

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

## **TEST REPORT**

FCC Standards: FCC 47CFR part 15 subpart C

| Test Report No. | : | CTK-2016-00976 |
|-----------------|---|----------------|
| rest report No. | • | CIR 2010 00370 |

Date of Issue : 2016-07-27

FCC ID : U5MLABEL-TX220

Basic Model/Type No. : SLP-TX22\*xy

Kind of Product : THERMAL LABEL PRINTER

Applicant : BIXOLON Co., Ltd.

Applicant Address : 7th-8th FL, Miraeasset Venture Tower, 20, Pangyoyeok-ro

241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea

Manufacturer : BIXOLON Co., Ltd.

Manufacturer Address : 7th-8th FL, Miraeasset Venture Tower, 20, Pangyoyeok-ro

241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea

Contact Person : Shin Ji Sung / Assistant Manager

Telephone : +82-31-218-5582

Received Date : 2016-07-04

Test period : Start : 2016-07-05 End : 2016-07-26

Test Results :  $\square$  In Compliance  $\square$  Not in Compliance

The test results presented in this report relate only to the object tested.

Tested by

Y. T. Lee

Young-taek, Lee Test Engineer Date: 2016-07-27 Reviewed by

Young-Joon, Park Technical Manager Date: 2016-07-27

Test Report No.: CTK-2016-00976 Page 1 of 59 Date: 2016-07-27



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

## REPORT REVISION HISTORY

| Date       | Revision                | Page No |
|------------|-------------------------|---------|
| 2016-07-27 | Issued (CTK-2016-00976) | All     |
|            |                         |         |
|            |                         |         |
|            |                         |         |
|            |                         |         |
|            |                         |         |
|            |                         |         |
|            |                         |         |
|            |                         |         |

This report shall not be reproduced except in full, without the written approval of CTK Co., Ltd. This document may be altered or revised by CTK Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by CTK Co., Ltd. will constitute fraud and shall nullify the document.

Test Report No.: CTK-2016-00976 Page 2 of 59

Date: 2016-07-27

Form No.: CTK-D151-06-R102(Rev.0)



## **TABLE OF CONTENTS**

| REPORT        | REVISION HISTORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 2 |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.0           | General Product Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 4 |
|               | Tested Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 1.2           | Tested Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 4 |
| 1.3           | Model Differences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 5 |
| 1.4           | Device Modifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 5 |
|               | Peripheral Devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 1.6           | Calibration Details of Equipment Used for Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 5 |
|               | Test Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|               | Laboratory Accreditations and Listings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 2.0           | Summary of tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 7 |
|               | Transmitter Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 2.1.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 2.1.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 2.1.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 2.1.          | / ( /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 2.1.          | - idaminating pound contraction of the contraction |     |
| 2.1.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 2.1.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 2.1.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 2.1.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 2.1.          | Free Free Free Free Free Free Free Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| <b>APPEND</b> | IX A - Test Equipment Used For Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59  |

Test Report No.: CTK-2016-00976





# 1.0 General Product Description

| Kind of product         | THERMAL LABEL PRINTER                                                                                     |
|-------------------------|-----------------------------------------------------------------------------------------------------------|
| Kind of product         | THERMAL LABEL FRINTER                                                                                     |
| Model name              | SLP-TX22*xy                                                                                               |
| Serial number           | Prototype                                                                                                 |
| EUT condition           | Pre-production, not damaged                                                                               |
| Antenna type            | Chip antenna                                                                                              |
| Antenna Gain            | 0 dBi                                                                                                     |
| Frequency Range         | 2402 MHz - 2480 MHz                                                                                       |
| RF power                | 9.52 dBm Peak Conducted (GFSK)<br>8.98 dBm Peak Conducted (π/4 DQPSK)<br>8.11 dBm Peak Conducted (8-DPSK) |
| Type of Modulation      | Frequency Hopping Spread Spectrum                                                                         |
| Number of channels      | 79                                                                                                        |
| Channel Spacing         | 1 MHz                                                                                                     |
| Channel Access Protocol | Frequency Hopping                                                                                         |
| Type of Modulation      | GFSK(1Mbps), DQPSK(2Mbps), 8-DPSK(3Mbps)                                                                  |
| Power Source            | DC 24 V                                                                                                   |

# 1.1 Tested Frequency

|                 | LOW  | MID  | HIGH |
|-----------------|------|------|------|
| Frequency (MHz) | 2402 | 2441 | 2480 |

# 1.2 Tested Mode

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| Tested Ch      | Modulation<br>Technology | Modulation Type | Packet Type |
|----------------|--------------------------|-----------------|-------------|
| Low, Mid, High | FHSS                     | GFSK            | DH5         |
| Low, Mid, High | FHSS                     | 8-DPSK          | 3-DH5       |

Test Report No.: CTK-2016-00976

Date: 2016-07-27

CTK-2016-00976 Page 4 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

## 1.3 Model Differences

Remark: SLP-TX22\*xy

'\*' can be alphanumeric.

'x' can be blank or alphanumeric. 'y' can be blank or alphanumeric.

### 1.4 Device Modifications

The following modifications were necessary for compliance:

Not applicable

## 1.5 Peripheral Devices

| Device            | Manufacturer | Model No.         | Serial No.         |
|-------------------|--------------|-------------------|--------------------|
| Notebook Computer | НР           | HP ProBook 650 G1 | 5CG5114KD2         |
| AC/DC ADAPTER     | НР           | PPP012D-S         | WCNXF0AAR7S2<br>XX |

## 1.6 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less. All test equipment calibrations are traceable to the Korea Research Institute of Standards and Science (KRISS), therefore, all test data recorded in this report is traceable to KRISS.

# 1.7 Test Facility

The measurement facility is located at (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea.

Test Report No.: CTK-2016-00976 Page 5 of 59



# **Laboratory Accreditations and Listings**

| Country | Agency | Scope of Accreditation                                                                        | Registration<br>Number             | Logo |
|---------|--------|-----------------------------------------------------------------------------------------------|------------------------------------|------|
| USA     | FCC    | FCC Part 15 & 18<br>EMI (Electromagnetic Interference / Emission)                             | 805871                             | FC   |
| CANADA  | IC     | IC<br>EMI (3/10m test site)                                                                   | 8737A-2                            | *    |
| JAPAN   | VCCI   | VCCI V-3<br>EMI (Electromagnetic Interference / Emission)                                     | C-986<br>T-1843<br>R-3627<br>G-387 | VEI  |
| KOREA   | MSIP   | EMI (Electromagnetic Interference / Emission) EMS (Electromagnetic Susceptibility / Immunity) | KR0025                             |      |

Test Report No.: CTK-2016-00976 Page 6 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

# 2.0 Summary of tests

| FCC Part<br>Section(s) | Parameter                       | Limit         | Test<br>Condition | Status<br>(note 1) |
|------------------------|---------------------------------|---------------|-------------------|--------------------|
| 15.247(a)              | Carrier Frequency<br>Separation | > 25 kHz      |                   | С                  |
| 15.247(a)              | Number of Hopping Frequencies   | > 15 hops     |                   | С                  |
| 15.247(a)              | 20 dB Bandwidth                 | NA            |                   | С                  |
| 15.247(a)              | Dwell Time                      | < 0.4 seconds | Conducted         | С                  |
| 15.247(b)              | Transmitter Output<br>Power     | < 0.125 Watts |                   | С                  |
| 15.247(d)              | Conducted Spurious emission     | > 20 dBc      |                   | С                  |
| 15.247(d)              | Band Edge                       | > 20 dBc      |                   | С                  |
| 15.209                 | Field Strength of<br>Harmonics  | 15.209(a)     | Radiated          | С                  |
| 15.207                 | AC Conducted Emissions          | 15.207(a)     | Line Conducted    | С                  |

The sample was tested according to the following specification:

The tests were performed according to the method of measurements prescribed in DA 00-705.

