ALLEGATO XXXVII

RADIAZIONI OTTICHE

PARTE I - RADIAZIONI OTTICHE NON COERENTI

Radiazioni ottiche non coerenti

I valori limite di esposizione alle radiazioni ottiche, pertinenti dal punto di vista biofisico, possono essere determinati con le formule seguenti. Le formule da usare dipendono dal tipo della radiazione emessa dalla sorgente e i risultati devono essere comparati con i corrispondenti valori limite di esposizione indicati nella tabella 1.1. Per una determinata sorgente di radiazioni ottiche possono essere pertinenti più valori di esposizione e corrispondenti limiti di esposizione.

Le lettere da a) a o) si riferiscono alle corrispondenti righe della tabella 1,1,

a)
$$H_{af} = \int_{0}^{t} \int_{\lambda = 400 \text{ cm}}^{\lambda = 400 \text{ cm}} \int_{\lambda = 100 \text{ cm}}^{\lambda = 400 \text{ cm}} (\lambda, t) \cdot S(\lambda) \cdot d\lambda \cdot dt$$

(H_{eff} è pertinente solo nell'intervallo da 180 a 400 nm)

$$H_{UVA} = \int\limits_{0}^{t} \int\limits_{\lambda = 100 \text{ erg}}^{\lambda = 400 \text{ erg}} \frac{d\lambda}{dt}.$$

(H_{UNA} è pertinente solo nell'intervallo da 315 a 400 nm)

c), d)
$$L_n = \int\limits_{\lambda=100\,\mathrm{nes}}^{\lambda=700\,\mathrm{nes}} L_\lambda\left(\lambda\right) \cdot B(\lambda) \cdot d\lambda$$

(L_B è pertinente solo nell'intervallo da 300 a 700 nm)

e), f)
$$E_{B} = \int\limits_{\lambda=100m}^{\lambda=700m} E_{\lambda}(\lambda) \cdot B(\lambda) \cdot d\lambda$$

(E_B è pertinente solo nell'intervallo da 300 a 700 nm)

$$g(-1) \qquad \qquad L_{_{\mathbf{R}}} = \int\limits_{\lambda_{_{1}}}^{\lambda_{_{1}}} L_{_{\lambda}}\left(\lambda\right) \cdot R(\lambda) \cdot d\lambda$$

(Cfr. tabella 1,1 per i valori appropriati di λ₁ e λ₂)

m), n)
$$E_{1R} = \int_{\lambda=700\,\mathrm{cm}}^{\lambda=1000\,\mathrm{cm}} d\lambda$$

(Ein è pertinente solo nell'intervallo da 780 a 3 000 nm)

$$H_{din} \ = \ \int\limits_{-\infty}^{\varepsilon} \ \int\limits_{-\infty}^{\lambda = 1000 \ cm} E_{\lambda} \left(\lambda, \psi \cdot d\lambda \cdot dt \right)$$

(H_{skin} è pertinente solo nell'intervallo da 380 a 3 000 nm)

Ai fini della direttiva, le formule di cui sopra possono essere sostituite dalle seguenti espressioni e dall'utilizzo dei valori discreti che figurano nelle tabelle successive;

a)
$$E_{eff} = \sum_{\lambda=400 \, cm}^{\lambda=400 \, cm} E_{\lambda} \cdot S(\lambda) \cdot \Delta \lambda$$

$$e\ H_{eff}=E_{eff}\cdot\Delta t$$

b)
$$E_{tNA} = \sum_{k=0}^{k=400 \, cm} E_k \cdot \Delta \lambda$$

$$e\ H_{UVA}=E_{UVA}\cdot \Delta t$$

c), d)
$$L_{n} = \sum_{\lambda=100}^{\lambda=700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda$$

e), f)
$$E_{h} = \sum_{\lambda=200 \text{ cm}}^{\lambda=700 \text{ cm}} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda$$

g)-l)
$$L_R = \sum_{\lambda}^{\lambda_c} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda$$

(Cfr. tabella 1,1 per i valori appropriati di λ_{i} e λ_{2})

$$m),\,n) \qquad E_{lR} = \sum_{\lambda=200\,m}^{\lambda=1000\,cm} E_{\lambda} \cdot \Delta \lambda$$

o)
$$E_{din} = \sum_{k=100mn}^{k=100mn} E_k \cdot \Delta \lambda \qquad e \; H_{dein} = E_{dein} \cdot \Delta t$$

Note:

