МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

Ульяновский государственный технический университет

Факультет информационных систем и технологий

Кафедра «Прикладная математика и информатика»

Расчётно-графическая работа

По дисциплине «Теория вероятностей, математическая статистика и теория случайных процессов»

Выполнила: студентка группы ПМбд-21

Шувалова В.Д.

Проверила:

к.т.н., доцент Кувайскова Ю.Е.

Ульяновск 2024 г.

ЗАДАНИЕ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ ПО «МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ»

Задание:

- **1.** Выбрать объект с двумя случайными параметрами X и Y, собрать выборку объёма n = 100. Результат оформить в виде таблицы.
- **2.** Составить две раздельные выборки для X и Y.
- **3.** Составить вариационные ряды для X и Y.
- **4.** Составить группированные выборки для X и Y с числом интервалов k = 8 10.
- **5.** По полученным группированным выборкам построить на **отдельных** графиках гистограмму частот, полигон частот и выборочную функцию распределения для каждой случайной величины X и Y.
- **6.** По построенным графикам выбрать типы распределения величин X и Y (равномерное, показательное, нормальное и др.)
- **7.** Вычислить точечные оценки математического ожидания и дисперсии для X и Y.
- **8.** Найти **95%** и **99%** доверительные интервалы для **математического ожидания** и **дисперсии** случайных величин X и Y.
- **9.** Определить параметры теоретического закона распределения для X и Y, используя метод моментов (кроме случая равномерного распределения).
- **10.**Построить отдельно для X и Y на одном графике гистограмму, полигон и теоретическую плотность распределения вероятностей. (При построении графиков по оси ординат откладывать значения плотности относительной частоты $\frac{n_i}{n_W}$).
- **11.**С уровнем значимости $\alpha = 0.05$ проверить гипотезы о выбранных теоретических распределениях, используя критерий χ^2 .
- **12.**Методом наименьших квадратов найти параметры a и b уравнения линейной среднеквадратической регрессии Y на X(y = ax + b)
- **13.**Вычислить коэффициенты корреляции и детерминации. Сделать выводы о степени линейной связи между переменными X и Y.
- **14.** Проверить значимость линейной регрессии y = ax + b по критерию Фишера.
- **15.**Изобразить на одном графике диаграмму рассеивания (каждая пара (x; y) изображается точкой) и прямую регрессии y = ax + b.

Исходными данными для примера являются измерения доли населения за чертой бедности за 2022 год в % (случайная величина Y) и инфляции за 2022 год в % (случайная величина X) в различных странах мира. Всего было рассмотрено 100 стран.

Таблица 1. Сравнение инфляции и доли населения за чертой бедности в 100 странах мира

N	X	Y	N	X	Y	N	X	Y	N	X	Y
1	6,24	14,30	26	13,50	8,60	51	20,10	14,40	76	8,39	17,50
2	9,88	5,50	27	9,89	38,83	52	10,63	17,90	77	11,52	46,00
3	21,69	36,21	28	12,27	42,40	53	6,33	9,90	78	12,68	25,31
4	17,81	37,81	29	8,87	24,53	54	14,65	43,70	79	3,23	5,60
5	8,54	31,80	30	10,21	33,72	55	21,23	37,70	80	4,27	8,20
6	6,50	12,40	31	7,99	14,70	56	8,25	31,55	81	8,00	42,10
7	7,74	13,30	32	17,77	10,10	57	16,48	12,30	82	5,87	17,10
8	14,32	6,00	33	11,85	29,40	58	8,43	8,80	83	16,00	12,60
9	6,15	27,02	34	7,20	12,50	59	6,89	21,90	84	15,97	26,70
10	17,95	5,00	35	8,05	31,74	60	4,63	9,40	85	8,03	41,90
11	11,92	14,80	36	9,02	24,53	61	6,47	34,50	86	20,05	7,30
12	5,00	38,50	37	3,21	29,87	62	8,40	13,10	87	17,54	33,50
13	7,66	8,20	38	8,50	36,51	63	4,52	16,90	88	15,81	29,42
14	3,19	40,20	39	7,29	22,80	64	8,74	21,04	89	6,20	4,80
15	10,50	16,90	40	5,14	46,10	65	3,06	16,00	90	12,03	46,10
16	11,86	19,30	41	7,35	72,06	66	9,00	19,90	91	16,33	15,40
17	10,30	32,14	42	21,00	21,70	67	1,99	15,70	92	6,40	30,21
18	14,43	26,70	43	4,87	33,80	68	3,80	15,70	93	6,26	30,66
19	17,22	41,40	44	21,34	30,02	69	16,92	4,30	94	13,95	13,60
20	18,34	42,50	45	4,75	33,61	70	7,24	17,10	95	9,94	29,61
21	5,21	17,70	46	6,55	12,20	71	8,83	22,38	96	4,70	12,70
22	4,58	34,50	47	8,51	13,60	72	17,86	25,20	97	14,02	27,02
23	6,90	11,60	48	11,50	18,60	73	8,92	12,00	98	5,32	16,70
24	6,53	37,54	49	13,81	36,81	74	6,91	34,38	99	7,90	17,20
25	3,76	6,70	50	8,46	14,80	75	19,05	22,07	100	7,46	21,14

