Computational methods for imprecise continuous-time birth-death processes: a preliminary study of flipping times

Stavros Lopatatzidis, Jasper De Bock, Gert de Cooman

The Precise Case

Consider a continuous time and finite-state Markov process with state space \mathcal{X} . At any time $t \in [0, +\infty)$, the stochastic matrix of the process P_t is derived from a transition rate matrix Q. For $i, j \in \mathcal{X}$, the element at the i row and j column of Q is denoted by Q(i, j). For the matrix Q, the following properties hold

(P1)
$$Q(i,j) \ge 0$$
 for all $i,j \in \mathcal{X}$ such that $i \ne j$ (P2) $\sum_{i \in \mathcal{X}} Q(i,j) = 0, \forall i \in \mathcal{X}$

A matrix Q is said to be bounded if $Q(i,i) > -\infty$ for all $i \in \mathcal{X}$ or, equivalently, if $\|\mathcal{Q}\| < \infty$. Our results hold for various types of norm, but the one we consider is the infinite norm defined by $\|\mathcal{Q}\| \coloneqq \|\mathcal{Q}\|_{\infty} = \max\{\sum_{i \in \mathcal{X}} |Q(i,j)| : i \in \mathcal{X}\}.$

When Q is bounded, then P_t satisfies the Kolmogorov backward equation

$$\frac{d}{dt}P_t = QP_t. \tag{1}$$

If we let $f_t(i) := E_t(f|X_0 = i)$, with f a realvalued function on the finite state space ${\mathcal X}$ and $i \in \mathcal{X}$ an initial state, then we can rewrite Equation (1) as follows

$$\frac{d}{dt}f_t = Qf_t. \tag{2}$$

Combined with the boundary condition $f_0 = f$, the unique solution of Equation (2) is $f_t = e^{tQ}f$. Instead of considering a time-invariant Q, we can also let Q_t be a function of the time t. In that case, Equation (2) can be rewritten as

$$\frac{d}{dt}f_t = Q_t f_t. \tag{3}$$

which, in general, has no analytical solution.

A "messy" case

Consider the state space $\mathcal{X} := \{0, 1, 2, 3\}$, the following set Q of bounded matrices

$$\left\{
\begin{pmatrix}
-p_i & p_i & 0 & 0 \\
q_j & -q_j & 0 & 0 \\
0 & 0 & -r & r \\
0 & 0 & s & -s
\end{pmatrix} : a_i \in [\underline{a}, \overline{a}] \text{ and } b_j \in [\underline{b}, \overline{b}] \right\}$$

and a function f of the form $[c, c, f_2, f_3]^T$. In this case, we cannot efficiently identify Q_{τ_0} , because for any $Q,Q'\in\mathcal{Q}$, we have that $Q^kf=Q'^kf$, for all $k\in\mathbb{N}$.

Is there a simple way to check when two different matrices Q, Q' yield the same expected value, without calculating Q^k and Q'^k for all k?

Imprecise Birth-Death Process

We focus on the case where every state has an interval-valued birth and/or death rate. The transition rate matrices have the following form

$$\begin{pmatrix}
-\lambda_0 & \lambda_0 & 0 & \cdots & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots & \vdots \\
0 & \cdots & \mu_i & -(\mu_i + \lambda_i) & \lambda_i & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots & \vdots \\
0 & \cdots & \cdots & 0 & \mu_L & -\mu_L
\end{pmatrix}$$

where, for all $i \in \{0, \ldots, L-1\}$ and $j \in \{1, \ldots, L\}$, $\lambda_i \in [\underline{\lambda}, \lambda]$ and $\mu_i \in [\mu, \overline{\mu}]$ and $L \in \mathbb{N}$. In this way, we have a set of matrices Q with finite numbers of extreme points, separately specified rows and which avoids the special case above.

The Imprecise Case

Set of matrices Instead of a single transition matrix Q, we consider a set of such matrices, denoted by Q. We assume that each matrix in Q is bounded and satisfies (P1) and (P2). Let R be the set of all rate matrices, then for any set $Q \subseteq \mathcal{R}$ of rate matrices, we let

$$Q_i := \{Q(i, \cdot) : Q \in Q\}$$
 for all $i \in \mathcal{X}$,

and we say that Q has separately specified rows if

$$Q \in \mathcal{Q}(\forall i \in \mathcal{X}) \ \mathcal{Q}(i, \cdot) \in \mathcal{Q}_i.$$

We further assume that Q is the convex hull of a *finite* number of extreme transition rate matrices.

Our Approach At any time $t \in [0, +\infty)$, the only assumption we make about Q_t is that it is an element of Q. Every such possible choice of non-stationary transition rate matrices will, by (3), result in a—possibly different solution f_t . Our goal is to calculate exact lower and upper bounds for the set of all these solutions f_t , as denoted by \underline{f}_t and \overline{f}_t . In the recent work of Škulj and with respect to the lower bound, \underline{f}_t is the solution to

$$\frac{d}{dt}\underline{f}_{t} = \min_{O \in \mathcal{Q}} Q\underline{f}_{t}, \text{ with boundary condition } \underline{f}_{0} = f. \tag{4}$$

Since Q is the convex hull of a finite number of extreme transition rate matrices and that the solution to (4) is continuous, there must be time points $0 = t_0 < t_1 < \ldots < t_n < t_{n+1} < \ldots$ such that, for all $t \in \tau_n := [t_n, t_{n+1}]$, the minimum in (4) is obtained by the same extreme transition rate matrix $Q_{\tau_n} \in \mathcal{Q}$. We call these time points t_n flipping times. Equation (4) is then piecewise linear and has the following solution

$$\underline{f}_t = e^{(t-t_n)Q_{\tau_n}}e^{(t_n-t_{n-1})Q_{\tau_{n-1}}}\dots e^{(t_2-t_1)Q_{\tau_1}}e^{t_1Q_{\tau_0}}f, \text{ for } t \in [t_n, t_{n+1}].$$
(5)

Calculating Lower Expectations We need to find the flipping times t_n and the corresponding extreme transition rate matrices Q_{τ_n} when calculating the lower expectation of a given f on \mathcal{X} . It is known that

$$\frac{\partial}{\partial t} \left[e^{tQ} f \right] \Big|_{t=0} = Qf \Rightarrow (\forall \varepsilon > 0) (\exists \delta > 0) (\forall t \in (0, \delta)) \| e^{tQ} f - f - tQf \|_{\infty} < t\varepsilon \tag{6}$$

and it can be further proved that for any pair of matrices Q, Q' in Q

if
$$Qf < Q'f$$
, then $(\exists \delta > 0)(\forall t \in (0, \delta)) e^{tQ}f < e^{tQ'}f$,

where Qf < Q'f if $Qf(i) \leq Q'f(i)$ for all $i \in \mathcal{X}$ and $Qf \neq Q'f$. In order to find Q_{τ_0} in (5), we need to find a Q such that Qf < Q'f, for all $Q' \in Q \setminus \{Q\}$. Since Q has separately specified rows, we can identify Q_{τ_0} by minimising Qf at each row separately. Hence, Q_{τ_0} belongs to the set

$$Q_{\tau_0} := \{ Q \in \mathcal{Q} : Qf(i) \leq Q'f(i), \forall i \in \mathcal{X} \text{ and } \forall Q' \in \mathcal{Q} \setminus \{Q\} \}.$$

In practice, Q_{τ_0} might not be a singleton and in this case, for any two matrices Q, Q' in Q_{τ_0} , we have that Qf = Q'f. Since we know that $\frac{\partial^k}{\partial^k t} [e^{tQ}f]\Big|_{t=0} = Q^k f$, it can be proved that

if
$$Q^k f < Q'^k f$$
 and $Q^{k'} f = Q'^{k'} f$ for all $k' \in \{1, \dots, k-1\}$, then $(\exists \delta > 0)(\forall t \in (0, \delta)) e^{tQ} f < e^{tQ'} f$ (7)

Therefore, if Q_{τ_0} is not a singleton, then Q_{τ_0} is a single matrix Q of Q_{τ_0} , for which (7) holds.

Having found Q_{τ_0} , then $\underline{f}_{t_1} = e^{t_1 Q_{\tau_0}} f$ and $\tau_0 := [t_1, 0]$ due to (5). In order to find the corresponding, if any, flipping time t_1 , we take the derivative of $e^{tQ}\underline{f}_{t_1}$ evaluated at t=0.

$$\frac{\partial}{\partial t} \left[e^{tQ} \underline{f}_{t_1} \right] \Big|_{t=0} = Q \underline{f}_{t_1} = Q e^{t_1 Q_{\tau_0}} f$$

and due to continuity, it holds that

$$Q_{\tau_0} e^{t_1 Q_{\tau_0}} f = Q e^{t_1 Q_{\tau_0}} f. \tag{8}$$

We solve (8) for each $i \in \mathcal{X}$ separately, since \mathcal{Q} has separately specified rows and the smallest positive real solution of t_1 is the first flipping time and the corresponding matrix Q is the matrix Q_{τ_1} . We continue the same procedure till we find no more flipping times.

- Numerical Results

We calculate the lower expected probability of state 1, $\underline{E}(X_t = 1)$, of an imprecise birth-death chain with state space $\mathcal{X} := \{0, 1, 2, 3\}$ for t approaching infinity. The set of transition rate matrices Q is derived from the intervals $\lambda_i \in [1,3] \text{ and } \mu_i \in [2,5], \text{ for all } i \in \{0,\ldots,L-1\} \text{ and } i \in \{0,\ldots,L-1\}$ $j \in \{1, \ldots, L\}$ and the input function is $f = [0, 1, 0, 0]^T$.

Following the procedure described before, we start by finding a matrix Q, such that Qf < Q'f for all $Q' \in \mathcal{C}$ $\mathcal{X} \setminus Q$. Due to the values of f, there are multiple Q, such that Qf is pointwise minimum. These matrices have the following form

$$Q^* = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 5 & -8 & 3 & 0 \\ 0 & 2 & -(2 + \lambda_2) & \lambda_2 \\ 0 & 0 & \mu_3 & -\mu_3 \end{pmatrix}$$

where, $\lambda_2 \in \{1,3\}$ and $\mu_3 \in \{2,5\}$.

Continuing with the procedure, we check whether there is a matrix Q, such that $Q^2f < Q'^2f$ for all $Q' \in \mathcal{X} \setminus Q$. Indeed, there is such a matrix and therefore we have that

$$Q_{\tau_0} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 5 & -8 & 3 & 0 \\ 0 & 2 & -5 & 3 \\ 0 & 0 & 2 & -2 \end{pmatrix}$$

for which the flipping time is $t_1 = 0.6403991$ and Q_{τ_1} is

$$Q_{\tau_1} = \begin{pmatrix} -3 & 3 & 0 & 0 \\ 2 & -5 & 3 & 0 \\ 0 & 2 & -5 & 3 \\ 0 & 0 & 2 & -2 \end{pmatrix}$$

For the matrix Q_{τ_1} there is no flipping time and by taking $t \to \infty$, we have that $\underline{E}(X=1) = 0.0937540788$.