MH1810 Math 1 Part 2 Chap 5 Differentiation Maximum and Minimum Problems

Tang Wee Kee

Nanyang Technological University

First Derivative and the Growth of a Function

Suppose f is differentiable and f is increasing on (a, b). Then it follows from the definition of derivative that $f'(x) \ge 0$ on (a, b).

How about the converse?

If $f'(x) \ge 0$ on (a, b), does it follow that f is increasing on (a, b)? The next result says that it is true if f'(x) > 0.

Theorem

Theorem

1. If f'(x) > 0 on (a, b), then f is increasing on (a, b), i.e., for $x_1, x_2 \in (a, b)$

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2).$$

2. If f'(x) < 0 on (a, b), then f is decreasing on I, i.e., for $x_1, x_2 \in (a, b)$

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2).$$

Proof.

(Use Mean Value Theorem)

Corollary

Suppose f continuous on [a, b].

- 1. If f'(x) > 0 on (a, b), then f is increasing on [a, b].
- 2. If f'(x) < 0 on (a, b), then f is decreasing on [a, b].

Example

Example

Find interval(s) where f defined by $f(x) = 2 + 3x - x^3$ is increasing.

Solution

Solution

The function $f(x) = 2 + 3x - x^3$ is continuous on \mathbb{R} . Note that

$$f'(x) = 3 - 3x^2 = 3(1 - x)(1 + x)$$
 on \mathbb{R} .

Thus, f'(x) > 0 for $x \in (-1, 1)$ and f'(x) < 0 for $x \in (-\infty, -1) \cup (1, \infty)$.

Since f is continuous \mathbb{R} , we conclude that f is increasing on [-1,1].

Using f' for checking one-to-one

If f is increasing or decreasing on (a, b), then f is one-to-one on (a, b).

Example

Show that $f(x) = \sin x$ with domain $[-\pi/2, \pi/2]$ is one-to-one.

Solution

We have

$$f'(x) = \cos x > 0, \quad x \in (-\pi/2, \pi/2).$$

So, f is continuous on $[-\pi/2, \pi/2]$, differentiable on $(-\pi/2, \pi, 2)$ and f'(x) > 0 on $(-\pi/2, \pi/2)$. Thus, f is increasing on $[-\pi/2, \pi/2]$ and hence it is one-to-one. (And, its inverse is denoted by $\sin^{-1} x$.)

Using f' to Solve Optimization Problems

Theorem (Fermat's Theorem)

Suppose f has a local maximum or minimum at c. If f'(c) exists, then

$$f'(c)=0.$$

Proof.

(Omitted).

Example

How do we construct a cylindrical metal can with a given volume V in a way that minimizes the surface area (the amount of metal used)?

Using f' to Solve Optimization Problems

Example

How do we construct a cylindrical metal can with a given volume V in a way that minimizes the surface area (the amount of metal used)?

Solution

Let r be the radius and h the height and A the surface area of the cylindrical can. Then

$$V = \pi r^2 h$$
, $A = 2\pi r^2 + 2\pi r h$.

The first equation gives us $h=\frac{V}{\pi r^2}$, which we can substitute into A to get $A(r)=2\pi r^2+\frac{2V}{r}$.

Solution

$$A(r)=2\pi r^2+\frac{2V}{r}.$$

Our objective is to find the minimum of A(r), where the domain of A(r) is $(0, \infty)$. Note that A is continuous on $(0, \infty)$, and we have

$$A'(r) = 4\pi r - \frac{2V}{r^2} = \frac{4\pi}{r^2} \left(r^3 - \frac{V}{2\pi} \right).$$

Solution

$$A'(r) = \frac{4\pi}{r^2} \left(r^3 - \frac{V}{2\pi} \right) = 0 \Leftrightarrow r = \left(\frac{V}{2\pi} \right)^{1/3}$$
 For $0 < r < \left(\frac{V}{2\pi} \right)^{1/3}$, $A'(r) < 0$. Thus, $A(r)$ is decreasing on $\left(0, \left(\frac{V}{2\pi} \right)^{1/3} \right)$. For $r > \left(\frac{V}{2\pi} \right)^{1/3}$, $A'(r) > 0$. Thus, $A(r)$ is increasing on $\left(\left(\frac{V}{2\pi} \right)^{1/3}, \infty \right)$. Therefore, $A(r)$ where $r = \left(\frac{V}{2\pi} \right)^{1/3}$ must be a global minimum point. Hence we should choose to make our cans with radius $r = \left(\frac{V}{2\pi} \right)^{1/3}$ and height $h = V/(\pi r^2)$.

