

Universidad Nacional de Ingeniería Facultad de Ingeniería Mecánica

Laboratorio de Máquinas Eléctricas ML202B

Laboratorio 3:

Motor asíncrono trifásico Rotor jaula de ardilla

Estudiante:

Josue Huaroto Villavicencio

201740701

Docente:

Ing. Huamán Ladera Floren Acel

Fecha de presentación:

Martes 11 de agosto de 2020

2020-1

LIMA - PERU

Índice

Ín	dice de Figuras	II
In	${f troducci\'on}$	III
1.	Objetivos	1
2.	Precauciones	1
3.	Fundamento teórico 3.1. Rotor de Jaula de ardilla	2 2 2 2 3 3
4.	Equipos y máquinas eléctricas a utilizar	3
5.	Ensayos normalizados 5.1. Conexión del motor asíncrono trifásico - jaula de ardilla normalizado (IEC 34-8)	6 6 7 8 8 8 9
6.	Aplicaciones industriales	9
7.	Cuestionario	10
8.	Recomendaciones	20
9.	Conclusiones	20
Aı	nexos	21
Bi	ibliografía	22

Índice de figuras

1.	Autotransformador variable
2.	Motor jaula de ardilla trifásico
3.	Banco activo de pruebas
4.	Diagrama de circuito (conexión delta)
5.	Esquema de montaje (conexión delta)
6.	Circuito equivalente en un motor asíncrono
7.	Conexiones realizadas
8.	Ensayo de vacío - P vs I
9.	Ensayo de vacío - fdp vs P
10.	Ensayo de vacío
11.	Ensayo de cortocircuito - P vs I
12.	Ensayo de cortocircuito - fdp vs P
13.	Ensayo de cortocircuito
14.	Ensayo de carga - P vs I
15.	Ensayo de carga - T vs P
16.	Ensayo de carga - fdp vs RPM
17	Ensavo de cortocircuito

Introducción

Las máquinas asíncronas se utilizan en aplicaciones de hasta el rango de los MW. Su construcción sencilla con rotor tipo jaula de ardillas las convierte en motores de uso más frecuente. Estos motores asíncronos trifásicos industriales pueden ser:

- Motores trifásicos con rotor jaula de ardilla (una jaula, doble jaula, jaula tratada y ranura profunda).
- Motores trifásicos con polos conmutables con bobinado Dahlander.
- Motores trifásicos con polos conmutables con dos bobinados separados.

Los motores se utilizan en los sectores industriales más variados, como por ejemplo las industrias alimentaria, química, metalúrgica, papelera, minera o las instalaciones de tratamiento de aguas. Las aplicaciones incluyen máquinas con piezas móviles a velocidad fija o variable, como por ejemplo los sistemas de elevación, como ascensores o montacargas; de transporte, como las cintas transportadoras; los sistemas de ventilación y climatización, como las unidades de tratamiento de aire; y su uso más común: las bombas y compresores.

Estos hechos evidencian por qué el motor asíncrono trifásico puede considerarse como la máquina eléctrica más ampliamente utilizada en el entorno industrial.

1. Objetivos

Los objetivos del presente laboratorio son:

- 1. Hacer conocer la constitución electromecánica de los motores asíncronos.
- 2. Familiarizarse con la simbología y conexionado de las máquinas eléctricas de nuestro laboratorio en los ensayos según las normas IEC y NEMA.
- 3. Conexión y puesta en servicio del motor.
- 4. Inversión del sentido de giro (utilizando un conmutador manual).
- 5. A partir de los ensayos realizados obtener el circuito monofásico equivalente.
- 6. Regirstro de los valores característicos y curvas características (FP, EF, Torque) de funcionamiento específicas de las máquinas asíncronas.
- 7. Evaluación de las mediciones realizadas y registradas.
- 8. Presentación del protocolo de pruebas según normas establecidas.

