DIFFERENTIAL COHOMOLOGY SEMINAR 4 (DRAFT)

TALK BY ALESSANDRO NANTO

In the last talk we learned the definition of a differential cohomology theory, as a sheaf valued in spectra on the site of manifolds. This talk continues our journey through differential cohomology theories, and focuses on the following three topics:

- (1) We want to learn how to construct non-trivial examples out of sheaves valued in chain complexes.
- (2) We want to understand how we can extend classical cohomology operations to the setting of differential cohomology theories.
- (3) We want to introduce suitable analogues of fiber-wise integration.

1. ABELIAN GROUPS, SPECTRA AND THE HEART

Let us start by reviewing the relation between abelian groups, rings and spectra.

Definition 1.1. Let $n \in \mathbb{Z}$ and X be a spectrum, define $\pi_n(X) := \pi_0(\Omega^{\infty + n}X) = \pi_0(X_{-n})$. We call π_n the n-th homotopy group of X.

Remark 1.2. Note that since $X_n \simeq \Omega^2 X_{n+2}$, for any n, the set $\pi_0(X_n)$ underlies the structure of an abelian group.

The category Sp underlies the structure of a symmetric monoidal ∞ -category ([Lur17, Corollary 4.8.2.19]). Following [Lur17], we denote by \otimes the tensor product on Sp.

Definition 1.3. A (commutative) algebra object in Sp is called an $(\mathbb{E}_{\infty}$ -)ring spectrum, see [Lur17, Definition 7.1.0.1]. Given a ring spectrum R, denote by Mod_R the corresponding category of left R-module spectra, see [Lur17, Definition 7.1.1.2].

Remark 1.4. The sphere spectrum \mathbb{S} acts as the monoidal unit of $\mathbb{S}p$, therefore it is a \mathbb{E}_{∞} -ring spectrum. The category $\mathrm{Mod}_{\mathbb{S}}$ is canonically equivalent to $\mathbb{S}p$.

Definition 1.5. Denote by $\operatorname{Sp}_{\geq 0} \subseteq \operatorname{Sp}$ the full sub-category generated by *connective spectra*, i.e. spectra X such that $\pi_n(X) \simeq 0$, for all n < 0. Denote by $\operatorname{Sp}^{\heartsuit} \subseteq \operatorname{Sp}_{\geq 0}$ the *heart of spectra*, i.e. the full sub-category generated by spectra X such that $\pi_n(X) \simeq 0$, for all n > 0.

We have the following result relating connective spectra and the heart, which follow immediately.

Lemma 1.6. Let X be a connective spectrum. The following are equivalent:

- (1) X is in the heart.
- (2) $\pi_n(\Omega^{\infty}X) = 0$, for all n > 0.
- (3) $\operatorname{Hom}_{S_{\alpha}}(S, \Omega^{\infty}X) \simeq 0$, for all connected, pointed spaces S.
- (4) X is local with respect to the class of maps $\Sigma^{\infty}S \to 0$, for every connected pointed space S.

The category $\mathrm{Sp}_{\geq 0}$ is presentable and π_0 induces an equivalence between the heart and Ab ([Lur17, Proposition 1.4.3.6]). The heart is a sub-category of local objects of connective spectra, therefore the inclusion $\mathrm{Ab} \simeq \mathrm{Sp}^{\heartsuit} \subseteq \mathrm{Sp}_{\geq 0}$ is a right adjoint. The category $\mathrm{Sp}_{\geq 0}$ is closed under \otimes and, given X, Y connective spectra,

(1.7)
$$\pi_0(X \otimes Y) \simeq \pi_0(X) \otimes \pi_0(Y)$$

see [Dav24, Theorem 2.3.28]

Definition 1.8. Given an abelian group A, denote by HA the (unique up to equivalence) spectrum of the heart such that $\pi_0(HA) \simeq A$. We call HA the Eilenberg-Mac Lane spectrum of A.

