

Master in Computer Vision Barcelona

Module: Video Analysis

Lecture 5: Bayesian tracking (I)

Lecturer: Ramon Morros

Overview

- Introduction to the tracking problem
- **Linear Dynamic Models**
- Kalman Filter
- **Particle Filters**

Bayesian estimation

• Goal: finding an object position over time in a video sequence.

- How to estimate this function iteratively?
 - Kalman Filter
 - Particle Filter

Observations and states

- State (x): true parameters that characterize the object being tracked
 - Position, velocity, etc.
 - Usually "hidden" or unknown
- Measurement/observation (z): what we can measure on the image at a given time
 - Blob centroids, bounding boxes, etc.
 - Observations result from underlying states
 - Subject to noise

Tracking as inference

- At each time step, object state changes (from x_{k-1} to x_k) and we get a new observation z_k
- Goal: recover most likely state x_k given:
 - All observations seen so far (z₁, ..., z_k)
 - Knowledge about dynamics of state transitions.

Steps of tracking

Steps of tracking

 Prediction: What is the current state of the object given past measurements?

$$p(x_k | z_1,...,z_{k-1}) = p(x_k | z_{1:k-1})$$

 Update: Compute an updated estimate of the state from prediction and measurements.

$$p(x_k | z_1, ..., z_{k-1}, z_k) = p(x_k | z_{1:k})$$

Questions

- How to represent the dynamics model that govern the changes in the states?
- How to represent the relationship between state and measurements, plus our uncertainty in the measurements?
- How to compute each cycle of updates?
- How to combine prediction and correction?
 - If the dynamics model is too strong, will end up ignoring the data
 - If the observation model is too strong tracking is the observation model is too strong, tracking is reduced to repeated detection

Bayesian filtering

Introduction

Kalman Filter

•⊒UOC

• **Definition:** Algorithm that processes measurements to deduce the **optimal estimate** of the state of a **linear system** using a set of measurements and a **statistical model** of the system.

#UPC

Assumptions

Markov process: Current state X_k depends only on previous state X_{k-1}

$$p(x_k \mid x_0, \dots, x_{k-1}) = p(x_k \mid x_{k-1})$$
Dynamics model

Independence: Measurement depends only on current state

$$p(z_t \mid x_0, \dots, x_k) = p(z_k \mid x_k)$$
Observation model

Filtering framework

- Discrete-time state space filtering
- We want to recursively estimate the current state at every time that a measurement is received

Prediction:

 Propagate state pdf forward in time, taking noise into account (translate, deform, and spread the pdf)

Update:

 Use Bayes theorem to modify prediction pdf based on current measurement

pdf: the probability density function of a continuous random variable is a function that describes the relative likelihood for this random variable to take on a given value.

Bayesian estimation

Consider

 $\{x_k\}_{k\geq 0}$: Unobserved process with transition density $x_k|x_{k-1}\sim f(\cdot|x_{k-1})$

 $\{z_k\}_{k\geq 1}$: Observations, conditionally independent given $\{x_k\}_{k\geq 0}$, of marginal density $z_k | x_k \sim g(\cdot | x_k)$

$$z_k = \psi(x_k, w_k)$$
 { v_k }_{k>2} { w_k }_{k>1} : Independent noises

Tracking as induction

- Goal: Our goal is to obtain $p(x_k | z_{1:k})$
- Base case:
 - Assume we have an initial **prior** that predicts state in absence of any evidence: $\mathbf{p}(\mathbf{x}_0)$
 - At the first frame, update given the value of z₀

$$p(x_0 | z_0) = \frac{p(z_0 | x_0)p(x_0)}{p(z_0)} \propto p(z_0 | x_0)p(x_0)$$

Posterior prob. of state given measurement

Likelihood of Prior of measurement the state

Tracking as induction

Prediction:

(Chapman-Kolmogorov equation)

Update:

Slide credit: Svetlana Lazebnik

LINEAR DYNAMIC MODELS

Linear Dynamics Models (LDM)

