Macchine di Turing

a.a. 2020-2021

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

Macchine di Turing a nastro singolo

Dispositivo che accede ad un nastro potenzialmente illimitato diviso in celle contenenti ciascuna un simbolo appartenente a un alfabeto Γ , ampliato con il carattere speciale \square (blank) che rappresenta la situazione di cella non contenente caratteri.

All'inizio del calcolo solo una porzione finita del nastro contiene simboli di Γ . La macchina di Turing opera su tale nastro tramite una testina, la quale può scorrere su di esso in entrambe le direzioni Su ogni cella la testina può leggere o scrivere caratteri appartenenti all'alfabeto Γ oppure il simbolo \square .

Macchine di Turing a nastro singolo

Macchina di Turing deterministica

Sestupla $\mathcal{M} = \langle \Gamma, \square, Q, q_0, F, \delta \rangle$, dove :

- Γ: alfabeto dei simboli di nastro
- □ ∉ Γ: carattere speciale denominato blank
- Q: insieme finito e non vuoto di stati
- $q_0 \in Q$: stato iniziale
- $F \subseteq Q$: insieme degli stati finali
- δ : funzione di transizione definita come

$$\delta: (Q-F)\times (\Gamma\cup\{\square\})\mapsto Q\times (\Gamma\cup\{\square\})\times \{\smallfrown, \smallfrown, \circ\}$$

in cui \sim , \sim e \circ indicano, rispettivamente, lo spostamento a destra, lo spostamento a sinistra e l'immobilità della testina.

Automi a pila

Transizione determinata da $\delta(q_2, b) = (q_3, a, \sim)$

- DTM utilizzabili per calcolo di funzioni, o per riconoscere o accettare stringhe su un alfabeto di input $\Sigma \subseteq \Gamma$
- DTM usate per accettare stringhe vengono dette di tipo *riconoscitore*
- DTM usate per calcolare funzioni vengono dette di tipo trasduttore
- In entrambi i casi, all'inizio del calcolo, solo una porzione finita del nastro contiene simboli diversi da blank che costituiscono l'input del calcolo stesso

Configurazioni di DTM

Si definisce configurazione istantanea o configurazione di una macchina di Turing con alfabeto di nastro Γ ed insieme degli stati Q, una stringa c=xqy, con (assumendo $\bar{\Gamma}=\Gamma\cup\{\Box\}$):

- 1. $x \in \Gamma \bar{\Gamma}^* \cup \{\varepsilon\}$
- 2. $q \in Q$
- 3. $y \in \bar{\Gamma}^*\Gamma \cup \{\Box\}$

L'interpretazione data ad una stringa xqy è che xy rappresenti il contenuto della sezione non vuota del nastro, che lo stato attuale sia q e che la testina sia posizionata sul primo carattere di y. Nel caso in cui $x = \varepsilon$ abbiamo che a sinistra della testina compaiono solo simboli \square , mentre se $y = \square$ sulla cella attuale e a destra della testina compaiono soltanto simboli \square .

Configurazione iniziale

La configurazione iniziale di una MT rispetto a una stringa di input σ prevede che:

- il nastro contenga la stringa σ in una sequenza di celle
- tutte altre celle del nastro siano vuote (contengano □)
- lo stato attuale sia lo stato iniziale q_0
- $\bullet\,$ la testina si trovi sulla cella contenente il primo carattere di $\sigma\,$

Una configurazione xqy è quindi iniziale se $x = \varepsilon$, $q = q_0$, $y = \sigma$.

Configurazione finale

Una configurazione c = xqy, con si dice finale se $q \in F$.

Quindi, una macchina di Turing si trova in una configurazione finale se il suo stato attuale è uno stato finale, indipendentemente dal contenuto del nastro e dalla posizione della testina.

Matrice di transizione

La funzione di transizione può essere rappresentata mediante matrici di transizione e grafi di transizione.

Esempio

	О	1	*	\$	
q_0	$(q_1,*, \curvearrowright)$	$(q_2,\$, \curvearrowright)$	-	-	(q_F, \square, \circ)
q_1	$(q_1,0, \curvearrowright)$	$(q_1, 1, \curvearrowright)$	-	-	$(q_3, \square, \curvearrowright)$
q_2	$(q_2,0, \curvearrowright)$	$(q_2, 1, \curvearrowright)$	-	-	$(q_4, \square, \curvearrowright)$
q_3	$(q_3, 0, \curvearrowright)$	$(q_3, 1, \curvearrowright)$	-	-	$(q_5, 0, \curvearrowleft)$
q_4	$(q_4, 0, \curvearrowright)$	$(q_4, 1, \curvearrowright)$	-	-	$(q_6,1, \curvearrowleft)$
q_5	$(q_5, 0, \curvearrowleft)$	$(q_5, 1, \curvearrowleft)$	$(q_0, 0, \curvearrowright)$	-	$(q_5,\square, \curvearrowleft)$
96	$(q_6,0,\curvearrowleft)$	$(q_6, 1, \curvearrowleft)$	-	$(q_0,1, \curvearrowright)$	$(q_6,\square, \curvearrowleft)$
q_F	-	-	-	-	-

In generale, assumiamo che uno stato finale non abbia transizioni uscenti definite.

