

《地球物理计算方法》

第2章 数值积分

数值积分

- 1、机械求积
- 2、Newton-cotes积分公式
- 3、复化求积方法
- 4、Romberg求积公式
- 5、Gauss积分公式
- 6、数值微分

函数积分:

$$I = \int_{a}^{b} f(x) \mathrm{d}x.$$

若能求出被积函数f(x)的一个原函数F(x),则定积分I能根据牛顿-莱布尼茨公式求出,即

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

$$F'(x) = f(x)$$

函数积分面临的困难:

(1) 被积函数f(x)并不一定能够找到用初等函数的有限形式表示的原函数F(x),例如:

$$\int_0^1 \frac{\sin x}{x} dx \, \, \operatorname{Im} \, \int_0^1 e^{-x^2} dx$$

(2) 还有被积函数f(x)的原函数能用初等函数表示,但表达式太复杂,例如函数 $f(x)=x^2\sqrt{2x^2+3}$,其原函数 F(x)表达式为:

$$F(x) = \frac{1}{4}x^3\sqrt{2x^2 + 3} + \frac{3}{16}x\sqrt{2x^2 + 3} - \frac{9}{16\sqrt{2}}\ln(\sqrt{2}x + \sqrt{2x^2 + 3}) + C$$

函数积分面临的困难:

(3) 被积函数*f*(*x*)没有具体的解析表达式, 其函数 关系由表格或图形表示.

根据积分中值定理,函数积分:

平均高度

$$\int_{a}^{b} f(x)dx = (b-a)f(\xi), \quad \xi \in (a,b)$$

 $f(\xi)$ 为区间[a,b]上的平均高度。只要对平均高度 $f(\xi)$ 提供一种数值计算方法,便可以获得一种数值积分方法。

左矩形公式 $f(\xi) \approx f(a)$

$$\int_{a}^{b} f(x)dx \approx (b-a)f(a)$$

右矩形公式 $f(\xi) \approx f(b)$

$$\int_{a}^{b} f(x)dx \approx (b-a)f(b)$$

中矩形公式

$$f(\xi) \approx f(\frac{a+b}{2})$$

$$\int_{a}^{b} f(x)dx \approx (b-a)f(\frac{a+b}{2})$$

梯形公式

$$f(\xi) \approx \frac{f(a) + f(b)}{2}$$

$$\int_{a}^{b} f(x)dx \approx \frac{1}{2}(b-a)[f(a)+f(b)]$$

辛甫生 (Simpson) 公式

$$f(\xi) \approx \frac{1}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)]$$

$$\int_{a}^{b} f(x)dx \approx \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right]$$

求积节点

特点: (1) 求积系数 A_k 与节点 x_k 的 选取有关,不依赖于被积函数f(x)的 具体形式; (2)直接利用被积函数计 算积分值,避免求原函数的困难。

求积系数,即 x_k 的权

认识:

- ◆求积分用某些节点函数值的加权平均来计算 $f(\xi)$;
- ◆求积系数 A_k (权系数),与函数没有关系,只与求积节点有关。

问题:

- 1. 求积系数及节点如何确定?
- 2. 此公式与插值多项式有何联系?
- 3. 公式的计算精度如何判断?如何提高计算精度?

例 设积分区间[a, b]为[0, 2], 分别用梯形和Simpson公式

$$\int_0^2 f(x)dx \approx \frac{2-0}{2} [f(0) + f(2)]$$
$$\int_0^2 f(x)dx \approx \frac{2-0}{6} [f(0) + 4f(1) + f(2)]$$

计算 $f(x) = 1, x, x^2, x^3, x^4, e^x$ 时积分结果并与准确值进行比较。

解:梯形公式和Simpson公式的计算结果与准确值比较如下表所示

f(x)	1	\boldsymbol{x}	x^2	x^3	x^4	\mathbf{e}^{x}
准确值	2	2	2.67	4	6.40	6.389
梯形公式	2	2	4	8	16	8.389
辛甫生公式	2	2	2.67	4	6.67	6.421