- E_λ (λ, t), E_λ irradianza spettrale o densità di potenza spettrale: la potenza radiante incidente per unità di area su una superficie, espressa in watt su metro quadrato per nanometro [W m² nm²]; i valori di E_λ (λ, t) ed E_λ sono il risultato di misurazioni o possono essere forniti dal fabbricante delle attrezzature:
- E_{eff} irradianza efficace (gamma UV): irradianza calcolata nell'intervallo di lunghezza d'onda UV da 180 a 400 nm, ponderata spettralmente con S (λ), espressa in watt su metro quadrato [W m⁻²];
- H esposizione radiante: integrale nel tempo dell'irradianza, espressa in joule su metro quadrato [] m⁻²]:
- H_{eff} esposizione radiante efficace: esposizione radiante ponderata spettralmente con S (λ), espressa in joule su metro quadrato [J m⁻²];
- E_{UVA} irradianza totale (UVA): irradianza calcolata nell'intervallo di lunghezza d'onda UVA da 315 a 400 nm, espressa in watt su metro quadrato [W nr²];
- H_{UW} esposizione radiante: integrale o somma nel tempo e nella lunghezza d'onda dell'irradianza nell'intervallo di lunghezza d'onda UVA da 315 a 400 nm, espressa in joule su metro quadrato [J m⁻²];
- S (A) fattore di peso spettrale: tiene conto della dipendenza dalla lunghezza d'onda degli effetti sulla salute delle radiazioni UV sull'occhio e sulla cute (tabella 1.2) [adimensionale];
- t, Δt tempo, durata dell'esposizione, espressi in secondi [s];
- λ lunghezza d'onda, espressa in nanometri [rm];
- Δλ larghezza di banda, espressa in nanometri [nm], degli intervalli di calcolo o di misurazione
- I_k (k), I_k radianza spettrale della sorgente, espressa in watt su metro quadrato per steradiante per nanometro [W m⁻² sr⁻¹ nm⁻¹];
- R (A) fattore di peso spettrale: tiene conto della dipendenza dalla lunghezza d'onda delle lesioni termiche provocate sull'occhio dalle radiazioni visibili e IRA (tabella 1,3) [adimensionale];
- I_R radianza efficace (lesione termica): radianza calcolata ponderata spettralmente con R (λ), espressa in watt su metro quadrato per steradiante [W m⁻² sr⁻¹];
- B (λ) ponderazione spettrale: tiene conto della cipendenza dalla lunghezza d'onda della lesione fotochimica provocata all'occhio dalla radiazione di luce hlu (Fahella 1.3) [adimensionale]:
- L_B radianza efficace (luce blu): radian za calcolata ponderata spettralmente con B (λ), espressa in watt su metro quadrato per steradiante [W m⁻² sr ⁻¹];
- E_B irradianza efficace (hce blu): irradianza calcolata ponderata spettralmente con B (λ) espressa in watt su metro quadrato [W m⁻²];
- En irradianza totale (lesione termica): irradianza calcolata nell'intervallo di lunghezze d'on da dell'infrarosso da 780 nm a 3 000 nm, espressa in watt su metro quadrato [W nr²];
- Estin irradianza totale (visibile, IRA e IRB): irradianza calcolata nell'intervallo di lunghezze d'onda visibile e dell'infrarosso da 380 nm a 3 000 nm, espressa in watt su metro quadrato [W m-2];
- II, im esposizione sadiante: integrale o somma nel iempo e nella lunghezza d'onda dell'irradianza nell'intervallo di lunghezze d'onda visibile e dell'infrarosso da 380 nm a 3 000 nm, espressa in joule su metro quadrato () m²);
- angolo sotteso: angolo sotteso da una sorgente apparente, visto in un punto nello spazio, espresso in milliradianti (mrad). La sorgente apparente è l'oggetto reale o virtuale che forma l'immagine retinica più piccola possibile.

Tabella 1.1 Valori limiti di esposizione per radiazioni ottiche non coerenti

Nischio	kotocheratie oorginnivise cataratoganesi eritema daatooti tumore della cute	ទេងនើល្អនយុប			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Partedd corpo	oothic comes complements cristallino cute	ochic crisalino			OOCHICA PER IN	
Connecti			pera≥11 mad		per a / 11 mead Of. min 2	
Unità	[] m²]	[] m ²]	$l_{a}[W\mathbf{n}^{-a}\mathbf{s}^{a}]$ t: [second]	[W m ² sc ³]	I ₀ [W m ²] t: [secondi]	[Wm ⁻³]
Valori limite di esposizione	$F_{\rm eff} = 30$ Valore giornaliero 8 are	$E_{\rm DM}=10^4$ Valore giornalismo 8 ore	$L_3 = \frac{10^6}{t}$ pr t < 10000 s	L _s = 100 per t > 10000 s	$E_3 = \frac{100}{t}$ put s 10000 s	E ₁ = 0.01 t >10 000 s
Lunghezz a fonda nen	180-400 (UVA, UVB e UVC)	315-400 (UVA)	300-700 (Lace blu) Cf-neta 1	300-700 (Ince blu) Cfr. nota 1	300-200 (Loce blu) Cfr. note 1	300-700 (Lace bla) Cfc. nata 1
Indice	d	ų	3	7	d	, ,,