Таблица 2. Выборка для случайной величины Х

N	X	N	X	N	X	N	X	N	X
1	6,24	21	5,21	41	7,35	61	6,47	81	8,00
2	9,88	22	4,58	42	21,00	62	8,40	82	5,87
3	21,69	23	6,90	43	4,87	63	4,52	83	16,00
4	17,81	24	6,53	44	21,34	64	8,74	84	15,97
5	8,54	25	3,76	45	4,75	65	3,06	85	8,03
6	6,50	26	13,50	46	6,55	66	9,00	86	20,05
7	7,74	27	9,89	47	8,51	67	1,99	87	17,54
8	14,32	28	12,27	48	11,50	68	3,80	88	15,81
9	6,15	29	8,87	49	13,81	69	16,92	89	6,20
10	17,95	30	10,21	50	8,46	70	7,24	90	12,03
11	11,92	31	7,99	51	20,10	71	8,83	91	16,33
12	5,00	32	17,77	52	10,63	72	17,86	92	6,40
13	7,66	33	11,85	53	6,33	73	8,92	93	6,26
14	3,19	34	7,20	54	14,65	74	6,91	94	13,95
15	10,50	35	8,05	55	21,23	75	19,05	95	9,94
16	11,86	36	9,02	56	8,25	76	8,39	96	4,70
17	10,30	37	3,21	57	16,48	77	11,52	97	14,02
18	14,43	38	8,50	58	8,43	78	12,68	98	5,32
19	17,22	39	7,29	59	6,89	79	3,23	99	7,90
20	18,34	40	5,14	60	4,63	80	4,27	100	7,46

Таблица 3. Выборка для случайной величины Ү

N	Y	N	Y	N	Y	N	Y	N	Y
1	14,30	21	17,70	41	45,90	61	34,50	81	42,10
2	5,50	22	34,50	42	21,70	62	13,10	82	17,10
3	36,21	23	11,60	43	33,80	63	16,90	83	12,60
4	37,81	24	37,54	44	30,02	64	21,04	84	26,70
5	31,80	25	6,70	45	33,61	65	16,00	85	41,90
6	12,40	26	8,60	46	12,20	66	19,90	86	7,30
7	13,30	27	38,83	47	13,60	67	15,70	87	33,50
8	6,00	28	42,40	48	18,60	68	15,70	88	29,42
9	27,02	29	24,53	49	36,81	69	4,30	89	4,80
10	5,00	30	33,72	50	14,80	70	17,10	90	46,10
11	14,80	31	14,70	51	14,40	71	22,38	91	15,40
12	38,50	32	10,10	52	17,90	72	25,20	92	30,21
13	8,20	33	29,40	53	9,90	73	12,00	93	30,66
14	40,20	34	12,50	54	43,70	74	34,38	94	13,60
15	16,90	35	31,74	55	37,70	75	22,07	95	29,61
16	19,30	36	24,53	56	31,55	76	17,50	96	12,70
17	32,14	37	29,87	57	12,30	77	46,00	97	27,02
18	26,70	38	36,51	58	8,80	78	25,31	98	16,70
19	41,40	39	22,80	59	21,90	79	5,60	99	17,20