Date: 03.06.2025 & 18.06.2025

Using Equation (1.7) and the adjunction between H and π_0 , one can prove H, viewed as a functor $Ab \to Sp$, is lax monoidal. In particular, if R is a commutative ring, then HR is a connective \mathbb{E}_{∞} -ring spectrum. On the other hand, if R is a connective \mathbb{E}_{∞} -ring spectrum and M a connective module, then $\pi_0(M)$ is a $\pi_0(R)$ -module.

Definition 1.9. Given a commutative ring R, denote by $Ch(R) = Ch(Mod_R)$ the ordinary category of unbounded chain complexes. Let $\mathcal{D}(R)$ be the ∞ -localization of Ch(R) at the class of quasi-isomorphisms.

Similar to the heart of spectra, given an \mathbb{E}_{∞} -ring spectrum R, denote by $\operatorname{Mod}_R^{\heartsuit} \subseteq \operatorname{Mod}_R$ the full subcategory generated by R-modules such that the underlying spectrum belongs to the heart of spectra.

Theorem 1.10 (Stable Dold-Kan Correspondence). Let R be a commutative ring.

- (1) $\operatorname{Mod}_R \simeq \operatorname{Mod}_{HR}^{\heartsuit}$ via taking Eilenberg-Mac Lane spectra. (2) The equivalence in (1) extends to an equivalence $H: \mathcal{D}(R) \simeq \operatorname{Mod}_{HR}$ of symmetric monoidal ∞ categories.

Proof. (1) is [Lur17, Proposition 7.1.1.13], while (2) is [Lur17, Theorem 7.1.2.13].
$$\Box$$

An interesting consequence of Theorem 1.10 is the following:

Corollary 1.11. Given $F \in \mathcal{D}(R)$, then $\pi_n(HF) \simeq H_n(F)$, for all $n \in \mathbb{Z}$.

Proof.

$$\pi_n(HF) = \pi_0(\Omega^{\infty+n}HF)$$

$$\stackrel{\textcircled{1}}{\simeq} \pi_0(\operatorname{Hom}_{\operatorname{\mathbb{S}p}}(\Sigma^n\mathbb{S}, HF))$$

$$\stackrel{\textcircled{2}}{\simeq} \pi_0(\operatorname{Hom}_{\operatorname{Mod}_{HR}}(\Sigma^nHR, HF))$$

$$\stackrel{\textcircled{3}}{\simeq} \pi_0(\operatorname{Hom}_{\mathcal{D}(R)}(R[n], F))$$

$$\stackrel{\textcircled{4}}{\simeq} H_n(F)$$

(1) The functor $\Omega^{\infty+n}$ is corepresented by the shifted sphere spectrum $\Sigma^n \mathbb{S}$. (2) The forgetful functor $\operatorname{Mod}_{HR} \to \operatorname{Mod}_{\mathbb{S}} \simeq \operatorname{Sp}$ is right adjoint to tensoring with HR and $HR \otimes (\Sigma^n \mathbb{S}) \simeq \Sigma^n HR$. (3) Theorem 1.10 (4) π_0 of the mapping space $\text{Hom}_{\mathcal{D}(R)}(R[n], F)$ is equivalent to the mapping space $R[n] \to F$ in the ordinary derived category of R, i.e. homotopy classes of maps $R[n] \to F$, which correspond exactly to classes in $H_n(F)$.

2. Locally constant sheaves on manifolds

Let \mathcal{C} be a presentable ∞ -category. The ∞ -categorical background given in previous talks allows to conclude the existence of a number of functors. Here we give a (somewhat) explicit formula for one.

Remark 2.1. Let B be a full, dense sub-site of Mfd, recall then that, for every presentable category C, the restriction functor induces an equivalence $Shv(Mfd, \mathcal{C}) \simeq Shv(\mathcal{B}, \mathcal{C})$.

