

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 15 ณ มหาวิทยาลัยบูรพา

ข้อสอบข้อที่ 1 จากทั้งหมด 3 ข้อ วันพุธที่ 5 มิถุนายน 2562 เวลา 9.00-12.00 น.

เกาทัณฑ์ประชันแม่น (Archery)

เกาทัณฑ์ กุทัณฑ์ โกทัณฑ์ หรือธนู เป็นอาวุธที่มนุษย์ประดิษฐ์ขึ้นมาตั้งแต่ดึกดำบรรพ์เพื่อใช้สำหรับ ป้องกันตัว ล่าสัตว์ หรือการต่อสู้ในสงคราม ต่อมาการยิงเกาทัณฑ์หรือยิงธนูได้กลายเป็นกีฬา กีฬายิงธนูเป็น กีฬาที่เน้นความแข็งแรงและใช้สมาธิเป็นหลัก ซึ่งเริ่มมีการบรรจุประเภทการแข่งขันยิงธนูในโอลิมปิกในสมัย โบราณแต่ถูกยกเลิกไป แต่ได้รับการบรรจุใหม่ในกีฬาโอลิมปิกปี 1972 ณ กรุงมิวนิค ประเทศเยอรมนี โดยกีฬา ยิงธนูมีการแข่งขันหลายประเภท เช่น ยิงเป้าเล็ก ๆ เพื่อดูความแม่นยำ ยิงไกลเพื่อดูระยะยิง หรือแข่งยิงธนูบน สกีซึ่งมีต้นกำเนิดมาจากประเทศในแถบสแกนดิเนเวีย เนื่องจากในปีนี้ประเทศไทยเป็นเจ้าภาพกีฬาเกาทัณฑ์ ประชันแม่น และสนามการแข่งขันกีฬายิงธนู คือ ศูนย์กีฬามหาวิทยาลัยบูรพาได้ออกแบบการแข่งขันให้ผู้เข้า แข่งขันแต่ละคนจะต้องยิงลูกธนูลอดผ่านรูบนกล่องกระดาษโดยมีเงื่อนไข ดังต่อไปนี้

- 1. ผู้เข้าแข่งขันต้องยิงธนูให้เข้าเป้า โดยลูกธนูจะวิ่งเป็นเส้นตรงแนวราบเสมอ
- 2. จากจุดยิงธนูถึงเป้าจะมีอุปสรรคเป็นกล่องที่มีขนาดเท่ากันวางขวางจำนวน N แถวเรียงต่อกันในแนวยาว แต่ละแถวอาจจะมีจำนวนกล่อง 1 กล่องหรือมากกว่า เรียงซ้อนกันในแนวสูง โดยแต่ละแถวอาจมีกล่อง ซ้อนเป็นจำนวนเท่ากันหรือแตกต่างกันก็ได้ เรียกแถวที่อยู่ใกล้ผู้ยิงธนูที่สุดว่าแถวที่หนึ่ง แถวที่อยู่ถัด ออกไปว่าแถวที่สอง ไปจนถึงแถวที่อยู่ใกล้เป้าที่สุดว่าแถวที่ N และแต่ละแถวจะเรียกกล่องที่อยู่ล่างสุดว่า กล่องที่หนึ่ง เรียกกล่องที่ซ้อนทับกล่องถัดมาว่ากล่องที่สอง กล่องที่สามไปเรื่อย ๆ จนถึงกล่องบนสุด
- 3. แต่ละแถวนั้นจะ**มีกล่องเพียง 1 กล่องเท่านั้น ที่มีรูอยู่ตรงกลางกล่อง**ซึ่งสามารถยิงลูกธนูให้ผ่านได้
- 4. ลุกธนูจะต้องวิ่งจากจุดยิงธนูผ่านกล่องที่มีรู**ทุกแถว**ไปยังเป้า
- 5. ผู้เข้าแข่งขันสามารถปรับระดับของกล่องที่มีรูในแต่ละแถวได้ โดยการหยิบ**กล่องด้านล่าง**ออก**ทีละกล่อง** แล้วเอาไปต่อข้างบนสุดในแถวเดียวกันเท่านั้น และสามารถปรับระดับความสูงของตำแหน่งผู้เข้าแข่งขัน และเป้าได้

หมายเหตุ ผู้เข้าแข่งขันสามารถปืนบันไดเพิ่มความสูงหรือนอนยิง เพื่อยิงธนูตามต้องการได้

6. ผลแพ้ชนะจะประเมินจากการยิงเข้าเป้า (ผู้เข้าแข่งขันจะยิงเข้าเป้าก็ต่อเมื่อยิงลูกธนูเป็นเส้นตรงแนวราบ ลอดผ่านกล่องที่มีรูทุกแถว) และ**จำนวนครั้งที่น้อยที่สุด**ในการเลื่อนกล่อง (การปรับระดับความสูงของ ตำแหน่งผู้เข้าแข่งขันและเป้าไม่นำมาคิดเป็นผลแพ้ชนะ)

งานของคุณ จงเขียนโปรแกรมเพื่อคำนวณหาจำนวนของค**รั้ง**ที่น้อยที่สุด ที่ต้องหยิบแต่ละกล่องออกจาก ล่างสุดแล้วเอาไปต่อข้างบนสุดในแถวรวมกันทุก ๆ แถว เพื่อทำให้ผู้เข้าแข่งขันสามารถยิงลูกธนูลอดผ่านกล่อง ทุกแถวและเข้าเป้าได้

ภาพที่ 1 และ 2 เป็นภาพประกอบตัวอย่างที่ 1

ภาพที่ 1 ภาพเริ่มต้นการแข่งขัน

จากภาพที่ 1 แถวที่หนึ่งให้ดึงกล่องข้างล่างออก**หนึ่งกล่อง**แล้วนำไปต่อข้างบน และแถวที่สามให้ดึง กล่องที่หนึ่งและกล่องที่สองจากด้านล่างออก**ทีละครั้ง**แล้วนำไปวางต่อข้างบน จะได้ดังภาพที่ 2

ภาพที่ 2 ภาพผลลัพธ์หลังการขยับกล่อง

ข้อมูลนำเข้า

บรรทัดที่ 1	จำนวนเต็ม 1 จำนวน คือ N ที่แสดงถึงจำนวนแถวของกล่อง $1 \leq N \leq 500,\!000$
บรรทัดที่ 2	จำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ระบุจำนวนกล่องที่วางซ้อนกัน c_i
	ของแถวที่ i
	กำหนดให้ $1 \leq c_i \leq 10^9$ เมื่อ $i=1,,N$
บรรทัดที่ 3	จำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง โดยแต่ละจำนวน p_i จะแสดงถึง
	ตำแหน่งของกล่องที่มีรู (นับจากด้านล่าง) ที่ลูกธนูสามารถลอดผ่านได้ของแถวที่ $m{i}$
	กำหนดให้ $1 \leq p_i \leq c_i$ เมื่อ $i=1,$, N

ข้อมูลส่งออก

1 บรรทัด	จำนวนเต็ม 2 จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ประกอบด้วย
	จำนวนเต็ม P แทนตำแหน่งของกล่องที่มีรูในทุกแถว (นับจากด้านล่าง)
	และจำนวนเต็ม M แทนจำนวนของ <u>ครั้ง</u> ที่น้อยที่สุดที่แต่ละกล่องต้องถูกหยิบออกแล้วเอาไป
	ต่อข้างบนสุดในแถว เพื่อทำให้ลูกธนูสามารถลอดผ่านได้
	หมายเหตุ หากมีหลายคำตอบให้แสดงค่า P ที่น้อยที่สุดที่เป็นไปได้

หมายเหตุ ข้อมูลส่งออกมีโอกาสที่เกินขอบเขต ดังนั้นแนะนำให้ใช้ตัวแปรประเภท "long long" การแสดงผล และอ่านค่าตัวแปรประเภทดังกล่าวสามารถกระทำได้โดยใช้รูปแบบ "%lld"

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก
3	2 3
4 6 5	
3 2 4	

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
3	1 4
5 8 6	
2 4 1	

ข้อมูลนำเข้า	ข้อมูลส่งออก
5	3 9
7 9 6 8 5	
45135	

ตัวอย่างที่ 4

ข้อมูลนำเข้า	ข้อมูลส่งออก
5	3 8
9 4 5 6 8	
4 4 5 1 3	

ตัวอย่างที่ 5

ข้อมูลนำเข้า	ข้อมูลส่งออก
6	1 3
2 2 2 2 2 2	
1 2 1 2 1 2	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	512 MB
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการตรวจให้คะแนนโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อกำหนดอื่น ๆ

้ ผู้เข้าแข่งขันต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ ดังนี้

ภาษา C	ภาษา C++	
/*	/*	
TASK: archery.c	TASK: archery.cpp	
LANG: C	LANG: C++	
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName	
CENTER: YourCenter	CENTER: YourCenter	
*/	*/	

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

ระดับข้อมูล	สำหรับข้อมูล	้ สำหรับข้อมูล	คะแนนสูงสุดที่เป็นไปได้	เงื่อนไข
ทดสอบ	ขนาด $oldsymbol{N}^{^{^{\!$	ขนาด c_i^-	โดยประมาณ	
1	≤ 20	≤ 20	20%	-
2	≤ 1,000	$\leq 10^9$	40%	-
3	≤ 500,000	≤ 10 ⁹	80%	อ่านหมายเหตุที่ 2.
4	≤ 500,000	≤ 10 ⁹	100%	อ่านหมายเหตุที่ 3.

