#### **Statistics Foundation**

**Simple Linear Regression** 

### **Correlation Analysis**

- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
  - Correlation is only concerned with strength of the relationship
  - No causal effect is implied with correlation



## **Correlation Analysis**

- The population correlation coefficient is denoted ρ (the Greek letter rho)
- The sample correlation coefficient is

$$r = \frac{s_{xy}}{s_x s_y}$$

where

$$s_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

# Introduction to Regression Analysis

- Regression analysis is used to:
  - Predict the value of a dependent variable based on the value of at least one independent variable
  - Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain (also called the endogenous variable)

Independent variable: the variable used to explain the dependent variable (also called the exogenous variable)



### **Linear Regression Model**

- The relationship between X and Y is described by a linear function
- Changes in Y are assumed to be caused by changes in X
- Linear regression population equation model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

• Where  $\beta_0$  and  $\beta_1$  are the population model coefficients and  $\epsilon$  is a random error term.



## Simple Linear Regression Model

#### The population regression model:



## Simple Linear Regression Model

(continued)



Digital Vidya

## Simple Linear Regression Equation

The simple linear regression equation provides an estimate of the population regression line



The individual random error terms e<sub>i</sub> have a mean of zero

$$e_i = (y_i - \hat{y}_i) = y_i - (b_0 + b_1 x_i)$$



#### **Least Squares Estimators**

 $^{ullet}$   $b_0$  and  $b_1$  are obtained by finding the values of  $b_0$  and  $b_1$  that minimize the sum of the squared differences between y and  $\hat{y}$ :

min SSE = min 
$$\sum e_i^2$$
  
= min  $\sum (y_i - \hat{y}_i)^2$   
= min  $\sum [y_i - (b_0 + b_1 x_i)]^2$ 

Differential calculus is used to obtain the coefficient estimators b<sub>0</sub> and b<sub>1</sub> that minimize SSE



#### **Least Squares Estimators**

(continued)

The slope coefficient estimator is

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{\overline{x}}} = r_{xy} \frac{s_{y}}{s_{x}}$$

And the constant or y-intercept is

$$b_0 = \overline{y} - b_1 \overline{x}$$

• The regression line always goes through the mean  $\overline{x}$ ,  $\overline{y}$ 



## Finding the Least Squares Equation

- The coefficients  $b_0$  and  $b_1$ , and other regression results in this module, will be found using a computer
  - Hand calculations are tedious
  - Statistical routines are built into Excel
  - Other statistical analysis software can be used

## Linear Regression Model Assumptions

- The true relationship form is linear (Y is a linear function of X, plus random error)
- The error terms,  $\varepsilon_i$  are independent of the x values
- The error terms are random variables with mean 0 and constant variance,  $\sigma^2$  (the constant variance property is called homoscedasticity)
- The random error terms,  $\varepsilon_i$ , are not correlated with one another, so that

$$E[\varepsilon_i] = 0$$
 and  $E[\varepsilon_i^2] = \sigma^2$  for  $(i = 1, K, n)$ 

$$E[\varepsilon_i \varepsilon_j] = 0$$
 for all  $i \neq j$ 

## Interpretation of the Slope and the Intercept

•  $b_0$  is the estimated average value of y when the value of x is zero (if x = 0 is in the range of observed x values)

 b<sub>1</sub> is the estimated change in the average value of y as a result of a one-unit change in x



## Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
  - Dependent variable (Y) = house price in \$1000s
  - Independent variable (X) = square feet



## Sample Data for House Price Model

| House Price in \$1000s<br>(Y) | Square Feet<br>(X) |
|-------------------------------|--------------------|
| 245                           | 1400               |
| 312                           | 1600               |
| 279                           | 1700               |
| 308                           | 1875               |
| 199                           | 1100               |
| 219                           | 1550               |
| 405                           | 2350               |
| 324                           | 2450               |
| 319                           | 1425               |
| 255                           | 1700               |



### **Graphical Presentation**

House price model: scatter plot







### Regression Using Excel

Tools / Data Analysis / Regression







### **Excel Output**

| Regression | Statistics |
|------------|------------|
|------------|------------|

Multiple R 0.76211
R Square 0.58082
Adjusted R Square 0.52842
Standard Error 41.33032
Observations 10

The regression equation is:

house price = 98.24833 + 0.10977 (square feet)

| ANOVA      | /         |            |            |         |                |
|------------|-----------|------------|------------|---------|----------------|
|            | df /      | SS         | MS         | F       | Significance F |
| Regression | 1         | 18934.9348 | 18934.9348 | 11.0848 | 0.01039        |
| Residual   | <b>/8</b> | 13665.5652 | 1708.1957  |         |                |
| Total      | 9         | 32600.5000 |            |         |                |



|             | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|-------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 | 0.03374   | 0.18580   |



### **Graphical Presentation**

House price model: scatter plot and regression line.





house price = 98.24833 + 0.10977 (square feet)



#### Interpretation of the Intercept, b<sub>o</sub>

house price = 98.24833 + 0.10977 (square feet)

