

※ 〇

AJUSTE DE UMA RETA

$$\sum \Bigl(Y_i - \hat{Y_i}\,\Bigr)$$

3

MINIMIZAÇÃO DOS DESVIOS ABSOLUTOS

$$\sum \left| Y_i - \hat{Y}_i \right|$$

EXEMPLO 1

Considere o seguinte conjunto de pontos

Χ	Y
1	1
2	1
3	2
4	2
5	4

5

RETAS DE AJUSTE

$$Y = 0.5 + 0.5X$$

R3
$$Y=-0.7+0.9X$$

RETAS

R1	R2	R3
0.6	1	0.2
1.3	1.5	1.1
2	2	2
2.7	2.5	2.9
3.4	3	3.8

7

DESVIOS

Desv1	Desv2	Desv3
0.4	0	0.8
-0.3	-0.5	-0.1
0	0	0
-0.7	-0.5	-0.9
0.6	1	0.2
0	0	0

DESVIOS ABSOLUTOS

Desv1	Desv2	Desv3
0.4	0	0.8
0.3	0.5	0.1
0	0	0
0.7	0.5	0.9
0.6	1	0.2
2	2	2

QUADRADO DOS DESVIOS

(Desv1) ²	(Desv2) ²	(Desv3) ²
0.16	0	0.64
0.09	0.25	0.01
0	0	0
0.49	0.25	0.81
0.36	1	0.04
1.10	1.50	1.50

11

EXEMPLO 2

Comprimento alar (cm) em função da idade (dias) para andorinhas

Dias	Comp.
3	1,4
4	1,5
5	2,1
6	2,4
8	3,1
9	3,2
10	3,3

DPS 12

EXEMPLO 2 (SPSS)

DPS 13

EXEMPLO 2

DPS 14

Models (curve estimation algorithms)

Previous (Next

CURVEFIT allows the user to specify a model with or without a constant term designated by \mathcal{P}_0 . If this constant term is excluded, simply set it zero or one depending upon whether it appears in an additive or multiplicative manner in the models listed below.

. (1 * -)

DPS 15

DPS

16

Variable Processing Summary

		variables		
		Dependent	Independent	
		Comprimento	Idade	
Number of Positive Values		7	7	
Number of Zeros		0	0	
Number of Negative Values	0	0		
Number of Missing	User-Missing	0	0	
Values	System-Missing	0	0	

Model Summary and Parameter Estimates Dependent Variable: Comprimento

	1		Parameter Estimate			es			
Equation	R Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	0,964	132,174	1	5	0,000	0,515	0,298		
Logarithmic	0,971	165,753	1	5	0,000	-0,727	1,772		
Inverse	0,915	53,833	1	5	0,001	4,087	-9,026		
Quadratic	0,980	99,685	2	4	0,000	-0,274	0,579	-0,021	
Cubic	0,991	106,896	3	3	0,002	1,471	-0,387	0,141	-0,008
Power	0,968	149,638	1	5	0,000	0,563	0,792		
Growth	0,931	67,190	1	5	0,000	-0,006	0,131		
Exponential	0,931	67,190	1	5	0,000	0,994	0,131		

The independent variable is Idade

17

EXEMPLO 2

DPS 18

RECTA DE MÍNIMOS QUADRADOS

Estimadores

$$Y_i = \beta_0 + \beta_1 \cdot \left(X_i - \overline{X}\right) + \varepsilon_i \quad i = 1,...,n$$

$$\beta_0 = \frac{1}{n} \sum_{i} Y_i = \overline{Y}$$

$$\beta_1 = \frac{\sum_{i} (X_i - \overline{X}) \cdot (Y_i - \overline{Y})}{\sum_{i} (X_i - \overline{X})^2} = \frac{s_{XY}}{s_{xx}}$$

$$\sigma^{2} \qquad s^{2} = \frac{1}{n-2} \sum_{i} \hat{e}_{i}^{2} = \frac{1}{n-2} \sum_{i} \left\{ Y_{i} - \left[\hat{\beta}_{0} + \hat{\beta}_{1} \cdot \left(X_{i} - \overline{X} \right) \right] \right\}^{2}$$

