# Serviços Cognitivos- atividade discente supervisionada 2

Prof. Mozart Hasse

## LEIA ATENTAMENTE TODAS AS INTRUÇÕES ATÉ O FINAL DA ÚLTIMA PÁGINA. CADA PALAVRA CONTA!

Seu objetivo é planejar o roteiro de deslocamento do "UNIBRASIL Maps", um projeto fictício para mapear a cidade de Curitiba usando um hipotético drone autônomo com GPS incorporado de alta precisão.

O objetivo do drone é fotografar uma lista de CEPs na cidade de Curitiba (coordenadas dadas pelo professor) e <u>voltar ao local original (Campus Unibrasil)</u>, escolhendo ordem de visitação e horários de voo, de modo a <u>MINIMIZAR O CUSTO</u>, <u>QUE SERÁ MEDIDO PELO TEMPO TOTAL DE VOO E A</u> **QUANTIDADE DE PARADAS PARA RECARGA**.

O algoritmo usado para gerar a solução proposta deve obrigatoriamente ser um algoritmo de computação evolucionária (preferencialmente um algoritmo genético).

Dados sobre o drone e fatores de tempo e custo

- A velocidade base do drone é de 30 Km/h e a máxima é de 60 Km/h, ANTES DE CONSIDERAR O EFEITO DO VENTO.
- DEVE-SE tirar um minuto de autonomia por parada para o drone decolar ou desacelerar, tirar as fotos em cada coordenada e depois voltar a acelerar ou pousar para reabastecimento. Ou seja, a cada recarga OU parada em coordenada, considere o consumo de 60 segundos de voo do drone.
- Considere que o CONSUMO DE ENERGIA em movimento é dado pelo ChatGPT conforme resposta a seguir. Considere o modo "normal" (ideal) como voo a 30 Km/h SEM VENTO e o modo "esportivo" como qualquer velocidade acima disso, sobre a qual deve-se aplicar a fórmula para medir a redução na autonomia.

#### Fórmula para medir a redução no tempo de voo

Uma forma de calcular a redução no tempo de voo em função da velocidade é utilizar a relação empírica entre a **potência necessária para manter o voo estável** e a **resistência ao arrasto**, que aumenta proporcionalmente ao quadrado da velocidade. Assim, a potência necessária (P) é proporcional a:

$$P(v) \propto v^3$$

Isso ocorre porque a potência necessária para mover o drone contra a resistência do ar cresce aproximadamente com o cubo da velocidade v. Se  $T_{
m normal}$  é o tempo de voo no modo normal e  $v_{
m normal}$  a velocidade nesse modo, o tempo de voo no modo esportivo  $T_{
m esportivo}$  pode ser estimado como:

$$T_{
m esportivo} = T_{
m normal} imes \left(rac{v_{
m normal}}{v_{
m esportivo}}
ight)^3$$

- A velocidade do drone só permite regulagens para números inteiros. O vento pode tornar a velocidade efetiva um número fracionado, mas a base para consumo de bateria é o número inteiro calculado pelo algoritmo antes da aplicação do efeito do vento.
- A autonomia de voo do drone é de 30 minutos, ou melhor, <u>1800 segundos</u>. Se não houver carga suficiente para ir de uma coordenada até a coordenada seguinte, o drone **DEVE** pousar para recarga antes de ficar totalmente sem bateria.
- O DRONE SÓ PODE PARAR NAS COORDENADAS DADAS NO PROBLEMA. APRESENTAR UMA SOLUÇÃO INVÁLIDA QUE DEIXE O DRONE SEM CARGA DURANTE O VOO É UMA FALTA GRAVE QUE PRECISA DE TODOS OS CUIDADOS POSSÍVEIS NA IMPLEMENTAÇÃO PARA NÃO ACONTECER (só temos UM drone com essa tecnologia e não podemos perdê-lo!).
- O cálculo de tempo de voo entre uma coordenada e outra DEVE ser calculado em segundos e arredondado para cima em caso de segundo fracionado.

As fotos precisam ser tiradas durante o dia, portanto os vôos só podem acontecer a partir das 06:00:00 da manhã e o drone DEVE pousar para recarga em uma das coordenadas do problema até no máximo 19:00:00 horas, para então retomar as coletas no dia seguinte. TODAS AS COLETAS DEVEM TERMINAR DENTRO DOS 5 DIAS DADOS COMO PRAZO. O ponto inicial e o ponto final da solução deve ser o CEP do campus Unibrasil (82821020)

Considere a alteração na autonomia em função do vento conforme exemplo abaixo, dado pelo ChatGPT, supondo um ângulo de voo de 39,5 graus com vento SSE de 9 Km/h:

#### **Parâmetros**

- Ângulo de voo: 39,5 graus em relação ao Norte (suponho que a direção do drone seja dada em relação ao Norte).
- Direção do vento: SSE (Sul-Sudeste), o que corresponde a 157,5 graus a partir do Norte.
- Velocidade do vento: 9 km/h.
- Velocidade normal de voo: 30 km/h (mantemos o mesmo valor do DJI Mavic Air 2).