Grafo di transizione

Esercizio

Considerata la macchina di Turing deterministica definita sopra e assumendo la configurazione iniziale q_0 10:

- determinare la computazione effettuata dalla macchina, indicando la configurazione finale che viene raggiunta;
- 2. descrivere informalmente il comportamento della macchina su un input generico.

Accettazione e rifiuto di stringhe

- Computazione massimale: computazione che non può prolungarsi (non esistono transizioni applicabili alla configurazione raggiunta)
- Computazione di accettazione: computazione massimale che termina in una configurazione finale
- Computazione di rifiuto: computazione massimale che si conclude in una configurazione non finale

Dato un alfabeto di input $\Sigma \subseteq \Gamma$, una stringa $x \in \Sigma^*$ è *accettata* (*rifiutata*) da una MT \mathcal{M} se esiste una computazione di accettazione (di rifiuto) di \mathcal{M} con $c_0 = q_0 x$.

Accettazione e rifiuto di stringhe

• Terza possibilità: non esiste alcuna computazione massimale con $c_0 = q_0 x$; in altre parole, la computazione di $\mathcal M$ su input x non termina

Data un MT $\mathcal M$ con alfabeto di input Σ , l'insieme Σ^* è partizionato in tre linguaggi:

- L'insieme $L(\mathcal{M})$ delle stringhe accettate da \mathcal{M}
- L'insieme $\overline{L}(\mathcal{M})$ delle stringhe rifiutate da \mathcal{M}
- L'insieme $\Sigma^* (L(\mathcal{M}) \cup \overline{L}(\mathcal{M}))$ delle stringhe sulle quali la computazione effettuata da \mathcal{M} non termina

Definizioni equivalenti

- 1. esistono due soli stati finali q_1, q_2 , tutte le computazioni massimali terminano in uno stato finale ed una stringa x è accettata se $q_0x \vdash_{\mathcal{M}}^* wq_1z$, mentre è rifiutata se $q_0x \vdash_{\mathcal{M}}^* wq_2z$
- 2. esiste un solo stato finale q_F , l'alfabeto di nastro contiene due simboli speciali \mathcal{Y} , $\mathcal{N} \notin \Sigma$, tutte le computazioni massimali terminano nello stato finale ed una stringa x è accettata se $q_0x \vdash_{\mathcal{M}}^* q_F \mathcal{Y}$, mentre è rifiutata se $q_0x \vdash_{\mathcal{M}}^* q_F \mathcal{N}$.

Riconoscimento di linguaggi

- Data una MT deterministica $\mathcal{M} = \langle \Gamma, \square, Q, q_0, F, \delta \rangle$
- Dato un alfabeto di input $\Sigma \subseteq \Gamma$
- \mathcal{M} riconosce (decide) un linguaggio $L \in \Sigma^*$ se e solo se per ogni $x \in \Sigma^*$:
 - o esiste una computazione massimale $q_0x \stackrel{*}{\vdash_{\mathcal{M}}} wqz$
 - $q \in F$ se e solo se $x \in L$
 - o $w \in \Gamma\bar{\Gamma}^* \cup \{\varepsilon\}$ e $z \in \bar{\Gamma}^*\Gamma \cup \{\Box\}$ rappresentano il contenuto delle porzioni di nastro significative prima e dopo la posizione della testina
- Affinché un linguaggio sia riconosciuto, $\mathcal M$ deve fermarsi per ogni $x \in \Sigma^*$

Accettazione di linguaggi

- Data una MT deterministica $\mathcal{M} = \langle \Gamma, \square, Q, q_0, F, \delta \rangle$
- Dato un alfabeto di input $\Sigma \subseteq \Gamma$
- \mathcal{M} accetta un linguaggio $L \in \Sigma^*$ se e solo se
 - $L = \{x \in \Sigma^* \mid q_0 x \vdash_{\mathcal{M}}^* wqz; q \in F\}$
- Quindi, L è l'insieme delle stringhe per le quali la computazione effettuata da $\mathcal M$ termina in uno stato finale
- Che succede per $x \notin L$? La computazione effettuata da $\mathcal M$ può:
 - 1. terminare in uno stato $q \in Q F$
 - 2. non terminare

Esercizio

- i) Definire una macchina di Turing deterministica che riconosce il linguaggio $L = \{w\tilde{w} \mid w \in \{a,b\}^+\}$.
- ii) Definire una macchina di Turing deterministica che accetta il linguaggio L sopra definito e che per qualche stringa $x \in \{a,b\}^* L$ cicla indefinitamente.