rpo Rischio		untione retina			untione retina		ustione cornea ino catarattogenesi		
Parte del corpo		oothic rein			oothic rein		ochic come	cristallino	
Commenti	$C_e = 1.7$ per $a \le 1.7$ mead $C_e = a$ per $1.7 \le a \le 100$ mead	$C_c = 100 \text{ per}$ a > 100 mead $\lambda_1 = 380; \lambda_2 = 1.400$		C _e = 11 per a s 11 mrad C _e = a per 11s a s 100 mrad	$C_c = 100 \text{ per}$ a > 100 mrad (campo di vista per la misu- razione, 11 mrad) $\lambda_1 = 780$; $\lambda_2 = 1400$				
Unità	$[Wm^2\pi^1]$	L _{g.} [W m ⁻² sr ¹] t: [secondi]	[Wm ⁻² sr ¹]	$[Wm^2\pi^4]$	L _* : [W m ⁻² sr ⁻¹] t: [secondi]	[Wm ⁻² st ¹]	E [W m²] t: [secondi]	[Wm²]	
Valori limite di esposizione	$L_{R} = \frac{2.8 \cdot 10^{7}}{C_{e}}$ per t > 10 s	$L_{\rm g} = \frac{5 \cdot 10^7}{C_{\rm co} a x 5}$ per 10 µs < t < 10 s	$L_R = \frac{8.89 \cdot 10^8}{C_0}$ per t <10 ps	$L_{R} = \frac{6 \cdot 10^{4}}{C_{o}}$ per t > 10 s	$L_{\rm g} = \frac{5 \cdot 10^7}{C_{\rm co} 4035}$ per 10 µs < t < 10 s	$L_R = \frac{8.89 \cdot 10^8}{C_0}$ per t < 10 jes	Eg = 18 000 t ^{0,5} per t < 1 000 s	Eg = 100 per t > 1 000 s	
Lunghezza d'onda nm	3 80-1 400 (Vissbile e 1RA)	3 80-1 400 (Visibile e 1RA)	3 80-1 400 (Visibile e 1RA)	780-1 400 (IRA)	780-1 400 (IRA)	780-1 400 (IRA)	780-3 000 (IRA c IRB)	780-3 000 (IRAc IRB)	
Indice	ois	ч.		rada,	×	1	É	ď	

Indice	Langhezza d'onda nan	Valori limite di esposizione	Chath	Commenti	odaco pp sama	Nischio
ъ	380-3 000 (Visibile, IRA	H _{dan} = 20 000 t ^{0,25} per t < 10 s	H: [] m ²] t: [second]		one	untione
	e IRB)					

Lineavallo di lungbezze donda 200-700 mm copre in parte gli UVB, tutti gli UVB, e la maggior parte delle radiazioni visibili; tuttavia il rischio associato è normalmente denominato rischio da «luce blu», in senso stretto la luce blu riguarda soltanto approssimativamente l'intervallo 400-490 nm. Note I:

Per la fissazione contante di soggenti piccolissime che sottendono angoli < 11 matd. La può essere convertito in E₀. Ciò si applica di solito solo agli strumenti oftalmid o all'occhio stabilizzato sotto anestesia Il «tempo di fissazione» massimo è dato dat_{raux}= 100/E₀ dove E₀ è espressa in W m². Considerati i movimenti dell'occhio durante compiti visivi normali, questo valore non supera i 100s. Nota 2:

 $\label{eq:continuous} \mbox{Tabella 1.2} $$ S (\lambda) [adimensionale], da 180 nm a 400 nm $$$

