

Dictionnaire Mots Physique-Chimie

Traductions Allemand-Français

Daniel San José Pro 2017-2018

1 H																	2 He
3	4											5	6	7	8	9	10
Li	Ве											В	C	N	0	F	Ne
11	Beryllium											13	Kohlenstoff	Stickstoff 15	16	Fluor	18
Na	Mg											AI	Si	Р	S	CI	Ar
Natrium	Magnesium 20	21	22	23	24	25	26	27	28	29	30	31	32	Phosphor	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	Calcium 38	Scandium	40	Vanadium 41	42	Mangan	Eisen 44	45	Nickel	Kupfer	48	49	Germanium 50	Arsen	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	În	Sn	Sb	Te	JJ	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niob	Molybdán	Technetium	Ruthenium	Rhodium	Palladium	Silber	Cadmium	Indium	Zinn	Antimon	Tellur	lod	Xenon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hafnium	Ta	Wolfram	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Radium	Actinium	Rf Rutherfordium	Db Dubnium	Sg	Bh	Hs Hassium	Mt Meitnerium	Ds Darmstadtium	Rg Roentgenium	Cn	Uut	Flerovium	Uup		Uus Ununseptium	Uuo

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	Cer	Praseodym	Neodym	Promethium		Europlum	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thullum	Ytterblum	Lutetium
**	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Thorium	Protactinium	Uran	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinlum	Fermium	Mendelevium	Nobelium	Lawrencium

Indices

Physique:

Theme I: Les Ondes	2
Définitions et caractéristiques	2
Le Son et communication	3
Physique quantique	4
Thème II : La Mécanique	7
Bases de la mécanique classique et définir un système	7
Mécanique Céleste	9
Mécanique dans un champ de pesanteur	10
Mécanique dans un champ électrostatique	11
Travail et Énergie	12
Thème III : Thermodynamique	13
Thème IV : Relativité	15
Chimie:	
Thème I : Bases de la Chimie	17
Verrerie en chimie et outils dans le laboratoire	17
Molécules, atomes et autres particules	19
Définir un élément	20
Thème II : Types de réactions	23
Réactions acido-basiques	23
Réactions d'oxydo-reduction	25
Thème III : Contrôle de qualité	26

PHYSIQUE

Thème I: Les Ondes

Définitions et caractéristiques:

Onde Progressive	e Welle(n)
Longueur d'Onde (λ)	e Wellenlänge
Fréquence (f)	e Frequenz(en)
Période (T)	e Periode (oder Periodendauer)
Espace	r Raum
Temps (t)	e Zeit
Vitesse (v)	e Geschwindigkeit
Célérité d'une onde (c)	e Phasengeschwindigkeit einer Welle
le Front d'onde	e Wellenfront
Matière	e Materie
Onde Longitudinale	e Longitudinalwelle (oder
<u> </u>	Längswelle)
Onde Transversale	e Transversalwelle (auch Quer-,
	Schub- oder Scherwelle)
Diffraction	e Beugung (oder Diffraktion)
Réfraction	e Brechung (oder auch Refraktion)
Interférence	e Interferenz

Onde Mécanique	e mecanische Welle
Onde Electromagnétique	e elektromagnetische Welle
la Phase	e Phase
l'Amplitude	e Amplitude (A₀)

$$c = \lambda \cdot f = \frac{\lambda}{T}$$

$$f = \frac{1}{T}$$

Interférences constructives	e konstruktive Interferenz
Interférences destructives	e destruktive Interferenz
Effet Doppler	r Doppler-Effekt
Différence de marche	r Gangunterschied

Le Son et communication:

Le Son	r Schall
Le Bruit	s Geräusch

Onde Sonore	e Schallwelle
Son audible	r Hörschall
Infrason	r Infraschall
Ultrason	r Ultraschall
Intensité sonore (I)	e Schallintensität
Niveau d'Intensité sonore (L)	r Schallintensitätspegel
Système binaire	s Dualsystem (oder Zweiersystem, Binärsystem)
Signal analogique	s Analogsignal
Signal numérique	s Digitalsignal
CAN (convertisseur analogique numérique)	ADU (Analog-Digital-Umsetzer)

Dezimal	Binär	Dezimal	Binär
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

Physique quantique :

$$L = 10 \times \log\left(\frac{I}{I_0}\right) \& I_0 = 10^{-12} W. m^{-2}$$

Physique quantique	e Quantenphysik
Physique classique	e klassiche Physik
un photon	s Photon(en)

