Samenvatting Algebra 1

Jonas van der Schaaf

$22~\mathrm{mei}~2020$

Inhoudsopgave

1	Groepen	2
2	Ondergroepen, homomorfismen en directe producten 2.1 Ondergroepen	3
3	Voortbrengers, orde en index 3.1 Voortbrengers	6
4	Ondergroepen en factorgroepen 4.1 Normaaldelers	
5	Isomorfie- en homomorfiestellingen	9
6	Groepswerkingen	10
7	Automorfismen7.1 De automofismegroep7.2 Semidirecte producten	
8	Groepen die misschien handig zijn	14

1 Groepen

Groepsaxioma's Een groep is een paar van een verzameling G met een bewerking $\circ: G \times G \to G$ met de volgende eigenschappen:

1. Associativiteit: voor elke $a, b, c \in G$ geldt dat

$$(a \circ b) \circ c = a \circ (b \circ c),$$

2. Neutraal element: er is een $e \in G$ zodat voor elke $g \in G$ geldt dat

$$e \circ g = g \circ e = g$$
,

3. Voor elke $a \in G$ is er een a^* zodat

$$a \circ a^* = a^* \circ a = e$$
.

Abelse Groepen Zij G een groep. Als voor elke $a, b \in G$ geldt dat $a \circ b = b \circ a$, dan heet G abels, en dan zeggen we dat elk element in G commuteert.

Multiplicatieve notatie In de rest van deze samenvatting zal ik (bijna) altijd de multiplicatieve notatie gebruiken, dat komt overeen met $a \circ b = ab$, $\underbrace{a \circ \cdots \circ a}_{} = a^n$ en $a^* = a^{-1}$.

Simpele stellingen over inverses Zij G een groep, dan geldt dat:

- 1. Er is precies 1 eenheidselement in een groep,
- 2. Elk element $a \in G$ heeft precies 1 inverse,
- 3. Voor elke $a, b \in G$ geldt dat

$$\left(a^{-1}\right)^{-1} = a$$

en dat

$$(ab)^{-1} = b^{-1}a^{-1}.$$

Verder geldt voor $n, m \in \mathbb{Z}$ dat $a^{n+m} = a^n \cdot a^m$ en dat $a^{nm} = (a^n)^m$.

Uniciteit van producten Zij G een groep en $a, b \in G$. Dan is er precies één $x \in G$ zodat ax = b, namelijk $x = a^{-1}b$.

Ook is er precies één $y \in G$ zodat ya = b, namelijk $y = ba^{-1}$.

Producten van meer dan 1 **element** Zij G een groep met $a_1, \ldots, a_n \in G$ dan is het product $a_1 \cdots a_n$ inductief gedefinieerd als $(a_1 \cdots a_{n-1})a_n$. Ook volgt door inductie toe te passen uit deze definitie dat $(a_1 \cdots a_k)(a_{k+1} \cdots a_n) = a_1 \cdots a_n$.

2 Ondergroepen, homomorfismen en directe producten

2.1 Ondergroepen

Definitie van een ondergroep Zij G een groep en laat $H \subseteq G$ een deelverzameling zijn. Dan geldt dat H een ondergroep is precies als:

- 1. H niet leeg is $(H \neq \emptyset)$,
- 2. voor elke $a, b \in H$ geldt dat $ab \in H$ (ook wel H is gesloten),
- 3. voor alle $a \in H$ ook geldt dat $a^{-1} \in H$.

Ondergroepen en groepen Zij G een groep en $H \subseteq G$ een ondergroep. Dan is H ook een groep met dezelfde werking als op G.

Equivalente eigenschappen van ondergroep Zij G een groep en $H \subseteq G$ een deelverzameling, dan is H ook een ondergroep als geldt dat

- 1. H niet leeg is,
- 2. voor elke $a, b \in H$ geldt dat $ab^{-1} \in H$.

