世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 413/06, 417/06, A61K 31/55

A1

(11) 国際公開番号

W099/12925

(43) 国際公開日

1999年3月18日(18.03.99)

(21) 国際出願番号

PCT/JP98/04071

(22) 国際出願日

1998年9月10日(10.09.98)

(30) 優先権データ

特願平9/245669 特願平9/245670 1997年9月10日(10.09.97)

1997年9月10日(10.09.97)

(71) 出願人 (米国を除くすべての指定国について) 味の素株式会社(AJINOMOTO CO., INC.)[JP/JP] 〒104-0031 東京都中央区京橋1丁目15番1号 Tokyo,(JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

坂田勝利(SAKATA, Katsutoshi)[JP/JP]

辻 尚志(TSUJI, Takashi)[JP/JP]

佐々木則子(SASAKI, Noriko)[JP/JP]

高橋和義(TAKAHASHI, Kazuvoshi)[JP/JP]

〒210-0801 神奈川県川崎市川崎区鈴木町1番1号

味の素株式会社 中央研究所内 Kanagawa, (JP)

(74) 代理人

弁理士 中村 稔, 外(NAKAMURA, Minoru et al.) 〒100-8355 東京都千代田区丸の内3丁目3番1号

新東京ビル646号 Tokyo, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO特許 (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

(54)Title: 5,11-DIHYDRODIBENZ[b,e][1,4]OXAZEPINE DERIVATIVES AND MEDICINAL COMPOSITION CONTAINING THE SAME

(54)発明の名称 5,11-ジヒドロジベンゾ [b,e] [1,4] オキサゼピン誘導体及び該誘導体を含有する医薬組成物

(57) Abstract

The 5,11-dihydrodibenz[b,e][1,4]oxazepine derivatives represented by chemical formulae (1 and 2) and analogues thereof have a calcium channel antagonistic activity and are useful in the treatment or prevention of intestinal diseases such as gastrointestinal tract dyskinesia, in particular, irritable bowel syndrome.

(1)

(2)

下記式で表される5,11ージヒドロジベンゾ〔b,e〕〔1,4〕オキサゼビン誘導体及びその類縁体は、カルシウムチャネル拮抗作用を有し、消化管運動機能異常症、特に過敏性腸症候群のような腸疾患の治療又は予防処置に有用である。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AATUZAMATATボバベブグベブベカウニュアコメローロッツマトンスペプメイーメ国ュプェインスペーンスコカウキキチドデエスペインスークアンスペースコカウキキチドデエスペーンスコカウキキチドデエスペーンスコカウキャチドデエスペーンスコカウキャチドデエスペーンスコカウキャチドデエスペーンスコカウキャチドデエスペーンスコカウキャチドデエスペーンスコカウキャチドデエスペーンスコカウキャチドデエスペーンスコカウキャチドデエスペーンスコカウキャチドデエスペーンスコカウキャチドデエスペーンスコカウキャチドデエスペーンスコカウキャチャーンスコカウキャーンスコカウキャーンスコカウキャーンスコカウキャーンスコカウキャーンスコカウキャーンスコカウキャーンスコカウキャーンスコカウキャーンスコカウキャーンスコカウトーンスカウトーンスカウトーンスカウトーンスコカウトーンスカウトーンスカウトーンスカウトーンスカウトーンスカカウトーンスカウトーンスカウトーンスカウトーンスカウトーンスカウトーンスカウトーンスカウトーンスカウトーンスカウトーンスカウトー

FFGGGGGGGGGHHIIIIIJKKKKKLLL IRABDEHMNWRRUDELNSTPEGPRZCI Tフガ英ググガガギギギクハイアイイアイ日ケキ北峡カセリ フフガ英ググガガギギギクハイアイイアイ日ケキ北峡カセリ ア・・マランドルラドスリーアギ ゲーア・・アーシンルーン ターシン ア・・マーシンルーン ターシン メーシンと ファン イフィアイラ本ニル朝遠ザンヒ ア・・マーシンルーン ターシン ア・・マーシンルーン ターシン ア・・マーシンルーン ターシン ア・・マーシンルーン ターシン ア・マーシンルーン ターシン ア・マーシンルーン ターシン ア・マーシンルーン ターシン ア・マーシンルーン アーター イフリーション アーター イファーション アーター イフリーション アーター イフリー アーター インター インタ

明細書

5, 11-ジヒドロジベンゾ [b, e] [1, 4] オキサゼピン誘導体及び該誘導体を含有する医薬組成物

発明の背景

¥

本発明は、カルシウムチャネル拮抗作用を有し、消化管運動機能異常症、特に 過敏性腸症候群のような腸疾患の治療又は予防処置に有用な5,11-ジヒドロ ジベンゾ〔b,e〕〔1,4〕オキサゼピン誘導体、その立体異性体、薬理学的 に許容されるその塩又はそれらの水和物及びこれを有効成分とする医薬組成物に 関する。

例えば、ヨーロッパ特許第0404359A1号には、5,11ージヒドロジベンゾ〔b,e]〔1,4〕チアゼピン誘導体が胃腸管に対して選択性を有するカルシウムチャネル拮抗薬として有用であると開示されている。又、クインら(Quinn, P. ら)、Brit. J. Pharmacol 1994, 112(Suppl.), Abst 573P 及びワリスら(Wallis R.M.ら)、Brit. J. Pharmacol 1994, 112(Suppl.), Abst 574Pには、上記誘導体の一種である(S)-5-[1-(4-メトキシフェニル)エチル〕ピロリジン-2-(1)ルメチル〕-5,11-(1)ビドロジベンゾ〔b,e〕〔1,4〕チアゼピン マレイン酸塩が同様の効果を有することを開示している。しかしながら、これらの化合物は口渇、散瞳等の副作用の一因となる抗コリン作用を有することが欠点の一つであった。

近年、社会環境の複雑化に伴い、多くの人が過度のストレスにさらされるようになり、便通異常や腹痛などを主症状とする過敏性腸症候群の患者が増加している。このような疾患の改善には、抗コリン薬、緩下薬、止瀉薬、整腸薬、粘膜麻痺薬、消化管運動機能調節薬、自律神経調節薬、漢方薬、抗不安薬、抗うつ薬、

睡眠薬、抗精神病薬などが用いられている。しかしながら、これら薬剤は、臨床効果が不十分であり、また副作用の面から必ずしも満足できるものとは言い難い。 従って、副作用を有さない優れた消化管運動機能改善作用を示す新しいタイプの 薬剤開発が望まれている。

発明の開示

本発明は、優れた消化管運動機能改善作用を示す新規化合物を提供することを目的とする。

本発明は、又、該新規化合物を含有する医薬組成物を提供することを目的とする。

この及び他の目的は、以下の記載及び実施例から明らかとなるであろう。

カルシウムチャネル拮抗薬は、平滑筋収縮抑制作用を有することから陽管の異常な収縮亢進に起因する疾患、例えば過敏性陽症候群のような陽疾患に有効であると考えられ、実際ニカルジピンやベラパミル等のカルシウムチャネル拮抗薬が過敏性陽症候群に有効であると報告されている [Am. J. Gastroenterol., 80,317(1985), Gut. 28,1609(1987), J. Clin. Psychiatry., 48,388(1987), Pharmacol. Ther., 60,121(1993)]。しかしながら、カルシウムチャネル拮抗薬の主作用である心臓血管系への作用によりほとんど臨床に応用されていないのが現状である。このようなことから、消化管運動機能異常症、特に過敏性腸症候群のような腸疾患の治療剤として、低毒性、即ち心臓血管系へ影響を及ぼさない腸管選択的なカルシウムチャネル拮抗薬の開発を目指し、鋭意研究を行った。その結果、下記一般式[I-I] 又は[I-II]で表される化合物が、腸管選択性なカルシウムチャネル拮抗活性を示し消化管運動機能異常改善薬として有効であることを見い出し、本発明を完成するに至った。

即ち、本発明は、下記一般式[I-I] 又は[I-II]で表される5,11-ジヒドロ

ジベンゾ〔b, e〕〔1, 4〕オキサゼピン誘導体、その立体異性体、薬理学的 に許容されるその塩又はそれらの水和物、及びこれを有効成分とする医薬組成物、 特に消化管運動機能異常症の治療用又は予防用医薬組成物に関する。

$$\mathbb{R}^{6} \xrightarrow{\mathbb{R}^{7}} \mathbb{R}^{1}$$

$$\mathbb{R}^{4} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{2}$$

$$\mathbb{R}^{3}$$

〔式中、 $R^1 \sim R^5$ は同一でも異なっていてもよく、水素原子、低級アルコキシ基、アミノ基又はアルキルアミノ基を表すが、いずれか1つ以上はアミノ基又はアルキルアミノ基を表し、 R^6 及び R^7 は同一でも異なっていてもよく、水素原子又はヒドロキシ基を表し、若しくは一緒になって=0を表し、 Y^1 はメチレン、イオウ原子、又はヒドロキシメチンを表す。〕

〔式中、 $R^{11}\sim R^{15}$ は同一でも異なっていてもよく、水素原子、ハロゲン原子、シアノ基、ヒドロキシ基、低級アルコキシ基、アミノ基又はアルキルアミノ基を表すか、又は R^{15} と R^{11} 、 R^{11} と R^{12} 、 R^{12} と R^{13} 、若しくは R^{13} と R^{14} が一緒になって-O(CH_2)。O-基(nは 1、2又は 3)を表し、 Y^2 はメチレン、イオウ原子、又はヒドロキシメチンを表し、Aは CH_2 、CHOH、CO、又はOのいずれか、Bは CH_2 、CHOHのいずれか、又はA-BがCH=CHを表し、Dは CH_2 、 CH_2 $-CH_2$ $-CH_2$ $-CH_2$ を表す。〕

発明を実施するための最良の形態

上記一般式[I-I] における $R^- \sim R^5$ の低級アルコキシ基としては、アルキル基の炭素数が $1 \sim 5$ のものが好ましく、より好ましくはアルキル基の炭素数が $1 \sim 3$ のものである。また、 $R^- \sim R^5$ のアルキルアミノ基としては、モノアルキルアミノ基及びジアルキルアミノ基があげられる。ここで、アルキル基の炭素数が $1 \sim 5$ のものが好ましく、より好ましくはアルキル基の炭素数が $1 \sim 3$ のものである。

本発明では、 $R^+ \sim R^5$ のうちの1つがPミノ基又はPルキルPミノ基であり、残りが水素原子であるのが好ましい。この場合、さらに R^6 及び R^7 が水素原子であるのが好ましい。又、 Y^+ がメチレンであるのが好ましい。

