In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt,seaborn as sns
```

In [3]:

 $\label{local_csv} train_df=pd.read_csv(r"C:\Users\raja\Downloads\Mobile_Price_Classification_train.csv") \\ train_df$

Out[3]:

dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	 px_height	px_width	ram	sc_h	sc_w	talk_time	tŀ
0	1	0	7	0.6	188	2	 20	756	2549	9	7	19	
1	0	1	53	0.7	136	3	 905	1988	2631	17	3	7	
1	2	1	41	0.9	145	5	 1263	1716	2603	11	2	9	
0	0	0	10	0.8	131	6	 1216	1786	2769	16	8	11	
0	13	1	44	0.6	141	2	 1208	1212	1411	8	2	15	
1	0	1	2	8.0	106	6	 1222	1890	668	13	4	19	
1	0	0	39	0.2	187	4	 915	1965	2032	11	10	16	
1	1	1	36	0.7	108	8	 868	1632	3057	9	1	5	
0	4	1	46	0.1	145	5	 336	670	869	18	10	19	
1	5	1	45	0.9	168	6	 483	754	3919	19	4	2	

In [4]:

test_df=pd.read_csv(r"C:\Users\raja\Downloads\Mobile_Price_Classification_test.csv")
test_df

Out[4]:

blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	 рс	px_height	px_width	ram	sc_h	sc_w
1	1.8	1	14	0	5	0.1	193	 16	226	1412	3476	12	7
1	0.5	1	4	1	61	0.8	191	 12	746	857	3895	6	0
1	2.8	0	1	0	27	0.9	186	 4	1270	1366	2396	17	10
0	0.5	1	18	1	25	0.5	96	 20	295	1752	3893	10	0
0	1.4	0	11	1	49	0.5	108	 18	749	810	1773	15	8
1	1.9	0	0	1	54	0.5	170	 17	644	913	2121	14	8
0	1.8	1	0	0	13	0.9	186	 2	1152	1632	1933	8	1
0	1.4	0	1	1	8	0.5	80	 12	477	825	1223	5	0
1	0.5	1	0	0	50	0.4	171	 12	38	832	2509	15	11
1	0.5	0	4	1	35	0.1	140	 19	457	608	2828	9	2

```
In [9]:
x=train_df.drop('price_range',axis=1)
y=train_df['price_range']
In [10]:
train df['four g'].value counts()
Out[10]:
four_g
1
     1043
      957
Name: count, dtype: int64
In [11]:
x=train_df.drop('price_range',axis=1)
y=train_df['price_range']
In [12]:
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7,random_state=42)
x_train.shape,x_test.shape
Out[12]:
((1400, 20), (600, 20))
In [13]:
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[13]:
▶ RandomForestClassifier
In [14]:
rf=RandomForestClassifier()
In [15]:
params={"max_depth":[2,3,5,10,20], 'min_samples_leaf':[5,10,20,50,100,200], 'n_estimators':[10,25,30,50,100,200]
In [16]:
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[16]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
       ▶ RandomForestClassifier
In [17]:
grid_search.best_score_
Out[17]:
0.8328571428571429
```

In [18]:

```
rf_best=grid_search.best_estimator_
print(rf_best)
```

RandomForestClassifier(max_depth=20, min_samples_leaf=5)

In [20]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[5],feature_names=x.columns,class_names=['0','1','2','3'],filled=True);
```


In [22]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[7],feature_names=x.columns,class_names=['0','1','2','3'],filled=True);
```



