Relational Algebra & Calculus

Roberto Marabini EDAT

2017

Query Plan

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - Relational Algebra: More operational (procedural), very useful for representing execution plans.
 - Relational Calculus: Lets users describe what they want, rather than how to compute it: Non-operational, <u>declarative</u>.

Relational Algebra

Basic operations:

- Selection (σ) Selects a subset of rows from relation.
- Projection (π) Deletes unwanted columns from relation.
- Cross-product (x) Allows us to combine two relations.
- <u>Set-difference</u> (___) Tuples in reln. I, but not in reln. 2.
- Union () Tuples in reln. I and in reln. 2.

Additional operations:

- Intersection, <u>join</u>, division, renaming: Not essential, but (very!) useful.
- Aggregation (sum, avg, etc.)
- Since each operation returns a relation, operations can be composed: algebra is "closed".

Relational Algebra Operations

(b) Projection

(c) Cartesian product

3

Pearson Education © 2009

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to eliminate duplicates! Why?
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it (by DISTINCT). Why not?

Relation r

А	В	С
α	10	1
α	20	1
β	30	1
β	40	2

А	С		А	С
α	1		α	1
α	1	=	β	1
β	1		β	2
В	2			

$$\square$$
 $\prod_{A,C} (r)$

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result!
 Why?
- Schema of result identical to schema of input relation.
- What is Operator composition?
- Selection is commutative

Relation r

А	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$$\forall \sigma_{A=B^{\land}D>5}(r)$$

Α	В	С	D
α	α	1	7
β	β	23	10

Union, Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - Corresponding' fields have the same type.
- What is the schema of result?

Union – Example

Relations r, s:

Α	В	
α	1	
α	2	
β	1	
r		

$$\begin{array}{|c|c|c|}
\hline
A & B \\
\hline
\alpha & 2 \\
\beta & 3 \\
\hline
S \\
\end{array}$$

 $r \cup s$:

Α	В
α	1
α	2
β	1
β	3

Difference. Example

Relaciones r, s:

Α	В
α	1
α	2
β	1
·	r

 $\begin{array}{c|c}
A & B \\
\hline
\alpha & 2 \\
\beta & 3 \\
\hline
S
\end{array}$

r – *S*:

Cross-Product (Cartesian Product)

❖ Each row of SI is paired with each row of RI.

Relations r, s:

С	D	Ε
$\begin{array}{c} \alpha \\ \beta \\ \beta \\ \gamma \end{array}$	10 10 20 10	а а b b

r x s:

Α	В	С	D	Ε
α	1	α	10	а
α	1	β	10	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

S

Renaming operator

Name the result of an operation Refer to the same relation by several names Example:

$$\rho_{x}(E)$$

Assigns the result of Expression E to name X

$$\rho_{X \text{ (A I, A2, ..., An)}}$$
 (E)

Renames Attributes as: A1, A2,, An.

Notation: <

A Set of Logical Operations: The Relational Algebra

- Six basic operations:
 - Projection $\pi_{\overline{\alpha}}(R)$
 - Selection σ_{θ} (R)
 - Union $R_1 \cup R_2$
 - Difference $R_1 R_2$
 - Product $R_1 \times R_2$
 - Rename $\rho_{\overline{\alpha} \to \overline{\beta}}$ (R)
- And some other useful ones:
 - Join $R_1 \bowtie_{\theta} R_2$
 - Intersection $R_1 \cap R_2$
 - Division R_1 / R_2

Natural Join

Relation r, s:

А	В	С	D
α	1	α	а
β	2	γ	а
γ	4	β	b
α	1	γ	а
δ	2	β	b
r			

В	D	Ε
1	а	α
3	а	β
1	а	$egin{array}{c} eta \ \gamma \ \delta \end{array}$
2 3	b	_
3	b	\in
	S	

 $r \bowtie s$

А	В	С	D	Ε
α	1	α	а	α
α	1	α	а	γ
α	1	γ	а	α
α	1	γ	а	γ
δ	2	β	b	δ

Properties of join

- **
- * Is join commutative? $S1 \bowtie R1 = R1 \bowtie S1$?
- * Is join associative? $S1\bowtie (R1\bowtie C1)=(S1\bowtie R1)\bowtie C1?$

Deriving Intersection

Intersection: as with set operations, derivable from difference

Division

Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved all boats.

