COM 5335 NETWORK SECURITY LECTURE 3 FINITE FIELDS I

Scott CH Huang

Modular Arithmetic

- It's sometimes called the 'clock arithmetic'.
- It uses a finite number of values and loops back from either end:
 - $a \pmod{n} \equiv a+n \pmod{n} \equiv a+2*n \pmod{n}$

Modulo 7 Example

Modular Arithmetic

- Define modulo operator a mod n as the remainder when a is divided by n.
- We use the term congruence for 'a \equiv b mod n'.
 - It reads "a is congruent to b modulo n".
 - When divided by n, a & b have same remainder
 - e.g. $100 \equiv 34 \mod 11 \equiv 1 \mod 11$
 - -12 mod $7 \equiv -5 \mod 7 \equiv 2 \mod 7 \equiv 9 \mod 7$
- b is also called the residue of a mod n

Modular Arithmetic Operations

- Include additions & multiplications
- Apply modulo to reduce answer within n.
- Basic properties
 - a+b mod n ≡ (a mod n)+(b mod n) mod n
 - a*b mod n ≡ (a mod n)*(b mod n) mod n

Modulo 5 Addition/ Multiplication Table

+	0	1	2	3	4	×	0	1	2	3	4
0	0	1	2	3	4					0	
1	1	2	3	4	0					3	
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2					4	
4	$\mid 4 \mid$	0	1	2	3	$4 \mid$	0	4	3	2	1

Divisors

- A non-zero number b divides a if, for some m, we have a=m*b (a,b,m all integers)
 - If we divide a by b, there's no remainder.
- Denoted by b | a
- b is called a divisor of a
 - e.g. each of 1,2,3,4,6,8,12,24 divides 24.

Modular Arithmetic

- Modular arithmetic for integer n:
 - $Z_n = \{0, 1, ..., n-1\}$
 - $(Z_n, +, *)$ forms a commutative ring (to be explained later)
- Some Remarks
 - If $(a+b)\equiv (a+c) \mod n$ then $b\equiv c \mod n$.
 - If $(a*b)=(a*c) \mod n$ then $b=c \mod n$ only if a is relatively prime to n.

Greatest Common Divisor (GCD)

- A.k.a. the highest common factor (HCF).
- An elementary concept in number theory.
- GCD (a,b) of a and b is the largest number that divides both a and b.
 - e.g. GCD(60,24) = 12
- Numbers are relatively prime if their GCD = 1.
 - e.g. GCD(8,15) = 1; 8 & 15 are relatively prime.

Euclid's Algorithm (輾轉相除法)

- An efficient way to find the GCD(a,b)
- Based on the lemma that
 - GCD(a,b) = GCD(b, a mod b)
- Apply Euclid's Algorithm to compute GCD(a,b):
 - A=a, B=b
 - while B>0
 - \blacksquare R = A mod B
 - A = B, B = R
 - return A

Example GCD(1970,1066)

 $1970 = 1 \times 1066 + 904 \gcd(1066, 904)$

 $1066 = 1 \times 904 + 162 \quad \gcd(904, 162)$

 $904 = 5 \times 162 + 94$ gcd(162, 94)

 $162 = 1 \times 94 + 68$ gcd(94, 68)

 $94 = 1 \times 68 + 26$ gcd(68, 26)

 $68 = 2 \times 26 + 16$ gcd(26, 16)

 $26 = 1 \times 16 + 10$ gcd(16, 10)

 $16 = 1 \times 10 + 6$ gcd(10, 6)

 $10 = 1 \times 6 + 4$ gcd(6, 4)

 $6 = 1 \times 4 + 2$ gcd(4, 2)

 $4 = 2 \times 2 + 0$ gcd(2, 0)

Introduction to Finite Field

- Important in cryptography
 - AES, Elliptic Curve, IDEA, XTR
- Operations on "abstract elements"
 - What constitutes a "number" and the type of operations varies considerably
- Groups, rings, fields from abstract algebra

Groups

Niels Henrik Abel (1802-1829)

- (G,*): a set G of elements with operation '*' satisfying

- (G1) Associativity: (a*b)*c = a*(b*c)

$$(a*b)*c = a*(b*c)$$

- (G2) Identity:
$$\exists e \text{ s.t. } e^*a = a^*e = a \quad \forall a \in G$$

- (G3) Inverse:

$$\exists a^{-1} \text{ s.t. } a^*a^{-1} = a^{-1}*a = e$$

- If commutativity also holds
 - (G4). a*b = b*a then it is called an <u>abelian group</u>

- $G = \{0,1,2,3\}$
- Operation: + (mod 4)
- (G,+) is an abelian group.

