知能システム学特論レポート

(DL2 班) Caffe on Ubuntu

2015年6月29日

1 報告者

15344203 有田 裕太 15344206 緒形 裕太 15344209 株丹 亮 12104125 宮本 和

2 進行状況

- 理論研究
- 順伝播型ネットワークについて

3 理論研究

- 3.1 ユニットの出力
- 3.2 活性化関数
- 3.3 多層ネットワーク

Fig. 1 に 2 層構造のネットワークを示す。Fig. 1 (a) より各層を $l=0,\ 1,\ 2$ とすると,l=1 の層を入力層,l=2 を中間層,隠れ層,l=3 を出力層と呼ぶ。各層のユニットの入出力を区別するために,入力を $\boldsymbol{u}^{(l)}$,出力を $\boldsymbol{z}^{(l)}$ と定義すると,中間層 (l=2) のユニットの出力は以下の式で表される.

$$u^{(2)} = W^{(2)}x + b^{(2)} \tag{3.1}$$

$$z^{(2)} = f(u^{(2)}) \tag{3.2}$$

 $m{W}^{(2)}$ は入力層と中間層の結合重みであり, $m{b}^{(2)}$ は中間層のユニットに与えられたバイアスである.同様にして $m{u}^{(3)}$, $m{z}^{(3)}$ は

$$\boldsymbol{u}^{(3)} = \boldsymbol{W}^{(3)} \boldsymbol{z}^{(2)} + \boldsymbol{b}^{(3)} \tag{3.3}$$

$$\boldsymbol{z}^{(3)} = \boldsymbol{f}(\boldsymbol{u}^{(3)}) \tag{3.4}$$

Fig.1 2層のネットワーク

となり、任意の階層 L のネットワークに一般化すると

$$\boldsymbol{u}^{(l+1)} = \boldsymbol{W}^{(l+1)} \boldsymbol{z}^{(l)} + \boldsymbol{b}^{(l+1)}$$
(3.5)

$$z^{(l+1)} = f(u^{(l+1)}) \tag{3.6}$$

と書ける. $l=1,\ 2,\ 3,\cdots,L-1$ の順に繰り返していくと最終的な出力 y を決定することができる. この出力を決定するのは各層間の結合重み $\mathbf{W}^{(l)}$ $(l=2,\cdots,L)$ とユニットのバイアス $\mathbf{b}^{(l)}$ $(l=2,\cdots,L)$ である. これらのパラメータを持つベクトル w を定義して, y(x;w) と表現する.

3.4 出力層の設計と誤差関数

3.4.1 学習の枠組み

順伝播型ネットワークが表現する関数 y(x;w) をネットワークのパラメータ w を変えることで変化させ、望みの関数を与えることを考える.入力 x と望みの出力 d のペアを次のように与える.

$$\{(\boldsymbol{x}_1, d_1), (\boldsymbol{x}_1, d_1), ..., (\boldsymbol{x}_N, d_N)\}\$$
(3.7)

これらのペア (x,d) 1つ1つを訓練サンプル (training samples) といい,その集合を訓練データ (training data) という.ネットワーク w を調整することで訓練データの入出力ペアをできるだけ再現すること学習という.

この場合、ネットワークが表す関数と訓練データとの近さ $(y(x_n; w))$ を誤差関数 (error function) で定義する。誤差関数は問題の種別や活性化関数によって異なる。Tab.1 に問題の種別ごとの活性化関数と誤差関数の一覧を示す。

問題の種別	出力層の活性化関数	誤差関数
回帰	正接双曲線関数や恒等写像	二乗誤差 式 (3.8)
二値分類	ロジスティック関数	式 (3.9)
多クラス分類	ソフトマックス関数	交差エントロピー 式 (3.10)

Tab.1 問題の種別ごとの活性化関数と誤差関数

3.4.2 回帰

回帰 (regression) とは出力連続値をとる関数を対象に訓練データを良く再現する関数を求めることをいう. 回帰では活性化関数に正接双曲線関数や恒等写像を用い、評価関数は次式が良く用いられる.

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{d}_n - \mathbf{y}(\mathbf{x}_n; \mathbf{w})||^2$$
(3.8)

3.4.3 二值分類

二値分類では入力 x に応じて 2 種類に区別する問題を考える。すなわち, $d \in \{0,1\}$ とする。このとき,活性化関数はロジスティック関数 $y=1/(1+\exp(-u))$ とし,誤差関数は次式で与える。

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \left[d_n \log y(\mathbf{x}_n; \mathbf{w} + (1 - d_n) \log\{1 - y(\mathbf{x}_n; \mathbf{w})\}) \right]$$
(3.9)

3.4.4 多クラス分類

多クラス分類とは入力 x に応じて有限個のクラスに分類する問題である。一例として Fig に手書き文字認識の例を示す。この問題では活性化関数にはソフトマックス関数 (softmax function) が良く用いられる。また、誤差関数は次式で与える。

$$E(\boldsymbol{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{N} d_{nk} \log y_k(\boldsymbol{x}_n; \boldsymbol{w})$$
(3.10)

なお、この関数は交差エントロピー (cross entropy) と呼ばれる.

4 今後の課題

- 理論研究を進める.
- Caffe を使いこなす