PROBLEM A - PATRILINEAL CLANS

Heather Johnston, Gabi Muir, Nguyen Nguyen

Mount Holyoke College - Group 3

Problem Statement

- Bottleneck in genetic diversity among Y-chromosomes occured from 7000
 BCE to 5000 BCE
- Competition among patrilineal clans as a potential reason
- Previous model assumes uniform group of females

Question: How do we model population dynamics of different patrilineal clans in conflict while taking into account females associated with the clans?

Model: Assumptions

- The populations tend toward a carrying capacity and a 50:50 gender ratio
- Growth rates are proportional to clan sizes
- Females have some preference to stay in their own clan or to seek better mating opportunities
- Males die from conflict at rates proportional to the size of the male populations in both clans
- Same population dynamics, carrying capacity, and conflict morbidity rates across clans

Simple Population Model

growth rate r_1 and turnover rate r_2 carrying capacity

Updated Conflict Model

growth rate r₁ and turnover rate r₂

carrying capacity K

conflict morbidity rate q

Intermarriage rates c_1 and c_2

Complete Model: Two Tribes

growth rate r₁ and turnover rate r₂

carrying capacity K

conflict morbidity rate q

Intermarriage rates c_1 and c_2

Solution & Analysis: Conflict

Solution curves with varying conflict morbidity rate (q)

And constant:

$$r_1 = 0.01$$

$$r_2 = 0.0005$$

$$c_1 = c_2 = 0.001$$

Solution & Analysis: Conflict

Time

Time

Time

Our model does not show that male populations will always go extinct

Our model requires conflict morbidity rates to be sufficiently high to create genetic bottleneck

Solution & Analysis: Intermarriage

Changing the rate of intermarriage between F1 and M2 (c1)

Intermarriage between F2 and M1 is constant

Keeping other parameters constant

Limitations & Extensions

- Simplification of population dynamics
 - o Groups could split apart or combine, etc.
- Potential variation in parameters between clans
 - Different conflict morbidity rates according to technology
 - o Different growth rates and carrying capacities according to environment
- Analysis of model for more than one clan:

Additional Issue - Increase in Mobility

Intermarriage: Female preference for staying or leaving clans

↑ Mobility → ↑ intermarriage

↓ Mobility → ↓ intermarriage

Additional Issue - Increase in Mobility

Intermarriage: Female preference for staying or leaving clans

- ↑ Mobility → ↑ intermarriage
- Mobility
 Intermarriage

Conflict morbidity:

- ↑ Mobility ➤ ↓ conflict morbidity if avoidant
- ↑ Mobility ➤ ↑ conflict morbidity if imperialist
- Mobility conflict morbidity less interaction between groups

Additional Issue - Increase in Mobility

Intermarriage: Female preference for staying or leaving clans

- ↑ Mobility → ↑ intermarriage
- Mobility intermarriage

Conflict morbidity:

- ↑ Mobility ➤ ↓ conflict morbidity if avoidant
- ↑ Mobility ➤ ↑ conflict morbidity if imperialist
- Mobility conflict morbidity less interaction between groups

Carrying capacity:

- Groups reaching capacity could move to find new resources

Additional Issue - Different Technologies

The smaller clan has domesticated horses; this gives them an advantage during conflict

Keeping clan 2's morbidity the same, increasing clan 1's morbidity rate - analogous to clan 2 having horses

Summary

- Developed a model for patrilineal clans during conflicts for both males and females population
- Extinction happens when conflict morbidity rate is high enough
- Intermarriage can alter the long-term outcomes of intense conflict
- The model can be extended to describe more than 2 clans

References

- Oota, H., Settheetham-Ishida, W., Tiwawech, D., Ishida, T., & Stoneking, M. (2001). Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. *Nature Genetics*, 29(1), 20.
- Zeng, T. C., Aw, A. J., & Feldman, M. W. (2018). Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck. *Nature Communications*, 9(1), 2077. https://doi.org/10.1038/s41467-018-04375-6