RETINA KAN DAMARLARINI ÇIKARMAK İÇİN EŞİKLEME TEMELLI MORFOLOJIK BIR YÖNTEM HANDE GÜLMEN

02205076013

GİRİŞ

Yapılan bu çalışmada, renkli retina fundus görüntüsü üzerinde retina damarlarını otomatik olarak bölütleyen bir yöntem üzerinde çalışılmıştır. Retina damar ağ yapısını bölütlemek için morfolojik işlemlere dayalı bir yöntem retina görüntüleri üzerine uygulanmıştır. Morfolojik işlemlerin uygulandığı fundus görüntüsüne üç farklı eşikleme yöntemi uygulanmıştır.

- 1.Çoklu eşitleme
- 2. Maksimum Entropi Tabanlı Eşikleme
- 3. Bulanık Kümeleme Tabanlı Eşikleme

Eşikleme sonucunda bölütlenmiş damar görüntüleri elde edilmiş .Maklade açıklanan çalışmada amaç farklı eşikleme algoritmalarının aynı görüntüler üzerindeki performans karşılaştırmasını sağlamaktır.

Deneysel sonuçlar, önerilen yöntemin doğru bir şekilde tespit edebildiğini göstermiştir. Eşikleme algoritmalarının 40 görüntüden oluşan veri seti üzerindeki doğruluk oranı Bulanık Mantık Tabanlı Eşikleme için 0.952, Maksimum Entopi Tabanlı Eşikleme için 0.950 ve Çoklu Eşikleme için 0.925 olarak hesaplanmış.

- Genelikle retina damar bölütleme işlemi işin geleneksel yöntemler ve son zamanlarda popüler hale gelen derin öğrenme yöntemleri önerilmiş. Derin öğrenme yöntemleri ile retina damar bölütleme sistemlerinin geliştirilmesi daha sağlam sonuçlar verir fakat donanım bağlılığı gerektirir. geleneksel yöntemler olarak adlandırılan denetimli/denetimsiz öğrenme yöntemleri, morfolojik yöntemler, uyum süzgeci gibi yöntemler daha hızlı ve daha anlaşılabilir yöntemler olduğu için makalede açıklanan çalışmada geleneksel bir yöntem olan morfolojik tabanlı bir yöntem kullanılmış.
- Retina oksijensiz kalırsa retinada istenmeyen yeni hasas damarlar oluşur. Bu durum DR hastalığının habercisidir. Bu istenmeyen hasas damarları tespit etmek için retina damar ağ yapısının bilinmesi gerekir. Bu makalede, retina damar ağ yapısını otomatik olarak bölütleyen morfolojik tabanlı bir yöntem önerilmiş. Bu yöntem morfolojik işlemlere dayalı iki farklı yöntemden esinlenerek oluşturulm. Bu yöntemde, ilk önce RGB renk uzayındaki görüntüler gri ölçekli görüntülere dönüştürülüp sonrasında ise gri ölçekli görüntünün tersi üzerinde üst-şapka, alt-şapka ve morfolojik açma yöntemi uygulanmış.
- Morfolojik üst ve alt şapka yöntemin kullanılması retina damalarının belirginleştirilmesi sağlar. Belirginleştirilmiş retina görüntülerini bölütlemek için üç farklı eşikleme yöntemi kullanılır. Bunlar;
- Çoklu Eşikleme yöntemi, Maksimum Entropi Tabanlı Eşikleme yöntemi ve Bulanık Kümeleme Tabanlı
 Eşikleme yöntemi

MATERYAL VE METOT

• 1.MORFOLOJİK İŞLEMLER

Morfolojik işlemler ,görüntüyü basitleştirir ve görüntünün temel özelliklerini korur. Çalışmada kulanılan olan morfolojik işlemlerin amacı üst-şapka ve alt-şapka dönüşümleri kan damarlarına belirginlik kazandırmak için .

Üst şapka dönüşümü, bir giriş görüntüsüne morfolojik açma işlemi uygulandıktan sonra uygulama sonucunun orijinal giriş görüntüsünden çıkarılması işlemidir.

