Protecting Against Attacks

Objectives

After completing this lesson, you should be able to do the following:

- Describe the process of configuring Secure Sockets Layer (SSL)
- Use the keytool utility to configure keys and obtain digital certificates
- Configure SSL for the WLS server
- Configure countermeasures for some Web-based attacks such as:
 - Man in the middle
 - Denial of service
 - Large buffer
 - Connection starvation

Road Map

- Protecting the transport layer
 - Secure Sockets Layer (SSL)
 - keytool
 - Certificates
 - Configuring SSL
- Protecting against attacks

What Is SSL?

Secure Sockets Layer (SSL) is a protocol that enables:

- Connection security through encryption
- A server to authenticate to a client
- A client to authenticate to a server (optional)
- Data integrity such that the data that flows between a client and server is protected from tampering by a third party

Trust and Identity

- SSL and keystore are configured independently.
- For the purpose of backward compatibility, this release of Oracle WebLogic Server supports private keys and a trusted WebLogic Keystore provider.
- Identity:
 - Private key and digital certificate (can now be looked up directly from the keystore, not necessarily as a stand-alone file outside the keystore)
- Trust:
 - Certificates of trusted certificate authorities

Using an SSL Connection

- WLS uses SSL to secure HTTP and t3 communication.
- To use SSL, clients access WLS via the HTTPS or t3s protocols.
 - https://localhost:7002/orderStock
 - t3s://localhost:7002/useCreditCard

Enabling Secure Communication

- With SSL, data is encrypted using a negotiated symmetric session key.
- A public key algorithm is used to negotiate the symmetric session key.
- In SSL, digital certificates are used to provide a trusted public key.

Oracle WebLogic Server SSL Requirements

To enable Oracle WebLogic Server SSL, you must perform the following steps:

- 1. Obtain an appropriate digital certificate.
- 2. Install the certificate.
- 3. Configure SSL properties.
- 4. Configure two-way authentication (if desired).
 - SSL impacts performance.

keytool Utility

- keytool is a standard J2SE SDK utility for managing:
 - The generation of private keys and the corresponding digital certificates
 - Keystores (databases) of private keys and the associated certificates
- The keytool utility can display certificate and keystore contents.
- Specify an algorithm different from DSA when generating digital keys using keytool.

Obtaining a Digital Certificate: keytool Examples

Generate a new self-signed digital certificate:

```
keytool -genkey -alias dwkey -keyalg RSA -keysize 512
-keystore dw_identity.jks
```

Generate a Certificate Signing Request:

```
keytool -certreq -v -alias dwkey -file
   dw_cert_request.pem
   -keypass dwkeypass -keystore dw_identity.jks
   -storepass dwstorepass
```

Import a signed certificate reply from a CA:

```
keytool -import -alias dwkey -file dw_cert_reply.pem
    -keypass dwkeypass -keystore dw_identity.jks
    -storepass dwstorepass
```

Configuring Keystores

— Trust ——	
Demo Trust Keystore:	/u01/app/oracle/product/fmw/11.1.0/wiserver_10.3/server /lib/DemoTrust.jks
Demo Trust Keystore Type:	jks
Demo Trust Keystore Passphrase:	•••••
Java Standard Trust Keystore:	/u01/app/oracle/product/fmw/11.1.0 /jrockit_160_05_R27.6.2-20/jre/lib/security/cacerts
Java Standard Trust Keystore Type:	jks
Java Standard Trust Keystore Passphrase:	
Confirm Java Standard Trust	

Configuring SSL for an Oracle WebLogic Server

Road Map

- WLS Security Architecture overview
- Users and groups
- Protecting application resources
- Protecting communications
- Protecting against attacks
 - Types of attacks
 - Protecting against man-in-the-middle attacks
 - Protecting against denial of service (DoS) attacks
 - Protecting against large buffer attacks
 - Protecting against connection starvation

Protecting Against Attacks

WLS can help protect applications against several attacks:

- Man-in-the-middle attacks
- Denial of service (DoS) attacks
- Large buffer attacks
- Connection starvation attacks

Man-in-the-Middle Attacks

- In the "man-in-the-middle" attack, a third party poses as a destination host intercepting messages between the client and the real host.
- Instead of issuing the real destination host's SSL certificate, the attacker issues his or her own hoping that the client would accept it as being from the real destination host.

