RO0A
		2nd-	F320	RO7B	RO6B	RO5B	RO4B	RO3B	RO2B	RO1B	RO0B
		1st-	F11	RO15A	RO14A	RO13A	RO12A	RO11A	RO11A	RO10A	RO9A
		2nd-	F321	RO15B	RO14B	RO13B	RO12B	RO11B	RO11B	RO10B	RO9B
		1st-	F014	MR7A	MR6A	MR5A	MR4A	MR3A	MR2A	MR1A	MR0A
		2nd-	F324	MR7B	MR6B	MR5B	MR4B	MR3B	MR2B	MR1B	MR0B
				_							
		1st-	F015	MR15A	MR14A	MR13A	MR12A	MR11A	MR10A	MR9A	MR8A
		2nd-	F325	MR15B	MR14B	MR13B	MR12B	MR11B	MR10B	MR9B	MR8B
				_							
		1st-	F234	SSPD7A	SSPD6A	SSPD5A	SSPD4A	SSPD3A	SSPD2A	SSPD1A	SSPD0A
		2nd-	F250	SSPD7B	SSPD6B	SSPD5B	SSPD4B	SSPD3B	SSPD2B	SSPD1B	SSPD0B
				_							
		1st-	F235	SSPD15A	SSPD14A	SSPD13A	SSPD12A	SSPD11A	SSPD10A	SSPD9A	SSPD8A
		2nd-	F251	SSPD15B	SSPD14B	SSPD13B	SSPD12B	SSPD11B	SSPD10B	SSPD9B	SSPD8B
				_		T		T			
		1st-	F341								SRRDYA
		2nd-	F342								SRRDYB
_											
(d) Com											
	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045		TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
2nd-	F245	F049	F049		TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
					1	1		1	1	i	
1st-	F231	F047	F047				EXOFA	ļ			PC1DTA
2nd-	F247	F051	F051				EXOFB	<u></u>			PC1DTB

2.6.3 Parameters

This subsection describes those parameters that are common to all operation modes by dividing them into several types.

NOTE

For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part I.

(1) List of parameters specific to spindle motor driving

This item provides a list of the motor parameters specific to spindle motor driving (with no speed range switching). Usually, the settings of these parameters need not be changed. Use the values indicated on a parameter table for each motor model without modification.

	Parameter No.		D
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3006#2	4006#2	4006#2	Sets the unit of speed.
3008#4	4008#4	4008#4	Sets the method of output control.
3011#3	4011#3	4011#3	Sets the number of motor poles.
3011#4	4011#4	4011#4	Sets a maximum output for acceleration/deceleration.
3011#7	4011#7	4011#7	Sets the number of motor poles.
3012#2,#1,#0	4012#2,#1,#0	4012#2,#1,#0	Sets a PWM carrier frequency.
3012#7	4012#7	4012#7	Sets the spindle HRV function.
3013#6 to #2	4013#6 to #2	4013#6 to #2	Sets current dead-band data.
3013#7	4013#7	4013#7	Sets a PWM carrier frequency in low-speed characteristics area of speed range switching.
3020	4020	4020	Maximum motor speed
3039	4039	4039	Slip compensation coefficient
3080	4080	4080	High-speed area regenerative power limit/regenerative power limit
3083	4083	4083	Motor voltage on velocity control
3084	4084	4084	Motor voltage on orientation
3085	4085	4085	Motor voltage on servo mode/spindle synchronous control
3086	4086	4086	Motor voltage on Cs contouring control
3100	4100	4100	Base speed for motor output specification
3101	4101	4101	Torque limitation value for motor output specification
3102	4102	4102	Excitation voltage saturation speed with no load
3103	4103	4103	Base speed limit ratio
3104	4104	4104	Current loop proportional gain
3106	4106	4106	Current loop integral gain
3108	4108	4108	Current loop integral gain zero speed
3109	4109	4109	Filter time constant in voltage command saturation processing
3110	4110	4110	Current conversion constant
3111	4111	4111	Secondary current coefficient
3112	4112	4112	Voltage command saturation decision level/PWM command clamp value
3113	4113	4113	Slip constant
3114	4114	4114	Slip compensation coefficient for a high-speed area/slip compensation coefficient at deceleration time
3115	4115	4115	PWM command clamp value at deceleration time
3116	4116	4116	Motor leakage constraint

FANUC AC SPINDLE MOTOR αi series B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

	Parameter No.		Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3117	4117	4117	Voltage compensation coefficient for a high-speed area in steady state/motor voltage coefficient in steady state
3118	4118	4118	Voltage compensation coefficient for a high-speed area at deceleration time/motor voltage coefficient at deceleration time
3119	4119	4119	Time constant for excitation current change at deceleration time/time constant for excitation current change
3120	4120	4120	Dead-band rectangular wave component zero voltage/dead-band data
3127	4127	4127	Load meter indication value at maximum output time
3128	4128	4128	Compensation coefficient between the specification and true base/maximum torque curve compensation coefficient
3129	4129	4129	Secondary current coefficient on rigid tapping
3130	4130	4130	Current loop proportional gain velocity coefficient/current phase delay compensation constant
3133	4133	4133	Motor model code
3134	4134	4134	Motor overheat level (2 words)
3169	4169	4169	Temperature monitoring time constant
3362	4362	4362	Load meter compensation 1
3363	4363	4363	Load meter compensation 2
3364	4364	4364	Load meter compensation 3

(2) List of parameters related to alarm detection

This item provides a list of the parameters related to alarm detection conditions.

	Parameter No.		Description				
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description				
3009#2	4009#2	4009#2	Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued				
3087	4087	4087	Overspeed level				
3088	4088	4088	Velocity error excess detection level when the motor is bound				
3089	4089	4089	Velocity error excess detection level when the motor is rotating				
3090	4090	4090	Overload detection level				
3123	4123	4123	Short-time overload detection period				

(3) Other parameters

This item provides a list of the parameters common to all operation modes except the parameters listed in Items (1) and (2) above.

Parameter No. 15 <i>i</i> 16 <i>i</i> 30 <i>i</i>).	Description	
		30 <i>i</i>	Description	
_	3706#1,0	-	Gear ratio between the spindle and position coder (cases of $\times 1$, $\times 2$, $\times 4$, $\times 8$)	
5602#3	_	_	Whether to indicate an alarm detected by the spindle amplifier (Usually, set 0.)	
5807#0	_	_	Enables/disables the spindle alarms (SPxxxx) of all spindles. (Usually, set 0.)	
5842	_	3720	Number of position coder pulses	
5850	_	_	Spindle number selected at power-on/reset time	
3001#0	4001#0	4001#0	Whether to use the MRDY signal (machine ready signal)	
3006#1	4006#1	4006#1	Gear ratio increment system	
3006#2	4006#2	4006#2	Sets the unit of speed.	
3009#0	4009#0	4009#0	Velocity loop gain increment system	
3009#4	4009#4	4009#4	Whether to output the load detection signals (LDT1, LDT2) during acceleration/deceleration	
3012#7	4012#7	4012#7	Sets the spindle HRV function.	
3019#2	4019#2	4019#2	Whether to perform torque clamping when the speed is zero	
3019#7	4019#7	4019#7	Automatic parameter setting function	
3352#1	4352#1	4352#1	Sets the peak hold function for load meter output.	
3395#3	4395#3	4395#3	Sets parameter transfer from the CNC to spindle software.	
3020	4020	4020	Maximum motor speed	
3022	4022	4022	Speed arrival detection signal	
3023	4023	4023	Speed detection level	
3024	4024	4024	Speed zero detection level	
3025	4025	4025	Torque limitation value.	
3026	4026	4026	Load detection level 1	
3027	4027	4027	Load detection level 2	
3056	4056	4056	Gear ratio (High)	
3057	4057	4057	Gear ratio (Medium High)	
3058	4058	4058	Gear ratio (Medium Low)	
3059	4059	4059	Gear ratio (Low)	
3095	4095	4095	Speedometer output voltage adjustment value	
3096	4096	4096	Load meter output voltage adjustment value	
3122	4122	4122	Speed detection filter time constant	
3170	4170	4170	Overload current alarm detection level	
3345	4345	4345	Detection level of the spindle motor speed command	
3346	4346	4346	Incomplete integral coefficient	
3351	4351	4351	Current detection offset compensation	

2.6.4 Details of Parameters

This subsection details the serial spindle parameters (in the four thousands for 16*i*, in the four thousands for 30*i*, and in the three thousands for 15*i*) among the parameters common to all operation modes. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3, "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

(1) List of parameters specific to spindle motor driving

Usually, the settings of the motor parameters specific to spindle motor driving need not be changed. Their details are omitted.

(2) List of parameters related to alarm detection

This item details the parameters related to alarm detection conditions.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3009	4009	4009						ALSP		

ALSP Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued

0: Turns off the power after the motor is decelerated and stopped.

1: Turns off the power to the motor immediately.

Set this parameter to 1 to turn off the power to the motor immediately when any spindle alarm is issued

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15*i* 16*i* 30*i* 3087 4087 4087

Overspeed level

Unit of data: 1% Valid data range: 0 to 115 Standard setting value: 115

This parameter sets an overspeed level.

When the speed exceeds [maximum motor speed (No. 4020) × setting

data (%)], the overspeed alarm (spindle alarm 07) is issued.

♠ WARNING

Make sure this parameter is set to the standard setting value. Do not change the value.

15*i* 16*i* 30*i* 3088 4088 4088

Velocity error excess detection level when the motor is bound

Unit of data: 0.01% Valid data range: 0 to 10000

Standard setting value: 75

This parameter sets a velocity error excess (spindle alarm 31)

detection level when the motor is bound.

If a velocity error equal to or greater than [maximum motor speed (No. 4020) × setting data (%)] occurs when the motor is bound, for example, the motor binding alarm (spindle alarm 31) is issued.

15*i* 16*i* 30i 4089 4089 3089

Velocity error excess detection level when the motor is rotating

Unit of data: 0.1% 0 to 1000 Valid data range: Standard setting value: 200

This parameter sets a velocity error excess detection level when the

motor is rotating.

If a velocity error equal to or greater than [maximum motor speed (No. 4020) × setting data (%)] occurs, the velocity error excess alarm

(spindle alarm 02) is issued.

30*i* 15*i* 16*i* 3090 4090 4090

Overload detection level

Unit of data: 1% 0 to 100 Valid data range: Standard setting value: 90

This parameter sets a condition for detecting the short-time overload alarm (spindle alarm 29).

If the state where a load equal to or greater than setting data (%) (maximum motor output [load meter full scale] = 100%) is imposed on the spindle motor lasts for a specified period (set in No. 4123) or more, the short-time overload alarm (spindle alarm 29) is issued.

FANUC AC SPINDLE MOTOR αi series

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3123 4123 4123

Short-time overload detection period

Unit of data: 1sec
Valid data range: 0 to 500
Standard setting value: 30

This parameter sets the timing for detecting the short-time overload

alarm (spindle alarm 29).

If the state where a load equal to or greater than the specified value (set in parameter No. 4090) is imposed on the spindle motor lasts for at least the period specified in this parameter, the short-time overload

alarm (spindle alarm 29) is issued.

(3) Other parameters

This item details the parameters common to all operation modes except the parameters listed in Items (1) and (2) above.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3001	4001	4001

#7	#6	#5	#4	#3	#2	#1	#0
							MRDY1

MRDY1

Whether to use the MRDYA signal (machine ready signal)

0: Does not uses the MRDYA signal (MRDYA = 1 at all times).

1: Uses the MRDYA signal.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3006	4006	4006

#7	#6	#5	#4	#3	#2	#1	#0
					SPDUNT	GRUNIT	

GRUNIT

Sets a gear ratio setting resolution:

0: 1/100 unit 1: 1/1000 unit

Select a gear ratio data setting resolution from the following:

- (a) Resolution based on motor speed increased by a factor of 100 relative to one spindle rotation
- (b) Resolution based on motor speed increased by a factor of 1000 relative to one spindle rotation

Depending on the setting of this parameter, the increment system of the parameters indicated in the table below changes.

	Parameter No	Description	
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data

NOTE

Usually, use the 1/100 unit (setting "0").

SPDUNT Sets the

Sets the unit of speed.

0: Sets the 1 min⁻¹ unit.

1: Sets the 10 min⁻¹ unit.

When a type of motor whose maximum speed exceeds 32767 min⁻¹ is used, set this parameter to 1.

The setting of this parameter changes the increment systems of the parameters listed in the table below.

Parameter No.		о.	Description	Increment system of parameter		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>		1 min ⁻¹ unit	10 min ⁻¹ unit	
3020	4020	4020	Maximum motor speed	1min ⁻¹	10min ⁻¹	
3021	4021	4021	Maximum spindle speed on Cs contouring control	1min ⁻¹	10min ⁻¹	
3030	4030	4030	Soft start/stop setting time	1min ⁻¹ /sec	10min ⁻¹ /sec	
3032	4032	4032	Acceleration on spindle synchronous control	1min ⁻¹ /sec	10min ⁻¹ /sec	
3033	4033	4033	Spindle synchronous speed arrival level	1min ⁻¹	10min ⁻¹	
3074	4074	4074	Reference position return speed on Cs contouring control/servo mode	1min ⁻¹	10min ⁻¹	
3098	4098	4098	Maximum speed for position feedback signal detection	1min ⁻¹	10min ⁻¹	
3100	4100	4100	Base speed for motor output specification	1min ⁻¹	10min ⁻¹	
3102	4102	4102	Excitation voltage saturation speed with no load	1min ⁻¹	10min ⁻¹	
3108	4108	4108	Current loop integral gain zero speed	1min ⁻¹	10min ⁻¹	
L	ow-speed c	haracteristi	cs parameters (when the speed range switching co	ntrol function is	used)	
3108	4108	4108	Current loop integral gain zero speed	1min ⁻¹	10min ⁻¹	
3138	4138	4138	Base speed for motor output specification	1min ⁻¹	10min ⁻¹	
3140	4140	4140	Excitation voltage saturation speed with no load	1min ⁻¹	10min ⁻¹	
3144	4144	4144	Current loop integral gain zero speed	1min ⁻¹	10min ⁻¹	
3160	4160	4160	Speed detection level hysteresis	1min ⁻¹	10min ⁻¹	

NOTE

- 1 Usually, set the 1 min⁻¹ unit (by setting the parameter to 0).
- 2 After changing the setting of this parameter, turn the CNC off, then on again.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3009	4009	4009

#7	#6	#5	#4	#3	#2	#1	#0
			LDTOUT				VLPGAN

VLPGAN

Velocity control loop gain increment system

0: Uses ordinary setting.

1: Divides ordinary setting data by 16 for processing.

NOTE

Usually, set this parameter to 0.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

LDTOUT

Whether to output the load detection signals (LDT1, LDT2) during acceleration/deceleration

- 0: Does not output the load detection signals during acceleration/deceleration (standard setting value).
- 1: Outputs the load detection signals during acceleration/ deceleration (at all times) when the parameter-set level is exceeded.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3012	4012	4012

#7	#6	#5	#4	#3	#2	#1	#0
SPHRV							

SPHRV

Sets the spindle HRV control function.

- 0: Disables spindle HRV control.
- 1: Enables spindle HRV control. (standard setting value)

Set this parameter to 1.

NOTE

The control method usable with the αi series spindle is spindle HRV control only.

The conventional control method is not supported.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>		
3019	4019	4019		

#7	#6	#5	#4	#3	#2	#1	#0
PRLOAD					SSTTRQ		

SSTTRQ

Whether to perform torque clamping when the speed is zero

- 0: Performs clamping.
- 1: Does not perform clamping.

NOTE

Usually, set this parameter to 1 not to perform clamping.

PRLOAD

Automatic parameter setting function

- 0: Does not perform automatic parameter setting (standard setting value).
- 1: Performs automatic parameter setting.

After setting a desired motor model code in parameter No. 4133 and setting this bit to 1, turn off the power to the CNC, then turn on the power to the CNC again. The parameters (No. 4000 to No. 4175) for the αi series spindle corresponding to the model code are automatically initialized. Upon completion of automatic setting, this bit is automatically set to 0.

NOTE

With FS15*i*, the parameter address of this function is different, namely, bit 0 of No. 5607 is used. Moreover, note that the meanings of settings are reversed as follows.

- 0: Performs automatic parameter setting.
- 1: Does not perform automatic parameter setting.
- In this case, set a model code in parameter No. 3133.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3352	4352	4352							PKHALW	

PKHALW

Sets the peak hold function for load meter output.

0: Does not use the peak hold function. (standard setting value)

1: Uses the peak hold function.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3395	4395	4395					PRIMED			

PRIMED

Sets parameter transfer from the CNC to spindle software.

- 0: Regards parameters as valid one second after they are transferred from the CNC. (Standard setting value)
- 1: Regards parameters as valid as soon as they are transferred from the CNC.

NOTE

This parameter is valid with 9D50 series F (06) edition or later, 9D70 series A (01) edition or later, and 9D80 series A (01) edition or later.

15*i* 16*i* 30*i* 3020 4020 4020

Maximum motor speed

Unit of data: 1min⁻¹ (Unit of 10 min⁻¹ when bit 2 (SPDUNT) of parameter No. 4006

= 1)

Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

This parameter sets a maximum spindle motor speed.

15*i* 16*i* 30*i* 3022 4022

Speed arrival detection level

Unit of data: 0.1% Valid data range: 0 to 1000 Standard setting value: 150

This parameter sets a speed arrival signal (SARA) detection range. When the motor speed reaches within ±(setting data/10)% of a

specified speed, the speed arrival signal (SARA) is set to 1.

15*i* 16*i* 30*i* 3023 4023 4023

Speed detection level

Unit of data: 0.1% Valid data range: 0 to 1000 Standard setting value: 30

This parameter sets a speed detection signal (SDTA) detection range. When the motor speed is (setting data/10)% of a maximum speed or

less, the speed detection signal (SDTA) is set to 1.

FANUC AC SPINDLE MOTOR αi series

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3024 4024 4024

Speed zero detection level

Unit of data: 0.01%
Valid data range: 0 to 10000

Standard setting value: 75

This parameter sets a speed zero detection signal (SSTA) detection

range.

When the motor speed is (setting data/100)% of a maximum speed or

less, the speed zero detection signal (SSTA) is set to 1.

15*i* 16*i* 30*i* 3025 4025 4025

Torque limitation value.

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 50

This parameter sets a torque limitation value to be applied when the torque limitation command HIGH (TLMHA) or the torque limitation command LOW (TLMLA) is specified.

The data indicates limitation values when the maximum torque is

Torque limitation command LOW(TLMLA)	Torque limitation command HIGH(TLMHA)	Description
0	0	No torque limitation is imposed.
0	1	The torque is limited to the value set in this parameter.
1	0	The torque is limited to a half of
1	1	the value set in this parameter.

15*i* 16*i* 30*i*3026 4026 4026

Load detection level 1

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 83

This parameter sets a load detection signal 1 (LDT1A) detection range. When the output of the spindle motor is (setting data)% of the maximum output or more, load detection signal 1 (LDT1A) is set to 1.

15*i* 16*i* 30*i* 3027 4027 4027

Load detection level 2

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 95

This parameter sets a load detection signal 2 (LDT2A) detection range. When the output of the spindle motor is (setting data)% of the maximum output or more, load detection signal 2 (LDT2A) is set to 1.

FANUC AC SPINDLE MOTOR αi series

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

	30 <i>i</i>	16 <i>i</i>	15 <i>i</i>
Gear ratio (HIGH)	4056	4056	3056
Gear ratio (MEDIUM HIGH)	4057	4057	3057
Gear ratio (MEDIUM LOW)	4058	4058	3058
Gear ratio (LOW)	4059	4059	3059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) \times 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation × 1000)

Valid data range: 0 to 32767 Standard setting: 100

These data are used to set the gear ratio between spindle and spindle

motor. Example:

> When the spindle rotates once, set "250" as the data when the motor rotates 2.5 times.

A parameter is selected with the CTH1A and CTH2A input signals. Set the gear or clutch status to correspond to the clutch/gear signal (CTH1A, CTH2A) in input signals.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

30*i* 15*i* 16*i* 3095 4095 4095

Speedometer output voltage adjustment value

Unit of data: 0.1%

Valid data range: -1000 to +100 (-100% to +10%)

Standard setting value:

Set this parameter when making a fine adjustment of speedometer

output voltage.

Positive (+) data increases the output voltage.

NOTE

Usually, this parameter need not be adjusted.

15*i* 16*i* 30*i* 3096 4096 4096

Load meter output voltage adjustment value

Unit of data: 0.1%

Valid data range: -1000 to +100 (-100% to +10%)

Standard setting value:

Set this parameter when making a fine adjustment of load meter output voltage.

Positive (+) data increases the output voltage.

Usually, this parameter need not be adjusted.

FANUC AC SPINDLE MOTOR αi series

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR Bil series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3122 4122 4122

Speed detection filter time constant

Unit of data: 0.1 ms0 to 10000 Valid data range:

Standard setting value:

This parameter sets a time constant for a filter to be applied to the

velocity feedback signal.

NOTE

Usually, this parameter need not be adjusted.

15*i* 16*i* 30*i* 3170 4170 4170

Overload current alarm detection level

Unit of data:

Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

NOTE

Usually, this parameter need not be adjusted.

15*i* 16*i* 30*i* 3345 4345 4345

Specified detection level of the spindle motor speed

1 min⁻¹ Unit of data: 0 to 32767 Valid data range: 0

Standard setting value:

This parameter sets the detection level of the spindle motor speed detection function. If the specified spindle motor speed is greater than the set value, the level of the speed specification detection signal output from the spindle amplifier to the CNC becomes 1.

If the set value is 0, the level of the speed specification detection

signal is always 0.

15*i* 16*i* 30*i* 3346 4346 4346

Incomplete integral coefficient

Unit of data:

Valid data range: 0 to 32767

Standard setting value:

Set this parameter to use incomplete integral function for velocity loop integral control.

NOTE

Usually, this parameter need not be adjusted.

FANUC AC SPINDLE MOTOR αi series 2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

15*i* 16*i* 30*i* 3351 4351 4351

Current detection offset compensation

Unit of data:

Valid data range : $0 \text{ to } \pm 32767$

Standard setting value: 0

NOTE

Usually, this parameter need not be adjusted.

2.6.5 Diagnosis (Diagnosis Screen)

This subsection provides a list of the diagnosis (diagnosis screen) indications common to all operation modes only. For details, refer to the Connection Manual (Function) of each CNC.

(a) For Series 16*i*/18*i*/21*i*

"FANUC Series 16i/18i/21i-MODEL B MAINTENANCE MANUAL : B-63525EN Refer to Section 1.8, "DISPLAYING DIAGNOSTIC PAGE."

(b) For Series 30*i*/31*i*/32*i*

"FANUC Series 30*i*/31*i*/32*i*-MODEL A MAINTENANCE MANUAL : B-63945EN Refer to Section 1.3, "DIAGNOSIS FUNCTION."

(c) For Series 15i

"FANUC Series 15*i*-MODEL B MAINTENANCE MANUAL : B-63785EN Refer to Section 1.3, "DIAGNOSIS FUNCTION."

(d) For Series 0i

"FANUC Series 0*i*-MODEL C MAINTENANCE MANUAL : B-64115EN Refer to Section 1.8, "DISPLAYING DIAGNOSTIC PAGE."

(1) Series 16*i*

Address	Description
400	Information including spindle control information
401	Serial spindle alarm state of the first spindle
402	Serial spindle alarm state of the second spindle
403	First spindle motor temperature [°C] (*1)
404	Second spindle motor temperature [°C] (*1)
408	Information related to spindle serial output interface communication errors
409	Information related to spindle serial output interface activation
410	Load meter indication for the first spindle [%]
411	Speedometer indication for the first spindle [min ⁻¹]
412	Load meter indication for the second spindle [%]
413	Speedometer indication for the second spindle [min ⁻¹]
417	Position coder feedback signal for the first spindle [pulse]
419	Position coder feedback signal for the second spindle [pulse]
445	First spindle position data
446	Second spindle position data
710	First spindle error state (*1)
711	Second spindle error state (*1)
712	First spindle warning state (*1)
713	Second spindle warning state (*1)

NOTE

*1 The indications are provided only when the MODEL B CNC is combined with the αi spindle.

(2) Series 30*i*

Address	Description
400	Information including spindle control information
403	First spindle motor temperature [°C]
408	Information related to spindle serial output interface communication errors
410	Load meter indication for the spindle [%]
411	Speedometer indication for the spindle [min-1]
417	Position coder feedback signal for the spindle [pulse]
445	Spindle position data
710	Spindle error state
712	Spindle warning state

(2) Series 15*i*

Address	Description			
1500	Information about spindle serial output interface communication errors			
1504	Spindle motor torque data			
1505	Spindle motor speed data			
1561	Spindle state error number (*1)			
1562	Spindle warning number (*1)			
1563	Spindle motor temperature information (*1)			

NOTE

*1 The indications are provided only when the MODEL B CNC is combined with the αi spindle.

3

I/O SIGNALS (CNC ↔ PMC)

This chapter explains the functions of the signals directly input from the PMC to spindle amplifier (SP) via the CNC and the signals directly output from the spindle amplifier (SP) to PMC. For other spindle-related I/O signals, refer to the Connection Manual (Function) of the relevant CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Chapter 9, "SPINDLE SPEED FUNCTION."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Chapter 11, "SPINDLE SPEED FUNCTION."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7, "SPINDLE SPEED FUNCTION."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Chapter 9, "SPINDLE SPEED FUNCTION."

3.1 INPUT SIGNALS (PMC \rightarrow CNC \rightarrow SP)

This section describes the functions of the signals directly input from the PMC to spindle amplifier (SP) via the CNC and also describes the signal addresses of the first spindle and second spindle. For other spindle-related input signals, refer to the Connection Manual (Function) of the relevant CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Chapter 9, "SPINDLE SPEED FUNCTION."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Chapter 11, "SPINDLE SPEED FUNCTION."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7, "SPINDLE SPEED FUNCTION."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Chapter 9, "SPINDLE SPEED FUNCTION."

3.1.1 List of Input Signals

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070	MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA
2nd-	G235	G074	G074	MRDYB	ORCMB	SFRB	SRVB	СТН1В	CTH2B	TLMHB	TLMLB
1st-	G226	G071	G071	RCHA	RSLA	INTGA	SOCNA	MCFNA	SPSLA	*ESPA	ARSTA
2nd-	G234	G075	G075	RCHB	RSLB	INTGB	SOCNB	MCFNB	SPSLB	*ESPB	ARSTB
1st-	G229	G072	G072	RCHHGA	MFNHGA	INCMDA	OVRA	DEFMDA	NRROA	ROTAA	INDXA
2nd-	G237	G076	G076	RCHHGB	MFNHGB	INCMDB	OVRB	DEFMDB	NRROB	ROTAB	INDXB
1st-	G228	G073	G073				DSCNA	SORSLA	MPOFA	SLVA	
2nd-	G236	G077	G077				DSCNB	SORSLB	MPOFB	SLVB	
					-		•	•	•		

3.1.2 Explanation of Input Signals

Symbol	Name	Description				
TIMIA D	Torque limitation	These signals limit the output torque of the spindle motor.				
TLMLA, B	command LOW	The limit value is set in spindle parameter No. 4025.				
		TLML TLMH				
	T P P P	0 0 : Torque not limited				
TLMHA, B	Torque limitation	0 1 : Limited to the parameter-set value				
	command HIGH	1 0 : Limited to about half of the parameter-set value				
		1 1 : Limited to about half of the parameter-set value				
		These signals set the conditions listed below according to the clutch or gear				
		status.				
		The signals can also be used for selecting spindle control parameters.				
		The names such as HIGH GEAR are given for convenience, and the				
CTH1A, B	Clutch/gear signal	correspondence to the actual gears is free.				
CHT2A, B	Ciutcii/geai signai	CTH1 CTH2				
		0 0 : HIGH GEAR				
		0 1 : MEDIUM HIGH GEAR				
		1 0 : MEDIUM LOW GEAR				
		1 1 : LOW GEAR				
SRVA, B	Reverse rotation	These signals set the rotation direction of the spindle motor when viewed from				
SKVA, D	command	the shaft side.				
		SRV SFR				
	Forward rotation	0 0 : Stopped				
SFRA, B	command	0 1 : Forward rotation (CCW: Counterclockwise direction)				
		1 0 : Reverse rotation (CW: Clockwise direction)				
		1 1 : Stopped				
	Spindle orientation	This signal is used to perform spindle orientation control.				
ORCMA, B	Spindle orientation command	0: Turns off the spindle orientation command.				
	Communa	1: Performs spindle orientation control.				
MRDYA, B	Machine ready signal	0: Motor excitation is off.				
WI (B 17 t, B	Washine ready eightin	1: Ready for operation				
		This signal is used to reset spindle alarms.				
		 				
ARSTA, B	Spindle alarm reset	32 msec min.				
7 (1 (O 17 1, B	signal					
		"1" An alarm is reset when the signal status changes from "1" to				
		"0" ─ "0".				
*ESPA, B	Emergency stop signal	0: Emergency stop				
20.74, 2	Emergency stop eignar	1: Normal operation				
	Spindle switching	This signal is used to select a spindle motor in spindle switching control.				
SPSLA, B	request signal	0: Selects the main spindle motor.				
	. oquost signa.	1: Selects the sub-spindle motor.				
		This signal is used in spindle switching control.				
	Magnetic contactor	0: The MCC on the sub-spindle motor side is OFF (the main spindle motor is				
MCFNA, B	status signal for the	selected).				
	sub-spindle motor	1: The MCC on the sub-spindle motor side is ON (the sub-spindle motor is				
<u> </u>		selected).				
SOCNA, B	Soft start/stop signal	0: Disables the soft start/stop function.				
		1: Enables the soft start/stop function.				
INTGA, B	Velocity integral control	0: Enables velocity integral control.				
5, 5	signal	1: Disables velocity integral control.				

FANUC AC SPINDLE MOTOR αi series 3.I/O SIGNALS (CNC ↔ PMC) FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

Symbol	Name	Description
RSLA, B	Speed range switching request signal	This signal is used to select output characteristics in speed range switching control. 0: Selects the high-speed range characteristics. 1: Selects the low-speed range characteristics.
RCHA, B	Magnetic contactor status signal for the low-speed characteristics	 This signal is used in speed range switching control. 0: The MCC on the low-speed characteristics side is OFF (the high-speed characteristics are selected). 1: The MCC on the low-speed characteristics side is ON (the low-speed characteristics are selected).
INDXA, B	Orientation stop position change command	"1" This signal is used in orientation with the stop position set external setting type. When the status of this signal changes from "1" to "0", new position stop data is input, and a movement to the new position then a stop take place.
RОТАА, В	Rotation direction command at orientation stop position change	This signal is used in orientation with the stop position set external setting type. 0: CCW (counterclockwise) 1: CW (clockwise)
NRROA, B	Shortcut command at orientation stop position change	This signal is used in orientation with the stop position set external setting type. 0: The rotation direction depends on the ROTA signal setting. 1: Shortcut control (within $\pm 180^{\circ}$)
OVRA, B	Analog override command	Disables analog override. Enables analog override.
INCMDA, B	Incremental command	Incremental command spindle orientation Ordinary orientation
MFNHGA, B	Magnetic contactor status signal for the main spindle motor	0: The MCC on the main spindle motor side is OFF. 1: The MCC on the main spindle motor side is ON.
RCHHGA, B	Magnetic contactor status signal for the high-speed characteristics	0: The MCC on the high-speed characteristics side is OFF. 1: The MCC on the high-speed characteristics side is ON.
MPOFA, B	Motor power turn-off signal	1: Turns off the motor power.
SORSLA, B	Synchronous orientation request command	This signal requests a synchronous orientation operation. 0: Cancels synchronous orientation. 1: Requests synchronous orientation.
DSCNA, B	Disconnection detection disable signal	This signal is used to detach the feedback cable between the amplifier and motor. 0: Enables disconnection and overheat detection. 1: Disables disconnection and overheat detection.
DEFMDA, B	Differential speed mode command signal	O: Disables differential speed mode. 1: Enables differential speed mode.
SLVA, B	Tandem operation command	Disables tandem operation. Enables tandem operation.

3.1.3 Details of Input Signals

(a) Torque limitation command signals (TLMLA, TLMHA)

- (1) A torque limit is used to rotate the spindle motor by decreasing the output torque of the spindle motor temporarily at the time of mechanical spindle orientation and so forth.
- (2) For each machine, the machine tool builder must set the output torque and speed applied at the time of orientation so that hitting against the machine stopper produces less impact.
- (3) The output torque at orientation can be adjusted with parameter No. 4025.
- (4) If the torque limitation command signals are set to 1, the torque limitation state is entered. (Even when 1 is specified during motor rotation, it becomes valid immediately.) As soon as the torque limitation state is entered, the torque limitation in-progress signal (TLMA) is output externally.
- (5) When mechanical orientation is to be performed at the time of ATC of a machining center, the power magnetics sequence design must take the following into consideration not to damage the machine stopper:
 - <1> The output torque at orientation time must not be excessively large.
 - <2> The speed at orientation time must not be excessively high. Interlock must be provided so that, for example, when the speed detection signal detects an excessively high speed, the protrusion of the stopper is suppressed.
 - <3> When the torque limit is canceled, the stopper must have been certainly kept in place.

If the above conditions are hard to satisfy, employ purely electrical spindle orientation (a CNC software option is required), which does not use the stopper.

(b) Clutch/gear signals (CTH1A, CTH2A)

- (1) When there are two or more gear change stages between the spindle and spindle motor, these signals are used to select spindle control parameters (position gain, gear ratio, and velocity loop gain) for each gear. These signals are also used for a motor having an speed range switching function to select control parameters for each winding.
- (2) Make settings as listed in the table below according to the state of the clutch or gear. The names such as HIGH GEAR are given for convenience, and the correspondence to the actual gears is free.

CTH1A	CTH2A	
0	0	HIGH GEAR
0	1	MEDIUM HIGH GEAR
1	0	MEDIUM LOW GEAR
1	1	LOW GEAR

(c) Forward rotation command signal (SFRA) and reverse rotation command signal (SRVA)

- (1) When the following four conditions are satisfied, the spindle motor starts forward or reverse rotation according to the speed command (a positive value):
 - <1> Emergency stop signal *ESPA is set to 1.
 - <2> Machine ready signal MRDYA is set to 1.
 - <3> Forward rotation command signal SFRA or reverse rotation command signal SRVA is 1.
 - <4> The contact signal between ESP and 24 V (CX4 of the common power supply (PS)) is ON (closed).
- (2) While SFRA is 1, the spindle motor rotates counterclockwise as viewed from the shaft side at a specified speed (a positive value). While SRVA is 1, the spindle motor rotates clockwise as viewed from the shaft side according to the speed command (a positive value).

When SFR = 1 When SRV = 1

(3) When SFRA is set to 0 or when SRVA is set to 0, the spindle motor is stopped by regenerative braking. After the spindle motor is stopped, the power element excitation signal is turned off to interrupt power supply to the spindle motor.

NOTE

If the forward rotation command signal (SFRA) and reverse rotation command signal (SRVA) are specified at the same time, the spindle status error (error 14) occurs, and the spindle motor is stopped.

(d) Spindle orientation command (ORCMA)

For details of this signal, see Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION", in Part I.

(e) Machine ready signal (MRDYA)

(1) This signal is used as follows according to the parameter settings:

Mode	Parameter setting FS16 <i>i</i> : 4001 #0 FS30 <i>i</i> : 4001 #0 FS15 <i>i</i> : 3001 #0	Description
Α	0	The machine ready signal is not used. In this case, the spindle motor is made ready only by inputting the emergency stop signal.
В	1	The machine ready signal is used so that the spindle motor can be made ready by two signals. When MRDYA = 0, the excitation signal for the power element of the inverter is turned off to interrupt power.

(2) Mode A

Mode A is used to minimize input signals.

(3) Mode B

<1> In a machine in which the spindle motor is clamped by the tool unclamp signal during an orientation operation for automatic tool change (ATC), a slight displacement from the orientation stop position may increase the load meter indication, allowing a large motor current to flow.

To prevent this, set MRDYA to 0 to release the orientation state while the tool unclamp state is present. At the end of the tool unclamp state, setting MRDYA to 1 can restore the orientation state.

<2> In the application explained <1> above, if the orientation command signal ORCMA is kept 1, setting MRDYA to 0/1 causes a movement just by the amount of the displacement from the stop position, so another one-rotation operation and orientation operation need not be performed.

Timing chart (mode B)

Orientation command ORCMA Orientation completion signal ORARA

Tool change operation

Spindle unclamp Machine ready signal MRDYA

(f) Spindle alarm reset signal (ARSTA)

- (1) After the cause of an alarm such as a motor overheat, excessively large velocity error, over speed, and overload is removed, inputting this alarm reset signal releases the alarm, making the spindle usable.
- (2) When no alarm is issued, inputting this signal causes nothing.
- (3) Alarms detected in the common power supply (PS) and part of spindle alarms (such as overcurrent) cannot be released by this signal. (The power must be turned off once.)
- (4) If a spindle alarm is issued, cancel the spindle commands (such as the speed command, forward/reverse rotation commands, orientation command, and operation mode command), then reset the alarm.

NOTE

With the following series and editions, the alarm reset signal is valid only in the velocity control mode (in other modes, inputting the alarm reset signal does not release the alarm):

9D50 series P (16) edition or later 9D70 series G (07) edition or later 9D80 series A (01) edition or later

(g) Emergency stop signal (*ESPA)

- (1) When *ESPA = 1, the spindle motor and spindle amplifier become ready for operation. When *ESPA = 0, the spindle amplifier outputs to the common power supply (PS) a signal for turning off the MCC, and the spindle motor does not operate.
- (2) As soon as *ESPA is set to 0 during motor rotation, the spindle motor decelerates and stops. After the spindle motor stops, a signal for turning off the MCC is output.
- (3) When *ESPA is set to 1 again, the spindle motor becomes ready for rotation, so the spindle motor will start rotating as soon as a rotation command is issued. Therefore, when inputting the emergency stop signal, reset the command signals (speed command, forward and reverse rotation commands) to the spindle amplifier at the same time.
- (4) This signal (*ESP) and the emergency stop signal (connector CX4) of the common power supply (PS) function as signals having the same meaning for the spindle amplifier (SP).

(h) Spindle switching request signal (SPSLA), magnetic contactor status signal for the sub-spindle motor (MCFNA), and magnetic contactor status signal for the main spindle motor (MFNHGA)

For details of these signals, see Section 5.2, "SPINDLE SWITCHING CONTROL", in Part I.

(i) Soft start/stop signal (SOCNA)

(1) When the soft start/stop signal is set to 1, the soft start/stop function is enabled, which allows the speed command change rate at acceleration/deceleration to be set as shown below.

- (2) The soft start/stop function is valid in the velocity control mode.
- (3) When emergency stop signal *ESPA or machine ready signal MRDYA is set to 0, the soft start/stop function is disabled automatically.

NOTE

With the following series and editions, setting bit 2 of parameter No. 4399 to 1 enables the function even when *ESPA = 0 or MRDYA = 0:

9D50 series O (15) edition or later

9D53 series G (07) edition or later

9D70 series F (06) edition or later

9D80 series A (01) edition or later

(4) The speed command change rate is set in parameter No. 4030. When 0 is set in the parameter, the soft start/stop function is disabled.

(5) When the rate of the change in acceleration command (parameter No. 4508) is set, a quadratic function type speed command can be given in the spindle amplifier (quadratic function type soft start/stop function).

Use this function when you want to reduce the shock due to a change in speed specified at the start of acceleration/deceleration. In this case, the internal speed command of the spindle amplifier changes as follows:

NOTE

The quadratic function type soft start/stop function can be used with 9D50 series G (07) edition or later, 9D70 series A (01) edition or later, and 9D80 series A (01) edition or later.

(j) Velocity integral control signal (INTGA)

(1) When spindle position control (spindle orientation control, spindle positioning control, Cs contour control, and so on) is performed, the spindle is sometimes clamped by the brake or the like. If the spindle is kept clamped with a minute position error, velocity integral control may allow an excessively large current to flow into the motor, attempting to eliminate the position error to zero.

In such a case, use of this signal disables velocity integral control to prevent an excessively large current from flowing into the motor even when a minute position error occurs.

(2) Also when two spindles are used to hold a workpiece in spindle synchronous control, a minute synchronous error generated at the time of the hold operation may cause velocity integral control to attempt to eliminate the error to zero, and as a result, an excessively large current may flow into the motor.

In this case, this signal can be used to disable velocity integral control and prevent an excessively large current from flowing into the motor even when a minute synchronous error occurs.

(k) Speed range switching request signal (RSLA), magnetic contactor status signal for low-speed characteristics (RCHA), and magnetic contactor status signal for high-speed characteristics (RCHHGA)

For details of these signals, see Section 5.1, "SPEED RANGE SWITCHING CONTROL", in Part I.

(I) Orientation stop position change command (INDXA), rotation direction command at orientation stop position change (ROTAA), shortcut command at orientation stop position change (NRROA), and incremental command (INCMDA)

For details of these signals, see Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION", in Part I and Section 5.3, "INCREMENTAL COMMAND TYPE SPINDLE ORIENTATION", in Part I.

(m) Spindle analog override command (OVRA)

- (1) In the velocity control mode, the speed command can be overridden with the voltage externally applied to the spindle amplifier directly in an analog form.
- (2) The analog override function is valid when this signal is 1. The function is valid only in the velocity control mode (including the soft start/stop function).
- (3) The upper limit (100% or 120%) of analog override is parameter-set as follows:

Parameter No.			Description
FS15 <i>i</i>	FS16 <i>i</i>	FS30 <i>i</i>	Description
3006 #5	#5 4006 #5 400e	4006 #5	Sets the input range of spindle analog override. 0 : 0 to 100%
			1:0 to 120%

The upper limit of analog override input voltages is +4.5 V. When the speed command value obtained by multiplication by the override value exceeds the parameter-set maximum speed, the speed is clamped at the maximum speed.

(4) The override type is parameter-set as follows:

Parameter No.			Description
FS15 <i>i</i>	FS16 <i>i</i>	FS30 <i>i</i>	Description
	3009 #6 4009 #6	4009 #6	Sets the override type.
3009 #6			0: Linear function type override
			1: Quadratic function type override

<1> Linear function type override

The override value actually used corresponds to the input override value on a one-to-one basis.

$$OVR_{OUT} = OVR_{IN}$$

<2> Quadratic function type override

The override value actually used corresponds to the input override value in the quadratic function manner.

When compared with the linear function type, the quadratic function type has rougher speed resolution for the input override in the high-speed region and has a finer speed resolution in the low-speed region.

(5) The following shows the system configuration when attention is focused on the analog override function:

(6) The analog override input is connected as shown in the figure below. The input voltage equivalent to the upper override limit (100% or 120%) to OVR2 is 4.5 V. Override values are set in steps of 1%.

Use resistors so that the total resistance of VR and R1 ranges from 2 $K\Omega$ to 10 $K\Omega$.

- (7) Because the hysteresis characteristic is provided to prevent override fluctuation, an override of 0% is not set even when the input voltage is 0 V.
- (8) When a signal for enabling or disabling the status of the analog override function is issued, or the setting of the upper override limit parameter is changed, the motor speed may change largely. So, before changing the status or setting, stop the motor.

(n) Motor power turn-off signal (MPOFA)

- (1) When an abnormality occurs during spindle synchronous control or during machining with a machine such as a gear machining tool, this signal is used to immediately turn off the power to the spindle motor and allow the motor to run freely.
- (2) This signal turns off the motor power only.
- (3) The motor power can be supplied again after the motor is stopped (zero speed signal SSTA = 1). Even when this signal is canceled, the power cannot be supplied while the motor is rotating (SSTA = 0).
- (4) After turning off the motor power, cancel all operation modes to ensure safety. After the motor is stopped (SSTA = 1), specify operation modes again.

When the power is turned off during position control, the position control operation is performed continuously, so an alarm such as an alarm due to an excessively large position error may be issued.

Operation mode examples:

- Forward rotation command (SFRA)
- Reverse rotation command (SRVA)
- Spindle orientation (ORCMA)
- Rigid tapping (RGTP, RGTAP)
- Spindle synchronous control (SPSYC, SPPHS)
- Spindle positioning
- Cs contour control (CON, SCNTR1, SCNTR2, and so on)
- Speed difference mode (DEFMDA)

(6) If bit 2 of parameter No. 4009 is set to 1, the motor power can be turned off immediately when spindle alarm 24 (serial transfer data error) occurs. Normally, when spindle alarm 24 occurs, the spindle motor is decelerated then stopped.

(o) Synchronous orientation request command (SORSLA)

For details of this signal, see Section 5.5, "SPINDLE ORIENTATION DURING SPINDLE SYNCHRONIZATION CONTROL", in Part I.

(p) Disconnection detection disable signal (DSCNA)

(1) This signal is used when the connection between the spindle amplifier and spindle motor needs to be disconnected temporarily.

- (2) When this signal is used to detach the feedback signal, motor overheat and the issuance of a feedback signal disconnection alarm can be prevented.
- (3) A motor excitation OFF state confirmation signal (EXOFA) is provided to confirm that the motor is not excited before the connected power line is detached.
- (4) Before setting this signal to 1 and disconnecting the feedback signals and power line, set all the SFRA, SRVA, ORCMA, MRDYA, and *ESPA commands to 0, and confirm that the motor excitation OFF state confirmation signal (EXOFA) has been set to 1. After completing re-connection, reset this signal to 0.

(q) Differential speed mode command signal (DEFMDA)

For details of this signal, see Section 5.9, "DIFFERENTIAL SPINDLE SPEED CONTROL" in Part I.

(r) Tandem operation command (SLVA)

For details of this signal, see Section 5.11, "TORQUE TANDEM CONTROL FUNCTION" in Part I.

3.2 OUTPUT SIGNALS ($SP \rightarrow CNC \rightarrow PMC$)

This section describes the functions of the signals directly input from the PMC to spindle amplifier (SP) via the CNC and also describes the signal addresses of the first spindle and second spindle. For other spindle-related output signals, refer to the Connection Manual (Function) of the relevant CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Chapter 9, "SPINDLE SPEED FUNCTION."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Chapter 11, "SPINDLE SPEED FUNCTION."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7, "SPINDLE SPEED FUNCTION."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Chapter 9, "SPINDLE SPEED FUNCTION."

3.2.1 List of Output Signals

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA	TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
2nd-	F245	F049	F049	ORARB	TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
1st-	F228	F046	F046				SLVSA	RCFNA	RCHPA	CFINA	CHPA
2nd-	F244	F050	F050				SLVSB	RCFNB	RCHPB	CFINB	СНРВ
						•					
1st-	F231	F047	F047				EXOFA	SORENA		INCSTA	PC1DTA
2nd-	F247	F051	F051				EXOFB	SORENB		INCSTB	PC1DTB
						•			·-		
1st-	F230	F048	F048				CSPENA				
2nd-	F246	F052	F052				CSPENB				
							•				

3.2.2 Explanation of Output Signals

Symbol	Name	Description
		This signal is output when a spindle alarm is issued.
ALMA, B	Alarm signal	0: Normal state
,		1: Alarm state
		This signal is output when the actual rotation speed of the spindle motor has
	Zero speed detection	decreased to the zero speed detection level or lower.
SSTA, B	signal	0: Rotating
	3	1: Zero speed state
		This signal is output when the actual rotation speed of the spindle motor has
		decreased to a predetermined rotation speed or lower.
SDTA, B	Speed detection signal	0: Above predetermined speed
		1: Predetermined speed or lower
		This signal is output when the actual rotation speed of the spindle motor has
		achieved a predetermined range for a speed command.
SARA, B	Speed arrival signal	0: Speed not achieved
		1: Speed achieved
LDT1A, B	Load detection signal 1	These signals are output when load at a set load detection level or higher is
EDIIA, D	Load delection signal I	detected. Different levels can be set for LDT1A and LDT2A.
LDT2A, B	Load detection signal 2	0: Lower than the set load
LD12A, D	Load detection signal 2	1: Set load or higher
		This signal is output when the torque is being limited by the TLMLA or TLMHA
	Torque limitation	signal.
TLMA, B	Torque limitation	o: Torque not being limited
	in-progress signal	· · ·
		1: Torque being limited
	0	This signal is output when the spindle stops in the neighborhood of a
ORARA, B	Orientation completion signal	predetermined position after an orientation command is input.
,		0: Orientation not completed
		1: Orientation completed
	Power line switching	This signal is used in spindle switching control.
CHPA, B	signal	0: Selects the MCC on the main spindle motor side.
	Ŭ	1: Selects the MCC on the sub-spindle motor side.
	Spindle switching	This signal is used in spindle switching control.
CFINA, B	completion signal	0: Controls the main spindle motor.
		1: Controls the sub-spindle motor.
	Power line switching	This signal is used in speed range switching control.
RCHPA, B	signal	0: Selects the MCC on the high-speed range characteristics side.
	0.9.16.	1: Selects the MCC on the low-speed range characteristics side.
	Output switching	This signal is used in speed range switching control.
RCFNA, B	completion signal	0: Control with high-speed range characteristics
	completion orginal	1: Control with low-speed range characteristics
	Position coder	This signal is used to confirm whether the position coder one-rotation signal is
PC1DTA, B	one-rotation signal	detected or not.
FUIDIA, B	detection state signal	0: Position coder one-rotation signal not detected
	actoclion state signal	1: Position coder one-rotation signal detected
		This signal is used to confirm whether incremental spindle orientation is being
INICSTA D	Incremental orientation	performed or not.
INCSTA, B	signal	0: Incremental spindle orientation is not in progress.
		1: Incremental spindle orientation is in progress.
	Synchronous	This signal is used to confirm whether synchronous orientation is enabled or not.
SORENA, B	orientation enable	0: Disables synchronous orientation.
<i>'</i>	signal	1: Enables synchronous orientation.

FANUC AC SPINDLE MOTOR αi series 3.I/O SIGNALS (CNC \leftrightarrow PMC) FANUC BUILT-IN SPINDLE MOTOR BiI series B-65280EN/06

Symbol	Name	Description
EXOFA, B	Motor excitation off state signal	This signal is used to confirm whether motor excitation is off. 0: Motor excitation is in progress. 1: Motor excitation is off.
SLVSA, B	Tandem operation state signal	This signal is used with the spindle tandem function. 0: Tandem operation is not in progress. 1: Tandem operation is in progress.
CSPENA, B	IL'S PATAPANCA NASITIAN	 This signal is used to indicate whether Cs axis coordinate establishment processing is possible. 0: Coordinate establishment processing is impossible (with a reference position not established). 1: Coordinate establishment processing is possible (with a reference position established).

3.2.3 Details of Output Signals

(a) Spindle alarm signal (ALMA)

- (1) When continuation of spindle motor operation becomes impossible, the power to the spindle motor is turned off to stop the spindle motor.
- (2) At the same time, alarm signal ALMA is set to 1. For the meaning of the alarm, check the indicator of the spindle amplifier.
- (3) Use the alarm signal output to reset the command signals sent to the spindle amplifier (speed command, forward and reverse rotation commands, spindle orientation command, operation mode command and so on). Unless the reset state has been entered (the signals issued from the PMC have been all cleared), the spindle motor may rotate when the alarm on the spindle amplifier is released, which presents a dangerous situation.
- (4) At the same time when the alarm signal is output, the power to the spindle motor is turned off, and the spindle motor coasts. Therefore, it is necessary to enter the feed hold state by setting the emergency stop state on the CNC or power magnetics cabinet.
- (5) When the alarm state is entered, ALMA is set to 1. While the alarm signal is 1, the spindle motor is placed in the coast state regardless of external commands.
- (6) The following diagram shows the relationship between the alarm signal and alarm reset signal:

(b) Zero speed detection signal (SSTA)

(1) When the actual rotation speed of the spindle motor has decreased to the zero speed detection level or lower for a stop command, SSTA is set to 1.

- (2) The zero speed detection point is 0.75% (initial standard setting in the parameter) of the maximum speed. For a motor of which maximum speed is 6000 min⁻¹, for example, the zero speed detection point is 45 min⁻¹.
- (3) When the above condition is satisfied, this signal is output regardless of the rotation command (SFR, SRV).
- (4) The minimum pulse width of this signal is approximately 40 ms.

(c) Speed detection signal (SDTA)

- (1) When the spindle motor speed has decreased to a parameter-set speed level or lower, SDTA is set to 1.
- (2) This signal is used to confirm that the speed has decreased to a predetermined speed such as a clutch changeable speed or gear changeable speed.

- (3) This signal is output regardless of the rotation command (SFR, SRV).
 - <Reference> Gear shift sequence

In CNC machine tools, gear shift, which is one of sequence controls, causes a shift of the gear section of a spindle, which is an important component of a machine. In this case, to perform gear change safely, it is necessary to confirm that the spindle motor is rotated at a low speed.

A sample gear shift sequence using the speed detection signal (gear change enable signal) is given below. Please use this sample as a reference material when designing gear shift power magnetics sequence.

To perform a gear change safely, confirm that the spindle motor speed is low by using the speed detection signal before moving the shifter. When the zero speed signal is also used, duplicate checking for safety can be made.

(Why the confirmation is required) If the shifter moves while the spindle motor rotates, the gear is damaged.

Zero speed detection signal SSTA

(d) Speed arrival signal (SARA)

(1) When the actual rotation speed of the spindle motor has reached a predetermined range for a speed command, SARA is set to 1.

- (2) The setting range is ± 1 to 100% of a specified speed. When a speed not higher than 10% of the maximum rotation speed is specified, however, the detection range is wider than the set range.
- (3) The standard setting is $\pm 15\%$. The detection range of this speed arrival signal widens for low speeds as shown below.

(4) This signal is output when SFRA or SRVA is set to 1.

(5) This signal can be used to control reverse rotation in a tapping cycle as follows:

When a reserve rotation command is issued, the spindle motor starts decelerating, and 40 ms later the arrival signal is set to 0. Then, after the speed reaches zero, the speed arrival signal being set to 1 is detected. This completes the reverse spindle rotation command.

(6) This signal is used as a confirmation signal (FIN signal) for forward rotation (M03) and reverse rotation (M04) commands.

(e) Load detection signals (LDT1A, LDT2A)

- (1) When the maximum output level (10 V) of the load meter (LM) is assumed to be 100%, the load detection signal is set to 1 if the load meter output indicates a parameter-set value (%) or greater.
- (2) Two different levels (LDT1A and LDT2A) can be set.
- (3) These signals are used in PMC control. For example, to prevent the spindle from stopping when a cutting overload is applied to the spindle during cutting, these signals are used to decrease the feedrate or stop the feedrate.
- (4) An application example is given below. In the following example, two load detection levels are set for control:

- (5) The above shows an example of control using two levels. When the feed motor is to be stopped immediately by using just one level, control must be provided according to the machine specification.
- (6) These signals are not output in 10 seconds (set in parameter No. 4082) after the status of the speed command signal changes.

(f) Torque limitation in-progress signal (TLMA)

For details of this signal, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

(g) Orientation completion signal (ORARA)

For details of this signal, see Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION", in Part I.

(h) Power line switching signal (CHPA) and spindle switching completion signal (CFINA)

For details of these signals, see Section 5.2, "SPINDLE SWITCHING CONTROL", in Part I.

(i) Power line switching signal (RCHPA) and output switching completion signal (RCFNA)

For details of these signals, see Section 5.1, "SPEED RANGE SWITCHING CONTROL", in Part I.

(j) Position coder one-rotation signal detection state signal (PC1DTA)

For details of this signal, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

(k) Incremental orientation signal (INCSTA)

For details of this signal, see Section 5.3, "INCREMENTAL COMMAND TYPE SPINDLE ORIENTATION", in Part I.

(I) Synchronous orientation enable signal (SORENA)

For details of this signal, see Section 5.5, "SPINDLE ORIENTATION DURING SPINDLE SYNCHRONIZATION CONTROL", in Part I.

(m) Motor excitation off state signal (EXOFA)

For details of this signal, see (p), "Disconnection detection disable signal", in Subsection 3.1.3 in Part I.

(n) Tandem operation state signal (SLVSA)

For details of this signal, see Section 5.11, "TORQUE TANDEM CONTROL FUNCTION", in Part I.

(o) Cs reference position establishment state signal (CSPENA)

This signal indicates whether coordinate establishment processing is possible when the Cs axis coordinate establishment function is used with Series 16*i*-MODEL B/Series 30*i*-MODEL A.

If reference position return operation is performed in the Cs mode when bit 5 of parameter No. 4353 is set to 1, this signal is set to 1 from 0 to enable coordinate establishment processing.

This signal is set to 0 when the power is turned off or a spindle alarm is issued.

NOTE

This signal can be used with 9D50 series G (07) edition or later, 9D70 series A (01) edition or later, and 9D80 series A (01) edition or later.

ADJUSTMENT

4.1 VELOCITY LOOP GAIN ADJUSTMENT

4.1.1 Overview

Optimum adjustment of the velocity loop gain increases the position loop gain, therefore significantly enhancing disturbance suppression performance, positioning speed and accuracy. So, the adjustment of the velocity loop gain is very important in servo adjustments, and it should be performed first. This section explains the parameters for velocity loop gain adjustment and the adjustment procedure.

4.1.2 Parameters

There are five operation modes in spindle control: velocity control mode, orientation, servo mode (rigid tapping and spindle positioning), spindle synchronous control, and Cs contour control. There are parameters corresponding to each operation mode and to the clutch/gear signals (CTH1A and CTH2A). The following shows the parameters for each operation mode.

(1) Velocity control mode

15*i* 16*i* 30*i* 3040 4040 4040 3041 4041 4041

Velocity loop proportional gain on velocity control mode (HIGH)

CTH1A=0

Velocity loop proportional gain on velocity control mode (LOW)

CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 10

15*i* 16*i* 30*i* 3048 4048 4048 3049 4049 4049

Velocity loop integral gain on velocity control mode (HIGH)	CTH1A=0
Velocity loop integral gain on velocity control mode (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 10

(2) Orientation

15*i* 16*i* 30*i*3042 4042 40423043 4043 4043

Velocity loop proportional gain on orientation (HIGH)	CTH1A=0
Velocity loop proportional gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767 Standard setting value: 10

- 207 -

B-65280EN/06

	301	161	151
V	4050	4050	3050
	4051	4051	3051

Velocity loop integral gain on orientation (HIGH)	CTH1A=0
Velocity loop integral gain on orientation (LOW)	CTH1A=1

Unit of data:

0 to 32767 Valid data range:

Standard setting value:

(3) Servo mode (Rigid tapping and spindle positioning)

30*i* 15*i* 16*i* 3044 4044 4044 3045 4045 4045

Velocity loop proportional gain on servo mode (HIGH) CTH1A=0 Velocity loop proportional gain on servo mode (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 10

> 15*i* 16*i* 30*i* 3052 4052 4052 4052

Velocity loop integral gain on servo mode (HIGH) CTH1A=0 Velocity loop integral gain on servo mode (LOW) CTH1A=1

Unit of data: Unit of data:

Valid data range: 0 to 32767

4052

Standard setting value:

(4) Spindle synchronous control

3052

16*i* 30*i*

4044 4044

Velocity loop proportional gain on spindle synchronous control (HIGH)CTH1A=0

Velocity loop proportional gain on spindle synchronous control (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

4045

Standard setting value: 10

4053

4045

16*i* 30*i*

4052 4052

Velocity loop integral gain on spindle synchronous control (HIGH) CTH1A=0 Velocity loop integral gain on spindle synchronous control (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

4053

Standard setting value: 10

NOTE

For the velocity loop gain on spindle synchronous control and on the servo mode, common parameters are used.

(5) Cs contour control

15*i* 16*i* 30*i*

3046 4046 4046 3047 4047 4047 Velocity loop proportional gain on Cs contouring control (HIGH)

CTH1A=0

Velocity loop proportional gain on Cs contouring control (LOW)

CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 30

15*i* 16*i* 30*i*

3054 4054 4054 3055 4055 4055

 Velocity loop integral gain in Cs contouring control (HIGH)
 CTH1A=0

 Velocity loop integral gain in Cs contouring control (LOW)
 CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 50

4.1.3 Adjustment Procedure

(1) Start of each operation mode

In preparation for the adjustment, settings must be made so that a stable operation takes place in each mode without overshoot or oscillation.

See Chapter 2, "EXPLANATION OF OPERATION MODES", temporarily set parameters (acceleration/deceleration time constant, position gain, and so on) to make operations stable in each operation mode, and confirm operations.

NOTE

When a motor with a large torque-to-inertia ratio (for example, low-speed winding of a motor with an speed range switching function) is used, or when the rigidity of the spindle is low, the standard setting of the velocity loop gain may be so high that oscillation can occur. In such a case, decrease the velocity loop gain.

(2) Adjustment

When adjusting the velocity loop gain, check the operation mode and clutch/gear signal, and modify corresponding parameters. Follow the steps below to adjust the parameters:

<1> Determining the oscillation limit

Basically, determine the oscillation limit based on torque commands, position errors, vibration, sound, and so on when the motor is stopped (for orientation, after completion of the operation) or when the motor rotates at a certain speed not higher than the base speed. Normally, increase the proportional gain and integral gain settings in steps of about 5; for a motor with a large torque-to-inertia ratio, increase these settings in steps of about 2. As the settings are increased gradually, the symptoms below start to appear at a certain setting level. The settings at this level are determined to be the oscillation limit:

- The machine vibrates or produces large sound.
- Vibration of a torque command becomes large.
- Position errors at stop time vary largely.

NOTE

The oscillation limit varies with the spindle inertia. In a machine in which the inertia varies largely according to the tool and workpiece used, adjustment must be made in the smallest inertia state.

<2> Final settings

Set proportional gain of approximately 70% of the oscillation limit. As the integral gain, the same value as the proportional gain is basically set. When increasing the setting, however, make an adjustment so that the integral gain is typically about twice or five times as high as the proportional gain.

<3> Elimination of machine resonance

At the time of velocity loop gain adjustment, the gain cannot sometimes be increased because of machine resonance. In such a case, the machine resonance elimination function (a torque command filter and HRV filter) described in the next section can be adjusted to increase the velocity loop gain while avoiding machine resonance. See Section 4.2, "MACHINE RESONANCE ELIMINATION", and make adjustments as necessary.

4.1.4 Additional Information (Position Gain Adjustment)

Although the limit value of the position gain is determined basically depending on the velocity loop characteristics, the setting standards may vary depending on the operation mode. See Chapter 2, "EXPLANATION OF OPERATION MODES", and make adjustments accordingly.

4.2 MACHINE RESONANCE ELIMINATION

4.2.1 TCMD Filter

(1) Overview

The torque command filter applies a primary low-pass filter to torque commands. When the machine system resonates at frequencies as high as several hundreds Hz or higher, this function can avoid such high-frequency resonance.

(2) Series and editions of applicable spindle software

9D50 series A(01) edition or later 9D70 series A(01) edition or later 9D80 series A(01) edition or later

(3) Details

Fig. 4.2.1 shows a velocity loop configuration including the torque command filter.

When the machine system has a high resonance frequency, the speed feedback may include a resonance component, and this component may be amplified by the proportional gain (Kp).

The torque command filter prevents machine resonance by applying a primary low-path filter to the proportional of the torque command to remove high-frequency components of the torque command.

Fig. 4.2.1 velocity loop configuration including the torque command filter

(4) Setting parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3121	4121	4121	Torque command filter time constant
3157	4157	4157	Torque command filter time constant: for low-speed characteristics

Unit of data: 0.5msec
Valid data range: 0 to 32767
Standard setting value: 5

Basically, use the standard setting value 5 (time constant: 2.5 ms). When a value greater than the standard setting value needs to be set, make an adjustment and typically set a value not greater than 15. When a value greater than 15 needs to be set, decrease the velocity loop gain.

4.2.2 HRV Filter

(1) Overview

The HRV filter can attenuate signals which are in certain frequency band. When a strong resonance point is present in an area not lower than 200 Hz, and it is impossible to increase the velocity loop gain, the velocity loop gain can be increased by using this filter.

NOTE

For machines in which the rigidity of the part connecting the spindle and motor is considered to change with time, or for machines whose spindle inertia changes largely depending on the tool or workpiece used, do not use the HRV filter.

(2) Series and editions of applicable spindle software

9D50 series E(05) edition or later 9D70 series A(01) edition or later 9D80 series A(01) edition or later

(3) Details

Fig. 4.2.2 shows the HRV filter configuration.

The HRV filter is applied to the proportional (the value immediately after the torque command filter in Fig. 4.2.1) of the torque command after the command is passed through the torque command filter. The HRV filter attenuates signals in a set frequency band to avoid machine resonance.

Four filter stages in total can be applied. For each stage, filter characteristics are set by using three parameters including the center frequency, band width, and damping.

Fig.4.2.2 (a) HRV filter configuration

(4) Setting parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3391	4391	4391	HRV filter 1 - attenuation center frequency
3392	4392	4392	HRV filter 1 - attenuation bandwidth
3393	4393	4393	HRV filter 1 - damping
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3416	4416	4416	HRV filter 2 - attenuation center frequency
3417	4417	4417	HRV filter 2 - attenuation bandwidth
3418	4418	4418	HRV filter 2 - damping
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3419	4419	4419	HRV filter 3 - attenuation center frequency
3420	4420	4420	HRV filter 3 - attenuation bandwidth
3421	4421	4421	HRV filter 3 - damping
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3422	4422	4422	HRV filter 4 - attenuation center frequency
3423	4423	4423	HRV filter 4 - attenuation bandwidth
3424	4424	4424	HRV filter 4 - damping

Attenuation center frequency:

Unit of data: 1Hz Valid data range: 96 to 3000

Standard setting value: 0

Attenuation bandwidth:

Unit of data: 1Hz Valid data range: 10 to 3000

Standard setting value: 0

Damping:
Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 0

For each filter stage, set three parameters including the attenuation center frequency, attenuation bandwidth, and damping. When a filter stage is not to be used, set 0 (standard setting) in all the three

parameters.

(5) Adjustment

The disturbance input function (see Subsection 4.2.3) is used for adjustment. After increasing the velocity loop gain until oscillation disappears, use the disturbance input function to observe the frequency (FNCFRQ) and gain (TFUNCG: ratio of the amplitude of the torque command before disturbance application to the amplitude of the disturbance torque command). When there is strong resonance, the gain near the resonance point increases abruptly. So, set the frequency around the peak as the attenuation center frequency, and adjust the attenuation bandwidth and damping. To minimize influences on other bands, make adjustments and set an attenuation bandwidth value as small as possible and a damping value as large as possible.

An example for adjusting the HRV filter using the disturbance input function is given below.

A spindle check board and oscilloscope are required for the adjustment.

Fig.4.2.2 (b) Before application of the HRV filter

Fig.4.2.2 (c) After application of the HRV filter

(Attenuation center frequency = 550Hz, attenuation bandwidth = 40Hz, damping = 0%)

* Adjustment without the disturbance input function When adjusting the HRV filter without the disturbance input function, increase the velocity loop gain until oscillation occurs, observe the vibration of a torque command, set its frequency as the attenuation center frequency, and adjust the attenuation bandwidth and damping.

(6) Additional information (cautions)

When the HRV filter is used, inappropriate parameter setting may make velocity loop control unstable, resulting in abnormal oscillation by a torque command. There is a high possibility that velocity loop control becomes unstable when a "low" center frequency, "high" bandwidth, and "small" damping coefficient are set.

- 1. The motor may accelerate to a speed higher than the specified one with an acceleration/deceleration function depending on the degree of oscillation. Before using the HRV filter, fully consider the following points and adjust the parameters:
 - The use of the HRV filter is allowed when the center frequency is 200 Hz or higher.
- 2. The standard attenuation bandwith is up to 30% of the center frequency. Set as small a value as possible.
- 3. Set as large a damping coefficient as possible.
- 4. When the center frequency of machine resonance is 200 Hz or lower, adjust the parameters with observing the instructions described in items (2) and (3) while checking that no torque command causes abnormal oscillation.
- 5. When you do not use the HRV filter, set all three parameters (attenuation center frequency, attenuation bandwidth, and damping) for HRV filters 1 to 4 to "0."

4.2.3 Disturbance Input Function

(1) Overview

This function is used to measure the gain of the frequency response of a torque command to a disturbance torque command by applying the disturbance torque command in form of a sine wave to the torque command.

With this function, the HRV filter can be adjusted easily.

(2) Series and editions of applicable spindle software

9D50 series E(05) edition or later 9D70 series A(01) edition or later 9D80 series A(01) edition or later

(3) Details

Fig. 4.2.3 (a) shows the configuration of the disturbance input function.

A disturbance torque command (DTQCMD) in form of a sine wave is applied to the torque command (TQCMDB), which is the output of the velocity loop controller (including filtering), and the input frequency is increased step by step. While the frequency of the disturbance torque command is being increased, the frequency and the ratio of the amplitude of the torque command to the amplitude of the disturbance torque command (TQCMDB/DTQCMD) (the gain) are observed simultaneously. By doing this, the gain of the frequency response of the torque command to the disturbance torque command can be measured.

If there is strong resonance, an abrupt increase in the gain is observed near the resonance frequency. So, by observing this phenomenon, the HRV filter can be adjusted easily.

Fig.4.2.3 (a) Configuration of the disturbance input function

(4) Setting parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3395	4395	4395	DTQFNC	DTQTRG						

DTQFNC Disturbance input function bit

0: Disables the disturbance input function.1: Enables the disturbance input function.

This bit is valid only when S0 is specified in the velocity control mode. If this bit is set to 1 under conditions other than the above, the spindle amplifier results in a status error (error No. 32), and the excitation of

the spindle motor is turned off.

DTQTRG Disturbance input function bit

When this bit is set to ON $(0 \rightarrow 1)$ while excitation is ON (SFR = 1 or SRV = 1), a measurement starts. When this bit is set to OFF during

measurement, the measurement is stopped in the middle.

15*i* 16*i* 30*i* 3410 4410

Measurement start frequency

Unit of data: 1Hz Valid data range: 0 to 2000

Standard setting value: 0

Set the frequency at which measurements are to start.

When 0 is set, 10 Hz is assumed.

15*i* 16*i* 30*i* 3411 4411 4411

Measurement end frequency

Unit of data: 1Hz
Valid data range: 0 to 2000

Standard setting value :

Set the frequency at which measurements are to end.

When 0 is set, 500 Hz is assumed.

15*i* 16*i* 30*i*3412 4412 4412

Measurement frequency interval

Unit of data: 1Hz
Valid data range: 0 to 20
Standard setting value: 0

Set the interval of measurement frequencies.

When 0 is set, 5 Hz is assumed.

15*i* 16*i* 30*i* 3413 4413 4413

Number of measurement times per frequency

Unit of data: 1 time
Valid data range: 0 to 1000

Standard setting value: 0

Set the number of times a measurement is made per frequency.

When 0 is set, five times are assumed.

Normally, set 0.

15*i* 16*i* 30*i* 3414 4414 4414

Disturbance torque command amplitude

Unit of data : 1% (100% = maximum torque command)

Valid data range: 0 to 50 Standard setting value: 0

Set the amplitude of the disturbance torque command.

When 0 is set, 5% is assumed.

Normally, set 0.

15*i* 16*i* 30*i* 3415 4415

Motor speed command at measurement time

Unit of data: 1min⁻¹ (Unit of 10min⁻¹ when bit 2 (SPDUNT) of parameter No. 4006

= 1)

Valid data range : -32768 to +32767

Standard setting value: 0

Set the motor speed command at measurement time.

The speed is clamped at the maximum speed of the motor.

15*i* 16*i* 30*i* 3030 4030 4030

Change rate of motor speed command at measurement

Unit of data: 1min⁻¹/sec (Unit of 10min⁻¹/sec when bit 2 (SPDUNT) of parameter

No. 4006 = 1)

Valid data range: 0 to +32767

Standard setting value: 0

When a non-zero value is to be set as the motor speed command at measurement time, set the change rate of the motor speed command to

measurement time, set the change rate of the motor speed

prevent abrupt acceleration/deceleration.

When the disturbance input function is disabled (DTQFNC = 0), this parameter is used as the soft start/stop setting time. So, after the

measurements, restore the original value.

(5) Measurement procedure

Follow the steps below to make measurements:

As the operation mode, set the velocity control mode.

<1> Parameter setting (preparation for measurements)

Basically, only bit setting in parameter No. 4395 needs to be performed.

 \rightarrow Bit 7 (DTQFNC) of parameter No. 4395 = 1, bit 6 (DTQTRG) = 0

For other parameters, although default settings may be used, set appropriate value as necessary. (When the frequency of the resonance point is high, the setting of the measurement end frequency must be increased.)

- <2> Issue the S0 command and turn on excitation (SFR = 1 or SRV = 1).
- <3> Setting measurement start trigger DTQTRG to 1 starts measurements.

When a non-zero value is set in the motor speed command at the measurement time (parameter No. 4415), the motor accelerates to the set speed before measurements start. When measurements end, the motor decelerates then stops.

If one of the following conditions is satisfied during measurements, measurements are interrupted, and the motor decelerates then stops:

- The measurement start trigger is turned off. (DTQTRG = 0)
- Spindle motor excitation is turned off. (SFR = 0, SRV = 0)
- An emergency stop is applied.
- <4> To restart measurements, set measurement start trigger DTQTRG to ON $(0 \rightarrow 1)$.

In HRV filter adjustment, a measurement and parameter change must be repeated. So adjust the filter by repeating the following steps: starting measurement (DTQTRG = 1) \rightarrow end of measurement \rightarrow DTQTRG = 0 \rightarrow changing the HRV filter parameters \rightarrow starting measurement (DTQTRG = 1) and so on.

<5> After completing measurements (adjustment), turn off motor excitation, and reset all the parameters for the disturbance input function to 0.

(6) Observing data

The table below shows the setting method for observing measurement data on the spindle check board and descriptions of observation data. At the time of measurement (adjustment), observe data listed in the table by using measuring devices such as the spindle check board and an oscilloscope. Fig. 4.2.3 (b) shows an example of data observation at the time of measurement.

Channel	Setting address Settings		Descriptions			
	d-05 (data number)	167	FNCFRQ : Frequency of disturbance torque command			
CH1	d-06 (shift amount)	0 or 1	±128 Hz/±5 V with shift amount 0			
CITI	d-07 (shift direction)	0	±126 Hz/±5 V with shift amount 1			
	d-08 (offset)	1	200 MZ/±0 V WILLI SHIIL AMOUNT I			
	d-09 (data number)	168	TFUNCG: Ratio of amplitude of TQCMDB to amplitude of DTQCMD (gain)			
CH2	d-10 (Shift amount)	6 or 7	+200 %/+5 V with shift amount 6			
CHZ	d-11 (shift direction)	0	7±200 %/±5 V with shift amount 6 -1±400 %/±5 V with shift amount 7			
	d-12 (offset)	1	+00 70/±3 V With Shint amount /			

Fig.4.2.3 (b) Example for observing disturbance input function data

* The data shows that strong resonance is present at about 600 Hz.

4.3 AMPLITUDE RATIO/PHASE DIFFERENCE COMPENSATION FUNCTION

(1) Overview

This function compensates for errors in speed and position detection due to the amplitude ratio and phase difference of phase A/B of speed and position detection sensors.

By using this function, improvements in positioning and feed accuracy at the time of Cs contour control can be expected.

(2) Series and editions of applicable spindle software

9D50 series C(03) edition or later 9D70 series A(01) edition or later 9D80 series A(01) edition or later

(3) Details

The feedback signals from the αiM , αiMZ , αiBZ , and αiCZ sensors are used for speed or position detection in the spindle amplifier, and they are two sine wave signals (phase A/B) having the same amplitude and a phase difference of 90°. Based on these phase A/B signals, the detection circuit of the spindle amplifier generates feedback data used for speed and position detection. If the feedback signals are in the ideal state (having the same amplitude and a phase difference of 90°), accurate feedback data is generated. Actually, however, the amplitude and phase difference are slightly deviated from the ideal state. This deviation causes a feedback data error, which lowers the accuracy of speed and position detection.

When the feedback data has an error due to the deviation in amplitude and phase difference of the feedback signals as described above, this function performs compensation of feedback data generation processing (interpolation processing) of the detection circuit by setting compensation data for the detection circuit to minimize the error.

Use of this function improves the accuracy in speed and position detection. As a result, positioning and feed accuracy can be improved, and also improvement in rigidity can be expected because of the increase in velocity loop gain and position loop gain.

NOTE

This function does not simplify sensor installation work by directly performing compensation of the feedback signals. The sensor signals must satisfy the specification. So, before using this function, check that the feedback signals satisfy the specification.

(4) Setting parameters

15*i* 16*i* 30i 3355 4355 4355

Compensation of motor sensor signal amplitude ratio

1% Unit of data: Valid data range: -8 to +8

Standard setting value:

15*i* 16*i* 30*i*

3356 4356 4356 Compensation of motor sensor signal phase difference

Unit of data: 1° Valid data range: -4 to +4

Standard setting value:

15*i* 16*i* 30*i*

3357 4357 4357 Compensation of spindle sensor signal amplitude ratio

Unit of data: 1% Valid data range: -8 to +8

Standard setting value: 0

> 15*i* 16*i* 30*i* 3358 4358 4358

Compensation of spindle sensor signal phase difference

1° Unit of data: Valid data range: -4 to +4 Standard setting value:

> When compensation of the feedback signal of the motor sensor connected to spindle amplifier JYA2 is performed, the settings of parameter Nos. 4355 and 4356 are adjusted. When compensation of the feedback signal of the spindle sensor connected to JYA4 is performed, the settings of parameter Nos. 4357 and 4358 are adjusted. When as with a built-in motor the speed sensor and position sensor are the same (the feedback signal of JYA2 is used for speed detection and position detection), compensation is performed for JYA2 only. When the speed sensor and position sensor are provided separately (the feedback signal of JYA2 is used for speed detection, and the feedback signal of JYA4 is used for position detection), compensation is performed for both JYA2 and JYA4.

(5) Preparation for adjustment

With this function, parameters are adjusted by rotating the spindle at a certain speed in the velocity control mode and observing feedback data. The measuring devices required for the adjustment and the settings made at the time of adjustment are explained below.

<1> Measuring devices required for adjustment For the adjustment by this function, a spindle check board (A06B-6078-H001) and a digital oscilloscope having an averaging function are required.

<2> Speed and rotation direction at adjustment time

For adjustment on the motor sensor side, issue a speed command and rotation direction command (SFR or SRV) so that the motor rotates in the forward direction (counterclockwise) at speed N (see the equation below). For adjustment on the spindle sensor side, issue the commands so that the spindle rotates in the forward direction (counterclockwise) at speed N.

N [min⁻¹] = 4685/Number of sensor gear teeth [λ /rev]

Example: When the number of sensor gear teeth = 256 [λ /rev] N = 4685/256 = approx.18 [min⁻¹]

<3> Setting observation data

The table given below lists the data items to be observed at the time of adjustment and the settings for output on the spindle check board. For adjustment on the motor sensor (JYA2) side, observe data with data Nos. 313 and 231. For adjustment on the spindle sensor (JYA4) side, observe data with data Nos. 314 and 232.

Channel	Setting address	Setting data	Description
	d 05 (data number)	313	Motor sensor feedback incremental data
	d-05 (data number)	314	Spindle sensor feedback incremental data
CH1	d-06 (shift amount)	3 to 5	Incremental data sent every 2 ms for feedback data (data Nos. 231
	d-07 (shift direction)	0	and 232)
	d-08 (offset)	0 or 1	The data weights 1/2 ⁴ λ/10V for a shift amount of 4
CH2	d 00 (data number)	231	Motor sensor feedback data
	d-09 (data number)	232	Spindle sensor feedback data
	d-10 (Shift amount)	8	The data weights 1λ/10V.
	d-11 (shift direction)	0	During rotation, a saw tooth wave form is observed, and the edge
	d-12 (offset)	0	interval is equivalent to data for 1λ of the sensor gear.

<4> Setting the oscilloscope

Connect and set the oscilloscope as shown below to observe data. Use a falling edge of feedback data as a trigger, observe a waveform which averages incremental data, and adjust parameters so that the amplitude of this waveform is minimized.

Channel 1: Connected to the CH1 pin of the check board (0.5 to 1 V/div)

Channel 2: Connected to the CH2 pin of the check board (5 V/div)

Measurement time range: 5 to 10 ms/div Trigger setting: Falling edge of channel 2

Number of averaging times: About 16 to 64 times

(6) Adjustment procedure

After completing the preparation for adjustment mentioned previously, follow the steps below to adjust parameter settings in the MDI mode.

NOTE

Note that the αi series does not have the adjustment function using the spindle check board.

- <1> Rotation in the velocity control mode Set all the amplitude ratio and phase difference compensation parameters to 0, and rotate the spindle (motor) in the previously mentioned direction and at speed N in the velocity control mode.
- <2> Setting and adjusting the check board and oscilloscope After disabling the averaging function of the oscilloscope, adjust the settings regarding the shift amount and the presence/absence of an offset for CH1, and the display setting of the oscilloscope so that incremental data does not overflow the check board output range (±5 V) and oscilloscope display range (see Fig. 4.3 (a)).

After completing the adjustment of the check board and oscilloscope, enable the averaging function (See Fig. 4.3 (b)).

Fig. 4.3 (a) Without averaging

Fig. 4.3 (b) When averaging is performed 32 times

* Sensor: 256 λ /rev, speed 18 min⁻¹

<3> Adjusting the phase difference compensation parameter Set the parameter for amplitude ratio compensation (parameter No. 4355 or 4357) to 0, and adjust the phase difference compensation parameter (parameter No. 4356 or 4358). Typically, set a value with which the amplitude of averaged incremental data is minimized. First, check the amplitude by entering (+)1 as the parameter value and the amplitude by entering -1. In the direction in which the amplitude becomes smaller, change the parameter value in steps of 1. Then, you can find the optimum value easily. Fig. 4.3 (c) shows the waveform obtained after phase difference compensation adjustment.

Fig. 4.3 (c) After phase difference compensation

<4> Adjusting the amplitude ratio compensation parameter After adjusting phase difference compensation to an optimum value, adjust amplitude ratio compensation. The adjustment method and the guideline for adjustment are the same as for phase difference compensation. Perform adjustment so that the amplitude of feedback incremental data becomes smaller. Fig. 4.3 (d) shows the waveform obtained after adjustment of amplitude ratio compensation (and phase difference compensation).

Fig. 4.3 (d) After amplitude ratio (and phase difference) compensation

NOTE

Whichever compensation, amplitude ratio compensation or phase difference compensation, may be adjusted first, the same adjustment result can be obtained. So, steps <3> and <4> may be performed in reverse order.

5

FUNCTION DESCRIPTIONS

5.1 SPEED RANGE SWITCHING CONTROL

Optional function

5.1.1 Overview

Speed range switching control switches the output characteristic (winding) of a spindle motor (motor designed for speed range switching control) that has two types of windings (winding with low-speed output characteristic and winding with high-speed output characteristic).

NOTE

Using this function requires the CNC software option.

5.1.2 Series and Editions of Applicable Spindle Software

Spindle software

- F										
Series	Edition	Usable CNC								
9D50	A (01) edition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i> / FS0 <i>i</i> / FS15 <i>i</i>								
9D70	A (01) edition or later	FS30i / FS31i / FS32i								
9D80	A (O4) adition or later	FS16i / FS18i / FS21i / FS0i / FS15i								
	A (01) edition or later	FS30i / FS31i / FS32i								

5.1.3 Configuration

Shown below is a machine configuration for using speed range switching control.

This function requires the following items in addition to a spindle amplifier (SP).

- Switching unit (a magnetic contactor and a relay for driving it are included)
- Signals between the PMC and switching unit

Refer to "FANUC SERVO AMPLIFIER αi series Descriptions" (B-65282EN) for the specification of the switching unit and detailed descriptions about their connection.

5.1.4 I/O Signals (CNC \leftrightarrow PMC)

(1) Address list of input signals (PMC \rightarrow CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070					CTH1A	CTH2A		
2nd-	G235	G074	G074					СТН1В	СТН2В		
						=				-"	
1st-	G226	G071	G071	RCHA	RSLA						
2nd-	G234	G075	G075	RCHB	RSLB						
						_					
1st-	G229	G072	G072	RCHHGA							
2nd-	G237	G076	G076	RCHHGB							

(2) Details of input signals (PMC \rightarrow CNC)

(a) Speed range switching request signal (RSLA)

- (1) The RSLA signal is used as a command signal for selecting an output characteristic.
 - 0: The high-speed characteristic is selected.
 - 1: The low-speed characteristic is selected.
- (2) Method of specifying the RSLA signal according to the speed command (S command)

Input the RSLA signal in such a way that, if the specified speed is lower than or equal to the switching speed, the low-speed characteristic is selected and, if the specified speed is higher than or equal to the switching speed, the high-speed characteristic is selected. When this signal changes from 0 to 1 in a rotation speed range that is higher than or equal to the switching speed, the low-speed characteristic is selected immediately. To avoid this symptom, set, to 1, a parameter (bit 4 of parameter No. 4019) for selecting the low-speed characteristic after the speed detection signal (SDTA) has changed to 1. This method requires that the detection level of the SDTA signal be set to the switching speed.

- (3) Method of using the speed-detected signal (SDTA)
 Input the speed range switching request signal according to the output of the SDTA signal. This method requires that the detection level of the SDTA signal be set to the switching speed. Note that the SDTA signal changes in the following cases:
 - If the motor speed crosses the speed detection level during constant surface speed control
 When the motor is used with the low-speed characteristic, clamping the maximum rotation speed of the spindle under constant surface speed control to the switching speed (using the G50 and G92 commands) prevents speed range switching.
 - If the motor speed crosses the speed detection level when the speed is changed under spindle override

- (4) Because the motor is switched off during speed range switching, select an output characteristic, whichever is necessary, before entering any of the following control modes. Do not change the speed range switching request signal during operation.
 - Rigid tapping
 - Cs contouring control
 - Spindle synchronous control
 - Spindle positioning
 - Spindle orientation (lower than or equal to the orientation speed)

(b) Low-speed characteristic magnetic contactor status signal (RCHA)

- (1) Input an open/closed status signal for the magnetic contactor (MCC) used for the low-speed characteristic of the spindle motor.
 - 0: The low-speed characteristic magnetic contactor is open (off).
 - 1: The low-speed characteristic magnetic contactor is closed (on).
- (2) Usually, specify the status of the auxiliary contact (contact A) of the low-speed characteristic magnetic contactor without modifying it.
- (3) If bit 3 of parameter No. 4014 = 0, the RCHA signal is used as a confirmation signal for the status of the power line. So, specify the selected status of the magnetic contactor for switching the output characteristic of the spindle motor.
 - 0: The high-speed characteristic is selected.
 - 1: The low-speed characteristic is selected.

To switch from low-speed characteristic to high-speed characteristic, after making sure that the low-speed characteristic magnetic contactor is switched off and the high-speed characteristic magnetic contactor is switched on, change this signal from 1 to 0. Similarly, to switch from high-speed characteristic to low-speed characteristic, after making sure that the high-speed characteristic magnetic contactor is switched off and the low-speed characteristic magnetic contactor is switched on, change this signal from 0 to 1.

(c) High-speed characteristic magnetic contactor status signal (RCHHGA)

- (1) Input an open/closed status signal for the magnetic contactor (MCC) used for the high-speed characteristic of the spindle motor.
 - 0: The high-speed characteristic magnetic contactor is open (off)
 - 1: The high-speed characteristic magnetic contactor is closed (on).
- (2) Usually, specify the status of the auxiliary contact (contact A) of the high-speed characteristic magnetic contactor without modifying it.
- (3) The RCHHGA signal is valid if bit 3 of parameter No. 4014 = 1.

(3) Address list of output signals (CNC \rightarrow PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045						SDTA		
2nd-	F245	F049	F049						SDTB		
								•			<u>.</u>
1st-	F228	F046	F046					RCFNA	RCHPA		
2nd-	F244	F050	F050					RCFNB	RCHPB		

(4) Details of output signals (CNC \rightarrow PMC)

(a) Power line switching signal (RCHPA)

- (1) The RCHPA signal is a command signal for selecting a magnetic contactor used to switch the output characteristic of the spindle motor
 - 0: The high-speed characteristic magnetic contactor is selected.
 - 1: The low-speed characteristic magnetic contactor is selected.
- (2) The RCHPA signal is output in response to an incoming speed range switching request signal (RSLA). Switch the magnetic contactor according to the RCHPA signal.
- (3) When the speed range is switched from low speed to high speed, the RCHPA signal changes from 1 to 0 in response to an incoming speed range switching request signal (RSLA). When the speed range switching request signal is received, the motor power is automatically switched off. So, first switch off the low-speed magnetic contactor. After making sure that the low-speed magnetic contactor has been switched off, switch on the high-speed magnetic contactor.
- (4) When the speed range is switched from high speed to low speed, the RCHPA signal changes from 0 to 1 in response to an incoming speed range switching request signal (RSLA). When the speed range switching request signal is received, the motor power is automatically switched off. So, first switch off the high-speed magnetic contactor. After making sure that the high-speed magnetic contactor has been switched off, switch on the low-speed magnetic contactor.

(b) Power line switching completion signal (RCFNA)

- (1) After spindle motor speed range switching is completed, indicate which speed range is selected.
 - 0: The spindle is running with the high-speed characteristic.
 - 1: The spindle is running with the low-speed characteristic.
- (2) After making sure that the speed range switching request signal (RSLA) has changed and the RCFNA signal matches the RSLA, go to the next operation.

(c) Speed detection signal (SDTA)

- (1) Output a signal for indicating whether the motor speed is not lower than or not higher than the speed level specified in parameter No. 4023.
 - 0: The motor is rotating at or faster than the specified speed level.
 - 1: The motor is rotating at or lower than the specified speed level.
- (2) The SDTA signal can be used to detect the speed for speed range switching by setting the speed detection level to the switching speed.
- (3) Be careful when using the SDTA signal for speed range switching, because the signal may change because of speed fluctuations when the machine runs at or near the switching speed.
- (4) The SDTA signal has hysteresis. The hysteresis width is initially set to 20 min⁻¹. The setting can be changed, using parameter No. 4160. See Subsection 5.1.7, "Details of Related Parameters," for the setting.

5.1.5 Sequence

(1)Performing speed range switching by checking the status of both contacts of the low-speed characteristic magnetic contactor status signal (RCHA) and high-speed characteristic magnetic contactor status signal (RCHHGA) (bit 3 of parameter No. 4014 = 1)

(a) Switching from low-speed characteristic to high-speed characteristic

(b) Switching from high-speed characteristic to low-speed characteristic

(2)Performing speed range switching by checking only the power line status confirmation signal (RCHA) (bit 3 of parameter No. 4014 = 0)

(a) Switching from low-speed characteristic to high-speed characteristic

Speed range switching request Low speed (= 1) High speed (= 0) signal (RSLA) PMC→CNC Power line switching signal (RCHPA) Low speed (= 1) High speed (= 0) CNC→PMC Clutch/gear signal High speed (= 0) Low speed (= 1) (CTH1A, 2A) PMC→CNC Low-speed characteristic Open magnetic contactor Closed High-speed characteristic Closed Open magnetic contactor Power line status confirmation High speed (= 0) Low speed (= 1) signal (RCHA) PMC→CNC Speed range switching Low speed (=1) High speed (=0) completion signal (RCFNA) CNC→PMC

(b) Switching from high-speed characteristic to low-speed characteristic

Speed range switching request High speed (= 0) Low speed (= 1) signal (RSLA) PMC→CNC Power line switching signal Low speed (= 1) (RCHPA) High speed (= 0) CNC→PMC Clutch/gear signal Low speed (= 1) High speed (= 0) (CTH1A, 2A) PMC→CNC Low-speed characteristic Closed magnetic contactor Open High-speed characteristic Closed Open magnetic contactor Power line status confirmation High speed (= 0) Low speed (=1) signal (RCHA) PMC→CNC Speed range switching Low speed (=1) High speed (=0) completion signal (RCFNA) $CNC \rightarrow PMC$

NOTE

- 1 A parameter can specify that switching from high-speed output characteristic to low-speed output characteristic be not performed at a speed higher than or equal to the switching speed (speed detection signal SDTA = 0) even if a switching request is issued.
- 2 Switch the clutch/gear signals (CTH1A and CTH2A) in such a way that the velocity loop gain can be specified for low- and high-speed characteristics separately.
- 3 Spindle alarm 15 is issued unless the magnetic contactor status signal is input within one second after the power line switching signal is output. So, input the magnetic contactor status signal within one second after the power line switching signal is output.
- 4 If you want to check the selection status of magnetic contactors MCC1 and MCC2 only with the auxiliary contact of magnetic contactor MCC1, allow a delay time of at least 50 ms between the instant when switching between MCC1 and MCC2 is performed with the power line switching signal (RCHPA) and the instant when the power line status confirmation signal (RCHA) changes, because a delay occurs in the operation of the magnetic contactors.

5.1.6 List of Related Parameters

Pa	Parameter No.		Description
15 <i>i</i>			Description
3015 #2	4015 #2	4015 #2	Whether the speed range switching control function is available (to be set to "1") (The CNC software option is required.)
3014 #3	4014 #3	4014 #3	Function of checking the both magnetic contactor contacts for high-/low-speed characteristics in speed range switching
3019 #4	4019 #4	4019 #4	Function of checking the speed detection signal when switching is performed from high-speed characteristic to low-speed characteristic
3023	4023	4023	Speed detecting level
3160 4160 4160 \$		4160	Speed detection level hysteresis

5.1.7 Details of Related Parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3015	4015	4015						SPDSW		

SPDSW

Presence of speed range switching function (To use this function, the CNC software option is required.)

0: Without speed range switching function

1: With speed range switching function (To be set to "1")

15 <i>i</i>	161	301	
3014	4014	4014	

#7	#6	#5	#4	#3	#2	#1	#0
				CHGSLT			

CHGSLT

Function of checking the both magnetic contactor contacts for high-/low-speed characteristics in speed range switching

- 0: A check is made, using the power line status confirmation signal (RCH).
- 1: The contacts of both high- and low-speed characteristic magnetic contactors are checked.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3019	4019	4019

#7	#6	#5	#4	#3	#2	#1	#0
			SDTCHG				

SDTCHG

Specifies whether to switch from high-speed range to low-speed range, upon the speed detection signal (SDT) being set to "1", when speed range switching is used.

- 0: Switches from the high-speed to low-speed range regardless of the speed detection signal (SDT).
- 1: Switches from the high-speed to low-speed range after the SDT signal has changed to "1".

If this data is "0", switching from high-speed characteristic to low-speed characteristic occurs no matter what the status of the speed detection signal (SDT) is.

If this data is "1", switching from high-speed characteristic to low-speed characteristic does not occur when the speed detected signal (SDT) is "0". The switching occurs only after the SDT signal has changed to "1".

To make switching to low-speed characteristic occur securely at or near the switching speed, set the speed detection level (parameter No. 4023) to a level slightly higher than the switching speed level.

15*i* 16*i* 30*i*3023 4023 4023

Speed detecting level

Unit of data: 0.1% Valid data range: 0 to 1000 Standard setting value: 0

This data is used to set the detecting level of speed detecting signal (SDT).

When the motor speed reaches (setting data/10) % or less of maximum speed, the speed arrival signal (SDT) is set to "1".

15*i* 16*i* 30*i* 3160 4160 4160

Speed detection level hysteresis

Unit of data: 1min⁻¹ (When parameter No. 4006 #2 (SPDUNT)=1, 10 min⁻¹)

0 to 32767 Valid data range:

Standard setting value:

Specify the hysteresis of the detection level of the speed detection signal (SDT).

The speed detection signal (SDT) changes from 1 to 0 with the set speed detection level + hysteresis motor speed, and changes from 0 to 1 with the set speed detection level motor speed. If this data is set to 20 min⁻¹ or less, the hysteresis is automatically set to 20 min⁻¹.

If the speed detection signal (SDT) is used in speed range switching control, increase the data setting in situations where the switching circuit is likely to cause chattering close to the motor speed for the speed detection level.

Set the hysteresis width to a speed change measured during switching with a margin (about twice the measured speed change).

A rough estimate of the hysteresis width can be obtained from the following expression (on the assumption that the motor load torque at switching is 20% of the maximum output torque):

Speed range switching time

Hysteresis width[min -1] =

5.1.8 Parameter-specified Switching between High- and Low-speed Characteristics

(1) Clutch/gear signals (CTH1A and CTH2A)

In speed range switching control, clutch/gear signals (CTH1A and CTH2A) are input to switch high- and low-speed velocity loop gain, position gain, and gear ratio data.

Usually, the clutch/gear signals are intended to select spindle parameters (velocity loop gain, position gain, and gear ratio) that correspond to the selected clutch/gears.

In speed range switching control, switching must be done in conjunction with winding selection.

CTH1A	CTH2A	Selection status clutch/gears	Selection status of winding	
0	0	HIGH GEAR	(HIGH)	High-speed output characteristic winding
0	1	MEDIUM HIGH GEAR	(HIGH)	-
1	0	MEDIUM LOW GEAR	(LOW)	-
1	1	LOW GEAR	(LOW)	Low-speed output characteristic winding

- (2) Relationships between the clutch/gear signals and spindle parameters
 - (a) When the high-speed output characteristic winding is selected (CTH1A = 0 and CTH2A = 0)

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3040	4040	4040	Velocity loop proportional gain on the velocity control mode (HIGH)
3042	4042	4042	Velocity loop proportional gain on orientation (HIGH)
3044	4044	4044	Velocity loop proportional gain on servo mode (HIGH)
3046	4046	4046	Velocity loop proportional gain on Cs contouring control (HIGH)
3048	4048	4048	Velocity loop integral gain on the velocity control mode (HIGH)
3050	4050	4050	Velocity loop integral gain on orientation (HIGH)
3052	4052	4052	Velocity loop integral gain on servo mode (HIGH)
3054	4054	4054	Velocity loop integral gain on Cs contouring control (HIGH)
3060	4060	4060	Position gain on orientation (HIGH)
3065	4065	4065	Position gain on servo mode (HIGH)
3069	4069	4069	Position gain on Cs contouring control (HIGH)

(b) When the low-speed output characteristic winding is selected (CTH1A = 1 and CTH2A = 1)

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3041	4041	4041	Velocity loop proportional gain on the velocity control mode (LOW)
3043	4043	4043	Velocity loop proportional gain on orientation (LOW)
3045	4045	4045	Velocity loop proportional gain on servo mode (LOW)
304	4047	4047	Velocity loop proportional gain on Cs contouring control (LOW)
3049	4049	4049	Velocity loop integral gain on the velocity control mode (LOW)
3051	4051	4051	Velocity loop integral gain on orientation (LOW)
3053	4053	4053	Velocity loop integral gain on servo mode (LOW)
3055	4055	4055	Velocity loop integral gain on Cs contouring control (LOW)
3063	4063	4063	Position gain on spindle orientation (LOW)
3068	4068	4068	Position gain on servo mode (LOW)
3072	4072	4072	Position gain on Cs contouring control (LOW)

(3) Cautions

Keep in mind that the clutch/gear signals (CTH1A and CTH2A) are used to select also parameters for rigid tapping, feed axis position gain under Cs contouring control, the number of teeth of arbitrary gears, time constants, and backlash in the Series 15*i*.

5.2 SPINDLE SWITCHING CONTROL

5.2.1 Overview

Spindle switching control is a function that drives two spindle motors with a single spindle amplifier, one at a time by switching them. The function is suitable for a machine in which two spindle motors are not driven simultaneously.

5.2.2 Series and Editions of Applicable Spindle Software

Spindle software

	Series	Edition	Usable CNC
	9D50	E (05) edition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i> / FS0 <i>i</i> / FS15 <i>i</i>
	9D70	A (01) edition or later	FS30i / FS31i / FS32i
	0000	A (O4) adition on later	FS16i / FS18i / FS21i / FS0i / FS15i
	9D80	A (01) edition or later	FS30i / FS31i / FS32i

5.2.3 Configuration

Shown below is a machine configuration for using spindle switching control.

The following items are required for spindle switching control in addition to a spindle amplifier (SP) and two spindle motors:

- Sub module SW (SSW)
- Switching unit (a magnetic contactor and a relay for driving it are included)
- Signals between the PMC and switching unit

Refer to "FANUC SERVO AMPLIFIER αi series Descriptions" (B-65282EN) for the specification of the submodule SW (hereafter SSW), switching unit, and detailed descriptions about their connection.

5.2.4 Details of Specifications

- (1) The spindle amplifier and SSW are used to select one of two spindle motors and drive the selected spindle motor. They cannot be used to drive two spindle motors simultaneously or switch between a motor with a 200 V input and a motor with a 400 V input (HV). They cannot be used to drive αCi series spindle motors either.
- (2) Any spindle motors that can be driven with the spindle amplifier can be combined as a main spindle or sub-spindle.

 The capacity of the spindle amplifier used for two spindle motors must be large enough for the larger of the two. The required parameters may have to be re-set depending on the combination of the motors and amplifier.
- (3) The SSW switches the feedback signal according to the switching command from the spindle amplifier. The detectors that can be used are as follows:

 Detectors incorporated in the motor (speed detectors): αiM sensor, αiMZ sensor, αiBZ sensor (for built-in motors), and αiCZ sensor (for built-in motors)

 Detectors mounted on the spindle (position detectors): Position coder, αiBZ sensor (when SP TYPE B is used), αiCZ sensor (when SP TYPE B is used), and proximity switch
- (4) Speed range switch control can be used for both the main spindle and sub-spindle.
- (5) Rigid tapping can be used for both the main spindle and sub-spindle.
- (6) Position coder-based spindle orientation can be used for both the main spindle and sub-spindle as long as it uses a method of specifying a stop position with a parameter.
- (7) The status information about the magnetic contactors of both the main spindle and sub-spindle can be input so that the status of the power line can be checked securely. This function is enabled by setting the following parameters.

FS16*i*: Bit 2 of parameter No. 4014 = 1

FS30i: Bit 2 of parameter No. 4014 = 1

FS15i: Bit 2 of parameter No. 3014 = 1

(8) A switching error is detected and spindle alarm 15 is issued unless the magnetic contactor status signal (MCFNA or MFNHGA) is not input within one second after the power line switching signal (CHPA) is output.

5.2.5 Restrictions

- (1) Stop position external setting type orientation can be used only for the main spindle.
- (2) Spindle synchronous control can be used only for the main spindle.
- (3) Spindle positioning can be used only for the main spindle.
- (4) Cs contouring control can be used only for the main spindle.

- (5) For the sub-spindle motor, up to two gear switching stages can be specified using a parameter.
- (6) The dual position feedback function can be used on the main side only.

5.2.6 I/O Signals (CNC↔PMC)

(1) Address list of input signals (PMC → CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G226	G071	G071					MCFNA	SPSLA		
2nd-	G234	G075	G075					MCFNB	SPSLB		
										•	
1st-	G229	G072	G072		MFNHGA						
2nd-	G237	G076	G076		MFNHGB						

(2) Details of input signals (PMC \rightarrow CNC)

(a) Spindle switching request signal (SPSLA)

- (1) The SPSLA signal is used as a command signal to select a spindle motor.
 - 0: The main spindle motor is selected.
 - 1: The sub-spindle motor is selected.
- (2) After stopping the spindle motors, change the SPSLA signal. The zero-speed signal (SSTA) can be used as an output signal to check that the spindle motors are at a halt.
- (3) Reset the rotation commands (SFRA and SRVA) and spindle orientation command (ORCMA) to 0, because switching requires that the motor power be off.

(b) Sub-spindle motor magnetic contactor status signal (MCFNA)

- (1) Input the open/closed status of the sub-spindle motor magnetic contactor (MCC).
 - 0: The sub-spindle motor magnetic contactor is open (off).
 - 1: The sub-spindle motor magnetic contactor is closed (on).
- (2) Usually, specify the status of the auxiliary contact (contact A) of the sub-spindle motor magnetic contactor without modifying it.
- (3) If bit 2 of parameter No. 4014 = 0, the MCFNA signal is used as a confirmation signal for the status of the power line. So, specify the selection status of the magnetic contactor for switching the power line of the spindle motor.
 - 0: The main spindle motor is selected.
 - 1: The sub-spindle motor is selected.

To switch from the sub-motor to the main motor, after making sure that the sub-motor magnetic contactor is switched off and the main motor magnetic contactor is switched on, change this signal from 1 to 0. Similarly, to switch from the main motor to the sub-motor, after making sure that the main motor magnetic contactor is switched off and the sub-motor magnetic contactor is switched on, change this signal from 0 to 1.

(c) Main spindle motor magnetic contactor status signal (MFNHGA)

- (1) Input the open/closed status of the main spindle motor magnetic contactor (MCC).
 - 0: The main spindle motor magnetic contactor is open (off).
 - 1: The main spindle motor magnetic contactor is closed (on).
- (2) Usually, specify the status of the auxiliary contact (contact A) of the main spindle motor magnetic contactor without modifying it.
- (3) The MFNHGA signal is valid if bit 2 of parameter No. 4014 = 1.

(3) Address list of output signals (CNC \rightarrow PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045							SSTA	
2nd-	F245	F049	F049							SSTB	
1st-	F228	F046	F046							CFINA	СНРА
2nd-	F244	F050	F050							CFINB	СНРВ

(4) Details of output signals (CNC → PMC)

(a) Power line switching signal (CHPA)

- (1) The CHPA signal is a command signal for selecting a magnetic contactor used to switch the power line of the spindle motor.
 - 0: The main spindle motor magnetic contactor is selected.
 - 1: The sub-spindle motor magnetic contactor is selected.
- (2) When the spindle switching request signal (SPSLA) is input, a check is made to see if the motors are at a stop and their power is off. Once it has been confirmed that the motors are at a stop and their power is off, the CHPA signal is output. Switch the magnetic contactor according to the CHPA signal.
- (3) When switching from the sub-motor to the main motor occurs, the CHPA signal changes from 1 to 0 in response to an incoming spindle switching request signal (SPSLA) provided that the sub-motor is at a stop and its power is off. After this signal change has occurred, first switch off the sub-motor magnetic contactor. After making sure that the sub-motor magnetic contactor has been switched off, switch on the main motor magnetic contactor.
- (4) When switching from the main motor to the sub-motor occurs, the CHPA signal changes from 0 to 1 in response to an incoming spindle switching request signal (SPSLA) provided that the main motor is at a stop and its power is off. After this signal change has occurred, first switch off the main motor magnetic contactor. After making sure that the main motor magnetic contactor has been switched off, switch on the sub-motor magnetic contactor.

(b) Spindle switching completion signal (CFINA)

- (1) After spindle switching is completed, it is indicated which spindle motor is currently under control.
 - 0: The main spindle motor is currently under control.
 - 1: The sub-spindle motor is currently under control.
- (2) After making sure that the spindle switching request signal (SPSLA) has changed and the CFINA signal matches the SPSLA, go to the next operation.
- (3) Keep the rotation commands (SFRA and SRVA) and spindle orientation command (ORCMA) turned off during switching, because switching requires that the motor power be off.

(c) Zero-speed signal (SSTA)

- (1) It is indicated whether the spindle motor speed is not lower or not higher than the zero-speed detection level (parameter-specified speed level).
 - 0: The motor is rotating at or faster than the speed detection level
 - 1: The motor is rotating at or slower than the speed detection level.
- (2) The motor must be at a halt during spindle switching. Use the SSTA signal to check that that the motor is at a halt.

5.2.7 Sequence

(1)Performing spindle switching by checking the status of both contacts of the sub-spindle motor magnetic contactor status signal (MCFNA) and main spindle motor magnetic contactor status signal (MFNHGA) (bit 2 of parameter No. 4014 = 1)

Rotation commands (SFRA and SRVA) Spindle orientation command (ORCMA) PMC→CNC

Spindle motor speed

Zero-speed signal (SSTA) CNC→PMC

Spindle switching request signal (SPSLA) PMC→CNC

Power line switching signal (CHPA) CNC→PMC

Main spindle motor magnetic contactor

Main spindle motor magnetic contactor status signal (MFNHGA) PMC→CNC

Sub-spindle motor magnetic contactor

Sub-spindle motor magnetic contactor status signal (MCFNA) PMC→CNC Spindle switching completion signal (CFINA) CNC→PMC

NOTE

Spindle alarm 15 is issued unless the main spindle motor status signal (MFNHGA) and sub-spindle motor status signal (MCFNA) change within one second after the switching request signal (SPSLA) signal has changed.

(2)Performing spindle switching by checking only with the power line status signal (MCFNA) (bit 2 of parameter No. 4014 = 0)

Rotation commands (SFRA and SRVA) Spindle orientation command (ORCMA) PMC→CNC

Spindle motor speed

Zero-speed signal (SSTA) CNC→PMC

Spindle switching request signal (SPSLA) PMC→CNC

Power line switching signal (CHPA) CNC→PMC

Main spindle motor magnetic contactor

Sub-spindle motor magnetic contactor

Sub-spindle motor magnetic contactor status signal (MCFNA) PMC→CNC

Spindle switching completion signal (CIFNA) CNC→PMC

NOTE

- When checking the selection status of magnetic contactors MCC1 and MCC2 only with the auxiliary contact of magnetic contactor MCC1, allow a delay time of at least 50 ms between the instant when switching between MCC1 and MCC2 is performed with the power line switching signal (CHPA) and the instant when the power line status confirmation signal (MCFN) changes, because a delay occurs in the operation of the magnetic contactors.
- Spindle alarm 15 is issued unless the power line magnetic contactor status signal (MCFNA) changes within one second after the switching request signal (SPSLA) has changed.

5.2.8 List of Related Parameters

P	Parameter No.		Deparintion	
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	
5607#0	4019#7	4019#7	Parameter automatic setting function (MAIN)	
3133	4133	4133	Motor model code (MAIN)	
5607#0	4195#7	4195#7	Parameter automatic setting function (SUB)	
3309	4309	4309	Motor model code (SUB)	
3014#0	4014#0	4014#0	Whether the spindle switching function is available (to be set to "1")	
3014#2	4014#2	4014#2	Function of checking the both magnetic contactor contacts for main	
			spindle and sub-spindle motors in spindle switching	
3013	4013	4013	Current dead-band data (MAIN)	
#6 to #2	#6 to #2	#6 to #2	ourion dodd burid data (i'ii iii i)	
3024	4024	4024	Speed zero detecting level (MAIN)	
3110	4110	4110	Current conversion constant (MAIN/high-speed characteristic)	
3146	4146	4146	Current conversion constant (MAIN/low-speed characteristic)	
3189	4189	4189	Comment deed bond date (CLID)	
#6 to #2	#6 to #2	#6 to #2	Current dead-band data (SUB)	
3199	4199	4199	Zero-speed detection level (SUB)	
3264	4264	4264	Current conversion constant (SUB/high-speed characteristic)	
3294	4294	4294	Current conversion constant (SUB/low-speed characteristic)	

NOTE

In the FS15*i*, the parameter automatic setting function is common to the main and sub-spindle motors

5.2.9 Details of Related Parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0	
3014	4014	4014						AXSLCT		AXISSL	

AXISSL Whether the spindle switching control function is available

- 0: No spindle switching function is available.
- 1: The spindle switching function is available (to be set to "1").

AXSLCT Function of checking the contents of both the main spindle and sub-spindle motor magnetic contactor contacts in spindle switching

- 0: The check is based on the power line status signal (MCFN)
- 1: The check is made on the contacts (MCFN and MFNHG) of both the main and sub-spindle motor magnetic contactors.

15*i* 16*i* 30*i* MAIN: 3013 4013 4013 SUB: 3189 4189 4189

5.FUNCTION DESCRIPTIONS

#7	#6	#5	#4	#3	#2	#1	#0
	DS5	DS4	DS3	DS2	DS1		
	DS5	DS4	DS3	DS2	DS1		

DS5 to DS1

Current dead-band data

This parameter is determined according to the spindle amplifier model to be used.

In spindle switching control, the amplifier model to be used may differ from the amplifier that supports the motor. In this case, change the parameter setting according to the amplifier to be used, while referencing the following table.

Amp	Parameter setting					
200V-input	400V-input	DS5	DS4	DS3	DS2	DS1
αiSP2.2 to 15	αi SP5.5HV to 15HV	0	0	0	1	1
αiSP22 to 37	αi SP30HV to 45HV	1	0	1	0	0
α <i>i</i> SP45 to 55	αiSP75HV to 100HV	0	0	1	1	0

NOTE

Be careful when no correct data is specified, because it is likely that switching elements in the power circuit may break down.

15*i* 16*i* 30i 3024 4024 4024 3199 4199 4199

Speed zero detecting level (MAIN side)	
Speed zero detecting level (SUB side)	

Unit of data: 0.01% 0 to 10000 Valid data range:

Standard setting value:

75

This data is used to set the detecting level of speed zero detection signal (SSTA).

When the motor speed reaches (setting data/100)% or less of maximum speed, the speed zero detection signal (SSTA) is set to "1".

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3110	4110	4110
3146	4146	4146
3264	4264	4264
3294	4294	4294

Current conversion constant (MAIN side, high-speed characteristic)
Current conversion constant (MAIN side, low-speed characteristic)
Current conversion constant (SUB side, high-speed characteristic)
Current conversion constant (SUB side, low-speed characteristic)

Unit of data:

Valid data range: 0 to 32767

Standard setting value: T

This parameter is intended to specify a current detection weight that varies depending on the motor model to be used.

If a motor and a spindle amplifier are in a combination that is not originally intended, it is necessary to change the setting according to the spindle amplifier to be used. Use the following conversion formula to determine a value to be specified in the parameter.

$$ICONV2 = ICONV1 \times \frac{G1}{G2}$$

ICONV1 : Current conversion constant before change ICONV2 : Current conversion constant after change

G1: Current detection gain for the spindle amplifier initially intended for the motor

G2 : Current detection gain for the spindle amplifier to be used in spindle switching

The current detection gains (G1 and G2) vary from one amplifier model to another. The following table lists the current detection gains that correspond to each amplifier model.

Amplifie	Current detection gain			
200V-input	400V-input	(G1,G2)		
αiSP2.2, 5.5	αiSP5.5HV, 11HV	60		
αiSP11	αiSP15HV	30		
αiSP15	αiSP30HV	20		
αiSP22	αiSP45HV	15		
αiSP26		10		
αiSP30, 37	αiSP75HV	7.5		
αiSP45	αiSP100HV	6.67		
αiSP55		4.29		

NOTE

If no correct data is specified, the motor fails to deliver the rated power, and it is likely that switching elements in the power circuit may break down.

