

Chapter 4 – Physical fundamentals

4 Physical fundamentals / Contents

4.1 Fundamentals of electromagnetic waves

- 4.1.1 Definition of electromagnetic waves
- 4.1.2 Doppler frequency shift
- 4.1.3 The electromagnetic spectrum

4.2 Electromagnetic wave propagation

- 4.2.1 Terminology
- 4.2.2 Atmospheric structure
- 4.2.3 Phase and group velocity
- 4.2.4 Line-of-sight, ground, sky waves

4.3 Observables derived from electromagnetic waves

4 Physical fundamentals (1)

4.1 Fundamentals of electromagnetic waves

4.1.1 Definition of electromagnetic waves

- Oscillating electric force propagates through space (vacuum, atmosphere, solid, fluid)
- Electromagnetic waves are formed when an electric (E-) field
 couples with the orthogonal magnetic (M- or H-) field
- Field vectors of E- and H-field are perpendicular to each other
 and to the propagation direction
- Plane of E-field defines the **polarization** of the wave (constant, circular, elliptical)

4 Physical fundamentals (2)

 Principal components of an electromagnetic wave emitted radially from a vertical tower:

4 Physical fundamentals (3)

Propagation: Maxwell's laws. Assuming a sinusoidal propagation, the wave motion is

$$y = a\sin\left(2\pi ft\right) \tag{4.1}$$

 $a \dots$ amplitude, $f \dots$ frequency, $t \dots$ time

Circular frequency ω , also called angular velocity:

$$\omega = 2\pi f \tag{4.2}$$

so that (4.1) may also be written as

$$y = a\sin\omega t. \tag{4.3}$$

Current value of ωt describing the current state, is denoted as phase angle (or briefly phase) φ .

4 Physical fundamentals (4)

Introducing this phase angle

$$\varphi = \omega t \tag{4.4}$$

in (4.3) leads to

$$y = a\sin\varphi. \tag{4.5}$$

Phase angle: time-dependent, bounded between 0 and 2π , see Fig.

4 Physical fundamentals (5)

- Wavelength λ : distance between two points of equal phase, i.e., after the variation of φ by 2π .
- Period T: time needed for this variation
- Cycle: one full variation of the phase by 2π . Accordingly, the time needed for one cycle is the period T.
- Temporal variation of the phase:

$$\frac{\varphi}{2\pi} = \frac{t}{T} \tag{4.6}$$

• Local variation of the phase while propagating in analogy to (4.6):

$$\frac{\varphi}{2\pi} = \frac{\varrho}{\lambda} \tag{4.7}$$

where ϱ is the range equivalent to the phase.

4 Physical fundamentals (6)

• Elementary relations implying the period T are

$$\omega = 2\pi/T \tag{4.8}$$

$$T = 1/f = 2\pi/\omega \,. \tag{4.9}$$

• Frequency f, wavelength λ , and velocity v:

$$v = \lambda f. (4.10)$$

• Electromagnetic wave in vacuum: velocity v becomes c, the velocity of light in vacuum:

$$c = \lambda f \tag{4.11}$$

where

$$c = 299792458 \text{ m s}^{-1}$$
. (4.12)

4 Physical fundamentals (7)

Table 4.1. Physical quantities

Quantity	Symbol	Unit
Frequency	f	s^{-1}
Phase	arphi	radians
Wavelength	λ	m
Period	T	S
Velocity of light	c	${ m ms^{-1}}$

The angular velocity or circular frequency ω is also defined by the derivation of the phase angle φ with respect to time

$$\omega = \frac{d\varphi}{dt} \,. \tag{4.13}$$

Thus, between the epochs t_0 and t the phase is

$$\varphi = \int_{t_0}^t \omega \, dt \tag{4.14}$$

4 Physical fundamentals (8)

- Modulation: Variation of
 - (a) Amplitude
 - (b) Frequency
 - (c) Phase

Provides a tool to communicate information of many types (audio, video, data)

