Day 2

Egad! It's Excel

The Data Bootcamp

Admin Stuff

Class Git Repository

All Class Content and Homework will be here:

https://ucsd.bootcampcontent.com/UCSD-Coding-Bootcamp/UCSD201805DATA1-Class-Repository-DATA

You will be analyzing thousands of Kickstarter projects to look for funding trends across goal targets and topics.

Due: Next Saturday (30th)

Recommended Target: Thursday of Next Week

Quick Refresher

Truth-Telling & Story Telling

What are the steps in the **Analytics Paradigm?**

Analytics Paradigm

Regardless of type or industry, this paradigm provides a repeatable pathway for effective data problem solving.

Let's Start with the Basics

Formulas

Arguments

In a way, Excel has introduced you to a sort of protoprogramming. Throughout your time writing scripts you will rely on **functions** (methods) that do *something* to or with **arguments**.

When we reference a set of range, Excel is being given a set of **variable** inputs. It will determine the actual values of these inputs prior to executing the function.

What about this example?

Which is the function? Which are the arguments?

= SUM(AVG(F4:F6), AVG(G4:G6))

What about this example?
Which is the function? Which are the arguments?

= SUM(AVG(F4:F6), AVG(G4:G6))

It Depends...

What about this example? Which is the function? Which are the arguments?

The **AVG functions** takes as their arguments the ranges provided.

What about this example? Which is the function? Which are the arguments?

This is a **nested function**. We'll be doing plenty of complex nests in this class.

Python Snippet from Last Class

```
requests.get(target_url_italian, headers=headers).json()
requests.get(target_url_mexican, headers=headers).json()
```

Python Snippet from Last Class

Syntax and capabilities may differ across technologies and platforms, but fundamental concepts remain the same.

Demo Time!

(01-ExcelPlayground, 02-NamedRanges)

Conditionals

Conditionals: If This... Then That

Conditionals present a way to **control the flow** of logic based on certain criteria being met. This is a *core building block* in all languages.

Conditionals: If This... Then That

=IF(D2>5,TRUE,FALSE)

AND, NOT, OR

Conditionals: If This... Then That

=IF(**AND(**D2>5, D2<10**)**,TRUE,FALSE)

Conditionals: If This... Then That

Nesting conditionals can quickly become a very convoluted (albeit necessary) part of your data prep.

Demo Time!

(03-ColorCounter – 08-McDonalds)

BREAK

Pivot Tables

Get Pivot With It

Pivot Tables are one of the most important data visualization concepts to master in this class.

(Don't worry. They are a cinch to deal with)

Get Pivot With It

Seller	Qty. Sold	Date
Joseph	\$42.50	1/1/17
Jacob	\$65.00	1/3/17
Jacob	\$5.25	1/6/17
Joseph	\$125.00	1/6/17
Jacob	\$3.50	1/7/17
Matt	\$32.00	1/9/17

Seller	Total Sold	
Joseph	\$167.50	
Jacob	\$73.75	
Matt	\$32.0	

In essence, Pivot tables are a **summative** analytic tool that allows us to perform aggregate functions that along any combination of fields.

(The name comes from the fact that we are pivoting along a data axis)

Demo Time!

(09-PivotTables, 10-TopSongs)

Lookups

Look It Up with Lookups

Planet	Population	
Zeelo	5020	
Merinoa	380	
Cardboard Box	2	
• • •		
Asteroid 9	95	

Assume this table is gigantic...

How would we retrieve the population of a specific planet for use in another formula?

Look It Up with Lookups

Planet	Population	
Zeelo	5020	
Merinoa	380	
Cardboard Box	2	
• • •	• • •	
Asteroid 9	95	

Assume this table is gigantic...

How would we retrieve the population of a specific planet for use in another formula?

=vlookup(<value>, <full table>, <column to retrieve>,<match parameter>)

What Will This Yield?

Planets

Planet	Population	Species
Zeelo	5020	Zoltans
Merinoa	380	Murphies
Cardboard Box	2	Hambones
•••		
Asteroid 9	95	The Asterisks

=vlookup("Asteroid 9", Planets, 3, FALSE)

What Will This Yield?

Planets

Planet	Population	Species
Zeelo	5020	Zoltans
Merinoa	380	Murphies
Cardboard Box	2	Hambones
Asteroid 9	95	The Asterisks

=vlookup("Astroid 9", Planets, 3, FALSE)

The Asterisks

Demo Time!

(11-Lookups, 12-ProductPivot)

Questions / Discussion