- ❖ Let A have 2 fields, x and y; B have only field y:
 - A/B = $\{\langle x \rangle | \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B\}$
 - i.e., A/B contains all x tuples (sailors) such that for <u>every</u> y tuple (boat) in B, there is an xy tuple in A.
 - Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A/B.
- \diamond In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division A/B

s n o	pno
s 1	p 1
s 1	p 2
s 1	p 3
s 1	p 4
s 2	p 1
s 2	p 2
s 3	p 2
s 4	p 2
s 4	p 4

pno	
p2	
<i>B</i> 1	

pno)	
p2		
p4		
B2		

pno
p1
p2
p4
<i>B3</i>

sno
s1
s2
s3
s4

A/E

A/B2

A/B3

Mini-Quiz

- This completes the basic operations of the relational algebra. Try writing queries for these:
 - The IDs of students named "Bob"
 - The names of students expecting an "A"
 - The names of students in 501-0105 class
 - The sids and names of students not enrolled

Data Instance for Operator Examples

STUDENT

sid	name
I	Jill
2	Qun
3	Nitin

Takes

sid	exp-grade	cid
I	Α	550-0105
I	Α	700-1005
3	С	501-0105

COURSE

cid	subj	sem
550-0105	DB	F05
700-1005	Al	S05
501-0105	Arch	F05

PROFESSOR

fid	name
1	lves
2	Saul
8	Roth

Teaches

fid	cid
I	550-0105
2	700-1005
8	501-0105

Even More Operators (Extended Relational Algebra)

Generalized Projection

Aggregation Function

Generalized Projection

Extends the projection operation by allowing arithmetic functions to be used in projection list.

$$\prod_{\mathsf{FI},\mathsf{F2},\ldots,\mathsf{Fn}}(E)$$

E is a relation.

 F_1 , F_2 , ..., F_n are arithmetic functions that use constant and attributes from E.

Aggregation Functions

Input: set of values. Output: single value

avg: average value

min: minimum value

max: maximum value

sum: sum

count: number of values

Notation:

GI, G2, ..., Gn
$$\mathcal{G}_{FI(AI), F2(A2),..., Fn(An)}(E)$$

E: relational algebra expression

 $G_1, G_2 ..., G_n$ list of attributes used for grouping.

 F_i aggregation functions

 A_i : attributes

Aggregation operator: Example I

Relación r:

А	В	С
α	α	7
α	β	7
β	β	3
β	β	10

$$g_{\text{sum(c)}}(\mathbf{r})$$

sum-C

27

Aggregation operator: Example II

Account

branchName	Account No	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

branchName**9** sum(balance) (account)

branchName	XXXX
Perryridge	1300
Brighton	1500
Redwood	700

Modify DataBases: insert, update, delete

- $r \leftarrow r \cup E$ (insert)
- $r \leftarrow r E$ (delete)
- Update: sequence of insert, delete operations.

Example Queries (Find PK)

Assume the following relations:

BOOKS(Docld, Title, Publisher, Year)

STUDENTS(Stld, StName, Major, Age)

AUTHORS(AName, Address)

borrows(Docld, Stld, Date)

has-written(Docld, AName)

describes(Docld, Keyword)

Example Queries

Assume the following relations:

BOOKS(Docld, Title, Publisher, Year)

STUDENTS(Stld, StName, Major, Age)

AUTHORS(AName, Address)

borrows(Docld^, Stld^, Date^)

has-written(Docld^, Aname^)

describes(Docld^, Keyword)

Exercises

- I. List the year and title of each book
- List all information about students whose major is CS
- 3. List all books published by McGraw-Hill before 1990.
- 4. List the name of those authors who are living in Davis.
- 5. List the name of students who are older than 30 and who are not studying CS
- 6. Rename AName in the relation AUTHORS to Name

Exercises - II

- I. List the names of all students who have borrowed a book and who are CS majors
- 2. List the title of books written by the author 'Silberschatz'.
- 3. As 2., but not books that have the keyword 'database'
- 4. Find the name of the youngest student
- 5. Find the title of the oldest book

Switching Gears: An Equivalent, But Very Different, Formalism

- Codd invented a relational calculus that he proved was equivalent in expressiveness
 - More convenient for describing certain things, and for certain kinds of manipulations
- The database uses the relational algebra internally
- Relational calculus query specifies what is to be retrieved rather than how to retrieve it.
- Interested in finding tuples for which a predicate is true.
- To find set of all tuples S such that P(S) is true: {S | P(S)}

