Problema E

Triangulo

Arquivo fonte: triangulo.{ c | cpp | java | py }
Autor: Prof. Dr. Alex Marino (Fatec Ourinhos)

Durante uma expedição científica em um exoplaneta recém-cartografado, uma equipe de sondas automatizadas está triangulando posições com base em sinais de rádio. Cada sonda forma triângulos com duas antenas fixas, e os dados recebidos contêm apenas dois lados do triângulo e o ângulo entre eles, medido em graus.

Por conta das severas restrições de processamento da estação remota, os cálculos devem ser feitos com **ponto flutuante de dupla precisão**, e os resultados devem ser reportados com **exatamente quatro casas decimais**.

Sua missão é escrever um programa que, a partir dos dois lados a e b, e do ângulo θ entre eles (em graus), calcule a **área** do triângulo formado. Utilize $\pi \approx 3.14159265358979323846$.

Entrada

A entrada consiste em várias linhas. Cada linha contém três números reais com até duas casas decimais:

- a o comprimento do primeiro lado ($1 \le a \le 10^4$),
- b o comprimento do segundo lado ($1 \le b \le 10^4$),
- θ o ângulo entre os dois lados, em graus reais (0 < θ < 180).

A entrada termina com uma linha contendo 0 0, que **não deve ser processada**.

Saída

Para cada caso de teste, imprima uma linha contendo a área do triângulo correspondente, com **precisão de 4 casas decimais**, utilizando ponto flutuante de dupla precisão.

Exemplo de Entrada 1

Exemplo de Saída 1

3.00 4.00 90.00	6.0000
5.00 7.00 60.00	15.1554
10.00 10.00 30.00	25.0000
0 0 0	