RAPPORT TRAVAIL PRATIQUE EN DATA SCIENCE ET INTELLIGENCE ARTIFICIELLE

PROJET DE MACHINE LEARNING:

Prévision de maladie cardio vasculaire

LISTE DES FIGURES

Figure 1 : résultats de l'analyse descriptive	21
Figure 2 : schéma d'un modèle de decision tree	24
Figure 3: arbre de decision technique	25
Figure 4 : schéma d'un modèle bagging	26
Figure 5 : schéma d'une regression logistique	26
Figure 6 : PCA Visual	32
Figure 7: dispersion des PCA 1 et PCA 2 en fonction de la Target	35
Figure 8: precision Visual	35
Figure 9 : calcul du f1-score	35
Figure 10 : accuracy Visual	36
Figure 11 : résultat score decision tree	39
Figure 12 : résultat score bagging 80-20	39
Figure 13 : résultat score bagging 60-40	40

Tableau 1 : datasets	14
Tableau 2 : datasets avec les NA traités	16

LISTE DES GRAPHIQUES

Graphique 1 : fréquence des données en fonction du Target	19
Graphique 2 : scatter plot du dataset	20
Graphique 3 : PCA Visual	32
Graphique 4 : matrice de confusion Visual	36
Graphique 5 : matrice de confusion decision tree	37
Graphique 6 : matrice de confusion bagging 80-20	37
Graphique 7 : matrice de confusion 60-40	38

LISTE DES SYNTAXES

Syntaxe 1 : decision tree du travail	27
Syntaxe 2: bagging du travail	28
Syntaxe 3: regression logistique	29
Syntaxe 4 : PCA	31
Svntaxe 5 : resultat PCA	33

SIGLES ET ABREVIATIONS

ML: Machine Learning

IA: Intelligence Artificielle

PCA: Analyse en Composantes Principales

 ${f NLP}$: Traitement du langage naturel

RESUME

Dans la vie de tous les jours, nous sommes soumis à des problèmes précis. Parlant ici des problèmes liés au développement et l'évolution de vie tels que la pauvreté, le manque d'infrastructure, technicité en arrière, ressources insuffisants etc... Notre but en tant que chercheur en intelligence artificielle et donc de créer des solutions à ces différents maux. Dans notre notre travail, il est question pour nous d'utiliser la sous branche de l'IA qui est le ML dans la médecine, plus précisément la prévision de maladie dans 10 ans. Pour cela, nous avons opté pour 03 modèles : le Bagging, les arbres de decision et le modèle logistique. Par la suite, nous passerons à l'évaluation de ceux-ci à partir de différentes métriques et nous en tirions des conclusions.

Mots clés: Machine Learning, intelligence artificielle, decision tree, bagging, modèle.

ABSTRACT

In everyday life, we are subject to specific problems. Speaking here about the problems related to the development and evolution of life such as poverty, lack of infrastructure, backward technicality, insufficient resources etc... Our goal as a researcher in artificial intelligence and therefore to create solutions to these different evils. In our work, it is a question for us of using the sub-branch of AI which is ML in medicine, more precisely the prediction of disease in 10 years. For this, we opted for 3 models: Bagging, decision trees and the logistics model. Subsequently, we will move on to evaluating these using different metrics and drawing conclusions.

<u>Keywords</u>: Machine Learning, artificial intelligence, decision tree, bagging, model.

SOMMAIRE

PARTIE 1 : PRESENTATION, TRAITEMENT ET ANALYSE DESCRIPTIVE DES DONNEES	12
CHAPITRE 1 : PRESENTATION ET TRAITEMENT DES DONNEES	13
SECTION 1 : PRESENTATION DES DONNEES	14
SECTION 2 : TRAITEMENT DES DONNEES	16
CHAPITRE 2 : ANALYSE DESCRIPTIVE DES DONNEES	18
SECTION 1 : VISUALISATION DES DONNEES	19
SECTION 2 : RESULTATS DE L'ANALYSE DESCRIPTIVE	20
PARTIE 2 : MODELES DE MACHINE LEARNING ET EVALUATION	22
CHAPITRE 3 : MODELE DE MACHINE LEARNING	23
SECTION 1 : PRESENTATION THEORIQUE DES MODELES DE MACHINE LEARNING	24
SECTION 2 : MISE EN ŒUVRE TECHNIQUE DES MODELES	
SECTION 3 : ANALYSE EN COMPOSANTES PRINCIPALES	30
CHAPITRE 4 : EVALUATION	34
SECTION 1 : PRESENTATION THEORIQUES DES METRIQUE	35
SECTION 2 : TECHNICITE DES METRIQUES	37

INTRODUCTION GENERALE

En 1950, l'intelligence artificielle voit le jour avec JOHN VON NEUMANN et ALAN TURING et évolue au fil des années. Aujourd'hui les capacités et les applications de celle-ci sont bien plus améliorée comparées à ce qu'elles étaient avant et continueront à s'améliorer. L'IA comporte plusieurs sous branches que nous citons ici : Le machine Learning ou apprentissage machine, le Deep Learning, le NLP. Par la suite, nous nous attarderons sur le machine Learning appliquée à la prédiction des maladies cardiovasculaires. Ainsi donc, se découle la question principale, comment le machine Learning permet d'assister les experts médicaux dans la prédiction efficace des maladies cardiovasculaires ?

Ce travail a pour objet principal d'utiliser les données à disposition pour visualiser la disparité et la spécificité des différentes variables, choisir les variables déterminantes afin de mettre sur pied des modèles de prédictions permettant de répondre au problème.

Une méthodologie quantitative s'impose à nous basée sur une base de données chiffrée à disposition constituée des caractéristiques des individus.

Les modèles d'apprentissages utilises ici sont le **Décision tree**, le **Bagging** et le **modèle de regression logistique** et les métriques **la précision**, **le f1-score**, **l'accuracy et la matrice de confusion**.

Ainsi donc nous commencerons par faire une analyse descriptive et la visualisation des données, la programmation des modèles et nous en découlerons des observations en fonctions des résultats obtenus.

PARTIE 1 : PRESENTATION, TRAITEMENT ET ANALYSE DESCRIPTIVE DES DONNEES

Le traitement des données est un processus qui consiste qui consiste à collecter, enregistrer, organiser, stocker, modifier, extraire, utiliser, communiquer, diffuser ou mettre à disposition des données personnelles. Ainsi cette phase constitue une étape très importante dans l'obtention de bons résultats finaux.

CHAPITRE 1 : PRESENTATION ET TRAITEMENT DES DONNEES

Toute analyse prédictive demande la conception d'une base de données conséquente basée sur les caractéristiques qui peuvent avoir un impact sur l'élément que l'on veut prédire. Dans notre cas, nous disposons de 16 caractéristiques d'une population et dans ce travail, nous présenterons la phase de traitement des données, l'analyse descriptive et la visualisation des ceux-ci.

SECTION 1: PRESENTATION DES DONNEES

En matière de conception de base de données pour l'étude des problèmes, les variables choisies doivent être déterminantes et étroitement liés aux problèmes que l'on souhaite prédire.

Le tableau fournit est constitué de :

- 4240 lignes
- 16 colonnes

Ces caractéristiques se visualisent comme suit :

