

Numero matricola: 0522501592

PIPELINE METODOLOGICA PER L'ANALISI SEMANTICA E LA VALUTAZIONE DEGLI ERRORI DI PRONUNCIA NELLA LINGUA THAI

Relatore: Loredana Caruccio

Correlatore: Dott. Bernardo Breve

Corso di Laurea Magistrale in Informatica

Università Degli Studi DI Salerno

01. Introduzione al Problema

02. Sfide dell'ASR per la lingua thailandese

Damiana Buono Matricola N. 0522501592

Corpus disponibili

02. Obiettivi Proposti

Addestramento del modello ASR

Creazione del corpus che simulano errori commessi da studenti di Thai

Analisi linguistica e semantica

Damiana Buono Matricola N. 0522501592

03. Fine-Tuning di un modello ASR

Step 1: Trascrizione automatica (ASR)

Output: trascrizione corretta e pulita del parlato originale
• Esempio trascrizione: พื้น ทำ ด้วย ไม้ศาล หรือ ฟากสัพ

Modello ASR: airesearch/wav2vec2-large-xlsr-53-th

- Basato su Wav2Vec2
- Ottimizzato per la **lingua thailandese**
- Equilibrio tra accuratezza e fedeltà
- **Corpus** di riferimento: *LOTUS*

Segmentazione della trascrizione con **tokenizer**

newmm:

- Suddivisione in unità linguistiche coerenti
- Passaggio fondamentale per la successiva fase di injection di errori

03. Fine-Tuning di un modello ASR

Step 2: Injection controllata di errori fonetici

- Scopo: simulare errori di pronuncia tipici di studenti Thai
- Input: sequenza tokenizzata della trascrizione
- Funzione principale: maybe_inject_pronunciation_multi_scaled
- Tipologie di errori fonetici:
 - Consonanti iniziali/finali
 - Vocali lunghe/corte
 - o Toni

• **Generazione**: varianti fonetiche plausibili filtrate con dizionario e *WordNet Thai*

03. Fine-Tuning di un modello ASR

Step 3: Rigenerazione acustica (TTS)

errori di pronuncia

- Caratteristiche de modello:
 - Riproduce fedelmente l'input testuale
 - Evita eccessiva normalizzazione automatica
 - Mantiene alterazioni fonetiche e prosodiche introdotte

03. Fine-Tuning di un modello ASR

Step 4: Archiviazione dei dati sintetici.

Output: dataset strutturato con:

- Trascrizione originale: พื้น ทำ ด้วย ไม้ศาล หรือ ฟากสัพ
- Trascrizione con errori: พื้น ทำ ด้วย ไม้ ศร หรือ ฟาก สัพ
- Dettaglio_modifica: Aggiunto tono: "' in 'ไม๊' | Rimosso " da 'ไม้' | SUONO_VOCALE 'ศาล': 'า'→'ะ' | SUONO_CONSONANTE 'ศาล': 'ล'→'ร' | Rimosso 'ะ' da 'ศาล'
- Path file audio corrotto ottenuto dal modello TTS

- **Risultato:** dataset sintetico **(3.255 frasi)** utile per:
- Analisi semantica e fonetica
- Addestramento supervisionato di modelli ASR

03. Fine-tuning del modello

Step5: Addestramento del modello fine-tuned.

04. Scenario Applicativo

Damiana Buono Matricola N. 0522501592

Caso di Studio: Analisi Semantica delle Produzioni Linguistiche in Thai

Contesto:

- Studenti e utenti non madrelingua
- Livelli di competenza: principiante, intermedio.
- Necessità di un apprendimento naturale e personalizzato

Objettivo:

- Promuovere un apprendimento linguistico personalizzato
- Valutare in modo integrato pronuncia e il significato
- Fornire un feedback immediato e mirato sul parlato dello studente

Approccio Tecnologico

- Integrazione di modelli ASR avanzati e analisi semantica per comprendere il parlato degli studenti
- Supporto a un apprendimento interattivo centrato sullo studente

04. Pipeline per la valutazione del parlato • Esempio: Obiettivo: preservare gli errori per analisi successive. STEP 1

Damiana Buono Matricola N. 0522501592

Step 1: Trascrizione Automatica del Parlato (ASR)

Output: trascrizione fedele, senza correzioni automatiche.

- o Riferimento: ส้วม ทาน ด้อม ใต บรูก เข้าเจ้า อาย หงัก
- o Predizione del modello: ส้วม ทาน ด้อม ใต บรูก เข้าเจ้า อาย หงัก

Modello: wav2vec2 fine-tuned su parlato con errori injection di errori

04. Pipeline per la valutazione del parlato Step 2: Generazione dell'Audio di Riferimento (TTS) tonale Crea una **pronuncia corretta standard** a partire dal testo. Audio chiaro, coerente in tono e durata

Damiana Buono Matricola N. 0522501592

04. Pipeline per la valutazione del parlato

Damiana Buono Matricola N. 0522501592

Step 3: Trascrizione dell'Audio di Riferimento (ASR di Riferimento)