Evaluation at $\{0\}$ induces an adjunction $(L,\Gamma): \mathcal{C} \to \operatorname{Shv}(\mathcal{M}fd,\mathcal{C})$, where the functor Γ is evaluation at $\{0\}$, while the left adjoint L maps $C \in \mathcal{C}$ to the sheafification of the constant pre-sheaf with value C.

Remark 2.2. Every presentable ∞-category C is uniquely cotensored over S, see [Lur09, Remark 5.5.2.6]. More explicitly, for every space S and object C, there is an object C^S together with a natural equivalence

$$\operatorname{Hom}_{\mathcal{E}}(S, \operatorname{Hom}_{\mathcal{C}}(-, C)) \simeq \operatorname{Hom}_{\mathcal{C}}(-, C^S)$$

Definition 2.3. Denote by Sing the functor $\mathcal{M}fd \to \mathcal{S}$ mapping a manifold to its underlying space of smooth simplexes. Given a presentable ∞ -category \mathcal{C} , denote by \flat the composition $\mathcal{C} \to \operatorname{Fun}(\mathcal{S}^{\operatorname{op}}, \mathcal{C}) \to \operatorname{Fun}(\mathcal{M}\operatorname{fd}^{\operatorname{op}}, \mathcal{C})$, the first functor coming from Remark 2.2, the second being pre-composition with Sing^{op}.

Explicitly, given an object $C \in \mathcal{C}$, the associated pre-sheaf bC maps a manifold M to $C^{\operatorname{Sing}(M)}$.

Remark 2.4. Given a topological space X, denote by $\operatorname{Sing}^{top}(X)$ the corresponding space, i.e. its singular simplicial set. If X = M is a smooth manifold, then $\operatorname{Sing}(M) \subseteq \operatorname{Sing}^{top}(M)$ and the inclusion is a homotopy equivalence by Whitney's Approximation Theorem, see [Zuo21, Theorem 1.6].

Lemma 2.5 ([BG16, Corollary 6.46]). Sing is a cosheaf. In particular, \flat factors through $Shv(Mfd, \mathcal{C}) \subseteq Fun(Mfd^{op}, \mathcal{C})$.

Lemma 2.5 is essentially the consequence of a generalized version of Seifert-van Kampen theorem, namely [Lur17, Proposition A.3.2], stating that, given a topological space X and a covering sieve \mathcal{O} , the space $\operatorname{Sing}^{top}(X)$ is the colimit of $\operatorname{Sing}^{top}(U)$, over $U \in \mathcal{I}(\mathcal{O})$.

Theorem 2.6. $\flat : \mathcal{C} \to \operatorname{Shv}(\operatorname{\mathcal{M}fd}, \mathcal{C})$ is left adjoint to Γ .

Proof. The composition $\mathcal{C} \xrightarrow{\flat} \operatorname{Shv}(\mathfrak{Mfd}, \mathcal{C}) \xrightarrow{\mid \varepsilon_{\operatorname{uc}} \mid} \operatorname{Shv}(\mathcal{E}\operatorname{uc}, \mathcal{C})$ maps an object C to the sheaf $\flat C$ restricted to Euclidean spaces. Since \mathbb{R}^n is contractible, $(\flat C)(\mathbb{R}^n) = C^{\operatorname{Sing}(\mathbb{R}^n)} \simeq C$ and so \flat restricted to ε Euclidean spaces. The functor taking C to the the pre-sheaf with constant value C, which is left adjoint to Γ restricted to ε Euc.

Remark 2.7. The proof of Theorem 2.6 shows that, given an object $C \in \mathcal{C}$ and a dense sub-site $\mathcal{B} \subseteq \mathcal{M}$ fd of contractible manifolds, the constant pre-sheaf with value C is equivalent to the sheaf $\flat C$ restricted to \mathcal{B} , hence it is already a sheaf.

3. Chain complexes and sheaves

The stable Dold-Kan correspondence allows us to move freely between sheaves of $H\mathbb{Z}$ -module spectras and sheaves valued in the derived category $\mathcal{D}(\mathbb{Z})$ of abelian groups. In this section, we introduce definition and some technical lemmas regarding sheaves on manifolds valued in the derived category.