Table 1: Datasets

male	age	education	currentSmo	cigsPerDay	BPMeds	prevalentSt	prevalentH	diabetes	totChol	sysBP	diaBP	ВМІ	heartRate	glucose	TenYearCHD
1	39	4	0	0	0	0	0	0	195	106	70	26.97	80	77	0
0	46	2	0	0	0	0	0	0	250	121	81	28.73	95	76	0
1	48	1	1	20	0	0	0	0	245	127.5	80	25.34	75	70	0
0	61	3	1	30	0	0	1	0	225	150	95	28.58	65	103	1
0	46	3	1	23	0	0	0	0	285	130	84	23.1	85	85	0
0	43	2	0	0	0	0	1	0	228	180	110	30.3	77	99	0
0	63	1	0	0	0	0	0	0	205	138	71	33.11	60	85	1
0	45	2	1	20	0	0	0	0	313	100	71	21.68	79	78	0
1	52	1	0	0	0	0	1	0	260	141.5	89	26.36	76	79	0
1	43	1	1	30	0	0	1	0	225	162	107	23.61	93	88	0
0	50	1	0	0	0	0	0	0	254	133	76	22.91	75	76	0
0	43	2	0	0	0	0	0	0	247	131	88	27.64	72	61	0
1	46	1	1	15	0	0	1	0	294	142	94	26.31	98	64	0
0	41	3	0	0	1	0	1	0	332	124	88	31.31	65	84	0
0	39	2	1	9	0	0	0	0	226	114	64	22.35	85	NA	0
0	38	2	1	20	0	0	1	0	221	140	90	21.35	95	70	1
1	48	3	1	10	0	0	1	0	232	138	90	22.37	64	72	0
0	46	2	1	20	0	0	0	0	291	112	78	23.38	80	89	1
0	38	2	1	5	0	0	0	0	195	122	84.5	23.24	75	78	0
1	41	2	0	0	0	0	0	0	195	139	88	26.88	85	65	0
0	42	2	1	30	0	0	0	0	190	108	70.5	21.59	72	85	0
0	43	1	0	0	0	0	0	0	185	123.5	77.5	29.89	70	NA	0
0	52	1	0	0	0	0	0	0	234	148	78	34.17	70	113	0
0	52	3	1	20	0	0	0	0	215	132	82	25.11	71	75	0
1	44	2	1	30	0	0	1	0	270	137.5	90	21.96	75	83	0
1	47	4	1	20	0	0	0	0	294	102	68	24.18	62	66	1
0	60	1	0	0	0	0	0	0	260	110	72.5	26.59	65	NA	0
1	35	2	1	20	0	0	1	0	225	132	91	26.09	73	83	0
0	61	3	0	0	0	0	1	0	272	182	121	32.8	85	65	1
0	60	1	0	0	0	0	0	0	247	130	88	30.36	72	74	0
1	36	4	1	35	0	0	0	0	295	102	68	28.15	60	63	0

Source = kaggle.com

Les variables soumises à notre étude sont :

- > male
- > age
- > education
- currentSmoker
- ➤ cigsPerDay
- **▶** BPMeds
- > PrevalentStroke
- > PrevalentHyp
- Diabetes
- > totChol
- > SysBP
- ➤ DiaBP
- **≻** BMI
- > Heartrate
- ➢ Glucose
- > TenYearCHD

SECTION 2- TRAITEMENT DES DONNEES

Le traitement des données surtout en présence des valeurs manquantes est un aspect crucial de l'analyse des données et de la modélisation. Les ensembles de données incomplets peuvent poser des problèmes lors de l'analyse de données et donner lieu à des résultats biaisés ou inexacts. <u>Pandas</u>, une puissante bibliothèque Python pour la manipulation et l'analyse de données, fournit diverses fonctions pour traiter les données manquantes.

Dans notre travail, nous avons opté pour la méthode de l'imputation par la fonction interpolate des bibliothèques Pandas pour interpoler nos valeurs manquantes.

L'interpolation est une méthode permettant de combler les valeurs manquantes en les estimant sur la base des valeurs d'autres points de données.

Table 2 : Datasets avec les NA traités

	Sex_male	age	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	heartRate
0	1	39	0	0.0	0.0	0	0	0	195.0	106.0	70.0	26.97	80.0
1	0	46	0	0.0	0.0	0	0	0	250.0	121.0	81.0	28.73	95.0
2	1	48	1	20.0	0.0	0	0	0	245.0	127.5	80.0	25.34	75.0
3	0	61	1	30.0	0.0	0	1	0	225.0	150.0	95.0	28.58	65.0
4	0	46	1	23.0	0.0	0	0	0	285.0	130.0	84.0	23.10	85.0
195	0	49	1	9.0	0.0	0	0	0	226.0	106.0	71.0	22.89	85.0
196	1	48	1	10.0	0.0	0	0	0	308.0	117.0	76.0	30.85	65.0
197	0	55	1	9.0	0.0	0	0	0	248.0	157.0	82.5	22.91	89.(
198	0	58	1	5.0	0.0	0	0	0	215.0	170.0	86.0	29.06	75.0
199	1	60	0	0.0	0.0	0	0	0	240.0	137.0	84.0	29.51	82.0

Source: groupe de travail

Le tableau ci-dessus fournit notre dataset sans données manquantes. Les espaces contenant ces éléments on été remplacé par les valeurs interpolées par rapports à d'autres données autour par la thode interpolate () de pandas.