2、代数精度的概念

定义: 设求积公式 $\int_a^b f(x) dx \approx \sum_{k=0}^n A_k f(x_k)$

对于一切次数小于等于m的多项式是准确的,而对于次数为m+1的多项式是不准确的,则称该求积公式具有m阶代数精度(简称精度)

等价定义: 设求积公式 $\int_a^b f(x)dx \approx \sum_{k=0}^n A_k f(x_k)$ 对于 $1, x, x^2, \dots, x^m$ 是准确的,而对于 x^{m+1} 是不准确的,则称该求积公式具有m阶代数精度。

注: 利用代数精度作为条件构建求积公式。

例 试构造求积公式 $\int_a^b f(x)dx \approx A_0 f(x_0) + A_1 f(x_1)$ 使其具有1阶代数精度.

解:对于f(x)=1,x是否精确相等;

当
$$f(x) = 1$$
时,左 = $\int_a^b 1 dx = b - a$,右 = $(A_0 + A_1)$

当
$$f(x) = x$$
时,左 = $\int_a^b x dx = \frac{1}{2}(b^2 - a^2)$,右=[$A_0a + A_1b$];

得到:
$$A_0 = A_1 = \frac{b-a}{2}$$
;

例 若对于给定的一组求积节点 $x_k(k=0,1,2,\dots,n)$ 相应的求积公式

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$

至少具有n次代数精度,试确定其求积系数。

解 由已知对于 $f(x) = 1, x, x^2, \dots, x^n$, 求积公式

均成立等式,得:
$$\int_a^b f(x)dx \approx \sum_{k=0}^n A_k f(x_k)$$

解:对于f(x)=1, x, ..., x^n 均精确相等;令左=右

$$\begin{cases} A_0 + A_1 + \dots + A_n = b - a \\ x_0 A_0 + x_1 A_1 + \dots + x_n A_n = \frac{b^2 - a^2}{2} \\ \dots \\ x_0^n A_0 + x_1^n A_1 + \dots + x_n^n A_n = \frac{b^{n+1} - a^{n+1}}{(n+1)!} \end{cases}$$

其系数矩阵

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_n \\ x_0^2 & x_1^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_0^n & x_1^n & \cdots & x_n^n \end{bmatrix}$$

当
$$x_k$$
 (k =0,1,..., n)
互异时非奇异,故
 A_k 有唯一解。

在求积节点给定的情况下,求积公式的构造本质上是个解

3、插值型求积公式

过函数f(x)的n+1节点 x_0 , x_1 ,, x_n 的函数值,作n次插值多项式函数 $p_n(x)$:

$$f(x) \approx p_n(x) = \sum_{k=0}^n f(x_k) l_k(x)$$

式中

$$l_k(x) = \prod_{\substack{j=0\\j\neq k}}^n \frac{x - x_j}{x_k - x_j}$$

由于多项式求积分容易,令

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p_{n}(x)dx$$

插值表示:

$$\sum_{k=0}^{n} A_k f(x_k) = \int_{a}^{b} \sum_{k=0}^{n} f(x_k) l_k(x) dx$$

$$\sum_{k=0}^{n} A_k f(x_k) = \sum_{k=0}^{n} f(x_k) \int_{a}^{b} l_k(x) dx$$

这样求解插值系数: $A_k = \int_a^b l_k(x) dx$ $l_k(x) = \prod_{\substack{j=0 \ j \neq k}}^n \frac{x - x_j}{x_k - x_j}, k = 0 \sim n$

$$l_{k}(x) = \prod_{\substack{j=0 \ j \neq k}}^{n} \frac{x - x_{j}}{x_{k} - x_{j}}, k = 0 \sim n$$

插值型求积方法

插值型求积代数精度

定理 n+1个节点的求积公式

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$

至少具有n次代数精度的充要条件是此公式为插值型求积公式.

