# Object extraction techniques and visual image search with Semantic web techniques

#### Aninda Maulik

Supervisors: Prof. Pierre Maret
Dennis Diefenbach

Cyber Physical and Social Systems University of Jean Monnet

July 2020

#### Introduction: Just Google

images with bicycles





Blovde - Wikipedia en.wikipedia.org



Orbea - Orbea orbea.com



Bikes: How to Choose | REI Co-op relicom



## images with bicycles on the right



newsfas.com

loverguardiorenzy com

pirterest com

forbes com-

dall/burn.com

ginterest.com

#### Introduction:QAnswer

- QAnswer is knowledge (or ontology) based QA system.
- A knowledge base is a collection of facts that can be interpreted by a machine
- Such a fact can look like this: "bicycle" "in" "right".
- QAnswer translates from a natural language question to correct SPARQL queries.

give me pictures with bicycles on the right side of image

Go

/ has on the right / bicycle

## Background SparQI



#### / has on the right / bicycle

```
SELECT DISTINCT ?s1 WHERE { ?s1 <a href="http://qanswer.eu/data/datasets/objectPosition/has_on_the_right>">http://qanswer.eu/data/datasets/objectPosition/has_on_the_right><a href="http://www.wikidata.org/entity/Q11442">http://qanswer.eu/data/datasets/objectPosition/has_on_the_right><a href="http://www.wikidata.org/entity/Q11442">http://qanswer.eu/data/datasets/objectPosition/has_on_the_right><a href="http://www.wikidata.org/entity/Q11442">http://qanswer.eu/data/datasets/objectPosition/has_on_the_right><a href="http://www.wikidata.org/entity/Q11442">http://qanswer.eu/data/datasets/objectPosition/has_on_the_right><a href="http://www.wikidata.org/entity/Q11442">http://www.wikidata.org/entity/Q11442</a>>.

} LIMIT 1000
```



```
/ instance of / image
/ has in the center, has on the bottom, has on the left, has on the right / bicycle
/ instance of / image
```

```
SELECT DISTINCT ?s1 WHERE { ?s1 ?p1 <a href="http://www.wikidata.org/entity/Q478798">http://www.wikidata.org/entity/Q11442>.
?s1 ?p3 <a href="http://www.wikidata.org/entity/Q478798">http://www.wikidata.org/entity/Q478798>.
} LIMIT 1000
```



## QAnswer: images with bicycle in the right

#### / has on the right / bicycle

LIST IMAGES







## set of bicycle images



2016\_Strzelin%2C \_ul\_%C5%9Awi %C4%99tego\_Flo riana\_14\_1.jpg



20080804\_freight \_bicycle\_Shangh ai\_2383.jpg



Barclays\_Cycle\_H ire%2C\_St\_Mary\_ Axe%2C\_Aldgate. jpg



Chapelle\_de\_Bast ide\_vers\_Lasbros\_ DSC\_0598.IPG



Cycling\_Amsterd am.jpg



Juist%2C\_Altes\_ Warmbad\_--\_201 4\_--\_3630.jpg



M%C3%8Cnster %2C\_Prinzipalma rkt\_--\_2014\_--\_46 89-93.jpg



Preah\_Sihanouk\_ National\_Park\_08 .jpg



Puch\_Olympian\_ 12\_01.jpg



Restaurant\_Laska \_e%C3%B4t%C3 %A9\_rue\_Terraille \_%C3%A0\_Lyon...

#### Content

- Implementation of an Algorithm for object extraction.
- Design of a semantic web modelling for extracted data.
- Implementation of a visual image search engine through Qanswer.

## Implementation of an Algorithm for object extraction.

YOLO-(You Only Look Once)

Implementation of an Algorithm for object extraction.