20	17-2018
un électron	s Elektron(en) (e-)
un atome	s Atom(en)
une molécule	Molekül (e)
L.A.S.E.R.	S -
émission spontanée	e spontane Emission
émission stimulée	e stimulierte Emission (oder induzierte Emission)
absorption	e Lichtabsorption
Constante de Planck (h)	s Plancksche Wirkungsquantum (oder die Planck-Konstante)
État excité	r Angeregte Zustand
Lumière monochromatique	s monochromatische Licht
Dualité onde-particule	r Welle-Teilchen-Dualismus
Mécanique quantique	e Quantenphysik
Fentes de Young (interférences de Young)	s Doppelspaltexperiment
Quantité de mouvement (p)	r Impuls
Energie par pompage	e Pumpelenergie
Milieu actif	s aktive Medium
Le spectre de la lumière	s elektromagnetische Spektrum
Le visible	s sichtbare Licht
Les Ultraviolets	e Ultravioletstrahlung
Les Infrarouges	e Infrarotstrahlung

Thème II: La Mécanique

Bases de la mécanique classique et définir un système:

la masse (m)	e Masse
la charge éléctrique (q)	e elektrische Ladung
le volume (V)	s Volumen
la vitesse (v)	e Geschwindigkeit
La distance (d)	e Strecke (s)
la quantité de mouvement (p)	r Impuls
masse volumique / densité	e (Massen)dichte/ e relative Dichte
centre de gravité	s Gravizentrum
l'accélération (a)	e Beschleunigung
la position	r Ort (r)
Le vecteur	r Vektor
le scalaire	r Skalar(en)
la direction et le sens	e Richtung
la norme/valeur d'un vecteur	r Betrag des Vektores
la dérivée	e Ableitung (Differentialrechnung)
la primitive	e Stammfunktion
les lois de Newton	e Newtonsche Gesetze
un référentiel	s Bezugssystem

ordinatensystem	
ılsystem	
e Applikate	
stem	
erhaltung	
eit-Diagramm	
7 8 9 10 _{t/s}	

• Première Loi de Newton: « Tout corps persévère dans l'état de repos ou de mouvement uniforme en ligne droite dans lequel il se trouve, à moins que quelque force n'agisse sur lui, et ne le contraigne à changer d'état. »

Erstes newtonsches Gesetz: "Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit."

Deuxième Loi de Newton:

$$\sum_{i} \vec{F}_{i} = \frac{d\vec{p}}{dt}$$

Zweites newtonsches Gesetz:

• Troisième Loi de Newton: « L'action est toujours égale à la réaction ; c'est-à-dire que les actions de deux corps l'un sur l'autre sont toujours égales et de sens contraires. »

Drittes newtonsches Gesetz: "Kraft gleich Gegenkraft: Eine Kraft von Körper A auf Körper B geht immer mit einer gleich großen, aber entgegen gerichteten Kraft von Körper B auf Körper A einher."

la cinématique	e Kinematik
Mouvement rectiligne uniforme	e geradlinig gleichförmige Bewegung
Mouvement uniformément accéléré	e geradlinig gleichmäßig beschleunigte Bewegung

Repère de Frenet	e frenetschen Formeln (Frenet- Formeln)	
Mouvement circulaire	e Kreisbewegung	
Mécanique Céleste:		
Mécanique Céleste	e Himmelsmechanik	
Demi-grand axe	e große Halbachse	
Demi-petit axe	e kleine Halbachse	
Apogée	s Apogäum	
Périgée	s Perigäum	
Les lois de Kepler	e Keplersche Gesetze	
une fusée	e Rakette	
un satellite	r Satellit(en)	
une planète	r Planet(en)	
Référentiel géocentrique	s geozentrische Bezugssystem	
Référentiel héliocentrique	s heliozentrische Bezugssystem	
Force gravitationnelle (F_G)	e Gravitationskraft	
Constante gravitationnelle (G)	e Gravitationskonstante	
Loi universelle de la gravitation	s newtonsche Gravitationsgesetz	
Le foyer	r Brennpunkt	
	1	

$$F_P = F_P = G \frac{m_p m_s}{r_{SP}^2}$$

Première Loi de Kepler : « Les planètes du système solaire décrivent des trajectoires elliptiques, dont le Soleil occupe l'un des foyers. »

Erstes Keplersches Gesetz: « Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht. »

Deuxième Loi de Kepler: « Si S est le Soleil et M une position quelconque d'une planète, l'aire balayée par le segment [SM] entre deux positions C et D est égale à l'aire balayée par ce segment entre deux positions E et F si la durée qui sépare les positions C et D est égale à la durée qui sépare les positions E et F.»

