第三章 时序电路的分析与设计

- 3.1 时序电路基础
- 3 1 时序电路概述
- 3.1.2 时序电路的双稳态元件
- 3.2 同步时序电路的分析与设计
- 3.2.1 同步时序电路的分析
- 3.2.2 同步时序电路的设计
- 3. 异步时序电路的分析与设计
- 331 脉冲异步时序电路概述
- 3.3.2 脉冲异步时序电路的分析步骤
- 3.3.3 脉冲异步时序电路的设计步骤
- 3.4 常用MSI时序逻辑器件及其应用
- 3.4.1 计数器
- 3.4.2 寄存器
- 3.4.3 节拍分配器

- 3.2 同步时序电路的分析与设计
- 3.2.1 同步时序电路的分析 以分名 Clocked Synchronous Circuit Analysis

(1) 列出激励函数及输出函数表达式:

激励函数 = G(输入,现态)

Mealy型输出 = F(输入,现态)

Moore型输出 = F(现态)

- (2) 根据触发器的次态方程得到各个状态的次态方程: 次态 = Q(输入, 现态)
- (3) 根据状态变量的次态方程填写二进制状态表。

同步时序电路的分析方法(续) 不默

- (4) 根据输出表达式填写输出值到二进制状态表,从而得到二进制状态输出表。
- (5)每一个状态分配一个字母状态名,从而得到<mark>状态输</mark>出表。
- (6) 根据状态输出表,画出状态图。
- (7) 电路特性描述,确定电路的逻辑功能。

下面结合实例,对上述步骤作具体说明。

例1 分析如图所示电路的特性。

分析步骤如下:

(1) 列出激励函数及输出函数表达式:

$$\begin{aligned} \mathbf{D}_0 &= \mathbf{X} \overline{\mathbf{Q}}_0 + \overline{\mathbf{X}} \mathbf{Q}_0 \\ \mathbf{D}_1 &= \overline{\mathbf{X}} \mathbf{Q}_1 + \mathbf{X} \overline{\mathbf{Q}}_1 \mathbf{Q}_0 + \mathbf{X} \mathbf{Q}_1 \overline{\mathbf{Q}}_0 \\ \mathbf{Z} &= \mathbf{X} \mathbf{Q}_1 \mathbf{Q}_0 \end{aligned}$$

(2) 写出各状态变量的次态方程。

由 D触发器的次态方程: Q n+1=D, 可得:

$$\mathbf{Q}_0^{n+1} = \mathbf{D}_0$$
 $\mathbf{Q}_1^{n+1} = \mathbf{D}_1$

代入 D_0 , D_1 , 则表达式为:

(3) 填写二进制状态块

纤规态、

$$\mathbf{Q}_0^{\mathbf{n}+1} = \mathbf{X}\mathbf{Q}_0 + \mathbf{X}\mathbf{Q}_0$$

$$\mathbf{Q}_1^{\mathbf{n+1}} = \mathbf{X}\mathbf{Q}_1 + \mathbf{X}\mathbf{Q}_1\mathbf{Q}_0 + \mathbf{X}\mathbf{Q}_1\mathbf{Q}_0$$

Q_1Q_0	0	1			
00	00	01			
01	01	10			
10	10	11			
11	11	00			
n+1 $n+1$					

$$Q_1^{n+1} Q_0^{n+1}$$

(4) 填写二进制状态输出表

$$Z = XQ_1Q_0 Q \mathcal{N}^{\frac{1}{2}} + Z \mathcal{U}_1$$

$\mathbf{Q}_1\mathbf{Q}_0$	0	1
00	00/0	01/0
01	01/0	10/0
10	10/0	11/0
(11)	11/0	00/1

$$Q_1^{n+1}Q_0^{n+1}/Z$$

 $\begin{array}{c|cccc} \mathbf{X} & \mathbf{0} & \mathbf{1} \\ \mathbf{00} & \mathbf{00/0} & \mathbf{01/0} \\ \mathbf{01} & \mathbf{01/0} & \mathbf{10/0} \\ \mathbf{10} & \mathbf{10/0} & \mathbf{11/0} \\ \mathbf{11} & \mathbf{11/0} & \mathbf{00/1} \\ \end{array}$