2. Precauciones

Dados las circunstancias del laboratorio y teniendo en cuenta que los equipos son muy valiosos es que se deber tener muy en cuenta lo siguiente:

- 1. Verificar el dimensionamiento de la instrumentación a utilizarse, así mismo constatar que los esquemas estén bien planteados.
- 2. Para evitar el deterioro y/o avería de los instrumentos y equipos, no debe accionarse los equipos bajo ningún motivo, sin la aprobación del profesor.
- 3. Para evitar el deterioro de los amperímetros, en el momento del arranque se debe poner el amperímetro de línea en corto circuito (utilizando un puente) y siempre el arranque debe hacerse en estrella-triángulo a plena tensión.
- 4. Luego de unos 5 segundos hacer el cambio a triángulo y seguidamente retirar el puente del amperímetro. Si es posible hacer el arranque a tensión reducida estando el motor en la posición triángulo.
- 5. La escala de todos los instrumentos debe ser la máxima.
- 6. Al operar el freno, comenzar con una carga mínima y aumentarlo en forma gradual hasta llegar al máximo permisible.

3. Fundamento teórico

Este motor se creó debido a la demanda de un motor síncrono polifásico con arranque propio en tamaños menores, de menos de 50 HP. Que no necesitarán excitación del campo con CD y que poseen las características de velocidad constante del motor. El rotor consiste de un devanado de jaula de ardilla embobinado o vaciado, distribuido uniformemente en las ranuras.

Cuando una corriente alterna polifásica se aplica a la armadura normal de un estator polifásico, el motor arranca como motor de inducción. Debido al rotor de polo saliente, el motor llega muy fácil a su sincronía y desarrolla con rapidez el par máximo del motor síncrono de la máquina de polos salientes.

Así el motor síncrono de inducción desarrolla el par de reluctancia, proporcional a $\sin(2\alpha)$ y al cuál se le llama a veces motor polifásico de reluctancia. Pero este es un nombre equivocado porque el motor síncrono de inducción trabaja con las características combinadas del par del motor síncrono y de inducción. Cuando está diseñado con devanados de rotor de alta resistencia, se pueden desarrollar pares de arranque bastante altos, hasta del 400 % del par a plena carga. Por otro lado, el empleo de devanados del rotor con alta resistencia ocasiona desplazamiento mayor, menor eficiencia y menor posibilidades de entrada en sincronismo con carga mediante el par de reluctancia.

3.1. Rotor de Jaula de ardilla

En su forma instalada, es un cilindro montado en un eje. Internamente contiene barras conductoras longitudinales de aluminio o de cobre con surcos y conectados juntos en ambos extremos poniendo en cortocircuito los anillos que forman la jaula.

El nombre se deriva de la semejanza entre esta jaula de anillos y barras y la rueda de un hámster (ruedas probablemente similares existen para las ardillas domésticas). La base del rotor se construye de un apilado de hierro de laminación.

3.2. Funcionamiento

Los devanados en el estator de un motor de inducción instan al campo magnético a rotar alrededor del rotor. El movimiento relativo entre este campo y la rotación del rotor induce corriente eléctrica, un flujo en las barras conductoras. Alternamente estas corrientes que fluyen longitudinalmente en los conductores reaccionan con el campo magnético del motor produciendo una fuerza que actúa tangente al rotor, dando por resultado un esfuerzo de torsión para dar vuelta al eje. En efecto, el rotor se lleva alrededor el campo magnético, pero en un índice levemente más de la rotación. La diferencia en velocidad se llama deslizamiento y aumenta con la carga.

A menudo, los conductores se inclinan levemente a lo largo de la longitud del rotor para reducir ruido y para reducir las fluctuaciones del esfuerzo de torsión que pudieron resultar, a algunas velocidades, y debido a las interacciones con las barras del estator. El número de barras en la jaula de la ardilla se determina según las corrientes inducidas en las bobinas del estator y por lo tanto según la corriente a través de ellas. Las construcciones que ofrecen menos problemas de regeneración emplean números primos de barras.

