Supporting Information

Article title: Australian continental-island biogeography – insight from the starflowers (*Calytrix*: Myrtaceae)

Francis J. Nge^{1,2,4}, Ed Biffin^{1,2}, Kevin R. Thiele³, Michelle Waycott^{1,2}

Author for correspondence: Francis Nge

Supplementary Methods

Southwest Western Australia subset analysis

We further focused on the southwestern Australian region specifically by dividing it into subregions for analysis of biogeographic patterns within the hotspot, given that the majority of *Calytrix* species are endemic to the region. Six subregions were delineated according to the Interim Biogeographic for Australia (IBRA7) bioregional Regionalisation classification www.environment.gov.au/topics/land/national-reserve-system/science-maps-and-data/australiasbioregions-ibra): northern Geraldton Sandplains (N), Swan Coastal Plain (P), mesic forests (J; includes Jarrah Forest and Warren IBRA regions), wheatbelt (W; includes Avon Wheatbelt and Mallee IBRA regions), Esperance (E), south coast (S; Albany and Stirling regions- includes a portion of the Mallee and Esperance IBRA regions), and semi-arid regions surrounding SWA (A; includes Coolgardie, Yalgoo, Murchison IBRA regions). Calytrix retrorsifolia and C. acutifolia (Nge et al., 2017) were classified under the Swan Coastal Plain as they are found on the edge of the Darling Scarp and are not in the adjacent Jarrah Forest biome.

In our SWA subset analysis, non-SWA taxa apart from the semi-arid taxa adjacent to SWA were pruned from the dated tree. No scenarios on climatic changes (aridification) across the biome through time were included in this subset as our understanding on how aridification has affect these regional biomes within SWA are currently lacking.

Supplementary Results and Discussion

The DEC+j model was the best fit model for our SWA subset analysis, having the lowest AIC scores out of the six models tested (Table S6). Western central Australia was estimated to be the most probable ancestral range for Clade A (P = 0.85), whereas the wheatbelt, western central Australia, and both areas combined were estimated as the most probable ancestral ranges for Clade

¹School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia

²State Herbarium of South Australia, G.P.O. Box 1047, Adelaide, South Australia 5001

³School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA 6009, Australia

⁴Corresponding author Email: francis.nge@adelaide.edu.au

B (P = 0.29, 0.30, 0.36 respectively) (Fig. S5). Clade C was inferred to have the northern sandplains as its most probable ancestral range (P = 0.53). Unlike the continent-wide analysis (see main text), dispersal (61%) was the most common biogeographic event, followed by within-area speciation (34%), and vicariance (5%) within SWA (Table S7a). Range expansion account for over half (53%) of the total events within SWA.

The SWA is an important diversification center for *Calytrix*, accounting for the majority (76.7%) of within-area speciation events in our continent-wide BSM analysis (see main text). Of the subregions, the Northern Sandplains is shown to be an important area of diversification for *Calytrix*, with two clades diversifying predominantly within that area of SWA. The diversification history of the largest clade (B) showed that initial diversification in SWA was concentrated in the Wheatbelt region from the late Oligocene to early Miocene, following the split with C. verruculosa at the base of the clade. A subsequent radiation coinciding with the aridification of the continent was noted in the mid-Miocene (c. 15 Ma), when a lineage migrated into the Northern Sandplains and diversified (Figs. S5-7). This radiation is significant as it accounts for almost half of the present diversity within Calytrix, and is the source of four out of the five independent dispersal events noted from SWA into the adjacent arid zone. The Northern Sandplains was also estimated as the ancestral area for Clade C. This clade has an older origin and diversification history (early Oligocene) than the nested radiation of Clade B in the Northern Sandplains. This area has been identified repeatedly as one of the hotspots for plant species richness and endemism within SWA (Hopper and Gioia, 2004; Rosauer et al., 2009; González-Orozco et al., 2011; Gioia and Hopper, 2017). It is also the most prominent source area within SWA, accounting for about a third of all dispersal events with movements to all other subregions recorded except for Esperance. Further studies are warranted to investigate for mechanisms that led to this area being conducive for increased diversification of many plant groups compared with other subregions within SWA.

