

DTS207TC Database Development and Design

Lecture 4 XML

Chap 30 textbook

Di Zhang, Autumn 2025

Page titles with * will not be assessed

一图在手 十月横着走

SUN	MON	TUE	WED	ТНЦ	FRI	SAT
			1	2	Э	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	zz	Z3	24	25
26	27	28	29	30	31	

14	Python入门 Introduction to Python	D-2001/D-3001	18:00-20:00 Tuesday & Friday
	学生社团月活动(联学探索社) 师生面对面——科研之路,启迪未来 Student Club Month Event - CELN Inspire & Explore: The Road to Research	D-2007	15:00-16:00
	微景观手作工坊 Mini Landscape Workshop	E-3033	14:00-16:30
2	国际学生联谊会 International Students Gathering	E-3033	15:00-17:00
2	企业参访(科大讯飞) Company visit - iFLYTEK	科大讯飞(苏州) iFLYTEK (Suzhou)	13:00-15:00
	简历优化 CV Optimization	D-2007	13:00-15:00
			(6

*Analog

Possible patterns: Array, Tree, Graph. Nothing else!

Outline

- Semi-Structured Data
- XML
 - Introduction
 - Structure
 - Schema
 - Query
 - API

Semi-Structured Data

- Many applications require storage of complex data, whose schema changes often
- The relational model's requirement of atomic data types may be an overkill
 - E.g., storing set of interests as a set-valued attribute of a user profile may be simpler than normalizing it
- Data exchange can benefit greatly from semi-structured data
 - Exchange can be between applications, or between backend and front-end of an application
 - Web-services are widely used today, with complex data fetched to the front-end and displayed using a mobile app or JavaScript

Features of Semi-Structured Data Models

· Flexible schema

- Wide column representation: allow each tuple to have a different set of attributes, can add new attributes at any time
- **Sparse column** representation: schema has a fixed but large set of attributes, by each tuple may store only a subset

Multivalued data types

- Sets, multisets
 - E.g.,: set of interests ('basketball, 'La Liga', 'cooking', 'anime', 'jazz')
- Key-value map (or just map for short)
 - Store a set of key-value pairs
 - E.g., {(brand, Apple), (ID, MacBook Air), (size, 13), (color, silver)}
 - Operations on maps: put(key, value), get(key), delete(key)

• , Arrays

Widely used for scientific and monitoring applications

Features of Semi-Structured Data Models

- Arrays
 - Widely used for scientific and monitoring applications
 - E.g., readings taken at regular intervals can be represented as array of values instead of (time, value) pairs
 - [5, 8, 9, 11] instead of {(1,5), (2, 8), (3, 9), (4, 11)}
- Multi-valued attribute types
 - Modeled using non first-normal-form (NFNF) data model

Json

Introduction

- XML: Extensible Markup Language
- Defined by the WWW Consortium (W3C)
- Derived from SGML (Standard Generalized Markup Language), but simpler to use than SGML
- Documents have tags giving extra information about sections of the document
 - E.g., <title> XML </title> <slide> Introduction ...</slide>
- Extensible, unlike HTML
 - Users can add new tags, and separately specify how the tag should be handled for display

XML Introduction (Cont.)

- The ability to specify new tags, and to create nested tag structures make XML
 a great way to exchange data, not just documents.
 - Much of the use of XML has been in data exchange applications, not as a replacement for HTML
- Tags make data (relatively) self-documenting

```
E.g.,
   <university>
       <department>
         <dept name> Comp. Sci. </dept name>
         <building> Taylor </building>
         <budget> 100000 </budget>
       </department>
       <course>
          <course id> CS-101 </course id>
          <title> Intro. to Computer Science </title>
          <dept name> Comp. Sci </dept name>
          <credits> 4 </credits>
       </course>
  </university>
```

XML: Motivation

- Data interchange is critical in today's networked world
 - Examples:
 - Banking: funds transfer
 - Order processing (especially inter-company orders)
 - Scientific data
 - Chemistry: ChemML, ...
 - Genetics: BSML (Bio-Sequence Markup Language), ...
 - Paper flow of information between organizations is being replaced by electronic flow of information
- Each application area has its own set of standards for representing information
- XML has become the basis for all new generation data interchange formats

XML Motivation (Cont.)