4 Physical fundamentals (9)

Relationship between frequency and wavelength

Frequency	Wavelength
1 Hz	3·10 ⁸ m
1 kHz	3·10⁵ m
1 MHz	3·10 ² m
1 GHz	3·10 ⁻¹ m

4 Physical fundamentals (10)

4.1.2 Doppler frequency shift

- In case of relative motion between transmitter and receiver
- First approximation:

$$\Delta f = f_r - f_e = -\frac{v_\rho}{c} f_e$$

Doppler frequency is proportional to radial velocity >
integration over time yields range differences

4 Physical fundamentals (11)

4.1.3 The electromagnetic spectrum

- Components
 - Radio
 - Infrared
 - Optical
 - Ultraviolet
 - X rays
 - Gamma rays
- Opaque types
 - Ionosphere opaque (reflection)
 - Atmosphere opaque (absorption)
- Windows
 - Radio window (10 cm 1cm)
 - Infrared window (1 mm 1 μm)
 - Optical window (1 μm 100 nm)

4 Physical fundamentals (12)

- Electromagnetic spectrum
 - \rightarrow In function of wavelength λ [m]

4 Physical fundamentals (13)

- Radio frequency (RF) part of EM spectrum
 - RF spectrum: $f \le 3.10^3$ GHz
 - RF band assignment:

Frequency band	Wavelength	Identification
3-30 kHz	100-10 km	VLF
30-300 kHz	10-1 km	LF
300-3000 kHz	1000-100 m	MF
3-30 MHz	100-10 m	HF
30-300 MHz	10-1 m	VHF
300-3000 MHz	100-10 cm	UHF
3-30 GHz	10-1 cm	SHF
30-300 GHz	10-1 mm	EHF

4 Physical fundamentals (14)

Band	Typical service
VLF	Sonar, submarine communication, terrestrial navigation (Omega)
LF	Radio beacons, terrestrial navigation (Loran-C), navigation aids
MF	AM broadcasting, maritime radio, coast guard communication, direction finding, emergency
HF	Telephone, telegraph, fax, short wave international broadcasting, amateur radio, citizen's band, ship-to-coast communication
VHF	Television, FM broadcast, air-traffic control, police, taxi mobile radio, aircraft navigational aids
UHF	Satellite-based navigation (GPS, GLONASS, Galileo), TV, mobile telephone, cellular radio, paging, sat. communication
SHF	Airborne radar, microwave links, land mobile communication, satellite communication
EHF	Radar, experimental communication

4 Physical fundamentals (15)

Letter designation of frequency bands (simplified):

Letter	Frequency band
L	0.39 – 1.55 GHz
S	1.55 – 5.20 GHz
С	3.90 – 6.20 GHz
X	5.20 – 10.90 GHz
K	10.90 – 36.00 GHz
Q	36.00 – 46.00 GHz

- Radio transmission and reception
 - Continuous-wave transmission
 - Pulse transmission

4 Physical fundamentals (16)

4.2 Electromagnetic wave propagation

4.2.1 Terminology

- Absorption Conversion into another type of energy (e.g., heat)
- Attenuation Decrease of field strength with increasing distance; inverse term: Gain. Unit: dB. Attenuation of n dB means a **decrease of original power** by a factor of $10^{-0.1}$ n; 1 dB \rightarrow 0.79 of original power remains
- Diffraction Deviation of energy flow direction when passing a gap; involves a change in direction
- Dispersion
 Dependency of refraction on frequency. Medium:
 Dispersive and nondispersive media
- Interference Superposition of waves → produce combined effect

4 Physical fundamentals (17)

Reflection When a wave meets a boundary: Reflection (or

transmission); partial or complete reflection; involves a **change in direction**; irregular

(scattered) vs. regular (specular) reflection

Refraction Involves change in direction when wave passes

from one to the other medium;

ionospheric (dispersive for radio window)

tropospheric (dispersive for optical window)

Scintillation Rapid fluctuation of amplitude and phase

(caused by irregularly structured regions)

is characteristic for scintillation

4 Physical fundamentals (18)

4.2.2 Atmospheric structure

Height [km]	Layer structure	Refractivity	Electromagnetic structure
0 – 12	Troposphere		
12	Tropopause	Transanhara	Neutral atmosphere
12 – 50	Stratosphere	Troposphere	
50	Stratopause		
50 – 80	Mesosphere		
80 – 300	Thermosphere	Ionosphere	lonosphere
> 300	Exosphere		
> 1000			
> 1000		S	Plasmasphere
> 25000			Magnetosphere

