RAG is All You Need: A Comprehensive Guide to Retrieval-Augmented Generation

Zhanghao Chen

HKUST(GZ)
IPE Thrust

August 2025

Blueprint

2 / 55

Outline

- Introduction to RAG Systems
- Naive RAG
 - Document Ingestion Pipeline
 - Retrieval Pipeline
 - Generation Pipeline
- Advanced RAG
 - Pre-Retrieval
 - Post-Retrieval
 - Graph RAG & Modular RAG
- Evaluation and Metrics
- 5 RAG Tools & Frameworks

Introduction to RAG Systems

4 / 55

What is RAG?

Definition

Retrieval-Augmented Generation (RAG) combines information retrieval from external knowledge bases with text generation using large language models.

Three Core Steps:

Retrieve: Search relevant documents

Augment: Combine context with query

Generate: Produce grounded responses

• Key Benefit: Enables dynamic, up-to-date, factually grounded responses

Why RAG Matters

Traditional LLM Challenges:

- Static training data
- Expensive retraining
- Hallucinations
- Limited domain knowledge

RAG Solutions:

- Dynamic knowledge access
- Cost-effective updates
- Factual grounding
- Domain specialization

Key Insight: RAG transforms LLMs from static knowledge repositories into dynamic information processing systems.

Comparison

Aspect	Pure LLM	Fine-tuning	RAG	
Knowledge Updates	No	No	Yes	
Cost	Low	High	Medium	
Accuracy	Medium	High	High	
Flexibility	Low	Medium	High	
Implementation	Easy	Hard	Medium	

- RAG offers the best balance of accuracy, flexibility, and cost
- Enables real-time knowledge integration without model retraining

Real-World Applications

Enterprise Use Cases:

- Customer support chatbots
- Internal knowledge management
- Legal document analysis
- Technical documentation

Research & Education:

- Scientific literature review
- Educational Q&A systems
- Research assistance
- Academic writing support

Real Case: Microsoft Copilot uses RAG to retrieve and summarize web content, providing users with accurate, up-to-date information from multiple sources in real-time.

Naive RAG

Naive RAG Architecture

Naive RAG: Three Main Components

- Ocument Ingestion Pipeline
 - Text extraction and chunking
 - Embedding generation
 - Vector storage
- Retrieval Pipeline
 - Query embedding
 - Similarity search
 - Top-k document selection
- Generation Pipeline
 - Context integration
 - Prompt construction
 - Response generation

Ingestion

- Text Extraction & Chunking: Break documents into manageable pieces & remove all invalid characters
- Embedding Generation: Convert text chunks into vector representations
- Vector Storage: Store embeddings in searchable database

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (C)

Text Extraction Strategies

Document Types:

- PDF documents
- Web pages (HTML)
- Office documents
- Plain text files
- Structured data (JSON, XML)

Extraction Tools:

- PyPDF2, pdfplumber
- BeautifulSoup, Scrapy
- python-docx, openpyxl
- Unstructured.io
- Custom parsers

Challenge: Preserving document structure and metadata during extraction is critical for context understanding.

Text Cleaning Example

- Remove formatting artifacts and normalize whitespace
- Preserve semantic structure

Chunking Strategies

Strategy	Method
Fixed Size	Character/token count
Recursive Character	Multi-level separators
Document-Specific	Structure-aware splitting
Semantic	Embedding-based similarity
Agentic	LLM-driven decisions

- Chunk size: Balance between context and specificity
- Overlap: Prevent information loss at boundaries
- Metadata: Preserve source information and structure

LangChain Implementation: Use CharacterTextSplitter for fixed size, RecursiveCharacterTextSplitter for recursive, and SemanticChunker for semantic chunking.

https://medium.com/@aminajavaid30/building-a-rag-system-the-data-ingestion-pipeline-d04235fd17ea

Embeddings

- Definition: Dense vector representations of text that capture semantic meaning
- Purpose: Enable mathematical operations on text for similarity search
- Properties:
 - Similar texts have similar vectors
 - Vectors can be compared using distance metrics

Popular Embedding Models (2025.08)

