Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа

ФИЗИКА

Тонкие линзы

Задание №5 для 8-х классов

(2013 – 2014 учебный год)

г. Долгопрудный, 2014

Составитель: В.П. Слободянин, доцент кафедры общей физики МФТИ.

Физика: задания №5 для 8-х классов (2013 – 2014 учебный год), 2014, 20 с.

Дата отправления заданий по физике и математике – 22 апреля 2014 г.

Учащийся должен стараться выполнить все задачи и контрольные вопросы в заданиях. Некоторая часть теоретического материала, а также часть задач и контрольных вопросов являются сложными и потребуют от учащегося больше усилий при изучении и решении. В целях повышения эффективности работы с материалом они обозначены символом «*» (звёздочка). Мы рекомендуем приступать к этим задачам и контрольным вопросам в последнюю очередь, разобравшись вначале с более простыми.

Составитель:

Слободянин Валерий Павлович

Подписано 20.03.14. Формат $60\times90~1/16$. Бумага типографская. Печать офсетная. Усл. печ. л. 1,25. Уч.-изд. л. 1,11. Тираж 400. Заказ №57-з.

Заочная физико-техническая школа Московского физико-технического института (государственного университета) ООО «Печатный салон ШАНС»

Институтский пер., 9, г. Долгопрудный, Москов. обл., 141700. 3ФТШ, тел./факс (495) 408-51-45 — **заочное отделение**, тел./факс (498) 744-63-51 — **очно-заочное отделение**, тел. (499) 755-55-80 — **очное отделение**.

e-mail: zftsh@mail.mipt.ru

Наш сайт: www.school.mipt.ru

© ЗФТШ, 2014

§1. Преломление света на тонком клине

Прежде чем изучать тонкие линзы, давайте решим задачу о прохождении узкого пучка света через тонкий клин. Тонким клином называется стеклянная призма, у которой угол α при вершине мал (α << 1). Чтобы изготовить такой клин в заводских условиях, берут стеклянную плоскопараллельную пластинку и на шлифовальном станке часть одной из её граней стачивают под малым углом α (рис. 1.1). Если левую грань клина сошлифовать так, что она уменьшится на толщину плоскопараллельной пластинки ABCD, то угол отклонения узкого пучка света, падающего под малым углом φ_1 на клин, не изменится. Поэтому договорились изображать клин так, как показано на рис. 1.2. Пусть n — показатель преломления материала клина. Найдём угол δ отклонения луча от исходного направления. Задачу будем решать в предположении, что углы α и φ_1 малы. На рис. 1.3 эти углы для наглядности сильно увеличены.

$$\phi_1 = n\psi_1, \ \phi_2 = n\psi_2.$$
 Приближенный закон Снелла (см. §7 задания 4).

Угол отклонения луча на первой грани $\delta_1=\varphi_1-\psi_1=(n-1)\psi_1$. Угол отклонения луча на второй грани $\delta_2=\varphi_2-\psi_2=(n-1)\psi_2$.

По теореме о внешнем угле треугольника угол отклонения луча, прошедшего сквозь клин, равен $\delta = \delta_1 + \delta_2 = (n-1)(\psi_1 + \psi_2)$.

По той же теореме $\alpha_1 = \psi_1 + \psi_2$, а углы α и α_1 равны как углы со взаимно перпендикулярными сторонами. В итоге мы получим:

$$\delta = \delta_1 + \delta_2 = (n-1)(\psi_1 + \psi_2) = (n-1)\alpha_1 = (n-1)\alpha$$
.

