Felix Kiunke, 357322

Blatt 8

Aufgabe 8.3

Im folgenden wird gezeigt, dass es eine Abbildung V und ein Polynom p gibt, sodass gilt:

$$x \in 3$$
-Colorability $\iff \exists |y| \le p(|x|) : V$ akzeptiert $y \# x$.

Ein Graph mit n Knoten kann mit einer Adjazenzmatrix in n^2 Zeichen aus 0, 1 kodiert werden, d.h. $|x| = \mathcal{O}(n^2)$. Das Zertifikat der Lösung sei eine Liste an Farben in der Reihenfolge der Knoten. Bei 3 Farben kann jede Farbe mit 2 Bits kodiert werden: 00, 11 oder 01. Es gilt daher $|y| = \mathcal{O}(n)$.

$$p(x) = x$$
, da $x \le x^2 \quad \forall x \in \mathbb{N}$

Verifikation der Lösung, die durch y beschrieben wird: Sei $y_n \in 00, 11, 01$ der Farbwert des n-ten Knotens und $x_{i,j} \in 0, 1$ ein Element aus der Adjazenzmatrix.

```
for i = 1..n do
for j = 1..n do
if x_{i,j} = 1 and i > j
if y_i = y_j REJECT
end if
end for
end for ACCEPT
```

Da dieser Algorithmus n^2 viele Schritte benötigt und Lesen aus y mit polynomialem Zeitverlust mit einem zweiten Band simuliert werden kann, ist dies ein Algorithmus in Polynomialzeit.

Aufgabe 8.4

```
NP \subseteq NP':
Sei L \in NP, d.h. es existiert eine NTM M mit L(M)=L und Polynom p mit t_M(n) \leq p(n).
```

Man konstruiere eine NTM M', welche die Berechnung nach p(n) (für n=|w|) Schritten abbricht und sich sonst wie M verhält. Es gilt $t'_{M'} \leq p(n)$, da es auf keinem Wort der Länge n einen Pfad länger p(n) geben kann. Der kürzeste akzeptierende Pfad bleibt hierbei erhalten, da er nicht länger als p(n) sein kann. Also gilt L(M') = L und deshalb $L \in NP$ '.

$\mathrm{NP'}\subseteq\mathrm{NP}:$

Sei L \in NP, d.h. es existiert eine NTM M' mit L(M') = L und Polynom p mit $t'_{M'}(n) \leq p(n)$. Dann ist $t_{M'} \leq p(n)$, da alle Pfade polynomiell beschränkt sind, insbesondere auch der kürzeste akzeptierende. Daher L \in NP.

 $\mathrm{NP'}\subseteq \mathrm{NP} \wedge \mathrm{NP}\subseteq \mathrm{NP'} \implies \mathrm{NP'}=\mathrm{NP}.$