Übungen zu Analysis 2, 11. Übung 18. 6. 2019

(letzte Übung)

- 3. Übungstest 26. 6. 18:00 Audi Max Getreidemarkt
- 111. Sei X ein kompakter Hausdorffraum. Dann ist X unter keiner echt feineren Topologie kompakt und unter keiner echt gröberen Topologie Hausdorff.
- 112. Zeigen Sie, dass die rekursiv definierte Funktionenfolge

$$f_n(t) = \frac{1}{2}f_{n-1}(1-t) + \frac{1}{4}\cos(t^2), \quad f_0(t) = 0$$

auf [0, 1] eine gleichmäßig konvergente Teilfolge besitzt.

- 113. In einem metrischen Raum ist eine Menge A genau dann präkompakt, wenn jede Folge in A eine Teilfolge besitzt, die Cauchyfolge ist.
- 114. Sei für $n \in \mathbb{N}$ $f_n : [0,1] \to \mathbb{R}$, $x \mapsto x^n$. Für welche $a \in \mathbb{R}$ ist die Menge $\{f_n : n \in \mathbb{N}\}$ relativ kompakt in C([0,a])?
- 115. Besitzt die Folge $(f_n)_{n\in\mathbb{N}}$

$$f_1(x) = \sin(x - x^2), \quad f_n(0) = 0, \quad f'_n(x) = \sin(f_{n-1}(x)) + 1 - x, \quad n > 1$$

eine in $C[0, 1]$ (mit Maximumsnorm) konvergente Teilfolge?

116. Zeigen Sie, dass die abgeschlossene Einheitskugel in $\ell^p_{\mathbb{R}}(\mathbb{N})$ für $1 \leq p \leq \infty$ nicht kompakt ist.

Hinw. Betrachten sie die Elemente $e_i = (0, ..., 0, 1, 0, ...)$ und eine geeignete Überdeckung.

- 117. Zeigen Sie, dass für eine kompakte Teilmenge K des \mathbb{R}^n die Polynome in den k Veränderlichen dicht in C(K) liegen.
- 118. Ist K kompakt und A eine Unteralgebra von C(K) mit der Topologie der gleichmäßigen Konvergenz, so ist auch \overline{A} eine Unteralgebra.
- 119. Ist G eine kommutative topologische Gruppe (Bso. 1.4.5). Dann heißt ein stetiger Homomorphismus von G nach \mathbb{T} (\mathbb{T} mit der Relativtopologie von \mathbb{C} vgl. Prop. 1.3.7) ein *Charakter* auf G. Zeigen Sie, dass das Produkt zweier Charaktäre ein Charakter ist und die Menge \hat{G} der Charaktäre so zu einer Gruppe wird, die als *duale Gruppe* \hat{G} bezeichnet wird. Zeigen Sie, dass die Mengen

$$B(\chi_0, K, \epsilon) := \{ \chi \in \hat{G} : |\chi_0(x) - \chi(x)| < \epsilon \ \forall x \in K \}$$

mit $\chi_0 \in \hat{G}$, $K \subseteq G, K$ kompakt $, \epsilon > 0$ Basis einer Topologie auf \hat{G} sind unter der \hat{G} zu einer topologischen Gruppe wird.

- 120. Zeigen Sie, dass mit den Bezeichnungen des vorherigen Beispiels gilt:
 - a) Ist G kompakt, so ist \hat{G} diskret;
 - b) Ist G diskret, so ist \hat{G} kompakt.