5.2.10 Parameter Setting Procedure

(1) Motor-specific parameter setting

<1> Motor model code setting

Specify the model code of a motor to be subjected to automatic setting. If the motor has no model code, specify "300" (for a motor with no speed range switching function) or "400" (for a motor with a speed range switching function).

CNC	Parame	Sotting value	
CNC	MAIN side	SUB side	Setting value
15 <i>i</i>	No.3133	No.3309	
16 <i>i</i>	No.4133	No.4309	Model code
30 <i>i</i>	No.4133	No.4309	

<2> Parameter automatic setting

After the following parameters are specified, switch the CNC power off and on again. The spindle parameter specified with a model code is automatically set up. Once automatic setting is completed, the following parameters are re-set to their previous values.

CNC	Parame	Sotting value			
	MAIN side	SUB side	Setting value		
15 <i>i</i>	No.56	No.5607#0			
16 <i>i</i>	No.4019#7	No.4195#7	1		
30 <i>i</i>	No.4019#7	No.4195#7	1		

NOTE

In the FS15*i*, a parameter for the parameter automatic setting function is common to the main and sub-spindle motors. Keep in mind that parameter automatic setting occurs for the main and sub-spindle motors simultaneously.

<3> Motor-specific parameter setting (for motors with no model code)

If the motor has no model code, once automatic setting is completed, specify motor-specific parameters by entering values manually according to the parameter tables for individual motor models.

NOTE

Set the parameters for the sub-spindle according to the list of the motor-specific parameter numbers in Subsection 5.2.11, "Supplementary Descriptions about Parameters," in Part I.

- (2) Parameter re-setting for spindle switching
 If the motor and spindle amplifier are not in a standard combination, change the current dead-band data and current conversion constant as described in the previous item.
- (3) Parameter setting related to detectors Specify parameters related to detectors according to the system configuration of the spindle. See Section 1.3 for explanations about how to specify parameters related to detectors.

5.2.11 Supplementary Descriptions about Parameters

- (1) The spindle amplifier drives the motor using the relevant parameters according to the selected spindle (main spindle or sub-spindle for spindle switching).

 For the parameter numbers for the main spindle and sub-spindle, see Appendix B, "LIST OF SPINDLE PARAMETER NUMBERS."
- (2) The following table lists the motor-specific parameter numbers for the main spindle and those for the sub-spindle.

 Set a motor-specific parameter for the sub-spindle according to the table below

	Parameter No.					
	5 <i>i</i>		6 <i>i</i>		0 <i>i</i>	Description
MAIN	SUB	MAIN	SUB	MAIN	SUB	
3007	3183	4007	4183	4007	4183	Bit type parameter
3008	3184	4008	4184	4008	4184	Bit type parameter
3009	3185	4009	4185	4009	4185	Bit type parameter
3010	3186	4010	4186	4010	4186	Bit type parameter
3011	3187	4011	4187	4011	4187	Bit type parameter
3012	3188	4012	4188	4012	4188	Bit type parameter
3013	3189	4013	4189	4013	4189	Bit type parameter
3019	3195	4019	4195	4019	4195	Bit type parameter
3020	3196	4020	4196	4020	4196	Maximum motor speed
3023	3198	4023	4198	4023	4198	Speed detection level
3039	3254	4039	4254	4039	4254	Slip compensation gain [for high-speed characteristics of speed range switching]
3080	3231	4080	4231	4080	4231	Regenerative power limit for high-speed zone/regenerative power limit
0000	0201	1000	1201	1000	1201	[for high-speed characteristics of speed range switching]
3083	3236	4083	4236	4083	4236	Motor voltage on velocity control mode
	0200	1000		1000	1200	[for high-speed characteristics of speed range switching]
3093	3279	4093	4279	4093	4279	Value displayed on load meter at maximum output
						[for low-speed characteristics of speed range switching]
3100	3256	4100	4256	4100	4256	Base speed of motor output specifications
						[for high-speed characteristics of speed range switching]
3101	3257	4101	4257	4101	4257	Output limit for motor output specifications
						[for high-speed characteristics of speed range switching]
3102	3258	4102	4258	4102	4258	Excitation voltage saturation speed at no-load
0400	2050	4400	4050	4400	4050	[for high-speed characteristics of speed range switching]
3103	3259	4103	4259	4103	4259	Base speed limit ratio [for high-speed characteristics of speed range switching]
3104	3260	4104	4260	4104	4260	Current loop proportional gain [for high-speed characteristics of speed range switching]
3106	3261	4106	4261	4106	4261	Current loop integral gain[for high-speed characteristics of speed range switching]

	Parameter No.							
1:	15 <i>i</i> 16 <i>i</i> 30 <i>i</i> MAIN SUB MAIN SUB MAIN SUB					Description		
MAIN	SUB	MAIN	SUB	MAIN	SUB			
3108	3262	4108	4262	4108	4262	Velocity at which the current loop integral gain is zero [for high-speed characteristics of speed range switching]		
3109	3263	4109	4263	4109	4263	Filter time constant for processing saturation related to the voltage command [for high-speed characteristics of speed range switching]		
3110	3264	4110	4264	4110	4264	Current conversion constant		
				4111		[for high-speed characteristics of speed range switching] Secondary current coefficient		
						[for high-speed characteristics of speed range switching] Criterion level for saturation related to the voltage command/PWM command		
				4112		clamp value [for high-speed characteristics of speed range switching]		
3113	3207	4113	4207	4113	4267	Slip constant [for high-speed characteristics of speed range switching]		
3114	3268	4114	4268	4114	4268	Slip compensation coefficient for a high-speed zone/slip compensation coefficient at deceleration [for high-speed characteristics of speed range switching]		
3115	3269	4115	4269	4115	4269	PWM command clamp value at deceleration [for high-speed characteristics of speed range switching]		
3116	3270	4116	4270	4116	4270	Motor leakage constant [for high-speed characteristics of speed range switching]		
3117	3271	4117	4271	4117	4271	Regular-time voltage compensation coefficient for high-speed zone/regular-time motor voltage coefficient[for high-speed characteristics of speed range switching]		
3118	3272	4118	4272	4118	4272	Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient		
	V	•		_		[for high-speed characteristics of speed range switching]		
3119	3280	4119	4280	4119	4280	Deceleration-time excitation current change time constant/excitation current change time constant [for high-speed characteristics of speed range switching]		
3127	3274	4127	4274	4127	4274	Value displayed on load meter at maximum output [for high-speed characteristics of speed range switching]		
						Compensation coefficient between the specification and true base/maximum		
3128	3275	4128	4275	4128	4275	torque curve compensation coefficient		
						[for high-speed characteristics of speed range switching]		
3129	3276	4129	4276	4129	4276	Secondary current coefficient for rigid tapping [for high-speed characteristics of speed range switching]		
3130	3277	4130	4277	4130	4277	Current loop proportional gain speed coefficient/current phase delay compensation coefficient[for high-speed characteristics of speed range switching]		
3134	3310	4134	4310	4134	4310	Motor overheat detect level		
3136	3284	4136	4284	4136	4284	Motor voltage on velocity control mode [for low-speed characteristics of speed range switching]		
3138	3286	4138	4286	4138	4286	Base speed of motor output specifications [for low-speed characteristics of speed range switching]		
3139	3287	4139	4287	4139	4287	Output limit for motor output specifications [for low-speed characteristics of speed range switching]		
3140	3288	4140	4288	4140	4288	Excitation voltage saturation speed at no-load		
3141	3289	4141	4289	4141	4289	[for low-speed characteristics of speed range switching] Base speed limit ratio [for low-speed characteristics of speed range switching]		
		4142		4142		Current loop proportional gain [for low-speed characteristics of speed range switching]		
3143	3291	4143	4291	4143	4291	Current loop integral gain[for low-speed characteristics of speed range switching]		
				4144		Velocity at which the current loop integral gain is zero [for low-speed characteristics of speed range switching]		
3145	3293	4145	4293	4145	4293	Filter time constant for processing saturation related to the voltage command		
				4146		[for low-speed characteristics of speed range switching] Current conversion constant		
						[for low-speed characteristics of speed range switching]		

	Parameter No.										
1	5 <i>i</i>	10	6 <i>i</i>	3	0 <i>i</i>	Description					
MAIN	SUB	MAIN	SUB	MAIN	SUB	Construction of the contract o					
3147	3295	4147	4295	4147	4295	Secondary current coefficient					
3148	3296	4148	4296	4148	4296	[for low-speed characteristics of speed range switching] Criterion level for saturation related to the voltage command/PWM command					
3149	3297	4149	4297	4149	4297	clamp value [for low-speed characteristics of speed range switching] Slip constant [for low-speed characteristics of speed range switching]					
		4150				Slip compensation coefficient for a high-speed zone/slip compensation coefficient at deceleration [for low-speed characteristics of speed range switching]					
3151	3299	4151	4299	4151	4299	PWM command clamp value at deceleration [for low-speed characteristics of speed range switching]					
3152	3300	4152	4300	4152	4300	Motor leakage constant [for low-speed characteristics of speed range switching]					
3153	3301	4153	4301	4153	4301	Regular-time voltage compensation coefficient for high-speed zone/regular-time motor voltage coefficient [for low-speed characteristics of speed range switching]					
3154	3302	4154	4302	4154	4302	Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient [for low-speed characteristics of speed range switching]					
3156	3255	4156	4255	4156	4255	Slip compensation gain [for low-speed characteristics of speed range switching]					
		4158				Compensation coefficient between the specification and true base/maximum torque curve compensation coefficient [for low-speed characteristics of speed range switching]					
3159	3305	4159	4305	4159	4305	Secondary current coefficient for rigid tapping [for low-speed characteristics of speed range switching]					
3161	3306	4161	4306	4161	4306	Current loop proportional gain speed coefficient/current phase delay compensation coefficient[for low-speed characteristics of speed range switching]					
3165	3308	4165	4308	4165	4308	Deceleration-time excitation current change time constant/excitation current change time constant [for low-speed characteristics of speed range switching]					
3166	3307	4166	4307	4166	4307	Regenerative power limit for high-speed zone/regenerative power limit [for low-speed characteristics of speed range switching]					
3169	3349	4169	4349	4169	4349	Temperature monitoring time constant					

(3) The following parameters are common to the main and sub-spindle motors. They cannot be specified separately for these motors.

Para	ameter	No.	Description			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description			
3027	4027	4027	Load detecting level 2			
3030	4030	4030	Soft start/stop setting time			
3087	4087	4087	Overspeed level			
3088	4088	4088	Velocity error excess detecting level on motor shaft lock condition			
3089	4089	4089	Velocity error excess detecting level on motor rotation			
3090	4090	4090	Overload detecting level			
3095	4095	4095	Adjustment of speedometer output voltage			
3096	4096	4096	The adjustment of load meter output voltage			
3098	4098	4098	Maximum speed of position feedback signal detection			
3099	4099	4099	Delay time for motor excitation			
3123	4123	4123	Setting the overload detection time			
3260	4260	4260	Speed detection level hysteresis			
3341	4341	4341	Unexpected disturbance torque detection level			
3344	4344	4344	Advanced feed-forward coefficient			
3346	4346	4346	Incomplete integration coefficient			

(4) For the sub-spindle motor, up to two gear switching stages can be specified. The input signal CTH1A is used to select one of the gear stages. (For the main spindle motor, up to four gear switching stages can be specified, using CTH1A and CTH2A.)

Parameter No.		No.	Description	CTH1A
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	CINIA
3216	4216	4216	Gear ratio(SUB side/HIGH)	0
3217	4217	4217	Gear ratio(SUB side /LOW)	1
3218	4218	4218	Position gain on orientation(SUB side/HIGH)	
3219	4219	4219	Position gain on orientation(SUB side/LOW)	1
3221	4221	4221	Position gain on servo mode(SUB side/HIGH)	0
3222	4222	4222	Position gain on servo mode(SUB side/LOW)	1

(5) For the sub-spindle motor, only one velocity integral gain stage can be specified. The CTH1A signal cannot be used for switching.

Para	ameter	No.	Description		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description		
3212	4212	4212	Velocity loop integral gain on the velocity control mode (SUB side)		
3213	4213	4213	Velocity loop integral gain on orientation (SUB side)		
3214	4214	4214	Velocity loop integral gain on servo mode (SUB side)		

5.3 INCRMENTAL COMMAND TYPE SPINDLE ORIENTATION (SPINDLE ROTATION SPEED CONTROL) Optional function

5.3.1 Overview

Incremental command type spindle orientation is a function that expands the spindle orientation in which a stop position is specified externally using a position coder.

This function is intended to move the spindle from the position where it was when a spindle orientation command was input to a position specified incrementally. It positions the spindle as follows:

The spindle rotates from the position where it was when a spindle orientation command was input through an incremental angle specified from the PMC via the CNC. When the spindle orientation is completed, a completion signal is sent to the PMC via the CNC. Using the function enables:

- (i) Spindle motor-based turret indexing
- (ii) Spindle rotation speed control if a command multiplier value (parameter-specified value) is set to "4096"

NOTE

- 1 Using this function requires the spindle orientation CNC software option.
- 2 The maximum spindle speed that can be specified is shown below:

9D50 series N edition or earlier, 9D70 series E edition or earlier:

120 rotations

9D50 series O edition or later, 9D70 series F edition or later, 9D80 series A edition or later:

30000 rotations

5.3.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC
9D50	A (01) edition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i> / FS0 <i>i</i> / FS15 <i>i</i>
9D70	A (01) edition or later	FS30i / FS31i / FS32i
9D80	A (O4) adition on later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i> / FS0 <i>i</i> / FS15 <i>i</i>
	A (01) edition or later	FS30i / FS31i / FS32i

5.3.3 System Configuration

The incremental command type spindle orientation function can be used in the following system configuration.

(1) When the αi position coder is used

(2) When the α position coder S is used

(3) When the built-in motor is used

(4) When the spindle motor with built-in αi MZ sensor is used

(5) When the separate type αi BZ sensor or the separate type αi CZ sensor is used

(6) When the external one-rotation signal (proximity switch) is used

NOTE

- To detect the one-rotation signal securely, fix the direction (bits 3 and 2 of parameter No. 4003) in which the spindle rotates during spindle orientation to one direction.
- 2 Specify the type (bits 3 and 2 of parameter No. 4004) of an external one-rotation signal (proximity switch).
- 3 To detect the one-rotation signal securely, set the spindle orientation speed (parameter No. 4038) to a value between 50 and 100 min⁻¹ according to the specification of the external one-rotation signal (proximity switch).
- 4 A sequence for detecting the one-rotation signal is started after the orientation speed has been reached.
- 5 Specify the denominator/numerator parameters (Nos. 4171 to 4174) of an arbitrary gear ratio between the motor sensor and spindle.

(7) System in which the turret and the motor with a built-in αiMZ sensor are linked with gears and a clutch (for turret indexing)

5.3.4 I/O Signals(CNC↔PMC)

(1) Address list of input signals (PMC→CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070		ORCMA			CTH1A	CTH2A		
2nd-	G235	G074	G074		ORCMB			СТН1В	СТН2В		
1st-	G229	G072	G072			INCMDA			NRROA	ROTAA	INDXA
2nd-	G237	G076	G076			INCMDB			NRROB	ROTAB	INDXB
1st-	G230	G078	G078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G238	G080	G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
					_						
1st-	G231	G079	G079					SHA11	SHA10	SHA09	SHA08
2nd-	G239	G081	G081					SHB11	SHB10	SHB09	SHB08

(2) Details of input signals (PMC→CNC)

(a) Incremental command data selection signal (INCMDA)

The INCMDA signal is for selecting the data type (stop position data or incremental command data) of externally specified data (SHA00 to SHA11).

0: Stop position data

1: Incremental command data

(b) Short-cut command for spindle orientation stop position change (NRROA)

The NRROA signal is disabled if incremental command type spindle orientation is enabled (INCMDA = 1).

- (c) Spindle orientation command (ORCMA)
- (d) Clutch/gear signals (CT1HA and CTH2A)
- (e) Spindle orientation stop position change command (INDXA)
- (f) Rotation direction command for spindle orientation stop position change (ROTAA)

The functions of the input signals ORCMA, CTH1A, CTH2A, INDXA, and ROTAA are the same as for position coder-method spindle orientation. See Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION" in Part I.

(g) Spindle orientation external stop position commands (SHA11 to SHA00)

These commands are treated as incremental command data if INCMDA = 1.

(3) Address list of output signals (CNC→PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA							
2nd-	F245	F049	F049	ORARB							
								-			
1st-	F221	F047	F047							INCSTA	
2nd-	F247	F051	F051							INCSTB	

(4) Details of output signals (CNC→PMC)

(a) Incremental command mode status signal (INCSTA)

The INCSTA signal indicates the status of the INCMDA (incremental command data selection signal).

0: INCMDA = 0 1: INCMDA = 1

Before performing incremental command type spindle orientation, make sure that this signal is "1".

(b) Spindle orientation completion signal (ORARA)

The function of the output signal ORARA is the same as for position coder-method spindle orientation. See Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION" in Part I.

5.3.5 **Examples of Sequences**

(1) Incremental operation

ORCMA (Spindle orientation command) SHA00-SHA11 (Spindle orientation stop position command) <2> <3> <1> **INDXA** (Spindle orientation stop position change command) **INCMDA** (Stop position/incremental command data selection command) **ROTAA** (Rotation direction command for stop position change) Spindle position CCW Motor speed CW<4> <4> **ORARA** (Spindle orientation completion signal)

NOTE

Set time t to 50 ms or over so that each signal can be confirmed.

- <1> The SHA00 to SHA11 data is read as incremental command data if ORCMA rises under the condition of INCMDA = "1" when the spindle is at a halt (zero-speed detection signal SSTA = "1"). The spindle rotates through the specified incremental angle, starting from the position where it rested, and then stops. Its rotation direction is determined by ROTAA.
- <2> If incremental operation is continued, the SHA00 to SHA11 data is read as incremental command data if INDXA falls under the condition of ORCMA = "1" and INCMDA = "1". The spindle rotates through the specified incremental angle, starting from the position where it rested, and then stops. Its rotation direction is determined by ROTAA.

- <3> Incremental command data is specified in pulse units in a range from 0 to +4095 pulses.
 - The rotation direction of the spindle is determined by ROTAA. If the command multiplier parameter (No. 4328) is specified, the spindle rotates through [command multiplier parameter] × [incremental command data] and then stops. The rotation direction parameter NRROA (bits 2 and 3 of parameter No. 4003) is disabled during incremental operation.
- <4> When the position error gets in a parameter-specified range, the completion signal ORARA is output.

(2) Example of using spindle orientation and incremental movement together

- <1> Stop at a fixed position as directed with an ordinary spindle orientation command
 - In the first-time orientation after the power is switched on, the spindle rotates at the orientation speed. After detecting a one-rotation signal, it stops at a fixed position. In the second- and subsequent-time spindle orientation, the spindle stops at a fixed position within one rotation.
 - The direction in which the spindle motor rotates depends on the setting of the rotation direction parameter (bits 2 and 3 of parameter No. 4003).
 - The SHA00 to SHA11 data is read as stop position command data if ORCMA rises under the condition of INCMDA = "0". The spindle rotates through the angle determined by [SHA00 to SHA11 value] + [value specified in the orientation stop position shift amount parameter (No. 4077)], and then stops there.
- <2> Stop at a fixed position as directed with an incremental command
 - See the previous page for incremental operations.
 - If the command multiplier parameter (No. 4328) = 4096, spindle rotation speed control can be performed.
- <3> Fixed position specified with fixed position stop external setting
 - The SHA00 to SHA11 data is read as stop position command data if INDXA falls under the condition of ORCMA = "1" and INCMDA = "0", the spindle rotates to a specified position and then stops there.
 - The direction in which the spindle rotates is determined by NRROA and ROTAA.
 - If NRROA = "1", the spindle rotates from the current stop position to a specified stop position through the shorter route (within $\pm 180^{\circ}$).
 - If NRROA = "0", the direction in which the spindle rotates is determined by ROTAA.
- <4> If the position error gets in a parameter-specified range, the completion signal ORARA is output.

5.3.6 List of Related Parameters

	Parameter N	lo.	Deparintion			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description			
3015 #0	4015 #0	4015 #0	Whether the spindle orientation function is available (to be set to "1")			
3013 #0	5#0 4015#0 4015#0		(The CNC software option is required.)			
5609#2	3702#3,#2 3729#0		Whether the stop position external setting-type spindle orientation function is available (to be set to "1")			
			(For 16i, #2: First spindle, #3: Second spindle)			
3328	4328	4328	Command multiplier for incremental command external setting data			

NOTE

This subsection describes only the parameters specific to incremental command type spindle orientation. See Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION" in Part I, for parameters related to other types of spindle orientation.

5.3.7 Details of Related Parameters

This subsection describes only the parameters specific to incremental command type spindle orientation. See Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION" in Part I, for parameters related to other types of spindle orientation.

15*i* 16*i* 30*i* 3328 4328 4328

Command multiplier for spindle orientation by a position coder

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 0

Set a command multiplier for the spindle orientation function with an externally set incremental command.

If this data is "0", the multiplier is automatically assumed to be 1. Incremental command = incremental command data (SHA11 to

SHA00) × data (multiplier) specified in this parameter

To use spindle rotation speed control, set this parameter to "4096", because one rotation of the spindle corresponds to 4096 pulses.

NOTE

The maximum speed (incremental command) that can be specified is: 120 rotations (= $120 \times 4096 \text{ pulses}$)

9D50/N edition or earlier, 9D70/E edition or earlier

30000 rotations (= 30000×4096 pulses)

9D50/O edition or later, 9D70/F edition or later, 9D80 series

5.4 HIGH-SPEED SPINDLE ORIENTATION

Optional function

5.4.1 Overview

This high-speed spindle orientation function shortens the time required for spindle orientation of the spindle by:

- <1> Making the most of the ability of the motor to decelerate
- <2> Increasing the gain of the position loop

NOTE

- 1 Using this function requires the CNC software option for spindle orientation.
- 2 This function cannot be used for spindle orientation during spindle synchronous control.
- 3 This function does not support the speed unit 10 min^{-1} (FS16*i*: Bit 2 of No. 4006 = 1).

5.4.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC
9D50	A (01) edition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i> / FS0 <i>i</i> / FS15 <i>i</i>
9D70	A (01) edition or later	FS30i / FS31i / FS32i
0000	A (O4) adition on later	FS16i / FS18i / FS21i / FS0i / FS15i
9D80	A (01) edition or later	FS30i / FS31i / FS32i

5.4.3 System Configuration

Explained below is a system configuration in which the high-speed spindle orientation function is usable.

NOTE

This function cannot be used in an external one-rotation signal-based spindle orientation system in which a proximity switch is used.

(1) When the αi position coder is used

(2) When the α position coder S is used

(3) When the built-in motor is used

(4) When the spindle motor with built-in αi MZ sensor is used

(5) When the separate type αi BZ sensor or separate type αi CZ sensor is used

5.4.4 I/O Signals (CNC↔PMC)

(1) Address list of input signals (PMC \rightarrow CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070		ORCMA			CTH1A	CTH2A		
2nd-	G235	G074	G074		ORCMB			СТН1В	СТН2В		
								_			
1st-	G229	G072	G072			INCMDA			NRROA	ROTAA	INDXA
2nd-	G237	G076	G076			INCMDB			NRROB	ROTAB	INDXB
1st-	G230	G078	G078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G238	G080	G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
					_						
1st-	G231	G079	G079					SHA11	SHA10	SHA09	SHA08
2nd-	G239	G081	G081					SHB11	SHB10	SHB09	SHB08

- (2) Details of input signals (PMC \rightarrow CNC)
 - (a) Spindle orientation command (ORCMA)
- (b) Clutch/gear signals (CTH1A and CTH2A)
- (c) Spindle orientation stop position change command (INDXA)
- (d) Rotation direction command for spindle orientation stop position change (ROTAA)
- (e) Short-cut command for spindle orientation stop position change (NRROA)
- (f) Incremental command data selection signal (INCMDA)
- (g) Spindle orientation external stop position commands (SHA11 to SHA00)

The functions of the input signals ORCMA, CTH1A, CTH2A, INDXA, ROTAA, NRROA, INCMDA, and SHA11 to SHA00 are the same as for position coder-method spindle orientation and incremental command type spindle orientation. See Sections 2.2, "POSITION CODER-METHOD SPINDLE ORIENTATION," and 5.3, "INCREMENTAL COMMAND TYPE SPINDLE ORIENTATION" in Part I.

(3) Address list of input signals (CNC \rightarrow PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA							
2nd-	F245	F049	F049	ORARB							
1st-	F221	F047	F047							INCSTA	
2nd-	F247	F051	F051							INCSTB	

(4) Details of input signals (CNC \rightarrow PMC)

- (a) Incremental command mode status signal (INCSTA)
- (b) Spindle orientation completion signal (ORARA)

The functions of the output signals ORARA and INCSTA are the same as for position coder-method spindle orientation and incremental command type spindle orientation. See Sections 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION," and 5.3, "INCREMENTAL COMMAND TYPE SPINDLE ORIENTATION" in Part I.

5.4.5 Sequence

This subsection describes the operations of high-speed spindle orientation. See Sections 2.2, "POSITION CODER-BASED SPINDLE ORIENTATION," and 5.3, "INCREMENTAL COMMAND TYPE SPINDLE ORIENTATION" in Part I, for concrete examples of sequences

(1) Starting spindle orientation when the spindle is rotating at or faster than the orientation speed upper limit

ORCMA
(spindle orientation command)

ORARA
(spindle orientation completion signal)

Motor speed

- <1> If the spindle orientation command (ORCMA) is input when the spindle is rotating at or faster than the orientation speed upper limit specified in parameter No. 4038, the spindle is decelerated to the orientation speed upper limit.
- <2> A one-rotation signal is detected (only at the first-time spindle orientation after the power is switched on).
- <3> The spindle decelerates at the acceleration specified as an acceleration during motor deceleration in parameter Nos. 4320 to 4323
- <4> When the spindle speed becomes lower than or equal to the value calculated within the software, the position loop is controlled at the position gain specified as a spindle orientation position gain in parameter Nos. 4060 to 4063.
- <5> When the position error becomes lower than or equal to the number of pulses specified as a spindle orientation completion signal level in parameter No. 4075, the spindle orientation completion signal (ORARA) is output.

(2) Starting spindle orientation when the spindle is rotating at a speed between the orientation speed lower limit and the orientation speed upper limit

- <1> If the spindle orientation command (ORCMA) is input when the spindle is rotating at a speed between the orientation speed upper limit specified in parameter No. 4038 and the orientation speed lower limit (calculated within the software), a one-rotation signal is detected (only at the first-time spindle orientation after the power is switched on).
- <2> The spindle decelerates at the acceleration specified as an acceleration during motor deceleration in parameter Nos. 4320 to 4323.
- <3> When the spindle speed becomes lower than or equal to the value calculated within the software, the position loop is controlled at the position gain specified as a spindle orientation position gain in parameter Nos. 4060 to 4063.
- <4> When the position error becomes lower than or equal to the number of pulses specified as a spindle orientation completion signal level in parameter No. 4075, the spindle orientation completion signal (ORARA) is output.

(3) Starting spindle orientation when the spindle is rotating at or slower than the orientation speed lower limit

- <1> If the spindle orientation command (ORCMA) is input when the spindle is rotating at or slower than the orientation speed lower limit (calculated within the software), a one-rotation signal is detected (only at the first-time spindle orientation after the power is switched on).
- <2> The spindle accelerates at the acceleration specified as an acceleration during motor deceleration in parameter Nos. 4320 to 4323.
- <3> The spindle decelerates at the acceleration specified as an acceleration during motor deceleration in parameter Nos. 4320 to 4323.
- <4> When the spindle speed becomes lower than or equal to the value calculated within the software, the position loop is controlled at the position gain specified as a spindle orientation position gain in parameter Nos. 4060 to 4063.
- <5> When the position error becomes lower than or equal to the number of pulses specified as a spindle orientation completion signal level in parameter No. 4075, the spindle orientation completion signal (ORARA) is output.

5.4.6 List of Related Parameters

	Parameter No.		Description		
15 <i>i</i>	15 <i>i</i> 16 <i>i</i> 30 <i>i</i>		Description		
3015 #0	4015 #0	4015 #0	Whether the spindle orientation function is available (to be set to "1") (The CNC software option is required.)		
3018 #6	4018 #6	4018 #6	High-speed spindle orientation function (to be set to "1")		
5609#2	3702#3,#2	3729#0	Whether the stop position external setting-type spindle orientation function is available (For 16i, #2: First spindle, #3: Second spindle)		
3003 #0	4003#0	4003#0	Spindle orientation type selection (to be reset to "0")		
3003#3,#2	4003#3,#2	4003#3,#2	Rotation direction for spindle orientation (to be reset to "0, 0" or to be set to "0, 1")		
3017#7	4017#7	4017#7	Short-cut function when spindle orientation from stopped state is specified		
3018#5	4018#5	4018#5	Whether the speed command correction function for high-speed spindle orientation is available		
3031	4031	4031	Spindle orientation stop position (This parameter is invalid for stop position external setting type and incremental command external setting type.)		
3038	4038	4038	Orientation speed upper limit		
3042	4042	4042	Velocity proportional gain on orientation		
3043	4043	4043	(These parameters are selected with the input signal CTH1A.)		
3050	4050	4050	Velocity integral gain on orientation		
3051	4051	4051	(These parameters are selected with the input signal CTH1A.)		
3056 to 3059	4056 to 4059	4056 to 4059	Gear ratio data between spindle and motor (These parameters are selected with the input signals CTH1A and CTH2A.)		
3060 to 3063	4060 to 4063	4060 to 4063	Position gain on orientation (These parameters are selected with the input signals CTH1A and CTH2A.)		
3064	4064	4064	Percentage limit to an acceleration during deceleration		
3075	4075	4075	Orientation completion signal detection level		
3077	4077	4077	Orientation stop position shift value		
3084	4084	4084	Motor voltage on orientation		
3320 to 3223	4320 to 4323	4320 to 4323	Acceleration during motor deceleration (These parameters are selected with the input signals CTH1A and CTH2A.)		
3326	4326	4326	Acceleration limitation start speed during deceleration		
3330	4330	4330	(These parameters are selected with the input signal CTH1A.)		
3328	4328	4328	Command multiplier for orientation		

NOTE

- 1 See Section 1.3, "PARAMETERS RELATED TO DETECTORS" in Part I, for parameters related to detectors.
- 2 See Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT" in Part I, for velocity loop proportional/integral gain tuning.
- 3 When using the high-speed spindle orientation function, set the parameters (bits 3 and 2 or parameter No. 4003) for rotation direction for spindle orientation with the previous rotation direction (0, 0 or 0, 1).

5.4.7 Details of Related Parameters

15*i* 16*i* 30*i* #7 #6 #5 #4 #3 #2 #1 #0 3018 4018 4018 **HSORI HSVCM**

HSVCM: Velocity command compensation function in high-speed spindle

orientation is:0 : Disabled.1 : Enabled.

Usually, set this parameter to "1".

HSORI: High-speed spindle orientation function is:

0: Disabled1: EnabledSet to 1.

15*i* 16*i* 30*i* 3003 4003 4003

#7	#6	#5	#4	#3	#2	#1	#0
				DIRCT2	DIRCT1		PCMGSL

DIRCT1, DIRCT2

Rotation direction at spindle orientation

DIRCT2	DIRCT1	Rotation direction
0	0	By rotation direction immediately before (CCW for the first-time spindle orientation after the power is switched on)
0	1	By rotation direction immediately before (CW for the first-time spindle orientation after the power is switched on)
1	0	CCW direction looking from shaft of motor
1	1	CW direction looking from shaft of motor

NOTE

When using the high-speed spindle orientation function, specify the rotation direction for spindle orientation to be the previous rotation direction (bits 3 and 2 of parameter No. 4003 = 0 and 0 or 0 and 1).

PCMGSL: Orientation method selection Set to 0.

15*i* 16*i* 30*i* 3017 4017 4017

<u>#</u> 7	#6	#5	#4	#3	#2	#1	#0
NRROEN							

NRROEN

The short-cut function when spindle orientation from stopped state is specified is:

0: Unavailable

1: Available

If the setting is "1", a short-cut is made provided that the following conditions are satisfied.

- i) Bit 7 of parameter No. 4016 (RFCHK3) = 0
- ii) Zero-speed detection signal (output signal) SST = 1
- iii) Short-cut command (input signal) NRROA = 1

15*i* 16*i* 30*i* 3031 4031 4031

Position coder method orientation stop position

Unit of data: 1 pulse unit (360 degrees/4096)

Valid data range: 0 to 4095

Standard setting value: 0

> This data is used to set the stop position of position coder method spindle orientation. This parameter is invalid for stop position external setting-type and incremental command external setting-type spindle orientation. Instead, the stop position commands (SHA11 to SHA00)

(input signals) are valid.

15*i* 16*i* 30*i* 3038 4038 4038

Spindle orientation speed upper limit

1min⁻¹ Unit of data: 0 to 32767 Valid data range:

Standard setting value:

This data is used to specify the upper limit to the orientation speed of an spindle end. If the setting is "0", the parameter is assumed to be set with a value converted for the spindle from the excitation voltage saturation speed with no load on the motor (parameter No. 4102,

low-speed characteristic parameter No. 4140).

30*i* 15*i* 16*i* 4042 3042 4042 3043 4043 4043

Velocity proportional gain on orientation (HIGH)	CTH1A=0
Velocity proportional gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 10

This data is used to set the velocity loop proportional gain on

orientation.

15*i* 16*i* 30*i* 3050 4050 4050 3051 4051 4051

Velocity integral gain on orientation (HIGH)	CTH1A=0
Velocity integral gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767 Standard setting value:

This data is used to specify a velocity loop integral gain for spindle

orientation.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3056	4056	4056
3057	4057	4057
3058	4058	4058
3059	4059	4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: Number of motor rotations per spindle rotation / 100

(Number of motor rotations per spindle rotation / 1000 if bit 1 of

parameter No. 4006 (GRUNIT) = 1)

Valid data range: 3 to 3000

(33 to 30000 if bit 1 of parameter No. 4006 (GRUNIT) = 1)

Standard setting value: 100

NOTE

The range of gear ratios supported by this function is: 1:30 to 30:1

15 <i>i</i>	16 <i>i</i>	30i
3060	4060	4060
3061	4061	4061
3062	4062	4062
3063	4063	4063

Position gain on orientation (HIGH)	CTH1A=0, CTH2A=0
Position gain on orientation (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Position gain on orientation (MEDIUM LOW)	CTH1A=1, CTH2A=0
Position gain on orientation (LOW)	CTH1A=1, CTH2A=1

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting value: 1000

These data are used to set the position gain on spindle orientation.

15*i* 16*i* 30*i* 3064 4064 4064

Percentage limit to an acceleration during deceleration

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 100

This data is used to specify the percentage limit to an acceleration during deceleration if spindle orientation is started when the spindle speed is lower than or equal to the limitation start seed for an acceleration during deceleration (parameter Nos. 4326 and 4330).

Usually, specify "100".

15*i* 16*i* 30*i* 3075 4075 4075

Orientation completion signal detection level (effective area for in-position check)

Unit of data: ±1 pulse unit (360 degrees/4096)

Valid data range: 0 to 100 Standard setting value: 10

This data is used to set the detecting level of orientation completion signal (ORARA). ORARA = 1 is satisfied if the position error is

within the setting.

15*i* 16*i* 30*i* 3077 4077 4077

Orientation stop position shift value

Unit of data: ± 1 pulse unit (360 degrees/4096)

Valid data range: -4095 to 4095

Standard setting value: 0

This data is used to specify the shift amount of the spindle orientation stop position. If a positive value is specified, the position where the spindle stops is shifted counterclockwise.

15*i* 16*i* 30*i* 3084 4084 4084

Motor voltage setting on orientation

Unit of data: 1%
Valid data range: 0 to 100

Standard setting value: Depends on the motor model.

This data is used to specify the motor voltage for spindle orientation.

For high-speed spindle orientation, usually specify "100".

 15i
 16i
 30i

 3320
 4320
 4320

 3321
 4321
 4321

 3322
 4322
 4322

 3323
 4323
 4323

Acceleration during motor deceleration (HIGH)	CTH1A=0, CTH2A=0
Acceleration during motor deceleration (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Acceleration during motor deceleration (MEDIUM LOW)	CTH1A=1, CTH2A=0
Acceleration during motor deceleration (LOW)	CTH1A=1, CTH2A=1

Unit of data: 10min⁻¹/sec Valid data range: 0 to 6400 Standard setting value: 0

This data is used to specify the acceleration during motor deceleration for high-speed spindle orientation. If the setting is "0", the high-speed spindle orientation function is disabled, and the standard-type spindle orientation function is enabled. The setting for the parameter is obtained using:

obtained, using:

Acceleration during deceleration = $\frac{\tau}{J} \times \frac{60}{2\pi} \times (0.8 \text{ to } 0.9)$

where

 $\tau(Nm)$: Motor maximum torque at spindle orientation speed upper

limit (parameter No. 4038)

J(kgm2): Motor inertia + load inertia

FANUC AC SPINDLE MOTOR αi series 5.FUNCTION DESCRIPTIONS FANUC BUILT-IN SPINDLE MOTOR BiI series

B-65280EN/06

15*i* 16*i* 30*i*3326 4326 43263330 4330 4330

Acceleration limitation start speed during deceleration (HIGH)	CTH1A=0
Acceleration limitation start speed during deceleration (LOW)	CTH1A=1

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting value: 0

This data is used to specify the motor speed at which limitation on the acceleration during deceleration is started. If the setting is "0", the parameter is assumed to be set with the spindle orientation lower limit

speed calculated within the software.

15*i* 16*i* 30*i* 3328 4328 4328

Command multiplier for spindle orientation by a position coder

Unit of data:

Valid data range: 0 to 32767

Standard setting value: (

Set a command multiplier for the spindle orientation function with an

externally set incremental command.

When 0 is set in this parameter, 1 is assumed to have been specified.

5.4.8 Spindle Data Used in Tuning

This subsection describes high-speed spindle orientation-related data that can be observed using the spindle check board (A06B-6078-H001). Refer to an applicable maintenance manual for detailed explanations about how to use the spindle check board.

(1) Motor speed (data No. 19) and motor speed command (data No. 16)

These are spindle motor speed data and speed command data. The following table lists the relationships between the shift amount and the check board output value (if shift direction 0 and offset 1 are specified).

Shift amount	15	16	17	18	19	20
Output value (min ⁻¹ /5V)	1024	2048	4096	8192	16384	32768

(2) Torque command (data No. 90)

This is motor torque command data. If shift amount 8, shift direction 0, and offset 1 are specified, the check board output value is 100%/2.5 V.

(3) Spindle orientation sequence (data No. 298)

This data represents a high-speed spindle orientation sequence. If shift amount 4, shift direction 1, and offset 1 are specified, the check board output and the state of each sequence interval are as follows:

- A: Before spindle orientation begins
- B : Interval from the instant when an spindle orientation command is input and the instant which the orientation speed is reached and a one-rotation signal is detected
- C : Interval during which the spindle is linearly decelerating with a constant specified for deceleration
- D : State in which the position loop is closed
- E : Spindle orientation is completed (inposition)

(4) Position error (data No. 136)

This is position error data (4096 pulses/rev) for spindle orientation. The following table lists the relationships between the shift amount and check board output value (when shift direction 0 and offset 1 are specified).

Shift amount	0	1	2	3	4	5
Output value (pulses/5 V)	128	256	512	1024	2048	4096

The position error data is output only in sequence intervals C, D, and E. It is 0 in the other intervals.

(5) Spindle orientation time (data No. 305)

This is the time from the instant when a spindle orientation command is input to the instant when spindle orientation is completed. It is indicated in ms units on the check board indicator (when shift amount 0, shift direction 0, and display format 0 are specified).

5.4.9 Tuning Procedure

Tune the parameters according to the following procedure. The ability of a motor to decelerate varies with the load inertia on the motor. When tuning, mount a tool with the highest possible load inertia on the spindle. If such a tool is unavailable, allow a considerable margin in specifying an acceleration during deceleration.

(1) Parameter initialization

Initialize the parameters related to high-speed spindle orientation as listed below.

No.	Description	Initial setting
4003#0	Selecting a spindle orientation type	0
4003#3,#2	Spindle rotation direction at orientation	Select a rotation direction.
4006#1	Unit of gear ratio setting	Specify an appropriate value depending on the system configuration.
4017#7	Short-cut function when spindle orientation from stopped state is specified	Specify an appropriate value according to the use of the machine.
4018#5	Whether a speed command correction function for high-speed spindle orientation is available	1
4018#6	High-speed spindle orientation function	1
4031	Spindle orientation stop position	Specify a stop position.
4038	Spindle orientation speed upper limit	0
4042 to 4043	Velocity proportional gain on orientation	10
4050 to 4051	Velocity integral gain on orientation	10
4056 to 4059	Gear ratio	Specify an appropriate value depending on the system configuration.
4060 to 4063	Position gain on orientation	3000
4064	Percentage limit to an acceleration during deceleration	100
4075	Orientation completion signal detection level	Specify an appropriate value according to the use of the machine.
4077	Orientation stop position shift value	Specify a stop position.
4084	Motor voltage on orientation	100
4320 to 4323	Acceleration during motor deceleration	Tune according to actual measurements.
4326,4330	Acceleration limitation start speed during deceleration	0
4328	Command multiplier for orientation	Specify an appropriate value according to the use of the machine.

NOTE

- 1 Spindle alarm 21 is issued if the relation (bit 0 of parameter No. 4000) between the spindle and motor rotation direction and/or the setting of the spindle sensor mounting direction (bit 4 of parameter No. 4001) is incorrect.
- 2 The time required for spindle orientation may get abnormally long if the gear ratio resolution (bit 1 of parameter No. 4006) setting and/or gear ratio (parameter Nos. 4056 to 4059) setting is incorrect.
- 3 To switch the winding of the spindle motor with speed range switching control from high-speed winding to low-speed winding during spindle orientation command-specified deceleration, set the orientation speed upper limit (parameter No. 4038) to the base speed of the low-speed winding or lower. In the sequence enters interval C (where linear deceleration takes place with a parameter-specified time constant), the time required for spindle orientation may get abnormally long.

(2) Initial setting of the acceleration during deceleration (parameter Nos. 4320 to 4323)

Run a real machine on the velocity control mode (regular operation mode), and decelerate it from the base speed ω_B (see the following expression).

Base speed ω_B = parameter No. 4102 × parameter No. 4117/100 (if parameter No. 4038 = 0), or

= parameter No. 4038 (if parameter No. $4038 \neq 0$)

Then, measure the time the real machine takes to decelerate, set up the initial acceleration during deceleration Tc from the measured deceleration time according to the following expression (see the figure below):

Acceleration during deceleration = base speed/time taken to decelerate from the base speed to a halt/10 (in 10 min⁻¹/s)

Motor speed (data Time taken to decelerate from the No. 19) base speed to a halt Motor speed command (data No. 16)

Example of setting an initial acceleration during deceleration

(3) Tuning the velocity loop proportional gain (parameter Nos. 4042 and 4043) and integral gain (parameter Nos. 4050 and 4051)

Tune the velocity loop proportional/integral gain while referencing Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT" in Part I.

(4) Tuning the position gain

Basically, the position gain needs no adjustment. If you want to increase the setting for the position gain, do not increase it over 4000.

(5) Tuning the acceleration during deceleration (parameter Nos. 4320 to 4323)

Start spindle orientation when the spindle is running at the spindle maximum rotation speed, and tune the acceleration during deceleration so that the torque command will not be saturated when the motor starts linear deceleration (the beginning of interval C in the sequence). (See the following figure.)

Example 1 of deceleration time constant adjustment (good case)

Example 2 of deceleration time constant adjustment (bad case)

(6) Tuning the percentage limit to an acceleration during deceleration (parameter No. 4064)

(a) Deciding whether or not to tune the percentage limit to an acceleration during deceleration

Start spindle orientation when the spindle is running at the base speed ω_B . (See the figure below.) If the torque command is saturated in sequence intervals C or D, it is necessary to tune the percentage limit to an acceleration during deceleration.

If the torque command is not saturated, stop tuning the spindle orientation.

Case in which parameter tuning is necessary

Spindle orientation sequence (data No. 298)

Torque command (data No. 90)

Saturated

Case in which parameter tuning is unnecessary

(b) Tuning the percentage limit to an acceleration during deceleration

Specify the acceleration limitation start speed during deceleration ω_{LS} (parameter Nos. 4326 and 4330) as follows:

Acceleration limitation start speed during deceleration ω_{LS} = 1.1 \times base speed ω_{B}

Then, decrease the percentage limit to an acceleration during deceleration (parameter No. 4064) until the torque command will not be saturated at the end of sequence interval C or in sequence interval D. In this case, there is no problem even if the torque command is about to be saturated at the beginning of sequence interval C. (See the following figure.)

Example 1 of the percentage limit to an acceleration during deceleration (bad case)

Example 2 of the percentage limit to an acceleration during deceleration (good case)

(7) Tuning the acceleration limitation start speed during deceleration (parameter Nos. 4326 and 4330)

If you tuned the percentage limit to an acceleration during deceleration as explained in item (6), tune also the acceleration limitation start speed during deceleration.

(a) Deciding whether or not to tune the acceleration limitation start speed during deceleration

Start spindle orientation when the spindle is running at 10 min⁻¹ + acceleration limitation start speed during deceleration ω_{LS} , which is an initial setting used when the percentage limit to an acceleration during deceleration is tuned. (See the following figure.) In this case, it is necessary to tune the percentage limit to an acceleration during deceleration if the torque command is saturated in sequence interval C or D.

If the torque command is not saturated, stop tuning the spindle orientation

Case in which parameter tuning is necessary

Case in which parameter tuning is unnecessary

(b) Tuning the acceleration limitation start speed during deceleration

Increase the acceleration limitation start speed during deceleration (parameter Nos. 4326 and 4330) until the torque command will not be saturated at the end of sequence interval C or in sequence interval D even when spindle orientation is started when the spindle is running at 10 min $^{-1}$ + acceleration limitation start speed during deceleration $\omega_{\rm LS}$. Similarly to item (6), there is no problem even if the torque command is about to be saturated at the beginning of sequence interval C.

5.5 SPINDLE ORIENTATION DURING SPINDLE SYNCHRONIZATION CONTROL Optional function

5.5.1 Overview

This function performs orientation stop operation (orientation during spindle synchronous control) in the direction/stop position specified externally while keeping synchronization between spindles during spindle synchronous control.

Using spindle orientation during spindle synchronous control (hereafter simply called synchronous orientation) enables the following operations:

- Loading/unloading of an irregular-shape workpiece during spindle synchronous control
- Side-facing of a workpiece that must be held at both ends (such as a long workpiece) after it is indexed

NOTE

- 1 Using this function requires the CNC software option for spindle synchronous control.
- 2 This function is an add-on to the spindle synchronous control function. This section focuses on the add-on.
- 3 Using this function requires the enabling of the stop position externally setting spindle orientation function.
- 4 Some parameter specifications related to the αi series spindle amplifiers differ from those related to the α series. See Subsection 5.5.6, "Details of Related Parameters."

5.5.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC
9D50	E (05) edition or later	FS16i / FS18i / FS21i / FS0i
9D70	A (01) edition or later	FS30i / FS31i / FS32i
0000	A (O4) adition on later	FS16i / FS18i / FS21i / FS0i
9D80	A (01) edition or later	FS30i / FS31i / FS32i

5.5.3 Specification

Synchronous orientation

During spindle synchronous control, inputting the synchronous orientation command (SPPHS rising edge when SORENA = 1) can stop spindle orientation with two spindles kept in synchronization.

NOTE

- 1 If bell-shaped Acc./Dec. is already enabled, it is kept enabled during synchronous orientation.
- 2 If you changed parameters or sequences, disconnect each spindle for safety purposes, and then run the machine to check carefully the direction in which each spindle rotates, the position where each spindle stops, and whether a synchronous error occurs.

Reference position (phase) setting

Before issuing a synchronous orientation command, it is necessary to perform reference position (phase) setting for the two spindles.

Set the reference position of each of the spindles using spindle phase synchronous control.

If spindle phase synchronous control is performed with synchronous speed command = "0", the spindles stop at:

[One-rotation signal position] + [shift amount during spindle synchronous control (parameter No. 4034)]

This position is used as a reference position (stop position where SHA11 to SHA00 are all 0s) for the synchronous orientation stop position.

NOTE

- 1 Before inputting the spindle phase synchronous control command (SPPHS), make sure that both the spindles are rotating at the synchronous speed and they remain synchronized (FSPSY = 1). If the synchronous control command is issued before the spindles start rotating at the synchronous speed, they get out of phase.
- 2 In addition, before inputting the phase synchronous command, disconnect both spindles.

Synchronous orientation stop position

SHA11 to SHA00 are used to specify the spindle stop position for synchronous orientation. Specify the desired shift amount relative from the reference position explained above.

NOTE

- Be sure to specify the same reference position for both the spindles. If you fail to specify the same spindle position, it is impossible to maintain spindle synchronization.
- 2 Also specify the direction in which each spindle rotates during synchronous orientation, using ROTAA. The direction in which each spindle must rotate to keep itself in synchronization with the other spindle varies depending on the machine configuration. Be sure to specify the correct direction according to the machine condition so that the spindles are maintained in synchronization. If you fail to specify the correct direction, it is impossible to maintain spindle synchronization.
- 3 Keep these signals (SHA11 to SHA00 and ROTAA) in the stated status until synchronous orientation is completed.

5.5.4 I/O Signals (CNC \leftrightarrow PMC)

(1) Address list of input signals (PMC \rightarrow CNC)

G1081 G1081

2nd-

(a) For path 1

(a) For path 1										
	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
	G038	G038					SPPHS	SPSYC		
1st-	G072	G072							ROTAA	
2nd-	G076	G076							ROTAB	
1st-	G073	G073					SORSLA			
2nd-	G077	G077					SORSLB			
1st-	G078	G078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G080	G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
1st-	G079	G079					SHA11	SHA10	SHA09	SHA08
2nd-	G081	G081					SHB11	SHB10	SHB09	SHB08
										-
(b) For path 2										
. , .	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
	G1038	G1038					SPPHS	SPSYC		
									-	
1st-	G1072	G1072							ROTAA	
2nd-	G1076	G1076							ROTAB	
										•
1st-	G1073	G1073					SORSLA			
2nd-	G1077	G1077					SORSLB			
								•		
1st-	G1078	G1078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G1080	G1080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
1st-	G1079	G1079					SHA11	SHA10	SHA09	SHA08
							_	_		

SHB11

SHB10 SHB09

SHB08

(2) Details of input signals (PMC \rightarrow CNC)

(a) Spindle synchronous control command (SPSYC)

Setting the SPSYC signal to "1" directs the spindles to enter the spindle synchronous control mode. Before issuing this command, specify SORSLA (SORSLA) = "0".

Maintain the condition of SPSYC = "1" during synchronous orientation.

(b) Spindle phase synchronous control command or synchronous orientation command (SPPHS)

If SORENA (SORENB) = "0", the spindle phase synchronous control command is issued at the rising edge of the SPPHS signal. (See Section I-2.5, "SPINDLE SYNCHRONIZATION CONTROL," FOR PHASE SYNCHRONOUS CONTROL.")

If SORENA (SORENB) = "1", the synchronous orientation command is issued at the rising edge of the SPPHS signal. When the synchronous orientation command is issued, the synchronous speed command becomes disabled, and synchronous orientation begins.

Keep satisfying synchronous speed command = "0" during synchronous orientation.

Before issuing the synchronous orientation command, make sure that SORSLA (SORSLB) = "1" and SORENA (SORENB) = "1" are satisfied for both the spindles.

Keep in mind that the meaning of the SPPHS signal changes according to the state of the SORENA (SORENB) signal.

To issue the synchronous orientation command after spindle phase synchronous control is performed, it is necessary to reset the SPPHS signal to "0" previously. The spindle phase synchronous control completion signal is kept at "0" while the SPPHS signal is "0".

(c) Synchronous orientation request command (SORSLA)

The SORSLA signal is a signal for requiring synchronous orientation. In response to this signal, the spindle amplifier outputs a synchronous orientation permission signal (SORENA or SORENB).

If SORSLA (SORSLB) = "1" is input, the synchronous orientation command (SPPHS) becomes enabled when SORENA (SORENB) = "1" is satisfied.

Keep the current state of the SORSLA signal until synchronous orientation is completed.

If SORSLA (SORSLB) = "0" is input, synchronous orientation is released and the synchronous speed command becomes enabled, when SORENA (SORENB) = "0" is satisfied.

(d) Synchronous orientation external stop position command (SHA11 to SHA00)

This command is used to specify the stop position for synchronous orientation.

If all of the SHA11 to SHA00 signals are "0", the position where each spindle is to rest (reference position) is as stated below if the spindle phase synchronous command is issued under the condition of synchronous speed command = "0":

[One-rotation signal position] + [shift amount during spindle synchronous control (parameter No. 4034)]

The shift amount relative from the reference position is:

Shift amount (degrees) =
$$\frac{360}{4096} \times \sum_{i=0}^{11} (SHAi \times 2^{i})$$

Assert the SHA11 to SHA00 signals at least 50 ms before the synchronous orientation command is input, and keep them asserted until synchronous orientation is completed.

(e) Rotation direction command for synchronous (ROTAA)

This command specifies the direction in which the spindle rotates during synchronous orientation.

0: The spindle rotates CCW.

1: The spindle rotates CW.

To make both the spindles rotate in the same direction, it is necessary to input the ROTAA signal correctly. Because the correct rotation direction changes depending on the machine configuration, specify it exactly while paying attention to the way each spindle is linked to its motor and the positional relationship between the spindles.

Assert the ROTAA signals at least 50 ms before the synchronous orientation command is input, and keep it asserted until synchronous orientation is completed.

(3) Address list of output signals (CNC \rightarrow PMC)

(a) For path 1

(b) For path 2

(4) Details of output signals (CNC \rightarrow PMC)

(a) Synchronous orientation permission signal (SORENA)

If this signal is "1", the synchronous orientation command is issued at the rising edge of the SPPHS signal.

If this signal is "0", the spindle phase synchronous command is issued at the rising edge of the SPPHS signal. If this signal becomes "0" during synchronous orientation, the synchronous orientation is released.

In this case, reset the synchronous speed command for both the spindles to "0". SORENA (SORENB) = "1" is output if SORSLA (SORSLB) = "1" is satisfied, and SORENA (SORENB) = "0" is output if SORSLA (SORSLB) = "0" is satisfied.

(b) Spindle speed synchronous control completion signal (FSPSY)

If the spindle synchronous control command is issued, the FSPSY signal becomes "1" when both spindles reach the specified synchronous speed.

Before issuing the spindle phase synchronous control command for reference position setting, make sure that the synchronous speed command is "0" and the FSPSY signal is "1".

The signal becomes "1" if the velocity error between the spindles is smaller than the value specified in parameter No. 4033.

(c) Spindle phase synchronous control completion signal or synchronous orientation completion signal (FSPPH)

If the spindle phase synchronous control command is issued, the FSPPH signal becomes "1" when phase synchronization is completed. If the synchronous orientation command is issued, the signal becomes "1" when synchronous orientation is completed.

The signal is kept at "0" while SPPHS (spindle phase synchronous control command or synchronous orientation command) = "0".

After the spindle phase synchronous control command has been issued, the signal is output if the following conditions are satisfied.

- The velocity error between the spindles is smaller than the value specified in parameter No. 4034.
- The synchronous error between the spindles is smaller than the value specified in parameter No. 4810.

After the synchronous orientation command has been issued, the signal is output if the following conditions are satisfied.

- The synchronous error between the spindles is smaller than the value specified in parameter No. 4810.
- The position error between the spindles is smaller than the value specified in parameter No. 4075.

(d) Phase synchronous error monitor signal (SYCAL)

This signal is used to detect when a synchronous error becomes large when the spindles are under synchronous control.

If the signal is detected, the PMC usually performs alarm processing. The signal becomes "1" if the synchronous error between the two spindles becomes larger than or equal to the value specified in parameter No. 4811 when the spindles are under synchronous control.

5.5.5 Sequence

Shown below is an example of a sequence in which synchronous orientation is used. In this example sequence, the first and second spindles are put under spindle synchronous control to perform the machining described below.

- (1) The spindle synchronous control command is issued with the first spindle rotating and the second at rest.
- (2) Upon completion of spindle synchronization, synchronous speed command = "0" is specified.
- (3) The spindle phase synchronous control command is issued for reference position setting.
- (4) Upon completion of spindle phase synchronization, a workpiece is loaded.
- (5) The workpiece is machined by running the spindles under spindle synchronous control.
- (6) The spindles are stopped at a fixed position, using synchronous orientation.
- (7) Upon completion of synchronous orientation, the workpiece is unloaded.
- (8) Synchronous orientation is released.
- (9) Spindle synchronous control is released.

NOTE

Set time t to at least 50 ms so that each signal can be asserted securely.

5.5.6 List of Related Parameters

Parame	ter No.	Decembries					
16 <i>i</i>	30 <i>i</i>	Description					
4800#1,#0	4801#0	Direction in which each of spindles rotates under spindle synchronous control (For 16 <i>i</i> : #0: First spindle: #1: Second spindle. For 30 <i>i</i> : Each spindle)					
4810	4810	That error pulse difference between two spindles on which the spindle phase synchronous completion signal is output					
4811	4811	That error pulse difference between two spindles on which the spindle phase synchronous error monitor signal is output					
3702#3,#2	3729#0	Whether the stop position external setting-type spindle orientation function is available (For 16 <i>i</i> : #0: First spindle: #1: Second spindle. For 30 <i>i</i> : Each spindle)					
4006#4	4006#4	Setting for disabling automatic detection of a one-rotation signal when the spindle synchronous control mode is switched					
4014#6	4014#6	Whether the synchronous orientation function is available					
4032	4032	Acceleration at spindle synchronous control (It is necessary to specify the same value for the first and second spindles.)					
4033	4033	Spindle synchronous speed arrival level					
4034	4034	Shift amount at spindle phase synchronous control					
4035	4035	Spindle phase synchronous compensation data					
4044 4045	4044 4045	Velocity proportional gain on spindle synchronous control (This parameter is selected with the input signal CTH1A.)					
4052 4053	4052 4053	Velocity integral gain on spindle synchronous control (This parameter is selected with the input signal CTH1A.)					
4056 to 4059	4056 to 4059	Gear ratio data between spindle and motor (These parameters are selected with the input signals CTH1A and CTH2A.)					
4065 to 4068	4065 to 4068	Position gain on spindle synchronous control (It is necessary to specify the same value for the first and second spindles.) (These parameters are selected with the input signals CTH1A and CTH2A.)					
4075	4075	Orientation completion signal detection level					
4085	4085	Motor voltage setting on spindle synchronous control					
4336	4336	Acceleration magnetic flux switching point for spindle synchronous control (It is necessary to specify the same value for the first and second spindles.)					
4340	4340	Bell-shaped acceleration/deceleration time constant for spindle synchronous control (It is necessary to specify the same value for the first and second spindles.)					
4369	4369	Synchronous orientation deceleration coefficient					

NOTE

- 1 See Section I-1.3, "PARAMETERS RELATED TO DETECTORS," for parameters related to detectors.
- ² See Section I-4.1, "VELOCITY LOOP GAIN ADJUSTMENT," for velocity loop proportional/integral gain tuning.
- 3 See "Function Description: Spindle Synchronous Control" for parameters related to the spindle synchronous control function.

5.5.7 Details of Related Parameters

16 <i>i</i>	-	#7	#6	#5	#4	#3	#2	#1	#0
3702	-					OR2	OR1		

OR1 The stop position external setting-type spindle orientation function (for the first spindle) is:

0: Disabled1: EnabledSet to "1".

OR2 The stop position external setting-type spindle orientation function (for the second spindle) is:

0: Disabled1: EnabledSet to "1".

-	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
-	3729								ORTs

ORT_S The stop position external setting-type spindle orientation function is:

0: Disabled1: EnabledSet to "1".

16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
4014	4014		SYCORI						

SYCORI: The synchronous orientation function is:

0 : Disabled1 : Enabled

Set to "1" for both the spindles.

16*i* 30*i*4075 4075 Orientation completion signal detection level

Unit of data: 1 pulse unit (360 degrees/4096)

Valid data range: 0 to 100 Standard setting value: 10

This parameter is used to specify the synchronous orientation completion pulse width. When the synchronous orientation command is issued, the synchronous orientation completion signal (FSPPH) becomes "1" if the spindle stop position is within the setting data

range.

Specify the same value for both the spindles. This parameter is used also for regular orientation.

FANUC AC SPINDLE MOTOR αi series FANUC BUILT-IN SPINDLE MOTOR BiI series 5.FUNCTION DESCRIPTIONS

B-65280EN/06

16*i* 30*i*4369 4369

Synchronous orientation deceleration coefficient

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 0

This parameter is used to specify a change that occurs in the spindle speed during synchronous orientation as a ratio to the acceleration during spindle synchronous control (parameter No. 4032). If the setting is "0", it is assumed to be 100%. (The change ratio specified in

parameter No. 4032 is used without modification.) Specify the same value for both the spindles.

5.6 SPINDLE FINE ACC./DEC. (FAD) FUNCTION

5.6.1 Overview

The spindle fine Acc./Dec. (FAD) function realizes smooth acceleration/deceleration during rigid tapping and Cs contouring control by performing acceleration/deceleration processing with spindle software. It can reduce mechanical shocks that may accompany acceleration/deceleration.

NOTE

- 1 This function is usable in a combination of the αi spindle amplifier and the FANUC Series 16*i*/18*i*/21*i*-MODEL B CNC.
- 2 This function cannot be used with the FANUC Series 15*i* MODEL B.
- 3 This function cannot be used with the FANUC Series 30*i* /31*i* /32*i*.
- 4 This function cannot be used together with the spindle EGB function.

5.6.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Remark
9D50	E (05) edition or later	
9D80	A (01) edition or later	

CNC software

Series	Edition	Remark		
B0H1	M (13) edition or later	For the FANUC Series 16i/160i/160is-MB		
BDH1	M (13) edition or later	For the FANUC Series 18i/180i/180is-MB		
BDH5	C (03) edition or later	For the FANUC Series 18i/180i/180is-MB5		
DDH1	M (13) edition or later	For the FANUC Series 21i/210i/210is-MB		
B1H1	M (13) edition or later	For the FANUC Series 16i/160i/160is-TB		
BEH1	M (13) edition or later	For the FANUC Series 18i/180i/180is-TB		
DEH1	M (13) edition or later	For the FANUC Series 21i/210i/210is-TB		

5.6.3 Block Diagram

Shown below is the block diagram of a system configuration in which spindle fine Acc./Dec. is used. Smooth acceleration/ deceleration is realized by applying linear- or bell-shaped smoothing to the move command from the CNC on small cycles in the spindle software.

5.6.4 Parameters

(1) List of Related Parameters

Parameter No.	Description			
16 <i>i</i>				
5205#7	Setting of fine Acc./Dec. during rigid tapping			
4394#3	Spindle fine Acc./Dec. function bit			
4394#4	Acceleration/deceleration type during spindle fine Acc./Dec.			
4344	Feed-forward coefficient during fine Acc./Dec.			
4037	Velocity loop feed-forward coefficient during fine Acc./Dec.			
4408	Fine Acc./Dec. time constant			
4409	Feed-forward timing adjustment coefficient			

(2) Details of parameters related to rigid tapping

16 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
5205	REF							

REF Setting of fine Acc./Dec. during rigid tapping

0: No fine Acc./Dec. (FAD) is available.

1: Fine Acc./Dec. (FAD) is available.

To be set to "1" if the spindle fine Acc./Dec. (FAD) function is used.

(3) Details of parameters related to serial spindles

16 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
4394				FADLIN	FADFNC			

FADFNC Spindle fine Acc./Dec. (FAD) function bit

> The fine Acc./Dec. (FAD) function is disabled. The fine Acc./Dec. (FAD) function is enabled.

To be set to "1" if the spindle fine Acc./Dec. (FAD) function is used.

Acceleration/deceleration type during spindle fine Acc./Dec. (FAD) **FADLIN**

> 0: Bell-shaped Acc./Dec. 1: Linear-shaped Acc./Dec.

Specify the same acceleration/deceleration type as for the servo axis for which interpolation is performed simultaneously with this function.

16*i*

4344 Feed-forward coefficient during fine Acc./Dec.

Unit of data: 0.01% Valid data range: 0 to 10000

Standard setting value:

This parameter is used to specify the feed-forward coefficient for

spindle fine Acc./Dec.

Specify the same setting for the servo axis for which interpolation is

performed simultaneously with this function.

16*i*

4037 Velocity loop feed-forward coefficient during fine Acc./Dec.

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 0

This parameter is used to specify the velocity loop feed-forward coefficient during fine Acc./Dec. (FAD). Determine what to specify

according to the following calculation.

Setting = 214466 × [spindle inertia + rotor inertia] (kgm²) motor maximum torque (Nm)

16*i*

4408 Fine Acc./Dec. time constant

Unit of data: 1msec Valid data range: 8 to 64 Standard setting value:

This parameter is used to specify the time constant for spindle fine Acc./Dec. (FAD). If the specified value is out of the valid data ranging, the setting is clamped to the upper or lower limit.

No cutting/traverse time constant switching function is available. Specify the same value as for the servo axis (for cutting) for which

interpolation is performed simultaneously with this function.

16*i* 4409

Feed-forward timing adjustment coefficient

Unit of data: 0.001msec Valid data range: -1000 to 1000

Standard setting value: 0

This parameter is used to adjust the timing of the feed-forward term of the velocity command to improve accuracy of the synchronization with the servo axis being accelerated or decelerated.

Setting -1000 advances the timing by 1 ms, and setting +1000 lags the

timing by 1 ms.

5.6.5 Diagnosis (Diagnosis Screen)

Address	Description			
16 <i>i</i>	Description			
418	1st-spindle (regular) position error			
420	2nd-spindle (regular) position error			
422	3rd-spindle (regular) position error			
424	4th-spindle (regular) position error			
714	1st-spindle (FAD) position error			
715	2nd-spindle (FAD) position error			
734	3rd-spindle (FAD) position error			
735	4th-spindle (FAD) position error			

5.6.6 Status Errors

Error No.	Description	Measure		
31	Invalid hardware configuration	Check the model of the CNC in use.		
34	An attempt was made to enable both the spindle FAD function and spindle EGB function.	To use the spindle FAD function, disable the spindle EGB function.		

5.6.7 Cautions

(1) Cautions for using the synchronization and fine Acc./Dec. (FAD) functions simultaneously between the servo axis and spindle axis

The following restrictions are placed on the simultaneous use of the synchronization and fine Acc./Dec. (FAD) functions between the servo axis (hereafter SV axis) and spindle axis (hereafter SP axis).

	Whether the SV-axis FAD is usable				
Function	If the SP-axis FAD is disabled	If the SP-axis FAD is enabled	Cautions about simultaneous use		
Rigid tapping	Usable	Usable	If the SP-axis FAD is disabled: FAD and feed-forward are kept off during rigid tapping. Establishing synchronization requires changing the position gain for SV-axis rigid tapping (bit 3 of parameter No. 2209 or parameter Nos. 5280 to 5284). (*) If the SP-axis FAD is enabled: It is necessary to use the same FAD time constant, acceleration/deceleration type, feed-forward coefficient, and position gain for both the SV axis (for cutting) and SP axis.		
Advanced preview rigid tapping	Unusable	Usable	It is necessary to use the same FAD time constant, acceleration/deceleration type, feed-forward coefficient, and position gain for both the SV axis (for cutting) and SP axis.		
Cs contouring control	Unusable	Usable	It is necessary to use the same FAD time constant, acceleration/deceleration type, feed-forward coefficient, and position gain for both the SV axis (for cutting) and SP axis.		
Hobbling function	Unusable	Unusable			
EGB function	Unusable	Unusable	Disable the SV-axis FAD function.		
Flexible synchronization	Unusable	Usable	It is necessary to use the same FAD time constant, acceleration/deceleration type, feed-forward coefficient, and position gain for both the SV axis (for cutting) and SP axis.		

NOTE

(*) If the SP-axis FAD is disabled, set bit 3 of parameter No. 2209 to 1, or set parameter Nos. 5280 to 5284 with a value 1 ms higher than otherwise. If the SP-axis FAD is enabled, reset bit 3 of parameter No. 2209 to 0 and set parameter Nos. 5280 to 5284 with the same value as for the spindle axis. Refer to the "FANUC AC SERVO MOTOR $\alpha is/\alpha i/\beta is$ series Parameter Manual (B-65270EN)" for details.

(2) Cautions about position error

When the spindle fine Acc./Dec. (FAD) function is in use, the following two types of position error can occur because the spindle software applies smoothing to a motion command from the CNC.

- Actual position error related to the command from the CNC: (Regular) position error
- Position error used within the spindle software: FAD position error

These position error are used for the following purposes.

- (Regular) position error: Excessive-error check and in-position check
- FAD position error: Error display on the spindle adjustment screen

NOTE

The (regular) position error becomes larger by the amount of an influence of fine Acc./Dec. (FAD) smoothing. So, include this amount when specifying excessive-error and in-position check levels.

An increase in the position error caused by fine Acc./Dec. (FAD) is obtained by:

[When the linear type is used.]

Increase in pos. error (pulses) =
$$\frac{\text{detection}}{\text{unit}} \times \frac{\text{feedrate (min}^{-1})}{60 \times 1000} \times \left[\frac{\text{FAD time}}{\text{constant (ms)}} + 1 \right]$$

[When the bell-shaped type is used.]

Increase in pos. error (pulses) =
$$\frac{\text{detection}}{\text{unit}} \times \frac{\text{feedrate (min}^{-1})}{60 \times 1000} \times \left[\frac{\text{FAD time constant (ms)}}{2} + 1 \right]$$

Letting the FAD time constant and feedrate be, respectively, 64 ms (bell-shaped type) and 3000 min⁻¹ for rigid tapping (with a detection unit of 4096 pulses/rev):

Increase in pos. error (pulses) =
$$4096 \times \frac{3000}{60 \times 1000} \times \left[\frac{64}{2} + 1\right] = 6758$$

5.7 UNEXPECTED DISTURBANCE TORQUE DETECTION FUNCTION Optional function

5.7.1 Overview

The unexpected disturbance torque detection function is intended to monitor friction torque components and those needed in machining by extracting them from the torque output from the spindle motor and eliminating the torque needed in acceleration/deceleration. It can be used to detect a broken tool and to manage the tools for service life.

NOTE

- 1 Using this function requires the CNC software option for the unexpected disturbance torque detection function.
- 2 A broken or worn tool may or may not be able to be detected depending on the machine condition.

5.7.2 Series and Editions of Applicable Spindle Software

Series	Edition	Remark
9D50	A (01) edition or later	FS16i / FS18i / FS21i / FS0i / FS15i
9D70	A (01) edition or later	FS30i / FS31i / FS32i
0070	A (O4) adition on later	FS16i / FS18i / FS21i / FS0i / FS15i
9D70	A (01) edition or later	FS30i / FS31i / FS32i

5.7.3 I/O Signals (CNC↔PMC)

(1) Address list of output signals (CNC \rightarrow PMC)

16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
F090	F090					ABTSP3	ABTSP2	ABTSP1	
F091	F091				ABTSP4				
				,					

15*i* F155 F154

AQSP2	AQSP1				
			AQSP4	AQSP3	

- (2) Details of output signals (CNC \rightarrow PMC)
 - (a) First-spindle unexpected disturbance torque detection signals (ABTSP1 and AQSP1)
 - (b) Second-spindle unexpected disturbance torque detection signals (ABTSP2 and AQSP2)
 - (c) Third-spindle unexpected disturbance torque detection signals (ABTSP3 and AQSP3)
 - (d) Fourth-spindle unexpected disturbance torque detection signals (ABTSP4 and AQSP4)

These signals are output when the estimated load torques on the respective spindles become higher than or equal to the set level. Refer to an applicable CNC Connection Manual (Function) for details.

- (a) For Series 16*i*/18*i*/21*i*
 - "FANUC Series 16i/18i/21i-MODEL B CONNECTION MANUAL (FUNCTION) : B-63523EN-1 Refer to Section 2.10, "ABNORMAL LOAD DETECTION."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A

 CONNECTION MANUAL (FUNCTION): B-63943EN-1

 Refer to Section 2.9, "UNEXPECTED DISTURBANCE

 TORQUE DETECTION FUNCTION."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 2.9, "ABNORMAL LOAD DETECTION."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL C
 CONNECTION MANUAL (FUNCTION): B-64113EN-1
 Refer to Section 2.9, "ABNORMAL LOAD DETECTION."

5.7.4 List of Related Parameters

Pa	rameter No).	Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3015 #1	4015 #1	4015 #1	Whether the unexpected disturbance torque detection function is available (The CNC software option is required.)
3248	4248	4248	Torque constant for spindle load torque monitoring (for high-speed output switching characteristics)
3281	4281	4281	Torque constant for spindle load torque monitoring (for low-speed output switching characteristics)
3249	4249	4249	Observer gain 1 for spindle load torque monitoring
3250	4250	4250	Observer gain 2 for spindle load torque monitoring
3341	4341	4341	Unexpected disturbance torque detection level

5.7.5 Details of Related Parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3015	4015	4015							SPLDMT	

SPLDMT: Whether the unexpected disturbance torque detection function is

available

0 : Unavailable1 : Available

This parameter is specified automatically by the software option.

15*i* 16*i* 30*i*3248 4248 4248 Torque constant for spindle load torque monitoring (for high-speed output switching characteristics)

Torque constant for spindle load torque monitoring (for low-speed output switching characteristics)

Unit of data:

Valid data range: 0 to 32767

Standard setting value :

Specify the torque constant Kt for calculating the spindle load torque, using the following calculation:

$$Kt = \frac{T \max}{Jm + Jl} \times 4.889$$

Tmax: Motor maximum output torque [Nm] (Use 120% of the

30-minute rated torque as a rough standard.)

Jm : Motor rotor inertia [kgm²]

 $\mathcal{J}l$: Spindle inertia (in terms of motor axis inertia) [kgm²]

FANUC AC SPINDLE MOTOR αi series FANUC BUILT-IN SPINDLE MOTOR BiI series 5.FUNCTION DESCRIPTIONS

B-65280EN/06

15*i* 16*i* 30*i* 3249 4249 4249 3250 4250 4250

Observer gain 1 for spindle load torque monitoring

Observer gain 2 for spindle load torque monitoring

Unit of data:

Valid data range: 0 to 32767 Standard setting value: 500

Specify the gain (usually "500") for the spindle load torque estimation

observer.

15*i* 16*i* 30*i* 3341 4341 4341

Unexpected disturbance torque detection level

Unit of data: 0.01% Valid data range: 0 to 10000

Standard setting value: 0

Specify the output level for the spindle unexpected disturbance torque detection signal, using a percentage to the motor maximum output torque. If this parameter is "0", no spindle unexpected disturbance

torque detection signal is output.

5.7.6 Parameter Tuning Procedure

(1) Parameter initialization

Initialize the parameters related to the unexpected disturbance torque detection function as listed below.

No.	Description	Initial setting
4015#1	Whether the unexpected disturbance torque detection function is available (The CNC software option is required.)	1
4248	Torque constant for spindle load torque monitoring	Specify an appropriate value according to the spindle inertia (see the following expression).
4249	Observer gain 1 for spindle load torque monitoring	500
4250	Observer gain 2 for spindle load torque monitoring	500
4341	Unexpected disturbance torque detection level	0 (to be changed to an appropriate value according to the use of the machine)

(2) Initial setting of the torque constant (parameter No. 4248)

Using the following expression, calculate the initial torque constant setting according to the spindle inertia and specify it in the corresponding parameter.

$$Kt = \frac{T \max}{Jm + Jl} \times 4.889$$

Tmax: Motor maximum output torque [Nm] (Use 120% of the

30-minute rated torque as a rough standard.)

Jm : Motor rotor inertia [kgm²]

Jl : Spindle inertia (in terms of motor axis inertia) [kgm²]

Example)

Initial torque constant setting for the $\alpha i I3/10000$

Letting motor rotor inertia Jm, motor maximum output torque Tmax, and spindle inertia Jl be, respectively, 0.0148 kgm^2 , $35.0 \times 1.2 = 42.0 \text{ Nm}$, and 0.0250 kgm^2 , the torque constant is:

 $Kt = 42.0/(0.0148 + 0.0250) \times 4.889 = 5159.24$

So, set parameter No. 4248 to "5159".

(3) Tuning the torque constant (parameter No. 4248)

Described below is how to tune the torque constant while observing the spindle torque data, using the spindle check board (A06B-6078-H001). Refer to an applicable maintenance manual for detailed explanations about how to use the spindle check board.

First set up	the enir	idle che	eck board	ac listed	helow
THSI SCI UD	me son	idie ciid	ck bbaru	as nsicu	DCIOW.

Output terminal	Output data	Setting		Resolution
		d-05	19	
CH1	Motor speed	d-06	18	1638.4 min ⁻¹ /V
CITI	Wotor speed	d-07	0	1030.4 11111 77
		d-08	1	
			277	F\/ - Tracy (master
CH2	Spindle load torque	d-10	7	5V = Tmax (motor
		d-11	0	maximum output
		d-12	1	torque)

With the above settings, direct the machine to run at a speed that matches your machining program, cause it to perform acceleration/deceleration with no load, and observe the load torque on the spindle.

While observing the waveform of the spindle load torque, tune the torque constant so that the spindle load torque during acceleration will get close (and flat) to 0.

See the following charts for details.

Fig. <1>: Parameter No. 4248 = 10000

Fig. <2>: Parameter No. 4248 = 15000

Fig. <3>: Parameter No. 4248 = 12000 (final value)

5.8 SPINDLE EGB (SPINDLE ELECTRONIC GEAR BOX)

Optional function

5.8.1 Overview

The spindle EGB function is intended to use one of spindles in a pair as a tool axis (master axis) and the other as a workpiece axis (slave axis) and cause the slave axis to rotate in synchronization with the master axis at a specified synchronous ratio. Refer to an applicable CNC Connection Manual (Function) for details of this function.

(a) For Series 16*i*/18*i*

"FANUC Series 16i/18i/21i-MODEL B CONNECTION MANUAL (FUNCTION): B-63523EN-1 Refer to Section 1.14.2, "Spindle Electronic Gear Box (M series)."

NOTE

- 1 Using this function requires the CNC software option.
- 2 Using this function requires SP TYPE B for both the master and slave axes.
- 3 For the master and slave axes, use the spindle software of the same series and edition.
- 4 This function cannot be used together with the spindle fine Acc./Dec. (FAD) function.
- 5 This function cannot be used together with the toque tandem control function.
- 6 This function cannot be used with the FANUC Series 15i-MODEL B.
- 7 This function cannot be used with the FANUC Series 30*i*/31*i*/32*i*.
- 8 There are no limitations on the assignment of the master and slave axes.

For descriptive purposes, this specification assumes: Master spindle amplifier: 1st spindle Slave spindle amplifier: 2nd spindle

5.8.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Remark
9D50	E (05) edition or later	
9D80	A (01) edition or later	

CNC software

Series	Edition	Remark
B0H1	A (01) edition or later	For FANUC Series 16 /160i/160is-MB
BDH1	A (01) edition or later	For FANUC Series 18i/180i/180is-MB
BDH5	A (01) edition or later	For FANUC Series 18i/180i/180is-MB5

5.8.3 System Configuration

The spindle EGB function is usable in the following system configuration.

NOTE

The spindle EGB function is usable between spindles having a different detector configuration.

(1) System configuration with built-in motors

Parameter settings related to detectors

Parameter	Setting	Description	
4000#0	0	The spindle and motor rotates in the same direction.	
4002#3,#2,#1,#0	0,0,0,1	The motor sensor is used for position feedback.	
4003#7,#6,#5,#4	0,0,0,0	It is unnecessary to specify the number of the spindle sensor teeth.	
4010#2,#1,#0	0,0,1	αiMZ/αiBZ/αiCZ sensor	
4011#2,#1,#0 or 4334	Depending on the sensor.	Setting for the number of motor sensor (speed sensor) teeth	
4056 to 4059	100 or 1000	The spindle-to-motor gear ratio is 1:1. (The settings for these parameters vary depending on the gear ratio increment system specified in bit 1 or parameter No. 4006.)	
4386 ^(*)		Setting for the number of master-axis motor sensor (speed sensor) teeth	

^(*) This parameter is valid only for the slave axis (second spindle).

(2) System configuration with separate αi BZ sensors or separate αi CZ sensors

Parameter settings related to detectors

Parameter	Setting	Description
4000#0	Depending on the spindle configuration	Setting for the relationship between the rotation directions of the spindle and motor
4001#4	Depending on the spindle configuration	Setting for the orientation in which the spindle sensor is mounted
4002#3,#2,#1,#0	0,0,1,0	αi BZ sensor, αi CZ sensor
4003#7,#6,#5,#4 or 4361	Depending on the sensor	Setting for the number of spindle sensor (position sensor) teeth.
4010#2,#1,#0	0,0,0	αiM sensor
4010#2,#1,#0	0,0,1	αiMZ sensor
4011#2,#1,#0 or 4334	Depending on the sensor	Setting for the number of motor sensor (speed sensor) teeth
4056 to 4059	Depending on the spindle configuration	Setting for the spindle-to-motor gear ratio
4386 ^(*)	Depending on the sensor	Setting for the number of master-axis motor sensor (speed sensor) teeth

^(*) This parameter is valid only for the slave axis (second spindle).

(3) System configuration where an external one-rotation signal (proximity switch) is used

Parameter settings related to detectors

Parameter	Setting	Description
4000#0		Setting for the relationship between the rotation directions of the spindle and motor
4002#3,#2,#1,#0	0,0,0,1	To be used for the position feedback of the motor sensor
4003#7,#6,#5,#4	0,0,0,0	It is unnecessary to specify the number of teeth on the spindle sensor.
4004#2	1	An external one-rotation signal (proximity switch) is used.
4004#3	Depending on the sensor	Setting for the type of the external one-rotation signal (proximity switch)
4010#2,#1,#0	0,0,1	αiMZ/αiBZ/αiCZ sensor
4011#2,#1,#0 or 4334	Depending on the sensor	Setting for the number of motor sensor (speed sensor) teeth
4056 to 4059	Depending on the spindle configuration	Setting for the spindle-to-motor gear ratio
4171 to 4174	Depending on the spindle configuration	Setting for the spindle-to-motor gear ratio (arbitrary gear ratio).
4386 ^(*)	Depending on the sensor	Setting for the number of master-axis motor sensor (speed sensor) teeth
4498, 4499 ^(*)	Depending on the spindle configuration	Setting for the master-axis spindle-to-motor gear ratio (arbitrary gear ratio)

^(*) This parameter is valid only for the slave axis (second spindle).

5.8.4 Block Diagram

Shown below is the block diagram of a system configuration in which the spindle EGB is used.

In this system configuration, it is possible to use one of spindles in a pair as a tool axis (master axis) and the other as a workpiece axis (slave axis) and cause the slave axis to rotate in synchronization with the master-axis at a specified synchronous ratio.

NOTE

- 1 It is possible to drive the master axis (first spindle) on the velocity control mode.
- 2 To drive the master axis at a constant speed in the Cs contouring control mode, use the position control function for the PMC axis control constant-speed command.

5.8.5 I/O Signals (CNC \leftrightarrow PMC)

This subsection lists only the input/output signals related to the spindle EGB. Refer to an applicable CNC Connection Manual (Function) for details of each signal.

(a) For Series 16*i*/18*i*FANUC Series 16*i*/18*i*/21*i*-MODEL B
CONNECTION MANUAL (FUNCTION): B-63523EN-1
Refer to Subsection 1.14.2, "Spindle Electronic Gear Box (M series)."

(1) Input signals (PMC \rightarrow CNC)

(2) Output signals (CNC \rightarrow PMC)

	#7	#6	#5	#4	#3	#2	#1	#0
F065		SYNMOD		RTRCTF				

5.8.6 Examples of Sequences

Refer to an applicable CNC Connection Manual (Function) for spindle EGB sequences.

(a) For Series 16*i*/18*i*FANUC Series 16*i*/18*i*/21*i*-MODEL B
CONNECTION MANUAL (FUNCTION): B-63523EN-1
Refer to Section 1.14.2, "Spindle Electronic Gear Box (M series)."

5.8.7 **List of Related Parameters**

Parameter No.	B I fin
16 <i>i</i>	Description
7700#0	Direction for helical compensation
7700#2	Setting for releasing the synchronous control mode at a reset
7709	Axis number for helical gear axial feed axis
7710	Spindle EGB slave axis number
7771	Spindle EGB master axis number
7772	The number of pulses the position sensor generates at each rotation of the tool axis (master axis)
	(Specify 360,000 for the IS-B.)
7773	The number of pulses the position sensor generates at each rotation of the workpiece axis (slave axis)
	(Specify 360,000 for the IS-B.)
8005#4	Setting for the type of the PMC axis control constant-speed command function
8028	Time constant for linear-shaped Acc./Dec. in speed command-based continuous feed for each axis in PMC-based axis control
8040	Number of pulses the position sensor generates at each rotation of the spindle on a PMC-controlled axis
	(Specify 360,000 for the IS-B.)
4016#3	Setting for the feed-forward smoothing function
4352#4	Feed-forward setting
4352#6	Inter-spindle amplifier communication slave axis setting
4352#7	Inter-spindle amplifier communication master axis setting
4036	Feed forward coefficient
4037	Velocity loop feed forward coefficient
4046	Velocity proportional gain on Cs contouring control
4047	(This parameter is selected with the PMC input signal CTH1A.)
4054	Velocity integral gain on Cs contouring control
4055	(This parameter is selected with the PMC input signal CTH1A.)
4069 to 4072	Position gain on Cs contouring control (This parameter is selected with the PMC input signal CTH1A.)
4386	Number of master-axis spindle sensor teeth
4387	Synchronous ratio numerator
4388	Synchronous ratio denominator
4498	Denominator of the master-axis motor sensor-to-spindle arbitrary gear ratio
4499	Numerator of the master-axis motor sensor-to-spindle arbitrary gear ratio

NOTE

- 1 See Section I-1.3, "PARAMETERS RELATED TO DETECTORS," for parameters related to detectors.
- 2 See Section I-4.1, "VELOCITY LOOP GAIN ADJUSTMENT," for velocity loop proportional/integral gain tuning.

5.8.8 Details of Related Parameters

This subsection details the serial spindle parameters related to the EGB (for the 16*i*, parameter Nos. 4000 to 4999). It also briefly describes the parameters related to the position control function for the PMC axis control constant-speed command. Refer to an applicable CNC Connection Manual (Function) for details of other parameters.

(a) For Series 16i/18i
FANUC Series 16i/18i/21i-MODEL B
CONNECTION MANUAL (FUNCTION): B-63523EN-1
Refer to Subsection 1.14.2, "Spindle Electronic Gear Box (M series)."

(1) Summary of parameters related to the position control function for the PMC axis control constant-speed command

This paragraph summarizes parameters related to the position control function for the PMC axis control constant-speed command. For details of this function and PMC axis control, refer to the "FANUC Series 16*i*/18*i* PMC Axis Control Function Constant-Speed Command Position Control Function Description: A-63542E" and Section 15.1, "PMC AXIS CONTROL FUNCTION," of the "FANUC Series 16*i*/18*i*/21*i*-MODEL B Connection Manual (Function) (B-63523EN-1)."

NOTE

To drive the master axis at a constant speed in the Cs contouring control mode, use the position control function for the PMC axis control constant-speed command.

16 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
8005			_	PMCPOS				

PMCPOS

Setting for the type of the PMC axis control constant-speed command function

0: Velocity control1: Position controlTo be set to "1"

16*i*

8028

Time constant for linear-shaped Acc./Dec. in speed command-based continuous feed for each axis in PMC-based axis control

Unit of data: 1msec / 1000min⁻¹ id data range: 0 to 32767

Valid data range: 0 to 32

Standard setting value :

Specify the time constant for linear-shaped Acc./Dec. for the

PMC-controlled axis.

16*i*

8040

Number of pulses the position sensor generates at each rotation of the spindle on a PMC-controlled axis

Unit of data: Minimum detection unit

Valid data range: 1 to 999,999,999

Standard setting value:

Specify the number of pulses the position sensor generates at each

rotation of the spindle on a PMC-controlled axis.

Specify "360,000" for the IS-B.

(2) Details of parameters related to serial spindles

This paragraph details the serial spindle parameters related to the EGB (for the 16*i*, parameter Nos. 4000 to 4999). See Section I-2.4, "Cs CONTOURING CONTROL," for details of parameters related to Cs contouring control.

16 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
4016					FFSMTH			

FFSMTH Setting of smoothing function on feed forward control

0: Without smoothing function

1: With smoothing function

Sets the presence of smoothing function on feed forward control of Cs contouring control.

Specify "1" to use spindle EGB control.

16 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
4352	MASTER	SLAVE		FFALWS				

MASTER Inter-spindle amplifier communication master axis setting

0: Non-inter-spindle amplifier communication master axis

1: Inter-spindle amplifier communication master axis (Set 1 for the master axis.)

SLAVE Inter-spindle amplifier communication slave axis setting

0: Non-inter-spindle amplifier communication slave axis

1: Inter-spindle amplifier communication slave axis (Set 1 for the master axis.)

FFALWS Feed-forward setting

0: Feed-forward is enabled only during cutting feed.

1: Feed-forward is always enabled.

Set 0 for the spindle EGB master axis (first spindle) and 1 for the slave axis (second spindle).

16*i*

4036

Feed-forward coefficient

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 0

Set the feed forward coefficient when feed forward control is executed

on Cs contouring control.

Set 100 for the spindle EGB slave axis (second spindle).

16*i*

4037

Velocity loop feed forward coefficient

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 0

Set the velocity loop feed forward coefficient when feed forward control is executed on Cs contouring control. Set the following

calculation equation.

Setting = 214466 × [spindle inertia + rotor inertia] (kgm²) motor maximum torque (Nm)

16*i*

4386

Number of master-axis spindle sensor teeth

Unit of data: 1λ / rev Valid data range: 0, 64 to 4096

Standard setting value: (

Specify the number of master-axis spindle sensor teeth (position sensor). If "0" is specified, EGB synchronous ratio is assumed to be

"0".

NOTE

This parameter is valid only for the slave axis (second spindle).

16*i*

4387

Synchronous ratio numerator

Valid data range: -32767 to 32767

Standard setting value: 0

Specify the numerator of a synchronous ratio.

NOTE

This parameter is valid only for the slave axis (second spindle).

16*i*

4388

Synchronous ratio denominator

Valid data range: 1 to 65535

Standard setting value: 0

Specify the denominator of a synchronous ratio.

NOTE

This parameter is valid only for the slave axis (second spindle).

16*i*

4498 4499

Denominator of the master-axis motor sensor-to-spindle arbitrary gear ratio

Numerator of the master-axis motor sensor-to-spindle arbitrary gear ratio

Valid data range: 0 to 32767

Standard setting value: 0

Specify conversion coefficients (numerator and denominator) to be used when the detection arbitrary gear ratio function (DMR function) is used where the master-axis spindle position feedback signal is obtained by multiplying the feedback signal of the master-axis motor sensor (αi M or αi MZ sensor) by the gear ratio.

If the spindle makes Q turns while the motor shaft makes P turns

(where \dot{P} and \dot{Q} are mutually prime), the settings are: Parameter No. 4498 = \dot{P} and parameter No. 4499 = \dot{Q} If the parameters are "0", they are assumed to be "1".

NOTE

This parameter is valid only for the slave axis (second spindle).

5.8.9 Diagnosis Signal Related to Spindle EGB

Address 16 <i>i</i>	Description				
0717	Synchronous error between master and slave axes.(Weight is slave side)	Pulse			

NOTE

- 1 Displaying this data on the CNC diagnosis screen requires the αi SP TYPE B and the i series MODEL B CNC.
- 2 Displaying this data on the CNC diagnosis screen requires the following CNC software series/editions.

FS16i/160i/160is-MB :B0H1 series R(18) edition or later FS18i/180i/180is-MB : BDH1 series R(18) edition or later FS18i/180i/180is-MB5 : BDH5 series H(08) edition or later

5.8.10 Status Errors Related to Spindle EGB

Error No.	Description	Measure		
33	Invalid hardware configuration	Check the model of the CNC in use.		
24	An attempt was made to enable both the	To use the spindle EGB function, disable the		
34	spindle EGB and FAD functions.	spindle FAD function.		

5.8.11 Alarms

(1) Spindle alarm

I	Error No.	Description	Measure
ĺ	66	An error occurred in inter-spindle amplifier communication.	Check the connection of the cable (JX4).
	80	An alarm was issued on the destination amplifier of inter-spindle amplifier communication.	Correct the cause of the alarm on the destination spindle amplifier.

(2) CNC alarm

This subsection lists only the alarms related to the spindle EGB function. Refer to an applicable CNC Connection Manual (Function) for details.

(a) For Series 16*i*/18*i*FANUC Series 16*i*/18*i*-MODEL B
CONNECTION MANUAL (FUNCTION): B-63523EN-1
Refer to Section 1.14.2, "Spindle Electronic Gear Box (M series)."

Alarm No.	Description
010	A parameter specified for a G81 command is incorrect.
181	The format of a G81 block is incorrect.
184	A command that should not be issued during synchronous control is issued.
186	Incorrect parameter setting for G81: The slave axis has not been specified as a rotary axis.

5.9 DIFFERENTIAL SPINDLE SPEED CONTROL

5.9.1 Overview

The differential spindle speed control function controls the velocity of one spindle (slave axis) relative to the velocity of the other of spindle (master axis).

Applying this function to rigid tapping enables tapping the center of a workpiece while rotating a spindle (master axis) that holds a workpiece at a constant speed. Therefore, the time required for stopping the workpiece axis (master axis) can be reduced.

5.9.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC
9D50	F (06) edition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i> / FS0 <i>i</i> / FS15 <i>i</i>
9D70	A (01) edition or later	FS30i / FS31i / FS32i
0000	A (O4) adition or later	FS16i / FS18i / FS21i / FS0i / FS15i
9D80	A (01) edition or later	FS30i / FS31i / FS32i

5.9.3 Configuration

The following figure shows an example of a configuration used for differential spindle speed control.

NOTE

- 1 The sub module SW (SSW) is required in addition to the spindle amplifier to receive the position coder signal from the master side.
- When the position coder output of connector JX4 is used, spindle amplifier (SP) TYPE B is used (The maximum speed available for the position coder output is 20000 min⁻¹).

5.9.4 Description

- (1) The position coder must be connected to the master side spindle at the ratio of 1:1.
- (2) The position coder signal from the master side received by the sub module SW is output from JX4.
- (3) Differential spindle speed control can be used only during speed control mode or rigid tapping. It cannot be used during Cs contouring control, spindle synchronous control, or spindle orientation.
- (4) When differential spindle speed control is applied to rigid tapping (Differential speed rigid tapping), sum of the velocity of master spindle and the velocity command of rigid tapping for slave spindle must not exceed the maximum speed of slave spindle.
- (5) The master side spindle must be kept at a constant speed during rigid tapping. Acceleration or deceleration cannot be performed.
- (6) Since the output torque of the motor is normally reduced in high-speed rotation areas, the rigid tapping acceleration/deceleration constant must be set to a greater value.

5.9.5 I/O Signals (CNC↔PMC)

(1) Address list of input signals (PMC→CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	
1st-	G229	G072	G072					DEFMDA			
2nd-	G237	G076	G076					DEFMDB			

(2) Details of input signals (PMC→CNC)

(a) Speed differential mode specification signal (DEFMDA)

This signal is used to specify whether differential spindle speed mode is enabled.

- 0: Differential spindle speed mode disabled
- 1: Differential spindle speed mode specified

While this signal is set to 1, the spindle is controlled in differential spindle speed mode.

The velocity of the slave axis in differential spindle speed mode is controlled by the sum of the velocity of the master spindle and the velocity command of the slave spindle.

(3) Output signals (CNC→PMC)

There are no output signals.

5.9.6 Examples of Sequences

The following shows examples of sequences used when differential speed rigid tapping is performed using the first spindle as the slave axis (on the tool side).

- <1> When differential spindle speed mode is commanded to slave spindle, the slave spindle accelerates to the velocity of the master spindle.
- <2> After making sure that the slave spindle accelerates to the velocity of the master spindle, start rigid tapping.
- <3> Perform differential speed rigid tapping.
- <4> When the velocity command of the slave spindle is 0 min⁻¹, if differential spindle speed mode is released upon completion of rigid tapping, the slave spindle stops. If the velocity command of the slave spindle is commanded not equal to 0 min⁻¹, the slave spindle accelerates or decelerates to the velocity commanded.

5.9.7 List of Related Parameters

Pa	arameter N	lo.	Description		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description		
3000 #5	4000 #5	4000 #5	Whether the differential spindle speed control function is available (to be set to 1)		
3000 #6	4000 #6	4000 #6	Setting of direction for differential spindle speed control		
3017 #6	4017 #6	4017 #6	Setting of speed integration operation when differential spindle speed control is exercised		

5.9.8 Details of Related Parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3000	4000	4000		DEFDRT	DEFFNC					

DEFFNC

Whether differential spindle speed control function is available

0: Differential spindle speed control is not available

1: Differential spindle speed control is available (to be set to 1)

DEFDRT

Setting of the direction for differential spindle speed control(feedback polarity on the master side)

0: Direction same as the feedback signal1: Direction opposite to the feedback signal

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3017	4017	4017

#7	#6	#5	#4	#3	#2	#1	#0
							VINTDC

VINTDC

This parameter sets speed integration operation when differential spindle speed control is exercised. Set this parameter to 1.

NOTE

This parameter is valid with 9D50 series M (13) edition or later, 9D70 series C (03) edition or later, and 9D870 series A (01) edition or later.

5.9.9 Status Errors on Differential Spindle Speed Control

Error No.	Description	Measure
10	Differential spindle speed mode and Cs mode are specified at the same time.	Check the sequences.
12	Differential spindle speed mode is specified during spindle synchronous control.	Check the sequences.
13	Differential spindle speed mode is specified during spindle orientation.	Check the sequences.
16	Differential spindle speed mode is specified with speed differential control disabled.	Check the parameter settings and sequences.

5.10 DUAL POSITION FEEDBACK FUNCTION Optional function

5.10.1 Overview

When position control is performed by Cs contouring control or rigid tapping with a machine having a large backlash, vibration can be generated in closed loop mode while stable operation is possible in semi-closed loop mode. For such a machine system, the dual position feedback function provides stable control equivalent to control in semi-closed loop mode.

NOTE

- 1 To use this function, a CNC software option for Cs contouring control or rigid tapping is required.
- 2 Here, the semi-closed loop refers to positional control by motor sensor, and the closed loop refers to positional control by spindle sensor.
- 3 The dual position feedback function cannot be used on the spindle switch control SUB side.

5.10.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC	Remarks
9D50	A (01) edition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i>	Only the dual position feedback function under Cs contouring control is supported.
9000	M (13) edition or later	/ FS0i / FS15i	The dual position feedback function in the servo mode (rigid tapping/spindle positioning) is supported.
9D70	A (01) edition or later	FS30i / FS31i / FS32i	Only the dual position feedback function under Cs contouring control is supported.
9070	C (03) edition or later	F33011 F33111 F3321	The dual position feedback function in the servo mode (rigid tapping/spindle positioning) is supported.
9D80	A (01) edition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i>	Only the dual position feedback function under Cs contouring control is supported.

5.10.3 Block Diagram

The following shows a block diagram of dual position feedback:

Position feedback (from motor sensor)

Position feedback (from the spindle sensor)

As shown in the above diagram, error counter ER1 in the semi-closed loop and error counter ER2 in the closed loop are prepared. The primary delay time constant is expressed as follows:

Primary delay time constant = $(1 + \tau s)^{-1}$

Here, consider actual error ER by time constant.

- (1) When time constant $\tau = 0$: $(1 + \tau s)^{-1} = 1$ ER = ER1 + (ER2 - ER1) = ER2 (error counter in the closed loop)
- (2) When time constant $\tau = \infty$: $(1 + \tau s)^{-1} = 0$ ER = ER1 (error counter in the semi-closed loop)

From the primary delay time constant, control can be provided in the semi-closed loop when a transition state is present, and control can be provided in the closed loop when positioning is performed. According to this principle, vibration during movement can be suppressed to a level equivalent to the level obtained in the semi-closed loop.

5.10.4 List of Related Parameters

Pai	Parameter No.		Deparintion	
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	
3014#7	4014#7	4014#7	Setting of dual position feedback	
3171	4171	4171	Denominator of conversion coefficient	
3173	4173	4173	(Selected by spindle control input signal CTH1A)	
3172	4172	4172	Numerator of conversion coefficient	
3174	4174	4174	(Selected by spindle control input signal CTH1A)	
3215	4215	4215	Primary delay time constant in dual position feedback	[in Cs contouring control]
3224	4224	4224	Maximum amplitude in dual position feedback	[in Cs contouring control]
3225	4225	4225	Dual position feedback zero width	[in Cs contouring control]
3354	4354	4354	Excessive semi-closed loop/closed loop position error alarm detection level	[in Cs contouring control]
3520	4520	4520	Primary delay time constant in dual position feedback	[in servo mode]
3521	4521	4521	Maximum amplitude in dual position feedback	[in servo mode]
3522	4522	4522	Dual position feedback zero width	[in servo mode]
3523	4523	4523	Excessive semi-closed loop/closed loop position error alarm detection level	[in servo mode]

NOTE

- 1 This subsection lists only those parameters that are specific to dual position feedback. For parameters related to Cs contouring control, see Section 2.4, "Cs CONTOURING CONTROL", in Part I. For parameters related to rigid tapping, see Section 2.3, "RIGID TAPPING", in Part I.
- 2 The dual position feedback function (FS16*i*: No. 4520 to No. 4522) in the servo mode (rigid tapping/spindle positioning) is usable with the following series and editions: 9D50 series M edition (13 edition) or later 9D70 series C edition (03 edition) or later 9D80 series A edition (01 edition) or later

5.10.5 Details of Related Parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3014	4014	4014	DUALFB							

DUALFB Setting of dual position feedback

0: Enables dual position feedback.1: Disables dual position feedback.

To use the dual position feedback function, set "1".

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3171	4171	4171
3172	4172	4172
3173	4173	4173
3174	4174	4174

Denominator of conversion coefficient (HIGH)	CTH1A=0
Numerator of conversion coefficient (HIGH)	CTH1A=0
Denominator of conversion coefficient (LOW)	CTH1A=1
Numerator of conversion coefficient (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: (

These parameters are used to obtain the feedback amount for one rotation of the spindle from the position feedback signal in the semi-closed loop (the position feedback signal from the motor sensor) when the spindle rotates one turn.

When the spindle rotates Q turns while the motor shaft rotates P turns (P and Q are mutually prime integers), the parameters are set as follows:

No. 4171 (No. 4173 if CTH1A = 1) = P No. 4172 (No. 4174 if CTH1A = 1) = Q

If these parameters are set to "0", "1" is assumed to be set in the parameters.

15*i* 16*i* 30*i* 3215 4215 4215

Primary delay time constant in dual position feedback

[in Cs contouring control]

Unit of data: 1msec Valid data range: 0 to 32767

Standard setting value :

This parameter sets a primary delay time constant in dual position

feedback when Cs contouring control is exercised.

If hunting occurs during acceleration/deceleration, set a larger value. If this parameter is set to 0, the same setting as for a closed loop (=

dual position feedback disabled) results.

Setting "32767" provides control equivalent to the semi-closed loop.

15*i* 16*i* 30*i* 3224 4224 4224

Maximum amplitude in dual position feedback [in Cs contouring control]

Unit of data: 64 pulses (=0.064deg)

occurs.

Valid data range: 0 to 32767

Standard setting value: 0

This parameter sets a maximum amplitude in dual position feedback when Cs contouring control is exercised.

If an error between the position in the semi-closed loop and the position in the closed loop exceeds the setting, correction clamping

If "0" is set, correction clamping does not occur.

15*i* 16*i* 30*i* 3225 4225 4225

Dual position feedback zero width

[in Cs contouring control]

Unit of data: 1 pulse (=0.001deg)

Valid data range: 0 to 32767

Standard setting value :

This parameter sets a dual position feedback zero width when Cs

contouring control is exercised.

Positioning is performed so that the difference in position between the closed loop and semi-closed loop does not exceed the pulse width

equivalent to the parameter-set value.

Set "0" first, and if an unstable condition is observed when the

machine is stopped, increase the setting.

15*i* 16*i* 30*i*3354 4354 4354

Excessive semi-closed loop/closed loop position error alarm detection level [in Cs contouring control]

Unit of data: 64 pulses (=0.064deg)

Valid data range: 0 to 32767

Standard setting value :

This parameter sets an excessive semi-closed loop/closed loop position error alarm (spindle alarm 61) when Cs contouring control is

exercised.

When the position difference (semi-closed loop/closed loop position error) between the semi-closed loop and the closed loop exceeds the value set in this parameter, the alarm (spindle alarm 61) is issued.

15*i* 16*i* 30*i* 3520 4520 4520

Primary delay time constant in dual position feedback

[in servo mode]

Unit of data: 1msec Valid data range: 0 to 32767

Standard setting value :

This parameter sets a primary delay time constant in dual position feedback in the servo mode (rigid tapping/spindle positioning). If hunting occurs during acceleration/deceleration, set a larger value. If this parameter is set to 0, the same setting as for a closed loop (=

Setting "32767" provides control equivalent to the semi-closed loop.

dual position feedback disabled) results.

NOTE

This parameter is valid with 9D50 series M (13) edition or later, 9D70 series C (03) edition or later, and 9D80 series A (01) edition or later.

15*i* 16*i* 30*i* 4521 3521 4521

Maximum amplitude in dual position feedback

[in servo mode]

B-65280EN/06

1 pulse unit (=360/4096 degrees) Unit of data:

Valid data range: 0 to 4095

Standard setting value:

This parameter sets a maximum amplitude in dual position feedback in the servo mode (rigid tapping/spindle positioning).

If an error between the position in the semi-closed loop and the position in the closed loop exceeds the setting, correction clamping occurs.

If "0" is set, correction clamping does not occur.

If a value not within the valid data range is set, the value is clamped to the maximum allowable value.

NOTE

This parameter is valid with 9D50 series M (13) edition or later, 9D70 series C (03) edition or later, and 9D80 series A (01) edition or later.

15*i* 16*i* 30i3522 4522 4522

Dual position feedback zero width

[in servo mode]

Unit of data: 1 pulse unit (=360/4096 degrees)

0 to 4095 Valid data range:

Standard setting value:

This parameter sets a dual position feedback zero width in the servo mode (rigid tapping/spindle positioning).

Positioning is performed so that the difference in position between the closed loop and semi-closed loop does not exceed the pulse width equivalent to the parameter-set value.

Set "0" first, and if an unstable condition is observed when the machine is stopped, increase the setting.

If a value not within the valid data range is set, the value is clamped to the maximum allowable value.

NOTE

This parameter is valid with 9D50 series M (13) edition or later, 9D70 series C (03) edition or later, and 9D80 series A (01) edition or later.

15*i* 16*i* 30*i*3523 4523 4523

Excessive semi-closed loop/closed loop position error alarm detection level [in servo mode]

Unit of data: 1 pulse unit (=360/4096 degrees)

Valid data range: 0 to 4095

Standard setting value:

This parameter sets an excessive semi-closed loop/closed loop position error alarm (spindle alarm 61) in the servo mode (rigid tapping/spindle positioning).

When the position difference (semi-closed loop/closed loop position error) between the semi-closed loop and the closed loop exceeds the value set in this parameter, the alarm (spindle alarm 61) is issued. If a value not within the valid data range is set, the value is clamped to

the maximum allowable value.

NOTE

This parameter is valid with 9D50 series M (13) edition or later, 9D70 series C (03) edition or later, and 9D80 series A (01) edition or later.

5.10.6 Spindle Alarm

Error No.	Description	Measure
61	The difference (semi-closed loop/closed position error) between the semi-closed loop and the closed loop exceeds the set value.	Correct the cause of the semi-closed loop/closed position error.

5.11 TORQUE TANDEM CONTROL FUNCTION Optional function

5.11.1 Overview

The torque tandem control function controls two mechanically connected spindle motors by using the same torque command.

NOTE

- 1 To use this function, the CNC software option (spindle tandem control) is required.
- 2 To use this function, SP TYPE B is required.
- 3 When this function is used, the spindle amplifiers and spindle motors of the master and slave must be of the same model.
- 4 For the master and slave axes, use the spindle software of the same series and edition.
- 5 This function cannot be used together with the following functions:
 - Spindle synchronous control function
 - Speed range switching function
 - Spindle switching function
 - Position coder signal output function
 - Spindle EGB function
 - Spindle leaning control function
 - Synchronous built-in spindle motor driving
- 6 No limitation is imposed on master and slave axis assignment.

In the descriptions below, the following assignment is used for convenience:

Master spindle amplifier: First spindle Slave spindle amplifier: Second spindle

5.11.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC
9D50	M (13) edition or later	FS16i / FS18i / FS15i
9D70	C (03) edition or later	FS30i / FS31i
0000	A (01) adition or later	FS16i / FS18i / FS21i / FS0i / FS15i
9D80	A (01) edition or later	FS30i / FS31i / FS32i

5.11.3 System Configuration

NOTE

- 1 For connection details of each cable, refer to "FANUC SERVO AMPLIFIER αi series DESCRIPTIONS (B-65282EN)".
- 2 The common power supply (PS) emergency stop signal (connector CX4) needs to be input for each common power supply (PS).
- (1) Sample configuration 1: System where the master spindle and slave spindle are mechanically connected or disconnected when a workpiece is attached or detached

NOTE

When the master and slave are mechanically disconnected, torque tandem control cannot be used. In this case, cancel the tandem operation mode.

(2) Sample configuration 2: System where the table axis is driven by two motors

5.11.4 I/O Signals (CNC \leftrightarrow PMC)

NOTE

- 1 A command for the spindles engaged in tandem operation is issued to the master spindle amplifier. The input signal specifications are the same as for ordinary spindles (for which the torque tandem function is not used).
 - For details of signals used in each control mode, see Chapter 3, "I/O SIGNALS", in Part I.
- 2 During tandem operation, no signal needs to be input from the PMC to the tandem function slave spindle amplifier. Those signals that are required to drive the slave spindle amplifier are transferred from the master spindle amplifier by inter-spindle amplifier communication.
- 3 During tandem operation, use a signal output from the master spindle amplifier for sequence determination (such as speed arrival determination and alarm detection). (No signal output from the slave spindle amplifier is needed.)

(1) Input signals (PMC \rightarrow CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	G226	G071	G071
2nd-	G234	G075	G075

#7	#6	#5	#4	#3	#2	#1	#0
			SOCNA				
			SOCNB				

SOCNA SOCNB

Soft start/stop signal (for the first spindle)

Soft start/stop signal (for the second spindle)

0: Disables the soft start/stop function.

1: Enables the soft start/stop function.

These signals enable or disable the soft start/stop function.

Use these signals when limiting the specified acceleration rate to reduce a mechanical shock during acceleration/deceleration.

During tandem operation (SLVx = 1), the signals need not be input to the slave spindle amplifier.

B-65	280	ΙFΝ	/06
D-03	200	ורוםי.	/00

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	G228	G073	G073
2nd-	G236	G077	G077

#7	#6	#5	#4	#3	#2	#1	#0
					MPOFA	SLVA	
					MPOFB	SLVB	

SLVA SLVB Tandem operation command (for the first spindle)

Tandem operation command (for the second spindle)

- 0: Makes a request to disable tandem operation.
- 1: Makes a request to enable tandem operation.

These signals enable or disable tandem operation.

When using the torque tandem function, set these signals to 1 for both of the master and slave.

NOTE

- 1 Both of the master and slave must be stopped before these signals can be switched. During rotation, these signals cannot be accepted.
- 2 Switch these signals in the speed control mode. In a mode other than the speed control mode, these signals cannot be accepted.
- 3 When the master and slave are mechanically disconnected with each other, do not set these signals to 1.

MPOFA MPOFB Motor power turn-off signal (for the first spindle)

Motor power turn-off signal (for the second spindle)

- 0: Normal operation
- 1: Turns off the power to the motor.

These signals turn off the power to the motor.

During tandem operation (SLVx = 1), these signals need not be input to the slave spindle amplifier.

NOTE

If an error such as an excessive master-slave speed difference is detected when torque tandem operation is enabled, the power to both of the master motor and slave motor must be turned off simultaneously to minimize damage to the machine. In such a case, be sure to turn off the power to both motors by using these signals.

(2) Output signals (CNC \rightarrow PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045							SSTA	
2nd-	F245	F049	F049							SSTB	

SSTA Sp SSTB Sp

Speed zero detection signal (for the first spindle)

Speed zero detection signal (for the second spindle)

0: The spindle motor is rotating.

1: The spindle motor is in the speed zero (stopped) state.

After checking that these signals are set to 1 with both of the master and slave, switch the tandem operation command SLVx.

When these signals are set to 0, the tandem operation command cannot be accepted.

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	F228	F046	F046
2nd-	F244	F050	F050

#7	#6	#5	#4	#3	#2	#1	#0
			SLVSA				
			SLVSB				

SLVSA SLVSB Tandem operation state signal (for the first spindle)

Tandem operation state signal (for the second spindle)

0: Tandem operation is disabled.

1: Tandem operation is enabled.

After checking that these signals are set to 1 with both of the master and slave, issue a command to the master spindle amplifier.

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
1st-	F231	F047	F047	
2nd-	F247	F051	F051	

#7	#6	#5	#4	#3	#2	#1	#0
					MSOVRA		
					MSOVRB		

MSOVRA MSOVRB Master-slave speed difference state signal(for the first spindle)

Master-slave speed difference state signal (for the second spindle)

- 0: The speed difference between the master and slave is less than the set value.
- 1: The speed difference between the master and slave is equal to or greater than the set value.

These signals indicate whether or not the speed difference between the master motor and slave motor is less than the value set in the parameter (FS16i: No. 4347).

