Routing Protocol Classification

IGP

- Interior Gateway Protocol
- used to communicate within same autonomous system
- RIP, IGRP, EIGRP, OSPF, IS-IS

EGP

- 1. Exterior Gateway Protocol
- used to communicate between two or more autonomous system
- 3. Border Gateway Protocol (BGP)

Enhanced Interior Gateway Routing Protocol

- Advanced distance vector (Hybrid protocol)
- Standard protocol (initially was cisco proprietary)
- Classless routing protocol (carry subnet-mask, support subnets/VLSM)
- Max Hop count is 255 (100 by default)
- Administrative distance is 90
- Easy and Flexible network design. (unlike OSPF)
- Uses Multicast (224.0.0.10) and unicast for initial neighbor discovery process

EIGRP step by step initial process

Converged, calculate best route builds routing table

EIGRP Tables

Neighbor table

- Contains list of directly connected routers
- # show ip eigrp neighbor

Topology table

· List of all the best routes learned from each neighbor

3 best routes from all 3 neighbors (stores in topology table)
Select the best route - (routing table) and advertise best route to neighbor

EIGRP Convergence

- Incremental updates
- ▶ Periodically send hello packets are sent every 5 seconds (dead − 15 sec)
- Convergence rate is fast (15 sec)

Also pre-calculates second best route

- best route = successor
- Second best route = feasible successor

EIGRP Metric – parameters

	Bandwidth	Delay	load	Reliability	MTU
Serial	1544 Kbps	20,000 Us	1 - 255	1 - 255	1500 bytes
Ethernet	10 Mbps	200 Us	200 Us 1- less		
Fasteth	100 Mbps	100 Us	255 more	255 more	
gigeth	1000 Mbps	10 Us			

R-1(config)#interface serial 0/0 R-1(config-if)#bandwidth 1000

R-1#sh interfaces so/o

Serialo/0 is up, line protocol is up (connected)
Hardware is HD64570
Internet address is 10.0.0.1/8
MTU 1500 bytes, BW 1000 Kbit, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 1/255

R-1#sh interfaces so/o

Serialo/o is up, line protocol is up (connected)
Hardware is HD64570
Internet address is 10.0.0.1/8
MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 1/255

EIGRP Metric Calculation

BW Delay load Reliability MTU

K1 = 1 K3 = 1 K2 = 0 K4 = 0 K5 = 0

The EIGRP metric calculation formula is as below:

$$metric = \left[\left(K1 \times \frac{10^7}{BW_{\min}} + \frac{K2 \times BW_{\min}}{256 - load} + K3 \times \sum delays \right) \times \frac{K5}{K4 + reliability} \right] \times 256$$

By default uses BW and Delay in the metric calculation.

Formula with default K values (K1 = 1, K2 = 0, K3 = 1, K4 = 0, K5 = 0):

Metric = [K1 * BW + ((K2 * BW) / (256 - load)) + K3 * delay]

Default Metric = 256*(Slowest BW+ All link Delay)

 $BW = 10^7/BW$ in kbps

Delay = delay in Microsecond

EIGRP cost

Least cost = best route

R-1#show ip route

Gateway of last resort is not set

- C 10.0.0.0/8 is directly connected, Serialo/0
- D 11.0.0.0/8 [90/2681856] via 10.0.0.2, 00:05:45, Serialo/0
- C 192.168.1.0/24 is directly connected, FastEthernet0/0
- D 192.168.2.0/24 [90/2172416] via 10.0.0.2, 00:05:48, Serialo/0
- D 192.168.3.0/24 [90/2684416] via 10.0.0.2, 00:02:49, Serialo/0

EIGRP Metric Calculation Example

 $A \rightarrow B \rightarrow C \rightarrow D$ $A \rightarrow X \rightarrow Y \rightarrow Z \rightarrow D$ Least bandwidth 64 kbps

Total delay 6,000

Least bandwidth 256 kbps

Total delay 8,000

The EIGRP metric calculation formula is as below:

$$metric = \left[\left(KI \times \frac{10^7}{BW_{\min}} + \frac{K2 \times BW_{\min}}{256 - load} + K3 \times \sum delays \right) \times \frac{K5}{K4 + reliability} \right] \times 256$$

EIGRP Configuration

Router(config)# router eigrp <AS NO> Router(config-router)# network <Network ID>

R-1(config)# router eigrp 100

R-1(config-router)# network 192.168.1.0

R-1(config-router)# network 10.0.0.0

EIGRP AS number has to match on all routers to establish neighbors and exchange routes

EIGRP Configuration

R-1(config)# router eigrp 100

R-1(config-router)# network 192.168.1.0

R-1(config-router)# network 10.0.0.0

R-2(config)#router eigrp 100

R-2(config-router)# network 192.168.2.0

R-2(config-router)# network 11.0.0.0

R-2(config-router)# network 10.0.0.0

R-3(config)# router eigrp 100

R-3(config-router)# network 192.168.3.0

R-3(config-router)# network 11.0.0.0

EIGRP verification

192,168,1,2

R-1#show ip route

Gateway of last resort is not set

- C 10.0.0.0/8 is directly connected, Serialo/0
- D 11.0.0.0/8 [90/2681856] via 10.0.0.2, 00:05:45, Serialo/0
- C 192.168.1.0/24 is directly connected, FastEtherneto/0
- D 192.168.2.0/24 [90/2172416] via 10.0.0.2, 00:05:48, Serialo/0
- D 192.168.3.0/24 [90/2684416] via 10.0.0.2, 00:02:49, Serialo/0

R-2#show ip eigrp neighbors

IP-EIGRP neighbors for process 100

Н	Address	Interface	Hold Uptime		SRTT	-	RTO	Q	Seq	
				(sec)		(ms)		Cnt	Nun	n
0	10.0.0.1	Se0/0	10	00:03:44	40	1000	0	8		
1	11.0.0.2	Se0/1	12	00:01:10	40	1000	0	7		

LAB: DYNAMIC ROUTING USING EIGRP

- Configure Dynamic routing using EIGRP 100
- Verify Routing table and reachability between the LAN's (using PING and TRACE commands)

LAB: Dynamic Routing using EIGRP - using Redundant links

