

Информационный объект, отношение

СОТРУДНИК

Таб_ном	Фамилия_И_О	Телефон	Должность	Оклад
001	Борисов А.А.	523-45-89	старший преподаватель	30000
002	Назаров С.В.	532-78-01	ассистент	20000
003	Петров В.А	245-67-90	ассистент	20000

Атрибут — свойство некоторого отношения. Часто называется полем таблицы ($^{\text{Таб}_\text{ном}}$, $^{\text{Фамилия}_\text{И}_\text{О}}$, $^{\text{Телефон}}$, $^{\text{Должность}}$, $^{\text{Оклад}}$).

Домен атрибута — множество допустимых значений, которые может принимать атрибут (для атрибута Оклад – это положительные целы числа в некотором интервале).

Кортеж — конечное множество взаимосвязанных допустимых значений атрибутов, которые вместе описывают некоторую сущность (строка таблицы: 001 Борисов А.А. 523-45-89 старший преподаватель 30000).

Отношение — конечное множество кортежей (таблица СОТРУДНИК).

Схема отношения — конечное множество атрибутов, определяющих некоторое отношение. Иными словами, это структура таблицы, состоящей из конкретного набора полей.

Проекция — отношение, полученное из заданного путём удаления и (или) перестановки некоторых атрибутов:

Таб_ном	Фамилия_И_О
001	Борисов А.А.
002	Назаров С.В.
003	Петров В.А

Функциональная зависимость между атрибутами (множествами атрибутов) X и Y означает, что для любого допустимого набора кортежей в данном отношении, если два кортежа совпадают по значению Y. Обозначение: {X} -> {Y}.

Например,

Таб_ном	Фамилия_И_О	Телефон	Должность	Оклад	
001 Борисов А.А.		523-45-89	старший	30000	
001	рорисов А.А.	J23-4J-0J	преподаватель	30000	
002	Назаров С.В.	532-78-01	ассистент	20000	
003	Петров В.А	245-67-90	ассистент	20000	

Функциональная зависимость между атрибутами (множествами атрибутов) X и Y означает, что для любого допустимого набора кортежей в данном отношении, если два кортежа совпадают по значению Y. Обозначение: {X} -> {Y}.

Например, если значение атрибута Должность — Ассистент, то значением атрибута Оклад в таком кортеже всегда будет 20000.

Таб_ном	Фамилия_И_О	Телефон	Должность	О клад
001	Борисов А.А.	523-45-89	старший преподаватель	80000
002	Назаров С.В.	532-78-01	ассистент	20000
003	Петров В.А	245-67-90	ассистент	20000

Пример

delivery

good_type	good_name	supplier_name	supplier_adress	price	count
Чай	Липтон	ИП «Поставка»	Батарейная 17	20	25
Кофе	Максим	ЧП «Иванов»	Чапаева 10	30	35
Кофе	Pele	ИП «Поставка»	Батарейная 17	23	28
Чай	Джей	ИП «Поставка»	Батарейная 17	15	20
Какао	Российское	ИП «Иванов»	Чапаева 10	18	23

Отношение (сущность, информационный объект) — delivery

<u>Атрибуты (поля)</u> - good_type, good_name, supplier_name, supplier_address, price, count <u>Кортеж (строка)</u> - Чай Липтон ИП «Поставка» Батарейная 17 20 25

<u>Домен</u> – для атрибута good_type это {Чай, Кофе, Какао}

Схема отношения -

Предметная область «Склад»

delivery

good_type	good_name	supplier_name	supplier_adress	price	count
Чай	Липтон	ИП «Поставка»	Батарейная 17	20	25
Кофе	Максим	ЧП «Иванов»	Чапаева 10	30	35
Кофе	Pele	ИП «Поставка»	Батарейная 17	23	28
Чай	Джей	ИП «Поставка»	Батарейная 17	15	20
Какао	Российское	ИП «Иванов»	Чапаева 10	18	23

Возможные проблемы

- Многократное дублирование текстовых значений, что приводит к ошибке: ИП «Поставка» и ИП«Поставка» - разные строковые константы.
- Необходимость занесения связанных данных (не только имя поставщика, но и его адрес), ошибка можно случайно указать одному поставщику разный адрес.

Предметная область «Склад»

delivery

good_type	good_name	supplier_name	supplier_adress	price	count
Чай	Липтон	ИП «Поставка»	Батарейная 17	20	25
Кофе	Максим	ЧП «Иванов»	Чапаева 10	30	35
Кофе	Pele	ИП «Поставка»	Батарейная 17	23	28
Чай	Джей	ИП «Поставка»	Батарейная 17	15	20
Какао	Российское	ИП «Иванов»	Чапаева 10	18	23

Возможные проблемы

- При смене адреса или названия фирмы поставщика придется исправлять все строки, в которых есть этот поставщик.
- Какой товар и кто привез в таблице никак не идентифицирован, поэтому в других документах невозможно указать ссылку на определенную запись (придется перечислять все поля).

Предметная область «Склад»

delivery

good_type	good_name	supplier_name	supplier_adress	price	count
Чай	Липтон	ИП «Поставка»	Батарейная 17	20	25
Кофе	Максим	ЧП «Иванов»	Чапаева 10	30	35
Кофе	Pele	ИП «Поставка»	Батарейная 17	23	28
Чай	Джей	ИП «Поставка»	Батарейная 17	15	20
Какао	Российское	ИП «Иванов»	Чапаева 10	18	23

Вывод

Использовать данную таблицу для хранения и обработки информации о поставках товара HEЛЬЗЯ.

Нормальные формы

Нормальная форма — требование, предъявляемое к структуре таблиц в теории реляционных баз данных для устранения из базы избыточных функциональных зависимостей между полями таблиц.

Метод нормальных форм состоит в сборе информации об объектах решения задачи в рамках одной таблицы и последующей декомпозиции этой таблицы на несколько взаимосвязанных таблиц на основе процедур нормализации отношений.

Цель нормализации исключить избыточное дублирование данных, которое является причинами аномалий, возникающих при добавлении, редактировании и удалении строк таблицы.

Нормализация отношений

Существует 6 нормальных форм и 5 правил перевода от одной нормальной формы к нормальной форме более высокого порядка.

Метод нормальных форм используется в процессе проектирования базы данных.

Является итерационным и заключается в последовательном переводе таблицы от одной нормальной формы к нормальной форме более высокого порядка по определенным правилам.

Отношение находится в **1НФ**, если все его атрибуты являются простыми, все используемые домены должны содержать только скалярные значения. Не должно быть повторений строк в таблице.

Пример:

brand	model
iPhone	iPhone Pro 11, iPhone SE 2020, iPhone 12 Pro
Samsung	Galaxy M52, Galaxy Z Flip 3
Xiaomi	Xiaomi Redmi 10 4, POCO X3 Pro 8

Нарушение нормализации 1НФ происходит в моделях всех брендов телефонов, т.к. в одном поле **model** содержится список из 3 или 2 элементов. Например, Galaxy M52, Galaxy Z Flip 3, т.е. он не является атомарным.

Способ приведения к 1НФ — добавление кортежей (строк) в таблице так, чтобы в одном кортеже (строке) отображалась одна модель телефона определенного бренда:

brand	model
iPhone	iPhone Pro 11
iPhone	iPhone SE 2020
iPhone	iPhone 12 Pro
Samsung	Galaxy M52
Samsung	Galaxy Z Flip 3
Xiaomi	Xiaomi Redmi 10 4
Xiaomi	POCO X3 Pro 8

Ключевой атрибут

Ключевой атрибут – однозначно определяет кортежи отношения (строки таблицы).

Ключ может быть:

- простым состоит из одного атрибута;
- составным состоит из нескольких атрибутов.

Каждое отношение обязательно имеет комбинацию атрибутов, которая может служить ключом. Ее существование гарантируется тем, что отношение — это множество, которое не содержит одинаковых элементов — кортежей.

Потенциальный ключ

Потенциальный ключ — в реляционной модели данных — подмножество атрибутов отношения, удовлетворяющее требованиям уникальности и минимальности (несократимости).

Уникальность означает, что нет и не может быть двух кортежей данного отношения, в которых значения этого подмножества атрибутов совпадают (равны).

Минимальность (несократимость) означает, что в составе потенциального ключа отсутствует меньшее подмножество атрибутов, удовлетворяющее условию уникальности. Иными словами, если из потенциального ключа убрать любой атрибут, он утратит свойство уникальности.

Потенциальный ключ (вариант 1)

В нашем случае остальные характеристики телефона однозначно определяются двумя атрибутами (**brand** и **model**), то есть их совокупность можно рассматривать как потенциальный ключ. Однако свойством минимальности ключ не обладает (удалим **brand** уникальность ключа сохранится).

brand (ключ)	model (ключ)
iPhone	iPhone Pro 11
iPhone	iPhone SE 2020
iPhone	iPhone 12 Pro
Samsung	Galaxy M52
Samsung	Galaxy Z Flip 3
Xiaomi	Xiaomi Redmi 10 4
Xiaomi	POCO X3 Pro 8

Потенциальный ключ (вариант 2)

В нашем примере модель не может относится к другому бренду, поэтому в качестве потенциального ключа можно выбрать простой ключ **model**. Он удовлетворяет и требованиям уникальности, а минимальность проверять не обязательно, так как ключ простой.

brand	model (ключ)
iPhone	iPhone Pro 11
iPhone	iPhone SE 2020
iPhone	iPhone 12 Pro
Samsung	Galaxy M52
Samsung	Galaxy Z Flip 3
Xiaomi	Xiaomi Redmi 10 4
Xiaomi	POCO X3 Pro 8

Ключевой атрибут

Однако, нужно иметь в виду, что ключи будут использоваться в других таблицах. При этом для ключей текстового типа:

- придется несколько раз записывать значения ключевых атрибутов;
- при изменении названия бренда и модели, придется вносить изменения во все таблицы.

