(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年8月12日(12.08.2004)

PCT

(10) 国際公開番号 WO 2004/068513 A1

(51) 国際特許分類7: H01F 1/04, 1/08, 41/02. C22C 38/00, B22F 1/00, C21D 6/00

(21) 国際出願番号:

PCT/JP2004/000750

(22) 国際出願日:

2004年1月28日(28.01.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-019446 2003年1月28日(28.01.2003) Љ 2003年2月3日(03.02.2003) 特願2003-026077 ЛР 2003年3月28日(28.03.2003) 特願2003-092892 JР 特願 2003-421463

> 2003年12月18日(18.12.2003) ЛР

(71) 出願人(米国を除く全ての指定国について): TDK 株式会社 (TDK CORPORATION) [JP/JP]; 〒1038272 東京都中央区日本橋一丁目13番1号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 坂本 篤司 (SAKAMOTO, Atsushi) [JP/JP]; 〒1038272 東京都 中央区日本橋一丁目13番1号 TDK株式会社 内 Tokyo (JP). 中根 誠 (NAKANE, Makoto) [JP/JP]; 〒1038272 東京都中央区日本橋一丁目13番1号 TDK株式会社内 Tokyo (JP). 中村 英樹 (NAKA-MURA, Hideki) [JP/JP]; 〒1038272 東京都中央区日本 橋一丁目13番1号 TDK株式会社内 Tokyo (JP). 福野 亮 (FUKUNO, Akira) [JP/JP]; 〒1038272 東京都 中央区日本橋一丁目13番1号 TDK株式会社内 Tokyo (JP).
- (74) 代理人: 大場 充 (OBA, Mitsuru); 〒1010032 東京都千 代田区岩本町1丁目4番3号 KMビル8階大場国 際特許事務所 Tokyo (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM,

/続葉有/

(54) Title: HARD MAGNETIC COMPOSITION, PERMANENT MAGNET POWDER, METHOD FOR PERMANENT MAG-NET POWDER, AND BONDED MAGNET

(54) 発明の名称: 硬質磁性組成物、永久磁石粉末、永久磁石粉末の製造方法、ボンド磁石

- a...X-RAY DIFFRACTION OUTPUT INTENSITY
- b...ThMn₁₂ TYPE PHASE

d...SAMPLE No. 45

e...SAMPLE No. 7

c...SAMPLE No. 4

(57) Abstract: A hard magnetic composition which is represented by a general formula: $R(Fe_{100-y-w}Co_wTi_y)_xSi_zA_v$, wherein R is at least one sciencest selected from rare earth metals including Y, and Nd accounts for 50 mole % or more of R, and A is N and/or C, and wherein with respect to the mole ratios in the general formula, x is 10 to 12.5, y is (8.3 - 1.7 X z) to 12.3, z is 0.1 to 2.3, v is 0.1 to 3, and w is 0 to 30, and wherein (Fe + Co + Ti + Si)/R > 12 is satisfied. The hard magnetic composition comprises a single phase structure of a phase having a ThMn₁₂ type crystal structure.

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH,

CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約: 一般式R(Fe_{100-y-w}Co_wTi_y) $_x$ Si $_z$ A、(一般式中、Rは希土類元素から選択される少なくとも 1種の元素(但し希土類元素はYを含む概念である)であるとともにRの50モル%以上がNd、AはN及び/又はC)からなり、一般式のモル比が、 $_x$ =10~12.5、 $_y$ =(8.3–1.7× $_z$)~12.3、 $_z$ =0.1~2.3、 $_x$ =0.1~3、 $_y$ =0.1~3、 $_y$ =0.1~3、 $_y$ =0.1~3、 $_y$ =0.1~3。 $_y$ =0.10

明 細 書

硬質磁性組成物、永久磁石粉末、永久磁石粉末の製造方法、ボンド磁石

5 技術分野

本発明は、スピーカやモータなど磁界を必要とする機器に用いられる永久磁石用材料として好適な硬質磁性組成物に関する。また本発明は、永久磁石用材料、特にボンド磁石用材料として好適な磁石粉末、及びその製造方法に関する。

10 背景技術

希土類磁石の中でもR-T-B系希土類永久磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であることから、スピーカやモータなどの電気機器各種用途に用いられている。

ところが、近年、電気機器の小型化の要求が一層高まってきており、新しい 15 永久磁石材料の開発が進められている。

そのなかで、体心正方晶もしくは $ThMn_{12}$ 型結晶構造を有する希土類一鉄系磁石材料が、例えば特開昭63-273303号公報、特開平4-241402号公報、特開平5-65603号公報及び特開2000-114017号公報に報告されている。

20 特開昭63-273303号公報は、式RxTiyAzFeaCob(式中 RはYを含む希土類元素、AはB, C, A1, Si, P, Ga, Ge, Sn, S, Nの各々1種以上であり、重量百分率でxは12~30%、yは4~10%、 zは0.1~8%、aは55~85%、bは34%以下である)で示される希 土類永久磁石を開示している。特開昭63-273303号公報において、A 25 元素は、原子間に入りFe間距離を好ましい方向に変化させるものであること が述べられている。

特開平4-241402号公報は、式RxMyAzFe100-x-y-z (式中RはYを含む希土類元素から選択された少なくとも1種の元素、MはS

i, Cr, V, Mo, W, Ti, Zr, Hf及びAlから選択された少なくとも1種の元素、AはN及びCから選択された少なくとも1種の元素)である永久磁石を開示している。この永久磁石は、原子%でxが4~20%、yが20%以下、zが0.001~16%である)で示され、 $ThMn_{12}$ 型結晶構造を有する相を主相とする。また特開平4-241402号公報には、M元素(Si, Ti等)を添加することにより、安定した $ThMn_{12}$ 型の結晶構造を有する希土類鉄系の正方晶化合物を形成できることが開示されている。特開平4-241402号公報には、A元素(C, N)はキュリー温度の向上に有効であることが開示されている。

10 特開平5-65603号公報は、RをY, Th及びすべてのランタノイド元素からなる群の中から選ばれた1種又は2種以上の元素の組合せ、XをN(窒素)もしくはB(硼素)もしくはC(炭素)又はこれらの元素の組合せとするとき、原子百分率で、R:3~30%、X:0.3~50%を含み、残部が実質的に下eからなる鉄-希土類系永久磁石材料を開示している。この磁石材料は、体心正方晶構造を有する相を主相とする。また特開平5-65603号公報は、下eの一部をM元素(Ti, Cr, V, Zr, Nb, Al, Mo, Mn, Hf, Ta, W, Mg, Si, Sn, Ge, Gaからなる群の中から選ばれた1種又は2種以上の元素の組合せ)で置換することにより、原子百分率で、M:0.5~30%を含むようにすることもさらに提案している。特開平5-65603号公報において、M元素は体心正方晶構造を生成する上で大きな効果を有する元素と位置付けられている。

また、特開 2000-114017 号公報は、一般式 $(R_{1-u}\ M_u)$ $(Fe_{1-v-w}\ Co_v\ T_w)_x\ A_y$ $(式中のR,\ M,\ T,\ A$ は、それぞれR:Yを含む希土類元素から選ばれる少なくとも1つの元素、M:Ti, Nbから選ばれる少なくとも1つの元素、T:Ni, Cu, Sn, V, Ta, Cr, Mo, W, Mn から選ばれる少なくとも1つの元素、A:Si, Ge, Al, Ga から選ばれる少なくとも1つの元素であり、u, v, w, x 及びyは、それぞれ0. $1 \le u \le 0$. 7、 $0 \le v \le 0$. 8、 $0 \le w \le 0$. 1、 $5 \le x \le 12$ 、0. $1 \le v$

10

15

 $y \le 1.5$ 、である)にて表わされる永久磁石材料を開示している。この永久磁石材料は、主たる硬磁性相が $ThMn_{12}$ 型結晶構造を有する。特開 2000 -114017号公報では、 $M元素でR元素を置換することにより、<math>ThMn_{12}$ 型結晶構造を有する相(以下、 $ThMn_{12}$ 相」ということがある)を安定化する元素であるSi,Geなどの量を低減できることが述べられている。

希土類永久磁石には、高い磁気特性が要求される一方、低コストであることも要求される。希土類永久磁石を構成する希土類元素の中で、NdはSmに比べて安価であることから、高価なSmと比べて安価なNdが希土類元素の主体をなすことが望ましい。ところが、Ndを用いるとThMn₁₂相の生成が困難であり、その作製に高温かつ長時間の熱処理を必要とする。例えば、前述の特開平5-65603号公報においては900℃で7日間の焼鈍を施しており、また、特開平4-241402号公報、特開2000-114017号公報においては一部の例外を除いて希土類元素としてSmのみを用いている。

そこで本発明は、希土類元素としてNdを用いた場合でもThMn₁₂相を容易に生成することのできる硬質磁性組成物、永久磁石粉末等の提供を課題とする。

発明の開示

本発明者は、所定量のTi, Siを同時に添加することにより希土類元素と LTNdを用いた場合においても $LThMn_{12}$ 型結晶構造を有する相が容易に生成されることを知見した。また所定量のLTi, LTi を同時に添加して得られた化合物にさらにLTi なが、LTi ない、LTi なが、LTi なが、LTi ない、LTi ない、LTi なが、LTi ない、LTi なが、LTi ない、LTi ない、

本発明は以上の知見に基づいてなされたものであり、一般式R($Fe_{100-y-2}$ $_wCo_wTi_y$) $_xSi_zA_v$ (一般式中、Rは希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である)であるとともにRの50モル%以上がNd、AはN及び/又はC)、前記一般式のモル比が、x=10~12.5、 $y=(8.3-1.7\times z)~12.3、<math>z=0.1~2.3$ 、v

 $=0.1 \sim 3$ 、 $w=0 \sim 30$ であるとともに、(Fe+Co+Ti+Si)/R > 12 を満足することを特徴とする硬質磁性組成物である。

また、本発明者は、Rの一部をZr及び/又はHfで置換することにより、 より高い飽和磁化を示す硬質磁性組成物を得ることができることを知見した。

- 5 この場合には、一般式:R1 $_{1-u}$ R2 $_{u}$ (Fe $_{100-y-w}$ Co $_{w}$ Ti $_{y}$) $_{x}$ Si $_{z}$ A $_{v}$ (一般式中、R1は希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である)であるとともにR1の50モル%以上がNd、R2はZr及び/又はHf、AはN及び/又はC)とし、かつ一般式のモル比が、u=0.18以下、 $y=4.5\sim12.3$ 、 $x=11\sim12.8$ 、z=0.18
- 10 $1 \sim 2$. $3 \lor v = 0$. $1 \sim 3 \lor w = 0 \sim 30$ であるとともに、(Fe+Co+Ti+Si)/(R1+R2)>12を満足するように硬質磁性組成物の組成を設定すればよい。

飽和磁化の向上という効果を享受するために、R2元素(Zr及び/又はHf)の量(u)は $0.04\sim0.06$ とすることが望ましい。

- Rの一部をZr及び/又はHfで置換した場合にも、硬質磁性組成物を実質的に硬質磁性相の単相組織から構成されるものとすることができ、またこの硬質磁性相をThMn₁₂型結晶構造とすることができる。なお、本明細書において、Rの一部をZr及び/又はHfで置換することを「Zr(Hf)置換」ということがある。
- Z r (H f) 置換の有無を問わず、本発明の硬質磁性組成物は、Rの70モル%以上がNdである場合であっても、硬質磁性相の単相組織を得ることができ、また、この単相組織を $ThMn_{12}$ 型結晶構造を有する相とすることもできる。

本発明の硬質組成物において、AはNであることが望ましい。

25 また、Zr (Hf) 置換の有無を問わず、xは $11\sim12.5$ 、zは $0.2\sim2.0$ 、vは $0.5\sim2.5$ 、wは $10\sim25$ であることが望ましい。

以上の本発明によれば、R-Ti-Fe-Si-A化合物又はR-Ti-Fe-Co-Si-A化合物(一般式中、Rは希土類元素から選択される少なく

10

15

ここで、この単相組織を $ThMn_{12}$ 型結晶構造を有する相とすることができる。

本発明の硬質磁性組成物は、異方性磁界 (H_A) が 40kOe以上、飽和磁化 (σs) が 130emu/g以上という優れた磁気特性を示すこともできる。

さて、永久磁石の製造コスト低減という観点から、Ndを用いた場合にも高温かつ長時間の熱処理を要しないことが望まれる。このため、本発明者はR(Rは希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である))とT(FeとTiを必須とする遷移金属元素)からなり、RとTのモル比が1:12近傍の組成を有する金属間化合物について検討を行った。その結果、Siが侵入型元素として存在する場合に、高温かつ長時間の熱処理を施すことなく、高い飽和磁化及び異方性磁界が得られる。さらに、Nが侵入型元素として存在する場合には、飽和磁化及び異方性磁界がともにさらに向上することを知見した。

20 また本発明者は上述した検討過程において、SiとNは侵入型元素である点で共通するものの、侵入による結晶格子へ与える影響に差異があることを確認した。詳しくは後述するが、Siは結晶格子を収縮させる作用を有し、特に結晶格子のa軸を収縮させる。これに対し、Nは結晶格子を等方的に膨張させる作用を有している。その結果、従来知られているASTM (American Society For Testing and Materials)に基づくThMn₁₂型化合物の結晶格子のc軸とa軸の軸比(以下、c/aと記す)よりも、本発明者による新たな金属間化合物のc/aは力である。なお、ASTMに基づくThMn₁₂型化合物のc/aは0.558である。

10

15

20

25

以上の知見に基づく本発明は、RとT(RはYを含む希土類元素の1種又は2種以上、TはFe及びTiを必須とする遷移金属元素)のモル比が1:12 近傍である金属間化合物の単相組織からなり、Si及びA(AはN及びCの1 種又は2種)が侵入型元素として前記金属間化合物の結晶の格子間に存在する ことを特徴とする硬質磁性組成物を提供する。

本発明の硬質磁性組成物において、RとTのモル比が $1:10\sim1:12$. 5 であることが望ましい。

本発明でいうところの $ThMn_{12}$ 型結晶構造とは、X線回折において $ThMn_{12}$ 型結晶構造と同定できるものをいう。但し、ASTMで規定されている $ThMn_{12}$ 型化合物とは、c/a の値が異なる。すなわち、本発明の硬質磁性組成物において、前記金属間化合物における結晶格子のc 軸の格子定数及びa 軸の格子定数の比をc 1/a 1 とし、ASTM (American Society For Testing and Materials) に基づく $ThMn_{12}$ 型化合物における結晶格子のc 軸の格子定数及びa 軸の格子定数の比をc 2/a 2 (c 2/a 2=0.558) とすると、c 1/a 1>c 2/a 2 とすることができる。このとき、S i が結晶格子を異方的に収縮させ、かつAが結晶格子を等方的に膨張させることによりc 1/a 1>c 2/a 2 を得ることができる。

ところで、従来からボンド磁石等に用いられる永久磁石粉末としてはSmC o 磁石粉末やN d F e B 磁石粉末が知られている。コストの低減の観点から、高価なSmと比べて安価なN d が希土類元素の主体をなすことが望ましい。このため、N d $_2$ F e $_{14}$ B $_1$ 相を有する磁石粉末が広く用いられきたが、より安価な磁石粉末が望まれている。

こうした磁石粉末を得るために、本発明者は様々な検討を行った。その結果、上述した本発明の硬質磁性組成物の結晶組織を微細化することにより、永久磁石粉末として十分な保磁力を発現できることを知見した。すなわち、本発明の永久磁石粉末は、一般式R($Fe_{100-y-w}Co_wTi_y$) $_xSi_zA_v$ (一般式中、Rは希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である)であるとともにRの50モル%以上がNd、AはN及び/又

15

20

はC)からなり、前記一般式のモル比が、 $x=10\sim12$. 8、 $y=(8.3-1.7\times z)\sim12$. 3、z=0. $1\sim2$. 3、v=0. $1\sim3$ 、 $w=0\sim30$ であるとともに、(Fe+Co+Ti+Si)/R>12を満足する組成を有し、平均結晶粒径が200nm以下である粒子の集合からなることを特徴とする。