หมายเหตุ

- 1. มีชุดทดสอบอย่างน้อย 5% จากคะแนนเต็มที่มีค่า c_i เท่ากันทั้งหมด
- 2. ชุดทดสอบสำหรับระดับข้อมูลทดสอบที่ 3 ซึ่งมีระดับคะแนนสูงสุดที่เป็นไปได้ประมาณ 40% จาก คะแนนเต็ม มีลักษณะข้อมูลดังนี้ มีค่า p_i ไม่ซ้ำกันทุกแถว
- 3. ชุดทดสอบสำหรับระดับข้อมูลทดสอบที่ 4 สอดคล้องกับระดับข้อมูลตามหมายเหตุข้อที่ 2. แต่ไม่ รับประกันว่า p_i ซ้ำกันหรือไม่ซ้ำกันเลย

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 15 ณ มหาวิทยาลัยบูรพา

ข้อสอบข้อที่ 2 จากทั้งหมด 3 ข้อ วันพุธที่ 5 มิถุนายน 2562 เวลา 9.00-12.00 น.

งบประมาณปรับปรุงเส้นทาง (Budget)

มหาวิทยาลัยบูรพาซึ่งเป็นเจ้าภาพการแข่งขันคอมพิวเตอร์โอลิมปิกครั้งที่ 15 ให้ความสำคัญกับการ แข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติเป็นอย่างมาก เนื่องด้วยสภาพอากาศปัจจุบันร้อนมากที่สุดทั้งยังมีฝน ตกชุก ทางมหาวิทยาลัยจึงปรับปรุงเส้นทางเชื่อมระหว่างอาคารต่าง ๆ ภายในมหาวิทยาลัยให้มีหลังคาบังแดด โดยมหาวิทยาลัยมีอาคารทั้งสิ้น B อาคาร (แต่ละอาคารกำกับด้วยหมายเลข 0 ถึง B-1 ที่ไม่ซ้ำกัน) มี เส้นทางเชื่อมทั้งหมด E เส้นทาง ซึ่งเส้นทางเชื่อมเหล่านี้อาจจะมีระยะทางแตกต่างกัน นักศึกษาสามารถเดิน จากอาคารใด ๆ ไปยังอาคารอื่น ๆ โดยผ่านเส้นทางเชื่อมระหว่างอาคารต่าง ๆ ที่มีอยู่ได้เสมอ และเส้นทาง เชื่อมระหว่างอาคารหมายเลข i กับอาคารหมายเลข j ($0 \le i$, $j \le B-1$) มีเพียงเส้นทางเชื่อมเดียว เท่านั้น

ในเส้นทางเชื่อมเหล่านี้ มีเส้นทางเชื่อมเพียงบางเส้นทางแล้วเท่านั้นที่มีหลังคาบังแดด ดังนั้น มหาวิทยาลัยบูรพาจึงจัดสรรงบประมาณสร้างหลังคาบังแดดเพิ่มให้กับเส้นทางเชื่อมบางทางเดิน เพื่อให้ นักศึกษาสามารถเดินทางจากอาคารหนึ่งไปยังอีกอาคารหนึ่งโดยใช้เส้นทางที่มีหลังคาได้เสมอ ตัวอย่างอาคาร และเส้นทางเชื่อม แสดงดังภาพที่ 1

ภาพที่ 1 ตัวอย่างของอาคารและเส้นทางเชื่อม ในกรณีที่ B=6

มีบริษัทเอกชนจำนวนมากที่เสนอตัวเข้ามาสร้างหลังคาบังแดดให้กับมหาวิทยาลัย โดยบริษัทเหล่านั้น มีแพ็คเกจโปรโมชั่นการสร้างหลังคาต่าง ๆ มากมาย รวมทั้งหมด P แพ็คเกจ สำหรับแต่ละแพ็คเกจนั้นจะเป็น การสร้างหลังคาสำหรับเส้นทาง 1 เส้นทาง โดยบริษัทจะระบุราคาและระยะทางที่สามารถสร้างได้ ดังตารางที่ 1

ตารางที่ 1 ตัวอย่างแพ็คเกจ

หมายเลข	บริษัท	ระยะทาง (เมตร)	ราคา (บาท)
1	ต้อยหลังคาไทย	5	60
2	ต้อยหลังคาไทย	50	200
3	ต้อยหลังคาไทย	75	350
4	Mr. Roof	20	100
5	Mr. Roof	40	145
6	ช่างโอทอป	15	50
7	ช่างโอทอป	35	150
8	บางแสนการช่าง	8	60

บริษัทเหล่านั้นมีกฎในการขายแพ็คเกจ ดังนี้

- 1. การทำหลังคาสำหรับเส้นทางเชื่อมหนึ่งเส้นทางใด ๆ นั้นจะต้องใช้แพ็คเกจเพียงแพ็คเกจเดียวที่มี ระยะทางไม่น้อยกว่าระยะทางของเส้นทางนั้น และจะต้องจ่ายเต็มราคาสำหรับแพ็คเกจดังกล่าว
 - 2. ระยะทางที่เกินมาของแพ็คเกจใด ๆ ไม่สามารถนำไปใช้กับเส้นทางเชื่อมอื่นได้
 - 3. สำหรับเส้นทางที่แตกต่างกัน มหาวิทยาลัยสามารถซื้อแพ็คเกจเดิมซ้ำได้

ตัวอย่างเช่น ถ้าหากเราต้องการสร้างหลังคาสำหรับเส้นทางเชื่อม จำนวน 2 เส้นทาง ที่มีระยะทาง 5 เมตร และ 10 เมตร เราสามารถซื้อแพ็คเกจหมายเลข 1 และหมายเลข 6 (รวมเป็นเงิน 60 + 50 = 110 บาท) เพื่อสร้างหลังคาได้ หรือมหาวิทยาลัยอาจจะเลือกซื้อแพ็คเกจหมายเลข 6 จำนวนสองครั้ง (รวมเป็นเงิน 50 + 50 = 100 บาท) ก็ได้ แต่มหาวิทยาลัยไม่สามารถซื้อแพ็คเกจ 8 จำนวนสองครั้งได้ถึงแม้ว่าระยะทางรวมของเส้นทางที่ต้องสร้าง

วิธีสร้างหลังคาวิธีหนึ่งสำหรับตัวอย่างในภาพที่ 1 คือ การเลือกซื้อแพ็คเกจหมายเลข 4, 4 และ 7 ซึ่ง ทำให้ใช้งบประมาณ รวมทั้งสิ้น 100+100+150 = 350 บาท แสดงดังภาพที่ 2

ภาพที่ 2 ตัวอย่างการคำนวณงบประมาณ

วิธีสร้างหลังคาที่ดีที่สุดสำหรับตัวอย่างในภาพที่ 1 คือ การเลือกซื้อแพ็คเกจหมายเลข 4, 5 และ 6 ซึ่ง ทำให้ใช้งบประมาณ รวมทั้งสิ้น 100+145+50 = 295 บาท แสดงดังภาพที่ 3

ภาพที่ 3 ตัวอย่างการคำนวณงบประมาณ

<u>งานของคุณ</u> จงเขียนโปรแกรมคำนวณงบประมาณที่น้อยที่สุดที่สามารถสร้างหลังคาครอบคลุมให้สามารถเดิน เชื่อมต่อกันได้ทุกอาคาร และรับประกันว่ามีวิธีในการสร้างหลังคาให้เป็นไปตามเงื่อนไขที่กำหนดได้

ข้อมูลนำเข้า

มีจำนวน E+P+2 บรรทัด ดังนี้

r .	
บรรทัดที่ 1	จำนวนเต็ม 2 จำนวน คั่นด้วยช่องว่าง คือ B และ E แทนจำนวนอาคารและ
	จำนวนเส้นทางเชื่อม ตามลำดับ โดย $2 \leq B \leq 3,000, \ B \leq E \leq 500,000$
E บรรทัดถัดไป	เป็นข้อมูลของเส้นทางเชื่อม บรรทัดละ 1 เส้นทาง แต่ละบรรทัดประกอบด้วย
	จำนวนเต็ม 4 จำนวน คั่นด้วยช่องว่าง คือ S และ T แทนหมายเลขอาคารสอง
	อาคารที่เชื่อมกัน โดย $0 \leq S$, $T < B$ ตามด้วย L แทนระยะทางของเส้นทางนี้
	โดยที่ $1 \leq L \leq 1$, 000 , 000 และ R แทนสถานะของหลังคา โดย $R=0$
	หมายถึงเส้นทางนี้ยังไม่มีหลังคา และ $R=1$ หมายถึง มีหลังคาแล้ว รับประกัน
	ว่าสำหรับคู่อาคารใด ๆ จะมีเส้นทางไม่เกิน 1 เส้นทาง
บรรทัดที่ E + 2	มีจำนวนเต็ม P แทนจำนวนแพ็คเกจทั้งหมดที่บริษัทต่าง ๆ เสนอมา
P บรรทัดถัดไป	แต่ละบรรทัดประกอบด้วยจำนวนเต็ม 2 จำนวน คั่นด้วยช่องว่าง คือ ${\mathcal C}$ และ D
	แทนระยะทางและราคาของหลังคาตามลำดับ โดยที่ $1 \leq extit{C}$, $D \leq 1$,000,000

