Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им.Н.Э. Баумана)

Факультет РЛ

Кафедра РЛ1 «Радиоэлектронные системы и устройства»

Домашнее задание №1

по курсу «Электроника»

Исследование вольт-амперных характеристик полупроводникового диода

Вариант № 27

Выполнил студент группы РЛ-41 Иванов В.В.

Преподаватель Крайний В.И.

Расчет параметров модели заданного диода

Заданный диод Д102 (BV=199.8 СЈО=32.42p FC=.5 IBV=344.9n IKF=.1402

I S

Из справочника [1] находим паспортные данные диода Д**102**: Диод кремниевый р точечный, $I_{\text{пр.}max}=30$ мA, $U_{\text{обр.}max}=50$ В.

S Схема измерительного стенда для исследования прямой ветви BAX^{R} полупроводникового диода (файл VAR2021.CIR) u

 $^{
m V}$ R1 — внутреннее сопротивление источника V1; R_{mA} , R_{mV} — внутренние сопротивле $^{
m J}$ ния миллиамперметра и милливольтметра соответственно. При прямом включении

сопротивление диода мало по сравнению с R_{mV} , поэтому миллиамперметр включен последовательно с диодом и вольтметром.

Строим прямую ветвь BAX диода. Диалоговое окно задания параметров для построения BAX следующее:

Проводим многовариантный анализ (степпинг) для R_{mV} = 1К..10К, R_{mA} =1..10 Ом. Окно задания параметров следующее:

Графики ВАХ следующие:

Графики расположены очень близко друг к другу поскольку сопротивления R_{mV} и диод включены параллельно и $R_{диода}$ << R_{mV} . Для R_{mA} =1 Ом .. 10 Ом

При увеличении величины сопротивления $R_{mA}\,BAX$ смещается из-за увеличения падения напряжения на $R_{mA}.$

Схема измерительного стенда для исследования обратной ветви ВАХ полупроводникового диода (файл VAR2022.CIR).

Окно задания параметров следующее:

При обратном включении сопротивления диода и вольтметра очень велики, вольтметр теперь включается параллельно с последовательным соединением диода и миллиамперметра.

График обратной ветви ВАХ
VAR2022.CIR

Рассчитаем основные параметры заданного диода в программе Mathcad. Для этого воспользуемся функцией Numeric Output программы сделаем формат числовых данных Decimal, а в файле с расширением .dno сотрем всю текстовую информацию. Далее с помощью функции

Id

VAX

	0	1
0	0	0
1	0.133	0
2	0.267	3·10 ⁻³
3	0.4	0.014
4	0.533	0.034
5	0.667	0.058
6	0.8	0.085
7	0.933	0.112
8	1.067	0.14
9	1.2	0.169
10	1.333	0.197
11	1.467	0.227
12	1.6	0.256
13	1.733	0.285
14	1.867	0.315
15	2	0.345

			$Ud := VAX^{\langle 0 \rangle} V$
	0	1	$Ud := VAX^{\langle 0 \rangle} V$ $Id := VAX^{\langle 1 \rangle} A$
)	0	0	i1 := 8
	0.133	0	i2 := 10
•	0.267	3·10 ⁻³	12 10
}	0.4	0.014	i3 := 14
ļ	0.533	0.034	i4 := 15
5	0.667	0.058	F4. 0.1
;	0.8	0.085	Ft := 0.1
,	0.933	0.112	$Is := 10^{-6}$
}	1.067	0.14	N:= 1.0
)	1.2	0.169	10000000 10000000000000000000000000000
0	1.333	0.197	Rs = 13
1	1.467	0.227	
_ 2	1.6	0.256	

Расчет параметров модели диода проводился путем решения системы нелинейных уравнений с помощью блока функций "Given-Minerr". Выводя точки графика прямой ветви ВАХ диода и подставляя их в расчетные формулы, с помощью функции "Given-Minerr" получаем параметры модели полупроводникового диода.