Remark 3.1. All chain complexes are \mathbb{Z} -graded. Given a ring R, we identify chain complexes with cochain complexes. More specifically, we identify a cochain complex V^* with the chain complex $V_n = V^{-n}$. Viceversa, we identify V_* with the cochain complex $V^n = V_{-n}$. In particular, operations defined on cochain complexes are extended to chain complexes via this identification.

Definition 3.2 ([BNV16, Definition 7.14]). Given $n \in \mathbb{Z}$ and a cochain complex V^* , denote by $V^{\geq n}$, resp. $V^{\leq n}$, the naive truncations

$$\cdots \to 0 \to V^n \to V^{n+1} \to \cdots$$
, resp. $\cdots \to V^{n-1} \to V^n \to 0 \to \cdots$

Given $F: \mathcal{M}fd^{\mathrm{op}} \to \mathrm{Ch}(\mathbb{Z})$, denote by $F^{\geq n}$ and $F^{\leq n}$ the point-wise naive truncations of F. If F is a sheaf of chain complexes, then so are its truncations.

Lemma 3.3 ([BNV16, Lemma 7.12]). Let $F : \mathcal{M}fd^{op} \to Ch(\mathbb{Z})$ a sheaf of chain complexes of C^{∞} -modules, then $\mathcal{M}fd^{op} \xrightarrow{F} Ch(\mathbb{Z}) \to \mathcal{D}(\mathbb{Z})$ is a sheaf.

Definition 3.4. Denote by Ω^* the sheaf $Mfd^{op} \to Ch(\mathbb{Z})$ mapping a manifold to its de Rham complex.

Lemma 3.3 ensures that the sheaf in Definition 3.4 and the corresponding naive truncations remain sheaves after post-composition with the localization functor $Ch(\mathbb{Z}) \to \mathcal{D}(\mathbb{Z})$.

Definition 3.5. Given a sheaf $F: \mathcal{M}fd^{op} \to \mathcal{D}(\mathbb{Z})$, denote by HF the Eilenberg-Mac Lane sheaf of $H\mathbb{Z}$ -module spectra obtained by applying point-wise the equivalence of Theorem 1.10.

4. Higher de Rham Theorem

The classical de Rham theorem gives an explicit ring isomorphism between the de Rham cohomology of a manifold M and its singular cohomology with real coefficients. Using the modern perspective we can recover de Rham theorem as a corollary of a more general \mathbb{A}_{∞} -quasi-isomorphism of differential graded algebras. An \mathbb{A}_{∞} -morphism of DGAs $\mu: R \to S$ consists of a sequence of graded linear maps $\{\mu_n: R^{\otimes n} \to S\}_{n\geq 1}$ satisfying a sequence of coherence conditions, see [LV12, Proposition 10.2.12]. One such condition is that μ_1 is a chain map, then a \mathbb{A}_{∞} -quasi-isomorphism is an \mathbb{A}_{∞} -morphism μ such that μ_1 is a quasi-isomorphism. Here we use the machinery set-up in Section 2.

Remark 4.1. Since $\mathcal{D}(\mathbb{Z})$ is presentable, we know that it is cotensored over S. Given a space S and a chain complex M_* , the cotensor M_*^S is the chain complex of graded linear maps $C_*(S,\mathbb{Z}) \to M_*$, from the (normalized) singular chain complex of S to M_* , see [Lur17, Definition 1.3.2.1]. In particular, let $M_* = M$ be concentrated in degree 0, then M_*^S is the singular cochain complex of S with values in M.

Remark 4.2. Given a smooth manifold M, denote by $C^{\mathrm{sm}}_*(M,\mathbb{Z})$ the *smooth* singular chain complex generated by the smooth singular simplicial set $\mathrm{Sing}(M)$. Given an abelian group A, denote by $C^*_{\mathrm{sm}}(M,A)$ the cochain complex valued in A associated to $C^{\mathrm{sm}}_*(M,\mathbb{Z})$.