- Earlier generation formats were based on plain text with line headers indicating the meaning of fields
 - Similar in concept to email headers
 - Does not allow for nested structures, no standard "type" language
 - Tied too closely to low level document structure (lines, spaces, etc)
- · Each XML based standard defines what are valid elements, using
 - XML type specification languages to specify the syntax
 - DTD (Document Type Descriptors)
 - XML Schema
 - Plus textual descriptions of the semantics
- XML allows new tags to be defined as required
 - However, this may be constrained by DTDs
- A wide variety of tools is available for parsing, browsing and querying XML documents/data

Structure of XML Data

- Tag: label for a section of data
- Element: section of data beginning with <tagname> and ending with matching </tagname>
- Elements must be properly nested
 - Proper nesting
 - <course> ... <title> </title> </course>
 - Improper nesting
 - <course> ... <title> </course> </title>
 - Formally: every start tag must have a unique matching end tag, that is in the context of the same parent element.
- Every document must have a single top-level element


```
<purchase order>
   <identifier> P-101 </identifier>
   <purchaser> .... </purchaser>
   <itemlist>
     <item>
         <identifier> RS1 </identifier>
         <description> Atom powered rocket sled </description>
         <quantity> 2 </quantity>
        <price> 199.95 </price>
     </item>
     <item>
        <identifier> SG2 </identifier>
         <description> Superb glue </description>
         <quantity> 1 </quantity>
         <unit-of-measure> liter </unit-of-measure>
         <price> 29.95 </price>
     </item>
    </itemlist>
 </purchase order>
```

Motivation for Nesting

- Nesting of data is useful in data transfer
 - Example: elements representing item nested within an itemlist element
- Nesting is not supported, or discouraged, in relational databases
 - With multiple orders, customer name and address are stored redundantly
 - normalization replaces nested structures in each order by foreign key into table storing customer name and address information
 - Nesting is supported in object-relational databases
- But nesting is appropriate when transferring data
 - External application does not have direct access to data referenced by a foreign key

Structure of XML Data (Cont.) 學 西交利物演文學

- Mixture of text with sub-elements is legal in XML.
 - Example:

```
<course>
  This course is being offered for the first time in 2009.
   <course id> BIO-399 </course id>
  <title> Computational Biology </title>
  <dept name> Biology </dept name>
   <credits> 3 </credits>
</course>
```

Useful for document markup, but discouraged for data representation

Attributes

Elements can have attributes

```
<course course_id= "CS-101">
     <title> Intro. to Computer Science</title>
     <dept name> Comp. Sci. </dept name>
     <credits> 4 </credits>
     </course>
```

- Attributes are specified by name=value pairs inside the starting tag of an element
- An element may have several attributes, but each attribute name can only occur once

```
<course course_id = "CS-101" credits="4">
```

Attributes vs. Subelements

- Distinction between subelement and attribute
 - In the context of documents, attributes are part of markup, while subelement contents are part of the basic document contents
 - In the context of data representation, the difference is unclear and may be confusing
 - Same information can be represented in two ways
 - <course course id= "CS-101"> ... </course>
 - <course> <course id>CS-101/course id> ... </course>
 - Suggestion: use attributes for identifiers of elements, and use subelements for contents

Namespaces

- XML data has to be exchanged between organizations
- Same tag name may have different meaning in different organizations, causing confusion on exchanged documents
- Specifying a unique string as an element name avoids confusion
- Better solution: use unique-name:element-name
- Avoid using long unique names all over document by using XML Namespaces

More on XML Syntax

5

- Elements without subelements or text content can be abbreviated by ending the start tag with a /> and deleting the end tag
 - <course course_id="CS-101" Title="Intro. To Computer Science"
 dept_name = "Comp. Sci." credits="4" />
- To store string data that may contain tags, without the tags being interpreted as subelements, use CDATA as below
 - <![CDATA[<course> ... </course>]]>

Here, <course> and </course> are treated as just strings

CDATA stands for "character data"

XML Document Schema

- Database schemas constrain what information can be stored, and the data types of stored values
- XML documents are not required to have an associated schema
- However, schemas are very important for XML data exchange
 - Otherwise, a site cannot automatically interpret data received from another site
- Two mechanisms for specifying XML schema
 - Document Type Definition (DTD)
 - Widely used
 - XML Schema
 - Newer, increasing use

