INDEX

Unsupervised Learning	2
Dimension Reduction	
— · Clustering	
1. K-means	3
2. Hierarchical Agglomerative Clustering (HAC)	4
Distributed Representation (Dimension Reduction)	
1. Feature Selection	5
2. Principle Component Analysis (PCA)	
Word Embedding	
ー、1-of-N Encoding	
二、Word Class	14
三、Word Embedding	14
1. Count Based	15
2. Perdition based	
Neighbor Embedding	22
— · Locally Linear Embedding (LLE)	
二、Laplacian Eigenmaps	
三、T-distributed Stochastic Neighbor Embedding (t-SNE)	26
1. t-SNE–Similarity Measure	28

Unsupervised Learning

Data 皆不具 label,且訓練時僅有 input 而無法直接獲得 output 的學習模式。 主要可分作兩類,Dimension Reduction 與 Generation。

Dimension Reduction

基本精神為「化簡為繁」,意即把本來比較複雜的 input 變成比較簡單的 output。

一、Clustering

假設現在要做 image 的 clustering,那就是把一大堆的 image 分成好幾類。 將本來有些不同的 image 都用同一個 class 來表示。

1. K-means

將一大堆的 unlabeled data 把他們分作 K 個 cluster。

首先就是找這些 cluster 的 center,從 training data 裡面隨機找 K 個 object 出來,當成 K 個 cluster 的 center。

接下來決定每一個 object 屬於 1 到 K 的哪一個 cluster。假設現在的 object \mathbf{x}^n ,跟第 i 個 cluster 的 center 最接近的話,那 \mathbf{x}^n 就屬於 \mathbf{c}^i 。

簡而言之用一個 binary 的 value b (上標 n ,下標 i)來代表第 n 個 object 有沒有屬於第 i 個 class ,如果第 n 個 object 屬於第 i 個 class 的話,那這一個 binary 的 value 就是 1 ,反之就是 0 。

接下來,就是 update cluster,把所有屬於第 i 個 cluster 的 object 做平均,得到 第 i 個 cluster 的 center \mathbf{c}^i 。

最後就重複上述步驟即可。

K-means

- Clustering $X = \{x^1, \dots, x^n, \dots, x^N\}$ into K clusters
- Initialize cluster center c^i , i=1,2, ... K (K random x^n from X)
- Repeat
 - For all x^n in X: $b_i^n \begin{cases} 1 & x^n \text{ is most "close" to } c^i \\ 0 & \text{Otherwise} \end{cases}$
 - Updating all c^i : $c^i = \sum_{x^n} b^n_i x^n \Big/ \sum_{x^n} b^n_i$

2. Hierarchical Agglomerative Clustering (HAC)

該方法是先建一個 tree,假設現在有 5 個 example,兩兩去算他的相似度,然後挑最相似的那一個 pair 出來。

假設現在最相似的 pair ,是第一個和第二個 example ,那就把第一個 example 和第二個 example merge 起來,像是對他們取平均得到一個新的 vector (下圖黃色方塊),同時代表第一個和第二個 example。

接下來變成有四個 example,再對這 4 筆 data 兩兩去計算他們的相似度,假設是第三筆和第四筆最像,那就再把他們 merge 起來,得到另外一筆 data (下圖紅色方塊)。

最終得到這個 tree 的 root,建立出一個 tree structure

接下來要決定在這個 tree structure 上面哪地方切一刀,就可將 example 分成好 幾個 cluster。

HAC 跟 K-means 最大的差別就是,如何決定 cluster 的數目。在 K-means 裡面要需要決定那個 K 的 value 是多少,而到底有多少個 cluster 是不容易決定的; HAC 的好處就是不直接決定幾個 cluster,而是決定要切在這個樹的 structure 的哪裡。

□ · Distributed Representation (Dimension Reduction)

然而在做 cluster 的時候比較以偏概全,因為每一個 object 最後都必須要屬於某一個 cluster。實際上來說應該用一個 vector 來表示各個 object,那這個 vector 裡面的每一個 dimension 就代表了某一種 attribute。 該方式就稱 distributed representation。

