

# **Experiments in Detecting Persuasion Techniques in the News**



# Seunghak Yu<sup>1</sup> Giovanni Da San Martino<sup>2</sup> Preslav Nakov<sup>2</sup>

<sup>1</sup>MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA <sup>2</sup>Qatar Computing Research Institute, HBKU, Qatar

seunghak@csail.mit.edu {gmartino, pnakov}@hbku.edu.qa

# **Computational Propaganda**

• Propaganda has been widely used since the advent of mass media









- However, Internet and social media "have allowed cross-border computational propaganda by foreign states or even private organizations" (Bolsover and Howard, Big Data 2017)
- Can we automatically detect the use of propaganda? Can we make America (and the world) aware again?
- Current approaches provide document-level predictions
- rely on gold labels based on distant supervision  $\rightarrow$  noisy
- lack model explainability

#### Propaganda Techniques

Propaganda is conveyed through a series of rhetorical and psychological techniques



**Figure 1:** *Bandwagon*: join in because everyone else is taking the same action.







Greta Thunberg: "We are in the middle of the sixth mass extinction, with more than 200 species getting extinct every day."

Figure 2: Name calling.

Figure 3: Appeal to fear.

# Propaganda Techniques Corpus

450 news articles from 48 sources (21,230 sentences, 350K tokens) annotated at the fragment level with 18 propaganda techniques.



# **Annotation Process**

- Phase 1: two annotators,  $a_i$  and  $a_j$ , independently annotated the same article
- Phase 2:  $a_i$  and  $a_j$  discussed with a consolidator  $c_1$  all instances to come up with a final annotation.

The table shows  $\gamma$  inter-annotator agreement for spans only and spans + labels between two annotators and one annotator and one consolidator.

| - | Anı              | notations | spans $(\gamma_s)$ | +labels $(\gamma_{sl})$ |  |  |
|---|------------------|-----------|--------------------|-------------------------|--|--|
|   | $\overline{a_1}$ | $a_2$     | 0.30               | 0.24                    |  |  |
| _ | $a_3$            | $a_4$     | 0.34               | 0.28                    |  |  |
|   | $\overline{a_1}$ | $c_1$     | 0.58               | 0.54                    |  |  |
| 5 | $a_2$            | $c_1$     | 0.74               | 0.72                    |  |  |
|   | $a_3$            | $c_2$     | 0.76               | 0.74                    |  |  |
|   | $a_4$            | $c_2$     | 0.42               | 0.39                    |  |  |

# **Tasks and Evaluation Measure**

- FLC: detect the text fragments in which a propaganda technique is used and identify the technique. Spans is a lighter version of the task in which only the span has to be identified.
- SLC detect the sentences that contain one or more propaganda techniques (binary task).

An evaluation measure for Task FLC needs to be defined. We use a variant of the standard  $F_1$  (and Precision, P, and Recall, R) taking into account partially overlapping spans:

$$P(S,T) = \frac{1}{|S|} \sum_{\substack{s \in S, \\ t \in T}} C(s,t,|s|), \qquad R(S,T) = \frac{1}{|T|} \sum_{\substack{s \in S, \\ t \in T}} C(s,t,|t|),$$

where

$$C(s,t,h) = \frac{|(s \cap t)|}{h} \delta\left(l(s),l(t)\right)$$

here  $\delta(a, b) = 1$  if a = b, and 0 otherwise.

Token



Example of gold annotation (top) and the predictions of a supervised model (bottom) in a document represented as a sequence of characters. The class of each fragment is shown in parentheses.

Token

Label 2

Label 1

Token

Label N

#### **Models**

• Multi-Granularity Network: It drives the higher-granularity task (FLC,  $g_2$ ) on the basis of the lower-granularity information (SLC,  $g_1$ ) through a trainable gate f:

$$o_{g_2} = f(o_{g_1}) * o_{g_2}$$

and we used a weighted sum of losses with a hyper-parameter  $\alpha$ 

Token

Label 2

$$L_J = L_{q_1} * \alpha + L_{q_2} * (1 - \alpha)$$

Sentence

Token

Label N







Figure 4: The architecture of the baseline models (a-c), and of our proposed multi-granularity network (d).

# **Experiments**

| Model             | Spans |       | FLC Task |       |       | SLC Task |       |       |       |
|-------------------|-------|-------|----------|-------|-------|----------|-------|-------|-------|
| Model             | P     | R     | $F_1$    | P     | R     | $F_1$    | P     | R     | $F_1$ |
| BERT              | 39.57 | 36.42 | 37.90    | 21.48 | 21.39 | 21.39    | 63.20 | 53.16 | 57.74 |
| Joint             | 39.26 | 35.48 | 37.25    | 20.11 | 19.74 | 19.92    | 62.84 | 55.46 | 58.91 |
| Granu             | 43.08 | 33.98 | 37.93    | 23.85 | 20.14 | 21.80    | 62.80 | 55.24 | 58.76 |
| Multi-Granularity |       |       |          |       |       |          |       |       |       |
| ReLU              | 43.29 | 34.74 | 38.28    | 23.98 | 20.33 | 21.82    | 60.41 | 61.58 | 60.98 |
| Sigmoid           | 44.12 | 35.01 | 38.98    | 24.42 | 21.05 | 38.98    | 62.27 | 59.56 | 60.71 |

**Table 1:** Evaluation of the models for Spans, FLC and SLC tasks. The proposed models improve over the baselines.

# **Conclusion and Future Work**

- Our fine-grained task can complement document-level judgments, both to come out with an aggregated decision and to explain why it has been flagged as potentially propagandistic.
- We plan to build an online platform to annotate propaganda techniques and expand the corpus.

# What We Are Up To

- SemEval 2020 Task 11 on Fine Grained Propaganda Detection: https://propaganda.qcri.org/semeval2020-task11
- Our Propaganda Analysis Project (where you can find this paper): https://propaganda.qcri.org
- The Tanbih Project, which aims to limit the effect of "fake news", propaganda and media bias by making users aware of what they are reading: http://tanbih.qcri.org