Model	Dims	Tokens	Best For
OpenAI text-embedding-3-large	3072	8191	General purpose
Google Gemini-embedding-001	3072	2048	Multilingual, flexible
Qwen3-Embedding-8B	4096	32768	Long context, multilingual
BGE-M3	1024	8192	Multilingual, hybrid
E5-Mistral-7B-instruct	4096	32768	High performance

- Trade-offs: Accuracy vs. Speed vs. Cost vs. Deployment
- Customization: Fine-tuned models for specialized domains
- Consistency: Same model for indexing and querying

Embedding Generation Example

Output:

```
Embedding shape: (2, 384)
Similarity: 0.564
```

- Each text becomes a 384-dimensional vector
- Cosine similarity measures semantic closeness

MTEB Embedding Evaluation Metrics

Task Category	Description	Example Datasets	Metric
Classification	Text classification tasks	Amazon, Bank- ing77	Accuracy
Clustering	Document cluster- ing	ArxivClustering, Reddit	V- measure
Pair Classification	Binary text pair classification	Sprint, Twit- terSemEval	AP
Reranking	IR reranking	AskUbuntu, MindSmall	MAP
Retrieval	Document re- trieval	MSMARCO, NQ	nDCG@10
STS	Semantic similarity	STS-B, SICK-R	Spearman
Summarization	Document summa- rization	SummEval	Spearman
BitextMining	Parallel sentence mining	BUCC, Tatoeba	F1 Score

• MTEB: Massive Text Embedding Benchmark with 8 task categories

 $\verb|https://huggingface.co/spaces/mteb/leaderboard|$

4□ > 4□ > 4≡ > 4≡ > 900

Sparse vs Dense Embeddings & BM25

Aspect	Sparse Em-	Dense Em-	BM25
	beddings	beddings	
Representation	High-	Low-	Term frequency
	dimensional	dimensional	based
	sparse vectors	dense vectors	
Interpretability	High (explicit	Low (latent fea-	High (term
	terms)	tures)	weights)
Semantic Understanding	Limited	Strong	None
Exact Match	Excellent	Poor	Excellent
Conceptual Match	Poor	Excellent	Poor
Storage	Efficient	More storage	Minimal
	(sparse)	needed	
Computation	Fast	Moderate	Very fast
Training Required	No	Yes	No

Sparse: TF-IDF, SPLADE - good for keyword matching

• Dense: BERT, Sentence-BERT - captures semantic meaning

• BM25: Classic probabilistic ranking function

Hybrid: Combine all three for optimal performance

Vector Databases

Traditional Databases:

- Exact match queries
- SQL-based operations
- Structured data focus
- Limited similarity search

Vector Databases:

- Similarity-based search
- High-dimensional vectors
- Semantic understanding
- Optimized for ML workloads

Key Capability: Vector databases enable fast approximate nearest neighbor (ANN) search across millions of high-dimensional vectors.

Vector Database Comparison

Database	Туре	Scalability	Ease of Use	Cost
Pinecone	Cloud	High	High	Medium
Weaviate	Self-hosted/Cloud	High	Medium	Low-Med
Chroma	Self-hosted	Medium	High	Low
Qdrant	Self-hosted/Cloud	High	Medium	Low-Med
Milvus (Preferred)	Self-hosted/Cloud	Very High	Low	Low
FAISS	Library	Medium	Low	Free

- Cloud vs. Self-hosted: Trade-off between convenience and control
- Scalability: Consider your expected data volume and query load
- Features: Metadata filtering, hybrid search, multi-tenancy

Vector Search Algorithms

- Exact Search (Brute Force):
 - Compare query vector with all stored vectors
 - Guaranteed accuracy but slow for large datasets
 - O(n) complexity
- Approximate Nearest Neighbor (ANN):
 - Trade accuracy for speed
 - Various algorithms: HNSW, IVF, LSH
 - Sub-linear complexity
- Hierarchical Navigable Small World (HNSW):
 - Most popular ANN algorithm
 - Graph-based approach
 - Excellent recall-speed trade-off

Types of Retrieval

- Dense Retrieval (Semantic Search):
 - Uses vector embeddings
 - Captures semantic similarity
 - Good for conceptual matches
- 2 Sparse Retrieval (Keyword Search):
 - Traditional TF-IDF, BM25
 - Exact term matching
 - Good for specific terms/names
- Hybrid Retrieval:
 - Combines dense and sparse methods
 - Best of both worlds
 - More robust results

