First Hit

End of Result Set

L4: Entry 2 of 2 File: DWPI Aug 25, 1998

DERWENT-ACC-NO: 1998-517585

DERWENT-WEEK: 199844

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Oscillating buzzer for portable telephone, hearing aids - has magnet placed

vertically, opposing resonant panel and spring body with one of its pole is

positioned at centre of voice coil

PATENT-ASSIGNEE: NAMIKI SEIMITSU HOSEKI KK (NAMJ)

PRIORITY-DATA: 1997JP-0047126 (February 15, 1997)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE PAGES MAIN-IPC

JP 10229596 A August 25, 1998

004 H04R009/00

APPLICATION-DATA:

PUB-NO APPL-DATE APPL-NO DESCRIPTOR

JP 10229596A February 15, 1997 1997JP-0047126

INT-CL (IPC): G10 K 9/13; H04 R 9/00

ABSTRACTED-PUB-NO: JP 10229596A

BASIC-ABSTRACT:

The buzzer has a cylindrical voice coil (15) fixed at the centre of a high frequency resonant panel (14). A yoke (19) and a magnet (18) forming a single body is fixed at centre of a low frequency spring body (20).

The vertical positions of the magnet opposes the resonant panel and the spring body. The magnet is so arranged such that end face of one of its pole faces the centre section of the voice coil. An elastic damper (16) supports the resonant panel.

USE - For PHS.

ADVANTAGE - Prevents interference of mutual oscillation. Increases bodily sensation oscillation.

ABSTRACTED-PUB-NO: JP 10229596A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.1/3

DERWENT-CLASS: P86 V06 W01

EPI-CODES: V06-C; V06-E01A; W01-C01D1E;

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-229596

(43)公開日 平成10年(1998)8月25日

(51) Int.Cl. ⁶		識別記号	ΡI		
H04R	9/00		H04R	9/00	В
G10K	9/13	101	G10K	9/13	101H

審査請求 未請求 請求項の数1 FD (全 4 頁)

(21)出顯番号	特顧平9-47126	(71)出題人 000240477 並木精密宝石株式会社
(22)出顧日	平成9年(1997)2月15日	東京都足立区新田3丁目8番22号
		(72)発明者 高橋 慧三郎
		東京都足立区新田 3 丁目 8 番22号 並材 密宝石株式会社内

(54) 【発明の名称】 振動ブザー

(57)【要約】

【目的】 高域発音体と低域振動体とを一体型のケース 内に具備した振動ブザーの構造に関し、特に共振による 相互間振動の干渉を防止する。

【構成】 高周波用振動板中心部に円筒型ボイスコイルを固着し、低周波用スプリング体中心部にヨーク部と一体のマグネットを固着し、前記ボイスコイルに対してマグネットを内挿するような位置に振動板及びスプリング体を上下対向させ、前記マグネットの一極に配置したボールピースの端面が円筒型ボイスコイル内の中央部に位置するように配置し、本体ケースと高周波用振動板の取り付け台座部分に弾性体のダンパーを配置させる。

【特許請求の範囲】

【請求項1】 高周波用振動板中心部に円筒型ボイスコ イルを問着し、低周波用スプリング体中心部にヨーク部 と一体のマグネットを固着し、前記ボイスコイルに対し てマグネットを内挿するような位置に振動板及びスプリ ング体を上下対向させ、前記マグネットの一極に配置し たポールピースの端面が円筒型ボイスコイル内の中央部 に位置するように配置し、本体ケースと高周波用振動板 の取り付け台座部分に弾性体のダンパーを配置させるこ とを特徴とした振動ブザー。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高域発音体と低域振動 体とを一体型のケース内に具備した振動ブザーの構造に 関するものであり、特に共振による相互間振動の干渉を 防止する構造を含むものである。

[0002]

【従来の技術】従来の一般的な動電型発音体の構造を図 3に示す。図3のようにポールピース13を付属したマグ ネット1は本体ケース2の底板7上に固定され、ボイス 20 コイル3は振動板4中心に固着され、マグネット1によ り発生した円周上の磁気間隙部5にボイスコイル3を位 置させることにより、20~20KHzの再生を可能とする 広帯域再生特性をもつ発音体として普及している。

[0003]

【発明が解決しようとする課題】しかしながら低域の再 生能力としては、必要な音圧が得られない構造であるた め、振動体として使用することは不可能であり、他にも 電磁型発音体においては必要とする周波数の共振点でビ ークをもつ単峰再生特性しか得られないという理由で、 低域振動体としては実現ができなかった。

【0004】本発明者らは、先に考案した電磁誘導型変 換器 (実開平5-85192号) により、高域発音体と低域振 動体との二種発振体を可能とする電磁誘導タイプの一体 型変換器を提供することができたが、後に構造上の問題 点が新たに発生し本発明に至った。

【0005】つまり図2に示す従来型構造では、低周波 成分の信号がボイスコイル9に電荷された時、磁気回路 内に働く力は、重量の重い磁気回路側(マグネット10、 上下に動かす力が発生する。

【0006】この時、低周波用振動板を100Hz前後の周 波数で共振させた時、その共振振動が本体ケース12及び 底板7を通して外部伝達され、信号の種類によっては、 低周波用振動板が共振する時に高周波成分によって高い 周波数の振動も発生させてしまい、これが本体ケース自 身を通して高周波用振動板に伝わり雑音を発生してしま う問題が多々あった。さらに、このことに加え振動量が 小さいという問題もあった。

[0007]