Doorsnedes van ondergroepen Zij G een groep en $(H_i)_{i \in I}$ een collectie ondergroepen, dan geldt dat

$$\bigcap_{i\in I} H_i$$

ook een ondergroep is van G.

2.2 Groepshomomorfismen

Definitie van een homomorfisme Zij G_1, G_2 groepen. Dan is $f: G_1 \to G_2$ een groepshomomorfisme als voor elke $a, b \in G_1$ geldt dat

$$f(ab) = f(a)f(b).$$

De verzameling van homomorfismen van G_1 naar G_2 wordt als $\text{Hom}(G_1, G_2)$ genoteerd.

Isomorfismen Zij G_1, G_2 groepen en $f: G_1 \to G_2$ een bijectief homomorfisme, dan wordt het ook wel een isomorfisme genoemd. Als er een isomorfisme tussen twee groepen G_1, G_2 bestaat, dan heten deze isomorf, en dat wordt genoteerd als $G_1 \cong G_2$.

Endomorfismen Een homomorfisme van een groep naar zichzelf heet een endomorfisme. De verzameling endomorfismen van G wordt genoteerd als $\operatorname{End}(G)$.

Automorfismen Een isomorfisme van een groep naar zichzelf heet een automorfisme. De verzameling automorfismen van G wordt genoteerd als Aut(G).

Eigenschappen van een homomorfisme Zij G_1, G_2 groepen en $f: G_1 \to G_2$ een homomorfisme. Laat $e_1 \in G_1$ het eenheidselement van G_1 zijn en $e_{2 \in G_2}$ het eenheidselement van G_2 . Dan geldt dat

- 1. $f(e_1) = e_2$,
- 2. voor elke $a \in G_1$ geldt dat $f(a^{-1}) = f(a)^{-1}$.

Kernen van homomorfismen Zij G_1, G_2 groepen, $f: G_1 \to G_2$ een homomorfisme en e_2 het eenheidselement van G_2 . Dan is de kern van f als volgt gedefinieerd:

$$\ker(f) = \{ g \in G \mid f(g) = e_2 \}.$$

De kern is een ondergroep van G_1 . Ook is het beeld $f[G_1]$ een ondergroep van G_2 .

Injectieviteit Zij G_1, G_2 groepen, $f: G_1 \to G_2$ een homomorfisme en e_1 het eenheidselement van G_1 . Dan geldt dat f een injectieve functie is precies als

$$\ker(f) = \{e_1\}.$$

Samenstellingen van homomorfismen Zij G_1, G_2, G_3 groepen en $f: G_1 \to G_2$ en $g: G_2 \to G_3$ homomorfismen. Dan is $f \circ g$ ook een homomorfisme.

Inverses van isomorfismen Zij G_1, G_2 groepen en $f: G_1 \to G_2$ een isomorfisme, dan is f^{-1} ook een isomorfisme.

Equivalentie en isomorfismen Zij G_1, G_2, G_3 groepen, dan geldt dat

- 1. $G_1 \cong G_1$,
- 2. als $G_1 \cong G_2$, dan geldt ook dat $G_2 \cong G_1$,
- 3. als $G_1 \cong G_2$ en $G_2 \cong G_3$, dan geldt ook dat $G_1 \cong G_3$.

2.3 Directe producten

Definitie van het directe product Zij G_1, G_2 twee groepen, dan geldt dat $G_1 \times G_2$ met de bewerking

$$(G_1 \times G_2) \times (G_1 \times G_2) \to G_1 \times G_2 : ((g_1, h_1), (g_2, h_2)) \mapsto (g_1 g_2, h_1 h_2)$$

een groep vormt.

Eigenschappen van het directe product Voor drie groepen G_1, G_2, G_3 geldt in zekere zin dat ze de volgenden eigenschappen hebben

- 1. Commutativiteit: $G_1 \times G_2 \cong G_2 \times G_1$,
- 2. associativiteit: $(G_1 \times G_2) \times G_3 \cong G_1 \times (G_2 \times G_3) \cong G_1 \times G_2 \times G_3$.