λ in nm	s (A)	λ in nm	s (A)	λ in mm	s (X)	λ in nm	s (A)	λ in nm	5 (A)
180	0,0120	228	0,1737	276	0,9434	324	0,000520	372	0.000086
181	0,0126	225	0,1819	277	0,9272	325	0,000500	373	0,000083
182	0,0132	230	0,1900	278	0,9112	326	0,000479	374	080000;3
183	0,0138	231	0,1995	279	0,8954	327	0,000459	375	6,000077
184	0,0144	231	0,2089	280	0,8800	328	0,000440	376	0,000074
185	0,0151	233	0,2188	281	0,8568	329	0,000425	377	0,000072
186	0,0158	234	0,2292	282	0,8342	330	0,000410	378	0,000069
187	0,0166	235	0,2400	283	0,8122	331	0,000396	379	0,000066
188	0,0173	23 €	0,2510	284	0,7908	332	0,000383	380	0,000064
189	0,0181	237	0,2624	285	0,7700	333	0,000370	381	6,000062
190	0,0190	238	0,2744	286	0,7420	334	0,000355	382	0,000059
191	0,0199	235	0,2869	287	0,7151	335	0,000340	383	0,000057
192	0,0208	240	0,3000	288	0,6891	336	0,000327	384	0,000055
193	0,0218	241	0,3111	289	0,6641	337	0,000315	385	0,000053
194	0,0228	242	0,3227	290	0,6400	338	0,000303	386	0,000051
195	0,0239	243	0,3347	291	0,6186	339	0,000291	387	0,000049
196	0,0250	244	0,3471	292	0,5980	340	0,000280	388	0,000047
197	0,0262	245	0,3600	293	0,5780	341	0,000271	389	0,000046
198	0,0274	246	0,3730	294	0,5587	342	0,000263	390	0,000044
199	0,0287	247	0,3865	295	0,5400	343	0,000255	391	0;000042
200	0,0300	248	0,4005	296	0,4984	344	0,000248	392	0,000041
201	0,0334	249	0,4150	297	0,4600	345	0,000240	393	0,000039
202	0,0371	250	0,4300	298	0,3989	346	0,000231	394	0,000037
203	0,0412	251	0,4465	299	0,3459	347	0,000223	395	0,000036
204	0,0459	251	0,4637	300	0,3000	348	0,000215	396	0,000035
205	0,0510	253	0,4815	301	0,2210	349	0,000207	397	0,000033
206	0,0551	254	0,5000	302	0,1629	350	0,000200	398	0,000032
207	0,0595	255	0,5 20 0	303	0,1200	351	0,000191	399	6,000031
208	0,0643	25€	0,5437	304	0,0849	352	0,000183	400	(;000030
209	0,0694	257	0,5685	305	0,0600	353	0,000175		
210	0,0750	258	0,5945	306	0,0454	354	0,000167		
211	0,0786	255	0,6216	307	0,0344	355	0,000160		
212	0,0824	260	0,6500	308	0,0260	356	0,000153		
213	0,0864	261	0,6792	309	0,0197	357	0,000147		
214	0,0906	261	0,7098	310	0,0150	358	0,000141		
215	0,0950	263	0,7417	311	0,0111	359	0,000136		
216	0,0995	264	0,7751	312	0,0081	360	0,000130		
217	0,1043	265	0,8100	313	0,0060	361	0,000126		
218	0,1093	26 ć	0,8449	314	0,0042	362	0,000122		
2 19	0,1145	267	0,8812	315	0,0030	363	0,000118		
220	0,1200	268	0,9192	316	0,0024	364	0,000114		
221	0,1257	265	0,9587	317	0,0020	365	0,000110		
222	0,1316	270	1,0000	318	0,0016	366	0,000106		
223	0,1378	271	0,9919	319	0,0012	367	0,000103		
224	0,1444	272	0,9838	320	0,0010	368	0,000099		
225	0.1500	273	0,9758	321	0000819	369	0.000096		
226	0,1583	274	0,9679	322	0000670	370	0,000093		
227	0.1658	275	0,9600	323	0000540	371	0,000090		

Tábella 1.3 B (A), R (A) [adimensionale], da 380 nm a 1 400 nm

λ in nm	В (Д)	R (A)
300 ≤λ< 380	0,01	_
380	0,01	0,1
385	0,013	0,13
390	0,025	0,25
395	0,05	0,5
400	0,1	1
40.5	0,2	2
410	0,4	4
415	0,8	8
420	0,9	9
425	0,95	9,5
430	0,98	9,8
435	1	10
440	1	10
445	0,97	9,7
450	0,94	9,4
455	0,9	9
460	0,8	8
465	0,7	7
470	0,62	6,2
475	0,55	5,5
480	0,45	4,5
485	0,32	3,2
490	0,22	2,2
495	0,16	1,6
500	0,1	1
500 <λ≤ 600	100,02(450k)	1
600 <λ≤ 700	0,001	1
700 <λ≤ 1 050	_	100002C00- 3)
1 050 <λ≤ 1 150	_	0,2
1 150 <λ≤ 1 200	_	0,2-10 ^{0,02} (1150- ³)
1 200 <λ≤ 1 400	_	0,02

PARTE II - RADIAZIONI LASER

Radiazioni laser

I valori di esposizione alle radiazioni ottiche, pertinenti dal punto di vista biofisico, possono essere determinati con le formule seguenti. La formula da usare dipende dalla lunghezza d'onda e dalla durata delle radiazioni emesse dalla sorgente e i risultati devono essere comparati con i corrispondenti valori limite di esposizione di cui alle tabelle da 2.2 a 2.4. Per una determinata sorgente di radiazione laser possono essere pertinenti più valori di esposizione e corrispondenti limiti di esposizione.

