P. Seidel, Rings of dofinition of Fulloya regover of CY hypersular 7/18/2017
X symplectic manifold, $c_1(X) = (\omega_X)$ (Funo, or monstre) Y C X anticonnix-1 hypersurface, $c_1(Y) = 0$.
$Y \subset X$ anticonsist. I hypersurface, $C_1(Y) = 0$.
Assump: Y is the member of a Lefsdetz pencil of such hypersufcer, with base locus
无 。
B(Y) Filiaga category, II-graded Ass category over C((g)).
We also have: the relative Tuliage category
$\mathcal{F}(Y)$ Fulraya category, \mathbb{Z} -graded Ass category over $\mathbb{C}((q))$. We also have: the relative Fulraya category apple $\mathbb{F}(Y,\mathbb{Z})$ $\mathfrak{G}((q))$ $\mathfrak{F}(Y)$, and the "affix" Fulraya category
F(Y/Z), over C, with
$F(Y Z)$, over C , with $F(Y,Z) \otimes_{C[q]} C \longrightarrow F(Y Z)$
Vanishing cycles for the pencil firm or LII subcotegores BCF(Y/Z), Bg = F(Y,Z).
Quarton: Overwhith sibring of CCQI is By defined? (nearly, on mobile discipled are this ring)
Application If B is defined one RCDIGI, the full subrolegy of F(Y)
Application: If B_q is defined one $RCDIQI$, the full subrolegy of $F(Y)$ consulting of LCY with $H^2(1)=0$ is defined over the algebraic closure
$\mathbb{R} \subset \mathbb{G}((\mathbb{Q}))$.
This a general algebro-geometric principle.
Exilet M be colver used that a debod over Q If F > M is a verter
Lindle with Ext'(E, E) = 0, then E is defined over Q. (or rather, is unapplied to me which is)
Being defred over R" is not recessarily well-behaved up under homotopically well-behaved.
Ex: Take chain complexes $h (C,d) \stackrel{f}{\longleftarrow} (C,d) = 0$ $e^{-id} = 0$
h (C,d) =/ gof=id & fog = id
S Lh+hd+id.

Take a defenction $d_q = d + O(q)$ of d, and transfer it to E. Explain forms h; de = I + g (de - d) f + g (de - d) h (de - d) f + - (infinite sun!)

The de is defined over R = C[eq] the rare is not necessarily tree for de .

I maybe ohit oplaces are finite-dimensionly ble tens are eventually 0) Ex: Lot B, B be introppe minimal Aso algebras over C that are Aso-isomorphic. If By is a minimal dobration of B dollard one R, one can had a conseponding definition By with the same property. (in thes cox: conshow finiteness of sunsappearing is tensfer situation) Conformately, this doesn't apply in our case here & So, have to be careful, and/or flinte of more stratured models,), Conjecture! Let $r = dim H^2(X)$. Then there are explicitly given $g_1, -g_{r-1} \in \mathbb{C}[q]^{\times}$, $g_1 \in \mathbb{C}[q]$, $g_1 \in \mathbb{C}[q]$, $g_1 \in \mathbb{C}[q]$ such that B_g is defined over $C[g_1^{\pm 1}, g_{r-1}, f] \in C[g]$ Recall that vanishing cycles are ordered, (V1, -, Vm), & $B = \bigoplus_{i,j=1}^{n} CF^*(V_i, V_j)$ Vi is a sphere, so I can assume CF*(Vi,Vi) = C·ei & C·pi. Then, B=AOP.

	where:
	A = DCF*(Vi,Vj) D D.e; A x subalgebra
	and $P = \bigoplus CF^*(V_i, V_j) \bigoplus \bigoplus \bigoplus .p_i \bigoplus and similarly$ i>j
	Bq = $Aq \oplus Pq$. Let's say A has "ineight" O " and P has "neight -1". Then the A so structure has pieces of neights O , 1 , 2 , 3 , (neight $o: A^{or} \rightarrow A$ & $A^{or} \circ P \otimes A^{or} \rightarrow B$ wought $1: A^{or} \circ P \otimes A^{or} \rightarrow A$ et
	(weight o: dor -> of & dor @ B @ dos -> B weight 1: dor @ B @ dos -> of et
	Then, Conjecture: the wordst w part of B_g is a polynomial in f of degree $\leq w$ whose coefficients lie in $C[g_g^{\pm 1}, -g_{rg}]$.
Ī	$r=1$ \Rightarrow Ag is the towal deformation of A (Auroux-Katzarhar-Orlor), the only information lies in f. Let X be the blown p of X along Z , the base loss.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	H ² (\hat{X}) = $C[Y] \otimes C[\hat{Z}]$ Consider GW mut ownthing sections (sphere in \hat{X} u/degree 1 are P') and set j'almost $C\omega$; actual $C\omega$ is $C\hat{Z}$) thanks of fiber.
	$Z(x) = \sum_{A \in H_2(\hat{X})} Z_A q^{A \cdot LZ_J} \in H^2(\hat{X}; C(lq))$
	A. [Y]=1 $=-1$. Similarly, ansider bisectors $=(2)$ \in $=$ (5) \in $=$ (5) $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
	Write $q^{-2} \left[\hat{Z} \right] = \psi_{Z^{(2)}} - \eta \left[Y \right]$, where $\left[\psi \in C[q], \psi = 1 + O(q), \chi \in C[q] \right]$ (no problem $b/c z^{(i)}$ has const. solutions, so $\psi \neq 0$, e.g., ψ invertible)
	(NO PROJEM VIL & MAS CONST. SOLUTINES, SO 10 TO P.g.,

