Dimensionstheorie

Seminar Kommutative Algebra

Leo Kayser 20. Juli 2020

Ein Apéritif

- ▶ Sei A ein noetherscher lokaler Ring mit maximalem Ideal m. Dann sind folgende Ausdrücke wohldefiniert, endlich und stimmen überein:
 - dim $A = \sup \{ n \mid \text{es gibt Primideale } \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n \subset A \};$
 - $\delta(A) = \min \{ n \mid \text{es gibt ein } \mathfrak{m}\text{-prim} \text{ ares Ideal } (a_1, \ldots, a_n) \subseteq \mathfrak{m} \};$
 - $d(A) = \deg \chi_{\mathfrak{m}}(A)$, wobei $\chi_{\mathfrak{m}}$ ein Polynom ist mit $\chi_{\mathfrak{m}}(n) = \ell(A/\mathfrak{m}^n)$ für $n \gg 0$.
- ▶ Ist $\mathfrak{p} = (a_1, \ldots, a_n) \subset A$ Primideal in einem noetherschen Ring, so ist dim $A_{\mathfrak{p}} \leq n$.
- ▶ Ist k ein Körper, so ist dim $k[X_1, ..., X_n] = n$.
- ightharpoonup Ist A eine nullteilerfreie endlich erzeugte k-Algebra, so ist

$$\dim A = \operatorname{trdeg}_k \operatorname{Quot}(A) = \dim A/\mathfrak{p} + \dim A_\mathfrak{p} \quad \forall \mathfrak{p} \text{ prim.}$$

Inhalt

Das Hilbertpolynom und $d_{ar}(A)$

14

26

36

Das charakteristische Polynom und d(A)

Der Hauptsatz der Dimensionstheorie und Anwendungen

Affine k-Algebren

Das Hilbertpolynom und $d_{gr}(A)$

Homogene Komponenten sind endlich erzeugt

Sei $A = \bigoplus_{n>0} A^{(n)}$ ein noetherscher graduierter Ring

 \implies endlich erzeugt über dem noetherschen Ring $A^{(0)}$ von x_1,\ldots,x_s homogen.

Sei weiterhin $M = \bigoplus_{n \ge 0} M^{(n)}$ ein endlich erzeugter graduierter A-Modul.

Lemma 1 $A^{(n)}$ und $M^{(n)}$ sind endlich erzeugt als $A^{(0)}$ -Moduln.

Beweis.

(i)
$$\mathcal{M}^{(n)} := \left\{ \left. x_1^{e_1} \cdots x_s^{e_s} \, \right| \, \sum_{j=1}^s e_j \deg x_j = n \, \right\} \leadsto \left| \mathcal{M}^{(n)} \right| < \infty \text{ und } \langle \mathcal{M}^{(n)} \rangle_{A^{(0)}} = A^{(n)}.$$

(ii)
$$M = Am_1 + \dots + Am_t \sim A^{(n)} = \sum_{i=1}^t A^{n-r_i} m_i = \langle \{ x \cdot m_i \mid x \in \mathcal{M}^{(n-r_i)} \} \rangle_{A^{(0)}}.$$

3

Die Poincaré-Reihe

Sei C die Klasse der endlich erzeugten $A^{(0)}$ -Moduln und $\lambda \colon C \to \mathbb{Z}$ eine additive Funktion.

Beispiel • $A^{(0)} = k$ ein Körper, $\lambda(V) = \dim_k V$.

- $A^{(0)}$ artinsch, $\lambda(N) = \ell(N)$ (Länge des Moduls).

Definition 2: (Poincaré-Reihe)

Die Poincaré-Reihe von M bezüglich λ ist die formale Potenzreihe

$$P(M,t) := \sum_{n=0}^{\infty} \lambda(M^{(n)}) t^n \in \mathbb{Z}[\![t]\!].$$

Die Poincaré-Reihe ist eine rationale Funktion

Satz 3: (Hilbert-Serre)

P(M,t) ist eine rationale Funktion in t von der Form

$$P(M,t) = \frac{f(t)}{(1-t^{k_1})\cdots(1-t^{k_s})} \in \mathbb{Q}(t),$$

wobei $f(t) \in \mathbb{Z}[t]$ und $k_i := \deg x_i > 0$.

Beweis. Induktion über s, die Anzahl der Erzeuger von $A = A^{(0)}[x_1, \dots, x_s]$.

Induktionsanfang s=0: Dann ist $M^{(n)}=0$ für $n\gg 0$, also bricht die Reihe P(M,t) ab und ist ein Polynom in $\mathbb{Z}[t]$.

Beweis von Satz 3 i

Induktionsschritt $s-1 \mapsto \underline{s}$: Setze $A' := A^{(0)}[x_1, \dots, x_{s-1}] \subset A$.

Sei $\varphi \coloneqq \text{,..} x_s \text{``} \colon M \to M$ die Skalarmultiplikation mit $x_s, \varphi^{(n)} \coloneqq \varphi_{|_{M(n)}}$. Wir haben

$$0 \longrightarrow K^{(n)} \longleftrightarrow M^{(n)} \xrightarrow{\varphi^{(n)}} M^{(n+k_s)} \longrightarrow L^{(n+k_s)} \longrightarrow 0, \tag{1}$$

$$K^{(n)} := \ker \left(\varphi^{(n)}\right) \subset M^{(n)},$$

$$L^{(n+k_s)} := \operatorname{coker} \left(\varphi^{(n)}\right) = \frac{M^{(n+k_s)}}{x_s M^{(n)}}.$$

Setze

$$K\coloneqq\bigoplus_{n\in\mathbb{N}_0}K^{(n)}=\ker\varphi\hookrightarrow M,\qquad L\coloneqq\bigoplus_{n\geq k_s}L^{(n)}\hookrightarrow {}^{M}\Big/_{x_sM},$$

dies sind endlich erzeugte graduierte A- <u>und A'-</u>Moduln.

