

Sets Ex 1.6 Q9

Given $A \cap B = \emptyset$, i.e., A and B are disjoint sets this can represented by venn diagram as follows

To show: $A \subseteq B'$

This is clear from the venn diagram itself $v \in A$ is lying in the complement of B, but we give a proof of it. So let $x \in A$

$$\begin{array}{ll} \ddots & A \cap B = \phi, \\ \therefore & x \notin B \end{array}$$

and so $x \in B'$

 $[\because X \notin B \Rightarrow X \in B]$

Thus $x \in A \Rightarrow x \in B'$. This is true for all $x \in A$

Hence, $A \subseteq B'$

Sets Ex 1.6 O10

We need to show that $(A-B) \cap (A \cap B) = \emptyset$, $(A \cap B) \cap (B-A) = \emptyset$ and $(A-B) \cap (B-A) = \emptyset$

The 3 sets A – B, $A \cap B$ and B – A may be represented by a venn diagram as follows

It is clear from the diagram that the 3 sets are pairwise disjoint, but we shall give a proff of it.

We first show that $(A - B) \cap (A \cap B) = \emptyset$

Let $x \in (A - B)$

 $\Rightarrow x \in A \text{ and } x \notin B$

[by definition of A - B]

 \Rightarrow $x \notin A \cap B$. This is true for all $x \in (A - B)$

Hence $(A-B) \cap (A \cap B) = \emptyset$

On a similar lines, it can be seen that $(A \cap B) \cap (B - A) = \emptyset$

Finally, we show that $(A-B) \cap (B-A) = \emptyset$

We have,

$$A-B=\left\{X\in A:X\not\in B\right\}$$
 and
$$B-A=\left\{X\in B:X\not\in A\right\}$$

Hence,
$$(A-B) \wedge (B-A) = \phi$$
.

Sets Ex 1.6 Q11

We need to show $(A \cup B) \land (A \land B') = A$

Now,

$$(A \cup B) \cap (A \cap B') = ((A \cup B) \cap A) \cap B'$$
 [Using associative property]
$$= ((A \cap A) \cup (B \cap A)) \cap B'$$
 [$\cup A \cap A = A \text{ and } B \cap A = A \cap B,$ by commutative law
$$= A \cap B'$$
 [$\cup A \cup (A \cap B) = A$]
$$= A \cap B'$$

Sets Ex 1.6 Q12(i)

We have $A \cup B = \emptyset$, the universal set

To show: $A \subset B$

Let, $x \in A$

$$\Rightarrow$$
 $x \notin A'$ $\left[\because A \land A' = \emptyset \right]$

 $x \in A$ and $A \subset \cup$

 $X \in \mathcal{Q}$ \Rightarrow

$$\Rightarrow \qquad x \in \left(A^{\, !} \cup B\right) \qquad \qquad \left[\because \cup = A^{\, !} \cup B \right]$$

 $x \in A'$ or $x \in B$

But, $x \notin A'$,

Thus, $x \in A \Rightarrow x \in B$

This is true for all $x \in A$

 $A \subset B$

Sets Ex 1.6 Q12(ii)

We have $B' \subset A'$

To show: $A \subset B$

Let, $x \in A$

$$\Rightarrow x \notin A'$$

$$\left[\because A \cap A' = \phi \right]$$

$$\Rightarrow \qquad x \notin B' \qquad \left[\because B' \subset A' \right]$$

$$\Rightarrow X \in B$$

$$\left[\because B \land B^{\top} = \phi \right]$$

Thus, $x \in A \Rightarrow x \in B$

This is true for all $x \in A$

 $\therefore \ A \subset B$

********* END *******