

Bipolar Abstract Argumentation

- Guillermo R. Simari

Laboratorio de Investigación y Desarrollo en Inteligencia Artificial (LIDIA)

Instituto de Ciencias e Ingeniería de la Computación Departamento de Ciencias e Ingeniería de la Computación

UNIVERSIDAD NACIONAL DEL SUR Bahia Blanca - ARGENTINA

Bipolar Argumentation Frameworks

Mostly following Cayrol and Lagasquie-Schiex (2005, 2007, 2009, 2010)

A Cohen, S Gottifredi, A J García, G R Simari: A Survey of Different Approaches to Support in Argumentation Systems. Knowledge Eng. Review 29(5): 513-550 (2014)

Abstraction is a double-edged sword

Fundamentally, Computer Science is a science of abstraction —creating the right model for thinking about a problem and devising the appropriate mechanizable techniques to solve it.

• • •

However, abstraction in the sense we use it implies simplification, the replacement of a complex and detailed real-world situation by an understandable model within which we can solve a problem. That is, we "abstract away" the details whose effect on the solution to a problem is minimal or non-existent, thereby creating a model that lets us deal with the essence of the problem.

A. Aho, J. Ullman, Foundations of Computer Science (1995)

Abstraction is a tool for collective thought. It results in more cohesive APIs & tooling across projects because people are thinking & collaborating about things with a similar language.

Merrick Christensen

https://www.merrickchristensen.com/articles/abstraction/

Toulmin's General Model of Layout of Arguments

The following exchange of arguments happens during a meeting of the editorial board of a newspaper:

- ${\mathcal I}$ information I concerning person P should be published.
- \mathcal{P} information I is private; so, P denies publication.
- \mathcal{M} P is the new prime minister; so, all related to P is public.
- S I is an important information concerning P's son.

Some conflicts appear during the above discussion:

- There is conflict between arguments $\mathcal P$ and $\mathcal I$, and between arguments $\mathcal M$ and $\mathcal P$.
- But, the relation between \mathcal{P} and \mathcal{S} clearly is not a conflict; also, \mathcal{S} provides information related to \mathcal{P} .

The following exchange of arguments happens during a meeting of the editorial board of a newspaper:

- ${\mathcal I}$ information I concerning person P should be published.
- \mathcal{P} information I is private; so, P denies publication.
- \mathcal{M} P is the new prime minister; so, all related to P is public.
- ${\mathcal S}$ I is an important information concerning P's son.

 \mathcal{S} \mathcal{P} \mathcal{I}

 \mathcal{M}

The following exchange of arguments happens during a meeting of the editorial board of a newspaper:

- ${\mathcal I}$ information I concerning person P should be published.
- ${\mathcal P}$ information I is private; so, P denies publication.
- \mathcal{M} P is the new prime minister; so, all related to P is public.
- ${\cal S}$ I is an important information concerning P's son.

$$\mathcal{S} \qquad \mathcal{P} \stackrel{\longrightarrow}{\longleftarrow} \mathcal{I}$$

 \mathcal{M}

- ${\mathcal I}$ $\,$ information I concerning person P should be published.
- \mathcal{P} information I is private; so, P denies publication.
- \mathcal{M} P is the new prime minister; so, all related to P is public.
- ${\cal S}$ I is an important information concerning P's son.

- ${\mathcal I}$ information I concerning person P should be published.
- \mathcal{P} information I is private; so, P denies publication.
- \mathcal{M} P is the new prime minister; so, all related to P is public.
- S I is an important information concerning P's son.

- ${\mathcal I}$ information I concerning person P should be published. $^{!}$
- \mathcal{P} information I is private; so, P denies publication.
- \mathcal{M} P is the new prime minister; so, all related to P is public.
- ${\cal S}$ I is an important information concerning P's son.

- ${\mathcal I}$ information I concerning person P should be published.
- ${\mathcal P}$ information I is private; so, P denies publication.
- \mathcal{M} P is the new prime minister; so, all related to P is public.
- ${\mathcal S}$ I is an important information concerning P's son.

