Математические основы компьютерной графики

- (c) Корольков О.Г. http://vk.com/korolkov_amm
- (с) Кафедра вычислительной математики и прикладных информационных технологий Воронежского государственного университета

Аффинные преобразования на плоскости.

Наименование А П	Формула АП в декар- товых координатах	Матрица АП в одно- родных координатах
Аффинное преобразование общего вида	$\begin{cases} x' = a_{11}x + a_{12}y + b_1 \\ y' = a_{21}x + a_{22}y + b_2 \end{cases}$	$A = \begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ 0 & 0 & 1 \end{pmatrix}$
Тождественное аффинное преобразование	$\begin{cases} x' = x \\ y' = y \end{cases}$	$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Базовые аффинные преобразования на плоскости.

Наименование АП	Формула АП в декар- товых координатах	Матрица АП в одно- родных координатах
Перенос на вектор $\vec{a}(a_x, a_y)$	$\begin{cases} x' = x + a_x \\ y' = y + a_y \end{cases}$	$T_{\vec{a}} = \begin{pmatrix} 1 & 0 & a_x \\ 0 & 1 & a_y \\ 0 & 0 & 1 \end{pmatrix}$
Поворот вокруг начала координат на угол ф	$\begin{cases} x' = x \cos \varphi - y \sin \varphi \\ y' = x \sin \varphi + y \cos \varphi \end{cases}$	$R_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & 1 \end{pmatrix}$
Масштабирование вдоль координат- ных осей	$\begin{cases} x' = k_x \cdot x \\ y' = k_y \cdot y \end{cases}$	$S_{k_x,k_y} = \begin{pmatrix} k_x & 0 & 0 \\ 0 & k_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Базовые аффинные преобразования на плоскости.

Наименование АП	Формула АП в декар- товых координатах	Матрица АП в одно- родных координатах
Отражение относительно оси абсцисс	$\begin{cases} x' = x \\ y' = -y \end{cases}$	$M_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Отражение относительно оси ординат	$\begin{cases} x' = -x \\ y' = y \end{cases}$	$M_{y} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Отражение относительно начала координат	$\begin{cases} x' = -x \\ y' = -y \end{cases}$	$M_O = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