The signal for the slave spindle amplifier need not be monitored. (At all times, 0 is output.)

NOTE

Monitor the states of these signals on the PMC. Ensure that an alarm is issued if an error occurs (for example, if the state of 1 lasts for a certain period of time).

5.11.5 **Examples of Sequences**

NOTE

Examples of sequences are given below assuming the following:

First spindle: Master spindle amplifier Second spindle: Slave spindle amplifier

(Example 1) Speed control mode

5.11.6 Parameters

(1) Cautions

For the master spindle amplifier and slave spindle amplifier, set the same parameters except for the following specific parameters:

	Parameter No.	1	Description	Master setting	Slave setting	
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	waster setting	Slave Setting	
3002 #3 to #0	4002 #3 to #0	4002 #3 to #0	Spindle sensor type	Depending on the spindle configuration	Depending on the spindle configuration	
3353#2	4353#2	4353#2	Relationship of master/slave motor rotation directions in torque tandem operation	Depending on the spindle configuration	0	
3352#7,#6	4352#7,#6	4352#7,#6	Inter-spindle amplifier communication setting	1, 0	0, 1	
3360			Preload value	Machine by machine (adjustment value)	0	

(2) List of parameters

	Parameter No	o.	Description				
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description				
3009#2	4009#2	4009#2	Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued				
3353#2	4353#2	4353#2	Relationship of master/slave motor rotation directions in torque tandem operation				
3015#3	4015#3	4015#3	Whether to use the spindle tandem function				
3353#1	4353#1	4353#1	Velocity feedback signal setting in torque tandem operation				
3398#3	4398#3	4398#3	Whether to use the twin drive function				
3398#6	4398#6	4398#6	Whether to detect a speed polarity error (spindle alarm d0) in torque tandem operation				
3352#6	4352#6	4352#6	Inter-spindle amplifier communication slave axis setting				
3352#7	4352#7	4352#7	Inter-spindle amplifier communication master axis setting				
3347	4347	4347	Master-slave speed difference state signal output setting				
3360	4360	4360	Preload value				

(3) Details of Parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3009	4009	4009						ALSP		

ALSP Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued

0: Turns off the power after the motor is decelerated to a stop.

1: Turns off the power immediately. (Set this parameter to 1.)

NOTE

If an alarm is issued during torque tandem operation, the power to both of the master motor and slave motor must be turned off simultaneously to prevent the machine from being damaged. When using the torque tandem function, be sure to set this parameter to 1 to turn off the power to the motors immediately if a CNC-SP communication error occurs.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3015	4015	4015

#7	#6	#5	#4	#3	#2	#1	#0
				SPDTDM			

SPDTDM

Whether to use the spindle tandem function (The CNC software option is required.)

0: Does not use the spindle tandem function.

1: Uses the spindle tandem function.

NOTE

If this bit is set to 0, the torque tandem function does not operate normally. When this bit is set to 0, check the software option.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3352	4352	4352

#7	#6	#5	#4	#3	#2	#1	#0
MASTER	SLAVE						

SLAVE In

Inter-spindle amplifier communication slave axis setting

0: Non-inter-spindle amplifier communication slave axis

1: Inter-spindle amplifier communication slave axis (Set this parameter to 1 for the slave spindle amplifier.)

MASTER

Inter-spindle amplifier communication master axis setting

0: Non-inter-spindle amplifier communication master axis

1: Inter-spindle amplifier communication master axis (Set this parameter to 1 for the slave spindle amplifier.)

15*i* 16*i* 30*i* 3353 4353 4353

5.FUNCTION DESCRIPTIONS

#7	#6	#5	#4	#3	#2	#1	#0
					RVSVC2	VFBAV	

VFBAV

Velocity feedback signal setting in torque tandem operation

- 0: For speed control, the master spindle amplifier motor speed only is used
- 1: For speed control, the average speed of the master spindle amplifier and slave spindle amplifier is used.

By exercising speed control using the average speed feedback value of the master and slave, vibration caused by spindle backlash may be suppressed.

RVSVC2

Relationship of master/slave motor rotation directions in torque tandem operation

- 0: The master motor and slave motor rotate in the same direction at spindle rotation time (as viewed from the motor shaft).
- 1: The master motor and slave motor rotate in the opposite directions at spindle rotation time (as viewed from the motor shaft).

This parameter sets the polarity for a speed command and feedback signal in torque tandem operation.

NOTE

- 1 This parameter need not be set for the slave spindle amplifier side. (The setting for the master spindle amplifier is transferred to the slave spindle amplifier by inter-spindle amplifier communication.)
- 2 If the setting of this parameter is improper, the torque tandem function does not operate normally. If the spindle is rotated in this state, the speed polarity error alarm (spindle alarm d0) is issued in torque tandem operation.

15*i* 16*i* 30*i* 3398 4398 4398

	#7	#6	#5	#4	#3	#2	#1	#0
ſ		A130DN			WNDTDM			

WNDTDM

Whether to use the twin drive function Set this parameter to 0.

NOTE

If this bit is set to 1, the torque tandem function does not operate normally. Be sure to set this bit to 0

A130DN

Whether to detect a speed polarity error (spindle alarm d0) in torque tandem operation

0: Detects the error.

1: Does not detect the error.

15*i* 16*i* 30*i* 3347 4347 4347

Master-slave speed difference state signal output setting

Unit of data: 1min⁻¹

*(10min⁻¹ when bit 2 (SPDUNT) of parameter No. 4006 is set to 1)

Valid data range: 0 to 32767

Standard setting value: 0

This parameter sets a level for detecting the master-slave speed

difference state signal (MSOVRA:F47#2, MSOVRB:F51#2). If this parameter is set to 0, the setting of 100 is assumed.

15*i* 16*i* 30*i* 3360 4360 4360

Preload value

Unit of data: ± 16384 equivalent to a torque command of 100%

Valid data range : -8192 to 8192 (-50% to +50%)

Standard setting value: 0

This parameter sets a preload value.

This parameter may suppress stop-time vibration caused by backlash.

NOTE

This parameter need not be set for the slave spindle amplifier side. (The setting for the master spindle amplifier is transferred to the slave spindle amplifier by inter-spindle amplifier communication.)

5.11.7 Alarm and Status Error

(1) Spindle alarm

Alarm No.	Description	Measure
66	An inter-spindle amplifier communication error occurred.	Check the connection of the cable (JX4).
80	An alarm was issued on the destination spindle amplifier of inter-SPM communication.	Correct the cause of the alarm on the destination spindle amplifier.
d0	The relationship between the speed polarity of the master motor and the speed polarity of the slave motor is abnormal.	Check the rotation direction relationship setting (FS16i: Bit 2 of No. 4353).

(2) Spindle amplifier status error

Error No.	Description	Measure					
21	A tandem operation command was input when spindle synchronous control is enabled.	Input a tandem operation command after canceling spindle synchronous control.					
22	Spindle synchronous control was specified when tandem operation is enabled.	Specify spindle synchronous control after canceling torque tandem operation.					
23	A tandem operation command is input even if the option is not specified.	Torque tandem control requires the CNC software option. Check the option.					
38	 Parameters related to inter-spindle amplifier communication are not set correctly. Functions that cannot be used together with the torque tandem function are set. 	Check the parameters.					

5.12 MAGNETIC SENSOR METHOD SPINDLE ORIENTATION Optional function

5.12.1 Overview

Magnetic sensor method spindle orientation is a function for stopping the spindle at a specified position by receiving a position feedback signal from a magnetic sensor directly attached to the spindle of the machine.

NOTE

- 1 To use this function, the CNC software option (spindle orientation) is required.
- 2 To use this function, SP TYPE B is required.

5.12.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC
9D50	F (06) edition or later	FS16i / FS18i / FS21i / FS0i / FS15i
9D70	A (01) edition or later	FS30i / FS31i / FS32i
9D80	A (01) edition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i> / FS0 <i>i</i> / FS15 <i>i</i> FS30 <i>i</i> / FS31 <i>i</i> / FS32 <i>i</i>

5.12.3 System Configuration

The magnetic sensor method spindle orientation function can be used with the following system configuration:

NOTE

For the hardware specifications of the magnetic sensor and magnetic sensor signal conversion adaptor and connection details of each cable, refer to "FANUC SERVO AMPLIFIER αi series DESCRIPTIONS (B-65282EN)".

5.12.4 I/O Signals (CNC \leftrightarrow PMC)

The specifications of I/O signals are the same as for position coder method spindle orientation. For details of the specifications, see Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION", in Part I.

(1) Address list of input signals (PMC \rightarrow CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070		ORCMA			CTH1A	CTH2A		
2nd-	G235	G074	G074		ORCMB			СТН1В	CTH2B		

(2) Address list of output signals (CNC \rightarrow PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA							
2nd-	F245	F049	F049	ORARB							

5.12.5 Sequence

The sequence is the same as for position coder method spindle orientation. For details of the specifications, see Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION", in Part I.

5.12.6 **Parameters**

(1) List of parameters

	Parameter No.		Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3015 #0	4015 #0	4015 #0	Whether the spindle orientation function is available (to be set to "1") (The CNC software option is required.)
3001 #3	4001 #3	4001 #3	Magnetic sensor attachment direction
3003 #0	4003 #0	4003 #0	Whether to use the position coder method spindle orientation function or magnetic sensor method spindle orientation function (to be set to 1 to use the magnetic sensor method)
3003 #3,#2	4003 #3,#2	4003 #3,#2	Rotation direction for spindle orientation
3042	4042	4042	Velocity proportional gain on orientation
3043	4043	4043	(These parameters are selected with the input signal CTH1A.)
3050	4050	4050	Velocity integral gain on orientation
3051	4051	4051	(These parameters are selected with the input signal CTH1A.)
3056 to 3059	4056 to 4059	4056 to 4059	Gear ratio data between spindle and motor (These parameters are selected with the input signals CTH1A and CTH2A.)
3060 to 3063	4060 to 4063	4060 to 4063	Position gain on orientation (These parameters are selected with the input signals CTH1A and CTH2A.)
3064	4064	4064	Ratio of position gain change upon completion of spindle orientation
3075	4075	4075	Orientation completion signal detection level
3076	4076	4076	Spindle orientation speed limit ratio
3077	4077	4077	Orientation stop position shift value
3078	4078	4078	MS signal constant
3079	4079	4079	MS signal gain adjustment
3084	4084	4084	Motor voltage on spindle orientation
3038	4038	4038	Spindle orientation speed

(2) Details of parameters

15*i* 16*i* 30*i* 3001 4001 4001

#7	#6	#5	#4	#3	#2	#1	#0
				MGDIR			

MGDIR

Magnetic sensor attachment direction

The motor and magnetic sensor rotate in the opposite directions.

he motor and magnetic sensor rotate in the same direction.

The spindle motor rotates counterclockwise as viewed from the motor shaft when the forward rotation command SFRA = 1.

Make such an arrangement that the check hole of the magnet and the pin groove of the magnetic sensor face each other so that the magnetic sensor and magnet rotate in the directions shown in the figure below when SFRA = 1. In this case, set this bit to 0. If the arrangement is opposite to that shown in the figure below, set this bit to 1.

NOTE

Note that the specification of this parameter is different from the α series.

15*i* 16*i* 30*i* 3003 4003 4003

#7	#6	#5	#4	#3	#2	#1	#0
				DIRCT2	DIRCT1		PCMGSL

DIRCT1, DIRCT2

Rotation direction at spindle orientation

DIRCT2	DIRCT1	Rotation direction
0	(1)	By rotation direction immediately before (CCW for the first-time spindle orientation after the power is switched on)
0		By rotation direction immediately before (CW for the first-time spindle orientation after the power is switched on)
1	0	CCW direction looking from shaft of motor
1	1	CW direction looking from shaft of motor

PCMGSL:

Orientation method selection

Set this bit to 1 (magnetic sensor method).

15*i* 16*i* 30*i* 3038 4038 4038

Spindle orientation speed

Unit of data: 1min⁻¹

(*10min⁻¹ when bit 2 (SPDUNT) of parameter No. 4006 is set to 1)

Valid data range: 0 to 32767

Standard setting value :

O

This data is used to set an orientation speed at the spindle end.

If this data is set to 0, an orientation speed is determined from the

position gain and the motor speed limit ratio in orientation.

15*i* 16*i* 30*i*3042 4042 40423043 4043 4043

Velocity proportional gain on orientation (HIGH)	CTH1A=0
Velocity proportional gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value :

This data is used to set the velocity loop proportional gain on spindle

orientation.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

15*i* 16*i* 30*i* 3050 4050 4050 3051 4051 4051

Velocity integral gain on orientation (HIGH)	CTH1A=0
Velocity integral gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 10

This data is used to specify a velocity loop integral gain for spindle

orientation.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

15*i* 16*i* 30*i* 3056 4056 4056 3057 4057 4057 3058 4058 4058 3059 4059 4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: Number of motor rotations per spindle rotation / 100

(Number of motor rotations per spindle rotation / 1000 if bit 1 of

parameter No. 4006 (GRUNIT) = 1)

Valid data range: 0 to 32767

Standard setting value:

This data is used to set a gear ratio between the spindle and spindle

motor.

For example, if the motor makes 2.5 rotations while the spindle makes

1 rotation, set 250 in this parameter.

A parameter is selected according to the values of the input signals

CTH1A and CTH2A.

Ensure that the state of the gear or clutch corresponds to the values of CTH1A and CTH2A.

NOTE

If an improper value is set in these parameters, an unexpected operation such as endless spindle rotation at orientation time can result.

So, be sure to set a proper gear ratio.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3060	4060	4060
3061	4061	4061
3062	4062	4062
3063	4063	4063

Position gain on orientation (HIGH)	CTH1A=0, CTH2A=0
Position gain on orientation (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Position gain on orientation (MEDIUM LOW)	CTH1A=1, CTH2A=0
Position gain on orientation (LOW)	CTH1A=1, CTH2A=1

0.01sec⁻¹ Unit of data: Valid data range: 0 to 32767 Standard setting value: 1000

These data are used to set the position gain on spindle orientation.

A parameter is selected according to the values of the input signals

CTH1A and CTH2A.

15*i* 16*i* 30*i* 3064 4064 4064

Ratio of position gain change upon completion of spindle orientation

Unit of data: 1%
Valid data range: 0 to 1000
Standard setting value: 100

This data is used to set a position gain change ratio upon completion

of orientation.

15*i* 16*i* 30*i*

3075 4075 4075

Orientation completion signal detection level (effective area for in-position check))

Unit of data : $\pm 0.1 deg$ Valid data range : 0 to 100 Standard setting value : 10

This data is used to set the detecting level of orientation completion

signal (ORARA).

The orientation completion signal (ORARA) is set to 1 if the spindle

position is within the set data range when orientation is stopped.

When the orientation command (ORCMA) is turned off (= 0), the

orientation completion signal (ORARA) is set to 0.

15*i* 16*i* 30*i* 3076 4076 4076

Spindle orientation speed limit ratio

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 33

This data is used to set an orientation speed limit ratio.

Orientation speed = $60 \times \frac{\text{Position gain}}{100} \times \text{gear ratio} \times \frac{\text{Speed}}{\text{limit ratio}} \text{ [min}^{-1}]$

15*i* 16*i* 30*i* 3077 4077

Orientation stop position shift value

Unit of data : ± 0.01 deg Valid data range : -100 to 100

Standard setting value: 0

This data is used to shift the stop position.

When a plus (+) value is set, the spindle stop position is shifted in the

CCW direction by the set number of pulses.

15*i* 16*i* 30*i* 3078 4078 4078

MS signal constant

Unit of data:

Valid data range: 80 to 1000 Standard setting value: 200

This data is used to set a value calculated from the expression below.

Settings = $\frac{L}{2} \times \frac{1}{2\pi \times H} \times 4096$

where

L : Magnet length [mm]

H: Distance from the spindle center to magnet [mm]

Example When H = 100 mm and L = 50 mm

MS signal constant = $\frac{(50/2)}{2\pi \times 100} \times 4096 = 163$

15*i* 16*i* 30*i* 3079 4079

MS signal gain adjustment

Unit of data:

Valid data range: -128 to 127

Standard setting value: 0

This data is used to adjust the amplitude of the MS signal. Usually, use the values indicated in the table below as standard values.

Name	Specification	Magnet		MS signal
Name	drawing number	Туре	Length [mm]	gain
Not specified. Standard	A57L-0001-0037	Standard (TYPE II)	50	0
Magnetic sensor N	A57L-0001-0037/N	Standard (TTFE II)	30	0
Magnetic sensor P	A57L-0001-0037/P	Compact type (TYPE III)	50	-20
Magnetic sensor Q	A57L-0001-0037/Q	Cylinder type with diameter of \$\phi40\$ (TYPE IV)	31	70
Magnetic sensor R	A57L-0001-0037/R	Cylinder type with diameter of φ50 (TYPEV)	37	50
Magnetic sensor S	A57L-0001-0037/S	Cylinder type with diameter of \$\phi60\$ (TYPEVI)	43	70
Magnetic sensor T	A57L-0001-0037/T	Cylinder type with diameter of \$670 (TYPEVII)	49	40

15*i* 16*i* 30*i* 3084 4084 4084

Motor voltage setting on orientation

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 30

This data is used to specify the motor voltage for spindle orientation.

Depending on the motor model, set 30 usually.

5.13 SPINDLE BACKLASH ACCELERATION FUNCTION

Optional function

5.13.1 Overview

The spindle backlash acceleration function improves a figure error caused by the delayed reversal along the Cs contouring control axis.

NOTE

- 1 To use this function, the CNC software option (Cs contouring control) is required.
- 2 This function is valid for advanced preview feed-forward in the Cs contouring control mode.
- 3 This function is unavailable for the sub-spindle for spindle switching.
- 4 This function cannot be used together with the spindle EGB function.

5.13.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC
9D50	O(15) edition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i> / FS0 <i>i</i> / FS15 <i>i</i>
9D70	F (06) edition or later	FS30i / FS31i / FS32i
0000	A (O1) adition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i> / FS0 <i>i</i> / FS15 <i>i</i>
9D80	A (01) edition or later	FS30i / FS31i / FS32i

5.13.3 Block Diagram

The following shows a block diagram of spindle backlash acceleration.

5.13.4 Parameters

(1) List of parameters

F	Parameter No.		Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3402#0	4402#0	4402#0	Whether to enable the backlash acceleration function
3402#1	4402#1	4402#1	Setting of the feed-forward coefficient when the backlash acceleration function is enabled.
3455	4455	4455	Backlash acceleration: Compensation
3456	4456	4456	Backlash acceleration: Stop timing

(2) Details of parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3402	4402	4402		·					MDLINF	BKAFNC

BKAFNC Whether to enable the backlash acceleration function

0 : Disables the backlash acceleration function.1 : Enables the backlash acceleration function.

MDLINF Sets the advanced preview feed-forward coefficient when the backlash

acceleration function is enabled.

Set "0" when the advanced preview feed-forward coefficient is less

than 100% (parameter No. 4344 is not 10000) or

"1" when the coefficient is 100% (parameter No. 4344 is 10000).

15*i* 16*i* 30*i* 3455 4455 [

Backlash acceleration: Compensation

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 0

This parameter sets the backlash acceleration compensation.

15*i* 16*i* 30*i* 3456 4456 4456

Backlash acceleration: Stop timing

Unit of data: 0.001deg Valid data range: 0 to 32767

Standard setting value: 0

This parameter sets the timing of the termination of backlash

acceleration.

5.13.5 Example of Adjustment

(1) CNC program

Prepare a program which draws an arc (eccentric arc) with polar coordinate interpolation as shown below:

G90	←	Absolute
G54	←	Select workpiece coordinate system 1.
G00 X15. C0.	←	Move to the start point.
G5.1 Q1	←	Turn AI contouring control on.
G12.1	←	Turn polar coordinate interpolation on.
G04 X5.	←	Dwell. Press the "origin" button (see Item (3)).
G02 I20. J0	←	Draw an arc.
G13.1	←	Turn polar coordinate interpolation off.
G5.1 Q0	←	Turn AI contouring control off.
M99	←	End

(2) Preparation for data measurement using the SERVO GUIDE

Open the graph window of the SERVO GUIDE and set channels as follows:

(3) Data measurement and display using the SERVO GUIDE

Execute the program described above and press the <u>of</u> button while the spindle stops at the start point to perform origin operation.

Then, press the **b**utton before the spindle moves to start measurement.

After the completion of data measurement, change the graph window display mode as follows to display an arc.

(4) Adjustment

Follow the adjustment steps below while observing the arc figure in the CIRCLE mode in the graph window:

- (a) Set the initial values listed below for compensation (parameter No. 4455) and stop timing (parameter No. 4456):
 Backlash acceleration compensation (parameter No. 4455): 5
 Backlash acceleration stop timing (parameter No. 4456): 100
- (b) Increase the compensation value (parameter No. 4455) to minimize the peak value of the projection in each quadrant. If the waveform cuts into the circle, decrease the setting.
- (c) Increase the stop timing to minimize the peak value of the projection in each quadrant.If the waveform cuts into the circle, decrease the setting.

START-UP

1.1 **START-UP PROCEDURE**

For this subsection, see Section 1.1, "START-UP PROCEDURE", in

NOTE

The CNCs that can be used with the $\beta \emph{i}$ SVSP are the 0i /0i Mate -MODEL B or 0i /0i Mate -MODEL C.

1.2 SPINDLE SERIAL INTERFACE

Optional function

1.2.1 Parameters Related to Spindle Serial Output

For this subsection, see Subsection 1.2.1, "Parameters Related to Spindle Serial Output", in Part I.

1.2.2 Automatic Spindle Parameter Initialization

(1) Parameter list

Parameter No. (0 <i>i</i>)	Description
4019#7	Function for automatically initializing spindle parameters
4133	Spindle motor model code

(2) Procedure for automatic spindle parameter initialization

Perform automatic spindle parameter initialization by following the procedure below.

<1> Set the model code for the desired motor for automatic parameter initialization.

Parameter No. (0i)	Description
4133	Model code

NOTE

When using a spindle motor that has no model code, set model code "300" for automatic parameter setting, then manually input data according to the model-by-model parameter list.

<2> Set the relevant parameter to enable automatic spindle parameter initialization.

Parameter No. (0i)	Description
4019#7	1

NOTE

This bit is reset to its original value after automatic parameter initialization.

- <3> Turn off then turn on again the power to the CNC. The spindle parameter data set with the model code is automatically initialized.
- <4> According to the detector configuration, set the detector-related parameters.

<5> In parameter No. 4090 (overload detection level), set the standard value of the βi series spindle motor.

Parameter No. (0i)	Description
4090	95

1.2.3 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 1.2.3, "Diagnosis (Diagnosis Screen)", in Part I.

1.2.4 Alarm

For this subsection, see Subsection 1.2.4, "Alarm", in Part I.

1.3 PARAMETERS RELATED TO DETECTORS

The following detector configurations can be used with the βi SVSP:

Motor sensor	Spindle sensor
αi M sensor	None
αi M sensor	αi position coder
αiMZ sensor	None
αiMZ sensor	External one-rotation signal

NOTE

- 1 Because of the difference in amplifier hardware specifications, the detector configurations that can be used with the βi SVSP are limited.
- 2 Only a position coder or external one-rotation signal can be used as the spindle sensor for the SVSP. (The spindle sensor refers to the detector connected to connector JYA3.)

1.3.1 List of Parameters for Detectors

For this subsection, see Subsection 1.3.1, "List of Parameters for Detectors", in Part I.

1.3.2 Details of Parameters for Detectors

For this subsection, see Subsection 1.3.2, "Details of Parameters for Detectors", in Part I.

1.3.3 Typical Detector Configurations

This subsection presents the spindle detector configurations usable with the βi SVSP and describes the procedure for setting parameters in these detector configurations.

With the βi SVSP, the detector circuitry hardware is set according to the parameter setting. For this reason, an alarm such as a disconnection alarm may be output while parameters related to detectors are being set.

To initialize the hardware, after setting the parameters related to detectors, turn the power to the amplifier off once.

(1) When position control is not exercised

Parameter (0i)	Settings	Description
4002 #3,#2,#1,#0	0,0,0,0	Does not exercise position control.
4010 #2,#1,#0	Depends on the detector.	Sets the type of motor sensor.
4011 #2,#1,#0	Depends on the detector.	Sets the number of motor sensor gear teeth.

(2) When the α position coder is used

Parameter (0i)	Settings	Description
4000 #0	Depends on the configuration.	Rotation directions of the spindle and motor
4001 #4	Depends on the configuration.	Spindle sensor mounting direction
4002 #3,#2,#1,#0	0,0,1,0	Uses the αi position coder as the spindle sensor.
4003 #7,#6,#5,#4	0,0,0,0	Sets the number of spindle sensor gear teeth.
4010 #2,#1,#0	Depends on the detector.	Sets the type of motor sensor.
4011 #2,#1,#0	Depends on the detector.	Sets the number of motor sensor gear teeth.
4056 to 4059	Depends on the configuration.	Gear ratio between the spindle and motor

(3) When the αi MZ sensor is used

[Sample system configuration 2]

Parameter (0i)	Settings	Description
4000 #0	0	Rotation directions of the spindle and motor
4002 #3,#2,#1,#0	0,0,0,1	Uses the motor sensor for position feedback.
4010 #2,#1,#0	0,0,1	Uses the αi MZ or αi BZ sensor as the motor sensor.
4011 #2,#1,#0	Depends on the detector.	Sets the number of motor sensor gear teeth.
4056 to 4059	100 or 1000	Gear ratio between the spindle and motor 1:1

(4) When the external one-rotation signal (proximity switch) is used [Sample system configuration]

Parameter (0i)	Settings	Description
4000 #0	Depends on the configuration.	Rotation directions of the spindle and motor
4002 #3,#2,#1,#0	0,0,0,1	Uses the motor sensor for position feedback.
4004 #2	1	Uses the external one-rotation signal.
4004 #3	Depends on the detector.	Sets the external one-rotation signal type.
4010 #2,#1,#0	Depends on the detector.	Sets the type of motor sensor.
4011 #2,#1,#0	Depends on the detector.	Sets the number of motor sensor gear teeth.
4056 to 4059	Depends on the configuration.	Gear ratio between the spindle and motor
4171 to 4174	Depends on the configuration.	Arbitrary gear ratio between the motor sensor and spindle

2

EXPLANATION OF OPERATION MODES

2.1 VELOCITY CONTROL MODE

2.1.1 Start-up Procedure

For this subsection, see Subsection 2.1.1, "Start-up Procedure", in Part I.

2.1.2 Overview

For this subsection, see Subsection 2.1.2, "Overview", in Part I.

2.1.3 System Configuration

The velocity control mode is applicable to all detector configurations. For system configurations, see Subsection 1.3.3, "Typical Detector Configurations", in Part II.

2.1.4 List of I/O Signals (CNC↔PMC)

For this subsection, see Subsection 2.1.4, "List of I/O Signals (CNC↔PMC)", in Part I.

2.1.5 Related Parameters

For this subsection, see Subsection 2.1.5, "Related Parameters", in Part I

2.1.6 Details of Related Parameters

For this subsection, see Subsection 2.1.6, "Details of Related Parameters", in Part I.

2.1.7 Troubleshooting

For this subsection, see Subsection 2.1.7, "Troubleshooting", in Part I.

2.2 POSITION CODER METHOD SPINDLE ORIENTATION

Optional function

2.2.1 Start-up Procedure

For this subsection, see Subsection 2.2.1, "Start-up Procedure", in Part I

2.2.2 Overview

For this subsection, see Subsection 2.2.2, "Overview", in Part I.

2.2.3 Feature

For this subsection, see Subsection 2.2.3, "Feature", in Part I.

2.2.4 System Configuration

The system configurations that enable the use of the position coder method orientation function are shown below.

(1) When the αi position coder is used

[Sample system configuration]

(2) When the αiMZ is used

B-65280EN/06 FANUC AC SPINDLE MOTOR βi series 2.EXPLANATION OF OPERATION MODES

(3) When the external one-rotation signal (proximity switch) is used

NOTE

- 1 For stable detection of the one-rotation signal, fix the rotation direction (bits 3 and 2 of No. 4003) for orientation at one direction.
- 2 Set the type (bits 3 and 2 of No. 4004) of the external one-rotation signal (proximity switch).
- 3 For stable detection of the one-rotation signal, set an orientation speed (No. 4038) from 50 to 100 min⁻¹ according to the specification of the external one-rotation signal (proximity switch).
- 4 The detection of the one-rotation signal starts after the orientation speed is reached.
- 5 Set the parameters (No. 4171 to No. 4174) for the numerator/denominator of an arbitrary gear ratio between the motor sensor and spindle.

2.2.5 Stop Position Specification Method

For this subsection, see Subsection 2.2.5, "Stop Position Specification Method", in Part I.

2.2.6 I/O Signals (CNC \leftrightarrow PMC)

For this subsection, see Subsection 2.2.6, "I/O Signals (CNC \leftrightarrow PMC)", in Part I.

2.2.7 Examples of Sequences

For this subsection, see Subsection 2.2.7, "Examples of Sequences", in Part I.

2.2.8 Related Parameters

For this subsection, see Subsection 2.2.8, "Related Parameters", in Part I.

2.2.9 Details of Related Parameters

For this subsection, see Subsection 2.2.9, "Details of Related Parameters", in Part I.

2.2.10 Adjusting the Orientation Stop Position Shift Parameter

For this subsection, see Subsection 2.2.11, "Adjusting the Orientation Stop Position Shift Parameter", in Part I.

2.3 RIGID TAPPING

Optional function

2.3.1 Start-up Procedure

For this subsection, see Subsection 2.3.1, "Start-up Procedure", in Part I.

2.3.2 Overview

For this subsection, see Subsection 2.3.2, "Overview", in Part I.

2.3.3 System Configuration

The system configurations that enable the use of rigid tapping are shown below.

(1) When the αi position coder is used

[Sample system configuration]

(2) When the spindle motor with built-in αi M sensor (or αi MZ sensor) is used

[Sample system configuration 1]

NOTE

- 1 When performing rigid tapping by using a signal from the sensor built into the motor as a position feedback signal, use one of the following functions if the gear ratio between the motor and spindle is other than 1:1
 - (a) Detection arbitrary gear ratio function (DMR function)
 - (b) Command arbitrary gear ratio function (CMR function)
- 2 When using the detection arbitrary gear ratio function (DMR function), set the following:
 - Parameters (No. 4171 to No. 4174) for the numerator/denominator of an arbitrary gear ratio between the motor sensor and spindle
- 3 When using the detection arbitrary gear ratio function (DMR function) with a motor containing a built-in αi MZ sensor, set bit 6 of No. 4007 to 1 so that the alarms related to the position feedback signal (when Cs contouring control is not exercised) are not detected.
- 4 When using the command arbitrary gear ratio function (CMR function), set the following:
 - Enable the setting of an arbitrary gear ratio between the spindle and position coder (bit 1 of No. 5200 = 1).
 - Enable the setting of the command arbitrary gear ratio function (CMR) on rigid tapping (bit 7 of No. 4006 = 1).
 - Set the parameters for specifying the number of gear teeth on the spindle side (No. 5221 to No. 5224).
 - Set the parameters for specifying the number of gear teeth on the position coder side (No. 5231 to No. 5234).
- 5 Reference position return can be performed when the spindle is directly connected to the motor or when the spindle is connected to the motor at a ratio of 1:1.

(3) When the external one-rotation signal (proximity switch) is used

NOTE

- 1 When using the external one-rotation signal (proximity switch), use the detection arbitrary gear ratio function (DMR function).
- 2 When using the detection arbitrary gear ratio function (DMR function), set the following:
 - Parameters (No. 4171 to No. 4174) for the numerator/denominator of an arbitrary gear ratio between the motor sensor and spindle
- 3 Set the type of the external one-rotation signal (proximity switch) (bits 3 and 2 of No. 4004).
- 4 For stable detection of the one-rotation signal, set a reference position return speed (No. 4074) from 50 to 100 min⁻¹ according to the specification of the used external one-rotation signal (proximity switch).
- 5 When orientation based on the external one-rotation signal is used together, match the reference position return speed and direction with the orientation speed and direction.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR βi series B-65280EN/06

2.3.4 List of I/O Signals (CNC \leftrightarrow PMC)

For this subsection, see Subsection 2.3.4, "List of I/O Signals (CNC \leftrightarrow PMC)", in Part I.

2.3.5 Sequence

For this subsection, see Subsection 2.3.5, "Sequence", in Part I.

2.3.6 Related Parameters

For this subsection, see Subsection 2.3.6, "Related Parameters", in Part I.

2.3.7 Details of Related Parameters

For this subsection, see Subsection 2.3.7, "Details of Related Parameters", in Part I.

2.3.8 Parameter Setting Procedure

For this subsection, see Subsection 2.3.8, "Parameter Setting Procedure", in Part I.

2.3.9 Adjustment Procedure

For this subsection, see Subsection 2.3.9, "Adjustment Procedure", in Part I.

2.3.10 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.3.10, "Diagnosis (Diagnosis Screen)", in Part I.

2.3.11 Alarm

For this subsection, see Subsection 2.3.11, "Alarm", in Part I.

2.4 Cs CONTOURING CONTROL

Optional function

2.4.1 Start-up Procedure

For this subsection, see Subsection 2.4.1, "Start-up Procedure", in Part I

2.4.2 Overview

For this subsection, see Subsection 2.4.2, "Overview", in Part I.

2.4.3 System Configuration

(1) When a motor with a built-in αi MZ sensor is used

Parameter (0i)	Settings	Description
4000 #0	0	Rotation directions of the spindle and motor
4002 #3,#2,#1,#0	0,0,0,1	Uses the motor sensor for position feedback.
4010 #2,#1,#0	0,0,1	Uses the αi MZ sensor as the motor sensor.
4011 #2,#1,#0	Depends on the detector.	Sets the number of motor sensor gear teeth.
4056 to 4059	100 or 1000	The spindle-to-motor gear ratio is 1:1.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR βi series B-65280EN/06

(2) When an αi position coder is used

Parameter (0i)	Settings	Description
4002 #3,#2,#1,#0	0,0,1,0	αi position coder
4003 #7,#6,#5,#1	0,0,0,0	αi position coder
4010 #2,#1,#0 Depends on the detector.		Sets the type of motor sensor.
4011 #2,#1,#0 Depends on the detector.		Sets the number of motor sensor gear teeth.
4056 to 4059	Depends on the configuration.	Gear ratio between the spindle and motor
4171 to 4174 Depends on the configuration.		Sets the gear ratio between the spindle and motor when the position coder feedback interpolation function is used.
4398#0 The setting of 1 is recommended.		Sets the position coder feedback interpolation function.

2.4.4 List of I/O Signals (CNC \leftrightarrow PMC)

For this subsection, see Subsection 2.4.4, "List of I/O Signals (CNC \leftrightarrow PMC)", in Part I.

2.4.5 Examples of Sequences

For this subsection, see Subsection 2.4.5, "Examples of Sequences", in Part I.

2.4.6 Related Parameters

For this subsection, see Subsection 2.4.6, "Related Parameters", in Part I.

2.4.7 Details of Related Parameters

For this subsection, see Subsection 2.4.7, "Details of Related Parameters", in Part I.

The βi series spindle motor, however, enables Cs contouring control in a system where an αi position coder is used as the position sensor. In such a case, control improvements such as smooth low-speed feed can be made by using the position coder feedback interpolation function set with the parameter below.

0i	#7	#6	#5	#4	#3	#2	#1	#0	
4398								PCCSCM	ì

PCCSCM

Sets the position coder feedback interpolation function.

- 0: Disables the position coder feedback interpolation function.
- 1: Enables the position coder feedback interpolation function.

When an αi position coder is used for spindle position feedback to exercise Cs contouring control, this function improves control performance with position coder feedback pulse interpolation using high-resolution motor side feedback. To use this function, set this parameter to 1.

This function is valid only when the spindle sensor is an αi position coder. When the gear ratio between the spindle and motor is not 1:1, be sure to set an arbitrary gear ratio (No. 4171 through No. 4174) between the spindle and motor.

NOTE

- 1 This parameter is valid with 9D50 series H (08) edition or later.
- When Cs contouring control is exercised in a system where an αi position coder is used as the position sensor, the position feedback resolution is 0.088 deg. In this case, the position error may not converge to 0, depending on the specified position. So, a value greater than 88 pulses (0.088 deg) must be set as the effective area (No. 1826).

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR βi series B-65280EN/06

0i	
4171	Denominator of an arbitrary gear ratio between the motor sensor and spindle (HIGH) CTH1A=0
4172	Numerator of an arbitrary gear ratio between the motor sensor and spindle (HIGH) CTH1A=0
4173	Denominator of an arbitrary gear ratio between the motor sensor and spindle (LOW) CTH1A=1
4174	Numerator of an arbitrary gear ratio between the motor sensor and spindle (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 0

These parameters set conversion coefficients (numerator, denominator) for using the detection arbitrary gear ratio function (DMR function) by multiplying a motor sensor (αiM sensor) feedback signal by a gear ratio to produce a spindle position feedback signal. When the spindle rotates Q times while the motor shaft rotates P times (there is no common divisor other than 1 for P and Q), the settings are:

No. 4171 (No. 4173 when CTH1A = 1) = P No. 4172 (No. 4173 when CTH1A = 1) = Q

When 0 is set in any of these parameters, the setting of 1 is assumed.

NOTE

Note that if an improper value is set in this parameter, the position coder feedback interpolation function does not function normally.

2.4.8 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.4.8, "Diagnosis (Diagnosis Screen)", in Part I.

2.4.9 Alarm

For this subsection, see Subsection 2.4.9, "Alarm", in Part I.

B-65280EN/06 FANUC AC SPINDLE MOTOR βi series 2.EXPLANATION OF OPERATION MODES

2.5 SPINDLE SYNCHRONOUS CONTROL Optional function

2.5.1 Start-up Procedure

For this subsection, see Subsection 2.5.1, "Start-up Procedure", in Part I.

2.5.2 Overview

For this subsection, see Subsection 2.5.2, "Overview", in Part I.

2.5.3 System Configuration

The system configurations that enable the use of the spindle synchronous control function are shown below.

NOTE

Spindle synchronous control between spindles each having a different detector configuration is possible.

(1) When the αi position coder is used

(2) When the spindle motor with built-in αi MZ sensor is used

(3) When the external one-rotation signal (proximity switch) is used

NOTE

- When using the external one-rotation signal (proximity switch), use the detection arbitrary gear ratio function (DMR function).
- 2 When using the detection arbitrary gear ratio function (DMR function), set the following:
 - Parameters (No. 4171 to No. 4174) for the numerator/denominator of an arbitrary gear ratio between the motor sensor and spindle
- 3 Set the type of the external one-rotation signal (proximity switch) (bits 3 and 2 of No. 4004).
- 4 For stable detection of the one-rotation signal, detect the one-rotation signal by performing spindle orientation before entering spindle synchronous control mode.

For orientation based on the external one-rotation signal, see Section 2.2, "POSITION CODER METHOD ORIENTATION", in Part I.

2.5.4 Explanation of Operation

For this subsection, see Subsection 2.5.4, "Explanation of Operation", in Part I.

2.5.5 I/O Signals (CNC \leftrightarrow PMC)

For this subsection, see Subsection 2.5.5, "I/O Signals (CNC \leftrightarrow PMC)", in Part I.

2.5.6 Examples of Sequences

For this subsection, see Subsection 2.5.6, "Examples of Sequences", in Part I.

2.5.7 Related Parameters

For this subsection, see Subsection 2.5.7, "Related Parameters", in Part I.

2.5.8 Details of Related Parameters

For this subsection, see Subsection 2.5.8, "Details of Related Parameters", in Part I.

2.5.9 Number of Error Pulses in Spindle Synchronous Control

For this subsection, see Subsection 2.5.9, "Number of Error Pulses in Spindle Synchronous Control", in Part I.

2.5.10 Specifying a Shift Amount for Spindle Phase Synchronous Control

For this subsection, see Subsection 2.5.10, "Specifying a Shift Amount for Spindle Phase Synchronous Control", in Part I.

2.5.11 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.5.11, "Diagnosis (Diagnosis Screen)", in Part I.

2.5.12 Alarm

For this subsection, see Subsection 2.5.12, "Alarm", in Part I.

2.6 SPECIFICATIONS COMMON TO ALL OPERATION MODES

2.6.1 Overview

For this subsection, see Subsection 2.6.1, "Overview", in Part I.

2.6.2 List of I/O Signals (CNC \leftrightarrow PMC)

For this subsection, see Subsection 2.6.2, "List of I/O Signals (CNC \leftrightarrow PMC)", in Part I.

2.6.3 Parameters

For this subsection, see Subsection 2.6.3, "Parameters", in Part I.

2.6.4 Details of parameters

For this subsection, see Subsection 2.6.4, "Details of parameters", in Part I.

Note that, however, the standard setting value of the following parameter differs among the βi series spindle motors:

0*i* 4090

Overload detection level

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 95

This parameter sets the condition for detecting a short-time overload alarm (spindle alarm 29).

If a load more than the set percentage (maximum motor output [load meter full scale] = 100%) is applied to the spindle motor for a predetermined time period (set by parameter No. 4123), a short-time overload alarm (spindle alarm 29) is issued.

2.6.5 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.6.5, "Diagnosis (Diagnosis Screen)", in Part I.

3

I/O SIGNALS (CNC ↔ PMC)

This chapter explains the functions of the signals directly input from the PMC to SVSP via the CNC and the signals directly output from the SVSP to PMC. For other spindle-related I/O signals, refer to the manual of the relevant CNC.

3.1 INPUT SIGNALS (PMC \rightarrow CNC \rightarrow SVSP)

This section explains the functions of the signals directly input from the PMC to SVSP via the CNC. For other spindle-related input signals, refer to the manual of the relevant CNC.

3.1.1 List of Input Signals

	0 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G070	MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA
2nd-	G074	MRDYB	ORCMB	SFRB	SRVB	CTH1B	CTH2B	TLMHB	TLMLB
		_				-			
1st-	G071			INTGA	SOCNA			*ESPA	ARSTA
2nd-	G075			INTGB	SOCNB			*ESPB	ARSTB
		_							
1st-	G072			INCMDA	OVRA		NRROA	ROTAA	INDXA
2nd-	G076			INCMDB	OVRB		NRROB	ROTAB	INDXB
				_		_			
1st-	G073				DSCNA		MPOFA		
2nd-	G077				DSCNB		MPOFB		

3.1.2 Explanation of Input Signals

For information about the signals listed in Subsection 3.1.1, "List of Input Signals", in Part II, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

Those signals that are not listed in Subsection 3.1.1, "List of Input Signals", in Part II are not used with the βi SVSP series spindle.

3.1.3 Details of input signals

For information about the signals listed in Subsection 3.1.1, "List of Input Signals", in Part II, see Subsection 3.1.3, "Details of input signals", in Part I.

Those signals that are not listed in Subsection 3.1.1, "List of Input Signals", in Part III are not used with the βi SVSP series spindle.

3.2 OUTPUT SIGNALS (SVSP→CNC→PMC)

This section explains the functions of the signals directly output from the SVSP to PMC via the CNC. For other spindle-related output signals, refer to the manual of the relevant CNC.

3.2.1 List of Output Signals

	0 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F045	ORARA	TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
2nd-	F049	ORARB	TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
				_		_			
1st-	F047				EXOFA			INCSTA	PC1DTA
2nd-	F051				EXOFB			INCSTB	PC1DTB

3.2.2 Explanation of Output Signals

For information about the signals listed in Subsection 3.2.1, "List of Output Signals", in Part II, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

Those signals that are not listed in Subsection 3.2.1, "List of Output Signals", in Part II are not used with the βi SVSP series spindle.

3.2.3 Details of Output Signals

For information about the signals listed in Subsection 3.2.1, "List of Output Signals", in Part II, see Subsection 3.2.3, "Details of Output Signals", in Part I.

Those signals that are not listed in Subsection 3.2.1, "List of Output Signals", in Part II are not used with the βi SVSP series spindle.

ADJUSTMENT

4.1 VELOCITY LOOP GAIN ADJUSTMENT

4.1.1 Overview

For this subsection, see Subsection 4.1.1, "Overview", in Part I.

4.1.2 Parameters

For this subsection, see Subsection 4.1.2, "Parameters", in Part I.

4.1.3 Adjustment Procedure

For this subsection, see Subsection 4.1.3, "Adjustment Procedure", in Part I.

4.1.4 Additional Information (Position Gain Adjustment)

For this subsection, see Subsection 4.1.4, "Additional Information (Position Gain Adjustment)", in Part I.

FUNCTION DESCRIPTIONS

5.1 INCRMENTAL COMMAND TYPE SPINDLE ORIENTATION (SPINDLE ROTATION SPEED CONTROL) Optional function

5.1.1 Overview

For this subsection, see Subsection 5.3.1, "Overview", in Part I.

5.1.2 System Configuration

The incremental command type spindle orientation function can be used in the following system configuration.

(1) When the αi position coder is used

[Sample system configuration]

(2) When the spindle motor with built-in αiMZ sensor is used

Spindle motor with built-in αiMZ

Spindle motor with built-in αiMZ

SvSP
(TYPE A)

Spindle

Spindle motor with built-in αiMZ sensor Spindle motor with built-in αiMZ sensor Sysp (TYPE A) Directly connected or connected with a gear or timing belt at a ratio of 1:1

(3) When the external one-rotation signal (proximity switch) is used

NOTE

- 1 To detect the one-rotation signal securely, fix the direction (bits 3 and 2 of parameter No. 4003) in which the spindle rotates during spindle orientation to one direction.
- 2 Specify the type (bits 3 and 2 of parameter No. 4004) of an external one-rotation signal (proximity switch).
- 3 To detect the one-rotation signal securely, set the spindle orientation speed (parameter No. 4038) to a value between 50 and 100 min⁻¹ according to the specification of the external one-rotation signal (proximity switch).
- 4 A sequence for detecting the one-rotation signal is started after the orientation speed has been reached.
- 5 Specify the denominator/numerator parameters (Nos. 4171 to 4174) of an arbitrary gear ratio between the motor sensor and spindle.

5.1.3 I/O Signals (CNC↔PMC)

(1) Address list of input signals (PMC→CNC)

(2) Details of input signals (PMC→CNC)

For this subsection, see Item 5.3.3 (2), "Details of input signals (PMC→CNC)", in Part I.

(3) Address list of output signals (CNC→PMC)

	0 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F045	ORARA							
2nd-	F049	ORARB							
1st-	F047							INCSTA	
2nd-	F051							INCSTB	

(4) Details of output signals (CNC→PMC)

For this subsection, see Item 5.3.3 (4), "Details of output signals $(CNC \rightarrow PMC)$ ", in Part I.

5.1.4 Examples of Sequences

For this subsection, see Subsection 5.3.4, "Examples of Sequences", in Part I.

5.1.5 List of Related Parameters

Parameter No.	Description
4015 #0	Whether the spindle orientation function is available (to be set to "1")
	(The CNC software option is required.)
3702#3,#2	Whether the stop position external setting-type spindle orientation function is available (to be set to "1")
	(Bit 2: 1st spindle. Bit 3: 2nd spindle)
4328	Command multiplier for incremental command external setting data

NOTE

This subsection describes only the parameters specific to incremental command type spindle orientation. See Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION" in Part I, for parameters related to other types of spindle orientation.

5.1.6 Details of Related Parameters

For this subsection, see Subsection 5.3.6, "Details of Related Parameters", in Part I.

5.2 HIGH-SPEED SPINDLE ORIENTATION

Optional function

5.2.1 Overview

For this subsection, see Subsection 5.4.1, "Overview", in Part I.

5.2.2 System Configuration

Explained below is a system configuration in which the high-speed spindle orientation function is usable.

NOTE

This function cannot be used in an external one-rotation signal-based spindle orientation system in which a proximity switch is used.

(1) When the αi position coder is used

Spindle motor with built-in αiM sensor (or αiMZ sensor)

Spindle motor with built-in αiM sensor (or αiMZ sensor)

Spindle motor with built-in αiM sensor (or αiMZ sensor)

Spindle system configuration]

Spindle motor with built-in αiM sensor (or αiMZ sensor)

Spindle system configuration]

(2) When the spindle motor with built-in αiMZ sensor is used

5.2.3 I/O Signals (CNC↔PMC)

(1) Address list of input signals (PMC \rightarrow CNC)

	0 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G070		ORCMA			CTH1A	CTH2A		
2nd-	G074		ORCMB			СТН1В	CTH2B		
				-"				•	
1st-	G072			INCMDA			NRROA	ROTAA	INDXA
2nd-	G076			INCMDB			NRROB	ROTAB	INDXB
			•		•	•			
1st-	G078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
1st-	G079					SHA11	SHA10	SHA09	SHA08
2nd-	G081					SHB11	SHB10	SHB09	SHB08

(2) Details of input signals (PMC \rightarrow CNC)

- (a) Spindle orientation command (ORCMA)
- (b) Clutch/gear signals (CTH1A and CTH2A)
- (c) Spindle orientation stop position change command (INDXA)
- (d) Rotation direction command for spindle orientation stop position change (ROTAA)
- (e) Short-cut command for spindle orientation stop position change (NRROA)
- (f) Incremental command data selection signal (INCMDA)
- (g) Spindle orientation external stop position commands (SHA11 to SHA00)

The functions of the input signals ORCMA, CTH1A, CTH2A, INDXA, ROTAA, NRROA, INCMDA, and SHA11 to SHA00 are the same as for position coder-method spindle orientation and incremental command type spindle orientation. See Sections 2.2, "POSITION CODER-METHOD SPINDLE ORIENTATION," and 5.3, "INCREMENTAL COMMAND TYPE SPINDLE ORIENTATION" in Part I.

(3) Address list of output signals (CNC \rightarrow PMC)

- (4) Details of output signals (CNC \rightarrow PMC)
 - (a) Incremental command mode status signal (INCSTA)
- (b) Spindle orientation completion signal (ORARA)

The functions of the output signals ORARA and INCSTA are the same as for position coder-method spindle orientation and incremental command type spindle orientation. See Sections 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION," and 5.3, "INCREMENTAL COMMAND TYPE SPINDLE ORIENTATION" in Part I.

5.2.4 Sequence

For this subsection, see Subsection 5.4.4, "Sequence", in Part I.

5.2.5 List of Related Parameters

Parameter No.	D					
0 <i>i</i>	Description					
	Whether the spindle orientation function is available (to be set to "1")					
4015 #0	(The CNC software option is required.)					
4018 #6	High-speed spindle orientation function (to be set to "1")					
	Whether the stop position external setting-type spindle orientation function is available					
3702#3,#2	(Bit 2: First spindle. Bit 3: Second spindle.)					
4003#0	Spindle orientation type selection (to be reset to "0")					
4003#3,2	Rotation direction for spindle orientation (to be reset to "0, 0" or to be set to "0, 1")					
4017#7	Short-cut function when spindle orientation from stopped state is specified					
4018#5	Whether the speed command correction function for high-speed spindle orientation is available					
	Spindle orientation stop position					
4031	(This parameter is invalid for stop position external setting type and incremental command					
	external setting type.)					
4038	Orientation speed upper limit					
4042	Velocity proportional gain on orientation					
4043	(These parameters are selected with the input signal CTH1A.)					
4050	Velocity integral gain on orientation					
4051	(These parameters are selected with the input signal CTH1A.)					
4056 to 4059	Gear ratio data between spindle and motor					
1000 10 1000	(These parameters are selected with the input signals CTH1A and CTH2A.)					
4060 to 4063	Position gain on orientation (These parameters are selected with the input signals CTH1A and CTH2A.)					
4064	Percentage limit to an acceleration during deceleration					
4075	Orientation completion signal detection level					
4073	Orientation stop position shift value					
4077						
4004	Motor voltage on orientation					
4320 to 4323	Acceleration during motor deceleration					
4000	(These parameters are selected with the input signals CTH1A and CTH2A.)					
4326 4330	Acceleration limitation start speed during deceleration					
	(These parameters are selected with the input signal CTH1A.)					
4328	Command multiplier for orientation					

NOTE

- 1 See Section 1.3, "PARAMETERS RELATED TO DETECTORS" in Part I, for parameters related to detectors.
- 2 See Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT" in Part I, for velocity loop proportional/integral gain tuning.
- When using the high-speed spindle orientation function, set the parameters (bits 3 and 2 or parameter No. 4003) for rotation direction for spindle orientation with the previous rotation direction (0, 0 or 0, 1).

5.2.6 Details of Related Parameters

For this subsection, see Subsection 5.4.6, "Details of Related Parameters", in Part I.

5.2.7 Spindle Data Used in Tuning

For this subsection, see Subsection 5.4.7, "Spindle Data Used in Tuning", in Part I.

5.2.8 Tuning Procedure

For this subsection, see Subsection 5.4.8, "Tuning Procedure", in Part I.

5.3 SPINDLE FINE ACC./DEC. (FAD) FUNCTION

5.3.1 Overview

The spindle fine Acc./Dec. (FAD) function realizes smooth acceleration/deceleration during rigid tapping and Cs contouring control by performing acceleration/deceleration processing with spindle software. It can reduce mechanical shocks that may accompany acceleration/deceleration.

NOTE

This function is usable in a combination of the βi SVSP and the FANUC Series 0i / 0i Mate-MODEL B or FANUC Series 0i / 0i Mate-MODEL C CNC.

5.3.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Remark
9D50	E(05) edition or later	

CNC software

Series	Edition	Remark
D4A1	A(01) edition or later	For the FANUC Series 0i-MB
D501	A(01) edition or later	For the FANUC Series 0i Mate-MB
D6A1	A(01) edition or later	For the FANUC Series 0i-TB
D701	A(01) edition or later	For the FANUC Series 0i Mate-TB
D4B1	A(01) edition or later	For the FANUC Series 0i-MC
D511	A(01) edition or later	For the FANUC Series 0i Mate-MC
D6B1	A(01) edition or later	For the FANUC Series 0i-TC
D711	A(01) edition or later	For the FANUC Series 0i Mate-TC

5.3.3 Block Diagram

For this subsection, see Subsection 5.6.3, "Block Diagram", in Part I.

5.3.4 Parameters

(1) List of Related Parameters

Parameter No.	Description				
0 <i>i</i>	Description				
5205#7	Setting of fine Acc./Dec. during rigid tapping				
4394#3	Spindle fine Acc./Dec. function bit				
4394#4	Acceleration/deceleration type during spindle fine Acc./Dec.				
4344	Feed-forward coefficient during fine Acc./Dec.				
4037	Velocity loop feed-forward coefficient during fine Acc./Dec.				
4408	Fine Acc./Dec. time constant				

(2) Details of parameters related to rigid tapping

For this subsection, see Item 5.6.4 (2), "Details of parameters related to rigid tapping", in Part I.

(3) Details of parameters related to serial spindles

For this subsection, see Item 5.6.4 (3), "Details of parameters related to serial spindles", in Part I.

5.3.5 Diagnosis (Diagnosis Screen)

Address 0i	Description		
	1 of animals (vacular) modifies areas		
418	1st-spindle (regular) position error		
420	2nd-spindle (regular) position error		
714	1st-spindle (FAD) position error		
715	2nd-spindle (FAD) position error		

5.3.6 Status Errors

For this subsection, see Subsection 5.6.6, "Status Errors", in Part I.

5.3.7 Cautions

For this subsection, see Subsection 5.6.7, "Cautions", in Part I.

5.4 UNEXPECTED DISTURBANCE TORQUE DETECTION FUNCTION Optional function

5.4.1 Overview

For this subsection, see Subsection 5.7.1, "Overview", in Part I.

5.4.2 Series and Editions of Applicable Spindle Software

For this subsection, see Subsection 5.7.2, "Series and Editions of Applicable Spindle Software", in Part I.

5.4.3 I/O Signals (CNC↔PMC)

(1) Address list of output signals (CNC \rightarrow PMC)

0 i	#7	#6	#5	#4	#3	#2	#1	#0
F090						ABTSP2	ABTSP1	

- (2) Details of output signals (CNC → PMC)
 - (a) First-spindle unexpected disturbance torque detection signals (ABTSP1 and AQSP1)
 - (b) Second-spindle unexpected disturbance torque detection signals (ABTSP2 and AQSP2)

These signals are output when the estimated load torques on the respective spindles become higher than or equal to the set level. Refer to an applicable CNC Manual for details.

5.4.4 List of Related Parameters

Parameter No.	Description			
0 <i>i</i>	Description			
4015 #1	Whether the unexpected disturbance torque detection			
	function is available (The CNC software option is required.)			
4248	Torque constant for spindle load torque monitoring			
4249	Observer gain 1 for spindle load torque monitoring			
4250	Observer gain 2 for spindle load torque monitoring			
4341	Unexpected disturbance torque detection level			

5.4.5 Details of Related Parameters

For this subsection, see Subsection 5.7.5, "Details of Related Parameters", in Part I.

5.4.6 Parameter Tuning Procedure

For this subsection, see Subsection 5.7.6, "Parameter Tuning Procedure", in Part I.

START-UP

1.1 START-UP PROCEDURE

perform automatic setting with model code "240", then modify the parameter data according to the motor-specific

parameter list.

1.2 SPINDLE SERIAL INTERFACE

Optional function

1.2.1 Parameters Related to Spindle Serial Output

For this subsection, see Subsection 1.2.1, "Parameters Related to Spindle Serial Output", in Part I.

1.2.2 Automatic Spindle Parameter Initialization

(1) Parameter list

Parameter No.		No.	Description		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description		
5607#0 4019#7 4		4019#7	Function for automatically initializing spindle		
3001#0	4019#1	4019#1	parameters		
3133	4133	4133	Spindle motor model code		

(2) Procedure for automatic spindle parameter initialization

Perform automatic spindle parameter initialization by following the procedure below.

<1> Set the model code for the desired motor for automatic parameter initialization.

Pa	arameter N	lo.	Description		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description		
3133	4133	4133	Model code		

NOTE

When using a spindle motor that has no model code, set model code "240" for automatic parameter setting, then manually input data according to the model-by-model parameter list.

<2> Set the relevant parameter to 1 to enable automatic spindle parameter initialization.

Parameter No.			Description		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description		
_	4019#7	4019#7	1		
5607#0	_		0		

NOTE

This bit is reset to its original value after automatic parameter initialization.

<3> Turn the CNC off, then on again. Then, the spindle parameters specified with a model code are automatically initialized.

1.2.3 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 1.2.3, "Diagnosis (Diagnosis Screen)", in Part I.

1.2.4 Alarm

For this subsection, see Subsection 1.2.4, "Alarm", in Part I.

1.3 PARAMETERS RELATED TO DETECTORS

NOTE

- 1 Note that the specifications of parameters related to detectors for the αCi series spindle amplifiers differ from those of parameters for the αC series spindle amplifiers.
- 2 The spindle sensor (separate detector) usable with the αCi series spindle amplifier is a position coder only. (The spindle sensor is a detector connected to connector JYA3.)

1.3.1 **List of Parameters for Detectors**

	Parameter No.		Description		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description		
_	3706#1,#0	_	Gear ratio of spindle to position coder (×1, ×2, ×4, ×8)		
5842	_	3720	Number of pulses of the position coder		
3000 #0	4000 #0	4000 #0	Direction of spindle and spindle motor rotation		
3001 #4	4001 #4	4001 #4	Spindle sensor (position coder) mounting direction		
3002 #3,#2,#1,#0	4002 #3,#2,#1,#0	4002 #3,#2,#1,#0	Spindle sensor type setting (whether to use a position coder)		
3003	4003	4003	Setting of the number of spindle sensor (position coder) gear teeth		
#7,#6,#5,#4	#7,#6,#5,#4	#7,#6,#5,#4	(Set to 0,0,0,0.)		
3005 #0	4005 #0	4005 #0	Setting of the velocity feedback method		
3006#1	4006#1	4006#1	Gear ratio increment system		
3007 #5	4007 #5	4007 #5	Whether to detect disconnection of feedback signals		
3007 #6	4007 #6	4007 #6	Whether to detect alarms related to position feedback signals		
3016 #6	4016 #6	4016 #6	Whether to detect alarms related to threading feedback		
3016 #7	4016 #7	4016 #7	Setting of the function of detecting the one-rotation signal again each time position control mode is set.		
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data (This data is selected by spindle control input signals CTH1A and CTH2A.)		
3098	4098	4098	Maximum speed for position feedback signal detection		

#0 ROTA1

#2

1.3.2 Details of Parameters for Detectors

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	
3000	4000	4000	_					

ROTA1 Indicates the relationship between the rotation directions of spindle and spindle motor.

0: Rotates the spindle and spindle motor in the same direction.

1: Rotates the spindle and spindle motor in the reverse direction.

NOTE

When using a position coder, be sure to set this parameter. If this parameter is not set correctly, the velocity error excess alarm (spindle alarm 02), motor binding alarm (spindle alarm 31), or gear ratio parameter setting error alarm (spindle alarm 35) may be detected.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>		
3001	4001	4001		

#7	#6	#5	#4	#3	#2	#1	#0
			SSDIRC				

SSDIRC

Indicates the mounting direction of spindle sensor (position coder).

- 0: Rotates the spindle and spindle sensor (position coder) in the same direction.
- 1: Rotates the spindle and spindle sensor (position coder) in the reverse direction.

NOTE

When using a position coder, be sure to set this parameter. If this parameter is not set correctly, the velocity error excess alarm (spindle alarm 02), motor binding alarm (spindle alarm 31), or gear ratio parameter setting error alarm (spindle alarm 35) may be detected.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>		
3002	4002	4002		

#7	#6	#5	#4	#3	#2	#1	#0
				SSTYP3	SSTYP2	SSTYP1	SSTYP0

SSTYP3 to 0

Spindle sensor type

This parameter sets the type of a separate detector to be attached to the spindle (detector to be connected to connector JYA3).

The separate detector usable with the αCi series spindle is a position coder only.

SSTYP3	SSTYP2	SSTYP1	SSTYP0	Spindle sensor type
0	0	0	0	None (No position control function is used.)
0	0	1	0	αi position coder

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>		
3003	4003	4003		

#7	#6	#5	#4	#3	#2	#1	#0
PCPL2	PCPL1	PCPL0	PCTYPE				

PCPL2, PCPL1, PCPL0, PCTYPE

Gear teeth number setting of the spindle sensor (position coder) Set to 0,0,0,0.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3005	4005	4005

#7	#6	#5	#4	#3	#2	#1	#0
							VCTLPC

VCTLPC

Sets the velocity feedback method.

- 0: Exercises velocity control with an estimated velocity only.
- 1: Uses a velocity calculated from the position coder signal to exercise velocity control.

The feedback signal from a position coder attached to a spindle on a 1:1 basis is converted to motor speed data for velocity control. Set this bit to 1 when performing orientation, rigid tapping, or spindle synchronous control.

By setting this bit to 1 even in ordinary velocity control, the response characteristics and stability of velocity control can be improved.

NOTE

- 1 The feature may not be fully utilized, depending on the connection ratio between the spindle and spindle motor or between the spindle and position coder, the rigidity of the connection, the precision of position coder attachment, and so forth.
- When this bit is set to 1 with a spindle that has a gear switch mechanism, the torque limitation command signal (TLMLA) must be input at the start of gear switching. For details, see Chapter 3, "I/O SIGNALS (CNC ↔ PMC)", in Part III.

15*i* 16*i* 30*i* 3006 4006 4006

#7	#6	#5	#4	#3	#2	#1	#0
						GRUNIT	

GRUNIT

Sets a gear ratio setting resolution:

0: 1/100 unit 1: 1/1000 unit

Select a gear ratio data setting resolution from the following:

- (a) Resolution based on motor speed increased by a factor of 100 relative to one spindle rotation
- (b) Resolution based on motor speed increased by a factor of 1000 relative to one spindle rotation

Depending on the setting of this parameter, the increment system of the parameters indicated in the table below changes.

	Parameter No.	Description	
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data

NOTE

Usually, use the 1/100 unit (setting "0").

15*i* 16*i* 30*i* 3007 4007 4007

#7	#6	#5	#4	#3	#2	#1	#0
	PCALCH	PCLS					

PCLS

Determines feedback signal disconnection detection.

- 0: Performs disconnection detection.
- 1: Does not perform disconnection detection.

When this bit is set to "0", spindle alarm 27 (Position coder signal disconnection) are checked.

NOTE

Usually, set "0".

PCALCH

Determines whether to use alarms related to position feedback signals.

- 0: Detects alarms.
- 1: Does not detect alarms.

When this bit is set to "0", spindle alarms 41, 42, and 47 are checked.

15*i* 16*i* 30*i* 3016 4016 4016

#7	#6	#5	#4	#3	#2	#1	#0
RFCHK3	RFCHK2						

RFCHK2

Determines whether to detect the alarm related to threading position detection signal feedback (spindle alarm 46).

- 0: Does not detect alarms.
- 1: Detects alarms.

RFCHK3 Setting of the function of detecting the one-rotation signal again each time position control mode is set.

0: The one-rotation signal is not detected each time the operating mode changes.

Once the one-rotation signal has been detected, it is not detected again until the power goes off.

1: The one-rotation signal is detected each time the operating mode changes.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3056	4056	4056
3057	4057	4057
3058	4058	4058
3059	4059	4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767 Standard setting: 100

These parameters set the gear ratio of the spindle motor relative to the spindle.

When the motor rotates 2.5 times, for every rotation of the spindle, for example, set 250 in the parameter.

A parameter is selected by the CTH1A and CTH2A input signals. The gear or clutch status must correspond to the status of the CTH1A and CTH2A input signals.

NOTE

- 1 When using a position coder, be sure to set these parameters. If these parameters are not set correctly, the velocity error excess alarm (spindle alarm 02), motor binding alarm (spindle alarm 31), or gear ratio parameter setting error alarm (spindle alarm 35) may be detected.
- When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

15*i* 16*i* 30*i* 3098 4098 4098

Maximum speed for position feedback signal detection

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting: (

This parameter sets a maximum spindle speed that enables the detection of a motor/spindle sensor (position coder) feedback signal. When "0" is set in this parameter, up to the maximum motor speed can be detected.

NOTE

Usually, set "0".

1.3.3 Typical Detector Configurations

This subsection describes typical detector configurations and the parameter setting procedures for the detector configurations.

With the αCi series spindle, the detector circuitry hardware is set according to the parameter setting. For this reason, an alarm such as a disconnection alarm may be output while parameters related to detectors are being set.

To initialize the hardware, after setting the parameters related to detectors, turn the power to the amplifier off once.

(1) When position control is not exercised

[Sample system configuration]

Parameter No.	Settings	Description				
4002 #3,#2,#1,#0	0,0,0,0	Does not exercise position control. (without position coder)				
4005#0	0	Exercises velocity control with an estimated velocity only.				
4056 to 4059	Depends on the configuration	Gear ratio between the spindle and motor				

(2) When the αi position coder is used

[Sample system configuration]

Parameter No.	Settings	Description
4000 #0	Depends on the configuration.	Rotation directions of the spindle and motor
4001 #4	Depends on the configuration.	Spindle sensor mounting direction
4002 #3,#2,#1,#0	0,0,1,0	Uses the αi position coder as the spindle sensor.
4003 #7,#6,#5,#4	0,0,0,0	Sets the number of spindle sensor gear teeth.
4005#0	1	Uses the speed calculated from the position coder signal to perform speed control.
4056 to 4059	Depends on the configuration.	Gear ratio between the spindle and motor

2

EXPLANATION OF OPERATION MODES

2.1 VELOCITY CONTROL MODE

2.1.1 Start-up Procedure

2.1.2 Overview

The velocity control mode is a function for exercising velocity control to rotate the spindle motor according to a velocity command from the CNC.

NOTE

On a CNC screen (such as the spindle monitor screen and the adjustment screen), the velocity control mode is indicated as "NORMAL OPERATION MODE".

2.1.3 System Configuration

The velocity control mode is applicable to all detector configurations. For system configurations, see Subsection 1.3.3, "Typical Detector Configurations".

2.1.4 List of I/O Signals (CNC↔PMC)

This subsection provides a list of the I/O signals related to the velocity control mode only. For details of each signal, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3, "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63833EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

For details of the I/O signals common to the CNCs, see Chapter 3, "I/O SIGNALS (CNC \leftrightarrow PMC)", in Part I.

#0 SWS1 (*1)

SOV0

R01I R01I2

R09I R09I2

(1) Input signals(PMC→CNC)

(a) Series 16i

		#7	#6	#5	#4	#3	#2	#1	
Common to all axes	G027				*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	
Common to all axes	G028						GR2	GR1	
Common to all axes	G029		*SSTP	SOR	SAR				
Common to all axes	G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	
1st-	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	
2nd-	G034	R08I2	R07I2	R06I2	R05I2	R04I2	R03I2	R02I2	
1st-	G033	SIND	SSIN	SGN		R12I	R11I	R10I	
2nd-	G035	SIND2	SSIN2	SGN2		R12I2	R11I2	R10I2	
						•	•	•	

NOTE

*1 These signals are valid in multi-spindle control.

(b) Series 30*i*

2nd-

1st-

2nd-

G234

G229

G237

G075

G072

G076

G075

G072

G076

(-)				#7	#6	#5	#4	#3	#2	#1	#0	
	Common to	all axes	G027				*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)	
	Common to	all axes	G028						GR2	GR1		
	Common to	all axes	G029		*SSTP	SOR	SAR					
	Common to	all axes	G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0	
		1st-	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I	
		2nd-	G034	R08I2	R07I2	R06I2	R05l2	R04I2	R03I2	R02I2	R01I2	
		1st-	G033	SIND	SSIN	SGN		R12I	R11I	R10I	R09I	
		2nd-	G035	SIND2	SSIN2	SGN2		R12I2	R11I2	R10I2	R09I2	
							_					
				NOTE								
				*1 Th	ese sig	nals ar	e valid i	n multi-	-spindle	contro		
(c) Seri	es 15 <i>i</i>											
	0	!!	0005	#7	#6	#5	#4	#3	#2	#1	#0	
	Common to	o all axes	G005							FIN		
	1st	t_	G024	RI7A	RI6A	RI5A	RI4A	RI3A	RI2A	RI1A	RI0A	
	2nc		G232	RI7B	RI6B	RI5B	RI4B	RI3B	RI2B	RI1B	RI0B	
	2110	1 -	0232	KI/B	KIOD	KIJD	KI4D	KIJD	KIZD	KIID	KIOD	
	1st	<u>.</u>	G025	RISGNA			RI12A	RI11A	RI10A	RI9A	RI8A	
	2nc		G233	RISGNB			RI12B	RI11B	RI10B	RI9B	RI8B	
	2110	1 -	0233	KIOOND			KIIZD	KIIID	KITOD	Kian	KIOD	
	1st	<u>.</u>	G026		GS4A	GS2A	GS1A					
	2nd		G272		GS4B	GS2B	GS1B					
	2110	1 -	GZ1Z		G34B	GSZB	ОЗТВ					
(c) Con	nmon to	CNCs										
(0) 0011	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0	
1st-	G227	G070	G070	MRDYA		SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA	
2nd-	G235	G074	G074	MRDYB		SFRB	SRVB	СТН1В	CTH2B	TLMHB	TLMLB	
1st-	G226	G071	G071							*ESPA		
				—			1					

*ESPB

OVRA

OVRB

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

(2) Output signals (CNC→PMC)

(a) Series 16*i*

	#7	#6	#5	#4	#3	#2	#1	#0
F001				ENB				
F007			•			SF		
F022	S07	S06	S05	S04	S03	S02	S01	S00
F023	S15	S14	S13	S12	S11	S10	S09	S08
F024	S23	S22	S21	S20	S19	S18	S17	S16
F025	S31	S30	S29	S28	S27	S26	S25	S24
F034						GR30 (*1)	GR2O (*1)	GR10 (*1)
F036	R08O	R070	R06O	R05O	R040	R03O	R02O	R010
F037				·	R120	R110	R100	R09O

NOTE

*1 These signals are valid with the M series only.

#2

SF

S02

S10

S18

S26

#1

S01

S09

S17

S25

GR2O

R020

R100

#0

S00

S08

S16

S24

GR10

(*1)

R010

R090

(b) Series 30i

#7 #6 #5 #4 #3 F001 **ENB** F007 F022 **S07 S06 S05 S04 S03** F023 **S15 S14** S13 S12 **S11** F024 **S23** S22 **S21** S20 S19 F025 **S31 S30 S29 S28 S27** GR30 (*1) F034 F036 **R080** R070 R060 R050 R040 R03O F037 R120 R110

NOTE

*1 These signals are valid with the M series only.

(c) Series 15i

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	F008							SF	
Common to all axes	F020	S 7	S6	S5	S4	S3	S2	S1	S0
Common to all axes	F021	S15	S14	S13	S12	S11	S10	S09	S08
Common to all axes	F022	S23	S22	S21	S20	S19	S18	S17	S16
Common to all axes	F023	S31	S30	S29	S28	S27	S26	S25	S24
Common to all axes	F045			SRSRDY					
			•		_				
1st-	F010	RO7A	RO6A	RO5A	RO4A	RO3A	RO2A	RO1A	RO0A
2nd-	F320	RO7B	RO6B	RO5B	RO4B	RO3B	RO2B	RO1B	RO0B
1st-	F11	RO15A	RO14A	RO13A	RO12A	RO11A	RO11A	RO10A	RO9A
2nd-	F321	RO15B	RO14B	RO13B	RO12B	RO11B	RO11B	RO10B	RO9B
1st-	F014	MR7A	MR6A	MR5A	MR4A	MR3A	MR2A	MR1A	MR0A
2nd-	F324	MR7B	MR6B	MR5B	MR4B	MR3B	MR2B	MR1B	MR0B
1st-	F015	MR15A	MR14A	MR13A	MR12A	MR11A	MR10A	MR9A	MR8A
2nd-	F325	MR15B	MR14B	MR13B	MR12B	MR11B	MR10B	MR9B	MR8B
1st-	F234	SSPD7A	SSPD6A	SSPD5A	SSPD4A	SSPD3A	SSPD2A	SSPD1A	SSPD0A
2nd-	F250	SSPD7B	SSPD6B	SSPD5B	SSPD4B	SSPD3B	SSPD2B	SSPD1B	SSPD0B
1st-	F235	SSPD15A	SSPD14A	SSPD13A	SSPD12A	SSPD11A	SSPD10A	SSPD9A	SSPD8A
2nd-	F251	SSPD15B	SSPD14B	SSPD13B	SSPD12B	SSPD11B	SSPD10B	SSPD9B	SSPD8B
				_	-	-	_		
1st-	F341								SRRDYA
2nd-	F342								SRRDYB
		<u> </u>		1	·	1			

(d) Common to CNCs

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045		TLMA		LDT1A	SARA	SDTA	SSTA	
2nd-	F245	F049	F049		TLMB		LDT1B	SARB	SDTB	SSTB	

2.1.5 Related Parameters

	Parameter No		Description					
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description					
_	3705#0	3705#0	Sets SF signal output and the S code for an S command.					
_	3705#2	3705#2	Gear switch method (M series only)					
_	3705#4	3705#4	Sets SF signal output and the S code for an S command (T series only).					
	2705#5	2705#5	Sets SF signal output when constant surface speed control is exercised					
	3705#5	3705#5	and an S code is specified (M series only).					
	3705#6	3705#6	Sets SF signal output (M series only).					
_	3706#4	3706#4	Spindle gear selection method (M series only)					
	3706#7,#6	3706#7,#6	Spindle speed command polarity (valid when input signal SSIN = 0)					
	3709#0	3709#0	Number of sampling operations at spindle speed calculation time (T series only for 16 <i>i</i>)					
_	3735	3735	Minimum clamp speed of the spindle motor (M series only)					
	3736	3736	Maximum clamp speed of the spindle motor (M series only)					
	3740	3740	Time until the spindle speed arrival signal is checked					
_	3741	3741	Maximum spindle speed for gear 1					
_	3742	3742	Maximum spindle speed for gear 2					
	3743	3743	Maximum spindle speed for gear 3					
_	3744	3744	Maximum spindle speed for gear 4 (T series only)					
_	3751	3751	Spindle motor speed at the switch point between gear 1 and gear 2 (M series only)					
	3752	3752	Spindle motor speed at the switch point between gear 2 and gear 3 (M series only)					
	3772	3772	Maximum allowable spindle speed					
2031	3031	3031	Allowable number of S code characters					
2003#1	_	_	Sets an S code polarity.					
2204#0			Sets the display of an actual spindle speed.					
2402#6			Sets the S code specified in a block containing G92.					
5602#3			Whether to provide an indication for an alarm detected with the spindle					
0002#0			amplifier. (Set "0" usually.)					
5611	_	_	Number of sampling operations when an average spindle speed is to be found.					
5612			Unit of spindle speed output with the DO signal					
5807#0	_	_	Enables/disables the spindle alarms (SPxxxx) of all spindles. (Set "0" usually.)					
5842	_	3720	Number of position coder pulses					
5847		3721	Number of gear teeth on the position coder side on velocity control (for					
3047		3721	feed per revolution, threading, etc.)					
5848	_	3722	Number of gear teeth on the spindle side on velocity control (for feed per revolution, threading, etc.)					
5850	_	_	Spindle number to be selected at power-on/reset time					
5820#4			Sets the method of spindle speed calculation.					
3006#5	4006#5	4006#5	Sets an analog override range.					
3009#4	4009#4	4009#4	Whether to output the load detection signal (LDT1) during acceleration/deceleration					
3009#6	4009#6	4009#6	Analog override type					
5607#0	4019#7	4019#7	Automatic spindle parameter setting function					
3020	4020	4020	Maximum motor speed					
3040	4040	4040	Velocity loop proportional gain on the velocity control mode					
3041	4041	4041	(A parameter is selected by the PMC input signal CTH1A.)					

	Parameter No.		Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3048	4048	4048	Velocity loop integral gain on the velocity control mode
3049	4049	4049	(A parameter is selected by the PMC input signal CTH1A.)
2056 to 2050	4056 to 4059	4056 to 4059	Spindle and motor gear ratio data
3056 to 3059	4056 10 4059	4036 10 4039	(A parameter is selected by the PMC input signals CTH1A and CTH2A.)
2000 to 2070	4000 to 4070	4000 to 4070	Acceleration/deceleration constant
3069 to 3072	4069 to 4072	4069 to 4072	(A parameter is selected by the PMC input signals CTH1A and CTH2A.)
3081	4081	4081	Delay time until the motor power is turned off
3082	4082	4082	Sets an acceleration/deceleration time.
3083	4083	4083	Motor voltage on the velocity control mode

NOTE

- 1 For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part III.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part III.

2.1.6 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16i, in the four thousands for 30i, and in the three thousands for 15i) among the parameters related to the velocity control mode. For details of other parameters, refer to the parameter manual of each CNC.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3006	4006	4006

#7	#6	#5	#4	#3	#2	#1	#0
		ALGOVR					

ALGOVR

Sets a spindle analog override range.

0: 0 to 100% (standard setting value)

1: 0 to 120%

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3009	4009	4009

#7	#6	#5	#4	#3	#2	#1	#0
	OVRTYP		LDTOUT				

LDTOUT

Whether to output the load detection signal (LDT1A) during acceleration/deceleration

- 0: Not output during acceleration/deceleration. (standard setting value)
- 1: Output (at all times) during acceleration/deceleration if the parameter-set level is exceeded.

OVRTYP Analog override type

0: Override of linear function type (standard setting value)

1: Override of quadratic function type

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
4019	4019	PRLOAD							

Automatic parameter setting function PRLOAD

- Does not perform automatic parameter setting. (standard setting value)
- Performs automatic parameter setting.

After setting a desired motor model code in parameter No. 4133 and setting this bit to 1, turn off the power to the CNC, then turn on the power to the CNC again. The parameters (No. 4000 to No. 4175) for the αCi series spindle corresponding to the model code are automatically initialized. Upon completion of automatic setting, this bit is automatically set to "0".

NOTE

With FS15*i*, the parameter address of this function is different, namely, bit 0 of No. 5607 is used. Moreover, note that the meanings of settings are reversed as follows.

- 0 : Performs automatic parameter setting.
- 1: Does not perform automatic parameter setting. In this case, set a model code in parameter No. 3133.

15*i* 16*i* 30i 3020 4020 4020

Maximum motor speed

1min⁻¹ Unit of data: 0 to 32767 Valid data range:

Standard setting value: Depends on the motor model.

This parameter sets a maximum spindle motor speed.

♠ WARNING

The spindle motor may rotate at the maximum spindle motor speed specified by this parameter. Therefore, this parameter must not be set to a value greater than the maximum rotation speed indicated by the specification of the spindle motor.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3040	4040	4040
3041	4041	4041

Velocity loop proportional gain on velocity control mode (HIGH)	CTH1A=0
Velocity loop proportional gain on velocity control mode (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: Depends on the motor model.

This data is used to set the velocity loop proportional gain on velocity

control mode.

When the input signal CTH1A = 0, (HIGH) is selected. When the input signal CTH1A = 1, (LOW) is selected.

15*i* 16*i* 30*i* 3048 4048 4048 3049 4049 4049

Velocity integral gain on velocity control mode (HIGH)	CTH1A=0
Velocity integral gain on velocity control mode (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: Depends on the motor model.

This data is used to set the velocity loop integral gain on velocity

control mode

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

 15i
 16i
 30i

 3056
 4056
 4056

 3057
 4057
 4057

 3058
 4058
 4058

 3059
 4059
 4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767

Standard setting value: 100

These data are used to set the gear ratio between spindle and spindle motor.

Example:

When the spindle rotates once, set "250" as the data when the motor rotates 2.5 times.

NOTE

- 1 A parameter is selected by the input signals CTH1A and CTH2A. Ensure that the gear or clutch state corresponds to the input signals CTH1A and CTH2A. When the signals are not input correctly, the overcurrent alarm (spindle alarm 12) can be issued.
- When using a position coder, be sure to set this parameter. If this parameter is not set correctly, the velocity error excess alarm (spindle alarm 02), motor binding alarm (spindle alarm 31), or gear ratio parameter setting error alarm (spindle alarm 35) may be detected.
- 3 When an improper value is set in this parameter, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

15*i* 16*i* 30*i* 3069 4069 4069 3070 4070 4070 3071 4071 4071 3071 4072 4072

Acceleration/deceleration constant (HIGH)	CTH1A=0, CTH2A=0
Acceleration/deceleration constant (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Acceleration/deceleration constant (MEDIUM LOW)	CTH1A=1, CTH2A=0
Acceleration/deceleration constant (LOW)	CTH1A=1, CTH2A=1

Unit of data: 1min⁻¹ / sec Valid data range: 0 to 32767 Standard setting value: 900

These parameters set an acceleration/deceleration constant calculated from the motor output torque and spindle inertia and adjust acceleration/deceleration time.

A parameter is selected by the input signals CTH1A and CTH2A. The initial setting value "900" assumes that linear acceleration/deceleration is performed with the 30-minute rated torque at the maximum motor speed, with an inertia three times as large as the rotor inertia of the motor. It is assumed that all (α Ci series spindle motors satisfy this initial value. So, there is a margin with some motor models.

For each machine, find a load inertia, and assign the found value to the following expression to calculate an acceleration/deceleration constant for setting:

 $Tc = T/(Jm+JI) \times (60/2\pi)$ = P/N × (60/2\pi) /(Jm+JI) × (60/2\pi) = P/N/(Jm+JI) × (60/2\pi)²

Tc [min⁻¹/sec]: Acceleration/deceleration constant

Jm [kgm²] : Motor rotor inertia

Jl [kgm²] : Load inertia in terms of motor axis

T [Nm] : 30-minute rated torque P [kW] : 30-minute rated output

N [min⁻¹] : Motor speed

[Rotor inertia and torque data of standard models]

Motor model	αC1i	αC2i	αC3i	αC6i	αC8i	α C12 <i>i</i>	αC15 <i>i</i>
Rotor inertia Jm [kgm²]	0.003	0.0078	0.0148	0.0179	0.0275	0.07	0.09
30-minute rated torque at base speed T [Nm]	14.01	23.55	35.01	47.75	70.03	95.49	117.77

NOTE

- 1 The initial setting value satisfies a value calculated with N = maximum speed and JI = Jm×3.
- 2 A maximum specifiable acceleration/deceleration constant is based on N = base speed.

15*i* 16*i* 30*i* 3081 4081 4081

Delay time until the motor power is turned off

Unit of data: 10ms
Valid data range: 0 to 1000
Standard setting value: 20(200ms)

If SFRA = 0 or SRVA = 0 is specified, this parameter sets a period of time from the stop of the motor (detection of the speed zero detection signal SSTA = 1) until the power to the motor is turned off.

NOTE

When a small value is set in this parameter, the motor can coast after the power to the motor is turned off.

15*i* 16*i* 30*i* 3082 4082 4082

Setting of acceleration/deceleration time

Unit of data: 1sec
Valid data range: 0 to 255
Standard setting value: 10

This parameter sets a period of time in which alarm detection is disabled by assuming that the spindle motor is being accelerated or decelerated even if the velocity error exceeds the velocity error excess alarm (spindle alarm 02) level after start of acceleration/deceleration on the velocity control mode.

In the velocity control mode, a step-by-step speed command is specified. So, the spindle motor cannot follow up the command immediately after start of acceleration/deceleration, and the velocity error exceeds the velocity error excess alarm level. This parameter is used to prevent the velocity error excess alarm (spindle alarm 02) from being detected incorrectly immediately after start of acceleration/deceleration.

NOTE

With a machine tool such as a lathe that has a large load inertia, the acceleration/deceleration time becomes longer. In such a case, set the value corresponding to the acceleration/deceleration time of the machine in this parameter.

15*i* 16*i* 30*i*3083 4083 4083

Motor voltage setting on velocity control mode

Unit of data: 1% Valid data range: 0 to 100 Standard setting: 60

This parameter is used to set a motor voltage on velocity control mode. Usually, this parameter need not be adjusted. Use the standard setting.

2.1.7 Troubleshooting

If the spindle motor does not operate normally, take an action by referencing the items listed below according to the state of trouble. For an action to be taken when an alarm is issued, refer to the maintenance manual.

	State of trouble							
(i)	When the motor does not rotate							
(ii)	When the motor does not rotate at a specified speed							
(iii)	When the motor vibrates and makes an abnormal sound when							
(111)	rotating							
(iv)	When an overshoot or hunting occurs							
(v)	When the cutting capability is degraded							
(vi)	When the acceleration/deceleration time is long							

(i) When the motor does not rotate

- (1) Check the connections. (Refer to Descriptions (B-65372EN).)
 - (a) Motor power line phase order
 - (b) Connection of the position coder signal cable (shielding, grounding)
 - (c) DC link connection between the common power supply (PS) and amplifier
- (2) Check the parameter settings.
 - (a) Parameter data for each motor model
 - (b) Detector-related parameter data (Refer to Section 1.3 in Part III.)
 - (c) Setting of a maximum motor speed

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3020	4020	4020	Maximum motor speed

- (d) Parameters related to spindle speed specification Refer to Subsec. 2.1.5 in Part III.
- (3) Check the input signals.
 - (a) Input signals for spindle control (PMC \rightarrow CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	G227	G070	G070
2nd-	G235	G074	G074
1st-	G226	G071	G071
2nd-	G234	G075	G075

#7	#6	#5	#4	#3	#2	#1	#0
MRDYA		SFRA	SRVA				
MRDYB		SFRB	SRVB				
	-	-	-		_		_
						*ESPA	
						*ECDD	

(ii) When the motor does not rotate at a specified speed

- (1) Check the connections. (Refer to Descriptions (B-65372EN).)
 - (a) Motor power line connection
 - (b) Connection of the position coder signal cable (shielding, grounding)
- (2) Check the parameter settings.
 - (a) Parameter data for each motor model
 - (b) Detector-related parameter data (Refer to Section 1.3 in Part III.)
 - (c) Setting of a maximum motor speed

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3020	4020	4020	Maximum motor speed

(d) Parameters related to spindle speed specification

For Series 16*i*/18*i*/21*i*

"FANUC Series 16i/18i/21i-MODEL B

CONNECTION MANUAL (FUNCTION): B-63523EN-1 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

For Series 30*i*/31*i*/32*i*

"FANUC Series 30i/31i/32i-MODEL A

CONNECTION MANUAL (FUNCTION): B-63943EN-1

Refer to Section 11.3, "SPINDLE SPEED CONTROL."

For Series 15i

"FANUC Series 15i-MODEL B

CONNECTION MANUAL (FUNCTION): B-63783EN-1

Refer to Section 9.3, "SPINDLE SPEED CONTROL."

For Series 0i

"FANUC Series 0i-MODEL B

CONNECTION MANUAL (FUNCTION): B-63833EN-1

Refer to Section 9.3, "SPINDLE SPEED CONTROL."

(iii) When the motor vibrates and makes an abnormal sound when rotating

- (1) Check the connections. (Refer to Descriptions (B-65372EN).)
 - (a) Connection of the position coder signal cable (shielding, grounding)
- (2) Check the parameter settings.

The velocity loop gain may be too large. Adjust the following parameters:

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	Setting data
3040	4040	4040	Velocity proportional gain (HIGH)	
3041	4041	4041	Velocity proportional gain (LOW)	Decrease the
3048	4048	4048	Velocity integral gain (HIGH)	setting values.
3049	4049	4049	Velocity integral gain (LOW)	

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

(3) Make a comparison with the case of motor coasting. If vibration and sound produced when the motor coasts are extremely smaller than those produced when the motor is driven, the control circuit is faulty. If sound produced remains unchanged, the motor or the machine may be faulty. If the overheat signal cable from the motor is disconnected during motor rotation, an alarm is issued, and the motor coasts. Before performing the coasting of the motor, consult with the machine tool builder for confirmation. Depending on the sequence, the brake may be applied.

(iv) When an overshoot or hunting occurs

- (1) Check the parameter settings.
 - (a) The velocity loop gain may be too large. Adjust the following parameters:

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	Setting data
3040	4040	4040	Velocity proportional gain(HIGH)	
3041	4041	4041	Velocity proportional gain(LOW)	Decrease the
3048	4048	4048	Velocity integral gain (HIGH)	setting values.
3049	4049	4049	Velocity integral gain (LOW)	

(b) The acceleration/deceleration constant may be too large. Adjust the following parameters:

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	Setting data
3069	4069	4069	Acceleration/deceleration constant (HIGH)	
3070	4070	4070	Acceleration/deceleration constant (MEDIUM HIGH)	Decrease the
3071	4071	4071	Acceleration/deceleration constant (MEDIUM LOW)	setting values.
3072	4072	4072	Acceleration/deceleration constant (LOW)	

(v) When the cutting capability is degraded

- (1) Check the parameter settings.
 - (a) Parameter data for each motor model
- (2) Check the input signals.
 - (a) Torque limitation command (TLMHA)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	G227	G070	G070
2nd-	G235	G074	G074

#7	#6	#5	#4	#3	#2	#1	#0
						TLMHA	
						TLMHB	

- (3) Check the machine.
 - (a) Belt tension, and so forth

(vi) When the acceleration/deceleration time is long

- (1) Check the parameter settings.
 - (a) Parameter data for each motor model
 - (b) The acceleration/deceleration constant may be too small. Adjust the following parameters:

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	Setting data
3069	4069	4069	Acceleration/deceleration constant (HIGH)	
3070	4070	4070	Acceleration/deceleration constant (MEDIUM HIGH)	Increase the
3071	4071	4071	Acceleration/deceleration constant (MEDIUM LOW)	setting values.
3072	4072	4072	Acceleration/deceleration constant (LOW)	

(c) Regenerative power limitation (Check if the same value as in the parameter table for each motor model is set.)

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3080	4080	4080	Regenerative power limitation

- (2) Check the input signals.
 - (a) Torque limitation commands (TLMH)

	15 <i>i</i>	16 <i>i</i>	301
1st-	G227	G070	G070
2nd-	G235	G074	G074

#7	#6	#5	#4	#3	#2	#1	#0
						TLMHA	
						TLMHB	

2.2 POSITION CODER METHOD SPINDLE ORIENTATION

Optional function

2.2.1 Start-up Procedure

2.2.2 Overview

For this subsection, see Subsection 2.2.2, "Overview", in Part I.

2.2.3 Feature

For this subsection, see Subsection 2.2.3, "Feature", in Part I.

2.2.4 System Configuration

The system configurations that enable the use of the position coder method orientation function are shown below.

(1) When the αi position coder is used

NOTE

The spindle sensor (separate detector) usable with the αCi series spindle amplifier is a position coder only.

2.2.5 Stop Position Specification Method

For this subsection, see Subsection 2.2.5, "Stop Position Specification Method", in Part I.

2.2.6 I/O Signals (CNC↔PMC)

(1) Address list of Input signals (PMC \rightarrow CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070		ORCMA			CTH1A	CTH2A		
2nd-	G235	G074	G074		ORCMB			СТН1В	СТН2В		
							_				
1st-	G229	G072	G072						NRROA	ROTAA	INDXA
2nd-	G237	G076	G076						NRROB	ROTAB	INDXB
1st-	G230	G078	G078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G238	G080	G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
1st-	G231	G079	G079					SHA11	SHA10	SHA09	SHA08
2nd-	G239	G081	G081					SHB11	SHB10	SHB09	SHB08

(2) Details of input signals (PMC \rightarrow CNC)

With the αCi series, the signals indicated in the item above are valid. For details of each signal, see Subsection 2.2.6(2), "Details of input signals (PMC \rightarrow CNC)", in Part I.

(3) Address list of output signals (CNC \rightarrow PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA							
2nd-	F245	F049	F049	ORARB							

(4) Details of output signals (CNC \rightarrow PMC)

With the αCi series, the signals indicated in the item above are valid. For details of each signal, see Subsection 2.2.6(4), "Details of output signals (CNC \rightarrow PMC)", in Part I.

2.2.7 Examples of Sequences

For this subsection, see Subsection 2.2.7, " Examples of Sequences ", in Part I.

2.2.8 Related Parameters

Р	arameter No.		Description			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description			
3015 #0	4015 #0	4015 #0	Specifies whether to use the spindle orientation function. (Set this bit to 1.) (The CNC software option is required.)			
5609#2	3702#3,#2	3729#0	Specifies whether to use the spindle orientation function with the stop position external setting type. (For 16 <i>i</i> , #2: First spindle, #3: Second spindle)			
3003#3,#2	4003#3,#2	4003#3,#2	Direction of rotation in spindle orientation (Set to 0 and 0 or 0 and 1.)			
3005#0	4005#0	4005#0	Setting of the velocity feedback method (Set to 1.)			
3017 #7	4017 #7	4017 #7	Shortcut function when orientation is specified in stop state			
3031	4031	4031	Stop position for position coder method orientation (This parameter is disabled when spindle orientation with an externally set stop position or an externally set incremental command is used.)			
3038	4038	4038	Spindle orientation speed			
3042	4042	4042	Velocity proportional gain on orientation			
3043	4043	4043	(A parameter is selected by the CTH1A input signal.)			
3050	4050	4050	Velocity integral gain on orientation			
3051	4051	4051	(A parameter is selected by the CTH1A input signal.)			
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio (A parameter is selected by the CTH1A and CTH2A input signals.)			
3060 to 3063	4060 to 4063	4060 to 4063	Position gain for orientation (A parameter is selected by the CTH1A and CTH2A input signals.)			
3064	4064	4064	Acceleration limitation ratio at deceleration time (Set to 100.)			
3075	4075	4075	Detection level for the spindle orientation completion signal			
3077	4077	4077	Spindle orientation stop position shift			
3084	4084	4084	Motor voltage for spindle orientation			
3320 to 3323	4320 to 4323	4320 to 4323	Acceleration at orientation deceleration time (A parameter is selected by the CTH1A and CTH2A input signals.)			

NOTE

- 1 For the parameters related to detectors, see the Section 1.3, "PARAMETERS RELATED TO DETECTORS" in the Part III.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part III.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

2.2.9 Details of Related Parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3003	4003	4003					DIRCT2	DIRCT1		

DIRCT2, DIRCT1

Setting of rotation direction at spindle orientation

DIRCT2	DIRCT1	Rotation direction at spindle orientation
0	0	By rotation direction immediately before (It is CCW at the power on.)
0	1	By rotation direction immediately before (It is CW at the power on.)

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3005	4005	4005

#7	#6	#5	#4	#3	#2	#1	#0
							VCTLPC

VCTLPC

Sets the velocity feedback method.

0: Exercises velocity control with an estimated velocity only.

1: Uses a velocity calculated from the position coder signal to exercise velocity control.

Set to 1.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3017	4017	4017

#7	#6	#5	#4	#3	#2	#1	#0
NRROEN							

NRROEN

Specifies whether to use the shortcut function when orientation is specified in the stop state.

0: Does not use the function.

1: Uses the function.

When this bit is set to 1, short cut operation is performed when the following conditions are satisfied:

- Bit 7 of parameter No. 4016 (RFCHK3) is set to 0.
- Zero speed detection output signal SSTA is set to 1.
- Shortcut command input signal NRROA is set to 1.

15*i* 16*i* 30*i* 3031 4031 4031

Position coder method orientation stop position

Unit of data: 1 pulse (360°/4096)

Valid data range: 0 to 4096

Standard setting:

This data is used to set the stop position of position coder method spindle orientation. It can be set at every 360 degrees/4096.

When stop position external command type orientation and incremental command external type orientation are set, this parameter becomes invalid.

Stop position command (SHA11-SHA00) of input signal instructed becomes valid

15*i* 16*i* 30*i* 3038 4038 4038

Spindle orientation speed

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting: 0

This parameter sets the orientation speed at the end of the spindle.

When this data is set to 0, 200 min⁻¹ is set.

 15i
 16i
 30i

 3042
 4042
 4042

 3043
 4043
 4043

Velocity loop proportional gain on orientation (HIGH)	CTH1A=0
Velocity loop proportional gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: Depends on the motor model.

This parameter sets the velocity loop proportional gain for spindle

orientation.

When the CTH1A input signal is set to 0, proportional gain for the HIGH gear is selected. When the CTH1A input signal is set to 1,

proportional gain for the LOW gear is selected.

15*i* 16*i* 30*i* 3050 4050 4050 4051 4051

Velocity loop integral gain on orientation (HIGH)	CTH1A=0
Velocity loop integral gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: Depends on the motor model.

This parameter sets the velocity loop integral gain for spindle

orientation.

When the CTH1A input signal is set to 0, integral gain for the HIGH gear is selected. When the CTH1A input signal is set to 1, integral

gain for the LOW gear is selected.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3056	4056	4056
3057	4057	4057
3058	4058	4058
3059	4059	4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range : Standard setting :

These parameters set the gear ratio of the spindle motor relative to the

When the motor rotates 2.5 times, for every rotation of the spindle, for example, set 250 in the parameter.

NOTE

0 to 32767 100

- 1 A parameter is selected by the input signals CTH1A and CTH2A. Ensure that the gear or clutch state corresponds to the input signals CTH1A and CTH2A. When the signals are not input correctly, the overcurrent alarm (spindle alarm 12) can be issued.
- When using a position coder, be sure to set this parameter. If this parameter is not set correctly, the velocity error excess alarm (spindle alarm 02), motor binding alarm (spindle alarm 31), or gear ratio parameter setting error alarm (spindle alarm 35) may be detected.
- 3 When an improper value is set in this parameter, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

151	161	301
3060	4060	4060
3061	4061	4061
3062	4062	4062
3063	4063	4063

Position gain on orientation (HIGH)	CTH1A=0, CTH2A=0
Position gain on orientation (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Position gain on orientation (MEDIUM LOW)	CTH1A=1, CTH2A=0
Position gain on orientation (LOW)	CTH1A=1, CTH2A=1

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting: 1000

These parameters set the position gain for orientation.

A parameter is selected by the CTH1A and CTH2A input signals.

15*i* 16*i* 30*i* 3064 4064 4064

Acceleration limitation ratio at deceleration time

Unit of data: 1%
Valid data range: 0 to 100
Standard setting: 100

Set to 100.

15*i* 16*i* 30*i* 3075 4075 4075

Orientation completion signal detection level (limits of in-position)

Unit of data : ± 1 pulse unit (360degrees/4096)

Valid data range: 0 to 100 Standard setting: 10

This data is used to set the detecting level of orientation completion

signal (ORARA).

When the spindle position is located within the setting data on orientation completion, the bit of orientation completion signal

(ORARA) in the spindle control signals is set to "1".

When the orientation command (ORCMA) is turned off (= 0), the

orientation completion signal (ORARA) is set to "0".

15*i* 16*i* 30*i* 3077 4077

Orientation stop position shift value

Unit of data: ± 1 pulse unit (360degrees/4096)

Valid data range: -4095 to 4095

Standard setting: 0

In the position coder method orientation, set this data to shift stop

position.

Spindle is shift No. of setting pulse in CCW direction, and stops by

data (+).

15*i* 16*i* 30*i* 3084 4084 4084

Motor voltage setting on orientation

Unit of data: 1%
Valid data range: 0 to 100
Standard setting: 60

This parameter sets the motor voltage for orientation. Usually, set 60.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

15 <i>i</i>	161	301		
3320	4320	4320	Acceleration at orientation deceleration time (HIGH)	CTH1A=0, CTH2A=0
3321	4321	4321	Acceleration at orientation deceleration time (MEDIUM	HIGH) CTH1A=0, CTH2A=1
3322	4322	4322	Acceleration at orientation deceleration time (MEDIUM	LOW) CTH1A=1, CTH2A=0
3323	4323	4323	Acceleration at orientation deceleration time (LOW)	CTH1A=1, CTH2A=1

Unit of data: 10min⁻¹/sec Valid data range: 0 to 32767

Standard setting: 0

These parameters set a motor acceleration value at deceleration time in orientation. When 0 is set, an acceleration value of 520 min⁻¹/sec (corresponding to setting = 52 or equivalent to the standard setting for the αC series spindle) is set.

2.2.10 Adjusting the Orientation Stop Position Shift Parameter

For this subsection, see Subsection 2.2.11, "Adjusting the Orientation Stop Position Shift Parameter", in Part I.

2.3 RIGID TAPPING

Optional function

2.3.1 Start-up Procedure

B. Prepare and check the rigid tapping ladder program.

- C. Set up the detector-related parameters according to the system configuration.
 - Specify to use the spndile sensor and spindle motor.
 - Specify the rotation direction of the spindle and motor and that of the spindle and position coder.
 - Set up the gear ratio between the spindle and motor.
- D. Adjust the parameters according to the adjustment procedure.
 - Maximum rotation speed and acceleration/deceleration time constant for rigid tapping
 - Position gain for rigid tapping
 - Velocity loop proportional and integral gains for rigid tapping
 - Motor voltage for rigid tapping
 - Motor activation delay

E. Check the precision by actually performing cutting.

If there is a problem with the precision of the machine, adjust the acceleration/deceleration time constant and velocity loop gains again.

2.3.2 Overview

For this subsection, see Subsection 2.3.2, "Overview", in Part I.

2.3.3 System Configuration

The system configurations that enable the use of rigid tapping are shown below.

(1) When the αi position coder is used

NOTE

The spindle sensor (separate detector) usable with the αCi series spindle amplifier is a position coder only.

2.3.4 List of I/O Signals (CNC \leftrightarrow PMC)

This subsection provides a list of the I/O signals related to rigid tapping only. For details of each signal, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.11, "RIGID TAPPING."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.11, "RIGID TAPPING."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.8, "RIGID TAPPING."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63833EN-1
 Refer to Section 9.10, "RIGID TAPPING."

For details of the I/O signals common to the CNCs, see Chapter 3, "I/O SIGNALS (CNC \leftrightarrow PMC)", in Part I.

(1) Input signals (PMC \rightarrow CNC)

(a) Series 16i

	#7	#6	#5	#4	#3	#2	#1	#0
G027							SWS2 (*1)	SWS1 (*1)
G028						GR2	GR1	
G029								GR21 (*2)
G061								RGTAP

NOTE

- 1 The rigid tapping of the 2nd spindle is available by the multi-spindle control function.
 - When SWS1 is set to 1 (regardless of whether SWS2 is set to 0 or 1), rigid tapping is performed using the 1st spindle. When SWS1 is set to 0, and SWS2 is set to 1, rigid tapping is performed using the 2nd spindle.
- 2 This signal is used when the rigid tapping of the second spindle.
 - According to the GR21 signal, the individual gear parameters for gear 1 or 2, also used for the 1st spindle, are selected.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

(b) Series 30*i*

NOTE

- 1 The rigid tapping of the 2nd spindle is available by the multi-spindle control function.
 - When SWS1 is set to 1 (regardless of whether SWS2 is set to 0 or 1), rigid tapping is performed using the 1st spindle. When SWS1 is set to 0, and SWS2 is set to 1, rigid tapping is performed using the 2nd spindle.
- 2 This signal is used when the rigid tapping of the second spindle.

(c) Series 15*i*

		#7	#6	#5	#4	#3	#2	#1	#0
1st-	G026								SPSTPA
2nd-	G272								SPSTPB

(d) Common to CNCs

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
1st-	G227	G070	G070
2nd-	G235	C074	G074

#7	#6	#5	#4	#3	#2	#1	#0
		SFRA	SRVA	CTH1A	CTH2A		
		SFRB	SRVB	СТН1В	CTH2B		

(2) Output signals (CNC \rightarrow PMC)

(a) Series 16i

NOTE

*1 These signals are effective when M series.

(a) Series 30i

#0 #7 #6 #5 #4 #3 #2 #1 GR10 GR30 GR2O F034 (*1) (*1) (*1) **RGSPP RGSPM** F065 (*1) (*1) F076 RTAP

NOTE

*1 These signals are effective when M series.

(b) Series 15*i*

	#7	#6	#5	#4	#3	#2	#1	#0
F040				RTAP				
F155						RSPC	RSPM	RSPP

2.3.5 Sequence

For a rigid tapping sequence, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.11, "RIGID TAPPING."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A

 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.11, "RIGID TAPPING."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.8, "RIGID TAPPING."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63833EN-1
 Refer to Section 9.10, "RIGID TAPPING."

2.3.6 Related Parameters

	Parameter No		Description			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description			
	5210	5210	M code of rigid tapping command			
	5202#0		Whether to perform orientation (reference position return) when			
5606#6	(M series only)	5202#0	starting rigid tapping			
	3706#1,#0					
-	3707#1,0	-	Gear ratio between spindle and position coder, 1:1, 1:2, 1:4, 1:8			
5842	-	3720	Number of pulse of the position coder			
	5280	5280	Position gain of tapping axis at rigid tapping			
3065 to 3068	5281 to 5284	5281 to 5284	(16i /30i: No. 5284 is used for the T series only.)			
5605#1	-	-	Acc./Dec. type (Set to 1.)			
	5241	5241				
F744	5242	5242	Spindle maximum speed at rigid tapping			
5711	5243	5243	(16i: No. 5244 is used for the T series only.)			
	5244	5244				
5605#2	-	-				
5757	-	-	Chindle and of for determining an appeloration value for outling			
5886	-	-	Spindle speed for determining an acceleration value for cutting			
5889	-	-	feed on rigid tapping			
5892						
5605#2						
5751	5261	5261				
5884	5262	5262	Acc./Dec. time constant			
5887	5263	5263	(16i: No. 5264 is used for the T series only.)			
5890	5264	5264				
5893						
5605#2	_	_				
5752	_	_				
5885	_	_	FL speed for spindle and drilling axis acceleration/deceleration on			
5888	_	_	rigid tapping			
5891	_	_				
5894						
-	5200#4	5200#4	Override selection at extracting			
5883	5211	5211	Override value at extracting			
_	5201#2	5201#2	Time constant at extracting			
	5271 to 5274	5271 to 5274	(No. 5274 is used for the T series only.)			
1827	5300	5300	In-position width of tapping axis			
5875	5301	5301	In-position width of spindle			
1837	5310	5310	Allowable level of position error of tapping axis at moving			
	5341					
5876	5311	5311	Allowable level of position error of spindle at moving			
1829	5312	5312	Allowable level of position error of tapping axis at stop			
5877	5313	5313	Allowable level of position error of spindle at stop			
5853						
5856	5321	5321	Backlash of spindle			
5859	5322 to 5324	5322 to 5324	(16i: Nos.5322 to 5324, 30i: No. 5324 is used for the T series only.)			
5862	4000":	4000":	D. Construction of the Con			
3000#4	4000#4	4000#4	Reference position return direction on servo mode			
3002#5	4002#5	4002#5	Whether to enable the rotation direction signal (SFR/SRV) on servo mode			
3005#0	4005#0	4005#0	Setting of the velocity feedback method (Set to 1.)			

	Parameter No		Description		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	- Description		
3044 3045	4044 4045 4045		Velocity loop proportional gain on servo mode/spindle synchronous control (It is selected by input signal CTH1A/B.)		
3052 3053	4052 4053	4052 4053	Velocity loop integral gain on servo mode/spindle synchronous control (It is selected by input signal CTH1A/B.)		
3056 to 3059	4056 to 4059	4056 to 4059	Gear ratio between spindle and motor (It is selected by input signal CTH1A or CTH2A)		
3065 to 3068	4065 to 4068	4065 to 4068	Spindle position gain on servo mode/spindle synchronous control (It is selected by input signal CTH1A or CTH2A)		
3073	4073	4073	Grid shift amount on servo mode		
3074	4074	4074	Reference position return speed on servo mode		
3091	4091	4091	Position gain change ratio at reference position return time on servo mode		
3085	4085	4085	Motor voltage on servo mode/spindle synchronous control		
3099	4099	4099	Delay time for stable motor excitation		

NOTE

- 1 For the parameters related to detectors, see Section 1.3, "PARAMETERS RELATED TO DETECTORS" in the Part III.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part III.

2.3.7 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16i, in the four thousands for 30i, and in the three thousands for 15i) among the parameters related to rigid tapping. For details of other parameters, refer to the parameter manual of each CNC.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3000	4000	4000

#7	#6	#5	#4	#3	#2	#1	#0
			RETSV				

RETSV

Reference position return direction on servo mode (rigid tapping/spindle positioning)

- 0: The spindle performs a reference position return operation in the CCW(counterclockwise) direction.
- 1: The spindle performs a reference position return operation in the CW(clockwise) direction.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3002	4002	4002			SVMDRT					

SVMDRT

Whether to enable the rotation direction signal (SFR/SRV) function on servo mode (rigid tapping/spindle positioning)

0: Enables the rotation direction function.

If a move command from the CNC is positive (+).

- (a) The spindle rotates in the CCW direction when the input signal SFR (bit 5 of G70) = 1.
- (b) The spindle rotates in the CW direction when the input signal SRV (bit 4 of G70) = 1.
- 1: Disables the rotation direction function.

If a move command from the CNC is positive (+), the spindle rotates in the CCW direction when the input signal SFR = 1 or SRV = 1.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3005	4005	4005

#7	#6	#5	#4	#3	#2	#1	#0
							VCTLPC

VCTLPC

Sets the velocity feedback method.

0: Exercises velocity control with an estimated velocity only.

1: Uses a velocity calculated from the position coder signal to exercise velocity control.

Set to 1.

101	101	301
3044	4044	4044
3045	4045	4045

16:

15;

Velocity loop proportional gain on servo mode/spindle synchronous control (HIGH) $\,$ CTH1A=0 $\,$

Velocity loop proportional gain on servo mode/spindle synchronous control (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

30:

These parameters set a velocity loop proportional gain on servo mode (rigid tapping/spindle positioning) or spindle synchronous control. When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3052	4052	4052	Velocity loop integral gain on servo mode/spindle synchronous control (HIGH) CTH1A=0
3053	4053	4053	Velocity loop integral gain on servo mode/spindle synchronous control (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value : Depends on the motor model.

These parameters set a velocity loop integral gain on servo mode (rigid tapping/spindle positioning) or spindle synchronous control. When the input signal CTH1A = 0, (HIGH) is selected. When the input signal CTH1A = 1, (LOW) is selected.

NOTE

For velocity loop gain setting on spindle synchronous control and servo mode, the common parameters are used.

151	161	301
3056	4056	4056
3057	4057	4057
3058	4058	4058
3059	4059	4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767

Standard setting: 100

These parameters set the gear ratio of the spindle motor relative to the

spindle.

When the motor rotates 2.5 times, for every rotation of the spindle, for example, set 250 in the parameter.

NOTE

- 1 A parameter is selected by the input signals CTH1A and CTH2A. Ensure that the gear or clutch state corresponds to the input signals CTH1A and CTH2A. When the signals are not input correctly, the overcurrent alarm (spindle alarm 12) can be issued.
- When using a position coder, be sure to set this parameter. If this parameter is not set correctly, the velocity error excess alarm (spindle alarm 02), motor binding alarm (spindle alarm 31), or gear ratio parameter setting error alarm (spindle alarm 35) may be detected.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>		
3065	4065	4065	Spindle position gain on servo mode/spindle synchronous control (HIGH) CTH1A=0, CTH2A	\=0
3066	4066	4066	Spindle position gain on servo mode/spindle synchronous control (MEDIUM HIGH) CTH1A=0, CTH2A	\=1
3067	4067	4067	Spindle position gain on servo mode/spindle synchronous control (MEDIUM LOW) CTH1A=1, CTH2A	\=0
3068	4068	4068	Spindle position gain on servo mode/spindle synchronous control (LOW) CTH1A=1, CTH2A	\=1

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting value: 1000

These parameters set a position gain on servo mode (rigid

tapping/spindle positioning) or spindle synchronous control.

A parameter is selected according to the input signals CTH1A and

CTH2A.

NOTE

For velocity loop gain setting on spindle synchronous control and servo mode, the common parameters are used.

15*i* 16*i* 30*i* 3073 4073 4073

Grid shift amount on servo mode

Unit of data: 1 pulse $(=360^{\circ}/4096)$

Valid data range: 0 to 4095

Standard setting value: 0

This parameter is used to shift the reference position on servo mode

(rigid tapping/spindle positioning).

The reference position of the spindle is shifted in the CCW direction

by the specified number of pulses.

15*i* 16*i* 30*i* 3074 4074 4074

Reference position return speed on servo mode

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting value: 0

To perform a reference position return operation, set a reference

position return speed in this parameter.

15*i* 16*i* 30*i* 3085 4085 4085

Motor voltage on servo mode/spindle synchronous control

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 60

These parameters set a motor voltage on rigid tapping. Usually, set 60.

15*i* 16*i* 30*i* 3091 4091 4091

Position gain change ratio at reference position return time on servo mode

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 100

This parameter sets a position gain change ratio at reference position return time on servo mode (rigid tapping, spindle positioning, and so

forth).

