Aula 01 - Conceitos básicos e visão geral de OpenFlow/SDN

MATE18 – Oficina de OpenFlow/SDN Universidade Federal da Bahia

Italo Valcy <italovalcy@ufba.br>
05 de julho de 2017

Licença de uso e atribuição

Todo o material aqui disponível pode, posteriormente, ser utilizado sob os termos da:

Creative Commons License:

Atribuição - Uso não comercial - Permanência da Licença

http://creativecommons.org/licenses/by-nc-sa/3.0/

Agenda

- Aula 01: conceitos de OpenFlow, prática de captura de pacotes, alteração do datapath de forma pró-ativa
 - Exercício: estudo sobre mininet, prática de criação de caminhos com ofctl
- Aula 02: controlador OpenFlow, exemplos,
 APIs, bibliotecas e aplicações de apoio
- Aula 03: construção de aplicação L2 multiswitch com Ryu/Mininet
- Aula 04: prática com switches reais, conceitos de slices

A rede atual

Roteamento, gerencia, mobilidade, controle de acesso, VPN, ...

Feature Feature

Operating System

Specialized Packet Forwarding Hardware

Verticalização Fechado, proprietário Inovação lenta

A rede atual

A rede atual

- Dificuldades com o modelo atual:
 - Múltiplas sintaxes de CLI;
 - Funcionalidades dependentes de fabricante tempo de implantação;
 - Licenciamento por funcionalidade;
 - Impossibilidade de testar novas funcionalidades de rede (protocolos);
 - Customizações são restritas aos parâmetros de configuração;
 - Rede com pouca flexibilidade.

A "Rede definida por software"

A "Rede definida por software"

Openflow

Openflow é uma interface aberta para controlar remotamente a tabela de encaminhamento de equipamentos de rede como switches, roteadores e access points.

A partir dessa primitiva de baixo nível, pesquisadores podem construir redes com novas propriedades de alto nível.

Fonte: Nick McKeown (Stanford), SDN CIO Summit 2010

Control Path (Software)

Data Path (Hardware)

Fonte: Nick McKeown (Stanford), SDN CIO Summit 2010

OpenFlow Controller

OpenFlow Protocol (SSL)

Control Path OpenFlow

Data Path (Hardware)

Fonte: Nick McKeown (Stanford), SDN CIO Summit 2010

Exemplo do OpenFlow

Exemplo do OpenFlow

OpenFlow é um protocolo, SDN é uma arquitetura

- Redes Definidas por Software (SDN) refatoram o relacionamento entre os dispositivos de rede e o software que os controla
- OpenFlow é uma interface aberta que permite um controle mais flexível e previsível da rede, tornando fácil estender sua função. [HotSDN'12 CFP]

OpenFlow é um protocolo, SDN é uma arquitetura

- Redes Definidas por Software (SDN) refatoram o relacionamento entre os dispositivos de rede e o software que os controla
- OpenFlow é uma interface aberta que permite um controle mais flexível e previsível da rede, tornando fácil estender sua função. [HotSDN'12 CFP]

Exercício de fixação 1

- Como SDN/OpenFlow trata as seguintes questões?
 - Múltiplas sintaxes de CLI;
 - Funcionalidades dependentes de fabricante tempo de implantação;
 - Licenciamento por funcionalidade;
 - Impossibilidade de testar novas funcionalidades de rede (protocolos);
 - Customizações são restritas aos parâmetros de configuração;
 - Rede com pouca flexibilidade.

Como funciona o Openflow?

A principal abstração utilizada na especificação do OpenFlow é o conceito de fluxo

Um fluxo é constituído pela combinação de campos do cabeçalho do pacote a ser processado pelo dispositivo.

- Definição: fluxo
 - É uma sequência unidirecional de pacotes na qual todos os pacotes compartilham um conjunto de valores de cabeçalho comum
- Exemplos:
 - Fluxo 1: pacotes com destino 192.168.0.0/24
 - Fluxo 2: pacotes com interface de entrada 2, VLAN ID 10 e MAC de destino X:X:X:X:X:X
 - Fluxo 3: pacotes com IP de origem X.X.X.X, IP de destino Y.Y.Y.Y e porta TCP de destino 80

0

Exemplos de campos para definição do fluxo:

Ethernet frame

Preamble	Source Address	Destination Address	Туре	Data	FCS
----------	-------------------	------------------------	------	------	-----

Cabeçalho dos frames do protocolo OpenFlow

Quando o switch recebe um pacote ele deve compará-lo com sua tabela de fluxo

Se o cabeçalho não for compatível com nenhum fluxo em sua tabela, o switch deve encaminhar o cabeçalho (ou pacote todo) para o controlador

- Ao receber o pacote, o controlador deve tomar uma decisão e
 - Enviar uma requisição de mudança da tabela de fluxos do switch
 - Devolver o pacote (ou o cabeçalho + buffer-id)
 - Indicar uma ação para o pacote
 - Ou., descartar

