Automatic Control Systems

NYQUIST-II

alghoniemy@alexu.edu.eg

Reading:

- chapter 8 (Section 8.2)
- chapter 9 (Section 9.5)

Practice problems

- Study table 9.6 on pages 704-711
- Solve problems at the end of chapter 9

The Nyquist Stability Criterion

Case 1

L(S) = G(s)H(s) has no open-loop poles in the RHP, (P = 0)

"A feedback system is stable <u>if and only if</u> the contour Γ_L in the G(s)H(s)-plane <u>DOES NOT</u> encircle the (-1,0) point when the number of poles of L(s) in the RHP is zero (P=0)"

$$Z = N + P$$

$$\therefore Z = 0$$

$$\Rightarrow N = 0$$

• For no zeros of the characteristic equation on the RHP, then there should be <u>no encirclement</u> of the point -1 in the L(s) plane

The Nyquist Stability Criterion

Case 2 G(s)H(s) has poles in the RHP, $(P \neq 0)$

"A feedback system is stable <u>if and only if</u>, for the contour Γ_L , the number of <u>counterclockwise</u> encirclements of the (-1,0) point equals to the number of poles of G(s)H(s) in the RHP of the splane"

• For no zeros of the characteristic equation on the RHP, we must have P counterclockwise encirclement of the -1 point in the G(s)H(s) plane

example

$$G(s) = K_1/s(s-1)$$

ω	$GH(j\omega)$
$j\omega \to 0_+$	∞ \angle $-$ 270 0
$j\omega \to +\infty$	$0 \angle - 180^{0}$

- \rightarrow This is CASE-II
- $P = 1, N = +1 \Rightarrow Z = 2$
- The <u>system is unstable</u> because there are **two roots** in the **RHS** of the s-plane regardless of the value of K_1

35

Add a <u>derivative</u> feedback (PD) (why??)

 $G(s) = K_1 K_2 (s + 1/K_2)/s(s - 1)$

ω	$GH(j\omega)$
$j\omega \to 0_+$	∞ \angle $-$ 270 0
$j\omega \to +\infty$	$0 \angle - 90^{0}$

- P = 1 (case II)
- Condition for stability: $N = -1 \Rightarrow K = K_1 K_2 > 1$

•
$$G(s) = K_1 K_2 (s + 1/K_2)/s(s - 1)$$

• Let: $1/K_2 = 3$, $K_1K_2 = K$

$$G(s)H(s) = \frac{K(s+3)}{s(s-1)}$$

verify using root locus

Nyquist plot transfer function $\left(\frac{s+3}{s(s-1)}\right)$

Nyquist plot

b=0.5*[1 3]; a=[1 -1 0]; nyquist(b,a)

b=[1 3]; a=[1 -1 0]; rlocus(b,a)

- **example**: determine the range of *K* for stability?
- *Inner-loop* stability

$$G(s) = \frac{1}{s^2(s+1)}$$

Inner-loop is <u>unstable</u>

case — I

 $s^2(s+1)$

 $G_2(s)$

C(s)

After adding a differentiator

The open-loop system with PD

$$G(s) = G(s)_1 G_2(s) = \frac{K(s+0.5)}{s^3 + s^2 + 1}$$

- P=2
- For stability of the closed-loop system,

•
$$\Rightarrow Z = 0 \Rightarrow N = Z - P = -2$$

(two **counterclockwise** encirclement of the critical point -1)

• Open-loop poles, P = 2 (case II)

C(s) - C(s) C(s) -	K(s+0.5)
$G(s) = G(s)_1 G_2(s) =$	$\frac{1}{s^3 + s^2 + 1}$

ω	$G(j\omega)$
$j\omega \rightarrow 0_+$	0.5 <i>K</i>
$j\omega \to +\infty$	$0 \angle - 180^{0}$

Condition for stability_{0.5}

$$Z = 0 \Longrightarrow N = -2$$

$$\Rightarrow 0.5K > 1$$

$$\Rightarrow K > 2$$

b=[1 0.5]; a=[1 1 0 1]; sys=tf(b,a); nyquist(sys)

verify using root locus

$$G(s) = G(s)_1 G_2(s) = \frac{K(s+0.5)}{s^3 + s^2 + 1}$$

42

Relative stability and the Nyquist criterion Pulled Plane

 $\begin{array}{c|c}
 & \text{Im } L \\
\hline
O & \text{O} \\
\hline
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$

• The proximity of the $L(j\omega)$ - locus to the (-1,j0) critical point is a measure of the relative stability of the system.

