1. 標註執行環境

Google colab

2. 程式語言

Python 3

3. 執行方式:

非原生套件:

- -From google .colab import drive:讓 Google Drive 中的文件可以在google.colab 中使用。
- -from sklearn.model_selection import train_test_split: 使用這個函數,可以將數據集劃分為訓練集和測試集,以便在機器學習模型的訓練和評估過程中使用

NB:

-from sklearn.naive_bayes import BernoulliNB: 從 scikit-learn 中導入 Bernoulli Naive Bayes 分類器的方式

SVM:

- -from scikit-learn import SVM: SVM 是一種監督式機器學習演算法,用於分類和回歸任務。
- -from sklearn import metrics:該模組提供了各種用於評估機器學習模型性能的函數。
- -from sklearn.metrics import precision_recall_curve,
- precision_recall_fscore_support, auc:導入與 Precision-Recall Curve 和其他評估指標相關的特定函數。precision_recall_curve 計算不同概率閾值的 precision-recall 配對,precision_recall_fscore_support 計算 precision、recall 和 Fl 分數,auc 計算曲線下面積。
- -import matplotlib.pyplot as plt:從 matplotlib 庫中導入 pyplot 模組,用於創建可視化,例如圖表和圖形。
- -from sklearn. preprocessing import label_binarize:該函數用於將分類的類別標籤轉換為二進制向量。
- -from sklearn.multiclass import OneVsRestClassifier 這是一種將二元 分類算法擴展到多類問題的策略。
- -import numpy as np:-

原生套件:

-引入 python 標準庫 os,用於操作檔案和資料夾,方便讀取或寫入檔案。執行輸出:

-點擊 google colab 中的執行階段,點全部執行或者按 ctrl+F9 便可執行程式

碼,作業要求的 Cosine Similarity 會輸出在 Command Line, TF-IDF vectors 則會存取進雲端中的 TF-IDF-Vectors"。

4. 作業處理邏輯說明:

導入相關模組和設定 Google Colab 掛載:

載入文檔標籤:

-classes = [list(map(int, line.split())) for line in file]:

最終, classes 是一個包含多個子列表的列表, 每個子列表代表一個標籤,

第一個元素是類別標籤,其餘的元素是相應的文檔編號。

載入文本數據和標籤:

with open(os.path.join(document_folder, f"{i}.txt"), 'r',

encoding='utf-8') as file:

content = file.read()

NB: 載入 PA1-data folder

SVM: 載入 TF-IDF-Vectors folder

NB:使用二元計數向量化文本數據:

binary_vectorizer = CountVectorizer(binary=True)

使用 scikit-learn 的 CountVectorizer 將文本數據轉換為二元計數向量, 這表示每個單詞的存在與否

建立訓練和測試集:

y. append(cls): 將對應文檔編號的標籤(cls)添加到 y 列表中。

x_train, x_test, y_train, y_test = train_test_split(x, y,

test_size=0.1, stratify=y, random_state=42):

train_test_split 函數用於將資料集分為訓練集和測試集。

test_size=0.1 表示將 10% 的數據分配給測試集。

stratify=y 表示根據標籤進行分層劃分,以確保訓練集和測試集中的類別分佈相似。

random_state=42 是為了確保每次運行時切割的結果都是相同的。

建立模型:

NB: model = BernoulliNB()

model.fit(x_train, y_train)

SVM(Linear): SVM model = SVC(kernel='linear', C=1.0,

probability=True)

SVM(rdf): SVM model = SVC(kernel='rbf', gamma='scale', C=1.0,

probability=True)

SVM_model. fit(x_train, y_train)

進行預測和評估模型:

predicted_results = model.predict(x_test)
expected_results = y_test
print(metrics.classification_report(expected_results, predicted_results))

繪製多類別的精確度-召回曲線:

1)二值化標籤:

y_test_bin = label_binarize(y_test, classes=np.unique(y)) 使用 label_binarize 函數將原始的多類別標籤(y_test) 轉換成二元矩 陣。

2)計算每個類別的精確度-召回曲線:

precision, recall, _ = precision_recall_curve(y_test_bin[:, i],
y_score[:, i])

auc_score = auc(recall, precision)

recall fl-score

1.00

1.00

1.00

0.50

plt.plot(recall, precision, lw=2, label=f'Class {i+1} (AUC =
{auc_score:.2f})')