本発明の永久磁石粉末において、粉末を構成する各粒子は $ThMn_{12}$ 型結晶構造を有する相を主相とし、特に実質的に $ThMn_{12}$ 型結晶構造を有する相の単相組織からなることが望ましい。

また本発明の永久磁石粉末において、Rの70モル%以上をNdが占める場 10 合であっても実質的に $ThMn_{12}$ 型結晶構造を有する相の単相組織を得ること ができる。このため、コスト低減に有利である。

本発明の永久磁石粉末は、上述のように、微細な結晶組織を有するところに特徴がある。そしてこのように微細な結晶組織は、急冷凝固処理されたアモルファス又は微細結晶質の粉末に対して所定の熱処理を施すことにより実現される。本発明の永久磁石粉末の製造方法では、まず平均粒径が一般式R(Fe₁₀0-y-wCo_wTi_y)_xSi_z(一般式中、Rは希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である)であるとともにRの50モル%以上がNd)からなり、前記一般式のモル比が、 $x=10\sim12$.8、 $y=(8.3-1.7\times z)\sim12.3$ 、 $z=0.1\sim2.3$ 、 $w=0\sim30$ であるとともに、(Fe+Co+Ti+Si)/R>12を満足する組成を有し、急冷凝固処理が施された粉末を作製する。次いで、この粉末を、不活性雰囲気中にて600~850℃の温度範囲で0.5~120hr保持する熱処理を施す。そして、熱処理が施された粉末に対して窒化処理又は炭化処理を施すのである。

25 本発明の永久磁石粉末の製造方法において、急冷凝固処理が施された粉末は、 アモルファス相、アモルファス相と結晶相の混相又は結晶相のうち、いずれか の組織を呈する。この中では、次に行われる熱処理後の結晶粒径の制御の容易 性からアモルファス相と結晶相の混相、特に結晶相がリッチな混相とすること が望ましい。

5

15

20

25

本発明の永久磁石粉末の製造方法において、急冷凝固処理の具体的な方法は問わない。但し、生産性、冷却凝固後に安定して所望の組織が得られること等の理由により、単ロール法を適用することが望ましい。単ロール法を適用する場合のロールの周速は10~100m/sとすることが望ましい。得たい合金の組成、溶湯を吐出するノズル孔径、ロール材質等の他の条件によっても若干の相違はあるものの、この範囲で急冷凝固処理された粉末は、アモルファス相、アモルファス相と結晶相の混相又は結晶相のいずれかの組織を呈することができる。

10 本発明の永久磁石粉末の製造方法において、急冷凝固処理が施された粉末に対して行う熱処理は、アモルファス相を結晶化するか、又は結晶相を構成する 結晶粒子の粒径を調整するものとなる。

本発明により得られる永久磁石粉末を用いることにより、ボンド磁石を作製することができる。このボンド磁石は、永久磁石粉末と、永久磁石粉末を結合させる樹脂相とを備えている。この永久磁石粉末を構成する結晶質の硬質磁性粒子は、一般式R(Fe_{100-y-w}Co_wTi_y)_xSi_zA_v(一般式中、Rは希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である)であるとともにRの50モル%以上がNd、AはN及び/又はC)からなり、前記一般式のモル比が、 $x=10\sim12$.8、 $y=(8.3-1.7\times z)\sim12$.3、 $z=0.1\sim2$.3、 $v=0.1\sim3$ 、 $v=0\sim30$ であるとともに、(Fe+Co+Ti+Si)/R>12の組成を満足することを特徴とする。

磁気特性の観点から、本発明のボンド磁石における硬質磁性粒子は、平均結晶粒径が200nm以下であることが望ましい。

図面の簡単な説明

第1図はNd (Ti_{8.2}Fe_{91.8})_{11.9}Si₂及びNd (Ti_{8.2}Fe_{91.8})
{11.9}Si₂N{1.5}の組成を有する硬質磁性組成物における格子定数 (a 軸、c 軸

及びc軸/a軸)とSi量(z)の関係を示すグラフ、第2図は第1実施例(実 験例1) で得られた試料の組成、磁気特性、相構成を示す図表、第3図(a) はSi量と飽和磁化(σs)との関係を示すグラフ、第3図(b)はSi量と 異方性磁界 (H_A) との関係を示すグラフ、第4図は試料No. 4、7、45の 5 X線回折の結果を示すチャート、第5図は試料No. 4、7、33、45の熱 磁気曲線、第6図は第1実施例(実験例2)で得られた試料の組成、磁気特性、 相構成を示す図表、第7図(a)は(Fe+Ti)量と飽和磁化(σs)との 関係を示すグラフ、第7図(b)は(Fe+Ti)量と異方性磁界(H_A)との 関係を示すグラフ、第8図(α)は(Fe+Ti)量と飽和磁化(σs)との 関係を示すグラフ、第8図(b)は(Fe+Ti)量と異方性磁界(H_A)との 10 関係を示すグラフ、第9図は第1実施例(実験例3)で得られた試料の組成、 磁気特性、相構成を示す図表、第10図(α)はΤi量と飽和磁化(σs)と の関係を示すグラフ、第10図(b)はTi量と異方性磁界(H_a)との関係を 示すグラフ、第11図(α)はTi量と飽和磁化(σs)との関係を示すグラ 15 フ、第11図(b)はTi量と異方性磁界(H_A)との関係を示すグラフ、第1 2図(a)はTi量と飽和磁化(σs)との関係を示すグラフ、第12図(b) はTi量と異方性磁界(H₄)との関係を示すグラフ、第13図は第1実施例(実 験例4)で得られた試料の組成、磁気特性、相構成を示す図表、第14図(a) はN量と飽和磁化(σs)との関係を示すグラフ、第14図(b)はN量と異 方性磁界(H₄)との関係を示すグラフ、第15図は第1実施例(実験例5)で 20 得られた試料の組成、磁気特性、相構成を示す図表、第16図は第1実施例(実 験例6)で得られた試料の組成、磁気特性、相構成を示す図表、第17図は第 2 実施例(実験例7)で得られた試料の組成、磁気特性、相構成を示す図表、 第18図は試料No.63、91、105のX線回折の結果を示すチャート、 25 第19図はα-Feのピークが生ずる回折角度近傍の拡大図、第20図は第2 実施例(実験例8)で得られた試料の組成、磁気特性、相構成を示す図表、第 21図は第2実施例(実験例9)で得られた試料の組成、磁気特性、相構成を 示す図表、第22図は第2実施例(実験例10)で得られた試料の組成、磁気

10

15

25

特性、相構成を示す図表、第23図は第2実施例(実験例11)で得られた試 料の組成、磁気特性、相構成を示す図表、第24図は第2実施例(実験例12) で得られた試料の組成、磁気特性、相構成を示す図表、第25図は第2実施例 (実験例13)で得られた試料の組成、磁気特性、相構成を示す図表、第26 図は第2実施例(実験例14)で得られた試料の組成、磁気特性、相構成を示 す図表、第27図は第3実施例(実験例15)で得られた試料の組成、磁気特 性、相構成を示す図表、第28図は第3実施例で得られた試料の熱磁気曲線、 第29図は第3実施例(実験例16)で得られた試料の組成、磁気特性、相構 成を示す図表、第30図は急冷凝固後のフレークについて、X線回折の結果を 示すチャート、第31図は熱処理後の試料について、X線回折の結果を示すチ ャート、第32図はロール周速(Vs)が25m/sで得られたフレークを熱 処理した後の組織をTEMにより観察した結果を示す図、第33図はロール周 速(Vs)が75m/sで得られたフレークを熱処理した後の組織をTEMに より観察した結果を示す図、第34図は第4実施例(実験例17)において窒 化処理後に磁気特性を測定した結果を示す図表、第35図は第4実施例(実験 例18)において窒化処理後に磁気特性を測定した結果を示す図表である。

発明を実施するための最良の形態

以下、本発明の硬質磁性組成物、永久磁石粉末、永久磁石粉末の製造方法及 20 びボンド磁石について、その最良の形態を含む実施の形態を説明する。

はじめに、本発明における各元素の限定理由を説明する。

[R (希土類元素)]

Rは高い磁気異方性を得るのに必須な元素である。硬質磁性相としての $ThMn_{12}$ 相を生成するためにはSmを用いるのが有利であるが、本発明ではコスト的なメリットを得るためにRの50 モル%以上をNdで占めることとする。本発明はRの50 モル%以上をNdで占めながらも $ThMn_{12}$ 相を容易に生成することを可能とする。

但し、Ndのほかに他の希土類元素を含むことを本発明は許容する。その場

合、Y, La, Ce, Pr, Smから選択される少なくとも1種の元素をNd とともに含むことが好ましい。この中でPrはNdとほぼ同等の性質を示すこ とから、磁気特性においてもNdと同等の値が得られるため特に好ましい。

本発明によれば、Rに占めるNdの割合が70 モル%以上、あるいは90 モル%以上と高い場合であっても、硬質磁性相である $ThMn_{12}$ 相を主相、さらには $ThMn_{12}$ 相からなる単相組織を得ることができる。後述する実施例に示すように、本発明によれば、RがNdのみ、つまりRの100 モル%をNdが占める場合であっても、硬質磁性相である $ThMn_{12}$ 相からなる単相組織を得ることができる。

10 [Si]

[T i]

5

15

25

SiはTiと同時にR(Nd), Feに対し添加されると、硬質磁性相としての $ThMn_{12}$ 相の安定化に寄与する。このとき、Siは $ThMn_{12}$ 相の格子間に侵入して結晶格子を縮小させる効果を持つ。Siの量が0.1未満(モル比、以下同様)にすると Mn_2Th_{17} 型結晶構造を有する相(以下、 Mn_2Th_{17} 相)が析出し、2.3を超えると α -Feが析出する傾向にある。したがって、本発明ではSiの量であるzを $0.1\sim2.3$ の範囲とすることを推奨する。望ましいSi量(z)は $0.2\sim2$.0、さらに望ましいSi量(z)は $0.2\sim1.0$ である。

 $Ti は Th Mn_{12}$ 相の生成に寄与する。具体的には、Feを所定量のTiによって置換することで、 $Th Mn_{12}$ 相の生成が容易となる。この効果を十分に得るためには、Si量との関係でTi量(y)の下限を設定することが必要である。つまり、後述する実施例にて示すように、Ti量(y)が($8.3-1.7\times z$ (Si量))未満になると α -Fe及び Mn_2 Th $_{17}$ 相が析出する。また、Ti量(y)が12.3を超えると飽和磁化の減少が著しくなる。したがって

本発明では、T i 量 (y) を $(8.3-1.7 \times z (S i 量)) \sim 12.3 とする。望ましい<math>T$ i 量 (y) は $(8.3-1.7 \times z (S i 量)) \sim 12$ 、より望ましいT i 量 (y) は $(8.3-1.7 \times z (S i 量)) \sim 10$ 、より一層望ましいT i 量 (y) は $(8.3-1.7 \times z (S i 量)) \sim 9$ である。

また、Fe量とTi量の和(x)が、10未満では飽和磁化及び異方性磁界がともに低く、また、12.5を超えると α -Feが析出する。したがって、Fe量とTi量の和(x)を<math>10~12.5とする。望ましいFe量とTi量の和(x)は11~12.5である。

[A(N(窒素)及び/又はC(炭素))]

- 15 望ましいA量(v)は0.3~2.5、さらに望ましいA量(v)は1.0 ~2.5である。

[Fe, Fe-Co]

20

本発明による硬質磁性組成物は、上記元素以外を実質的にFeとするが、Fe0 の一部をCo0 で置換することが有効である。後述する実施例で説明するように、Co0 を添加することにより、飽和磁化(Ge0 及び異方性磁界(He0 が増大する。Ce0 の量は、Ge0 以下のモル比で添加するのが望ましく、Ge0 の範囲とするのがより望ましい。なお、Ge0 の添加は必須ではない。

[(Feのモル比+Coのモル比+Tiのモル比+Siのモル比)/(Rのモル 比)>12]

25 Fe, Co, Ti及びSiの個々の含有量は前述したとおりであるが、本発明の硬質磁性組成物を $ThMn_{12}$ 相単相組織とする上で、(Fe+Co+Ti+Si)/R>12の条件を満足することが重要である。後述する実施例で示すように、上記条件を満たさない場合には飽和磁化が低い。

[Zr, Hf]

20

以上、本発明による硬質磁性組成物の組成について説明した。

本発明の硬質磁性組成物は、さらにZr及び/又はHfを含むことができる。 Zr及び/又はHfは磁気特性、特に飽和磁化の向上に有効である。

- 5 Zr 及び/又はHf は、上記一般式において、R の一部を置換する。ここで、Zr 及び/又はHf の置換量を示すu が 0 . 18 を超えるとu が 0 の場合よりも飽和磁化が低くなる。したがって、Zr 及び/又はHf によってR の一部を置換する場合には、u は 0 . 18 以下 (0 を含まず)とする。望ましいu は 0 . 0 1 \sim 0 . 1 5 、 さらに望ましいu は 0 . 0 6 である。
- 10 ここで、Zr(Hf)置換を行う場合における、Ti量(y)を示しておく。 Zr(Hf)置換を行う場合には、Ti量(y)を4.5~12.3とする。 この場合における望ましいTi量(y)は5~12、より望ましくは6~10、 さらに望ましくは7~9とする。なお、Fe量、Co量及び<math>Ti量の和(x)は1~12.8、望ましくは11.5~12.5とする。
- 15 本発明による硬質磁性組成物の製造方法は公知の製造方法により得ることが できる。

侵入型元素であるNについては、Nをもともと含む原料を用いることができる。但し、N以外の元素を含む組成物を製造した後に、Nを含む気体又は液体中で処理(窒化)することによりNを侵入させることが望ましい。Nを侵入させることのできる気体としては、 N_2 ガス、 N_2 + H_2 混合ガス、 NH_3 ガス、これらの混合ガスを用いることができる。窒化処理の温度は200~1000℃、望ましくは350~700℃とすればよい。また、窒化処理時間は0.2~200時間の範囲で適宜選択すればよい。

Cを侵入させる処理(炭化処理)についてもNの場合と同様である。つまり、 Cをもともと含む原料を用いることもできるし、C以外の元素を含む組成物を 製造した後に、Cを含む気体又は液体中で加熱処理することもできる。 あるい は、Cを含む固体とともに加熱処理することによりCを侵入させることもできる。 Cを侵入させることのできる気体としてはCH4、C2H6等が掲げられる。

また、Cを含む固体としては、カーボンブラックを用いることができる。これらによる炭化においても、窒化処理と同様の温度、処理時間の範囲内で適宜条件を設定することができる。

<結晶構造>

10

15

5 次に、本発明による硬質磁性組成物の結晶構造について説明する。

本発明の硬質磁性組成物は、R(Rは希土類元素から選択される少なくとも 1種の元素(但し希土類元素はYを含む概念である))とT(FeとTiを必須 とする遷移金属元素)からなり、RとTのモル比が1:12近傍の組成を有する金属間化合物から構成される。この金属間化合物の結晶の格子間には、Si が侵入型元素として存在する。また、この結晶格子にはNも侵入型元素として存在する。

上述したように、SiとNはともに結晶の格子間に存在して磁気特性を改善する。ところが、Siは結晶格子を収縮させ、Nは結晶格子を膨張させる。このように、SiとNとはその作用が異なっている。以下、この点について言及する。

第1図は、Nd($Ti_{8.2}Fe_{91.8}$) $_{11.9}Si_z$ 及びNd($Ti_{8.2}Fe_{91.8}$) $_{11.9}Si_z$ N $_{11.5}$ の組成を有する硬質磁性組成物における格子定数(c 軸、a 軸及びc 軸/a 軸)とSi 量(z)の関係を示すグラフである。なお、第1図に示される硬質磁性組成物は、後述する実施例に開示されたものである。