I coefficienti usati come fattori di calcolo nelle tabelle da 2.2 a 2.4 sono riportati nella tabella 2.5 e i fattori di correzione per l'esposizione ripetuta nella tabella 2.6.

$$E = \frac{dP}{dA} [W m^2]$$

$$H = \int\limits_{t}^{t} E(t) \cdot dt \left[Jm^{2}\right]$$

Note:

dP potenza, espressa in watt [W];

dA superficie, espressa in metri quadrati [m²];

- E(t), E irradianza o densità di potenza: la potenza radiante incidente per unità di area su una superficie generalmente espressa in watt su metro quadrato [W m⁻²]. I valori E(t) ed E sono il risultato di misunazioni o possono essere indicati dal fabbricante delle attrezzature;
- H esposizione radiante: integrale nel tempo dell'irradianza, espressa in joule su metro quadrato [J m⁻²];
- t tempo, durata dell'esposizione, espressa in secondi [s];
- λ lunghezza d'onda, espressa in nanometri [nm];
- γ angolo del com che limita il campo di vista per la misurazione, espresso in milliradianti [mral];
- γ_m campo di vista per la miaurazione, espresso in milliradianti [mrad];
- angolo sotteso da una sorgente, espresso in milliradianti [mrad];
 - apertura limite: superficie circolate su cui si basa la media dell'irradianza e dell'esposizione radiante;
- G nadianza integrata: integrale della radianza su un determinato tempo di esposizione, espresso come energia radiante per unità di area di una superficie radiante per unità dell'angolo solido di emissione, espressa in joule su metro quadrato per steradiante [] m⁻² sr⁻¹].

Tabella 2.1 Rischi delle radiazioni

Lunghezza d'onda [nm] λ	Campo di radiazione	Organo interes- sato	Rischio	Tabella dei valori limite di esposizione
da 180 a 400	UV	occhio	danno fotochimico e danno termico	2.2, 2.3
da 180 a 400	UV	cute	eritema	2.4
da 400 a 700	visibile	occhio	danno alla retina	2.2
da 400 a 600	visibile	occhio	danno fotochimico	2.3
da 400 a 700	visibile	cute	danno termico	2.4
da 700 a 1 400	IRA	occhio	danno termico	2.2, 2.3
da 700 a 1 400	IRA	cute	danno termico	2.4
da 1 400 a 2 600	IRB	occhio	danno termico	2.2
da 2 600 a 106	IRC	occhio	danno termico	2.2
da 1 400 a 106	IRB, IRC	occhio	danno termico	2.3
da 1 400 a 106	IRB, IRC	cute	danno termico	2.4

Tabella 2.2 Valori limite di esposizione dell'occhio a radiazioni laser — Durata di esposizione breve < 10 s