数值积分

- 1、机械求积
- 2、Newton-cotes积分公式
- 3、复化求积方法
- 4、Romberg求积公式
- 5、Gauss积分公式
- 6、数值微分

Newton-cotes积分公式

把区间[a, b]分为n等份,步长为h(h=(b-a)/n),则n+1个点(取等分点)分别为: $x_k=a+kh$,由这n+1个点构造的插值型求积公式为:

$$I_n \approx (b-a) \sum_{k=0}^n C_k f(x_k)$$

若此求积公式至少具有n阶的代数精度,则**称此求积公式为n阶的** Newton-Cotes公式.

1、公式的导出

积分公式的构造:

(1) 利用精度概念求积分系数

对于

$$\int_{a}^{b} f(x) dx \approx (b - a) \sum_{k=0}^{n} C_{k} f(x_{k})$$

则此求积公式对于 $1, x, x^2, \dots$ 应成立等式条件满足。

1、公式的导出

(2) 利用插值公式求积分系数

$$C_k = \frac{1}{b-a} \int_a^b l_k(x) dx, k = 0, 1, \dots, n$$

$$C_{k} = \frac{1}{b-a} \int_{a}^{b} \prod_{\substack{j=0 \\ j \neq k}}^{n} \frac{x - x_{j}}{x_{k} - x_{j}} dx \xrightarrow{x - x_{j} = (k-j)h \atop x_{k} - x_{j} = (k-j)h} \xrightarrow{1} \int_{0}^{n} h \prod_{\substack{j=0 \\ j \neq k}}^{n} \frac{t - j}{k - j} dt$$

x=a+th

$$= \frac{(-1)^{n-k}}{n \times k! \times (n-k)!} \int_0^n \prod_{\substack{j=0 \ j \neq k}}^n (t-j)dt \qquad - \text{般多项式积分}$$

1、公式的导出

- ◆既然柯特斯系数跟被积函数、积分区间无关,只与代替被积函数的多项式次数n有关,就可以在求积分前预先算出来。
- ◆只要计算出柯特斯系数,就可以按下式计算积分(如n=4)

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p_{4}(x)dx = (b-a)\sum_{i=0}^{4} c_{i}^{(4)} f(x_{i})$$

$$= (b-a) \left[c_0^{(4)} f(x_0) + c_1^{(4)} f(x_1) + c_2^{(4)} f(x_2) + c_3^{(4)} f(x_3) + c_4^{(4)} f(x_4) \right]$$

不同n的柯特斯系数表及代数精度

n	注:n为小区间个数 C_k	m
1	$\frac{1}{2}\{1,1\}$	1
2	$\frac{1}{6}\{1,4,1\}$	3
3	$\frac{1}{8}\{1,3,3,1\}$	3
4	$\frac{1}{90} \{7,32,12,32,7\}$	5
5	$\frac{1}{288} \{19,75,50,50,75,19\}$	5
6	$\frac{1}{840}$ {41,216,27,272,27,216,41}	7
7	$\frac{1}{17280} \{ 751, 3577, 1323, 2989, 2989, 1323, 3577, 751 \}$	7
8	$\frac{1}{28350} \{989, 5888, -928, 10496, -4540, 10496, -928, 5888, 989\}$	9

$$1, \quad \sum_{k=0}^{n} C_k = 1$$

$$2 \cdot C_{n-k} = C_k, k = 0 \sim n, (P61公式10)$$
 对称性;

3、当 $n \le 7$ 时,其 Newton—Cotes 系数为正;当 $n \ge 8$ 时,其 Newton—Cotes 系数有正、有负.

根据柯特斯系数表,当 $n \ge 8$ 时, C_k 出现负值,N - C公式不稳定.