ข้อมูลส่งออก

มีจำนวน 1 บรรทัด คือ

บรรทัดที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 8	295
0 1 19 0	
1 2 50 1	
1 3 5 0	
2 3 18 0	
0 4 32 0	
3 4 22 0	
2 5 70 0	
4 5 20 1	
8	
5 60	
50 200	
75 350	
20 100	
40 145	
15 50	
35 150	
8 60	

ข้อกำหนด

หัวข้อ	เงื่อนไข	
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)	
ข้อมูลส่งออก	Standard Output (จอภาพ)	
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที	
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	512 MB	
คะแนนสูงสุดของโจทย์	100 คะแนน	
เงื่อนไขการตรวจให้คะแนนโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน	

ข้อกำหนดอื่น ๆ ผู้เข้าแข่งขันต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ ดังนี้

์ ภาษา C	ภาษา C++	
/*	/*	
TASK: budget.c	TASK: budget.cpp	
LANG: C	LANG: C++	
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName	
CENTER: YourCenter	CENTER: YourCenter	
*/	*/	

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

ระดับข้อมูล	สำหรับข้อมูล สำหรับข้อมูล		สำหรับข้อมูล	คะแนนสูงสุดที่เป็นไปได้
ทดสอบ	ขนาด \emph{B}	ขนาด $\it E$	ขนาด $\it P$	โดยประมาณ
1	≤ 10	≤ 100	≤ 100	25%
2	≤ 10	≤ 100	≤ 300,000	60%
3	≤ 3,000	≤ 500,000	≤ 100	80%
4	≤ 3,000	≤ 500,000	≤ 300,000	100%

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 15 ณ มหาวิทยาลัยบูรพา

ข้อสอบข้อที่ 3 จากทั้งหมด 3 ข้อ วันพุธที่ 5 มิถุนายน 2562 เวลา 9.00-12.00 น.

ค่ายกลพิฆาตแมลงวัน (Fly)

งานเลี้ยงแห่งหนึ่งมีข้าวหลามหนองมนและอาหารทะเลที่ขึ้นชื่อของจังหวัดชลบุรีเป็นจำนวนมาก เหล่าฝูงแมลงวันทราบว่ามีงานเลี้ยงดังกล่าวจากหน่วยสอดแนมแมลงวัน หัวหน้าแมลงวันจึงพาสมุนแมลงวัน ทั้งหมดมาจู่โจมเพื่อกินอาหารดังกล่าว แน่นอนว่าผู้จัดงานเลี้ยงก็ทราบดีว่าแมลงวันจะจู่โจม จึงได้สร้างค่ายกล พิฆาตแมลงวันขึ้นมา และติดตั้งค่ายกลดังกล่าวไว้ ณ ตำแหน่งที่แมลงวันต้องบินผ่านเพื่อเข้าถึงอาหาร

ค่ายกลพิฆาตแมลงวัน มีลักษณะเป็นตารางกว้าง (คอลัมน์) C หน่วย และลึก (แถว) R หน่วย ถ้า กองทัพแมลงวันจะบินเข้าสู่งานเลี้ยง ต้องเข้าค่ายกลพิฆาตแมลงวันทางด้านล่างสุดบินผ่านค่ายกลไปยังด้าน บนสุดเพื่อออกไปหาอาหารตามที่ต้องการ ค่ายกลพิฆาตแมลงวันนี้มีการติดตั้งแสงสะกดแมลงวันไว้ แสงสะกด แมลงวันนี้ส่องจากด้านบนของค่ายกลลงมาด้านล่างของค่ายกลตามแนวลึก และมีการติดตั้งลำแสงนี้ไว้ในทุก ๆ ระยะ 1 หน่วยในแนวคอลัมน์ ตั้งแต่ตำแหน่งหน่วยที่ 0, 1, 2 ไปจนถึงหน่วยที่ C แสงนี้จะสะกดให้แมลงวันไม่ สามารถขยับตัวออกไปจากแนวลำแสงดังกล่าวได้ และต้องบินตรงไปตามแนวแสงเท่านั้น

ค่ายกลพิฆาตแมลงวันนี้ยังติดตั้ง "กับดักพิฆาตแมลงวัน" ซึ่งเป็นแท่งเหล็กที่ปล่อยกระแสไฟฟ้าแรงสูง โดยเมื่อแมลงวันมาสัมผัสกับแท่งเหล็กดังกล่าว แมลงวันจะตาย กับดักนี้ได้รับการติดตั้งไว้ในทุก ๆ แถวของ ค่ายกล แถวละสองด้าน คือ ด้านซ้ายและด้านขวา กับดักนี้มีความลึก 1 หน่วย คือ มีความลึกเต็มแถวพอดี และกับดักนี้จะเคลื่อนที่ไปด้านซ้ายหรือขวาตามแถวที่กับดักนั้นอยู่ด้วยความเร็วเท่า ๆ กัน หากกับดักพิฆาต แมลงวันคู่ใดวิ่งมาชนกัน กับดักทั้งคู่จะกระดอนกลับในทิศทางตรงข้าม และหากกับดักใดเคลื่อนไปกระทบ ขอบซ้ายหรือขอบขวาของค่ายกลพิฆาตแมลงวัน กับดักนั้นก็จะกระดอนและเคลื่อนที่สะท้อนกลับไปอีกทิศทาง เช่นกัน กับดักพิฆาตแมลงวันทั้งหมดจะเคลื่อนที่ด้วยความเร็ว 1 หน่วยต่อ 1 วินาที

หมายเหตุ การชนกันของกับดักพิฆาตแมลงวันจากทางซ้ายและทางขวาในแต่ละแถวแบ่ง 2 กรณี คือ

- 1. กับดักพิฆาตแมลงวันด้านซ้ายอยู่ในตำแหน่งคอลัมน์ที่ i กำลังเคลื่อนที่ไปทางด้านขวา และกับดัก พิฆาตแมลงวันด้านขวาอยู่ในตำแหน่งคอลัมน์ที่ i + 1 กำลังเคลื่อนที่ไปทางด้านซ้าย การชนกันและ กระดอนกลับใช้เวลา 1 วินาที โดยทำให้กับดักพิฆาตแมลงวันด้านซ้ายยังคงอยู่ในตำแหน่งที่ i แต่จะ เคลื่อนที่กระดอนกลับไปทางด้านซ้ายในวินาทีถัดไป และกับดักพิฆาตแมลงวันด้านขวายังคงอยู่ใน ตำแหน่งที่ i + 1 และเคลื่อนที่กระดอนกลับไปทางด้านขวาในวินาทีถัดไป (ดังแสดงในภาพที่ 1 แถว 4)
- 2. กับดักพิฆาตแมลงวันด้านซ้ายอยู่ในตำแหน่งที่ i กำลังเคลื่อนที่ไปทางด้านขวา และกับดักพิฆาต แมลงวันด้านขวาอยู่ในตำแหน่งที่ i เช่นกันกำลังเคลื่อนที่ไปทางด้านซ้าย การชนกันและกระดอนกลับ ใช้เวลา 1 วินาที โดยทำให้กับดักพิฆาตแมลงวันด้านซ้ายอยู่ในตำแหน่งที่ i-1 และเคลื่อนที่ย้อนไป ทางด้านซ้ายในวินาทีถัดไป ส่วนกับดักพิฆาตแมลงวันด้านขวาอยู่ในตำแหน่งที่ i+1 และเคลื่อนที่ไป ทางด้านขวาในวินาทีถัดไป (ดังแสดงในภาพที่ 1 แถว 2)

ภาพที่ 1 แสดงถึงค่ายกลพิฆาตแมลงวันขนาดกว้าง 7 หน่วย ลึก 5 หน่วย (5 แถว) เส้นประสีเขียว แสดงถึงลำแสงสะกดแมลงวันและทิศทางที่แมลงวันสามารถบินไปได้ (ลำแสงประจำอยู่ 8 คอลัมน์) พื้นที่สีเทา แสดงถึงกับดักพิฆาตแมลงวัน โดยลูกศรแสดงถึงทิศทางที่กับดักกำลังเคลื่อนที่ ภาพด้านซ้ายเป็นสถานะเริ่มต้น ของพื้นที่ ณ เวลา 0 วินาที และภาพด้านขวาเป็นสถานะของพื้นที่ ณ เวลา 1 วินาที