1. Feature Selection

假設 data 的分布本來在二維的平面上,然後發現幾乎都集中在 x_2 的 dimension 而已,如此就可以拿掉 x_1 這個 dimension。

然而這個方法不見得總是有用,因為有很多時候處理的 case 是任何一個 dimension 都不能拿掉的。

2. Principle Component Analysis (PCA)

假設這個 function 是一個很簡單的 linear function,這個 input z 跟這個 output z 之間的關係就是 linear 的 transform,也就是把這個 x 乘上一個 matrix w 可得到 output z。

那現在要做的事情就是根據一大堆的 x 把 W 找出來。可理解成將 x 投影到 W 上,使他們在 W 有較大的 variance,而投影後在 W 上的點就是 Z。

假設把 x 投影到一維,我們希望選一個 w^1 ,他經過 projection 以後,得到的這些 z^1 的分布越大越好。也就是說,我們不希望通過這個 projection 以後,所有的點通通擠在一起(見上圖)。

所以我們希望找一個 projection 的方向,它可以讓 projection 後的 variance 越大越好。因此現在要去 maximize 的對象是 z_l 的 variance,就是 summation over 所有的(z_l - z_l \bar) 的平方;而 z_l \bar 就是做 z_l 的平均值。因此只要找到一個 w^l 讓 z_l 的 variance 最大就結束了。

再來可能不只要投影到一維,推廣至二維的情況大略相同。同樣是找一個 \mathbf{w}^2 讓 \mathbf{z}_2 的 variance 最大。

只是在一維時我們必須限制 \mathbf{w}^1 的 2-norm,使 \mathbf{w}^1 跟 \mathbf{x} 做內積能直接得到 \mathbf{z}_1 ;但 是為避免 \mathbf{w}^2 與 \mathbf{w}^1 同值,必須再限制兩者的內積值為 1。

$$z_1 = w^1 \cdot x$$

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \overline{z_1})^2 \|w^1\|_2 = 1$$

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \overline{z_1})^2 \|w^1\|_2 = 1$$

 $z_1 = w^1 \cdot x$

$$z_2 = w^2 \cdot x$$

Orthogonal matrix We want the variance of z_2 as large as possible

$$Var(z_2) = \frac{1}{N} \sum_{z_2} (z_2 - \overline{z_2})^2 \|w^2\|_2 = 1$$
$$w^1 \cdot w^2 = 0$$

(1) Lagrange Multiplier

前面提到 z_1 等於 w^1 跟 x 的內積值,那 z_1 的平均值就是 summation over 所有 w^1 跟 x 的內積再除以總數。可進一步簡化成 w^1 與 x\bar 的內積,即:

$$\overline{z_1} = w^1 \cdot \frac{1}{N} \sum x = w^1 \cdot \bar{x}$$

而 z₁ 的 variance 可整理為 w¹ 的 transpose 乘上 x 的 covariance 再乘上 w¹。 而此處用 S 來描述 x 的 covariance matrix。

所以現在要解的問題是找出一個 \mathbf{w}^1 可以 maximize 該式。但這個 optimization 的對象是有 constraint 的,如果沒有 constraint 的話,這裡的 \mathbf{w}^1 每一個值都變無 窮大就結束了。所以這裡的 constraint 是說 \mathbf{w}^1 的 2-norm 要等於 1。

$$Var(z_{1}) = \frac{1}{N} \sum_{z_{1}} (z_{1} - \bar{z_{1}})^{2}$$

$$= \frac{1}{N} \sum_{x} (w^{1} \cdot x - w^{1} \cdot \bar{x})^{2} \qquad (a \cdot b)^{2} = (a^{T}b)^{2} = a^{T}ba^{T}b$$

$$= \frac{1}{N} \sum_{x} (w^{1} \cdot (x - \bar{x}))^{2} \qquad \text{Find } w^{1} \text{ maximizing}$$

$$= \frac{1}{N} \sum_{x} (w^{1} \cdot (x - \bar{x}))^{2} \qquad (w^{1})^{T} (x - \bar{x})(x - \bar{x})^{T}w^{1}$$

$$= (w^{1})^{T} \frac{1}{N} \sum_{x} (x - \bar{x})(x - \bar{x})^{T}w^{1} \qquad ||w^{1}||_{2} = (w^{1})^{T}w^{1} = 1$$

$$= (w^{1})^{T} Cov(x)w^{1} \qquad S = Cov(x)$$

那有了這些以後,我們就要解這一個 optimization 的 problem。 由於 S 是 symmetric 又是 positive-semidefinite 的關係,他所有的 eigenvalue 都是 non-negative 的。

