

H2 Mathematics (9758) Chapter 2 Transformation of Curves Extra Practice Solutions

Qn 1	2020/VJC/8b
	Before C, the equation of curve is $y = -\frac{x+3}{x+2}$
	Before B, the equation is $y = \frac{x+3}{x+2}$
	Before A, the equation is $y = \frac{(x-3)+3}{(x-3)+2} = \frac{x}{x-1}$
	$\therefore y = \frac{x}{x - 1}$

Qn 2	2020/CJC Prelim/1
(i)	
	$f(x) = \frac{2x+3}{3x+5}$ 2 1
	$=\frac{2}{3}-\frac{1}{3(3x+5)}$
	$= \frac{2}{3} + \frac{-\frac{1}{3}}{3x+5}$ $y = \frac{1}{x} \to y = \frac{1}{9} \left(\frac{1}{x}\right) = \frac{1}{9x}$
(ii)	
	Step1 : stretching by a factor of $\frac{1}{9}$ parallel to the y-axis
	Or stretching by a factor of $\frac{1}{9}$ parallel to the <i>x</i> -axis
	$y = \frac{1}{9x} \to y = \frac{1}{9\left(x + \frac{5}{3}\right)}$
	Step2 : translation by $\frac{5}{3}$ units in the negative x-direction
	$y = \frac{1}{9\left(x + \frac{5}{3}\right)} \to y = -\frac{1}{9\left(x + \frac{5}{3}\right)}$
	Step3 : reflection in the <i>x</i> -axis

$$y = -\frac{1}{9\left(x + \frac{5}{3}\right)} \rightarrow y = \frac{2}{3} - \frac{1}{9\left(x + \frac{5}{3}\right)}$$

Step4: translation by $\frac{2}{3}$ units in the positive y-direction