Second Derivatives and Shape of Curve

We start with describing the shape of a curve, followed by using the second derivative to classify its shape.

Definition

Suppose f is differentiable.

(a) The graph of a function f concaves upward at a point c if the graph of f lies above its tangent at c, i.e.,

$$f(x) \ge f(c) + f'(c)(x - c)$$

for x in a neighbourhood of c.

The graph of a function f concaves upward on an interval (a, b) if it is concave upward (or convex) at every point in (a, b).

Second Derivatives and Shape of Curve

Definition

Suppose f is differentiable.

(b) The graph of a function f concaves downward at a point c if the graph of f lies below its tangent at c, i.e.,

$$f(x) \le f(c) + f'(c)(x - c)$$

for x in a neighbourhood of c.

The graph of a function f concaves downward on an interval (a, b) if it is concave downward (or concave) at every point in (a, b).

Inflection Points

Definition

Suppose f is differentiable.

(c) A point P on the curve y = f(x) is called an inflection point if f is continuous there and the curve changes concavity, i.e., from concaving upward to concaving downward, or from concaving downward to concaving upward.

Concavity Test

Theorem

- (a) If f''(x) > 0 for all x in (a, b), then the graph of f concaves upward on (a, b).
- (b) If f''(x) < 0 for all x in (a, b), then the graph of f concaves downward on (a, b).

Proof.

(Omitted.)

This is a consequence of the Mean Value Theorem applied to f'.

Concavity Test: Examples

Example

Let $f(x) = 2 + 3x - x^3$. Find the intervals where the graph concave upwards. Find also the intervals where the graph concaves downwards and the points of inflection.

Solution

$$f(x)=2+3x-x^3$$
 , $f'(x)=3-3x^2$, $f''(x)=-6x$ at every $x\in\mathbb{R}.$

$$f''(x) > 0 \iff x < 0,$$

 $f''(x) < 0 \iff x > 0.$

Therefore, the graph of f is concave downward on $(0, \infty)$, and concave upward on $(-\infty, 0)$.

There is a change of concavity at x = 0. So, x = 0 is a point of inflection.

Second derivatives and the nature of extrema

The next result is useful for solving some optimization problems, especially if the function is twice differentiable.

Theorem

Suppose f is twice differentiable on (a, b) and f'(c) = 0 for some $c \in (a, b)$.

- (a) If f''(x) > 0 on (a, b), then f(c) is a global minimum on (a, b).
- (b) If f''(x) < 0 on (a, b), then f(c) is a global maximum on (a, b).

[Proof.] Omitted.

Application to an Optimisation Problem

Example

How do we construct a cylindrical metal can with a given volume V in a way that minimizes the surface area (the amount of metal used)?

Solution

Let r be the radius and h the height and A the surface area of the cylindrical can. Then

$$V = \pi r^2 h$$
, and $A = 2\pi r^2 + 2\pi r h$.

The first equation gives us $h = \frac{V}{\pi r^2}$, which we can substitute into A to get

$$A(r) = 2\pi r^2 + \frac{2V}{r}.$$

Solution

Note that A(r) is continuous on $(0, \infty)$, and we have

$$A'(r) = \frac{4\pi}{r^2} \left(r^3 - \frac{V}{2\pi} \right) \text{ and } A''(r) = 4\pi + \frac{4V}{r^3} > 0.$$

We also note that

$$A'(r) = 0 \Leftrightarrow r = \left(\frac{V}{2\pi}\right)^{1/3}$$

Since A''(r) > 0 for every $r \in (0, \infty)$ and $A'(\left(\frac{V}{2\pi}\right)^{1/3}) = 0$, we conclude that $A(\left(\frac{V}{2\pi}\right)^{1/3})$ is a global minimum.

