Announcements & Such

- Shuggie Otis.
- Administrative Stuff
 - HW #5 first resubmission is due on Thursday.
 - My handout "Working with LMPL Interpretations" is posted (useful for part of HW #5). I will discuss this (again) today.
 - From now on, my office hours are: 4-6pm Tuesdays.
- Today: Chapter 6 LMPL Semantics
 - Validity and Invalidity in LMPL.
 - *Constructing* LMPL interpretations (to establish ⊭ claims).
 - **Next**: Natural Deductions in LMPL (*i.e.*, rules for the quantifiers).

Constructing LMPL Interpretations to Prove ≠ Claims

- The notion of *semantic consequence* (\models) in LMPL is defined in the usual way. We say that $p_1, \ldots, p_n \models q$ in LMPL *iff* there is no LMPL interpretation on which all of p_1, \ldots, p_n are true, but q is false.
- In HW #5, you are asked to prove that $p_1, ..., p_n \not\models q$, for various p's and q's. This means you must *construct* (or, *find*) LMPL interpretations on which $p_1, ..., p_n$ are all true, but q is false.
- On page 2 of my "Working with LMPL Interpretations" handout, I have included two problems of this kind. There, I explain in detail *how I* arrived at my interpretations. This is a method you should emulate.
- On your HW's and exams, you will **not** need to explain how you arrived at your interpretations. But, you will need to demonstrate that your interpretations really are counterexamples (i.e., that they really are interpretations on which p_1, \ldots, p_n are all true, but q is false).

How Do We *Prove* \models Claims in LMPL?

- In LSL, we had *systematic*, truth-table procedures for proving *both* negative (⊭) *and* affirmative (⊨) semantical claims.
- The method of constructing LMPL interpretations *is* a general way to establish *negative* (⊭) LMPL-semantical claims.
- We will *not* be learning any systematic methods for (*directly*) establishing *affirmative* (\models) LMPL-semantical claims. There *are* such methods, but they are beyond the scope of this course.^a
- In LMPL, we will rely on *natural deduction proofs* to give us an (*in*direct) method for demonstrating the *validity* of LMPL argument-forms. We'll talk about LMPL natural deductions soon.

alf an LMPL argument with k predicate letters is *in*valid, then there exists a *counterexample interpretation* \mathcal{I} whose domain \mathcal{D} has no more than 2^k elements. So, *exhaustive search* over *all* interpretations such that $|\mathcal{D}| \leq 2^k$ is a *decision procedure* for LMPL-validity. Note: this means checking $2^{2^k \cdot k}$ matrices. This is too many to check, even for small k. If k = 2, then $2^{2^k \cdot k} = 2^8 = 256$. For k = 3, this is 16777216! See pages 212–215 of Hunter's *Metalogic* (our 140A text). We discuss this in 140A.

Construction of LMPL Interpretations: Examples

- Here are six sample problems that require you to *construct* (or, *find*) LMPL interpretations that are *counterexamples* to \models claims (the first two of these are solved on p. 2 of my handout on constructing LMPL interpretations):
 - (1) $(\forall x)(Fx \to Gx), (\forall x)(Fx \to Hx) \not\models (\forall x)(Gx \to Hx)$
 - (2) $(\exists x)(Fx \& Gx), (\exists x)(Fx \& Hx), (\forall x)(Gx \rightarrow \sim Hx) \not\models (\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$
 - (3) $(\forall x)Fx \leftrightarrow (\forall x)Gx \not\models (\exists x)(Fx \leftrightarrow Gx)^a$
 - $(4) (\forall x) Fx \leftrightarrow A \not\models (\forall x) (Fx \leftrightarrow A)^{\mathsf{b}}$
 - (5) $Fa \rightarrow (\exists x)Gx \not\models (\exists x)Fx \rightarrow (\exists x)Gx^{c}$
 - (6) $(\exists x)(\forall y)(Fx \to Gy) \not\models (\exists y)(\forall x)(Fx \to Gy)^{\mathbf{d}}$

^aOne solution: $\mathcal{D} = \{a, b\}$, $\operatorname{Ext}(F) = \{a\}$, $\operatorname{Ext}(G) = \{b\}$.

