COSC2473

Digital Logic

Logic Gates & Bit Masking
Boolean Algebra

Boolean Algebra

- Boolean algebra has many of the same rules as normal high school level algebra, and indeed the symbols used (+ for OR, * for AND, etc) reflect this.
 - And just like algebra, you can use various methods to simplify.
 - We will show here two methods:
- Algebraic Simplification
 - Can work for any number of variables
- Graphical Simplification using Karnaugh maps
 - This works for up to 4 variables, but beyond that, it gets too complicated.

Boolean Logic Rules

Reminder of the Boolean Logic rules

		NOT	AND	OR	XOR
<u>A</u>	В	~A	•	+	<u> </u>
0	0	1	0	0	0
0	1	1	0	1	1
1	0	0	0	1	1
1	1	0	1	1	0

Typical Boolean expressions are:

$$-C+AB=true$$

 if C is true or both A and B are true and is equivalent to the circuit.at right

Boolean Algebra Rules

Commutative law	A + B = B + A				
Associative law	A + (B + C) = A + B + C = (A + B) + C				
	A(BC) = ABC = (AB)C				
Distributive law	A(B+C) = AB + AC				
de Morgan's	$\overline{A+B}=\overline{A}.\overline{B}$				
theorems					
	A.B = A + B				
Identities	$1 + any = 1, \qquad 0 + A = A$				
	1 . $A = A$, 0 . $any = 0$				
	$A \cdot A = A, \qquad A + A = A$				
	$A + \overline{A} = 1$, $A \cdot \overline{A} = 0$				
	$AB + \overline{A}B = B$				
	A + BC = (A + B)(A + C)				

Algebraic Simplification and Python

Example of simplification and how it is used in programming

$$A + AC = (A + A)(A + C),$$

 $using the pattern A + BC = (A+B)(A+C)$
 $= 1 (A + C = A + C, since (A + A) = 1$

Python Code

Let's test the above. Suppose we have two sensors, S1, S2 = +/-5 volts, and an activation decision Z

```
>>> S1=-5; S2=-5; A=S1>0; C=S2>0; Z = A or (not A and C); print(A,C,Z)
False False False
>>> S1=-5; S2=+5; A=S1>0; C=S2>0; Z = A or (not A and C); print(A,C, Z)
False True True
>>> S1=+5; S2=-5; A=S1>0; C=S2>0; Z = A or (not A and C); print(A,C, Z)
True False True
>>> S1=+5; S2=+5; A=S1>0; C=S2>0; Z = A or (not A and C); print(A,C, Z)
True True True
>>> S1=+5; S2=+5; A=S1>0; C=S2>0; Z = A or (not A and C); print(A,C, Z)
```

Proof

The above values of A,B,Z look like a truth table for Z=A+C

Algebraic Simplification

- Example of simplification
 - 1. Eliminating common variables

$$A + AB = A(1 + B) = A$$
, since $1 + anything = 1$
 $AB + AB = (A + A)B = B$, where $A = NOTA$

2. More Complex Factoring

$$A + BC = (A + B)(A + C)$$

$$= \underline{A.A} + A.C + \underline{B.A} + B.C,$$

$$= A + A.C + A.B + B.C,$$

$$= \underline{A.1} + A.C + AB + B.C,$$

$$= A.(1 + C + B) + B.C,$$

$$= A.(1) + B.C,$$

$$= A + B.C$$

multiply out, so
but
$$AA=A$$
, $BA=AB$
but $A=A.1$, so
factor out A , so
but $(1+any)=1$, so
but $A.1=A$, so
...QED

Using Truth Table as Proof

 We can also prove the previous equation by showing all combinations in a truth table. We show that Left hand side (LHS) = right hand side (RHS)

			Χ	LHS	Y	Z	RHS
А	В	С	B.C	A + X	A + B	A+C	Y . Z
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

De Morgan's Theorem

- One way in which Boolean algebra is different to other forms is the following
 - Most commonly used to change a term involving ORs into one involving ANDs, and vice versa
 - It works due to the symmetry of the OR and AND truthtables

$\overline{A+B}=\overline{A}.$	\overline{B}
$\overline{A.B} = \overline{A} +$	\overline{B}

Α	В	A	B	A.B	A+B
0	0	1	1	0	1
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	1	0

de Morgan's Laws are also applied

- One is basically the upside-down inverse of the other
 - You can get upside-down by complementing the operands A and B
 - and then simply map AND to OR

to Set Theory, where
$$OR \Leftrightarrow U$$
 (set union)

