

Robótica Aplicada

Profesor: Oliver Ochoa García

Cinemática Directa

Descripción

- La cinemática estudia el movimiento sin considerar fuerzas.
 Se enfoca en:
 - Posición
 - Velocidad
 - Aceleración
- Cinemática de Manipuladores:
 - Analiza las propiedades geométricas y temporales del movimiento.
 - Relaciona la posición y orientación de los eslabones del manipulador.
 - Se **asignan marcos de referencia** a las partes del mecanismo para describir sus relaciones.

Conceptos

- configuración: una especificación de las posiciones de todos los puntos de un mecanismo
- grados de libertad (dof): # de # reales requeridos para describir una configuración
 - dof de un cuerpo plano: m = 3;
 - dof de un cuerpo espacial: m = 6
- espacio de configuración (espacio C): el espacio de dimensiones dof de todas las configuraciones

Descripción

• Un manipulador puede considerarse como un conjunto de cuerpos conectados en cadena por medio de **articulaciones**.

Estos cuerpos se llaman eslabones.

Tipo de Union	dof f	(C) entre dos cuerpos rígidos planos	(C) entre dos cuerpos rígidos espaciales
Revoluta	1	2	5
Prismatico	1	2	5
Helicoidal	1	N/A	5
Cilindrica	2	N/A	4
Universal	2	N/A	4
Esferica	3	N/A	3
Planar	3	0	3

Restricciones

Restricciones

DOF de un mecanismo

• Dof de un mecanismo = Σ (Numero de Elementos) – Σ (Restricciones independientes por Unión)

$$\mathrm{dof} = \underbrace{m(N-1)}_{\mathrm{rigid\ body\ freedoms}} - \underbrace{\sum_{i=1}^{J} c_i}_{\mathrm{joint\ constraints}}$$

$$= m(N-1) - \sum_{i=1}^{J} (m-f_i)$$

$$= m(N-1-J) + \sum_{i=1}^{J} f_i.$$

Formula de Grübler

Restricciones de Movimiento

 Holonómicas Son limitaciones que dependen únicamente de la posición del sistema.

 No Holonómicas Son limitaciones que dependen de la velocidad o del camino que toma el sistema, no solo de su posición.

Cadenas Cinemáticas

- Se asume que se usan uniones de **un solo grado de Libertad** es decir, prismático o revoluta.
- Un robot con n articulaciones tendrá n+1 eslabones.
- Se numeran las **articulaciones de 1 a** *n* y lo **eslabones de 0 a** *n* por lo que la articulación *i* conecta eslabón i-1 y eslabón i.
- La unión *i* es fija con respecto a eslabón *i-1*, por lo que **cuando articulación** *i* **es actuado, el eslabón** *i* **se mueve.**
- Cualquier articulación i es asociada con una variable $oldsymbol{q_i}$

$$q_i = \begin{cases} \theta_i revoluta \\ d_i prismatico \end{cases}$$

Cadenas Cinemáticas

• Para realizar un análisis cinemático colocamos u marco de coordenadas a cada eslabón, $o_i x_i y_i$

• Debido a que la homogénea entre $o_i x_i y_i z_i$ y $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$ no es constante y varia con el movimiento se debe modificar en función a la variable de la articulación q_i

$$T_i = T_i(q_i)$$

Cadenas Cinemáticas

$$_{j}^{i}T = H_{i+1}H_{i+2} \dots H_{j-1}H_{j}$$

$$H = \begin{bmatrix} R_i^{i-1} & P_i^{i-1} \\ 0 & 1 \end{bmatrix}$$

$$_{j}^{i}T = H_{i+1} \dots H_{j} = \begin{bmatrix} R_{j}^{i} & P_{j}^{i} \\ 0 & 1 \end{bmatrix}$$

$$R_j^i = R_{i+1}^i \dots R_j^{j-1}$$

$$P_j^i = P_{j-1}^i + R_{j-1}^i P_j^{j-1}$$

Denavit Hartenberg

• Esta convención indica que una transformada homogénea puede ser representada por 4 transformaciones básicas

$$T_i = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & 0 \\ s\theta_i & c\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \alpha_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_i & -s\alpha_i & 0 \\ 0 & s\alpha_i & c\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_i = \begin{bmatrix} c\theta_i & -s\theta_i c\alpha_i & s\theta_i s\alpha_i & a_i c\theta_i \\ s\theta_i & c\theta_i c\alpha_i & -c\theta_i s\alpha_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Donde:

 θ_i : Angulo de Articulacion α_i : torsión del eslabón α_i : longitud de eslabón d_i : desplazamiento del eslabón

Convención Denavit-Hartenberg

 θ_i : Angulo de Articulacion α_i : torsión del eslabón a_i : longitud de eslabón d_i : desplazamiento del eslabón

Convención Denavit-Hartenberg

- Como se vio antes, se necesitan 6
 números para definir la matriz, esto se
 logra con el correcto posicionamiento de
 los orígenes y ejes del robot
- El eje x_1 es perpendicular al eje z_0 .
- El eje x_1 intersecta al eje z_0 .