## Class Number, Class Name, QID

```
person-Q215627
                           25.umbrella-Q41607
                                                      49.orange-Q39338
1.bicycle-Q11442
                           26.handbag-Q467505
                                                      50.broccoli-Q47722
2.car- Q1420
                           27.tie-044416
                                                      51.carrot-081
3.motorbike-034493
                           28.suitcase-0200814
                                                      52.hot dog-Q181055
4.aeroplane-Q197
                           29.frisbee-0131689
                                                      53.pizza-Q177
5.bus-Q5638
                           30.skis-0172226
                                                      54.donut-0192783
6.train-0870
                                                      55.cake-Q13276
                           31.snowboard-Q178131
7.truck-Q43193
                           32.sports ball-063347096
                                                      56.chair-015026
8.boat-035872
                           33.kite-0107061
                                                      57.sofa-Q131514
9.traffic light-Q8004
                           34.baseball bat-Q809910
                                                      58.pottedplant-Q203834
10.fire hydrant-Q634299
                           35.baseball glove-Q809894
                                                      59.bed-042177
11.stop sign-Q250429
                           36.skateboard-Q15783
                                                      60.diningtable-010578291
12.parking meter-0953960
                           37.surfboard-0457689
                                                      61.toilet-Q7857
13.bench-0204776
                           38.tennis racket-0153362
                                                      62.tvmonitor-Q289
14.bird-Q5113
                           39.bottle-080228
                                                      63.laptop-Q3962
15.cat-Q4167836
                           40.wine glass-01531435
                                                      64.mouse-Q7987
16.dog-0144
                                                      65.remote-0185091
                           41.cup-081727
17.horse-0726
                           42.fork-081881
                                                      66.keyboard-Q250
18.sheep-07368
                           43.knife-Q32489
                                                      67.cell phone-Q17517
19.cow-0830
                           44.spoon-081895
                                                      68.microwave-Q127956
20.elephant-Q7378
                           45.bow1-Q153988
                                                      69.oven-036539
21.bear-Q30090244
                           46.banana-0503
                                                      70.toaster-014890
22.zebra-Q32789
                                                      71.sink-Q140565
                           47.apple-Q89
23.giraffe-0862089
                           48.sandwich-028803
                                                      72.refrigerator-037828
24.backpack-05843
```

#### Class Number, Class Name, QID

```
https://github.com/pjreddie/darknet/blob/master/data/coco.names
73.book-Q571
74.clock-Q376
75.vase-Q191851
76.scissors-Q40847
77.teddy bear-Q213477
78.hair drier-Q15004
79.toothbrush-Q134205
```

## **Bounding Box**





## Co-ordinate representation of Bounding Box



77,115

## Image-Object Relations

| Image | relation          | property value |
|-------|-------------------|----------------|
|       | has on the left   |                |
|       | has on the right  |                |
|       | has on the top    |                |
|       | has on the buttom |                |
|       | has in the center |                |

#### Algorithms for Image-Object Relations

#### Algorithm 1 has on the left and right

```
1: if X - centre \le 0.3 * X - ImageDimentions then

2: hasontheleft \leftarrow object

3: else

4: if X - centre \ge 0.6 * X - ImageDimentions then

5: hasontheright \leftarrow object

6: end if
```

#### Algorithm 2 has on the top and bottom

```
1: If Y = centre ≤ 0.3 * Y = Image Dimentions then

2: hasonthetop ← object

3: else

4: if Y = centre ≥ 0.6 * Y = Image Dimentions then

5: hasonthebottom ← object

6: end if

7: end if
```

#### Algorithm 3 has in the center

```
1: if X = centre \ge 0.3 * X = Image Dimentions,

X = centre \le 0.66 * X = Image Dimentions,

Y = centre \ge 0.3 * Y = Image Dimentions,

Y = centre \le 0.66 * Y = Image Dimentions then

2: has in the center \leftarrow object
```

## An attempt to show a graphical representation of tblrc



### Algorithms for Image-Object Relations

#### Algorithm 1 has on the left and right

```
1: if X - centre \le 0.3 * X - ImageDimentions then

2: hasontheleft \leftarrow object

3: else

4: if X - centre \ge 0.6 * X - ImageDimentions then

5: hasontheright \leftarrow object

6: end if
```

#### Algorithm 2 has on the top and bottom

```
1: if Y = centre ≤ 0.3 * Y = ImageDimentions then
2: hasonthetop ← object
3: else
4: if Y = centre ≥ 0.6 * Y = ImageDimentions then
5: hasonthebottom ← object
6: end if
7: end if
```

#### Algorithm 3 has in the center

```
1: if X - centre \ge 0.3 * X - Image Dimentions,

X - centre \le 0.66 * X - Image Dimentions,

Y - centre \ge 0.3 * Y - Image Dimentions,

Y - centre \le 0.66 * Y - Image Dimentions then

2: has in the center \leftarrow object
```