Lunche	zza d'onda * [nm]	Apertura				Durata [s]			
gii	and a or, as (iiii)	Ape	10 ⁻¹³ - 10 ⁻¹¹	10 ⁻¹¹ - 10 ⁻⁹	10-9 - 10-7	10 ⁻⁷ - 1,8 · 10 ⁻⁸	1,8 · 10 ⁻⁵ - 5 · 10 ⁻⁵	5 · 10 ⁻⁵ - 10 ⁻³	10 ⁻³ – 10 ¹
UVC	180 - 280 280 - 302	0.8			H = 30 [J m ⁻²]	889.00	10 ⁹ ll 11-5 č 1	03 . 0.25 m21 . C	d
	303 304 305	per 0,3 <t<10 s<="" td=""><td></td><td></td><td>$H = 40 [J m^{-2}]$ $H = 60 [J m^{-2}]$ $H = 100 [J m^{-2}]$</td><td>se t < 1</td><td>2,6 · 10⁻⁹ allora H = 5,6 · 1 ,3 · 10⁻⁸ allora H = 5,6 · 1 ,0 · 10⁻⁷ allora H = 5,6 · 1</td><td>03 t 0.25 [J m⁻²] cfr. no</td><td>ta ^d</td></t<10>			$H = 40 [J m^{-2}]$ $H = 60 [J m^{-2}]$ $H = 100 [J m^{-2}]$	se t < 1	2,6 · 10 ⁻⁹ allora H = 5,6 · 1 ,3 · 10 ⁻⁸ allora H = 5,6 · 1 ,0 · 10 ⁻⁷ allora H = 5,6 · 1	03 t 0.25 [J m ⁻²] cfr. no	ta ^d
	306 307	·1°,375 pe	F = 3 •	10 ¹⁰ • [W m ⁻²]	$H = 160 [J m^{-2}]$ $H = 250 [J m^{-2}]$	se t < 4	$6.7 \cdot 10^{-7}$ allora H = $5.6 \cdot 1$ $4.0 \cdot 10^{-6}$ allora H = $5.6 \cdot 1$	0 ³ t ^{0,25} [J m ⁻²] cfr. no	ta ^d
UVB	308 309 310	s; 1.5	C	fr. nota c	$H = 400 [J m^{-2}]$ $H = 630 [J m^{-2}]$ $H = 10^{3} [J m^{-2}]$	se t < 1	$2.6 \cdot 10^{-8}$ allora H = $5.6 \cdot 1$ $1.6 \cdot 10^{-4}$ allora H = $5.6 \cdot 1$ $1.0 \cdot 10^{-3}$ allora H = $5.6 \cdot 1$	03 t 9.25 [J m ⁻²] cfr. not	tad
	310 311 312	mm per t<0,3			$H = 1.6 \cdot 10^{3} \text{ [J m]}$ $H = 1.6 \cdot 10^{3} \text{ [J m]}$ $H = 2.5 \cdot 10^{3} \text{ [J m]}$	se t < 6	$6.7 \cdot 10^{-5}$ allora H = $5.6 \cdot 1$ $6.7 \cdot 10^{-5}$ allora H = $5.6 \cdot 1$ $6.0 \cdot 10^{-2}$ allora H = $5.6 \cdot 1$	0 st 0,2 s [J m ⁻²] cfr. no	ta ^d
	313 314	1 mm			H = $4.0 \cdot 10^3$ [J m H = $6.3 \cdot 10^3$ [J m	2] se t < 2	$2.6 \cdot 10^{-1}$ allora H = $5.6 \cdot 1$	0 ³ t ^{0,25} [J m ⁻²] cfr. no	ta ^d
UVA	315 - 400			1.675		- 2-	$H = 5,6 \cdot 10^3$		1
Visibile	400 - 700 700 - 1 050	E	$H = 1.5 \cdot 10^{-4} C_E [J \text{ m}^{-2}]$ $H = 1.5 \cdot 10^{-4} C_A C_E [J \text{ m}^{-2}]$	H = $2.7 \cdot 10^4 t^{0.75} C_E [J m^2]$ H= $2.7 \cdot 10^4 t^{0.75} C_A C_E [J m^2]$	$H = 5 \cdot 10^{-3}$ $H = 5 \cdot 10^{-3}$			$H = 18 \cdot t^{-0.75} C_E [J m^{-1}]$ $H = 18 \cdot t^{-0.75} C_A C_B$	
e IRA	1 050 - 1 400	7.1	$H = 1.5 \cdot 10^{-3} C_C C_E [J m^{-2}]$	$H = 2.7 \cdot 10^5 t^{0.75} C_C C_E [J m^{-2}]$	11-5-10	$H = 5 \cdot 10^{-2} \text{ C}$	C _E [J m ⁻²]		0 · t 0.75 C _C C _E [] m ⁻²]
	1 400 - 1 500		$E = 10^{12} [W m^{-2}]$	Cfr. nota ^c			0³ [J m ⁻²]		$H = 5.6 \cdot 10^3 \cdot t^{-0.25} [J \text{ m}^{-2}]$
IRB	1 500 - 1 800	Cfr. nota ^b	$E = 10^{13} [W m^{-2}]$	Cfr. nota ^c			$H = 10^4 [J \text{ m}^{-2}]$]	
e	1 800 - 2 600	100	$E = 10^{12} [W m^2]$	Cfr. nota ^c		H=1	0 ³ [J m ⁻²]		$H = 5.6 \cdot 10^3 \cdot t^{-0.25} [J \text{ m}^{-2}]$
IRC	2 600 - 10 ⁶	Cf	$E = 10^{11} [W m^{-2}]$	Cfr. nota ^c	H=100 [J m ⁻²]		H = 5,6	· 10 ³ · t ^{0,25} [J m ⁻²]	

Se la lunghezza d'onda del laser è coperta da due limiti, si applica il più restrittivo.

Se 1 400 s\<10⁵ nm: apertura diametro = 1 mm per t s 0,3 s e 1,5 t^{0,375} mm per 0,3 s < t < 10 s; se 10⁵ s\<10⁶ nm: apertura diametro = 11 mm.

Per mancanza di dati a queste lunghezze di impulso, l'ICNIRP raccomanda di usare i limiti di irradianza per 1 ns.

La tabella riporta i valori di singoli impulsi laser. In caso di impulsi multipli, le durate degli impulsi che rientrano in un intervallo T_{nin} (elencate nella tabella 2.6) devono essere sommate e il valore di tempo risultante deve essere usato per t nella formula: 5,6 10⁵ t.^{2.5}

Tabella 2.3 Valori limite di esposizione dell'occhio a radiazioni laser — Durata di esposizione lunga ≥ 10 s