The Swan Coastal Plain is another notable biogeographic subregion for *Calytrix* as it has the highest species to area-size ratio out of all SWA subregions, despite being of recent origin compared to the rest of SWA. A similar pattern is shown in other studies, with this region being another hotspot for plant species richness in SWA (Hopper and Gioia, 2004; Phillips et al., 2009). The region originated in the Quaternary from the build up of coastal carbonate deposits that comprise Quindalup and Spearwood dunes, and eroded deposits from the Yilgarn Block making up the older Bassendean dunes (*c.* 800 kya). In contrast, the rest of SWA has been tectonically quiet for 300 million years and sits on the Yilgarn Craton which assembled *c.* 2–3 billion ya. The formation of the Swan Coastal Plain in the Quaternary would have provided new niches for colonisation from

other areas of SWA, resulting in it being the largest sink area in our BSM analyses. Due to its recent age, all dispersal events recorded into this subregion are range expansion events (i.e. no endemic species-within-area speciation). Surprisingly, it is also an important source area for other subregions, being recorded as having the third highest number of disperal events to other areas. However, this might be explained by its proximity to the Northern Sandplains and Wheatbelt, which are the two major centers of diversification for *Calytrix* in SWA. Indeed, a link between the number of species, frequency of dispersal events, and geographic distance between areas is noted in this study, supporting the distance decay of similarity effect (Nekola and White, 1999). A similar effect is noted in our continent-wide analysis, where biogeographic events are largely limited to within-area speciation events, and dispersal events limited to adjacent areas. Geographic distance of dispersal events might be determined by the biology of this group. Many species of *Calytrix* display seed characters indicative of wind or animal dispersal, with the presence of calvx awns, increased length of the hypanthium, and presence of hairs on the propagules (Craven, 1987). However, this link has never been been formally documented or tested. Additional studies are also warranted to look at why other subregions such as the Jarrah Forest and southern regions (South Coast and Esperance) play a smaller role in the diversification of *Calytrix* in SWA, despite these areas being adjacent to the Wheatbelt – one of the major diversification centers.

Southwest Western Australia extinction buffer

Extinctions in other parts of Australia could also be inferred from our dataset based on the respective stem and crown ages of each lineage. *Ochrosperma* display a broom-and-handle or comb-like signature (with a stem age of c. 43.7 Ma and crown age of c. 19.1 Ma), indicative of extinction and subsequent diversification (Crisp and Cook, 2009). The genus is sister to *Calytrix* and *Homalocalyx* and is confined largely to mesic rainforest areas of eastern Australia. The most common recent ancestor (MRCA) of these genera in Chamelaucieae could have a much wider distribution across Australia similar to *Calytrix* during the Eocene as the climate was warmer and wetter then (Crisp and Cook, 2013). These lineages then retreated to mesic fringes (SWA and eastern Australia) of the continent as it became progressively more arid since the mid-Miocene in concordance with the peripheral-vicariance hypothesis (Byrne et al., 2011). Higher diversifiation rates or earlier differentiation in SWA compared to other regions of Australia around the E–O boundary was inferred from our dataset, with the origins of SWA clades (B and C) at or immediately after the E–O boundary event. In contrast, the northern and eastern Australian clades arose after the E–O boundary during the late Oligocene (26 Ma, 95% CI: 20–31 Ma). This pattern of higher diversification rates in SWA compared with eastern Australia around the E–O boundary is

congruent with the broader diversification history of Chamelaucieae as is shown in differences in its genera diversification rates across the two regions (Nge et al., 2020).

Supplementary Tables and Figures

Table S1a. Samples of outgroups used in this study, with the relevant gene regions and associated GenBank accesion number.

