三角比と三角関数

2022.04.25

2次関数と方程式(復習+)

2次関数のグラフ

- (1) $y = a(x b)^2 + c$
 - ・ $y=ax^2$ のグラフと形は同じ
 - ・x方向にb,y方向にc平行移動
 - ・頂点は (b, c)

- ・(1)の形に変形(平方完成)
- ・例) $y=x^2+4x+1$ $=(x^2+4x+4)-4+1=(x+2)^2-3$ 頂点は(-2,-3)

2次方程式の解

• 方程式 $ax^2 + bx + c = 0$ の解は $y = ax^2 + bx + c$ のグラフとx軸との交点のx座標

[2]
$$y = 2x^2 + 7x - 4$$
, $2x^2 + 7x - 4 = 0$

解の公式1

•
$$x^2 + 2ax + b = 0$$

 $(x+a)^2 - a^2 + b = 0$
 $(x+a)^2 = a^2 - b$
 $x + a = \pm \sqrt{a^2 - b}$
よって $x = -a \pm \sqrt{a^2 - b}$

解の公式2

ullet 2 次方程式 $ax^2+bx+c=0$ の解

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

例)
$$2x^2 - 5x + 1 = 0$$
 $x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{5 \pm \sqrt{17}}{4}$

課題 0418-2 次の2次方程式を解け.

Text P.74

三角比

三平方の定理

● 角 C が直角の直角三角形 △ABC

• BC = a, CA = b, AB = c とおく

$$\Longrightarrow \boxed{a^2+b^2=c^2}$$

課題 0418-3 次のa, b, cを求めよ

鋭角の三角比

$$\sin heta = rac{高さ}{斜辺}$$

$$an heta = rac{高さ}{底辺}$$

比だから大きさによらない 角 θ だけで決まる

課題 0418-4 次の三角比を求めよ.

(前ページの図または Text P.105 を用いよ)

 $[1] \cos 30^{\circ}$

 $[2]\,\sin 45^\circ$

 $[3] \tan 60^{\circ}$

練習 (鋭角の三角比)

課題 0418-5 図の三角形について次を求めよ.

 $[1] \,\, x^{\circ}$

[2] 辺AC

[3] 辺AB

 $[4] \tan x$

 $[5] \cos x$ $[6] \sin x$

 $[7] \tan 59^{\circ}$

 $[8]\,\cos 59^\circ$

 $[9] \sin 59^{\circ}$

三角比の拡張1

- $(1) \,\, 0^{\circ}$
- $(2) 90^{\circ}$
- (3) 鈍角 $(90^{\circ} < \theta < 180^{\circ}$

課題 0418-6 「鈍角等の三角比」で三角比がどうなるかを考 えよ

鈍角等の三角比

- 鈍角のとき, θ を1つの角とする直角三角形ができない
- 座標軸をおく
- 頂点 P の座標を (x, y) とする

$$ullet$$
 斜辺 $=$ OP , 底辺 $=$ x , 高さ $=$ y $\cos heta = rac{x}{\mathrm{OP}}, \ \sin heta = rac{y}{\mathrm{OP}}, \ an heta = rac{y}{x}$

0°の三角比┃

$$\cos 0^{\circ} = 1$$

$$\sin 0^{\circ} = 0$$

$$\tan 0^{\circ} = 0$$

90°の三角比

 $\cos 90^{\circ} = 0$

 $\sin 90^{\circ} = 1$

 $\tan 90^\circ =$ 値がない

鈍角の三角比の符号

cos は —

 $\sin \mathcal{U} +$

tanはー

三角比の相互関係

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\mathbb{H}) \, an heta = rac{y}{x} = rac{rac{y}{ ext{OP}}}{rac{x}{ ext{OP}}} = rac{\sin heta}{\cos heta} \, \, ag{cos} \, heta$$

$$(2)$$
 $\cos^2 \theta + \sin^2 \theta = 1$ $(\cos(\theta))^2 \cos^2 \theta$ と書く

III)
$$\cos^2 \theta + \sin^2 \theta = \frac{x^2}{\text{OP}^2} + \frac{y^2}{\text{OP}^2} = \frac{x^2 + y^2}{\text{OP}^2} = 1$$

課題 (三角比の相互関係)

課題 0418- $7\cos\theta=rac{1}{3}$ のとき, $\sin\theta$ を求めよ.ただし, θ は鋭角とする $\mathrm{TextP107}$

課題 0418-8 $\sin heta = rac{2}{3}$ とする.次の場合のそれぞれについて $\cos heta$ を求めよ

[1] heta が鋭角のとき [2] heta が鈍角のとき

一般角

一般角

 \bullet これまで,角 θ は2つの線分の間の角だった

$$0^{\circ} \leqq heta \leqq 360^{\circ}$$

- 角を回転を表す量とすると θ はどんな実数でもよい.
 - $\cdot x$ 軸を始線とする
 - \cdot $heta > 0^\circ$ のとき,反時計回り
 - \cdot $heta < 0^\circ$ のとき,時計回り

一般角

HTML「一般角」で一般角を見てみよう

一般角の三角比

● 座標を使う(鈍角の場合と同じ)

例
$$heta = -30^{\circ}$$
 $\cos \theta =$
 $\sin \theta =$
 $\tan \theta =$

課題 0418-10 次の値を求めよ.

 $[1] \cos 240^{\circ}$ $[2] \sin 240^{\circ}$

[3] $\sin(-30^{\circ})$ [4] $\tan(-30^{\circ})$