20 第1図において、Siが添加されてもc軸の格子定数に大きな変化はみられない。ところが、a軸については、Siを添加することにより格子定数が顕著に小さくなることがわかる。つまり、Siは結晶の格子間に存在し、かつ結晶格子を異方的に収縮させる特徴を有している。

次に、第1図において、Nを添加することにより、c軸及びa軸ともにその 25 格子定数が大きくなることがわかる。つまり、Nは結晶の格子間に存在し、か つ結晶格子を等方的に膨張させる。以上のようにして結晶格子を収縮又は膨張 させることにより飽和磁化、キュリー温度及び異方性磁界が向上する。なお、 Siによる結晶格子を異方的に収縮させる作用がNを添加しても変わらないこ

20

25

とも第1図からわかる。そして、Siはその存在によって結晶格子が収縮するが、Nとの共存によって異方性化向上の効果が顕著となるとともに、単相組織の生成を容易にする。

なお、第1図において、「ASTM」の符号が付されたプロットは、ASTMに記載された $ThMn_{12}$ 型化合物のc軸の格子定数、a軸の格子定数及びc軸の格子定数/a軸の格子定数を示している。Nd($Ti_{8.2}Fe_{91.8}$) $_{11.9}Si_{2}$ でzがゼロの組成物の格子定数が、ASTMに記載された $ThMn_{12}$ 型化合物の格子定数に一致していることがわかる。

Siが結晶の格子間に存在することは、以下のことにより実証される。上記 Nd $(Ti_{8.2}Fe_{91.8})_{11.9}Si_z$ でzがゼロ、つまりSiを含まない組成物と含む組成物についてX線回折法による確認を行ったところ、両者ともに得られる回折ピークの基本形態に変化が見られなかった。しかも、Siもしくは上記組成物の構成元素とSiの化合物のピーク及び α -Feのピークが確認されない。さらにSi量の増加にともなってa軸の格子定数が連続的に小さくな る。これらのことから、Siが結晶の格子間に存在すると認められる。

また、本発明において、N原子は結晶の格子間に存在し、c 軸、a 軸ともほぼ同比率で膨張させる。しかし、S i は結晶の格子間に存在するが、a 軸のみを縮めていることから、結晶格子内の特定の場所に存在することが推定される。その存在位置は確定できないが、 $ThMn_{12}$ 型化合物のX線回折パターンを示すことから、結晶の格子間において特定の位置を占有していると考えられる。

本発明の硬質磁性組成物は、ASTMに記載された $ThMn_{12}$ 型化合物とは異なる格子定数を示すが、X線回折では $ThMn_{12}$ 型化合物と同定される回折パターンを示す。よって、本発明の硬質磁性組成物は $ThMn_{12}$ 型化合物である。本発明の硬質磁性組成物において、硬質磁性相を $ThMn_{12}$ 型結晶構造とすることが望ましい。特に、硬質磁性相を実質的に $ThMn_{12}$ 型結晶構造の単相組織から構成することが、磁気特性の観点から望ましい。

以上、本発明の硬質磁性組成物について説明した。この硬質磁性組成物は磁 石材料として好適であるが、本発明者はこの硬質磁性組成物の結晶組織を微細 化することにより、永久磁石粉末として十分な保磁力を発現できることを知見 した。以下、本発明の永久磁石粉末及びその製造方法について詳述する。

[永久磁石粉末の組織]

まず、本発明の永久磁石粉末の組織について説明する。

本発明の永久磁石粉末は、その結晶粒径が平均で200nm以下、望ましくは100nm以下、さらに望ましくは80nm以下と微細である。このように微細な組織を有することにより、本発明は永久磁石粉末として必要な保磁力を発現することができる。本発明においてこのような微細な組織を得る手段は後述する。なお、結晶粒径は熱処理した急冷合金をTEMにより観察し個々の粒子を認識した後、個々の粒子の面積を画像処理によって求め、その値と同面積となる円の直径として算出した値である。平均結晶粒径は1試料あたり100個程度の結晶粒について計測を行い、全測定粒子の結晶粒径の平均値とした。

微細な結晶組織を有する本発明の永久磁石粉末は、 $ThMn_{12}$ 相が主相、より望ましくは $ThMn_{12}$ 相の単相組織とする。なお、 $ThMn_{12}$ 相の単相組織か否かは、後述する実施例で示す基準にしたがって判断する。

[永久磁石粉末の製造方法]

15

次に本発明の永久磁石粉末の製造方法を説明する。

本発明の永久磁石粉末は、前述のように微細な結晶組織を有するところに特徴があるが、この微細な結晶組織を得るのにいくつかの手法がある。例えば、

20 溶湯急冷法を用いる方法、メカニカルグラインディングあるいはメカニカルアロイングを用いる方法、HDDR (Hydrogenation-Decomposition-Desorption-Recombination) 法を用いる方法である。以下では、溶湯急冷法を用いた製造方法について説明する。

溶湯急冷法を用いた製造方法は、溶湯急冷工程、熱処理工程、窒化処理工程 25 の主要な3つの工程を有している。以下、各工程について順次説明する。

<溶湯急冷工程>

溶湯急冷工程は、前述した組成となるように配合された原料金属を溶解して 溶湯を得た後、この溶湯を急冷凝固する。具体的な凝固法としては、単ロール

15

法、双ロール法、遠心急冷法、ガスアトマイズ法等が存在する。なかでも、単ロール法を用いることが望ましい。単ロール法では、合金溶湯をノズルから吐出して冷却ロール周面に衝突させることにより、合金溶湯を急速に冷却し、薄帯状または薄片状の急冷合金を得る。単ロール法は、他の溶湯急冷法に比べ、量産性が高く、急冷条件の再現性が良好である。

急冷凝固された合金は、その組成、冷却ロールの周速度によって異なるが、 アモルファス単相、アモルファス相と結晶相の混相、結晶相単相のいずれかの 組織形態を呈する。アモルファス相は、後に行う熱処理によって微結晶化され る。一つの尺度として、冷却ロールの周速度が大きくなれば、アモルファスの

10 占有する割合が高くなる。

冷却ロールの周速度が速くなれば、得られる急冷合金が薄くなるため、より 均質な急冷合金が得られる。本発明にとって最も望ましいのは、冷却凝固され たままの状態で最終的に得たい微結晶組織を有していることであるが、これを 実現することは容易ではない。一方、アモルファス相単相の組織を得た後に、

熱処理によって微結晶化することももちろん可能であるが、先行して形成された核に基づく結晶粒が異常成長して粗大な結晶粒を生じさせるおそれがある。 したがって、本発明にとって望ましい形態は、微結晶相がリッチで残部がアモルファス相の凝固組織を得ることである。

そのためには、冷却ロールの周速度は、通常、 $10~100\,\mathrm{m/s}$ 、好まし $10~100\,\mathrm{m/s}$ ない $10~1000\,\mathrm{m/s}$ ない $10~10000\,\mathrm{m/s}$ ない $10~10000\,\mathrm{m/s}$ ない $10~10000\,\mathrm{m/s}$ ない $10~10000\,\mathrm{m/s}$

<熱処理工程>

溶湯急冷工程によって得られた急冷合金は、次いで熱処理に供される。この 無処理は、急冷合金がアモルファス相単相の場合には、本発明で要求される粒

15

20

25

径の微結晶を生成する。また、急冷合金がアモルファス相と結晶相の混相の場合には、アモルファス相を微結晶化し、加えて結晶粒を本発明で要求される粒径に制御する。さらに、急冷合金が結晶相の単相組織である場合には、その結晶粒を本発明で要求される粒径に制御する。したがって、急冷合金の状態で本発明の永久磁石粉末が要求する微細な組織が得られない限り、この熱処理を施す必要がある。

この熱処理における処理温度は、600~850 \mathbb{C} 、望ましくは650~8 00 \mathbb{C} 、さらに望ましくは670~750 \mathbb{C} である。処理時間は処理温度にもよるが、通常、0.5~120 hr程度とする。この熱処理は、Ar, He,

10 真空等の非酸化性雰囲気で行なうことが望ましい。

<窒化処理工程>

熱処理後、急冷合金に窒化処理を施す。侵入型元素であるNについては、Nをもともと含む原料を用いることもできるが、N以外の元素を含む組成物を製造した後に、Nを含む気体または液体中で処理(窒化)することによりNを侵入させることが望ましい。Nを侵入させることのできる気体としては、 N_2 ガス、 N_2+H_2 混合ガス、 NH_3 ガス、これらの混合ガスを用いることができる。また、これらのガスを高圧ガスとして処理することが、窒化処理を迅速化する上で望ましい。

窒化処理の温度は $200\sim450$ $\mathbb C$ 、望ましくは $350\sim420$ $\mathbb C$ とし、窒化処理時間は $0.2\sim200$ h r の範囲で適宜選択すればよい。また、 $\mathbb C$ を侵入させる処理(炭化処理)についても同様で、 $\mathbb C$ をもともと含む原料を用いることもできるし、 $\mathbb C$ 以外の元素を含む組成物を製造した後に、 $\mathbb C$ を含む気体または液体中で加熱処理することもできる。あるいは、 $\mathbb C$ を含む固体とともに加熱処理することにより $\mathbb C$ を侵入させることもできる。 $\mathbb C$ を侵入させることのできる気体としては $\mathbb C$ H $_4$ 、 $\mathbb C$ $_2$ H $_6$ 等が掲げられる。また、 $\mathbb C$ を含む固体としては、カーボンブラックを用いることができる。これらによる炭化においても、窒化と同様の温度、処理時間の範囲内で適宜条件を設定することができる。

以上が本発明の永久磁石粉末を得るための基本的な工程であるが、溶湯急冷

25

法で得られた合金を、熱処理工程前、窒化処理工程前又は窒化処理工程後のいずれかの段階で粉砕することができる。溶湯急冷法で得られた合金は、通常、ボンド磁石用の永久磁石粉末に要求されるサイズと異なっているからである。 粉砕はArやN。等の不活性ガス中において行う。

永久磁石粉末の平均粒径は特に限定されないが、同一粒子中に結晶性の大きく異なる領域ができるだけ存在しないような粒径であることが望ましく、また、永久磁石粉末として使用可能な粒径であることが望ましい。具体的には、ボンド磁石に適用する場合、平均粒径は、通常、10μm以上とすることが望ましいが、十分な耐酸化性を得るためには、平均粒径を望ましくは30μm以上、より望ましくは50μm以上、さらに望ましくは70μm以上とする。また、この程度の平均粒径とすることにより、高密度のボンド磁石とすることができる。一方、平均粒径の上限は、望ましくは500μm、より望ましくは250μmである。なお、ここでいう平均粒径は、メディアン径D50により特定することができる。D50は、径の小さな粒子から質量を加算していって、その合計質量が全粒子の合計質量の50%となったときの粒径、すなわち粒度分布グラフにおける累積頻度である。

以上で得られた永久磁石粉末は、ボンド磁石に供することができる。ボンド磁石は、永久磁石粉末を構成する粒子をバインダで結合することにより作製される。ボンド磁石はその製造方法によりいくつかの種類がある。例えば、プレス成形を用いるコンプレッションボンド磁石、射出成形を用いるインジェクションボンド磁石がある。バインダとしては、各種樹脂を用いることが望ましいが、金属バインダを用いてメタルボンド磁石とすることもできる。樹脂バインダの種類は特に限定されず、エポキシ樹脂やナイロン等の各種熱硬化性樹脂や各種熱可塑性樹脂から目的に応じて適宜選択すればよい。金属バインダの種類も特に限定されない。また、永久磁石粉末に対するバインダの含有比率や成形時の圧力等の各種条件にも特に制限はなく、通常の範囲から適当に選択すればよい。但し、結晶粒の粗大化を防ぐために、高温の熱処理が必要な方法は避けることが好ましい。

10

15

20

25

以上では溶湯急冷法を用いて微細結晶組織を得る例について説明したが、本 発明はこの方法に限定されない。他の方法としては、メカニカルグラインディ ングを用いる方法がある。この方法は、メカニカルグラインディング工程、熱 処理工程、窒化処理工程の主要な3つの工程を有している。熱処理工程、窒化 処理工程は前述した溶湯急冷法を用いた方法と同様であるので、その説明は省 略する。

メカニカルグラインディングは、所定粒径とされた合金粒子に機械的な衝撃を継続的に加えることにより、結晶組織であったものをアモルファス相に変化させることができる。機械的な衝撃は、粉砕機として知られるボールミル、シェーカーミル、振動ミルを用いることにより付与することができる。これらの粉砕機で合金粒子を処理することにより、粒子の組織をアモルファスとすることができるのである。

合金粒子は常法に従って製造することができる。例えば、所定組成のインゴットを作製した後に、そのインゴットを粉砕することにより得ることができる。 あるいは、溶湯急冷法で得られた薄帯又は薄片をメカニカルグラインディングの対象とすることもできる。この場合、当初よりアモルファス状態となっている薄帯又は薄片に適用する必要がないことは言うまでもない。

メカニカルグラインディングにより、アモルファス化された合金粉末は、熱処理工程及び窒化処理工程を順次経ることにより、本発明の永久磁石粉末を得ることができる。また、この永久磁石粉末を用いて本発明のボンド磁石を得ることができる。

微細な結晶組織を得る手法として、水素雰囲気中で高温に保持した後に水素を取り除く熱処理(HDDR: Hydrogenation-Decomposition-Desorption-Recombination)がある。本発明はこのHDDRを用いて微細な結晶組織を得ることもできる。HDDRが施された粉末に対して、熱処理工程及び窒化処理工程を順次施すことにより、本発明の永久磁石粉末を得ることができる。また、この永久磁石粉末を用いて本発明のボンド磁石を得ることができる。

(実施例)

次に、具体的な実施例を挙げて本発明をさらに詳細に説明する。

[第1実施例]

5

15

20

25

上述した組成範囲の限定理由の根拠となる実験結果(実験例 $1\sim6$)を、第 1 実施例として示す。上述のように、本発明の硬質磁性組成物は、ASTMに記載された $ThMn_{12}$ 型化合物とは異なる格子定数を示すが、X線回折では $ThMn_{12}$ 型化合物と同定される回折パターンを示す。

<実験例1>

はじめに、相状態、磁気的な特性に関する z 値(Si量)依存性の実験結果 10 (実験例1)について説明する。

高純度のNd、Fe、Ti、Siメタルを原料に用い、合金組成としてNd - (Ti_{8,3}Fe_{91,7})₁₂-Si₂の組成となるように、Ar雰囲気中でのア 一ク溶解法により試料を作製した。続いてこの合金をスタンプミルにて粉砕し 目の開きが38 μ mのふるいを通した後に、430~520 \mathbb{C} の温度で100 時間、窒素雰囲気中で保持する熱処理(窒化)を行った。熱処理後の各試料に ついて、化学組成分析、構成される相の同定を行うとともに、飽和磁化 (σs) 及び異方性磁界(H₄)の測定を行った。その結果を第2図及び第3図に示す。 なお、構成される相の同定は、X線回折法及び熱磁気曲線の測定に基づいて 行った。X線回折はCu管球を用い15kWの出力にて測定を行い、ThMn, ₂相及びそれ以外の相のピークの有無を確認した。但し、Mn₂Th₁₂相のピー クはThMn,。相のピークとほぼ一致するためX線回折法のみで確認すること が困難である。このため、構成される相の同定に熱磁気曲線も用いる。また、 熱磁気曲線は2kOeの磁場を印加して測定を行い、ThMn12相以外の相に 対応するTc(キュリー温度)の発現有無を確認した。なお、本発明において、 「ThMnュ。相の単相組織である」とは、上述したX線回折法によりThMnュ 2相以外の相のピークが観察されず、かつ上述した熱磁気曲線の測定によりTh Mn, っ相以外の相に対応するTcが確認されないとともに、当該Tcよりも高

