Linear Regression – Intuition – IV

Dr. Muhammad Wasim

Linear Regression

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters

$$\theta_0$$
, θ_1

Cost Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Goal:

$$minimize_{\theta_0,\theta_1}J(\theta_0,\theta_1)$$

Linear Regression

$$J(heta_0, heta_1)$$
 (function of the parameters $heta_0, heta_1$)

Cost Function as a Contour Plot

Cost Function as a Contour Plot (Cont.)

Linear Regression with one Variable – Gradient Descent

Have some function $J(\theta_0, \theta_1)$ Want $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , $\overline{\theta_1}$ to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at the minimum

The idea behind Gradient Descent Algorithm

