学号:

大 连 理 工 大 学

____ 级___ 班

教师:

工科数学分析基础 2 试卷: A 考试形式: 闭卷 课程名称: 学院(系): _____! 授课院(系): 数学科学学院 考试日期: 2015年6月26日 试卷共6页

	1	=	111	四	五.	六	七		总分
标准分	30	20	10	10	10	10	10		100
得 分									

一、填空题 (每题 6 分,共 30 分)

- 2、曲面 $z = 4 x^2 y^2$ 在点(1,1,2) 处的切平面方程是_____

法线方程是 ______。

3、设函数 $z = f(\frac{x^2 + y^2}{2}, xy)$, 其中 f 具有二阶连续偏导数,则:

 $\begin{cases} 4 \ \text{设函数} \ f(x) = \begin{cases} x, 0 \le x \le \frac{1}{2} \\ 2(1-x), \frac{1}{2} < x < 1 \end{cases}, \text{ 函数} \ f(x) \text{ in Fourier (傅里叶) 级数}$

是: $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x$, $x \in (-\infty, +\infty)$, 其和函数是 S(x), $a_n = 2 \int_0^1 f(x) \cos n\pi x dx$

$$(n = 0,1,2,\cdots)$$
, $\mathbb{Q}[S(\frac{1}{2})] = \underline{\hspace{1cm}}$, $S(99) = \underline{\hspace{1cm}}$

分

二、单项选择题 (每题 4 分,共 20 分)

- 1、微分方程组 $\begin{cases} y_1' = y_1 + 2y_2 \\ y_2' = 2y_2 + y_2 \end{cases}$ 的通解为(
 - (A) $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3x};$ (B) $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3x};$

(B)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3x}$$
;

(C)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3x};$$
 (D) $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3x}.$

(D)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3x}$$

- 2、设函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, x^2 + y^2 \neq 0 \\ 0, x^2 + y^2 = 0 \end{cases}$,则 f(x,y) 在 (0,0) 点 (0,0) 点
 - (A) 连续

- (B) 不连续, 且偏导数不存在
- (C) 偏导数存在但不可微
- (D) 可微
- 3、以下命题中正确的是(
 - (A) 若 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛, 则 $\sum_{n=1}^{\infty} u_n$ 收敛;
 - (B) 若 $u_n \le v_n$, (n = 1, 2, ...),且 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛;
 - (C) 若 $\lim_{n\to\infty} u_n = 0$, 则 $\sum_{n=1}^{\infty} u_n$ 收敛;
 - (D) 若 $w_n \le u_n \le v_n$, (n = 1, 2, ...),且 $\sum_{n=1}^{\infty} w_n$ 和 $\sum_{n=1}^{\infty} v_n$ 均收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛。
- 4、设 $D_k(k=1,2,3,4)$ 是圆域 $D=\{(x,y)|x^2+y^2\leq 1\}$ 在第k象限的部分,记 $I_k=\iint\limits_{\Omega}(y-x)dxdy$,则()
 - (A) $I_1 > 0$; (B) $I_2 > 0$; (C) $I_3 > 0$; (D) $I_4 > 0$.
- 5、设函数 f(x),g(x) 均有二阶连续导数,且满足 $f(0)>0,g(0)<0,\ f'(0)=g'(0)=0$,则函数 z = f(x)g(y) 在点(0, 0) 处取得极小值的一个充分条件是(
 - (A) f''(0) < 0, g''(0) > 0; (B) f''(0) < 0, g''(0) < 0;
 - (C) f''(0) > 0, g''(0) > 0; (D) f''(0) > 0, g''(0) < 0.

得分

三、(10 分) 求微分方程 $y'' - 3y' + 2y = -e^x$ 的通解。

得 分 四、(10 分) 已知幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n+1}$, 求: 1、收敛域; 2、和函数。

得 分

五、(10 分) 计算曲线积分 $I = \int_L (e^x \sin y - 2y) dx + (e^x \cos y - x) dy$ 。 已知 L 是从点 O(0,0)

沿曲线 $y = x^2$ 到点 A(1,1) 的有向曲线。

得 分 六、(10 分) 求曲面积分 $I = \iint_{\Sigma} xz^2 dydz + y^2 dzdx + z \bullet \sin x dx dy$, 其中曲面 Σ:

 $z = \sqrt{x^2 + y^2}$ (1 \le z \le 2),取上侧。

得 分

七、(10分) 已知函数 f(x,y) = x + y + xy, 曲线 $L: x^2 + y^2 + xy = 3$, 求函数 f(x,y) 在曲线

L上的最大方向导数。