

Л

网络层

主要任务是把<mark>分组</mark>从源端传到目的端,为分组交换网上的不同主机提供通信服务。 网络层传输单位是<mark>数据报</mark>。

应用层

表示层

会话层 传输层

数据链路层

物理层

功能一:路由选择与分组转发 最佳路径

功能二: 异构网络互联

功能三: 拥塞控制

若所有结点都来不及接受分组,而要丢弃大量分组的话,网络就处于<mark>拥塞</mark>状态。因此要采取一定措施,

缓解这种拥塞。

WAY1: 开环控制 静

WAY2: 闭环控制 动

王道考研/CSKAOYAN.COM

IP数据报分片例题 需要分片为长 数据部分(3800B) 度不超过1420B 的数据报片。 数据部分(1400B) 育部2(20B)数据部分(1400B) 数据部分(1000B) 总长度 标识 MF DF 片偏移 原始数据报 3820 12345 0 0 0 1420 12345 数据报片1 1 0 0 数据报片2 1420 12345 1 0 175 1020 12345 0 0 350 数据报片3 王道考研/CSKAOYAN.COM

分类的IP地址 于网的划分 构成超网(无分类编址方法)

特殊IP地址					
NetID 网络号	HostID主机 号	作为IP分组 源地址	作为IP分组目 的地址	用途	
全0	全0	可以	不可以	本网范围内表示主机,路由表中用于表示默认路由 (表示整个Internet网络)	
全0	特定值	可以	不可以	表示本网内某个特定主机	
全1	全1	不可以	可以	本网广播地址 (路由器不转发)	
特定值	全0	不可以	不可以	网络地址,表示一个网络	
特定值	全1	不可以	可以	直接广播地址,对特定网络上的所有主机进行广播	
127	任何数 (非全 0/1)	可以	可以	用于本地软件环回测试,称为环回地址	
				王道考研/CSKAOYAN.COM	

地址类別 地址范围 网段个数 A类 10.0.0.0~10.255.255.255 1 B类 172.16.0.0~172.31.255.255 16 C类 192.168.0.0~192.168.255.255 256

23

A类(1~126)	0 1 2 3 8 0 1B 网络号	16 主机号	24 32	
B类(128~19	91) 1 0 2B 网络	号	主机号	
C类(192~223) 1 1 1 0 3B		网络号	主机号	
D类(224~2	39) 1 1 1 0	多播地址		
E类(240~25	55) 1 1 1 1 1	保留为今后使用		
网络类别	最大可用网络数	第一个可用的网络号	最后一个可用的网络号	每个网络中的最大主机数
A	2 ⁷ -2	1	126	2 ²⁴ -2
В	2 ¹⁴ -1	128.1	191.255	2 ¹⁶ -2
С	2 ²¹ -1	192.0.1	223.255.255	2 ⁸ -2

子网掩码习题

已知IP地址是141.14.72.24, 子网掩码是255.255.192.0, 求网络地址。 如果子网掩码是255.255.224.0, 求网络地址。

10000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	252
11111110	254
11111111	255

王道考研/CSKAOYAN.COM

33

子网掩码习题

某主机的IP地址为180.80.77.55,子网掩码为255.255.252.0。若该主机向其所在子网发送广播分组,则目的地址可以是(). A. 180.80.76.0 B. 180.80.76.255 C. 180.80.77.255 D. 180.80.79.255

王道考研/CSKAOYAN.COM

构成超网

某路由表中有转发接口相同的4条路由表项,其目的网络地址分别为35.230.32.0/21、35.230.40.0/21、35.230.48.0/21、35.230.56.0/21,将该4条路由聚合后的目的网络地址为

() 。 A. 35.230.0.0/19

B. 35.230.0.0/20

C. 35.230.32.0/19

D. 35.230.32.0/20

35.230.32.0/21

00100000

35.230.40.0/21

0 0 1 0 1 0 0 0

35.230.48.0/21

0 0 1 1 0 0 0 0

35.230.56.0/21

0 0 1 1 1 0 0 0

王道考研/CSKAOYAN.COM

41

最长前缀匹配

使用CIDR时,查找路由表可能得到几个匹配结果(**跟网络掩码按位相与**),应选择具有最长网络前缀的路由。前缀越长,地址块越小,路由越具体。

206.0.68.0/22

计算机系

计算机,学着挺有意 思的,就是头有点冷

目的地址为 206.0.71.130 的数据报

71: 01000111 130: 10000010

物理,很好学的,就是头冷

96.

