

Cancer/No Cancer

Early Cancer Detection using Data Science Tools

Peter Liu

Dallas AI

2018.7.26

About me

Dr. Peter LIU Energy Industry

Ph.D., Colorado State University Scientist, Sandia National Labs

Green Chemistry

(12) United States Patent Chen et al.

(54) BIOREFINING COMPOUNDS AND ORGANOCATALYTIC UPGRADING METHODS

(71) Applicant: COLORADO STATE UNIVERSITY
RESEARCH FOUNDATION, Fort
Collins, CO (US)

(72) Inventors: Eugene Y. Chen, Fort Collins, CO (US); Dajiang Liu, Fort Collins, CO (US)

(73) Assignee: Colorado State University Research Foundation, Fort Collins, CO (US)

2015 Presidential Green Chemistry Challenge Award

is presented to

Dajiang (DJ) Liu

of

Colorado State University

for

Greener Condensation Reactions for Renewable Chemicals, Liquid Fuels, and Biodegradable Polymers

Sections

Early cancer detection

- "How Data Science Enables Early Cancer Diagnosis" on Medium
- ML application to 'red-flag' suspected cancer patients

Machine learning product development

- App development using Dash

Other interesting topic

- "Scan-and-Bingo Approach for Product Authentication" on Medium
- ML application to authenticate our food products

My Pet Hamster Passed Away Due to Cancer

Top 3 Cancers in United States

Five Years' Survival Rates at Different Stages

Early Detection/Treatment = Higher Survival Rate

Typical Procedures for Cancer Diagnosis

Problems:

- Some cancer does not have symptoms until late stage
- Difficult to link symptoms with cancer

National Cancer Institute 6

Early Detection of Cancer

Goal

- "Red Flag" the suspected cancer samples using routine checkup samples(*e.g.*, blood, serum)
- App development to aid cancer screening

Who Cares?

Approach

Shotgun Method

Analyze routine check up samples, *e.g.* blood samples, and collect as much information as possible for cancer detection

Red Flag Suspects

Identify samples that have high probability of cancer and recommend for further testing

Shotgun Method

- Mass Spectrometry
- Collect mass information of all chemicals
- Low Sample Loading
- Milligram (1/1000 grams) samples
- High Sensitivity
- Detect trace amount of chemicals at parts per billion(ppb) level
- High Throughput Screening
- Easily coupled with robotic sample preparation process and results obtained within minutes

Problems with Shotgun Method

• Difficult to compare unless you already know which peak is the determinant

Real-world Problem to ML Problem

Real-world Problem

Machine Learning Problem

- 1. Select Determinant Masses
- 2. Predict Cancer

- 1. Feature Selection
- 2. Classification

Determinant Masses Selection vs. Important Features Selection

Cancer/No Cancer

VS.

1/-1

N	ΝZ	200.17821	200.44238	200.70672	200.97123	201.23592	201.50078	201.76582	202.03103	202.29642	202.56198	 9982.7063	9984.5
0		1.720546	1.720546	1.720546	1.719901	1.717815	1.713023	1.692505	1.672132	1.636220	1.560843	 0.0	0.0
1		1.524127	1.501587	1.463949	1.407535	1.325125	1.226132	1.120034	1.005362	0.893435	0.777613	 0.0	0.0
2		1.637911	1.637911	1.631477	1.612273	1.581629	1.525683	1.435933	1.330684	1.193543	0.997459	 0.0	0.0
3		1.656036	1.656036	1.656036	1.651223	1.634340	1.590969	1.525195	1.444791	1.340823	1.217818	 0.0	0.0
4		1.793301	1.793301	1.793301	1.793301	1.791395	1.785510	1.767697	1.722631	1.655785	1.542241	 0.0	0.0

Data Source

- Sample mass spectra collected from National Cancer Institute (NCI)
- Two cancers
- Three groups
- Six subgroups

Data Wrangling

"Long" single MS data

"Wide" single MS data

Mass values

٦	M/Z	200.17821	200.44238	200.70672	200.97123	201.23592	201.50078	201.76582	202.03103	201
	0	1.720546	1.720546	1.720546	1.719901	1.717815	1.713023	1.692505	1.672132	1.6

Concatenation by Row

Mass Spectra Data Matrix

Mass values

Samples

	M/Z	200.17821	200.44238	200.70672	200.97123	201.23592	201.50078	201.76582	202.03103	202.29642	202.56198	 9982.7063	9984.5713	991
,	0	1.720546	1.720546	1.720546	1.719901	1.717815	1.713023	1.692505	1.672132	1.636220	1.560843	 0.0	0.0	0.0
	1	1.524127	1.501587	1.463949	1.407535	1.325125	1.226132	1.120034	1.005362	0.893435	0.777613	 0.0	0.0	0.0
•	2	1.637911	1.637911	1.631477	1.612273	1.581629	1.525683	1.435933	1.330684	1.193543	0.997459	 0.0	0.0	0.0
	3	1.656036	1.656036	1.656036	1.651223	1.634340	1.590969	1.525195	1.444791	1.340823	1.217818	 0.0	0.0	0.0
	4	1.793301	1.793301	1.793301	1.793301	1.791395	1.785510	1.767697	1.722631	1.655785	1.542241	 0.0	0.0	0.0