- The type of an XML document can be specified using a DTD
- DTD constraints structure of XML data
 - What elements can occur
 - What attributes can/must an element have
 - What subelements can/must occur inside each element, and how many times.
- DTD does not constrain data types
 - All values represented as strings in XML
- DTD syntax
 - <!ELEMENT element (subelements-specification) >
 - <!ATTLIST element (attributes) >

Element Specification in DTD <a>© model Model Model <a href="ma

- Subelements can be specified as
 - names of elements, or
 - #PCDATA (parsed character data), i.e., character strings
 - EMPTY (no subelements) or ANY (anything can be a subelement)
- Example

```
<! ELEMENT department (dept_name_building, budget)>
<! ELEMENT dept_name (#PCDATA)>
```

<! ELEMENT budget (#PCDATA)>

Subelement specification may have regular expressions

```
<!ELEMENT university ( ( department | course | instructor | teaches )+)>
```

- Notation:
 - alternatives
 - "+" 1 or more occurrences
 - 0 or more occurrences

University DTD

4

```
<!DOCTYPE university [</pre>
   <!ELEMENT university ( (department|course|instructor|teaches)+)>
   <!ELEMENT department ( dept name, building, budget)>
   <!ELEMENT course ( course id, title, dept name, credits)>
   <!ELEMENT instructor (IID, name, dept name, salary)>
   <!ELEMENT teaches (IID, course id)>
   <!ELEMENT dept name( #PCDATA )>
   <!ELEMENT building( #PCDATA )>
   <!ELEMENT budget( #PCDATA )>
   <!ELEMENT course id ( #PCDATA )>
   <!ELEMENT title ( #PCDATA )>
   <!ELEMENT credits( #PCDATA )>
   <!ELEMENT IID( #PCDATA )>
   <!ELEMENT name( #PCDATA )>
   <!ELEMENT salary( #PCDATA )>
```


- Attribute specification : for each attribute
 - Name
 - Type of attribute
 - CDATA
 - ID (identifier) or IDREF (ID reference) or IDREFS (multiple IDREFs)
 - more on this later
 - Whether
 - mandatory (#REQUIRED)
 - has a default value (value),
 - or neither (#IMPLIED)
- Examples
 - <!ATTLIST course course_id CDATA #REQUIRED>, or
 - <!ATTLIST course

```
course_id ID #REQUIRED

dept_name IDREF #REQUIRED

instructors IDREFS #IMPLIED >
```

IDs and IDREFs

- An element can have at most one attribute of type ID
- The ID attribute value of each element in an XML document must be distinct
 - Thus the ID attribute value is an object identifier
- An attribute of type IDREF must contain the ID value of an element in the same document
- An attribute of type IDREFS contains a set of (0 or more) ID values.
 Each ID value must contain the ID value of an element in the same document

University DTD with Attributes 西交利加油大學

University DTD with ID and IDREF attribute types.

```
<!DOCTYPE university-3 [</pre>
  <!ELEMENT university ( (department|course|instructor)+)>
  <!ELEMENT department ( building, budget )>
  <!ATTLIST department
      dept_name ID #REQUIRED >
  <!ELEMENT course (title, credits )>
  <!ATTLIST course
       course id ID #REQUIRED
       dept_name IDREF #REQUIRED
       instructors IDREFS #IMPLIED >
  <!ELEMENT instructor ( name, salary )>
  <!ATTLIST instructor
       IID ID #REQUIRED
      dept_name IDREF #REQUIRED >
   · · · declarations for title, credits, building,
       budget, name and salary · · ·
]>
```


5

XML data with ID and IDREF attributes

0

```
<university-3>
     <department dept name="Comp. Sci.">
           <building> Taylor </building>
           <budget> 100000 </budget>
     </department>
     <department dept name="Biology">
           <building> Watson </building>
           <budget> 90000 </budget>
     </department>
     <course course id="CS-101" dept name="Comp. Sci"</pre>
                  instructors="10101 83821">
           <title> Intro. to Computer Science </title>
           <credits> 4 </credits>
     </course>
     <instructor IID="10101" dept name="Comp. Sci.">
           <name> Srinivasan </name>
           <salary> 65000 </salary>
     </instructor>
</university-3>
```