牛顿-柯特斯公式

1、梯形公式

当n=1时(即2个点,1等份),有梯形公式(1次代数精度):

$$I_1 = \frac{b-a}{2} \left[f(a) + f(b) \right]$$

2、辛普生公式

当n=2时(即3个点,2等份),有辛普生公式(3次代数精度):

$$I_2 = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

3. 柯特斯公式

当n=4时(即5个点,4等份),有柯特斯公式(5次代数精度)

$$I_4 = \frac{b-a}{90} \left[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right]$$

$$h = \frac{b-a}{4}, x_0 = a, x_i = a+ih, i = 0,1,2,3,4$$

其代数精度至少是4;

例:分别用梯形公式、辛甫(pu)生公式和柯特斯公式计算定积分 $\int_{0.5}^{1} \sqrt{x} dx$ 的近似值(计算结果取5位有效数字)

(1) 用梯形公式计算

$$\int_{0.5}^{1} \sqrt{x} dx \approx \frac{1 - 0.5}{2} [f(0.5) + f(1)] = 0.25 \times [0.70711 + 1] = 0.4267767$$

(2) 用辛甫生公式

$$\int_{0.5}^{1} \sqrt{x} dx \approx \frac{1 - 0.5}{6} \left[\sqrt{0.5} + 4 \times \sqrt{(0.5 + 1)/2} + \sqrt{1} \right]$$
$$= \frac{1}{12} \times \left[0.70711 + 4 \times 0.86603 + 1 \right] = 0.43093403$$

(3) 用柯特斯公式计算,系数为

$$\frac{7}{90}$$
, $\frac{32}{90}$, $\frac{12}{90}$, $\frac{32}{90}$, $\frac{7}{90}$

$$\int_{0.5}^{1} \sqrt{x} dx \approx \frac{1 - 0.5}{90} [7 \times \sqrt{0.5} + 32 \times \sqrt{0.625} + 12 \times \sqrt{0.75} + 32 \times \sqrt{0.875} + 7 \times \sqrt{1}]$$

$$= \frac{1}{180} \times [4.94975 + 25.29822 + 10.39223 + 29.93326 + 7] = 0.43096407$$

积分的准确值为

$$\int_{0.5}^{1} \sqrt{x} dx = \frac{2}{3} x^{\frac{3}{2}} \Big|_{0.5}^{1} = 0.43096441$$

梯形

辛甫生

柯特斯

0.4267767 0.43093403

0.43096407

可见, 三个求积公式的精度逐渐提高.

2、低阶求积公式的代数精度

定理 n+1个等距节点 $x_k = a + kh$, $k = 0 \sim n$ 的牛顿-柯特斯公式

$$\int_{a}^{b} f(x)dx \approx (b-a) \sum_{k=0}^{n} C_{k} f(x_{k})$$

至少具有n阶的精度; 当n为偶数时, 其精度可以达到n+1阶.

所以,n为偶数时的积分公式更加常用。

3、低阶求积公式的余项

牛顿-柯特斯公式是一个插值型数值求积公式,当用插值多项式 $P_n(x)$ 代替f(x)积分时(代数精度为n),其截断误差R(f)为:

$$R(f) = \int_{a}^{b} f(x)dx - \int_{a}^{b} p_{n}(x)dx = \int_{a}^{b} (f(x) - p_{n}(x))dx$$

$$R_{n}(x) = f(x) - p_{n}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

便可得出它的截断误差:

$$R(f) = \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\xi) \omega_{n+1}(x) dx$$
 37

1、梯形公式

如果取n=1;用一次多项式代替被积函数(代数精度为1),

根据牛顿-柯特斯求积公式的误差理论式,梯形求积公式的误差估计为:

$$R_1(f) = \frac{1}{(2)!} \int_a^b f^{(2)}(\xi) \omega_2(x) dx = \frac{f^{(2)}(\xi)}{(2)!} \int_a^b (x-a)(x-b) dx = \frac{-(b-a)^3}{12} f''(\xi)$$

2、辛甫生公式

由于辛甫生公式n=2;该求积公式是用二次多项式逼近被积函数推得的,原则上它的代数精度为2。但因多项式次数是偶数,据前面的定理知道,它的代数精度为3。

根据牛顿-柯特斯求积公式的误差理论式,辛甫生公式求积公式的误差估计为:

$$R_2(x) = \frac{1}{4!} \left[-\frac{(b-a)^5}{120} f^{(4)}(\xi) \right] = -\frac{(b-a)^5}{2880} f^{(4)}(\xi), \xi \in [a,b]$$

