INTRODUÇÃO À IHC 2021/1

FACOM33501 – Interação Humano-Computador

Prof. Dr. Rafael D. Araújo rafael.araujo@ufu.br

http://www.facom.ufu.br/~rafaelaraujo

- Escreva o que você acha que é IHC no espaço de colaboração do caderno no OneNote
- 5 minutos

"A interação humano-computador é uma disciplina preocupada com o projeto, avaliação e implementação de **sistemas de computação interativos** para uso **humano** e com o estudo dos principais fenômenos que os cercam." (Hewett et al., 1992, tradução livre)

"A área de Interação Humano-Computador (IHC) se dedica a estudar os fenômenos de **comunicação entre pessoas e sistemas computacionais** que está na interseção das ciências da **computação** e **informação** e **ciências sociais** e **comportamentais** e envolve todos os aspectos relacionados com a interação entre usuários e sistemas." (CEIHC/SBC)

O termo só foi difundido à partir do início dos anos 80

■ É fundamentado em outras disciplinas

■ Envolve aspectos físicos, psicológicos e teóricos

Objetos de estudo

técnicas de avaliação

abordagens de design soluções de design boas e ruins ferramentas e técnicas de implementação

Processos de Desenvolvimento

Objetos de estudo

Design (ou projeto) se refere tanto ao processo criativo de criar e especificar algo quanto às suas representações.

técnicas de avaliação

abordagens de design soluções de design boas e ruins ferramentas e técnicas de implementação

Processos de Desenvolvimento

Multidisciplinariedade

FACOM33501 – Interação Humano-Computador

Introdução à IHC

Profissões relacionadas

- Analista de UX
- Analista de Ul/WebDesigner
- Arquiteto de informação
- Especialista em usabilidade
- Testador/Avaliador

Sistemas interativos no cotidiano

Com quais os sistemas interativos você se comunica diariamente?

- Quais características deles você gosta e quais você não gosta? Por quê?
 - Pense na experiência como um todo e não só nas funcionalidades que existem/não existem

■ 50s – Interfaces são painel de controles do hardware, usuário são

engenheiros

■ 60-70s – Interfaces são programas em linguagens como COBOL, FORTRAN

```
PROCEDURE DIVISION.
000025
               0001-MAIN.
000026
                   INSPECT FUNCTION REVERSE(STR-1)
000027
                   TALLYING WS-LEN1 FOR LEADING SPACES.

COMPUTE WS-LEN = LENGTH OF STR-1 - WS-LEN1.
000028
000029
000030
                   DISPLAY WS-LEN.
000031
000032
                        WS-LEN TO J.
                           REV-PARA WS-LEN TIMES.
000033
000034
                   DISPLAY STR-1.
000035
                   DISPLAY STR-2.
000036
000037
                REV-PARA.
                   MOVE STR-1(J:1) TO STR-2(I:1).
000038
000039
                   SUBTRACT 1 FROM J.
                   ADD 1 TO I.
000040
        **************************** Rottom of Data *****************
```

```
maths_mod.f95 % array_funcs.f95 % arrays.sh %
     =subroutine print_mat2(a,n,m)
82
          implicit none
83
          integer, intent(in) :: n,m
84
          real*8, dimension(n,m), intent(in) :: a
85
          integer :: i,j
86
          do 1=1,n
              write(*,'("I")',advance='no')
88
89
               write(*,'(f8.3,t3)',advance='no'),a(i,j)
91
92
              write(*,'("1")')
93
          end do
94
ine: 92 / 201 col: 24 sel: 0 INS SP mode: Unix (LF) encoding: UTF-8 filetype: Fortr
```

■ 70-80s – Primeiros aplicativos e linguagens de comandos

Prompt de comando Windows

■ 80s – Interfaces gráficas com aplicativos

■ 90s – Interfaces multimídia e interfaces Web

00s - Interface tornam-se ubíquas – estão em todo lugar e em

dispositivos móveis

Interface vs Interação

- Interface é a superfície que forma um limite comum de dois corpos ou espaços (Michaelis)
 - É o nome dado a toda porção de um sistema com a qual um usuário mantém contato ao utilizá-lo

- Interação é o ato de reciprocidade entre dois ou mais corpos (Michaelis)
 - É o processo de comunicação entre pessoas e sistemas interativos
 - A interação só é possível quando o sistema oferece uma interface

Por que pensar na interação?