Number	K accession number.	matK	atpB	ndhF	ITS
1	Agonis_	AF184715.1	AF184676.2	AY498762.1	EU850627.1
2	Angophora_costata_	HQ287612.1			
3	Angophora_leiocarpa_	HQ287613.1			
4	Arillastrum_gummiferum_	HQ287614.1			
5	Calothamnus_	AF184704.2	AF184667	AY498774.1	EF041511.1
6	Corymbia_calophylla_	HQ287615.1	7 11 20 1007	711.0077.112	2.0.1202212
7	Corymbia intermedia	HQ287616.1			
8	Corymbia_maculata_	HQ287617.1			
9	Eucalyptopsis_papuana_	AF368205.2			AF190354.1
10	Eucalyptus_baileyana_	HQ287618.1			711 130334.1
11	Eucalyptus_bicostata_	HQ287619.1			
12	Eucalyptus brachyandra	HQ287620.1			
13	Eucalyptus_curtisii_	HQ287620.1 HQ287621.1			
14	Eucalyptus_deglupta_	HQ287622.1			
15	Eucalyptus diversicolor	HQ287623.1			
16	Eucalyptus_globulus_	HQ287627.1			
17	Eucalyptus_guilfoylei_	HQ287628.1			
18	Eucalyptus_howittiana_	HQ287629.1			
19	Eucalyptus_imlayensis_	HQ287630.1			
20	Eucalyptus_jacksonii_	HQ287631.1			
21	Eucalyptus_kitsoniana_	HQ287633.1			
22	Eucalyptus_microcorys_	HQ287634.1			
23	Eucalyptus_raveretiana_	HQ287635.1			
24	Eucalyptus_stoatei_	HQ287636.1			
25	Eucalyptus_tenuipes_	HQ287637.1			
26	Homalocalyx_aureus_	AF489398.1		AY498785.1	HM160106.1
27	Homalospermum_firmum_	AF184720.1	AF184682.2		EU850632.1
28	Kunzea_baxteri_	AF184722.1	AF184684	AY498789.1	KM064868.1
29	Kunzea_EAST_Au	AF184724.1	AF184686.2	AY498790.1	EU833174.1
30	Leptospermum_EAST_Au	AF184732.1	AF184697.2	AY498791.1	EU850643.1
31	Leptospermum_spinescens_	AF184734.1	AF184696.2		
32	Lindsayomyrtus_racemoides_	AF184706.3	AF184668.2	AY498793.1	HM160111.1
33	Lophostemon_	AY525134.1	HQ287610.1	AY525134.1	KM065037.1
34	Ochrosperma_citriodorum_	AF489383.1	AF489327.1		
35	Ochrosperma_lineare_	AF489384.2	AF489328.2		
36	Ochrosperma_oligomerum_	AF489385.2	AF489329.2		
37	Osbornia_octodonta_	AF368213.2		AY498805.1	EF041844.1
38	Stockwellia_quadrifida_	HQ287639.1			
39	Syncarpia_	AY525139.1		AY498813.1	KM065007.1
40	Xanthostemon_	AY525144.1		AY498823.1	EF041515.1
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7.1. 750025.1	L. 071010.1

Table S1b. Newly sequenced *Calytrix* and *Homalocalyx* outgroup samples used in this study, sourced from herbarium specimens.

Collector's no.	Таха	Voucher	Date collected
FN 640	Calytrix amethystina	PERTH 08628920	24/9/12
FN 641	Calytrix birdii	PERTH 06764929	29/10/00
FN 642	Calytrix creswellii	PERTH 08930155	9/11/16
FN 643	Calytrix decandra	PERTH 08930155	17/1/17
FN 644	Calytrix desolata	PERTH 08754896	14/9/10
FN 645	Calytrix divergens	PERTH 08193096	11/12/08
FN 646	Calytrix eriosipetala	PERTH 07557280	8/9/06
FN 647	Calytrix uncinata	PERTH 08762740	21/11/10
FN 648	Calytrix verruculosa	PERTH 07379226	15/5/06
FN 649	Calytrix viscida	PERTH 08612382	3/10/12
FN 650	Calytrix watsonii	PERTH 07739303	18/9/05
FN 651	Calytrix sp. Paynes Find	PERTH 08200378	12/10/08
FN 652	Calytrix truncatifolia	PERTH 07498918	12/10/05
FN 653	Calytrix breviseta subsp. stipulosa	PERTH 08996903	11/10/13
FN 654	Calytrix drummondii	PERTH 06482732	7/12/02
FN 655	Calytrix ecalycata subsp. pubescens	PERTH 08576815	28/9/07
FN 656	Calytrix habrantha	PERTH 06390901	12/11/01
FN 657	Calytrix hirta	PERTH 08929769	25/11/16
FN 658	Calytrix duplistipulata	PERTH 06419720	5/6/00
FN 659	Calytrix merreliana	PERTH 08701997	21/10/13
FN 660	Calytrix megaphylla	PERTH 08050767	2/4/07
FN 661	Calytrix nematoclada	PERTh 05563119	3/5/99
FN 662	Calytrix oldfieldii	PERTH 05878993	15/8/00
FN 663	Calytrix parvivallis	PERTH 07729561	4/10/06
FN 664	Calytrix patrickiae	PERTH 06233961	3/10/00
FN 665	Calytrix paucicostata	PERTH 05312957	5/11/98
FN 666	Calytrix plumulosa	PERTH 08097348	26/10/07
FN 667	Calytrix sagei	PERTH 06836844	28/10/02
FN 668	Calytrix simplex subsp. suboppositifolia	PERTH 07577745	9/12/06
FN 669	Calytrix simplex subsp. simplex	PERTH 08471436	10/1/13
FN 670	Calytrix superba	PERTH 07400977	23/6/00
FN 672	Calytrix variabilis	PERTH 07781458	29/9/07
FN 673	Calytrix achaeta	PERTH 08662436	29/5/08
FN 674	Calytrix brownii	PERTH 08364419	9/6/11
FN 675	Calytrix exstipulata	PERTH 08257779	6/7/10
FN 676	Calytrix gomphrenoides	PERTH 07994001	23/1/07
FN 677	Homalocalyx aureus	PERTH 08894914	16/9/16

Table Sc. Newly sequenced *Calytrix* samples used in this study, from freshly collected material, to be vouchered in AD.

