用新一代人工智能技术解决真实问题 ---谈中小学AI科创活动的开展

谢作如 浙江省温州中学

摘要: 人工智能教育不能仅仅停留在科普和体验阶段,要让学生用AI来解决真实问题。本文提出"AI科创活动"这 一教育名词,梳理了中小学AI科创活动的类型方向,从多个角度进行了可行性分析,并展示了温州中学的学生案例。

关键词: 人工智能教育: AI科创活动: 新一代人工智能技术

中图分类号: G434 文献标识码: A 论文编号: 1674-2117 (2022) 13-0005-04

近年来人工智能技术突飞猛 进,不管是抗拒还是顺从,谁都无 法否认,人工智能正在改变我们身 边的点点滴滴。和人工智能技术发 展几乎同步,中小学的人工智能教 育也越来越引起关注。《普通高中 信息技术课程标准(2017年版)》 虽然在必修模块中增加了"人工智 能",但毕竟是在高中阶段,并没有 引起足够重视。《义务教育信息科 技课程标准(2022年版)》的发布, 则意味着人工智能教育要讲入国 家课程,必将迎来新的热点。

中小学人工智能教育该如何 实施?一位人工智能方向的博士曾 经非常直接地表示,让中小学生做 一个训练识别手写体的模型,或者 体验一下各种AI应用,不过是在教 "屠龙之术"——指极为高明,但 是在现实中用不到的技术或本领。 显然,远离生活应用的AI教育无法 吸引中小学生,是没有生命力的。那 么,中小学人工智能教育究竟如何 开展才真正有效? 笔者从开展AI科 创活动这一可行的角度提出了自己 的观点。

● AI科创活动的提出和分类

人工智能是研究、开发用于模 拟、延伸和扩展人的智能的理论、 方法、技术及应用系统的一门新的 技术科学,科创活动是科技创新活 动或者科普创新活动的简称, AI科 创活动则是指融合AI技术的科技 创新活动。

以研究内容或者方向进行划 分,中小学的AI科创活动大致可以 划分为AI+科研、AI+工程和AI+艺 术三类,加上AI本身就是一个重要 的研究领域,于是形成了AI科创的 四个主要类别或者研究方向。

AI+科研。随着科技的发 展,数据探究已经成为科研活动 最常用的手段,而运用AI能够很好 地开展一些重复烦琐的数据整理 工作。

AI+工程。在创客活动中, AI

技术的应用已经非常普遍。AI技术 的普及又推动中小学开源硬件逐 步走向卡片电脑,如树莓派、虚谷 号、拿铁熊猫和行空板等。这些控 制板内置Linux系统,流畅运行如 TensorFlow、PvTorch之类的AI 框架。

AI+艺术。自从世界上第一件 被拍卖的AI艺术品以432500美元 的高价售出,"AI+艺术"的浪潮便 势不可挡。作为艺术与科技结合最 典型的代表,交互艺术更是融入了 越来越前沿的技术。随着生成对抗 网络的普及,生成图像(如猫脸、二 次元头像、人脸等)、图片上色、艺术 风格迁移等各种有趣的艺术应用 不断出现。

AI实验研究。和其他经典计 算机算法不同的是, AI模型的训练 和数据集的关联特别密切。当面对 一个真实的问题情境时,即使在最 新SOTA模型的支持下,也需要微 调很多参数。

● 开展AI科创活动的可行性 分析

中小学生能不能使用AI技术开展科创活动?在编写清华大学出版社初中信息科技教材时,笔者曾针对AI技术在解决真实问题方面,与几位核心编委总结出了三种典型的途径,并梳理出相应的支持工具。

1. 应用AI技术解决真实问题 的三种途径

途径一:调用人工智能开放 平台的接口

人工智能开放平台的接口一般采用Web方式,因而也称为WebAPI。利用这些WebAPI,学生不需要自行训练AI模型,也不需要理解原理,只要将数据提交到平台,然后根据返回的预测结果做相应的执行即可(如图1)。人工智能开放平台最典型代表是百度AI开放平台,它提供了一个名为"baidu-aip"的Python库。

途径二:调用人工智能应用 平台

一些人工智能的算法和模型 会封装为AI应用平台,和WebAPI一 样,学生不需要自行训练模型,也不 需要理解原理即可使用。可以将这 些AI应用平台看成是本地的API, 常见的AI应用平台有OpenCV和 MediaPipe等,OpenCV还支持自行

图1 借助AI开放平台对数据进行识别

训练分类器(AI模型),也可以称为 AI开发平台。

有些AI算法和模型并没有封装为人工智能应用平台,以扩展库或者模块等方式发布,需要用户自行编译使用,如清华大学自然语言处理实验室推出的中文文本分类工具包THUCTC(THU Chinese Text Classification)、常见的语音合成库Pyttsx等。

