Linked Open Data per un Content-based Recommender System

Luciano Quercia Simone Rutigliano

Accesso intelligente alle informazioni ed elaborazione del linguaggio naturale

Corso di Laurea in Informatica Magistrale

7 maggio 2013

Outline

- 1 Obiettivi
- 2 Progetto
 - Sorgente dati
 - Realizzazione
 - Fattori
 - Output
- 3 Sperimentazione
 - Dataset
 - Protocollo Sperimentale
 - Risultati
- 4 Conclusioni e sviluppi futuri
 - Document Image Understanding

Obiettivi

Realizzazione di un content-based recommender system basato sulla Linked Open Data Cloud

Content-based Recommender System

Il sistema stabilisce a priori la distanza trai film al fine di raccomandare i più simili alle preferenze dell'utente

Linked Open Data Cloud

Collezione (Cloud) di dataset:

- descritti attraverso RDF
- fortemente interconnessi fra loro (Linked)
- fruibili liberamente e gratuitamente (Open)

Linked Open Data Cloud

Resource Description Framework

Strumento base proposto da *W3C* per la codifica, lo scambio e il riutilizzo di metadati strutturati.

L'RDF Data Model si basa su tre principi chiave:

- qualunque cosa può essere identificata da un (URI)
- utilizzare il linguaggio meno espressivo per definire qualunque cosa
- o qualunque cosa può dire qualunque cosa su qualunque cosa

Esempio - Resource Description Framework

Considerando la frase:

Tarantino is the director of the Django Unchained.

L'affermazione può essere suddivisa come:

Soggetto (Risorsa) Django Unchained director Oggetto (Risorsa) Tarantino

DBPedia

- Centro della Linked
 Open Data Cloud
- Dump di Wikipedia trasformato in RDF

イロン イラン イミン イミン

Proprietà estratte

Per la raccomandazione di film, abbiamo estratto le seguenti proprietà

- studio
- music
- music composer
- writer
- editing
- director

- subject
- starring
- productor
- writer
- cinematography

Grafo delle Risorse

Attraverso query SPARQL sono state estratte tutte le triple che avevano proprietà nota e un film come soggetto è stato generato il grafo delle risorse

```
PREFIX dbpedia:http://dbpedia.org/resource/
PREFIX prop:http://dbpedia.org/ontology/
SELECT ?name
WHERE {
dbpedia:Django_Unchained prop:director ?name.
}
```

risultato:

http://dbpedia.org/resource/Quentin_Tarantino

Grafo delle Risorse

Grafo dei Film

Tutte le risorse non film sono state epurate ed inglobate all'interno degli archi.

Distanze

Sono state applicate 4 distanze su grafo:

- Direct
 - Con hinated
 - Direct Weighted
 - Combinated Weighte

Distanze

Sono state applicate 4 distanze su grafo:

- Direct
- Combinated

Direct Weighted

Distanze

Sono state applicate 4 distanze su grafo:

- Direct
- Combinated
- Direct Weighted

Distanze

Sono state applicate 4 distanze su grafo:

- Direct
- Combinated
- Direct Weighted
- Combinated Weighted

Rappresentazione del profilo

Il profilo è stato rappresentato in 2 modi:

• SIMPLE - Insieme di film positivi per l'utente

$$P_{NORM}(f_a) = V$$

Rappresentazione del profilo

Il profilo è stato rappresentato in 2 modi:

 SIMPLE - Insieme di film positivi per l'utente
 WEIGHTED - Ogni film influisce, positivamente o negativamente, alle raccomandazioni, secondo il voto ricevuto

$$P_{NORM}(f_a) = Voto(f_a) - Voto_M^{1}$$

Esempio di profilazione

considerati i film con le relative votazioni:

	FILM	VOTAZIONE
•	Titanic	5
	Django Unchained	4
	Bastardi senza gloria	2

I profili creati saranno:

Simple	Django Unchained Titanic		
	Titanic	2	
Weighted	Django Unchained	1	
	Bastardi senza gloria	-1	

Raccomandazioni

Obiettivi Progetto Sperimentazione Conclusioni e sviluppi futuri

Dataset Protocollo Sperimentale Risultati

MovieLens

Protocollo Sperimentale

Metriche

Risultati

minSup (%)		
30	40	50
528032	344798	254805
523274	341534	252355
516958	336733	248658
513503	334292	246843
	30 528032 523274 516958	30 40 528032 344798 523274 341534 516958 336733

Dataset TPAMI

	minSup (%)			
minGR	10	20	30	
1	386996	176407	114492	
2	382639	173372	112476	
8	376645	169406	109814	
64	374736	167742	108595	

Dataset ICML

	minSup (%)		
minGR	10	20	30
1	128327	88684	58603
2	126840	87644	58091
8	122591	84208	55718
64	121363	82980	54490

Dataset BG

Conclusioni e sviluppi futuri

TEPaC

TEPaC

Transductive Emerging Pattern based Classifier

- classificatore di strutture logiche
- basato su pattern emergenti
- utilizza un approccio trasduttivo

Document Image Understanding

Comprensione automatizzata di documenti cartacei

a m ggior parte della conoscenza ondi le si trova su supporti

- Libri
- Documenti
- Giornali

La digitalizzazione offre innumerevoli vantaggi

Document Image Understanding

- Comprensione automatizzata di documenti cartacei
- La maggior parte della conoscenza mondiale si trova su supporti cartacei
 - Libri
 - Documenti
 - Giornali

La digitalizzazione offre innumerevoli vantaggi

Document Image Understanding

- Comprensione automatizzata di documenti cartacei
- La maggior parte della conoscenza mondiale si trova su supporti cartacei
 - Libri
 - Documenti
 - Giornali
- La digitalizzazione offre innumerevoli vantaggi

Grazie per l'attenzione.

