- 16
- В кубе $ABCDA_1B_1C_1D_1$ все рёбра равны 7. На его ребре BB_1 отмечена точка K так, что KB=4. Через точки K и C_1 проведена плоскость α , параллельная прямой BD_1 .
- а) Докажите, что $A_1P:PB_1=1:3$, где P точка пересечения плоскости α с ребром A_1B_1 .
- б) Найдите объём большей из двух частей куба, на которые он делится плоскостью α.

а) Проведём через точку K прямую, параллельную BD_1 . Пусть эта прямая пересекает плоскость грани $A_1B_1C_1D_1$ в точке L. Прямая KL лежит в плоскости BB_1D_1 , значит, точка L лежит на диагонали B_1D_1 . Более того, $B_1L:LD_1=B_1K:KB=3:4$.

Прямая C_1L пересекает ребро A_1B_1 в точке P, принадлежащей плоскости α . Треугольники B_1LP и D_1LC_1 подобны, поэтому $B_1P:D_1C_1=B_1L:D_1L=3:4$. Значит, $A_1P:PB_1=1:3$.

б) Объём куба $ABCDA_1B_1C_1D_1$ равен 343. Объём тетраэдра PKC_1B_1 равен

$$\frac{1}{6}B_1P \cdot B_1C_1 \cdot B_1K = \frac{3}{56}B_1A_1 \cdot B_1C_1 \cdot B_1B = \frac{147}{8}.$$

Значит, объём оставшейся части равен $\frac{2597}{8}$.

Ответ: б) $\frac{2597}{8}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a и обоснованно получен верный ответ в пункте δ	2
Имеется верное доказательство утверждения пункта <i>а</i> ИЛИ обоснованно получен верный ответ в пункте <i>б</i>	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

- Основанием прямой четырёхугольной призмы $ABCDA_1B_1C_1D_1$ является квадрат ABCD со стороной $5\sqrt{2}$, высота призмы равна $2\sqrt{14}$. Точка K середина ребра BB_1 . Через точки K и C_1 проведена плоскость α , параллельная прямой BD_1 .
 - а) Докажите, что сечение призмы плоскостью α является равнобедренным треугольником.
 - б) Найдите периметр треугольника, являющегося сечением призмы плоскостью α.

а) В треугольнике BB_1D_1 проведём среднюю линию KL. Точка L лежит в плоскости α , поскольку прямые KL и BD_1 параллельны.

В квадрате $A_1B_1C_1D_1$ точка L является серединой диагонали B_1D_1 , значит, она также является серединой диагонали A_1C_1 , а искомым сечением является треугольник A_1KC_1 .

Прямоугольные треугольники A_1B_1K и C_1B_1K равны по двум катетам. Следовательно, $A_1K = C_1K$.

б) В прямоугольных треугольниках $A_1B_1C_1$ и C_1B_1K :

$$A_1C_1 = \sqrt{A_1B_1^2 + B_1C_1^2} = 10 \text{ M } A_1K = C_1K = \sqrt{B_1C_1^2 + B_1K_1^2} = 8.$$

Искомый периметр равен 26.

Ответ: б) 26.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а и обоснованно	2
получен верный ответ в пункте δ	2
Имеется верное доказательство утверждения пункта а	
или	1
обоснованно получен верный ответ в пункте 6	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	2

- 16
- В правильной треугольной пирамиде SABC сторона основания AB равна 30, а боковое ребро SA равно 28. Точки M и N середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
- а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
- б) Найдите объём пирамиды, вершиной которой является точка C, а основанием сечение пирамиды SABC плоскостью α .

а) Прямая MNпараллельна плоскости АВС, поэтому сечение пересекает плоскость по прямой PQ, параллельной MN. Рассмотрим плоскость SCE. Пусть К — точка пересечения этой плоскости и прямой MN, L точка пересечения этой плоскости прямой PQ, 0 основания пирамилы. Плоскости

SCE и MNQ перпендикулярны плоскости ABC, поэтому прямая KL перпендикулярна плоскости ABC, а значит, параллельна прямой SO. Поскольку MN — средняя линия треугольника ASB, точка K является серединой ES. Значит, L — середина EO. Медиана CE треугольника ABC делится точкой O в отношении 2:1. Значит, CL:LE=5:1.

б) Прямая CL перпендикулярна KL и PQ . Значит, CL — высота пирамиды

CMNQP . Эта высота равна $CL = \frac{5CE}{6} = \frac{25\sqrt{3}}{2}$. В трапеции MNQP имеем:

$$MN = \frac{AB}{2} = 15$$
, $PQ = \frac{5AB}{6} = 25$, $KL = \frac{SO}{2} = \frac{\sqrt{SC^2 - CO^2}}{2} = 11$.

Значит, площадь трапеции MNQP равна $\frac{MN + PQ}{2} \cdot KL = 220$. Объём

пирамиды *CMNQP* равен $\frac{2750\sqrt{3}}{3}$.

Ответ: 6) $\frac{2750\sqrt{3}}{3}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a и обоснованно получен верный ответ в пункте δ	2
Имеется верное доказательство утверждения пункта а ИЛИ обоснованно получен верный ответ в пункте б	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

- 16
- В правильной четырёхугольной пирамиде SABCD все рёбра равны 5. На рёбрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA = AQ = RC = 2.
- а) Докажите, что плоскость PQR перпендикулярна ребру SD.
- б) Найдите расстояние от вершины D до плоскости PQR .

