

Class XII – Mathematics (Relation and Function)

- 1. Show that the relation R in the set R of real numbers, defined as $R = \{(a, b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive.
- 2. Let $f(x) = \sqrt{1-x}$ and $g(x) = \log x$, describe the function fog. Also give their domains.
- 3. Let f be the greatest integer function and g be the modulus function. Find the values of the following:

(gof)
$$\left(\frac{5}{3}\right)$$
 – (fog) $\left(\frac{5}{3}\right)$

- 4. If $f(x) = e^x$ and $g(x) = \log x$. Find $f(x) = \log x$. Find $f(x) = \log x$.
- 5. Let f(x) = $\frac{x}{\sqrt{(1+x^2)}}$, then show that (fofof) (x) = $\frac{x}{\sqrt{(1+3x^2)}}$.
- 6. Show that the function f: R \rightarrow R defined by f(x) = $3x^3 + 5$ for all x \in R is a bijective.
- 7. If $f: (1,2,3) \to (a, b, \sqrt{c})$ given by f(1) = a, f(1) = b and f(3) = c. Find the inverse (f^{-1}) of f^{-1} . Show that $(f^{-1})^{-1} = f$.
- 8. If the operation * is defined on the set of all rational number by the rule $a*b = \frac{ab}{3}$ for all a, b ϵ Q. Show that * is association on Q.
- 9. If '*' is defined on the set R of real numbers by $\frac{3ab}{7}$, then determine the identity element in R for the binary operation?
- 10. Show that the relation R in the set A = $\{1, 2, 3, 4, 5\}$ given by R = $\{(a, b) : |a b| \text{ is even}\}$, is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other. But no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$.