#### Etapas do cálculo

1. Calcular o ângulo relativo entre o vento e a direção de voo: O ângulo entre o vento (157,5 graus) e o voo (39,5 graus) pode ser calculado como:

$$\theta = |157, 5^{\circ} - 39, 5^{\circ}| = 118^{\circ}$$

2. **Determinar a componente do vento na direção do voo**: Usamos a fórmula para a componente do vento ao longo do vetor do voo. Essa componente do vento  $V_{\rm vento}$  é:

$$V_{
m vento} = V_{
m vento\ total} imes \cos( heta)$$

Substituindo os valores:

$$V_{\rm vento} = 9 \times \cos(118^{\circ})$$

Calculando  $\cos(118^{\circ}) \approx -0.469$ :

$$V_{\rm vento} = 9 \times (-0.469) = -4.22 \, {\rm km/h}$$

O valor negativo indica que o vento está atuando parcialmente contra o drone, reduzindo sua velocidade efetiva.

3. Velocidade efetiva do drone: Agora, subtraímos essa componente da velocidade do drone:

$$V_{\text{efetiva}} = V_{\text{drone}} + V_{\text{vento}}$$

Substituindo:

$$V_{\rm efetiva} = 30 \, {\rm km/h} + (-4.22 \, {\rm km/h}) = 25.78 \, {\rm km/h}$$

Considere para o problema a seguinte previsão da Climatempo de ventos e direções para os <u>próximos 5</u> <u>dias, durante os quais devem ocorrer todas as coletas em todas as coordenadas (considerar apenas velocidade em Km/h e direção)</u>:



| Dia 3 |                                                                      | Hor                           | ra  |          | 06h             | 09h     | 12h    | 15h        | 18h           | 21h  | _ |
|-------|----------------------------------------------------------------------|-------------------------------|-----|----------|-----------------|---------|--------|------------|---------------|------|---|
|       | Velocidade do vento<br>(nós)                                         |                               |     |          | 8               | 9       | 4      | 11         | 9             | 8    |   |
|       | Velocidade do vento<br>(km/h)<br>Rajada<br>(nós)<br>Rajada<br>(km/h) |                               |     |          | 15              | 17      | 8      | 20         | 16            | 15   |   |
|       |                                                                      |                               |     |          | 8               | 9       | 4      | 11         | 9             | 8    |   |
|       |                                                                      |                               |     |          | 15              | 17      | 8      | 20         | 16            | 15   |   |
|       | Direção do vento                                                     |                               |     | ⊭<br>ENE | ⊭<br>NE         | ⊮<br>NE | ←<br>E | ←<br>E     | ₩<br>ENE      | •    |   |
|       | 0 nós                                                                | 1-2                           | 3-5 | 6-10     | 11-15           | 16-20   | 21-25  | 26-30 31-4 | 10 41-50      | +50  |   |
| Dia 4 | Hora                                                                 |                               |     | 06h      | 09h             | 12h     | 15h    | 18h        | 21h           | _    |   |
|       | Velocidade do vento<br>(nós)                                         |                               |     | 2        | 2               | 4       | 4      | 5          | 6             |      |   |
|       | Ve                                                                   | Velocidade do vento<br>(km/h) |     |          | 3               | 3       | 7      | 7          | 10            | 11   |   |
|       | Rajada<br>(nós)<br>Rajada<br>(km/h)                                  |                               |     |          | 2               | 2       | 4      | 4          | 5             | 6    |   |
|       |                                                                      |                               |     |          | 3               | 3       | 7      | 7          | 10            | 11   |   |
|       | Direção do vento                                                     |                               |     |          | WSW             | WSW     | WSW    | ≯<br>SSW   | <b>←</b><br>E | ENE. |   |
|       | 0 nós                                                                | 1-2                           | 3-5 | 6-10     | 11-15           | 16-20   | 21-25  | 26-30 31-4 | 10 41-50      | +50  |   |
| Dia 5 |                                                                      | Hoi                           | ra  |          | 06h             | 09h     | 12h    | 15h        | 18h           | 21h  |   |
|       | Velocidade do vento<br>(nós)                                         |                               |     | 2        | 3               | 2       | 5      | 8          | 8             |      |   |
|       | Velocidade do vento<br>(km/h)<br>Rajada<br>(nós)<br>Rajada<br>(km/h) |                               |     |          | 4               | 5       | 4      | 8          | 15            | 15   |   |
|       |                                                                      |                               |     |          | 2               | 3       | 2      | 5          | 8             | 8    |   |
|       |                                                                      |                               |     |          | 4               | 5       | 4      | 8          | 15            | 15   |   |
| 1     | Direção do vento                                                     |                               |     | ⊭<br>NE  | <i>⊭</i><br>ENE | ⊭<br>NE | ←<br>E | ←<br>E     | ←<br>E        | -    |   |
|       |                                                                      |                               |     |          |                 |         |        |            |               |      |   |