Turing-decidibilità

- Un linguaggio *L* è detto Turing-decidibile se esiste una macchina di Turing deterministica che lo riconosce
- Un linguaggio è detto Turing-semidecidibile se esiste una macchina di Turing deterministica che lo accetta.

MT a più nastri

Una MTM (multi-tape Turing machine) a k nastri ($k \ge 2$) è una sestupla $\mathcal{M}^{(k)} = \langle \Gamma, \Box, Q, q_0, F, \delta^{(k)} \rangle$ dove:

- $\Gamma = \bigcup_{i=1}^{k} \Gamma_i$ è l'unione dei k alfabeti di nastro $\Gamma_1, \ldots, \Gamma_k$ non necessariamente distinti
- Q, q_0 ed F hanno lo stesso significato che nel caso della macchina di Turing ad 1 nastro
- la funzione di transizione $\delta^{(k)}$ è definita come

$$\delta^{(k)}: (Q-F) \times \bar{\Gamma}_1 \times \ldots \times \bar{\Gamma}_k \mapsto Q \times \bar{\Gamma}_1 \times \ldots \times \bar{\Gamma}_k \times \{ \curvearrowright, \curvearrowleft, \circ \}^k$$

MT a più nastri

- Una \mathcal{M} esegue una transizione a partire da uno stato interno q_i e con le k testine una per nastro posizionate sui caratteri a_i, \ldots, a_k
- se $\delta^{(k)}(q_i, a_{i_1}, \dots, a_{i_k}) = (q_j, a_{j_1}, \dots, a_{j_k}, z_{j_1}, \dots, z_{j_k})$
 - si porta nello stato q_j ,
 - \circ scrive i caratteri a_{j_1}, \ldots, a_{j_k} sui rispettivi nastri
 - o fa compiere alle testine i rispettivi spostamenti a destra, a sinistra o nessuno spostamento, come specificato dagli $z_{j_\ell} \in \{ \curvearrowright, \curvearrowright, \circ \}, \ell = 1, \dots, k$

MT a più nastri

Configurazioni di MTM

Una configurazione istantanea di una macchina di Turing multinastro può essere rappresentata da una stringa del tipo

$$q \# \alpha_1 \uparrow \beta_1 \# \alpha_2 \uparrow \beta_2 \# \dots \# \alpha_k \uparrow \beta_k$$

- *q* è lo stato attuale
- il contenuto significativo del nastro T_k è $\alpha_k \cdot \beta_k$
- la testina del nastro T_k è posizionata sulla cella contenente il primo carattere di β_k

Configurazioni di MTM

Una configurazione di una MTM $q \# \alpha_1 \uparrow \beta_1 \# \alpha_2 \uparrow \beta_2 \# \dots \# \alpha_k \uparrow \beta_k$ è:

- finale se q ∈ F, quindi se lo stato attuale è finale, indipendentemente dal contenuto dei nastri
- iniziale (con stringa di input x) se $q = q_0$, $\alpha_i = \varepsilon$, $i = 1, \ldots, k$, $\beta_1 = x$, $\beta_i = \square$, $i = 2, \ldots, k$, quindi se il primo nastro contiene l'input con la testina sul primo carattere, e gli altri nastri sono vuoti

Riconoscimento di $L = \{xc\tilde{x}, x \in \{a, b\}^+\}$

• Operazioni:

- input scandito da sx verso dx fino a quando si incontra il separatorec: simboli copiati sul nastro di lavoro da sx verso dx
- resto dell'input scandito da sx verso dx, nastro di lavoro scandito da dx verso sx, confrontano i caratteri in input con quelli presenti sul nastro di lavoro
- Alfabeto di input $\Sigma = \{a, b, c\}$
- Alfabeto del nastro di lavoro è $\Gamma = \{a, b\}$
- Configurazione iniziale: $q_0 \# \uparrow xc\tilde{x} \# \uparrow \Box$.
- Tre stati: q_0 (scansione di x), q_1 (scansione di \tilde{x}), q_2 , stato finale. Quindi $Q = \{q_0, q_1, q_2\}$ e $F = \{q_2\}$.