本発明では、 R^1 及び R^2 は同一でも異なっていてもよく、水素原子、アミノ基又はアルキルアミノ基を表すが、 R^1 と R^2 が同時に水素原子を表すことはなく、 R^3 、 R^4 及び R^5 が水素原子であるのが好ましい。又、本発明では、 R^4 と R^2 の両方がアミノ基又はアルキルアミノ基を表すのが好ましいが、より好ましくは、 R^1 と R^2 の一方がアミノ基又はアルキルアミノ基を表し、他方が水素原子を表すのが好ましい。又、 R^1 と R^2 の一方がアミノ基又はアルキルアミノ基を表し、他方が低級アルコキシ基を表すのが好ましい。これらのうち、特に R^2 がアミノ基又はアルキルアミノ基を表し、 R^1 が水素原子を表すのが好ましい。

本発明では、一般式[I-I] において、 R^6 及び R^7 が水素原子であり、 Y^1 がメチレンであるのが好ましい。これらのうち、特に好ましい化合物は、下記の式で表される (R) -5, 11 - \Im 2 - 3 -

本発明化合物[I-I] は、例えば、下記の方法A-1によって製造できる。

〔式中、 $R^1 \sim R^7$ 及び Y^1 は、前記と同じであり、 X^1 は塩素原子、臭素原子、又はヨウ素原子を表す。ここで、 R^6 及び R^7 が水素原子であり、 Y^1 がメチレンであるのが好ましい。〕

化合物 [II] を、溶媒中塩基の存在下、上記一般式[III-1] で表されるハロゲン化物と反応させることにより、本発明化合物[I-I] を製造することができる。

前記反応溶媒としては、N, N-ジメチルホルムアミド等のアミド類、テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタン等のエーテル類、アセトニトリル、トルエン、キシレン、ベンゼン、ジメチルスルホキシド等が好適に使用できる。前記塩基としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、水素化ナトリウム、水素化カリウム、リチウムジイソプロピルアミド、n-ブチルリチウム、ナトリウムメトキシド、カリウムt-ブトキシドなどを挙げることができる。

反応温度は、通常0℃~150℃、好適には室温~100℃の範囲で行われる。

反応時間は、反応温度あるいは溶媒の種類によって異なるが、通常 1 ~ 1 5 0 時間である。

化合物[III-I] 及び塩基の使用量は、化合物 (II) の使用量に対して、それぞれ等モル以上、好ましくは $1\sim5$ 倍モルである。 .

なお、前記反応の原料に用いた化合物 [II] は公知の方法 [J. Med. Chem., 7, 609 (1964)] により製造できる。

また、上記一般式[III-I] で表されるハロゲン化物は、プロリン、ヒドロキシ プロリン、システインにホルムアルデヒドを反応させて得られるチオプロリンを 用いて、公知の方法 [EPO404359A1号] に準じて製造できる。

さらに、A-1の場合、本発明化合物の立体化学は、文献記載の反応機構に基づき決定した(EPO404359A1号及び Tetrahedron, 37, 2173 (1981))。 又、本発明化合物[I-I] は、下記の方法B-1によって製造できる。

〔式中、 $R^- \sim R^7$ は、前記と同じであり、 Y^- はメチレン、イオウ原子、又はヒドロキシメチンを表し、Vはセーブトキシカルボニル基、ベンジルオキシカルボニル基、トシル基等のアミノ基の保護基を、W、W は塩素原子、臭素原子、ヨウ素原子、メシル基又はトシル基等の脱離基を表す。〕

化合物 [II] に、溶媒中、上記一般式 [IV-I] で表されるN-t-ブトキシカルボニル-2-ピロリジニルメチルトシレート等を滴下して反応させ、一般式 [V-I] の化合物を調製し、ついで脱保護して一般式 [VI-I] の化合物を得、これに一般式 [VII-I] の化合物を塩基の存在下で反応させることにより、本発明化合物[I-I] を製造することができる。

ここで塩基及び反応溶媒としては、上記反応A-1におけるのと同じものを使

用することができる。

本発明化合物[I-I] において、 $R^1 \sim R^5$ のいずれかがアミノ基又はモノアルキルアミノ基の場合、下記 Cのように、アミノ基又はモノアルキルアミノ基を t ープトキシカルボニル基、ベンジルオキシカルボニル基、トシル基、ベンジル基、トリチル基等のアミノ基の保護基で保護した前駆体、或いは対応するニトロ体を方法 A-1 ないしB-1 で合成した後に、脱保護或いは還元によりアミノ基又はモノアルキルアミノ基に変換することによって製造できる。又、アルキルアミノ体、ジアルキルアミノ体は対応するアミノ体、モノアルキルアミノ体をN-アルキル化することによっても得られる。

C

$$R^6$$
 R^7
 R
 R^6
 R^7
 R
 R^8
 R^8

〔式中、Rは水素原子又は低級アルコキシ基、R⁶、R⁷ およびY¹ は、前記と同じであり、R⁸ 及びR⁸ は水素原子、又は低級アルキル基を表し、Zはtーブトキシカルボニル基、ベンジルオキシカルボニル基、トシル基、ベンジル基、トリチル基等のアミノ基の保護基を表す。〕

化合物 [VIII] を、当該する保護基の脱保護に一般的に用いられる方法によって脱保護して化合物 [X] を得、或いは化合物 [IX] を接触水素化、金属還元等の方法により還元することにより、化合物 [XI] を調製し、引き続きアルキル化する事により、化合物 [X] ないし [XII] を調製する。アルキル化はハロゲン化アルキルやアルキルトシラート等の通常のアルキル化剤を用いるか、カルボニル化合物と縮合させた後に還元する還元アルキル化によって容易に行うことが出来る。ジアルキル体を得る場合には、化合物 [XI] から化合物 [X] を調製し、更に化合物 [XII] へと2段階で導いてもよく、R®及びR®が同じ低級アルキル基の場合は1段階で直接、化合物 [XII] へと導いてもよい。

上記一般式[I-II]におけるR¹¹~R¹⁵のハロゲン原子としては、フッ素原子、塩素原子等、低級アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基等の炭素数 $1\sim 5$ の低級アルコキシ基、アルキルアミノ基としては、モノアルキルアミノ基及びジアルキルアミノ基、-O (CH_2)。O-基としては、メチレンジオキシ基、エチレンジオキシ基、プロピレンジオキシ基を挙げることができる。これらのうち、ハロゲン原子としては、フッ素原子が好ましく、低級アルコキシ基としては、炭素数 $1\sim 3$ の低級アルコキシ基が好ましい。又、モノアルキルアミノ基及びジアルキルアミノ基としては、アルキル基の炭素数が $1\sim 5$ のものが好ましく、より好ましくはアルキル基の炭素数が $1\sim 5$ のものが好ましく、より好ましくはアルキル基の炭素数が $1\sim 3$ のものである。特に好ましくは、ジアルキルアミノ基である。

A-B-DはCHOH-CH₂ - CH₂ 、CH₂ - CHOH-CH₂ 、CH=CH-CH₂ 、CO-CH₂ - CH₂ 、O-CH₂ - CH₂ 又はCH₂ - CH₂

- C H 2 のいずれかが好ましい。

本発明では、一般式〔I〕において、 Y^2 がメチレンであるのが好ましい。ここで、 $R^{11} \sim R^{15}$ が同時に水素原子とならないのが好ましい。本発明では、 R^{11} 及び R^{12} が同一でも異なっていてもよく、水素原子、ハロゲン原子、シアノ基、ヒドロキシ基、低級アルコキシ基、アミノ基又はアルキルアミノ基を表し、 $R^{13} \sim R^{15}$ は水素原子を表し、又は R^{11} 及び R^{12} が一緒になって-O (CH_2)。O- 基 (nは1、2又は3) を表すのが好ましい。又、 R^{11} が水素原子、 R^{12} がハロゲン原子又は低級アルコキシ基を表すのが好ましい。さらに R^{12} がメトキシ基であり、 R^{11} 及び $R^{13} \sim R^{15}$ が水素原子であるのが好ましい。又は R^{11} がアミノ基又はアルキルアミノ基であり、 $R^{12} \sim R^{15}$ が水素原子であるのが好ましい。これらのうち、特に好ましい化合物は、下記の式で表される (R) -5 、11-ジ ヒドロ-5-[1-[3-(4-メトキシフェニル)プロバン<math>-1-1 ル -2-1 ピロリジニルメチル〕ジベンゾ〔b,e〕〔1,4〕オキサゼビン、薬理学的に許容されるこれらの塩又はそれらの水和物である。

本発明化合物[I-II]は、例えば、下記の方法A-2によって製造できる。

〔式中、 $R^{11} \sim R^{15}$ 、A、B、D及び Y^2 は前記と同じであり、 X^2 は塩素原子、臭素原子、又はヨウ素原子を表す。〕

化合物 [II] を、溶媒中塩基の存在下、上記一般式[III-II]で表されるハロゲン化物と反応させることにより、本発明化合物 [II] を製造することができる。

上記反応における反応溶媒及び塩基としては、上記反応A-1におけるのと同じものを使用することができる。

反応温度は、通常 0 ∞ \sim 1 5 0 ∞ 、好適には室温 \sim 1 0 ∞ の範囲で行われる。 反応時間は、反応温度あるいは溶媒の種類によって異なるが、通常 1 \sim 1 5 0 時間である。

化合物[III-II]及び塩基の使用量は、化合物 [II] の使用量に対して、それぞれ等モル以上、好ましくは $1\sim5$ 倍モルである。

なお、前記反応の原料に用いた化合物 [II] は公知の方法 [J. Med. Chem., 7, 609 (1964)] により製造できる。

また、上記一般式[III-II]で表されるハロゲン化物は、プロリン、ヒドロキシ プロリン、システインにホルムアルデヒドを反応させて得られるチオプロリンを 用いて、公知の方法 [EPO404359A1号] に準じて製造できる。

さらに、A-2の場合、本発明化合物の立体化学は、文献記載の反応機構に基づき決定した(EPO404359A1号及び Tetrahedron, 37, 2173 (1981))。 又、本発明化合物[I-II]は、下記の方法B-2によって製造できる。

〔式中、R¹¹~R¹⁵、A、B、D及びY² は、前記と同じであり、Vはtーブトキシカルボニル基、ベンジルオキシカルボニル基、トシル基等のアミノ基の保護基を、W、W³ は塩素原子、臭素原子、ヨウ素原子、メシル基又はトシル基等の脱離基を表す。〕

化合物 [II] に、溶媒中、上記一般式 [IV-II] で表されるNーtーブトキシカルボニルー2ーピロリジニルメチルトシレート等を滴下して反応させ、一般式 [V-II] の化合物を調製し、ついで脱保護して一般式 [VI-II] の化合物を得、これに一般式 [VII-II] の化合物を反応させることにより、本発明化合物 [I-II]を製造することができる。

反応溶媒としては、上記反応A-1おけるのと同じものを使用することができる。

アミノ置換体については、前記C法に準じて調製することができる。

本発明化合物[I-I] 及び[I-II]の薬理学的に許容される塩としては、例えば、塩酸塩、臭化水素塩、硫酸塩、リン酸塩等の鉱酸塩(無機塩)や酢酸塩、乳酸塩、フマル酸塩、マレイン酸塩、リンゴ酸塩、酒石酸塩、クエン酸塩、シュウ酸塩、アスパラギン酸塩、メタンスルホン酸塩等の有機酸塩を挙げることができる。これらのうち、無機塩が好ましい。