Support in Argumentation

- → The goal is not to change the existing arguments or introduce defeats that do not quite exist; an alternative is to consider a new and independent relation defined over the set of arguments.
- → The objective is to provide tools to attempt to represent all the types of interactions between the arguments.
- → A relation of support will provide the required representational elements without loosing the abstract flavor of the classic argumentation frameworks.

About Support in Argumentation

Deductive Support:

Captures the intuition that if A supports B then the acceptance of A implies the acceptance of B, and as a reflection the non-acceptance of B implies the non-acceptance of A.

 $\mathcal{A} \Longrightarrow \mathcal{B}$, then \mathcal{B} is accepted, and

 ${\cal B}$ is not accepted, then ${\cal A}$ is not accepted

About Support in Argumentation

Necessary Support:

Reflects the intuition that if A supports B then the acceptance of A is necessary to get the acceptance of B, or equivalently the acceptance of B implies the acceptance of A.

About Support in Argumentation

Evidential Support: Permits to distinguish between prima-facie and standard arguments; prima-facie arguments do not require any support from other arguments, whereas standard arguments must be supported by at least one primafacie argument.

Bipolar Argumentation Frameworks (BAFs)

Bipolar Argumentation Frameworks

A Bipolar Argumentation Framework (BAF) is a triple:

Example (contd.)

- ${\mathcal P}$ information I is private so, P denies publication.
- ${\mathcal S}$ I is an important information concerning P's son.
- ${\cal M}$ P is the new prime minister so, everything related to P is public.

The BAF in the figure can be put in terms of the previous definition as

$$BAF = \langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$$
 where:

$$\mathbb{A} = \{\mathcal{I}, \mathcal{M}, \mathcal{P}, \mathcal{S}\}$$

$$\mathbb{R}_d = \{ (\mathcal{P}, \mathcal{I}), (\mathcal{I}, \mathcal{P}), (\mathcal{M}, \mathcal{P}) \}$$

$$\mathbb{R}_s = \{\,(\mathcal{S},\,\mathcal{P})\,\}$$

$$\mathcal{S} \Longrightarrow \mathcal{P} \rightleftarrows \mathcal{I}$$
 \uparrow
 \mathcal{M}

Bipolar Interaction Graph

$$\mathcal{B} \Longrightarrow \mathcal{C} \Longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longleftarrow \mathcal{H}$$
 $\uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \downarrow \qquad \qquad \downarrow \downarrow$
 $\mathcal{A} \qquad \mathcal{D} \longleftarrow \mathcal{G}$

Example

Example

Definition: Let $BAF=\langle \ \mathbb{A}, \ \mathbb{R}_d, \ \mathbb{R}_s \
angle$ be a Bipolar Argumentation Framework and \mathcal{A} , $\mathcal{B}\in \mathbb{A}$

- A supported defeat from ${\mathcal A}$ to ${\mathcal B}$ is a sequence

$$\mathcal{A} = \mathcal{A}_1 \; \mathrm{R}_1 \ldots \mathrm{R}_{n ext{-}1} \, \mathcal{A}_n = \, \mathcal{B}, \; n \geq 3,$$
 such that $\mathrm{R}_i = \mathbb{R}_s$ for $1 \leq i \leq n ext{-}2$, and $\mathrm{R}_{n ext{-}1} = \mathbb{R}_d$, i.e., $\mathcal{A}_1 \Rightarrow \mathcal{A}_2 \Rightarrow \cdots \, \mathcal{A}_{n ext{-}1} \to \mathcal{A}_n = \, \mathcal{B}$

$$\mathcal{A}$$
 \mathcal{D} \iff \mathcal{G}

$$\mathcal{B} \Rightarrow \mathcal{C} \Rightarrow \mathcal{E} \rightarrow \mathcal{F}$$

$$\mathcal{C} \Rightarrow \mathcal{E} \rightarrow \mathcal{F}$$

$$\mathcal{E} o \mathcal{F}$$

A supported defeat from \mathcal{A} to \mathcal{B} is a sequence $\mathcal{A}=\mathcal{A}_1$ R_1 ... $R_{n\text{-}1}$ $\mathcal{A}_n=\mathcal{B}$, $n\geq 3$, such that $R_i=\mathbb{R}_s$ for $1\leq i\leq n\text{-}2$, and $R_{n\text{-}1}=\mathbb{R}_d$.