- b<sub>0</sub> is the estimated average value of Y when the value of X is zero (if X = 0 is in the range of observed X values)
  - Here, no houses had 0 square feet, so  $b_0 = 98.24833$  just indicates that, for houses within the range of sizes observed, \$98,248.33 is the portion of the house price not explained by square feet



# Interpretation of the Slope Coefficient, b

houseprice = 98.24833 + 0.10977 (square feet)

- b<sub>1</sub> measures the estimated change in the average value of Y
   as a result of a one-unit change in X
  - Here,  $b_1 = .10977$  tells us that the average value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size



#### Measures of Variation

Total variation is made up of two parts:

$$SST = SSR + SSE$$

Total Sum of Squares

Regression Sum of Squares

Error Sum of Squares

$$SST = \sum (y_i - \overline{y})^2$$

$$|SSR = \sum (\hat{y}_i - \overline{y})^2|$$

$$SSE = \sum (y_i - \hat{y}_i)^2$$

where:

 $\overline{V}$  = Average value of the dependent variable

y<sub>i</sub> = Observed values of the dependent variable

 $\hat{y}_i$  = Predicted value of y for the given  $x_i$  value



#### Measures of Variation

(continued)

- SST = total sum of squares
  - Measures the variation of the  $y_i$  values around their mean,  $\overline{y}$
- SSR = regression sum of squares
  - Explained variation attributable to the linear relationship between x and y
- SSE = error sum of squares
  - Variation attributable to factors other than the linear relationship between x and y



#### Measures of Variation



#### Coefficient of Determination, R<sup>2</sup>

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called Rsquared and is denoted as R<sup>2</sup>

$$R^2 = \frac{SSR}{SST} = \frac{regression sum of squares}{total sum of squares}$$

note:  $0 \le R^2 \le 1$ 

# Examples of Approximate r<sup>2</sup> Values



# Examples of Approximate r2 Values



 $0 < r^2 < 1$ 

Weaker linear relationships between X and Y:



Some but not all of the variation in Y is explained by variation in X

# Examples of Approximate r<sup>2</sup> Values



 $r^2 = 0$ 

No linear relationship between X and Y:

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

### **Excel Output**





|             | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|-------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 | 0.03374   | 0.18580   |



### Correlation and R<sub>2</sub>

• The coefficient of determination, R<sup>2</sup>, for a simple regression is equal to the simple correlation squared

$$R^2 = r_{xy}^2$$

## Estimation of Model Error Variance

An estimator for the variance of the population model error is

$$\hat{\sigma}^2 = s_e^2 = \frac{\sum_{i=1}^{n} e_i^2}{n-2} = \frac{SSE}{n-2}$$

Division by n-2 instead of n-1 is because the simple regression model uses two estimated parameters,  $b_0$  and  $b_1$ , instead of one

$$s_e = \sqrt{s_e^2}$$
 is called the standard error of the estimate

## **Excel Output**

|  | res |  |  |  |
|--|-----|--|--|--|
|  |     |  |  |  |

Multiple R 0.76211
R Square 0.58082
Adjusted R Square 0.52842
Standard Error 41.33032
Observations 10

 $s_e = 41.33032$ 

| ANOVA      |    |            |            |         |                |
|------------|----|------------|------------|---------|----------------|
|            | df | SS         | MS         | F       | Significance F |
| Regression | 1  | 18934.9348 | 18934.9348 | 11.0848 | 0.01039        |
| Residual   | 8  | 13665.5652 | 1708.1957  |         |                |
| Total      | 9  | 32600.5000 |            |         |                |



|             | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|-------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 | 0.03374   | 0.18580   |



### **Comparing Standard Errors**

s<sub>e</sub> is a measure of the variation of observed y values from the regression line



The magnitude of  $s_e$  should always be judged relative to the size of the y values in the sample data

i.e.,  $s_e$  = \$41.33K is moderately small relative to house prices in the \$200 - \$300K range



# Inferences About the Regression Model

• The variance of the regression slope coefficient  $(b_1)$  is estimated by

$$s_{b_1}^2 = \frac{s_e^2}{\sum (x_i - \overline{x})^2} = \frac{s_e^2}{(n-1)s_x^2}$$

where:

 $S_{b_1}$  = Estimate of the standard error of the least squares slope

$$s_e = \sqrt{\frac{SSE}{n-2}}$$
 = Standard error of the estimate

## **Excel Output**

| Regression | <b>Statistics</b> |
|------------|-------------------|
|------------|-------------------|

| Multiple R        | 0.76211  |
|-------------------|----------|
| R Square          | 0.58082  |
| Adjusted R Square | 0.52842  |
| Standard Error    | 41.33032 |
| Observations      | 10       |
|                   |          |



| ANOVA      |    |            |            |         |                |
|------------|----|------------|------------|---------|----------------|
|            | df | SS         | MS         | F       | Significance F |
| Regression | 1  | 18934.9348 | 18934.9348 | 11.0848 | 0.01039        |
| Residual   | 8  | 13665.5652 | 1708.1957  |         |                |
| Total      | 9  | 32600.5000 |            |         |                |



|             | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|-------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 | 0.03374   | 0.18580   |



