MADMO

Boostings and ensembles. Part 2.

Taras Khakhulin

Deep Learning Engineer Samsung Al Center Skoltech & MIPT MS

t.khakhulin@gmail.com

https://github.com/khakhulin/ https://twitter.com/t khakhulin

Ensemble problems

Fixed target function

_

Similar dataset

Solve one task

Ensembles

Voting

- averaging

Stacking

Boosting

Output Coding

- code target (squared)

Bagging

Heuristics

Hand-crafted methods

Random Forest

Bagging + RSM = Random Forest

Lecture 1. Part 2

How to build an ensemble from different models?

Use different datasets (or datasets parts) for different level models.

- Use different datasets (or datasets parts) for different level models.
- Experiment with different models (linear, trees ensembles, simple networks, etc.)

- Use different datasets (or datasets parts) for different level models.
- Experiment with different models (linear, trees ensembles, simple networks, etc.)
- Or just different GBT ensembles (hola, kaggle :)

Just combine several *strong/complex* models.

Weights should sum up to 1 and come from [0; 1]

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

Just combine several *strong/complex* models.

Weights should sum up to 1 and come from [0; 1]

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

Simple and intuitive ensembling method

Just combine several *strong/complex* models.

Weights should sum up to 1 and come from [0; 1]

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

- Simple and intuitive ensembling method
- Finding optimal weights could be tricky

Just combine several *strong/complex* models.

Weights should sum up to 1 and come from [0; 1]

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

- Simple and intuitive ensembling method
- Finding optimal weights could be tricky
- Linear composition is not always enough

2nd meta model 1st meta model

2nd meta model Ensemble them

1st meta model

Still confused about Stacking?

Α				
XO	x1	x2	xn	У
0.17	0.25	0.93	0.79	1
0.35	0.61	0.93	0.57	0
0.44	0.59	0.56	0.46	0
0.37	0.43	0.74	0.28	1
0.96	0.07	0.57	0.01	1

В				
XO	x1	x2	xn	У
0.89	0.72	0.50	0.66	0
0.58	0.71	0.92	0.27	1
0.10	0.35	0.27	0.37	0
0.47	0.68	0.30	0.98	0
0.39	0.53	0.59	0.18	1

С				
XO	x1	x2	xn	У
0.29	0.77	0.05	0.09	?
0.38	0.66	0.42	0.91	?
0.72	0.66	0.92	0.11	?
0.70	0.37	0.91	0.17	?
0.59	0.98	0.93	0.65	?

Train algorithm **0** on A and make predictions for B and C and save to **B1**, **C1** Train algorithm **1** on A and make predictions for B and C and save to **B1**, **C1** Train algorithm **2** on A and make predictions for B and C and save to **B1**, **C1**

B1				
pred0	pred0 pred1 pred2			
0.24	0.24 0.72		0	
0.95	0.25	0.22	1	
0.64	0.80	0.96	0	
0.89	0.58	0.52	0	
0.11	0.20	0.93	1	

C1				
pred0	pred1	pred2	У	Preds3
0.50	0.50	0.39	?	0.45
0.62	0.59	0.46	?	0.23
0.22	0.31	0.54	?	0.99
0.90	0.47	0.09	?	0.34
0.20	0.09	0.61	?	0.05

Train algorithm 3 on B1 and make predictions for C1

- Correlated models
- Use models with different natures
- Understand your models
- Work with your feature space
- Stack over stacking StackNet

- Correlated models
- Use models with different natures
- Understand your models
- Work with your feature space

```
from mlens.ensemble import SuperLearner
ensemble = SuperLearner()
ensemble.add(estimators)
ensemble.add meta(meta estimator)
ensemble.fit(X, y).predict(X)
```

Stack over stacking StackNet or http://ml-ensemble.com/

Gradient boosting

Gradient boosting

$$a_n(x) = h_1(x) + \dots + h_n(x)$$

Binary classification problem. Models - decision stumps.

Binary classification problem. Models - decision stumps.