Supported defeat

A supported defeat from \mathcal{A} to \mathcal{B} is a sequence $\mathcal{A}=\mathcal{A}_1$ R_1 ... R_{n-1} $\mathcal{A}_n=\mathcal{B}$, $n\geq 3$, such that $R_i=\mathbb{R}_s$ for $1\leq i\leq n$ -2, and $R_{n-1}=\mathbb{R}_d$.

Definition: Let $BAF=\langle \ \mathbb{A}, \ \mathbb{R}_d, \ \mathbb{R}_s \
angle$ be a Bipolar Argumentation Framework and \mathcal{A} , $\mathcal{B}\in \mathbb{A}$

- A supported defeat from ${\mathcal A}$ to ${\mathcal B}$ is a sequence

$$\mathcal{A} = \mathcal{A}_1 \; \mathrm{R}_1 \ldots \mathrm{R}_{n\text{-}1} \, \mathcal{A}_n = \, \mathcal{B}, \; n \geq 3,$$
 such that $\mathrm{R}_i = \mathbb{R}_s$ for $1 \leq i \leq n\text{-}2$, and $\mathrm{R}_{n\text{-}1} = \mathbb{R}_d$, i.e., $\mathcal{A}_1 \Rightarrow \mathcal{A}_2 \Rightarrow \cdots \mathcal{A}_{n\text{-}1} \rightarrow \mathcal{A}_n = \, \mathcal{B}$

- A secondary defeat from ${\mathcal A}$ to ${\mathcal B}$ is a sequence

$$\mathcal{A} = \mathcal{A}_1 \; \mathrm{R}_1 \ldots \mathrm{R}_{n\text{-}1} \; \mathcal{A}_n = \mathcal{B}, \; n \geq 3,$$
 such that $\mathrm{R}_1 = \mathbb{R}_d$ and $\mathrm{R}_i = \mathbb{R}_s$ for $2 \leq i \leq n\text{-}1$, i.e., $\mathcal{A}_1 \to \mathcal{A}_2 \Rightarrow \cdots \Rightarrow \mathcal{A}_n = \mathcal{B}$

A direct defeat $\mathcal{A} o \mathcal{B}$ is also a supported defeat.

Secondary defeat

$$\mathcal{A} o \mathcal{B} \Rightarrow \mathcal{C} \Rightarrow \mathcal{E} \text{ and } \mathcal{A} o \mathcal{B} \Rightarrow \mathcal{C} \Rightarrow \mathcal{D}$$

A secondary defeat from $\mathcal A$ to $\mathcal B$ is a sequence $\mathcal A=\mathcal A_1\ \mathrm R_1\dots\mathrm R_{n\text{--}1}\ \mathcal A_n=\ \mathcal B$, $n\geq 3$, such that $\mathrm R_1=\mathbb R_d$ and $\mathrm R_i=\mathbb R_s$ for $2\leq i\leq n\text{--}1$.

A *secondary defeat* from
$$\mathcal{A}$$
 to \mathcal{B} is a sequence $\mathcal{A}=\mathcal{A}_1$ R_1 ... R_{n-1} $\mathcal{A}_n=\mathcal{B}$, $n\geq 3$, such that $R_1=\mathbb{R}_d$ and $R_i=\mathbb{R}_s$ $for \ 2\leq i\leq n$ -1.

 $\mathcal{F} \! o \mathcal{G} \Rightarrow \mathcal{F}$

Definition: Let $BAF=\langle \ \mathbb{A}, \ \mathbb{R}_d, \ \mathbb{R}_s \
angle$ be a Bipolar Argumentation Framework and \mathcal{A} , $\mathcal{B}\in \mathbb{A}$

