Carnegie Mellon University

Pittsburgh Bike Data Analysis

JUN 01, 2023

Hsiu-Yuan Yang

Agenda

- 1. Background & Objective
- 2. Data Source & Data Preparation
- 3. EDA & Visualization
- 4. Model Analysis

Background & Objective

Background: The Rise of Bike Transportation

The popularity of shared mobility services has led Bike Share Pittsburgh Inc (POGOH) to launch a bike sharing program in Pittsburgh, Pennsylvania. The program aims to provide residents and visitors with accessible, sustainable, and affordable bicycle rentals, integrating human-powered transportation as an essential component of the larger public transit system. By doing so, the program offers greater convenience and transportation opportunities for Pittsburgh residents while also providing an additional sightseeing option for visitors.

However, the distribution of bike stations has become a subject of debate, with concerns about some neighborhoods being underserved and others having an excess of stations.

Background & Objective (Cont'd)

Objective: To Access the Current Design of Pittsburgh Bike Stations

In this project, we aim to examine the relationship between the underlying census data and the number of bicycle rental stations in different census tracts in Pittsburgh, with a focus on factors such as population, race, income, education level, transportation characteristics, etc.

The purpose of this work is to reassess the current design of bike stations in Pittsburgh and determine if improvements or adjustments are necessary. The primary goal is to identify any disparities and propose changes to enhance the bike sharing program, making it more equitable and efficient.

Data Source

1. Pittsburgh Geographical Data

TIGER/Line Shapefiles from US Census Bureau (2020)¹

Pennsylvania shapefiles was used as the base and extraction / processing was done to filter out Pittsburgh shapefiles

2. Pittsburgh Census Data

Population details / info from US Census Bureau (2020)²

On top of extraction of the census data, preprocessing was also performed for easier analysis purpose, including the following:

- Population density was calculated
- A new category was created (i.e. college_degree_or_above) to simplify the education level grouping

Notes:

- 1. For more information, please see https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2020.html#list-tab-790442341.
- 2. For more information, please see https://data.census.gov/.

3. Pittsburgh Bike Station Data¹

Bike station data provided from Healthy Ride (2021)²

A snapshot of station locations and capacities

4. Pittsburgh Bike Station Activity Data¹

Bike rental data provided from Healthy Ride $(2021)^2$

Details of the rental trips, where a trip is defined as any rental longer than a minute that begins and ends at a valid Healthy Ride station

Notes:

- For more information, please see https://healthyridepgh.com/data/.
- While Healthy Ride has stored their data by quarterly basis, for this study, we have consolidated the data to account for the whole 2021.

 While Healthy Ride has stored their data by quarterly basis, for this study, we have consolidated the data to account for the whole 2021.

1. Pittsburgh Geographical Data¹

The geographical data contains the following information²:

- State Federal Information Processing System (FIPS) code
- Country FIPS code
- Census Tract Code
- GEOID (serves as census block identifiers)
- Census Land Area
- Census Water Area
- Census latitude of the internal point
- Census longitude of the internal point
- Geometry representation

Notes:

- Our data scope is for year 2020.
- The list is not exhaustive; only information that are used in this project are listed.

2. Pittsburgh Census Data

The census data used can be divided into the below categories:

General Overview	Transportation Related
 Examples: Population density Gender Median income Median house value Education level Race 	Examples:Public transportation for workTravel time to work

2. Pittsburgh Census Data (Cont'd)

The full set of census data attributes (after preprocessing) used are as follows:

```
22 WIDOWED
                                                                               43 TRAVEL_TIME_TO_WORK_25_TO_29_MIN
   NAME
   POPULATION
                                      23 LESS_THAN_HIGH_SCHOOL
                                                                               44 TRAVEL_TIME_TO_WORK_30_TO_34_MIN
                                      24 HIGH SCHOOL GRADUATE
                                                                               45 TRAVEL_TIME_TO_WORK_35_TO_44_MIN
   NATIVE
                                      25 COLLEGE_ASSOCIATE_DEGREE
                                                                               46 TRAVEL TIME TO WORK 45 TO 59 MIN
  AGE UNDER 17
                                      26 BACHELOR DEGREE
                                                                               47 TRAVEL TIME TO WORK MORE THAN 60 MIN
  AGE 18 TO 64
                                      27 GRADUATE PROFESSIONAL DEGREE
                                                                               48 WORKER VEHICLE DROVE ALONE
  AGE OVER 65
                                      28 INDIVIDUAL INCOME MEDIAN
                                                                               49 WORKER VEHICLE CARPOOL
   MALE
                                                                               50 WORKER PUBLIC TRANSPORTATION
                                      29 MOVED WITHIN SAME COUNTY
   FEMALE
                                                                               51 HOUSEHOLD
                                      30 MOVED FROM DIFFERENT COUNTY
   ONE RACE
                                      31 MOVED FROM DIFFERENT STATE
                                                                               52 HOUSEHOLD SIZE
10 TWO RACES
                                                                               53 FAMILY
                                      32 MOVED FROM ABROAD
11 WHITE
12 BLACK AFRICAN AMERICAN
                                      33 WORKER
                                                                               54 FAMILY SIZE
13 AMERICAN_INDIAN_ALASKA_NATIVE
14 ASIAN
                                      34 WORKER NOT WFH
                                                                               55 HOUSEHOLD WITH CHILREN
                                      35 WORKER DEPART 0000 0559
                                                                               56 HOUSEHOLD MARRIED COUPLE
14 ASIAN
                                      36 WORKER_DEPART_0600_0729
                                                                               57 HOUSEHOLD_MALE_NO_SPOUSE
15 HAWAIIAN_PACIFIC
                                      37 WORKER DEPART 0730 0859
                                                                               58 HOUSEHOLD FEMALE NO SPOUSE
16 OTHER RACE
17 HISPANIC LATINO
                                      38 WORKER DEPART 0900 2359
                                                                               59 HOUSEHOLD NONFAMILY
                                      39 TRAVEL_TIME_TO_WORK_LESS_THAN_10_MIN
18 LANGUAGE_OTHER_THAN_ENGLISH
                                                                               60 POVERTY
                                      40 TRAVEL_TIME_TO_WORK_10_TO_14_MIN
19 NEVER_MARRIED
                                                                                61 DISABILITY
                                      41 TRAVEL TIME TO WORK 15 TO 19 MIN
                                                                               62 MEDIAN_HOUSE_VALUE
   NOW MARRIED
                                      42 TRAVEL_TIME_TO_WORK_20_TO_24_MIN
21 DIVORCED_SEPARATED
                                                                                63 Area
                                                                                64 POPULATION DENSITY
                                                                                65 COLLEGE_DEGREE_OR_ABOVE
```

3. Pittsburgh Bike Station Data¹

The bike station data contains the following information:

- Station ID
- Station name
- Latitude / longitude coordinates
- Number of individual docking points at each station

During pre-processing, it was noted that the station data for 2021 Q2 was corrupted and the information stored are not aligned with other station data.