	Lunghezza d'onda ^a [nm]	Аретша		Durata [s]	
	neighteen a one panis	ybe	10 ¹ - 10 ²	10 ² - 10 ⁴	104-3-104
UVC	180 - 280			H = 30 [J m ⁻²]	
	280 - 302] [
	303] [$H = 40 [J m^{-2}]$	
	304			$H = 60 [J \text{ m}^{-2}]$	
	305			$H = 100 [J m^{-2}]$	
	306] [$H = 160 [J m^{-2}]$	
	307	l a L		$H = 250 [J m^{-2}]$	
UVB	308	3,5 mm		$H = 400 [J m^{-2}]$	
	309	m		$H = 630 [J m^{-2}]$	
	310			$H = 1.0 \cdot 10^{3} [J m^{-2}]$	
	311	JL		$H = 1.6 \cdot 10^{3} [J \text{ m}^{-2}]$	
	312			$H = 2.5 \cdot 10^3 [J m^{-2}]$	
L	313] [$H = 4.0 \cdot 10^3 [] m^{-2}]$	
	314] [$H = 6.3 \cdot 10^3 [j m^{-2}]$	
UVA	315 - 400			$H = 10^{+} [J \text{ m}^{-2}]$	
Visibile 400 – 700	400 - 600 Danno fotochimico ^b Danno alla retina	uu .	$H = 100 C_B [J m^{-2}]$ ($\gamma = 11 \text{ mrad}$) ^d	$E = 1 C_B [W m^{-2}]; (\gamma = 1, 1 t^{0.5} mrad)^d$	$E = 1 C_B [W m^{-2}]$ (y = 110 mrad) ^d
Visi 400-	400 - 700 Danno termico ^b Danno alla reti n a	7 п	St	e $\alpha < 1, 5 \text{ mrad}$ allora $E = 10 \text{ [W m}^{-2}\text{]}$ e $\alpha > 1, 5 \text{ mrad e t} \le T_2$ allora $H = 1.8 C_1 t^{0.75} \text{ [J m}^{-2}\text{]}$ e $\alpha > 1, 5 \text{ mrad e t} > T_2$ allora $E = 18 C_E T_2^{-0.25} \text{ [W m}^{-2}\text{]}$	
IRA	700 - 1 400	7 mm	Se	$\begin{array}{ll} \mathbf{e} \ \mathbf{\alpha} < 1,5 \ \text{mrad} & \text{allora} \ \mathbf{E} = 10 \ C_A \ C_C \ [\mathrm{W} \ \mathbf{m}^{-2}] \\ \mathbf{e} \ \mathbf{\alpha} > 1,5 \ \text{mrad} \ \mathbf{e} \ \mathbf{t} \le \mathbf{T}_2 & \text{allora} \ \mathbf{H} = 18 \ C_A \ C_C \ C_E \ \mathbf{t}^{-0.25} \ [\mathrm{J} \ \mathbf{m}^{-2}] \\ \mathbf{e} \ \mathbf{\alpha} > 1,5 \ \text{mrad} \ \mathbf{e} \ \mathbf{t} > \mathbf{T}_2 & \text{allora} \ \mathbf{E} = 18 \ C_A \ C_C \ C_E \ \mathbf{t}^{-0.25} \ [\mathrm{W} \ \mathbf{m}^{-2}] \ (\text{non superare} \ 1000 \ \mathrm{W} \ \mathbf{m}^{-2}) \end{array}$	
IRB e IRC	1 400 - 10 ⁶	cfr.°		$E = 1 000 [W m^{-2}]$	

a Se la lunghezza d'onda o un'altra caratterística del laser è coperto da due limiti, si applica il più restrittivo.

Se a < y il valore del campo di vista di misurazione y deve essere sufficientemente grande da includere completamente la sorgente, altrimenti non è limitato e può essere superiore a y.

Per sorgenti piccole che sottendono un angolo di 1,5 mrad o înferiore, i doppi valori limiti nel visibile da 400 nm a 600 nm si riducono ai limiti per rischi termici per 10 s s t < T₁ e ai limiti per rischi fotochimici per periodi superiori. Per T₁ e T₂ cft. tabella 2.5. Il limite di rischio fotochimico per la retina può anche essere espresso come radianza integrata nel tempo G = 10⁶ C_B (Jim² sr⁻¹) per t > 10 sino a t = 10 000 s e L = 100 C_S (W m⁻² sr⁻¹) per t > 10 000 s. Per la misurazione di G e L y_m deve essere usato come campo di vista medio. Il confine ufficiale tra visibile e infrarosso è 780 nm come stabilito dalla CIE. La colonna con le denominazioni della lunghezza d'onda ha il solo scopo di fornire un inquadramento migliore all'utente. (Il simbolo G è usato dal CEN; il simbolo L₀ dalla CIE, il simbolo L₀ dall'IEC e dal CENELEC).

Per lunghezze d'onda 1 400 - 103 nm; apertura diametro = 3,5 mm; per lunghezze d'onda 103 - 106 nm; apertura diametro = 11 mm.

d Per la misurazione del valore di esposizione y è così definita: se α (angolo sotteso da una sorgente) > γ (angolo del cono di limitazione, indicato tra parentesi nella colonna corrispondente) allora il campo di vista di misurazione di γ (se si utilizza un valore superiore del campo di vista il rischio risulta sovrastimato).