Потенциальный ключ (вариант 3)

Еще одним способом создания ключа является включение нового числового атрибута в таблицу, значения которого будут уникальными для каждой строки таблицы. Такой способ определения ключа является предпочтительным.

model id	brand	model
1	iPhone	iPhone Pro 11
2	iPhone	iPhone SE 2020
3	iPhone	iPhone 12 Pro
4	Samsung	Galaxy M52
5	Samsung	Galaxy Z Flip 3
6	Xiaomi	Xiaomi Redmi 10 4
7	Xiaomi	POCO X3 Pro 8

Отношение находится во 2НФ, если оно находится в 1НФ и каждый не ключевой атрибут неприводимо зависит от ключа.

Неприводимость означает, что в составе потенциального ключа отсутствует меньшее подмножество атрибутов, от которого можно также вывести данную функциональную зависимость.

Вторая нормальная форма актуальна только для тех отношений, в которых есть составные ключи.

Пример:

<u>brand</u> (ключ)	<u>model</u> (ключ)	price	sale
iPhone	iPhone Pro 11	89 290	10%
iPhone	iPhone SE 2020	36 990	10%
iPhone	iPhone 12 Pro	89 990	10%
Samsung	Galaxy M52	72 000	5%
Samsung	Galaxy Z Flip 3	94 990	5%
Xiaomi	Xiaomi Redmi 10 4	13 990	20%
Xiaomi	POCO X3 Pro 8	25 990	20%

Таблица находится в первой нормальной форме, но не во второй. Цена смартфона зависит от модели и бренда. Скидка зависит от бренда, то есть зависимость от составного ключа неполная.

Пример:

<u>brand</u> (ключ)	<u>model</u> (ключ)	price	sale
iPhone	iPhone Pro 11	89 290	10%
iPhone	iPhone SE 2020	36 990	10%
iPhone	iPhone 12 Pro	89 990	10%
Samsung	Galaxy M52	72 000	5%
Samsung	Galaxy Z Flip 3	94 990	5%
Xiaomi	Xiaomi Redmi 10 4	13 990	20%
Xiaomi	POCO X3 Pro 8	25 990	20%

```
{price} -> {brand, model}
{sale} -> {brand}
```

Способ приведения к 2НФ - декомпозиция на два отношения, в которых не ключевые атрибуты функционально полно зависят от ключа.

Шаг 1. Из исходной таблицы удалить атрибут(ы), который зависит от части ключа.

brand	<u>model</u>	price
iPhone	iPhone Pro 11	89 290
iPhone	iPhone SE 2020	36 990
iPhone	iPhone 12 Pro	89 990
Samsung	Galaxy M52	72 000
Samsung	Galaxy Z Flip 3	94 990
Xiaomi	Xiaomi Redmi 10 4	13 990
Xiaomi	POCO X3 Pro 8	25 990

Способ приведения к 2НФ - декомпозиция на два отношения, в которых не ключевые атрибуты функционально полно зависят от ключа.

Шаг 2. Создать новую таблицу, состоящую из удаленных атрибутов и соответствующим им ключом. В таблицу занести только УНИКАЛЬНЫЕ записи исходной таблицы.

brand	sale
iPhone	10%
Samsung	5%
Xiaomi	20%

Отношение находится в **3НФ**, когда находится во 2НФ и каждый не ключевой атрибут нетранзитивно зависит от первичного ключа.

Транзитивная зависимость имеет место когда, описательный реквизит зависит от ключа через промежуточный реквизит.

Пример:

model id	brand	model	price	sale
1	iPhone	iPhone Pro 11	89 290	10%
2	iPhone	iPhone SE 2020	36 990	10%
3	iPhone	iPhone 12 Pro	89 990	10%
4	Samsung	Galaxy M52	72 000	5%
5	Samsung	Galaxy Z Flip 3	94 990	5%
6	Xiaomi	Xiaomi Redmi 10 4	13 990	20%
7	Xiaomi	POCO X3 Pro 8	25 990	20%

В этой таблице скидка на смартфон зависит от бренда, бренд зависит от модели и только модель функционально полно зависит от ключа model id

Пример:

model id	brand	model	price	sale
1	iPhone	iPhone Pro 11	89 290	10%
2	iPhone	iPhone SE 2020	36 990	10%
3	iPhone	iPhone 12 Pro	89 990	10%
4	Samsung	Galaxy M52	72 000	5%
5	Samsung	Galaxy Z Flip 3	94 990	5%
6	Xiaomi	Xiaomi Redmi 10 4	13 990	20%
7	Xiaomi	POCO X3 Pro 8	25 990	20%

```
{sale} -> {brand},
{brand} -> {model}
{model} -> {model_id}
```

Способ приведения к 3НФ - декомпозиция на несколько отношений так, чтобы в таблице не осталось транзитивно зависимых атрибутов.

