UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2016/2 Prova da área IB

1 - 5	6	7	Total	

Nome:	Cartão:	

 ${\bf Regras\ Gerais:}$

- $\bullet\,$ Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique to do procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente!

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

I TOPI	Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.					
1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$				
2.	Transformada da derivada	Se $\lim_{t \to \pm \infty} f(t) = 0$, então $\mathcal{F}\left\{f'(t)\right\} = iw\mathcal{F}\left\{f(t)\right\}$				
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$				
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$				
4.	Deslocamento no eixo t	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$				
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$				
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$				
7.	Teorema da Convolução	$\mathcal{F}\{(f*g)(t)\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$				
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$				
8.	Conjugação	$\overline{F(w)} = F(-w)$				
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$				
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$				
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a }F\left(\frac{w}{a}\right), \qquad a \neq 0$				
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$				
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$				

Séries e transformadas de Fourier:

	Forma trigonométrica	Forma exponencial
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(w_n t) + b_n \sin(w_n t)]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$	
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$	
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real,}$ onde $A(w) = \int_0^\infty f(t) \cos(wt) dt \in B(w) = \int_0^\infty f(t) \sin(wt) dt$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt} dw,$ onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt} dt$
	$J_{-\infty}$	$J_{-\infty}$

Tabela de integrais definidas:

Tabela de integrais definidas:	
1. $\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3. $\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sec(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$
5. $ \int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases} $	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0 \\ 0, & m = 0 \\ -\frac{\pi}{2}, & m < 0 \end{cases} $
7. $\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9. $\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \operatorname{sen}(mx) \cos(nx) dx =$
	$= \frac{m(a^2 + m^2 - n^2)}{(a^2 + (m-n)^2)(a^2 + (m+n)^2)} (a > 0)$
11. $\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13. $\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15. $ \int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases} $	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $
17. $\int_0^\infty x^2 e^{-ax} \operatorname{sen}(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19. $\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21. $\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} (a > 0, m \ge 0)$	22. $\int_0^\infty x e^{-a^2 x^2} \operatorname{sen}(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Frequências das notas musicais em Hertz:

Nota \ Escala	1	2	3	4	5	6
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integraic

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

• Questão 1 (1.0 ponto) Assinale as alternativas que melhor representam os diagramas de espectro de amplitude e fase da função $f(t) = -3 + 2\cos(t) - 4\sin(t)$ (amplitude na primeira coluna e fase na segunda).

• Questão 2 (1.0 ponto) Dado o diagrama de espectro de amplitude de uma função periódica f(t), marque as alternativas que representam, respectivamente, o módulo do valor médio e a potência média da função $\left(\left|\frac{1}{T}\int_0^T f(t)dt\right|\right)$ e $\left|\frac{1}{T}\int_0^T |f(t)|^2dt\right|$.

Valor Médio

- () 0
- () 0.5
- () 1
- () 1.5
- () 2.5
- (X) 2
- () 3

- Potência Média
 - () 11.5
 - () 10
 - (X) 8.5
 - () 6
 - () 4.5
 - () 3
 - $(\)\ 0.5$
- Questão 3 (1.0 ponto) Calcule as transformadas de Fourier das funções $f(t) = e^{-2|t|}$ e $g(t) = e^{-2|t|} \cos(3t)$, a > 0, respectivamente.

- $(\)\ \frac{1}{w^2+2}$

- (X) $\frac{4}{w^2 + 4}$
- $w^{2} + 4$ $() \frac{4}{w^{2} + \sqrt{2}}$ $() \frac{8}{w^{2} + 4}$ $() \frac{2}{w^{2} + 1}$

- - (X) $\frac{2}{(w-3)^2+4} + \frac{2}{(w+3)^2+4}$
 - $(\)\ \frac{2}{(w-3)^2+4}$
 - $(\)\ \frac{2}{(w+3)^2+4}$
 - $\begin{array}{c} (w+3) + 1 \\ (w+3) + 4 \\ (w+3)^2 + 4 \\ (w+3)^2 + 4 \\ (w+3)^2 + 2 \\ (w+3)^2 + 2 \\ (w+2)^2 + 3 \\ \end{array}$

Assinale as respostas da questão 4 nesta página: G(w) na coluna à esquerda e H(w) à direita.

• Questão 5 (1.0 ponto) Considere uma aproximação discreta do diagrama de espectro de uma nota tocada por um instrumento musical e representado por uma função periódica f(t):

Marque a resposta que indicam as notas que melhor aproximam à do sinal f(t) e à do sinal f(-3t), respectivamente. [Lembrete: $2\pi \text{ rad/s} = 1 \text{ Hz}$].

Nota tocada por f(t)

- (X) Lá da escala 2
- () Lá da escala 3
- $(\)$ Dó da escala 2
- () Dó da escala 3
- () Sol da escala 2
- () Sol da escala 3

Nota tocada por f(-3t)

- () Dó da escala 2
- () Ré da escala 1
- () Si da escala 6
- () Mi da escala 5
- (X) Mi da escala 4
- () Mi da escala 3

- Questão 6 (3.0 pontos) Considere a função $f(t) = |\sin(2\pi t)|$ e responda as questões abaixo.
 - a) (0.5) Calcule a frequência e o período fundamental de f(t)
 - b) (1.5) Calcule a forma trigonométrica da série de Fourier de f(t)
 - c) (1.0) Esboce as primeiras raias dos diagramas de espectro da série de Fourier de f(t).