- 1、机械求积
- 2、Newton-cotes积分公式
- 3、复化求积方法
- 4、Romberg求积公式
- 5、Gauss积分公式
- 6、数值微分

问题的提出

Newton-Cotes公式是取等距节点作为求积节点,随着求积节点的增多,求积公式的代数精度会提高。

例:分别用梯形公式、辛甫生公式和柯特斯公式计算定积分 $\int_{0.5}^{1} \sqrt{x} dx$ 的近似值(计算结果取5位有效数字)

(1) 用梯形公式计算

$$\int_{0.5}^{1} \sqrt{x} dx \approx \frac{1 - 0.5}{2} [f(0.5) + f(1)] = 0.25 \times [0.70711 + 1] = 0.4267767$$

(2) 用辛甫生公式

$$\int_{0.5}^{1} \sqrt{x} dx \approx \frac{1 - 0.5}{6} \left[\sqrt{0.5} + 4 \times \sqrt{(0.5 + 1)/2} + \sqrt{1} \right]$$
$$= \frac{1}{12} \times \left[0.70711 + 4 \times 0.86603 + 1 \right] = 0.43093403$$

(3) 用柯特斯公式计算,系数为

$$\frac{7}{90}$$
, $\frac{32}{90}$, $\frac{12}{90}$, $\frac{32}{90}$, $\frac{7}{90}$

$$\int_{0.5}^{1} \sqrt{x} dx \approx \frac{1 - 0.5}{90} [7 \times \sqrt{0.5} + 32 \times \sqrt{0.625} + 12 \times \sqrt{0.75} + 32 \times \sqrt{0.875} + 7 \times \sqrt{1}]$$

$$= \frac{1}{180} \times [4.94975 + 25.29822 + 10.39223 + 29.93326 + 7] = 0.43096407$$

积分的准确值为

$$\int_{0.5}^{1} \sqrt{x} dx = \frac{2}{3} x^{\frac{3}{2}} \Big|_{0.5}^{1} = 0.43096441$$

梯形

辛甫生

柯特斯

0.43096407

可见,三个求积公式的精度逐渐提高.

问题: 高次求积公式并不一定能取得好的

效果,如: n≥8

办法: 分段求积分→复化求积方法

将积分区间 [a, b]划分为 n等分, 步长 $h = \frac{b-a}{n}$, 分点 $x_k = a + kh(k = 0,1,...,n)$,

由定积分性质知
$$I = \int_a^b f(x)dx = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(x)dx$$

把积分区间[a, b]平均分成若干小区间[x_k , x_{k+1}]

第一步,在每个小区间上采用次数不高的Newton-Cotes求积公式,如梯形公式或辛甫生公式;

第二步,将每个区间上的近似积分值求和,用所得的值近 似代替原积分值。

如此得到的求积公式称为复化求积公式。

复化求积公式可以克服高次Newton-Cotes公式计算不稳定的问题,运算简单且易于在计算机上实现。

1、复化求积公式

1. 复化梯形公式 T_n

$$I \approx \sum_{i=0}^{n-1} \frac{h}{2} \Big[f(x_i) + f(x_{i+1}) \Big]$$

$$= \frac{h}{2} \Big[f(x_0) + 2(f(x_1) + f(x_2) + \dots + f(x_{n-1})) + f(x_n) \Big]$$

$$= \frac{h}{2} \Big[f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \Big] = T_n$$

