Code:-

```
import pandas as pd
import numpy as np
import os
import time
from sentence transformers import SentenceTransformer
from sklearn.metrics import classification report
from pyxdameraulevenshtein import damerau levenshtein distance
def load_data(file_path):
       return pd.read_excel(file_path)
def lowercase all(df):
def generate embeddings(model, df):
def compute damerau levenshtein similarity(query, entry):
def calculate semantic similarities(df, query, model):
           entry = str(row[column])
```

```
combined_similarity = (semantic_similarity
damerau levenshtein similarity) / 2
def find best match(similarities):
def compute metrics(df, best match):
  return pd.DataFrame(report).transpose()
def process data(file path, query):
  model = SentenceTransformer('all-MiniLM-L6-v2',
tokenizer_kwargs={'clean_up_tokenization_spaces': True})
def main():
  print("Query given:", user query)
```

Documentation: Hybrid Model Using MiniLM and Damerau-Levenshtein for Query Matching

1. Objective and Overview

- This initial hybrid model approach is designed to accurately match user queries to entries in a dataset. By combining the semantic strength of MiniLM embeddings with Damerau-Levenshtein distance for string matching, the model achieves a balance between semantic meaning and string similarity. This approach is particularly useful for tasks that require both a high level of understanding of query intent and tolerance for small textual variations.

2. Core Components and Functionalities

- Data Loading and Preprocessing
- Data Loading: The `load_data` function supports multiple file formats, including CSV and Excel, to allow for flexibility in the dataset's source.
- Preprocessing: The `lowercase_all` function ensures that all text entries are converted to lowercase, standardizing the data and preventing case-sensitivity issues during similarity calculations.
- Ground Truth Setup: A basic ground truth column (`ground_truth`) is created to simulate a binary classification scenario for demonstration purposes.
 - MiniLM Model for Semantic Similarity
- Model Selection: The model leverages the `all-MiniLM-L6-v2` model from the Sentence Transformers library, which is optimized for embedding-based similarity tasks.
- Embedding Generation: The `generate_embeddings` function creates embeddings for each column in the dataset. These embeddings are later used to compute semantic similarity with the user's query.
- Query Encoding: The user's query is encoded as an embedding, which is then compared against the dataset's entries to assess the level of semantic similarity.
 - Damerau-Levenshtein Distance for String Similarity
- String Comparison: The `compute_damerau_levenshtein_similarity` function calculates the Damerau-Levenshtein similarity between the user query and each dataset entry, taking into account potential typos or transpositions.
 - Hybrid Similarity Calculation
- Combined Similarity: The `calculate_semantic_similarities` function computes both semantic and Damerau-Levenshtein similarities, then averages them to achieve a final similarity score for each entry.
- Result Filtering: Entries with a similarity score above a threshold (set at 0.5 by default) are considered as potential matches, and the highest similarity match is selected as the best match.

3. Workflow and Logic

- Step 1: File Upload and Dataset Preparation

- The program prompts the user to upload a dataset (CSV or Excel) using the `load_data` function. The dataset is then preprocessed to standardize text format and set up ground truth labels for evaluation.
 - Step 2: Semantic and String Similarity Matching
- The user inputs a query, which is processed to generate both semantic and Damerau-Levenshtein similarity scores for each row in the dataset. This hybrid similarity approach balances both meaning and textual proximity, leading to an accurate match.
 - Step 3: Selecting the Best Match
- The highest-scoring match is retrieved through the `find_best_match` function, and its index and similarity score are displayed to the user.
 - Step 4: Model Evaluation (Optional)
- If the dataset includes a ground truth, the program computes classification metrics (e.g., accuracy, precision, recall) through `compute_metrics`, allowing for an assessment of the model's performance on the matching task.

4. Performance and Runtime Considerations

- The hybrid approach is computationally efficient, leveraging MiniLM embeddings for rapid semantic similarity scoring and Damerau-Levenshtein for lightweight string comparisons. Runtime for processing varies based on dataset size and query complexity but generally remains within an acceptable range for most use cases.

5. Limitations and Future Enhancements

- Threshold Sensitivity: The similarity threshold can impact the model's performance. A dynamic threshold or context-specific threshold optimization could enhance accuracy in future iterations.
- Fine-tuning MiniLM: Fine-tuning MiniLM on specific domain-related data could improve semantic similarity matching for specialized datasets.