(c) 状态/输出表

SX	0	1
A	A /0	B /0
В	B /0	C /0
C	C /0	$\mathbf{D}/0$
D	D /0	A/1

 S^{n+1}/Z

(d)状态图

(6) 根据状态输出表画出<mark>状态图</mark>,见图(d)。

(7) 电路特性描述

由状态图可看出,此电路功能为: 当输入4个"1"时,输出为1。

假设从初态A开始,输入X为: 10110010

按照状态图列出状态响应序列如下:

分析如图所示电路电路。

用 JK 触发器组成的Moore型电路

分析步骤如下:

(1) 列出激励函数及输出函数表达式:

$$J_0 = x \cdot \overline{y}$$

$$J_1 = x \cdot Q_0 + y$$

$$Z = Q_1 \cdot Q_0 + \overline{Q}_1 \cdot \overline{Q}_0$$

$$K_0 = x \cdot \overline{y} + y \cdot Q_1$$

$$K_1 = y \cdot \overline{Q}_0 + x \cdot \overline{y} \cdot Q_0$$

(2) 列出状态变量的次态方程: (2) 1年 JQ + KQ, 可得:

$$Q_{0}^{n+1} = J_{0} \bullet \overline{Q}_{0} + \overline{K}_{0} \bullet Q_{0}$$

$$= x \bullet \overline{y} \bullet \overline{Q}_{0} + \overline{x} \bullet \overline{y} \bullet Q_{0} + \overline{x} \bullet \overline{Q}_{1} \bullet Q_{0} + y \bullet \overline{Q}_{1} \bullet Q_{0}$$

$$Q_{1}^{n+1} = J_{1} \bullet \overline{Q}_{1} + \overline{K}_{1} \bullet Q_{1}$$

$$= x \bullet \overline{Q}_{1} \bullet Q_{0} + y \bullet \overline{Q}_{1} + x \bullet \overline{y} \bullet Q_{1} + \overline{y} \bullet Q_{1} \bullet \overline{Q}_{0}$$

$$+ y \bullet Q_{1} \bullet Q_{0} + \overline{x} \bullet Q_{1} \bullet Q_{0}$$

≤:

(3) 用激励/转换表导出状态表: JK 考属 来3

$\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$	$\mathbf{J_1} \ \mathbf{K_1} \ \mathbf{J_0} \ \mathbf{K_0}$
00 00	0
00 01	0
00 10	0
00 11	0
01 00	1
01 01	1
01 10	1
01 11	1
10 00	0
10 01	1
10 10	0
10 11	1
10 00 10 10 10 11 11 00 11 01	1
11 01	1
11 10	1
11 11	1

$$J_0 = x \cdot \overline{y}$$

$$K_0 = x \cdot \overline{y} + y \cdot Q_1$$

$$J_1 = x \cdot Q_0 + y$$

$$K_1 = y \cdot \overline{Q}_0 + x \cdot \overline{y} \cdot Q_0$$

$$Z = Q_1 \cdot Q_0 + \overline{Q}_1 \cdot \overline{Q}_0$$

$$\mathcal{A}$$

$$\mathcal{A}$$

$$\mathcal{A}$$

$$\mathcal{A}$$

$$\mathcal{A}$$

$$\mathcal{A}$$

$\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$	$J_1 K_1 J_0 K_0$
00 00	0 0
00 01	0 0
00 10	0 0
00 11	0 0
01 00	1 1
01 01	1 0
01 10	1 1
01 11	1 0
10 00	0 0
10 01 10 10	1 1
10 10	0 0
10 11	1 1
11 00	1 1
11 01	1 0
11 10	1 1
11 11	1 0