Solução: a) Olhando o gráfico abaixo o período e a frequência fundamental ficam claros: $T = \frac{1}{2}$ e $w = 4\pi$.

Solução: b) Como f(t) é par, $b_n = 0$. Assim, calculamos abaixo a_0 e a_n .

$$a_0 = \frac{2}{T} \int_0^T |\sin(2\pi t)| dt$$

$$= 4 \int_0^{\frac{1}{2}} \sin(2\pi t) dt$$

$$= -4 \left[\frac{\cos(2\pi t)}{2\pi} \right]_0^{\frac{1}{2}}$$

$$= -\frac{4}{2\pi} [\cos(\pi) - 1] = \frac{4}{\pi}.$$

$$a_n = \frac{2}{T} \int_0^T |\sin(2\pi t)| \cos(w_n t) dt$$

$$= 4 \int_0^{\frac{1}{2}} \sin(2\pi t) \cos(4\pi n t) dt$$

$$= 2 \int_0^{\frac{1}{2}} (\sin(2\pi t + 4\pi n t) + \sin(2\pi t - 4\pi n t)) dt$$

$$= -2 \left[\frac{\cos(2\pi (1 + 2n)t)}{2\pi (1 + 2n)} + \frac{\cos(2\pi (1 - 2n)t)}{2\pi (1 - 2n)} \right]_0^{\frac{1}{2}}$$

$$= -2 \left[\frac{\cos(\pi (1 + 2n)) - 1}{2\pi (1 + 2n)} + \frac{\cos(\pi (1 - 2n)) - 1}{2\pi (1 - 2n)} \right]$$

$$= 4 \left[\frac{1}{2\pi (1 + 2n)} + \frac{1}{2\pi (1 - 2n)} \right]$$

$$= \frac{4}{\pi (1 - 4n^2)}.$$

Solução: c) Observe que $C_n = \frac{a_n}{2}$. Temos

$$C_{0} = \frac{2}{\pi}e^{i\cdot 0}$$

$$C_{1} = C_{-1} = \frac{2}{3\pi}e^{i\cdot \pi}$$

$$C_{2} = C_{-2} = \frac{2}{15\pi}e^{i\cdot \pi}$$

$$(3)$$

$$C_1 = C_{-1} = \frac{2}{3\pi} e^{i \cdot \pi} \tag{2}$$

$$C_2 = C_{-2} = \frac{2}{15\pi} e^{i \cdot \pi} \tag{3}$$

• Questão 7 (2.0 pontos) Considere a seguinte equação da onda:

$$\left\{ \begin{array}{ll} \displaystyle \frac{\partial^2 u}{\partial t^2}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t), & -\infty < x < \infty, \quad t > 0, \\ \\ \displaystyle u(x,0) = e^{-|x|}, & -\infty < x < \infty, \\ \displaystyle u_t(x,0) = 0, & -\infty < x < \infty. \end{array} \right.$$

a) (1.0) Aplique a transformada de Fourier na equação diferencial para concluir que

$$\mathcal{F}\{u(x,t)\} = F(k)\cos(kt),$$

onde $F(k) = \mathcal{F}\{e^{-|x|}\}.$

b) (1.0) Calcule a transformada inversa usando a expressão do item anterior para concluir que a solução da equação diferencial dada é

$$u(x,t) = \frac{1}{2}(e^{-|x+t|} + e^{-|x-t|}).$$

Solução: a) Aplicamos a transformada de Fourier no problema:

$$\left\{ \begin{array}{l} \frac{\partial^2 U}{\partial t^2}(k,t) = -k^2 U(k,t), \\ \\ U(k,0) = \mathcal{F}\{e^{-|x|}\}, \\ U_t(k,0) = 0, \end{array} \right.$$

onde $U(k,t) = \mathcal{F}\{u(x,t)\}$. A solução desta equação diferencial ordinária é

$$U(k,t) = A(k)\cos(kt) + B(k)\sin(kt).$$

Quando impomos as condições iniciais, temos U(k,0) = A(k) = F(k) e $U_t(k,0) = kB(k) = 0$. Logo

$$U(k,t) = F(k)\cos(kt).$$

Solução: b) Aplicamos a transformada inversa e usamos a propriedade do deslocamento:

$$\begin{split} u(x,t) &= \mathcal{F}^{-1} \left\{ F(k) \cos(kt) \right\} \\ &= \mathcal{F}^{-1} \left\{ F(k) \frac{e^{ikt} + e^{-ikt}}{2} \right\} \\ &= \frac{1}{2} \left(\mathcal{F}^{-1} \left\{ F(k) e^{ikt} \right\} + \mathcal{F}^{-1} \left\{ F(k) e^{-ikt} \right\} \right) \\ &= \frac{1}{2} (e^{-|x+t|} + e^{-|x-t|}). \end{split}$$