Limitations of DTDs

- No typing of text elements and attributes
 - All values are strings, no integers, reals, etc.
- Difficult to specify unordered sets of subelements
 - Order is usually irrelevant in databases (unlike in the documentlayout environment from which XML evolved)
 - (A | B)* allows specification of an unordered set, but
 - Cannot ensure that each of A and B occurs only once
- IDs and IDREFs are untyped
 - The instructors attribute of an course may contain a reference to another course, which is meaningless
 - instructors attribute should ideally be constrained to refer to instructor elements

XML Schema

- XML Schema is a more sophisticated schema language which addresses the drawbacks of DTDs. Supports
 - Typing of values
 - E.g., integer, string, etc
 - Also, constraints on min/max values
 - User-defined, comlex types
 - Many more features, including
 - uniqueness and foreign key constraints, inheritance
- XML Schema is itself specified in XML syntax, unlike DTDs
 - More-standard representation, but verbose
- XML Scheme is integrated with namespaces
- BUT: XML Schema is significantly more complicated than DTDs.

XML Schema Version of Univ. 图成分的为为为为


```
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="university" type="universityType" />
<xs:element name="department">
   <xs:complexType>
       <xs:sequence>
          <xs:element name="dept name" type="xs:string"/>
          <xs:element name="building" type="xs:string"/>
          <xs:element name="budget" type="xs:decimal"/>
       </xs:sequence>
   </xs:complexType>
</xs:element>
<xs:element name="instructor">
   <xs:complexType>
     <xs:sequence>
        <xs:element name="IID" type="xs:string"/>
        <xs:element name="name" type="xs:string"/>
        <xs:element name="dept name" type="xs:string"/>
        <xs:element name="salary" type="xs:decimal"/>
     </xs:sequence>
  </xs:complexType>
</xs:element>
... Contd.
```

XML Schema Version of Univ. DTD (Cont.)

- Choice of "xs:" was ours -- any other namespace prefix could be chosen
- Element "university" has type "universityType", which is defined separately
 - xs:complexType is used later to create the named complex type "UniversityType"

More features of XML Schema 的 More features of XML Schema of of XML Schema

- Attributes specified by xs:attribute tag:

 - adding the attribute use = "required" means value must be specified
- Key constraint: "department names form a key for department elements under the root university element:

Foreign key constraint from course to department:

Querying XML Data

- Translation of information from one XML schema to another.
- Querying on XML data
- Above two are closely related, and handled by the same tools
- Standard XML querying languages
 - XPath
 - Simple language consisting of path expressions
 - XQuery
 - An XML query language with a rich set of features

Tree Model of XML Data

- Query and transformation languages are based on a tree model of XML data
- An XML document is modeled as a tree, with nodes corresponding to elements and attributes
 - Element nodes have child nodes, which can be attributes or subelements
 - Text in an element is modeled as a text node child of the element
 - Children of a node are ordered according to their order in the XML document
 - Element and attribute nodes (except for the root node) have a single parent, which is an element node
 - The root node has a single child, which is the root element of the document

XPath

- XPath is used to address (select) parts of documents using path expressions
- A path expression is a sequence of steps separated by "/"
 - Think of file names in a directory hierarchy
- Result of path expression: set of values that along with their containing elements/attributes match the specified path
- E.g., /university-3/instructor/name evaluated on the university-3 data we saw earlier returns

```
<name>Srinivasan</name> <name>Brandt</name>
```

E.g., /university-3/instructor/name/text()
 returns the same names, but without the enclosing tags

XPath (Cont.)

- The initial "/" denotes root of the document (above the top-level tag)
- Path expressions are evaluated left to right
 - Each step operates on the set of instances produced by the previous step
- Selection predicates may follow any step in a path, in []
 - E.g., /university-3/course[credits >= 4]
 - returns account elements with a balance value greater than 400
 - /university-3/course[credits] returns account elements containing a credits subelement
- Attributes are accessed using "@"
 - E.g., /university-3/course[credits >= 4]/@course_id
 - returns the course identifiers of courses with credits >= 4
 - IDREF attributes are not dereferenced automatically (more on this later)