Boosting: core idea

We train each model in the ensemble so that it corrects the error of the previous one

Boosting: Step by step

$$\frac{1}{2} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{a}$$

$$a_N(x) = \sum_{n=1}^{N} b_n(x)$$

$$b_1(x) := \operatorname*{arg\,min}_{b \in \mathcal{A}} \frac{1}{2} \sum_{i=1}^{\ell} (b(x_i) - y_i)^2$$

$$\frac{1}{2} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{a}$$

Result algorithm:

$$a_N(x) = \sum_{n=1}^{N} b_n(x)$$

$$b_1(x) := \operatorname*{arg\,min}_{b \in \mathcal{A}} \frac{1}{2} \sum_{i=1}^{\ell} (b(x_i) - y_i)^2 \qquad \quad s_i^{(1)} = y_i - b_1(x_i)$$

$$s_i^{(1)} = y_i - b_1(x_i)$$

$$b_2(x) := \underset{b \in \mathcal{A}}{\operatorname{arg\,min}} \frac{1}{2} \sum_{i=1}^{\ell} (b(x_i) - s_i^{(1)})^2$$

$$\frac{1}{2} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{a}$$

Result algorithm:

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$s_i^{(N)} = y_i - \sum_{n=1}^{N-1} b_n(x_i) = y_i - a_{N-1}(x_i), \qquad i = 1, \dots, \ell;$$
 $b_N(x) := \operatorname*{arg\,min}_{b \in \mathcal{A}} \frac{1}{2} \sum_{i=1}^{\ell} (b(x_i) - s_i^{(N)})^2$

$$\frac{1}{2} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_a$$

Result algorithm:
$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$s_i^{(N)} = y_i - \sum_{n=1}^{N-1} b_n(x_i) = y_i - a_{N-1}(x_i), \qquad i = 1, \dots, \ell;$$

$$b_N(x) := \operatorname*{arg\,min}_{b \in \mathcal{A}} \frac{1}{2} \sum_{i=1}^{\ell} (b(x_i) - s_i^{(N)})^2 \quad s_i^{(N)} = y_i - a_{N-1}(x_i) = -\left. \frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \right|_{z = a_{N-1}(x_i)}$$

Denote dataset
$$\{(x_i,y_i)\}$$
 , loss function $L(y,f)$

Denote dataset
$$\{(x_i, y_i)\}$$

$$a_N(x) = \sum_{n=0}^{N} \gamma_n b_n(x)$$

Denote dataset
$$\{(x_i, y_i)\}$$

, loss function
$$L(y,f)$$

$$a_N(x) = \sum_{n=0}^{N} \gamma_n b_n(x)$$

$$b_0(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$$

Denote dataset
$$\{(x_i,y_i)\}$$
 , loss function $L(y,f)$

$$a_N(x) = \sum_{n=0}^{N} \gamma_n b_n(x)$$

$$b_0(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$$

$$\sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + \gamma_N b_N(x_i)) \to \min_{b_N, \gamma_N}$$

Denote dataset
$$\{(x_i,y_i)\}$$
 , loss function $L(y,f)$

$$a_N(x) = \sum_{n=0}^{N} \gamma_n b_n(x)$$

$$b_0(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$$

Find nex algo to minimize the error:

$$\sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + \gamma_N b_N(x_i)) \to \min_{b_N, \gamma_N}$$

What if we could use gradient descent in space of our models?

Gradient boosting: theory

What if we could use gradient descent in space of our models?

Gradient boosting: theory

What if we could use gradient descent in space of our models?

Denote dataset
$$\{(x_i, y_i)\}$$

$$a_N(x) = \sum_{n=0}^{N} \gamma_n b_n(x)$$

$$\sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + s_i) \to \min_{s_1, \dots, s_{\ell}}$$

$$b_0(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$$

$$s_i = -\frac{\partial L}{\partial z} \Big|_{z=a_{N-1}(x_i)}$$

Denote dataset
$$\{(x_i, y_i)\}$$

$$a_N(x) = \sum_{n=0}^{N} \gamma_n b_n(x) \qquad \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + s_i) \to \min_{s_1, \dots, s_{\ell}}$$

$$b_0(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i \qquad s_i = -\frac{\partial L}{\partial z} \Big|_{z=a_{N-1}(x_i)}$$