なお本発明化合物[I-I] 及び[I-II]は、1個又はそれ以上の不斉炭素原子を有しており、光学異性体が存在し得る。これらの光学異性体、それらの任意の混合物あるいはラセミ体は本発明の化合物に包含される。このうち、ピロリジン環の2位の立体配置がR体であるのが好ましい。また、本発明化合物及び薬理学的に許容されるその塩は、水和物又は溶媒和物として存在することもあるので、これら水和物及び溶媒和物も本発明に包含される。

本発明化合物を医薬製剤又は医薬組成物として用いる場合、医薬上許容され得る賦形剤、担体、希釈剤等の製剤補助剤を適宜混合し、常法により錠剤、カプセ

ル剤、顆粒剤、細粒剤、粉末剤、丸剤、シロップ剤、懸濁剤、乳剤、軟膏剤、坐剤又は注射剤等の形態で、経口又は非経口で投与することができる。本発明では、活性成分としての本発明の化合物と、医薬上許容され得る担体及び/又は希釈剤とを含有する医薬製剤又は医薬組成物が好ましい。ここで、担体及び希釈剤としては、グルコース、スクロース、ラクトース、タルク、シリカ、セルロース、メチルセルロース、スターチ、ゼラチン、エチレングリコール、ポリエチレングリコール、グリセリン、エタノール、水や油脂などがあげられる。

また、本発明化合物の投与量及び投与回数は、病気の種類、患者の年齢、体重等に応じて適宜選択することができる。例えば、本発明化合物を過敏性腸症候群のような腸疾患の治療剤として経口投与する場合は、成人に対し1日約0.1~1000mgを1回~数回に分けて投与すればよい。

実施例

以下に、本発明を実施例、試験例及び製剤例により、具体的に説明するが、本 発明はその要旨を越えない限り、以下に限定されるものではない。

〔調製例1〕

(R) 及び(S) -5, 11-ジヒドロ-5-(2-ピロリジニルメチル)ジベンゾ [b, e] [1, 4] オキサゼピン

アルゴン気流下、60%水素化ナトリウム(1.44g、36mmol)をヘキサンで洗浄した後、ジメチルスルホキシド(100ml)に懸濁し、5,11 ージヒドロジベンゾ〔b,e〕〔1,4〕オキサゼピン(H.L. Yale, et al, J. Med. Chem.,7,609(1964))(6.0g,30mmol)を加え、50℃で60分間攪拌した。この溶液に(R)ーNーtーブトキシカルボニルー2ーピロリジニルメチルトシレート(12.8g、36mmol)のジメチルスルホキシド(60ml)溶液を滴下して50℃で3時間攪拌した。反応液を氷水で冷却した5%硫酸水素カリウム水溶液中に注入し、酢酸エチルで抽出した。有機層を飽和重曹水、

飽和食塩水で順次洗浄し、乾燥後、溶媒を減圧留去した。得られた残留物をカラムクロマトグラフィーに付し、酢酸エチルとヘキサン(1:11)の混合溶媒で溶出して溶媒を減圧留去し、(R)-5,11-ジヒドロ-5-[1-(t-ブトキシカルボニル)-2-ピロリジニルメチル]ジベンゾ〔b,e〕〔1,4〕オキサゼピン(<math>2.57g、22%)を得た。

(R) -5, 11-ジヒドロ-5-[1-(t-ブトキシカルボニル) -2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン400mgの ジオキサン (1.5 ml) 溶液に4 M塩酸ジオキサン溶液 (1.5 ml) を加え、室 温で1時間撹拌した後、減圧下で溶媒を留去した。残留物をジクロロメタン (20 ml) に溶解し、トリエチルアミン (0.16 ml、1.1 mmol) を加え、 室温で30分間撹拌した後、飽和重曹水で洗浄し、有機層を硫酸マグネシウムで 乾燥し、減圧下で溶媒を留去し、淡黄色油状の標記化合物 (R) -5, 11-ジ ヒドロ-5-(2-ピロリジニルメチル) ジベンゾ [b, e] [1, 4] オキサ ゼピン (280 mg、96%) を得た。

 $ESI/Mass:281[M+H^+]$

NMR(CDC1₃) & : 1.40-1.48(1H, m), 1.50-1.90(3H, m), 2.55(1H, b), 2.76-2.96(2H, m), 3.28-3.38(1H, m), 3.62-3.82(2H, m), 5.33(2H, s), 6.75-6.83 (3H, m), 6.97-7.03(2H, m), 7.10-7.15(1H, m), 7.24-7.32(2H, m)

同様に (S) -N-t-ブトキシカルボニルー2-ピロリジニルメチルトシレートを用いて、 (S) <math>-5, 11-ジヒドロ-5-(2-ピロリジニルメチル) ジベンゾ [b, e] [1, 4] オキサゼピンを得た。このものは上記と同一の NMR及びマススペクトルを与えた。

〔実施例1〕

(R) -5, 11-ジヒドロ-5-[1-(2-(4-ジメチルアミノフェニル) エチル] <math>-2-ピロリジニルメチル] ジベンゾ (b, e) (1, 4) オキサ

ゼピン

アセトニトリル(20m1)中に(R)-5,11-ジヒドロ-5-(2-ピロリジニルメチル)ジベンゾ〔b,e〕〔1,4〕オキサゼピン(調製例1)(420mg、1.5mmol)、2-(4-ジメチルアミノフェニル)エチルトシレート(640mg、2mmol)、炭酸ナトリウム(210mg, 2mmol)、ヨウ化ナトリウム(30mg, 0.2mmol)を加え、90°Cで14時間加熱還流し、減圧下に溶媒を留去し、残留物を酢酸エチルと水に分配した。有機層を水洗し、硫酸マグネシウムで乾燥後、溶媒を減圧下に留去した。得られた残留物をカラムクロマトグラフィーに付し、溶出液として最初にジクロロメタンを用い、ジクロロメタン/2Mメタノール性アンモニア(50:1)に変えて溶出を行った。適当なフラクションを集め、減圧下に溶媒を留去すると、標記化合物が淡黄色油状物として得られた(240mg、37%)。

NMR (CDC1,) δ : 1.57-1.87(4H, m), 2.20-2.30(1H, m), 2.47-2.58(1H, m) 2.73-2.79(3H, m), 2.94(6H, s), 2.99-3.10(1H, m), 3.16-3.26(1H, m), 3.35 (1H, dd, J=9.4, 13.0Hz), 4.10(1H, dd, J=3.6, 13.0Hz), 5.21(1H, d, J=11.7 Hz), 5.33(1H, d, J=11.7Hz), 6.72-6.85(3H, m), 6.86(2H,d,J=8.7Hz) 6.92-7.08(3H, m), 7.14(2H, d, J=8.7Hz), 7.20-7.35(2H, m)

〔実施例2〕

- (R) -5, 11-ジヒドロ-5-[1-[2-(4-ジメチルアミノフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン 2塩酸塩
- (R) -5, 11-ジヒドロ-5-[1-[2-(4-ジメチルアミノフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン 238 m g のジクロロメタン (10 m 1) 溶液に 4 M 塩酸ジオキサン0.6 m 1 を加え、5 分間撹拌した後、溶媒を減圧留去した。得られた残留物をエタノ

ール、ジメトキシエタン、エーテルの混合溶媒から再結晶し、標記化合物を白色 固体として得た (204mg、73%)。

融点:164-169℃

 $ESI/Mass: 428 [M+H^+]$

NMR(CDC1₃) δ: 1.90-2.30(4H, m), 2.77-2.88(1H, m), 2.95-3.05(1H, m), 3.10-3.28(1H, m), 3.16(6H, s), 3.42-3.54(2H, m), 3.58-3.70(1H, m), 3.86-3.96(1H, m), 4.23(1H, dd, J=7.2, 14.1Hz), 4.67(1H, dd, J=5.4, 14.1Hz), 5.14(1H, d, J=12.6Hz), 5.29(1H, d, J=12.6Hz), 6.80-6.90(3H, m), 7.00-7.14 (3H, m), 7.20-7.33(2H, m), 7.40(2H, d, 8.7Hz), 7.74(2H, d, 8.7Hz)

〔実施例3〕

- (S) -5, 11-ジヒドロ-5-[1-[2-(4-ジメチルアミノフェニル) エチル] <math>-2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン
- (S) -5, 11-ジヒドロ-5-(2-ピロリジニルメチル)ジベンゾ〔b, e〕〔1, 4〕オキサゼビン(調製例1)を用い、実施例1と同様の手法により標記化合物を得た(38%)。このものは実施例1の化合物と同一のNMR及びマススペクトルを与えた。

〔実施例4〕

(S) -5, 11-ジヒドロ-5-[1-[2-(4-ジメチルアミノフェニル) エチル] <math>-2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン 2 塩酸塩

実施例3で得られた化合物を実施例2と同様の方法で処理し、標記化合物を白色固体として得た(72%)。このものは実施例2の化合物と同一のNMR及びマススペクトルを与えた。

融点:165-170℃

〔実施例5〕

(R) - 5, 11 - ジヒドロ - 5 - [1 - (2 - (4 - ジエチルアミノフェニル) エチル] - 2 - ピロリジニルメチル] ジベンゾ <math>(b, e) (1, 4) オキサゼピン

2-(4-ジェチルアミノフェニル)ェチルブロマイドを用い、実施例1と同様の手法により、標記化合物を淡黄色油状物として得た(<math>7.4%)。

NMR(CDC1₃) δ: 1.16(6H, t, J=8.0Hz), 1.63-1.90(4H, m), 2.25-2.35(1H, m), 2.50-2.62(1H, m), 2.70-2.86(3H, m), 3.03-3.15(1H, m), 3.22-3.30(1H, m), 3.36(4H, q, J=8.0Hz), 3.41(1H, dd, J=10.7, 14.3Hz), 4.17(1H, dd, J=3.7, 14.3Hz), 5.26(1H, d, J=13.0Hz), 5.34(1H, d, J=13.0Hz), 6.65(2H, d, J=11.7Hz), 6.76-6.82(3H, m), 6.99-7.12(3H, m), 7.07(2H, d, 11.7Hz), 7.25-7.32(2H, m)

〔実施例6〕

(R) -5, 11-ジヒドロ-5-[1-(2-(4-ジエチルアミノフェニル) エチル] <math>-2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン 2 塩酸塩

実施例5で得られた化合物を実施例2と同様の方法で処理し、標記化合物を白色 色固体として得た(90%)。

融点:143-146℃

ESI/Mass: 456 [M+H⁺]