Tabella 2.4

Valori limite di esposizione della cute a radiazioni laser

hezza d'onda * [nm] 180 - 400 3, 5, 6, 1400 1 400 - 1500 1 500 - 1800 1 800 - 2 600 2 600 - 10 ⁶	Durata [s]	$<10^{-9}$ $10^{-9}-10^{-7}$ $10^{-3}-10^{-3}$ $10^{-3}-10^{-3}$ $10^{1}-10^{-3}$ $10^{1}-3\cdot10^{4}$	$E=3\cdot 10^{10}[\text{Wm}^{-2}]$ Come i limiti di esposizione per l'occhio		$E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} \text{ CA} \left[\text{W·m}^{-2} \right] \qquad \qquad E = 2 \cdot 10^{11} $	$E = 10^{12} [Wm^{-3}]$	$E = 10^{17} [Wm^{-2}]$	$E = 10^{12} [Wm^{-3}]$	$E = 10^{11} [Wm^{-2}]$
180 - 400 180 - 400 700 - 1400 1 500 - 1800 1 500 - 1800 1 800 - 2 600 2 600 - 10 ⁶	ertura	dv	m m≷ ,€	tut	nč,š				
Lungl UV (A, B, C) c RA IRA IRB c IRB	Lunghezza d'onda ª [nm]			Ш	700 - 1 400	1 400 - 1 500	1 500 - 1 800	1 800 - 2 600	2 600 - 106

Se la lunghezza d'onda o un'altra condizione del laser è coperta da due limiti, si applica il più restrittivo.

Tabella 2.5

Fattori di correzione applicati e altri parametri di calcolo

Parametri elencati da ICNIRP	Regione spettrale valida (nm)	Valore o descrizione
	λ < 700	C _A = 1,0
$C_{\mathbf{A}}$	700 — 1 050	C _A = 10 0,002(A - 700)
	1 050 — 1 400	C _A = 5,0
C	4 00 — 4 50	C _R = 1.0
Св	4 50 — 700	$C_B = 10^{-0.02(\lambda - 450)}$
	700 — 1 150	C _C = 1,0
$C_{\mathbb{C}}$	1 150 — 1 200	C _C = 10 0,018 (A - 1 150)
	1 200 — 1 400	C _c = 8,0
	λ < 450	T ₁ = 10 s
T ₁	4 50 — 5 00	$T_1 = 10 \cdot [10^{-0.02 (\lambda - 450)}] \text{ s}$
	λ > 500	T ₁ = 100 s
Parametri elencati da ICNIRP	Valido per effetto biologico	Valore o descrizione
a _{min}	tutti gli effetti termici	$\alpha_{min} = 1,5 \text{ mrad}$
Parametri elencati da ICNIRP	Intervallo angolare valido (mrad)	Valore o descrizione
	$\alpha < \alpha_{min}$	$C_{\rm E} = 1.0$
$C_{\mathbf{E}}$	$a_{min} < \alpha < 100$	$C_E = \alpha / \alpha_{min}$
	a > 100	$C_E = \alpha^2/(\alpha_{min} \cdot \alpha_{max})$ mrad con $\alpha_{max} = 100$ mrad
	a < 1,5	T ₂ = 10 s
T ₂	1,5 < a < 100	$T_2 = 10 \cdot [10^{-(\alpha - 1.5)/98.5}] \text{ s}$
	α > 100	T ₂ = 100 s

Parametri elencati da ICNIRP	Intervallo temporale valido per l'esposizione (s)	Valore o descrizione
	t ≤ 100	γ = 11 [mrad]
Υ	100 < t < 10 ⁴	$\gamma = 1.1 t^{0.5} [mrad]$
	t > 10 ⁴	γ = 110 [mrad]

Tabella 2.6

Correzione per esposizioni ripetute

Per tutte le esposizioni ripetute, derivanti da sistemi laser a impulsi ripetitivi o a scansione, dovrebbero essere applicate le tre norme generali seguenti:

- L'esposizione derivante da un singolo impulso di un treno di impulsi non supera il valore limite di esposizione per un singolo impulso della durata di quell'impulso.
- L'esposizione derivante da qualsiasi gruppo di impulsi (o sottogruppi di un treno di impulsi) che si verseica in un tempo t non supera il valore limite di esposizione per il tempo t.
- 3. L'esposizione derivante da un singolo impulso in un gruppo di impulsi non supera il valore limite di esposizione del singolo impulso moltiplicato per un fattore di correzione termica cumulativa C_p=N^{-0,25}, dove N è il numero di impulsi. Questa norma si applica soltanto a limiti di esposizione per la protezione da lesione termica, laddove tutti gli impulsi che si verseicano in meno di T_{min} sono trattati come singoli impulsi.

Parametri	Regione spettrale valida (nm)	Valore o descrizione
	315 <λ≤ 400	Tmin = 10 -9 s (= 1 ns)
	400 <λ≤ 1 050	T_{min} = 18· 10 $^{-6}$ s (= 18 $\mu s)$
	1 050 <λ≤ 1 400	$T_{min} = 50 \cdot 10^{-6} \text{ s} (= 50 \mu\text{s})$
T_{min}	1 400 <λ≤ 1 500	T _{min} = 10 ⁻³ s (= 1 ms)
	1 500 <λ≤ 1 800	$T_{min} = 10 \text{ s}$
	1 800 <λ≤ 2 600	T _{min} = 10 ⁻³ s (= 1 ms)
	2 600 <λ≤ 10 ⁶	T _{min} = 10 -7 s (= 100 ns)