1、复化求积公式

2. 复化辛甫生公式 S_n

$$I = \sum_{k=0}^{n-1} \int_{x_i}^{x_{i+1}} f(x) dx \approx \sum_{i=0}^{n-1} \frac{h}{6} \left[f(x_i) + 4f(x_{i+\frac{1}{2}}) + f(x_{i+1}) \right]$$

$$= \frac{h}{6} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

$$S_n = \frac{h}{6} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

其中
$$x_{i+\frac{1}{2}} = x_i + \frac{1}{2}h$$

1、复化求积公式

3.复化柯特斯公式

$$C_n = \frac{h}{90} \left[7f(a) + 32 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{4}}) + 12 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) \right]$$

$$+32\sum_{i=0}^{n-1} f(x_{i+\frac{3}{4}}) + 14\sum_{i=1}^{n-1} f(x_i) + 7f(b)$$

其中, $X_{i+\frac{1}{4}}, X_{i+\frac{1}{2}}, X_{i+\frac{3}{4}}$ 为子区间内的4等分点。

复化求积公式的余项

1. 复化梯形公式的余项

复化梯形公式 T_n 的余项

$$R = I - T_n = \sum_{i=0}^{n-1} \left[-\frac{1}{12} h^3 f''(h_i) \right], \ h_i \in [x_i, x_{i+1}],$$

若f''(x)在[a,b]上连续,则

$$R = -\frac{n}{12}h^3 f''(\xi) = -\frac{b-a}{12}h^2 f''(\xi), \quad \xi \in [a,b].$$

$$\therefore n \to \infty, h^2 \to 0, R \to 0$$
 是收敛的.

复化求积公式的余项

2. 复化simpson公式的余项

余项
$$R = I - S_n = -\frac{h}{180} \left(\frac{h}{2}\right)^4 \sum_{k=0}^{n-1} f^{(4)}(\eta_k), \eta_k \in (x_k, x_{k+1}),$$

当
$$f \in C^4[a,b]$$
时,

$$R = I - S_n = -\frac{b - a}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\eta) = -\frac{b - a}{2880} h^4 f^{(4)}(\eta), \eta \in (a, b).$$

$$\therefore n \to \infty, h^4 \to 0, R \to 0$$

具有相应的收敛性和稳定性.

复化求积公式的截断误差

复化梯形公式的截断误差:

$$R_T(f) = \int_a^b f(x)dx - T_n = -\frac{h^3}{12} n f''(\xi) = \frac{b-a}{12} h^2 f''(\xi) \quad \xi \in (a,b)$$

复化辛普生公式的截断误差:

$$R_{S}(f) = \sum_{k=1}^{m} -\frac{(2h)^{5}}{2880} m f^{(4)}(\xi) = -\frac{b-a}{180} h^{4} f^{(4)}(\xi) \quad \xi \in (a,b)$$

步长h越小,截断误差越小。

例:

依次用n=8的复化梯形公式、n=4的复化Simpson公式计算定积分

$$I = \int_0^1 \frac{\sin x}{x} dx$$

解:首先计算出所需各节点的函数值, n=8时, $h=\frac{1}{8}=0.125$

实例分析

1. 复化梯形公式得

$$T_8 = \frac{1}{16} [f(0) + 2f(0.125) + 2f(0.25) + 2f(0.375) + 2f(0.5) + 2f(0.625) + 2f(0.75) + 2f(0.875) + f(1)]$$

$$= 0.9456909$$

2. 复化Simpson公式得

$$S_4 = \frac{1}{24} [f(0) + f(1) + 2(f(0.25) + f(0.5) + f(0.75))$$

$$+4(f(0.125) + f(0.375) + f(0.625) + f(0.875))]$$

$$= 0.9460832$$

实例分析

各种方法精度的比较:

比较:

准确值

I=0.9460831

$$T_1 = 0.9270354$$

$$T_8 = 0.9456909$$

$$S_1 = 0.9461359$$

$$S_4 = 0.9460832$$

- 1、机械求积
- 2、Newton-cotes积分公式
- 3、复化求积方法
- 4、Romberg求积公式
- 5、Gauss积分公式
- 6、数值微分

1、梯形法的递推(变步长法)

复化积分可以提高精度, $h \rightarrow 0$ 时,I(h) 引。

复化积分存在的问题:

- 1、在使用求积公式之前必须先给出步长h;
- 2、 $h\rightarrow 0$, $n\rightarrow \infty$,计算量太大。

解决问题的方法:

变步长计算,逐次二分,直到求得的积分值满足精度为止。同时继承前面已算出的积分值。

1、梯形法的递推(变步长法)

建立 T_{2n} 与 T_n 之间的递推关系:

$$T_{n} = \sum_{k=0}^{n-1} \frac{h}{2} \left[f(x_{k}) + f(x_{k+1}) \right]$$

$$T_{2n} = \sum_{k=0}^{n-1} \frac{h}{4} \left[f(x_{k}) + 2f(x_{k+\frac{1}{2}}) + f(x_{k+1}) \right]$$

$$= \frac{h}{4} \sum_{k=0}^{n-1} \left[f(x_{k}) + f(x_{k+1}) \right] + \frac{h}{2} \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}})$$

得到递推关系:

$$T_{2n} = \frac{T_n}{2} + \frac{h}{2} \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}})$$

$$x_{k+\frac{1}{2}} = a + (k+\frac{1}{2})h$$

$$T_{2n}\left(\frac{h}{2}\right) = \frac{T_n(h)}{2} + \frac{h}{2} \sum_{k=0}^{n-1} f\left(x_{k+\frac{1}{2}}\right) \qquad x_{k+\frac{1}{2}} = a + (k+\frac{1}{2})h$$

注: T_{2n} 的全部节点中有n+1个是二分前的原有节点,可作为已知值使用,而它的后一项只涉及二分时新增加的节点 $x_{k+1/2}$,该递推公式避免了旧节点的重复计算,节约了计算量。

计算流程图

变步长梯形法的流程图

例 用变步长梯形求积法计算定积分 $I = \int_0^1 \frac{\sin x}{x} dx$, $\varepsilon = 10^{-2}$.

解:由

$$f(x) = \frac{\sin x}{x}, f(0) = 1, f(1) = 0.8410709$$

得

$$T_1 = \frac{1}{2} [f(0) + f(1)] = 0.9207355$$

由于 $f(\frac{1}{2}) = 0.958851$, 故有

$$T_2 = \frac{1}{2}T_1 + \frac{1}{2}f(\frac{1}{2}) = 0.9397933$$
 $|T_2 - T_1| = 0.019 > \varepsilon$

实例分析

新分点上的函数值

$$f(\frac{1}{4}) = 0.9896158$$
 , $f(\frac{3}{4}) = 0.9088516$

$$T_4 = \frac{1}{2}T_2 + \frac{1}{4}\left[f(\frac{1}{4}) + f(\frac{3}{4})\right] = 0.9445135$$

$$: |T_4 - T_2| < 0.005 < \varepsilon \quad : I \approx T_4 = 0.945$$

2、龙贝格公式

1、梯形法的加速

▶梯形法的算法简单,但精度低,收敛慢。

办法:可以采用进行外推算法,加工梯形值提高精度。

根据梯形法的误差公式,积分值 T_n 的误差与 h^2 成正比,因此步长减半后误差将减至1/4,即有

$$\frac{I - T_{2n}}{I - T_n} \approx \frac{1}{4}$$

移项整理,知

$$I - T_{2n} \approx \frac{1}{3} (T_{2n} - T_n)$$

这是T2n 的事后估计法,可以用这个误差来补偿数值结果;

$$\overline{T} = T_{2n} + \frac{1}{3}(T_{2n} - T_n) = \frac{4}{3}T_{2n} - \frac{1}{3}T_n$$