Итак, угол отклонения в пучка параллельных лучей, прошедших сквозь тонкий клин, не зависит от угла падения и остаётся постоянной величиной:

$$\delta = (n-1)\alpha. \tag{1.1}$$

Иногда у плоскопараллельной пластинки стачивают под малыми

углами обе половины одной из граней (см. рис. 1.4). Получившееся устройство называют *бипризмой*. Если на бипризму пустить широкий пучок параллельных лучей света, то после прохождения бипризмы пучки станут сходиться. Рассмотрим **пример 1.1.** На бипризму, изготовленную из стекла с показателем преломления n=1,5 и имеющую ширину b=3 см, пустили широкий пучок параллельных лучей света. Углы при вершине бипризмы одинаковы и равны $\alpha=0,05$ рад. За бипризмой образовалось два сходящихся пучка параллельных лучей.

1) Под каким углом φ будут сходиться лучи? Если за бипризмой установить экран, то на нём можно наблюдать

Рис. 1.4

область, освещённую обоими пучками.

- 2) На каком расстоянии L_1 от бипризмы нужно установить экран, чтобы область перекрытия пучков была максимальной?
- 3) На каком максимальном расстоянии L_2 от бипризмы пучки лучей ещё будут пересекаться?

Решение. 1) Изобразим

Рис. 1.5

ход лучей за бипризмой (рис. 1.2). Верхняя половина бипризмы отклонит падающий пучок лучей вниз на угол

$$\delta_1 = (n-1)\alpha = 0,025$$
 рад,

а нижняя – вверх на такой же по величине угол

$$\delta_2 = (n-1)\alpha$$
.

Следовательно, пучки будут сходиться под углом

$$\varphi = 2\delta_1 = 2(n-1)\alpha = 0.05$$
 рад.

2) Максимальная область перекрытия пучков находится там, где пересекаются лучи (1) и (2) (см. рис. 1.2).

В силу малости угла φ искомое расстояние $L_1 \approx \frac{b}{2\varphi} = \frac{b}{4\alpha(n-1)} = 30$ см.

3) Из того же рисунка легко видеть, что максимальное расстояние $L_2 = 2L_1 = 60$ см.

§2. Тонкая линза

Слово «линза» произошло от латинского lens — чечевица. В оптике под линзой понимают прозрачное тело, ограниченное выпуклыми или вогнутыми поверхностями и преобразующее форму светового пучка. Одна из поверхностей линзы может быть плоской. Мы будем рассматривать линзы, находящиеся в воздухе, если иное специально не оговорено. Если линза преобразует пучок параллельных лучей в сходящийся, её называют собирающей или положительной. Если

после прохождения линзы пучок параллельных лучей ста- Рис. 2.1 новится расходящимся, линзу называют рассеивающей или отрица- тельной. Существует огромное разнообразие типов линз. Так, для решения некоторых научных задач используют цилиндрические линзы (рис. 2.1). Но наиболее широкое распространение получили линзы, обе преломляющие поверхности которых представляют собой части сфер с разными радиусами кривизны.

Такие линзы относительно просты в изготовлении. Собирающие линзы делятся на двояковыпуклые, плосковыпуклые, вогнуто – выпуклые. Рассеивающие – на двояковогнутые, плосковогнутые и

Рис. 2.2

выпукло - вогнутые. На рисунке 2.2 дан вид сбоку на такие линзы. Мы с вами рассмотрим основные свойства так называемых тонких линз. Говорят, что линза тонкая, если её толщина d много меньше диаметра D (рис. 2.3).

Рис. 2.3

зволяет учесть некоторые эффекты, например искажения (их называют аберрациями), неизбежно

> возникающие при прохождении света через реальные толстые линзы.

Здесь

уместно

Рис. 2.4 Заметим, что хороший объектив микроскопа

может содержать более десяти линз (рис. 2.4).

§3. Фокусные расстояния плосковыпуклой линзы

Рассмотрим линзу, представляющую собой кусок стекла, который с одной стороны ограничен плоской поверхностью, а с другой сферической (рис. 3.1). Пусть радиус сферической поверхности равен R, а показатель преломления стекла п. Главной оптической осью такой

линзы назовём прямую CX, перпендикулярную плоской поверхности линзы и проходящую через центр кривизны C выпуклой поверхности. Предположим, что слева на плоскую поверхность линзы падает пучок лучей, параллельных главной оптической оси. Выберем из этого пучка произвольный луч AA', проходящий на расстоянии h от главной оптической оси. Этот луч, преломившись на сферической поверхности, пересечёт главную оптическую ось на некотором расстоянии F от линзы. Если угол падения φ_1 мал, то мы сможем воспользоваться приближённым законом Снелла: $n \varphi_1 = \varphi_2$.

