

Overview

- Ni(100)
 - surface relaxation
 - surface energy
 - LDOS
 - surface band-structure
- Ni(111)
 - clean surface
 - CO adsorption
 - adsorption-energy
 - LDOS
 - work-function (change)
 - frequencies

Ni(100) - surface relaxation

```
fcc (100) surface
3.53
  .50000
         .50000
                 .00000
 -.50000 .50000
                 .00000
   .00000
         .00000
                 5.00000
Selective Dynamics
Cartesian
   .00000
          .00000
                 .00000 F F F
   .00000
          .50000
                 .50000 F F F
          .00000 1.00000 F F F
   .00000
   .00000 .50000 1.50000 T T T
          .00000
   .00000
                 2.00000 T T T
```

POSCAR

- Ni lattice constant 3.53 Å
- 1 atom per layer $\Rightarrow p(1 \times 1)$ cell
- 5 nickel layers
- first two layers (of one side) relaxed
- $3 \cdot 3.53 = 10.59$ Å vacuum

POTCAR

PAW-GGA potential for Ni

```
general:
   SYSTEM = clean Ni(100) surface
   ISTART = 0; ICHARG=2
   ENCUT = 270
   ISMEAR = 2 ; SIGMA = 0.2
 spin:
   ISPIN=2
   MAGMOM = 5*1
 dynamic:
   IBRION = 1
        = 100
  NSW
   POTIM = 0.2
K-Points
 0
Monkhorst-Pack
9 9 1
0 0 0
```

INCAR

- startjob; initial charge-density from overlapping atoms
- energy cut-off: 270 eV (default)
- MP-smearing (metal!)
- spinpolarized calculation initial moments of 1
- ionic relaxation

KPOINTS

- equally spaced mesh
- odd \rightarrow centered on Γ
- results in 15 k-points in IBZ
- 1 in z-direction!

the relaxation run

forces in the first and last step (in OUTCAR)

POSITION			TOTAL-FORCE	E (eV/Angst)	
0.00000	0.00000	0.00000	0.000000	0.000000	0.397218
0.00000	1.76500	1.76500	0.000000	0.000000	-0.391340
0.00000	0.00000	3.53000	0.000000	0.000000	-0.001868
0.0000	1.76500	5.29500	0.000000	0.000000	0.392187
0.00000	0.00000	7.06000	0.000000	0.000000	-0.396197
total drift:			0.000000	0.000000	0.000485
POSITION			TOTAL-FORCE	E (eV/Angst)	
POSITION	0.00000	0.00000	TOTAL-FORCE	(eV/Angst) 0.000000	0.403512
	0.00000 1.76500	0.00000 1.76500			0.403512 -0.382356
0.00000			0.000000	0.000000	
0.00000	1.76500	1.76500	0.000000	0.000000	-0.382356
0.00000 0.00000 0.00000	1.76500 0.00000	1.76500 3.53000	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	-0.382356 0.111374

surface energy

Energy convergence

- energy changes during relaxation from -25.560 to -25.575 eV \Rightarrow relaxation energy $E^{\text{rel}} = -15 \text{ meV}$
- surface energy of (unrelaxed) surface according

$$\sigma = \frac{1}{2}(E_{\text{surf}} - N_{\text{atoms}} \cdot E_{\text{bulk}})$$

$$\Rightarrow \sigma^{unrel} = \frac{1}{2}(-25.560 - 5 \cdot (-5.457)) = 0.86 \text{ eV}$$

•
$$\sigma = \sigma^{\text{unrel}} + E^{\text{rel}} = 0.71 \text{ eV}$$

geometry

from CONTCAR (or OUTCAR) file

```
Phonons - (100)-direction
  3,530000000000000
    0.5000000000000000
                    0.50000000000000000
                                      0.00000000000000000
   -0.50000000000000000
                    0.50000000000000000
                                      0.00000000000000000
    0.00000000000000000
                    0.00000000000000000
                                      5.00000000000000000
Selective dynamics
Direct
 0.00000000000000000
                                                   F
 0.5000000000000000
                 0.5000000000000000
                                0.1000000000000014
 0.20000000000000028
 0.50000000000000000
                 0.50000000000000000
                                0.3018929055424291
```