Test Report No.: CTK-2016-00976 Page 7 of 59

<sup>-</sup> FCC Part 15.247, ANSI C63.10-2013



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

## 2.1 Transmitter Requirements

## 2.1.1 Carrier Frequency Separation

### **Test Location**

RF Test Room

#### **Test Procedures**

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT has its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

### The spectrum analyzer is set to:

Span = 5 MHz (wide enough to capture the peaks of two adjacent channels)

RBW = 30 kHz ( $\geq$  1% of the span) Sweep = auto

VBW = 100 kHz ( $\geq$  RBW) Detector function = peak

Trace = max hold



Figure 1: Measurement setup for the carrier frequency separation

#### Limit

§15.247(a)(1) Frequency hopping system operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-third of 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

### **Test Results**

Test mode: GFSK, CFG PKT Packet Type: 15 Packet Size: 339(DH5)

| Channel | Adjacent Hopping<br>Channel Separation<br>(kHz) | Two-third of 20dB<br>bandwidth<br>(kHz) | Minimum<br>Bandwidth<br>(kHz) | Result   |
|---------|-------------------------------------------------|-----------------------------------------|-------------------------------|----------|
| 2441MHz | 999.2                                           | 553.3                                   | 25                            | Complies |

Test mode: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021(3DH5)

| i cst illouc . | o bi sit, ci o i it i acite | L Type . Si I deket s | NEC . IUEI(JD | 113)     |
|----------------|-----------------------------|-----------------------|---------------|----------|
|                | Adjacent Hopping            | Two-third of 20dB     | Minimum       |          |
| Channel        | Channel Separation          | bandwidth             | Bandwidth     | Result   |
|                | (kHz)                       | (kHz)                 | (kHz)         |          |
| 2441MHz        | 1000.0                      | 806.7                 | 25            | Complies |

See next pages for actual measured spectrum plots.

Test Report No.: CTK-2016-00976 Page 8 of 59



### **Carrier Frequency Separation**

### Test mode: GFSK



Date: 5.JUL.2016 17:52:07

#### Test mode: 8-DPSK \*RBW 30 kHz Delta 2 [T1 ] VBW 100 kHz



Date: 6.JUL.2016 18:06:23

Test Report No.: CTK-2016-00976 Page 9 of 59



## 2.1.2 Number of Hopping Frequencies

#### **Test Location**

RF Test Room

### **Test Procedures**

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

### The spectrum analyzer is set to:

Frequency range 1: Start = 2389.5 MHz, Stop = 2439.5 MHz

2: Start = 2439.5 MHz, Stop = 2489.5 MHz

RBW = 300 kHz ( $\geq$  1% of the span) Sweep = auto

VBW = 300 kHz (≥ RBW) Detector function = peak

Trace = max hold

EUT \_\_\_\_\_ Spectrum Analyzer

### Limit

§15.247(a)(1)(iii) For frequency hopping system operating in the 2400-2483.5 MHz band shall use at least 15 hopping frequencies.

### **Test Results**

Test mode: GFSK, CFG PKT Packet Type: 15 Packet Size: 339(DH5)

| Total number of Hopping Channels | Result   |
|----------------------------------|----------|
| 79                               | Complies |

Test mode: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021(3DH5)

| Total number of Hopping Channels | Result   |
|----------------------------------|----------|
| 79                               | Complies |

See next pages for actual measured spectrum plots.

Test Report No.: CTK-2016-00976 Page 10 of 59

## **Number of Hopping Frequencies(GFSK)**



Date: 5.JUL.2016 17:56:45



Date: 5.JUL.2016 17:58:47

Test Report No.: CTK-2016-00976 Page 11 of 59 Date: 2016-07-27

### **Number of Hopping Frequencies(8-DPSK)**



Date: 6.JUL.2016 17:42:56



Date: 5.JUL.2016 18:03:36

Test Report No.: CTK-2016-00976 Page 12 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

### 2.1.3 20 dB bandwidth

### **Test Location**

RF Test Room

#### **Test Procedures**

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels. After the trace being stable, Use the marker-to peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

#### The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = approximately 2 or 3 times of the 20 dB bandwidth

RBW = 30 kHz ( $\geq 1\%$  of the 20 dB bandwidth) Sweep = auto

VBW = 30 kHz (≥ RBW) Detector function = peak

Trace = max hold

EUT \_\_\_\_\_ Spectrum Analyzer

#### Limit

Limit: N/A

Test Report No.: CTK-2016-00976 Page 13 of 59 Date: 2016-07-27



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

### **Test Results**

Test mode: GFSK, CFG PKT Packet Type: 15 Packet Size: 339(DH5)

|                    |                 | , pe : : : : : : ;       |          |  |
|--------------------|-----------------|--------------------------|----------|--|
| Frequency<br>(MHz) | Channel Number. | Measured Bandwidth (MHz) | Result   |  |
| 2402               | 0               | 0.830                    | Complies |  |
| 2441               | 39              | 0.830                    | Complies |  |
| 2480               | 78              | 0.840                    | Complies |  |

Test mode: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021(3DH5)

| TOSC IIIOGC TO BIO | 1 1011(55115)   |                          |          |
|--------------------|-----------------|--------------------------|----------|
| Frequency<br>(MHz) | Channel Number. | Measured Bandwidth (MHz) | Result   |
| 2402               | 0               | 1.200                    | Complies |
| 2441               | 39              | 1.210                    | Complies |
| 2480               | 78              | 1.200                    | Complies |

See next pages for actual measured spectrum plots.

Test Report No.: CTK-2016-00976 Page 14 of 59

### 20 dB Bandwidth - GFSK



Date: 6.JUL.2016 10:00:56



Date: 6.JUL.2016 10:02:01

Test Report No.: CTK-2016-00976 Page 15 of 59





Date: 6.JUL.2016 10:02:43

Page 16 of 59 Test Report No.: CTK-2016-00976

### 20 dB Bandwidth - 8-DPSK



Date: 6.JUL.2016 10:07:15



Date: 6.JUL.2016 10:08:58

Test Report No.: CTK-2016-00976 Page 17 of 59





Date: 6.JUL.2016 10:09:58

Test Report No.: CTK-2016-00976 Page 18 of 59



## 2.1.4 Time of Occupancy (Dwell Time)

#### **Test Location**

RF Test Room

#### **Test Procedures**

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT has its hopping function enabled.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured and set spectrum analyzer to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. The SLP-DX22\*z has 3 type of payload, DH1, DH3, DH5. The hopping rate is 1600 per second.