NMR(CD₃OD) δ : 1.15(6H, t, J=8.0Hz), 1.92-2.26(3H, m), 2.33-2.47(1H, m), 3.03-3.17(2H, m), 3.22-3.35(2H, m), 3.53-3.60(1H, m), 3.60-3.70(4H, m), 3.70-3.80(1H, m), 4.04(1H, dd, J=10.3, 14.6Hz), 4.33(1H, dd, J=5.0, 14.6 Hz), 5.18(1H, d, J=14.0Hz), 5.50(1H, d, J=14.0Hz), 6.80-6.94(3H, m), 7.10 -7.20(2H, m), 7.23-7.30(2H, m), 7.35-7.57(5H, m)

〔実施例7〕

(R) -5, 11-ジヒドロ-5-[1-[2-(4-アミノフェニル) エチル] <math>-2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕オキサゼピン 2塩酸塩

NMR(CDC1₃) &: 1.51(9H, s),1.62-1.90(4H, m), 2.20-2.32(1H, m), 2.48
-2.56(1H, m), 2.72-2.80(3H, m), 3.00-3.10(1H, m), 3.16-3.22(1H, m),
3.35(1H, dd, J=10.7, 14.3Hz), 4.08(1H, dd, J=3.7, 14.3Hz), 5.21(1H, d, J=13.0Hz), 5.32(1H, d, J=13.0Hz), 6.74-6.86(3H, m), 6.96-7.08(3H, m),7.13
(2H, d, J=9.3Hz), 7.25=7.35(2H, m), 7.29(2H, d, 9.3Hz)

これを実施例2と同様の方法で処理し、標記化合物を白色固体として得た(57%)。

融点:176-180℃

 $ESI/Mass: 400[M+H^{+}]$

NMR(CD₃OD) δ : 1.92-2.20(3H, m), 2.32-2.45(1H, m), 3.00-3.14(2H, m), 3.20-3.34(2H, m), 3.48-3.58(1H, m), 3.72-3.80(1H, m), 3.84-3.96(1H, m), 4.37(1H, dd, J=4.7, 15.3Hz), 4.02(1H, dd, J=10.7, 11513z), 5.19(1H, d, J=14.3Hz), 5.50(1H, d, J=14.3Hz), 6.83-6.96(3H, m), 7.09-7.20(3H, m), 7.25-7.40(6H, m)

〔実施例8〕

(R) -5, 11-ジヒドロ-5-[1-(2-(4-メチルアミノフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン 2塩酸塩

2-(4-(N-t-7)+2)カルボニルーN-x+2ルアミノ)フェニル〕エチルクロライドを用い、実施例 7 と同様の手法により、(R)-5, 1 1 - ジヒドロ-5-[1-(2-(4-(N-t-7)+2)+2)-N-x+2) フェニル)エチル〕-2-2 プロリジニルメチル〕ジベンゾ〔b,e〕〔1,4〕オキサゼピンを淡黄色油状物として得た(82%)

NMR(CDC1₃) &: 1.46(9H, s), 1.64-1.90(4H, m), 2.22-2.30(1H, m), 2.52-2.60(1H, m), 2.74-2.84(3H, m), 3.03-3.13(1H, m), 3.16-3.25(1H, m), 3.16(3H, s), 3.35(1H, dd, J=10.7, 14.3Hz), 4.09(1H, dd, J=3.7, 14.3Hz), 5.21(1H, d, J=13.0Hz), 5.32(1H, d, J=13.0Hz), 6.75-6.86(3H, m), 7.00-7.20 (7H, m), 7.28-7.34(2H, m)

これを実施例 2 と同様の方法で処理し、標記化合物を白色固体として得た(63%)。

融点:134-137℃

 $ESI/Mass: 414[M+H^{+}]$

NMR(CD₃OD) δ : 1.94-2.20(3H, m), 2.32-2.46(1H, m), 3.00-3.15(2H, m),

3.06(3H, s), 3.20-3.38(2H, m), 3.50-3.60(1H, m), 3.72-3.80(1H, m), 3.84-3.95(1H, m), 4.04(1H, dd, J=10.3, 15.7Hz), 4.32(1H, dd, J=5.3, 15.7Hz), 5.19(1H, d, J=14.0Hz), 5.50(1H, d, J=14.0Hz), 6.82-6.96(3H, m), 7.10-7.20 (2H, m), 7.27-7.35(2H, m), 7.37-7.50(5H, m)

〔実施例9〕

(R) -5, 11-ジヒドロ-5-[1-[2-(3-ジメチルアミノフェニル) エチル] <math>-2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン

2-(3-ジメチルアミノフェニル)エチルトシレートを用い、実施例1と同様の手法により標記化合物を淡黄色油状物として得た(56%)。

NMR(CDCl₃) δ: 1.63-1.90(4H, m), 2.21-2.31(1H, m), 2.54-2.63(1H, m), 2.73-2.82(3H, m), 2.95(6H, s), 3.06-3.14(1H, m), 3.17-3.26(1H, m), 3.37 (1H, dd, J=10.7, 14.3Hz), 4.12(1H, dd, J=3.7, 14.3Hz), 5.22(1H, d, J=13.0Hz), 5.34(1H, d, J=13.0Hz), 6.58-6.63(3H, m), 6.76-6.83(3H, m), 6.98 -7.32(6H, m)

〔実施例10〕

(R) -5, 11-ジヒドロ-5-[1-[2-(3-ジメチルアミノフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン 2塩酸塩

実施例9で得られた化合物を実施例2と同様の方法で処理し、標記化合物を白色固体として得た(89%)。

融点:125-128℃

 $ESI/Mass: 428[M+H^+]$

NMR(CD₃OD) δ : 1.95-2.20(3H, m), 2.33-2.43(1H, m), 3.02-3.15(2H, m), 3.20-3.36(2H, m), 3.28(6H, s), 3.54-3.64(1H, m), 3.72-3.80(1H, m), 3.83-

3.92(1H, m), 4.08(1H, dd, J=10.0, 15.7Hz), 4.30(1H, dd, J=5.7, 15.7Hz), 5.20(1H, d, J=14.3Hz), 5.52(1H, d, J=14.3Hz), 6.80-6.95(3H, m), 7.08-7.20 (2H, m), 7.24-7.40(4H, m), 7.7.48-7.57(3H, m)

〔実施例11〕

- (S) -5, 11-ジヒドロ-5-[1-(2-(3-ジメチルアミノフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕 オキサゼピン
- (S) -5, 11-ジヒドロ-5-(2-ピロリジニルメチル) ジベンゾ〔b, e〕〔1, 4〕オキサゼピン(調製例1)を用い、実施例9と同様の手法により標記化合物を得た(62%)。このものは実施例9の化合物と同一のNMR及びマススペクトルを与えた。

〔実施例12〕

(S) -5, 11-ジヒドロ-5-[1-[2-(4-ジメチルアミノフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン 2 塩酸塩

実施例11で得られた化合物を実施例2と同様の方法で処理し、溶媒を減圧留去して、標記化合物を淡褐色固形物として得た(79%)。このものは実施例10の化合物と同一のNMR及びマススペクトルを与えた。

〔実施例13〕

(R) -5, 11-ジヒドロ-5-[1-[2-(3-アミノフェニル) エチル] <math>-2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン 2塩酸塩

-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕オキサゼピンを淡黄色油状物として得た(90%)。

NMR(CDCl₃) δ : 1.52(9H, s), 1.65-1.90(4H, m), 2.20-2.28(1H, m), 2.52-2.60(1H, m), 2.73-2.84(3H, m), 3.03-3.14(1H, m), 3.15-3.21(1H, m), 3.37(1H, dd, J=10.7, 14.3Hz), 4.09(1H, dd, J=3.7, 14.3Hz), 5.21(1H, d, J=13.3Hz), 5.33(1H, d, J=13.3Hz), 6.75-6.90(4H, m), 7.00-7.15(3H, m), 7.16-7.36(5H, m)

これを実施例 2 と同様の方法で処理し、標記化合物を白色固体として得た(84%)。

融点:149-152℃

 $ESI/Mass: 400[M+H^{+}]$

NMR(CD₃OD) δ: 1.93-2.20(3H, m), 2.32-2.46(1H, m), 3.03-3.20(1H, m), 3.24-3.36(1H, m), 3.52-3.64(1H, m), 3.70-3.80(1H, m), 3.82-3.96(1H, m), 4.07(1H, dd, J=10.0, 15.3Hz), 4.30(1H, dd, J=5.7, 15.3Hz), 5.21(1H, d, J=14.0Hz), 5.48(1H, d, J=14.0Hz), 6.83-6.96(3H, m), 7.08-7.20(2H, m), 7.25-7.55(7H, m)

〔実施例14〕

(R) -5, 11-ジヒドロ-5-[1-[2-(3-メチルアミノフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン 2塩酸塩

2-[3-(N-t-プトキシカルボニル-N-メチルアミノ)フェニル] エチルトシレートを用い、実施例7と同様の手法により(R)-5, 11-ジヒドロ-5-[1-[2-(3-(N-t-プトキシカルボニル-N-メチル)]アミノフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ〔b, e] [1, 4] オキサゼビンを淡黄色油状物として得た(83%)。

NMR(CDC1₃) δ: 1.47(9H, s), 1.64-1.90(4H, m), 2.20-2.30(1H, m), 2.74
-2.86(3H, m), 3.03-3.14(1H, m), 3.15-3.24(1H, m), 3.27(3H, s), 3.37(1H, dd, J=10.7, 14.3Hz), 4.10(1H, dd, J=3.7, 14.3Hz), 5.22(1H, d, J=13.3Hz), 5.34(1H, d, J=13.0Hz), 6.67-6.83(3H, m), 7.99-7.05(3H, m), 7.09-7.12(3H, m), 7.23-7.30(3H, m)

これを実施例2と同様の方法で処理し、標記化合物を白色固体として得た (63%)。

融点:179-181℃

 $ESI/Mass: 414[M+H^{+}]$

NMR(CD₃OD) δ : 1.95-2.20(3H, m), 2.32-2.43(1H, m), 30.4-3.10(2H, m), 3.08(3H, s), 3.56-3.66(1H, m), 3.70-3.80(1H, m), 3.83-3.95(1H, m), 4.08 (1H, dd, J=10.0, 16.0Hz), 4.30(1H, dd, J=5.7, 16.0Hz), 5.21(1H, d, J=14.0 Hz), 5.50(1H, d, J=14.0Hz), 6.80-6.95(3H, m), 7.12-7.20(2H, m), 7.25-7.40 (6H, m), 7.48-7.54(1H, m)

〔実施例15〕

- (S) -5, 11-ジヒドロ-5-[1-[2-(3-メチルアミノフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピン 2塩酸塩
- (S) -5, 11-ジヒドロ-5-(2-ピロリジニルメチル) ジベンゾ〔b, e〕〔1,4〕オキサゼピン(調製例1)を用い、実施例14と同様にして、 (S) <math>-5, 11-ジヒドロ-5-[1-[2-(3-(N-t-ブトキシカルボニル-N-メチル) アミノフェニル) エチル〕-2-ピロリジニルメチル〕ジベンゾ〔b,e〕〔1,4〕オキサゼピンを淡黄色油状物として得た(58%)。

