Master Informatique - Spécialité SAR

NI405 - Modélisation des systèmes répartis

Réseaux de Petri

2 - Modélisation de systèmes infinis

Lemme de monotonie

 \forall <R, M₀>, \forall M₁ accessible à partir de M₀:

$$M_1[s>M_2 \text{ et } M'_1 \ge M_1 \implies M'_1[s>M'_2 \text{ et } M'_2 \ge M_2]$$

Donc

Par le lemme de monotonie, si M_1 [s> M_2 et M_2 > M_1

- s est aussi franchissable à partir de M₂
- on a une séquence infinie qui augmente le marquage
 - Le réseau est non borné, le graphe d'accessibilité infini, mais on peut construire une représentation d'un sur-ensemble des marquages accessibles

Graphe de couverture

Définition: Le graphe de couverture d'un réseau marqué $\langle R, M_0 \rangle$ est un système de transitions $\langle Q, \Delta, \lambda, q_0 \rangle$ tel que :

- **Q** un ensemble de marquages sur $N \cup \{\omega\}$, avec $\forall k \neq 0, \omega + k = \omega, \omega k = \omega, \omega > k$
- Δ l'ensemble des arcs reliant deux éléments de Q par le franchissement d'une transition de R
- λ étiquette les arcs du graphe par le nom de la transition

$$\mathbf{q_0} = \mathbf{M_0}$$

Graphe de couverture

- Deux étapes :
 - construire l'arborescence de couverture,
 - replier l'arborescence de couverture en fusionnant les marquages identiques.

Arbre de couverture (1)

```
1- Pour toute transition t faire si M_0 [t> M' alors insérer M' dans l'arbre si M' > M_0 alors pour tout p tq M'(p) > M_0 (p) M'(p) := \omega
```


$$(1, 0)$$
 [t1> $(1, 1)$

$$(1, 0)$$

$$\downarrow t1$$

$$(1, \omega)$$

Arbre de couverture (2)

```
2- Pour chaque nouveau marquage M de l'arbre faire : soit \sigma tq M<sub>0</sub> [\sigma > M. si \exists M'= M le long de \sigma, alors M n'a pas de successeur sinon Pour toute transition t faire si M [t> alors \forall p, M'(p) = M(p) + C(p, t) si \exists M", M<sub>0</sub> [s<sub>1</sub> > M" [s<sub>2</sub> > M' et M" < M' alors pour tout p tq M"(p) < M'(p) faire M'(p) = \omega insérer M' dans l'arbre
```


Graphe de couverture - exemple

Graphe de couverture

Propriétés

- Le graphe de couverture est fini
- Le réseau est borné si le graphe de couverture ne contient pas de noeud dont une composante (au moins) a la valeur ω .

Dans ce cas, le graphe de couverture est identique au graphe d'accessibilité

Perte d'information sur le graphe de couverture

- Le symbole ω introduit une perte d'information
- D'une manière générale, le graphe de couverture ne permet pas de répondre à des questions sur
 - L'accessibilité d'un marquage
 - La vivacité du réseau
- Des réseaux ayant des comportements différents peuvent avoir le même graphe de couverture

Graphe de couverture et accessibilité

Graphe de couverture et comportement

vivant

La séquence t1t2 est bloquante

Réseau non borné et vivacité

- t n'est pas vivante s'il y a dans le graphe de couverture une composante fortement connexe puits dans laquelle t n'apparaît pas.
- <R,M_o> n'est pas vivant s'il y a dans le graphe de couverture une composante fortement connexe puits dans laquelle au moins une transition n'apparaît pas.
- <R,M_o> n'est pas pseudo-vivant s'il y a dans le graphe de couverture un nœud sans successeur.

Puissance d'expression des RdP

- Les réseaux de Petri n'ont pas la puissance d'expression de la machine de Turing
 - On ne sait pas représenter certains problèmes avec des données infinies
 - Lecteur/Ecrivain avec un nombre infini de lecteurs
- Extension du modèle par l'introduction d'arcs inhibiteurs
 - Définissent le nombre maximum de jeton que peut contenir une place pour que la transition soit franchissable

n Lecteurs / m Ecrivains

Lectures et Ecritures exclusives entre elles Ecritures exclusives entre elles

Lecteur :
Requête Lecture
Début Lecture
Fin Lecture

Ecrivain:
Requête Ecriture
Début Ecriture
Fin Ecriture

n Lecteurs / nombre infini d'écrivains

Lectures et Ecritures exclusives entre elles Ecritures exclusives entre elles

Nombre infini de lecteurs?