Linear dynamics models

- Dynamics model
 - State undergoes linear transformation **D** plus Gaussian noise

$$\phi (x_{k-1}, v_{k-1}) = Dx_{k-1} + \Sigma_d$$

 $x_k \sim N(Dx_{k-1}, \Sigma_d)$

State at time t comes from a transformation (D) of previous state (k-1) plus a noise term

- Observation model
 - Measurement is the linearly transformed state plus Gaussian noise.

$$\psi(z_k, v_k) = Mx_k + \sum_m z_k \sim N(Mx_k, \Sigma_m)$$

Measurement at time k comes from a transformation (M) of current state k plus a noise term

Linear Dynamics Models (LDM)

Notation

$$x_k \sim N(\mu, \Sigma)$$

- Random variable with Gaussian probability distribution that has mean vector μ and covariance matrix Σ
 - x and μ are d-dimensional, Σ is dxd.
- For the unidimensional case, μ is a scalar and Σ is a 1x1 matrix \rightarrow the variance σ^2

$$x_t \sim N(\mu, \sigma^2)$$

$$(2\pi)^{-\frac{k}{2}} |\mathbf{\Sigma}|^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})},$$

Linear Dynamics Models (LDM)

Linear dynamics models

- Example: linear velocity (1D points)
 - State vector: position p and velocity v

$$x_{t} = \begin{bmatrix} p_{t} \\ v_{t} \end{bmatrix} \qquad \begin{aligned} p_{t} &= p_{t-1} + (\Delta t)v_{t-1} + \varepsilon & \text{(greek letters denote noise} \\ v_{t} &= v_{t-1} + \xi & \text{terms)} \end{aligned}$$

$$x_{t} = D_{t}x_{t-1} + noise = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1} \\ v_{t-1} \end{bmatrix} + noise$$

Measurement is position only

$$z_{t} = Mx_{t} + noise = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p_{t} \\ v_{t} \end{bmatrix} + noise$$

$$x_{t} \sim N(\mathbf{D}x_{t-1}; \Sigma_{d})$$

$$z_{t} \sim N(\mathbf{M}x_{t}; \Sigma_{m})$$

KALMAN FILTER

Kalman filter

- Optimal method for tracking linear dynamical models under the assumption of Gaussian noise
- The predicted/corrected state distributions are Gaussian
 - Only the mean and covariance should be estimated.
 - The calculations are easy (all the integrals can be done in closed form).

Kalman filter (1D)

Know corrected state from k-1, and all measurements up to the current one.

→ Predict distribution over next state.

Know prediction of state, and next measurement

→ Update distribution over current state.

$$p(x_k | z_{1:k-1})$$

$$\mu_k^-, \sigma_k^-$$

Mean and std. dev. of predicted state:

Time advances: k++
$$p(x_k | z_{1 \cdot k})$$

$$\mu_k^+, \sigma_k^+$$

Mean and std. dev. of predicted state:

Kalman filter (1D): prediction

· Linear dynamic model defining predicted state evolution, with noise

$$x_k = N(d \cdot x_{k-1}, \sigma_d^2)$$

Estimate the predicted distribution for next state

$$p(x_k | z_{0:k-1}) = N(\mu_k^-, (\sigma_k^-)^2)$$

Update mean and variance

$$\mu_k^- = d \cdot \mu_{k-1}^+$$

$$\mu_{k}^{-} = d \cdot \mu_{k-1}^{+} \qquad \left[(\sigma_{k}^{-})^{2} = \sigma_{d}^{2} + (d \cdot \sigma_{k-1}^{+})^{2} \right]$$

Kalman filter (1D): correction

 Linear model defining the mapping of state to measurements:

$$z_k = N(m \cdot x_k, \sigma_m^2)$$

 Want to estimate corrected distribution given latest measurement:

$$P(x_k | z_{1:k}) = N(\mu_k^+, (\sigma_k^+)^2)$$

Update mean & variance

$$\mu_{k}^{+} = \frac{\mu_{k}^{-} \cdot \sigma_{m}^{2} + m \cdot z_{k} \cdot (\sigma_{k}^{-})^{2}}{\sigma_{m}^{2} + m^{2} \cdot (\sigma_{k}^{-})^{2}} \qquad (\sigma_{t}^{+})^{2} = \frac{\sigma_{m}^{2} \cdot (\sigma_{k}^{-})^{2}}{\sigma_{m}^{2} + m^{2} \cdot (\sigma_{k}^{-})^{2}}$$

$$(\sigma_t^+)^2 = \frac{\sigma_m^2 \cdot (\sigma_k^-)^2}{\sigma_m^2 + m^2 \cdot (\sigma_k^-)^2}$$