### The spectrum analyzer is set to:

Center frequency = the highest, middle, and the lowest channels

Span = zero

RBW = 1 MHz Trace = max hold

 $VBW = 1 MHz (\ge RBW)$  Detector function = peak

Sweep = as necessary to capture the entire dwell time per hopping channel



### Limit

 $\S15.247(a)(1)(iii)$  For frequency hopping system operating in 2400-2483.5 MHz band, the average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Report No.: CTK-2016-00976 Page 19 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

### **Test Results**

Time of occupancy on the TX channel in 31.6 sec = time domain slot length  $\times$  hop rate  $\div$  number of hop per channel  $\times$  31.6

### Test mode: GFSK

| Channel         |             | Time domain         | Test Results                                              |          |
|-----------------|-------------|---------------------|-----------------------------------------------------------|----------|
| Frequency (MHz) | Packet Type | slot length<br>(ms) | Time of occupancy on<br>the TX channel in<br>31.6sec (ms) | Result   |
|                 | DH 1        | 0.440               | 140.8                                                     | Complies |
| 2441            | DH 3        | 1.700               | 272.0                                                     | Complies |
|                 | DH 5        | 2.940               | 313.6                                                     | Complies |

DH1 Dwell time =  $0.440 \text{ ms} \times (1600 \div 2) \div 79 \times 31.6 = 140.8 \text{ ms}$ DH3 Dwell time =  $1.700 \text{ ms} \times (1600 \div 4) \div 79 \times 31.6 = 272.0 \text{ ms}$ DH5 Dwell time =  $2.940 \text{ ms} \times (1600 \div 6) \div 79 \times 31.6 = 313.6 \text{ ms}$ 

#### Test mode: 8-DPSK

| rest mode : 6 Di Sk |                                             |             |                                                           |              |          |  |
|---------------------|---------------------------------------------|-------------|-----------------------------------------------------------|--------------|----------|--|
|                     | Channel                                     | Channel     | Time domain                                               | Test Results |          |  |
|                     | Frequency Packet Type slot lengt (MHz) (ms) | slot length | Time of occupancy on<br>the TX channel in<br>31.6sec (ms) | Result       |          |  |
|                     | 2441                                        | 3DH 1       | 0.440                                                     | 140.8        | Complies |  |
|                     |                                             | 3DH 3       | 1.700                                                     | 272.0        | Complies |  |
|                     |                                             | 3DH 5       | 2.940                                                     | 313.6        | Complies |  |

3DH1 Dwell time = 0.440 ms  $\times$  (1600÷2) ÷ 79  $\times$  31.6 = 140.8 ms 3DH3 Dwell time = 1.700 ms  $\times$  (1600÷4) ÷ 79  $\times$  31.6 = 272.0 ms 3DH5 Dwell time = 2.940 ms  $\times$  (1600÷6) ÷ 79  $\times$  31.6 = 313.6 ms

See next pages for actual measured spectrum plots.

Test Report No.: CTK-2016-00976 Page 20 of 59



## Time of Occupancy for PACKET Type DH1(GFSK)



Date: 6.JUL.2016 10:23:15

### Time of Occupancy for PACKET Type DH3(GFSK)



Date: 6.JUL.2016 10:25:26

Test Report No.: CTK-2016-00976 Page 21 of 59 Date: 2016-07-27



## Time of Occupancy for PACKET Type DH5(GFSK)



Date: 6.JUL.2016 10:27:49

Test Report No.: CTK-2016-00976 Page 22 of 59 Date: 2016-07-27



## Time of Occupancy for PACKET Type 3DH1(8-DPSK)



Date: 6.JUL.2016 17:46:21

### **Time of Occupancy for PACKET Type 3DH3(8-DPSK)**



Date: 6.JUL.2016 17:47:56

Test Report No.: CTK-2016-00976 Page 23 of 59

Date: 2016-07-27 This Report shall not be reproduced except in full without the written approval of CTK



## **Time of Occupancy for PACKET Type 3DH5(8-DPSK)**



Date: 6.JUL.2016 17:49:01

Test Report No.: CTK-2016-00976 Page 24 of 59 Date: 2016-07-27



## 2.1.5 Maximum peak Conducted Output Power

#### **Test Location**

RF Test Room

### **Test Procedures**

The maximum peak conducted output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT has its hopping function disabled at the highest, middle and the lowest available channels.

The spectrum analyzer is set to:

Center frequency = the highest, middle, and the lowest channels

Span = approximately 5 times of the 20 dB bandwidth

RBW = 1 MHz (greater than the 20 dB bandwidth of the emission being measured)

 $VBW = 1 MHz (\ge RBW)$  Detector function = peak

Trace =  $\max$  hold Sweep = auto



#### Note:

The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by low loss cable.

### Limit

§5.247(b)(1) The Maximum Peak Output Power Measurement is 0.125 Watts for frequency hopping system operating in 2400-2483.5 MHz employing at least 15 Hopping channels.

Test Report No.: CTK-2016-00976 Page 25 of 59

Date: 2016-07-27



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

### **Test Results**

Test mode: GFSK, CFG PKT Packet Type: 15 Packet Size: 339(DH5)

|                    |             | <i>,</i> .             |                       |          |
|--------------------|-------------|------------------------|-----------------------|----------|
| Frequency<br>(MHz) | Channel No. | Peak output power(dBm) | Peak output power(mW) | Result   |
| 2402               | 0           | 9.44                   | 8.79                  | Complies |
| 2441               | 39          | 9.19                   | 8.30                  | Complies |
| 2480               | 78          | 9.52                   | 8.95                  | Complies |

Test mode:  $\pi/4$  DQPSK, CFG PKT Packet Type: 30 Packet Size: 679(2DH5)

| 1000 mode 1 %, 12 <b>c</b> . 014, 01 0 1 111 1 donot 1 <b>, p</b> 0 1 0 0 1 donot 0 = 0 1 0 |             |                        |                       | 7 7 (== 110 ) |
|---------------------------------------------------------------------------------------------|-------------|------------------------|-----------------------|---------------|
| Frequency<br>(MHz)                                                                          | Channel No. | Peak output power(dBm) | Peak output power(mW) | Result        |
| 2402                                                                                        | 0           | 8.98                   | 7.91                  | Complies      |
| 2441                                                                                        | 39          | 8.56                   | 7.18                  | Complies      |
| 2480                                                                                        | 78          | 8.95                   | 7.85                  | Complies      |

Test mode: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021(3DH5)

| 1 0 0 0 1110 010 1 0 1 1 1 1 1 1 |             |                        |                       | (        |
|----------------------------------|-------------|------------------------|-----------------------|----------|
| Frequency<br>(MHz)               | Channel No. | Peak output power(dBm) | Peak output power(mW) | Result   |
| 2402                             | 0           | 7.44                   | 5.55                  | Complies |
| 2441                             | 39          | 7.51                   | 5.64                  | Complies |
| 2480                             | 78          | 8.11                   | 6.47                  | Complies |

See next pages for actual measured spectrum plots.