温側で残存する磁化が 0.05以下であることをいい、検出されない程度の不

10

15

20

25

可避不純物及び未反応物等が含まれていてもかまわない。例えば、アーク溶解では溶解中の熱均一度が不十分であり、わずかな未反応相(例えばNd、 α - Fe 等)が残存することがあり、また試料ホルダーからのCu 等が不可避不純物として含まれることがあるが、X線回折及び熱磁気曲線の測定にて検出されない限り不可避不純物を考慮しない。構成される相の同定に関する具体例を第4図、第5図に基づいて説明する。

第4図は、試料No. 4、7及び後述する試料No. 45のX線回折の結果を示すチャートである。第4図に示すように、試料No. 4、45については $ThMn_{12}$ 相を示すピークのみが観察された。但し、試料No. 7では、 α - $Feのピークを確認することができる。なお、上述したように、<math>Mn_{2}Th_{17}$ 相のピークは $ThMn_{12}$ 相のピークと重なっているため、このグラフ上で両者の区別をすることができない。

また第5図は、試料No. 4、7及び後述する試料No. 33、45の熱磁気曲線を示している。400℃近傍に $ThMn_{12}$ 相のTcが存在する。また、 Mn_2Th_{17} 相(2-17相)のTcは、第5図に示すように、 $ThMn_{12}$ 相の Tcより低温側に確認される(試料No. 33)。ここでは $ThMn_{12}$ 相の Tc 以外のTcが確認されず、かつこのTcより高温側で残存する磁化が0.05 以下であるときに単相と認定した。つまり、試料No. 4及び試料No. 45 は、 $ThMn_{12}$ 相のTc以外のTcが確認されず、かつこのTcより高温側で残存する磁化が0.05以下であるため、 $ThMn_{12}$ 相の単相組織と同定した。また、試料No. 7は、 $ThMn_{12}$ 相のTc以外のTcが確認されなかったが、このTcより高温側で残存する磁化が0.05を超えていることと第4図に基づき、 $ThMn_{12}$ 相の他に $\alpha-Fe$ が析出しているものと同定する。さらに、試料No. 33は、 Mn_2Th_{17} 相のTcが確認され、かつ $ThMn_{12}$ 相の他により高温側で残存する磁化が0.05を超えていることから、 $ThMn_{12}$ 相の他に Mn_2Th_{17} 相のTcが確認され、かつ $ThMn_{12}$ 相の他に

以上のように、第4図(X線回折)及び第5図(熱磁気曲線)の両者において、相構成がThMn₁₂相以外の相が確認されない場合に、本発明ではThM

n₁₂相の単相組織であると定義する。

また、飽和磁化(σ s)及び異方性磁界(H_A)は、V S M(Vibrating Sample Magnetometer:振動試料型磁力計)を用いて最大印加磁界 2 0 k O e で測定した磁化容易軸方向の磁化曲線及び磁化困難軸方向の磁化曲線に基づいて求めている。但し、測定の便宜上、飽和磁化(σ s)は磁化容易軸方向の磁化曲線上で最大の磁化の値とした。また、異方性磁界(H_A)は、磁化困難軸方向の磁化曲線上の 1 0 k O e における接線が、飽和磁化(σ s)の値と交差する磁界の値で定義した。

第2図及び第3図に示すように、Siが添加されていない試料No.6では ThMn₁₂相(以下、1-12相)の他に、Mn₂Th₁₇相(以下、2-17 10 相)及び $\alpha-Fe$ が存在しており、特に異方性磁界(H_A)が低い。これに対し て、Siを添加した試料 $No.1\sim5$ は、1-12相の単相になり1-12相 が安定化することがわかる。そして、これら1-12相が単相の組成物は、1 30emu/g以上の飽和磁化 (σs)、50kOe以上の異方性磁界 (H_A) を得ることができる。しかし、Si量が 2. 5の試料No. 7では α -Feが 15 析出し、かつ特性が低下する。また、Fe+Ti量が10未満でかつSi量が 2. 5の試料No. 8は、飽和磁化 (σ s) および異方性磁界 (H_s) ともに著 しく低下する。なお、軟磁性であるα-Feが存在すると、その部分が低い磁 界(減磁界)で逆磁区を発生させる。したがって、硬質磁性相成分の磁区の反 20 転を容易に進める結果として保磁力が低くなるから、保磁力が要求される永久 磁石にとってαーFeの存在は望ましくない。

試料No. $1\sim5$ の範囲においては、S i 量が多いほど異方性磁界(H_A)が高く、逆にS i 量が少ないほど飽和磁化(σ s)が高くなる傾向にある。 <実験例 2>

25 実験例1と同様にして $Nd-(Ti_{8.3}Fe_{91.7})_x-Si_z-N_{1.5}$ の組成となるように試料を作製して、化学組成の分析、構成される相の同定、飽和磁化(σ s)及び異方性磁界(H_A)の測定を行った。実験例2で得られた試料の組成、磁気特性、相構成を第6図に示す。また、試料 $No.9\sim11$ 、 $17\sim2$

0の飽和磁化(σ s)及び異方性磁界(H_A)の測定結果を第7図(a)、(b) にそれぞれ示す。同様に、試料N o.1 2 \sim 1 6、2 1、2 2 σ 3 σ 3 σ 4 σ 4 σ 5 σ 3 σ 4 σ 5 σ 6 σ 6 σ 6 σ 7 σ 8 σ 6 σ 7 σ 8 σ 6 σ 9 σ 9 σ 8 σ 6 σ 9 σ 9

x (Fe量+Ti量) およびx+z (Fe量+Ti量+Si量) の影響を確認 するために行った実験である。

第6図~第8図に示すように、xが10未満(試料No.17、21)では飽和磁化(σ s)が120emu/g未満であり、z(Si量)が1.1と低い試料No.17では異方性磁界(H_A)が30程度とともに低い。逆にxが102.5を超える(試料No.20、22)と α -Feが析出してしまう。また、xが10~12.5の範囲にあったとしても、x+zが12以下(試料No.18、19)になると、飽和磁化(σ s)が120emu/g未満、異方性磁界(H_A)が30kOe程度とともに低い。

以上に対して、xが $10\sim12$. 5の範囲にあり、かつx+zが12を超え 15 ていると(試料N o. $9\sim16$)、120 e m u / g 以上の飽和磁化(σ s)、50 k O e 以上の異方性磁界(H_A)の特性を有し、かつ1-12 相単相組織を 得ることができる。

<実験例3>

実験例1と同様にしてNdー(TiyFe_{100-y})ーSi_{1.0}ーN_{1.5}、Nd 20 ー (TiyFe_{100-y})ーSi_{1.5}ーN_{1.5}、Ndー (TiyFe_{100-y})ーSi_{2.0}ーN_{1.5}の組成となるように試料を作製して、化学組成の分析、構成される相の同定、飽和磁化(σ s)及び異方性磁界(H_A)の測定を行った。実験例3で得られた試料の組成、磁気特性、相構成を第9図に示す。また、試料No.23~25、33~35の飽和磁化(σ s)及び異方性磁界(H_A)の測定結果を第10図(a)、(b)にそれぞれ示す。同様に、試料No.26~28、36、37の飽和磁化(σ s)及び異方性磁界(H_A)の測定結果を第11図(a)、(b)に、また試料No.29~32、38の飽和磁化(σ s)及び異方性磁界(σ s)の測定結果を第12図(σ s)にそれぞれ示す。

なお、実験例 3 は、相構成、飽和磁化(σ s)及び異方性磁界(H_A)に対する、y(T i 量)の影響を確認するために行った実験である。

第9図〜第12図に示すように、z(Si量)が1.0、1.5および2.0のいずれの場合においてもy(Ti量)が(8.3−1.7 \times z)未満であると、 α -Fe、さらには2−17相が析出する(試料No.33、34、36 \sim 38)。一方、y(Ti量)が12.5と12.3を超えると飽和磁化(α s)が120emu/g未満と低下する(試料No.35)。

以上に対して、y(T i 量)が($8.3-1.7\times z$)~12.3の範囲にあると、1-12相単相、換言すれば硬質磁性相単相の組織となり、かつ1300 e m u / g 以上、さらには140 e m u / g 以上の飽和磁化(σ s)、50 k O e 以上、さらには55 k O e 以上の異方性磁界 (H_A) を得ることができる(試料No.23~32)。

<実験例4>

20 なお、実験例 4 は、相構成、飽和磁化(σ s)及び異方性磁界(H_A)に対する、v(N量)の影響を確認するために行った実験である。

第13図及び第14図に示すように、v(N量)が0では飽和磁化(σ s)および異方性磁界(H_A)ともに低い(試料No. 43)。一方、v(N量)が3. 5と3を超えると α -Feが析出する(試料No. 44)。

以上に対して、v(N量)が0. $1\sim3$ の範囲にあると、1-12相単相、換言すれば硬質磁性相単相の組織となり、かつ120emu/g以上の飽和磁化 (σs) 、30kOe以上の異方性磁界 (H_A) を得ることができる(試料No. $39\sim42$)。飽和磁化 (σs) 、異方性磁界 (H_A) の観点からすると、v

(N量) は、 $0.5\sim2.7$ 、さらには $1.0\sim2.5$ の範囲とすることが望ましい。

<実験例5>

実験例1と同様にして第15図に示す各試料を作製して、構成される相の同 定、飽和磁化(σ s)及び異方性磁界(H_A)の測定を行った。その結果を第15図に示す。

なお、実験例 5 は、N d - (T i $_{8.3}$ F e $_{91.7-w}$ C o $_w$) 1 2 - S i $_z$ - $N_{1.5}$ における w (C o 量)依存性を確認するための実験である。

第15図に示すように、z(Si量)が0.25および1.0のいずれの場合でも、w(Co量)を増やしていくと飽和磁化(σ s)、異方性磁界(H_A)が向上し、w(Co量)が20程度でその効果がピークとなることがわかる。したがって、Coが高価であることをも考慮すると、w(Co量)は30以下とすることが望ましく、 $10\sim25$ の範囲とすることがより望ましい。また、この範囲のw(Co量)において、組織は1-12相の単相である。

15 <実験例6>

20

高純度のNd、Fe、Ti、Siメタルを、原料に用い、合金組成としてNdー(Ti_{8.3}Fe_{91.7-w}Co_w)₁₂-Si₂の組成となるように、Ar雰囲気中でのアーク溶解法により試料を作製した。続いてこの合金をスタンプミルにて粉砕し目の開きが 38μ mのふるいを通した後に、平均粒径 1μ m以下のC粉末と混合し、 $400\sim600$ Cの温度で 24 時間、Ar雰囲気中で保持する熱処理を行った。熱処理後の各試料について、化学組成の分析、構成される相の同定を行うとともに、飽和磁化(σ s)及び異方性磁界(H_A)の測定を行った。その結果を第 16 図に示す。

第16図に示すように、Nの代わりにCを添加することによっても、1-125 2相の単相組織を得ることができるとともに、120emu/g以上の飽和磁化 (σs) 、30kOe以上の異方性磁界 (H_A) を得ることができる。このとき、CはNと同様の役割を果たしている。

また、Ndの1~25%をPrで置換した場合においても他の試料と同等の

結果を得ることができる。

[第2実施例]

N d の一部をZr 又はHf で置換することによる磁気特性の変動を確認するために行った実験結果(実験例 $7\sim14$)を、第2実施例として示す。なお、実験例 $7\sim13$ ではNd の一部をZr で置換し、実験例 14ではNd の一部をHf で置換した。

<実験例7>

5

10

15

20

以上より、Z r 量(u)は、一般式: R 1_{1-u} R 2_u (T i_y F $e_{100-y-w}$ C o_w) $_x$ S i_z A $_v$ において 0.0 $1\sim$ 0.18の範囲とすることが望ましく、0.04 \sim 0.06の範囲とすることがより望ましい。

熱処理後の各試料について、構成される相の同定は、X線回折法に基づいて 25 行った。X線回折の条件は第1実施例と同様とし、 $ThMn_{12}$ 相及びそれ以外 の相のピーク有無を確認した。その他の相としては、 $\alpha-Fe、Mn_2Th_{17}$ 相及びNdの窒化物が掲げられる。高い磁気特性を得るためには、 $ThMn_{12}$ 相以外の主回折線が $ThMn_{12}$ 相の主回折線に対して 50%以下のピーク強度

比であることが望ましい。構成される相の同定に関する具体例を第18図及び 第19図に基づいて説明する。

第18図は、後述する試料No.63、91、105のX線回折測定結果を示すチャートであるが、試料No.63、91では $ThMn_{12}$ 相を示すピークのみが観察された。これに対して、試料No.105では、 α -Feのピークを確認することができる。試料No.105はN量が過剰に含まれているために $ThMn_{12}$ 相が分解し、それに伴って α -Feが析出したものと解される。このことは、試料No.105は $ThMn_{12}$ 相のピークが減少する一方、 α -Feのピークが増大していることからわかる。

- 第19図は、 α -Feのピークが生じる回折角度近傍の拡大図である。この角度近傍において、 $ThMn_{12}$ 相のピークと α -Feのピークとが隣接している。試料No. 63では $ThMn_{12}$ 相のピークのみが観察される。また、試料No. 91では $ThMn_{12}$ 相と α -Feの2つのピークが観察されるが、このように α -Feが少ない場合には特性に及ぼす影響が小さい。一方、試料No.
- 15 105ではほぼ α -Feのピークしか観察されない。また、第18図からわかる通り、42°近傍に見られる $ThMn_{12}$ 相の主回折線に対する α -Feの主回折線のピーク強度比が50%以上である。このように α -Feが多く析出すると特性の劣化が著しくなる。

<実験例8>

20 実験例 7 と同様の手順で、N d $_{0.95}$ Z r $_{0.05}$ (T i $_{8.3}$ F e $_{91.7}$) $_{12}$ S i $_{12}$ N $_{1.5}$ の組成となるように試料を作製して、化学組成の分析、構成される相の同定、飽和磁化($_{6}$ S)及び異方性磁界($_{14}$ の測定を行った。その結果を第 2 0 図に示す。

なお、実験例 8 は、相構成、飽和磁化 (σ s) 及び異方性磁界 (H_A) に対す 25 る、S i 量 (z) の影響を確認するために行った実験である。

Siが添加されていない試料No. 69では1-12相の他に、 Mn_2Th_1 7相(以下、2-17相)及び $\alpha-Fe$ 相が存在しており、特に異方性磁界(Ha4)が低い。これに対して、Si6を添加した試料No. $70\sim73$ は、1-12

15

相の単相になり1-12相が安定化することがわかる。そして、これら1-12 名間が単相の組成物は、140 あるいは145 e m u / g以上の飽和磁化(σ s)、50 あるいは55 k O e 以上の異方性磁界(H_A)を得ることができる。しかし、Si 量が2.5 の試料No.74 では $\alpha-F$ e が多く析出し、特性が低下する。なお、軟磁性である $\alpha-F$ e が存在すると、その部分が低い磁界(減磁界)で逆磁区を発生させる。したがって、硬質磁性相成分の磁区の反転を容易に進める結果として保磁力が低くなるから、保磁力が要求される永久磁石にとって $\alpha-F$ e の存在は望ましくない。

試料 $No.70\sim73$ の範囲においては、Si量が多いほど異方性磁界 (H_A) 10 が高く、逆にSi量が少ないほど飽和磁化(σs)が高くなる傾向にある。 <実験例 9>

実験例 7 と同様の手順で、N d $_{0.95}$ Z r $_{0.05}$ (T i $_{8.3}$ F e $_{91.7}$) $_{x}$ S i $_{0.5}$ N d $_{0.95}$ Z r $_{0.05}$ (T i $_{8.3}$ F e $_{91.7}$) $_{x}$ S i $_{1.0}$ N d $_{0.95}$ Z r $_{0.05}$ (T i $_{8.3}$ F e $_{91.7}$) $_{x}$ S i $_{1.5}$ N d $_{0.95}$ Z r $_{0.05}$ (T i $_{8.3}$ F e $_{91.7}$) $_{x}$ S i $_{1.5}$ N $_{1.5}$ の組成となるように試料を作製して、化学組成の分析、構成される相の同定、飽和磁化($_{\sigma}$ s)及び異方性磁界 (H_A) の測定を行った。その結果を第21図に示す。

