

Analisis Klasifikasi Genre Musik Pop Menggunakan Regresi Logistik dan K-Nearest Neighbors pada Platform Streaming Spotify

Seminar Tugas Akhir

Katlyn Kenisha - 23101910080

Dosen Pembimbing 1: Maria Zefanya Sampe, M.Si., M.M.

Dosen Pembimbing 2: Maydison Ginting, Ph.D.

Teknologi

- Teknologi terus dikembangkan dan mengubah kehidupan manusia dalam berbagai aspek.
- Kini, musik dapat diakses dengan mudah melalui platform streaming musik seperti **Spotify**.

Spotify

- Unggul dengan market share sebesar 31% sampai dengan Q2-2021.
- Berhasil
 meningkatkan
 jumlah subscriber
 berbayar hingga
 487 juta pengguna
 pada akhir tahun
 2022.

User

- Menikmati berbagai jenis musik.
- Mendengarkan lagu baru yang mirip dengan lagu yang sudah mereka sukai.
- Tidak ingin bersusah payah untuk mendengarkan lagu.

Spotify

- Pengelompokkan musik ke berbagai genre.
- Mengidentifikasi perilaku pengguna.
- Memberikan rekomendasi lagu.
- Membuat playlist.

Rumusan Masalah

- Bagaimana penerapan model klasifikasi dengan menggunakan regresi logistik dan KNN?
- 2. Bagaimana performa dari model klasifikasi menggunakan metode regresi logistik dan KNN berdasarkan metrik *precision*, *recall*, dan *F1-score*?

Batasan Penelitian

- 1. **Data**: Lagu-lagu dari 1 Januari 2010 31 Desember 2019 yang ada di Spotify.
- 2. Variabel Independen: Acousticness, danceability, duration, energy, instrumentalness, key, liveness, loudness, mode, speechiness, tempo, dan valence. Variabel dependen: Genre.
- 3. **Metode**: Regresi logistik dan KNN.
- 4. **Software**: Google Colab (Python).

Tinjauan Pustaka

Genre Musik

Pengelompokkan musik sesuai dengan kemiripannya satu sama lain.

Regresi Logistik

Metode *supervised learning* yang digunakan untuk menganalisa hubungan antara variabel independen dengan variabel dependen yang bersifat kategorik.

$$\pi\big(x_i\big) = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_i x_i)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_i x_i)}$$

dimana

 $\pi(x)$ = peluang sukses suatu kejadian

 $\beta_0 = konstanta$

 $x_i =$ variabel independen ke-i

 β_i = koefisien dari variabel independen ke-i

= banyaknya variabel independen x

KNN

Metode *supervised learning* yang digunakan untuk mengelompokkan data berdasarkan beberapa tetangga terdekat.

$$d(x_i, y_i) = \sum_{i=1}^k |x_i - y_i|$$

```
\begin{array}{ll} \operatorname{dimana} & \\ d(x_i,y_i) & = \operatorname{\underline{jarak}} \operatorname{Manhattan} \operatorname{\underline{antar objek}} \\ i & = \operatorname{variabel} \operatorname{data} \\ x_i & = \operatorname{data} \operatorname{training} \\ y_i & = \operatorname{data} \operatorname{testing} \\ k & = \operatorname{dimensi} \operatorname{data} \end{array}
```


Tinjauan Pustaka

Confusion Matrix

Metode untuk mengevaluasi performa model dengan membandingkan hasil klasifikasi yang dilakukan oleh model (*predicted*) dengan hasil sebenarnya (*actual*).

		Actual Class		
	Class 1 Class 0			
Predicted Class	Class 1	True Positive (TP)	False Positive (FP)	
	Class 0	False Negative (FN)	True Negative (TN)	

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 - score = \frac{2*Precision*Recall}{Precision+Recall}$$

Permutation Importance

Metode untuk menilai kontribusi setiap variabel independen terhadap variabel dependen dengan cara melakukan permutasi acak pada suatu variabel independen.

Penelitian Terdahulu

- 1. K-Nearest Neighbor Algorithm for Feature Reinforcement and Music Genre Prediction in Mobile Applications: Comparison to Decision oleh Bharath dan Saraswathi (2023).
- 2. Automatic Categorization of Electronic Music Genres oleh Krebbers (2020).
- 3. Music Genre Classification using Machine Learning oleh Seethal, Vijayakumar (2021).
- 4. Single-labelled Music Genre Classification Using Content-Based Features oleh Ajoodha, Klein, dan Rosman (2015).