Далее в программе Micro-Cap в библиотеке SOVDIOD.LIB сформируем модель с параметрами рассчитанного диода.

В файле Micro-Cap VAR_COMPARE.CIR проверяем схождение характеристик. С учетом того , что для рассматриваемого диода $I_{\text{пр.}max} =$ кривые.

Относительная погрешность составляет

что является приемлемым, так как меньше 10%.

Для корректировки барьерной ёмкости диода при напряжении, равном нулю (СЈ0), проведем эксперимент в МС9 для получения вольт-фарадной характеристики (ВФХ) (файл VAR_RESONANCE.CIR). Вычислим Cd (барьерная емкость диода) через значение Fpeз контура.

Проведя анализ, получим резонансные кривые:

Для построения зависимости резонансной частоты от выходного напряжения используем функцию PerformanceWindows для Peak_X в программе МС9. Получаем следующий график:

Теперь построим ВФХ средствами MathCAD, импортируя полученную в MC9 зависимость в MathCAD:

MC9 := READPRN("C:\MC9\DATA\VAR_RESONANCE Peak_X(V(OUT),1,1) vs VVAR.ANO")

		0	1
	0	0	1.7·105
	1	0.5	4.2.105
	2	1	4.35.105
	3	1.5	4.4.105
	4	2	4.45.105
	5	2.5	4.45.105
	6	3	4.45.105
MC9 =	7	3.5	4.5·10 ⁵
	8	4	4.55.105
	9	4.5	4.6.105
	10	5	4.55.105
	11	5.5	4.6.105
	12	6	4.6.105
	13	6.5	4.65.105
	14	7	4.6.105
	15	7.5	4.65.105

Строим график зависимости резонансной частоты от обратного напряжения.

$$F := 1000 \cdot MC9^{\langle 1 \rangle}$$

$$V := -MC9^{\langle 0 \rangle}$$

$$\frac{5 \cdot 10^{8}}{4 \cdot 10^{8}}$$

$$\frac{F}{1 \cdot 10^{8}}$$

$$\frac{2 \cdot 10^{8}}{-8}$$

$$\frac{1 \cdot 10^{8}}{-8}$$

Далее рассчитываем емкость диода и строим график ее зависимости от обратного напряжения (вольт-фарадная характеристика).

$$\begin{aligned} \text{Ck} &:= 100^{-12} \\ \text{Lk} &:= 10^{-3} \\ \text{Cd}_{i} &:= \left(\frac{-1}{4}\right) \cdot \frac{\left[4 \cdot \text{Lk} \cdot \text{Ck} \cdot \left(F_{i}\right)^{2} \cdot \pi^{2} - 1\right]}{\text{Lk} \cdot \left(F_{i}\right)^{2} \cdot \pi^{2}} \end{aligned}$$

$$M := 0.3$$

CJO :=
$$0.2 \cdot 10^{-10}$$

Given

$$\mathbf{Cd}_1 = \mathbf{CJO} \cdot \left(\frac{\mathbf{VJ}}{\mathbf{VJ} + \left| \mathbf{V}_1 \right|} \right)^{0.3}$$

$$Cd_2 = CJO \cdot \left(\frac{VJ}{VJ + |V_2|}\right)^{0.3}$$

$$CJO \le 10^{-10}$$

$$\begin{pmatrix} VJ \\ CJO \end{pmatrix} := MinErr(VJ,CJO)$$

$$\begin{pmatrix} VJ \\ CJO \end{pmatrix} = \begin{pmatrix} 0.75 \\ 2 \times 10^{-11} \end{pmatrix}$$

В итоге прописываем эту емкость в модели полученного диода.

m

o

d

Для исследования импульсных свойств диодае используем файл VAR_TT.CIR. 1

D Схема для исследования импульсных свойств диодаа

-RU I г Рвнутреннее сопротивление генератора;

R₂- нагрузка.

импульс

НЫ

X

си

ΓН

а Ил го Вв у

Временные диаграммы

входного напряжения и

тока в нагрузке.