Шаг 1. Из исходной таблицы удалить атрибуты, которые зависят от ключа транзитивно.

model id	model	price
1	iPhone Pro 11	89 290
2	iPhone SE 2020	36 990
3	iPhone 12 Pro	89 990
4	Galaxy M52	72 000
5	Galaxy Z Flip 3	94 990
6	Xiaomi Redmi 10 4	13 990
7	POCO X3 Pro 8	25 990

Способ приведения к 3НФ - декомпозиция на несколько отношений так, чтобы в таблице не осталось транзитивно зависимых атрибутов.

Шаг 2. Создать новую таблицу, в которую включить удаленные атрибуты. Определить (добавить) ключ. Занести уникальные кортежи зависимых атрибутов.

brand id	brand	sale
01	iPhone	10%
02	Samsung	5%
03	Xiaomi	20%

Способ приведения к 3НФ - декомпозиция на несколько отношений так, чтобы в таблице не осталось транзитивно зависимых атрибутов.

Шаг 3. В таблицу шага 1 включить атрибут-связку, соответствующий ключевому столбцу созданной таблицы (для сохранения информационной целостности исходной таблицы).

model id	model	price	brand_id
1	iPhone Pro 11	89 290	01
2	iPhone SE 2020	36 990	01
3	iPhone 12 Pro	89 990	01
4	Galaxy M52	72 000	02
5	Galaxy Z Flip 3	94 990	02
6	Xiaomi Redmi 10 4	13 990	03
7	POCO X3 Pro 8	25 990	03

Нормальная форма **Бойса-Кодда (НФБК)** - частная форма 3 нормальной формы.

Для отношений, имеющих один ключ, НФБК является ЗНФ.

Отношение не отвечает форме Бойса-Кодда, если:

- имеет два или более потенциальных ключа;
- два и более потенциальных ключа являются составными;
- они пересекаются, т.е. имеют хотя бы один общий атрибут;
- атрибуты в составном ключе не являются взаимонезависимыми.

Пример:			7
		1	

city	shop	<u>model</u>	price
Владивосток	ДНС	iPhone Pro 11	89 290
Москва	ДНС	iPhone SE 2020	36 990
Владивосток	Связной	iPhone SE 2020	36 500
Москва	Связной	iPhone 12 Pro	89 990
Хабаровск	М.Видео	iPhone 12 Pro	92 350
Москва	М.Видео	Galaxy M52	72 000
Владивосток	ДНС	Galaxy Z Flip 3	94 990
Москва	Связной	Galaxy M52	71 999
Москва	М.Видео	Galaxy Z Flip 3	90 990

Атрибут **price** функционально полно зависит от составного ключа (**city, shop, model**).

Пример:

city	shop	<u>model</u>	price
Владивосток	ДНС	iPhone Pro 11	89 290
Москва	ДНС	iPhone SE 2020	36 990
Владивосток	Связной	iPhone SE 2020	36 500
Москва	Связной	iPhone 12 Pro	89 990
Хабаровск	М.Видео	iPhone 12 Pro	92 350
Москва	М.Видео	Galaxy M52	72 000
Владивосток	ДНС	Galaxy Z Flip 3	94 990
Москва	Связной	Galaxy M52	71 999
Москва	М.Видео	Galaxy Z Flip 3	90 990

Но в ключе существует функциональная зависимость.

{model} -> {shop}

Пример:		 	
пример.			
	↓	\	

city	shop	model	price
Владивосток	ДНС	iPhone Pro 11	89 290
Москва	днс	iPhone SE 2020	36 990
Владивосток	Связной	iPhone SE 2020	36 500
Москва	Связной	iPhone 12 Pro	89 990
Хабаровск	М.Видео	iPhone 12 Pro	92 350
Москва	М.Видео	Galaxy M52	72 000
Владивосток	днс	Galaxy Z Flip 3	94 990
Москва	Связной	Galaxy M52	71 999
Москва	М.Видео	Galaxy Z Flip 3	90 990

Но в ключе существует функциональная зависимость.

{model} -> {shop} -> {city}

Тример:			
city	shop	<u>model</u>	price
Владивосток	ДНС	iPhone Pro 11	89 290
Москва	ДНС	iPhone SE 2020	36 990
Владивосток	Связной	iPhone SE 2020	36 500
Москва	Связной	iPhone 12 Pro	89 990
Хабаровск	М.Видео	iPhone 12 Pro	92 350
Москва	М.Видео	Galaxy M52	72 000
Владивосток	ДНС	Galaxy Z Flip 3	94 990
Москва	Связной	Galaxy M52	71 999
Москва	М.Видео	Galaxy Z Flip 3	90 990

Можно ошибочно при заполнении таблицы указать для какого-то города несуществующий магазин и наоборот.

