MATHEMATICS FOR SIGNAL AND SYSTEMS

1. The two questions 1.a and 1.b below are independent.

We say that two subspaces V and W of \mathbb{R}^n are complementary, denoted by $V \oplus W = \mathbb{R}^n$, if (i) $V \cap W = \{0\}$, where 0 is the zero vector in \mathbb{R}^n , and (ii) any vector $x \in \mathbb{R}^n$ can be written as x = v + w where $v \in V$ and $w \in W$.

a) Let P be the matrix defined as

$$P = \frac{1}{2} \left(\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{array} \right)$$

- i) Describe a basis of Ker(P) the null-space (kernel) of P and Ran(P) the range of P. Justify your answer. [3]
- ii) Show that $\mathbb{R}^4 = \text{Ker}(P) \oplus \text{Ran}(P)$. [2]
- iii) Show that for $x \in \text{Ker}(P)$ and $y \in \text{Ran}(P)$ then $x^T y = 0$. [2]
- iv) Conclude that *P* is an orthogonal projection. [3]

SOLUTION

1.a.i)

Ran(P)

We show an alternative method to the previous examples. The range of P is y such that Px = y for some vector x. That is,

$$\frac{1}{2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Using Gaussian elimination:

Solutions exist iff rank $A = \operatorname{rank} A | \mathbf{w}$, implying a + c = 0, b + d = 0. Hence, solutions have the form

$$\mathbf{x} = \begin{bmatrix} a \\ b \\ -a \\ -b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \quad a, b \in \mathbb{R}.$$

. Furthermore, since they are linearly independent, $\left\{\begin{bmatrix}1\\0\\-1\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\\-1\end{bmatrix}\right\}$ forms a

basis of Ran (P).

We find the solution space in x of Px = 0 using the Gaussian eliminations from the above, i.e. using matrix A:

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow x = z, y = t. \text{ Hence } \mathbf{x} = \begin{bmatrix} x \\ y \\ x \\ y \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \quad x, y \in \mathbb{R}. \text{ And since they are}$$

linearly independent, $\left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}$ forms a basis of Ker (P).

1.a.ii) By the usual techniques, the four vectors above can be shown to be linearly independent. Therefore, they form a basis for \mathbb{R}^4 , and so the desired result follows.

1.a.iii)
$$\mathbf{x} \in \operatorname{Ker}(P) \Rightarrow \mathbf{x} = \begin{bmatrix} \gamma \\ \delta \\ \gamma \\ \delta \end{bmatrix}$$
 for some $\gamma, \delta \in \mathbb{R}$, and $\mathbf{y} \in \operatorname{Ran}(P) \Rightarrow \mathbf{y} = \begin{bmatrix} \alpha \\ \beta \\ -\alpha \\ -\beta \end{bmatrix}$ for some $\alpha, \beta \in \mathbb{R}$. Hence $\mathbf{x}^T \mathbf{y} = \alpha \gamma + \beta \delta - \alpha \gamma - \beta \delta = 0$.

1.a.iv) We show P is a projection: $y \in Ran(P)$ has form $\begin{bmatrix} \alpha \\ \beta \\ -\alpha \end{bmatrix}$ and

$$P\mathbf{y} = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ -\alpha \\ -\beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \\ -\alpha \\ -\beta \end{bmatrix} = \mathbf{y}$$

Hence $P^2 = P$ and P is projection. By part 1.a.iii), $Ran(P) \perp Ker(P)$, and so P is an orthogonal projection.

b) Define the matrix A_m as follows

$$A_m = \left(\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 0 & m & 0 & 0 \\ 1 & 0 & -m & -1 \\ 0 & 1 & 0 & 0 \end{array}\right),$$

where $m \in \mathbb{R}$ is a parameter.

i) Derive bases for
$$Ker(A_m)$$
 and $Ran(A_m)$. [3]

ii) For
$$m \neq 0$$
, show that $Ran(A_m) \oplus Ker(A_m) = \mathbb{R}^4$. [2]

iii) We now fix
$$m = 0$$
. Compute A_0^3 . [2]

iv) Do we have
$$Ran(A_0^3) \oplus Ker(A_0^3) = \mathbb{R}^4$$
?