Functions in XPath

- XPath provides several functions
 - The function count() at the end of a path counts the number of elements in the set generated by the path
 - E.g., /university-2/instructor[count(./teaches/course)> 2]
 - Returns instructors teaching more than 2 courses (on university-2 schema)
 - Also function for testing position (1, 2, ..) of node w.r.t. siblings
- Boolean connectives and and or and function not() can be used in predicates

More XPath Features

- Operator "|" used to implement union
 - E.g., /university-3/course[@dept name="Comp. Sci"] | /university-3/course[@dept name="Biology"]
 - Gives union of Comp. Sci. and Biology courses
 - However, "|" cannot be nested inside other operators.
- "//" can be used to skip multiple levels of nodes
 - E.g., /university-3//name
 - finds any name element *anywhere* under the /university-3 element, regardless of the element in which it is contained.
- A step in the path can go to parents, siblings, ancestors and descendants of the nodes generated by the previous step, not just to the children
 - "//", described above, is a short from for specifying "all descendants"
 - ".." specifies the parent.

XQuery

11

- XQuery is a general purpose query language for XML data
- Currently being standardized by the World Wide Web Consortium (W3C)
 - The textbook description is based on a January 2005 draft of the standard. The final version may differ, but major features likely to stay unchanged.
- XQuery is derived from the Quilt query language, which itself borrows from SQL, XQL and XML-QL

```
    XQuery uses a
        for ... let ... where ... order by ...result ...
        syntax
        for ⇔ SQL from
        where ⇔ SQL where
        order by ⇔ SQL order by
        result ⇔ SQL select
        let allows temporary variables, and has no equivalent in SQL
```

FLWOR Syntax in XQuery

- For clause uses XPath expressions, and variable in for clause ranges over values in the set returned by XPath
- Simple FLWOR expression in XQuery
 - find all courses with credits > 3, with each result enclosed in an <course_id>
 .. </course_id> tag
 for \$x in /university-3/course
 let \$courseId := \$x/@course_id
 where \$x/credits > 3
 return <course id> { \$courseId } </course id>
 - Items in the **return** clause are XML text unless enclosed in {}, in which case they are evaluated
- Let clause not really needed in this query, and selection can be done In XPath. Query can be written as:

```
for $x in /university-3/course[credits > 3]
return <course_id> { $x/@course_id } </course_id>
```

• Alternative notation for constructing elements:

```
return element course_id { element $x/@course_id }
```

Joins

Joins are specified in a manner very similar to SQL

```
for $c in /university/course,
    $i in /university/instructor,
    $t in /university/teaches
where $c/course_id= $t/course id and $t/IID = $i/IID
return <course_instructor> { $c $i } </course_instructor>
```

 The same query can be expressed with the selections specified as XPath selections:

Nested Queries

 The following query converts data from the flat structure for university information into the nested structure used in university-1

```
<university-1>
   for $d in /university/department
    return <department>
              { $d/* }
              { for $c in /university/course[dept name = $d/dept name]
               return $c }
           </department>
    for $i in /university/instructor
    return <instructor>
               { $i/* }
               { for $c in /university/teaches[IID = $i/IID]
                return $c/course id }
             </instructor>
</university-1>
```

\$c/* denotes all the children of the node to which \$c is bound, without the enclosing top-level tag

Grouping and Aggregation

Nested queries are used for grouping

Sorting in XQuery

- The order by clause can be used at the end of any expression. E.g., to return instructors sorted by name for \$i in /university/instructor order by \$i/name return <instructor> { \$i/* } </instructor>
- Use order by \$i/name descending to sort in descending order
- Can sort at multiple levels of nesting (sort departments by dept_name, and by courses sorted to course_id within each department)

Application Program Interface 西交利和海太學

13

- There are two standard application program interfaces to XML data:
 - SAX (Simple API for XML)
 - Based on parser model, user provides event handlers for parsing events
 - E.g., start of element, end of element
 - DOM (Document Object Model)
 - XML data is parsed into a tree representation.
 - Variety of functions provided for traversing the DOM tree
 - Also provides functions for updating DOM tree

Storage of XML Data

- XML data can be stored in
 - Non-relational data stores
 - Flat files
 - Natural for storing XML
 - But has all problems discussed in Chapter 1 (no concurrency, no recovery, ...)
 - XML database
 - Database built specifically for storing XML data, supporting DOM model and declarative querying
 - Currently no commercial-grade systems
 - Relational databases
 - Data must be translated into relational form.
 - Advantage: mature database systems
 - Disadvantages: overhead of translating data and queries

