CS230 - Digital Logic Design and Computer Architecture

Problem Set 6 Solution

Autumn 2023

Ans1.

No. of blocks = 2

A[0,0] - Miss, A[0,0] - Hit
A[0,1] - Miss, A[1,0] - Hit
A[1,0] - Hit, A[0,1] - Hit
A[1,1] - Hit, A[1,1] - Hit

Block 1

A[0,0]
A[1,0]
A[0,1]
A[1,1]

Hit Ratio = 6/8 = 0.75

Ans2.

Memory System1:

Access time for the level-1 cache (T1)=5 ns Access time for the level2 cache (T2)=120 ns

Memory System2:

Access time for the level-3 cache is (T3)=10 ns Access time for the level-4 cache is (T4)=150 ns

Given -

Hit ratio (h2)=0.8

AMAT1=1/2(AMAT2)

Average access time2 = (T3)+(1-h2)(T4)= 10+(1-0.8)(150)= 40

Average access time1 =
$$(T1)+(1-h1)(T2)$$

20 = $5+(1-h1)(120)$

Ans3.

h1 = 0.87

- A. Number of sets = Cache memory/(set associativity × cache block size)
 - $= 256KB/(4 \times 16B)$
 - =4096
- B. Memory address size = 32bit

Number of bits required to identify a particular set = 12

Number of bits required to identify a particular location in cache line = 4

Size of tag field = 32 - 12 - 4 = 16 bit

- C. We use a 4-way set associative cache. So, we need 4 comparators each of size
- D. Cache block size is 16-byte. so 4-bits are required to find the byte offset within a cache block.
- E. size of tag = 16 bit

Number of sets = 4096

Set associativity = 4

Extra memory required to store the tag bits = $16 \times 4096 \times 4$ bits = 2^{18} bits = 2^{15} bytes

Ans4. 5

0	41	0	45	0	45	0	45	0	45
1	33	1	33	1	22	1	22	1	22
2	25	2	25	2	25	2	25	2	25
3	8	3	8	3	8	3	8	3	8
4	19	4	19	4	19	4	33	4	33
5	6	5	6	5	6	5	6	5	73
6	16	6	16	6	16	6	16	6	16
7	35	7	35	7	35	7	35	7	35

Ans5.

Physical Address Space $=2^P$ Bytes i.e. P bits to represent size of total memory. Cache Size $=2^N$ Byte i.e., N bits to represent Cache memory.

 $\operatorname{Tag\ size} = 2^X$ Bytes i.e., X bits to represent Tag.

Cache is K- way associative.

(Size of Tag) $\times \frac{\text{Cache Size}}{K} = \text{Total Memory Size}$

$$\Rightarrow 2^{X+N-\log(K)} = 2^{I}$$
$$\Rightarrow 2^{X} = 2^{P-N+\log(K)}$$

$$\implies X(\text{Size of Tag in bits}) = P - N + \log(K)$$