Justify your answer. [3]

SOLUTION

1.b.i) Similar to the above approach, we derive that
$$Ran(A) = span \left\{ \begin{bmatrix} -1 \\ m \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

and
$$Ker(A) = span \left\{ \begin{bmatrix} m \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 where bases are given in both cases.

1.b.ii) We show that the four vectors are linearly independent when $m \neq 0$, and so by the same justification as above, the result follows.

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ m & 0 & 1 & 0 \\ -1 & m & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \leadsto \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -m \\ -1 & m & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \leadsto \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & m & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -m \end{bmatrix}$$

hence, $m \neq 0 \Rightarrow$ the rows are linearly independent, implying the vectors are linearly independent.

1.b.iv) $\operatorname{Ran}(A_0^3) = \mathbf{0}$ and $\operatorname{Ker}(A_0^3) = \mathbb{R}^4$, therefore $\operatorname{Ran}(A_0^3) \oplus \operatorname{Ker}(A_0^3) = \mathbb{R}^4$.

2. Let $A = (a_{ij})_{i,j=1,\dots,n} \in \mathbb{R}^{n \times n}$ be a symmetric matrix, i.e, $A^T = A$ such that for all $x \in \mathbb{R}^n$ with $x \neq 0$ we have

$$x^T A x > 0$$
.

Matrices satisfying the above properties are known as positive-definite matrices

- a) Let $e_i \in \mathbb{R}^n$ with all its entries equal to 0 except the *i*-th entry which is equal to 1. Show that, for i = 1, ..., n, we have $a_{ii} = e_i^T A e_i > 0$. [1]
- b) Let C be the Schur complement of a_{11} in A, i.e.

$$C = A_{22} - \frac{1}{a_{11}} A_{21} A_{12}$$

where

$$A = \left(\begin{array}{cc} a_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right)$$

with a_{11} is a scalar, $A_{21} \in \mathbb{R}^{n-1}$, and $A_{22} \in \mathbb{R}^{(n-1) \times (n-1)}$ and $A_{12} \in \mathbb{R}^{1 \times (n-1)}$.

- i) Justify the fact that $C = A_{22} \frac{1}{a_{11}} A_{21} A_{21}^T$. [1]
- ii) Let $v \in \mathbb{R}^{n-1}$ and define $x \in \mathbb{R}^n$ such that

$$x = \left(\begin{array}{c} -(1/a_{11})A_{21}^T v \\ v \end{array}\right).$$

Show that $x^T A x = v^T C v$ and that C is a positive-definite matrix. [3]

- c) In what follows we will show that there exists a lower-triangular matrix $L \in \mathbb{R}^{n \times n}$ such that $A = LL^T$. This factorisation is known as the *Cholesky decomposition*.
 - i) Let L be given by

$$L = \left(\begin{array}{cc} l_{11} & \mathbf{0}^T \\ L_{21} & L_{22} \end{array}\right)$$

with l_{11} is a scalar, $L_{21} \in \mathbb{R}^{n-1}$, and $L_{22} \in \mathbb{R}^{(n-1) \times (n-1)}$ and $\mathbf{0} \in \mathbb{R}^{n-1}$. Write the block structure of the matrix LL^T .

- ii) Let $A = LL^T$. Show that $l_{11} = \sqrt{a_{11}}$, $L_{21} = (1/l_{11})A_{21}$, and $L_{22}L_{22}^T = A_{22} L_{21}L_{21}^T$. [2]
- iii) Describe a recursive procedure to construct the lower-triangular matrix L such that $A = LL^T$. [4]
- iv) Describe how one would use the above procedure to solve the linear equation Ax = y for $A \in \mathbb{R}^{n \times n}$ positive definite. [3]
- d) Define the following matrix A

$$A = \left(\begin{array}{ccc} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{array}\right)$$

- i) Apply the Cholesky decomposition to the matrix A above. [2]
- ii) Use it to solve the equation Ax = y where $y = \begin{pmatrix} 30 \\ 15 \\ -16 \end{pmatrix}$. [2]

SOLUTION [For a matrix $A = [a_{ij}]$, the notation $[A]_{ij}$ means the element a_{ij}]

1. Ae_i picks out the *i*'th colum of A and $e_i^T(Ae_i)$ picks out the the *i*'th row of Ae_i , that being a single element. Hence, the *i*'th diagonal element is picked.

