Detecting Market Regimes Using High-Frequency Limit Order Book and Trade Data

I processed the data in 4 pairs of Book Order- Trade Volume data for the four respective files.

1. Feature Engineering

- -Market Microstructure: Calculated mid-price, spread, and microprice for liquidity, cost insights.
- -Order Book Depth: Extracts imbalance and depth at multiple levels, capturing market pressure.
- -Volatility: Computes rolling volatility for price and microprice to track uncertainty.
- -Trade Dynamics: Includes buy/sell volume, VWAP, & market maker activity for trade flow study
- -Synchronization: Aligns order book and trade data for consistent feature extraction.

Additional Steps:

Timestamp Cleaning: Converts raw timestamp strings into a consistent datetime format.

Slope Calculation: Uses linear regression to calculate price-quantity slopes for bid and ask sides.

Rolling Window Features: Computes rolling features- total volume, volume imbalance, trade counts.

Normalization: Standardizes features using z-score scaling for model input consistency.

2. Normalization & Clustering

-PCA:

Variance: Component 1 captures 99%+ of the data, simplifying to a single dominant feature.

Kurtosis: High in Component 1, indicating rare events.

-SVD:

Variance: More evenly spread across components, capturing diverse data behaviors.

Kurtosis: High in Component 2, highlighting volatility.

Results from all 4 pairs were almost the same except the first pair. I have included the detailed results with all complete visualizations in the GitHub link.

Clustering Summary:

- **-KMeans**: Silhouette scores (0.278–0.523) suggest moderate clustering, with 3–5 clusters.
- **-HDBSCAN**: Silhouette scores (-0.069-0.515) indicate good cohesion, with 7-11 clusters.
- **-GMM**: Silhouette scores (0.190–0.493) show variable performance, with 3–5 clusters.

Insight: HDBSCAN excels in cohesion and cluster count, while KMeans and GMM perform moderately.

3. Regime Labeling and Analysis & Visualizations

Pair	Volatility	Liquidity	Directionality	Regime Label
1(14th)	Low	High	Mean Reverting	Mean Reverting & Liquid & Stable
2(15th)	Moderate	High	Trending	Trending & Liquid & Volatile
3(16th)	High	Low	Trending	Trending & Illiquid & Volatile
4(17th)	Moderate	Low	Mean Reverting	Mean Reverting & Illiquid & Volatile

Regime Duration Distribution

4. Regime Change Insights

Although the results varied a bit among the 4 pairs(provided in GitHub link), for the above result, it could be summarised in the following way:

1.Transition Matrix:

-High Self-Transition Probabilities:

Regime 0 \rightarrow **0**: 76%

Regime 1 \rightarrow 1: 74%

Regime $2 \rightarrow 2$: 89%

-Interpretation: Regimes exhibit stability, with Regime 2 (Trending & Liquid & Stable) being the most persistent. This persistence is useful for predictive modeling and suggests regimes change infrequently.

2.Feature Distributions by Regime:

Regime 0: High volatility, low liquidity.

Regime 1: Stable, moderate liquidity.

Regime 2: High liquidity, trending price action.

-Interpretation: Feature distributions across regimes verify economic intuition, highlighting distinct characteristics for each market state.