<u>Claims</u>

- 1. Peptides according to claim 1, with biological activity against infection by HIV, having the amino acid sequence
- 5 Z_1 -LE- X_1 -IP- X_2 - X_3 - X_4 -P- X_5 - X_6 - X_7 - X_8 - X_9 - X_{10} -K- X_{11} - X_{12} - X_{13} - X_{14} - X_{15} - Z_2 , wherein

 X_1 is a lysine, alanine, or aspartic acid;

X₂ is a cysteine, methionine or isoleucine;

X₃ is a serine, cysteine, lysine or glycine;

 X_4 is an isoleucine, alanine, phenylalanine or cysteine;

X₅ is a proline, D-proline or a substituted L-or D-proline;

X₆ is a cysteine or glutamic acid;

 X_7 is an amino acid with a hydrophobic or an aromatic side chain or cysteine;

 X_8 is an amino acid with a hydrophobic or an aromatic side chain or cysteine;

X₉ is an amino acid with an aromatic side chain;

 X_{10} is a glycine, alanine or asparagine;

 X_{11} is a proline, aspartic acid, octahydroindolyl-2-carboxylic acid or D-

20 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid;

 X_{12} is a phenylalanine, alanine, glycine, glutamic acid or D-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid;

 X_{13} is an amino acid with a hydrophobic or an aromatic side chain;

X₁₄ is an amino acid with a hydrophobic or an aromatic side chain;

 X_{15} is a phenylalanine or deletion;

 Z_1 is NH_2 or a sequence of 1 to 10 amino acid residues;

 Z_2 is COOH or a sequence of 1 to 10 amino acid residues;

and peptides which are fragments and/or covalently linked oligomers and/or derivatives, especially amidated, alkylated, acylated, sulfated,

pegylated, phosphorylated and/or glycosylated derivatives, and mutants thereof;

and with the provisio that

30

- (a) if X_{12} is alanine, glycine, glutamic acid, or D-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid than X_{13} , X_{14} and X_{15} are phenylalanine, valine and phenylalanine respectively; and/or
- (b) if X_{12} is phenylalanine, than X_{13} , X_{14} and X_{15} are valine, phenylalanine and a deletion, respectively; and
- (c) that there are at maximum two cysteine residues in a peptide.
- Peptides according to claim 1 with a biological activity against infection by HIV having the amino acid sequence

10 Z_1 -LE- X_1 -IP- X_1 - X_3 - X_4 -P- X_5 - X_6 - X_7 - X_8 - X_9 - X_{10} -K- X_{11} -FVF- Z_2 , wherein

 X_1 is a lysine, alanine or aspartic acid:

X₂ is a cysteine, methionine or isoleucine;

X₃ is a serine, cysteine or glycine;

 X_4 is a isoleucine or cysteine;

 X_5 is a proline, D-proline or any substituted L- or D-proline;

X₆ is a cysteine or glutamic acid;

 X_7 is a phenylalanine, cysteine, valine, isoleucine or 3,3-diphenylalanine;

 X_8 is a phenylalanine, leucine, alanine, glycine, cysteine, D-1,2,3,4-

tetrahydroisoquinoline-3-carboxylic acid or L-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid;

X₉ is an amino acid with an aromatic side chain;

 X_{10} is a glycine or asparagine;

X₁₁ is a proline or D-1,2,3,4-tetrahydroisoquinoline-3-carboxylic;

 Z_1 is NH₂ or a sequence of 1 to 10 amino acid residues;

Z₂ is COOH or a sequence of 1 to 10 amino acid residues;

and peptides which are fragments and/or covalently linked oligomers and/or derivatives, especially amidated, alkylated, acylated, sulfated, pegylated, phosphorylated and/or glycosylated derivatives, and mutants thereof,

with the provisio that

(a) if two cysteine residues are present, said residues are separated by

25

30

four other amino acid residues; and

- (b) L-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid (L-Tic), D-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (D-Tic) and/or 3,3-diphenylalanine are present, no cysteine residue is present.
- 3. Peptides according to claims 1 to 2 with a biological activity against infection by HIV, having the amino acid sequence $Z_1\text{-LE-}X_2\text{-IP-}X_2\text{-}X_3\text{-IP-}X_5\text{-}X_6\text{-}X_7\text{-}X_8\text{-F-}X_{10}\text{-KPFVF-}Z_2,$ wherein
- X_1 is a lysine, alanine or aspartic acid; X_2 is a cysteine, methionine or isoleucine;

 X_3 is a serine or glycine;

 X_5 is a L-proline, D-proline or any substituted L- or D-proline X_6 is a cysteine or glutamic acid;

 X_7 is a phenyalalnine or valine;

 X_8 is a phenylalanine, leucine, alanine or L-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid;

 X_{10} is a glycine or asparagine;

 Z_1 is NH₂ or a sequence of 1 to 10 amino acid residues;

Z₂ is COOH or a sequence of 1 to 10 amino acid residues, and and peptides which are fragments and/or covalently linked oligomers and/or derivatives, especially amidated, alkylated, acylated, sulfated, pegylated, phosphorylated and/or glycosylated derivatives, and mutants thereof.