^bOne solution: $\mathcal{D} = \{a, b\}$, 'A' is \bot , $\text{Ext}(F) = \{a\}$.

^cOne solution: $\mathcal{D} = \{a, b\}$, $\operatorname{Ext}(F) = \{b\}$, $\operatorname{Ext}(G) = \emptyset$.

^dOne solution: $\mathcal{D} = \{a, b\}$, $\operatorname{Ext}(F) = \{a\}$, $\operatorname{Ext}(G) = \emptyset$.

Construction of LMPL Interpretations: Example #1

- (1) $(\forall x)(Fx \to Gx), (\forall x)(Fx \to Hx) \not\models (\forall x)(Gx \to Hx)$
 - To prove (1), we need to construct (find) an interpretation \mathcal{I} such that:
 - (i) ' $(\forall x)(Fx \rightarrow Gx)$ ' is true in 1.
 - (ii) ' $(\forall x)(Fx \rightarrow Hx)$ ' is true in 1.
 - (iii) ' $(\forall x)(Gx \rightarrow Hx)$ ' is false in \mathcal{I} .
 - **Step 1**: We begin *provisionally* with the smallest domain $\mathcal{D} = \{a\}$.
 - **Step 2**: We make sure that the object a is a *counterexample* to the conclusion ' $(\forall x)(Gx \to Hx)$ '. That is, we make sure that the *instance* ' $Ga \to Ha$ ' of the conclusion is *false* on I. So, we must have $a \in \text{Ext}(G)$, but $a \notin \text{Ext}(H)$. We can achieve this by: $\text{Ext}(G) = \{a\}$, and $\text{Ext}(H) = \emptyset$.
 - **Step 3**: At the same time, we try to make *both* of the premises $(\forall x)(Fx \rightarrow Gx)'$ and $(\forall x)(Fx \rightarrow Hx)'$ true on \mathcal{I} .

In this case, we can make both premises true simply by ensuring that a ∉ Ext(F). The simplest way to do this is to stipulate that Ext(F) = Ø
— which yields the following interpretation that does the trick:

- We have discovered an interpretation $\mathcal{I}_{(1)}$ on which ' $(\forall x)(Fx \to Gx)$ ' and ' $(\forall x)(Fx \to Hx)$ ' are both true, but ' $(\forall x)(Gx \to Hx)$ ' is false (*demonstrate this!*). Therefore, claim (1) is true.
- When you're asked to prove a claim like (1), you must do 2 things:
 - *Report* an interpretation (like I_2) which serves as a counterexample to the validity of the LMPL argument-form, *and*
 - *Demonstrate* that your interpretation *really is* a counterexample *i.e.*, *show* that your interpretation makes all the premises true and the conclusion false, using the methods above. You do *not* need to explain the process which led to the *discovery* of the interpretation.

Construction of LMPL Interpretations: Example #2

- (2) $(\exists x)(Fx \& Gx), (\exists x)(Fx \& Hx), (\forall x)(Gx \rightarrow \sim Hx) \neq (\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$
- We need an interpretation \mathcal{I} on which ' $(\exists x)(Fx \& Gx)$ ', ' $(\exists x)(Fx \& Hx)$ ', and ' $(\forall x)(Gx \to \sim Hx)$ ' are all \top , but ' $(\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$ ' is \bot .
- **Step 1**: We begin with the smallest possible domain $\mathcal{D} = \{a\}$.
- **Step 2**: We make sure that a is a *counterexample* to the conclusion ' $(\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$ '. So, we make its *instance* ' $Fa \leftrightarrow (Ga \lor Ha)$ ' \bot on \mathcal{I} . One way to do this is: $a \in \operatorname{Ext}(F)$, $a \notin \operatorname{Ext}(G)$, and $a \notin \operatorname{Ext}(H)$. So far, we have the following: $\operatorname{Ext}(F) = \{a\}$, and $\operatorname{Ext}(G) = \operatorname{Ext}(H) = \emptyset$.
- **Step 3**: Now, we must make *all three* of the premises (i) ' $(\exists x)(Fx \& Gx)$ ', (ii) ' $(\exists x)(Fx \& Hx)$ ', and (iii) ' $(\forall x)(Gx \to \sim Hx)$ ' \top on \mathcal{I} . In order to make $(i) \top$ on \mathcal{I} , we must ensure that there is some object in the domain \mathcal{D} which satisfies *both* 'F' and 'G'. But, since a must *not* satisfy both 'F' and 'G', this means we will need to *add another object b* to our domain \mathcal{D} .