Test Report No.: CTK-2016-00976 Page 26 of 59

## **Maximum peak Conducted Output Power - GFSK**



Date: 5.JUL.2016 17:34:26



Date: 5.JUL.2016 17:35:10

Page 27 of 59 Test Report No.: CTK-2016-00976





Date: 5.JUL.2016 17:36:03

Test Report No.: CTK-2016-00976 Page 28 of 59

## Maximum peak Conducted Output Power - $\pi/4$ DQPSK



Date: 6.JUL.2016 11:02:01



Date: 6.JUL.2016 11:01:23

Test Report No.: CTK-2016-00976 Page 29 of 59

Form No.: CTK-D151-06-R102(Rev.0)

Date: 2016-07-27 This Report shall not be reproduced except in full without the written approval of CTK





Date: 6.JUL.2016 11:00:46

Test Report No.: CTK-2016-00976 Page 30 of 59 Date: 2016-07-27

## **Maximum peak Conducted Output Power - 8-DPSK**



Date: 6.JUL.2016 17:51:12



Date: 6.JUL.2016 17:52:18

Page 31 of 59 Test Report No.: CTK-2016-00976





Date: 6.JUL.2016 17:53:12

Test Report No.: CTK-2016-00976 Page 32 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

### 2.1.6 RF Conducted Emissions

#### **Test Location**

RF Test Room

### **Test Procedures**

The bandwidth at 20 dB down from the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT has its hopping function disabled at the highest, middle and the lowest available channels.

### The spectrum analyzer is set to:

Center frequency = the highest, middle, and the lowest channels

RBW = 100 kHz

 $VBW = 100 \text{ kHz} (\geq RBW)$ 

Span = 10 MHz Detector function = peak

Trace =  $\max$  hold Sweep = auto

EUT \_\_\_\_\_ Spectrum Analyzer

### Limit

> 20 dBc

#### **Test Results**

All conducted emission in any 100 kHz bandwidth outside of the spectrum band was at least 20 dB lower than the highest level of the inband spectral density. Therefore the applying equipment meets the requirement.

See next pages for actual measured spectrum plots.

Test Report No.: CTK-2016-00976 Page 33 of 59



### Band - edge (Hopping mode) - GFSK



Date: 6.JUL.2016 11:12:11



Date: 6.JUL.2016 11:20:58

Test Report No.: CTK-2016-00976 Page 34 of 59

## Band - edge (Hopping mode) - 8-DPSK



Date: 6.JUL.2016 11:43:10



Date: 6.JUL.2016 11:33:41

Test Report No.: CTK-2016-00976 Page 35 of 59



## Band - edge (Non-Hopping mode) - GFSK



Date: 6.JUL.2016 12:07:47



Date: 6.JUL.2016 12:09:01

Test Report No.: CTK-2016-00976 Page 36 of 59

### Band - edge (Non-Hopping mode) - 8-DPSK



Date: 6.JUL.2016 12:13:36



Date: 6.JUL.2016 12:10:55

Test Report No.: CTK-2016-00976 Page 37 of 59

### Spurious (at 20 dB blow) - Low channel Frequency Range = 30 MHz ~ 10<sup>th</sup> harmonic (Test mode : GFSK)



Date: 6.JUL.2016 14:39:02



Date: 6.JUL.2016 14:39:33

Test Report No.: CTK-2016-00976 Date: 2016-07-27

## Spurious (at 20 dB blow) – Mid channel Frequency Range = 30 MHz $\sim 10^{th}$ harmonic (Test mode : GFSK)



Date: 6.JUL.2016 14:34:29



Date: 6.JUL.2016 14:35:19

Test Report No.: CTK-2016-00976 Date: 2016-07-27

### Spurious (at 20 dB blow) - High channel Frequency Range = 30 MHz ~ 10<sup>th</sup> harmonic (Test mode : GFSK)



Date: 6.JUL.2016 14:44:01



Date: 6.JUL.2016 14:44:30

Test Report No.: CTK-2016-00976 Date: 2016-07-27

This Report shall not be reproduced except in full without the written approval of CTK

Form No.: CTK-D151-06-R102(Rev.0)

Page 40 of 59



## Spurious (at 20 dB blow) – Low channel Frequency Range = 30 MHz $\sim 10^{th}$ harmonic (Test mode: 8-DPSK)



Date: 6.JUL.2016 14:49:30



Date: 6.JUL.2016 14:50:06

Test Report No.: CTK-2016-00976 Page 41 of 59 Date: 2016-07-27

This Report shall not be reproduced except in full without the written approval of CTK Form No.: CTK-D151-06-R102(Rev.0)



## Spurious (at 20 dB blow) – Mid channel Frequency Range = 30 MHz $\sim 10^{th}$ harmonic (Test mode: 8-DPSK)



Date: 6.JUL.2016 14:57:14



Date: 6.JUL.2016 14:57:45

Test Report No.: CTK-2016-00976 Date: 2016-07-27

### Spurious (at 20 dB blow) - High channel Frequency Range = 30 MHz ~ 10<sup>th</sup> harmonic (Test mode: 8-DPSK)



Date: 6.JUL.2016 15:00:53



Date: 6.JUL.2016 15:01:23

Test Report No.: CTK-2016-00976 Date: 2016-07-27



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

### 2.1.7 Field Strength of Emissions

#### **Test Location**

 $\boxtimes$  10 m SAC (test distance :  $\square$  10 m,  $\boxtimes$  3 m)  $\boxtimes$  3 m SAC (test distance : 3 m)

#### **Test Procedures**

- 1) In the frequency range of 9 kHz to 30 MHz, magnetic field is measured with Loop Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- 2) In the frequency rage above 30 MHz, Bi-Log Test Antenna(30 MHz to 1 GHz) and Horn Test Antenna(above 1 GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emissions levels at both horizontal and vertical polarizations should be tested.

### The spectrum analyzer is set to:

Frequency Range = 9 kHz  $\sim$  25 GHz (2.4 GHz  $10^{th}$  harmonic) RBW = 1 MHz for f  $\geq$  1 GHz, 100 kHz for f < 1 GHz, 9 kHz for f < 30 MHz VBW  $\geq$  RBW Sweep = auto

Test Report No.: CTK-2016-00976 Page 44 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

#### Limit

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                      | MHz MHz           |                         | MHz           | MHz         | GHz                     |
|--------------------------|-------------------|-------------------------|---------------|-------------|-------------------------|
| 0.09-0.11                | 8.37626-8.38675   | 73-74.6                 | 399.9-410     | 2690-2900   | 10.6-12.7               |
| <sup>1</sup> 0.495-0.505 | 8.41425-8.41475   | 74.8-75.2               | 608-614       | 3260-3267   | 13.25-13.4              |
| 2.1735-2.1905            | 12.29-12.293      | 108-121.94              | 960-1240      | 3332-3339   | 14.47-14.5              |
| 4.125-4.128              | 12.51975-12.52025 | 123-138                 | 1300-1427     | 3345.8-3358 | 15.35-16.2              |
| 4.17725-4.17775          | 12.57675-12.57725 | 149.9-150.05            | 1435-1626.5   | 3600-4400   | 17.7-21.4               |
| 4.20725-4.20775          | 13.36-13.41       | 156.52475-<br>156.52525 | 1645.5-1646.5 | 4500-5150   | 22.01-23.12             |
| 6.215-6.218              | 16.42-16.423      | 156.7-156.9             | 1660-1710     | 5350-5460   | 23.6-24                 |
| 6.26775-6.26825          | 16.69475-16.69525 | 162.0125-167.17         | 1718.8-1722.2 | 7250-7750   | 31.2-31.8               |
| 6.31175-6.31225          | 16.80425-16.80475 | 167.72-173.2            | 2200-2300     | 8025-8500   | 36.43-36.5              |
| 8.291-8.294              | 25.5-25.67        | 240-285                 | 2310-2390     | 9000-9200   | <sup>2</sup> Above 38.6 |
| 8.362-8.366              | 37.5-38.25        | 322-335.4               | 2483.5-2500   | 9300-9500   |                         |

