Dinámica Hamiltoniana

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

5 de noviembre de 2024

Agenda

- 🚺 Entre Lagrange y Hamilton
 - La idea lagrangiana
 - La idea hamiltoniana
 - Velocidades generalizada y momentos conjugados
- El esquema Hamiltoniano
 - Del lagrangeano al hamiltoniano
 - El oscilador armónico
 - Partícula moviéndose en cono vertical

• La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $\mathcal{L}(q_i, \dot{q}_i, t), i = 1, 2, ..., s$, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .

- La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $\mathcal{L}(q_i, \dot{q}_i, t), i = 1, 2, ..., s$, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .
- En la formulación lagrangiana el movimiento de un sistema mecánico con n grados de libertad se rige por n ecuaciones diferenciales ordinarias de segundo orden.

- La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $\mathcal{L}(q_i, \dot{q}_i, t), i = 1, 2, ..., s$, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .
- En la formulación lagrangiana el movimiento de un sistema mecánico con n grados de libertad se rige por n ecuaciones diferenciales ordinarias de segundo orden.
- El movimiento del sistema se determina unívocamente al especificar las 2n condiciones iniciales: los valores de las coordenadas q_s y velocidades \dot{q}_s para un instante particular t_0 .

- La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $\mathcal{L}(q_i, \dot{q}_i, t), i = 1, 2, ..., s$, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .
- En la formulación lagrangiana el movimiento de un sistema mecánico con n grados de libertad se rige por n ecuaciones diferenciales ordinarias de segundo orden.
- El movimiento del sistema se determina unívocamente al especificar las 2n condiciones iniciales: los valores de las coordenadas q_s y velocidades \dot{q}_s para un instante particular t_0 .
- El movimiento se representa geométricamente mediante una trayectoria en el espacio de configuración n-dimensional descrito por las coordenadas generalizadas q_1, \ldots, q_n

 La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i), en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i.

- La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i) , en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i .
- La dinámica de hamiltoniana consiste en sustituir las n ecuaciones de Lagrange por un conjunto equivalente de n ecuaciones diferenciales ordinarias de primer orden.

- La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i) , en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i .
- La dinámica de hamiltoniana consiste en sustituir las n ecuaciones de Lagrange por un conjunto equivalente de n ecuaciones diferenciales ordinarias de primer orden.
- El movimiento se representa por una curva descrita en el espacio de fase, un espacio de 2n dimensiones cuyas coordenadas son las variables independientes q_i y p_i .

- La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i) , en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i .
- La dinámica de hamiltoniana consiste en sustituir las n ecuaciones de Lagrange por un conjunto equivalente de n ecuaciones diferenciales ordinarias de primer orden.
- El movimiento se representa por una curva descrita en el espacio de fase, un espacio de 2n dimensiones cuyas coordenadas son las variables independientes q_i y p_i .
- La importancia del formalismo hamiltoniano radica en que proporciona un método potente, general y flexible para la investigación de las cuestiones estructurales más profundas de la mecánica clásica y también en que sirve de fundamento a la mecánica cuántica y a la mecánica estadística.

• No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.

- No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.
- Es decir $\dot{q}_i = s_i$, $\Rightarrow \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial s_i} \right) \frac{\partial \mathcal{L}}{\partial q_i} = 0$, para i = 1, ..., n, donde $\mathcal{L}(q_i, s_i, t)$ es el Lagrangiano del sistema.

- No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, \ i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.
- Es decir $\dot{q}_i = s_i$, $\Rightarrow \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial s_i} \right) \frac{\partial \mathcal{L}}{\partial q_i} = 0$, para $i = 1, \dots, n$, donde $\mathcal{L}(q_i, s_i, t)$ es el Lagrangiano del sistema.
- Estas ecuaciones, involucran a las q_i y s_i de forma muy asimétrica y no son especialmente útiles.

- No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, \ i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.
- Es decir $\dot{q}_i = s_i$, $\Rightarrow \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial s_i} \right) \frac{\partial \mathcal{L}}{\partial q_i} = 0$, para $i = 1, \dots, n$, donde $\mathcal{L}(q_i, s_i, t)$ es el Lagrangiano del sistema.
- Estas ecuaciones, involucran a las q_i y s_i de forma muy asimétrica y no son especialmente útiles.
- Bajar el orden del sistema de ecuaciones dinámicas, se consigue describiendo la evolución del sistema mediante 2n, cantidades: las posiciones q_1, \ldots, q_n y los momentos conjugados p_1, \ldots, p_n , definidos por $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}, \quad i = 1, \ldots, n$.