ภาพที่ 1 ตัวอย่างค่ายกลพิฆาตแมลงวันขนาดกว้าง 7 หน่วย ลึก 5 หน่วย

หัวหน้าแมลงวันต้องการหาทางที่จะบินเข้าไปยังหาอาหารให้เร็วที่สุด เนื่องจากหัวหน้าทราบดีว่า สมุน ต้องบินไปตามแนวลำแสงเท่านั้น หัวหน้าจึงกำหนดกฏในการบินให้กับสมุน ดังนี้

- ณ เวลา 0 วินาที ให้แมลงวันสมุนแต่ละตัวอยู่ ณ แถวที่ 0 ซึ่งอยู่ด้านล่างนอกค่ายกลพิฆาตในตำแหน่ง ที่ตรงตามแนวลำแสงพอดี ดังแสดงด้วยวงกลมสีดำที่มีหมายเลขคอลัมน์กำกับอยู่ในรูปข้างต้น
- ให้แมลงวันสมุนศึกษาจังหวะและกลไลของค่ายกลพิฆาตนี้ แล้ววางแผนการบินไปให้ถึงอาหาร ซึ่งอยู่ หลังค่ายกลพิฆาตแมลงวันให้เร็วที่สุด
- ในแต่ละจุดเริ่มต้นของแต่ละวินาที เริ่มตั้งแต่วินาทีที่ 0 สมุนแมลงวันแต่ละตัวมีทางเลือกเพียงสองทาง เท่านั้นคือ "อยู่กับที่" หรือ "บินไปด้านบนเป็นระยะทาง 1 หน่วย ด้วยความเร็ว 1 หน่วยต่อวินาที" ไปยังแถวถัดไป โดยยังต้องอยู่ในแนวลำแสงเดิมที่เคยอยู่เท่านั้น ห้ามออกนอกเส้นทาง

ตัวอย่างการจำลองการบินของแมลงวันสมุนที่อยู่ประจำคอลัมน์ที่ 3 ผ่านค่ายกลพิฆาตแมลงวันที่มีขนาดกว้าง 7 หน่วย และลึก 5 หน่วย (5 แถว) ที่ใช้เวลาในการบินผ่านค่ายกลพิฆาตในเวลา 10 วินาที แสดงดังภาพที่ 2 (หมายเหตุ ตั้งแต่สถานะของค่ายกลพิฆาต ณ เวลา 1 วินาที เป็นต้นไปจะแสดงเฉพาะแมลงวันสมุนในคอลัมน์ ที่ 3 เท่านั้น)

ภาพที่ 2 การจำลองการบินของแมลงวันสมุน

ภาพที่ 2 การจำลองการบินของแมลงวันสมุน (ต่อ)

จากภาพที่ 2 เป็นตัวอย่างของการบินของแมลงวันสมุนที่อยู่ประจำคอลัมน์ที่ 3 ใช้เวลา 10 วินาที อย่างไรก็ตาม ยังมีแมลงวันสมุนที่อยู่คอลัมน์อื่น (คอลัมน์ที่ 4) ซึ่งสามารถบินผ่านค่ายกลพิฆาตไปยังอาหารโดย ใช้เวลาน้อยที่สุด เพียง 9 วินาที ดังตัวอย่างที่ปรากฏในภาพที่ 3 ด้านล่าง

ภาพที่ 3 การจำลองการบินของแมลงวันสมุน

เนื่องด้วยอาหารอร่อยมาก จึง**รับประกันว่า**มีแมลงวันสมุนอย่างน้อย 1 ตัว บินผ่านค่ายกลพิฆาตไปยังอาหาร ได้

<u>งานของคุณ</u> จงเขียนโปรแกรมเพื่อคำนวณเวลาที่น้อยที่สุด ซึ่งแมลงวันสมุนที่ประจำอยู่ในคอลัมน์ใดคอลัมน์ หนึ่ง สามารถบินผ่านค่ายกลพิฆาตไปยังอาหารได้

ข้อมูลนำเข้า

มีจำนวน N บรรทัด ดังนี้

บรรทัดที่ 1	จำนวนเต็ม 2 จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ประกอบด้วย	
	จำนวนแถว R $(1 \leq R \leq 2{,}000)$ และจำนวนคอลัมน์ \mathcal{C} $(1 \leq \mathcal{C} \leq 2{,}000)$	
บรรทัดที่ 2	แต่ละแถวมีข้อมูลนำเข้า 4 ค่า คั่นแต่ละค่าด้วยช่องว่างหนึ่งช่อง โดยแสดงตามลำดับ	
ถึง <i>R</i> + 1	ดังนี้	
	A_i แทนตำแหน่งเริ่มต้นของกับดักพิฆาตแมลงวันด้านซ้าย $(0 \leq A_i \leq \mathcal{C}_i)$	
	B_i แทนทิศทางเริ่มต้นของกับดักพิฆาตแมลงวันด้านซ้าย	
	C_i แทนตำแหน่งเริ่มต้นของกับดักพิฆาตแมลงวันด้านขวา $(A_i \leq C_i \leq C)$	
	D_i แทนทิศทางเริ่มต้นของกับดักพิฆาตแมลงวันด้านขวา	
	โดยที่ B_i และ D_i เป็นตัวอักขระ R (แทนการเคลื่อนที่ไปทางขวา) หรือ L (แทนการ	
	เคลื่อนที่ไปทางซ้าย) เมื่อ $1 \leq i \leq R$	

ข้อมูลส่งออก

มีจำนวน 1 บรรทัด คือ

บรรทัดที่ 1	แสดงเวลาที่แมลงวันบินให้ผ่านค่ายกลพิฆาตนี้ไปได้เร็วที่สุด โดยไม่สัมผัสกับไม้พิฆาต
	แมลงวัน

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก	
5 7	9	
4 R 4 L		
1 L 6 R		
1 R 7 R		
2 R 7 R		
1 R 3 R		

หมายเหตุ ข้อมูลนำเข้าของตัวอย่างที่ 1 สอดคล้องกับภาพที่ 2 สถานะของพื้นที่ ณ เวลา 0 วินาที

ข้อมูลนำเข้า	ข้อมูลส่งออก	
5 7	10	
2 R 3 L		
0 L 6 R		
1 L 7 R		
2 L 7 R		
5 L 7 R		

ข้อกำหนด

หัวข้อ	เงื่อนไข	
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)	
ข้อมูลส่งออก	Standard Output (จอภาพ)	
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที	
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	512 MB	
คะแนนสูงสุดของโจทย์	100 คะแนน	
เงื่อนไขการตรวจให้คะแนนโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน	

ข้อกำหนดอื่น ๆ

้ ผู้เข้าแข่งขันต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ ดังนี้

ภาษา C	ภาษา C++	
/*	/*	
TASK: fly.c	TASK: fly.cpp	
LANG: C	LANG: C++	
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName	
CENTER: YourCenter	CENTER: YourCenter	
*/	*/	

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

ระดับข้อมูล ทดสอบ	สำหรับข้อมูลขนาด <i>R</i>	สำหรับข้อมูลขนาด $\it C$	คะแนนสูงสุดที่เป็นไป ได้โดยประมาณ	เงื่อนไข
1	≤ 20	≤ 20	30%	-
2	≤ 200	≤ 200	70%	ı
3	≤ 1,000	≤ 200	80%	ı
4	≤ 2,000	≤ 2,000	100%	-

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 15 ณ มหาวิทยาลัยบูรพา

ข้อสอบข้อที่ 1 จากทั้งหมด 3 ข้อ วันพฤหัสบดีที่ 6 มิถุนายน 2562 เวลา 9.00-12.00 น.

เหรียญโอลิมปิก (Medal)

หลังศึกมหาสงครามจักรวาลสิ้นสุดลง การแข่งขันพัฒนาโปรแกรมโอลิมปิกจึงเริ่มเป็นที่นิยมอย่างมาก และแพร่หลายไปทั่วทุกจักรวาล โดยในปีนี้จักรวาลบางแสนได้รับเกียรติให้เป็นเจ้าภาพจัดการแข่งขัน ซึ่งทาง เจ้าภาพมีการจัดพิธีมอบเหรียญโอลิมปิกให้กับนักพัฒนาโปรแกรมทุกคน โดยได้เชิญเทพเจ้าสายฟ้ามาร่วมเป็น ประธานในพิธี สำหรับพิธีการมอบเหรียญโอลิมปิกนั้นกำหนดให้นักพัฒนาโปรแกรมทุกคนขึ้นบนแท่นรับ เหรียญ แท่นดังกล่าวมีที่ยืนรับเหรียญในแนวหน้ากระดานสำหรับนักพัฒนาโปรแกรมผ่านทางศีรษะจากคนซ้ายสุดไป ยังคนขวาสุดเสมอ เนื่องด้วยนักพัฒนาโปรแกรมแต่ละคนมีความสูงไม่เท่ากัน และแท่นรับเหรียญก็มีความสูงที่ แตกต่างกันด้วย ประธานจึงต้องขยับแขนขึ้นลงเพื่อคล้องเหรียญโอลิมปิกผ่านทางศีรษะนักพัฒนาโปรแกรม ทุก ๆ คน เพื่อเป็นการเฝ้าระวังสุขภาพของประธานซึ่งเคยได้รับบาดเจ็บที่แขนจากการต่อสู้ในศึกมหาสงคราม ที่ผ่านมา ฝ่ายพิธีการจึงต้องพิจารณาว่าจะทำอย่างไรให้ประธานขยับแขนขึ้นและลงทั้งหมดเป็นระยะทางน้อย ที่สุด โดยเริ่มพิจารณา<u>หลังจากการคล้องเหรียญโอลิมปิกให้กับนักพัฒนาโปรแกรมคนแรก</u>จนครบทุกคน