20	42,50	40	46,10	60	9,40	80	8,20	100	21,14
----	-------	----	-------	----	------	----	------	-----	-------

Таблица 4. Вариационный ряд для Х

N	X	N	X	N	X	N	X	N	X
1	1,99	21	6,20	41	7,99	61	9,94	81	15,81
2	3,06	22	6,24	42	8,00	62	10,21	82	15,97
3	3,19	23	6,26	43	8,03	63	10,30	83	16,00
4	3,21	24	6,33	44	8,05	64	10,50	84	16,33
5	3,23	25	6,40	45	8,25	65	10,63	85	16,48
6	3,76	26	6,47	46	8,39	66	11,50	86	16,92
7	3,80	27	6,50	47	8,40	67	11,52	87	17,22
8	4,27	28	6,53	48	8,43	68	11,85	88	17,54
9	4,52	29	6,55	49	8,46	69	11,86	89	17,77
10	4,58	30	6,89	50	8,50	70	11,92	90	17,81
11	4,63	31	6,90	51	8,51	71	12,03	91	17,86
12	4,70	32	6,91	52	8,54	72	12,27	92	17,95
13	4,75	33	7,20	53	8,74	73	12,68	93	18,34
14	4,87	34	7,24	54	8,83	74	13,50	94	19,05
15	5,00	35	7,29	55	8,87	75	13,81	95	20,05
16	5,14	36	7,35	56	8,92	76	13,95	96	20,10
17	5,21	37	7,46	57	9,00	77	14,02	97	21,00
18	5,32	38	7,66	58	9,02	78	14,32	98	21,23
19	5,87	39	7,74	59	9,88	79	14,43	99	21,34
20	6,15	40	7,90	60	9,89	80	14,65	100	21,69

Таблица 5. Вариационный ряд для Ү

N	Y	N	Y	N	Y	N	Y	N	Y
1	4,30	21	12,50	41	17,10	61	26,70	81	34,50
2	4,80	22	12,60	42	17,20	62	27,02	82	36,21
3	5,00	23	12,70	43	17,50	63	27,02	83	36,51
4	5,50	24	13,10	44	17,70	64	29,40	84	36,81
5	5,60	25	13,30	45	17,90	65	29,42	85	37,54
6	6,00	26	13,60	46	18,60	66	29,61	86	37,70
7	6,70	27	13,60	47	19,30	67	29,87	87	37,81
8	7,30	28	14,30	48	19,90	68	30,02	88	38,50
9	8,20	29	14,40	49	21,04	69	30,21	89	38,83
10	8,20	30	14,70	50	21,14	70	30,66	90	40,20
11	8,60	31	14,80	51	21,70	71	31,55	91	41,40
12	8,80	32	14,80	52	21,90	72	31,74	92	41,90
13	9,40	33	15,40	53	22,07	73	31,80	93	42,10
14	9,90	34	15,70	54	22,38	74	32,14	94	42,40
15	10,10	35	15,70	55	22,80	75	33,50	95	42,50
16	11,60	36	16,00	56	24,53	76	33,61	96	43,70
17	12,00	37	16,70	57	24,53	77	33,72	97	45,90

18	12,20	38	16,90	58	25,20	78	33,80	98	46,00
19	12,30	39	16,90	59	25,31	79	34,38	99	46,10
20	12,40	40	17,10	60	26,70	80	34,50	100	46,10

Таблица 6. Группированная выборка для Х

№ интервала	_	ницы валов верхняя	Представитель интервала z _i	Частоты n _i
1	1,99	3,96	2,98	7
2	3,96	5,93	4,95	12
3	5,93	7,90	6,92	20
4	7,90	9,87	8,89	19
5	9,87	11,84	10,86	9
6	11,84	13,81	12,83	7
7	13,81	15,78	14,80	6
8	15,78	17,75	16,77	8
9	17,75	19,72	18,74	6
10	19,72	21,69	20,71	6

Относительные частоты n _i / n	Накопленные частоты n _i	Накопленные относительные частоты n _i / n	Плотность относительной частоты n_i / n^*w
0,07	7	0,07	0,04
0,12	19	0,19	0,06
0,20	39	0,39	0,10
0,19	58	0,58	0,10
0,09	67	0,67	0,05
0,07	74	0,74	0,04
0,06	80	0,80	0,03
0,08	88	0,88	0,04
0,06	94	0,94	0,03
0,06	100	1,00	0,03