- $G = \{0,1,2,3\}$
- Operator: * (mod 4)
- Is (G,*) a group? If not, which condition fails?

- \blacksquare G = {1,2,3,4}
- Operator: * (mod 5)
- Is (G,*) a group? If not, which condition fails?

- $G = \{1,2,3\}$
- Operator: * (mod 5)
- Is (G,*) a group? If not, which condition fails?

- $G = \{1,2,3\}$
- Operator: * (mod 4)
- Is (G,*) a group? If not, which condition fails?

Rings

- (R,+,*) a set R of elements with two operations '+' and '*' satisfying the following conditions
 - (R,+) is an abelian group. (G0-G4)
 - (R,*) is a semi-group, i.e. (G0,G1)
 - Closure: $a,b \in R => a*b \in R$
 - Associativity: (a*b)*c = a*(b*c)
 - Distributivity: a*(b+c) = a*b + a*c
- If '*' is also commutative, it's called a commutative ring.
- If the multiplicative identity exists, it's called a ring with (unit)
 1.
- Exercise: Is {0,1,2,3; (+, *) (mod 4)} a ring?

Example of Ring: Z₆

- +: mod 6 addition
- *: mod 6 multiplication
- Additive identity = 0
- Multiplicative identity = 1

Z_6

- Additive inverse of 5?
 - 5+1=0, -5=1
- Multiplicative inverse of 5?
 - **-** 5*5=1, 5-1=5
- Multiplicative inverse of 3?
 - 3 has no multiplicative inverse.
- Elements of a ring may not have multiplicative inverse.

Fields

- \blacksquare A ring (R,+,*) satisfying:
 - (R,+) is an abelian group
 - $(R\setminus\{0\},*)$ is an abelian group
- In short, a field is a *commutative division ring*.
- Exercise: Test if {0,1,2,3; (+, *) (mod 4)} is a field.
- Exercise: Test if {0,1,2,3, 4; (+, *) (mod 5)} is a field.

Finite Fields (Galois Fields)

- Finite fields play a key role in cryptography
- The number of elements in a finite field must be some power of a prime pⁿ (big theorem!)
- Known as Galois fields
- Denoted by GF(pⁿ)
- Most important finite fields:
 - GF(p)
 - $GF(2^n)$

Évariste Galois (1811-1832)

Finite Fields GF(p)

- GF(p) is the set of integers $Z_p = \{0,1, ..., p-1\}$ with arithmetic operations modulo a prime p
- \blacksquare (Z_p ,+,*) forms the finite field GF(p).
 - Since each item has a multiplicative inverse
- Division is "well-behaved"
 - We can perform addition, subtraction, multiplication, and division in GF(p).
- If p is prime, then Z_p is a field. $Z_p = GF(p)$.
- If n is not prime, then Z_n is not a field. Z_n is a commutative ring with 1.

GF(7) Multiplication Table

×	0	1	2	3	4	5	6
•					0		
1	0			3	4	5	6
2		2			1		
3	0						4
4					2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Multiplicative Inverse of GF(7)

0	1	2	3	4	5	6
_	1	4	5	2	3	6

Finding Multiplicative Inverses in Z_p

- Finding the mult. inverse of 337 in Z1021
 - Run Euclid's algorithm
 - *-* 1021-3*337=10
 - 337-33*10=7
 - 10-1*7=3
 - 7-2*3=1

Finding Multiplicative Inverses in Z_p (Backward Ver.)

