PS01709

LoRaWAN Class A/B/C AT Command Specification

V1.2

Document information

Info	Content			
Keywords	LoRaWAN, AT Command, UART, USB, Class A/B/C			
Abstract	This document defines AT command format used by RisingHF LoRaWAN module			

WARNING:

This document is only for AT modem of which version is higher than 3.1.0 (LoRaWAN A/B/C), for other version devices please refer to PS01509

RisingHF

Content

Content	2
Tables	7
1 Introduction	1
1.1 Feature	1
1.2 Related Products	2
2 Preface	3
2.1 Conventions	3
2.2 Symbols	3
2.3 Format	3
2.3.1 Query	3
2.3.2 Configure / Control	3
2.3.3 Return	3
2.4 Error	4
2.5 EEPROM	4
3 Band Plans	5
3.1 Data Rate Scheme	5
3.2 Payload Length Limitation	6
3.3 TX Output Power Encoding	6
3.4 Channels	7
3.4.1 Default Uplink Channels	7
3.4.2 Downlink RXWIN1 Channels	7
3.4.3 Downlink RXWIN2 Channel	8
3.4.4 Join Request Channels	8
3.5 Join Duty Cycle Limitation	9
3.6 RX1DROffset Limitation	9
3.6.1 EU868/EU434/CN470 /KR920/CN470PREQUEL/STE920	9
3.6.2 US915/ US915HYBRID/AU915	9
3.6.3 AS923	9
3.6.4 IN865	9
3.7 CFLIST	10
3.8 LinkAdrReq	10
3.9 Band Specific Limitation	10

	3.9.1 US915/AU915/CN470 Channel Limitation	10
	3.9.2 EU868 Duty Cycle Limitation	10
	3.9.3 CN799 Duty Cycle Limitation	11
	3.9.1 EU433 Duty Cycle Limitation	11
	3.9.2 AS923 Dwell Time Limitation	11
	3.9.3 KR920 Channels and TX Power Limitation	11
	3.10 Band Frequency Range	11
	3.10.1 AS923 Region Limitation	12
	3.11 Class B	12
	3.11.1 Default Parameters	12
	3.11.2 Beacon Frame Content	13
	3.11.3 Periodicity	13
4 (Commands	14
	4.1 AT	15
	4.2 VER	15
	4.3 ID	15
	4.4 RESET	16
	4.5 MSG	16
	4.5.1 LinkCheckReq	17
	4.5.2 Error Status	17
	4.6 CMSG	18
	4.7 MSGHEX	18
	4.7.1 Send Unconfirmed Message with Zero Length Payload	18
	4.8 CMSGHEX	19
	4.8.1 Send Confirmed Message with Zero Length Payload	19
	4.9 PMSG	19
	4.10 PMSGHEX	19
	4.11 PORT	19
	4.12 ADR	20
	4.13 DR	20
	4.13.1 Check and Set Data Rate	20
	4.13.2 Data Rate Scheme	20
	4.14 CH	21

4.14.1 Query Channel Configuration	21
4.14.2 Add or Delete Channel	21
4.14.3 Enable or Disable Channel	22
4.15 POWER	22
4.15.1 Set and Check Power	22
4.15.2 Force Set Power	22
4.15.3 Power Table	23
4.16 REPT	23
4.17 RETRY	23
4.18 RXWIN2	23
4.19 RXWIN1	24
4.20 KEY	24
4.21 FDEFAULT	25
4.22 DFU	25
4.23 MODE	26
4.24 JOIN	26
4.24.1 Auto Join	27
4.25 BEACON	27
4.25.1 AT+BEACON	27
4.25.2 AT+BEACON=DMMUL	28
4.25.3 AT+BEACON=INFO	28
4.25.4 AT+BEACON=GWGPS	28
4.25.5 Switch to Class B mode	28
4.26 CLASS	29
4.26.1 Class C Downlink	30
4.26.2 Class B Downlink	30
4.26.3 Class B Status	30
4.27 DELAY	30
4.28 LW	31
4.28.1 CDR	31
4.28.2 ULDL	31
4.28.3 DC	31
4.28.4 NET	32

4.28.5 MC	33
4.28.6 THLD	33
4.28.7 BAT	33
4.28.8 TPS	34
4.28.9 SCR	34
4.28.10 JDC	34
4.28.11 CT	35
4.28.12 LEN	35
4.28.13 VER	35
4.28.14 DTR	36
4.28.15 LCR	36
4.28.16 LDRO	36
4.28.17 DCMRX	37
4.28.18 DUMRX	37
4.28.19 AFPACK	38
4.28.20 CHRB	38
4.29 WDT	38
4.30 LOWPOWER	38
4.30.1 Low Power Auto Mode	39
4.31 VDD	40
4.32 TEMP	40
4.33 RTC	41
4.33.1 Time Synchronization	41
4.33.2 Leap second	41
4.33.3 Time Zone	42
4.34 EEPROM	42
4.35 UART	42
4.35.1 TIMEOUT	42
4.35.2 BR	42
4.36 TEST	43
4.36.1 Help Information	43
4.36.2 Enter TEST mode	43
4.36.3 Query RF configuration	43

RisingHF

LoRaWAN Class A/B/C AT Command Specification

	4.36.4 Set RF Configuration	. 44
	4.36.5 TX LoRa Packet	45
	4.36.6 RX LoRa Packet	45
	4.36.7 TX Continuous Wave	46
	4.36.8 TX Continuous LoRa	. 46
	4.36.9 RSSI	46
	4.36.10 LWDL	46
	4.36.1 Beacon Sniffer	46
4	.37 LOG	. 47
5 C	ass A/B/C and A/C Different Command	. 48
Rev	ision	. 49

Tables

Table 1-1 Related products list	2
Table 2-1 Error code list	
Table 2-2 Memorized configuration	4
Table 3-1 Data Rate Scheme	5
Table 3-2 RF Modulation Bit Rate	5
Table 3-3 Data Rate and Payload Length Map	6
Table 3-4 TX Power Table	6
Table 3-5 Default MaxEIRP Value and MaxEIRP Index Map	7
Table 3-6 MaxEIRP Table	7
Table 3-7 Default Uplink Channels	7
Table 3-8 Default Downlink RXWIN1 Channels	8
Table 3-9 Default RXWIN2 Configuration	8
Table 3-10 Join Request Channels	8
Table 3-11 Join Duty Cycle	9
Table 3-12 RX1DROffset Range	9
Table 3-13 AS923 RX1DROffset Effective Table	9
Table 3-14 IN865 RX1DROffset Effective Table	9
Table 3-15 CFList Definition	
Table 3-16 LinkAdrReq ChMaskCntl Definition	. 10
Table 3-17 ETSI EU868 Regulation	. 11
Table 3-18 CN779 Duty Cycle Limitation	
Table 3-19 EU433 Duty Cycle Limitation	
Table 3-20 AS923 Dwell Time Limitation	. 11
Table 3-21 KR920 Channel and TX power limitation	. 11
Table 3-22 Band Frequency Range	. 12
Table 3-23 AS923 Region Limitation	
Table 3-24 Class B Default Parameters	. 12
Table 3-25 Beacon Format	
Table 3-26 Legacy EU868 and US915 Beacon Format	
Table 3-27 Class B Periodicity Table	. 13
Table 4-1 Command List	. 14
Table 4-2 Factory default configuration	
Table 4-3 LoRaWAN Delay Items	
Table 4-4 Duty Cycle Control	. 32
Table 4-5 TEST mode sub-command list	. 43
Table 4-6 MAX output power of HF and LF band	. 44

1 Introduction

RisingHF™ LoRaWAN™ modem is <u>LoRaWAN</u> compatible device, which supports flexible LoRaWAN communication. This document is intended to describe a command interface implementation of LoRaWAN Class A/B/C protocol. LoRaWAN protocol is available from LoRa Alliance, it is recommended to review LoRaWAN specification before using LoRaWAN modem.

1.1 Feature

- ➤ LoRaWAN R1.0.2B band plan:
 - EU868 US915 US915HYBRID CN779 EU433 AU915 AU915OLD CN470 AS923 KR920 IN865
- User defined band plan:
 - CN470PREQUEL STE920
- LoRaWAN Class A/B/C
- All LoRaWAN 1.0.2B Class A/B/C MAC command:
 - LinkCheckReg / LinkCheckAns
 - LinkADRReg / LinkADRAns
 - DutyCycleReq / DutyCycleAns
 - RXParamSetupReq / RXParamSetupAns
 - DevStatusReq / DevStatusAns
 - NewChannelReg / NewChannelAns
 - RXTimingSetupReq / RXTimingSetupAns
 - TxParamSetupReg / TxParamSetupAns
 - DIChannelReq / DIChannelAns
 - DeviceTimeReq / DeviceTimeAns
 - PingSlotInfoReq / PingSlotInfoAns
 - PingSlotChannelReg / PingSlotChannelAns
 - BeaconTimingReq / BeaconTimingAns
 - BeaconFreqReq / BeaconFreqAns
- LoRaWAN dynamic select Port Zero / FOpts to send uplink MAC command
- Flexible RXWIN2 configuration interface
- Configurable RXWIN1 channel frequency
- Possibility to enable full-duplex LoRaWAN system
- Maximum configurable 96 channels
- Maximum 255 bytes RF frame
- User configuration nonvolatile
- Numerous test commands (LoRa P2P, Class C downlink, Continuous Wave etc.)
- Flexible hexadecimal string parser
- Ultra-low power (1.4uA@3.3V 1.9uA@3.3 watchdog on)¹, intelligent auto low power mode
- Case insensitive commands
- > 256 bytes EEPROM to save user data
- RTC time and supply voltage measurement

_

¹ UART interface modem only

- Power supply measurement
- > AT+LOG to speed up development debugging
- > Intelligent LoRaWAN beacon time auto correction
- Multicast for Class B and Class C mode
- > Configurable leap seconds through AT command

1.2 Related Products

Part Number	Bootloader	Interface		
RHF76-052DM	UART	UART		
RHF76-052CL	UART	UART		
RHF3M076B	USB	USB		
RHF0M003-LF20	UART	UART		
RHF0M003-HF20	UART	UART		
RHF0M010-LF20	UART	UART		
RHF0M010-HF20	UART	UART		
RHF0M062-LF22	UART	UART		
RHF0M062-HF22	UART	UART		

Table 1-1 Related products list

2 Preface

2.1 Conventions

- Command is case insensitive;
- All commands have response;
- Command length never exceeds total 528 characters;
- One valid AT Command must end with '\n', "\r\n" is also valid;
- If command timeout feature is enabled, end '\n' will not be mandatory;
- <LF> means the newline character. <CR> means carriage return;
- Default UART² configuration "9600, 8, n,1" (8 bits data, no parity, 1 stop bit);

2.2 Symbols

- = = --> Set value for command
- ? --> Query
- : --> Start a list input parameter
- + --> Prefix of command
- , --> Separator of parameters
- Space --> Empty character, could be used to format command

NOTE: You could use quote sign < " > to force input parameter with space, such as <AT+MSGHEX="AA BB CC DD EE">, then "AA BB CC DD EE">, then then the the then the

2.3 Format

All commands in this document are end with <CR><LF>. In order to facilitate the description, all <CR><LF> is intentionally omitted in this document.

2.3.1 Query

Use query command to check LoRaWAN modem configuration, such as channel configuration, ADR status, TX power, etc.

AT+COMMAND

AT+COMMAND?

AT+COMMAND=?

NOTE: Query format is available with every LoRaWAN supported command

2.3.2 Configure / Control

Uses configure/control command to set new configuration or control transaction.

AT+COMMAND=DATA

2.3.3 Return

Return data is in format like "+CMD: RETURN DATA"

+COMMAND: "RETURN DATA"

RHF3M076B supports USB CDC interface of which UART configuration is unconcerned

² RHF76-052AM supports UART interface

2.4 Error

Code	Comment						
-1	Parameters is invalid						
-10	Command unknown						
-11	Command is in wrong format						
-12	Command is unavailable in current mode (Check with "AT+MODE")						
-20	Too many parameters. LoRaWAN modem support max 15 parameters						
-21	Length of command is too long (exceed 528 bytes)						
-22	Receive end symbol timeout, command must end with <lf></lf>						
-23	Invalid character received						
-24	Either -21, -22 or -23						

Table 2-1 Error code list

This error code list applies to all LoRaWAN supported command. User could refer to this list to know what is happening to LoRaWAN modem, when gets errors.

