Übungsblatt 3 Rechnernetze und Datenkommunikation

Aufgabe 1: Wandeln Sie zwischen der CIDR- und der "Dotted-decimal" Schreibweise der Subnetzmaske um:

0.0.0.0	\leftrightarrow	/0	Umrechnungstabelle:
128.0.0.0	\leftrightarrow	/1 <-> 10000000.000	255 = 11111111b
192.0.0.0	\leftrightarrow	/2 <-> 11000000.000	254 = 11111110b
255.0.0.0	\leftrightarrow	/8 <-> 11111111.000	252 = 11111100b
	` '		248 = 11111000b
255.128.0.0	\leftrightarrow	/9	240 = 11110000b
255.192.0.0	\leftrightarrow	/10	224 = 11100000b
255.255.0.0	\leftrightarrow	/16	192 = 11000000b
255.255.255.224 ↔		/(8+8+8+3)=/27	128 = 10000000b
		(3 3 3 2) .2/	0 = 00000000b

Aufgabe 2: Gegeben ist die IP-Adresse 10.65.130.5 und die Subnetzmaske /18 (10.65.130.5/18)

Gesucht:

```
Nebenrechnung: 10.65.130.5 = 0000\ 1010\ .\ 0100\ 0001\ .\ 1000\ 0010\ .\ 0000\ 0101

(ursprüngliche) Klasse = \underline{\mathbf{A}}

Präfix = (\text{binär})\ \underline{0000\ 1010\ .\ 0100\ 0001\ .\ 10}

Suffix = (\text{binär})\ \underline{00\ 0010\ .\ 0000\ 0101}

NW-Adresse = 0000\ 1010\ .\ 0100\ 0001\ .\ 10\ 000000\ .\ 0000\ 0000 = \underline{10.65.128.0}

Max. Anzahl der Hosts im NW = (32-18) Host-Bits = 14 Bits \rightarrow 2^14 Möglichkeiten = 16384; Netznummer und Broadcast-Nummer abgezogen, ergibt \underline{16382}

Gerichtete Broadcast-Adresse = 0000\ 1010\ .\ 0100\ 0001\ .\ 10\ 111111\ .\ 11111 = \underline{10.65.191.255}
```

Aufgabe 3: Zerlegen Sie den Adressbereich 10.65.128.0/18 in zwei /19 Bereiche. Wie lauten die beiden NW-Adressen und die zugehörigen Host-Adressen? Wie die gerichteten Broadcast-Adressen?

```
10.65.128.0/18 = 0000\ 1010\ .\ 0100\ 0001\ .\ 1000\ 0000\ .\ 0000\ 0000
```

Die unterstrichenen Bits dürfen nicht geändert werden, nur die nicht unterstrichenen.

Die /19 Bereiche haben ein weiteres Bit unterstrichen. Dieses kann 0 oder 1 sein. Die beiden NW-Adressen (alle nicht unterstrichenen Bits sind 0) sind daher

- A) 0000 1010 . 0100 0001 . 1000 0000 . 0000 0000 = **10.65.128.0/19**
- B) 0000 1010 . 0100 0001 . 1010 0000 . 0000 0000 = **10.65.160.0/19**

Im NW A können die Hosts die Adressen von

```
<u>0000 1010 . 0100 0001 . 1000</u> 0000 . 0000 0001 = 10.65.128.1 bis

<u>0000 1010 . 0100 0001 . 1001</u> 1111 . 1111 1110 = 10.65.159.254 annehmen,

die gerichtete Broadcast-Adresse ist 10.65.159.255
```

Im NW b können die Hosts die Adressen von

```
\underline{0000\ 1010\ .\ 0100\ 0001\ .\ 101}0\ 0000\ .\ 0000\ 0001 = 10.65.160.1\ \ bis \underline{0000\ 1010\ .\ 0100\ 0001\ .\ 101}1\ 1111\ .\ 1111\ 1110 = 10.65.191.254\ annehmen, die gerichtete Broadcast-Adresse ist 10.65.191.255
```

Aufgabe 4: Adressplanung 1

Sie sind Netzwerkadministrator der Firma "We start yet". Ihre Firma hat 2 Abteilungen A und B. Jede Abteilung hat ca. 100 Rechner und möchte ein eigenes Full-Duplex Ethernet haben. Die beiden Ethernets sollten über einen Router an das Internet angeschlossen werden.

Von ihrem ISP haben Sie den Adressbereich 137.23.4.0/24 erhalten.

Welche Netzwerknummern und Subnetzmasken (CIDR-Notation) vergeben Sie an die einzelnen Abteilungen?

Geben Sie für jede Abteilung die möglichen Host IP-Adressen an und die gerichtete Broadcast-Adresse. Der Router soll die einheitliche Hostnummer (Suffix) 1 bekommen.

Zeichen Sie den zugehörige NW-Plan

```
137.23.4.0/24 = 1000 1001 . 0001 0111 . 0000 0100 . 0000 0000
```

Die unterstrichenen Bits dürfen nicht verändert werden. Die nicht unterstrichenen Bits dürfen vom Netzadmin frei belegt werden. Der Netzadmin braucht 2 NW und zerlegt daher den Bereich 137.23.4.0/24 in zwei Teile, indem er der NW-Adresse (Präfix) ein Bit mehr zugesteht. Die beiden so entstandenen Netzwerkadressen, lauten:

```
Netz A: \underline{1000\ 1001\ .0001\ 0111\ .0000\ 0100\ .0}000\ 0000 = 137.23.4.0/25
```

```
Netz B: 1000 1001 . 0001 0111 . 0000 0100 . 1000 0000 = 137.23.4.128/25
```

Netz A kann z.B. der Abteilung A gegeben werden, das Netz B der Abteilung B.

