pH and buffers

Dr. P.M.T.B Wickramasinghe

Dept. of Biochemistry and Clinical Chemistry

Objectives

- 1. Explain the term pH & calculate pH at different [H $^+$]
- State the relationship between pH and the concentration of conjugate acid and base
- 3. Use Henderson Hasselbalch equation to calculate pH of a given buffering system
- 4. Define "buffers" and explain the following terms
 - a. Buffering capacity
 - b. Buffering range
- 5. Name the buffers found in body fluid and explain their buffering action

pH- a measure of H⁺ concentration

pH calculations I

e.g. What is the pH of a solution whose $[H^+]$ is 3.2×10^{-4} mol/L?

```
pH = -\log_{10} [H<sup>+</sup>]

= -\log (3.2 \times 10^{-4})

= -\log (3.2) + -\log (10^{-4})

= -0.5 + 4

= 3.5
```

pH calculations II

 e.g. What is the fold change of H⁺ ion concentration between pH 7.35 and 7.45

```
pH = -\log_{10} [H<sup>+</sup>]

[H<sup>+</sup>] = 10^{-pH}

[H<sup>+</sup>] at pH 7.35 = 4.47 10^{-8} mol/L

[H<sup>+</sup>] at pH 7.45 = 3.55 10^{-8} mol/L
```

Fold change= 4.47/3.58 = 1.26 (~ 25% change)

Defining acids and bases

Strong acids / bases -> completely dissociate

$$HCI \longrightarrow H^+ + CI^-$$

Weak acids / bases → partially dissociate

$$CH_3COOH$$
 \longleftrightarrow $H^+ + CH_3COO^-$
 NH_4OH \longleftrightarrow $NH_4^+ + OH^-$

Many biologically important molecules are either weak acids or bases.

Conjugate acids and bases

Deprotonated form of a weak acid-conjugate base

$$CH_3$$
-CO-COOH \longrightarrow $H^+ + CH_3$ -CO-COOpyruvic acid pyruvate weak acid conjugate base

Protonated form of a weak base – conjugate acid

$$CH_3NH_2 + H^+ \iff CH_3NH_3^+$$

methylamine methylammonium
weak base conjugate acid

Deriving quantitative relationships

 Quantitative relationship between concentration of weak acid (HA) and its conjugate base (A-)

$$HA \iff H^+ + A^-$$

Dissociation constant $K_a = \frac{[H^+][A^-]}{[HA]}$ of acid

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

 Relative strength of acids are expressed in terms of dissociation constant

e.g. acetic acid
$$K_a = 1.8 \times 10^{-5}$$
, formic acid $K_a = 1.8 \times 10^{-4}$

Larger the K_a stronger the acid(formic acid >acetic acid)

Henderson – Hasselbalch equation

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

Rearranging for [H⁺] =
$$\frac{K_a[HA]}{[A^-]}$$

Convert to log
$$\log[H^+] = \log K_a + \log \frac{[HA]}{[A^-]}$$

Multiply by (-1)
$$-\log[H^+] = -\log K_a + -\log \frac{[HA]}{[A^-]}$$

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

$$pK_a \mathbf{\alpha} \frac{1}{K_a}$$

Buffers

Definition:

Solutions that resist change in pH following the addition of (small amounts) acid or base

[Solutions of weak acid & their conjugate base (or weak base & their conjugate acid) behave as buffers]

Characteristics of buffers I

Buffering Range
 The pH range a buffer is most effective

(monitor the change of pH in a weak acid with the addition of a base)

As a general rule the buffering range is;

$$pH = pK_a \pm 1$$

Characteristics of buffers II

Buffer capacity:

The extent a buffer can resist changes in pH with the addition of a strong acid or a base

Depends on:

- 1. Concentration of acid and conjugate base
- 2. How close the pH of buffer is to the pKa of weak acid

Maximum buffering capacity occurs at a pH= pK_a

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

When acid is half neutralized [HA]=[A⁻], therefore; $log_{10} 1 = 0$ $pH=pK_a$

pH calculations III

1. Calculate the pH of a mixture of 0.1M acetic acid & 0.2M sodium acetate. $(pK_{CH_3COOH} = 4.76)$

$$pH = pK_a + \log \frac{[acetate]}{[acetic \ acid]}$$
$$= 4.76 + \log \left[\frac{0.2}{0.1}\right]$$
$$= 4.76 + 0.30$$
$$= 5.06$$

