Succinct Representation of Labeled Graphs

Matthias Dürksen
Seminar on Algorithms for Compressed Graphs

4th February 2019

Outline


```
(() (( ()) () ())
[[[[]]][[]]]
{ { { } } } }
```

Planar Graphs

Triangulated Graphs

First Tree – Canonical Spanning Tree

Second Tree

Third Tree


```
(() (( ()) () ())
[[[[]]][[]]]
{ { { } } } }
```


Parenthesis $\left\{ \left\{ \left\{ {1\atop 2} \right\} {1\atop 3} \right\} \left\{ {1\atop 5} \right\} {1\atop 6} \right\}$

Merge

Parenthesized representation

- Each type -> forms a correct parenthesis
- Two parenthesis per Edge

=> 2m*3 Bits necessary

Generate Graph [TODO] **Animated** rebuilding the graph 2

Parenthesized representation

Why to use the parentheses

Explain Results and supported functions

Extension

 Labeled Graphs: As always with a mapping from node id to Label

 [Some more words to it, depending on how much time remains]

Summary

- ⇒ 6m Bits necessary
- ⇒ Query runtimes like uncompressed

End

Thank you for your attention!