- This new object b must be such that: $b \in \text{Ext}(F)$, and $b \in \text{Ext}(G)$. Now, we have $\text{Ext}(F) = \{a, b\}$, $\text{Ext}(G) = \{b\}$, and $\text{Ext}(H) = \emptyset$.
- All that remains is to ensure that premises (ii) and (iii) are also \top on \mathcal{I} . In order to make (ii) \top on \mathcal{I} , we'll need to make sure that there is some object in \mathcal{D} which satisfies both 'F' and 'H'. We could try to make b satisfy all three 'F', 'G', and 'H'. But, if we were to do this, then premise (iii) would become false on \mathcal{I} , since its instance ' $Gb \rightarrow \sim Hb$ ' would then be false on \mathcal{I} . Thus, we'll need to add a third object c to \mathcal{D} such that: $c \in Ext(F)$, $c \notin Ext(G)$, and $c \in Ext(H)$ and that does the trick:

$$I_{(2)}$$
: $egin{array}{c|cccc} & F & G & H \\ \hline a & + & - & - \\ b & + & + & - \\ c & + & - & + \\ \hline \end{array}$

• We have discovered an interpretation $I_{(2)}$ on which ' $(\exists x)(Fx \& Gx)$ ', ' $(\exists x)(Fx \& Hx)$ ', and ' $(\forall x)(Gx \to \sim Hx)$ ' are all \top , but on which ' $(\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$ ' is false (*demonstrate this!*). \therefore claim (2) is true.

Construction of LMPL Interpretations for ⊭: **Procedure**

- 1. Begin with smallest domain possible $\mathcal{D} = \{\alpha\}$.
- 2. Make the conclusion of the $\not\equiv$ claim false (for α).
 - That is, make the *a*-instance of the conclusion false.
- 3. Try to make all premises of the $\not\equiv$ claim true (for α).
 - That is, make the *a*-instance of each of the premises true.
- 4. If you succeed, then you're done. Now report and verify your matrix.
- 5. If you fail, then add a new individual β to $\mathcal{D} = \{\alpha, \beta\}$, and continue.
- 6. Make the conclusion of the \neq claim false.
 - If the conclusion is an \forall claim, then it's already false.
 - If it's an \exists , then you must make sure its *b*-instance is also false.
- 7. Make the premises of the $\not\equiv$ claim true.
 - If a premise is an \forall claim, then *all* its instances must be true.
 - If it's an ∃ claim, only *one* of its instances needs to be true.
- 8. If you succeed, you're done. If not, add another (y) to \mathcal{D} . Repeat ...

Using Sentential Reasoning to "Verify" LMPL ⊨ Claims

$$(\forall x)(\exists y)(Fx \& Gy) = (\exists y)(\forall x)(Fx \& Gy)$$

• To see why, think about the truth-conditions for each side:

$$(\forall x)(\exists y)(Fx \& Gy) \approx (\exists y)(Fa \& Gy) \& (\exists y)(Fb \& Gy) \& \cdots$$

$$\approx [(Fa \& Ga) \lor (Fa \& Gb) \lor \cdots] \& [(Fb \& Ga) \lor (Fb \& Gb) \lor \cdots] \& \cdots$$

$$\approx [Fa \& (Ga \lor Gb \lor \cdots)] \& [Fb \& (Ga \lor Gb \lor \cdots)] \& \cdots$$