.Alt-şapka dönüşümü, bir giriş görüntüsüne morfolojik bir kapama işlemi uygulandıktan sonra uygulama sonucunun orijinal giriş görüntüsünden çıkarılması işlemidir.

- 2.Eşikleme yöntemleri
- Görüntü eşikleme sadeliği ve sağlamlığı nedeni ile en sık kullanılan görüntü bölütleme yöntemlerinden biri. Eşikleme işlemi, gri ölçekli bir görünün yoğunluk seviyesine göre sınıflara ayrıldığı bir işlemdir. Bu sınıflandırma işlemi için tanımlanmış kurallara uygun bir eşik değeri seçmek gerekir. çalışmada kullanılan eşikleme yöntemleri;
- ----Çok seviyeli eşikleme
- Gri ölçekli görüntüyü birkaç farklı bölgeye ayırabilen bir işlemi
- ----Maksimum entropi tabanlı eşikleme
- Araştırmacılar tarafından tercih edilen bir yöntemdir.
- Sınıflar arasındaki varyansı maksimize etmek ya da sınıf içi varyansı minimize etmek yerine sınıflar arası entropi maksimize edilir. Bu yönteme göre, bir görüntüdeki yoğunluk değerlerinin olasılık dağılımına katkı veren ön ve arka plan görüntüsüne ait entropi değerleri ayrı ayrı hesaplanır ve toplamları maksimize edilir. Ardından, entropinin toplamını maksimize eden bir optimum eşik değeri hesaplanır.
- -----Bulanık mantık tabanlı eşikleme
- Nesnelerin kümelere olan aitliğini ifade etmek için bir derece kavramı kullanır.Her nesne için, toplam derece 1'dir.Her pikselin üyelik değerini hesaplamak için se

• Bölütleme görüntülerini ikili görüntülere dönüştürmek için kullanılacak eşik hesaplaması;

Seviye
$$0 = \frac{\max(I(c1 == 1)) + \min(I(c2 == 2))}{2}$$

Seviye $1 = \frac{\max(I(c2 == 1)) + \min(I(c3 == 3))}{2}$

3. Kullanılam yöntem

Önerilen yöntemde, veri setinde bulunan fundus görüntülerine ait damarların bölütlenmesi sağlanmıştır. Öncelikle, veri setinde bulunan görüntüler RGB renk uzayından gri ölçekli görüntülere dönüştürülür. Gri

ölçekli görüntülerin tersi üzerinde önerilen sistem uygulanır.

• 3.1 Veri seti

- Önerilen yöntem diğer yöntemlerle kıyaslanabilir olması açısından halka açık olarak sunulan DRIVE veri seti üzerinde test edilmiş. DRIVE veri setindeki görüntüler 45° görüş alanında Canon 3CCD ile çekilmiştir. Görüntülerin her biri 565 × 584 piksel boyutunda 20 eğitim ve 20 test görüntüsünden oluşmaktadır. Veri setindeki damar pikselleri, deneyimli bir göz doktoru tarafından eğitilmiş üç gözlemci tarafından manuel olarak bölümlere ayrılmıştır. Test seti iki farklı gözlemci tarafından iki kez bölütlendirilmiş görüntülerden oluşur.
- 3.2 Morfolojik işlemler
- Retina kan damarları, retina arka planına göre daha koyu görünür bazı durumlarda ise kan damarlarının merkez çizgisi bölgesinde parlaklık görününür. Bu durumu ortadan kaldırmak için morfolojik açma işlemi uygulanır. Morfolojik açma işlemi yarıçapı 21 olan bir disk oluşturup oluşturulan bu disk gri ölçekli görüntünün tersine uygulanarak morfolojik açma işlemi yapılır. Sonrasındaysa uzunluğu 21 olan bir çizgisel yapı elemanı oluşturulup, oluşturulan bu çizgisel yapı elemanı gri ölçekli görüntünün tersine uygulanarak üst-şapka ve alt-şapka dönüşümleri tamamlanmış olur.

