Topology

K

April 26, 2022

Contents

Definition 0.1 (Topological Space). A topological space is an ordered pair (X, τ) , where X is a set and τ is a collection of subsets that satisfies the following axioms.

- 1. The empty set \varnothing and the whole set X belongs to τ .
- 2. Any arbitary union of members of τ belongs to τ .
- 3. The intersection of finite number of members of τ belongs to τ .

The collection τ is called a topology on X and the elements of τ are called open sets. A subset $A \subset X$ is said to be closed if its complement $X \setminus A$ is open.

Example 0.1.1. Let X be a set.

- 1. $\tau = \mathcal{P}(X)$ is called the discrete topology. In this case, (X, τ) is called the discrete space. It is the finest topology. (One can define an ordering of topologies.)
- 2. $\tau = \{\emptyset, \mathcal{P}(X)\}$ is called the trivial topology.
- 3. Let (X, d) be a metric space. Set

$$\tau_d := \{ U \in X \mid U \text{ is a open subset in the metric space } (X, d) \}. \tag{1}$$

Recall that U being an open subset in the metric space (X, d) means that for all $x \in U$ there is an r > 0 such that $B_d(x, r)$ is contained in U.

Here, τ is a topology. In other words, a metric induces a topology.

(Proof as homework.)

4. The Zariski-topology.

Definition 0.2 (Continuous Maps). Let (X, τ_X) and (Y, τ_Y) be topological spaces. A map $f: X \longrightarrow Y$ is said to be continuous if the preimage of an open subset is again open, i.e.

for all
$$U \in \tau_Y$$
 it is $f^{-1}(U) \in \tau_X$. (2)

Lemma 0.2.1. The different definitions of continuity in a topological space and a metric space are equivalent, i.e. if X and Y are metric spaces, then $f: X \longrightarrow Y$ is ϵ - δ -continuous if and only if f is continuous.

Definition 0.3 (Homeomorphism). Let X and Y be topological spaces. A map $f: X \longrightarrow Y$ is a homeomorphism if it has the following properties.

- 1. f is bijective.
- 2. f is continuous.
- 3. The inverse map f^{-1} is continuous.

If such function exists, X and Y are said to be homeomorphic.

We denote the set of all homeomorphisms from X to Y by $\operatorname{Homeo}(X,Y)$. The set of all homeomorphisms of X to itself $\operatorname{Homeo}(X)$ is a group with composition as its operation.

4 CONTENTS

Definition 0.4. Let (X, τ) a topological space.

- 1. $\mathcal{B} \subset \mathcal{O}$ is a basis of the topology, if any member of \mathcal{O} is the union of subsets from \mathcal{B} .
- 2. $S \subset \mathcal{O}$ is a subbasis of the topology, if any member of \mathcal{O} is the union of finite intersections of subsets from S.

We say that \mathcal{B} and \mathcal{S} generates \mathcal{O} and write $\overline{\mathcal{S}} = \overline{\mathcal{B}} = \mathcal{O}$.

Lemma 0.4.1. Let $S \subset \mathcal{P}(X)$, then there exists exactly one topology $\mathcal{O} \subset \mathcal{P}(X)$ of X such that 1. $S \subset \mathcal{O}$