Таблица 7. Группированная выборка для Ү

№ интервала	l -	ницы овалов	Представитель интервала z _i	Частоты n _i
	РИЖИН	верхняя		
1	4,30	8,48	6,39	10
2	8,48	12,66	10,57	12
3	12,66	16,84	14,75	15
4	16,84	21,02	18,93	11
5	21,02	25,20	23,11	9
6	25,20	29,38	27,29	6
7	29,38	33,56	31,47	12
8	33,56	37,74	35,65	11
9	37,74	41,92	39,83	6
10	41,92	46,10	44,01	8

Относительные частоты n _i / n	Накопленные частоты n _i	Накопленные относительные частоты n_i/n	Плотность относительной частоты n_i / n^*w
0,10	10	0,10	0,02
0,12	22	0,22	0,03
0,15	37	0,37	0,04
0,11	48	0,48	0,03
0,09	57	0,57	0,02
0,06	63	0,63	0,01
0,12	75	0,75	0,03
0,11	86	0,86	0,03
0,06	92	0,92	0,01
0,08	100	1,00	0,02

По графикам предположим типы распределения:

• СВ Х: нормальное распределение

• СВ Y: равномерное распределение

Точечная оценка математического ожидания для СВ Х:

$$m_x^* = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i = 10,10$$

Смещённая оценка дисперсии (выборочная дисперсия) для СВ Х:

$$D_x^* = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = 25,04$$

Несмещённая оценка дисперсии для СВ Х:

$$S^2 = \frac{n}{n-1}D_x^* = 25,29$$

Доверительные интервалы для математического ожидания СВ Х:

$$ar{x} - t_{1-\frac{\alpha}{2}}(n-1) \frac{S}{\sqrt{n}} < m < \bar{x} + t_{1-\frac{\alpha}{2}}(n-1) \frac{S}{\sqrt{n}}$$

 $ar{x} = 10,10; \ S = 5,0289; \ n = 100; \ \alpha = 1 - p; \ t_{0,975} (99) = 1,9842;$
 $t_{0,995}(99) = 2,6264$
 $oldsymbol{p} = 95\% \quad 9,10 < m < 11,10$
 $oldsymbol{p} = 99\% \quad 8.78 < m < 11.42$

Доверительные интервалы для дисперсии СВ X:

$$\frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2}}(n-1)}$$

$$S^2 = 25,29; \quad n = 100; \quad \alpha = 1-p; \quad \chi^2_{0,975}(99) = 129,6; \quad \chi^2_{0,025}(99) = 74,2$$

$$\chi^2_{0,995}(99) = 140,2; \quad \chi^2_{0,005}(99) = 67,3$$

$$p = 95\% \quad 19,32 < \sigma^2 < 33,74$$

$$p = 99\% \quad 17,86 < \sigma^2 < 37,20$$

Параметры т и о для нормального распределения СВ Х:

Ищем по методу моментов: приравниваем теоретические и выборочные моменты.

11

$$m_1 = M[X] = m_x; m_1^* = \frac{1}{n} \sum_{i=1}^n x_i; m_1 = m_1^* => m^* = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x} = 10,10$$

$$\mu_2 = D[X] = D_x; \ \mu_2^* = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2; \ \mu_2 = \mu_2^* => D^* = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

$$D^* = (\sigma^*)^2 => (\sigma^*)^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = 25,04 => \sigma^* \approx 5,00$$

Точечная оценка математического ожидания для СВ Ү:

$$m_x^* = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i = 23,22$$

Смещённая оценка дисперсии (выборочная дисперсия) для СВ Ү:

$$D_x^* = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = 139,05$$

Несмещённая оценка дисперсии для СВ Ү:

$$S^2 = \frac{n}{n-1}D_x^* = 140,45$$

Доверительные интервалы для математического ожидания СВ Ү:

$$ar{x} - t_{1-\frac{\alpha}{2}}(n-1) \frac{S}{\sqrt{n}} < m < \bar{x} + t_{1-\frac{\alpha}{2}}(n-1) \frac{S}{\sqrt{n}}$$