Collector's no.	Таха	Date collected	Latitude	Longitude
FN 380	Calytrix tetragona	00/09/2017	-37.2679	149.6753
FN 400	Calytrix aurea	00/09/2017	-32.025	115.9819
FN 401	Calytrix fraseri	00/09/2017	-32.0187	115.9806
FN 550	Calytrix sylvana	2/10/18	-31.4751	115.9707
FN 554	Calytrix strigosa	2/10/18	-31.1799	115.8259
FN 567	Calytrix chrysantha	2/10/18	-29.9052	115.25361
FN 572	Calytrix sapphirina	3/10/18	-29.6388	115.2171
FN 583	Calytrix depressa	3/10/18	-28.01716	114.3304
FN 584	Calytrix brevifolia	4/10/18	-27.6921	114.2124
FN 585	Calytrix formosa	4/10/18	-27.6121	114.4097
FN 586	Calytrix harvestiana	4/10/18	-27.6495	114.4551
FN 592	Calytrix strigosa	4/10/18	-27.7014	114.2925
FN 594	Calytrix gracilis	4/10/18	-27.8526	114.48098
FN 595	Calytrix purpurea	4/10/18	-27.8526	114.48098
FN 597	Calytrix pimeleoides	4/10/18	-28.2347	114.6457
FN 601	Calytrix ecalycata subsp. ecalycata	5/10/18	-29.2685	115.8685
FN 602	Calytrix ecalycata subsp. brevis	5/10/18	-30.03580556	115.7390556
FN 607	Calytrix platycheiridia	5/10/18	-30.02077778	115.8688611
FN 610	Calytrix cravenii 'typical form'	5/10/18	-30.1112	115.9785
FN 611	Calytrix leschenaultii	5/10/18	-30.1112	115.9785
FN 612	Calytrix violacea	6/10/18	-30.862286	116.72096
FN 614	Calytrix gracilis	6/10/18	-30.862286	116.72096
FN 617	Calytrix sapphirina	6/10/18	-30.8545	116.6865
FN 619	Calytrix cravenii 'Calingiri'	6/10/18	-31.03638	116.5344
FN 623	Calytrix cravenii 'Calingiri'	6/10/18	-31.1618	116.4895
FN 625	Calytrix oncophylla	6/10/18	-31.497301	116.576933
FN 626	Calytrix leschenaultii	6/10/18	-31.497301	116.576933
FN 628	Calytrix sylvana	6/10/18	-31.6784	116.3276
FN 633	Calytrix breviseta subsp. breviseta	7/10/18	-32.0198	115.98589
FN 634	Calytrix acutifolia	7/10/18	-31.9952	116.0319
FN 635	Calytrix glutinosa	7/10/18	-31.9942	116.0316
FN 639	Calytrix tetragona	9/10/18	-33.5845	117.2260833
FN 680	Calytrix leschenaultii	9/10/18	-33.5845	117.2260833
FN 685	Calytrix tetragona	10/10/18	-34.3424	117.8001
FN 688	Calytrix leschenaultii	10/10/18	-34.4901	118.6096
FN 690	Calytrix tetragona	10/10/18	-34.409	118.7295
FN 691	Calytrix tetragona	10/10/18	-33.7131	118.6825
FN 692	Calytrix leschenaultii	10/10/18	-33.7131	118.6825
FN 306	Calytrix retrorsifolia	00/09/2017	-33.701069	115.541297
FN 394	Calytrix tetragona	00/02/2018	-36.3108	146.2084
FN 251	Calytrix tetragona	18/10/17	-32.725607	138.081843
FN 402	Calytrix flavescens	00/04/2018	-32.1074	115.9309

Table S2. Summary statistics and AIC scores for all 20 models in this study across the different scenarios for the continent-wide analysis. AIC scores from BAYAREA models were excluded from model selection as these models do not account for vicariance. The model with the lowest score is highlighted in red.