21

※ 〇

DISTRIBUIÇÃO DOS ERROS

DISTRIBUIÇÃO DO DECLIVE

IC e Testes de hipóteses

	IC	TH
βο	$\hat{\beta}_0 \pm t_{n-2,(\frac{\alpha}{2})} \cdot \frac{s}{\sqrt{n}}$	$\begin{aligned} H_0: \beta_0 &= b_0 \\ H_1: \beta_0 &\neq b_0, \beta_0 > b_0 \text{ ou } \beta_0 < b_0 \end{aligned}$ $ET &= \frac{\hat{\beta}_0 - b_0}{s / \sqrt{n}}$ $H_0 \text{ verdadeira } \Rightarrow ET \sim t_{n-2}$
β ₀ ΄	$\left(\hat{\beta}_0 - \overline{X}.\hat{\beta}_1\right) \pm t_{n-2,(\frac{\sigma}{2})}.s.\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{s_{XX}}}$	$\begin{split} H_0: \beta_0^{'} &= b_0' \\ H_1: \beta_0^{'} &\neq b_0', \beta_0^{'} > b_0' \text{ ou } \beta_0^{'} < b_0' \\ ET &= \frac{\left(\hat{\beta}_0 - \overline{X}.\hat{\beta}_1\right) - b_0'}{s.\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{s_{\chi\chi}}}} \\ H_0 \text{ verdadeira } &\Rightarrow ET \sim t_{n-2} \end{split}$
β_1	$\hat{\beta}_1 \pm t_{n-2,(\frac{\alpha_2}{2})} \cdot \frac{s}{\sqrt{s_{XX}}}$	$H_{0}: \beta_{1} = b_{10}$ $H_{1}: \beta_{1} \neq b_{10}, \beta_{1} > b_{10} \text{ ou } \beta_{1} < b_{10}$ $ET = \frac{\hat{\beta}_{1} - b_{10}}{\frac{s}{\sum_{i}(x_{i} - \overline{x})^{2}}}$ $H_{0} \text{ verdadeira } \Rightarrow ET \sim t_{n-2}$ 25

INTERVALO DE CONFIANÇA

REGRESSÃO NÃO LINEAR

27

※ 〇

REGRESSÃO NÃO LINEAR

Modelo	Transformação
$\bullet Y_i = \alpha' + \frac{\beta}{X_i} + e_i$	$U_{i} = \frac{1}{X_{i}}$ $Y_{i} = \alpha' + \beta \cdot U_{i} + e_{i}$
• $Y_i = e^{\alpha' + \beta \cdot X_i + e_i}$	$Z_{i} = \ln Y_{i}$ $Z_{i} = \alpha' + \beta . X_{i} + e_{i}$
• $Y_i = e^{\alpha' + \frac{\beta}{X_i} + e_i} \operatorname{com} \alpha' > 0, \beta < 0$	$U_{i} = \frac{1}{X_{i}}$ $Z_{i} = \ln Y_{i}$ $Z_{i} = \alpha' + \beta U_{i} + e_{i}$

REGRESSÃO LINEAR E MÚLTIPLA

Um modelo de regressão linear múltipla descreve uma relação entre várias variáveis quantitativas **independentes**, X_1 , X_2 , ..., X_p e uma variável quantitativa **dependente**, Y, nos termos seguintes:

$$Y_{i} = \beta_{0} + \beta_{1} \cdot (X_{1i} - \bar{X}_{1}) + \beta_{2} \cdot (X_{2i} - \bar{X}_{2}) + \dots + \beta_{j} \cdot (X_{ji} - \bar{X}_{j}) + \varepsilon_{i} \quad i = 1, \dots, n$$
$$j = 1, \dots, J$$

onde:

- $(X_{1i}, X_{2i}, ..., X_{Ji}, Y_i)$ i-ésima observação das variáveis $X_{1i}, X_{2i}, ..., X_{Ji}$ e Y.
- ullet $\overline{X_j}$ média aritmética das observações $X_{\scriptscriptstyle H}$
- $\beta_0,\beta_1,\beta_2,...,\beta_J$ parâmetros fixos da relação linear entre $X_{1i},X_{2i},...,X_{Ji}$ e Y
- \bullet ε_i erro aleatório associado ao valor observado Y_i

RESÍDUOS

$\underline{\mathsf{Pressupostos}\,\mathsf{para}}\, \boldsymbol{\varepsilon_{\scriptscriptstyle{i}}}$

- São mutuamente independentes;
- $\varepsilon_i \sim IN(0,\sigma^2)$

• São normalmente distribuídos.

