X510050 - Langages et automates Généralités sur les langages

D. Béchet & T. Sadiki

Université de Nantes & Université Internationale de Rabat

10 septembre 2014

Introduction

Langage naturel, langage mathématique, langage de programmation (C, Java, ...), langage formel, format de fichiers, normalisation, ...

Langage formel : un vocabulaire + des règles de grammaires

Théorie des langages formels

- Analyse: déterminer si une phrase appartient ou non au langage.
- Génération : générer l'ensemble des phrases (mots) d'un langage

Syntaxe uniquement

Sémantique non prise en compte

Voir Noam CHOMSKY (sur Wikipédia) pour l'aspect historique

Plan Chapitre 1

- Notions de monoïde
- Mots et monoïdes
- Relations entre mots
- 4 Langages et opérations

Définition de monoïde

Définition 1.1 - Monoïde

Un monoïde est un ensemble E muni d'une opération binaire interne associative \oplus et possédant un élément neutre ε

Notation : $\langle E, \oplus, \varepsilon \rangle$

Exemples:

- < $\mathbb{N},+,0>$ les entiers positifs ou nuls avec l'addition (élément neutre 0)
- $-<\mathbb{Z},+,0>$ les entiers relatifs avec l'addition (élément neutre 0)
- $-<\mathbb{R}, \times, 1>$ les nombres rééls avec la multiplication (élément neutre 1)
- $-<\mathcal{P}(U),\cup,\emptyset>$ les sous-ensembles d'un univers U avec l'union
- etc

Propriétés d'un monoïde $\langle E, \oplus, \varepsilon \rangle$

● est une opération binaire interne (ou stable) à E :

$$\forall x, y \in E, x \oplus y \text{ est défini} \text{ et } x \oplus y \in E$$

•

est associative :

$$\forall x, y, z \in E, (x \oplus y) \oplus z = x \oplus (y \oplus z)$$

Pour cette raison, les parenthèses sont souvent omises

• ε est un élément neutre de E pour \oplus :

$$\varepsilon \in E$$
 et $\forall x \in E, \varepsilon \oplus x = x \oplus \varepsilon = x$

• Il ne peut exister qu'un seul élément neutre dans un monoïde : si ε et ε' sont deux éléments neutres de E pour \oplus , alors $\varepsilon = \varepsilon \oplus \varepsilon' = \varepsilon'$

Définition de sous-monoïde

Définition 1.2 - Sous-monoïde

Soit $\langle E, \oplus, \varepsilon \rangle$, un monoïde et T un sous-ensemble de E (T \subseteq E). $\langle T, \oplus, \varepsilon \rangle$ est un sous-monoïde de $\langle E, \oplus, \varepsilon \rangle$, ssi c'est un monoïde.

Puisque $\langle E, \oplus, \varepsilon \rangle$ est un monoïde, il suffit de démontrer que :

- ε ∈ T
- \oplus est stable dans T : \forall t,t' \in T, t \oplus t' \in T

Définition 1.3 - Monoïde engendré

Soit $M = \langle E, \oplus, \varepsilon \rangle$ un monoïde. Pour toute partie A de E, on peut définir le plus petit sous-monoïde de M contenant A. On l'appelle le sous-monoïde de M engendré par A.

Exercices sue les monoïdes

Monoïde? Sous-monoïde? Monoïde engendré?

 $\mathbb N$ est l'ensemble des entiers naturels $Pair(\mathbb N)$ est l'ensemble des entiers pairs (ou nuls) $Impair(\mathbb N)$ est l'ensemble des entiers impairs

$$<\mathbb{N}, +, 0 > ?$$

 $<\mathbb{N}, \times, 1 > ?$
 $< Pair(\mathbb{N}), +, 0 > ?$
 $< Pair(\mathbb{N}), \times, 1 > ?$
 $< Impair(\mathbb{N}), +, 0 > ?$
 $< Impair(\mathbb{N}), \times, 1 > ?$

Exercices sue les monoïdes - Quelques réponses

Monoïde ? Sous-monoïde ? Monoïde engendré ?

