Square Root & Cube Root – Căn Bậc 2 & Căn Bậc 3

Nguyễn Quản Bá Hồng*

Ngày 15 tháng 4 năm 2023

Tóm tắt nội dung

[EN] This text is a collection of problems, from easy to advanced, about square root & cube root. This text is also a supplementary material for my lecture note on Elementary Mathematics grade 9, which is stored & downloadable at the following link: GitHub/NQBH/hobby/elementary mathematics/grade 9/lecture¹. The latest version of this text has been stored & downloadable at the following link: GitHub/NQBH/hobby/elementary mathematics/grade 9/square root & cube root².

[VI] Tài liệu này là 1 bộ sưu tập các bài tập chọn lọc từ cơ bản đến nâng cao về *các tam giác đồng dạng*. Tài liệu này là phần bài tập bổ sung cho tài liệu chính – bài giảng GitHub/NQBH/hobby/elementary mathematics/grade 9/lecture của tác giả viết cho Toán Sơ Cấp lớp 9. Phiên bản mới nhất của tài liệu này được lưu trữ & có thể tải xuống ở link sau: GitHub/NQBH/hobby/elementary mathematics/grade 9/square root & cube root.

Nội dung. Định lý Thales, tam giác đồng dạng.

Mục lục

1	Square Root – Căn Bậc 2	2
2	Căn Bậc 2 & Hằng Đẳng Thức $\sqrt{A^2} = A $	2
3	Liên Hệ Giữa Phép Nhân & Phép Khai Phương	2
4	Liên Hệ Giữa Phép Chia & Phép Khai Phương	2
5	Biến Đổi Đơn Giản Biểu Thức Chứa Căn Thức Bậc 2	2
6	Rút Gọn Biểu Thức Chứa Căn Thức Bậc 2	2
7	Cube Root – Căn Bậc 3	2
TT:	Thi lian	

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

URL: https://github.com/NQBH/hobby/blob/master/elementary_mathematics/grade_9/NQBH_elementary_mathematics_grade_9.pdf.

 $^{^2 \}text{URL: https://github.com/NQBH/hobby/blob/master/elementary_mathematics/grade_9/similar_triangle/NQBH_square_root_cube_root.pdf.}$

- 1 Square Root Căn Bậc 2
- 2 Căn Bậc 2 & Hằng Đẳng Thức $\sqrt{A^2} = |A|$
- 3 Liên Hệ Giữa Phép Nhân & Phép Khai Phương
- 4 Liên Hệ Giữa Phép Chia & Phép Khai Phương
- 5 Biến Đổi Đơn Giản Biểu Thức Chứa Căn Thức Bậc 2
- 6 Rút Gon Biểu Thức Chứa Căn Thức Bâc 2

Kiến thức cơ bản. $\boxed{1}$ Với số $a \in \mathbb{R}$, $a \ge 0$, số $b \in \mathbb{R}$ được gọi là căn bậc 2 của số a nếu $b^2 = a$. $\boxed{2}$ Số a < 0 không có căn bậc 2. Số a = 0 chỉ có 1 căn bậc 2 là số 0. Số a > 0 có đúng 2 căn bậc 2 là số b & số -b (có thể gom lại thành $\pm b$) trong đó b được chọn là số dương, b > 0, ký hiệu bởi \sqrt{a} , & được gọi là căn bậc 2 số học của a. $\boxed{3}$ Với biểu thức đại số A, biểu thức đại số B không âm được gọi là căn bậc 2 của A, ký hiệu $B = \sqrt{A}$, nếu $B^2 = A$, A được gọi là biểu thức đưới dấu căn bậc 2. $\boxed{4}$ Điều kiện để A có căn bậc 2 là $A \ge 0$. $\boxed{5}$ Với biểu thức đại số A, ta luôn có $\sqrt{|A^2|} = |A|$. $\boxed{6}$ Với 2 biểu thức đại số A, B không âm, ta luôn có $\sqrt{AB} = \sqrt{A}\sqrt{B}$, $\sqrt{C^2B} = |C|\sqrt{B}$. $\boxed{7}$ Với biểu thức đại số A, B thỏa mãn $B \ne 0$, $AB \ge 0$ luôn có: $\sqrt{\frac{A}{B}} = \frac{\sqrt{|A|}}{\sqrt{|B|}}$, $\frac{A}{B} = \frac{\sqrt{AB}}{|B|}$.

Bài toán 1 (Bình, Ngọc, and Sơn, 2021, Ví dụ 1.1, p. 5). Rút gọn biểu thức: $\sqrt{(7+4\sqrt{3})(a-1)^2}$.

$$Gi \dot{a} i. \ \sqrt{(7+4\sqrt{3})(a-1)^2} = \sqrt{7+4\sqrt{3}} \sqrt{(a-1)^2} = \sqrt{(2+\sqrt{3})^2} \sqrt{(a-1)^2} = |2+\sqrt{3}||a-1| = (2+\sqrt{3})|a-1|.$$

Lưu ý 1. Đẳng thức: $(a + b\sqrt{c})^2 = a^2 + 2ab\sqrt{c} + b^2c = (a^2 + b^2c) + 2ab\sqrt{c}, \forall a, b, c \in \mathbb{R}, c \ge 0.$

Bài toán 2. Cho $a,b,c,A,B \in \mathbb{Z}, c \geq 0$ thỏa mãn đẳng thức $(a+b\sqrt{c})^2 = A+B\sqrt{c}$. (a) Tìm mối quan hệ của a,b,c,A,B. Biểu diễn (A,B) theo (a,b,c). $(b)^*$ Biểu diễn (a,b) theo (c,A,B).

7 Cube Root – Căn Bậc 3

Lưu ý 2.
$$D{\mathring{a}ng} \ thức: (a+b\sqrt[3]{c})^3 = a^3 + 3a^2b\sqrt[3]{c} + 3ab^2\sqrt[3]{c^2} + b^3c = (a^3+b^3c) + 3a^2b\sqrt[3]{c} + 3ab^2\sqrt[3]{c^2}, \ \forall a,b,c \in \mathbb{R}.$$

Bài toán 3. Cho $a, b, c, A, B \in \mathbb{Z}$, $c \geq 0$ thỏa mãn đẳng thức $(a + b\sqrt[3]{c})^3 = A + B\sqrt[3]{c} + C\sqrt[3]{c^2}$. (a) Tìm mối quan hệ của a, b, c, A, B, C. Biểu diễn (A, B, C) theo (a, b, c). $(b)^*$ Biểu diễn (a, b) theo (c, A, B, C).

Tài liệu

Bình, Vũ Hữu, Phạm Thị Bạch Ngọc, and Nguyễn Tam Sơn (2021). *Tài Liệu Chuyên Toán Trung Học Cơ Sở Toán 9. Tập 1:* Dại Số. Nhà Xuất Bản Giáo Dục Việt Nam, p. 192.