NOTE

An overshoot can occur at reference position return time for a cause such as an excessively high reference position return speed and an excessively large spindle inertia. In this case, an overshoot can be avoided by setting a small value in this parameter.

15*i* 16*i* 30*i* 3099 4099

Delay time for stable motor excitation

Unit of data: 1ms Valid data range: 0 to 32767

Standard setting value: 0

This parameter sets a period of time required until motor excitation becomes stable on rigid tapping.

NOTE

In switching from the velocity control mode to rigid tapping mode, the stop time excessive error alarm can be issued intermittently.

This is because the excitation state of the spindle motor changes abruptly, and therefore a transient state occurs in the motor, thus moving the motor shaft slightly.

In such a case, set this parameter. In general, set a value from about 300 to 400 (300 to 400 msec).

2.3.8 Parameter Setting Procedure

(1) Gear ratio between the spindle and the motor

The loop gain constant parameter is not used in the αCi series (Serial) spindle system.

"Gear ratio between the spindle and the motor" parameter should be set instead of it.

Each parameter is selected according to the gear selection signal (CTH1A/B, CTH2A/B).

[1st. sp]

Gear signal		Parameter No.		
CTH1A	CTH2A	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
0	0	3056 (S1)	4056 (S1)	4056 (S1)
0	1	3057 (S1)	4057 (S1)	4057 (S1)
1	0	3058 (S1)	4058 (S1)	4058 (S1)
1	1	3059 (S1)	4059 (S1)	4059 (S1)

[2nd. sp]

Gear signal			Parameter No.	
CTH1B	CTH2B	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
0	0	3056 (S1)	4056 (S2)	4056 (S2)
0	1	3057 (S1)	4057 (S2)	4057 (S2)
1	0	3058 (S1)	4058 (S2)	4058 (S2)
1	1	3059 (S1)	4059 (S2)	4059 (S2)

(2) Position gain

In rigid tapping, the tapping axis and spindle are controlled to be synchronized. So, the position gains of the tapping axis and spindle must be set to the same value.

[Series 16*i*]

The position gain parameter of the tapping axis in the rigid tapping is selected as follows according to the gear selection signal.

Standard machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and machining [M series] with surface speed constant option: GR2, GR1

Second spindle of turning [T series]: GR21(Multi-spindle control option is needed)

Standard machining [M series]

Gear signal			Parameter No.
GR10	GR2O	GR3O	Parameter No.
			5280 ^(*1)
1	0	0	5281
0	1	0	5282
0	0	1	5283

Turning [T series] and machining [M series] with surface speed constant

	Gear si	gnal	Paramo	otor No
1st	. sp	2nd. sp	Parameter No.	
GR1	GR2	GR21	Т	М
			528	O ^(*1)
0	0	0	52	81
1	0	1	52	82
0	1		52	83
1	1		5284	5283

NOTE

*1 When this parameter is "0", each gear parameter becomes valid.

When this parameter is not "0", each gear parameter becomes invalid, and this parameter is always used.

The position gain parameter of the spindle in the rigid tapping is selected as follows according to the gear selection signal (CTH1A/B, CTH2A/B). (This is common T series and M series)

[1st. sp]

Gear signal		Parameter No.
CTH1A	CTH2A	Parameter NO.
0	0	4065 (S1)
0	1	4066 (S1)
1	0	4067 (S1)
1	1	4068 (S1)

[2nd. sp]

Gear	signal	Parameter No.
CTH1B	CTH2B	Farailletei NO.
0	0	4065 (S2)
0	1	4066 (S2)
1	0	4067 (S2)
1	1	4068 (S2)

! CAUTION

Take care to input the gear selection signal GR1, GR2, GR21, GR10, GR20, GR30 and CTH1A/B, CTH2A/B according to the real gear state in order to get the same position gain of the tapping axis and that of the spindle, because GR1, GR2, GR21, GR10, GR20, GR30 and CTH1A/B, CTH2A/B are inputted independently.

[Series 30i]

The position gain parameter of the tapping axis in the rigid tapping is selected as follows according to the gear selection signal.

Standard machining[M series]: GR3O, GR2O, GR1O

Turning [T series] and machining [M series] with surface speed

constant option: GR2, GR1

Second spindle: GR22, GR21(Multi-spindle control option is needed)

Turning [T series] and machining [M series] with

Standard machining [M series]

G	ear sign		
GR10	GR2O	GR3O	Parameter No.
1	0	0	5231
0	1	0	5232
0	0	1	5233

surface speed constant						
Gear signal		Parameter No.				
GR1 GR2	GR21		М			
		5280 ^(*1)				
0	0	5281				
1	0	5282				
0	1	5283				
1	1	E204 E202				

^{*} First spindle: GR1, GR2 / Second spindle: GR21, GR22

NOTE

*1 When this parameter is "0", each gear parameter becomes valid.

When this parameter is not "0", each gear parameter becomes invalid, and this parameter is always used.

The position gain parameter of the spindle in the rigid tapping is selected as follows according to the gear selection signal (CTH1A/B, CTH2A/B). (This is common T series and M series)

[1st. sp]

Gear signal		Parameter No.
CTH1A	CTH2A	Farailleter No.
0	0	4065 (S1)
0	1	4066 (S1)
1	0	4067 (S1)
1	1	4068 (S1)

[2nd. sp]

Goar	eianal	
Gear signal CTH1B CTH2B		Parameter No.
0	0	4065 (S2)
0	1	4066 (S2)
1	0	4067 (S2)
1	1	4068 (S2)

⚠ CAUTION

Take care to input the gear selection signal GR1, GR2, GR21, GR22, GR10, GR20, GR30 and CTH1A/B, CTH2A/B according to the real gear state in order to get the same position gain of the tapping axis and that of the spindle, because GR1, GR2, GR21, GR22, GR10, GR20, GR30 and CTH1A/B, CTH2A/B are inputted independently.

[Series 15*i*]

In the rigid tapping, the same parameter address data is used for the position gain of the tapping axis and the spindle.

Each position gain is selected as follows according to the gear selection signal (CTH1A, CTH2A).

,				
Parameter No.	Gear signal			
Parameter No.	CTH2A	CTH1A		
3065	0	0		
3066	1	0		
3067	0	1		
3068	1	1		

(3) Acceleration/deceleration time constant

[Series 16*i*]

(1) Each parameter can be set for each gear and is selected according to the gear selection signal.

By setting the following parameter, the different time constant between the cutting in and cutting out (extracting) becomes available.

5201 #2

0: The same time constant between cutting in and out. (No. 5261 to 5264)

1: The different time constant between cutting in and out. Cutting in: No. 5261 to 5264 Cutting out: No. 5271 to 5274

Standard Machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and Machining [M series] with surface speed

constant: GR2, GR1

2nd. sp of Turning [T series] : GR21 (Multi-spindle control option is needed)

Standard machining [M series]

GR10	Gear signal O GR2O GR3O		Time constant (Cutting in) Parameter No.	Time constant (Cutting out) Parameter No.	Spindle max. speed at rigid tapping Parameter No.					
1	0	0	5261	5271	5241					
0	1	0	5262	5272	5242					
0	0	1	5263	5273	5243					

Turning [T series] and machining [M series] with surface speed constant

Gear signal		nal	Time constant	Time constant	Spindle max. speed at		
1st	1st. sp 2nd. sp ((Cutting in) Parameter No.	(Cutting out) Parameter No.	_	rigid tapping Parameter No.	
GR1	GR2	GR21	Parameter No.	Parameter No.	T/TT	М	
0	0	0	5261	5271	5241	5241	
1	0	1	5262	5272	5242	5242	
0	1	-	5263	5273	5243	5243	
1	1	-	5264 ^(*1)	5274 ^(*1)	5244 ^(*1)	=	

NOTE

*1 This is not available for Machining (M series).

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

(2) The override at extracting.

5200 #4

0: The override at extracting is not valid.

1: The override at extracting is valid. (Set override value at No. 5211)

[Series 30*i*]

(1) Each parameter can be set for each gear and is selected according to the gear selection signal.

By setting the following parameter, the different time constant between the cutting in and cutting out (extracting) becomes available.

5201 #2

0: The same time constant between cutting in and out. (No. 5261 to 5264)

1: The different time constant between cutting in and

Cutting in : No. 5261 to 5264 Cutting out: No. 5271 to 5274

Standard Machining [M series]: GR3O, GR2O, GR1O

Turning [T series] and Machining [M series] with surface speed

constant: GR2, GR1

2nd. sp : GR21, GR21 (Multi- spindle control option is needed)

Standard machining [M series]

G	Gear signal		Time constant	Time constant	Spindle max. speed
GR10	GR2O	GR3O	(Cutting in) Parameter No.	(Cutting out) Parameter No.	at rigid tapping Parameter No.
1	0	0	5261	5271	5241
0	1	0	5262	5272	5242
0	0	1	5263	5273	5243

Turning [T series] and machining [M series] with surface speed constant

Gear	Gear signal Cutting in) Parameter No.		Time constant (Cutting out) Parameter No.	Spindle max. speed at rigid tapping Parameter No.		
GRs1*	GRs2*	Parameter No.	Parameter No.	T	М	
0	0	5261	5271	5241	5241	
1	0	5262	5272	5242	5242	
0	1	5263	5273	5243	5243	
1	1	5264 ^(*1)	5274 ^(*1)	5244 ^(*1)	-	

^{*} First spindle: GR1, GR2 / Second spindle: GR21, GR22

NOTE

*1 This is not available for Machining (M series).

(2) The override at extracting.

5200 #4

0: The override at extracting is not valid.

1: The override at extracting is valid. (Set override value at No. 5211)

[Series 15*i*]

(1) Acc./Dec. type

5605 #1 0: Exponential type Acc./Dec.

1: Linear type Acc./Dec. (Standard setting)

NOTE

Usually, linear type acceleration/deceleration (bit 1 of No. 5605 = 1) is used.

(2) Set Acc./Dec. the time constant of the rigid tapping mode.

<1> The time constant is a fixed value if bit 2 of parameter No. 5605 = 0.

Acc./Dec. time constant	5751		
Spindle speed	5757		

<2> When bit 2 of parameter No.5605 is set to 1, one of the four acceleration/deceleration time constants is selected, depending on the spindle speed.

	Spindle speed	Acc./Dec. time constant
Gear 1	5886	5884
Gear 2	5889	5887
Gear 3	5892	5890
Gear 4	-	5893

2.3.9 Adjustment Procedure

(1) Parameters used for adjustment

The table below lists and describes the parameters used for adjusting rigid tapping.

Parameter No.(FS16i)	Description
5241 to 5244	Maximum spindle speed on rigid tapping (Depends on the GR signal. 5244 is for the T series only.)
5261 to 5264	Acceleration/deceleration time constant on rigid tapping (Depends on the GR signal. 5264 is for the T series only.)
5280 to 5284	Position gain of tapping axis on rigid tapping (5280 is for all gears. 5281 to 5284 depend on the GR signal. 5284 is for T series only.)
4065 to 4068	Spindle position gain on rigid tapping (depends on CTH1 and CTH2 signals)
4044 to 4045	Velocity proportional gain on rigid tapping (depends on CTH1A signal)
4052 to 4053	Velocity integral gain on rigid tapping (depends on CTH1A signal)
4085	Motor voltage on rigid tapping (Set to 60.)
4099	Delay time for motor excitation (Specify a value around 300 to 400.)

(2) Spindle data used for adjustment

For this item, see Item 2.3.9-(2), "Spindle data used for adjustment", in Part I.

(3) Adjustment procedure

For this item, see Item 2.3.9-(3), "Adjustment procedure", in Part I.

2.3.10 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.3.10, "Diagnosis (Diagnosis Screen)", in Part I.

2.3.11 Alarm

For this subsection, see Subsection 2.3.11, "Alarm", in Part I.

2.4 SPINDLE SYNCHRONOUS CONTROL

Optional function

2.4.1 Start-up Procedure

2.4.2 Overview

For this subsection, see Subsection 2.5.2, "Overview", in Part I.

2.4.3 System Configuration

The system configurations that enable the use of the spindle synchronous control function are shown below.

(1) When the αi position coder is used

NOTE

The spindle sensor (separate detector) usable with the αCi series spindle amplifier is a position coder only.

2.4.4 Explanation of Operation

For this subsection, see Subsection 2.5.4, "Explanation of Operation", in Part I.

2.4.5 I/O Signals (CNC \leftrightarrow PMC)

(1) Address list of input signals (PMC \rightarrow CNC)

	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G038	G038					SPPHS	SPSYC		
Common to all axes	G032	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
Common to all axes	G033	G033			SSGN		R12I	R11I	R10I	R09I
										_
1st-	G070	G070			SFRA	SRVA	CTH1A	CTH2A		
2nd-	G074	G074			SFRB	SRVB	СТН1В	CTH2B		
1st-	G071	G071			INTGA					
2nd-	G075	G075			INTGB					

(2) Details of input signals (PMC \rightarrow CNC)

With the αCi series, the signals indicated in the item above are valid. For details of each signal, see Item 2.5.5-(2), "Details of input signals (PMC \rightarrow CNC)", in Part I.

(3) Address list of output signals (CNC \rightarrow PMC)

	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	F044	F044				SYCAL	FSPPH	FSPSY		
						•				
1st-	F045	F045					SARA			
2nd-	F049	F049					SARB			

(4) Details of output signals (CNC \rightarrow PMC)

With the αCi series, the signals indicated in the item above are valid. For details of each signal, see Item 2.5.5-(4), "Details of output signals (CNC \rightarrow PMC)", in Part I.

2.4.6 Examples of Sequences

For this subsection, see Subsection 2.5.6, "Examples of Sequences", in Part I.

2.4.7 Related Parameters

Parame	eter No.	Description						
16 <i>i</i>	16 <i>i</i>	Description						
4800#0	-	Direction of rotation of the 1st spindle motor while spindle synchronous control is applied						
4800#1	1	Direction of rotation of the 2nd spindle motor while spindle synchronous control is applied						
-	4801#0	Direction of rotation of each spindle motor while spindle synchronous control is applied						
4810	4810	Error pulse difference between the two spindles for turning on the spindle phase synchronous completion signal						
4811	4811	Error pulse difference between the two spindles for issuing an alarm on spindle synchronous control						
4002#6	4002#6	Whether to enable the rotation direction signal (SFR/SRV) function on spindle synchronous control						
4005#0	4005#0	Setting of the velocity feedback method						
4006#1	4006#1	Gear ratio increment system						
4006#3	4006#3	Setting for disabling automatic one-rotation signal detection at spindle synchronous control mode switching time						
4032	4032	Acceleration used for spindle synchronous control (The same value must be set for both the 1st and 2nd spindles.)						
4033	4033	Spindle synchronous speed arrival level						
4034	4034	Shift amount for spindle phase synchronous control						
4035	4035	Compensation data for spindle phase synchronous control						
4044 4045	4044 4045	Velocity proportional gain on spindle synchronous control (A parameter is selected by the CTH1A PMC input signal.)						
4052 4053	4052 4053	Velocity integral gain on spindle synchronous control (A parameter is selected by the CTH1A PMC input signal.)						
4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data (A parameter is selected by the CTH1A and CTH2A PMC input signals.)						
4065 to 4068	4065 to 4068	Position gain on spindle synchronous control (The same value must be specified for both the 1st and 2nd spindles.) (A parameter is selected by the CTH1A and CTH2A PMC input signals.)						
4085	4085	Motor voltage on spindle synchronous control						
4336	4336	Magnetic flux switching point used for calculating an acceleration/deceleration time constant used on spindle synchronous control (The same value must be specified for both the 1st and 2nd spindles.)						
4340	4340	Bell-shaped acceleration/deceleration time constant on spindle synchronous control (The same value must be specified for both the first and second spindles.)						

NOTE

- 1 For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part III.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part III.

2.4.8 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16*i* and 30*i*) among the parameters related to spindle synchronous control. For details of other parameters, refer to the parameter manual of each CNC.

- (a) For Series 16i/18i/21i

 "FANUC Series 16i/18i/21i-MODEL B

 CONNECTION MANUAL (FUNCTION): B-63523EN-1

 Refer to Section 9.12, "SPINDLE SYNCHRONOUS CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.13, "SPINDLE SYNCHRONOUS CONTROL."
- (c) For Series 0*i*"FANUC Series 0*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63833EN-1
 Refer to Section 9.11, "SPINDLE SYNCHRONOUS CONTROL."

16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
4002	4002		SYCDRT						

SYCDRT Whether to enable the rotation direction signal (SFR/SRV) function on spindle synchronous control

0: Enables the rotation direction function.

If a move command from the CNC is positive (+),

- (a) The spindle rotates in the CCW direction when the input signal SFR (bit 5 of G70) = 1.
- (b) The spindle rotates in the CW direction when the input signal SRV (bit 4 of G70) = 1.
- 1: Disables the rotation direction function.

If a move command from the CNC is positive (+), the spindle rotates in the CCW direction when the input signal SFR = 1 or SRV = 1.

16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0	
4005	4005								VCTLPC	

VCTLPC Sets the velocity feedback method.

- 0: Exercises velocity control with an estimated velocity only.
- 1: Uses a velocity calculated from the position coder signal to exercise velocity control.

Set to 1.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
4006	4006					SYCREF		GRUNIT	

GRUNIT

Sets a gear ratio setting resolution:

0: 1/100 unit 1: 1/1000 unit

Select a gear ratio data setting resolution from the following:

- (a) Resolution based on motor speed increased by a factor of 100 relative to one spindle rotation
- (b) Resolution based on motor speed increased by a factor of 1000 relative to one spindle rotation

Depending on the setting of this parameter, the increment system of the parameters indicated in the table below changes.

Parame	eter No.	Description			
16 <i>i</i>	30 <i>i</i>	Description			
4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data			

NOTE

- 1 Usually, use the 1/100 unit (setting "0").
- When the 1/100 unit is set as the gear ratio setting resolution (with the bit set to 0), a steady-state synchronous error may be indicated due to the fraction of the gear ratio. In such a case, the synchronous error can be

improved when the 1/1000 unit is set as the gear ratio setting resolution (with the bit set to 1).

SYCREF

Setting for function performing automatic detection of the one-rotation signal on spindle synchronous control

0: Automatic detection of the one-rotation signal carried out

1: Automatic detection of the one-rotation signal not carried out. (When spindle phase synchronization is not carried out)

When the mode is switched to spindle synchronous control mode after power-on, the two spindles automatically perform a one-rotation signal detection operation. So, the spindles automatically make two to three turns even if such turns are not intended.

This operation is required because the one-rotation signal must be detected to enable spindle phase synchronous control.

If the two spindles are mechanically connected to disable each spindle from performing a one-rotation signal detection operation, or if spindle phase synchronous control is not exercised, the operation above can be disabled by setting this bit to 1.

When this parameter is set to 1, check that the one-rotation signal has been detected for both spindles (output signal PC1DTA = 1) before applying the spindle phase synchronous control signal (SPPHS).

If the one-rotation signal is not detected, specify a speed of several ten min⁻¹ or higher in spindle synchronous control mode, and wait until the one-rotation signal is detected. (See sequence example (4).)

16*i* 30*i*4032 4032

Acceleration at spindle synchronous control

Unit of data: 1min⁻¹/sec Valid data range: 0 to 32767

Standard setting: 0

This parameter sets an acceleration value for linear acceleration/deceleration when the synchronous speed command for spindle synchronous control is changed.

NOTE

- 1 Set exactly the same data for 1st spindle and 2nd spindle. When different data is set, synchronization between the two spindles is not guaranteed.
- 2 When this parameter is set to 0, the spindle doesn't accelerate or decelerate, so, be sure to set proper value in this parameter.

16*i* 30*i* 4033

Spindle synchronous speed arrival level

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting: 10

For the synchronous speed command at spindle synchronous control, if the error of the respective spindle motor speeds are within the setting level, the spindle synchronous control complete signal (FSPSY) becomes "1".

(13131) 000

16*i* 30*i*4034 4034

Shift amount at spindle phase synchronous control

Unit of data: 1 pulse unit (360°/4096)

Valid data range: 0 to 4095

Standard setting: 0

Sets the shift amount from the reference point at spindle phase

synchronous control (one-rotation signal).

16*i* 30*i* 4035

Spindle phase synchronous compensation data

Unit of data: 1 pulse/2msec Valid data range: 0 to 4095 Standard setting: 10

This parameter reduces speed fluctuations when aligning phase of spindles in spindle phase synchronous control.

When this parameter is "0", since the phase alignment amount is only issued once, the position error quickly becomes large, and there are large speed changes on phase alignment.

It is possible to perform smooth phase alignments through issuing separate commands for phase alignment amounts for the number of 2 msec pulses set in this parameter.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

16 <i>i</i>	30 <i>i</i>		
4044	4044	Velocity loop proportional gain on servo mode/on spindle synchronous contr	ol
4044	7077	(HIGH) CTH1A=	:0
4045	4045	Velocity loop proportional gain on servo mode/on spindle synchronous contr	ol
4043		(LOW) CTH1A=	:1

Unit of data:

Valid data range: 0 to 32767

Standard setting: Varies with the motor model.

> This parameter sets a velocity loop proportional gain on servo mode (rigid tapping/spindle positioning) or spindle synchronous control. It is selected HIGH when CTH1A=0 of input signal, and It is selected

LOW when CTH1A=1 of input signal.

16 <i>i</i>	30 <i>i</i>	
4052	4052	Velocity integral gain on servo mode/on spindle synchronous control (HIGH) CTH1A=0
4053	4053	Velocity integral gain on servo mode/on spindle synchronous control (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: Depend on motor model.

This parameter sets a velocity loop integral gain on servo mode (rigid

tapping/spindle positioning) or spindle synchronous control.

It is selected HIGH when CTH1A=0 of input signal, and It is selected LOW when CTH1A=1 of input signal.

NOTE

For velocity loop gain setting on spindle synchronous control and servo mode, the common parameters are used.

161	301		
4056	4056	Gear ratio (HIGH)	CTH1A=0, CTH2A=0
4057	4057	Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
4058	4058	Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
4059	4059	Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767 Standard setting: 100

> These parameters set the gear ratio of the spindle motor to the spindle. When the motor rotates 2.5 times for each turn of the spindle, for

example, set 250 in the parameter.

NOTE

- 1 A parameter is selected by the input signals CTH1A and CTH2A. Ensure that the gear or clutch state corresponds to the input signals CTH1A and CTH2A. When the signals are not input correctly, the overcurrent alarm (spindle alarm 12) can be issued.
- When using a position coder, be sure to set this parameter. If this parameter is not set correctly, the velocity error excess alarm (spindle alarm 02), motor binding alarm (spindle alarm 31), or gear ratio parameter setting error alarm (spindle alarm 35) may be detected.

16 <i>i</i>	30 <i>i</i>	
4065	4065	Position gain on servo mode/on spindle synchronous control (HIGH)
4000	4000	CTH1A=0, CTH2A=0
4066	4066	Position gain on servo mode/on spindle synchronous control (MEDIUM HIGH)
	.000	CTH1A=0, CTH2A=1
4067	4067	Position gain on servo mode/on spindle synchronous control (MEDIUM LOW)
		CTH1A=1, CTH2A=0
4068	4068	Position gain on servo mode/on spindle synchronous control (LOW)
.000	1000	CTH1A=1, CTH2A=1

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting: 1000

This sets position gain on servo mode (rigid tapping/spindle positioning). It is selected by CTH1A or CTH2A of input signal.

NOTE

For velocity loop gain setting on spindle synchronous control and servo mode, the common parameters are used.

16*i* 30*i*4085 4085

Motor voltage setting on spindle synchronous control

Unit of data: 1% Valid data range: 0 to 100 Standard setting: 60

Set a motor voltage for spindle synchronous control.

Usually, set to 60.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

16*i* 30*i*4336 4336

Acceleration switch point on spindle synchronous control

Unit of data Valid data range :

1min⁻¹ 0 to 32767

Standard setting:

This parameter sets a switching speed for acceleration on spindle synchronous control.

Area above the set speed
Linear acceleration/deceleration is performed according to the acceleration value set in the acceleration parameter (No. 4032) on spindle synchronous control.

Area below the set speed Acceleration changes according to the torque characteristics of the spindle motor.

NOTE

- 1 Set the same data for the first spindle and second spindle. If different data is set, synchronization between the two spindles is not guaranteed.
- 2 When this parameter is set to 0, linear acceleration/deceleration is performed.

16*i* 30*i* 4340

Bell-shaped acceleration/deceleration time constant for spindle synchronous control

Unit of data: 1msec Valid data range: 0 to 512 Standard setting: 0

> Set a bell-shaped acceleration/deceleration time constant used when the specified synchronous speed for spindle synchronous control is changed.

> This parameter is applied to a move command after the acceleration/deceleration time constant at spindle synchronous control set in parameter No. 4032 is applied. Consequently, linear acceleration/deceleration is performed according to the time constant set in this parameter when 0 is set in parameter No. 4032.

When this parameter is set, the spindle synchronous speed control completion signal (FSPSY), output when the synchronous speed is first reached after the spindle synchronous control mode is entered, is delayed by the set time.

NOTE

Set the same data for the first spindle and second spindle. If different data is set, synchronization between the two spindles is not guaranteed.

2.4.9 Number of Error Pulses in Spindle Synchronous Control

For this subsection, see Subsection 2.5.9, "Number of Error Pulses in Spindle synchronous Control", in Part I.

2.4.10 Specifying a Shift Amount for Spindle Phase Synchronous Control

For this subsection, see Subsection 2.5.10, "Specifying a Shift Amount for Spindle Phase Synchronous Control", in Part I.

2.4.11 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.5.11, "Diagnosis (Diagnosis Screen)", in Part I.

2.4.12 Alarm

For this subsection, see Subsection 2.5.12, "Alarm", in Part I.

2.5 SPECIFICATIONS COMMON TO ALL OPERATION MODES

2.5.1 Overview

This section describes the I/O signals (CNC \leftrightarrow PMC), parameters, diagnosis signals, and alarms common to all operation modes.

2.5.2 List of I/O Signals (CNC \leftrightarrow PMC)

This subsection provides a list of the I/O signals related to spindle speed control only. For details of each signal, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A

 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3, "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63833EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

For details of the I/O signals common to the CNCs, see Chapter 3, "I/O SIGNALS (CNC \leftrightarrow PMC)", in Part I.

(1) Input signals (PMC → CNC)

(a) Series 16i

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G027				*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
Common to all axes	G028						GR2	GR1	
Common to all axes	G029		*SSTP	SOR	SAR				
Common to all axes	G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
1st-	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
2nd-	G034	R08I2	R07I2	R06I2	R05l2	R04I2	R03I2	R02I2	R01I2
1st-	G033	SIND	SSIN	SGN		R12I	R11I	R10I	R09I
2nd-	G035	SIND2	SSIN2	SGN2		R12I2	R11I2	R10I2	R09I2

NOTE

*1 These signals are valid in multi-spindle control.

(b) Series 30*i*

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G027				*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
Common to all axes	G028						GR2	GR1	
Common to all axes	G029		*SSTP	SOR	SAR	•			
Common to all axes	G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
1st-	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
2nd-	G034	R08I2	R07I2	R06I2	R05I2	R04I2	R03I2	R02I2	R01I2
1st-	G033	SIND	SSIN	SGN		R12I	R11I	R10I	R09I
2nd-	G035	SIND2	SSIN2	SGN2		R12I2	R11I2	R10I2	R09I2
			•	•	-		•		

NOTE

*1 These signals are valid in multi-spindle control.

(c) Series 15*i*

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G005							FIN	
							•		-
1st-	G024	RI7A	RI6A	RI5A	RI4A	RI3A	RI2A	RI1A	RI0A
2nd-	G232	RI7B	RI6B	RI5B	RI4B	RI3B	RI2B	RI1B	RI0B
1st-	G025	RISGNA			RI12A	RI11A	RI10A	RI9A	RI8A
2nd-	G233	RISGNB			RI12B	RI11B	RI10B	RI9B	RI8B
			-	'					
1st-	G026		GS4A	GS2A	GS1A				
2nd-	G272		GS4B	GS2B	GS1B				
					·				

(d) Common to CNCs

Comm	on to	CNCs									
	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070	MRDYA		SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA (*1)
2nd-	G235	G074	G074	MRDYB		SFRB	SRVB	СТН1В	CTH2B	TLMHB	TLMLB (*1)
					•	-		-			
1st-	G226	G071	G071							*ESPA	ARSTA
2nd-	G234	G075	G075							*ESPB	ARSTB
1st-	G228	G073	G073						MPOFA		
2nd-	G236	G077	G077						MPOFB		

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

NOTE

*1 The signal functions of the αCi series differ from those of the αi series. For details, see Chapter 3, "I/O SIGNALS (CNC \leftrightarrow PMC)", in Part III.

(2) Output signals (CNC \rightarrow PMC)

(a) Series 16i

F001
F007
F022
F023
F024
F025
F034
F036
F037

#7	#6	#5	#4	#3	#2	#1	#0
			ENB				
					SF		
S07	S06	S05	S04	S03	S02	S01	S00
S15	S14	S13	S12	S11	S10	S09	S08
S23	S22	S21	S20	S19	S18	S17	S16
S31	S30	S29	S28	S27	S26	S25	S24
					GR30 (*1)	GR2O (*1)	GR10 (*1)
R08O	R070	R06O	R05O	R040	R03O	R02O	R010
				R120	R110	R100	R09O

NOTE

1* These signals are valid with the M series only.

(b) Series 30*i*

F001
F007
F022
F023
F024
F025
F034
F036
F037

;	#7	#6	#5	#4	#3	#2	#1	#0
				ENB				
						SF		
5	307	S06	S05	S04	S03	S02	S01	S00
	S15	S14	S13	S12	S11	S10	S09	S08
	S23	S22	S21	S20	S19	S18	S17	S16
	331	S30	S29	S28	S27	S26	S25	S24
						GR30 (*1)	GR2O (*1)	GR10 (*1)
R	080	R070	R06O	R05O	R040	R03O	R02O	R010
					R120	R110	R100	R09O

NOTE

1* These signals are valid with the M series only.

(c) Series 15*i*

(-,				#7	#6	#5	#4	#3	#2	#1	#0
	Common to	all axes	F008		1					SF	
	Common to		F020	S 7	S6	S5	S4	S3	S2	S1	S0
	Common to	all axes	F021	S15	S14	S13	S12	S11	S10	S09	S08
	Common to	all axes	F022	S23	S22	S21	S20	S19	S18	S17	S16
	Common to	all axes	F023	S31	S30	S29	S28	S27	S26	S25	S24
	Common to	all axes	F045			SRSRDY					
					1			<u>I</u>			<u> </u>
		1st-	F010	RO7A	RO6A	RO5A	RO4A	RO3A	RO2A	RO1A	RO0A
		2nd-	F320	RO7B	RO6B	RO5B	RO4B	RO3B	RO2B	RO1B	RO0B
		1st-	F11	RO15A	RO14A	RO13A	RO12A	RO11A	RO11A	RO10A	RO9A
		2nd-	F321	RO15B	RO14B	RO13B	RO12B	RO11B	RO11B	RO10B	RO9B
		1st-	F014	MR7A	MR6A	MR5A	MR4A	MR3A	MR2A	MR1A	MR0A
		2nd-	F324	MR7B	MR6B	MR5B	MR4B	MR3B	MR2B	MR1B	MR0B
		1st-	F015	MR15A	MR14A	MR13A	MR12A	MR11A	MR10A	MR9A	MR8A
		2nd-	F325	MR15B	MR14B	MR13B	MR12B	MR11B	MR10B	MR9B	MR8B
		1st-	F234	SSPD7A	SSPD6A	SSPD5A	SSPD4A	SSPD3A	SSPD2A	SSPD1A	SSPD0A
		2nd-	F250	SSPD7B	SSPD6B	SSPD5B	SSPD4B	SSPD3B	SSPD2B	SSPD1B	SSPD0B
		1st-	F235	SSPD15A	SSPD14A	SSPD13A	SSPD12A	SSPD11A	SSPD10A	SSPD9A	SSPD8A
		2nd-	F251	SSPD15B	SSPD14B	SSPD13B	SSPD12B	SSPD11B	SSPD10B	SSPD9B	SSPD8B
		1st-	F341								SRRDYA
		2nd-	F342								SRRDYB
(d) Con	nmon to										
	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045		TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
2nd-	F245	F049	F049		TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
4.51	E004	E047	E047							1	DC4DTA
1st-	F231	F047	F047								PC1DTA
2nd-	F247	F051	F051		1	1	1	1			PC1DTB

2.5.3 Parameters

This subsection describes those parameters that are common to all operation modes by dividing them into several types.

NOTE

For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part III.

(1) List of parameters specific to spindle motor driving

This item provides a list of the motor parameters specific to spindle motor driving. Usually, the settings of these parameters need not be changed. Use the values indicated on a parameter table for each motor model without modification.

	Parameter No.	_	Deparintion
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3011#3	4011#3	4011#3	Sets the number of motor polarities.
3011#4	4011#4	4011#4	Sets a maximum output for acceleration/deceleration.
3011#7	4011#7	4011#7	Sets the number of motor polarities.
3012#2,#1,#0	4012#2,#1,#0	4012#2,#1,#0	Sets a PWM carrier frequency.
3013#6 to #2	4013#6 to #2	4013#6 to #2	Sets current dead-band data.
3020	4020	4020	Maximum motor speed
3080	4080	4080	High-speed area regenerative power limit/regenerative power limit
3083	4083	4083	Motor voltage on velocity control motor
3100	4100	4100	Base speed for motor output specification
3101	4101	4101	Torque limitation value for motor output specification
3102	4102	4102	Excitation voltage saturation speed with no load
3103	4103	4103	Base speed limit ratio
3104	4104	4104	Current loop proportional gain
3105	4105	4105	Current loop integral gain
3106	4106	4106	D-axis current loop gain
3107	4107	4107	Q-axis current loop gain
3108	4108	4108	Q-axis current deviation limitation coefficient
3109	4109	4109	Filter time constant in voltage command saturation processing
3110	4110	4110	Current conversion constant
3111	4111	4111	Secondary current coefficient
3112	4112	4112	Voltage command saturation decision level/PWM command clamp value
3113	4113	4113	Slip constant
3115	4115	4115	PWM command clamp value at deceleration time
3116	4116	4116	Motor leakage constraint
3117	4117	4117	Voltage compensation coefficient for a high-speed area in steady
3117	4117	4117	state/motor voltage coefficient in steady state
3118	4118	4118	Voltage compensation coefficient for a high-speed area at deceleration
3110	7110	7110	time/motor voltage coefficient at deceleration time
3119	4119	4119	Time constant for excitation current change at deceleration time/time
		7110	constant for excitation current change
3120	4120	4120	Dead-band compensation data
3127	4127	4127	Load meter indication value at maximum output time
3128	4128	4128	Compensation coefficient between the specification and true
3120	7120	7120	base/maximum torque curve compensation coefficient

Parameter No.			Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3130	4130	4130	Current loop proportional gain velocity coefficient/current phase delay compensation constant
3131	4131	4131	Dead-band compensation hysteresis
3133	4133	4133	Motor model code
3134	4134	4134	Motor overheat level (2 words)

(2) List of parameters related to alarm detection

This item provides a list of the parameters related to alarm detection conditions.

	Parameter No		Description				
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description				
3009#2	4009#2	4009#2	Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued				
3086	4086	4086	Gear ratio parameter setting error alarm (spindle alarm 35) detection level				
3088	4088	4088	Velocity error excess detection level when the motor is bound				
3089	4089	4089	Velocity error excess detection level when the motor is rotating				
3090	4090	4090	Overload detection level				
3123	4123	4123	Short-time overload detection period				

(3) Other parameters

This item provides a list of the parameters common to all operation modes except the parameters listed in Items (1) and (2) above.

	Parameter No		Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
	3706#1,#0	_	Gear ratio between the spindle and position coder (cases of $\times 1$, $\times 2$, $\times 4$, $\times 8$)
5602#3	_		Whether to indicate an alarm detected by the spindle amplifier (Usually, set 0.)
5807#0			Enables/disables the spindle alarms (SPxxxx) of all spindles. (Usually, set 0.)
5842	_	3720	Number of position coder pulses
5850	_		Spindle number selected at power-on/reset time
3001#0	4001#0	4001#0	Whether to use the MRDY signal (machine ready signal)
3002#4	4002#4	4002#4	SM pin output data selection
3005#0	4005#0	4005#0	Setting of the velocity feedback method
3006#1	4006#1	4006#1	Gear ratio increment system
3006#2	4006#2	4006#2	Sets the unit of speed.
3009#4	4009#4	4009#4	Whether to output the load detection signal (LDT1A) during acceleration/deceleration
3019#7	4019#7	4019#7	Automatic parameter setting function
3020	4020	4020	Maximum motor speed
3022	4022	4022	Speed arrival detection signal
3023	4023	4023	Speed detection level
3024	4024	4024	Speed zero detection level
3025	4025	4025	Torque limitation value.
3026	4026	4026	Load detection level 1
3056	4056	4056	Gear ratio (High)
3057	4057	4057	Gear ratio (Medium High)
3058	4058	4058	Gear ratio (Medium Low)
3059	4059	4059	Gear ratio (Low)
3078	4078	4078	Gear switch timer
3095	4095	4095	Speedometer output voltage adjustment value
3121	4121	4121	Torque change time constant (torque command filter time constant)

2.5.4 Details of parameters

This subsection details the serial spindle parameters (in the four thousands for 16i, in the four thousands for 30i, and in the three thousands for 15i) among the parameters common to all operation modes. For details of other parameters, refer to the parameter manual of each CNC.

(1) List of parameters specific to spindle motor driving

Usually, the settings of the motor parameters specific to spindle motor driving need not be changed. Their details are omitted.

(2) List of parameters related to alarm detection

This item details the parameters related to alarm detection conditions.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3009	4009	4009						ALSP		

ALSP Motor power turn-off method when serial data transfer error (spindle alarm 24) is issued

0: Turns off the power after the motor is decelerated and stopped.

1: Turns off the power to the motor immediately.

Set this parameter to 1 to turn off the power to the motor immediately when any spindle alarm is issued

15*i* 16*i* 30*i* 3086 4086 4086

Gear ratio parameter setting error alarm (spindle alarm 35) detection level

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting value: 0 (equivalent to 500 min⁻¹)

This parameter sets the detection level of the gear ratio parameter setting error alarm (spindle alarm 35).

When the difference between the motor speed calculated from the position coder feedback and gear ratio parameters (No. 4056 to No. 4059) and the estimated motor speed calculated with control software becomes equal to or greater than the setting, the gear ratio parameter setting error alarm (spindle alarm 35) is issued.

When the standard setting (0) is used, the setting of 500 min⁻¹ is assumed.

B-65280EN/06 FANUC AC SPINDLE MOTOR αCi series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3088 4088 4088

Velocity error excess detection level when the motor is bound

Unit of data: 0.01% Valid data range: 0 to 10000

Standard setting value: 75

This parameter sets a velocity error excess (spindle alarm 31)

detection level when the motor is bound.

If a velocity error equal to or greater than [maximum motor speed (No. 4020) × setting data (%)] occurs when the motor is bound, for example,

the motor binding alarm (spindle alarm 31) is issued.

15*i* 16*i* 30*i* 3089 4089 4089

Velocity error excess detection level when the motor is rotating

Unit of data: 0.1%
Valid data range: 0 to 1000
Standard setting value: 200

This parameter sets a velocity error excess detection level when the

motor is rotating.

If a velocity error equal to or greater than [maximum motor speed (No. 4020) × setting data (%)] occurs, the velocity error excess alarm

(spindle alarm 02) is issued.

15*i* 16*i* 30*i* 3090 4090 4090

Overload detection level

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 90

This parameter sets a condition for detecting the short-time overload

alarm (spindle alarm 29).

If the state where a load equal to or greater than setting data (%) (maximum motor output = 100%) is imposed on the spindle motor lasts for a specified period (set in No. 4123) or more, the short-time

overload alarm (spindle alarm 29) is issued.

15*i* 16*i* 30*i* 3123 4123 4123

Short-time overload detection period

Unit of data: 1sec
Valid data range: 0 to 500
Standard setting value: 30

This parameter sets the timing for detecting the short-time overload

alarm (spindle alarm 29).

If the state where a load equal to or greater than the specified value (set in parameter No. 4090) is imposed on the spindle motor lasts for at least the period specified in this parameter, the short-time overload alarm (spindle alarm 29) is issued.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

(3) Other parameters

This item details the parameters common to all operation modes except the parameters listed in Items (1) and (2) above.

MRDY1 Whether to use the MRDYA signal (machine ready signal)

0: Does not uses the MRDYA signal (MRDYA = 1 at all times).

1: Uses the MRDYA signal.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3002	4002	4002				SMORLM				

SMORLM SM pin output data selection

0 : Speedometer data

1 : Load meter data

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3005	4005	4005								VCTLPC

VCTLPC

Sets the velocity feedback method.

0: Exercises velocity control with an estimated velocity only.

1: Uses a velocity calculated from the position coder signal to exercise velocity control.

The feedback signal from a position coder attached to a spindle on a 1:1 basis is converted to motor speed data for velocity control. Set this bit to 1 when performing orientation, rigid tapping, or spindle synchronous control.

By setting this bit to 1 even in ordinary velocity control, the response characteristics and stability of velocity control can be improved.

NOTE

- 1 The feature may not be fully utilized, depending on the connection ratio between the spindle and spindle motor or between the spindle and position coder, the rigidity of the connection, the precision of position coder attachment, and so forth.
- When this bit is set to 1 with a spindle that has a gear switch mechanism, the torque limitation command signal (TLMLA) must be input at the start of gear switching. For details, see Chapter 3, "I/O SIGNALS (CNC ↔ PMC)", in Part III.

B-65280EN/06 FANUC AC SPINDLE MOTOR αCi series 2.EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3006	4006	4006						SPDUNT	GRUNIT	

GRUNIT

Sets a gear ratio setting resolution:

0: 1/100 unit

1: 1/1000 unit

Select a gear ratio data setting resolution from the following:

- (a) Resolution based on motor speed increased by a factor of 100 relative to one spindle rotation
- (b) Resolution based on motor speed increased by a factor of 1000 relative to one spindle rotation

Depending on the setting of this parameter, the increment system of the parameters indicated in the table below changes.

	Parameter No		Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data

NOTE

Usually, use the 1/100 unit (setting "0").

#4 LDTOUT

SPDUNT

Sets the unit of speed.

Set to 0.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#!
3009	4009	4009			

LDTOUT

Whether to output the load detection signal (LDT1A) during acceleration/deceleration

#3

#2

#1

#0

- 0: Does not output the load detection signals during acceleration/deceleration (standard setting value).
- 1: Outputs the load detection signals during acceleration/deceleration (at all times) when the parameter-set level is exceeded.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3019	4019	4019	PRLOAD					SSTTRQ		

SSTTRO

Whether to perform torque clamping when the speed is zero

0: Performs clamping.

1: Does not perform clamping.

NOTE

Usually, set this parameter to 1 not to perform clamping.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

PRLOAD Automatic parameter setting function

- 0: Does not perform automatic parameter setting (standard setting value).
- 1: Performs automatic parameter setting.

After setting a desired motor model code in parameter No. 4133 and setting this bit to 1, turn off the power to the CNC, then turn on the power to the CNC again. The parameters (No. 4000 to No. 4175) for the α Ci series spindle corresponding to the model code are automatically initialized. Upon completion of automatic setting, this bit is automatically set to 0.

NOTE

With FS15*i*, the parameter address of this function is different, namely, bit 0 of No. 5607 is used.

Moreover, note that the meanings of settings are reversed as follows.

0: Performs automatic parameter setting.

1: Does not perform automatic parameter setting. In this case, set a model code in parameter No. 3133.

15*i* 16*i* 30*i* 3020 4020 4020

Maximum motor speed

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting value : Depends on the motor model.

This parameter sets a maximum spindle motor speed.

15*i* 16*i* 30*i* 3022 4022

Speed arrival detection signal

Unit of data: 0.1% Valid data range: 0 to 1000 Standard setting value: 150

This parameter sets a speed arrival signal (SARA) detection range.

When the motor speed (estimated value) reaches within \pm (setting data/10)% of a specified speed, the speed arrival signal (SARA) is set

to 1.

15*i* 16*i* 30*i* 3023 4023 4023

Speed detection level

Unit of data: 0.1% Valid data range: 0 to 1000 Standard setting value: 30

This parameter sets a speed detection signal (SDTA) detection range. When the motor speed (estimated value) is (setting data/10)% of a maximum speed or less, the speed detection signal (SDTA) is set to 1.

B-65280EN/06 FANUC AC SPINDLE MOTOR αCi series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3024 4024 4024

Speed zero detection level

Unit of data: 0.01% Valid data range: 0 to 10000

Standard setting value: 75

This parameter sets a speed zero detection signal (SSTA) detection

range.

When the motor speed (estimated value) is (setting data/100)% of a maximum speed or less, the speed zero detection signal (SSTA) is set

to 1.

15*i* 16*i* 30*i* 3025 4025 4025

Torque limitation value.

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 50

This parameter sets a torque limitation value to be applied when the torque limitation command HIGH (TLMHA) is specified.

The data indicates limitation values when the maximum torque is

100%.

Torque limitation command HIGH (TLMHA)	Description
0	No torque limitation is imposed.
1	The torque is limited to the value set in this parameter.

15*i* 16*i* 30*i* 3026 4026 4026

Load detection level 1

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 83

This parameter sets a load detection signal 1 (LDT1A) detection

range.

When the output of the spindle motor is (setting data)% of the maximum output or more, load detection signal 1 (LDT1A) is set to 1.

2.EXPLANATION OF OPERATION MODES FANUC AC SPINDLE MOTOR αCi series B-65280EN/06

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3056	4056	4056
3057	4057	4057
3058	4058	4058
3059	4059	4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

(Motor rotation for one rotation of spindle) / 100 Unit of data:

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767 100 Standard setting value:

These data are used to set the gear ratio between spindle and spindle

motor. Example:

> When the spindle rotates once, set "250" as the data when the motor rotates 2.5 times.

NOTE

- 1 A parameter is selected by the input signals CTH1A and CTH2A. Ensure that the gear or clutch state corresponds to the input signals CTH1A and CTH2A. When the signals are not input correctly, the overcurrent alarm (spindle alarm 12) can be issued.
- 2 When using a position coder, be sure to set this parameter. If this parameter is not set correctly, the velocity error excess alarm (spindle alarm 02), motor binding alarm (spindle alarm 31), or gear ratio parameter setting error alarm (spindle alarm 35) may be detected.
- 3 When an improper value is set in this parameter, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

16*i* 30i4078 4078

Gear switch timer

Unit of data: 1sec 0 to 500 Valid data range: Standard setting value:

> For a spindle that has a gear switch mechanism, this parameter sets a period of time from the start of a gear switch sequence (input of the TLML signal) until the gear shifter is actually started. For details, see

Chapter 3, "I/O SIGNALS (CNC ↔ PMC)", in Part III.

For a spindle that has no gear switch mechanism, set this parameter to 0.

B-65280EN/06 FANUC AC SPINDLE MOTOR αCi series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3095 4095 4095

Speedometer output voltage adjustment value

Unit of data: 0.1%

Valid data range : -1000 to +100(-100% to +10%)

Standard setting value: (

Set this parameter when making a fine adjustment of speedometer

terminal output voltage.

Positive (+) data increases the output voltage.

NOTE

Usually, this parameter need not be adjusted.

15*i* 16*i* 30*i* 3121 4121 4121

Torque command filter time constant

Unit of data: 0.5msec Valid data range: 0 to 32767

Standard setting value: 5

Basically, use the standard setting value 5 (time constant of 2.5 ms).

2.5.5 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.6.5, "Diagnosis (Diagnosis Screen)", in Part I.

3

I/O SIGNALS (CNC ↔ PMC)

This chapter explains the functions of the signals directly input from the PMC to SPMC via the CNC and the signals directly output from the SPMC to PMC. For other spindle-related I/O signals, refer to the Connection Manual (Function) of the relevant CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Chapter 9 "SPINDLE SPEED FUNCTION."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3 "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7 "SPINDLE SPEED FUNCTION."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63833EN-1
 Refer to Chapter 9 "SPINDLE SPEED FUNCTION."

3.1 INPUT SIGNALS (PMC→CNC→SPMC)

This section explains the functions of the signals directly input from the PMC to SPMC via the CNC. For other spindle-related input signals, refer to the Connection Manual (Function) of the relevant CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
 CONNECTION MANUAL (FUNCTION) : B-63523EN-1
 Refer to Chapter 9 "SPINDLE SPEED FUNCTION."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A

 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Chapter 11 "SPINDLE SPEED FUNCTION."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7 "SPINDLE SPEED FUNCTION."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63833EN-1
 Refer to Chapter 9 "SPINDLE SPEED FUNCTION."

3.1.1 List of Input Signals

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070	MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA
2nd-	G235	G074	G074	MRDYB	ORCMB	SFRB	SRVB	СТН1В	СТН2В	TLMHB	TLMLB
1st-	G226	G071	G071			INTGA				*ESPA	ARSTA
2nd-	G234	G075	G075			INTGB				*ESPB	ARSTB
									•		
1st-	G229	G072	G072			INCMDA	OVRA		NRROA	ROTAA	INDXA
2nd-	G237	G076	G076			INCMDB	OVRB		NRROB	ROTAB	INDXB
					·			-			
1st-	G228	G073	G073						MPOFA		
2nd-	G236	G077	G077						MPOFB		
										•	

3.1.2 Explanation of Input Signals

For information about the signals listed in Subsection 3.1.1, "List of Input Signals", in Part III, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

Those signals that are not listed in Subsection 3.1.1, "List of Input Signals", in Part III are not used with the αCi series spindle.

This subsection describes only those signals that have different specifications for use with the αCi spindle.

Symbol	Name	Description
TLMLA,	Torque limitation	Switches to a speed control method that uses speed estimation during gear switching.
TLMLB	command LOW	0: -
		Performs speed control using only speed estimation. (However, there is the delay set by the gear switching timer [No. 4078].)
		set by the gear switching timer [No.4078].)

3.1.3 Details of Input Signals

For information about the signals listed in Subsection 3.1.1, "List of Input Signals", in Part III, see Subsection 3.1.3, "Details of input signals", in Part I.

Those signals that are not listed in Subsection 3.1.1, "List of Input Signals", in Part III are not used with the αCi series spindle.

This subsection describes only those signals that have different specifications for use with the αCi spindle.

(a) Torque limitation command signals (TLMLA)

If gear switching is performed with the setting (No.4005#0="1") that uses motor speed calculated from the position coder signal to perform speed control, the state of machine gear may not match the state of the gear ratio parameter. This can cause an alarm to occur due to speed control using incorrect speed data. Therefore, switch to a control method that uses the speed estimation during gear switching by inputting the torque limitation command signal (TLMLA) upon start of gear switching so that gear switching is performed smoothly. In addition, set the time from when a gear switching sequence starts to when the gear shifter actually operates for parameter No.4078 (gear switching timer). (See below.)

(Example of a recommended sequence)

3.2 OUTPUT SIGNALS (SPMC \rightarrow CNC \rightarrow PMC)

This section explains the functions of the signals directly output from the SPMC to PMC via the CNC. For other spindle-related output signals, refer to the Connection Manual (Function) of the relevant CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
 CONNECTION MANUAL (FUNCTION) : B-63523EN-1
 Refer to Chapter 9 "SPINDLE SPEED FUNCTION."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3 "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7 "SPINDLE SPEED FUNCTION."
- (d) For Series 0*i*"FANUC Series 0*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63833EN-1
 Refer to Chapter 9 "SPINDLE SPEED FUNCTION."

3.2.1 List of Output Signals

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA	TLMA		LDT1A	SARA	SDTA	SSTA	ALMA
2nd-	F245	F049	F049	ORARB	TLMB		LDT1B	SARB	SDTB	SSTB	ALMB
						-"					
1st-	F231	F047	F047							INCSTA	PC1DTA
2nd-	F247	F051	F051							INCSTB	PC1DTB

3.2.2 Explanation of Output Signals

For information about the signals listed in Subsection 3.2.1, "List of Output Signals", in Part III, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

Those signals that are not listed in Subsection 3.2.1, "List of Output Signals", in Part II are not used with the αCi series spindle.

3.2.3 Details of Output Signals

For information about the signals listed in Subsection 3.2.1, "List of Output Signals", in Part III, see Subsection 3.2.3, "Details of Output Signals", in Part I.

Those signals that are not listed in Subsection 3.2.1, "List of Output Signals", in Part II are not used with the αCi series spindle.

ADJUSTMENT

4.1 **VELOCITY LOOP GAIN ADJUSTMENT**

4.1.1 **Overview**

Optimum adjustment of the velocity loop gain increases the position loop gain, therefore significantly enhancing disturbance suppression performance, positioning speed and accuracy. So, the adjustment of the velocity loop gain is very important in servo adjustments, and it should be performed first. This section explains the parameters for velocity loop gain adjustment and the adjustment procedure.

To check the waveform of a torque command, position error, or so on, use the spindle check board and an oscilloscope, or the servo guide (see Appendix F).

4.1.2 **Parameters**

There are four operation modes in spindle control: velocity control mode, orientation, servo mode (rigid tapping and spindle positioning), and spindle synchronous control. There are parameters corresponding to each operation mode and to the clutch/gear signals (CTH1A and CTH2A). The following shows the parameters for each operation mode.

(1) Velocity control mode

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3040	4040	4040
3041	4041	4041

Velocity loop proportional gain on velocity control mode (HIGH)	CTH1A=0
Velocity loop proportional gain on velocity control mode (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

15*i* 16*i* 30*i* 3047 4047 4047 4048

3048

Velocity loop integral gain on velocity control mode (HIGH)	CTH1A=0
Velocity loop integral gain on velocity control mode (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

4048

Standard setting value: Depends on the motor model.

(2) Orientation

 15i
 16i
 30i

 3042
 4042
 4042

 3043
 4043
 4043

 Velocity loop proportional gain on orientation (HIGH)
 CTH1A=1

 Velocity loop proportional gain on orientation (LOW)
 CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

15*i* 16*i* 30*i* 3050 4050 4050 **Veloc** 3051 4051 4051 **Veloc**

Velocity loop integral gain on orientation (HIGH)CTH1A=0Velocity loop integral gain on orientation (LOW)CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

(3) Servo mode (Rigid tapping and spindle positioning)

 15i
 16i
 30i

 3044
 4044
 4044

 3045
 4045
 4045

 Velocity loop proportional gain on servo mode (LOW)
 CTH1A=1

 CTH1A=1
 CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value : Depends on the motor model.

15*i* 16*i* 30*i*

305240524052Velocity loop integral gain on servo mode (HIGH)CTH1A=0305340534053Velocity loop integral gain on servo mode (LOW)CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

(4) Spindle synchronous control

15*i* 16*i* 30*i* - 4044 4044

Velocity loop proportional gain on spindle synchronous control (HIGH)CTH1A=0

- 4045 4045

Velocity loop proportional gain on spindle synchronous control (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

15*i* 16*i* 30*i*

4052 40524053 4053

Velocity loop integral gain on spindle synchronous control (HIGH)

CTH1A=0

Velocity loop integral gain on spindle synchronous control (LOW)

CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

NOTE

For the velocity loop gain on spindle synchronous control and on the servo mode, common parameters are used.

4.1.3 Adjustment Procedure

(1) Start of each operation mode

In preparation for the adjustment, settings must be made so that a stable operation takes place in each mode without overshoot or oscillation.

See Chapter 2, "EXPLANATION OF OPERATION MODES", temporarily set parameters (acceleration/deceleration time constant, position gain, and so on) to make operations stable in each operation mode, and confirm operations.

NOTE

When the rigidity of the spindle is low, the standard setting of the velocity loop gain may be so high that oscillation can occur. In such a case, decrease the velocity loop gain.

(2) Adjustment

When adjusting the velocity loop gain, check the operation mode and clutch/gear signal, and modify corresponding parameters. Follow the steps below to adjust the parameters:

<1> Determining the oscillation limit

Basically, determine the oscillation limit based on torque commands, position errors, vibration, sound, and so on when the motor is stopped (for orientation, after completion of the operation) or when the motor rotates at a certain speed not higher than the base speed. Usually, increase the settings of the proportional gain and integral gain in steps of about 10. As the settings are increased gradually, the symptoms below start to appear at a certain setting level. The settings at this level are determined to be the oscillation limit:

- The machine vibrates or produces large sound.
- Vibration of a torque command becomes large.
- Position errors at stop time vary largely.

NOTE

The oscillation limit varies with the spindle inertia. In a machine in which the inertia varies largely according to the tool and workpiece used, adjustment must be made in the smallest inertia state.

<2> Final settings

Set proportional gain of approximately 70% of the oscillation limit. Make an adjustment to set an integral gain that is about four to ten times greater than the proportional gain.

4.1.4 Additional Information (Position Gain Adjustment)

Although the limit value of the position gain is determined basically depending on the velocity loop characteristics, the setting standards may vary depending on the operation mode. See Chapter 2, "EXPLANATION OF OPERATION MODES", and make adjustments accordingly.

IV. FANUC BUILT-IN SPINDLE MOTOR BiS series

START-UP

1.1 START-UP PROCEDURE

1.2 SPINDLE SERIAL INTERFACE

Optional function

1.2.1 Parameters Related to Spindle Serial Output

For this subsection, see Subsection 1.2.1, "Parameters Related to Spindle Serial Output", in Part I.

1.2.2 Automatic Spindle Parameter Initialization

(1) Parameter list

F	Parameter No).	
15 <i>i</i>	i 16i 30i		Description
5607#0	4019#7	4019#7	Function for automatically initializing spindle parameters
3133	4133	4133	Spindle motor model code

(2) Procedure for automatic spindle parameter initialization

Perform spindle parameter initialization by following the procedure below.

<1> Set model code "300".

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3133	4133	4133	Model code

<2> Set the relevant parameter to enable automatic spindle parameter initialization.

P			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
_	4019#7	4019#7	1
5607#0	_	_	0

NOTE

This bit is reset to its original value after automatic parameter initialization.

- <3> Turn off then turn on again the power to the CNC. The spindle parameter data common to each model is automatically initialized.
- <4> Input parameters manually according to the model-by-model parameter list.
- <5> Set detector-related parameters according to the detector configuration.

1.2.3 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 1.2.3, "Diagnosis (Diagnosis Screen)", in Part I.

1.2.4 Alarm

1.3 PARAMETERS RELATED TO DETECTORS

NOTE

- 1 Note that the specifications of parameters related to detectors for the αi series spindle amplifiers differ from those of parameters for the α series spindle amplifiers.
- 2 The sensor used with the BiS series spindle is a αi BZ sensor or αi CZ sensor.

1.3.1 List of Parameters for Detectors

For this subsection, see Subsection 1.3.1, "List of Parameters for Detectors", in Part I.

1.3.2 Details of Parameters for Detectors

For this subsection, see Subsection 1.3.2, "Details of Parameters for Detector", in Part I.

1.3.3 Typical Detector Configurations

This subsection describes the detector configuration of the BiS series spindle and the parameter setting procedure applicable to the detector configuration.

With the BiS series spindle, the detector circuitry hardware is set according to the parameter setting. For this reason, an alarm such as a disconnection alarm may be output while parameters related to detectors are being set.

To initialize the hardware, after setting the parameters related to detectors, turn the power to the amplifier off once.

(1) When the αiBZ or αiCZ sensor is used

Parameter	Settings	Description
4000 #0	0	Rotation directions of the spindle and motor
4002 #3,#2,#1,#0	0,0,0,1	Uses the motor sensor for position feedback.
4010 #2,#1,#0	0,0,1	Uses the αiBZ or αiCZ sensor as the motor sensor.
4011 #2,#1,#0	Depends on the detector.	Sets the number of motor sensor gear teeth.
4056 to 4059 100 or 1000		Gear ratio between the spindle and motor 1:1

1.4 SUB MODULE SM

1.4.1 **Overview**

The sub module SM (SSM) protects the amplifier and motor against an overvoltage caused by the motor counter electromotive voltage of the BiS series spindle (synchronous built-in spindle motor), for example, when a spindle alarm is issued.

For safety, connecting the sub module SM is recommended. If the SSM is not used, the maximum motor speed needs to be limited. (For details of limiting the maximum motor speed, see Subsection 1.4.4.)

↑ CAUTION

This section provides information important to safe use of the BiS series spindle (synchronous built-in spindle motor). Be sure to read this section even when the sub module SM (SSM) is not used.

1.4.2 Series and Editions of Applicable Spindle Software

9D53 series B (02) edition or later 9D70 series A (01) edition or later 9D80 series B (02) edition or later

1.4.3 Configuration

The configuration for using the sub module SM is shown below.

For the specifications of the sub module SM and connection details, refer to "FANUC SERVO AMPLIFIER αi series DESCRIPTIONS (B-65282EN)".

NOTE

To use the sub module SM, use spindle amplifier (SP) TYPE B.

1.4.4 **Related Parameters**

♠ CAUTION

This subsection describes the parameters related to the sub module SM (SSM). If the SSM is not used, the maximum motor speed (parameter No. 4020) needs to be limited.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3008	4008	4008

#7	#6	#5	#4	#3	#2	#1	#0
		SSMUSE					

SSMUSE

This parameter sets whether to use the sub module SM (SSM).

0: Does not use the sub module SM.

Uses the sub module SM.

To use the synchronous built-in spindle motor safely, setting this bit to "1" to use the SSM is recommended.

If the SSM is not used, set this bit to 0. In this case, the maximum motor speed (parameter No. 4020) needs to be limited.

30*i* 15*i* 16*i* 3020 4020 4020

Maximum motor speed

1min⁻¹ Unit of data: Valid data range: 0 to 32767

Standard setting value:

Depends on the motor model.

This parameter sets a maximum spindle motor speed.

If the SSM is not used, the maximum motor speed needs to be limited so that the back electromotive force (BEMF) voltage at a speed at which the overspeed alarm (spindle alarm 07) is detected is lower than the smaller value of the following two allowable voltage levels.

The standard setting of an overspeed alarm detection level is 115%, so that the maximum motor speed must satisfy the following expression:

(Maximum motor speed) $\times 1.15 \times \text{Ke}/1000 \le \text{Minimum}$ (Va, Vm)

Maximum allowable voltage of the SP:

 $Va = 636V_{rms}$ (SP for 400V system)

 $Va = 318V_{rms}$ (SP for 200V system)

Withstand voltage of the motor:

Vm [V_{rms}] (between lines)

BEMF constant:

Ke [V_{rms}/1000min⁻¹] (between lines)

Example)

When a synchronous built-in spindle motor with the BEMF voltage $Ke = 139 [V_{rms}/1000 min^{-1}]$ (between lines) and withstand voltage 450Vrms of the motor (between lines) is driven by a spindle amplifier (SP) of 400V system, the following value can be set as the maximum motor speed (parameter No. 4020):

Maximum allowable voltage of the SP:

 $Va = 636 V_{rms}$ (SP for 400V system)

Withstand voltage of the motor:

 $Vm=450 V_{rms}$ (between lines)

BEMF constant:

 $Ke = 139 V_{rms}/1000 min^{-1}$ (between lines)

(Maximum value of No. 4020)

- = Minimum(636, 450) / $139 \times 1000 / 1.15$
- $=450 / 139 \times 1000 / 1.15$
- $= 2815 [min^{-1}]$

1.4.5 Stop Processing When a Sub Module SM Error Occurs

↑ CAUTION

This subsection describes stop processing to be performed when a sub module SM (SSM) error occurs. If an SSM error occurs, the function for protecting the amplifier against a spindle alarm does not operate normally. Ensure that when an SSM error occurs, the motor is stopped according to the descriptions of this subsection.

(a) Output signals (CNC \rightarrow PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F230	F048	F048					SSMBRKA			
2nd-	F246	F052	F052					SSMBRKB			

Symbol	Name	Description
SSMBRKA, SSMBRKB	Sub module SM (SSM) error state signal	Output when a sub module SM (SSM) error is detected. 0: Normal state 1: The sub module SM (SSM) is abnormal.

(b) Stop processing

When an SSM error is detected, the SSM error signal SSMBRK is set to 1, and the spindle amplifier (SP) has state error 36 turned on. At this time, decelerate and stop the motor safely by following the procedure below:

- (1) Disconnect the spindle for which the SSM error occurs mechanically from other axes. This operation is to prevent the deceleration of the spindle motor from having a mechanical impact on the spindles.
- (2) Then, decelerate and stop the target spindle.
- (3) When the motor is decelerated and the speed becomes zero (SST = 1), spindle alarm 89 is issued.

(Timing chart)

1.4.6 Alarm and Status Error

(a) Spindle alarm

Alarm No.			LED display		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Spindle amplifier	Description	Measure
SP0089	9089	SP9089	89	The SSM is abnormal. (1) The spindle amplifier (SP) does not support the SSM. (2) No SSM is installed or connected. (3) The interface signal between the spindle amplifier (SP) and SSM is disconnected. (4) The SSM is faulty.	Alarm 89 cannot be reset. Turn the power off, then check whether the SP supports the SSM and whether the SSM and SP are connected properly. If the SSM is faulty, replace the SSM.

(b) Status error

Status error No.	Description	Measure				
	The SSM is abnormal.					
	(1) The interface signal between the	For PMC processing to be performed when error 36 is				
36	spindle amplifier (SP) and SSM is	issued, see Subsection 1.4.5, "Stop Processing When a				
	disconnected.	Sub Module SM Error Occurs", in Part IV.				
	(2) The SSM is faulty.					

1.4.7 Caution

♠ CAUTION

This subsection provides notes on using the BiS series spindle safely. Fully understand the instructions described in this subsection before using the BiS series spindle.

(1) When the sub module SM (SSM) is not used

(1) When the SSM is not used, the maximum motor speed (parameter No. 4020) needs to be limited. Driving the motor at a speed faster than the limit may damage the spindle amplifier (SP). For details, see Subsection 1.4.4, "Related Parameters", in Part IV.

(2) When the sub module SM (SSM) is used

(1) To check that the SSM operates normally, conduct an SSM self test at least once a day. An SSM self test is conducted on the rising edge of the emergency stop signal *ESP. The execution time (corresponding to "t" in the figure below) of the self test is about 450 msec (with 9D53 series H (08) edition or later, 9D70 series G (07) edition or later, and 9D80 series B (02) edition or later; about 250 msec with any edition earlier than the above).

MCC: The MCC is connected between the power supply and common power supply (PS), and the MCC switch signal line is connected to the CX3 of the common power supply (PS). The MCC is turned on/off by the emergency stop signal *ESP (G071#1).

- (2) By conducting the test described below at least once after SSM installation, check that the SSM self test function operates normally. If this test is not conducted, the function for protecting the SSM amplifier and motor can be lost, resulting in damage to the amplifier or motor, for example, when a power failure occurs.
 - Step 1. Turn off the power to the machine.
 - Step 2. To prevent the power to the motor from being turned on during testing, detach the CX3 connector on the common power supply (PS) connected to the SSM and also detach the CX31 connector on the sub module SM.
 - Step 3. Turn on the power to the machine.
 - Step 4. After the CNC starts up and the indication of "-" on the spindle amplifier (SP) is turned on, set the emergency stop signal (*ESP) to 1.

- Step 5. The self test function is operating normally if spindle alarm 89 is issued at emergency stop cancellation time. If the alarm is not issued, the cable, parameter, or spindle amplifier (SP) is abnormal.
- Step 6. Turn off the power to the machine. Be sure to reinstall the CX3 and CX31 connectors.
- (3) If a spindle alarm is issued and the spindle amplifier (SP) detects the input of the motor power turn-off signal (MPOF), the SSM is activated and the motor is decelerated to a stop. This deceleration differs from ordinary deceleration in that it is dynamic brake operation caused by short-circuits between motor pins by the SSM, however. If the SSM is faulty at this time, the spindle amplifier (SP) can be damaged.
- (4) After the SSM is activated, the spindle amplifier (SP) ignores any alarm reset unless the speed zero state (speed zero signal SST = 1) continues for at least 5 sec (with 9D53 series G (07) edition or later, 9D70 series F (06) edition or later, or 9D80 series B (02) edition or later; for at least 120 sec with any edition earlier than the above). For resetting of the alarm, the speed zero state (SST = 1) needs to be set.
- (5) After the SSM is activated, the SP ignores any alarm reset during the period described in item (4). When the SSM is active, reset the alarm after the period has elapsed. If the alarm is reset in the state where a command is input, the motor can abruptly start rotation. So, specify such a sequence that all commands are cleared when an alarm is issued or MPOF is input, and the cleared commands are specified again upon completion of alarm resetting.
- (6) If the motor power turn-off signal MPOF is input, the SSM is activated. So, a deceleration to a stop (dynamic brake operation, which differs from ordinary deceleration) occurs instead of a free-run stop.
- (7) When the SSM is faulty, inputting the motor power turn-off signal MPOF may damage the spindle amplifier (SP). So, ensure that MPOF is not input in a high-speed area where the SSM is needed.
- (8) Do not insert a switch element such as an electromagnetic contactor in the power line between the spindle amplifier (SP) and synchronous built-in spindle motor. If the power line is broken during rotation, the amplifier or motor can be damaged.

1.5 MAGNETIC POLE DETECTION

1.5.1 Overview

To control the synchronous built-in spindle motor, information about the magnetic pole position (phase) of the rotor is needed. Operation for detecting the magnetic pole position (phase) of the rotor is referred to as magnetic pole detection. Immediately after the power is turned on or if magnetic pole position information is lost for a cause such as an alarm, magnetic pole detection needs to be performed before the motor can be driven.

Three magnetic pole detection modes are available:

- Minute operation mode (usable with 9D53 series I edition or later, 9D70 series H edition or later, and 9D80 series B edition or later)
- Automatic selection mode (usable with 9D53 series C edition or later, 9D70 series B edition or later, and 9D80 series B edition or later)
- Direct current activation mode

By setting the phase difference between the magnetic pole position (phase) of the rotor and the one-rotation signal generation position beforehand in a parameter, control can be exercised using a parameter-set offset value and one-rotation signal position as reference data after one-rotation signal detection (AMR offset function).

1.5.2 Magnetic Pole Detection Operation

(1) Minute operation mode (usable with 9D53 series I edition or later, 9D70 series H edition or later, and 9D80 series B edition or later)

In the minute operation mode, magnetic pole detection is performed while the motor is moved in very small steps. When the motor is locked, magnetic pole detection is disabled in principle (spindle alarm 65 is issued).

Usually, magnetic pole detection in this mode is recommended.

(2) Automatic selection mode (usable with 9D53 series C edition or later, 9D70 series B edition or later, and 9D80 series B edition or later)

In the automatic selection mode, magnetic pole detection is performed in either of the following two modes that is selected automatically by the spindle amplifier (SP):

Minute operation mode: In this mode, magnetic pole detection is performed while the motor is moved in very small steps.

Stop mode : In this mode, magnetic pole detection is enabled even when the motor is locked.

In the automatic selection mode, magnetic pole detection is started in the minute operation mode. When the motor is detected to be locked, the spindle amplifier selects the stop mode and magnetic pole detection is performed.

NOTE

In the automatic selection mode, magnetic pole detection is enabled even when the motor is locked because the stop mode can be selected. To select the stop mode, however, the following conditions must be satisfied:

- The saliency of the motor is sufficiently large. (Lq-Ld>1mH)
- At about 70% of the maximum current, a magnetic saturation of 5% or more is generated (the torque constant decreases by 5% or more.)

If either of the above conditions is not satisfied, the precision of detection may be degraded or the magnetic pole position may be unable to be detected. So, confirm that operation in the stop mode can be performed normally before using the automatic selection mode.

When the minute operation or automatic selection mode is used, the velocity feedback may exceed the value set in parameter No. 4450 (velocity feedback threshold) due to noise and a symptom such as the following may occur: Magnetic pole detection is not started or is not completed. In this case, follow the steps below:

- <1> First, check the noise level of the velocity feedback.
- <2> When the noise level of the velocity feedback is 5.5 min⁻¹ or less, set the lower two digits (velocity feedback threshold) of parameter No. 4450 to the standard setting (0: 11 min⁻¹).
- <3> When the noise level of the velocity feedback exceeds 5.5 min⁻¹, first reduce the noise by suppressing it. If the noise cannot be reduced to the allowable level by any means, set the lower two digits (velocity feedback threshold) of parameter No. 4450 to about double the noise level.

(3) Direct current activation mode

In the direct current activation mode, magnetic pole detection is performed while the motor is vibrating to a large extent.

When the motor is locked, magnetic pole detection is disabled.

Operation in the direct current activation mode is as follows:

- <1> Perform direct current activation at a phase of the electric angle 0 deg.
- <2> Check that the motor is stopped. The motor is assumed to be stopped when a stop confirmation time (specified using the lower two digits of parameter No. 4083) has elapsed after the motor speed becomes 5 min⁻¹ or below.
- <3> After checking that the motor is stopped, perform direct current activation at a phase of the electric angle 90 deg.
- <4> Check that the motor is stopped.
- <5> After checking that the motor is stopped, the spindle alarm 65 is issued if the phase difference of the rotor between the cases where direct current activation is performed at the electric angle 0 deg and at the electric angle 90 deg is not within the range 80 to 100 deg.

The maximum travel distance from the start to end of magnetic pole detection is the electric angle 270 deg.

1.5.3 AMR Offset Function

The spindle amplifier controls the motor based on the initial magnetic pole position estimated by magnetic pole detection. So, a large error between the estimated and true magnetic pole positions may affect the motor so that the acceleration/deceleration time during forward rotation differs from that during reverse rotation (torque characteristics during forward rotation differ from those during reverse rotation) or another symptom occurs.

The AMR offset function minimizes the error between these magnetic pole positions.

Reading this subsection and using the AMR offset function are recommended

NOTE

This function can be used with 9D53 series C (03) edition or later, 9D70 series B (02) edition or later, and 9D80 series B (02) edition or later.

(1) AMR offset function operation

When the AMR offset function is enabled, the spindle amplifier determines the estimated magnetic pole position as follows:

- <1> After the power is turned on, magnetic pole detection is performed.
 - "The precision of the estimated magnetic pole position" is "the precision of magnetic pole detection." So, the width of the error between the estimated and true magnetic pole positions is determined depending on the precision of magnetic pole detection.
- <2> When a rotation command is input, the motor rotates and the estimated magnetic pole position is updated using the feedback data of the motor sensor based on the initial magnetic pole position determined in step <1>. So, the error of the initial value determined in step <1> is the error of the estimated magnetic pole position with no change.

<3> When the AMR offset function is enabled (when bit 6 of parameter No. 4008 is 0 and the value of parameter No. 4084 is the adjustment value and is not 0), the following processing compensates the displacement of the detected magnetic pole position above.

When the motor rotates and the one-rotation signal is detected, the estimated magnetic pole position is forcibly replaced with AMR offset data (parameter No. 4084). AMR offset processing is executed only when the one-rotation signal is detected for the first time after magnetic pole detection.

(2) Setting of the AMR offset parameters

Set the parameters according to the procedure below.

- <1> Set bit 6 (NEGREF) of parameter No. 4008 to 0 and set parameter No. 4084 (AMR offset) to 0.
- <2> After performing magnetic pole detection, rotate the motor at about 100 min⁻¹ and check the magnetic pole position when the one-rotation signal is detected. When the one-rotation signal is detected, data changes from "0" to "the magnetic pole position when the one-rotation signal is detected."

(*) Checking the magnetic pole position when the one-rotation signal is detected

- On the diagnosis screen:
 Set parameter No. 4532 to 2. The magnetic pole position is displayed on diagnosis screen No. 720 (1st spindle). This function may be unavailable depending on the spindle software edition. For details, see Item (2) in Subsection 1.5.5.
- On the spindle check board:

 Make a setting for display. (d-01=977, d-02=0, d03=0, d-04=0)
- <3> The checked magnetic pole position contains the detection error. Check the magnetic pole position as described in step <2> several times and find the average.
- <4> Turn motor excitation off, then set the average found in step <3> in parameter No. 4084.

NOTE

If an inappropriate value is set for the AMR offset (parameter No. 4084), the motor may move unpredictably. So, observe the following rules strictly when setting the parameter:

- Set the parameter in the emergency stop signal input state.
- Confirm that the setting is the same as the average found in step <3>.

- <5> Turn the power off, then on again and perform magnetic pole detection. Accelerate and decelerate the motor with the forward and reverse rotation commands at about 100 min⁻¹, and check whether the motor rotates normally.
- <6> By using the SERVO GUIDE or spindle check board, measure the torque command, actual speed, and the torque command in a constant rotation when acceleration/deceleration operation is performed with the forward (SFR) and reverse (SRV) commands at the maximum speed.
- <7> Compare the torque command and actual speed during forward rotation with those during reverse rotation to check whether the AMR offset setting is appropriate. When the acceleration time, deceleration time, and torque command amplitude during forward rotation are almost the same as those during reverse rotation, the AMR offset data setting (parameter No. 4084) is appropriate.
- <8> If they are not almost the same, the AMR offset data setting (parameter No. 4084) is inappropriate. In this case, adjust the value of parameter No. 4085 (parameter for checking and fine-adjusting the AMR offset) so that they are almost the same.
- <9> After the completion of adjustment, set the following values in parameters Nos. 4084 and 4085:

```
No.4084 \text{ (new)} = No.4084 \text{ (old)} + No.4085 \text{ (old)}
No.4085 \text{ (new)} = 0
```

NOTE

Observe the following rules strictly when setting the parameters for the same reasons as described in NOTE in step <4>:

- Set the parameters in the emergency stop signal input state.
- Confirm that the settings are the same as the values in step <9>.

<10> Turn the power off.

NOTE

The AMR offset is a parameter indicating the phase relationships between the motor and motor sensor. After the phase relationships are changed due to a cause such as the replacement of the motor sensor, adjust the AMR offset again.

1.5.4 I/O Signals (CNC \leftrightarrow PMC)

(1) Address list of Input signals (PMC \rightarrow CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070	MRDYA		SFRA	SRVA				
2nd-	G235	G074	G074	MRDYB		SFRB	SRVB				
1st-	G226	G071	G071							*ESPA	
2nd-	G234	G075	G075							*ESPB	
1st-	G228	G073	G073	EPFSTRA					MPOFA		
2nd-	G236	G077	G077	EPFSTRB					MPOFB		

(2) Details of input signals (PMC \rightarrow CNC)

This item provides a list of the input signals related to magnetic pole detection only. Also see Section 3.1, "INPUT SIGNALS $(PMC \rightarrow CNC \rightarrow SP)$," in Part IV.

(a) Machine ready signal (MRDYA)

Set this signal to "1" before starting magnetic pole detection.

(b) Forward rotation command signal (SFRA) and reverse rotation command signal (SRVA)

- (1) When bit 7 (EPFSIG) of parameter No. 4007 is set to 0: One of these signals starts magnetic pole detection operation. Input one of the signals. The velocity command is ignored while the magnetic pole undetected state (EPFIX = 0). However, as soon as EPFIX is set to 1 (the magnetic pole detection completed), the velocity command is accepted to start rotation.
- (2) When bit 7 (EPFSIG) of parameter No. 4007 is set to 1: When this setting is made, these signals operate not as signals for starting magnetic pole detection, but as those for simply turning excitation on. Before starting magnetic pole detection operation (EPFSTR = 1), input either signal of SFR and SRV.

(c) Emergency stop signal (*ESPA)

Set this signal to "1" before starting magnetic pole detection.

(d) Magnetic pole detection operation start signal (EPFSTRA)

- (1) When bit 7 (EPFSIG) of parameter No. 4007 is set to 0: This signal is disabled. Always set this signal to "0."
- (2) When bit 7 (EPFSIG) of parameter No. 4007 is set to 1: To make the operator concerned with magnetic pole detection operation, this signal can be used together with EPFIX (magnetic pole detection state signal). While this signal is input, the spindle software ignores a command and displays error 30 (on the spindle amplifier (SP)). So, when EPFIX is set to 1, turn this signal off.

(e) Motor power turn-off signal (MPOFA)

Do not input this signal during magnetic pole detection operation. The motor is not excited and the magnetic pole position cannot be detected.

(3) Address list of output signals (CNC \rightarrow PMC)

	151	161	301
1st-	F230	F048	F048
2nd-	F246	F052	F052

<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
EPFIXA							
EPFIXB							

(4) Details of output signals (CNC \rightarrow PMC)

(a) Magnetic pole detection state signal (EPFIXA)

This signal indicates the state of magnetic pole detection.

- 0: Magnetic pole undetected In this state, magnetic pole detection operation is started by a start signal.
- 1: Magnetic pole detection completed This signal is reset to 0 if a spindle alarm indicating the loss of the magnetic pole position due to trouble such as a motor sensor disconnection is issued.

If this signal state is indicated using a lamp on the operator's panel, the operator can recognize the magnetic pole detection state.

If any of the following spindle alarms is issued, the spindle amplifier (SP) loses the magnetic pole position and turns off the magnetic pole detection state signal (EPFIX = 0).

Spindle alarm Nos.: 01, 24, 26, 37, 65, 73

1.5.5 Related Parameters

(1) Parameters related to magnetic pole detection

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3007	4007	4007	EPFSIG							

EPFSIG

Selects a magnetic pole detection start signal.

0: Uses SFR or SRV as a magnetic pole detection start signal.1: Uses EPFSTR as a magnetic pole detection start signal.

Set this parameter to select a desired start signal.

15*i* 16*i* 30*i* 3083 4083 4083

Current ratio/motor stop confirmation time in magnetic pole detection operation

The upper two digits (thousands and hundreds) indicate a current ratio in magnetic pole detection, and the lower two digits (tens and ones) indicate a motor stop confirmation time.

Current ratio in magnetic pole detection (upper two digits)

Unit of data: 1%
Valid data range: 0 to 99

Standard setting value: Depends on the motor model.

Set the magnitude of a current command value in magnetic pole

detection operation as a ratio to the maximum current value.

This parameter is valid in the minute operation mode or direct current

activation mode.

Motor stop confirmation time (lower two digits)

Unit of data: 0.1sec Valid data range: 0 to 99

Standard setting value : Depends on the motor model.

Set a period of time for confirming the stop of the motor in the direct

current activation mode.

This parameter is valid in the direct current activation mode.

NOTE

If magnetic pole detection position precision is insufficient for a cause such as friction, the motor output torque may decrease. In such a case, this parameter needs to be adjusted.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3398	4398	4398						SELMET		

SELMET

Selects a magnetic pole detection mode.

- 0: Performs magnetic pole detection in the direct current activation mode.
- 1: Performs magnetic pole detection in the automatic selection mode or minute operation mode.

<u>Usually</u>, set this parameter to 1 (automatic selection or minute operation mode) to use the function.

NOTE

This parameter is valid with 9D53 series C (03) edition or later, 9D70 series B (02) edition or later, and 9D80 series B (02) edition or later.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3399	4399	4399

#7	#6	#5	#4	#3	#2	#1	#0
	MINUTE						

MINUTE

Selects a magnetic pole detection mode.

0: Automatic selection mode (minute operation mode + stop mode)

1: Minute operation mode

<u>Usually</u>, set this parameter to 1 (minute operation mode) to use the function.

NOTE

This parameter is valid with 9D53 series I (09) edition or later, 9D70 series H (08) edition or later, and 9D80 series B (02) edition or later.

15*i* 16*i* 30*i* 3449 4449

Direction detection current/polarity determination current

The upper three digits (ten thousands, thousands, and hundreds) indicate a direction detection current, and the lower two digits (tens and ones) indicate a polarity determination current.

Direction detection current (upper three digits)

Unit of data: 1%
Valid data range: 0 to 320
Standard setting value: 0

Set a current for magnetic pole direction detection in magnetic pole

detection operation. When 0 is set, 100% is set.

This parameter is valid in the stop mode.

Polarity determination current (lower two digits)

Unit of data: 1%
Valid data range: 0 to 99
Standard setting value: 0

Set a detection current for determining the polarity of the magnetic pole as a ratio to the maximum current value. When 0 is set, 70% is set internally.

This parameter is valid in the stop mode.

NOTE

This parameter is valid with 9D53 series C (03) edition or later, 9D70 series B (02) edition or later, and 9D80 series B (02) edition or later.

15*i* 16*i* 30*i* 3450 4450 4450

Travel distance allowance magnification/velocity feedback threshold

The upper three digits (ten thousands, thousands, and hundreds) indicate a travel distance allowance magnification, and the lower two digits (tens and ones) indicate a velocity feedback threshold.

Travel distance allowance magnification (upper three digits)

Unit of data: 1%
Valid data range: 0 to 200
Standard setting value: 0

Set a travel distance allowance magnification. Set a ratio relative to a machine angle of 5 deg assumed to be 100%. When 0 is set, 100%

(machine angle of 5 deg) is set internally.

This parameter is valid in the minute operation mode.

Velocity feedback threshold (lower two digits)

Unit of data: 1%
Valid data range: 0 to 99
Standard setting value: 0

Set a velocity feedback threshold for determining the stop of the motor, assuming $100\% = 110 \text{ min}^{-1}$. When 0 is set, 10% (11 min^{-1}) is

set internally.

This parameter is valid in the minute operation mode.

NOTE

This parameter is valid with 9D53 series C (03) edition or later, 9D70 series B (02) edition or later, and 9D80 series B (02) edition or later.

(2) Parameters related to AMR offset

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3008	4008	4008		NEGREF						

NEGREF

Sets whether to use a one-rotation signal of the motor sensor as reference magnetic pole position data.

- 0: Uses the one-rotation signal position of the motor sensor as reference magnetic pole position data.
- 1: Does not use the one-rotation signal position of the motor sensor as reference magnetic pole position data.

When this parameter is set to "1," the spindle amplifier operates based on the initial magnetic pole position detected by magnetic pole detection operation regardless of the one-rotation signal position of the motor sensor.

Usually, set this parameter to 0 (uses the AMR offset function) to use the spindle amplifier.

15*i* 16*i* 30*i* 3084 4084 4084

AMR offset

Unit of data: 1 pulse (8192 pulses = electric angle 360 deg)

Valid data range: 0, 1 to 8192

Standard setting value :

Set an AMR offset.

This parameter is valid when bit 6 (NEGREF) of parameter No. 4008 is set to 0. Set an adjustment value to this parameter. When this parameter is set to 0, the AMR offset function is disabled. When setting 0 pulse as an AMR offset, set 8192.

See Subsection 1.5.3, "AMR Offset Function," and adjust this parameter for each motor.

NOTE

- 1 This parameter needs to be adjusted for individual motors. If parameters for other machine are loaded as the initial data, clear and readjust this parameter after loading parameters.
- 2 This parameter indicates the phase relationships between the motor and motor sensor. After the phase relationships are changed due to a cause such as the replacement of the motor sensor, adjust the AMR offset again.
- 3 This parameter is valid with 9D53 series C (03) edition or later, 9D70 series B (02) edition or later, and 9D80 series B (02) edition or later.
- 4 When the spindle software edition is earlier than the editions above, set this parameter to 0.

15*i* 16*i* 30*i* 3085 4085 4085

AMR offset adjustment value

Unit of data : 1 pulse (8192 pulses = electric angle 360 deg)
Valid data range : -300 to +300 (electric angle: -13.2deg to +13.2deg)

Standard setting value :

This parameter is used for AMR offset adjustment. The AMR offset can be shifted by a specified number of pulses.

To protect against an operation error caused by directly modifying the AMR offset (parameter No. 4084), the valid data range is limited to -300 to +300 pulses.

Observe the torque command and actual speed when making forward rotations and reverse rotations at the same speed, and make an adjustment so that same acceleration time and deceleration time are achieved with the same torque command, and the torque command in a certain rotation is about the same.

NOTE

- 1 After adjusting this parameter, add the optimum value to the setting of parameter No. 4084 and set the obtained value for parameter No. 4084 and "0" for this parameter (No. 4085).
- 2 This parameter is valid with 9D53 series C (03) edition or later, 9D70 series B (02) edition or later, and 9D80 series B (02) edition or later.
- 3 When the spindle software edition is earlier than the editions above, set this parameter to 0.

15*i* 16*i* 30*i* 3532 4532 4532

Arbitrary data output function number

Unit of data:

Valid data range: 0 to 32767

Standard setting value :

Set this parameter to 2 when an AMR offset candidate value is to be checked on the diagnosis screen of the CNC. An AMR offset candidate value (magnetic pole position corresponding to a one-rotation signal position counted relative to the magnetic pole detection position) can be checked with the following numbers on the diagnosis screen of the CNC:

	Diagnosis No. (16 <i>i</i>)	Diagnosis No. (30i)
1st spindle	720	720
2nd spindle	721	720
3rd spindle	740	720
4th spindle	741	720

NOTE

1 When this function is used, the following combinations of spindle software and CNC software must be used:

For spindle software 9D53 series F edition or later and 9D80 series B edition or later

FS16i /160i /160is-TB : B1HA series V (22) edition or later FS16i /160i /160is-MB : B0HA series P (16) edition or later FS18i /180i /180is-MB : BEHA series V (22) edition or later FS18i /180i /160is-MB : BDHA series P (16) edition or later FS18i /180i /180is-MB5 : BDHE series F (06) edition or later FS21i /210i /210is-MB : DEHA series P (16) edition or later FS21i /210i /210is-MB : DDHA series P (16) edition or later

For spindle software 9D70 series E edition or later and 9D80 series B edition or later

FS30*i* /300*i* /300*i*s-A : G002/G012/G022 series F (6.0) edition or later

FS31i /310i /310is-A5 : G121/G131 series F (6.0) edition or later FS31i /310i /310is-A : G101/G111 series F (6.0) edition or later

FS32*i* /320*i* /320*i*s-A : G201 series F (6.0) edition or later

1.5.6 Sequence

(1) When SFR or SRV is used as a start signal (Parameter No.4007#7:EPFSIG=0)

When SFR or SRV is input in the magnetic pole undetected state (EPFIX = 0), magnetic pole detection starts, ignoring the speed command. The speed command is enabled after magnetic pole detection is completed (EPFIX = 1). Do not input MPOF (motor power turn-off signal) and EPFSTR (magnetic pole detection operation start signal).

- (1) After turning on the power, the operator is to make a preparation to activate the motor.
- (2) Upon completion of preparation, set SFR (or SRV) to 1.
- (3) In the magnetic pole undetected state (EPFIX = 0), magnetic pole detection automatically starts.
- (4) When magnetic pole detection operation is started, the motor moves to the magnetic pole 0 deg position then moves to and stops at the magnetic pole 90 deg position (machine angle 90 deg/number of magnetic poles), determining the magnetic pole. (Direct current activation mode)
- (5) When the magnetic pole position is determined, the motor enters the magnetic pole detection completed state (EPFIXA = 1), which allows the motor to drive. If a command is kept input during magnetic pole detection, the motor starts rotating at the same time the magnetic pole position is determined. The operator may feel that this motion is unpredictable. So, provide interlock so that rotation and other commands cannot be input in the magnetic pole undetected state (EPFIX = 0).
- (6) If a spindle alarm that causes the magnetic pole position to be lost is issued, the magnetic pole undetected state (EPFIX = 0) is set. When specifying the next rotation command, start all over again from the beginning of the sequence.

(2) When EPFSTR is used as a start signal (Parameter No.4007#7:EPFSIG=1)

It is assumed that the magnetic pole determination state signal EPFIX and the magnetic pole determination operation start signal EPFSTR correspond to a lamp and button on the operator's panel. Do not input MPOF (motor power turn-off signal) during magnetic pole detection operation.

- (1) The operator recognizes EPFIX = 0 (the lamp turned off on the operator's panel) then makes a preparation for magnetic pole detection operation.
- (2) Upon completion of preparation, set EPFSTR = 1 (turn on the button on the operator's panel) to start magnetic pole determination operation.
- (3) The motor moves to the magnetic pole 0 deg position then moves to and stops at the magnetic pole 90 deg position (machine angle 90 deg/number of magnetic poles), determining the magnetic pole.
- (4) Upon magnetic pole determination, EPFIX = 1 is set (the lamp on the operator's panel is turned on).
- (5) The operator recognizes the completion of magnetic pole detection operation and set EPFSTR to 0 (turns the button on the operator's panel off).
- (6) When EPFSTR is set to 0, the speed command can be accepted. Confirm that the spindle amplifier is in the magnetic pole detection completed state (EPFIX = 1) and EPFSTR is set to 0 before inputting a rotation or move command.
- (7) If a spindle alarm that causes the magnetic pole position to be lost is issued, EPFIX = 0 is set (the lamp on the operator's panel is turned off). In this case, start all over again from the beginning of the sequence.

1.5.7 Causes of Spindle Alarm 65

If magnetic pole detection fails, spindle alarm 65 is issued. This alarm may be issued for the causes listed below. If spindle alarm 65 is issued, check the following:

- (1) Any of the following parameters is set incorrectly: No.4011#2,#1,#0,No.4334 (Number of teeth of the motor sensor) No.4011#7,#3,No.4368 (Number of motor poles)
- (2) The activation current ratio in magnetic pole detection is small so that friction impedes movement. If spindle alarm 65 is issued for this cause, increase the value of the upper three digits (activation current ratio) of parameter No.
- (3) The motor stop confirmation time (lower two digits of parameter No. 4083) is too short. The motor vibrates when it stops. So, if the set value is too small, an incorrect magnetic pole position is recognized. A sufficiently long time is needed to confirm the stop of the motor.
- (4) Motor feedback signal counting is performed incorrectly for a cause such as noise.
- (5) The motor is mechanically held and cannot move.
- (6) The motor power line is not connected. (Alternatively, the magnetic contactor is off if it is installed between the spindle amplifier and motor.)
- The motor power line phase order does not match the motor feedback signal connection phase order.

1.5.8 **Cautions**

⚠ CAUTION

This subsection provides notes on magnetic pole detection. For safety, carefully follow the notes described in this subsection.

- (1) After the power is turned on or an alarm that causes the magnetic pole position to be lost is issued, magnetic pole detection needs to be performed.
- (2) In both the direct current activation and minute operation modes, the magnetic pole position is detected by moving the motor. For this reason, magnetic pole detection is disabled in the motor locked state. So, perform magnetic pole detection when the motor can move.
- (3) If the precision of magnetic pole detection is poor, the motor output torque is small.
- (4) If magnetic pole detection is not completed, all input rotation and move commands are ignored. However, those commands become valid upon completion of magnetic pole detection. So, if an input command is left uncleared in the magnetic pole undetected state, the motor abruptly rotates upon completion of magnetic pole detection, resulting in a dangerous situation. Prepare such a sequence that commands are input after the magnetic pole determination state signal (F048#7 (EPFIXA)) set to 1 is confirmed.

2

EXPLANATION OF OPERATION MODES

2.1 VELOCITY CONTROL MODE

2.1.1 Start-up Procedure

For this subsection, see Subsection 2.1.1, "Start-up Procedure", in Part I

2.1.2 Overview

For this subsection, see Subsection 2.1.2, "Overview", in Part I.

2.1.3 System Configuration

The velocity control mode is applicable to all detector configurations. For system configurations, see Subsection 1.3.3, "Typical Detector Configurations", in Part IV.

2.1.4 List of I/O Signals (CNC↔PMC)

For this subsection, see Subsection 2.1.4, "List of I/O Signals (CNC↔PMC)", in Part I.

2.1.5 Related Parameters

Parameter No.			Description			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description			
_	3705#0	3705#0	Sets SF signal output and the S code for an S command.			
_	3705#2	3705#2	Gear switch method (M series only)			
_	3705#4	3705#4	Sets SF signal output and the S code for an S command (T series only).			
	0705#5	0705#5	Sets SF signal output when constant surface speed control is exercised			
	3705#5	3705#5	and an S code is specified (M series only).			
_	3705#6	3705#6	Sets SF signal output (M series only).			
_	3706#4	3706#4	Spindle gear selection method (M series only)			
_	3706#7,#6	3706#7,#6	Spindle speed command polarity (valid when input signal SSIN = 0)			
_	3709#0	3709#0	Number of sampling operations at spindle speed calculation time (T series only for 16 <i>i</i>)			
_	3735	3735	Minimum clamp speed of the spindle motor (M series only)			
_	3736	3736	Maximum clamp speed of the spindle motor (M series only)			
_	3740	3740	Time until the spindle speed arrival signal is checked			
_	3741	3741	Maximum spindle speed for gear 1			
_	3742	3742	Maximum spindle speed for gear 2			
_	3743	3743	Maximum spindle speed for gear 3			
	3744	3744	Maximum spindle speed for gear 4 (T series only)			
_	3751	3751	Spindle motor speed at the switch point between gear 1 and gear 2 (M series only)			
_	3752	3752	Spindle motor speed at the switch point between gear 2 and gear 3 (M series only)			
_	3772	3772	Maximum allowable spindle speed			
2031	3031	3031	Allowable number of S code characters			
2003#1	_	_	Sets an S code polarity.			
2204#0	_	_	Sets the display of an actual spindle speed.			
2402#6	_	_	Sets the S code specified in a block containing G92.			
5602#3	_	_	Whether to provide an indication for an alarm detected with the spindle amplifier. (Set "0" usually.)			
5611	_	_	Number of sampling operations when an average spindle speed is to be found.			
5612	_		Unit of spindle speed output with the DO signal			
5807#0	_	_	Enables/disables the spindle alarms (SPxxxx) of all spindles. (Set "0" usually.)			
5842	_	3720	Number of position coder pulses			
5847	_	3721	Number of gear teeth on the position coder side on velocity control (for feed per revolution, threading, etc.)			
5848	_	3722	Number of gear teeth on the spindle side on velocity control (for feed per revolution, threading, etc.)			
5850	_	_	Spindle number to be selected at power-on/reset time			
5820#4	_	_	Sets the method of spindle speed calculation.			
3006#5	4006#5	4006#5	Sets an analog override range.			
3009#4	4009#4	4009#4	Whether to output the load detection signals (LDT1, LDT2) during acceleration/deceleration			
3009#6	4009#6	4009#6	Analog override type			
3012#6	4012#6	4012#6	Sets whether to drive the synchronous built-in spindle motor. (Set "1".)			
3012#7	4012#7	4012#7	Sets the spindle HRV function. (Set "1".)			
5607#0	4019#7	4019#7	Automatic spindle parameter setting function			
3352#1	4352#1	4352#1	Sets the peak hold function for load meter output.			
3020	4020	4020	Maximum motor speed			

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

	Parameter No.		Description		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>			
3022	4022	4022	Speed arrival detection level		
3023	4023	4023	Speed detection level		
3024	4024	4024	Speed zero detection level		
3025	4025	4025	Torque limitation value.		
3026	4026	4026	Load detection level 1		
3027	4027	4027	Load detection level 2		
3030	4030	4030	Soft start/stop setting time		
3040	4040	4040	Velocity loop proportional gain on the velocity control mode		
3041	4041	4041	(A parameter is selected by the PMC input signal CTH1A.)		
3048	4048	4048	Velocity loop integral gain on the velocity control mode		
3049	4049	4049	(A parameter is selected by the PMC input signal CTH1A.)		
3056 to 3059	4056 to 4059	4056 to 4059	Spindle and motor gear ratio data		
3036 10 3039	4056 10 4059	4056 10 4059	(A parameter is selected by the PMC input signals CTH1A and CTH2A.)		
3081	4081	4081	Delay time until the motor power is turned off		
3082	4082	4082	Sets an acceleration/deceleration time.		
3508	4508	4508	Rate of change in acceleration at soft start/stop		

NOTE

- 1 For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part IV.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part IV.

2.1.6 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16i, and in the four thousands for 30i, and in the three thousands for 15i) among the parameters related to the velocity control mode. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3, "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3006	4006	4006

#7	#6	#5	#4	#3	#2	#1	#0
		ALGOVR					

ALGOVR

Sets a spindle analog override range.

0: 0 to 100% (standard setting value)

1: 0 to 120%

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3008	4008	4008

#7	#6	#5	#4	#3	#2	#1	#0
		SSMUSE					

SSMUSE

Sets whether to use the sub module SM (SSM).

0: Does not use the sub module SM.

1: Uses the sub module SM.

NOTE

If the SSM is not used (SSMUSE = 0), the maximum motor speed (parameter No. 4020) needs to be limited so that the counter electromotive voltage from the synchronous built-in spindle motor does not exceed the overvoltage alarm level of the spindle amplifier (SP). If a proper limit is exceeded, the spindle amplifier (SP) can be damaged.

B-65280EN/06FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3009	4009	4009		OVRTYP		LDTOUT				

LDTOUT

Whether to output the load detection signals (LDT1 and LDT2) during acceleration/deceleration

- 0: Not output during acceleration/deceleration. (standard setting value)
- 1: Output (at all times) during acceleration/deceleration if the parameter-set level is exceeded.

OVRTYP Analog override type

0: Override of linear function type (standard setting value)

1: Override of quadratic function type

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3012	4012	4012	SPHRV	SYSP						

SYSP

Sets whether to drive the synchronous built-in spindle motor.

- 0: Enables inductive spindle motor driving. (standard setting value)
- 1: Enables synchronous built-in spindle motor driving. Set to "1".

SPHRV

Sets the spindle HRV control function.

- 0: Disables spindle HRV control.
- 1: Enables spindle HRV control. (standard setting value)

Set to "1".

NOTE

When driving the BiS series spindle (synchronous built-in spindle motor), be sure to set both of the SYSP and SPHRV bits to 1.

16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0	
4019	4019	PRLOAD								1

PRLOAD

Automatic parameter setting function

- 0: Does not perform automatic parameter setting. (standard setting value)
- 1: Performs automatic parameter setting.

After setting a desired motor model code in parameter No. 4133 and setting this bit to 1, turn off the power to the CNC, then turn on the power to the CNC again. The parameters (No. 4000 to No. 4175) for the αi series spindle corresponding to the model code are automatically initialized. Upon completion of automatic setting, this bit is automatically set to 0.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280EN/06

NOTE

With FS15*i*, the parameter address of this function is different, namely, bit 0 of No. 5607 is used. Moreover, note that the meanings of settings are reversed as follows.

0 : Performs automatic parameter setting.

1 : Does not perform automatic parameter setting. In this case, set a model code in parameter No. 3133.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3352	4352	4352

#7	#6	#5	#4	#3	#2	#1	#0
						PKHALW	

PKHALW

Sets the peak hold function for load meter output.

0: Does not use the peak hold function. (standard setting value)

1: Uses the peak hold function.

15*i* 16*i* 30*i* 3020 4020 4020

Maximum motor speed

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

This parameter sets a maximum spindle motor speed.

! WARNING

- 1 The spindle motor may rotate at the maximum spindle motor speed specified by this parameter. Therefore, this parameter must not be set to a value greater than the maximum rotation speed indicated by the specification of the spindle motor.
- 2 If the sub module SM (SSM) is not used, the maximum motor speed needs to be limited. Limit the maximum motor speed according to Section 1.4, "SUB MODULE SM", in Part IV.

15*i* 16*i* 30*i* 3022 4022

Speed arrival detection level

Unit of data: 0.1%
Valid data range: 0 to 1000
Standard setting value: 150

This parameter sets a speed arrival signal (SARA) detection range. When the motor speed reaches within ±(setting data/10)% of a

specified speed, the speed arrival signal (SARA) is set to 1.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3023 4023 4023

Speed detection level

Unit of data: 0.1% Valid data range: 0 to 1000 Standard setting value: 30

This parameter sets a speed detection signal (SDTA) detection range. When the motor speed is (setting data/10)% of a maximum speed or

less, the speed detection signal (SDTA) is set to 1.

15*i* 16*i* 30*i* 3024 4024 4024

Speed zero detection level

Unit of data: 0.01% Valid data range: 0 to 10000 Standard setting value: 75

This parameter sets a speed zero detection signal (SSTA) detection

range.

When the motor speed is (setting data/100)% of a maximum speed or less, the speed zero detection signal (SSTA) is set to 1.

NOTE

If a calculated speed zero detection level exceeds 200 min⁻¹, the speed zero detection level is clamped to 200 min⁻¹. (9D53 series B (02) edition or later, 9D70 series A (01) edition or later, and 9D80 series B (02) edition or later)

15*i* 16*i* 30*i* 3025 4025 4025

Torque limitation value.

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 50

This parameter sets a torque limitation value to be applied when the torque limitation command HIGH (TLMHA) or the torque limitation command LOW (TLMLA) is specified.

The data indicates limitation values when the maximum torque is 100%.

Torque limitation command LOW(TLMLA)	Torque limitation command HIGH(TLMHA)	Description
0	0	No torque limitation is imposed.
0	1	The torque is limited to the value set in this parameter.
1	0	The torque is limited to a half of
1	1	the value set in this parameter.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280EN/06

15*i* 16*i* 30*i* 3026 4026 4026

Load detection level 1

1% Unit of data: Valid data range: 0 to 100 Standard setting value: 83

This parameter sets a load detection signal 1 (LDT1A) detection

range.

When the output of the spindle motor is (setting data)% of the maximum output or more, load detection signal 1 (LDT1A) is set to 1.

15*i* 16*i* 30*i* 4027 4027 3027

Load detection level 2

Unit of data: 1% Valid data range: 0 to 100 Standard setting value: 95

This parameter sets a load detection signal 2 (LDT2A) detection

When the output of the spindle motor is (setting data)% of the maximum output or more, load detection signal 2 (LDT2A) is set to 1.

15*i* 16*i* 30*i* 4030 3030 4030

Soft start/stop setting time

1min⁻¹/sec Unit of data: 0 to 32767 Valid data range: Standard setting value:

> This parameter sets an acceleration value (speed change rate) when the soft start/stop function is enabled (when the soft start/stop signal

SOCNA = 1).

NOTE

When 0 is set, the soft start/stop function is disabled.

15*i* 16*i* 30i 3040 4040 4040 4041 3041 4041

Velocity loop proportional gain on velocity control mode (HIGH) CTH1A=0 Velocity loop proportional gain on velocity control mode (LOW) CTH1A=1

Unit of data:

0 to 32767 Valid data range:

Standard setting:

This data is used to set the velocity loop proportional gain on velocity

control mode.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

 15i
 16i
 30i

 3048
 4048
 4048

 3049
 4049
 4049

Velocity loop integral gain on velocity control mode (HIGH)	CTH1A=0
Velocity loop integral gain on velocity control mode (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 10

This data is used to set the velocity loop integral gain on velocity

control mode.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

 15i
 16i
 30i

 3056
 4056
 4056

 3057
 4057
 4057

 3058
 4058
 4058

 3059
 4059
 4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767

Standard setting: 100

These data are used to set the gear ratio between spindle and spindle

motor.

Usually, set 100.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

15*i* 16*i* 30*i* 3081 4081 4081

Delay time until the motor power is turned off

Unit of data: 10ms
Valid data range: 0 to 1000
Standard setting value: 20(200ms)

This parameter sets a period of time from the stop of the motor (detection of the speed zero detection signal SSTA set to 1) until the power to the motor is turned off if the SFR/SRV signal is off.

NOTE

When a small value is set in this parameter, the motor can coast after the power to the motor is turned off.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280EN/06

15*i* 16*i* 30*i* 3082 4082 4082

Setting of acceleration/deceleration time

Unit of data: 1sec
Valid data range: 0 to 255
Standard setting value: 10

This parameter sets a period of time in which alarm detection is disabled by assuming that the spindle motor is being accelerated or decelerated even if the velocity error exceeds the velocity error excess alarm (spindle alarm 02) level after start of acceleration/deceleration on the velocity control mode.

In the velocity control mode, a step-by-step speed command is specified. So, the spindle motor cannot follow up the command immediately after start of acceleration/deceleration, and the velocity error exceeds the velocity error excess alarm level. This parameter is used to prevent the velocity error excess alarm (spindle alarm 02) from being detected incorrectly immediately after start of acceleration/deceleration.

NOTE

With a machine tool such as a lathe that has a large load inertia, the acceleration/deceleration time becomes longer. In such a case, set the value corresponding to the acceleration/deceleration time of the machine in this parameter.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3508 4508 4508

Rate of change in acceleration at soft start/stop

Unit of data: 10min⁻¹/sec² Valid data range: 0 to 32767

Standard setting: (

This parameter sets the jerk (the rate of change in acceleration) when the soft start/stop function is enabled (soft start/stop signal SOCNA =

Acceleration in velocity command (min⁻¹/sec)

noded from Gree at the point.

Increase in acceleration = 10 × setting in parameter No. 4508 × T Initial acceleration = Setting in parameter No. 4030

NOTE

- 1 This parameter is valid with 9D53 series B (02) edition or later, 9D70 series A (01) edition or later, and 9D80 series B (02) edition or later.
- 2 If 0 is set, a liner type velocity command is observed when the soft start/stop function is enabled.

2.1.7 Troubleshooting

For this subsection, see Subsection 2.1.7, "Troubleshooting", in Part I.

2.2 POSITION CODER METHOD SPINDLE ORIENTATION

Optional function

2.2.1 **Start-up Procedure**

For this subsection, see Subsection 2.2.1, "Start-up Procedure", in Part

2.2.2 **Overview**

For this subsection, see Subsection 2.2.2, "Overview", in Part I.

2.2.3 **Feature**

For this subsection, see Subsection 2.2.3, "Feature", in Part I.

2.2.4 **System Configuration**

The system configurations that enable the use of the position coder method orientation function are shown below.

(1) When the αiBZ sensor or αiCZ sensor is used

[Sample system configuration]

2.2.5 **Stop Position Specification Method**

For this subsection, see Subsection 2.2.5, "Stop Position Specification Method", in Part I.

2.2.6 I/O Signals (CNC ↔ PMC)

For this subsection, see Subsection 2.2.6, "I/O Signals (CNC ↔ PMC)", in Part I.

2.2.7 Examples of Sequences

For this subsection, see Subsection 2.2.7, "Examples of Sequences", in Part I.

2.2.8 Related Parameters

	Parameter No.		Description		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description		
3015#0	4015#0	4015#0	Specifies whether to use the spindle orientation function. (Set this bit to 1.) (The CNC software option is required.)		
5609#2	3702#3,#2	3729#0	Specifies whether to use the spindle orientation function with the stop position external setting type. (For 16 <i>i</i> , #2: First spindle, #3: Second spindle)		
3003#0	4003#0	4003#0	Choice of orientation method (Set this bit to 0.)		
3003#3,#2	4003#3,#2	4003#3,#2	Direction of rotation in spindle orientation		
3017#7	4017#7	4017#7	Shortcut function when orientation is specified in stop state		
3031	4031	4031	Stop position for position coder method orientation (This parameter is disabled when spindle orientation with an externally set stop position or an externally set incremental command is used.)		
3042	4042	4042	Velocity loop proportional gain for orientation		
3043	4043	4043	(A parameter is selected by the CTH1A input signal.)		
3050	4050	4050	Velocity loop integral gain for orientation		
3051	4051	4051	(A parameter is selected by the CTH1A input signal.)		
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio (A parameter is selected by the CTH1A and CTH2A input signals.)		
3060 to 3063	4060 to 4063	4060 to 4063	Position gain for orientation (A parameter is selected by the CTH1A and CTH2A input signals.)		
3064	4064	4064	Rate of change in the position gain upon completion of spindle orientation		
3075	4075	4075	Detection level for the spindle orientation completion signal		
3076	4076	4076	Speed limit ratio for spindle orientation		
3077	4077	4077	Spindle orientation stop position shift		
3038	4038	4038	Spindle orientation speed		

NOTE

- 1 For the parameters related to detectors, see the Section 1.3, "PARAMETERS RELATED TO DETECTORS" in the Part IV.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part IV.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280EN/06

2.2.9 **Details of Related Parameters**

15*i* 16*i* 30i #4 #1 4003 3003 4003 DIRCT2 DIRCT1 PCMGSL

DIRCT2, DIRCT1

Setting of rotation direction at spindle orientation

DIRCT2	DIRCT1	Rotation direction at spindle orientation
0	0	By rotation direction immediately before (It is CCW at the power on.)
0	1	By rotation direction immediately before (It is CW at the power on.)
1	0	CCW (counterclockwise) direction looking from shaft of motor
1	1	CW (clockwise) direction looking from shaft of motor

#0

PCMGSL Selects the type of orientation.

Set this bit to 0 (orientation by a position coder).

15*i* 16*i* 30i 3017 4017 4017

#7	#6	#5	#4	#3	#2	#1	#0
NRROEN							

NRROEN

Specifies whether to use the shortcut function when orientation is specified in the stop state.

Does not use the function. 0:

Uses the function.

When this bit is set to 1, short cut operation is performed when the following conditions are satisfied:

- Bit 7 of parameter No. 4016 (RFCHK3) is set to 0.
- Zero speed detection output signal SSTA is set to 1.
- Shortcut command input signal NRROA is set to 1.

15*i* 16*i* 30i 3031 4031 4031

Position coder method orientation stop position

Unit of data: ± 1 pulse unit (360 degrees/4096) 0 to 4096 Valid data range:

0

Standard setting:

This data is used to set the stop position of position coder method spindle orientation. It can be set at every 360 degrees/4096.

When stop position external command type orientation and incremental command external type orientation are set, this parameter becomes invalid.

Stop position command (SHA11-SHA00) of input signal instructed becomes valid.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3038 4038 4038

Spindle orientation speed

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting: 0

This parameter sets the orientation speed at the end of the spindle. When 0 is specified for this parameter, the orientation speed is determined depending on the position gain and the motor speed limit

ratio for orientation.

15*i* 16*i* 30*i*3042 4042 40423043 4043 4043

Velocity loop proportional gain on orientation (HIGH)	CTH1A=0
Velocity loop proportional gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 10

This parameter sets the velocity loop proportional gain for spindle

orientation.

When the CTH1A input signal is set to 0, proportional gain for the HIGH gear is selected. When the CTH1A input signal is set to 1,

proportional gain for the LOW gear is selected.

 15i
 16i
 30i

 3050
 4050
 4050

 3051
 4051
 4051

Velocity loop integral gain on orientation (HIGH)	CTH1A=0
Velocity loop integral gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 10

This parameter sets the velocity loop integral gain for spindle

orientation.

When the CTH1A input signal is set to 0, integral gain for the HIGH gear is selected. When the CTH1A input signal is set to 1, integral

gain for the LOW gear is selected.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280EN/06

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3056	4056	4056
3057	4057	4057
3058	4058	4058
3059	4059	4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767 Standard setting: 100

These parameters set the gear ratio of the spindle motor relative to the

spindle.