 $ar{x} = 23,22; \ S = 11,8512; \ n = 100; \ \alpha = 1 - p; \ t_{0,975}(99) = 1,9842;$
 $t_{0,995}(99) = 2,6264$
 $oldsymbol{p} = 95\% \quad 20,87 < m < 25,57$
 $oldsymbol{p} = 99\% \quad 20,11 < m < 26,33$

Доверительные интервалы для дисперсии СВ Ү:

$$\frac{(n-1) S^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)} < \sigma^2 < \frac{(n-1) S^2}{\chi^2_{\frac{\alpha}{2}}(n-1)}$$

$$S^2 = 140,45; \quad n = 100; \quad \alpha = 1 - p; \quad \chi^2_{0,975}(99) = 129,6; \quad \chi^2_{0,025}(99) = 74,2$$

$$\chi^2_{0,995}(99) = 140,2; \quad \chi^2_{0,005}(99) = 67,3$$

$$\boldsymbol{p} = \mathbf{95}\% \quad 107,29 < \sigma^2 < 187,39$$

$$\boldsymbol{p} = \mathbf{99}\% \quad 99,18 < \sigma^2 < 206,61$$

Параметры а и в для равномерного распределения СВ Ү:

Метод моментов для равномерного распределения даёт плохие оценки, поэтому найдём параметры следующим образом. Равномерное распределение предполагает, что все элементы СВ расположены внутри отрезка [a; b], поэтому:

$$a^* = min(x_i) = 4,30$$
; $b^* = max(x_i) = 46,10$

Проверим гипотезу о нормальном виде распределения СВ X. Для этого используем критерий χ^2 с уровнем значимости $\alpha=0.05$ и числом степеней свободы $\mathbf{r}=k-l-1=10-2-1=7$. Где l – число неизвестных параметров распределения, у нормального их 2: m и σ . Таким образом: $\chi^2_{1-\alpha}(k-l-1)=\chi^2_{0.95}(7)=14.067$

Вероятности находим по формуле: $p_i = F(b_i) - F(a_i) = \varPhi\Big(\frac{b_i - m}{\sigma}\Big) - \varPhi\Big(\frac{a_i - m}{\sigma}\Big),$ где $\varPhi(x)$ – функция Лапласа. В качестве мат. ожидания m берём среднее $\bar{x} = 10,10$. В качестве σ берём S. Ранее найдено: $S^2 = 25,29 => S = \sqrt{S^2} = 5,03$.

Таблица 8. Расчёт значения хи-квадрат для СВ Х

	Границы и	інтервалов	Частоты	Вероятности	Теоретические	$(n_i - np_i)^2$
Nº	Нижняя a _i	Верхняя b _i	n _i	рі	частоты пр _і	$\frac{(n_i - np_i)}{np_i}$
1	1,99	3,96	7	0,0575	5,75	0,2717
2	3,96	5,93	12	0,0921	9,21	0,8452
3	5,93	7,90	20	0,1267	12,67	4,2406
4	7,90	9,87	19	0,1501	15,01	1,0606
5	9,87	11,84	9	0,1567	15,67	2,8391
6	11,84	13,81	7	0,1336	13,36	3,0277
7	13,81	15,78	6	0,1004	10,04	1,6257
8	15,78	17,75	8	0,0649	6,49	0,3513
9	17,75	19,72	6	0,0362	3,62	1,5648
10	19,72	21,69	6	0,0174	1,74	10,4297

Полученное значение статистики: $\chi^2 = \sum_{i=1}^{10} \frac{(n_i - np_i)^2}{np_i} = 26,2564$ Теоретическое значение: $\chi^2_{1-\alpha}(k-l-1) = \chi^2_{0,95}(7) = 14,067$ $\chi^2 > \chi^2_{0,95}(7) =>$ гипотеза о нормальном виде распределения СВ X отклоняется.

