1 Fonction logarithme népérien

• Définition. Courbe représentative

La fonction logarithme népérien, notée ln, est la primitive sur]0; $+\infty[$ de la fonction $x\mapsto \frac{1}{x}$ qui s'annule pour x=1. Pour tout x>0, si $f(x)=\ln x$ alors $f'(x)=\frac{1}{x}$.

Propriétés

Pour tout a > 0 et b > 0: $\ln a b = \ln a + \ln b ; \ln a^n = n \ln a$ (n entier relatif) $\ln \frac{1}{b} = -\ln b ; \ln \frac{a}{b} = \ln a - \ln b.$

2 Fonction exponentielle

Définition. Courbe représentative

La fonction exponentielle est définie et dérivable sur \mathbb{R} .

Pour tout x réel, si $f(x) = e^x$ alors $f'(x) = e^x$

_ ∞	0		1	+ ∞
		+		
			e /	+ ∞
arin In	_1_			
			+	+

Propriétés

Pour a et b réels quelconques : $e^{a+b} = e^a \times e^b$; $e^{a-b} = \frac{e^a}{e^b}$; $(e^a)^n = e^{na}$ (n entier relatif) Pour b > 0 : $e^a = b$ équivaut à $a = \ln b$.

Comment résoudre une équation ou une inéquation où figure la fonction logarithme ou la fonction exponentielle ?

On utilise:

- les résultats concernant « Équations et Inéquations » rappelés dans le Mémento page 302;
- les règles de calcul relatives à la fonction logarithme et à la fonction exponentielle rappelées dans le Mémento page 303;
- les propriétés du tableau suivant :

• l'équation	$\ln x =$	a a	pour	solution:
$x = e^a$.				

- In $a = \ln b$ équivaut à a = b.
- In $a < \ln b$ équivaut à a < b.
- l'équation $e^x = a$, avec a > 0, a pour solution : $x = \ln a$.
- $e^a = e^b$ équivaut à a = b.
- $e^a < e^b$ équivaut à a < b.

Exemple 1. Résoudre l'équation $e^{-0.5x+1} - 2 = 0$.

L'équation s'écrit : $e^{-0.5x+1} = 2$.

En prenant le logarithme népérien de chaque membre, on obtient : $-0.5x + 1 = \ln 2$,

d'où, successivement :
$$-0.5x = \ln 2 - 1$$
; $x = \frac{\ln 2 - 1}{-0.5} = 2(1 - \ln 2)$.

L'équation proposée admet une solution : $x = 2(1 - \ln 2)$; $x \approx 0.61$.

Exemple 2. Résoudre l'inéquation 2 $\ln (x + 4) > \ln (2 - x)$

On doit avoir x + 4 > 0 et 2 - x > 0 soit -4 < x < 2.

On écrit : $\ln (x + 4)^2 > \ln (2 - x)$ d'où $(x + 4)^2 > 2 - x$

c'est-à-dire: $x^2 + 8x + 16 > 2 - x$ d'où $x^2 + 9x + 14 > 0$.

Dans \mathbb{R} , l'équation $x^2 + 9x + 14 = 0$ a pour solutions : $x_1 = -7$; $x_2 = -2$.

Dans \mathbb{R} , on a $x^2 + 9x + 14 > 0$ pour x tel que x < -7 ou x > -2.

On doit avoir – 4 < x < 2, donc l'inéquation proposée a pour solutions **les réels x tels que** – 2 < x < 2.

Exemple 3. Résoudre l'équation $e^x - 10 = -3e^{2x}$.

L'équation s'écrit : $3e^{2x} + e^x - 10 = 0$ soit $3(e^x)^2 + e^x - 10 = 0$.

En posant $X = e^x$, on obtient l'équation du second degré $3X^2 + X - 10 = 0$.

Cette équation a pour solutions dans $\mathbb{R}: X_1 = -2$ et $X_2 = \frac{5}{3}$.

Il faut alors résoudre les équations d'inconnue $x : e^x = -2$; $e^x = \frac{5}{3}$.

- L'équation $e^x = -2$ n'a pas de solution, car $e^x > 0$.
- L'équation $e^x = \frac{5}{3}$ a pour solution : $x = \ln \frac{5}{3}$.

Donc l'équation proposée a une seule solution : $x = \ln \frac{5}{3}$; $x \approx 0.51$.

Exercices:

Calculs ; équations et inéquations avec logarithmes ou exponentielles

Fiche méthode 1

Simplifier les expressions suivantes :

$$\label{eq:ln3} ln\ 3 + ln\ \frac{1}{3}\ ; \quad ln\ e^3 - ln\ e\ ; \quad e^{-ln2}.$$

2 R Simplifier les expressions suivantes : $\ln \sqrt{e^5}$; $e^{\ln 5 - \ln 3}$; $\ln e^3 - e^{\ln 3}$.

Pour chacun des exercices 3 à 7, résoudre les équations proposées.

3 R ln
$$x + 2 = 0$$
; ln $(x + 1) - 3 = 0$.

4 C
$$\ln(x+2) = \ln(2x+1)$$
; $2 \ln x + \ln 3 = 0$.

6 R
$$e^{2x} - 3 = 0$$
; $e^{2x} = e^{x+1}$.

7 C
$$e^{4x} - 2e^{3x} = 0$$
; $e^{0.2x} = 2e^{-0.2x}$.

a) Résoudre l'équation d'inconnue X: $X^2 - 2X - 3 = 0$.

b) En déduire les solutions de l'équation d'inconnue *x* :

$$e^{2x} - 2e^x - 3 = 0$$
.

On posera $X = e^x$.

9 a) Résoudre l'équation d'inconnue X: $X^2 - 2X + 2 = 0$.

b) En déduire les solutions de l'équation d'inconnue x:

$$e^{2x} - 2e^x + 2 = 0.$$

On posera $X = e^x$.

Pour chacun des exercices 10 à 15, résoudre les inéquations proposées.

10 C
$$\ln (x+1) < 0$$
; $\ln (2-x) > \ln 3$.

$$\ln \frac{x+1}{x-1} > 0.$$

12 C
$$3-2e^{0.5x}>0$$
.

13
$$e^x(e^x-2) > 0$$
.

$$14 e^{2x} - 4e^x < 0.$$

15 R
$$1 - e^{0.5x-1} < 0$$
.

16 C Étudier sur \mathbb{R} le signe de $(e^x + 1)(e^x - 3)$.

Variations de fonctions

Fiche méthode 6

Pour chacun des exercices 84 à 98, la fonction f est dérivable sur l'intervalle I.

Dans chaque cas :

- calculer f'(x);

- étudier le signe de f'(x) sur l;

- dresser le tableau de variation de f.

L'étude des limites éventuelles de f n'est pas demandée ici.

84
$$I = \mathbb{R}$$
; $f(x) = 2x^2 - 8x - 3$.

85
$$I = \mathbb{R}$$
; $f(x) = -x^2 + 3x + 5$.

86
$$I = \mathbb{R}$$
; $f(x) = x^3 - 3x + 1$.

87 R
$$I = [0; +\infty[; f(x) = 2x^2 - 4e^{-x}]$$
.

88
$$I =]0; + \infty[; f(x) = x + \frac{1}{x}.$$

89 R $I =]0; +\infty[; f(x) = \ln x - x - 1.$

90
$$I = \mathbb{R}$$
; $f(x) = \frac{1}{3} x^3 - x$.

91
$$I = \mathbb{R}$$
; $f(x) = 3x^2 - 3x^3$.

92
$$I = [0; +\infty[; f(x) = \ln x - \sqrt{x}]$$

93 R
$$I = [0; 10]; f(x) = x + 10 - 5 \ln(x + 2).$$

94 R
$$I = [0; +\infty[; f(x) = x^2 - 18 \ln x + 18.$$

95 C $I = \mathbb{R}$; $f(x) = 2e^{2x} - 5e^x + 2$.

96
$$I = [0; 40]; \quad f(x) = 45x^2 - x^3.$$

97 R
$$I = [0; 12]; f(x) = x^3 - 24x^2 + 144x.$$

98 C
$$I = [0; +\infty[; f(x) = 3 + 2 \ln x - (\ln x)^2]$$
.

99 On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = x + \frac{1}{2(e^x + 1)}$$

1. Déterminer les limites de f en $-\infty$ et en $+\infty$.

2. Calculer f'(x) et vérifier que, pour tout x réel :

$$f'(x) = \frac{2e^{2x} + 3e^x + 2}{2(e^x + 1)^2}.$$

3. Dresser le tableau de variation de *f*.

100 R On considère la fonction f définie sur \mathbb{R} par $f(x) = e^{2x} - 7e^x + 5x + 1$.

1. Calculer f'(x) et montrer que, pour tout x réel : $f'(x) = (e^x - 1) (2e^x - 5).$

2. a) Étudier le signe de f'(x) sur \mathbb{R} .

b. Dresser le tableau de variation de f.

Soit f la fonction définie sur \mathbb{R} par : $f(x) = 1 - 2x + e^{2x}.$

1. Calculer f'(x).

2. Dresser le tableau de variation de f (on ne demande pas les limites en $-\infty$ et en $+\infty$).

3. En déduire que, pour tout réel x, on a f(x) > 0.

Correction:

$$\frac{5}{2}$$
; $\frac{5}{3}$; 0.

• Solution :
$$x = e^{-2}$$
.

• Solution :
$$x = -1 + e^3$$
.

• On doit avoir
$$x > -2$$
 et $x > -\frac{1}{2}$
soit $x > -\frac{1}{2}$.

On obtient :
$$x + 2 = 2x + 1$$
.

D'où la solution :
$$x = 1$$
.

• On doit avoir x > 0. On obtient : $2 \ln x = -\ln 3$; $\ln x = -\frac{1}{2} \ln 3 = \ln \frac{1}{\sqrt{3}}$.

D'où la solution : $x = \frac{1}{\sqrt{3}}$.

$$\begin{array}{c}
\bullet & \frac{1}{2} \ln 3. \\
\bullet & 1
\end{array}$$

On écrit successivement :

$$e^{4x} = 2e^{3x}$$
; $\frac{e^{4x}}{e^{3x}} = 2$; $e^x = 2$.

D'où la solution : $x = \ln 2$.

• On écrit successivement :

successivement:
$$\frac{e^{0,2x}}{e^{-0,2x}} = 2 \; ; \; e^{0,4x} = 2 \; ; \; 0,4x = \ln 2.$$

D'où la solution : $x = \frac{1}{0.4} \ln 2$.

• On doit avoir x > -1.

On obtient: x + 1 < 1 soit x < 0

Ensemble des solutions :]-1;0[.

• On doit avoir x < 2.

On obtient: 2-x > 3 soit x < -1.

Ensemble des solutions : $]-\infty$; -1[.

On obtient:
$$3 > 2e^{0.5x}$$
 soit $e^{0.5x} < \frac{3}{2}$.

D'où $0.5x < \ln \frac{3}{2}$; $x < 2 \ln \frac{3}{2}$.

15
$$x > 2$$
.

Puisque $e^x + 1 > 0$, le signe de $(e^x + 1)(e^x - 3)$ est celui de $e^x - 3$ d'où les résultats suivants :

$$-\sin x < \ln 3, \text{ alors } (e^x + 1)(e^x - 3) < 0;$$

- $\sin x > \ln 3, \text{ alors } (e^x + 1)(e^x - 3) > 0.$

87 $f'(x) = 4x + 4e^{-x}$; f'(x) > 0; f est croissante.

89
$$f'(x) = \frac{1}{x} - 1$$
.

x	0		1		+∞
f'(x)		+	0	_	
f(x)			-2		•

93
$$f'(x) = \frac{x-3}{x+2}$$

x	0	3		10
f'(x)	_	0	+	
	10 – 5 ln 2			20 – 5 ln 12
f(x)				*
		* m -		

$$m = 13 - 5 \ln 5$$
.

94
$$f'(x) = 2 \frac{(x-3)(x+3)}{x}$$
.

x	0	Į.	3		+ ∞
f'(x)		-	0	+	- (12)
f(x)			* m -		•

$$m = 27 - 18 \ln 3$$
.

95 $f'(x) = e^x(4e^x - 5)$; f'(x) a le signe de $4e^x - 5$.

x	- ∞		$ln \frac{5}{4}$		+ ∞
f'(x)		-	0	+	
f(x)			$-\frac{9}{8}$		<i>></i>

97 $f'(x) = 3(x^2 - 16x + 48)$.

x	0		4		12
f'(x)		+	0	_	0
			256 -		
f(x)					
	0 -				*

98 $f'(x) = \frac{2}{x} (1 - \ln x).$

x	0		e		+ ∞
f'(x)		+	0	-	The lite
f(x)			4		

1.
$$f'(x) = 2e^{2x} - 7e^x + 5 = (e^x - 1)(2e^x - 5)$$
.

 $m \approx -5,7.$