接著用 Lagrange multiplier (開頭如下式假設),

$$g(w^1) = (w^1)^T S w^1 - \alpha ((w^1)^T w^1 - 1)$$

把這個 function 對 w 的第一個 element 做偏微分,再對第二個 element 做偏微分,依此類推。然後令這些式子通通等於 0,整理完後得到,會得到一個式子帶入 \mathbf{w}^1 後使其為 0。

$$S(w^1) - \alpha(w^1) = 0$$

而 \mathbf{w}^1 就是 \mathbf{S} 的 eigenvector,接下來看哪一個 eigenvector 代到下式,可以 maximize 該式。

$$(w^1)^T S(w^1) = \alpha(w^1)^T (w^1) = \alpha$$

所以問題變成找一個 w^l 使 α 最大。而當 α 最大時,這個 α 就是最大的 eigenvalues λ_l ; w^l 是對應到最大的 eigenvalue 的 eigenvector。

Find
$$w^1$$
 maximizing $(w^1)^T S w^1$ $(w^1)^T w^1 = 1$

$$S = Cov(x)$$
 Symmetric Positive-semidefinite (non-negative eigenvalues)

Using Lagrange multiplier [Bishop, Appendix E]

$$g(w^1) = (w^1)^T S w^1 - \alpha \left((w^1)^T w^1 - 1 \right)$$

$$\partial g(w^1) / \partial w_1^1 = 0$$

$$\partial g(w^1) / \partial w_2^1 = 0$$

$$\vdots$$

$$Sw^1 - \alpha w^1 = 0$$

$$Sw^1 = \alpha w^1 \quad w^1 : \text{eigenvector}$$

$$(w^1)^T S w^1 = \alpha (w^1)^T w^1$$

$$= \alpha \quad \text{Choose the maximum one}$$

 w^1 is the eigenvector of the covariance matrix S Corresponding to the largest eigenvalue λ_1 同理,如果要找 \mathbf{w}^2 的話,就要 maximize 根據 \mathbf{w}^2 投影以後的 variance :

$$(w^2)^T S(w^2)$$

同樣假設 function g 裡面包含了你要 maximize 的對象,還有兩個 constraint $(w^l \ \mathbb{R} \ w^2)$ 他們是 orthogonal 的),然後分別乘上 $\alpha \ \mathbb{R} \ \beta$ 。

$$g(w^2) = (w^2)^{\mathrm{T}} S(w^2) - \alpha((w^2)^T w^2 - 1) - \beta((w^2)^T w^1 - 0)$$

接下來對所有的參數做偏微分得到這個值:

$$S(w^2) - \alpha(w^2) - \beta(w^1) = 0$$

接著式子左邊同乘 w¹ 的 transpose 變為:

$$(w^1)^T S(w^2) - \alpha(w^1)^T (w^2) - \beta(w^1)^T (w^1) = 0$$

紅字部分為一個 scalar (vector* matrix* vector),而 scalar 在做 transpose 以後還是他自己,所以 transpose 結果是一樣的,得到:

$$(w^1)^T S(w^2) = (w^2)^T (S^T)(w^1) = (w^2)^T S(w^1)$$

(因為S是 symmetric的,所以 transpose 以後還是他自己)

接下來我們已經知道 \mathbf{w}^1 是 \mathbf{S} 的 eigenvector,而且它對應到最大的 eigenvalue $\mathbf{\lambda}^1$,所以寫為下式:

$$: S(w^1) = (\lambda^1)(w^1)$$

$$\therefore (w^2)^T S(w^1) = (w^2)^T (\lambda^1)(w^1) = (\lambda^1)(w^1)(w^2)^T$$

