Bootstrap

Wei Li

Syracuse University

Spring 2021

Bootstrap methods

Bootstrap distribution

Nonparametric bootstrap, (semi)-parametric bootstrap

Bootstrap estimate of prediciton error

Some discussions

Bootstrap methods

Bootstrap methods

- ▶ The bootstrap is a general tool for assessing statistical accuracy.
- ▶ As with cross-validation, the bootstrap can be used to estimate prediction error.
 - typically estimates well only the expected prediction error Err (but not Err_{τ})

General ideas

Data are realizations of

$$Z_1, \ldots, Z_n$$
 i.i.d. $\sim P$

where P denotes an unknown distribution.

We denote a statistical procedure or estimator by

$$\hat{\theta}_n = S\left(Z_1, \dots, Z_n\right)$$

which is a (known) function S of the data Z_1, \ldots, Z_n .

Statisticians typically would need to find out the

- ightharpoonup sampling distribution of $\hat{\theta}_n$,
- ▶ the expectation $E(\hat{\theta}_n)$ or the variance $Var(\hat{\theta}_n)$.

Suppose we knew what the distribution P is

ightharpoonup can simulate to obtain the distribution of any $\hat{\theta}_n$ with arbitrary accuracy

But we do not know what the distribution P.

Bootstrap:

- use the empirical distribution \hat{P}_n which places probability mass 1/n on every data point $Z_i, i = 1, \ldots, n$.
- \triangleright simulate from \hat{P}_n : generate simulated data

$$Z_1^*, \dots Z_n^*$$
 i.i.d. $\sim \hat{P}_n$

i.e., generate n random drawings with **replacement** from the original data set $\{Z_1, \ldots, Z_n\}$.

- ▶ Such a simulated new data set is called a **bootstrap sample**.
- compute our estimator $\hat{\theta}_n^* = S(Z_1^*, \dots, Z_n^*)$ based on the bootstrap sample.
- We then repeat this many times (say obtain B bootstrap samples, thus $B \hat{\theta}_n^* s$)
- Get an approximate distribution for $\hat{\theta}_n$ by the histogram of B $\hat{\theta}_n^*$ s.

ESL. Fig. 7.12.

Nonparametric bootstrap

The algorithm can be described as:

▶ 1. Generate a bootstrap sample

$$Z_1^*, \dots, Z_n^*$$
 i.i.d. $\sim \hat{P}_n$

That is obtain n random draws with replacement from the data set $\{Z_1, \ldots, Z_n\}$.

▶ 2. Compute the *bootstrapped estimator* based on the bootstrap sample

$$\hat{\theta}_n^* = S\left(Z_1^*, \dots, Z_n^*\right)$$

 \triangleright 3. Repeat steps 1 and 2 for B times to obtain

$$\hat{\theta}_n^{*1}, \dots, \hat{\theta}_n^{*B}$$

Bootstrap distribution

Bootstrap distribution

The **bootstrap distribution**, denoted here by P^* ,

▶ the conditional probability distribution which is induced by i.i.d. resampling of the data given the original data.

The bootstrap distribution of $\theta_n^* = S(Z_1^*, \dots, Z_n^*)$ is the distribution which arises when resampling with \hat{P}_n and applying the function S on such a bootstrap sample.

bootstrap expectation
$$E^* \left[\hat{\theta}_n^* \right] \cong \frac{1}{B} \sum_{i=1}^B \hat{\theta}_n^{*i}$$
 bootstrap variance
$$\operatorname{Var}^* \left(\hat{\theta}_n^* \right) \cong \frac{1}{B-1} \sum_{i=1}^B \left(\hat{\theta}_n^{*i} - \frac{1}{B} \sum_{j=1}^B \hat{\theta}_n^{*j} \right)^2$$
 α -quantile of the bootstrap distribution of $\hat{\theta}_n^*$: empirical α -quantile of $\hat{\theta}_n^{*1}, \dots, \hat{\theta}_n^{*B}$

If the empirical distribution \hat{P}_n is "close" to the true data-generating probability P, the bootstrap values are "reasonable" estimates for the true quantities.

$$E\left[\hat{\theta}_{n}\right] \approx E^{*}(\hat{\theta}_{n}^{*}) \cong \frac{1}{B} \sum_{i=1}^{B} \hat{\theta}_{n}^{*i}$$

$$\operatorname{Var}\left(\hat{\theta}_{n}\right) \approx \operatorname{Var}^{*}\left(\hat{\theta}_{n}^{*}\right) \cong \frac{1}{B-1} \sum_{i=1}^{B} \left(\hat{\theta}_{n}^{*i} - \frac{1}{B} \sum_{j=1}^{B} \hat{\theta}_{n}^{*j}\right)^{2}.$$

Bootstrap consistency

The bootstrap is called to be **consistent** for $\hat{\theta}_n$ if, for an increasing sequence a_n , for all x

$$P\left[a_n\left(\hat{\theta}_n - \theta\right) \le x\right] - P^*\left[a_n\left(\hat{\theta}_n^* - \hat{\theta}_n\right) \le x\right] \xrightarrow{P} 0(n \to \infty)$$

In classical situations, $a_n = \sqrt{n}$.