Upon examining the rental data in 2021 Q2, it was determined that the station data for 2021 Q2 is more aligned with the station data for 2021 Q3 instead of 2021 Q1, hence, we have used the Q3 file as a substitute.

It is noted that there are out of the 128 census tracts, only 42 of them have bike stations.

Notes:

1. Our data scope is for year 2021.

4. Pittsburgh Bike Station Activity Data

The bike station activity (rental) data contains the following information:

- Trip ID
- Bike ID
- Trip start day ad time
- Trip end day and time
- Trip duration (in seconds)
- Trip start station name and station ID¹
- Trip end station name and station ID¹
- User type

For easier interpretation purpose, we decided to look at bike activity from demand and supply angle.

Therefore, we have rendered the trip start station name and station ID as "demand" and the trip end station name and station ID as "supply".

Demand counts and supply counts are then be aggregated to be utilized in the following analysis.

Notes:

1. These are the fields that have been use in this study.

Data Preparation

Consolidation relevant information

To facilitate the regression / modelling, the below actions were executed:

- 1. Bike station data and bike station activity data were consolidated with census data and geographical data
- 2. While bike station activity data is in quarterly basis, the values have been aggregated to account for the total activity in 2021

Data Preparation (Cont'd)

Final Dataset Used for Modeling

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 128 entries, 0 to 127
Data columns (total 74 columns):

Pittsburgh Census Characteristics

Population Density

Gender

Individual Median Income

Median House Value

Education Level (College Degree or Above)

Race (White Ratio)

Usage of Public Transportation to Work Ratio

Average Travel Time to Work (mins)

Demand (Bike Activities) in 2020

Demand Map for January 2020

Supply (Bike Activities) in 2020

Supply Map for January 2020

Our Models

To Examine the Current Design of Bike Stations

Below are the 2 models defined in this analysis¹:

- "Number of bike stations" versus "census features"
- 2. "Average activity2" versus "number of bike stations & census features"

2 types of methods are utilized:

- 1. Spatial regression
- 2. Elastic net³

Notes:

- 1. The data unit is per census tract.
- 2. Activity is defined as the "demand" count plus "supply" count in each bike station. Average activity refers to the total activity count for all bike stations divided by the total number of bike station counts within one census tract.
- 3. Considering that we only have a limited sample size (only 42 census tracts have bike stations) and a large number of census features, using spatial regression did not give us too meaningful insights, hence, elastic net was also used for elimination of features.

Carnegie Mellon University

Spatial Regression

1. "Number of bike stations" versus "census features"

(a) Regression using the full set of features:

```
# full features first
 # get X and y (for full set)
feature_cols = ['POPULATION_DENSITY', "AGE_UNDER_17", "AGE_18_TO_64", "AGE_OVER_65", "MALE", 'WHITE',
                  "BLACK AFRICAN AMERICAN", "AMERICAN INDIAN ALASKA NATIVE", "ASIAN", "HAWAIIAN PACIFIC",
                 "HISPANIC LATINO", "LANGUAGE OTHER THAN ENGLISH", 'MEDIAN HOUSE VALUE',
                  'COLLEGE DEGREE OR ABOVE', "INDIVIDUAL INCOME MEDIAN", "WORKER NOT WFH",
                 "WORKER DEPART 0000 0559", "WORKER_DEPART_0600_0729", "WORKER_DEPART_0730_0859", "WORKER_DEPART_0900_2359",
                 "TRAVEL TIME TO WORK LESS THAN 10 MIN", 'TRAVEL TIME TO WORK 10 TO 14 MIN',
                 'TRAVEL_TIME_TO_WORK_15_TO_19_MIN', 'TRAVEL_TIME_TO_WORK_20_TO_24_MIN',
                 'TRAVEL TIME TO WORK 25 TO 29 MIN', 'TRAVEL TIME TO WORK 30 TO 34 MIN',
                 'TRAVEL_TIME_TO_WORK_35_TO_44_MIN', 'TRAVEL_TIME_TO_WORK_45_TO_59_MIN',
                  'TRAVEL TIME TO WORK MORE THAN 60 MIN', 'WORKER VEHICLE DROVE ALONE',
                 'WORKER VEHICLE CARPOOL', 'WORKER PUBLIC TRANSPORTATION', 'POVERTY', 'DISABILITY']
 X = census df[feature cols].values
 # standardization first
 scaler = StandardScaler()
 X = scaler.fit transform(X)
 y = census df.bike station count.values
 ols spreg = spreg.OLS(y, X, w=W, spat diag=True, moran = True)
 print(ols spreg.summary)
```

Python command

The spatial weights were calculated leveraging libpysal library with the below command:

```
# calculate weights
points = list(zip(census_df['INTPTLAT'], census_df['INTPTLON']))
W=libpysal.weights.DistanceBand(points,threshold=11.2,binary=False)
```

1. "Number of bike stations" versus "census features" (Cont'd)

(a) Regression using the full set of features (Cont'd):

REGRESSION					var_14	-0.5881781	0.3203899	-1.83
					var_15	1.0693322	0.2321361	4.66
SUMMARY OF OUTPUT: ORD	INARY LEAST SQUAR	ES			var_16	4.9003185	0.6375255	7.68
					var_17	-4.5695019	6.3733229	-0.73
Data set :	unknown				var 18	-8.6417610	11.9703565	-0.72
Weights matrix :	unknown				var 19	-10.8193133	14.2235522	-0.76
Dependent Variable :	dep_var		r of Observation		var 20	-10.9445569	14.6108401	-0.74
Mean dependent var :	0.7812			: 35	var 21	5.9521877	7.4428575	0.79
S.D. dependent var :	1.9398	Degre	es of Freedom	: 93	var 22	5.2280661	6.9375451	0.75
R-squared :	0.7514				var 23	5.7203572	8.0773125	0.70
Adjusted R-squared :	0.6605				var 24	6.0782112	8.3839729	0.72
Sum squared residual:	118.809		tistic	8.2667		2.9990909	4.1548672	0.72
Sigma-square :	1.278			: 2.867e-16	var_25	5.8878780	8.0225248	0.7
S.E. of regression :	1.130		ikelihood		var_26			
Sigma-square ML :	0.928		e info criterion		var_27	2.8343018	3.9086490	0.72
S.E of regression ML:	0.9634	Schwa	rz criterion	: 523.531	var_28	2.3071508	3.2412609	0.71
					var_29	3.6458718	5.0970389	0.73
					var_30	-2.8545615	0.4041137	-7.06
Variable	Coefficient	Std.Error	t-Statistic	Probability	var_31	-0.5480127	0.1618232	-3.38
					var_32	-0.7193145	0.2363374	-3.04
CONSTANT	0.7812500	0.0999027	7.8201073	0.0000000	var_33	-0.9016902	0.4455309	-2.02
var_1	-0.1096981	0.1601751	-0.6848638	0.4951332	var 34	0.0613769	0.1331994	0.46
var_2	-0.3921096	0.4277514	-0.9166765	0.3616832				
var_3	-0.4986081	0.9758415	-0.5109520	0.6105955				
var_4	-0.3862427	0.4488300	-0.8605546	0.3916965	REGRESSION DIAGNOSTICS			
var_5	-0.1847496	0.1972263	-0.9367391	0.3513190	MULTICOLLINEARITY COND		982.124	
var_6	0.8712260	1.2818038	0.6796875	0.4983907	TIGET TEGET THE TITLE TO THE	1110H HONDER	3021124	
var_7	1.3133771	1.1152717	1.1776297	0.2419491	TEST ON NORMALITY OF E	nnonc		
var_8	-0.2977766	0.1185095	-2.5126814	0.0137037	TEST ON NORMALITY OF E	DF	VALUE	PROE
var_9	0.3727325	0.3473711	1.0730096	0.2860432				PROE
var_10	0.0290473	0.1193684	0.2433411	0.8082771	Jarque-Bera	2	14.380	(
var_11	0.0117169	0.1525549	0.0768045	0.9389440				
var_12	0.0056149	0.2744463	0.0204589	0.9837211	DIAGNOSTICS FOR HETEROS	KEDASTICITY		
var_13	-0.0238102	0.2015485	-0.1181366	0.9062142	RANDOM COEFFICIENTS			
					TEST	DF	VALUE	PROB
	_				Breusch-Pagan test	34	102,443	0
	Dar	rraccia	nranar	t autaut				

Regression report output

var 16	4.9003185	0.6375255	7.6864662	0.000000
var 17	-4.5695019	6.3733229	-0.7169732	0.475187
var 18	-8.6417610	6.3733229 11.9703565	-0.7219301	0 472440
var 19	-10.8193133	14.2235522	-0.7606618	0.448783
var 20	-10.9445569	14.6108401	-0.7490710	0.4557049
var 21	5.9521877	7.4428575	-0.7219301 -0.7606618 -0.7490710 0.7997181	0.425912
var_22	5.2280661	6.9375451	0.7535902	0.452999
var 23	5.7203572	8.0773125	0.7082006	0.4805920
var 24	6.0782112	8.3839729	0.7249798	0.470284
var_25 var_26	2.9990909	4.1548672 8.0225248	0.7218259	0.472212
var_26	5.8878780	8.0225248	0.7339183	0.464844
var_27	2.8343018		0.7251359	0.470189
var_28 var 29	2.3071508	3.2412609 5.0970389	0.7118066 0.7152921	0.478366
var 29	3.6458718	5.0970389	0.7152921	0.476220
var_30	-2.8545615	0.4041137	-7.0637584 -3.3864902	0.0000000
var_31	-0.5480127	0.1618232	-3.3864902	0.001038
var_32	-0.7193145	0.2363374	-3.0435916	0.0030394
	-0 9016902	0.4455309	-2.0238556	0.045854
var_33				
Var_34 REGRESSION DIAGNOSTICS MULTICOLLINEARITY CONDI	0.0613769 TION NUMBER	0.1331994	0.4607895	
var_34 REGRESSION DIAGNOSTICS MULTICOLLINEARITY CONDITEST ON NORMALITY OF ER	0.0613769 TION NUMBER	982.124	0.4607895	
GRESSION DIAGNOSTICS ULTICOLLINEARITY CONDI-	0.0613769 TION NUMBER	0.1331994	0.4607895	
Var_34 REGRESSION DIAGNOSTICS MULTICOLLINEARITY CONDITEST ON NORMALITY OF ERITEST Darque-Bera DIAGNOSTICS FOR HETEROSK ANDOM COEFFICIENTS EST	0.0613769 TION NUMBER RORS DF 2 REDASTICITY DF	982.124 VALUE 14.380 VALUE	PROB 0.0008	0.646025
Var_34 REGRESSION DIAGNOSTICS MULTICOLLINEARITY CONDITEST ON NORMALITY OF ERITEST Darque-Bera DIAGNOSTICS FOR HETEROSK ANDOM COEFFICIENTS EST	0.0613769 TION NUMBER RORS DF 2	982.124 VALUE 14.380	0.4607895 PROB 0.0008	
Van_34 REGRESSION DIAGNOSTICS MULTICOLLINEARITY CONDITEST TEST ON NORMALITY OF ERITEST JAIGNOSTICS FOR HETEROSK VANDOM COEFFICIENTS TEST TEST TEST TEST TEST TEST TEST	0.0613769 TION NUMBER RORS DF 2 REDASTICITY DF	982.124 VALUE 14.380 VALUE	PROB 0.0008	
Var_34 REGRESSION DIAGNOSTICS BULTICOLLINEARITY CONDITEST ON NORMALITY OF ERIEST BATQUE-Bera IAGNOSTICS FOR HETEROSK ANDOM COEFFICIENTS EST reusch-Pagan test oenker-Bassett test	TION NUMBER RORS DF 2 EEDASTICITY DF 34 34 DEPENDENCE	982.124 VALUE 14.380 VALUE 102.443 68.455	PROB 0.0008	
VAT34 REGRESSION DIAGNOSTICS MULTICOLLINEARITY CONDITEST ON NORMALITY OF ERITEST BEAT OF THE OFFICE OFFICE OF THE OFFICE OF	0.0613/69 TION NUMBER RORS DF 2 EDASTICITY DF 34 34 DEPENDENCE MI/OF	982.124 VALUE 14.380 VALUE 102.443 68.455 VALUE	PROB 0.0008 PROB 0.0000 0.0000 0.0004	
VAR_34 REGRESSION DIAGNOSTICS MULTICOLLINEARITY CONDITEST ON NORMALITY OF ERITEST JAGNOSTICS FOR HETEROSK ANDIOM COEFFICIENTS EST incusch-Pagan test oenker-Bassett test DIAGNOSTICS FOR SPATIAL EST DIAGNOSTICS FOR SPATIAL EST DIAGNOSTICS FOR SPATIAL	TION NUMBER RORS DF 2 EEDASTICITY DF 34 34 DEPENDENCE MI/DF -0.0738	982.124 VALUE 14.380 VALUE 102.443 68.455 VALUE	PROB 0.0008 PROB 0.0000 0.0000 0.0004	
VAR_34 REGRESSION DIAGNOSTICS MULTICOLLINEARITY CONDITEST ON NORMALITY OF ERITEST JAGNOSTICS FOR HETEROSK ANDIOM COEFFICIENTS EST incusch-Pagan test oenker-Bassett test DIAGNOSTICS FOR SPATIAL EST DIAGNOSTICS FOR SPATIAL EST DIAGNOSTICS FOR SPATIAL	TION NUMBER RORS DF 2 SEDASTICITY DF 34 34 DEPENDENCE MI/DF -0.0238	982.124 VALUE 14.380 VALUE 102.443 68.455 VALUE 1.270 1.312	PROB 0.0008 PROB 0.0000 0.0004 PROB 0.2042 0.2520	
VAT34 REGRESSION DIAGNOSTICS NULTICOLLINEARITY CONDITES TEST ON NORMALITY OF ERITES TEST JAGNOSTICS FOR HETEROSK ANDOM COEFFICIENTS EST reusch-Pagan test oenker-Bassett test JAGNOSTICS FOR SPATIAL EST oran's I (error) agrange Multiplier (lag obust IM (Japier)	TION NUMBER RORS DF 2 EEDASTICITY DF 34 34 DEPENDENCE MI/DF -0.0238 t) 1	982.124 VALUE 14.380 VALUE 102.443 68.455 VALUE 1.270 1.312 0.38	PROB 0.0008 PROB 0.0000 0.0004 PROB 0.2042 0.2520	
VAT34 REGRESSION DIAGNOSTICS NULTICOLLINEARITY CONDITES TEST ON NORMALITY OF ERITES TEST JAGNOSTICS FOR HETEROSK ANDOM COEFFICIENTS EST reusch-Pagan test oenker-Bassett test JAGNOSTICS FOR SPATIAL EST oran's I (error) agrange Multiplier (lag obust IM (Japier)	TION NUMBER RORS DF 2 EEDASTICITY DF 34 34 DEPENDENCE MI/DF -0.0238 t) 1	982.124 VALUE 14.380 VALUE 102.443 68.455 VALUE 1.270 1.312 0.38	PROB 0.0008 PROB 0.0000 0.0004 PROB 0.2042 0.2520	
var_33 var_34 var_34 REGRESSION DIAGNOSTICS MULTICOLLINEARITY CONDITION TEST ON NORMALITY OF ERITEST Jarque-Bera DIAGNOSTICS FOR HETEROSK RANDOM COEFFICIENTS TEST Breusch-Pagan test Koenker-Bassett test DIAGNOSTICS FOR SPATIAL TEST Moran's I (error) Lagrange Multiplier (lag Robust LM (lag) Lagrange Multiplier (err Robust LM (error) Lagrange Multiplier (err Robust LM (error) Lagrange Multiplier (err Robust LM (error) Lagrange Multiplier (sAF	0.0613/69 TION NUMBER RORS DF 2 EEDASTICITY DF 34 34 34 DEPENDENCE MI/OF -0.0238 () 1 1 ror) 1	982.124 VALUE 14.380 VALUE 192.443 68.455 VALUE 1.270 1.312 0.038 2.459 1.184	PROB 0.0008 PROB 0.0000 0.0004 PROB 0.2042 0.2520 0.8459	