因為 $(w^1)^*(w^2)^T$ 又等於 0 (orthogonal),所以得到的結論是如果 β 等於 0 的話,剩下的 $S^*(w^2)$ 會等於 $\alpha^*(w^2)$ 。

所以 w^2 也是一個 eigenvector 且必須跟 w^1 orthogonal ,故選第二大的 w^2 ,然後 他對應到第二大的 eigenvalue λ^2 。

其餘維度依此類推。

 w^2 is the eigenvector of the covariance matrix S Corresponding to the 2nd largest eigenvalue λ_2

另外 PCA 中 z 的 covariance 會是一個 diagonal matrix。

也就是說,假設 PCA 所得到的新的 feature z 給其他的 model 描述某一個 class 的 distribution (假設為 generative model)。

那在做這個 Gaussian 的假設的時候,假設說 input data 的 covariance 就是 diagonal,且不同的 dimension 之間沒有 correlation,這樣一來減少參數量。 所以他就可以用比較簡單的 model 來處理 input data,避免 overfitting 的情形

$$Cov(z) = \frac{1}{N} \sum_{K} (z - \bar{z})(z - \bar{z})^{T} = WSW^{T} \qquad S = Cov(x)$$

$$= WS[w^{1} \quad \cdots \quad w^{K}] = W[Sw^{1} \quad \cdots \quad Sw^{K}]$$

$$= W[\lambda_{1}w^{1} \quad \cdots \quad \lambda_{K}w^{K}] = [\lambda_{1}Ww^{1} \quad \cdots \quad \lambda_{K}Ww^{K}]$$

$$= [\lambda_{1}e_{1} \quad \cdots \quad \lambda_{K}e_{K}] = D \qquad \text{Diagonal matrix}$$

(2) SVD

假設在考慮的是 MNIST,這些數字其實是由一些 basic 的 component(筆畫)所組成的。那這些 component 寫作 $\mathbf{u}^1, \mathbf{u}^2, \mathbf{u}^3$ 等等。則 input \mathbf{x} 會等於 \mathbf{u}^1 這個 component 乘上 \mathbf{c}^1 加上 \mathbf{u}^2 這個 component 乘上 \mathbf{c}^2 ,以此類推,然後再加上 \mathbf{x} \bar 代表所有的 image 的平均。

所以每一張 image 就是有一堆 component 的 linear combination, 然後再加上它的平均所組成的。

Basic Component:

接著這一些 linear combination 的結果減去 x kar,該值必須與目標值 x head 越近越好,即:

$$x - \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$$

因此就必須找 K 個 vector 去 minimize 他們的距離 (reconstruction error)

Reconstruction error :
$$\|(x - \bar{x}) - \hat{x}\|_2$$

$$L = \min_{\{u^1, \dots, u^K\}} \sum_{k=1}^{K} ||(x - \bar{x}) - \hat{x}||_2$$
$$\hat{x} = \sum_{k=1}^{K} c_k u^k$$

接下來,可進一步將 reconstruction error 表示為 matrix 的乘積。

接著可以用 SVD 把 matrix X 拆成 U, Σ 與 V 三個 matrix 的乘積,U 就是代表 matrix u^K ; Σ *V 就是代表 matrix c_K 。

然後 U 這個 matrix,他的 k 個 column,其實就是一組 orthonormal vector,對應 到的就是 $X*X^T$ 最大的 k 個的 eigenvector。

而這個 $X^*(X^T)$ 就是 covariance matrix ,也就是 PCA 找出來的那一些 w (covariance matrix 的 eigenvector)等同於解出來的 U 的每一個 column 的 vector 。

換句話說,根據 PCA 找出來的那些 w 其實就是在 minimize 這個 reconstruction error;那 Dimension Reduction 的結果就是這些 vector。

(3) Neural Network

已知從用 PCA 找出來的 w^l 到 w^K 就是 K 個 component $, u^l, u^2$ 到 u^K ,再根據 component linear combination 得到的結果叫做 $x \cdot head$,也就是 $(w^K)^* c_k$ 做 linear combination 的結果。

接著我們會希望這個 x\head 跟(x - x\bar)他的距離越近越好,也就是要 minimize 這個 reconstruction error。

由於 W 已經找出來了,所以接下來只需要找的 c_k 的值。由於這些 K 個 vector w^K 是 orthonormal 的,因此只要把(x-x\bar)跟 w^k 做內積,就可找出 c_k 。

