1 General Description

Suppose \mathbb{F}_{2^n} is a finite field such that $n=2m, q=2^m$ and gcd(k,n)=1.

Conjecture 1 For some a_1, a_2 and $a_3 \in \mathbb{F}_{2^n}$ the function

$$F_1(x) = x^{2^k+1} + a_1 x^{q+2^k} + a_2 x^{2^k q+1} + a_3 x^{(2^k+1)q}$$

is APN.

Remark 1 Note that

$$(F_1(x))^{2^{2m-k}} = x^{1+2^{2m-k}} + a_1 x^{q^{2^{2m-k}}+1} + a_2 x^{2^m+2^{2m-k}} + a_3 x^{(1+2^{2m-k})q}.$$

We only need to consider the cases that $k \leq m$.

Remark 2 Either a_1 or a_2 can be 0.

Conjecture 2 F_1 produces either 1 or $\phi(m)$ classes of APN functions up to EA/CCZ-equivalence.

Theorem 1 (proved) Suppose n is even, gcd(k,n) = 1 and g is a primitive element of \mathbb{F}_{2^n} . Then the function $F_1 = x^{2^k+1} + a_3 x^{(2^k+1)q}$, where $a_3 = \mathbb{F}_{2^n} \setminus \{1\} \cup \{g^{q-1} \mid i = \{1, 2, \dots, q-1\}\}$, is APN.

2 Special Cases

Suppose \mathbb{F}_{2^n} is a finite field such that hw(n) = 2, n = 2m, $q = 2^m$ and $n = 2^s + 2^t$.

Conjecture 3 For some a_1, a_2 and $a_3 \in \mathbb{F}_{2^n}$ the function

$$F_2(x) = x^{2^{s-1}+2^{t-1}} + a_1 x^{2^{s-1}q+2^{t-1}} + a_2 x^{2^{t-1}q+2^{s-1}} + a_3 x^{(2^{s-1}+2^{t-1})q}$$

$$= x^m + a_1 x^{2^{s-1}q+2^{t-1}} + a_2 x^{2^{t-1}q+2^{s-1}} + a_3 x^{m \cdot q}$$

is APN.

Remark 3 Without loss of generality, we may assume $s \ge t$. Denoting k = s - t and $y = x^{2^{t-1}}$, we get

$$F_1(y) = y^{2^k+1} + a_1 y^{q+2^k} + a_2 y^{2^k q+1} + a_3 y^{(2^k+1)q}$$

$$= x^{2^{t-1}(2^k+1)} + a_1 x^{2^{t-1}(q+2^k)} + a_2 x^{2^{t-1}(2^k q+1)} + a_3 x^{2^{t-1}(2^k+1)q}$$

$$= F_2(x).$$

Thus, $F_1(x)$ and $F_2(x)$ have the same form. From the experiment result in A.4, $gcd(2^s + 2^t, s - t)$ is not necessarily equal to 1 for $F_2(x)$ to be APN.

Conjecture 3 is also true if ether $a_1 = 0$, $a_2 = 0$ or $a_3 = 0$ (verified for n = 6, 10).

Observation 1 F_2 is equivalent to F_1 for n < 18.

Conjecture 4 For h = 1 (hw(n) = 1) and n > 2 the function $F_2(x) = x^{2^{s-2} \cdot (1+2^m)}$ has $\delta = 2^{2^{s-1}}$.

All monomials of F_2 preserve the property $x^d \pmod{x^{2^m} + x} = x^m$. In other words, $F_2(x) = cx^m \pmod{x^{2^m} + x}$.

Observation 2 For k = 1 F_1 is equivalent to the function $F_3(x) = x^3 + a_1x^{2+q} + a_2x^{1+2q} + a_3x^{3q}$.

Observation 3 The number of all possible APN functions of the form $x^3 + a_1x^{10} + a_2x^{17} + a_3x^{24}$ (n=6, k=1) is 43174. That means $\frac{43174}{2^{18}} = 0.164$ or 16% of all possible functions. The probability that a random APN function CCZ-equivalent to permutation is 0.9643.

A Examples of degrees of F_1 for several values of n

n	k	degrees	APN
4	1,3	${3,6,9,12}$	+
6	1,4	${3, 10, 17, 24}$	+
	2,5	$\{5, 12, 33, 40\}$	+
	3	$\{2, 9, 9, 16\}$	-
8	1,5	${3,18,33,48}$	+
	2,6	$\{5, 20, 65, 80\}$	-
	3,7	$\{9, 24, 129, 144\}$	+
10	1,6	${3,34,65,96}$	+
	2,7	$\{5, 36, 129, 160\}$	+
	3,8	$\{9, 40, 257, 288\}$	+
	4,9	$\{17, 48, 513, 544\}$	+
12	1,7	${3,66,129,192}$	+
	2,8	$\{5, 68, 257, 320\}$	-
	3,9	$\{9, 72, 513, 576\}$	-
	4, 10	$\{17, 80, 1025, 1088\}$	-
	5,11	${33, 96, 2049, 2112}$	+

B Examples of degrees of F_2 for several values of n

n	degrees
6	${3, 10, 17, 24}$
10	$\{5, 36, 129, 160\}$
12	$\{6, 132, 258, 384\}$
18	$\{9,520,4097,4608\}$
20	$\{10, 2056, 8194, 10240\}$
24	$\{12, 16392, 32772, 49152\}$
34	$\{17, 131088, 2097153, 2228224\}$
36	$\{18, 524304, 4194306, 4718592\}$
40	$\{20, 4194320, 16777220, 20971520\}$

C Examples of APN functions

Precomputed APN functions in the form of $F_1(x)$ are listed here. The results have the following format [a,b,c,d], where $a=1=g^{2^n-1},a_1=g^b,a_2=g^c,a_3=g^d$ (note, 0=0, and not g^0). File names consist of n,k and degrees (d_1,d_2,d_3,d_4) . For example, the second line of "6_1_3-10-17-24.txt" describes the function $F_1(x)=x^3+0x^{10}+0x^{17}+gx^{24}=x^3+gx^{24}$ (k=1) over \mathbb{F}_{2^6} .

Remark 4 Perhaps you have noticed that degrees are sorted in increasing order. A problem may occur when $d_i > 2^n - 1$. In this case the order changes. In other words, correspondence of coefficients depends on k.