• Yapılandırma elemanı dikey yönlere sahip olduğunda ve yapılandırma elemanı damar genişliğinden daha büyük olduğu durumlarda :fundus içerisinde tutulamadığında bir damarı veya damarın bir kısmını yok olması problemleri ortaya çıkabalir. Aslında yapılandırma elemanının yönü ile damar paralel olduğunda bir yok olma olayı meydana gelmeyecektir.M. Fraz vd., bu probleme çözüm olması için 21 piksel uzunluğunda bir çizgisel yapılandırma elemanı belirlemiştir. Bu yapısal elemanı 22.5°'lik açılarla döndermiş ve en büyük çapa sahip damarı çıkarmak için bir toplam üst şapka dönüşümü kullanmıştır.M.Fraz çalışma görüntüleri;

• M. D. Saleh vd. tarafından önerilen matematiksel ifade kullanılmış ve denklemden elde edilen sonuçlar bu matematiksel ifadeye göre nihai sonuca ulaşmıştır. M. D. Saleh vd. matematiksel ifadede morfolojik açma işleminin üzerine üst-şapka sonucu eklenerek elde edilen sonuç alt-şapka sonucundan çıkarılır. Uzunluğu 21 piksel olan ve 22.5°'lik açılarla dönerek her açı için oluşturulan toplam morfolojik açma işlemi toplam üst şapka dönüşümüne eklenmiş ve elde edilen sonuç toplam alt şapka dönüşümünden çıkarılmıştır. Bu aşamaya ait görsel sonuçların

görüntüleri;

Şekil 5. Önerilen yöntem sonucu. İlk görüntü Denklem (11) sonucu, İkinci görüntü ilk görüntünün tersi alınmış halidir.

BULGULAR VE TARTIŞMA

• Üç farklı eşikleme algoritması iyileştirilmiş fundus görüntüleri üzerinde uygulanarak damar piksellerinin bölütlenmesi sağlanmış. İyileştirilmiş görüntüler eşikleme işlemine tabi tutulduktan sonra çıktı görüntüleri üzerinde performans iyileştirilmesi yapılıp performans iyileştirme yönteminde damara ait olmayan damar benzeri görüntüler morfolojik işlemler kullanılarak yok edilmiş.

Şekil 6. Performans İyileştirme Sonuçları. Birinci satırlar eşikleme sonuçlarını, ikinci satırlar iyileştirme sonuçlarını göstermektedir. Orijinal görüntünün altındaki görüntüler 1.manuel bölütlenmiş gerçek zemin görüntüleridir.

Doğruluk oranı ölçüsü kulanarak uygulanan yöntemin başarı ölçütünü hesaplaplanmış;

ACC =	TP + TN
	$\overline{TP + FP + TN + FN}$

Tablo 1. Eși	Tablo 1. Eşikleme yöntemlerinin doğruluk oran sonuçları				
Görüntü ismi	Bulanık Mantık Tabanlı Eşikleme	Maksimum Entropi Tabanlı Eşikleme	Çoklu Eşikleme Yöntemi		
01_test	0.9610	0.95864	0.9550		
02_test	0.9511	0.95653	0.9579		
03_test	0.9522	0.93426	0.9301		
04_test	0.9491	0.95705	0.9570		
05_test	0.9526	0.94855	0.9450		
06_test	0.9485	0.94221	0.9136		
07_test	0.9505	0.94895	0.9444		
08_test	0.9510	0.94043	0.9148		
09_test	0.9530	0.94627	0.9345		
10_test	0.9586	0.95376	0.9518		
11_test	0.9494	0.94976	0.9479		
12_test	0.9550	0.95244	0.9072		
13_test	0.9500	0.94601	0.9460		
14_test	0.9617	0.95821	0.9344		
15_test	0.9636	0.96398	0.9493		
16_test	0.9562	0.95520	0.9536		
17_test	0.9574	0.95023	0.9290		
18_test	0.9569	0.95723	0.9454		
19_test	0.9713	0.96701	0.9561		
20_test	0.9582	0.95505	0.9110		
21_training	0.9582	0.95968	0.9630		
22_training	0.9533	0.95464	0.9524		
23_training	0.9173	0.95349	0.8338		
24_training	0.9382	0.94285	0.9435		
25_training	0.9459	0.92455	0.9161		
26_training	0.9545	0.94524	0.8448		
27_training	0.9479	0.95131	0.9504		
28_training	0.9493	0.95311	0.9523		
29_training	0.9589	0.95624	0.9478		
30_training	0.9447	0.93437	0.5305		
31_training	0.9464	0.94877	0.9505		
32_training	0.9609	0.95895	0.9602		
33_training	0.9588	0.95740	0.9563		
34_training	0.9213	0.92242	0.8836		
35_training	0.9574	0.95969	0.9567		
36_training	0.9400	0.93858	0.9420		
37_training	0.9542	0.95534	0.9527		
38_training	0.9524	0.94959	0.9481		
39_training	0.9507	0.94576	0.9114		