Estimating bias

Under bootstrap consistency, the bias of $\hat{\theta}_n$ may be approximated as

$$E(\hat{\theta}_n) - \theta \approx E^*(\hat{\theta}_n^*) - \hat{\theta}_n$$
$$\approx \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}_n^{*b} - \hat{\theta}_n$$

Also,
$$\operatorname{Var}\left(\hat{\theta}_{n}\right) \approx \operatorname{Var}^{*}\left(\hat{\theta}_{n}^{*}\right)$$
.

Estimating confidence intervals

We can also construct the bootstrap confidence interval for θ .

Recall that a $(1 - \alpha)$ confidence interval for θ , computed over $z_1, \ldots z_n$, is a random interval [L, U] satisfying

$$P(L \le \theta \le U) = 1 - \alpha$$

The bootstrap confidence interval for θ is given by (why?)

$$\left[2\hat{\theta}_n - q_{1-\alpha/2}^*, 2\hat{\theta}_n - q_{\alpha/2}^*\right].$$

Here $q_{\alpha/2}^*$ and $q_{1-\alpha/2}^*$, are the $\alpha/2$ and $1-\alpha/2$ are the bootstrap quantiles of $\hat{\theta}_n^{*(1)}, \dots \hat{\theta}_n^{*(B)}$.

Studentized bootstrap confidence intervals

In some cases, the distributions of $(\hat{\theta}_n - \theta)/\widehat{SE}(\hat{\theta}_n)$ and $(\hat{\theta}_n^* - \hat{\theta}_n)/\widehat{SE}(\hat{\theta}_n^*)$ could be close, where $\widehat{SE}(\cdot)$ denote estimated standard errors. Hence we could use what are called **studentized** bootstrap confidence intervals.

- ightharpoonup repeat, for $b = 1, \dots B$:
 - ightharpoonup draw a bootstrap sample $z_1^{*(b)}, \dots z_n^{*(b)}$ from $\{z_1, \dots z_n\}$
 - recompute the statistic $\hat{\theta}_n^{*(b)}$ on $z_1^{*(b)}, \dots z_n^{*(b)}$
 - ightharpoonup repeat, for $m = 1, \dots M$:
 - draw a bootstrap sample $z_1^{*(b,m)}, \dots z_n^{*(b,m)}$ from $\{z_1^{*(b)}, \dots z_n^{*(b)}\}$
 - recompute the statistic $\hat{\theta}_n^{*(\bar{b},m)}$ from $\{z_1^{*(b,m)}, \dots z_n^{*(b,m)}\}$
 - ightharpoonup compute the sample standard deviation $\hat{s}^{*(b)}$ of $\hat{\theta}_n^{*(b,1)}, \dots \hat{\theta}_n^{*(b,M)}$
 - ightharpoonup compute $(\hat{\theta}_n^{*(b)} \hat{\theta}_n)/\hat{s}^{*(b)}$.

From above we have a sample $\{(\hat{\theta}_n^{*(b)} - \hat{\theta}_n)/\hat{s}^{*(b)} : b = 1, \dots, B\}$, from which, we compute he quantiles $q_{\alpha/2}^*$ and $q_{1-\alpha/2}^*$.

The approximate $1 - \alpha$ bootstrap confidence interval for θ is given by

$$(\hat{\theta}_n - \widehat{SE}(\hat{\theta}_n)q_{1-\alpha/2}^*, \hat{\theta}_n - \widehat{SE}(\hat{\theta}_n)q_{\alpha/2}^*),$$

▶ $\widehat{SE}(\hat{\theta}_n)$ can be approximated with $\operatorname{Var}^*(\hat{\theta}_n^*)$ using bootstrap samples $\{\hat{\theta}_n^{*(1)}, \dots, \hat{\theta}_n^{*(B)}\}$.

Nonparametric bootstrap, (semi)-parametric bootstrap

Parametric bootstrap

Assume that the data are realizations from

$$Z_1, \ldots, Z_n$$
 i.i.d. $\sim P_{\theta}$

where P_{θ} is given up to an unknown parameter (vector) θ .