Tabela de fluxos

Tabela de fluxos - Exemplos

Switching										
Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
* Flow Sw		00:1f:	*	*	*	*	*	*	*	port6
Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
port3		00:1f	0800	vlan1	1.2.3.4	5.6.7.8	4	17264	80	port6
Firewall	_		L			l_	l	L	L	
Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Forward
* Routing	* *		*	*	*	*	*	*	22	drop
Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
* VLAN S	* * witching	3	*	*	*	5.6.7.8	*	*	*	port6
Switch Port	MAC src		Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
*	* (00:1f	*	vlan1	*	*	*	*	*	port6, port7, port9

Componentes do OpenFlow

- ▶ **Tabela de fluxo**: realiza pesquisas em pacotes:
 - Todos os pacotes são comparados com a tabela de fluxo (match)
 - A ação a ser tomada depende das regras de match encontrada na tabela de fluxo
- Canal seguro: comunicação com o controlador externo.
- Protocolo OpenFlow: padroniza a comunicação do equipamento de rede com um sistema externo. Diversas versões: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6
- Controlador: software responsável pelas decisões de encaminhamento e atualização da flow table, conforme definido pelas aplicações

Exercício de fixação 2

- O que é um fluxo? O que é uma tabela de fluxos? Qual equivalente da tabela de fluxos em switches convencionais?
- Em qual camada do modelo TCP/IP o protocolo OpenFlow atua?
- Qual o papel do controlador?

Protocolo OpenFlow - Tipos de mensagem

- O protocolo OpenFlow suporta três tipos de mensagem (cada um com outros sub-tipos):
 - Controller-to-switch: iniciadas pelo controller e usadas para gerenciar ou inspecionar o estado do switch
 - Asynchronous: iniciadas pelo switch e usadas para atualizar o controller dos eventos da rede e mudanças no switch
 - Symmetric: podem ser iniciadas pelo controller ou pelo switch sem solicitação

Protocolo Openflow - Tipos de mensagem

- Controller-to-switch (algumas):
 - Features: quais capabilities o switch suporta?
 - Modify-state: add/delete/modify flows na tabela de flows do switch
 - Read-State: obter estatísticas da tabela de flows, portas ou flows individuais
 - Send-Packet: usado pelo controller para enviar pacotes para uma porta do switch

Protocolo Openflow - Tipos de mensagem

- Asynchronous (algumas):
 - Packet-in: switch encaminha pacote (ou cabeçalho) para o controller se não houver uma entrada correspondente previamente instalada na tabela de flows
 - Flow-removed: quando o timeout do flow expirou e ele foi removido da tabela de flows
 - Port-Status: switch informa ao controller sobre mudanças na configuração do estado das portas
 - Error: informa ao controller sobre erros diversos

Protocolo Openflow - Tipos de mensagem

- Symmetric (algumas):
 - Hello: usados no estabelecimento da conexão do switch com o controller
 - Echo: Echo request/reply usado para checar latência, largura de banda e/ou conexões ativas

Protocolo Openflow - Ações

Na versão 1.0:

- Required:
 - Forward (ALL, CONTROLLER, IN_PORT)
 - Drop
- Optional:
 - Enqueue
 - Forward (NORMAL)
 - Modify-field (set VLAN ID, strip VLAN header, modify src/dst MAC, modify src/dst IPv4, modify src/dst transport port, etc.)

Protocolo Openflow - Contadores

Na versão 1.0:

Counter	Bits			
Per Table				
Active Entries	32			
Packet Lookups	64			
Packet Matches	64			
Per Flow				
Received Packets	64			
Received Bytes	64			
Duration (seconds)	32			
Duration (nanoseconds)	32			

Per Port	,			
Received Packets	64			
Transmitted Packets	64			
Received Bytes	64			
Transmitted Bytes	64			
Receive Drops	64			
Transmit Drops	64			
Receive Errors	64			
Transmit Errors	64			
Receive Frame Alignment Errors	64			
Receive Overrun Errors	64			
Receive CRC Errors	64			
Collisions	64			
Per Queue				
Transmit Packets	64			
Transmit Bytes	64			
Transmit Overrun Errors	64			

Switch OpenFlow

- O protocolo OpenFlow define dois tipos de switches:
 - Switch OpenFlow (only);
 - Switch OpenFlow Enabled (hybrid).

Ex Switch OpenFlow only:

Switch OpenFlow

Switch OpenFlow híbrido

Controlador OpenFlow

- O controlador OpenFlow se comunica com os switches através de um canal seguro
 - Objetivo: atualização da tabela de fluxo
 - A lógica é executada pelo controlador
- Fornece API (Application Programming Interface) para implementação de aplicações.
- Canal de controle: tcp ou ssl; in-band ou out-of-band

Exercício de fixação 3

- Qual a função das seguintes mensagens e como elas são processas no controlador?
 - Packet-In
 - Modify-state
 - Send-Packet
 - Features
- Qual a diferença de controle in-band versus out-of-band?