Время восстановления — время, при котором Іобр = 0.1 Іпр. ТТ — время переноса заряда или среднее время жизни носителей.

Из временных диаграмм получаем: tвоc=407n => TT=tвоc*1.6=651.2n. Прописываем значение параметра TT в модели полученного диода.

m

0

d

Расчет параметров модели диода, исследуемого на лабораторных е

1 работах

D

Исследовался диод атипа Д7Ж со следующими данными [1]:

v

ветвь.

Диод германиевый сплавной, металлостеклянный корпус. F_{max} =2.4к Γ ц, g

Іпр.ср=300мA, Uобр.макс=200В. v

Измеренные на лабораторных работах данные занесены в таблицы: D

s u Таблица 1. Прямая

If, A				
V _f , V	S			
Vf, V	I			

I _f ,A		k			R
V _f , V		f N			
		X			
		t			
		i			
			а 2. Обратная в	етвь.	
Іа, мкА	u	16.7gu	17u	17.3u	17.5u
Vrev, V	2.1	4 C	6	8	10
		j			
Іа,мкА	18.2u	19.3ou	20.2u	21.1u	22u
V _{rev} , V	20	40 p	60	80	100
		M	1		
		V			
		j			
		F c			
		I			
		S			
		r			
		u			
		N			
		r			

Расчет параметров модели в программе Model

В

Окно расчетов 1

Окно расчетов 2

Окно расчетов 3

Окно расчетов 4

Создаем SPICE файл, и прописываем имя файла в библиотеку (D7J.lib). Сравнение ВАХ лабораторного диода и диода, полученного в программе Model, проводим в следующей схеме.

Строим ВАХ прямой ветви:

На графике BAX диода, полученного в программе Model, по точкам (используя графический редактор программы Microcap) строим график лабораторного диода и вычисляем погрешность.

Рассчитаем относительную погрешность:

$$\Delta = (~I_{\rm Д7ЖA} - I_{\rm Д7ЖAnew}~/~I_{\rm Д7ЖA})$$
* 100 % =

Расхождение по току меньше 10%, следовательно, модель приемлема. Используя справочные данные, скорректируем значение BV.

В итоге получаем следующие параметры модели:

Параметры модели диода Д7Ж_new скорректированные: IS=31.5u, N=2.05, X $_{\rm T}$

ВЫВОД: В ходе выполнения работы была изучена работа программ I математического анализа Mathcad и схемотехнического моделирования MicroE заданного в библиотеке полупроводникового диода, на виртуальных G

измерительных стендах в программе МісгоСар построены его входные и В

выходные характеристики, которые были импортированы в программу Mathcad и на базе которых с помощью блока функций "Given-Mineer" решены нелинейные уравнения и получены основные параметры модели диода. Далее в В формате SPICE была сформирована модель диода. Получена вольт-фарадная характеристика и исследованы импульсные свойства диода. Изучена методика Е измерения характеристик и расчета параметров модели диода, была доказана \mathbf{C} правильность построения модели (относительная погрешность составила J характеристика германиевого диода Д7Ж, проведен расчет параметров модели O этого диода в MicroCap с помощью программы MODEL и сформирована его р модель. Расхождение графиков составило 3.3%. V J M F Список использованных источников \mathbf{C}

- Т 1. Полупроводниковые приборы: диоды, тиристры, оптоэлектронные приборы. Т Справочник А.В. Баюков, А.Б. Гритцевич, А.А.Зайцев и др; Под общ. Ред. и Н.Н.Горюнова 3е изд., Перераб. М. Энергоатомизад, 1972 -744с.
 - 2. Разевиг В.Д. Схемотехническое моделирование с помощью Micro-Cap 7.-М.: Горячая линия Телеком,2003.-368 с.,ил.
 - 3. Компьютер для студентов. Самоучитель. Быстрый старт. Под ред. В.Б. Комягина: Учебное пособие М.: Издательство ТРИУМФ, 2003 400с.:ил.