途径三: 收集数据选择算法 训练模型

一些特定的场景是找不到通 用工具的,只能靠自行训练数据。例 如,你想将自家的几只宠物狗进行 分类识别,就只能收集数据,再选 择算法自行训练模型了。又如,识别 普通话有很多WebAPI,但是要识 别温州话这种地方方言,就只能靠 自己训练。

显然,途径三的难度是最高的,也是最有AI味的做法。实际上,以深度学习为代表的新一代人工智能技术的兴起,是对AI技术的一种有效"降维",开发难度变低,识别效果却更好。

2. 开发AI应用系统的常见支撑技术

实际上,不管采用以上哪一种 途径,都仅仅是"用AI解决问题"的 一个核心环节,并非全部。作为一 个完整的AI应用系统,对数据进 行推理或者识别环节固然重要,但 获取数据(感知),根据识别结果 执行相应的动作(控制),同样不可 缺少。还有,这个AI应用如何部署 也非常重要。这说明,仅仅有AI开 发工具是不够的,还需要其他的工 具来支持。

以设计一个看到小朋友微笑 会摆摆手并打招呼的微笑机器人 为例,除了需要训练一个识别微笑 表情的AI模型或者相关WebAPI 外,还需要很多其他相关工具: 实时获取摄像头画面的工具,如 OpenCV;一个能够驱动舵机的软 硬件工具,如pingpong和掌控板; 一个能够部署这个AI应用的迷你 电脑,如拿铁熊猫;一个语音合成 工具,如Pyttsx等。

Python是当前中小学生学习 AI的主流语言。在陪同学生开发AI 应用的这几年中,笔者收集了一些 常见Python库,并按照功能类型进 行了分类(如下页表)。

当然,中小学生开发的AI应用往往需要部署在一些迷你电脑上,能够运行Linux系统的开源硬件就成为最常见的选择,如jetsonNano、树莓派、虚谷号和行空板等,这些硬件的性能和价格都不一样,可以根据具体的要求做出选择。如果对Linux系统不熟悉,也可以选择拿铁熊猫。

● AI科创活动案例

温州中学的人工智能教育始于2017年,随着AI技术的平民化,逐步从Kinect(微软的一款深度摄像头)、LeapMotion(一款手势传感器)转向到基于普通摄像头

和深度学习上来,2021年,学校建 设了人工智能实验室,开设了"走 进万物智联的世界"课程。学生 在物联网的基础上,利用HASS (HomeAssistant,一款开源的智 能家居网关) 将实验室等智能家居 设备打通,设计一些智能控制方向 的有趣应用,成为学校智慧校园建 设的一部分。

案例1: 趣味二进制灯组—— 基于数字识别的灯光控制系统

简介: 用户在摄像头(高拍仪) 下写0~255之间的数字,智能终端 将数字转化为二进制数字, 然后发 送相应的MQTT消息到MQTT服 务器(SIoT), HASS网关接收到消 息后,控制实验室中的智能灯泡(8 个一组)的开关状态(如图2)。

AI技术: 手写数字识别。利用 MMEdu的Classification模块和 LeNet网络模型。

相关技术:物联网技术。借助 MQTT服务器实现消息中转, 再使 用HASS实现智能灯具的控制。

点评: 这是典型的AI+工程的 案例。手写体识别是一个非常经典 的人工智能实验, 也是一个入门级 的卷积神经网络实验,借助LeNet 网络模型和Mnist数据集一般在数 分钟内就能训练出一个准确度较 高的AI模型。但是模型训练出来后 还能做什么? 很多AI课程都没有进 行拓展。"趣味二进制灯组"案例给 出了一个答案,那就是从AI模型训 练走向AI应用系统开发,让物联网

开发AI应用系统需要的常见Python库

名称	功能类型	功能描述	备注
Keras	模型训练	Keras 是一个开源人工神经网络库,可以作为 TensorFlow、Microsoft-CNTK 和 Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化	后期的Keras主要支持 TensorFlow
FastAI	模型训练	FastAI 也称 fast. ai,是让新手快速实施深度学习的工具包,是 PyTorch 的高阶应用程序接口,内置了各种 SOTA 模型	
MMEdu	模型训练	MMEdu源于国产人工智能视觉算法集成框架OpenMMLab,是一个"开箱即用"的深度学习开发工具。初学者通过简洁的代码即可完成各种 SOTA 模型的训练,快速搭建出 AI 应用系统	
BaseNet	模型训练	一个类似 Keras 神经网络搭建工具,是PyTorch 的高阶应用程序接口,语法和MMEdu 一 致, 是 OpenXLab—EDU 的 成员库	
BaseML	模型训练	一个类似 SKLearn 的传统机器学习库,语法 和 MMEdu 一 致, 是 OpenXLab—EDU 的成员库。	
pinpong	感知和输出	获取传感器数据,驱动舵机、IED等执行器, 执行特定的动作	多数的开源硬件
OpenCV	感知和处理	一个功能强大的应用的开源计算机视觉和 机器学习软件库	一般用OpenCV 来获取摄像头画面
MediaPipe	感知和处理	一个由 Google Research 开发并开源的多媒体机器学习模型应用框架	
PyWebIO	输入和输出	一个能够让 Python 代码变成简单的 Web应用或基于浏览器的 GUI 应用的库	
siot	网络通信	一个物联网协议 MQTT 的库	
Flask	WebAPI 开发	一个 Web 开发库,可以用简短的代码开发 出 WebAPI 接口	
掌控板	感知和输出	一款为中小学创客教育定制的开源硬件, 内置了 Wi-Fi	
Arduino	感知和输出	一款经典的开源硬件,被誉为创客神器	