4. Peptides according to claim 1 to 3, having the amino acid sequence Z_1 -LEAIP- X_2 -SIP- X_5 - X_6 -V- X_8 -FNKPFVF- Z_2 , wherein

 X_2 and X_6 are cysteines, or X_2 is methionine and X_6 is glutamic acid X_5 is a D-proline or L-proline:

 X_8 is an amino acid with a hydrophobic or an aromatic side chain or lysine; Z_1 is NH_2 or a sequence of 1 to 10 amino acid residues;

 Z_2 is COOH or a sequence of 1 to 10 amino acid residues; and peptides which are fragments and/or covalently linked oligomers and/or derivatives, especially amidated, alkylated, acylated, sulfated, pegylated, phosphorylated and/or glycosylated derivatives, and mutants thereof, with biological activity against infection by HIV,

with the proviso that at least one of the following is true:

X₂ is D-proline or

X₅ is not lysine or

X₆ and X₈ are cysteine.

10

5

- 5. Peptides according to anyone of the claim 1 to 4, wherein the cysteine residues at positions 6 and 11, 6 and 12, 7 and 12, or 8 and 13 are connected by an intramolecular disulfide bond.
- 15 6. Peptides according to anyone of the claim 1 to 4, with a single cysteine residue, wherein said cysteine residue is connected by an intermolecular disulfide bond to another peptide with a single cysteine residue, forming a homo-dimer.
- 7. Peptides according to anyone of the claims 1 to 6, wherein the leucine residue at amino acid position 1 and the glutamic acid at amino acid position 2 are covalently linked by an N-alkylated amide bond or by an ester bond or by a reduced peptide bond or by a retro-inverso peptide bond or by an N-alkylated retro-inverso peptide bond.

25

8. Peptides according to any of the claims 1 to 7 with one of the amino acid sequences

	VIR-121	LEAIPMSIPpEVAFNKPFVF	SEQ ID NO. 2
30	VIR-161	LEAIPCSIPpCVAFNKPFVF	SEQ ID NO. 3
	VIR-162	LEAIPCSIPPCVGFGKPFVF	SEQ ID NO. 4
	VIR-163	LEAIPCSIPPCVLFNKPFVF	SEO ID NO. 5

	VIR-164	LEAIPCSIPPCVFFNKPFVF	SEQ ID	NO.	6
	VIR-165	LEAIPCSIPPCFAFNKPFVF	SEQ ID	NO.	7
•	VIR-166	LEAIPCSIPPCVA(D-Tic)NKP(D-Tic)FVF	SEQ ID	NO.	8
	VIR-170	LEAIPMSIPPEVFFGKPFVF	SEQ ID	NO.	9
5	VIR-175	LEAIPMSIPPEFLFGKPFVF	SEQ ID	NO.	10
	VIR-182	LEAIPMSIPPELAFAKPFVF	SEQ ID	NO.	11
	VIR-184	LEAIPMSIPPEIAFNKPFVF	SEQ ID	NO.	12
	VIR-190	LEAIPMSIPpEVGFGKPFVF	SEQ ID	NO.	13
	VIR-191	LEAIPMSIPpEVLFGKPFVF	SEQ ID	NO.	14
10	VIR-192	LEAIPMSIPpEVFFGKPFVF	SEQ ID	NO.	15
	VIR-193	LEAIPMSIPpEFAFNKPFVF	SEQ ID	NO.	16
	VIR-197	LEAIPMSIPpEVFFNKPFVF	SEQ ID	NO.	17
	VIR-199	LEAIPMSIPpEFLFNKPFVF	SEQ ID	NO.	18
	VIR-229	LEAIPISIPpEVAFNKPFVF	SEQ ID	NO.	19
15	VIR-234	LEAIPMGIPpEVAFNKPFVF	SEQ ID	NO.	20
	VIR-243	LEAIPMSIPPEFAFNKDFVF	SEQ'ID	NO.	21
	VIR-252	LEDIPMSIPpEVAFNKPFVF	SEQ ID	NO.	22
	VIR-255	LEKIPMSIPpEVAFNKPFVF	SEQ ID	NO.	23
	VIR-257	LEAIPMSIPpEV(cyclohexylalanine)FNKPFVF	SEQ ID	NO.	24
20	VIR-258	LEAIPMSIPpE(1-naphthylalanine)AFNKPFVF	SEQ ID	NO.	25
	VIR-259	LEAIPMSIPpE(p-fluorophenylanine)AFNKPFVF	SEQ ID	NO.	26
	VIR-260	LEAIPMSIPpEV(4-pyridylalanine)FNKPFVF	SEQ ID	NO.	27
•	VIR-261	LEAIPMSIPpE(3,3-diphenylalanine)AFNKPFVF	SEQ ID I	NO.	28
	VIR-262	LEAIPMSIPpEV(D-Tic)FNKPFVF	SEQ ID I	NO.	29
25	VIR-263	LEAIPMSIPpEV(L-Tic)FNKPFVF	SEQ ID	NO.	30
	VIR-264	${\sf LEAIPMSIPpEV(3-benzothienylalanine)FNKPFVF}$	SEQ ID I	NO.	31
	VIR-265	LEAIPMSIPpEV(3-thienylalanine)FNKPFVF	SEQ ID	NO.	32
	VIR-266	LEAIPMSIPpEVWFNKPFVF	SEQ ID I	NO.	33
	VIR-268	LEAIPMSIPpEVAFNK(L-Tic)FVF	SEQ ID I	NO.	34
30	VIR-269	LEAIPMSIPpEVAFNK(Oic)FVF	SEQ ID I	NO.	35
	VIR-272	LEAIPMCIPPECLFNKPFVF	SEQ ID	NO.	36
	VIR-273	LEAIPMCIPPECFFNKPFVF	SEQ ID I	NO.	37