- Para possibilitar o design de produtos interativos que satisfaçam as pessoas em suas atividades cotidianas e no trabalho, ou seja, criar uma boa experiência de uso
- Desenvolver produtos com boa qualidade de interação

Usabilidade

- Em produtos de software
 - requisito n\u00e3o funcional
 - atributos de qualidade da interface
- Características de boa qualidade de design
 - facilidade de aprendizado (learnability)
 - facilidade de recordação (memorability)
 - eficiência (efficiency)
 - segurança no uso (safety)
 - satisfação do usuário (satisfaction)

Affordance

- Conceito criado originalmente pelo psicólogo James J. Gibson
- Características de um artefato que evidenciam o que é possível fazer com ele e as maneiras de utilizá-lo (intuição)
- Em IHC, introduzido por Donald Norman (1988), a affordance de um objeto corresponde ao conjunto das características de um objeto capazes de revelar aos seus usuários as operações e manipulações que eles podem fazer com ele

Experiência do Usuário (UX)

- "A experiência do usuário abrange todos os aspectos da interação do usuário final com a empresa, seus serviços e produtos." (Norman e Nielsen, tradução livre)
- Pensando em produtos de software:
 - Envolve o modo o uso de sistemas interativos afetam os sentimentos e as emoções do usuário
- Vídeo Don Norman: https://www.youtube.com/watch?v=9BdtGjoIN4E

UX = Usabilidade?

- UX (User experience) está relacionada com a forma com que o usuário se sente ao experimentar um serviço/aplicação
- Usabilidade é sobre a facilidade de uso e a eficiência da interação

"A experiência do usuário com um produto vai além da sua usabilidade; inclui ainda mais aspectos subjetivos, como estética, prazer e diversão". Simone et al. (2021) apud Norman (2013)

UX = Usabilidade?

FALHAS DE DESIGN DE UX

ADD HARD-BOILED EGGS?

You	may	select one of the choices
	ADD	ONE HARD-BOILED EGG + \$1.00
	ADD	TWO HARD-BOILED EGGS + \$2.00
	ADD	THREE HARD-BOILED EGG + \$3.00
	ADD	FOUR HARD-BOILED EGG + \$4.00
	ADD	FIVE HARD-BOILED EGG + \$5.00
	ADD	SIX HARD-BOILED EGG + \$6.00
	ADD	SEVEN HARD-BOILED EGG + \$7.00
	ADD	EIGHT HARD-BOILED EGG + \$8.00
	ADD	NINE HARD-BOILED EGG + \$9.00
	ADD	TEN HARD-BOILED EGG + \$10.00
	ADD	ELEVEN HARD-BOILED EGG + \$11.00
	ADD	TWELVE HARD-BOILED EGG + \$12.00
	ADD	THIRTEEN HARD-BOILED EGG + \$13.00
	ADD	FOURTEEN HARD-BOILED EGG + \$14.00
	ADD	FIFTEEN HARD-BOILED EGG + \$15.00

FACOM33501 – Interação Humano-Computador Introdução à IHC

Bad desigr

FACOM33501 – Interação Humano-Computador Introdução à IHC

Bad design

FACOM33501 – Interação Humano-Computador Introdução à IHC

Bad design

Reset Yo	ur Password							
Please ente	r the following i	nforn	nation	:				
(1	Date of Birth							
		0	Nov		*	2013	v	0
CONTINUE	CANCEL	Su	Мо	Tu	W	2060 2061 2062	4	Sa 2
		3	4	5		2063 2064		9
		10	11	12		2065		16 ar
		17	18	19		2066		23
		24	25	26		2067 2068		30
		Today				2069 2070 2071	n	ne
						2072 2073		
						2074 2075 2076		
						2077 2078		

FACOM33501 – Interação Humano-Comp Introdução à IHC

Bad desig

FACOM33501 – Interação Humano-Computador Introdução à IHC

Bad design

Análise PACT (Pessoas, Atividades, Contextos, Tecnologias)

- É um framework para o design de sistemas interativos
- As pessoas usam tecnologias para realizar atividades dentro de contextos

Fonte: Benyon, D. Interação Humano-Computador. 2ª ed., Pearson.