Нормальная форма Бойса-Кодда (НФБК)

Способ приведения к НФБК- декомпозиция на несколько отношений так, чтобы в составном ключе все атрибуты были взаимонезависимы.

Шаг 1. Из ключа удалить функционально зависимые атрибуты.

<u>model</u>	price
iPhone Pro 11	89 290
iPhone SE 2020	36 990
iPhone SE 2020	36 500
iPhone 12 Pro	89 990
iPhone 12 Pro	92 350
Galaxy M52	72 000
Galaxy Z Flip 3	94 990
Galaxy M52	71 999
Galaxy Z Flip 3	90 990

Нормальная форма Бойса-Кодда (НФБК)

Способ приведения к НФБК- декомпозиция на несколько отношений так, чтобы в составном ключе все атрибуты были взаимонезависимы.

Шаг 2. Создать новую таблицу, в которую включить удаленные атрибуты. Добавить ключевой столбец. Занести различные записи.

	-	
city shop id	city	shop
1	Владивосток	ДНС
2	Москва	ДНС
3	Владивосток	Связной
4	Москва	Связной
5	Хабаровск	М.Видео
6	Москва	М.Видео

Нормальная форма Бойса-Кодда (НФБК)

Способ приведения к НФБК- декомпозиция на несколько отношений так, чтобы в составном ключе все атрибуты были взаимонезависимы.

Шаг 3. В таблицу шага 1 в ключ включить атрибут-связку, соответствующий ключевому столбцу созданной таблицы. Заполнить поле.

city shop id	model	price
1	iPhone Pro 11	89 290
2	iPhone SE 2020	36 990
3	iPhone SE 2020	36 500
4	iPhone 12 Pro	89 990
5	iPhone 12 Pro	92 350
6	Galaxy M52	72 000
1	Galaxy Z Flip 3	94 990
4	Galaxy M52	71 999
6	Galaxy Z Flip 3	90 990

Отношение находится в **4НФ**, если оно находится в НФБК и все многозначные зависимости являются функциональными зависимостями от ее ключей.

В отношении **R** (**A**, **B**, **C**) существует **многозначная зависимость** (обозначается **R.A** -> -> **R.B**) в том и только в том случае, если множество значений **B**, соответствующее паре значений **A** и **C**, зависит только от **A** и не зависит от **C**.

Пример:

supplier	shop	<u>model</u>	price
MainApple	ДНС	iPhone Pro 11	89 290
MainApple	ДНС	iPhone SE 2020	36 990
MainApple	Связной	iPhone 12 Pro	89 990
MainApple	М.Видео	iPhone 12 Pro	92 350
MainApple	М.Видео	Galaxy M52	72 000
000 "ДМ-Опт"	ДНС	Galaxy Z Flip 3	94 990
000 "ДМ-Опт"	Связной	Galaxy M52	71 999
000 "ДМ-Опт"	М.Видео	Galaxy Z Flip 3	90 990

Существует следующая многозначная зависимость:

```
\{\text{supplier}\} \rightarrow \{\text{model}\}\
\{\text{supplier}\} \rightarrow \{\text{shop}\}\
```

Пример:

supplier	shop	<u>model</u>	price
MainApple	ДНС	iPhone Pro 11	89 290
MainApple	ДНС	iPhone SE 2020	36 990
MainApple	Связной	iPhone 12 Pro	89 990
MainApple	М.Видео	iPhone 12 Pro	92 350
MainApple	М.Видео	Galaxy M52	72 000
000 "ДМ-Опт"	ДНС	Galaxy Z Flip 3	94 990
000 "ДМ-Опт"	Связной	Galaxy M52	71 999
000 "ДМ-Опт"	М.Видео	Galaxy Z Flip 3	90 990

То есть, например, при добавлении новой модели нужно указать магазин и поставщика, при этом нужно следить, чтобы у поставщика действительно была эта модель, а поставщик работал с этим магазином.

Способ приведения к 4НФ- декомпозиция на несколько отношений так, независимые факты размещались в разных отношениях.

Шаг 1. Из исходной таблицы удалить атрибуты, связанные многозначной зависимостью.

price
89 290
36 990
89 990
92 350
72 000
94 990
71 999
90 990

Способ приведения к 4НФ- декомпозиция на несколько отношений так, независимые факты размещались в разных отношениях.

Шаг 2. Создать две новые таблицы, в которые включить связанные столбцы. Добавить ключевые столбцы. Занести уникальные записи.

p m id	supplier	model
1	MainApple	iPhone Pro 11
2	MainApple	iPhone SE 2020
3	MainApple	iPhone 12 Pro
4	MainApple	Galaxy M52
5	000 "ДМ-Опт"	Galaxy Z Flip 3
6	000 "ДМ-Опт"	Galaxy M52

p s id	supplier	shop
01	MainApple	ДНС
02	MainApple	Связной
03	MainApple	М.Видео
04	000 "ДМ-Опт"	ДНС
05	000 "ДМ-Опт"	Связной
06	000 "ДМ-Опт"	М.Видео

Способ приведения к 4НФ- декомпозиция на несколько отношений так, независимые факты размещались в разных отношениях.