Kalman filter (1D): prediction vs. update

$$\mu_{k}^{+} = \frac{\mu_{k}^{-} \cdot \sigma_{m}^{2} + m \cdot z_{k} \cdot (\sigma_{k}^{-})^{2}}{\sigma_{m}^{2} + m^{2} \cdot (\sigma_{k}^{-})^{2}} \qquad (\sigma_{k}^{+})^{2} = \frac{\sigma_{m}^{2} \cdot (\sigma_{k}^{-})^{2}}{\sigma_{m}^{2} + m^{2} \cdot (\sigma_{k}^{-})^{2}}$$

$$(\sigma_k^+)^2 = \frac{\sigma_m^2 \cdot (\sigma_k^-)^2}{\sigma_m^2 + m^2 \cdot (\sigma_k^-)^2}$$

- If there is no prediction uncertainty: $\sigma_{\nu}^{-} = 0$
 - Measurement is ignored!

$$\mu_k^+ = \mu_k^- \quad (\sigma_k^+)^2 = 0$$

- If there is no measurement uncertainty: $\sigma_{m} = 0$
 - Prediction is ignored!

$$\mu_k^+ = \frac{z_k}{m} \qquad (\sigma_k^+)^2 = 0$$

Kalman filter (1D): example

State is 2D: position + velocity Measurement is 1D: position

Kalman filter (1D): example

Kalman filter (1D): example

Kalman filter (1D): example

Kalman filter (1D): example

Kalman filter: generic case

Vectors with more than one dimension:

Prediction

$$x_k^- = Dx_{k-1}^+$$

$$\Sigma_k^- = D\Sigma_k^+ D^T + \Sigma_d$$

Update
$$x_k^+ = x_k^- + K_k \left[(z_k - M \cdot x_k^-) \right]$$

$$\Sigma_k^+ = (I - K_k M) \Sigma_k^-$$

$$K_k = \Sigma_k^- M^T (M \Sigma_k^- M^T + \Sigma_m)^{-1}$$

- More weight on residual when measurement error covariance approaches 0.
- Less weight on residual as a priori estimate error covariance approaches 0.

Kalman filter

- Pros:
 - Gaussian densities everywhere
 - Simple updates, compact and efficient
 - Very established method, very well understood
 - Optimal for linear dynamic models under Gaussian noise
- Cons:
 - Unimodal distribution, only single hypothesis
 - Restricted class of motions defined by linear model

Modern visual trackers using Kalman Filter:

- Bewley, Alex et al. "Simple Online and Realtime Tracking." 2016 IEEE International Conference on Image Processing (ICIP)
- Nicolai Wojke et al. "Simple Online and Realtime Tracking with a Deep Association Metric", arXiv. 1703.07402, 2017

Kalman filter

Source: https://github.com/Team-Neighborhood/Kalman-Filter-Image

Kalman filter

- Linear model often does not describe accurately the dynamics of the problem
 - E.g. bouncing ball

Prediction is too far from true position to compensate

Slide credit: B. Leibe

Tracking issues

- Initialization
 - Often done manually
 - Background subtraction, detection can also be used
- Data association, multiple tracked objects
 - Occlusions, clutter
- Deformable and articulated objects
- Constructing accurate models of dynamics
 - E.g., Fitting parameters for a linear dynamics model
- Drift
 - Accumulation of errors over time

Tracking without LDM assumption

Other methods

- Extended Kalman filter
 - Removes linearity constraint on the state transition and observation models
- Mean-shift
 - Non-parametric technique
- Particle filter
 - Uses a sequential Montecarlo method
 - Multimodal distribution.
 - Removes linearity and gaussianity constraints