• Para simplificar considere que o vento tem a mesma direção e velocidade na cidade inteira durante os horários indicados e que o vento não muda de direção nem velocidade enquanto o

drone está no trajeto entre uma coordenada e outra. Por exemplo: se o drone sair do ponto A às 8:59:00 e chegar no ponto B às 9:20:00, a velocidade e ângulo do vento serão as da coluna "06h" da tabela fornecida pelo professor, porém no voo seguinte (por exemplo de B até C, iniciando 9:21:00) a velocidade e ângulo do vento serão as da coluna "09h". Ou seja, a velocidade do vento será estimada de acordo com o horário de partida e permanecerá fixa até a chegada na coordenada do CEP seguinte.

- Devido à necessidade de deslocar a equipe em solo, o custo de cada pouso para recarga é de 60 reais (assuma que qualquer pouso gera uma recarga, porém se o drone apenas parar para tirar fotos só há o gasto de tempo e autonomia da bateria);
- Por fim, consulte o ChatGPT ou similar para ver como implementar o cálculo da distância entre cada coordenada <u>dada em graus pelo professor</u>. Segundo o ChatGPT, pode-se calcular essa distância da seguinte forma:

Para calcular a distância entre duas coordenadas geográficas (latitude e longitude) informadas, você pode usar a **fórmula de Haversine**, que calcula a distância entre dois pontos em uma esfera com base em suas coordenadas. A Terra é considerada uma esfera com um raio aproximado de 6.371 km.

#### Fórmula de Haversine

A fórmula de Haversine é a seguinte:

$$egin{aligned} a &= \sin^2\left(rac{\Delta\phi}{2}
ight) + \cos(\phi_1)\cdot\cos(\phi_2)\cdot\sin^2\left(rac{\Delta\lambda}{2}
ight) \ & c &= 2\cdot atan2\left(\sqrt{a},\sqrt{1-a}
ight) \ & d &= R\cdot c \end{aligned}$$

#### Onde:

- φ<sub>1</sub> e φ<sub>2</sub> são as latitudes dos dois pontos (em radianos).
- $\lambda_1$  e  $\lambda_2$  são as longitudes dos dois pontos (em radianos).
- Δφ = φ<sub>2</sub> − φ<sub>1</sub> é a diferença entre as latitudes.
- Δλ = λ<sub>2</sub> − λ<sub>1</sub> é a diferença entre as longitudes.
- R é o raio da Terra (aproximadamente 6.371 km ou 6.371.000 metros).
- d é a distância entre os dois pontos.

### Seu objetivo

A sua implementação deve gerar um arquivo de saída em formato CSV (ou seja, valores separados por vírgulas) com a melhor solução encontrada pelo seu algoritmo:

| Coluna            | Valores possíveis                        | Descrição                                                                                                         |  |  |  |  |
|-------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CEP inicial       | 80010010 a 82990198                      | Um dos códigos da lista fornecida pelo professor                                                                  |  |  |  |  |
| Latitude inicial  | -25,6154928550559 a<br>-25,3530998572423 | Dado da linha correspondente fornecido pelo professor                                                             |  |  |  |  |
| Longitude inicial | -49,372483 a -<br>49,1880231206476       | Dado da linha correspondente fornecido pelo professor                                                             |  |  |  |  |
| Dia do vôo        | 1, 2, 3, 4 ou 5                          | conforme previsão de vento dada pelo professor                                                                    |  |  |  |  |
| Hora inicial      | 06:00:00 a 19:00:00                      | Hora de saída do drone da coordenada inicial indicada nesta linha                                                 |  |  |  |  |
| Velocidade        | 30 a 60                                  | Valor <b>inteiro</b> indicando a velocidade de voo neste trecho, em Km/h, <b>antes da aplicação do ajuste por</b> |  |  |  |  |
| CED C I           | 00040040 - 00000400                      | conta do vento                                                                                                    |  |  |  |  |
| CEP final         | 80010010 a 82990198                      | Um dos códigos da lista fornecida pelo professor                                                                  |  |  |  |  |
| Latitude final    | -25,6154928550559 a<br>-25,3530998572423 | Dado da linha correspondente fornecido pelo professor                                                             |  |  |  |  |
| Longitude final   | -49,372483 a -<br>49,1880231206476       | Dado da linha correspondente fornecido pelo professor                                                             |  |  |  |  |
| Pouso             | SIM ou NÃO                               | SIM: drone pousou e ficará parado em solo até o dia e                                                             |  |  |  |  |
|                   |                                          | horário indicados na próxima linha, quando decolará                                                               |  |  |  |  |
|                   |                                          | com bateria recarregada                                                                                           |  |  |  |  |
|                   |                                          | NÃO: o drone ficará um minuto ou mais parado no ar                                                                |  |  |  |  |
|                   |                                          | tirando as fotos e consumindo bateria antes de seguir                                                             |  |  |  |  |
|                   |                                          | para a próxima coordenada.                                                                                        |  |  |  |  |
| Hora final        | 06:00:00 a 19:00:00                      | Hora de chegada do drone na coordenada de destino, considerando velocidade efetiva após aplicação do              |  |  |  |  |
|                   |                                          | efeito do vento e contando os segundos para                                                                       |  |  |  |  |
|                   |                                          | desaceleração e pouso e/ou tomada de fotos do local.                                                              |  |  |  |  |

Um EXEMPLO da solução PARCIAL, ainda sem considerar os tempos de parada e os dias, poderia ser a dada pela seguinte figura, onde o ponto vermelho é o CEP do Unibrasil, local no qual o trajeto começa e termina:



A lista com estes CEPs e coordenadas está disponível no ambiente virtual de aprendizagem junto com essa especificação.

#### Cuidados na implementação

Fatores que serão considerados na avaliação da sua implementação:

- Cálculo de distâncias implementado corretamente
- Cálculo de velocidade com vento e consumo de bateria
- Cálculo de custo e tempo considerando todos os outros fatores
- Clareza e organização da função fitness
- Clareza, eficiência, viabilidade e organização da codificação genética para representação do problema
- Validade da solução encontrada
- Percentual de cobertura do teste unitário
- Qualidade da solução obtida (otimização de horários e ordem de visitação de cada ponto)
- Clareza e organização do código

Linguagens permitidas: Python ou C# (em uma versão que GARANTIDAMENTE rode de maneira NATIVA no Linux, não me obrigue a instalar o Wine ou máquinas virtuais!)

#### Instruções para entrega

Sua entrega deve ter os seguintes componentes:

- Implementação do algoritmo de computação evolucionária, que deve ter toda a informação necessária para ser executado localmente pelo professor para reproduzir ao menos parcialmente o resultado encontrado pela equipe.
- Casos de teste próprios, com evidências de medição do percentual de cobertura de código.
- Arquivo CSV com a melhor solução encontrada pela equipe.

O trabalho deve ser entregue em UM arquivo em <u>formato ZIP</u>, enviado por apenas UM membro da equipe. Apenas o <u>ÚLTIMO</u> envio será considerado.

O trabalho DEVE conter o nome completo e matrícula de TODOS os integrantes. Erros ou omissões nesta parte serão considerados FALTAS GRAVES.

Recomenda-se a divisão do trabalho nas seguintes etapas/atividades, que são interdependentes mas podem ser feitas em paralelo:

- Organização dos requisitos e casos de testes por ordem de complexidade;
- Definição da arquitetura das classes (INVISTAM TEMPO NISSO!);
- Montagem de casos de teste para cobrir todos os requisitos;
- Montagem do código;
- Montagem de casos de teste para cobrir todos os requisitos;
- Peer-review do código;
- Validação da solução gerada pela aplicação.

#### Observações gerais

O trabalho <u>pode</u> ser feito em <u>equipes</u> de até 5 alunos. A EQUIPE TODA É IGUALMENTE RESPONSÁVEL PELO SUCESSO DO TRABALHO E PELA IDENTIFICAÇÃO CORRETA E COMPLETA DE TODOS OS SEUS INTEGRANTES.

É TERMINANTEMENTE PROIBIDO compartilhar arquivos entre equipes, incluindo os casos de teste. Qualquer tentativa de fazer isso implicará na atribuição de <u>nota ZERO</u> a TODOS os membros de TODAS as equipes envolvidas.