

FIRST LEGO LEAGUE CHALLENGE

Engineering Notebook Worksheets

TEAM NAME:

TEAM NUMBER:

Updated: August 2022

Image Credit: FIRST LEGO League Challenge

As you complete the Mission Strategy charts on the next few pages, you will need to know

Mission Evaluation

Name:

- 1. Read the rules and then fill in the information in the chart.
- 2. Use the information to create a Strategy for your team (Page 6)
- 3. Activation Method: How is the mission activated? Push/Pull/Lift/Lower/Deliver?
- 4. Other factors: Are missions in the same location? Require no attachment?

Mission	Location on field	Navigation Easy/Hard	Mission Activation Method	Other Factors to Consider	Points
M01 Innovation Project Model					
M02 Oil Platform					
M03 Energy Storage					
M04 Solar Farm					
M05 Smart Grid					

Mission Evaluation

Name:

- 1. Read the rules and then fill in the information in the chart.
- 2. Use the information to create a Strategy for your team (Page 6)
- 3. Activation Method: How is the mission activated? Push/Pull/Lift/Lower/Deliver?
- 4. Other factors: Are missions in the same location? Require no attachment?

Mission	Location from Launch Near/Far	Navigation Easy/Hard	Activation Method	Other Factors	Points
M06 Hybrid Car					
M07 Wind Turbine					
M08 Watch TV					
M09 Dinosaur Toy					
M10 Power Plant					

Mission Evaluation

Name:

- 1. Read the rules and then fill in the information in the chart.
- 2. Use the information to create a Strategy for your team (Page 6)
- 3. Activation Method: How is the mission activated? Push/Pull/Lift/Lower/Deliver?
- 4. Other factors: Are missions in the same location? Require no attachment?

Mission	Location from Launch Near/Far	Navigation Easy/Hard	Activation Method	Other Factors	Points
M11 Hydro- electric Dam					
M12 Water Reservoir					
M13 Power-to-X					
M14 Toy Factory					
M15 Recharge- able Battery					5

Compare your strategy with others on your team and reach a consensus 1.

Image Credit: FIRST LEGO League Challenge

Image Credit: FIRST LEGO League Challenge

Robot Design

Name:

Instructions:

- 1. Review the rules for the robot game. Are these any rules that will restrict your design? Is there a size limit?
- 2. Think about all the missions your team decided to do. Will it need to go over something or reach high up?
- 3. Think about the paths your team decided to go on. Will it need to line follow? Where will it align?
- 4. Discuss with the rest of your team and then build a base robot to match the features you want and need.

What features
should the robot
have?

What sensors	do
we need?	

What are some mechanisms that can solve the mission?

		8

Robot Testing

Name:

- 1. If you design more than one robot, use this chart to compare them. At the top of each column, describe your robot
- 2. Come up with some basic tests to compare the robot designs. Can this robot move straight accurately? Can it turn consistently? Can it line follow? Can it detect a line? Did the robot move as intended?
- 3. Discuss which robot performed the best to help you pick the best design for your team.

	Robot 1: Wheels: Size: Sensors: Motors:	Robot 2: Wheels: Size: Sensors: Motors:	Robot 3: Wheels: Size: Sensors: Motors:
Move Straight 50cm			
Overall: Speed Balance			

Pseudocode

Name:

- 1. Time to plan. For each path your team picked to go on, write out the pseudocode for the robot. Once the robot launches, how will it travel to the mission model and activate it? E.g. Move forward 30cm, turn 90 degrees left, etc
- 2. Write down each step the robot would take in plain English. Later, programmers can convert this into code
- 3. Add as many rows as needed

Setup	Location of robot in launch:
Step	Instruction
1	
2	
3	
4	
5	
6	
7	
8	

Deal	ide	CO	da
Pseu	Jac)CO	ae

Name:

Step	Instruction

Reliability

Name:

- 1. Run each mission 10 times and see how reliable it was
- 2. Work on your solution until it becomes more reliable
- 3. Use FLLTutorial's Scorer to score your runs

	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Test 7	Test 8	Test 9	Test 10	Total
Ex. M00	Yes	No	No	Yes	No	No	Yes	No	No	Yes	4/10
Doints											
Points											12

Attachment Evolution	Nan	ne:
Date: Mission Name:		
Describe Attachment Feature	es	Image
What change	es we	ere made and why?

Attachment Testing	Name:
Date: Mission Name:	Attachment Tested

	Test 1	Test 2	Test 3
What worked well?			
What did not work?			
Next steps: What will you change or modify?			

Robot Presentation

Name:

- 1. Write a script for your robot design presentation
- 2. Remember to discuss all aspects of the rubric
- 3. Remember to show your robot, explain your code and refer to documentation to demonstrate your iterative design process

Preparing for Judging

Name:

Make sure you communicate all aspects of the rubric. Be as specific as possible, give examples and show evidence.

BEGINNING 1	DEVELOPING 2	ACCOMPLISHED 3	EXCEEDS 4			
1007			How has the team exceeded?			
IDENTIFY - Team had a clearly defined mission strategy and explored building and coding skills they needed.						
No clear mission strategy	Partially clear mission strategy	Fully clear mission strategy				
Some team members learned building and coding skills	Many team members learned building and coding skills	All team members learned building and coding skills				
DESIGN - Team produced innovat	tive designs and a clear workplan, seel	king guidance as needed.				
Minimal evidence of an effective workplan	Some evidence of an effective workplan	A lot of evidence of an effective workplan				
Minimal explanation of robot and code's innovative features	Some explanation of robot and code's innovative features	A lot of explanation of robot and code's innovative features				
CREATE - Team developed an effective robot and code solution matching their mission strategy.						
Limited functionality of robot attachments or sensors	Developing functionality of robot attachments or sensors	Good functionality of robot attachments or sensors				
Unclear explanation of how code makes their robot act	Partially clear explanation of how code makes the robot act	Fully clear explanation of how code makes their robot act				
ITERATE - Team repeatedly tested their robot and code to identify areas for improvement and incorporated the findings into their current solution.						
Minimal evidence of testing their robot and code	Some evidence of testing their robot and code	A lot of evidence of testing their robot and code				
Minimal evidence their robot and code was improved	Some evidence their robot and code was improved	A lot of evidence their robot and code was improved				
COMMUNICATE - Team's explanation of the robot design process was effective and showed how all team members have been involved.						
Unclear explanation of robot design process	Partially clear explanation of robot design process	Fully clear explanation of robot design process				
Clear evidence that some team members involved	Clear evidence that many team members involved	Clear evidence that all team members involved				

Sample Questions	Name:
How did your team divide the work?	
Did everyone learn to build and program?	
How did you test your robot? Did you make	any changes to it?

1	-:	D.,	
Jua	ging	Prepa	aration

Name:

Look at the rubrics. Think about how you will address each area.

IDENTIFY: Explain what your team's strategy is an how you came up with your team's strategy?

DESIGN: What are the key features of your robot and code? What makes it innovative and reliable?

ITERATE: How did you come up with that design? How did you test and modify your code and robot?