Started on	Wednesday, 26 October 2016, 11:42 AM
State	Finished
Completed on	Sunday, 30 October 2016, 4:14 PM
Time taken	4 days 4 hours

Grade 93.3 out of 100.0

Question 1

Correct

Mark 5.0 out of 5.0

P5.09 9ed

Find the range of values for $\boldsymbol{\sigma}$ in which the op amp does not saturate. Assume the op amp is ideal

$$\boxed{0} \qquad \checkmark \leq \sigma \leq \boxed{.4}$$

Numeric Answer

 $0 \le \sigma \le 0.40$

Correct

Not answered

Mark 0.0 out of 5.0

Numeric Answer

$$v_0 = -6 \text{ V}$$

Correct

Mark 5.0 out of 5.0

P5.12_10ed

Assume the op amp is ideal.

Find
$$v_0$$
 if $v_a = 1$ V, $v_b = 1.5$ V, $v_c = -4$ V.
 $v_0 = \boxed{-6}$ V

Numeric Answer

$$v_0 = -6 \text{ V}$$

Correct

Correct

Mark 5.0 out of 5.0

AP5.03_9ed

Assume the op amp is ideal.

a) Find v_0 in the circuit shown if $v_a = 0.1$ V and $v_b = 0.25$ V.

$$v_O = \begin{bmatrix} -7.5 \\ \checkmark \end{bmatrix}$$
 V

b) If $v_b = 0.25$ V, how large can v_a be before the op amp saturates?

$$v_a = \boxed{.15}$$

Numeric Answer

a)
$$v_0 = -7.5 \text{ V}$$

a)
$$v_0 = -7.5 \text{ V}$$

b) $v_a = 0.15 \text{ V}$

Correct

Correct

Mark 5.0 out of 5.0

P5.18_9ed

Specify the range of values of v_g so that the op amp operates in a linear mode

$$-4.55$$
 $\checkmark \leq v_{\rm g} \leq 4.55$ $\checkmark V$

Numeric Answer

$$-4.554 \le v_{\rm g} \le 4.554 \text{ V}$$

Correct

Correct

Mark 5.0 out of 5.0

P5.16_9ed

Calculate v_0 for this circuit.

$$v_0 = 9$$
 \checkmark V

Numeric Answer

$$v_0 = 9 \text{ V}$$

Correct

Correct

Mark 5.0 out of 5.0

AP5.05_9ed

In the difference amplifier shown, $v_b = 4.0 \text{ V}$.

What range of values for v_a will result in linear operation?

$$2 \qquad \checkmark \leq v_a \leq 6 \qquad \checkmark V$$

Numeric Answer

$$2 \text{ V} \le v_a \le 6 \text{ V}$$

Correct

Correct

Mark 5.0 out of 5.0

P5.26_10ed

Given: $v_a = 2V$

Find v_0 .

$$v_o = \boxed{-3}$$

Numeric Answer

$$v_0 = -3V$$

Correct

Correct

Mark 5.0 out of 5.0

P6.02 9ed

The current in a 50 μ H (micro Henry) inductor is $i_1 = 18 \text{ t e}^{-10t} \text{ A for } t \ge 0$.

- a) Find the voltage across the inductor for t > 0.
- b) Find the power (in microwatts) at the terminals of the inductor when t = 200 ms (milli sec).

Select one:

• a.
$$v_L = 900 e^{-10 t}$$
 (1-10 t) μ V (micro Volts)
 $p_I = -59.34 \ \mu$ W (micro Watts) delivering \checkmark

b.
$$v_L = -900 e^{-10 t}$$
 (1-10 t) μ V (micro Volts)
 $p_1 = +59.34 \mu$ W (micro Watts) absorbing

C.
$$v_L = 90 e^{-10 t}$$
 (1-10 t) μ V (micro Volts)
 $p_L = -5.934 \ \mu$ W (micro Watts) delivering

d.
$$v_L = 59.34 e^{-10 t} (1-10 t) \mu V$$
 (micro Volts)
 $p_I = -900 \mu W$ (micro Watts) delivering

Your answer is correct.

Multiple choice

$$v_L = 900e^{-10t}$$
 (1-10t) μ V (micro Volts)
 $p_L = -59.34 \ \mu$ W (micro Watts) delivering

The correct answer is:
$$v_L = 900 e^{-10 t}$$
 (1-10 t) μ V (micro Volts) $p_L = -59.34 \ \mu$ W (micro Watts) delivering

Correct

Correct

Mark 5.0 out of 5.0

CQ6.09

Given:

L = 15 mH (milli Henry)

At an instant of time the inductor has a current of 9.2 Amps which is increasing by 6.8 Amps/ms.

What is the power absorbed/delivered by the inductor at that instant of time?

$$P_L = ??$$
 Watts

Answer: 938.4 ✓

Calculated Question

The correct answer is: 938.400

Correct

Correct

Mark 5.0 out of 5.0

CQ6.07

Given:

L = 11 mH (milli H)

The inductor current i changes 9.6 A/ms (Amps per milli sec) for a short while.

What is the voltage across the inductor during this period?

$$V_L = ?? V$$

Answer: | 105.6

Calculated Question

The correct answer is: 105.600

Correct

Correct

Mark 5.0 out of 5.0

P6.13 10ed

The voltage across a 5 μF (micro F) capacitor is $v_c = 500$ t $e^{-2,500}$ t V for $t \ge 0$.