Tablo 2. Eş	Tablo 2. Eşikleme yöntemlerinin değerleri				
Görüntü	Bulanık Mantık	Maksimum	Çoklu		
ismi	Tabanlı	Entropi Tabanlı	Eşikleme		
	Eşikleme	Eşikleme	Yöntemi		
01_test	78	84	81		
02_test	96	81	96		
03_test	61	90	64		
04_test	103	74	102		
05_test	66	80	72		
06_test	60	84	64		
07_test	78	84	84		
08_test	56	83	64		
09_test	60	85	65		
10_test	69	85	75		
11_test	101	79	101		
12_test	61	86	67		
13_test	76	85	80		
14_test	69	87	73		
15_test	81	86	87		
16_test	83	84	87		
17_test	65	87	68		
18_test	74	84	79		
19_test	71	83	75		
20_test	57	88	62		
21_training	90	84	93		
22_training	86	80	88		
23_training	67	104	71		
24_training	92	82	93		
25_training	48	91	62		
26_training	52	88	59		
27_training	91	81	94		
28_training	94	81	95		
29_training	68	79	75		
30_training	39	98	44		
31_training	114	71	112		
32_training	75	80	80		
33_training	82	85	86		
34_training	85	86	88		
35_training	92	82	94		
36_training	84	86	87		
37_training	96	80	98		
38_training	74	83	79		
39 training	61	91	64		
40_training	63	79	67		

Tablo 3. Diğer yöntemlerle performans karşılaştırması				
Literatürdeki Yöntemler	Doğruluk Oranı			
BenjunYin vd. [22]	0.943			
B.Barkana vd. [23]	0.950			
Peter Bankhead vd. [24]	0.937			
M.M. Fraza vd. [11]	0.947			
J.Zhang vd. [17]	0.943			
Önerilen Yöntem				
Bulanık Mantık Tabanlı Doğruluk Oranı	0.952			
Maksimum Entropi Tabanlı Doğruluk	0.950			
Orani				
Eşikleme Tabanlı Doğruluk Oranı	0.925			

SONUÇLAR

- Paylaşıma açık olarak sunulan DRIVE veri seti üzerinde morfolojik işlemlere dayalı bir damar iyileştirme yöntemi kullanılmıştır. Damar iyileştirme aşamasından sonra Çoklu Eşikleme, Bulanık Mantık Tabanlı Eşikleme ve Maksimum Eşikleme yöntemleri kullanılarak damar bölütlemesi yapılmıştır. Bu yöntem temelde morfolojik işlemlere dayanmış olsa da asıl amaç eşikleme algoritmalarının yöntem üzerindeki performanslarının karşılaştırılmasıdıdır.Bu makalede, Bulanık Mantık Tabanlı Eşikleme yönteminin ortalama doğruluk oranı 0.952 olarak hesaplanmış ve diğer iki eşikleme yönteminden daha yüksek bir değere sahip olmuş.
- Elde edilen deneysel sonuçlar tatmin edici bir seviyede.
- Önerilen yöntem geliştirilmeye açık.
- Halka açık bir veri seti kullanıldığı için karşılaştırılabilinir ve doğruluğu test edilebilinir.