

Exame Especial de **Introdução aos Sistemas Eletromagnéticos - Parte I**Eng. Biomédica 2°Ano/1°Semestre

Nome Nº Aluno
A parte I do exame é constituída por 4 questões de escolha múltipla e por 4 questões de desenvolvimento. Das questões indicadas, responda no máximo a 5 e indique neste rectângulo as respostas efectivamente respondidas.

Escolha múltipla

- Para cada questão há uma única hipótese correta.
- Assinale a resposta correta no enunciado com um círculo.
- Se pretende anular uma resposta escreva "Anulado" na respetiva caixa.
- Cotação: Resposta correta = 2; Resposta errada = 0,66
- 1 Uma partícula entra numa região onde existem campos \vec{E} e \vec{B} tal como está ilustrado na figura ao lado e descreve a trajetória indicada a tracejado.
- \vec{v}_0 \vec{E}

03/09/2013

Duração: 1h

- **1.1** Considere as afirmações I e II e escolha a hipótese correta sobre a sua veracidade.
 - I A carga é positiva.
 - II Ajustando a intensidade dos campos sem alterar a sua direção ou sentido é possível tornar a trajetória retilínea.

ou sentido e possivei tornar a trajetoria retirinea.		
A: I é verdadeira e II é falsa.	B: I e II são falsas	
C: I e II são verdadeiras.	D: I é falsa e II é verdadeira.	

1.2 Escolha a hipótese correta que completa os espaços por preencher na seguinte frase:

Se a partícula for sujeita apenas ao campo elétrico a sua trajetória tem forma ______ e se for sujeita apenas ao campo de indução magnética a sua trajetória tem forma ______.

mas are tampe at margare magnetica a sua trajeveria tem rerina		
A: Circular; Parabólica.	B: Retilínea; Helicoidal.	
C: Parabólica; Circular.	D: Helicoidal; Retilínea.	

- **2**. Colocam-se duas espiras S1 e S2 junto de um fio percorrido por uma corrente I, tal como se esquematiza na figura. Considere que a corrente I aumenta ao longo do tempo.
- **2.1** É gerada uma corrente induzida na espira S1?

2 E gerada dina corrente indazida na espira 51.		
A: Sim, no sentido anti-horário.	B: Sim, no sentido horário.	
C: Sim, mas não há dados suficientes para	D: Não	
determinar o sentido da corrente.		

2.2 É gerada uma corrente induzida na espira S2?

A: Sim, no sentido horário.	B: Sim, no sentido anti-horário.
C: Sim, mas não há dados suficientes para	D: Não
determinar o sentido da corrente.	

Desenvolvimento

- Apresente todos os passos de resolução e justifique convenientemente todos os cálculos.
- Indique as unidades dos resultados obtidos.
- Cada questão tem a cotação de 2 valores.
- **3.** Três cargas, uma positiva e duas negativas, estão dispostas nos vértices de um quadrado com 3 cm de lado como indica a figura. O módulo de cada carga é igual a 2 nC. Admita que o potencial é nulo no infinito.

- **3.1** Calcule o campo elétrico gerado pelas três cargas no centro do quadrado (ponto O). (Indique a sua resposta em termos vetoriais, de acordo com o sistema de eixos representado na figura.)
- **3.2** Calcule a força elétrica sobre a carga que se encontra no ponto P. (Indique a sua resposta em termos vetoriais, de acordo com o sistema de eixos representado na figura.)
- 3.3 Calcule o potencial elétrico gerado pelas três cargas no centro do quadrado (ponto O).
- **3.4** Calcule a energia eletrostática das três cargas.

Soluções:

- **1.1** A
- **1.2** C
- **2.1** B
- **2.2** D

3.1
$$\overrightarrow{E_o} = 28284 \ \hat{x} - 84853 \ \hat{y} \ V/m$$

3.2
$$\overrightarrow{F_P} = -40.0 \ \hat{x} + 40.0 \ \hat{y} \ \mu N$$

3.3
$$V = -848,5 V$$

3.4
$$U = -8,485 \times 10^{-7} J$$