El núcleo de hierro sirve para llevar el campo magnético a través del motor. En estructura y material se diseña para reducir al mínimo las pérdidas. Las láminas finas, separadas por el aislamiento de barniz, reducen las corrientes parásitas que circulan resultantes de las corrientes de Foucault. El material, un acero bajo en carbono pero alto en silicio, con varias veces la resistencia del hierro puro, en la reductora adicional. El contenido bajo de carbono le hace un material magnético suave con pérdidas bajas por histéresis.

El mismo diseño básico se utiliza para los motores monofásicos y trifásicos sobre una amplia gama de tamaños. Los rotores para trifásica tienen variaciones en la profundidad y la forma de barras para satisfacer los requerimientos del diseño. Este motor es de gran utilidad en variadores de velocidad.

3.3. Tipos de rotores

Existen varios tipos de estos elementos, pero los que son más usados en la industria; es decir, los rotores para motores asíncronos de corriente alterna son 4.

3.3.1. Rotor de jaula de ardilla simple

Los círculos negros que se muestran en la figura representan las ranuras del rotor donde va introducido el bobinado. Existen varios tipos de ranuras, de ahí que existan varios tipos de rotores.

Este tipo de rotor es el usado para motores pequeños, en cuyo arranque la intensidad nominal supera 6 o 8 veces a la intensidad nominal del motor. Soporta mal los picos de cargas. Está siendo sustituido por los rotores de jaula de ardilla doble en motores de potencia media. Su par de arranque no supera el 140 % del nominal.

3.3.2. Rotor de jaula de ardilla doble

La ranuras es doble, por este motivo tiene el nombre de ardilla doble. Las dos ranuras están separadas físicamente, aunque en el dibujo no se observe.

Este tipo de rotor tiene una intensidad de arranque de 3 o 5 veces la intensidad nominal, y su par de arranque puede ser de 230 % la nominal. Estas características hacen que este tipo de rotor sea muy interesante frente al rotor de jaula de ardilla simple. Es el más empleado en la actualidad, soporta bien las sobrecargas sin necesidad de disminuir la velocidad, lo cual le otorga mayor estabilidad.

3.3.3. Rotor con ranura profunda

Es una variante del rotor de jaula de ardilla simple, pero se le denomina rotor de ranura profunda. Sus características vienen a ser iguales a la del rotor de jaula simple. Es usado para motores de baja potencia que necesitan realizar continuos arranques y paradas.

3.3.4. Rotor de anillos rozantes

Se denominan rotores de anillo rozantes porque cada extremos del bobinado está conectado con un anillo situado en el eje del rotor. Las fases del bobinado salen al exterior por medio de unas escobillas que rozan en los anillos.

Conectando unas resistencias externas a las escobillas se consigue aumentar la resistencia rotórica, de está forma, se logra variar el par de arranque, que puede ser, dependiendo de dichas resistencias externas, del $150\,\%$ y el $250\,\%$ del par normal. La intensidad nominal no supera las 2 veces la intensidad nominal del motor.

3.4. Aplicaciones comunes

Los motores de la línea monofásica pueden ser clasificados como "Motores de Uso general"; sin embargo, pueden ser empleados, sin ningún problema, en aplicaciones específicas como:

- Aplicaciones en ambientes polvosos.
- Bombas centrífugas.
- Compresores.
- Ventiladores.
- Bombas de combustible.
- A prueba de explosión.
- Lavadoras y electrodomésticos en general.

