Esercitazione N.2: Circuito RC - Filtri Passivi.

Gruppo AC Federico Belliardo, Francesco Mazzoncini, Giulia Franchi October 10, 2016

1 Scopo e strumentazione

Misurare la frequenza di un filtro passa-basso e studiare la variazione della risposta del filtro in funzione del carico applicato a valle. In seguito studiare la l'attenuazione di un filto passa-banda. [Aggiungere strumentazione]

2 Filtro passa-basso

Progettazione filtro. Si vogliono trovare i valori dei componenti resistivo e capacitivo del filtro perchè trasmetta un segnale sinusoidale di frequenza 2kHz e attenui il rumore a 20kHz.

Figure 1: Schema del circuito passa-basso

Risolvendo il circuito e chiamando r la resitenza di carico e R la resistenza del passabasso si ottiene la seguente relazione per il modulo dell'attenuazione:

 $|A(\omega)| = \frac{1}{\sqrt{(1+x)^2 + (\frac{f}{f_0})^2}}$. Dove f_0 è la frequenza di taglio del filtro. Definite $f_2 = 20kHz$ e $f_1 = 2kHz$ le

freuenze del rumore e del segnale e $x=\frac{R}{r}$ otteniamo come rapporto di attenuazione: $|\frac{A(2kHz)}{A(20kHz)}|=\sqrt{\frac{f_0^2(1+x)^2+f_2^2}{f_0^2(1+x)^2+f_1^2}}$ Selezionando una resistenza $R=1k\Omega$ del filtro molto minore del carico $r=100k\Omega$ otteniamo x=0.01 cioè un valore per x trascurabile e possiamo scrivere (le unità sono state prese kHz): $|\frac{A(2kHz)}{A(20kHz)}|=\sqrt{\frac{f_0^2+400}{f_0^2+4}}$. Con n condensatore C=80nF si ottiene una rapporto segnale rumore $|\frac{A(2kHz)}{A(20kHz)}|\sim 7$ e una attenuazione del segnale $|A(2kHz)|\sim \frac{1}{\sqrt{2}}$.

Abbiamo à disposizione un condensatore da $C=\pm nF$, e questo implica avere una resistenza $R=\pm k\Omega$. La frequenza di taglio quindi è $f_0=\pm kHz$ e da questi valori stimiamo i valori di $|A(2kHz)|=\pm$ e di $|\frac{A(2kHz)}{A(20kHz)}|$.

Misura frequenza di taglio. Si è misurata la frequenza di taglio dall'intersezione delle due rette del fit. Chiamate le rette $y = a_1x + b_1$ e $y = a_2x + b_2$, il loro punto di intersezione è $f_0 = \frac{b_1 - b_2}{a_1 - a_2}$.

Impedenza del circuito a bassa frequenza. L'impedenza di ingresso di un circuito come quello disegnatio all'inizio della relazione è $Z_{ingresso}=R+\frac{r}{j\omega Cr+1}$, dunque a bassa frequenza in condensatore è un aperto dunque l'impedenza di ingresso è R+r, mentre ad alta frequenza è un cortocircuito dunque l'impendenza è R. Alla frequenza di taglio abbiamo poi: $Z_{ingresso}=R+\frac{Rr}{jr+R}$. L'efetto della resistenza di carico sul circuito è di diminuirne il guadagno, secondo la formula: $|A(\omega)|=\frac{1}{\sqrt{(1+x)^2+(\frac{f}{f_0})^2}}$. Lo scostamento della risposta da quella del filtro ideale è tanto maggiore quanto il carico resistivo è più vicino alla resistenza del filto.

3 Filtro passa-banda

Figure 2: Filtro passa banda

Verifiche sui circuiti passa alto e passa basso.

Misure sul fitro passa banda.

Spegazioni teoriche. La funzione di trasferimento teorica per un circuito passa banda come quelli disegnati sopra è: $V_{out} = A_1 A_2 \frac{Z_{in}^2}{Z_{out}^2 + Z_{in}^2} V_{in}$, dove gli apici si riferiscono a al primo o al secondo circuito in sequenza. La seguente tabella riassume le impedenze di ingresso e sucita per circuiti passa basso:

	Passa-basso	Passa-alto
Ingresso	$R + \frac{1}{i\omega C}$	$R + \frac{1}{i\omega C}$
Uscita	AR	$j\omega \check{C}A$

Table 1: Riassunto resistenze di ingresso e di uscita.

Semplificando l'espressione otteniamo: $V_{out} = A_1 A_2 \frac{1}{1 + \frac{R_1}{R_2} A_1 A_2} V_{in}$. E nel nostro caso (due resistenze uguali otteniamo: $V_{out} = A_1 A_2 \frac{1}{1 + A_1 A_2} V_{in}$, che è limitato dall'alto da $A_{max} = \frac{1}{2}$. Se chiamiamo ω_1 la frequenza di taglio del circuito passa alto e ω_2 la frequenza di taglio del circuito passa alto e la frequenza del circuito passa basso otteniamo i seguenti limiti per l'attenuazione:

- $\omega \ll \omega_1$ allora $A_1 \sim 1$ dunque $A_{tot} = \frac{A_2}{1+A_2}$, sviluppando otteniamo $A_{tot} = \frac{1}{2} \frac{1}{1-j\frac{\omega_2}{2}}$ dunque il filtro è equivalente a un passa alto con frequenza di tagio $\frac{\omega_2}{2}$.
- $\omega \gg \omega_2$ allora $A_2 \sim 1$ dunque $A_{tot} = \frac{A_1}{1+A_1}$, sviluppando otteniamo: $A_{tot} = \frac{1}{2} \frac{1}{1+j\frac{omega}{2\omega_1}}$.

Se vogliamo che $A_{tot} = A_1 A_2$ deve essere $R_1 \ll R_2$ come è evidente.