NLP Lab 8

Dixitha Kasturi dkasturi@syr.edu

Topic: Continuation of classification and feature exploration

I explored both Option 1 and Option 2.

Option 1:

Accuracy with stop words: 0.76

Accuracy with stop words removal: 0.788

The accuracy did increase, which in a way showed that the stop words were indeed contributing negatively to the model's overall performance. I removed the stop words in the NOT_featuresets function

Top 30 features with stop words:

Most Informative Features							
V engrossing =	True	pos :	neg	=	19.5	:	1.0
V stupid =	True	neg :	pos	=	17.8	:	1.0
V mediocre =	True	neg :	pos	=	17.1	:	1.0
	True	neg :	pos	=	15.1	:	1.0
\overline{V} inventive =	True	pos :	neg	=	14.9	:	1.0
	True	neg :	pos	=	14.4	:	1.0
$\overline{V}_{boring} =$	True	neg :	pos	=	14.2	:	1.0
V_flat =	True	neg :	pos	=	13.5	:	1.0
V_unique =	True	pos :	neg	=	12.9	:	1.0
$V_{refreshingly} =$	True	pos :	neg	=	12.9	:	1.0
_V_refreshing =	True	pos :	neg	=	12.9	:	1.0
V_wonderful =	True	pos :	neg	=	12.5	:	1.0
V_90 =	True	neg :	pos	=	12.4	:	1.0
V_warm =	True	pos :	neg	=	11.3	:	1.0
V_stale =	True	neg :	pos	=	11.1	:	1.0
V_mesmerizing =	True	pos :	neg	=	10.9	:	1.0
V_car =	True	neg :	pos	=	10.4	:	1.0
V_mindless =	True	neg :	pos	=	10.4	:	1.0
V_dull =		neg :	pos	=	10.3		
$V_{quietly} =$	True	pos :	neg	=	10.3	:	1.0
V_captures =		pos :	neg	=	10.1	:	1.0
V_powerful =		pos :	neg	=	10.0		
V_annoying =	True	neg :	pos	=	9.7	:	1.0
V_provides =		pos :	neg	=	9.7	:	1.0
V_chilling =		pos :	neg	=	9.6	:	1.0
V_waste =		neg :	pos	=	9.5	:	1.0
V_supposed =	True	neg :	pos	=	9.1	:	1.0
V_tiresome =	True	neg :	pos	=	9.1	:	1.0
$V_{meandering} =$		neg :	pos	=	9.1	:	1.0
V_unexpected =	True	pos :	neg	=	8.9	:	1.0

Top 30 features after stop words removal:

Option 2:

When the given function was used with 4 numeric features the following accuracy was obtained

```
# retrain the classifier using these features
train_set, test_set = SL_featuresets[1000:], SL_featuresets[:1000]
classifier = nltk.NaiveBayesClassifier.train(train_set)
nltk.classify.accuracy(classifier, test_set)
0.746
```

When the given function was used with 1 numeric feature the following accuracy was obtained

```
def SL_features2(document, word_features, SL):
   document_words = set(document)
   features = {}
   for word in word_features:
        features['V_{{}}'.format(word)] = (word in document_words)
   # count variables for negative and positive
   weakPos = 0
   strongPos = 0
   weakNeg = 0
   strongNeg = 0
    for word in document_words:
        if word in SL:
            strength, posTag, isStemmed, polarity = SL[word]
            if strength == 'weaksubj' and polarity == 'positive':
                weakPos += 1
            if strength == 'strongsubj' and polarity == 'positive':
                strongPos += 1
            if strength == 'weaksubj' and polarity == 'negative':
                weakNeg += 1
            if strength == 'strongsubj' and polarity == 'negative':
                strongNeg += 1
            negcount = weakPos + strongPos
            poscount = weakNeg + strongNeg
            features['totcount'] = negcount - poscount
    return features
```

```
train_set2, test_set2 = SL_featuresets2[1000:], SL_featuresets2[:1000]
classifier2 = nltk.NaiveBayesClassifier.train(train_set2)
nltk.classify.accuracy(classifier2, test_set2)
```

0.758

```
def SL features3(document, word features, SL):
    document_words = set(document)
   features = {}
   for word in word features:
        features['V_{}'.format(word)] = (word in document_words)
    # count variables for negative and positive
    negcount = 0
    poscount = 0
   for word in document words:
        if word in SL:
            strength, posTag, isStemmed, polarity = SL[word]
            if polarity == 'positive':
                poscount += 1
            if polarity == 'negative':
                negcount += 1
            features['totcount'] = negcount - poscount
    return features
```

```
train_set3, test_set3 = SL_featuresets3[1000:], SL_featuresets3[:1000]
classifier3 = nltk.NaiveBayesClassifier.train(train_set3)
nltk.classify.accuracy(classifier3, test_set3)
```

0.758

The accuracy increased when only 1 numeric feature was considered. I wrote 2 versions of the same action to verify if my approach was correct.