- Run extended Euclid's algorithm (<u>backward substitution</u>)
 - -1=1*7+(-2)*3=1*7+(-2)(10-1*7)
 - = (-2)10 + 3(7)
 - =(-2)10+3(337-33*10)
 - =(3)337+(-101)10
 - =3(337)+(-101)(1021-3*337)
 - =(-101)1021+(306)337
 - 337-1=306 mod 1021, multiplicative inverse.

Euclid's Algorithm in C

```
    //Precondition: a,b > 0
    int gcd(int a, int b) {

            while (b!=0){
                t = b;
                 b = a % b;
                 a = t;
                 return a;
                 }
                 1
                 x
                 y
                 x
                 x
                 y
                 x
                 x
                 y
                 x
                x
                 x
                 x
                 y
                 x
                 x
                 y
                 x
                 x
                     x
                      x
                     x
                     x
                    x
                     x
                    x
                     x
                    x
                     x
                    x
                     x
                     x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                    x
                   x
                    x
                   x
                    x
```

Extended Euclidean Algorithm

- There are both forward and backward substitution algorithms
- It can be used to find **Bézout's** identity
- Bézout's identity
 - Let a and b be integers with gcd=d. Then, there exist integers x and y such that ax + by = d.
 - x,y are called Bézout's coefficients
- Bézout's identity leads to multiplicative inverse, Chinese Remainder Theorem, Rabin cryptosystem and many other important cryptographic primitives.
- (Myth): where there is cryptography, there is extended Euclidean algorithm.

Standard Euclidean Algorithm Revisited

- Input: positive integers a,b
- Output: (quotients) $q_1,...,q_k$ and (remainders) $r_0,...,r_{k+1}$ s.t.

```
r_0 = a
r_1 = b
\vdots
r_{i+1} = r_{i-1} - q_i r_i \quad \text{and} \quad 0 \le r_{i+1} < |r_i|
\vdots
```

Extended Euclidean Algorithm (Forward Ver.)

I/O: same as standard Euclidean algorithm except there are two more output sequences: s_i and t_i

```
r_{0} = a r_{1} = b
s_{0} = 1 s_{1} = 0
t_{0} = 0 t_{1} = 1
\vdots \vdots
r_{i+1} = r_{i-1} - q_{i}r_{i} and 0 \le r_{i+1} < |r_{i}|
s_{i+1} = s_{i-1} - q_{i}s_{i}
t_{i+1} = t_{i-1} - q_{i}t_{i}
\vdots
```

Computation stops when $r_{k+1}=0$. $gcd(a,b)=r_k$. Bézout's coefficients = s_k , t_k .

A Concrete Example

■ Input a=240 b=46. Results: $-9 \times 240 + 47 \times 46 = 2$

i	quotient q_{i-1}	remainder r _i	Si	t_i
0		240	1	0
1		46	0	1
2	240 ÷ 46 = 5	240 - 5 × 46 = 10	$1-5\times0=1$	$0 - 5 \times 1 = -5$
3	46 ÷ 10 = 4	46 - 4 × 10 = 6	$0-4\times 1=-4$	1 - 4 × -5 = 21
4	10 ÷ 6 = 1	10 - 1 × 6 = 4	$1 - 1 \times -4 = 5$	-5 - 1 × 21 = -26
5	6 ÷ 4 = 1	$6 - 1 \times 4 = 2$	$-4-1\times 5=-9$	21 - 1 × -26 = 47
6	4 ÷ 2 = 2	4 - 2 × 2 = 0	$5 - 2 \times -9 = 23$	$-26 - 2 \times 47 = -120$

Some Remarks

- If n is not prime, then Z_n is not a field.
- Given $x \in Z_n$, x^{-1} may not exist.
- Under what condition will x⁻¹ exist?

Polynomial Arithmetic

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{i=0}^n a_i x^i$$

- Consider
- Both + and * can be performed on polynomials if they can be performed on a0,...,an.
- Suppose a0,...,an \subseteq R, R is a ring. Denote the set of polynomials by R[x].
- \blacksquare R[x] forms a ring, usually called the polynomial ring.
- Is $\{f \in R[x] \mid deg(f) \le n \}$ a ring?
- If F is a field. Is F[x] a field?