Inginighted	111 104.	numparam						
	LnL	S	d	e	j	X	AIC	AIC_wt
Default param							-	
metric								
DEC	-84.1	2	0.0031	1.00E-12	0	n/a	172.2	4.70E-08
DEC+J	-66.27	3	0.0005	1.00E-12	0.037	n/a	138.5	0.97
DIVALIKE	-87.78	2	0.0048	1.00E-12	0	n/a	179.6	1.20E-09
DIVALIKE+J	-69.84	3	0.0014	1.00E-12	0.036	n/a	145.7	0.027
BAYAREALIK								
E	-107	2	0.0012	0.027	0	n/a	217.9	5.60E-18
BAYAREALIK	72.25	2	0.0044	4 005 07	0.04	I -	4507	0.0022
E+J Scenario 1: add	-72.35	3 rent relative d	0.0011	1.00E-07	0.04	n/a	150.7	0.0022
stratification	aition of can	rent relative u	istalice betwe	een regions w	itii ilo tiille			
DEC	-67.19	3	0.031	0.0004	0	-0.75	140.4	2.00E-08
DEC+J	-48.57	4	0.0099	1.00E-12	0.62	-1.07	105.1	0.92
DIVALIKE	-68.46	3	0.056	1.00E-12	0	-0.86	142.9	5.70E-09
DIVALIKE+J	-51.24	4	0.02	1.00E-12	0.52	-1.04	110.5	0.063
BAYAREALIK	52.2	•	0.02	1.001 11	0.02		220.0	0.000
E	-90.45	3	0.071	0.019	0	-0.99	186.9	1.60E-18
BAYAREALIK								
E+J	-52.4	4	0.017	1.00E-07	0.48	-1.1	112.8	0.02
Scenario 2: gra Ma time interv		of W, E, N and	d expansion o	of the arid inte	erior (A) trom	40 Ma strati	fied at 10	
DEC DEC	-57.57	3	0.69	1.00E-12	0	-2.5	121.1	9.90E-06
DEC+J	-37.37	4	0.89	1.00E-12 1.00E-12	2.25	-2.5	98.21	0.95
DIVALIKE	-45.11	3	0.29	1.00E-12 1.00E-12	0	-2.5	128.1	3.00E-07
DIVALIKE DIVALIKE+J	-48.28	5 4	0.099	1.00E-12 1.00E-12	1.08	-2.1 -1.84	104.6	0.04
BAYAREALIK	-40.20	4	0.099	1.UUE-12	1.06	-1.04	104.0	0.04
E	-87.15	3	0.58	0.026	0	-2.48	180.3	1.40E-18
BAYAREALIK								
E+J	-49.48	4	0.034	1.00E-07	0.63	-1.61	107	0.012
Scenario 3: ab	-	of W, E, N and	expansion of	f the arid inte	rior (A)			
commencing a			0.10				400	4 405 00
DEC	-61.49	3	0.12	5.70E-05	0	-1.87	129	1.10E-06
DEC+J	-46.91	4	0.0075	1.00E-12	0.34	-1.06	101.8	0.86
DIVALUE	-63.95	3	0.059	1.00E-12	0	-1.13	133.9	9.30E-08
DIVALIKE+J BAYAREALIK	-49.01	4	0.014	1.00E-12	0.3	-1.06	106	0.1
E	-84.7	3	0.23	0.025	0	-2.49	175.4	9.00E-17
BAYAREALIK	04.7	3	0.23	0.023	O	2.43	173.4	J.00L 17
E+J	-50.04	4	0.0094	1.00E-07	0.3	-1.08	108.1	0.037
Scenario 4: sin		ario 3 but with	additional in	crease in disp	ersal distance	between W	/ and E at c.	14 Ma
(simulate Null	•							
DEC	-61.43	3	0.11	1.00E-12	0	-1.83	128.9	2.40E-06
DEC+J	-47.52	4	0.0087	1.00E-12	0.38	-1.09	103	0.95
DIVALIKE	-65.87	3	0.037	1.00E-12	0	-0.83	137.7	2.80E-08
DIVALIKE+J	-50.79	4	0.0083	1.00E-12	0.19	-0.76	109.6	0.036
BAYAREALIK	04.63	2	0.35	0.035	•	2.5	475.0	2.005.46
E BAYAREALIK	-84.62	3	0.25	0.025	0	-2.5	175.2	2.00E-16
E+J	-51.87	4	0.006	1.00E-07	0.21	-0.8	111.7	0.012
	31.07		0.000		0.21	0.0		3.012

Table S3a. Average number and directionality of range-expansion events estimated for *Calytrix* over 50 biogeographical stochastic mapping (BSM) events of continent-wide analysis. Number includes total number of dispersal events (from found and range expansion events). Colour indicates frequency of events (red–green, highest–lowest). Area names in first row indicate source areas (where lineages dispersed from) and names in first column indicate sink areas (where lineages dispersed to). Area names are southwest Australia (W), eastern Australia (E), western central arid zone (A), and northern Australia (N).