Tuple Relational Calculus - Example

To find details of all staff earning more than 10,000:
 {S | Staff(S) ^ S.salary > 10000}

 To find a particular attribute, such as salary, write: {S.salary | Staff(S) ^ S.salary > 10000}

staffNo	fName	IName	position	sex	DOB	salary	branchNo
SL21	John	White	Manager	M	1-Oct-45	30000	B005
SG37	Ann	Beech	Assistant	F	10-Nov-60	12000	B003
SG14	David	Ford	Supervisor	M	24- Mar-58	18000	B003
SG5	Susan	Brand	Manager	F	3-Jun-40	24000	B003

- I. Can use two quantifiers to tell how many instances the predicate applies to:
 - I. Existential quantifier ∃ ('there exists')
 - 2. Universal quantifier \forall ('for all')

 Tuple variables qualified by ∀ or ∃ are called bound variables, otherwise called free variables.

 Existential quantifier used in formulae that must be true for at least one instance, such as:

```
Staff(S) ^ (∃ B)(Branch(B) ^
(B.branchNo = S.branchNo) ^
B.city = 'London')
```

 Means 'There exists a Branch tuple with same branchNo as the branchNo of the current Staff tuple. S, and is located in London'.

staffNo fName IName position sex DOB

Branch

branchNo	street	city	postcode

 Universal quantifier is used in statements about every instance, such as:

$$(\forall B)$$
 (B.city \neq 'Paris')

Means 'For all Branch tuples, the address is not in Paris'.

• Can also use $\sim(\exists B)$ (B.city = 'Paris') which means 'There are no branches with an address in Paris'.

staffNo	fName	IName	position	sex	DOB	salary	branchNo

Branch

branchNo	street	city	postcode

Example - Tuple Relational

staffNo fName IName position sex DOB salary branchNo

 List the names of all managers who earn more than £25,000.

```
{S.fName, S.IName | Staff(S) ^
S.position = 'Manager' ^ S.salary > 25000}
```

 List the staff who manage properties for rent in Glasgow.

```
{S | Staff(S) ^ (∃ P) (PropertyForRent(P) ^
(P.staffNo = S.staffNo) ^
P.city = 'Glasgow')}
```

PropertyForR	Rent								
propertyNo	street	city	postcode	type	rooms	rent	ownerNo	staffNo	branchNo

Example - Tuple Relational Calculus

 List the names of staff who currently do not manage any properties.

```
{S.fName, S.IName | Staff(S) ^ (~(∃ P)
     (PropertyForRent(P)^(S.staffNo = P.staffNo)))}
Or
{S.fName, S.IName | Staff(S) ^
     ((∀ P) (~PropertyForRent(P) v ~(S.staffNo = P.staffNo)))}
```

	staffNo	fName	lName	e position		sex	DO	ЭВ	sala	ary	branchl	Vo
PropertyForRent												
	propertyNo	street	city	postcode	type	rooms	rent	ownerNo	staffNo	brancl	hNo	

Example - Tuple Relational Calculus

```
List the names of clients who have viewed a
    property for rent in Glasgow.
 \{C.fName, C.IName \mid Client(C) \land ((\exists V)(\exists P))\}
  (Viewing(V) ^ PropertyForRent(P) ^
  (C.clientNo)^{1}
  (V.propertyNo=P.propertyNo) ^
        P.city = 'Glasgow'))}
 PropertyForRent
                                 rooms | rent | ownerNo | staffNo
                                                   branchNo
 propertyNo street
                city
                      postcode type
Client
                                      Viewing
```

prefType | maxRent

clientNo | propertyNo | viewDate

comment

clientNo | fName | IName

telNo

- Expressions can generate an infinite set. For example: {S | ~Staff(S)}
- To avoid this, add restriction that all values in result must be values in the domain of the expression.

Domain Relational Calculus

 Uses variables that take values from domains instead of tuples of relations.

• If F(d1, d2, ..., dn) stands for a formula composed of atoms and d1, d2, ..., dn represent domain variables, then:

```
\{dI, d2, ..., dn \mid F(dI, d2, ..., dn)\}
```

is a general domain relational calculus expression.

Example - Domain Relational Calculus

Find the names of all managers who earn more than £25,000.

```
{fN, IN | (∃sN, posn, sex, DOB, sal, bN)
  (Staff (sN, fN, IN, posn, sex, DOB, sal, bN) ∧
  posn = 'Manager' ∧ sal > 25000)}
```