- A supported defeat from ${\mathcal A}$ to ${\mathcal B}$ is a sequence

$$\mathcal{A} = \mathcal{A}_1 \; \mathrm{R}_1 \ldots \mathrm{R}_{n ext{-}1} \, \mathcal{A}_n = \, \mathcal{B}, \; n \geq 3,$$
 such that $\mathrm{R}_i = \mathbb{R}_s$ for $1 \leq i \leq n ext{-}2$, and $\mathrm{R}_{n ext{-}1} = \mathbb{R}_d$, i.e., $\mathcal{A}_1 \Rightarrow \mathcal{A}_2 \Rightarrow \cdots \, \mathcal{A}_{n ext{-}1} \to \mathcal{A}_n = \, \mathcal{B}$

- A secondary defeat from ${\mathcal A}$ to ${\mathcal B}$ is a sequence

$$\mathcal{A} = \mathcal{A}_1 \; \mathrm{R}_1 \ldots \mathrm{R}_{n\text{--}1} \, \mathcal{A}_n = \mathcal{B}, \; n \geq 3,$$
 such that $\mathrm{R}_1 = \mathbb{R}_d$ and $\mathrm{R}_i = \mathbb{R}_s$ for $2 \leq i \leq n\text{--}1$, i.e., $\mathcal{A}_1 \to \mathcal{A}_2 \Rightarrow \cdots \Rightarrow \mathcal{A}_n = \mathcal{B}$

A direct defeat $\mathcal{A} o \mathcal{B}$ is also a supported defeat.

- a path $\mathcal{A}_1\Rightarrow\mathcal{A}_2\ldots\Rightarrow\mathcal{A}_k\to\mathcal{B}$ in the bipolar interaction graph leads to k supported defeats from each \mathcal{A}_i to \mathcal{B} $(1\leq i\leq k)$; and,

- a path $\mathcal{A}_1\Rightarrow \overline{\mathcal{A}}_2 \ldots \Rightarrow \mathcal{A}_k \to \mathcal{B}$ in the bipolar interaction graph leads to k supported defeats from each \mathcal{A}_i to \mathcal{B} $(1 \leq i \leq k)$; and,
- a path $\mathcal{B} o \mathcal{A}_1 \Rightarrow \mathcal{A}_2 ... \Rightarrow \mathcal{A}_k$ in the bipolar interaction graph leads to k secondary defeats from \mathcal{B} to each \mathcal{A}_i $(1 \leq i \leq k)$.

In red all the defeats (supported and secondary) are shown together with the supports in grey.

Handling Conflict

Definition: Let $BAF = \langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a Bipolar Argumentation Framework and $S \subseteq A$, $A \in A$, then:

- S set-defeats A iff there exists a supported defeat or a direct defeat for A from an element of S.

Handling Conflict

Definition: Let $BAF=\langle\ \mathbb{A},\ \mathbb{R}_d,\ \mathbb{R}_s\ \rangle$ be a Bipolar Argumentation Framework and $S\subseteq\mathbb{A}$, $\mathcal{A}\in\mathbb{A}$, then:

- S set-defeats A iff there exists a supported defeat or a direct defeat for A from an element of S.
- S set-supports A iff there exists a sequence of supports for A from an element of S.

Handling Conflict

In AAF, acceptable sets of arguments must be conflict-free (a form of coherence); in BAFs, the notion of coherence can be extended in two different ways:

 Disallowing both direct defeats and the proper supported defeats enforces a kind of internal coherence:

A set S of arguments that set-defeats one of its elements, is rejected.

 Extending the consistency constraint between support and defeat relations leads to external coherence:

A set S of arguments which set-defeats and set-supports the same argument, is not accepted.

Conflict Freeness and Safety

Definition: Let $BAF=\langle \ \mathbb{A}, \ \mathbb{R}_d, \ \mathbb{R}_s \ \rangle$ be a Bipolar Argumentation Framework and $S\subseteq \mathbb{A}$

- S is +conflict-free iff there is no pair A, $B \in S$ such that there is a supported or a secondary defeat from A to B.
- -S is safe iff there is no $\mathcal{A}\in\mathbb{A}$ and no pair $\mathcal{B},\mathcal{C}\in S$ such that there is a supported or a secondary defeat from \mathcal{B} to \mathcal{A} , and either there is a sequence of support from \mathcal{C} to \mathcal{A} , or $\mathcal{A}\in S$.

