Matemática Discreta I - MATA42

Profa. Isamara Alves (DMAT/IME/UFBA)

AULA - 07/03/2019

Teoria de Conjuntos - Conjunto Universo

DEFINIÇÃO: (Conjunto Universo)

Seja $\mathcal U$ um conjunto. Dizemos que $\mathcal U$ é CONJUNTO UNIVERSO se, e somente se, $\mathcal U$ contém todos os conjuntos em discussão.

DEFINIÇÃO:

Sejam $\mathcal U$ conjunto universo e $A \in \mathcal P(\mathcal U)$. Dizemos que o conjunto $\mathcal U \backslash A := \{x \mid x \in \mathcal U \text{ e } x \notin A\}$ é o Complemento de A relativo em $\mathcal U$. Notação: $\sim A$ ou $\overline A$ ou $\overline A$.

EXEMPLOS:

- Sejam $\mathcal{U} = \mathbb{N}$ e $A := \{x \in \mathbb{N} \mid x \ge 15\}$ então $(\sim A) := \{x \in \mathbb{N} \mid x < 15\}$
- ② Sejam $\mathcal{U} = \mathbb{N}$, $A := \{x \in \mathbb{N} \mid x = 2y; \text{ para algum } y \in \mathbb{N}\}$, e $B := \{x \in \mathbb{N} \mid x = 2y + 1; \text{ para algum } y \in \mathbb{N}\}$, então $\sim A = B$ e $\sim B = A$; Note que: $A \cup B = \mathcal{U}$ e $A \cap B = \emptyset$.

Teoria de Conjuntos - Propriedades em Conjuntos

PROPRIEDADES:

Sejam o conjunto universo \mathcal{U} e $A \in \mathcal{P}(\mathcal{U})$. Então;

- (i) $\sim (\sim A) = A$
- (ii) $\sim \emptyset = \mathcal{U}$
- (iii) $\sim \mathcal{U} = \emptyset$
- (iv) $A \cup (\sim A) = \mathcal{U}$
- (v) $A \cap (\sim A) = \emptyset$

Proposição:

Sejam \mathcal{U} conjunto universo e $A, B \in \mathcal{P}(\mathcal{U})$. Então;

- (i) $\sim (A \cap B) = (\sim A) \cup (\sim B)$
- (ii) $\sim (A \cup B) = (\sim A) \cap (\sim B)$

OBSERVAÇÃO.13: A proposição acima denota as "Leis de DeMorgan".

Teoria de Conjuntos - Operações sobre Conjuntos

DEFINIÇÃO: (Diferença Simétrica)

Sejam A e B conjuntos quaisquer. Dizemos que o conjunto $C:=\{(A\backslash B)\cup (B\backslash A)\}$ é a DIFERENÇA SIMÉTRICA de A com B. NOTAÇÃO: $A\triangle B$

EXEMPLOS:

- **1** Sejam $A := \{x \in \mathbb{N} \mid x \ge 5\}$ e $B := \{x \in \mathbb{N} \mid x \le 10\}$ então $(A \setminus B) := \{x \in \mathbb{N} \mid x > 10\}$ $(B \setminus A) := \{x \in \mathbb{N} \mid x < 5\}$ $(A \triangle B) := \{x \in \mathbb{N} \mid x < 5 \text{ ou } x > 10\}$
- ② Sejam $A:=\{x\in\mathbb{N}\mid x=2y; \text{ para algum }y\in\mathbb{N}\}$ e $B:=\{x\in\mathbb{N}\mid x=2y+1; \text{ para algum }y\in\mathbb{N}\}$ então $(A\backslash B):=A$ $(B\backslash A):=B$ $(A\Delta B):=A\cup B=\mathbb{N}$

Teoria de Conjuntos - Propriedades em Conjuntos

PROPRIEDADES:

Sejam A e B conjuntos quaisquer. Então;

- (i) $A\Delta B = B\Delta A$
- (ii) $A\Delta\emptyset = A$
- (iii) $A\Delta A = \emptyset$

Teoria de Conjuntos - Família de Conjuntos

DEFINIÇÃO: (Família de Conjuntos)

Sejam $n \in \mathbb{Z}^+$ e \mathcal{I} um conjunto de n índices. Dizemos que o conjunto $\{A_i\}_{i \in \mathcal{I}}$ é uma família de conjuntos.