War 3. В таблицу шага 1 добавить ключи созданных таблиц для сохранения информационной целостности.

p s id	p m id	price
01	1	89 290
01	2	36 990
02	3	89 990
03	3	92 350
03	4	72 000
04	5	94 990
05	6	71 999
06	5	90 990

Декомпозицией отношения R называется замена **R** на совокупность отношений $\{R_1, R_2, ..., R_n\}$ такую, что каждое из них есть проекция **R**, и каждый атрибут **R** входит хотя бы в одну из проекций декомпозиции.

Декомпозицией отношения R называется замена **R** на совокупность отношений $\{R_1, R_2, ..., R_n\}$ такую, что каждое из них есть проекция **R**, и каждый атрибут **R** входит хотя бы в одну из проекций декомпозиции.

Пример:

supplier	customer	model
MainApple	Покупатель_1	iPhone Pro 11
MainApple	Покупатель_1	iPhone 12 Pro
MainApple	Покупатель_2	iPhone 12 Pro
000 "ДМ-Опт"	Покупатель_2	Galaxy Z Flip 3

Рассмотрим теперь отношение **R'**, которое получается в результате операции соединения, применённой к отношениям, полученным в результате декомпозиции **R**.

Декомпозиция называется **декомпозицией без потерь**, если **R'** в точности совпадает с **R**.

Неформально говоря, при декомпозиции без потерь отношение «разделяется» на отношения-проекции таким образом, что из полученных проекций возможна «сборка» исходного отношения с помощью операции соединения.

Пример, отношение \mathbf{R} :

supplier	customer	model
MainApple	Покупатель_1	iPhone Pro 11
MainApple	Покупатель_1	iPhone 12 Pro
MainApple	Покупатель_2	iPhone 12 Pro
000 "ДМ-Опт"	Покупатель_2	Galaxy Z Flip 3

Варианты декомпозиции R':

- {supplier}, {customer}, {model}{supplier}, {customer, model}{model}, {supplier, customer}{customer}, {supplier, model}
- {supplier, customer}, {customer, model}
- {supplier, customer}, {supplier, model}
- {customer, model}, {supplier, model}
- {supplier, customer}, {customer, model}, {model, supplier}

```
Вариант декомпозиции: \{supplier\}, \{customer\}, \{model\} R_1 R_2 R_3 supplier customer model
```

MainApple ООО "ДМ-Опт" Покупатель_1 Покупатель_2 iPhone Pro 11
iPhone 12 Pro
Galaxy Z Flip 3

```
Соединение проекций R ' (CROSS JOIN): {supplier}, {customer}, {model} R<sub>1</sub> R<sub>2</sub> R<sub>3</sub>
```

supplier	customer	model
MainApple	Покупатель_1	iPhone Pro 11
MainApple	Покупатель_1	iPhone 12 Pro
MainApple	Покупатель_1	Galaxy Z Flip 3
MainApple	Покупатель_2	iPhone 12 Pro
MainApple	Покупатель_2	iPhone Pro 11
MainApple	Покупатель_2	Galaxy Z Flip 3
000 "ДМ-Опт"	Покупатель_1	iPhone Pro 11
000 "ДМ-Опт"	Покупатель_1	iPhone 12 Pro
000 "ДМ-Опт"	Покупатель_1	Galaxy Z Flip 3
000 "ДМ-Опт"	Покупатель_2	iPhone 12 Pro
000 "ДМ-Опт"	Покупатель_2	iPhone Pro 11
000 "ДМ-Опт"	Покупатель_2	Galaxy Z Flip 3

```
Соединение проекций R': {supplier}, {customer}, {model} R_1 R_2 R_3
```

supplier	customer	model
MainApple	Покупатель_1	iPhone Pro 11
MainApple	Покупатель_1	iPhone 12 Pro
MainApple	Покупатель_1	Galaxy Z Flip 3
MainApple	Покупатель_2	iPhone 12 Pro
MainApple	Покупатель_2	iPhone Pro 11
MainApple	Покупатель_2	Galaxy Z Flip 3
000 "ДМ-Опт"	Покупатель_1	iPhone Pro 11
000 "ДМ-Опт"	Покупатель_1	iPhone 12 Pro
000 "ДМ-Опт"	Покупатель_1	Galaxy Z Flip 3
000 "ДМ-Опт"	Покупатель_2	iPhone 12 Pro
000 "ДМ-Опт"	Покупатель_2	iPhone Pro 11
000 "ДМ-Опт"	Покупатель_2	Galaxy Z Flip 3

R' не совпадает с R, а значит такая декомпозиция не является декомпозицией без потерь.