4. Equipos y máquinas eléctricas a utilizar

1. Autotransformador variable.

Figura 1: Autotransformador variable

2. Motor jaula de ardilla trifásico.

Figura 2: Motor jaula de ardilla trifásico

3. Banco activo de pruebas.

Figura 3: Banco activo de pruebas

Banco activo de	Banco activo de pruebas							
N° de pedido	SO3636-6U							
Tensión Nominal	230 Voltios							
Corriente Nominal	3 Amperios							
Corriente Arranque	9 Amperios							
Torque Máximo	10 N-m							
Potencia Aparente	800 VA							
Régimen de servicio	S_1							
RPM máx	4000							
Grado de protección	IP_{20}							
Amplificador I	ntegrado							
Tensión de pico	600 Voltios							
Tensión RMS	400 Voltios							
Corriente pico	10 Amperios							
Corriente RMS	7 Amperios							

Motor asíncr	Motor asíncrono trifásico						
N°							
Tensión	400/690 Voltios						
Corriente	1.73/0.81 Amperios						
Conexión	D/Y						
Frecuencia	60 Hz.						
Potencia	0.37 kW						
Régimen de servicio	S_1						
RPM máx	2800						
Grado de protección	IP_{54}						
IKL	В						
Norma	VDE 0530						
Termostato	120° C						
Factor de potencia	0.84						
Motor tipo ja	ula de ardilla						

	Descripción de máquinas y equipos							
Item	Descripción general de las máquinas y equipos	Cantidad						
1	Manguito de acoplamiento	01						
2	Cubierta de acoplamiento	01						
3	Interruptor de 04 polos	01						
4	Conmutador D-Y	01						
5	Fuente de corriente alterna regulable adecuada	01						
6	Multímetro analógico/digital, FP, KW, KVARS	02						
7	Multímetro digital FLUKE	01						
8	Unidad condensadora	01						
9	Conectores de seguridad	04						
10	Juego de cables de 4 mm ²	25						

5. Ensayos normalizados

- 5.1. Conexión del motor asíncrono trifásico jaula de ardilla normalizado (IEC 34-8)
- 5.2. Medición de la resistencia del estator normalizado (IEEE 112/1978 item 4.1)
- 5.3. Medición de la resistencia de aislamiento normalizado (IEEE 112/1978 item 4.1)

Figura 4: Diagrama de circuito (conexión delta)

Figura 5: Esquema de montaje (conexión delta)

5.3.1. Circuito equivalente en un motor asíncrono

Figura 6: Circuito equivalente en un motor asíncrono

5.4. Prueba en vacío (IEEE 112/1978 item 4.6)

El montaje del motor se realiza conforme a la siguiente figura. Con el motor trifásico en vacío la tensión de alimentación se regula hasta que el voltímetro indique la tensión nominal del motor ha ser probado (ver placa). Los instrumentos de medida que se utilicen durante la práctica, ya están incluidos dentro del pupitre de prácticas.

Las condiciones son las siguientes:

- La velocidad debe ser constante
- El eje del motor debe estar completamente libre.
- La frecuencia debe ser la nominal del motor.

Con la finalidad de verificar las curvas de vacío sobreponerlos con las B vs H.

$$B_{\text{máx}} = \frac{V_{LL} \times 10^{-8}}{4,44 \times f \, A \, N} \tag{1}$$

$$H = \frac{N \times \sqrt{3} I f}{L_m} \tag{2}$$

Donde:

- L_m : Longitud media al paquete magnético (m).
- $\,\blacksquare\,\,N$: Número de vueltas del bobinado estatórico por fase.
- A: Área transversal del paquete magnético estatórico = $L \times C$
- L: Longitud del paquete magnético (m).
- C: Altura de la corona (m).
- f: Frecuencia del sistema (Hz).
- V_{LL} : Tensión de línea en Voltios.

$$Z_0 = \frac{V_0}{I_0} \tag{3}$$

$$R_0 = \frac{P_0}{I_0^2} = R_1 + R_M \tag{4}$$

$$X_0 = \sqrt{Z_0^2 - R_0^2} = X_1 + X_M \tag{5}$$

5.5. Prueba de rotor bloqueado (IEEE 112/1978 item 4.8)

Las condiciones son las siguientes:

- La corriente de línea debe ser la nominal del motor.
- El eje del motor debe estar trabado.
- La frecuencia debe ser la nominal del motor.