Beweis von Satz 3 ii

Aus der Induktionsvoraussetzung wissen wir:

$$P(\mathbf{K},t) = \frac{f_{\mathbf{K}}(t)}{\prod_{i=1}^{s-1} (1 - t^{k_i})}, \quad P(L,t) = \frac{f_L(t)}{\prod_{i=1}^{s-1} (1 - t^{k_i})} \qquad f_{\mathbf{K}}, f_L \in \mathbb{Z}[t].$$
 (2)

Wenden wir λ auf (1) an, so erhalten wir aus der Additivität [AM69, Proposition 2.11]

$$\lambda(K^{(n)}) - \lambda(M^{(n)}) + \lambda(M^{(n+k_s)}) - \lambda(L^{(n+k_s)}) = 0.$$

Diese Gleichung mit t^{n+k_s} multiplizieren und formal aufaddieren liefert

$$\sum_{n=0}^{\infty} \lambda(\underline{K^{(n)}}) t^{n+k_s} - \sum_{n=0}^{\infty} \lambda(M^{(n)}) t^{n+k_s} + \sum_{n=0}^{\infty} \lambda(M^{(n+k_s)}) t^{n+k_s} - \sum_{n=0}^{\infty} \lambda(L^{(n+k_s)}) t^{n+k_s} = 0,$$

$$= t^{k_s} \cdot P(\underline{K}, t) = t^{k_s} \cdot P(\underline{M}, t) = P(\underline{M}, t) - g(t) = P(\underline{L}, t)$$

wobei $g(t) = \sum_{n=0}^{k_s-1} \lambda(M^{(n)}) t^n$ ein Polynom ist.

Beweis von Satz 3 iii

Also ist

$$t^{k_s}P(\mathbf{K},t) - t^{k_s}P(M,t) + P(M,t) - g(t) - P(L,t) = 0.$$

Umsortieren der Terme liefert

$$(1 - t^{k_s})P(M, t) = -t^{k_s}P(K, t) + P(L, t) + g(t).$$

Teilt man dies durch $1-t^{k_s}\in\mathbb{Z}[\![t]\!]^{\times}$ und setzt die Darstellung aus (2) ein, erhält man

$$P(M,t) = \frac{-t^{k_s}P(K,t) + P(L,t) + g(t)}{1 - t^{k_s}} = \frac{f(t)}{(1 - t^{k_1}) \cdots (1 - t^{k_s})}.$$

8

Das Hilbertpolynom

Satz 3 zeigt, dass P(M,t) bei 1 eine Polstelle besitzen kann, und zwar von der Polordnung $\leq s$. Bezeichne diese mit $d_{gr}(M) \coloneqq -\operatorname{ord}_1(P(M,t))$.

Korollar 4: (Existenz des Hilbertpolynoms)

- (i) Ist $k_i = \deg x_i = 1$ für alle i, so stimmt für hinreichend großes n die Folge $\lambda(M^{(n)})$ mit den Werten eines rationalen Polynoms $HP_M \in \mathbb{Q}[X]$ überein.
- (ii) $\deg HP_M = d_{qr}(M) 1$.
- (iii) Ist $A^{(0)}$ artinsch und $\lambda = \ell$, so ist $d_{gr}(M) \geq 0$ für $M \neq 0$.

Das Polynom $HP_M(X)$ aus Korollar 4 ist das Hilbert polynom von M (bzgl. λ).

Beweis von Korollar 4 i

Beweis. (i) Nach Satz 3 ist $\lambda(M^{(n)})$ der n-te Koeffizient in der Reihenentwicklung von $P(M,t)=f(t)(1-t)^{-s}$. Nach eventuellem Kürzen können wir $s=d\coloneqq d_{gr}(M)$ und $f(1)\neq 0$ annehmen; schreibe $f(t)=\sum_{i=0}^N a_it^i$.

Fall 1: $d \le 0$. Dann ist P(M,t) schon ein Polynom, d.h. $\lambda(M^{(n)}) = 0$ für $n \gg 0$. $\rightarrow HP_M(n) = 0$.

<u>Fall 2:</u> d > 0. Die Potenzreihenentwicklung von $(1-t)^{-d}$ lautet

$$\frac{1}{(1-t)^d} = \sum_{n=0}^{\infty} \binom{n+d-1}{d-1} t^n \in \mathbb{Z}\llbracket t \rrbracket.$$

Die Faltung dieser Reihe mit f(t) liefert an der n-ten Stelle

$$\lambda(M^{(n)}) = \sum_{k=0}^{n} a_k \binom{n-k+d-1}{d-1}.$$

Beweis von Korollar 4 ii

Da $a_i = 0$ für i > N, genügt es für $n \ge N$ die Summe bis N laufen zu lassen.

$$HP_M(n) := \sum_{k=0}^{N} a_k \binom{n-k+d-1}{d-1} = \sum_{k=0}^{N} a_k \frac{(n-k+d-1)\cdots(n-k+1)}{(d-1)!}$$

definiert also ein Polynom, welches mit $\lambda(M^{(n)})$ für $n \geq N$ übereinstimmt.