Análise PACT

■ Pessoas

 Diferenças físicas (ergonomia), diferenças psicológicas (modelos mentais), diferenças sociais (grupos focais)

Atividades

 Aspectos temporais (regulares ou esporádicas), cooperação, complexidade, segurança, natureza do conteúdo

Análise PACT

- Contextos
 - Organizacional, social, circunstâncias físicas
- Tecnologias
 - Hardware + software

Análise PACT

■ Por exemplo, como a atividade de assistir a um filme mudou desde os primórdios do cinema?

O ser humano

- Personagem central em qualquer sistema interativo
- Para projetar bons sistemas interativos, precisamos entender suas capacidades e limitações
 - Como percebe o mundo ao seu redor?
 - Sua capacidade física de manipulação de objetos?
 - Como armazena e processa as informações?
 - Como resolve problemas

Modelo do Processador de Informação Humano (MPIH)

- Elaborado por Card, Moran e Newell, 1983
- Visão simplificada do processamento humano ao interagir com sistemas computacionais
- Fundamentado na Psicologia Cognitiva
- Três subsistemas: Sistema Perceptual, o Sistema Cognitivo, e o Sistema Motor

MPIH

- Entrada e saída de informação
 - visão, audição, tato, paladar e olfato
- Informações armazenadas na memória
 - sensorial, curto prazo, longo prazo
- Informações processadas e aplicadas
 - raciocínio, resolução de problemas, habilidade, erro
- A emoção influencia as capacidades humanas
- Cada pessoa é diferente

- Sistema complexo, com limitações físicas e perceptivas
- Dois estágios:
 - recepção física do estímulo do mundo exterior
 - processamento e interpretação desse estímulo
- Coisas não vistas vs capacidades interpretativas

Bastonetes (~120M): são altamente sensíveis à luz, situados principalmente nas bordas da retina (visão periférica).

Cones (~6M): cores (RGB), concentrados na fóvea.

Detalhes, nitidez

Facebook helps you connect and the people in your life.

Daltonismo

- 8% dos homens e 1% das mulheres
- Tricromacia
 - possui os três tipos de cones, mas um deles não funciona corretamente
- Dicromacia
 - ausência de um dos tipos de cones: protanopia (vermelho) / deuteranopia (verde) / tritanopia (azul)
- Monocromacia
 - ausência de dois ou três tipos de cones

Daltonismo

individual with normal color vision (left), and a color blind (protanopic) retina. Note that the center of the fovea holds very few blue-sensitive cones.

Fonte: Wikipedia

Globalmente, pelo menos 2,2 bilhões de pessoas têm deficiência visual ou falta de visão. Destes, são 43 milhões de pessoas vivendo com cegueira (OMS, 2021).

E/S - Audição

- Começa com vibrações no ar ou ondas sonoras
- O ouvido humano pode ouvir frequências de cerca de 20 Hz a 20 kHz

FACOM33501 – Interação Humano-Computador Introdução à IHC

E/S - Audição

Atualmente, 430 milhões de pessoas (~5% da população) tem algum grau de perda auditiva. Em 2050, estima-se que esse número será de aproximadamente 25% da população (OMS, 2021).