Retrieval Pipeline

Query Enhancement Techniques

Query Expansion:

- Add synonyms and related terms
- Use LLM to generate alternative phrasings
- Domain-specific term expansion

Query Decomposition:

- Break complex queries into sub-questions
- Retrieve for each sub-question separately
- Combine results intelligently

Hypothetical Document Embeddings (HyDE):

- Generate hypothetical answer to query
- Use answer embedding for retrieval
- Often more effective than query embedding

Retrieval Implementation Example

```
import chromadb
from sentence_transformers import SentenceTransformer
# Initialize components
client = chromadb.Client()
collection = client.create_collection("documents")
model = SentenceTransformer('all-MiniLM-L6-v2')
# Add documents and query
documents = ["Document 1 text...", "Document 2 text..."]
embeddings = model.encode(documents)
collection.add(embeddings=embeddings.tolist(),
                documents=documents.
                ids=["doc_1", "doc_2"])
query_embedding = model.encode(["What is ML?"])
results = collection.query(
    query_embeddings=query_embedding.tolist(),
    n_results=5)
```

0

The Generation Component

- Role: Synthesize retrieved information into coherent responses
- Input: User query + retrieved context documents
- Output: Natural language response grounded in retrieved content
- Challenges:
 - Context length limitations
 - Information synthesis
 - Maintaining factual accuracy
 - Handling conflicting information

Key Principle: The LLM should act as an intelligent synthesizer, not a creative writer, when using RAG.

Prompt Engineering for RAG

- System Prompt: Define the Al's role and behavior
- Context Integration: How to present retrieved documents
- Instructions: Specific guidelines for response generation
- Output Format: Structure the desired response format

Essential Elements:

- Clear role definition
- Context usage instructions
- Accuracy requirements
- Citation guidelines
- 5 Fallback behavior for insufficient context

RAG Prompt Template Example

```
You are a helpful AI assistant. Use the provided context
to answer the user's question accurately.
CONTEXT:
{retrieved_documents}
INSTRUCTIONS:
1. Base your answer primarily on the provided context
2. If context doesn't contain enough information, say so
3. Include relevant quotes when appropriate
4. Cite sources using [Source: document_name]
5. Be concise but thorough
USER QUESTION: {user_query}
ANSWER:
```

- Clear instructions prevent hallucination
- Citation requirements improve transparency
- Fallback behavior handles edge cases

Advanced Prompting Techniques

Chain-of-Thought:

- Step-by-step reasoning
- Improves complex queries
- Shows reasoning process

Few-Shot Examples:

- Provide example Q&A pairs
- Demonstrates desired format
- Improves consistency

Role-Based Prompting:

- Specific expert personas
- Domain-appropriate language
- Targeted expertise

Multi-Step Reasoning:

- Break down complex tasks
- Validate intermediate steps
- Reduce error propagation

Advanced RAG

Advanced RAG Architecture

Pre-Retrieval Optimization

Query Enhancement:

- Query expansion with synonyms
- Query rewriting for better matching
- Multi-query generation

Query Routing:

- Route to appropriate knowledge bases
- Domain-specific strategies

Query Classification:

- Intent detection
- Complexity assessment
- Response type prediction

Goal: Optimize queries before retrieval for better results.

Pre-Retrieval Techniques

HyDE (Hypothetical Document Embeddings):

- Generate hypothetical answer
- Use answer embedding for retrieval
- Often more effective than query embedding

Step-Back Prompting:

- Generate broader, conceptual questions
- Retrieve high-level context first
- Then focus on specific details

Query Decomposition:

- Break complex queries into sub-questions
- Retrieve for each sub-question
- Combine results intelligently

Multi-Vector Retrieval:

- Generate multiple query representations
- Retrieve using different embeddings
- Merge and rank results

Post-Retrieval Processing

• Re-ranking:

- Cross-encoder models for better relevance scoring
- LLM-based relevance assessment
- Diversity-aware ranking

Context Compression:

- Remove irrelevant information
- Summarize long documents
- Extract key sentences and facts

Context Fusion:

- Merge information from multiple sources
- Resolve contradictions
- Create coherent context window

Goal: Refine and optimize retrieved content before feeding it to the generation model.