•	VIR-274	LEAIPMCIPPECLFGKPFVF	SEQ ID NO. 38
	VIR-280	LEAIPCSIPPCFLFGKPFVF	SEQ ID NO. 39
	VIR-284	LEAIPISIPPEVFFGKPFVF	SEQ ID NO. 40
	VIR-286	LEAIPISIPPELAFAKPFVF	SEQ ID NO. 41
5	VIR-290	LEAIPISIPpEVFFGKPFVF	SEQ ID NO. 42
	VIR-298	LEAIPISIPpEVWFNKPFVF	SEQ ID NO. 43
•	VIR-320	LEAIPMGIPpEVFFGKPFVF	SEQ ID NO. 44
	VIR-322	LEAIPMGIPpEVFFNKPFVF	SEQ ID NO. 45
	VIR-323	LEAIPMGIPpEFLFNKPFVF	SEQ ID NO. 46
10	VIR-326	LEDIPMGIPpEVAFNKPFVF	SEQ ID NO. 47
	VIR-328	LEAIPMGIPpEVWFNKPFVF	SEQ ID NO. 48
	VIR-344	LEAIPCSIPPCVFFGKPFVF	SEQ ID NO. 49
	VIR-345	LEAIPCSIPPCFLFGKPFVF	SEQ ID NO. 50
	VIR-346	LEAIPCSIPPCLAFAKPFVF	SEQ ID NO. 51
15	VIR-348	LEAIPCSIPpCVGFGKPFVF	SEQ ID NO. 52
	VIR-350	LEAIPCSIPpCVFFGKPFVF	SEQ'ID NO. 53
	VIR-351	LEAIPCSIPpCFAFNKPFVF	SEQ ID NO. 54
	VIR-352	LEAIPCSIPpCVFFNKPFVF	SEQ ID NO. 55
	VIR-353	LEAIPCSIPpCFLFNKPFVF	SEQ ID NO. 56
20	VIR-354	LEAIPCSIPpCVAFNKPFVF	SEQ ID NO. 57
	VIR-355	LEAIPCGIPpCVAFNKPFVF	SEQ ID NO. 58
	VIR-356	LEAIPCSIPPCFAFNKDFVF	SEQ ID NO. 59
	VIR-357	LEDIPCSIPpCVAFNKPFVF	SEQ ID NO. 60
	VIR-358	LEKIPCSIPpCVAFNKPFVF	SEQ ID NO. 61
25.	VIR-376	LEAIPMSIPpEFLFGKPAFVF	SEQ ID NO. 62
	VIR-377	LEAIPMSIPpEFLFGKPGFVF	SEQ ID NO. 63
	VIR-380	LEAIPMSIPpEFLFGKPFFVF	SEQ ID NO. 64
	VIR-384	LEAIPMSIPpEFLFGKPEFVF	SEQ ID NO. 65
	VIR-396	LEAIPMSAPpEFLFGKPFVF	SEQ ID NO. 66
30	VIR-400	LEAIPMSFPpEFLFGKPFVF	SEQ ID NO. 67
	VIR-416	LEAIPMGIPpEFLFGKPFVF	SEQ ID NO. 68
•	VIR-418	LEKIPMGIPpEFLFGKPFVF	SEQ ID NO. 69

