# LIME

Mose Park

Department of Statistical Data Science University of Seoul

Selective. Lab

April 9, 2024

## Index

- Intro
  Interpretable이 왜 중요한지
  LIME이 무엇인지
- **SP-LIME** SP-LIME 식에 대한 디테일 설명
- 4 Experiment
  설명이 충실한지?
  예측에 신뢰가 가는지?
  유용한 모델인지?
  - 5 Appendix

## Overview



## Introduction

## Black box vs Interpretable



▶ 블랙박스는 데이터와 예측 결과와의 관계를 규명할 수 없음

Black box model



▶ 해석가능한 모델은 왜 그런 결과가 나왔는지 설명가능

Tree model

## Why?



- ▶ black box model은 환자가 독감이라고 결정하는 것에서 끝남
- ▶ LIME은 과거 증상들이 무엇이었는지 해석할 수 있음
- ▶ 의사는 모델의 예측을 신뢰(trust)할지 결정함

# LIME

## Objective function

$$\xi(x) = \underset{g \in G}{\operatorname{arg\,min}} \mathcal{L}(f, g, \pi_x) + \Omega(g) \tag{1}$$

G: a class of interpretable models ex) 'g'는 각각 선형 모델, 의사결정나무 등이 될 수 있음

 $\Omega(g):$  measure of complexity ex) 0이 아닌  $\beta$ 의 개수, 트리의 깊이 등

f: model being explained ex) 설명되어야 할 블랙박스 모델

 $\pi_x$ : proximity measure between an instance z to x

ightharpoonup z가 무엇이고  $\pi$  의 역할은?

## Sampling



- ▶ 블랙박스 모델의 복잡한 결정 함수 f가 파란색/분홍색 배경으로 나뉨
- ▶+ 기호는 설명되고 있는 인스턴스 'z' 를 의미 ← 이것을 샘플링함
- ▶샘플링된 + 들은 인스턴스와의 거리를 통해 가중치를 부여, 상대적 크기가 근접성(거리)을 의미

## Algorithm 1

**Require:** Classifier f, Number of samples N

**Require:** Instance x, and its interpretable version x'

**Require:** Similarity kernel  $\pi_x$ , Length of explanation K

- 1. Initialize Z.
- 2. For i = 1 to N do
  - (a) Sample  $z'_i$  around x'.
  - (b) Compute  $Z = Z \cup \{(z_i', f(z_i), \pi_x(z_i))\}.$
- 3. End for.
- 4. Compute w = K-Lasso(Z, K) with  $z'_i$  as features,  $f(z_i)$  as target.
- 5. Return w.

# SP-LIME

## Why SP-UME?



- ▶ 단일 예측이기 때문에 모델 전체 해석의 일반화가 어려움
- ▶ 개별 인스턴스를 설명하는 것 대신에 인스턴스들의 집합을 설명하는 것을 목표

## **Expanation matrix**

feature 즉, 변수들



$$W$$
, with  $n = d' = 5$ 

- lacktriangle 회색칸은 instance를 의미, f2가 f3에 비해 importance score가 높기 때문에  $I_2>I_3$
- ▶ 2번째 행은 3번째 행과 유사한 설명을 가진 인스턴스기 때문에 동시에 고르면 안됌 2, 5과 최적

## Pick Step

$$c(V, W, I) = \sum_{j=1}^{d'} \mathbf{1}_{\{\exists i \in V : W_{ij} > 0\}} I_j$$
(3)

$$\operatorname{Pick}(W, I) = \arg \max_{V:|V| \le B} c(V, W, I) \tag{4}$$

- ▶ 식 (3)은 주어진 W와 I에 대해 집합 V 내의 적어도 한 인스턴스에 나타나는 특성들의 총 중요도를 계산하는 집합 함수 C
- ▶ 커버리지를 최대화하는 budget 내에 허락할 수 있는 index set V를 찿아주는 것이 목표

## Algorithm 2

Require: Instances X, Budget B

- For all  $x_i \in X$  do  $W_i \leftarrow \operatorname{explain}(x_i, \bar{x}_i) \quad // \text{ Using Algorithm 1}$  End for
- For j = 1 to d do

$$I_j \leftarrow \sum_{i=1}^n W_{ij}$$
 // Compute feature importances

End for

- Initialize  $V \leftarrow \emptyset$
- While |V| < B do

$$V \leftarrow V \cup \{\arg\max_{i} c(V \cup \{i\}, W, I)\}$$
 // Greedy optimization of (4)

End while

 $\bullet$  Return V

NP hard 로 인한 수정 → submodular pick (근사)

Experiment

## Are Explanation faithful?





Fig. 7

- ▶ Recall은 LR과 DT에서 산출한 10개 feature들을 LIME에서 잘 Cover하는지에 대한 비율을 의미
- ▶LIME이 대부분 세팅에서 우수

## Should I trust prediction?



○ :"untrustworthy" 즉, 신뢰할 수 없는 feature가 예측에 중요한 역할을 함 변경 여부 X : "trustworthy" (labeling)

Table 1

|        | Books |      |      |      | $\mathrm{DVDs}$ |      |      |                           |
|--------|-------|------|------|------|-----------------|------|------|---------------------------|
|        | LR    | NN   | RF   | SVM  | LR              | NN   | RF   | $\overline{\mathrm{SVM}}$ |
| Random | 14.6  | 14.8 | 14.7 | 14.7 | 14.2            | 14.3 | 14.5 | 14.4                      |
| Parzen | 84.0  | 87.6 | 94.3 | 92.3 | 87.0            | 81.7 | 94.2 | 87.3                      |
| Greedy | 53.7  | 47.4 | 45.0 | 53.3 | 52.4            | 58.1 | 46.6 | 55.1                      |
| LIME   | 96.6  | 94.5 | 96.2 | 96.7 | 96.6            | 91.8 | 96.1 | 95.6                      |

- ▶ F1은 100회 실험 돌리고 평균값으로 계산
- ▶ Recall과 Precision 모두 LIME이 우수

### Can I trust model?

Figure 8



▶ SP-LIME 을 통해 나온 instance 중 trustworthy한 instance의 비율