Reranking Techniques Overview

Reranking: Post-retrieval technique to improve document relevance ordering

Reciprocal Rank Fusion (RRF):

- Formula: $RRF(d) = \sum_{r \in R} \frac{1}{k + r(d)}$
- No training required
- Robust aggregation method

Cross-Encoder Models:

- Joint query-document encoding
- Higher accuracy, slower inference
- Examples: BERT, RoBERTa

Cohere Rerank:

- Commercial API solution
- Multilingual support
- Domain-optimized

Benefits:

- Improved relevance ordering
- Better generation context
- Reduced noise in results

Qwen3: Unified Embedding & Reranking

Qwen3 Dual-Mode Architecture:

- Embedding Mode: Fast dense retrieval with shared parameters
- Reranking Mode: Cross-attention scoring with LM head
- Unified Training: Single model for both tasks
- Performance: SOTA on MTEB retrieval benchmark

Innovation: First model to unify embedding and reranking in one architecture, achieving both efficiency and accuracy.

Post-Retrieval Techniques

Lost-in-the-Middle Problem:

- LLMs perform worse on middle content
- Solution: Reorder by relevance
- Place most relevant at beginning/end

Context Window Management:

- Token budget allocation
- Intelligent truncation
- Sliding window approaches

Self-RAG:

- LLM evaluates retrieval necessity
- Adaptive retrieval based on confidence
- Self-correction mechanisms

CRAG (Corrective RAG):

- Evaluate retrieval quality
- Trigger web search if needed
- Correct and refine retrieved content

Graph RAG & Modular RAG Graph RAG:

- Build knowledge graphs from documents
- Entity and relationship extraction
- Graph-based retrieval and reasoning

Benefits:

- Captures entity relationships
- Enables multi-hop reasoning
- Structured knowledge representation

Modular RAG:

- Flexible, composable components
- Mix and match different modules
- Adaptive pipeline design

Key Modules:

- Query processors
- Specialized retrievers
- Context processors
- Response generators

Future Direction: Evolution towards more sophisticated multimodal RAG systems.

Evaluation and Metrics

Why Evaluate RAG Systems?

- Performance Optimization: Identify bottlenecks and improvement areas
- Component Analysis: Understand which parts work well/poorly
- Comparison: Compare different approaches and configurations
- Quality Assurance: Ensure system meets requirements
- Continuous Improvement: Monitor performance over time

Challenge: RAG evaluation is complex because it involves both retrieval quality and generation quality.

Retrieval Evaluation Metrics

Traditional IR Metrics:

- Precision@K: Relevant docs in top K
- Recall@K: Coverage of relevant docs
- Mean Reciprocal Rank (MRR): Position of first relevant doc
- NDCG: Normalized discounted cumulative gain

RAG-Specific Metrics:

- Context Relevance: How relevant is retrieved context?
- Context Recall: Does context contain answer?
- Context Precision: How much context is relevant?
- Answer Relevance: Does answer address query?
- Requires ground truth relevance judgments
- Can be expensive to create comprehensive test sets

Generation Evaluation Metrics

Metric Type	Examples	Measures	
Factual Accuracy	FactScore, FActCC	Correctness vs. source	
Faithfulness	RAGAS Faithfulness	Grounding in context	
Relevance	RAGAS Answer Relevance	Query-answer alignment	
Completeness	Coverage metrics	Information completeness	
Coherence	Human evaluation	Response quality	

- Automated metrics: Scalable but may miss nuances
- Human evaluation: More accurate but expensive
- LLM-as-judge: Emerging approach using LLMs for evaluation

RAGAS Framework

- Retrieval-Augmented Generation Assessment
- Comprehensive evaluation framework for RAG systems
- Key metrics:
 - Context Precision: Relevant items in retrieved context
 - Context Recall: Ground truth in retrieved context
 - Faithfulness: Claims in answer supported by context
 - Answer Relevance: Answer addresses the question