Usually, set 100.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3060	4060	4060
3061	4061	4061
3062	4062	4062
3063	4063	4063

Position gain on orientation (HIGH)	CTH1A=0, CTH2A=0
Position gain on orientation (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Position gain on orientation (MEDIUM LOW)	CTH1A=1, CTH2A=0
Position gain on orientation (LOW)	CTH1A=1, CTH2A=1

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting: 1000

These parameters set the position gain for orientation.

A parameter is selected by the CTH1A and CTH2A input signals.

15*i* 16*i* 30*i* 3064 4064 4064

Modification rate of position gain on orientation completion

Unit of data: 1% Valid data range: 0 to 799 Standard setting: 100

This data is used to set the modification rate of position gain on

spindle orientation completion.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3075 4075 4075

Orientation completion signal detection level (limits of in-position)

Unit of data: ± 1 pulse unit (360 degrees/4096)

Valid data range: 0 to 100 Standard setting: 10

This data is used to set the detecting level of orientation completion

signal (ORARA).

When the spindle position is located within the setting data on orientation completion, the bit of orientation completion signal

(ORARA) in the spindle control signals is set to "1".

When the orientation command (ORCMA) is turned off (= 0), the

orientation completion signal (ORARA) is set to "0".

15*i* 16*i* 30*i* 3076 4076 4076

Motor speed limit ratio on orientation

Unit of data: 1%
Valid data range: 0 to 100
Standard setting: 33

This data is used to set motor speed limit ratio on orientation.

The value calculated from the position gain (No. 4060 to No. 4063) and this parameter as indicated below is used as an orientation speed and reference position return speed on servo mode (rigid

tapping/spindle positioning).

Orientation speed of motor (motor speed)

= $60 \times (Position gain)/100 \times (Gear ratio) \times \frac{(Speed limit ratio)}{100} [min^{-1}]$

15*i* 16*i* 30*i* 3077 4077

Orientation stop position shift value

Unit of data: ± 1 pulse unit (360 degrees/4096)

Valid data range: -4095 to 4095

Standard setting: 0

In the position coder method orientation, set this data to shift stop

position.

Spindle is shift No. of setting pulse in CCW direction, and stops by

data (+).

2.2.10 Adjusting the Orientation Stop Position Shift Parameter

For this subsection, see Subsection 2.2.11, "Adjusting the Orientation Stop Position Shift Parameter", in Part I.

2.3 RIGID TAPPING

Optional function

2.3.1 Start-up Procedure

For this subsection, see Subsection 2.3.1, "Start-up Procedure", in Part I.

2.3.2 Overview

For this subsection, see Subsection 2.3.2, "Overview", in Part I.

2.3.3 System Configuration

The system configurations that enable the use of rigid tapping are shown below.

(1) When the αiBZ sensor or αiCZ sensor is used

[Sample system configuration]

2.3.4 List of I/O Signals (CNC \leftrightarrow PMC)

For this subsection, see Subsection 2.3.4, "List of I/O Signals (CNC \leftrightarrow PMC)", in Part I.

2.3.5 Sequence

For this subsection, see Subsection 2.3.5, "Sequence", in Part I.

2.3.6 Related Parameters

Parameter No.						
15 <i>i</i>			Description			
-	5210	5210	M code of rigid tapping command			
	5202#0	3210	Whether to perform orientation (reference position return) when starting			
5606#6	(M series only)	5202#0	rigid tapping			
-	3706#1,#0	-	Gear ratio between spindle and position coder, 1:1, 1:2, 1:4, 1:8			
E942	3707#1,#0	2720	Number of pulse of the position coder			
5842	- 5200#1	3720	Number of pulse of the position coder			
-	5200#1	-	Selection of arbitrary gear ratio between spindle and position coder			
5852	5221	5221				
5855	5222	5222	Teeth number of spindle side at arbitrary gear ratio (command) setting			
5858	5223	5223	(16i/30i: No. 5224 is used for the T series only.)			
5861	5224	5224				
5851	5231	5231				
5854	5232	5232	Teeth number of position coder side at arbitrary gear ratio (command)			
5857	5233	5233	setting (16i/30i: No. 5234 is used for the T series only.)			
5860	5234	5234				
2065 to 2069	5280	5280	Position gain of tapping axis at rigid tapping (16i/30i: No. 5284 is used for			
3065 to 3068	5281 to 5284	5281 to 5284	the T series only.)			
5605#1	-	-	Acc./Dec. type (Set to 1.)			
	5241	5241				
	5242	5242	Spindle maximum speed at rigid tapping (16i/30i: No. 5244 is used for the			
5711	5243	5243	T series only.)			
	5244	5244				
5605#2	-	-				
5757	_	_				
5886	_	_	Spindle speed for determining an acceleration value for cutting feed on			
5889	_	_	rigid tapping			
5892	-	_				
5605#2	-					
5751	5261	5261				
5886	5262	5262	Acc./Dec. time constant (16i/30i: No. 5264 is used for the T series only.)			
	5263	5263	Acc./Dec. time constant (10//30/. No. 3204 is used for the 1 series only.)			
5889	5264	5264				
5892						
5605#2	-	-				
5752	_	_				
5885	_	_	FL speed for spindle and drilling axis acceleration/deceleration on rigid			
5888	_	_	tapping			
5891	_	_				
5894						
-	5200#4	5200#4	Override selection at extracting			
5883	5211	5211	Override value at extracting			
	5201#2	5201#2	Time constant at extracting (No. 5274 is used for the T series only.)			
	5271 to 5274	5271 to 5274	Time constant at extracting (two. 5274 is used for the 1 series offly.)			
	<u>-</u>	5203#2	Feed-forward function at rigid tapping			
1827	5300	5300	In-position width of tapping axis			
5875	5301	5301	In-position width of spindle			
	5310					
1837	5341	5310	Allowable level of position error of tapping axis at moving			
5876	5311	5311	Allowable level of position error of spindle at moving			
1829	5312	5312	Allowable level of position error of tapping axis at stop			
			· · · · · · · · · · · · · · · · · · ·			
5877	5313	5313	Allowable level of position error of spindle at stop			

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280EN/06

Parameter No.			Description		
15 <i>i</i>	16 <i>i</i>	16 <i>i</i>	Description		
5853 5856 5859 5862	5321 to 5324	5321 to 5324	Backlash of spindle (16 <i>i</i> : No. 5322 and No. 5324 are used for the T series only. 30 <i>i</i> : No. 5324 is used for the T series only.)		
3000#4	4000#4	4000#4	Reference position return direction on servo mode		
3002#5	4002#5	4002#5	Whether to enable the rotation direction signal (SFR/SRV) on servo mode		
3006#7	4006#7	4006#7	Setting of the command arbitrary gear ratio function (CMR) on rigid tapping		
-	-	4037	Velocity loop feed-forward coefficient		
3044 3045	4044 4045	4044 4045	Velocity loop proportional gain on servo mode/spindle synchronous control (It is selected by input signal CTH1A/B.)		
3052	4052	4052	Velocity loop integral gain on servo mode/spindle synchronous control		
3053	4053	4053	(It is selected by input signal CTH1A/B.)		
3056 to 3059	4056 to 4059	4056 to 4059	Gear ratio between spindle and motor (It is selected by input signal CTH1A or CTH2A)		
3065 to 3068	4065 to 4068	4065 to 4068	Spindle position gain on servo mode/spindle synchronous control (It is selected by input signal CTH1A or CTH2A)		
3073	4073	4073	Grid shift amount on servo mode		
3074	4074	4074	Reference position return speed on Cs contouring control/servo mode		
3091	4091	4091	Position gain change ratio at reference position return time on servo mode		
_	-	4344	Advanced preview feed-forward coefficient		

NOTE

- 1 For the parameters related to detectors, see Section 1.3, "PARAMETERS RELATED TO DETECTORS" in the Part I.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part I.

2.3.7 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16*i*, and in the four thousands for 30*i*, and in the three thousands for 15*i*) among the parameters related to rigid tapping. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
 CONNECTION MANUAL (FUNCTION) : B-63523EN-1
- Refer to Section 9.11, "RIGID TAPPING." (b) For Series 30i/31i/32i

"FANUC Series 30*i*/31*i*/32*i*-MODEL A CONNECTION MANUAL (FUNCTION) : B-63943EN-1 Refer to Section 11.11, "RIGID TAPPING."

(c) For Series 15i

"FANUC Series 15*i*-MODEL B CONNECTION MANUAL (FUNCTION) : B-63783EN-1 Refer to Section 9.8, "RIGID TAPPING."

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3000	4000	4000

#7	#6	#5	#4	#3	#2	#1	#0
			RETSV				

RETSV

Reference position return direction on servo mode (rigid tapping/spindle positioning)

- 0: The spindle performs a reference position return operation in the CCW(counterclockwise) direction.
- 1: The spindle performs a reference position return operation in the CW(clockwise) direction.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>		
3002	4002	4002		

#7	#6	#5	#4	#3	#2	#1	#0
		SVMDRT					

SVMDRT

Whether to enable the rotation direction signal (SFR/SRV) function on servo mode (rigid tapping/spindle positioning)

- 0: Enables the rotation direction function.
 - If a move command from the CNC is positive (+),
 - (a) The spindle rotates in the CCW direction when the input signal SFR (bit 5 of G70) = 1.
 - (b) The spindle rotates in the CW direction when the input signal SRV (bit 4 of G70) = 1.
- 1: Disables the rotation direction function.

If a move command from the CNC is positive (+), the spindle rotates in the CCW direction when the input signal SFR = 1 or SRV = 1.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280EN/06

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3006	4006	4006	RGTCMR							

RGTCMR

Sets the command arbitrary gear ratio function (CMR) on rigid tapping.

0: Disables the command arbitrary gear ratio function.

1: Enables the specified arbitrary gear ratio function.

Set this parameter to 1 when rigid tapping is performed using a signal from the sensor built-into the motor as a position feedback signal and the gear ratio between the motor and spindle is other than 1:1.

When using the command arbitrary gear ratio function (CMR function), set the following as well:

- Enabling an arbitrary gear ratio between the spindle and position coder (bit 1 of No. 5200 = 1)
- Parameters for the number of gear teeth on the spindle side (No. 5221 to No. 5224)
- Parameters for the number of gear teeth on the position coder side (No. 5231 to No. 5234)

30*i* 4037

Velocity loop feed-forward coefficient

Unit of data:

Valid data range: 0 to 32767

Standard setting value :

0

This parameter sets a velocity loop feed-forward coefficient for using feed-forward control. Set the result of calculation of the following expression:

Setting = 214466
$$\times$$
 [spindle inertia + rotor inertia](kg·m²)

Maximum motor torque (N·m)

15*i* 16*i* 30*i* 3044 4044 4044

Velocity loop proportional gain on servo mode/spindle synchronous control (HIGH) $\,$ CTH1A=0 $\,$

3045 4045 4045

Velocity loop proportional gain on servo mode/spindle synchronous control (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 10

These parameters set a velocity loop proportional gain on servo mode (rigid tapping/spindle positioning) or spindle synchronous control. When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal $\hat{C}TH1A = 1$, (LOW) is selected.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3052	4052	4052	Velocity loop integral gain on servo mode/spindle synchronous control (HIGH) CTH1A=0
3053	4053	4053	Velocity loop integral gain on servo mode/spindle synchronous control (LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 10

> These parameters set a velocity loop integral gain on servo mode (rigid tapping/spindle positioning) or spindle synchronous control. When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3056	4056	4056	
3057	4057	4057	
3058	4058	4058	
3059	4059	4059	

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767

Standard setting: 100

> These data are used to set the gear ratio between spindle and spindle motor. Usually, set 100.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	
3065	4065	4065	Spindle position gain on servo mode/spindle synchronous control (HIGH) CTH1A=0, CTH2A=0
3066	4066	4066	Spindle position gain on servo mode/spindle synchronous control (MEDIUM HIGH) CTH1A=0, CTH2A=1
3067	4067	4067	Spindle position gain on servo mode/spindle synchronous control (MEDIUM LOW) CTH1A=1, CTH2A=0
3068	4068	4068	Spindle position gain on servo mode/spindle synchronous control (LOW) CTH1A=1, CTH2A=1

0.01sec⁻¹ Unit of data: Valid data range: 0 to 32767 Standard setting value: 1000

> These parameters set a position gain on servo mode (rigid tapping/spindle positioning) or spindle synchronous control. A parameter is selected according to the input signals CTH1A and

CTH2A.

15*i* 16*i* 30i3073 4073 4073

Grid shift amount on servo mode

1 pulse unit (360 degrees/4096) Unit of data:

Valid data range: 0 to 4095

Standard setting value: 0

This parameter is used to shift the reference position on servo mode

(rigid tapping/spindle positioning).

The reference position of the spindle is shifted in the CCW direction

by the specified number of pulses.

30*i* 15*i* 16*i* 3074 4074 4074

Reference position return speed on Cs contouring control/servo mode

1min⁻¹ Unit of data: Valid data range: 0 to 32767 0

Standard setting value:

When 0 is set

The value calculated from the position gain (No. 4065 to No. 4068) and orientation-time speed limit ratio (No. 4076) as indicated below is used as a reference position return speed on servo mode (rigid tapping/spindle positioning).

Reference position return speed (motor speed) =

Position gain 100 ×Gear ratiox Speed limit ratio [min⁻¹]

When a value other than 0 is set

The value set in this parameter is used as a reference position return speed on servo mode (rigid tapping/spindle positioning).

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3091 4091 4091

Position gain change ratio at reference position return time on servo mode

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 100

This parameter sets a position gain change ratio at reference position return time on servo mode (rigid tapping, spindle positioning, and so

forth).

NOTE

An overshoot can occur at reference position return time for a cause such as an excessively high reference position return speed and an excessively large spindle inertia. In this case, an overshoot can be avoided by setting a small value in this parameter.

15*i* 16*i* 30*i* - 4344

Advanced preview feed-forward coefficient

Unit of data: 0.01% Valid data range: 0 to 10000 Standard setting value: 0

g value: 0
This parameter sets a f

This parameter sets a feed-forward coefficient for using feed-forward control. Set the same value as for the servo axis simultaneously

subjected to interpolation.

2.3.8 Parameter Setting Procedure

For this subsection, see Subsection 2.3.8, "Parameter Setting Procedure", in Part I.

2.3.9 Adjustment Procedure

(1) Parameters used for adjustment

The table below lists and describes the parameters used for adjusting rigid tapping.

Parameter No. (FS16i)	Description
5241 to 5244	Maximum spindle speed on rigid tapping (Depends on the GR signal. No. 5244 is for the T series only.)
5261 to 5264	Acceleration/deceleration time constant on rigid tapping (Depends on the GR signal. No. 5264 is for the T series only.)
5280 to 5284	Position gain of tapping axis on rigid tapping (No. 5280 is for all gears. Nos. 5281 to 5284 depend on the GR signal. No. 5284 is for T series only.)
4065 to 4068	Spindle position gain on rigid tapping (depends on CTH1A and CTH2A signals)
4044 to 4045	Velocity loop proportional gain on rigid tapping (depends on CTH1A signal)
4052 to 4053	Velocity loop integral gain on rigid tapping (depends on CTH1A signal)

(2) Spindle data used for adjustment

Adjust the parameters while observing the motor speed, torque command, velocity error, synchronous error, and other waveform by using a spindle check board and oscilloscope or SERVO GUIDE. The table below lists spindle check board settings for observing the waveform.

Check board s	etting address	Sottings	Observing data			
Output to CH1	Output to CH2	Settings	Observing data			
d-05	d-09	25	Volcoity orror			
d-06	d-10	12	Velocity error ±128 min ⁻¹ at ±5 V			
d-07	d-11	0	±256min ⁻¹ at ±5 V if d-06 (d-10) is set to 13			
d-08	d-12	1	±25011111 at ±5 v ii d=00 (d=10) is 30t to 15			
d-05	d-09	90	Torque command			
d-06	d-10	7	Maximum positive/negative torque command at ±5 V			
d-07	d-11	0	Maximum positive/negative torque command at ±2.5 V			
d-08	d-12	1	if d-06 (d-10) is set to 8			
d-05	d-09	68	Synchronous error (value converted for the spindle:			
d-06	d-10	0	4096 pulses/rev)			
d-07	d-11	0	±128 pulses at ±5 V ±256 pulses at ±5 V if d-06 (d-10) is set to 1			
d-08	d-12	1	±512 pulses at ±5 V if d-06 (d-10) is set to 2			
d-05	d-09	19	Motor speed			
d-06	d-10	18	±8192 min ⁻¹ at ±5 V			
d-07	d-11	0	±4096 min ⁻¹ at ±5 V if d-06 (d-10) is set to 17			
d-08	d-12	1	±2048 min ⁻¹ at ±5 V if d-06 (d-10) is set to 16			

NOTE

When observing the synchronous error of Series 16i, set the following parameters:

No. 3700, #7 = 1:

Uses the synchronous error output (maintenance function). (Return the setting to 0 after the observation is completed.)

No. 5203, #7 = 1:

Sets a synchronous error update cycle.

(Return the setting to 0 after the observation is completed.)

No. 5204, #0 = 0:

Displays the synchronous error on the diagnosis screen.

(3) Adjustment procedure

(3)-1 Specifying an acceleration/deceleration time constant (1): Specifying a provisional value

Before optimizing the acceleration/deceleration time constant, adjust the gain to improve the response. Following (a) or (b) below, specify a provisional acceleration/deceleration time constant according to the target maximum speed.

(a) Specifying a provisional time constant according to the velocity waveform in actual acceleration/deceleration

Observe the motor velocity waveform (velocity control mode) in acceleration up to the maximum rigid tapping speed. Specify such a provisional time constant that the inclination (acceleration) during rigid tapping acceleration becomes about a half of the inclination of a tangent to the motor velocity waveform near the location of maximum speed. See the sample waveform shown below.

- Nr. Maximum rigid tapping speed (No. 5241 to 5244) 4000 min⁻¹ in this example
- ta: Time of acceleration by the maximum torque at Nr About 400 ms in this example
- tr. Rigid tapping acceleration/deceleration time constant (No. 5261 to 5264) 800 ms, which is two times ta, in this example

In this example, the maximum rigid tapping speed Nr is set to 4000 min⁻¹. To determine the acceleration/deceleration time constant, the motor velocity waveform in acceleration up to 4000 min⁻¹ is observed. If the acceleration is performed with the maximum motor torque at 4000 min⁻¹, the acceleration time ta needed to attain 4000 min⁻¹ is about 400 ms, as shown above. This is the minimum value of acceleration/deceleration time constant tr, which can be specified without consideration of cutting load. A time constant that can be specified in consideration of cutting load is usually about 1.2 to 1.5 times this value. As a provisional value for gain adjustment, approximately double (800 ms) is specified here.

(b) Specifying a value calculated from the relationship between the maximum torque and spindle inertia

Specify an acceleration/deceleration time constant calculated from the following expression:

 $tr[\text{ms}] = \frac{Jm[\text{kgm}^2] + JL[\text{kgm}^2]}{T\max(Nr)[\text{Nm}]} \times \frac{2\pi}{60} \times Nr[\text{min}^{-1}] \times GR \times 1000 \times 2$

tr[ms]: Acceleration/deceleration time constant on rigid

tapping (No. 5261 to 5264)

Nr[min⁻¹]: Maximum spindle speed on rigid tapping (No. 5241

to 5244)

GR: Spindle-motor gear ratio (Motor rotation per spindle

rotation)

Tmax(Nr) [Nm]: Maximum torque of spindle motor at Nr

 $Jm[kgm^2]$: Rotor inertia of spindle motor

JL[kgm²]: Spindle load inertia(converted for the motor shaft)

(3)-2 Specifying a position gain

Specify an initial value of about 2000(20 sec⁻¹) to 3000(30 sec⁻¹), then adjust the value as needed. Basically, specify identical values for the spindle and tapping axis.

After specifying the position gain, check whether the spindle is operating as designed. For that purpose, check that the position error (value displayed on the CNC screen) during stable rotation at the maximum speed is almost the same as the theoretical value. This theoretical value is calculated as shown below. If the theoretical value is substantially different, re-check the parameters related to position gain, gear ratio, and detector.

$$Perr(Nr)[pulse] = \frac{Nr[\min^{-1}]}{60} \times 4096[pulse/rev] \times \frac{1}{PG[\sec^{-1}]}$$

Perr(Nr) [pulse]:Position error in stable rotation at NrNr [min-1]:Maximum speed on rigid tappingPG [sec-1]:Position gain on rigid tapping

If the gear ratio is 1:1 at Nr=4000 min⁻¹ and PG=3000 (30 sec⁻¹), the position error in stable rigid tapping at Nr is calculated as follows:

$$Perr(Nr) = \frac{4000}{60} \times 4096 \times \frac{1}{30} = 9102[pulse]$$

(3)-3 Specifying a velocity loop gain

Refer to Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT" for details of the velocity loop proportional/integral gain. Adjust the velocity loop proportional/integral gain so that the velocity error decreases.

During the adjustment, observe the velocity error and motor speed. Sample waveforms before and after the adjustment are shown below:

(a) Waveform before adjustment (No. 4044 = 10, No. 4052 = 10)

(b) Waveform after adjustment (No. 4044 = 20, No. 4052 = 60)

(3)-4 Specifying an acceleration/deceleration time constant (2) : Specifying an optimum value

Observing the torque command and motor speed, make a final adjustment of the time constant. Adjust the time constant in consideration of the actual cutting load, so that the peak torque at air cut becomes about 70% to 80% (3.5 to 4.0 V) of the maximum value. Sample waveforms before and after the adjustment are shown below:

(a) Waveform before adjustment (No. 5261 = 800)

(b) Waveform after adjustment (No. 5261 = 480)

(3)-5 Checking the synchronous error

The spindle adjustment ends when the adjustments described in above procedures are completed. After the spindle adjustment, check the synchronous error between the spindle and servo axis, which will be an index of rigid tapping precision.

The synchronous error is a difference between the spindle position error and the servo axis position error converted for the spindle.

 $SYNCER[pulse] = \hat{PERsp}[pulse] - PERsv[pulse]$

SYNCER [pulse]:Synchronous error

(4096 pulses per spindle rotation)

PERsp [pulse]: Spindle position error

PERsv [pulse]: Servo axis position error converted for the spindle

2.3.10 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.3.10, "Diagnosis (Diagnosis Screen)", in Part I.

2.3.11 Alarm

For this subsection, see Subsection 2.3.11, "Alarm", in Part I.

2.4 Cs CONTOURING CONTROL

Optional function

2.4.1 Start-up Procedure

For this subsection, see Subsection 2.4.1, "Start-up Procedure", in Part I

2.4.2 Overview

For this subsection, see Subsection 2.4.2, "Overview", in Part I.

2.4.3 System Configuration

The system configurations that enable the use of the Cs contouring control function are shown below.

[System configuration example]

2.4.4 List of I/O Signals (CNC \leftrightarrow PMC)

For this subsection, see Subsection 2.4.4, "List of I/O Signals (CNC \leftrightarrow PMC)", in Part I.

2.4.5 Examples of Sequences

For this subsection, see Subsection 2.4.5, "Examples of Sequences", in Part I.

2.4.6 Related Parameters

16i	P	arameter No.					
1005#2			30 <i>i</i>	Description			
1005#2	1005#0	1005#0	1005#0	Whether to use the reference position return function			
1005#3		-	_	·			
1600#2,11,#0 1006#2 1006#2 Sets a linear axis/rotation axis. (Set "1") 1600#3 - Sets a Indust for a move command/rotation axis. (Set "0".) 1804#7 - Sets a Indust for a move command/rotation axis. (Set "1".) 1804#7 - Sets a Caoltouring control axis with a serial spindle. (Set "1".) Sets a Cao contouring control axis with a serial spindle. (Set "1".) Specifies whether to enable the reference position return function for the first G00 command received after switching to Cs contouring control. Sets the Cs axis coordinate establishment function. Increment system (Set "1".) Specifies whether to enable the reference position return function for the first G00 command received after switching to Cs contouring control. Sets the Cs axis coordinate establishment function. Increment system (Set "1".) (Sets the Cs axis coordinate establishment function. Increment system (Set "1".) (Sets and axis coordinate establishment function. (Set "1".) (Sets and axis (Set "360.0".) (Sets and axis (S							
1600#2 #1.#0 1006#2 1006#2 Sets a linear axis/rotation axis. (Set "1".)	1005#3	-	-				
1804#7 - Sets a Cs contouring control axis with a serial spindle. (Set "1".)	1600#2,#1,#0	1006#2	1006#2				
203#1 - Sets machine position display on the CRT. (Set "1".)	1600#3	-	-	Sets a radius for a move command/rotation axis. (Set "0".)			
203#1 - Sets machine position display on the CRT. (Set "1".)	1804#7	-	-	Sets a Cs contouring control axis with a serial spindle. (Set "1".)			
3712#2 3712#2 3712#2 Set the Cs axis coordinate establishment function.	2203#1	-	-				
1012		2700#4	2700#4	Specifies whether to enable the reference position return function for the			
1012	-	3700#1	3700#1	first G00 command received after switching to Cs contouring control.			
#3,#2,#1,#0 #1,#0 #3,#2,#1,#0 (Usually, set and use IS-B.) 1020 1020 1020 Program axis name - 1022 1022 Sets an axis of the basic coordinate system. (Set "0".) 1023 1023 1023 Servo axis number (Set "-1".) 1028 1260 Movement per rotation of rotation axis (Set "360.0".) 1420 1420 1420 Rapid traverse rate 1620 1620 1620 Linear acceleration/deceleration time constant for rapid feed 1820 1820 1826 In-position width 5880 1828 1828 Position error limit during movement 5881 1829 1829 Position error limit when stopped 5882 Position error limit when the servo system is off 5869#0 Position error limit when the servo system is off 581 3920 3920 3930 3930 3930 3930 3940 3991 to 3944 3931 to 3934 3931	-	3712#2	3712#2	Sets the Cs axis coordinate establishment function.			
1020	1012	1004	1013	Increment system			
1022 1022 Sets an axis of the basic coordinate system. (Set "0".)	#3,#2,#1,#0	#1,#0	#3,#2,#1,#0	(Usually, set and use IS-B.)			
1023	1020	1020		Program axis name			
1028	-	1022	1022	Sets an axis of the basic coordinate system. (Set "0".)			
1260	1023	1023	1023	Servo axis number (Set "-1".)			
1420	1028	-	-	Spindle number of Cs contouring control axis			
1620	1260	-	1260	Movement per rotation of rotation axis (Set "360.0".)			
1820	1420	1420	1420	Rapid traverse rate			
1826		1620	1620	Linear acceleration/deceleration time constant for rapid feed			
5880 1828 1829 Position error limit during movement 5881 1829 1829 Position error limit when stopped 5882 - - Position error limit when the servo system is off 5609#0 - - Sets a position gain for a servo axis subject to interpolation with the Cs contouring control axis. ("0": Automatically set, "1": Not automatically set. Usually, set "0".) - 3900 3910 3910 3920 3920 3920 3930 3930 3930 3930 393	1820	1820	1820	Command multiplication (Usually, set "2" [= CMR 1].)			
1829	5879	1826	1826				
Sets a position error limit when the servo system is off		1828	1828	Position error limit during movement			
Sets a position gain for a servo axis subject to interpolation with the Cs contouring control axis. "0": Automatically set, "1": Not automatically set. Usually, set "0".) 3900		1829	1829				
Servo axis number subject to interpolation with the Cs contouring control axis	5882	-	-	Position error limit when the servo system is off			
Control mode Contouring control							
3900 3910 3910 3920 3920 3930 3930 3940 3940 3941 to 3904 3911 to 3914 3921 to 3924 3921 to 3924 3931 to 3934 3931 to 3934 3941 to 3944 3	5609#0	-	-				
Servo axis number subject to interpolation with the Cs contouring control axis Servo axis number subject to interpolation with the Cs contouring control axis Servo axis number subject to interpolation with the Cs contouring control axis Servo axis number subject to interpolation with the Cs contouring control axis 3901 to 3904 3901 to 3904 3911 to 3914 3921 to 3924 3931 to 3934 3931 to 3934 3941 to 3944 3941 to 3944 5843 Number of pulses of position detector for Cs contouring control axis 5843 Number of pulses of position detector for Cs contouring control mode 3000#1 4000#1 4000#1 Spindle rotation direction for a positive motion command on Cs contouring control mode 3000#3 4000#3 4000#3 Direction of reference position return when the system enters Cs contouring control mode 3002#4 4002#4 4002#4 Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control. Maximum spindle speed on Cs contouring control mode				("0": Automatically set, "1": Not automatically set. Usually, set "0".)			
Servo axis number subject to interpolation with the Cs contouring control axis Servo axis number subject to interpolation with the Cs contouring control axis 3930 3930 3940 3901 to 3904 3901 to 3904 3911 to 3914 3911 to 3914 3921 to 3924 3931 to 3934 3931 to 3934 3931 to 3934 3941 to 3944 5843 - Number of pulses of position detector for Cs contouring control scontrol mode 3000#1 4000#1 4000#1 Direction of reference position return when the system enters Cs contouring control mode 3002#4 4002#4 4002#4 4002#4 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control mode Servo axis number subject to interpolation with the Cs contouring control axis							
3920 3930 3940 3940 3940 3991 to 3994 3911 to 3914 3921 to 3924 3931 to 3934 3931 to 3934 3941 to 3944 4000#1 4000#1 4000#1 4000#1 4000#1 Spindle rotation direction for a positive motion command on Cs contouring control mode Direction of reference position return when the system enters Cs contouring control mode 3002#4 4002#4 4002#4 4002#4 4002#4 4002#4 4002#4 3005#0 4005#0 - Sets the detection unit for Cs contouring control 3016#3 4016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control mode 3021 4021 4021 Maximum spindle speed on Cs contouring control mode				Servo axis number subject to interpolation with the Cs contouring control			
3940 3940 3940 3901 to 3904 3901 to 3904 3911 to 3914 3921 to 3924 3921 to 3924 3931 to 3934 3941 to 3944 4000#1 4000#1 4000#1 4000#1 4000#3 4000#3 4000#3 4000#3 4000#3 4000#4	-						
3901 to 3904 3911 to 3914 3911 to 3914 3921 to 3924 3931 to 3934 3931 to 3945 3931 to 3946 3931 to 3934 4000#1 300#### Spindle rotation direction for a positive motion command on Cs contouring control mode 300####### Spindle rotation direction for a positive motion command on Cs contouring control mode 300##################################							
- 3911 to 3914 3921 to 3924 3931 to 3934 3931 to 3934 3931 to 3934 3941 to 3944 4000#1 4000#1 4000#1 Spindle rotation direction for a positive motion command on Cs contouring control mode 3000#3 4000#3 4000#3 4000#3 Direction of reference position return when the system enters Cs contouring control mode 3002#4 4002#4 4002#4 4002#4 Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control mode							
- 3921 to 3924 3931 to 3934 3931 to 3934 3931 to 3934 3941 to 3944 5843 Number of pulses of position detector for Cs contouring control axis - Number of pulses of position detector for Cs contouring control - Spindle rotation direction for a positive motion command on Cs contouring control mode - Output Direction of reference position return when the system enters Cs contouring control mode - Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control - Sets the detection unit for Cs contouring control - Sets the smoothing function in feed-forward control mode							
3931 to 3934 3941 to 3944 5843 - Number of pulses of position detector for Cs contouring control Spindle rotation direction for a positive motion command on Cs contouring control mode 3000#3 4000#3 4000#3 4000#3 4000#3 4000#4 4000#4 4000#4 4000#4 4000#4 4000#4 4000#4 4000#4 4000#4 4000#4 4000#4 4000#4 50irection of reference position return when the system enters Cs contouring control mode Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control 3005#0 4005#0 4016#3 4016#3 4016#3 Sets the detection unit for Cs contouring control. Sets the smoothing function in feed-forward control. Maximum spindle speed on Cs contouring control mode				Position gain of a servo axis subject to interpolation with the Cs contouring			
3941 to 3944 3941 to 3944 5843 Number of pulses of position detector for Cs contouring control 3000#1 4000#1 4000#1 Spindle rotation direction for a positive motion command on Cs contouring control mode 3000#3 4000#3 4000#3 Direction of reference position return when the system enters Cs contouring control mode 3002#4 4002#4 4002#4 Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control mode	_			control axis			
- Number of pulses of position detector for Cs contouring control 3000#1 4000#1 4000#1 Spindle rotation direction for a positive motion command on Cs contouring control mode 3000#3 4000#3 4000#3 Direction of reference position return when the system enters Cs contouring control mode 3002#4 4002#4 4002#4 Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control mode							
3000#1 4000#1 4000#1 Spindle rotation direction for a positive motion command on Cs contouring control mode 3000#3 4000#3 4000#3 Direction of reference position return when the system enters Cs contouring control mode 3002#4 4002#4 4002#4 Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control. Maximum spindle speed on Cs contouring control mode	5843	-	-				
3000#1 4000#1 control mode 3000#3 4000#3 4000#3 Direction of reference position return when the system enters Cs contouring control mode 3002#4 4002#4 4002#4 4002#4 Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control. 3021 4021 Maximum spindle speed on Cs contouring control mode		_	-	·			
3000#3 4000#3 4000#3 Direction of reference position return when the system enters Cs contouring control mode 3002#4 4002#4 4002#4 Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control. 3021 4021 Maximum spindle speed on Cs contouring control mode	3000#1	4000#1	4000#1				
3002#4 4000#3 4000#3 control mode Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control. Maximum spindle speed on Cs contouring control mode							
3002#4 4002#4 4002#4 Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control. 3021 4021 Maximum spindle speed on Cs contouring control mode	3000#3	4000#3	4000#3				
3002#4 4002#4 contouring control 3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control. 3021 4021 Maximum spindle speed on Cs contouring control mode	0005"	1005"	1005"				
3005#0 4005#0 - Sets the detection unit for Cs contouring control. 3016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control. 3021 4021 Maximum spindle speed on Cs contouring control mode	3002#4	4002#4	4002#4	,			
3016#3 4016#3 4016#3 Sets the smoothing function in feed-forward control. 3021 4021 Maximum spindle speed on Cs contouring control mode	3005#0	4005#0	-				
3021 4021 4021 Maximum spindle speed on Cs contouring control mode			4016#3	-			
				-			
3030 4030 - FEEU-IOFWAID COEFFICIENT	3036	4036	-	Feed-forward coefficient			

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

Parameter No.			Deparintion		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description		
3037	4037	4037	Velocity loop feed-forward coefficient		
3046	4046	4046	Velocity loop proportional gain on Cs contouring control mode		
3047	4047	4047	(A parameter is selected by the CTH1A input signal sent from the PMC.)		
3054	4054	4054	Velocity loop integral gain on Cs contouring control mode		
3055	4055	4055	(A parameter is selected by the CTH1A input signal sent from the PMC.)		
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio (A parameter is selected by the CTH1A and CTH2A input signals sent from the PMC.)		
3069 to 3072	4069 to 4072	4069 to 4072	Position gain for axes subject to Cs contouring control (A parameter is selected by the CTH1A input signal sent from the PMC.)		
3074	4074	4074	Feedrate for reference position return on Cs contouring control mode or servo mode		
3092	4092	4092	Rate of change in the position gain when reference position return is performed on Cs contouring control mode		
3094	4094	4094	Disturbance torque compensating constant (acceleration feedback gain)		
3131	4131	4131	Velocity detection filter time constant (on Cs contouring control)		
3135	4135	4135	Grid shift on Cs contouring control mode		
3162	4162	4162	Velocity loop integral gain for cutting feed on Cs contouring control		
3163	4163	4163	(A parameter is selected by the PMC input signal CTH1A.)		
-	-	4344	Advanced preview feed-forward coefficient		
-	4353#5	4353#5	Sets the Cs axis position data transfer function.		
3406	4406	4406	Acceleration/deceleration time constant for Cs control reference position return		

NOTE

- 1 For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part IV.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part IV.

2.4.7 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16*i*, in the four thousands for 30*i*, and in the three thousands for 15*i*) among the parameters related to Cs contouring control. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.9, "Cs CONTOUR CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.9, "Cs CONTOUR CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7, "Cs CONTOUR CONTROL."

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3000	4000	4000

#7	#6	#5	#4	#3	#2	#1	#0
				RETRN		ROTA2	

ROTA2 Indicates the spindle direction by the move command (+). (Only effective on Cs contouring control)

- 0: When the value of a move command from the CNC is positive (+), the spindle rotates in the CCW direction.
- 1: When the value of a move command from the CNC is positive (+), the spindle rotates in the CW direction.

Change the setting of this parameter when changing the rotation direction of the spindle on Cs contouring control.

RETRN Indicates the reference position return direction on Cs contouring control.

- 0: Returns the spindle from the CCW direction to the reference position (counterclockwise direction).
- 1: Returns the spindle from the CW direction to the reference position (clockwise direction).

B-65280EN/06FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3002	4002	4002				CSDRCT				

CSDRCT Whether to use the rotation direction signal (SFR/SRV) on Cs contouring control

- 0: Rotation direction function enabled
 - (1) When bit 1 (ROTA2) of No. 4000 = 0, and the value of a move command from the CNC is positive (+)
 - (a) The spindle rotates counterclockwise when input signal SFR(G70#5) is set to 1.
 - (b) Tithe spindle rotates clockwise when input signal SRV(G70#4) is set to 1.
 - (2) When bit 1 (ROTA2) of No. 4000 = 1, and the value of a move command from the CNC is positive (+)
 - (a) The spindle rotates clockwise when input signal SFR(G70#5) is set to 1.
 - (b) The spindle rotates counterclockwise when input signal SRV(G70#4) is set to 1.
- 1: Rotation direction function disabled

The rotation direction function of the SFR/SRV signal is disabled. Only the function for enabling spindle motor excitation is available.

- (1) When bit 1 (ROTA2) of parameter No. 4000 is set to 0 When the value of a move command from the CNC is positive (+), and SFR/SRV = 1, the spindle rotates in the CCW direction.
- (2) When bit 1 (ROTA2) of parameter No. 4000 is set to 1 When the value of a move command from the CNC is positive (+), and SFR/SRV = 1, the spindle rotates in the CW direction.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	<u>#</u> 7	#6	#5	#4	#3	#2	#1	#0
3005	4005	4005								CS360M

CS360M Sets the detection unit for Cs contouring control.

0: 0.001° 1: 0.0001°

Set 0 usually. When a αiCZ sensor is used as the position detector and the setting unit IS-C is used, set 1.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3016	4016	4016					FFSMTH			

CECNTH Consider that the second consider the second constitution of the sec

FFSMTH Specifies whether to use the smoothing function under feed-forward control.

0: Does not use the smoothing function.

1: Uses the smoothing function.

This bit specifies whether to use the smoothing function under feed-forward control on Cs contouring control mode.

15*i* 16*i* 30*i* 3021 4021 4021

Maximum speed on Cs contouring control mode

Unit of data: 1min⁻¹
Valid data range: 0 to 32767
Standard setting: 100

This parameter specifies the maximum speed of a spindle operating on

Cs contouring control mode.

When 0 is specified as the parameter for the feedrate for reference position return on Cs contouring control mode (parameter No. 4074), reference position return is performed at the speed specified as the

maximum speed in this parameter.

15*i* 16*i* 30*i* 3036 4036 -

Feed-forward coefficient

Unit of data: 1%
Valid data range: 0 to 100
Standard setting: 0

Set the feed-forward coefficient when feed-forward control is

executed on Cs contouring control.

15*i* 16*i* 30 3037 4037 4037

Velocity loop feed-forward coefficient

Unit of data:

Valid data range: 0 to 32767

Standard setting: 0

Set a velocity loop feed-forward coefficient when feed-forward control is executed on Cs contouring control. Use the following

expression to determine a value to be set:

Setting = 214466 \times [spindle inertia + rotor inertia](kg·m²) Maximum motor torque (N·m)

15*i* 16*i* 30*i* 3046 4046 4046 3047 4047 4047

Velocity loop proportional gain on Cs contouring control (HIGH)

CTH1A=0

Velocity loop proportional gain on Cs contouring control (LOW)

CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 30

These parameters specify the proportional gains of the velocity loop

on Cs contouring control mode.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal CTH1A = 1, (LOW) is selected.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>		
3054	4054	4054	Velocity loop integral gain on Cs contouring control (HIGH)	CTH1A=0
3055	4055	4055	Velocity loop integral gain on Cs contouring control (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 50

These parameters specify the integral gains of the velocity loop for Cs

contouring control mode.

When the input signal CTH1A = 0, (HIGH) is selected. When the

input signal $\overline{C}TH1A = 1$, (LOW) is selected.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>		
3056	4056	4056	Gear ratio (HIGH)	CTH1A=0, CTH2A=0
3057	4057	4057	Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
3058	4058	4058	Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
3059	4059	4059	Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767

Standard setting: 100

These parameters set the gear ratio of the spindle motor to the spindle. Usually, set 100.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle does not stop but keeps rotating at the time of orientation. So, be sure to set a proper gear ratio.

151	101	301
3069	4069	4069
3070	4070	4070
3071	4071	4071
3072	4072	4072

Position gain on Cs contouring control (HIGH)	CTH1A=0, CTH2A=0
Position gain on Cs contouring control (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Position gain on Cs contouring control (MEDIUM LOW)	CTH1A=1, CTH2A=0
Position gain on Cs contouring control (LOW)	CTH1A=1, CTH2A=1

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting: 3000

These parameters specify the position gains used on Cs contouring

control mode.

A parameter is selected by the input signals CTH1A and CTH2A.

15*i* 16*i* 30*i* 3074 4074 4074

Speed for return to reference position on Cs contouring control mode/servo mode

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting: 0

• When 0 is set

The value set in No. 4021 (maximum spindle speed) is used as a reference position return speed on Cs contouring control.

When a value other than 0 is set

The value set in this parameter is used as a reference position return speed on Cs contouring control.

NOTE

An overshoot can occur at reference position return time for a cause such as an excessively high reference position return speed by setting the parameter No. 4021 (maximum spindle speed on Cs contouring control mode). In this case, set this parameter.

15*i*16*i*30*i*309240924092

The reduction rate of position loop gain in returning to the reference position on Cs contouring mode

Unit of data: 1%
Valid data range: 0 to 100
Standard setting: 100

This parameter specifies a rate of change in the position gain used for reference position return on Cs contouring control mode.

NOTE

An overshoot can occur at reference position return time for a cause such as an excessively high reference position return speed and an excessively large spindle inertia. In this case, an overshoot can be avoided by setting a small value in this parameter.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i*

3094 4094 4094

The constant of the torque disturbance compensating (Acceleration feedback gain)

Unit of data:

Valid data range: 0 to 32767

Standard setting:

This parameter specifies the constant for compensating for a disturbance torque on Cs contouring control mode.

NOTE

By setting this parameter, stability in cutting can be improved.

In this parameter, set a value from 500 to 2000.

Do not set a value exceeding 4000.

15*i* 16*i* 30*i*3131 4131 4131

Velocity detection filter time constant (on Cs contouring control)

Unit of data: 0.1ms

Valid data range: 0 to 10000

Standard setting value: 0

This parameter sets a filter time constant for the velocity feedback

signal on Cs contouring control. Usually, set 0.

15*i* 16*i* 30*i* 3135 4135 4135

Grid shift amount on Cs contouring control

Unit of data: 1 pulse unit (=0.001°) (0.0001° when bit 0 (CS360M) of parameter No.

4005 is set to 1)

Valid data range : -360000 to +360000

(When parameter No. 4005 #0 (CS360M) is 1, -3,600,000 to

+3,600,000)

Standard setting value: 0

Use this parameter to shift the machine reference position on Cs

contouring control.

The machine reference position of the spindle shifts by the set number

of pulses in the CCW direction.

 15i
 16i
 30i

 3162
 4162
 4162

Velocity loop integral gain for cutting feed on Cs contouring control(HIGH) CTH1A=0

3163 4163 4163

Velocity loop integral gain for cutting feed on Cs contouring control(LOW) CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value :

These parameters set a velocity loop integral gain for cutting feed

(G01, G02, G03) on Cs contouring control.

When the input signal CTH1A = 0, (HIGH) is selected. When the input signal CTH1A = 1, (LOW) is selected.

NOTE

When 0 is set in these parameters, the values set in No. 4054 and No. 4055 (velocity loop integral gain on Cs contouring control) are valid.

15*i* 16*i* 30*i* - 4344

Advanced preview feed-forward coefficient

Unit of data: 0.01% Valid data range: 0 to 10000

Standard setting value: 0

This parameter sets a feed-forward coefficient for exercising feed-forward control when Cs contouring control is used.

15*i* 16*i* 30*i* - 4353 4353

#7	#6	#5	#4	#3	#2	#1	#0
		CSPTRE					

CSPTRE

Sets the Cs axis position data transfer function.

0: Disables the Cs axis position data transfer function.

1: Enables the Cs axis position data transfer function.

Set this parameter to 1 when using the Cs axis coordinate establishment function.

NOTE

This parameter is valid with 9D53 series B (02) edition or later, 9D70 series A (01) edition or later, and 9D80 series B (02) edition or later.

B-65280EN/06FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

15*i*16*i*34064406

Acceleration/deceleration time constant at return to the reference position in Cs contouring control

Unit of data: 1msec Valid data range: 0 to 32767

Standard setting:

This parameter sets the acceleration to be used for returning to the reference position in Cs contouring control. Use of this parameter can reduce the shock due to acceleration/deceleration during return to the reference position. The spindle speed command during return to the reference position is then given as follows:

NOTE

- 1 When 0 is set in this parameter, a velocity command is assumed as follows.
 - Before detecting the one-rotation signal: Reference position return speed (step-type velocity command)
 - After detecting the one-rotation signal:
 Distance to the reference position × Position gain
- 2 This parameter is enabled when soft start/stop signal SOCNA is 1.

2.4.8 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.4.8, "Diagnosis (Diagnosis Screen)", in Part I.

2.4.9 Alarm

For this subsection, see Subsection 2.4.9, "Alarm", in Part I.

2.5 SPINDLE SYNCHRONOUS CONTROL

Optional function

2.5.1 Start-up Procedure

For this subsection, see Subsection 2.5.1, "Start-up Procedure", in Part I.

2.5.2 Overview

For this subsection, see Subsection 2.5.2, "Overview", in Part I.

2.5.3 System Configuration

The system configurations that enable the use of the spindle synchronous control function are shown below.

2.5.4 Explanation of Operation

For this subsection, see Subsection 2.5.4, "Explanation of Operation", in Part I.

2.5.5 I/O Signals (CNC \leftrightarrow PMC)

For this subsection, see Subsection 2.5.5, "I/O Signals (CNC \leftrightarrow PMC)", in Part I.

2.5.6 Examples of Sequences

For this subsection, see Subsection 2.5.6, "Examples of Sequences", in Part I.

2.5.7 Related Parameters

Parameter No. 16 <i>i</i> 30 <i>i</i>		Description	
		Description	
4800#0	ı	Direction of rotation of the 1st spindle motor while spindle synchronous control is applied	
4800#1	-	Direction of rotation of the 2nd spindle motor while spindle synchronous control is applied	
-	4801#0	Direction of rotation of each spindle motor while spindle synchronous control is applied	
4810	4810	Error pulse difference between the two spindles for which to output the spindle phase synchronous control completion signal	
4811	4811	Error pulse difference between the two spindles for which to output the phase synchronous error monitor signal (SYCAL)	
4002#6	4002#6	Whether to enable the rotation direction signal (SFR/SRV) function on spindle synchronous control	
4006#1	4006#1	Gear ratio increment system	
4006#3	4006#3	Setting for disabling automatic one-rotation signal detection at spindle synchronous control mode switching time	
4032	4032	Acceleration used for spindle synchronous control (The same value must be set for both the 1st and 2nd spindles.)	
4033	4033	Spindle synchronous speed arrival level	
4034	4034	Shift amount for spindle phase synchronous control	
4035	4035	Compensation data for spindle phase synchronization	
4044	4044	Velocity loop proportional gain for spindle synchronous control	
4045	4045	(A parameter is selected by the CTH1A PMC input signal.)	
4052	4052	Velocity loop integral gain for spindle synchronous control	
4053	4053	(A parameter is selected by the CTH1A PMC input signal.)	
4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data (A parameter is selected by the CTH1A and CTH2A PMC input signals.)	
4065 to 4068	4065 to 4068	Position gain for spindle synchronous control (The same value must be specified for both the 1st and 2nd spindles.) (A parameter is selected by the CTH1A and CTH2A PMC input signals.)	
4336	4336	Magnetic flux switching point used for calculating an acceleration/deceleration time constant used for spindle synchronous control (The same value must be specified for both the 1st and 2nd spindles.)	
4340	4340	Bell-shaped acceleration/deceleration time constant for spindle synchronous control (The same value must be specified for both the first and second spindles.)	
4346	4346	Incomplete integration coefficient	
4515	4515	Excessive speed deviation alarm detection level on spindle synchronous control	
4516	4516	Excessive positional deviation alarm detection level on spindle synchronous control	

NOTE

- 1 For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part IV.
- 2 For velocity loop proportional/integral gain adjustment, see Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT", in Part IV.

2.5.8 Details of Related Parameters

This subsection details the serial spindle parameters (in the four thousands for 16*i* and 30*i*) among the parameters related to spindle synchronous control. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i

 "FANUC Series 16i/18i/21i-MODEL B

 CONNECTION MANUAL (FUNCTION): B-63523EN-1

 Refer to Section 9.12, "SPINDLE SYNCHRONOUS CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.13, "SPINDLE SYNCHRONOUS CONTROL."

16 <i>i</i>	30	#7	#6	#5	#4	#3	#2	#1	#0
4002	4002		SYCDRT						

SYCDRT

Whether to enable the rotation direction signal (SFR/SRV) function on spindle synchronous control

- 0: Enables the rotation direction function.
 - If a move command from the CNC is positive (+),
 - (a) The spindle rotates in the CCW (counterclockwise) direction when the input signal SFR (bit 5 of G70) = 1.
 - (b) The spindle rotates in the CW (clockwise) direction when the input signal SRV (bit 4 of G70) = 1.
- 1: Disables the rotation direction function.

If a move command from the CNC is positive (+), the spindle rotates in the CCW (counterclockwise) direction when the input signal SFR = 1 or SRV = 1.

16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
4006	4006					SYCREF		GRUNIT	

GRUNIT

Sets a gear ratio setting resolution:

0: 1/100 unit

1: 1/1000 unit

Select a gear ratio data setting resolution from the following:

- (a) Resolution based on motor speed increased by a factor of 100 relative to one spindle rotation
- (b) Resolution based on motor speed increased by a factor of 1000 relative to one spindle rotation

Depending on the setting of this parameter, the increment system of the parameters indicated in the table below changes.

	Parame	eter No.	Description		
	16 <i>i</i>	30 <i>i</i>	Description		
ĺ	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data		

NOTE

- Usually, use the 1/100 unit (setting "0").
- 2 When the 1/100 unit is set as the gear ratio setting resolution (with the bit set to 0), a steady-state synchronous error may be indicated due to the fraction of the gear ratio.

In such a case, the synchronous error can be improved when the 1/1000 unit is set as the gear ratio setting resolution (with the bit set to 1).

SYCREF

Setting for function performing automatic detection of the one-rotation signal on spindle synchronous control

0: Automatic detection of the one-rotation signal carried out

Automatic detection of the one-rotation signal not carried out. (When spindle phase synchronization is not carried out)

When the mode is switched to spindle synchronous control mode after power-on, the two spindles automatically perform a one-rotation signal detection operation. So, the spindles automatically make two to three turns even if such turns are not intended.

This operation is required because the one-rotation signal must be detected to enable spindle phase synchronous control.

If the two spindles are mechanically connected to disable each spindle from performing a one-rotation signal detection operation, or if spindle phase synchronous control is not exercised, the operation above can be disabled by setting this bit to 1.

When this parameter is set to "1", check that the one-rotation signal has been detected for both spindles (output signal PC1DTA = 1) before applying the spindle phase synchronous control signal (SPPHS).

If the one-rotation signal is not detected, specify a speed of several ten min⁻¹ or higher in spindle synchronous control mode, and wait until the one-rotation signal is detected. (See sequence example (4).)

16*i* 30*i* 4032 4032

Acceleration at spindle synchronous control

1min⁻¹/sec Unit of data: Valid data range: 0 to 32767 0

Standard setting:

parameter sets an

acceleration value linear acceleration/deceleration when the synchronous speed command for spindle synchronous control is changed.

NOTE

- 1 Set exactly the same data for 1st spindle and 2nd spindle. When different data is set, synchronization between the two spindles is not guaranteed.
- 2 When this parameter is set to 0, motor doesn't accelerate/decelerate, so, be sure to set proper value in this parameter.

B-65280EN/06FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

16*i* 30*i* 4033 4033

Spindle synchronous speed arrival level

1min⁻¹/sec Unit of data: 0 to 32767 Valid data range:

Standard setting:

For the synchronous speed command at spindle synchronous control, if the error of the respective spindle motor speeds are within the setting level, the spindle synchronous control complete signal

(FSPSY) becomes "1".

30*i* 16*i* 4034 4034

Shift amount at spindle phase synchronous control

Unit of data: 1 pulse unit (360 degrees/4096)

0 to 4095 Valid data range:

Standard setting:

Sets the shift amount from the reference position (one-rotation signal)

at spindle phase synchronous control.

30*i* 16*i* 4035 4035

Spindle phase synchronous compensation data

Unit of data: 1 pulse/2msec Valid data range: 0 to 4095 Standard setting: 10

This parameter reduces speed fluctuations when aligning phase of

spindles in spindle phase synchronous control.

When this parameter is "0", since the phase alignment amount is only issued once, the position error quickly becomes large, and there are large speed changes on phase alignment.

It is possible to perform smooth phase alignments through issuing separate commands for phase alignment amounts for the number of 2

msec pulses set in this parameter.

16*i* 30*i*

4044 4044 Velocity loop proportional gain on spindle synchronous control (HIGH)

CTH1A=0

4045 4045 Velocity loop proportional gain on spindle synchronous control (LOW)

Unit of data:

Valid data range: 0 to 32767

Standard setting:

This sets velocity loop proportional gain on spindle synchronous

It is selected HIGH when CTH1A=0 of input signal, and It is selected

LOW when CTH1A=1 of input signal.

16 <i>i</i>	30 <i>i</i>		
4052	4052	Velocity loop integral gain on spindle synchronous control (HIGH)	CTH1A=0
4053	4053	Velocity loop integral gain on spindle synchronous control (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting: 10

This sets velocity loop integral gain on spindle synchronous control. It is selected HIGH when CTH1A=0 of input signal, and It is selected LOW when CTH1A=1 of input signal.

161	30 <i>i</i>		
4056	4056	Gear ratio (HIGH)	CTH1A=0, CTH2A=0
4057	4057	Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
4058	4058	Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
4059	4059	Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767 Standard setting: 100

These parameters set the gear ratio of the spindle motor to the spindle.

Usually, set 100.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle does not stop but keeps rotating at the time of orientation. So, be sure to set a proper gear ratio.

16 <i>i</i>	30 <i>i</i>		
4065	4065	Position gain on spindle synchronous control (HIGH)	CTH1A=0, CTH2A=0
4066	4066	Position gain on spindle synchronous control (MEDIUM I	HIGH)
4000	4000		CTH1A=0, CTH2A=1
4067	4067	Position gain on spindle synchronous control (MEDIUM I	LOW)
			CTH1A=1, CTH2A=0
4068	4068	Position gain on spindle synchronous control (LOW)	CTH1A=1, CTH2A=1

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting: 1000

This sets position gain in spindle synchronous control. It is selected by

CTH1A or CTH2A of input signal.

B-65280EN/06FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

16*i* 30*i* 4336

Acceleration switch point on spindle synchronous control

Unit of data 1min⁻¹
Valid data range: 0 to 32767

Standard setting: (

The acceleration for spindle synchronous control changes according to the speed set in this parameter as follows:

• Area where the spindle speed does not exceed the speed set in this parameter

The acceleration for spindle synchronous control is constant (as set in parameter No. 4032).

 Area where the spindle speed exceeds the speed set in this parameter

The acceleration for spindle synchronous control decreases in inverse proportion to the speed.

NOTE

- 1 Set the same data for the first spindle and second spindle. If different data is set, synchronization between the two spindles is not guaranteed.
- 2 When this parameter is set to 0, linear acceleration/deceleration (constant acceleration) is performed.

16*i* 30*i*

4340 4340

Bell-shaped acceleration/deceleration time constant for spindle synchronous control

Unit of data: 1msec Valid data range: 0 to 512 Standard setting: 0

This parameter sets a bell-shaped acceleration/deceleration time constant for spindle synchronous control.

This parameter is applied to the move command after "Acceleration at spindle synchronous control" (parameter No. 4032) is applied.

When this parameter is set, the spindle synchronous speed control completion signal (FSPSY), output when the synchronous speed is first reached after the spindle synchronous control mode is entered, is delayed by the set time.

NOTE

Set the same data for the first spindle and second spindle. If different data is set, synchronization between the two spindles is not guaranteed.

16*i* 30*i*4346 4346

Incomplete integration coefficient

Unit of data:

Valid data range: 0 to 32767

Standard setting: 0

Set this parameter to use incomplete integration for velocity loop

integration control.

NOTE

Usually, this parameter need not be adjusted.

16*i* 30*i*

4515 4515

Excessive speed deviation alarm detection level on spindle synchronous control

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting:

This parameter sets a level for detecting the excessive speed deviation alarm under spindle synchronous control.

If the positional deviation (position error) or the difference between the speed command for the spindle end calculated from the position gain and the actual spindle speed exceeds the value set in this parameter in the spindle synchronous control mode, the excessive speed deviation alarm under spindle synchronous control (spindle alarm C8) is detected. When this parameter is set to 0, alarm detection is disabled.

If the speed integration control signal (INTG) is used, the speed deviation increases for a cause such as acceleration/deceleration and cutting load. The spindle speed deviation that causes torque command saturation is indicated below. Set an alarm level by using a calculated value as a guideline. (During spindle synchronous control, ensure that torque command saturation does not take place.)

Spindle speed deviation $[min^{-1}] = 1024 \times A / P \times B / G$

where

No.4006#1	.006#1 No.4009#0 A		В
0	0	1	100
0	1	16	100
1	0	1	1000
1	1	16	1000

P: Velocity loop proportional gain on spindle synchronous control (No.4044, 4045)

G: Gear ratio (No.4056 to 4059)

NOTE

This parameter is valid with 9D53 series E (05) edition or later, 9D70 series D (04) edition or later, and 9D80 series B (02) edition or later.

B-65280EN/06FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

16*i* 30*i*

4516 4516

Excessive positional deviation alarm detection level on spindle synchronous control

Unit of data: 100 pulses (weight of 4096 pulses/rev)

Valid data range: 0 to 32767

Standard setting: (

This parameter sets a level for detecting the excessive positional deviation alarm under spindle synchronous control.

If the positional deviation (position error) exceeds the value set in this parameter in the spindle synchronous control mode, the excessive positional deviation alarm under spindle synchronous control (spindle alarm C9) is detected. When this parameter is set to 0, alarm detection is disabled.

As an alarm level, set a value greater than the positional deviation (position error) equivalent to the spindle speed specified in the spindle synchronous control mode. The positional deviation equivalent to the spindle speed can be calculated from the following expression:

Positional deviation [pulse] = Spindle speed [min⁻¹] $/ 60 \times 4096 \times 100 / PG$ where

PG: Position gain on spindle synchronous control (No.4065 to 4068)

NOTE

This parameter is valid with 9D53 series E (05) edition or later, 9D70 series D (04) edition or later, and 9D80 series B (02) edition or later.

2.5.9 Number of Error Pulses in Spindle Synchronous Control

For this subsection, see Subsection 2.5.9, "Number of Error Pulses in Spindle Synchronous Control", in Part I.

2.5.10 Specifying a Shift Amount for Spindle Phase Synchronous Control

For this subsection, see Subsection 2.5.10, "Specifying a Shift Amount for Spindle Phase Synchronous Control", in Part I.

2.5.11 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.5.11, "Diagnosis (Diagnosis Screen)", in Part I.

2.5.12 Alarm

For this subsection, see Subsection 2.5.12, "Alarm", in Part I.

2.6 SPECIFICATIONS COMMON TO ALL OPERATION MODES

2.6.1 Overview

For this subsection, see Subsection 2.6.1, "Overview", in Part I.

2.6.2 List of I/O Signals (CNC \leftrightarrow PMC)

This subsection provides a list of the I/O signals related to spindle speed control only. For details of each signal, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Section 11.3, "SPINDLE SPEED CONTROL."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

For details of the I/O signals common to the CNCs, see Chapter 3, "I/O SIGNALS (CNC \leftrightarrow PMC)", in Part IV.

(1) Input signals (PMC \rightarrow CNC)

(a) Series 16i

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G027				*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
Common to all axes	G028						GR2	GR1	
Common to all axes	G029		*SSTP	SOR	SAR				
Common to all axes	G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
1st-	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
2nd-	G034	R08I2	R07I2	R06I2	R05I2	R04I2	R03I2	R02I2	R01I2
1st-	G033	SIND	SSIN	SGN		R12I	R11I	R10I	R09I
2nd-	G035	SIND2	SSIN2	SGN2		R12I2	R11I2	R10I2	R09I2

NOTE

*1 These signals are valid in multi-spindle control.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

(b) Series 30*i*

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G027				*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
Common to all axes	G028						GR2	GR1	
Common to all axes	G029		*SSTP	SOR	SAR				
Common to all axes	G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
1st-	G032	R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
2nd-	G034	R08I2	R07I2	R06I2	R05l2	R04I2	R03I2	R02I2	R01I2
1st-	G033	SIND	SSIN	SGN		R12I	R11I	R10I	R09I
2nd-	G035	SIND2	SSIN2	SGN2		R12I2	R11I2	R10I2	R09I2
		_	_	_			_	_	

NOTE

*1 These signals are valid in multi-spindle control.

(c) Series 15i											
				#7	#6	#5	#4	#3	#2	#1	#0
(Common to	all axes	G005							FIN	
									•		
		1st-	G024	RI7A	RI6A	RI5A	RI4A	RI3A	RI2A	RI1A	RI0A
		2nd-	G232	RI7B	RI6B	RI5B	RI4B	RI3B	RI2B	RI1B	RI0B
		1st-	G025	RISGNA			RI12A	RI11A	RI10A	RI9A	RI8A
		2nd-	G233	RISGNB			RI12B	RI11B	RI10B	RI9B	RI8B
					-						
		1st-	G026		GS4A	GS2A	GS1A				
		2nd-	G272		GS4B	GS2B	GS1B				
								-			
(d) Comn	non to	CNCs									
	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070	MRDYA		SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA
2nd-	G235	G074	G074	MRDYB		SFRB	SRVB	CTH1B	CTH2B	TLMHB	TLMLB
1st-	G226	G071	G071							*ESPA	ARSTA
						1	1	I			
2nd-	G234	G075	G075							*ESPB	ARSTB
2nd-	G234	G075	G075							*ESPB	ARSTB
2nd- 1st-	G234 G228	G075 G073	G075 G073	EPFSTRA			DSCNA		MPOFA	*ESPB	ARSTB

(2) Output signals (CNC \rightarrow PMC)

(a) Series 16i

	#7	#6	#5	#4	#3	#2	#1	#0
F001				ENB				
F007			,			SF		
F022	S07	S06	S05	S04	S03	S02	S01	S00
F023	S15	S14	S13	S12	S11	S10	S09	S08
F024	S23	S22	S21	S20	S19	S18	S17	S16
F025	S31	S30	S29	S28	S27	S26	S25	S24
F034						GR30 (*1)	GR2O (*1)	GR10 (*1)
F036	R08O	R070	R06O	R05O	R040	R03O	R02O	R010
F037					R120	R110	R100	R09O

NOTE

*1 These signals are valid with the M series only.

(b) Series 30i

 #7	#6	#5	#4	#3	#2	#1	#0
			ENB				
					SF		
S07	S06	S05	S04	S03	S02	S01	S00
S15	S14	S13	S12	S11	S10	S09	S08
S23	S22	S21	S20	S19	S18	S17	S16
S31	S30	S29	S28	S27	S26	S25	S24
					GR3O (*1)	GR2O (*1)	GR10 (*1)
R08O	R070	R06O	R05O	R040	R03O	R02O	R010
				R120	R110	R100	R09O

F023 F024 F025 F034 F036 F037

F001 F007 F022

NOTE

*1 These signals are valid with the M series only.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

(b) Series 15*i*

(b) belies is:			ш-	40	45	44.4	40	#0	44.4	40
			#7	#6 T	#5 I	#4 T	#3	#2	#1	#0
Common to	all axes	F008	-						SF	
Common to	all axes	F020	S7	S6	S5	S4	S3	S2	S1	S0
Common to	all axes	F021	S15	S14	S13	S12	S11	S10	S09	S08
Common to	all axes	F022	S23	S22	S21	S20	S19	S18	S17	S16
Common to	all axes	F023	S31	S30	S29	S28	S27	S26	S25	S24
Common to	all axes	F045			SRSRDY					
				_						
	1st-	F010	RO7A	RO6A	RO5A	RO4A	RO3A	RO2A	RO1A	RO0A
	2nd-	F320	RO7B	RO6B	RO5B	RO4B	RO3B	RO2B	RO1B	RO0B
	1st-	F11	RO15A	RO14A	RO13A	RO12A	RO11A	RO11A	RO10A	RO9A
	2nd-	F321	RO15B	RO14B	RO13B	RO12B	RO11B	RO11B	RO10B	RO9B
	1st-	F014	MR7A	MR6A	MR5A	MR4A	MR3A	MR2A	MR1A	MR0A
	2nd-	F324	MR7B	MR6B	MR5B	MR4B	MR3B	MR2B	MR1B	MR0B
	1st-	F015	MR15A	MR14A	MR13A	MR12A	MR11A	MR10A	MR9A	MR8A
	2nd-	F325	MR15B	MR14B	MR13B	MR12B	MR11B	MR10B	MR9B	MR8B
	1st-	F234	SSPD7A	SSPD6A	SSPD5A	SSPD4A	SSPD3A	SSPD2A	SSPD1A	SSPD0A
	2nd-	F250	SSPD7B	SSPD6B	SSPD5B	SSPD4B	SSPD3B	SSPD2B	SSPD1B	SSPD0B
	1st-	F235	SSPD15A	SSPD14A	SSPD13A	SSPD12A	SSPD11A	SSPD10A	SSPD9A	SSPD8A
	2nd-	F251	SSPD15B	SSPD14B	SSPD13B	SSPD12B	SSPD11B	SSPD10B	SSPD9B	SSPD8B
				<u> </u>						
	1st-	F341								SRRDYA
	2nd-	F342								SRRDYB
				1	1		1			
(c) Common to	CNCs									
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st- F229	F045	F045		TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
2nd- F245	F049	F049		TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
							_			
1st- F231	F047	F047				EXOFA				PC1DTA
2nd- F247	F051	F051				EXOFB				PC1DTB
				_						
1st- F230	F048	F048	EPFIXA				SSMBRKA			PC1DTA
2nd- F246	F052	F052	EPFIXB				SSMBRKB			PC1DTB
					•	•	-			

2.6.3 Parameters

This subsection describes those parameters that are common to all operation modes by dividing them into several types.

NOTE

For the detector-related parameters, see Section 1.3, "PARAMETERS RELATED TO DETECTORS", in Part IV.

(1) List of parameters specific to synchronous built-in spindle motor driving

This item provides a list of the motor parameters specific to synchronous built-in spindle motor driving. Usually, the settings of these parameters need not be changed. Use the values indicated on a parameter table for each motor model without modification.

	Parameter No.		D
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3006#4	4006#4	4006#4	Sets the d-phase current command.
3008#3	4008#3	4008#3	Sets the current command.
3008#4	4008#4	4008#4	Sets the method of output control.
3009#5	4009#5	4009#5	Sets base speed (for BiS160L4/6000)
3011#3	4011#3	4011#3	Sets the number of motor poles.
3011#4	4011#4	4011#4	Sets a maximum output for acceleration/deceleration.
3011#7	4011#7	4011#7	Sets the number of motor poles.
3012#2,#1,#0	4012#2,#1,#0	4012#2,#1,#0	Sets a PWM carrier frequency.
3012#6	4012#6	4012#6	Sets whether to drive the synchronous built-in spindle motor.
3012#7	4012#7	4012#7	Sets the spindle HRV function.
3013#6 to #2	4013#6 to #2	4013#6 to #2	Sets current dead-band data.
3020	4020	4020	Maximum motor speed
3080	4080	4080	Limits regenerative power.
3083	4083	4083	Current step selection/activation current ratio/stop confirmation
3003	4003	4003	time in magnetic pole detection
3084	4084	4084	AMR offset
3085	4085	4085	AMR offset fine adjustment
3086	4086	4086	Inductance ratio
3100	4100	4100	Base speed for motor output specification
3101	4101	4101	Torque limitation value for motor output specification
3102	4102	4102	Base speed at maximum load
3103	4103	4103	Magnetic flux reduction start speed
3104	4104	4104	Current loop proportional gain
3106	4106	4106	Current loop integral gain
3108	4108	4108	Current loop integral gain zero speed
3109	4109	4109	Filter time constant in voltage command saturation processing
3110	4110	4110	Current conversion constant
3111	4111	4111	Maximum current coefficient
3112	4112	4112	Voltage command saturation decision level/PWM command clamp
3113	4113	4113	Value Current coefficient for magnetic flux reduction
3115	4115	4115	Current coefficient for magnetic flux reduction PWM command clamp value at deceleration time
3115	4116	4116	·
3110	4110	4110	Counter electromotive voltage compensation coefficient

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

	Parameter No.	•	Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3117	4117	4117	Interference voltage compensation coefficient
3119	4119	4119	Interference voltage compensation
3120	4120	4120	Dead-band rectangular wave component zero voltage/dead-band data
3127	4127	4127	Load meter indication value at maximum output time
3130	4130	4130	Current phase delay compensation constant
3133	4133	4133	Motor model code
3134	4134	4134	Motor overheat level (2 words)
3362	4362	4362	Load meter compensation 1
3363	4363	4363	Load meter compensation 2
3364	4364	4364	Load meter compensation 3

(2) List of parameters related to alarm detection

This item provides a list of the parameters related to alarm detection conditions.

	Parameter No		Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3009#2	4009#2	4009#2	Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued
3087	4087	4087	Overspeed level
3088	4088	4088	Velocity error excess detection level when the motor is bound
3089	4089	4089	Velocity error excess detection level when the motor is rotating
3090	4090	4090	Overload detection level
3123	4123	4123	Short-time overload detection period

(3) Other parameters

This item provides a list of the parameters common to all operation modes except the parameters listed in Items (1) and (2) above.

Р	arameter No).	D
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
_	3706#1,#0	-	Gear ratio between the spindle and position coder (cases of $\times 1$, $\times 2$, $\times 4$, $\times 8$)
5602#3	_	_	Whether to indicate an alarm detected by the spindle amplifier (Usually, set 0.)
5807#0	_	_	Enables/disables the spindle alarms (SPxxxx) of all spindles. (Usually, set 0.)
5842		3720	Number of position coder pulses
5850			Spindle number selected at power-on/reset time
3001#0	4001#0	4001#0	Whether to use the MRDY signal (machine ready signal)
3006#1	4006#1	4006#1	Gear ratio increment system
3009#0	4009#0	4009#0	Velocity loop gain increment system
3009#4	4009#4	4009#4	Whether to output the load detection signals (LDT1, LDT2) during
3009#4	4009#4	4009#4	acceleration/deceleration
3012#6	4012#6	4012#6	Sets whether to drive the synchronous built-in spindle motor.
3012#7	4012#7	4012#7	Sets the spindle HRV function.
3019#2	4019#2	4019#2	Whether to perform torque clamping when the speed is zero
3019#7	4019#7	4019#7	Automatic parameter setting function
3352#1	4352#1	4352#1	Sets the peak hold function for load meter output.
3395#3	4395#3	4395#3	Sets parameter transfer from the CNC to spindle software.
3020	4020	4020	Maximum motor speed
3022	4022	4022	Speed arrival detection signal
3023	4023	4023	Speed detection level
3024	4024	4024	Speed zero detection level
3025	4025	4025	Torque limitation value.
3026	4026	4026	Load detection level 1
3027	4027	4027	Load detection level 2
3056	4056	4056	Gear ratio (High)
3057	4057	4057	Gear ratio (Medium High)
3058	4058	4058	Gear ratio (Medium Low)
3059	4059	4059	Gear ratio (Low)
3095	4095	4095	Speedometer output voltage adjustment value
3096	4096	4096	Load meter output voltage adjustment value
3122	4122	4122	Speed detection filter time constant
3170	4170	4170	Overload current alarm detection level
3345	4345	4345	Detection level of the spindle motor speed command
3346	4346	4346	Incomplete integral coefficient
3351	4351	4351	Current detection offset compensation

2.6.4 **Details of Parameters**

This subsection details the serial spindle parameters (in the four thousands for 16i, in the four thousands for 30i, and in the three thousands for 15i) among the parameters common to all operation modes. For details of other parameters, refer to the Connection Manual (Function) of each CNC.

- (a) For Series 16*i*/18*i*/21*i* "FANUC Series 16i/18i/21i-MODEL B CONNECTION MANUAL (FUNCTION): B-63523EN-1 Refer to Section 9.3, "SPINDLE SPEED CONTROL."
- (b) For Series 30*i*/31*i*/32*i* "FANUC Series 30i/31i/32i-MODEL A CONNECTION MANUAL (FUNCTION): B-63943EN-1 Refer to Section 11.3, "SPINDLE SPEED CONTROL."
- (c) For Series 15i "FANUC Series 15i-MODEL B CONNECTION MANUAL (FUNCTION): B-63783EN-1 Refer to Section 9.3, "SPINDLE SPEED CONTROL."

(1) List of parameters specific to spindle motor driving

Usually, the settings of the motor parameters specific to synchronous built-in spindle motor driving need not be changed. Their details are

(2) List of parameters related to alarm detection

This item details the parameters related to alarm detection conditions.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3009	4009	4009

#7	#6	#5	#4	#3	#2	#1	#0
					ALSP		

ALSP Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued

0: Turns off the power after the motor is decelerated and stopped.

Turns off the power to the motor immediately.

Set this parameter to 1 to turn off the power to the motor immediately when any spindle alarm is issued

15*i* 16*i* 30i4087 4087 3087

Overspeed level

Unit of data: 1% 0 to 200 Valid data range: Standard setting value: 115

This parameter sets an overspeed level.

When the speed exceeds [maximum motor speed (No. 4020) × setting data (%)], the overspeed alarm (spindle alarm 07) is issued.

⚠ WARNING

Make sure this parameter is set to the standard setting value. Do not change the value.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280EN/06

15*i* 16*i* 30*i* 3088 4088 4088

Velocity error excess detection level when the motor is bound

Unit of data: 0.01% Valid data range: 0 to 10000

Standard setting value: 75

This parameter sets a velocity error excess (spindle alarm 31)

detection level when the motor is bound.

If a velocity error equal to or greater than [maximum motor speed (No. 4020) × setting data (%)] occurs when the motor is bound, for example, the motor binding alarm (spindle alarm 31) is issued.

15*i* 16*i* 30*i* 3089 4089

Velocity error excess detection level when the motor is rotating

Unit of data: 0.1% Valid data range: 0 to 1000 Standard setting value: 200

This parameter sets a velocity error excess detection level when the

motor is rotating.

If a velocity error equal to or greater than [maximum motor speed (No. 4020) \times setting data (%)] occurs, the velocity error excess alarm

(spindle alarm 02) is issued.

15*i* 16*i* 30*i* 3090 4090 4090

Overload detection level

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 90

This parameter sets a condition for detecting the short-time overload

alarm (spindle alarm 29).

If the state where a load equal to or greater than setting data (%) (maximum motor output [load meter full scale] = 100%) is imposed on the spindle motor lasts for a specified period (set in No. 4123) or more, the short-time overload alarm (spindle alarm 29) is issued.

15*i* 16*i* 30*i*3123 4123 4123

Short-time overload detection period

Unit of data: 1sec
Valid data range: 0 to 500
Standard setting value: 30

This parameter sets the timing for detecting the short-time overload

alarm (spindle alarm 29).

If the state where a load equal to or greater than the specified value (set in parameter No. 4090) is imposed on the spindle motor lasts for at least the period specified in this parameter, the short-time overload

alarm (spindle alarm 29) is issued.

B-65280EN/06FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

(3) Other parameters

This item details the parameters common to all operation modes except the parameters listed in Items (1) and (2) above.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3001	4001	4001

#7	#6	#5	#4	#3	#2	#1	#0
							MRDY1

MRDY1

Whether to use the MRDYA signal (machine ready signal)

0: Does not uses the MRDYA signal (MRDYA = 1 at all times).

1: Uses the MRDYA signal.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3006	4006	4006

#7	#6	#5	#4	#3	#2	#1	#0
						GRUNIT	

GRUNIT

Sets a gear ratio setting resolution:

0: 1/100 unit

1: 1/1000 unit

Select a gear ratio data setting resolution from the following:

- (a) Resolution based on motor speed increased by a factor of 100 relative to one spindle rotation
- (b) Resolution based on motor speed increased by a factor of 1000 relative to one spindle rotation

Depending on the setting of this parameter, the increment system of the parameters indicated in the table below changes.

	Parameter No	Description	
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3056 to 3059	4056 to 4059	4056 to 4059	Spindle-to-motor gear ratio data

NOTE

Usually, use the 1/100 unit (setting "0").

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3009	4009	4009

#7	#6	#5	#4	#3	#2	#1	#0
			LDTOUT				VLPGAN

VLPGAN

Velocity control loop gain increment system

0: Uses ordinary setting.

1: Divides ordinary setting data by 16 for processing.

NOTE

Usually, set this parameter to 0.

LDTOUT

Whether to output the load detection signals (LDT1, LDT2) during acceleration/deceleration

- 0: Does not output the load detection signals during acceleration/deceleration (standard setting value).
- 1: Outputs the load detection signals during acceleration/ deceleration (at all times) when the parameter-set level is exceeded.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280EN/06

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3012	4012	4012	SPHRV	SYSP						

SYSP Sets whether to drive the synchronous built-in spindle motor.

0: Enables inductive spindle motor driving. (standard setting value)

1: Enables synchronous built-in spindle motor driving.

Set this parameter to 1.

SPHRV Sets the spindle HRV control function.

0: Disables spindle HRV control.

1: Enables spindle HRV control. (standard setting value)

Set this parameter to 1.

NOTE

When driving the BiS series spindle (synchronous built-in spindle motor), be sure to set both of the SYSP and SPHRV bits to 1.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3019	4019	4019

#7	#6	#5	#4	#3	#2	#1	#0
PRLOAD					SSTTRQ		

SSTTRQ

Whether to perform torque clamping when the speed is zero

0: Performs clamping.

1: Does not perform clamping.

NOTE

Usually, set this parameter to 1 not to perform clamping.

PRLOAD

Automatic parameter setting function

- 0: Does not perform automatic parameter setting (standard setting value).
- 1: Performs automatic parameter setting.

After setting a desired motor model code in parameter No. 4133 and setting this bit to 1, turn off the power to the CNC, then turn on the power to the CNC again. The parameters (No. 4000 to No. 4175) for the αi series spindle corresponding to the model code are automatically initialized. Upon completion of automatic setting, this bit is automatically set to 0.

NOTE

With FS15*i*, the parameter address of this function is different, namely, bit 0 of No. 5607 is used.

Moreover, note that the meanings of settings are reversed as follows.

0: Performs automatic parameter setting.

1: Does not perform automatic parameter setting. In this case, set a model code in parameter No. 3133.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3352	4352	4352							PKHALW	

PKHALW

Sets the peak hold function for load meter output.

0: Does not use the peak hold function. (standard setting value)

1: Uses the peak hold function.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3395	4395	4395					PRIMED			

PRIMED

Sets parameter transfer from the CNC to spindle software.

- 0: Regards parameters as valid one second after they are transferred from the CNC. (Standard setting value)
- 1: Regards parameters as valid as soon as they are transferred from the CNC.

NOTE

This parameter is valid with 9D53 series B (02) edition or later, 9D70 series A (01) edition or later, and 9D80 series B (02) edition or later.

15*i* 16*i* 30*i* 3020 4020 4020

Maximum motor speed

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting value:

Depends on the motor model.

This parameter sets a maximum spindle motor speed.

NOTE

If the sub module SM (SSM) is not used, the maximum motor speed needs to be limited. See Section 1.4, "SUB MODULE SM," in Part IV and limit the maximum motor speed.

15*i* 16*i* 30*i* 3022 4022

Speed arrival detection level

Unit of data: 0.1%
Valid data range: 0 to 1000
Standard setting value: 150

This parameter sets a speed arrival signal (SARA) detection range. When the motor speed reaches within \pm (setting data/10)% of a specified speed, the speed arrival signal (SARA) is set to 1.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280EN/06

15*i* 16*i* 30*i* 3023 4023 4023

Speed detection level

Unit of data: 0.1% Valid data range: 0 to 1000 Standard setting value: 30

This parameter sets a speed detection signal (SDTA) detection range. When the motor speed is (setting data/10)% of a maximum speed or

less, the speed detection signal (SDTA) is set to 1.

15*i* 16*i* 30*i* 3024 4024 4024

Speed zero detection level

Unit of data: 0.01% Valid data range: 0 to 10000 Standard setting value: 75

This parameter sets a speed zero detection signal (SSTA) detection

range.

When the motor speed is (setting data/100)% of a maximum speed or less, the speed zero detection signal (SSTA) is set to 1.

NOTE

If the calculated speed zero detection level exceeds 200 min⁻¹, it is clamped at 200 min⁻¹. (9D53 series B (02) edition or later, 9D70 series A (01) edition or later, and 9D80 series B (02) edition or later)

15*i* 16*i* 30*i* 3025 4025 4025

Torque limitation value.

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 50

This parameter sets a torque limitation value to be applied when the torque limitation command HIGH (TLMHA) or the torque limitation command LOW (TLMLA) is specified.

The data indicates limitation values when the maximum torque is 100%.

Torque limitation command LOW (TLMLA)	Torque limitation command HIGH (TLMHA)	Description
0	0	No torque limitation is imposed.
0	1	The torque is limited to the value set in this parameter.
1	0	The torque is limited to a half of
1	1	the value set in this parameter.

B-65280EN/06FANUC BUILT-IN SPINDLE MOTOR BiS series 2.EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3026 4026 4026

Load detection level 1

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 83

This parameter sets a load detection signal 1 (LDT1A) detection range. When the output of the spindle motor is (setting data)% of the maximum output or more, load detection signal 1 (LDT1A) is set to 1.

15*i* 16*i* 30*i* 3027 4027 4027

Load detection level 2

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 95

This parameter sets a load detection signal 2 (LDT2A) detection range. When the output of the spindle motor is (setting data)% of the maximum output or more, load detection signal 2 (LDT2A) is set to 1.

 15i
 16i
 30i

 3056
 4056
 4056

 3057
 4057
 4057

 3058
 4058
 4058

 3059
 4059
 4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: (Motor rotation for one rotation of spindle) / 100

(When parameter No. 4006 #1 (GRUNIT) is 1, motor rotation / 1000)

Valid data range: 0 to 32767

Standard setting: 100

These data are used to set the gear ratio between spindle and spindle motor.

Example :

When the spindle rotates once, set "250" as the data when the motor rotates 2.5 times.

A parameter is selected with the CTH1A and CTH2A input signals. Set the gear or clutch status to correspond to the clutch/gear signal (CTH1A, CTH2A) in input signals.

NOTE

When an improper value is set in these parameters, an unexpected operation can occur. For example, the spindle can continue rotating without stopping at the time of orientation. So, be sure to set a proper gear ratio.

2.EXPLANATION OF OPERATION MODES FANUC BUILT-IN SPINDLE MOTOR BiS series B-65280 EN/06

15*i* 16*i* 30*i* 3095 4095 4095

Speedometer output voltage adjustment value

Unit of data: 0.1%

Valid data range : -1000 to +100(-100% to +10%)

Standard setting value:

Set this parameter when making a fine adjustment of speedometer

output voltage.

Positive (+) data increases the output voltage.

NOTE

Usually, this parameter need not be adjusted.

15*i* 16*i* 30*i* 3096 4096 4096

Load meter output voltage adjustment value

Unit of data: 0.1%

Valid data range : -1000 to +100(-100% to +10%)

Standard setting value: 0

Set this parameter when making a fine adjustment of load meter

output voltage.

Positive (+) data increases the output voltage.

NOTE

Usually, this parameter need not be adjusted.

15*i* 16*i* 30*i* 3122 4122 4122

Speed detection filter time constant

Unit of data: 0.1ms Valid data range: 0 to 10000

Standard setting value:

This parameter sets a time constant for a filter to be applied to the

velocity feedback signal.

NOTE

Usually, this parameter need not be adjusted.

15*i* 16*i* 30*i*3170 4170 4170

Overload current alarm detection level

Unit of data:

Valid data range: 0 to 32767

Standard setting value: Depends on the motor model.

NOTE

Usually, this parameter need not be adjusted.

B-65280EN/06 FANUC BUILT-IN SPINDLE MOTOR BiS series 2. EXPLANATION OF OPERATION MODES

15*i* 16*i* 30*i* 3345 4345 4345

Specified detection level of the spindle motor speed

Unit of data: 1 min⁻¹
Valid data range: 0 to 32767

Standard setting value:

This parameter sets the detection level of the spindle motor speed detection function. If the specified spindle motor speed is greater than the set value, the level of the speed specification detection signal

output from the spindle amplifier to the CNC becomes 1.

If the set value is 0, the level of the speed specification detection signal is always 0.

15*i* 16*i* 30*i*3346 4346 4346

Incomplete integral coefficient

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 0

Set this parameter to use incomplete integral function for velocity loop

integral control.

NOTE

Usually, this parameter need not be adjusted.

15*i* 16*i* 30*i* 3351 4351 4351

Current detection offset compensation

Unit of data:

Valid data range: 0 to ± 32767

Standard setting value: 0

NOTE

Usually, this parameter need not be adjusted.

2.6.5 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 2.6.5, "Diagnosis (Diagnosis Screen)", in Part I.

3

I/O SIGNALS (CNC ↔ PMC)

This chapter explains the functions of the signals directly input from the PMC to spindle amplifier (SP) via the CNC and the signals directly output from the spindle amplifier (SP) to PMC. For other spindle-related I/O signals, refer to the Connection Manual (Function) of the relevant CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Chapter 9, "SPINDLE SPEED FUNCTION."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Chapter 11, "SPINDLE SPEED FUNCTION."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7, "SPINDLE SPEED FUNCTION."

3.1 INPUT SIGNALS (PMC \rightarrow CNC \rightarrow SP)

This section explains the functions of the signals directly input from the PMC to spindle amplifier (SP) via the CNC. For other spindle-related input signals, refer to the Connection Manual (Function) of the relevant CNC.

- (a) For Series 16i/18i/21i
 "FANUC Series 16i/18i/21i-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Chapter 9, "SPINDLE SPEED FUNCTION."
- (b) For Series 30i/31i/32i
 "FANUC Series 30i/31i/32i-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Chapter 11, "SPINDLE SPEED FUNCTION."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7, "SPINDLE SPEED FUNCTION."

3.1.1 List of Input Signals

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070	MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA
2nd-	G235	G074	G074	MRDYB	ORCMB	SFRB	SRVB	СТН1В	СТН2В	TLMHB	TLMLB
1st-	G226	G071	G071			INTGA	SOCNA			*ESPA	ARSTA
2nd-	G234	G075	G075			INTGB	SOCNB			*ESPB	ARSTB
					•			- '	•		
1st-	G229	G072	G072			INCMDA	OVRA		NRROA	ROTAA	INDXA
2nd-	G237	G076	G076			INCMDB	OVRB		NRROB	ROTAB	INDXB
					•			_'			
1st-	G228	G073	G073	EPFSTRA			DSCNA	SORSLA	MPOFA		
2nd-	G236	G077	G077	EPFSTRB			DSCNB	SORSLB	MPOFB		

3.1.2 Explanation of Input Signals

The signals whose names are not listed in Subsection 3.1.1, "List of Input Signals", in Part IV are not supported by the BiS series spindle.

Symbol	Name	Description
TLMLA, B	Torque limitation	These signals limit the output torque of the spindle motor.
I LIVILA, D	command LOW	The limit value is set in spindle parameter No. 4025.
		TLML TLMH
	Torque limitation	0 0 : Torque not limited
TLMHA, B	command HIGH	0 1 : Limited to the parameter-set value
	Command Figh	1 0 : Limited to about half of the parameter-set value
		1 1 : Limited to about half of the parameter-set value
		These signals set the conditions listed below according to the clutch or gear
		status.
		The signals can also be used for selecting spindle control parameters.
		The names such as HIGH GEAR are given for convenience, and the
CTH1A, B	Clutch/gear signal	correspondence to the actual gears is free.
CHT2A, B	Ciuton/gear signar	CTH1 CTH2
		0 0 : HIGH GEAR
		0 1 : MEDIUM HIGH GEAR
		1 0 : MEDIUM LOW GEAR
		1 1 : LOW GEAR
SRVA, B	Reverse rotation	These signals set the rotation direction of the spindle motor when viewed from
SKVA, D	command	the shaft side.
		SRV SFR
	Forward rotation	0 0 : Stopped
SFRA, B		0 1 : Forward rotation (CCW: Counterclockwise direction)
	command	1 0 : Reverse rotation (CW: Clockwise direction)
		1 1 : Stopped
	Cnindle erientation	This signal is used to perform spindle orientation control.
ORCMA, B	Spindle orientation	0: Turns off the spindle orientation command.
	command	1: Performs spindle orientation control.
MDDVAD	Machine ready signal	0: Motor excitation is off.
MRDYA, B	Machine ready signal	1: Ready for operation
		This signal is used to reset spindle alarms.
ADCTA D	Spindle alarm reset	32 msec min.
ARSTA, B	signal	
		"1" An alarm is reset when the signal status changes from "1" to
		"0" ──
*ESPA, B	Emorgonov eten eignel	0: Emergency stop
ESPA, B	Emergency stop signal	1: Normal operation
COCNA D	Coff otort/otor cianal	0: Disables the soft start/stop function.
SOCNA, B	Soft start/stop signal	1: Enables the soft start/stop function.
INITCA D	Velocity integral control	0: Enables velocity integral control.
INTGA, B	signal	1: Disables velocity integral control.
	Orientation stan	This signal is used in orientation with the stop position set
INIDVA	Orientation stop	"1" external setting type. When the status of this signal changes
INDXA, B	position change	from "1" to "0", new position stop data is input, and a
	command	movement to the new position then a stop take place.
	Rotation direction	This signal is used in orientation with the stop position set external setting type.
ROTAA, B	command at orientation	0: CCW (counterclockwise)
	stop position change	1: CW (clockwise)

Symbol	Name	Description
	Shortcut command at	This signal is used in orientation with the stop position set external setting type.
NRROA, B	orientation stop position	0: The rotation direction depends on the ROTA signal setting.
	change	1: Shortcut control (within ±180°)
O)/DA D	Analog override	0: Disables analog override.
OVRA, B	command	1: Enables analog override.
INCMDAR	Incremental command	1: Incremental command spindle orientation
INCMDA, B	incremental command	0: Ordinary orientation
MPOFA, B	Motor power turn-off signal	1: Turns off the motor power.
	Synchronous	This signal requests a synchronous orientation operation.
SORSLA, B	orientation request	0: Cancels synchronous orientation.
	command	1: Requests synchronous orientation.
	Disconnection detection	This signal is used to detach the feedback cable between the amplifier and motor.
DSCNA, B	Disconnection detection	0: Enables disconnection and overheat detection.
	disable signal	1: Disables disconnection and overheat detection.
	Magnetic nels detection	Signal for starting magnetic pole detection operation
EPFSTRA, B	Magnetic pole detection	0: Cancels magnetic pole detection operation.
	operation start signal	1: Requests magnetic pole detection operation.

3.1.3 Details of Input Signals

(a) Torque limitation command signals (TLMLA, TLMHA)

For details of these signals, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

(b) Clutch/gear signals (CTH1A, CTH2A)

For details of these signals, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

(c) Forward rotation command signal (SFRA) and reverse rotation command signal (SRVA)

For details of these signals, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

For these signals, see also Section 1.5, "MAGNETIC POLE DETECTION", in Part IV.

(d) Spindle orientation command (ORCMA)

For details of this signal, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

(e) Machine ready signal (MRDYA)

For details of this signal, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

For this signal, see also Section 1.5, "MAGNETIC POLE DETECTION", in Part IV.

(f) Spindle alarm reset signal (ARSTA)

For details of this signal, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

(g) Emergency stop signal (*ESPA)

For details of this signal, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

For this signal, see also Section 1.5, "MAGNETIC POLE DETECTION", in Part IV.

(h) Soft start/stop signal (SOCNA)

For details of this signal, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

(i) Velocity integral control signal (INTGA)

For details of this signal, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

(j) Orientation stop position change command (INDXA), rotation direction command at orientation stop position change (ROTAA), shortcut command at orientation stop position change (NRROA), and incremental command (INCMDA)

For details of these signals, see Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION", in Part I and Section 5.3, "INCREMENTAL COMMAND TYPE SPINDLE ORIENTATION", in Part I.

(k) Spindle analog override command (OVRA)

For details of this signal, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

(I) Motor power turn-off signal (MPOFA)

NOTE

Some specifications of this signal differ from those with an inductive spindle motor.

For details of this signal, see Subsection 3.1.2, "Explanation of Input Signals", in Part I.

Some specifications of this signal differ from those with an inductive spindle motor, so carefully set this signal for the sub module SM and magnetic pole detection. See Sections 1.4, "SUB MODULE SM," and 1.5, "MAGNETIC POLE DETECTION," in Part IV.

(m) Synchronous orientation request command (SORSLA)

For details of this signal, see Section 5.5, "SPINDLE ORIENTATION DURING SPINDLE SYNCHRONIZATION CONTROL", in Part I.

(n) Disconnection detection disable signal (DSCNA)

NOTE

The specifications of this signal partly differ from the specifications for the inductive spindle motor.

(1) This signal is used when the connection between the spindle amplifier and spindle motor needs to be disconnected temporarily.

- (2) When this signal is used to detach the feedback signal, motor overheat and the issuance of a feedback signal disconnection alarm can be prevented.
- (3) A motor excitation OFF state confirmation signal (EXOFA) is provided to confirm that the motor is not excited before the connected power line is detached.
- (4) Before setting this signal to 1 and disconnecting the feedback signals and power line, set all the SFRA, SRVA, ORCMA, MRDYA, and *ESPA commands to 0, and confirm that the motor excitation OFF state confirmation signal (EXOFA) has been set to 1. After completing re-connection, reset this signal to 0
- (5) With the synchronous built-in spindle motor, the motor sensor disconnection alarm (spindle alarm 73) is issued during activation even if this signal is set to 1.
- (6) With the synchronous built-in spindle motor, the motor sensor feedback is monitored for a disconnection even while this signal is set to 1. When a disconnection is detected, the magnetic pole position undetected state (EPFIXA = 0) is set. So, while this signal is set to 1 (not during activation, however,), the motor sensor disconnection alarm (spindle alarm 73) is not detected even if the motor sensor feedback disconnection state is detected. In this case, however, the magnetic pole position undetected state is set.

(o) Magnetic pole detection operation start signal (EPFSTRA)

For details of this signal, see Section 1.5, "MAGNETIC POLE DETECTION", in Part IV.

3.2 OUTPUT SIGNALS ($SP \rightarrow CNC \rightarrow PMC$)

This section explains the functions of the signals directly output from the spindle amplifier (SP) to PMC via the CNC. For other spindle-related output signals, refer to the Connection Manual (Function) of the relevant CNC.

- (a) For Series 16*i*/18*i*/21*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63523EN-1
 Refer to Chapter 9, "SPINDLE SPEED FUNCTION."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A
 CONNECTION MANUAL (FUNCTION): B-63943EN-1
 Refer to Chapter 11, "SPINDLE SPEED FUNCTION."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 9.7, "SPINDLE SPEED FUNCTION."

3.2.1 List of Output Signals

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA	TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
2nd-	F245	F049	F049	ORARB	TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
1st-	F231	F047	F047				EXOFA	SORENA		INCSTA	PC1DTA
2nd-	F247	F051	F051				EXOFB	SORENB		INCSTB	PC1DTB
						•					
1st-	F230	F048	F048	EPFIXA			CSPENA	SSMBRKA			
2nd-	F246	F052	F052	EPFIXB			CSPENB	SSMBRKB			

3.2.2 Explanation of Output Signals

The signals whose names are not listed in Subsection 3.2.1, "List of Output Signals", in Part IV are not supported by the BiS series spindle.

Symbol	Name	Description
ALMA, B	Alarm signal	This signal is output when a spindle alarm is issued. 0: Normal state 1: Alarm state
SSTA, B	Zero speed detection signal	This signal is output when the actual rotation speed of the spindle motor has decreased to the zero speed detection level or lower. 0: Rotating 1: Zero speed state
SDTA, B	Speed detection signal	This signal is output when the actual rotation speed of the spindle motor has decreased to a predetermined rotation speed or lower. 0: Above predetermined speed 1: Predetermined speed or lower
SARA, B	Speed arrival signal	This signal is output when the actual rotation speed of the spindle motor has achieved a predetermined range for a speed command. 0: Speed not achieved 1: Speed achieved
LDT1A, B	Load detection signal 1	These signals are output when load at a set load detection level or higher is detected. Different levels can be set for LDT1A and LDT2A.
LDT2A, B	Load detection signal 2	0: Lower than the set load 1: Set load or higher
TLMA, B	Torque limitation in-progress signal	This signal is output when the torque is being limited by the TLMLA or TLMHA signal. 0: Torque not being limited 1: Torque being limited
ORARA, B	Orientation completion signal	This signal is output when the spindle stops in the neighborhood of a predetermined position after an orientation command is input. 0: Orientation not completed 1: Orientation completed
PC1DTA, B	Position coder one-rotation signal detection state signal	This signal is used to confirm whether the position coder one-rotation signal is detected or not. 0: Position coder one-rotation signal not detected 1: Position coder one-rotation signal detected
INCSTA, B	Incremental orientation signal	This signal is used to confirm whether incremental spindle orientation is being performed or not. 0: Incremental spindle orientation is not in progress. 1: Incremental spindle orientation is in progress.
SORENA, B	Synchronous orientation enable signal	This signal is used to confirm whether synchronous orientation is enabled or not. 0: Disables synchronous orientation. 1: Enables synchronous orientation.
EXOFA, B	Motor excitation off state signal	This signal is used to confirm whether motor excitation is off. 0: Motor excitation is in progress. 1: Motor excitation is off.
SSMBRKA, B	Sub module SM (SSM) error state signal	This signal is used to check the error state of the sub module SM (SSM). 0: The SSM is normal. 1: The SSM is abnormal.

Symbol	Name	Description
CSPENA, B	II 'e rataranca nocition	 This signal is used to indicate whether Cs axis coordinate establishment processing is possible. 0: Coordinate establishment processing is impossible (with a reference position not established). 1: Coordinate establishment processing is possible (with a reference position established).
EPFIXA, B	Magnetic pole detection state signal	This signal is used to check whether magnetic pole detection is completed or not. 0: Magnetic pole detection is not completed. 1: Magnetic pole detection is completed.

3.2.3 Details of Output Signals

(a) Spindle alarm signal (ALMA)

For details of this signal, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

(b) Zero speed detection signal (SSTA)

For details of this signal, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

(c) Speed detection signal (SDTA)

For details of this signal, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

(d) Speed arrival signal (SARA)

For details of this signal, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

(e) Load detection signals (LDT1A, LDT2A)

For details of these signals, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

(f) Torque limitation in-progress signal (TLMA)

For details of this signal, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

(g) Orientation completion signal (ORARA)

For details of this signal, see Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION", in Part I.

(h) Position coder one-rotation signal detection state signal (PC1DTA)

For details of this signal, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

(i) Incremental orientation signal (INCSTA)

For details of this signal, see Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION", in Part I.

(j) Synchronous orientation enable signal (SORENA)

For details of this signal, see Section 5.5, "SPINDLE ORIENTATION DURING SPINDLE SYNCHRONIZATION CONTROL", in Part I.

(k) Motor excitation off state signal (EXOFA)

For details of this signal, see (p), "Disconnection detection disable signal", in Subsection 3.1.3 in Part I.

(I) Sub module SM (SSM) error state signal (SSMBRKA)

For details of this signal, see Section 1.4, "SUB MODULE SM", in Part IV.

(m) Cs reference position establishment state signal (CSPENA)

For details of this signal, see Subsection 3.2.2, "Explanation of Output Signals", in Part I.

(n) Magnetic pole detection state signal (EPFIXA)

For details of this signal, see Section 1.5, "MAGNETIC POLE DETECTION", in Part IV.

ADJUSTMENT

4.1 VELOCITY LOOP GAIN ADJUSTMENT

4.1.1 Overview

For this subsection, see Subsection 4.1.1, "Overview", in Part I.

4.1.2 Parameters

For this subsection, see Subsection 4.1.2, "Parameters", in Part I.

4.1.3 Adjustment Procedure

For this subsection, see Subsection 4.1.3, "Adjustment Procedure", in Part I.

4.1.4 Additional Information (Position Gain Adjustment)

For this subsection, see Subsection 4.1.4, "Additional Information (Position Gain Adjustment)", in Part I.

4.2 MACHINE RESONANCE ELIMINATION

4.2.1 TCMD Filter

For this subsection, see Subsection 4.2.1, "TCMD Filter", in Part I.

4.2.2 HRV Filter

For this subsection, see Subsection 4.2.2, "HRV Filter", in Part I.

4.2.3 Disturbance Input Function

For this subsection, see Subsection 4.2.3, "Disturbance Input Function", in Part I.

4.3 AMPLITUDE RATIO/PHASE DIFFERENCE COMPENSATION FUNCTION

For this section, see Subsection 4.3, "AMPLITUDE RATIO/PHASE DIFFERENCE COMPENSATION FUNCTION", in Part I.

5

FUNCTION DESCRIPTIONS

5.1 SPEED RANGE SWITCHING CONTROL Optional function

The BiS series spindle (synchronous built-in spindle motor) does not support this function.

5.2 SPINDLE SWITCHING CONTROL

The BiS series spindle (synchronous built-in spindle motor) does not support this function.

5.3 INCRMENTAL COMMAND TYPE SPINDLE ORIENTATION (SPINDLE ROTATION SPEED CONTROL) Optional function

5.3.1 Overview

For this subsection, see Subsection 5.3.1, "Overview", in Part I.

5.3.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC					
9D53	A (01) edition or later	FS16 <i>i</i> / FS18 <i>i</i> / FS21 <i>i</i> / FS0 <i>i</i> / FS15 <i>i</i>					
9D70	A (01) edition or later	FS30i / FS31i / FS32i					
9D80	D (00) adition or later	FS16i / FS18i / FS21i / FS0i / FS15i					
	B (02) edition or later	FS30i / FS31i / FS32i					

5.3.3 System Configuration

The incremental command type spindle orientation function can be used in the following system configuration.

(1) When the αiBZ sensor or αiCZ sensor is used

5.3.4 I/O Signals(CNC↔PMC)

(1) Address list of input signals (PMC→CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070		ORCMA			CTH1A	CTH2A		
2nd-	G235	G074	G074		ORCMB			СТН1В	СТН2В		
								_			
1st-	G229	G072	G072			INCMDA			NRROA	ROTAA	INDXA
2nd-	G237	G076	G076			INCMDB			NRROB	ROTAB	INDXB
1st-	G230	G078	G078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G238	G080	G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
					_						
1st-	G231	G079	G079					SHA11	SHA10	SHA09	SHA08
2nd-	G239	G081	G081					SHB11	SHB10	SHB09	SHB08

(2) Details of input signals (PMC→CNC)

For this item, see Item (2), "Details of input signals (PMC \rightarrow CNC)", in Subsection 5.3.4 of Part I.

(3) Address list of output signals (CNC→PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA							
2nd-	F245	F049	F049	ORARB							
1st-	F221	F047	F047							INCSTA	
2nd-	F247	F051	F051							INCSTB	

(4) Details of output signals (CNC→PMC)

For this item, see Item (4), "Details of output signals (CNC \rightarrow PMC)", in Subsection 5.3.4 of Part I.

5.3.5 Examples of Sequences

For this subsection, see Subsection 5.3.5, "Examples of Sequences", in Part I.

5.3.6 List of Related Parameters

	Parameter N	o.	Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description
3015 #0	4015 #0	4015 #0	Whether the spindle orientation function is available (to be set to "1") (The CNC software option is required.)
5609#2	3702#3,#2	3729#0	Whether the stop position external setting-type spindle orientation function is available (to be set to "1") (For 16 <i>i</i> , #2: First spindle, #3: Second spindle)
3328	4328	4328	Command multiplier for incremental command external setting data

NOTE

This subsection describes only the parameters specific to incremental command type spindle orientation. See Section 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION" in Part I, for parameters related to other types of spindle orientation.

5.3.7 Details of Related Parameters

For this subsection, see Subsection 5.3.7, "Details of Related Parameters", in Part I.

5.4 HIGH-SPEED SPINDLE ORIENTATION

Optional function

5.4.1 Overview

For this subsection, see Subsection 5.4.1, "Overview", in Part I.

5.4.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC					
9D53	A (01) edition or later	FS16i / FS18i / FS21i / FS0i / FS15i					
9D70	A (01) edition or later	FS30i / FS31i / FS32i					
0000	D (00) adition or later	FS16i / FS18i / FS21i / FS0i / FS15i					
9D80	B (02) edition or later	FS30i / FS31i / FS32i					

5.4.3 System Configuration

Explained below is a system configuration in which the high-speed spindle orientation function is usable.

(1) When the αiBZ sensor or αiCZ sensor is used

5.4.4 I/O Signals (CNC↔PMC)

(1) Address list of input signals (PMC \rightarrow CNC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070		ORCMA			CTH1A	CTH2A		
2nd-	G235	G074	G074		ORCMB			СТН1В	СТН2В		
								_			
1st-	G229	G072	G072			INCMDA			NRROA	ROTAA	INDXA
2nd-	G237	G076	G076			INCMDB			NRROB	ROTAB	INDXB
1st-	G230	G078	G078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G238	G080	G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
					_						
1st-	G231	G079	G079					SHA11	SHA10	SHA09	SHA08
2nd-	G239	G081	G081					SHB11	SHB10	SHB09	SHB08

- (2) Details of input signals (PMC \rightarrow CNC)
- (a) Spindle orientation command (ORCMA)
- (b) Clutch/gear signals (CTH1A and CTH2A)
- (c) Spindle orientation stop position change command (INDXA)
- (d) Rotation direction command for spindle orientation stop position change (ROTAA)
- (e) Short-cut command for spindle orientation stop position change (NRROA)
- (f) Incremental command data selection signal (INCMDA)
- (g) Spindle orientation external stop position commands (SHA11 to SHA00)

The functions of the input signals ORCMA, CTH1A, CTH2A, INDXA, ROTAA, NRROA, INCMDA, and SHA11 to SHA00 are the same as for position coder-method spindle orientation and incremental command type spindle orientation. See Sections 2.2, "POSITION CODER-METHOD SPINDLE ORIENTATION," and 5.3, "INCREMENTAL COMMAND TYPE SPINDLE ORIENTATION" in Part I.

(3) Address list of input signals (CNC \rightarrow PMC)

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA							
2nd-	F245	F049	F049	ORARB							
					•						
1st-	F221	F047	F047							INCSTA	
2nd-	F247	F051	F051							INCSTB	

- (4) Details of input signals (CNC \rightarrow PMC)
 - (a) Incremental command mode status signal (INCSTA)
 - (b) Spindle orientation completion signal (ORARA)

The functions of the output signals ORARA and INCSTA are the same as for position coder-method spindle orientation and incremental command type spindle orientation. See Sections 2.2, "POSITION CODER METHOD SPINDLE ORIENTATION," and 5.3, "INCREMENTAL COMMAND TYPE SPINDLE ORIENTATION" in Part I.

5.4.5 Sequence

For this subsection, see Subsection 5.4.5, "Sequence", in Part I.

5.4.6 List of Related Parameters

	Parameter No.		Description			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description			
3015 #0	4015 #0	4015 #0	Whether the spindle orientation function is available (to be set to "1") (The CNC software option is required.)			
3018 #6	4018 #6	4018 #6	High-speed spindle orientation function (to be set to "1")			
5609#2	3702#3,#2	3729#0	Whether the stop position external setting-type spindle orientation function is available (For 16 <i>i</i> , #2: First spindle, #3: Second spindle)			
3003 #0	4003#0	4003#0	Spindle orientation type selection (to be reset to "0")			
3003#3,#2	4003#3,2	4003#3,#2	Rotation direction for spindle orientation (to be reset to "0, 0" or to be set to "0, 1")			
3017#7	4017#7	4017#7	Short-cut function when spindle orientation from stopped state is specified			
3018#5	4018#5	4018#5	Whether the speed command correction function for high-speed spindle orientation is available			
3031	4031	4031	Spindle orientation stop position (This parameter is invalid for stop position external setting type and incremental command external setting type.)			
3038	4038	4038	Orientation speed upper limit			
3042	4042	4042	Velocity proportional gain on orientation			
3043	4043	4043	(These parameters are selected with the input signal CTH1A.)			
3050	4050	4050	Velocity integral gain on orientation			
3051	4051	4051	(These parameters are selected with the input signal CTH1A.)			
3056 to 3059	4056 to 4059	4056 to 4059	Gear ratio data between spindle and motor (These parameters are selected with the input signals CTH1A and CTH2A.)			
3060 to 3063	4060 to 4063	4060 to 4063	Position gain on orientation (These parameters are selected with the input signals CTH1A and CTH2A.)			
3064	4064	4064	Percentage limit to an acceleration during deceleration			
3075	4075	4075	Orientation completion signal detection level			
3077	4077	4077	Orientation stop position shift value			
3320 to 3223	4320 to 4323	4320 to 4323	Acceleration during motor deceleration (These parameters are selected with the input signals CTH1A and CTH2A.)			
3326	4326	4326	Acceleration limitation start speed during deceleration			
3330	4330	4330	(These parameters are selected with the input signal CTH1A.)			
3328	4328	4328	Command multiplier for orientation			

NOTE

- 1 See Section 1.3, "PARAMETERS RELATED TO DETECTORS" in Part IV, for parameters related to detectors.
- 2 See Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT" in Part IV, for velocity loop proportional/integral gain tuning.
- 3 When using the high-speed spindle orientation function, set the parameters (bits 3 and 2 or parameter No. 4003) for rotation direction for spindle orientation with the previous rotation direction (0, 0 or 0, 1).

5.4.7 Details of Related Parameters

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0	
3018	4018	4018		HSORI	HSVCM						

HSVCM: Velocity command compensation function in high-speed spindle

orientation is:0 : Disabled.1 : Enabled.

Usually, set this parameter to "1".

HSORI: High-speed spindle orientation function is:

0: Disabled1: EnabledSet to 1.

15*i* 16*i* 30*i* 3003 4003

#7	#6	#5	#4	#3	#2	#1	#0
				DIRCT2	DIRCT1		PCMGSL

DIRCT1, DIRCT2 Rotation direction at spindle orientation

DIRCT2	DIRCT1	Rotation direction				
0	0	By rotation direction immediately before (CCW for the first-time spindle orientation after the power is switched on)				
0	1	By rotation direction immediately before (CW for the first-time spindle orientation after the power is switched on)				
1	0	CCW direction looking from shaft of motor				
1	1	CW direction looking from shaft of motor				

NOTE

When using the high-speed spindle orientation function, specify the rotation direction for spindle orientation to be the previous rotation direction (bits 3 and 2 of parameter No. 4003 = 0 and 0 or 0 and 1).

PCMGSL: Orientation method selection

Set to 0.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
3017	4017	4017	NRROEN							

NRROEN

The short-cut function when spindle orientation from stopped state is specified is:

0: Unavailable

Available 1:

If the setting is "1", a short-cut is made provided that the following conditions are satisfied.

- Bit 7 of parameter No. 4016 (RFCHK3) = 0 i)
- Zero-speed detection signal (output signal) SST = 1
- iii) Short-cut command (input signal) NRROA = 1

15*i* 30i 16*i* 3031 4031 4031

Position coder method orientation stop position

Unit of data: 1 pulse unit (360 degrees/4096)

0 to 4095 Valid data range:

Standard setting value:

This data is used to set the stop position of position coder method spindle orientation. This parameter is invalid for stop position external setting-type and incremental command external setting-type spindle orientation. Instead, the stop position commands (SHA11 to SHA00)

(input signals) are valid.

15*i* 16*i* 30i 3038 4038 4038

Spindle orientation speed upper limit

1min⁻¹ Unit of data: Valid data range: 0 to 32767

Standard setting value:

This data is used to specify the upper limit to the orientation speed of an spindle end. If the setting is "0", the parameter is assumed to be set with a value converted for the spindle from the excitation voltage saturation speed with no load on the motor (parameter No. 4102,

low-speed characteristic parameter No. 4140).

15*i* 16*i* 30i3042 4042 4042 3043 4043 4043

Velocity proportional gain on orientation (HIGH)	CTH1A=0
Velocity proportional gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value:

This data is used to set the velocity loop proportional gain on

orientation.

15*i* 16*i* 30*i* 3050 4050 4050 3051 4051 4051

Velocity integral gain on orientation (HIGH)	CTH1A=0
Velocity integral gain on orientation (LOW)	CTH1A=1

Unit of data:

Valid data range: 0 to 32767

Standard setting value: 10

This data is used to specify a velocity loop integral gain for spindle

orientation.

 15i
 16i
 30i

 3056
 4056
 4056

 3057
 4057
 4057

 3058
 4058
 4058

 3059
 4059
 4059

Gear ratio (HIGH)	CTH1A=0, CTH2A=0
Gear ratio (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Gear ratio (MEDIUM LOW)	CTH1A=1, CTH2A=0
Gear ratio (LOW)	CTH1A=1, CTH2A=1

Unit of data: Number of motor rotations per spindle rotation / 100

(Number of motor rotations per spindle rotation / 1000 if bit 1 of

parameter No. 4006 (GRUNIT) = 1)

Valid data range: 3 to 3000

(33 to 30000 if bit 1 of parameter No. 4006 (GRUNIT) = 1)

Standard setting value: 100

NOTE

The range of gear ratios supported by this function is: 1:30 to 30:1

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3060	4060	4060
3061	4061	4061
3062	4062	4062
3063	4063	4063

Position gain on orientation (HIGH)	CTH1A=0, CTH2A=0
Position gain on orientation (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Position gain on orientation (MEDIUM LOW)	CTH1A=1, CTH2A=0
Position gain on orientation (LOW)	CTH1A=1, CTH2A=1

Unit of data: 0.01sec⁻¹
Valid data range: 0 to 32767
Standard setting value: 1000

These data are used to set the position gain on spindle orientation.

