Planificación de procesos: Núcleo prevenible, tiempo real y optimización fina

Integrantes:

Garcia Cabrera Orlando Anselmo Morales Garcia Luis Ángel

PROCESO

Es importante definir nuestro objeto de estudio

- 1. Un proceso es una abstracción que hace referencia a cada caso de ejecución de un programa. (Cabalar Pedro, Universidad de Coruña)
- 2. Un proceso es la imagen en memoria de un programa, junto con la información relacionada con el estado de su ejecución. (Gunnar Gwolf, Fundamentos de sistemas operativos)
- 3. Un programa ejecutable es un conjunto de instrucciones y datos almacenados en un fichero. Cuando lo que tiene ese programa se carga en la memoria y se pone en ejecución, se convierte en un proceso.(NA, Procesos8)

Planificación de procesos

Se refiere a como determina el sistema operativo que proceso continua para utiliza el CPU

- (Política de planificación) Determina que proceso continua para utiliza el CPU de acuerdo a criterios definidos
- 2. (Parámetros de rendimiento) Para evaluar la calidad de una política de planificación
- 3. (Comportamiento de programas) Tipos de procesos que se ejecutaran

IMPORTANTE:

No confundir con Administración de procesos: Se refiere a la forma en que se representan los procesos y se implementan las transiciones de estado entre ellos y los cambios de contexto

NIVELES DE PLANIFICACION Y TRANSICIONES INVOLUCRADAS

Figura 3.1: Diagrama de transición entre los estados de un proceso.

CORTO PLAZO: Denominado también el despachador. Decide cómo compartir momento a momento al equipo entre todos los procesos.

LARGO PLAZO: Procesos que serán próximamente iniciados, considerando los requisitos pre-declarados para su planificación.

MEDIO PLAZO: Al sacar un proceso de memoria por problemas de espacio o de permisos. Colocándolo en el estado de bloqueado.

TIPOS DE PROCESOS

- 1. Apropiativos: aquellos que requieren estar en ejecución durante un lapso largo de tiempo.
- No apropiativos: aquellos que requieren por lapsos de tiempo cortos la ejecución del procesador, ya sea de forma única o repetitiva, es decir, permiten a otros procesos apropiarse de los recursos que ahora poseen.

KERNEL

UNIDADES DE MEDIDA

TICK: Una fracción de tiempo durante la cual se puede realizar trabajo útil, esto es, usar el CPU sin interrupción, es decir ignorando interrupciones especiales.

QUANTUM: El tiempo mínimo que se permitirá a un proceso el uso del procesador.

KERNEL

El núcleo (Kernel) es la parte de una sistema operativo que se ejecuta en modo privilegiado, encargado de realizar funciones principales como:

- Gestión de memoria
- Sistema de archivos
- Administración de servicios E/S
- Protocolos de red

Para nuestro estudio Windows NT y Linux Kernel

POSIX Application Application Process

Environment Subsystems

POSIX Subsystem Subsystem

Ver Mode

Windows NT Executive

Executive Services

I/O Manager Manager Manager Procedure Memory Manager Man

Linux Kernel v2.4.0

KERNEL PREVENIBLE

DEFINICION

Un kernel preventivo es aquel que se puede interrumpir en medio de la ejecución del código, por ejemplo, en respuesta a una llamada del sistema, para hacer otras cosas y ejecutar otros subprocesos, posiblemente aquellos que no están en el kernel

VENTAJAS:

- Sys-calls no bloquea todo el sistema.
- El kernel prevenible puede mejorar la latencia y la escalabilidad, y puede hacer que la tarea de alta prioridad se ejecute y responda a tiempo.

DESVENTAJA:

 Mayor complejidad en el código del kernel, al tener que manejar más casos finales, realizar bloqueos más precisos.

IMPLEMENTACION EN LINUX

En Linux el espacio de usuario siempre ha sido prevenible, el kernel interrumpe los programas de espacio de usuario para cambiar a otros subprocesos, utilizando reloj tick.

Mientras que hasta la versión 2.6, el kernel fue prevenible y se puede habilitar o deshabilitar usando la opción CONFIG_PREEMPT.

TIEMPO REAL DURO Y SUAVE

Tiempo real duro:

Los sistemas en que el tiempo máximo es garantizable son conocidos como de tiempo real duro. Aunque en los sistemas propósito general como Linux y Windows esto no es posible

Tiempo real suave:

En este sistema existen, procesos con diferentes prioridades. Los procesos críticos reciban un trato prioritario por encima de los procesos comunes.

BIBLIOGRAFIA

Tema8. Procesos: http://www.atc.uniovi.es/telematica/2ac/Apuntes-y-Ejercicios/T08-Procesos.pdf

Tema2.Procesos.SistemasOperativos. Cabalar Pedro, Universidad de Coruña: https://www.dc.fi.udc.es/~so-grado/SO-Procesos.pdf

3. Planificación de procesos y procesadores:

http://www.sc.ehu.es/acwlaroa/SO2/Apuntes/Cap3.pdf

¿Cómo es el kernel de Windows ?: https://www.genbeta.com/a-

 $\underline{fondo/como\text{-}es\text{-}el\text{-}kernel\text{-}de\text{-}windows\text{-}y\text{-}cuales\text{-}son\text{-}sus\text{-}diferencias\text{-}con\text{-}}el\text{-}de\text{-}linux}$

Kernel de Linux: https://es.wikipedia.org/wiki/N%C3%BAcleo_Linux

https://maslinux.es/entendiendo-el-kernel-de-linux-2/

http://culturacion.com/que-es-y-que-funcion-tiene-el-kernel-de-

linux/ http://devarea.com/understanding-linux-kernel-preemption/

https://stackoverflow.com/questions/817059/what-is-preemption-what-is-a-preemtible-kernel-what-is-it-good-for

https://stackoverflow.com/questions/5283501/what-does-it-mean-to-say-linux-kernel-is-preemptive

https://autostatic.com/2017/06/27/rpi-3-and-the-real-time-kernel/

https://unix.stackexchange.com/questions/5180/what-is-the-difference-

between-non-preemptive-preemptive-and-selective-preempti

•

.