Eth3.0

Quantum security

IBM Q 50 qubits

- intro
- Eth1—quantum vulnerability
- Eth2—quantum infancy
- Eth3—quantum security

paradigm shifts

Neven's law vs hype

> What's your vision for Eth 3.0?

"STARKs, STARKs and lots of STARKs."—Vitalik, Jan 2019

> What's your vision for Eth 3.0?

"STARKs, STARKs and lots of STARKs."—Vitalik, Jan 2019

flexibility

one tool to rule them all

> What's your vision for Eth 3.0?

"STARKs, STARKs and lots of STARKs."—Vitalik, Jan 2019

flexibility

- one tool to rule them all
- lean and resilient crypto
 - consolidation of assumptions
 - hash functions only
 - Lindy effect

> What's your vision for Eth 3.0?

"STARKs, STARKs and lots of STARKs."—Vitalik, Jan 2019

flexibility

- one tool to rule them all
- lean and resilient crypto
 - consolidation of assumptions
 - hash functions only
 - Lindy effect

performance

- relatively fast prover
- data is cheap™

Ethereum Foundation grant (July 2018)

~\$5 million

"quantum insurance"

Ethereum Foundation grant (July 2018)

Ethereum Foundation grant (July 2018)

plausibly provably quantum secure

Succinct Arguments in the Quantum Random Oracle Model

Alessandro Chiesa alexch@berkeley.edu UC Berkeley Peter Manohar manohar@berkeley.edu UC Berkeley

July 18, 2019

Nicholas Spooner
nick.spooner@berkeley.edu
UC Berkeley

plausibly provably quantum secure

Succinct Arguments in the Quantum Random Oracle Model

Alessandro Chiesa alexch@berkeley.edu UC Berkeley Peter Manohar manohar@berkeley.edu UC Berkeley

July 18, 2019

Nicholas Spooner
nick.spooner@berkeley.edu
UC Berkeley

→ slightly larger proofs

plausibly provably quantum secure

Succinct Arguments in the Quantum Random Oracle Model

Alessandro Chiesa alexch@berkeley.edu UC Berkeley Peter Manohar manohar@berkeley.edu UC Berkeley

July 18, 2019

Nicholas Spooner
nick.spooner@berkeley.edu
UC Berkeley

→ slightly larger proofs

universal SNARK setups

	hash function	class group	RSA group	powers of tau
quantum secure				
unbounded and succinct				
transparent				
updatable	N/A	N/A		

universal SNARK setups

STARK/FRI unique selling point					
	hash function	class group	RSA group	powers of tau	
quantum secure	\ \				
unbounded and succinct					
transparent					
updatable	N/A	N/A			

Eth1—quantum vulnerability

"37% of the [Bitcoin] supply is at risk"

exposed pubkeys

"37% of the [Bitcoin] supply is at risk"

- Eth1 vs Bitcoin
 - accounts encourage pubkey reuse vs UTXOs (expecting >37% at risk)
 - hard to migrate contracts (e.g. long-running Augur bet)

exposed pubkeys

- Eth1 vs Bitcoin
 - accounts encourage pubkey reuse vs UTXOs (expecting >37% at risk)
 - hard to migrate contracts (e.g. long-running Augur bet)
- governance intervention
 - false positives
 - possibly controversial

inertia

"Historically, it has taken **almost two decades to deploy our modern public key cryptography infrastructure**."—NIST website

inertia

"Historically, it has taken **almost two decades to deploy our modern public key cryptography infrastructure**."—NIST website

NIST post-quantum competition

- 2016—kickoff
- 2017—round 1 (69 candidates)
- 2019—round 2 (26 candidates)
- 2021—round 3
- 2024—draft standard

inertia

"Historically, it has taken **almost two decades to deploy our modern public key cryptography infrastructure**."—NIST website

NIST post-quantum competition

- 2016-kickoff
- 2017—round 1 (69 candidates)
- 2019—round 2 (26 candidates)
- 2021—round 3
- 2024—draft standard