2.5 EEPROM

Items below will be synchronized to EEPROM of LoRaWAN modem once changed successfully, this makes LoRaWAN modem memorized, user doesn't need to reconfigure parameter after repower, LoRaWAN modem helps to keep it. If user wants to go back factory default configuration, refer to 4.21 FDEFAULT.

ltem				
Channel frequency, datarate range				
(up to 96 channels)				
Datarate				
TX power				
ADR				
RX Window2 frequency/datarate				
RX Window1 frequency				
Keys(NwkSkey, AppSkey, AppKey)				
ID(DevAddr, DevEui, AppEui)				
Port				
Unconfirmed message repetition				
Confirmed message retry				
Mode ³				
LWABP/LWOTAA				
Delay(RX1, RX2, JRX1, JRX2)				
Multicast parameters				
(MC_DevAddr, MC_ NwkSkey, MC_ AppSkey)				
Table 2-2 Memorized configuration				

V1.2 2018-12-28 www.risinghf.com

³ Test mode is not stored; a reset during test mode makes modem switch back to previous mode.

3 Band Plans

RisingHF LoRaWAN Class A/B/C AT modem devices support:

LoRaWAN 1.0.2B Band Plans:

EU868 US915 US915HYBRID CN779 EU433 AU915 AU915OLD CN470 AS923 KR920 IN865

Customized band plans:

CN470PREQUEL STE920

Refer to LoRaWANRegionalParametersv1.0.2_final_1944_1.pdf for details.

3.1 Data Rate Scheme

DR	EU868	US915	US915 HYBRID	CN779	EU433	AU915	AU915OLD	CN470	AS923	KR920	IN865	CN470 PREQUEL	STE920
0	SF12/125	SF10/125	SF10/125	SF12/125	SF12/125	SF12/125	SF10/125	SF12/125	SF12/125	SF12/125	SF12/125	SF12/125	SF12/125
1	SF11/125	SF9/125	SF9/125	SF11/125	SF11/125	SF11/125	SF9/125	SF11/125	SF11/125	SF11/125	SF11/125	SF11/125	SF11/125
2	SF10/125	SF8/125	SF8/125	SF10/125	SF10/25	SF10/125	SF8/125	SF10/125	SF10/125	SF10/125	SF10/125	SF10/125	SF10/125
3	SF9/125	SF7/125	SF7/125	SF9/125	SF9/125	SF9/125	SF7/125	SF9/125	SF9/125	SF9/125	SF9/125	SF9/125	SF9/125
4	SF8/125	SF8/500	SF8/500	SF8/125	SF8/125	SF8/125	SF8/500	SF8/125	SF8/125	SF8/125	SF8/125	SF8/125	SF8/125
5	SF7/125	-	-	SF7/125	SF7/125	SF7/125	-	SF7/125	SF7/125	SF7/125	SF7/125	SF7/125	SF7/125
6	SF7/250	-	-	SF7/250	SF7/250	SF8/500	-	-	SF7/250	-	SF7/250	-	SF7/250
7	FSK	-	-	FSK	FSK	-	-	-	FSK	-	FSK	-	FSK
8	-	SF12/500	SF12/500	-	-	SF12/500	SF12/500	-	-	-		-	-
9	-	SF11/500	SF11/500	-	-	SF11/500	SF11/500	-	-	-		-	-
10	-	SF10/500	SF10/500	-	-	SF10/500	SF10/500	-	-	-		-	-
11	-	SF9/500	SF9/500	-	-	SF9/500	SF9/500	-	-	-		-	-
12	-	SF8/500	SF8/500	-	-	SF8/500	SF8/500	-	-	-		-	-
13	-	SF7/500	SF7/500	-	-	SF7/500	SF7/500	-	-	-		-	-
14	-	-	-	-	-		-	-	-	-		-	-
15	-	-	-	-	-		-	-	-	-		-	-

Table 3-1 Data Rate Scheme

RF Modulation	Indicative physical bit rate [bit/s]
LoRa SF12/125KHz	250
LoRa SF11/125KHz	440
LoRa SF10/125KHz	980
LoRa SF9/125KHz	1760
LoRa SF8/125KHz	3125
LoRa SF7/125KHz	5470
LoRa SF7/250KHz	11000
FSK 50kbps	50000
LoRa SF12/500KHz	980
LoRa SF11/500KHz	1760
LoRa SF10/500KHz	3900
LoRa SF9/500KHz	7000
LoRa SF8/500KHz	12500
LoRa SF7/500KHz	21900

Table 3-2 RF Modulation Bit Rate

3.2 Payload Length Limitation

Repeater mode is not supported.

DR	EU868	US915	US915 HYBRID	CN779	EU433	AU915	AU915OLD	CN470	AS923	KR920	IN865	CN470 PREQUEL	STE920
0	51	11	11	51	51	51	11	51	51	65	51	51	51
1	51	53	53	51	51	51	53	51	51	151	51	51	51
2	51	126	126	51	51	51	126	51	51	242	51	51	51
3	115	242	242	115	115	115	242	115	115	242	115	115	115
4	242	242	242	242	242	242	242	242	242	242	242	242	242
5	242	-	-	242	242	242	=	242	242	242	242	242	242
6	242	-	-	242	242	242	-	-	242	-	242	-	242
7	242	-	-	242	242		-	-	242	-	242	-	242
8	-	53	53	-	-	53	53	-	-	-		-	-
9	-	129	129	-	=	129	129	-	-	-		-	-
10	-	242	242	-	-	242	242	-	-	-		-	-
11	-	242	242	-	-	242	242	-	-	-		-	-
12	-	242	242	-	=	242	242	-	-	-		-	-
13	-	242	242	-	-	242	242	-	-	=		-	-
14	-	-	-	-	-		=	-	-	=		-	-
15	-	-	-	-	-		-	-	-	-		-	-

Table 3-3 Data Rate and Payload Length Map

3.3 TX Output Power Encoding⁴

TXPower	EU868	US915	US915 HYBRID	CN779	EU433	AU915	AU915OLD	CN470	AS923	KR920	IN865	CN470 PREQUEL	STE920
MaxEIRP	16	30	30	12.15 ⁵	12.15	30	30	19.15 ⁶	16	14	30	19.15	30
0~15						Ma	xEIRP – 2*TXP	ower					
0	16	30	30	12	12	30	30	20	16	14	30	20	20
1	14	28	28	10	10	28	28	18	14	12	28	18	18
2	12	26	26	8	8	26	26	16	12	10	26	16	16
3	10	24	24	6	6	24	24	14	10	8	24	14	14
4	8	22	22	4	4	22	22	12	8	6	22	12	12
5	6	20	20	2	2	20	20	10	6	4	20	10	10
6	4	18	18			18	18	8	4	2	18	8	8
7	2	16	16			16	16	6	2	0	16	6	6
8		14	14			14	14				14		
9		12	12			12	12				12		
10		10	10			10	10				10		
11-15													
TXPower Max	7	10	10	5	5	10	10	7	7	7	10	7	10
Default	1	8	8	0	0	8	8	0	0	1	8	0	4

Table 3-4 TX Power Table

⁴ LoRaWAN V1.0.3 US915 / AU915 band supports TxPower maximum 15

 $^{^{\}rm 5}$ 12.15dBm is set to 12dBm, MaxEIRP Index 2

⁶ 19.15dBm is converted to 20dBm, MaxEIRP Index 7

	EU868	US915	US915 HYBRID	CN779	EU433	AU915	AU915OLD	CN470	AS923	KR920	IN865	CN470 PREQUEL	STE920
MaxEIRP Index	5	13	13	2	2	13	13	7	5	4	13	7	13
MaxEIRP	16	30	30	12.15 ⁷	12.15	30	30	19.15 ⁸	16	14	30	19.15	30

Table 3-5 Default MaxEIRP Value and MaxEIRP Index Map

MaxEIRP Index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MaxEIRP	8	10	12	13	14	16	18	20	21	24	26	27	29	30	33	36

Table 3-6 MaxEIRP Table

TXPower is defined in LoRaWAN specification Mac command LinkADRReq chapter.

3.4 Channels

3.4.1 Default Uplink Channels

Band \ DR	0	1	2	3~95	Default Data Rate	Channel Numbers	Channel Numbers Max
EU868	868.1 DR0~DR5	868.3 DR0~DR5	868.5 DR0~DR5	-	0	3	16
US915	902.3 DR0~DR3	902.5 DR0~DR3	902.7 DR0~DR3	0~63 902.3 + ch * 200000 DR0~DR3 64~71 903.0 + ch * 600000 DR4	0	72	72
US915HYBRID	902.3 DR0~DR3	902.5 DR0~DR3	902.7 DR0~DR3	0~7 902.3 + ch * 200000 DR0~DR3 64 903.0 + ch * 600000 DR4	0	9	72
CN779	779.5 DR0~DR5	779.7 DR0~DR5	779.9 DR0~DR5	-	0	3	16
EU433	433.175 DR0~DR5	433.375 DR0~DR5	433.575 DR0~DR5	-	0	3	16
AU915	915.2 DR0~DR5	915.4 DR0~DR5	915.6 DR0~DR5	0~63 915.2 + ch * 200000 DR0~DR5 64~71 915.9 + ch * 600000 DR6	0	72	72
AU915OLD	915.2 DR0~DR3	915.4 DR0~DR3	915.6 DR0~DR3	0~63 915.2 + ch * 200000 DR0~DR3 64~71 915.9 + ch * 600000 DR4	0	72	72
CN470	470.3 DR0~DR5	470.5 DR0~DR5	470.7 DR0~DR5	200KHz channel space up to 95	0	96	96
AS923	923.2 DR0~DR5	923.4 DR0~DR5	-	-	2	2	16
KR920	922.1 DR0~DR5	922.3 DR0~DR5	922.5 DR0~DR5	-	0	3	16
IN865	865.0625 DR0~DR5	865.4025 DR0~DR5	865.985 DR0~DR5	-	0	3	16
CN470PREQUEL	471.5 DR0~DR5	471.7 DR0~DR5	471.9 DR0~DR5	200KHz channel space up to 7	0	8	16
STE920	922.0 DR0~DR5	922.2 DR0~DR5	922.4 DR0~DR5	200KHz channel space up to 7	0	8	16

Table 3-7 Default Uplink Channels

3.4.2 Downlink RXWIN1 Channels

Downlink Data Rate is defined by RX1DROffset.

Band \ CH	0~95
EU868	Same as uplink channels
US915	923.3 + (ch % 8) * 0.6
US915HYBRID	923.3 + (ch % 8) * 0.6
CN779	Same as uplink channels
EU433	Same as uplink channels
AU915	923.3 + (ch % 8) * 0.6
AU915OLD	923.3 + (ch % 8) * 0.6

⁷ 12.15dBm is set to 12dBm, MaxEIRP Index 2

⁸ 19.15dBm is converted to 20dBm, MaxEIRP Index 7

Band \ CH	0~95					
CN470	500.3 + (ch % 48) * 0.2					
AS923	Same as uplink channels					
KR920	Same as uplink channels					
IN865	Same as uplink channels					
CN470PREQUEL	Same as uplink channels					
STE920	Same as uplink channels					

Table 3-8 Default Downlink RXWIN1 Channels

3.4.3 Downlink RXWIN2 Channel

Band\DR	Frequency/MHz	Data Rate
EU868	869.525	DR0
US915	923.3	DR8
US915HYBRID	923.3	DR8
CN779	786	DR0
EU433	434.665	DR0
AU915	923.3	DR8
AU915OLD	923.3	DR8
CN470	505.3	DR0
AS923	923.2	DR2
KR920	921.9	DR0
IN865	866.55	DR2
CN470PREQUEL	471.3	DR3
STE920	923.2	DR0

Table 3-9 Default RXWIN2 Configuration

3.4.4 Join Request Channels

Band	Channels
EU868	0-2
US915	All uplink channels
US915HYBRID	All uplink channels
CN779	0-2
EU433	0-2
AU915	All uplink channels
AU915OLD	All uplink channels
CN470	All uplink channels
AS923	0-1 (Fixed DR2)
KR920	0-2
IN865	0-2
CN470PREQUEL	0-7
STE920	0-7

Table 3-10 Join Request Channels

Note: Although the modern supports user to modify the default uplink channels, it does not encourage user to do so. If user need modify the default channels, please make sure gateway and server supports the selected channel.

3.5 Join Duty Cycle Limitation

The latest V2.1.x (or higher) firmware enables the global JoinReq duty cycle which applies below table9.