使用迴圈遍歷每個類別,計算精確度-召回曲線的數據點,並計算曲線下面積 (AUC)。每條曲線都用不同的標籤和線寬繪製。

3) 圖形設定:

support

5. 結果:

precision

9

10

11

12

NB:

1 0.17 1.00 0.29 1 2 2 0.00 0.00 0.00 3 1.00 1.00 1.00 1 2 0.00 0.00 0.00 4 5 2 1.00 1.00 1.00 6 1.00 1.00 1.00 1 7 1.00 1.00 2 1.00 8 2 1.00 1.00 1.00

1.00

1.00

0.50

1.00

1.00

1.00

0.67

0.67

1

1 2

1

13	1.00	0.50	0.67	2
accuracy			0.70	20
macro avg	0.74	0.77	0.71	20
weighted avg	0.73	0.70	0.68	20

Multiclass Precision-Recall Curve

SVM(Leaner)

precision	recall f1-	score su	pport	
1	1.00	1.00	1.00	1
2	1.00	1.00	1.00	2
3	1.00	1.00	1.00	1
4	1.00	1.00	1.00	2
5	1.00	1.00	1.00	2
6	1.00	1.00	1.00	1
7	1.00	1.00	1.00	2
8	1.00	1.00	1.00	2
9	1.00	1.00	1.00	1
10	1.00	1.00	1.00	1

11	1.00	1.00	1.00	2
12	1.00	1.00	1.00	1
13	1.00	1.00	1.00	2
accuracy			1.00	20
macro avg	1.00	1.00	1.00	20
weighted avg	1.00	1.00	1.00	20

Multiclass Precision-Recall Curve

SVM(RBF):

precision	recall	l f1-score	e suppor	t	
	1	1.00	1.00	1.00	1
	2	1.00	1.00	1.00	2
	3	1.00	1.00	1.00	1
	4	1.00	1.00	1.00	2
	5	1.00	1.00	1.00	2
	6	1.00	1.00	1.00	1
	7	1.00	1.00	1.00	2
	8	1.00	1.00	1.00	2
	9	1.00	1.00	1.00	1

	10	1.00	1.00	1.00	1
	11	1.00	1.00	1.00	2
	12	1.00	1.00	1.00	1
	13	1.00	1.00	1.00	2
accui	cacy			1.00	20
macro	avg	1.00	1.00	1.00	20
weighted	avg	1.00	1.00	1.00	20

Multiclass Precision-Recall Curve

精確度 (Precision):

精確度是指在所有被模型預測為正例的樣本中,實際上是正例的比例。

公式:Precision = TP / (TP + FP)

其中,TP(True Positive)是模型正確預測為正例的樣本數,FP(False Positive)是模型錯誤預測為正例的樣本數。

精確度的值範圍在 0 到 1 之間,越接近 1 表示模型在預測正例方面的效果越好。

召回率 (Recall):

召回率是指在所有實際為正例的樣本中,模型成功預測為正例的比例。

公式:Recall = TP / (TP + FN)

其中,TP(True Positive)是模型正確預測為正例的樣本數,FN(False Negative)是模型錯誤預測為負例的樣本數。

召回率的值範圍在 0 到 1 之間,越接近 1 表示模型在捕捉正例方面的效果越好。

AUC:

AUC 是 ROC 曲線下的面積,取值範圍在 0 到 1 之間。AUC 越接近 1 ,表示模型性能越好。

AUC 的解釋是在隨機選取一個正例和一個負例的情況下,模型正確區分它們的概率。AUC 等於 0.5 表示模型的預測效果等同於隨機猜測,大於 0.5 表示模型優於隨機猜測,越接近 1 表示模型性能越好。

由上評估:

使用 SVM 模組的預測效果更好,上傳結果至 kaggle 也可以發現使用 SVM 模組分數以及精確率會高於使用 NB。

\oslash	output2.csv Complete · 3d ago	0.97777	
\odot	output1.csv Complete · 3d ago	0.93611	
\odot	output (1).csv	0.67361	

由上至下,分別為使用 SVM(linear), SVM(rbf)以及使用 NB 的預測結果。