- \bullet < $Pair(\mathbb{N}), +, 0 > :$ un monoïde
- $extbf{2} < Pair(\mathbb{N}), +, 0 > :$ sous-monoïde de $< \mathbb{N}, +, 0 > :$
- ullet < $Pair(\mathbb{N}),+,0>$: le sous-monoïde de $<\mathbb{N},+,0>$ engendré par $\{2\}$
- $\bullet < Impair(\mathbb{N}), +, 0 > :$ n'est pas un monoïde

Démonstrations:

- (3) implique (2) qui implique (1)
- (3) se démontre en remarquant que 2 est pair, en montrant (2) puis en montrant par une récurrence simple que tout sous-monoïde de $<\mathbb{N},+,0>$ contenant l'entier 2 doit contenir au moins tous les entiers pairs
- (4) se démontre facilement en remaquant que la somme de deux nombres impairs n'est pas impair, par exemple 1+1=2

Définitions de symbole, alphabet, mot

Définition 1.4 - Symbole

Un symbole est une brique élémentaire, un atome

Définition 1.5 - Alphabet

Un alphabet A est un ensemble fini et non vide de symboles

Définition 1.6 - Mot

Un **mot** (chaîne) sur un alphabet A est une suite finie de symboles de A Si a_1, \ldots, a_n sont des symboles de A, on note $a_1 \cdots a_n$ le mot qui forme la suite de ces n symboles^a

^an peut être nul et les symboles ne sont pas forcément distincts deux à deux

Longueur d'un mot, mot vide

Définition 1.7 - Longueur d'un mot

La **longueur** d'un mot est le nombre de symboles du mot. Soit un mot w, sa longueur est notée w

Définition 1.8 - Mot vide

Le mot vide est le mot de longueur 0, c'est-à-dire ne contenant aucun symbole. Plutôt que de le marquer par une chaîne vide, il est souvent noté ε . $|\varepsilon| = 0$

Définition 1.9 - Mot de longueur n, A^n , A^* et A^+

Soit A un alphabet, l'ensemble des mots de longueur n est noté Aⁿ On appelle A*, l'ensemble de tous les mots de longueur finie construits avec les symboles de A.

On appelle A⁺, l'ensemble de tous les mots de longueur finie et non nulle construits avec les symboles de A

Concaténation

Définition 1.10 - Concaténation

Soit $v, w \in A^*$, |v| = m, |w| = n, la **concaténation** de v et w, notée $\mathbf{v} \cdot \mathbf{w}$, est le mot de longueur m + n dont les m premiers symboles sont le mot v et les n suivants le mot w. Ainsi, si $v = a_1 a_2 \dots a_m$ et $v = b_1 b_2 \dots b_n$ alors $\mathbf{v} \cdot \mathbf{w} = \mathbf{a}_1 \mathbf{a}_2 \dots \mathbf{a}_m \mathbf{b}_1 \mathbf{b}_2 \dots \mathbf{b}_n$

Propriétés de la concaténation

- associativité, $\forall u, v, w \in A^*$, $(u \cdot v) \cdot w = u \cdot (v \cdot w) = u \cdot v \cdot w$
- généralement non commutatif, soit $u, v \in A^*$, $u \cdot v \neq v \cdot u$
- élément neutre ε , $\forall u \in A^*$, $\varepsilon \cdot u = u \cdot \varepsilon = u$

 $\langle A^*, \cdot, \varepsilon \rangle$ est un monoïde, appelé monoïde libre engendré par A

Décomposition

Théorème 1.1 - Propriété de la décomposition

Tout mot v (de longueur n = |v|) sur un alphabet A se décompose de façon unique en $a_1 \cdot a_2 \cdot \ldots \cdot a_n$, où $\forall i \in \{1 \ldots n\}, a_i \in A$.

Cela signifie que le monoïde libre engendré par A est un monoïde libre au sens de l'algèbre universelle, que les symboles sont atomiques et que tout mot est produit unique de concaténation des symboles qui le composent

Théorème 1.2 - Lemme de Levi

Soient $t, u, v, w \in A^*$, si $t \cdot u = v \cdot w$ alors il existe un unique $(\exists !)$ $z \in A^*$ tel que :

- 2 ou bien $(t = v \cdot z \text{ et } z \cdot u = w)$

Ce lemme est un résultat intermédiaire utile dans les démonstrations

Démonstration du lemme de Levi

De manière informelle, si l'on a $t \cdot u = v \cdot w$, il y a trois cas :

VVVVVWWWWWW

ttttuuuuuuuu

②
$$|t| < |v|$$
 et $|u| > |w|$: $|zzzz|$

VVVVVVVVWWWW

tttttttuuuu

3
$$|t| > |v|$$
 et $|u| < |w|$: $|zzzz|$

VVVVWWWWWWWW

Puissance

Notation - Puissance

La **puissance** n du mot x (notée x^n) est le mot $v = x \cdot ... \cdot x$ (n fois).