Вариант декомпозиции:

{supplier, customer}, {customer, model}, {model, supplier}

 R_1

supplier	customer
MainApple	Покупатель_1
MainApple	Покупатель_2
000 "ДМ-Опт"	Покупатель_2

 R_2

supplier	model
MainApple	iPhone Pro 11
MainApple	iPhone 12 Pro
000 "ДМ-Опт"	Galaxy Z Flip 3

 R_3

customer	model
Покупатель_1	iPhone Pro 11
Покупатель_1	iPhone 12 Pro
Покупатель_2	iPhone 12 Pro
Покупатель_2	Galaxy Z Flip 3

```
Соединение проекций R'(INNER JOIN):  \{ \text{supplier, customer} \}, \{ \text{customer, model} \}, \{ \text{model, supplier} \}   R_1 \qquad \qquad R_2 \qquad \qquad R_3
```

supplier	customer	customer	model	model	supplier
MainApple	Покупатель_1	Покупатель_1	iPhone Pro 11	iPhone Pro 11	MainApple
MainApple	Покупатель_1	Покупатель_1	iPhone 12 Pro	iPhone 12 Pro	MainApple
MainApple	Покупатель_2	Покупатель_2	iPhone 12 Pro	iPhone 12 Pro	MainApple
000 "ДМ-Опт"	Покупатель_2	Покупатель_2	Galaxy Z Flip 3	Galaxy Z Flip 3	000 "ДМ-Опт"

```
Соединение проекций R'(INNER JOIN): {supplier, customer}, {customer, model}, {model, supplier}
```

supplier	customer	model
MainApple	Покупатель_1	iPhone Pro 11
MainApple	Покупатель_1	iPhone 12 Pro
MainApple	Покупатель_2	iPhone 12 Pro
000 "ДМ-Опт"	Покупатель_2	Galaxy Z Flip 3

R' совпадает с **R**, а значит такая декомпозиция **является декомпозицией без потерь**.

Отношения находятся в **5НФ**, если оно находится в 4НФ и в таблице каждая нетривиальная зависимость соединения определялась ключом этой таблицы.

Если «Атрибут_1» зависит от «Атрибута_2», а «Атрибут_2» в свою очередь зависит от «Атрибута_3», а «Атрибут_3» зависит от «Атрибута_1», то все три атрибута обязательно входят в один кортеж.

Пятая нормальная форма ориентирована на работу с зависимыми соединениями. Указанные зависимые соединения между тремя атрибутами встречаются очень редко. Зависимые соединения между четырьмя, пятью и более атрибутами указать практически невозможно.

Пример:

supplier	customer	model	price
MainApple	Покупатель_1	iPhone Pro 11	89 290
MainApple	Покупатель_1	iPhone 12 Pro	89 990
MainApple	Покупатель_2	iPhone 12 Pro	92 350
000 "ДМ-Опт"	Покупатель_1	Galaxy Z Flip 3	94 990
000 "ДМ-Опт"	Покупатель_2	Galaxy Z Flip 3	90 990

Покупатель_1 приобретает несколько Товаров у MainApple. Покупатель_1 приобрел новый Товар Galaxy Z Flip 3 у ООО "ДМ-Опт". Тогда в соответствии с 5НФ MainApple обязан поставлять Покупателю_1 тот же самый новый Товар Galaxy Z Flip 3, а ООО "ДМ-Опт" должен поставлять Покупателю_1, кроме нового Товара Galaxy Z Flip 3, всю номенклатуру Товаров MainApple.

Этого на практике не бывает. Покупатель свободен в своем выборе товаров.

Способ приведения к 5НФ- декомпозиция на несколько отношений так, чтобы эта декомпозиция являлась декомпозицией без потерь.

Общая рекомендация: строить структуру базы данных таким образом, чтобы избежать применения **4НФ** и **5НФ**.

Шаг 1. Создать две новые таблицы, в которые включить связанные столбцы, разбив многозначную зависимость.

supplier	model

supplier	shop

Способ приведения к 5НФ- декомпозиция на несколько отношений так, чтобы эта декомпозиция являлась декомпозицией без потерь.

Шаг 1. Выполнить декомпозицию:

{supplier, customer}, {customer, model}, {model, supplier} R_1

supplier	customer
MainApple	Покупатель_1
MainApple	Покупатель_2
000 "ДМ-Опт"	Покупатель_2

supplier	model
MainApple	iPhone Pro 11
MainApple	iPhone 12 Pro
000 "ДМ-Опт"	Galaxy Z Flip 3

customer	model
Покупатель_1	iPhone Pro 11
Покупатель_1	iPhone 12 Pro
Покупатель_2	iPhone 12 Pro
Покупатель_2	Galaxy Z Flip 3

Способ приведения к 5НФ- декомпозиция на несколько отношений так, чтобы эта декомпозиция являлась декомпозицией без потерь.