15*i* 16*i* 30*i* 3064 4064 4064

Percentage limit to an acceleration during deceleration

Unit of data: 1%
Valid data range: 0 to 100
Standard setting value: 100

This data is used to specify the percentage limit to an acceleration during deceleration if spindle orientation is started when the spindle speed is lower than or equal to the limitation start seed for an acceleration during deceleration (parameter Nos. 4326 and 4330).

Usually, specify "100".

15*i* 16*i* 30*i* 3075 4075 4075

Orientation completion signal detection level (effective area for in-position check)

Unit of data: ±1 pulse unit (360 degrees/4096)

Valid data range: 0 to 100 Standard setting value: 10

This data is used to set the detecting level of orientation completion signal (ORARA). ORARA = 1 is satisfied if the position error is

within the setting.

15*i* 16*i* 30*i* 3077 4077

Orientation stop position shift value

Unit of data: ± 1 pulse unit (360 degrees/4096)

Valid data range: -4095 to 4095

Standard setting value: 0

This data is used to specify the shift amount of the spindle orientation stop position. If a positive value is specified, the position where the

spindle stops is shifted counterclockwise.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>
3320	4320	4320
3321	4321	4321
3322	4322	4322
3323	4323	4323

Acceleration during motor deceleration (HIGH)	CTH1A=0, CTH2A=0
Acceleration during motor deceleration (MEDIUM HIGH)	CTH1A=0, CTH2A=1
Acceleration during motor deceleration (MEDIUM LOW)	CTH1A=1, CTH2A=0
Acceleration during motor deceleration (LOW)	CTH1A=1, CTH2A=1

Unit of data: 10min⁻¹/sec Valid data range: 0 to 6400 Standard setting value: 0

This data is used to specify the acceleration during motor deceleration for high-speed spindle orientation. If the setting is "0", the high-speed spindle orientation function is disabled, and the standard-type spindle orientation function is enabled. The setting for the parameter is obtained, using:

Acceleration during deceleration = $\frac{\tau}{J} \times \frac{60}{2\pi} \times (0.8to0.9)$

where $\tau(Nm)$: Motor maximum torque at spindle orientation speed

upper limit (parameter No. 4038)

J(kgm²): Motor inertia + load inertia

B-65280EN/06

15*i* 16*i* 30*i*3326 4326 43263330 4330 4330

Acceleration limitation start speed during deceleration (HIGH)	CTH1A=0
Acceleration limitation start speed during deceleration (LOW)	CTH1A=1

Unit of data: 1min⁻¹
Valid data range: 0 to 32767

Standard setting value: 0

This data is used to specify the motor speed at which limitation on the acceleration during deceleration is started. If the setting is "0", the parameter is assumed to be set with the spindle orientation lower limit

speed calculated within the software.

15*i* 16*i* 30*i* 3328 4328 4328

Command multiplier for spindle orientation by a position coder

Unit of data:

Valid data range: 0 to 32767

Standard setting value: (

Set a command multiplier for the spindle orientation function with an

externally set incremental command.

When 0 is set in these parameters, 1 is assumed to have been

specified.

5.4.8 Spindle Data Used in Tuning

For this subsection, see Subsection 5.4.8, "Spindle Data Used in Tuning", in Part I.

5.4.9 Tuning Procedure

Tune the parameters according to the following procedure. The ability of a motor to decelerate varies with the load inertia on the motor. When tuning, mount a tool with the highest possible load inertia on the spindle. If such a tool is unavailable, allow a considerable margin in specifying an acceleration during deceleration.

(1) Parameter initialization

Initialize the parameters related to high-speed spindle orientation as listed below.

No.	Description	Initial setting
4003#0	Selecting a spindle orientation type	0
4003#3,#2	Spindle rotation direction at orientation	Select a rotation direction.
4006#1	Unit of gear ratio setting	Specify an appropriate value depending on the system configuration.
4017#7	Short-cut function when spindle orientation from stopped state is specified	Specify an appropriate value according to the use of the machine.
4018#5	Whether a speed command correction function for high-speed spindle orientation is available	1
4018#6	High-speed spindle orientation function	1
4031	Spindle orientation stop position	Specify a stop position.
4038	Spindle orientation speed upper limit	0
4042 to 4043	Velocity proportional gain on orientation	10
4050 to 4051	Velocity integral gain on orientation	10
4056 to 4059	Gear ratio	Specify an appropriate value depending on the system configuration.
4060 to 4063	Position gain on orientation	3000
4064	Percentage limit to an acceleration during deceleration	100
4075	Orientation completion signal detection level	Specify an appropriate value according to the use of the machine.
4077	Orientation stop position shift value	Specify a stop position.
4320 to 4323	Acceleration during motor deceleration	Tune according to actual measurements.
4326,4330	Acceleration limitation start speed during deceleration	0
4328	Command multiplier for orientation	Specify an appropriate value according to the use of the machine.

NOTE

- 1 Spindle alarm 21 is issued if the relation (bit 0 of parameter No. 4000) between the spindle and motor rotation direction and/or the setting of the spindle sensor mounting direction (bit 4 of parameter No. 4001) is incorrect.
- 2 The time required for spindle orientation may get abnormally long if the gear ratio resolution (bit 1 of parameter No. 4006) setting and/or gear ratio (parameter Nos. 4056 to 4059) setting is incorrect.

(2) Initial setting of the acceleration during deceleration (parameter Nos. 4320 to 4323)

Run a real machine on the velocity control mode (regular operation mode), and decelerate it from the base speed ω_B (see the following expression).

Base speed ω_B = parameter No. 4102 × parameter No. 4117/100 (if parameter No. 4038 = 0), or

= parameter No. 4038 (if parameter No. $4038 \neq 0$)

Then, measure the time the real machine takes to decelerate, set up the initial acceleration during deceleration Tc from the measured deceleration time according to the following expression (see the figure below):

Acceleration during deceleration = base speed/time taken to decelerate from the base speed to a halt/10 (in 10 min⁻¹/s)

Example of setting an initial acceleration during deceleration

(3) Tuning the velocity loop proportional gain (parameter Nos. 4042 and 4043) and integral gain (parameter Nos. 4050 and 4051)

Tune the velocity loop proportional/integral gain while referencing Section 4.1, "VELOCITY LOOP GAIN ADJUSTMENT" in Part I.

(4) Tuning the position gain

Basically, the position gain needs no adjustment. If you want to increase the setting for the position gain, do not increase it over 4000.

(5) Tuning the acceleration during deceleration (parameter Nos. 4320 to 4323)

Start spindle orientation when the spindle is running at the spindle maximum rotation speed, and tune the acceleration during deceleration so that the torque command will not be saturated when the motor starts linear deceleration (the beginning of interval C in the sequence). (See the following figure.)

Example 1 of deceleration time constant adjustment (good case)

Example 2 of deceleration time constant adjustment (bad case)

(6) Tuning the percentage limit to an acceleration during deceleration (parameter No. 4064)

(a) Deciding whether or not to tune the percentage limit to an acceleration during deceleration

Start spindle orientation when the spindle is running at the base speed ω_B . (See the figure below.) If the torque command is saturated in sequence intervals C or D, it is necessary to tune the percentage limit to an acceleration during deceleration.

If the torque command is not saturated, stop tuning the spindle orientation.

Case in which parameter tuning is necessary

Spindle orientation sequence (data No. 298)

Torque command (data No. 90)

Saturated

Case in which parameter tuning is unnecessary

(b) Tuning the percentage limit to an acceleration during deceleration

Specify the acceleration limitation start speed during deceleration ω_{LS} (parameter Nos. 4326 and 4330) as follows:

Acceleration limitation start speed during deceleration ω_{LS} = 1.1 \times base speed ω_{B}

Then, decrease the percentage limit to an acceleration during deceleration (parameter No. 4064) until the torque command will not be saturated at the end of sequence interval C or in sequence interval D. In this case, there is no problem even if the torque command is about to be saturated at the beginning of sequence interval C. (See the following figure.)

Example 1 of the percentage limit to an acceleration during deceleration (bad case)

Example 2 of the percentage limit to an acceleration during deceleration (good case)

(7) Tuning the acceleration limitation start speed during deceleration (parameter Nos. 4326 and 4330)

If you tuned the percentage limit to an acceleration during deceleration as explained in item (6), tune also the acceleration limitation start speed during deceleration.

(a) Deciding whether or not to tune the acceleration limitation start speed during deceleration

Start spindle orientation when the spindle is running at 10 min⁻¹ + acceleration limitation start speed during deceleration ω_{LS} , which is an initial setting used when the percentage limit to an acceleration during deceleration is tuned. (See the following figure.) In this case, it is necessary to tune the percentage limit to an acceleration during deceleration if the torque command is saturated in sequence interval C or D.

If the torque command is not saturated, stop tuning the spindle orientation

Case in which parameter tuning is necessary

Case in which parameter tuning is unnecessary

(b) Tuning the acceleration limitation start speed during deceleration

Increase the acceleration limitation start speed during deceleration (parameter Nos. 4326 and 4330) until the torque command will not be saturated at the end of sequence interval C or in sequence interval D even when spindle orientation is started when the spindle is running at 10 min⁻¹ + acceleration limitation start speed during deceleration ω_{LS} . Similarly to item (6), there is no problem even if the torque command is about to be saturated at the beginning of sequence interval C.

5.5 SPINDLE ORIENTATION DURING SPINDLE SYNCHRONOUS CONTROL Optional function

5.5.1 Overview

For this subsection, see Subsection 5.5.1, "Overview", in Part I.

5.5.2 Series and Editions of Applicable Spindle Software

Spindle software

•		
Series	Edition	Usable CNC
9D53	B (02) edition or later	FS16i / FS18i / FS21i / FS0i
9D70	A (01) edition or later	FS30i / FS31i / FS32i
0000	D (00) adition or later	FS16i / FS18i / FS21i / FS0i
9D80	B (02) edition or later	FS30i / FS31i / FS32i

5.5.3 Specification

For this subsection, see Subsection 5.5.3, "Specification", in Part I.

5.5.4 I/O Signals (CNC ↔ PMC)

16*i*

(1) Address list of input signals (PMC \rightarrow CNC)

(a) For path 1

	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
	G038	G038					SPPHS	SPSYC		
									-	
1st-	G072	G072							ROTAA	
2nd-	G076	G076							ROTAB	
								•		•
1st-	G073	G073					SORSLA			
2nd-	G077	G077					SORSLB			
1st-	G078	G078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G080	G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
1st-	G079	G079					SHA11	SHA10	SHA09	SHA08
2nd-	G081	G081					SHB11	SHB10	SHB09	SHB08

(b) For path 2

	G1038 G1038					SPPHS	SPSYC		
								•	
1st-	G1072 G1072							ROTAA	
2nd-	G1076 G1076							ROTAB	
1st-	G1073 G1073					SORSLA			
2nd-	G1077 G1077					SORSLB			
1st-	G1078 G1078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
2nd-	G1080 G1080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
1st-	G1079 G1079					SHA11	SHA10	SHA09	SHA08
2nd-	G1081 G1081					SHB11	SHB10	SHB09	SHB08

(2) Details of input signals (PMC \rightarrow CNC)

- (a) Spindle synchronous control command (SPSYC)
- (b) Spindle phase synchronous control command or synchronous orientation command (SPPHS)
- (c) Synchronous orientation request command (SORSLA)
- (d) Synchronous orientation external stop position command (SHA11 to SHA00)
- (e) Rotation direction command for synchronous (ROTAA)

For the input signals SPSYC, SPPHS, SORSLA, SHA11 to SHA00, and ROTAA, see Item (2), "Details of input signals (PMC \rightarrow CNC)", in Subsection 5.5.4 of Part I.

(3) Address list of output signals (CNC \rightarrow PMC)

(a) For path 1

	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
	F044	F044				SYCAL	FSPPH	FSPSY		
										_
1st-	F047	F047					SORENA			
2nd-	F051	F051					SORENB			

(b) For path 2

	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
	F1044	F1044				SYCAL	FSPPH	FSPSY		
									-	
1st-	F1047	F1047					SORENA			
2nd-	F1051	F1051					SORENB			

(4) Details of output signals (CNC \rightarrow PMC)

- (a) Synchronous orientation permission signal (SORENA)
- (b) Spindle speed synchronous control completion signal (FSPSY)
- (c) Spindle phase synchronous control completion signal or synchronous orientation completion signal (FSPPH)
- (d) Phase synchronous error monitor signal (SYCAL)

For the output signals SORENA, FSPSY, FSPPH, and SYCAL, see Item (4), "Details of output signals (CNC \rightarrow PMC)", in Subsection 5.5.4 of Part I.

5.5.5 Sequence

For this subsection, see Subsection 5.5.5, "Sequence", in Part I.

5.5.6 List of Related Parameters

Parame	ter No.	Description
16 <i>i</i>	30 <i>i</i>	Description
4800#1,#0	4801#0	Direction in which each of spindles rotates under spindle synchronous control (For 16 <i>i</i> : #0: First spindle: #1: Second spindle. For 30 <i>i</i> : Each spindle)
4810	4810	That error pulse difference between two spindles on which the spindle phase synchronous completion signal is output
4811	4811	That error pulse difference between two spindles on which the spindle phase synchronous error monitor signal is output
3702#3,#2	3729#0	Whether the stop position external setting-type spindle orientation function is available (For 16 <i>i</i> : #0: First spindle: #1: Second spindle. For 30 <i>i</i> : Each spindle)
4006#4	4006#4	Setting for disabling automatic detection of a one-rotation signal when the spindle synchronous control mode is switched
4014#6	4014#6	Whether the synchronous orientation function is available
4032	4032	Acceleration at spindle synchronous control (It is necessary to specify the same value for the first and second spindles.)
4033	4033	Spindle synchronous speed arrival level
4034	4034	Shift amount at spindle phase synchronous control
4035	4035	Spindle phase synchronous compensation data
4044	4044	Velocity proportional gain on spindle synchronous control
4045	4045	(This parameter is selected with the input signal CTH1A.)
4052	4052	Velocity integral gain on spindle synchronous control
4053	4053	(This parameter is selected with the input signal CTH1A.)
4056 to 4059	4056 to 4059	Gear ratio data between spindle and motor (These parameters are selected with the input signals CTH1A and CTH2A.)
4065 to 4068	4065 to 4068	Position gain on spindle synchronous control (It is necessary to specify the same value for the first and second spindles.) (These parameters are selected with the input signals CTH1A and CTH2A.)
4075	4075	Orientation completion signal detection level
4336	4336	Acceleration magnetic flux switching point for spindle synchronous control (It is necessary to specify the same value for the first and second spindles.)
4340	4340	Bell-shaped acceleration/deceleration time constant for spindle synchronous control (It is necessary to specify the same value for the first and second spindles.)
4369	4369	Synchronous orientation deceleration coefficient

NOTE

- 1 See Section IV-1.3, "PARAMETERS RELATED TO DETECTORS," for parameters related to detectors.
- ² See Section IV-4.1, "VELOCITY LOOP GAIN ADJUSTMENT," for velocity loop proportional/integral gain tuning.
- 3 See "Function Description: Spindle Synchronous Control" for parameters related to the spindle synchronous control function.

5.5.7 Details of Related Parameters

For this subsection, see Subsection 5.5.7, "Details of Related Parameters", in Part I.

5.6 SPINDLE FINE ACC./DEC. (FAD) FUNCTION

5.6.1 Overview

For this subsection, see Subsection 5.6.1, "Overview", in Part I.

5.6.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Remark
9D53	B (02) edition or later	
9D80	B (02) edition or later	

CNC software

Series	Edition	Remark				
B0H1	M (13) edition or later	For the FANUC Series 16i/160i/160is-MB				
BDH1	M (13) edition or later	For the FANUC Series 18i/180i/180is-MB				
BDH5	C (03) edition or later	For the FANUC Series 18i/180i/180is-MB5				
DDH1	M (13) edition or later	For the FANUC Series 21i/210i/210is-MB				
B1H1	M (13) edition or later	For the FANUC Series 16i/160i/160is-TB				
BEH1	M (13) edition or later	For the FANUC Series 18i/180i/180is-TB				
DEH1	M (13) edition or later	For the FANUC Series 21i/210i/210is-TB				

5.6.3 Block Diagram

For this subsection, see Subsection 5.6.3, "Block Diagram", in Part I.

5.6.4 Parameters

For this subsection, see Subsection 5.6.4, "Parameters", in Part I.

5.6.5 Diagnosis (Diagnosis Screen)

For this subsection, see Subsection 5.6.5, "Diagnosis (Diagnosis Screen)", in Part I.

5.6.6 Status Errors

For this subsection, see Subsection 5.6.6, "Status Errors", in Part I.

5.6.7 Cautions

For this subsection, see Subsection 5.6.7, "Cautions", in Part I.

5.7 UNEXPECTED DISTURBANCE TORQUE DETECTION FUNCTION Optional function

5.7.1 Overview

For this subsection, see Subsection 5.7.1, "Overview", in Part I.

5.7.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Remark
9D53	E (05) edition or later	FS16i / FS18i / FS21i / FS0i / FS15i
9D70	D (04) edition or later	FS30i / FS31i / FS32i
0000	D (00) adition or later	FS16i / FS18i / FS21i / FS0i / FS15i
9D80	B (02) edition or later	FS30i / FS31i / FS32i

5.7.3 I/O Signals (CNC↔PMC)

(1) Address list of output signals (CNC → PMC)

16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
F090	F090					ABTSP3	ABTSP2	ABTSP1	
F091	F091				ABTSP4				
				•		-			

15*i* F155 F154

AQSP2	AQSP1				
			AQSP4	AQSP3	

- (2) Details of output signals (CNC \rightarrow PMC)
- (a) First-spindle unexpected disturbance torque detection signals (ABTSP1 and AQSP1)
- (b) Second-spindle unexpected disturbance torque detection signals (ABTSP2 and AQSP2)
- (c) Third-spindle unexpected disturbance torque detection signals (ABTSP3 and AQSP3)
- (d) Fourth-spindle unexpected disturbance torque detection signals (ABTSP4 and AQSP4)

These signals are output when the estimated load torques on the respective spindles become higher than or equal to the set level. Refer to an applicable CNC Connection Manual (Function) for details.

- (a) For Series 16i/18i/21i

 "FANUC Series 16i/18i/21i-MODEL B

 CONNECTION MANUAL (FUNCTION): B-63523EN-1

 Refer to Section 2.10, "ABNORMAL LOAD DETECTION."
- (b) For Series 30*i*/31*i*/32*i*"FANUC Series 30*i*/31*i*/32*i*-MODEL A

 CONNECTION MANUAL (FUNCTION): B-63943EN-1

 Refer to Section 2.9, "UNEXPECTED DISTURBANCE TORQUE DETECTION FUNCTION."
- (c) For Series 15*i*"FANUC Series 15*i*-MODEL B
 CONNECTION MANUAL (FUNCTION): B-63783EN-1
 Refer to Section 2.9, "ABNORMAL LOAD DETECTION."

5.7.4 List of Related Parameters

Pa	Parameter No.		Description	
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Description	
3015 #1	4015 #1	4015 #1	Whether the unexpected disturbance torque detection function is available (The CNC software option is required.)	
3248	4248	4248	Torque constant for spindle load torque monitoring (for high-speed output switching characteristics)	
3281	4281	4281	Torque constant for spindle load torque monitoring (for low-speed output switching characteristics)	
3249	4249	4249	Observer gain 1 for spindle load torque monitoring	
3250	4250	4250	Observer gain 2 for spindle load torque monitoring	
3341	4341	4341	Unexpected disturbance torque detection level	

5.7.5 Details of Related Parameters

For this subsection, see Subsection 5.7.5, "Details of Related Parameters", in Part I.

5.7.6 Parameter Tuning Procedure

For this subsection, see Subsection 5.7.6, "Parameter Tuning Procedure", in Part I.

5.8 SPINDLE EGB (SPINDLE ELECTRONIC GEAR BOX)

Optional function

5.8.1 Overview

The spindle EGB function is intended to use one of spindles in a pair as a tool axis (master axis) and the other as a workpiece axis (slave axis) and cause the slave axis to rotate in synchronization with the master axis at a specified synchronous ratio. Refer to an applicable CNC Connection Manual (Function) for details of this function.

(a) For Series 16*i*/18*i*"FANUC Series 16*i*/18*i*/21*i*-MODEL B
CONNECTION MANUAL (FUNCTION): B-63523EN-1
Refer to Section 1.14.2, "Spindle Electronic Gear Box (M series)."

NOTE

- 1 Using this function requires the CNC software option.
- 2 Using this function requires spindle amplifier (SP) type B for both the master and slave axes.
- 3 For the master and slave axes, use the spindle software of the same series and edition.
- 4 This function cannot be used together with the spindle fine Acc./Dec. (FAD) function.
- 5 This function cannot be used together with the torque tandem control function.
- 6 This function cannot be used with the FANUC Series 15*i*-MODEL B.
- 7 This function cannot be used with the FANUC Series 30*i*/31*i*/32*i*.
- 8 There are no limitations on the assignment of the master and slave axes.

For descriptive purposes, this specification assumes: Master spindle amplifier: First spindle Slave spindle amplifier: Second spindle

5.8.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Remark
9D53	B (02) edition or later	
9D80	B (02) edition or later	

CNC software

Series	Edition	Remark
B0H1	A (01) edition or later	For FANUC Series 16i/160i/160is-MB
BDH1	A (01) edition or later	For FANUC Series 18i/180i/180is-MB
BDH5	A (01) edition or later	For FANUC Series 18i/180i/180is-MB5

5.8.3 System Configuration

The spindle EGB function is usable in the following system configuration.

(1) System configuration with built-in motors

Parameter settings related to detectors

Parameter	Setting	Description
4000#0	0	The spindle and motor rotates in the same direction.
4002#3,#2,#1,#0	0,0,0,1	The motor sensor is used for position feedback.
4003#7,#6,#5,#4	0,0,0,0	It is unnecessary to specify the number of the spindle sensor teeth.
4010#2,#1,#0	0,0,1	αiMZ/αiBZ/αiCZ sensor
4011#2,#1,#0 or 4334	Depending on the sensor.	Setting for the number of motor sensor (speed sensor) teeth
4056 to 4059	100 or 1000	The spindle-to-motor gear ratio is 1:1. (The settings for these parameters vary depending on the gear ratio increment system specified in bit 1 or parameter No. 4006.)
4386 ^(*)	Depending on the sensor.	Setting for the number of master-axis motor sensor (speed sensor) teeth

^(*) This parameter is valid only for the slave axis (second spindle).

5.8.4 Block Diagram

For this subsection, see Subsection 5.8.4, "Block Diagram", in Part I.

5.8.5 I/O Signals (CNC \leftrightarrow PMC)

This subsection lists only the input/output signals related to the spindle EGB. Refer to an applicable CNC Connection Manual (Function) for details of each signal.

(a) For Series 16i/18i FANUC Series 16i/18i/21i-MODEL B Connection Manual (Function): B-63523EN-1 Refer to Subsection 1.14.2, "Spindle Electronic Gear Box (M series)."

(1) Input signals (PMC \rightarrow CNC)

	#7	#6	#5	#4	#3	#2	#1	#0
G066				RTRCT				

(2) Output signals (CNC \rightarrow PMC)

	#7	#6	#5	#4	#3	#2	#1	#0
F065		SYNMOD		RTRCTF				

5.8.6 Examples of Sequences

Refer to an applicable CNC Connection Manual (Function) for spindle EGB sequences.

(a) For Series 16i/18i
FANUC Series 16i/18i/21i-MODEL B
CONNECTION MANUAL (FUNCTION): B-63523EN-1
Refer to Section 1.14.2, "Spindle Electronic Gear Box (M series)."

5.8.7 List of Related Parameters

Parameter No.	B I fin
16 <i>i</i>	Description
7700#0	Direction for helical compensation
7700#2	Setting for releasing the synchronous mode at a reset
7709	Axis number for helical gear axial feed axis
7710	Spindle EGB slave axis number
7771	Spindle EGB master axis number
	The number of pulses the position sensor generates at each rotation of the tool
7772	axis (master axis)
	(Specify 360,000 for the IS-B.)
	The number of pulses the position sensor generates at each rotation of the
7773	workpiece axis (slave axis)
	(Specify 360,000 for the IS-B.)
8005#4	Setting for the type of the PMC axis control constant-speed command function
8028	Time constant for linear-shaped Acc./Dec. in speed command-based continuous
0020	feed for each axis in PMC-based axis control
	Number of pulses the position sensor generates at each rotation of the spindle
8040	on a PMC-controlled axis
	(Specify 360,000 for the IS-B.)
4016#3	Setting for the feed-forward smoothing function
4352#4	Feed-forward setting
4352#6	Inter-SPM communication slave axis setting
4352#7	Inter-SPM communication master axis setting
4036	Feed forward coefficient
4037	Velocity loop feed forward coefficient
4046	Velocity proportional gain on Cs contouring control
4047	(This parameter is selected with the PMC input signal CTH1A.)
4054	Velocity integral gain on Cs contouring control
4055	(This parameter is selected with the PMC input signal CTH1A.)
4069 to 4072	Position gain on Cs contouring control
4009 10 4072	(This parameter is selected with the PMC input signal CTH1A.)
4386	Number of master-axis spindle sensor teeth
4387	Synchronous ratio numerator
4388	Synchronous ratio denominator
4498	Denominator of the master-axis motor sensor-to-spindle arbitrary gear ratio
4499	Numerator of the master-axis motor sensor-to-spindle arbitrary gear ratio

NOTE

- 1 See Section IV-1.3, "PARAMETERS RELATED TO DETECTORS," for parameters related to detectors.
- 2 See Section IV-4.1, "VELOCITY LOOP GAIN ADJUSTMENT," for velocity loop proportional/integral gain tuning.

5.8.8 Details of Related Parameters

For this subsection, see Subsection 5.8.8, "Details of Related Parameters", in Part I.

5.8.9 Diagnosis Signal Related to Spindle EGB

Address 16 <i>i</i>	Description	Unit
0717	Synchronous error between master and slave axes. (Weight is slave side)	Pulse

NOTE

- 1 Displaying this data on the CNC diagnosis screen requires the αi spindle amplifier (SP) TYPE B and the i series model B CNC.
- 2 Displaying this data on the CNC diagnosis screen requires the following CNC software series/editions. FS16*i*/160*i*/160*i*s-MB:

B0H1 series R(18) edition or later

FS18i/180i/180is-MB:

BDH1 series R(18) edition or later

FS18i/180i/180is-MB5:

BDH5 series H(08) edition or later

5.8.10 Status Errors Related to Spindle EGB

Error No.	Description	Measure	
33	Invalid hardware configuration	Check the model of the CNC in use.	
34	An attempt was made to enable both the	To use the spindle EGB function, disable the	
34	spindle EGB and FAD functions.	spindle FAD function.	

5.8.11 Alarms

For this subsection, see Subsection 5.8.11, "Alarms", in Part I.

5.9 DIFFERENTIAL SPINDLE SPEED CONTROL

The BiS series spindle (synchronous built-in spindle motor) does not support this function.

5.10 DUAL POSITION FEEDBACK FUNCTION Optional function

The BiS series spindle (synchronous built-in spindle motor) does not support this function.

5.11 TORQUE TANDEM CONTROL FUNCTION Optional function

The BiS series spindle (synchronous built-in spindle motor) does not support this function.

5.12 MAGNETIC SENSOR METHOD SPINDLE ORIENTATION Optional function

The BiS series spindle (synchronous built-in spindle motor) does not support this function.

5.13 SPINDLE BACKLASH ACCELERATION FUNCTION

Optional function

5.13.1 Overview

For this subsection, see Subsection 5.3.1, "Overview", in Part I.

5.13.2 Series and Editions of Applicable Spindle Software

Spindle software

Series	Edition	Usable CNC
9D53	G (07) edition or later	FS16i / FS18i / FS21i / FS0i / FS15i
9D70	F (06) edition or later	FS30i / FS31i / FS32i
0000	D (00) adition or later	FS16i / FS18i / FS21i / FS0i / FS15i
9D80	B (02) edition or later	FS30i / FS31i / FS32i

5.13.3 Block Diagram

For this subsection, see Subsection 5.13.3, "Block Diagram", in Part I.

5.13.4 Parameters

For this subsection, see Subsection 5.13.4, "Parameters", in Part I.

5.13.5 Example of Adjustment

For this subsection, see Subsection 5.13.5, "Example of Adjustment", in Part I.

SPINDLE PARAMETER TABLE

A.1 αi SERIES SPINDLE PARAMETER TABLE

 αi series spindle parameters are classified into the following types:

- A: Parameters related to the setup of detectors
- B: Parameters related to the setup of various functions (operating modes)
- C: Unique parameters for the drive of spindle motors (Set the parameter data according to the parameter list for each motor model.)
- D: Parameters related to the setting of alarm detection conditions
- MH, ML, SH, and SL in the table represent the following:
- MH: Parameter for speed range switch high-speed characteristics on the main side of spindle switching (for standard motors)
- ML: Parameter for speed range switch low-speed characteristics on the main side of spindle switching
- SH: Parameter for speed range switch high-speed characteristics on the sub-side of spindle switching
- SL: Parameter for speed range switch low-speed characteristics on the sub-side of spindle switching

Internal					Standard		Α	ppli	catio	n	Classifi	Reference
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents	МН	ML	SH	SL	-cation	item
0H	3000	4000	4000	#0	0	Rotation direction relationship between the spindle and motor	0	0			Α	I-1.3.2
				#1	0	Spindle rotation direction when a positive (+) move command is specified on Cs contouring control	0	0			В	I-2.4.7
				#3	0	Return direction for the reference position on Cs contouring control mode	0	0			В	I-2.4.7
				#4	0	Return direction for the reference position on servo mode	0	0			В	I-2.3.7
				#5	0	Whether to use the differential spindle speed control function	0	0			В	I-5.9.8
				#6	0	Direction for differential spindle speed control	0	0			В	I-5.9.8
0L	3001	4001	4001	#0	1	Whether to use MRDY (machine ready) signal	0	0			В	I-2.6.4
				#3	0	Mounting direction of the magnetic sensor	0	0			В	I-5.12.6
				#4	0	Mounting direction of the spindle sensor	0	0			Α	I-1.3.2
1H	3002	4002	4002	#0	0	Spindle sensor type	0	0			Α	I-1.3.2
				#1	0	Spindle sensor type	0	0			Α	I-1.3.2
				#2	0	Spindle sensor type	0	0			Α	I-1.3.2
				#3	0	Spindle sensor type	0	0			Α	I-1.3.2
				#4	0	Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control	0	0			В	I-2.4.7
				#5	0	Whether to use the rotation direction signal (SFR/SRV) function on servo mode	0	0			В	I-2.3.7
				#6	0	Whether to use the rotation direction signal (SFR/SRV) function on spindle synchronous control	0	0			В	I-2.5.8
				#7	0	Whether to use the CMR (servo mode Cs contouring) function in servo mode	0	0			В	
1L	3003	4003	4003	#0	0	Spindle orientation method	0	0			В	I-2.2.9
				#2	0	Rotation direction during spindle orientation	0	0			В	I-2.2.9
				#3	0	Rotation direction during spindle orientation	0	0			В	I-2.2.9
				#4	0	Teeth number setting of spindle sensor	0	0			Α	I-1.3.2
				#5	0	Teeth number setting of spindle sensor	0	0			Α	I-1.3.2
				#6	0	Teeth number setting of spindle sensor	0	0			Α	I-1.3.2

Internal					Standard		Α	ppli	catio	n	Classifi	Reference
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents	мн	ML	SH	SL	-cation	item
				#7	0	Teeth number setting of spindle sensor	0	0			Α	I-1.3.2
2H	3004	4004	4004	#2	0	Setting of external one-rotation signal	0	0			Α	I-1.3.2
				#3	0	Setting of external one-rotation signal	0	0			Α	I-1.3.2
2L		4005		#0	0	Command resolution for Cs contouring control	0	0			В	I-2.4.7
3H	3006	4006	4006		0	Increment system of gear ratio	0	0			Α	I-1.3.2
				#2	Depends on the model	Increment system of spindle speed	0	0			С	I-2.6.4
				#3	0	Automatic detection of one-rotation signal during spindle synchronous control	0	0			В	I-2.5.8
				#5	0	Setting of analog override range	0	0			В	I-2.1.6
				#7	0	Whether to use the command arbitrary gear ratio (CMR) function on rigid tapping	0	0			В	I-2.3.7
3L	3007	4007	4007	#5	0	Whether to detect a feedback signal disconnection	0	0			Α	I-1.3.2
				#6	0	Whether to detect the alarms (spindle alarms 41, 42, 47, 81, 82, 83, 85, 86, and 87) related to the position feedback signal (when non-Cs contouring control mode is set)	0	0			A	I-1.3.2
4H	3008	4008	4008		0	Reserved	0				С	
				#1	0	Reserved		0			С	
				#2	0	Reserved	0	0			С	
				#4	Depends on the model	Setting of output limitation method	0	0			С	I-2.6.4
4L	3009	4009	4009	#0	0	Increment system of velocity loop gain	0	0			В	I-2.6.4
				#2	0	Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued	0	0			D	I-2.6.4
				#4	0	Whether to output the load detection signals (LDT1, LDT2) during acceleration/deceleration	0	0			В	I-2.1.6
				#6	0	Analog override type	0	0			В	I-2.1.6
5H	3010	4010	4010	#0	Depends on the model	Motor sensor type	0	0			Α	I-1.3.2
				#1	Depends on the model	Motor sensor type	0	0			Α	I-1.3.2
				#2	Depends on the model	Motor sensor type	0	0			Α	I-1.3.2
5L	3011	4011	4011	#0	Depends on the model	Teeth number setting of motor sensor	0	0			Α	I-1.3.2
				#1	Depends on the model	Teeth number setting of motor sensor	0	0			Α	I-1.3.2
				#2	Depends on the model	Teeth number setting of motor sensor	0	0			Α	I-1.3.2
				#3	Depends on the model	Number of motor poles	0	0			С	I-2.6.4
				#4	Depends on the model	Setting of maximum output during acceleration/deceleration	0	0			С	I-2.6.4
				#7	Depends on the model	Number of motor poles	0	0			С	I-2.6.4
6H	3012	4012	4012	#0	Depends on the model	Setting of PWM carrier frequency	0	0			С	I-2.6.4
				#1	Depends on the model	Setting of PWM carrier frequency	0	0			С	I-2.6.4
				#2	Depends on the model	Setting of PWM carrier frequency	0	0			С	I-2.6.4
				#7	1	Setting of spindle HRV function	0	0	0	0	С	I-2.6.4
6L	3013	4013	4013		Depends on the model	Current dead-band data	0	0			С	I-2.6.4
				#3	the model	Current dead-band data	0	0			С	I-2.6.4
				#4	Depends on the model	Current dead-band data	0	0			С	I-2.6.4

Internal					Standard		Α	ppli	catio	n	Classifi	Reference
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents	мн	ML	SH	SL	-cation	item
				#5	Depends on the model	Current dead-band data	0	0			С	I-2.6.4
				#6	Depends on the model	Current dead-band data	0	0			С	I-2.6.4
				#7	Depends on the model	Setting of a PWM carrier frequency for low-speed characteristics area		0			С	I-2.6.4
7H	3014	4014	4014	#0	0	Whether to use the spindle switch function	0	0	0	0	В	I-5.2.9
				#2	0	Whether to check both spindle switch main and sub magnetic contactor contacts	0	0	0	0	В	I-5.2.9
				#3	0	Whether to check both magnetic contactor contacts for high-speed /low-speed characteristics in speed range switching	0	0	0	0	В	I-5.1.7
				#6	0	Whether to use the orientation function on spindle synchronous control	0	0			В	I-5.5.6
				#7	0	Setting of dual position feedback	0	0			В	I-5.10.4
7L	3015	4015	4015		0	Whether to use the spindle orientation function	0	0	0	0	В	I-2.2.9
				#1	0	Whether to use the unexpected disturbance torque detection function	0	0	0	0	В	I-5.7.5
				#2	0	Whether to use the speed range switching function	0	0	0	0	В	I-5.1.7
01.1	2012	4040	4046	#3	0	Whether to use the spindle tandem function	0	0	0	0	В	I-5.11.6
8H	3016	4016	4016		0	Setting of the smoothing function in feed-forward control	0	0			В	I-2.4.7 I-5.8.7
				#4	0	Setting related to control characteristics on Cs contouring control/servo mode	0	0			В	I-2.3.7 I-2.4.7
				#5	0	Whether to detect the alarms (spindle alarms 81, 82, 85, 86) related to position feedback (on Cs contouring control mode)	0	0			A	I-1.3.2
				#6	0	Whether to detect the alarm (spindle alarms 46) related to feedback of the position detection signal for threading	0	0			Α	I-1.3.2
				#7	0	Function for newly detecting the one-rotation signal before entering position control mode	0	0			Α	I-1.3.2
8L	3017	4017	4017	#0	0	This parameter sets speed integration operation when differential spindle speed control is exercised.	0	0			В	I-5.9.8
				#7	0	Setting of shortcut orientation from stop state in position coder method spindle orientation	0	0			В	I-2.2.9
9H	3018	4018	4018		0	Whether to use the velocity command compensation function during high-speed orientation	0	0			В	I-5.4.6
				#6	0	High-speed orientation function	0	0			В	I-5.4.6
9L	3019	4019	4019		1	Whether to use torque clamp at zero speed	0	0			В -	I-2.6.4
				#4	0	Setting of the function for switching from high-speed characteristics to low-speed characteristics with the speed detection signal SDT = 1 at speed range switching	0	0			В	I-5.1.7
				#7	0	Automatic parameter setting function (16i)	0	0			В	I-1.1.2 I-2.6.4
10	3020	4020	4020		Depends on the model	Maximum motor speed	0	0			С	I-2.6.4
11	3021	4021	4021		100	Maximum speed on Cs contouring control mode	0	0			В	I-2.4.7
	3022				150	Speed arrival detection level (SAR)	0	0			В	I-2.6.4
			4023	_	30	Speed detection level (SDT)	0	0	<u> </u>		В	I-2.6.4
			4024		75	Zero speed detection level (SST)	0	0	<u> </u>		В	I-2.6.4
			4025	_	50	Limited torque (TLMH, TLML)	0	0	<u> </u>	<u> </u>	В	I-2.6.4
16			4026		83	Load detection level 1 (LDT1)	0	0		^	В	I-2.6.4
17 18			4027 4028		95 0	Load detection level 2 (LDT2) Limited output pattern	0	0	0	0	B B	I-2.6.4 I-2.1.6
			4028		100	Output limit	0	0	 	-	В	I-2.1.6
			4030		0	Soft start/stop time (SOCN)	0	0	0	0	В	I-2.1.6
		4031			0	Stop position of position coder method orientation	0	0	Ť	Ť	В	I-2.2.9
			4032		0	Acceleration on spindle synchronous control	0	0			В	I-2.5.8

Internal data No.					Standard		Α	ppli	catio	on	Classifi	Reference
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents		N#:	ç	٥.	-cation	item
23	3033	4033	4033		10	Spindle synchronous speed arrival level	О	ML O	SH	SL	В	I-2.5.8
24			4034		0	Shift during synchronous control of spindle phase	0	0			В	I-2.5.8
25			4035		10	Compensation data for spindle phase synchronous control	0	0			В	I-2.5.8
26	3036	4036	4036		0	Feed-forward coefficient	0	0			В	I-2.4.7 I-5.8.8
27	3037	4037	4037		0	Feed-forward coefficient of velocity loop	0				В	I-2.4.7
21	3037	4037	4037			r eed-forward coefficient of velocity loop					Ь	I-5.6.4
												I-5.8.8
28	3038	4038	4038		0	Spindle orientation speed	0	0			В	I-2.2.9
												I-5.4.6
29	3039	4039	4039		Depends on the model	Slip compensation gain	0				С	I-2.6.4
30	3040	4040	4040		10	Velocity loop proportional gain on velocity control mode (High)	0	0			В	I-2.1.6
31	3041	4041	4041		10	Velocity loop proportional gain on velocity control mode (Low)	0	0			В	I-2.1.6
32			4042		10	Velocity loop proportional gain on orientation (High)	0	0			В	I-2.2.9
33	3043	4043	4043		10	Velocity loop proportional gain on orientation (Low)	0	0			В	I-2.2.9
34	3044	4044	4044		10	Velocity loop proportional gain on servo	0	0			В	I-2.3.7
						mode/spindle synchronous control (High)	L_	<u> </u>		<u> </u>		I-2.5.8
35	3045	4045	4045		10	Velocity loop proportional gain on servo mode/spindle synchronous control (Low)	0	0			В	I-2.3.7
20	2040	4040	4040		20							I-2.5.8
36			4046		30	Velocity loop proportional gain on Cs contouring control (High)	0	0			В	I-2.4.7
37		4047			30	Velocity loop proportional gain on Cs contouring control (Low)	0	0			В	I-2.4.7
38			4048		10	Velocity loop integral gain on velocity control mode (High)	0	0			В	I-2.1.6
39			4049		10	Velocity loop integral gain on velocity control mode (Low)	0	0			В	I-2.1.6
40			4050		10	Velocity loop integral gain on orientation (High)	0	0			В	I-2.2.9
41	3051		4051		10	Velocity loop integral gain on orientation (Low)	0	0			В	I-2.2.9
42	3052	4052	4052		10	Velocity loop integral gain on servo mode/spindle synchronous control (High)	0	0			В	I-2.3.7 I-2.5.8
43	3053	4053	4053		10	Velocity loop integral gain on servo mode/spindle synchronous control (Low)	0	0			В	I-2.3.7 I-2.5.8
44	3054	4054	4054		50	Velocity loop integral gain on Cs contouring control (High)	0	0			В	I-2.4.7
45	3055	4055	4055		50	Velocity loop integral gain on Cs contouring control (Low)	0	0			В	I-2.4.7
46	3056	4056	4056		100	Gear ratio (High)	0	0			Α	I-1.3.2
47	3057	4057	4057		100	Gear ratio (Medium High)	0	0			Α	I-1.3.2
48			4058		100	Gear ratio (Medium Low)	0	0			Α	I-1.3.2
49	_		4059		100	Gear ratio (Low)	0	0			Α	I-1.3.2
50	_		4060		1000	Position gain on orientation (High)	0	0			В	I-2.2.9
51		4061			1000	Position gain on orientation (Medium High)	0	0		<u> </u>	В	I-2.2.9
52			4062		1000	Position gain on orientation (Medium Low)	0	0		ļ	В	I-2.2.9
53			4063		1000	Position gain on orientation (Low)	0	0		ļ	В	I-2.2.9
54	3064	4064	4064		100	Ordinary orientation: Rate of change in position gain upon completion of orientation	0	0			В	I-2.2.9 I-5.4.6
						High-speed orientation: Rate of change in position gain upon completion of orientation						
55	3065	4065	4065		1000	Position gain on servo mode/spindle synchronous control (High)	0	0			В	I-2.3.7 I-2.5.8
56	3066	4066	4066		1000	Position gain on servo mode/spindle synchronous	0	0			В	I-2.3.7
	000-	400-	100-		4000	control (Medium High)	_	_		<u> </u>	-	I-2.5.8
57	3067	4067	4067		1000	Position gain on servo mode/spindle synchronous control (Medium Low)	0	0			В	I-2.3.7 I-2.5.8

Internal					Standard		Application				Classifi	Reference
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents	МН	ML	SH	SL	-cation	item
58	3068	4068	4068		1000	Position gain on servo mode/spindle synchronous control (Low)	0	0			В	I-2.3.7 I-2.5.8
59		4069			3000	Position gain on Cs contouring control (High)	0	0			В	I-2.4.7
60			4070		3000	Position gain on Cs contouring control (Medium High)	0	0			В	I-2.4.7
61	3071	4071	4071		3000	Position gain on Cs contouring control (Medium Low)	0	0			В	I-2.4.7
62		4072			3000	Position gain on Cs contouring control (Low)	0	0			В	I-2.4.7
63			4073		0	Grid shift on servo mode	0	0			В	I-2.3.7
64			4074		0	Reference position return speed on Cs contouring control/servo mode	0	0	0	0	В	I-2.3.7 I-2.4.7
65			4075		10	Detection level for orientation completion signal (ORAR)	0	0			В	I-2.2.9
66	3076	4076	4076		33	Ordinary orientation: Motor speed limit value on orientation High-speed orientation: Reserved	0	0			В	I-2.2.9
67	3077	4077	4077		0	Orientation stop position shift	0	0			В	I-2.2.9
68	3078	4078	4078		200	MS signal constant	0	0			В	I-5.12.6
69	3079	4079	4079		0	MS signal gain adjustment	0	0			В	I-5.12.6
70	3080	4080	4080		Depends on the model	Regenerative power limit for high-speed zone/regenerative power limit	0				С	I-2.6.4
71	3081		4081		20	Delay time until motor power is cut off	0	0			В	I-2.1.6
72	3082	4082	4082		10	Setting of acceleration/deceleration time	0	0			В	I-2.1.6
73	3083	4083	4083		Depends on the model	Motor voltage on velocity control mode	0				С	I-2.1.6
74	3084	4084	4084		Depends on the model	Motor voltage on orientation	0	0			С	I-2.2.9 I-5.4.6
75	3085	4085	4085		Depends on the model	Motor voltage on servo mode/spindle synchronous control mode	0				С	I-2.3.7 I-2.5.8
76	3086	4086	4086		100	Motor voltage on Cs contouring control	0	0			С	I-2.4.7
77	3087	4087	4087		115	Overspeed level	0	0	0	0	D	I-2.6.4
78	3088	4088	4088		75	Level for detecting excess velocity error when motor is restrained	0	0	0	0	D	I-2.6.4
79	3089	4089	4089		200	Level for detecting excess velocity error when motor rotates	0	0	0	0	D	I-2.6.4
80	3090	4090	4090		90	Overload detection level	0	0	0	0	D	I-2.6.4
81		4091			100	Rate of change in position gain during reference position return on servo mode	0	0			В	I-2.3.7
82	3092	4092	4092		100	Rate of change in position gain during reference position return on Cs contouring control	0	0			В	I-2.4.7
83			4093		Depends on the model	Value displayed on load meter at maximum output		0			С	App. B
84	3094	4094	4094		0	Disturbance torque compensation constant (acceleration feedback gain)	0	0			В	I-2.4.7
85			4095	_	0	Adjusted output voltage of speedometer	0	0	0	0	В	I-2.6.4
86			4096		0	Adjusted output voltage of load meter	0	0	0	0	В	I-2.6.4
87		4097			0	Feedback gain of spindle speed	0	0			В	I-2.4.7
88			4098		0	Maximum speed for position feedback signal detection	0	0	0	0	Α	I-1.3.2
89	3099	4099	4099		0	Delay time for motor excitation	0	0	0	0	В	I-2.3.7 I-2.4.7
90	3100	4100	4100		Depends on the model	Base speed of motor output specifications	0				С	I-2.6.4
91		4101			Depends on the model	Output limit for motor output specifications	0				С	I-2.6.4
92			4102		Depends on the model	Excitation voltage saturation speed at no-load	0				С	I-2.6.4
93	3103	4103	4103		Depends on the model	Base speed limit ratio	0				С	I-2.6.4

Internal data No.					Standard		A	ppli	catio	on	Classifi	Reference
data No.	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit		Contents					-cation	item
F-xxx 94	3104	4104	4104		data Depends on	Current loop proportional gain	MH	ML	SH	SL	С	I-2.6.4
					the model		<u> </u>					
95			4105		0	Reserved	0				С	
96			4106		Depends on the model	Current loop integral gain	0				С	I-2.6.4
97	_		4107		0	Reserved	0				С	
98			4108		Depends on the model	Velocity at which the current loop integral gain is zero	0				С	I-2.6.4
99	3109	4109	4109		Depends on the model	Filter time constant for processing saturation related to the voltage command	0				С	I-2.6.4
100	3110	4110	4110		Depends on the model	Current conversion constant	0				С	I-2.6.4
101	3111	4111	4111		Depends on the model	Secondary current coefficient	0				С	I-2.6.4
102	3112	4112	4112		Depends on the model	Criterion level for saturation related to the voltage command/PWM command clamp value	0				С	I-2.6.4
103	3113	4113	4113		Depends on the model	Slip constant	0				С	I-2.6.4
104	3114	4114	4114		Depends on the model	Slip compensation coefficient for a high-speed zone/slip compensation coefficient at deceleration	0				С	I-2.6.4
105	3115	4115	4115		Depends on the model	PWM command clamp value at deceleration	0				С	I-2.6.4
106	3116	4116	4116		Depends on the model	Motor leakage constant	0				С	I-2.6.4
107	3117	4117	4117		Depends on the model	Regular-time voltage compensation coefficient for high-speed zone/regular-time motor voltage coefficient	0				С	I-2.6.4
108	3118	4118	4118		Depends on the model	Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient	0				С	I-2.6.4
109	3119	4119	4119		Depends on the model	Deceleration-time excitation current change time constant/excitation current change time constant	0				С	I-2.6.4
110	3120	4120	4120		Depends on the model	Dead-band rectangular wave component zero voltage/dead-band data	0	0	0	0	С	I-2.6.4
111	3121	4121	4121		5	Time constant for changing the torque (TCMD filter time constant)	0				В	I-4.2.1
112	3122	4122	4122		0	Time constant for velocity detecting filter	0	0			В	I-2.6.4
113	3123	4123	4123		30	Short-time overload detection time	0	0	0	0	D	I-2.6.4
114			4124		0	Reserved	0				С	
117	3127	4127	4127		Depends on the model	Value displayed on load meter at maximum output	0				С	I-2.6.4
118	3128	4128	4128		Depends on the model	Compensation coefficient between the specification and true base/maximum torque curve compensation coefficient	0				С	I-2.6.4
119	3129	4129	4129		Depends on the model	Secondary current coefficient for rigid tapping	0				С	I-2.6.4
120	3130	4130	4130		Depends on the model	Current loop proportional gain speed coefficient/current phase delay compensation coefficient	0				С	I-2.6.4
121	3131	4131	4131		0	Time constant for velocity detecting filter (on Cs contouring control)	0	0			В	I-2.4.7
123	3133	4133	4133		Depends on the model	Motor model code	0	0			С	I-1.1.2 I-2.6.4
124 125	3134	4134	4134		Depends on the model	Motor overheat detect level (2-word)	0	0			С	I-2.6.4
126	3135	4135	4135		0	Grid shift during Cs contouring control mode I	0	0	-		В	I-2.4.7
127						(2-word)						1 2.4.7
128	3136	4136	4136		Depends on the model	Motor voltage on velocity control mode		0			С	Арр. В
129	3137	4137	4137		Depends on the model	Motor voltage on servo mode/spindle synchronous control mode		0			С	Арр. В

	Internal				Standard		Α	ppli	catio	n	Classifi	Reference
						Contents	МН	ML	SH	SL		
The model Excitation voltage saturation speed at no-load O C App. E	130	3138	4138	4138		Base speed of motor output specifications		0			С	Арр. В
133 3141 4141 4141 4142 1422 1	131	3139	4139	4139		Output limit for motor output specifications		0			С	Арр. В
134	132	3140	4140	4140		Excitation voltage saturation speed at no-load		0			С	Арр. В
The model Depends on Depends on Current loop integral gain Depends on Depends on Velocity at which the current loop integral gain is Depends on	133	3141	4141	4141		Base speed limit ratio		0			С	Арр. В
136	134	3142	4142	4142		Current loop proportional gain		0			С	Арр. В
137 3145 4145 4145 Depends on the model Depends on the m	135	3143	4143	4143		Current loop integral gain		0			С	Арр. В
138 3146 4146 4146 Depends on the model Depends on the model Depends on the model Depends on the model Current conversion constant O C App. E	136	3144	4144	4144				0			С	Арр. В
The model The	137	3145	4145	4145				0			С	Арр. В
140 3148 4148 4148 1418 Depends on the model Criterion level for saturation related to the voltage O C App. E Criterion level for saturation related to the voltage O C App. E Criterion level for saturation related to the voltage O C App. E App.	138	3146	4146	4146		Current conversion constant		0			С	Арр. В
the model Command/PWM command clamp value	139	3147	4147	4147		Secondary current coefficient		0			С	Арр. В
142 3150 4150 4150 Depends on the model Depends on the m	140	3148	4148	4148				0			С	Арр. В
143 3151 4151 4151 Depends on the model Depends on the model 145 3152 4152 4152 Depends on the model 145 3153 4153 4153 Depends on the model PWM command clamp value at deceleration O C App. E 145 3153 4153 Depends on the model Regular-time voltage compensation coefficient for high-speed zone/regular-time motor voltage coefficient O C App. E 146 3154 4154 A154 Depends on the model Acceleration-time voltage compensation coefficient O C App. E 147 3155 4155 4155 Depends on the model Silp compensation coefficient O C App. E 148 3156 4156 A156 Depends on the model Silp compensation gain O C App. E 150 3158 4158 A158 Depends on the model Silp compensation coefficient O B App. E 150 3159 4159 Depends on the model Depends on the model App. E 152 3160 4160 A160 Depends on the model Depend	141	3149	4149	4149		Slip constant		0			С	Арр. В
144 3152 4152 4152 Depends on the model Depends on the m	142	3150	4150	4150				0			С	Арр. В
the model 145 3153 4153 4153	143	3151	4151	4151		PWM command clamp value at deceleration		0			С	Арр. В
the model high-speed zone/regular-time motor voltage coefficient 146 3154 4154 4154 Depends on Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient 147 3155 4155 4155 0 Reserved O C C App. E 148 3156 4156 4156 Depends on the model 149 3157 4157 5 Depends on the model 150 3158 4158 4158 Depends on the model 151 3159 4159 4159 Depends on the model 152 3160 4160 4160 O Hysteresis of speed detection level 153 3161 4161 4161 Depends on the model 154 3162 4162 4162 O Integral gain of velocity loop during cutting feed on Cs contouring control mode (High) 155 3163 4163 4163 Depends on the model 156 3166 4166 4166 Depends on Cs contouring control mode (Ligh) 157 3165 4165 4165 Depends on the model 158 3166 4166 4166 Depends on the model 159 Depends on Reserved O O O O B Integral gain of velocity loop during cutting feed on Cs contouring control mode (Ligh) 158 3168 4168 4168 Depends on the model 159 Depends on Reserved Coefficient Current change time constant Coefficient Courrent change time constant Coefficient Coefficient Courrent change time constant Coefficient C	144	3152	4152	4152		Motor leakage constant		0			С	Арр. В
the model for high-speed zone/acceleration-time motor voltage coefficient 147 3155 4155 4155 0 Reserved O O C App. E 148 3156 4156 4156 Depends on the model 149 3157 4157 4157 5 Time constant for changing the torque (TCMD filter time constant) 150 3158 4158 4158 Depends on the model 151 3159 4159 4159 Depends on the model 152 3160 4160 4160 O Hysteresis of speed detection level 153 3161 4161 4161 Depends on the model 154 3162 4162 4162 O Integral gain of velocity loop during cutting feed on Cs contouring control mode (High) 155 3163 4163 4163 4163 Depends on Cs contouring control mode (High) 156 3163 4165 4165 4166 Depends on Cs contouring control mode (Low) 157 3165 4165 4166 Depends on the model 158 3166 4166 4166 Depends on the model 159 3168 4168 4168 O Current overload alarm detection level O O O D App. E 150 3168 4168 4168 O Current overload alarm detection level O O O D D App. E 150 3168 4168 4169 A169 Depends on the model 150 3168 4168 4168 O Current overload alarm detection level O O D D App. E 150 3169 4169 4169 Depends on the model 151 3169 4169 4169 Depends on the model 152 3160 4160 4160 Depends on the model 153 3163 4163 4163 Depends on the model 154 3165 4166 4166 Depends on the model 155 3163 4163 4163 Depends on the model 156 3168 4168 4168 Depends on the model 157 3165 4166 4166 Depends on the model 158 3166 4166 4166 Depends on the model 159 Temperature monitoring time constant 150 Depends on the model 151 Depends on the model 152 Depends on the model 153 Depends on the model 154 Depends on the model 155 Depends on the model 155 Depends on the model 156 Depends on the model 157 Depends on the model 158 Depends on the model 159 Depends on the model 150 Depends on the model 1	145	3153	4153	4153		high-speed zone/regular-time motor voltage		0			С	Арр. В
148 3156 4156 4156 Depends on the model 149 3157 4157 4157 5 Time constant for changing the torque (TCMD filter time constant) 150 3158 4158 4158 Depends on the model 151 3159 4159 4159 Depends on the model 152 3160 4160 4160 O Hysteresis of speed detection level 153 3161 4161 4161 Depends on the model 154 3162 4162 4162 O Integral gain of velocity loop during cutting feed on Cs contouring control mode (High) 155 3163 4165 4165 Depends on the model 156 3165 4165 4166 Depends on the model 157 3165 4166 4166 Depends on the model 158 3166 4166 4166 Depends on the model 159 3168 4168 4168 Depends on the model 150 Depends on the model 151 Signal Alfa Alfa Depends on the model 151 Signal Alfa Alfa Depends on the model 151 Signal Alfa Alfa Depends on the model 152 Signal Alfa Alfa Alfa Depends on the model 154 Signal Alfa Alfa Alfa Depends on the model 155 Signal Alfa Alfa Alfa Depends on the model 156 Signal Alfa Alfa Alfa Depends on the model 157 Signal Alfa Alfa Alfa Depends on the model 158 Signal Alfa Alfa Depends on the model 159 Signal Alfa Alfa Alfa Depends on the model 150 Signal Alfa Alfa Alfa Depends on the model 150 Signal Alfa Alfa Alfa Depends on the model 150 Signal Alfa Alfa Alfa Depends on the model 150 Signal Alfa Alfa Alfa Depends on the model 150 Signal Alfa Alfa Alfa Depends on the model 150 Signal Alfa Alfa Alfa Depends on the model 151 Signal Alfa Alfa Alfa Depends on the model 152 Signal Alfa Alfa Alfa Alfa Depends on the model 153 Signal Alfa Alfa Alfa Alfa Depends on the model 154 Signal Alfa Alfa Alfa Alfa Signal Alfa Alfa Signal Alfa Alfa Signal Alfa Alfa Signal Alfa Sig	146	3154	4154	4154		for high-speed zone/acceleration-time motor voltage		0			С	Арр. В
the model 149 3157 4157 4157 5 Time constant for changing the torque (TCMD filter time constant) 150 3158 4158 4158 Depends on the model 151 3159 4159 4159 Depends on the model 152 3160 4160 4160 OHysteresis of speed detection level 153 3161 4161 4161 Depends on the model 154 3162 4162 4162 OHysteresis of speed detection level 155 3163 4163 4163 OHysteresis of speed detection level 156 3165 4165 4165 OHysteresis of speed detection level 157 3165 4165 4165 OHysteresis of speed detection level 158 3166 4166 4166 Depends on the model 158 3168 4168 4168 OHysteresis of speed detection current coefficient for rigid tapping 159 OHYsteresis of speed detection level 150 OHysteresis of speed detection level 151 OHYsteresis of speed detection level 150 OHysteresis of speed detection level 151 OHYsteresis of speed detection level 152 OHysteresis of speed detection level 153 OHYsteresis of speed detection level 154 OHysteresis of speed detection level 155 OHYsteresis of speed detection level 156 OHYsteresis of speed detection level 157 OHYsteresis of speed detection level 158 OHYsteresis of speed detection level 159 OHYsteresis of speed detection level 150 OHYsteresis of speed detection level 151 OHYsteresis of spee	147	3155	4155	4155	0	Reserved		0			С	Арр. В
time constant) 150 3158 4158 4158 Depends on the model 151 3159 4159 4159 Depends on the model 152 3160 4160 4160 Depends on the model 153 3161 4161 4161 Depends on the model 154 3162 4162 4162 O Integral gain of velocity loop during cutting feed on Cs contouring control mode (High) 155 3163 4163 4163 Depends on Cs contouring control mode (Low) 156 3166 4166 4166 Depends on Cs contouring control mode (Low) 158 3166 4166 4166 Depends on the model 159 3168 4168 4168 O Current overload alarm detection level 150 3169 4169 4169 Depends on the model 151 3169 4169 4169 Depends on the model 152 3160 4169 4169 Depends on the model 153 3163 4163 4163 Depends on the model 154 3165 4165 4165 Depends on the model 155 3166 4166 4166 Depends on the model 156 3168 4168 4168 Depends on the model 157 3168 4168 4168 Depends on the model 158 3169 4169 4169 Depends on the model 159 Depends on the model 150 Depends on the model 151 Depends on the model 152 Depends on the model 153 Depends on the model 154 Depends on the model 155 Depends on the model 156 Depends on the model 157 Depends on the model 158 Temperature monitoring time constant 159 Depends on the model 150 Depends on the model	148	3156	4156	4156		Slip compensation gain		0			С	Арр. В
the model and true base/maximum torque curve compensation coefficient 151 3159 4159 4159 Depends on Secondary current coefficient for rigid tapping O O O O D DEPENDS ON The model 152 3160 4160 4160 O Hysteresis of speed detection level O O O O D D DEPENDS ON The model Coefficient for rigid tapping O O O O D D DEPENDS ON The model Coefficient for rigid tapping O O O O D D DEPENDS ON The model Coefficient for rigid tapping O O O O D D DEPENDS ON The model Coefficient for rigid tapping O O O D D DEPENDS ON The model Coefficient for rigid tapping O O O D D DEPENDS ON The model Coefficient for rigid tapping O O O D D DEPENDS ON The model Coefficient for rigid tapping O O O D D DEPENDS ON The model Current loop proportional gain speed Coefficient for rigid tapping O O O D D DEPENDS ON The model Current loop proportional gain speed Coefficient for rigid tapping O O O D D DEPENDS ON The model Current loop proportional gain speed Coefficient for rigid tapping O O O D D DEPENDS ON The model Current loop proportional gain speed Coefficient for rigid tapping O O O D D DEPENDS ON The model Current loop proportional gain speed Coefficient for rigid tapping O O O D D D DEPENDS ON The model for rigid tapping O O O D D D D D DEPENDS ON The model Current loop proportional gain speed Coefficient for rigid tapping O O O O D D D D D D D D DEPENDS ON The model for rigid tapping O O O O D D D D D D D D D D D D D D D	149	3157	4157	4157	5	Time constant for changing the torque (TCMD filter time constant)		0			В	Арр. В
the model 152 3160 4160 4160 0 Hysteresis of speed detection level O O O O B I-5.1.7 153 3161 4161 4161 Depends on the model coefficient/current phase delay compensation coefficient 154 3162 4162 4162 O Integral gain of velocity loop during cutting feed on Cs contouring control mode (High) 155 3163 4163 4163 O Integral gain of velocity loop during cutting feed on Cs contouring control mode (Low) 157 3165 4165 4165 Depends on the model 158 3166 4166 4166 Depends on the model 159 3168 4168 4168 O Current overload alarm detection level 160 3168 4168 4168 Depends on the model 161 3169 4169 4169 Depends on the model 162 Temperature monitoring time constant 163 Temperature monitoring time constant 164 Temperature monitoring time constant 165 O O O O O O O O O O O O O O O O O O O	150	3158	4158	4158		and true base/maximum torque curve compensation		0			С	Арр. В
153 3161 4161 4161 Depends on the model coefficient/current phase delay compensation coefficient 154 3162 4162 4162 0 Integral gain of velocity loop during cutting feed on Cs contouring control mode (High) 155 3163 4163 4163 0 Integral gain of velocity loop during cutting feed on Cs contouring control mode (Low) 157 3165 4165 4165 Depends on the model Constant/excitation current change time constant 158 3166 4166 4166 Depends on the model Current overload alarm detection level 160 3168 4168 4168 0 Current overload alarm detection level 161 3169 4169 4169 Depends on the model Current overload alarm detection level 162 App. Evaluation Current Change time Constant 163 Current overload alarm detection level 164 Current overload alarm detection level 165 Chap. Evaluation Current Change time Constant 166 Current overload alarm detection level 167 Current overload alarm detection level 168 Current overload alarm detection level 169 Current overload alarm detection level 170 Current overload alarm detection level 180 Current overload alarm detection level	151	3159	4159	4159		Secondary current coefficient for rigid tapping		0			С	Арр. В
the model coefficient/current phase delay compensation coefficient 154 3162 4162 4162 0 Integral gain of velocity loop during cutting feed on Cs contouring control mode (High) 155 3163 4163 4163 0 Integral gain of velocity loop during cutting feed on Cs contouring control mode (Low) 157 3165 4165 4165 Depends on the model Constant/excitation current change time constant 158 3166 4166 4166 Depends on the model Constant/excitation current change time constant 160 3168 4168 4168 0 Current overload alarm detection level O Depends on the model Constant/excitation current change time constant 161 3169 4169 4169 Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends on the model Current overload alarm detection level O Depends	152	3160	4160	4160	0	Hysteresis of speed detection level	0	0	0	0	В	I-5.1.7
Cs contouring control mode (High) 155	153	3161	4161	4161		coefficient/current phase delay compensation		0			С	Арр. В
Cs contouring control mode (Low) 157 3165 4165 4165 Depends on the model constant/excitation current change time constant 158 3166 4166 4166 Depends on the model constant/excitation current change time constant 158 3166 4166 4166 Depends on the model constant/excitation current change time constant 158 3166 4168 4168 Depends on the model constant constant constant constant constant constant 158 3166 4166 4166 Depends on the model constant const	154	3162	4162	4162	0		0	0			В	I-2.4.7
157316541654165Depends on the modelDeceleration-time excitation current change time constantOCApp. E158316641664166Depends on the modelRegenerative power limit for high-speed zone/regenerative power limitOCApp. E160316841684168OCurrent overload alarm detection levelODApp. E161316941694169Depends on the modelTemperature monitoring time constantOCI-2.6.4	155	3163	4163	4163	0		0	0			В	I-2.4.7
1583166 4166 4166Depends on the modelRegenerative power limit for high-speed zone/regenerative power limitOCApp. E1603168 4168 41680Current overload alarm detection levelODApp. E1613169 4169 4169Depends on the modelTemperature monitoring time constantOCI-2.6.4	157	3165	4165	4165				0			С	Арр. В
160 3168 4168 4168 0 Current overload alarm detection level O D App. E 161 3169 4169 4169 Depends on the model Temperature monitoring time constant O O C I-2.6.4	158	3166	4166	4166		Regenerative power limit for high-speed		0			С	Арр. В
161 3169 4169 4169 Depends on the model Temperature monitoring time constant O O C I-2.6.4	160	3168	4168	4168		·		0			D	Арр. В
162 3170 4170 0 Current overload alarm detection level 0 D 1-2.6.4	161						0				С	I-2.6.4
10 10 10 10 10 10 10 10 10 10 10 10 10 1	162	3170	4170	4170	0	Current overload alarm detection level	0				D	I-2.6.4

Internal					Standard		Α	ppli	catio	n	Classifi	Reference
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents					-cation	item
163	3171	4171	4171		0	Denominator of arbitrary gear ratio between motor	мн О	ML O	SH	SL	Α	I-1.3.2
164	3172	4172	4172		0	sensor and spindle (High) Numerator of arbitrary gear ratio between motor	0	0			Α	I-1.3.2
165	3173	4173	4173		0	sensor and spindle (High) Denominator of arbitrary gear ratio between motor	0	0			Α	I-1.3.2
166	2174	4174	4174		0	sensor and spindle (Low)	0	0			^	I-1.3.2
166						Numerator of arbitrary gear ratio between motor sensor and spindle (Low)	U	U			A	
168H	3176	4176	4176		0	Rotation direction relationship between the spindle and motor			0	0	Α	Арр. В
				#4	0	Return direction for the reference position on servo mode			0	0	В	Арр. В
168L	3177	4177	4177	#0	1	Whether to use MRDY (machine ready) signal			0	0	В	Арр. В
				#3	0	Mounting direction of the magnetic sensor	0	0			В	Арр. В
				#4	0	Mounting direction of the spindle sensor			0	0	Α	Арр. В
169H	3178	4178	4178	#0	0	Spindle sensor type			0	0	Α	Арр. В
				#1	0	Spindle sensor type			0	0	Α	Арр. В
				#2	0	Spindle sensor type			0	0	Α	Арр. В
				#3	0	Spindle sensor type			0	0	Α	Арр. В
				#5	0	Whether to use the rotation direction signal (SFR/SRV) function on servo mode			0	0	В	Арр. В
169L	3179	4179	4179	#0	0	Spindle orientation method			0	0	В	Арр. В
				#2	0	Rotation direction during spindle orientation			0	0	В	App. B
				#3	0	Rotation direction during spindle orientation			0	0	В	Арр. В
				#4	0	Teeth number setting of spindle sensor			0	0	Α	Арр. В
				#5	0	Teeth number setting of spindle sensor			0	0	Α	Арр. В
				#6	0	Teeth number setting of spindle sensor			0	0	Α	App. B
				#7	0	Teeth number setting of spindle sensor			0	0	Α	App. B
170H	3180	4180	4180	#2	0	Setting of external one-rotation signal			0	0	Α	App. B
				#3	0	Setting of external one-rotation signal			0	0	Α	App. B
171H	3182	4182	4182	#1	0	Increment system of gear ratio			0	0	Α	App. B
				#2	Depends on	Increment system of spindle speed			0	0	С	Арр. В
					the model	, , ,						
				#5	0	Setting of analog override range			0	0	В	Арр. В
				#7	0	Whether to use the command arbitrary gear ratio (CMR) function on rigid tapping			0	0	В	Арр. В
171L	3183	4183	4183	#5	0	Whether to detect a feedback signal disconnection			0	0	Α	Арр. В
				#6	0	Whether to detect the alarms (spindle alarms 41, 42, 47, 81, 82, 83, 85, 86, and 87) related to the position feedback signal (when Cs contouring control mode is not set)			0	0	Α	Арр. В
172H	3184	4184	4184		0	Reserved			0		С	
				#1	0	Reserved			<u> </u>	0	С	
				#2	0	Reserved			0	0	С	
				#4	Depends on the model	Setting of output limitation method			0	0	С	App. B
172L	3185	4185	4185	#0	0	Increment system of velocity loop gain			0	0	В	Арр. В
				#2	0	Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued			0	0	D	Арр. В
				#4	0	Whether to output the load detection signals (LDT1, LDT2) during acceleration/deceleration			0	0	В	Арр. В
				#6	0	Analog override type			0	0	В	Арр. В
173H	3186	4186	4186	#0	Depends on the model	Motor sensor type			0	0	Α	Арр. В
				#1	Depends on the model	Motor sensor type			0	0	Α	Арр. В
				#2	Depends on the model	Motor sensor type			0	0	Α	Арр. В

173L 3187 4187	Internal					Standard		Α	ppli	catio	n	Classifi	Reference
## 10 pepends on the model ## 2 pepends on the model ## 3 pepends on the model ## 4 pepends on the model ## 5 pepends on the model	data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit		Contents	мн	МL	SH	SL		
## ## ## ## ## ## ## #	173L	3187	4187	4187	#0		Teeth number setting of motor sensor			0	0	Α	Арр. В
## 1 Depends on Number of motor poles the model behavior of the model of the the model of the mo					#1		Teeth number setting of motor sensor			0	0	Α	Арр. В
## the model the model scale and provided learning and provided learning the model scale and provided learning the model stem model to the model the model the model the model stem stem stem stem stem stem stem stem					#2		Teeth number setting of motor sensor			0	0	Α	Арр. В
The model acceleration The model The model The model The model The model The model The model T					#3		Number of motor poles			0	0	С	Арр. В
174H 3188 4188 #8 #8 #8 #0 Depends on Setting of PWM carrier frequency					#4					0	0	С	Арр. В
174L 189 4189 4189 420 20 20 20 20 20 20 2					#7		Number of motor poles			0	0	С	Арр. В
the model between the model the model setting of PWM carrier frequency the model the m	174H	3188	4188	4188	#0		Setting of PWM carrier frequency			0	0	С	Арр. В
174L 3189 4189 4189 #2 Depends on the model					#1		Setting of PWM carrier frequency			0	0	С	Арр. В
## Depends on the model							Setting of PWM carrier frequency			0	0	С	Арр. В
## Depends on the model	174L	3189	4189	4189	#2		Current dead-band data			0	0	С	Арр. В
					#3		Current dead-band data			0	0	С	Арр. В
the model					#4		Current dead-band data			0	0	С	Арр. В
The model The					#5		Current dead-band data			0	0	С	Арр. В
The model Characteristics area Characteristics Characterist					#6		Current dead-band data			0	0	С	Арр. В
#1 0 Whether to use the spindle load detection function					#7						0	С	Арр. В
#2 0	176L	3191	4191	4191	#0	0	Whether to use the spindle orientation function					В	
#3					#1	0	Whether to use the spindle load detection function					В	
176H 3192 4192 4192 #3 0 Setting of the smoothing function in feed-forward control 0 0 0 B App. B					#2	0	Whether to use the output switching function					В	
#4					#3	0	Whether to use the spindle tandem function					В	
Mode	176H	3192	4192	4192	#3	0				0	0	В	Арр. В
related to feedback of the position detection signal for threading					#4	0				0	0	В	Арр. В
before entering position control mode					#6	0	related to feedback of the position detection signal			0	0	A	Арр. В
177H 3194 4194 4194 #5 0 Whether to use the velocity command compensation function during high-speed orientation O O B App. B					#7	0				0	0	Α	Арр. В
function during high-speed orientation function during high-speed orientation Color of the function Color of the function Color of the function Color of the function Color of the function for switching from high-speed characteristics with the speed detection signal SDT = 1 at speed range switching Color of the function for switching from high-speed characteristics with the speed detection signal SDT = 1 at speed range switching Color of the function for switching from high-speed characteristics with the speed detection signal SDT = 1 at speed range switching Color of the function for switching from high-speed characteristics with the speed detection function for switching from high-speed characteristics with the speed detection for switching from high-speed characteristics with the speed detection for switching from high-speed for switching from high-speed characteristics with the speed detection for switching from high-speed	176L	3193	4193	4193	#7	0				0	0	В	Арр. В
177L 3195 4195 #2 1 Whether to use torque clamp at zero speed O O B App. B 177L 3195 4195 4195 #2 1 Whether to use torque clamp at zero speed O O B App. B 178 4196 #7 0 Automatic parameter setting function (16i/30i) O O B App. B 178 3196 4196 4196 Depends on the model Maximum motor speed O O C App. B 179 3197 4197 4197 150 Speed arrival detection level (SAR) O O B App. B 180 3198 4198 30 Speed detection level (SDT) O O B App. B 181 3199 4199 75 Zero speed detection level (SST) O O B App. B	177H	3194	4194	4194	#5	0				0	0	В	Арр. В
#4 0 Setting of the function for switching from high-speed characteristics to low-speed characteristics with the speed detection signal SDT = 1 at speed range switching #7 0 Automatic parameter setting function (16i/30i) O O B App. B 178 3196 4196 4196 Depends on the model 179 3197 4197 4197 150 Speed arrival detection level (SAR) O O B App. B 180 3198 4198 4198 30 Speed detection level (SDT) O O B App. B 181 3199 4199 4199 75 Zero speed detection level (SST)					#6	0	High-speed orientation function			0	0	В	App. B
#4 0 Setting of the function for switching from high-speed characteristics to low-speed characteristics with the speed detection signal SDT = 1 at speed range switching #7 0 Automatic parameter setting function (16i/30i) O O B App. B 178 3196 4196 4196 Depends on the model 179 3197 4197 4197 150 Speed arrival detection level (SAR) O O B App. B 180 3198 4198 4198 30 Speed detection level (SDT) O O B App. B 181 3199 4199 4199 75 Zero speed detection level (SST)	177L	3195	4195	4195	#2	1	Whether to use torque clamp at zero speed			0	0	В	App. B
178 3196 4196 4196 Depends on the model Maximum motor speed O O C App. B 179 3197 4197 4197 150 Speed arrival detection level (SAR) O O B App. B 180 3198 4198 4198 30 Speed detection level (SDT) O O B App. B 181 3199 4199 4199 75 Zero speed detection level (SST) O O B App. B					#4	0	characteristics to low-speed characteristics with the speed detection signal SDT = 1 at speed range			0	0	В	App. B
178 3196 4196 4196 Depends on the model Maximum motor speed O O C App. B 179 3197 4197 4197 150 Speed arrival detection level (SAR) O O B App. B 180 3198 4198 4198 30 Speed detection level (SDT) O O B App. B 181 3199 4199 4199 75 Zero speed detection level (SST) O O B App. B					#7	0	Automatic parameter setting function (16i/30i)			0	0	В	App. B
180 3198 4198 4198 30 Speed detection level (SDT) O O B App. B 181 3199 4199 4199 75 Zero speed detection level (SST) O O B App. B	178	3196	4196	4196			Maximum motor speed					С	Арр. В
180 3198 4198 4198 30 Speed detection level (SDT) O O B App. B 181 3199 4199 4199 75 Zero speed detection level (SST) O O B App. B	179	3197	4197	4197		150	Speed arrival detection level (SAR)			0	0	В	Арр. В
181 3199 4199 4199 75 Zero speed detection level (SST) O O B App. B										_	-		Арр. В
							, , ,			_	-		Арр. В
TOE TOEOUTEOUTEOUTE OUT I DO TENINCUTORACETENIN. TENIET TO TOTAL TO TOTAL TO THE TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TO THE TOTAL T	182					50	Limited torque (TLMH, TLML)			0	0	В	App. B

Internal		45: 40:	20:		Standard		Δ	ppli	catio	n		
data No.	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting	Contents				i i	Classifi -cation	Reference item
F-xxx					data		МН	ML	SH	SL	-cation	itein
183	3201		4201		83	Load detection level 1 (LDT1)			0	0	В	Арр. В
184		4202			0	Limited output pattern			0	0	В	App. B
185		4203			100	Output limit			0	0	В	App. B
186	_	4204			0	Stop position of position coder method orientation			0	0	В	App. B
187		4205			0	Spindle orientation speed			0	0	В	Арр. В
188			4206		10	Velocity loop proportional gain on velocity control mode (High)			0	0	В	Арр. В
189		4207			10	Velocity loop proportional gain on velocity control mode (Low)			0	0	В	Арр. В
190			4208		10	Velocity loop proportional gain on orientation (High)			0	0	В	App. B
191		4209			10	Velocity loop proportional gain on orientation (Low)			0	0	В	App. B
192	3210	4210	4210		10	Velocity loop proportional gain on servo mode (High)			0	0	В	Арр. В
193	3211	4211	4211		10	Velocity loop proportional gain on servo mode (Low)			0	0	В	App. B
194	3212	4212	4212		10	Velocity loop integral gain on velocity control mode (common to High and Low)			0	0	В	Арр. В
195	3213	4213	4213		10	Velocity loop integral gain on orientation (common to High and Low)			0	0	В	Арр. В
196	3214	4214	4214		10	Velocity loop integral gain on servo mode (common to High and Low)			0	0	В	Арр. В
197	3215	4215	4215		0	Primary delay time constant in dual position feedback [in Cs contour control]	0	0			В	I-1.5.10
198	3216	4216	4216		100	Gear ratio (High)			0	0	Α	Арр. В
199	3217	4217	4217		100	Gear ratio (Low)			0	0	Α	Арр. В
200	3218	4218	4218		1000	Position gain on orientation (High)			0	0	В	Арр. В
201	3219	4219	4219		1000	Position gain on orientation (Low)			0	0	В	App. B
202	3220	4220	4220		100	Ordinary orientation: Rate of change in position gain upon completion of orientation			0	0	В	Арр. В
						High-speed orientation: Rate of change in position gain upon completion of orientation						
203		4221			1000	Position gain on servo mode (High)			0	0	В	App. B
204		4222			1000	Position gain on servo mode (Low)			0	0	В	App. B
205	3223	4223	4223		0	Grid shift on servo mode			0	0	В	Арр. В
206		4224			0	Maximum amplitude in dual position feedback [in Cs contour control]	0	0			В	I-1.5.10
207	3225	4225	4225		0	Dual position feedback zero width [in Cs contour control]	0	0			В	I-1.5.10
208	3226	4226	4226		10	Detection level for orientation completion signal (ORAR)			0	0	В	Арр. В
209	3227	4227	4227		33	Ordinary orientation: Motor speed limit value on orientation			0	0	В	Арр. В
	0057	1077	1071			High-speed orientation: Reserved				Ļ		
210			4228		0	Orientation stop position shift			0	0	В	App. B
211	3229				200	MS signal constant		<u> </u>	0	0	В	App. B
212		4230			0	MS signal gain adjustment			0	0	В	App. B
213		4231			Depends on the model	Regenerative power limit for high-speed zone/regenerative power limit			0		С	App. B
214		4232			20	Delay time until motor power is cut off		<u> </u>	0	0	В	App. B
215			4233		10	Setting of acceleration/deceleration time		<u> </u>	0	0	В	Арр. В
216			4234		0	Spindle load monitor observer gain 1			0	0	В	Арр. В
217			4235		0	Spindle load monitor observer gain 2			0	0	В	App. B
218			4236		Depends on the model	Motor voltage on velocity control mode			0		С	App. B
219					Depends on the model	Motor voltage on orientation			0	0	С	Арр. В
220			4238		Depends on the model	Motor voltage on servo mode			0		С	App. B
221	3239	4239	4239		100	Rate of change in position gain during reference position return on servo mode			0	0	В	App. B

Internal data No.					Standard		Α	ppli	catio	n	Classifi	Reference
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents	мн	ML	SH	SL	-cation	item
222	3240	4240	4240		0	Feed-forward coefficient			0	0	В	Арр. В
223	3241	4241	4241		0	Feed-forward coefficient of velocity loop			0		В	App. B
225	3243	4243	4243		0	Denominator of arbitrary gear ratio between motor sensor and spindle (High)			0	0	Α	Арр. В
226	3244	4244	4244		0	Numerator of arbitrary gear ratio between motor sensor and spindle (High)			0	0	Α	Арр. В
227	3245	4245	4245		0	Denominator of arbitrary gear ratio between motor sensor and spindle (Low)			0	0	Α	Арр. В
228	3246	4246	4246		0	Numerator of arbitrary gear ratio between motor sensor and spindle (Low)			0	0	Α	Арр. В
230	3248	4248	4248		0	Spindle load monitor torque constant	0				В	I-5.7.5
231	3249	4249	4249		0	Spindle load monitor observer gain 1	0	0			В	I-5.7.5
232	3250	4250	4250		0	Spindle load monitor observer gain 2	0	0			В	I-5.7.5
236	_		4254		Depends on the model	Slip compensation gain			0		С	Арр. В
237	3255	4255	4255		Depends on the model	Slip compensation gain				0	С	Арр. В
238	3256	4256	4256		Depends on the model	Base speed of motor output specifications			0		С	Арр. В
239	3257	4257	4257		Depends on the model	Output limit for motor output specifications			0		С	Арр. В
240	3258	4258	4258		Depends on the model	Excitation voltage saturation speed at no-load			0		С	Арр. В
241	3259	4259	4259		Depends on the model	Base speed limit ratio			0		С	Арр. В
242	3260	4260	4260		Depends on the model	Current loop proportional gain			0		С	Арр. В
243	3261	4261	4261		Depends on the model	Current loop integral gain			0		С	Арр. В
244	3262	4262	4262		Depends on the model	Velocity at which the current loop integral gain is zero			0		С	Арр. В
245			4263		Depends on the model	Filter time constant for processing saturation related to the voltage command			0		С	App. B
246			4264		Depends on the model	Current conversion constant			0		С	Арр. В
247			4265		Depends on the model	Secondary current coefficient			0		С	Арр. В
248			4266		Depends on the model	Criterion level for saturation related to the voltage command/PWM command clamp value			0		С	Арр. В
249			4267		Depends on the model	Slip constant			0		С	App. B
250			4268		Depends on the model	Slip compensation coefficient for a high-speed zone/slip compensation coefficient at deceleration			0		С	Арр. В
251			4269		Depends on the model	PWM command clamp value at deceleration			0		С	Арр. В
252			4270		Depends on the model	Motor leakage constant			0		С	App. B
253	3271	4271	4271		Depends on the model	Regular-time voltage compensation coefficient for high-speed zone/regular-time motor voltage coefficient			0		С	App. B
254	3272	4272	4272		Depends on the model	Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient			0		С	App. B
255	3273	4273	4273		5	Time constant for changing the torque (TCMD filter time constant)			0		В	Арр. В
256	3274	4274	4274		Depends on the model	Value displayed on load meter at maximum output			0		С	Арр. В
257			4275		Depends on the model	Compensation coefficient between the specification and true base/maximum torque curve compensation coefficient			0		С	Арр. В
258	3276	4276	4276		Depends on the model	Secondary current coefficient for rigid tapping			0		С	Арр. В

Internal					Standard				Reference			
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents	мн	ML	SH	SL	-cation	item
259		4277			Depends on the model	Current loop proportional gain speed coefficient/current phase delay compensation coefficient			0		С	Арр. В
260			4278		0	Time constant for velocity detecting filter			0	0	В	Арр. В
261		4279			Depends on the model	Value displayed on load meter at maximum output				0	С	Арр. В
262	3280	4280	4280		Depends on the model	Deceleration-time excitation current change time constant/excitation current change time constant			0		С	Арр. В
263	3281		4281		0	Spindle load monitor torque constant		0			В	Арр. В
264					0	Spindle load monitor torque constant			0		В	Арр. В
265		4283			0	Spindle load monitor torque constant				0	В	App. B
266			4284		Depends on the model	Motor voltage on velocity control mode				0	С	App. B
267			4285		Depends on the model	Motor voltage on servo mode				0	С	Арр. В
268	3286	4286	4286		Depends on the model	Base speed of motor output specifications				0	С	Арр. В
269		4287			Depends on the model	Output limit for motor output specifications				0	С	Арр. В
270	3288	4288	4288		Depends on the model	Excitation voltage saturation speed at no-load				0	С	Арр. В
271	3289	4289	4289		Depends on the model	Base speed limit ratio				0	С	Арр. В
272	3290	4290	4290		Depends on the model	Current loop proportional gain				0	С	Арр. В
273	3291	4291	4291		Depends on the model	Current loop integral gain				0	С	Арр. В
274	3292	4292	4292		Depends on the model	Velocity at which the current loop integral gain is zero				0	С	Арр. В
275	3293	4293	4293		Depends on the model	Filter time constant for processing saturation related to the voltage command				0	С	Арр. В
276	3294	4294	4294		Depends on the model	Current conversion constant				0	С	Арр. В
277	3295	4295	4295		Depends on the model	Secondary current coefficient				0	С	Арр. В
278	3296	4296	4296		Depends on the model	Criterion level for saturation related to the voltage command/PWM command clamp value				0	С	Арр. В
279	3297	4297	4297		Depends on the model	Slip constant				0	С	Арр. В
280	3298	4298	4298		Depends on the model	Slip compensation coefficient for a high-speed zone/slip compensation coefficient at deceleration				0	С	Арр. В
281	3299	4299	4299		Depends on the model	PWM command clamp value at deceleration				0	С	Арр. В
282	3300	4300	4300		Depends on the model	Motor leakage constant				0	С	Арр. В
283	3301	4301	4301		Depends on the model	Regular-time voltage compensation coefficient for high-speed zone/regular-time motor voltage coefficient				0	С	Арр. В
284	3302	4302	4302		Depends on the model	Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient				0	С	Арр. В
285	3303	4303	4303		5	Time constant for changing the torque (TCMD filter time constant)				0	В	Арр. В
286	3304	4304	4304		Depends on the model	Compensation coefficient between the specification and true base/maximum torque curve compensation coefficient				0	С	Арр. В
287	3305	4305	4305		Depends on the model	Secondary current coefficient for rigid tapping				0	С	Арр. В
288	3306	4306	4306		Depends on the model	Current loop proportional gain speed coefficient/current phase delay compensation coefficient				0	С	Арр. В

Internal					Standard		Α	ppli	catio	n	Classifi	Reference
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents	мн	ML	SH	SL	-cation	item
289	3307	4307	4307		Depends on the model	Regenerative power limit for high-speed zone/regenerative power limit				0	С	App. B
290	3308	4308	4308		Depends on the model	Deceleration-time excitation current change time constant/excitation current change time constant				0	С	Арр. В
291	3309	4309	4309		Depends on the model	Motor model code			0	0	С	Арр. В
292 293	3310	4310	4310		Depends on the model	Motor overheat detect level (2-word)			0	0	С	Арр. В
304	3320	4320	4320		0	Motor acceleration at deceleration time (High)	0	0			В	I-5.4.6
305					0	Motor acceleration at deceleration time (Medium High)	0	0			В	I-5.4.6
306	3322	4322	4322		0	Motor acceleration at deceleration time (Medium Low)	0	0			В	I-5.4.6
307	3323	4323	4323		0	Motor acceleration at deceleration time (Low)	0	0			В	I-5.4.6
308	3324	4324	4324		0	Motor acceleration at deceleration time (High)			0	0	В	Арр. В
309	3325	4325	4325		0	Motor acceleration at deceleration time (Low)			0	0	В	Арр. В
310			4326		0	Acceleration limitation start speed at deceleration time (High)	0	0			В	I-5.4.6
311	3327	4327	4327		0	Acceleration limitation start speed at deceleration time (High)			0	0	В	Арр. В
312		4328			0	Command multiplication for spindle orientation by position coder	0	0			В	I-5.3.6
313			4329		0	Command multiplication for spindle orientation by position coder			0	0	В	App. B
314	3330	4330	4330		0	Acceleration limitation start speed at deceleration time (Low)	0	0			В	I-5.4.6
315		4331			0	Acceleration limitation start speed at deceleration time (Low)			0	0	В	App. B
316		4332			0	Reserved			0		С	
317		4333			0	Reserved				0	С	
318		4334			0	Number of motor sensor arbitrary teeth	0	0			Α	I-1.3.2
319		4335			0	Number of motor sensor arbitrary teeth			0	0	Α	App. B
320	3336	4336	4336		0	Switching point used for an acceleration/deceleration time constant used for spindle synchronous control	0	Ο	0	0	В	I-2.5.8
324		4340			0	Bell-shaped acceleration/deceleration time constant during spindle synchronous control	0	0	0	0	В	I-2.5.8
325		4341			0	Unexpected disturbance torque detection level	0	0	0	0	В	I-5.7.5
328		4344			0	Advanced preview feed-forward coefficient	0	0	0	0	В	I-5.6.4
329			4345		0	Spindle motor speed specification detection level	0	0	0	0	В	I-2.6.4
330			4346		0	Incomplete integration factor	0	0	0	0	В	I-2.5.8 I-2.6.4
331			4347		0	Master-slave speed difference state signal output setting	0	0			В	I-5.10.6
332			4348		0	Current overload alarm detection level			<u> </u>	0	D	App. B
333			4349		Depends on the model	Temperature monitoring time constant			0	0	С	App. B
334			4350		0	Current overload alarm detection level	_	L_	0	_	D	App. B
335		4351			0	Current detection offset compensation	0	0	0	0	В	I-2.6.4
336H	3352	4352	4352		0	Setting of the peak hold function for load meter output	0	0			В	I-2.1.6
				#4	0	Setting of whether to enable/disable feed forward at all times	0	0			В	I-5.8.8
				#6	0	Inter-spindle amplifier communication slave axis setting	0	0			В	I-5.8.8 I-5.11.4
				#7	0	Inter-spindle amplifier communication master axis setting	0	0			В	I-5.8.8 I-5.11.4
336L	3353	4353	4353	#1	0	Velocity feedback signal setting in torque tandem operation	0	0			В	I-5.11.6

Internal					Standard		Α	ppli	catio	n	Ole : 'C	D-f:
data No.	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting	Contents					Classifi -cation	Reference item
F-xxx					data		МН		SH	SL	-cution	itein
				#2	0	Relationship of master/slave motor rotation directions in torque tandem operation	0	0			В	I-5.11.6
337	3354	4354	4354		0	Excessive semi-closed loop/closed loop position error alarm detection level [in Cs contour control]	0	0			Α	I-1.5.10
338	3355	4355	4355		0	Motor sensor signal amplitude ratio compensation	0	0			Α	I-1.3.2 I-4.3
339	3356	4356	4356		0	Motor sensor signal phase difference compensation	0	0			Α	I-1.3.2 I-4.3
340	3357	4357	4357		0	Spindle sensor signal amplitude ratio compensation	0	0			Α	I-4.3 I-4.3
341	3358	4358	4358		0	Spindle sensor signal phase difference compensation	0	0			Α	I-1.3.2
343	3360	4360	4360		0	Preload value	0	0			В	I-4.3 I-5.10.6
344		4361			0	Number of spindle sensor arbitrary teeth	0	0			A	I-1.3.2
345		4362			0	Load meter compensation 1	0				C	I-2.6.4
346		4363			0	Load meter compensation 2	0				С	I-2.6.4
347		4364			0	Load meter compensation 3	0				С	I-2.6.4
348			4365		0	Load meter compensation 1		0			С	App. B
349			4366		0	Load meter compensation 2		0			С	App. B
350			4367		0	Load meter compensation 3		0			С	App. B
352			4369		0	Spindle synchronous orientation deceleration coefficient	0	0			В	I-5.5.6
356H	3373	4373	4373	#1	0	Setting of the peak hold function for load meter output			0	0	В	Арр. В
358	3376	4376	4376		0	Load meter compensation 1			0		С	Арр. В
359	3377	4377	4377		0	Load meter compensation 2			0		С	Арр. В
360	3378	4378	4378		0	Load meter compensation 3			0		С	Арр. В
361	3379	4379	4379		0	Load meter compensation 1				0	С	App. B
362	3380	4380	4380		0	Load meter compensation 2				0	С	Арр. В
363	3381	4381	4381		0	Load meter compensation 3				0	С	Арр. В
366	3384	4384	4384		0	Spindle EGB : Maximum acceleration/deceleration value in automatic phase matching (16i)	0	0			В	I-5.8.8
367	3385	4385	4385		0	Spindle EGB : time constant for free-running phase matching (16 <i>i</i>)	0	0			В	I-5.8.8
368	3386	4386	4386		0	Spindle EGB : master side detector pulse count	0	0			В	I-5.8.8
369	3387	4387	4387		0	Spindle EGB : synchronous ratio numerator	0	0			В	I-5.8.8
370	3388	4388	4388		0	Spindle EGB : synchronous ratio denominator	0	0			В	I-5.8.8
373			4391		0	Resonance elimination filter 1 : attenuation center frequency	0	0			В	I-4.2.2
374			4392		0	Resonance elimination filter 1 : attenuation bandwidth	0	0			В	I-4.2.2
375			4393		0	Resonance elimination filter 1 : damping	0	0			В	I-4.2.2
376H	3394	4394	4394		0	Setting of the detection lower limit of the one-rotation signal	0	0			A	I-1.3.2
				#3	0	Setting of the fine acceleration/deceleration (FAD) function (16 <i>i</i>)	0	0			В	I-5.6.4
				#4	0	Acceleration/deceleration type of fine acceleration/deceleration (FAD) (16i)	0	0			В	I-5.6.4
				#5	0	Whether to detect the alarm related to spindle sensor polarity erroneous setting	0	0			A	I-1.3.2
376L	3395	4395	4395		0	Setting of parameter transfer from the CNC to spindle software	0	0	0	0	В	I-2.6.4
				#6	0	Triggering of the disturbance input function (vibration application function)	0	0			В	I-4.2.3
0=2/:	0000	1055	1055	#7	0	Setting of the disturbance input function (vibration application function)	0	0			В	I-4.2.3
378H	3398	4398	4398		0	Whether to use the twin drive function	0	0			В	I-5.10.6
				#6	0	Whether to detect a speed polarity error (spindle alarm d0) in torque tandem operation	0	0			В	I-5.10.6

Internal					Standard		Α	ppli	catio	n	Classifi	Reference
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents	мн	ML	SH	SL	-cation	item
383	3406	4406	4406		0	Acceleration/deceleration time constant at return to the reference position in Cs contouring control	0	0			В	I-2.4.7
385	3408	4408	4408		0	Fine acceleration/deceleration time constant (16i)	0	0	0	0	В	I-5.6.4
386			4409		0	Feed forward timing adjustment coefficient	0	0			В	I-5.6.4
387	3410	4410	4410		0	Disturbance input function : measurement start frequency	0	0	0	0	В	I-4.2.3
388	3411	4411	4411		0	Disturbance input function : measurement end frequency	0	0	0	0	В	I-4.2.3
389	3412	4412	4412		0	Disturbance input function : measurement frequency interval	0	0	0	0	В	I-4.2.3
390	3413	4413	4413		0	Disturbance input function : number of measurements per frequency	0	0	0	0	В	I-4.2.3
391	3414	4414	4414		0	Disturbance input function : disturbance torque command amplitude	0	0	0	0	В	I-4.2.3
392	3415	4415	4415		0	Disturbance input function : motor speed command for measurement	0	0	0	0	В	I-4.2.3
393	3416	4416	4416		0	Resonance elimination filter 2 : attenuation center frequency	0	0			В	I-4.2.2
394	3417	4417	4417		0	Resonance elimination filter 2 : attenuation bandwidth	0	0			В	I-4.2.2
395	3418	4418	4418		0	Resonance elimination filter 2 : damping	0	0			В	I-4.2.2
396	3419	4419	4419		0	Resonance elimination filter 3 : attenuation center frequency	0	0			В	I-4.2.2
397	3420	4420	4420		0	Resonance elimination filter 3 : attenuation bandwidth	0	0			В	I-4.2.2
398	3421	4421	4421		0	Resonance elimination filter 3 : damping	0	0			В	I-4.2.2
399	3422	4422	4422		0	Resonance elimination filter 4 : attenuation center frequency	0	0			В	I-4.2.2
400	3423	4423	4423		0	Resonance elimination filter 4 : attenuation bandwidth	0	0			В	I-4.2.2
401	3424	4424	4424		0	Resonance elimination filter 4 : damping	0	0			В	I-4.2.2
420	3443	4443	4443		0	Feed-forward coefficient of velocity loop		0			В	Арр. В
444H	3467	4467	4467	#2	0	Setting of the detection lower limit of the one-rotation signal			0	0	Α	Арр. В
				#3	0	Setting of the fine acceleration/deceleration (FAD) function (16 <i>i</i>)			0	0	В	Арр. В
				#4	0	Acceleration/deceleration type of fine acceleration/deceleration (FAD) (16i)			0	0	В	Арр. В
				#5	0	Whether to detect the alarm related to spindle sensor polarity erroneous setting			0	0	Α	App. B
444L	3468	4468	4468	#6	0	Triggering of the disturbance input function (vibration application function)			0	0	В	Арр. В
				#7	0	Setting of the disturbance input function (vibration application function)			0	0	В	Арр. В
453	-		4481		0	Feed-forward timing adjustment coefficient			0	0	В	Арр. В
458			4486		0	Feed-forward coefficient of velocity loop	_			0	В	App. B
470			4498		0	Spindle EGB master side : denominator of arbitrary gear ratio between motor sensor and spindle	0	0			В	I-5.8.8
471			4499		0	Spindle EGB master side : numerator of arbitrary gear ratio between motor sensor and spindle	0	0			В	I-5.8.8
472			4500		0	Denominator of arbitrary gear ratio between spindle sensor and spindle (High)	0	0			Α	I-1.3.2
473			4501		0	Numerator of arbitrary gear ratio between spindle sensor and spindle (High)	0	0			Α	I-1.3.2
474			4502		0	Denominator of arbitrary gear ratio between spindle sensor and spindle (Low)	0	0			А	I-1.3.2
475			4503		0	Numerator of arbitrary gear ratio between spindle sensor and spindle (Low)	0	0			Α	I-1.3.2
480	3508	4508	4508		0	Rate of change in acceleration at soft start/stop	0	0	0	0	В	I-2.1.6
487	3515	4515	4515		0	Excessive speed deviation alarm detection level on spindle synchronous control	0	0			D	I-2.5.8

Internal					Standard		Α	ppli	catio	n	Classifi	Reference
data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	initial setting data	Contents	МН	ML	SH	SL	-cation	item
488	3516	4516	4516		0	Excessive positional deviation alarm detection level on spindle synchronous control	0	0			D	I-2.5.8
492	3520	4520	4520		0	Primary delay time constant in dual position feedback [in servo mode]	0	0			В	I-5.10.5
493	3521	4521	4521		0	Maximum amplitude in dual position feedback [in servo mode]	0	0			В	I-5.10.5
494	3522	4522	4522		0	Dual position feedback zero width [in servo mode]	0	0			В	I-5.10.5
495	3523	4523	4523		0	Excessive semi-closed loop/closed loop position error alarm detection level [in servo mode]	0	0			В	I-1.5.10

A.2 αCi SERIES SPINDLE PARAMETER TABLE

 αCi series spindle parameters are classified into the following types:

- A: Parameters related to the setup of detectors
- B: Parameters related to the setup of various functions (operating modes)
- C: Unique parameters for the drive of spindle motors (Set the parameter data according to the parameter list for each motor model.)
- D: Parameters related to the setting of alarm detection conditions

Internal data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	Standard initial setting data	Contents	Classifi -cation	Reference item
0H	3000	4000	4000	#0	0	Rotation direction relationship between the spindle and motor	Α	III-1.3.2
				#4	0	Return direction for the reference position on servo mode	В	III-2.3.7
0L	3001	4001	4001	#0	1	Whether to use MRDY (machine ready) signal	В	III-2.5.4
				#4	0	Spindle sensor (position coder) attachment direction	Α	III-1.3.2
1H	3002	4002	4002	#0	0	Spindle sensor type	Α	III-1.3.2
				#1	0	Spindle sensor type	Α	III-1.3.2
				#2	0	Spindle sensor type	Α	III-1.3.2
				#3	0	Spindle sensor type	Α	III-1.3.2
				#4	0	SM pin output data selection	В	III-2.5.4
				#5	0	Whether to use the rotation direction signal (SFR/SRV) function on servo mode	В	III-2.3.7
				#6	0	Whether to use the rotation direction signal (SFR/SRV) function on spindle synchronous control	В	III-2.4.8
1L	3003	4003	4003	#2	0	Rotation direction during spindle orientation	В	III-2.2.9
				#3	0	Rotation direction during spindle orientation	В	III-2.2.9
				#4	0	Teeth number setting of spindle sensor	Α	III-1.3.2
				#5	0	Teeth number setting of spindle sensor	Α	III-1.3.2
				#6	0	Teeth number setting of spindle sensor	Α	III-1.3.2
				#7	0	Teeth number setting of spindle sensor	Α	III-1.3.2
2L	3005	4005	4005	#0	0	Setting of the velocity feedback method	Α	III-1.3.2
3H	3006	4006	4006	#1	0	Increment system of gear ratio	Α	III-1.3.2
				#2	0	Increment system of spindle speed	С	III-2.5.4
				#3	0	Automatic detection of one-rotation signal during spindle synchronous control	В	III-2.4.8
				#5	0	Setting of analog override range	В	III-2.1.6
3L	3007	4007	4007	#5	0	Whether to detect a feedback signal disconnection	Α	III-1.3.2
				#6	0	Whether to detect the alarms (spindle alarms 41, 42, and 47) related to the position feedback signal (when non-Cs contouring control mode is set)	А	III-1.3.2
4L	3009	4009	4009	#2	0	Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued	D	III-2.5.4
				#4	0	Whether to output the load detection signals (LDT1) during acceleration/deceleration	В	III-2.1.6
				#6	0	Analog override type	В	III-2.1.6
5L	3011	4011	4011	#3	1	Number of motor poles	С	III-2.5.3
				#4	Depends on the model	Setting of maximum output during acceleration/deceleration	С	III-2.5.3
				#7	0	Number of motor poles	С	III-2.5.3
6H	3012	4012	4012	#0	0	Setting of PWM carrier frequency	С	III-2.5.3
				#1	0	Setting of PWM carrier frequency	С	III-2.5.3
				#2	0	Setting of PWM carrier frequency	С	III-2.5.3
6L	3013	4013	4013	#2	Depends on the model	Current dead-band data	С	III-2.5.3

Internal data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	Standard initial setting data	Contents	Classifi -cation	Reference item
				#3	Depends on the model	Current dead-band data	С	III-2.5.3
				#4	Depends on the model	Current dead-band data	С	III-2.5.3
				#5	Depends on the model	Current dead-band data	С	III-2.5.3
				#6	Depends on the model	Current dead-band data	С	III-2.5.3
7L	3015	4015	4015	#0	0	Whether to use the spindle orientation function	В	III-2.2.8
8H	3016	4016	4016	#6	0	Whether to detect the alarm (spindle alarms 46) related to feedback of the position detection signal for threading	Α	III-1.3.2
				#7	0	Function for newly detecting the one-rotation signal before entering position control mode	Α	III-1.3.2
8L		4017		#7	0	Setting of shortcut orientation from stop state in position coder method spindle orientation	В	III-2.2.9
9L	3019	4019	4019	#2	1	Whether to use torque clamp at zero speed	В	III-2.5.4
				#7	0	Automatic parameter setting function (16i)	В	III-2.1.6
10		4020			6000	Maximum motor speed	С	III-2.1.6
12		4022	_		150	Speed arrival detection level (SAR)	В	III-2.5.4
13		4023			30	Speed detection level (SDT)	В	III-2.5.4
14		4024			75	Zero speed detection level (SST)	В	III-2.5.4
15		4025			50	Limited torque (TLMH)	В	III-2.5.4
16		4026			83	Load detection level 1 (LDT1)	В	III-2.5.4
21		4031			0	Stop position of position coder method orientation	В	III-2.2.9
22		4032			0	Acceleration for spindle synchronous control	В	III-2.4.8
23		4033			10	Spindle synchronous speed arrival level	В	III-2.4.8
24			4034		0	Shift during synchronous control of spindle phase	В	III-2.4.8
25		4035			0	Compensation data for spindle phase synchronous control	В	III-2.4.8
28		4038			0	Spindle orientation speed	В	III-2.2.9
30		4040			Depends on the model	Velocity loop proportional gain on velocity control mode (High)	В	III-2.1.6
31		4041			Depends on the model	Velocity loop proportional gain on velocity control mode (Low)	В	III-2.1.6
32		4042			Depends on the model	Velocity loop proportional gain on orientation (High)	В	III-2.2.9
33		4043			Depends on the model	Velocity loop proportional gain on orientation (Low)	В	III-2.2.9
34	3044	4044	4044		Depends on the model	Velocity loop proportional gain on servo mode/spindle synchronous control (High)	В	III-2.3.7 III-2.4.8
35	3045	4045	4045		Depends on the model	Velocity loop proportional gain on servo mode/spindle synchronous control (Low)	В	III-2.3.7 III-2.4.8
38	3048	4048	4048		Depends on the model	Velocity loop integral gain on velocity control mode (High)	В	III-2.1.6
39	3049	4049	4049		Depends on the model	Velocity loop integral gain on velocity control mode (Low)	В	III-2.1.6
40	3050	4050	4050		Depends on the model	Velocity loop integral gain on orientation (High)	В	III-2.2.9
41	3051	4051	4051		Depends on the model	Velocity loop integral gain on orientation (Low)	В	III-2.2.9
42	3052	4052	4052		Depends on the model	Velocity loop integral gain on servo mode/spindle synchronous control (High)	В	III-2.3.7 III-2.4.8
43	3053	4053	4053		Depends on the model	Velocity loop integral gain on servo mode/spindle synchronous control (Low)	В	III-2.3.7 III-2.4.8
46	3056	4056	4056		100	Gear ratio (High)	Α	III-1.3.2
47		4057			100	Gear ratio (Medium High)	A	III-1.3.2
48			4058		100	Gear ratio (Medium Low)	A	III-1.3.2
49		4059			100	Gear ratio (Low)	Α	III-1.3.2
50		4060			1000	Position gain on orientation (High)	В	III-2.2.9
51	3061	4061	4061		1000	Position gain on orientation (Medium High)	В	III-2.2.9

Internal data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	Standard initial setting data	Contents	Classifi -cation	Reference item
52	3062	4062	4062		1000	Position gain on orientation (Medium Low)	В	III-2.2.9
53		4063			1000	Position gain on orientation (Low)	В	III-2.2.9
54	3064	4064	4064		100	Acceleration limitation ratio at deceleration time	В	III-2.2.9
55	3065	4065	4065		1000	Position gain on servo mode/spindle synchronous control (High)	В	III-2.3.7 III-2.4.8
56	3066	4066	4066		1000	Position gain on servo mode/spindle synchronous control (Medium High)	В	III-2.3.7 III-2.4.8
57	3067	4067	4067		1000	Position gain on servo mode/spindle synchronous control (Medium Low)	В	III-2.3.7 III-2.4.8
58	3068	4068	4068		1000	Position gain on servo mode/spindle synchronous control (Low)	В	III-2.3.7 III-2.4.8
59	3069	4069	4069		900	Acceleration/deceleration constant (High)	В	III-2.1.6
60	3070	4070	4070		900	Acceleration/deceleration constant (Medium High)	В	III-2.1.6
61	3071	4071	4071		900	Acceleration/deceleration constant (Medium Low)	В	III-2.1.6
62	3072	4072	4072		900	Acceleration/deceleration constant (Low)	В	III-2.1.6
63	3073	4073	4073		0	Grid shift on servo mode	В	III-2.3.7
64	3074	4074	4074		0	Reference position return speed on servo mode	В	III-2.3.7
65		4075			10	Detection level for orientation completion signal	В	III-2.2.9
67		4077			0	Orientation stop position shift	В	III-2.2.9
68		4078			0	Gear switch timer	В	III-2.5.4
70		4080			Depends on the model	Regenerative power limit for high-speed zone/regenerative power limit	В	III-2.5.3
71	3081	4081	4081		20	Delay time until motor power is cut off	В	III-2.1.6
72	3082	4082	4082		10	Setting of acceleration/deceleration time	В	III-2.1.6
73	3083	4083	4083		60	Motor voltage on velocity control mode	С	III-2.1.6
74		4084			60	Motor voltage on orientation	С	III-2.2.9
75		4085			60	Motor voltage on servo mode/spindle synchronous control mode	С	III-2.3.7 III-2.4.8
76		4086			0	Gear ratio parameter setting error alarm (spindle alarm 35) detection level	D	III-2.5.4
78	3088	4088	4088		75	Level for detecting excess velocity error when motor is restrained	D	III-2.5.4
79	3089	4089	4089		200	Level for detecting excess velocity error when motor rotates	D	III-2.5.4
80	3090	4090	4090		90	Overload detection level	D	III-2.5.4
81		4091			100	Rate of change in position gain during reference position return on servo mode	В	III-2.3.7
85	3095	4095	4095		0	Speedometer pin output voltage adjustment value	В	III-2.5.4
88	3098	4098	4098		0	Maximum speed for position coder signal detection	Α	III-1.3.2
89	3099	4099	4099		0	Delay time for motor excitation	В	III-2.3.7
90			4100		Depends on the model	Base speed of motor output specifications	С	III-2.5.3
91			4101		Depends on the model	Output limit for motor output specifications	С	III-2.5.3
92		4102			Depends on the model	Excitation voltage saturation speed at no-load	С	III-2.5.3
93			4103		Depends on the model	Compensation data for resistance	С	III-2.5.3
94			4104		Depends on the model	Current loop proportional gain	С	III-2.5.3
95			4105		Depends on the model	Current loop integral gain	С	III-2.5.3
96			4106		Depends on the model	D-axis current loop gain	С	III-2.5.3
97			4107		Depends on the model	Q-axis current loop gain	С	III-2.5.3
98			4108		Depends on the model	Q-axis current deviation limitation coefficient	С	III-2.5.3
99	3109	4109	4109		Depends on the model	Filter time constant for processing saturation related to the voltage command	С	III-2.5.3

Internal data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	Standard initial setting data	Contents	Classifi -cation	Reference item
100	3110	4110	4110		Depends on the model	Current conversion constant	С	III-2.5.3
101	3111	4111	4111		Depends on the model	Secondary current coefficient	С	III-2.5.3
102		4112			Depends on the model	Criterion level for saturation related to the voltage command/PWM command clamp value	С	III-2.5.3
103		4113			Depends on the model	Slip constant	С	III-2.5.3
105		4115			Depends on the model	PWM command clamp value at deceleration	С	III-2.5.3
106		4116			Depends on the model	Motor leakage constant	С	III-2.5.3
107	3117				Depends on the model	Regular-time voltage compensation coefficient for high-speed zone/regular-time motor voltage coefficient	С	III-2.5.3
108		4118			Depends on the model	Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient	С	III-2.5.3
109		4119			Depends on the model	Deceleration-time excitation current change time constant/excitation current change time constant	С	III-2.5.3
110	3120	4120	4120		Depends on the model	Dead-band compensation data	С	III-2.5.3
111	3121	4121	4121		5	Time constant for changing the torque (TCMD filter time constant)	В	III-2.5.4
113	3123	4123	4123		30	Short-time overload detection time	D	III-2.5.4
117	3127	4127	4127		Depends on the model	Value displayed on load meter at maximum output	С	III-2.5.3
118	3128	4128	4128		Depends on the model	Compensation coefficient between the specification and true base/maximum torque curve compensation coefficient	С	III-2.5.3
120	3130	4130	4130		Depends on the model	Current loop proportional gain speed coefficient/current phase delay compensation coefficient	С	III-2.5.3
121	3131	4131	4131		Depends on the model	Dead-band compensation hysteresis	В	III-2.5.3
123	3133	4133	4133		Depends on the model	Motor model code	С	III-2.5.3
124 125	3134	4134	4134		Depends on the model	Motor overheat detect level (2-word)	С	III-2.5.3
152	3160	4160	4160		0	Hysteresis of speed detection level	В	I-5.1.7
304	3320	4320	4320		0	Acceleration at orientation deceleration time (High)	В	III-2.2.9
305	3321	4321	4321		0	Acceleration at orientation deceleration time (Medium High)	В	III-2.2.9
306		4322			0	Acceleration at orientation deceleration time (Medium Low)	В	III-2.2.9
307		4323			0	Acceleration at orientation deceleration time (Low)	В	III-2.2.9
312		4328			0	Command multiplication for spindle orientation by position coder	В	I-5.3.6
320	3336	4336	4336		0	Switching point used for an acceleration/deceleration time constant used for spindle synchronous control	В	III-2.4.8
324	3340	4340	4340		0	Bell-shaped acceleration/deceleration time constant during spindle synchronous control	В	III-2.4.8