It is noted that:

- 1. The significant values with p-value less than 0.05 include:
 - "AMERICAN INDIAN_ALASKA_NATIVE"
 - "INDIVIDUAL INCOME MEDIAN"
 - "WORKER NOT WFH"
 - "WORKER VEHICLE_DROVE_ALONE"
 - "WORKER VEHICLE CARPOOL"
 - "WORKER PUBLIC TRANSPORTATION"
 - "POVERTY"
- The model R-square is 0.7514, and its adjusted R-square is 0.6605

The fact that median income and poverty are associated with the number of bike stations seems to be interesting; this could be an indicator of more resources distributed to the rich.

1. "Number of bike stations" versus "census features" (Cont'd)

(b) Regression using significant features identified:

Python command

The spatial weights were calculated leveraging libpysal library with the below command:

```
# calculate weights
points = list(zip(census_df['INTPTLAT'], census_df['INTPTLON']))
W=libpysal.weights.DistanceBand(points,threshold=11.2,binary=False)
```

DECDECCTON

1. "Number of bike stations" versus "census features" (Cont'd)

(b) Regression using significant features identified (Cont'd):

REGRESSION									
SUMMARY OF OUTPUT: ORD	INARY LEAST SQUAF	RES							
Data set :					TEST ON NORMALITY OF ERRORS				
Weights matrix :					TEST	DF	VALUE	PROB	
Dependent Variable :	dep_var		r of Observation		Jarque-Bera	2	265.890	0.0000	
Mean dependent var :	0.7812		r of Variables		sar que ser a	_	2031030	0.000	
S.D. dependent var :	1.9398	Degre	es of Freedom	: 120	DIAGNOSTICS FOR HETEROSKEDAS	TTCTTV			
R-squared :	0.6012					IICIIY			
Adjusted R-squared :	0.5780				RANDOM COEFFICIENTS				
Sum squared residual:	190.553		tistic	: 25.8486	TEST	DF	VALUE	PROB	
Sigma-square :	1.588		F-statistic)	: 2.861e-21	Breusch-Pagan test	7	193.137	0.0000	
S.E. of regression :	1.260		ikelihood	: -207.090	Koenker-Bassett test	7	46.407	0.0000	
Sigma-square ML :	1.489		e info criterion						
S.E of regression ML:	1.2201	Schwa	rz criterion	: 452.996	DIAGNOSTICS FOR SPATIAL DEPE	NDENCE			
					TEST	MI/DF	VALUE	PROB	
Variable	Coefficient	Std.Error	t-Statistic	Probability	Moran's I (error)	-0.0034	0.723	0.4698	
variable		3tu.E1101			Lagrange Multiplier (lag)	1	5.203	0.0225	
CONSTANT	0.7812500	0.1113812	7.0141994	0.0000000	Robust LM (lag)	1	6.532	0.0106	
var_1	-0.2729384	0.1154025	-2.3650995	0.0196290	Lagrange Multiplier (error)	1	0.049	0.8255	
var_2	0.2850052	0.1361439	2.0934120	0.0384183	Robust LM (error)	1	1.377	0.2405	
var_3	4.6204681	0.3745235	12.3369240	0.0000000	Lagrange Multiplier (SARMA)	2	6.581	0.0372	
var_4	-2.8472468	0.3110419	-9.1538999	0.0000000					
var_5	-0.4639421	0.1589958	-2.9179522	0.0042077	=======================================	END OF	REDORT		
var_6	-0.9081053	0.1912089	-4.7492833	0.0000057		LIND OI	ner on		
	0.0704000	0.3300050	0.0504505	0.0000000					

It is noted that:

- 1. All significant have a p-value less than 0.05:
 - "AMERICAN_INDIAN_ALASKA_NATIVE"
 - "INDIVIDUAL_INCOME_MEDIAN"
 - "WORKER NOT WFH"
 - "WORKER VEHICLE DROVE ALONE"
 - "WORKER_VEHICLE_CARPOOL"
 - "WORKER PUBLIC TRANSPORTATION"
 - "POVERTY"
- 2. The model R-square is 0.6012, and its adjusted R-square is 0.5780

The result reinforced our previous finding: bike station counts may be associated with income level

Regression report output

Spatial Regression

2. "Average activity" versus "number of bike stations & census features"

