Fuzzy Logic: Introduction

Debasis Samanta

IIT Kharagpur dsamanta@iitkgp.ac.in

07.01.2015

What is Fuzzy logic?

- Fuzzy logic is a <u>mathematical language</u> to <u>express</u> something.
 This means it has grammar, syntax, semantic like a language for communication.
- There are some other mathematical languages also known
 - Relational algebra (operations on sets)
 - Boolean algebra (operations on Boolean variables)
 - Predicate logic (operations on well formed formulae (wff), also called predicate propositions)
- Fuzzy logic deals with Fuzzy set.

A brief history of Fuzzy Logic

 First time introduced by Lotfi Abdelli Zadeh (1965), University of California, Berkley, USA (1965).

He is fondly nick-named as LAZ

A brief history of Fuzzy logic

Dictionary meaning of fuzzy is not clear, noisy etc.

Example: Is the picture on this slide is fuzzy?

Antonym of fuzzy is crisp

Example: Are the chips crisp?

Example: Fuzzy logic vs. Crisp logic

Example: Fuzzy logic vs. Crisp logic

Example: Fuzzy logic vs. Crisp logic

World is fuzzy!

Concept of fuzzy system

Concept of fuzzy set

To understand the concept of **fuzzy set** it is better, if we first clear our idea of **crisp set**.

X =The entire population of India.

 $H = All Hindu population = \{ h_1, h_2, h_3, ..., h_L \}$

M = All Muslim population = $\{ m_1, m_2, m_3, ..., m_N \}$

Here, All are the sets of finite numbers of individuals.

Such a set is called crisp set.

Example of fuzzy set

Let us discuss about fuzzy set.

X = All students in IT60108.

S = All Good students.

 $S = \{ (s, g) \mid s \in X \}$ and g(s) is a measurement of goodness of the student s.

Example:

 $S = \{ (Rajat, 0.8), (Kabita, 0.7), (Salman, 0.1), (Ankit, 0.9) \} etc.$

Fuzzy set vs. Crisp set

Crisp Set	Fuzzy Set		
1. $S = \{ s \mid s \in X \}$	1. $F = (s, \mu) s \in X$ and		
	μ (s) is the degree of s.		
2. It is a collection of el-	2. It is collection of or-		
ements.	dered pairs.		
3. Inclusion of an el-	3. Inclusion of an el-		
ement $s \in X$ into S is	ement $s \in X$ into F is		
crisp, that is, has strict	fuzzy, that is, if present,		
boundary yes or no .	then with a degree of		
	membership.		

Fuzzy set vs. Crisp set

Note: A crisp set is a fuzzy set, but, a fuzzy set is not necessarily a crisp set.

Example:

$$\mathsf{H} = \{\; (h_1,\,1),\, (h_2,\,1),\, \dots\,,\, (h_L,\,1)\; \}$$

Person =
$$\{ (p_1, 1), (p_2, 0), ..., (p_N, 1) \}$$

In case of a crisp set, the elements are with extreme values of degree of membership namely either 1 or 0.

How to decide the degree of memberships of elements in a fuzzy set?

City	Bangalore	Bombay	Hyderabad	Kharagpur	Madras	Delhi
DoM	0.95	0.90	0.80	0.01	0.65	0.75

How the cities of comfort can be judged?

Example: Course evaluation in a crisp way

- **●** EX = Marks ≥ 90
- **2** $A = 80 \le Marks < 90$
- **3** B = $70 \le Marks < 80$
- **4** $C = 60 \le Marks < 70$
- **5** D = $50 \le Marks < 60$
- **1** P = $35 \le Marks < 50$
- F = Marks < 35</p>

Example: Course evaluation in a crisp way

Example: Course evaluation in a fuzzy way

Few examples of fuzzy set

- High Temperature
- Low Pressure
- Color of Apple
- Sweetness of Orange
- Weight of Mango

Note: Degree of membership values lie in the range [0...1].

Some basic terminologies and notations

Definition 1: Membership function (and Fuzzy set)

If X is a universe of discourse and $x \in X$, then a fuzzy set A in X is defined as a set of ordered pairs, that is

 $A = \{(x, \mu_A(x)) | x \in X\}$ where $\mu_A(x)$ is called the membership function for the fuzzy set A.

Note:

 $\mu_A(x)$ map each element of X onto a membership grade (or membership value) between 0 and 1 (both inclusive).

Question:

How (and who) decides $\mu_A(x)$ for a Fuzzy set A in X?

Some basic terminologies and notations

Example:

X = All cities in India

A = City of comfort

A={(New Delhi, 0.7), (Bangalore, 0.9), (Chennai, 0.8), (Hyderabad, 0.6), (Kolkata, 0.3), (Kharagpur, 0)}

Membership function with discrete membership values

The membership values may be of discrete values.