CHAPITRE 2 : ANALYSE DESCRIPTIVE DES DONNEES

Plantant le décor de notre travail, nous allons présenter dans cette sous section l'aspect visuel de nos données, ainsi que certaines de ses caracteristiques descriptives.

SECTION 1: VISUALISATION DES DONNEES

Graphique 1 : fréquence des données en fonction du Target

Source: groupe de travail

Nous observons que dans ce graphe, chaque variable du dataset est représentée en fonction de la Variation de la Target.

Graphique 2 : scatter plot du dataset

Source: groupe de travail

Ici, les variables sont représentées en point et la Target est visible à travers la variation des couleurs.

SECTION 2 : STATISTIQUES DESCRIPTIVES

Figure 1 : résultats de l'analyse descriptive

	Sex_male	age	currentSmoke	r cigsPerDay	BPMeds \	
count	3751.000000	3751.000000	3751.00000			
mean	0.445215	49.573447	0.48840	9.008531	0.030392	
std	0.497056	8.570204	0.49993	2 11.925097	0.171686	
min	0.000000	32.000000	0.00000	0.000000	0.000000	
25%	0.000000	42.000000	0.00000	0.000000	0.000000	
50%	0.000000	49.000000	0.00000	0.000000	0.000000	
75%	1.000000	56.000000	1.00000	0 20.000000	0.000000	
max	1.000000	70.000000	1.00000	70.000000	1.000000	
	prevalentStr	oke prevalen	tHyp diab	etes totC	hol sysBP	\
count	3751.000	000 3751.00	0000 3751.00	0000 3751.000	000 3751.000000	
mean	0.005	599 0.31	1917 0.02	7193 236.928	019 132.368435	
std	0.074	623 0.46	3338 0.16	2666 44.611	594 22.046522	
min	0.000	000 0.00	0000 0.00	0000 113.000	000 83.500000	
25%	0.000	000 0.00	0000 0.00	0000 206.000	000 117.000000	
50%	0.000	000 0.00	0000 0.00	0000 234.000	000 128.000000	
75%	0.000	000 1.00	0000 0.00	0000 264.000	000 144.000000	
max	1.000	000 1.00	0000 1.00	0000 696.000	000 295.000000	
	diaBP	BMI	heartRate	glucose	TenYearCHD	
count	3751.000000	3751.000000	3751.000000		3751.000000	
mean	82.938550	25.808288	75.704079	81.880032	0.152493	
std	11.932779	4.065599	11.956382	23.882233	0.359546	
min	48.000000	15.540000	44.000000	40.000000	0.000000	
25%	75.000000	23.085000	68.000000	71.000000	0.000000	
50%	82.000000	25.410000	75.000000	78.000000	0.000000	
75%	90.000000	28.060000	82.000000	87.000000	0.000000	
max	142.500000	56.800000	143.000000	394.000000	1.000000	

Source : groupe de travail

Cette analyse renvoie les différentes variations et les données des statistiques descriptives de chaque variables tels que : la moyenne, le minimum, le maximum, les quantiles.

PARTIE 2 : MODELES DE MACHINE LEARNING ET EVALUATION

Après la mise sur pied d'un modèle, il va de soit qu'il faut l'évaluer afin de déterminer sa précision par rapport à d'autres modèles. L'objet de cette partie est de présenter de manière théorique et technique les différents modèles et évaluer leurs performances à travers différentes métriques.

CHAPITRE 3 : MODELES DE MACHINE LEARNING

Par définition, un modèle est une représentation simplifiée de la réalité. En intelligence artificielle, ses applications sont multiples et au fil des années les méthodes de conception des modèles de plus en plus performantes voient le jour.

Dans notre projet, 03 principaux modèles seront portés à vos papilles :

- Le Decision Tree
- Le Bagging
- Le modèle de régression logistique.

SECTION 1 : PRESENTATION THEORIQUE DES MODELES DE ML

Tout travail nécessitant une revue des normes théoriques, présentons dans ce qui suit les différents modèles théoriquement.