4 Physical fundamentals (19)

4 Physical fundamentals (20)

lonosphere

- Definition: Electrically charged component of the upper atmosphere (National Research Council 1982)
- Contains free, neutral, and charged particles
- Historically, the ionosphere is divided into regions called layers
 - D, E, F (F1, F2)
 - No free electrons below 45 km
 - Extents according to previous figure
- Electron density: Maximum in the F2 layer at about 300 km

4 Physical fundamentals (21)

- **D layer**: 50 km 90 km; ionization varies strongly with sunlight; low electron density; lower ionization or even absence in the night, maximal ionization at noon.
- **E layer**: 90 km 140 km; ionization based on multiple sources: During daytime primarily because of solar ultraviolet and X-rays, at night because of cosmic rails and meteors; maximum ionization at noon, minimal before sunrise
- F layer: 150 km 500 km; ionization is maximal around noon and decreases towards sunset (but remains ionized during night), minimum before sunrise; during the day: F splits into F1 and F2:
 - F1 layer: Central part at about 150 200 km
 - F2 layer: Central part at about 300 km

4 Physical fundamentals (22)

4.2.3 Phase and group velocity Electromagnetic waves:

- in vacuum: $c = 299792458 \,\mathrm{m \, s^{-1}}$, the speed of light
- in a dispersive medium: phase and group velocity must be distinguished.

Phase velocity:

- periodic in space, represent a wave train of infinite duration
- consider a single electromagnetic wave propagating in space with wavelength λ and frequency f. The velocity of its phase

$$v_{\rm ph} = \lambda f \tag{4.17}$$

is denoted phase velocity.

• Carrier waves are typical examples of waves propagating with phase velocity

4 Physical fundamentals (23)

Group velocity:

- electromagnetic wave with varying amplitude may be considered as a wave of many frequencies
- this carrier wave has a modulated envelope as shown in Fig. 4.6 which travels with the group velocity

$$v_{\rm gr} = -\frac{df}{d\lambda} \,\lambda^2 \,. \tag{4.18}$$

• GPS code measurements are a typical example where this velocity applies

4 Physical fundamentals (24)

The modulated envelope of the amplitude modulated carrier propagates with group velocity

4 Physical fundamentals (25)

Relation between phase and group velocity \rightarrow total differential of Eq. (4.17) resulting in

$$dv_{\rm ph} = f \, d\lambda + \lambda \, df \tag{4.19}$$

which can be rearranged to

$$\frac{df}{d\lambda} = \frac{1}{\lambda} \frac{dv_{\rm ph}}{d\lambda} - \frac{f}{\lambda} \,. \tag{4.20}$$

The substitution of (4.20) into (4.18) yields

$$v_{\rm gr} = -\lambda \frac{dv_{\rm ph}}{d\lambda} + f \lambda \tag{4.21}$$

or finally the Rayleigh equation

$$v_{\rm gr} = v_{\rm ph} - \lambda \frac{dv_{\rm ph}}{d\lambda} \,. \tag{4.22}$$

- In free space: phase = group velocity = c
- in a medium: wave propagation depends on refractive index n.

4 Physical fundamentals (26)

Generally, the propagation velocity is obtained from

$$v = c/n. (4.23)$$

Applying this expression to the phase and group velocity:

$$v_{\mathbf{ph}} = c/n_{\mathbf{ph}} \tag{4.24}$$

$$v_{\rm gr} = c/n_{\rm gr} \tag{4.25}$$

are achieved. A relation of the two refractive indices n_{ph} and n_{gr} is given by the modified Rayleigh equation

$$n_{\rm gr} = n_{\rm ph} - \lambda \frac{dn_{\rm ph}}{d\lambda} \,. \tag{4.26}$$