EXEMPLO: Seja $\mathcal{I} = \{1, 2, 3, 4, 5, 6\}$ então $\{A_i\}_{i \in \mathcal{I}} = \{A_1, A_2, A_3, A_4, A_5, A_6\}$ é uma família com 6 conjuntos. OBSERVAÇÃO.14:

- Seja a família $\{A_i\}_{i\in\mathcal{I}}\neq\emptyset$; onde $\mathcal{I}=\{1,2,3,\cdots,n\},n\in\mathbb{Z}^+$. Definimos o conjunto INTERSECÇÃO desta família como sendo: $\bigcap_{i\in\mathcal{I}}A_i:=\{x\mid x\in A_1\ \mathrm{e}\ x\in A_2\ \mathrm{e}\ x\in A_3\ \mathrm{e}\ \cdots\ \mathrm{e}\ x\in A_n\}$
- Seja a família $\{A_i\}_{i\in\mathcal{I}}\neq\emptyset$; onde $\mathcal{I}=\{1,2,3,\cdots,n\},n\in\mathbb{Z}^+.$ Definimos o conjunto UNIÃO desta família como sendo: $\bigcup_{i\in\mathcal{I}}A_i:=\{x\mid x\in A_1 \text{ ou } x\in A_2 \text{ ou } x\in A_3 \text{ ou }\cdots\text{ ou } x\in A_n\}$

Teoria de Conjuntos - Família de Conjuntos

EXEMPLOS:

Seja a família de conjuntos $\{A_1, A_2, A_3\}$ tais que:

$$A_1 := \{x \in \mathbb{N} \mid x < 11\}, \ A_2 := \{x \in \mathbb{N} \mid x > 1\}, \ e$$

 $A_3 := \{x \in \mathbb{N} \mid x = 2y; \ \mathsf{para algum} \ y \in \mathbb{N}\}$

- ② $\bigcup \{A_1, A_2, A_3\} = A_1 \cup A_2 \cup A_3 = \{x \in \mathbb{N} \mid x < 11 \text{ ou } x > 1 \text{ ou } x = 2y; \text{ para algum } y \in \mathbb{N}\} = \{x \in \mathbb{N} \mid x \geq 0\} = \mathbb{N}.$

Proposição: (Leis de DeMorgan)

Sejam \mathcal{I} um conjunto de índices e $\{A_i\}_{i\in\mathcal{I}}\neq\emptyset$ uma família de conjuntos em um conjunto universo \mathcal{U} . Então;

(i)
$$\sim (\bigcap_{i \in \mathcal{I}} A_i) = \bigcup_{i \in \mathcal{I}} (\sim A_i)$$

(ii)
$$\sim (\bigcup_{i \in \mathcal{I}} A_i) = \bigcap_{i \in \mathcal{I}} (\sim A_i)$$

Diagrama de Venn

- John Venn foi um matemático inglês do século XIX. Em 1881,
 Ele introduziu uma representação gráfica dos conjuntos.
- Podemos utilizar os diagramas de Venn a fim de representar, graficamente, os conjuntos e as operações entre os conjuntos.

EXEMPLO:

Seja $A \in \mathcal{P}(\mathcal{U})$; $A := \{1, 2, 3, 4, 5, 6\}$.

Diagrama de Venn

Sejam os conjuntos $A, B \in \mathcal{P}(\mathcal{U})$; podemos representar as operações: intersecção e união, utilizando o *Diagrama de Venn*.

