Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №3 по дисциплине «Основы профессиональной деятельности» Выполнение циклических программ Вариант №3272

Выполнил:

Дядев Владислав Александрович

Группа Р3131

Проверила:

Остапенко Ольга Денисовна

Санкт-Петербург 2025

Содержание

Задание	3
Порядок выполнения	
Исходная программа	
Описание программы	
Область представления	
Область допустимых значений	
Расположение в памяти ЭВМ	
Адреса первой и последней выполняемых команд программы	
Таблица трассировки	
Вывол	

Задание

Вариант №31286

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы. Вариант задания представлен на Рисунок 1.

5C2:	05D9	5D0:	F401
5C3:	0200	5D1:	CE04
5C4:	E000	5D2:	0400
5C5:	E000	5D3:	7EF1
5C6:	+ AF80	5D4:	F901
5C7:	0740	5D5:	EEEF
5C8:	0680	5D6:	85C4
5C9:	EEFB	5D7:	CEF6
5CA:	AF04	5D8:	0100
5CB:	EEF8	5D9:	F300
5CC:	4EF5	5DA:	1300
5CD:	EEF5	5DB:	D5CC
5CE:	ABF4	5DC:	0280
5CF:	0480	l	

Рисунок 1 – Задание

Порядок выполнения

Исходная программа

Адрес	Код	Мнемоника	Комментарии			
	команды					
5C2	05D9	-first_el	Адрес первого элемента массива			
5C3	0200	-last_el	Адрес текущего элемента массива			
5C4	E000	-count_el	Длина массива			
5C5	E000	-result	Результат			
5C6	AF80	LD #80	Прямая загрузка AC = FF80			
5C7	0740	DEC	Декремент AC – 1 => AC			
5C8	0680	SWAB	Обмен ст. и мл. байта AC7AC0 ⇔ AC15AC7			
5C9	EEFB	ST(IP-5)	Сохранение значения АС в ячейку (5С5) AC => MEM(5C5)			
5CA	AF04	LD #04	Прямая загрузка $AC = 0004$			
5CB	EEF8	ST(IP-8)	Сохранение значения AC в ячейку (5C4) $AC \Rightarrow MEM(5C4)$			
5CC	4EF5	ADD(IP-B)	Прибавление значения ячейки (5C2) к AC $AC + MEM(5C2) \Rightarrow AC$			
5CD	EEF5	ST(IP-B)	Сохранение значения АС в ячейку (5С3) AC => MEM(5C3)			
5CE	ABF4	LD -(IP-C)	Косвенная автодекрементная загрузка MEM(5C3) - 1 => MEM(5C3) MEM(5C3) => AC			
5CF	0480	ROR	AC и C сдвигается вправо AC0 => C, C => AC15			
5D0	F401	BCS 01	Если C == 1, то IP + 1 => IP			
5D1	CE04	JUMP(IP+4)	Прямой относительный прыжок в IP(5D6)			
5D2	0400	ROL	AC и C сдвигается влево AC15 => C, C => AC0			
5D3	7EF1	CMP(IP-F)	Установить флаги по результату AC – MEM(5C5)			
5D4	F901	BGE 01	Если N⊕V == 0, то IP + 1 => IP			
5D5	EEEF	ST(IP-11)	Сохранение значения АС в ячейку (5С5) AC => MEM(5C5)			
5D6	85C4	LOOP 5C4	MEM(5C4) − 1 => MEM(5C4) Если MEM(5C4) <= 0, то IP + 1 => IP			
5D7	CEF6	JUMP(IP-A)	Прямой относительный прыжок в IP(5CE)			
5D8	0100	HLT	Остановка			
5D9	F300	-	Элемент массива №1			
5DA	1300	-	Элемент массива №2			
5DB	D5CC	-	Элемент массива №3			
5DC	0280	-	Элемент массива №4			

Описание программы

Программа находит минимальное нечётное число из массива.

Область представления

first el, last el – 11-разрядные числа (адрес БЭВМ).

 $count_el$, result, arr[i] — знаковые 16-разрядные числа.

