Показатели

Определение 1. Напомним, что число a $npuнa \partial ne ж cum$ $no \kappa a з a me n w$ t (или t является $no \kappa a з a me n e m$ числа a) по модулю n, если t является наименьшим натуральным числом таким, что $a^t \equiv 1 \pmod{n}$.

- **1.** Пусть a принадлежит показателю t по модулю n. Тогда верны следующие утверждения:
- а) числа $1=a^0,\,a^1,\,\ldots,\,a^{t-1}$ различны по модулю n.
- б) $a^d \equiv 1 \pmod{n}$ тогда и только тогда, когда d : t.
- в) $a^d \equiv a^s \pmod n$ тогда и только тогда, когда $d-s \stackrel{.}{:} t$.
- Γ) $\varphi(n)$ делится на t.
- **2.** а) Докажите, что в разложении на простые сомножители числа $2^q 1$, где q 1 простое, любое число будет давать остаток 1 по модулю q.
- б) Выведите из этого, что простых чисел бесконечно много.
- **3.** Докажите, что $\varphi(a^n-1)$ делится на n для натуральных a и n.
- **4.** Пусть p и q простые, q > 5. Известно, что $2^p + 3^p$ делится на q. Докажите, что q > 2p.
- 5. Докажите, что если m степень двойки, то любой простой делитель числа 2^m+1 сравним с 1 по модулю 2m.
- **6.** Найдите все пары простых чисел (p,q) такие, что $5^p + 5^q \\\vdots pq$.
- 7. Докажите, что $2^{n} 1$ не делится на n, n > 1.
- 8. Пусть g первообразный корень по модулю $p,\ p$ —простое. Докажите, что число $a=g^k$ принадлежит показателю $\frac{p-1}{(p-1,k)}$ по модулю p.
- **9.** Докажите, что количество правильных положений кубика Рубика (то есть таких, которые можно получить из исходного положения, где все грани одноцветны) делится на а) 4; б) 3; в) 5; г) 7; д) 11.