

Incident report analysis

Summary	A multimedia company that provides web design, graphic design, and social					
	media marketing services experienced a Distributed Denial of Service (DDoS)					
	attack that disrupted its internal network for two hours. The attack involved a					
	large flood of ICMP packets that exploited an unconfigured firewall,					
	overwhelming network resources and preventing normal internal traffic from					
	accessing systems. This incident exposed vulnerabilities in the company's					
	network defenses, including inadequate firewall configuration and limited					
	traffic monitoring.					
Identify	The company's internal network was disrupted by a Distributed Denial of					
	Service (DDoS) attack that exploited an unconfigured firewall, allowing a					
	flood of ICMP packets to overwhelm network resources. This caused a					
	two-hour outage where normal traffic could not access critical services. Key					
	security risks include misconfigured firewall settings, lack of traffic filtering					
	and rate limiting, and insufficient monitoring to detect unusual network					
	behavior early.					
Protect	To prevent similar attacks, the company should strengthen its network					
	defenses by properly configuring the firewall with strict access controls and					
	ICMP rate limiting. Implementing network segmentation will isolate critical					
	systems, reducing the impact of future disruptions. Regular security audits					
	and patching will address vulnerabilities, while staff training will ensure					
	employees understand security protocols. Additionally, deploying intrusion					
	prevention systems (IPS) and redundant network infrastructure will he					
	maintain service availability even during an attack.					
	Thairtean oor vice availability even daring an attack.					

Detect	To improve detection, the company should implement real-time network						
	monitoring to quickly identify unusual traffic patterns, such as sudden ICMP						
	floods. Deploying intrusion detection systems (IDS) will help flag suspicious						
	activity, while log analysis and automated alerts can provide early warning of						
	potential threats. Regular penetration testing and vulnerability scanning will						
	also help uncover weaknesses before attackers can exploit them.						
Respond							
·	In the event of another attack, the company should have a clear incident						
	response plan to quickly contain and neutralize threats. This includes						
	immediately blocking malicious traffic, isolating affected systems, and						
	engaging the incident response team to investigate. Communication						
	protocols should be in place to notify leadership , stakeholders , and service						
	providers, ensuring a coordinated effort to minimize downtime. A						
	post-incident review should follow to identify lessons learned and strengthen						
	security measures.						
D							
Recover	After the attack is contained, the company should focus on restoring all						
	systems and services to full functionality and verifying data integrity to						
	ensure nothing was lost or altered. Backups should be used to recover any						
	impacted resources, and additional resilience measures, such as improved						
	firewall settings, redundancy, and stronger monitoring, should be implemented.						
	A formal post-incident report and updated security strategy will help the						
	organization strengthen its defenses and reduce the risk of future disruptions.						

Reflections/Notes:			

The NIST Cybersecurity Framework (CSF) provided a clear structure for addressing this incident. Using the five core functions (Identify, Protect, Detect, Respond, and Recover) helped pinpoint vulnerabilities, strengthen defenses, and ensure a quick, organized response. This approach highlights the CSF's value in guiding smaller organizations toward better security practices and resilience.