Isomorfisme tussen een groep en ondergroepen Zij G een ondergroep met twee ondergroepen H_1, H_2 met de volgende eigenschappen

- 1. Voor alle $h_1 \in H_1$ en $h_2 \in H_2$ geldt dat $h_1h_2 = h_2h_1$ m
- 2. $H_1 \cap H_2 = \{e\},\$
- 3. voor elke $g \in G$ geldt dat $g = h_1h_2$ voor een $h_1 \in H_1$ en $h_2 \in H_2$.

Dan geldt dat $G \cong H_1 \times H_2$.

Chinese reststelling Zij $n, m \in \mathbb{N}$ met ggd(n, m) = 1. Dan geldt dat

$$\mathbb{Z}/nm\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$

met het isomorfisme

$$f\colon \mathbb{Z}/nm\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \colon a \mod nm \to (a \mod n, a \mod m).$$

Algemenere versie Zij n_1, \ldots, n_t positieve gehele getallen zijn zodat voor alle $i, j \in \{1, \ldots, t\}$ geldt dat $\gcd(n_i, n_j) = 1$. Definieer $N \coloneqq \prod_{i=1}^t n_i$. Dan geldt dat

$$\mathbb{Z}/N\mathbb{Z} \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_t\mathbb{Z}$$

met het isomorfisme

$$f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_t\mathbb{Z} : a \mod N \mapsto (a \mod n_1, \dots, a \mod n_t).$$

3 Voortbrengers, orde en index

3.1 Voortbrengers

Definitie van een voortbrenger Zij G een groep en $S\subseteq G$ een deelverzameling. Dan geldt dat

$$\langle S \rangle := \{ g \in G \mid g = x_1 \cdots x_n, n \in \mathbb{N}_0, x_i \in S \text{ of } x_i^{-1} \in S \}.$$

Voor elke S geldt dat $\langle S \rangle$ een ondergroep is.

Cyclische groep Een groep heet cyclisch als geldt dat $\langle x \rangle = G$ voor een $x \in G$. Dan heet x een voortbrenger van G.

Orde van een element Zij G een groep en $x \in G$. Dan is de orde van x gedefinieerd als

$$\operatorname{orde}(x) \coloneqq \begin{cases} \min\{n \in \mathbb{N} \mid x^n = e\} = \# \left\langle x \right\rangle & \{n \in \mathbb{N} \mid x^n = e\} \neq \varnothing \\ \infty & \{n \in \mathbb{N} \mid x^n = e\} = \varnothing \end{cases}.$$

Het enige element met orde 1 is het eenheidselement.

Machten van veelvouden van de orde Zij $x \in G$ een element met orde $n < \infty$. Dan geldt voor $m \in \mathbb{Z}$ dat $x^m = e$ dan en slechts dan als $n \mid m$.

Isomorfismen van gegenereerde ondergroepen Zij G een groep en $x \in G$. Dan geldt dat

- 1. $\langle x \rangle \cong \mathbb{Z}$ als $\operatorname{orde}(x) = \infty$,
- 2. $\langle x \rangle \cong \mathbb{Z}/n\mathbb{Z}$ als orde $(x) = n < \infty$.

Ordes en homomorfismen Zij G_1, G_2 groepen en $x \in G_1$ een element met $\operatorname{orde}(x) = n < \infty$. Dan heeft f(x) ook eindige orde en $\operatorname{orde}(f(x)) \mid \operatorname{orde}(x)$. Als f injectief is geldt dat $\operatorname{orde}(f(x)) = \operatorname{orde}(x)$.

3.2 Ordes van (onder)groepen

Orde van een groep Zij G een groep, dan is de orde van G gedefinieerd als

$$orde(G) := \#G$$
.

Stelling van Euler Zij $a \in \mathbb{Z}$ en $m \in \mathbb{N}$ met ggd(a, m) = 1. Dan geldt dat $a^{\varphi(m)} \equiv 1 \mod m$.