On a
$$|v| = n \times |x|$$

$$\forall x \in A^*, \ x^0 = \varepsilon, \ x^1 = x$$

$$\forall x \in A^*, x^n = \varepsilon \Longrightarrow x = \varepsilon \text{ ou } n = 0$$

Exercices sur les mots

bb

① Donner la longueur des mots suivants sur l'alphabet a,b,c: abcb abba ε

- Onner la longueur des mots suivants sur l'alphabet a,b,ch,',' : a,bbaa achbbaa
- **3** Soient a, b des symboles de A et u un mot de A^* . Montrer que si $u \cdot a = b \cdot u$ alors a = b et $u \in \{a\}^*$.

Exercices sur les mots - Réponses

1 Donner la longueur des mots suivants sur l'alphabet a,b,c:

$$abcb \Longrightarrow 4$$

$$abba \Longrightarrow 4$$

$$\varepsilon \Longrightarrow 0$$

$$bb \Longrightarrow 2$$

② Donner la longueur des mots suivants sur l'alphabet a,b,ch,',' :

$$a,bbaa \Longrightarrow 6$$

 $achbbaa \Longrightarrow 6$

3 Soient a, b des symboles de A et u un mot de A^* . Montrer que si $u \cdot a = b \cdot u$ alors a = b et $u \in \{a\}^*$

Démonstration : par induction généralisée sur la longueur de *u* et en utilisant le lemme de l'evi

Exercices sur les mots - Démonstration de (3)

- Hypothèse d'induction Soient $k \in \mathbb{N}$, $u \in A^*$, $a, b \in A$ avec |u| = k, nous supposons que la propriété est vraie pour tout mot u' de longueur plus petite (strictement) que k.
- **Hypothèse** : nous supposons que $u \cdot a = b \cdot u$
- **Utilisation du lemme de Levi** : nous avons soit $u = b \cdot z$ et $z \cdot a = u$ soit $b = u \cdot z$ et $z \cdot u = a$
- Sous cas 1 : si k = 0 alors $u = \varepsilon$ donc a = b et $u \in \{a\}^*$
- Sous cas 2 : si k > 0, $b = u \cdot z$ et $z \cdot u = a$ alors $z = \varepsilon$ et a = b = u donc a = b et $u \in \{a\}^*$
- Sous cas 3 : si k > 0, $u = b \cdot z$ et $z \cdot a = u$ alors $z \cdot a = b \cdot z$ Utilisation de l'hypothèse d'induction : comme $z \cdot a = b \cdot z$ et |z| < |u| = k, nous avons a = b et $z \in \{a\}^*$ Finalement a = b et $u = z \cdot a \in \{a\}^*$

Définitions de préfixe, suffixe, sous-chaîne/facteur

Définition 1.11 - Préfixe/préfixe propre

v est un préfixe de w ($v \in Pref(w)$) ssi $\exists z \in A^*$ tel que $w = v \cdot z$ v est un préfixe propre de w ($v \in PrefProp(w)$) ssi $\exists z \in A^+$ tel que $w = v \cdot z$

Définition 1.12 - Suffixe/suffixe propre

v est un suffixe de w ($v \in Suff(w)$) ssi $\exists z \in A^*$ tel que $w = z \cdot v$ v est un suffixe propre de w ($v \in SuffProp(w)$) ssi $\exists z \in A^+$ tel que $w = z \cdot v$

Définition 1.13 - Sous-chaîne

v est une sous-chaîne ou facteur de w ssi $\exists u_1, u_2 \in A^*$ tel que $w = u_1 \cdot v \cdot u_2$

facteur gauche = préfixe facteur droit = suffixe

Occurrence et relations d'ordre sur les chaînes

Définition 1.14 - Occurrence

Une **occurrence** du symbole x dans le mot w est un entier i>0 tel que le i-ème symbole de w (noté w(i)) est x

