Let f(0) = f(2) = c. Then we have

$$g(0) = f(0+1) - f(0) = f(1) - c,$$

$$g(1) = f(1+1) - f(1) = c - f(1).$$

If f(1) = c, then $g(0) = g(1) = 0 \implies f(1) = f(0)$ and f(2) = f(1), as desired.

If f(1) > c, then $g(1) < 0 < g(0) \implies \exists x_0 \in [0,1] \ f(x_0+1) - f(x_0) = g(x_0) = 0$ by intermediate value theorem. Thus we have $|(x_0+1) - x_0| = 1$ and $f(x_0+1) = f(x_0)$ as desired.

If f(1) < c, then $g(0) < 0 < g(1) \implies \exists x_0 \in [0,1] \ f(x_0+1) - f(x_0) = g(x_0) = 0$ by intermediate value theorem. Thus we have $|(x_0+1) - x_0| = 1$ and $f(x_0+1) = f(x_0)$ as desired, completing the proof.

$\mathbf{Q2}$

(Contrapositive) Suppose f is unbounded on (a,b), i.e., $\forall M < 0 \; \exists x \in (a,b) \; |f(x)| > M$. Thus we can construct a sequence $(x_n) \in (a,b)$ such that $\forall n \in \mathbb{N} \; |f(x_n)| > n$. Since (x_n) is bounded in (a,b), it has a convergent subsequence $(x_{n_k}) \in (a,b)$, which is also Cauchy sequence. Clearly $\forall k \in \mathbb{N} \; |f(x_{n_k})| > n_k$ which implies $f(x_{n_k})$ is not convergent and hence not Cauchy. Thus f is not uniformly continuous on (a,b).

 $\mathbf{Q3}$

(a) Since f and g are continuous on \mathbb{R} , f-g is also continuous on R. Let $r \in \mathbb{R} \setminus \mathbb{Q}$. Suppose $f(r) \neq g(r)$, i.e. $(f-g)(r) = c_r \neq 0$. Let $\epsilon = |c_r|$, then for each $\delta > 0$ $\exists q \in \mathbb{Q}$ such that

$$r < q < r + \delta$$
 and $|(f - g)(q) - (f - g)(r)| = |0 - |c_r||$
= $|c_r|$
 $\geq \epsilon$

implying that f-g is not continuous at r which is a contradiction. Thus f(r)=g(r) for each $r\in\mathbb{R}\setminus\mathbb{Q}$. Since f(q)=g(q) for every $q\in\mathbb{Q}$, we have f(x)=f(x) for every $x\in\mathbb{R}$.

(b)

 $\mathbf{Q4}$

 $\mathbf{Q5}$

 $\mathbf{Q8}$

 $\mathbf{Q}9$