실험 결과 보고서

3-3 옴의 법칙과 휘스톤 브리지

학과 전팅당학과	학년 _ 학번 _ 12201856	이름 강다명	실험조
제출일	담당교수 강영헌	담당조교 _ \$46	,

[1] 옴(Ohm)의 법칙

1. 측정치 및 계산

(1) 단일 저항값 측정

	R_1		R_2		R_3	
	V	I	V	I	V	I
1	2,0 V	8,24mA	210V	5128mA	210 V	2,53 mA
2	410 V	15,90 mA	4.0V	10,32 mA	410V	4,91mA
3	6.0V	23.57mA	6.0 V	15126mA	6.0V	7,36m)
4	%.o√	31,51mA	8101	20,55mA	8,00	9,80mA
저항 (기울기로 부터)	$R_1 \pm \Delta R_1 = 250.7 (A)$		$R_2 \pm \Delta R_2 = 0.337 (k\Omega)$		$R_3 \pm \Delta R_3 = 0.316 (\kappa\Omega)$	

- 위 전압 및 전류 측정에서의 불확도는 각각 얼마나 되는가? $\Delta V = (V)$, $\Delta I = (A)$ 또 저항 측정값의 불확도 ΔR 은 얼마나 되는가? $\Delta R = (KC)$ 對단간? 첫예있며 對性한 정도, 즉 특정값에 전바라 되는 5원 정도, 점값이 전바라 범인을 나타내는 주점값이다. 극성당을 합지적도 취한 수 있는 값의 본인을 탁한한 것이다. 또 사랑는 이유는 모자는 언제도 앞수 다음에도 밝하고 안다고 가정하는 많이 생기만 집값이 전체 범위(包되건)에 대한 취임과서 異性 이용하는 것이다.
- 상기 그래프에서 기울기로 부터 저항은 어떻게 구할 수 있는가? 없어께의 함께 의해 저항 유 보다 되었어! 원하다. 따라서 용한 樹 R에 대해 무슨을 예뻐 각 함마다 저희을 한 수 있다. 따라서 原则 張 해당한 역의 장로 나면 보기 되어 가입다면 처음은 한 수 있다. 하당 故답들이 다해 強제망能 동네도 阳은 친수 있다.

(2) 직렬 및 병렬 연결된 저항들의 등가 저항값 측정

	11/2	· · · · · · · · · · · · · · · · · · ·			
	The transfer to the second of	회로 R_{ea}	병렬회로 R_{eq}		
		I	<i>V</i>	I	
× ×	· V		2,0 √	15113mA	
1	2 .0 V	1,40 mA		29, 37 mA	
2	4.0 V	2,78mA	4.0 V		
3	6.0 V	4.BmA	6.0 V	44.6 mA	
4	3.0V	5,56mA	8.0V	59.8 mA	
저항 (기울기로 부터)	$R_{eq} \pm \Delta R_{eq} = 1.4398$	S (KP)	$R_{eq} \pm \Delta R_{eq} = 0.1336$	(ka)	
식에 따라 계산된 저항	$R_{eq} = 1.4531 \text{ kg}$	7331	$R_{eq} = 0.1232 k \Omega$		
차이	0.0139k-2		0.005442		

- 위에서 그래프에서 기울기로부터 구한 저항 값과 식에 따라 계산된 저항 값 차이의 원인에 대해서 논의에 보시요. 각저항 Rin Ra. Ra에 대해 보는 항상 같아야한다. 하지만 2V. 4V. 6V. 8V 각 점에다 보고이 말다는 것으로 보다 것으로 보다 모다는 그렇게 모다는 말하는 당아이다. 따라서 이로인하나 두 값 사이의 모차가 반생한 것으로 본수 있다. 또 되에 만분되어 있는 장치들에 약한 저항이 함은 発行 있다.