Para el ensayo de rotor bloqueado se utilizará exactamente el mismo esquema de conexiones que para el caso del ensayo de vacío. La única diferencia estribará en que en este caso se alimentará el motor con una tensión mucho más reducida que la nominal. A partir de 0 voltios se irá aumentando la tensión hasta que el motor alcance la corriente nominal, todo ellos manteniendo el rotor bloqueado. Se deberá poner especial

atención en no superar la corriente nominal del motor para evitar que los devanados sufran daños. Como resultado del ensayo se registrarán la tensión, la corriente y la potencia en este ensayo.

$$Z_{cc} = \frac{V_{cc}}{I_{cc}} \tag{6}$$

$$R_{cc} = \frac{P_{cc}}{I_{cc}^2} = R_1 + R_{2'} \tag{7}$$

$$X_{cc} = \sqrt{Z_{cc}^2 - R_{cc}^2} = X_1 + X_{2'} \tag{8}$$

Reactancias estatóricas y retóricas - IEEE 112 1978 ITEM 4.8									
Tipo de motor Clase NEMA A Clase NEMA B Clase NEMA C Clase NEMA D Rotor bobin.									
X_1	$0.5~X_{cc}$	$0.4~X_{cc}$	$0.3~X_{cc}$	$0.5~X_{cc}$	$0.5~X_{cc}$				
$X_{2'}$	$0.5~X_{cc}$	$0.6~X_{cc}$	$0.7~X_{cc}$	$0.5~X_{cc}$	$0.5 X_{cc}$				

5.6. Prueba con carga (IEEE 112/1978 item 4.2)

- 1. Para la prueba con carga se tendrá que conectar el freno LN.
- 2. Seguir las indicaciones del profesor.
- 3. En forma muy atenta y delicada manipular el regulador de velocidad del freno dinámico hasta que la corriente circulante consumida por el motor es la corriente nominal.
- 4. Después del registro de las cargas aplicadas en el motor tomar el registro de la velocidad y el torque. Aplicando la siguiente expresión se logrará calcular la potencia útil:

$$P_{\text{util}} = T \text{ (N - m)} \times \text{RPM } (\pi/30)$$
(9)

$$P_{\text{util}} = T \text{ (N - m)} \times \text{RPM (}\pi/30\text{)}$$

$$\text{EF} = \frac{P_{\text{util}}}{P_{\text{ingreso}}}$$
(10)

	Prueba con carga (Prueba al freno)										
Fre	Freno Motor tipo jaula de ardilla										
RPM	N-m	V_{RS} (V)	I_R (A)	P_{total} (Vatios)	$Q_{\rm total}$ (Vatios)	S (V-A)	Eficiencia	RPM	F.P.		

5.7. Ensayo de temperatura (IEEE 112/1978 item 5.3 MET. 3)

Consiste el registrar la temperatura y el tiempo y tener la curva Temperatura vs Tiempo. El tiempo mínimo es 4 horas cuando la temperatura comienza a disminuir en 2°C durante las dos horas siguientes.

Compensación reactiva IEC 831 - item 1,2 y VDE 560 item 4 **5.8.**

6. Aplicaciones industriales

Su construcción robusta e IPW adecuado hace que estos motores sean utilizados en ambientes agresivos tales como: las embarcaciones navieras, la industria textil, industrias químicas, etc. Teniendo en cuenta la categorización, sería muy importante y necesario hacer una buena selección del motor para lo cual el torque de la carga es la información base.

Las cargas más importantes son nominadas a continuación:

Compresores de aire.

- Electroventiladores centrífugos y axiales pequeños, medianos y grandes.
- Máquinas que requieren de un arranque moderado.
- Electrobombas centrífugas.
- Fajas transportadoras.
- Cargas que cuenten con un torque bajo, medio y elevado.

7. Cuestionario

1. Enumere y defina las características nominales de las máquinas rotativas de inducción jaula de ardilla. Presente las características de placa del motor utilizados en su experiencia.