A.3 Bis series spindle parameter table

Spindle parameters are classified into the following types:

- A: Parameters related to the setup of detectors
- B: Parameters related to the setup of various functions (operating modes)
- C: Unique parameters for the drive of spindle motors (Set the parameter data according to the parameter list for each motor model.)
- D: Parameters related to the setting of alarm detection conditions

Internal data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	Standard initial setting data	Contents	Classification	Reference item
0H	3000	4000	4000	#0	0	Rotation direction relationship between the spindle and motor	А	IV-1.3.2
				#1	0	Spindle rotation direction when a positive (+) move command is specified on Cs contouring control	В	IV-2.4.7
				#3	0	Return direction for the reference position on Cs contouring control mode	В	IV-2.4.7
				#4	0	Return direction for the reference position on servo mode	В	IV-2.3.7
0L	3001	4001	4001	#0	1	Whether to use MRDY (machine ready) signal	В	IV-2.6.4
				#4	0	Mounting direction of the spindle sensor	Α	IV-1.3.2
1H	3002	4002	4002	#0	0	Spindle sensor type	Α	IV-1.3.2
				#1	0	Spindle sensor type	Α	IV-1.3.2
				#2	0	Spindle sensor type	Α	IV-1.3.2
				#3	0	Spindle sensor type	Α	IV-1.3.2
				#4	0	Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control	В	IV-2.4.7
				#5	0	Whether to use the rotation direction signal (SFR/SRV) function on servo mode	В	IV-2.3.7
				#6	0	Whether to use the rotation direction signal (SFR/SRV) function on spindle synchronous control	В	IV-2.5.8
				#7	0	Whether to use the CMR (servo mode Cs contouring) function in servo mode	В	
1L	3003	4003	4003	#0	0	Spindle orientation method	В	IV-2.2.9
				#2	0	Rotation direction during spindle orientation	В	IV-2.2.9
				#3	0	Rotation direction during spindle orientation	В	IV-2.2.9
				#4	0	Teeth number setting of spindle sensor	Α	IV-1.3.2
				#5	0	Teeth number setting of spindle sensor	Α	IV-1.3.2
				#6	0	Teeth number setting of spindle sensor	Α	IV-1.3.2
				#7	0	Teeth number setting of spindle sensor	Α	IV-1.3.2
2L	3005	4005	4005	#0	0	Command resolution for Cs contouring control	В	IV-2.4.7
3H	3006	4006	4006	#1	0	Increment system of gear ratio	Α	IV-1.3.2
				#3	0	Automatic detection of one-rotation signal during spindle synchronous control	В	IV-2.5.8
				#4	0	Sets the d-phase current command.	С	IV-2.6.3
				#5	0	Setting of analog override range	В	IV-2.1.6
				#7	0	Whether to use the command arbitrary gear ratio (CMR) function on rigid tapping	В	IV-2.3.7
3L	3007	4007	4007	#5	0	Whether to detect a feedback signal disconnection	А	IV-1.3.2
				#6	0	Whether to detect the alarms (spindle alarms 41, 42, 47, 81, 82, 83, 85, 86, and 87) related to the position feedback signal (when non-Cs contouring control mode is set)	А	IV-1.3.2
				#7	0	Magnetic pole detection start signal selection	В	IV-1.5.3
4H	3008	4008	4008	#0	0	Reserved	С	
				#1	0	Reserved	С	
				#2	0	Reserved	С	

Internal data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	Standard initial setting data	Contents	Classification	Reference item
				#3	0	Sets the current command.	С	IV-2.6.3
				#4	Depends on the model	Setting of output limitation method	С	IV-2.6.3
				#5	0	Whether to use the SSM	В	IV-1.4.4
				#6	0	Reference magnetic pole position selection	В	IV-1.5.3
4L	2000	4000	4009	#0	0	(Whether to use the AMR offset function) Increment system of velocity loop gain	В	IV-1.5.5 IV-2.6.4
4L	3009	4009	4009	#2	0	Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued	D	IV-2.6.4
				#4	0	Whether to output the load detection signals (LDT1, LDT2) during acceleration/deceleration	В	IV-2.1.6
				#5	Depends on the model	Setting related to magnetic flux reduction speed	С	IV-2.6.3
				#6	0	Analog override type	В	IV-2.1.6
5H	3010	4010	4010		Depends on the model	Motor sensor type	Α	IV-1.3.2
				#1	Depends on the model	Motor sensor type	А	IV-1.3.2
	0011	1011	1011	#2	Depends on the model	Motor sensor type	А	IV-1.3.2
5L	3011	4011	4011		Depends on the model	Teeth number setting of motor sensor	А	IV-1.3.2
				#1	Depends on the model	Teeth number setting of motor sensor	Α	IV-1.3.2
				#2	Depends on the model	Teeth number setting of motor sensor	Α	IV-1.3.2
				#4	Depends on the model Depends on	Number of motor poles Setting of maximum output during	С	IV-2.6.3
				#7	the model Depends on	acceleration/deceleration Number of motor poles	С	IV-2.6.3
6H	3012	4012	4012		the model Depends on	Setting of PWM carrier frequency	С	IV-2.6.3
				#1	the model	Setting of PWM carrier frequency	С	IV-2.6.3
				#2	the model Depends on	Setting of PWM carrier frequency	C	IV-2.6.3
					the model			
				#6	1	Setting of the synchronous built-in spindle motor	С	IV-2.6.3
6L	3013	4013	4013	#7 #2	Depends on the model	Setting of spindle HRV function Current dead-band data	C C	IV-2.6.3 IV-2.6.3
				#3		Current dead-band data	С	IV-2.6.3
				#4	Depends on the model	Current dead-band data	С	IV-2.6.3
				#5	Depends on the model	Current dead-band data	С	IV-2.6.3
				#6	Depends on the model	Current dead-band data	С	IV-2.6.3
7H			4014		0	Setting of dual position feedback	В	IV-5.5.6
7L	3015	4015	4015	_	0	Whether to use the spindle orientation function	В	IV-2.2.9
				#1	0	Whether to use the unexpected disturbance torque detection function	В	IV-5.7.5
8H	3016	4016	4016		0	Setting of the smoothing function in feed-forward control	В	IV-2.4.7 IV-5.8.7
				#4	0	Setting related to control characteristics on Cs contouring control/servo mode	В	IV-2.3.7 IV-2.4.7
				#5	0	Whether to detect the alarms (spindle alarms 81, 82, 85, 86) related to position feedback (on Cs contouring control mode)	А	IV-1.3.2

Internal data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	Standard initial setting data	Contents	Classification	Reference item
				#6	0	Whether to detect the alarm (spindle alarms 46) related to feedback of the position detection signal for threading	А	IV-1.3.2
				#7	0	Function for newly detecting the one-rotation signal before entering position control mode	А	IV-1.3.2
8L	3017	4017	4017	#7	0	Setting of shortcut orientation from stop state in position coder method spindle orientation	В	IV-2.2.9
9H	3018	4018	4018	#5	0	Whether to use the velocity command compensation function during high-speed orientation	В	IV-5.4.6
				#6	0	High-speed orientation function	В	IV-5.4.6
9L	3019	4019	4019	#2	1	Whether to use torque clamp at zero speed	В	IV-2.6.4
				#7	0	Automatic parameter setting function (16i)	В	IV-1.1.2 IV-2.6.4
10	3020	4020	4020		Depends on the model	Maximum motor speed	С	IV-1.4.4 IV-2.6.3
11	3021	4021	4021		100	Maximum speed on Cs contouring control mode	В	IV-2.4.7
12	3022	4022	4022		150	Speed arrival detection level (SAR)	В	IV-2.6.4
13	3023	4023	4023		30	Speed detection level (SDT)	В	IV-2.6.4
14			4024		75	Zero speed detection level (SST)	В	IV-2.6.4
15			4025		50	Limited torque (TLMH, TLML)	В	IV-2.6.4
16	3026	4026	4026		83	Load detection level 1 (LDT1)	В	IV-2.6.4
17	3027	4027	4027		95	Load detection level 2 (LDT2)	В	IV-2.6.4
20	3030	4030	4030		0	Soft start/stop time (SOCN)	В	IV-2.1.6
21	3031	4031	4031		0	Stop position of position coder method orientation	В	IV-2.2.9
22	3032	4032	4032		0	Acceleration on spindle synchronous control	В	IV-2.5.8
23	3033	4033	4033		10	Spindle synchronous speed arrival level	В	IV-2.5.8
24	3034	4034	4034		0	Shift during synchronous control of spindle phase	В	IV-2.5.8
25	3035	4035	4035		0	Compensation data for spindle phase synchronous control	В	IV-2.5.8
26	3036	4036	4036		0	Feed-forward coefficient	В	IV-2.4.7 IV-5.8.8
27	3037	4037	4037		0	Feed-forward coefficient of velocity loop	В	IV-2.4.7 IV-5.6.4 IV-5.8.8
28	3038	4038	4038		0	Spindle orientation speed	В	IV-2.2.9 IV-5.4.6
29	3039	4039	4039		0	Reserved	С	
30	3040	4040	4040		10	Velocity loop proportional gain on velocity control mode (High)	В	IV-2.1.6
31	3041	4041	4041		10	Velocity loop proportional gain on velocity control mode (Low)	В	IV-2.1.6
32	3042	4042	4042		10	Velocity loop proportional gain on orientation (High)	В	IV-2.2.9
33	3043	4043	4043		10	Velocity loop proportional gain on orientation (Low)	В	IV-2.2.9
34			4044		10	Velocity loop proportional gain on servo mode/spindle synchronous control (High)	В	IV-2.3.7 IV-2.5.8
35			4045		10	Velocity loop proportional gain on servo mode/spindle synchronous control (Low)	В	IV-2.3.7 IV-2.5.8
36			4046		30	Velocity loop proportional gain on Cs contouring control (High)	В	IV-2.4.7
37			4047		30	Velocity loop proportional gain on Cs contouring control (Low)	В	IV-2.4.7
38	3048	4048	4048		10	Velocity loop integral gain on velocity control mode (High)	В	IV-2.1.6
39			4049		10	Velocity loop integral gain on velocity control mode (Low)	В	IV-2.1.6
40	3050	4050	4050		10	Velocity loop integral gain on orientation (High)	В	IV-2.2.9
41	3051	4051	4051		10	Velocity loop integral gain on orientation (Low)	В	IV-2.2.9
42			4052		10	Velocity loop integral gain on servo mode/spindle synchronous control (High)	В	IV-2.3.7 IV-2.5.8
43	3053	4053	4053		10	Velocity loop integral gain on servo mode/spindle synchronous control (Low)	В	IV-2.3.7 IV-2.5.8
44			4054		50	Velocity loop integral gain on Cs contouring control (High)	В	IV-2.4.7
45	3055	4055	4055		50	Velocity loop integral gain on Cs contouring control (Low)	В	IV-2.4.7

Internal data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	Standard initial setting data	Contents	Classification	Reference item
46	3056	4056	4056		100	Gear ratio (High)	Α	IV-1.3.2
47	3057	4057	4057		100	Gear ratio (Medium High)	Α	IV-1.3.2
48	3058	4058	4058		100	Gear ratio (Medium Low)	Α	IV-1.3.2
49	3059	4059	4059		100	Gear ratio (Low)	Α	IV-1.3.2
50	3060	4060	4060		1000	Position gain on orientation (High)	В	IV-2.2.9
51	3061	4061	4061		1000	Position gain on orientation (Medium High)	В	IV-2.2.9
52	3062	4062	4062		1000	Position gain on orientation (Medium Low)	В	IV-2.2.9
53	3063	4063	4063		1000	Position gain on orientation (Low)	В	IV-2.2.9
54	3064	4064	4064		100	Ordinary orientation: Rate of change in position gain upon completion of orientation High-speed orientation: Rate of change in position gain	В	IV-2.2.9 IV-5.4.6
55	3065	4065	4065		1000	upon completion of orientation Position gain on servo mode/spindle synchronous control (High)	В	IV-2.3.7 IV-2.5.8
56	3066	4066	4066		1000	Position gain on servo mode/spindle synchronous control (Medium High)	В	IV-2.3.7 IV-2.5.8
57	3067	4067	4067		1000	Position gain on servo mode/spindle synchronous control (Medium Low)	В	IV-2.3.7 IV-2.5.8
58	3068	4068	4068		1000	Position gain on servo mode/spindle synchronous control (Low)	В	IV-2.3.7 IV-2.5.8
59			4069		3000	Position gain on Cs contouring control (High)	В	IV-2.4.7
60	3070	4070	4070		3000	Position gain on Cs contouring control (Medium High)	В	IV-2.4.7
61	3071	4071	4071		3000	Position gain on Cs contouring control (Medium Low)	В	IV-2.4.7
62			4072		3000	Position gain on Cs contouring control (Low)	В	IV-2.4.7
63			4073		0	Grid shift on servo mode	В	IV-2.3.7
64	+		4074		0	Reference position return speed on Cs contouring control/servo mode	В	IV-2.3.7 IV-2.4.7
65	3075	4075	4075		10	Detection level for orientation completion signal (ORAR)	В	IV-2.2.9
66			4076		33	Ordinary orientation: Motor speed limit value on orientation High-speed orientation: Reserved	В	IV-2.2.9
67	3077	4077	4077		0	Orientation stop position shift	В	IV-2.2.9
70	1		4080		Depends on the model	Regenerative power limit for high-speed zone/regenerative power limit	C	IV-2.6.3
71	3081	4081	4081		20	Delay time until motor power is cut off	В	IV-2.1.6
72			4082		10	Setting of acceleration/deceleration time	В	IV-2.1.6
73			4083		0	Current ratio/motor stop confirmation time in magnetic pole detection operation	C	IV-1.5.5 IV-2.6.3
74	3084	4084	4084		0	AMR offset	С	IV-1.5.3 IV-1.5.5 IV-2.6.3
75	3085	4085	4085		0	AMR offset fine adjustment	С	IV-1.5.3 IV-1.5.5 IV-2.6.3
76	3086	4086	4086		Depends on the model	Inductance ratio	С	IV-2.6.3
77	3087	4087	4087		115	Overspeed level	D	IV-2.6.4
78	3088	4088	4088		75	Level for detecting excess velocity error when motor is restrained	D	IV-2.6.4
79			4089		200	Level for detecting excess velocity error when motor rotates	D	IV-2.6.4
80	3090	4090	4090		90	Overload detection level	D	IV-2.6.4
81			4091		100	Rate of change in position gain during reference position return on servo mode	В	IV-2.3.7
82			4092		100	Rate of change in position gain during reference position return on Cs contouring control	В	IV-2.4.7
84			4094		0	Disturbance torque compensation constant (acceleration feedback gain)	В	IV-2.4.7
85			4095		0	Adjusted output voltage of speedometer	В	IV-2.6.4
86			4096		0	Adjusted output voltage of load meter	В	IV-2.6.4
88	13098	4098	4098	l	0	Maximum speed for position feedback signal detection	Α	IV-1.3.2

Internal data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	Standard initial setting data	Contents	Classification	Reference item
89	3099	4099	4099		0	Delay time for motor excitation	В	IV-2.3.7 IV-2.4.7
90	3100	4100	4100		Depends on the model	Base speed of motor output specifications	С	IV-2.6.3
91	3101	4101	4101		Depends on the model	Output limit for motor output specifications	С	IV-2.6.3
92	3102	4102	4102		Depends on the model	Base speed	С	IV-2.6.3
93			4103		Depends on the model	Magnetic flux reduction speed at maximum load	С	IV-2.6.3
94			4104		Depends on the model	Current loop proportional gain	С	IV-2.6.3
95			4105		0	Reserved	С	
96			4106		Depends on the model	Current loop integral gain	С	IV-2.6.3
97		4107			0	Reserved	С	
98			4108		Depends on the model	Velocity at which the current loop integral gain is zero	С	IV-2.6.3
99		4109			0	Reserved	С	IV-2.6.3
100			4110		Depends on the model	Current conversion constant	С	IV-2.6.3
101		4111			Depends on the model	Maximum current constant	С	IV-2.6.3
102			4112		Depends on the model	PWM command clamp value	С	IV-2.6.3
103			4113		Depends on the model	Current constant for magnetic flux reduction	С	IV-2.6.3
104			4114		0	Reserved	С	
105			4115		Depends on the model	PWM command clamp value at deceleration	С	IV-2.6.3
106			4116		Depends on the model	Counter electromotive voltage compensation constant for magnetic flux reduction speed at maximum load	С	IV-2.6.3
107		4117			Depends on the model	Interference voltage compensation constant for magnetic flux reduction speed at maximum load	С	IV-2.6.3
108			4118		0	Reserved	С	
109			4119		Depends on the model	Interference voltage compensation	С	IV-2.6.3
110			4120		Depends on the model	Dead-band rectangular wave component zero voltage/dead-band data	С	IV-2.6.3
111			4121		5	Time constant for changing the torque (TCMD filter time constant)	В	IV-4.2.1
112			4122		0	Time constant for velocity detecting filter	В	IV-2.6.4
113			4123		30	Short-time overload detection time	D	IV-2.6.4
114 117	-		4124 4127		0 Depends on the model	Reserved Value displayed on load meter at maximum output	C	IV-2.6.3
118	3128	4128	4128		0	Reserved	С	
119			4129		0	Reserved	C	
120			4130		Depends on the model	Current phase delay compensation coefficient	С	IV-2.6.3
121	3131	4131	4131		0	Time constant for velocity detecting filter (on Cs contouring control)	В	IV-2.4.7
123	3133	4133	4133		Depends on the model	Motor model code	С	IV-1.1.2 IV-2.6.3
124 125	3134	4134	4134		Depends on the model	Motor overheat detect level (2-word)	С	IV-2.6.3
126 127	3135	4135	4135		0	Grid shift during Cs contouring control mode I (2-word)	В	IV-2.4.7
152	3160	4160	4160		0	Hysteresis of speed detection level	В	IV-5.1.7
154	3162	4162	4162		0	Integral gain of velocity loop during cutting feed on Cs contouring control mode (High)	В	IV-2.4.7

161 316 162 317 163 317 164 317 165 317 166 317 230 324 231 324 232 325 304 332 305 332 306 332 310 332 311 333 312 332 314 333 320 333 324 334 325 334 328 334	70 4 771 772 4 773 774 774 774 774 775 774 775 774 775 774 775 775	4169 4170 4171 4172 4173 4174 4248 4249	4163 4169 4170 4171 4172 4173 4174 4248		Depends on the model 0 0 0 0	Integral gain of velocity loop during cutting feed on Cs contouring control mode (Low) Temperature monitoring time constant Current overload alarm detection level Denominator of arbitrary gear ratio between motor sensor and spindle (High) Numerator of arbitrary gear ratio between motor sensor and spindle (High)	B C D A	IV-2.4.7 IV-2.6.4 IV-2.6.4 IV-1.3.2
162 317 163 317 164 317 165 317 166 317 230 324 231 324 232 325 304 332 305 332 306 332 307 332 310 332 312 332 314 333 320 333 324 334 325 334 328 334	770 4 771 4 772 4 773 4 774 4 774 4 774 774 774 774 774	4170 4171 4172 4173 4174 4248 4249	4170 4171 4172 4173 4174 4248		the model 0 0 0	Current overload alarm detection level Denominator of arbitrary gear ratio between motor sensor and spindle (High) Numerator of arbitrary gear ratio between motor sensor	D A	IV-2.6.4
163 317 164 317 165 317 166 317 230 324 231 324 232 325 304 332 305 332 307 332 310 332 312 332 314 333 320 333 324 334 325 334 328 334	71 4 72 4 73 4 74 4 449 4 550 4	4171 4172 4173 4174 4248 4249	4171 4172 4173 4174 4248		0	Denominator of arbitrary gear ratio between motor sensor and spindle (High) Numerator of arbitrary gear ratio between motor sensor	А	
164 317 165 317 166 317 166 317 230 324 231 324 232 325 304 332 305 332 306 332 310 332 311 333 312 332 314 333 320 333 324 334 325 334 328 334	772 4 773 4 774 4 448 4 449 4 50 4	4172 4173 4174 4248 4249	4172 4173 4174 4248		0	and spindle (High) Numerator of arbitrary gear ratio between motor sensor		IV-1.3.2
165 317 166 317 230 324 231 324 232 325 304 332 305 332 306 332 310 332 311 333 312 332 314 333 320 333 324 334 325 334 328 334	73 4 74 4 48 4 49 4 50 4	4173 4174 4248 4249	4173 4174 4248		-		Δ	
166 317 230 324 231 324 232 325 304 332 305 332 306 332 310 332 311 333 312 332 314 333 320 333 324 334 325 334 328 334	74 4 48 4 49 4 50 4	4174 4248 4249	4174 4248		0	and spindle (riigh)	7	IV-1.3.2
230 324 231 324 232 325 304 332 305 332 306 332 310 332 312 332 314 333 320 333 324 334 325 334 328 334	48 4 49 4 50 4	4248 4249	4248			Denominator of arbitrary gear ratio between motor sensor and spindle (Low)	Α	IV-1.3.2
231 324 232 325 304 332 305 332 306 332 310 332 311 332 312 332 314 333 320 333 324 334 325 334 328 334	49 50 20	4249			0	Numerator of arbitrary gear ratio between motor sensor and spindle (Low)	Α	IV-1.3.2
232 325 304 332 305 332 306 332 310 332 312 332 314 333 320 333 324 334 325 334 328 334	50 4 20 4				0	Spindle load monitor torque constant	В	IV-5.7.5
304 332 305 332 306 332 307 332 310 332 312 332 314 333 318 333 320 333 324 334 325 334 328 334	20 4	4250	4249		0	Spindle load monitor observer gain 1	В	IV-5.7.5
305 332 306 332 307 332 310 332 312 332 314 333 318 333 320 333 324 334 325 334 328 334		1200	4250		0	Spindle load monitor observer gain 2	В	IV-5.7.5
306 332 307 332 310 332 312 332 314 333 318 333 320 333 324 334 325 334 328 334	21 4	4320	4320		0	Motor acceleration at deceleration time (High)	В	IV-5.4.6
307 332 310 332 312 332 314 333 318 333 320 333 324 334 325 334 328 334	- '	4321	4321		0	Motor acceleration at deceleration time (Medium High)	В	IV-5.4.6
310 332 312 332 314 333 318 333 320 333 324 334 325 334 328 334	22	4322	4322		0	Motor acceleration at deceleration time (Medium Low)	В	IV-5.4.6
312 332 314 333 318 333 320 333 324 334 325 334 328 334	23	4323	4323		0	Motor acceleration at deceleration time (Low)	В	IV-5.4.6
314 333 318 333 320 333 324 334 325 334 328 334	26	4326	4326		0	Acceleration limitation start speed at deceleration time (High)	В	IV-5.4.6
318 333 320 333 324 334 325 334 328 334	28 4	4328	4328		0	Command multiplication for spindle orientation by position coder	В	IV-5.3.6
320 333 324 334 325 334 328 334			4330		0	Acceleration limitation start speed at deceleration time (Low)	В	IV-5.4.6
324 334 325 334 328 334	34	4334	4334		0	Number of motor sensor arbitrary teeth	Α	IV-1.3.2
325 334 328 334	36	4336	4336		0	Switching point used for an acceleration/deceleration time constant used for spindle synchronous control	В	IV-2.5.8
328 334	40	4340	4340		0	Bell-shaped acceleration/deceleration time constant during spindle synchronous control	В	IV-2.5.8
	41 4	4341	4341		0	Unexpected disturbance torque detection level	В	IV-5.7.5
200	44	4344	4344		0	Advanced preview feed-forward coefficient	В	IV-5.6.4
	_		4345		0	Spindle motor speed specification detection level	В	IV-2.6.4
330 334	46	4346	4346		0	Incomplete integration factor	В	IV-2.5.8 IV-2.6.4
	_		4351		0	Current detection offset compensation	В	IV-2.6.4
336H 335	52	4352	4352		0	Setting of the peak hold function for load meter output	В	IV-2.1.6
				#4	0	Setting of whether to enable/disable feed forward at all times	В	IV-5.8.8
				#6	0	Inter-spindle amplifier communication slave axis setting	В	IV-5.8.8
				#7	0	Inter-spindle amplifier communication master axis setting	В	IV-5.8.8
			4355		0	Motor sensor signal amplitude ratio compensation	А	IV-1.3.2 IV-4.3
			4356		0	Motor sensor signal phase difference compensation	Α	IV-1.3.2 IV-4.3
	_		4362		0	Load meter compensation 1	С	IV-2.6.3
	_		4363		0	Load meter compensation 2	С	IV-2.6.3
	_		4364		0	Load meter compensation 3	С	IV-2.6.3
	_		4369		0	Spindle synchronous orientation deceleration coefficient	В	IV-5.5.6
			4384		0	Spindle EGB : Maximum acceleration/deceleration value in automatic phase matching (16i)	В	IV-5.8.8
			4385		0	Spindle EGB : time constant for free-running phase matching (16 <i>i</i>)	В	IV-5.8.8
	_		4386		0	Spindle EGB : master side detector pulse count	В	IV-5.8.8
	_		4387		0	Spindle EGB : synchronous ratio numerator	В	IV-5.8.8
	_		4388 4391		0	Spindle EGB : synchronous ratio denominator Resonance elimination filter 1 : attenuation center	B B	IV-5.8.8 IV-4.2.2
374 339	_		4392		0	frequency Resonance elimination filter 1 : attenuation bandwidth	В	IV-4.2.2

Internal data No. F-xxx	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	bit	Standard initial setting data	Contents	Classification	Reference item
375	3393	4393	4393		0	Resonance elimination filter 1 : damping	В	IV-4.2.2
376H	3394	4394	4394	#2	0	Setting of the detection lower limit of the one-rotation signal	А	IV-1.3.2
				#3	0	Setting of the fine acceleration/deceleration (FAD) function $(16i)$	В	IV-5.6.4
				#4	0	Acceleration/deceleration type of fine acceleration/deceleration (FAD) (16i)	В	IV-5.6.4
				#5	0	Whether to detect the alarm related to spindle sensor polarity erroneous setting	Α	IV-1.3.2
376L	3395	4395	4395	#3	0	Setting of parameter transfer from the CNC to spindle software	В	IV-2.6.4
				#6	0	Triggering of the disturbance input function (vibration application function)	В	IV-4.2.3
				#7	0	Setting of the disturbance input function (vibration application function)	В	IV-4.2.3
378H	3398	4398	4398	#2	0	Selects a magnetic pole detection mode.	С	IV-1.5.5
378L	3399	4399	4399	#6	0	Selects a magnetic pole detection mode.	С	IV-1.5.5
383	3406	4406	4406		0	Acceleration/deceleration time constant at return to the reference position in Cs contouring control	В	IV-2.4.7
385	3408	4408	4408		0	Fine acceleration/deceleration time constant (16i)	В	IV-5.6.4
386	3409	4409	4409		0	Feed forward timing adjustment coefficient	В	IV-5.6.4
387			4410		0	Disturbance input function : measurement start frequency	В	IV-4.2.3
388	3411	4411	4411		0	Disturbance input function : measurement end frequency	В	IV-4.2.3
389	3412	4412	4412		0	Disturbance input function : measurement frequency interval	В	IV-4.2.3
390	3413	4413	4413		0	Disturbance input function : number of measurements per frequency	В	IV-4.2.3
391	3414	4414	4414		0	Disturbance input function : disturbance torque command amplitude	В	IV-4.2.3
392			4415		0	Disturbance input function : motor speed command for measurement	В	IV-4.2.3
393	3416	4416	4416		0	Resonance elimination filter 2 : attenuation center frequency	В	IV-4.2.2
394	3417	4417	4417		0	Resonance elimination filter 2 : attenuation bandwidth	В	IV-4.2.2
395	3418	4418	4418		0	Resonance elimination filter 2 : damping	В	IV-4.2.2
396	3419	4419	4419		0	Resonance elimination filter 3 : attenuation center frequency	В	IV-4.2.2
397	3420	4420	4420		0	Resonance elimination filter 3: attenuation bandwidth	В	IV-4.2.2
398	3421	4421	4421		0	Resonance elimination filter 3 : damping	В	IV-4.2.2
399			4422		0	Resonance elimination filter 4 : attenuation center frequency	В	IV-4.2.2
400			4423		0	Resonance elimination filter 4 : attenuation bandwidth	В	IV-4.2.2
401			4424		0	Resonance elimination filter 4 : damping	В	IV-4.2.2
426	3449	4449	4449		0	Direction detection current/polarity determination current	С	IV-1.5.5
427			4450		0	Travel distance allowance magnification/velocity feedback threshold	С	IV-1.5.5
428		4451			0	Reserved		
470			4498		0	Spindle EGB master side : denominator of arbitrary gear ratio between motor sensor and spindle	В	IV-5.8.8
471			4499		0	Spindle EGB master side : numerator of arbitrary gear ratio between motor sensor and spindle	В	IV-5.8.8
480	3508	4508	4508		0	Rate of change in acceleration at soft start/stop	В	IV-2.1.6
487	3515	4515	4515		0	Excessive speed deviation alarm detection level on spindle synchronous control	D	IV-2.5.8
488	3516		4516		0	Excessive positional deviation alarm detection level on spindle synchronous control	D	IV-2.5.8
504	-	4532	4532		0	Arbitrary data output function number	В	IV-1.5.5

LIST OF SPINDLE PARAMETER NUMBERS

The following shows corresponding of the parameter numbers of parameters for speed range switch high-speed/low-speed characteristics on the main side/sub-side of spindle switching.

MH, ML, SH, and SL in the table represent the following:

MH: Parameter for speed range switch high-speed characteristics on the main side of spindle switching (for standard motors)

ML: Parameter for speed range switch low-speed characteristics on the main side of spindle switching

SH: Parameter for speed range switch high-speed characteristics on the sub-side of spindle switching

SL: Parameter for speed range switch low-speed characteristics on the sub-side of spindle switching

	1	5 <i>i</i>			1	6 <i>i</i>			3	0 <i>i</i>		Contents
МН	ML	SH	SL	МН	ML	SH	SL	МН	ML	SH	SL	Contents
3000	\leftarrow	3176	\leftarrow	4000	\leftarrow	4176	←	4000	\leftarrow	4176	←	Bit parameter
3001	←	3177	←	4001	←	4177	←	4001	+	4177	←	Bit parameter
3002	←	3178	←	4002	←	4178	←	4002	+	4178	←	Bit parameter
3003	←	3179	←	4003	\leftarrow	4179	←	4003		4179	←	Bit parameter
3004	←	3180	←	4004	←	4180	←	4004	←	4180	←	Bit parameter
3005	←	3181	←	4005	←	4181	←	4005	←	4181	←	Bit parameter
3006	←	3182	←	4006	\leftarrow	4182	←	4006		4182	←	Bit parameter
3007	←	3183	←	4007	\leftarrow	4183	←	4007		4183	←	Bit parameter
3008	←	3184	←	4008	←	4184	←	4008	←	4184	←	Bit parameter
3009	←	3185	←	4009	←	4185	←	4009	←	4185	←	Bit parameter
3010	←	3186	←	4010	\leftarrow	4186	←	4010		4186	←	Bit parameter
3011	←	3187	←	4011	\leftarrow	4187	←	4011		4187	←	Bit parameter
3012	←	3188	←	4012	←	4188	←	4012	←	4188	←	Bit parameter
3013	←	3189	←	4013	←	4189	←	4013	←	4189	←	Bit parameter
3014	←	←	←	4014	←	←	←	4014	←	←	←	Bit parameter
3015	←	←	←	4015	←	←	←	4015	←	←	←	Bit parameter
3016	←	3192	←	4016	←	4192	←	4016	←	4192	←	Bit parameter
3017	←	3193	←	4017	←	4193	←	4017	←	4193	←	Bit parameter
3018	←	3194	←	4018	←	4194	←	4018	←	4194	←	Bit parameter
3019	←	3195	←	4019	←	4195	←	4019	←	4195	←	Bit parameter
3020	←	3196	←	4020	←	4196	←	4020	←	4196	←	Maximum motor speed
3021	←	None	None	4021	←	None	None	4021	←	None	None	Maximum speed on Cs contouring control mode
3022	←	3197	←	4022	←	4197	←	4022	←	4197	←	Speed arrival detection level
3023	←	3198	←	4023	←	4198	←	4023	←	4198	←	Speed detection level
3024	←	3199	←	4024	←	4199	←	4024		4199	←	Zero speed detection level
3025	←	3200	←	4025	←	4200	←	4025		4200	←	Limited torque
3026	←	3201	←	4026	←	4201	←	4026	←	4201	←	Load detection level 1
3027	←	←	←	4027	←	←	←	4027		←	←	Load detection level 2
3028	←	3202	←	4028	←	4202	←	4028		4202	←	Limited output pattern
3029	←	3203	←	4029	←	4203	←	4029	←	4203	←	Output limit

	1	5 <i>i</i>			10	6 <i>i</i>			3(0 <i>i</i>		Contents		
МН	ML	SH	SL	МН	ML	SH	SL	МН	ML	SH	SL	Contents		
3030	\leftarrow	←	←	4030	\leftarrow	\leftarrow	←	4030	←	\leftarrow	←	Soft start/stop time		
3031	\leftarrow	3204	←	4031	\leftarrow	4204	←	4031	←	4204	←	Stop position of position coder method orientation		
3032	\leftarrow		None	4032	\leftarrow	None	None	4032	←	None	None	Acceleration on spindle synchronous control		
3033	\leftarrow	None	None	4033	\leftarrow	None	None	4033	←	None	None	Spindle synchronous speed arrival level		
3034	\leftarrow	None	None	4034	\leftarrow	None		4034	←	None	None	Shift during synchronous control of spindle phase		
3035	←	None	None	4035	←	None	None	4035	←	None	None	Compensation data for spindle phase synchronous control		
3036	\leftarrow	3240	\leftarrow	4036	\leftarrow	4240	←	4036	←	4240	←	Feed-forward coefficient		
3037	3443	3241	3486	4037	4443	4241	4486	4037	4443	4241	4486	Feed-forward coefficient of velocity loop		
3038	\leftarrow	3205	←	4038	\leftarrow	4205	←	4038	←	4205	←	Spindle orientation speed		
3039	3156	3254	3255	4039	4156	4254	4255	4039	4156	4254	4255	Slip compensation gain		
3040	←	3206	←	4040	←	4206	←	4040	←	4206	←	Velocity loop proportional gain on velocity control mode (High)		
3041	←	3207	←	4041	←	4207	←	4041	←	4207	←	Velocity loop proportional gain on velocity control mode (Low)		
3042	\leftarrow	3208	←	4042	\leftarrow	4208	←	4042	←	4208	←	Velocity loop proportional gain on orientation (High)		
3043	\leftarrow	3209	←	4043	\rightarrow	4209	←	4043	←	4209	←	Velocity loop proportional gain on orientation (Low)		
3044	\leftarrow	3210	←	4044	\rightarrow	4210	←	4044	←	4210	←	Velocity loop proportional gain on servo mode (High)		
3045	\leftarrow	3211	\leftarrow	4045	\leftarrow	4211	←	4045	←	4211	←	Velocity loop proportional gain on servo mode (Low)		
3046	←	None	None	4046	←	None	None	4046	←	None	None	Velocity loop proportional gain on Cs contouring control (High)		
3047	←	None	None	4047	←	None	None	4047	←	None	None	Velocity loop proportional gain on Cs contouring control (Low)		
3048	\	3212	\	4048	\	4212	←	4048	←	4212	←	Velocity loop integral gain on velocity control mode (High)		
3049	\	\rightarrow	\rightarrow	4049	\	↑	1	4049	←	↑	1	Velocity loop integral gain on velocity control mode (Low)		
3050	\leftarrow	3213	←	4050	\rightarrow	4213	←	4050	←	4213	←	Velocity loop integral gain on orientation (High)		
3051	\leftarrow	\uparrow	\uparrow	4051	\rightarrow	\uparrow	↑	4051	←	\uparrow	\uparrow	Velocity loop integral gain on orientation (Low)		
3052	←	3214	\	4052	←	4214	←	4052	←	4214	←	Velocity loop integral gain on servo mode/spindle synchronous control (High)		
3053	\	\rightarrow	\rightarrow	4053	\	↑	1	4053	←	↑	1	Velocity loop integral gain on servo mode/spindle synchronous control (Low)		
3054		None	None	4054	+	None	None	4054	←	None	None	Velocity loop integral gain on Cs contouring control (High)		
3055	←	None	None	4055		None	None	4055	←	None	None	Velocity loop integral gain on Cs contouring control (Low)		
3056	\leftarrow	3216	←	4056	\	4216	←	4056	←	4216	←	Gear ratio (High)		
3057	\leftarrow	↑	↑	4057	←	↑	1	4057	←	↑	1	Gear ratio (Medium High)		
3058	\leftarrow	\downarrow	\downarrow	4058	\leftarrow	\downarrow	\downarrow	4058	←	\downarrow	\downarrow	Gear ratio (Medium Low)		
3059	\leftarrow	3217	\leftarrow	4059	\leftarrow	4217	←	4059	←	4217	←	Gear ratio (Low)		
3060	\leftarrow	3218	←	4060	\leftarrow	4218	←	4060	←	4218	←	Position gain on orientation (High)		
3061	\leftarrow	↑	↑	4061	\leftarrow	<u> </u>	↑	4061	←	↑	↑	Position gain on orientation (Medium High)		
3062	\leftarrow	\downarrow	\downarrow	4062	\leftarrow	+	↓	4062	←	↓	↓	Position gain on orientation (Medium Low)		
3063	\leftarrow	3219	←	4063	\leftarrow	4219	←	4063	←	4219	←	Position gain on orientation (Low)		
3064	←	3220	←	4064	\leftarrow	4220	←	4064	←	4220	←	Ordinary orientation: Rate of change in position gain upon completion of orientation		
												High-speed orientation: Rate of change in position gain upon completion of orientation		
3065	←	3221	\	4065	←	4221	←	4065	←	4221	←	Position gain on servo mode/spindle synchronous control (High)		
3066	←	↑	↑	4066	←	↑	1	4066	←	↑	1	Position gain on servo mode/spindle synchronous control (Medium High)		
3067	←	\	\rightarrow	4067	←	\rightarrow	\	4067	←	\	\	Position gain on servo mode/spindle synchronous control (Medium Low)		
3068	←	3222	←	4068	←	4222	←	4068	←	4222	←	Position gain on servo mode/spindle synchronous control (Low)		
3069	←	None	None	4069	←	None	None	4069	←	None	None	Position gain on Cs contouring control (High)		

	19	5 <i>i</i>			10	6 <i>i</i>			3	0 <i>i</i>				
МН	ML	SH	SL	МН	ML	SH	SL	МН	ML	SH	SL	Contents		
3070	←		None	4070	←		None	4070	←			Position gain on Cs contouring control (Medium High)		
3071	←	None	None	4071	←	None	None	4071	←	None	None	Position gain on Cs contouring control (Medium Low)		
3072	←	None	None	4072	←	None	None	4072	←	None	None	Position gain on Cs contouring control (Low)		
3073	←	3223	←	4073	←	4223	←	4073	←	4223	←	Grid shift on servo mode		
3074	\	←	←	4074		←	←	4074	←	←	←	Reference position return speed on Cs contouring control/servo mode		
3075	\downarrow	3226	←	4075	←	4226	←	4075	←	4226	←	Detection level for orientation completion signal		
3076	←	3227	←	4076	←	4227	←	4076	←	4227	←	Ordinary orientation: Motor speed limit value on orientation		
0077		0000		4077		4000		4077		4000		High-speed orientation: Reserved		
3077	←	3228	←	4077	←	4228 4229	←	4077	←	4228	←	Orientation stop position shift		
3078 3079	←	3229 3230	←	4078 4079	←	4229	←	4078 4079	←	4229 4230	←	MS signal constant		
	← 3166	3230	← 3307	4079	←	4230	← 420 7		← 4166	4230	← 420 7	MS signal gain adjustment Regenerative power limit for high-speed		
3080					4166		4307	4080			4307	zone/regenerative power limit		
3081	←	3232	←	4081	←	4232	←	4081	←	4232	←	Delay time until motor power is cut off		
3082	←	3233	←	4082	←	4233	←	4082	←	4233	←	Setting of acceleration/deceleration time		
3083	3136	3236	3284	4083	4136	4236	4284	4083	4136	4236	4284	Motor voltage on velocity control mode		
3084 3085	<u>←</u> 3137	3237 3238	<i>←</i> 3285	4084 4085	← 4137	4237 4238	← 4285	4084 4085	<u>←</u> 4137	4237 4238	← 4285	Motor voltage on orientation Motor voltage on servo mode/spindle synchronous control mode		
3086	←	None	None	4086	←	None	None	4086	←	None	None	Motor voltage on Cs contouring control		
3087	<u>`</u>	←	+ tone	4087	· ←	←	←	4087	<u>`</u>	←	+ + ·	Overspeed level		
3088	←	←	←	4088	←	←	←	4088	←	←	←	Level for detecting excess velocity deviation when motor is restrained		
3089	←	←	←	4089	←	←	←	4089	←	←	←	Level for detecting excess velocity deviation when motor rotates		
3090	←	←	←	4090	←	←	←	4090	←	←	←	Overload detection level		
3091	\	3239	←	4091	+	4239	←	4091	←	4239	←	Rate of change in position gain during reference position return on servo mode		
3092	\	None	None	4092	←	None	None	4092	←	None	None	Rate of change in position gain during reference position return on Cs contouring control		
3094	+	None	None	4094	←	None	None	4094	←	None	None	Disturbance torque compensation constant (acceleration feedback gain)		
3095	\leftarrow	←	←	4095	←	\leftarrow	←	4095	←	←	←	Adjusted output voltage of speedometer		
3096	\leftarrow	←	←	4096	←	←	←	4096	←	←	←	Adjusted output voltage of load meter		
3097	←	None	None	4097	←	None	None	4097	←	None	None	Feedback gain of spindle speed		
3098	\		←	4098	←	\	←	4098	←	←	←	Maximum speed for position feedback signal detection		
3099	←	←	←	4099	←	←	←	4099	←	←	←	Delay time for motor excitation		
3100	3138	3256	3286	4100	4138	4256	4286	4100	4138	4256	4286	Base speed of motor output specifications		
3101	3139	3257	3287	4101	4139	4257	4287	4101	4139	4257	4287	Output limit for motor output specifications		
3102	3140	3258	3288	4102	4140	4258	4288	4102	4140	4258	4288	Excitation voltage saturation speed at no-load		
3103	3141	3259	3289	4103	4141	4259	4289	4103	4141	4259	4289	Base speed limit ratio		
3104	3142	3260	3290	4104	4142	4260	4290	4104	4142	4260	4290	Current loop proportional gain		
3106 3108	3143 3144	3261 3262	3291 3292	4106 4108	4143 4144	4261 4262	4291 4292	4106 4108	4143 4144	4261 4262	4291 4292	Current loop integral gain Velocity at which the current loop integral gain is		
3109	3145	3263	3293	4109	4145	4263	4293	4109	4145	4263	4293	zero Filter time constant for processing saturation related to the voltage command		
3110	3146	3264	3294	4110	4146	4264	4294	4110	4146	4264	4294	Current conversion constant		
3111	3147	3265		4111	4147	4265	4295	4111	4147	4265	4295	Secondary current coefficient		
3112	3148	3266	3296	4112	4148	4266	4296	4112	4148	4266	4296	Criterion level for saturation related to the voltage command/PWM command clamp value		
3113	3149	3267	3297	4113	4149	4267	4297	4113	4149	4267	4297	Slip constant		
3114	3150	3268	3298	4114	4150	4268	4298	4114	4150	4268	4298	Slip compensation coefficient for a high-speed zone/slip compensation coefficient at deceleration		
3115	3151	3269	3299	4115	4151	4269	4299	4115	4151	4269	4299	PWM command clamp value at deceleration		
5.10	J.0:	0200	0_00			00	00			00	00	sammana siamp value at accoloration		

	1	5i			10	6 <i>i</i>			3(0 <i>i</i>		Contents		
МН	ML	SH	SL	МН	ML	SH	SL	МН	ML	SH	SL	Contents		
3116	3152	3270	3300	4116	4152	4270	4300	4116	4152	4270	4300	Motor leakage constant		
3117	3153	3271	3301	4117	4153	4271	4301	4117	4153	4271	4301	Regular-time voltage compensation coefficient for high-speed zone/regular-time motor voltage coefficient		
3118	3154	3272	3302	4118	4154	4272	4302	4118	4154	4272	4302	Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient		
3119	3165	3280	3308	4119	4165	4280	4308	4119	4165	4280	4308	Deceleration-time excitation current change time constant/excitation current change time constant		
3120	←	←	\downarrow	4120	\downarrow	\downarrow	↓	4120	←		←	Dead-band rectangular wave component zero voltage/dead-band data		
3121	3157	3273	3303	4121	4157	4273	4303	4121	4157	4273	4303	Time constant for changing the torque (TCMD filter time constant)		
3122	\leftarrow	3278	←	4122	←	4278	←	4122	←	4278	←	Time constant for velocity detecting filter		
3123	\leftarrow	\leftarrow	\leftarrow	4123	\leftarrow	\leftarrow	\leftarrow	4123	←	\leftarrow	←	Short-time overload detection time		
3127	3093	3274	3279	4127	4093	4274	4279	4127	4093	4274	4279	Value displayed on load meter at maximum output		
3128	3158	3275	3304	4128	4158	4275	4304	4128	4158	4275	4304	Compensation coefficient between the specification and true base/maximum torque curve compensation coefficient		
3129	3159	3276	3305	4129	4159	4276	4305	4129	4159	4276	4305	Secondary current coefficient for rigid tapping		
3130	3161	3277	3306	4130	4161	4277	4306	4130	4161	4277	4306	Current loop proportional gain speed coefficient/current phase delay compensation coefficient		
3131	←		None	4131	←	None	None	4131	←		None	Time constant for velocity detecting filter (on Cs contouring control)		
3133	\leftarrow	3309	\leftarrow	4133	\leftarrow	4309	←	4133	←	4309	←	Motor model code		
3134	\leftarrow	3310	\leftarrow	4134	\leftarrow	4310	←	4134	←	4310	←	Motor overheat detect level (2-word)		
3135	←	None	None	4135	←	None	None	4135	←	None	None	Grid shift during Cs contouring control mode I (2-word)		
3160	←	←	\leftarrow	4160	\leftarrow	←	←	4160	←	←	←	Hysteresis of speed detection level		
3162	←		None	4162	←			4162	←	None		Integral gain of velocity loop during cutting feed on Cs contouring control mode (High)		
3163	←		None	4163	←	None	None	4163	←	None	None	Integral gain of velocity loop during cutting feed on Cs contouring control mode (Low)		
3169	←	3349	←	4169	←	4349	←	4169	←	4349	←	Temperature monitoring time constant		
3170	3168	3350	3348	4170	4168	4350	4348	4170	4168	4350	4348	Current overload alarm detection level		
3171	←	3243	←	4171	←	4243	←	4171	←	4243	←	Denominator of arbitrary gear ratio between motor sensor and spindle (High)		
3172	←	3244	←	4172	←	4244	←	4172	←	4244	←	Numerator of arbitrary gear ratio between motor sensor and spindle (High)		
3173	←	3245	←	4173	←	4245	←	4173	←	4245	←	Denominator of arbitrary gear ratio between motor sensor and spindle (Low)		
3174	←	3246	←	4174	←	4246	←	4174	←	4246	←	Numerator of arbitrary gear ratio between motor sensor and spindle (Low)		
3215	←	None		4215	←			4215	←		None	Primary delay time constant in dual position feedback [in Cs contour control]		
3224	←	None		4224		None		4224	←	None		Maximum amplitude in dual position feedback [in Cs contour control]		
3225	←	None		4225	←	None		4225	←		None	Dual position feedback zero width [in Cs contour control]		
3248	3281	3282	3283	4248	4281	4282	4283	4248	4281	4282	4283	Spindle load monitor torque constant		
3249	←	3234	←	4249	←	4234	←	4249	←	4234	←	Spindle load monitor observer gain 1		
3250	←	3235	←	4250	←	4235	←	4250	←	4235	←	Spindle load monitor observer gain 2		
3320 3321	←	3324	<u>←</u>	4320 4321	←	4324 ↑	<u>←</u>	4320 4321	←	4324 ↑	<u>←</u>	Motor acceleration at deceleration time (High) Motor acceleration at deceleration time (Medium		
3322	←	\downarrow	\rightarrow	4322	←	\downarrow	\	4322	←	\	\	High) Motor acceleration at deceleration time (Medium Low)		
3323	←	3325	←	4323	←	4325	←	4323	←	4325	←	Motor acceleration at deceleration time (Low)		
3326	←	3327	←	4326	←	4327	←	4326	←	4327	←	Acceleration limitation start speed at deceleration		
												time (High)		

Note	at deceleration teeth ration/deceleration chronous control tion time constant l etection level befficient tection level te signal output thion d loop position ontour control] to compensation
3328	at deceleration teeth ration/deceleration chronous control tion time constant l etection level befficient tection level te signal output thion d loop position ontour control] to compensation
3330	teeth ration/deceleration chronous control tion time constant l tetection level befficient teetion level te signal output tion d loop position ontour control] to compensation
3334	ration/deceleration chronous control tion time constant letection level pefficient tection level te signal output letection devel to compensation occupation occupation occupation compensation
3336	ration/deceleration chronous control tion time constant letection level pefficient tection level te signal output letection devel to compensation occupation occupation occupation compensation
3340	tion time constant Il stection level pefficient tection level te signal output thion Il loop position ontour control] to compensation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	te signal output It is signal
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	te signal output tition d loop position ontour control] to compensation
3346 ← ← 4346 ← ← 4346 ← ← ← Incomplete integration factor 3347 ← None None None None None None None Master-slave speed difference start setting 3351 ← ← ← 4351 ← ← ← Current detection offset compensation 3352 ← 3373 ← 4352 ← 4373 ← Bit parameter 3353 ← 3374 ← 4353 ← 4374 ← Bit parameter 3354 ← None None None None None Excessive semi-closed loop/closed error alarm detection level [in Cs costs] 3355 ← None None None None None None None None Excessive semi-closed loop/closed error alarm detection level [in Cs costs] Asset in Cs costs] <	te signal output ation d loop position ontour control] o compensation
3347	d loop position ontour control] o compensation
3351	d loop position ontour control] o compensation
3352 ← 3373 ← 4352 ← 4373 ← 4374 ← 4374 ← Bit parameter 3353 ← 3374 ← 4353 ← 4374 ← Bit parameter 3354 ← None <	d loop position ontour control] o compensation
3353	ontour control] o compensation
3354	ontour control] o compensation
Second State Sec	ontour control] o compensation
3356	
3357	
3358	•
3360 ← None None 4360 ← None None None Preload value 3361 ← None None 4361 ← None	
3361 ← None None 4361 ← None	
3362 3365 3376 3379 4362 4365 4376 4379 4362 4365 4376 4379 Load meter compensation 1 3363 3366 3377 3380 4363 4366 4377 4380 4363 4366 4377 4380 Load meter compensation 2 3364 3367 3378 3381 4364 4367 4378 4381 4364 4367 4378 4381 Load meter compensation 3 3369 ← None None None None None None None Spindle synchronous orientation decoefficient	/ teeth
3363 3366 3377 3380 4363 4366 4377 4380 4363 4366 4377 4380 Load meter compensation 2 3364 3367 3378 3381 4364 4367 4378 4381 4364 4367 4378 4381 Load meter compensation 3 3369 ← None None None None None None None None Spindle synchronous orientation decoefficient None None None None None None None None None None None None None None None None None	teetii
3364 3367 3378 3381 4364 4367 4378 4381 4364 4367 4378 4381 Load meter compensation 3 3369 ← None None 4369 ← None None 4369 ← None None Spindle synchronous orientation decoefficient	
3369 ← None None 4369 ← None None 4369 ← None None Spindle synchronous orientation de coefficient	
3384 - None None 4384 - None None 4384 - None None Spindle FCR : Maximum accolarate	eceleration
Value in automatic phase matching	
3385 ← None None 4385 ← None None 4385 ← None None Hone Spindle EGB : time constant for free matching	e-running phase
3386 ← None None 4386 ← None None 4386 ← None None Spindle EGB : master side detector	r pulse count
3387 ← None None 4387 ← None None 4387 ← None None Spindle EGB : synchronous ratio n	
3388 ← None None 4388 ← None None 4388 ← None None Spindle EGB : synchronous ratio d	
3391 ← None None 4391 ← None None 4391 ← None None Resonance elimination filter 1 : atte	
3392 ← None None 4392 ← None None 4392 ← None None Resonance elimination filter 1 : atte	
3393 ← None None 4393 ← None None 4393 ← None None Resonance elimination filter 1 : da	mping
3394 ← 3467 ← 4394 ← 4467 ← 4394 ← Bit parameter	
3395 ← 3468 ← 4395 ← 4468 ← 4395 ← 4468 ← Bit parameter	
$3396 \leftarrow 3469 \leftarrow 4396 \leftarrow 4469 \leftarrow 4396 \leftarrow 4469 \leftarrow Bit parameter$	
$3397 \leftarrow 3470 \leftarrow 4397 \leftarrow 4470 \leftarrow 4397 \leftarrow 4470 \leftarrow $ Bit parameter	
3398 ← 3471 ← 4398 ← 4471 ← 4398 ← 4471 ← Bit parameter 3399 ← 3472 ← 4399 ← 4472 ← 4399 ← 4472 ← Bit parameter	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$3401 \leftarrow 3474 \leftarrow 4401 \leftarrow 4474 \leftarrow 4401 \leftarrow 4474 \leftarrow Bit parameter$	
$3402 \leftarrow 3475 \leftarrow 4402 \leftarrow 4475 \leftarrow 4402 \leftarrow 4475 \leftarrow $ Bit parameter	l l
$3403 \leftarrow 3476 \leftarrow 4403 \leftarrow 4476 \leftarrow 4403 \leftarrow 4476 \leftarrow $ Bit parameter	
3406 ← None None 4406 ← None None 4406 ← None None Hore the reference position in Cs contour	
$3408 \leftarrow \leftarrow \leftarrow 4408 \leftarrow \leftarrow 4408 \leftarrow \leftarrow $ Fine acceleration/deceleration time	
$3409 \leftarrow 3481 \leftarrow 4409 \leftarrow 4481 \leftarrow 4409 \leftarrow 4481 \leftarrow $ Feed-forward timing adjustment co	uring control

	1:	5 <i>i</i>			1	6 <i>i</i>			3	0 <i>i</i>		
МН	ML	SH	SL	МН	ML	SH	SL	МН	ML	SH	SL	Contents
3410	←	←		4410	←	←		4410	←	←	←	Disturbance input function : measurement start frequency
3411	←	←	\	4411	←	←	↓	4411	←	←	←	Disturbance input function : measurement end frequency
3412	←	←	←	4412	←	←	←	4412	←	←	←	Disturbance input function : measurement frequency interval
3413	←	←	←	4413	←	←	←	4413	←	←	←	Disturbance input function : number of measurements per frequency
3414	←	←	←	4414	←	←	←	4414	←	←	←	Disturbance input function : disturbance torque command amplitude
3415	←	←	←	4415	←	←	←	4415	←	←	←	Disturbance input function : motor speed command for measurement
3416	←	None	None	4416	←	None	None	4416	←	None	None	Resonance elimination filter 2 : attenuation center frequency
3417	←	None		4417	←	None	None	4417	←	None	None	Resonance elimination filter 2 : attenuation bandwidth
3418	\leftarrow	None		4418	\leftarrow		None	4418	←	None	None	Resonance elimination filter 2 : damping
3419	←	None	None	4419	←	None	None	4419	←	None		Resonance elimination filter 3 : attenuation center frequency
3420	←	None	None	4420	←	None	None	4420	←	None		Resonance elimination filter 3 : attenuation bandwidth
3421	\leftarrow	None	None	4421	\leftarrow	None	None	4421	←	None	None	Resonance elimination filter 3 : damping
3422	←	None	None	4422	←	None	None	4422	←	None		Resonance elimination filter 4 : attenuation center frequency
3423	←	None	None	4423	←	None	None	4423	←	None	None	Resonance elimination filter 4 : attenuation bandwidth
3424	\leftarrow	None	None	4424	\leftarrow	None	None	4424	←	None	None	Resonance elimination filter 4 : damping
3498	←	None	None	4498	←	None	None	4498	←	None		Spindle EGB master side : denominator of arbitrary gear ratio between motor sensor and spindle
3499	←	None	None	4499	←	None	None	4499	←	None	None	Spindle EGB master side : numerator of arbitrary gear ratio between motor sensor and spindle
3500	←	None	None	4500	←	None	None	4500	←	None	None	Denominator of arbitrary gear ratio between spindle sensor and spindle (High)
3501	←	None	None	4501	←	None	None	4501	←	None	None	Numerator of arbitrary gear ratio between spindle sensor and spindle (High)
3502	←	None	None	4502	←	None	None	4502	←	None	None	Denominator of arbitrary gear ratio between spindle sensor and spindle (Low)
3503	←	None	None	4503	←	None	None	4503	←	None	None	Numerator of arbitrary gear ratio between spindle sensor and spindle (Low)
3508	←	←		4508	←	←		4508	←	←	←	Rate of change in acceleration at soft start/stop
3520	←	None	None	4520	←	None	None	4520	←	None	None	Primary delay time constant in dual position feedback [in servo mode]
3521	←	None	None	4521	←		None	4521	←	None		Maximum amplitude in dual position feedback [in servo mode]
3522	←	None	None	4522	←	None	None	4522	←	None	None	Dual position feedback zero width [in servo mode]
3523	←	None	None	4523	←	None	None	4523	←	None	None	Excessive semi-closed loop/closed loop position error alarm detection level [in servo mode]

PARAMETER TABLE FOR EACH MOTOR MODEL

C.1 SPINDLE MOTOR αi I series

	Motor model		α <i>i</i> I 0.5/10000	αi I 1/10000	α <i>i</i> Ι 1.5/10000	αi I 2/10000	αi I 3/10000	αi I 6/10000	αi I 8/8000	α <i>i</i> I 12/7000
App	plicable ampl	ifier	α <i>i</i> SP2.2	α <i>i</i> SP2.2	α <i>i</i> SP5.5	αi SP5.5	α <i>i</i> SP5.5	α <i>i</i> SP11	α <i>i</i> SP11	α <i>i</i> SP15
AIIbl	Model code oftware serie		301	302	304	306	308	310 9D50/F	312 9D50/D	314
	ed winding ch		9D50/F —	9D50/D —	9D50/D —	9D50/D —	9D50/D —	9D30/F	9D30/D	9D50/D —
	ed winding ch		0.55/1.1kW 3000/10000min ⁻¹	1.5/2.2kW 3000/10000min ⁻¹	1.1/3.7kW 1500/10000min ⁻¹	2.2/3.7kW 1500/10000min ⁻¹	3.7/5.5kW 1500/10000min ⁻¹	5.5/7.5kW 1500/10000min ⁻¹	7.5/11kW 1500/8000min ⁻¹	11/15kW 1500/7000min ⁻¹
FS15i	FS16i	FS30i	3000/1000011111	3000/1000011111	1300/10000111111	1300/10000111111	1300/1000011111	1300/10000111111	1300/0000111111	1300/1000111111
3007	4007	4007	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3008	4008	4008	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3009 3010	4009 4010	4009 4010	00000000	00000000	00000000	0000000	0000000	0000000	0000000	00000000
3011	4011	4011	00011000	00011001	00011001	00011001	00011001	00011010	00011010	00011010
3012	4012	4012	10000010	10000010	10000010	10000010	10000010	10000010	10000010	10000010
3013	4013	4013	00001100	00001100	00001100	00001100	00001100	00001100	00001100	00001100
3019	4019	4019	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100
3020	4020	4020	10000	10000	10000	10000	10000	10000	8000	7000
3023 3039	4023 4039	4023 4039	0	0	0	0	0	0	0	0
3040	4040	4040	U	U	U	U	U	U	U	U
3041	4041	4041								
3048	4048	4048								
3049	4049	4049								
3080	4080	4080	90	83 80(*1)	85 65(*1)	77 70(*1)	65(*1)	66	75	70
3083	4083	4083	30	30	30	30		30	30	30
3093 3100	4093 4100	4093 4100	0 3400	0 3100	0 1650	0 1550	0 1600	0 1550	0 1600	0 1500
3100	4100	4100	100	100	100	100	100	96	100	100
3102	4102	4102	6500	3557	2767	2567	1967	2630	1656	1500
3103	4103	4103	46	87	60	68	75	60	0	0
			0(*1)	0(*1)	0(*1)	0(*1)	0(*1)			_
3104	4104	4104	3000	6000	6000	6000	7000	6000	8000	7000
3105 3106	4105 4106	4105 4106	7500	6000	0 6000	6000	7000	6000	0 8000	7000
3107	4100	4107	7500	0000	0000			0	0	7000
3108	4108	4108	0	0	0	0	0		0	
3109	4109	4109	25	25	25	25		25	25	25
3110	4110	4110	1571	690	563	474	475	754	503	595
3111	4111	4111	260	102	217	175	200	260	170	173
3112 3113	4112 4113	4112 4113	200 2077	200 2100	200 1635	200 1192	19400 1077	200 620	200 790	200 311
3114	4114	4114	23040	17920	0			20480	19200	23040
3115	4115	4115	100	100	100	100	100	100	100	100
3116	4116	4116	13760	10018	9598	9300	7950	8803	8118	5000
3117	4117	4117	90	90	90	90		90	90	90
3118 3119	4118 4119	4118 4119	100 5	100 5	100 5	100		100 15	100 12	100 31
3120	4119	4119	0	0	0			0	0	0
3124	4124	4124	0	0	0	0	0	0	0	0
3127	4127	4127	240	176	404	202	178	164	176	164
3128	4128	4128	120	0		90			117	0
3129 3130	4129 4130	4129 4130	0 25700	0 25700	0 25700	0 25700		0 25700	0 25700	0 25700
3134	4134	4134	110	110	110	110		130	130	130
3136	4136	4136	0	0	0			0	0	0
3138	4138	4138	0	0	0			0	0	0
3139	4139	4139	0	0	0			0	0	0
3140	4140	4140 4141	0	0	0				0	
3141 3142	4141 4142	4141	0	0	0				0	0
3143	4143	4143	0							
3144	4144	4144	0			0	0	0		
3145	4145	4145	0	0	0	0	V	0	0	0
3146 3147	4146 4147	4146 4147	0	0					0	
3147	4147	4147	0	0					0	
3149	4149	4149	0	0					0	
3150	4150	4150	0	0	0	0	0	0	0	0
3151	4151	4151	0	0						0
3152	4152	4152	0							
3153 3154	4153 4154	4153 4154	0	0					0	
3155	4154	4154	0	0					0	
3156	4156	4156	0						0	
3158	4158	4158	0	0	0			0	0	0
3159	4159	4159	0	0	0				0	0
3161	4161	4161	0	0	0				0	
3165 3166	4165 4166	4165 4166	0	0	0				0	
3169	4169	4169	0	0	0			0	0	0
	utput during		1.32kW	2.64kW	4.44kW	4.44kW	-	·	13.2kW	18.0kW
(fo	or PS selection	on)	2.60kW(*1)	2.87kW(*1)	6.7kW(*1)	6.4kW(*1)	7.9kW(*1)			
	model (old ı		α0.5/10000i	α1/10000 <i>i</i>	α1.5/10000i	α2/10000i	α3/10000i	α6/10000i	α8/8000i	α12/7000i
Applicabl	le amplifier (d	old name)	SPM-2.2i	SPM-2.2 <i>i</i>	SPM-5.5i	SPM-5.5 <i>i</i>	SPM-5.5 <i>i</i>	SPM-11 <i>i</i>	SPM-11 <i>i</i>	SPM-15 <i>i</i>

^(*1) This setting makes the maximum output during acceleration greater and the acceleration time reduced.

	Motor model	<u> </u>	α <i>i</i> I 15/7000	α <i>i</i> I 18/7000	αi I 22/7000	αi I 30/6000	αi I 40/6000	αi I 50/4500	α <i>i</i> I 1.5/15000
App	plicable ampl	ifier	α <i>i</i> SP22	α <i>i</i> SP22	α <i>i</i> SP26	α <i>i</i> SP45	α <i>i</i> SP45	α <i>i</i> SP55	α <i>i</i> SP15
	Model code		316	318	320	322	323	324	305
Applicable so	oftware serie	s and edition	9D50/D	9D50/F	9D50/D	9D50/E	9D50/E	9D50/F	9D50/I
Low-spee	ed winding ch	racteritics	_	_	_	_	_	_	_
High-cnee	ed winding ch	racterities	15/18.5kW	18.5/22kW	22/26kW	30/37kW	37/45kW	45/55kW	1.5/2.2kW
			1500/7000min ⁻¹	1500/7000min ⁻¹	1500/7000min ⁻¹	1150/6000min ⁻¹	1500/6000min ⁻¹	1150/4500min ⁻¹	3000/15000min ⁻¹
FS15 <i>i</i> 3007	FS16 <i>i</i> 4007	FS30 <i>i</i> 4007	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3008	4007	4007	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3009	4009	4009	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3010	4010	4010	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3011 3012	4011 4012	4011 4012	00011010 10000010	00011010 10000010	00011010 10000010	00011010 10000010	00011010 10000000	00011010 10000000	00011001 10000010
3013	4013	4013	01010000	01010000	01010000	00011000	00011000	00011000	00001100
3019	4019	4019	00000100	00000100	00000100	00000100	00000100	00000100	00000100
3020	4020	4020	7000	7000	7000	6000	6000	4500	15000
3023 3039	4023 4039	4023 4039	0	0	0	0	0	0	0
3040	4040	4040	0	U	0	U		- O	0
3041	4041	4041							
3048	4048	4048							
3049	4049	4049							
3080	4080	4080	20555	11615	80	77	80	80	14165
3083	4083	4083	30	30	30	30	30	30	10
3093	4093	4093	0	0	0	0	0	0	0
3100 3101	4100 4101	4100 4101	1500 95	1520 100	1500 95	1387 100	1740 100	1200 85	3250 33
3101	4101	4101	1710	1813	1756	1387	1740	1201	7145
3103	4103	4103	0	84	0	0	0	89	75
			_						
3104 3105	4104 4105	4104 4105	5500 0	3000	4500 0	6000	3000	3000	2300
3106	4106	4106	5500	10000	4500	6000	3000	4500	8700
3107	4107	4107	0	0	0	0	0	0	0
3108	4108	4108	0	0	0	0	0	0	0
3109 3110	4109 4110	4109 4110	25 794	25 943	25 924	25 1145	25 970	25 1260	25 629
3111	4111	4111	243	333	252	286	286	320	180
3112	4112	4112	200	200	200	200	200	200	200
3113	4113	4113	304	308	290	189	190	170	2227
3114 3115	4114 4115	4114 4115	23040 100	0 100	0 100	20480 100	23040 100	23040 100	0 90
3116	4116	4116	5177	3600	5564	6071	6128	5800	10289
3117	4117	4117	90	90	29530	90	90	90	90
3118	4118	4118	100	100	110	100	100	100	100
3119 3120	4119 4120	4119 4120	31 0	31 0	29	51 0	48	56 0	5 0
3124	4124	4124	0	0	0	0	0	0	0
3127	4127	4127	148	143	142	148	146	146	176
3128	4128	4128	105 0	0	105	0	0	114	73
3129 3130	4129 4130	4129 4130	25700	25700	0 25700	25700	25700	25700	25700
3134	4134	4134	130	130	130	130	130	130	110
3136	4136	4136	0	0	0	0	0	0	0
3138	4138	4138	0	0	0	0	0	0	0
3139 3140	4139 4140	4139 4140	0	0	0	0	0	0	0
3141	4141	4141	0	0	0	0	0	0	0
3142	4142	4142	0	0	0	0	0	0	0
3143 3144	4143 4144	4143 4144	0	0	0	0	0	0	0
3144	4145	4144	0	0	0	0	0	0	0
3146	4146	4146	0	0	0	0	0	0	0
3147	4147	4147	0	0	0	0	0	0	0
3148 3149	4148 4149	4148 4149	0	0	0	0	0	0	0
3150	4149	4149	0	0	0	0	0		0
3151	4151	4151	0	0	0	0	0	0	0
3152	4152	4152	0	0	0	0	0		0
3153 3154	4153 4154	4153 4154	0	0	0	0	0		0
3155	4155	4155	0			0	0		0
3156	4156	4156	0	0	0	0	0	0	0
3158	4158	4158	0	0	0	0	0		0
3159 3161	4159 4161	4159 4161	0	0	0	0	0		0
3165	4165	4165	0	0	0	0	0		0
3166	4166	4166	0	0	0	0	0	0	0
3169 Mariana	4169	4169	0	0	0	0	0 E4 0kW	0	13.064
	utput during a or PS selection		22.2kW	26.4kW	31.2kW	44.4kW	54.0kW	66.0KW	13.0kW
	model (old i		α15/7000i	α18/7000i	α22/7000i	α30/6000i	α40/6000i	α50/4500i	α1.5/15000i
	le amplifier (SPM-22 <i>i</i>	SPM-22 <i>i</i>	SPM-26 <i>i</i>	SPM-45 <i>i</i>	SPM-45 <i>i</i>	SPM-55 <i>i</i>	SPM-15 <i>i</i>
, ,	, (

	Motor model		iI 245000	iI 2//2000	iI 0//2000	iI 0/42000(*4)	. i I 0/40000	. i I 0/40000(*4)	iI 42/40000	. i I 42/40000/*4)
Apr	plicable ampl		αί I 2/15000 αί SP22	αi I 3/12000 αi SP11	αi I 6/12000 αi SP11	αi I 6/12000(*4) αi SP11	αi I 8/10000 αi SP11	αi I 8/10000(*4) αi SP11	αί Ι 12/10000 αί SP15	αi I 12/10000(*4) αi SP15
1,4,	Model code		307	309	401	-	402	-	403	-
Applicable s	oftware serie	s and edition	9D50/D	9D50/F	9D50/D	_	9D50/F	_	9D50/F	_
Low-spee	ed winding ch	racteritics	_	_	5.5/7.5kW	5.5/7.5kW	7.5/11kW	7.5/11kW	11/15kW	11/15kW
			2.2/3.7kW	3.7/5.5kW	1500/12000min ⁻¹ 5.5/7.5kW	1500/12000min ⁻¹	1500/10000min ⁻¹ 7.5/11kW	1500/10000min ⁻¹	1500/10000min ⁻¹ 11/15kW	1500/10000min ⁻¹
High-spee	ed winding ch	racteritics	3000/15000min ⁻¹	1500/12000min ⁻¹	4000/12000min ⁻¹	_	4000/10000min ⁻¹	_	4000/10000min ⁻¹	_
FS15i	FS16 <i>i</i>	FS30i								
3007 3008	4007 4008	4007 4008	00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000
3009	4009	4009	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3010	4010	4010	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3011 3012	4011 4012	4011 4012	00011001 10000010	00011001 10000010	00011010 10000010	00011010 10000010	00011010 10000010	00011010	00011010 10000010	00011010
3012	4013	4012	01010000	00001100	000010	000010	00001100	10000010 00001100	00001100	10000010 00001100
3019	4019	4019	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100
3020	4020	4020	15000	12000	12000	12000	10000	10000	10000	10000
3023 3039	4023 4039	4023 4039	0	0	333(*2)	0	400(*2)	0	400(*2)	0
3040	4040	4040	•			6(*3)		6(*3)	, and the second	
3041	4041	4041			6(*3)	0(40)	6(*3)	0.440		
3048 3049	4048 4049	4048 4049			6(*3)	6(*3)	6(*3)	6(*3)		
3080	4080	4080	12122	16720	82	66		14168	75	70
					78(*1)					
3083 3093	4083 4093	4083 4093	10	30	30 164	30	30 176	30	30 164	30 0
3100	4100	4100	3200	1500	4000	1550	3538	1600	3900	1500
3101 3102	4101	4101 4102	45 6432	87 3015	81 4561	96 2630	100	100 1656	80	100 1500
	4102				4561		3538		3593	
3103	4103	4103	92	82	0(*1)	60	0	0	90	0
3104	4104	4104	3000	3200	4000	6000	2200	6000	1800	7000
3105 3106	4105 4106	4105 4106	3000	7500	4000	6000	8000	18000	6500	7000
3107	4107	4107	0	0	0	0	0	0	0	0
3108	4108	4108	0	0					0	0
3109 3110	4109 4110	4109 4110	25 588	25 559	25 431	25 754	25 503	25 503	25 595	25 595
3111	4111	4111	175	190	125	260	165	170	173	173
3112	4112	4112	200	200	200	200	200	200	200	200
3113 3114	4113 4114	4113 4114	1800	900 19200	650 20480	620 20480	480	790 19200	280	311 23040
3115	4115	4115	100	100	100	100	100	100	100	100
3116	4116	4116	16564	7376	8986	8803	5734	8118	5280	5000
3117 3118	4117 4118	4117 4118	90 100	90 100	90 100	90 100	100 100	90 100	90 100	90 100
3119	4119	4119	2	9	15	15	20	12	34	31
3120	4120	4120 4124	0	0		0	0		0	0
3124 3127	4124 4127	4124	202	<u>0</u> 178	0 164	164	176		164	0 164
3128	4128	4128	85	0	95	109	0	117	0	0
3129 3130	4129 4130	4129 4130	0	0	0 25700	0 25700	0 35700		0 25700	0
3134	4134	4134	25700 110	25700 110	25700 130	130	25700 130	25700 130	25700 130	25700 130
3136	4136	4136	0	0	30	0	30	0	30	0
3138 3139	4138 4139	4138 4139	0	0		0		0	1500 100	0
3140	4140	4140	0	0		0		0		0
3141	4141	4141	0	0		0		-	0	0
3142 3143	4142 4143	4142 4143	0	0		0		0	7000 7000	0
3144	4144	4143	0					V		
3145	4145	4145	0	0		0		0	25	0
3146 3147	4146 4147	4146 4147	0	0		0		0	595 173	0
3148	4148	4148	0	0	200	0	200	0	200	0
3149	4149	4149	0	0		0			311	0
3150 3151	4150 4151	4150 4151	0	0		0			23040 100	0
3152	4152	4152	0	0	8803	0	8118	0	5000	0
3153	4153	4153	0	0		0		0	90	0
3154 3155	4154 4155	4154 4155	0	0		0			100	0
3156	4156	4156	0	0	0	0	0	0	0	0
3158	4158	4158	0	0		0		0	0	0
3159 3161	4159 4161	4159 4161	0	0		0			0 25700	0
3165	4165	4165	0	0	15	0	12	0	31	0
3166	4166	4166	0	0		0		0	70	0
3169 Maximum o	4169 utput during	4169 acceleration	20.0kW	0 13.0kW	9.0kW	9.0kW	0 13.2kW	13.2kW	0 18.0kW	0 18.0kW
	or PS selection				14.0kW(*1)					
	model (old		α2/15000i	α3/12000i	α6/12000i	α6/12000i	α8/10000i	α8/10000i	α12/10000i	α12/10000i
Applicab	le amplifier (old name)	SPM-22 <i>i</i>	SPM-11 <i>i</i>	SPM-11 <i>i</i>	SPM-11 <i>i</i>	SPM-11 <i>i</i>	SPM-11 <i>i</i>	SPM-15 <i>i</i>	SPM-15 <i>i</i>

- (*1) This setting makes the maximum output during acceleration greater and the acceleration time reduced.
- (*2) When using the SDT signal, manually change the parameters that were automatically set.
- (*3) Set this value as the initial value of the velocity loop gain for low-speed characteristics of speed range switching.
- (*4) This setting is used when only a low-speed winding is connected without the output range being switched in the output range switching motor.

	Motor model		αi I 15/10000	αi I 15/10000(*4)	αi I 18/10000	αi I 18/10000(*4)	αi I 22/10000	αi I 22/10000(*4)
	plicable ampl		α <i>i</i> SP22	α <i>i</i> SP22	αi SP22	α <i>i</i> SP22	αi SP26	α <i>i</i> SP26
	Model code		404	_	405	-	406	_
pplicable s	oftware serie	s and edition	9D50/F		9D50/F	_	9D50/E	=
Low-spee	ed winding ch	racteritics	15/18.5kW 1500/10000min ⁻¹	15/18.5kW 1500/10000min ⁻¹	18.5/22kW 1500/10000min ⁻¹	18.5/22kW 1500/10000min ⁻¹	22/26kW 1500/10000min ⁻¹	22/26kW 1500/10000min ⁻¹
High-spee	ed winding ch	racteritics	15/18.5kW 4000/10000min ⁻¹	_	18.5/22kW 4000/10000min ⁻¹	-	22/26kW 4000/10000min ⁻¹	_
FS15i	FS16i	FS30i	4000/1000011111		4000/10000111111		4000/10000111111	
3007	4007	4007	00000000	00000000	00000000	00000000	00000000	00000000
3008	4008	4008	00000000	00000000	00000000	00000000	00000000	00000000
3009	4009	4009	00000000	00000000	00000000	00000000	00000000	00000000
3010	4010	4010	00000000	00000000	00000000	00000000	00000000	00000000
3011 3012	4011 4012	4011 4012	00011010 10000010	00011010 10000010	00011010 10000010	00011010 10000010	00011010 10000010	00011010 10000010
3013	4013	4013	01010000	01010000	01010000	01010000	01010000	0101000
3019	4019	4019	00000100	00000100	00000100	00000100	00000100	00000100
3020	4020	4020	10000	10000	10000	10000	10000	1000
3023	4023	4023	400(*2)		400(*2)		400(*2)	
3039	4039	4039	0	0	0	0	0	
3040	4040	4040						
3041 3048	4041 4048	4041 4048						
3049	4049	4049						
3080	4080	4080	80	20555	80	11615	75	56
3083	4083	4083	30	30	30	30	30	30
3093	4093	4093	148	0	143	0	142	(
3100	4100	4100	4000	1500	4100	1520	4000	1440
3101	4101	4101	62	95	100	100	83	96
3102	4102	4102	3482	1710	4582	1813	3504	1709
3103	4103	4103	75	70	89	84	0	96
3104	4104	4104	1700	5500	1300	3000	2800	5000
3105	4105	4105	0	0	0	0	0	0000
3106	4106	4106	5500	5500	5000	10000	2800	5000
3107	4107	4107	0	0	0	0	0	(
3108	4108	4108	0	0	0	0	0	(
3109	4109	4109	25	25	25	25	25	25
3110	4110	4110	575	794	754	943	603	823
3111 3112	4111 4112	4111 4112	193 200	243 200	260 200	333 200	143 200	213
3113	4113	4113	275	304	319	308	265	300
3114	4114	4114	23040	23040	0.00	0	24320	19200
3115	4115	4115	100	100	100	100	100	100
3116	4116	4116	5126	5177	4100	3600	5523	5593
3117	4117	4117	90	90	90	90	90	90
3118	4118	4118	90	100	100	100	100	100
3119 3120	4119 4120	4119 4120	35 0	31 0	30	31	36	341
3124	4124	4124	0	0	0	0	0	(
3127	4127	4127	148	148	143	143	142	142
3128	4128	4128	0	105	102	0	0	(
3129	4129	4129	0	0	0	0	0	(
3130	4130	4130	25700	25700	25700	25700	25700	25700
3134	4134	4134	130	130	130	130	130	130
3136	4136	4136	30	0	30	0	30	(
3138	4138 4139	4138 4139	1500 95	0	1520 100	0	1440 96	(
3139 3140	4139	4139	1710	0	1813	0	1709	(
3141	4141	4141	70	0	84	0	96	(
3142	4142	4142	5500	0	3000	0	5000	(
3143	4143	4143	5500	0	10000	0	5000	(
3144	4144	4144	0	0	0	0	0	(
3145	4145	4145	25	0	25	0	25	
3146	4146	4146	794	0	943	0	823	(
3147	4147 4148	4147 4148	243	0	333 200	0	213 200	(
3148 3149	4148	4148	200 304	0		0	300	(
3150	4150	4150	23040	0	0	0	19200	
3151	4151	4151	100	0	100	0	100	(
3152	4152	4152	5177	0	3600	0	5593	(
3153	4153	4153	90	0	90	0	90	(
3154	4154	4154	100	0	100	0	100	(
3155	4155	4155	0	0	0	0	0	(
3156	4156	4156	0	0		0	0	
3158 3159	4158 4159	4158 4159	105 0	0	0	0	0	(
3161	4161	4161	25700	0	25700	0	25700	
3165	4165	4165	31	0		0	341	
3166	4166	4166	20555	0		0	56	
3169	4169	4169	0	0	0	0	0	
Maximum o	utput during	acceleration	22.2kW	22.2kW	26.4kW	26.4kW	31.2kW	31.2kV
/£.	or PS selection	on)						
(10		_	15/10000:	α15/10000i	α18/10000i	α18/10000i	α22/10000i	$\alpha 22/10000i$
	r model (old i	name)	α 15/10000 i	Q 13/ 100001	Q 10/ 100001	0.10/10000/	(LZZ/10000)	(LZZ) 10000i

- (*2) When using the SDT signal, manually change the parameters that were automatically set.
- (*4) This setting is used when only a low-speed winding is connected without the output range being switched in the output range switching motor.

C.2 SPINDLE MOTOR αi I_P series

	Motor model		αi I _P 12/6000	αi I _P 12/8000	αi I _P 15/6000	αi I _P 15/8000	αi I _P 18/6000	αi I _P 18/8000	αi I _P 22/6000	αi I _P 22/8000
Ap	plicable ampli	fier	α <i>i</i> SP11	α <i>i</i> SP11	α <i>i</i> SP15	α <i>i</i> SP15	α <i>i</i> SP15	α <i>i</i> SP15	α <i>i</i> SP22	α <i>i</i> SP22
A F 11	Model code	1 100	407	_	408	_	409	_	410	_
Applicable s	oftware serie	s and edition	9D50/F 3.7/7.5kW	- 3.7/7.5kW	9D50/F 5/9kW		9D50/F 6/11kW	- 6/11kW	9D50/F 7.5/15kW	7.5/15kW
Low-spec	ed winding ch	racteritics	500/1500min ⁻¹	500/1500min ⁻¹	500/1500min ⁻¹	500/1500min ⁻¹				
High-spe	ed winding ch	racteritics	5.5/7.5kW	5.5/7.5kW	7.5/9kW	7.5/9kW	9/11kW	9/11kW	11/15kW	11/15kW
			750/6000min ⁻¹	750/8000min ⁻¹	750/6000min ⁻¹	750/8000min ⁻¹	750/6000min ⁻¹	750/8000min ⁻¹	750/6000min ⁻¹	750/8000min ⁻¹
FS15 <i>i</i> 3007	FS16 <i>i</i> 4007	FS30 <i>i</i> 4007	00000000		00000000	-	00000000		00000000	_
3007	4007	4007	00000000		00000000		00000000	1	00000000	<u> </u>
3009	4009	4009	00000000	←	00000000	←	00000000	←	00000000	←
3010	4010	4010	00000000	←	00000000	+	00000000	1	00000000	←
3011	4011 4012	4011	00011010 10000010	←	00011010 10000010	←	00011010	←	00011010 10000010	←
3012 3013	4012	4012 4013	00001100	→	00001100		10000010 00001100	1	01010000	<u>←</u>
3019	4019	4019	00000100	←	00000100	←	00000100	+	00000100	←
3020	4020	4020	6000	8000	6000	8000	6000	8000	6000	8000
3023	4023	4023	125(*2)	94(*2)	125(*2)	94(*2)	125(*2)	94(*2)	125(*2)	94(*2)
3039 3040	4039 4040	4039 4040	0	←	0	←	0	↓	0	←
3040	4040	4041								
3048	4048	4048								
3049	4049	4049								
3080	4080	4080	11610	←	16730	←	75	←	18000	←
3083 3093	4083 4093	4083 4093	30 243		30 216		30 220	1	30 240	←
3100	4100	4100	750	<u></u>	750	· ·	740	↓	800	<u>←</u>
3101	4101	4101	100	←	90	←	100	←	100	←
3102	4102	4102	1488		1431	←	1261	←	1342	←
3103 3104	4103 4104	4103 4104	75 4000	←	65 3800	←	70 5500	←	65 5500	←
3104	4104 4105	4104 4105	4000		3800	←	5500	↓	5500 0	<u>←</u>
3106	4106	4106	10000	←	11000	←	17000	←	5500	←
3107	4107	4107	0	←	0	+	0	↓	0	←
3108	4108	4108	0		0	←	0		0	←
3109 3110	4109 4110	4109 4110	25 815	←	25 1043	←	25 754	←	25 914	←
3111	4111	4111	297		326	-	225		300	<u>←</u>
3112	4112	4112	200	←	200	←	200	←	200	←
3113	4113	4113	240	←	270	←	300	←	300	+
3114	4114	4114	23040	←	23040	←	0	←	23040	←
3115 3116	4115 4116	4115 4116	100 5307	←	100 5171	→	100 5671	←	100 6196	<u>←</u>
3117	4117	4117	90	←	90	←	90	·	90	←
3118	4118	4118	100	←	100	_	100	1	100	←
3119	4119	4119	40	↓	35	↓	32	↓	301	←
3120 3124	4120 4124	4120 4124	0		0	←	0	←	0	←
3124	4127	4127	164	<u> </u>	144		147		164	-
3128	4128	4128	105	←	105	←	105	↓	110	←
3129	4129	4129	0	←	0	1	0	Ţ	0	←
3130	4130	4130	25700	←	25700	<u>←</u>	25700	→	25700	←
3134 3136	4134 4136	4134 4136	130 30	→	130 30		130 30	1	130 30	-
3138	4138	4138	530	←	560	←	500	←	530	←
3139	4139	4139	90	←	100	←	90	+	100	←
3140	4140	4140	887	+	1143	↓	755	↓	930	←
3141 3142	4141 4142	4141 4142	0 6500	←	80 5000	←	60 8000	←	0 6500	<u>←</u>
3143	4143	4143	15000	, -	13000	· · ·	23000	, -	15000	←
3144	4144	4144	0		0	←	0	←	0	←
3145	4145	4145	25	_	25	+	25	↓	25	←
3146 3147	4146 4147	4146 4147	1494 565	←	2514 816	←	1489 476	←	1886 617	<u>←</u>
3148	4148	4148	200		200		200		200	-
3149	4149	4149	270	←	280	←	315	←	327	←
3150	4150	4150	23040	←	23040	←	0	←	20480	←
3151	4151	4151	100	←	100	←	100	←	100	←
3152 3153	4152 4153	4152 4153	5268 90	←	5170 90	↓	5660 90	←	4813 90	←
3154	4154	4154	100	<u></u>	100	<u></u>	115	· -	110	<u></u>
3155	4155	4155	0		0	←	0	↓	0	←
3156	4156	4156	0		0	←	0	—	0	←
3158	4158	4158	110	←	105	←	0	←	90	←
3159 3161	4159 4161	4159 4161	0 25700	←	0 25700		25700	↓	25700	<u>←</u>
3165	4165	4165	15	←	34	←	10	+	20	←
3166	4166	4166	70	+	70	1	77	Ţ	75	←
3169	4169	4169	0		0	←	0	←	0	←
	output during		12.3kW	12.3kW	13.5kW	13.5kW	15.1kW	15.1kW	20.0kW	20.0kW
	or PS selection		40/0000	40/0000	45/0000	45/0000	40/0000	40/0000	00/0000	00/0000
	r model (old r ole amplifier (o		α12/6000i P SPM-11i	α12/8000i P SPM-11i	α15/6000i P SPM-15i	α15/8000i P SPM-15i	α18/6000 <i>i</i> P SPM-15 <i>i</i>	α18/8000i P SPM-15i	α22/6000i P SPM-22i	α22/8000i P SPM-22i
Applicat	ampillior (C	, a manito/	OI IVITII	OI WETT	OI IVI-101	O1 1VI=101	O1 IVI-101	O1 1VI=131	OI IVI-ZZI	OI IVI=ZZI

^(*2) When using the SDT signal, manually change the parameters that were automatically set.

M	Notor model		αi I _P 30/6000	αi I _P 40/6000	αi I _P 50/6000	αi I _P 60/4500
Appli	icable ampli	fier	α <i>i</i> SP22	α <i>i</i> SP26	α <i>i</i> SP26	α <i>i</i> SP30
N	Model code		411	412	413	414
Applicable sof	tware serie:	s and edition	9D50/E	9D50/F	9D50/E	9D50/F
Low-speed	winding chr	racteritics	11/18.5kW	13/22kW	22/30kW	18.5/30kW
			400/1500min ⁻¹ 15/18.5kW	400/1500min ⁻¹ 18.5/22kW	575/1500min ⁻¹ 22/30kW	400/1500min ⁻¹ 22/30kW
High-speed	I winding ch	racteritics	575/6000min ⁻¹	575/6000min ⁻¹	1200/6000min ⁻¹	750/4500min ⁻¹
FS15i	FS16i	FS30i	07070000111111	070/0000111111	1200/0000111111	70074000111111
3007	4007	4007	00000000	00000000	00000000	00000000
3008	4008	4008	00000000	00000000	00000000	00000000
3009	4009	4009	00000000	00000000	00000000	00000000
3010	4010	4010	00000000	00000000	00000000	00000000
3011	4011 4012	4011 4012	00011010	00011010	00011010 10000010	00011010
3012 3013	4012	4012	10000010 01010000	10000000 01010000	01010000	10000000 01010000
3019	4019	4019	00000100	00000100	00000100	00000100
3020	4020	4020	6000	6000	6000	4500
3023	4023	4023	96(*2)	96(*2)	200(*2)	167(*2)
3039	4039	4039	0	0	0	0
3040	4040	4040				
3041	4041	4041				
3048 3049	4048 4049	4048 4049				
3080	4080	4080	19280	65	75	75
3083	4083	4083	30	30	30	30
3093	4093	4093	202	203	164	195
3100	4100	4100	590	590	1107	750
3101	4101	4101	100	100	100	84
3102	4102	4102	889	835	1107	861
3103	4103	4103	85	80	0	80
3104 3105	4104	4104	10000	3500	8000	5000
3105	4105 4106	4105 4106	0 10000	0 6500	0 8000	9000
3107	4107	4107	0	0300	0	0
3108	4108	4108	0	0	0	0
3109	4109	4109	25	25	25	25
3110	4110	4110	750	1052	686	1018
3111	4111	4111	267	312	175	280
3112	4112	4112	150	200	200	200
3113	4113	4113	198	170 0	180	196 0
3114 3115	4114 4115	4114 4115	21760 100	100	25600 100	100
3116	4116	4116	6050	4500	6150	5050
3117	4117	4117	90	90	90	90
3118	4118	4118	100	100	100	100
3119	4119	4119	48	56	53	49
3120	4120	4120	0	0	0	0
3124	4124	4124 4127	0	0 143	0	0
3127 3128	4127 4128	4127	148 105	85	164 100	164 0
3129	4129	4129	0	0	0	0
3130	4130	4130	25700	25700	25700	25700
3134	4134	4134	130	130	130	130
3136	4136	4136	30	30	30	30
3138	4138	4138	400	430	608	420
3139	4139	4139	100	100	100	85
3140 3141	4140 4141	4140 4141	684 0	713 56	608	497 0
3142	4142	4141	13000	5000	21000	8000
3143	4143	4143	13000	7000	21000	12000
3144	4144	4144	0	0	0	0
3145	4145	4145	25	25	25	25
3146	4146	4146	2011	2155	1131	1764
3147	4147	4147	733	655	317	510
3148	4148 4149	4148 4149	200	200	200	200
3149 3150	4149	4149	165 0	200	195 23040	195 0
3151	4151	4151	100	100	100	100
3152	4152	4152	6008	5200	6191	5045
3153	4153	4153	28250	90	90	90
3154	4154	4154	100	100	100	100
3155	4155	4155	0	0	0	0
3156	4156	4156	0	0	0	0
3158 3159	4158 4159	4158 4159	90 0	0	110 0	0
3161	4161	4161	25700	25700	25700	25700
3165	4165	4165	58	48	49	20
3166	4166	4166	50	17232	65	45
3169	4169	4169	0	0	0	0
		acceleration	25.0kW	29.0kW	35.4kW	36kW
Maxilliulli out	(for PS selection)					
	PS selection	on)				
(for	PS selection model (old r		α30/6000 <i>i</i> P	α40/6000 <i>i</i> P	α50/6000 <i>i</i> P	α60/4500 <i>i</i> P

^(*2) When using the SDT signal, manually change the parameters that were automatically set.

C.3 SPINDLE MOTOR αi IT series

	Motor model	<u> </u>	αi Iτ 1.5/15000	αi Iτ 2/15000	αi Iτ 3/12000	αi I _T 6/12000	αi Iτ 6/12000(*4)	αi Iτ 8/12000	αi Iτ 8/12000(*4)
Ap	plicable ampl	ifier	α <i>i</i> SP15	α <i>i</i> SP22	α <i>i</i> SP11	α <i>i</i> SP15	α <i>i</i> SP15	α <i>i</i> SP15	α <i>i</i> SP15
	Model code		_	_	_	_	_	_	_
	oftware serie ed winding ch		_	_	<u> </u>	5.5/7.5kW	5.5/7.5kW	7.5/11kW	7.5/11kW
			1.5/2.2kW	2.2/3.7kW	3.7/5.5kW	1500/12000min ⁻¹ 5.5/7.5kW	1500/12000min ⁻¹	1500/12000min ⁻¹ 7.5/11kW	1500/12000min ⁻¹
High-spe	ed winding ch	racteritics	3000/15000min ⁻¹		1500/12000min ⁻¹	4000/12000min ⁻¹	_	4000/12000min ⁻¹	-
FS15i	FS16i	FS30i							
3007	4007	4007	00000000		00000000	00000000	00000000		00000000
3008 3009	4008 4009	4008 4009	00000000 00000000	00000000	00000000	00000000 00000000	00000000	00000000 00000000	00000000
3010	4010	4010	00000001	00000000	00000001	00000001	00000001	00000001	00000001
3011	4011	4011	00011001	00011001	00011001	00011010	00011010	00011010	00011010
3012	4012	4012	10000010	10000010	10000010	10000010	10000010	10000010	10000010
3013 3019	4013 4019	4013 4019	00001100 00000100	01010000 00000100	00001100 00000100	00001100 00000100	00001100 00000100	00001100 00000100	00001100 00000100
3020	4019	4020	15000	15000	12000	12000	12000	12000	12000
3023	4023	4023				333(*2)	12000	333(*2)	12000
3039	4039	4039	0	0	0	0	C	0	0
3040	4040	4040				0(*2)		C(*2)	
3041 3048	4041 4048	4041 4048				6(*3)		6(*3)	
3049	4049	4049				6(*3)		6(*3)	
3080	4080	4080	14165	12122	16720	81	58	70	49
3083	4083	4083	10	10	30	30	30	30	30
3093	4093	4093	0 3250	0 3200	0 1500	164 4200	0 1500	176	0 1500
3100 3101	4100 4101	4100 4101	3250	3200 45	1500 87	4200 50	1500 71	3580 100	1500
3102	4102	4101	7145	6432	3015	4561	2630	3580	1642
3103	4103	4103	75	92	82	70	70	0	77
3104	4104	4104	2300	3000	3200	3000	5500	2300	5000
3105 3106	4105 4106	4105 4106	0 8700	3000	7500	3000			0 5000
3107	4107	4107	0		7500	3000			0
3108	4108	4108	0		0	0			0
3109	4109	4109	25	25	25	25	25	25	25
3110	4110	4110	629	588	559	646	1131	421	566
3111 3112	4111 4112	4111 4112	180 200	175 200	190 200	185 200	353 200	100 200	162 200
3113	4113	4113	2227	1800	900	650	620	980	1090
3114	4114	4114	0		19200	20480	20480	0	19200
3115	4115	4115	90		100	100	100	100	100
3116 3117	4116 4117	4116 4117	10289 90	16564 90	7376 90	10783 90	8803 90	11031 90	8000 90
3118	4117	4117	100	100	100	100	100	100	100
3119	4119	4119	5		9	15	527	522	521
3120	4120	4120	0		0	0	0	0	0
3124	4124	4124	0		0	0			0
3127 3128	4127 4128	4127 4128	176 73	202 85	178 0	164 95	164 105	176 0	176 0
3129	4129	4129	0		0	0	0	0	0
3130	4130	4130	25700	25700	25700	25700	25700	25700	25700
3134	4134	4134	110	110	110	130	130	130	130
3136 3138	4136 4138	4136 4138	0		0	30 1500	0		0
3139	4139	4139	0		0		0		0
3140	4140	4140	0	0	0	2630	0	1642	0
3141	4141	4141	0		0		0		0
3142 3143	4142 4143	4142 4143	0		0		0		0
3144	4144	4144	0		0	0	0		0
3145	4145	4145	0	0	0	25	0	25	0
3146	4146	4146	0		0		0		0
3147 3148	4147 4148	4147 4148	0		0	353 200	0		0
3149	4148	4148	0		0		0		0
3150	4150	4150	0	0	0	20480	0	19200	0
3151	4151	4151	0		0		0		0
3152	4152	4152	0		0		0		0
3153 3154	4153 4154	4153 4154	0		0		0		0
3155	4155	4155	0		0	0			0
3156	4156	4156	0	0	0	0	0	0	0
3158	4158	4158	0		0		0		0
3159 3161	4159 4161	4159 4161	0		0		0		0
3165	4165	4165	0		0		0		0
3166	4166	4166	0		0		0		0
3169	4169	4169	0	0	0	0	0	0	0
	output during		13.0kW	20kW	13kW	13kW	13kW	13.2kW	13.2kW
	or PS selection		4 5/450001	2/450001	2/42000	. 0/400001	. 0.400000	0/40000*	0/400001
	r model (old i		α1.5/15000 <i>i</i> τ	α2/15000 <i>i</i> τ	α3/12000 <i>i</i> τ	α6/12000 <i>i</i> τ	α6/12000 <i>i</i> τ	α8/12000 <i>i</i> τ	α8/12000 <i>i</i> τ
Applicab	ole amplifier (d	ла патте)	SPM-15 <i>i</i>	SPM-22 <i>i</i>	SPM-11 <i>i</i>	SPM-15 <i>i</i>	SPM-15 <i>i</i>	SPM-15 <i>i</i>	SPM-15 <i>i</i>

^(*2) When using the SDT signal, manually change the parameters that were automatically set.

^(*4) This setting is used when only a low-speed winding is connected without the output range being switched in the output range switching motor.

	Motor model		αi Iτ 8/15000	αi Iτ 8/15000(*4)	α <i>i</i> I _T 15/10000	αi Iτ 15/10000(*4)	α <i>i</i> I _T 15/12000	αi Iτ 15/12000(*4)	α <i>i</i> Iτ 22/10000	αi Iτ 22/10000(*4)
	plicable ampli		α <i>i</i> SP26	αi SP26	α <i>i</i> SP22	α <i>i</i> SP22	αi SP30	α <i>i</i> SP30	αi SP26	αi SP26
	Model code		-		-		_	ı		
Applicable s	oftware serie	s and edition	- 7 E/44/4EI-M	- 7.5/11/15kW	- 45/40 51/M		- 45/40 5/2014M		-	
Low-spee	ed winding ch	racteritics	7.5/11/15kW 1500/4000min ⁻¹	1500/4000min ⁻¹	15/18.5kW 1500/10000min ⁻¹	15/18.5kW 1500/10000min ⁻¹	15/18.5/22kW 1400/4000min ⁻¹	15/18.5/22kW 1400/4000min ⁻¹	22/26kW 1500/10000min ⁻¹	22/26kW 1500/10000min ⁻¹
High-spee	ed winding ch	racteritics	7.5/11/15kW	_	15/18.5kW	_	15/18.5/22kW	_	22/26kW	_
FS15i	FS16i	FS30i	4000/15000min ⁻¹		4000/10000min ⁻¹		5000/12000min ⁻¹		4000/10000min ⁻¹	
3007	4007	4007	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3008	4008	4008	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3009	4009	4009	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3010 3011	4010 4011	4010 4011	00000001 00011010	00000001 00011010	00000001 00011010	00000001 00011010	00000001 00011010	00000001 00011010	00000001 00011010	00000001 00011010
3012	4012	4012	10000010	10000010	10000010	10000010	10000010	10000010	10000010	10000010
3013	4013	4013	01010000	01010000	01010000	01010000	01010000	01010000	01010000	01010000
3019 3020	4019 4020	4019 4020	00000100 15000	00000100 4000	00000100 10000	00000100 10000	00000100 12000	00000100 4000	00000100 10000	00000100
3023	4020	4020	267(*2)	4000	400(*2)	10000	292(*2)	4000	400(*2)	10000
3039	4039	4039	0	0	0	0	0	0	0	0
3040	4040	4040	4/*0\							
3041 3048	4041 4048	4041 4048	4(*3)							
3049	4049	4049	4(*3)							
3080	4080	4080	18774	95	80	20555		65	75	56
3083 3093	4083 4093	4083 4093	30 240	30	30 148	30		30	30 142	30
3100	4100	4100	4040	1570	4000	1500	4500	1450	4000	1440
3101	4101	4101	84	90	62	95	65	70	83	96
3102 3103	4102 4103	4102 4103	5161	2592	3482 75	1710 70	5392 82	1783 93	3504	1709 96
3103	4103	4103	2700	5000	1700	5500	3500	7000	2800	5000
3105	4105	4105	0	0	0	0	0	0	0	0
3106	4106	4106	9200	16000	5500	5500		7000	2800	5000
3107 3108	4107 4108	4107 4108	0	0	0	0		0	0	0
3109	4109	4109	25	25	25	25		25	25	25
3110	4110	4110	503	754	575	794	887	2155	603	823
3111 3112	4111 4112	4111 4112	105 200	192 200	193 200	243 200	255 200	650 200	143 200	213 200
3113	4113	4113	1000	1050	275	304	380	380	265	300
3114	4114	4114	28160	0	23040	23040	0	0	24320	19200
3115 3116	4115 4116	4115 4116	100 10984	100 11083	100 5126	100 5177	100 9314	100 2000	100 5523	100 5593
3117	4117	4117	90	90	90	90		90	90	90
3118	4118	4118	90	100	90	100	90	90	100	100
3119	4119	4119	10	15	35	31	25	25	36	341
3120 3124	4120 4124	4120 4124	0	0	0	0		0	0	0
3127	4127	4127	240	240	148	148		176	142	142
3128	4128	4128	0	110	0	105	0	0	0	0
3129 3130	4129 4130	4129 4130	25700	25700	0 25700	0 25700	0 25700	0 25700	0 25700	0 25700
3134	4134	4134	130	130	130	130		130	130	130
3136	4136	4136	30	0	30	0		0		0
3138 3139	4138 4139	4138 4139	1570 90	0	1500 95	0		0	1440 96	0
3140	4140	4140	2592	0		0		0		0
3141	4141	4141	0	0	70	0	93	0	96	0
3142 3143	4142 4143	4142 4143	5000 16000	0	5500 5500	0		0	5000 5000	0
3144	4143	4144	0	0		0		0		0
3145	4145	4145	25	0	25	0	25	0	25	0
3146 3147	4146 4147	4146 4147	754 192	0	794 243	0		0		0
3148	4147	4148	200	0	200	0		0		0
3149	4149	4149	1050	0	304	0	380	0	300	0
3150 3151	4150	4150 4151	100	0		0		0		0
3151	4151 4152	4151	11083	0	100 5177	0		0	5593	0
3153	4153	4153	90	0	90	0	90	0	90	0
3154	4154	4154	100	0		0		0		0
3155 3156	4155 4156	4155 4156	0	0	0	0		0	0	0
3158	4158	4158	110	0	105	0	0	0	0	0
3159	4159	4159	0	0		0		0		0
3161 3165	4161 4165	4161 4165	25700 15	0	25700 31	0		0		0
3166	4166	4166	95	0	20555	0		0		0
3169	4169	4169	0	0	0	0	0	0	0	0
	utput during		28kW	28kW	22.2kW	22.2kW	38kW	38kW	31.2kW	31.2kW
	or PS selection		0/450001	0/450001	45/400001	45/400001	45/40000	45/40000	00/40000	00/40000
	model (old i le amplifier (o		α8/15000i τ SPM-26i	α8/15000i τ SPM-26i	α15/10000 <i>i</i> τ SPM-22 <i>i</i>	α15/10000 <i>i</i> τ SPM-22 <i>i</i>	α15/12000i τ SPM-30i	α15/12000i τ SPM-30i	α22/10000i τ SPM-26i	α22/10000i τ SPM-26i
Дриново	o amplitier (C	Jiu Hairie)	3F IVI-201	3F IVI-201	OF IVI=ZZI	OF IVI-ZZI	3F IVI=3UI	OF IVI-OUI	3F IVI-201	OF IVI=201

- (*2) When using the SDT signal, manually change the parameters that were automatically set.
- (*3) Set this value as the initial value of the velocity loop gain for low-speed characteristics of speed range switching.
- (*4) This setting is used when only a low-speed winding is connected without the output range being switched in the output range switching motor.

C.4 SPINDLE MOTOR αi I series (400V)

Applicable perspition all SPS-SHV all		Motor model		α <i>i</i> I 0.5/10000HV	αi I 1/10000HV	αi I 1.5/10000HV	αi I 2/10000HV	α <i>i</i> I 3/10000HV	αi I 6/10000HV	α <i>i</i> I 8/8000HV	α <i>i</i> I 12/7000HV
Page Company Company											
Hapt-report winding Createring 1.50 1.		Model code		311	313	315	317	319	321	325	326
16,000-10-10-10-10-10-10-10-10-10-10-10-10-	Applicable so	oftware serie	s and edition	9D50/F	9D50/F	9D50/F	9D50/F	9D50/F	9D50/F	9D50/F	9D50/F
Page	Low-spee	d winding ch	racteritics	_	_	_	_	_	_	_	_
Page	High-spee	nd winding ch	racterities			1.1/3.7kW	2.2/3.7kW				11/15kW
1,000 1,00				3000/10000min ⁻¹	3000/10000min ⁻¹	1500/10000min ⁻¹	1500/10000min ⁻¹	1500/10000min ⁻¹	1500/10000min ⁻¹	1500/8000min ⁻¹	1500/7000min ⁻¹
2008 4008 4008 4000 00000000 00000000 00000000				0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
1971 4911 4911 000000000 000000000 000000000 000000											
3011 4011 4011 4010 00011001 00011001 00011010 00011010 00011010 00011010 00001010 00000010 00000010 00000010 00000010 00000010 000000010 00000000											
1907 24012 4012 4010 10000010 10000010 10000010 10000010 10000010 10000010 10000010 1000010 10000110 100000110 10000110 100000110 100000110 100000110 100000110 100000110 1000001											
3913 4913 4913 4913 490000000 00000100 00000100 00000100 00000100 00000100 00000100 00000100 00000100 00000100 00000000											
3319 4019 4019 4019 00000100 000001100 0000001100 0000001100 0000001100 0000001100 0000001100 00000000											
30023 4020 4020 10000 10000 10000 10000 10000 5000 7000 7000 3003 4020 4											
10023 4023 4023 4023 0											
3904 4040 4040 4040			4023								
3041 4041 4041 4041 3049 4048 4048 4049 3049 4048 4048 4049 3049 4048 4048 4049 3050 4069 4080				0	0	0	0	0	0	0	0
3048 4048 4048 4049 4049 85 205700 141701 660 756 66 760 66 86 760 86 760 86 760 86 760 86 760 86 760 86 760 86 760 86 760 86 760 86 760 86 760 76											
3089 4089 4089 85 205665 14173 80 8 86 70 86 130 3080 4080 4080 4080 85 20570***********************************											
3000 4080 4080 85 200505 14173 80 85 65 70 85113 300 303											
3083 4093 4003 30 30 30 30 30 30				85						70	
3939 4963 4963 4963 0 0 0 0 0 0 0 0 0											
3100											0
3101 4101 4101 4102 4102 6503 3600 2745 4421 2288 3000 2323 1754		4100					1500		1500	1800	
3103	3101			100	85	100	100	100	100	100	100
31103 41103 41104 41104 41506 6000 5000 5000 5000 5000 7000 5000 7000 2000 2000 2000 3105 41105 41105 41105 41105 41105 41105 41105 41105 4107 0 0 0 0 0 0 0 0 0	3102	4102	4102								
3104 4104 4104 4400 6900 6900 5900 7000 5900 7000 2000 3105 4105 4106 4106 4500 6900 12000 5000 7000 5000 7000 4500 3107 4107 4107 4107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3103	4103	4103								
3106 4106 4106 4106 400 00 0 0 0 0 0 0 0	3104	4104	4104								
3107 4107 4107 4107 0 0 0 0 0 0 0 0 0									0		
3108				4500	6000	12000	5000	7000	5000	7000	4500
3100											
3110											
3111											
3113											
3114											
3115											
3116											
3117 4117 4118 100 100 100 100 100 100 100 301 3118 4118 4119 5 4 4 4 10 11 111 113 35 35 3120 4120 4120 0 0 0 0 0 0 0 0 0											
3118											
3120	3118	4118	4118	100		100		100	100	100	
3124 4124 4127 240 176 404 202 178 184 176 1848 3128 4128 4129 120 75 107 90 90 0 0 0 0 0 0 3128 4129 4129 0 0 0 0 0 0 0 0 0											
3127											
3128											
3129									0		
3134		4129	4129	0	0	0	0	0	0		0
3136											
3138											
3139											
3140											0
3142	3140	4140	4140	0	0	0	0	0	0		0
3143											0
3144											
3145											0
3146											0
3148	3146	4146	4146	0	0	0	0	0	0	0	0
3149											0
3150											
3151 4151 4151 0 0 0 0 0 0 0 0 0											
3152											0
3154	3152	4152	4152	0	0	0	0	0	0	0	0
3155											0
3156											
3158											
3159											0
3161 4161 4161 0 0 0 0 0 0 0 0 0						0	0				0
3166											0
3169 4169 4169 0 0 0 0 0 0 0 0 0											0
Maximum output during acceleration (for PS selection) 1.32kW 2.59kW(*1) 2.64kW 3.0kW(*1) 4.44kW 6.3kW(*1) 4.44kW 7.5kW(*1) 6.6kW 8.9kW(*1) 9.0kW 13.2kW 15.4kW(*1) 13.2kW 15.8kW(*1) 13.2kW 15.8kW(*1) 13.2kW 15.8kW(*1) 15.4kW(*1) 15.4kW(*1) 15.4kW(*1) 20.3kW(*1)											
(for PS selection) 2.59kW(*1) 3.0kW(*1) 6.3kW(*1) 7.5kW(*1) 8.9kW(*1) 15.4kW(*1) 15.8kW(*1) 20.3kW(*1)											
Motor model (old name) α0.5/10000HVi α1.1/10000HVi α1.5/10000HVi α2/10000HVi α3/10000HVi α6/10000HVi α8/8000HVi α12/7000HVi											
	Motor	model (old r	name)	α0.5/10000HVi	α1/10000HVi	α1.5/10000HVi	α2/10000HVi	α3/10000HVi	α6/10000HVi	α8/8000HVi	α12/7000HVi

^(*1) This setting makes the maximum output during acceleration greater and the acceleration time reduced.

	Motor mode	l I	α <i>i</i> I 15/7000HV	α <i>i</i> I 22/7000HV	αί I 30/6000HV	αί I 40/6000HV	αi I 60/4500HV	αi I 100/4000HV	αi I 100/4000HV(*4)
App	plicable ampl	ifier	αi SP30HV	αi SP30HV	αi SP45HV	αi SP45HV	αi SP75HV	αi SP75HV	αi SP75HV
	Model code		327	328	329	_	_	415	_
Applicable s	oftware serie	s and edition	9D50/F	9D50/F	9D50/F	_	_	9D50/F	_
Low-spee	ed winding ch	racteritics	-	_	_	_	_	100kW	100kW
			15/18.5kW	22/26kW	30/37kW	37/45 kW	60/75 kW	1000/3000min ⁻¹ 100kW	1000/3000min ⁻¹
High-spee	ed winding ch	racteritics	1500/7000min ⁻¹	1500/7000min ⁻¹	1150/6000min ⁻¹	1500/6000 min ⁻¹	1150/4500 min ⁻¹	2000/4000min ⁻¹	-
FS15i	FS16i	FS30i							
3007	4007	4007	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3008	4008 4009	4008 4009	00000000 00000000	00000000	00000000	00010000	00000000	00000000	
3009 3010	4010	4009	00000000	0000000	0000000	00000000	00000000	00000001	00000000 00000001
3011	4011	4011	00011010	00011010	00011010	00001010	00011010		
3012	4012	4012	10000010	10000010	10000000	10000000	10000000		
3013	4013	4013	01010000	01010000	01010000	01010000 00000100	00011000	00011000	
3019 3020	4019 4020	4019 4020	00000100 7000	00000100 7000	00000100 6000	6000	00000100 4500	00000100 4000	00000100 3000
3023	4023	4023	7 000		5555	5555		500(*2)	5555
3039	4039	4039	0	0	0	0	0	0	0
3040	4040 4041	4040 4041							
3041 3048	4041	4041							
3049	4049	4049							
3080	4080	4080	65	75	98	82	90	80	72
3083	4083	4083	30	30	30	30	30	30	30
3093	4093	4093	0	0	0	0	0	120	0
3100	4100	4100	1500	1595	1230	1600	1130	2007	835
3101	4101 4102	4101 4102	73 1972	100	85 1617	100 1940	100 1491	100	100
3102 3103	4102	4102	65	1595 0	55	1940	85	2007	835 0
3104	4104	4104	4500	5000	2500	2500	3500	2500	6000
3105	4105	4105	0	0	0	0	0	0	0
3106	4106	4106	4500	5000	4000	2800	7000	3000	7500
3107 3108	4107 4108	4107 4108	0	0	0		0		
3109	4109	4109	25	25	25	25	25	25	25
3110	4110	4110	1499	838	1257	718	1174	754	823
3111	4111	4111	425	223	455	252	345	215	239
3112	4112	4112	200	200	200	200	200	200	200
3113 3114	4113 4114	4113 4114	280 23040	325 20480	160 0	175 0	193	185 0	215 0
3115	4115	4115	100	100	100	100	100	100	
3116	4116	4116	5153	5572	5056	6212	5042	6516	6532
3117	4117	4117	90	90	90	90	90	105	105
3118 3119	4118 4119	4118 4119	100 34	100 29	100 60	100 54	100 49	105 39	105 20
3120	4120	4120	0	0	0		0		
3124	4124	4124	0	0	0		0		
3127	4127	4127	148	142	148	146	150	120	
3128 3129	4128 4129	4128 4129	0	0	110	115 0	0		
3130	4130	4130	25700	25700	25700	25700	25700		
3134	4134	4134	130	130	130	130	130		140
3136	4136	4136	0	0	0		0		
3138 3139	4138 4139	4138 4139	0				0		0
3140	4140	4140	0	0	0		0		0
3141	4141	4141	0	0	0		0		
3142	4142 4143	4142 4143	0	0	0		0		0
3143 3144	4143	4143	0				0		
3145	4145	4145	0	0	0		0		
3146	4146	4146	0	0	0	0	0	823	0
3147 3148	4147 4148	4147 4148	0	0	0		0		0
3149	4149	4149	0	0	0		0		
3150	4150	4150	0	0			0		
3151	4151	4151	0	0	0		0		0
3152	4152 4153	4152	0	0	0		0		0
3153 3154	4153	4153 4154	0	0	0		0		0
3155	4155	4155	0	0	0		0		
3156	4156	4156	0	0	0		0		
3158	4158	4158	0	0			0		
3159 3161	4159 4161	4159 4161	0	0	0		0		0
3165	4165	4165	0	0			0		
3166	4166	4166	0	0	0	0	0	72	0
3169	4169	4169	0	21 21/1/	0	0	0000	11700	
	utput during or PS selection		22.2kW	31.2kW	44.4kW	54kW	90kW	117kW	117kW
	r model (old		α15/7000HVi	α22/7000HVi	α30/6000HVi	α40/6000HVi	α60/4500HVi	α100/4000HVi	α100/4000HVi
	. (276	-							,

- (*2) When using the SDT signal, manually change the parameters that were automatically set.
- (*4) This setting is used when only a low-speed winding is connected without the output range being switched in the output range switching motor.