Altenatively,

- S is +conflict-free iff there is no pair A, $B \in S$ such that $\{A\}$ set-defeats B.
- S is safe iff there is no $A \in \mathbb{A}$ such that S set-defeats A, and either S set-supports A or $A \in S$.

Conflict Freeness and Safety

Definition: Let $BAF = \langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a Bipolar Argumentation Framework and $S \subseteq \mathbb{A}$

- S is +conflict-free iff there is no pair A, $B \in S$ such that $\{A\}$ set-defeats B.
- S is safe iff there is no $A \in \mathbb{A}$ such that S setdefeats A, and either S set-supports A or $A \in S$.

The notion of +conflict-freeness is more restrictive than simple conflict-freeness since +conflict-freeness considers supported and secondary defeats, and supported defeats include direct defeat.

Definition: Let $BAF=\langle \ \mathbb{A}, \ \mathbb{R}_d, \ \mathbb{R}_s \ \rangle$ be a Bipolar Argumentation Framework and $S\subseteq \mathbb{A}$

- S is +conflict-free iff there is no pair A, $B \in S$ such that $\{A\}$ set-defeats B.
- S is safe iff there is no $A \in \mathbb{A}$ such that S setdefeats A, and either S set-supports A or $A \in S$.

Also, it has been shown that if a set is safe it is also +conflict-free, although the converse does not hold (example follows); but, if a set is +conflict-free and closed under the support relation then it is also safe (closed: if $A \Rightarrow B$, and $A \in S$, then $B \in S$).

Definition: Let $BAF = \langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a Bipolar Argumentation Framework and $S \subseteq \mathbb{A}$

- S is +conflict-free iff there is no pair A, $B \in S$ such that $\{A\}$ set-defeats B.
- S is safe iff there is no $A \in \mathbb{A}$ such that S setdefeats A, and either S set-supports A or $A \in S$.

```
\{\mathcal{A},\mathcal{F}\} is conflict-free and +conflict-free. \{\mathcal{A},\mathcal{C}\} is conflict-free but not +conflict-free. \{\mathcal{G}\} is conflict-free but not +conflict-free. \{\mathcal{B},\mathcal{C},\mathcal{D},\mathcal{E},\mathcal{H}\} is +conflict-free but not safe. \{\mathcal{B},\mathcal{C},\mathcal{D},\mathcal{E}\} and \{\mathcal{B},\mathcal{C},\mathcal{D},\mathcal{H}\} are both safe.
```


 $\{\mathcal{A},\mathcal{C}\}$ is conflict-free but not +conflict-free. $\{\mathcal{G}\}$ is conflict-free but not +conflict-free. $\{\mathcal{A},\mathcal{F}\}$ is conflict-free and +conflict-free. +Conflict-free

The notion of +conflict-freeness is more restrictive than simple conflict-freeness since considers supported and secondary defeats, and supported defeats include direct defeat.

If a set is safe it is also +conflict-free, although the converse does not hold.

If a set is +conflict-free and closed under the support relation then it is also safe.

(closed: if $A \Rightarrow B$, and $A \in S$, then $B \in S$)

+Conflict-free

Safe

 $\{\mathcal{B},\mathcal{C},\mathcal{D},\mathcal{E},\mathcal{H}\}$ is +conflict-free but not safe.

- Various notions of coherence, and two kinds of defeat (direct and supported) are available, we may extend the notion of defense in different ways.
- However, we will restrict to the classical defense, for the following reasons:
 - The purpose of this introduction is to present the basic principles central to bipolar frameworks, and
 - It has been postulated in the literature that support does not have the same strength as defeat.
- Thus, an argument can be considered as defended if and only if its direct defeaters are directly defeated.

BAFs Admissibility

- Three different definitions for admissibility are possible, and they will be given from most general to most specific.
- First, Dung's definition in the context of BAFs provides the definition of d-admissibility ("d" means "in Dung's AAF).
- → The consideration of <u>external coherence</u> renders the concept to s(afe)-admissibility.
- Finally, external coherence can be strengthened by requiring that an admissible set be closed for \mathbb{R}_s (the support relation), obtaining the definition of c(losed)-admissibility.