OpenFlow em ação

• Quando um pacote chega a um equipamento com OpenFlow habilitado, os cabeçalhos do pacote são comparados às regras das entradas das tabelas de fluxos, os contadores são atualizados e as ações correspondentes são realizadas.

OpenFlow em ação

- Se não houver correspondência entre o pacote e alguma entrada da tabela de fluxos, o pacote é encaminhado, por completo, ao controlador.
- Alternativamente, apenas o cabeçalho encaminhado ao controlador mantendo pacote armazenado no buffer do hardware.

OpenFlow em ação

- As ações associadas aos fluxos incluem:
 - a) encaminhar o fluxo de pacotes para determinada porta(s);
 - b) modificar os campos do cabeçalho;
 - c) encapsular e transmitir o pacote para o controlador;
 - d) descartar os dados, como medida de segurança, com a implementação de firewalls, ou ainda para inibir ataques de negação de serviço;
 - e) encaminhar o pacote para o processamento normal do equipamento nas camadas 2 ou 3.

Controlador OpenFlow

Controlador OpenFlow

Simulação de requisição HTTP em rede com OpenFlow (como funciona na rede legada?)

Prática 01

- Captura de pacotes do protocolo openflow com wireshark e identificação de cada tipo de mensagem
 - No terminal:
 - sudo mn
 - No wireshark, fazer a captura no "Loopback" e colocar o filtro:
 - of
- Captura de requisição PING com OpenFlow

Open vSwitch

- Open vSwitch é um switch virtual open source tipicamente utilizando em ambientes de virtualização (locais e distribuídos)
- Também é utilizado em alguns equipamentos com hardware dedicado
- Muito utilizado em soluções SDN

Open vSwitch

- Visibilidade de comunicação inter-VM: NetFlow, sFlow(R), IPFIX, SPAN, RSPAN e mirrors baseados em túneis GRE
- LACP (IEEE 802.1AX-2008)
- Standard 802.1Q VLAN model with trunking
- BFD and 802.1ag link monitoring
- STP (IEEE 802.1D-1998)
- OpenFlow (1.0 ... 1.6)
- ► IPv6
- Multiple tunneling protocols (GRE, VXLAN, IPsec, GRE and VXLAN over IPsec)
- Remote configuration protocol with C and Python bindings
- Kernel and user-space forwarding engine

- ovs-ofctl utilitário de gerenciamento para openflow
- ovs-dpctl utilitário de gerenciamento do Open vSwitch datapath
- ovs-vsctl gerenciamento de switches virtuais com ovsdb-server

ovs-vsctl show	Mostra informações sobre os switches virtuais
ovs-vsctl list Controller	Mostra informações da conexão OF do switch

ovs-ofctl show SWITCH	Exibe informações do SWITCH
ovs-ofctl dump-flows	Verifica a Flow Table do
SWITCH	SWITCH
ovs-ofctl del-flows	Limpa a Flow Table do
SWITCH	SWITCH
ovs-ofctl add-flow	Deixa o SWITCH operando
SWITCH action=normal	em modo "normal" (L2)
ovs-ofctl mod-port SWITCH IFACE ACT	Realiza a ação ACT (up, down) na interface IFACE do SWITCH

ovs-ofctl add-flow SWITCH priority=XXXX,in_port=YYY, actions=output:Z

Adiciona um fluxo no SWITCH, com prioridade XXXX, entrando pela porta YYY, e realizando a ação de sair pela porta Z

ovs-ofctl add-flow SWITCH dl_src=MAC1,dl_dst=MAC2, actions=output:X

Adiciona um fluxo no SWITCH, com origem o MAC1, com destino o MAC2, realizando a ação X

ovs-ofctl add-flow SWITCH priority=XXX,ip,nw_src=IP1, nw_dst=IP2,actions=normal

Adiciona um fluxo no SWITCH, com prioridade XXX, que seja do tipo IP, com o origem o IP1 e destino IP2, realizando a opção normal (L2).

Prática 2

- Criar uma topologia linear (3 switches) e configurar regras de encaminhamento baseado em L2. Iniciar o mininet com:
 - sudo mn --topo linear,3 --mac --arp--controller none
- Objetivo: pingall

Exercício

- Tarefa 1: Estudar sobre o mininet conforme Aula02_Mininet no Moodle e fazer exercícios propostos
- Tarefa 2: Fazer script python para criar topologias em anel com "n" switches/hosts (um host em cada switch). Utilizar comandos ovs-ofctl para criar o menor caminho entre cada nó; além de encaminhar o tráfego, modificar o MAC de destino para o MAC do próximo salto.