(a) Regression using the full set of features:

```
# full features first
 # get X and y (for full set)
feature_cols = ['POPULATION_DENSITY', "AGE_UNDER_17", "AGE_18_TO_64", "AGE_OVER_65", "MALE", 'WHITE',
                 "BLACK AFRICAN AMERICAN", "AMERICAN INDIAN ALASKA NATIVE", "ASIAN", "HAWAIIAN PACIFIC",
                 "HISPANIC LATINO", "LANGUAGE OTHER THAN ENGLISH", 'MEDIAN HOUSE VALUE',
                 'COLLEGE DEGREE OR ABOVE', "INDIVIDUAL INCOME MEDIAN", "WORKER NOT WFH",
                 "WORKER DEPART 0000 0559", "WORKER DEPART 0600 0729", "WORKER DEPART 0730 0859", "WORKER DEPART 0900 2359",
                 "TRAVEL TIME TO WORK LESS THAN 10 MIN", 'TRAVEL TIME TO WORK 10 TO 14 MIN',
                 'TRAVEL TIME TO WORK 15 TO 19 MIN', 'TRAVEL TIME TO WORK 20 TO 24 MIN',
                 'TRAVEL TIME TO WORK 25 TO 29 MIN', 'TRAVEL TIME TO WORK 30 TO 34 MIN',
                 'TRAVEL TIME TO WORK 35 TO 44 MIN', 'TRAVEL TIME TO WORK 45 TO 59 MIN',
                 'TRAVEL_TIME_TO_WORK_MORE_THAN_60_MIN', 'WORKER_VEHICLE_DROVE_ALONE',
                 'WORKER VEHILLE CARPOOL', 'WORKER PUBLIC TRANSPORTATION', 'POVERTY', 'DISABILITY', 'bike station count']
 X = census df[feature cols].values
 # standardization first
 scaler = StandardScaler()
 X = scaler.fit transform(X)
 avg count = np.array(census df['total activity count']/census df['bike station count'])
 avg count = np.nan to num(avg count, nan=0)
 y = avg count
 ols spreg = spreg.OLS(y, X, w=W, spat diag=True, moran = True)
 print(ols spreg.summary)
```

Python command

The spatial weights were calculated leveraging libpysal library with the below command:

```
# calculate weights
points = list(zip(census_df['INTPTLAT'], census_df['INTPTLON']))
W=libpysal.weights.DistanceBand(points,threshold=11.2,binary=False)
```

2. "Average activity" versus "number of bike stations & census features" (Cont'd)

VALUE

0.092

3.094

9.460

0.692

7.058

10.152

0.9267

0.0786

0.0021

0.4056

0.0079

0.0062

(a) Regression using the full set of features (Cont'd):

					var_15	-145.8651694	195.8064289	-0.7449458
REGRESSION					var_16	-555.7375132	620.5115903	-0.8956118
					var_17	2641.9129966	4864.2747928	0.5431258
SUMMARY OF OUTPUT: ORD	DINARY LEAST SQUA	RES			var_18	4635.9436025	9136.4151668	0.5074139
					var_19	5781.7521943	10859.5068420	0.5324139
Data set :					var_20	5577.1233618	11154.1533239	0.5000042
Weights matrix :					var_21	-2715.5256201	5684.3800257	-0.4777171
Dependent Variable :			r of Observations		var_22	-2609.7096376	5296.4271663	-0.4927302
Mean dependent var :	607.0060		r of Variables		var_23	-3133.2102367	6164.3889259	-0.5082759
S.D. dependent var :		Degre	es of Freedom	: 92	var 24	-3188.6486680	6399.2467034	-0.4982850
R-squared :					var 25	-1676.0938518	3171.2139663	-0.5285338
Adjusted R-squared :	0.3114				var 26	-3060.9321950	6123.7905634	-0.4998427
Sum squared residual:			tistic	2.6408	var_27	-1392.6070048	2983.3635666	-0.4667909
	740073.826		F-statistic)	: 0.0001141	var 28	-1278.6303427	2473.7113771	-0.5168874
S.E. of regression :			ikelihood e info criterion	: -1025.417	var 29	-2085.5050739	3890.1338187	-0.5361011
	531928.063				var 30	-107.7168610	381.2662760	-0.2825240
S.E of regression ML:	729.3340	Schwai	rz criterion	: 2225.507	var 31	-49.4605995	130.5409812	-0.3788894
					var 32	175.8928662	188.6280965	0.9324850
Variable	Coefficient	Std.Error	t-Statistic	Probability	var 33	400.5929242	346.4912296	1.1561416
Valitable	COETTICIENT	Stu.Elilioli	t-Statistic		var 34	-9.2028428	101.4968474	-0.0906712
CONSTANT	607.0060016	76.0383243	7.9828956	0.0000000	var_35	349.9528519	152.4986211	2.2947935
var 1	122.1682042	122.2201254	0.9995752	0.3201380				
var 2	-449.0132582	327.0392352	-1.3729645	0.1731007				
var_3	-577.0488856	743.7778195	-0.7758350	0.4398363	REGRESSION DIAGNOSTICS			
var 4	-411.9655874	342.9725735	-1.2011619	0.2327717	MULTICOLLINEARITY COND	ITION NUMBER	986.015	
var_5	30.3005510	150.8201316	0.2009052	0.8412162				
var_6	633.1532337	978.0313738	0.6473752	0.5190013	TEST ON NORMALITY OF E			
var_7	377.1609049	855.1653527	0.4410386	0.6602198	TEST	DF	VALUE	PROB
var_8	59.9753681	93.2118543	0.6434307	0.5215453	Jarque-Bera	2	171.539	0.0000
var_9	217.2920796	266.0239056	0.8168141	0.4161448				
var_10	-18.4884863	90.8830615	-0.2034316	0.8392470				
var_11	-41.5969199	116.1168267	-0.3582334	0.7209894	DIAGNOSTICS FOR HETERO	SKEDASTICITY		
var_12	-34.7404485	208.8880607	-0.1663113	0.8682769	RANDOM COEFFICIENTS			
var_13	87.2100541	153.4148093	0.5684592	0.5711082	TEST	DF	VALUE	PROB
var_14	-4.5709275	248.2355632	-0.0184137	0.9853487	Breusch-Pagan test	35	131,936	0.0000
					Koenker-Bassett test	35	38.615	0.3095
							20.013	0.3033

DIAGNOSTICS FOR SPATIAL DEPENDENCE

Moran's I (error)

Robust LM (error)

Robust LM (lag)

Lagrange Multiplier (lag)

Lagrange Multiplier (error)

Lagrange Multiplier (SARMA)

Regression report output

It is noted that:

0.3727975

0.6130787

0.5957229

0.6339846

0.6233772

0.6194723

0.5984016

0.6417530

0.6064751

0.5931825

0.7781764

0.3535267

0.2506167

0.0240191

- The number of bike stations is dominating the model, and no other features are considered significant
- 2. The R-square is 0.5012, and the adjusted R-square is 0.3114.

