Assignment Project Exian Help

https://powcoder.com

Regression II: Regularization

Assignment Project Exam Help

https://powcoder.com

Outline

- Inductive biases in linear regression
- ► Regularization
- Assignment Project Exam Help

https://powcoder.com

Inductive bias

In linear regression, possible for least square solution to be non-unique, in which case there are infinitely-many solutions.

Assignment which is a superior of the contract of the contrac

► Small norm ⇒ small changes in output in response to changes

change in output change in input

(elsy contenue of Jauchy Schwarz) Little dath foe not gill daton to thouse the formal longer w.

- ightharpoonup Preference for short w is an example of an <u>inductive bias</u>.
- ► All learning algorithms encode some form of inductive bias.

Example of minimum norm inductive bias

► Trigonometric feature expansion

Assignments early solutions to normal equations
$$\begin{array}{c} \varphi(x) = (\sin(x), \cos(x), \dots, \sin(32x), \cos(32x)) \in \mathbb{R}^{64} \\ \text{Help} \\ \text{Infinitely many solutions to normal equations} \end{array}$$

Figure 1: Fitted linear models with trigonometric feature expansion

Representation of minimum norm solution (1)

Claim: The minimum (Euclidean) norm solution to normal

Assignment Project Exam Help $w = A^{\mathsf{T}} \alpha = \sum_{i=1}^{\mathsf{equations lives in span}} \alpha_i x_i$

https://wpioxwrcs.mgder.com

Proof: If we have any solution of the form w = s + r, where A^{\dagger} in $A^$ remove r and have a shorter solution:

$$A^{\mathsf{T}}b = A^{\mathsf{T}}Aw = A^{\mathsf{T}}A(s+r) = A^{\mathsf{T}}As + A^{\mathsf{T}}(Ar) = A^{\mathsf{T}}As.$$

(Recall Pythagorean theorem: $||w||_2^2 = ||s||_2^2 + ||r||_2^2$)

Representation of minimum norm solution (2)

- ▶ In fact, minimum Euclidean norm solution is unique!
- Assignment then governor be some length, then Assignment then governor be continued by the same length, then the same length, the same length is same length.

https://powcoder.com

Regularization

- ▶ Combine two concerns: making both $\widehat{\mathcal{R}}(w)$ and $\|w\|_2^2$ small
- - ► Interstition powered entermination.

 - $\lambda = 0$ is OLS/ERM.
 - λ controls how much to pay attention to $\emph{regularizer}_* \|w\|_2^2$ Charles to Mr. Ching hat (1) OWCOCET
 - λ is hyperparameter to tune (e.g., using cross-validation)

▶ Solution is also in span of the x_i 's (i.e., in range(A^{T}))

Example of regularization with squared norm penality

Trigonometric feature expansion

Assignment Project Exam Help

Trade-off between fit to data and regularizer

Data augmentation (1)

Let
$$\widetilde{A} = \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix} \in \mathbb{R}^{(n+d) \times d}$$
 and $\widetilde{b} = \begin{bmatrix} b \\ 0 \end{bmatrix} \in \mathbb{R}^{n+d}$

Assign \widetilde{A} every \widetilde{A} to be the property \widetilde{b} .

https://powcoder.com

► Interpretation:

 $\begin{array}{c} \bullet \quad d \text{ "fake" data points, ensures augmented } \widetilde{A} \text{ has rank } d \\ \bullet \quad A^{\mathsf{T}} A = A^{\mathsf{T}} A + \lambda I \text{ and } \widetilde{A}^{\mathsf{T}} \widetilde{b} = A^{\mathsf{T}} b \end{array}$

- ► So ridge regression solution is $\hat{w} = (A^{\mathsf{T}}A + \lambda I)^{-1}A^{\mathsf{T}}b$

Data augmentation (2)

 Domain-specific data augmentation: e.g., image transformations

Assignment Project Exam Help

https://powcoder.com

Figure 3: What data augmentations make sense for OCR digit recognition?

- ► Lasso: minimize $\widehat{\mathcal{R}}(w) + \lambda ||w||_1$
 - \blacktriangleright Here, $||v||_1 = \sum_{i=1}^n |v_i|$, sum of absolute values of vector

Assignment Project Exam Help

Tends to produce w that are *sparse* (i.e., have few non-zero entries), or at least are well-approximated by sparse vectors.

https://powcoder.com
$$|w^{\mathsf{T}}x - w^{\mathsf{T}}x'| \leq ||w||_1 \cdot ||x - x'||_{\infty}$$

Lasso vs ridge regression

- ► Example: coefficient profile of Lasso vs ridge
- ightharpoonup x =clinical measurements, y =level of prostate cancer antigen

SSI Horizontal exist vary Reportations of left small has right electrons. For Lasso and ridge solutions, for eight different features

Inductive bias from minimum ℓ_1 norm

Theorem: Pick any $w \in \mathbb{R}^d$ and any $\varepsilon \in (0,1)$. Form $\tilde{w} \in \mathbb{R}^d$ by including the $\lceil 1/\varepsilon^2 \rceil$ largest (by magnitude) coefficients of Assignature for the first term <math>Help $\|\tilde{w} - w\|_2 < \varepsilon \|w\|_1$.

https is snap converted to the cherman w is well-approximated by sparse vector.