Zweites Keplersches Gesetz: « Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.»

Troisième Loi de Kepler :

Drittes Keplersches Gesetz:

$$\frac{T^2}{a^3} = \frac{4\pi^2}{GM_S}$$

Mécanique Classique dans un champ de pesanteur:

Champ de pesanteur	s Schwerefeld
Intensité du champ de pesanteur	e Fallbeschleunigung
(g)	(r Ortsfaktor)
Une trajectoire parabolique	e Wurfparabel
Un projectile	s Projektil

Une chute libre	r freie Fall
Une parabole	e Parabel
Vitesse initiale	e Anfangsgeschwindigkeit
Angle initiale	r (Anfangs)Winkel α
La portée	e Reichweite

Mécanique Classique dans un champ électrostatique :

Particule chargée	s elektrische Teilchen
Champ électrique (E)	s elektrische Feld
Force électrique (F _E)	R Coulomb-Kraft
Un condensateur plan	r Plattenkondensator
Une électrode	e Elektrode
Dévier une particule	ein Teilchen lenken
Tension (U)	e Spannung
Puissance (P en Watt)	e Leistung

Ablenkung eines Teilchens im E-Feld eines Kondensator

$$\Delta y = \frac{E \boldsymbol{\cdot} q}{2 \boldsymbol{\cdot} m} \boldsymbol{\cdot} t^2 = \; \frac{U \boldsymbol{\cdot} \; q}{2 \boldsymbol{\cdot} d \boldsymbol{\cdot} m} \;\; t^2 = \frac{U \boldsymbol{\cdot} \; q}{2 \boldsymbol{\cdot} d \boldsymbol{\cdot} m \boldsymbol{\cdot} v_0^2} \;\; (\Delta x)^2$$

 $d=\,$ Abstand der beiden Kondensatorplatten zueinander

 $U=\;$ Spannung, die am Kondensator anliegt

 $q \; = \; {
m Ladung \; des \; Teilchens \; zw. \; den \; Kondensatorplatten}$

 $m=\,$ Masse des Teilchens

$F_E = q.E = q.\frac{U}{d}$ $E = \frac{U}{d}$

Travail et Énergie :

Énergie Mécanique	e mechanische Energie
Énergie Cinétique	e kinetische Energie
Énergie Potentiel	e potenzielle Energie
Principe de conservation d'énergie	r Energieerhaltungssatz
Une force constante	e konstante Kraft
Une force conservative	e konservative Kraft.
Travail d'une force	e Arbeit

Thème III: La Thermodynamique

La thermodynamique

e Thermodynamik

101/100		
La energie interne	e innere Energie	
L'entropie	e Entropie	
La température	e Temperatur	
Le point critique	r kritische Punkt	
Le point triple	r Tripelpunkt	
La enthalpie	e Enthalpie	
La chaleur (échanque thermique Q)	e Wärme	
La résistance thermique	r Wärmewiderstand	
La conduction thermique	e Wärmeleitung (oder Konduction)	
La convection thermique	e Konvektion	
Transfert par rayonnement	e Wärmestrahlung	
Un transfert thermique	e Wärmeübertragung	
La conductivité thermique	e Wärmeleitfähigkeit λ	
Flux de chaleur	r Wärmestrom (Q)	
Epaisseur	e Länge (I)	
Surface	e Fläche (A)	

$$T_1 > T_2$$

$$Q = \frac{T_1 - T_2}{R_{th}}$$

$$R_{th} = \frac{l}{A \cdot \lambda}$$

Thème IV: La Relativité

La théorie de	e la relativité	e Relativitäts	theorie
La relativité	restreinte	e spezielle Relativ	vitätstheorie
Dilatation	du temps	e Zeitdilat	ation
Contraction d	es longueurs	e Lorentzkon	traktion
Vitesse de	la lumière	e Lichtgeschw	indigkeit
Le facteur o	de Lorentz	r Lorentzfo	aktor
Temps	propre	e Eigenz	eit
Temps "Lal	boratoire"	e Zeit des Labo	rsystemes
Montre à	a photon	e Lichtu	hr
γ 10 9 8 7	$y = \frac{1}{\sqrt{1 - \cdot}}$	v ²	
6 5	V	C ²	
4			
3			
2			
1			
0	C	//2	C V

Chimie

Thème I: Bases de la chimie

Verrerie en chimie et outils dans le laboratoire :