图2 趣味灯光控制系统工作流程

和人工智能结合起来。

案例2: AI魔法棒——基于掌 控板的手势识别

简介: 魔法棒上内置了加速 度传感器(利用掌控板即可),利用 MQTT发送每一次完成动作后的 加速度传感器数据(每秒采集128 个),形成数据集后在台式机上训 练出AI模型。之后,每完成一个动 作就用MQTT发送消息到台式机 上预测,再利用MQTT接收识别结 果,在屏幕上显示或者执行相应的 动作(如下页图3)。

AI技术: BP神经网络。利用

BaseNet搭建全连接神经网络, 在事先采集数据的基础上训练 AI模型,用这个模型对新的数据讲 行预测。

相关技术: 传感器技术和物 联网技术。利用MQTT消息传递数 据,借助SIoT的数据导出功能得到 数据集。

点评: AI课程中在教学BP神 经网络时,往往采用"波士顿房价 预测""鸢尾花识别"之类的案例, 非常无趣。本案例巧妙地使用了 MQTT消息传递数据,借助台式机 的算力搭建BP神经网络, 训练数据 并用于新数据预测,从而识别出传 感器的运动状态(手势),是"创客 +AI"教育的典型案例。

案例3: 是什么决定了青少年 的见识——基于好问题数据的深 度探究

简介: 不同地区的学生在见识 方面是否一致?他们的"提问"能 力有什么不同? 而这些差别和地区 GDP是什么关系? 带着这样的问 题,学生分析了全国中小学生"好问

图3 AI魔法棒的工作流程

题"大赛的一百多万条数据,选择了 上海和赣州两个地区进行多方面 的比较,最后得出相关结论。

AI技术:中文文本分类。利用 中文文本分类工具包THUCTC,对 学生的问题内容进行分类。

相关技术:数据分析技术。利 用Pandas分析一百多万条数据。

点评:这是长三角中学生数据 探究大赛的一个获奖作品。虽然说 利用jieba库分词和统计词频也是 AI技术的典型应用,但毕竟过于简 单。如果没有中文文本分类工具包 (THUCTC)的支持,这个数据探 究工作是无法进行的,因为数据量 太大了。

案例4: 当MediaPipe遇上BP 神经网络——对表情识别的另一 种研究

简介:表情识别 (Facial Expression Recognition) 是计 算机理解人类情感的一个重要方 向, 也是人机交互的一个重要方 面。训练表情识别的AI模型对算 力要求较高,需要GPU环境的支 持,在普通机房无法开展这方面 的研究。但是,如果先利用Dlib或 者MediaPipe获取人脸特征点,然 后搭建神经网络进行训练呢?学 生利用Extended Cohn-Kanade

(CK+)数据集进行实验,获得了很 不错的准确率。

AI技术: MediaPipe和BP神经 网络。先利用MediaPipe获取人脸 特征点, 再用BaseNet搭建全连接 神经网络。

点评:这是一个"AI实验 研究"方向的典型科创案例。 MediaPipe是谷歌开源的人体关键 点检测算法,可以识别人脸、手势、 姿态等多种关键点,并且检测速度 足够快。在MediaPipe的支持下,学 生找到了一种低算力模式下的深度 学习研究方向。

● 反思与展望

通过这几年开展AI科创活动 的实践, 笔者深深体会到用AI解决 真实问题并不困难, 学生完全有能 力学习以深度学习为代表的新一代 人工智能技术,并开发出一些简单 有趣的AI应用。虽然目前国内开展 AI科创活动的学校主要集中在上 海、北京这些城市的名校中,但笔者 坚信, AI技术很快就会走下神坛, 成为学生们实践技术创新的重要工 具之一。

参考文献:

- [1]吴俊杰, 谢作如, 戴娟. 中小学AI教育需要怎样的工具[J]. 中国信息技术教育, 2022(12):19-22.
- [2]谢作如,邱奕盛. 用深度学习和物联网技术设计"AI魔法棒"[J]. 中国信息技术教育, 2022(09):77-79. @