<sup>&</sup>lt;sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Test Report No.: CTK-2016-00976 Page 45 of 59

<sup>&</sup>lt;sup>2</sup> Above 38.6



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

| Frequency(MHz)    | Field Strength | Field Strength | Deasurement       |
|-------------------|----------------|----------------|-------------------|
| i requericy(MIIZ) | uV/m@3m        | dBuV/m@3m      | Distance (meters) |
| 0.009-0.490       | 2400/F(kHz)    | -              | 300               |
| 0.490-1.705       | 24000/F(kHz)   | -              | 30                |
| 1.705-30          | 30             | -              | 30                |
| 30-88             | 100**          | 40             | 3                 |
| 88-216            | 150**          | 43.5           | 3                 |
| 216-960           | 200**          | 46             | 3                 |
| Above 960         | 500            | 54             | 3                 |

<sup>\*\*</sup> Except as provided in 15.209(g).fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz, 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g.15.231 and 15.241.

#### Note:

- 1) For above 1 GHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
- 2) For above 1 GHz, limit field strength of harmonics : 54 dBuV/m@3m (AV) and 74 dBuV/m@3m (PK)
- 3) For measurement above 1GHz, the resolution bandwidth is set to 1 MHz and video bandwidth is set to 1 MHz for peak measurement and 10 Hz for average measurement.

Test Report No.: CTK-2016-00976 Page 46 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

### **Test Setup:**

1) For field strength of emissions from 9 kHz to 30 MHz



2) For field strength of emissions from 30 MHz to 1 GHz



Test Report No.: CTK-2016-00976



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

3) For field strength of emissions above 1 GHz



# Test Results 1) 9 kHz to 30 MHz

| EUT               | THERMAL LABEL PRINTER |
|-------------------|-----------------------|
| Frequency Range   | 9 kHz – 30 MHz        |
| Test mode         | Worst case            |
| Detector function | Quasi-Peak            |

#### The requirements are:

### 

| Frequency | Measured Data | Margin | Remark   |  |
|-----------|---------------|--------|----------|--|
| (MHz)     | (dBuV/m)      | (dB)   |          |  |
| -         | -             | ı      | See note |  |

#### Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB)

Test Report No.: CTK-2016-00976 Page 48 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

#### 2) 30 MHz to 1 GHz

#### Test mode: Hopping(8-DPSK), CFG PKT Packet Type: 31, Packet Size: 1021(3DH5)

| EUT               | THERMAL LABEL PRINTER |
|-------------------|-----------------------|
| Frequency Range   | Below 1000 MHz        |
| Test mode         | 8-DPSK(Worst case)    |
| Detector function | Quasi-Peak            |

#### The requirements are:

#### 

| <u> </u>           |                           |                |            |
|--------------------|---------------------------|----------------|------------|
| Frequency<br>(MHz) | Measured Data<br>(dBuV/m) | Margin<br>(dB) | Remark     |
| 266.68             | 43.5                      | 2.5            | Quasi-Peak |

#### **Test Data**



| Tilla | i nesurt  |     |               |           |              |             |              |       |
|-------|-----------|-----|---------------|-----------|--------------|-------------|--------------|-------|
| No.   | Frequency | (P) | Reading<br>OP | c.f       | Result<br>OP | Limit<br>QP | Margin<br>QP | Angle |
|       | [MHz]     |     | [dB(uV)]      | [dB(1/m)] | [dB(uV/m)]   | [dB(uV/m)]  | [dB]         | [deg] |
| 1     | 31.940    | V   | 49.0          | -17.4     | 31.6         | 40.0        | 8.4          | 149.8 |
| 2     | 34.123    | V   | 47.4          | -17.5     | 29.9         | 40.0        | 10.1         | 119.0 |
| 3     | 127.970   | V   | 46.4          | -14.5     | 31.9         | 43.5        | 11.6         | 73.3  |
| 4     | 266.680   | Н   | 56.2          | -12.7     | 43.5         | 46.0        | 2.5          | 158.9 |
| 5     | 266.680   | V   | 54.4          | -12.7     | 41.7         | 46.0        | 4.3          | 304.0 |
| 6     | 865 291   | V   | 38 6          | -1 4      | 37 2         | 46.0        | 8.8          | 273 2 |

#### Remark:

- 1. The field strength of spurious emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.
- 2. Result = Reading + Correction factor
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain

Test Report No.: CTK-2016-00976 Page 49 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

### 3) above 1 GHz

| EUT     | THERMAL LABEL PRINTER | Measurement Detail |         |
|---------|-----------------------|--------------------|---------|
| Model   | SLP-TX22*xy           | Frequency Range    | 1-25GHz |
| Channel | Channel 0             | Detector function  | Average |

#### **Remarks**

We have tested three mode (X, Y, Z). The worst mode (Z axis) for final test.

The requirements are:

| Frequency<br>(MHz) | Measured Data<br>(dBuV/m) | Margin<br>(dB) | Remark  |
|--------------------|---------------------------|----------------|---------|
| 1601               | 49.5                      | 4.5            | Average |

#### **Test Data**

Test mode: GFSK, CFG PKT Packet Type: 15 Packet Size: 339(DH5)

| Frequency | Reading<br>[dBuV/m] | Height |     | Height Correction<br>Factor |           | Result<br>[dBuV/m] | Margin<br>[dB] |
|-----------|---------------------|--------|-----|-----------------------------|-----------|--------------------|----------------|
| [MHz]     | AV / Peak           |        | [m] | Antenna + Amp. Gain + Cable | AV / Peak | AV / Peak          | AV / Peak      |
| 4804.00   | 34.2 40.0           | Н      | 1.5 | 3.7                         | 54.0 74.0 | 37.9 43.7          | 16.1 30.3      |

Test mode: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021(3DH5)

| rost illout | 1040 10 D1 514 61 61 K1 1 46K6t 1 4 pc 1 51 1 46K6t 5126 1 2022 (55115) |        |      |        |                             |        |        |               |        |      |        |  |
|-------------|-------------------------------------------------------------------------|--------|------|--------|-----------------------------|--------|--------|---------------|--------|------|--------|--|
| Eroguency   | Rea                                                                     | ding   |      | Height | Correction                  | Limits |        | Limits Result |        | sult | Margin |  |
| riequelicy  | Frequency [dBuV/r                                                       |        | Pol. | neight | Factor                      | [dBu   | V/m]   | [dBu          | V/m]   | [d   | IB]    |  |
| [MHz]       | AV                                                                      | / Peak |      | [m]    | Antenna + Amp. Gain + Cable | AV     | / Peak | AV ,          | / Peak | AV / | Peak   |  |
| 4803.00     | 37.0                                                                    | 49.9   | V    | 1.5    | 3.7                         | 54.0   | 74.0   | 40.7          | 53.6   | 13.3 | 20.4   |  |
|             |                                                                         |        |      |        |                             |        |        |               |        |      |        |  |