More formally, Ae_i is a $n \times 1$ matrix (column vector) with $[Ae_i]_{k1} = \sum_{t=1}^n [A]_{kt} [e_i]_{t1}$. Now $[e_i]_{i1} = 1$ and $[e_i]_{t1} = 0$ for $t \neq i$. Thus $[Ae_i]_{k1} = \sum_{t=1}^n [A]_{kt} [e_i]_{t1} = [A]_{ki} [e_i]_{t1} = a_{ki}$. Now $e_i^T A e_i = \sum_{t=1}^n [e_i^T]_{1t} [Ae_i]_{t1} = \sum_{t=1}^n [e_i^T]_{1t} a_{ti}$, and since $[e_i^T]_{1i} = 1$ and $[e_i^T]_{1t} = 0$ for $t \neq i$, we have $e_i^T A e_i = a_{ii}$.

- 2. $A_{12} = A_{21}^T$ because A is symmetric.
- 3. Observe $x^T = [(-(1/a_{11})A_{21}^Tv)^T \quad v^T] = [-(1/a_{11})v^TA_{21} \quad v^T]$. Hence,

$$x^{T}Ax = \left[-(1/a_{11})v^{T}A_{21} \quad v^{T} \right] \begin{bmatrix} a_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} -(1/a_{11})A_{21}^{T}v \\ v \end{bmatrix}$$

$$= \left[0 \quad -\frac{1}{a_{11}}v^{T}A_{21}A_{12} + v^{T}A_{22} \right] \begin{bmatrix} -(1/a_{11})A_{21}^{T}v \\ v \end{bmatrix}$$

$$= -\frac{1}{a_{11}}v^{T}A_{21}A_{12}v + v^{T}A_{22}v$$

$$= v^{T}A_{22}v - \frac{1}{a_{11}}v^{T}A_{21}A_{21}^{T}v$$

$$v^{T}Cv = v^{T} \left(A_{22} - \frac{1}{a_{11}}A_{21}A_{21}^{T} \right) v = v^{T}A_{22}v - \frac{1}{a_{11}}v^{T}A_{21}A_{21}^{T}v$$

thus $x^TAx = v^TCv$. Furthermore, given A, any $v \in \mathbb{R}^{n-1}$ defines an $x \in \mathbb{R}^n$ such that $v^TCv = x^TAx > 0$. Thus, $v^TCv > 0$ for any $v \in \mathbb{R}^{n-1}$, implying C is positive-definite.

4. (a)

$$LL^{T} = \begin{bmatrix} l_{11} & \mathbf{0}^{T} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} l_{11} & L_{21}^{T} \\ \mathbf{0} & L_{22}^{T} \end{bmatrix} = \begin{bmatrix} l_{11}^{2} & l_{11}L_{21}^{T} \\ l_{11}L_{21} & L_{21}L_{21}^{T} + L_{22}L_{22}^{T} \end{bmatrix}$$
(2.1)

(b) Equating elements from A and the RHS of (2.1), we see that: $a_{11} = l_{11}^2 \Rightarrow l_{11} = \sqrt{a_{11}}$; $A_{21} = l_{11}L_{21} \Rightarrow L_{21} = (1/l_{11})A_{21}$; $A_{22} = L_{21}L_{21}^T + L_{22}L_{22}^T \Rightarrow L_{22}L_{22}^T = A_{22} - L_{21}L_{21}^T$

(c)

 $\frac{\text{CholeskyLD}(A)}{\text{matrix } L} \qquad \text{# A is a positive-definite matrix. Return is a the lower triangular}$

BEGIN

- 1. $l_{11} \leftarrow \sqrt{a_{11}}$
- 2. If A is a 1×1 matrix, return l_{11}
- 3. $L_{21} \leftarrow (1/l_{11})A_{21}$
- 4. $C \leftarrow A_{22} \frac{1}{a_{11}} A_{21} A_{21}^T$
- 5. $L_{22} \leftarrow \text{CholeskyLD}(C)$
- 6. return $\begin{bmatrix} l_{11} & \mathbf{0} \\ L_{21} & L_{22} \end{bmatrix}$

END

Note that in line 4., $C \leftarrow A_{22} - \frac{1}{a_{11}} A_{21} A_{21}^T = A_{22} - L_{21} L_{21}^T = L_{22} L_{22}^T$ by part (b) above. Furthermore, we know from part 3. of this exercise that C is positive-definite, and so is valid input to the function.