これを実施例2と同様の方法で処理し、溶媒を減圧留去して、標記化合物を淡褐色固形物として得た(80%)。このものは実施例14の化合物と同一のNM

R及びマススペクトルを与えた。

[実施例16]

(R) -5, 11-ジヒドロ-5-[1-[2-(2-アミノフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ (b, e) [1, 4] オキサゼピン 2-[2-(N-t-ブトキシカルボニルアミノ) フェニル] エチルトシレートを用い、実施例7と同様にして、(R) -5, 11-ジヒドロ-5-[1-[2-(2-(N-t-ブトキシカルボニルアミノ) フェニル) エチル] -2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼピンを得た。これをジクロロメタンに溶解した後、4 M塩酸ジオキサンを加えて室温で1時間撹拌した。溶媒を留去し、残留物を0.5M-NaOHとクロロホルムに分配し、有機層を硫酸マグネシウムで乾燥後、減圧下に溶媒を留去すると、標記化合物が淡黄色油状物として得られた(43%)。

NMR(CDC1₃) δ : 1.60-1.90(4H, m), 2.20-2.28(1H, m), 2.56-2.65(1H, m), 2.70-2.81(3H, m), 3.02-3.11(1H, m), 3.22-3.27(1H, m), 3.33(1H, dd, J=10.7, 14.1Hz), 4.07(1H, dd, J=4.3, 14.1Hz), 5.17(1H, d, J=13.0Hz), 5.29 (1H, d, J=13.0Hz), 6.65-6.80(5H, m), 6.92-7.08(5H, m), 7.20-7.34(2H, m)

(R) -5, 11-ジヒドロ-5-[1-(2-(2-アミノフェニル) エチル] <math>-2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕オキサゼピン 2塩酸塩

実施例16で得られた化合物を実施例2と同様の方法で処理し、標記化合物を 白色固体として得た(88%)。

融点:168-172℃

〔実施例17〕

 $ESI/Mass: 400[M+H^{+}]$

NMR(CD₃OD) δ : 1.96-2.20(3H, m), 2.32-2.41(1H, m), 3.14-3.20(2H, m),

3.30-3.44(2H, m), 3.70-3.83(2H, m), 3.84-3.94(1H, m), 4.24(1H, s), 4.26 (1H, s), 5.18(1H, d, J=14.0Hz), 5.43(1H, d, J=14.0Hz), 6.83-6.95(3H, m), 7.10-7.20(2H, m), 7.25-7.44(7H, m)

〔実施例18〕

実施例16で得られた化合物(130mg、0.32mmol)を、3mlのアセトニトリルに溶解し、これに37%ホルムアルデヒド水溶液(0.3ml、3.7mmol)、ナトリウムシアノボロヒドリド(30mg、0.48mmol)を加えて溶解した後、激しく撹拌しながら、氷酢酸0.2mlを滴下して室温で0.5時間撹拌した。反応液に固体炭酸水素ナトリウムを加えて中和した後、酢酸エチルで抽出し、有機相を硫酸マグネシウムで乾燥して溶媒を減圧下で留去した。得られた残留物をカラムクロマトグラフィーに付し、溶出液として最初にジクロロメタン、次いでジクロロメタン/メタノール(50:1)を用いて溶出を行った。適当なフラクションを集め、減圧下に溶媒を留去して、標記化合物を淡黄色油状物として得た(95mg、69%)。

NMR(CDC1₃) δ : 1.64-1.90(4H, m), 2.25-2.35(1H, m), 2.57-2.66(1H, m), 2.69(6H, s), 2.74-2.87(1H, m), 2.90-3.00(2H, m), 3.08-3.17(1H, m), 3.23-3.29(1H, m), 3.39(1H, dd, J=10.7, 14.0Hz), 4.15(1H, dd, J=4.0, 14.0Hz), 5.21(1H, d, J=14.0Hz), 5.32(1H, d, J=14.0Hz), 6.74-6.83(3H, m), 7.00-7.08 (3H, m), 7.12-7.17(2H, m), 7.20-7.23(2H, m), 7.28-7.34(2H, m)

〔実施例19〕

(R) -5, 11-ジヒドロ-5-[1-[2-(3-ジメチルアミノフェニル) エチル] <math>-2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサ

ゼピン 2塩酸塩

実施例18で得られた化合物を実施例2と同様の方法で処理し、標記化合物を 白色固体として得た(56%)。

融点:170-172℃

 $ESI/Mass: 428[M+H^+]$

NMR(CD,0D) δ : 1.93-2.18(3H, m), 2.32-2.47(1H, m), 3.17(6H, s), 3.25 -3.33(2H, m), 3.34-3.44(2H, m), 3.68-3.88(2H, m), 3.90-3.97(1H, m), 4.25 (1H, s), 4.27(1H, s), 5.08(1H, d, J=14.7Hz), 5.35(1H, d, J=14.7Hz), 6.75 -6.95(3H, m), 7.06-7.20(2H, m), 7.25-7.80(7H, m)

〔実施例20〕

(R) - 5, 11 - ジヒドロー 5 - [1-(2-(3-ジメチルアミノー4-メトキシフェニル) エチル] - 2 - ピロリジニルメチル] ジベンゾ <math>[b, e] [1, 4] オキサゼピン

2-(3-ジメチルアミノー4-メトキシフェニル) エチルトシレートを用い、 実施例1と同様の手法により、標記化合物を淡黄色油状物として得た(64%)。 NMR(CDC1₃) る:1.63-1.90(4H, m), 2.20-2.36(1H, m), 2.50-2.64(1H, m), 2.70-2.86(3H, m), 2.79(6H, s), 3.00-3.16(1H, m), 3.18-3.24(1H, m), 3.38 (1H, t, J=13.0Hx), 3.97(3H, s), 4.10(1H, d, J=13.0Hz), 5.21(1H, d, J= 14.0Hz), 5.34(1H, d, J=14.0Hz), 6.76-6.86(6H, m), 7.00-7.16(3H, m), 7.24 -7.32(2H, m)

〔実施例21〕

(R) -5, 11-ジヒドロ-5-[1-(2-(3-ジメチルアミノ-4-メトキシフェニル) エチル] -2-ピロリジニルメチル] ジベンゾ〔b, e〕 〔1, 4〕オキサゼピン 2塩酸塩

実施例20で得られた化合物を実施例2と同様の方法で処理し、標記化合物を

白色固体として得た(72%)。

融点:141-144℃

 $ESI/Mass: 458[M+H^{+}]$

NMR(CD₃OD) δ : 1.94-2.20(3H, m), 2.32-2.42(1H, m), 3.00-3.16(2H, m), 3.23-3.36(2H, m), 3.27(6H, s), 3.50-3.63(1H, m), 3.70-3.80(1H, m), 3.82-3.92(1H, m), 4.04(3H, s), 4.08(1H, dd, J=10.3, 15.7Hz), 4.30(1H, dd, J=5.3, 15.7Hz), 5.21(1H, d, J=14.0Hz), 5.54(1H, d, J=14.0Hz), 6.80-6.94 (3H, m), 7.10-7.20(2H, m), 7.25-7.40(5H, m), 7.70(1H, s)

[実施例22]

(R) -5, 11-ジヒドロ-5-[1-(2-(4-メトキシー3-アミノフェニル) エチル] <math>-2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕 オキサゼピン 2塩酸塩

2-[3-(N-t-ブトキシカルボニルアミノ)-4-メトキシ]フェニルエチルトシレートを用い、実施例7と同様の手法により(R)-5,11-ジヒドロ-5-[1-[2-[3-(N-t-ブトキシカルボニルアミノ)-4-メトキシフェニル]エチル]-2-ピロリジニルメチル]ジベンゾ〔b,e〕 [1,4]オキサゼピンを淡黄色油状物として得た(86%)。

NMR(CDC1,) &: 1.52(9H, s), 1.63-1.90(4H, m), 2.20-2.30(1H, m), 2.50-2.62(1H, m), 2.72-2.80(3H, m), 3.04-3.17(1H, m), 3.18-3.24(1H, m), 3.30-3.40(1H, m), 3.85(3H, s), 4.12-4.18(1H, m), 5.20(1H, d, J=14.0Hz), 5.34(1H, d, J=14.0Hz), 6.74-6.84(5H, m), 7.00-7.08(2H, m), 7.10-7.16(2H, m), 7.23-7.36(2H, m)

これを実施例 2 と同様の方法で処理し、標記化合物を白色固体として得た(69%)。

融点:151-155℃

 $ESI/Mass: 430[M+H^{+}]$

NMR(CD₃OD) δ: 1.92-2.20(3H, m), 2.30-2.42(1H, m), 2.92-3.08(2H, m), 3.18-3.30(2H, m), 3.48-3.56(1H, m), 3.68-3.78(1H, m), 3.83-3.93(1H, m), 3.97(3H, s), 4.06(1H, dd, J=10.0, 15.7Hz), 4.29(1H, dd, J=5.7, 15.7Hz), 5.21(1H, d, J=14.0Hz), 5.49(1H, d, J=14.0Hz), 6.82-6.94(3H, m), 7.08-7.18 (3H, m), 7.26-7.40(5H, m)

[実施例23]

アセトニトリル (20m1) 中に (R) −5, 11−ジヒドロ−5− (2−ビロリジニルメチル) ジベンゾ (b, e) (1, 4) オキサゼピン (調製例1) (280mg、1.0mmo1)、3−(4−メトキシフェニル)−1−プロピルプロミド (320mg、1.4mmo1)、炭酸ナトリウム (150mg, 1.4mmo1)、ラウ化ナトリウム (20mg, 0.13mmo1)を加え、90℃で13時間加熱還流し、減圧下に溶媒を留去し、残留物を酢酸エチルと水に分配した。有機層を水洗し、硫酸マグネシウムで乾燥後、溶媒を減圧下に留去した。得られた残留物をカラムクロマトグラフィーに付し、溶出液としてジクロロメタンを用い適当なフラクションを集め、減圧下に溶媒を留去すると、標記化合物が淡黄色油状物として得られた (310mg、72%)。

NMR(CDC13) δ: 1.60-1.90(6H, m), 2.10-2.20(1H, m), 2.28-2.38(1H, m) 2.53-2.77 (4H, m), 2.80-2.90(1H, m), 3.12-3.18(1H, m), 3.40(1H, dd, J= 9.4, 13.0Hz), 3.80(3H, s), 4.08(1H, dd, J=3.6, 13.0Hz), 5.22(1H, d, J=11.7Hz), 5.33(1H, d, J=11.7Hz), 6.76-6.90(3H, m), 6.86(2H,d,J=8.7Hz) 6.94-7.10(3H, m), 7.16(2H, d, J=8.7Hz), 7.28-7.35(2H, m)

[実施例24]

