Concept 00000 Evaluation 0000

Conclusio

Simulation Framework for Distributed Database Query Processing in the Semantic Internet of Things

Johann Mantler

Master's Thesis Institute of Information Systems University of Lübeck

> supervised by Prof. Dr. Sven Groppe, Benjamin Warnke

12. August 2021

Concept 00000 Evaluation 0000 Conclusion

Technology Trends

- IoT is growing
- IoT is driving Big Data
- IoT is driving Semantic Web
- computing capabilities are increasing
 - shifting computing and data storage to the edge
 - Cloud Computing → Fog Computing → Edge Computing

Concept 00000 Evaluatio 0000

Conclusio

DBMS in Edge Computing

- luposdate3000: Semantic Web DBMS adapted to IoT
- instances run on edge and fog devices
 - multiplatform to support heterogeneity
 - distribution of data storage and query processing
- current work
 - simulator for integrating real DBMS into a modeled IoT environment
 - protocol for distributed query processing

Introduction OO•

Concept

Evaluation 0000 Conclusion

Related Work

Simulator	Features								
	Language	Purpose	Network Comm.	Network Protocols	loT Rou- ting	Node Per- formance	Real Data	Energy	External Apps
Python	lation							scriptor	
COOJA	Java, C	precise WSN simulati-	✓	✓	✓	✓	√1	✓	
		on in Contiki							
FogNetSim++	C++	apps in fog environ-	✓	✓		✓		✓	
		ments							
CloudSim	Java	cloud computing	✓			✓		✓	
IoTSim-Edge	Java	app composition in	✓	✓		✓		✓	
		edge computing							
EdgeCloudSim	Java	edge computing	✓			✓		✓	
IoTSim-Osmosis	Java	app composition	✓	✓		✓		✓	
iFogSim	Java	fog computing with	✓			✓		✓	
•		data streams							
PureEdgeSim	Java	edge computing	✓			✓		✓	
YAFS	Python	dynamic infrastruc-	✓			✓		✓	
		tures							
MyiFogSim	Java	mobile nodes	✓			✓		✓	
FogBed	Python	real apps in containers	✓			✓	✓		via Docker
(Proposed)	Kotlin	query processing with	✓	✓	✓	✓	✓		via Kotlin in-
		real DBMS							terface

Concept •0000 Evaluation 0000 Conclusion

IoT Environment

Concept 0 • 0 0 0 Evaluation 0000 Conclusion

DBMS Instance Distribution

 Introduction
 Concept
 Evaluation

 ○○○
 ○○●○○
 ○○○○

Operator Graph Mapping

Conclusion

Concept 000•0 Evaluation 0000

Conclusio

Query Processing Protocol

```
function RECEIVE(pck)
   if pck is QueryPackage then
       parse, send MulticastPackage
   else if pck is MulticastPackage then
      if isLeafNode then
          calculate, send ResultPackage or EndResultPackage
      else
          prepare, send MulticastPackage
      end if
   else if pck is ResultPackage then
      calculate, send ResultPackage or EndResultPackage
   end if
end function
```


Concept 0000 Evaluation

Conclusion

Model: Parking Space Finder Application

Concept

Evaluation •000 Conclusion

Protocol Evaluation

objective: less resource consumption than centralized processing

- → compare
 - construct two topologies
 - \bullet distributed case: 10 instances as data sinks for the WSNs + 1 instance as fog node
 - centralized case: 1 instance as fog node and data sink for the WSNs
 - simulate
 - insert sensor samples
 - process 8 different SPARQL queries

Concept 00000 Evaluation 0000

Conclusion

Visualization

MSN of parking sensors that cover parking area n

Root device for the DODAG and operator graphs

() Device

Device with parking

Device with DBMS instance

Available link

RPL DODAG link

Concept 00000 Evaluation 00•0

Conclusion

Simulation Results

	Central	ized Case	Distributed Case		
	Sent Packages	Kilobytes Traffic	Sent Packages	Kilobytes Traffic	
Only Sample Inserts	500	724	29060	9330	
Q1 Listing A.2	500	724	29080	9451	
Q2 Listing A.3	500	724	29080	9384	
Q3 Listing A.4	500	724	29132	9459	
Q4 Listing A.5	500	724	29080	9431	
Q5 Listing A.6	500	724	29118	9413	
Q6 Listing A.7	500	724	29216	9737	
Q7 Listing A.8	500	724	29216	9761	
Q8 Listing 3.5	500	724	29216	9726	

Concept

Evaluation

Conclusi

Result Analysis

- distributed case is worse due to the current sensor data distribution
 - inserting a sample causes up to 66 messages
- without sensor data distribution: could perform better than centralized case

	Central	ized Case	Distributed Case (Dummy)		
	Sent Packages	Kilobytes Traffic	Sent Packages	Kilobytes Traffic	
Only Sample Inserts	500	724	500	258	

- distributed query processing can have a maximum of 724 258 = 466 kilobytes of traffic
- query processing traffic is always less than 466 kilobytes!

Concept 00000 Evaluation 2000 Conclusion

Summary and Future Work

- summary
 - new test environment for the development of IoT DBMS
 - new protocol design for distributed query processing
- future work
 - optimize sensor data distribution
 - optimize package sizes
 - compare execution times