10. 距離空間の完備化

岩井雅崇 2022/12/13

問題の上に $^{\bullet}$ がついている問題は \underline{m} けてほしい問題である。問題の上に * がついている問題は 面白いかちょっと難しい問題である。以下断りがなければ \mathbb{R}^n にはユークリッド位相を入れたもの を考える。また位相空間 X は 2 点以上の点を含むものとする。

- 問 10.1 ullet $C[0,1]:=\{f:[0,1]\to\mathbb{R}\,|\,f$ は実数値連続関数 $\}$ とおく. 以下この問題では, 関数列 $\{f_i\}_{i=1}^\infty$ と言えば $f_i\in C[0,1]$ となる関数の列とする. 次の問いに答えよ.
 - (a) 「関数列 $\{f_i\}_{i=1}^{\infty}$ が $f \in C[0,1]$ に各点収束する」ことの定義を述べよ.
 - (b) 「関数列 $\{f_i\}_{i=1}^{\infty}$ が $f \in C[0,1]$ に一様収束する」ことの定義を述べよ.
 - (c) 関数列 $\{f_i\}_{i=1}^{\infty}$ が $f \in C[0,1]$ に一様収束するならば、各点収束することを示せ.
 - (d) (c) の逆は一般には成り立たない. その関数列の例を一つあげよ.
 - (e) $f,g \in C[0,1]$ に関して $d_{\infty}(f,g) = \sup_{x \in [0,1]} \{|f(x) g(x)|\}$ とおく. 問題 1.2 と同様にして $(C[0,1],d_{\infty})$ は距離空間になる. $(C[0,1],d_{\infty})$ は完備であることを示せ.
- 問 10.2 * 実数列 $x=\{x_n\}_{n=1}^\infty$ で $\sum_{n=1}^\infty x_n^2 < \infty$ となるものの集合を l^2 とする. $x,y \in l^2$ について $d_{l^2}(x,y)=\sqrt{\sum_{n=1}^\infty (x_n-y_n)^2}$ と定めると,問 1.3 から (l^2,d_{l^2}) は距離空間となる. l^2 はこの 距離 d_{l^2} に関して完備であることを示せ.
- 問 10.3 * 次の問いに答えよ.
 - (a) 距離空間上のコンパクト集合は有界閉集合であることを示せ.
 - (b) (l^2,d_{l^2}) を 問 10.2 の通りとし, $A:=\{x\in l^2\,|\,d_{l^2}(x,x)=1\}$ とおく.A は (l^2,d_{l^2}) の有界閉集合であるがコンパクト集合ではないことを示せ.また (l^2,d_{l^2}) もコンパクトではないことを示せ.
- 問 10.4~(X,d) を距離空間とし、X の部分集合 A,B について $d(A,B):=\inf_{a\in A,b\in B}\{d(a,b)\}$ と定める、次の問いに答えよ、
 - (a) ある距離空間と互いに交わらない閉集合 A, B で d(A, B) = 0 となるものの例をあげよ.
 - (b) Aをコンパクト集合, B を閉集合とするとき, A と B が互いに交わらなければ d(A,B)=0 であることを示せ.
- 問 $10.5 * (C[0,1], d_{\infty})$ を問 10.1 の通りとする. 次の問いに答えよ.
 - (a) $A=\{f\in C[0,1]\,|\,f([0,1])\subset [0,1]\}$ とおくと、A は $(C[0,1],d_\infty)$ のコンパクト集合ではないこと示せ.
 - (b) $B = \{f \in A \mid$ 任意の $x, y \in [0,1]$ について $|f(x) f(y)| \le |x y|\}$ とおくと、B は $(C[0,1],d_{\infty})$ のコンパクト集合であることを示せ.
- 問 10.6 * C[0,1] を問 10.1 の通りとし, $f,g \in C[0,1]$ に関して

$$d_1(f,g) := \int_0^1 |f(x) - g(x)| dx$$

とおくと d_1 は C[0,1] の距離となる. d_1 の距離に関して関数列 $\{f_i\}_{i=1}^\infty$ が $f\in C[0,1]$ に収束するとき, $\{f_i\}_{i=1}^\infty$ は f に L^1 収束すると呼ぶ. 次の問いに答えよ.