	W	E	A	N	total	% source
W	0	0.2	0.08	0	0.28	21
E	0.84	0	0.02	0.06	0.92	68
A	0.06	0.04	0	0.02	0.12	9
N	0	0.04	0	0	0.04	3
total	0.9	0.28	0.1	0.08	1.36	100
% sink	66	21	7	6	100	

Table S3b. Average number and directionality of founder events estimated for *Calytrix* over 50 biogeographical stochastic mapping (BSM) events of continent-wide analysis. Number includes total number of dispersal events (from found and range expansion events). Colour indicates frequency of events (red–green, highest–lowest). Area names in first row indicate source areas (where lineages dispersed from) and names in first column indicate sink areas (where lineages dispersed to). Area names are southwest Australia (W), eastern Australia (E), western central arid zone (A), and northern Australia (N).

	W	E	A	N	total	% source
W	0	0.1	5.54	0.22	5.86	58
E	0.08	0	0	0.4	0.48	5
A	2.52	0.34	0	0.36	3.22	32
N	0.02	0.46	0.04	0	0.52	5
total	2.62	0.9	5.58	0.98	10.08	100
% sink	26	9	55	10	100	

Table S4. Vicariance scenarios and how often they are witnessed out of the 50 BSMs.

Vicariance	no. out of 50 BSMs
AN->A,N	2
EAN->A,EN	1
WA->A,W	26
WAN->A,WN	3
WAN->N,WA	1
WE->E,W	1
WEA->A,WE	5
WEA->W,EA	2
WEAN->A,WEN	37
WEAN->N,WEA	2
WEAN->W,EAN	2
WEN->N.WE	43

Table S5. Sympatric speciation out of the 50 BSMs within each region.

Table	S5. Sym	patric sp	eciation	out of the 5
BSM	A->A,A	E->E,E	N->N,N	W->W,W
1	5	1	4	39
2	7	3	4	37
3	6	3	4	39
4	7	3	4	38
5	5	3	4	39
6	6	3	4	39
7	6	2	4	39
8	6	2	4	39
9	5	1	4	40
10	6	0	4	36
11	5	2	4	39
12	5	1	4	39
13	6	2	4	39
14	7	1	4	36
15	7	2	4	38
16	6	3	4	39
17	7	3	4	38
18	5	2	4	40
19	6	2	4	38
20	7	3	4	38
21	5	0	4	40
22	6	3	4	39
23	5	0	4	41
24	5	2	4	39
25	5	2	4	40
26	5	0	4	40
27	6	3	4	39
28	6	3	4	39
29	7	2	4	38
30	6	3	4	39
31	5	0	4	39
32	6	1	4	39
33	6	2	4	39
34	7	2	4	38
35	5	0	4	41
36	6	2	4	38
37	5	2	4	40
38	7	3	4	37
39	5	3	4	40
40	5	1	4	40
41	6	3	4	39
42	7	2	4	38
43	6	3	4	39
44	6	3	4	39
45	5	0	4	41
46	6	1	4	39
47	6	3	4	39
48	6	2	4	39

Table S5. Continued.

I ttoic	Se. Cont	maca.			
BSM	A->A,A	E->E,E	N->N,N	W->W,W	
49	6	2	4	39	
50	7	1	4	38	
	A->A,A	E->E,E	N->N,N	W->W,W	
average	5.88	1.92	4	38.88	
%	11.6	3.8	7.9	76.7	

Table S6. Summary statistics and AIC scores for all four models in this study across the different scenarios for the SWA subset. AIC scores from BAYAREA models were excluded from model selection as these models do not account for vicariance. The model with the lowest score is highlighted in red.

	LnL	numparams	d	е	j	AIC	AICc	AIC_wt
DEC	-217.3	2	0.0077	0.0006	0	438.6	438.8	0.92
DEC+J	-219.8	3	0.0076	1.00E-12	0.026	445.7	446.1	0.027
DIVALIKE	-231.5	2	0.01	0.01	0	466.9	467.1	6.50E-07
DIVALIKE+J	-219.8	3	0.0076	1.00E-12	0.026	445.7	446.1	0.027
BAYAREALIKE	-234.3	2	0.0056	0.053	0	472.6	472.7	3.90E-08
BAYAREALIKE+J	-220	3	0.004	0.023	0.025	445.9	446.3	0.023

Table S7a Summary of 50 biogeographical stochastic mapping (BSM) counts of SWA subset analysis for Calytrix using the DEC + j model.