物理系

王道考研/CSKAOYAN.COM

最长前缀匹配

使用CIDR时,查找路由表可能得到几个匹配结果,应选择具有最长网络前缀的路由。前缀越长,地址块越小,路由越具体。

路由器R0的路由表见下表:若进入路由器R0的分组的目的地址为132.19.237.5,请问该分组应该被转发到哪一个下一跳路由器()。

A. R1 B. R2 C. R3 D. R4

目的网络	下一跳
132.0.0.0/8	R1
132.0.0.0/11	R2
132.19.232.0/22	R3
0.0.0.0/0	R4

王道考研/CSKAOYAN.COM

43

ARP协议 王道考研/CSKAOYAN.COM

ARP协议

由于在实际网络的链路上传送数据帧时,最终必须使用MAC地址。

ARP协议:完成主机或路由器IP地址到MAC地址的映射。解决下一跳走哪的问题

ARP协议使用过程:

检查**ARP高速缓存**,有对应表项则写入MAC帧,没有则用目的MAC地址为FF-FF-FF-FF-FF的帧封装并广播ARP请求分组,同一局域网中所有主机都能收到该请求。目的主机收到请求后就会向源主机单播一个ARP响应分组,源主机收到后将此映射**写入ARP缓存**(10-20min更新一次)。

ARP协议4种典型情况:

- 1.主机A发给本网络上的主机B:用ARP找到主机B的硬件地址;
- 2. 主机A发给另一网络上的主机B: 用ARP找到本网络上一个路由器(网关)的硬件地址;
- 3.路由器发给本网络的主机A:用ARP找到主机A的硬件地址;
- 4.路由器发给另一网络的主机B:用ARP找到本网络上的一个路由器的硬件地址。

ARP协议自动进行

王道考研/CSKAOYAN.COM

47

ARP协议习题

主机发送IP数据报给主机B,经过了5个路由器,请问此过程总共使用了几次ARP协议?

ARP协议解决下一跳走哪的问题

王道考研/CSKAOYAN.COM

ICMP差错报告报文(5种)

- **1.终点不可达**: 当路由器或主机不能交付数据报时就向源点发送终点不可达报文。 无法交付
- **3.时间超过**: 当路由器收到生存时间TTL=0的数据报时,除丢弃该数据报外,还要向源点发送时间超过报文。当 终点在预先规定的时间内不能收到一个数据报的全部数据报片时,就把已收到的数据报片都丢弃,并向源点发 送时间超过报文。 TTL=0
- **5.改变路由(重定向)**: 路由器把改变路由报文发送给主机,让主机知道下次应将数据报发送给另外的路由器(可通过更好的路由)。 值得更好的路由

王道考研/CSKAOYAN.COM

55

不应发送ICMP差错报文的情况

- 1.对ICMP差错报告报文不再发送ICMP差错报告报文。
- 2.对第一个分片的数据报片的所有后续数据报片都不发送ICMP差错报告报文。
- 3.对具有**组播地址**的数据报都不发送ICMP差错报告报文。
- 4.对具有**特殊地址**(如127.0.0.0或0.0.0.0)的数据报不发送ICMP差错报告报文。

王道考研/CSKAOYAN.COM

57

ICMP询问报文

- 2.时间戳请求和回答报文 请某个主机或路由器回答当前的日期和时间。用来进行时钟同步和测量时间。
- 4.路口 和通告报文

王道考研/CSKAOYAN.COM

IPv6和IPv4

- 1.IPv6将地址从32位(4B)扩大到128位(16B),更大的地址空间。
- 2.IPv6将IPv4的校验和字段彻底移除,以减少每跳的处理时间。
- 3.IPv6将IPv4的可选字段移出首部,变成了**扩展首部**,成为灵活的首部格式,路由器通常不对扩展首部进行检查,大大提高了路由器的处理效率。
- 4.IPv6支持<mark>即插即用</mark>(即自动配置),不需要DHCP协议。
- 5.IPv6首部长度必须是8B的整数倍,IPv4首部是4B的整数倍。
- 6.IPv6只能在主机处分片,IPv4可以在路由器和主机处分片。
- 7.ICMPv6: 附加报文类型"分组过大"。
- 8. IPv6支持资源的预分配, 支持实时视像等要求, 保证一定的带宽和时延的应用。
- 9.IPv6取消了协议字段,改成下一个首部字段。
- 10.IPv6取消了总长度字段,改用有效载荷长度字段。
- 11.IPv6取消了服务类型字段。

王道考研/CSKAOYAN.COM

IPv6基本地址类型

单播 一对一通信 可做源地址+目的地址

多播 一对多通信 可做目的地址

任播 一对多中的一个通信 可做目的地址

68

双协议栈

隧道技术

IPv6向IPv4过渡的策略

IPv6与IPv4的不同