

GPU BOOTCAMP

Winter School on High Performance Computing, IITK Dec, 2019

GPU BOOTCAMP

What to expect?

- Fundamentals of GPU Computing
- Ways to GPU Programming
- Hands-on Session: From Simple to Real World Application Porting

INTRODUCTION TO GPU COMPUTING

What to expect?

- Parallel Programming: Perspective
- Evolution of Computing
- Fundamentals of GPU Architecture
- Broad view on GPU Stack
- Ways to GPU Computing
- Good starting point

WHAT IS PARALLEL PROGRAMMING?

"Performance Programming"

Parallel programming involves exposing an algorithm's ability to execute in parallel

This may involve breaking a large operation into smaller tasks (task parallelism)

Or doing the same operation on multiple data elements (data parallelism)

Parallel execution enables better performance on modern hardware

WHAT IS PARALLEL PROGRAMMING?

A real world example

A professor and his 3 teaching assistants (TA) are grading 1,000 student exams

This exam has 8 questions on it

Let's assume it takes 1 minute to grade 1 question on 1 exam

To maintain fairness, if someone grades a question (for example, question #1) then they must grade that question on all other exams

The following is a sequential version of exam grading

SEQUENTIAL SOLUTION

SEQUENTIAL SOLUTION

PARALLEL SOLUTION

PIPELINE

PIPELINE STALL

STATE OF THE ART 2019

CRAY-1LATENCY-HIDING SINGLE VECTOR CPU, 160 MFLOPS PEAK

CRAY-2

4 LATENCY-HIDING VECTOR CPUS, 2 GFLOPS PEAK, 1985

CRAY T3D DEC ALPHA EV4 MICROPROCESSORS, 1 TFLOPS PEAK, 1993

LIFE AFTER MOORE'S LAW

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

RISE OF GPU COMPUTING

CUDA PLATFORM

oeople

GPU Users

Domain Specialists Problem Specialists

New Developers and Optimization Experts

Domain Doscriptors

Applications

Frameworks

Libraries

Directives and Standard Languages

Extended Standard Languages

Ease of use

Specialized Performance

custerns

Programming Model, GPU Architecture, System Architecture, Tools

HOW GPU ACCELERATION WORKS

ACCELERATED COMPUTING

CPU

Optimized for Serial Tasks

GPU Accelerator

Optimized for Parallel Tasks

CPU IS A LATENCY REDUCING ARCHITECTURE

CPU Optimized for Serial Tasks

CPU Strengths

- Very large main memory
- Very fast clock speeds
- Latency optimized via large caches
- Small number of threads can run very quickly

CPU Weaknesses

- Relatively low memory bandwidth
- Cache misses very costly
- Low performance/watt

GPU IS ALL ABOUT HIDING LATENCY

GPU Strengths

- High bandwidth main memory
- Significantly more compute resources
- Latency tolerant via parallelism
- High throughput
- High performance/watt

GPU Weaknesses

- Relatively low memory capacity
- · Low per-thread performance

GPU Accelerator

Optimized for Parallel Tasks

GIANT LEAP FOR AI & HPC VOLTA WITH NEW TENSOR CORE

21B xtors | TSMC 12nm FFN | 815mm²

5,120 CUDA cores

7.8 FP64 TFLOPS | 15 FP32 TFLOPS

NEW 120 Tensor TFLOPS

20MB SM RF | 16MB Cache

32GB HBM2 @ 900 GB/s

300 GB/s NVLink

SPEED V. THROUGHPUT

Speed

Throughput

Which is better depends on your needs...

HOW TO START WITH GPUS

- 1. Review available GPUaccelerated applications
- 2. Check for GPU-Accelerated applications and libraries
- 3. Add OpenACC Directives for quick acceleration results and portability
- 4. Dive into CUDA for highest performance and flexibility

GPU-ACCELERATED APPLICATIONS

620+ Applications Across Domains

- Life Sciences
- Manufacturing
- Physics
- Oil & Gas
- Climate & Weather
- Media & Entertainment

- Deep Learning
- Federal & Defense
- Data Science & Analytics
- Safety & Security
- Computational Finance
- ► Tool & Management

GPU ACCELERATED LIBRARIES

"Drop-in" Acceleration for Your Applications

More libraries: https://developer.nvidia.com/gpu-accelerated-libraries

WHAT IS OPENACC

Programming Model for an Easy Onramp to GPUs

Directives-based programming model for parallel computing

```
Main()
{
    <serial code>
        #pragma acc kernels
        {
            <parallel code>
        }
    }
}
```

performance portability on CPUs and GPUs

Powerful & Portable

Simple

Read more at www.openacc.org/about

SINGLE PRECISION ALPHA X PLUS Y (SAXPY)

GPU SAXPY in multiple languages and libraries

Part of Basic Linear Algebra Subroutines (BLAS) Library

$$z = \alpha x + y$$

x, y, z: vector

 α : scalar

SAXPY: OPENACC COMPILER DIRECTIVES

Parallel C Code

```
void saxpy(int n,
           float a,
           float *x,
           float *y)
#pragma acc kernels
  for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
saxpy(1 << 20, 2.0, x, y);
```