A fuzzy set with discrete values of μ

Membership function with discrete membership values

Either elements or their membership values (or both) also may be of discrete values.

 $A = \{(0,0.1), (1,0.30), (2,0.78), \dots, (10,0.1)\}$

Note : X = discrete value

How you measure happiness ??

A = "Happy family"

Membership function with continuous membership values

$$\mu_{\scriptscriptstyle B}(x) = \frac{1}{1 + \left(\frac{x - 50}{10}\right)^4}$$

$$B=\{(x,\mu_B(x))\}$$

Note : x = real value = R⁺

Fuzzy terminologies: Support

Support: The support of a fuzzy set *A* is the set of all points $x \in X$ such that $\mu_A(x) > 0$

Fuzzy terminologies: Core

Core: The core of a fuzzy set *A* is the set of all points *x* in *X* such that $\mu_A(x) = 1$

Fuzzy terminologies: Normality

Normality: A fuzzy set A is a normal if its core is non-empty. In other words, we can always find a point $x \in X$ such that $\mu_A(x) = 1$.

Fuzzy terminologies: Crossover points

Crossover point : A crossover point of a fuzzy set *A* is a point $x \in X$ at which $\mu_A(x) = 0.5$. That is Crossover $(A) = \{x | \mu_A(x) = 0.5\}$.

Fuzzy terminologies: Fuzzy Singleton

Fuzzy Singleton: A fuzzy set whose support is a single point in X with $\mu_A(x) = 1$ is called a fuzzy singleton. That is $|A| = \{ x \mid \mu_A(x) = 1 \}$.

Fuzzy terminologies: α -cut and strong α -cut

α -cut and strong α -cut :

The α -cut of a fuzzy set A is a crisp set defined by

$$A_{\alpha} = \{ \mathbf{x} \mid \mu_{A}(\mathbf{x}) \geq \alpha \}$$

Strong α -cut is defined similarly :

$$A_{\alpha}$$
' = $\{x \mid \mu_A(x) > \alpha \}$

Note : Support(A) = A_0 ' and Core(A) = A_1 .

Fuzzy terminologies: Convexity

Convexity: A fuzzy set A is convex if and only if for any x_1 and $x_2 \in X$ and any $\lambda \in [0, 1]$

$$\mu_A (\lambda x_1 + (1 - \lambda)x_2) \ge \min(\mu_A(x_1), \mu_A(x_2))$$

Note:

- A is convex if all its α level sets are convex.
- Convexity $(A_{\alpha}) \Longrightarrow A_{\alpha}$ is composed of a single line segment only.

Fuzzy terminologies: Bandwidth

Bandwidth:

For a normal and convex fuzzy set, the bandwidth (or width) is defined as the distance the two unique crossover points:

Bandwidth(
$$A$$
) = $|x_1 - x_2|$

where
$$\mu_A(x_1) = \mu_A(x_2) = 0.5$$

Fuzzy terminologies: Symmetry

Symmetry:

A fuzzy set A is symmetric if its membership function around a certain point x = c, namely $\mu_A(x + c) = \mu_A(x - c)$ for all $x \in X$.

Fuzzy terminologies: Open and Closed

A fuzzy set A is

Open left

If
$$\lim_{x\to-\infty} \mu_A(x) = 1$$
 and $\lim_{x\to+\infty} \mu_A(x) = 0$

Open right:

If
$$\lim_{x\to-\infty}\mu_A(x)=0$$
 and $\lim_{x\to+\infty}\mu_A(x)=1$

Closed

If:
$$\lim_{x\to-\infty} \mu_A(x) = \lim_{x\to+\infty} \mu_A(x) = 0$$

Fuzzy vs. Probability

Fuzzy: When we say about certainty of a thing

Example: A patient come to the doctor and he has to diagnose so that medicine can be prescribed.

Doctor prescribed a medicine with certainty 60% that the patient is suffering from flue. So, the disease will be cured with certainty of 60% and uncertainty 40%. Here, in stead of flue, other diseases with some other certainties may be.

Probability: When we say about the chance of an event to occur

Example: India will win the T20 tournament with a chance 60% means that out of 100 matches, India own 60 matches.

Prediction vs. Forecasting

The Fuzzy vs. Probability is analogical to Prediction vs. Forecasting

Prediction: When you start guessing about things.

Forecasting: When you take the information from the past job and apply it to new job.

The main difference:

Prediction is based on the best guess from experiences.

Forecasting is based on data you have actually recorded and packed from previous job.

Fuzzy Membership Functions

Fuzzy membership functions

A fuzzy set is completely characterized by its membership function (sometimes abbreviated as MF and denoted as μ). So, it would be important to learn how a membership function can be expressed (mathematically or otherwise).

