

Co-optimizing Integrated Transmission-Distribution Systems using PowerModelsITD.jl

Juan Ospina, *Ph.D*.
Scientist **A-1** Information Systems and Modeling Group
Los Alamos National Laboratory (LANL)

LA-UR-23-26135

Acknowledgements - Team & Funding

- David M. Fobes (A-1 LANL)
- Russell Bent (T-5 LANL)
- Andreas Wächter (Northwestern University)
- Xinyi Luo (Northwestern University)

This work was performed with the support of the U.S.

Department of Energy (DOE) Office of Electricity (OE)

Advanced Grid Modeling (AGM) Research Program under program manager Ali Ghassemian. We gratefully acknowledge Ali's support of this work.

Outline

PES OWER & Energy Society*

- Background & Challenges
- Introduction to PowerModelsITD.jl
- Using PowerModelsITD.jl
- Use Cases & Tests

Background & Challenges

Background

 Conventional electric power systems (EPS) are composed of:

- Generation
- Transmission
- Distribution
- Managed independently by:
 - Transmission system (TSOs)
 - Distribution system operators (DSOs).

Background: TSOs

TSOs traditionally model distribution systems as consumers (loads).

Background: DSOs

• DSOs traditionally regard transmission systems as slack buses with unlimited resources (often modeled as **voltage sources**).

Modeled as <u>three-phase</u> (multiconductor)

Background: Integration of DERs

Distribution systems are becoming more active:

- Integration of Distributed Energy Resources (DERs)
- Integration of Information & Communication Technologies (ICTs).

The **assumption** of <u>distribution</u> being just **passive loads** is **unreasonable** for **optimal** T&D **operation**.

Challenges

- Traditionally owned and operated by separate entities.
- Centralized models may not be scalable and hard to solve. (Assumption)
- Convergence issues with AC OPF (nonlinear, nonconvex formulations)
- Unable to coordinate or co-optimize resources across T&D boundaries

Coordination (Co-optimization) between T&D networks will be imperative for the optimal operation of the (future) power grid.

To fill this gap, we developed a first-of-its-kind tool that supports and enables the Co-optimization of T&D systems

Introduction to PowerModelsITD.jl

InfrastructureModels.jl

Core package for multi-infrastructure modeling and optimization ecosystem

https://github.com/lanl-ansi/InfrastructureModels.jl

Power & Energy Society®

- Open-source tool (Written in Julia)
- Based on LANL multi-infrastructure ecosystem
- Used for modeling and optimizing T&D systems
- Solve steady-state ITD Optimal Power Flow (OPF)
- Evaluate diverse network formulations
- Common research platform for emerging formulations

[1] https://github.com/lanl-ansi/PowerModelsITD.jl

[2] Ospina, J., et al. (2023). Modeling and Rapid Prototyping of Integrated Transmission-Distribution OPF Formulations with PowerModelsITD.jl. IEEE Transactions on Power Systems.

[3] Ospina, J., et al. (2023). On the Feasibility of Market Manipulation and Energy Storage Arbitrage via Load-Altering Attacks. Energies, 16(4), 1670.

https://github.com/lanl-ansi/PowerModelsITD.jl

Problem Specifications

Integrated T&D Power Flow (pfitd)
Integrated T&D Optimal Power Flow (opfitd)

Formulations

ACP-ACPU ACR-ACRU IVR-IVRU NFA-NFAU SOCBFM-LinDis3Flow

Core language feature: <u>Multiple dispatch</u>

PowerModelsITD.jl: Boundaries

$$|V^{D}|[a] \preceq V^{T} = \preceq V^{D}[a]$$

$$|V^{T}| = |V^{D}|[b] \qquad \preceq V^{D}[b] = \preceq V^{D}[a] - 120^{\circ}$$

$$|V^{D}|[c] \qquad \preceq V^{D}[c] = \preceq V^{D}[a] + 120^{\circ}$$

PowerModelsITD.jl: Formulations

NLP Formulations

- ACP-ACPU
 - Power-Voltage, polar coordinates, non-linear (NLP)
- ACR-ACRU
 - Power-Voltage, rectangular coordinates, nonlinear (NLP)
- IVR-IVRU
 - Current-Voltage, rectangular coordinates, nonlinear (NLP)

Linear Approximations

- NFA-NFAU
 - Network Flow Approximation
 - Active power only, lossless, linear (LP)
- BFA-LinDist3Flow
 - Branch Flow Approximation Linear Approximation

Relaxations

- SOCBFM-SOCUBFM
 - Second Order Cone Branch Flow Model Relaxations – W-space.