(ii) $\deg HP_M=d-1$, denn der Leitterm von HP_M (in n) ist

$$\sum_{k=0}^{N} a_k \frac{n^{d-1}}{(d-1)!} = \frac{\sum_{k=0}^{N} a_k 1^k}{(d-1)!} \cdot n^{d-1} = \underbrace{\frac{f(1)}{(d-1)!}}_{\neq 0} n^{d-1}.$$

(iii) Angenommen
$$d_{gr}(M) < 0$$
, so wäre $P(M,t) \in \mathbb{Z}[t]$ mit $P(M,1) = 0 = \sum_n \ell(M^{(n)})$. Da $\ell \geq 0$, ist $\ell(M^{(n)}) = 0 \ \forall n$, also $M^{(0)} = 0 \ \forall n$, im Widerspruch zu $M \neq 0$.

Ein explizites Beispiel

Beispiel 5: (Das Hilbertpolynom von $R[X_1, \ldots, X_s]$)

Sei $R = A^{(0)}$ artinsch und $A = R[X_1, \dots, X_s]$ der Polynomring in s Variablen. $A^{(n)}$ ist ein freier R-Modul mit Basis $\mathcal{M}^{(n)}$.

$$a_n := \left| \mathcal{M}^{(n)} \right| = \binom{n+s-1}{s-1} \implies \ell(A^{(n)}) = \ell(R^{a_n}) = a_n \cdot \ell(R).$$

Poincaréreihe und Hilbertpolynom sind in diesem Fall

$$P(A,t) = \sum_{n=0}^{\infty} \ell(R) \binom{n+s-1}{s-1} t^n = \frac{\ell(R)}{(1-t)^s}, \qquad d_{gr}(A) = s,$$

$$HP_A(X) = \ell(R) \binom{X+s-1}{s-1} = \frac{\ell(R)}{(s-1)!} (X+s-1) \cdots (X+1).$$

Das charakteristische Polynom und d(A)

Wachstum von M/M_n

Sei (A, \mathfrak{m}) ein noetherscher lokaler Ring und M ein endlich erzeugter A-Modul.

Sei weiterhin \mathfrak{a} ein \mathfrak{m} -primäres Ideal und (M_n) eine stabile \mathfrak{a} -Filtration von M.

Ziel:

Satz 6: (Existenz des charakteristischen Polynoms)

- (i) M/M_n hat endliche Länge für alle $n \in \mathbb{N}_0$.
- (ii) Für $n \gg 0$ stimmt $\ell(M/M_n)$ mit einem rationalen Polynom g(n) überein.
- (iii) $\deg g(n)$ ist beschränkt durch die Länge jedes Erzeugendensystems von $\mathfrak a.$

Ein Hilfslemma

Lemma 7 (i) $G_{\mathfrak{a}}(A)$ ist noethersch und G(M) endlich erzeugt über $G_{\mathfrak{a}}(A)$.

- (ii) $G_{\mathfrak{a}}^{(0)}(A) = A/\mathfrak{a}$ ist ein artinscher lokaler Ring.
- (iii) $G^{(n)}(M) = M_n/M_{n+1}$ hat endliche Länge als A-Modul.
- (iv) Ist $\mathfrak{a} = (x_1, \ldots, x_s)$ und $\overline{x_i} := x_i + \mathfrak{a}^2 \in \mathfrak{a}_{\mathfrak{a}^2}$, so ist $G_{\mathfrak{a}}(A) = (A/\mathfrak{a})[\overline{x_1}, \ldots, \overline{x_s}]$.

Beweis. (i) [AM69, Proposition 10.22 (i) & (iii)]

(ii) A/\mathfrak{a} ist noethersch und lokal. Da das Radikal mit Quotienten verträglich ist, gilt

$$\sqrt{\mathfrak{a}} = \mathfrak{m} \subset A \quad \Longrightarrow \quad \sqrt{(0)} = \overline{\mathfrak{m}} \subset A/\mathfrak{a} \quad \Longrightarrow \quad \overline{\mathfrak{m}}^n = (0)$$

für ein n. Nach [AM69, Proposition 6.8] ist A artinsch.

Beweis des Hilfslemmas

(iii) M_n/M_{n+1} ist ein endlich erzeugter A-Modul. Da (M_n) eine \mathfrak{a} -Filtration ist, ist

$$\mathfrak{a} \subset \operatorname{Ann}_A(M_n/M_{n+1}) \implies M_n/M_{n+1} \text{ ist } A/\mathfrak{a}\text{-Modul}.$$

Damit ist M_n/M_{n+1} endlich erzeugt über dem nach (ii) artinschen Ring A/\mathfrak{a} , besitzt also endliche Länge als A/\mathfrak{a} -Modul [AM69, Proposition 6.8], und damit auch als A-Modul.

(iv) folgt aus der Tatsache, dass

$$\mathfrak{a} = (x_1, \dots, x_s) \implies \mathfrak{a}^n = (\{x_1^{e_1} \cdots x_s^{e_s} \mid e_i \ge 0, \sum_i e_i = n\}).$$

Daher wird $G^{(n)}(A) = \mathfrak{a}^n/\mathfrak{a}^{n+1}$ von den Monomen in $\overline{x_i}$ vom Grad n erzeugt.

Beweis von Satz 6: (i) \overline{M}/M_n hat endliche Länge

Tatsächlich ist

$$\ell(M/M_n) = \sum_{k=0}^{n-1} \ell(M_k/M_{k+1}) < \infty;$$
(3)

wir beweisen diese Formel durch Induktion nach n.

Induktions an fang
$$n=0$$
: $M_0=M$ \Longrightarrow $\ell(M/M_0)=\ell(0)=0=$ "leere Summe".