Intersecção: A∩B

União: AUB

DIAGRAMA DE VENN

Sejam os conjuntos $A, B \in \mathcal{P}(\mathcal{U})$; podemos representar as operações: diferença e diferença simétrica, utilizando o *Diagrama de Venn*

DIAGRAMA DE VENN

Seja o conjunto $A \in \mathcal{P}(\mathcal{U})$; podemos representar o complemento de A relativo ao conjunto universo \mathcal{U} , utilizando o Diagrama de Venn

Complemento de A: ~A

Teoria de Conjuntos - Exercícios

Questão.1: Sejam os conjuntos: $A = \{0, 1, 3, 4\}, B = \{2, 3, 4, 5\}, C = \{4, 5\}, D = \{5, 6, 7\}. Determine:$

- (a) $(A \cup C) \cap B$
- (b) $(B \cap C) \cup D$
- (c) $(B-A)\cap C$
- (d) $(B-C)\cup (A\cap B)$

Teoria de Conjuntos - Exercícios

Questão.1: (Respostas)
$$A = \{0, 1, 3, 4\}, B = \{2, 3, 4, 5\}, C = \{4, 5\}, D = \{5, 6, 7\}.$$

- (a) $(A \cup C) \cap B = \{3, 4, 5\}$
- (b) $(B \cap C) \cup D = \{4, 5, 6, 7\}$
- (c) $(B-A) \cap C = \{5\}$
- (d) $(B-C) \cup (A \cap B) = \{2,3,4\}$

Teoria de Conjuntos - Diagrama de Venn

Questão.2: Sejam os conjuntos: $A = \{2, 3, 4\}, B = \{2, 3, 5, 6, 7\}, C=\{5, 6, 7\}, D=\{2, 4\}.$

Desenhe o Diagrama de Venn representando os conjuntos e determine as seguintes relações entre os conjuntos:

- (a) $(A \cap B) \cup C =$
- (b) $(C \cup D) \cap B =$
- (c) $(A \cap D) \cup (A \cap C) =$
- (d) $(C \cap D) \cup A =$
- (e) $(B A) \cup D =$
- (f) $B (C \cup D) =$
- (g) B (A D) =
- (h) $A (D \cap A) =$
- (i) $(A D) \cup (B C) =$

Teoria de Conjuntos - Diagrama de Venn

Questão.2: (Respostas)

- (a) $(A \cap B) \cup C = \{2, 3, 5, 6, 7\}$
- (b) $(C \cup D) \cap B = \{2, 5, 6, 7\}$
- (c) $(A \cap D) \cup (A \cap C) = \{2, 4\}$
- (d) $(C \cap D) \cup A = \{2, 3, 4\}$
- (e) $(B-A) \cup D = \{2,4,5,6,7\}$
- (f) $B (C \cup D) = \{3\}$
- (g) $B (A D) = \{2, 5, 6, 7\}$
- (h) $A (D \cap A) = \{3\}$
- (i) $(A-D) \cup (B-C) = \{2,3\}$

Teoria de Conjuntos - Cardinalidade

```
Questão.3: Sejam os conjuntos A e B, tais que \#A = 10, \#(A \cap B) = 3 e \#(A \cup B) = 12. Determine \#B utilizando o Diagrama de Venn.
```

Teoria de Conjuntos - Cardinalidade

Questão.3: Sejam os conjuntos A e B, tais que $\#A = 10, \#(A \cap B) = 3$ e $\#(A \cup B) = 12$. Determine #B.

Logo, #B = 5.

Sejam A e B CONJUNTOS DISJUNTOS, isto é, $A\cap B=\emptyset$. Verificamos que o "número total" de elementos que pertencem a A ou a B, ou seja, a $A\cup B$ é dado por:

$$\#(A \cup B) = \#A + \#B.$$

Princípio da Inclusão e Exclusão

Sejam A e B conjuntos não-disjuntos, ou seja, $A \cap B \neq \emptyset$. Então, quando unimos os elementos de A com os de B, INCLUIMOS alguns elementos que pertencem a ambos os conjuntos. Desta forma, para obtermos $\#(A \cup B)$ precisamos EXCLUÍ-los. Assim,

$$\#(A \cup B) = \#A + \#B - \#(A \cap B).$$

Exemplo.1: Um repórter entrevista 35 pessoas que optam pela CONDIÇÃO.1, CONDIÇÃO.2 ou ambos e conclui que 14 entrevistados optaram pela CONDIÇÃO.1, 26 pela CONDIÇÃO.2. Quantos entrevistados escolheram ambos?

Exemplo.1:

Resolução:

A= pessoas que optam pela CONDIÇÃO.1 B= pessoas que optam pela CONDIÇÃO.2 Então, $\#(A\cup B)=35$. Como, $\#(A\cup B)=\#A+\#B-\#(A\cap B)$ $35=14+26-\#(A\cap B)$ $\#(A\cap B)=5$.