Hybrid Formulations (Experimental)

- ACR-FOTRU
 - Power-Voltage NLP, rectangular coordinates, First-Order Taylor Approximation
- ACP-FOTPU
 - Power-Voltage NLP, polar coordinates, First-Order Taylor Approximation
- ACR-FBSU
 - Power-Voltage NLP, rectangular coordinates, Forward-Backward Sweep Approximation
- SOCBFM-LinDist3Flow
 - Second Order Cone Branch Flow Model Relaxation W-space.
 - Linear Approximation.

Using PowerModelsITD.jl

Using PowerModelsITD.jl: Files

Transmission file

MATPOWER (".m")
PSS(R)E v33 specification (".raw")

Distribution

Boundary file

```
"transmission_boundary": "5",

"distribution_boundary": "5",

{

"transmission_boundary": "6",

"distribution_boundary": "5",

"distribution_boundary": "5",

"3bus_bal.voltage_source.source"

}
```

JSON (".json")

other proprietary file formats supported via **DiTTo [4]**

OpenDSS (".dss")

(support PowerWorld for PSSE conversions)

[4] "DiTTo (Distribution Transformation Tool)," 2021, Accessed: Aug. 06, 2021. [Online]. Available: https://github.com/NREL/ditto

Using PowerModelsITD.jl: Solving

Case w/ 1 distro. system

```
using PowerModelsITD
import Ipopt
ipopt = Ipopt.Optimizer

# Path for the files
pmitd_path = joinpath(dirname(pathof(PowerModelsITD)), "..")

# Files
pm_file = joinpath(pmitd_path, "test/data/transmission/case5_withload.m")
pmd_file = joinpath(pmitd_path, "test/data/distribution/case3_balanced.dss")
boundary_file = joinpath(pmitd_path, "test/data/json/case5_case3_bal.json")

pmitd_type = NLPowerModelITD{ACPPowerModel, ACPUPowerModel}

result = solve_opfitd(pm_file, pmd_files, boundary_file, pmitd_type, ipopt)
```

Case w/ 2 distro. systems

```
using PowerModelsITD
import Ipopt
ipopt = Ipopt.Optimizer

# Path for the files
pmitd_path = joinpath(dirname(pathof(PowerModelsITD)), "..")

# Files
pm_file = joinpath(pmitd_path, "test/data/transmission/case5_with2loads.m")
pmd_file1 = joinpath(pmitd_path, "test/data/distribution/case3_unbalanced.dss")
pmd_file2 = joinpath(pmitd_path, "test/data/distribution/case3_balanced.dss")
boundary_file = joinpath(pmitd_path, "test/data/json/case5_case3x2_unbal_bal.json")

pmd_files = [pmd_file1, pmd_file2] # vector of files
pmitd_type = NLPowerModelITD{ACPPowerModel, ACPUPowerModel}

result = solve_opfitd(pm_file, pmd_files, boundary_file, pmitd_type, ipopt)

LesnIr = 20JAE_obt[rq(bm_file, pmd_files, boundary_file, pmitd_type, ipopt)
```

Simple User Interface

Easy User Adoption

Using PowerModelsITD.jl: Results

```
iulia> result
Dict{String, Any} with 8 entries:
  "solve time"
                       => 0.12712
  "optimizer"
                       => "Ipopt"
  "termination status" => LOCALLY SOLVED
  "dual status"
                       => FEASIBLE POINT
  "primal status"
                       => FEASIBLE POINT
  "objective"
                       => 18146.3
  "solution"
                       => Dict{String, Any}("multiinfrastructure"=>true, "it"=>Dict{String, Any}("pmd...
                       => -Inf
  "objective lb"
```