• La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $\mathcal{L}(q, \dot{q}, t)$ por H(q, p, t) como generador de la dinámica.

- La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $\mathcal{L}(q, \dot{q}, t)$ por H(q, p, t) como generador de la dinámica.
- Definimos $H(q, p, t) = \sum_{i=1}^{n} \dot{q}_{i} p_{i} L(q, \dot{q}, t)$ como la transformación de Legendre del lagrangiano $\mathcal{L}(q, \dot{q}, t)$. En el lado derecho las velocidades se expresan como $\dot{q}_{i} = f_{i}(q, p, t)$.

- La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $\mathcal{L}(q, \dot{q}, t)$ por H(q, p, t) como generador de la dinámica.
- Definimos $H(q, p, t) = \sum_{i=1}^{n} \dot{q}_i p_i L(q, \dot{q}, t)$ como la transformación de Legendre del lagrangiano $\mathcal{L}(q, \dot{q}, t)$. En el lado derecho las velocidades se expresan como $\dot{q}_i = f_i(q, p, t)$.
- Las ecuaciones dinámicas serán $\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}, \quad i=1,\ldots,n$

- La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $\mathcal{L}(q, \dot{q}, t)$ por H(q, p, t) como generador de la dinámica.
- Definimos $H(q, p, t) = \sum_{i=1}^{n} \dot{q}_i p_i L(q, \dot{q}, t)$ como la transformación de Legendre del lagrangiano $\mathcal{L}(q, \dot{q}, t)$. En el lado derecho las velocidades se expresan como $\dot{q}_i = f_i(q, p, t)$.
- Las ecuaciones dinámicas serán $\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}, \quad i=1,\ldots,n$
- El planteamiento hamiltoniano de la dinámica implica los siguientes pasos
 - Fija las coordenadas generalizadas y construye el lagrangeano a partir de las energías cinética y potencial
 - Expresa la velocidades generalizadas en término de los momentos canónicos conjungados $\dot{q}_i = f_i(q, p, t)$.
 - Construye el Hamiltoniano a partir de la transformación de Legendre del Lagrangeano
 - Plantea las ecuaciones dinámicas de Hamilton

• El Lagrangiano es $\mathcal{L} = T - V = \frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2$

- El Lagrangiano es $\mathcal{L} = T V = \frac{1}{2}m\dot{q}^2 \frac{1}{2}kq^2$
- Hay un momento conjugado: $p = \frac{\partial \mathcal{L}}{\partial \dot{q}} = m\dot{q} \quad \Rightarrow \quad \dot{q} = \frac{p}{m}$

- El Lagrangiano es $\mathcal{L} = T V = \frac{1}{2}m\dot{q}^2 \frac{1}{2}kq^2$
- Hay un momento conjugado: $p = \frac{\partial \mathcal{L}}{\partial \dot{q}} = m\dot{q} \quad \Rightarrow \quad \dot{q} = \frac{p}{m}$
- El Hamiltoniano es $H(q,p)=p\dot{q}-\mathcal{L}=p\dot{q}-\frac{1}{2}m\dot{q}^2+\frac{1}{2}kq^2$, es decir $H(q,p)=p\frac{p}{m}-\frac{1}{2}m\left(\frac{p}{m}\right)^2+\frac{1}{2}kq^2=\frac{p^2}{2m}+\frac{1}{2}kq^2$

- El Lagrangiano es $\mathcal{L}=T-V=rac{1}{2}m\dot{q}^2-rac{1}{2}kq^2$
- Hay un momento conjugado: $p=rac{\partial \mathcal{L}}{\partial \dot{q}}=m\dot{q} \quad \Rightarrow \quad \dot{q}=rac{p}{m}$
- El Hamiltoniano es $H(q,p) = p\dot{q} \mathcal{L} = p\dot{q} \frac{1}{2}m\dot{q}^2 + \frac{1}{2}kq^2$, es decir $H(q,p) = p\frac{p}{m} \frac{1}{2}m\left(\frac{p}{m}\right)^2 + \frac{1}{2}kq^2 = \frac{p^2}{2m} + \frac{1}{2}kq^2$
- Las ecuaciones de Hamilton son $\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{m}$ y $\dot{p} = -\frac{\partial H}{\partial q} = -kq$