$$\mathbf{J}_{0} = \mathbf{x} \cdot \overline{\mathbf{y}}$$

$$\mathbf{K}_{0} = \mathbf{x} \cdot \overline{\mathbf{y}} + \mathbf{y} \cdot \mathbf{Q}_{1}$$

$$\mathbf{J}_{1} = \mathbf{x} \cdot \mathbf{Q}_{0} + \mathbf{y}$$

$$\mathbf{K}_{1} = \mathbf{y} \cdot \overline{\mathbf{Q}}_{0} + \mathbf{x} \cdot \overline{\mathbf{y}} \cdot \mathbf{Q}_{0}$$

$$\mathbf{Z} = \mathbf{Q}_{1} \cdot \mathbf{Q}_{0} + \overline{\mathbf{Q}}_{1} \cdot \overline{\mathbf{Q}}_{0}$$

ſ	$\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$	$J_1 K_1$	$J_0 K_0$
H	00 00	0 0	0
	$0\ 0\ 0\ 1$	0 0	0
	00 10	0 0	0
Ŧ	00 11	0 0	0
	01 00	1 1	0
1	01 01	1 0	0
	01 10	1 1	0
or .	01 11	1 0	0
	10 00	0 0	1
3	10 01	1 1	1
2	10 10	0 0	1
Ī	10 11	1 1	1
Ē	11 00	1 1	0
Ţ	11 01	1 0	0
E	11 10	1 1	0
1	11 11	1 0	0

$$J_{0} = \mathbf{x} \cdot \overline{\mathbf{y}}$$

$$K_{0} = \mathbf{x} \cdot \overline{\mathbf{y}} + \mathbf{y} \cdot \mathbf{Q}_{1}$$

$$J_{1} = \mathbf{x} \cdot \mathbf{Q}_{0} + \mathbf{y}$$

$$K_{1} = \mathbf{y} \cdot \overline{\mathbf{Q}}_{0} + \mathbf{x} \cdot \overline{\mathbf{y}} \cdot \mathbf{Q}_{0}$$

$$\mathbf{Z} = \mathbf{Q}_{1} \cdot \mathbf{Q}_{0} + \overline{\mathbf{Q}}_{1} \cdot \overline{\mathbf{Q}}_{0}$$

$$| \mathcal{O} \mathbf{O} |$$

$\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$	$J_1 K_1$	$J_0 K_0$
00 00	0 0	0 0
00 01	0 0	0 0
00 10	0 0	0 0
00 11	0 0	0 0
01 00	1 1	0 0
01 01	1 0	0 0
01 10	1 1	0 1
01 11	1 0	0 1
10 00	0 0	1 1
10 01	1 1	1 1
10 10	0 0	1 1
10 11	1 1	1 1
11 00	1 1	0 0
11 01	1 0	0 0
11 10	1 1	0 1
11 11	1 0	0 1

$$J_0 = x \cdot \overline{y}$$

$$K_0 = x \cdot \overline{y} + y \cdot Q_1$$

$$J_1 = x \cdot Q_0 + y$$

$$K_1 = y \cdot \overline{Q}_0 + x \cdot \overline{y} \cdot Q_0$$

$$Z = Q_1 \cdot Q_0 + \overline{Q}_1 \cdot \overline{Q}_0$$

$\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$	$J_1 K_1 J_0 K_0$	Z
00 00	0 0 0 0	1
00 01	0 0 0 0	0
00 10	0 0 0 0	0
00 11	0 0 0 0	1
01 00	1 1 0 0	1
01 01	1 0 0 0	0
01 10	1 1 0 1	0
01 11	1 0 0 1	1
10 00	0 0 1 1	1
10 01	1 1 1 1	0
10 10	0 0 1 1	0
10 11	1 1 1 1	1
11 00	1 1 0 0	1
11 01	1 0 0 0	0
11 10	1 1 0 1	0
11 11	1 0 0 1	1