- La séquence (RL.DL)ⁿ doit être franchissable pour toute valeur de n.
- Le marquage

$$M_n = M_0 + n.C.\sigma$$
 σ = vecteur caractéristique de la séquence doit être accessible pour toute valeur de n

 Donc la séquence (RL.DL) ne peut décrémenter le marquage d'aucune place

Nombre infini de lecteurs (suite)?

• Toute séquence où une écriture commence après la fin de n lectures doit être franchissable :

$$M_0$$
 [(RL.DL)ⁿ.FLⁿ .RE.DE >

- Soit M_0 [RL.DL> M Puisque la séquence ne décrémente pas le marquage, $M \ge M_0$
- Donc M [(RL.DL)ⁿ.FLⁿ .RE.DE > $M_0 \text{ [(RL.DL)^{n+1}.FL^n .RE.DE} >$

Une écriture peut commencer alors qu'il y a une lecture en cours!

Arc inhibiteur

- Inh(p, t) = n
 t n'est franchissable que s'il y a moins de n jetons dans p
- Représenté avec une extrémité ronde
- Généralement pas pris en compte par les méthodes de vérification
- On peut calculer le graphe des marquages accessibles et le graphe de couverture
- Certaines propriétés (caractère borné, accessibilité) deviennent indécidables

Nombre infini de lecteurs

Une lecture peut commencer s'il n'y a pas d'écriture en cours Une écriture peut commencer s'il n'y a ni lecture, ni écriture en cours

Conclusions

- Puissance d'expression supérieure aux automates, inférieure à la machine de Turing
- Beaucoup de propriétés sont décidables
 - Caractère borné
 - Accessibilité
 - Blocage, vivacité
- L'extension du modèle (arcs inhibiteurs) diminue le champ de propriétés décidables
 - Vivacité, accessibilité ne le sont plus
- Problème de représentation des systèmes complexes
 - Ajout d'information au niveau des jetons

Exercice 3

- Ce réseau est-il
 - Borné?
 - Quasi-vivant ?
 - Pseudo-vivant ?
 - Vivant?
- Ce réseau admet-il un état d'accueil ?

Exercice 4 : construire le graphe d'accessibilité

Master Informatique - Spécialité SAR

NI405 - Modélisation des systèmes répartis

Introduction aux réseaux de Petri de haut-niveau (les réseaux colorés)

2 - Analyse

Analyse d'un modèle RdP coloré

- Les modèles construits précédemment vérifient-ils la spécification ?
- Possibilité de réponse grâce à
 - La construction du graphe d'accessibilité
 - Les invariants linéaires du réseau
 - La théorie des réductions
- Essayer de tirer parti de la structure du modèle induite par les fonctions de couleur

Pourquoi limiter les fonctions de couleur?

- Pour préserver la lisibilité du modèle
 - Tout réseau ordinaire peut être représenté...

Comme ça!

- Parce que les propriétés des fonctions permettent d'obtenir des propriétés sur le franchissement
 - On peut construire un graphe de classes
 - sans perte d'information
 - sans passer par la construction du graphe du réseau déplié

Exemple de la section critique simple

$$C = \{c_{1}, c_{2}, c_{3}\}$$

$$M_{0}(Repos) = C.All$$

$$M_{0}(Repos(c_{1} + c_{2} + c_{3}) + Res$$

$$(t_{1}, c_{1}) / (t_{1}, c_{2})$$

$$Repos(c_{2} + c_{3}) + Res + Att(c_{1})$$

$$M_{1}(Repos(c_{1} + c_{2}) + Res + Att(c_{3})$$

$$+ Res + Att(c_{2})$$

$$M_{2}(Repos(c_{1} + c_{3}) + Res + Att(c_{2})$$

Vers l'utilisation des symétries

- Dans le marquage initial, t_1 est franchissable pour toute instance de couleur marquant Repos
- Si on applique une permutation sur la couleur de la transition, les marquages obtenus sont identiques à cette permutation près

Vers l'utilisation des symétries

• On peut représenter cet ensemble de franchissements en utilisant des variables :

- On obtient ensuite les franchissements réels en testant l'ensemble des instanciations possibles de x, y et z.
- Est-ce général?