Ordinary Polynomial Arithmetic

\blacksquare Z[x] arithmetics

- Let
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$

-
$$f(x) + g(x) = x^3 + 2x^2 - x + 3$$

$$- f(x) - g(x) = x^3 + x + 1$$

-
$$f(x) * g(x) = x^5 + 3x^2 - 2x + 2$$

Polynomial Arithmetic with Modulo Coefficients

- \blacksquare $Z_n[x]$ arithmetic
- $\blacksquare \quad \text{In } Z_2[x]$
 - Let $f(x) = x^3 + x^2$ and $g(x) = x^2 + x + 1$
 - $f(x) + g(x) = x^3 + x + 1$
 - $f(x) * g(x) = x^5 + x^2$

Modular Polynomial Arithmetic

- Can we generalize $a \equiv b \pmod{n}$ to $a(x) \equiv b(x) \pmod{n(x)}$?
- We can consider modular +, * on polynomials too.
 - If f(x) = q(x) * g(x) + r(x)
 - Interpret r(x) as a remainder
 - $r(x) \equiv f(x) \mod g(x)$
- If have r(x)=0, we say g(x) divides f(x).
- The set of all polynomials R[x] modulo a fixed polynomial g(x) also forms a ring.
- We call this ring the quotient ring, denoted by R[x]/(g(x)) or R[x] mod g(x).

Quotient Rings

- \blacksquare Z_p is actually a quotient ring too.
- \blacksquare $Z_p=Z/(p)$ or Z mod p.
 - c.f. R[x]/(g(x))
- If $p \in Z$ is prime, then Z/(p) is a field.
- If $p(x) \in R[x]$ is prime (what does this mean???), then R[x]/(p(x)) is a field???

Irreducible Polynomials

- \blacksquare g(x) is irreducible iff it has no divisors other than itself & 1.
- If $p(x) \in R[x]$ is irreducible, then R[x]/(p(x)) is a field.
- We can find the multiplicative inverse of any polynomial by running the extended Euclid's algorithm just like what we did earlier with integers.

Euclid's Algorithm on Polynomials

- \blacksquare An efficient way to find the GCD(f(x),g(x))
- Based on the lemma that:
 - $GCD(f(x),g(x)) = GCD(g(x), f(x) \bmod g(x))$
- Euclid's Algorithm to compute GCD(f,g):
 - A=f, B=g
 - while B>0
 - \blacksquare R = A mod B
 - A = B, B = R
 - return A

Finite Field Construction

- \blacksquare To construct $GF(p^n)$
 - Find an irreducible polynomial $p(x) \in Z_p[x]$
 - $GF(p^n)$ can be constructed as $Z_p[x]/(p(x))$
- This is just one of many equivalent constructions.
- Multiplicative inverses always exist. Why?

Example of $GF(2^3)$

- Find an irreducible polynomial $p(x)=x^3+x+1 \in Z_2[x]$
- $GF(8)=Z_2[x]/(p(x))$
- From now on, we use 1011 to represent $1x^3+0x^2+1x^1+1x^0$
- Everything is calculated mod 1011 (not modulo a number!!)
- Never regard these bit-strings as binary numbers and perform these operations on numbers !!!
- Example: 10001 = 111 mod 1011 because 10001=10*1011+111
- We only need 3 bits to represent each element. Why?

