Abdellahman Ad Abdellattah Sheet 3

1701229/10TES

K-means	Clustering	,i-
	0	_

1) 3 clusters, Center A1, A4, A7

D/12			
D(A1, A1) = 0	Clust	ers	
$D(A1, A4) = \sqrt{13} = 3.61$ $D(A1, A7) = \sqrt{66} = 8.06$	AI	A4	A7
U(12,AT) 166 ≈ 8.06	AI	A3 1	A2
D(A2, A1) = 5		A4	AZ
D(A2, A4)= 4,24	10	A5	
D(A2, AF)= 3, 16		A8	3
D(A3, AL)= 6			
D(A3, A4)=5		-41	
D(A3, A7) = 7.28	8-	0 kg	
D(A5,A1)=7.07	6-	Cz	
D(AS, At) = 3, 61	5- • A2		
D(A5, A7) = 6, 708	2 ° C3	P6	
D/A/ 40			
D(A6, A1) = 7.211 O(A6, A4) = 4.123		456789	0
Q(A6, A7) = 4.125 Q(A6, A7) = 5.385	C, =/2, Le		
	C2 (6,6)		
D(A8, A1) = 2.24	3		
D/A8, A4)= 1.41			
D/40 A71= 7.615			And the second second

Nile

3

C, A B, S} BSA, C, D, E, +, 7, 93 C=[0,1,1,0,0,0,0,0,0,0) CIAC, & C2[1,0,0,1,1,1,1,1,1] = [0,50,50,0,00,0,0,0](100 = VOL (A) C2TAC2 = 330 = Vol(B) CUTE A,B) = 40 ICUT (A, B) = 40 (100 + 330.) $=\frac{86}{165} \simeq 0.621$ C2 => A & A, B, S, D, e} BEC, t, \$,93 CUT(A,B)= 50 C=[0.1,1,1,0,1,1,0,0,0] Cz£0,0,0,1,0,0,1,1,13 C/ AC = 230 C, T & C2 = 200

CI is better a graph cut but worse as a NEUT C2 is better a NCVT but were as a graducet 1. Conditional Entropy $H(T(C_i)) = -\frac{1}{2} = (\frac{n_i}{n_i}) \frac{1}{2} \frac$ 3. Pairwise neasures (Jaccard and Rand index) 4. Map matching when # of chesters = 3, aymax \(\text{N}\) \\ = \(\xi\) \(\widetilde{\pi}\) 5. F - Meane Praci = Roly, F, = 2 x Procx xreck F=1 Ein Fi Jacovard Index = TP+FN+P Define Rand Index = TP+TN
TP+TN+FN+FP

_ii) f	Beta CV = Win / Word North
M	C=5
	i=1 W(Cai,Cai) +1 W(Cai,Cai)
- 10 × 21	
0300 (12)	
	1501 1501 1501 1501 1501
Nile -	
STATIONERIES	