Задача 1.

Дадени са две редици от цели числа $k_0, k_1, ..., k_{m-1}$ и $l_0, l_1, ..., l_{n-1}, m, n \in [1; 100]$, елементите на които са подредени във възходящ ред. Да се изтрие най-големият елемент от редицата $\{k_i, i \in [0; m-1]\}$, който не се съдържа в редицата $\{l_i, j \in [0; n-1]\}$. Наредбата на редицата $\{k_i\}$ трябва да се запази. За целта да се дефинират подходящи функции.

Задача 2.

Да се дефинират следните функции:

- а) **void cycle(int* x, int n, int k),** която преобразува едномерния масив x c n елемента, като циклично ги премества на k позиции наляво. k е дадено естествено число, k > 0.
- б) **void cycleMatr(int a**[[20], int n, int* b), която преобразува двумерния масив а, представящ квадратна матрица с размерност n x n, като циклично премества елементите на i-ия ѝ ред на b[i] позиции наляво, $i \in [0; n-1]$. Масивът b съдържа n на брой естествени числа, задаващи позициите на циклично преместване. При реализирането да се използва дефинираната в а) функция **cycle**.

Задача 3.

Даден е двумерен масив R[20][3] от имена на хора, описващ роднински връзки, както е показано в таблицата:

Име на лице	Майка на лицето	Баща на лицето
Иван Петров	Галина Иванова	Петър Петров
Пенка Георгиева	Тодорка Нинова	Георги Георгиев
•••		
Юлия Димова	Гергана Димова	Няма

Имената са сортирани лексикографски по колоната "Име на лице".

Да се дефинират функции (в) е рекурсия):

- а) mother(x), която намира името името на майката на лицето х или низа "няма", ако лицето х няма майка;
- б) **father(x),** която намира името на бащата на лицето х или низа "няма", ако лицето х няма баща;
- в) **inheritor(a, b)**, която проверява дали лице с име b е наследник (дете, внук, правнук, ...) на лице с име а по бащина линия.

Задача 4.

Даден е символен низ с дължина не повече от 100 символа. Да се напише функция, която записва в масив от цели числа всички числа, които могат да се прочетат в низа. Число е последователност от символи, които представляват цифри. Допуска се да има водещ знак (+/-).

Ппимеп.

Вход: "В 9 ч. тръгвам към ФМИ с автобус 94 или 120." Резултат: Масив с елементи 9, 94 и 120.

Задача 5.

Даден е символен низ с дължина не повече от 100 символа. Да се напише функция, която записва в масив всички думи от низа. Дума е последователност от латински букви, отделена в двата си края с интервали. Думите в масива са с точна дължина.

Пример:

Bход: "What is your favourite movie?." Резултат: Масив с елементи "is", "your", "favourite".

Задача 6.

Дадена е квадратна матрица от естествени числа с размерност $n \times n$, $n \in [2; 20]$. Да се напише функция, която сортира редовете на матрицата в низходящ ред според сумата на цифрите във всеки от елементите.

Да се напише функция, която проверява дали съществува диагонал (с повече от три елемента), чиито елементи образуват числова редица с общ член n(n+1)/2.

Забележка. Ако матрицата има диагонал с елементи: 15, 21, 28, 36, то резултатът от изпълнението на програмата трябва да бъде **true**, тъй като редицата 15, 21, 28, 36 е получена от общия член при стойности 5, 6, 7 и 8.

Задача 7.

Дадена е квадратна матрица с размери $n \times n, n \in [1;10]$, която описва лабиринт. Стойност 0 в дадена клетка означава "стена", стойност 1 означа "свободно място за движение". Даден е низ съдържащ само буквите E(east), W(west), N(north) и S(south), които указват едностъпкови придвижвания в съответните географски посоки. Да се напише функция, която проверява дали даденият низ е валиден път от някоя проходима клетка в лабиринта до долния десен ъгъл в лабиринта.

Задача 8.

Да се напише функция **encode**, която по подаден низ, връща неговия кодиран еквивалент.

Кодирането се извършва като на всяка последователност от еднакви символи се съпостави съответният символ и пред него броят на последователните му срещания. Единичните символи в низа не се кодират.

Пример: exod: abbbcdd uзxod: a3bc2d2

Задача 9.

Дадена е матрица от цели числа с размери $n^2 \times n^2$, която можем да си представим като n^2 наброй елемента с размери $n \times n$. Да се провери дали матрицата удовлетворява условията на играта Судоку, т.е. на всеки ред и стълб на матрицата, както и на всеки ред и стълб във всяко малко квадратче се срещат само различни числа.

Задача 10.

Да се запълни със стойности, прочетени от клавиатурата, матрица с големина $n \times n$ от тип char, където $n \in [2;100]$ (п се чете от клавиатурата). Всеки елемент на матрицата е или символа 'х' или символа 'о'. Да се даде отговор на въпроса - вярно ли е, че всеки елемент на матрицата има четен брой съседни клетки със символа 'о'.

Пример:

3

xxo

XOX

oxx // -> YES

4

XXXO

xoxo oxox

XXXX

 $// \rightarrow NO$