なお、実験例 9 は、相構成、飽和磁化(σ s)及び異方性磁界(H_A)に対する、 F e 量 + C o 量 + T i 量(x)及びF e 量 + C o 量 + T i 量 + S i 量(x + z)の影響を確認するために行った実験である。

第21図に示すように、Fe量+Co量+Ti量(x)が11未満(試料No.81、83、84、86)では飽和磁化(σs)が140emu/g未満である。逆にzが13となる(試料No.85)とα-Feが多く析出し、特性が低下する。また、zが11~12.5の範囲にあったとしても、x+z、つまり(Feのモル比+Coのモル比+Tiのモル比+Siのモル比)/(R1のモル比+R2のモル比)が11.6と12以下(試料No.82)になると、飽和磁化(σs)は140emu/g以上の値を示すものの、異方性磁界(H_A)が40kOe以下の値に留まる。

以上に対して、xが11~12.8の範囲にあり、かつx+2が12を超え

る試料No. 75~80は、140emu/g以上の飽和磁化(σ s)、50k Oe以上の異方性磁界(H_{A})を有する。

<実験例10>

実験例 7 と同様の手順で、N d $_{0.95}$ Z r $_{0.05}$ (T i $_{y}$ F e $_{100-y}$) $_{12}$ S i $_{1.5}$ N d $_{0.95}$ Z r $_{0.05}$ (T i $_{y}$ F e $_{100-y}$) $_{12}$ S i $_{1.5}$ N d $_{0.95}$ Z r $_{0.05}$ (T i $_{y}$ F e $_{100-y}$) $_{12}$ S i $_{2.0}$ N $_{1.5}$ の組成となるように試料を作製して、化学組成の分析、構成される相の同定、飽和磁化($_{0}$ S)及び異方性磁界($_{1}$ H $_{2}$ の測定を行った。その結果を第22図に示す。

なお、実験例10は、相構成、飽和磁化(σ s)及び異方性磁界(H_A)に対 10 する、Ti量(y)の影響を確認するために行った実験である。

Si量(z)が1.5及び2.0のいずれの場合においてもTi量(y)が5.0未満であると、 α -Fe、さらには2-17相が析出するとともに、飽和磁化(σ s)及び異方性磁界(H_A)が低い値に留まっている(試料No.94、99)。一方、Ti量(y)が12.5と12.3を超えると飽和磁化(σ s)が130emu/g未満と低下する(試料No.90)。

以上に対して、Ti量(y)が $5\sim12$.3の範囲にある試料No.87~89、 $91\sim93$ 、 $95\sim98$ は、1-12相単相、換言すれば硬質磁性相単相の組織となり、かつ140あるいは150emu/g以上の飽和磁化(σ s)、50あるいは55kOe以上の異方性磁界(H_{A})を得ることができる。

20 <実験例11>

15

実験例 7 と同様の手順で、 $Nd_{0.95}Zr_{0.05}$ (Ti_yFe_{100-y}) $_{12}Si_{1.0}N_v$ の組成となるように試料を作製して、化学組成の分析、構成される相の同定、飽和磁化(σ s)及び異方性磁界(H_A)の測定を行った。その結果を第23図に示す。

25 なお、実験例11は、相構成、飽和磁化(σ s)及び異方性磁界(H_A)に対する、N量(v)の影響を確認するために行った実験である。

第23図に示すように、N量(v)が0では飽和磁化(σ s)及び異方性磁界(H_a)ともに低い(試料No. 100)。

以上に対して、N量(v)が $1\sim3$ の範囲にある試料No. $101\sim104$ は、1-12相単相、換言すれば硬質磁性相単相の組織となり、かつ140emu/g以上の飽和磁化(σ s)、45あるいは50kOe以上の異方性磁界(HA)を得ることができる。飽和磁化(σ s)、異方性磁界(HA)の観点から、N量(v)は、 $0.5\sim2.7$ 、さらには $1.0\sim2.5$ の範囲とすることが望ましい。

<実験例12>

5

実験例 7 と同様の手順で、N d $_{0.95}$ Z r $_{0.05}$ (T i $_{8.3}$ F e $_{91.7-w}$ C o $_{w}$) $_{12}$ S i $_{0.25}$ N $_{1.5}$ 、N d $_{0.95}$ Z r $_{0.05}$ (T i $_{8.3}$ F e $_{91.7-w}$ C o $_{w}$) $_{12}$ S i $_{1.5}$ の組成となるように試料を作製して、構成される相の同定、飽和磁化 ($_{\sigma}$ s) 及び異方性磁界 ($_{H_A}$) の測定を行った。その結果を第 2 4 図に示す。

なお、実験例12は、相構成、飽和磁化(σ s)及び異方性磁界(H_A)に対する、Co量(w)の影響を確認するために行なった実験である。

第24図に示すように、Si量(z)が0.25及び1.0のいずれの場合 にも、Co量(w)を増やしていくと飽和磁化(σ s)及び異方性磁界(H_A)が向上し、Co量(w)が20程度でその効果がピークになることがわかる。したがって、Coが高価であることをも考慮すると、Co量(w)は30以下とすることが望ましく、 $10\sim25$ の範囲とすることがより望ましい。また、この範囲のCo量(w)において、組織は1-12相の単相である。

20 <実験例13>

25

第25図に示すように、Nの代わりにCを添加することによっても、1-12相の単相組織を得ることができるとともに、140あるいは150e mu/g以上の飽和磁化(σ s)、40kOe以上の異方性磁界(H_A)を得ることができる。このとき、CはNと同様の役割を果たしている。

5 <実験例14>

Ndの一部をHfで置換することによる磁気特性の変動を確認するために行った実験結果を、実験例14として示す。

実験例 7 と同様の手順で、N d $_{1-u}$ H f $_{u}$ (T i $_{8.3}$ F e $_{91.7}$) $_{12}$ S i $_{1.0}$ N $_{1.5}$ 、の組成となるように試料を作製して、化学組成の分析、構成される相の同 定、飽和磁化(σ s)及び異方性磁界(H_A)の測定を行った。その結果を第 2 6 図に示す。

第26図に示すように、HfはZrと同様の効果があることがわかる。

[第3実施例]

15

20

Siの含有に伴う c/a の変動を確認するために行った実験結果(実験例15、 16)を、第3実施例として示す。

<実験例15>

高純度のNd、Fe、Ti、Siメタルを原料に用い、合金組成としてNd $-(Ti_{8.2}Fe_{91.8})_{11.9}-Si_{z}$ の組成、及びNd $-(Ti_{8.3}Fe_{91.7})_{12}-Si_{z}$ の組成となるように、Ar 雰囲気中でのアーク溶解法により試料を作製した。続いてこの合金をスタンプミルにて粉砕し目の開きが 38μ mのふるいを通した後に、 $430\sim520$ の温度で100 時間、窒素雰囲気中で保持する熱処理(窒化)を行った。熱処理後の各試料について、化学組成分析、構成される相の同定を行うとともに、第1実施例と同様の条件で飽和磁化(σ s)及び異方性磁界(H_{\bullet})の測定を行った。その結果を第27図に示す。

25 なお、相構成の同定は、第1実施例と同様に、X線回折法及び熱磁気曲線の 測定に基づいて行った。

第27図に示すように、Siが添加されていない試料No.12900.552に比べて c/aが大きい試料 $No.121\sim126$ は磁気特性、特に異方性

25

磁界(H_A)が向上することがわかる。但し、第28図も参照すれば、a 軸の格子定数が所定の範囲まで小さくなるにしたがって異方性磁界(H_A)は向上する一方、飽和磁化(σ s)は低下する傾向にあることがわかる。また、S i 量が多い試料N o.131は、 α -F e が析出するとともに、飽和磁化(σ s)及び異方性磁界(H_A)がともに低下する。さらに、N の添加されていない試料N o.130は飽和磁化(σ s)が低い。なお、N を含むがS i を含まない試料N o.129及びS i を含むがN を含まない試料N o.129及びS i を含むがN を含まない試料N o.130の飽和磁化(σ s)及び異方性磁界(H_A)のレベルからすると、本発明による試料N o.121~126の飽和磁化(σ s)及び異方性磁界(H_A)は予想の範囲を超えた高い値を示しており、N i 及びN の両者を兼備することにより磁気特性が顕著に向上することがわかる。

第28図は第27図の試料No. 127、128、132の組成物の熱磁気曲線を示している。試料No. 127、128は430℃近傍にTcが存在することがわかるが、それ以外のTcを確認することができない。したがって、試料No. 127、128は、ThMn₁₂相の単相組織であるものと認められる。試料No. 132は、400℃近傍に第1相に対応するTcを確認することができる。加えて、450℃において室温の20%に相当する磁化を有している。これは、試料No. 132に、Tcが450℃以上の磁性相が存在していることを示している。測定温度を上昇していくと770℃近傍で磁化が失われることから、第2相の存在を確認することができる。この結果及びX線回折の結果から、この第2相はα−Feであると認められる。

<実験例16>

実験例15と同様にして第29図に示す組成物を得た。この組成物について、 実験例15と同様に飽和磁化(σ s)及び異方性磁界(H_A)の測定を行うとと もに、構成する相の同定を行った。その結果を第29図に併せて示す。

第29図に示すように、Fe+Ti量(x)、つまりRに対するFe+Tiの比が10~12.5の範囲にある試料No.133~137は、120あるいは $130emu/g以上の飽和磁化(<math>\sigma$ s)及び55kOe以上の異方性磁界

 (H_A) という高い磁気特性を得ている。しかも、試料No. $133\sim137$ による組成物は、 $ThMn_{12}$ 相の単相組織である。これに対して、Rに対するFe+Tiの比が12. 7の試料No. 138は、 $ThMn_{12}$ 相化合物の他に α -Feの析出が確認される。また、試料No. $133\sim137$ において、Rに対するFe+Tiの比が小さくなると、組織は単相であるものの、飽和磁化(σ s)及び異方性磁界(H_A)がともに低下する。この傾向から、Rに対するFe+Tiの比は、10以上とすることが望ましい。

[第4実施例]

5

以上に示した実施例(第1実施例~第3実施例)は硬質磁性組成物に関する 10 ものである。第4実施例では永久磁石粉末に関する具体的な実施例を示す。 <実験例17>

次の組成になるよう秤量した原料をArガス雰囲気中で溶解し急冷凝固を行った。急冷条件は以下の通りである。

得られた合金は厚さが 20μ mのフレーク状であった。これらをAr ガス雰 15 囲気中にて 800 で 2hr 保持する熱処理を施した。

さらにスタンプミルにて 75μ mのふるいを通過する大きさまで粉砕し、粉砕粉に窒化処理を施した。窒化条件は、400 $\mathbb{C} \times 64$ h r 、 \mathbb{N}_2 フロー(大気圧)である。

- ・組成: N d ₁ F e _{9. 15} C o _{2. 0} T i _{0. 85} S i _{0. 2}
- 20 ・ 単ロール法 (ロール材質: Cu)
 - ノズル穴径: φ1mm
 - 噴出ガス圧: 0.5 kg/cm²
 - 溶湯温度:1400℃
 - ロール周速(Vs):15、25、50、75m/s
- 25 急冷凝固後のフレーク(試料)及び熱処理後の試料について、XRD(X-Ray Diffractometer、X線回折装置)により相構成を観察した。その結果を第30図及び第31図に示す。なお、第30図は急冷凝固後の試料についての観察結果を、また第31図は熱処理後の試料についての観察結果を示している。

15

25

第30図に示すように、ロール周速(Vs)が15m/s、25m/sで得られた試料は、 $ThMn_{12}$ 相のピークが観察されているのに対し、ロール周速(Vs)が50m/s、75m/sで得られた試料は $ThMn_{12}$ 相のピークが観察されずアモルファスに特有な回折線となっている。

第31図に示すように、熱処理後には、いずれのロール周速においてもTh Mn_{12} 相が主相を占めることが確認された。

第32図はロール周速(Vs)が25m/sで得られた熱処理後の試料の組織をTEM (Transmission Electron Microscope、透過型電子顕微鏡)で観察した結果を示す図である。第33図はロール周速(Vs)が75m/sで得られた熱処理後の試料の組織をTEMで観察した結果を示す図である。

第32図及び第33図に示すように、熱処理後には極めて微細な結晶構造を呈することが確認できた。但し、ロール周速(Vs)によって熱処理後の組織は以下のような差異がある。ロール周速(Vs)が25m/sで得られた試料は粒径が25nm程度の結晶が多く観察され、最大粒径が50nm程度である。これに対して、75m/sで得られた試料は粒径が10nm程度の結晶が多く観察され、最大粒径が10nm程度である。

次に、急冷凝固後、熱処理後及び窒化処理後の試料の磁気特性をVSMにて 測定した(印加磁界:20kOe)。その結果を第34図に示す。なお、窒化処 理後の試料のN含有量は、以下の通りである。

20 ロール周速 (Vs) = 25 m/s:2.93 wt% ロール周速 (Vs) = 75 m/s:2.79 wt%

第34図に示すように、熱処理後に窒化処理を施すことにより、保磁力(H c j)及び残留磁化(σ r)ともに向上して永久磁石粉末として十分な特性が 得られることが確認された。なお、第34図には、以下の比較例による粉末に ついての磁気特性の測定結果を併せて示しているが、保磁力(H c j)及び残留磁化(σ r)ともに、実施例に比べて低い値に留まっている。

比較例:本実施例と同様の組成 (Nd₁Fe_{9.15}Co_{2.0}Ti_{0.85}Si_{0.2}) となるよう原料を秤量し、高周波溶解にて溶解後、水冷Cu鋳型に鋳込み合金 を作製した(合金厚み $10\,\mathrm{mm}$)。この合金を実施例と同様にスタンプミルで粉砕した後に、やはり本実施例と同様に熱処理及び窒化処理を施して粉末を得た。 次に、窒化処理された粉末(ロール周速($V\,\mathrm{s}$)が $50\,\mathrm{m/s}$ のもの)に対し $3\,\mathrm{w}\,\mathrm{t}$ %のエポキシ樹脂を混合・攪拌し、 $\phi\,10\,\mathrm{mm}$ の円柱キャビティを有する金型で成形圧力 $6\,\mathrm{t}\,\mathrm{o}\,\mathrm{n/c}\,\mathrm{m/s}$ にて成形し、その成形体を $1\,50\,\mathrm{C}\,\mathrm{c}\,\mathrm{4}\,\mathrm{h}$ rキュア処理を施しボンド磁石とした。ボンド磁石はB-Hトレーサにて磁気特性を測定した(印加磁界: $2\,5\,\mathrm{k}\,\mathrm{O}\,\mathrm{e}$)。その結果は以下の通りである。

Br=6700G、Hcj=7980Oe、(BH) max=8.5MGOe <実験例18>

- 10 第35図に示す組成を有する急冷凝固合金を作製した後に、熱処理及び窒化 処理を施した。なお、急冷凝固、熱処理及び窒化処理の条件は以下の通りであ る。窒化処理後に磁気特性を測定した結果を第35図に示す。
 - 一急冷凝固一
 - ・ 単ロール法 (ロール材質: Cu)
- 15 · ノズル穴径: φ 1 mm
 - ・ 噴出ガス圧: 0.5 kg/cm²
 - · 溶解温度:1400℃
 - ロール周速(Vs):50m/s
 - -熱処理-
- 20 A r ガス雰囲気中にて800℃で2h r 保持
 - 一窒化処理一

N₂ガスフロー (大気圧) 中で400℃、64hr保持

第35図に示すように、熱処理後に窒化処理を施すことが、高い磁気特性を 備えた永久磁石粉末を得る上で有効であることが確認できた。

産業上の利用可能性

25

本発明によれば、希土類元素としてNdを用いた場合でも $ThMn_{12}$ 相を容易に生成することのできる硬質磁性組成物が提供される。特に、本発明によれ

10

ば、Ndが100モル%であっても $ThMn_{12}$ 相、換言すれば硬質磁性相の単相組織からなる硬質磁性組成物を得ることができる。

また本発明によれば、異方的に結晶格子を収縮させるSiと等方的に結晶格子を膨張させるNを侵入元素として存在させ、かつRとTとの比が12近傍である金属間化合物により、飽和磁化及び異方性磁界がともに高い単相組織の硬質磁性組成物を得ることができる。