- El Lagrangiano es $\mathcal{L} = T V = \frac{1}{2}m\dot{q}^2 \frac{1}{2}kq^2$
- Hay un momento conjugado: $p = \frac{\partial \mathcal{L}}{\partial \dot{q}} = m\dot{q} \quad \Rightarrow \quad \dot{q} = \frac{p}{m}$
- El Hamiltoniano es $H(q, p) = p\dot{q} \mathcal{L} = p\dot{q} \frac{1}{2}m\dot{q}^2 + \frac{1}{2}kq^2$, es decir $H(q, p) = p\frac{p}{m} \frac{1}{2}m\left(\frac{p}{m}\right)^2 + \frac{1}{2}kq^2 = \frac{p^2}{2m} + \frac{1}{2}kq^2$
- Las ecuaciones de Hamilton son $\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{m}$ y $\dot{p} = -\frac{\partial H}{\partial q} = -kq$
- Se resuelven igual que la ecuación de Lagrange $\ddot{q}=rac{\dot{p}}{m}=-rac{k}{m}q$

- El Lagrangiano es $\mathcal{L} = T V = \frac{1}{2}m\dot{q}^2 \frac{1}{2}kq^2$
- Hay un momento conjugado: $p = \frac{\partial \mathcal{L}}{\partial \dot{q}} = m\dot{q} \quad \Rightarrow \quad \dot{q} = \frac{p}{m}$
- El Hamiltoniano es $H(q, p) = p\dot{q} \mathcal{L} = p\dot{q} \frac{1}{2}m\dot{q}^2 + \frac{1}{2}kq^2$, es decir $H(q, p) = p\frac{p}{m} \frac{1}{2}m\left(\frac{p}{m}\right)^2 + \frac{1}{2}kq^2 = \frac{p^2}{2m} + \frac{1}{2}kq^2$
- Las ecuaciones de Hamilton son $\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{m}$ y $\dot{p} = -\frac{\partial H}{\partial q} = -kq$
- Se resuelven igual que la ecuación de Lagrange $\ddot{q}=rac{\dot{p}}{m}=-rac{k}{m}q$
- Con solución $q(t) = A\sin(\omega t + \varphi)$, $\omega^2 = \frac{k}{m}$, es decir $p(t) = m\dot{q} = Am\omega\cos(\omega t + \varphi)$

- ullet El Lagrangiano es $\mathcal{L}=T-V=rac{1}{2}m\dot{q}^2-rac{1}{2}kq^2$
- Hay un momento conjugado: $p = \frac{\partial \mathcal{L}}{\partial \dot{q}} = m\dot{q} \quad \Rightarrow \quad \dot{q} = \frac{p}{m}$
- El Hamiltoniano es $H(q, p) = p\dot{q} \hat{\mathcal{L}} = p\dot{q} \frac{1}{2}m\dot{q}^2 + \frac{1}{2}kq^2$, es decir $H(q, p) = p\frac{p}{m} \frac{1}{2}m\left(\frac{p}{m}\right)^2 + \frac{1}{2}kq^2 = \frac{p^2}{2m} + \frac{1}{2}kq^2$
- Las ecuaciones de Hamilton son $\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{m}$ y $\dot{p} = -\frac{\partial H}{\partial q} = -kq$
- Se resuelven igual que la ecuación de Lagrange $\ddot{q}=rac{\dot{p}}{m}=-rac{k}{m}q$
- Con solución $q(t) = A\sin(\omega t + \varphi)$, $\omega^2 = \frac{k}{m}$, es decir $p(t) = m\dot{q} = Am\omega\cos(\omega t + \varphi)$
- El Hamiltoniano es independiente del tiempo, entonces $H(q,p)=rac{p^2}{2m}+rac{1}{2}kq^2=$ cte Una elipse en el espacio de fase

