Machine Learning 101

Jonas Gonzalez

What is Machine Learning?

"Teach computers how to learn and act without being explicitly programmed"

"Machine learning focuses on the development of computer programs that can access data and use it to learn for themselves "

"The primary aim is to allow the computers to learn **automatically without human intervention** or assistance and adjust actions accordingly"

Data acquisition

- Images
- Audio
- Numeric data

1	A	В	C	D	E	F	G
1	Date	Open	High	Low	Close	Volume	Adj Close
2	02/01/2003	50.65	51.61	50.52	51.6	7545500	44.99
3	03/01/2003	51.61	51.61	49.85	50	8389300	43.59
4	06/01/2003	50.2	50.55	49.67	50.19	7438400	43.76
5	07/01/2003	50.32	50.76	50.1	50.46	6669000	43.99
6	08/01/2003	50.4	51.36	49.86	49.99	7796900	43.58
7	09/01/2003	50.75	52	50.75	51.92	9884800	45.27
8	10/01/2003	51.92	52	51.21	51.62	7426600	45
9	13/01/2003	51.62	52.18	51	51.28	6920800	44.71
LO	14/01/2003	51	51.54	50.7	51.41	6759600	44.82
1	15/01/2003	51.45	51.68	50.53	50.59	6503500	44.11
12	16/01/2003	51.1	51.23	49.98	50.3	8086900	43.85
13	17/01/2003	50.3	50.43	49.7	49.97	8661200	43.57
14	21/01/2003	50.07	50.29	48.98	49.01	7827400	42.73
15	22/01/2003	49.02	49.59	47.75	48.07	11097600	41.91
16	23/01/2003	48.07	48.76	47.34	48.57	10896500	42.34
7	24/01/2003	48.4	48.69	47.19	47.3	8425500	41.24

Data preparation

- Incomplete data
 - o NaN, null
- Noisy
 - Age = -20 , Height = 120
- Inconsistent
 - Rating = 18/30 or Rating = A-F

Data wrangling

- Choose how to deal with your data
 - NaN, null values
 - Take the mean
 - Remove instance
 - Normalize your data
 - Remove outliers

Analyze your data

"Data analysis is the process of evaluating data using analytical and statistical tools to discover useful information"

Quick exploration to see patterns

- Statistical Distributions
- Plotting (Histogram, scatter plot, box plot)
- Correlation

Analyze your data

"Data analysis is the process of evaluating data using analytical and statistical tools to discover useful information"

Preparing your data for learning

Ready to make learning:

- Data is clean
- Exploratory analysis give us the features that might be useful for our initial question
- Dataset

Now lets start doing ML!

"A computer program is said to learn from experience **E** with respect to someclass of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**"

Source: http://www.deeplearningbook.org/

The Task T

"Machine learning aims at generalizing a task that will be to difficult to solve with fixed program"

Classification:

From a vector $x \in \mathbb{R}^n$ find the class its belong

That is finding $f : \mathbb{R}^n \rightarrow \{1, \dots, k\}$

Regression:

From a vector $x \in \mathbb{R}^n$ predict a numerical value

That is finding $f: \mathbb{R}^n \rightarrow \{1, \dots, k\}$

P

"How evaluate the performance of the model on the task **T**"

	Predicted Positives	Predicted Negatives
Actual: Positives	TP	FN
Actual: Negatives	FP	TN

ACCURACY = TP + TN / (TP + TN + FP + FN)

P

"How evaluate the performance of the model on the task **T**"

N = 100	Predicted: Positives	Predicted: Negatives	
Actual: Positives	45	5	
Actual: Negatives	5	45	

ACCURACY = 45 + 45 / 100 = 0.9

P

"How evaluate the performance of the model on the task **T**"

N = 100	Predicted: Positives	Predicted: Negatives	
Actual: Positives	0	0	
Actual: Negatives	2	98	

ACCURACY = 0 + 98 / 100 = 0.98% !!

P

"How evaluate the performance of the model on the task **T**"

N = 100	Predicted: Positives	Predicted: Negatives
Actual: Positives	0	1
Actual: Negatives	1	98

PRECISION = $TP/TP + FP \rightarrow 0/2 = 0\%$

P

"How evaluate the performance of the model on the task **T**"

N = 100	Predicted: Positives	Predicted: Negatives	
Actual: Positives	0	1	
Actual: Negatives	1	98	

RECALL = TP / TP + FN -> 0 / 1 = 0%

"How evaluate the performance of the model on the task **T**"

N = 165	Predicted: Positives	Predicted: Negatives
Actual: Positives	50	10
Actual: Negatives	5	100

ACCURACY = 0.9 PRECISION = 0.91 RECALL = 0.95

F-measure = 2*PRECISION*RECALL / (PRECISION +RECALL) F-measure = 0.92

The Experience **E**

Usually ML models experience a dataset, a collection of data points.

Supervised Learning

"The model is given a dataset of pair (x,y) and it has to learn a function that successfully predict the label Y from new input X."

Unsupervised Learning

"The dataset is only data points with different features f. The goal generally is to learn some useful properties (the probability distribution)

It can also be applied to find clusters"

A Simple Example

Linear Regression

$$Y = ax + b$$

A Simple Example

Linear Regression

Underfitting vs Overfitting

Bias vs Variance tradeoff

High bias -> underfitting

High variance -> overfitting

Source: http://scott.fortmann-roe.com/docs/BiasVariance.html

Cross-Validation : k-fold

Evaluate machine learning models on a limited data sample

Next time: In depth Machine learning (Math and hand on session)