Le nombre d'occurrences de la lettre x dans le mot w est noté $|w|_x$

L'alphabet $A = \{x_1, x_2, \dots, x_n\}$ muni d'un ordre total < sur les symboles définit sur A^* plusieurs relations d'ordre :

- l'ordre préfixiel, noté $<_{\rm p}$: ordre partiel défini par : ${\bf u}<_{\rm p}{\bf v}$ ssi u est un préfixe propre de v
- l'ordre lexicographique (ordre du dictionnaire), noté $<_L$: ordre total défini par : $\mathbf{u} <_L \mathbf{v}$ ssi u est un préfixe propre de v ($u <_p v$) ou bien $u = w \cdot a \cdot u_2$ et $v = w \cdot b \cdot v_2$ tels que $w \in A^*$, a < b avec $a, b \in A$
- l'ordre hiérarchique, noté <_h : ordre total pour lequel les mots sont classés en premier lieu par longueur, puis pour les mots de même longueur, par ordre lexicographique.

Exercices sur les relations entre mots

- Soit x = abbcc un mot sur l'alphabet $A = \{a, b, c\}$, donner Pref(x) et Suff(x).
- ② Soient $u_1, u_2, v \in A^*$, montrer que si $u_1 \in Pref(v)$ et $u_2 \in Pref(v)$ alors soit $u_1 \in Pref(u_2)$, soit $u_2 \in Pref(u_1)$
- 3 Soient les mots suivants sur l'alphabet $A = \{a, b, c, d\}$ muni de l'ordre total a < b < c < d:
 - 0 a
 - abcd
 - bc
 - 4 dbc
 - ab
 - 6 cd
 - cdab
 - abdd

Trier ces mots selon les ordres préfixiels, lexicographiques et hiérarchiques.

Exercices sur les relations entre mots - Réponses

- Soit x = abbcc un mot sur l'alphabet $A = \{a, b, c\}$ $Pref(x) = \{a, ab, abb, abbc, abbcc\}$ $Suff(x) = \{c, cc, bcc, bbcc, abbcc\}$
- ② Soient $u_1, u_2, v \in A^*$, montrer que si $u_1 \in Pref(v)$ et $u_2 \in Pref(v)$ alors soit $u_1 \in Pref(u_2)$, soit $u_2 \in Pref(u_1)$

```
Démonstration: assez simple en utilisant le lemme de Levi Si u_1 \in Pref(v) et u_2 \in Pref(v) alors \exists w_1, w_2 \in A^* tels que v = u_1 \cdot w_1 = u_2 \cdot w_2. Le lemme de Levi implique que \exists! z \in A^* tel que (u_1 = u_2 \cdot z \text{ et } w_2 = z \cdot w_1) ou (u_2 = u_1 \cdot z \text{ et } w_1 = z \cdot w_2) \Rightarrow u_1 = u_2 \cdot z \text{ ou } u_2 = u_1 \cdot z \Rightarrow u_1 \in Pref(u_2) ou u_2 \in Pref(u_1)
```

Exercices sur les relations entre mots - Réponses

- **3** Soient les mots suivants sur l'alphabet $A = \{a, b, c, d\}$ muni de l'ordre total a < b < c < d:
 - Ordre préfixiel :

$$\mathsf{a} <_{p} \mathsf{abcd}, \ \mathsf{a} <_{p} \mathsf{ab}, \ \mathsf{a} <_{p} \mathsf{abdd}, \ \mathsf{ab} <_{p} \mathsf{abcd}, \ \mathsf{ab} <_{p} \mathsf{abdd}, \ \mathsf{cd} <_{p} \mathsf{cdab}$$

$$a <_p ab <_p abdd$$
 et $cd <_p cdab$

- Ordre lexicographiques :
 - $a <_{l} ab <_{l} abcd <_{l} abdd <_{l} bc <_{l} cd <_{l} cdab <_{l} dbc$
- Ordre hiérarchique :

$$a <_h ab <_h bc <_h cd <_h dbc <_h abcd <_h abdd <_h cdab$$

Langage

Définition 1.15 - Langage

Un langage L sur un alphabet A est un ensemble de chaînes (ou ensemble de mots) sur A. L est donc un sous-ensemble de A^* , autrement dit $L \subseteq A^*$.