Kleine stelling van Fermat Zij p een priemgetal en $a \in \mathbb{Z}$, dan geldt dat $a^p \equiv a \mod p$.

3.3 Nevenklassen

Definitie van een nevenklasse Zij G een groep en $H\subseteq G$ een ondergroep. Laat $a\in G$. Dan heet

$$aH := \{ah \mid h \in H\}$$

een linkernevenklasse van ${\cal H}$ en

$$Ha := \{ha \mid h \in H\}$$

een rechternevenklasse van H.

De verzameling rechternevenklassen van H wordt genoteerd als G/H en de verzameling linkernevenklassen als $H\backslash G$.

3.3 Nevenklassen Jonas van der Schaaf

Elementen van nevenklassen Zij G een groep en $H \subseteq G$ een ondergroep. Dan gelden de volgende drie eigenschappen voor alle $a, b \in G$:

- 1. aH = bH dan en slechts dan als $a^{-1}b \in H$,
- 2. óf aH = bH óf $aH \cap bH = \emptyset$,
- 3. elk element zit in precies 1 nevenklasse.

Aantallen elementen van nevenklassen Zij G een groep en $H \subseteq G$ een ondergroep, dan geldt voor elke $a \in G$ dat

$$#aH = #H.$$

Index van een ondergroep Zij G een groep en $H \subseteq G$ een ondergroep, dan is de index van H als volgt gedefinieerd:

$$[G:H] := \#(G/H).$$

Representantensysteem Zij G een groep, $H \subseteq G$ een ondergroep en $S \subseteq G$ een verzameling zodat het precies 1 element uit elke nevenklasse bevat, dan heet S een representantensysteem en dan geldt dat #S = [G:H]. Bovendien geldt ook dat

$$G = \coprod_{s \in S} sH.$$

De stelling van Lagrange Zij G een groep en $H \subseteq G$ een ondergroep. Dan geldt dat

$$orde(G) = [G : H] \cdot orde(H).$$

Hieruit volgt dat $orde(H) \mid orde(G)$ als G eindig is, want $[G:H] \in \mathbb{N}$.

Ondergroep van een ondergroep Zij G een eindige groep en $H_2 \subseteq H_1 \subseteq G$ ondergroepen. Dan geldt dat

$$[G: H_1] = [G: H_2] \cdot [H_2: H_1].$$

Ordes van elementen en groepen Zij G een groep en laat $x \in G$. Dan geldt dat orde(x) | orde(G).

Groepen met ordes van priemgetallen Zij G een groep met orde(G) = p, dan is G cyclisch en $G \cong \mathbb{Z}/p\mathbb{Z}$.

Kleine groepen en cycliciteit Zij G een groep met $\operatorname{orde}(G) \leq 5$, dan geldt dat G cyclisch is of $G \cong V_4$.

Stelling van Cauchy Zij G een eindige groep en p een priemgetal zodat $p \mid \operatorname{orde}(G)$. Dan is er een $x \in G$ met $\operatorname{orde}(x) = p$.

4 Ondergroepen en factorgroepen

4.1 Normaaldelers

Definitie van een normaaldeler Zij G een groep en $N \subseteq G$ een ondergroep. Dan heet N een normaaldeler als voor alle $g \in G$ en $n \in N$ geldt dat

$$gng^{-1} \in N$$
.

Dit wordt ook wel genoteerd als $N \triangleleft G$.

Het centrum van een groep Zij G een groep. Dan is het centrum van G gedefinieerd als $Z(G) := \{g \in G \mid \forall h \in G : gh = hg\}$. Het centrum is een normaaldeler.

De commutatorondergroep Zij G een groep. Dan is de commutatorondergroep van G gedefinieerd als $[G,G] := \langle \{[g,h] \mid g,h \in G\} \rangle$. Dit is ook een normaaldeler. We definiëren ook dat $G_{ab} = G/[G,G]$.

Normaaldelers en linkse/rechtse nevenklassen Zij G een groep en $N \subseteq G$ een ondergroep. Dan is N een normaaldeler dan en slechts dan als aN = Na voor alle $a \in G$.

