

NITTE MEENAKSHI INSTITUTE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTE AFFILIATED TO VTU, BELAGAVI)

6th Mid-Semester Examination BE Degree (MSE- 2 Scheme)

Department of Electronics and Communication Engineering

Semester:	Course Name:	Contral Sul
Course code: 2 E C & 62	Faculty Names Section A:	Section B: Section C:
Date: 5/6/24	Max. Marks	30

	And boilet		
Q.No	Scheme	Mark	CO;BL
1.	-> Root locus is a graphical.	W a	
0)	representations of Vroots of the	lani	
PI	> Root locus is a graphical representations of roots of the Characteristic equations. Time	- 0	
	donain analysis for finding the	mpi	N
16m	domain analysis for finding the System stability. (IM)	3	
	i) The wernor	2.	
250/2	-> Mode prot		
	voeful in analyzing magnitude 4 phase changes introduced	1	
	4 phase frequency deman	1	
	by a system. frequency domains analysis for finding the system stability -> (1M) System stability -> (1M)	Bury	
	analys of tability of (M)	961	
	System 3	-	
6)			
"			
	he ce es any condition for s/s		
	he ce es any table is		6
74 /		2	-
11 (19 12	> All the terms of Routin		
2-9	Le de Colores		
	array must have	991	
-	There should not be any	Р	age 1 of 4
	sign Change.		

c) Angle condition: De nave. (4(s). H(s)z=1+j0 $\frac{(4(s). H(s))}{(s)} = \pm (29+1)180$ $\Rightarrow \text{ phere } 9:0,1,2.$ $\frac{(20). H(s)}{(s)} = \pm (29+1)180$ $\Rightarrow \text{ point } \text{$ Ne have. G(s). H(s)=-1+j0 19(s) H(s) I = 1

The value of k can be found

The value condition for which

by magnitude condition for which

known point on root locus is the

known of characteristic equation. unit-111 P=3; Z=0; P-Z=3. (1M) step 3: Enistence of breakourry pt (m)

step 3: Angla of asymptotes. 0= (29/+1) iso

p-2.

Q = 60 02=180; 03=300 2) a) step ();

step 4: Centroid == -2.667. Step 5: Breakaway Pt (2M) Step 6: Point of intersection (2M) S= ± j 3.87 rad/sec. (IM) (IOM)

Step 7: Draw the root (ocus

on graph. Finj 0 K K < 120 [OR] + 3 (2m) SP=0,-3+4j,-3-4j ~ (2M) (b) Angle of departure at complex Poles (-3±4j) -> (im)

-- 2 -6

tan
$$\theta = \frac{4}{3} \Rightarrow \theta = 53.13$$
 $\Rightarrow (1M)$
 $p_1 = 180 - 53.13 = 126.87$
 $p_2 = 90$
 $56p = 4p + 6p \Rightarrow (1M)$
 $p_3 = 0$
 $p_4 = 216.87$
 $p_4 = 216.87$
 $p_5 = 216.87$
 $p_6 = 2$

$$A(s) = 2s^4 + 12s^2 + 16$$

$$\frac{dA(s)}{d(s)} = 8s^2 + 24s \rightarrow (m)$$

56 1 8 20 16
55 2 12 16 0
$\frac{5^4}{5^3} \frac{12}{8} \frac{16}{24} \frac{16}{0} \rightarrow (3M)$
S ² 6 16
5 2.67 0
To obtain stability, solve A(s) =0
$3 = \pm i(1.414)$. $-3(9M)$ complen conjugates
Since root are complen conjugates Since root are conjugates Since
Since marginally stable.
System à marginal (m)
(2) H. ()
b) Q(s)H(s)= 20
e(1+0.1s)
Replace s=jw=>(IM)
() ((()))= 20
$G(j\omega) H(j\omega)^{2} \frac{20}{(j\omega)(1+0.1j\omega)}$ $S(1M)$
>(IM)
\Rightarrow factors $k=20$ $\therefore k=20 \log 200 = 26.02 dR$ $\therefore k=20 \log 200 = 26.02 dR$ $\times 2 = 46.02 dR \Rightarrow (2M)$
, ~ 2
$\frac{K^2}{100} 46.02 dB \rightarrow (2M)$
I, IN

Page 3 of 4

(1+0.1jw) -> Roll off is -20 dB/dec. -> (M).

(1+0.1jw) wc= 10 rad /sec. -(1m)

(10) Bode plot m sensily sheet (10M)

-> (10M) 4) Angle condition.

19(s). H(s) / = ±(29+1)180

(1m)

9-0,1,2.
(4m)

(4s). H(s)--180 = (2m) => since it is odd multiple of

+180; he point s=+0.75 liv on

> (IM)

root locus 9(9) 4(90) 11 Actorial Social Social