This model is unsatisfying as we can see that it is dominated by the number of bike stations and does not have explanatory power from other features

2. "Average activity" versus "number of bike stations & census features" (Cont'd)

(b) Regression after removing the dominant feature (bike station count):

```
# remove bike station counts
 # get X and y
v feature_cols = ['POPULATION_DENSITY', "AGE_UNDER_17", "AGE_18_TO_64", "AGE_OVER_65", "MALE", 'WHITE',
                  "BLACK_AFRICAN_AMERICAN", "AMERICAN_INDIAN_ALASKA_NATIVE", "ASIAN", "HAWAIIAN_PACIFIC",
                  "HISPANIC LATINO", "LANGUAGE OTHER THAN ENGLISH", 'MEDIAN HOUSE VALUE',
                  'COLLEGE DEGREE OR ABOVE', "INDIVIDUAL INCOME MEDIAN", "WORKER NOT WFH",
                  "WORKER DEPART 0000 0559", "WORKER DEPART 0600 0729", "WORKER DEPART 0730 0859", "WORKER DEPART 0900 2359",
                  "TRAVEL TIME TO WORK LESS THAN 10 MIN", 'TRAVEL TIME TO WORK 10 TO 14 MIN',
                  'TRAVEL TIME TO WORK 15 TO 19 MIN', 'TRAVEL TIME TO WORK 20 TO 24 MIN',
                 'TRAVEL_TIME_TO_WORK_25_TO_29_MIN', 'TRAVEL_TIME_TO_WORK_30_TO_34_MIN',
                  'TRAVEL TIME TO WORK 35 TO 44 MIN', 'TRAVEL TIME TO WORK 45 TO 59 MIN',
                  'TRAVEL TIME TO WORK MORE THAN 60 MIN', 'WORKER VEHICLE DROVE ALONE',
                  'WORKER VEHICLE CARPOOL', 'WORKER PUBLIC TRANSPORTATION', 'POVERTY', 'DISABILITY']
 X = census df[feature cols].values
 # standardization first
 scaler = StandardScaler()
 X = scaler.fit transform(X)
 avg count = np.array(census df['total activity count']/census df['bike station count'])
 avg count = np.nan to num(avg count, nan=0)
 y = avg count
 ols_spreg = spreg.OLS(y, X, w=W, spat_diag=True, moran = True)
 print(ols spreg.summary)
```

Python command

The spatial weights were calculated leveraging libpysal library with the below command:

```
# calculate weights
points = list(zip(census_df['INTPTLAT'], census_df['INTPTLON']))
W=libpysal.weights.DistanceBand(points,threshold=11.2,binary=False)
```

2. "Average activity" versus "number of bike stations & census features" (Cont'd)

(b) Regression after removing the dominant feature (bike station count) (Cont'd):

REGRESSION								
						var_15	var_15 47.8082431	var_15 47.8082431 180.6912265
SUMMARY OF OUTPUT: ORD	DINARY LEAST SQUA	RES				var_16	var_16 331.7896880	var_16 331.7896880 496.2402986
						var_17	var_17 1814.3020526	var_17 1814.3020526 4960.8987979
Data set :					var	_18	_18 3070.7804387	_18 3070.7804387 9317.5456855
Weights matrix :					var_19	9	3822.1989731	3822.1989731 11071.3993831
Dependent Variable :	dep_var		of Observations		var_20		3594.8864896	3594.8864896 11372.8584588
Mean dependent var :			of Variables	: 35	var_21		-1637.4878318	-1637.4878318 5793.4084571
S.D. dependent var :		Degrees	of Freedom	: 93	var_22		-1662.8220274	-1662.8220274 5400.0809275
R-squared :					var_23		-2097.1607134	-2097.1607134 6287.2587206
Adjusted R-squared :	0.2798			0 4540	var_24		-2087.7859724	-2087.7859724 6525.9585750
Sum squared residual:		F-stati		2.4512	var_25		-1132.9098135	-1132.9098135 3234.0862620
	774022.345			: 0.0003678	var_26		-1994.5419281	-1994.5419281 6244.6127800
S.E. of regression : Sigma-square ML :	879.785 562375.610		celihood info criterion	: -1028.979	var_27	-	879.2689428	879.2689428 3042.4336472
S.E of regression ML:			criterion		var_28	-86	0.7678921	0.7678921 2522.9487887
3.E Of Tegression ML.	749.9171	3CIWal 2	Criterion	. 2227.780	var_29	-1425.1	785316	785316 3967.4585548
					var_30	-624.72427	797	797 314.5560340
Variable	Coefficient	Std.Error	t-Statistic	Probability	var_31	-148.714600	6	6 125.9607612
vai tabic					var_32	45.6133433		183.9614666
CONSTANT	607,0060016	77.7627775	7.8058683	0.0000000	var_33	237.2821902		346.7945766
var 1	102.3000891	124.6779171	0.8205149	0.4140208	var_34	1.9135037		103.6803796
var 2	-520,0306791	332.9552563	-1.5618636	0.1217167				
var 3	-667.3549065	759.5803523	-0.8785837	0.3818914				
var 4	-481.9204170	349.3625385	-1.3794279	0.1710709	REGRESSION DIAGNOSTICS			
var_5	-3.1605995	153.5180002	-0.0205878	0.9836186	MULTICOLLINEARITY COND	ITION NUMBER		982.124
var_6	790.9464053	997.7368446	0.7927405	0.4299467				
var_7	615.0348087	868.1107614	0.7084750	0.4804224	TEST ON NORMALITY OF E			
var_8	6.0431981	92.2460029	0.0655118	0.9479072	TEST	DF		VALUE
var_9	284.7999843	270.3884220	1.0532995	0.2949327	Jarque-Bera	2		138.116
var_10	-13.2275577	92.9145990	-0.1423625	0.8871016	DIACNOCTICS FOR HETERS	CVEDACTICITY		
var_11	-39.4747976	118.7464437	-0.3324293	0.7403132	DIAGNOSTICS FOR HETERO	SKEDASTICTTY		
var_12	-33.7235051	213.6248975	-0.1578632	0.8749069	RANDOM COEFFICIENTS			
var_13	82.8976329	156.8822925	0.5284066	0.5984759	TEST	DF		VALUE
var_14	-111.0995217	249.3866747	-0.4454910	0.6570003	Breusch-Pagan test	34		112.518
					Koenker-Bassett test	34		36.062

Regression report output

var_33	237.2821902	346.7945766	0.6842154	0.4955406
var_34	1.9135037	103.6803796	0.0184558	0.9853148
REGRESSION DIAGNOSTICS				
MULTICOLLINEARITY CONDITI	ON NUMBER	982,124		
TEST ON NORMALITY OF ERRO	ORS			
TEST	DF	VALUE	PROB	
Jarque-Bera	2	138.116	0.0000	
DIAGNOSTICS FOR HETEROSKE	DASTICITY			
RANDOM COEFFICIENTS				
TEST	DF	VALUE	PROB	
Breusch-Pagan test	34	112.518	0.0000	
Koenker-Bassett test	34	36.062	0.3723	
DIAGNOSTICS FOR SPATIAL D	DEPENDENCE			
TEST	MI/DF	VALUE	PROB	
Moran's I (error)	-0.0103	0.394	0.6936	
Lagrange Multiplier (lag)	1	2.616	0.1058	
Robust LM (lag)		7.768		
Lagrange Multiplier (erro	or) 1	0.459	0.4979	
Robust LM (error)	1	5.611	0.0178	
Lagrange Multiplier (SARM	1A) 2	8.227	0.0163	
=======================================	FND OF	REPORT		