ตัวอย่างเช่น นักพัฒนาโปรแกรม 3 คน มีความสูง 158, 168 และ 139 เซนติเมตร (ซม.) ตามลำดับ ดังนั้น ฝ่ายพิธีการจึงจัดเรียงแท่นรับเหรียญ 3 แท่นที่มีความสูง 132, 104 และ 140 ซม. เรียงจากซ้ายไปขวา ตามลำดับ (ดูตัวอย่างจากภาพที่ 1 ประกอบ) เมื่อคำนวณตำแหน่งความสูงจากพื้นถึงศีรษะของนักพัฒนา โปรแกรม จะได้ความสูงเป็น 290, 272 และ 279 ซม. ตามลำดับ ทำให้ประธานในพิธีขยับแขนขึ้นลงหลังจาก การมอบเหรียญโอลิมปิกให้กับนักพัฒนาโปรแกรมคนแรกจนครบทุกคน เป็นระยะทางรวมทั้งสิ้น 25 ซม. ซึ่ง คำนวณจาก (290 - 272) + (279 - 272) ซม.

ภาพที่ 1 ตัวอย่างนักพัฒนาโปรแกรม 3 คน ยืนบนแท่นรับเหรียญ 3 แท่น (ภาพนี้ไม่ใช่สัดส่วนจริง)

อย่างไรก็ตาม ฝ่ายพิธีการเชื่อว่ามีวิธีที่จะทำให้ประธานขยับแขนได้น้อยกว่าระยะทางดังกล่าว โดยการ จัดลำดับนักพัฒนาโปรแกรมและตำแหน่งของแท่นรับเหรียญใหม่ เช่น จากตัวอย่างข้างต้นหากเรียงลำดับให้ นักพัฒนาโปรแกรมที่มีความสูง 168, 139 และ 158 ซม. ขึ้นรับเหรียญ และเรียงแท่นที่มีความสูงจากซ้ายไปขวา เป็น 104, 140 และ 132 ซม. ทำให้ความสูงจากพื้นถึงศีรษะเป็น 272, 279 และ 290 ซม. ตามลำดับ ซึ่งกรณีนี้ ประธานในพิธีต้องขยับแขนเพื่อมอบเหรียญรวมทั้งสิ้นเพียง 18 ซม. ซึ่งคำนวณจาก (279 - 272) + (290 - 279) ซม.

ดังนั้นจึงจำเป็นต้องมีการพิจารณาสลับตำแหน่งของนักพัฒนาโปรแกรมในการรับเหรียญโอลิมปิกและ สลับตำแหน่งของแท่นรับเหรียญ เพื่อให้ประธานขยับแขนขึ้นลงน้อยที่สุด

ข้อกำหนด: จำนวนนักพัฒนาโปรแกรมและจำนวนแท่นรับเหรียญมีจำนวนเท่ากัน

<u>งานของคุณ</u> จงเขียนโปรแกรมเพื่อคำนวณระยะทางรวมที่น้อยที่สุดที่ประธานขยับแขนขึ้นและลง โดยเริ่ม คำนวณหลังจากการคล้องเหรียญโอลิมปิกให้กับนักพัฒนาโปรแกรมคนแรกจนครบทุกคน

ข้อมูลนำเข้า

บรรทัดที่ 1	จำนวนเต็ม 1 จำนวน คือ n แสดงจำนวนนักพัฒนาโปรแกรม	
	$1 \le n \le 500,000$	
บรรทัดที่ 2	จำนวนเต็ม n จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ได้แก่ $t_1,,t_n$ แทนความสูง	
	ของนักพัฒนาโปรแกรมที่ได้รับเหรียญแต่ละคน $1 \leq t_i \leq 1,000,000$, $i=1,2,3,$, n	
บรรทัดที่ 3	3 จำนวนเต็ม n จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ได้แก่ h_1, \ldots, h_n แทนความสูง	
	ของแท่นตำแหน่งที่ i , $1 \leq h_i \leq 1$,000,000, $i=1,2,3,$, n	

ข้อมูลส่งออก

1 บรรทัด	จำนวนเต็ม 1 จำนวน แสดงระยะทางรวมที่น้อยที่สุดที่ประธานขยับแขนขึ้นและลง โดยเริ่ม
	คำนวณหลังจากการคล้องเหรียญโอลิมปิกให้กับนักพัฒนาโปรแกรมคนแรกจนครบทุกคน

หมายเหตุ

ข้อมูลส่งออกมีโอกาสที่เกินขอบเขต ดังนั้นแนะนำให้ใช้ตัวแปรประเภท "long long" การแสดงผลและอ่านค่าตัวแปรประเภทดังกล่าวสามารถกระทำได้โดยใช้รูปแบบ "%lld"

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก
3	18
158 168 139	
132 104 140	

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	13
11 28	
68 38	

ข้อมูลนำเข้า	ข้อมูลส่งออก
3	6
9 1 7	
6 4 4	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	512 MB
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการตรวจให้คะแนนโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อกำหนดอื่น ๆ

้ ผู้เข้าแข่งขันต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ ดังนี้

ภาษา C	ภาษา C++
/*	/*
TASK: medal.c	TASK: medal.cpp
LANG: C	LANG: C++
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName
CENTER: YourCenter	CENTER: YourCenter
*/	*/

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

v	9		
ชุดทดสอบที่	สำหรับข้อมูลขนาด $\it n$	คะแนนสำหรับชุดข้อมูล	เงื่อนไข
		ทดสอบแต่ละชุด	
1	n = 5	10%	-
2	$n \leq 7$	5%	-
3	$n \le 10$	5%	ความสูงของแท่นเท่ากันหมด
4	$n \le 10$	10%	-
5	$n \le 500,000$	70%	-

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 15 ณ มหาวิทยาลัยบูรพา

ข้อสอบข้อที่ 2 จากทั้งหมด 3 ข้อ วันพฤหัสบดีที่ 6 มิถุนายน 2562 เวลา 9.00-12.00 น.

ทันเนอะ (Minimum Load Requirement)

บางแสนเป็นเมืองอัจฉริยะ ทางคณะวิทยาการสารสนเทศ มหาวิทยาลัยบูรพา จึงมีแนวคิดที่จะเพิ่ม ความสามารถของลิฟต์เพื่อควบคุมการขนส่งผู้โดยสารแบบอัจฉริยะ ซึ่งตึกของคณะวิทยาการสารสนเทศมี 11 ชั้น และมีลิฟต์ทั้งสิ้น N ตัว ลิฟต์ทุกตัวใช้รอบเวลาในการขึ้น-ลง 1 นาทีเท่ากัน (ไม่ว่าจะขึ้นไปชั้นใด ลิฟต์ใช้ เวลาขึ้นไปชั้นดังกล่าว และลงมาที่ชั้นหนึ่งเป็นเวลา 1 นาทีเสมอ) โดยลิฟต์แต่ละตัวสามารถรองรับน้ำหนักได้ ไม่เท่ากัน ลิฟต์ตัวที่ i สามารถรองรับน้ำหนักได้ไม่เกิน L_i กิโลกรัม

ในเดือนมิถุนายน พ.ศ. 2562 คณะวิทยาการสารสนเทศ ม.บูรพา ได้รับมอบหมายให้เป็นเจ้าภาพร่วม จัดการแข่งขันโอลิมปิกระดับชาติ ครั้งที่ 15 มีจำนวนนักเรียนเข้าร่วมแข่งขันเป็นจำนวน *M* คน ฝ่ายจัดการ แข่งขันต้องการประเมินเวลาในการใช้ลิฟต์พานักเรียนทั้งหมดไปยังห้องแข่งขันที่ชั้น 3 บนตึกดังกล่าว เพื่อแจ้ง เตือนนักเรียนเกี่ยวกับเวลาที่ต้องมาถึงก่อนกำหนด