Note: A membership function can be on

- (a) a discrete universe of discourse and
- (b) a continuous universe of discourse.

Example:

A = Fuzzy set of "Happy family"

 $B=\text{"Young age"} \quad \text{\longrightarrow} \quad$

Fuzzy membership functions

So, membership function on a discrete universe of course is trivial. However, a membership function on a continuous universe of discourse needs a special attention.

Following figures shows a typical examples of membership functions.

Fuzzy MFs: Formulation and parameterization

In the following, we try to parameterize the different MFs on a continuous universe of discourse.

Triangular MFs: A triangular MF is specified by three parameters $\{a, b, c\}$ and can be formulated as follows.

$$triangle(x; a, b, c) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ \frac{c-x}{c-b} & \text{if } b \le x \le c \\ 0 & \text{if } c \le x \end{cases}$$

Fuzzy MFs: Trapezoidal

A trapezoidal MF is specified by four parameters $\{a, b, c, d\}$ and can be defined as follows:

$$trapeziod(x; a, b, c, d) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ 1 & \text{if } b \le x \le c \end{cases}$$

$$\frac{d-x}{d-c} & \text{if } c \le x \le d$$

$$0 & \text{if } d \le x \end{cases}$$
(2)

Fuzzy MFs: Gaussian

A Gaussian MF is specified by two parameters $\{c, \sigma\}$ and can be defined as below:

gaussian(x;c,
$$\sigma$$
) = $e^{-\frac{1}{2}(\frac{x-c}{\sigma})^2}$.

Fuzzy MFs: Generalized bell

It is also called Cauchy MF. A generalized bell MF is specified by three parameters $\{a, b, c\}$ and is defined as:

bell(x; a, b, c)=
$$\frac{1}{1+|\frac{x-c}{a}|^{2b}}$$

Example: Generalized bell MFs

Example:
$$\mu(x) = \frac{1}{1+x^2}$$
; $a = b = 1$ and $c = 0$;

Generalized bell MFs: Different shapes

Fuzzy MFs: Sigmoidal MFs

Parameters: $\{a, c\}$; where c = crossover point and a = slope at c;

Sigmoid(x;a,c)=
$$\frac{1}{1+e^{-\left[\frac{a}{x-c}\right]}}$$

Fuzzy MFs: Example

Example: Consider the following grading system for a course.

Excellent = Marks < 90

 $Very\ good = 75 \leq Marks \leq 90$

 $Good = 60 \leq Marks \leq 75$

Average = $50 \le Marks \le 60$

 $Poor = 35 \leq Marks \leq 50$

Bad= Marks ≤ 35

Grading System

A fuzzy implementation will look like the following.

You can decide a standard fuzzy MF for each of the fuzzy garde.

Operations on Fuzzy Sets

Basic fuzzy set operations: Union

Union ($A \cup B$):

$$\mu_{A\cup B}(x) = \max\{\mu_A(x), \, \mu_B(x)\}$$

Example:

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$
 and

$$B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\};$$

$$C = A \cup B = \{(x_1, 0.5), (x_2, 0.3), (x_3, 0.5)\}$$

Basic fuzzy set operations: Intersection

Intersection $(A \cap B)$:

$$\mu_{A \cap B}(x) = \min\{\mu_A(x), \, \mu_B(x)\}\$$

Example:

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$
 and

$$B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\};$$

$$C = A \cap B = \{(x_1, 0.2), (x_2, 0.1), (x_3, 0.4)\}$$

Basic fuzzy set operations: Complement

Complement (A^C):

$$\mu_{A_{A^C}}(x) = 1 - \mu_A(x)$$

Example:

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$

$$C = A^C = \{(x_1, 0.5), (x_2, 0.9), (x_3, 0.6)\}$$

Basic fuzzy set operations: Products

Algebric product or Vector product (A•B):

$$\mu_{A\bullet B}(x) = \mu_A(x) \bullet \mu_B(x)$$

Scalar product $(\alpha \times A)$:

$$\mu_{\alpha A}(\mathbf{x}) = \alpha \cdot \mu_{A}(\mathbf{x})$$

Basic fuzzy set operations: Sum and Difference

Sum (A + B):

$$\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x)$$

Difference $(A - B = A \cap B^C)$:

$$\mu_{A-B}(x) = \mu_{A\cap B^C}(x)$$

Disjunctive sum: $A \oplus B = (A^C \cap B) \cup (A \cap B^C)$)