Tahapan Penelitian

Pengolahan Data

Data Collection

- Web API Spotify
- Library: Spotipy
- Membuat fungsi untuk meng-import playlist

Γ	artist	track_title	track_id	release_date	popularity	acousticness	danceability	duration_ms	energy
0	Charlie Puth	Dangerously	3qonjOrhFCfTnaaMruHzxW	2016-01-29	72	0.364	0.696	199133	0.517
1	Rizky Febian	Hingga Tua Bersama	5b0NpyYAwW2dUGL08ir7Bg	2021-05-12	72	0.796	0.579	270926	0.459

Data Preparation

Data Cleaning

- Menghapus data duplikat, data dengan variabel kosong
- Filtering release date dari lagu (2010-2019)

Data Preprocessing

- Mengubah variabel duration dari milidetik menjadi menit
- Mengubah variabel genre menjadi hanya 'pop' atau 'non-pop'

Data Preparation (continued)Exploratory Data Analysis (EDA)

Pengolahan Data

Data Transformation

- Encoding variabel genre dimana pop = 1 dan non-pop = 0
- Normalisasi dengan Min-Max terhadap variabel duration, key, loudness, dan tempo

Train Test Split

• 80% training dan 20% testing

Data Balancing

Balancing terhadap data training dengan SMOTE

Modelling

- 2 jenis klasifikasi; regresi logistik dan KNN
- 2 jenis model; model dengan semua variabel dan model dengan variabel bebas multikolinearitas
- 5-Fold cross validation

Model dengan Semua Variabel

Regresi Logistik

KNN

	Training	Testing
Precision	72.8%	83.1%
Recall	79.8%	79.2%
F1-Score	76.1%	81.1%

	Training	Testing
Precision	82.5%	78.7%
Recall	72.1%	73.5%
F1-Score	76.9%	76%

Uji Multikolinearitas

Model dengan Variabel Bebas Multikolinearitas

Regresi Logistik

KNN

	Training	Testing
Precision	69.8%	80%
Recall	78%	77%
F1-Score	73.7%	78.5%

	Training	Testing
Precision	79.1%	78.3%
Recall	70.8%	74.1%
F1-Score	74.7%	76.2%

Perbandingan Performa Model

Model	Variabel	Precision		Recall		F1-Score	
		Training	Testing	Training	Testing	Training	Testing
Regresi Logistik	Semua	72.8%	83.1%	79.8%	79.2%	76.1%	81.1%
	Bebas Multikolinearitas	69.8%	80%	78%	77%	73.7%	78.5%
KNN	Semua	82.5%	78.7%	72.1%	73.5%	76.9%	76%
	Bebas Multikolinearitas	79.1%	78.3%	70.8%	74.1%	74.7%	76.2%

Permutation Importance

Semua Variabel
←

Variabel Bebas
Multikolinearitas
→

Kesimpulan

- Dalam penerapan model klasifikasi, ditemukan bahwa isu *underfitting* muncul dalam regresi logistik. Di sisi lain, parameter optimal untuk model KNN yang ditemukan adalah k = 3 dan metrik jarak = *Manhattan*.
- Model regresi logistik mempunyai performa yang lebih baik dari model KNN. Model terbaik berdasarkan asumsi yang terpenuhi dan metrik yang dihasilkan adalah **model regresi logistik dengan variabel bebas multikolinearitas** dengan nilai *F1-Score* sebesar 78.5%.

Saran

- Mencoba metode klasifikasi lainnya seperti Random Forest, SVM, dan lain-lain.
- Menambahkan variabel independen lainnya seperti analisis lirik pada lagu.
- Mengimplementasikan multiclass classification.

Referensi

- MIDiA, "Music subscriber market shares Q2 2021," [Online]. Available: https://www.midiaresearch.com/blog/music-subscriber-market-shares-q2-2021
- Spotify, "Shareholder Deck Q4 2022 Update," [Online]. Available: https://s29.q4cdn.com/175625835/files/doc financials/2022/q4/ShareholderDeck-Q4-2022-FINAL.pdf
- "Spotify The User Experience," [Online]. Available: https://henree.me/projects/spotify-user-experience
- C. Chen, "Spotify Questionnaire: Personalizing Auto-Generated Playlists," [Online]. Available: https://cc2395.medium.com/spotify-questionnaire-personalizing-auto-generated-playlists-a648486f5b0
- E. Jones, "Survey shows students prefer Spotify for streaming music; Apple Music is runner-up," [Online]. Available: https://kealakai.bvuh.edu/survey-shows-students-prefer-spotify-for-streaming-music-apple-music-is-runner-up
- D. W. Hosmer, Jr., S. Lemeshow dan R. X. Sturdivant, Applied Logistic Regression. 2013
 - I. José, "KNN (K-Nearest Neighbors) #1," [Online]. Available: https://towardsdatascience.com/knn-k-nearest-neighbors-1-a4707b24bd1d