Funzione di transizione:

- Lettura e copiatura di x: $\delta(q_0, a, \square) = (q_0, a, a, \wedge, \wedge)$, $\delta(q_0, b, \square) = (q_0, b, b, \wedge, \wedge)$
- Lettura separatore: $\delta(q_0, c, \square) = (q_1, c, \square, \sim, \sim)$
- Lettura e verifica di \tilde{x} :
 - Caratteri uguali sui due nastri: $\delta(q_1, a, a) = (q_1, a, a, \land, \land),$ $\delta(q_1, b, b) = (q_1, b, b, \land, \land)$
 - Caratteri diversi sui due nastri: in questo caso la stringa non viene accettata. Nessuna transizione definita.
- Terminazione della verifica: $\delta(q_1, \square, \square) = (q_2, \square, \square, \circ, \circ)$

Computazioni massimali corrispondenti ai due input bacab e acb.

```
q_0 # \uparrow bacab # \uparrow \square
q_0 # b \uparrow acab # b \uparrow \Box
q_0 # ba \uparrow cab # ba \uparrow \square
q_1 \# bac \uparrow ab \# b \uparrow a
q_1 \# baca \uparrow b \# \uparrow ba
q_1 \# bacab \uparrow \square \# \uparrow \square ba
q_2 \# bacab \square \uparrow \square \# \uparrow \square ba
q_0 \# \uparrow acb \# \uparrow \Box
q_0 \# a \uparrow cb \# a \uparrow \Box
q_1 \#ac \uparrow b \# \uparrow a
```

Equivalenza tra MTM e MT

È possibile dimostrare l'equivalenza tra MTM e MT:

- per ogni MT \mathcal{M} esiste una MTM \mathcal{M}' equivalente, tale cioé che $L(\mathcal{M}) = L(\mathcal{M}')$ (si tratta della stessa \mathcal{M})
- per ogni MTM $\mathcal M$ esiste una MT $\mathcal M'$ equivalente, tale cioé che $L(\mathcal M) = L(\mathcal M')$
 - o dimostrazione mediante simulazione di \mathcal{M}' su \mathcal{M} : mostrando come ad ogni computazione di \mathcal{M} corrisponda una computazione di \mathcal{M}' con stesso esito (accettazione, rifiuto, non termina)

MT non deterministica

Una macchina di Turing non deterministica (NDTM) \mathcal{M} a k nastri è una sestupla $\mathcal{M} = \langle \Gamma, \Box, Q, q_0, F, \delta_N \rangle$, in cui:

- $\Gamma = \bigcup_{i=1}^k \Gamma_i$
- δ_N è una funzione parziale

$$\delta_{\rm N}: (Q-F) \times \bar{\Gamma}_1 \times \dots \bar{\Gamma}_k \mapsto \mathcal{P}(Q \times \bar{\Gamma}_1 \times \dots \times \bar{\Gamma}_k \times \{\frown, \frown, \circ\}^k)$$

Esempio di NDTM

Consideriamo una macchina di Turing non deterministica \mathcal{M} avente $\Gamma = \{a,b,c,d\}, Q = \{q_0,q_1,q_2,q_3,q_4,q_5,q_6,q_7,q_8,q_9,q_{10},q_{11}\}, F = \{q_{11}\}$ e funzione $\delta_{\rm N}$ definita come segue:

	а	ь	С	d	
qo	$\{(q_0,a, \sim), (q_1,c, \sim)\}$	$\{(q_0,b, \curvearrowright), (q_2,c, \curvearrowright)\}$	_	_	_
q_1	$\{(q_1,a, \curvearrowright), (q_3,d, \backsim)\}$	$\{(q_1,b,\curvearrowright)\}$	_	_	_
q_2	$\{(q_2,a,\curvearrowright)\}$	$\{(q_2,b, \curvearrowright), (q_3,d, \backsim)\}$	_	-	_
q_3	$\{(q_3,a,\boldsymbol{\curvearrowleft})\}$	$\{(q_3,b,\curvearrowleft)\}$	$\{(q_4,c,\curvearrowright)\}$	_	-
q_4	$\{(q_5,c,\curvearrowright)\}$	$\{(q_6,c,\sim)\}$	_	-	-
q_5	$\{(q_5, a, \curvearrowright)\}$	$\{(q_5,b,\sim)\}$	_	$\{(q_7, d, \curvearrowright)\}$	-
96	$\{(q_6,a, \curvearrowright)\}$	$\{(q_6,b,\sim)\}$	_	$\{(q_8,d,\boldsymbol{\wedge})\}$	-
q_7	$\{(q_9,d,\boldsymbol{\wedge})\}$	_	_	$\{(q_7, d, \curvearrowright)\}$	-
98	_	$\{(q_9,d, \curvearrowleft)\}$	_	$\{(q_8,d,\boldsymbol{\wedge})\}$	-
q_9	$\{(q_{10},a,\boldsymbol{\curvearrowleft})\}$	$\{(q_{10},b,\curvearrowleft)\}$	$\{(q_{11},c,\circ)\}$	$\{(q_9,d,\boldsymbol{\curvearrowleft})\}$	-
q_{10}	$\{(q_{10},a,\boldsymbol{\curvearrowleft})\}$	$\{(q_{10},b,\curvearrowleft)\}$	$\{(q_4,c,\curvearrowright)\}$	-	-
q_{11}	_	_	_	_	_