• inward relaxation of surface layers

$$\Rightarrow \Delta d_{12} = (0.3978 - 0.3019)/0.1 = -4.1\%$$

$$\Rightarrow \Delta d_{12} = (0.3019 - 0.2000)/0.1 = +1.9\%$$

Ni(100) - local density of states

```
general:
   SYSTEM = clean (100) Ni surface
   ISMEAR = -5
   ALGO=V

spin:
   ISPIN=2
   MAGMOM = 5*1

NPAR = 1
   RWIGS = 1.4
```

INCAR

- tetrahedron method
- Wigner-Seitz radius of 1.4 Å
- NPAR=1 necessary for parallel run

POSCAR

• copy CONTCAR (optimized!) to POSCAR

total charge # of ion s p d tot 0.522 0.390 8.449 9.361 9.591 0.551 0.577 8.463 0.551 0.571 8.464 9.586 0.559 0.595 8.470 9.624 0.535 0.415 8.461 9.411 tot 2.72 2.55 42.31 47.57 magnetization (x) # of ion s p d tot 1 -0.003 -0.023 0.715 0.689 -0.008 -0.028 0.618 0.582 -0.008 -0.029 0.6180.582 -0.008 -0.028 0.621 0.585 5 -0.004 -0.024 0.705 0.678 $-0.03 \quad -0.13 \quad 3.28$ 3.12 tot

partial charge - magnetization

- at the end of the OUTCAR file information on local charge and magnetization is given
- by changing RWIGS the total number of electrons within the spheres could be adapted (nickel pseudo-potential has a valence of 10)
- enhancement of the magnetic moment at the surface
- in the center "bulk like

LDOS

Local Density of States

- projection onto surface layer and bulk layer
- each spin component is plotted separately
- band narrowing at surface
- exchange splitting larger at surface

Ni(100) - band structure

```
ICHARG = 11
general:
  SYSTEM = clean (100) nickel surface
  ENMAX = 270
  ISMEAR = 2 ; SIGMA = 0.2
 ALGO=V
spin:
  ISPIN=2
 MAGMOM = 5*1
 NPAR=1
 RWIGS = 1.4
for consistency with parallel run:
NGX = 10 ; NGY = 10 ; NGZ = 72
NGXF= 18; NGYF= 18; NGZF= 140
```

INCAR

- read in charge density (1) and do not update it $(+10) \Rightarrow$ non-selfconsistent run!
- set FFT grid parameters manually to same values, to make sure that CHGCAR file is read properly

kpoints for band-structure G-X-M-G
 13
reziprok
 .00000 .00000 1
 .12500 .00000 .00000 1

.25000	.00000	.00000	1
.37500	.00000	.00000	1
.50000	.00000	.00000	1
.50000	.12500	.00000	1
.50000	.25000	.00000	1
.50000	.37500	.00000	1
.50000	.50000	.00000	1

.37500

.25000

.12500

.00000

.00000

.00000

.00000

.00000

.37500

.25000

.12500

.00000

KPOINTS

- 13 k-points along line $\bar{\Gamma} \bar{X} \bar{M} \bar{\Gamma}$
- in reciprocal coordinates
- all points with weight 1

surface bandstructure

. . .

Static calculation charge density remains constant during run spin polarized calculation

. . .

Bandstructure (projected)

• in OUTCAR status message on actual job
 ⇒ non-selfconsistent calculation

- bandstructure consists mainly out of bulklike bands
- dots mark localization at surface layer

Ni(111) - surface relaxation

```
general:
   ISTART = 0;   ICHARG = 2
   SYSTEM = clean (111) surface
   ENMAX = 270
   ISMEAR = 2 ; SIGMA = 0.2
   ALGO=V

dynamic:
   NSW=100
   POTIM = 0.2
   IBRION = 1
```

INCAR

- same INCAR file as previously for (100) surface
- spin-polarization neglected

```
Ni - (111)
  3.53
   .70710678 .0000000 .000000
 -0.35355339 0.6123724 .000000
   .000000 .000000 5.196152
    5
selective dynamics
direct
.00000000 .00000000 .00000000 F
.33333333 .66666667 .11111111
.66666667 .33333333 .22222222
.00000000 .00000000 .33333333 T
.3333333 .66666667 .44444444 Т
```

