Assignment 2 MAT 458

5.5.58a: We have as given that

$$\langle Px - x, Px \rangle = \langle Px, Px - x \rangle = 0.$$

Together with linearity this implies that for all x,

$$\langle Px, x \rangle = \langle x, Px \rangle.$$

Thus we have that $P^* = P$. Furthermore, linearity implies that

$$\langle Px, Px \rangle = \langle P^2x, x \rangle = \langle Px, x \rangle.$$

Therefore $P^2 = P$.

5.5.58b: We first claim that R(P) is closed. Let $\{x_n\}$ be a sequence in R(P), that converges to some x. Then we have that $Px_n = x_n$, and so

$$\langle Px_n - x_n, x_n \rangle = 0.$$

Inner product continuity implies that

$$\langle Px - x, x \rangle = 0.$$

Therefore Px = x and so $x \in R(P)$. Thus R(P) is closed. We now verify that $\langle Px - x, Px \rangle = 0$. Since $P^2 = P = P^*$.

$$\langle Px - x, Px \rangle = \langle Px - x, P^2x \rangle = \langle P^2x - Px, Px \rangle = 0.$$

5.5.58c: It is enough to check that $Px = \sum \langle x, u_{\alpha} \rangle u_{\alpha}$ satisfies $\langle Px - x, Px \rangle = 0$.

$$\begin{split} \langle \sum \langle x, u_{\alpha} \rangle u_{\alpha} - x, \sum \langle x, u_{\alpha} \rangle u_{\alpha} \rangle &= \langle \sum \langle x, u_{\alpha} \rangle u_{\alpha}, \sum \langle x, u_{\alpha} \rangle u_{\alpha} \rangle - \langle x, \sum \langle x, u_{\alpha} \rangle u_{\alpha} \rangle \\ &= \langle \sum \langle x, u_{\alpha} \rangle u_{\alpha}, \sum \langle x, u_{\alpha} \rangle u_{\alpha} \rangle - \sum \langle x, u_{\alpha} \rangle \cdot \sum \langle x, u_{\alpha} \rangle u_{\alpha} \\ &= 0 \end{split}$$