Угол отклонения

$$\delta = \varphi_2 - \varphi_1 = (n-1) \varphi_1. \tag{3.1}$$

Так как углы δ и φ_1 малы, запишем приближённое равенство:

$$\delta \approx \frac{h}{F}$$
; $\varphi_1 \approx \frac{h}{R}$.

Если полученные выражения подставить в формулу (3.1) и сократить на общий множитель h, то мы получим: $\frac{1}{F} = P = \frac{n-1}{R}$, или

$$F = \frac{R}{n-1} \,. \tag{3.2}$$

Внимание! Длина отрезка F не зависит от произвольно выбранной нами высоты h, следовательно, все лучи из падающего пучка пересекутся в одной и той же точке, называемой фокусом линзы. Само же расстояние F называют фокусным расстоянием линзы, а физическую величину P – оптической силой линзы. В системе СИ она измеряется в диоптриях и обозначается дптр. По определению 1 дптр — это оптическая сила линзы с фокусным расстоянием 1м.

Пример 3.1. Вычислите оптическую силу линзы с фокусным расстоянием F = 16 см.

Решение. Выразим фокусное расстояние линзы в метрах 16 см = 0,16 м. По определению оптическая сила P = 1/(0,16 м) = 6,25 дптр.

Ответ: P = 6,25 дптр.

Можно показать (подумайте, как), что если пучок лучей, параллельных главной оптической оси, направить справа на выпуклую поверх-

ность плосковыпуклой линзы, то все они, дважды преломившись в линзе, пересекутся на главной оптической оси в точке, отстоящей от линзы на таком же расстоянии F. То есть у линзы два фокуса. В этой связи договорились один фокус, в котором собираются параллельные лучи света, прошедшие сквозь собирающую линзу, называть $3a\partial ниm$, а другой фокус — $nepe\partial hum$. Для рассеивающих линз задний фокус (тот, в котором пересекаются продолжения параллельных лучей, падающих на линзу) находится со стороны источника, а передний — с противоположной стороны.

§4. Формула тонкой собирающей линзы

Рассмотрим двояковыпуклую собирающую линзу. Прямая ОХ, про-

ходящая через центры кривизны преломляющих поверхностей линзы, называется её главной оптической осью (сравните это определение с определением из \$3 для плосковыпуклой линзы). Предположим, что точечный источник света S_1 расположен на этой оси. Прове-

дём из точки S_1 два луча. Один — вдоль главной оптической оси, а другой — под углом φ_1 к ней, в точку M линзы, отстоящую от главной оптической оси на расстоянии h (рис. 4.1). Преломившись в линзе, этот луч пересечёт главную оптическую ось в некоторой точке S_2 , которая есть изображение источника S_1 .

Предположим, что углы, которые рассматриваемый луч образует с главной оптической осью линзы, малы. Тогда

$$\varphi_1 \approx \frac{h}{a}, \quad \varphi_2 \approx \frac{h}{h}.$$
(4.1)

Легко видеть, что угол отклонения δ является внешним для треугольника $S_1 M S_2$. По теореме о внешнем угле треугольника

$$\varphi_1 + \varphi_2 = \delta. \tag{4.2}$$

Фрагмент линзы в окрестности точки M, через которую прошёл рассматриваемый луч, можно считать тонким клином. Ранее мы показали, что для тонкого клина угол отклонения есть величина постоянная и не зависит от угла падения. Значит, сместив источник S_1 вдоль главной оптической оси и удалив его на бесконечность, мы добьёмся того, что после прохождения линзы луч пройдёт через её фокус, а угол отклонения будет

$$\delta \approx \frac{h}{F} \,. \tag{4.3}$$

Здесь F — фокусное расстояние линзы. Подставим выражения (4.1) и (4.3) в формулу (4.2). После сокращения на множитель h получим:

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{F} \,. \tag{4.4}$$

Мы получили формулу тонкой собирающей линзы. Не забудьте, что она получена в параксиальном приближении (для малых углов $\varphi_1, \varphi_2, \delta$). Первенство в выводе этой формулы приписывают замечательному французскому естествоиспытателю Рене Декарту.

Обычно предметы или источники света изображают слева от линзы.

Задача 4.1. Найдите фокусное расстояние \vec{F} линзы, составленной из двух собирающих линз с фокусными расстояниями F_1 и F_2 . Линзы прижаты вплотную одна к другой, а их главные оптические оси совпалают.

Решение. Линзу, составленную из двух плотно прижатых друг к другу тонких линз, тоже можно считать тонкой собирающей линзой, а это значит, что и для неё справедлива формула (4.4). Поместим точечный источник света S_1 в переднем фокусе первой линзы. Для составной линзы $a = F_1$. Лучи, испущенные S_1 , после прохождения первой линзы пойдут параллельно её главной оптической оси. Но рядом находится вторая линза. Пучок параллельных лучей, падающих на вторую линзу, сойдётся в её заднем фокусе (точка S_2) на расстоянии F_2 . Для составной линзы расстояние $b = F_2$. Выполнив соответствующие подстановки в (4.4), получим:

$$\frac{1}{F_1} + \frac{1}{F_2} = \frac{1}{F}. (4.5)$$

Это соотношение можно выразить через оптические силы линз:

$$P_1 + P_2 = P. (4.6)$$

Мы получили очень важный результат – *оптическая сила системы* линз, *плотно прижатых друг к другу*, *равна сумме их оптических сил*.

§5. Формула тонкой рассеивающей линзы

Рассмотрим двояковогнутую рассеивающую линзу. OX – её главная

оптическая ось. Предположим, что точечный источник света S_1 расположен на этой оси. Как и в предыдущем параграфе, проведём из точки S_1 два луча. Один — вдоль главной оптической оси, а другой — под углом к ней в точку M линзы, отстоящую от главной оптической оси на расстоянии h (рис. 5.1). Преломившись в линзе, этот луч будет ещё сильнее удаляться от главной оптической оси. Если его продолжить обратно, за линзу, то он пе-

Рис. 5.1

ресечёт главную оптическую ось в некоторой точке S_2 , называемой изображением источника S_1 . Поскольку изображение получено в результате мысленного, воображаемого пересечения лучей, то и называют его **мнимым**.

Легко видеть, что угол φ_2 является внешним для треугольника $S_1 M S_2$. По теореме о внешнем угле треугольника

$$\varphi_1 + \delta = \varphi_2. \tag{5.1}$$

Фрагмент линзы, в окрестности точки M через которую прошёл рассматриваемый луч, можно рассматривать как тонкий клин. Смещая источник S_1 вдоль главной оптической оси и, удаляя его на бесконечность, мы добьёмся того, что луч, параллельный главной оптической оси, после преломления в линзе пройдёт через её фокус, а угол отклонения будет равен

$$\delta \approx \frac{h}{F},\tag{5.2}$$

где F — фокусное расстояние линзы. Мы по-прежнему считаем, что углы, которые рассматриваемый луч образует с главной оптической осью линзы, малы. Тогда

$$\varphi_1 \approx \frac{h}{a}, \quad \varphi_2 \approx \frac{h}{b}.$$
(5.3)

Подставим выражения (5.2) и (5.3) для углов в формулу (5.1). После сокращения на общий множитель h получим:

$$\frac{1}{a} + \frac{1}{F} = \frac{1}{b} \,. \tag{5.4}$$

Обычно выражение (5.4) записывают в несколько ином виде:

$$\frac{1}{a} - \frac{1}{b} = -\frac{1}{F} \,. \tag{5.5}$$

Мы получили формулу так называемой тонкой рассеивающей линзы. В качестве расстояний a, b, F берутся их арифметические значения.