La verrerie de laboratoire	S Glasgerät	
Un becher	s Becherglas	
Une pipette(jaugée)	e (Mess)Pipette	
Un erlenmeyer	r Erlenmeyerkolben	
Une fiole jaugée	r Messkolben	
Une burette graduée	e Bürette	
Une Éprouvette graduée	r Messzylinder	
Un Entonnoir	r Trichter	
Un verre de montre	s Uhrglas	
Une ampoule à décanter	r Scheidetrichter	
Un support réglable	s Laborboy	
Une propipette	r Pipettierhelfer	
Un tube à essai	s Reagenzglas	
Un bouchon	s Schliffstopfen	
Un réfrigérant (à boules)	r Laborkühler (Kugelkühler)	
Un ballon	r Rundkolben	

Un chauffe-ballon	e Laborheizhaube
Un thermomètre	s/r Thermometer
Un barreau aimanté	S Magnetrührstäbchen
Un agitateur magnétique	r Magnetrührer
Une balance électronique	e elektronische Waage
Un ampèremètre	s Strommessgerät (umgangsprachlich: s Ampermeter)
Un voltmètre	s Spannungsmessgerät
	(umgangsprachlich: s Voltmeter)
Un Ohmmètre	s Widerstandsmessgerät
	(umgangsprachlich: s Ohmmeter)
Un multimètre	s Multimeter
Un oscilloscope	s Oszilloskop
Un générateur électrique	r elektrische Generator
Une pile	e Batterie
Le ménisque	r Meniskus
Une cuvette	e Küvette
Extension Table à cari de Bistant	Verra à pied Pipette Pipette jaugée
Erlenmeyer Tube à essai Bécher Fiole jaugée Ballon Ampoule à décanter	Verre à pied simple simple Éprouvette graduée Burette
Bouchon Chauffe-ballon Cristallisoi	Agitateur Support Propipette
Verre de montre Balance éle	

Molécules, atomes et autres particules :

Une molécule	s Molekül
Un atome	s Atom
Une particule	s Teilchen
Un muon	s Myon
Un quark	s Quark
Un proton	s Proton
Un neutron	s Neutron
Un électron	s Elektron
Un photon	s Photon
Un ion	s Ion
Un cation	s Cation
Un anion	s Anion
Noyau de l'atome	r Atomkern
Nuage d'électron	e Elektronenhülle/Atomhülle
Elektronenbahn Atomhülle Elektron Atomkern	U WII

Proton Neutron

La concentration massique	e Massenkonzentration						
La concentration molaire	e Stoffmengenkonzentration						
La masse volumique	e Dichte ρ						
La densité	e Relative Dichte d						
La masse atomique	e Atommasse						
Le numéro atomique	e Ordnungszahl, Kernladungszahl, Atomnummer oder Protonenzahl						
La masse molaire	e molare Masse M						
La quantité de matière	e Stoffmenge(Molmenge/Molzahl)						
Le symbole de l'élément	s Elementssymbol						
Un isotope	s Isotop						
Un isomère	e Isomer(e)						
La radioactivité	e Radioaktivität						
L'électronégativité	e Elektronegativität						
Le nombre d'Avogradro	e Avogadro-Konstante N _A						
La solubilité	e Löslichkeit						
La température de fusion	e Schmelztemperatur						
La température d'ébullition	r Siedepunkt						
Une liaison covalente	e Kovalente Bindung						
Une double liaison	e Doppelbindung						

2017	-2018
Une liaison hydrogène	e Wasserstoffbrückenbindung (H-Brücke)
Les forces de Van der Waals	e Van-der-Waals-Kräfte
La (Stéréo)isomérie	e (Stereo)isomerie
Un Stéréoisomère	s Stereoisomer(e)
De constitution	s Konstitutionsisomer(e) (auch Strukturisomer(e))
De conformation	s Konformationsisomer(e)
De configuration	s Konfigurationsisomer(e)
Un diastéréoisomère	s Diastereomer(e)
Un énantiomères	s Enantiomere
Konstitutionsisomerie Konfigurationsisomerie Diase	Konformationsisomerie tereomerie