Man-in-the-Middle: Countermeasures

- The "man-in-the-middle" attacks can be resisted by using a Hostname Verifier.
- A Hostname Verifier validates that the host to which an SSL connection is made is the intended or authorized party.
- WLS provides a Hostname Verifier by default.
- A custom Hostname Verifier can be created by implementing the

weblogic.security.SSL.HostnameVerifier interface.

Configuring a Hostname Verifier

Hostname Verification:	BEA Hostname Verifier				
	Custom Hostname Verifier				
	BEA Hostname Verifier				
	None				
Custom Iostname Verifier:					
lostname	500				

Denial of Service Attacks

- DoS attacks are attempts by attackers to prevent legitimate users of a service from using that service.
- There are three basic types of attack:
 - Consumption of scarce, limited, or nonrenewable resources
 - Destruction or alteration of configuration information
 - Physical destruction or alteration of network components

Denial of Service Attacks: Countermeasures

Harden WLS against DoS attacks by:

- Filtering incoming network connections
- Configuring consumable WLS resources with the appropriate threshold and quotas
- Limiting access to configuration information and configuration tools
- Limiting access to back up configuration files
- Preventing unauthorized access by protecting passwords against password-guessing attacks

Filtering Network Connections

- WLS can be configured to accept or deny network connections based on the origin of the client.
- This feature can be used to restrict the:
 - Location from which connections to WLS are made
 - Type of connection made—that is, allow only SSL connections and reject all others
- To filter network connections, create a class that implements the ConnectionFilter interface and install it using the Administration Console.

Connection Filter

Excessive Resource Consumption

- Denial of service can come from consuming server-side resources used by Web applications:
 - Intentionally generating errors that will be logged, consuming disk space
 - Sending large messages, many messages, or delaying delivery of messages in an effort to cripple JMS
 - Disrupting network connectivity through "connection starvation"
 - Consuming system memory through "large buffer attacks"
- The effect of these attacks can be reduced by setting the appropriate quotas and threshold values.

Large Buffer Attacks

- Individuals can try and bring down a Web site by sending a large buffer of data, which starves the system of memory.
- Administrators can combat this attack by setting a threshold for incoming data.

Setting the Post Size

Connection Starvation

- Individuals can try and take down a Web site by sending small, incomplete messages that cause the server to wait.
- Administrators can combat this attack by setting a threshold.
- Connections time out while waiting for the remainder of the data if they have reached the threshold set by the administrator.

Connection Starvation

User Lockout

- Individuals attempt to hack into a computer using various combinations of usernames and passwords.
- Administrators can protect against this security attack by setting the lockout attributes.
- The administrator can unlock a locked user using the console.

```
<May 2, 2009 2:42:36 PM EDT> <Notice> <Security> <BEA-090078> <User johndoe in security realm myrealm has had 5 invalid login attempts, locking account for 30 minutes.>
```

Configuring User Lockout

ettings for	myrealm					
Configuration	on Users and Grou	Users and Groups		cies	Credentia	
General R	General RDBMS Security Store		User Lockout Performance			
Save						
✓ Æ Lock	out Enabled					
E Lockout Threshold:			5			
E Lockout Duration:			30			
¿ Lockout Reset Duration:			5			
Lockout Cache Size:			5			
€ Lockout GC Threshold:			400			

Unlocking Users

Protecting the Administration Console

- You can configure a separate administration port for all administration traffic.
- You can change the context path of the console.
- You can disable the console (application).

Quiz

The Hostname Verifier is one measure for combating this type of attack:

- Large buffer
- 2. Connection starvation
- 3. Man in the middle
- 4. User lockout

Quiz

To counter connection starvation attacks, you can set:

- 1. Max Post Size
- 2. Post Timeout
- 3. Hostname Verifier
- 4. User lockout

Summary

In this lesson, you should have learned how to:

- Describe the process of configuring SSL
- Use the keytool utility to configure keys and obtain digital certificates
- Configure SSL for the WLS server
- Configure countermeasures for some Web-based attacks such as:
 - Man in the middle
 - Denial of service
 - Large buffer
 - Connection starvation

Practice 19: Overview

This practice covers the following topics:

- Using keytool to generate an identity keystore that contains a private key and a self-signed public certificate
- Configuring keystores using the Administration Console
- Configuring SSL for a managed server