§6. Построение изображений, даваемых тонкой линзой

На оптических схемах линзы принято обозначать в виде отрезка со стрелками на концах. У собирающих линз стрелки направлены наружу, а у рассеивающих – к центру отрезка.

Рассмотрим порядок построения изображений, которые создаёт собирающая линза (рис. 6.1). Поместим слева от линзы на расстоянии, большем фокусного, вертикальную стрелку (предмет) AB. Из точки B пустим на линзу луч (1) параллельно главной оптической оси. Преломившись, этот луч пройдёт через задний фокус вправо и вниз. Второй луч пустим через передний фокус. Преломившись в линзе, он пойдёт вправо параллельно главной оптической оси. Существует точка B_1 в которой оба луча пересекутся. B_1 есть изображение точки B. Любой другой луч, вышедший из B и прошедший сквозь линзу, также дол-

Рис. 6.1

жен прийти в точку B_1 . Аналогичным образом построим изображение точки A. И так, мы построили изображение предмета AB в тонкой линзе. Из рис. 6.1 видно что:

- 1) изображение стрелки *действительное* (если на место изображения стрелки поместить плоский экран, то на нём можно увидеть её изображение);
- 2) изображение *перевёрнутое* (относительно самой стрелки). Как сама стрелка

AB, так и её изображение A_1B_1 перпендикулярны главной оптической оси.

Отметим два достаточно общих свойства тонкой линзы:

- прямую линию линза отображает в прямую;
- если плоский предмет перпендикулярен главной оптической оси, то и его изображение будет перпендикулярным этой оси.

Вообще же, углы у протяжённых предметов, расположенных вдоль главной оптической оси, и углы у их изображений различны. Это видно из рис. 6.2. Квадрат ABCD линза «превратила» в трапецию $A_1B_1C_1D_1$.

Рис. 6.2

Если справа и слева от тонкой линзы находится одна и та же среда (обычно это воздух), то для построения изображения заданной точки может оказаться полезным ещё один «замечательный» луч - тот, кото-

рый идёт через центр линзы. На рис. 6.1 он помечен как луч (3). Проходя через линзу, он не меняет своего направления и так же, как и первые луча, два приходит в точку Иногда такой луч, проходящий через центр линзы, за его «несгибаемость» называют побочной оптической осью.

Теперь построим изо-

бражение предмета АВ в рассеивающей линзе. Для этого пустим луч из

точки B параллельно главной оптической оси. Преломившись в линзе, он пойдёт вверх так, как будто был испущен из фокуса и шёл не преломляясь (рис. 6.3). Воображаемую часть луча от фокуса до линзы обозначим пунктирной линией. Другой луч пустим через оптический центр O линзы. Изображение B_1 точки B будет лежать на пересечении этого луча с воображаемой (пунктирной линией). Изображение точки A лежит на пересечении вертикальной линии, проходящей через B_1 , с главной оптической осью.

§7. Поперечное увеличение

Линзы, зеркала или более сложные оптические инструменты обладают некоторыми общими свойствами. При рассмотрении этих свойств удобно называть рассматриваемые инструменты *оптическими системами* (ОС). Пусть стрелка *АВ* расположена перед (ОС) перпендикулярно её главной оптической оси.

Пусть, далее, A_1B_1 – изображение этой стрелки (рис. 7.1).

Определение. *Поперечным увеличением* оптической системы называется отношение длины изображения предмета A_1B_1 к длине AB самого предмета. Здесь важно запомнить, что предмет лежит в плоскости, перпендикулярной к главной оптической оси системы. Будем обозначать такое увеличение буквой Γ .