POSCAR

- similar setup as for (100) surface
- again 5 layers, 2 relaxed
- $(1 .444) \cdot 5.196 \cdot 3.53 =$ $\sim 10.2 \text{Å of vacuum}$

surface energy - geometry

Ε	POSITION			TOTAL-FORCE	TOTAL-FORCE (eV/Angst)			
-	0.00000	0.00000	0.00000	0.00000	0.00000	0.173189		
	0.00000	1.44112	2.03805	0.000000	0.00000	-0.059921		
	1.24804	0.72056	4.07609	0.000000	0.000000	-0.004067		
	0.00000	0.00000	6.11414	0.000000	0.000000	0.064998		
	0.00000	1.44112	8.15219	0.000000	0.00000	-0.174199		
-								
	total drift:			-0.000054	0.000104	-0.004855		

- forces already at the beginning rather small
 - \Rightarrow small relaxations for compact surfaces
- for surface energy non-spin-polarized bulk nickel as reference!

$$\Rightarrow \sigma^{unrel} = \frac{1}{2}(-25.729 - 5 \cdot (-5.406)) = 0.65 \text{ eV}$$

 \Rightarrow (111) surface more stable than (100) surface

Ni(111) - CO adsorption

```
Ni - (111)
 3.53
   .70710678 .0000000 .000000
-0.35355339 0.6123724 .000000
   .000000 .000000 5.1961524
   5 1 1
selective dynamics direct
.00000000 .00000000 .00000000 F
.33333333 .66666667 .11111111 F F F
.66666667 .33333333 .22222222
.00000000 .00000000 .33333333 T T
.3333333 .66666667 .4444444 T
.33333333 .66666667 .54029062 T T
.33333333 .66666667 .60298866 T T T
```

POSCAR

- two additional types (C+O)
 ⇒ POTCAR!
- CO molecule put above surface atom
 ⇒on-top
- $z_C = (.540 .444) \cdot 5.196 \cdot 3.53 =$ $\sim 1.76 \text{Å}$
- $d_{CO} = (.603 .540) \cdot 5.196 \cdot 3.53 =$ $\sim 1.16 \text{Å}$

POTCAR

• append carbon and oxygen potentials

geometry

POSITION			TOTAL-FORC	E (eV/Angst)	
0.00000	0.00000	0.00000	0.000000	0.000000	0.170860
0.00000	1.44112	2.03805	0.00000	0.000000	-0.108390
1.24804	0.72056	4.07609	0.00000	0.000000	-0.030356
0.00000	0.00000	6.10874	0.00000	0.000000	-0.082039
0.00000	1.44112	8.15398	0.00000	0.000000	0.007561
0.00000	1.44112	9.90862	0.00000	0.000000	0.020113
0.00000	1.44112	11.06330	0.00000	0.000000	0.022250
total drift:			-0.000184	-0.000227	0.014065

- small outward relaxation of surface due to adsorption $\Rightarrow \Delta d_{12} = (8.154 6.109)/2.038 = 0.4\%$
- CO geometry $\Rightarrow d_{\text{CO}} = 11.063 9.909 = 1.155\text{Å}; z_C = 9.909 8.154 = 1.755\text{Å}.$

Ni(111) - 400 eV

(for adsorption energy)

- potentials for oxygen and carbon require an energy cut-off of 400 eV.
 - ⇒ previous calculation for clean cannot be used as reference
 - ⇒ recalculate with same energy cut-off

INCAR

```
ENMAX = 400

general:
   SYSTEM = Ni(100)
   ISTART = 0
   ICHARG = 2
   ISMEAR = 2
   SIGMA = 0.2
   ALGO=V

special:
```

LVTOT = .TRUE.

- change of cut-off lowers total energy
 ⇒ -25.730 eV (270 eV) → -25.741 eV at 400 eV
 ⇒ becomes more important for larger cells!
- $E_{\text{ads}} = E_{\text{total}} E_{\text{clean}} E_{\text{CO}}$ $\Rightarrow E_{\text{ads}} = -40.830 + 25.741 + 14.833 = -0.256 \text{ eV}$
- we use this run also to calculate the work-function of Ni(111)

work-function

- use p4vasp to show the planar average of the potential
- vacuum-potential $E^{\text{vac}} = 5.46 \text{ eV}$
- Fermi-level $\varepsilon_F = 0.225 \text{ eV}$ (from OUTCAR)
- $\Phi = E^{\text{vac}} \varepsilon_{\text{F}} = 5.24 \text{ eV}$