さらに本発明によれば、希土類元素としてNdを用いた場合でもThMn₁₂相を容易に生成することのできる永久磁石粉末及びその製造方法を提供することができる。また本発明によれば、そのような永久磁石粉末を用いたボンド磁石を得ることができる。

10

20

請求の範囲

1. 一般式R($Fe_{100-y-w}Co_wTi_y$) $_xSi_zA_v$ (一般式中、Rは希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である)であるとともにRの50モル%以上がNd、AはN及び/又はC)からなり、

前記一般式のモル比が、 $x=10\sim12$. 5、 $y=(8.3-1.7\times z)\sim12$. 3、z=0. $1\sim2$. 3、v=0. $1\sim3$ 、 $w=0\sim30$ であるとともに、(Fe+Co+Ti+Si)/R>12を満足することを特徴とする硬質磁性組成物。

- 2. 前記硬質磁性組成物が、ThMn₁₂型の結晶構造を有する相の単相組織から構成されることを特徴とする請求項1に記載の硬質磁性組成物。
- 15 3. 前記Rの70モル%以上がNdであることを特徴とする請求項1に記載の 硬質磁性組成物。
 - 4. 前記Rの一部がZr及び/又はHf で置換されていることを特徴とする請求項1に記載の硬質磁性組成物。
 - 5. 一般式: R $\mathbf{1}_{1-u}$ R $\mathbf{2}_{u}$ (F $\mathbf{e}_{100-y-w}$ C \mathbf{o}_{w} T \mathbf{i}_{y}) $_{x}$ S \mathbf{i}_{z} A $_{v}$ (一般式中、R $\mathbf{1}$ は希土類元素から選択される少なくとも $\mathbf{1}$ 種の元素 (但し希土類元素はYを含む概念である) であるとともにR $\mathbf{1}$ の5 $\mathbf{0}$ モル%以上がN \mathbf{d} 、R $\mathbf{2}$ はZ \mathbf{r} 及び/又はH \mathbf{f} 、AはN及び/又はC) からなり、
- 25 前記一般式のモル比が、u=0. 18以下、<math>y=4. $5\sim12$. 3、x=1 $1\sim12$. 8、z=0. $1\sim2$. 3、v=0. $1\sim3$ 、 $w=0\sim3$ 0であると ともに、(Fe+Co+Ti+Si) / (R1+R2) > 12を満足することを 特徴とする硬質磁性組成物。

- 6. 前記硬質磁性組成物が、 $ThMn_{12}$ 型結晶構造を含むことを特徴とする請求項 5 記載の硬質磁性組成物。
- 5 7. 前記 u が 0. 0 4 ~ 0. 0 6 であることを特徴とする請求項 5 に記載の硬質磁性組成物。
 - 8. 前記AはNであることを特徴とする請求項1又は5に記載の硬質磁性組成物。

- 9. 前記xは11 \sim 12. 5であることを特徴とする請求項1又は5に記載の 硬質磁性組成物。
- 10. 前記 z は 0. 2 ~ 2. 0 であることを特徴とする請求項 1 又は 5 に記載 15 の硬質磁性組成物。
 - 11. 前記 v は 0. $5\sim 2$. 5 であることを特徴とする請求項 1 又は 5 に記載の硬質磁性組成物。
- 20 12. 前記wは10~25であることを特徴とする請求項1又は5に記載の硬質磁性組成物。
- 13. R-Ti-Fe-Si-A化合物又はR-Ti-Fe-Co-Si-A化合物(一般式中、Rは希土類元素から選択される少なくとも1種の元素(但した) し希土類元素はYを含む概念である)であるとともにRの80モル%以上がNd、AはN及び/又はC)からなり、硬質磁性相の単相組織から構成され、飽和磁化(σs)が120emu/g以上、異方性磁界(H_A)が30kOe以上であることを特徴とする硬質磁性組成物。

- 14. 前記硬質磁性相は、 $ThMn_{12}$ 型の結晶構造を有する相であることを特徴とする請求項13に記載の硬質磁性組成物。
- 5 15. 前記異方性磁界 (H_A) が40kOe以上であることを特徴とする請求項13に記載の硬質磁性組成物。
 - 16. 前記飽和磁化 (σs) が130emu/g以上であることを特徴とする 請求項13に記載の硬質磁性組成物。

20

- 17. RとT(Rは希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である)、TはFe及びTiを必須とする遷移金属元素)のモル比が1:12近傍である金属間化合物の単相組織からなり、
- Si及びA(AはN及び/又はC)が侵入型元素として前記金属間化合物の 15 結晶の格子間に存在することを特徴とする硬質磁性組成物。
 - 18. 前記金属間化合物における結晶格子の c 軸の格子定数及び a 軸の格子定数の比を c 1 / a 1 とし、A S T M (American Society For Testing and Materials) に基づく $ThMn_{12}$ 型化合物における結晶格子の c 軸の格子定数及び a 軸の格子定数の比を c 2 / a 2 (c 2 / a 2 = 0. 558) とすると、c 1 / a 1 > c 2 / a 2 であることを特徴とする請求項17に記載の硬質磁性組成物。
- 19. Siが結晶格子を異方的に収縮させ、かつAが結晶格子を等方的に膨張 25 させることにより c 1/a 1>c 2/a 2 を得ることを特徴とする請求項17 に記載の硬質磁性組成物。
 - 20. RとTのモル比が1:10~1:12. 5であることを特徴とする請求

項17に記載の硬質磁性組成物。

21. 一般式R($Fe_{100-y-w}Co_wTi_y$) $_xSi_zA_v$ (一般式中、Rは希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である)であるとともにRの50モル%以上がNd、AはN及び/又はC)からなり、

前記一般式のモル比が、 $x=10\sim12$. 8、 $y=(8.3-1.7\times z)\sim12$. 3、z=0. $1\sim2$. 3、v=0. $1\sim3$ 、 $w=0\sim30$ であるとともに、(Fe+Co+Ti+Si)/R>12を満足する組成を有し、

- 10 平均結晶粒径が200nm以下である粒子の集合からなることを特徴とする 永久磁石粉末。
 - 22. 前記粒子はThMn₁₂型結晶構造を有する相を主相とすることを特徴とする請求項21に記載の永久磁石粉末。

15

5

- 23. 前記粒子は実質的に $ThMn_{12}$ 型結晶構造を有する相の単相組織からなることを特徴とする請求項21に記載の永久磁石粉末。
- 24. Rの70モル%以上をNdが占めることを特徴とする請求項21に記載 20 の永久磁石粉末。
 - 25. 一般式R($Fe_{100-y-w}Co_wTi_y$) $_xSi_z$ (一般式中、Rは希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である)であるとともにRの50モル%以上がNd)からなり、
- 25 前記一般式のモル比が、 $x=10\sim12.8$ 、 $y=(8.3-1.7\times z)\sim12.3$ 、 $z=0.1\sim2.3$ 、 $w=0\sim30$ であるとともに、(Fe+Co+Ti+Si)/R>12を満足する組成を有し、急冷凝固処理が施された粉末を作製し、

前記粉末を、不活性雰囲気中にて650~850℃の温度範囲で0.5~1 20hr保持する熱処理を施し、

前記熱処理が施された前記粉末に対して窒化処理又は炭化処理を施すことを 特徴とする永久磁石粉末の製造方法。

5

- 26. 前記急冷凝固処理が施された前記粉末は、その組織がアモルファス相、アモルファス相と結晶相の混相又は結晶相のいずれかであることを特徴とする請求項25に記載の永久磁石粉末の製造方法。
- 10 27. 前記急冷凝固処理が単ロール法によるものであり、用いられるロールの 周速が $10\sim100\,\mathrm{m/s}$ であることを特徴とする請求項25に記載の永久磁 石粉末の製造方法。
- 28. 前記熱処理は、アモルファス相を結晶化するか、又は結晶相を構成する 15 結晶粒子の粒径を調整することを特徴とする請求項25に記載の永久磁石粉末 の製造方法。
 - 29. 永久磁石粉末と、

前記永久磁石粉末を結合させる樹脂相と、を備えるボンド磁石であって、

20 前記永久磁石粉末を構成する結晶質の硬質磁性粒子は、一般式R($Fe_{100-y-w}Co_wTi_y$) $_xSi_zA_v$ (一般式中、Rは希土類元素から選択される少なくとも1種の元素(但し希土類元素はYを含む概念である)であるとともにRのの50モル%以上がNd、AdN及び/YはC)からなり、

前記一般式のモル比が、x=10~12.8、y=(8.3-1.7×z)~25 12.3、z=0.1~2.3、v=0.1~3、w=0~30であるとともに、(Fe+Co+Ti+Si)/R>12の組成を満足することを特徴とするボンド磁石。

30. 前記硬質磁性粒子は、平均結晶粒径が200nm以下であることを特徴とする請求項29に記載のボンド磁石。

WO 2004/068513 PCT/JP2004/000750

2/31

	1	_	_							
SN SN SN SN SN SN SN SN SN SN SN SN SN S	=	Fe+Ti	. <u></u>	z	රි	σs	¥	Fe+Ti+Si	Fe+Ti+Si Tiの下限値	
	3	×	(z)	3	(€	[emu/g]	[k0e]	(x+x)	8.3-1.7z	相構成
	8.3	11.9	0.2	1.6	0	143.8	51.5	12.1	8.0	
2	8.2	11.9	0.5	1.5	0	143.5	52.1	12.4	7.5	
က	8.2	12.1	1.0	1.5	0	140.8	55.4	13.1	9.9	単相(1-12相のみ)
4	8.2	12.0	1.5	1.3	0	138.2	58.2	13.5	5.8	
. 2	8.1	11.9	2.0	1.4	0	136.8	59.8	13.9	4.9	
9	8.3	12.1	0	1.4	0	141.8	28.9	12.1	8.3	1-12相と、2-17相と の-Fe
7	8.3	12.1	2.5	1.4	0	129.5	35.7	14.6	4.1	1-12相と、 α-Fe
8	8.2	9.8	2.5	1.5	0	115.2	29.8	12.3	4.1	単相(1-12相のみ)
							A			- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

部2回

第3図

6/31

di	_	,	,	,	,	,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(<i>七</i> 0日	で (をの配	10分)	間のみ)	間のみ) (チの間	間のみ) 間のみ)	間のみ) 国のみ) α-Fe	間のみ) 間のみ) ロの子) 日のみ)
1 # 4	価値					**************************************	単相(1-12相のみ)	単相(1-12本	単相(1-12本	単相(1–12本	単相(1-124	単相(1-12本	単相(1-12相のみ)	単相(1-124単相(1-124	単相(1-12相のみ) 単相(1-12相のみ) 単相(1-12相と、α-Fe 単相(1-12相のみ)
Fe+Ti+Si Tiの下限値	8.3-1.7z		9.9	9.9	9.9	6.6	6.6 6.6 5.1	6.6 6.6 6.7 5.1	6.6 6.6 6.6 7.1 5.1 4.9	6.6 6.6 6.6 6.6 7.1 7.1 4.9	6.6 6.6 6.6 6.4 6.4 6.4	6.6 6.6 6.4 6.4 6.6 6.6	6.6 6.6 6.6 6.6 6.6 6.6	6.6 6.6 6.6 6.6 6.6 6.6	6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6
Fe+Ti+Si	(x+z)		12.2	12.2	13.2	13.2	13.2 13.5 12.1 12.1 12.4	13.2 13.5 12.1 12.4 12.8	13.2 13.2 13.5 12.1 12.4 12.8	13.2 13.5 12.1 12.4 12.8 14.2	13.2 13.2 13.5 12.4 12.8 14.2 14.5	13.2 13.2 13.5 12.4 12.8 14.2 14.5 10.6	12.2 13.2 13.5 12.4 12.8 14.2 10.6 11.0	13.2 13.5 13.5 12.1 12.4 12.8 14.5 10.6 11.0	13.2 13.5 13.5 12.4 12.8 14.2 14.5 10.6 11.0 11.5
НА	[k0e]		54.6	54.6 55.1	54.6 55.1 54.9	54.6 55.1 54.9 57.4	54.6 55.1 54.9 57.4 59.0	54.6 55.1 57.4 59.0 58.6	54.6 55.1 57.4 59.0 58.6 58.9	54.6 55.1 54.9 57.4 59.0 58.6 58.9	54.6 55.1 57.4 59.0 58.6 58.9 58.9 30.2	54.6 55.1 57.4 59.0 58.6 58.9 58.9 30.2 32.0	54.6 55.1 57.4 59.0 58.6 58.9 58.9 30.2 33.9	54.6 55.1 54.9 57.4 59.0 58.6 58.9 58.9 30.2 32.0 33.9 46.2	54.6 55.1 54.9 57.4 59.0 58.6 58.9 58.9 30.2 32.0 33.9 46.2 49.5
σs	[emu/g]	0007	130.0	130.0	130.0 142.7 145.2	130.0 142.7 145.2 121.6	130.0 142.7 145.2 121.6	130.0 142.7 145.2 121.6 124.8	130.0 142.7 145.2 121.6 124.8 127.4 135.9	130.0 142.7 145.2 121.6 124.8 127.4 135.9	130.0 142.7 145.2 121.6 127.4 135.9 138.2	130.0 142.7 145.2 121.6 127.4 135.9 138.2 116.8	130.0 142.7 145.2 121.6 127.4 135.9 138.2 116.8 119.2	130.0 142.7 145.2 121.6 127.4 135.9 138.2 116.8 119.2 145.9	130.0 142.7 145.2 121.6 127.4 135.9 138.2 116.8 119.2 119.2 145.9
රි	(w)	0)	0	00	000	0000	00000	00000	000000	000000	0000000	00000000	000000000	0000000000
z	(>)	1.6		1.5	1.5	1.5	1.5 1.5 1.5 1.5	r:	7 1 1 1 1 1 1 2 2 3 4 5 6 6 7 8 9 9 1 1 1 2 2 4 4 4 5 6 6 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 2 2 2 <t< td=""><td>7 1 1 2 1 2 2 2 3 4 4 5 4 5 6 7 8 9 1 1 1 1 2 2 3 4 4 5 6 6 7 8 8 9 9 1 1 1 1 1 2 2 3 4 4 5 6 6 7 8 8 9 9 1 1 1 1 2 2 2 2 3 4 4 5 6 6 7 <t< td=""><td>7 1</td></t<><td>7 1 1 1 1 1 1 2 1 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 6 7 8 9 1 1 1 1 1 1 2 2 3 4 4 4 5 6 6 7 8 8 9 1 1 1 1 2 2 2 2 3 4 4 4 5 6 6 <t< td=""><td>7 1 1 1 1 1 1 2 2 2 3 4 4 5 4 4 5 4 5 6 7 8 9 1 1 1 1 2 2 2 3 4 4 5 6 6 6 7 8 9 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 4 4 5 6 6 7 8 8 8 9 1 1 <t< td=""><td>7 1</td></t<><td>1 1</td></td></t<></td></td></t<>	7 1 1 2 1 2 2 2 3 4 4 5 4 5 6 7 8 9 1 1 1 1 2 2 3 4 4 5 6 6 7 8 8 9 9 1 1 1 1 1 2 2 3 4 4 5 6 6 7 8 8 9 9 1 1 1 1 2 2 2 2 3 4 4 5 6 6 7 <t< td=""><td>7 1</td></t<> <td>7 1 1 1 1 1 1 2 1 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 6 7 8 9 1 1 1 1 1 1 2 2 3 4 4 4 5 6 6 7 8 8 9 1 1 1 1 2 2 2 2 3 4 4 4 5 6 6 <t< td=""><td>7 1 1 1 1 1 1 2 2 2 3 4 4 5 4 4 5 4 5 6 7 8 9 1 1 1 1 2 2 2 3 4 4 5 6 6 6 7 8 9 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 4 4 5 6 6 7 8 8 8 9 1 1 <t< td=""><td>7 1</td></t<><td>1 1</td></td></t<></td>	7 1	7 1 1 1 1 1 1 2 1 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 6 7 8 9 1 1 1 1 1 1 2 2 3 4 4 4 5 6 6 7 8 8 9 1 1 1 1 2 2 2 2 3 4 4 4 5 6 6 <t< td=""><td>7 1 1 1 1 1 1 2 2 2 3 4 4 5 4 4 5 4 5 6 7 8 9 1 1 1 1 2 2 2 3 4 4 5 6 6 6 7 8 9 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 4 4 5 6 6 7 8 8 8 9 1 1 <t< td=""><td>7 1</td></t<><td>1 1</td></td></t<>	7 1 1 1 1 1 1 2 2 2 3 4 4 5 4 4 5 4 5 6 7 8 9 1 1 1 1 2 2 2 3 4 4 5 6 6 6 7 8 9 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 4 4 5 6 6 7 8 8 8 9 1 1 <t< td=""><td>7 1</td></t<> <td>1 1</td>	7 1	1 1
S	(z)	1.0	1.0		0.1	1.0			- 2 2	- 0 0 0	- 2 2 2 -	- 2 2 2	- 2 2 2	- 2 2 2	- 2 2 2 2
Fe+Ti	×	11.2	12.2	19.5	2	10.1	10.1	10.5	10.1 10.9 12.2	10.1 10.5 10.9 12.2 12.5	10.1 10.5 10.9 12.2 12.5 9.5	10.1 10.5 10.9 12.2 12.5 9.5 10.0	10.1 10.5 12.2 12.5 9.5 10.0	10.1 10.5 12.2 12.2 12.5 9.5 10.0 10.5	10.1 10.5 12.2 12.2 12.5 9.5 10.0 10.5 12.7 9.5
F	(>)	8.0	8.3	8.3		8.2	8.2	8. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	8.2 1.8 8.1 8.0 8.0	8.1 8.1 8.0 8.2 8.2 8.2	8.3 8.2 8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 7 1 8 8 8 8 1 1 8 8 1 1 1 8 8 1 1 1 1
CN TA TA TA TA TA TA TA TA TA TA TA TA TA	BANTIO.	6	9	=		12	13	13	13 15 15	13 14 15 16	12 13 15 16 17	12 13 15 16 17 18	12 13 15 16 17 19	12 13 15 16 17 19 20	12 13 14 15 16 17 17 19 20