而該內積的過程可以想成用 neural network 來表示,最終我們要使 NN 的 output 與 $(x - x \setminus bar)$ 的距離越近越好;

換句話說就是讓 input 等於 output,而這個東西就叫作 Autoencoder。

PCA looks like a neural network with one hidden layer (linear activation function)

Autoencoder

If $\{w^1, w^2, \dots w^K\}$ is the component $\{u^1, u^2, \dots u^K\}$

Word Embedding

→ 1-of-N Encoding

將文字描述為 vector 的一種方式,這個 vector 的 dimension,就是這個世界上可能有的詞彙數目,而每一個文字,皆對應到其中一維。

二、Word Class

然而上述方式無法從 vector 獲得任何資訊,因此可進一步使用 Word Class 將同性質的文字歸做一類。等同於在做 Dimension Reduction 的時候做 clustering 的概念。

三、Word Embedding

考量到光用一個 feature 無法將所有文字完全分開;或是 class 之間的相似程度 無法區別,例如下圖 class 1 與 class 3 雖然分別是動物及植物,但是他們皆屬生物比起 class 2 的相近度較高。

使用 Word Embedding 的時候,就是把每一個 word 都 project 到一個 high dimensional 的 space 上面,而 project 後的 vector 又稱 feature vector。

1. Count Based

如果現在有兩個詞彙, w_i 與 w_j 常常在同一個文章中出現,那他們的 word vector 就分別用 $V(w_i)$ 以及 $V(w_j)$ 來代表。而這種方法有一個很代表性的例子,叫做 Glove vector。

這個方法的原則是計算 $V(w_i)$ 以及 $V(w_j)$ 的內積;而假設 N_{ij} 是 w_i 跟 w_j 他們 cooccur 在同樣的 document 裡面的次數。最後我們希望找一組 w_i 與 w_j 的 vector 使其內積與 N_{ij} 越近越好。

- If two words w_i and w_j frequently co-occur, V(w_i) and V(w_i) would be close to each other
- E.g. Glove Vector: http://nlp.stanford.edu/projects/glove/

2. Perdition based

Prediction based 的方法主要是 learn 一個 neural network,他做的事情是 given 前一個 word 然後 predict 下一個可能出現的 word 是什麼。

假設給一個 sentence,這邊的每一個 w 代表一個 word;而這個 neural network 的 input w_{i-1} 就是 1-of-N encoding 的 vector;output 就是下一個 word w_i是某一個 word 的機率,也就是說 output 的 dimension 就是 vector 的 size,假設現在世界上有 10 萬個 word,這個 model 的 output 就是 10 萬維。

至於將 input feature vector 丟進去 NN 的時候,他會通過很多 hidden layer。接下來把第一個 hidden layer 的 input 拿出來,寫作他的第一個 dimension 是 Z_1 ,第二個 dimension 是 Z_2 ,以此類推。這一個 input 1-of-N encoding 得到 Z 的這個 vector 就可代表一個 word 的 embedding。

(1) Sharing Parameters

如果只看一個詞彙,他下一個連接的詞彙有非常多種組合可能性。因此可以拓展這個問題,希望 machine learn 的是 input 前面兩個詞彙 w_{i-2} 跟 w_{i-1} 並且 predict 下一個 word w_i 。

因此可以輕易地把這個 model 拓展到 N 個詞彙。一般而言,如果要 learn 這樣的 word vector 的話至少需要 10 個詞彙才能夠 learn 出比較 reasonable 的結果。

這邊用 input 兩個 word 當作例子,值得注意的是一般的 neural network,就把 input w_{i-2} 跟 w_{i-1} 的 1-of-N encoding 的 vector 接在一起變成一個很長的 vector。接著直接丟到 neural network 裡面當作 input 就可以了。

但實際上會希望 w_{i-2} 相連的 weight 跟 w_{i-1} 相連的 weight 是被 tight 在一起的,意思就是 w_{i-2} 的第一個 dimension 跟第一個 hidden layer 的第一個 neuron 中間連的 weight;以及 w_{i-1} 的第一個 dimension 跟第一個 hidden layer 的第一個 neuron,他們之間連的 weight。這兩個 weight 必須是一樣的,以此類推。