Time	Range	Transmit time	DutyCycle
Aggregated during the first hour following power-up or reset	T0 <t<t0+1< th=""><th>Transmit time < 36Sec</th><th>1%</th></t<t0+1<>	Transmit time < 36Sec	1%
Aggregated during the next 10 hours	T0+1 <t<t0+11< th=""><th>Transmit time < 36Sec</th><th>0.1%</th></t<t0+11<>	Transmit time < 36Sec	0.1%
After the first 11 hours, aggregated over 24h	T0+11+N <t<t0+35+n (n="">=0)</t<t0+35+n>	Transmit time < 8.7Sec per 24h	0.01%

Table 3-11 Join Duty Cycle

3.6 RX1DROffset Limitation

	RX1DROffset	EU868	US915	US915 HYBRID	CN779	EU433	AU915	AU915OLD	CN470	AS923	KR920	IN865	CN470 PREQUEL	STE920
	Min	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ	Max	5	3	3	5	5	5	3	5	7	5	7	5	5

Table 3-12 RX1DROffset Range

Default RX1DROffset of all bands is 0.

3.6.1 EU868/EU434/CN470 /KR920/CN470PREQUEL/STE920

DR = MAX(UplinkChannelDaraRate - RX1DROffset, DR0)

3.6.2 US915/ US915HYBRID/AU915

DR = MAX(MIN(UplinkChannelDaraRate +10 - RX1DROffset, DR13), DR8)

3.6.3 AS923

MIN(5, MAX(MinDR, UplinkChannelDaraRate - Effective_RX1DROffset))

MinDR depends on the DownlinkDwellTime bit sent to the device in the TxParamSetupReq command:

- Case DownlinkDwellTime = 0 (No limit): MinDR = DR0
- Case DownlinkDwellTime = 1 (400ms): MinDR = DR2

RX1DROffset	0	1	2	3	4	5	6	7
Effective_RX1DROffset	0	1	2	3	4	5	-1	-2

Table 3-13 AS923 RX1DROffset Effective Table

3.6.4 IN865

MIN(5, MAX(0, UplinkChannelDaraRate - Effective_RX1DROffset))

RX1DROffset	0	1	2	3	4	5	6	7
Effective_RX1DROffset	0	1	2	3	4	5	-1	-2

Table 3-14 IN865 RX1DROffset Effective Table

[&]quot;AT+LW=JDC, OFF" command could be used to disable the feature if user need to disable the feature.

⁹ LoRaWAN102-20161012 Page 37

3.7 CFLIST

CFListType	EU868	US915	US915 HYBRID	CN779	EU433	AU915	AU915OLD	CN470	AS923	KR920	IN865	CN470 PREQUEL	STE920
Chld	3-7 ¹⁰	N/A	N/A	3-7	3-7	N/A	N/A	N/A	2-6	3-7	3-7	N/A	N/A
ChMask	N/A	0-71	0-71	N/A	N/A	0-71	N/A	0-95	N/A	N/A	N/A	N/A	N/A

Table 3-15 CFList Definition

LoRaWAN V1.0.3 US915 / US915 / CN470 supports to use CFLIST to management channel (ChMask).

3.8 LinkAdrReq

ChMaskCntl	EU868	US915	US915 HYBRID	CN779	EU433	AU915	AU915OLD	CN470	AS923	KR920	IN865	CN470 PREQUEL	STE920
0	0-15	0-15	0-15	0-15	0-15	0-15	0-15	0-15	0-15	0-15	0-15	0-15	0-15
1	RFU	16-31	16-31	RFU	RFU	16-31	16-31	16-31	RFU	RFU	RFU	16-31	RFU
2	RFU	32-47	32-47	RFU	RFU	32-47	32-47	32-47	RFU	RFU	RFU	32-47	RFU
3	RFU	48-63	48-63	RFU	RFU	48-63	48-63	48-63	RFU	RFU	RFU	48-63	RFU
4	RFU	64-71	64-71	RFU	RFU	64-71	64-71	64-79	RFU	RFU	RFU	64-79	RFU
5	RFU	8LSB CHBlk 0-7 8MSBs RFU ¹¹	8LSB CHBlk 0-7 8MSBs RFU	RFU	RFU	8LSB CHBlk 0-7 8MSBs RFU	RFU	80-95	RFU	RFU	RFU	80-95	RFU
6	All On	0-63 on Mask 64-71	0-63 on Mask 64-71	All On	All On	0-63 on Mask 64-71	0-63 on Mask 64- 71	All On	All On	All On	All On	All On	All On
7	RFU	0-63 off 64-71 Mask	0-63 off 64-71 Mask	RFU	RFU	0-63 off 64-71 Mask	0-63 off 64-71 Mask	RFU	RFU	RFU	RFU	RFU	RFU

Table 3-16 LinkAdrReq ChMaskCntl Definition

3.9 Band Specific Limitation

3.9.1 US915/AU915/CN470 Channel Limitation

Under these modes, up to 72 (US915/AU915) or 96 (CN470) channels could be enabled. All these channels are not configurable with the default channels according to the definition of LoRaWAN 1.0.1. This means below commands will be invalid:

AT+CH=ch, freq, [drmin], [drmax]
AT+RXWIN1=ch, freq

To turn on/off channel, user need to use AT+CH=NUM or AT+CH=ch, ON/OFF command.

3.9.2 EU868 Duty Cycle Limitation

Only EU868 band need enable duty cycle limitation to comply with ETSI [EN300.220] standard. Band and limitation is defined as below.

Band Index	Frequencies(MHz)	Maximum Power	Duty Cycle	Band Width
g2	863.00 ~ 865.00	14dBm	0.1%	2MHz
g	865.00 ~ 868.00	14dBm	1%	3MHz

¹⁰ Here has some difference from LoRaWAN specification use 4-8 to define, by which it assume first channel has index 1. RisingHF device use index 0 for the first channel.

¹¹ LoRaWAN V1.0.3 Only

Band Index	Frequencies(MHz)	Maximum Power	Duty Cycle	Band Width
g1	868.00 ~ 868.60	14dBm	1%	600KHz
g2	868.70 ~ 869.20	14dBm	0.1%	500KHz
g3	869.40 ~ 869.65	27dBm	10%	250KHz
g4	869.70 ~ 867.00	14dBm	1%	300KHz

Table 3-17 ETSI EU868 Regulation

3.9.3 CN799 Duty Cycle Limitation

Band Index	Frequencies(MHz)	Maximum Power	Duty Cycle	Band Width
g0	779.00 ~ 787.00	12.15dBm	1%	8MHz

Table 3-18 CN779 Duty Cycle Limitation

3.9.1 EU433 Duty Cycle Limitation

Band Index	Frequencies(MHz)	Maximum Power	Duty Cycle	Band Width
g0	433.175 ~ 434.665	12.15dBm	1%	1.5MHz

Table 3-19 EU433 Duty Cycle Limitation

3.9.2 AS923 Dwell Time Limitation

UplinkDwellTime, DownlinkDwellTime and MaxEIRP can be set configured through TxParamSetupReq / TxParamSetupAns MAC command.

DR \ DwellTime	UplinkDwellTime 0	UplinkDwellTime 1	DownlinkDwellTime 0	DownlinkDwellTime 1
0	51	N/A	51	N/A
1	51	N/A	51	N/A
2	51	11	51	11
3	115	53	115	53
4	242	125	242	125
5	242	242	242	242
6	242	242	242	242
7	242	242	242	242
8:15	RFU	RFU	RFU	RFU

Table 3-20 AS923 Dwell Time Limitation

3.9.3 KR920 Channels and TX Power Limitation

For KR920 band, only below channels are available.

Channel Frequency	920.9	921.1	921.3	921.5	921.7	921.9	922.1	922.3	922.5	922.7	922.9	923.1	923.3
Maximum EIRP output power	10	10	10	10	10	10	14	14	14	14	14	14	14

Table 3-21 KR920 Channel and TX power limitation

3.10 Band Frequency Range

Band	Start Channels	End Frequency	Band Width
EU868	863	870	7MHz
US915	902	928	26MHz
US915HYBRID	902	928	26MHz
CN779	799	787	8MHz
EU433	433.175	434.665	1.49MHz

Band	Start Channels	End Frequency	Band Width
AU915	915	928	13MHz
AU915OLD	915	928	13MHz
CN470	470	510	40MHz
AS923	902	928	26MHz
KR920	920.9	923.3	2.4MHz
IN865	865	867	2MHz
CN470PREQUEL	470	510	40MHz
STE920	920	925	26MHz

Table 3-22 Band Frequency Range

3.10.1 AS923 Region Limitation¹²

Country Name	Frequency Range
Brunei	923-925
Cambodia	923-925
Indonesia	923-925
Japan	920-928
Laos	923-925
New Zealand	915-928
Singapore	920-925
Taiwan	922-928
Thailand	920-925
Vietnam	920-925

Table 3-23 AS923 Region Limitation

3.11 Class B

3.11.1 Default Parameters

Band	Beacon Channel Number (ChannelNum)	Beacon Channel Frequency / MHz	Beacon Channel DataRate	Beacon Channel SF/BW	Ping Slot Channel Frequency / MHz	Ping Slot Channel Data Rate / MHz
EU868	1	869.525	DR3	SF9/125KHz	869.525	DR3
US915	8	923.3 + ch * 0.6	DR8	SF12/500KHz	923.3 + ch * 0.6	DR8
US915HYBRID	8	923.3 + ch * 0.6	DR8	SF12/500KHz	923.3 + ch * 0.6	DR8
CN779	1	785	DR3	SF9/125KHz	785	DR3
EU433	1	434.665	DR3	SF9/125KHz	434.665	DR3
AU915	8	923.3 + ch * 0.6	DR10	SF10/500KHz	923.3 + ch * 0.6	DR10
AU915OLD	8	923.3 + ch * 0.6	DR10	SF10/500KHz	923.3 + ch * 0.6	DR10
CN470	8	508.3 + ch * 0.2	DR2	SF10/125KHz	508.3 + ch * 0.2	DR2
AS923	1	923.4	DR3	SF9/125KHz	923.4	DR3
KR920	1	923.1	DR3	SF9/125KHz	923.1	DR3
IN865	1	865.55	DR4	SF8/125KHz	865.55	DR4
CN470PREQUEL	1	473	DR3	SF9/125KHz	473	DR3
STE920	1	923.4	DR3	SF9/125KHz	923.4	DR3

Table 3-24 Class B Default Parameters

Beacon channel index number at specified beacon time can be calculated with formula:

ch = floor(beacon_time/beacon_period) % ChannelNum

¹² Defined by LoRaWAN 1.0.2 Regional Parameter

3.11.2 Beacon Frame Content

LoRaWAN V102B and V103:

Band	Size	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
EU868	17	RF	U		niT	Time			RC	GwSpecific						CI	XC							
US915	23			RFU					me	CRC Gv					Gw	Speci	ific				RFU	RFU CRC		RC
CN779	17	RF	U		niT	Time			RC	GwSpecific							CI	RC						
EU433	17	RF	U		Tir	Time			RC		GwSpecific						CRC							
AU915	19		RFU	-		Ti	me		CI	RC GwSpecific				ific			RFU	CF	Σ					
CN470	19		RFU			Ti	me		CI	RC GwSpecif				ific	RFU			CF	SC					
AS923	17	RF	U		Tir	me		CF	RC	GwSpecific							CI	ΣC						
KR920	17	RF	U		Tir	me		CF	RC		GwSpecific						CRC							
IN865	19	RFU		Ti	me		CI	RC		GwSpecific						RFU		CF	RC					

Table 3-25 Beacon Format

LoRaWAN V102 (Time is in UTC epoch format)

Band	Size	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
EU868 V102	17		NetId			Tir	ne		CRC			Gw	Speci	ific			CF	SC						
US915 V102	19		NetId			Tir	ne		CF	RC	GwSpecific							RFU	CF	℃				

Table 3-26 Legacy EU868 and US915 Beacon Format

3.11.3 Periodicity

Periodicity is a very important Class B parameter to control ping slot numbers and ping slot timing. Periodicity is set to 5 by default. **AT+BEACON=periodicity** command can be used to configure periodicity.