Проверим гипотезу о равномерном распределении СВ Ү. Для этого используем критерий χ^2 с уровнем значимости $\alpha=0.05$ и числом степеней свободы $\mathbf{r}=k-l-1=10-2-1=7$. Где l – число неизвестных параметров распределения, у равномерного их 2: а и b. Таким образом: $\chi^2_{1-\alpha}(k-l-1)=\chi^2_{0.95}(7)=14,067$

Вероятности находим по формуле:
$$p_i = F(b_i) - F(a_i)$$
; $F(x) = \begin{cases} 0, \text{при } x < a \\ \frac{x-a}{b-a}, \text{при } a \leq x \leq b \\ 1, \text{при } x > b \end{cases}$

a=4,30; b=46,10 — найдены ранее. Распределение равномерное, поэтому p_i будут одинаковыми: $p_i=0,1$ для $i=\overline{1,k}$, где k=10

Таблица 9. Расчёт значения хи-квадрат для СВ У

	Границы интервалов		Частоты	Рородиности	Тооротиноскио	$(n_i - np_i)^2$
№	Нижняя	Верхняя	частоты n _i	Вероятности рі	Теоретические частоты пр _і	$\frac{(n_i - np_i)}{np_i}$
	$\mathbf{a_i}$	b _i		_	•	Ft
1	4,30	8,48	10	0,1	10	0,0
2	8,48	12,66	12	0,1	10	0,4
3	12,66	16,84	15	0,1	10	2,5
4	16,84	21,02	11	0,1	10	0,1
5	21,02	25,20	9	0,1	10	0,1
6	25,20	29,38	6	0,1	10	1,6
7	29,38	33,56	12	0,1	10	0,4
8	33,56	37,74	11	0,1	10	0,1
9	37,74	41,92	6	0,1	10	1,6
10	41,92	46,10	8	0,1	10	0,4

Полученное значение статистики: $\chi^2 = \sum_{i=1}^{10} \frac{(n_i - np_i)^2}{np_i} = 7,2$

Теоретическое значение: $\chi^2_{1-\alpha}(k-l-1)=\chi^2_{0,95}(7)=14,067$

 $\chi^2 \le \chi^2_{0.95}(7) =$ гипотеза о равномерном виде распределения СВ Y принимается.

Найдём параметры \mathbf{a} и \mathbf{b} уравнения линейной среднеквадратической регрессии \mathbf{Y} на \mathbf{X} ($\mathbf{y} = \mathbf{a}\mathbf{x} + \mathbf{b}$) методом наименьших квадратов:

$$Q_{xy} = \sum x_i y_i - n\bar{x}\bar{y} = 538,19; \ Q_x = \sum x_i^2 - n\bar{x}^2 = 2504,17$$

 $a = \frac{Q_{xy}}{Q_x} = 0,2149; \ b = \bar{y} - a\bar{x} = 21,04$

Уравнение линейной регрессии:

$$y = 0,2149x + 21,04$$

Коэффициент корреляции:

$$R = \sqrt{\frac{Q_r}{Q_y}} = 0,0912,$$
 где:

факторная сумма квадратов (сумма квадратов, обусловленная регрессией):

$$Q_r = a^2 Q_x = 115,6658$$

общая сумма квадратов:

$$Q_y = \sum y_i^2 - n\bar{y}^2 = 13904,51$$

Выборочный коэффициент корреляции:

$$r_{xy} = [$$
знак $a]R = 0.0912$

 $\left|r_{xy}\right|=0.0912<0.2=>$ линейная связь между X и Y практически отсутствует Коэффициент детерминации:

$$R^2 = \frac{Q_r}{Q_y} = 0,0083 \Longrightarrow 0,83\%$$
 дисперсии Y объясняется влиянием фактора X.

Проверка значимости линейной регрессии y = 0,2149x + 21,04 по критерию Фишера:

Статистика Фишера: $F_{\rm B}=\frac{Q_r(n-2)}{Q_e}=0,8221,$ где:

остаточная сумма квадратов: $Q_e = Q_y - Q_r = 13788,\!84$ (из основного тождества дисперсионного анализа: $Q_y = Q_r + Q_e$)

Квантиль распределения Фишера: $F_{1-\alpha}(1, n-2) = F_{0,95}(1,98) = 3,94$

 $F_{\scriptscriptstyle \rm B} \leq F_{1-lpha}(1,n-2) =>$ модель незначима: фактор X не оказывает влияние на СВ Y Модель незначима => неадекватна и непригодна для прогноза.

Диаграмма рассеивания и прямая регрессии 40 - 30 - 20 - 20 - 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Ось Х