Sprawozdanie 4 Ćwiczenie 57c

Jan Bronicki Nr indeksu: 249011 Marcin Radke Nr indeksu: 241554

1 Wstęp Teoretyczny

Celem ćwiczenia jest zbadanie efektu Halla. Zmierzymy U_H w zależności od α , gdzie U_H jest napięciem jakie powstaje w skutek efektu Halla kiedy kręcimy hallotronem, a α jest kątem o, który przekręciliśmy go. Narysujemy zatem wykresy, dla $U_H(\alpha)$ oraz $U_H(B_n)$. Następnie na podstawie wykresów $U_H(B_n)$ i $U_H(I_s)$, które powinny przypominać swoimi charakterystykami wykresy liniowe wyznaczymy wspołczynnik γ , gdzie $U_H = \gamma I_s$. Następnie γ posłuży nam do obliczenia koncentracji ładunków $n = \frac{1}{\gamma ed}$, gdzie e - ładunek, d - gęstość.

Rysunek 1: Schemat Hallotronu

W naszym eksperymencie wykorzystamy następujące przyrządy:

- Hallotron umieszczony w polu magnetycznym wytworzonym przez Magnesy trwałe. Magnesy zamocowane są tak, by możliwy był pomiar zmian orientacji pola magnetycznego względem płaszczyzny hallotronu
- Zasilacz hallotronu
- ullet Miliamperomierz do pomiaru natężenia prądu sterującego I_s
- \bullet Woltomierz do pomiaru napięcia Hall'
a U_H
- Przewody elektryczne

2 Opracowanie wyników

Sporządziliśmy wykres $U_H(\alpha)$:

Rysunek 2: Wykres napięcia hallotronu od kąta

Na podstawie wzoru $B_n = B_0 sin(\alpha - \alpha_0)$ został narysowany wykres ?? opisujący $U_H(B_n)$. Jako wartość B_0 zgodnie z instrukcją przyjęte zostało 0.5, a błąd $B_0 = \pm 0.05~T$.

Dzięki wykresowi 2 uzyskujemy jego linię regresji y=Ax+B, gdzie $|A|=\gamma I_s$ z czego otrzymujemy, że $\gamma=\frac{|A|}{I_s}$, dla rozróżnienia tutaj otrzymanego współczynnika γ dopasujemy mu indeks "s" otrzymując $\gamma_s=\frac{|A|}{I_s}$.

$$y = -0.1508x + 0.0025$$

 $u(A) \approx \pm 0.0003$
 $u(B) \approx \pm 0.0001$

Oto przykładowe niepewności:

- Niepewność kąta α założyliśmy jako stałą wynoszącą 5° (w radianach ≈ 0.0873)
- $u(U_H) = \pm (0.05 \cdot rdg + 3 \cdot dgt) = \pm (0.05 \cdot 0.00832 + 3 \cdot 0.00001) \approx \pm 0.0004 \ V$

Odczytana z wykresu wartość $\alpha_0 \approx 175^{\circ}$.

Przykładowe obliczenia B_n oraz jej niepewności:

- $B_n = B_0 sin(\alpha \alpha_0) = 0.5 \cdot sin(0^\circ 175^\circ) \approx -0.04358 \ T$
- $u(B_n) = \sqrt{(B_0^2 \cdot \cos^2(\alpha 175^\circ) \cdot u^2(\alpha) + \sin^2(\alpha 175^\circ) \cdot u^2(B_0)} =$ = $\sqrt{(0.5^2 \cdot \cos^2(0^\circ - 175^\circ) \cdot 0.0873^2 + \sin^2(0^\circ - 175^\circ) \cdot 0.05^2} \approx \pm 0.00578 \ T$
- Niepewność $u(\alpha) = \pm 5^{\circ}$ została wyrażona w radianach i wynosi około ± 0.0873 [rad]

Na tej podstawie możemy wyliczyć γ_s .

$$\begin{split} \gamma_s &= \frac{|A|}{I_s} = \frac{0.1508}{0.005} \approx 30.16 \\ u(A) &= \pm 0.0003 \\ u(I) &= \frac{Klasa \cdot Zakres}{100 \cdot \sqrt{3}} = \frac{0.5 \cdot 0.0075}{100 \cdot \sqrt{3}} \approx \pm 0.0002 \ A \\ u(\gamma_s) &= \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 \cdot u^2(x_j)} = \sqrt{u^2(A) \cdot \left(\frac{1}{I_s}\right)^2 + u^2(I_s) \cdot \left(\frac{A}{I_s^2}\right)^2} = \\ &= \sqrt{0.0003^2 \cdot \left(\frac{1}{0.005}\right)^2 + 0.00002^2 \cdot \left(\frac{0.1508}{0.005^2}\right)^2} \approx \pm 0.14 \end{split}$$

W związku z sinsoidą zawartą we wzorze na B_n niepewność B_n waha się oraz w pewnych momentach (widzianych na skrajnych wartościach indukcji) owe niepewności osiągają dość duże wartości. Co za tym idzie γ_s , która jest na podstawie wyliczonych B_n obliczana również jest opatrzona sporą wartością niepewności.