### Restricted band edge test data

Measured frequency range: 1435-1626.5MHz, 2310-2390 MHz, 2483.5-2500 MHz

Test mode: GPSK, CFG PKT Packet Type: 15 Packet Size: 339(DH5)

| Frequency  | Read          | ding |                  | Height | Correction Limits Result    |          | Limits |          | sult   | Ma   | rgin |
|------------|---------------|------|------------------|--------|-----------------------------|----------|--------|----------|--------|------|------|
| riequelicy | [dBuV/m] Pol. |      | [dBuV/m] Pol. Fa |        | Factor                      | [dBuV/m] |        | [dBuV/m] |        | [dB] |      |
| [MHz]      | AV / Peak     |      |                  | [m]    | Antenna + Amp. Gain + Cable | AV ,     | / Peak | AV /     | / Peak | AV / | Peak |
| 1601.00    | 54.4          | 56.0 | Н                | 1.5    | -4.9                        | 54.0     | 74.0   | 49.5     | 51.1   | 4.5  | 22.9 |
| 2385.00    | 34.4          | 47.2 | Н                | 1.5    | -2.6                        | 54.0     | 74.0   | 31.8     | 44.6   | 22.2 | 29.4 |

Test mode: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021(3DH5)

| Frequency |           | Reading [dBuV/m] Pol. |   | Height | Correction<br>Factor        | [dBuV/m] |      |           |      | Result<br>[dBuV/m] |      | Margin<br>[dB] |  |
|-----------|-----------|-----------------------|---|--------|-----------------------------|----------|------|-----------|------|--------------------|------|----------------|--|
| [MHz]     | AV / Peak |                       |   | [m]    | Antenna + Amp. Gain + Cable |          |      | AV / Peak |      | AV / Peak          |      |                |  |
| 1601.00   | 53.4      | 56.1                  | V | 1.5    | -4.9                        | 54.0     | 74.0 | 48.5      | 51.2 | 5.5                | 22.8 |                |  |
| 2386.00   | 37.5      | 49.9                  | V | 1.5    | -2.6                        | 54.0     | 74.0 | 34.9      | 47.3 | 19.1               | 26.7 |                |  |

Test Report No.: CTK-2016-00976

Date: 2016-07-27

Form No.: CTK-D151-06-R102(Rev.0)

Page 50 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

| EUT     | THERMAL LABEL PRINTER | Measurement Detail |         |
|---------|-----------------------|--------------------|---------|
| Model   | SLP-TX22*xy           | Frequency Range    | 1-25GHz |
| Channel | Channel 39            | Detector function  | Average |

#### Remarks

We have tested three mode (X, Y, Z). The worst mode (Z axis) for final test.

The requirements are:

| Frequency<br>(MHz) | Measured Data<br>(dBuV/m) | Margin<br>(dB) | Remark  |
|--------------------|---------------------------|----------------|---------|
| 1627               | 48.9                      | 5.1            | Average |

#### **Test Data**

Test mode: GPSK, CFG PKT Packet Type: 15 Packet Size: 339(DH5)

| Frequency | Reading [dBuV/m] Pol. |   | Height | Correction<br>Factor        | Limits [dBuV/m] | Result<br>[dBuV/m] | Margin<br>[dB] |  |
|-----------|-----------------------|---|--------|-----------------------------|-----------------|--------------------|----------------|--|
| [MHz]     | AV / Peak             |   | [m]    | Antenna + Amp. Gain + Cable | AV / Peak       | AV / Peak          | AV / Peak      |  |
| 4881.00   | 37.3 46.9             | Н | 1.5    | 3.7                         | 54.0 74.0       | 41.0 50.6          | 13.0 23.4      |  |

Test mode: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021(3DH5)

| Frequency | Reading<br>[dBuV/m] | Pol. | Height | Correction<br>Factor        | Limits<br>[dBuV/m] | Result<br>[dBuV/m] | Margin<br>[dB] |
|-----------|---------------------|------|--------|-----------------------------|--------------------|--------------------|----------------|
| [MHz]     | AV / Peak           |      | [m]    | Antenna + Amp. Gain + Cable | AV / Peak          | AV / Peak          | AV / Peak      |
| 4881.00   | 42.8 57.0           | Н    | 1.5    | 3.7                         | 54.0 74.0          | 46.5 60.7          | 7.5 13.3       |

#### Restricted band edge test data

Measured frequency range: 1435-1626.5MHz, 2310-2390 MHz, 2483.5-2500 MHz

Test mode: GPSK, CFG PKT Packet Type: 15 Packet Size: 339(DH5)

| Frequency  | Reading      |   | Height | Correction                  | Limits    | Result    | Margin    |  |
|------------|--------------|---|--------|-----------------------------|-----------|-----------|-----------|--|
| riequelicy | [dBuV/m] Pol |   | Height | Factor                      | [dBuV/m]  | [dBuV/m]  | [dB]      |  |
| [MHz]      | AV / Pea     | C | [m]    | Antenna + Amp. Gain + Cable | AV / Peak | AV / Peak | AV / Peak |  |
| 1627.00    | 53.2 54.7    | Н | 1.5    | -4.9                        | 54.0 74.0 | 48.3 49.8 | 5.7 24.2  |  |
|            | -            |   |        |                             | :         | :         |           |  |

Test mode: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021(3DH5)

| Frequency | Reading [dBuV/m] Pol. |        | 9 |     | Correction<br>Factor        | Limits [dBuV/m] |      |           | sult<br>V/m] |           | rgin<br>IB] |
|-----------|-----------------------|--------|---|-----|-----------------------------|-----------------|------|-----------|--------------|-----------|-------------|
| [MHz]     | AV ,                  | / Peak |   | [m] | Antenna + Amp. Gain + Cable | AV / Peak       |      | AV / Peak |              | AV / Peak |             |
| 1627.00   | 53.8                  | 57.2   | Н | 1.5 | -4.9                        | 54.0            | 74.0 | 48.9      | 52.3         | 5.1       | 21.7        |

Test Report No.: CTK-2016-00976 Page 51 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

| EUT     | THERMAL LABEL PRINTER | Measurement Detail |         |
|---------|-----------------------|--------------------|---------|
| Model   | SLP-TX22*xy           | Frequency Range    | 1-25GHz |
| Channel | Channel 78            | Detector function  | Peak    |

#### **Remarks**

We have tested three mode (X, Y, Z). The worst mode (Z axis) for final test.