RAGAS Score = $\sqrt[4]{\text{Precision} \times \text{Recall} \times \text{Faithfulness} \times \text{Relevance}}$

Evaluation Implementation

```
from ragas import evaluate
from ragas.metrics import answer_relevancy, faithfulness
# Prepare evaluation dataset
eval_dataset = {
    'question': ['What is machine learning?'],
    'answer': ['ML is a subset of AI that enables
                 systems to learn...'],
    'contexts': [['ML is a method of data analysis
                   that automates...']],
    'ground_truths': [['Machine learning is AI subset...']]
# Run evaluation
result = evaluate(eval_dataset,
                 metrics=[answer_relevancy, faithfulness])
print(f"Answer Relevancy: {result['answer_relevancy']}")
print(f"Faithfulness: {result['faithfulness']}")
```

RAG Tools & Frameworks

47 / 55

Popular RAG Frameworks

Framework	Туре	Strengths	Best For
LangChain	Full-stack	Comprehensive, popular	Rapid prototyping
LlamaIndex	Data-focused	Document handling	Data-heavy applications
Haystack	Production-ready	Scalable, modular	Enterprise deployment
Chroma	Vector DB + RAG	Simple, integrated	Small to medium projects
Weaviate	Vector DB + RAG	GraphQL, hybrid search	Complex queries
Pinecone	Vector DB service	Managed, scalable	Production systems

- Full-stack frameworks: End-to-end RAG solutions
- Specialized tools: Focus on specific components
- Cloud services: Managed solutions with less setup

LangChain Framework Deep Dive

Key Components:

- Document loaders
- Text splitters
- Vector stores
- Retrievers
- Chains and agents

Advantages:

- Large ecosystem
- Many integrations
- Active community
- Extensive documentation

Use Case: Ideal for rapid prototyping and experimentation with different RAG configurations.

LangChain RAG Implementation

```
1 from langchain.document_loaders import TextLoader
 from langchain.text_splitter import CharacterTextSplitter
 from langchain.embeddings import OpenAIEmbeddings
4 from langchain.vectorstores import Chroma
 from langchain.chains import RetrievalQA
 from langchain.llms import OpenAI
 # Load and process documents
 loader = TextLoader('documents.txt')
 documents = loader.load()
 text_splitter = CharacterTextSplitter(
     chunk_size=1000, chunk_overlap=0)
 texts = text_splitter.split_documents(documents)
```

LangChain RAG Implementation (continued)

```
# Create vector store
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(texts, embeddings)
# Create RAG chain
qa_chain = RetrievalQA.from_chain_type(
    llm=OpenAI(), chain_type="stuff",
    retriever=vectorstore.as_retriever())
# Query
response = qa_chain.run("What is the main topic?")
print(response)
```

- Complete RAG pipeline in just a few lines
- Automatic document processing and indexing
- Built-in retrieval and generation

LlamaIndex Framework Deep Dive

- Focus: Data ingestion and indexing for LLM applications
- Strengths:
 - Advanced document parsing
 - Multiple index types
 - Query engines
 - Data connectors
- Index Types:
 - Vector Store Index
 - Tree Index
 - Keyword Table Index
 - Knowledge Graph Index

Use Case: Best for applications requiring sophisticated document understanding and multiple data sources.

Conclusion

- RAG is transformative: Bridges the gap between static LLMs and dynamic knowledge
- Components matter: Each part of the pipeline affects overall quality
- Evaluation is key: Measure what matters for your use case
- Tools are maturing: Rich ecosystem of frameworks and services
- Future is bright: Continuous improvements in all areas

RAG is indeed all you need for building intelligent, grounded AI systems!

References

- Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Advances in Neural Information Processing Systems, 33, 9459-9474.
- Quantification of the second of the secon
- 3 Huang, J. RAG Practical Course. GeekTime.
- Iusztin, P., & Labonne, M. (2024). LLM Engineer's Handbook: Master the Art of Engineering Large Language Models from Concept to Product. Packt Publishing.
- Mao, Y. Large Language Model Fundamentals.

Questions & Discussion

Thank you!

Questions & Discussion

Contact: zchen971@connect.hkust-gz.edu.cn

Slides available at: github.com/Zhanghao25/RAG