Shipinsky KS 11012025-105903

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 3640 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 7 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 561 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 3 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 7890 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 4150 МГц до 4200 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -90 дБм 2) -93 дБм 3) -96 дБм 4) -99 дБм 5) -102 дБм 6) -105 дБм 7) -108 дБм 8) -111 дБм 9) -114 дБм

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 4? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{23; -175\} \quad 2) \ \{13; -87\} \quad 3) \ \{28; -175\} \quad 4) \ \{8; -87\} \quad 5) \ \{13; 23\} \quad 6) \ \{18; -21\} \quad 7) \ \{13; -153\}$$

8) {8; 45} 9) {23; -87}

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 304 МГц, частота ПЧ 38 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 342 MΓ_{II}
- 2) 950 MΓ_Ц
- 3) 912 MΓ_{II}
- 4) 1216 MΓ_{II}.

Для выделения только **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 36 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 92 МГц?

Варианты ОТВЕТА:

1) $67.9 \, \text{n}\Phi$ 2) $17.6 \, \text{n}\Phi$ 3) $44.3 \, \text{n}\Phi$ 4) $28 \, \text{n}\Phi$

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.27739 - 0.40993i, s_{31} = -0.44392 - 0.30039i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -21 дБн 2) -23 дБн 3) -25 дБн 4) -27 дБн 5) -29 дБн 6) -31 дБн 7) -33 дБн 8) -35 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 2.2 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 9 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 8.3 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

 $1)\ 4.3\ \mathsf{дE}\ 2)\ 4.9\ \mathsf{дE}\ 3)\ 5.5\ \mathsf{дE}\ 4)\ 6.1\ \mathsf{дE}\ 5)\ 6.7\ \mathsf{дE}\ 6)\ 7.3\ \mathsf{дE}\ 7)\ 7.9\ \mathsf{дE}\ 8)\ 8.5\ \mathsf{дE}\ 9)\ 9.1\ \mathsf{дE}$