Sparsity

Lasso also tries to make coefficients small. What if we only care about sparsity?

Assignment in Project is Exam-slatelp

Greedy algorithms: repeatedly choose new variables to "include" in support of w until k variables are included.

Each time you "include" a new variable, re-fit all coefficients for included variables.

Often werks as well as Lasso powcoder

Often werks as well as Lasso powcoder

Detour: Model averaging

- ▶ Suppose we have M real-valued predictors, $\hat{f}_1, \ldots, \hat{f}_M$

How to take advantage of all of them?

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them?}

As \$1 \text{Months form bick the best of them best of the any x,

https://powedder.com

Risk of model averaging

▶ $\mathcal{R}(f) := \mathbb{E}[(f(X) - Y)^2]$ for some random variable (X, Y) taking values in $\mathcal{X} \times \mathbb{R}$.

▶ Better than model selection when:

Stacking and features

- ln model averaging, "weights" of 1/M for all \hat{f}_i seems arbitrary

Assignated representation of the control of the con

• Use additional data (independent of $\hat{f}_1, \ldots, \hat{f}_M$)

https://powcoder.com

- Verhot Any Victor (even pathet in the fature)
 Conversely: Behind every feature is a deliberate modeling
- choice

Detour: Bayesian statistics

- ▶ <u>Bayesian inference</u>: probabilistic approach to updating beliefs
- Posit a (parametric) statistical model for data (likelihood)

 ASS1 graphych some beliefs abquet to transmit visual properties after seeing data (posterior)

(Finding normalization constant $Z_{\rm data}$ is often the computationally challenging part of belief updating.) A significant for the computationally challenging part of belief updating.)

Beyond Bayesian inference

 Can use Bayesian inference framework for designing estimation/learning algorithms (even if you aren't a Bayesian!)

Assignment compression probability

- ► Called *maximum a posteriori (MAP)* estimator
- ightharpoonup Just find w to maximize

https://pow.coder.com

► (Avoids issue with finding normalization constant.)

Bayesian approach to linear regression

▶ In linear regression model, express prior belief about

 $\textbf{Assignment} \overset{w = (w_1, \dots, w_d)}{\textbf{Project}} \overset{\text{using a probability distribution with density}}{\textbf{Exam}} \overset{\text{density}}{\textbf{Help}} \\ \overset{\text{Simple choice: }}{\textbf{prior}(w_1, \dots, w_d)} = \prod_{j=1}^d \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{w_j}{2\sigma^2})$

- ▶ I.e., treat w_1, \ldots, w_d as independent $N(0, \sigma^2)$ random variables
- independent giver w and Y₁ C Q X Y₂ are conditionally independent giver w and Y₂ C Q X X 1 are conditionally
- ► What is the MAP?

MAP for Bayesian linear regression

ightharpoonup Find w to maximize

Heret p is marginal density of X; chimportant marke roganithm and omit terms not involving w.

Add
$$\overline{\mathbf{W}}^{\frac{1}{2}} \overset{\mathbb{Z}}{\leftarrow} \overset{\mathbb{Z}}{\text{hat}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb{Z}}{\rightarrow}} \overset{\mathbb$$

For $\sigma^2 = \frac{1}{n\lambda}$, same as minimizing

$$\frac{1}{n} \sum_{i=1}^{n} (x_i^{\mathsf{T}} w - y_i)^2 + \lambda ||w||_2^2,$$

which is the ridge regression objective!

Example: Dartmouth data example

Dartmouth data example, where we considered intervals for the HS GPA variable:

Assignment Project Exam Help

- Use $\varphi(x)=(\mathbf{1}_{\{x\in(0.00,0.25]\}},\mathbf{1}_{\{x\in(0.25,0.50]\}},\dots)$ with a linear friting: $\langle \mathbf{p}_{j=1}^{\mathbf{Q}}(\mathbf{w}_{j}-\mu)^{2}$ where $\mu=2.46$ is mean of
- College GPA values.
- What's the Bayesian interpretation of minimizing the following we chat powcoder

$$\frac{1}{n} \sum_{i=1}^{n} (\varphi(x_i)^{\mathsf{T}} w - y_i)^2 + \lambda \sum_{j=1}^{d} (w_j - \mu)^2$$