Induktionsschritt $n \mapsto n+1$: Betrachte die kurze exakte Sequenz

$$0 \longrightarrow M/M_n \longrightarrow M/M_{n+1} \longrightarrow M_n/M_{n+1} \longrightarrow 0.$$

Die äußeren beiden Moduln sind nach Induktionsvoraussetzung und Lemma 7(iii) von endlicher Länge, und damit auch der Modul M/M_{n+1} in der Mitte.

(3) ergibt sich aus der Additivität von ℓ auf der kurzen exakten Sequenz.

Beweis von Satz 6: (ii) $\ell(M/M_n)$ ist Polynom für $n \gg 0$

Nach Lemma 7(iv) wird $G_{\mathfrak{a}}(A)$ als A/\mathfrak{a} -Algebra von endlich vielen homogenen Elementen $\overline{x_i} \in G_{\mathfrak{a}}^{(1)}(A)$ erzeugt. Nach Lemma 7(iii) nimmt ℓ auf den $G^{(n)}(M)$ endliche Werte an, sodass wir uns in der Situation des ersten Abschnitts wiederfinden.

Korollar 4 liefert die Existenz des Hilbertpolynoms $HP_{G(M)}$ mit

$$\ell(M_n/M_{n+1}) = HP_{G(M)}(n) \qquad n \gg 0.$$

Nach Gleichung (3) haben wir für $n \gg 0$

$$\ell(M/M_{n+1}) - \ell(M/M_n) = \ell(M_n/M_{n+1}) = HP_{G(M)}(n),$$

nach Lemma 1 des Spickzettels stimmt für $n\gg 0$ die Funktion $\ell(M/M_n)$ mit einem Polynom g(n) vom Grad $\deg HP_{G(M)}+1$ überein.

Beweis von Satz 6: (iii) $\deg g(n) \leq s$

Sei $\mathfrak a$ erzeugt von s Elementen, so ist $G_{\mathfrak a}(A)$ nach Lemma 7(iv) erzeugt von ihren Restklassen. Wir erhalten aus dem Satz von Hilbert-Serre die Abschätzung

$$\deg HP_{G(M)} \stackrel{\text{Kor. 4}}{=} d_{gr}(G(M)) - 1 \stackrel{\text{Satz 3}}{\leq} s - 1.$$

Somit erhalten wir für g(n)

$$\deg g(n) = \deg HP_{G(M)} + 1 \le (s-1) + 1 = s.$$

Das charakteristische Polynom

Ist $(M_n)=(\mathfrak{a}^n M)$, so schreiben wir für das Polynom g(n) aus Satz 6 $\chi^M_{\mathfrak{a}}(n)$. Im Fall M=A nennen wir $\chi_{\mathfrak{a}}\coloneqq\chi^A_{\mathfrak{a}}$ das *charakteristische Polynom* von \mathfrak{a} .

Beispiel: $(A = \mathbb{Z}_{(p)})$ Dann ist $\mathfrak{m} = p\mathbb{Z}_{(p)}$. Da $\mathbb{Z}_{(p)}$ ein Hauptidealring ist, ist $p^n\mathbb{Z}_{(p)}/p^{n+1}\mathbb{Z}_{(p)}$ einfach, daher ist $\ell(\mathbb{Z}_{(p)}/\mathfrak{m}^n) = n = \chi_{\mathfrak{m}}(n)$.

Satz 8: (Unabhängigkeit von Filtration und Ideal)

- (i) Grad und Leitkoeffizient von g(n) in Satz 6 hängen nicht von der Wahl der stabilen \mathfrak{a} -Filtration (M_n) von M ab.
- (ii) Der Grad von $\chi_{\mathfrak{a}}$ hängt nicht von der Wahl des m-primären Ideals \mathfrak{a} ab.

Beweis von Satz 8

Beweis.

(i) Sei (M'_n) eine weitere stabile \mathfrak{a} -Filtration und $g'(n) = \ell(M/M'_n)$. Nach [AM69, Lemma 10.6] haben die Filtrationen beschränkte Differenz, d.h. $\exists n_0 \in \mathbb{N}$ mit

$$M_{n-n_0} \subseteq M'_n \subseteq M_{n+n_0} \implies g(n-n_0) \le g'(n) \le g(n+n_0) \qquad n \gg 0.$$

Da g(n) und g'(n) Polynome sind, stimmen Grad und Leitkoeffizient nach Lemma 2 des Spickzettels überein.

(ii) Es genügt zu zeigen, dass $\deg \chi_{\mathfrak{a}} = \deg \chi_{\mathfrak{m}}$. Da $\sqrt{\mathfrak{a}} = \mathfrak{m}$, gibt es ein r > 0 mit

$$\mathfrak{m}\supseteq\mathfrak{a}\supseteq\mathfrak{m}^r \implies \mathfrak{m}^n\supseteq\mathfrak{a}^n\supseteq\mathfrak{m}^{rn} \implies \chi_{\mathfrak{m}}(n)\leq \chi_{\mathfrak{a}}(n)\leq \chi_{\mathfrak{m}}(rn) \qquad n\gg 0.$$

Nach Lemma 2 des Spickzettels stimmen die Grade der Polynome überein.

d(A)

Definition 9: (d(A))

Ist A ein noetherscher lokaler Ring, so sei $d(A) := \deg \chi_{\mathfrak{m}} \in \mathbb{N}_0$.

Bemerkung. Ist A eine graduierte $k=A^{(0)}$ -Algebra endlich erzeugt von Elementen von Grad 1 und $\mathfrak{m}:=A_+$, so ist $A/\mathfrak{m}^n\cong A_\mathfrak{m}/(\mathfrak{m}A_\mathfrak{m})^n$, also tatsächlich $d(A_\mathfrak{m})=d_{gr}(A)$.

