24. a)
$$\frac{1}{12}$$
 b) 80 c) 21

У	(4, 3)
y = 2	(6, 1)
$f(x) = \frac{2x - 11}{x - 5}$	x = 5

b) Answers may vary:
$$f(x) = \frac{2x - 11}{x - 5}$$
. **26.** $x = 4$

27.
$$x = \pm \frac{1}{2}$$
, $x = 7$, $x = -\frac{5}{3}$, and $x = \frac{1}{3}$ **28.** $x = 30^{\circ}$

1.5 Introduction to Derivatives, pages 58-62

1. a) C **b)** A **c)** B **2. a)**
$$f'(x) = 3x^2$$
 b) i) 108 **ii)** 0.75 **iii)** $\frac{4}{3}$

iv)
$$12$$
 c) i) $y = 108x + 432$ ii) $y = 0.75x + 0.25$

iii)
$$y = \frac{4}{3}x - \frac{16}{27}$$
 iv) $y = 12x - 16$ 3. Answers will vary

4. a)
$$f'(x) = 1$$
 b) i) 1 ii) 1 iii) 1 iv) 1 **5.** a) $f(x) = 3x$

b)
$$f(x) = x^2$$
 c) $f(x) = 4x^3$ **d)** $f(x) = -6x^3$ **e)** $f(x) = \frac{5}{x}$

f)
$$f(x) = \sqrt{x}$$
 6. a) $f'(x) = \frac{1}{x^2}$ b) i) $\frac{1}{36}$ ii) -4 iii) $\frac{9}{4}$

iv)
$$-\frac{1}{4}$$
 c) i) $y = -\frac{1}{36}x - \frac{1}{3}$ ii) $y = -4x - 4$

iii)
$$y = -\frac{9}{4}x + 3$$
 iv) $y = -\frac{1}{4}x + 1$

7. Answers will vary. **a)** $x \in (-\infty, -1)$ or $(-1, \infty)$

b)
$$x \in (-\infty, \infty)$$
 c) $x \in (3, \infty)$ **d)** $x \in (-\infty, -1)$

or $(-1, \infty)$ 8. Answers will vary. a) linear b) cubic

c) constant d) quadratic 9. a)
$$\frac{dy}{dx} = 2x$$
 b) $x \in \mathbb{R}$; $x \in \mathbb{R}$

c) Answers will vary 10. a) i)
$$\frac{dy}{dx} = -6x$$
 ii) $\frac{dy}{dx} = 8x$

b) Answers will vary **c)** i)
$$\frac{dy}{dx} = -4x$$
 ii) $\frac{dy}{dx} = 10x$

d) i)
$$\frac{dy}{dx} = -4x$$
 ii) $\frac{dy}{dx} = 10x$ 11. a) $\frac{dy}{dx} = 0$

b) Answers may vary: Yes. The slope of a horizontal line

is 0. c)
$$\frac{dy}{dx} = 0$$
 12. a) $x^3 + 3hx^2 + 3h^2x + h^3$ b) i) $\frac{dy}{dx} = 6x^2$

ii)
$$\frac{dy}{dx} = -3x^2$$
 13. a) Answers will vary b) i) $\frac{dy}{dx} = -12x^2$

ii)
$$\frac{dx}{dy} = \frac{3}{2}x^2$$
 c) i) $\frac{dy}{dx} = -12x^2$ ii) $\frac{dy}{dx} = \frac{3}{2}x^2$ 14. a) $\frac{dy}{dx} = 8$

b)
$$\frac{dy}{dx} = 6x - 2$$
 c) $\frac{dy}{dx} = -2x$ **d)** $\frac{dy}{dx} = 8x + 5$

e)
$$\frac{dy}{dx} = 8x - 4$$
 15. a) $x^4 + 4hx^3 + 6h^2x^2 + 4h^3x + h^4$

b) i)
$$\frac{dy}{dx} = 4x^3$$
 ii) $\frac{dy}{dx} = 8x^3$ iii) $\frac{dy}{dx} = 12x^3$