18 VIIIA 2 4.0026	He	17 WILE HELIUM	9 9 18.998 10 20.180	F	F FLUOR NEON	6 17 35.45 18 39.948	Cl Ar	. CHLOR ARGON	1 35 79.904 36 83.798	Br Kr	BROM KRYPTON	0 53 126.90 54 131.29	I Xe	IOD XENON	(222) 86 (222)	At Rn	ASTAT RADON	() 117 (294) 118 (294)		TENNESSI	Copyright © 2017 Eni Generalić	3 70 173.05 71 174.97	Yb Lu	YTTERBIUM LUTETIUM		(102 (259) 103 (262)	No Lr	MOBELLIM
世		A 16 WA	17 8 15.999	0	F SAUERSTOFF	30.974 16 32.06	S	SCHWEFEL	2 34 78.971	Se	SELEN	6 52 127.60	Te	TELLUR	8 84 (209)	Po	POLONIUM	9) 116 (291)		M LIVERMORIUM		6 69 168.93	Tm	THULIUM		7) 101 (258)		MENDEI EVII IM
Z W		A 15 WA	11 7 14.007	Z	FF STICKSTOFF	15	Ь	PHOSPHOR	33 74.922	As	M ARSEN	71 51 121.76	Sp	ANTIMON	2 83 208.98	Bi	BISMUT	7) 115 (289)	Me	MOSCOVIUM		13 68 167.26	Er	ERBIUM		2) 100 (257)	Rin	MIIMGEE
Σ		4 14 MA	11 6 12.011	ن ا	KOHLENSTOFF	2 14 28.085	Si	A SILIZIUM	3 32 72.64	g	GERMANIUM	2 50 118.71	Sn	ZINN	8 82 207.2	Pb	BLEI	5) 114 (287)		FLEROVIUM		0 67 164.93	Ho	М НОГМІЛМ		(1) 69 (252)		MINISTER
ELEMENTE		13	5 10.81	m	BOR	13 26.982	Al	S ALUMINUM	8 31 69.723	Ga	GALLIUM	11 49 114.82	In	MUIGNI	9 81 204.38	Ξ	R THALLIUM	5) 113 (285)		M NIHONIUM		13 66 162.50	Dy			7) 98 (251)		1
ER								12	6 30 65.38	Zn	ZINK	7 48 112.41	Cd	KADMIUM	7 80 200.59	Hg	QUECKSILBER	0) 112 (285)		COPERNICIUM		5 65 158.93	Tp	M TERBIUM		(247) 97 (247)	BK	DCDVC! !!!
DE								11	3 29 63.546	Cn	KUPFER	2 47 107.87	Ag	\longrightarrow	8 79 196.97	Au	GOLD) 111 (280)				6 64 157.25	Cq	GADOLINIUM		96	Cin	1
	N	EKVICE		SSE (1)		TES		10	3 28 58.693	Z	NICKEL	1 46 106.42	Pd	PALLADIUM	2 78 195.08	Pt	PLATIN) 110 (281)		M DARMSTADTIUM		5 63 151.96	Eu	EUROPIUM		(1) 95 (243)	AVIII	- Cidles
SYSTEM	ELEMENTGRUPPEN	ABSTRACT S (1986)		RELATIVE ATOMMASSE (1)		NAME DES ELEMENTES		6	5 27 58.933	ပ	KOBALT	7 45 102.91	Rh	A RHODIUM	3 77 192.22	Ir	IRIDIUM) 109 (276)	MIG	MEITNERIUM		62 150.36	Sm	M SAMARIUM) 94 (244)	Pal	E I
YS	ELEM	CHEMICAL	- F (NAME I		&	3 26 55.845	Fe	EISEN	(44 101.07	Ru	RUTHENIUM	1 76 190.23	O	OSMIUM	(772) 108		HASSIUM		(145)	Pin	PROMETHIUM		3 93 (237)		1 INITEDIA
NS		Z,	13	5 10.811	8	BOR		7 VIIIB	3 25 54.938	Mn	MANGAN	5 43 (98)		TECHNETIUM	1 75 186.21	Re	RHENIUM) 107 (272)	B	A BOHRIUM		1 60 144.24	Nd	/ NEODYM		4 92 238.03	n	NAGII
	ELEMENTGRUPPEN	MPFEHLUNG (1985)		ORDNUNGSZAHL –	ELEMENTSYMBOL —			9 9 9 P	24 51.996	Cr	CHROM	3 42 95.95	Mo	MOLYBDÄN	5 74 183.84	>	WOLFRAM	105 (268) 106 (271)	50 V2	SEABORGIUM		59 140.91	Pr	PRASEODYM		t 91 231.04	Pa	MINITOATOR
PERIODE	ELEME	IUPACEN		ORDNU	ELEMEN			5 WB	7 23 50.942	>	VANADIUM	41 92.906	NP NP	NIOB	73 180.95	Та	TANTAL) 105 (268	DIP	M DUBNIUM	IIDEN	57 138.91 58 140.12	Ce	CER	N.	90 232.04	Th	THORITIM
X								4 MB	22 47.867	Ξ	TITAN	40 91.224	Zr	ZIRKON	72 178.49	Ht	1 HAFNIUM	104 (267)		RUTHERFORDIUM	I ANTHANIDEN	57 138.9	La	LANTHAN	ACTINIDEN	89 (227)	Ac	MILINITOR
П		,				Υ		3	19 39.098 20 40.078 21 44.956	Sc	SCANDIUM	39 88.906	>	YTTRIUM	57-71	La-Lu	Lanthaniden	89-103	Ac-Lr	Actiniden								
		2	4 9.0122	Be	BERYLLIUM	12 24.305	Mg	MAGNESIUM	20 40.078	Ca	CALCIUM	38 87.62	Sr	STRONTIUM	56 137.33	Ba	BARIUM	88 (226)	Ra	RADIUM								
GRUPPE 1	Н	WASSERSTOFF	3 6.94	Ľ	LITHIUM	11 22.990	Na	NATRIUM	19 39.098	¥	KALIUM	37 85.468	Rb	RUBIDIUM	55 132.91	Cs	CÄSIUM	87 (223)	Fr	FRANCIUM								
EN	EKIOD	ЬE		7			e			4			ĸ			9			7									