It is noted that:

0.5054025 0.7154042

0.7424663

0.7497464

0.7269035

0.7732232

- 1. No features can be considered as significant
- 2. The R-square is 0.4726, and the adjusted R-square is 0.2798

This model is unsatisfying as we could not find any potential insights

Carnegie Mellon University

Elastic Net

1. "Number of bike stations" versus "census features"

```
from scipy.stats import t
# full features first
 # get X and y (for full set)
· feature cols = ['POPULATION DENSITY', "AGE UNDER 17", "AGE 18 TO 64", "AGE OVER 65", "MALE", 'WHITE',
                 "BLACK_AFRICAN_AMERICAN", "AMERICAN_INDIAN_ALASKA_NATIVE", "ASIAN", "HAWAIIAN_PACIFIC",
                 "HISPANIC_LATINO", "LANGUAGE_OTHER_THAN_ENGLISH", 'MEDIAN_HOUSE_VALUE',
                  'COLLEGE DEGREE OR ABOVE', "INDIVIDUAL INCOME MEDIAN", "WORKER NOT WFH",
                  "WORKER DEPART 0000 0559", "WORKER DEPART 0600 0729", "WORKER DEPART 0730 0859", "WORKER DEPART 0900 2359",
                  "TRAVEL TIME TO WORK LESS THAN 10 MIN", 'TRAVEL TIME TO WORK 10 TO 14 MIN',
                  'TRAVEL_TIME_TO_WORK_15_TO_19_MIN', 'TRAVEL_TIME_TO_WORK_20_TO_24_MIN',
                  'TRAVEL TIME TO WORK 25 TO 29 MIN', 'TRAVEL TIME TO WORK 30 TO 34 MIN',
                  'TRAVEL TIME TO WORK 35 TO 44 MIN', 'TRAVEL TIME TO WORK 45 TO 59 MIN',
                  'TRAVEL TIME TO WORK MORE THAN 60 MIN', 'WORKER VEHICLE DROVE ALONE',
                  'WORKER_VEHICLE_CARPOOL', 'WORKER_PUBLIC_TRANSPORTATION', 'POVERTY', 'DISABILITY']
 X = census df[feature cols].values
 # standardization first
 scaler = StandardScaler()
 X = scaler.fit transform(X)
 y = census df.bike station count.values
 # create elastic net model
 enet model = ElasticNet(alpha=0.1, l1 ratio=0.4, fit intercept=False)
 enet results = enet model.fit(X, y)
# calculate R-squared
 r squared = enet model.score(X, y)
 # calculate p-values
 n = len(y)
 p = X.shape[1]
 rss = np.sum((y - enet_model.predict(X))**2)
 se = np.sqrt(rss / (n - p) / np.diag(np.dot(X.T, X)))
 # Calculate t-values and p-values
 t values = enet model.coef / se
 p values = 2 * t.cdf(-np.abs(t values), n - p)
 # display results
 print("Elastic Net Results:")
 print("R-squared: {:.3f}".format(r squared))
 print('{:<40} {:10} {:10} {:10}'.format('feature', 'coefficient','t-value','p-value'))</pre>
 for feature, coef, t, p in zip(feature cols, enet results.coef , t values, p values):
     print('{:<40} {:10} {:10} {:10} .format(feature, np.round(coef, 6), np.round(t, 4), np.round(p, 4)))</pre>
```

Elastic Net (Cont'd)

1. "Number of bike stations" versus "census features" (Cont'd)

Elastic Net Results: R-squared: 0.418			
feature	coefficient		p-value
POPULATION_DENSITY	-0.060146		0.6933
AGE_UNDER_17	-0.451344		0.0038
AGE_18_T0_64	0.086754		0.5697
AGE_OVER_65	-0.316266	-2.08	0.0402
MALE	-0.100338	-0.6599	0.5109
WHITE	-0.095409	-0.6275	0.5319
BLACK_AFRICAN_AMERICAN	0.144822	0.9525	0.3433
AMERICAN_INDIAN_ALASKA_NATIVE	-0.167312	-1.1004	0.274
ASIAN	0.060513	0.398	0.6915
HAWAIIAN_PACIFIC	-0.013112	-0.0862	0.9315
HISPANIC_LATINO	-0.0	-0.0	1.0
LANGUAGE_OTHER_THAN_ENGLISH	-0.0	-0.0	1.0
MEDIAN_HOUSE_VALUE	0.088407	0.5814	0.5623
COLLEGE_DEGREE_OR_ABOVE	-0.0	-0.0	1.0
INDIVIDUAL_INCOME_MEDIAN	0.460763	3.0303	0.0032
WORKER_NOT_WFH	1.016425	6.6847	0.0
WORKER_DEPART_0000_0559	0.087847	0.5777	0.5648
WORKER_DEPART_0600_0729	0.011752	0.0773	0.9386
WORKER_DEPART_0730_0859	-0.187438	-1.2327	0.2208
WORKER_DEPART_0900_2359	-0.103635	-0.6816	0.4972
TRAVEL_TIME_TO_WORK_LESS_THAN_10_MIN	0.76367	5.0224	0.0
TRAVEL_TIME_TO_WORK_10_TO_14_MIN	0.21085	1.3867	0.1688
TRAVEL_TIME_TO_WORK_15_TO_19_MIN	-0.185272	-1.2185	0.2261
TRAVEL_TIME_TO_WORK_20_TO_24_MIN	-0.034039	-0.2239	0.8233
TRAVEL_TIME_TO_WORK_25_TO_29_MIN	-0.027557	-0.1812	0.8566
TRAVEL_TIME_TO_WORK_30_TO_34_MIN	-0.0	-0.0	1.0
TRAVEL_TIME_TO_WORK_35_TO_44_MIN	-0.048671	-0.3201	0.7496
TRAVEL_TIME_TO_WORK_45_TO_59_MIN	-0.031371	-0.2063	0.837
TRAVEL_TIME_TO_WORK_MORE_THAN_60_MIN	-0.0	-0.0	1.0
WORKER_VEHICLE_DROVE_ALONE	-0.627428	-4.1264	0.0001
WORKER_VEHICLE_CARPOOL	-0.185499	-1.22	0.2255
WORKER_PUBLIC_TRANSPORTATION	0.0	0.0	1.0
POVERTY	-0.0	-0.0	1.0
DISABILITY	0.0	0.0	1.0

It is noted that:

- 1. The significant values with p-value less than 0.05 include
 - "AGE_UNDER_17"
 - "AGE OVER 65"
 - "INDIVIDUAL_INCOME_MEDIAN"
 - "WORKER NOT WFH"
 - "TRAVEL_TIME_TO_WORK_LESS_THAN_10_MIN"
 - "WORKER_VEHICLE_DROVE_ALONE"
- 2. The R-square is 0.418

The fact that median income is associated with the number of bike stations seems to be interesting (similar like the result we got from spatial regression); this could be an indicator of more resources distributed to the rich.