1. 측정치 및 계산

*	R ₁ (kΩ)	R ₂ (₺₽)	미지저항	미지저항 R_x (실험을 통한 계산치)	미지저항 R_x (멀티미터 측정치)	상대오차 (%)
1	2.66η	2,620	R_{x1}	1,965 K-2	1,982 k.0	0.858
2	1,830	3,458	R_{x2}	3.1719 K-D	3.86 kA	2,098

$$**$$
 상대오차 $= \frac{|R_x - R_{x_0}|}{R_{x_0}} \times 100\%$

2. 결과 및 논의

侧锯 斑斑 烟蛇属 对胡 子格叶子配川 叶制 智媛 蚁胀 翘 郏 知 照 湖 371凹 对的 初展 田 叫林岭 沿는 继加尔 明明 智思 生成田 中枢 VII의 智能 纽 VT 到南山 时 到時是 空午处中。 OF 胡籽 林曼山 CHEH 智图的 各部是 OFFICE RING ROOM CHEM 企VANTHON IN R3>R2>R1 经 光是空午处时 0 R=101 2时 R301 7时亚, R1017时光 地阻 整千趾 生 中期的 的旋尾에서 与脉的 Roan 期间的 日亚 跨到的 日 架 发生午 处于 王姆跑 Regoll CHEHALE 生物品,R2、R9年 架路 机花 堤 始 島州 韩阳 电视片计 工格 单连 如内 想要 当中电 Rink是 各种的 细胞 可能 00至 中国 四阳 Rink型

对是 建外山、绝对河 岬村的 多节的 時能 堤江 皇子 处心

引物如约 年期 江田州 福里野 期时 親 7 平 境 9 午 影明 。 暖 野 臣 难是

3. 질문

- (1) Ohm의 법칙이 성립하지 않는 저항체의 경우에 V = IR의 관계식을 어떻게 해석하여야 하나? याप विश्व विश्व कि कि कि कि कि हैं। अप कि प्राचा कि प्राच कि प्राचा कि प्राचा कि प्राचा कि प्राचा कि प्राचा कि प्राच कि प्राचा कि प्राचा कि प्राचा कि प्राचा कि प्राचा कि प्राच कि प्राच V=IR=IIf(VI)区 理识的中,和 (2)是 智的 I=Ai, R=含是 O局的 V=IR 电阳岩 部内特部中,
- (2) 미시적인 Ohm의 법칙은 전기장 E와 전류밀도 j 사이에 E=
 ho j의 관계가 있다. 이관계로부터 길이가 l이고, 단면적이 A인 도선에서 저항 R과 ho의 관계를 구하라. V=Edort. 磷蛭 产锅咽管空锅中,上壳至锅暖锅等好生气 E=PIZ 4EH世午知0号 V=Edal 대始吧 V=Pid=P芸d T·된다 V=Roll-로 V=P. 芸·d=IR. R=1/움로 나타변수있다. 즉 R은 5년의 강에 이러나 당면하나 방미리남만, 10나 R은 이러 관계에 있다.
- (3) 휘스톤브릿지 실험에서 만일 검류계의 눈금이 5 μ A에 해당하는 전류가 흐른다면 B와 D 사이의 전위 补는 얼마인가? 猫相 铝이 이이 아내는 况은 BH DUNION 恐怖 정脑는 것으로 볼수있다. 이때 BY DAIN의 翻點 V-IR 程 哪時 苍午处叶 이때 正 塔阳 岩이가라는 硚, 즉 5,4AT SID RE CATALON LIPTAMONTH COULD PETOLOT.
- (4) 상기 (3)번의 결과로 미지 저항값을 결정하는데 미치는 영향은 몇 %정도인가? 新 001 叶红 保護 7KM 到时 别的 超知 对如时 0m 时 5hh 电始别 5hh 임에 횡한 제의 데는 KOOD, V=IR을 이렇면 5V, 1800 N 3500 A 화에는 약 0,0014 N 0,0028 A 정도의 那中部 0는 1400/MAN 2800/MA O区 5MASH 的磁光 OF 已经的 计结图 5MASH 对称 地站日社 四、相影的 中 智思 明 华如仁、叶明明《心多》的 医肝 划时上