- estimate the unknown parameter θ by $\hat{\theta}_n$
- ► draw

$$Z_1^*, \dots, Z_n^*$$
 i.i.d. $\sim P_{\hat{\theta}_n}$

Example

- ▶ the training data by $z = \{z_1, z_2, \dots, z_n\}$, with $z_i = (x_i, y_i)$ $i = 1, 2, \dots, n$.
- ▶ assume that $Y_i = \beta^\top x_i + \varepsilon_i$, (i = 1, ..., n), $\varepsilon_1, ..., \varepsilon_n \stackrel{i.i.d.}{\sim} \mathcal{N}\left(0, \sigma^2\right)$, $-\theta = \left(\beta, \sigma^2\right)$. $-\hat{\beta}, \hat{\sigma}$ denote the MLE estimates based on original data.
- 1. Simulate $\varepsilon_1^*, \dots, \varepsilon_n^*$ i.i.d. $\sim \mathcal{N}(0, \hat{\sigma}^2)$.
- 2. Construct

$$Y_i^* = \hat{\beta}^\top x_i + \varepsilon_i^*, i = 1, \dots, n$$

The parametric bootstrap regression sample is then

$$(x_1, Y_1^*), \ldots, (x_n, Y_n^*)$$

where the predictors x_i are as for the original data.

Nonparametric bootstrap

Denote the training data by $z = \{z_1, z_2, \dots, z_n\}$, with $z_i = (x_i, y_i)$ $i = 1, 2, \dots, n$. Here x_i is the input, and y_i the outcome. Suppose $E(Y|X=x) = \mu(x) = \sum_{j=1}^{M} \beta_j h_j(x)$ and $Y = \mu(X) + \epsilon$, where $var(\epsilon) = \sigma^2$.

$$\hat{\beta} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{y}$$

$$\widehat{\text{Var}}(\hat{\beta}) = (\mathbf{H}^T \mathbf{H})^{-1} \hat{\sigma}^2$$

$$\hat{\sigma}^2 = \sum_{i=1}^n (y_i - \hat{\mu}(x_i))^2 / n$$

- Let $h(x)^T = (h_1(x), h_2(x), \dots, h_M(x)).$
- $\hat{\mu}(x) = h(x)^T \hat{\beta}$
- ▶ standard error $\widehat{\operatorname{se}}[\widehat{\mu}(x)] = \left[h(x)^T \left(\mathbf{H}^T \mathbf{H}\right)^{-1} h(x)\right]^{\frac{1}{2}} \widehat{\sigma}.$
- ► Then (biased) 95% confidence interval is $\hat{\mu}(x) \pm 1.96 \cdot \hat{\text{se}}[\hat{\mu}(x)]$.

Suppose we have n = 50. The nonparametric bootstrap works as in the following.

- We draw B datasets each of size n = 50 with replacement from our training data, the sampling unit being the pair $z_i = (x_i, y_i)$.
- ▶ To each bootstrap dataset \mathbf{Z}^* we fit a cubic spline $\hat{\mu}^*(x)$.
- ▶ Using B = 200 bootstrap samples, we can form a 95% pointwise confidence band from the percentiles at each x: we find the $2.5\% \times 200 = \text{fifth largest and smallest values at each x.}$

Semi-parametric bootstrap

Simulate new responses by adding Gaussian noise to the predicted values:

$$y_i^* = \hat{\mu}(x_i) + \varepsilon_i^*; \quad \varepsilon_i^* \sim N(0, \hat{\sigma}^2); \quad i = 1, 2, \dots, n$$

This process is repeated B times, where B = 200 say. The resulting bootstrap datasets have the form $(x_1, y_1^*), \ldots, (x_n, y_n^*)$ and we recompute the B-spline smooth on each.

he confidence bands from this method will exactly equal the least squares bands, as the number of bootstrap samples goes to infinity.

Note that

- ▶ the estimate based on bootstrap sample
 - $\hat{\mu}^*(x) = h(x)^T \left(\mathbf{H}^T \mathbf{H} \right)^{-1} \mathbf{H}^T \mathbf{y}^*$
- ▶ its distribution

$$\hat{\mu}^*(x) \sim N\left(\hat{\mu}(x), h(x)^T \left(\mathbf{H}^T \mathbf{H}\right)^{-1} h(x) \hat{\sigma}^2\right)$$

Another version of bootstrap

Suppose

$$Y_i = f(x_i) + \varepsilon_i$$

 $\varepsilon_1, \dots, \varepsilon_n$ i.i.d. $\sim P_{\varepsilon}$

where P_{ε} is unknown with expectation 0.

- 1. Estimate \hat{f} from the original data and compute the residuals $r_i = Y_i \hat{f}(x_i)$.
- 2. Consider the centered residuals $\tilde{r}_i = r_i n^{-1} \sum_{i=1}^n r_i$. In case of linear regression with an intercept, the residuals are already centered. Denote the empirical distribution of the centered residuals by $\hat{P}_{\tilde{r}}$.
- 3. Generate

$$\varepsilon_1^*, \dots, \varepsilon_n^*$$
 i.i.d. $\sim \hat{P}_{\tilde{r}}$

Note that $\hat{P}_{\tilde{r}}$ is an estimate of P_{ε} .