GF(2³) Addition/Multiplication Table

		•	Table 4.6 F	Polynomial A	Arithmetic M	Modulo (x³ -	+ x + 1)		
	+	000	001 1	010 x	$011 \\ x + 1$	100 x ²	$x^2 + 1$	$110 \\ x^2 + x$	$x^2 + x + 1$
000	0	0	1	X	x+1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	X	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	х	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x+1	х	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	X	x+1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	χ^2	$x^2 + 1$	х	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x^2	x + 1	x	1	0
				(a) Addition				
		000	001	010	011	100	101	110	111
000	×	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1 0	X 0	x + 1 0	x ² 0	$\frac{x^2 + 1}{0}$	$x^2 + x$	$x^2 + x + 1$
001	0	0 0 0	1 0 1	X 0 X	x+1 0 $x+1$	x ² 0 x ²	$x^{2} + 1$ 0 $x^{2} + 1$	$x^2 + x$ 0 $x^2 + x$	$x^2 + x + 1$ 0 $x^2 + x + 1$
001 010	0 1 x	0 0 0	1 0 1 x	x 0 x x ²	$x + 1$ 0 $x + 1$ $x^2 + x$	x^{2} 0 x^{2} $x + 1$	$x^{2} + 1$ 0 $x^{2} + 1$ 1	$x^{2} + x$ 0 $x^{2} + x$ $x^{2} + x + 1$	$x^{2} + x + 1$ 0 $x^{2} + x + 1$ $x^{2} + 1$
001 010 011	$0 \\ 1 \\ x \\ x + 1$	0 0 0 0	1 0 1 x x+1	x 0 x x^2 $x^2 + x$	$x + 1$ 0 $x + 1$ $x^2 + x$ $x^2 + 1$	x^{2} 0 x^{2} $x+1$ $x^{2}+x+1$	$x^{2} + 1$ 0 $x^{2} + 1$ 1 x^{2}	$x^{2} + x$ 0 $x^{2} + x$ $x^{2} + x + 1$ 1	$x^{2} + x + 1$ 0 $x^{2} + x + 1$ $x^{2} + 1$
001 010 011 100	0 1 x x+1 x ²	0 0 0 0 0	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ x \\ x+1 \\ x^2 \end{array} $	x 0 x x^2 $x^2 + x$ $x + 1$	$x + 1$ 0 $x + 1$ $x^{2} + x$ $x^{2} + 1$ $x^{2} + x + 1$	x^{2} 0 x^{2} $x+1$ $x^{2}+x+1$ $x^{2}+x$	$x^{2} + 1$ 0 $x^{2} + 1$ 1 x^{2} x	$x^{2} + x$ 0 $x^{2} + x$ $x^{2} + x + 1$ 1 $x^{2} + 1$	$x^{2} + x + 1$ 0 $x^{2} + x + 1$ $x^{2} + 1$ x 1
001 010 011 100 101	0 1 x $x+1$ x^2 x^2+1	0 0 0 0 0 0	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ x \\ x+1 \\ x^2 \\ x^2+1 \end{array} $	x 0 x x^2 $x^2 + x$ $x + 1$	$x + 1$ 0 $x + 1$ $x^{2} + x$ $x^{2} + 1$ $x^{2} + x + 1$ x^{2}	x^{2} 0 x^{2} $x + 1$ $x^{2} + x + 1$ $x^{2} + x$ x	$x^{2} + 1$ 0 $x^{2} + 1$ 1 x^{2} x $x^{2} + x + 1$	$x^{2} + x$ 0 $x^{2} + x$ $x^{2} + x + 1$ 1 $x^{2} + 1$ $x + 1$	$x^{2} + x + 1$ 0 $x^{2} + x + 1$ $x^{2} + 1$ x 1 $x^{2} + x$
001 010 011 100	0 1 x x+1 x ²	0 0 0 0 0	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ x \\ x+1 \\ x^2 \end{array} $	x 0 x x^2 $x^2 + x$ $x + 1$	$x + 1$ 0 $x + 1$ $x^{2} + x$ $x^{2} + 1$ $x^{2} + x + 1$	x^{2} 0 x^{2} $x+1$ $x^{2}+x+1$ $x^{2}+x$	$x^{2} + 1$ 0 $x^{2} + 1$ 1 x^{2} x	$x^{2} + x$ 0 $x^{2} + x$ $x^{2} + x + 1$ 1 $x^{2} + 1$	$x^{2} + x + 1$ 0 $x^{2} + x + 1$ $x^{2} + 1$ x 1

(b) Multiplication

Computational Considerations

- Since coefficients are 0 or 1, we can always represent any polynomial as a bit string.
- Addition becomes XOR of these bit strings
- Multiplication can be done more easily
 - Shift & XOR (to be explained in lec 4)
- Modulo reduction can be done by repeatedly substituting highest power with remainder of an irreducible polynomial (also shift & XOR)