Storage of XML in Relational Databases

- Alternatives:
 - String Representation
 - Tree Representation
 - Map to relations

String Representation

- Store each top level element as a string field of a tuple in a relational database
 - Use a single relation to store all elements, or
 - Use a separate relation for each top-level element type
 - E.g., account, customer, depositor relations
 - Each with a string-valued attribute to store the element
- Indexing:
 - Store values of subelements/attributes to be indexed as extra fields of the relation, and build indices on these fields
 - E.g., customer_name or account_number
 - Some database systems support function indices, which use the result of a function as the key value.
 - The function should return the value of the required subelement/attribute

String Representation (Cont.) 學 西交利物滴之學

- Benefits:
 - Can store any XML data even without DTD
 - As long as there are many top-level elements in a document, strings are small compared to full document
 - Allows fast access to individual elements.
- Drawback: Need to parse strings to access values inside the elements
 - Parsing is slow.

Tree Representation

Tree representation: model XML data as tree and store using relations
 nodes(id, parent_id, type, label, value)

- Each element/attribute is given a unique identifier
- Type indicates element/attribute
- Label specifies the tag name of the element/name of attribute
- Value is the text value of the element/attribute
- Can add an extra attribute position to record ordering of children

Tree Representation (Cont.)

- Benefit: Can store any XML data, even without DTD
- Drawbacks:
 - Data is broken up into too many pieces, increasing space overheads
 - Even simple queries require a large number of joins, which can be slow

- Relation created for each element type whose schema is known:
 - An id attribute to store a unique id for each element
 - A relation attribute corresponding to each element attribute
 - A parent_id attribute to keep track of parent element
 - As in the tree representation
 - Position information (ith child) can be store too
- All subelements that occur only once can become relation attributes
 - For text-valued subelements, store the text as attribute value
 - For complex subelements, can store the id of the subelement
- Subelements that can occur multiple times represented in a separate table
 - Similar to handling of multivalued attributes when converting ER diagrams to tables

Storing XML Data in Relational System 高交利物滴文學

- Applying above ideas to department elements in university-1 schema, with nested course elements, we get department(id, dept_name, building, budget) course(parent id, course_id, dept_name, title, credits)
- Publishing: process of converting relational data to an XML format
- Shredding: process of converting an XML document into a set of tuples to be inserted into one or more relations
- XML-enabled database systems support automated publishing and shredding
- Many systems offer native storage of XML data using the xml data type. Special internal data structures and indices are used for efficiency

SQL/XML

- New standard SQL extension that allows creation of nested XML output
 - Each output tuple is mapped to an XML element row

```
<university>
   <department>
      <row>
        <dept name> Comp. Sci. </dept name>
        <building> Taylor </building>
        <budy><br/><br/>/budget></br/><br/>/budget></br/>
      </row>
     .... more rows if there are more output tuples ...
  </department>
  ... other relations ..
</university>
```

SQL Extensions

xmlelement creates XML elements

xmlattributes creates attributes

```
select xmlelement (name "course",
    xmlattributes (course id as course id, dept name as dept
name),
    xmlelement (name "title", title),
    xmlelement (name "credits", credits))
from course
```

Xmlagg creates a forest of XML elements

```
select xmlelement (name "department",

dept_name,
xmlagg (xmlforest(course_id))
order by course_id))
from course
group by dept_name
```

*XML Applications

- Storing and exchanging data with complex structures
 - E.g., Open Document Format (ODF) format standard for storing Open Office and Office Open XML (OOXML) format standard for storing Microsoft Office documents
 - Numerous other standards for a variety of applications
 - ChemML, MathML
- Standard for data exchange for Web services
 - remote method invocation over HTTP protocol
 - More in next slide
- Data mediation
 - Common data representation format to bridge different systems

*Web Services

- The Simple Object Access Protocol (SOAP) standard:
 - Invocation of procedures across applications with distinct databases
 - XML used to represent procedure input and output
- A Web service is a site providing a collection of SOAP procedures
 - Described using the Web Services Description Language (WSDL)
 - Directories of Web services are described using the Universal Description, Discovery, and Integration (UDDI) standard

*Tour Sharing

*Pros and cons

