Organización y Arquitectura de computadoras Práctica 1

Araujo Chávez Mauricio 24 de Agosto de 2017

Datos de la computadora:

• Fabricante y modelo de la computadora:

Hewlett Packard, HP Notebook .

• Fabricante, modelo, frecuencia, número de núcleos, y arquitectura del procesador:

Intel Pentium N3540, 2.67GHz, 4 núcleos, 64 bits.

- Capacidad de memoria RAM y de cachés de los procesadores:
 - 4 GB Memoria RAM, 2 MB memoria caché del procesador.
- Capacidad del disco duro:
 - 1 TB de capacidad.
- Distribución de linux y versión del kernel:

Ubuntu 17.04, Kernel: 4.10.0-32-generic.

Nombre de la prueba	Resultado
GZIP Compression	27.28 Seconds
DCRAW	191.74 Seconds
FLAC Audio Encoding	23.90 Seconds
REDIS	386115.21 Requests Per Second
Timed MrBayes Analysis	81.41 Seconds
Timed M Player Compilation	210.01 Seconds
Timed PHP Compilation	125.24 Seconds

Table 1: Resultado de las pruebas

Nombre de la prueba	Resultado
GZIP Compression	26.4 Seconds
DCRAW	136.38 Seconds
FLAC Audio Encoding	20.00 Seconds
REDIS	416814.34 Requests Per Second
Timed MrBayes Analysis	42.39 Seconds
Timed M Player Compilation	233.62 Seconds
Timed PHP Compilation	117.00 Seconds

Table 2: Resultado de las pruebas(2a Computadora)

Nombre de la prueba	Resultado
GZIP Compression	60.69 Seconds
DCRAW	108.98 Seconds
FLAC Audio Encoding	14.00 Seconds
REDIS	752900.60 Requests Per Second
Timed MrBayes Analysis	95.70 Seconds
Timed M Player Compilation	226.43 Seconds
Timed PHP Compilation	131.60 Seconds

Table 3: Resultado de las pruebas(3a Computadora)

Nombre de la prueba	Resultado
GZIP Compression	40.53 Seconds
DCRAW	167.28 Seconds
FLAC Audio Encoding	32.02 Seconds
REDIS	166265.13 Requests Per Second
Timed MrBayes Analysis	78.785 Seconds
Timed M Player Compilation	295.53 Seconds
Timed PHP Compilation	142.85 Seconds

Table 4: Resultado de las pruebas(4a computadora)

Nombre de la prueba	Propósito
GZIP Compression	Tiempo de respuesta
DCRAW	Tiempo de respuesta
FLAC Audio Encoding	Tiempo de respuesta
REDIS	Rendimiento
Timed MrBayes Analysis	Tiempo de respuesta
Timed M Player Compilation	Tiempo de respuesta
Timed PHP Compilation	Tiempo de respuesta

Table 5: Tipo de pruebas

Ejercicios

Usando la medida de tendencia central adecuada y tu reporte de resultados, calcula:

- La medida de tiempo de respuesta 55.1758 segundos
- La medida de rendimiento 386115.21 request per second

Calcula los tiempos normalizados y obtén la medida de tendencia central adecuada para cada una de las computadoras.

• Computadora 1 y 2: 1.21 Computadora 1 y 3: 1.09 Computadora 1 y 4: 0.78

• Computadora 2: 45.5825 segundos

Computadora 3: **50.1897**

Computadora 4: 70.6227 segundos

Plantea un caso de uso de computadora, de acuerdo a los requerimientos del usuario pondera los resultados y obten la medida de desempeño.

• Suponemos que el ususario requiere un máximo tiempo de respuesta en compiladores y cifrados por lo tanto tendríamos:

.25 en PHP test; .25 en MPlayer test; .25 en GZIP test; .10 en MrBayes test; .10 en DCRAW test y .5 en FLAC test.

De donde obtenemos los siguientes resultados:

Computadora 1: 129.8975 segundos Computadora 2: 122.132 segundos Computadora 3: 132.148 segundos Computadora 4: 160.344 segundos

De donde podemos deducir que la computadora 2 sería la ideal para tales condiciones de trabajo.

Preguntas

- ¿Cuál computadora tiene el mejor tiempo de ejecución? Comparada con la peor medida, ¿Por qué factor es mejor la computadora? El tiempo de ejecución de la computadora 2 es 0.64 veces más rápido que la computadora 4. Debido a la diferencia en sus frecuencias de reloj.
- ¿Cuál computadora tiene el mejor rendimiento? Comparada con la peor medida, ¿Por qué factor es mejor la computadora? El rendimiento de la computadora 1 es **0.51** veces mejor que la computadora 3.
- De acuerdo a la computadora de referencia, ¿cuál computadora tiene el mejor desempeño y cuál computadora tiene el peor desempeño? El mejor desempeño lo tiene la computadora referencia y el peor lo tiene la computadora 3.

- ¿Cuál computadora tiene el mejor desempeño para el usuario planteado en el caso de uso?

 La computadora 2.
- De entre los atributos de cada máquina comparada, ¿cuáles resultan determinantes en la pérdida o ganancia de desempeño?

 La frecuencia de reloj y los ciclos de reloj promedio por instrucción.