For every object:
$$\left. \left(-\left. \frac{\partial L}{\partial z} \right|_{z=a_{N-1}(x_i)} \right)_{i=1}^\ell = -\nabla_z \sum_{i=1}^\ell L(y_i,z_i) \big|_{z_i=a_{N-1}(x_i)}$$

Denote dataset $\{(x_i, y_i)\}$

$$a_N(x) = \sum_{n=0}^{N} \gamma_n b_n(x)$$

$$\sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + s_i) \to \min_{s_1, \dots, s_{\ell}}$$

$$b_0(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$$

$$s_i = -\frac{\partial L}{\partial z} \Big|_{z=a_{N-1}(x_i)}$$

For every object:
$$\left. \left(-\left. \frac{\partial L}{\partial z} \right|_{z=a_{N-1}(x_i)} \right)_{i=1}^\ell = -\nabla_z \sum_{i=1}^\ell L(y_i,z_i) \big|_{z_i=a_{N-1}(x_i)}$$

$$\gamma_N = rg \min_{\gamma \in \mathbb{R}} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + \gamma b_N(x_i))$$

Gradient boosting: sum up

What we need:

- Data.
- Loss function and its gradient.
- Family of algorithms (with constraints on hyperparameters if necessary).
- Number of iterations M.
- Initial value (GBM by Friedman): constant.

Gradient boosting: regularization

$$a_N(x) = a_{N-1}(x) + \eta \gamma_N b_N(x),$$

$$\eta \in (0,1]$$

Number of iteration

Weak learners

Gradient boosting: regularization

$$a_N(x) = a_{N-1}(x) + \eta \gamma_N b_N(x),$$

$$\eta \in (0,1]$$

Number of iteration

Weak learners

Stochastic Gradient Boosting - train b_i on subsample of data

Gradient boosting: Loss Function

Classification Logistic Loss

$$L(y, z) = \log(1 + \exp(-yz)).$$

$$b_N = \operatorname*{arg\,min}_{b \in \mathcal{A}} \sum_{i=1}^{\ell} \left(b(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2$$

Gradient boosting: Loss Function

Classification Logistic Loss

$$L(y,z) = \log(1 + \exp(-yz)).$$

$$b_N = \operatorname*{arg\,min}_{b \in \mathcal{A}} \sum_{i=1}^{\ell} \left(b(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2$$

Regression

MSE

MAE

Where are Trees?

$$b_n(x) = \sum_{j=1}^{J_n} b_{nj} [x \in R_j]$$
 $j=1,\ldots,J_n$ number of leafs R_j subspace

$$a_N(x) = a_{N-1}(x) + \gamma_N \sum_{j=1}^{J_N} b_{Nj}[x \in R_j]$$

$$b_n(x) = \sum_{j=1}^{J_n} b_{nj} [x \in R_j]$$
 $j=1,\ldots,J_n$ number of leafs R_j subspace

$$a_N(x) = a_{N-1}(x) + \gamma_N \sum_{j=1}^{J_N} b_{Nj}[x \in R_j] = a_{N-1}(x) + \sum_{j=1}^{J_N} \gamma_N b_{Nj}[x \in R_j].$$

$$b_n(x) = \sum_{j=1}^{J_n} b_{nj} [x \in R_j]$$
 $j=1,\ldots,J_n$ number of leafs R_j subspace

$$a_N(x) = a_{N-1}(x) + \gamma_N \sum_{j=1}^{J_N} b_{Nj}[x \in R_j] = a_{N-1}(x) + \sum_{j=1}^{J_N} \gamma_N b_{Nj}[x \in R_j].$$

$$\sum_{i=1}^{\ell} L\left(y_i, a_{N-1}(x_i) + \sum_{j=1}^{J_N} \gamma_{Nj}[x \in R_j]\right) \to \min_{\{\gamma_{Nj}\}_{j=1}^{J_N}}$$

$$b_n(x) = \sum_{j=1}^{J_n} b_{nj} [x \in R_j]$$
 $j=1,\ldots,J_n$ number of leafs R_j subspace