Definition 4.3. Consider the morphism $\Omega^*(M) \to (\flat \mathbb{R})(M) = C^*_{sm}(M, \mathbb{R})$ taking a form $\omega \in \Omega^n(M)$ to the linear map $\int \omega : C^{sm}_n(M, \mathbb{Z}) \to \mathbb{R}$. We call the induced transformation $d\mathbb{R} : \Omega^* \to \flat \mathbb{R}$ the *de Rham morphism*.

We can now state the main theorem.

Theorem 4.4 ([Aa10, Theorem 3.25]). dR: $\Omega^* \to \mathbb{R}$ lifts to an \mathbb{A}_{∞} -quasi-isomorphism of sheaves of DGAs.

5. Deligne Cohomology

In this section, we give the definition of the ℓ -th Deligne sheaf as the Eilenberg-Mac Lane spectrum (see Definition 3.5) associated to a sheaf $F: \mathcal{M}fd^{op} \to \mathcal{D}(\mathbb{Z})$. Following that, we give explicit cochain complexes that are quasi-isomorphic to the value of F at a manifold M.

Definition 5.1. Given $\ell \in \mathbb{N}$, define $\hat{\mathbb{Z}}(\ell) : \mathcal{M}fd^{op} \to \mathcal{D}(\mathbb{Z})$ as the pullback

$$\hat{\mathbb{Z}}(\ell) \longrightarrow \Omega^{\geq \ell} \\
\downarrow \qquad \qquad \downarrow \\
\flat \mathbb{Z} \longrightarrow \flat \mathbb{R}$$

The vertical morphism being the composition $\Omega^{\geq \ell} \hookrightarrow \Omega^* \xrightarrow{\mathrm{dR}} \flat \mathbb{R}$. We call the corresponding Eilenberg-Mac Lane spectrum $H\hat{\mathbb{Z}}(\ell)$ the ℓ -th Delique sheaf.

Remark 5.2 (Model A, see [HS05, §3.2]). Let $\acute{C}(\ell)^n(M) \subseteq C^n_{\rm sm}(M,\mathbb{Z}) \oplus C^{n-1}_{\rm sm}(M,\mathbb{R}) \oplus \Omega^n(M)$ consist of triples (c,h,ω) for which $\omega=0$ if $n<\ell$, with differential $\delta(c,h,\omega)=(\delta c,\mathrm{dR}(\omega)-c-\delta h,d\omega)$. This complex $\acute{C}^*(\ell)(M)$ fits into a diagram

$$\begin{array}{ccc} \acute{C}^*(\ell)(M) & \longrightarrow \Omega^{\geq \ell}(M) \\ \downarrow & & \downarrow \\ C^*_{\mathrm{sm}}(M,\mathbb{Z}) & \longrightarrow C^*_{\mathrm{sm}}(M,\mathbb{R}) \end{array}$$

which commutes up to homotopy given by the projections $\acute{C}^n(\ell)(M) \to C^{n-1}_{\mathrm{sm}}(M,\mathbb{R})$. The diagram above model the pullback of Definition 5.1, hence $\acute{C}^*(\ell)(M) \simeq \hat{\mathbb{Z}}(\ell)(M)$.

Remark 5.3 (Model B). Recall that \flat preserves cofiber sequences, since it is left adjoint, and that fiber sequences are the same a cofiber sequences in stable ∞ -categories. Consider the diagram

$$\begin{array}{ccc}
\ddot{\mathbb{Z}}(\ell) & \longrightarrow \Omega^{\geq \ell} \\
\downarrow & & \downarrow \\
\flat \mathbb{Z} & \longrightarrow \flat \mathbb{R} \\
\downarrow & & \downarrow \\
0 & \longrightarrow \flat (\mathbb{R}/\mathbb{Z})
\end{array}$$