Ondergroepen van index 2 Zij G een groep en N een ondergroep met [G:N]=2, dan geldt dat $N \triangleleft G$.

Kernen van homomorfismen Zij G_1, G_2 groepen en $f: G_1 \to G_2$ een homomorfisme, dan geldt dat $\ker(f) \triangleleft G$.

4.2 Factorgroepen

Constructie van de factorgroep Zij G een groep en $N \triangleleft G$. Dan vormt G/N een groep met de bewerking $G/N \times G/N \colon (\overline{a}, \overline{b}) \mapsto \overline{ab}$.

Bovendien geldt dat orde(G/N) = [G:N], en als G abels is, dan is G/N dat ook.

Normaaldelers zijn kernen Zij G een groep en $N \triangleleft G$. Dan is N de kern van het homomorfisme

$$\varphi \colon G \to G/N \colon g \mapsto gN.$$

Dit homomorfisme heet het natuurlijke/canonieke homomorfisme. De functie φ is ook surjectief.

Normaaldeler en kern Zij G een groep en $N \subset G$ een ondergroep. Dan geldt dat $N \triangleleft G$ dan en slechts dan als $N = \ker(f)$ voor een homomorfisme f.

Normaaldeler en ondergroepen Zij G een groep $N \triangleleft G$ en $H \subseteq G$ een ondergroep zodat $N \subseteq H$. Dan geldt dat N/H een ondergroep is van G/N.

Normaaldelers en abelse groepen Zij G een groep en $N \triangleleft G$, dan is G/N abels precies als $[G,G] \subseteq N$.

5 Isomorfie- en homomorfiestellingen

De homomorfiestelling Zij G_1, G_2 groepen en $f: G_1 \to G_2$ een homomorfisme en $N \triangleleft G$ met $N \subseteq \ker(f)$. Dan is er een unieke $g: G_1/N \to G_2$ met $g(\overline{a}) := f(a)$ zodat geldt dat $g \circ \varphi = f$. Bovendien geldt dat $\ker(g) = \ker(f)/N \subseteq G/N$.

Eerste isomorfiestelling Zij G_1, G_2 groepen met $f: G_1, G_2$ een homomorfisme, dan geldt dat

$$G_1/\ker(f) \cong f(G_1).$$

Surjectief homomorfisme Als de eisen hierboven gelden en f surjectief is, dan geldt dat $G_1/\ker(f) \cong f(G_1) = G_2$ met een isomorfie gegeven door $a \cdot \ker(f) \mapsto f(a)$.

Homomorfisme tussen abelse groep Zij G, A groepen en A abels. Dan is er voor elk homomorfisme $f: G \to A$ een eenduidig bepaald homomorfisme $g: G_{ab} \to A$ waarvoor geldt dat $f = g \circ \varphi$. Hier is $\varphi: G \to G_{ab}$ de canonieke afbeelding.

Doorsnedes van normaaldelers Zij G een groep, $N \triangleleft G$ en $H \subseteq G$ een ondergroep. Dan geldt dat:

- 1. $N \cap H \triangleleft H$,
- 2. $HN = \{hn \mid h \in H, n \in N\}$ is een ondergroep van G,
- 3. $H/(H \cap N) \cong HN/N$ (dit is de tweede isomorfiestelling).

Derde isomorfiestelling Zij G een groep en $N, N' \triangleleft$ met $N \subseteq N'$. Dan geldt dat N'/N een normaaldeler is van G/N en elke normaaldeler van G/N is van deze vorm. Ook geldt dat

$$(G/N)(N'/N) \cong G/N'.$$

6 Groepswerkingen

Definitie van een groepswerking Zij G een groep en X een verzameling. Een werking is dan een afbeelding:

$$G \times X \colon (g, x) \mapsto g \circ x$$

die voldoet aan de volgende twee eigenschappen:

- 1. Voor elke $x \in X$ geldt dat $e \circ x = x$,
- 2. voor alle $g, h \in G$ en $x \in X$ geldt dat $g \circ (h \circ x) = (gh) \circ x$.

