```
printf("Universidade Estadual Vale do Acarau\n");
printf("Centro de Ciencias Exatas e Tecnologicas (CCET)\n");
printf("Ciencia da Computacao\n");
printf("Circuitos Digitais\n");
printf("Lista 04\n");
```

1. Faça as leituras dos mapas de Karnaugh a seguir e implemente os circuitos lógicos.

a)

b)

		BC			
		00	01	11	10
A	0	1	1	0	0
Λ	1	1	0	1	1

c)

		CD			
		00	01	11	10
	00 01 11	1	0	0	1
AB	01	0	0	1	0
	11	0	0	1	1
	10	1	0	0	1

d)

		CD			
		00	01	11	10
	00 01	0	1	0	0
AB	01	0	1	1	1
	11	0	1	1	1
	10	1	1	0	0

e)

		CD			
		00	01	11	10
AB	00	1	1	1	1
	01	0	1	1	1
	11	1	0	0	1
	10	0	1	1	0

f)

		CD			
		00	01	11	10
	00 01	1	1	1	0
AB	01	1	1	1	0
	11	1	1	1	0
	10	1	0	0	0

g)

		CD			
		00	01	11	10
AB	00 01 11	0	0	0	0
	01	0	1	1	1
		1	0	1	1
	10	0	1	1	0

h)

		CD			
		00	01	11	10
AB	00 01	0	0	0	0
	01	0	1	1	0
	11	0	1	1	0
	10	1	1	1	1

2. Construa um circuito multiplicador.

O circuito recebe um número de dois dígitos binários representados pelas variáveis de entrada A_1 e A_2 (Sendo A_1 o bit mais significante). O circuito também recebe outro número de dois dígitos binários representados pelas variáveis de entrada B_1 e B_2 (Sendo B_1 o bit mais significante). O resultado é expresso por um número de 4 dígitos binários representados pela variáveis de saída S_1 , S_2 , S_3 e S_4 (Sendo S_1 o bit mais significante).

Exemplo:

O cálculo
$$(11)_2 \times (10)_2 = (0110)_2$$

Onde $A_1 = 1, A_2 = 1, B_1 = 1, B_2 = 0, S_1 = 0, S_2 = 1, S_2 = 1, S_4 = 0$

3. Qual o menor circuito digital possível que possua o comportamento mostrado na tabela-verdade abaixo.

ABCDE	S
00000	0
00001	0
00010	0
00011	0
00100	1
00101	1
00110	1
00111	1
01000	0
01001	0
01010	0
01011	0
01100	0
01101	1
01110	0
01111	1
10000	0
10001	1
10010	0
10011	1
10100	1
10101	1
10110	1
10111	1
11000	0
11001	0
11010	0
11011	0
11100	0
11101	0
11110	0
11111	0