Область допустимых значений

count el \in [1; 127]

result, $arr[i] \in [-2^{15}; 2^{15}-1]$

first $el \in [1; 5C2\text{-count } el] \cup [5D9; 7FF]$

last el ∈ [first el; first el+count el-1]

Расположение в памяти ЭВМ

Исходные данные: 5D9, 5DA, 5DB, 5DC

Программа: 5C6-5D8

Результат: 5С5

Адреса первой и последней выполняемых команд программы

Адрес первой: 5С6

Адрес последней: 5D8

Таблица трассировки

Выполняемая		Содержимое регистров процессора после выполнения								Ячейка,	
кома	анда	команды			содержимое						
								кото	рой		
								измен	илось		
										после	
										выполнения	
										кома	нды
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый
											код
5C6	AF80	5C7	AF80	5C6	FF80	000	FF80	FF80	1000		
5C7	0740	5C8	0740	5C7	0740	000	05C7	FF7F	1001		
5C8	0680	5C9	0680	5C8	0680	000	05C8	7FFF	0001		
5C9	EEFB	5CA	EEFB	5C5	7FFF	000	FFFB	7FFF	0001	5C5	7FFF
5CA	AF04	5CB	AF04	5CA	0004	000	0004	0004	0001		
5CB	EEF8	5CC	EEF8	5C4	0004	000	FFF8	0004	0001	5C4	4
5CC	4EF5	5CD	4EF5	5C2	05D9	000	FFF5	05DD	0000		
5CD	EEF5	5CE	EEF5	5C3	05DD	000	FFF5	05DD	0000	5C3	05DD
5CE	ABF4	5CF	ABF4	5DC	0280	000	FFF4	0280	0000	5C3	05DC
5CF	0480	5D0	0480	5CF	0480	000	05CF	0140	0000		
5D0	F401	5D1	F401	5D0	F401	000	05D0	0140	0000		
5D1	CE04	5D6	CE04	5D1	05D6	000	0004	0140	0000		
5D6	85C4	5D7	85C4	5C4	0003	000	0002	0140	0000	5C4	3
5D7	CEF6	5CE	CEF6	5D7	05CE	000	FFF6	0140	0000		
5CE	ABF4	5CF	ABF4	5DB	D5CC	000	FFF4	D5CC	1000	5C3	05DB
5CF	0480	5D0	0480	5CF	0480	000	05CF	6AE6	0000		
5D0	F401	5D1	F401	5D0	F401	000	05D0	6AE6	0000		
5D1	CE04	5D6	CE04	5D1	05D6	000	0004	6AE6	0000		
5D6	85C4	5D7	85C4	5C4	0002	000	0001	6AE6	0000	5C4	2
5D7	CEF6	5CE	CEF6	5D7	05CE	000	FFF6	6AE6	0000		
5CE	ABF4	5CF	ABF4	5DA	1300	000	FFF4	1300	0000	5C3	05DA
5CF	0480	5D0	0480	5CF	0480	000	05CF	0980	0000		
5D0	F401	5D1	F401	5D0	F401	000	05D0	0980	0000		
5D1	CE04	5D6	CE04	5D1	05D6	000	0004	0980	0000		
5D6	85C4	5D7	85C4	5C4	0001	000	0000	0980	0000	5C4	1
5D7	CEF6	5CE	CEF6	5D7	05CE	000	FFF6	0980	0000		
5CE	ABF4	5CF	ABF4	5D9	F300	000	FFF4	F300	1000	5C3	05D9
5CF	0480	5D0	0480	5CF	0480	000	05CF	7980	0000		
5D0	F401	5D1	F401	5D0	F401	000	05D0	7980	0000		
5D1	CE04	5D6	CE04	5D1	05D6	000	0004	7980	0000		

5D6	85C4	5D8	85C4	5C4	0000	000	FFFF	7980	0000	5C4	0
5D8	0100	5D9	0100	5D8	0100	000	05D8	7980	0000		

Вывод

В ходе данной лабораторной работы я познакомился с командами ветвлений и циклов, а также научился работать с различными режимами адресации и массивами.