(d) Ax = y. Compute L = CholeskyLD(A), trasnpose (a copy of) that to give L^T . Then we know that $A = LL^T$. Thus, the equation is $L(L^Tx) = y$. Let $z = L^Tx$, solve Lz = y for

z, using forward substitution (which is an easy computation). Now solve $L^T x = z$ using backward substitution.

(e)
$$A = \begin{bmatrix} 25 & 15 & -1 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix}, L = \begin{bmatrix} 5 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & 1 & 3 \end{bmatrix}$$
, as follows:

CholeskyLD(A)

- $l_{11} \leftarrow 5$
- $L_{21} \leftarrow \begin{bmatrix} 3 \\ -1 \end{bmatrix}$
- $4. \qquad C \leftarrow \begin{bmatrix} 9 & 3 \\ 3 & 10 \end{bmatrix}$
- 5. $L_{22} \leftarrow \text{CholeskyLD}(C) = \begin{bmatrix} 3 & 0 \\ 1 & 3 \end{bmatrix}$
- return $\begin{bmatrix} 5 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & 1 & 3 \end{bmatrix}$

$$C = \begin{bmatrix} 9 & 3 \\ 3 & 10 \end{bmatrix}$$

CholeskyLD(C)

- $l_{11} \leftarrow 3$
- $L_{21} \leftarrow [1]$

- $L_{22} \leftarrow 3$ return $\begin{bmatrix} 3 & 0 \\ 1 & 3 \end{bmatrix}$

$$Ax = \begin{bmatrix} 25 & 15 & -1 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & 1 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 5 & 3 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 30 \\ 15 \\ -16 \end{bmatrix}$$

Letting
$$z = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 5 & 3 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and solving $Lz = y$, we get $z_1 = 6, z_2 = -1, z_3 - 3$

Then

$$\begin{bmatrix} 5 & 3 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 \\ -3 \end{bmatrix}$$

We get
$$x_3 = -1, x_2 = 0, x_1 = 1$$
. Thus, $x = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

3. Let m and n be two positive integers with $m \le n$. We consider $A \in \mathbb{R}^{(n+1)\times (m+1)}$ the matrix defined by

$$A = \begin{pmatrix} 1 & x_0 & \dots & x_0^m \\ 1 & x_1 & \dots & x_1^m \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \dots & x_n^m \end{pmatrix},$$

where x_0, \ldots, x_n are n distinct real numbers

Let 0 be the vector with all its entries equal to 0 (we will use the same notation for both the zero vector of \mathbb{R}^{m+1} and the one of \mathbb{R}^{n+1}). In what followed we define the vector

$$v = \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_m \end{pmatrix} \in \mathbb{R}^{m+1}.$$

a) i) Show that if Av = 0 then v = 0. [1]

Hint: Use the fact if the polynomial $P(x) = v_0 + v_1 x + \cdots + v_m x^m$ has n distinct zeros then P(x) = 0.

- ii) Using the previous question, show that if $A^T A v = 0$ then v = 0. [2]
- iii) Fix $y \in \mathbb{R}^{n+1}$. Justify the fact that the linear equation $A^T A x = A^T y$ admits a unique solution w.
- b) In the remainder of this problem, we will denote the solution in 2. a) iii) by w, i.e.

$$A^T A w = A^T y$$
.

For $v \in \mathbb{R}^{m+1}$ and $y \in \mathbb{R}^{n+1}$, define $g(v) = (y - Av)^T (y - Av)$.