Permutation sur un multi-ensemble

• Soit A un ensemble, s une permutation sur A et a un multi-ensemble sur A

$$s.a = s.\left(\sum_{x \in A} a(x).x\right) = \sum_{x \in A} a(x).s(x)$$

- En particulier: s.a(s.x) = a(x) (notation: s.c = s(c))
 - Le coefficient de s.x dans s.a est le coefficient de x dans a
- Exemple:

$$M(p) = c_1 + 2.c_2$$

 $s.c_1 = c_3$ $s.c_2 = c_1$ $s.c_3 = c_2$
 $s.M(p)(s.c_1) = M(p)(c_1) = 1$ $s.M(p) = c_3 + 2.c_1$
 $s.M(p)(s.c_2) = M(p)(c_2) = 2$

Equivalence de franchissabilité

• (t, c_t) est franchissable \Leftrightarrow

$$M(p) \ge W^{\scriptscriptstyle -}(p, t)(c_t)$$

$$\forall c \in C(p), \quad M(p)(c) \ge W^{\scriptscriptstyle -}(p, t)(c_t)(c)$$

$$\forall c \in C(p), \quad s.M(p)(s.c) \ge s.W^{\scriptscriptstyle -}(p, t)(c_t)(s.c)$$

Dans le cas particulier où $s.W^{-}(p,t)(c_t) = W^{-}(p,t)(s.c_t)$

$$\forall c \in C(p), \quad s.M(p)(s.c) \ge W^{-}(p, t)(s.c_t)(s.c)$$

$$\forall c \in C(p), \quad s.M(p)(c) \ge W^{-}(p, t)(s.c_t)(c)$$

 $(t, s.c_t)$ est franchissable à partir de s.M

Equivalence de franchissement

• Après franchissement de (t, c,) à partir de M :

$$M'(p) = M(p) - W'(p, t)(c_t) + W'(p, t)(c_t)$$

$$s.M'(p) = s.M(p) - s.W'(p, t)(c_t) + s.W'(p, t)(c_t)$$

Dans le cas particulier où

1)
$$s.W^{-}(p, t)(c_t) = W^{-}(p, t)(s.c_t)$$

2)
$$s.W^{+}(p, t)(c_{t}) = W^{+}(p, t)(s.c_{t})$$

 $s.M'(p) = s.M(p) - W^{-}(p, t)(s.c_{t}) + W^{+}(p, t)(s.c_{t})$

$$s.M \xrightarrow{(t, s.c_t)} s.M$$

Et donc?

- Dans quel cas a-t-on : $s \circ f = f \circ s$?
- Soit C_i une classe de couleurs et f_i : C(t) -> Bag(C_i)
 - $Si f_i = X_i^j$
 - Pour toute permutation s_i sur C_i
 - Si $f_i = C_i$.All
 - Pour toute permutation s_i sur C_i
 - Si $f_i = X_i^j$ ++ (donc C_i est ordonnée)
 - Pour toute rotation r_i sur C_i
- Les contraintes sur les fonctions de couleur permettent donc de connaître les fonctions s *par construction*

Equivalence de marquages

Ensemble de symétries :

- A chaque classe non ordonnée C_i du réseau, on associe un groupe S_i de permutations,
- A chaque classe ordonnée C_i du réseau, on associe un groupe S_i de rotations
- L'ensemble S des symétries du réseau est défini par

$$S = \{ \langle s_1, ..., s_n \rangle \mid s_i \in S_i \}$$

• Equivalence de marquages (≡) :

$$M \equiv M' \Leftrightarrow \exists s \in S, M' = s.M$$

Classes de marquages

• Pour tour marquage M, on peut définir Cl(M) :

$$Cl(M) = \{ M' \mid \exists s \in S, M' = s.M \}$$

- Propriétés fondamentales de Cl(M) :
 - $-M \xrightarrow{(t,c)} M' \Rightarrow \forall s \in S, s.M \xrightarrow{(t,s.c)} s.M'$
 - Si M_0 est symétrique ($\forall s \in S$, $s.M_0 = M_0$) et M est accessible, $\forall M' \in Cl(M), M'$ est accessible
 - \forall s \in S tel que s.M = M,

$$M \xrightarrow{(t, c)} M' \Rightarrow M \xrightarrow{(t, s.c)} s.M'$$

On peut donc aussi définir des classes de franchissements

Donc

- En définissant une représentation adéquate des classes d'états,
 - Sous classes dynamiques
 - Marquage symbolique
- En définissant une règle de franchissement qui s'applique directement sur cette représentation,
 - Règle de franchissement symbolique

On peut construire *directement* un graphe de classes (graphe quotient) qui est une représentation exacte de l'ensemble des états accessibles

Sous-classes dynamiques pour C non ordonnée

- On groupe dans un ensemble (sous-classe dynamique) les objets de C_i qui ont le même marquage
- Exemple:

 $Repos(c_1+c_2) + Att(c_3) + Res$

Exemple informel

Sous-classes dynamiques pour C ordonnée

• Une sous-classe dynamique représente des objets qui ont le même marquage et

- qui doivent être consécutifs dans l'ordre d'énumération de la classe
- tels que le successeur du dernier élément représenté par Z^i est représenté par Z^{i+1}