AND
$$\Leftrightarrow \cap$$
 (set intersection)
NOT \Leftrightarrow ' (set complement)

A Practical Example

- Consider a platform elevator on Flinders Street Station
 - Would you know how to program a 2 level elevator?
 - Where do you start?
 - Consider the cases
 - 2 levels: Concourse, Platform
 - Up and Down buttons on each level outside of the car
 - Up and Down buttons inside the car
 - Activate motor to travel up or down
 - Door open sensor to decide whether to move the car
 - Door Open/Close on arrival or based on inside/outside buttons
- Not so simple, right?

Flinders Street Platform Elevator 1

Consider a platform elevator on Flinders Street Station

2 levels: Concourse (C), Platform (/C)	С
 Up button on lower level outside car 	B_OU
 Down Button on upper level outside car 	B_OD
 Up button inside car 	B_IU
 Down button inside car 	B_ID
Door open sensor (1 = closed)	S
 Travel Up for the car 	M_U
 Travel Down for the car 	M_D
 Door open / close Activator 	Α

Flinders Street Platform Elevator 2

We can simplify further

```
Position of car (1=Concourse, 0= Platform)
Up button on lower level outside car
Down Button on upper level outside car
Lever inside car L = 1 (Up) or 0 (Down)
Motor = 1 (travel Up) or -1 (down) or 0 (do nothing)
```

 Assume doors open automatically on arrival, or button push when already there.

Flinders Street Platform Elevator 3

We can simplify further

```
Position of car (1=Concourse, 0= Platform)
Outside Button calls the car
Lever inside car L = 1 (Up) or 0 (Down)
```

Motor = 1 (travel Up) or -1 (down) or 0 (do nothing)M

What is needed for the motor to start?

```
If (B/C L) M = +1 else if (B C/L) M = -1 else M = 0
```

```
M = 0

If (B)

if (C and not L)

if (L and not C)
```

M = -1 M = +1Slide 12

Graphical Simplification

- A Karnaugh Map is a pictorial representation of the bit patterns arising from a truth table
- Suppose we have 2 variables A,B

$$X = A + /AB$$
$$= T_1 + T_2$$

1. We populate the grid with our terms

	Α	/A
В	1	2
/B	1	

More: https://www.youtube.com/watch?v=3vkMgTmieZl

Karnaugh Maps – 2 Variables

- A Karnaugh Map is also "a special form of truth table that enables easier pattern recognition" by humans.
- Suppose we have 2 variables A,B

$$X = A + /AB$$
$$= T_1 + T_2$$

- 1. We populate the grid with our terms
- 2. We then draw the largest possible overlapping rectangles that can cover all terms

	Α	/A
В		2
/B	1	

Karnaugh Maps – 2 Variables

Suppose we have 2 variables A,B

$$X = A + /AB$$
$$= T_1 + T_2$$

- 1. We populate the grid with our terms
- We then draw the largest possible overlapping rectangles that can cover all terms
- 3. We then describe these rectangles as:

	Α	/A
В		2
/B	1	

Karnaugh Maps – 2 Variables

Equivalent Boolean Logic simplification

See: Karnaugh Maps Introduction
 https://www.youtube.com/watch?v=A0XupfXiKlo

Now we have 3 variables A, B, C on a 4 variable map

$$-X = AB + AC + AB/C + B/C$$

$$- X = T_1 + T_2 + T_3 + T_4$$
 'minterms'

- AB

	AB	A/B	/A/B	/AB
CD	1			
C/D	1			
/C/D	1			
/CD	1			

Now we have 3 variables A, B, C on a 4 variable map

$$-X = AB + AC + AB/C + B/C$$

$$- X = T_1 + T_2 + T_3 + T_4$$
 'minterms'

- AC

	AB	A/B	/A/B	/AB
CD	2	2		
C/D	2	2		
/C/D				
/CD				

Now we have 3 variables A, B, C on a 4 variable map

$$-X = AB + AC + AB/C + B/C$$

$$- X = T_1 + T_2 + T_3 + T_4$$
 'minterms'

– /AB/C

	AB	A/B	/A/B	/AB
CD				
C/D				
/C/D				3
/CD				3

Now we have 3 variables A, B, C on a 4 variable map

$$-X = AB + AC + AB/C + B/C$$

$$- X = T_1 + T_2 + T_3 + T_4$$
 'minterms'