Visualizando no Diagrama de Venn :

Conclusão: 5 pessoas optaram pelas CONDIÇÕES.1 e 2.

Exemplo.2: Todos os convidados de uma festa BEBEM CAFÉ e/ou BEBEM CHÁ.

13 convidados BEBEM CAFÉ, 10 BEBEM CHÁ e 4 BEBEM CAFÉ E CHÁ. Quantas pessoas tem na festa?

Resolução:

A = pessoas que BEBEM CAFÉ

B =pessoas que BEBEM CHÁ

Como,
$$\#(A \cup B) = \#A + \#B - \#(A \cap B)$$

$$\#(A \cup B) = 13 + 10 - 4$$

 $\#(A \cup B) = 19$.

Visualizando no Diagrama de Venn :

Conclusão: Existem 19 pessoas na festa.

Proposição: Extensão do Princípio da Inclusão e Exclusão

Sejam
$$A, B \in C$$
 CONJUNTOS NÃO DISJUNTOS, então $\#(A \cup B \cup C) = \#A + \#B + \#C - \#(A \cap B) - \#(A \cap C) - \#(B \cap C) + \#(A \cap B \cap C)$.

Demonstração:

$$\#(A \cup B \cup C) = \#(A \cup (B \cup C)) = \#A + \#(B \cup C) - \#(A \cap (B \cup C)) = \#A + \#B + \#C - \#(B \cap C) - \#[(A \cap B) \cup (A \cap C)] = \#A + \#B + \#C - \#(B \cap C) - [\#(A \cap B) + \#(A \cap C) - \#((A \cap B) \cap (A \cap C))] = \#A + \#B + \#C - \#(B \cap C) - \#(A \cap B) - \#(A \cap C) + \#(A \cap B \cap C).$$

Exemplo.3: O controle de qualidade em uma fábrica verificou 47 peças com DEFEITOS DE PINTURA, DEFEITOS DE EMBALAGEM e/ou DEFEITOS NA PARTE ELETRÔNICA. Dessas peças, 28 tinham defeitos de pintura, 17 tinham defeitos na embalagem, 12 tinham defeitos na parte eletrônica, 7 tinham defeitos na embalagem e na parte eletrônica, 3 tinham defeitos de pintura e defeitos na parte eletrônica. Alguma peça tinha os três defeitos?

Exemplo.3:

Resolução:

A = DEFEITOS DE PINTURA

B = DEFEITOS DE EMBALAGEM

C = DEFEITOS NA PARTE ELETRÔNICA

Então;
$$\#(A \cup B \cup C) =$$

$$\#A + \#B + \#C - \#(A \cap B) - \#(A \cap C) - \#(B \cap C) + \#(A \cap B \cap C);$$

$$47 = 28 + 17 + 12 - 0 - 3 - 7 + \#(A \cap B \cap C);$$

$$\#(A\cap B\cap C)=0.$$

Visualizando no Diagrama de Venn :

Conclusão: Nenhuma peça apresentou os três defeitos ao mesmo tempo.

Exemplo.4: Uma quitanda vende BROCÓLIS, CENOURA, QUIABO. Em determinado dia, a quitanda atendeu 204 pessoas. Se 114 pessoas compraram brocólis, 152 compraram cenouras, 17 compraram quiabos, 64 compraram brocólis e cenouras, 12 compraram cenouras e quiabos e 3 compraram os três. Quantas pessoas compraram brocólis e quiabos?

Exemplo.4:

Resolução:

A =pessoas que compraram BROCÓLIS

B = pessoas que compraram CENOURAS

C = pessoas que compraram QUIABOS

Então;
$$\#(A \cup B \cup C) =$$

$$\#A + \#B + \#C - \#(A \cap B) - \#(A \cap C) - \#(B \cap C) + \#(A \cap B \cap C);$$

204 = 114 + 152 + 17 - 64 - $\#(A \cap C)$ - 12 + 3;

$$\#(A \cap C) = 6.$$

Visualizando no Diagrama de Venn :

Conclusão: 6 pessoas compraram brocólis e quiabos.