Rysunek 3: Wykres napięcia hallotronu U_H od indukcji magnetycznej B_n

Następnie ponownie spróbujemy wyliczyć współczynnik γ tym razem na podstawie pomiarów napięcia U_H od natężenia I_s (które tym razem nie jest stałe i jest przedmiotem naszych pomiarów). Jak widać na otrzymanym wykresie ?? zależność, którą utrzymaliśmy jest liniowa, a w tym przypadku mając y = Ax + B współczynnik A będzie się równał $A = \gamma B$. Ponownie, dla rozróżnienia wspołczynnikowi γ tutaj otrzymanemu nadamy indeks, dla jego rozróżnienia ("h"). Tak więc otrzymujemy taką zależność $\gamma_h = \frac{|A|}{B}$. W tych pomiarach indukcja B jest taka, że B = const.

I[A]	U[V]	
	0,005	0,00832
	0,006	0,01093
	0,007	0,01273
	0,008	0,01456
	0,009	0,01629
	0,01	0,01795
	0,011	0,01965
	0,012	0,02131
	0,013	0,02305
	0,014	0,02492
	0,015	0,02605

Rysunek 4: Wykres napięcia U_H od natężenia I_s

Otrzymana prosta y = Ax + B wynosi:

$$y = 1.7494x + 0.0003$$

 $u(A) \approx \pm 0.0318$
 $u(B) \approx \pm 0.0003$

Następnie możemy przejść do wyliczania γ_h . Pomiary napięcia od natężenia były robione dla kąta $\alpha=0^\circ$ tak więc $B_n\approx -0.043578$.

$$\gamma_h = \frac{|A|}{B}$$

$$\gamma_h = \frac{1.7494}{0.043578} \approx 40.14$$

$$u(\gamma_s) = \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 \cdot u^2(x_j)} = \sqrt{u^2(A) \cdot \left(\frac{1}{B}\right)^2 + u^2(B) \cdot \left(\frac{A}{B^2}\right)^2} =$$

$$= \sqrt{0.0003^2 \cdot \left(\frac{1}{0.04358}\right)^2 + 0.0058^2 \cdot \left(\frac{1.7494}{0.04358^2}\right)^2} \approx \pm 5.4$$

Następnie na potrzeby obliczenia koncentracji n obliczymy średnie $\gamma.$

$$\bar{\gamma} = \frac{\gamma_h + \gamma_s}{2} = \frac{40.14 + 30.16}{2} \approx 35.15$$

$$u(\bar{\gamma}) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}} = \sqrt{\frac{(30.16 - 35.15)^2 + (40.14 - 35.15)^2}{2(2-1)}} \approx 5.00$$

$$n = \frac{1}{35.15 \cdot 1.602 \cdot 10^{-19} \cdot 2 \cdot 10^{-6}} \approx 887.937 \cdot 10^{20}$$

$$\begin{split} u(n) &= \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 \cdot u^2(x_j)} = \sqrt{u^2(\bar{\gamma}) \cdot \left(\frac{1}{\bar{\gamma}^2 e d}\right)^2 + u^2(d) \cdot \left(\frac{1}{\bar{\gamma} e d^2}\right)^2} = \\ &= \sqrt{4.99^2 \cdot \left(\frac{1}{35.15^2 \cdot 1.602 \cdot 10^{-19} \cdot 2 \cdot 10^{-6}}\right)^2 + (1 \cdot 10^{-7})^2 \cdot \left(\frac{1}{35.15 \cdot 1.602 \cdot 10^{-19} \cdot (2 \cdot 10^{-6})^2}\right)^2} \approx \pm 140 \cdot 10^{20} \end{split}$$

3 Wnioski

Pierwsza część pomiaru potwierdza działanie efektu Halla generując sygnał sinusoidalny tworząc prąd zmienny. Niestety duże niepewności pomiarowe analogowego amperomierza oraz bardzo duże niepewności kątu hallotronu. Przez owe niepewności wykres 2 bardzo dobrze pokazuje jak bardzo prosta y mogła sie zmienic przez co zmieniony byłby parametr A co znacząco wpłyneło by to na wartość γ_s . γ_h również posiadało duże niepewności ze względu na indukcję B. Obie wartości γ dość różnią się od siebie co jest spowodowane owymi niepewnościami. Aby obliczyć koncentrację n wyliczyliśmy średnią obu γ i jej niepewność. Wyliczona koncentracją również jest przez to obarczona dużą niepewnością.