Deep Learning

CSE 641

Learning Machines - Examples

- What are learning machines and how are they modelled?
 - Essentially a function mapping
- Binary Classification
 - Detection (Spam/no Spam; bomb/no bomb)

$$f(x,\alpha): \mathbb{R}^n \to \{-1,1\}$$

- Multi-class Classification
 - ADAS systems (pedestrians, vehicles, barricades,...)

$$f(x,\alpha): \mathbb{R}^n \to \{0,1,2,\ldots,k\}$$

$$\alpha \in \Lambda$$

Some parameters governing the function f.

Can be abstract parameters like: one or several thresholds one or several hyperplanes

No. of neurons + weights

Learning Machines - Examples

Regression

 Predict [avg. enrolment in 2017, CGPA] based on [current enrolment, grade, job offer, package]

$$f(x,\alpha): \mathbb{R}^n \to \mathbb{R}^m_+$$

Density Estimation

$$p(x;\alpha): \mathbb{R}^n \to \mathbb{R}_+, \ \int_{-\infty}^{\infty} p(x;\alpha) \ dx = 1$$

$$\alpha \in \Lambda$$

Some parameters governing the function f.

Can be abstract parameters like:

Degree of polynomial + coefficients

Mean, variance, skewness, etc.

Mixture of Gaussians

Mixture of heterogeneous densities (uniform + exponential)

Representations Matter

Traditional Recognition Approach

Computer vision features

and many others:

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH,

Depth: Repeated Composition

Figure 1.2

Computational Graphs

Figure 1.3

Machine Learning and AI

Figure 1.4

Representation Learning Example: AutoEncoders

Bengio et al., NIPS'07; Vincent et al., ICML'08

Slide: R. Fergus

Learning Multiple Components

Course Administration

Required Prerequisites

- Machine Learning / Statistical Machine Learning
- Programming in Python
 - You will learn PyTorch in the Google Colab environment

Course Outcomes

- Understand various deep learning models such CNN, Autoencoders, RNN etc.
- Analyze various applications solved through the use of deep learning models
- Being able to design and implement their own deep learning models for the problem of their choice
- Course webpage:
 - Google Classroom: <u>Deep Learning CSE 641</u>
 - Class code: luia35e

People

- Instructors:
 - Dr. Saket Anand
 - Office Hours: Mondays 11:30AM-12:30PM, B-410 or by appointment

- TAs
 - Pravin Nagar
 - Shiv Kumar Gehlot
 - Shagun Uppal
 - Vishaal Udandarao

Reading Material

- Reference Books (for basics)
 - Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
 - Neural Networks: Tricks of the Trade Second Edition

 Most reading material will be from research papers published in NeurIPS, ICML, CVPR, ICCV, INTERSPEECH, etc.

Tentative Schedule

- Convolutional Neural Networks
 - Architectures, Optimization and Applications (2 weeks)
- Optimization of Deep Networks (1 week)
 - Loss Functions & Optimizers
 - Practical Tips: Dropout, BatchNorm, Instance Norm, Group Norm, Spectral Norm, etc.
- Recurrent Neural Networks (2 weeks)
 - LSTMs, Attention, CNN-LSTM architectures
- Transformers (1 week)

- Autoencoders
 - Stacked and Denoising
- Generative Models (3 weeks)
 - Variational Autoencoders (VAE)
 - Disentangled Representations
 - Generative Adversarial Networks (GAN)
- Domain Adaptation and Transfer Learning (2 week)
- Other Applications
 - Metric Learning

Grading Scheme

- Form groups of three
- Each group works on Assignment and Project
- Relative Grading
 - More focus on improving accuracy / performance

Type of Evaluation	% Contribution in Grade
Assignment	20
Project	25
Quiz (2)	10
Class Participation	10
Mid-sem	15
End-sem	20

Operational Details

- Form groups of three in week 2
 - Choose wisely as the groups won't change throughout the semester
- HW Assignments
 - Each topic will be accompanied with an appropriate task and dataset
- Class Presentations
 - Research papers will be provided every two weeks or so
 - Random calling of groups for 5 minute presentation per paper
 - Exam / Quiz questions could be based on assigned papers
- Course Project
 - Semester long project

Tentative HW Assignment

- HW-1 : CNN
 - Animal Detection / Traffic Light Detection
- HW-2 : RNN/LSTM
 - Image Captioning / VQA
- HW-3: Variational Autoencoders
 - Generative Models + Disentangling
- HW-4 : GANs
 - Generative Models + Domain Adaptation
- Project
 - End-to-end deep network training for a problem of your choice