- /B/C

	AB	A/B	/A/B	/AB
CD				
C/D				
/C/D		4	4	
/CD		4	4	

Karnaugh Maps – A

- Karnaugh map rects must be as large as possible
- Now we have 3 variables A, B, C on a 4 variable map

$$-X = AB + AC + AB/C + B/C$$

$$- X = T_1 + T_2 + T_3 + T_4$$
 'minterms'

- Make largest overlapping rect
- A

	AB	A/B	/A/B	/AB
CD	12	2		
C/D	12	2		
/C/D	1	4	4	3
/CD	7	4	4	3

Karnaugh Maps – /C

- Karnaugh map rects must contain 2ⁿ elements only
- Now we have 3 variables A, B, C on a 4 variable map

$$-X = AB + AC + AB/C + B/C$$

$$- X = T_1 + T_2 + T_3 + T_4$$
 'minterms'

- Make largest overlapping rect
- -A+/C

	AB	A/B	/A/B	/AB	
CD	12	2			
C/D	12	2			
/C/D	_	4	4	3	
/CD	1	4	4	3	

K-Map – Confirm using deMorgan's

- Confirm using deMorgan's Theorem
- Now we have 3 variables A, B, C on a 4 variable map

$$-X = AB + AC + AB/C + B/C$$

$$- X = T_1 + T_2 + T_3 + T_4$$
 'minterms'

- Make largest
 overlapping rect but
 for the unoccupied
 parts
- Then invert this.

	AB	A/B	/A/B	/AB
CD	12	2		
C/D	12	2		
/C/D	1	4	4	3
/CD	1	4	4	3

- /(/AC)

Karnaugh Maps – 4 Variables

- Karnaugh map rects must contain <u>no gaps</u>
- Now change a term to add a fourth variable, D

$$- X = AB + ACD + /AB/C + /B/C$$

$$- X = T_1 + T_2 + T_3 + T_4$$
 'minterms'

- So T₂ now is ACD

- The 2's are changed

– Gap in A/BC/D ▼

So cannot use A rect

- NowX = AB + ACD + /C

	AB	A/B	/A/B	/AB
CD	12	2		
C/D	1	A		
/C/D	1	4	4	3
/CD	1	4	4	3

Karnaugh Maps – Wrap-around Rects

- Karnaugh map rects can also wrap around.
- Now change a term to show wrap on 3 variable K-map

$$-X = AB + BC + AB/C + B/C$$

$$- X = T_1 + T_2 + T_3 + T_4$$
 'minterms'

- So T₂ now is BC
- The rect for T₂ now wraps around

	AB	A/B	/A/B	/AB
С	12			2
/C		4	4	3

- The biggest rect for T₂ is 1x2 that wraps around and corresponds to B
- This entirely covers T₁, so we can remove it.
- Finally
 X = B + /C

K-Maps – General Rules

- General comments about K-maps
 - Expressions must be organised into "minterms", which are "sums of products" of the form
 - $X = T_1 + T_2 + ...$ where T is a group of ANDed variables.
 - Area of rect $R = 2^n / m$, where n is the total number of variables, and m is the number of variables in this particular term.
 - In previous slide, n=3 variables, m for T_2 (BC) = 2, so R=2³/2 = 4
- For example:

Y = A(B + C) is in the wrong form, multiply out

Y = AB + AC = 2 rects of 4 elements each before populating the map.

Summary

- So we have three ways of simplifying Boolean expressions
 - First Principles
 - Good as a first choice for when you know the situation, such as the elevator example where we simplified the algorithm first.
 - Boolean Algebra
 - Good when you have a few Boolean condition variables, culminating into a small number of decision variables
 - Karnaugh Maps
 - As a graphical way of simplification, but it does not scale well beyond about 6 variables (if you can manage the 3D).
 - Truth Tables
 - The lowest level, but also the most robust, and the easiest to scale and automate.

Quiz

Using K-maps, simplify the expression
 X = A.B + A./B .C + D(/C.+/BC)

using the following steps.

- 1. Rewrite expression in terms of minterms
- Assign minterm numbers
- 3. Draw each minterm on the K-Map
- 4. Draw as few maximal overlapping rectangles as possible to cover all the non-blank entries
- List the terms corresponding to each rectangle.

	AB	A/B	/A/B	/AB
CD				
C/D				
/C/D				
/CD				