The requirements are:

| Frequency<br>(MHz) | Measured Data<br>(dBuV/m) | Margin<br>(dB) | Remark  |
|--------------------|---------------------------|----------------|---------|
| 1653               | 52.8                      | 1.2            | Average |

#### **Test Data**

Test mode: GPSK, CFG PKT Packet Type: 15 Packet Size: 339(DH5)

| Frequency | Reading<br>[dBuV/m] | Pol. | Height | Correction Limits Factor [dBuV/r |           | Result<br>[dBuV/m] | Margin<br>[dB] |  |
|-----------|---------------------|------|--------|----------------------------------|-----------|--------------------|----------------|--|
| [MHz]     | AV / Peak           |      | [m]    | Antenna + Amp. Gain + Cable      | AV / Peak | AV / Peak          | AV / Peak      |  |
| 4959.00   | 36.2 47.8           | Н    | 1.5    | 3.8                              | 54.0 74.0 | 40.0 51.6          | 14.0 22.4      |  |

Test mode: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021(3DH5)

| Frequency | Reading<br>[dBuV/m] | Pol. | Height | Correction<br>Factor        | Limits [dBuV/m] | Result [dBuV/m] | Margin<br>[dB] |
|-----------|---------------------|------|--------|-----------------------------|-----------------|-----------------|----------------|
| [MHz]     | AV / Peak           |      | [m]    | Antenna + Amp. Gain + Cable | AV / Peak       | AV / Peak       | AV / Peak      |
| 4960.00   | 39.5 57.6           | Н    | 1.5    | 3.8                         | 54.0 74.0       | 43.3 61.4       | 10.7 12.6      |

#### Restricted band edge test data

Measured frequency range: 1435-1626.5MHz, 2310-2390 MHz, 2483.5-2500 MHz

Test mode: GPSK, CFG PKT Packet Type: 15 Packet Size: 339(DH5)

| Frequency |      | Reading<br>[dBuV/m] |   | Height | Correction<br>Factor        | Limits<br>[dBuV/m] |      |           |      | Margin<br>[dB] |      |
|-----------|------|---------------------|---|--------|-----------------------------|--------------------|------|-----------|------|----------------|------|
| [MHz]     | AV , | / Peak              |   | [m]    | Antenna + Amp. Gain + Cable | AV / Peak          |      | AV / Peak |      | AV /           | Peak |
| 1653.00   | 57.7 | 58.8                | Н | 1.5    | -4.9                        | 54.0               | 74.0 | 52.8      | 53.9 | 1.2            | 20.1 |
| 2483.50   | 51.1 | 61.4                | Н | 1.5    | -2.5                        | 54.0               | 74.0 | 48.6      | 58.9 | 5.4            | 15.1 |

Test mode: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021(3DH5)

| Frequency | Read<br>[dBu\ | •      | Pol. | . Height Correction Limits Factor [dBuV/m] |                             | Height    |           | Margin<br>[dB] |  |
|-----------|---------------|--------|------|--------------------------------------------|-----------------------------|-----------|-----------|----------------|--|
| [MHz]     | AV /          | / Peak |      | [m]                                        | Antenna + Amp. Gain + Cable | AV / Peak | AV / Peak | AV / Peak      |  |
| 1653.00   | 55.6          | 58.8   | Н    | 1.5                                        | -4.9                        | 54.0 74.0 | 50.7 53.9 | 3.3 20.1       |  |
| 2483.50   | 51.7          | 68.9   | Н    | 1.5                                        | -2.5                        | 54.0 74.0 | 49.2 66.4 | 4.8 7.6        |  |

Test Report No.: CTK-2016-00976 Page 52 of 59

Date: 2016-07-27

This Report shall not be reproduced except in full without the written approval of CTK Form No.: CTK-D151-06-R102(Rev.0)



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

#### 2.1.8 AC Conducted Emissions

#### **Test Location**

Shielded Room

### **Frequency Range of Measurement**

150 kHz to 30 MHz

#### **Instrument Settings**

IF Band Width: 9 kHz

#### **Test Procedures**

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m.

Amplitude measurements were performed with a quasi-peak detector and an average detector.

#### Limit

#### - 15.207(a)

| Frequency  | Conducted Limit (dBuV) |           |  |  |  |
|------------|------------------------|-----------|--|--|--|
| (MHz)      | Quasi-peak             | Average   |  |  |  |
| 0.15 ~ 0.5 | 66 to 56*              | 56 to 46* |  |  |  |
| 0.5 ~ 5    | 56                     | 46        |  |  |  |
| 5 ~ 30     | 60                     | 50        |  |  |  |

<sup>\*</sup> Decreases with the logarithm of the frequency.

#### **Test Results**

The requirements are:

Test mode: Hopping, GFSK(Worst case),

CFG PKT Packet Type: 15, Packet Size: 339(DH5)

| Frequency | Measured Data | Margin | Remark     |
|-----------|---------------|--------|------------|
| (MHz)     | (dBuV/m)      | (dB)   |            |
| 0.1635    | 40.8          | 24.5   | Quasi-peak |

Test Report No.: CTK-2016-00976 Page 53 of 59

Date: 2016-07-27

This Report shall not be reproduced except in full without the written approval of CTK Form No.: CTK-D151-06-R102(Rev.0)



#### **Test Data**



## **Final Result 1**

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|---------------------|-----------------------|--------------------|--------|------|---------------|----------------|-----------------|
| 0.163500           | 40.8                | 1000.0                | 9.000              | On     | L1   | 9.8           | 24.5           | 65.3            |
| 0.186000           | 38.5                | 1000.0                | 9.000              | On     | L1   | 9.8           | 25.7           | 64.2            |
| 0.231000           | 35.1                | 1000.0                | 9.000              | On     | L1   | 9.7           | 27.3           | 62.4            |
| 9.154500           | 31.6                | 1000.0                | 9.000              | On     | L1   | 9.8           | 28.4           | 60.0            |
| 21.340500          | 26.4                | 1000.0                | 9.000              | On     | L1   | 9.9           | 33.6           | 60.0            |
| 28.221000          | 21.4                | 1000.0                | 9.000              | On     | L1   | 9.9           | 38.6           | 60.0            |

## Final Result 2

| Frequency<br>(MHz) | CAverage<br>(dΒμV) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|--------------------|-----------------------|--------------------|--------|------|---------------|----------------|-----------------|
| 2.881500           | 15.7               | 1000.0                | 9.000              | On     | L1   | 9.7           | 30.3           | 46.0            |
| 8.380500           | 23.2               | 1000.0                | 9.000              | On     | L1   | 9.8           | 26.8           | 50.0            |
| 9.172500           | 25.1               | 1000.0                | 9.000              | On     | L1   | 9.8           | 24.9           | 50.0            |
| 11.728500          | 19.4               | 1000.0                | 9.000              | On     | L1   | 9.8           | 30.6           | 50.0            |
| 21.390000          | 19.3               | 1000.0                | 9.000              | On     | L1   | 9.9           | 30.7           | 50.0            |
| 24.747000          | 20.0               | 1000.0                | 9.000              | On     | L1   | 9.9           | 30.0           | 50.0            |

