

_							
C	റ	n	t	Δ	n	t	c
·	u		L	C		L	3

1 Problems 1

1 Problems

Uppgift 1.1 (1). The two quantities x and y have a relative error of ϵ_x respectively ϵ_y . Calculate the error in the following cases:

- 1. x 2y
- 2. 4x 5y
- 3. 3xy
- 4. x^3/y^5
- 5. \sqrt{x}
- 6. $\sqrt{x^3}$
- 7. $\sqrt{2xu}$
- 8. $2\sqrt{\frac{x}{3y}}$
- $9. \ 2\sqrt{\frac{x^3}{3y}}$
- 10. $\frac{x}{y} + \frac{y}{x}$
- 11. $x^2 + y^2$

Lemma 1.1 (error of scaled approximate value). Let x be a value and \tilde{x} and approximation with relative error ϵ_x , and λ a scalar. Then the relative error of $\lambda \tilde{x}$ is $\epsilon_{\lambda x} = \epsilon_x$. This is because $\lambda \tilde{x} = \lambda x (1 + \epsilon_{\lambda x})$.

Lemma 1.2 (error of exponent). Let x be a value and \tilde{x} and approximation with relative error ϵ_x , and a an integer. Then the relative error of \tilde{x}^a is $\epsilon_{x^a} = a\epsilon_x$. This is because $\epsilon_{x^a} = \epsilon_{xx^{a-1}} = \epsilon_x + \epsilon_{x^{a-1}}$.

Lösning 1.1.1 (1). (1)

$$\epsilon_{x-2y} = \frac{x}{x - (2y)} \epsilon_x - \frac{(2y)}{x - (2y)} \epsilon_{2y}$$
$$= \frac{x}{x - 2y} \epsilon_x - \frac{2y}{x - 2y} \epsilon_y.$$

(2)

$$\epsilon_{4x-5y} = \frac{4x}{4x - 5y} \epsilon_{4x} - \frac{5y}{4x - 5y} \epsilon_{5y}$$
$$= \frac{4x}{4x - 5y} \epsilon_x - \frac{5y}{4x - 5y} \epsilon_y.$$

(3)

$$\epsilon_{3xy} = \epsilon_{xy} = \epsilon_x + \epsilon_y.$$

(4)

$$\epsilon_{\frac{x^3}{y^5}} = \epsilon_{x^3} - \epsilon_{y^5} = 3\epsilon_x - 5\epsilon_y.$$

(5)

$$\epsilon_x = \epsilon_{\sqrt{x}^2} = 2 \cdot \epsilon_{\sqrt{x}}$$

$$\Longrightarrow \epsilon_{\sqrt{x}} = \epsilon_x/2.$$

(6)

$$\epsilon_{\sqrt{x^3}} = \frac{\epsilon_{x^3}}{2} = \frac{3}{2}\epsilon_x.$$

(7)

$$\begin{split} \epsilon_{\sqrt{2xy}} &= \epsilon_{\sqrt{2} \cdot \sqrt{x} \cdot \sqrt{y}} \\ &= \epsilon_{\sqrt{x} \cdot \sqrt{y}} = \epsilon_{\sqrt{x}} + \epsilon_{\sqrt{y}} \\ &= \frac{\epsilon_x}{2} + \frac{\epsilon_y}{2}. \end{split}$$

(7)

$$\epsilon_{2\sqrt{\frac{x^3}{3y}}} = \epsilon_{\sqrt{\frac{x^3}{3y}}} = \frac{\epsilon_{\frac{x^3}{3y}}}{2} = \frac{\epsilon_{x^3} - \epsilon_{3y}}{2} = \frac{3\epsilon_x - \epsilon_y}{2}.$$

(8)

$$\begin{split} \epsilon_{\frac{x}{y}+\frac{y}{x}} &= \frac{\frac{x}{y}}{\frac{x}{y}+\frac{y}{x}} \epsilon_{\frac{x}{y}} + \frac{\frac{y}{z}}{\frac{x}{y}+\frac{y}{x}} \epsilon_{\frac{y}{z}} = \frac{x}{x+\frac{y^2}{x}} \epsilon_{\frac{x}{y}} + \frac{y}{\frac{x}{yz}+\frac{y}{xz}} \epsilon_{\frac{y}{z}} \\ &= \frac{x}{x+\frac{y^2}{x}} \epsilon_{\frac{x}{y}} + \frac{x}{x^2+y^2} \epsilon_{\frac{y}{z}} \\ &= \frac{x}{x+\frac{y^2}{x}} \epsilon_{\frac{x}{y}} + \frac{xy^2z}{x^2+y^2} \epsilon_{\frac{y}{z}} \\ &= \frac{x^2}{x^2+y^2} \epsilon_{\frac{x}{y}} + \frac{xy^2z}{x^2+y^2} \epsilon_{\frac{y}{z}} \\ &= \frac{x}{x^2+y^2} (\epsilon_{\frac{x}{y}} + y^2z\epsilon_{\frac{y}{z}}) \\ &= \frac{x}{x^2+y^2} (\epsilon_{x} - \epsilon_{y} + y^2z(\epsilon_{y} - \epsilon_{z})). \end{split}$$

(8)

$$\epsilon_{x^2+y^2} = \frac{x^2}{x^2+y^2} \epsilon_{x^2} + \frac{y^2}{x^2+y^2} \epsilon_{y^2}$$
$$= \frac{x^2}{x^2+y^2} 2\epsilon_x + \frac{y^2}{x^2+y^2} 2\epsilon_y.$$