Groepswerkingen en bijecties Zij G een groep en X een verzameling zodat G op X werkt met \circ . Dan is de afbeelding

$$\varepsilon_q \colon X \to X \colon x \mapsto g \circ x$$

een bijectie. Ook geldt dat $f: G \to S(X): g \mapsto \varepsilon_g$ een homomorfisme is.

Homomorfismes naar symmetrische groep Zij G een groep, X een verzameling en $f: G \to S(X)$ een homomorfisme, dan is $G \times X \to X: x \mapsto f(g)(x)$ een groepswerking.

Isomorfie van een groep met de symmetrische groep Elke groep G is isomorf met een ondergroep van S(G). Als $\#G = n < \infty$, dan is G specifiek isomorf met een ondergroep van S_n .

Normaaldelers en ondergroepen Zij G een groep en $H \subseteq G$ een ondergroep met de eigenschap $[G:H]=n<\infty$, dan is er een normaaldeler N met $N\subseteq H$ en $[G:N]\mid n!$.

Ondergroep met bijzondere orde Zij G een groep en H een ondergroep met ggd(#H,([G:H]-1)!)=1. Dan is H een normaaldeler.

Ondergroep met priemgetal als orde Zij G een groep en $H \subseteq G$ een ondergroep zodat #H de kleinste priemdeler is van #G. Dan is H een normaaldeler.

Definitie van de baan Zij G een groep die werkt op X, dan is de baan van $x \in X$ onder G gedefinieerd als

$$Gx := \{g \circ x \mid g \in G\}.$$

Equivalentie Zij G een groep die werkt op X, dan heten twee elementen $x, y \in X$ equivalent onder G als er een $g \in G$ is zodat $g \circ x = y$, dit wordt geschreven als $x \sim_G y$. Dit is een equivalentierelatie. De equivalentieklassen zijn precies de banen van X onder G.

Transitief werken Zij G een groep die werkt op X, dan geldt dat G transitief werkt op X als geldt dat Gx = X, dus als er precies 1 baan is.

Definitie van de stabilisator Zij G een groep die werkt op X. Dan is de stabilisator van een $x \in X$ gedefinieerd als

$$G_x := \{ g \in G \mid g \circ x = x \}.$$

Stabilisatoren en ondergroepen Zij G een groep die werkt op X. Dan is G_x een ondergroep van G en voor elke $g \in X$ geldt dat $gG_xg^{-1} = G_{g\circ x}$.

Nevenklassen van de stabilisator en banen Zij G een groep die werkt op X en $x \in X$. Dan geldt dat de afbeelding

$$f: G/G_x \to Gx: aG_x \mapsto a \circ x,$$

een welgedefinieerde bijectie. Daardoor geldt dat $\#Gx = [G:G_x]$.

Verzamelingen en indices van ondergroepen Zij G een groep de werkt op X. LZij Y een verzameling met precies één element uit elke baan. Dan geldt dat

$$\#X = \sum_{x \in Y} \left[G : G_x \right].$$

Conjugatie en groepswerking Zij G een groep die op zichzelf werkt met

$$gx := qxq^{-1}$$
,

dan heten de banen Gx de conjugatieklassen van x. Twee elementen $x, y \in G$ heten geconjugeerd als geldt dat er een $g \in G$ zodat geldt dat $gxg^{-1} = y$.

Groepen met orde van de macht van een priemgetal Zij G een groep met $\#G = p^k$ met p priem, dan geldt dat $Z(G) \neq \{e\}$.

Formule van Burnside Zij G een groep die werkt op een eindige verzameling X. Definiëer dan de fixpunten van g als

$$X^g \coloneqq \{x \in X \mid g \circ x = x\}.$$

Dan geldt voor het aantal banen #X/G dat het gelijk is aan

$$\#X/G = \frac{1}{\#G} \cdot \sum_{g \in G} \#X^g.$$

7 Automorfismen

7.1 De automofismegroep

Definitie van de automorfismegroep Zij G een groep. Dan geldt dat

$$\operatorname{Aut}(G) = \{ f : G \to G \mid G \text{ is een isomorfisme} \} \subseteq S(G)$$

een ondergroep is.

