In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

DATA COLLECTION

In [2]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\4_drug200 - 4_drug200.csv")
a
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]:

```
b=a.head(100)
b
```

Out[3]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
95	36	М	LOW	NORMAL	11.424	drugX
96	58	F	LOW	HIGH	38.247	drugY
97	56	F	HIGH	HIGH	25.395	drugY
98	20	М	HIGH	NORMAL	35.639	drugY
99	15	F	HIGH	NORMAL	16.725	drugY

100 rows × 6 columns

DATA CLEANING AND PRE-PROCESSING

In [4]:

```
b.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 6 columns):

		/ -		
#	Column	Non-Null Count	Dtype	
0	Age	100 non-null	int64	
1	Sex	100 non-null	object	
2	BP	100 non-null	object	
3	Cholesterol	100 non-null	object	
4	Na_to_K	100 non-null	float64	
5	Drug	100 non-null	object	
d_{1}				

dtypes: float64(1), int64(1), object(4)
memory usage: 4.8+ KB

In [5]:

b.describe()

Out[5]:

	Age	Na_to_K
count	100.000000	100.000000
mean	43.770000	16.823000
std	16.367531	7.257723
min	15.000000	7.285000
25%	30.500000	11.031250
50%	43.000000	15.025500
75%	58.000000	20.020250
max	74.000000	38.247000

In [7]:

b.columns

Out[7]:

Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='objec
t')

EDA AND VISUALIZATION

In [8]:

sns.pairplot(b)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x2236421f670>

In [10]:

sns.distplot(b['Age'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]:

<AxesSubplot:xlabel='Age', ylabel='Density'>


```
In [25]:
```

```
f=b[['Age','Na_to_K']]
```

In [26]:

```
sns.heatmap(f.corr())
```

Out[26]:

<AxesSubplot:>

In [27]:

```
x=f[['Age']]
y=f['Na_to_K']
```

In [28]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [29]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[29]:

LinearRegression()

In [30]:

```
print(lr.intercept_)
```

15.640017640932857

```
In [31]:
```

```
r=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
r
```

Out[31]:

Co-efficient

Age 0.007951

In [32]:

```
u=lr.predict(x_test)
plt.scatter(y_test,u)
```

Out[32]:

<matplotlib.collections.PathCollection at 0x2236a7eb250>

In [33]:

```
print(lr.score(x_test,y_test))
```

-0.04803604987051768

In []: