Dynamic Programming to Coin Change Problem

syscl

Let the d_1, \dots, d_k be the denominations, n be the amount of money, c_p be the minimum number of coins of current denomination system needed to make change for p. Let

$$c_0 = 0 (1)$$

$$c_p = \min_{1 \le i \le k} (1 + c_{p-d_i}) \tag{2}$$

then c_p is optimal solution to p.

Before we complete the proof, We have to prove the following lemma.

Lemma 1 Let $X=\{x_1,\cdots,x_k\}$ be an optimal solution where x_i is the number of d_i being used. If $P\subseteq X$ and $\alpha=\sum\limits_{x_i\in P}d_ix_i$, then P is an optimal solution to α .

Proof. If P is not an optimal solution to P, there there must exist a set $Q\subseteq X$ such that $\alpha=\sum\limits_{x_i\in Q}d_ix_i$ and $\sum\limits_{x\in Q}x<\sum\limits_{x\in P}x.$ If that is the case,

$$\sum_{x \in Q \cup (X-P)} x < \sum_{x \in X} x \tag{3}$$

and this is contradict to X is an optimal solution since $Q \cup (X - P)$ is a valid solution. \square

Corollary X - P is optimal solution to $n - \alpha$.

We now go to prove the recurrence relation c_p is optimal solution.

Proof. For the base case where $c_0 = 0$ is trivially correct. By **Lemma 1**, the optimal solution to the coin changing problem is composed of optimal solutions to smaller subproblems, which completes the proof.