BAFs Admissibility

Let us recall that in AFs, $S \subseteq \mathbb{A}$ is said to be conflict free iff there are no $\mathcal{A}, \mathcal{B} \in S$ such that \mathcal{A} defeats \mathcal{B} , and that $S \subseteq \mathbb{A}$ is said to be admissible iff S is conflict free and defends all its elements.

In BAFs a set $S \subseteq A$ is +conflict-free iff there is no pair A, $B \in S$ such that $\{A\}$ set-defeats B, and S is safe iff there is no $A \in A$ such that S set-defeats A, and either S set-supports A or $A \in S$.

Definition: Let $S \subseteq \mathbb{A}$, then it said that:

- -S is **d-admissible** iff S is +conflict-free and defends all its elements.
- -S is s-admissible iff S is safe and defends all its elements.
- -S is **c**-admissible iff S is +conflict-free, closed for \mathbb{R}_s and defends all its elements.

Examples

 $S \subseteq \mathbb{A}$, S is **d**-admissible iff S is +conflict-free and defends all its elements.

 $\{\mathcal{B},\mathcal{C},\mathcal{D},\mathcal{E},\mathcal{H}\}$ is not d-admissible since, although it is +conflict-free, it does not defend \mathcal{B} against the direct defeat from \mathcal{A} .

 $\{C, D, E, H\}$ is d-admisible

Examples

 $S \subseteq \mathbb{A}$, S is s-admissible iff S is safe (i.e., there is no $A \in \mathbb{A}$ s.t. S set-defeats A, and either S set-supports A or $A \in S$) and defends all its elements.

 $\overline{\{\mathcal{C},\,\mathcal{D},\,\mathcal{E}\}}$ is s-admissible

 $\mathcal{B} = \mathcal{C} \Rightarrow \mathcal{E} \rightarrow \mathcal{F} = \mathcal{H}$ $\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $\mathcal{A} = \mathcal{D} \leftarrow \mathcal{G}$

 $\{\mathcal{C},\,\mathcal{D},\,\mathcal{H}\}$ is s-admissible

Examples

 $S \subseteq \mathbb{A}$, S is **c**-admissible iff S is +conflict-free, closed for \mathbb{R}_s , and defends all its elements.

 $\{\mathcal{A}\}$ is c-admissible

 $\{\mathcal{C},\,\mathcal{D},\,\mathcal{E}\}$ is c-admissible

Definition: Let $\langle \mathbb{A}, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq \mathbb{A}$, S is a d-preferred (resp. s-preferred, c-preferred) extension iff S is \subseteq -maximal among the d-admissible (resp. s-admissible, c-admissible) subsets of \mathbb{A} .

Definition: Let $\langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq A$, S is a stable extension iff S is +conflict-free and for all $A \notin S$, the set S set-defeats A.

 $\{\mathcal{B},\mathcal{C},\mathcal{D},\mathcal{E},\mathcal{H}\}$ is not d-admissible since, although it is +conflict-free, it does not defend \mathcal{B} against the direct defeat from \mathcal{A} .

Definition: Let $\langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq A$, S is a d-preferred (resp. s-preferred, c-preferred) extension iff S is \subseteq -maximal among the d-admissible (resp. s-admissible, c-admissible) subsets of A.

Definition: Let $\langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq A$, S is a stable extension iff S is +conflict-free and for all $A \notin S$, the set S set-defeats A.

The d-preferred extensions are $\{C, D, E, H\}$ and $\{A,H\}$.

Definition: Let $\langle \mathbb{A}, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq \mathbb{A}$, S is a d-preferred (resp. s-preferred, c-preferred) extension iff S is \subseteq -maximal among the d-admissible (resp. s-admissible, c-admissible) subsets of \mathbb{A} .

Definition: Let $\langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq A$, S is a stable extension iff S is +conflict-free and for all $A \notin S$, the set S set-defeats A.

Definition: Let $\langle \mathbb{A}, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq \mathbb{A}$, S is a d-preferred (resp. s-preferred, c-preferred) extension iff S is \subseteq -maximal among the d-admissible (resp. s-admissible, c-admissible) subsets of \mathbb{A} .