Heatmap is more preferable than plot view

Plot view of data

1D Heatmap

Heatmap of robotic prepared ovarian datasets

• Difficult to tell the difference between cancer and control group

Heatmap of hand prepared ovarian datasets

• Difficult to tell the difference between cancer and control group

Heatmap of hand prepared prostate samples

• Difficult to tell the difference between cancer and control group

Data Visualization based on PCA

Easy to tell the difference!

Figure. Comparison of cancer and non-cancer group in three datasets. **Purple** plots represent **non-cancer** group, while **yellow** plots represent **cancer** group

Feature Selection by Random Forest

Important Features = Fingerprint Mass

Less than 1% features were needed

Figure. Explained Variance vs. Number of Features rendered by **Random Forest.** Decision Tree is a natural way of feature selection

Feature Selection

Feature Selection is not only for Modeling!

- Fingerprint masses inspire drug development
- One key molecule (molecular weight 472) to determine ovarian cancer is in our list of fingerprint masses

Figure. Selected fingerprint masses for robotic prepared ovarian samples

Reference

Models for Cancer Prediction

Table 1. Comparison of different models on cancer prediction

		Models after tuning parameters									
Datasets	Measure	KNN	Random Forest	SVM	Ensemble by Voting						
Ovarian	Accuracy	0.99	1.00	1.00	0.99						
Robotic	AUC	0.99	1.00	1.00	0.99						
	F1-Score	0.99	1.00	1.00	0.99						
Ovarian	Accuracy	0.93	0.92	0.95	0.92						
Hand	AUC	0.93	0.91	0.94	0.92						
	F1-Score	0.94	0.93	0.96	0.93						
Prostate	Accuracy	0.95	0.98	0.98	0.98						
	AUC	0.95	0.97	0.97	0.98						
	F1-Score	0.96	0.98	0.98	0.98						

FP and FN

Which model is better in early detection of cancer?

• Lower false negatives

Model 1

Predicted Actual	-1 (No Cancer)	(Cancer)	Total		
-1 (No Cancer)	23	3 (FP)	26		
1 (Cancer)	0 (FN)	34	34		
Total	23	37	60		

Model 2

Predicted Actual	-1 (No Cancer)	(Cancer)	Total
-1 (No Cancer)	23	0 (FP)	26
1 (Cancer)	3 (FN)	34	34
Total	23	37	60

SVM vs. Ensemble

SVM

	-	_	ared iples	Hand p	repar Sam		varian	Prostate Samples				
Confusion Predicted Actual		ix: 1	all	Confusion Predicted Actual		ix: 1	all	Confusion Predicted Actual	Matr -1	ix: 1	all	
-1	27	0	27	-1	23	3	26	-1	16	1	17	
1	- 0	49	49	1	0	34	34	1	0	23	23	
all	27	49	76	all	23	37	60	all	16	24	40	

Ensemble

Predicted Actual	-1	1	all	Predicted Actual	-1	1	all	Predicted Actual	-1	1	all
-1	27	0	27	-1	22	1	23	-1	16	0	16
_1		48	49	1		33	37	1	1	23	24
all	28	48	76	all	26	34	60	all	17	23	40

- SVM is our best model
- 0% of FN rate (fail to detect cancer) by SVM

Product Development

Cancer Diagnosis 1.0

- Web App developed based on Dash
- Simply **upload spectrum file** and cancer diagnosis results will be shown

Upload file

Welcome to Cancer Diagnosis	s 1.0		
► About			
► Instructions			
Please upload mass spectrum file:	Upload r	nass spectrum c	sv/excel from your own computer
UPLOAD FILE			
Please select sample group. If unkn	own, select 'Unknown'		
Unknown Samples			

Mass Spectrum Preview

 Mass spectrum will be shown using heatmap and plot, and you can choose the mass range

Classification of Unknown Sample

• It shows the visualization of new sample within training samples and predict the probability by four models. You can choose different classification criteria: all, sex or preparation

Cancer Prediction Results

Please select classification criteria ΑII X w Predicted Probability by Four Models Sample Projection using First Two Principal Components 100 Traning Samples Unknown Sample 20 80 Probability(%) 20 -10Tobotic Ovarian Contowps Prostate Cancer -20-10PC1

