

2023 Asia Regional - Seoul - Nationwide Internet Competition

Problem F Perfect Quadrants

Time Limit: 4 Seconds

Consider the plane and any point (x, y) in the plane. Now, you draw two half-lines starting from point (x, y), one downwards vertically and the other leftwards horizontally. The (infinite) region below the horizontal half-line and to the left of the vertical half-line is called a *quadrant*, denoted by Q(x, y). Note that the two half-lines of Q(x, y) form its boundary, while its interior excludes the boundary. See below.

Let L be a natural number and S be the set of points (x, y) in the plane with $x, y \in \{0, 1, 2, ..., L\}$. So, S consists of $(L + 1)^2$ points. For some $k \ge 1$, you are given k finite subsets $P_1, P_2, ..., P_k \subseteq S$ of S and k nonnegative integers $c_1, c_2, ..., c_k$. We say that a quadrant Q is $(c_1, c_2, ..., c_k)$ -perfect when the following condition is satisfied for all i = 1, 2, ..., k:

No points in P_i lie on the boundary of Q and $|P_i \cap Q| = c_i$.

Write a computer program that computes and prints out the number of points $(x, y) \in S$ such that Q(x, y) is $(c_1, c_2, ..., c_k)$ -perfect.

Input

Your program is to read from standard input. The input starts with a line consisting of two integers, L and k ($1 \le L \le 10^9$, $1 \le k \le 100,000$). The second line of the input consists of k nonnegative integers $c_1, c_2, ..., c_k$ ($0 \le c_1, c_2, ..., c_k \le 1,000,000$). The third line consists of a single integer N ($1 \le N \le 1,000,000$), where N denotes the total number of input points, that is, $N = |P_1| + |P_2| + \cdots + |P_k|$. In each of the following N lines, three integers x, y, and i ($0 \le x, y \le L$, $1 \le i \le k$) are given, meaning that the point (x, y) is a member of the set P_i . You can assume that no axis-parallel line passes through two of the N input points.

Output

Your program is to write to standard output. Print exactly one line. The line should consist of a single integer, representing the number of points $(x, y) \in S$ such that Q(x, y) is $(c_1, c_2, ..., c_k)$ -perfect.

The following shows sample input and output for three test cases.

Sample Input 1

10 1	7
1	
9	
0 3 1	
8 0 1	
4 1 1	
6 2 1	
7 7 1	
2 5 1	
3 6 1	
1 8 1	
5 4 1	
Sample Input 2	Output for the Sample Input 2
10 1	0
2	
9	
0 3 1	
8 0 1	
4 1 1	
6 2 1	
7 7 1	
2 5 1	
3 6 1	
1 8 1	
5 4 1	
Sample Input 3	Output for the Sample Input 3
10 2	3
1 1	
8	
1 4 1	
2 7 2	
4 6 1	
5 3 2	
6 5 1	
7 2 2	
8 1 1	
9 9 2	

Output for the Sample Input 1