c) Answers will vary d) i) $\frac{dy}{dx} = -4x^3$ ii) $\frac{dy}{dx} = 2x^3$

e) i)
$$\frac{dy}{dx} = -4x^3$$
 ii) $\frac{dy}{dx} = 2x^3$ 16. a) $H'(t) = -9.8t + 3.5$ b) -1.4 m/s c) 0.357 s; 1.625 m 17. a) $\frac{dy}{dx} = 2x - 2$

b) -1.4 m/s **c)** 0.357 s; 1.625 m **17.** a)
$$\frac{dy}{dx} = 2x - 2$$

c)
$$y = -8x - 9$$

18. a) i)
$$\frac{dy}{dx} = \frac{2}{x^2}$$
 ii) $\frac{dy}{dx} = \frac{1}{x^2}$ iii) $\frac{dy}{dx} = \frac{3}{x^2}$

iv)
$$\frac{dy}{dx} = \frac{4}{3x^2}$$
 b) Answers will vary

c) i) $\{x \mid x \in \mathbb{R}, x \neq 0\}; \{x \mid x \in \mathbb{R}, x \neq 0\}$

ii)
$$\{x \mid x \in \mathbb{R}, x \neq 0\}; \{x \mid x \in \mathbb{R}, x \neq 0\}$$

iii) $\{x \mid x \in \mathbb{R}, x \neq 0\}; \{x \mid x \in \mathbb{R}, x \neq 0\}$

iv)
$$\{x \mid x \in \mathbb{R}, x \neq 0\}; \{x \mid x \in \mathbb{R}, x \neq 0\}$$

iv)
$$\{x \mid x \in \mathbb{R}, x \neq 0\}; \{x \mid x \in \mathbb{R}, x \neq 0\}$$

19. a) i) $\frac{dy}{dx} = \frac{5}{x^2}$ ii) $\frac{dy}{dx} = \frac{3}{5x^2}$ b) i) $\frac{dy}{dx} = \frac{5}{x^2}$
ii) $\frac{dy}{dx} = \frac{3}{5x^2}$ 20. Answers may vary a) piecewise

i)
$$\frac{dy}{dx} = \frac{3}{5x^2}$$
 20. Answers may vary a) piecewise

function: y = -x + 3 if $x \le 2$ and y = 0.5x if x > 2

21. a) Answers will vary

b)
$$y = -1499x^2 + 26808x + 356532$$

c)
$$\frac{dy}{dx} = -2998x + 26808$$
 d) i) 17 814 births/year

ii) 5822 births/year iii) -3172 births/year

iv) $-12\ 166$ births/year v) $-21\ 160$ births/year

e) Answers will vary

g) Answers will vary 23. a) i)
$$\frac{dy}{dx} = 2x + 3$$
 ii) $\frac{dy}{dx} = 1 - 6x^2$

iii)
$$\frac{dy}{dx} = 8x^3 - 1$$
 b) i) $\frac{dy}{dx} = 2x + 3$ ii) $\frac{dy}{dx} = 1 - 6x^2$

iii)
$$\frac{dy}{dx} = 8x^3 - 1$$
 24. a) i) $\frac{dy}{dx} = -\frac{2}{x^3}$ ii) $\frac{dy}{dx} = -\frac{3}{x^4}$

iii)
$$\frac{dy}{dx} = -\frac{4}{x^5}$$
 b) i) $\{x \mid x \in \mathbb{R}, x \neq 0\}; \{x \mid x \in \mathbb{R}, x \neq 0\}$

ii) $\{x \mid x \in \mathbb{R}, x \neq 0\}; \{x \mid x \in \mathbb{R}, x \neq 0\}$

iii) $\{x \mid x \in \mathbb{R}, x \neq 0\}; \{x \mid x \in \mathbb{R}, x \neq 0\}$ c) Answers will vary

25. a) x = 2

b) Answers will vary **26. a)** i)
$$\frac{dy}{dx} = 0$$
 ii) $\frac{dy}{dx} = 1$

iii)
$$\frac{dy}{dx} = 2x$$
 iv) $\frac{dy}{dx} = 3x^2$ v) $\frac{dy}{dx} = 4x^3$

b) Answers will vary **c)** i) $\frac{dy}{dx} = 5x^4$

ii)
$$\frac{dy}{dx} = 6x^5$$
 d) i) $\frac{dy}{dx} = 5x^4$ ii) $\frac{dy}{dx} = 6x^5$

e)
$$\frac{dy}{dx} = nx^{n-1}$$
, $n \in \mathbb{N}$ f) Answers will vary

27. a)
$$\frac{dy}{dx} = 2x$$
; Difference of squares **b) i)** $\frac{dy}{dx} = 3x^2$

ii)
$$\frac{dy}{dx} = 4x^3$$
 iii) $\frac{dy}{dx} = 5x^4$ c) Answers may vary.