Esempio di NDTM

La macchina di Turing ${\mathcal M}$

- ha grado di non determinismo 2
- data una stringa di input $x \in \{a,b\}^*$, la accetta se e solo se esiste una stringa $y \in \{a,b\}^*$ con $|y| \ge 2$ tale che x = uyyv, con $u,v \in \{a,b\}^*$

Esempio di computazioni di ${\mathcal M}$

Possibili computazioni su input $abab \in L(\mathcal{M})$

- 1. $q_0abab \longmapsto cq_1bab \longmapsto cbq_1ab \longmapsto cbaq_1b \longmapsto cbabq_1\Box$
- $3. \ q_0abab \longmapsto aq_0bab \longmapsto abq_0ab \longmapsto abcq_1b \longmapsto abcbq_1\square$
- $4. \ \ q_0abab \longmapsto aq_0bab \longmapsto abq_0ab \longmapsto abaq_0b \longmapsto abacq_2\Box$
- $5. \ q_0abab \longmapsto aq_0bab \longmapsto abq_0ab \longmapsto abaq_0b \longmapsto ababq_0\Box$
- 6. $q_0abab \longmapsto aq_0bab \longmapsto acq_2ab \longmapsto acaq_2b \longmapsto acq_3ad \longmapsto aq_3cad \longmapsto acq_4ad \longmapsto accq_5d \longmapsto accdq_7\square$
- 7. $q_0abab \longmapsto cq_1bab \longmapsto cbq_1ab \longmapsto cq_3bdb \longmapsto q_3cbdb \longmapsto cq_4bdb \longmapsto ccq_6db \longmapsto ccdq_8b \longmapsto ccq_9dd \longmapsto cq_9cdd \longmapsto cq_{11}cdd$

Equivalenza tra MT ed MTND

È possibile dimostrare l'equivalenza tra MTND e MT:

- per ogni MT \mathcal{M} esiste una MTND \mathcal{M}' equivalente, tale cioé che $L(\mathcal{M}) = L(\mathcal{M}')$ (si tratta della stessa \mathcal{M})
- per ogni MTND $\mathcal M$ esiste una MT $\mathcal M'$ equivalente, tale cioé che $L(\mathcal M) = L(\mathcal M')$
 - o dimostrazione mediante simulazione di \mathcal{M}' su \mathcal{M} : mostrando come ad ogni computazione di \mathcal{M} corrisponda una computazione di \mathcal{M}' con stesso esito (accettazione, rifiuto, non termina)

Teorema

Se $\mathcal G$ è una grammatica di tipo o e $L=L(\mathcal G)$ è il linguaggio da essa generato, esiste una macchina di Turing non deterministica a due nastri $\mathcal M_L$ che accetta L.

Sia $\mathcal{G} = \langle V_N, V_T, P, S \rangle$, la macchina \mathcal{M}_L opera nel seguente modo.

- Data una stringa $w \in V_T^*$, la configurazione iniziale di \mathcal{M}_L è $q_o \# \uparrow w \# \uparrow S$.
- Ad ogni passo, in modo non deterministico \mathcal{M}_L applica sulla forma di frase ϕ presente sul secondo nastro tutte le possibili produzioni in P, rimpiazzando ϕ con una nuova forma di frase ϕ' derivabile da ϕ . Quindi verifica se ϕ' coincide con w: solo se la verifica dà esito positivo la macchina entra in uno stato finale di accettazione.

Corollario:

I linguaggi di tipo o sono Turing-semidecidibili

Teorema

Se \mathcal{M} è una macchina di Turing che accetta il linguaggio L allora esiste una grammatica \mathcal{G}_L di tipo o tale che $L=L(\mathcal{G}_L)$.