Mode	Туре	Mean	%
Within-area speciation	Sympatric speciation	25	23.5
	Speciation-subset	11.36	10.7
Dispersal	Founder events (j)	11.28	10.6
	Range expansions (d)	53.22	50.1
	Range contractions (e)	0	0.0
Vicariance	Vicariance	5.36	5.0
Total		115.5	100.0

Table S7b Average number and directionality of all dispersal events (founder & range expansion) estimated for *Calytrix* over 50 biogeographical stochastic mapping (BSM) events of SWA subset analysis. Number includes total number of dispersal events (from found and range expansion events). Colour indicates frequency of events (red–green, highest–lowest). Area names in first row indicate source areas (where lineages dispersed from) and names in first column indicate sink areas (where lineages dispersed to). Area names are Geraldton Sandplains (N), Swan Coastal Plain (P), Wheatbelt (W), South Coast (S), Esperance (E), arid areas adjacent to SWA (A), and Jarrah Forest (J).

	N	P	W	S	Е	A	J	total	% source
N	0	5.04	6.78	1.66	0.64	3.34	3.28	20.74	32.2
P	1.6	0	2.26	1.92	1.02	0	2.48	9.28	14.4
W	4.52	4.38	0	0.82	2.04	1.86	4.36	17.98	27.9
S	0.34	0.96	0.48	0	0.8	0.02	0.44	3.04	4.7
E	0.12	0.68	0.34	0.66	0	0.12	0.58	2.5	3.9
A	1.18	0.54	1.36	0	0.92	0	0.56	4.56	7.1
J	1.18	2.44	1.44	0.8	0.48	0.06	0	6.4	9.9
TOTAL	8.94	14.04	12.66	5.86	5.9	5.4	11.7	64.5	
% sink	13.9	21.8	19.6	9.1	9.1	8.4	18.1		

Table S7c Average number and directionality of range expansion events estimated for *Calytrix* over 50 biogeographical stochastic mapping (BSM) events of SWA subset analysis. Number includes total number of dispersal events (from found and range expansion events). Colour indicates frequency of events (red–green, highest–lowest). Area names in first row indicate source areas (where lineages dispersed from) and names in first column indicate sink areas (where lineages dispersed to). Area names are Geraldton Sandplains (N), Swan Coastal Plain (P), Wheatbelt (W), South Coast (S), Esperance (E), arid areas adjacent to SWA (A), and Jarrah Forset (J).

	N	P	W	S	Е	A	J	total	%
N	0	3.9	5.7	1.4	0.6	0.4	3.16	15.16	28
P	1.4	0	2.2	1.7	0.74	0	2.48	8.52	16
W	3.4	4.18	0	0.8	1.94	1.12	4.22	15.66	29
S	0.32	0.82	0.48	0	0.8	0	0.44	2.86	5
E	0.1	0.6	0.34	0.66	0	0.1	0.56	2.36	4
A	0.52	0.5	0.54	0	0.26	0	0.46	2.28	4
J	1.16	2.44	1.44	0.8	0.48	0.06	0	6.38	12
total	6.9	12.44	10.7	5.36	4.82	1.68	11.32	53.22	100
%	13	23	20	10	9	3	21	100	

Table S7d Average number and directionality of founder events estimated for *Calytrix* over 50 biogeographical stochastic mapping (BSM) events of SWA subset analysis. Number includes total number of dispersal events (from found and range expansion events). Colour indicates frequency of events (red–green, highest–lowest). Area names in first row indicate source areas (where lineages dispersed from) and names in first column indicate sink areas (where lineages dispersed to). Area names are Geraldton Sandplains (N), Swan Coastal Plain (P), Wheatbelt (W), South Coast (S), Esperance (E), arid areas adjacent to SWA (A), and Jarrah Forest (J).