$$\approx (Fa \& Fb \& Fc \& \cdots) \& (Ga \lor Gb \lor Gc \lor \cdots)$$

 $(\exists y)(\forall x)(Fx \& Gy) \approx (\forall x)(Fx \& Ga) \vee (\forall x)(Fx \& Gb) \vee \cdots$ $\approx [(Fa \& Ga) \& (Fb \& Ga) \& \cdots] \vee [(Fa \& Gb) \& (Fb \& Gb) \& \cdots] \vee \cdots$ $\approx [Ga \& (Fa \& Fb \& \cdots)] \vee [Gb \& (Fa \& Fb \& \cdots)] \vee \cdots$ $\approx (Ga \vee Gb \vee Gc \vee \cdots) \& (Fa \& Fb \& Fc \& \cdots)$

• : These two formulas are *equivalent*, since the two red formulas are

$$(Ga \vee Gb \vee \cdots) \& (Fa \& Fb \& \cdots) \approx (Fa \& Fb \& \cdots) \& (Ga \vee Gb \vee \cdots)$$

Natural Deduction Proofs in LMPL

- The natural deduction rules for LMPL will *include* the rules for LSL that we already know (*viz.*, Ass., &E, &I, \neg E, \neg I, \sim E, \sim I, DN, \vee E, \vee I, Df.).
- Plus, we will be *adding* 4 new rules. We will need both introduction and elimination rules for each of the two quantifiers ($\exists I, \exists E, \forall I, \forall E$).
- As in LSL, the system will be *sound and complete* (140A!). That is, \vdash will apply to the same sequents that \models does in our semantics for LMPL.
- We begin with the simplest: the introduction rule for \exists (\exists I). Intuitively, if we have proved $\phi\tau$ for some individual constant τ , then we may infer that ϕ is true of *something* (*e.g.*, that $(\exists x)\phi x$).
- *E.g.*, if we've proved 'Pa & Qa', we may validly infer ' $(\exists x)(Px \& Qx)$ '.
- We may also infer ' $(\exists x)(Pa \& Qx)$ ' and ' $(\exists x)(Px \& Qa)$ ' from 'Pa & Qa'.
- These (and similar) considerations lead us to the ∃I rule ...

The Rule of ∃-Introduction

Rule of \exists **-Introduction**: For any sentence $\phi\tau$, if $\phi\tau$ has been inferred at line j in a proof, then at line k we may infer $\lceil(\exists v)\phi v\rceil$, labeling the line 'j \exists I' and writing on its left the numbers that occur on the left of j.

$$a_1, \dots, a_n$$
 (j) $\phi \tau$
 \vdots
 a_1, \dots, a_n (k) $(\exists v) \phi v$ j $\exists I$

Where $\lceil (\exists v) \phi v \rceil$ is obtained syntactically from $\phi \tau$ by:

- Replacing *one or more occurrences* of τ in $\phi \tau$ by a *single* variable ν .
- Note: the variable ν *must not already occur in* the expression $\phi \tau$. [This prevents *double-binding*, *e.g.*, ' $(\exists x)(\exists x)(Fx \& Gx)$ '.]
- And, finally, prefixing the quantifier $\lceil (\exists v) \rceil$ in front of the resulting expression (which may now have both $\lceil v \rceil$'s and $\lceil \tau \rceil$'s occurring in it).

The Rule of \forall -Elimination

Rule of \forall -**Elimination**: For any sentence $\lceil (\forall v)\phi v \rceil$ and constant τ , if $\lceil (\forall v)\phi v \rceil$ has been inferred at a line j, then at line k we may infer $\phi \tau$, labeling the line 'j \forall E' and writing on its left the numbers that appear on the left of j.

$$a_1, \dots, a_n$$
 (j) $(\forall \nu) \phi \nu$
 \vdots
 a_1, \dots, a_n (k) $\phi \tau$ j $\forall E$

Where $\phi \tau$ is obtained syntactically from $\lceil (\forall v) \phi v \rceil$ by:

- Deleting the quantifier prefix $\lceil (\forall \nu) \rceil$.
- Replacing *every occurrence* of v in the open sentence ϕv by *one and the same* constant τ . [This prevents *fallacies*, *e.g.*, $(\forall x)(Fx \& Gx) Fa \& Gb$.]
- Note: since ' \forall ' means *everything*, there are *no* restrictions on *which* individual constant may be used in an application of $\forall E$.