如果不這麼做的話,把同一個 word 放在 w_{i-2} 的位置跟放在 w_{i-1} 的位置, 通過這個 transform 以後得到的 embedding 就會不一樣;另外一個理由在於可以 減少參數量,因為 input 這個 dimension 很大,所以就算這個 feature vector 是 50 維,也是一個非常大的 matrix。如果強迫讓所有的 1-of-N encoding,他後面接的 weight 是一樣的,那就不會隨著 contest 的增長,而需要這個更多的參數。

進一步用 formulation 來表示該想法。假設 w_{i-2} 的 1-of-N encoding 就是 X_{i-2} ; w_{i-1} 的 1-of-N encoding 就是 X_{i-1} ,那他們的長度都是 V 的絕對值。而這個 hidden layer 的 input 寫做一個 vector Z ,長度為 Z 的絕對值。

而 Z 等於 $X_{i-2}*W_1+X_{i-1}*W_2$ 。現在這個 W_1 跟 W_2 都是一個 Z 乘上一個 V dimension 的 weight matrix。接著我們強制讓 W_1 跟 W_2 相等,等於一個一模一樣的 matrix W。

也就是說在處理這個問題的時候,可以把 X_{i-2} 跟 X_{i-1} 直接先加起來,再乘上 W 的這個 transform 就會得到 z。

事實上在 train CNN 的時候也有讓某一些參數必須是相同的需求。因此採用相同作法,假設我們希望 w_i 跟 w_j 他們的 weight 是一樣的,因此要給他們一樣的 initialization。

接下來計算 w_i 對 cost function 的偏微分,然後 update w_i ; 同理計算 w_j 對 cost function 的偏微分,然後 update w_j 。

$$w_i \leftarrow w_i - \eta \frac{\partial C}{\partial w_i}$$
$$w_j \leftarrow w_j - \eta \frac{\partial C}{\partial w_j}$$

然而如果他們對 C 的偏微分是不一樣的,那就必須把 w_i 進一步減掉 w_j 對 C 的偏微分;同時把 w_j 減掉 w_i 對 C 的偏微分。也就是確保 w_i 跟 w_j 在訓練的過程中,他們的 weight 永遠都是被 tight 在一起的。

$$\begin{aligned} w_i &\leftarrow w_i - \eta \, \frac{\partial C}{\partial w_i} - \eta \, \frac{\partial C}{\partial w_j} \\ w_j &\leftarrow w_j - \eta \, \frac{\partial C}{\partial w_j} - \eta \, \frac{\partial C}{\partial w_i} \end{aligned}$$

(2) Training (以下截自影片字幕檔)

那要怎麼訓練這個 network 呢?這個 network 的訓練,完全是 unsupervised 的。 也就是說,你只要 collect 一大堆文字的 data,然後接下來就可以 train 你的 model。

比如說這邊有一個句子就是:潮水退了,就知道誰沒穿褲子。 那就讓你的 neural network input "潮水" 跟 "退了",希望他的 output 是 "就"。

所以你希望 network 的 output 跟 "就" 的 1-of-N encoding,是 minimize cross entropy。然後再來就 input "退了 " 跟 "就",希望他的 output 跟 "知道" 越接 近越好。

最後 output "就" 跟 "知道",希望他跟 "誰" 越接近越好。

(3) Continuous bag of word (CBOW)

拿某一個詞彙的 context 去 predict 中間這個詞彙,也就是拿 $W_{i\text{--}1}$ 跟 $W_{i\text{+-}1}$ 去 predict W_i 。

predicting the word given its context

(4) Skip-gram

拿中間的詞彙去 predict 接下來的 context , 也就是拿 W_i 去 predict W_{i-1} 跟 W_{i+1} 。

predicting the context given a word

此外,上述 Perdition based 的各種變形,皆不需要 deep 就能做得起來,因此可以大幅減少運算量。

Neighbor Embedding

與前述的 Dimension Reduction 不同,雖然皆是處理降維的問題,但 Neighbor Embedding 可以處理 Manifold 形式的 data point。由於在該例中兩點距離很遠的時候 Euclidean distance 不一定會成立,因此 PCA 無法有效分析兩點的距離。