A slightly different form is obtained by differentiating the relation $c = \lambda f$ with respect to λ and f, that is

$$d\lambda/\lambda = -df/f, \qquad (4.27)$$

and by substituting the result into (4.26):

$$n_{\rm gr} = n_{\rm ph} + f \frac{dn_{\rm ph}}{df} \,. \tag{4.28}$$

4 Physical fundamentals (27)

"Phenomenon":

- Refractive index n may be less than 1 implying by (4.23) that v may be greater than c.
- Contradiction to the fact that the velocity of light is the maximum velocity as concluded by Einstein?
- Reason: a wave train of finite length cannot be represented by a simple harmonic formula as used in (4.3). Moreover, no information can be transmitted by the simple harmonic form.

4 Physical fundamentals (28)

4.2.4 Line-of-sight, ground, sky waves

- Line-of-sight waves
 - VHF signals are transmitted in straight lines from one antenna to the other
 - Antennas: Directional, facing each other
 - Limitation for terrestrial applications: Curvature of earth
- Ground waves (surface waves)
 - Very low frequencies, signals traveling along the surface of the earth
 - Ground waves include direct line-of-sight waves, groundreflected and waves diffracting around the curved earth

4 Physical fundamentals (29)

Sky waves

- Definition: "A sky wave is one which, having left the antenna, is refracted/reflected by the ionosphere."
- Note that waves above about 30 MHz are not refracted or reflected by the ionosphere to any great extent and pass through to outer space
- Two factors for propagation: Frequency, level of ionization (Rule: "The higher the frequency, the less the wave is bent by the ionosphere.")

4 Physical fundamentals (30)

 Refraction and reflection in the ionosphere for different signal frequencies (left) and for equal signal frequencies but different emission angles (right):

4 Physical fundamentals (31)

- Frequency bands roughly assigned to type of waves
 - Ground waves: VLF, LF, partly MF
 - Sky waves: MF (partly overlapping with ground wave), HF
 - Line-of-sight waves: HF, VHF, UHF, SHF, EHF
- Example: Terrestrial microwaves:
 - Wavelengths 1 mm to 10 cm → SHF, EHF band → line-of sight waves → do not follow the curvature of the earth
- Maximal line of sight:

4 Physical fundamentals (32)

- Slight bending of electromagnetic waves in the troposphere
 - Geometric and radio path horizon due to tropospheric bending:

4 Physical fundamentals (33)

- Tropospheric ducting
 - During certain weather conditions
 - Radio signals "trapped" in the troposphere → VHF, UHF signals reach large distances
 - Ducts form usually over water, but also over land
 - Long distance travel: 4000 km over water, 1500 km over land

4 Physical fundamentals (34)

4.3 Observables derived from electromagnetic waves

- Ranges and range differences
 - Run time measurements
 - Phase measurements
- Range rates (velocity)
 - Direct (e.g., Doppler)
 - Indirect (e.g., electromagnetic velocity log)
- Directions
 - Radio-based direction finders:
 Differential distance measured at two receivers
 - Non-directional beacons:
 Symmetric pattern with cone of silence in between

4 Physical fundamentals (35)

References

- Anderson D, Fuller-Rowell T (1999): The ionosphere. Published by the Space Environment Center, Boulder. Available at www.sel.noaa.gov/Education (May 2003).
- Forssell B (1991): Radionavigation systems. Prentice Hall, New York.
- Hübner W (1985): Zur Ausnutzung der Dispersion für die elektromagnetische Streckenmessung. Deutsche Geodätische Kommission, Reihe C, vol 310.
- Lachapelle G (1998): Hydrography. Lecture Notes of the Department of Geomatics Engineering of the University of Calgary, no. 10016.
- National Research Council (1982): Outlook for science and technology the next five years. Freeman, San Francisco.
- Rinner K, Benz F (1966): Die Entfernungsmessung mit elektromagnetischen Wellen und ihre geodätische Anwendung. In: Jordan, Eggert, Kneissl (eds): Handbuch der Vermessungskunde, vol 6, 10th edition. J.B. Metzlersche Verlagsbuchhandlung, Stuttgart.
- Ryan MJ, Frater MR (2002): Communications and information systems. Argos, Canberra.