- Case I
- Case II

Gain Margin (GM)

Gain margin is the amount of gain in decibels (dB) that is allowed to be IN the loop before the closed-loop system reaches instability

PHASE-CROSSOVER POINT:

the point at which the Nyquist plot $L(j\omega)$ intersects the negative real axis

PHASE-CROSSOVER FREQUENCY

is the frequency ω_p at the phase-crossover point $\angle L(j\omega) = 180^o$

$$G.M. = 20\log_{10}\frac{1}{|L(j\omega_p)|}$$
 dB

• A rule of thumb G.M > 6dB

Gain Margin (GM)

Gain margin is the amount of gain in decibels (dB) that is allowed to be IN the loop before the closed-loop system reaches instability

PHASE-CROSSOVER POINT:

the point at which the Nyquist plot $L(j\omega)$ intersects the negative real axis

PHASE-CROSSOVER FREQUENCY

is the frequency ω_p at the phase-crossover point

$$\angle L(j\omega) = 180^{o}$$

$$G.M. = 20\log_{10} \frac{1}{|L(j\omega_p)|}$$
 dB

• A rule of thumb G.M > 6dB

• <u>example</u>

$$GH(s) = K(s-2)/(s+1)^2$$

• P = 0 (case-1)

ω	$GH(j\omega)$
$j\omega \rightarrow 0_+$	-2K
$\omega = \sqrt{5}$	<i>K</i> /2
$j\omega \to +\infty$	$0 \angle - 90^{0}$

•
$$G.M. = 20log_{10}(1/2K)$$

K	N	Z	stability
0 < K < 1/2	0	0	stable
K=1/2			Marginally stable
K > 1/2	1	1	unstable

• Example

$$GH(s) = K(s+2)/(s-1)^2$$

• P = 2 (case-II)

ω	$GH(j\omega)$
$j\omega \rightarrow 0_+$	2 <i>K</i>
$\omega = \sqrt{5}$	-K/2
$j\omega \to +\infty$	$0 \angle - 90^{0}$

• G.M. Is defined <u>in this case</u> by how much the gain Is <u>decreased</u> to reach instability

K	N	Z	stability
0 < K < 2	0	2	UNSTABLE
K = 2			Marginally stable
K > 2	-2	0	STABLE

Nyquist plot	transfer function	$\left(\frac{s+2}{(s-1)^2}\right)$
--------------	-------------------	------------------------------------

Nyquist plot

• Example

$$GH(s) = K(s+2)/(s-1)^2$$

- P = 2 (case-II)
- G.M. Is defined <u>in this case</u> by how much the gain is <u>decreased</u> to reach <u>instability</u>

K	N	Z	stability
0 < K < 2	0	2	UNSTABLE
K = 2			Marginally stable
K > 2	-2	0	STABLE

root locus plot transfer function $\left(\frac{s+2}{(s-1)^2}\right)$

Root locus plot

Phase Margin (PM)

Phase margin is defined as the angle in degrees in which the $L(j\omega)$ plot must be rotated about the origin in order that the gain-crossover point on the locus passes through the (-1,j0) point

GAIN-CROSSOVER POINT:

The point on the $L(j\omega)$ plot at which $|L(j\omega)|=1$

GAIN-CROSSOVER FREQUENCY:

The gain-crossover frequency ω_g is the frequency of $L(j\omega)$ at the gain-crossover point, i.e., $\left|L(j\omega_g)\right|=1$

$$P.M. = \angle L(j\omega_g) - 180^\circ$$

Phase Margin (PM)

Phase margin is defined as the angle in degrees in which the $L(j\omega)$ plot must be rotated about the origin in order that the gain-crossover point on the locus passes through the (-1,j0) point

Iocus A and Iocus B have the same

Gain margin but have different relative stability

Because they have different phase margins

<u>example</u>

$$L(s) = \frac{2500}{s(s+50)(s+5)}$$

Phase-crossover:

$$\operatorname{Im}(L(j\omega)) = 0$$

$$\Rightarrow L(j\omega_p) = -0.182$$
, $\omega_p = 15.88$ rad/s

Phase margin

 $=31.72^{\circ}$

Gain margin

$$G.M. = 20\log_{10}\frac{1}{|L(j\omega_p)|} = 20\log_{10}\frac{1}{0.182} = 14.82 \text{ dB}$$

Gain-crossover:

$$|L(j\omega)| = 1 \implies \omega_g = 6.22 \text{ rad/s}$$

Phase margin

$$P.M. = \angle L(j\omega_g) - 180^\circ = 211.72^\circ - 180^\circ = 31.72^\circ$$

 $j \operatorname{Im} L \spadesuit$

 $\omega = \infty$

-0.182 0

 $\omega_p = 15.88 \text{ rad/sec}$

 $\omega_{o} = 6.22 \text{ rad/sec}$

 $L(j\omega)$ -plane

Re L

The stability of control systems with time delays

- Usually, we cannot eliminate the effect of delay in real systems
- The Routh-Hurwitz criterion is **not applicable** for systems with time delays because **the characteristic equation is no longer algebraic**
- a pure time delay, T , is modeled as $G_d(s) = e^{-sT}$
- the loop transfer function L(s), becomes $L(s) = G_c(s)G(s)e^{-sT}$

The stability of control systems with time delays

• A pure time delay, T, has no effect on the gain of $L(j\omega)$

$$|L(j\omega)| = |G_c(j\omega)G(j\omega)|$$

• A pure delay, T, reduces the phase of $L(j\omega)$

$$\angle L(j\omega) = \angle G_c(j\omega)G(j\omega) - \omega T$$

- Time delay <u>reduces</u> the stability of the system
- Reduces Phase Margin