Periodicity	Ping slot control	0	1	2	3	4	5	6	7
PingNb	Number of ping slots per beacon period.	128	64	32	16	8	4	2	1
PingPeriod	Period of the device receiver wake-up expressed in number of slots		64	128	256	512	1024	2048	4096
PingPeriodTime/s	Period of the device receiver wake-up expressed in seconds	0.96	1.92	3.84	7.68	15.36	30.72	61.44	122.88
PingOffset	ingOffset Randomized offset computed at each beacon period start.		0-63	0-127	0-255	0-511	0-1023	0-2047	0-4095

Table 3-27 Class B Periodicity Table

4 Commands

Command	Description
AT	Test command
FDEFAULT	Factory data reset
RESET	Software reset
DFU	Force bootloader to enter dfu mode
LOWPOWER	Enter sleep mode
VER	Version[Major.Minor.Patch]
MSG	LoRaWAN unconfirmed data
MSGHEX	LoRaWAN unconfirmed data in hex
CMSG	LoRaWAN confirmed data
CMSGHEX	LoRaWAN confirmed data in hex
PMSG	LoRaWAN proprietary
PMSGHEX	LoRaWAN proprietary in hex
СН	LoRaWAN channel frequency
DR	LoRaWAN datarate
ADR	LoRaWAN ADR control
REPT	Unconfirmed message repetition
RETRY	Confirmed message retry
POWER	LoRaWAN TX power
RXWIN2	LoRaWAN RX window2
RXWIN1	LoRaWAN RX window1
PORT	LoRaWAN communication port
MODE	LWABP, LWOTAA, TEST
ID	LoRaWAN DevAddr/DevEui/AppEui
KEY	Set NWKSKEY/APPSKEY/APPKEY
CLASS	Choose LoRaWAN modem class(A/B/C)
JOIN	LoRaWAN OTAA JOIN
LW	LoRaWAN misc configuration (CDR, ULDL, NET, DC, MC, THLD)
BEACON	LoRaWAN Class B utilities
TEST	Send test serious command
UART	UART configure
DELAY	RX window delay
VDD	Get VDD
RTC	RTC time get/set
EEPROM	Write/Read EEPROM
WDT	Watchdog control
TEMP	Get Temperature
LOG	Log DEBUG/INFO/WARN/ERROR/FATAL/PANIC/QUIET

Table 4-1 Command List

4.1 AT

Use to test if connection of module is OK. This is a dummy command just like other common "AT modules"

```
Format:

AT

Return:
+AT: 0K
```

4.2 VER

Check firmware version. Versioning rule refers to <u>Semantic Versioning 2.0.0</u>.

Format:

AT+VER

Return:

```
+VER: $MAJOR.$MINOR.$PATCH
+VER: 2.1.x
```

4.3 ID

Use to check the ID of the LoRaWAN module, or change the ID. ID is treated as big endian numbers. Read ID Format:

Return:

```
+ID: DevAddr, xx:xx:xx:xx
+ID: DevEui<sup>13</sup>, xx:xx:xx:xx:xx:xx:xx
+ID: AppEui<sup>14</sup>, xx:xx:xx:xx:xx:xx:xx
```

Change end device address (**DEVADDR**)

```
AT+ID=DevAddr, "4 bytes length hex identifier" eg: AT+ID=DevAddr, "01234567" eg: AT+ID=DEVADDR, "01 23 45 67"
```

Return:

```
+ID: DevAddr, 01:23:45:67
```

Change device extended unique identifier (**DEVEUI**)

```
AT+ID= DevEui, "8 bytes length hex identifier (64bits)"
```

¹³ DevEui which is supplied by RisingHF are derived from STM32's UUID, these EUIs are RisingHF unique is not standard IEEE EUI-64, , it is recommended to apply and use IEEE-EUI64.

¹⁴ Default AppEui is **52:69:73:69:6E:67:48:46**

```
eg: AT+ID=DevEui, "0123456789ABCDEF"
eg: AT+ID=DEVEUI, "01 23 45 67 89 AB CD EF"

Return:
+ID: DevEui, 01:23:45:67:89:AB:CD:EF

Change device extended unique identifier (APPEUI)
AT+ID= AppEui, "8 bytes length hex identifier (64bits)"
eg: AT+ID=AppEui, "0123456789ABCDEF"
eg: AT+ID=APPEUI, "01 23 45 67 89 AB CD EF"

Return:
+ID: AppEui, 01:23:45:67:89:AB:CD:EF
```

4.4 RESET

Use to reset the module. If module returns error, then reset function is invalid.

Format:

AT+RESET

Return:

+RESET: OK

4.5 MSG

Use to send string format frame which is no need to be confirmed by the server.

Format:

AT+MSG="Data to send"

Return: (Full return message)

+MSG: Start +MSG: FPENDING +MSG: Link 20, 1 +MSG: ACK Received +MSG: MULTICAST

+MSG: PORT: 8; RX: "12345678" +MSG: RXWIN2¹⁵, RSSI -106, SNR 4

+MSG: Done

Below return messages are optional, it is returned only in the cases that specified event occurs.

¹⁵ RXWIN2: Message is received during RX Window2; RXWIN1: RX Window1; RXWIN0: Class C Extra RXWIN2.

4.5.1 LinkCheckReg

AT+MSG could be used to send LinkCheckReq mac command to check Link status between modem and server.

AT+MSG

```
+MSG: Start

+MSG: TX ""

+MSG: Link 20, 1

+MSG: RXWIN1, RSSI -93, SNR 6.25

+MSG: Done
```

From example above, the modem returns "+MSG: Link 20, 1" to host, it is in the format:

```
+MSG: Link Margin, GwCnt
```

The demodulation margin (Margin) is an 8-bit unsigned integer in the range of 0..254 indicating the link margin in dB of the last successfully received LinkCheckReq command.

A value of "0" means that the frame was received at the demodulation floor (0 dB or no margin) while a value of "20", for example, means that the frame reached the gateway 20 dB above the demodulation floor. Value "255" is reserved.

The gateway count (GwCnt) is the number of gateways that successfully received the last LinkCheckReq command.

4.5.2 Error Status

1. LoRaWAN transaction service is ongoing

```
+MSG: LoRaWAN modem is busy
```

2. LoRaWAN modem is in OTAA mode and not joined a network

```
+MSG: Please join network first
```

3. LoRaWAN modem already joined to a network previously

```
+JOIN: Joined already
```

Note: use AT+JOIN=FORCE to force join if needed.

4. All configured channels are occupied by others.

```
+MSG: No free channel -70
```

Note: use AT+LW=THLD to set a new threshold

5. There is no band available for the moment. The modem must stay silence for a while, because of local regulation rules or Join Request Duty Cycle

```
+MSG: No band in 13469ms
```

6. Current DR set data rate is not supported

```
+MSG: DR error
```

Note: use AT+DR=dr to set a new datarate

7. Current payload length is too long to send.

```
+MSG: Length error N
```

Note: N could be 0 or none zero value, if it returns 0, it means there is a pending Uplink MAC Command must be sent through Port 0. User need send a dummy MSG command "AT+MSG" to flush uplink MAC command.

It is recommended for use to run AT+LW=LEN command to get maximum available payload size. And make sure the next packet payload length is less than the available maximum payload length.

Note: use AT+LW=LEN command to get current available length.

4.6 CMSG

Use to send string format frame which must be confirmed by the server.

Format:

```
AT+CMSG="Data to send"

Return: (Full return message)
+CMSG: Start
+CMSG: Wait ACK
+CMSG: FPENDING
+CMSG: Link 20, 1
+CMSG: ACK Received
+CMSG: MULTICAST
+CMSG: PORT: 8; RX: "12345678"
+CMSG: RXWIN2<sup>16</sup>, RSSI -106, SNR 4
+CMSG: Done
```

Below return messages are optional, it is returned only in the cases that specified event occurs.

4.7 MSGHEX

Use to send hex format frame which is no need to be confirmed by the server.

Format:

```
AT+MSGHEX="xx xx xx xx" eg: AT+MSGHEX="12345678"
```

Return:

+MSGHEX: Start +MSGHEX: Done

For detailed examples, please refer to MSG. MSG and MSGHEX are the same command except payload format.

4.7.1 Send Unconfirmed Message with Zero Length Payload

Format:

AT+MSGHEX eg: AT+MSGHEX

Return:

+MSGHEX: Start +MSGHEX: Done

¹⁶ RXWIN2: Message is received during RX Window2; RXWIN1: RX Window1; RXWIN0: Class C Extra RXWIN2.

4.8 CMSGHEX

Use to send hex format frame which must be confirmed by the server.

Format:

AT+CMSGHEX="Data to send" eg: AT+CMSGHEX="12345678"

Return:

+CMSGHEX: Start +CMSGHEX: Wait ACK +CMSGHEX: Done

For detailed examples, please refer to CMSG. CMSG and CMSGHEX are the same command except payload format.

4.8.1 Send Confirmed Message with Zero Length Payload

Format:

AT+CMSGHEX eg: AT+CMSGHEX

Return:

+CMSGHEX: Start +CMSGHEX: Wait ACK +CMSGHEX: Done

4.9 PMSG

Use to send string format LoRaWAN proprietary frames.

Format:

AT+PMSG="Data to send" eg: AT+PMSG="This is a string"

Return:

+PMSG: Start
+PMSG: Done

4.10 PMSGHEX

Use to send hex format LoRaWAN proprietary frames.

Format:

AT+PMSGHEX="Data to send" eg: AT+PMSGHEX="AB CD"

Return:

+PMSGHEX: Start +PMSGHEX: Done

4.11 PORT

Set PORT number which will be used by MSG/CMSG/MSGHEX/CMSGHEX command to send message, port number should range from 1 to 255. User should refer to LoRaWAN specification to choose port.

```
Format:
       AT+PORT="port"
                                            // "port" should be 1~255
       eg: AT+PORT=8
                                            // Set port to 8
       eg: AT+PORT=?
                                            // Check current port
Return:
       +PORT: 8
                                            // PORT query/set return
   4.12 ADR
Set ADR function of LoRaWAN module.
Format:
       AT+ADR="state"
                                            // Enable ADR function
       eg: AT+ADR=ON
       AT+ADR=OFF
                                            // Disable ADR function
       AT+ADR=?
                                            // Check current ADR configuration
Return:
       +ADR: ON
                                            // ADR query/set return
```

4.13 DR

Use LoRaWAN defined DRx to set datarate of LoRaWAN AT modem. Refer to **Chapter 3 Band Plans** about the detailed definition of LoRaWAN data rate.

4.13.1 Check and Set Data Rate

```
Format:

AT+DR

AT+DR

AT+DR=drx

AT+DR:

DR0

+DR:

US915 DR0

SF10 BW125K

Return:

(ADR is functional)

+DR:

US915 DR3

SF7 BW125K

+DR:

US915 DR0

SF10 BW125K
```

4.13.2 Data Rate Scheme

```
Format:
```

```
AT+DR=band // "band" could be band names defined in Chapter 3 Band Plans
AT+DR=SCHEME // Check current band
```

Return: (EU868)

```
+DR: EU868
```

```
+DR: EU868 DR0 SF12 BW125K
+DR: EU868 DR1 SF11 BW125K
+DR: EU868 DR2 SF10 BW125K
+DR: EU868 DR3 SF9 BW125K
+DR: EU868 DR4 SF8 BW125K
```

```
+DR: EU868 DR5 SF7 BW125K
+DR: EU868 DR6 SF7 BW250K
+DR: EU868 DR7 FSK 50kbps
+DR: EU868 DR8 RFU
+DR: EU868 DR9 RFU
+DR: EU868 DR10 RFU
+DR: EU868 DR11 RFU
+DR: EU868 DR12 RFU
+DR: EU868 DR13 RFU
+DR: EU868 DR14 RFU
+DR: EU868 DR15 RFU
```

4.14 CH

4.14.1 Query Channel Configuration

Format:

AT+CH AT+CH=ch

1. Check single channel frequency

```
eg: AT+CH=2
+CH: 2,868500000,DR0:DR5
```

2. Query all channels

AT+CH

Query All Channels Return Format:

```
+CH: TOTAL_CHANNEL_NUMBER; LCn,FREQn,DR_MINn,DR_MAXn; LCy,FREQy,DR_MINy,DR_MAXy; ... LCz,FREQz,DR_MINz,DR_MAXz;
```

```
eg: +CH: 3; 0,868100000,DR0,DR5; 1,868300000,DR0,DR5; 2,868500000,DR0,DR5;
```

4.14.2 Add or Delete Channel

Set channel parameter of LoRaWAN modem, Set frequency zero to delete one channel. Format:

```
AT+CH="chn", ["freq"], ["drmin"], ["drmax"]

// Change the chn channel frequency to "Freq"

// "freq" is in MHz.

// Available "drmin"/"drmax" range DR0 ~ DR15
```

1. Change channel CH3 frequency to 433.3MHz, datarate DR0~DR5

```
eg: AT+CH=3, 433.3, DR0, DR5
```

2. Delete channel CH3

eg: AT+CH=3, 0

3. Change channel CH0 frequency to 433.3MHz,DR7

```
eg: AT+CH=0, 433.3, DR7
```

4. Change channel CH3 frequency to 433.7MHz, datarate DR0~DR5

```
eg: AT+CH=3, 433.7, 0, 5
```

5. Change channel CH3 frequency to 433.7MHz, datarate DR7

```
eg: AT+CH=3, 433.7, DR7
```

6. Change channel CH3 frequency to 433.7MHz, with default datarate DR0~DR5

```
eg: AT+CH=?
eg: AT+CH=3, 433.7
// It is not recommended to use this command
```

Return:

```
+CH: 3,433700000,DR0:DR5
+CH: 3,433700000,DR1
```

4.14.3 Enable or Disable Channel

Format:

```
AT+CH=NUM
AT+CH=NUM, chm-chn, ..., chx-chy, chz
```

1. Check current enabled channels

```
eg: AT+CH=NUM
+CH: NUM, 0-7, 64
```

2. Enable and disable channels

```
eg: AT+CH=NUM, 0-5, 64  // Enable channel 0, 1, 2, 3, 4, 5 and 64, disable all others +CH: NUM, 0-5, 64
```

Note: All channels should be controlled by a single command. The command operates all channels (0-95).