2. Calculate the ratio of the concentrations of bicarbonate & carbonic acid required in a buffer system of pH 7.40 $(pK_{H_2CO_3} = 6.1)$

$$pH = pK_a + \log \frac{[HCO_3]}{[H_2CO_3]}$$

$$\log \frac{[HCO_3^-]}{[H_2CO_3]} = pH - pK_a = 7.4 - 6.1$$

$$\frac{[HCO_3^-]}{[H_2CO_3]} = 10^{1.3} (inverse_\log)$$

$$= 20$$

Buffers of the body fluids

 The body maintain the pH within narrow limits despite the fact that metabolic processes will constantly release or uptake protons

Blood	Bicarbonate	$H_2CO_3 \longrightarrow H^+ + HCO_3^-$
	Hemoglobin	H⁺Hb ← H⁺ + Hb
	Protein	HProt ← H ⁺ + Prot ⁻
Intracellular	Protein	HProt ← H ⁺ + Prot ⁻
fluid	Phosphate	$H_2PO_4^- \iff H^+ + HPO_4^-$
Interstitial fluid	Bicarbonate	H ₂ CO ₃ → H ⁺ + HCO ₃
Urine	Bicarbonate	$H_2CO_3 \iff H^+ + HCO_3^-$
	Phosphate	$H_2PO_4^- \longrightarrow H^+ + HPO_4^-$
	Ammonia	$NH_4^+ \longrightarrow H^+ + NH_3$

Bicarbonate buffer system

A major buffer system in blood

Slow reaction:
$$catalyzed by$$

$$CO_2 + H_2O \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO_3^-$$

$$carbonic$$

$$anhydrase$$

By applying H-H equation;
$$pH = pK_{H_2CO_3} + \log \frac{[HCO_3]}{[H_2CO_3]}$$

Q- How do we relate gaseous CO₂ to H₂CO₃ in the blood?

```
[H_2CO_3] \alpha PCO_2 therefore;

[H_2CO_3] = Solubility constant of <math>CO_2X PCO_2
```

Bicarbonate buffer system ctd...

- pK_a of this system is low (6.1) relative to the pH of the blood (7.4)
- The most effective range for this system = 5.1 7.1
- However, bicarbonate buffer system is very important for the following reasons
 - It is found in high concentration in the plasma & $[HCO_3^-]$: $[CO_2]$ = 20/1 at physiological pH of 7.4
 - Amount of CO₂ & HCO₃ are physiologically regulated (by lungs & kidneys).

Phosphate buffer system

•
$$H_2PO_4$$
 \longrightarrow $H^+ + HPO_4^{2-}$

- $pK_a = 6.8$, buffer range = 5.8 7.8
- In the plasma, the phosphate concentration is too low for this system to be an important buffer
- But it is important intracellularly, and in the urine (Urine pH can vary from pH= 4.6 to 8)

Amino acids as buffers I

- Amino acids have an amine group and a carboxylic acid group (on the alpha carbon)
- Side chains of some amino acids contain buffering groups

Amino acids as buffers II

The state of the s	COO
H_3 $\stackrel{+}{N}$ $-\stackrel{-}{C}$ $-H$	H_3N-C-H
CH_2	CH_2
CH_2	C-NH
$\dot{\text{CH}}_2$	CH
NH	H_N
$C=NH_2$	
NH_2	
	CH_2 CH_2 CH_2 NH $C=NH_2$

Amino acid	Charge	Side chain pK _a
Lysine	+	10.69
Arginine	+	12.48
Histidine	+	6.02
Aspartat	e -	3.90
Glutamate -		4.42

- Positively charged=basic side chain:
- Negatively charged = acidic side chain
 - $RNH_2 + H^+ \longrightarrow RNH_3^+$
 - RCOOH ← H⁺ + RCOO

Proteins as buffers

- Charged side chains of amino acids mainly contribute to the charge of a protein
- Only the N and C termini of proteins will have unconjugated amine and carboxylic ends

Buffering system in the RBC - Hb

- Hemoglobin (Hb) can act as a buffer due to the presence of Histidine residues
- 32 histidines / Hb (present in large amounts)

Acidosis & Alkalosis

- When arterial pH
 - » falls below 7.35 \rightarrow acidosis
 - » rises above $7.45 \rightarrow$ alkalosis

2 types;

- 1) Metabolic
 - a decrease in $HCO_3^- \rightarrow metabolic acidosis$
 - an increase in HCO₃ → metabolic alkalosis
- 2) Respiratory
 - a rise in arterial $PCO_2 \rightarrow respiratory acidosis$
 - decline in $PCO_2 \rightarrow$ respiratory alkalosis

Thank you!!

Questions?