4. Construct the bootstrap response variables

$$Y_i^* = \hat{m}(x_i) + \varepsilon_i^*, i = 1, \dots, n$$

and the bootstrap sample is then $(x_1, Y_1^*), \dots, (x_n, Y_n^*)$.

Wei Li (Syracuse University), MAT850

Bootstrap estimate of prediciton error

If $\hat{f}^{*b}(x_i)$ is the predicted value at x_i , from the model fitted to the b th bootstrap dataset, our estimate is

$$\widehat{\text{Err}}_{\text{boot}} = \frac{1}{N} \sum_{i=1}^{N} \sum_{b=1}^{B} \frac{1}{B} L\left(y_i, \hat{f}^{*b}\left(x_i\right)\right)$$

- ightharpoonup Repeat for $b = 1, \dots, B$:
 - Generate $(X_1^{*b}, Y_1^{*b}), \dots, (X_n^{*b}, Y_n^{*b})$ by resampling with replacement from the original data.
 - Compute the bootstrapped estimator $\hat{f}^{*b}(\cdot)$ based on $(X_1^{*b}, Y_1^{*b}), \dots, (X_n^{*b}, Y_n^{*b})$
 - \blacktriangleright Evaluate err $^{*b} = n^{-1} \sum_{i=1}^{n} L\left(Y_i, \hat{f}^{*b}\left(X_i\right)\right)$
- ▶ Approximate the bootstrap generalization error Err by

$$B^{-1} \sum_{i=1}^{B} err^{*i}$$

Leave-one-out bootstrap estimate

Above estimate is not a good estimate in general. Tends to be overfitting.

The **leave-one-out bootstrap estimate** of prediction error is defined by

$$\widehat{\text{Err}}^{(1)} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{|C^{-i}|} \sum_{b \in \{1, \dots, B\} \cap C^{-i}} L\left(y_i, \hat{f}^{*b}\left(x_i\right)\right)$$

- $ightharpoonup C^{-i}$ is the set of indices of the bootstrap samples b that do not contain observation i,
- $ightharpoonup |C^{-i}|$ is the number of such samples.

The leave-one out bootstrap solves the overfitting problem suffered by $\widehat{\operatorname{Err}}_{boot}$, but has the training-set-size bias mentioned in the discussion of cross-validation.

► Typically, the leave-one out bootstrap estimate will be biased upward.

Bias

- ▶ Denote the bootstrap sample by $Z^* = \{Z_1^*, \dots, Z_n^*\}$.
- ▶ an out-of-bootstrap sample

$$Z_{\mathrm{out}}^* = \{Z_i; Z_i \notin Z^*\}$$

The out-of-bootstrap estimate above can be written as:

$$\widehat{\text{Err}}^{(1)} = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{\left| Z_{\text{out}}^{*(b)} \right|} \sum_{i \in Z_{\text{out}}^{*(b)}} L\left(y_i, \hat{f}^{*(b)}(x_i) \right)$$

Note that $\hat{f}^{*(b)}(\cdot)$ involves only data from $Z^{*(b)}$, and $(X_i, Y_i) \in Z_{\text{out}}^*$.

▶ The expected size of the out-of-bootstrap sample: $E^*[|Z_{\text{out}}^*|] \approx 0.368n$.

Roughly speaking, $\widehat{\text{Err}}^{(1)}$ is like a CV estimate that uses about 36.8% data points as test data, or about 63.2% data points as training data.

The .632 estimator

The ".632 estimator" is designed to alleviate this bias:

$$\widehat{\text{Err}}^{(.632)} = .368 \cdot \overline{\text{err}} + .632 \cdot \widehat{\text{Err}}^{(1)}$$

The derivation of the .632 estimator is complex; intuitively it pulls the leave-one out bootstrap estimate down toward the training error rate, and hence reduces its upward bias.

Note that
$$\overline{\operatorname{err}} \leq \widehat{\operatorname{Err}}^{(.632)} \leq \widehat{\operatorname{Err}}^{(1)}$$
.

- ▶ The .632 estimator works well in "light fitting" situations
- ► In the heavily-overfitting situations, one can further improve the .632 estimator: the .632+ estimator

Some discussions

Some discussions

- ▶ One can use bootstrap to estimate effective degree of freedom
- ► The bootstrap distribution discussed above is a "poor man's" Bayes posterior.

Bayesian bootstrap sample:

- ▶ Draw weights from a uniform Dirichlet distribution with the same dimension as the number of data points
- ► Sample from data accordingly to the probability defined by the Dirichlet weights
- ▶ Use the resampled data to calculate the statistics.