In der Abteilung A sind dann die Host IP Adressen von

```
<u>1000 1001 . 0001 0111 . 0000 0100 . 0</u>000 0001 = 137.23.4.1 bis

<u>1000 1001 . 0001 0111 . 0000 0100 . 0</u>111 1110 = 137.23.4.126
```

zu vergeben, wobei 137.23.4.1 für den Router reserviert ist und 137.23.4.127 die gerichtete Broadcast-Adresse der Abteilung A ist.

In der Abteilung b sind dann die Host IP Adressen von

```
<u>1000 1001 . 0001 0111 . 0000 0100 . 1</u>000 0001 = 137.23.4.129 bis
1000 1001 . 0001 0111 . 0000 0100 . 1111 1110 = 137.23.4.254
```

zu vergeben, wobei 137.23.4.129 für den Router reserviert ist und 137.23.4.255 die gerichtete Broadcast-Adresse der Abteilung B ist.

Aufgabe 5: Adressplanung 2

Sie sind Netzwerkadministrator der Firma "Yes, we can". Die Firma hat 5 Abteilungen A-E und möchte pro Abteilung ein eigenes physikalisches Netzwerk (Full Duplex Ethernet) aufbauen, die mittels eines gemeinsamen Routers an das Internet angeschlossen werden sollen.

Abteilung A und C rechnen mit max. 100 Rechnern in ihrem NW, Abteilung B mit 50, Abteilung D mit 300 und Abteilung E mit 1000.

Von ihrem ISP haben Sie den Adressenbereich 137.23.0.0/21 bekommen.

Welche Netzwerknummern und Subnetzmasken (CIDR-Notation) vergeben Sie an die einzelnen Abteilungen? Es sollten sowenig Adressen "verschwendet werden, wie nur möglich.

Geben Sie für jede Abteilung die möglichen Host IP-Adressen an und die gerichtete Broadcast-Adresse. Der Router soll die einheitliche Hostnummer (Suffix) 1 bekommen.

Zeichen Sie den zugehörige NW-Plan

137.23.0.0/21 = 1000 1001 . 0001 0111 . 0000 0000 . 0000 0000

Die unterstrichenen Bits dürfen nicht verändert werden. Die nicht unterstrichenen Bits dürfen vom Netzadmin frei belegt werden. Der Netzadmin braucht 5 NW unterschiedlicher Größe. Die Aufteilung ist daher etwas schwieriger. Wir fangen mit dem größten Netz an und gehen dann zu den kleineren Netzen:

Abteilung/Netz	Anzahl Hosts	Nächste 2er Potenz	Notwendige Anzahl von Hostbits	Subnetzmaske
Е	1000	1024=2^10	10	/22 =/(32-10)
D	300	512 = 2^9	9	/23
С	100	128 = 2^7	7	/25
A	100	128 = 2^7	7	/25
В	50	64 = 2^6	6	/26

Von dem Bereich 137.23.0.0/21 nehmen wir zuerst für das größte NW den folgenden Bereich weg:

E 1000 1001 . 0001 0111 . 0000 0000 . 0000 0000 137.23.0.0/22

Die restlichen Netze A-D müssen sich daher den Bereich

1000 1001 . 0001 0111 . 0000 0100 . 0000 0000 137.23.4.0/22

Teilen. Davon nehmen wir für das verbleibende größte Netz D den folgenden Bereich weg:

D 1000 1001 . 0001 0111 . 0000 0100 . 0000 0000 137.23.4.0/23

Es bleibt folgender Adressbereich übrig:

1000 1001 . 0001 0111 . 0000 0110 . 0000 0000 137.23.6.0/23

Davon nehmen wir für das Netz C:

C <u>1000 1001 . 0001 0111 . 0000 0110 . 0</u>000 0000 137.23.6.0/25

Es bleiben die beiden Adressbereiche übrig:

1000 1001 . 0001 0111 . 0000 0110 . 1000 0000 137.23.6.128/25

1000 1001 . 0001 0111 . 0000 0111 . 0000 0000 137.23.7.0/24

Den ersten Adressbereich kann man gleich für A verwenden:

A <u>1000 1001 . 0001 0111 . 0000 0110 . 1</u>000 0000 137.23.6.128/25

Dem zweiten nehmen wir noch einen Teil für das B Netz weg:

B <u>1000 1001 . 0001 0111 . 0000 0111 . 00</u>00 0000 137.23.7.0/26

Es bleiben die Adressbereiche

1000 1001 . 0001 0111 . 0000 0111 . 0100 0000 137.23.7.64/26

1000 1001 . 0001 0111 . 0000 0111 . 1000 0000 137.23.7.128/25

Übrig. Diese kann man für "future use" zurückhalten oder dem ISP zurückgeben.

Abteilung	Netzwerkadresse	Host-Adressen	Router-Adresse	Broadcast- Adresse
A	137.23.6.128/25	137.23.6.130 – 137.23.6.254	137.23.6.129	137.23.6.255
В	137.23.7.0/26	137.23.7.2 – 137.23.7.62	137.23.7.1	137.23.7.63
С	137.23.6.0/25	137.23.6.2- 137.23.6.126	137.23.6.1	137.23.6.127
D	137.23.4.0/23	137.23.4.2- 137.23.5.254	137.23.4.1	137.23.5.255
Е	137.23.0.0/22	137.23.0.2- 137.23.3.254	137.23.0.1	137.23.3.255

