X_2

8

6

5

8

8

у

0

2

1

2

0

0

1

```
# print first 5 rows of X after binarization
binarize X[0:5,:]
'Output':
array([[1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.]
```

Encoding Categorical Variables

Most machine learning algorithms do not compute with non-numerical or categorical variables. Hence, encoding categorical variables is the technique for converting nonnumerical features with labels into a numerical representation for use in machine learning modeling. Scikit-learn provides modules for encoding categorical variables including the LabelEncoder for encoding labels as integers, OneHotEncoder for converting categorical features into a matrix of integers, and LabelBinarizer for creating a one-hot encoding of target labels.

LabelEncoder is typically used on the target variable to transform a vector of hashable categories (or labels) into an integer representation by encoding label with values between 0 and the number of categories minus 1. This is further illustrated in Figure 18-1.

original dataset dataset with encoded labels X_2 у X_1 X_1 5 8 calabar 5 9 3 9 uyo LabelEncoder 8 6 owerri 8 0 5 0 uyo 3 calabar "calabar" ---> 0 0 8 "owerri" ---> 1 0 calabar "uyo 1 8 1 owerri

Figure 18-1. LabelEncoder

Let's see an example of LabelEncoder.

```
# import packages
from sklearn.preprocessing import LabelEncoder
# create dataset
data = np.array([[5,8,"calabar"],[9,3,"uyo"],[8,6,"owerri"],
                 [0,5,"uyo"],[2,3,"calabar"],[0,8,"calabar"],
                 [1,8,"owerri"]])
data
'Output':
array([['5', '8', 'calabar'],
       ['9', '3', 'uyo'],
       ['8', '6', 'owerri'],
       ['0', '5', 'uyo'],
       ['2', '3', 'calabar'],
       ['0', '8', 'calabar'],
       ['1', '8', 'owerri']], dtype='<U21')
# separate features and target
X = data[:,:2]
y = data[:,-1]
# encode y
encoder = LabelEncoder()
encode y = encoder.fit transform(y)
# adjust dataset with encoded targets
data[:,-1] = encode y
data
'Output':
array([['5', '8', '0'],
       ['9', '3', '2'],
       ['8', '6', '1'],
       ['0', '5', '2'],
       ['2', '3', '0'],
       ['0', '8', '0'],
       ['1', '8', '1']], dtype='<U21')
```

OneHotEncoder is used to transform a categorical feature variable in a matrix of integers. This matrix is a sparse matrix with each column corresponding to one possible value of a category. This is further illustrated in Figure 18-2.

original dataset								eı	encode categorical feature			
X ₁	X ₂	X3	У					X ₁	X ₂	X ₃	у	
5	efik	8	calabar	- LabelEncoder				5	0	8	calabar	
9	ibibio	3	uyo					9	1	3	uyo	
8	igbo	6	owerri			—	-	8	2	6	owerri	
0	ibibio	5	uyo	{ "efik"> 0 "ibibio"> 1 "igbo"> 2 }				0	1	5	uyo	
2	efik	3	calabar					2	0	3	calabar	
0	efik	8	calabar					0	0	8	calabar	
1	igbo	8	owerri					1	2	8	owerri	
one-hot encoding of feature x_2 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
			X ₁	Х3	X _{2,0}	X _{2,1}	X _{2,2}	у	_		HOLL	
			5	8	1	0	0	calabar		O,		
			9	3	0	1	0	uyo				
			8	6	0	0	1	owerri				
			0	5	0	1	0	uyo				
			2	3	1	0	0	calabar				
			0	8	1	0	0	calabar				
			1	8	0	0	1	owerri				

Figure 18-2. OneHotEncoder

Let's see an example of **OneHotEncoder**.

import packages
from sklearn.preprocessing import OneHotEncoder

```
# create dataset
data = np.array([[5,"efik", 8,"calabar"],[9,"ibibio",3,"uyo"],[8,"igbo",
6, "owerri"], [0, "ibibio", 5, "uyo"], [2, "efik", 3, "calabar"], [0, "efik",
8, "calabar"], [1, "igbo", 8, "owerri"]])
# separate features and target
X = data[:,:3]
y = data[:,-1]
# print the feature or design matrix X
Χ
'Output':
array([['5', 'efik', '8'],
       ['9', 'ibibio', '3'],
       ['8', 'igbo', '6'],
       ['0', 'ibibio', '5'],
       ['2', 'efik', '3'],
       ['0', 'efik', '8'],
       ['1', 'igbo', '8']], dtype='<U21')
# one hot encode X
one hot encoder = OneHotEncoder(handle unknown='ignore')
encode categorical = X[:,1].reshape(len(X[:,1]), 1)
one hot encode X = one hot encoder.fit transform(encode categorical)
# print one hot encoded matrix - use todense() to print sparse matrix
# or convert to array with toarray()
one hot encode X.todense()
'Output':
matrix([[1., 0., 0.],
        [0., 1., 0.],
        [0., 0., 1.],
        [0., 1., 0.],
        [1., 0., 0.],
        [1., 0., 0.],
        [0., 0., 1.]
```

Input Missing Data

It is often the case that a dataset contains several missing observations. Scikit-learn implements the **Imputer** module for completing missing values.