Korollar 10: (d entspricht d_{gr})

 $d(A) = \deg \chi_{\mathfrak{a}} = d_{gr}(G_{\mathfrak{a}}(A))$ für jedes m-primäre Ideal \mathfrak{a} .

Beweis. Satz 8(ii).

Der Abstiegsschritt

 $x \in A$ heißt M-regulär, wenn " $\cdot x$ ": $M \to M$ injektiv ist.

Satz 11

Sei M' := M/xM, dann ist

$$\deg \chi_{\mathfrak{a}}^{M'} \le \deg \chi_{\mathfrak{a}}^{M} - 1.$$

Korollar 12: (d(A/(x)) < d(A))

Ist $x \in A$ kein Nullteiler, so ist $d(A/(x)) \le d(A) - 1$.

Beweis. Setze M = A in Satz 11 und nutze $d(A) := \deg \chi_{\mathfrak{a}}^A$.

Beweis von Satz 11

Sei $N := xM \subseteq M$, dann ist $0 \longrightarrow N \longrightarrow M \longrightarrow M' \longrightarrow 0$ exakt.

Setze $N_n := N \cap \mathfrak{a}^n M$, so haben wir wie in Kapitel 10 die exakte Sequenz

$$0 \longrightarrow \underbrace{N/N \cap \mathfrak{a}^n M}_{N/N_n} \longrightarrow M/\mathfrak{a}^n M \longrightarrow M'/\mathfrak{a}^n M' \longrightarrow 0.$$

Wendet man ℓ auf diese Sequenz an, erhält man ein Polynom

$$g(n) := \ell(N/N_n) = \chi_{\mathfrak{a}}^M(n) - \chi_{\mathfrak{a}}^{M'}(n) \qquad n \gg 0.$$
(4)

Nach [AM69, Theorem 10.9] ist (N_n) eine stabile \mathfrak{a} -Filtration von N; nach Satz 8 sind also Grad und Leitkoeffizient von g(n) gleich denen von $\chi_{\mathfrak{a}}^N \stackrel{M\cong N}{=} \chi_{\mathfrak{a}}^M$.

Somit zeigt (4), dass der Grad von $\chi_{\mathfrak{a}}^{M'}$ nur echt kleiner sein kann als $\deg \chi_{\mathfrak{a}}^{M}$.

Der Hauptsatz der Dimensionstheorie und Anwendungen

Der Hauptsatz der Dimensionstheorie

Satz 13: (Hauptsatz der Dimensionstheorie)

In einem noetherschen lokalen Ring stimmen folgende Ausdrücke überein:

- dim $A = \sup \{ n \mid \text{es gibt Primideale } \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n \subset A \};$
- $\delta(A) = \min \{ n \mid \text{es gibt ein } \mathfrak{m}\text{-prim} \text{ ires Ideal } (a_1, \dots, a_n) \subseteq \mathfrak{m} \};$
- $d(A)=\deg\chi_{\mathfrak{a}}(A)=$ "Wachstumsordnung von $\ell(A/\mathfrak{a}^n),\,n\to\infty$ ", \mathfrak{a} m-primär.

Beweisstrategie: $\delta(A) \ge d(A) \ge \dim(A) \ge \delta(A)$.

" $\deg \ell(A/\mathfrak{a}^n) \leq \delta(A)$ " für jedes m-primäre \mathfrak{a} haben wir in Satz 6 bewiesen, nach Satz 8 sind diese Grade alle gleich d(A).

$$\implies \delta(A) \ge d(A).$$

$d(A) \ge \dim A$

Beweis. Induktion nach d = d(A).

Induktionsanfang d=0: $\ell(A/\mathfrak{m}^n)$ wird konstant für $n\gg 0$, also $\mathfrak{m}^n=\mathfrak{m}^{n+1}$ für ein n. Nach [AM69, Proposition 8.6] ist A artinsch, also dim A=0.

Induktionsschritt $d-1 \mapsto \underline{d}$: Sei $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_r$ eine Kette von Primidealen und $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_0$. Sei $A' := A/\mathfrak{p}_0$ und $x' := \overline{x} \in A'$. Dann ist A' nullteilerfrei und $x' \neq 0$, d.h.

$$d(A'/(x')) \stackrel{\text{Kor. } 12}{\leq} d(A') - 1$$

Ist $\mathfrak{m}' = \mathfrak{m}_{\mathfrak{p}_0}$ das maximale Ideal von A', so haben wir

$$\mathfrak{m}^n \subseteq \ker(A \twoheadrightarrow A'/\mathfrak{m}'^n) \quad \Longrightarrow \quad A/\mathfrak{m}^n \twoheadrightarrow A'/\mathfrak{m}'^n \quad \Longrightarrow \quad d(A) \ge d(A').$$

Dies zeigt $d(A'/(x')) \leq d-1$. Die Bilder der $\mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_r$ in A'/(x') bilden eine echt aufsteigende Kette, nach Induktionsvoraussetzung ist $r-1 \leq d-1$, d.h. $r \leq d$.

27

Primideale haben endliche Höhe

Definition 14: (Höhe eines Ideals)

Sei A ein Ring und $\mathfrak{p} \subset A$ ein Primideal. Wir definieren die $H\ddot{o}he$

$$\operatorname{ht}(\mathfrak{p})\coloneqq\sup\big\{\,n\mid\operatorname{es\ gibt\ Primideale}\,\mathfrak{p}_0\subsetneq\mathfrak{p}_1\subsetneq\cdots\subsetneq\mathfrak{p}_n=\mathfrak{p}\,\big\}=\dim A_{\mathfrak{p}}.$$

Ist $\mathfrak{a} \subsetneq A$ ein beliebiges Ideal, so definiere $\operatorname{ht}(\mathfrak{a}) \coloneqq \min \{ \operatorname{ht}(\mathfrak{p}) \mid \mathfrak{a} \subseteq \mathfrak{p} \text{ prim } \}.$

Korollar 15: (Noethersche lokale Ringe sind endlichdimensional)

- (i) Noethersche lokale Ringe haben endliche Dimension.
- (ii) Primideale in noetherschen Ringen haben endliche Höhe und erfüllen die \mathbf{dcc} .