# An attempt to show a graphical representation of tblrc in comparison to an incoming photo



## Using tblrc we create a csv file

| X1   | Y1   | X2   | Y2   | object nar | lmage nar ha              | s on the left | has on the right | has on the | has on the bottom | has in the cente |
|------|------|------|------|------------|---------------------------|---------------|------------------|------------|-------------------|------------------|
| 190  | 813  | 3897 | 1932 | airplane   | Antonov_na                | 3             | airplane         | na         | airplane          | airplane         |
| 220  | 596  | 5021 | 1673 | airplane   | EBACE_20 na               | 3             | airplane         | us.        | airplane          | airplane         |
| 742  | 1303 | 3933 | 2099 | airplane   | Embraer_Ina               | 3             | airplane         | us.        | airplane          | airplane         |
| 889  | 1035 | 1378 | 1374 | airplane   | Kirchturm na              | 3             | airplane         | na         | airplane          | airplane         |
| 172  | 278  | 4018 | 1722 | airplane   | Lufthansa <sub>,</sub> na | 3             | airplane         | na         | airplane          | airplane         |
| 331  | 532  | 2362 | 1245 | airplane   | North_Amna                | 3             | airplane         | na         | airplane          | airplane         |
| 1355 | 704  | 1444 | 813  | person     | North_Arr <sub>na</sub>   | 3             | person           | us.        | person            | person           |
| 833  | 251  | 2202 | 1761 | airplane   | Paris_Air_na              | 3             | airplane         | <b>n</b> 3 | airplane          | airplane         |
| 1460 | 1207 | 1579 | 1738 | person     | Playing_ir na             | 3             | person           | <b>n</b> a | person            | na               |
| 224  | 1063 | 466  | 1813 | person     | Playing_irps              | erson         | na               | <b>n</b> a | person            | na               |
| 756  | 1286 | 845  | 1562 | person     | Playing_irps              | erson         | na               | <b>n</b> a | person            | na               |
| 2374 | 990  | 2486 | 1359 | person     | Playing_ir na             | 3             | person           | na         | person            | na               |
| 468  | 1194 | 546  | 1264 | frisbee    | Playing_ir fri            | isbee         | na               | na na      | frisbee           | na               |
| 264  | 273  | 2284 | 1571 | airplane   | RUAG_Avina                | 3             | airplane         | na<br>na   | airplane          | airplane         |
|      |      |      |      |            |                           |               |                  |            |                   |                  |

### Design of a semantic web modelling for extracted data. Image-Object

• Design of a semantic web modelling based on the csv file.

| Image | relation          | property value |
|-------|-------------------|----------------|
|       | has on the left   |                |
|       | has on the right  |                |
|       | has on the top    |                |
|       | has on the buttom |                |
|       | has in the center |                |

| Subject    | Predicate | Object     |
|------------|-----------|------------|
| URI        | URI       | URI        |
| Blank Node |           | Blank Node |
|            |           | Literal    |

#### **URIs**



### IRIs defined by IETF — Internet Engineering Task Force

#### URLs, URIs, IRIs

- URL = Uniform Resource Locator http://www.learningsparql.com/resources/index.html
- URN = Universal Resource Name urn:isbn:006251587X
- URI = Universal Resource Identifier
  - encompasses both URLs and URNs
  - most URIs are URLs (sometimes the terms are used interchangeably)
  - http://xmlns.com/foaf/0.1/Person
- IETF released IRIs (Internationalized Resource Identifiers)

#### Blank Node



## Object-Object Relation

| Object    | relation      | property value |
|-----------|---------------|----------------|
|           | left of       | object         |
|           | right of      | object         |
|           | top of        | object         |
|           | buttom of     | object         |
|           | close to      | object         |
|           | far from      | object         |
| 0         | verlaping wit | object         |
|           | greater than  | object         |
|           | smaler than   | object         |
| %of image |               | value          |

## OORelation algos ready to be used

#### Algorithm 4 is on the left and right of

- if X − centreOfObject<sub>1</sub> ≤ X − centreOfObject<sub>2</sub> then  $Object_1IsOnTheLeft \leftarrow Object_2$
- 3: else
- if  $X centreOfObject_1 \ge X centreOfObject_2$  then
- $Object_1IsOnTheRight \leftarrow Object_2$
- end if
- 7: end if

#### Algorithm 5 is on the top and bottom of

- if Y − centreOfObject<sub>1</sub> ≤ Y − centreOfObject<sub>2</sub> then
- $Object_1IsOnTheTop \leftarrow Object_2$
- 3: else
- if  $Y centreOfObject_1 \ge Y centreOfObject_2$  then
- $Object_1IsOnTheBottom \leftarrow Object_2$ 5:
- end if
- 7: end if

#### Algorithm 6 close and far from

- if distance(Center1, Center2) ≤ means of diagonal of the 2 objects then
  - $Object_1IsCloseTo \leftarrow Object_2$
- 3: else
- if  $distance(Center1, Center2) \ge means of diagonal of the 2 objects$  then 4:
- $Object_1IsFarFrom \leftarrow Object_2$ 5.
- end if

# An attempt to show a graphical representation of O-O Relations in comparison to an incoming photo



## OORelation algos ready to be used, contd...

Greater and Smaller Than

#### Algorithm 7 greater and smaller than

```
    if AreaOfObject<sub>1</sub> ≤ AreaOfObject<sub>2</sub> then
```

Object<sub>1</sub>IsSmallerThan ← Object<sub>2</sub>

3: else

: if  $AreaOfObject_1 \ge AreaOfObject_2$  then

5:  $Object_1IsGreaterThan \leftarrow Object_2$ 

6: end if

7: end if

# An attempt to show a graphical representation of O-O Relations in comparison to an incoming photo



## OORelation algos ready to be used, contd...

Overlapping With

```
from shapely.geometry import Polygon
p1 = Polygon([(0,0), (1,1), (1,0)])
p2 = Polygon([(0,1), (1,0), (1,1)])
print(p1.intersects(p2))
```

