LAB. 1. Analiza systemów statycznych. Aproksymacja metodą najmniejszych kwadratów.

Na podstawie powyższego wykresu uzupełnij poniższą tabelę wartościami zmiennej x_3 :

$x_1 \setminus x_2$	0	1	2	3	4	5	6
0							
2							
4							
6							

Postacie wielomianów:

1.
$$f(x_1, x_2) = a_0 + a_1 x_1 + a_2 x_2$$
,

2.
$$f(x_1, x_2) = a_0 + a_1 x_1 x_2$$
,

3.
$$f(x_1, x_2) = a_0 + a_1x_1 + a_2x_2 + a_3x_1x_2$$
,

4.
$$f(x_1, x_2) = a_0 + a_1x_1 + a_2x_2 + a_3x_1x_2 + a_4x_1^2 + a_5x_2^2$$
,

5.
$$f(x_1, x_2) = a_0 + a_1 x_1^4 + a_2 x_2^4 + a_3 x_1 x_2$$
.

Dla każdej z podanych form wielomianu wykonaj:

- 1. Dokonaj aproksymacji metodą najmniejszych kwadratów.
- 2. Wyrysuj powstałą płaszczyznę wraz z punktami odczytanymi z wykresu.
- 3. Wyznacz błąd średniokwadratowy $mse = \frac{1}{n}\sum\limits_{i=1}^{n}(x_3(i)-x_3'(i))^2$