班级

北京理工大学 2016-2017 学年第二学期

姓名

《微积分 A》(下)期末试题(A卷)

学号

_											
(试卷共6页,十个大题,解答题必须有过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.											
题	_		[1]	四	五	六	七	八	九	十	总分
号											
得											
分											
签											
名											
一、填空题(每小题 4 分, 共 20 分)											
1. 过点 $M(3,0,-1)$ 且与平面 $\pi:3x-7y+5z-12=0$ 平行的平面方程为											
2. 函数 $u = xy^2z$ 在点 $P(1, -1, 2)$ 处沿 $n =$ 的方向导数最大,最大方											
向导数为											
3. 设 $I = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} dx \int_{\sin x}^{1} f(x, y) dy$,则交换积分次序后 $I = \underline{\qquad}$											
4. 已知曲线 $L: y = x^2 (0 \le x \le \sqrt{2})$,计算 $\int_L x dl = $											

- 5. 设常数 $\lambda > 0$, 且级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛,则级数 $\sum_{n=1}^{\infty} (-1)^n \cdot \frac{|a_n|}{\sqrt{n^2 + \lambda}}$ 是______ 收敛
- 二、计算题(每小题5分,共20分)
- 1. 求点M(1,0,2)到直线 $\frac{x}{2} = \frac{y+1}{-2} = \frac{z-1}{1}$ 的距离.

2. 设
$$z = f(\frac{x}{y})$$
, 且 $f(u)$ 二阶可导,求 $\frac{\partial^2 z}{\partial x \partial y}$.

3. 计算
$$I = \iint_{S} (x^2 + y^2) dS$$
, S 为锥面 $z^2 = 3(x^2 + y^2)$ 被平面 $z = 0$ 及 $z = 3$ 所截得的部分.

4. 设
$$r = \sqrt{x^2 + y^2 + z^2}$$
, 计算 $div(gradr)|_{(1,-2,-2)}$ 的值.

三、(8分) 求曲面 $x = u \cos v, y = u \sin v, z = 2v$ 在 $u = 2, v = \frac{\pi}{4}$ 处的切平面方程.

四、(6 分) 设D是由直线y=x, y=2x, y=1所围成的均匀薄片(面密度为 1), 求D对于y轴的转动惯量.

五、 $(8\, \mathcal{G})$ 求坐标原点到曲线 $\Gamma: \begin{cases} z=x^2+y^2 \\ x+y+z=1 \end{cases}$ 的最长和最短距离.

六、(8分) 设 $\varphi(x)$ 是 $(-\infty,+\infty)$ 内不取零值的可微函数, $\varphi(0)=1$.已知

 $\varphi(x)(2xy+x^2y+\frac{y^3}{3})dx+\varphi(x)(x^2+y^2)dy$ 是某二元函数 u(x,y) 的全微分.

(1) 求 $\varphi(x)$ 满足的微分方程及 $\varphi(x)$ 的表达式; (2)求u(x,y)的表达式.

七、 $(8 \, \mathcal{G})$ 求幂级数 $\sum_{n=0}^{\infty} \frac{x^n}{n+2}$ 的收敛域及和函数.

八、(8分) 设 f(x) 是周期为 2π 的周期函数.它在 $[-\pi,\pi)$ 上的表达式为 f(x)=x,

f(x) 展开的傅里叶级数为 $\sum_{n=1}^{\infty} b_n \sin nx$, 且 $S(x) = \sum_{n=1}^{\infty} b_n \sin nx$, 求 b_3 及 $S(\pi)$.

九、(8 分) 计算 $I = \iint_s x^3 dy dz + y^3 dz dx + z^3 dx dy$, 其中 S 为球面 $x^2 + y^2 + z^2 = R^2$ 的外侧.

十、(6 分)流速 $\vec{v} = \{x^3, y^2, z^4\}$ 的不可压缩的密度为 1 的流体,流过由 $z = 4 - (x^2 + y^2) = 1 - \frac{1}{4} (x^2 + y^2)$ 所围立体,有平行于xoz面的平面截此立体,问单位时间内沿y轴方向通过哪个截面的流量最大?