True

## Object-Object Relation

| Object    | relation      | property value |
|-----------|---------------|----------------|
|           | left of       | object         |
|           | right of      | object         |
|           | top of        | object         |
|           | buttom of     | object         |
|           | close to      | object         |
|           | far from      | object         |
| O         | verlaping wit | object         |
|           | greater than  | object         |
|           | smaler than   | object         |
| %of image |               | value          |

### Reified Triple



## Regular Triple



### Knowledge Graph

#### Image-Object Relation with a hint of Object-Object Relation

Design of a semantic web modelling for extracted data.



# Thereafter we use the CSV file in a Java program and convert it into a RDF file

Following this, we upload the file to QAnswer

 QAnswer: airplane in the center Confidence : -55 % Is this the right answer? O Yes O No / has in the center / airplane IMAGES LIST

#### images in the bottom

#### bench in the bottom





## images in the left

train in the left

https://qanswer-frontend.univ-st-etienne.fr/user/query?kb=onto&user=anindamaulik

### Qanswer: Image-Object Relation-contains

person and chair



https://upload.wikimedia.org/wikipedia/commons/e/eb/CEE\_Spi





# special Wikimediacommons api give images

```
https://commons.wikimedia.org/w/api.php?action=query&list=
              search&srsearch=haswbstatement:
           P180=Q7378&srnamespace=6&format=json
{"batchcomplete":"", "continue":
{"sroffset":10,"continue":"-||"},"query":{"searchinfo":
{"totalhits":236},"search":[{"ns":6,"title":"File:African
Elephant.jpg","pageid":15925090,"size":1529,"wordcount":8,
lish African Bush elephant facing forward Urdu \u06c1\u062
\u06cc","timestamp":"2020-07-03T11:16:22Z"},{"ns":6,"title
elefant.jpg ,"pageid":8133970,"size":899,"wordcount":1,"sn
h" "timestamn":"2020-06-05T21:24:05Z"},{"ns":6,"title":<mark>'</mark>Fi
Mammoth
sculpture.JPG" "pageid":17924651, "size":883, "wordcount":15
the copyright holder of this work, hereby publish it under
```

# special Wikimediacommons api give human hand-annotated structured data

https://commons.wikimedia.org/wiki/File: African\_elephants,\_Lake\_St\_Lucia\_06.jpg



# special Wikimediacommons api give human hand-annotated structured data like copyright details

#### copyright status

Q Search to add items

copyrighted

#### copyright license

Q Search to add items

GNU Free Documentation License, version 1.2 or later

Creative Commons Attribution-ShareAlike 4.0 International

Creative Commons Attribution-ShareAlike 3.0 Unported

Creative Commons Attribution-ShareAlike 2.5 Generic

Creative Commons Attribution-ShareAlike 2.0 Generic

Creative Commons Attribution-ShareAlike 1.0 Generic

#### general API documentation link

https://www.mediawiki.org/wiki/API:Search

#### Limitations and Future Work

Query for images on the top

Issue with confidence of detection by YOLO

/ has on the top / clock

https://upload.wikimedia.org/wikipedia/commons/e/e7/Taipei\_i Rheinland-Office-Building-02.jpg





### YOLO got overconfident



### Reified Triple



## Reified Triple not being generated by QAnswer



# special Wikimediacommons api give images and structured hand annotated human data

Our time constraints

https://commons.wikimedia.org/w/api.php?action=query&list=search&srsearch=haswbstatement: P180=Q7378&srnamespace=6&format=json

- We are yet to handle the incoming RDF data from the api
- and merge with our RDF file,
- in order to be able to query
- "Give me pictures of bicycles from February 2019"

#### Conclusion

- We have worked on improving image search engines by combining
  - Computer Vision techniques
  - with Semantic Web
  - and Question Answering techniques.
- Omputer Vision techniques is able to identify objects in images.
- Semantic Web techniques give a
  - Semantic representation of the images
  - that can be queried with QA engine, namely QAnswer.
- This work can be easily used by any search or query engine to give results
- based on image-object relation
- and in a near future on object-object relation.
- We do not have a bench mark as of yet, since
  - Nobody has worked in developing this concept
  - Our future work also includes establishing a bench mark for such data to make proper evaluation
- We have an automated Python program in place

## Automation pipeline



## Bounding Box around objects and text file





download (14).jpg.txt - Notepad

File Edit Format View Help 84 34 209 170 20 0.934078 4 36 88 162 20 0.841598

#### **END**

- Thank you for your attention, time and patience
- Please ask me any question that you have.
- Please provide your suggestion which can be used to make my work better