Son las características de funcionamiento de un motor de inducción cuando trabaja en el punto nominal y sus óptimas condiciones. Las podemos ver en la placa de características que llevan todos los motores. Las principales características de los motores de C.A. son:

- Potencia. Es la rapidez con la que se realiza un trabajo; en física la Potencia = Trabajo/Tiempo, la unidad del Sistema Internacional para la potencia es el Joule por segundo, y se denomina Watt (W). Sin embargo estas unidades tienen el inconveniente de ser demasiado pequeñas para propósitos industriales. Por lo tanto se utilizan el kiloWatt (kW) y el caballo de fuerza (HP). La diferencia de tensión es importante en la operación de una máquinas, ya que de esto dependerá la obtención de un mejor aprovechaiento de la operación. Los voltajes empleados más comúnmente son: 127 V, 220 V, 380 V, 440 V, 2300 V, 6000 V.
- Tensiones nominales. Son dos valores, el mayor para conectar en estrella y el menor para conectar en triángulo. Las tensiones son 400/230 V.
- Velocidad nominal. Es la velocidad de giro del rotor en el punto nominal. Es un valor alto próximo al sincronismo.
- Potencia mecánica nominal. Es la potencia que el motor entrega a la carga mecánica en forma de movimiento, cuando trabaja en el punto nominal. También se llama potencia útil, y se determina en cualquier punto de funcionamiento con la siguiente expresión:

$$P_{\rm mec} = \frac{2\pi}{60} M N_r$$

Donde:

- P_{mec} : Potencia mecánica entregada a la carga (W).
- M: Par motor (N-m).
- N_r : Velocidad del motor (RPM).

Normalmente se expresa en caballos de vapor.

- Corriente. La corriente eléctrica (I), es la rapidez del flujo de carga (Q) que pasa por un punto dado (P) en un conductor eléctrico en un tiempo (t) determinado.
- Corriente nominal. En una máquina, el valor de la corriente nominal es la cantidad de corriente que consumirá en condiciones normales de operación.
- Corriente de vacío. Es la corriente que consumirá la máquina cuando no se encuentre operando con carga y es aproximadamente del 20 % al 30 % de su corriente nominal.
- Corriente de arranque. Todos los motores eléctricos para operar consumen un excedente de corriente, mayor que su corriente nominal, que es aproximadamente de dos a ocho veces superior.
- Corriente a rotor bloqueado. Es la corriente máxima que soportará la máquina cuando su rotor esté totalmente detenido.

2. ¿Cómo se invierte el sentido de giro de éste motor asíncrono y cuantas posibilidades existen de hacerlo? Hagas las conexiones que se han realizado.

Se consigue permutando dos líneas cualesquiera de los tres que alimentan al motor; con ello se logra cambiar el sentido de giro del campo magnético giratorio de estator, y por ende el giro del rotor.

Figura 7: Conexiones realizadas

- 3. Realice todos los cálculos necesarios que le conduzca a construir el diagrama equivalente monofásico valorado, referido al estator con los valores registrados y calculados en los ensayos realizados en el laboratorio.
 - Prueba de vacío.

Prueba de vacío									
V (fase)	I (fase)	P (Vatios)	Torque (N-m)	$fdp (\cos \phi)$	RPM				
392	0.22	30.45	0	0.35	3580				
338	0.19	26.48	0	0.41	3580				
300	0.17	22.26	0	0.44	3570				
270	0.14	18.34	0	0.56	3550				

Cuadro 1: Datos obtenidos en la prueba de vacío

$$Z_0 = \frac{V_0}{I_0} = \frac{409.8 \text{ V}}{0.23} = 1781,73913 \Omega$$

$$R_0 = \frac{P_0}{I_0^2} = \frac{27 \text{ W}}{0.22716^2} = 523,25 \Omega$$

$$\cos \phi = \frac{R_0}{Z_0} = \frac{523,25}{1781,73} = 0,293675$$

Aplicando el proceso para todos los valores:

Prueba de vacío							
$\mathrm{Z}\;(\mathrm{V/I})\;\Omega$	$\cos \phi$ medido						
1781.81818	629.13223	1667.053889	0.35308	0.35			
1778.947368	733.518	1620.68	0.41233	0.41			
1764.70588	770.24221	1587.7386	0.43647	0.44			
1928.571428	935.714286	1686.36488	0.4851852	0.56			

Cuadro 2: Datos calculados de la prueba de vacío

• Prueba de cortocircuito.

