EXPOSÉ PROJET 8

PARTICIPEZ À LA CONCEPTION D'UNE VOITURE AUTONOME

Le 28 Juillet 2021

Zeineb Guizani

Plan de la présentation

- 1. Problématique métier
- 2. Description du jeu de données
- 3. Présentation des approches
- 4. Comparaison des approches
- 5. Déploiement de API Flask grâce au service Azure
- 6. Conclusion

I-Problématique métier

 L'entreprise « Future Vision Transport » par ordinateur pour les voitures autonomes.

conçoit des systèmes embarqués de vision

- Produire un modèle à base de réseaux de neurones qui permet de segmenter les images.
- Un problème de classification pixellique où chacun des pixels de l'image doit fournir une catégorie.
- Objectifs:
 - Générateur de données.
 - Keras et Azure Machine Learning pour l'entrainement des modèles.
 - Architectures
 - Augmentations de données.
- Résultats:
 - Déploiement du meilleur modèle sur Azure ML.
 - Faire l'api Flask et l'interface avec streamlit.

II- Description du jeu de données

Cityscapes Dataset

- Complexité:
 - 32 catégories à fusionner en 8 : les panneaux, les piétons, les trottoirs, les voitures, la végétation, la construction, le ciel ou le contexte.
- Diversité:
 - 50 villes, plusieurs mois (printemps, été, automne), scènes et contextes.
- Volume:
 - 5000 images annotées avec des annotations fines
 - 20000 images annotées avec des annotations grossières

II- Description du jeu de données

Data Generator

- Script automatisé et permet le traitement des images sur plusieurs cœurs de calcul.
 - 1. redimensionnement de la taille de l'image
 - 2. l'application de l'augmentation des données
 - 3. la normalisation des images
 - 4. one hot encoding » sur les labels du masque.
 - 5. l'application du shuffle

Architectures Métriques d'évaluation Fonctions de coût Augmentation

Unet

Figure Architecture UNet

Architectures Métriques d'évaluation Fonctions de coût Augmentation

UNet de segmentation models

les librairies fournissent des UNets dont l'encodeur est un réseau de neurone pré-entrainé afin d'améliorer les performances.

TABLEAU COMPARATIF BACKBONES

Utilisation	Architecture du backbone	Avantage
La construction d'un modèle pour une utilisation en routine clinique	Xception, MobileNet ef EfficientNet	compromis entre consommation des ressources et niveau de précision.
La classification des images où l'information spatiale est fortement discriminante	Squeeze-and-ExcitationNet et Inception	S'adaptent mieux à la forme discriminante.
La classification de plusieurs structures anatomiques	ResNet ou DenseNet	Architecture robuste et performante

Architectures

Métriques d'évaluation

Fonctions de coût

Augmentation

- I) Calcul d'IoU (Intersection over Union)
 - une métrique classique en traitement d'image.
 - un indicateur permettant de déterminer si la prédiction recouvre pertinemment la ground truth.
 - métrique sera calculée pour toutes les images à prédire et sera suivie au cours de l'apprentissage.
 - utiliser la librairie segmentation models
 - 2) Temps d'entrainement

Architectures Métriques d'évaluation Fonctions de coût Augmentation

Fonction de perte	Utilisation
Categorical Cross-Entropy	classification multi-class à simple label de sortie.
Dice	-Inspiré des coefficients Dice, métriques utilisée pour évaluer la performance d'un réseau de segmentation sémantique d'image en mesurant le chevauchement entre deux objets. - problématiques de segmentation d'image

Architectures Métriques d'évaluation Fonctions de cout Augmentation de données

Albumentations

appliquer plusieurs transformations d'images pour créer artificiellement de nouvelles données

Rotation	Changement d'échelles	Ajout d'effets	Décalage de couleurs	Eclairage	Distorsion
HorizontalFlip	ShiftScaleRotate	Blur	RGBShift	Random Brightness	Grid Distortion
ShiftScaleRotate		GaussNoise		Random Gamma	Optical Distortion
				RandomContrast	

IV- Comparaison des approches

Augmentation	loU	Loss	Temps de Traitement
Aucune	0.620	0.341	2 h 58 m
RandomGamma(p=0.25), Blur(p=0.25, blur_limit=7), GaussNoise(p=0.5)	0.599	0.365	3 h 9 m
HorizontalFlip(p=0.5), RandomGamma(p=0.25),	0.626	0.362	3 h 26 m
RandomGamma(p=0.25), Blur(p=0.25, blur_limit=7),	0.630	0.390	3 h 25 m
ShiftScaleRotate(), RGBShift(), Blur(), GaussNoise()	0.536	0.407	3 h 24
RGBShift(), RandomGamma(p=0.25), Blur(p=0.25, blur_limit=7),	0.588	0.364	3 h 23

Augmentation	loU	Loss	Temps de Traitem ent
RandomGamma(p=0.25), GaussNoise(p=0.5), Blur(p=0.25, blur_limit=7)	0.60 6	0.349	3 h 23 m
ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=0.2), HorizontalFlip(p=0.5), RandomGamma(p=0.25), GaussNoise(p=0.2), Blur(p=0.25, blur_limit=7)#,	0.57 7	0.369	3 h 24 m
A.HorizontalFlip(p = 0.5), OneOf(0.5 91	0.33	3 h 25
OneOf([A.ElasticTransform(alpha = 120, sigma = 120 * 0.05, alpha_affine = 120 * 0.03), A.GridDistortion(), A.OpticalDistortion(distort_limit = 2, shift_limit = 0.5),			II

IV- Comparaison des approches

Architecture	loU	Loss	Temps de Traitem ent
UNet simple sans augmentation	0.620	0.341	2 h 58 m
UNet simple avec augmentation	0.630	0.390	3 h 25 m
backbone_resnet34_ CE	0.626	0.361	1 h 0 m 35
backbone_resnet34_ Dice	0.690	0.205	1 h 15 m
backbone_efficientnet b7_Dice	0.731	0.172	4 h 36 m

V- Déploiement du modèle final avec Azure ML

- I. Récupération de la configuration du meilleur modèle
- 2. Enregistrement de la configuration du modèle
- 3. Déploiement du meilleur modèle
- 4. Déploiment de l'api Flask sur Azure
- 5. Interface graphique avec Streamlit

V- Déploiement du modèle final avec Azure ML

Diagramme de séquence du déploiement :

- (I) Requête liste image.
- (5) Chargement image/mask
- (2) Liste des images.
- (6) prédiction mask.
- (3) Choix de l'image
- (7) masque prédit

- (4) Récupération image/mask
- (8) Affichage résultat

Conclusion et axes d'amélioration

Conclusion & perspectives :

- Production d'un modèle à base de réseaux de neurones pour la segmentation d'images.
- Implémentation d'un générateur de données.
- Entrainement à base d'architectures de réseau de neurones pour la segmentation d'images.
- Utilisation de différentes augmentations de données.
- Déploiement d'une API Flask grâce au service Azure, affichée par Streamlit.
- Test d'architectures du modèle différentes de UNet.
- Traiter le problème de la dégradation de la prédiction suite à la petite résolution d'images.
- Prise en compte du temps de prédiction

MERCI DE VOTRE ATTENTION