Выведем формулы для поперечного увеличения тонкой линзы. Пусть расстояние от стрелки AB до линзы равно a, а расстояние от линзы до её изображения A_1B_1 равно b (рис. 7.2). Из подобия треугольников ABO и A'B'O' следует, что:

$$\Gamma = \frac{A'B'}{AB} = \frac{b}{a}.\tag{7.1}$$

Для Γ можно получить и другие выражения. Из подобия треугольников ABC и ODC получим:

$$\Gamma = \frac{OD}{AB} = \frac{OC}{AC} = \frac{F}{a - F},$$
(7.2)

ИЛИ

$$\Gamma = \frac{A'B'}{OK} = \frac{b - F}{F} \,. \tag{7.3}$$

Рис. 7.2

Для собирающей линзы в таблице 1 приведены качественные характеристики изображения плоского предмета, зависящие от отношения расстояний a и F .

Таблица 1.

Расстояние от линзы до предмета	Изображение прямое или перевёрнутое	Изображение дей- ствительное или мнимое	Изображение уве- личенное или уменьшенное
a < F	прямое	мнимое	увеличенное
F < a < 2F	перевёрнутое	действительное	увеличенное
a > 2F	перевёрнутое	действительное	уменьшенное

С помощью построений убедитесь в правильности данной таблицы.

§8. Примеры решения задач

Задача 8.1. Луч света, выходящий из воды $(n_1 = 4/3)$, падает на её поверхность под предельным углом полного отражения. Выйдет ли

луч в воздух, если на поверхности воды налить слой кедрового масла $(n_2 = 1,52)$?

Решение. Запишем условие прохождения луча света через воду, кедровое масло и (возможно) воздух. Согласно формуле (5.1) предыдущего задания, $n_1 \sin \phi_{Kp.1} = n_2 \sin \phi_2 = \sin 90^\circ = 1$. Следовательно, луч света, проникший в плёнку из кедрового масла, будет падать на границу раздела масло-воздух под углом ϕ_2 (предельным углом для кедрового масла), а это значит, что он и в этом случае не выйдет в воздух.

Задача 8.2. Перед рассеивающей линзой L_1 с известным диаметром D находится точечный источник S, не лежащий на главной оптической оси этой линзы (рис. 8.1). Постройте изображение S_1 источника. Покажите штриховкой область, из которой наблюдатель может видеть изображение S_1 .

Решение. Порядок построения изображения в рассеивающей линзе описан в $\S 6$. Наблюдателю, который видит сквозь линзу изображение S_1 , будет казаться, что лучи, не преломляясь, идут от изображения S_1 . Штриховкой (рис. 8.2) отмечена искомая область. Из других мест изображение S_1 увидеть нельзя.

Рис. 8.3

Задача 8.3. Тонкая линза создаёт изображение S_1 точечного источника S (рис. 8.3). AA_1 — главная оптическая ось линзы. Восстановите положение линзы. Собирающая она или рассеивающая эта линза?

Решение. Проведём через точки S_1 и S прямую до пересечения с главной оптической осью. Эта прямая — побочная оптическая ось (см. §6). Следовательно, точка O пересечения оптических осей — оптический центр линзы. Плоскость линзы перпендикулярна главной оптической оси. Проведём из точки S луч (1) параллельно главной оптической оси. Преломившись в линзе, он должен пройти через её фокус. Кроме того, этот луч (или его продолжение) должен пройти через точку S_1 (изображение точки S). Т. к. через S_1 проходит воображаемое продолжение луча, то изображение мнимое, прямое, увеличенное, а линза собирающая (см. таблицу 1).

Контрольные вопросы

- **1.** Тонкий стеклянный клин ($n_1 = 1,4$) погрузили в сосуд (рис. 1) с сероуглеродом ($n_2 = 1,63$). Выберите правильное утверждение
- а) Луч света, прошедший сквозь клин, отклонится вверх.
- б) Луч света, прошедший сквозь клин, от-клонится вниз.
- в) Луч испытает полное отражение на выходе из клина.