— \ Locally Linear Embedding (LLE)

在原來的空間裡面有某一個點,xi,接著選出這個 xi 的 neighbor xj。接下來要找 x^i 跟 x^j 的關係,寫作 w_{ii} 。

假設每一個 x^i ,都可以用他的 neighbor 做 linear combination,而 w_{ij} 就是拿 x^j 去 組合 x^i 的 weight。

接著我們希望這組 w_{ij} 對 x^i 的所有 neighbor x^j 做 weighted sum 的時候,他可以跟 x^i 越接近越好。也就是 x^i 減掉 summation over 所有的 w_{ij} 乘以 x^j ,他的 two norm 是越小越好的。

然後做 dimension reduction 把原來所有的 x^i 跟 x^j 轉成 z^i 和 z^j ,然而他們中間的關係 w_{ij} ,是不變的。

原來這些 x^j 可以做 linear combination 產生 x^i , 而這些 z^j 也可以用同樣的 linear combination 產生 z^i 。所以現在在這個式子裡面 w_{ij} 變成是已知的,接著要找一組 z,讓 z^j 透過 w_{ij} 做 weighted sum 以後,他可以跟 z^i 越接近越好。

此外該方法中,neighbor 的數量 K 選太小的時候,無法考慮距離較遠的點的情況;而 K 太大時,則會納入一些 transform 後關係太弱的 neighbor。

二、Laplacian Eigenmaps

然而比較兩點之間的距離,只算 Euclidean distance 是不足夠的,要看的是他們在這個 high density 的 region 之間的 distance。如果兩個點之間有 high density 的 connection,才算是真正的接近。

這件事情可以用一個 graph 來描述這件事情,也就是把 data point construct 成一個 graph,計算 data point 兩兩之間的相似度,如果相似度超過 threshold,就把他們 connect 起來。

此處可考慮 smoothness 的距離來建立 graph。如果 x^1 跟 x^2 在 high density 的 region 是 close 的,那我們就會希望, z^1 跟 z^2 也是相近的。

上述描述可用 smoothness 的式子寫出來,解法就同 semi-supervised learning:

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} \sqrt{(z^i)^2 + (z^j)^2} \quad (2 - norm)$$

而 $\mathbf{w}_{i,j}$ 代表如果今天兩個 data point 在圖上是相連的,那 $\mathbf{w}_{i,j}$ 就是他們的相似程度;若不相連,即為 $\mathbf{0}$ 。最後找出 \mathbf{z}^i 聞 \mathbf{z}^j minimize \mathbf{S} 。

(Review: semi-supervised learning)

$$w_{i,j} = \begin{cases} similarity \\ If connected \\ 0 & otherwise \end{cases}$$

• Review in semi-supervised learning: If x^1 and x^2 are close in a high density region, \hat{y}^1 and \hat{y}^2 are probably the same.

然而為防止 z^i 跟 z^j 為相同的值,必須再加上 constrain。如果 z 降維以後的空間 是 M 維的空間則希望 z^l 到 z^N 做 span 以後會等於 R^M 。也就是說 z 會佔據整個 M 維的空間。

而 z 與前述的 graph Laplacian L 是有關係的,他其實就是 graph Laplacian 的對應到比較小的 eigenvalue 的那些 eigenvector。

• Dimension Reduction: If x^1 and x^2 are close in a high density region, z^1 and z^2 are close to each other.

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} \left(z^i - z^j \right)^2$$

Any problem? How about $z^i = z^j = \mathbf{0}$?