Prueba de cortocircuito								
V (fase)	I (fase)	P (Vatios)	$fdp (\cos \phi)$					
60.4	0.34	15.22	0.729					
99.1	0.55	40.17	0.73					
143.7	0.81	85.9	0.749					
175.7	0.99	130	0.745					

Cuadro 3: Datos de la prueba de cortocircuito

• Prueba de carga

	Prueba de carga									
V (fase)	I (fase)	P (Vatios)	Torque (N-m)	$fdp (\cos \phi)$	RPM					
391	0.24	50.8	0.43	0.54	3560					
390.7	0.32	98.4	0.79	0.784	3490					
387.4	0.47	160.5	1.23	0.885	3410					
388	0.53	184.5	1.38	0.9	3370					
386	0.64	225.4	1.63	0.92	3300					
383.8	0.79	281.12	1.94	0.927	3190					
385.3	0.86	306.66	2.07	0.93	3120					
380.6	1.02	350.00	2.15	0.91	2980					

Cuadro 4: Datos de la prueba de carga

4. Grafique las curvas de vacío y corto circuito de la máquina de prueba.

Figura 8: Ensayo de vacío - P vs I

Figura 9: Ensayo de vacío - fdp vs P

Figura 10: Ensayo de vacío

Figura 11: Ensayo de cortocircuito - P vs I

Figura 12: Ensayo de cortocircuito - fdp vs P

Figura 13: Ensayo de cortocircuito

5. Grafique las curvas P_{nucleo} vs $I_1,\,T,\,\mathbf{EF},\,\mathbf{FP}$ vs velocidad.

Figura 14: Ensayo de carga - P ${\rm vs}$ I

Figura 15: Ensayo de carga - T
 vs ${\bf P}$

Figura 16: Ensayo de carga - fdp vs RPM

Figura 17: Ensayo de cortocircuito

6. Determinar las pérdidas rotacionales del motor probado.

Se sabe que:

$$\begin{split} P_{\rm desarrollada} &= 3 \frac{V_1 I \times {\rm fdp} \times {\rm EF}}{1000} \\ P_{\rm desarrollada} &= P_{\rm util} + P_{\rm m} \\ P_{\rm rotacional} &= P_{\rm fe} + P_{\rm mec} \end{split}$$

$P_{ m mec}$								
Torque (N-m)	RPM	V_1 (V)	I (A)	FDP	EF (%)	P_{desarr} (W)	P_{util} (W)	P_{mec} (W)
0.46	1150	267	1.29	0.808	86.43	72.1602	55.3967	16.7635
0.42	1160	267.7	1.24	0.814	83.09	67.3541	51.0194	16.3347
0.34	1190	267.8	1.17	0.807	77.45	58.7506	42.3696	16.3810
0.33	1200	268.8	1.15	0.808	73.96	55.4187	41.4690	13.9497

Cuadro 5: Datos calculados para $P_{\rm mec}$

$oxed{ ext{P\'erdidas rotacionales}} \ (P_{ ext{rotacional}})$								
$I_{\text{fase}} (A)$	P_{fe} (W)	P_{mec} (W)	$P_{\text{rotacional}}$ (W)					
1.29	706.2978	16.7635	689.5343					
1.24	710.0061	16.3347	693.6714					
1.17	710.5367	16.3810	694.1557					
1.15	715.8531	13.9497	701.9034					

Cuadro 6: Datos calculados para $P_{\rm rotacional}$

7. Elabore un formato de protocolo de pruebas que Ud. realizaría en las máquinas eléctricas tipo jaula de ardilla industrial.