Global Extrema

Let f be a function with domain D_f . Recall

Definition

We say that f has a global maximum (respectively global minimum) at c if $f(c) \ge f(x)$ (respectively $f(c) \le f(x)$) for all $x \in D_f$.

Our aim : find c where f(c) is a global extremum (maximum or minimum).

Local (Relative) Maximum/Minimum

Definition

Let f be a function with domain D_f

- (a) f has a local maximum (or relative maximum) at c if $f(c) \ge f(x)$ for $x \in (u, v) \cap D_f$ where (u, v) is some open interval containing c.
- (b) f has a local minimum (or relative minimum) at c if $f(c) \leq f(x)$ for $x \in (u, v) \cap D_f$ where (u, v) is some open interval containing c.

Note that a global maximum (respectively minimum) is a local maximum (respectively minimum).

Local Maximum/Minimum (Diagram)

The First Derivative Test

Theorem

Suppose that f is continuous in a neighbourhood of c where c is a critical point of f and that f' exists in a deleted neighbourhood of c. (Note that f'(c) may not be defined.)

(a) If f'(x) changes from negative to positive as x increases through c, then f has a local minimum at c.

The First Derivative Test

Theorem

Suppose that f is continuous in a neighbourhood of c where c is a critical point of f and that f' exists in a deleted neighbourhood of c. (Note that f'(c) may not be defined.)

- (b) If f'(x) changes from positive to negative as x increases through c, then f has a local maximum at c.
- (c) If f'(x) does not change sign as x increases through c, then f has no maximum or minimum at c.

Example

Example

Let $f(x) = (x-1)^{2/3}$. Find and classify all critical points of f on \mathbb{R} .

Solution

We have

$$f'(x) = \frac{2}{3}(x-1)^{-1/3}$$
,

which is undefined at x=1. Hence we have a singular point at x=1. Furthermore, since f'(x)<0 for x<1 and f'(x)>0 for x>1, the first derivative test tells us that f(1)=0 is a local minimum for f.

Example

Example

Let $f(x) = (x-1)^{1/3}$. Find and classify all critical points of f on \mathbb{R} .

Solution

We have

$$f'(x) = \frac{1}{3}(x-1)^{-2/3},$$

which is undefined at x = 1. Hence we have a singular point at x = 1.

Furthermore, f'(x) > 0 for x < 1 and f'(x) > 0 for x > 1, so the first derivative test tells us that f(1) = 0 is neither a local maximum nor a local minimum for f.

The Second Derivative Test

Theorem

Suppose f'(c) = 0 and f'' is continuous near c.

- (a) If f''(c) > 0, then f has a local minimum at c.
- (b) If f''(c) < 0, then f has a local maximum at c.
- (c) If f''(c) = 0, there is no conclusion. We don't know whether f has a local maximum or local minimum at c.

Graphical explanation:

Example

Example

Let $f(x) = 2 + 3x - x^3$. Classify all critical points of f.

Solution

$$f(x) = 2 + 3x - x^3$$
 , $f'(x) = 3 - 3x^2$, $f''(x) = -6x$ at every $x \in \mathbb{R}$.

Critical points are x = 1 and x = -1.

At x = 1, note that f'(1) = 0 and f''(1) < 0. By the second derivative test, f has a local maximum at x = 1.

At x = -1, note that f'(-1) = 0 and f''(1) > 0. By the second derivative test, f has a local minimum at x = -1.

Example

Example

Classify all critical points of $f(x) = x^4$.

Solution

 $f(x)=x^4$, $f'(x)=4x^3$, $f''(x)=12x^2$ at every $x\in\mathbb{R}$.

It is clear that x = 0 is the only critical point.

The second derivative test can not be applied here as f''(0) = 0.

We shall use first derivative test.

For x < 0, f'(x) < 0 whereas f'(x) > 0 for x > 0. By the first derivative test, we conclude f has a local minimum at x = 0.