	· VIR-445	LEAIPISIPpEV(D-Tic)FNKPFVF	SEQ ID NO. 70
	VIR-447	LEAIPISIPpEVAFNK(L-Tic)FVF	SEQ ID NO. 71
	VIR-448	LEAIPMGIPpEV(D-Tic)FNKPFVF	SEQ ID NO. 72
	VIR-449	LEAIPMGIPpEV(L-Tic)FNKPFVF	SEQ ID NO. 73
5	VIR-452	LEDIPMSIPpEV(L-Tic)FNKPFVF	SEQ ID NO. 74
	VIR-454	LEKIPMSIPpEV(D-Tic)FNKPFVF	SEQ ID NO. 75
	VIR-455	LEKIPMSIPpEV(L-Tic)FNKPFVF	SEQ ID NO. 76
	VIR-479	LEDIPIGIPpEFLFNKPFVF	SEQ ID NO. 77
•	VIR-483	LEKIPIGIPpEV(D-Tic)FNKPFVF	SEQ ID NO. 78
10	VIR-484	LEKIPIGIPpEV(L-Tic)FNKPFVF	SEQ ID NO. 79
	VIR-485	LEKIPIGIPpEVAFNK(L-Tic)FVF	SEQ ID NO. 80
	VIR-487	LEDIPIGIPpEV(L-Tic)FNKPFVF	SEQ ID NO. 81
	VIR-488	LEDIPIGIPpEVAFNK(L-Tic)FVF	SEQ ID NO. 82
	VIR-512	N-Me-LEAIPMSIPPEFLFGKPFVF	SEQ ID NO. 83
15	VIR-568	LEAIPMSCPPEFCFGKPFVF	SEQ ID NO. 84
	VIR-570	LEAIPCSIPPECLFGKPFVF	SEQ'ID NO. 85
	VIR-576	(LEAIPCSIPPEFLFGKPFVF)₂	SEQ ID NO. 86
	VIR-580	LEAIPMSIPPEFLFGKPFVF-miniPEG	SEQ ID NO. 87
	VIR-590	LEAIPMKIPPEFLFGKPFVF	SEQ ID NO. 88

25

30

- 9. The peptides according to anyone of claims 1 to 8, which interact with the fusion peptide of HIV.
- 10. The peptides according to anyone of claims 1 to 9, which have an IC_{50} of equal or below 6500 nM, preferably those having an IC_{50} of equal or below 2000 nM and most preferably those having an IC_{50} of equal or below 800 nM such as VIR-344 (SEQ ID NO. 49) with an IC_{50} of 348 nM, VIR-345 (SEQ ID NO. 50) with an IC_{50} of 298 nM, VIR-353 (SEQ ID NO. 56) with an IC_{50} of 225 nM, VIR-357 (SEQ ID NO. 60) with an IC_{50} of 497 nM, VIR-358 (SEQ ID NO. 61) with an IC_{50} of 706 nM, VIR-449 (SEQ ID NO. 73) with an IC_{50} of 274 nM, VIR-455 (SEQ ID NO. 76) with an IC_{50} of 134 nM, VIR-484 (SEQ ID NO. 79) with an IC_{50} of 100 nM, VIR-512 (SEQ ID NO. 83) with an

10

20

25

 IC_{50} of 138 nM, VIR-576 (SEQ ID NO. 86) with an IC_{50} of 107 nM and VIR-580 (SEQ ID NO. 87) with an IC_{50} of 150 nM.

- 11. Nucleic acids coding for peptides according to any of claims 1 to 10.
- 12. Antibodies binding specifically to peptides according to claims 1 to 10.
- 13. A medicament containing the peptides according to claims 1 to 10, nucleic acids of claim 11 or antibodies of claim 12.
- 14. The medicament of claim 13 in galenic formulations for oral, intravenous, intramuscular, intracutaneous, subcutaneous, intrathecal administration, and as an aerosol for transpulmonary administration.
- 15. The medicament of claim 13 or 14 comprising at least one further therapeutic agent.
 - 16. The medicament of claim 15, wherein the said at least one further therapeutic agent is a viral protease inhibitor, a reverse transcriptase inhibitor, a fusion inhibitor, a cytokine, a cytokine inhibitor, a glycosylation inhibitor or a viral mRNA inhibitor.
 - 17. Use of the peptides according to claims 1 to 10 for the manufacturing of a medicament for the treatment of HIV infections.
 - 18. An assay for determining molecules capable of interaction with the fusion peptide of HIV, comprising a peptide according to anyone of claims 1 to 10.
- 19. Use of the peptides according to anyone of claims 1 to 10 in an assay according to claim 16.

- 20. A diagnostic agent containing peptides according to any of claims 1 to 10, nucleic acids according to claim 11 or antibodies according to claim 12.
- 21. Use of the diagnostic agent according to claim 18 for assay systems for testing isolated plasma, tissue, urine and cerebrospinal fluid levels for HIV infection.