Bayes Nets

D-Separation & Inference

Some slides taken from previous 10701 recitations

Bayesian Network Inference Example

The most common task we wish to solve using Bayesian networks is probabilistic inference.

S R	P(W=F)	P(W=T)
FF	1.0	0.0
ΤF	0.1	0.9
FΤ	0.1	0.9
т т	0.01	0.99

BN Inference Example

 Observe that the grass is wet. What is the probability that the Sprinkler was on?

More Details

$$P(S=1|W=1) = \frac{P(S=1,W=1)}{P(W)}$$

$$= \frac{\sum_{c,r} P(C=c,S=1,R=r,W=1)}{\sum_{c,r,s} P(C=c,S=s,R=r,W=1)}$$

$$= \frac{\sum_{c,r} P(C=c)P(S=1|C=c)P(R=r|C=c)P(W=1|S=1,R=r)}{\sum_{c,r,s} P(C=c)P(S=s|C=c)P(R=r|C=c)P(W=1|S=s,R=r)}$$

$$= \frac{0.2781}{0.6471} = 0.43$$

Monte Carlo Sampling

 What is the probability that the sprinkler was on given that the grass is wet?

- Sample C, then S, R, and finally W many times.
- Approximate P(W), P(S,W) via counting.

Why D-Separation?

- Helps us understand the dependencies implied by a graph
- Helps us perform inference efficiently

Path

- Intuition: dependency must "flow" along paths in the graph.
- A path is a sequence of neighboring variables.

Examples:

$$R \leftarrow E \rightarrow A \leftarrow B$$

$$C \leftarrow A \leftarrow E \rightarrow R$$

d-separation

- Definition: If X1, X2 and X3 are three disjoint subsets of nodes in a DAG, then X2 is said to dseparate X1 from X3 if every undirected path from X1 to X3 is blocked by X2. A path is blocked if it contains a node Z such that:
- (1) Z has one incoming and one outgoing arrow and Z is in X2; or
- (2) Z has two outgoing arrows and Z is in X2; or
- (3) Z has two incoming arrows and neither Z nor any of its descendants is in X2.

A serial connection

- In a serial connection from X1 to X3 via X2, evidence from X1 to X3 is blocked only when we have hard evidence about X2.
- Intermediate cause.

A diverging connection

- In a diverging connection where X1 and X3
 have the common parent X2, evidence from X1
 to X3 is blocked only when we have hard
 evidence about X2.
- Common cause.

A Converging connection

- In a converging connection where X2 has parents X1 and X3, any evidence about X2 results in evidence transmitted between X1 and X3.
- Common Effect.

d-sep(R,B)?

- d-sep(X1, X3|X2)
- d-sep(R,B)?
 - $-X1 = \{R\}, X3 = \{B\}, X2 = \{\}$
 - Find all the path between R, B
 - Check the node:
 - Earthquake.
 (diverging, not in X2). Not blocking.
 - Alarm
 (Converging, A or C are not in X2). Block!

d-sep(R,B|A)?

- d-sep(X1, X3 | X2)
- d-sep(R,B|A)?
 - $X1 = \{R\}, X3 = \{B\}, X2 = \{A\}$
 - Find all the path between R, B
 - Check the node:
 - Earthquake.
 (diverging, not in X2). Not blocking.
 - Alarm
 (Converging, A or C are IN X2). Not blocking!

d-sep(R,B|E,A)?

- d-sep(X1, X3|X2)
- d-sep(R,B|E,A)?
 - $-X1 = \{R\}, X3 = \{B\}, X2 = \{E,A\}$
 - Find all the path between R, B
 - Check the node:
 - Earthquake.
 (diverging, IN X2). Blocking!
 - Alarm
 (Converging, A or C are IN X2). Not blocking.

d-sep(Radio,Gas|Moves)?

D-seperation: Multiple Paths

d-sep({C}, {F}|{D})?

D-seperation: Multiple Paths

d-sep({C}, {F}|{D})?

Red path is blocked by D.

Blue path is blocked by E not in evidence.

D-seperation on Sets

d-sep({Z, Y, P}, {W, Q}|{X})? W X Y

D-seperation on Sets

d-sep({Z, Y, P}, {W, Q}|{X})? YES

Blue path is a closed sequential path since we condition on X.