```
In [23]:
rf_best.feature_importances_
Out[23]:
array([0.07434881, 0.0043182 , 0.02066101, 0.00485052, 0.01704553,
       0.00509914, 0.03092368, 0.01694181, 0.02948496, 0.01380429,
        0.0186988 \;\; , \; 0.04885466, \; 0.05037508, \; 0.58918237, \; 0.01915089, \\
       0.02033392, 0.0214917, 0.00395349, 0.00487837, 0.00560278])
In [24]:
imp_df=pd.DataFrame({"Varname":x_train.columns,"Imp":rf_best.feature_importances_})
imp_df.sort_values(by="Imp",ascending=False)
Out[24]:
        Varname
                    Imp
```

13 ram 0.589182 0 battery_power 0.074349 12 px_width 0.050375 px_height 0.048855 11 6 int_memory 0.030924 8 mobile_wt 0.029485 16 talk_time 0.021492 2 clock_speed 0.020661 15 sc_w 0.020334 14 sc_h 0.019151 10 pc 0.018699 fc 0.017046 4 7 m_dep 0.016942 9 n_cores 0.013804 wifi 0.005603 19 four_g 0.005099 5 touch_screen 0.004878 18 3 dual_sim 0.004851 1 blue 0.004318

three_g 0.003953

```
In [25]:
```

17

```
x=test df.drop('wifi',axis=1)
y=test_df['wifi']
```

In [26]:

```
test_df['four_g'].value_counts()
```

Out[26]:

```
four_g
     513
     487
Name: count, dtype: int64
```

```
6/9/23, 6:58 PM
                                                 RandomForest(Mobile Price) - Jupyter Notebook
  In [27]:
  x=test_df.drop('wifi',axis=1)
  y=test_df['wifi']
  In [28]:
  from sklearn.model selection import train test split
  x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7,random_state=42)
  x_train.shape,x_test.shape
  Out[28]:
  ((700, 20), (300, 20))
  In [29]:
  from sklearn.ensemble import RandomForestClassifier
  rfc=RandomForestClassifier()
  rfc.fit(x_test,y_test)
  Out[29]:
  ▼ RandomForestClassifier
  RandomForestClassifier()
  In [30]:
  rf=RandomForestClassifier()
  In [31]:
  params={"max_depth":[2,3,5,10,20], 'min_samples_leaf':[5,10,20,50,100,200], 'n_estimators':[10,25,30,50,100,200]
  In [35]:
  from sklearn.model selection import GridSearchCV
  grid_search=GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring="accuracy")
  grid_search.fit(x_test,y_test)
  Out[35]:
               GridSearchCV
   ▶ estimator: RandomForestClassifier
         ▶ RandomForestClassifier
  In [33]:
  grid_search.best_score_
  Out[33]:
  0.53666666666666
```

In [36]:

```
rf_best=grid_search.best_estimator_
print(rf best)
```

RandomForestClassifier(max_depth=20, min_samples_leaf=5, n_estimators=10)

In [37]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[5],feature_names=x.columns,class_names=['0','1','2','3'],filled=True);
```


In [38]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[7],feature_names=x.columns,class_names=['0','1','2','3'],filled=True);
```


In [39]:

```
rf_best.feature_importances_
```

Out[39]:

```
array([0.11001855, 0.03613996, 0.03454918, 0.05752844, 0.00645731, 0.04716106, 0.01412928, 0.04868597, 0.04308591, 0.07856564, 0.02822526, 0.07850069, 0.06799408, 0.12203989, 0.08652807, 0.04214072, 0.04591817, 0.04619242, 0. , 0.0061394])
```

In [41]:

```
imp_df=pd.DataFrame({"Varname":x_train.columns,"Imp":rf_best.feature_importances_})
imp_df.sort_values(by="Imp",ascending=False)
```

Out[41]:

	Varname	Imp
13	px_width	0.122040
0	id	0.110019
14	ram	0.086528
9	mobile_wt	0.078566
11	рс	0.078501
12	px_height	0.067994
3	clock_speed	0.057528
7	int_memory	0.048686
5	fc	0.047161
17	talk_time	0.046192
16	sc_w	0.045918
8	m_dep	0.043086
15	sc_h	0.042141
1	battery_power	0.036140
2	blue	0.034549
10	n_cores	0.028225
6	four_g	0.014129
4	dual_sim	0.006457
19	touch_screen	0.006139
18	three_g	0.000000