Рис. 1

2. Дайте определение прямого изображения предмета.

3. К какому типу линз (собирающих или рассеивающих) относится линза 2, изображённая на рис. 2.2. Задания?

4. Перпендикулярно главной оси собирающей линзы расположена стрелка *AB* (рис. 2). Какое из утверждений истинное:

- Рис. 2
- а) мнимое изображение стрелки может быть как увеличенным, так и уменьшенным;
 - б) мнимое изображение стрелки может быть как прямым, так и перевёрнутым;
- в) мнимое изображение стрелки может находиться как справа, так и слева от переднего фокуса;
- г) мнимое изображение стрелки может находиться как справа, так и слева от стрелки.
- 5. Верно ли утверждение, что острый угол собирающая линза всегда отображает в острый угол?

Рис. 3

Если нет, приведите пример.

- **6.** Перед собирающей линзой находится точечный источник S (рис. 3). Покажите штриховкой область, из которой можно видеть изображение этого источника.
- 7. Тонкая линза создаёт изображение S_1 точечного источника S (рис. 4). AA_1 главная оптическая ось линзы. Восстановите положение фокусов линзы. Собирающая или рассеивающая эта линза?

Рис. 4

8. Тонкая линза создаёт изображение S_1 точечного источника S (рис. 5). AA_1 — главная оптическая ось линзы. Восстановите положение фокусов линзы. Собирающая или рассеивающая эта линза?

Рис. 5

- **9.** Модуль поперечного увеличения линзы $|\Gamma| > 1$. Выберите верные утверждения:
 - a) a > 2F; 6) 2F > a > F; B) a < F.

Задачи

Задача 1. Два стеклянных клина с малым углом α при вершине и показателями преломления n_1 и n_2 соответственно соединены так, как показано на рис. 6). Пучок параллельных лучей света, падающих на такую систему, отклоняется верхней частью вниз, а нижней — вверх и пересекаются под углом β . Вычислите этот угол.

Задача 2. Между двумя тонкими стеклянными клиньями с одинаковыми углами при вершине и показателями преломления n_1 и n_2 , соответственно, помещают третий клин так, что они образуют плоскопараллельную пластинку (рис. 7). Пучок параллельных лучей света, падающих на такую систему, не отклоняется. Вычислите показатель преломления n_3 среднего клина.

Рис. 6

Задача 3. Определите фокусное расстояние двояковыпуклой линзы, изготовленной из стекла с показателем предомления n=1.5 и имеющей радиусы кривизны предомляющих по-

преломления n=1,5 и имеющей радиусы кривизны преломляющих поверхностей $R_1=8$ см и $R_2=12$ см.

Задача 4. Луч света, падающий на край собирающей линзы, образует с главной оптической осью угол $\varphi_1 = 0.06$ рад, а после выхода из линзы он образует с этой осью угол φ_2 вдвое меньший угла φ_1 (рис. 8). Диаметр линзы D = 54 мм. Вычислите фокусное расстояние линзы.

Рис. 9

Задача 5 . Построением (с помощью циркуля и линейки без делений) восстановите ход луча от точки A через линзу до точки B (рис. 9).

Задача 6. Стрелка AB перпендикулярна главной оптической оси тонкой собирающей линзы. Расстояние от стрелки до экрана, на котором получилось её чёткое изображение, равно L=81 см. Если линзу передвинуть вдоль её главной оптической оси на расстояние l=9 см (не смещая при этом стрелку и экран), то изображение вновь окажется чётким. Каково поперечное увеличение Γ изображения предмета в первом и втором случае?

Задача 7. По разные стороны от линзы с фокусным расстоянием F на её главной оптической оси находятся точечный источник S и его

изображение S_1 . Расстояние от них до линзы одинаково. Вычислите расстояние L между источником S и его изображением S_1 .