Bounded Sum: $\mid A(x) \oplus B(x) \mid$

$$\mu_{|A(x)\oplus B(x)|} = \min\{1, \, \mu_A(x) + \mu_B(x)\}$$

Bounded Difference: $\mid A(x) \ominus B(x) \mid$

$$\mu_{|A(x) \ominus B(x)|} = \max\{0, \mu_A(x) + \mu_B(x) - 1\}$$

Basic fuzzy set operations: Equality and Power

Equality (A = B):

$$\mu_{A}(x) = \mu_{B}(x)$$

Power of a fuzzy set A^{α} :

$$\mu_{A^{\alpha}}(\mathbf{X}) = \{\mu_{A}(\mathbf{X})\}^{\alpha}$$

- If α < 1, then it is called *dilation*
- If $\alpha > 1$, then it is called *concentration*

Basic fuzzy set operations: Cartesian product

Caretsian Product ($A \times B$):

$$\mu_{A \times B}(x, y) = min\{\mu_A(x), \mu_B(y)\}$$

Example 3:

$$A(x) = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5), (x_4, 0.6)\}$$

$$B(y) = \{(y_1, 0.8), (y_2, 0.6), (y_3, 0.3)\}$$

Properties of fuzzy sets

Commutativity:

$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

Associativity:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributivity:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Properties of fuzzy sets

Idempotence:

$$A \cup A = A$$

$$A \cap A = \emptyset$$

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

Transitivity:

If
$$A \subseteq B$$
, $B \subseteq C$ then $A \subseteq C$

Involution:

$$(A^c)^c = A$$

De Morgan's law:

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Few Illustrations on Fuzzy Sets

Example 1: Fuzzy Set Operations

Let A and B are two fuzzy sets defined over a universe of discourse X with membership functions $\mu_A(x)$ and $\mu_B(x)$, respectively. Two MFs $\mu_A(x)$ and $\mu_B(x)$ are shown graphically.

Example 1: Plotting two sets on the same graph

Let's plot the two membership functions on the same graph

Example 1: Union and Intersection

The plots of union $A \cup B$ and intersection $A \cap B$ are shown in the following.

Example 1: Intersection

The plots of union $\mu_{\bar{A}}(x)$ of the fuzzy set A is shown in the following.

Fuzzy set operations: Practice

Consider the following two fuzzy sets *A* and *B* defined over a universe of discourse [0,5] of real numbers with their membership functions

$$\mu_{A}(x) = \frac{x}{1+x} \text{ and } \mu_{B}(x) = 2^{-x}$$

Determine the membership functions of the following and draw them graphically.

- i. \overline{A} , \overline{B}
- ii. *A* ∪ *B*
- iii. $A \cap B$
- iv. $(A \cup B)^c$ [Hint: Use De' Morgan law]

Example 2: A real-life example

Two fuzzy sets A and B with membership functions $\mu_A(x)$ and $\mu_B(x)$, respectively defined as below.

A =Cold climate with $\mu_A(x)$ as the MF.

B =Hot climate with $\mu_B(x)$ as the M.F.

Here, X being the universe of discourse representing entire range of temperatures.

Example 2: A real-life example

What are the fuzzy sets representing the following?

- Not cold climate
- Not hold climate
- Extreme climate
- Pleasant climate

Note: Note that "Not cold climate" \neq "Hot climate" and vice-versa.

Example 2 : A real-life example

Answer would be the following.

Not cold climate

 \overline{A} with $1 - \mu_A(x)$ as the MF.

Not hot climate

 \overline{B} with $1 - \mu_B(x)$ as the MF.

3 Extreme climate

 $A \cup B$ with $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$ as the MF.

Pleasant climate

 $A \cap B$ with $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$ as the MF.

The plot of the MFs of $A \cup B$ and $A \cap B$ are shown in the following.

Few More on Membership Functions

Generation of MFs

Given a membership function of a fuzzy set representing a linguistic hedge, we can derive many more MFs representing several other linguistic hedges using the concept of Concentration and Dilation.

Concentration:

$$A^k = [\mu_A(x)]^k$$
; $k > 1$

Dilation:

$$A^k = [\mu_A(x)]^k$$
; $k < 1$

Example : Age = { Young, Middle-aged, Old }

Thus, corresponding to Young, we have : Not young, Very young, Not very young and so on.

Similarly, with Old we can have : old, very old, very very old, extremely old etc.

Thus, Extremely old = $(((old)^2)^2)^2$ and so on

Or, More or less old = $A^{0.5} = (old)^{0.5}$

Linguistic variables and values

$$\mu_{young}(x) = bell(x, 20, 2, 0) = \frac{1}{1 + (\frac{x}{20})^4}$$

$$\mu_{old}(x) = bell(x, 30, 3, 100) = \frac{1}{1 + (\frac{x - 100}{30})^6}$$

$$\mu_{middle-aged} = bell(x, 30, 60, 50)$$

Not young =
$$\overline{\mu_{young}(x)} = 1 - \mu_{young}(x)$$

Young but not too young = $\mu_{young}(x) \cap \overline{\mu_{young}(x)}$

Any questions??