Prediction of Cancer/No Cancer in Specific Group

• If you choose specific group (Robotic prepared ovarian group herein), it shows the visualization of new sample within training samples in this group, and predict the probability of cancer/no cancer by four models

Cancer Prediction Results

Fingerprint Masses in Specific Group

• It will also show the fingerprint masses within specific group (robotic prepared ovarian group herein), you can select the mass range to show interested fingerprint masses

Fingerprint Masses for Cancer Diagnosis Please select mass range: 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 You have selected mass range from 200 to 1000 The number of fingerprint masses between 200 and 1000 are: 25 The fingerprint masses are: [245, 247, 295, 321, 434, 435, 435, 435, 436, 440, 472, 508, 554, 555, 620, 628, 632, 634, 652, 669, 691, 831, 833, 967] Please select mass range: 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 The number of fingerprint masses between 200 and 1000 are: 25 The fingerprint masses are: [245, 247, 295, 321, 434, 435, 435, 436, 440, 472, 508, 554, 555, 620, 628, 632, 634, 652, 669, 691, 831, 833, 967] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 The number of fingerprint masses between 200 and 1000 are: 25 The fingerprint masses are: [245, 247, 295, 321, 434, 435, 435, 436, 440, 472, 508, 554, 555, 620, 628, 632, 634, 652, 669, 691, 831, 833, 967] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Conclusion

- SVM were selected as the best model to predict ovarian and prostate cancers with high accuracy (95-100%), and 0% false negative rate, making it ideal to "red flag" the suspected cancer samples
- One of the fingerprint molecules determining ovarian cancer was identified, which is confirmed by literature report
- A cancer diagnosis app was developed to offer quick cancer prediction results as well as lists of fingerprint molecules for cancer diagnosis

Recommendations

- Patients should ask for mass spectrum test during routine check up for cancer screening
- Doctors should recommend patients to do mass spectrum test during routine check up
- Insurance company should cover the mass spectrum test fee as preventative test to encourage people do routine cancer screening

Goal of Early Cancer Detection

- √ "Red Flag" the suspected cancer samples using routine checkup samples(*e.g.*, blood, serum)
- √ App development to aid cancer screening
- × Increase the number of training/testing samples
- × Add more cancers

Look into the future

Cancer diagnosis as easy as blood sugar test!

Product Authentication

"Scan-and-Bingo Approach for Product Authentication" on Medium

- ML application to authentic your food and cosmetic products

Goal

• Develop a more reliable and efficient way to "Red Flag" those suspected counterfeits in the first place, e.g., cosmetic products, food, fuels

Approach

Shotgun Method

Scan sample using hand-held FTIR, and collect chemical information

• "Red Flag" Suspects
Identify whether the product is counterfeit

Fourier Transform Infrared Spectrometry (FTIR)

Authentic Or Not?

Strawberry Jam FTIR

• Total 983 samples: 351 authentic strawberry samples, 632 non-strawberry samples

Comparison of Strawberry and Non-strawberry samples

Spectra Projection based on PCA

Model Performance

Supported Vector Classifier

Logistic Regression (Problematic!)

Fresh Meat FTIR

• 120 meat samples: 40 chicken samples, 40 pork samples and 40 turkey samples

Comparison of Meat samples between Chicken, Pork and Turkey

Spectra Projection based on PCA

Model Performance

Supported Vector Classifier (SVC)

Linear Discriminant Analysis (LDA)

Origin of Olive Oil

120 olive oil samples: 20 from Greece, 34 from Italy,
 16 from Portugal and 50 from Spain

Comparison of Olive Oils from Greece, Italy, Portugal and Spain

Spectra Projection based on PCA

Model Performance

Supported Vector Classifier (SVC)

```
# Use first 12 principal components for prediction
xtrain, xtest, ytrain, ytest = train_test_split(xdata_transform[:,:12], ydata, test_size = 0.3, random_state = 3)
pipeline = make pipeline(StandardScaler(), SVC())
param = {'svc gamma': 10.0**np.arange(-3,3),'svc C': 10.0**np.arange(-3,3)}
gs svc = GridSearchCV(pipeline, param grid=param)
gs svc.fit(xtrain, ytrain)
svc predict = gs svc.predict(xtest)
report('SVC', ytest, svc predict)
Report of SVC
Accuracy of the model:1.0
Confusion Matrix:
[[8 0 0 0]]
 [0 7 0 0]
 [0 0 2 0]
 [0 0 0 19]]
```

Conclusion

- A scan-and-bingo approach was proposed as proof of authentication: Scan sample by hand-held FTIR and analyze by machine learning tools
- A satisfactory high accuracy (>98%) was achieved, and this method also offered us with deep understandings on the key difference between samples.
- This toolkit is especially interesting for product distributors, such as Walmart, Target, and Wholefoods, for quick assessment of product quality, as well as product manufacturer for quick assessment of quality

Thank you!

Stay cool!