Tutorial - Week 9

Please read the related material and attempt these questions before attending your allocated tutorial. Solutions are released on Friday 4pm.

Question 1

- (a) Sample n=300 observations from a $\mathcal{N}(0_p,I_p)$ distribution where p=10. Calculate the multiple correlation coefficient using the sample covariance matrix and the sample correlation matrix. Are the results the same?
- (b) Establish analytically the formula on page 8 of Week 8 Lecture Notes:

$$S_{21}^T S_{22}^{-1} S_{21} / S_{11} = R_{21}^T R_{22}^{-1} R_{21}.$$

Question 2

(a) Let R^2 be the sample Multiple Correlation Coefficient between X_1 and $(X_2, \ldots, X_p)^T$ based on an iid sample of size n from $N_p(\mu, \Sigma)$ where $\mu \in \mathbb{R}^p$ and $\Sigma \in \mathbb{R}^{p \times p}$ is a positive definite matrix. Assuming that the population Multuple Correlation Coefficient, ρ , is zero, page 10 of Week 8 Lecture Notes claims that

$$\frac{n-p}{p-1} \frac{R^2}{1-R^2} \sim F_{p-1,n-p}.$$

Perform a simulation study with N=2500 replicates to check this when p=50, n=300, $\Sigma=I_p$ and $\mu=\mathbf{0}_p$.

- (b) Empirically examine the size of the classical test for $\rho=0$ under the same assumptions as Question (2a).
- (c) Empirically examine the power of the classical test with $\alpha=0.05$ for $\rho=0$ where the data is generated under the same assumptions as Question (2a) with the exception that the population covariance matrix has the structure

$$\Sigma = \begin{bmatrix} A_{\rho} & 0 \\ 0 & I_{\rho-2} \end{bmatrix}$$

for

$$A_{
ho} = egin{bmatrix} 1 &
ho \
ho & 1 \end{bmatrix}$$

and $\rho \in [-1,1]$. Note that $\rho^2 = \frac{\sigma_{(1)}^T \Sigma_{22}^{-1} \sigma_{(1)}}{\sigma_{11}} = A_{12} \times 1 \times A_{21}/1$ where Σ is now decomposed as

$$\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{(1)}^T \\ \sigma_{(1)} & \Sigma_{22} \end{bmatrix}$$

with $1 = \sigma_{11}$ a scalar.

Question 3

(a) In @zheng2014inference, the authors claim that when $n \to \infty$ and $p \to \infty$ with $p/n \to y \in (0,1)$ and under some technical assumptions that

$$\sqrt{n}(R^2 - y_n) \to N(0, 2y(1 - y))$$

where $y_n = p/n$, $R^2 = S_{21}^T S_{22}^{-1} S_{21}/S_{11}$ and assuming that $\rho = 0$. Check this result by a simulation study. You may assume that the technical assumptions are satisfied when $X_1, \ldots, X_n \stackrel{iid}{\sim} N_p(0, I_p)$ with (n > p > 0).

- (b) Empirically examine the size of the test based on Zheng's method for the null hypothesis that $\rho = 0$ vs $\rho \neq 0$.
- (c) Empirically examine the power of the test based on Zheng's method for $\rho = 0$ vs $\rho \neq 0$ under the same assumptions as Question 2(c).

Question 4

In this question, we consider a dataset presented in (Anderson 2003) . Available for analysis is the sample correlation matrix

$$\mathbf{R}^X := \begin{bmatrix} 1.00 & 0.4248 & 0.0420 & 0.0215 & 0.0573 \\ 0.4248 & 1.0000 & 0.1487 & 0.2489 & 0.2843 \\ 0.0420 & 0.1487 & 1.0000 & 0.6693 & 0.4662 \\ 0.0215 & 0.2489 & 0.6693 & 1.0000 & 0.6915 \\ 0.0573 & 0.2843 & 0.4662 & 0.6915 & 1.000 \end{bmatrix}$$

The underlying data matrix $\mathbf{X}_{n \times p}$ has p=5 columns corresponding to scores on tests in arithmetic speed, X_1 , arithmetic power X_2 , memory for words X_3 , memory for meaningful symbols X_4 , and memory for meaningless symbols X_5 .

Of interest is the hypothesis at the 1% significance level that arithmetic speed is independent of the three memory scores.

(a) Write the underlying data matrix as

$$\mathbf{X} = \mathbf{X}_{n \times p} = \begin{bmatrix} X_1 & X_2 & X_3 & X_4 & X_5 \end{bmatrix}$$

and let

$$\mathbf{Y} = \mathbf{Y}_{n \times (p-1)} = \begin{bmatrix} X_1 & X_3 & X_4 & X_5 \end{bmatrix}$$

which is the data matrix \mathbf{X} including only the columns for arithmetic speed and the three memory scores.

Check whether the sample correlation matrix formed from \mathbf{Y} , say \mathbf{R}^{Y} , is of the form

$$\mathbf{R}^{Y} = \begin{bmatrix} \mathbf{R}_{11}^{X} & \mathbf{R}_{13}^{X} & \mathbf{R}_{14}^{X} & \mathbf{R}_{15}^{X} \\ \mathbf{R}_{31}^{X} & \mathbf{R}_{33}^{X} & \mathbf{R}_{34}^{X} & \mathbf{R}_{35}^{X} \\ \mathbf{R}_{41}^{X} & \mathbf{R}_{43}^{X} & \mathbf{R}_{44}^{X} & \mathbf{R}_{45}^{X} \\ \mathbf{R}_{51}^{X} & \mathbf{R}_{53}^{X} & \mathbf{R}_{54}^{X} & \mathbf{R}_{55}^{X} \end{bmatrix},$$

so that the sample correlation matrix for \mathbf{Y} is just the sample correlation matrix for \mathbf{X} with 1 row and 1 column removed.

- (b) Can you use the correlation matrix \mathbf{R}^{X} to analyze the hypothesis of interest?
- (c) Formulate the hypothesis of interest statistically.
- (d) Test the hypothesis of interest using the classical method. Is this a reasonable thing to do? Why or why not? What is the conclusion?
- (e) Test the hypothesis of interest using Zheng et al.'s method. What is the conclusion?
- (f) Which of these two analyses (in Question 3(d) and Question 3(e)) do you prefer? Why?