Der Krullsche Höhensatz

Satz 16: (Krullscher Höhensatz)

Sei A ein noetherscher Ring, $\mathfrak{a}=(a_1,\ldots,a_r)\subset A$ ein Ideal und \mathfrak{p} ein Primideal minimal über \mathfrak{a} . Dann ist $\operatorname{ht}(\mathfrak{p})\leq r$.

Beweis. Lokalisiere A an \mathfrak{p} , so ist das maximale Ideal $\mathfrak{m} = \mathfrak{p}A_{\mathfrak{p}}$ immernoch minimal über $\mathfrak{a}A_{\mathfrak{p}} = (\frac{a_1}{1}, \dots, \frac{a_r}{1})$. Daher ist $\mathfrak{a}A_{\mathfrak{p}}$ \mathfrak{m} -primär, also

$$ht(\mathfrak{p}) = \dim(A_{\mathfrak{p}}) \le d(A_{\mathfrak{p}}) \le \delta(A_{\mathfrak{p}}) \le r.$$

$\dim(A) \ge \delta(A)$

Für die verbleibende Ungleichung verwenden wir:

Satz 17: (Eine Umkehrung des Höhensatzes)

Sei R ein noetherscher Ring und $\mathfrak p$ ein Primideal der Höhe n. Dann gibt es $a_1,\ldots,a_n\in A$, sodass $\mathfrak p$ minimal über (a_1,\ldots,a_n) ist.

Insbesondere ist $ht(\mathfrak{p}) = \min \{ n \mid \exists a_1, \ldots, a_n; \mathfrak{p} \text{ geh\"{o}rt zu } (a_1, \ldots, a_n) \}.$

Beweis von $\dim(A) \ge \delta(A)$. Ist A ein noetherscher lokaler Ring und $\mathfrak{p} := \mathfrak{m}$, so garantiert Satz 17 ein Ideal

$$\mathfrak{a} = (a_1 \dots, a_n), \qquad n = \operatorname{ht}(\mathfrak{m}) = \dim A,$$

sodass m minimal über $\mathfrak a$ ist. Da A lokal ist, ist $\mathfrak a$ m-primär, also $\delta(A) \leq \dim(A)$.

Der Hauptsatz der Dimensionstheorie ist bewiesen! ©

Beweis von Satz 17

Ziel: Konstruiere rekursiv $a_1, \ldots, a_n \in \mathfrak{p}$, sodass

$$\operatorname{ht}((a_1,\ldots,a_k)) = k \quad \forall k \le n,$$

denn dann ist wegen $ht(\mathfrak{p}) = ht(\mathfrak{a}) = n \mathfrak{p}$ minimal über \mathfrak{a} .

Sei $\mathfrak{a}' := (a_1, \dots, a_{k-1})$ bereits konstruiert und betrachte die endliche (!) Menge

$$\mathcal{Q}\coloneqq \big\{ \ \mathfrak{q} \ \mathrm{prim} \ \big| \ \mathfrak{q} \ \mathrm{minimal} \ \mathrm{\ddot{u}ber} \ \mathfrak{a}' \ \big\} \,.$$

Nach dem Höhensatz ist
$$k-1=\operatorname{ht}(\mathfrak{a}')\stackrel{\operatorname{def}}{\leq}\operatorname{ht}(\mathfrak{q})\stackrel{\operatorname{H\"{o}h.}}{\leq}k-1$$
 für alle $\mathfrak{q}\in\mathcal{Q}$, also $\operatorname{ht}(\mathfrak{q})=k-1$.

Insbesondere ist $\mathfrak{p} \not\subseteq \mathfrak{q}$; nach [AM69, Prop. 1.11 (*prime avoidance*)] gibt es also ein $a_k \in \mathfrak{p}$ mit $a_k \notin \mathfrak{q} \ \forall \mathfrak{q} \in \mathcal{Q}$. Setze $\mathfrak{a} \coloneqq (a_1, \ldots, a_k)$. Jedes Primideal $\mathfrak{Q} \supseteq \mathfrak{a}$ enthält eines der \mathfrak{q} , da $a_k \in \mathfrak{Q} \setminus \mathfrak{q}$, ist die Inklusion echt, d.h.

$$\operatorname{ht}(\mathfrak{a}) \ge \operatorname{ht}(\mathfrak{a}') + 1 = k \stackrel{\text{H\"oh.}}{\ge} \operatorname{ht}(\mathfrak{a}) \implies \operatorname{ht}(\mathfrak{a}) = k.$$

Krulls Hauptidealsatz

Satz 18: (Krulls Hauptidealsatz)

Sei A ein noetherscher Ring und $x \in A$ weder Nullteiler noch Einheit. Dann hat jedes zu (x) gehörige Primideal Höhe 1.

Insbesondere gilt dies für (x) selbst, wenn (x) prim ist.

Beweis. Sei \mathfrak{p} so ein Primideal, nach dem Höhensatz ist $\operatorname{ht}(\mathfrak{p}) \leq 1$.