Thème II: Réactions en chimie

Réactions acido-basiques :

Une réaction chimique	e chemische Reaktion
Une réaction acido-basique	e Säure-Base-Reaktion
Un acide	e Säure(n)
Une base	e Base(n)
Un couple conjugué acido-basique	e Konjugierte Säure-Base-Paare
Un acide fort/faible	e Starke/Schwache Säure
Une base forte/faible	e Starke Base
Autoprotolyse de l'eau	e Autoprotolyse
Une solution acide	e Säure-Lösung
L'indice pH	r pH-Wert
La constante d'acidité K _A	e Säurekonstante K₅
Une solution tampon	e Pufferlösung
Les produits	e Produkte(pl)
Les réactifs	s Reaktant/e Edukte(pl)
Ion Hydroxyde	s Hydroxidion
Ion Oxonium	s Oxonium-Ion

Acide chlorhydrique	e Salzsäure HCl
Acide sulfurique	e Schwefelsäure H₂SO₄
Acide carbonique	e Kohlensäure H₂CO₃
Ammoniaque	s Ammoniak NH₃

Réactions oxydo-réduction :

Une réaction d'oxydoréduction	e Redoxreaktion								
Un oxydant	s Oxidationsmittel								
Un réducteur	s Reduktionsmittel								
La règle du gamma	« Gamma-Regel »								
Transfert d'électrons	e Elektronenübertragung								
Une pille Daniell	s Daniell-Element								
L'oxydation	e Oxidation								
La réduction	e Reduktion								
Le potentiel d'oxydoréduction	s Redoxpotential								
Un couple redox	s Redox-Paar								
Le nombre d'oxydation	e Oxidationszahl								
Reduktionsmittel Oxidation Reduktion	→ Oxidationsmittel + Elektron(en)								
Fe Cu ²⁺ korrespondieren Red 1 + Ox 2	Fe ²⁺ Cu Cu d Ox 1 + Red 2 korrespondierend								

Thème III: Contrôle de qualité

Un titrage	e Titration
Une solution titrante	e Maßlösung
Une solution titrée	e Probelösung
Le point d'équivalence	r Äquivalenzpunkt
Titrage par colorimétrie	(mittels) r Farbumschlag
Titrage par pH-métrie	(mittels) e pH-Wert-Messung
Titrage par conductimétrie	(mittels) Konduktimetrie
Étalonnage par absorbance	e Extinktion
Spectroscopie Infrarouge	e Infrarotspektroskopie
Spectroscopie UV-visible	e UV/Vis-Spektroskopie
Spectroscopie RMN	e Kernspinresonanzspektroskopie
(Résonance magnétique nucléaire)	(NMR-Spektroskopie)
Un pic de transmittance	e Transmissions- oder
	Absorptionsbande
Des protons équivalents	e äquivalenten H-Atomen
Le nombre d'onde	e Wellenzahl
Les multiplets	s Multiplett

$$E = log \frac{I_0}{I}$$

$$\sigma = \sum_{i} z_i \cdot \lambda_i \cdot C_i$$