E/S - Tato

- O toque é um meio importante de feedback
- A pele contém três tipos de receptores sensoriais
 - termorreceptores respondem a alterações de temperatura (calor e frio)
 - nociceptores respondem à percepção de dor ou potencial de dano (pressão intensa, calor e dor)
 - mecanorreceptores respondem a estímulos mecânicos, como pressão

Cinestesia

consciência da posição do corpo e dos membros

FACOM33501 – Interação Humano-Computador Introdução à IHC

E/S - Tato

Controle motor

- Como nos movemos afeta nossa interação com os computadores
- Tempo para responder a um estímulo:
 - Tempo de reação + Tempo de movimento
- Tempo de reação depende do tipo do estímulo
 - visual (~200ms), auditivo (~150ms), dor (~700ms)
 - habilidade, prática e fadiga podem aumentar ou diminuir o tempo
- Tempo de movimento e das características físicas dos sujeitos
 - idade e condição física, por exemplo

Controle motor

- Uma segunda medida da habilidade motora é a precisão
- A <u>lei de Fitts</u> descreve o tempo necessário para se atingir um alvo na tela

Tempo de movimento = $a + b \log_2(D/S + 1)$

- onde: a e b são constantes determinadas empiricamente;

D é a distância

S é o tamanho do alvo

 Implicações no design: os alvos geralmente devem ser os maiores possíveis e a distância a ser movida a menor possível

Controle motor

Tipos de memória

Limitada: 7±2 elementos (Miller, 1956)

Chunking Closure Perda lenta Capacidade muito grande (ou ilimitada)

Recuperação de informação na memória

- Relembrar (recall)
 - Informação recuperada da memória sem dicas
 - Maior custo de recuperação da informação
- Reconhecer (recognition)
 - Informação recuperada a partir de dicas
 - A apresentação da informação fornece conhecimento de que a informação foi anteriormente vista
 - Menos complexo que relembrar

Processamento da informação - Inferência

- Raciocínio dedutivo
 - derivar a conclusão logicamente à partir de premissas
- Raciocínio indutivo
 - generalizar à partir de casos vistos para casos não vistos
- Raciocínio abdutivo
 - raciocínio de evento para causa
 - procura a melhor explicação para eventos observados

Processamento da informação – Resolução de problemas

- Processo de encontrar solução para tarefa desconhecida usando conhecimento
- Capacidade de adaptar as informações de que dispomos para lidar com novas situações
- Várias teorias

Processamento da informação - Erros

- As pessoas constroem suas próprias teorias para compreender o comportamento causal. Esses são chamados de modelos mentais.
- Deslizes (slips)
 - intenção certa, mas falhou em fazer da maneira certa
 - causas: pouca habilidade física, desatenção etc.
 - mudanças em comportamentos habilidosos podem causar escorregões
- Equívocos (mistakes)
 - intenção errada
 - causa: compreensão incorreta

Emoções

- Envolvem claramente as respostas cognitivas e físicas aos estímulos
- Várias teorias
- A resposta biológica aos estímulos físicos é chamada de afeto
- Afeto influencia a forma como respondemos às situações
 - positivo -> solução criativa de problemas
 - negativo -> pensamento limitado

Emoções

- Envolvem estímulos
- Várias ted
- A resposta afeto
- Afeto influ
 - positive

"O afeto negativo pode dificultar até mesmo tarefas fáceis; afeto positivo pode tornar mais fácil realizar tarefas difíceis"

(Donald Norman)

negativo -> pensamento limitado

físicas aos

amada de

situações

Diferenças individuais

- longo prazo
 - sexo, habilidades físicas e intelectuais
- curto prazo
 - efeito do estresse ou fadiga
- mudanças
 - idade

Diferenças individuais

- longo prazo
 - sexo, habiliq
- curto prazo
 - efeito do est
- mudanças
 - idade

Sempre se pergunte:

a decisão de design excluirá
alguma parcela da população de
usuários?

Exercício para a próxima aula

■ Você foi incumbido do design de um sistema de informação para uma nova ciclovia que vai atravessar parte de sua cidade. O objetivo do sistema é fornecer informações sobre caminhos e distâncias para os ciclistas a passeio que queiram chegar aos principais pontos de interesse da cidade. Ele também precisa fornecer informações sobre outras coisas, como os horários de trens e ônibus para os ciclistas que estão indo e voltando do trabalho. Faça uma análise PACT para essa aplicação.

Em resumo...

- IHC é uma área multidisciplinar
- Estamos cercados de sistemas interativos
- As pessoas são diferentes umas das outras e precisamos considerar as diferenças ao projetar sistemas
- UX ≠ UI
- É preciso pensar na experiência dos usuários