I-1- Modèle de Decision Tree

Figure 2 : schéma d'un modèle de decision tree

 $Source: \underline{https://www.google.com/url?sa=i\&url=https\%3A\%2F\%2Fwww.lemarson.com\%2Farticle\%2Fles-arbres-de-decision-de-lapprentissage}$

Figure 3 : arbre de decision technique

Source :https://www.google.com/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org% 2Fwikipedia%2Fcommons%2Fthumb%2F7%2F74%2FArbrededecision_risque_cardiaque.png%2F2 20px-Arbrededecision_risque_cardiaque.png&tbnid=qn9JY-

Les **arbres de décision** sont un modèle populaire, utilisé dans la recherche opérationnelle, la planification stratégique et le **Machine Learning**. Chaque rectangle ci-dessus est appelé un **nœud**. Plus vous avez de nœuds, plus votre arbre décisionnel sera précis (en général). Les derniers nœuds de l'arbre décisionnel, où une décision est prise, sont appelés les « **feuilles** » de l'arbre. Les arbres décisionnels sont intuitifs et faciles à construire, mais ils font un peu défaut lorsqu'on parle de précision ou d'exactitude.

I-2- Modèle de Bagging

Figure 4 : Schéma d'un modèle de Bagging

Source :https://www.google.com/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org% 2Fwikipedia%2Fcommons%2Fthumb%2F7%2F74%2FArbrededecision_risque_cardiaque.png%2F2 20px-Arbrededecision_risque_cardiaque.png&tbnid=qn9JY-

"Ensemble on est plus fort": On pourrait symboliser le bagging par cette citation. En effet, cette technique fait partie des méthodes d'ensemble, qui consiste à considérer un ensemble de modèles pour prendre la décision finale. Nous allons voir en détail le cas du bagging. Le bagging, ou Bootstrap aggregation, est la méthode d'entraînement ensembliste couramment utilisée pour réduire la variance dans un fichier bruyant. Dans le bagging, un échantillon aléatoire de données dans un ensemble d'entraînement est sélectionné avec remplacement, ce qui signifie que les points de données individuels peuvent être choisis plusieurs fois. Après avoir généré plusieurs échantillons de données, ces modèles faibles sont ensuite entraînés indépendamment et, selon le type de tâche (régression ou classification, par exemple), la moyenne ou la majorité de ces prédictions produisent une estimation plus précise. Pour rappel, l'algorithme de forêt aléatoire est considéré comme une extension de la méthode bagging, car il utilise à la fois le bagging et le caractère aléatoire de la fonction pour créer une forêt non corrélée d'arbres de décision.

I-3- Modèle de regression logistique

La régression logistique est semblable à la régression linéaire, mais elle est utilisée pour modéliser la probabilité d'un nombre fini de résultats, généralement deux. Il y a plusieurs raisons pour lesquelles la régression logistique est utilisée par rapport à la régression linéaire lors de la modélisation des probabilités de résultats.

Une équation logistique est créée de telle sorte que les valeurs des résultats ne peuvent être qu'entre 0 et 1 (voir ci-dessous).

Figure 5 : Schéma d'une régression logistique

Source: https://www.google.com/imgres?imgurl=https%3A%2F%2Fdatatab.fr%2Fassets%2Ftutorial%2FLogisticfunction.png

SECTION 2 : MISE EN ŒUVRE TECHNIQUE DES MODELES

Passons à présent à l'aspect technique du travail consistant à la mise en œuvre et au codage.

