Vehicle Dynamics and Simulation

Using Eigenvalues and Eigenvectors

Dr B Mason

Lecture overview

- Transfer functions
- Modal motion in free vibration
 - Eigenvalues
 - Eigenvectors

Transfer Functions

- Transfer functions relate input to output
- The roots of the characteristic equation determine the dynamics of the system (free vibration response)
- Eigen structures provide more information about mode shapes

$$H(s) = \frac{b_{n}s^{n} + b_{m-1}s^{m-1} + \dots + b_{1}s + b_{0}}{a_{n}s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}}$$

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$$

Simple Example

- Using the simple suspension example from Section 2b
 - Assume zero initial conditions
 - Take Laplace transform
 - Write transfer function
 - Enter parameter values
- The roots of the characteristic equation in this example are;

$$-1.875 \pm 6.372i$$

• The nature of the roots e.g. complex, repeated, distinct and real determine the general solution approach.

$$H(s) = \frac{Y(s)}{U(s)} = \frac{Bs + K}{Ms^2 + Bs + K}$$

$$H(s) = \frac{3.75s + 44.1}{s^2 + 3.75s + 44.1}$$

Laplace Transform and the Transfer Function

• State space representation;

$$\dot{X} = AX + BU \tag{1}$$

$$Y = CX + DU ag{2}$$

Assuming zero initial conditions and taking the Laplace transform of [1];

$$sX = AX + BU$$

$$(sI - A)X = BU$$

$$X = (sI - A)^{-1}BU$$

• Substituting into [2];

$$Y = C(sI - A)^{-1}BU + DU$$

$$H(s) = C(sI - A)^{-1}B + D$$

Laplace Transform and the Transfer Function

- Equation [3] provides a general solution in terms of the transfer function, H(s) and is an alternate form to the State Space Representation.
- Comparing the denominator of [3] (sI A) with the definition for the eigenvalues;

$$Av = \lambda v$$
 [4]

- It can be shown that the transfer function poles are the roots of the Characteristic Equation and the eigenvalues of A which are found using $\det(A \lambda I) = 0$
- Matrix A governs the fundamental modes of vibration i.e. how the system will freely vibrate as it settles after some initial disturbance not the inputs.

worked example

An Example

The equations of the above system are (expressed in terms of two second order differential equations);

$$M_2\ddot{z}_2 = F - k(z_2 - z_1) - b(\dot{z}_2 - \dot{z}_1)$$

$$M_1 \ddot{z}_1 = k(z_2 - z_1) + b(\dot{z}_2 - \dot{z}_1) - kz_1 - b\dot{z}_1$$

and the input, u = F. So that the set of equations describing the state derivatives becomes;

$$\dot{x}_1 = x_3$$

$$\dot{x}_2 = x_4$$

$$\dot{x}_3 = -\frac{2k}{m}x_1 + \frac{k}{m}x_2 - \frac{2b}{m}x_3 + \frac{b}{m}x_4$$

$$\dot{x}_4 = kx_1 - kx_2 + bx_3 - bx_4 + u$$

So that the state space representation becomes;

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2k/m & k/m & -2b/m & b/m \\ k & -k & b & -b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u$$
 [3]

$$\dot{X} = AX + BU$$

I

• The vector of deflections, $z(t) = [x_1 \ x_2]^T$ for our LTI example may be written as a linear combination;

$$\mathbf{z}(\mathbf{t}) = Re\{\mathbf{u}_1 e^{\lambda_1 t} + \mathbf{u}_2 e^{\lambda_2 t}\}$$

where each term $u_i e^{\lambda_i t}$ represents a single vibrational mode, u_i are complex constants [2x1 vector in this example], λ_i are complex scalars and $\max(i) = n$ with n being the number of states.

• Evaluating a single term in the above, split λ_1 into real and imaginary parts;

$$\lambda_1 = a + bi$$

Using the above and Euler's formula we can better evaluate what is happening;

$$\boldsymbol{u}_1 e^{\lambda_i t} = \boldsymbol{u}_1 e^{(a+bi)t} = \boldsymbol{u}_1 e^{at} e^{ibt}$$

$$\mathbf{v}_1 e^{\lambda_i t} = \mathbf{u}_1 e^{\mathbf{u}t} (\cos(\mathbf{b}t) + i\sin(\mathbf{b}t))$$
 [5]

Modal motion in free vibration - Eigenvalues

• From [5], a should be -ve bounding the response to a decaying exponential, b gives the frequency of the sinusoidal component, u_i (complex) determines the magnitude and the relative phase of each mode.

Modal decomposition of response Solid line = total response Short dash = sinusoidal component Long dash = exponential decay

• Eigenvalues come in (complex conjugate) pairs and can be written;

$$\lambda_{1,2} = \lambda_{1&2} = \sigma \pm j\omega_d$$

where σ is the modal damping factor and ω_d is the damped natural frequency.

Check for yourself

- Use the eig() function in MATLAB to determine the eigenvalues of matrix A from the previous example.
- How are the complex conjugate pairs placed within the resulting (vector) answer?

- From the eigenvalues it is possible to tell
 - Damped natural frequency, ω_d
 - Natural frequency [Hz], $\omega_n/2\pi$
 - Damping factor, σ
 - Damping ratio, $\zeta = \cos(\theta)$
 - Settling time (within 2%), $T_S = \frac{4}{|\sigma|}$
 - Percent overshoot, $100e^{\sqrt{1}-\zeta^2}$
- Note: $\lambda = 0$ corresponds to the steady-state response of the system (not dynamics)

Check for yourself

- Using the previous example find the eigenvalues of the system and hence determine;
 - Damped natural frequency, ω_d
 - Natural frequency [Hz], $\omega_n/2\pi$
 - Damping factor, σ
 - Damping ratio, $\zeta = \cos(\theta)$
 - Settling time (within 2%), $T_S = \frac{4}{|\sigma|}$
 - Percent overshoot, $100e^{\frac{-\pi\zeta}{\sqrt{1}-\zeta^2}}$

- Eigenvectors can show the magnitudes at which the states vibrate in relation to one another.
- Writing eigenvalues and eigenvectors together in matrix form;

$$AV = VD$$

where;

$$\mathbf{V} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \\ \lambda_1 u_1 & \lambda_2 u_2 & \cdots & \lambda_n u_n \end{bmatrix} \text{ and } \mathbf{D} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

 Using MATLAB to find the eigenvalues of the example system, A matrix;

- The second and fourth columns are the complex conjugates of the first and third columns respectively
- Rows three and four are the first and second rows multiplied by their respective eigenvalues
- The system can then be characterized by considerably less 'unique information'

- Dividing through by the largest magnitude eigenvector (-0.0284 0.017i) to normalize the eigenvectors.
- Plot the eigenvector components (first mode)
- The relative magnitude and phase is seen on the two plots

- Similarly for the second (non-conjugate) mode of interest
- The relative magnitude and phase is seen on the two plots
- Note the differences between first and second modes of vibration

Mode 2

Conclusions

- Transfer function vs state space representation
- Eigenvalues tell us;
 - Damped natural frequency
 - Natural frequency
 - Damping factor
 - Damping ratio
 - Settling time
 - Percent overshoot
- Eigenvectors help us to understand vibration of the modes relative to one another