STT

Uso del modello per il

speech-to-speech per

ottenere la trascrizione 1

della frase senza errori

Si ottiene la trascrizione T della frase senza errori

gTTs

correzione prodotte

dal modello Google

Modello per il text-to.speech

della Google, usato per ottenere

un audio che va a correggere gli errori introdotti inizialmente

Damiana Buono 04. Pipeline per la valutazione del parlato Matricola N. 0522501592 Step 4: Analisi Semantica Esempio: • trascrizione pronunciata dallo studente: ส้วม ทาน ด้อม ใต บรูก เข้าเจ้า อาย หงัก • trascrizione con la corretta pronuncia: ส้วม ทาน ดอม เต้ บรู้ เข้า เจ้า อาย หงัก • similarità semantica: • **Confronto** tra trascrizione studente ↔ **Modello**: paraphrase-multilingual-MiniLM-L12-v2 versione corretta • Calcolo della similarità semantica (cosine STEP 4 similarity) STEP 1 **Analisi Semantica** paraphrase-multilingual-MiniLM-L12-v2 e STT Si ottiene la trascrizione T testuale dell'audio Il modello STT' fine_tuned viene usato per ottenere la trascrizione testuale STEP 2 STEP 3 dell'audio dello studente STT gTTs Si ottiene la trascrizione T della frase senza errori Modello per il text-to.speech Uso del modello per il correzione prodotte della Google, usato per ottenere speech-to-speech per dal modello Google ottenere la trascrizione ⁻ un audio che va a correggere gli errori introdotti inizialmente della frase senza errori

04. Pipeline per la valutazione del parlato Step 5: Analisi Fonetica e Classificazione della Gravità Stima della Gravità basata sul numero di errori inseriti. 0 = Nessuno • 1 - 3 = Lieve • 4 - 6 = Medio • > 6 = Grave Analisi fonetica e tonale, **Obiettivo** Confronto tra frase studente e frase corretta Identificare e quantificare gli errori fonetici e tonali per stimare la gravità complessiva della pronuncia STEP 4 STEP 1 STEP 5 **Analisi Semantica** Utilizzo del modello di embedding paraphrase-multilingual-MiniLM-L12-v2 e STT' Si ottiene la trascrizione T testuale dell'audio Il modello STT' fine_tuned viene usato per ottenere la trascrizione testuale STEP 2 STEP 3 dell'audio dello studente STT gTTs Si ottiene la trascrizione T della Ottengo l'audio con le frase senza errori Modello per il text-to.speech Uso del modello per il correzione prodotte della Google, usato per ottenere speech-to-speech per dal modello Google un audio che va a correggere gli ottenere la trascrizione 1 errori introdotti inizialmente della frase senza errori

Damiana Buono Matricola N. 0522501592

04. Pipeline Metodologica

Damiana Buono Matricola N. 0522501592

Step 6: Generazione del Feedback Linguistico

Il sistema genera un **messaggio descrittivo**, che indica:

- Dove si trovano gli errori
- Quale tipo di errore è stato commesso (tono, vocale, consonante)
- Come migliorare la pronuncia o la struttura semantica

Obiettivo

Unire i risultati dell'analisi semantica e fonetica per creare un feedback completo, personalizzato e operativo per lo studente.

Esempio feedback:

La frase 'ส้วม ทาน ด้อม ใต บรูก เข้าเจ้า อาย หงัก' è molto simile a 'ส้วม ทาน ดอม เต้ บรู้ เข้า เจ้า อาย หงัก' (0.97). Ottimo lavoro!

Solo piccole variazioni fonetiche potrebbero essere migliorate. Suggerimenti:

- La parola 'ด้อม' è diversa da 'ดอม', ma il significato resta simile
- Migliora la pronuncia di 'ใต', dovrebbe essere 'เต้'
- La parola 's' è diversa da 's', ma il significato resta simile
- Migliora la pronuncia di 'ก', dovrebbe essere 'เข้า'
- Migliora la pronuncia di 'เข้าเจ้า', dovrebbe essere 'เจ้า'

05. Domande di ricerca (Research Questions) Damiana Buono Matricola N. 0522501592

RQ2: Quanto impatta la quantità di errori rispetto alla capacità di trascrizione fedele?

RQ1: Quanto impatta la tipologia di errore rispetto alla capacità di trascrizione fedele?

RQ3: Quanto il modello di valutazione degli errori altera il significato semantico della frase rispetto alla versione corretta?

05. Metriche di valutazione

Damiana Buono Matricola N. 0522501592

Accuratezza fonetica:
Character Error Rate (**CER**), ovvero percentuale di caratteri trascritti in modo errato dal modello di riconoscimento del testo.

$$CER = rac{S + D + I}{N}$$

RQ3

Coerenza semantica:
Cosine Similarity (basata su
MiniLM-L12-v2)

$$CosSim(A,B) = rac{A \cdot B}{\|A\| \|B\|}$$

Stima della Gravità basata sul **numero di errori inseriti**.

05. Configurazione sperimentale

Damiana Buono Matricola N. 0522501592

Dataset:

- Basato su **LOTUS** corpus
- Versione estesa con injection controllato di errori del parlato
- Uso solo dei dati di **test**
- 326 frasi nel test set

Obiettivo:

Analizzare l'impatto delle tipologie e quantità di errori fonetici sulla trascrizione e sul significato delle frasi.