Factoring is easier than expanding

28. a)
$$f'(x) = \frac{3}{(x-1)^2}$$
, $\{x \mid x \in \mathbb{R}, x \neq 1\}$

b)
$$f'(x) = \frac{13}{(x+4)^2}$$
, $\{x \mid x \in \mathbb{R}, x \neq -4\}$

29. a)
$$f'(x) = \frac{1}{2\sqrt{x+1}}$$
, $\{x \mid x \in \mathbb{R}, x \ge -1\}$; $\{x \mid x \in \mathbb{R}, x > -1\}$

b)
$$f'(x) = \frac{1}{\sqrt{2x-1}}, \{x \mid x \in \mathbb{R}, x \ge 0.5\}; \{x \mid x \in \mathbb{R}, x > 0.5\}$$

30

(0, 0); Answers will vary **b)** Answers will vary

31. (1, 1, 1), (1, 2, 2) **32.**
$$x = \sqrt{2}$$
 33. 2009

Chapter 1 Review, pages 64-65

1. a) Answers will vary **b) i)** -900 L/h **ii)** -120 L/h **c) i)** -900 L/h **ii)** -600 L/h **iii)** -150 L/h **d) i)** Answers may vary: The graph would be steeper. **ii)** Answers may vary: The graph will shift up. **e)** Answers will vary **2.** Answers will vary: **a)** the volume of gas remaining in a gas tank as a car is driven **b)** the volume of water in a beaker as the beaker is filled with water **c)** the velocity of an airplane as it travels down a runway at takeoff **d)** the speed of a car when the brakes are applied in order to stop the car at a red light **3. a)** 5.6 m/s **b)** -14 m/s **c)** Answers will vary **4. a) i)** 14 **ii)** -16 **b) i)** y = 14x - 12 **ii)** y = -16x - 27

5. a)
$$t_1 = \frac{4}{3}$$
; $t_2 = \frac{1}{6}$; $t_3 = -\frac{4}{9}$; $t_4 = -\frac{11}{12}$; $t_5 = -\frac{4}{3}$

b) No. Answers may vary: The sequence does not have a limit as $n \to \infty$. The sequence is divergent.

6. a)
$$t_1 = \frac{35}{8}$$
; $t_2 = \frac{245}{64}$; $t_3 = \frac{1715}{512}$; $t_4 = -\frac{12\ 005}{4096}$;

$$t_5 = \frac{84\,035}{32.768}$$
 b) 0 **c)** 13 bounces

7. a) Function is continuous at x = 3. Answers will vary

b) Yes. The function is discontinuous for x = -3, where there is a vertical asymptote.

8. a)
$$x \in (-\infty, 0)$$
 or $(0, \infty)$; $y \in (-\infty, 2]$ **b) i)** -2

ii) -2 iii) $-\infty$ iv) $-\infty$ c) Answers may vary. The graph is discontinuous at x=0. 9. a) -4 b) $\frac{15}{7}$

c) $\frac{1}{8}$ d) $\frac{7}{6}$ e) 14 10. Answers may vary: As x approaches

-6 from the left, the graph of y = h(x) approaches y = 3. As x approaches -6 from the right, the graph of y = h(x) approaches y = 3. There is a hole in the graph of y = g(x) at (6, 3). Since $h(-6) \neq 3$, the function is discontinuous

11. a)
$$\frac{dy}{dx} = 4$$
 b) $h'(x) = 22x + 2$ c) $s'(t) = t^2 - 10t$

d)
$$f'(x) = 2x + 2$$
 12. a) $\frac{dy}{dx} = 6x - 4$

c)
$$y = -16x - 12$$