2-1- Modèle de Decision Tree

Syntaxe 1: Decision Tree du travail

[34] from matplotlib import pyplot as plt

from sklearn.tree import DecisionTreeClassifier

```
from sklearn.metrics import accuracy_score, f1_score, precision_score, confusion_matrix, recall_score, roc_auc_score, classification_report
 import numpy as np
 from collections import Counter
 from imblearn.over_sampling import SMOTE
X = np.asarray(dataset[['age', 'Sex_male', 'BPMeds', 'prevalentStroke'
                             , 'prevalentHyp', 'diabetes', 'BMI', 'totChol', 'sysBP',
                             'diaBP','glucose']])
 y = np.asarray(dataset['TenYearCHD'])
 from sklearn.model_selection import train_test_split
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.4, random_state = 100)
 SM = SMOTE()
X_res, y_res = sm.fit_resample(X_train, y_train)
 #new_train = pd.concat([X_res, y_res], axis=1)
 model1 = DecisionTreeClassifier(criterion = "entropy", max_depth=3)
model1.fit(X_train, y_train)
y_pred = model1.predict(X_test)
 classRep = classification_report(y_test, y_pred)
 #confMat = confusion_matrix(y_test, y_pred)
```

```
#"Precision metrics
precision = precision_score(y_test, y_pred)
print("precision:", round(precision*100, 2), "%")
#recall metrics
# recall = recall_score(y_test, y_pred)
# print("recall:", round(recall, 2))
#F1-score Metrics
f1 = f1_score(y_test, y_pred)
print("f1_score:", round(f1, 2))
#print(y_pred)
score1 = model1.score(X_test, y_test)
score2 = model1.score(X_train, y_train)
#Precision in test:
print(f'Score_Test: {round(score1, 3)*100}', '%')
#print("Accuracy", metrics.accuracy_score(y_test, y_pred))
#Precision in training:
print(f'Score_Training: {round(score2, 3)*100}', '%')
precision: 36.36 %
f1_score: 0.03
```

Source : groupe de travail

Score_Test: 85.7 %

2-2- Modèle de Bagging

Syntaxe 2 : Bagging du travail

```
# Division des données en 80% - 20%
[68] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
 model2 = BaggingClassifier(base_estimator=KNeighborsClassifier(),
                               n_estimators=100)
     model2.fit(X_train, y_train)
     # print(model.score(X_test, y_test))
     # print()
     y_pred = model2.predict(X_test)
     #"Precision metrics
     precision = precision_score(y_test, y_pred)
     print("precision:", round(precision*100, 2), "%")
     # recall = recall_score(y_test, y_pred)
     # print("recall:", round(recall, 2))
     #F1-score Metrics
     f1 = f1_score(y_test, y_pred)
     print("f1_score:", round(f1, 2))
     #print(y_pred)
     score1 = model1.score(X_test, y_test)
     score2 = model1.score(X_train, y_train)
     #Precision in test:
     print(f'Score_Test: {round(score1, 3)*100}', '%')
     #print("Accuracy", metrics.accuracy_score(y_test, y_pred))
     #Precision in training:
     print(f'Score_Training: {round(score2, 3)*100}', '%')
```

Source : groupe de travail

2-3- Modèle de régression logistique

Syntaxe 3 : régression logistique

LOGISTIC REGRESSION MODEL

```
X = np.asarray(dataset[['age', 'Sex_male', 'BPMeds', 'prevalentStroke'
                            , 'prevalentHyp', 'diabetes', 'totChol', 'sysBP',
                            'diaBP','BMI','glucose']])
y = np.asarray(dataset['TenYearCHD'])
# Normalisation du dataset
X = StandardScaler().fit(X).transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.4, random_state = 3)
model1 = LogisticRegression()
model1.fit(X_train, y_train)
# Le recall et la precision et le recall
from sklearn.metrics import recall_score, precision_score
y_pred = model1.predict(X_test)
print('Le recall vaut', recall_score(y_pred, y_test))
print('La precision vaut', precision_score(y_pred, y_test))
print("La performance à l'entrainement vaut", model1.score(X_train, y_train))
print("La performance au test vaut",model1.score(X_test, y_test))
Le recall vaut 0.47619047619047616
La precision vaut 0.045662100456621
La performance à l'entrainement vaut 0.84755555555555555
La performance au test vaut 0.8534310459693538
```

Source : groupe de travail

SECTION 3 : ANALYSE EN COMPOSANTES PRINCIPALES (PCA)

La PCA est une méthode de réduction de la dimensionnalité permettant d'obtenir une base de données inférieure à celle que l'on avait au départ tout en conservant une certaine proportion de la fiabilité des résultats ; généralement 95 à 99 %.

