Basic Mathematics, Fall 2020

Karen Keryan, ASDS, YSU

October 20, 2020

Singular Value Decomposition (SVD)

Theorem

Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix of rank r, with $r \in [0, \min(m, n)]$. The Singular Value Decomposition or SVD of A is a decomposition of A of the form

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ is an orthogonal matrix of column vectors \mathbf{u}_i , and $V \in \mathbb{R}^{n \times n}$ is an orthogonal matrix of column vectors \mathbf{v}_i and Σ is an $m \times n$ matrix with $\Sigma_{ii} = \sigma_i > 0$ and $\Sigma_{ij} = 0, i \neq j$. The SVD is always possible for any matrix A.

The σ_i are called the singular values, and by convention the singular values are ordered, i.e., $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \geq 0$ \mathbf{u}_i are called the left-singular vectors and \mathbf{v}_i are called the right-singular vectors.

 Σ has a diagonal submatrix that contains the singular values and needs additional zero vectors that increase the dimension.

$$\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ 0 & \ddots & 0 & 0 & \dots & 0 \\ 0 & \dots & \sigma_n & 0 & \dots & 0 \end{bmatrix}$$

The singular value matrix Σ must be of the same size as A

Example

$$A = \begin{pmatrix} -1 & \frac{1}{\sqrt{2}} & 1\\ -1 & -\frac{1}{\sqrt{2}} & 1 \end{pmatrix} = U\Sigma V^T$$

$$\sqrt{2} \quad (2 \quad 0 \quad 0) \quad \left(-\frac{\sqrt{2}}{2} \quad 0 \right)$$

$$= \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & -1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$$

Example

$$A = \begin{pmatrix} -\frac{3\sqrt{3}}{4} & -\frac{3}{4} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{9}{4} & -\frac{3\sqrt{3}}{4} \end{pmatrix} = U\Sigma V^{T}$$

$$= \begin{pmatrix} -\frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\ 0 & -1 & 0 \\ -\sqrt{3} & 0 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

→) q (+

The eigenvalue decomposition of a symmetric matrix

$$S = S^T = PDP^T$$

is a special case of the SVD

$$S = U\Sigma V^T,$$

where

The eigenvalue decomposition of a symmetric matrix

$$S = S^T = PDP^T$$

is a special case of the SVD

$$S = U\Sigma V^T,$$

where U = V = P and $\Sigma = D$.

Let $r = \operatorname{rk}(A)$.

Remark

- ullet The columns of U (m by m) are eigenvectors of AA^T ,
- the columns of V (n by n) are eigenvectors of A^TA .
- The r singular values on the diagonal of Σ (m by n) are the square roots of the nonzero eigenvalues of both AA^T and A^TA .

Remark

U and V give orthonormal bases for all four fundamental subspaces:

- first r columns of U: column space of A
- last m-r columns of U: nullspace of A^T
- first r columns of V: row space of A
- last n-r columns of V: nullspace of A

When A multiplies a column \mathbf{v}_i of V, it produces σ_i times a column of U.

$$AV = U\Sigma \Leftrightarrow A\mathbf{v}_i = \sigma_i \mathbf{u}_i$$

Geometric interpretation

For every linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ one can find orthonormal bases of \mathbb{R}^n and \mathbb{R}^m such that T maps the i-th basis vector of \mathbb{R}^n to a non-negative multiple of the i-th basis vector of \mathbb{R}^m , and sends the left-over basis vectors to zero. With respect to these bases, the map T is therefore represented by a diagonal matrix with non-negative real diagonal entries.

1. How to compute the SVD in **the case** $\operatorname{rk}(A) = m \leq n$?

Step 1: Compute the symmetrized matrix A^TA (recall $A \in \mathbb{R}^{m \times n}$). Step 2: Compute the eigenvalue decomposition of $A^TA = PDP^T$. From here we obtain

$$V = P$$
, and $\Sigma^T \Sigma = D$,

The eigenvalues of A^TA are the squared singular values of Σ . Step 3. Compute U using the formula

$$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i, \quad i = 1, \dots, m(m = \text{rk}(A))$$

V 2. How to compute the SVD in **the case** $\operatorname{rk}(A) = n \leq m$?

Step 1: Compute the symmetrized matrix AA^T .

Step 2: Compute the eigenvalue decomposition of

 $AA^T = QD_1Q^T$. From here we obtain U = Q, and $\Sigma\Sigma^T = D_1$,

Step 3. Compute V using the formula

$$\mathbf{v}_i = \frac{1}{-}A^T\mathbf{u}_i, \quad i = 1, \dots, n(n = \mathrm{rk}(A))$$

Example

Find the SVD of the matrix $A = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

Solution. Since rk(A) = 2 =number of rows, we will compute A^TA (so we can use the version 1 of "How to compute SVD?").

Note that
$$A^TA=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 . Hence the characteristic

polynomial is
$$\det \begin{pmatrix} 1-\lambda & 0 & 0 \\ 0 & 4-\lambda & 0 \\ 0 & 0 & -\lambda \end{pmatrix} = -(1-\lambda)(4-\lambda)\lambda.$$
 So the eigenvalues of A^TA are $\lambda_1=4, \lambda_2=1$ and $\lambda_3=0.$

Thus the singular values are $\sigma_1=2,\sigma_2=1$ and $\Sigma=\begin{pmatrix}2&0&0\\0&1&0\end{pmatrix}$

Let us find the eigenvalue decomposition of A^TA . As

$$A^T A - \lambda_1 I_3 = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence
$$\mathbf{x}_1 = [0 \ -1 \ 0]^T$$
 and $\mathbf{v}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|} = [0 \ -1 \ 0]^T$.