3. Enable single channel

```
eg: AT+CH=chn,ON
```

4. Disable single channel (channel is just masked, not deleted)

```
eg: AT+CH=chn,OFF
```

4.15 POWER

4.15.1 Set and Check Power

LoRaWAN TX power is controlled by internal TX power table, and also decided by hardware. Check TX power table to know what power could support.

Format:

```
AT+POWER
AT+POWER="pow" // Change LoRaWAN Tx Power
eg: AT+POWER=14 // Change LoRaWAN AT module TX power to 14dBm
Return:
+POWER: 14
```

4.15.2 Force Set Power

This command can be used to set a fixed TX power for LoRaWAN modem, it will bypass LoRaWAN TX power table and LinkADRReq command.

Format:

AT+POWER=pow, FORCE

4.15.3 Power Table

This command can be used to check band specific power table.

Format:

```
AT+POWER=TABLE
+POWER: 30 28 26 24 22 20 18 16 14 12 10
```

4.16 REPT

Unconfirmed message repeats times.

Format:

```
AT+REPT="Repeat Times"
                          //Repeat times" should range 1~15
eg: AT+REPT=2
                          //Repeat 2 times
+REPT: 2
```

Return:

4.17 RETRY

Confirmed message retry times. Valid range 0~254, if retry times is less than 2, only one message will be sent. Random delay 3 - 10s between each retry (band duty cycle limitation has the priority) Format:

```
AT+RETRY="Retry Times"
                                 //Retry times" should range 0~15
       eg: AT+RETRY=3
                                 //Retry 2 times (3-1), if no ack receive
Return:
       +RETRY: 3
```

4.18 RXWIN2

Set second RX window frequency and Data Rate. This command will change RXWIN2 configuration, which may cause downlink lost, if configuration is wrong.

Format:

```
// Query RX Window2 configuration
AT+ RXWIN2
AT+RXWIN2=Frequency, DRx
                                     // Set frequency and datarate
AT+RXWIN2=Frequency, SFx, BW
                                    // Set RXWIN2 through SF and BW
eg: AT+RXWIN2=433.3,DR3
                                    // Set RXWIN2 433.3MHz/DR3
                                    // Set RXWIN2 433.3MHz/SF7/BW500KHz
eg: AT+RXWIN2=433.3,SF7,500
```

Return:

```
// General data rate
+RXWIN2: 433300000, DR5
// Customized RX Window2 data rate with spread factor and band width
+RXWIN2: 433000000,SF7,BW125K
```

From firmware 1.8.0, RXWIN2 command could support more flexible configuration. Both LoRaWAN defined data rate (combination of spread faction and band width) and LoRa defined spread factor and band width format are supported. User could set his RXWIN2 to any possible SF and BW scheme. which is a very useful function for LoRaWAN proof of concept.

4.19 RXWIN1

RXWIN1 command could be used to set customized RXWIN channel, each RXWIN channel maps to an uplink channel. When RXWIN1 is enabled, user need make sure every uplink channel has its own mapped RXWIN1 channel, or the modem may perform unexpected.

With this special RXWIN1 command, frequency shift between uplink and downlink becomes possible, then full-duplex is easy to achieve for the system if gateway supports.

a) Set RXWIN1

AT+RXWIN1=ch, freq

eg: AT+RXWIN1=0,868.9

Set none zero **freq** to overwrite default RXWIN1 channel frequency.

Set zero **freq** to use default frequency

b) Query RXWIN1 channel

AT+RXWIN1=ch

eg: AT+RXWIN1=0,868100000

c) Check RXWIN1

AT+RXWIN1

+RXWIN1: 3; 0,868100000; 1,868300000; 2,868500000;

AT+RXWIN1 and its subcommands always returns the channels which are enabled currently. If customized downlink channel is zero, then default downlink channels will be used.

4.20 KEY

Change LoRaWAN related AES-128 KEY. If wrong key is used, your LoRaWAN modem will be rejected by LoRaWAN server. Contact server administrator to know what key should use. All KEYs are unreadable for security, the one who forgets his KEY need rewrite with a new key.

Format:

Change network session key (NWKSKEY)

AT+KEY=NWKSKEY, "16 bytes length key"

eg: AT+KEY=NWKSKEY, "2B7E151628AED2A6ABF7158809CF4F3C"

eg: AT+KEY=NWKSKEY, "2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C"

Return:

+KEY: NWKSKEY 2B7E151628AED2A6ABF7158809CF4F3C

Change application session key (APPSKEY)

AT+KEY=APPSKEY, "16 bytes length key"

eg: AT+KEY=APPSKEY, "2B7E151628AED2A6ABF7158809CF4F3C"

eg: AT+KEY= APPSKEY, "2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C"

Return:

+KEY: APPSKEY 2B7E151628AED2A6ABF7158809CF4F3C

Change application session key (APPKEY)

AT+KEY=APPKEY, "16 bytes length key"

eg: AT+KEY=APPKEY, "2B7E151628AED2A6ABF7158809CF4F3C"

AT+KEY= APPKEY, "2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C"

Return:

+KEY: APPKEY 2B7E151628AED2A6ABF7158809CF4F3C

4.21 FDEFAULT

Reset LoRaWAN AT modem to factory default configuration.

Format:

AT+FDEFAULT

AT+FDEFAULT=RISINGHF

Return:

+FDEFAULT: OK

Item	Value							
Mode	LoRaWAN ABP							
Channel	3 default channels							
	868.1MHz 868.3MHz 868.5MHz							
Datarate Range	DR0 : DR5							
Unconfirmed Message Repetition	1							
Confirmed Message Retry	3							
Port	8							
Datarate	DR0							
ADR	ON							
Power	14dBm							
RXWIN2	869.525MHz, DR0							
RXWIN1 Delay	1s							
RXWIN2 Delay	2s							
JOIN ACCEPT RXWIN1 Delay	5s							
JOIN ACCEPT RXWIN2 Delay	6s							
Listen Before Talk Threshold	-85dBm							
EU868 Duty Cycle Limitation	OFF							
LoRaWAN Public Network	ON							
NwkSKey	2B7E151628AED2A6ABF7158809CF4F3C							
AppSKey	2B7E151628AED2A6ABF7158809CF4F3C							
AppKey	2B7E151628AED2A6ABF7158809CF4F3C							
AppEui	52:69:73:69:6e:67:48:46							
Uplink Counter	1							
Downlink Counter	0							
Multicast	OFF							

Table 4-2 Factory default configuration

NOTE: Customized modem may be precompiled to use a different factory default configuration. If any user has request, please contact RisingHF support@risinghf.com.

4.22 **DFU**

Use to enter DFU mode. If user need to enter DFU mode to update LoRaWAN modem firmware, then user should first send "AT+DFU=ON" command to enable firmware upgrade. Once DFU mode is on, user should repower LoRaWAN modem (unplug and plug back), after repowered LoRaWAN will enter DFU mode, user could use DfuSe tool to update the firmware. If user want to exit DFU mode without upgrade, user just need to repower again, LoRaWAN modem will exit DFU mode automatically.

For UART bootloader, "AT+DFU=ON" command will make device enter bootloader mode automatically. For USB bootloader, after "AT+DFU=ON" command, user need restart device manually.

Format:

Example:

+DFU: ON

Note: DFU mode is risky. Before updating, user must make sure the firmware is supplied by RisingHF, a wrong firmware may brick LoRaWAN modem.

4.23 MODE

Use to select work mode. LWABP¹⁷, LWOTAA¹⁸, TEST are supported. LoRaWAN modem can only work with one mode at a time. By default, LWABP is enabled, all test commands are unavailable, LoRaWAN will return error(-12) if it receives test command in non-test mode.

"AT+MODE" command will reset LoRaWAN stack when first enter LWABP/LWOTTA mode and reset LoRa chip when first enter test mode.

LWABP/LWOTAA mode status is remembered by LoRaWAN modem, each time LoRaWAN modem starts, it will enter previous working mode before reset or repower.

Format:

Return

4.24 JOIN

When OTAA mode is enabled, JOIN command could use to join a known network.

Format:

AT+JOIN AT+JOIN=FORCE

¹⁷ LWABP is short for LoRaWAN Activation By Personalization. Check < LoRaWAN™ Specification> for details

¹⁸ LWOTAA is short for LoRaWAN Over-The-Air-Activation.

1. Join

```
eg: AT+JOIN // Send JOIN request
```

2. Disconnect with current network, force send one JOIN request

```
eg: AT+JOIN=FORCE
```

- 3. Returns
 - a) Join successfully

```
+JOIN: Starting +JOIN: NORMAL
```

+JOIN: NetID 000024 DevAddr 48:00:00:01

+JOIN: Done
b) Join failed

+JOIN: Join failed
c) Join process is ongoing

+JOIN: LoRaWAN modem is busy

4.24.1 Auto Join

Format:

```
AT+JOIN=period // period: 0 - 172800s, 0 to disable auto jioin. AT+JOIN=FORCE
```

1. Enable auto Join 1min

```
eg: AT+JOIN=60
```

2. Disable auto join

eg: AT+JOIN=0

In auto join mode host could still detect below format URC message to know device is connected

```
+JOIN: NetID 000024 DevAddr 48:00:00:01
```

+JOIN: Done

4.25 BEACON

4.25.1 AT+BEACON

Set beacon and ping slot configuration

```
AT+BEACON=periodicity,[DRx],[psfreq],[DRx,bfreq] // Set beacon configuration // periodicity: pingSlotPeriod factor (pingSlotPeriod = 2<sup>periodicity</sup> seconds) // DRx: Data rate // psfreq: Ping slot frequency // bfreq: Beacon frequency // []: The field is omissible with all appended fields
```

Query beacon and ping slot configuration

```
AT+BEACON
```

+BEACON: periodicity, DRx, psfreq, DRx, bfreq

4.25.2 AT+BEACON=DMMUL

Dummy uplink control. Before switching to Class B mode, dummy uplink is supported by device to get configuration information. By default, dummy uplink is turned off.

AT+BEACON=DMMUL, num, period

```
num: 0 to disable, others to enable exact number of dummy uplinks, 0 \sim 255 period: uplink period, 5 \sim 17280s AT+BEACON=DMMUL, 0, 15
```

4.25.3 AT+BEACON=INFO

Get beacon description information. Includes NetID, GatewayID, Gateway Coordinate

AT+BEACON=INFO

```
+BEACON: INFO, netid, gwid, longitude, latitude
netid: 3 bytes hex
gwid: 3 bytes hex
longitude: positive for east, negative for west. 123.124037 (East)
latitude: positive for north, negative for south. 89.002293 (North)
```

4.25.4 AT+BEACON=GWGPS

Get gateway GPS coordinate from last received beacon.

```
AT+BEACON=GWGPS
```

```
+BEACON: GWGPS, 123.124037, 89.002293
// 123.124037 Longitude (East)
// 89.002293 Latitude (North)
```

4.25.5 Switch to Class B mode

Command flow:

- 1. AT+CLASS=B
- 2. Wait +BEACON: LOCKED
- 3. Wait +BEACON: DONE
- 4. Device is now in Class B mode
- 5. When in Class B mode host should be responsible to monitor "+BEACON: LOST" event, when it occurs, which means device switch to Class A due to Beacon lost issue

- 6. If no beacon found during Class B switching process, "+BEACON: FAILED" is sent to host.
- 7. Current class mode is checkable through AT+CLASS command

Notification, will be triggered when the event occur.

```
+BEACON: LOCKED // Beacon found and synced
+BEACON: FAILED // Fail to switch to Class B
+BEACON: DONE // Success to switch to Class B
+BEACON: LOST // Beacon lost, switch back to Class A
```

4.25.5.1 ABP

Execute class switch AT command "AT+CLASS=B", the modem will negotiate with server automatically.