Elastic Net (Cont'd)

2. "Average activity" versus "number of bike stations & census features"

```
from scipy.stats import t
# full features first
# get X and y (for full set)
feature_cols = ['POPULATION_DENSITY', "AGE_UNDER_17", "AGE_18_TO_64", "AGE_OVER_65", "MALE", 'WHITE',
                 "BLACK_AFRICAN_AMERICAN", "AMERICAN_INDIAN_ALASKA_NATIVE", "ASIAN", "HAWAIIAN_PACIFIC",
                "HISPANIC_LATINO", "LANGUAGE_OTHER_THAN_ENGLISH", 'MEDIAN_HOUSE_VALUE',
                'COLLEGE_DEGREE_OR_ABOVE', "INDIVIDUAL_INCOME_MEDIAN", "WORKER_NOT_WFH",
                "WORKER_DEPART_0000_0559", "WORKER_DEPART_0600_0729", "WORKER_DEPART_0730_0859", "WORKER_DEPART_0900_2359",
                "TRAVEL_TIME_TO_WORK_LESS_THAN_10_MIN", 'TRAVEL_TIME_TO_WORK_10_TO_14_MIN',
                'TRAVEL_TIME_TO_WORK_15_TO_19_MIN', 'TRAVEL_TIME_TO_WORK_20_TO_24_MIN',
                'TRAVEL TIME TO WORK 25 TO 29 MIN', 'TRAVEL TIME TO WORK 30 TO 34 MIN',
                'TRAVEL_TIME_TO_WORK_35_TO_44_MIN', 'TRAVEL_TIME_TO_WORK_45_TO_59_MIN',
                'TRAVEL_TIME_TO_WORK_MORE_THAN_60_MIN', 'WORKER_VEHICLE_DROVE_ALONE',
                'WORKER_VEHICLE_CARPOOL', 'WORKER_PUBLIC_TRANSPORTATION', 'POVERTY', 'DISABILITY', 'bike_station_count']
X = census_df[feature_cols].values
# standardization first
scaler = StandardScaler()
X = scaler.fit transform(X)
avg count = np.array(census df['total activity count']/census df['bike station count'])
avg count = np.nan to num(avg count, nan=0)
y = avg_count
# create elastic net model
enet_model = ElasticNet(alpha=0.01, l1_ratio=0.5, fit_intercept=False)
enet results = enet model.fit(X, y)
# calculate R-squared
r squared = enet model.score(X, y)
# calculate p-values
n = len(y)
p = X.shape[1]
rss = np.sum((y - enet model.predict(X))**2)
se = np.sqrt(rss / (n - p) / np.diag(np.dot(X.T, X)))
# Calculate t-values and p-values
t values = enet model.coef / se
p_values = 2 * t.cdf(-np.abs(t_values), n - p)
# display results
print("Elastic Net Results:")
print("R-squared: {:.3f}".format(r_squared))
print('{:<40} {:10} {:10} '.format('feature', 'coefficient','t-value','p-value'))</pre>
for feature, coef, t, p in zip(feature_cols, enet_results.coef_, t_values, p_values):
    print('{:<40} {:10} {:10} '.format(feature, np.round(coef, 6), np.round(t, 4), np.round(p, 4)))
```

Elastic Net (Cont'd)

2. "Average activity" versus "number of bike stations & census features" (Cont'd)

Elastic Net Results:			
R-squared: 0.153			
feature	coefficient		•
POPULATION_DENSITY	115.78167		
AGE_UNDER_17	-299.768584		
AGE_18_TO_64	-215.43079		
AGE_OVER_65	-236.847874	-2.4029	0.0182
MALE	2.219528	0.0225	0.9821
WHITE	164.121597	1.6651	0.0993
BLACK_AFRICAN_AMERICAN	-6.743297	-0.0684	0.9456
AMERICAN_INDIAN_ALASKA_NATIVE	50.776635	0.5152	0.6077
ASIAN	135.577029	1.3755	0.1723
HAWAIIAN_PACIFIC	-25.100209	-0.2547	0.7996
HISPANIC_LATINO	-41.454163	-0.4206	0.675
LANGUAGE_OTHER_THAN_ENGLISH	-31.761178	-0.3222	0.748
MEDIAN_HOUSE_VALUE	84.11886	0.8534	0.3956
COLLEGE_DEGREE_OR_ABOVE	-53.666242	-0.5445	0.5874
INDIVIDUAL_INCOME_MEDIAN	-122.545193	-1.2433	0.2169
WORKER_NOT_WFH	-368.261003	-3.7362	0.0003
WORKER_DEPART_0000_0559	137.880158	1.3989	0.1652
WORKER_DEPART_0600_0729	-1.187196	-0.012	0.9904
WORKER_DEPART_0730_0859	254.330274	2.5803	0.0114
WORKER_DEPART_0900_2359	-94.897069	-0.9628	0.3382
TRAVEL TIME TO WORK LESS THAN 10 MIN	156.509251	1.5879	0.1157
TRAVEL_TIME_TO_WORK_10_TO_14_MIN	84.016051	0.8524	0.3962
TRAVEL_TIME_TO_WORK_15_TO_19_MIN	4.830301	0.049	0.961
TRAVEL TIME TO WORK 20 TO 24 MIN	65.000056	0.6595	0.5112
TRAVEL TIME TO WORK 25 TO 29 MIN	-60.650369	-0.6153	0.5398
TRAVEL TIME TO WORK 30 TO 34 MIN	52.584557	0.5335	0.595
TRAVEL_TIME_TO_WORK_35_TO_44_MIN	125.948688	1.2778	0.2045
TRAVEL_TIME_TO_WORK_45_TO_59_MIN	-17.200869	-0.1745	0.8618
TRAVEL TIME TO WORK MORE THAN 60 MIN	-109.435743	-1.1103	0.2697
WORKER VEHICLE DROVE ALONE	-148.339195	-1.505	0.1357
WORKER VEHICLE CARPOOL	-70.122997	-0.7114	0.4786
WORKER PUBLIC TRANSPORTATION	146.631791	1.4876	0.1402
POVERTY	296.14533		0.0034
DISABILITY	-6.864234		0.9446
bike station count	324.517424	3.2924	0.0014

It is noted that:

- 1. The significant values with p-value less than 0.05 include
 - "AGE UNDER 17"
 - "AGE_18_TO_64
 - "AGE OVER 65"
 - "WORKER NOT WFH"
 - "WORDER DEPART 0730 0859"
 - "POVERTY"
 - "BIKE_STATION_COUNT"

2. The R-square is 0.418

The fact that poverty is associated with the average activity seems to be interesting. It indicates that in less rich areas, the bikes are utilized more often. This could be because of the population there have higher demands for the bikes as bikes are more affordable for them.