An Example Proof Involving Both ∃I and ∀E

Let's prove that $(\forall x)(Fx \to Gx), Fa \vdash (\exists x)(\sim Gx \to Hx).$

1 2 3 4 1 1,2 1,2,3 1,2,3 1,2,3 1,2

(1) (∀x)(Fx→Gx)
(2) Fa
(3) ~Ga
(4) ~Ha
(5) Fa→Ga
(6) Ga
(7) Λ
(8) ~~Ha
(9) Ha
(10) ~Ga→Ha
(11) (∃x)(~Gx→Hx)

Premise
Premise
Assumption
Assumption
1 ∀E
5,2 →E
3,6 ~E
4,7 ~I
8 DN
3,9 →I
10 ∃I

• This example illustrates a typical pattern in quantificational proofs: quantifiers are removed from the premises using elimination rules, sentential (*viz.*, LSL) rules are applied, and then quantifiers are reintroduced using introduction rules to obtain the conclusion.

The Rule of ∀-Introduction: Some Background

- It is useful to think of a universal claim $\lceil (\forall v) \phi v \rceil$ as a *conjunction* which asserts that the predicate expression ϕ is satisfied by *all objects* in the domain of discourse (*i.e.*, the conjunction $\lceil \phi a \& (\phi b \& (\phi c \& ...)) \rceil$ is true).
- So, in order to be able to *introduce* the universal quantifier (*i.e.*, to *legitimately infer* $\lceil (\forall v) \phi v \rceil$ in a proof), we must be in a position to prove $\phi \tau$, for *any* individual constant τ . This is called *generalizable reasoning*.
- Consider the following *legitimate* introduction of a universal claim:

Problem is: $(\forall x)(Fx \rightarrow Gx)$, $(\forall x)Fx + (\forall x)Gx$

 $(1) \quad (\forall x)(\mathsf{Fx} \rightarrow \mathsf{Gx})$

 $(2) (\forall x) Fx$

(3) Fa→Ga

(4) Fa

(5) Ga

 $(6) (\forall x)Gx$

Premise

Premise

1 ∀E

2 AE

3,4 →E

5 **VI**

The Rule of \forall -Introduction: II

- We can legitimately infer ' $(\forall x)Gx$ ' at line 6 of this proof, because our inference to 'Gb' is *generalizable i.e.*, we could have deduced " $G\tau$ ", for *any* individual constant τ using *exactly parallel* reasoning.
- However, consider the following *il*legitimate "∀-Introduction" step:

1	(1)	$(\forall x)(F x \rightarrow G x)$	Premise	
2	(2)	Fb	Premise	
1	(3)	Fb→Gb	1 ∀ E	
1,2	(4)	Gb	2,3 →E	
1,2	(5)	(∀x)Gx	4 VI	NO!!

- This is *not* a valid inference, since $(\forall x)(Fx \rightarrow Gx), Fb \not\models (\forall x)Gx!$
- So, what went wrong? The problem is that the inference to 'Gb' at (4) is *not* generalizable. We can *not* deduce $\lceil G\tau \rceil$ for $any \tau$ from the premises ' $(\forall x)(Fx \to Gx)$ ' and 'Fb'. We can *only* infer 'Gb'.