AT+CLASS=B

When beacon is found, "+BEACON: LOCKED" message is notified.

+BEACON: LOCKED

When ping slot information is exchanged, "+BEACON: DONE" message is notified. At this time ping slots will be opened periodically

+BEACON: DONE

If there is not beacon is found in 128s, "+BEACON: FAILED" will be notified

If there is not beacon is found in 2 hour after beacon locked, "+BEACON: LOST" will be notified.

4.25.5.2 OTAA

Switch to OTAA mode.

AT+MODE=LWOTAA

Trigger AT+JOIN command to try to join the known LoRaWAN network.

AT+JOIN

Other information are the same as chapter 4.25.5.1 ABP.

4.26 CLASS

This command could enable LoRaWAN modem to work at different mode (Class A/B¹⁹/C). LoRaWAN modem works at class A mode when power on, user need manually switch mode to class B/C as needed.

Format:

```
eg: AT+CLASS=A // Enable Class A mode
eg: AT+CLASS=B // Enable Class B mode
eg: AT+CLASS=C // Enable Class C mode
```

Query class type:

AT+CLASS

¹⁹ Class B is available in after 3.x.x version firmware

```
+CLASS: A
+CLASS: C
+CLASS: B
+CLASS: B (Sx) // Class B switching ongoing
```

4.26.1 Class C Downlink

Class C mode will reuse RXWIN2 configuration. Check with "AT+RXWIN2". If downlink is received, below message could be returned to host.

```
+MSG: FPENDING

+MSG: Link 20, 1

+MSG: ACK Received

+MSG: MULTICAST

+MSG: PORT: 8; RX: "12345678"

+MSG: RXWINO, RSSI -106, SNR 4

+MSG: Done
```

4.26.2 Class B Downlink

Check with "AT+BEACON" current beacon and ping slot configuration. If downlink is received, below message could be returned to host. RXWIN3 stands for ping slot received packet.

```
+MSG: FPENDING
+MSG: Link 20, 1
+MSG: ACK Received
+MSG: MULTICAST
+MSG: PORT: 8; RX: "12345678"
+MSG: RXWIN3, RSSI -106, SNR 4
+MSG: Done
4.26.3 Class B Status
  +CLASS: B (S0)
                                    // (Status 0, Beacon timing request)
                                    // (Status 1, Beacon searching)
  +CLASS: B (S1)
                                    // (Status 2, Ping slot information request)
  +CLASS: B (S2)
  +CLASS: B (S3)
                                    // (Status 3, Failed)
  +CLASS: B (S4)
                                    // (Status 4, Not synced)
                                    // (Status 5, Network not joined)
  +CLASS: B (S5)
  +CLASS: B (S6)
                                  // (Status 6, LoRaWAN is busy)
                                    // (Status 7, Send dummy uplink)
  +CLASS: B (S7)
                                    // (Class B mode enabled)
  +CLASS: B
```

4.27 DELAY

RX window delay configuration command. Supports configure RECEIVE_DELAY1, RECEIVE_DELAY2, JOIN_ACCEPT_DELAY1, JOIN_ACCEPT_DELAY2.

Command	Item	Comments	
AT+DELAY=RX1, ms	RECEIVE_DELAY1	RX window 1 delay time	
AT+DELAY=RX2, ms	RECEIVE_DELAY2 RX window 1 delay time		
AT+DELAY=JRX1, ms	ns JOIN_ACCEPT_DELAY1 Join accept RX window 1 delay tir		
AT+DELAY=JRX2, ms	JOIN_ACCEPT_DELAY2	Join accept RX window 2 delay time	

Table 4-3 LoRaWAN Delay Items

```
Format:
       // Query delay settings
       AT+DELAY
       AT+DELAY?
       AT+DELAY=?
       // Set delay
       AT+DELAY=RX1, 1000
                             // Unit: ms
       AT+DELAY=RX2, 2000
       AT+DELAY=JRX1, 5000
       AT+DELAY=JRX2, 6000
Return:
       +DELAY RX1, 1000
       +DELAY RX2, 2000
       +DELAY JRX1, 5000
       +DELAY JRX2, 6000
```

4.28 LW

LW commands is a collection of several LoRaWAN control commands. Include CDR, ULDL, DC, NET, MC, THLD. BAT, TPS, SCR, JDC, LEN.

4.28.1 CDR

CDR command could be used to get current TX/RX available data rate range.

Format:

```
AT+LW=CDR, [ UL_DR_MIN, UL_DR_MAX, DL_DR_MIN, DL_DR_MAX ]
```

1. Check current datarate limitation

```
AT+LW=CDR
+LW: CDR, TXDR(0,7), RXDR(0,7) //EU868
+LW: CDR, TXDR(0,4), RXDR(8,13) //AU920
```

4.28.2 ULDL

Set and read uplink and downlink counter.

Format:

```
AT+LW=ULDL, UL_COUNTER, DL_COUNTER
```

1. Read counter

```
AT+LW=ULDL
+LW: ULDL 1, 0
```

2. Set counter

```
AT+LW=ULDL, 5, 10
+LW: ULDL 5, 10
```

4.28.3 DC

EU868 Duty Cycle limitation and LoRaWAN Transmit Duty Cycle control interface. This option is mandatory to be set to on, when using in Europe to follow ETSI regulation. And this command could

also be used to set a specify value for **MaxDCycle**, valid range 0 ~ 15. And the tansmit aggregated duty cycle is allowed by:

$$AggregatedDutyCylce = \frac{1}{2^{MaxDCycle}}$$

A value of 0 corresponds to "no duty cycle limitation" except the one set by the regional regulation.

MaxDCycle	2 ^{MaxDCycle}	Aggregated Duty Cycle	
0	1	100.000%	
1	2	50. 000%	
2	4	25. 000%	
3	8	12. 500%	
4	16	6. 250%	
5	32	3. 125%	
6	64	1. 563%	
7	128	0. 781%	
8	256	0. 391%	
9	512	0. 195%	
10	1024	0. 098%	
11	2048	0. 049%	
12	4096	0. 024%	
13	8192	0. 012%	
14	16384	0. 006%	
15	32768	0.003%	

Table 4-4 Duty Cycle Control

Format:

AT+LW=DC, "ON/OFF" AT+LW=DC, MaxDCycle

Return format:

1. Check DC option

AT+LW=DC

2. Set EU868 ETSI Duty Cycle on

AT+LW=DC, ON

3. Set EU868 ETSI Duty Cycle off

AT+LW=DC, OFF

+LW: DC, OFF

4. Set LoRaWAN MaxDCycle

AT+LW=DC

```
+LW: DC, ON, 0 // EU868 Duty Cycle ON, MaxDCycle is 0
+LW: DC, OFF, 1 // EU868 Duty Cycle OFF or not in EU868 mode, MaxDCycle is 0
```

4.28.4 NET

This command is used to choose public LoRaWAN network or private network. Set ON to choose public network, set OFF to choose private network.

Format:

```
AT+LW=NET, "ON/OFF"
```

1. Check network type

```
AT+LW=NET
```

```
+LW: NET, ON
```

2. Set public network on

```
AT+LW=NET, ON
```

+LW: NET, ON

3. Set public network off

```
AT+LW=NET, OFF
```

+LW: NET, OFF

4.28.5 MC

MC command could enable an extra broadcast address for LoRaWAN modem. This command is useful when using Class B or C mode, to control a group of devices which has the same multi cast address at the same time to use a broadcast downlink command.

Format:

```
AT+LW=MC,["ON/OFF"],["DEVADDR"],["NWKSKEY"],["APPSKEY"],["COUNTER"]
```

1. Check multi cast status

```
AT+LW=MC
```

```
+LW: MC, OFF, 00cf3e72, 0
```

2. Set MC parameters

```
AT+LW=MC,ON,"11223344","2B7E151628AED2A6ABF7158809CF4F3C","2B7E151628AED2A6ABF7158809CF4F3C",0 +LW: MC, ON, 11223344, 0
```

Default MC NWKSKEY and MC APPSKEY both are 2B7E151628AED2A6ABF7158809CF4F3C.

4.28.6 THLD

Listen before talk threshold control, available value -1 \sim -140 (dBm).

Format:

```
AT+LW=THLD, thresh_hold
```

1. Check current threshold level

```
AT+LW=THLD
```

```
+LW: THLD, -90
```

2. Set new threshold

```
AT+LW=THLD, -85
+LW: THLD, -85
```

4.28.7 BAT

Set DevStatusReg/DevStatusAns battery level value. Available value 0 ~ 255

1. Check current threshold level

```
AT+LW=BAT
```

```
+LW: BAT, 255
```

2. Set new threshold

```
AT+LW=BAT, 100
```

RisingHF

```
+LW: BAT, 100
```

4.28.8 TPS

TPS command can be used to set default TX parameter. **UplinkDwellTime** and **DownlinkDwellTime** option is just for AS923. **MaxEIRP** is for all bands.

Format:

```
AT+LW=TPS
```

AT+LW=TPS, UplinkDwellTime, DownlinkDwellTime, MaxEIRP

UplinkDwellTime: ON/OFF
DownlinkDwellTime: ON/OFF
MaxEIRP: 0~15

Return:

```
+LW: TPS, UplinkDwellTime, DownlinkDwellTime, MaxEIRP
```

Example:

```
AT+LW=TPS, ON, ON, 7
+LW: TPS, ON, ON, 7
```

4.28.9 SCR

SCR (Sequence counter Checking Relaxed) command could be used to disable strict downlink frame counter checking. Which is useful for some application, especially in the case which server can't reset downlink counter automatically.

Format:

```
AT+LW=SCR
AT+LW=SCR, ON
AT+LW=SCR, OFF
```

Return

```
+LW: SCR, OFF
+LW: SCR, ON
```

NOTE: If SCR is enabled, there may be security issue, if some recorder downlink and replay back to your device. Be careful to use this command

NOTE: If SCR is enabled by default since firmware v2.1.16, disable it if you need more security.

4.28.10 JDC

JDC command could be used to disable the JoinRequest duty cycle limitation.

Format:

```
AT+LW=JDC
AT+LW=JDC, OFF
AT+LW=JDC, ON
```

Return:

```
+LW: JDC, ON +LW: JDC, OFF
```

4.28.11 CT

CT command can be used to enable or disable strict lorawan compliance test mode. When disabled AT modem will optimize several lorawan features to make it more usable for application. By default It is disabled.

Format:

AT+LW=CT AT+LW=CT, ON AT+LW=CT, OFF

Return:

+LW: CT, ON +LW: CT, OFF

Index	Description
1	Downlink ACK of Confirmed uplink is no need to check, any valid downlink will terminate the confirmed downlink transaction.
2	When under ADR off mode, LinkAdrReq Datarate and TxPower configuration will be ignored and keep settings unchanged. And will reply always ACK
3	CN470/US915/AU915 band supports to use DIChannelReq command to configure downlink channel frequency
4	EU868 band is available to configure out of range channels to make customized band plans
5	

4.28.12 LEN

LEN command can be used to get maximum payload length which is supported to send according to current data rate.

Format:

AT+LW=LEN

Return:

+LW: LEN, 50

Note: If "AT+LW=LEN" returns 0 length. User must send a dummy AT+MSG command to flush the internal MAC command buffer. And continue to send more data.

4.28.13 VER

Note: don't change unless you know what you are doing.

Switch LoRaWAN protocol version.

Format:

AT+LW=VER, Vxx

Version	Description
V10	See V102
V101	See V102
V102	Legacy LoRaWAN 102, Class B beacon is in UTC epoch format, beacon timing will be influenced by leap second, class B of V102 is deprecated. Protocol: LoRaWAN102-20161012_1398_1.pdf Regional Parameter: LoRaWANRegionalParametersv1.0.2 final 1944 1.pdf
V102B	Default setting. LoRaWAN alliance recommended Class B protocol. Protocol: LoRaWAN1.0.2_classB_draft4-clean.pdf

	Regional Parameter: LoRaWANRegionalParametersv1.0.2_final_1944_1.pdf		
	Latest LoRaWAN alliance v1.0.x protocol.		
V103	Protocol: lorawan1.0.3_final.pdf		
	Regional Parameter: LoRaWAN Reginal Parameters v1.0.3 revA.pdf		
	The only difference between V102ALPHA and V102B is V102B use DeviceTimeReq to sync time with NS, but V102ALPH		
	use BeaconTimingReq.		
V102ALPHA			
	Protocol: LoRaWAN102-20161012_1398_1.pdf + LoRaWAN1.1_draft_30.pdf (Class B Section)		
	Regional Parameter: LoRaWANRegionalParametersv1.0.2_final_1944_1.pdf		
	Not supported yet		
V11			
\ \vi	Protocol: LoRaWAN-v1.1.pdf(October 11, 2017)		
	Regional Parameter: LoRaWAN-Regional-Parameters-v1.1rA.PDF(October 11, 2017)		

Example:

AT+LW=VER, V102B +LW: VER, V102B

4.28.14 DTR

Buffer DeviceTimeReq MAC command for AT modem, the MAC command will be sent in next LoRaWAN transaction controlled by command **MSG/CMSG/MSGHEX/CMSGHEX**Format:

AT+LW=DTR

It is recommended to use MSGHEX and CMSGHEX to carry this command if there is no application payload to send.

