Übungsblatt 9

Aufgabe 1. Die Grundgesamtheit besitze den Mittelwert μ und die Varianz σ^2 . Die Stichproben $X_1, ..., X_5$ seinen unabhängige Ziehungen aus dieser Grundgesamtheit. Man betrachte als Schätzfunktion für μ die Stichprobenfunktion

$$T_{1} = \overline{X} = \frac{1}{5}(X_{1} + X_{2} + \dots + X_{5}),$$

$$T_{2} = \frac{1}{3}(X_{1} + X_{2} + X_{3}),$$

$$T_{3} = \frac{1}{8}(X_{1} + X_{2} + X_{3} + X_{4}) + \frac{1}{2}X_{5},$$

$$T_{4} = X_{1} + X_{2},$$

$$T_{5} = X_{1}.$$

- a) Welche Schätzfunktionen sind erwartungstreu für μ ?
- b) Welche Schätzfunktion ist die wirksamste, wenn alle Verteilungen mit existierender Varianz zur Konkurrenz zugelassen werden?

Aufgabe 2. Die Suchzeiten von n Projektteams, die in verschiedenen Unternehmen dasselbe Problem lösen sollen, können als unabhängig und identisch exponentialverteilt angenommen werden. Aufgrund der vorliegenden Daten soll nun der Parameter λ der Exponentialverteilung mit der Maximum-Likelihood-Methode geschätzt werden. Es ergab sich eine durchschnittliche Suchzeit von $\overline{x} = 98$.

Stellen Sie die Likelihoodfunktion auf und bestimmen Sie die ML-Schätzfunktion für λ und berechnen Sie den ML-Schätzwert von λ .