$$J_0 = x \cdot \overline{y}$$

$$K_0 = x \cdot \overline{y} + y \cdot Q_1$$

$$J_1 = x \cdot Q_0 + y$$

$$K_1 = y \cdot \overline{Q}_0 + x \cdot \overline{y} \cdot Q_0$$

$$Z = Q_1 \cdot Q_0 + \overline{Q}_1 \cdot \overline{Q}_0$$

	x y	Q_1	\mathbf{Q}_0	$J_1 K_1$	$J_0 K_0$	Z	Q_1^{n+1}	Q_0^{n+1}
	0 0	0	0	0 0	0 0	1	0	
	$0 \ 0$	0	1	0 0	0 0	0	0	
	$0 \ 0$	1	0	0 0	0 0	0	1	
	00	1	1	0 0	0 0	1	1	
	0 1	0	0	11	0 0	1	1	
	01	0	1	10	0 0	0	1	
	01	1	0	11	0 1	0	0	
	01	1	1	10	0 1	1	1	
	10	0	0	0 0	1 1	1	0	
	10	0	1	11	1 1	0	1	
Ì	10	1	0	0 0	1 1	0	1	
	10	1	1	11	1 1	1	0	
A STATE OF	11	0	0	11	0 0	1	1	
	11	0	1	10	0 0	0	1	
-	11	1	0	11	0 1	0	0	
	11	1	1	10	0 1	1	1	

5:

(3) 用激励/转换表导出状态表:

	x y	\mathbf{Q}_1	\mathbf{Q}_{0}	$J_1 K_1$	$J_0 K_0$	Z	Q_1^{n+1}	Q_0^{n+1}
	0 0	0	0	0 0	0 0	1	0	0
	00	0	1	0 0	0 0	0	0	1
	00	1	0	0 0	0 0	0	1	0
	00	1	1	0 0	0 0	1	1	1
	01	0	0	11	0 0	1	1	0
	01	0	1	10	0 0	0	1	1
	01	1	0	11	0 1	0	0	0
c	01	1	1	10	0 1	1	1	0
ξ	10	0	0	0 0	1 1	1	0	1
100	10	0	1	11	1 1	0	1	0
5	10	1	0	0 0	1 1	0	1	1
	10	1	1	11	1 1	1	0	0
Ē	11	0	0	1 1	0 0	1	1	0
E	11	0	1	10	0 0	0	1	1
	11	1	0	11	0 1	0	0	0
	11	1	1	10	0 1	1	1	0

好检查这个没那么难

$\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$	$J_1 K_1 J_0 K_0$	Z	$Q_1^{n+1} \ Q_0^{n+1}$
00 00	0 0 0 0	1	0 0
00 01	0 0 0 0	0	0 1
00 10	0 0 0 0	0	1 0
00 11	0 0 0 0	1	1 1
01 00	1 1 0 0	1	1 0
01 01	1 0 0 0	0	1 1
01 10	1 1 0 1	0	0 0
01 11	1 0 0 1	1	1 0
10 00	0 0 1 1	1	0 1
10 01	1 1 1 1	0	1 0
10 10	0 0 1 1	0	1 1
1000 1001 1010 1011	1 1 1 1	1	0 0
11 00	1 1 0 0	1	1 0
11 01	1 0 0 0	0	1 1
11 10	1 1 0 1	0	0 0
11 11	1 0 0 1	1	1 0

(a) 二进制状态表

$\mathbf{Q}_{1}\mathbf{Q}_{0}$	00	01	10	11
00	00	10	01	10
01	01	11	10	11
10	10	00	11	00
11	11	10	00	10
$Q_1^{n+1} Q_0^{n+1}$				

(b) 二进制状态/输出表

Q_1Q_0	00 01 10 11	Z
00	00 10 01 10	
01	01 11 10 11	
10	10 00 11 00	
11_	11 10 00 10	1

(4) 画状态图 怎面 00维持. 7分计基础为国

(5) 电路特性说明:

此时序电路有 4 个状态,状态之间的转换由x、y 控制:

- ① 当 xy = 00 时,原状态保持不变;
- ② 当 xy = 10 时,状态在 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$ 循环,并在 $A \setminus D$ 状态时输出1。

(4) 画状态图

- (5) 电路特性说明:
- ③ 当 xy 为 01, 11 时,状态转换顺序与起始状态有关: 若起始状态为 A 或 C,则状态在A、C之间循环; 若起始状态为 B,则状态将是 B → D → C → A,然 后在 A、C 之间循环。

分析步骤如下:

(1) 列出激励函数及输出函数表达式:

$$D_4 = Q_3$$
 $D_3 = Q_2$ $D_2 = Q_1$ $D_1 = D_{11} \cdot D_{12} = \overline{Q_4} \, \overline{Q_3} \, \overline{Q_1} = \overline{Q_4} \, \overline{Q_3} + \overline{Q_4} \, Q_1$ 电路的输出函数为: $Q_4 \setminus Q_3 \setminus Q_2 \setminus Q_1$ 。

(2) 列出状态变量的次态方程: $Q_4^{n+1} = D_4 = Q_3$ $Q_3^{n+1} = D_3 = Q_2$ $Q_2^{n+1} = D_2 = Q_1$ $Q_1^{n+1} = D_1 = D_{11} \cdot D_{12} = \overline{Q}_4 \, \overline{Q}_3 + \overline{Q}_4 \, Q_1$

(3) 列出电路次态真值表

•	\mathbf{Q}_4	\mathbf{Q}_3	\mathbf{Q}_2	\mathbf{Q}_1	Q_4^{n+1}	Q_3^{n+1}	Q_2^{n+}	·1 Q ₁ ⁿ	+1
	0	0	0	0	0	0	0	1	
	0	0	0	1	0	0	1	1	
	0	0	1	0	0	1	0	1	
	0	0	1	1	0	1	1	1	
•	0	1	0	0	1	0	0	0	
	0	1	0	1	1	0	1	1	
	0	1	1	0	1	1	0	0	
	0	1	1	1	1	1	1	1	
	1	0	0	0	0	0	0	0	
	1	0	0	1	0	0	1	0	
	1	0	1	0	0	1	0	0	
	1	0	1	1	0	1	1	0	
	1	1	0	0	1	0	0	0	
	1	1	0	1	1	0	1	0	
	1	1	1	0	1	1	0	0	
	1	1	1	1	1	1	1	0	

(2) 次态方程:

$$\mathbf{Q}_4^{n+1} = \mathbf{D}_4 = \mathbf{Q}_3$$

 $\mathbf{Q}_3^{n+1} = \mathbf{D}_3 = \mathbf{Q}_2$

$$\mathbf{Q}_2^{n+1} = \mathbf{D}_2 = \mathbf{Q}_1$$

$$\mathbf{Q}_1^{n+1} = \mathbf{D}_1 = \mathbf{D}_{11} \cdot \mathbf{D}_{12}$$
$$= \overline{\mathbf{Q}}_4 \overline{\mathbf{Q}}_3 + \overline{\mathbf{Q}}_4 \mathbf{Q}_1$$

(3) 列出电路次态真值表

\mathbf{Q}_4	\mathbf{Q}_3	\mathbf{Q}_2	\mathbf{Q}_1	$\mathbf{Q}_4^{\mathbf{n}}$	⁺¹ Q	3 ⁿ⁺¹	Q_2^{n+1}	${}^{1}\mathbf{Q}_{1}^{n+1}$
0	0	0	0	()	0	0	1
0	0	0	1	()	0	1	1
0	0	1	0	()	1	0	1
0	0	1	1	()	1	1	1
0	1	0	0]	1	0	0	0
0	1	0	1]	1	0	1	1
0	1	1	0]	1	1	0	0
0	1	1	1]	1	1	1	1
1	0	0	0	()	0	0	0
1	0	0	1	()	0	1	0
1	0	1	0	()	1	0	0
1	0	1	1	()	1	1	0
1	1	0	0]	1	0	0	0
1	1	0	1]	1	0	1	0
1	1	1	0]	1	1	0	0
1	1	1	1]	1	1	1	0