$$J_N$$

$$\sum_{i=1}^{\ell} L\left(y_i, a_{N-1}(x_i) + \sum_{j=1}^{J_N} \gamma_{Nj}[x \in R_j]\right) \to \min_{\{\gamma_{Nj}\}_{j=1}^{J_N}}$$

$$a_N(x) = a_{N-1}(x) + \gamma_N \sum_{j=1}^{J_N} b_{Nj}[x \in R_j] = a_{N-1}(x) + \sum_{j=1}^{J_N} \gamma_N b_{Nj}[x \in R_j].$$

$$\{\gamma_{Nj}\}_{j=1}^{J_N}$$
 $\{\gamma_{Nj}\}_{j=1}^{J_N}$ $\gamma_{Nj} = rg min_{\gamma} \sum_{x_i \in R_j} L(y_i, a_{N-1}(x_i) + \gamma),$ 60

AdaBoost

$$L(y,z) = e^{-yz}$$

$$L(a, X) = \sum_{i=1}^{\ell} \exp\left(-y_i \sum_{n=1}^{N} \gamma_n b_n(x_i)\right)$$

$$s_i = -\left. \frac{\partial L(y_i, z)}{\partial z} \right|_{z=a_{N-1}(x_i)} = y_i \exp\left(-y_i \sum_{n=1}^{N-1} \gamma_n b_n(x_i)\right)$$

Extreme Gradient Boosting (XGBoost)

$$s = \left(-\left. \frac{\partial L}{\partial z} \right|_{z = a_{N-1}(x_i)} \right)_{i=1}^{\ell} = -\nabla_z \sum_{i=1}^{\ell} L(y_i, z_i) \Big|_{z_i = a_{N-1}(x_i)}$$

$$b_N(x) = \operatorname*{arg\,min}_{b \in \mathcal{A}} \sum_{i=1}^{\ell} \left(b(x_i) - s_i \right)^2$$

$$s = \left(-\left. \frac{\partial L}{\partial z} \right|_{z=a_{N-1}(x_i)} \right)_{i=1}^{\ell} = -\nabla_z \sum_{i=1}^{\ell} L(y_i, z_i) \Big|_{z_i=a_{N-1}(x_i)}$$

$$b_N(x) = rg \min_{b \in \mathcal{A}} \sum_{i=1}^\ell \left(b(x_i) - s_i
ight)^2$$
 Why?

$$s = \left(-\left. \frac{\partial L}{\partial z} \right|_{z = a_{N-1}(x_i)} \right)_{i=1}^{\ell} = -\nabla_z \sum_{i=1}^{\ell} L(y_i, z_i) \Big|_{z_i = a_{N-1}(x_i)}$$

$$\sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b(x_i)) \to \min_{b}$$

- the direction calculated by taking into account the second derivatives of the loss function.
- penalties are added for the number of leaves
- criterion of informativeness, dependent on the optimal displacement vector.
- the stop criteria in the training of the tree depends on the shift

Technical side: training in parallel

Which of the ensembling methods could be parallelized?

Technical side: training in parallel

Which of the ensembling methods could be parallelized?

Random Forest: parallel on the forest level (all trees are independent)

Technical side: training in parallel

Which of the ensembling methods could be parallelized?

- Random Forest: parallel on the forest level (all trees are independent)
- Gradient boosting: parallel on one tree level

Recap: ensembling methods

- 1. Bagging.
- 2. Random subspace method (RSM).
- 3. Bagging + RSM + Decision trees = Random Forest.
- 4. Gradient boosting.
- 5. Stacking.
- 6. Blending.

Great demo: http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

Recap: ensembling methods

- 1. Bagging.
- 2. Random subspace method (RSM).
- 3. Bagging + RSM + Decision trees = Random Forest.
- 4. Gradient boosting.
- 5. Stacking.
- 6. Blending.

Great demo: http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

Great thanks for materials to Radoslav Neychev

Links

- 1. Detailed description of bootstrapping procedure: link
- 2. Dyakonov blogpost about Gini coefficient and Gini Impurity: link
- 3. ODS ML course lesson about kNN and Decision Trees: link
- 4. Habr post about entropy in trees: link
- 5. Simply about bootstrapping on Habr: link
- 6. Notes about Decision Trees by Evgeny Sokolov: link