L'ensemble des langages L sur A est l'ensemble $\mathcal{P}(A^*)$ des parties de A^* , autrement dit : $L \in \mathcal{P}(A^*)$.

Étant donné un alphabet A, parmi tous les langages L de $\mathcal{P}(A^*)$:

- ullet Le langage neutre est celui dont le seul mot est la chaîne vide : $\{arepsilon\}$
- Le langage vide est celui qui ne contient aucun mot : 0
- Un langage fini est un langage qui contient un nombre fini de mots
- Un langage infini est un langage qui n'est pas fini
- Langage prefixe/suffixe : un langage L est dit posséder la propriété préfixe (resp. suffixe) si aucune chaîne de L n'est préfixe (resp. suffixe) propre d'une autre chaîne de L

Opérateurs ensemblistes classiques et opérateurs induits par la concaténation des mots

Définition 1.16 - Union, intersection, différence, complémentaire

```
Union : L \cup M = \{x \mid x \in L \text{ ou } x \in M\}
Intersection : L \cap M = \{x \mid x \in L \text{ et } x \in M\}
```

Différence (ou exclusion) : $L \setminus M = L - M = \{x \mid x \in L \text{ et } x \notin M\}$

Complémentaire sur A^* : Comp(L) = $A^* \setminus L = \{x \mid x \in A^* \text{ et } x \notin L\}$

Définition 1.17 - Opérateurs induits par la concaténation des mots

Produit: LM = $L \times M = \{x \cdot y \mid x \in L \text{ et } y \in M\}$

Puissance :
$$L^0 = \{\varepsilon\}$$
 et $L^n = L \times L^{n-1} = L^{n-1} \times L$

Fermeture de Kleene : $L^* = \bigcup_{i=0...\infty} L^i$

Fermeture positive : $L^+ = \bigcup_{i=1}^{\infty} L^i$

Propriétés des opérateurs entre langages

- Le langage vide est **absorbant** pour la concaténation des langages : $\emptyset \times L = \emptyset = \emptyset \times L$
- \bullet < $\mathcal{P}(A^*)$, \times , $\{\varepsilon\}$ > est un monoïde :
 - Le langage neutre est élément neutre pour la concaténation des langages : $\{\varepsilon\} \times L = L = L \times \{\varepsilon\}$
 - La concaténation des langages est associative : $(L1 \times L2) \times L3 = L1 \times (L2 \times L3)$
- $L^+ = L \times L^* = L^* \times L$ et $L^* = \{\varepsilon\} \cup L^+$
- $\bullet \ \emptyset^* = \{\varepsilon\} \ \mathrm{et} \ \{\varepsilon\}^* = \{\varepsilon\}$

Exercice sur les langages et opérations

Montrer que le produit de deux langages préfixes est un langage préfixe

Exercice sur les langages et opérations - Démonstration

Montrer que le produit de deux langages préfixes est un langage préfixe

Démonstration : par l'absurde, assez simple en utilisant le lemme de Levi

- Soient L et M deux langages préfixes, $w_1, w_2 \in LM$
- **Démonstration par l'absurde** : supposons que w_1 est préfixe propre de $w_2 \Rightarrow \exists z$ tel que $w_1 \cdot z = w_2$
- De plus, $\exists u_1, u_2 \in L$ et $\exists v_1, v_2 \in M$ tels que $w_1 = u_1 \cdot v_1$ et $v_2 = u_2 \cdot v_2$
- Lemme de levi sur $u_1 \cdot (v_1 \cdot z) = u_2 \cdot v_2$ $\Rightarrow \exists! z \text{ tel que } (u_1 = u_2 \cdot w \text{ et } v_2 = w \cdot v_1 \cdot z) \text{ ou } (u_2 = u_1 \cdot w \text{ et } v_1 = w \cdot v_2 \cdot z)$
- Or u_1 n'est pas préfixe de u_2 et réciproquement $\Rightarrow u_1 = u_2$ et $w = \varepsilon \Rightarrow v2 = v1 \cdot z$ ou $v1 = v2 \cdot z$
- Contradiction car v_1 n'est pas préfixe de v_2 et réciproquement
- La supposition n'est pas vraie : w_1 n'est pas préfixe propre de w_2
- De même w_2 ne peut pas être préfixe propre de $w_1 \Rightarrow LM$ est un langage préfixe