

Data Analytics 2

Summer Term 2019

Dr. Pascal Kerschke, Dennis Assenmacher, Moritz Seiler, Raphael Prager, Matthias Carnein

Information Systems and Statistics, University of Münster, Germany

Case Study Introduction

Outline

- The task: function approximation (regression) + multi-objective optimization
- Deliverables and assessment criteria
- Group building

Step 1: Function Approximation

- We put regression (function approximation via supervised learning) and multi-objective optimization together
- Every group gets a specific, unknown multi-objective problem
 - The problem consist of two separate functions (minimization!)
- Via a web service, you can request a limited (2000) number of points
- Run a machine learning algorithm on observations from both functions to approximate them (surrogate model)

Step 2: Optimization

- Find the approximated pareto front for both surrogate models
 (Y₁, Y₂)
- The functions are in 3D, in the unit hypercube $[-5,5]^3$
- Evolutionary algorithms are allowed, but not enforced
- Use your budget wisely

Task Summary

Your tasks:

- 1 Generate good surrogate models for **both functions**. (Online) (any supervised learning technique can be used)
- 2 Use these models to approximate the pareto front (Offline)
- 3 Learn something about the modeled problem (try visualization!)

You may:

- First try out your methods in test mode (unlimited sampling)
- Try out and assess different approaches/algorithms
- Use several models

You shall:

- Attempt rapid prototyping, take care of parameters
- Discuss within the group and also between groups

Deliverables

We expect you to deliver a short written report (**not more** than 10 pages), containing:

- Which techniques have you considered for the modeling
- Why did you finally choose one, and how did you set parameters?
- What kind of optimization algorithm did you use and why?
- How did you integrate optimization and modeling, how did you spend your budget and why?
- What have you learnt about your problem? How did you draw these conclusions (reasoning)?
- Please provide at least 20 of your optimal points that you have found (reasoning)

Important Dates

June 5	Begin of the case study and distribution of access tokens.
July 9	Final submission of the written report, the presentation
	slides and your (commented) code through the learnweb.
	(July/09/2019 11:59pm)
July 10-11	Final presentations (3 each day; 20 minutes). The present-
	ing group will be randomly drawn without replacement.

Within the presenting group the **presenter** will also be chosen **randomly** (one group = one presenter). All group members have to be present at **both** presentation days.

Client

- You can access your data via a provided client (learnweb)
- Each group gets a unique token
- We offer three different endpoints:
 - 1 api-test2D
 - 2 api-test3D
 - 3 api
- The first two endpoints are for testing purpose. They can be accessed without restrictions!
- Each endpoint has two functions: 1,2
- The third endpoint are your groups individual functions that needs to be analyzed. Access is restricted to 2000 observations for both functions combined!
 - !! Please do not fetch more than **50 observations per request** !!

Client Example

- apirequest(input, func, endpoint)
 - input: data frame with two or three features and up to 50 observations
 - func: either 1 or 2 (defines which function shall be accessed) endpoint: "api-test2D", "api-test3D" or "api"
- We want to get the second 3D test function evaluation for two points:
 - 1 The vectors are defined as: $(2, 3.4, 2)^T$, $(0.4, -0.5, 0.4)^T$
 - 2 Next, define a data frame: input = data.frame(x=c(2,0.4),
 y=c(3.4, -0.5), z=c(2,0.4))
 - 3 Observe the result: response = apirequest(input, 2, "api-test3D")
 - 4 response is a data frame containing the target values of function 2

A few hints to get a good grade

Do NOT waste your budget!

- Test your approaches by utilizing the test functions
- Do NOT build your models on 1000 random data points each (be smarter)

Try different approaches:

- Supervised Learning methods (regression tree, ANN's, etc.)
- Optimization algorithms (EA's)
- There are a lot of algorithms out there that we did not cover...

A few hints to get a good grade

Work together:

- Meet with your group and discuss different approaches
- Make plans and timetables, distribute work
- Peer programming...

Provide a good documentation

- Comment your code!!!
- Make notes about test runs (experimental journal)
- Use LaTeX (Overleaf)

If you have problems...

Ask the experts:

Moritz Seiler

Raphael Prager

- Each Wednesday
- Between 10.15 and 10.45 AM (and longer if necessary)
- Leonardo Campus 18