ในการทดสอบเวลาการใช้ลิฟต์ ฝ่ายจัดการแข่งขันจำลองสถานการณ์มีรายละเอียดดังต่อไปนี้

- ullet นักเรียนทั้งหมด M คน ยืนต่อแถวกัน โดยนักเรียนคนที่ j มีน้ำหนัก S_i $(1 \le j \le M)$ กิโลกรัม
- ullet ทางคณะได้จัดเตรียมพี่เลี้ยง N คน เพื่อดูแลนักเรียนในการใช้ลิฟต์ โดยพี่เลี้ยงคนที่ k มีน้ำหนัก $A_k~(1 {\le}~k {\le} N)$ กิโลกรัม
- ullet ฝ่ายจัดการแข่งขันจะจำลองสถานการณ์ X ครั้ง เพื่อประเมินเวลาการใช้ลิฟต์
- ในการจำลองครั้งที่ z $(1 \le z \le X)$ มีเงื่อนไข ดังนี้
 - 1. กำหนดการจำลองครั้งที่ z ใช้เวลาไม่เกิน T_z นาที
 - 2. ในการจำลองแต่ละครั้ง แบ่งนักเรียน M คนในแถวหลักออกเป็น N แถวย่อย ตามจำนวน ลิฟต์ โดยไม่สลับตำแหน่งของนักเรียน
 - 3. ฝ่ายจัดการแข่งขันสามารถ<u>เลือกพี่เลี้ยง 1 คน</u> เพื่อช่วยเหลือนักเรียนที่อยู่ใน<u>แถวย่อยหนึ่ง ๆ</u> ในการใช้<u>ลิฟต์ตัวใดตัวหนึ่ง</u> โดยที่นักเรียนที่อยู่ในแต่ละแถวย่อยต้องใช้ลิฟต์ตัวเดียวกัน และ

- เดินทางไปกับพี่เลี้ยงคนนั้นเสมอ (หมายเหตุ นักเรียนในแถวย่อยที่ i ไม่จำเป็นต้องใช้ลิฟต์ตัว ที่ i และ ไม่จำเป็นต้องไปกับพี่เลี้ยงคนที่ i)
- 4. เนื่องจากมีข้อจำกัดของลิฟต์ในเรื่องของการรองรับน้ำหนัก การใช้ลิฟต์เพื่อพานักเรียนทุกคน ที่อยู่ในแต่ละแถวย่อยไปยังห้องแข่งขัน อาจต้องใช้ลิฟต์ขึ้น-ลงมากกว่า 1 รอบ ในการใช้ลิฟต์ ในแต่ละรอบ นักเรียนต้องเข้าลิฟต์ตามลำดับในแถวย่อยนั้น ๆ
- ในการจำลองครั้งที่ z จะมีผลการประเมินแบบใดแบบหนึ่ง คือ P เมื่อมีอย่างน้อยหนึ่งวิธีที่สามารถส่ง นักเรียนทั้งหมดขึ้นลิฟต์ภายในเวลาที่กำหนดได้ หรือ F เมื่อไม่มีวิธีที่สามารถส่งนักเรียนทั้งหมดขึ้น ลิฟต์ภายในเวลาที่กำหนด

หมายเหตุ การจำลองสถานการณ์แต่ละครั้ง จำนวนนักเรียนในแต่ละแถวย่อยอาจถูกกำหนดให้มีจำนวน เพิ่มขึ้นหรือลดลงจากเดิม ฝ่ายจัดการแข่งขันอาจทำการปรับเปลี่ยนเวลาสูงสุดในการโดยสารลิฟต์และอาจ เลือกหรือไม่เลือกพี่เลี้ยงคนเดิมเพื่อช่วยเหลือนักเรียนที่อยู่ในแถวย่อยหนึ่ง ๆ ในการใช้ลิฟต์ตัวใดตัวหนึ่งได้ เพื่อให้ทันเวลาที่กำหนด

ตัวอย่าง มีลิฟต์ทั้งหมด 2 ตัว สามารถรองรับน้ำหนักได้ไม่เกิน 230 และ 300 กิโลกรัม (กก.) ตามลำดับ มี นักเรียนทั้งหมด 10 คน ยืนต่อแถวกัน โดยมีน้ำหนักตามลำดับ ดังนี้ 160, 120, 35, 80, 42, 87, 72, 45, 55 และ 63 กก. มีพี่เลี้ยง 2 คน มีน้ำหนัก 56 และ 65 กก.

ฝ่ายจัดการแข่งขันวางแผนการจำลองสถานการณ์ 3 ครั้ง ดังนี้

การจำลองสถานการณ์ครั้งที่ 1

เนื่องจากลิฟต์มี 2 ตัว การจำลองสถานการณ์ทำการแบ่งนักเรียนออกเป็นแถวย่อย ดังนี้

แถวย่อยแรก : นักเรียนคนที่ 1 - 3 มีน้ำหนัก 160, 120 และ 35 กก. ตามลำดับ

แถวย่อยที่สอง : นักเรียนคนที่ 4 - 10 มีน้ำหนัก 80, 42, 87, 72, 45, 55 และ 63 กก. ตามลำดับ

กำหนดเวลาทดสอบการใช้ลิฟต์ $T_1=2$ นาที

ผลการจำลองสถานการณ์ครั้งที่ 1 : ผ่าน (P) เนื่องจากมีอย่างน้อยหนึ่งวิธีที่สามารถส่งนักเรียนทั้งหมด ขึ้นลิฟต์ภายในเวลา 2 นาที ดังวิธีการที่แสดงในตารางที่ 1

ตารางที่ 1 การจำลองสถานการณ์ครั้งที่ 1

รอบที่/ลิฟต์ที่	ลิฟต์ตัวที่ 1	ลิฟต์ตัวที่ 2
	(รองรับน้ำหนักได้ไม่เกิน 230 กก.)	(รองรับน้ำหนักได้ไม่เกิน 300 กก.)
รอบที่ 1	A ₁ (56 กก.) : S ₁ (160 กก.)	A_{2} (65 กก.) : S_{4} (80 กก.)
(นาทีที่ 1)		<i>S</i> ₅ (42 กก.)
		<i>S</i> ₆ (87 กก.)
	<u>รวม</u> 56+160 = 216 กก.	<u>รวม</u> 65+80+42+87 = 274 กก.
รอบที่ 2	A_{1} (56 กก.) : S_{2} (120 กก.)	A ₂ (65 kg) : S ₇ (72 กก.)
(นาทีที่ 2)	<i>S</i> ₃ (35 กก.)	<i>S</i> ₈ (45 กก.)
		<i>S</i> ₉ (55 กก.)
		<i>S</i> ₁₀ (63 กก.)
	<u>รวม</u> 56+120+35 = 211 กก.	รวม 65+72+45+55+63 = 300 กก.

- นักเรียนในแถวย่อยแรกจะขึ้นลิฟต์ตัวที่ 1 (รองรับน้ำหนักได้ไม่เกิน 230 กก.) พร้อมกับพี่ เลี้ยงคนที่ 1 หนัก 56 กก. ($A_1=56$ กก.) โดยแบ่งเป็นการโดยสาร 2 รอบ
- นักเรียนในแถวย่อยที่สองจะขึ้นลิฟต์ตัวที่ 2 (รองรับน้ำหนักได้ไม่เกิน 300 กก.) พร้อมกับพี่ เลี้ยงคนที่ 2 ($A_2=65$ กก.) โดยแบ่งเป็นการโดยสาร 2 รอบ

การจำลองสถานการณ์ครั้งที่ 2

ลิฟต์มี 2 ตัว แบ่งนักเรียนเป็น 2 แถวย่อย

แถวย่อยแรก : นักเรียนคนที่ 1 - 2 มีน้ำหนัก 160 และ 120 กก. ตามลำดับ

แถวย่อยที่สอง : นักเรียนคนที่ 3 -10 มีน้ำหนัก 35, 80, 42, 87, 72, 45, 55 และ 63 กก. ตามลำดับ

กำหนดเวลาทดสอบการใช้ลิฟต์ T_2 = 2 นาที

ผลการจำลองสถานการณ์ครั้งที่ 2 : ผ่าน (P) เนื่องจากมีอย่างน้อยหนึ่งวิธีที่สามารถส่งนักเรียน ทั้งหมดขึ้นลิฟต์ภายในเวลา 2 นาที ดังวิธีการที่แสดงในตารางที่ 2

ตารางที่ 2 การจำลองสถานการณ์ครั้งที่ 2

รอบที่/ลิฟต์ที่	ลิฟต์ตัวที่ 1	ลิฟต์ตัวที่ 2
	(รองรับน้ำหนักได้ไม่เกิน 230 กก.)	(รองรับน้ำหนักได้ไม่เกิน 300 กก.)
รอบที่ 1	A ₂ (65 กก.) : S ₁ (160 กก.)	A_1 (56 kg) : S_3 (35 กก.)
(นาทีที่ 1)		<i>S</i> ₄ (80 กก.)
		<i>S</i> ₅ (42 กก.)
		<i>S</i> ₆ (87 กก.)
	<u>รวม</u> 65+160 = 225 กก.	รวม 56+35+80+42+87 = 300 กก.
รอบที่ 2	A_2 (65 กก.) : S_2 (120 กก.)	A ₁ (56 กก.) : S ₇ (72 กก.)
(นาทีที่ 2)		<i>S</i> ₈ (45 กก.)
		<i>S</i> ₉ (55 กก.)
		S ₁₀ (63 กก.)