• El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 - mgr\cot\alpha$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$
- Se despejan las velocidades generalizadas como $\dot{r}=rac{p_r}{m\csc^2\alpha}$ y $\dot{arphi}=rac{p_{arphi}}{mr^2}$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$
- Se despejan las velocidades generalizadas como $\dot{r}=rac{p_r}{m \csc^2 lpha}$ y $\dot{arphi}=rac{p_{arphi}}{mr^2}$
- El Hamiltoniano es $H = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{L} = p_r \dot{r} + p_{\varphi} \dot{\varphi} \frac{1}{2} m \dot{r}^2 \csc^2 \alpha \frac{1}{2} m r^2 \dot{\varphi}^2 + mgr \cot \alpha.$ Es decir $H(r, \varphi, p_r, p_{\varphi}) = \frac{p_r^2}{2m\csc^2 \alpha} + \frac{p_{\varphi}^2}{2mr^2} + mgr \cot \alpha$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$
- Se despejan las velocidades generalizadas como $\dot{r}=rac{p_r}{m\csc^2\alpha}$ y $\dot{arphi}=rac{p_{arphi}}{mr^2}$
- El Hamiltoniano es $H = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{L} = p_r \dot{r} + p_{\varphi} \dot{\varphi} \frac{1}{2} m \dot{r}^2 \csc^2 \alpha \frac{1}{2} m r^2 \dot{\varphi}^2 + mgr \cot \alpha.$ Es decir $H(r, \varphi, p_r, p_{\varphi}) = \frac{p_r^2}{2m \csc^2 \alpha} + \frac{p_{\varphi}^2}{2mr^2} + mgr \cot \alpha$
- Las ecuaciones de Hamilton son $\dot{\varphi} = \frac{\partial H}{\partial p_{\varphi}} = \frac{p_{\varphi}}{mr^2}$; $\dot{r} = \frac{\partial H}{\partial p_r} = \frac{p_r}{m \csc^2 \alpha}$; $\dot{p}_{\varphi} = -\frac{\partial H}{\partial \varphi} = 0 \Rightarrow p_{\varphi} = mr^2 \dot{\varphi} = \text{cte y } \dot{p}_r = -\frac{\partial H}{\partial r} = \frac{p_{\varphi}^2}{mr^3} mg \cot \alpha$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$
- Se despejan las velocidades generalizadas como $\dot{r}=rac{p_r}{m\csc^2\alpha}$ y $\dot{arphi}=rac{p_{arphi}}{mr^2}$
- El Hamiltoniano es $H = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{L} = p_r \dot{r} + p_{\varphi} \dot{\varphi} \frac{1}{2} m \dot{r}^2 \csc^2 \alpha \frac{1}{2} m r^2 \dot{\varphi}^2 + mgr \cot \alpha.$ Es decir $H(r, \varphi, p_r, p_{\varphi}) = \frac{p_r^2}{2m\csc^2 \alpha} + \frac{p_{\varphi}^2}{2mr^2} + mgr \cot \alpha$
- Las ecuaciones de Hamilton son $\dot{\varphi}=\frac{\partial H}{\partial p_{\varphi}}=\frac{p_{\varphi}}{mr^2};\;\dot{r}=\frac{\partial H}{\partial p_r}=\frac{p_r}{m \csc^2\alpha};\;\dot{p}_{\varphi}=-\frac{\partial H}{\partial \varphi}=0 \Rightarrow p_{\varphi}=mr^2\dot{\varphi}=$ cte y $\dot{p}_r=-\frac{\partial H}{\partial r}=\frac{p_{\varphi}^2}{mr^3}-mg\cot\alpha$
- Adicionalmente, $\frac{\partial H}{\partial t} = 0 \quad \Rightarrow \quad H(r, \varphi, p_r, p_{\varphi}) = \text{cte.}$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$
- Se despejan las velocidades generalizadas como $\dot{r}=rac{p_r}{m\csc^2\alpha}$ y $\dot{arphi}=rac{p_{arphi}}{mr^2}$
- El Hamiltoniano es $H = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{L} = p_r \dot{r} + p_{\varphi} \dot{\varphi} \frac{1}{2} m \dot{r}^2 \csc^2 \alpha \frac{1}{2} m r^2 \dot{\varphi}^2 + mgr \cot \alpha.$ Es decir $H(r, \varphi, p_r, p_{\varphi}) = \frac{p_r^2}{2m \csc^2 \alpha} + \frac{p_{\varphi}^2}{2mr^2} + mgr \cot \alpha$
- Las ecuaciones de Hamilton son $\dot{\varphi}=\frac{\partial H}{\partial p_{\varphi}}=\frac{p_{\varphi}}{mr^{2}};\;\dot{r}=\frac{\partial H}{\partial p_{r}}=\frac{p_{r}}{m\csc^{2}\alpha};\;$ $\dot{p}_{\varphi}=-\frac{\partial H}{\partial \varphi}=0\Rightarrow p_{\varphi}=mr^{2}\dot{\varphi}=\text{cte y }\dot{p}_{r}=-\frac{\partial H}{\partial r}=\frac{p_{\varphi}^{2}}{mr^{3}}-mg\cot\alpha$
- Adicionalmente, $\frac{\partial H}{\partial t} = 0 \quad \Rightarrow \quad H(r, \varphi, p_r, p_\varphi) = \text{cte.}$
- La función $H(r, \varphi, p_r, p_{\varphi}) =$ cte describe una hipersuperficie 3-dimensional en el espacio de fase 4-dimensional $(r, \varphi, p_r, p_{\varphi})$.

Dinámica Hamiltoniana