Sada příkladů 2/10

Funkce více proměnných

Parciální derivace

V následujících příkladech zjistěte, kde jsou funkce definované, spojité, kde mají parciální derivace 1. řádu a kde jsou spojité 1. parciální derivace

- 1. $f(x,y) = \ln(x+y)$
- 2. $f(x, y, z) = \cos x \cosh y$
- 3. f(x,y) = |x||y|
- 4. $f(x,y) = \sqrt[3]{xy}$
- 5. $f(x,y) = \sqrt[5]{x^5 + y^5}$
- 6. $f(x, y, x) = x^{\frac{y}{z}}$.
- 7. Nechť $\alpha \in \mathbb{R}$. Pro jaké hodnoty α bude mít funkce

$$f(x,y) = (x^2 + y^2)^{\alpha} \sin \frac{1}{x^2 + y^2}$$

parciální derivace 1. řádu v bodě (0,0)?

Spočtěte parciální derivace 2. řádu a zjistěte, zda jsou záměnné

- 8. $f(x,y) = x^4 + y^4 4x^2y^2$
- 9. $f(x,y) = \frac{x}{y^2}$
- $10. \ f(x,y) = x\sin(x+y)$
- 11. $f(x,y) = \operatorname{tg} \frac{x^2}{y}$
- 12. $f(x, y, z) = x^{y^z}$
- 13. $f(x,y) = \arctan \frac{x+y}{1-xy}$

14.
$$f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$
 (Uvažujte bod (0,0).)

- 15. Spočtěte derivaci funkce x^2-y^2 v bodě (1,1) ve směru jednotkového vektoru, který svírá s kladným směrem osy x úhel $\frac{\pi}{3}$.
- 16. Najděte jednotkový vektor, v jehož směru má derivace $x^2 xy + y^2$ v bodě (1,1) největší, nejmenší a nulovou hodnotu.
- 17. Spočtěte $\frac{\partial F}{\partial u}$, kde F = f(g), f(x,y,z) je daná funkce a $g_1(u,v) = (u^2-1)/2v$, $g_2(u,v) = (u+v)/(u-v)$, $g_3(u,v) = u^2-v^2$.
- 18. Nechť f(s,t) je hladká nezáporná funkce na \mathbb{R}^2 . Vyjádřete parciální derivace 1. řádu funkce $g(x,y)=f(x,y)^{f(y,x)}$ pomocí hodnot f a jejich parciálních derivací.