- นักเรียนในแถวย่อยแรกจะขึ้นลิฟต์ตัวที่ 1 (รองรับน้ำหนักได้ไม่เกิน 230 กก.) พร้อมกับพี่ เลี้ยงคนที่ 2 หนัก 65 กก. ($A_2=65$ กก.) โดยแบ่งเป็นการโดยสาร 2 รอบ
- นักเรียนในแถวย่อยที่สองจะขึ้นลิฟต์ตัวที่ 2 (รองรับน้ำหนักได้ไม่เกิน 300 กก.) พร้อมกับพี่ เลี้ยงคนที่ 1 ($A_1=56$ กก.) โดยแบ่งเป็นการโดยสาร 2 รอบ

การจำลองสถานการณ์ครั้งที่ 3

ลิฟต์มี 2 ตัว แบ่งนักเรียนเป็น 2 แถวย่อย

แถวย่อยแรก : นักเรียนคนที่ 1 - 5 มีน้ำหนัก 160, 120 35, 80 และ 42 กก. ตามลำดับ

แถวย่อยที่สอง : นักเรียนคนที่ 6 -10 มีน้ำหนัก 87, 72, 45, 55 และ 63 กก. ตามลำดับ

กำหนดเวลาทดสอบการใช้ลิฟต์ $T_3=1$ นาที

ผลการจำลองสถานการณ์ครั้งที่ 3 : ไม่ผ่าน (F) เนื่องจากไม่มีวิธีที่สามารถส่งนักเรียนทั้งหมดขึ้นลิฟต์ ภายในเวลาที่กำหนด ไม่ว่าจะเลือกพี่เลี้ยง แถวย่อยนักเรียน และลิฟต์ในรูปแบบใดก็ตาม

<u>งานของคุณ</u> จงเขียนโปรแกรมเพื่อทำการทดสอบการจำลองสถานการณ์การใช้ลิฟต์ภายใต้สถานการณ์ที่ กำหนดให้ทันเวลาที่กำหนด

ข้อมูลนำเข้า

มีจำนวน X+5 บรรทัด ดังนี้

บรรทัดที่ 1	จำนวนเต็ม 3 จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ประกอบด้วย		
	N แทนจำนวนลิฟต์ ($1 \leq N \leq 10$)		
	M แทนจำนวนนักเรียน (5 \leq M \leq 10,000,000)		
	X แทนจำนวนครั้งในการจำลองสถานการณ์ ($1 \leq X \leq 10$)		
บรรทัดที่ 2	จำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง		
	$L_1 L_2 L_N$ โดยที่แต่ละจำนวน L_i แทนค่าน้ำหนักที่ลิฟต์แต่ละตัวรองรับได้		
	$(1 \le L_i \le 2,000,000,200)$		
บรรทัดที่ 3	จำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง		
	$A_1A_2_{ iny \dots}A_N$ โดยที่แต่ละจำนวน A_k แทนค่าน้ำหนักของพี่เลี้ยงแต่ละคน		
	$(1 \le A_k \le 200)$		
บรรทัดที่ 4	จำนวนเต็ม M จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง		
	$S_1 \ S_2 \ \ S_M \ โดยที่แต่ละจำนวน S_j \ แทนค่าน้ำหนักของนักเรียนแต่ละคน$		
	$(1 \le S_j \le 200)$		
บรรทัดที่ 5	จำนวนเต็ม X จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง		
	$T_1 \ T_2 \ \ T_X \ $ โดยที่แต่ละจำนวน T_Z แทนเวลาสูงสุดในการจำลองสถานการณ์ครั้งที่ z		
	$(1 \le T_z \le 1,000,000)$		
บรรทัดที่ 6	แต่ละบรรทัดมีจำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง		
ถึง	$Q_1 \ Q_2 \ \ Q_N$ โดยที่แต่ละจำนวน Q_r แทนหมายเลขลำดับของนักเรียนในแถวหลักที่เป็น		
X + 5	สมาชิกลำดับแรกของแถวย่อยที่ r		
	$(1=Q_1 < Q_2 < < Q_N \le M$ และ $Q_r - Q_{r-1} < 1,200,000$ และ $2 \le r \le N)$		

ข้อมูลส่งออก

มีจำนวน X บรรทัด คือ

บรรา	ทัดที่ z	อักขระ 1 ตัว แทนผลการทดสอบเวลาของการจำลองสถานการณ์ครั้งที่ z	
(1 ≤	$z \leq X$)	โดยมีค่าเป็น	
		P เมื่อมีอย่างน้อยหนึ่งวิธีที่สามารถส่งนักเรียนทั้งหมดขึ้นลิฟต์ภายในเวลาที่กำหนดได้	
		หรือ F เมื่อไม่มีวิธีที่สามารถส่งนักเรียนทั้งหมดขึ้นลิฟต์ภายในเวลาที่กำหนด	

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก	
2 10 3	Р	
230 300	P	
56 65	F	
160 120 35 80 42 87 72 45 55 63		
2 2 1		
1 4		
1 3		
1 6		

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 8 1	F
150 100 200	
45 60 55	
80 45 50 62 48 40 68 55	
2	
1 3 5	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	1 GB
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการตรวจให้คะแนนโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อกำหนดอื่น ๆ

ผู้เข้าแข่งขันต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ ดังนี้

ภาษา C	ภาษา C++	
/*	/*	
TASK: minreq.c	TASK: minreq.cpp	
LANG: C	LANG: C++	
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName	
CENTER: YourCenter	CENTER: YourCenter	
*/	*/	

ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบเป็นกลุ่มของคะแนนที่เป็นอิสระต่อกัน โดยผลรวมของคะแนน ได้ 100% มีดังนี้

ระดับข้อมูล	คะแนนสูงสุดที่เป็นไปได้	เงื่อนไข
ทดสอบ	โดยประมาณ	
1	10%	N = 2 โดยที่ลิฟต์รองรับน้ำหนักเท่ากันและพี่เลี้ยงมีน้ำหนัก
		เท่ากัน และมี 1 แถวย่อยที่มีนักเรียน 1 คน
2	25%	N=2 โดยที่ลิฟต์รองรับน้ำหนักเท่ากันหรือพี่เลี้ยงมี
		น้ำหนักเท่ากันกรณีใดกรณีหนึ่ง
3	10%	$\mathit{N}=2$ โดยที่ลิฟต์รองรับน้ำหนักไม่เท่ากันและพี่เลี้ยงทุกคน
		มีน้ำหนักไม่เท่ากัน
4	25%	$2 < N \leq 10$ โดยที่ลิฟต์รองรับน้ำหนักเท่ากันหรือพี่เลี้ยงมี
		น้ำหนักเท่ากันกรณีใดกรณีหนึ่ง
5	10%	$5 < N \le 10, M \le 110,000$ จำนวนนักเรียนในแถวย่อย
		ไม่เกิน 15,000 คน และไม่รับประกันว่าน้ำหนักพี่เลี้ยงหรือ
		น้ำหนักลิฟต์เท่ากัน
6	20%	$5 < N \le 10$, $M \le 10$,000,000 จำนวนนักเรียนในแถว
		ย่อยไม่เกิน 1,200,000 คน และไม่รับประกันว่าน้ำหนักพี่
		เลี้ยงหรือน้ำหนักลิฟต์เท่ากัน

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 15 ณ มหาวิทยาลัยบูรพา

ข้อสอบข้อที่ 3 จากทั้งหมด 3 ข้อ วันพฤหัสบดีที่ 6 มิถุนายน 2562 เวลา 9.00-12.00 น.

ถ้ำเสือศรีราชา (Cave)

นักผจญภัยรุ่นเยาว์ต้องเข้าตามหาอัญมณีหินอนันต์ในถ้ำเสือศรีราชาช่วงฤดูน้ำหลาก แต่เกิดเหตุไม่ คาดฝัน มีฝนตกหนักมาก จนทำให้นักผจญภัยรุ่นเยาว์ติดอยู่ในถ้ำที่โถงแห่งหนึ่ง ทีม Avenger ได้รับการติดต่อ ขอความช่วยเหลือให้นำเสบียงเข้าไปให้นักผจญภัยกลุ่มนี้

ทีม Avenger ได้ปรึกษากับผู้มีประสบการณ์ในการเดินสำรวจถ้ำเสือศรีราชามาก่อน และได้บันทึก เส้นทางในถ้ำเป็นแผนที่ทางเดินถ้ำไว้ แผนที่นี้ได้ระบุจำนวนโถงในถ้ำทั้งหมด N โถง โดยแต่ละโถงแทนด้วย หมายเลขซึ่งเป็นจำนวนเต็มบวก 0 ถึง N-1 ที่ไม่ซ้ำกันกำกับอยู่ แผนที่แสดงทางเชื่อมระหว่างโถงจำนวน E เส้น