4.28.15 LCR

Buffer LinkCheckReq MAC command for AT modem, the MAC command will be sent in next LoRaWAN transaction controlled by command **MSG/CMSG/MSGHEX/CMSGHEX**Format:

AT+LW=LCR

It is recommended to use MSGHEX or CMSGHEX to carry this command if there is no application payload to send.

4.28.16 LDRO

This command could be used to configure Low Data Rate Optimize option. Which supports 3 status, AUTO, ON and OFF. Default mode is AUTO. (Note: this conjuration is not memorable, it is set to AUTO mode when power on or reset)

Format:

AT+LW=LDRO, AUTO AT+LW=LDRO, ON AT+LW=LDRO, OFF

Example:

AT+LW=LDRO +LW: LDRO, AUTO AUTO mode: (LoRaWAN configuration)

Data Rate	Low Data Rate Optimize
SF11/BW125	ON
SF12/BW125	ON
SF12/BW250	ON
Others	OFF

Use in LoRaWAN mode:

- 1. Run AT+LW=LDRO command
- 2. It will effect in next transaction (Class A uplink and RX windows, or Class B beacon and ping windows)

Use in TEST mode:

- 1. Run AT+LW=LDRO command
- 2. Run "AT+LW=RFCFG, freq, sf" command to effect it.

Example:

- 1. AT+MODE=TEST
- 2. AT+LW=LDRO,ON
- 3. AT+TEST=RFCFG, freq, sf, bw,
- 4. AT+TEST=TXLRPKT to send packet or AT+TEST=RXLRPKT to receive

Note: If LDRO option is not matched between TX and RX, then on receiver side it probably can't receive packet or receive damaged packet

4.28.17 DCMRX

DCMRX could be used to disable Confirmed Message RX window to speed up uplink period for Gateway or Server test purpose

Format:

AT+LW=DCMRX AT+LW=DCMRX,ON AT+LW=DCMRX,OFF

Example:

AT+LW=DCMRX +LW: DCMRX, ON

4.28.18 DUMRX

DUMRX could be used to disable Unconfirmed Message RX window to speed up uplink period for through output uplinks to server in short time to optimize application power consumption and efficiency. Format:

AT+LW=DUMRX AT+LW=DUMRX,ON AT+LW=DUMRX,OFF

Example:

AT+LW=DUMRX +LW: DUMRX, ON

4.28.19 AFPACK

AFPACK could be enabled to make the AT modem Auto ACK FPending bit to ease the end-device design. When enabled device will wait to timeout if FPending bit is set

Format:

```
AT+LW=AFPACK
AT+LW=AFPACK,0 // disable AFPACK function
AT+LW=AFPACK,1~172800 // enable AFPACK, and set timeout to N seconds

Example:
AT+LW=AFPACK
```

4.28.20 CHRB

+LW: AFPACK, 0~172800

CHRB can be set to enable or disable channel configuration roll back features. Channel roll back feature in standard LoRaWAN protocol could complex the server and end-device design and could lead to channel configuration non-synced issue. It is recommended to set CHRB OFF to disable channel roll back feature (Default setting).

Format:

```
AT+LW=CHRB
AT+LW=CHRB,OFF
// disable AFPACK function
AT+LW=CHRB,ON
// enable AFPACK, and set timeout to N seconds
Example:
AT+LW=CHRB
+LW: CHRB, OFF
```

4.29 WDT

WDT command can be used to turn on/off internal watchdog. The watchdog is on by default, this will enhance the module stability, especially under the condition of severe electromagnetic environment. After WDT is turned on, the sleep current will be increased by around 0.7uA.

Format:

AT+WDT AT+WDT=ON AT+WDT=OFF

Return:

+WDT: ON +WDT: OFF

4.30 LOWPOWER²⁰

Sleep command could be used to make modem enter sleep mode with ultra-low power consumption, check device datasheet to know detailed parameters. After device enters in sleep mode, host device could send any character to wakeup it, after this host should wait at least 5ms to send next commands, so that modem could get ready. A C code example is attached to show how to handle LOWPOWER mode.

²⁰ RHF76-052AM (UART enabled) supports this feature, RHF3M076B (USB enabled) doesn't support sleep mode.

During the LOWPOWER mode, level of UART RX pin must keep unchanged, any signal on UART RX pin will make modem exit LOWPOWER mode. When LOWPOWER mode is triggered, there are extra 30ms before modem really enter sleep mode, host device should use this time to de-initial its UART if it is needed.

It also supplies feature to set a lowpower alarm from 100ms to 129600000ms (36hrs).

Format:

```
eg: AT+LOWPOWER
                                              // Sleep until woke up by UART TX
       eg: AT+LOWPOWER=1000<sup>21</sup>
                                              // Sleep 1000ms until timeout
                                              // Enter extremely low power mode
       eg: AT+LOWPOWER=AUTOON
       eg: AT+LOWPOWER=AUTOOFF<sup>22</sup>
                                               // Exit extremely low power mode
                                              // Query symbol is not available
Return
       +LOWPOWER: SLEEP
                                             // Enter SLEEP mode successfully
       +LOWPOWER: WAKEUP
                                             // Modem is woke up.
Example:
       AT+LOWPOWER=1000
       +LOWPOWER: WAKEUP
```

Note: Extra 0x55 will be sent to host mcu to perform a wakeup signal for it, LoRaWAN AT Modem will wait for 15ms before sending "+LOWPOWER: WAKEUP" frame, host MCU could use this 15ms to initialize then to receive the WAKEUP frame.

C example:

4.30.1 Low Power Auto Mode

AT+LOWPOWER=AUTOON command could be used to enable extremely low power mode. In this mode modem will enter deep sleep mode when it is idle. The idle status means no ongoing receiving commands, no ongoing LoRaWAN service needed. If this mode is enabled, when sending commands to modem, at least four 0xFFs need to be added to the start of each AT command. At the same time, each return message is also added with four 0xFFs. The host mcu parser should be able to handle these wakeup characters.

_

Example to send AT+ID command with low power auto mode

Use AT+LOWPOWER=AUTOOFF command to turn off low power auto mode, four 0xFFs are also needed to add to the start of the command.

V1.2 2018-12-28 www.risinghf.com

²¹ Available after v1.9.5

²² It is better to use AT+LOWPOWER=AUTOOFF always with heading 0xFFs

Below hex string equals to the table above, send it to modem in hex format could also disable the low power auto on feature.

FFFFFF61742B6C6F77706F7765723D6175746F6F66660D0A

C example:

```
uint8_t buf[256];
printf("AT+LOWPOWER=AUTOON\r\n");// Set low-power auto on mode

// ...
// HOST do other operation.
// ...
buf[0] = 0xFF;
buf[1] = 0xFF;
buf[2] = 0xFF;
buf[3] = 0xFF;
//DelayMs(5); // If user use higher baud rate than 9600, uncomment this line sprintf(buf+4, "AT+MSG=\"string\"\r\n");
uart putbuf(buf, strlen(buf+4)+4); // Send command to LoRaWAN modem
```

4.31 VDD²³

Get supply voltage, return value in unit 0.01V. Format:

AT+VDD?
AT+VDD?
AT+VDD=?

Example:

AT+VDD +VDD: 3.30V

4.32 TEMP

Get temperature, return value in unit °C. Format:

AT+TEMP?
AT+TEMP=?

Example:

AT+TEMP +TEMP: 20.5

Note: Temperature command returns temperature sensed by on chip sensor which gives precision about +/-5°C in worst case, this feature provides a cheap temperature measurement solution for low precision application

²³ VDD command is not available on RHF0M062

4.33 RTC

Get real time from LoRaWAN modem. When modem is powered on, it always starts from 2000-01-01 00:00:00, user could set new time to modem to sync to the real time.

1. Check current time

```
AT+RTC
```

```
+RTC: 2000-01-01 01:00:28 // this means the modem has kept running for 1 hour
```

2. Set new time to "2016-06-14 18:16:11", this format is very critical, must keep the same format as "yyyy-MM-dd HH:mm:ss", year must starts with 20xx.

```
AT+RTC="2016-06-14 18:16:11"
+RTC: 2016-06-14 18:16:11
```

3. Get time zone

AT+RTC=ZONE

```
+RTC: ZONE, +00:00
```

4. Set time zone

```
AT+RTC=ZONE, "+08:00"
+RTC: ZONE, +00:00
```

5. Get verbose RTC time

AT+RTC=FULL

```
+RTC: YY-MM-DD hh:mm:ss UTCshh:mm, epoch, age

UTCshh:mm: s -> -/+, hh -> hour, mm -> minute

epoch: GPS epoch (if LoRaWAN V102 is enabled it is in UTC epoch<sup>24</sup>)

age: device start up age in second (AT+RESET / POWER ON / WDT Reset clears age to 0)
```

6. Check Leap seconds setting

AT+RTC=LEAPSEC

```
+RTC: LEAPSEC, 37
```

7. Set new leap seconds

```
AT+RTC=LEAPSEC, 37
+RTC: LEAPSEC, 37
```

4.33.1 Time Synchronization

When modem is powered on, it always starts from 2000-01-01 00:00:00, there are 3 ways for user to sync real time:

- > user could set new time to modem to sync to the real time.
- Use AT+LW=DTR command trigger DeviceTimeReg to sync time manually
 - LoRaWAN V102B or higher protocol
- In class B mode, time will be synchronized with beacon automatically

4.33.2 Leap second

Check http://www.ietf.org/timezones/data/leap-seconds.list to know the leap second list. As of this document (year 2017), there has been 37 leap seconds ever. The firmware has preset this value to calculate the UTC time. In the future, more leap seconds will occur, at that time user should update the leap second to real one so that AT+RTC command returns right time.

V1.2 2018-12-28 www.risinghf.com

²⁴ UTC epoch is already deprecated by LoRa Alliance due to the leap second issue, however AT modem keeps this mode for users whose LoRaWAN server still doesn't support GPS epoch

4.33.3 Time Zone

AT+RTC=ZONE command can be used to set time zone. Default set to UTC+00:00.

4.34 EEPROM

```
LoRaWAN Modem supports maximum 256 bytes to save user data. Format:
```

```
AT+EEPROM=ADDR
AT+EEPROM=ADDR, VAL
```

Return:

+EEPROM: ADDR, VAL

Both ADDR and VAL are in hex format. Valid range is 0x00 ~ 0xFF. Example:

AT+EEPROM=00, AB +EEPROM: 00, AB

4.35 UART

4.35.1 TIMEOUT

LoRaWAN AT modem supports UART receive timeout feature, AT parser inside the modem start counts from first "AT" character is received, when counter overflows, a "Input timeout" event will be triggered. One message like below will be showed. Maximum timeout value is 300ms.

```
+INFO: Input timeout

AT+UART=TIMEOUT, 0 // Disable timeout feature
AT+UART=TIMEOUT, 1000 // Set timeout 1s feature
AT+UART=TIMEOUT // Get timeout value
```

4.35.2 BR

BR command could be used to set new baud rate. Available baud rate are 9600 14400 19200 38400 57600 76800 115200 and 230400. New baud rate will be validated after reset or repower.

Format:

```
AT+UART=BR
AT+UART=BR, br
```

Return:

+UART=BR, br

4.36 TEST

TEST command is not like other command, it is a serious command, includes several sub-commands, refer to table below. With test mode, user could do RF performance test quickly without any knowledge of LoRa chip. Commands which are related to RF configuration is disabled in test mode.

