

Aula Prática 3: Variantes e extensões do problema do caminho mais curto

Elementos de Engenharia de Sistemas

2019/2020

Rede com (comprimento; duração) nos arcos.

- **Objetivo:** determinar dois caminhos disjuntos nos nodos (cada nodo, exceto o de origem e destino, faz parte de, no máximo, um caminho) entre o nodo o e o nodo d, de forma a minimizar a distância total.
- O modelo de PI vai ser semelhante ao que foi definido para o problema dos caminhos disjuntos nos arcos: o conjunto de restrições, a função objetivo e as restrições de conservação de fluxo para cada caminho mantêm-se.

Variáveis de decisão:

$$x_{ij} = \begin{cases} 1, & \text{se o arco } ij \text{ faz parte do caminho } 1 \\ 0, & \text{caso contrário} \end{cases} \quad \forall ij \in A$$
 $y_{ij} = \begin{cases} 1, & \text{se o arco } ij \text{ faz parte do caminho } 2 \\ 0, & \text{caso contrário} \end{cases} \quad \forall ij \in A$

Função objetivo e restrições de conservação de fluxo para cada um dos caminhos:

Min
$$z = x_{12} + 5x_{13} + \ldots + 3x_{67} + y_{12} + 5y_{13} + \ldots + 3y_{67}$$
 (1)

$$x_{12} + x_{13} = 1 (2)$$

$$-x_{12} + x_{23} + x_{24} = 0 (3)$$

:

$$-x_{45} - x_{57} - x_{65} = -1 (4)$$

$$y_{12} + y_{13} = 1 (5)$$

$$-y_{12} + y_{23} + y_{24} = 0 ag{6}$$

:

$$-y_{45} - y_{57} - y_{65} = -1 (7)$$

■ Finalmente, adicionam-se as restrições que garantem que num nodo passa, no máximo, um caminho.

$$x_{23} + x_{24} + y_{23} + y_{24} \le 1 \tag{8}$$

$$x_{35} + x_{36} + y_{35} + y_{36} \le 1 (9)$$

$$x_{45} + x_{46} + y_{45} + y_{46} \le 1 \tag{10}$$

$$x_{57} + y_{57} \le 1 \tag{11}$$

$$x_{67} + y_{67} \le 1 \tag{12}$$

$$x_{ij}, y_{ij} \in \{0, 1\}, \quad \forall ij \in A. \tag{13}$$

■ No Excel, temos:

Parâmetros no Solver.

■ Uma solução ótima para este problema é constituída pelos caminhos 1-2-4-5-7 e 1-3-6-7, com distância total igual a 19.

	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	٧	W
1		12	13	23	24	35	36	45	47	57	67	12	13	23	24	35	36	45	47	57	67		Lhs
21																							
22		x_ij									y_ij												
23	VD																				1		Z
24	comp	1	5	5	2	5	2	2	8	4	3	1	5	5	2	5	2	2	8	4	3		19
25																							

- **Objetivo:** determinar os k caminhos mais curtos entre o nodo o e o nodo d.
- Consideremos k=3. Este problema vai ser resolvido iterativamente: na 1^a iteração, será obtido o caminho mais curto de acordo com o modelo PI já construído.

■ Variáveis de decisão

$$x_{ij} = \begin{cases} 1, & \text{se o arco } ij \text{ faz parte do caminho mais curto} \\ 0, & \text{caso contrário} \end{cases}$$

lacktriangle para cada arco $ij \in A$.

 $+8x_{47}+4x_{57}+3x_{67}$

O modelo de PI é:

$$x_{12} + x_{13} = 1$$

$$-x_{12} + x_{23} + x_{24} = 0$$

$$-x_{13} + x_{35} + x_{36} = 0$$

$$-x_{24} + x_{45} + x_{47} = 0$$

$$-x_{35} + x_{57} = 0$$

$$-x_{36} + x_{67} = 0$$

$$-x_{45} - x_{57} - x_{65} = -1$$

$$x_{jj} \in \{0, 1\}, \quad \forall jj \in A.$$

$$(15)$$

$$(16)$$

$$(17)$$

$$(17)$$

$$(18)$$

$$(19)$$

$$(20)$$

$$(21)$$

$$(21)$$

Min $z = x_{12} + 5x_{13} + 5x_{23} + 2x_{24} + 5x_{35} + 2x_{36} + 2x_{45} +$

(14)

