MATH 239 Tutorial 1 Solution Outline

1. Let E be the set of all subsets of [n] of even size, and let O be the set of all subsets of [n] of odd size. Prove that

$$\sum_{\substack{i \text{ is even} \\ 0 \le i \le n}} \binom{n}{i} = \sum_{\substack{j \text{ is odd} \\ 0 \le j \le n}} \binom{n}{j}$$

by finding a bijection between E and O. Illustrate your bijection by matching up the E and O for [4].

Solution. One way is $f: E \to O$ where for any $A \in E$,

$$f(A) = \left\{ \begin{array}{ll} A \setminus \{1\} & \text{ when } 1 \in A \\ A \cup \{1\} & \text{ when } 1 \not\in A \end{array} \right.$$

In other words, if the even subset has 1 as an element, remove it. Otherwise, add 1 to the subset. Since we started with an even subset and are either removing or adding an element, we now have an odd subset.

The inverse function g is exactly the same, except it is defined on the domain g: $O \to E$. To prove that it is the inverse of f, we take any even subset A and show that g(f(A)) = A.

Case: $1 \in A$. Then $g(f(A)) = g(A \setminus \{1\}) = A$, since $A \setminus \{1\}$ does not include 1. The other case is similar.

2. Give a combinatorial proof of the following identity:

$$\binom{2n}{n} = 2\binom{2n-1}{n-1}.$$

Solution. For clarity we will first do a bit of algebra on the RHS:

$$2\binom{2n-1}{n-1} = \binom{2n-1}{n-1} + \binom{2n-1}{n-1} = \binom{2n-1}{n-1} + \binom{2n-1}{n}$$

Now consider what the LHS counts: It is the number of ways to pick an n-subset of [2n]. For any n-subset of [2n], it either contains the element 1, or it doesn't. If we know a subset does contain the element 1, then we still need to pick the other n-1 elements from the remaining 2n-1 elements, so there are $\binom{2n-1}{n-1}$ ways to do this. If the subset does not contain the element 1, then we need to pick the full n-subset from 2n-1 elements (since we can't pick the element 1). There are $\binom{2n-1}{n}$ ways to do this.

3. Give a combinatorial proof and an algebraic proof of the following identity:

$$\sum_{i=0}^{n} \binom{n}{i} i = n2^{n-1}.$$

1

Solution. Combinatorial: Count $\{(A, x)|A \subseteq [n], x \in A\}$ (sort of like picking a committee from n people, and picking a chair for the committee).

How can we build such a committee? On the RHS, we first pick the committee chair (n ways to do this), and then pick the rest of the committee (2^{n-1} ways to do this). On the LHS, we first pick our committee ($\binom{n}{i}$) ways to do this for committee size i ranging from 0 to n), and then pick our chair (i ways to do this, if we picked a committee of size i).

Algebraic: Differentiate $(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i$, and then let x=1.

4. Determine $[x^{314}]x^3(1+x)^2(1+5x^{10})^{-1}$.

Solution. This is
$$[x^{311}](1+x)^2(1+5x^{10})^{-1}$$
.

The first term only has powers ranging from 0 to 2, and the second term only has powers that are multiples of 10. Since we only care of the coefficient of x^311 , this can only occur when the second term contributes x^{310} , and the first term contributes x^1 .

When the first term contributes x^1 , its coefficient is 2. When the second term contributes x^310 , its coefficient is $(-5)^{31}$. Multiplying these together, we get $2 \cdot (-5)^{31}$.

5. Determine $[x^n](1+x^2)^{-5}(1-3x)^{20}$

Solution.

$$(1+x^2)^{-5}(1-3x)^{20} = \sum_{i\geq 0} \binom{i+4}{4} (-x)^{2i} \sum_{j=0}^{20} (-3)^j \binom{20}{j} x^j = \sum_{i\geq 0} \sum_{j=0}^{20} \binom{i+4}{4} (-3)^j \binom{20}{j} x^{2i+j}.$$

We need 2i+j=n, so j=n-2i. But $0\leq j\leq 20$, so $\frac{n-20}{2}\leq i\leq \frac{n}{2}$. So the coefficient of x^n is

$$\sum_{i=\left\lceil\frac{n-20}{2}\right\rceil}^{\left\lfloor\frac{n}{2}\right\rfloor} \binom{i+4}{4} (-3)^{n-2i} \binom{20}{n-2i}.$$

(Note: We don't have to be this precise. We can simply put $i\geq 0$, and note that $\binom{20}{n-2i}=0$ when n-2i>20 or n-2i<0.)

Additional exercises

1. Consider a road network that resembles an $m \times n$ grid. We wish to walk from the SW corner to the NE corner of the grid so that we only walk in E or N direction. Let $W_{m,n}$ be the set of all such walks. For example, the set of all such walks on a 2×3 grid is illustrated below:

Define $S_{m,n}$ to be the set of all subsets of $[m+n] = \{1, 2, \dots, m+n\}$ of size m.

Find a bijection between $W_{m,n}$ and $S_{m,n}$, and determine the number of walks in $W_{m,n}$.

Solution. Write the walk W as a sequence of E's and N's, map a walk to the subset $\{i|W_i=E\}$. This is reversible. The number is $\binom{m+n}{m}$.

- 2. Consider the k-tuples (T_1, \ldots, T_k) where each $T_i \subseteq [n]$. In other words, if P is the set of all subsets of [n], then such a k-tuple is in the cartesian product P^k . We define the following two subsets of P^k :
 - (a) S is all such k-tuples where $T_1 \subseteq T_2 \subseteq \cdots \subseteq T_k$.
 - (b) T is all such k-tuples that are mutually disjoint, i.e. $T_i \cap T_j = \emptyset$ for any $i \neq j$.

Find a bijection between S and T, which proves that |S|=|T|. What is this cardinality?

Solution. For each (T_1, \ldots, T_k) in S, form $(T_1, T_2 \setminus T_1, T_3 \setminus T_2, \ldots, T_k \setminus T_{k-1})$ in T. The cardinality is $(k+1)^n$ (for T, for each element in [n], it is in either one of the k sets, or not at all. So k+1 choices for each of the n elements.)

3. Prove the following identity (using any correct method):

$$2^{n-r} \binom{n}{r} = \sum_{k=r}^{n} \binom{n}{k} \binom{k}{r}$$

Solution. Count the set of objects $\{(A, B)|A \subseteq B \subseteq [n], |A| = r\}$.