年6回

7/31

第7図

8/31

第8図

9/31

	L									
N STATE	Ë	Fe+Ti	ા	Z	ဝိ	σs	H	Fe+Ti+Si	Tiの下限値	4-47-47
BAPTINO.	(<u>y</u>	(x)	(z)	(^)	(w)	[emn/g]	[kOe]	(x+z)	8.3-1.7z	伯荷风
23	9.9	12.1	1.0	1.3	0	145.0	57.1	13.1	9.9	
24	7.5	12.1	1.0	1.5	0	143.8	27.0	13.1	9.9	
25	10.0	11.9	1.0	1.5	0	135.1	50.3	12.9	9.9	
26	5.8	12.2	1.5	1.4	0	146.2	62.0	13.7	5.8	
27	6.7	12.0	1.5	1.4	0	143.0	61.8	13.5	5.8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
28	7.5	11.9	1.5	1.5	0	141.2	60.4	13.4	5.8	年4(1-1240)み)
29	4.9	11.9	2.0	1.4	0	142.5	63.8	13.9	4.9	
30	5.8	12.1	2.0	1.4	0	142.0	63.0	14.1	4.9	
31	6.7	12.0	2.0	1.5	0	141.9	62.8	14.0	4.9	
32	7.5	11.9	2.0	1.5	0	139.5	61.1	13.9	4.9	
33	5.0	12.0	1.0	1.5	0	138.2	29.0	13.0	9.9	1-12相と、2-17相と、α-Fe
34	5.8	12.1	1.0	1.5	0	139.7	41.6	13.1	9.9	1-12相と、α-Fe
35	12.5	12.2	1.0	1.4	0	118.0	44.1	13.2	9.9	単相(1-12相のみ)
36	4.2	12.0	1.5	1.5	0	128.5	29.5	13.5	5.8	1-12相と、2-17相と、α-Fe
37	5.0	12.2	1.5	1.5	0	135.0	45.3	13.7	5.8	1-12相と、α-Fe
38	3.3	12.1	2.0	1.5	0	135.8	52.8	14.1	4.9	1-12相と、α-Fe

第9図

第10図

(a)

第11図

(a)

(b)

12/31

第12図

第13図

				1	3/	/31	<u> </u>
## ## ## ## ## ## ## ## ## ## ## ## ##	相構成			年年(1-12年のみ)		単相(1-12相のみ)	1-12相子 G-Fe
Fe+Ti+Si Tiの下限値	8.3-1.7z	6.4	6.4	9.9	9.9	9.9	9.9
Fe+Ti+Si	(z+x)	13.3	13.1	12.9	12.9	13.2	13.0
HA	[k0e]	35.2	45.9	56.8	55.1	17.1	32.4
σs	[emu/g]	125.2	134.2	139.8	137.2	116.4	128.4
ဝိ	(w)	0	0	0	0	0	0
Z	3	0.4	1.0	1.9	2.5	0.0	3.5
S	(z)	1.1	1.1	1.0	1.0	1.0	1.0
Fe+Ti	(x)	12.2	12.0	11.9	11.9	12.2	12.0
Ti	(y)	8.3	8.2	8.2	8.1	8.2	8.3
(N) (A)	व्यक्तावा.	39	40	41	42	43	44

14/31

第14図

(a)

15/31

単相(1-12相のみ) 相構成 Tiの下限値 8.3-1.7z 7.9 7.9 7.9 9.9 9.9 Fe+Co+Ti+Si 13.0 (x+z) 12.4 12.3 12.3 13.0 13.0 [k0e] 58.6 56.3 54.5 57.2 59.6 54.1 [emn/g] 161.5 159.3 148.3 155.2 149.3 152.7 18.2 18.2 27.3 9.1 ပိ 3 9.1 1.5 3 Z 0.25 0. 0. (2) $\bar{\mathbf{w}}$ 12.0 Fe+Ti 12.0 12.0 12.0 12.0 8.2 8.2 8.1 <u>∞</u> 8.1 3 就 對 於 No. 46 48 47 49 50

第15図

16/31

· ·	μ	Fe+Ti	Si	0	රි	σs	ΗA	Fe+Co+Ti+Si Tiの下限値	Tiの下限値	47 47
BEATING.	Ś	(X)	(z)	(v)	(w)	[emu/g]	[kOe]	(x+z)	8.3-1.7z	伯 楠成
51	8.2	12.1	0.25	1.5	0	140.2	43.5	12.4	7.9	
52	8.3	12.2	1.0	1.5	0	138.5	44.8	13.2	9.9	
53	8.3	12.0	2.0	1.5	0	132.6	38.5	14.0	4.9	
54	8.2	12.2	0.25	1.5	19.2	152.3	47.5	12.5	7.9	
55	8.2	12.0	0.25	2.0	0	138.6	41.3	12.3	7.9	単相(1-12相のみ)
56	8.3	12.1	1.0	2.0	0	135.2	42.9	13.1	6.6	
57	8.2	12.1	2.0	2.0	0	129.5	37.1	14.1	4.9	
58	8.3	12.0	0.25	2.0	18.3	ĺ	45.5	12.3	7.9	
59	8.2	12.2	1.0	0	0	116.4	17.1	13.2	6.6	

第16図

17/31

		T								_
	相構成					単相(1-12相のみ)				1-12相と、0-Fe相
Fe+Co+Ti+Si	(z+x)	13.0	13.1	12.9	13.1	13.1	12.8	12.9	12.9	12.9
HAH	[koe]	56.2	55.8	55.0	55.1	55.1	55.4	53.9	53.2	52.9
σs	[emu/g]	139.4	142.2	144.6	145.6	144.5	143.9	142.5	141.0	1391
ပိ	(<u>M</u>)	0	0	0	0	0	0	0	0	0
z	3	2.3	1.7	1.8	1.6	1.6	1.7	1.6	1.7	2.2
Š	(Z)	1.0	1.0	6.0	6.0	1.0	1.0	6.0	1.0	1.0
Fe+Co+Ti	×	12.0	12.1	12.0	12.2	12.1	11.8	12.0	11.9	11.9
F	3	8.3	8.2	8.2	8.2	8.2	8.2	8.3	8.2	8.2
Zr	(n)	0.00	0.02	0.04	0.05	90.0	90.0	0.10	0.15	0.20
TANNO	BAATINO.	09	61	62	63	64	65	99	67	89

第17図

20/31

4 # 4	伯衛及	1-12相と、2-17相と、α-Fe相			単何(1-12相のみ)		1-12相と、α-Fe相
Şi		-		<u> </u>	<u>₩</u> 		-
Fe+Co+Ti+Si	(Z+X)	12.1	12.1	12.4	13.5	13.9	14.6
¥	1 1	28.9	51.5	52.1	58.2	59.8	35.7
σs		142.1	148.8	148.5	143.2	141.8	134.7
ပိ	(w)	0	0	0	0	0	0
Z	(^)	1.4	1.6	1.5	1.3	1.4	1.4
Si	(z)	0.0	0.2	0.5	1.5	2.0	2.5
Fe+Co+Ti	(X)	12.1	11.9	11.9	12.0	11.9	12.1
Ш	3	8.3	8.3	8.2	8.2	8.1	8.3
Zr	(E)	0.05	0.05	0.05	0.05	0.05	0.05
計 MNO	BATTING.	69	70	71	72	73	74

第20図

21/31

BNB BNB	dN相 目のみ)	dN相 目のみ) r-Fe相	dN相 Bのみ) Y-Fe相 dN相	dN相 Bのみ) r-Fe相 dN相 Bのみ)	dN相 Bのみ) r-Fe相 dN相 Bのみ)	dN相 Bのみ) r-Fe相 dN相 Bのみ) r-Fe相	dN相 Bのみ) r-Fe相 dN相 Bのみ) r-Fe相	dN相 Bのみ) dN相 Bのみ) r-Fe相	dN相 目のみ) dN相 目のみ) (-Fe相	dN相 19のみ) u-Fe相 dN相 10のみ) 1-Fe相
1-12相上, NdN	1-12相と、NdN相 単相(1-12相のみ)	1-12相と、NdN相 単相(1-12相のみ) 1-12相と、α-Fe相	1-12相と、NdN相 単相(1-12相のみ 1-12相と、α-Fe ² 1-12相と、NdN相	1-12相と、NdN相 単相(1-12相のみ) 1-12相と、α-Fe相 1-12相と、NdN相 単相(1-12相のみ)	1-12相と、NdN相 単相(1-12相のみ) 1-12相と、α-Fe相 1-12相と、NdN相 単相(1-12相のみ) 1-12相と、α-Fe相	1-12相と、NdN 単相(1-12相の 1-12相と、α- 1-12相と、NdN 単相(1-12相の 1-12相と、α-	1-12相と、NdN 単相(1-12相の 1-12相と、NdN 単相(1-12相の 1-12相と、のdの 1-12相と、のdの 1-12相と、のdの	1-12相と、NdN相 単相(1-12相のみ) 1-12相と、α-Fe相 1-12相と、NdN相 単相(1-12相のみ) 1-12相と、α-Fe相 単相(1-12相のみ)	1-12相と、NdN 単相(1-12相の 1-12相と、α- 1-12相と、NdN 単相(1-12相の 1-12相と、α- 単相(1-12相の	1-12相と、NdN相 単相(1-12相のみ) 1-12相と、α-Fe相 1-12相と、NdN相 単相(1-12相のみ) 1-12相と、α-Fe相 単相(1-12相のみ)
12.0	12.0	12.0	12.0 13.0 12.1	12.0 12.4 13.0 13.2	12.0 12.4 13.0 13.2 13.5	12.0 12.4 13.0 12.1 13.2 13.5	12.0 12.4 13.0 12.1 13.2 13.5 11.0	12.0 12.4 13.0 12.1 13.2 13.5 11.0 11.0	12.0 12.4 13.0 13.2 13.5 11.0 11.0	12.0 12.4 13.0 13.2 13.5 11.0 11.0 11.0
49.5	49.5	49.5 52.1 51.8	49.5 52.1 51.8 54.6	49.5 52.1 51.8 54.6 55.1	49.5 52.1 51.8 54.6 55.1 54.9	49.5 52.1 51.8 54.6 55.1 54.9	49.5 52.1 51.8 54.6 55.1 54.9 35.1	49.5 52.1 51.8 54.6 55.1 54.9 37.5 37.5	49.5 52.1 51.8 54.6 55.1 55.1 37.5 37.5 39.7	49.5 52.1 51.8 54.6 55.1 55.1 37.5 37.5 39.7 35.8
144.9	144.9	144.9 148.5 151.4	144.9 148.5 151.4 140.2	144.9 148.5 151.4 140.2 147.7	144.9 148.5 151.4 140.2 147.7	144.9 148.5 151.4 140.2 147.7 150.8	144.9 148.5 151.4 140.2 150.8 135.2	144.9 148.5 151.4 140.2 147.7 150.8 135.2 140.2	144.9 148.5 151.4 140.2 150.8 135.2 140.2 132.5	144.9 148.5 151.4 140.2 150.8 135.2 140.2 128.7 132.5 148.5
0	0	0 0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
<u>~</u>	1.8	1.8	1.5	1.8 1.6 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	8. 1. 6. 1. 7. 7. 7.	1.8 1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.5	1.8 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.6	1.8 1.6 1.6 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	1.8 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	1.8 1.6 1.6 1.7 1.5 1.7 1.7 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
0.5	0.5	0.5	0.5 0.5 0.5 1.0	0.5 0.5 0.5 1.0	0.5 0.5 0.5 1.0 1.0 1.0	0.5 0.5 1.0 1.0 1.0 0.5	0.5 0.5 1.0 1.0 1.0 0.5 0.5	0.5 0.5 1.0 1.0 1.0 0.5 0.5	0.5 0.5 1.0 1.0 1.0 0.5 0.5 0.5 1.0 1.0	0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.5 0.5 1.0 1.0
11.5	11.5	11.9	11.5	11.5 11.9 12.5 12.2	11.5 11.9 11.1 12.2 12.2	11.5 11.9 12.5 12.2 12.5 10.5	11.5 11.9 12.5 12.2 12.5 10.5	11.5 11.9 12.5 12.2 12.5 10.5 10.0	11.5 11.9 12.5 12.5 10.5 10.0	11.5 11.9 12.5 12.2 12.5 10.0 10.0 10.0 13.0
8.2	8.2	8.3 8.2	8.2 8.3 8.0	8.3 8.3 8.0 8.3 8.3 8.3	8.3 8.0 8.3 8.3 8.3 8.3 8.3	8.2 8.3 8.0 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3
	0.05	0.05	0.05	0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05
	9/	77	77	77 77 78 79	76 77 78 79 80	76 77 78 79 80 81	76 77 78 79 80 81 82	76 77 78 79 80 81 82 83	76 77 78 79 80 81 82 83 84	76 77 78 79 80 81 82 83 84 85