Since the bottom square is an pullback, $\hat{\mathbb{Z}}(\ell)(M)$ is equivalent to the pullback of the diagram in red. Let $\check{C}^n(\ell)(M) \subseteq C^{n-1}_{\mathrm{sm}}(M,\mathbb{R}/\mathbb{Z}) \oplus \Omega^n(M)$ consist of pairs (χ,ω) for which $\omega=0$ if $n<\ell$, with differential $\delta(\chi,\omega)=(e^{2\pi i \mathrm{dR}(\omega)}-\delta\chi,d\omega)$. Similar to Remark 5.2, the complex $\check{C}^*(\ell)(M)$ fits into the above diagram so that the outer square is an pullback, hence it is equivalent to $\hat{\mathbb{Z}}(\ell)(M)$.

Take an n-cocycle $(n \ge \ell)$ in the model from Remark 5.3, i.e. $(\chi, \omega) \in C^{n-1}_{\mathrm{sm}}(M, \mathbb{R}/\mathbb{Z}) \oplus \Omega^n(M)$ such that $d\omega = 0$ and $\delta\chi = e^{2\pi i \mathrm{dR}(\omega)}$. Such a cocycle determines a differential character of degree n-1 for M, in the sense of the following definition:

Definition 5.4 ([HS05, Definition 3.4], see also [BB14, Chapter 5]). Consider a manifold M, a differential character of degree n consists of a character $\chi: Z_n^{\rm sm}(M,\mathbb{Z}) \to \mathbb{R}/\mathbb{Z}$ on the group of smooth n-cycles of M together with a n-form $\omega \in \Omega^{n+1}(M)$, such that, for every smooth (n+1)-chain c,

$$\chi(\partial c) = e^{2\pi i \int_c \omega}$$

Definition 5.5. Given a full sub-site $\mathcal{B} \subseteq \mathcal{M}$ fd and a manifold M, a \mathcal{B} -good open cover of M consists of an open cover \mathcal{O} such that every finite intersection of elements in \mathcal{O} is either empty or diffeomorphic to an object of \mathcal{B} . If $\mathcal{B} = \mathcal{E}$ uc the sub-site of Euclidean spaces, we call a \mathcal{B} -good open cover a differentiably good open cover, see [FSS11, Definition 6.3.9].

If \mathcal{B} is the sub-site of contractible manifolds, we recover the notion of a good open cover. In our next model, we will construct a sheaf F equivalent to $\hat{\mathbb{Z}}(\ell)$ on a dense sub-site \mathcal{B} . Given a generic manifold M, we can evaluate $\hat{\mathbb{Z}}(\ell)(M)$ using F, if we assume the existence of a \mathcal{B} -good open cover. Here we care mainly about $\mathcal{B} = \mathcal{E}uc$.

Theorem 5.6 ([FSS11, Theorem A.1]). Every paracompact smooth manifold admits a differentiably good open cover.

Remark 5.7 (Model C, see [ADH21, Lemma 7.3.4]). Let $\mathcal{B} \subseteq \mathcal{M}$ fd be a dense sub-site of contractible manifolds, consider the following diagram in the category of sheaves on \mathcal{B}

The left square is obtained by: ① Apply the restriction to \mathcal{B} functor to the pullback diagram of Definition 5.1 ② Substitute $\flat \mathbb{R}|_{\mathcal{B}}$ with $\Omega^*|_{\mathcal{B}}$ (see Theorem 4.4) and $\flat \mathbb{Z}|_{\mathcal{B}}$ with \mathbb{Z} (see Remark 2.7). Since the right square is a pullback, $\hat{\mathbb{Z}}(\ell)|_{\mathcal{B}}$ is equivalent to the pullback of the diagram in red. Let $\check{C}^*(\ell)$ be the sheaf of chain complexes $\mathbb{Z} \to \Omega^0 \to \cdots \to \Omega^{\ell-1} \to 0 \to \cdots$, where \mathbb{Z} is in degree 0 includes into Ω^0 as constant functions. The complex $\check{C}^*(\ell)$ fits into the above diagram, so that the outer square is an pullback, therefore $\hat{\mathbb{Z}}(\ell)|_{\mathcal{B}} \simeq \check{C}^*(\ell)$.