Inwendige automorfismen Zij G een groep. Definiëer $\varphi_a \colon G \to G \colon g \mapsto aga^{-1}$ voor $a \in G$. Dan is de verzameling

$$\operatorname{Inn}(G) := \{ \varphi_a \mid a \in G \}$$

een normaaldeler van $\operatorname{Aut}(G)$ en $\operatorname{Inn}(G) \cong G/Z(G)$.

Automorfismen van normaaldelers Zij G een groep en $N \triangleleft G$. Dan is er een groepshomomorfisme $f \colon G \to N$ met $f(a) \coloneqq \varphi_a \mid N$. Als N abels is geldt bovendien dat de functie $g \colon G/N \to \operatorname{Aut}(N)$ met g(aN) = f(a) een goed gedefiniëerd homomorfisme is.

Groepen en priemgetallen Deze stelling bestaat uit twee delen:

- 1. Zij p een priemgetal en G een groep met $\#G = p^2$. Dan geldt dat $G \cong \mathbb{Z}/p^2\mathbb{Z}$ of $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.
- 2. Zij p,q priemgetallen met p>q en $\gcd(p-1,q)=1$. Dan is elke groep van de orde pq cyclisch, dus $G\cong \mathbb{Z}/pq\mathbb{Z}$.

7.2 Semidirecte producten

Definitie van het semidirecte product Zij H, N twee groepen en $\tau: H \to \operatorname{Aut}(N)$ een homomorfisme, dan vormt de verzameling $N \times H$ de bewerking

$$(n_1, h_1) \cdot (n_2, h_2) := (n_1 \tau(h_1)(n_2), h_1 h_2)$$

deze groep wordt genoteerd als $N \rtimes_{\tau} H$. Als duidelijk is welk homomorfisme bedoeld wordt wordt dat vaak genoteerd als $N \rtimes H$.

Semidirecte en directe producten Zij N, H groepen en $\tau \colon H \to \operatorname{Aut}(N)$ het triviale homomorfisme. Dan is het directe product $N \times H$ dezelfde groep als $N \rtimes_{\tau} H$.

Semidirecte producten en surjectieve homorfismen Zij N, H groepen en $\tau \colon H \to \operatorname{Aut}(N)$ een homomorfisme. Dan is de deelverzameling $\{e_N\} \times H \subseteq N \rtimes_{\tau} H$ een ondergroep en $\{e_N\} \times H \cong H$. Ook geldt dat de functie $\pi \colon N \rtimes_{\tau} H \to H \colon (n,h) \mapsto h$ een surjectief homomorfisme is met de kern $N \rtimes_{\tau} \{e\} \cong N$.

Semidirecte producten van ondergroepen Zij G een groep met $N, H \subseteq G$ een ondergroepen zodat de volgende eigenschappen gelden:

- $1.\ N\cap H=\{e\},$
- 2. G = NH,
- 3. $N \triangleleft G$.

Dan geldt dat $G \cong N \rtimes_{\tau} H$ met $\tau \colon H \to \operatorname{Aut}(N) \colon h \mapsto \varphi_h$.

Karakteristieke ondergroepen Zij G een groep en $H \subseteq G$ een ondergroep. Dan geldt dat H karakteristiek is als voor alle $\psi \in \operatorname{Aut}(G)$ geldt dat $\psi(H) = H$.

Voorbeelden van karakteristieke ondergroepen ZijGeen groep, dan geldt dat Z(G) en [G,G] karakteristieke ondergroepen zijn.

8 Groepen die misschien handig zijn

Quaternionen

Viergroep van Klein

Quaternionengroep (niet de quaternionen)

Symmetriegroep

Diëdergroep