Modello:

- wav2vec2-large-xlsr-53-th fine-tuned
- Denominato Eval Model

06. Analisi dei Risultati

RQ1: Quanto influisce il tipo di errore fonetico sull'accuratezza della trascrizione?

Toni Vocali Consonanti	CER medio 0.17	W Shapiro- Wilk 0.95	p-value 0.67
	0.15	0.92	0.42

Analisi condotte

- Calcolo del Character Error Rate (CER) per tre tipologie di errore: toni, vocali e consonanti.
- **Test di Shapiro-Wilk** → verifica della normalità dei dati (p > $0.05 \rightarrow \text{distribuzione normale}$).
- Applicazione di **test ANOVA** per confrontare le medie dei gruppi.
- Dataset bilanciato: 10 frasi per ogni categoria di errore, stessa complessità sintattica.

Risultati ottenuti:

- Shapiro-Wilk: p > 0.05 → dati normalmente distribuiti.
 ANOVA: p = 0.37 → nessuna differenza significativa.
 Conclusione: il tipo di errore non influisce significativamente sulla capacità di trascrizione.
 Il modello mostra robustezza rispetto alle variazioni
- fonetiche.

06. Analisi dei Risultati

RQ2: Quanto impatta la quantità di errori rispetto alla capacità di trascrizione fedele?

Analisi condotte

- Calcolo del **CER medio** per frasi con da **1 a 10 errori** fonetici.
- Test di Shapiro-Wilk sulla distribuzione del CER → verifica normalità.
- In base al risultato:
- se normale → correlazione Pearson;
- se non normale \rightarrow correlazione Spearman.

Risultati ottenuti

- Shapiro-Wilk: tutti i valori dei gruppi sono normali, solo il sesto gruppo ha p=0.036; p< 0.05 → dati non normali.
 Applicata correlazione di Spearman: ρ = 0.89, p = 0.001

- → correlazione positiva forte.
 CER stabile fino a 7 errori, poi crescita esponenziale.
 Conclusione: il modello mantiene fedeltà fino a un livello medio di errore, ma crolla oltre la soglia critica.

06. Analisi dei Risultati

RQ3: Quanto l' Eval Model altera il significato semantico della frase rispetto alla versione corretta?

Analisi condotte

- Definizione dei **livelli di gravità** basati sul numero di errori: 0 = Nessuno; 1-3 = Lieve; 4-6 = Medio; > 6 Grave
- Calcolo della cosine similarity tra frase errata e corretta tramite MiniLM-L12-v2.
- **Test di Shapiro-Wilk** → verifica normalità (p < 0.05 → non normale).
- Applicazione di **Kruskal-Wallis** per differenze tra gruppi.
- Calcolo di **correlazione Spearman** (ρ) e regressione lineare per stimare l'effetto della gravità.

Risultati ottenuti

- Shapiro-Wilk: p < 0.05 → distribuzione non normale.
 Kruskal-Wallis: p < 0.001 → differenze significative tra i livelli di gravità.
- Spearman ρ = -0.2977 (p < 0.001) → relazione negativa.
 Regressione: β = -0.0047 → conferma la tendenza
- decrescente
- Conclusione: all'aumentare della gravità, la similarità semantica diminuisce.
- Tuttavia, nelle frasi con errori lievi o medi, il modello preserva il significato generale.

07. Conclusioni

Modello **ASR** fine-tuned (wav2vec2-large-xlsr-53-th) combinato tokenizzazione e analisi semantica.

Risultati principali:

- Robusto su toni, vocali e consonanti.
- CER stabile fino a ~7 errori per frase.
- Significato preservato per errori lievi/moderati.

Pipeline proposta per trascrizione fedele del parlato con errori di pronuncia Thai. Dataset: **3.255** esempi, divisi in training (80%), validation (10%) e test (10%).

Validità della pipeline confermata, ma necessaria estensione a dati reali e valutazioni percettive.

07. Lavori Futuri

- Raccolta e integrazione di dati reali da studenti di Thai .
- Confronto tra **metriche** automatiche e **giudizi umani** per valutare la percezione fonetica.
- Analisi più approfondita di **localizzazione** e **tipologia** degli errori.
- Integrazione di informazioni **prosodiche** (intonazione, durata, frequenza).
- Ottimizzazione computazionale (distillation, quantization) per inferenza efficiente.
- Sviluppo di **strumenti didattici** interattivi per **feedback** personalizzato sulla pronuncia.
- Estensione a dialetti, code-switching e altre lingue tonali.

Numero matricola: 0522501592

PIPELINE METODOLOGICA PER L'ANALISI SEMANTICA E LA VALUTAZIONE DEGLI ERRORI DI PRONUNCIA NELLA LINGUA THAI

Grazie per l'attenzione

Relatore: Loredana Caruccio

Correlatore: Dott. Bernardo Breve

Corso di Laurea Magistrale in Informatica

Università Degli Studi

DI Salerno