(R) -5, 11-ジヒドロ-5-[1-(3-(4-メトキシフェニル)プロパン-1-イル] <math>-2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕 オキサゼピン塩酸塩

実施例23の化合物290mgのジクロロメタン(10ml)溶液に4M塩酸ジオキサン0.5mlを加え、5分間撹拌した後、溶媒を減圧留去した。得られた残留物をアセトン、エーテルの混合溶媒から再結晶し、標記化合物を白色固体として得た(268mg、79%)。

融点:172-174℃

 $ESI/Mass: 429 [M+H^+]$

NMR(CDC13) δ: 1.86-2.08(2H, m), 2.12-2.28(3H, m), 2.30-2.46(1H, m) 2.57-2.80(4H, m), 3.25-3.36(2H, m), 3.78(3H, s), 3.80-3.88(1H, m), 4.20 (1H, dd, J=7.2, 14.1Hz), 4.58(1H, dd, J=5.1, 14.1Hz), 5.16(1H, d, J=12.3 Hz), 5.25(1H, d, J=12.3Hz), 6.77-6.91(3H, m), 6.80(2H, d, J=8.7), 6.95 -7.10(3H, m), 7.04(2H, d, J=8.7), 7.21-7.33(2H, m)

〔実施例25〕

5, 11-ジヒドロー5ー [[(2R)-1- [(3S)-3-ヒドロキシー 3-フェニルプロパンー1-イル] -2-ピロリジニル] メチル] ジベンゾ [b, e] [1, 4] オキサゼピン

(S) -(+) -3 - 0 -

NMR(CDC13) δ : 1.57-1.96(6H, m), 2.05-2.15(1H, m), 2.57-2.66(1H, m) 2.70-2.80 (1H, m), 3.08-3.30(1H, m), 3.30-3.40(1H, m), 3.42(1H, dd, J= 9.9, 12.9 hz), 4.26(1H, dd, J=3.0, 12.9Hz), 4.93-5.00(1H, m), 5.25(1H, d, J=11.7Hz), 5.32(1H, d, J=11.7Hz), 6.76-6.90(3H, m), 6.98-7.08(2H, m),

7.12-7.18(1H, m), 7.20-7.40(7H, m)

〔実施例26〕

5, 11-ジヒドロー5ー [[(2R) -1- [(3S) -3-ヒドロキシー 3-フェニルプロパンー1-イル] -2-ピロリジニル] メチル] ジベンゾ [b, e) [1, 4] オキサゼビン塩酸塩

実施例25の化合物を実施例24と同様に処理し、標記化合物を白色固体として得た(55%)。

融点:149-150℃

ESI/Mass:415[M+H+]

NMR(CDC13) δ : 1.90-2.00(1H, m), 2.02-2.28(3H, m), 2.30-2.41(1H, m) 2.70-2.82(1H, m), 2.85-3.00(1H, m), 3.36-3.48(1H, m), 3.64-3.76(2H, m), 3.86-3.96(1H, m), 4.21(1H, dd, J=8.4, 14.1Hz), 4.71(1H, dd, J=4.5, 14.1Hz), 5.03-5.06(1H, m), 5.23(1H, d, J=12.0Hz), 5.28(1H, d, J=12.0Hz), 6.80-6.88(3H, m), 7.03-7.17(3H, m), 7.25-7.38(7H, m)

〔実施例27〕

- 5, 11-ジヒドロー5-[[(2R)-1-[(3R)-3-ヒドロキシー 3-フェニルプロパン-1-イル]-2-ピロリジニル]メチル]ジベンゾ[b, e][1, 4]オキサゼピン

NMR(CDC13) δ : 1.60-1.95(5H, m), 2.15-2.25(2H, m), 2.45-2.53(1H, m) 2.60-2.70 (1H, m), 2.92-3.00(1H, m), 3.30-3.38(1H, m), 3.31(1H, dd, J= 9.9, 12.9Hz), 4.05(1H, dd, J=3.0, 12.9Hz), 5.05-5.09(1H, m), 5.19(1H, d, J=11.7Hz), 5.28(1H, d, J=11.7Hz), 6.72-6.80(3H, m), 6.86-6.94(1H, m), 6.96-7.02(2H, m), 7.22-7.32(3H, m), 7.37-7.44(2H, m), 7.48-7.54(2H, m)

〔実施例28〕

5, 11-ジヒドロー5ー [[(2R) -1-[(3R) -3-ヒドロキシー3-フェニルプロパン-1-イル] -2-ピロリジニル] メチル] ジベンゾ〔b, e〕 [1, 4] オキサゼピン塩酸塩

実施例27の化合物を実施例24と同様に処理し、標記化合物を白色固体として得た(74%)。

融点:179-182℃

ESI/Mass: 415 [M+H+]

NMR(CDC13) δ : 1.90-2.00(1H, m), 2.02-2.26(3H, m), 2.28-2.41(1H, m) 2.75-2.88(1H, m), 2.97-3.07(1H, m), 3.36-3.48(1H, m), 3.50-3.78(2H, m), 3.92-4.03(1H, m), 4.17(1H, dd, J=8.7, 14.1Hz), 4.67(1H, dd, J=4.5, 14.1Hz), 4.88-4.92(1H, m), 5.19(1H, d, J=12.3Hz), 5.26(1H, d, J=12.3Hz), 6.80-6.92(3H, m), 6.98-7.15(3H, m), 7.20-7.38(7H, m)

[実施例29]

5, 11-ジヒドロ-5-[[(2R)-1-[(2R)-2-ヒドロキシ-3-(4-メトキシフェニル)プロパン-1-イル]-2-ピロリジニル]メチル]ジベンゾ[b, e][1, 4]オキサゼピン

NMR(CDC13) &: 1.62-1.88(4H, m), 2.23-2.31(2H, m), 2.70-2.78(3H, m) 2.82-2.92 (1H, m), 3.05-3.15(1H, m), 3.32(1H, dd, J=9.9, 12.9Hz), 3.80 (3H, s), 3.83-3.94(1H, m), 4.05(1H, dd, J=3.6, 12.9Hz), 5.21(1H, d, J=12.0Hz), 5.30(1H, d, J=12.0Hz), 6.76-6.80(3H, m), 6.86(2H,d,J=8.7Hz) 6.94 -7.10(3H, m), 7.16(2H, d, J=8.7Hz), 7.28-7.35(2H, m)

[実施例30]

実施例29の化合物を実施例24と同様に処理し、標記化合物を白色固体として 得た(74%)。

融点:178-181℃

ESI/Mass:445 [M+H⁺]

NMR(CDC13) δ : 1.88-2.00(1H, m), 2.00-2.26(3H, m), 2.62-2.68(1H, m) 2.82-2.97(3H, m), 3.18-3.35(1H, m), 3.77(3H, s), 3.98-4.08(1H, m), 4.13 (1H, dd, J=8.4, 13.8Hz), 4.28(1H, d, J=5.1), 4.52(1H, dd, J=4.6, 13.8Hz), 4.53-4.62(1H, m), 5.16(1H, d, J=12.6Hz), 5.24(1H, d, J=12.6Hz), 6.79-6.91 (4H, m), 6.83(2H, d, J=8.7), 6.98-7.11(2H, m), 7.08(2H, d, J=8.7), 7.19-7.30(2H, m)

〔実施例31〕

(R) - 5, $11 - \Im E F D - 5 - [1 - (3 - (4 - メトキシフェニル) - 2 - プロペン - 1 - イル] - 2 - ピロリジニルメチル] ジベンゾ〔b, e〕〔1,4〕オキサゼピン$

4-メトキシシンナミルブロミドを用い、実施例23と同様にして、標記化合物を淡黄色油状物として得た(29%)。

NMR(CDC13) δ : 1.68-1.92(4H, m), 2.37-2.44(1H, m), 2.92-3.00(1H, m) 3.16-3.24 (1H, m), 3.30-3.50(2H, m), 3.55(1H, dd, J=9.4, 13.0Hz), 3.80 (3H, s), 4.19(1H, dd, J=3.6, 13.0Hz), 5.23(1H, d, J=11.7Hz), 5.34(1H, d, J=11.7Hz), 6.20-6.32(1H, m), 6.50(d, J=16.0Hz), 6.70-6.80(3H, m), 6.86 (2H,d,J=8.7Hz) 6.96-7.12(3H, m), 7.17-7.28(2H, m), 7.32(2H, d, J=8.7Hz),

〔実施例32〕

(R) -5, 11-ジヒドロ-5-[1-(3-(4-メトキシフェニル)-2-プロペン-1-イル]-2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1,

4〕オキサゼピン塩酸塩

実施例31の化合物を実施例24と同様に処理し、標記化合物を白色固体として得た(46%)。

融点:120-122℃

ESI/Mass: 427 [M+H+]

NMR(CDC13) る: 1.88-2.00(1H, m), 2.10-2.20(3H, m), 2.85-2.95(1H, m) 3.55-3.68(1H, m), 3.70-3.92(3H, m), 3.80(3H, s),4.13(1H, dd, J=9.0, 13.8 Hz), 4.61(1H, dd, J=5.1, 13.8Hz), 5.19(1H, d, J=12.3Hz), 5.34(1H, d, J=12.3Hz), 6.25-6.35(1H, m), 6.53(1H, d, J=15.9), 6.67-6.85(3H, m), 6.87 (2H, d, J=8.7), 6.93-7.08(3H, m), 7.14-7.22(7H, m), 7.34(2H, d, J=8.7) (実施例 3 3)

(R) - 5, $11 - \Im E F D - 5 - [1 - (2 - (4 - \varkappa F + \varkappa Z +$

2-(4-メトキシフェニルオキシ)エチルブロミドを用い、実施例23と同様にして、標記化合物を淡黄色油状物として得た(341mg、79%)。

NMR(CDCl3) δ : 1.62-1.90(4H, m), 2.28-2.36(1H, m), 2.70-2.90(2H, m) 3.17-3.28(2H, m), 3.36-4.43(1H, m), 3.77(3H, s), 4.02-4.20(3H, m), 5.26 (1H, d, J=12.3Hz), 5.33(1H, d, J=12.3Hz), 6.72-6.88(7H, m), 7.00-7.15(3H, m), 7.28-7.34(2H, m)

〔実施例34〕

(R) -5, 11-ジヒドロ-5-[1-[2-(4-メトキシフェニルオキシ) エチル] -2-ピロリジニルメチル] ジベンゾ [b, e] [1, 4] オキサゼビン塩酸塩

実施例33の化合物を実施例24と同様に処理し、標記化合物を白色固体とし

て得た(78%)。

融点:186-191℃

 $ESI/Mass: 431 [M+H^+]$

NMR(CDC13) δ : 1.90-2.03(1H, m), 2.13-2.23(3H, m), 3.02-3.12(1H, m) 3.23-3.32(1H, m), 3.54-3.63(1H, m), 3.70-3.82(1H, m), 3.73(3H, s), 3.83-3.96(1H, m), 4.23(1H, dd, J=8.1, 14.1Hz), 4.29-4.35(1H, m), 4.53-4.62(1H, m), 4.68(1H, dd, J=5.1, 14.1Hz), 5.21(1H, d, J=12.6Hz), 5.29(1H, d, J=12.6Hz), 6.76-6.88(7H, m), 6.98-7.15(3H, m), 7.22-7.32(2H, m)