Page 54 of 59 Test Report No.: CTK-2016-00976







## **Final Result 1**

|           | ouit i    |        |           |        |      |       |        |        |
|-----------|-----------|--------|-----------|--------|------|-------|--------|--------|
| Frequency | QuasiPeak | Meas.  | Bandwidth | Filter | Line | Corr. | Margin | Limit  |
| (MHz)     | (dBµV)    | Time   | (kHz)     |        |      | (dB)  | (dB)   | (dBµV) |
| 72 (77)   |           | (ms)   |           | 22     |      |       |        |        |
| 0.163500  | 40.1      | 1000.0 | 9.000     | On     | N    | 9.8   | 25.2   | 65.3   |
| 0.186000  | 38.1      | 1000.0 | 9.000     | On     | N    | 9.8   | 26.1   | 64.2   |
| 0.231000  | 34.3      | 1000.0 | 9.000     | On     | N    | 9.7   | 28.1   | 62.4   |
| 19.005000 | 22.7      | 1000.0 | 9.000     | On     | N    | 9.9   | 37.3   | 60.0   |
| 20.895000 | 24.6      | 1000.0 | 9.000     | On     | N    | 10.0  | 35.4   | 60.0   |
| 24.940500 | 25.8      | 1000.0 | 9.000     | On     | N    | 10.0  | 34.2   | 60.0   |

## **Final Result 2**

| Frequency<br>(MHz) | CAverage<br>(dBµV) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|--------------------|-----------------------|--------------------|--------|------|---------------|----------------|-----------------|
| 3.349500           | 16.8               | 1000.0                | 9.000              | On     | N    | 9.7           | 29.2           | 46.0            |
| 8.214000           | 20.2               | 1000.0                | 9.000              | On     | N    | 9.8           | 29.8           | 50.0            |
| 8.907000           | 22.2               | 1000.0                | 9.000              | On     | N    | 9.8           | 27.8           | 50.0            |
| 11.260500          | 18.6               | 1000.0                | 9.000              | On     | N    | 9.8           | 31.4           | 50.0            |
| 22.690500          | 21.2               | 1000.0                | 9.000              | On     | N    | 10.0          | 28.8           | 50.0            |
| 24.414000          | 19.9               | 1000.0                | 9.000              | On     | N    | 10.0          | 30.1           | 50.0            |

Test Report No.: CTK-2016-00976 Page 55 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

# 2.1.9 Frequency Hopping System Requirements Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

- (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
- (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

#### **EUT Pseudorandom Frequency Hopping Sequence**

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 29-1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence



Each frequency used equally on the average by each transmitter. The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Test Report No.: CTK-2016-00976 Page 56 of 59

Date: 2016-07-27

Form No.: CTK-D151-06-R102(Rev.0)



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

### **Frequency Hopping System**

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

\*Example for a Bluetooth device using channel numbers would be : Ch 44, 35, 78, 03, 15, 21, 76, 40, 56, 13, 02, 19, 67, 39, 78, 20, 21, 64, 75 etc.

Test Report No.: CTK-2016-00976 Page 57 of 59



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

### 2.1.10 RF Exposure evaluation

#### Requirement

This device belongs to Mobile device. The definition of the category as following:

Mobile Derives:

CFR Title 47 §2.1091(b)

(b) For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons.

#### Limits

According to FCC Part 1.1307, systems operating under the provisions of this section shall be operated in a manner the ensures that the public is not exposed to radio frequency energy level in excess of the commission's guidelines.

| Limits for General Population/Uncontrolled Exposure |                         |                         |               |  |  |  |  |
|-----------------------------------------------------|-------------------------|-------------------------|---------------|--|--|--|--|
| Frequency range                                     | Electric field strength | Magnetic field strength | Power density |  |  |  |  |
| (MHz)                                               | (V/m)                   | (A/m)                   | (mW/cm²)      |  |  |  |  |
| 0.3-1.34                                            | 614                     | 1.63                    | *100          |  |  |  |  |
| 1.34-30                                             | 824/f                   | 2.19/f                  | *180/f²       |  |  |  |  |
| 30-300                                              | 27.5                    | 0.073                   | 0.2           |  |  |  |  |
| 300-1,500                                           |                         |                         | f/1500        |  |  |  |  |
| 1,500-100,000                                       |                         |                         | 1.0           |  |  |  |  |

f = frequency in MHz, \* = Plane-wave equivalent power density

#### **MPE Calculation formula**

 $S=PG/4\pi R^2$ 

S = Power density

P = Output Power(W)

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Separation distance between radiator and human body(m)

#### Result

Maximum peak output power at antenna input terminal(dBm): 9.52 Maximum peak output power at antenna input terminal(mW): 8.95

Prediction distance(cm): 20 Predication frequency(MHz): 2480

Antenna Gain (typical) (dBi): 0

Power density at predication frequency at 20 cm(mW/cm²): **0.002** MPE limit for RF exposure at prediction frequency(mW/cm²): 1

Test Report No.: CTK-2016-00976 Page 58 of 59

Date: 2016-07-27

This Report shall not be reproduced except in full without the written approval of CTK Form No.: CTK-D151-06-R102(Rev.0)



## **APPENDIX A - Test Equipment Used For Tests**

|    | Name of<br>Equipment           | Manufacturer                      | Model No.                                    | Serial No.    | Date of<br>Calibration | Due Date   |
|----|--------------------------------|-----------------------------------|----------------------------------------------|---------------|------------------------|------------|
| 1  | Spectrum Analyzer              | Rohde & Schwarz                   | FSP30                                        | 100994        | 2015-11-02             | 2016-11-02 |
| 2  | EMI Test Receiver              | Rohde & Schwarz                   | ESCI7                                        | 100814        | 2015-11-02             | 2016-11-02 |
| 3  | EMI Test Receiver              | Rohde & Schwarz                   | ESCI7                                        | 100816        | 2015-11-02             | 2016-11-02 |
| 4  | EMI Test Receiver              | Rohde & Schwarz                   | ESU40                                        | 100336        | 2016-05-14             | 2017-05-14 |
| 5  | Bilog Antenna                  | Schaffner                         | CBL6111C                                     | 2551          | 2015-04-24             | 2017-04-24 |
| 6  | Double Ridged<br>Guide Antenna | ETS-Lindgren                      | 3116                                         | 00062916      | 2015-09-04             | 2017-09-04 |
| 7  | Active Loop<br>Antenna         | SCHWARZBECK                       | FMZB 1513                                    | 1513-126      | 2016-05-25             | 2018-05-25 |
| 8  | Attenuator                     | Rohde & Schwarz                   | DNF                                          | 272.4110.50-2 | 2015-11-03             | 2016-11-03 |
| 9  | PREAMPLIFIER                   | Agilent                           | 8449B                                        | 3008A02307    | 2015-10-01             | 2016-10-01 |
| 10 | AMPLIFIER                      | Sonoma<br>Instrument Co.          | 310                                          | 291721        | 2016-02-11             | 2017-02-11 |
| 11 | Band Reject Filter             | Wainwright<br>Instruments<br>GmbH | WRCGV<br>2400/2483-<br>2375/2505-<br>50/10EE | 2             | 2016-05-13             | 2017-05-13 |
| 12 | Signal Generator               | Rohde & Schwarz                   | SMB100A                                      | 175528        | 2016-01-20             | 2017-01-20 |
| 13 | LISN                           | Rohde & Schwarz                   | ENV216                                       | 101760        | 2016-02-05             | 2017-02-05 |
| 14 | DC Power Supply                | Agilent                           | E3632A                                       | MY40011638    | 2015-11-02             | 2016-11-02 |

Test Report No.: CTK-2016-00976 Page 59 of 59

Date: 2016-07-27

This Report shall not be reproduced except in full without the written approval of CTK
Form No.: CTK-D151-06-R102(Rev.0)