(4) 列出状态表

和 状态图

设状态
$$0000 = S_0$$

$$0001 = S_1$$

 $0010 = S_2$

•

•

•

 $1111 = S_{15}$

代入左表中,

得到状态表,见下页表(b)和(c)。____

(5) 电路特性描述:

该电路共有16个状态。只要电路的初始态为状态图闭合环中某一状态,在时钟脉冲作用下,电路将按箭头所指方向在闭合环中8个状态间循环。这是一个模8步进码计数器。时钟脉冲就是计数信号,这8个状态称为"有效序列"。在闭环以外的8个状态称为"无效序列"。这种电路称为格雷码计数器或 Johnson 计数器,也叫"自恢复扭环移位寄存器"。

如果将电路改动为: D₁= D₁₂= Q₄/电路就成了单纯的扭环移位寄存器,如图所示: 挂起, 羽 起 大部方

状态图如图所示:

图(a) 中的状态循环符合格雷码编码, 故为有效序列;

图(b) 中状态循环为无效序列。

无效序列也是一个独立的闭合环。若电路一旦进入无效 序列就无法退出,此现象称为"挂起"。 **左**世代 50 0 午人

(6) 电路"挂起"的根本原因

若n个触发器所表示的 2n 个状态没有全部都用作"有效状态",则存在多余状态(unsead states),在真值表中就会出现无关项("don't-care" states)。

电路不应有挂起

(7) 电路"挂起"现象的解决办法

为防止电路处于"挂起",只有采取强制措施,如:

或者

• 设计与此有关的控制线路,使电路状态进入有效序 列状态之一,这种控制线路称为"校正网络"。

(8) 电路"挂起"现象的解决办法

- ① 无效序列的次态无关项全部指向0。 有点等. 太麻烦
- ② 打断一处"无效序列链",令其指向有效序列。
- ③ 根据真值表和卡诺图研究无效序列的生成规律 尽可能只改变某一触发器的输入网络,同时进行最简设 计。

下面通过研究Johnson 计数器(自校正Johnson 计数器)的设计过程和技巧,来寻找解决挂起问题的方法和规律。

例:设计八进制步进码计数器。到不了这个难度

需要用 4 个触发器:

 Q_4, Q_3, Q_2, Q_1

- 构成的 16 个组合中:
 - 8个有效码
 - 8个无效码(无关项)

列出次态真值表 这般Johnson.

$\overline{\mathbf{Q_4}}$	$\overline{\mathbf{Q}_3}$	$\overline{\mathbf{Q}_2}$	\mathbf{Q}_1	$Q_4^{n+1}Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}$
0	0	0	0	0 0 0 1
0	0	0	1	0/7 (= 141 111 1
0	0	1	0	d\lambda d d
0	0	1	1	0 1 1 1
0	1	0	0	d d d d
0	1	0	1	d d d d
0	1	1	0	d d d d
0	1	1	1	1 1 1 1
1	0	0	0	0 0 0 0
1	0	0	1	d d d d
1	0	1	0	d d d d
1	0	1	1	d d d d
1	1	0	0	1 0 0 0
1	1	0	1	d d d d
1	1	1	0	1 1 0 0
1	1	1	1	1 1 1 0

画出计数器的卡诺图。 根据次态真值表,

 Q_4Q_3

 Q_2Q_1

d

d

d

d

d

d

写出次态方程

$$\mathbf{Q}_4^{n+1} = \mathbf{Q}_3$$

$$\mathbf{Q}_3^{\mathbf{n}+1} = \mathbf{Q}_2$$

$$\mathbf{Q}_2^{n+1} = \mathbf{Q}_1$$

$$\mathbf{Q}_1^{n+1} = \overline{\mathbf{Q}}_4$$

d d d

d

 Q_1^{n+1}

野空退龍电路

解决挂起问题

试改变触发器Q₁的输入控制函数D来解决挂起问题。

注意:

能解决挂起问题的是的部分。

到原什么算出来?