Find the current "through" the capacitor for t > 0.

Find the power at the terminals of the capacitor when $t = 80 \mu s$ (micro sec).

Select one:

- a. $i_c = 2.5 e^{-2500t}$ (1-2500 t) mV (milli Volts) $p_c = 53.626 \mu$ W (micro Watts) absorbing \checkmark
- \circ b. $i_c = 2.5 e^{-2500t}$ (1-2500 t) V

 $p_c = 53.626 \text{ W absorbing}$

- \circ c. i_c = 5.3 e^{-5000t} (1-2500 t) mV (milli Volts)
 - $p_c = -53.626 \,\mu\text{W}$ (micro Watts) delivering
- Od. $i_c = 0.5 e^{-2500t}$ (1-2500 t) mV (milli Volts) p_c = 13.626 mW (milli Watts) absorbing

Your answer is correct.

Multiple choice

$$i_c = 2.5 e^{-2500t}$$
 (1-2500 t) mV (milli Volts)
 $p_c = 53.626 \mu W$ (micro Watts) absorbing

The correct answer is: $i_c = 2.5 e^{-2500t}$ (1-2500 t) mV (milli Volts) $p_c = 53.626 \mu W$ (micro Watts) absorbing

Correct

Correct

Mark 5.0 out of 5.0

P6.14_9ed

The current shown in the figure is applied to a 0.25 µF (micro F) capacitor.

The initial voltage across the capacitor is zero.

Find the charge on the capacitor at $t = 15 \mu s$ (micro sec).

$$Q_{15ms} = 5$$
 $\checkmark \mu C \text{ (micro C)}$

Find the voltage across the capacitor at $t = 15 \mu s$ (micro sec).

Numeric Answer

 $Q_{15ms} = 5 \mu C$ (micro Coulombs)

V_{15ms} = 20 Volts

Correct

Correct

Mark 5.0 out of 5.0

CQ6.10

Given:

 $C = 38 \mu F \text{ (micro Farad)}$

The capacitor voltage v changes at 2 V/µs (Volts per micro sec) for a short while.

What is the current displaced around the capacitor during this period?

$$i_C = ??$$
 Amps

Answer: 76

Calculated Question

The correct answer is: 76.000

Correct

Correct

Mark 5.0 out of 5.0

CQ6.04

Given:

$$L_1 = 1.5 \text{ mH (milli Henry)}$$
 $L_2 = 6.8 \text{ mH (milli Henry)}$ $L_3 = 5.6 \text{ mH (milli Henry)}$

Find the equivalent inductance $L_{\rm Eq}$.

$$L_{Eq} = ?? \text{ mH (milli Henry)}$$

Answer: 13.9

Calculated Question

The correct answer is: 13.900

Correct

Correct

Mark 5.0 out of 5.0

CQ6.05

Given:

$$L_1 = 2.8 \text{ mH (milli Henry)}$$
 $L_2 = 6.3 \text{ mH (milli Henry)}$ $L_3 = 7.3 \text{ mH (milli Henry)}$

Find the equivalent inductance $L_{\rm Eq}$.

$$L_{Eq} = ?? \text{ mH (milli Henry)}$$

Answer: 1.53

Calculated Question

The correct answer is: 1.532

Correct

Correct

Mark 5.0 out of 5.0

P6.20_6ed

Find the equivalent inductance with respect to the terminals a,b.

$$L_{Eq} = 8.6$$

Numeric Answer

$$L_{Eq} = 8.64 H$$

Correct

Marks for this submission: 5.0/5.0.

Question 18

Correct

Mark 5.0 out of 5.0

CQ6.01

Given:

$$C_1 = 2.3 \mu F$$
 (micro Farad) $C_2 = 6.8 \mu F$ (micro Farad) $C_3 = 1.8 \mu F$ (micro Farad)

Find the equivalent capacitance C_{Eq} .

$$C_{Eq} = ?? \mu F \text{ (micro Farad)}$$

Answer: .88

The correct answer is: 0.879

Correct

Correct

Mark 5.0 out of 5.0

P6.26_9ed

Find the equivalent capacitance with respect to the terminals a,b.

$$C_{Eq} = 2$$
 $\checkmark \mu F \text{ (micro F)}$

And find the initial voltage across the equivalent capacitance.

$$V_{\text{Ceq}} = \boxed{25}$$

Numeric Answer

$$C_{Eq} = 2 \mu F \text{ (micro F)}$$

$$V_{Ceq} = 25 V$$

Correct

Correct

Mark 3.3 out of 5.0

P6.24_6ed

Find the equivalent capacitance with respect to the terminals a,b.

$$C_{Eq} = \boxed{6}$$
 $\checkmark \mu F \text{ (micro F)}$

And find the initial voltage across the equivalent capacitance.

$$V_{ab} = V_{Ceq} = \boxed{-3}$$

Numeric Answer

$$C_{Eq} = 6 \mu F \text{ (micro F)}$$

$$V_{Ceq} = -3 V$$

Correct

Marks for this submission: 5.0/5.0. Accounting for previous tries, this gives 3.3/5.0.