- i) Show that $g(w) = y^T y y^T A w$, with w defined in 2. a) iii). [2]
- ii) Prove that $g(v) g(w) = (w v)^T A^T A(w v)$. [2] Hint: Use the fact that $||A(w - v)||^2 = ||(Aw - y) - (Av - y)||^2$.
- iii) Show that for all $v \in \mathbb{R}^{m+1}$, we have $g(v) \ge g(w)$ and that g(v) = g(w) if and only if v = w.
- c) Let P be a polynomial such that $P(x) = \sum_{k=0}^{m} v_k x^k$. We define the quantity

$$\Phi_m(P) = \sum_{i=0}^n (y_i - P(x_i))^2$$
.

Let
$$y = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^{n+1}$$
.

- i) Show that $\Phi_m(P) = g(v)$. [2]
- ii) Using question 3.b.iii), show that there exists a polynomial P_w such that $\Phi_m(P) \ge \Phi_m(P_w)$. [2]
- d) Let n = m = 3, $x_0 = -1$, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$, $y_0 = 1$, $y_1 = 2$, $y_2 = 1$, $y_3 = 0$.
 - i) Solve $A^T A v = A^T y$. [2]
 - ii) Derive the expression of the polynomial in $\mathbb{R}_3[X]$ that minimizes Φ_3 and give the minimum value of Φ_3 on $\mathbb{R}_3[X]$. Justify your answer. [2]

SOLUTION

3.a.i) If Av = 0 then $P(x_0) = P(x_1) = \dots P(x_n) = 0$, implying P(x) = 0, i.e., that $v_0 = v_1 = \dots v_m = 0$.

3.a.ii)
$$v^T A^T A v = ||Av||^2 = 0 \Rightarrow Av = 0 \Rightarrow v = 0$$
.

3.a.iii) Suppose $A^TAx = A^Ty$ and $A^TAx' = A^Ty$. Then $A^TA(x - x') = 0 \Rightarrow x = x'$.

3.b.i)

$$g(w) = (y - Aw)^{T} (y - Aw)$$

$$= y^{T} y - 2y^{T} Aw + (Aw)^{T} Aw$$

$$= y^{T} y - 2y^{T} Aw + w^{T} A^{T} Aw$$

$$= y^{T} y - 2y^{T} Aw + w^{T} A^{T} y$$

$$= y^{T} y - 2y^{T} Aw + y^{T} Aw$$

$$= y^{T} y - y^{T} Aw$$

3.b.ii) Note that

$$(w-v)^{T}A^{T}A(w-v) = ||A(w-v)||^{2}$$

$$= ||(Aw-y) - (Av-y)||^{2}$$

$$= ||y-Av||^{2} + ||y-Aw||^{2} - 2(Av-y)^{T}(Aw-y)$$

$$= ||y-Av||^{2} + ||y-Aw||^{2} - 2v^{T}A^{T}(Aw-y) + 2y^{T}(Aw-y)$$

$$= ||y-Av||^{2} + ||y-Aw||^{2} - 0 - 2g(w)$$
 by 2.a.i and the definition of w.
$$= g(v) + g(w) - 2g(w) = g(v) - g(w)$$

3.b.iii) Follows from previous question we have

$$g(v) - g(w) = ||A(v - w)||^2$$

and we conclude using question 3.a.ii).

3.c.i) Note that

$$P(x_i) = \sum_{k=0}^m v_k x_i^k = (Av)_i$$

Hence

$$\Phi_m(P) = ||y - Av||^2 = (y - Av)^T (y - Av) = g(v)$$

3.c.ii) Direct consquence of 3b.iii)

3.d.i) Here

$$A = \left(\begin{array}{cccc} 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{array}\right),$$

and

$$A^T A = \left(\begin{array}{cccc} 4 & 2 & 6 & 8 \\ 2 & 6 & 8 & 18 \\ 6 & 8 & 18 & 32 \\ 8 & 18 & 32 & 66 \end{array}\right),$$

and

$$A^T y = \left(\begin{array}{c} 4 \\ 0 \\ 2 \\ 0 \end{array}\right),$$

Hence

$$w = \begin{pmatrix} 2 \\ -1/3 \\ -1 \\ 1/3 \end{pmatrix},$$

3.d.ii) Simple calculations yield $\Phi_m(P_w) = 0$.