【課題を解決するための手段】本発明は、低コンプライ アンスをもつ高周波用振動板中心部にボイスコイルを固 着し、それに対して高コンプライアンスをもつ低周波用 スプリング体中心部にマグネットを固着し、ボイスコイ ル内にマグネットを内挿するような位置に振動板及びス プリング体を上下対向させ、マグネット一種側のポール ピース端面がボイスコイル中央部に位置するように配置 して本体ケース内に収納し、ボイスコイルに低周波信号 もしくは高周波信号を印加することにより、スプリング 10 体をマグネット極方向に振動させることで、2K~4K Hzの高域特性をもつブザー音と、50~100Hzの低域特 性をもつ振動運動とを使い分けることができる振動ブザ ーにおいて、振動量を増すためマグネットをヨーク部分 と一体化してスプリング体中心に配置し、さらに低周波 用振動板から発生する振動を、高周波用振動板の取り付 け台座部分に配置した弾性体ダンパーにより吸収させ、 高周波用振動板への干渉を防止する二つの構造を付加す るものである。

【0008】つまり一つは、振動運動は低周波用振動板 で発生させた共振動を本体ケース及び底板を通して外部 に伝達させるが、この時、高周波用振動板にもその振動 が直接伝わってしまうのを防止するため、本体ケースと 高周波用振動板との間に弾性体ゴム等のダンパー材を間 挿することにより、低周波用振動板で発生した高周波域 の高い周波数の振動を弾性体ゴム等のダンパー材にて吸 収させ、不必要な共鳴音の発生を減衰させることができ る。

【0009】さらにもう一つは、振動量増大の改善構造 として、マグネットとヨーク部分を一体化して重量を大 30 きくし、さらにスプリング体中心部分に対して、凸部を 設けて最少面積部分で固着することにより、スプリング 体の振幅が大きくなり、振動量を増大させる構造であ

【実施例】図1(a),(b)は本発明の一実施例である。図 において14は高周波用の振動板であり、ボイスコイル15 を下部中心に固着し、振動板14外周部を弾性体ゴムダン パー16を介して本体ケース17に固着している。

【0010】またマグネット18はポールピース13と共に カップ型ヨーク19中心に、またヨーク19自身は低周波用 ポールピース13、ヨーク8)に働き、低周波用振動板を 40 振動板のスプリング体20の中心部に凸部を設けて固着保 持され、円筒状のボイスコイル15内にマグネット18を内 挿するように、高周波用振動板14及び低周波用スプリン グ体20を上下対向させて本体ケース17内に配置してい

> 【0011】この時、マグネット18の一極 (N極) の端 面、つまりポールピース13がポイスコイル15中央部に位 置するようにすると、最大効率が得られる。また、高周 波用振動板の材質はSUS合金の薄板を用いたが、ポリエ ステル等のフィルムのものでもよい。また、上記弾性体 50 ダンパーの材質も、防振ゴム以外にもポリウレタン、硬

質スポンジ等が適用できる。また、スプリング体の材質 はリン錯銅、ベリリウム銅等が適用できる。

【0012】上記のように組み立てられた振動ブザーの ボイスコイル15に、2K~4KHzを印加すると音声信 号のブザー音が、また次に50~150Hzを印加すると体感 振動のバイブレーションが得られ、100Hz付近が最も振 動量が大きかった。

【0013】また、最大振動の低周波帯域100Hz前後の 信号を印加した時に、高周波用振動板14個の音の音圧を 測定した所、800~5 K Hzの音域において、従来型に比 10 べ約5dB~10dBの低下があり、弾性体ゴムダンパー16 の効果が見られた。

【0014】また、高周波成分の信号として800Hz~5 KHzの信号を入れ、高周波用振動板14の音の音圧を測 定した所、弾性体ゴムダンパー材の悪影響は全くなかっ た。さらに高周波用振動板14と低周波用スプリング体20 のコンプライアンスの差を適宜設定することにより、ブ ザー音と振動数を変化させることができた。

[0015]

【発明の効果】本発明の弾性体ダンパー付きの構造によ 20 10 マグネット り、低周波用スプリング体振動板側で発生した高周波域 の高い周波数の振動は吸収され、高周波用振動板側での 不必要な共鳴音の発生を減衰させることができ、また本 発明のヨーク一体型マグネットの構造により、体感振動 量は従来型に比較して増大した。

【0016】これにより発音体としてのブザー音と体感 振動バイブレータとしての振動とを変換器一体ケース内 で個々に独立して発生することができ、より完成度の高 い振動とブザー音一体型の変換器を実現することがで き、ポケットベルを初め、PHS、携帯電話、難聴者用 30 20 低周波用スプリング体 信号受信器などの小型化の機器内に、少スペースで組み

込むことができ、これらを携帯する使用者に対するアラ ームを、ブザー音と振動に分けて、バイブレーションア ラームとしては振動のみを体の一部に報知することがで きた。

【図面の簡単な説明】

【図1】本発明の振動ブザーの断面図(a)及び組立部品 の斜視図(b)。

【図2】従来型の振動ブザーの断面図。

【図3】従来の動電型発音体の断面図。

【符号の説明】

- 1 マグネット
- 2 ケース
- 3 ボイスコイル
- 4 振動板
- 5 磁気間隙
- 6 振動板
- 7 底板
- 8 ヨーク
- 9 ボイスコイル
- - 11 スプリング体
 - 12 ケース
 - 13 ポールピース
 - 14 高周波用振動板
 - 15 ボイスコイル
 - 16 弾性体ダンバー
 - 17 ケース
 - 18 マグネット
 - 19 ヨーク

【図1】