Se estas hipóteses se verificarem então: $Y_i \sim IN(\mu_{Y_i}, \sigma^2)$

$$\hat{\beta}_0 = \frac{1}{n} \sum_{i} Y_i = \overline{Y}$$

$$\begin{split} & s^2 = \frac{1}{n - J - 1} \sum_{i} \hat{\varepsilon}_{i}^2 = \\ & = \frac{1}{n - J - 1} \sum_{i} \left\{ Y_i - \left[\hat{\beta}_0 + \hat{\beta}_1 . \left(X_{1i} - \overline{X}_1 \right) + \hat{\beta}_2 . \left(X_{2i} - \overline{X}_2 \right) + ... + \hat{\beta}_j . \left(X_{Ji} - \overline{X}_J \right) \right] \right\}^2 \end{split}$$

EXEMPLO 3

Determine a relação existente entre o calor envolvido no endurecimento, representado pela variável Y e os pesos de duas substâncias X_1 e X_2 , tendo em consideração os seguintes valores obtidos numa experiência:

Υ	78.5	74.3	104.3	87.6	95.6	109.2	102.7	72.5	93.1	115.9
X1	7	1	11	11	7	11	3	1	2	21
						55				

Regression>Linear>Statistics

Regression>Linear>Save

35

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,988ª	,977	,970	2,57617

- a. Predictors: (Constant), X2, X1
- b. Dependent Variable: Y

Complementos de Estatística, Prof^a Ana Cristina Braga

ANOVA (Modelo)

H₀: O modelo de regressão considerado não serve

Decisão: Como valor p <0,05, rejeita-se a H₀, pelo que o modelo de regressão considerado é estatisticamente significativo

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1976,924	2	988,462	148,940	,000b
	Residual	46,457	7	6,637		
	Total	2023,381	9			

a. Dependent Variable: Y

b. Predictors: (Constant), X2, X1

Complementos de Estatística, Prof^a Ana Cristina Braga

37

RESÍDUOS (homoscedasticidade)

Complementos de Estatística, Prof^a Ana Cristina Braga 38

Resíduos (Normalidade)

- Teste analítico (KS com correção de Lilliefors)
- Método gráfico (P-P ou Q-Q plot)

NPar Tests

One-Sample Kolmogorov-Smirnov Test

		Residual
N		10
Normal Parameters ^{a,b}	Mean	,0000000
	Std. Deviation	,88191710
Most Extreme Differences	Absolute	,261
	Positive	,261
	Negative	-,169
Test Statistic		,261
Asymp. Sig. (2-tailed)		,051°

- a. Test distribution is Norma
- b. Calculated from data.
- c. Lilliefors Significance Correction.

Complementos de Estatística, Profa Ana Cristina Braga

39

Resíduos (média zero)

T-Test

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Standardized Residual	10	,0000000	,88191710	,27888668

One-Sample Test

	lest value = 0						
•				Mean	95% Confidence Interval of the Difference		
		t	df	Sig. (2-tailed)	Difference	Lower	Upper
	Standardized Residual	1,19E-014	9	1,000	3,32E-015	-,631	,631

Complementos de Estatística, Prof^a Ana Cristina Braga

Verificação de outliers

Complementos de Estatística, Prof^a Ana Cristina Braga

41

COEFICIENTE DE CORRELAÇÃO

Coeficiente de correlação de Pearson

$$R = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}} = \frac{s_{XY}}{\sqrt{s_{XX}} \cdot \sqrt{s_{YY}}}$$

TESTES DE ASSOCIAÇÃO

<u>Unilateral à direita</u> <u>Unilateral à esquerda</u> <u>Bilateral</u>

 $H_{0}: \rho = 0$ $H_{0}: \rho = 0$ $H_{0}: \rho = 0$

 $H_1: \rho > 0$ $H_1: \rho < 0$ $H_1: \rho \neq 0$

Estatística de teste $t = \frac{r \cdot \sqrt{n-2}}{\sqrt{1-r^2}}$

Região de Rejeição:

 $t > t_{\scriptscriptstyle n-2,(\alpha)} \hspace{1cm} t < -t_{\scriptscriptstyle n-2,(\alpha)} \hspace{1cm} |t| > t_{\scriptscriptstyle n-2,(\alpha/2)}$

43

EXEMPLO

- Índice de Desenvolvimento de Griffiths
 - avaliações motora e intelectual para 9 crianças com a idade de 4 anos

Motor	Intelectual		
84	77		
73	85		
101	105		
74	86		
88	108		
100	116		
86	96		
95	100		
82	100		

-44

DIAGRAMA DE DISPERSÃO

COEFICIENTE DE DETERMINAÇÃO

51

<u>Coeficiente de determinação</u> (r²), representa a proporção da variação de Y que é explicada pela regressão

$$r^{2} = \frac{\hat{\beta}_{1}^{2}.s_{xx}}{s_{yy}} = \frac{\hat{\beta}_{1}^{2}.\sum_{i}(X_{i} - \bar{X})^{2}}{\sum_{i}(Y_{i} - \bar{Y})^{2}} = \frac{\text{variação de } Y \text{ explicada pela regressão}}{\text{variação total de } Y}$$