- Através do Solver, é obtido o caminho 1-2-4-5-7, com comprimento 9. Na 2ª iteração, vamos acrescentar uma restrição ao modelo que exclua o caminho 1-2-4-5-7 das possíveis soluções.
- A restrição seguinte garante que na 2ª iteração só podem ser escolhidos, no máximo, 3 dos 4 arcos do atual caminho.

$$x_{12} + x_{24} + x_{45} + x_{57} \le 3 \tag{23}$$

- No Excel, acrescenta-se uma linha à matriz dos coeficientes e uma restrição ao Solver, obtendo o caminho 1-3-6-7, com comprimento 10.
- Para obter o 3º caminho mais curto, avançamos para a 3ª iteração e excluímos também o caminho 1-3-6-7 (para além do 1-2-4-5-7 excluído anteriormente) das possíveis soluções, acrescentando ao modelo a restrição

$$x_{13} + x_{36} + x_{67} \le 2 \tag{24}$$

■ que garante que, dos 3 arcos da actual solução, só podem ser escolhidos para o 3º caminho mais curto, no máximo, 2.

1	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
1		12	13	23	24	35	36	45	47	57	67		Lhs		Rhs
2	1	1	1										0	=	1
3	2	-1		1	1								0	=	0
4	3		-1	-1		1	1						0	=	0
5	4				-1			1	1				0	=	0
6	5					-1		-1		1			0	=	0
7	6						-1				1		0	=	0
8	7								-1	-1	-1		0	=	-1
9	1ºcmc	1			1			1		1			0	<=	3
10	2ºcmc		1				1				1		0	<=	2
11															
12	x_ij												Z		
13	comp	1	5	5	2	5	2	2	8	4	3		0		

Dados do modelo no Excel na 3ª iteração.

Dados do modelo no Solver na 3ª iteração.

■ Assim, o 3^{Ω} caminho mais curto é 1-2-4-7, com comprimento 11.

	Α	В	С	D	E	F	G	Н	- 1	J	K	L	M	N	0
1		12	13	23	24	35	36	45	47	57	67		Lhs		Rhs
2	1	1	1										1	=	1
3	2	-1		1	1								0	=	0
4	3		-1	-1		1	1						0	=	0
5	4				-1			1	1				0	=	0
6	5					-1		-1		1			0	=	0
7	6						-1				1		0	=	0
8	7								-1	-1	-1		-1	=	-1
9	1ºcmc	1			1			1		1			2	<=	3
10	2ºcmc		1				1				1		0	<=	2
11															
12	x_ij										0		Z		
13	comp	1	5	5	2	5	2	2	8	4	3		11		

- **Objetivo:** determinar o caminho entre o nodo *o* e o nodo *d* cujo arco mais longo é o menor possível.
- Será definida uma variável de decisão adicional, além das variáveis binárias definidas anteriormente.

$$x_{ij} = egin{cases} 1, & ext{se o arco } ij ext{ faz parte do caminho mais curto} \ 0, & ext{caso contrário} \end{cases} orall j \in A$$

u — comprimento do arco mais longo do caminho selecionado

■ A função objetivo passa a ser **apenas** *u*, uma vez que se pretende minimizar o comprimento do arco mais longo.

$$Min \quad u \tag{25}$$

$$x_{12} + x_{13} = 1 (26)$$

$$-x_{12} + x_{23} + x_{24} = 0 (27)$$

$$-x_{13} + x_{35} + x_{36} = 0 (28)$$

$$-x_{24} + x_{45} + x_{47} = 0 (29)$$

$$-x_{35} + x_{57} = 0 (30)$$

$$-x_{36} + x_{67} = 0 (31)$$

$$-x_{45} - x_{57} - x_{65} = -1 (32)$$

■ Além das restrições de conservação de fluxo, é necessário acrescentar restrições que garantam que *u* corresponde efetivamente ao comprimento do arco mais longo do caminho selecionado.

$$u \ge x_{12} \tag{33}$$

$$u \ge 5x_{13} \tag{34}$$

$$u \ge 5x_{23} \tag{35}$$

:

$$u \ge 4x_{57} \tag{36}$$

$$u \ge 3x_{67} \tag{37}$$

$$u \ge 0, x_{ii} \in \{0, 1\}, \quad \forall ij \in A$$
 (38)

Dados do modelo no Excel.

■ Nota: No Solver, é necessário adicionar *u* às variáveis de decisão.

Parâmetros no Solver.

■ Uma solução ótima é o caminho 1-2-4-5-7, com valor 4 (ou seja, o arco mais longo tem comprimento 4, e os arcos mais longos dos restantes caminhos têm comprimento igual ou superior a 4).