TABLA N° 1 RESISTENCIA DE AISLAMIENTO							
DEVANADO	TERMINALES	Raisl. (MΩ)	OBSERVACIONES				
	U1 - MASA						
ESTATOR	V1 - MASA						
	W1 - MASA						

TABLA N° 2 RESISTENCIA ÓHMICA POR FASE								
DEVANADO	TERMINALES	Rfase (Ω)*	Voltios	Amper.	Rfase	Tamb. (C°)		
					$(\Omega)^{**}$			
	U1 - U2							
ESTATOR	V1 - V2							
	W1 - W2							
* Utilizando un puente Wheatstone.								
* Utilizando una batería, voltímetro y amperímetro.								

TABLA N° 3 PRUEBA DE VACÍO									
V FASE	IFASE	P	TORQUE	Q	VELOCID.	COS θ			
(VOLTIOS)	(AMPERIOS	(VATIOS)	N - m	(VARs)	RPM				
)								

TABLA N° 4 PRUEBA DE CORTO CIRCUITO (ROTOR BLOQUEADO)											
V FASE (VOLTIOS) I FASE (AMPERIOS)				RIOS)	Р	Q	S	COS θ			
RS	RT	ST	R	S	Т	VATIOS	VARS	VOLT-AMP.			

TABLA	TABLA N° 5 PRUEBA CON CARGA (PRUEBA AL FRENO)									
VRS	VST	VRT	IR	PINGR.	PUTIL	TORQUE	VELOC	EF	COS θ	
VOL.	VOLT.	VOLT.	AMP.	VATIOS	VATIOS	N-m	RPM	(%)		

8. Recomendaciones

- 1. Al regular la corriente, el cambio debe ser entre 0.1 y 0.2 A. La máquina soporta hasta 0.6 A.
- 2. Se debe tener mucho cuidado y precaución en el empleo de los motores del laboratorio, para evitar el daño de los equipos y evitar accidentes.
- 3. Debe revisarse que se tenga el equipo necesario, adecuado y en buen estado antes de empezar la experiencia de laboratorio.
- 4. Revisar cuidadosamente que las conexiones estén bien realizadas.
- 5. Si la máquinas se calienta mucho, dejar de operar por algunos minutos hasta que se enfríe hasta la temperatura ambiente.

9. Conclusiones

- 1. La impedancia del motor disminuye cuando aumentamos la corriente, dado que el voltaje disminuye, por lo tanto varía la impedancia.
- 2. Conforme se aumenta la intensidad de corriente en la prueba de carga, aumenta el factor de potencia y el torque; sin embargo, la velocidad angular disminuye junto con la fuerza electromotriz.
- 3. La potencia aumenta cuando la corriente incrementa.
- 4. La resistencia del vacío es pequeña comparada con la reactancia.

Anexos

Bibliografía

- [1] Huaman L., Floren A. y Guadalupe, E. "Guía de laboratorio de máquinas eléctricas". *Universidad Nacional de Ingeniería*.
- [2] Fitzgerald, A. E. y Kingsley, C. "Teoría y análisis de las máquinas eléctricas". Mac Graw Hill.
- [3] Shult, George P. "Transformer and motors". A division of Prentice Hall Computer 11711.
- [4] Kosow, Irving L. "Máquinas eléctricas y transformadores". Prentice Hall Inc 1991.
- [5] Richardson, Donald V. y Caisse, Arthur J. "Rotating electric machinery and transformer technology". Prentice Hall Inc 1998.
- [6] Salvador, M. G. "Máquinas eléctricas estáticas teoría y problemas". Salvador Editores.
- [7] Gutiérrez, A. "Teoría y análisis de máquinas eléctricas".
- [8] Fraile M., J. "Máquinas eléctricas". Mac Graw Hill.
- [9] Hiziroglu, G. "Máquinas eléctricas y transformadores". Oxford University Press.