Convención Denavit-Hartenberg

$$p_1^0 = \begin{bmatrix} X_1^0 \\ Y_1^0 \\ Z_1^0 \end{bmatrix}$$

$$p_2^1 = \begin{bmatrix} X_2^1 \\ Y_2^1 \\ Z_2^1 \end{bmatrix}$$

$$p_1^0 = \begin{bmatrix} a_2 \cos \theta \\ a_2 \sin \theta \\ a_1 \end{bmatrix}$$

$$p_2^1 = \begin{bmatrix} a_4 \cos \theta \\ a_4 \sin \theta \\ a_3 \end{bmatrix}$$

- 1. Ubicar y etiquetar los ejes de las articulaciones $z_0, ..., z_{n-1}$ siendo que z_i sea el eje de movimiento de la articulación
- 2. Establecer el marco base. Colocar el origen en cualquier punto del eje z_0 . Los ejes x_0 y y_0 se eligen de acuerdo con la referencia de mano derecha y la normal de los ejes.
- 3. Ubicar el origen O_i donde la normal común a z_i y z_{i-1} intersecte z_i . Si z_i intersecta z_{i-1} , colocar O_i en esta intersección. Si z_i y z_{i-1} son paralelos, ubicar O_i en cualquier posición a lo largo de z_i .

- 4. Establecer x_i a lo largo de la normal común entre z_{i-1} y z_i o en la dirección normal al plano $z_{i-1} z_i$ si z_{i-1} y z_i se intersectan.
- 5. Establecer y_i para completar un sistema de referencia de mano derecha.

6. Crear una tabla de los parámetros a_i , d_i , α_i , θ_i

 θ_i : Angulo de x_{i-1} a x medido a lo largo de z_{i-1} α_i : Angulo de z_{i-1} a z medido a lo largo de x_i a_i : distancia a lo largo de x_i desde o_{i-1} a o_i d_i : distancia a lo largo de z_i desde o_{i-1} a o_i

Eslabon	a_i	d_i	α_i	$ heta_i$
1	a_1	d_1	α_1	$ heta_1$
n	a_n	d_n	α_n	θ_n

7. Formar las matrices de transformación T_i sustituyendo con los datos de la tabla

$$T_i = \begin{bmatrix} c\theta_i & -s\theta_i c\alpha_i & s\theta_i s\alpha_i & a_i c\theta_i \\ s\theta_i & c\theta_i c\alpha_i & -c\theta_i s\alpha_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

8. Sacar la transformada final multiplicando las distintas transformadas

$${}_{n}^{0}T = {}_{1}^{0}T, {}_{2}^{1}T, \dots {}_{n}^{n-1}T$$

Eslabon	a_i	α_i	d_i	$ heta_i$
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$ heta_2$

Eslabón	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	θ_2

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{i} & 0 & a_{1}c\theta_{1} \\ s\theta_{1} & c\theta_{i} & 0 & a_{1}s\theta_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{0}T = \begin{bmatrix} c\theta_{12} & -s\theta_{12} & 0 & a_{1}c\theta_{1} + a_{2}c\theta_{2} \\ s\theta_{12} & c\theta_{12} & 0 & a_{1}s\theta_{1} + a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Eslabón	a_i	α_i	d_i	$ heta_i$
1				
2				
3				

Eslabón	a_i	α_i	d_i	θ_i
1	0	0	d_1	$oldsymbol{ heta_1}$
2	0	-90	d_2	0
3	0	0	d_3	0

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{i} & 0 & 0 \\ s\theta_{1} & c\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{2}^{1}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{0}T = \begin{bmatrix} c\theta_{1} & 0 & -s\theta_{1} & -s\theta_{1}d_{3} \\ s\theta_{1} & 0 & c\theta_{1} & c\theta_{1}d_{3} \\ 0 & -1 & 1 & d_{1}+d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ejercicio 1 Robot Planar

Ejercicio 2 Robot Cartesiano

Ejercicio 3 Manipulador con muñeca esférica

Ejercicio 4 PUMA 260

Ejercicio 5