## Comparing Standard Errors of the Slope

 $S_{b_1}$  is a measure of the variation in the slope of regression lines from different possible samples



## Inference about the Slope: t Test

- t test for a population slope
  - Is there a linear relationship between X and Y?
- Null and alternative hypotheses

$$H_0$$
:  $β_1 = 0$  (no linear relationship)
 $H_1$ :  $β_1 \neq 0$  (linear relationship does exist)

Test statistic

$$t = \frac{b_1 - \beta_1}{s_{b_1}}$$

$$d.f.=n-2$$

where:

b<sub>1</sub> = regression slope coefficient

 $\beta_1$  = hypothesized slope

s<sub>b1</sub> = standard error of the slope



## Inference about the Slope: t Test

(continued)

| House Price in<br>\$1000s<br>(y) | Square Feet<br>(x) |  |  |  |
|----------------------------------|--------------------|--|--|--|
| 245                              | 1400               |  |  |  |
| 312                              | 1600               |  |  |  |
| 279                              | 1700               |  |  |  |
| 308                              | 1875               |  |  |  |
| 199                              | 1100               |  |  |  |
| 219                              | 1550               |  |  |  |
| 405                              | 2350               |  |  |  |
| 324                              | 2450               |  |  |  |
| 319                              | 1425               |  |  |  |
| 255                              | 1700               |  |  |  |

#### **Estimated Regression Equation:**

The slope of this model is 0.1098

Does square footage of the house affect its sales price?





### Inferences about the Slope: t Test Example



# Inferences about the Slope: t Test Example



# Inferences about the Slope: t Test Example

P-value = 0.01039

From Excel output:

 $H_0$ :  $\beta_1 = 0$  $H_1$ :  $\beta_1 <> 0$ 

|             | Coefficients | Standard Error | t Stat  | P-value |
|-------------|--------------|----------------|---------|---------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 |

This is a two-tail test, so the p-value is P(t > 3.329)+P(t < -3.329) = 0.01039 (for 8 d.f.)

**Decision:** P-value < α so Reject H<sub>0</sub>

#### **Conclusion:**

There is sufficient evidence that square footage affects house price

P-value

# Confidence Interval Estimate for the Slope

#### Confidence Interval Estimate of the Slope:

$$\boxed{b_1 - t_{n-2,\alpha/2} s_{b_1} \ < \ \beta_1 \ < \ b_1 + t_{n-2,\alpha/2} s_{b_1}}$$

d.f. = n - 2

#### **Excel Printout for House Prices:**

|                    | Coe | fficients | Standard Error | t Stat  | P-value | Lo | ower 95%  | U   | Jpper 95% | Þ |
|--------------------|-----|-----------|----------------|---------|---------|----|-----------|-----|-----------|---|
| Intercept          |     | 98.24833  | 58.03348       | 1.69296 | 0.12892 |    | -35.57720 |     | 232.07386 |   |
| <b>Square Feet</b> |     | 0.10977   | 0.03297        | 3.32938 | 0.01039 |    | 0.03374   | ) ( | 0.18580   |   |

At 95% level of confidence, the confidence interval for the slope is (0.0337, 0.1858)



# Confidence Interval Estimate for the Slope

(continued)

|                    | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|--------------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept          | 98.2483      | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| <b>Square Feet</b> | 0.1097       | 7 0.03297      | 3.32938 | 0.01039 | 0.03374   | 0.18580   |

Since the units of the house price variable is \$1000s, we are 95% confident that the average impact on sales price is between \$33.70 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance



#### F-Test for Significance

• F Test statistic: 
$$F = \frac{MSR}{MSE}$$

where 
$$MSR = \frac{SSR}{k}$$
 
$$MSE = \frac{SSE}{n-k-1}$$

where F follows an F distribution with k numerator and (n - k - 1)denominator degrees of freedom

(k = the number of independent variables in the regression model)

### **Excel Output**



|             | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|-------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 | 0.03374   | 0.18580   |



### F-Test for Significance

(continued)



#### **Test Statistic:**

$$F = \frac{MSR}{MSE} = 11.08$$

#### **Decision:**

Reject 
$$H_0$$
 at  $\alpha = 0.05$ 

#### **Conclusion:**

There is sufficient evidence that house size affects selling price

### Prediction

- The regression equation can be used to predict a value for y, given a particular x
- For a specified value,  $x_{n+1}$ , the predicted value is

$$\hat{y}_{n+1} = b_0 + b_1 x_{n+1}$$

# Predictions Using Regression Analysis

Predict the price for a house with 2000 square feet:

house price = 
$$98.25 + 0.1098$$
 (sq.ft.)

$$=98.25+0.1098(2000)$$

$$= 317.85$$

The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850



### Relevant Data Range

 When using a regression model for prediction, only predict within the relevant range of data





### **Graphical Analysis**

- The linear regression model is based on minimizing the sum of squared errors
- If outliers exist, their potentially large squared errors may have a strong influence on the fitted regression line
- Be sure to examine your data graphically for outliers and extreme points
- Decide, based on your model and logic, whether the extreme points should remain or be removed



### **Thank You**