〔実施例35〕

(R) -5, 11-ジヒドロ-5-[1-[3-(4-ジメチルアミノフェニル) プロパン-1-イル] <math>-2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕オキサゼピン

3-(4-ジメチルアミノフェニル)-1-プロビルトシレートを用い、実施例23と同様にして、標記化合物を淡黄色油状物として得た(54%)。

NMR(CDC13) &: 1.60-1.90(6H, m), 2.08-2.20(1H, m), 2.28-2.40(1H, m), 2.48-2.61(2H, m), 2.62-2.78(1H, m), 2.80-2.90(1H, m), 2.90(6H, s), 3.10-3.21(1H, m), 3.41(1H, dd, J=4.2, 13.2Hz), 4.10(1H, dd, J=3.3, 13.2Hz), 5.21(1H, d, J=11.7Hz), 5.30(1H, d, J=11.7Hz), 6.70(2H, d, 8.4Hz), 6.75-6.84(3H, m), 6.91-7.07(3H, m), 7.07(2H, d, 8.4Hz), 7.22-7.32(2H, m)

〔実施例36〕

(R) -5, 11-ジヒドロ-5-[1-(3-(4-ジメチルアミノフェニル) プロパン-1-イル] -2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕オキサゼピン 2塩酸塩

実施例35の化合物を実施例24と同様に処理し、溶媒を減圧除去して標記化 合物を淡褐色固形物として得た(86%)。

 $ESI/Mass: 442 [M+H^+]$

NMR(CDC13) δ : 1.50-2.00(4H, m), 2.10-2.20(2H, m), 2.32-2.44(1H, m) 2.62-2.68(3H, m), 3.05(6H, s), 3.33-3.46(2H, m), 3.80-3.90(1H, m), 4.19 (1H, dd, J=7.2, 14.1Hz), 4.59(1H, dd, J=5.1, 14.1Hz), 5.16(1H, d, J=12.3 Hz), 5.29(1H, d, J=12.3Hz), 6.81-6.91(3H, m), 6.86(2H, d, J=8.1), 6.96-7.05(2H, m), 7.09(2H, d, J=8.1), 7.20-7.36(3H, m)

〔実施例37〕

£, (4)

(R) -5, 11-ジヒドロ-5-[1-[3-(3-ジメチルアミノフェニル) プロパン-1-イル] -2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕オキサゼピン

3-(3-3) 3 -(3-3) 3 -(3-3) 4 -(3-3) 7 -(3-3) 7 -(3-3) 7 -(3-3) 7 -(3-3) 7 -(3-3) 7 -(3-3) 7 -(3-3) 8 -(3-3) 7 -(3-3) 7 -(3-3) 7 -(3-3) 7 -(3-3) 8 -(3-3) 8 -(3-3) 7 -(3-3) 8 -(3-3) 8 -(3-3) 8 -(3-3) 8 -(3-3) 8 -(3-3) 8 -(3-3) 8 -(3-3) 8 -(3-3) 9 -(3-3) 8 -(3-3) 9 -(3-3)

NMR(CDC13) δ : 1.60-1.92(6H, m), 2.10-2.20(1H, m), 2.30-2.48(1H, m), 2.56-2.72(3H, m), 2.84-2.96(1H, m), 2.98(6H, s), 3.12-3.18(1H, m), 3.36 (1H, dd, J=10.7, 14.3Hz), 4.10(1H, dd, J=3.7, 14.3Hz), 5.24(1H, d, J=13.0 Hz), 5.32(1H, d, J=13.0Hz), 6.60-6.65(3H, m), 6.76-6.84(3H, m), 6.98-7.36 (6H, m)

〔実施例38〕

(R) -5, 11-ジヒドロ-5-[1-[3-(3-ジメチルアミノフェニル) プロパン-1-イル] -2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕オキサゼピン 2塩酸塩

実施例35の化合物を実施例24と同様に処理し、標記化合物を淡褐色固体として得た。(338mg、95%)。

融点:120-123℃

 $ESI/Mass: 442 [M+H^+]$

NMR(CDC13) δ : 1.60-2.00(4H, m), 2.00-2.20(2H, m), 2.24-2.62(1H, m) 2.70-2.92(3H, m), 3.00-3.22(1H, m), 3.10(6H, s), 3.33-3.50(2H, m), 4.19 (1H, dd, J=6.7, 16.0Hz), 4.59(1H, dd, J=6.7, 16.0Hz), 5.02(1H, d, J=13.7 Hz), 5.11(1H, d, J=13.7Hz), 6.80-6.96(4H, m), 7.07(2H, t, J=8.1), 7.95(1H, d, J=8.1Hz), 7.23-7.32(2H, m), 7.40(1H, t, J=8.1), 7.60(1H, d, J=8.1Hz), 7.83(1H, s)

[実施例39]

Y'V .

(R) -5, 11-ジヒドロ-5-[1-(3-(3-(N-メチルアミノフェニル) プロパン-1-イル] <math>-2-ピロリジニルメチル] ジベンゾ〔b, e〕 〔1, 4〕 オキサゼピン

アセトニトリル(15m1)中に(R) - 5, 11ージヒドロー5ー(2ーピロリジニルメチル)ジベンゾ〔b, e〕〔1, 4〕オキサゼピン(調製例1)(280mg、1.0mmol)、3ー〔3ー(NーtーブトキシカルボニルーNーメチルアミノ)フェニル〕ー1ープロピルトシレート(503mg、1.2mmol)、炭酸ナトリウム(127mg,1.2mmol)、ヨウ化ナトリウム(30mg,0.2mmol)を加え、90℃で9時間加熱還流し、減圧下に溶媒を留去し、残留物を酢酸エチルと水に分配した。有機層を水洗し、硫酸マグネシウムで乾燥後、溶媒を減圧下に留去した。得られた残留物をカラムクロマトグラフィーに付し、溶出液として最初にジクロロメタンを用い、次いでジクロロメタン/メタノール(50:1)に変え、適当なフラクションを集め、減圧下に溶媒を留去し、残留物をジクロロメタンに溶解した後、4M塩酸ジオキサン1.0m1を加えて室温で1時間撹拌した。溶媒を留去し、残留物を0.5M-NaOHとクロロホルムに分配し、有機層を硫酸マグネシウムで乾燥後、減圧下に溶媒を留去すると、標記化合物が淡黄色油状物として得られた(376mg、88%)。

NMR(CDC13) δ: 1.60-1.78(4H, m), 1.95(2H, q, J=8.6Hz) 2.08-2.17(1H, m), 2.28-2.38(1H, m), 2.52-2.72(3H, m), 2.82-2.92(1H, m), 2.86(3H, s), 3.08-3.16(1H, m), 3.60(1H, dd, J=10.7, 14.3Hz), 4.09(1H, dd, J=3.7, 14.3 Hz), 5.24(1H, d, J=13.0Hz), 5.34(1H, d, J=13.0Hz), 6.45-6.53(2H, m), 6.58 -6.62(1H, m), 6.76-6.85(3H, m), 6.99-7.16(4H, m), 7.27-7.35(2H, m)

〔実施例40〕

(R) -5, 11-ジヒドロ-5-[1-(3-(3-メチルアミノフェニル) プロパン-1-イル] -2-ピロリジニルメチル] ジベンゾ〔b, e〕〔1, 4〕 オキサゼビン 2塩酸塩

実施例39の化合物を実施例24と同様に処理して標記化合物を白色固体として得た(297mg、68%)。

融点:126-129℃

 $ESI/Mass: 428 [M+H^+]$

NMR(CDC13) δ : 1.85-2.35(6H, m), 2.63-2.78(2H, m), 2.82-2.95(1H, m) 2.97(3H, s), 3.37-3.52(2H, m), 3.70-3.86(2H, m),4.13(1H, dd, J=8.7, 15.3 Hz), 4.59(1H, dd, J=6.0, 15.3Hz), 5.18(1H, d, J=14.0Hz), 5.31(1H, d, J=14.0Hz), 6.78-6.88(3H, m), 6.99-7.07(3H, m), 7.12-7.32(5H, m), 7.44-7.50 (1H, m), 7.58(1H, s)

以下に製剤例を記載する。

〔製剤例1〕

下記混合物を常法に従って混合し、打錠することにより、1錠当り主薬50mgを含有する錠剤を得た。

 実施例2の化合物
 50mg

 乳糖
 200mg

 結晶セルロース
 40mg

ステアリン酸マグネシウム

 $5\,\mathrm{mg}$

〔製剤例2〕

下記混合物を常法に従って造粒し、顆粒剤とした。

実施例 2 の化合物5 0 mg乳糖9 0 mgトウモロコシ澱粉6 0 mgタルク3 0 mgステアリン酸マグネシウム1 0 mg

〔製剤例3〕

実施例2の化合物の代わりに、実施例24の化合物を用いた以外は、製剤例1 と同様にして錠剤を得た。

〔製剤例4〕

実施例2の化合物の代わりに、実施例24の化合物を用いた以外は、製剤例2 と同様にして錠剤を得た。

次に本発明化合物の薬理試験について記載する。

[試験例1]

In vitro カルシウムチャネル拮抗作用(血管)

Crj: CD雄性ラット (8週齢~12週齢)の胸部大動脈を摘出し、らせん標本を作製した。この血管標本を混合ガス (酸素 95%、二酸化炭素 5%)を通気した 37%のタイロード液中に懸垂した。血管の張力変化は、トランスデューサーを介し、ペン書きレコーダー上に等尺性を記録した。高カリウム収縮は、栄養液をタイロード液からカリウムータイロード液 ($94.6\ mM$ のNaCl、

45.0 mMのKC1、1.8 mMのCaCl₂、1.04 mMのMgCl₂、0.4 mMのNaH₂PO₄、11.9 mMのNaHCO₃、5.55 mMのグルコース)に置換することにより惹起させた。被験化合物の高カリウム収縮抑制作用は、30分前処置により評価した。なお、比較物質としてヨーロッパ特許第0404359A1号に記載された化合物Aを用いた。カルシウムチャネル拮抗活性としての結果は、被験化合物10⁻⁷Mにおける高カルシウム収縮に対する抑制率として表した。また、収縮の50%抑制を示す被験化合物濃度(IC₅₀値)として表1に示した。但し、表中「一」で示した箇所は未測定である。

表1 カルシウムチャネル拮抗作用(血管)

被験化合物	勿	抑制率% (濃	!度10 ⁻¹ Mで)	I C 50 (nM)	
実施例 2	2	1 2		2 5 5	
実施例 (6	2 4		_	
実施例 :	1 0	5 1		5 7	
実施例 :	1 4	4 1		8 2	
実施例 [1 9	3 6		-	
実施例 2	2 4	3 1		180	
実施例 3	3 8	2 5		_	
化合物 A	A	9		5 3 0	

