MLS	Dataset	BST(AIC)	BST(AICc)	BST(BIC) I	BST(HQIC) B	ST(GMDL)
Ridge	automobile	19.91(3)	19.91(3)	19.91(3)	19.91(3)	19.91(3)
	fertility	106.65(3)	106.65(3)	106.65(3)	106.65(3)	106.65(3)
	flow	64.26(3)	64.26(3)	64.26(3)	64.26(3)	64.26(3)
	forest	102.13(3)	102.13(3)	102.13(3)	102.13(3)	102.13(3)
	servo	61.51(3)	61.51(3)	61.51(3)	61.51(3)	61.51(3)
	slump	86.94(3)	86.94(3)	86.94(3)	86.94(3)	86.94(3)
	traffic	45.01(3)	45.01(3)	45.01(3)	45.01(3)	45.01(3)
	wine_red	65.01(3)	65.01 (3)	65.01(3)	65.01(3)	65.01(3)
	wine_white	73.10(3)	73.10(3)	73.10(3)	73.10(3)	73.10(3)
Avg. Ranl		(3.00)	(3.00)	(3.00)	(3.00)	(3.00)
SVR	automobile	19.48(3)	19.48(3)	19.48(3)	19.48(3)	19.48(3)
	fertility	108.31(3)	108.31(3)	108.31(3)	108.31(3)	108.31(3)
	flow	72.55(4)	65.89(1)	69.56(2)	72.55(4)	69.56(2)
	forest	101.88(3)	101.88(3)	101.88(3)	101.88(3)	101.88(3)
	servo	15.07(3)	15.07(3)	15.07(3)	15.07(3)	15.07(3)
	slump	80.27(2)	79.90(1)	80.71(3)	80.71(3)	83.74(5)
	traffic	55.75(1)	55.75 (1)	57.27(4)	57.27(4)	57.27(4)
	wine_red	61.60(1)	61.60(1)	65.68(4)	64.06(3)	65.68(4)
	wine_white	58.81(2)	58.81(2)	58.81(2)	58.81(2)	73.34(5)
Avg. Ranl		(2.67)	(2.17)	(3.22)	(3.28)	(3.67)
RF	automobile		12.49(3)	12.49(3)	12.49(3)	12.49(3)
	fertility	108.85(5)	107.67(4)	102.29(2)	102.29(2)	102.29(2)
	flow	67.06 (3)	67.06(3)	67.06(3)	67.06 (3)	67.06(3)
	forest	123.56(3)	123.56(3)	123.56 (3)	123.56(3)	123.56 (3)
	servo	18.08(3)	18.08(3)	18.08(3)	18.08(3)	18.08(3)
	slump	71.35(3)	71.35(3)	71.35(3)	71.35(3)	71.35(3)
	traffic	45.28(3)	45.28(3)	45.28(3)	45.28(3)	45.28(3)
	wine_red	59.09 (3)	59.09(3)	59.09 (3)	59.09 (3)	59.09(3)
	wine_white	60.67(3)	60.67(3)	60.67(3)	60.67(3)	60.67(3)
Avg. Ranl		(3.22)	(3.11)	(2.89)	(2.89)	(2.89)
Mean Ran	k	(2.96)	(2.76)	(3.04)	(3.06)	(3.19)

Table 9: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when BST, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RF) and the RS sampling strategy.