Q	$_{4}\mathbf{Q}_{3}$	\mathbf{Q}_2	\mathbf{Q}_1	Q Q	4 ⁿ⁺¹ 2 ⁿ⁺¹	$\mathbf{Q_3}^1$ $\mathbf{Q_1}^1$		
0	0	0	0	0	0	0	1	
0	0	0	1	0	0	1	1	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	1	
0	1	0	0	1	0	0	1	*
0	1	0	1	1	0	1	1	
0	1	1	0	1	1	0	1	*
0	1	1	1	1	1	1	1	
1	0	0	0	0	0	0	0	
1	0	0	1	0	0	1	0	*
1	0	1	0	0	1	0	0	
1	0	1	1	0	1	1	0	*
1	1	0	0	1	0	0	0	
1	1	0	1	1	0	1	0	
1	1	1	0	1	1	0	0	
1	1	1	1	1	1	1	0	

Q_2Q_1	$_4$ Q $_3$			
Q2Q1	1	*d		
	1	ď	d	d
	1	1		d
	d	,d		d
	V	Q	1 ⁿ⁺¹	
	17	<u> </u>		

$Q_4Q_3Q_2Q_1$	$Q_4^{n+1}Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}$
0 0 0 0	0 0 0 1
0 0 0 1	0 0 1 1
0 0 1 0	0 1 0 1
$0 \ 0 \ 1 \ 1$	0 1 1 1
0 1 0 0	1 0 0 1 *
0 1 0 1	1 0 1 1
0 1 1 0	1 1 0 1 *
0 1 1 1	1 1 1 1
1 0 0 0	0 0 0 0
1 0 0 1	0 0 1 0 *
1 0 1 0	0 1 0 0
1 0 1 1	0 1 1 0 *
1 1 0 0	1 0 0 0
1 1 0 1	1 0 1 0
1 1 1 0	1 1 0 0
1 1 1 1	1 1 1 0

的心理是也是

修改Q2的输入来解决挂起

问题。

方案1 (黄色):

 Q_2^{n+1}

$$\mathbf{Q}_2^{\mathbf{n}+1} = \overline{\mathbf{Q}}_4 \, \mathbf{Q}_1 + \mathbf{Q}_2 \, \mathbf{Q}_1$$

Q	$_{1}\mathbf{Q}_{3}$	\mathbf{Q}_2	\mathbf{Q}_1		24 ⁿ⁺		
0	0	0	0	0	0	0	1
0	0	0	1	0	0	17	1
0	0	1	0	0	1	0 ′ ×	1
0	0	1	1	0	1	1	1
0	1	0	0	1	0	0	1
0	1	0	1	1	0	1	1
0	1	1	0	1	1	()	5 <u>1</u> 1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	10 3	
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	b d	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	0
				l			

- 总结关于同步时序电路的分析
 - 分析步骤、方法
 - 注意激励/转换表、二进制状态表、状态/输出表、状态转换图这些工具
 - -练习例题、习题
 - 例1注意画时间图时的输入规范化问题
 - · 例2注意JK触发器时使用激励/转换表
 - · 例3注意Johnson计数器的原理, 挂起的原因 及解决方法

习题

- 总结关于同步时序电路的分析
 - 分析步骤、方法
 - 注意激励/转换表、二进制状态表、状态/输出表、状态转换图这些工具
 - -练习例题、习题
 - 例1注意画时间图时的输入规范化问题
 - · 例2注意JK触发器时使用激励/转换表
 - 例3注意Johnson计数器的原理, 挂起的原因 及解决方法

习题