Parallel Fortran Code

```
subroutine saxpy(n, a, x, y)
  real :: x(:), y(:), a
 integer :: n, i
!$acc kernels
 do i=1,n
   y(i) = a*x(i)+y(i)
 enddo
!$acc end kernels
end subroutine saxpy
! Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
```


SAXPY: CUBLAS LIBRARY

Serial BLAS Code

```
int N = 1<<20;
...

// Use your choice of blas library

// Perform SAXPY on 1M elements
blas_saxpy(N, 2.0, x, 1, y, 1);</pre>
```

Parallel cuBLAS Code

```
int N = 1 << 20:
cublasInit();
cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);
// Perform SAXPY on 1M elements
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);
cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);
cublasShutdown();
```

You can also call cuBLAS from Fortran, C++, Python, and other languages:

http://developer.nvidia.com/cublas

SAXPY: CUDA C

Standard C

Parallel C

```
___global___
void saxpy(int n, float a,
      float *x, float *y)
  int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
int N = 1 << 20:
cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);
// Perform SAXPY on 1M elements
saxpy <<< 4096, 256>>> (N, 2.0, d_x, d_y);
cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);
```


SAXPY: THRUST C++ TEMPLATE LIBRARY

Serial C++ Code (with STL and Boost)

```
int N = 1 << 20;
std::vector<float> x(N), y(N);
// Perform SAXPY on 1M elements
std::transform(x.begin(), x.end(),
               y.begin(), y.end(),
          2.0f * 1 + 2):
```

Parallel C++ Code

```
int N = 1 << 20;
thrust::host_vector<float> x(N), y(N);
thrust::device_vector<float> d_x = x;
thrust::device_vector<float> d_y = y;
// Perform SAXPY on 1M elements
thrust::transform(d_x.begin(), d_x.end(),
                  d_y.begin(), d_y.begin(),
                  2.0f * _1 + _2);
```


SAXPY: CUDA FORTRAN

Standard Fortran

```
module mymodule contains
  subroutine saxpy(n, a, x, y)
    real :: x(:), y(:), a
    integer :: n, i
    do i=1,n
     y(i) = a*x(i)+y(i)
    enddo
  end subroutine saxpy
end module mymodule
program main
  use mymodule
  real :: x(2**20), y(2**20)
  x = 1.0, y = 2.0
  ! Perform SAXPY on 1M elements
  call saxpy(2**20, 2.0, x, y)
end program main
```

Parallel Fortran

```
module mymodule contains
  attributes(global) subroutine saxpy(n, a, x, y)
    real :: x(:), y(:), a
    integer :: n, i
    attributes(value) :: a, n
   i = threadIdx%x+(blockIdx%x-1)*blockDim%x
   if (i \le n) y(i) = a * x(i) + y(i)
  end subroutine saxpy
end module mymodule
program main
  use cudafor; use mymodule
  real, device :: x_d(2**20), y_d(2**20)
 x_d = 1.0, y_d = 2.0
  ! Perform SAXPY on 1M elements
  call saxpy <<<4096,256>>>(2**20, 2.0, x_d, y_d)
end program main
```

SAXPY: PYTHON

Standard Python

```
import numpy as np
def saxpy(a, x, y):
  return [a * xi + yi
          for xi, yi in zip(x, y)]
x = np.arange(2**20, dtype=np.float32)
y = np.arange(2**20, dtype=np.float32)
cpu_result = saxpy(2.0, x, y)
```

Numba: Parallel Python

```
import numpy as np
from numba import vectorize
@vectorize(['float32(float32, float32,
float32)'], target='cuda')
def saxpy(a, x, y):
    return a * x + y
N = 1048576
# Initialize arrays
A = np.ones(N, dtype=np.float32)
B = np.ones(A.shape, dtype=A.dtype)
C = np.empty_like(A, dtype=A.dtype)
# Add arrays onGPU
C = saxpy(2.0, X, Y)
```

ENABLING ENDLESS WAYS TO SAXPY

Developers want to build frontends for:

Java, Python, R, DSLs

Target other processors like:

ARM, FPGA, GPUs, x86

CUDA Compiler Contributed to Open Source LLVM

NVIDIA DEEP LEARNING SOFTWARE STACK

NVIDIA DEEP LEARNING SDK and CUDA

RAPIDS — OPEN GPU DATA SCIENCE

Software Stack Python

CHALLENGES UTILIZING AI & HPC SOFTWARE

Installation Complex, time consuming, and error-prone

NGC

The GPU-Optimized Software Hub

Simplify Deployments with Performance-optimized Containers

Innovate Faster with Ready-to-Use Solutions

Deploy Anywhere

SUMMARY

- Full Stack Optimization is key to performance
- Multiple choices for programming on GPU
- One is not an alternative to other. They co-exisit
- Universal hardware with Software stack is key to GPU computing