→ additional friction from blockchain governance

data is cheap™

Nielsen's law—bandwidth grows by 50% per year

data is cheap™

Nielsen's law—bandwidth grows by 50% per year

- data is fungible—a byte is a byte
- data is massively parallelizable
- 200kB proof today ~ 3.5kB proof in 10 years

gas repricing

call data repricing

- **EIP2028**—67 gas/byte to 16 gas/byte
- prediction—more data repricings

Eth2—quantum infancy

backup signatures

- quantum apocalypse backup—one-time migration
- Lamport—simple, available today, low overhead
- backwards compatible—integratable in any existing signature scheme

backup signatures

- quantum apocalypse backup—one-time migration
- Lamport—simple, available today, low overhead
- backwards compatible—integratable in any existing signature scheme

backup signatures

Lamport signatures

Lamport signatures

	bi	t 1	1	bit	256
secret key	a ₁	b ₁		 a ₂₅₆	b ₂₅₆
public key	H(a ₁)	H(b ₁)		 H(a ₂₅₆)	H(b ₂₅₆)

Lamport signatures

multi-hashing

	SHA256
security	conservative
speed (plain text)	fast
popularity	high
STARK-friendly	no

multi-hashing

	SHA256	low arithmetic complexity hash
security	conservative	experimental
speed (plain text)	fast	slower
popularity	high	low
STARK-friendly	no	yes

multi-hashing

	SHA256	low arithmetic complexity hash
security	conservative	experimental
speed (plain text)	fast	slower
popularity	high	low
STARK-friendly	no	yes

STARK-friendly hash challenge

family

HadesMiMC

MARVELIous

GMiMC

STARK-friendly hash challenge

STARK-friendly hash challenge

longer addresses

length matters

- current output length **n** = 160 bits
- classical collision resistance—O(n/2) ~ 80 bits
- o quantum collision resistance—O(2n/5) ~ 64 bits (technically O(n/3) = 60 bits)
- future cryptanalytic weakenings

2017 result

longer addresses

length matters

- current output length **n** = 160 bits
- classical collision resistance—O(n/2) ~ 80 bits
- o quantum collision resistance—O(2n/5) ~ 64 bits (technically O(n/3) ~ 60 bits)
- future cryptanalytic weakenings

longer addresses

length matters

- current output length **n** = 160 bits
- classical collision resistance—O(n/2) ~ 80 bits
- o quantum collision resistance—O(2n/5) ~ 64 bits (technically O(n/3) = 60 bits)
- future cryptanalytic weakenings

new **n**—256 bits

witness compression for stateless clients

witness compression for stateless clients

witness compression for stateless clients

abstraction

not opinionated

- no enshrined ECDSA
- no minimum 21,000 gas

quantum canary

- early detection—calibrated quantum advantage problem
- **bounty**—e.g. 1m ETH minted by the consensus
- programmatic—trigger for consensus and contracts

Eth3—quantum security

secrets involved

- BLS12-381 private key
- MPC-friendliness requirement

aggregation constraints

- batches of 1024 signatures
- 128 batches per block

aggregation constraints

- batches of 1024 signatures
- 128 batches per block

aggregation constraints

- batches of 1024 signatures
- 128 batches per block

idea

preference for hash-based signature schemes (e.g. Lamport, Winternitz, SPHINCS+)

- batch 1024 Lamport signatures into a STARK
- aggregate those 128 STARKs into one STARK

aggregation constraints

- batches of 1024 signatures
- 128 batches per block

idea

preference for hash-based signature schemes (e.g. Lamport, Winternitz, SPHINCS+)

- batch 1024 Lamport signatures into a STARK
- aggregate those 128 STARKs into one STARK

open problem—add MPC-friendliness

commitment $c = H^{1024}(s)$

custody proofs

custody proofs

custody proofs

permutation polynomial

constant gap
"bootstrap"

STARKs

exponential gap parallelism

permutation polynomial

constant gap
"bootstrap"

STARKs

exponential gap parallelism

pros

- quantum secure
- no trusted setup
- cheaper evaluator hardware
- easier to reason about lower bounds

VDFs

permutation polynomial

constant gap
"bootstrap"

STARKs

exponential gap parallelism

pros

- quantum secure
- no trusted setup
- cheaper evaluator hardware
- easier to reason about lower bounds

cons

- larger proofs
- more expensive prover hardware

bonus—minimise fraud proofs

blockchain design heuristics

- If cryptography doesn't work, try cryptoeconomics.
- If cryptography does work, avoid cryptoeconomics.

bonus—minimise fraud proofs

blockchain design heuristics

- If cryptography doesn't work, try cryptoeconomics.
- If cryptography does work, avoid cryptoeconomics.

thank you:)