LDOS, workfunction

```
general:
  ENMAX = 400
  SYSTEM = CO adsorption on Ni(100)
  ISMEAR = -5
 ALGO=V
LDOS:
 LORBIT = 1; NPAR = 1
 RWIGS = 1.40 1.29 1.11
workfunction:
  IDIPOL=3
  LDIPOL= .TRUE.
 LVTOT = .TRUE.
```

INCAR

- for DOS calculation ISMEAR=-5
- two additional WS-radii
- LVTOT writes local potential into LOCPOT file
- IDIPOL enables dipole correction in direction 3
- active dipole corrections to potential (=dipole layer)

POSCAR

copy CONTCAR (optimized!)
 to POSCAR

LDOS

- Im-decomposed DOS helps to analyze the bonding
- CO $5\sigma, 1\pi, 2\pi^*$
- from comparison with substrate LDOS
 - hybridization with Ni- $d_{3z^2-r^2}$
 - no interaction with d_{xy}
 - \Rightarrow from symmetry

workfunction

- $\varepsilon_F = 1.66 \text{ eV (from OUTCAR)}$
- vacuum-potential at 8.15 / 6.76 eV $\Rightarrow \Phi_{\text{CO}} = 6.49, \Phi_{\text{clean}} = 5.10 \text{ eV}$
- too small result for clean surface due to too small vacuum ...

frequencies

```
SYSTEM= CO on Nill1 - frequencies
general:
 ENMAX = 400
 ISMEAR = 2 ; SIGMA = 0.2
 ALGO = V
 EDIFF = 1E-6
dynamic:
 NSW=100
 POTIM = 0.04
  IBRION = 5
 NFREE = 2
```

INCAR

- the very usual settings ...
- smaller termination criterion EDIFF
- automatic frequency calculation (displacement 0.04 Å)

```
Ni - (111) + CO ontop

3.5300000000000

0.70710678 0.0000000 0.0000000

-0.35355339 0.6123724 0.0000000

0.00000000 0.0000000 5.1961524

5 1 1
```

Selective dynamics

Direct

```
0.0000000 0.0000000 0.0000000 F F F F O.33333333 0.66666667 0.11111111 F F F F O.66666666 0.33333333 0.2222222 F F F F O.33333333 0.66666667 0.4453762 F F F F O.66666666 0.33333333 0.5177755 F F T O.66666666 0.33333333 0.5815997 F F T
```

POSCAR

- take CONTCAR from relaxed calculation
- frequencies only for CO molecule and z-direction

(z- and (x,y) are independent!)

frequencies

Additional output in OUTCAR file for frequency calculation via finite difference:

Finite differences progress:

Degree of freedom: 1/ 2
Displacement: 1/ 2
Total: 1/ 4

- ullet After the first calculation for the equilibrium geometry, NFREE displacements (\pm POTIM) are performed for each degree of freedom; from these displacements the dynamical matrix is set up and diagonalized
- at the end of the OUTCAR file the
 - forces,
 - the dynamical matrix and finally
 - the eigenfrequencies and
 - eigenvectors (first normalized and then mass-weighted)

are listed

Eigenvectors and eigenvalues of the dynamical matrix

1	f	=	64.	112970	THz	402.8336	672 2PiTHz	2138.	578420	cm-	1 265.150026	meV
			X		Y	Z	(xb	C	dy	dz	
	0	.00	0000	0.0000	000	0.000000		0		0	0	
	0	.00	0000	1.4411	116	2.038046		0		0	0	
	1	.24	3043	0.7205	558	4.076093		0		0	0	
	0	.00	0000	0.0000	000	6.108743		0		0	0	
	0	.00	0000	1.4411	116	8.153979		0		0	0	
	0	.00	0000	1.4411	116	9.908620		0		0	-0.225414	
	0	.00	0000	1.4411	116	11.063296		0		0	0.156066	

2 f	= 12	.362230 TH	z 77.674183	2PiTHz 41	2.359599 cm-1	51.126093 meV
	X	Y	Z	dx	dy	dz
0.	.000000	0.000000	0.000000	0	0	0
0.	.000000	1.441116	2.038046	0	0	0
1.	.248043	0.720558	4.076093	0	0	0
0.	.000000	0.000000	6.108743	0	0	0
0.	.000000	1.441116	8.153979	0	0	0
0.	.000000	1.441116	9.908620	0	0	-0.180127
0.	.000000	1.441116	11.063296	0	0	-0.195303

CO stretch

CO-metal