- (a) $(C[0,1],d_1)$ は完備ではないことを示せ.
- (b) 関数列 $\{f_i\}_{i=1}^{\infty}$ が $f \in C[0,1]$ に一様収束するならば, L^1 収束すること示せ.
- (c) L^1 収束するが一様収束しない関数列の例を一つあげよ.
- (d) 各点収束するが L^1 収束しない関数列の例を一つあげよ.
- (e) 関数列 $\{f_i\}_{i=1}^\infty$ であって, L^1 収束するが, 任意の $x \in [0,1]$ について $\{f_i(x)\}_{i=1}^\infty$ が収束しない関数列の例を一つあげよ.
- 問 10.7*C[0,1] を問 10.1 の通りとする。 $x\in[0,1]$ について $X_x=\mathbb{R}$ とおくことで, $C[0,1]\subset\prod_{x\in[0,1]}X_x$ とみなせる。そこで $\prod_{x\in[0,1]}X_x$ の積位相の C[0,1] への相対位相を \mathcal{O}_p とおく。 次の問いに答えよ.
 - (a) 関数列 $\{f_i\}_{i=1}^\infty$ が $f\in C[0,1]$ に各点収束することは、位相空間 $(C[0,1], \mathcal{O}_p)$ において $\{f_i\}_{i=1}^\infty$ が $f\in C[0,1]$ に収束することと同値であることを示せ、(後者の収束の定義に関しては問題 3.10 を参照せよ、)
 - (b) \mathcal{O}_p は距離空間 $(C[0,1],d_\infty)$ が作る位相 \mathcal{O}_∞ よりも真に小さい、つまり $\mathcal{O}_p \subsetneq \mathcal{O}_\infty$ であることを示せ.1
- 問 10.8*p を素数とする. 0 でない有理数 $r\in\mathbb{Q}$ について, $r=p^e\frac{n}{m}(m,n)$ はともに p と互いに素な整数) と表せるとき, $v_p(r):=e$ と定義する. $r\in\mathbb{Q}$ について

$$|r|_p = \begin{cases} p^{-v_p(r)} & (r \neq 0) \\ 0 & (r = 0) \end{cases}$$

とおく. 次の問いに答えよ.

- (a) 0 でない有理数 $r,s\in\mathbb{Q}$ について, $r+s\neq 0$ ならば $v_p(r+s)\geq \min(v_p(r),v_p(s))$ であることを示せ.
- (b) $x,y\in\mathbb{Q}$ について $d_p(x,y):=|x-y|_p$ とおくと d_p は \mathbb{Q} の距離になることを示せ. 以下 \mathbb{Q}_p を \mathbb{Q} の d_p による完備化とする. また完備化によって誘導される \mathbb{Q}_p 上の距離を d_p と同じ記号で書くことにする.
- (c) $\{a_n\}_{n=0}^\infty$ を有理数の数列とする. (\mathbb{Q}_p,d_p) 上で $\sum_{n=0}^\infty a_n$ がある値に収束することは $\lim_{n\to\infty}|a_n|_p=0$ であることと同値であることを示せ.
- (d) (\mathbb{Q}_p,d_p) 上で $\sum_{n=0}^{\infty}p^n=rac{1}{1-p}$ であることを示せ.
- (e) $b_n \in \{0,1\}$ かつ (\mathbb{Q}_2,d_2) 上で $\frac{2}{7}=\sum_{n=0}^\infty b_n 2^n$ となるような数列 $\{b_n\}_{n=0}^\infty$ を決定せよ.

演習の問題は授業ページ (https://masataka123.github.io/2022_winter_generaltopology/) にもあります. 右下の QR コードからを読み込んでも構いません.

¹問 10.1 と合わせると位相が小さいほど収束しやすいことがわかる.