NP-Completeness

We are interested in identifying problems in NP which are unlikely to be in P.

A decision problem D is **NP-hard** if for all problems $D' \in NP$ we have $D' \leq D$

Thus NP-hard problems are at least as hard as all NP problems.

Note that NP-hard problems do not necessarily belong to NP. They could be harder.

If D is NP-hard and $D \leq D'$ then D' is also NP-hard.

A decision problem D is NP-complete (NPC) if

- 1. $D \in NP$
- 2. D is NP-hard

NP-complete problems are the hardest problems in NP.

SAT is NP-complete.

To see that problem D is NPC show:

- 1. $D \in NP$ (typically using guess and verify)
- 2. $D' \leq D$ for some known NPC problem D'

Point 2 establishes that D is NP-hard, since D' is NP-hard.

As an example take the Hamiltonian Path Problem (HPP). We have already seen that HPP $\in NP$ by guessing and verifying in p-time. If we can show SAT \leq HPP then we can conclude that HPP is NPC. It is indeed possible to show SAT \leq HPP.

So HPP is NP-complete.

Intractability via NP-completeness

Our original interest was in deciding which problems are tractable and which are intractable. We have a definition for 'tractable', and we have confirmed that problems such as sorting are indeed tractable.

What we have not done is show that a problem is intractable.

We now see how NP-completeness can help with this.

Suppose $P \neq NP$. If a problem D is NP-hard then $D \notin P$

Proof. Assume $P \neq NP$ and D is NP-hard.

Suppose for a contradiction that $D \in P$. We show that $NP \subseteq P$. Take $D' \in NP$. Since D is NP-hard, we have $D' \leq D$. Hence $D' \in P$. We have shown that $NP \subseteq P$.

But we know $P \subseteq NP$. Hence P = NP which contradicts our assumption.

Thus if we can show that a problem is NPC, we know that it is intractable (assuming that $P \neq NP$).

Recall the Travelling Salesman Problem TSP: Given a (complete) weighted graph (G,W), find a tour of G of minimum weight which visits each node exactly once and returns to the start node

TSP is an optimisation problem. We first define a decision version of TSP which we call TSP(D): Given a weighted graph (G,W) and a bound B, is there a tour of G with total weight \leq B?

We can think of B is being a budget or travel allowance. In the decision version, we ask whether there is a tour that does not exceed the budget.

We show that TSP(D) is NP-complete using Method 3.4.4:

1. $TSP(D) \in NP$:

If we guess a path p, we can check in p-time that p is a Hamiltonian circuit of G and that $W(p) \le B$. Clearly $|p| \le |G|$.

More formally define VER-TSP(D)((G, W), B, p) iff p is a Hamiltonian circuit of (G, W) and $W(p) \leq B$.

Then TSP(D)((G, W), B) iff $\exists p. VER-TSP(D)((G, W), B, p)$.

Also if VER-TSP(D)((G, W), B, p) then $|p| \le |G|$ under reasonable definitions of size.

2. $D' \leq TSP(D)$ for some known NPC problem D':

We choose HAMPATH as the known NPC problem and show HAMPATH \leq TSP(D).

We need to define a p-time function f which transforms a graph G into a weighted graph (G', W) together with a bound B so that HAMPATH(G) iff TSP(D)((G', W), B).

Given G we construct (G', W) as follows: Set nodes(G') = nodes(G). Given any two distinct nodes x, y of G:

- If (x,y) is an arc of G then (x,y) is also an arc of G', with W(x,y)=1.
- If (x,y) is not an arc of G then (x,y) is an arc of G', with W(x,y)=2.

Thus we add in the missing arcs of G but we give them a higher weight. Finally we let B = n + 1 where G has n nodes.

It is not hard to see that f(G) = ((G', W), B) is p-time — easiest to see using the adjacency matrix representation.

We now check that f is a reduction: HAMPATH(G) iff TSP(D)((G',W),B): Suppose G has a Hamiltonian path π with endpoints x and y. The same path in G' has weight n-1 (all arcs have weight 1). We get a Travelling Salesman

tour by adding in arc (x,y) with $W(x,y) \le 2$. Thus we have a tour of weight $\le n+1=B$.

Conversely, suppose (G', W) has a tour of weight $\leq B = n + 1$. This has n arcs. So at most one arc can have weight 2. Suppose this arc has endpoints x, y. Then omitting arc (x, y) gives us a Hamiltonian path in G.

We conclude that TSP(D) is NP-complete. Finally we can show that TSP is intractable (assuming $P \neq NP$).

- Suppose that TSP can be solved by a p-time algorithm
- We compute the optimal value O in p-time
- Then we can also solve TSP(D) in p-time we simply check whether $O \leq B$
- So $TSP(D) \in P$
- But this is impossible since TSP(D) is NP-complete and we assume $P \neq NP$

Check slides for 2 more examples