Angenommen $ht(\mathfrak{p})=0$, so ist \mathfrak{p} zu (0) gehörig, besteht also nach [AM69, Proposition 4.7] aus Nullteilern, im Widerspruch zu $x\in\mathfrak{p}$.

Reguläre lokale Ringe

Definition 19: (Regulärer lokaler Ring, [AM69, Thm. 11.22])

Ein $regul\"{a}rer$ lokaler Ring A erfüllt einer der folgenden \ddot{a} quivalenten Aussagen:

- (i) \mathfrak{m} kann von $d \coloneqq \dim A$ Elementen erzeugt werden;
- (ii) $\dim_k \mathfrak{m}_{m^2} = d$, wobei $k \coloneqq A/\mathfrak{m}$;
- (iii) $G_{\mathfrak{m}}(A) \cong k[X_1, \dots, X_d]$ (der Polynomring in d unabhängigen Variablen).

Satz 20: (Eigenschaften regulärer lokaler Ringe)

Ist A ein regulärer lokaler Ring, so ist A notwendigerweise **nullteilerfrei**, **ganzabgeschlossen** im Quotientenkörper [Kem11, Corollary 3.16], und sogar ein **faktorieller Ring** (Auslander-Buchsbaum-Theorem).

Reguläre lokale Ringe in freier Wildbahn

Beispiel 21 Sei A ein noetherscher lokaler Ring.

- Ist $\dim(A) = 0$, so ist A genau dann regulär, wenn A ein Körper ist.
- Ist $\dim(A) = 1$, so ist A genau dann regulär, wenn A ein diskreter Bewertungsring ist.
- In $\dim(A) \geq 2$ gibt es normale noethersche lokale Integritätsringe, welche nicht regulär sind, zum Beispiel $\mathbb{C}[X,Y,Z]/(Z^2-XY)_{(\overline{X},\overline{Y},\overline{Z})}$.

Hintergrund: Sei k algebraisch abgeschlossen, $\mathfrak{p}=(f_1,\ldots,f_m)\subset k[X_1,\ldots,X_n]$ ein Primideal, und $R=k[X_1,\ldots,X_n]/\mathfrak{p}$.

Sei
$$P\in V(\mathfrak{p})\subseteq k^n$$
 ein Punkt und $\mathfrak{m}=(\overline{X_1}-P_1,\ldots,\overline{X_n}-P_n)\subset R$ maximal:

$$R_{\mathfrak{m}} \text{ regul\"ar } \overset{[\text{Gat02, Prop. 4.4.8}]}{\Longleftrightarrow} \quad \operatorname{Rang} \left[\frac{\partial f_i}{\partial X_j}(P) \right]_{ij} \geq \operatorname{ht}(\mathfrak{p}) \overset{?}{=} n - \dim R.$$

Affine k- Algebren

$$\dim[X_1,\ldots,X_n]=n$$

Satz 22: (Dimension des Polynomrings)

Sei k ein Körper und $A = k[X_1, \ldots, X_n]$. Dann ist dim A = n.

Beweis. dim A > n, denn wir haben eine aufsteigende Primidealkette

$$(0) \subsetneq (X_1) \subsetneq \cdots \subsetneq (X_1, \ldots, X_n).$$

Sei zunächst k algebraisch abgeschlossen. Sei $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_r \subset A$ eine Kette von Primidealen, oBdA sei $\mathfrak{p}_r = \mathfrak{m}$ maximal. Nach Hilberts Nullstellensatz ist \mathfrak{m} von der Gestalt

$$\mathfrak{m} = (X_1 - a_1, \dots, X_n - a_n), \qquad a_i \in k.$$

Nach dem Höhensatz ist
$$r \leq \operatorname{ht}(\mathfrak{m}) \stackrel{\text{H\"oh.}}{\leq} n$$
, also $\dim A \leq n$.

Den allgemeinen Fall folgern wir aus folgendem Satz:

Ganze Erweiterungen und Dimension

Satz 23: (Dimension und Höhe sind mit ganzen Erweiterungen verträglich)

Seien $A\subseteq B$ Ringe, B ganz über A und $\mathfrak{P}\subset B$, $\mathfrak{p}=\mathfrak{P}\cap A$ prim.

- (i) Es gilt dim $B = \dim A$, und dim $B/\mathfrak{P} = \dim A/\mathfrak{p}$.
- (ii) Sind A und B nullteilerfrei und A normal, so ist $\operatorname{ht}(\mathfrak{P}) = \operatorname{ht}(\mathfrak{p})$.

Beweis.

Der Transzendenzgrad

Ist K/k eine Körpererweiterung, so ist $\operatorname{trdeg}_k(K) = n$, falls es über k algebraisch unabhängige Elemente $x_1, \ldots, x_n \in K$ gibt, sodass $K/k(x_1, \ldots, x_n)$ algebraisch ist.

Satz 24:
$$(\dim A = \operatorname{trdeg}_k \operatorname{Quot}(A))$$

Sei A eine nullteilerfreie affine k-Algebra. Dann ist $\dim A = \operatorname{trdeg}_k \operatorname{Quot}(A)$.

Beweis. Nach Noether-Normalisierung [AM69, Exercise 5.16] gibt es k-algebraisch unabhängige Elemente $X_1, \ldots, X_d \in A$, sodass

$$k \subset k[X_1, \ldots, X_d] = C \subset A, \qquad A/C \text{ ganz.}$$

$$\implies \operatorname{Quot}(A)/\operatorname{Quot}(C) = k(X_1, \dots, X_d)$$
 algebraisch, $\operatorname{trdeg}_k \operatorname{Quot}(A) = d$.