C.5 SPINDLE MOTOR αi IP series (400V)

Motor mo	del	αί I _P 15/6000HV	α <i>i</i> I _P 40/6000HV	αi I _P 50/6000HV
Applicable at		α <i>i</i> SP15HV	α <i>i</i> SP30HV	α <i>i</i> SP30HV
Model co		-	418	-
Applicable software se		_	9D50/F,9D70/A	_
		5/9kW	13/22kW	22/30kW
Low-speed winding	Chracteritics	500/1500min ⁻¹	400/1500min ⁻¹	575/1500min ⁻¹
High-speed winding	chracteritics	7.5/9kW	18.5/22kW	22/30kW
FS15i FS16i	FS30i	750/6000min ⁻¹	575/6000min ⁻¹	1200/6000min ⁻¹
3007 4007	4007	00000000	00000000	00000000
3008 4008	4008	00000000	00000000	00000000
3009 4009	4009	00000000	00000000	00000000
3010 4010	4010	00000000	00000000	00000000
3011 4011	4011	00011010	00011010	00011010
3012 4012 3013 4013	4012 4013	10000010 00001100	10000000	10000010
3013 4013 3019 4019	4019	00001100	01010000 00000100	01010000 00000100
3020 4020	4020	6000	6000	6000
3023 4023	4023	125	96(*2)	167
3039 4039	4039	0	0	0
3040 4040	4040			
3041 4041	4041			
3048 4048 3049 4049	4048 4049			
3080 4080	4080	95	73	80
3083 4083	4083	30	30	30
3093 4093	4093	216	203	164
3100 4100	4100	760	600	1120
3101 4101	4101	90	100	100
3102 4102 3103 4103	4102 4103	1460	889 75	1356
3103 4103 3104 4104	4103	60 5000	6400	85 6000
3105 4105	4105	0	0400	0000
3106 4106	4106	12000	6400	16000
3107 4107	4107	0	0	0
3108 4108	4108	0	0	0
3109 4109	4109	25	25	25
3110 4110	4110	1384	1098	838
3111 4111 3112 4112	4111 4112	330 200	304 200	225 200
3113 4113	4113	260	180	201
3114 4114	4114	0	20480	0
3115 4115	4115	100	100	100
3116 4116	4116	4600	6043	6202
3117 4117	4117	90	90	90
3118 4118 3119 4119	4118 4119	100 37	90 53	100 48
3120 4120	4120	0	0	0
3124 4124	4124	ŏ	0	0
3127 4127	4127	144	143	164
3128 4128	4128	103	115	104
3129 4129	4129	0	0	0
3130 4130	4130	25700	25700	25700
3134 4134 3136 4136	4134 4136	130 30	130 30	130 30
3138 4138	4138	530	430	699
3139 4139	4139	75	100	95
3140 4140	4140	726	661	699
3141 4141	4141	75	60	95
3142 4142	4142	10000	8600	10000
3143 4143 3144 4144	4143 4144	28000	8600 0	24000
3145 4145	4145	25	25	25
3146 4146	4146	1934	2514	1374
3147 4147	4147	465	726	395
3148 4148	4148	200	200	200
3149 4149	4149	330	185	188
3150 4150 3151 4151	4150 4151	100	23040 100	100
3152 4152	4151	5167	6040	6203
3153 4153	4153	90	90	90
3154 4154	4154	100	90	100
3155 4155	4155	0	0	0
3156 4156	4156	0	0	0
3158 4158	4158	0	0	120
3159 4159 3161 4161	4159 4161	0 25700	0 25700	0 25700
3165 4165	4165	25700	52	25700
3166 4166	4166	80	65	63
3169 4169	4169	0	0	0
Maximum output duri	ng acceleration	13.5kW	29.0kW	35.4kW
	_a:\	1	l l	
(for PS sele				
(for PS sele Motor model (c Applicable amplifie	ld name)	α15/6000HVi P SPM-15HVi	α40/6000HVi P SPM-30HVi	α50/6000HVi P SPM-30HVi

^(*2) When using the SDT signal, manually change the parameters that were automatically set.

C.6 SPINDLE MOTOR $\alpha i I_T$ series (400V)

	Motor mode	ıl	α <i>i</i> Iτ 1.5/15000HV	α <i>i</i> Ιτ 3/12000HV	α <i>i</i> Ιτ 6/12000HV	αi Iτ 6/12000HV(*4)	α <i>i</i> Iτ 8/12000HV	αi I⊤ 8/12000HV(*4)	α <i>i</i> Ιτ 8/15000HV	αi Iτ 8/15000HV(*4)
App	plicable amp	lifier	αi SP15HV	αi SP11HV	αi SP15HV	αi SP15HV	αi SP15HV	αi SP15HV	αi SP30HV	αi SP30HV
	Model code		_	1	1 1	1	_	-	_	_
	ottware serie	es and edition	_	_	5.5/7.5kW	5.5/7.5kW	7.5/11kW	7.5/11kW	7.5/11/15kW	- 7.5/11/15kW
-			1.5/2.2kW	3.7/5.5kW	1500/12000min ⁻¹ 5.5/7.5kW	1500/12000min ⁻¹	1500/12000min ⁻¹ 7.5/11kW	1500/12000min ⁻¹	1500/4000min ⁻¹ 7.5/11/15kW	1500/4000min ⁻¹
	ed winding cl	nracteritics	3000/15000min ⁻¹	1500/12000min ⁻¹	4000/12000min ⁻¹	-	4000/12000min ⁻¹	_	4000/15000min ⁻¹	-
FS15i	FS16i	FS30i	00000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000
3007 3008	4007 4008	4007 4008	00000000	00000000 00000000	00000000 00000000	00000000	00000000 00000000	00000000	00000000	00000000
3009	4009	4009	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3010	4010	4010	00000001	00000001	00000001	00000001	00000001	00000001	00000001	00000001
3011 3012	4011 4012	4011 4012	00011001 10000010	00011001 10000010	00011010 10000010	00011010 10000010	00011010 10000010	00011010 10000010	00011010 10000010	00011010 10000010
3013	4013	4013	00001100	00001100	00001100	00001100	00001100	00001100	01010000	01010000
3019	4019	4019	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100
3020 3023	4020 4023	4020 4023	15000	12000	12000 333(*2)	12000	12000 333(*2)	12000	15000 267(*2)	4000
3039	4039	4039	0	0	0	0	0	0	0	0
3040	4040	4040					6(*3)	6(*3)	4/*2\	4(*3)
3041 3048	4041 4048	4041 4048					6(*3)	6(*3)	4(*3)	4(*3)
3049	4049	4049					6(*3)		4(*3)	
3080	4080	4080	9045	90	96	19807	9050	14938	98	92
3083 3093	4083 4093	4083 4093	10	30	30 164	30	30 176	30 0	30 240	30
3100	4100	4100	3500	1550	4030	1570	3750	1550	4000	1630
3101	4101	4101	33	82	51	67	85	84	81	93
3102 3103	4102 4103	4102 4103	7257 80	2864 90	4526 67	2475 68	3798 89	1957 74	5660 86	2913 85
3104	4104	4104	3500	4000	2700	4600	3800	7000	3000	5500
3105	4105	4105	0	0	0	0	0	0	0	0
3106 3107	4106 4107	4106 4107	3500 0	14000	7000 0	12000	10000	18000 0	3000	5500 0
3107	4107	4107	0	0	0	0			0	0
3109	4109	4109	25	25	25	25	25	25	25	25
3110 3111	4110 4111	4110 4111	1005 233	559 190	862 190	1508 360	569 100	838 186	646 166	984 282
3112	4111	4111	200	200	200	200	200	200	200	200
3113	4113	4113	2000	850	750	730	950	1000	950	1100
3114 3115	4114 4115	4114 4115	0 100	0 100	19200 100	19200 100	0 100	0 100	0 100	0 100
3116	4116	4116	9815	7377	8202	8202	8736	8737	8703	8708
3117	4117	4117	90	90	90	90	90	90	90	90
3118 3119	4118 4119	4118 4119	100	110 11	90 13	100	90 10	90 266	90	90
3120	4119	4119	5	0	0	13	0	200	266 0	9
3124	4124	4124	0	0	0	0	0	0	0	0
3127	4127	4127	176	178	164	164	176	176	240	240 106
3128 3129	4128 4129	4128 4129	90	0	105	113	0	0	105	106
3130	4130	4130	25700	25700	25700	25700	25700	25700	25700	25700
3134	4134	4134	110	110	130	130	130	130	130	130
3136 3138	4136 4138	4136 4138	0	0	30 1570	0		0	30 1630	0
3139	4139	4139	0	0	67	0	84	0	93	0
3140	4140	4140	0			0		0		0
3141 3142	4141 4142	4141 4142	0	0	68 4600	0		0	85 5500	0
3143	4143	4143	0	0	12000	0	18000	0	5500	0
3144	4144	4144	0	0	0	0		0		0
3145 3146	4145 4146	4145 4146	0	0	25 1508	0		0	25 984	0
3147	4147	4147	0	0	360	0	186	0	282	0
3148	4148 4149	4148	0	0	200	0		0	200	0
3149 3150	4149	4149 4150	0	0		0	1000	0		0
3151	4151	4151	0	0	100	0	100	0	100	0
3152	4152	4152	0			0		0		0
3153 3154	4153 4154	4153 4154	0	0	90 100	0		0		0
3155	4155	4155	0	0	0	0	0	0	0	0
3156	4156	4156	0			0				
3158 3159	4158 4159	4158 4159	0	0	113 0	0		0		0
3161	4161	4161	0	0	25700	0	25700	0	25700	0
3165	4165	4165	0			0		0		0
3166 3169	4166 4169	4166 4169	0	0	19807 0	0	14938 0	0	92	0
		acceleration	13kW	13kW	13kW	13kW	13.2kW	13.2kW	28kW	28kW
	r PS selecti									
	model (old le amplifier (α1.5/15000HVi τ	α3/12000HVi τ	α6/12000ΗVi τ	α6/12000HVi τ	α8/12000HVi τ SPM-15HVi	α8/12000HVi τ	α8/15000HV <i>i</i> τ	α8/15000HVi τ
Applicabl	ie amplitier (oid name)	SPM-15HVi	SPM-11HVi	SPM-15HVi	SPM-15HVi	SMIVI-15HV1	SPM-15HVi	SPM-30HVi	SPM-30HVi

- (*2) When using the SDT signal, manually change the parameters that were automatically set.
- (*3) Set this value as the initial value of the velocity loop gain for low-speed characteristics of speed range switching.
- (*4) This setting is used when only a low-speed winding is connected without the output range being switched in the output range switching motor.

	Motor mode			$\alpha i \text{ IT } 15/10000 \text{HV(*4)}$	αi Ιτ 15/12000HV	αi IT 15/12000HV(*4)	αi Ιτ 22/10000HV	αi Iτ 22/10000HV(*4)
App	plicable ampl	ifier	αi SP30HV	αi SP30HV	αi SP30HV	αi SP30HV	αi SP30HV	αi SP30HV
	Model code		-	_	_	_	_	_
Low-spee	oftware seried winding ch		 15/18.5kW 1500/10000min ⁻¹ 15/18.5kW 4000/10000min ⁻¹	15/18.5kW 1500/10000min ⁻¹	- 15/18.5/22kW 1400/4000min ⁻¹ 15/18.5/22kW 5000/12000min ⁻¹	15/18.5/22kW 1400/4000min ⁻¹	22/26kW 1500/10000min ⁻¹ 22/26kW 4000/10000min ⁻¹	22/26kW 1500/10000min ⁻¹
FS15i	FS16i	FS30i						
3007	4007	4007	00000000	00000000	00000000	00000000	00000000	0000000
3008 3009	4008 4009	4008 4009	00000000	00000000	00000000	00000000	00000000	0000000
3010	4009	4009	00000000 00000001	00000000 00000001	00000000 00000001	00000000 00000001	00000000 00000001	0000000
3011	4011	4011	00011010	00011010	00011010	00011010	00011010	0001101
3012	4012	4012	10000010	10000010	10000000	10000000	10000010	1000001
3013	4013	4013	01010000	01010000	01010000	01010000	01010000	0101000
3019 3020	4019 4020	4019 4020	00000100 10000	00000100 10000	00000100 12000	00000100 4000	00000100 10000	0000010 1000
3023	4023	4023	400(*2)	10000	292(*2)	4000	400(*2)	1000
3039	4039	4039	Ó	0	Ö	0	0	
3040	4040	4040						
3041 3048	4041 4048	4041 4048						
3049	4049	4049						
3080	4080	4080	80	65	67	11354	83	1851
3083	4083	4083	30	30	30	30	30	3
3093	4093	4093	148	1500	176	1500	142	150
3100 3101	4100 4101	4100 4101	4000 53	1500 73	4600 59	1500 96	3630 74	150
3102	4102	4101	3464	1972	4937	2494	3318	1669
3103	4103	4103	70	65	94	0	93	82
3104	4104	4104	2800	4500	1800	3600	2100	400
3105 3106	4105 4106	4105 4106	0 2800	0 4500	0 3000	5500	0 6300	12000
3107	4106	4106	2000	4500	0	0	0300	12000
3108	4108	4108	0	0	0	0	0	
3109	4109	4109	25	25	25	25	25	2
3110	4110	4110	857	1499	870	1331	666	984
3111 3112	4111 4112	4111 4112	229 200	425 200	295 120	470 200	160 200	270
3113	4113	4113	280	280	400	440	265	275
3114	4114	4114	0	23040	0	0	0	
3115	4115	4115	100	100	100	100	100	100
3116	4116	4116	5184	5153	9570	9567	5000	499
3117 3118	4117 4118	4117 4118	90 100	90 100	90 90	90	90 90	90
3119	4119	4119	34	34	1048	22	50	70
3120	4120	4120	0	0	0	0	0	(
3124	4124	4124	0	0	0	0	0	(
3127 3128	4127 4128	4127 4128	148 0	148 0	176 0	176 0	142 98	142 103
3129	4129	4129	0	0	0	0	0	10.
3130	4130	4130	25700	25700	25700	25700	25700	25700
3134	4134	4134	130	130	130	130	130	130
3136 3138	4136 4138	4136 4138	30 1500	0	30 1500	0	30 1500	(
3139	4139	4139	73	0	96	0	84	(
3140	4140	4140	1972	0	2494	0	1669	(
3141	4141	4141	65	0	0	0	82	
3142 3143	4142 4143	4142 4143	4500 4500	0	3600 5500	0	4000 12000	
3143	4143	4143 4144	4500	0	5500	0	12000	
3145	4145	4145	25	0	25	0	25	
3146	4146	4146	1499	0	1331	0	984	
3147	4147	4147	425	0	470	0	270	
3148 3149	4148 4149	4148 4149	200 280	0	200 440	0	200 275	
3150	4150	4150	23040	0	0	0	0	(
3151	4151	4151	100	0	100	0	100	
3152	4152	4152	5153	0	9567	0	4991	
3153 3154	4153 4154	4153 4154	90 100	0	90 90	0	90 90	
3155	4155	4155	0	0	0	0	0	
3156	4156	4156	0	0	0	0	0	
3158	4158	4158	0	0	0	0	103	
3159	4159	4159	0	0	0	0	0	
3161 3165	4161 4165	4161 4165	25700 34	0	25700 22	0	25700 70	
3166	4166	4165	65	0	11354	0	18517	
3169	4169	4169	0	0	0	0	0	
	utput during or PS selection		22.2kW	22.2kW	38kW	38kW	31.2kW	31.2kV
	model (old		α15/10000HVi τ	α15/10000HV <i>i</i> τ	α15/12000HVi τ	α15/12000HVi ⊤	α22/10000HVi T	α22/10000HVi T
MOTOL								

^(*2) When using the SDT signal, manually change the parameters that were automatically set.

^(*3) Set this value as the initial value of the velocity loop gain for low-speed characteristics of speed range switching.

^(*4) This setting is used when only a low-speed winding is connected without the output range being switched in the output range switching motor.

C.7 SPINDLE MOTOR βi I series

Applicab Mode Mode Applicable software Continuous rat 15-min. rate FS0i 4007 4008 4009 4010 4011 4011 4012 4013 4019 4020 4023 4039 4041	r model le amplifier el code re series and edition ted chracteritics d chracteritics	βi I 3/10000 βi SVSPx-5.5 332 9D50/I 3.7kW 2000/10000min ⁻¹ 5.5kW	βi I 3/10000 βi SVSPx-11 337 9D50/Q 3.7kW	βi I 3/10000 βi SVSPx-15 338 9D50/Q	βi I 6/10000 βi SVSPx-11 333	βi I 6/10000 βi SVSPx-15 339	βi I 8/8000 βi SVSPx-11 334	βi I 8/8000 βi SVSPx-15	βi I 8/10000 βi SVSPx-11	βi I 8/10000 βi SVSPx-15
Mode Applicable softwar Continuous rat 15-min. rate FS0i 4007 4008 4009 4010 4011 4011 4012 4013 4019 4020 4023 4023 4041	el code re series and edition ted chracteritics	332 9D50/I 3.7kW 2000/10000min ⁻¹	337 9D50/Q	338						•
Applicable softwar Continuous rat 15-min. rate FS0i 4007 4008 4009 4010 4011 4012 4013 4019 4020 4023 4039 4041	e series and edition ted chracteritics	9D50/I 3.7kW 2000/10000min ⁻¹	9D50/Q		J 333					
Continuous rat 15-min. rate FS0i 4007 4008 4009 4010 4011 4011 4012 4013 4019 4020 4023 4039 4041	ted chracteritics	3.7kW 2000/10000min ⁻¹			9D50/I	9D50/Q	9D50/I	340 9D50/Q	341 9D50/Q	342 9D50/Q
15-min. rate FS0i 4007 4008 4009 4010 4011 4011 4013 4019 4020 4020 4023 4039 4041		2000/10000min ⁻¹	U.1 KVV	3.7kW	9D50/1 5.5kW	9D50/Q 5.5kW	7.5kW	9D50/Q 7.5kW	9D50/Q 7.5kW	9D50/Q 7.5kW
FS0i 4007 4008 4009 4010 4011 4012 4013 4019 4020 4023 4039 4041	d chracteritics		2000/10000min ⁻¹	2000/10000min ⁻¹	2000/10000min ⁻¹	2000/10000min ⁻¹	2000/8000min ⁻¹	2000/8000min ⁻¹	2000/10000min ⁻¹	2000/10000min ⁻¹
FS0i 4007 4008 4009 4010 4011 4012 4013 4019 4020 4023 4039 4041	d chracteritics		5.5kW	5.5kW	7.5kW	7.5kW	11kW	11kW	11kW	11kW
4007 4008 4009 4010 4011 4012 4013 4019 4020 4020 4039 4041		1500/10000min ⁻¹		1500/10000min ⁻¹	1500/10000min ⁻¹	1500/10000min ⁻¹	1500/8000min ⁻¹	1500/8000min ⁻¹	1500/10000min ⁻¹	1500/10000min ⁻¹
4008 4009 4010 4011 4012 4013 4019 4020 4023 4039 4041										
4009 4010 4011 4012 4013 4019 4020 4023 4039 4041		00000000	-	←	00000000	←	00000000	+	←	←
4010 4011 4012 4013 4019 4020 4023 4039 4041		00000000	←	←	00000000	←	00000000	↓	←	←
4011 4012 4013 4019 4020 4023 4039 4041		00000000	→	↓	00000000	+	00000000	1	↓	↓
4012 4013 4019 4020 4023 4039 4041		00010000		—	00010000	+	00010000	1	+	1
4013 4019 4020 4023 4039 4041		00011001		←	00011001	←	00011010	←	←	←
4019 4020 4023 4039 4041		10000000		←	10000000	←	10000000	—	←	+
4020 4023 4039 4041		00001100		+	00001100	-	00001100	1	←	+
4023 4039 4041		00000100	-	-	00000100	-	00000100	1	+	
4039 4041	<u> </u>	10000		-	10000	+	8000	—	10000	
4041	-	0	_	←	0	←	0	↓	←	
	-	U			U		U			
4049	1									
4080	1	13412	←	←	14170	←	75	←	←	←
4083	1	30	<u>`</u>	←	30	←	30	↓	←	←
4093	Ì	0		←	0	←	0	<u></u>	←	←
4100		1700	-	←	1550	←	1500	+	←	←
4101		90	<u></u> ←	←	90	←	95	Ţ		
4102		2154	←	←	2621	←	2602	+	←	←
4103		72	1	↓	58	1	64	1	↓	+
4104		2500		↓	2000	1	2000	1	↓	+
4105		0		-	0	←	0	—	-	←
4106		6600	-	-	5500	-	6000	—	-	
4107		0		←	0	←		←	↓	
4108	<u> </u>	0		←	0 25	←	0 25	←	←	<u></u>
4109 4110	-	25 718	1436	2154	520	— 780	887	1331	887	1331
4111		318		2154	208	/60	381	1331	007	1331
4112		200	-	<u></u>	200	<u></u>	200	<u></u>	<u> </u>	-
4113	1	850	-	←	800	←	500	+	←	←
4114		21760	←	←	0	←	0	←	←	←
4115		100	←	←	100	←	100	←	←	←
4116		7978	←	←	7395	←	8000		←	←
4117		90	→	↓	90	+	90	1	↓	+
4118		100	—	+	100	+	100	1	+	1
4119		11		↓	12	1	19	1	↓	1
4120		0		←	0	←	0	←	←	←
4124		0		←	0	←	0	1	←	
4127		164		-	150	-	161	←	+	-
4128 4129	<u> </u>	120		←	115 0	←	78 0	1	←	←
4130	-	25700		←	25700	←	25700	←	<u></u>	
4134		110		<u> </u>	110	<u></u>	110		<u> </u>	
4136		110		←	110	+	0	←	←	←
4138		0		←	0	+	0	1	←	+
4139		Ö		←	0	←	0	←	←	←
4140		0		←	0	←	0	←	←	←
4141		0	←	+	0	+	0	Ţ		↓
4142		0		←	0	+	0	↓	←	←
4143		0		↓	0	1	0	1	↓	+
4144		0		+	0		0	Ţ	+	1
4145		0		←	0	←	0	—	←	←
4146	ļ	0		←	0	←	0	—	-	←
4147	ļ	0		←	0	←	0	←	-	←
4148	1	0		←	0	←	0	←	←	←
4149	 	0		<u></u>	0	<u></u>	0	1	<u></u>	←
4150 4151	 	0		<u></u>	0	←	0	<u> </u>	<u></u>	<u></u>
4151	1	0		→	0		0	1	↓	↓
4153	 	0		←	0		0	1	←	→
4154	 	0			0		0			
4155	1	0		-	0		0		-	-
4156	1	0		<u></u>	0		0	· ←	<u></u>	÷
4158	1	0		←	0		0		←	←
4159		0		←	0		0	—	←	←
4161		0		←	0	+	0	1	←	1
4165		0	←	←	0	←	0	ļ	←	↓
4166		0	+	←	0	+	0	T	←	—
4169		0		+	0		0	1	+	+
	during acceleration	6.1kW		6.1kW	8.3kW	8.3kW	12.1kW	12.1kW		12.1kW
	el (old name)	β3/10000i	β3/10000i	β3/10000i	β6/10000i	β6/10000i	β8/8000i	β8/8000i	β8/10000i	β8/10000i
Applicable am	olifier (old name)	SVPMx-5.5i	SVPMx-11i	SVPMx-15i	SVPMx-11i	SVPMx-15i	SVPMx-11i	SVPMx-15i	SVPMx-11i	SVPMx-15i

			-1
	model	βi I 12/7000	βi I 12/8000
	e amplifier I code	βi SVSPx-15 335	βi SVSPx-15 343
Applicable software		9D50/I	9D50/Q
	ed chracteritics	11kW	11kW
Continuous rati	ed criracterities	2000/7000min ⁻¹	2000/8000min ⁻¹
15-min. rated	chracteritics	15kW	15kW
FS0i		1500/7000min ⁻¹	1500/8000min ⁻¹
4007		00000000	
4008		00000000	<u> </u>
4009		00000000	Ţ
4010		00010000	1
4011		00011010	
4012 4013		10000000 00001100	1
4019		00001100	
4020		7000	8000
4023			
4039		0	
4041 4049			
4080		60	
4083		30	<u></u>
4093		0	
4100		1550	1
4101		82	↓ .
4102 4103		1844 80	
4104		3000	<u></u>
4105		0	1
4106		8000	←
4107		0	
4108 4109		0 25	
4110		1031	1
4111		355	
4112		200	T
4113		705	↓
4114 4115		23040	
4116		100 6300	1
4117		90	+
4118		100	—
4119		14	Ţ
4120		0	
4124 4127		0 150	<u> </u>
4128		95	—
4129		0	Ţ
4130		25700	1
4134		110	
4136 4138		0	- 1
4139		0	,
4140		0	1
4141		0	Ţ
4142		0	<u> </u>
4143 4144		0	
4145		0	+
4146		0	Ţ
4147		0	—
4148		0	
4149 4150		0	
4151		0	
4152		0	1
4153		0	1
4154		0	
4155		0	
4156 4158		0	1
4159		0	-
4161		0	
4165		0	1
4166		0	
4169 Maximum output o	luring acceleration	0 16.5kW	← 16.5kW
	l (old name)	β12/7000i	β12/8000i
	lifier (old name)	SVPMx-15 <i>i</i>	SVPMx-15i

C.8 SPINDLE MOTOR βi IP series

Motor	model	βi I _P 15/6000	βi I _P 18/6000	
	amplifier	β <i>i</i> SVSPx-15	β <i>i</i> SVSPx-15	
Model		351	352	
Applicable software	series and edition	9D50/Q	9D50/Q	
Continuous rate	ed chracteritics	7.5kW	9kW	
		1200/6000min ⁻¹ 9kW	1000/6000min ⁻¹ 11kW	
15-min. rated	chracteritics	750/6000min ⁻¹	750/6000min ⁻¹	
FS0i		7 00/0000111111	700/0000111111	
4007		00000000	00000000	
4008		00010000	00010000	
4009		00000000	00000000	
4010 4011		00010000 00001010	00010000 00001010	
4012		10000000	10000000	
4013		00001100	00001100	
4019		00000100	00000100	
4020		6000	6000	
4023 4039		0	0	
4041				
4049				
4080		20575	21845	
4083		30	30	
4093 4100		750	750	
4101		79	790	
4102		1566	1191	
4103		0	0	
4104		2000	3000	
4105 4106		7000	7000	
4107		7000	7000	
4108		0	0	
4109		25	25	
4110		1414	1190	
4111		503 200	410	
4112 4113		228	200 268	
4114		0	0	
4115		100	100	
4116		5307	4194	
4117		90	90	
4118 4119		100 42	100	
4120		0	36 0	
4124		0	0	
4127		132	134	
4128		90	105	
4129 4130		0 25700	0 25700	
4134		130	130	
4136		0	0	
4138		0	0	
4139		0	0	
4140		0	0	
4141 4142		0	0	
4143		0	0	
4144		0	0	
4145		0	0	
4146		0	0	
4147 4148		0	0	
4149		0	0	
4150		0	0	
4151		0	0	
4152		0	0	
4153 4154		0	0	
4155		0	0	
4156		0	0	
4158		0	0	
4159		0	0	
4161		0	0	
4405		0	0	
4165 4166				
4166		0		
	luring acceleration	0 9.9kW	0	
4166 4169		0		

C.9 SPINDLE MOTOR αCi series

Motor model		αC1/6000i	αC2/6000i	αC3/6000i	αC6/6000i	αC8/6000i	αC12/6000i	αC15/6000i
Applicable amplifier		SPMC-2.2 <i>i</i>	SPMC-5.5 <i>i</i>	SPMC-5.5 <i>i</i>	SPMC-11i	SPMC-11i	SPMC-15i	SPMC-22i
Model code (Applicable software series and edition)		240 (9D60/C)	241 (9D60/C)	242 (9D60/C)	243 (9D60/C)	244 (9D60/C)	245 (9D60/C)	246 (9D60/C)
Output specification Parameter number		1.5/2.2 kW 3000/6000	2.2/3.7 kW 1500/6000	3.7/5.5 kW 1500/6000	5.5/7.5 kW 1500/6000	7.5/11 kW 1500/6000	11/15 kW 1500/6000	15/18.5 kW 1500/6000
FS15i	FS16i	min ⁻¹	min ⁻¹	min ⁻¹	min ⁻¹	min ⁻¹	min ⁻¹	min ⁻¹
3001	4001	00000001	00000001	00000001	00000001	00000001	00000001	00000001
3002	4002	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3010	4010	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3011	4011	00011000	00011000	00011000	00011000	00011000	00011000	00011000
3012	4012	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3013	4013	00001100	00001100	00001100	00001100	00001100	01010000	01010000
3019	4019	00000000	00000000	00000000	00000000	00000000	00000000	00000000
3020	4020	6000	6000	6000	6000	6000	6000	6000
3040,3041	4040,4041	50	60	90	50	60	150	120
3042~3045	4042~4045	100	100	150	100	100	250	200
3048,3049	4048,4049	360	240	360	200	240	600	480
3050~3053	4050~4053	600	400	600	400	400	1000	800
3080	4080	90	75	100	80	100	100	100
3083	4083	60	60	60	60	60	60	60
3100	4100	3300	1700	1800	1700	1900	1700	1500
3101	4101	100	100	100	100	100	100	100
3102	4102	4000	2600	1800	2500	1900	1700	1750
3103	4103	91	87	86	73	96	89	53
3104	4104	1300	500	800	400	600	600	500
3105	4105	100	30	30	20	20	15	10
3106	4106	200	200	200	400	200	100	200
3107	4107	1000	800	800	800	800	1000	600
3108	4108	200	200	200	200	200	200	500
3109	4109	25	25	25	25	25	25	25
3110	4110	629	503	419	686	539	808	862
3111	4111	75	188	147	244	202	252	262
3112	4112	200	200	200	200	200	200	200
3113	4113	2439	1192	1077	690	819	311	304
3114	4114	0	0	0	0	0	0	0
3115	4115	100	100	100	100	100	100	100
3116	4116	10494	10580	9938	8803	8118	5000	5177
3117	4117	90	90	32090	90	32090	32090	32090
3118	4118	100	100	110	100	110	110	110
3119	4119	4	8	9	14	12	31	31
3120	4120	15	15	15	15	15	50	50
3124	4124	0	0	0	0	0	0	0
3127	4127	176	202	178	164	176	164	148
3128	4128	0	0	0	0	0	0	0
3129	4129	0	0	0	0	0	0	0
3130	4130	100	100	100	100	100	100	100
3131	4131	5220	12900	12900	12900	10355	5235	5235
3134	4134	110	110	110	130	130	130	130
Maximum ou acceleration (for		2.64kW	4.44kW	6.6kW	9.0kW	13.2kW	18.0kW	22.2kW

D

LISTS OF ALARMS/STATE ERRORS

D.1 LIST OF SPINDLE ALARMS

This section provides a list of spindle alarms. For details of the alarms and actions to be taken, refer to Part II, "TROUBLESHOOTING", in "FANUC SERVO MOTOR αi series MAINTENANCE MANUAL (B-65285EN)".

	Alarm No.		LED o	lisplay	December 4 in m
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	SP	PS	Description
SP097x	749	SP12xx	Α		Program ROM error
SP097x	749	SP12xx	A1		Program ROM error
SP097x	749	SP12xx	A2		Program ROM error
SP0001	9001	SP9001	01		Motor overheat
SP0002	9002	SP9002	02		Excessive velocity error
SP0003	9003	SP9003	03		DC link fuse blown
SP0004	9004	SP9004	04	Е	Open phase in the converter main power supply
SP0006	9006	SP9005	06		Temperature sensor disconnected
SP0007	9007	SP9006	07		Overspeed
SP0009	9009	SP9009	09		Main circuit overload/IPM overheat
SP0010	9010	SP9010	10		Low power supply input voltage
SP0011	9011	SP9011	11	7	Converter: DC link overvoltage
SP0012	9012	SP9012	12		DC link overcurrent/IPM alarm
SP0014	9014	SP9014	14		Amplifier ID not registered
SP098x	750	SP12xx	13		CPU internal data memory error
SP0015	9015	SP9015	15		Speed range switching/spindle switching alarm
	9016	SP9016	16		RAM error
SP0017	9017	SP9017	17		Amplifier ID data error
SP098x	750	SP12xx	18		Program sum check error
SP098x	750	SP12xx	19		Excessive offset of the phase U current detection circuit
SP098x	750	SP12xx	20		Excessive offset of the phase V current detection circuit
SP0021	9021	SP9021	21		Position sensor polarity setting incorrect
SP0022	9022	SP9022	22		Spindle amplifier current overload
SP022x	749	SP12xx	24		Serial communication error
SP0027	9027	SP9027	27		Position coder disconnected
SP0029	9029	SP9029	29		Short-time overload
SP0030	9030	SP9030	30	1	Overcurrent in the converter input circuit
SP0031	9031	SP9031	31		Motor lock alarm
SP0032	9032	SP9032	32		Serial communication LSI RAM error
SP0033	9033	SP9033	33	5	Converter: DC link precharge failure
SP0034	9034	SP9034	34		Parameter data out of the specifiable range
SP0035	9035	SP9035	35		Gear ratio parameter error
SP0036	9036	SP9036	36		Error counter overflow
SP0037	9037	SP9037	37		Speed detector parameter error
SP0041	9041	SP9041	41		Position coder one-rotation signal detection error
SP0042	9042	SP9042	42		Position coder one-rotation signal not detected
SP0043	9043	SP9043	43		Position coder signal for differential speed mode disconnected
SP0046	9046	SP9046	46		Position sensor one-rotation signal detection error during thread cutting
SP0047	9047	SP9047	47		Position coder signal error
SP0049	9049	SP9049	49		Overflow of converted motor speed for differential spindle speed control

Alarm No.		LED display			
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	SP	PS	- Description
SP0050	9050	SP9050	50		Excessive speed command calculation value during spindle synchronous control
SP0051	9051	SP9051	51	4	Converter: DC link low voltage
SP0052	9052	SP9052	52		ITP signal error I
SP0053	9053	SP9053	53		ITP signal error II
SP0054	9054	SP9054	54		Current overload alarm
SP0055	9055	SP9055	55		Abnormal switching status of power leads
SP0056	9056	SP9056	56		Internal cooling fan stopped
SP0057	9057	SP9057	57	Н	Converter: excessive deceleration power
SP0058	9058	SP9058	58	3	Converter: main circuit overload
SP0059	9059	SP9059	59	2	Converter: cooling fan stopped
SP0061	9061	SP9061	61		Excessive semi-closed loop/closed loop position error alarm
SP0065	9065	SP9065	65		Abnormal travel distance in magnetic pole determination operation
SP0066	9066	SP9066	66		Communication alarm between SPM's
SP0067	9067	SP9067	67		Reference position return command in the EGB mode
	9069	SP9069	69		Safety speed exceeded
	9070	SP9070	70		Abnormal axis data
	9071	SP9071	71		Abnormal safety parameter
	9072	SP9072	72		Motor speed mismatch
SP0073	9073	SP9073	73		Motor sensor disconnected
	9074	SP9074	74		CPU test alarm
	9075	SP9075	75		CRC test alarm
	9076	SP9076	76		Safety function not executed
	9077	SP9077	77		Axis number mismatch
	9078	SP9078	78		Safety parameter mismatch
	9079	SP9079	79		Abnormal initial test operation
SP0080	9080	SP9080	80		Destination amplifier error in inter-spindle amplifier communication
SP0081	9081	SP9081	81		Motor sensor one-rotation signal detection error
SP0082	9082	SP9082	82		Motor sensor one-rotation signal not detected
SP0083	9083	SP9083	83		Motor sensor signal error
SP0084	9084	SP9084	84		Spindle sensor disconnected
SP0085	9085	SP9085	85		Spindle sensor one-rotation signal detection error
SP0086	9086	SP9086	86		Spindle sensor one-rotation signal not detected
SP0087	9087	SP9087	87		Spindle sensor signal error
SP0088	9088	SP9088	88		Cooling fan stopped of the radiator
SP0089	9089	SP9089	89		Sub module SM (SSM) error
SP0110	9110	SP9110	b0		Communication error between amplifier modules
SP0111	9111	SP9111	b1	6	Converter: control power supply low voltage
SP0112	9112	SP9112	b2	8	Converter: excessive regenerative power
SP0113	9113	SP9113	b3	Α	Converter: cooling fan stopped of the radiator
SP0120	9120	SP9120	C0		Communication data alarm
SP0121	9121	SP9121	C1		Communication data alarm
SP0122	9122	SP9122	C2		Communication data alarm
SP0123	9123	SP9123	C3		Spindle switch circuit error
SP0126	9126	SP9126	C6		Spindle speed exceeded
					Excessive speed deviation alarm on spindle synchronous
SP0128	9128	SP9128	C8		control

	Alarm No.		LED d	lisplay	Description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	SP	PS	Description
SP0129	9129	SP9129	С9		Excessive positional deviation alarm on spindle synchronous control
SP0130	9130	SP9130	d0		Speed polarity error in torque tandem operation
		SP9135	d5		Safety speed zero monitoring error
		SP9136	d6		Safety speed zero monitoring mismatch
SP0137	9137	SP9137	d7		Device communication error

D.2 LIST OF SPINDLE STATE ERRORS

When a parameter is set incorrectly or a sequence is incorrect, the error LED (yellow) on the indicator of the spindle amplifier (SP) is turned on, and an error code is displayed.

When the spindle motor malfunctions, check the error code on the amplifier indicator and take action according to the table below.

Indication	Description of error state	Action
01	Although neither *ESP (emergency stop signal; there are two types of signals including the input signal and common power supply (PS) contact signal) nor MRDY (machine ready signal) is input, SFR (forward rotation signal)/SRV (reverse rotation signal)/ORCM (orientation command) is input.	Check the *ESP and MRDY sequence. For MRDY, pay attention to the parameter setting regarding the use of the MRDY signal (bit 0 of parameter No. 4001).
03	Although a parameter setting (bits 3,2,1,0 of No. 4002 = 0,0,0,0) is made to use no position sensor (to exercise no position control), the Cs contouring control command is input. In this case, the motor is not excited.	Check the parameter setting.
04	Although a parameter setting (bits 3,2,1,0 of No. 4002 = 0,0,0,0) is made to use no position sensor (to exercise no position control), a command for servo mode (such as rigid tapping and spindle positioning) or spindle synchronous control is input. In this case, the motor is not excited.	Check the parameter setting.
05	Although the option parameter of the orientation function is not set, the ORCM (orientation command) is input.	Check the parameter setting of the orientation function.
06	Although the option parameter of the speed range switching control function is not set, the low-speed characteristics winding is selected. (RCH=1)	Check the parameter setting of the speed range switching control function and also check the power line state check signal (RCH).
07	Although the Cs contour control command is specified, SFR(clockwise command) / SRV(counterclockwise command) is not input.	Check the sequence.
08	Although the servo mode (rigid tapping, spindle positioning, etc.) is specified, SFR(clockwise command) / SRV(counterclockwise command) is not input.	Check the sequence.
09	Although spindle synchronous control mode is specified, SFR(clockwise command) / SRV(counterclockwise command) is not input.	Check the sequence.
10	Although Cs contour control mode is set, another mode (servo mode, spindle synchronous control, or orientation) is specified.	During execution of the C-axis control command, do not specify another mode. Before entering another mode, cancel the Cs contour control command.
11	Although servo mode (rigid tapping, or spindle positioning, etc.) is set, another mode (Cs contour control, spindle synchronous control, or orientation) is specified.	During execution of the servo mode command, do not specify another mode. Before entering another mode, cancel the servo mode.

Indication	Description of error state	Action
12	Although spindle synchronous control is being performed, another mode (Cs contour control, servo mode, or orientation) is specified.	During execution of the spindle synchronous control command, do not specify another mode. Before entering another mode, cancel the spindle synchronous control command.
13	Although the orientation command is being executed, another mode (Cs contour control, servo mode, or spindle synchronous control) is specified.	During execution of the orientation command, do not specify another mode. Before entering another mode, cancel the orientation command.
14	The SFR(clockwise command) and SRV(counterclockwise command) signals are both input at the same time.	Input the SFR(clockwise command) or SRV(counterclockwise command)signal.
16	Although a parameter setting (bit 5 of parameter No. 4000 = 0) is made to use no differential spindle speed control function, DEFMD (differential speed mode command) is input.	Check the parameter setting and differential speed mode command.
17	Setting of the speed detector parameter (bits 2, 1, and 0 of parameter No. 4011) is invalid. The corresponding speed detector is not present.	Check the parameter setting.
18	Although a parameter setting (bits 3,2,1,0 of No. 4002 = 0,0,0,0) is made to use no position sensor (to exercise no position control), position coder method orientation is specified.	Check the parameter setting and input signal.
19	Although the magnetic sensor method orientation command is specified, another mode (Cs contouring control, servo mode, or spindle synchronous control) is specified.	During the execution of the orientation command, do not specify another mode. Before changing the mode to another mode, cancel the orientation command.
21	·	Input a tandem operation command after canceling spindle synchronous control.
22	Spindle synchronous control was specified when tandem operation is enabled.	Specify spindle synchronous control after canceling torque tandem operation.
23	A tandem operation command is input even if the option is not specified.	Torque tandem control requires the CNC software option. Check the option.
24	For successive indexing in position coder method orientation, an incremental operation (INCMD = 1) is first performed, then an absolute position command (INCMD = 0) is input.	Check INCMD (incremental command). When specifying the absolute position command successively, be sure to perform absolute position command orientation first.
26	Parameter settings are made to use both spindle switching and three stage speed range switching control.	Check the parameter settings and input signals.
29	Parameter settings for using the shortest time orientation function (bit 6 of No. 4018 = 0, No. 4320 to No. 4323 \neq 0) are made.	The shortest time orientation function is unusable with the αi series spindle amplifier. Use orientation of ordinary type.
30	The magnetic pole undetected state is set, but a command is input.	In the magnetic pole undetected state (EPFIXA = 0), the motor cannot be driven even if a command is input. Input a command in the magnetic pole detection completed state (EPFIXA = 1). While EPFSTR = 1 is set, a command is ignored even in the magnetic pole detection completed state, and this error is indicated. Upon completion of magnetic pole detection, set EPFSTR = 0.
31	The hardware configuration disables the use of the spindle FAD function. In this case, the motor is not excited.	Check the model of the CNC.

Indication	Description of error state	Action
32	Although S0 is not specified for the speed mode, the parameter setting is made to enable the disturbance input function (bit 7 of parameter No. 4395 = 1).	Specify S0 for the speed mode before enabling the disturbance input function (setting bit 7 of parameter No. 4395 to 1).
33	The hardware configuration disables the use of the spindle EGB function. In this case, the motor is not excited.	Check the model of the CNC.
34	Both the spindle FAD function and spindle EGB function are enabled. In this case, the motor is not excited.	The two functions cannot be used at the same time. Enable one of the two functions at a time.
35	ID information of the spindle amplifier cannot be obtained.	Replace the spindle amplifier with one for which correct ID information is written.
36	The sub module SM (SSM) is abnormal. *1) Disconnection of the interface signal between the spindle amplifier and SSM *2) SSM failure	For action to be taken for this error, see Section 1.4, "SUB MODULE SM", in Part IV.
37	The current loop setting (parameter No. 4012) is changed.	Check the setting of parameter No. 4012, and turn the power off, then on again.
38	 Parameters related to inter-spindle amplifier communication are not set correctly. Functions that cannot be used together with the torque tandem function are set. 	Check the parameters.
39	DSCN (disconnection detection disable signal) is input in the state where SFR (forward rotation command), SRV (reverse rotation command), or ORCM (orientation command) is input.	Check the sequence. Do not input DSCN (disconnection detection disable signal) while a command for motor activation is input.

TABLE OF I/O SIGNALS RELATED TO **SPINDLE CONTROL**

E.1 αi SERIES SPINDLE

E.1.1 Input Signals (PMC→CNC)

(1) Series 16*i*

Common to all axes	G027
Common to all axes	G028
Common to all axes	G029
Common to all axes	G030
Common to all axes	G038
Common to all axes	G061

#7	#6	#5	#4	#3	#2	#1	#0
CON			*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
					GR2	GR1	
	*SSTP	SOR	SAR	•			
SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
				SPPHS	SPSYC		
							RGTAP

1st- G032 2nd- G034

R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
R08I2	R07I2	R06I2	R05I2	R04I2	R03I2	R02I2	R01I2

1st- G033 2nd- G035

SIND	SSIN	SGN	R12I	R11I	R10I	R09I
SIND2	SSIN2	SGN2	R12I2	R11I2	R10I2	R09I2

NOTE

*1 These signals are valid in multi-spindle control.

(2) Series 30i

Common to all axes	G027
Common to all axes	G028
Common to all axes	G029
Common to all axes	G030
Common to all axes	G038
Common to all axes	G061

#7	#6	#5	#4	#3	#2	#1	#0
CON			*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
					GR2	GR1	
	*SSTP	SOR	SAR				
SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
				SPPHS	SPSYC		
							RGTAP

1st- G032 2nd- G034 1st- G033

G035

2nd-

R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
R08I2	R07I2	R06I2	R05I2	R04I2	R03I2	R02I2	R01I2

R09I

R0912

 SIND
 SSIN
 SGN
 R12I
 R11I
 R10I

 SIND2
 SSIN2
 SGN2
 R12I2
 R11I2
 R10I2

NOTE

*1 These signals are valid in multi-spindle control.

(3) Series 15*i*

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G005							FIN	
	G067	SCNTR1							
	G071	SCNTR2							
	:	:							
			•						
1st-	G024	RI7A	RI6A	RI5A	RI4A	RI3A	RI2A	RI1A	RI0A
2nd-	G232	RI7B	RI6B	RI5B	RI4B	RI3B	RI2B	RI1B	RI0B
1st-	G025	RISGNA			RI12A	RI11A	RI10A	RI9A	RI8A
2nd-	G233	RISGNB			RI12B	RI11B	RI10B	RI9B	RI8B
				-					
1st-	G026		GS4A	GS2A	GS1A				SPSTPA
2nd-	G272		GS4B	GS2B	GS1B				SPSTPA

(4) Common to CNCs

<i>-</i>	וטוו נט	01103	,								
	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070	MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA
2nd-	G235	G074	G074	MRDYB	ORCMB	SFRB	SRVB	CTH1B	CTH2B	TLMHB	TLMLB
1st-	G226	G071	G071	RCHA	RSLA	INTGA	SOCNA	MCFNA	SPSLA	*ESPA	ARSTA
2nd-	G234	G075	G075	RCHB	RSLB	INTGB	SOCNB	MCFNB	SPSLB	*ESPB	ARSTB
1st-	G229	G072	G072	RCHHGA	MFNHGA	INCMDA	OVRA	DEFMDA	NRROA	ROTAA	INDXA
2nd-	G237	G076	G076	RCHHGB	MFNHGB	INCMDB	OVRB	DEFMDB	NRROB	ROTAB	INDXB
1st-	G228	G073	G073				DSCNA	SORSLA	MPOFA	SLVA	
2nd-	G236	G077	G077				DSCNB	SORSLB	MPOFB	SLVB	

E.1.2 Output Signals (CNC→PMC)

(1) Series 16*i*

	#7	#6	#5	#4	#3	#2	#1	#0
F001				ENB				
F007			'			SF		
F022	S07	S06	S05	S04	S03	S02	S01	S00
F023	S15	S14	S13	S12	S11	S10	S09	S08
F024	S23	S22	S21	S20	S19	S18	S17	S16
F025	S31	S30	S29	S28	S27	S26	S25	S24
F034						GR30 (*1)	GR2O (*1)	GR10 (*1)
F036	R08O	R070	R06O	R05O	R040	R03O	R02O	R010
F037					R120	R110	R100	R09O
F044				SYCAL	FSPPH	FSPSY	FSCSL	
F065							RGSPM (*1)	RGSPP (*1)
F076					RTAP			
F094	ZP8	ZP7	ZP6	ZP5	ZP4	ZP3	ZP2	ZP1

NOTE

(2) Series 30*i*

	#7	#6	#5	#4	#3	#2	#1	#0
F001				ENB				
F007			•			SF		
F022	S07	S06	S05	S04	S03	S02	S01	S00
F023	S15	S14	S13	S12	S11	S10	S09	S08
F024	S23	S22	S21	S20	S19	S18	S17	S16
F025	S31	S30	S29	S28	S27	S26	S25	S24
F034						GR30 (*1)	GR2O (*1)	GR10 (*1)
F036	R08O	R070	R06O	R05O	R040	R03O	R02O	R010
F037					R120	R110	R100	R09O
F044				SYCAL	FSPPH	FSPSY	FSCSL	
F065							RGSPM (*1)	RGSPP (*1)
F076					RTAP			
F094	ZP8	ZP7	ZP6	ZP5	ZP4	ZP3	ZP2	ZP1

NOTE

^{*1} These signals are valid with the M series only.

^{*1} These signals are valid with the M series only.

(3) Series 15*i*

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	F008							SF	
Common to all axes	F020	S 7	S6	S5	S4	S3	S2	S1	S0
Common to all axes	F021	S15	S14	S13	S12	S11	S10	S09	S08
Common to all axes	F022	S23	S22	S21	S20	S19	S18	S17	S16
Common to all axes	F023	S31	S30	S29	S28	S27	S26	S25	S24
Common to all axes	F040				RTAP				
Common to all axes	F045			SRSRDY					
	F064								ZP1
	F068								ZP2
	:								:
	F067	MSCNTR1							
	F071	MSCNTR2							
	:	:							
Common to all axes	F155						RSPC	RSPM	RSPP
1st-	F010	RO7A	RO6A	RO5A	RO4A	RO3A	RO2A	RO1A	RO0A
2nd-	F320	RO7B	RO6B	RO5B	RO4B	RO3B	RO2B	RO1B	RO0B
1st-	F011	RO15A	RO14A	RO13A	RO12A	RO11A	RO11A	RO10A	RO9A
2nd-	F321	RO15B	RO14B	RO13B	RO12B	RO11B	RO11B	RO10B	RO9B
1st-	F014	MR7A	MR6A	MR5A	MR4A	MR3A	MR2A	MR1A	MR0A
2nd-	F324	MR7B	MR6B	MR5B	MR4B	MR3B	MR2B	MR1B	MR0B
1st-	F015	MR15A	MR14A	MR13A	MR12A	MR11A	MR10A	MR9A	MR8A
2nd-	F325	MR15B	MR14B	MR13B	MR12B	MR11B	MR10B	MR9B	MR8B
1st-	F234	SSPD7A	SSPD6A	SSPD5A	SSPD4A	SSPD3A	SSPD2A	SSPD1A	SSPD0A
2nd-	F250	SSPD7B	SSPD6B	SSPD5B	SSPD4B	SSPD3B	SSPD2B	SSPD1B	SSPD0B
1st-	F235	SSPD15A	SSPD14A	SSPD13A	SSPD12A	SSPD11A	SSPD10A	SSPD9A	SSPD8A
2nd-	F251	SSPD15B	SSPD14B	SSPD13B	SSPD12B	SSPD11B	SSPD10B	SSPD9B	SSPD8B
			T	1	T	1			
1st-	F341								SRRDYA
2nd-	F342								SRRDYB

(4) Common to CNCs

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA	TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
2nd-	F245	F049	F049	ORARB	TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
1st-	F228	F046	F046				SLVSA	RCFNA	RCHPA	CFINA	СНРА
2nd-	F244	F050	F050				SLVSA	RCFNB	RCHPB	CFINB	СНРВ
					_						
1st-	F231	F047	F047				EXOFA	SORENA		INCSTA	PC1DTA
2nd-	F247	F051	F051				EXOFB	SORENB		INCSTB	PC1DTB
									·		
1st-	F230	F048	F048				CSPENA			·	
2nd-	F246	F052	F052				CSPENB				

E.2 αCi SERIES SPINDLE

E.2.1 Input Signals (PMC→CNC)

(1) Series 16*i*

G027 G028 G029 G030 G032 G033 G038 G061

#7	#6	#5	#4	#3	#2	#1	#0
			*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
					GR2	GR1	
	*SSTP	SOR	SAR	•			
SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
SIND	SSIN	SGN		R12I	R11I	R10I	R09I
				SPPHS	SPSYC		
							RGTAP

NOTE

*1 These signals are valid in multi-spindle control.

(2) Series 30*i*

G027 G028 G029 G030 G032 G033 G038 G061

#7	#6	#5	#4	#3	#2	#1	#0
			*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
					GR2	GR1	
	*SSTP	SOR	SAR	•			
SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
SIND	SSIN	SGN		R12I	R11I	R10I	R09I
				SPPHS	SPSYC		
							RGTAP

NOTE

*1 These signals are valid in multi-spindle control.

(3) Series 15*i*

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G005							FIN	
	G067	SCNTR1							
	G071	SCNTR2							
	:	:							
1st-	G024	RI7A	RI6A	RI5A	RI4A	RI3A	RI2A	RI1A	RI0A
2nd-	G232	RI7B	RI6B	RI5B	RI4B	RI3B	RI2B	RI1B	RI0B
1st-	G025	RISGNA			RI12A	RI11A	RI10A	RI9A	RI8A
2nd-	G233	RISGNB			RI12B	RI11B	RI10B	RI9B	RI8B
				•					
1st-	G026		GS4A	GS2A	GS1A				SPSTPA
2nd-	G272		GS4B	GS2B	GS1B				SPSTPA

(4) Common to CNCs

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070	MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA (*1)
2nd-	G235	G074	G074	MRDYB	ORCMB	SFRB	SRVB	СТН1В	СТН2В	TLMHB	TLMLB (*1)
1st-	G226	G071	G071			INTGA				*ESPA	ARSTA
2nd-	G234	G075	G075			INTGB				*ESPB	ARSTB
1st-	G229	G072	G072			INCMDA	OVRA		NRROA	ROTAA	INDXA
2nd-	G237	G076	G076			INCMDB	OVRB		NRROB	ROTAB	INDXB
1st-	G228	G073	G073						MPOFA		
2nd-	G236	G077	G077						MPOFB		

NOTE

^{*1} The signal functions of the αCi series differ from those of the αi series. For details, see Chapter 3, "I/O SIGNALS (CNC \leftrightarrow PMC)", in Part III.

E.2.2 Output Signals (CNC→PMC)

(1) Series 16*i*

	#7	#6	#5	#4	#3	#2	#1	#0
F001				ENB				
F007						SF		
F022	S07	S06	S05	S04	S03	S02	S01	S00
F023	S15	S14	S13	S12	S11	S10	S09	S08
F024	S23	S22	S21	S20	S19	S18	S17	S16
F025	S31	S30	S29	S28	S27	S26	S25	S24
F034						GR30 (*1)	GR2O (*1)	GR10 (*1)
F036	R08O	R070	R06O	R05O	R040	R03O	R02O	R010
F037					R120	R110	R100	R09O
F044				SYCAL	FSPPH	FSPSY	FSCSL	
F065							RGSPM (*1)	RGSPP (*1)
F076					RTAP			
F094	ZP8	ZP7	ZP6	ZP5	ZP4	ZP3	ZP2	ZP1

NOTE

F001 F007 F022 F023 F024 F025 F034 F036 F037 F044 F065 F076 F094 *1 These signals are valid with the M series only.

(2) Series 30*i*

	#7	#6	#5	#4	#3	#2	#1	#0
				ENB				
						SF		
	S07	S06	S05	S04	S03	S02	S01	S00
	S15	S14	S13	S12	S11	S10	S09	S08
	S23	S22	S21	S20	S19	S18	S17	S16
	S31	S30	S29	S28	S27	S26	S25	S24
						GR30 (*1)	GR2O (*1)	GR10 (*1)
1	R08O	R070	R06O	R05O	R040	R03O	R02O	R010
,					R120	R110	R100	R09O
				SYCAL	FSPPH	FSPSY	FSCSL	
							RGSPM (*1)	RGSPP (*1)
					RTAP			
	ZP8	ZP7	ZP6	ZP5	ZP4	ZP3	ZP2	ZP1

NOTE

*1 These signals are valid with the M series only.

(3) Series 15*i*

(3) Serie	3 13 <i>i</i>			#7	#6	#5	#4	#3	#2	#1	#0
	Common to all	l avec	F008	#1	#0	#5	# -1	#5	πΔ	SF	#0
	Common to all		F020	S 7	S6	S5	S4	S3	S2	S1	S0
	Common to all		F021	S15	S14	S13	S12	S11	S10	S09	S08
	Common to all		F022	S23	S22	S21	S20	S19	S18	S17	S16
	Common to all		F023	S31	S30	S29	S28	S27	S26	S25	S24
	Common to all		F040			00000	RTAP				
	Common to all	axes	F045			SRSRDY					
			F064								ZP1
			F068								ZP2
			:								:
			F067	MSCNTR1							
			F071	MSCNTR2							
			:	:							
	Common to all	axes	F155						RSPC	RSPM	RSPP
					•		1	1	1		
	1	st-	F010	RO7A	RO6A	RO5A	RO4A	RO3A	RO2A	RO1A	RO0A
	2	nd-	F320	RO7B	RO6B	RO5B	RO4B	RO3B	RO2B	RO1B	RO0B
	1	st-	F011	RO15A	RO14A	RO13A	RO12A	RO11A	RO11A	RO10A	RO9A
	2	nd-	F321	RO15B	RO14B	RO13B	RO12B	RO11B	RO11B	RO10B	RO9B
	1	st-	F014	MR7A	MR6A	MR5A	MR4A	MR3A	MR2A	MR1A	MR0A
	2	nd-	F324	MR7B	MR6B	MR5B	MR4B	MR3B	MR2B	MR1B	MR0B
	1	st-	F015	MR15A	MR14A	MR13A	MR12A	MR11A	MR10A	MR9A	MR8A
	2	nd-	F325	MR15B	MR14B	MR13B	MR12B	MR11B	MR10B	MR9B	MR8B
	1	st-	F234	SSPD7A	SSPD6A	SSPD5A	SSPD4A	SSPD3A	SSPD2A	SSPD1A	SSPD0A
	2	nd-	F250	SSPD7B	SSPD6B	SSPD5B	SSPD4B	SSPD3B	SSPD2B	SSPD1B	SSPD0B
	1	lst-	F235	SSPD15A	SSPD14A	SSPD13A	SSPD12A	SSPD11A	SSPD10A	SSPD9A	SSPD8A
	2	nd-	F251	SSPD15B	SSPD14B	SSPD13B	SSPD12B	SSPD11B	SSPD10B	SSPD9B	SSPD8B
	1	st-	F341								SRRDYA
	2	nd-	F342								SRRDYB
(4) 0						I					
(4) Com	mon to C				"6			"6	""	11.4	
4-1	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4 LDT1A	#3	#2	#1	#0
1st-		F045	F045	ORARA	TLMA	1	LDT1A	SARA	SDTA	SSTA	ALMA
2nd-	F245 I	F049	F049	ORARB	TLMB	<u></u>	LDT1B	SARB	SDTB	SSTB	ALMB
	F00.4	-0 1 -	F0.4=						İ	IN 22 - 1	DO 125
1st-		F047	F047		1			1		INCSTA	PC1DTA
2nd-	F247 I	F051	F051							INCSTB	PC1DTB

E.3 BiS SERIES SPINDLE

E.3.1 Input Signals (PMC→CNC)

(1) Series 16*i*

Common to all axes	G027
Common to all axes	G028
Common to all axes	G029
Common to all axes	G030
Common to all axes	G038
Common to all axes	G061

#7	#6	#5	#4	#3	#2	#1	#0
CON			*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
					GR2	GR1	
	*SSTP	SOR	SAR				
SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
				SPPHS	SPSYC		
							RGTAP

1st-	G032
2nd-	G034

R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
R08I2	R07I2	R06I2	R05I2	R04I2	R03I2	R02I2	R01I2

1st-	G033
2nd-	G035

SIND	SSIN	SGN	R12I	R11I	R10I	R09I
SIND2	SSIN2	SGN2	R12I2	R11I2	R10I2	R09I2

NOTE

These signals are valid in multi-spindle control.

(2) Series 30*i*

Common to all axes	G027
Common to all axes	G028
Common to all axes	G029
Common to all axes	G030
Common to all axes	G038
Common to all axes	G061

#7	#6	#5	#4	#3	#2	#1	#0
CON			*SSTP2 (*1)	*SSTP1 (*1)		SWS2 (*1)	SWS1 (*1)
					GR2	GR1	
	*SSTP	SOR	SAR				
SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
				SPPHS	SPSYC		
							RGTAP

1st-	G032
2nd-	G034

R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
R08I2	R07I2	R06I2	R05I2	R04I2	R03I2	R02I2	R01I2

1st-	G033
2nd-	G035

SIND	SSIN	SGN	R12I	R11I	R10I	R09I
SIND2	SSIN2	SGN2	R12I2	R11I2	R10I2	R09I2

NOTE

These signals are valid in multi-spindle control.

(3) Series 15*i*

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	G005							FIN	
	G067	SCNTR1							
	G071	SCNTR2							
	:	:							
									_
1st-	G024	RI7A	RI6A	RI5A	RI4A	RI3A	RI2A	RI1A	RI0A
2nd-	G232	RI7B	RI6B	RI5B	RI4B	RI3B	RI2B	RI1B	RI0B
1st-	G025	RISGNA			RI12A	RI11A	RI10A	RI9A	RI8A
2nd-	G233	RISGNB			RI12B	RI11B	RI10B	RI9B	RI8B
1st-	G026		GS4A	GS2A	GS1A				SPSTPA
2nd-	G272		GS4B	GS2B	GS1B				SPSTPA

(4) Common to CNCs

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	G227	G070	G070	MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA
2nd-	G235	G074	G074	MRDYB	ORCMB	SFRB	SRVB	СТН1В	CTH2B	TLMHB	TLMLB
1st-	G226	G071	G071			INTGA	SOCNA			*ESPA	ARSTA
2nd-	G234	G075	G075			INTGB	SOCNB			*ESPB	ARSTB
					•			_	•		
1st-	G229	G072	G072			INCMDA	OVRA	DEFMDA	NRROA	ROTAA	INDXA
2nd-	G237	G076	G076			INCMDB	OVRB	DEFMDB	NRROB	ROTAB	INDXB
1st-	G228	G073	G073	EPFSTRA			DSCNA	SORSLA	MPOFA		•
2nd-	G236	G077	G077	EPFSTRB			DSCNB	SORSLB	MPOFB		

E.3.2 Output Signals (CNC→PMC)

(1) Series 16*i*

	#7	#6	#5	#4	#3	#2	#1	#0
F001				ENB				
F007			'			SF		
F022	S07	S06	S05	S04	S03	S02	S01	S00
F023	S15	S14	S13	S12	S11	S10	S09	S08
F024	S23	S22	S21	S20	S19	S18	S17	S16
F025	S31	S30	S29	S28	S27	S26	S25	S24
F034						GR30 (*1)	GR2O (*1)	GR10 (*1)
F036	R08O	R070	R06O	R05O	R040	R03O	R02O	R010
F037					R120	R110	R100	R09O
F044				SYCAL	FSPPH	FSPSY	FSCSL	
F065							RGSPM (*1)	RGSPP (*1)
F076					RTAP			
F094	ZP8	ZP7	ZP6	ZP5	ZP4	ZP3	ZP2	ZP1

NOTE

F001 F007 F022 F023 F024 F025 F034 F036 F037 F044 F065 F076 F094 *1 These signals are valid with the M series only.

(2) Series 30*i*

#7	#6	#5	#4	#3	#2	#1	#0
			ENB				
					SF		
S07	S06	S05	S04	S03	S02	S01	S00
S15	S14	S13	S12	S11	S10	S09	S08
S23	S22	S21	S20	S19	S18	S17	S16
S31	S30	S29	S28	S27	S26	S25	S24
					GR30 (*1)	GR2O (*1)	GR10 (*1)
R08O	R07O	R06O	R05O	R040	R03O	R02O	R010
				R120	R110	R100	R09O
			SYCAL	FSPPH	FSPSY	FSCSL	
						RGSPM (*1)	RGSPP (*1)
				RTAP			
ZP8	ZP7	ZP6	ZP5	ZP4	ZP3	ZP2	ZP1

NOTE

*1 These signals are valid with the M series only.

(3) Series 15*i*

		#7	#6	#5	#4	#3	#2	#1	#0
Common to all axes	F008							SF	
Common to all axes	F020	S 7	S6	S5	S4	S3	S2	S1	S0
Common to all axes	F021	S15	S14	S13	S12	S11	S10	S09	S08
Common to all axes	F022	S23	S22	S21	S20	S19	S18	S17	S16
Common to all axes	F023	S31	S30	S29	S28	S27	S26	S25	S24
Common to all axes	F040				RTAP				
Common to all axes	F045			SRSRDY					
	F064								ZP1
	F068								ZP2
	:								:
	F067	MSCNTR1							
	F071	MSCNTR2							
	:	:							
Common to all axes	F155						RSPC	RSPM	RSPP
1st-	F010	RO7A	RO6A	RO5A	RO4A	RO3A	RO2A	RO1A	RO0A
2nd-	F320	RO7B	RO6B	RO5B	RO4B	RO3B	RO2B	RO1B	RO0B
1st-	F11	RO15A	RO14A	RO13A	RO12A	RO11A	RO11A	RO10A	RO9A
2nd-	F321	RO15B	RO14B	RO13B	RO12B	RO11B	RO11B	RO10B	RO9B
1st-	F014	MR7A	MR6A	MR5A	MR4A	MR3A	MR2A	MR1A	MR0A
2nd-	F324	MR7B	MR6B	MR5B	MR4B	MR3B	MR2B	MR1B	MR0B
1st-	F015	MR15A	MR14A	MR13A	MR12A	MR11A	MR10A	MR9A	MR8A
2nd-	F325	MR15B	MR14B	MR13B	MR12B	MR11B	MR10B	MR9B	MR8B
1st-	F234	SSPD7A	SSPD6A	SSPD5A	SSPD4A	SSPD3A	SSPD2A	SSPD1A	SSPD0A
2nd-	F250	SSPD7B	SSPD6B	SSPD5B	SSPD4B	SSPD3B	SSPD2B	SSPD1B	SSPD0B
1st-	F235	SSPD15A	SSPD14A	SSPD13A	SSPD12A	SSPD11A	SSPD10A	SSPD9A	SSPD8A
2nd-	F251	SSPD15B	SSPD14B	SSPD13B	SSPD12B	SSPD11B	SSPD10B	SSPD9B	SSPD8B
				T			· · · · · · · · · · · · · · · · · · ·		
1st-	F341								SRRDYA
2nd-	F342								SRRDYB

(4) Common to CNCs

	15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	#7	#6	#5	#4	#3	#2	#1	#0
1st-	F229	F045	F045	ORARA	TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
2nd-	F245	F049	F049	ORARB	TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
						_					
1st-	F231	F047	F047				EXOFA	SORENA		INCSTA	PC1DTA
2nd-	F247	F051	F051				EXOFB	SORENB		INCSTB	PC1DTB
						•					
1st-	F230	F048	F048	EPFIXA			CSPENA	SSMBRKA			
2nd-	F246	F052	F052	EPFIXB			CSPENB	SSMBRKB			

OBSERVING DATA USING THE SERVO GUIDE

Using the servo adjustment tool, SERVO GUIDE, enables you to observe internal data for the spindle.

This Appendix F describes the spindle data that can be observed using the SERVO GUIDE. It also presents examples of observed data. Refer to FANUC SERVO GUIDE OPERATOR'S MANUAL (B-65404EN) online help for detailed explanations about how to use the SERVO GUIDE.

F.1 SERIES AND EDITIONS OF APPLICABLE SPINDLE SOFTWARE

9D50 series B(02) edition or later 9D53 series A(01) edition or later 9D70 series A(01) edition or later 9D80 series A(01) edition or later

F.2 SPINDLE DATA THAT CAN BE OBSERVED USING THE SERVO GUIDE

F.2.1 Data List

The following table lists the spindle data that can be observed using the SERVO GUIDE.

Data type	Description	Description		
SPEED	Motor speed			
INORM	Motor current amplitude			
TCMD	Torque command			
VCMD	Motor speed command			
VERR	Speed deviation			
MCMD	Move command for an individual communication cycle			
ERR	Position error	9D50 series 11 edition or later *1		
ERRC	Position error (CNC)			
SYNC	Synchronous error	9D50 series 11 edition or later *1		
ORERR	Position error at orientation			
ORSEQ	Orientation sequence data			
PCPOS	Cumulative position feedback value			
CSPOS	Cumulative position feedback value			
WMDAT	Move command for an individual position loop			
ERR2	Position error 2			
ERR2C	Position error 2 (CNC)	9D50 series 11 edition or later *1		
SPCMD	Speed command data from the CNC			
SPSPD	Spindle speed	9D50 series 11 edition or later *1		
SPCT1	Spindle control signal 1			
SPCT2	Spindle control signal 2			
SPCT3	Spindle control signal 3	9D50 series 11 edition or later *1		
SPST1	Spindle status signal 1			
SPST2	Spindle status signal 2			
SFLG1	Spindle flag 1	9D50 series 11 edition or later *1		
SPPOS	Spindle position data	9D50 series 12 edition or later *2		
LMDAT	Load meter data	9D50 series 11 edition or later *1		
DTRQ	Spindle load torque (unexpected disturbance torque detection function)	9D50 series 11 edition or later *1		
FREQ	Frequency of a disturbance torque command (disturbance input function)	9D50 series 11 edition or later *1		
GAIN	Gain (disturbance input function)	9D50 series 11 edition or later *1		
MTTMP	Motor winding temperature	9D50 series 11 edition or later *1		
MFBDF	Feedback differential data on the motor side (for amplitude ratio/phase difference compensation adjustment)	9D50 series 11 edition or later *1		
SFBDF	Feedback differential data on the spindle side (for amplitude ratio/phase difference compensation adjustment)	9D50 series 11 edition or later *1		
PA1	A/D value of motor sensor phase A	9D50 series 11 edition or later *1		
PB1	A/D value of motor sensor phase B	9D50 series 11 edition or later *1		
PA2	A/D value of spindle sensor phase A	9D50 series 11 edition or later *1		
PB2	A/D value of spindle sensor phase B	9D50 series 11 edition or later *1		
VDC	DC link voltage	9D50 series 11 edition or later *1		
SFERR	Semi-closed loop/closed loop difference	9D50 series 11 edition or later *1		
SPERR	(Dual position feedback function)	and selles it edition of later		

Data type	Description	Description	
SMERR	Positional deviation on the semi-closed loop side		
	(Dual position feedback function)	9D50 series 11 edition or later	

NOTE

- *1 Valid with 9D53 series 03 edition or later, valid with 9D70 series 02 edition or later, and valid with 9D80 series 01 edition or later
- *2 Valid with 9D53 series 04 edition or later, valid with 9D70 series 03 edition or later, and valid with 9D80 series 01 edition or later
- *3 To observe data marked with *1 and *2, Servo Guide Ver. 3.0 or later is needed.

F.2.2 About the Spindle Speed Control and Spindle Status Signals

As stated in the previous item, the SERVO GUIDE can be used to observe the PMC signals (spindle speed control signals 1 and 2 and spindle status signals 1 and 2) used by the spindle.

Listed below is the data configuration for spindle speed control signals 1 and 2 and spindle status signals 1 and 2. Refer to Chapter 3 for explanations about each signal.

(a) Spindle speed control signal 1 (SPCT1)

#15	#14	#13	#12	#11	#10	#9	#8
RCH	RSL	INTG	SOCN	MCFN	SPSL	*ESP	ARST
#7	#6	#5	#4	#3	#2	#1	#0
MRDY	ORCM	SFR	SRV	CTH1	CTH2	TLMH	TLML

(b) Spindle speed control signal 2 (SPCT2)

#15	#14	#13	#12	#11	#10	#9	#8
			DSCN	SORSL	MPOF		
#7	#6	#5	#4	#3	#2	#1	#0
RCHHG	MFNHG	INCMD	OVR	DEFMD	NRRO	ROTA	INDX

(c) Spindle speed control signal 3 (SPCT3)

#15	#14	#13	#12	#11	#10	#9	#8
#7	#6	#5	#4	#3	#2	#1	#0

(d) Spindle status signal 1 (SPST1)

#15	#14	#13	#12	#11	#10	#9	#8
			SLVS	RCFN	RCHP	CFIN	CHP
#7	#6	#5	#4	#3	#2	#1	#0
ORAR	TLM	LDT2	LDT1	SAR	SDT	SST	ALM

(e) Spindle status signal 2 (SPST2)

#15	#14	#13	#12	#11	#10	#9	#8
			CSPEN				
#7	#6	#5	#4	#3	#2	#1	#0
			EXOF	SOREN		INCST	PC1DT

F.3 EXAMPLE OF OBSERVING DATA

(1) Synchronous error and motor speed in rigid tapping

DRAW1 : SYNC (Synchronous error) DRAW2 : SPEED (Motor speed)

(2) Motor speed and orientation sequence in orientation

DRAW1: SPEED (Motor speed)

DRAW2: ORSEQ (Orientation sequence)

(3) Spindle speeds and synchronous error in spindle synchronous control

DRAW1, 2 : SPSPD (Spindle speed S1 and S2) DRAW3 : SYNC (Synchronous error)

(4) Motor speed and estimated load torque data

DRAW1: SPEED (Motor speed)

DRAW2: DTRQ (Estimated load torque)

(5) Phase A/B feedback signal of α*i*BZ sensor

DRAW1 : PA2 (Phase A signal of a separate αiBZ sensor) DRAW2 : PB2 (Phase B signal of a separate αiBZ sensor)

(6) Spindle position data and one-rotation signal

DRAW1, 2 : SPPOS (Spindle position data)

DRAW3 : SFLG#0 (FGRD: One-rotation signal detection flag)

(7) Adjustment of amplitude ratio/phase difference compensation data (a) Before adjustment (No.4357=0, No.4358=0)

DRAW1: SFBDF (Spindle feedback difference data)

(8) Measurement of frequency characteristics using the disturbance input function

(a) XTYT display

(b) X-Y display

DRAW1: FREQ (Frequency in the disturbance torque command)

DRAW2: GAIN (Gain)

(9) Observation of spindle status signals

DRAW1: SPEED (Motor speed)

DRAW2: SPST1#1 (SST: Speed zero detection signal) DRAW3: SPST1#2 (SDT: Speed detection signal) DRAW4: SPST1#3 (SAR: Speed arrival signal)

PARAMETER SPECIFICATION DIFFERENCES BETWEEN THE αi SERIES AND αCi SERIES

This appendix describes the parameter specification differences between the αi series and αCi series.

The specifications of some parameters differ between the αi series and αCi series. For example, some identical parameter numbers do not specify the same functions. Take care at the time of the parameter setting.

G.1 PARAMETERS WITH DIFFERENT MEANINGS

4	40:		Contents		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	αi series	αCi series	
3000#1	4000#1	4000#1	Spindle rotation direction when a positive (+) move command is specified on Cs contouring control	Unused (Set to 0.)	
3000#3	4000#3	4000#3	Return direction for the reference position on Cs contouring control mode Unused (Set to 0.)		
3002#4	4002#4	4002#4	Whether to use the rotation direction signal (SFR/SRV) function on Cs contouring control	SM pin output data selection	
3002#7	4002#7	4002#7	Whether to use the CMR (servo mode Cs contouring) function on servo mode	Unused (Set to 0.)	
3003#3	4003#3	4003#3	Rotation direction during spindle orientation	Unused (Set to 0.)	
3004#2	4004#2	4004#2	Setting of external one-rotation signal	Unused (Set to 0.)	
3004#3	4004#3	4004#3	Setting of external one-rotation signal	Unused (Set to 0.)	
3005#0	4005#0	4005#0	Unused (Set to 0.)	Setting of the velocity feedback method	
3009#0	4009#0	4009#0	Increment system of velocity loop gain	Unused (Set to 0.)	
3010#0	4010#0	4010#0	Motor sensor type	Unused (Set to 0.)	
3010#1	4010#1	4010#1	Motor sensor type	Unused (Set to 0.)	
3010#2	4010#2	4010#2	Motor sensor type	Unused (Set to 0.)	
3011#0	4011#0	4011#0	Teeth number setting of motor sensor	Unused (Set to 0.)	
3011#1	4011#1	4011#1	Teeth number setting of motor sensor	Unused (Set to 0.)	
3011#2	4011#2	4011#2	Teeth number setting of motor sensor	Unused (Set to 0.)	
3012#7	4012#7	4012#7		Unused (Set to 0.)	
3013#7	4013#7	4013#7	Setting of a PWM carrier for low-speed characteristics area	Unused (Set to 0.)	
3014#0	4014#0	4014#0	Whether to use the spindle switch function	Unused (Set to 0.)	
3014#2	4014#2	4014#2	Whether to check both spindle switch main and sub magnetic contactor contacts	Unused (Set to 0.)	
3014#3	4014#3	4014#3	Whether to check both magnetic contactor contacts for high-speed characteristics/low-speed characteristics in speed range switching	Unused (Set to 0.)	
3014#6	4014#6	4014#6	Whether to use the orientation function on spindle synchronous control	Unused (Set to 0.)	
3016#4	4016#4	4016#4	Setting related to control characteristics on Cs contouring control/servo mode	Unused (Set to 0.)	
3016#5	4016#5	4016#5	Whether to detect the alarms (SPM alarms 82, 83, 85, 86) related to position feedback (in Cs contouring control mode)	Unused (Set to 0.)	
3018#5	4018#5	4018#5	Whether to use the velocity command compensation function during high-speed orientation	Unused (Set to 0.)	
3018#6	4018#6	4018#6	High-speed orientation function	Unused (Set to 0.)	
3019#4	4019#4	4019#4	Setting of the function for switching from high-speed characteristics to low-speed characteristics with the speed detection signal SDT = 1 at speed range switching	Unused (Set to 0.)	
3021	4021	4021	Maximum speed on Cs contouring control mode	Unused (Set to 0.)	
3027	4027	4027	Load detection level 2	Unused (Set to 0.)	
3028	4028	4028	Limited output pattern	Unused (Set to 0.)	
3029	4029	4029	Output limit	Unused (Set to 0.)	
3030	4030	4030	Soft start/stop time	Unused (Set to 0.)	
3038	4038	4038	Spindle orientation speed (*1)	Spindle orientation speed (*1)	
3039	4039	4039	Slip compensation gain	Unused (Set to 0.)	
3046	4046	4046	Velocity loop proportional gain on Cs contouring control (High)	Unused (Set to 0.)	
3047	4047	4047	Velocity loop proportional gain on Cs contouring control (Low)	Unused (Set to 0.)	
3054	4054	4054	Velocity loop integral gain on Cs contouring control (High)	Unused (Set to 0.)	
3055	4055	4055	Velocity loop integral gain on Cs contouring control (Low)	Unused (Set to 0.)	

45:	40:	20:	Contents		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	lpha i series	αCi series	
3064	4064	4064	Rate of change in position gain upon completion of orientation / Acceleration limitation ratio at deceleration time	Acceleration limitation ratio at deceleration time	
3069	4069	4069	Position gain on Cs contouring control (High)	Acceleration/deceleration constant (High)	
3070	4070	4070	Position gain on Cs contouring control (Medium High)	Acceleration/deceleration constant (Medium High)	
3071	4071	4071	Position gain on Cs contouring control (Medium Low)	Acceleration/deceleration constant (Medium Low)	
3072	4072	4072	Position gain on Cs contouring control (Low)	Acceleration/deceleration constant (Low)	
3076	4076	4076	Motor speed limit value on orientation	Unused (Set to 0.)	
3078	4078	4078	Reserved (Set to 200.)	Gear switch timer	
3086	4086	4086	Motor voltage on Cs contouring control	Gear ratio parameter setting error alarm (SPM alarm 35) detection level	
3087	4087	4087	Overspeed level	Unused (Set to 0.)	
3092	4092	4092	Rate of change in position gain during reference position return on Cs contouring control	Unused (Set to 0.)	
3093	4093	4093	Value displayed on load meter at maximum output	Unused (Set to 0.)	
3094	4094	4094	Disturbance torque compensation constant (acceleration feedback gain) Unused (Set to 0.)		
3096	4096	4096	Adjusted output voltage of load meter	Unused (Set to 0.)	
3097	4097	4097	Feedback gain of spindle speed	Unused (Set to 0.)	
3103	4103	4103	Base speed limit ratio	Compensation data for resistance	
3104	4104	4104	Current loop proportional gain (*1)	Current loop proportional gain (*1)	
3105	4105	4105	Unused (Set to 0.)	Current loop integral gain	
3106	4106	4106	Current loop integral gain	D-axis current loop gain	
3107	4107	4107	Unused (Set to 0.)	Q-axis current loop gain	
3108	4108	4108	Velocity at which the current loop integral gain is zero	Q-axis current deviation limitation coefficient	
3114	4114	4114	Slip compensation coefficient for a high-speed zone/slip compensation coefficient at deceleration	Unused (Set to 0.)	
3120	4120	4120	Dead-band rectangular wave component zero voltage/dead-band data	Dead-band compensation data	
3129	4129	4129	Secondary current coefficient for rigid tapping	Unused (Set to 0.)	
3131	4131	4131	Time constant for velocity detecting filter (on Cs contouring control)	Dead-band compensation hysteresis	
3135	4135	4135	Grid shift during Cs contouring control mode I (2-word)	Unused (Set to 0.)	
3320	4320	4320	Motor acceleration at deceleration time (High)	Acceleration at orientation deceleration time (High)	
3321	4321	4321	Motor acceleration at deceleration time (Medium High)	Acceleration at orientation deceleration time (Medium High)	
3322	4322	4322	Motor acceleration at deceleration time (Medium Low) Acceleration at orientation deceleration time Low)		
3323	4323	4323	Motor acceleration at deceleration time (Low)	Acceleration at orientation deceleration time (Low)	

NOTE

*1 The name is identical, but the specification differs partly.

PARAMETER SPECIFICATION DIFFERENCES BETWEEN THE αi SERIES AND BiS SERIES

This appendix describes the parameter specification differences between the αi series and BiS series.

The specifications of some parameters differ between the αi series and BiS series. For example, some identical parameter numbers do not specify the same functions. Take care at the time of the parameter setting.

H.1 PARAMETERS WITH DIFFERENT MEANINGS

NOTE

The parameters marked with (*1) have the same name but their specifications partly differ from each other.

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Contents		
151	101	301	lpha i series	BiS series	
3006#2	4006#2	4006#2	Increment system of spindle speed	Unused (Set to 0.)	
3006#4	4006#4	4006#4	Reserved	Sets the d-phase current command.	
3007#5	4007#5	4007#5	Whether to detect a feedback signal disconnection ^(*1)	Whether to detect a feedback signal disconnection	
3007#7	4007#7	4007#7	Reserved	Magnetic pole detection start signal selection	
3008#3	4008#3	4008#3	Reserved	Sets the current command.	
3008#5	4008#5	4008#5	Reserved	Setting for using the sub module SM	
3008#6	4008#6	4008#6	Reserved	Reference magnetic pole position selection	
3009#5	4009#5	4009#5	Reserved	Setting related to magnetic flux reduction speed	
3012#6	4012#6	4012#6	Unused (Set to 0.)	Setting of whether to drive the synchronous built-in spindle motor	
3012#7	4012#7	4012#7	Setting of spindle HRV function	Setting of spindle HRV function	
3013#7	4013#7	4013#7	Setting of a PWM carrier frequency for low-speed characteristics area	Unused (Set to 0.)	
3014#0	4014#0	4014#0	Whether to use the spindle switch function	Unused (Set to 0.)	
3014#2	4014#2	4014#2	Whether to check both spindle switch main and sub magnetic contactor contacts	Unused (Set to 0.)	
3014#3	4014#3	4014#3	Whether to check both magnetic contactor contacts for high-speed /low-speed characteristics in speed range switching	Unused (Set to 0.)	
3015#2	4015#2	4015#2	Whether to use the speed range switching function	Unused (Set to 0.)	
3015#3	4015#3	4015#3	Whether to use the spindle tandem function	Unused (Set to 0.)	
3016#4	4016#4	4016#4	Setting related to control characteristics on Cs contouring control/servo mode	Unused (Set to 0.)	
3017#0	4017#0	4017#0	This parameter sets speed integration operation when differential spindle speed control is exercised.	Unused (Set to 0.)	
3019#4	4019#4	4019#4	Setting of the function for switching from high-speed characteristics to low-speed characteristics with the speed detection signal SDT = 1 at speed range switching	Unused (Set to 0.)	
3024	4024	4024	Zero speed detection level (SST) (*1)	Zero speed detection level (SST) (*1)	
3039	4039	4039	Slip compensation gain	Unused (Set to 0.)	
3080	4080	4080	Regenerative power limit for high-speed zone/regenerative power limit	Regenerative power limit	
3083	4083	4083	Motor voltage on velocity control mode	Current ratio/motor stop confirmation time in magnetic pole detection operation	
3084	4084	4084	Motor voltage on orientation	AMR offset	
3085	4085	4085	Motor voltage on servo mode/spindle synchronous control mode	AMR offset fine adjustment	
3086	4086	4086	Motor voltage on Cs contouring control	Inductance ratio	
3097	4097	4097	Feedback gain of spindle speed	Unused (Set to 0.)	
3102	4102	4102	Excitation voltage saturation speed at no-load	Base speed	
3103	4103	4103	Base speed limit ratio	Magnetic flux reduction speed at maximum load	
3109	4109	4109	Filter time constant for processing saturation related to the voltage command	Unused (Set to 0.)	
3111	4111	4111	Secondary current coefficient	Maximum current constant	
3113	4113	4113	Slip constant	Current constant for magnetic flux reduction	
3114	4114	4114	Slip compensation coefficient for a high-speed zone/slip compensation coefficient at deceleration	Unused (Set to 0.)	
3116	4116	4116	Motor leakage constant	Counter electromotive voltage compensation constant for magnetic flux reduction speed at maximum load	

	40.		Contents				
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	αi series	BiS series			
3117	4117	4117	Regular-time voltage compensation coefficient for high-speed zone/regular-time motor voltage coefficient	Interference voltage compensation constant for magnetic flux reduction speed at maximum load			
3118	4118	4118	Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient	Unused (Set to 0.)			
3119	4119	4119	Deceleration-time excitation current change time constant/excitation current change time constant	Interference voltage compensation			
3128	4128	4128	Compensation coefficient between the specification and true base/maximum torque curve compensation coefficient	Unused (Set to 0.)			
3129	4129	4129	Secondary current coefficient for rigid tapping	Unused (Set to 0.)			
3130	4130	4130	Current loop proportional gain speed coefficient/current phase delay compensation coefficient	Current phase delay compensation coefficient			
3136	4136	4136	Motor voltage on velocity control mode	Unused (Set to 0.)			
3137	4137	4137	Motor voltage on servo mode/spindle synchronous control mode	Unused (Set to 0.)			
3138	4138	4138	Base speed of motor output specifications	Unused (Set to 0.)			
3139	4139	4139	Output limit for motor output specifications	Unused (Set to 0.)			
3140	4140	4140	Excitation voltage saturation speed at no-load	Unused (Set to 0.)			
3141	4141	4141	Base speed limit ratio	Unused (Set to 0.)			
3142	4142	4142	Current loop proportional gain	Unused (Set to 0.)			
3143	4143	4143	Current loop integral gain	Unused (Set to 0.)			
3144 3145	4144 4145	4144 4145	Velocity at which the current loop integral gain is zero Filter time constant for processing saturation related to the voltage command	Unused (Set to 0.) Unused (Set to 0.)			
3146	4146	4146	Current conversion constant	Unused (Set to 0.)			
3147	4147	4147	Secondary current coefficient	Unused (Set to 0.)			
3148	4148	4148	Criterion level for saturation related to the voltage command/PWM command clamp value	Unused (Set to 0.)			
3149	4149	4149	Slip constant	Unused (Set to 0.)			
3150	4150	4150	Slip compensation coefficient for a high-speed zone/slip compensation coefficient at deceleration	Unused (Set to 0.)			
3151	4151	4151	PWM command clamp value at deceleration	Unused (Set to 0.)			
3152	4152	4152	Motor leakage constant Unused (Set to 0.)				
3153	4153	4153	Regular-time voltage compensation coefficient for high-speed zone/regular-time motor voltage coefficient	Unused (Set to 0.)			
3154	4154	4154	Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient	Unused (Set to 0.)			
3156	4156	4156	Slip compensation gain	Unused (Set to 0.)			
3157	4157	4157	Time constant for changing the torque (TCMD filter time constant)	Unused (Set to 0.)			
3158	4158	4158	Compensation coefficient between the specification and true base/maximum torque curve compensation coefficient	Unused (Set to 0.)			
3159	4159	4159	Secondary current coefficient for rigid tapping	Unused (Set to 0.)			
3161	4161	4161	Current loop proportional gain speed coefficient/current phase delay compensation coefficient	Unused (Set to 0.)			
3163	4163	4163	Integral gain of velocity loop during cutting feed on Cs contouring control mode (Low)	Unused (Set to 0.)			
3165	4165	4165	Deceleration-time excitation current change time constant/excitation current change time constant	Unused (Set to 0.)			
3166	4166	4166	Regenerative power limit for high-speed zone/regenerative power limit	Unused (Set to 0.)			
3168	4168	4168	Current overload alarm detection level Unused (Set to 0.)				
3176#0		4176#0	Rotation direction relationship between the spindle and motor Return direction for the reference position on some mode.	Unused (Set to 0.)			
3176#4		4176#4	Return direction for the reference position on servo mode Unused (Set to 0.)				
3177#0	4177#0	4177#0	Whether to use MRDY (machine ready) signal Unused (Set to 0.)				
3177#3	4177#3	4177#3	Mounting direction of the magnetic sensor	Unused (Set to 0.)			
3177#4		4177#4	Mounting direction of the spindle sensor	Unused (Set to 0.) Unused (Set to 0.)			
3178#0		4178#0	Spindle sensor type				
3178#1 3178#2	4178#1 4178#2	4178#1 4178#2	Spindle sensor type Unused (Set to 0.) Spindle sensor type Unused (Set to 0.)				
3178#3		4178#3	Spindle sensor type Spindle sensor type	` '			
J110#3	41/0#3	41/0#3	Spindle sensor type Unused (Set to 0.)				

			Contents		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	αi series	BiS series	
			Whether to use the rotation direction signal (SFR/SRV)		
3178#5	4178#5	4178#5	function on servo mode	Unused (Set to 0.)	
3179#0	4179#0	4179#0	Spindle orientation method	Unused (Set to 0.)	
3179#2	4179#2	4179#2	Rotation direction during spindle orientation	Unused (Set to 0.)	
3179#3	4179#3	4179#3	Rotation direction during spindle orientation	Unused (Set to 0.)	
3179#4	4179#4	4179#4	Teeth number setting of spindle sensor	Unused (Set to 0.)	
3179#5	4179#5	4179#5	Teeth number setting of spindle sensor	Unused (Set to 0.)	
3179#6	4179#6	4179#6	Teeth number setting of spindle sensor	Unused (Set to 0.)	
3179#7	4179#7	4179#7	Teeth number setting of spindle sensor	Unused (Set to 0.)	
3180#2	4180#2	4180#2	Setting of external one-rotation signal	Unused (Set to 0.)	
3180#3	4180#3	4180#3	Setting of external one-rotation signal	Unused (Set to 0.)	
3182#1	4182#1	4182#1	Increment system of gear ratio	Unused (Set to 0.)	
3182#2	4182#2	4182#2	Increment system of spindle speed	Unused (Set to 0.)	
3182#5	4182#5	4182#5	Setting of analog override range	Unused (Set to 0.)	
3182#7	4182#7	4182#7	Whether to use the command arbitrary gear ratio (CMR) function on rigid tapping	Unused (Set to 0.)	
3183#5	4183#5	4183#5	Whether to detect a feedback signal disconnection	Unused (Set to 0.)	
3183#6	4183#6	4183#6	Whether to detect the alarms (spindle alarms 41, 42, 47, 81, 82, 83, 85, 86, and 87) related to the position feedback signal (when Cs contouring control mode is not set)	Unused (Set to 0.)	
3184#4	4184#4	4184#4	Setting of output limitation method	Unused (Set to 0.)	
3185#0	4185#0	4185#0	Increment system of velocity loop gain	Unused (Set to 0.)	
3185#2	4185#2	4185#2	Motor power turn-off method when spindle alarm 24 (serial data transfer error) is issued	Unused (Set to 0.)	
3185#4	4185#4	4185#4	Whether to output the load detection signals (LDT1, LDT2) during acceleration/deceleration	Unused (Set to 0.)	
3185#6	4185#6	4185#6	Analog override type	Unused (Set to 0.)	
3186#0	4186#0	4186#0	Motor sensor type	Unused (Set to 0.)	
3186#1	4186#1	4186#1	Motor sensor type	Unused (Set to 0.)	
3186#2	4186#2	4186#2	Motor sensor type	Unused (Set to 0.)	
3187#0	4187#0	4187#0	Teeth number setting of motor sensor	Unused (Set to 0.)	
3187#1	4187#1	4187#1	Teeth number setting of motor sensor	Unused (Set to 0.)	
3187#2	4187#2	4187#2	Teeth number setting of motor sensor	Unused (Set to 0.)	
3187#3	4187#3	4187#3	Number of motor poles	Unused (Set to 0.)	
3187#4	4187#4	4187#4	Setting of maximum output during acceleration/deceleration	Unused (Set to 0.)	
3187#7	4187#7	4187#7	Number of motor poles	Unused (Set to 0.)	
3188#0	4188#0	4188#0	Setting of PWM carrier frequency	Unused (Set to 0.)	
3188#1		4188#1	Setting of PWM carrier frequency	Unused (Set to 0.)	
3188#2		4188#2	. ,	Unused (Set to 0.)	
3189#2	4189#2	4189#2	Current dead-band data	Unused (Set to 0.)	
		4189#3	Current dead-band data	Unused (Set to 0.)	
3189#4	4189#4	4189#4	Current dead-band data	Unused (Set to 0.)	
3189#5	4189#5	4189#5	Current dead-band data	Unused (Set to 0.)	
3189#6	4189#6	4189#6	Current dead-band data	Unused (Set to 0.)	
3189#7	4189#7	4189#7	Setting of a PWM carrier frequency for low-speed characteristics area	Unused (Set to 0.)	
3192#3	4192#3	4192#3	Setting of the smoothing function in feed-forward control	Unused (Set to 0.)	
3192#4	4192#4	4192#4	Setting related to control characteristics on servo mode	Unused (Set to 0.)	
3192#6	4192#6	4192#6	Whether to detect the alarm (spindle alarms 46) related to feedback of the position detection signal for threading	Unused (Set to 0.)	
3192#7	4192#7	4192#7	Function for newly detecting the one-rotation signal before entering position control mode	Unused (Set to 0.)	
3193#0	4193#0	4193#0	This parameter sets speed integration operation when differential spindle speed control is exercised.	Unused (Set to 0.)	
3193#7	4193#7	4193#7	Setting of shortcut orientation from stop state in position coder method spindle orientation	Unused (Set to 0.)	
3194#5	4194#5	4194#5	Whether to use the velocity command compensation function during high-speed orientation	Unused (Set to 0.)	
3194#6	4194#6	4194#6	High-speed orientation function	Unused (Set to 0.)	

15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	Contents		
151	101	301	α <i>i</i> series	BiS series	
3195#2	4195#2	4195#2	Whether to use torque clamp at zero speed	Unused (Set to 0.)	
3195#4	4195#4	4195#4	Setting of the function for switching from high-speed characteristics to low-speed characteristics with the speed detection signal SDT = 1 at speed range switching	Unused (Set to 0.)	
3195#7	4195#7	4195#7	Automatic parameter setting function (16i /30i)	Unused (Set to 0.)	
3196	4196	4196	Maximum motor speed	Unused (Set to 0.)	
3197	4197	4197	Speed arrival detection level (SAR)	Unused (Set to 0.)	
3198	4198	4198	Speed detection level (SDT)	Unused (Set to 0.)	
3199	4199	4199	Zero speed detection level (SST)	Unused (Set to 0.)	
3200	4200	4200	Limited torque (TLMH, TLML)	Unused (Set to 0.)	
3201	4201	4201	Load detection level 1 (LDT1)	Unused (Set to 0.)	
3202	4202	4202	Limited output pattern	Unused (Set to 0.)	
3203	4203	4203	Output limit	Unused (Set to 0.)	
3204	4204	4204	Stop position of position coder method orientation	Unused (Set to 0.)	
3205	4205	4205	Spindle orientation speed	Unused (Set to 0.)	
3206	4206	4206	Velocity loop proportional gain on velocity control mode (High)	Unused (Set to 0.)	
3207	4207	4207	Velocity loop proportional gain on velocity control mode (Low)	Unused (Set to 0.)	
3208	4208	4208	Velocity loop proportional gain on orientation (High)	Unused (Set to 0.)	
3209	4209	4209	Velocity loop proportional gain on orientation (Low)	Unused (Set to 0.)	
3210	4210	4210	Velocity loop proportional gain on servo mode (High)	Unused (Set to 0.)	
3211	4211 4212	4211 4212	Velocity loop proportional gain on servo mode (Low) Velocity loop integral gain on velocity control mode (common to High and Low)	Unused (Set to 0.) Unused (Set to 0.)	
3213	4213	4213	Velocity loop integral gain on orientation (common to High and Low)	Unused (Set to 0.)	
3214	4214	4214	Velocity loop integral gain on servo mode (common to High and Low)	Unused (Set to 0.)	
3216	4216	4216	Gear ratio (High)	Unused (Set to 0.)	
3217	4217	4217	Gear ratio (Low)	Unused (Set to 0.)	
3218	4218	4218	Position gain on orientation (High)	Unused (Set to 0.)	
3219	4219	4219	Position gain on orientation (Low)	Unused (Set to 0.)	
3220	4220	4220	Ordinary orientation: Rate of change in position gain upon completion of orientation High-speed orientation: Rate of change in position gain upon completion of orientation	Unused (Set to 0.)	
3221	4221	4221	Position gain on servo mode (High)	Unused (Set to 0.)	
3222	4222	4222	Position gain on servo mode (Low)	Unused (Set to 0.)	
3223	4223	4223	Grid shift on servo mode	Unused (Set to 0.)	
3226	4226	4226	Detection level for orientation completion signal (ORAR)	Unused (Set to 0.)	
3227	4227	4227	Ordinary orientation: Motor speed limit value on orientation High-speed orientation: Reserved	Unused (Set to 0.)	
3228	4228	4228	Orientation stop position shift	Unused (Set to 0.)	
3229	4229	4229	MS signal constant	Unused (Set to 0.)	
3230	4230	4230	MS signal gain adjustment	Unused (Set to 0.)	
3231	4231	4231	Regenerative power limit for high-speed zone/regenerative power limit	Unused (Set to 0.)	
3232	4232	4232	Delay time until motor power is cut off	Unused (Set to 0.)	
3233	4233	4233	Setting of acceleration/deceleration time	Unused (Set to 0.)	
3234	4234	4234	Spindle load monitor observer gain 1	Unused (Set to 0.)	
3235	4235	4235	Spindle load monitor observer gain 2	Unused (Set to 0.)	
3236	4236	4236	Motor voltage on velocity control mode	Unused (Set to 0.)	
3237	4237	4237	Motor voltage on orientation	Unused (Set to 0.)	
3238	4238	4238	Motor voltage on servo mode	Unused (Set to 0.)	
3239	4239	4239	Rate of change in position gain during reference position return on servo mode Unused (Set to 0.)		
3240	4240	4240	Feed-forward coefficient	Unused (Set to 0.)	
3241	4241	4241	Feed-forward coefficient of velocity loop	Unused (Set to 0.)	

			Contents		
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	α <i>i</i> series	BiS series	
3296	4296	4296	Criterion level for saturation related to the voltage	Unused (Set to 0.)	
3297	4297	4297	command/PWM command clamp value Unused (Set to 0.) Unused (Set to 0.)		
3298	4298	4298	Slip compensation coefficient for a high-speed zone/slip compensation coefficient at deceleration	Unused (Set to 0.)	
3299	4299	4299	PWM command clamp value at deceleration	Unused (Set to 0.)	
3300	4300	4300	Motor leakage constant	Unused (Set to 0.)	
			Regular-time voltage compensation coefficient for	, , , ,	
3301	4301	4301	high-speed zone/regular-time motor voltage coefficient	Unused (Set to 0.)	
3302	4302	4302	Acceleration-time voltage compensation coefficient for high-speed zone/acceleration-time motor voltage coefficient	Unused (Set to 0.)	
3303	4303	4303	Time constant for changing the torque (TCMD filter time constant)	Unused (Set to 0.)	
3304	4304	4304	Compensation coefficient between the specification and true base/maximum torque curve compensation coefficient	Unused (Set to 0.)	
3305	4305	4305	Secondary current coefficient for rigid tapping	Unused (Set to 0.)	
3306	4306	4306	Current loop proportional gain speed coefficient/current phase delay compensation coefficient	Unused (Set to 0.)	
3307	4307	4307	Regenerative power limit for high-speed zone/regenerative power limit	Unused (Set to 0.)	
3308	4308	4308	Deceleration-time excitation current change time constant/excitation current change time constant	Unused (Set to 0.)	
3309	4309	4309	Motor model code	Unused (Set to 0.)	
3310	4310	4310	Motor overheat detect level (2-word)	Unused (Set to 0.)	
3324	4324	4324	Motor acceleration at deceleration time (High)	Unused (Set to 0.)	
3325	4325	4325	Motor acceleration at deceleration time (Low)	Unused (Set to 0.)	
3327	4327	4327	Acceleration limitation start speed at deceleration time (High)	Unused (Set to 0.)	
3329	4329	4329	Command multiplication for spindle orientation by position coder	Unused (Set to 0.)	
3331	4331	4331	Acceleration limitation start speed at deceleration time (Low)	Unused (Set to 0.)	
3335	4335	4335	Number of motor sensor arbitrary teeth	Unused (Set to 0.)	
3347	4347	4347	Master-slave speed difference state signal output setting	Unused (Set to 0.)	
3348	4348	4348	Current overload alarm detection level	Unused (Set to 0.)	
3349	4349	4349	Temperature monitoring time constant	Unused (Set to 0.)	
3350	4350	4350	Current overload alarm detection level	Unused (Set to 0.)	
3353#1	4353#1	4353#1	Velocity feedback signal setting in torque tandem operation	Unused (Set to 0.)	
3353#2		4353#2	Relationship of master/slave motor rotation directions in torque tandem operation	Unused (Set to 0.)	
3360	4360	4360	Preload value	Unused (Set to 0.)	
3365	4365		Load meter compensation 1	Unused (Set to 0.)	
3366	4366	4366	Load meter compensation 2	Unused (Set to 0.)	
3367	4367	4367	Load meter compensation 3	Unused (Set to 0.)	
3373#1	4373#1	4373#1	Setting of the peak hold function for load meter output	Unused (Set to 0.)	
3376	4376	4376	Load meter compensation 1	Unused (Set to 0.)	
3377	4377	4377	Load meter compensation 2	Unused (Set to 0.)	
3378	4378	4378	Load meter compensation 3	Unused (Set to 0.)	
3379	4379	4379	Load meter compensation 1	Unused (Set to 0.)	
3380	4380	4380	Load meter compensation 2	Unused (Set to 0.)	
3381	4381	4381	Load meter compensation 3	Unused (Set to 0.)	
3398#3	4398#3	4398#3	Whether to use the twin drive function	Unused (Set to 0.)	
3398#6		4398#6	Whether to detect a speed polarity error (spindle alarm d0) in torque tandem operation	Unused (Set to 0.)	
3443	4443	4443	Feed-forward coefficient of velocity loop	Unused (Set to 0.)	
3467#2	4467#2	4467#2	Setting of the detection lower limit of the one-rotation signal	Unused (Set to 0.)	
3467#3		4467#3	Setting of the fine acceleration/deceleration (FAD) function	Unused (Set to 0.)	
3467#4		4467#4	Acceleration/deceleration type of fine acceleration/deceleration (FAD)	Unused (Set to 0.)	
3467#5	4467#5	4467#5	Whether to detect the alarm related to spindle sensor polarity erroneous setting	Unused (Set to 0.)	
			Circlicous setting		

B-65280EN/06 APPENDIX G.PARAMETER SPECIFICATION DIFFERENCES BETWEEN THE αi SERIES AND Bis SERIES

15;	15 <i>i</i> 16 <i>i</i> 30 <i>i</i>		Contents	
131			α <i>i</i> series	BiS series
3468#6	4468#6	4468#6	Triggering of the disturbance input function (vibration application function)	Unused (Set to 0.)
3468#7	4468#7	4468#7	Setting of the disturbance input function (vibration application function)	Unused (Set to 0.)
3481	4481	4481	Feed-forward timing adjustment coefficient	Unused (Set to 0.)
3486	4486	4486	Feed-forward coefficient of velocity loop	Unused (Set to 0.)
3520	4520	4520	Primary delay time constant in dual position feedback [in servo mode]	Unused (Set to 0.)
3521	4521	4521	Maximum amplitude in dual position feedback [in servo mode]	Unused (Set to 0.)
3522	4522	4522	Dual position feedback zero width [in servo mode]	Unused (Set to 0.)
3523	4523	4523	xcessive semi-closed loop/closed loop position error alarm etection level [in servo mode] Unused (Set to 0.)	

B-65280EN/05 INDEX

INDEX

<a>	INPUT SIGNALS (PMC→CNC→SPMC)491
About the Spindle Speed Control and Spindle Status	INPUT SIGNALS (PMC→CNC→SVSP)392
Signals728	<l></l>
Adjusting the Orientation Stop Position Shift	LIST OF SPINDLE ALARMS704
Parameter	LIST OF SPINDLE PARAMETER NUMBERS679
ADJUSTMENT206, 394, 495, 611	LIST OF SPINDLE STATE ERRORS707
AMPLITUDE RATIO/PHASE DIFFERENCE	LISTS OF ALARMS/STATE ERRORS703
COMPENSATION FUNCTION222, 612	
AMR Offset Function	<m></m>
_	MACHINE RESONANCE ELIMINATION212, 612
	MAGNETIC POLE DETECTION515
BiS SERIES SPINDLE720	Magnetic Pole Detection Operation516
BiS SERIES SPINDLE PARAMETER TABLE672	MAGNETIC SENSOR METHOD SPINDLE
<c></c>	ORIENTATION348, 646
Calculating the Orientation Time72	<n></n>
Calculating the Position Gain for Orientation	Number of Error Pulses in Spindle Synchronous Control
Cs CONTOURING CONTROL110, 381, 563	
<d></d>	<0>
Data List	OBSERVING DATA USING THE SERVO GUIDE 725
DEFINITION OF WARNING, CAUTION, AND	OUTPUT SIGNALS (SP—CNC—PMC)196, 607
NOTEs-1	OUTPUT SIGNALS (SPMC\(\rightarrow\)C\(\rightarrow\)PMC)
Diagnosis Signal Related to Spindle EGB321, 645	OUTPUT SIGNALS (SVSP—CNC—PMC)393
DIFFERENTIAL SPINDLE SPEED CONTROL. 322, 646	001101 blotvies (5 to) 70100 71110/
Disturbance Input Function	< P>
DUAL POSITION FEEDBACK FUNCTION327, 646	PARAMETER SPECIFICATION DIFFERENCES
DOTE FORTION FEEDBACK FORCE FOR SEA, VIO	BETWEEN THE αi SERIES AND αCi SERIES 735
<e></e>	PARAMETER SPECIFICATION DIFFERENCES
EXAMPLE OF OBSERVING DATA729	BETWEEN THE αi SERIES AND BiS SERIES738
EXPLANATION OF OPERATION MODES28, 372, 422, 532	PARAMETER TABLE FOR EACH MOTOR MODEL
<f></f>	685
FUNCTION DESCRIPTIONS227, 396, 613	PARAMETERS RELATED TO DETECTORS
<h></h>	PARAMETERS WITH DIFFERENT MEANINGS
HIGH-SPEED SPINDLE ORIENTATION 265, 401, 618	736, 739
HRV Filter	Parameter-specified Switching between High- and
<i></i>	Low-speed Characteristics
I/O SIGNALS (CNC ↔ PMC)181, 391, 490, 600	POSITION CODER METHOD SPINDLE
INCRMENTAL COMMAND TYPE SPINDLE	ORIENTATION
ORIENTATION (SPINDLE ROTATION SPEED	Position Gain Adjustment211, 500, 612
CONTROL)255, 397, 615	PREFACEp-1
INPUT SIGNALS (PMC→CNC→SP)182, 601	

INDEX B-65280EN/05

<r></r>	TCMD Filter
RIGID TAPPING74, 377, 447, 550	TORQUE TANDEM CONTROL FUNCTION 334, 646
<\$>	<u></u>
SERIES AND EDITIONS OF APPLICABLE SPINDLE	UNEXPECTED DISTURBANCE TORQUE
SOFTWARE726	DETECTION FUNCTION304, 408, 638
SPECIFICATIONS COMMON TO ALL OPERATION	
MODES 161, 390, 476, 584	< <i>V></i>
Specifying a Shift Amount for Spindle Phase	VELOCITY CONTROL MODE29, 373, 423, 533
Synchronous Control	VELOCITY LOOP GAIN ADJUSTMENT
SPEED RANGE SWITCHING CONTROL 228, 614	
SPINDLE BACKLASH ACCELERATION	<α>
FUNCTION355, 647	αi SERIES SPINDLE711
SPINDLE DATA THAT CAN BE OBSERVED USING	αi SERIES SPINDLE PARAMETER TABLE652
THE SERVO GUIDE727	αCi SERIES SPINDLE716
SPINDLE EGB (SPINDLE ELECTRONIC GEAR	αCi SERIES SPINDLE PARAMETER TABLE
BOX)310, 641	***************************************
SPINDLE FINE ACC./DEC. (FAD) FUNCTION	
298, 406, 637	
SPINDLE MOTOR αCi series702	
SPINDLE MOTOR αiI series686	
SPINDLE MOTOR αiI series (400V)694	
SPINDLE MOTOR α <i>i</i> I _P series690	
SPINDLE MOTOR αiI _P series (400V)696	
SPINDLE MOTOR $\alpha i I_T$ series	
SPINDLE MOTOR $\alpha i I_T$ series (400V)697	
SPINDLE MOTOR βil series699	
SPINDLE MOTOR βiI _P series701	
SPINDLE ORIENTATION DURING SPINDLE	
SYNCHRONIZATION CONTROL286	
SPINDLE ORIENTATION DURING SPINDLE	
SYNCHRONOUS CONTROL633	
SPINDLE PARAMETER TABLE651	
SPINDLE SERIAL INTERFACE5, 365, 413, 505	
SPINDLE SWITCHING CONTROL240, 614	
SPINDLE SYNCHRONOUS CONTROL130, 385, 465, 574	
START-UP3, 363, 411, 503	
START-UP PROCEDURE 4, 51, 130, 364, 412, 504	
Status Errors Related to Spindle EGB321, 645	
Stop Position Specification Method55	
Stop Processing When a Sub Module SM Error Occurs511	
SUB MODULE SM508	
<t></t>	
TABLE OF I/O SIGNALS RELATED TO SPINDLE	
CONTROL710	

Revision Record

FANUC AC SPINDLE MOTOR $\alpha i/\beta i$ series, BUILT-IN SPINDLE MOTOR Bi series PARAMETER MANUAL (B-65280EN)

				 Change of the motor model name Addition of spindle backlash acceleration function 	Contents
				Jul., 2006	Date
				90	Edition
 Applied to Series 30i Addition of BUILT-IN SPINDLE MOTOR Bis series 	- Addition of AC SPINDLE MOTOR eta_i series	 Change of the motor model name Addition of the spindle speed differential control function 	Total revision - Addition of AC SPINDLE MOTOR αC_i series - Addition of Appendixes C, D, F, and G		Contents
Apr., 2005	Oct., 2003	Apr., 2003	Oct., 2002	Jun., 2001	Date
05	90	03	05	10	Edition