The Rule of ∀-Introduction: III

Rule of \forall **-Introduction**: For any sentence $\phi\tau$, if $\phi\tau$ has been inferred at a line j, then *provided that* τ *does not occur in any premise or assumption whose line number is on the left at line* j, we may infer $\lceil (\forall v)\phi v \rceil$ at line k, labeling the line 'j \forall I' and writing on its left the same numbers as occur on the left at line j.

$$a_1,..., a_n$$
 (j) $\phi \tau$
 \vdots
 $a_1,..., a_n$ (k) $(\forall v)\phi v$ j $\forall I$

Where $\lceil (\forall v) \phi v \rceil$ is obtained by:

- Replacing *every* occurrence of τ in $\phi \tau$ with ν and prefixing $\lceil (\forall \nu) \rceil$. [Again, 'every' prevents *fallacies*, *e.g.*, $(\forall x)(Fx \to Gx) (\forall x)(\forall y)(Fx \to Gy)$.]
- τ does not occur in any of the formulae a_1, \ldots, a_n . [ensures generalizability]
- v does not occur in $\phi \tau$. [prevents double-binding]

The Rule of \forall -Introduction: Four Examples

• Here are four examples of LMPL sequents involving the three quantifier rules we've learned so far $(\exists I, \forall E, \text{ and } \forall I)$.

(1)
$$(\forall x)(Fx \to Gx) \vdash (\forall x)Fx \to (\forall x)Gx$$

$$(2) \sim (\exists x)(Fx \& Gx) \vdash (\forall x)(Fx \to \sim Gx)$$

(3)
$$\sim (\forall x) Fx \vdash (\exists x) \sim Fx$$

$$(4) (\forall x)[Fx \to (\forall y)Gy] \vdash (\forall x)(\forall y)(Fx \to Gy)$$

Proof of (1)

Problem is: $(\forall x)(Fx \rightarrow Gx) \vdash (\forall x)Fx \rightarrow (\forall x)Gx$

7

1

2

1,2

1,2

1

(1) $(\forall x)(Fx \rightarrow Gx)$

 $(2) (\forall x) Fx$

(3) Fa→Ga

(4) Fa

(5) Ga

 $(6) (\forall x)Gx$

 $(7) \quad (\forall x) Fx \rightarrow (\forall x) Gx$

Premise

Assumption

1 VE

2 AE

3,4 →E

5 AI

2,6 →

Proof of (2)

 $(1) \sim (\exists x)(Fx\&Gx)$

Problem is: $\sim (\exists x)(Fx\&Gx) \vdash (\forall x)(Fx\rightarrow \sim Gx)$

2 3 2,3 2,3

1,2,3

(2) Fa

(3) Ga

(4) Fa&Ga

(5) (3x)(Fx&Gx)

(6) Λ

(7) ~Ga

(8) Fa→~Ga

(9) $(\forall x)(Fx \rightarrow \sim Gx)$

Premise

Assumption

Assumption

2,3 &1

4 31

1,5 ~E

3,6 ~1

2,7 →

8 AI

Proof of (3)

Problem is: $\sim (\forall x)Fx + (\exists x) \sim Fx$

(1) $\sim (\forall x) Fx$

(2) $\sim (\exists x) \sim Fx$

(3) ~Fa

(4) $(3x)\sim Fx$

(5) Λ

(6) ~~Fa

(7) Fa

 $(8) (\forall x) Fx$

(9) A

(10) $\sim \sim (\exists x) \sim Fx$

 $(11) (3x) \sim Fx$

Premise

Assumption

Assumption

IE 8

2,4 ~E

3,5 ~1

6 DN

7 **VI**

1,8 ~E

2,9 ~1

10 DN

Proof of (4)

Problem is: $(\forall x)(Fx \rightarrow (\forall y)Gy) \vdash (\forall x)(\forall y)(Fx \rightarrow Gy)$

(1) $(\forall x)(Fx \rightarrow (\forall y)Gy)$ Premise (2) Fa (3) $Fa \rightarrow (\forall y)Gy$ 1 **YE** $(4) (\forall y)Gy$ (5) Gb 4 **VE** (6) Fa→Gb $(7) (\forall y)(Fa \rightarrow Gy) \qquad 6 \forall I$ (8) $(\forall x)(\forall y)(Fx \rightarrow Gy)$ 7 **VI**

Assumption 3,2 →E 2,5 →