这个值正好是辛普生公式的结果。也可写为

$$S_n = (1+\omega)T_{2n} - \omega T_n \qquad \omega = \frac{1}{3}$$

2、 辛普生法的再加速

根据辛甫生法的误差公式,积分值T_n的误差与h⁴成正比,因此步长减半后误差将减至1/16,即有

$$\frac{I - S_{2n}}{I - S_n} \approx \frac{1}{16}$$

移项整理,知

$$I \approx \frac{16}{15} S_{2n} - \frac{1}{15} S_n$$

这个值正好是柯特斯公式的结果。也可写为 $C_n \approx \frac{16}{15} S_{2n} - \frac{1}{15} S_n$

$$C_n = (1+\omega)S_{2n} - \omega S_n \quad \omega = \frac{1}{15}$$

3、Romberg公式

重复同样的手续,依据柯特斯法的误差公式可进一步导出下列 龙贝格公式:

$$R_n = \frac{64}{63} C_{2n} - \frac{1}{63} C_n$$

这个公式也可写为,

$$R_n = (1+\omega)C_{2n} - \omega C_n \quad \omega = \frac{1}{63}$$

注:龙贝格求积公式也称为逐次分半加速法。它是在梯形公式、辛普森公式和柯特斯公式之间的关系的基础上,构造出一种加速计算积分的方法。作为一种外推算法,它在不增加计算量的前提下提高了误差的精度。

一般递推公式:

设k次二分得到的m次加速值为 $T_{m}^{(k)}$,Romberg算法的一般公式为,

$$T_{\mathbf{m}}^{(k)} = \frac{4^{m}}{4^{m} - 1} T_{m-1}^{(k+1)} - \frac{1}{4^{m} - 1} T_{m-1}^{(k)}.$$

其中,k表示每个区间二分的次数,等分的区间总个数为 $n = 2^k, k = 0,1,2,...$ 。m表示第几次加速,m = 1,2,...。

注: Romberg算法的代数精度为2m次,收敛阶为2(m+1)阶。

4、 Romberg**算法的实现**

计算流程见P70,实现步骤:

- ② 按变步长梯形公式计算积分近似值 将区间逐次分半, 令区间长度 $h = \frac{b-a}{2^k}$ $(k = 0,1,2,\cdots)$ T_2

计算

$$T_{2n} = \frac{T_n}{2} + \frac{h}{2} \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}})$$
 $(n = 2^k)$

按加速公式求加速值

梯形加速公式:

辛甫生加速公式:

龙贝格求积公式:

$$S_n = T_{2n} + \frac{T_{2n} - T_n}{3}$$

$$C_n = S_{2n} + \frac{S_{2n} - S_n}{15}$$

$$R_n = C_{2n} + \frac{C_{2n} - C_n}{63}$$

精度控制

 $\Delta < \varepsilon$ (其中 ϵ 为允许的误差)

 Λ : 表示二分前后的差。

龙贝格加速过程

	$\frac{\Delta}{3}$	$\frac{\Delta}{15}$	$\frac{\Delta}{63}$
T_1			
T_2	$-S_1$		
T_4	$-S_2$	$-C_1$	
T_8	$-S_4$	$-C_2$	$-R_1$
T_{16}	$-S_8$	$-C_4$	$-R_2$

↑:表示二分前后的差。

②
$$T_2 = T_0^{(1)}$$
 ③ $S_1 = T_1^{(0)}$ < ε ?

Romberg

①
$$T_1 = T_0^{(0)}$$
② $T_2 = T_0^{(1)}$
② ③ $S_1 = T_1^{(0)}$
② $S_2 = T_1^{(1)}$
② $S_2 = T_1^{(1)}$
② $S_3 = T_2^{(0)}$
② $S_4 = T_1^{(0)}$
② $S_4 = T_2^{(0)}$
② $S_4 = T_2^{(0)}$
② $S_4 = T_2^{(0)}$
② $S_4 = T_2^{(0)}$

龙贝格算法流程图

例 用Romberg算法计算定积分 $I = \int_0^1 \frac{\sin(x)}{x} dx$

解:构造龙贝格算法表

k	T_{2^k}	S_{2^k}	C_{2^k}	R_{2^k}
0	0.9207355			
1	0.9397933	0.9461459		
2	0.9445135	0.9460869	0.9400830	
3	0.9456909	0.9460833	0.9460831	0.9460831