Шаг 2. Выполнить соединение проекций $\mathbf{R}' = [R_1, R_2, R_3]$ (INNER JOIN):

 $\mathsf{R}_1 \hspace{1cm} \mathsf{R}_2 \hspace{1cm} \mathsf{R}_3$

supplier	customer	customer	model	model	supplier
MainApple	Покупатель_1	Покупатель_1	iPhone Pro 11	iPhone Pro 11	MainApple
MainApple	Покупатель_1	Покупатель_1	iPhone 12 Pro	iPhone 12 Pro	MainApple
MainApple	Покупатель_2	Покупатель_2	iPhone 12 Pro	iPhone 12 Pro	MainApple
000 "ДМ-Опт"	Покупатель_2	Покупатель_2	Galaxy Z Flip 3	Galaxy Z Flip 3	000 "ДМ-Опт"

Способ приведения к 5НФ- декомпозиция на несколько отношений так, чтобы эта декомпозиция являлась декомпозицией без потерь.

Шаг 3. Сравнить **R** ' =[R $_1$, R $_2$, R $_3$] с исходным отношением, они должны совпадать.

supplier	customer	model	
MainApple	Покупатель_1	iPhone Pro 11	
MainApple	Покупатель_1	iPhone 12 Pro	
MainApple	Покупатель_2	iPhone 12 Pro	
000 "ДМ-Опт"	Покупатель_2	Galaxy Z Flip 3	

6 нормальная форма (**6NF**) была введена при работе с хронологическими базами данных.

Хронологическая база данных — это база, которая может хранить не только текущие данные, но и исторические данные, т.е. данные, относящиеся к прошлым периодам времени. Такая база может хранить и данные, относящиеся к будущим периодам времени.

Таблица находится в **6NF**, когда она неприводима, то есть не может быть подвергнута дальнейшей декомпозиции без потерь.

Таблица, которая находится в **6NF**, также находится и в **5NF**, и во всех предыдущих.

6 нормальная форма вводит такое понятие как «**Декомпозиция до конца**», т.е. максимально возможная декомпозиция таблиц.

В хронологических базах данных такая нормализация может быть полезна, так как она позволяет бороться с избыточностью. В нехронологических базах данных нормализация таблиц до **6NF** приведёт к значительному снижению производительности. Кроме этого такая нормализация сделает работу с базой данных очень сложной за счет многократного увеличения количества таблиц.

Проектирование базы данных и NF

Процесс проектирования базы данных с помощью нормальных форм — это не процесс приведения ее к самой высокой нормальной форме, это компромисс между отсутствием аномалий (проблем при вставке, удалении, обновлении данных) и приемлемой производительностью.

Поэтому в процессе нормализации базы данных необходимо руководствоваться в первую очередь требованиями к разрабатываемой системе и требованиями предметной области.

Необходимо подумать о том, какие именно операции (действия) будут выполняться над данными, какие аномалии могут возникнуть в тех или иных случаях.

И только после этого принимать решения о нормализации, иными словами, **НЕОБХОДИМО РУКОВОДСТВОВАТЬСЯ ЗДРАВЫМ СМЫСЛОМ**.

Нормальная форма — требование, предъявляемое к структуре таблиц в теории реляционных баз данных для устранения из базы избыточных функциональных зависимостей между полями таблиц.

Нормальная форма — требование, предъявляемое к структуре таблиц в теории реляционных баз данных для устранения из базы избыточных функциональных зависимостей между полями таблиц.

Метод нормальных форм состоит в сборе информации об объектах решения задачи в рамках одной таблицы и последующей декомпозиции этой таблицы на несколько взаимосвязанных таблиц на основе процедур нормализации отношений.

Нормальная форма — требование, предъявляемое к структуре таблиц в теории реляционных баз данных для устранения из базы избыточных функциональных зависимостей между полями таблиц.

Метод нормальных форм состоит в сборе информации об объектах решения задачи в рамках одной таблицы и последующей декомпозиции этой таблицы на несколько взаимосвязанных таблиц на основе процедур нормализации отношений.

Цель нормализации исключить избыточное дублирование данных, которое является причинами аномалий, возникающих при добавлении, редактировании и удалении строк таблицы.

Существует 6 нормальных форм и 5 правил перевода от одной нормальной формы к нормальной форме более высокого порядка.

Существует 6 нормальных форм и 5 правил перевода от одной нормальной формы к нормальной форме более высокого порядка.

Метод нормальных форм используется в процессе проектирования базы данных.

Существует 6 нормальных форм и 5 правил перевода от одной нормальной формы к нормальной форме более высокого порядка.

Метод нормальных форм используется в процессе проектирования базы данных.

В реальных задачах, как правило, базу данных «доводят» нормальной формы Байеса-Кодда.

Спасибо за внимание!