	(//			,,					
	N	P	W	S	Е	A	J	total	% source
N	0	1.14	1.08	0.26	0.04	2.94	0.12	5.58	49
P	0.2	0	0.06	0.22	0.28	0	0	0.76	7
W	1.12	0.2	0	0.02	0.1	0.74	0.14	2.32	21
S	0.02	0.14	0	0	0	0.02	0	0.18	2
E	0.02	0.08	0	0	0	0.02	0.02	0.14	1
Α	0.66	0.04	0.82	0	0.66	0	0.1	2.28	20
J	0.02	0	0	0	0	0	0	0.02	0
total	2.04	1.6	1.96	0.5	1.08	3.72	0.38	11.28	100
% sink	18	14	17	4	10	33	3	100	

Fig. S1a. Maximum likelihood (RAxML) topology of *Calytrix* based on our NGS nuclear dataset with 28 nuclear loci. The three clades are highlighted, and support value denoting the crown of

0.007

Fig. S1b. Maximum likelihood (RAxML) topology of *Calytrix* based on our NGS plastid dataset with 19 plastid loci. The three clades are highlighted, and support values indicate bootstrap support.

Fig. S2. Maximum likelihood topology of *Calytrix* and outgroups based on ITS and 3 chl markers.

0.02

Fig. S3. Calibrated BEAST chronogram of *Calytrix* inferred from one nuclear (ITS) and three chloroplast (*mat*K, *atp*B, *ndh*F) loci – using the *Eucalyptus* macrofossil calibration only. Node labels indicate divergence age estimates (Ma)

Fig. S4. Maximum-likelihood ancestral-range reconstruction in *Calytrix* based on the default biogeographical model (DEC+*j*) with no time stratification and distance parameters. Pie diagrams depict the relative probabilities of ancestral ranges. *Calytrix* nodes with no pie diagrams shown correspond to the preceding pie. Coloured nodes at the tips correspond to their respective scored current distributions. Area names are southwest Australia (W), eastern Australia (E), western central arid zone (A), and northern Australia (N). Map insert shows area delineation.

Fig. S5. Maximum-likelihood ancestral-range reconstruction in *Calytrix* based on the default biogeographical model (DEC+*j*) with no time stratification and distance parameters for the SWA subset. Pie diagrams depict the relative probabilities of ancestral ranges. *Calytrix* nodes with no pie diagrams shown correspond to the preceding pie. Coloured nodes at the tips correspond to their respective scored current distributions. Area names are Geraldton Sandplains (N), Swan Coastal Plain (P), Wheatbelt (W), South Coast (S), Esperance (E), arid areas adjacent to SWA (A), and Jarrah Forest (J).

Fig. S6. Area size (ha) and species recorded in each subregion of SWA.

Fig. S7. Area size (ha) and sympatric (within-area) speciation counts in each subregion of SWA.

References

Byrne, M., Steane, D.A., Joseph, L., Yeates, D.K., Jordan, G.J., Crayn, D., Aplin, K., Cantrill, D.J., Cook, L.G., Crisp, M.D., 2011. Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.

Craven, L., 1987. A taxonomic revision of *Calytrix* Labill. (Myrtaceae). Australian Systematic Botany 10, 1–138.

Crisp, M.D., Cook, L.G., 2009. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution 63, 2257–2265.

Crisp, M.D., Cook, L.G., 2013. How Was the Australian Flora Assembled Over the Last 65 Million Years? A Molecular Phylogenetic Perspective. Annual Review of Ecology, Evolution, and Systematics 44, 303–324.

Gioia, P., Hopper, S.D., 2017. A new phytogeographic map for the Southwest Australian Floristic Region after an exceptional decade of collection and discovery. Botanical Journal of the Linnean Society 184, 1–15.

González-Orozco, C.E., Laffan, S.W., Miller, J.T., 2011. Spatial distribution of species richness and endemism of the genus *Acacia* in Australia. Australian Journal of Botany 59, 601–609.

Hopper, S.D., Gioia, P., 2004. The Southwest Australian Floristic Region: Evolution and Conservation of a Global Hot Spot of Biodiversity. Annual Review of Ecology, Evolution, and Systematics 35, 623–650.

Nekola, J.C., White, P.S., 1999. The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867–878.

Nge, F.J., Biffin, E., Thiele, K.R., Waycott, M., 2020. Extinction pulse at Eocene–Oligocene boundary drives diversification dynamics of the two Australian temperate floras. Proceedings of the Royal Society B 287, 20192546.

Nge, F.J., Keighery, G.J., Thiele, K.R., 2017. A revision of the *Calytrix acutifolia* complex (Myrtaceae: Chamelaucieae). Nuytsia 28, 321–337.

Phillips, R.D., Backhouse, G., Brown, A.P., Hopper, S.D., 2009. Biogeography of *Caladenia* (Orchidaceae), with special reference to the South-west Australian Floristic Region. Australian Journal of Botany 57, 259–275.

Rosauer, D., Laffan, S.W., Crisp, M.D., Donnellan, S.C., Cook, L.G., 2009. Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology 18, 4061–4072.