Similarly
$$A^T A - \lambda_2 I_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Hence $\mathbf{x}_2 = [-1 \ 0 \]^T$ and $\mathbf{v}_2 = \frac{\mathbf{x}_2}{\|\mathbf{x}_2\|} = [-1 \ 0 \ 0]^T$.

Analogously
$$A^TA - \lambda_3 I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

So
$$\mathbf{x}_3 = [0 \ 0 \ -1]^T$$
 and $\mathbf{v}_3 = \frac{\mathbf{x}_3}{\|\mathbf{x}_2\|} = [0 \ 0 \ -1]^T$.

By the formula $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i, \quad i = 1, 2$ (as $2 = \operatorname{rk}(A)$) we have

$$\mathbf{u}_1 = \frac{1}{2}A\mathbf{v}_1 = \begin{pmatrix} -1\\0 \end{pmatrix}$$
 and $\mathbf{u}_2 = \frac{1}{1}A\mathbf{v}_2 = \begin{pmatrix} 0\\-1 \end{pmatrix}$.

Finally we get

$$A = U\Sigma V^{T} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Remark

If we were asked to find the SVD of the transpose of the initial

matrix, i.e. $A^T = \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ 0 & 0 \end{pmatrix}$, then we would use the 2nd version of

"How to compute the SVD?", as in that case $\operatorname{rk}(A) = 2$ =number of columns. So we would first find the **three** left singular vectors (new $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$), then using those by $\mathbf{v}_i = \frac{1}{\sigma_i} A \mathbf{u}_i$, we would find the **two** right singular vectors (new $\mathbf{v}_1, \mathbf{v}_2$).

Example

Find the SVD of the matrix
$$A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix}$$

Solution. Since rk(A) = 2 =number of columns, we will compute AA^{T} (so we can use the 2nd version of "How to compute SVD?"). In fact the non-zero eigenvalues of A^TA and AA^T are the same. Hence instead of finding the eigenvalues of AA^T we can find A^TA . Note that $A^TA = \begin{pmatrix} 17 & 8 \\ 8 & 17 \end{pmatrix}$. Hence the characteristic polynomial is $\det \begin{pmatrix} 17 - \lambda & 8 \\ 8 & 17 - \lambda \end{pmatrix} = (25 - \lambda)(9 - \lambda)$. So the eigenvalues of A^TA are $\lambda_1=25, \lambda_2=9$. Thus the eigenvalues of $AA^T\in\mathbb{R}^{3\times 3}$ are $\lambda_1 = 25, \lambda_2 = 9$ and $\lambda_3 = 0$.

So singular values are
$$\sigma_1 = 5, \sigma = 3$$
. and $\Sigma = \begin{pmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{pmatrix}$.

Let us find the eigenvalue decomposition of AA^T . As

$$AA^{T} - \lambda_{1}I_{3} = \begin{pmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{pmatrix} - 25I_{3} = \begin{pmatrix} -12 & 12 & 2 \\ 12 & -12 & -2 \\ 2 & -2 & -17 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 1 & -1 & -\frac{1}{6} \\ 0 & 0 & 0 \\ 1 & -1 & -\frac{17}{2} \end{pmatrix} \to \begin{pmatrix} 1 & -1 & -\frac{1}{6} \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence $\mathbf{x}_1 = [-1 \ -1 \ 0]^T$ and $\mathbf{u}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|} = [-\frac{1}{\sqrt{2}} \ -\frac{1}{\sqrt{2}} \ 0]^T$

Similarly

$$AA^{T} - \lambda_{2}I_{3} = \begin{pmatrix} 4 & 12 & 2 \\ 12 & 4 & -2 \\ 2 & -2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -2 & -1 \\ 0 & 16 & 4 \\ 0 & 16 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -\frac{1}{2} \\ 0 & 1 & \frac{1}{4} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\to \begin{pmatrix} 1 & 0 & -\frac{1}{4} \\ 0 & 1 & \frac{1}{4} \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence
$$\mathbf{x}_2 = [-\frac{1}{4} \ \frac{1}{4} \ -1]^T$$
 and $\mathbf{u}_2 = \frac{\mathbf{x}_2}{\|\mathbf{x}_2\|} = [-\frac{\sqrt{2}}{6} \ \frac{\sqrt{2}}{6} \ -\frac{2\sqrt{2}}{3} \]^T$.

Analogously

$$AA^{T} - \lambda_{3}I_{3} = \begin{pmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -2 & 8 \\ 0 & 25 & -50 \\ 0 & 25 & -50 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\to \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}.$$

So
$$\mathbf{x}_3 = [2 \ -2 \ -1]^T$$
 and $\mathbf{u}_3 = \frac{\mathbf{x}_3}{\|\mathbf{x}_3\|} = [\frac{2}{3} \ -\frac{2}{3} \ -\frac{1}{3}]^T$.

By the formula $\mathbf{v}_i = \frac{1}{\sigma_i}A^T\mathbf{u}_i, \quad i=1,2$ (as $2=\mathrm{rk}(A)$) we have

$$\mathbf{v}_1 = \frac{1}{5}A^T\mathbf{u}_1 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \text{ and } \mathbf{v}_2 = \frac{1}{3}A^T\mathbf{u}_2 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Finally we get

$$A = U\Sigma V^{T} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{6} & \frac{2}{3} \\ -\frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{6} & -\frac{2}{3} \\ 0 & -\frac{2\sqrt{2}}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

If we were asked to find the SVD of the transpose of the initial matrix, i.e. $A^T = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$, then we would use the 1st version of "How to compute the SVD?", as in that case $\mathrm{rk}(A) = 2 = \mathrm{number}$ of rows. So we would first find the **three** right singular vectors (new $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$), then using those by $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$, we would find the **two** left singular vectors (new $\mathbf{u}_1, \mathbf{u}_2$).