Giving some constraints to z:

If the dim of z is M, Span $\{z^1, z^2, ... z^N\} = R^M$

Spectral clustering: clustering on z

Belkin, M., Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in neural information processing systems . 2002

至於如果先找出 z 之後,再用 K-means 做 clustering 稱 spectral clustering。

三、T-distributed Stochastic Neighbor Embedding (t-SNE)

前述的方法有一個最大的問題就是,他只假設相近的點應該要是接近的,但沒 有假設不相近的點要盡量分開。

比如用 LLE 在 MNIST 上時,他確實會把同個 class 的點都聚集在一起,但沒有 防止不同 class 的點不要疊成一團。

而做 t-SNE 時一樣是做降維,把原來的 data point x 變成比較低維的 vector z。

那在原來的 x 的 space 上計算所有的點的 pair, x 和 x 之間的 similarity, 寫作 $S(x^i, x^j) \circ$

接下來做 normalization,計算 $P(x^{j}|x^{i})$ 。在分子的地方是 x^{i} 跟 x^{j} 的 similarity, 然後分母的地方就是 summation over 除了 x^i 以外,所有其他的點和 x^i 之間所算 出來的距離。

$$P(x^{j}|x^{i}) = \frac{S(x^{i}, x^{j})}{\sum_{k \neq i} S(x^{i}, x^{k})}$$

另外假設已經找出了一個 low dimension 的 representation zⁱ跟 z^j,同樣也可以計 篁 similarity S'。

同理可定義 $Q(z^i|z^i)$, 他的分子的地方就是 $S'(z^i,z^j)$, 分母的地方就是 summation over zi 跟所有 database 裡面的 data point zk 之間的距離。

此處做 normalization 是必要的,因為不知道在高維空間中算出來的距離 S(xⁱ, x^j)跟 S'(zⁱ, z^j), 他們的 scale 是不是一樣的。

如果有做 normalization,就可以把他們都變成機率,此時他們的值都會介於 0 到1之間,他們 scale 會是一樣的。

Compute similarity between all pairs of x: $S(x^i, x^j)$

$$P(x^{j}|x^{i}) = \frac{S(x^{i},x^{j})}{\sum_{k \neq i} S(x^{i},x^{k})} \qquad Q(z^{j}|z^{i}) = \frac{S'(z^{i},z^{j})}{\sum_{k \neq i} S'(z^{i},z^{k})}$$

Compute similarity between all pairs of z: $S'(z^i, z^j)$

$$Q(z^{j}|z^{i}) = \frac{S'(z^{i}, z^{j})}{\sum_{k \neq i} S'(z^{i}, z^{k})}$$

接下來我們希望找一組 z^i 跟 z^j ,讓這兩個 distribution P 與 Q 越接近越好。 此處便是用 KL divergence 衡量兩個 distribution 之間的相似度,也就是使這兩個 distribution 之間的 KL divergence 越小越好,最後 summation over 所有的 data point minimize L (gradient descent)。

Find a set of z making the two distributions as close as possible

$$L = \sum_{i} KL(P(*|x^{i})||Q(*|z^{i}))$$

$$= \sum_{i} \sum_{j} P(x^{j}|x^{i})log \frac{P(x^{j}|x^{i})}{Q(z^{j}|z^{i})}$$

此外在做 t-SNE 的時候,他會計算所有 data point 之間的 similarity,所以其運算量有點大。

因此常見的做法是先用比較快的方法做降維 (PCA),最後再使用 t-SNE。

然而如果給 t-SNE 一個新的 data point 他會無法處理,他只能夠先給他一大堆 x,再把每一個 x 的 z 都找出來,接著繼續給他一個新的 x。 因此會需要重新跑一遍這一整套演算法,過程會變得相當麻煩。 所以一般 t-SNE 的作用比較不是用在這種 training testing 的這種 base 上面,而是拿來做 visualization。

也就是說如果已經有一大堆的 x,他是 high dimensional 的,那想要 visualize 他們在二維空間的分佈上是什麼樣子,就可以使用 t-SNE。

Good at visualization

1. t-SNE-Similarity Measure

下圖橫軸代表了在原來 space 上的 Euclidean distance 或是做 dimension reduction 以後的 Euclidean distance;而紅線是 RBF function,藍線是 t-distribution。

原來橘點做 dimension reduction 以後,為維持他們原來之間的距離,會轉換為藍點。此時就可得知,變到 t-distribution 以後,原來在高維空間裡面如果距離很近,做完 transform 以後他還是很近;如果原來就已經有一段距離,那做完 transform 以後他就會被拉得很遠。