Andererseits ist dim $A \stackrel{\text{ganz}}{=} \dim C = \dim k[X_1, \dots, X_d] \stackrel{\text{Satz 22}}{=} d.$

Affine k-Algebren haben schöne Ketteneigenschaften

Satz 25: (Maximalen Ketten haben gleiche Länge)

Sei A eine affine k-Algebra.

- (i) $\dim A < \infty$; beschränkt durch die Anzahl der Erzeuger als k-Algebra.
- (ii) Sei

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$$

eine (inklusions) maximale Kette von Primidealen, so ist $n = \dim A/\mathfrak{p}_0$.

Beweis.

(i) Nach Definition ist A von der Gestalt $A \cong k[X_1, \dots, X_n]/I$. Da die Dimension des Polynomrings n ist, folgt die Behauptung.

Beweis von Satz 25 i

(ii) Sei $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ eine maximale Kette. Indem wir A durch A/\mathfrak{p}_0 ersetzen, können wir A als nullteilerfrei annehmen. Wir führen Induktion nach n.

Induktionsanfang n = 0: Dann ist (0) maximal, also $\dim A/\mathfrak{p}_0 = 0$.

Induktionsschritt $n-1\mapsto n$: Die Bilder $\mathfrak{p}_1/\mathfrak{p}_1\subsetneq\cdots\subsetneq\mathfrak{p}_1/\mathfrak{p}_n$ in A/\mathfrak{p}_1 bilden ebenfalls eine maximale Kette; nach Voraussetzung ist $\dim A/\mathfrak{p}_1=n-1$. Es genügt also zu zeigen

$$\dim A/\mathfrak{p}_1 = \dim A - 1.$$

Nach Noether-Normalisierung gibt es einen Polynomring

$$k \subset k[X_1, \ldots, X_d] = C \subset A, \qquad A/C \text{ ganz.}$$

Da ${\cal C}$ als faktorieller Ring ganzabgeschlossen ist, folgt

$$1 = \operatorname{ht}(\mathfrak{p}_1) \stackrel{\operatorname{ganz}}{=} \operatorname{ht}(\mathfrak{p}_1 \cap C).$$

Beweis von Satz 25 iii

Sei $0 \neq f \in \mathfrak{p}_1 \cap C$, und $p \mid f$ ein irreduzibler Faktor in $\mathfrak{p}_1 \cap C$ (C ist faktoriell). Wegen $\operatorname{ht}((p)) = 1$ ist bereits $(p) = \mathfrak{p}_1 \cap C$.

ObdA komme X_d in p vor, dann sind die Restklassen der X_i

$$S := \{\overline{X_1}, \dots, \overline{X_{\mathbf{d-1}}}\} \subset \operatorname{Quot}(C/(p))$$

maximal algebraisch unabhängig, also $\operatorname{Quot}(C/(p))$ algebraisch über k(S).

Daher ist

$$\dim A - 1 \stackrel{\mathsf{ganz}}{=} d - 1 = \operatorname{trdeg}_k \operatorname{Quot}(C/(p)) \stackrel{\mathsf{Satz}}{=} ^{24} \dim C/(p) \stackrel{\mathsf{ganz}}{=} \dim A/\mathfrak{p}_1 \qquad \Box$$

Die Dimensionsformel

Korollar 26: (Die Dimensionsformel)

Ist A eine nullteilerfreie affine k-Algebra, und $\mathfrak{p}\subset A$ ein Primideal von A, so ist

$$\dim A/\mathfrak{p} + \operatorname{ht}(\mathfrak{p}) = \dim A.$$

Insbesondere ist $ht(\mathfrak{m}) = \dim A$ für alle maximalen Ideale $\mathfrak{m} \subset A$.

Korollar 27: (Hyperflächen haben Kodimension 1)

Sei $p \in k[X_1, \ldots, X_n]$ irreduzibel, so ist

$$\dim k[X_1, ..., X_n]/(p) = n - 1.$$

Beweis der Dimensionsformel

Beweis. Sei also A nullteilerfrei und $\mathfrak{p} \subset A$ prim. Sei

$$(0) = \mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_k = \mathfrak{p} \subset A$$

eine Kette der Länge $k = ht(\mathfrak{p})$. Sei weiterhin

$$(0) = \mathfrak{P}_0 \subsetneq \cdots \subsetneq \mathfrak{P}_l \subset A/\mathfrak{p} = \mathfrak{M}$$

eine Kette der Länge $l = \dim A/\mathfrak{p}$.

Seien $\mathfrak{p}_{k+i} := \pi^{-1}(\mathfrak{P}_i)$ die Urbilder unter der kanonischen Projektion $A \twoheadrightarrow A/\mathfrak{p}$.

$$(0) = \mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_k = \mathfrak{p} \subsetneq \mathfrak{p}_{k+1} \subsetneq \cdots \subsetneq \mathfrak{p}_{k+l} = \mathfrak{m}$$

ist nach Konstruktion eine maximale Kette von Primidealen, nach Satz 25 ist

$$\dim A = k + l = \operatorname{ht} \mathfrak{p} + \dim A/\mathfrak{p}.$$

Quellenverweise

- [AM69] Michael F. Atiyah und Ian G. Macdonald. *Introduction to Commutative Algebra*. Reading, Mass: Addison-Wesley Pub. Co, 1969. ISBN: 0201003619.
- [Gat02] Andreas Gathmann. Algebraic Geometry. 2002. URL: https://www.mathematik.uni-kl.de/~gathmann/class/alggeom-2002/alggeom-2002.pdf.
- [Kem11] Gregor Kemper. A Course in Commutative Algebra. Springer Berlin Heidelberg, 2011. DOI: 10.1007/978-3-642-03545-6.