Remark 5.8 (Model C, Continued). Since $\hat{\mathbb{Z}}(\ell)$ is equivalent to $\check{C}^*(\ell)$ restricted to \mathcal{B} , consider a manifold M having a \mathcal{B} -good open cover \mathcal{O} and let $\mathcal{I}(\mathcal{O})$ the closure of \mathcal{O} under finite intersections, then recall

$$\hat{\mathbb{Z}}(\ell)(M) \simeq \lim_{U \in \mathfrak{I}(\mathfrak{O})} \check{C}^*(\ell)(U)$$

By rearranging the limit, we see it is equivalent to the limit of the cosimplicial object taking n to the product over all tuples $(U_0, \dots, U_n) \in \mathcal{O}^{n+1}$ of $\check{C}^*(\ell)(U_0 \cap \dots \cap U_n)$. We can then apply [BNV16, Lemma 7.10] to calculate the limit of this cosimplicial cochain complex as the total cochain complex of

$$\check{C}^{n,m}(\ell) := \prod_{\mathfrak{S}^{n+1}} \check{C}^m(\ell)(U_0 \cap \cdots \cap U_n)$$

The differential in the m-direction simply comes from $\check{C}^*(\ell)$. The differential in the n-direction is the alternating sum of the morphisms $\delta^i: \check{C}^{n,m}(\ell) \to \check{C}^{n+1,m}(\ell)$, for $0 \le i \le n+1$, described in components as follows: Given $\mu \in \check{C}^{n,m}(\ell)$, the (U_0, \cdots, U_{n+1}) -component of $\delta^i \mu$ is the $(U_0, \cdots, \widehat{U_i}, \cdots, U_{n+1})$ -component of μ restricted to $U_0 \cap \cdots \cap U_{n+1}$, where the hat under U_i means we're removing it from the tuple.

6. Unfolding the fracture square of Deligne Cohomology

References

[Aa10] Camilo Arias Abad and Florian Schätz. The A_{∞} de Rham theorem and integration of representations up to homotopy. arXiv:1011.4693, 2010.

- [ADH21] Araminta Amabel, Arun Debray, and Peter J. Haine. Differential cohomology: Categories, characteristic classes, and connections. arXiv preprint, 2021. arXiv:2109.12250.
- [BB14] Christian Bär and Christian Becker. Differential Characters and Geometric Chains, pages 1–90. Springer International Publishing, Cham, 2014.
- [BG16] Ulrich Bunke and David Gepner. Differential function spectra, the differential Becker-Gottlieb transfer, and applications to differential algebraic K-theory. arXiv:1306.0247, 2016.
- [BNV16] Ulrich Bunke, Thomas Nikolaus, and Michael Völkl. Differential cohomology theories as sheaves of spectra. J. Homotopy Relat. Struct., 11(1):1–66, 2016.
- [Dav24] Jack Davies. V4d2 Algebraic Topology II So24 (stable and chromatic homotopy theory). Lecture notes, 2024. Unpublished.
- [FSS11] Domenico Fiorenza, Urs Schreiber, and Jim Stasheff. Čech cocycles for differential characteristic classes An ∞ -Lie theoretic construction. arXiv:1011.4735, 2011.
- [HS05] M. J. Hopkins and I. M. Singer. Quadratic functions in geometry, topology, and M-theory. J. Differential Geom., 70(3):329-452, 2005.
- [Lur09] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.
- [Lur17] Jacob Lurie. Higher algebra. Available online, September 2017.
- [LV12] Jean-Louis Loday and Bruno Vallette. Algebraic operads, volume 346. Springer Science & Business Media, 2012.
- [Zuo21] Wang Zuoqin. Lecture 11: Approximations and Deformations. Lecture notes, 2021. Unpublished.