化合物A

〔試験例2〕 In vitro カルシウムチャネル拮抗作用(回腸)

Crj: CD雄性ラット(8週齢~12週齢)の回腸を回直部より3cmの部分から摘出した。この回腸標本を混合ガス(酸素95%、二酸化炭素5%)を通気した37℃のタイロード液中に懸垂した。回腸の張力変化は、トランスデューサーを介し、ペン書きレコーダー上に等張性を記録した。高カリウム収縮は、栄養液をタイロード液からカリウムータイロード液(94.6 mMのNaCl、45.0 mMのKCl、1.8 mMのCaCl2、1.04 mMのMgCl2、0.4 mMのNaH2PO。、11.9 mMのNaHCO。、5.55 mMのグルコース)に置換することにより惹起させた。被験化合物の高カリウム収縮抑制作用は、30分前処置により評価した。なお、比較物質としてヨーロッパ特許第0404359A1号に記載された化合物Aを用いた。カルシウムチャネル拮抗活性としての結果は、被験化合物10-7Mにおける高カルシウム収縮に対する抑制率として表した。また、収縮の50%抑制を示す被験化合物濃度(IC5の値)として表2に示した。但し、表中「一」で示した箇所は未測定である。

表2 カルシウムチャネル拮抗作用(回腸)

被験化台	分物	抑制率% (濃度10 ⁻⁷ Mで)	I C 50 (nM)
実施例	2	6 2	3 5
実施例	6	5 1	
実施例	1 0	8 7	1 7
実施例	1 4	7 6	1 8
実施例	1 9	7 1	_
実施例	2 4	6 7	4 3
実施例	3 8	5 2	_
化合物	Α	4 8	1 2 0

表1及び表2に示した結果から明らかであるように、本発明化合物は、優れた カルシウムチャネル拮抗効果を有し、特に腸管選択性が高いカルシウムチャネル 拮抗薬であることが確認された。

〔試験例3〕 溶解度の測定

被験化合物を室温下、pH=7.2の0.15Mリン酸緩衝液に懸濁し、激しく振とうした後、一夜静置し、遠心分離にて不溶分を除去して上清中の化合物濃度を高速液体クロマトグラフィーにて定量した。このときの化合物濃度を溶解度とし表3に示した。

表3 中性緩衝液に対する溶解度

被験化台	物	溶解度 mg/ml
実施例	2	0.036
実施例	7	0.638
実施例	8	0.116
実施例	1 0	0.030
実施例	1 3	0.418
実施例	1 4	0.056
実施例	2 4	0.049
実施例	3 8	0.041
化合物	Α	0.013

表3に示した結果から明らかであるように、本発明化合物は、優れた水溶性を示し、経口剤として用いる場合、速やかで優れた吸収性を示すことが期待され、かつ、液剤として用いる場合にも、製剤化が容易であることが強く期待された。

以上の試験例から明らかなように、本発明化合物は消化管運動機能異常症、特に過敏性腸症候群のような腸疾患の治療剤、予防薬として優れた効果を発揮し得る。

請求の範囲

1. 一般式[I-I] で表される5,11ージヒドロジベンゾ〔b, e〕〔1,4〕 オキサゼピン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 &$$

〔式中、 R^+ ~ R^+ は同一でも異なっていてもよく、水素原子、低級アルコキシ基、アミノ基又はアルキルアミノ基を表すが、いずれか1つ以上はアミノ基又はアルキルアミノ基を表し、 R^+ 及び R^- は同一でも異なっていてもよく、水素原子又はヒドロキシ基を表し、若しくは一緒になって=0を表し、 Y^+ はメチレン、イオウ原子、又はヒドロキシメチンを表す。〕

- 2. R^- 及び R^2 は同一でも異なっていてもよく、水素原子、アミノ基又はアルキルアミノ基を表すが、 R^- と R^2 が同時に水素原子を表すことはなく、 R^3 、 R^4 及び R^5 が水素原子である請求項1記載のオキサゼビン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。
- 3. Y¹ がメチレンである請求項1の記載のオキサゼビン誘導体、その立体異性

体、薬理学的に許容されるその塩又はそれらの水和物。

4. $R^1 \sim R^5$ のうちの1つがアミノ基又はアルキルアミノ基であり、残りが水素原子である請求項1の記載のオキサゼピン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。

- 5. $R^1 \sim R^5$ のうちの1つがアミノ基又はアルキルアミノ基であり、残りが水素原子であり、 Y^1 がメチレンである請求項1の記載のオキサゼピン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。
- 6. $R^1 \sim R^5$ のうちの1つがアミノ基又はアルキルアミノ基であり、残りが水素原子であり、 R^6 及び R^7 が水素原子である請求項1記載のオキサゼビン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。
- 7. $R^1 \sim R^5$ のうちの1つがアミノ基又はアルキルアミノ基であり、残りが水素原子であり、 R^6 及び R^7 が水素原子であり、 Y^1 がメチレンである請求項 1記載のオキサゼビン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。
- 8. ピロリジン環の2位の立体配置がR体である請求項1記載のオキサゼピン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。
- 9. 一般式[I-II]で表される5,11-ジヒドロジベンゾ〔b,e〕〔1,4〕 オキサゼピン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれ らの水和物。

〔式中、 $R^{11}\sim R^{13}$ は同一でも異なっていてもよく、水素原子、ハロゲン原子、シアノ基、ヒドロキシ基、低級アルコキシ基、アミノ基又はアルキルアミノ基を表すか、又は R^{13} と R^{11} 、 R^{11} と R^{12} 、 R^{12} と R^{13} 、若しくは R^{13} と R^{14} が一緒になって-O(CH_2)。 $O-基(nは1、2又は3)を表し、<math>Y^2$ はメチレン、イオウ原子、又はヒドロキシメチンを表し、Aは CH_2 、 CHOH、CO、又はOのいずれか、Bは CH_2 、 又はCHOHのいずれか、又はA-BがCH=CHを表し、Dは CH_2 、 CH_2-CH_2 又は CH_2-CH_2 を表す。〕

- 10. R^{11} 及び R^{12} が同一でも異なっていてもよく、水素原子、ハロゲン原子、シアノ基、ヒドロキシ基、低級アルコキシ基、アミノ基又はアルキルアミノ基を表し、 $R^{13}\sim R^{15}$ は水素原子を表し、又は R^{11} 及び R^{12} は一緒になって $O(CH_2)_nO-$ 基(nは1、2又は3)を表す請求項9記載のオキサゼピン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。
- 11. R^{12} がメトキシ基であり、 R^{11} 及び R^{13} ~ R^{15} が水素原子である請求項9のオキサゼピン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれ

らの水和物。

12. R¹¹がアミノ基又はアルキルアミノ基である請求項9のオキサゼビン誘導体、 その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。

- 13. Y² がメチレンである請求項9記載のオキサゼピン誘導体、その立体異性体、 薬理学的に許容されるその塩又はそれらの水和物。
- 14. A、B、DのいずれもがCH2である請求項9記載のオキサゼビン誘導体、 その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。
- 15. ピロリジン環の2位の立体配置がR体である請求項9記載のオキサゼピン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれらの水和物。
- 16. 請求項1記載の一般式[I-I] で表される5, 11-ジヒドロジベンゾ〔b, e] 〔1, 4〕オキサゼピン誘導体、その立体異性体、薬理学的に許容される その塩又はそれらの水和物を有効成分とする医薬組成物。
- 17. 請求項 9 記載の一般式 [I-II] で表される 5, 1 1 ージヒドロジベンゾ 〔b, e] 〔1, 4〕 オキサゼピン誘導体、その立体異性体、薬理学的に許容される その塩又はそれらの水和物を有効成分とする医薬組成物。
- 18. 請求項1~8のいずれか1項記載の一般式[I-I] で表される5,11-ジヒドロジベンゾ〔b,e〕〔1,4〕オキサゼピン誘導体、その立体異性体、薬理学的に許容されるその塩又はそれらの水和物を有効成分とする消化管運動機能異常症の治療用又は予防用医薬組成物。
- 19. 請求項 9~15のいずれか1項記載の一般式[I-II]で表される5,11-ジ ヒドロジベンゾ〔b,e〕〔1,4〕オキサゼビン誘導体、その立体異性体、 薬理学的に許容されるその塩又はそれらの水和物を有効成分とする消化管運動 機能異常症の治療用又は予防用医薬組成物。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/04071

	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07D413/06, 417/06, A61K31/55				
	o International Patent Classification (IPC) or to both n				
	S SEARCHED				
Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ C07D413/06, 417/06, A61K31/55				
	ion searched other than minimum documentation to th				
Electronic d REGI	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY (STN), CA (STN), CAOLD (STN), CAPLUS (STN)				
	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap		Relevant to claim No.		
PX	WO, 97/33885, A1 (Ajinomoto 18 September, 1997 (18. 09.	Co., Inc.), 97)	1-19		
A	JP, 3-17079, A1 (Pfizer Inc. 25 January, 1991 (25. 01. 91 & US, 5071844, A & EP, 404 & AU, 9055954, A & CA, 201	1-19			
A	JP, 7-501054, A1 (G.D. Sear) 2 February, 1995 (02. 02. 95 & WO, 93/09104, A1 & US, 5 & EP, 6134472, A1 & AU, 92	1-19			
Furthe	documents are listed in the continuation of Poy C	Construct families among			
	Further documents are listed in the continuation of Box C. See patent family annex.				
"A" docume conside "E" earlier docume cited to special docume means docume the prior	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing date ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later than rity date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family			
Date of the actual completion of the international search 8 December, 1998 (08. 12. 98) Date of mailing of the international search report 15 December, 1998 (15. 12. 9					
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No.		Telephone No.			

国際出願番号 PCT/JP98/04071

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁶ C 0 7 D 4 1 3 / 0 6, 4 1 7 / 0 6, A 6 1 K .3 1 / 5 5

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁶ C07D 413/06, 417/06, A61K 31/55

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

REGISTRY (STN), CA (STN), CAOLD (STN), CAPLUS (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
PΧ	WO, 97/33885, A1 (味の素株式会社), 18. 9月. 1997 (18. 09. 97)	1-19
A	JP, 3-17079, A1 (ファイザー・インコーポレーテッド), 25. 1月. 1991 (25. 01. 91) & US, 5071844, A & EP, 404359, A1 & AU, 9055954, A & CA, 2017535, A	1-19
A	JP, 7-501054, A1 (ジー ディー サール アンドカンパニー), 2. 2月. 1995 (02. 02. 95) & WO, 93/09104, A1 & US, 5449674, A & EP, 6134472, A1 & AU 9226699 A	1-19

□ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

08.12.98

国際調査報告の発送日

15.12.98

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 浅 見 節 子 (AC 8222

電話番号 03-3581-1101 内線 3454