Figure 6: PCA Visual

Source:https://www.google.com/url?sa=i&url=https%3A%2F%2Fopenclassrooms.com%2Ff r%2Fcourses%2F4379436-explorez-vos-donnees-avec-des-algorithmes-non-supervises%2F4379481-calculez-les-composantes-principales-de-vos-donnees

Syntaxe 4: PCA

```
import pandas as pd
import numpy as np
import random as rd
mydata = pd.read_csv("framingham.csv")
mydata = pd.read_csv("framingham.csv")
mydata.fillna(mydata.mean(), inplace = True)
df = pd.DataFrame(mydata)
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(df)
MinMaxScaler()
scaled_data = scaler.transform(df)
from sklearn.decomposition import PCA
pca = PCA(n_{components} = 16)
pca.fit(scaled_data)
PCA(n_components=16)
per_var = np.round(pca.explained_variance_ratio_*100, decimals = 1)
labels = ['PC' + str(x) for x in range(1, len(per_var)+1)]
plt.bar(x =range(1, len(per_var)+1), height = per_var, tick_label = labels)
plt.ylabel('Percentage of Explained Variance')
plt.xlabel('Principal Componenents')
plt.title('Scree Plot')
plt.show()
```

Source : groupe de travail

Graphique 3 : PCA visual

Source: groupe de travail

Figure 7 : dispersion des PCA 1 et PCA 2 en fonction de la Target

Source: groupe de travail

Syntaxe : résultat de la PCA

```
loading_scores = pd.Series(pca.components_[0])
sorted_loading_scores = loading_scores.abs().sort_values(ascending = False)
top_10_features = sorted_loading_scores[0:10]
top_10_features
     0.739096
0 0.560280
7
   0.256468
4 0.224375
1 0.115492
10 0.055156
11 0.046518
2
    0.044188
5
    0.041104
12 0.028277
dtype: float64
```

Source: groupe de travail

D'après ce résultat on conclut qu'après l'analyse, seuls 10 features ont été retenus pour la prevision du target.

CHAPITRE 4: EVALUATION

L'évaluation d'un modèle est une étape cruciale dans le processus de modélisation. Elle permet de mesurer la qualité du modèle et de déterminer d'il est approprié pour résoudre le problème pour lequel il a été conçu.

SECTION 1: PRESENTATION THEORIQUES DES METRIQUES

I-1- la précision

La précision représente le nombre de prévisions correctes par rapport à toutes celles qui sont établies.

Figure 8 : Précision Visual

Source: https://images.nagwa.com/figures/explainers/946105690524/3.svg

I-2-le f1-score

Le f1-score est une métrique qui prend en compte la notion de faux positifs et faux négatifs. Elle se base sur le calcul de deux mesures qui font appel à la matrice de confusion.

Figure 9: calcul du f1-score

F1 Score =
$$\frac{2}{\frac{1}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}}$$
$$= \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Source:

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.v7labs.com%2Fblog%2Ff1-score-

I-3- le score (accuracy)

L'accuracy mesure l'efficacité d'un modèle à prédire correctement à la fois les individus positifs et négatifs.

Figure 10: accuracy visual

Source:

https://encryptedtbn0.gstatic.com/images?q=tbn:ANd9GcTQ0LTeu1QrGR4i0W0Edl7u0G0sPZdzeX5dz1bFuP0enw&s

I-4- la matrice de confusion

La matrice de confusion permet de connaître d'une part les différentes erreurs commises par un algorithme de prédiction, mais plus important encore, de connaître les différents types d'erreurs commis.

Graphique 4: matrice de confusion visual

		True Class	
Class		P	N
redicted	Р	TP	FP
Pred	N	FN	TN

 $\label{eq:source:https://www.google.com/url?sa=i&url=https\%3A\%2F\%2Fintelligence-artificielle.com\%2Fconfusion-matrix-dossier-complet$

SECTION 2 : TECHNICITE DES METRIQUES

2-1- La matrice de confusion

Dans notre cas d'étude, nous avons établi les matrices de confusion pour les différents modèles que nous avons choisi d'entrainer et de tester. Les résultats qui s'en sont donc suivi ont été obtenus comme suit :

2-1-1- DECISION TREE:

Graphique 5: matrice de confusion decision Tree

Source : groupe de travail

2-1-2- **BAGGING**

Avec un découpage de 80% - 20%

Graphique 6: matrice de confusion bagging 80-20

Source: groupe de travail

Avec un découpage de 60% - 40%

Graphique 7: matrice de confusion bagging 60-40

Source: groupe de travail

2-2- L'accuracy, precision et f1_score

Au cours de notre travail, nous avons noté le accuracy pour chacun des modèles dans les proportions que nous avons également choisies avec trois autres métriques, la précision, le f1-score, l'accuracy et la matrice de confusion présentée plus haut.