а) Стороны треугольника SBD равны 5, 5 и $5\sqrt{2}$, поэтому он прямоугольный, то есть прямая DS перпендикулярна прямой SB. Поскольку прямые SB и PQ параллельны, прямая DS перпендикулярна прямой PQ. Прямая AC перпендикулярна прямой BD, и по теореме о трёх перпендикулярах прямая AC

перпендикулярна прямой SD, а значит, и прямая QR перпендикулярна прямой SD. Таким образом, плоскость PQR перпендикулярна ребру SD.

б) Пусть плоскость PQR пересекает ребро SD в точке E. Из доказанного следует, что прямая PE перпендикулярна прямой SD, откуда

$$SE = SP\cos 60^{\circ} = \frac{3}{2}.$$

Значит,
$$DE = SD - SE = \frac{7}{2}$$
.

Поскольку плоскость PQR перпендикулярна ребру SD, искомое расстояние равно DE.

Ответ: б) $\frac{7}{2}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а и обоснованно	2
получен верный ответ в пункте δ	2
Имеется верное доказательство утверждения пункта а	
ИЛИ	1
обоснованно получен верный ответ в пункте δ	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	0
Максимальный балл	2

- 16
- В правильной треугольной пирамиде SABC сторона основания AB равна 24, а боковое ребро SA равно 19. Точки M и N середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
- а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
- б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью а.

а) Прямая MNпараллельна плоскости АВС, поэтому сечение плоскость пересекает по прямой PQ, параллельной MN. Рассмотрим плоскость SCE. Пусть К — точка пересечения этой плоскости и прямой MN, L точка пересечения этой плоскости PQ, прямой oпирамиды. Плоскости основания

SCE и MNQ перпендикулярны плоскости ABC, поэтому прямая KL перпендикулярна плоскости ABC, а значит, параллельна прямой SO. Поскольку MN — средняя линия треугольника ASB, точка K является серединой ES. Значит, L — середина EO. Медиана CE треугольника ABC делится точкой O в отношении 2:1. Значит, CL:LE=5:1.

б) В трапеции MNQP имеем:

$$MN = \frac{AB}{2} = 12$$
, $PQ = \frac{5AB}{6} = 20$, $KL = \frac{SO}{2} = \frac{\sqrt{SC^2 - CO^2}}{2} = \frac{13}{2}$.

Значит, площадь трапеции MNQP равна $\frac{MN + PQ}{2} \cdot KL = 104$.

Ответ: б) 104.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a и обоснованно получен верный ответ в пункте b	2
Имеется верное доказательство утверждения пункта а ИЛИ обоснованно получен верный ответ в пункте б	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

- В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами $AB = \sqrt{5}$ и BC = 2. Длины боковых рёбер пирамиды $SA = \sqrt{7}$, $SB = 2\sqrt{3}$, $SD = \sqrt{11}$.
 - а) Докажите, что SA высота пирамиды.
 - б) Найдите угол между прямой SC и плоскостью ASB.

а) В треугольнике SAB имеем:

$$SB^2 = 12 = 7 + 5 = SA^2 + AB^2$$
.

поэтому треугольник SAB прямоугольный с гипотенузой SB и прямым углом SAB. Аналогично, из равенства $SD^2 = 11 = 7 + 4 = SA^2 + AD^2$ получаем, что $\angle SAD = 90^\circ$. Так как прямая SA перпендикулярна прямым AB и AD, прямая SA перпендикулярна плоскости ABD.

б) Прямая BC перпендикулярна прямым SA и AB, значит, она перпендикулярна плоскости ASB, а искомый угол равен углу BSC.

Из прямоугольного треугольника BCS получаем: $tg \angle BSC = \frac{BC}{SB} = \frac{\sqrt{3}}{3}$,

откуда $\angle BSC = 30^{\circ}$. Ответ: б) 30°.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a и обоснованно получен верный ответ в пункте δ	2
Имеется верное доказательство утверждения пункта a ИЛИ обоснованно получен верный ответ в пункте δ	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

- 16
- В правильной треугольной пирамиде SABC сторона основания AB равна 30, а боковое ребро SA равно 28. Точки M и N середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
- а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
- б) Найдите расстояние от вершины A до плоскости α .

MNа) Прямая параллельна плоскости АВС, поэтому сечение плоскость пересекает по прямой PQ, параллельной MN. Рассмотрим плоскость SCE. Пусть K — точка пересечения этой плоскости и прямой MN, L точка пересечения этой плоскости прямой PQ, 0 центр Плоскости основания пирамиды.

- SCE и MNQ перпендикулярны плоскости ABC, поэтому прямая KL перпендикулярна плоскости ABC, а значит, параллельна прямой SO. Поскольку MN средняя линия треугольника ASB, точка K является серединой ES. Следовательно, L середина EO. Медиана CE треугольника ABC делится точкой O в отношении 2 1. Значит, CL: LE = 5:1.
- б) Прямая CE перпендикулярна KL и PQ, поэтому прямая CE перпендикулярна плоскости MNQ. Прямые AB и PQ параллельны, значит, расстояние от вершины A до плоскости сечения равно расстоянию от точки E до плоскости сечения, то есть $EL = \frac{CE}{6} = \frac{5\sqrt{3}}{2}$.

Ответ: б)
$$\frac{5\sqrt{3}}{2}$$
.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a и обоснованно получен верный ответ в пункте b	2
Имеется верное доказательство утверждения пункта а ИЛИ обоснованно получен верный ответ в пункте б	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2