สำหรับโถง Q และโถง R ใด ๆ ที่มีทางเชื่อมจาก Q ไป R แล้วทางเชื่อมนั้นมีจำนวนเต็ม $T_{Q,R}$ ($0 \le Q, R \le N-1, Q \ne R$) ที่ระบุระยะเวลา (นาที) ของการเดินทางผ่านทางเชื่อมจากโถงต้นทาง Q ไป ยังโถงปลายทาง R ขณะไม่มีน้ำท่วม และระยะเวลา $T_{Q,R}$ ดังกล่าวเป็นระยะเวลาการเดินทางจากโถงต้นทาง Q ไปยังโถงปลายทาง Q แต่อาจไม่ใช่ระยะเวลาการเดินทางจากโถงต้นทาง Q ไปยังโถง Q ไปยังโถง Q แล้วทางเชื่อมนั้นมี<u>เพียงเส้นเดียว</u>เท่านั้น

โถง P $(0 \le P \le N-1)$ เป็นโถงปากทางเข้าที่ทีม Avenger มีเสบียงเตรียมไว้ โถง U เป็นโถงที่ นักผจญภัยรุ่นเยาว์ติดอยู่ เมื่อ $0 \le U \le N-1, U \ne P$ ทีม Avenger ต้องการเดินทางจากโถง P ไปยัง โถง U โดยใช้เวลาน้อยที่สุด

เมื่อมีน้ำหลาก น้ำจะท่วมภายในถ้ำ และระดับน้ำมีผลกับระยะเวลาการเดินทางผ่านทางเชื่อม โดยที่ ระยะเวลาการเดินทางผ่านทางเชื่อมจะเพิ่มขึ้น 1 นาทีต่อระดับน้ำ (h) ที่สูงเพิ่มขึ้น 1 นิ้ว อย่างไรก็ตาม โถง P เป็นโถงที่อยู่บนพื้นที่สูง ดังนั้นแม้มีน้ำหลาก <u>ระยะเวลาการเดินผ่านทางเชื่อมใด ๆ ที่เชื่อมกับโถง P จะไม่ได้</u> รับผลกระทบจากการเพิ่มของระดับน้ำ

ภาพที่ 1 แสดงแผนที่และทางเชื่อมของถ้ำที่มีโถงจำนวน 8 โถง โดยโถงปากทางเข้า คือ โถง 0 (P=0) และ โถงที่นักผจญภัยรุ่นเยาว์ติดอยู่ คือ โถง 7 (U=7) จำนวนเต็มกำกับแต่ละทางเชื่อม คือ ระยะเวลาของการ เดินทางผ่านทางเชื่อมนั้น<u>ขณะไม่มีน้ำท่วม</u> (h=0)

เส้นทางจากโถง 0 ไปยังโถง 7 ที่ใช้ระยะเวลาเดินทางน้อยที่สุด คือ เส้นทาง 0 \rightarrow 4 \rightarrow 6 \rightarrow 5 \rightarrow 7 ซึ่งใช้ เวลาเดินทางเท่ากับ 8+1+1+2=12 นาที

ภาพที่ 1 แผนที่ของถ้ำสำหรับตัวอย่างที่ 1

ภาพที่ 2 แสดงแผนที่และทางเชื่อมของถ้ำในตัวอย่างที่ 1 <u>เมื่อเกิดน้ำหลากทำน้ำท่วม มีผลให้ระดับน้ำเพิ่มขึ้น</u> 10 นิ้ว (h=10) เส้นทางจากโถง 0 ไปยังโถง 7

เส้นทางจากโถง 0 ไปยังโถง 7 ที่ใช้ระยะเวลาเดินทางน้อยที่สุดในกรณีนี้ คือ เส้นทาง 0 \rightarrow 1 \rightarrow 2 \rightarrow 7 ซึ่ง ใช้เวลาเดินทางเท่ากับ 10+12+12 = 34 นาที

ภาพที่ 2 แผนที่ของถ้ำสำหรับตัวอย่างที่ 2

ในการวางแผนการช่วยเหลือ ทีม Avenger จึงต้องจำลองการเดินทาง เพื่อหาระยะเวลาการเดินทางที่น้อย ที่สุดในการนำเสบียงเข้าไปให้นักผจญภัย เป็นจำนวน L ครั้ง ที่ระดับความสูงของน้ำในถ้ำต่าง ๆ กัน เมื่อ h_i $\left(1\leq i\leq L\right)$ แทนความสูงของระดับน้ำในการจำลองครั้งที่ i

<u>งานของคุณ</u> จงเขียนโปรแกรมเพื่อช่วยทีม Avenger ในการคำนวณระยะเวลาการเดินทางที่น้อยที่สุด ซึ่งต้อง ใช้เดินทางจากโถง P ไปยังโถง U ณ ระดับความสูงของน้ำต่าง ๆ ทั้ง L ครั้งของการจำลอง <u>โดยรับประกันว่า</u> มีเส้นทางอย่างน้อยหนึ่งเส้นทางจากโถง P ไปยังโถง U เสมอ

ข้อมูลนำเข้า

มีจำนวน E+3 บรรทัด ดังนี้

บรรทัดที่ 1	จำนวนเต็ม 4 จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง		
	จำนวนเต็ม 4 จำนวนนี้ คือ N,P,U และ E ตามลำดับ แสดงถึง		
	N แทนจำนวนโถงในถ้ำทั้งหมด $\left(2 \leq N \leq 2000 ight)$		
	P แทนหมายเลขโถงปากทางเข้า $\left(0 \leq P < N ight)$		
	U แทนหมายเลขโถงที่นักผจญภัยติดอยู่ $\left(0 \leq U < N, U eq P ight)$ และ		
	E แทนจำนวนทางเชื่อมระหว่างโถง $ig(N-1 \le E \le 10{,}000ig)$		
บรรทัดที่ 2	แต่ละแถวประกอบด้วย จำนวนเต็ม 3 จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง		
ถึงบรรทัดที่	จำนวนเต็ม 3 จำนวนนี้ คือ Q , R และ $T_{Q,R}$ ตามลำดับ แสดงถึงทางเชื่อมระหว่างโถง		
E+1	Q แทนหมายเลขโถงต้นทาง $\; \left(0 \leq Q < N ight)$		
	R แทนหมายเลขโถงปลายทาง $\left(0 \leq R < N, Q eq R ight)$ และ		
	$T_{Q,R}$ แทนระยะเวลาการเดินทางจากโถงต้นทาง Q ไปยังโถงปลายทาง R $rac{var}{var}$		
	ท่วม $(h=0)$ $(1 \le T_{Q,R} \le 100,000,000)$		
บรรทัดที่ E + 2	จำนวนเต็ม 1 จำนวน คือ L แทนจำนวนครั้งที่ต้องจำลองการเดินทาง		
	$\left(1 \le L \le 500,000\right)$		
บรรทัดที่ E + 3	ประกอบด้วยจำนวนเต็ม L จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง		
	แต่ละจำนวนแทนความสูงของระดับน้ำ h_i เมื่อ $1 \leq i \leq L$		
	$\left(0 \le h_i \le 1,000,000\right)$		

ข้อมูลส่งออก

มีจำนวน 1 บรรทัด คือ

บรรทัดที่ 1	จำนวนเต็ม L จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง
	แต่ละจำนวน t_i $(1 \leq i \leq L)$ แทนระยะเวลาการเดินทางที่น้อยที่สุด จากโถง P ไป
	โถง U ที่ระดับความสูงของน้ำ h_i $\left(1 \leq i \leq L ight)$
	$\left(0 < t_i \le 1,000,000,000\right)$

ข้อมูลนำเข้า	ข้อมูลส่งออก
8 0 7 14	12 34 18 59
0 1 10	
0 3 14	
0 4 8	
1 2 2	
272	
2 3 4	
3 7 15	
3 4 9	
5 3 7	
5 7 2	
4 5 5	
4 6 1	
6 5 1	
6 4 3	
4	
0 10 2 30	

ข้อกำหนด

หัวข้อ	เงื่อนไข	
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)	
ข้อมูลส่งออก	Standard Output (จอภาพ)	
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที	
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	512 MB	
คะแนนสูงสุดของโจทย์	100 คะแนน	
เงื่อนไขการตรวจให้คะแนนโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน	

ข้อกำหนดอื่น ๆ ผู้เข้าแข่งขันต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ ดังนี้

ภาษา C	ภาษา C++	
31181 C	\$1161C++	
/*	/*	
TASK: cave.c	TASK: cave.cpp	
LANG: C	LANG: C++	
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName	
CENTER: YourCenter	CENTER: YourCenter	
*/	*/	

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

ระดับข้อมูล	สำหรับข้อมูลขนาด N	สำหรับข้อมูลขนาด L	คะแนนสูงสุดที่	เงื่อนไข
ทดสอบ			เป็นไปได้	
			โดยประมาณ	
1	N = 5	$L \le 10$	10%	แผนที่ทางเชื่อม
				เป็นดังภาพที่ 3
2	<i>N</i> ≤ 8	$L \le 10$	10%	ทางเชื่อมระหว่าง
				โถงมีระยะทาง
				เท่ากันทั้งหมดใน
				ทุก ๆ ทางเชื่อม
3	<i>N</i> ≤ 500	$L \le 10,000$	30%	-
4	$N \le 2,000$	$L \le 500,000$	50%	-

ภาพที่ 3 แผนที่สำหรับระดับข้อมูลทดสอบ 1