Les chiffres obtenus sont alors :

2-2-1-Decision Tree

Figure 11 : résultat score Decision tree

precision: 36.36 % f1_score: 0.03 Score_Test: 85.7 % Score_Training: 84.3 %

Source : groupe de travail

2-2-2-Bagging

En découpage 80% - 20%

Figure 12: Résultat score Bagging 80-20

precision: 27.27 %
f1_score: 0.11
Score_Test: 85.0 %
Score_Training: 84.8 %

Source : groupe de travail

En découpage 60% - 40%

Figure 12 : Résultat score bagging 60-40

precision: 56.9 %
f1_score: 0.27
Score_Test: 85.0 %
Score_Training: 84.7 %

Source : groupe de travail

CONCLUSION

Un modèle de machine learning lorsqu'il est entrainé, a pour but de pouvoir faire des prédictions des targets relatives aux features d'un ensemble de données précises. Le modèle doit donc être capable de pouvoir donné un résultat adéquat sur la base d'une référence que sont les données sur lesquelles elle a été entrainé au préalable. Pour évaluer le modèle, les métriques sont faites pour cette phase et dans notre cas, les évaluations sont plutôt déséquilibrées pour chacun des modèles que nous avons utilisés. Nous avons d'un côté en test le decision tree qui est plutôt intéressant en test et par contre en entrainement c'est le bagging dans les divisons 80-20 qui est meilleur. Ceci soulève donc cette exclamation : Retrouvons nous dans 10 ans pour en avoir le cœur net!

GLOSSAIRE

Intelligence artificielle : ensemble des théories et des techniques développant des programmes informatiques complexes capables de simuler certains traits de l'intelligence humaine (raisonnement, apprentissage...)

Machine Learning: sous-ensemble de l'intelligence artificielle (IA) qui vise à apprendre aux machines à tirer des enseignements des données et à s'améliorer avec l'expérience, au lieu d'être explicitement programmées pour le faire.

Deep Learning : Technologie basée sur des réseaux de neurones artificiels (en couches) permettant à une machine d'apprendre par elle-même, utilisée dans de nombreux domaines de l'intelligence artificielle (reconnaissance d'images, voiture autonome, diagnostic médical, etc.)

TABLE DES MATIERES

PARTIE 1 : PRESENTATION, TRAITEMENT ET ANALYSE DESCRIPTIVE DES DONNEES	12
CHAPITRE 1 : PRESENTATION ET TRAITEMENT DES DONNEES	13
SECTION 1 : PRESENTATION DES DONNEES	14
SECTION 2 : TRAITEMENT DES DONNEES	16
CHAPITRE 2 : ANALYSE DESCRIPTIVE DES DONNEES	18
SECTION 1 : VISUALISATION DES DONNEES	19
SECTION 2 : RESULTATS DE L'ANALYSE DESCRIPTIVE	20
PARTIE 2 : MODELES DE MACHINE LEARNING ET EVALUATION	22
CHAPITRE 3 : MODELE DE MACHINE LEARNING	23
SECTION 1 : PRESENTATION THEORIQUE DES MODELES DE MACHINE LEARNING	
1-1- Modèle decision tree	24
SECTION 2 : MISE EN ŒUVRE TECHNIQUE DES MODELES	
2-1- Modèle decision tree	27
2-2- Modèle de Bagging	28
2-3- modèle de régression logistique	29
SECTION 3 : ANALYSE EN COMPOSANTES PRINCIPALES	30
CHAPITRE 4 : EVALUATION	34
SECTION 1 : PRESENTATION THEORIQUES DES METRIQUE	35
1-1- la précision	
1-3- l'accuracy score	36
1-4- la matrice de confusion	36

SECTION 2 : TECHNICITE DES METRIQUES	37
2-1- la matrice de confusion	37
2-1-1- Decision Tree	37
2-1-2- Bagging	38
2-2- L'accuracy, la précision et le f1-score	39
2-2-1- Decision Tree	39
2-2-2- Bagging	39