Sub-Command	Comment	
STOP	Set LoRaWAN Modem to TEST stop mode	
TXCW	Transmit continuous wave	
TXCLORA	Transmit continuous LoRa signal	
RFCFG	Set RF configuration in TEST mode	
RXLRPKT	Continuous receive pure LoRa packet, print once there is new packet received	
TXLRPKT	Send one HEX format packet out	
TXLRSTR	Send one string format packet	
RSSI	Get RSSI value of specified channel	
LWDL	Send LoRaWAN downlink packet, useful tool to test CLASS C device	

Table 4-5 TEST mode sub-command list

4.36.1 Help Information

```
STOP -- AT+TEST=STOP

HELP -- AT+TSET=HELP

TXCW -- AT+TEST=TXCW

TXCLORA -- AT+TEST=TXCLORA

RFCFG -- AT+TEST=RFCFG,[F],[SF],[BW],[TXPR],[RXPR],[POW],[CRC],[IQ],[NET]

RXLRPKT -- AT+TEST=RXLRPKT

TXLRPKT -- AT+TEST=TXLRPKT,"HEX"

TXLRSTR -- AT+TEST=TXLRSTR,"TEXT"

RSSI -- AT+TEST=RSSI,F,[CNT]

LWDL -- AT+TEST=LWDL,TYPE,DevAddr,"HEX",[FCNT],[FPORT],[FCTRL]
```

4.36.2 Enter TEST mode

Before use any TEST command, LoRaWAN should work in test mode, or error code -12 will be reported.

Command:

AT+MODE=TEST

Return:

+MODE: TEST // LoRaWAN modem enter TEST mode successfully

4.36.3 Query RF configuration

First thing after enter TEST mode should be check RF configuration.

Command:

```
AT+TEST=? // Query test mode and RF configuration
```

Return Error:

+TEST: ERROR(-12)

[&]quot;[]" means the parameter is omissible together with parameters behind it

When come with ERROR(-12), user could try "AT+MODE=?" to check if LoRaWAN modem is in TEST mode, if not user should enter test mode first.

Return STOP:

+TEST: STOP

+TEST: RFCFG F:433300000, SF12, BW125K, TXPR:8, RXPR:8, POW:14dBm, CRC:ON, IQ:OFF,

NET: ON

Return TXLRPKT:

+TEST: TXLRPKT

+TEST: RFCFG F:433300000, SF12, BW125K, TXPR:8, RXPR:8, POW:14dBm, CRC:ON, IQ:OFF,

NET:ON

Return RXLRPKT:

+TEST: RXLRPKT

+TEST: RFCFG F:433300000, SF12, BW125K, TXPR:8, RXPR:8, POW:14dBm, CRC:ON, IQ:OFF,

NET: ON

Return TXCW:

+TEST: TXCW

+TEST: RFCFG F:433300000, SF12, BW125K, TXPR:8, RXPR:8, POW:14dBm, CRC:ON, IQ:OFF,

NET: ON

4.36.4 Set RF Configuration

RFCFG supports set frequency, SF, band width, TX preamble, RX preamble and TX power settings. TX and RX shares all configuration except "preamble length", user could choose different preamble length. For LoRa communication, it is strongly recommended to set RX preamble length longer than TX's. Bandwidth only supports 125KHz / 250KHz / 500KHz.

Depend on Semtech SX1276 (PA_BOOST/RFO) and design solution of RisingHF module, MAX output power of different band LoRaWAN modem could be different. Check below table about the details.

Device	Bootloader	Interface	LF Band ²⁵	HF Band ²⁶
RHF76-052AM	UART	UART	20dBm	14dBm
RHF76-052CM	UART	UART	-	20dBm
RHF76-052DM	UART	UART	20dBm	14dBm
RHF78-052AM	UART	UART	20dBm	-
RHF3M076B	USB	USB	20dBm	14dBm

Table 4-6 MAX output power of HF and LF band

Format:

"[]" means the parameter is omissible together with parameters after it

AT+TEST=RFCFG,[FREQUENCY],[SF],[BANDWIDTH],[TX PR],[RX PR],[TX POWER],[CRC],[IQ],[NET] eg: AT+TEST=RFCFG,866,SF12,125,12,15,14,0N,0FF,0FF

eg. AITIESI-RFCFG,000,3F12,123,12,13,14,0N,0FF

FREQUENCY: 866MHz SpreadFactor: SF12

²⁵ LF Band: Frequency is less than 525MHz

²⁶ HF Band: Frequency is larger than 525MHz

BandWidth: 125KHz
TX Preamble: 12
RX Preamble: 15
Power: 14dBm
CRC: ON
Inverted IQ: OFF
Public LoRaWAN: OFF

Return:

+TEST: RFCFG F:868100000, SF12, BW125K, TXPR:8, RXPR:8, POW:14dBm, CRC:ON, IQ:OFF, PNET:ON

4.36.5 TX LoRa Packet

After enter test mode, user could send LoRa packet through "AT+TEST=TXLRPKT" sub-command. The command format is like below:

```
AT+TEST=TXLRPKT, "HEX STRING"
```

Command sequence to send LoRa packet:

```
// Set test mode
       AT+MODE=TEST
       // Query test mode, check RF configuration
       AT+TEST=?
       // Set RF Configuration
       AT+TEST=RFCFG, [FREQUENCY], [SF], [BANDWIDTH], [TXPR], [RXPR], [POW], [CRC], [IQ], [NET]
       // Send HEX format packet
       AT+TEST=TXLRPKT, "HEX String"
       eg:AT+TEST=TXLRPKT, "00 AA 11 BB 22 CC"
       // Send TEXT format packet
       AT+TEST=TXLRSTR, "TEXT"
       eg:AT+TEST=TXLRSTR, "LoRaWAN Modem"
Return:
       +TEST: TXLRPKT "404EA99000800A00089F6E770959"
       +TEST: TXLRSTR "LoRaWAN Modem"
       +TEST: TX DONE
```

4.36.6 RX LoRa Packet

After enter test mode, user could enter LoRa packet continuous RX mode through RXLRPKT sub-command. Like below:

```
AT+TEST=RXLRPKT
```

Command sequence to receive LoRa packet:

```
// Set test mode
AT+MODE=TEST
// Query test mode, check RF configuration
AT+TEST=?
// Set RF Configuration
AT+TEST=RFCFG,[FREQUENCY],[SF],[BANDWIDTH], [TXPR],[RXPR],[POW],[CRC],[IQ],[NET]
// Enter RX continuous mode
```

RisingHF

AT+TEST=RXLRPKT

Return:

+TEST: LEN:250, RSSI:-106, SNR:10 +TEST: RX 404EA99000800A00089F6E770959

4.36.7 TX Continuous Wave

Before enable TXCW function, right frequency and TX power should be set. Format:

AT+TEST=TXCW

Return:

+TEST: TXCW

4.36.8 TX Continuous LoRa

Before enable TXCLORA function, right frequency and TX power should be set. Format:

AT+TEST= TXCLORA

Return:

+TEST: TXCLORA

4.36.9 RSSI

Read RSSI from a specified channel. Format:

AT+TEST = RSSI, frequency(MHz), [times]

Return:

+TEST: RSSI, average, maximum, minimum

4.36.10 LWDL

LWDL command is designed to test LoRaWAN modem CLASS C function. Use this command, user can easily send data to a working LoRaWAN Class C device.

```
AT+TEST = LWDL, TYPE, "DevAddr", "HEX STRING", [FCNT], [FPORT], [FCTRL]
```

FCNT: HEX
FPORT: Decimal
FCTRL: HEX

Return:

AT+TEST=LWDL,MSG,"009291ad","14 54 54 88 08 93 122 35", 1, 5, 00

+TEST: LWDL "A0AD91920000010005134D37EA53E3023A9F0125D234"

+TEST: LWDL TX DONE

Note: Must use AT+TEST=RFCFG command to set CRC OFF, IQ ON, NET ON before sending LoRaWAN downlink.

4.36.1 Beacon Sniffer

AT+TEST=BEACON command can be used to set AT modem into beacon sniffer mode, which could be useful for server and gateway designer to debug beacon timing. Format:

AT+TEST=BEACON

+TEST: BEACON

When beacon is received one beacon message is returned to host controller.

```
+TEST: BEACON, ms, payload, rssi, snr, ticks, vdd, temp
ms: beacon received time in ms
payload: hex string
rssi: unit dBm
snr: unit dB
ticks: unit 8192Hz
vdd: unit 0.01V
temp: unit 0.01°C
```

Before use Beacon, user also need use AT+TEST=RFCFG command to set CRC OFF, IQ OFF, NET ON, and use AT+DR=band to select correct band, use AT+LW=VER command to select correct LoRaWAN protocol.

Command flow to sniff EU868 beacon:

```
AT+DR=EU868
AT+LW=VER,102B
AT+MODE=TEST
AT+TEST=RFCFG, 869.525, SF9, 125, 8, 8, 20, OFF, OFF, ON
AT+TEST=BEACON

+TEST: BEACON, 232509, 0000804D67475A2800000000000000, -66, 5, 1905042, 320, 2197
+TEST: BEACON, 232509, 0000804D67475A280000000000000, -66, 5, 1905042, 320, 2197
+TEST: BEACON, 360509, 0000004E674732AC0000000000000, -66, 5, 2953807, 319, 2187
+TEST: BEACON, 488510, 0000804E67470A7100000000000000, -66, 5, 4002572, 319, 2223
+TEST: BEACON, 616511, 0000004F6747029B0000000000000, -66, 4, 5051336, 319, 2223
+TEST: BEACON, 744512, 0000804F67473A4600000000000000, -66, 5, 6100101, 319, 2205
```

Note: For beacon frequency hopping band like US915/CN470/AU915, BEACON sniffer mode can only sniff a single selected channel.

4.37 LOG

LOG command is for user debugging purpose, after log is enabled, AT modem will returns extra log message to host controller, check these log could help user locate issue quickly when it happens. Log is turned by default.

Format:

AT+LOG=level // DEBUG/INFO/WARN/ERROR/FATAL/PANIC/QUIET

Enable log:

AT+LOG=DEBUG

Disable log:

AT+LOG=QUIET

Note: if log is enabled it will takes extra energy, for low power application it is recommended to turn off log.

5 Class A/B/C and A/C Different Command

Class A/B/C(v3.1.x) firmware is designed to be backward compatible with Class A/C firmware (v2.1.x), and add new commands to support LoRaWAN class B.

Command
AT+LW=VER
AT+LW=DTR
AT+LW=LCR
AT+LW=LDRO
AT+LW=DCMRX
AT+LW=DUMRX
AT+LW=AFPACK
AT+LW=CHRB
AT+JOIN=time
AT+CMSGHEX (send empty payload)
AT+MSGHEX (send empty payload)
AT+RTC=ZONE
AT+RTC=LEAPSEC
AT+RTC=FULL
AT+TEMP
AT+CLASS=B
AT+BEACON
AT+BEACON=GWGPS
AT+BEACON=INFO
AT+BEACON=DMMUL
AT+TEST=BEACON
AT+LOG

Revision

V1.2 2018-12-15

- + Added V1.0.3 support
- + Added AT+LW=DCMRX
- + Added AT+LW=DUMRX
- + Added AT+LW=AFPACK
- + Added AT+LW=CHRB
- + Added AT+JOIN=time (auto sendding JoinRequest)
- + Added new part number:

RHF76-052CL

RHF0M003-LF20

RHF0M003-HF20

RHF0M010-LF20

RHF0M010-HF20

RHF0M062-LF22

RHF0M062-HF22

- + AT+MSGHEX and AT+CMSGHEX to send empty payload packet
- + Fixed various typos
- + Sync LoRaWAN at modem 3.5.x

V1.1 2018-03-15

- + Added AT+LW=LDRO
- + Sync version 3.2.2

V1.0 2017-12-22

- + Extract AT command from PS01509 v4.4
- + Added AT+LW=VER
- + Added AT+LW=DTR
- + Added AT+LW=LCR
- + Added AT+RTC=ZONE
- + Added AT+RTC=LEAPSEC
- + Added AT+RTC=FULL
- + Added AT+TEMP
- + Added AT+CLASS=B
- + Added AT+BEACON
- + Added AT+TEST=BEACON
- + Added AT+LOG
- + Added Class B band plan description

Please Read Carefully:

Information in this document is provided solely in connection with RisingHF products. RisingHF reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All RisingHF products are sold pursuant to RisingHF's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the RisingHF products and services described herein, and RisingHF assumes no liability whatsoever relating to the choice, selection or use of the RisingHF products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by RisingHF for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN RISINGHF'S TERMS AND CONDITIONS OF SALE RISINGHF DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF RISINGHF PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

RISINGHF PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE RISINGHF PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF RISINGHF HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY RISINGHF AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO RISINGHF PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of RisingHF products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by RisingHF for the RisingHF product or service described herein and shall not create or extend in any manner whatsoever, any liability of RisingHF.

RisingHF and the RisingHF logo are trademarks or registered trademarks of RisingHF in various countries.

Information in this document supersedes and replaces all information previously supplied.

The RisingHF logo is a registered trademark of RisingHF. All other names are the property of their respective owners.

© 2015 - 2018 RISINGHF - All rights reserved

http://www.risinghf.com