Transmission

```
julia> result["solution"]["it"]["pm"]
Dict{String, Any} with 6 entries:
    "baseMVA" => 100.0

"branch" => Dict{String, Any}("af"=>>Dict{String, Any}("af"=>>206.656, "qt"=>-202.276, "pt"=>221.006, "pf"=>-220.308), "4"=>Dict{String, Any}("qf"=>-217.108, "qt"=>221.882, "pt"=>79.0383, "pf"=>-78.3924), "1"=...
"gen" => Dict{String, Any}("4"=>Dict{String, Any}("4"=>Dict{String, Any}("qg"=>-201.205, "pg"=>461.003), "2"=>Dict{String, Any}("qg"=>-201.205, "pg"=>-201.205, "pg
```

Distribution

Boundary

```
julia> result["solution"]["it"]["pmitd"]["boundary"]
Dict{String, Any} with 4 entries:
    "(100001, 5, voltage_source.3bus_unbal.source)" => Dict{String, Any}("pbound_fr"=>[8068.8], "qbound_fr"=>[4367.42])
    "(100001, voltage_source.3bus_unbal.source, 5)" => Dict{String, Any}("pbound_to"=>[-3367.36, -2346.47, -2354.97], "qbound_to"=>[-1355.14, -1507.53, -1504.75])
    "(100002, voltage_source.3bus_bal.source, 6)" => Dict{String, Any}("pbound_to"=>[-2351.62, -2351.62], "qbound_to"=>[-1508.64, -1508.64])
    "(100002, 6, voltage_source.3bus_bal.source)" => Dict{String, Any}("pbound_fr"=>[7054.87], "qbound_fr"=>[4525.93])
```


Use Cases & Tests

Use Cases & Tests: OPF

Taxonomy PNNL Cases [5]

Buses/Nodes: 19,637

(w/ +500 from transmission)

Totals:

Edges: 20,595 (w/ +733

from transmission)

Task Casas		_
Test Cases	N	E
case_r1_25_1	759	762
case_r1_1247_1	3403	3583
case_r1_1247_2	1450	1 527
case_r1_1247_3	168	165
case_r1_1247_4	970	981
case_r2_25_1	16 17	16 81
case_gc_1247_1	96	93
case_r2_1247_1	17 31	17 50
case_r2_1247_2	1 207	1275
case_r4_1247_2	1 155	1202
case_r5_25_1	3116	3250
case_r5_35_1	1435	1 505
case_r5_1247_4	20 30	2088

Totals: 19,137 19,862

55

Use Cases & Tests: OPF Results

CPU: x6 Cores @ 2.80 Ghz

RAM: 128 GB

Ipopt vers.: 3.14.4 **MUMPS vers**.: 5.4.1

Case PNNL - All Regions			
Formulation	\$/hr	Time (s)	Iterations
ACP-ACPU	422,095.2350	525.154	94
IVR-IVRU	422,095.2348	360.954	99
NFA-NFAU	412,286.7567	10.860	24
ACR-FBSUBF	422,074.7218	226.852	97
BFA-LinDist3	412,286.7567	146.084	45
SOCBF-LinDist3	421,529.7893	241.203	75

Use Cases & Tests: Other Use Cases

T&D
Market Manipulation via
Load-Altering Attacks [6]

Hosting Limit Capacity for T&D

T&D Coordination
Transformer Deferral

[6] Ospina, J., Fobes, D. M., & Bent, R. (2023). On the Feasibility of Market Manipulation and Energy Storage Arbitrage via Load-Altering Attacks. *Energies*, *16*(4), 1670. url: https://www.mdpi.com/1996-1073/16/4/1670

Thank you Questions?

Contacts:

- Juan Ospina: jjospina@lanl.gov
- David M. Fobes: dfobes@lanl.gov