Definition: Let $\langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq A$, S is a stable extension iff S is +conflict-free and for all $A \notin S$, the set S set-defeats A.

Definition: Let $\langle \mathbb{A}, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq \mathbb{A}$, S is a d-preferred (resp. s-preferred, c-preferred) extension iff S is \subseteq -maximal among the d-admissible (resp. s-admissible, c-admissible) subsets of \mathbb{A} .

Definition: Let $\langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq A$, S is a stable extension iff S is +conflict-free and for all $A \notin S$, the set S set-defeats A.

Definition: Let $\langle \mathbb{A}, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq \mathbb{A}$, S is a d-preferred (resp. s-preferred, c-preferred) extension iff S is \subseteq -maximal among the d-admissible (resp. s-admissible, c-admissible) subsets of \mathbb{A} .

Definition: Let $\langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq A$, S is a stable extension iff S is +conflict-free and for all $A \notin S$, the set S set-defeats A.

Definition: Let $\langle \mathbb{A}, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq \mathbb{A}$, S is a d-preferred (resp. s-preferred, c-preferred) extension iff S is \subseteq -maximal among the d-admissible (resp. s-admissible, c-admissible) subsets of \mathbb{A} .

Definition: Let $\langle A, \mathbb{R}_d, \mathbb{R}_s \rangle$ be a BAF and let $S \subseteq A$, S is a stable extension iff S is +conflict-free and for all $A \notin S$, the set S set-defeats A.

 $\{\mathcal{A},\mathcal{H}\}, \{\mathcal{C},\mathcal{D},\mathcal{H}\}$ are not c-admissible since $\mathcal{H} \Rightarrow \mathcal{F}$ and \mathcal{F} does not belong to these sets; thus, the c-preferred extensions are $\{\mathcal{A}\}$ and $\{\mathcal{C},\mathcal{D},\mathcal{E}\}$.

References

- Cayrol, C. & Lagasquie-Schiex, M.-C. 2005. *On the acceptability of arguments in bipolar argumentation frameworks*. In 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 378–389.
- Cayrol, C. & Lagasquie-Schiex, M.-C. 2007. *Coalitions of arguments in bipolar argumentation frameworks*. In 7th International Workshop on Computational Models of Natural Argument, Hyderabad, India, 14–20.
- Amgoud L., Cayrol C., Lagasquie-Schiex, M.-C., Livet P., 2008. *On bipolarity in argumentation frameworks*, International Journal of Intelligent Systems 23 (2008) 1062–1093.
- Cayrol, C. & Lagasquie-Schiex, M.-C. 2009. *Bipolar abstract argumentation systems*. In Argumentation in Artificial Intelligence, Rahwan, I. & Simari, G. R.(eds). Springer, 65–84.
- Cayrol, C. & Lagasquie-Schiex, M.-C. 2010. *Coalitions of arguments: a tool for handling bipolar argumentation frameworks*. International Journal of Intelligent Systems 25(1), 83–109.
- Cayrol, C. & Lagasquie-Schiex, M-C. 2011. *Bipolarity in argumentation graphs: towards a better understanding*. In 5th International Conference on Scalable Uncertainty Management, USA, 137–148.
- Cohen A., Gottifredi S., García A.J. & Simari G.R., 2013. A survey of different approaches to support in argumentation systems. The Knowledge Engineering Review, available on CJO2013.
- Cayrol, C. & Lagasquie-Schiex, M-C. 2013. *Bipolarity in argumentation graphs: Towards a better understanding*. International Journal of Approximate Reasoning, 54 (2013) 876-899.
- Cohen, A., Garcia, A. J. & Simari, G. R. 2011. *Backing and undercutting in defeasible logic programming*. In 11th European Conf on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, UK, 50–61.
- Cohen, A., Garcia, A. J. & Simari, G. R. 2012. *Backing and undercutting in abstract argumentation frameworks*. In 7th Int Symp on Foundations of Information and Knowledge Systems, Germany, 107–123.
- Prakken, H. On support relations in abstract argumentation as abstractions of inferential relations. ECAI 2014. Prague, Czech Republic. T. Schaub et al. (Eds.), pp. 735-740.

Thank you! Questions?

