Scalar Quantization with Lossy Binary Coding for Gaussian Sources

Melanie F. Pradier, Pablo M. Olmos, Fernando Perez-Cruz

Universidad Carlos III of Madrid

October 7, 2013

Motivation

We need Data Compression!

Focus: Lossy Source Coding

- Lossy Source Coding
 - Rate Distortion Theory
 - State of the Art
- Scalar Quantization
 - Traditional Approach
 - Our Approach
- Results

Rate Distortion Theory

• Information theoretical bounds for lossy compression [Cover]

- $X_1, \ldots, X_n \sim p(x)$ i.i.d
- information rate R
- distortion $D = E\left[d\left(X,\hat{X}\right)\right]$
- $R(D) = \min_{p(\hat{x}|x): D \leq D_{max}} I(X, \hat{X})$

Rate Distortion Theory Examples of RD bounds

For Bernoulli source:

$$R(D) = \begin{cases} H(p) - H(D), & 0 \le D \le \min\{p, 1 - p\} \\ 0 & D > \min\{p, 1 - p\} \end{cases}$$

• For Gaussian source:

$$R(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D}, & 0 \le D \le \sigma^2 \\ 0, & D > \sigma^2 \end{cases}$$

Rate Distortion Theory

min
$$D$$

 $s.t.R \leq R_{max}$

$$\min R$$

$$s.t.D \le D_{max}$$

Rate Distortion Theory

$$R(D) = \min_{p(\hat{x}|x): D \le D_{max}} I(X, \hat{X})$$

Interesting Facts

- Duality between Channel Coding and Source Coding
 - Package Problem Vs Covering Problem
- Vector Quantization optimal (even if inputs are independent!)
 - Reason: geometry, typicality

State of the Art

• Problem formally defined in 1959 by Shannon

In Theory: Achievability Results

- Inspired in Error Correcting Codes
- Most of works for the BSS
- Only some codes proved to achieve the RD bound:
 - Hamming codes
 - LDPCs, regular LDGMs
 - MN codes
 - •

In Practice: Codes with good Performance

- Vector Quantization
 - Trellis-based quantizers
 - Lattice codes
 - Sparse codes
 - •
 - ⇒ although optimal, very expensive
- Scalar Quantization

0/4

Is Scalar Quantization a Good Idea? [Ziv]

- \bullet any input distribution p(x)
- mean-square error constraint $d = (x \hat{x})^2$
- uniform randomized quantizer + binary entropy encoder

Theorem 1: For any probabilistic n-vector source
$$H(Q_1(X+Z)|Z) \leq H_n(\epsilon) + 0.754 \text{ bits/sample}$$
 and hence, for stationary sources
$$\lim_{n \to \infty} H(Q_1(X+Z)|Z) \leq R(\epsilon) + 0.754 \text{ bits/sample}.$$

	Performance	Complexity
Vector Quantization	:)	:(:(
Scalar Quantization	:	:)

- Lossy Source Coding
 - Rate Distortion Theory
 - State of the Art
- Scalar Quantization
 - Traditional Approach
 - Our Approach
- Results

Scalar Quantization

Typical Approach

[Yao Wang, Brooklyn]

Our Approach

Examples

14/27

Theoretical Formulation

What is the distortion D?

- Lossless: $D = \sum_{A_i} \int_{t_{i-1}}^{t_i} (x r_i)^2 \phi(x) dx$ with $\phi(x) \sim N(0, \sigma^2)$
- Lossy: $D = \sum_{A_i} \sum_{A_j} pr(A_i \to A_j) \cdot \int_{t_{i-1}}^{t_j} (x r_j)^2 \phi(x) dx$

Theoretical Formulation

What is the rate R?

- $R = R_a \cdot R_b$
- We control $R_b \Rightarrow P_{err}$ for each bit $R_b = H(p) - H(P_{err})$

• If we have many bits, different rate allocation $R_b = \alpha_1 \cdot R_{b_1} + \ldots + \alpha_K \cdot R_{b_{\nu}}$

Theoretical Formulation

Optimization Problem

min
$$D = \sum_{A_i} \sum_{A_j} pr(A_i \to A_j) \cdot \int_{t_{j-1}}^{t_j} (x - r_j)^2 \phi(x) dx$$

$$s.t.R_{fixed} = R_q \cdot \sum_{k} \alpha_k [H(p_k) - H(D_{b,k})]$$

- Lossy Source Coding
 - Rate Distortion Theory
 - State of the Art
- Scalar Quantization
 - Traditional Approach
 - Our Approach
- Results

Results: Performance

Results: Asymptotic Behavior

Results: Comparison with Lossless case

Results: Importance of Labels

Results: Optimal Threshold and Binary Error Probability

Results: Optimal Thresholds and Alphas

Conclusion

Outlook

- New approach: Scalar quantization + lossy binary compressor
 - Allowing binary distortion improves overall performance
 - Outperforms squema with lossless compressor
- Asymptotic behavior empirically
- Labeling matters, thresholds come from infinity

Further research topics

- Can we prove an upper bound for the whole D range?
- Extend approach for variable length quantizers
- Different input sources and distortion measures

Bibliography

- Thomas M. Cover and Joy A. Thomas, Elements of Information Theory, Chapter 13, 1991
- Toby Berger, Jerry D. Gibson, Lossy Source Coding, 1998
- Daniel Marco, David L. Neuhoff, Low-Resolution Scalar Quantization for Gaussian Sources and Squared Error, 2006
- Jacob Ziv, On Universal Quantization, 1985
- Herbert Gish and John N. Pierce, Asymptotically Efficient Quantizing, 1968
- Robert M. Gray, Vector Quantization, 1984

Thank you!

Looking forward to your questions...