第21図

22/31

		単相(1-12相のみ)	単相(1-12相のみ)	単相(1-12相のみ)	単相(1-12相のみ) 1-12相と、α-Fe相	単相(1-12相のみ) 1-12相と、α-Fe相 単相(1-12相のみ)	単相(1-12相のみ) 1-12相と、α-Fe相 単相(1-12相のみ)	単相(1-12相のみ) 1-12相と、α-Fe相 単相(1-12相のみ) 1-12相と、α-Fe相	単相(1-12相のみ) 1-12相と、α-Fe相 単相(1-12相のみ) 1-12相と、α-Fe相	単相(1-12相のみ) 1-12相と、α-Fe相 単相(1-12相のみ) 1-12相と、α-Fe相 単相(1-12相のみ)	単相(1-12相のみ) 単相(1-12相のみ) 1-12相と、α-Fe相 1-12相と、α-Fe相 単相(1-12相のみ)
	13.1	13.1	13.1	13.1 12.9 13.2	13.1 12.9 13.2 13.7	13.1 12.9 13.2 13.7 13.5	13.1 12.9 13.2 13.7 13.5 13.5	13.1 12.9 13.2 13.2 13.5 13.4 13.4	13.1 12.9 13.2 13.7 13.4 13.5 13.5 13.9	13.1 12.9 13.2 13.5 13.5 13.9 13.9 14.1	13.1 12.9 13.2 13.5 13.4 13.5 13.9 14.0
	57.1	57.1 57.0 50.3	57.1 57.0 50.3 44.1	57.1 57.0 50.3 44.1 62.0	57.1 57.0 50.3 44.1 62.0	57.1 57.0 50.3 44.1 62.0 61.8	57.1 57.0 50.3 44.1 62.0 61.8 60.4	57.1 57.0 50.3 44.1 62.0 61.8 60.4 60.4	57.1 50.3 50.3 44.1 62.0 61.8 60.4 60.4 63.8	57.1 57.0 50.3 44.1 62.0 61.8 60.4 63.8 63.8	57.1 57.0 50.3 44.1 62.0 61.8 60.4 60.4 63.8 63.8 63.8
_	150.5	150.5	150.5 149.1 140.2 123.1	150.5 149.1 140.2 123.1 152.4	150.5 149.1 140.2 123.1 152.4 147.6	150.5 149.1 140.2 123.1 152.4 147.6	150.5 149.1 140.2 123.1 152.4 147.6 146.0	150.5 149.1 140.2 123.1 152.4 147.6 146.0 129.2	150.5 149.1 140.2 123.1 152.4 147.6 146.0 129.2 147.5	150.5 149.1 140.2 123.1 152.4 147.6 146.0 129.2 147.5 147.0	150.5 149.1 140.2 123.1 152.4 147.6 146.0 129.2 147.5 147.0
	0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
	1.3	<u>1.</u> 1. 1. 1.	1.5 1.5 1.4 1.5	E.1 1.5 1.4 1.1 1.4 1.1 1.4 1.1 1.1 1.1 1.1 1.1	E.1 1.5 1.5 4.1 4.1 4.1 4.1	1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.3 2.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 5.1 5.1 5.1 6.1 7.1 8.1 8.1 9.1 9.1 1.3 1.3 1.3 1.3 1.3 1.4 1.5 1.5 1.6 1.7 1.8 </td <td>1.3 1.4 1.7 1.7 1.8 1.9 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.8 1.1 1.2 1.3 1.4 1.7 1.7 1.8 1.8 1.1 1.2 1.3 1.4 1.7 1.7 <!--</td--><td>1.3 1.4 1.4 1.5 1.5 1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</td><td>1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</td><td>1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</td></td>	1.3 1.4 1.7 1.7 1.8 1.9 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.8 1.1 1.2 1.3 1.4 1.7 1.7 1.8 1.8 1.1 1.2 1.3 1.4 1.7 1.7 </td <td>1.3 1.4 1.4 1.5 1.5 1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</td> <td>1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</td> <td>1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</td>	1.3 1.4 1.4 1.5 1.5 1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
-	0.1	0.1 0.1	0.1 0.1	1.5	1.5	1.5 1.5 2.1 2.1 2.1 2.1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
12.1	12.1	12.1	12.1 11.9 12.2	12.1 11.9 12.2 12.2	12.1 11.9 12.2 12.2 12.0	12.1 11.9 12.2 12.2 12.0	12.1 12.2 12.2 12.0 11.9	12.1 11.9 12.2 12.2 12.0 11.9	12.1 11.9 12.2 12.2 12.0 11.9 11.9	12.1 11.9 12.2 12.0 11.9 12.0 12.0	12.1 11.9 12.2 12.0 12.0 12.0 12.0 12.0 11.9
9.9	7.5			╼╂┈┼┈┼┈┤	╼╂┈┼┈┼┈┼	╼┼┈┼┈┼┈┼	╼╁┈╁┈╁┈╁	╼╁╼╁╼╁╼╁			
0.05	0.05	0.05	0.05	0.05 0.05 0.05	0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05	
/8	88	88	88	88 89 89	88 89 90 91	88 89 90 92 93	88 89 90 92 93 94	88 89 90 92 93 94	88 89 90 92 93 95 96	88 89 90 91 94 95 96 97	88 89 90 94 95 96 97 98

第22図

図

က

 \sim

貀

23/31

1-12相と、NdN相と、α-Fe相 相構成 Fe+Co+Ti+Si (x+z) 13.2 13.3 12.9 13.1 12.9 13.0 [k0e] ¥ 35.2 45.9 56.8 17.1 55.1 [emu/g] σs 130.2 141.7 144.2 142.8 134.2 116.1 33 0 0 0 0 0 0 **Z**|3 0.0 0.4 0: 3.5 0. N N Ξ 0: 0.1 0. : Fe+Co+Ti 12.2 12.2 12.0 3 12.0 岸 3 8.2 8.3 8.3 8.2 8.1 0.05 0.05 0.05 0.05 0.05 0.05 E 4 實 對 對 於 別 。 100 101 102 103 104 105

第24図

Γ							
	相構成				単相(1-12相のみ)		
TATO TO	(c+v)	12.4	12.3	12.3	13.0	13.0	13.0
 	[kOa]	54.1	56.3	54.5	57.2	59.6	58.6
٦٥	[emu/g]	160.5	166.2	164.5	153.4	157.4	154.9
ç	3	9.1	18.2	27.3	9.1	18.2	27.3
Z	3	1.6	1.5	1.7	75.	1.6	1.5
S	(Z)	0.25	0.25	0.25	1.0	1.0	1.0
Fe+Co+Ti	3	12.1	12.0	12.0	12.0	12.0	12.0
ï	(5)	8.2	8.1	8.1	8.2	8.1	8.1
Zr	(T)	0.05	0.05	0.05	0.05	0.05	0.05
N H FB	BANTINO.	106	107	108	109	110	111

こ 図

第2

24/31

e bildini.	Zr	Ц	Fe+Co+Ti	Si	ပ	ပိ	σs	HA	Fe+Co+Ti+Si	4 株 中
प्रमुख.	(n)	(>)	(X)	(z)	(>)	(w)	[emn/g]	[k0e]	(x+z)	伯伸及
112	0.05	8.2	12.1	0.25	1.5	0	145.2	43.5	12.4	当时(1–19相 0五)
113	0.05	8.3	12.2	1	1.5	0	143.2	44.8	13.2	年作(1-12付5のア)
114	0.05	8.2	12.2	0.25	1.5	19.2	157.0	47.5	12.5	1-12相と、α-Fe相
115	0.05	8.2	12.0	0.25	2.0	0	143.5	41.3	12.3	
116	0.05	8.3	12.1	1	2.0	0	140.1	42.9	13.1	単相(1-12相のみ)
117	0.05	8.3	12.0	0.25	2.0	2.0 18.3	156.0	49.2	12.3	

第26図

1	(10) (1) (1)		単相(1-12相のみ)	
Fe+Co+Ti+Si	(z+x)	12.9	12.9	12.9
HA	[k0e]	53.1	52.0	53.5
σs	[emn/g]	140.5	144.2	141.1
ပိ	(w)	0	0	0
ပ	(v)	1.7	1.7	1.8
Si	(z)	1.0	0.9	1.0
Ti Fe+Co+Ti	(X)	11.9	12.0	11.9
F	(×)	8.2	8.2	8.3
士	(n)	0.02	0.05	0.10 8.3
्। N आ स ड	BLA-FINO.	118	119	120

25/31

3 #7 CT						1	単祖(1-12祖のみ)				<u> </u>		
ှင	(၃)	441	438	433	433	431	467	426	412	442	269	467	380
,	c/a	0.559	0.561	0.562	0.562	0.562	0.561	0.560	0.561	0.552	1	0.556	ļ
H	[k0e]	51.7	52.1	55.1	58.1	59.0	40.7	44.1	49.7	28.1	20.2	27.1	215
σs	[emu/g]	144.1	143.5	138.8	138.0	135.9	129.5	137.0	132.8	138.2	115.3	123.2	1951
z	(^)			<u>.</u>	C			1.0	1.1	1.5	_	1.5	0.7
S	(z)	0.25	0.50	1.00	1.50	2.00	2.50	0.50	1.50	l	1.50	3.00	3 05
Fe+Ti	(x)			7				100	12.0		11.9		12.0
Ι	(y)			0	7.0			0	o. O.		8.2		8
SNS TI		121	122	123	124	125	126	127	128	129	130	131	132

第27図

26/31

27/31

14 Miles	ï	Fe+Ti	Si	Z	Ωs	Н	Fe+Ti+Si	-/-	世里
in.441vo.	(y)	(x)	(z)	(>)	[emn/g]		(x+z)	c/a	伯伸及
133	8.2	10.1	2.0	1.6	2.0 1.6 121.6	57.4	12.1	0.562	
134	8.1	10.5	1.9	1.5	10.5 1.9 1.5 124.8	59.0	12.4	0.562	
135	8.1	10.9	1.9	1.5	10.9 1.9 1.5 127.4	58.6	12.8	0.562	単相(1-12相のみ)
136	8.0	12.2 2.0 1.4	2.0	1.4	135.9	58.9	14.2	0.561	
137	8.2	12.5 2.0 1.5	2.0		138.2	58.4	14.5	0.561	
138	8.3	12.7 2.0 1.6	2.0	1.6	137.8	45.8	14.7	١	1-12相と、α-Fe

第29図

28/31

WO 2004/068513 PCT/JP2004/000750

29/31

第32図

50nm

第33図

50nm

30/31

第34図

	ロール周速	工程	σr	Нсј
<u>_</u>	(m/s)	工性	(emu/g)	(Oe)
		急冷後	26	500
	15	熱処理後	31	620
į į		窒化後	36	2,150
		急冷後	12	120
	25	熱処理後	44	920
本発明		窒化後	86	7,920
ተ ኤማ		急冷後	12	80
	50	熱処理後	45	980
		窒化後	88	8,100
		急冷後	8	80
	75	熱処理後	51	1,010
		窒化後	84	7,860
		鋳込み後	10	120
比較例	鋳込み合金	_		
		窒化後	24	400

31/31

N H	ΙΞ	Fe+Ti	Si	Z	လ	Fe+Ti+Si	Tiの下限値	σr	Hcj
האילים.	3	×	(z)	(^)	(w)	(x+x)	8.3-1.7z	[emu/g]	(Oe)
139	8.3	11.9	0.2	1.6	0	12.1	8.0	6/	2,880
140	. 8	11.9	2.0	1.4	0	13.9	4.9	75	006'L
141	8.0	11.2	1.0	1.6	0	12.2	9.9	72	009'9
142	8.2	10.1	2.0	1.6	0	12.1	4.9	29	7,300
143	8.2	12.5	2.0	1.5	0	14.5	4.9	9/	7,560
144	9.9	12.1	1.0	1.3	0	13.1	9.9	80	7,220
145	6.7	12.0	1.5	1.4	0	13.5	5.8	79	8,470
146	6.7	12.0	2.0	1.5	0	14.0	4.9	78	8,750
147	8.3	12.2	1.1	0.4	0	13.3	6.4	69	2,750
148	8.1	11.9	1.0	2.5	0	12.9	9.9	9/	6,730
149	8.2	12.1	0.3	1.5	0	12.4	7.9	77	4,200
150	8.3	12.0	2.0	1.5	0	14.0	4.9	73	3,300
151	8.2	12.2	0.3	1.5	19.2	12.5	7.9	84	5,000
152	8.3	12.0	0.3	2.0	18.3	12.3	7.9	83	4,590
153	8.3	12.1	0	1.4	0	12.1	8.3	32	009
154	8.3	12.1	2.5	1.4	0	14.6	4.1	29	800

第35図

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/000750

A CLASSIEIC	ATION OF SUBJECT MATTER	FC1/UP	2004/000750
Int.C1	H01F1/04, 1/08, 41/02, C22C	38/00, B22F1/00, C21D6/0	0
	ernational Patent Classification (IPC) or to both natio	onal classification and IPC	
B. FIELDS SEA			
Int.Cl7	entation searched (classification system followed by H01F1/04, 1/08, 41/02, C22C	classification symbols) 38/00, B22F1/00, C21D6/0	0
Kokai Ji	tsuyo Shinan Koho 1971—2004 c	Toroku Jitsuyo Shinan Koho Jitsuyo Shinan Toroku Koho	1994-2004 1996-2004
	ase consulted during the international search (name o	f data base and, where practicable, search te	erms used)
	TS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a		Relevant to claim No.
Ť	JP 5-22613 A (Toshiba Corp. 03 September, 1993 (03.09.93 Full text; Figs. 1 to 6 & EP 0506412 A & US), 3), 5 5480495 A	1-30
Y	JP 6-283316 A (Hitachi Meta: 07 October, 1994 (07.10.94), Full text; Fig. 1 (Family: none)	ls, Ltd.),	1-30
Y	JP 7-74011 A (Sumitomo Speci 17 March, 1995 (17.03.95), Par. Nos. [0016] to [0018], (Family: none)		21-24,30
× Further docu	uments are listed in the continuation of Box C.		
		See patent family annex.	
"A" document defi to be of particu "E" earlier applicat filing date	tion or patent but published on or after the international	"T" later document published after the inter date and not in conflict with the applica the principle or theory underlying the in "X" document of particular relevance; the cl considered novel or cannot be consid	tion but cited to understand vention
cited to estable special reason ("O" document refer	rring to an oral disclosure, use, exhibition or other means	"Y" document of particular relevance; the cliconsidered to involve an inventive s combined with one or more other such d being obvious to a person skilled in the adocument member of the same patent fa	tep when the document is locuments, such combination art
29 March	completion of the international search 1, 2004 (29.03.04)	Date of mailing of the international search 13 April, 2004 (13.	h report 04.04)
Japanese	address of the ISA/ Patent Office	Authorized officer	
Facsimile No. orm PCT/ISA/210 ((second sheet) (January 2004)	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/000750

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Doloment to all 1
Y		Relevant to claim N
1	JP 2000-114017 A (Toshiba Corp.), 21 April, 2000 (21.04.00), Par. Nos. [0033] (Family: none)	27
Y	JP 1-175205 A (Shin-Etsu Chemical Co., Ltd.), 11 July, 1989 (11.07.89), Page 3 & EP 0323125 A	

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. Cl' H01F 1/04, 1/08, 41/02, C22C 38/00, B22F 1/00, C21D 6/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁷ H01F 1/04, 1/08, 41/02, C22C 38/00, B22F 1/00, C21D 6/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2004年

日本国登録実用新案公報

1994-2004年

日本国実用新案登録公報

1996-2004年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

		····
C. 関連する	ると認められる文献	
引用文献の カテゴリー*	31 Marth & Task day a Mart 12 Marth	関連する・
カテコリー来	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	JP 5-226123 A (株式会社東芝) 1993.09.03,全文,図1-6図	1-30
•	& EP 0506412 A & US 5480495 A	
Y	JP 6-283316 A (日立金属株式会社) 1994.10.07,全文,図1 (ファミリーなし)	1-30
	·	

|X|| C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- (A) 特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」 優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 29.03.2004

国際調査報告の発送日

13. 4. 2004

国際調金機関の名称及びあて先

海本語特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 山田 正文 5R 3142

電話番号 03-3581-1101 内線 3565

		7 31 200 47 000 7 30
C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の	関連する の表示 請求の範囲の番号
Y	JP 7-74011 A (住友特殊金属株式会社) 1995.03.17 段落【0016】-【0018】,【0027】 (ファミリーなし)	21-24, 30
Y	JP 2000-114017 A (株式会社東芝) 2000.04.21,段落【0033】 (ファミリーなし	2 7
Y	JP 1-175205 A (信越化学工業株式会社) 1989.07.11,第3頁 & EP 0323125 A	2 7