• Exemple:

$$Pense(c_2+c_4+c_5) + Mange(c_1+c_3) + F(c_5)$$

Une sous-classe dynamique par objet

$$Pense(Z^{2} + Z^{4} + Z^{5}) + Mange(Z^{1} + Z^{3}) + F(Z^{5}), \quad |Z^{i}| = 1$$

$$Pense(c_1 + c_3 + c_5) + Mange(c_2 + c_4) + F(c_1)$$

$$Pense(c_1 + c_2 + c_4) + Mange(c_3 + c_5) + F(c_2)$$

$$Pense(c_2 + c_3 + c_5) + Mange(c_1 + c_4) + F(c_3)$$

$$Pense(c_2 + c_4 + c_5) + Mange(c_1 + c_4) + F(c_3)$$

$$Pense(c_2 + c_4 + c_5) + Mange(c_1 + c_3) + F(c_5)$$

L'exemple des 5 philosophes

$$Pense(Z) + F(Z)$$

$$|Z| = 5$$

$$Pense(c_1 + c_2 + c_3 + c_4 + c_5)$$

$$+ F(c_1 + c_2 + c_3 + c_4 + c_5)$$

$$PF(c_1)$$

$$Pense(c_2 + c_3 + c_4 + c_5) + F(c_3 + c_4 + c_5) + Mange(c_1)$$

$$Pense(Z^1 + Z^3) + F(Z^1) + Mange(Z^2)$$

$$|Z^1| = 3, |Z^2| = |Z^3| = 1$$

$$Pense(c_3 + c_4 + c_5 + c_1) + F(c_4 + c_5 + c_1) + Mange(c_2)$$

$$Pense(c_4 + c_5 + c_1 + c_2) + F(c_5 + c_1 + c_2) + Mange(c_3)$$

$$Pense(c_5 + c_1 + c_2 + c_3) + F(c_1 + c_2 + c_3) + Mange(c_4)$$

$$Pense(c_1 + c_2 + c_3 + c_4) + F(c_2 + c_3 + c_4) + Mange(c_5)$$

Règle de franchissement

- Avant franchissement, on découpe les sous-classes dynamiques pour isoler les objets qui sont utilisés pour instancier les fonctions de couleur
- Exemple:

$$Repos(Z) + Res$$
 $|Z| = 3$ $Repos(Z^1 + Z^{1,0}) + Res$ $|Z^1| = 2, |Z^{1,0}| = 1$

 $Z^{1,0}$ contient l'objet choisi pour instancier X, Z^{1} ceux qui ne participent pas au franchissement

- On applique ensuite la règle de franchissement classique
- On peut (doit) regrouper les objets ayant même marquage après le franchissement, et on peut (doit) renuméroter les sous-classes dynamiques

Les philosophes (suite)

Les philosophes : graphe symbolique

Que préserve le graphe symbolique ?

- Tout marquage représenté par une classe (marquage symbolique) est accessible
- Tout marquage accessible est représenté par une classe
- Toute séquence de franchissement du GMA est représentée dans le graphe symbolique
- A toute séquence du graphe symbolique correspond une séquence du GMA

Alors que manque-t-il?

• On ne sait pas distinguer les situations suivantes :

Perte d'information sur les états d'accueil

Peut-on représenter n'importe quel réseau de Petri ordinaire ?

- Oui, mais...
 - Aucun intérêt si on ne réduit ni la représentation du modèle, ni celle du graphe d'accessibilité;
- Le modèle présenté impose que tous les objets d'une même classe se comportent de manière identique
 - Une classe regroupe un ensemble d'entités de même nature, susceptibles de marquer les mêmes places
- Il faut pouvoir partitionner la classe en sous-ensembles (sous-classes statiques) d'éléments qui évoluent de manière différente :

$$C_i = D_i^1 \cup D_i^2$$

- Les éléments de D_i¹ évoluent différemment de ceux de D_i²
- Les fonctions de diffusion sont définies au niveau des sous-ensembles : D_i¹. All
- Les techniques de construction du graphe symbolique continuent à s'appliquer

Conclusion

- La construction du graphe symbolique s'applique sur n'importe quel réseau coloré mais
 - Son efficacité dépend directement du degré de symétrie du système représenté : y a-t-il beaucoup de composants qui se comportent de manière identique ?
 - La structuration du modèle (limitaion des fonctions de couleurs)
 est nécessaire pour une construction directe et automatique
- La plupart des propriétés du système peuvent être vérifiées à partir du graphe symbolique