Q.1 Let	X be a discrete random variable taking
	8 a., a2, 9 s.t. P(x=an) = km. Also, let
Z = g(x, Y). Then show that:	
$E[Z] = \sum_{n} E[g(a_n, Y)] \times a_n $	
	7 L

(0,1) and also Yn Uniform ((0,1)). Let

W = max (x, y) and Z = min (x, y).

Find the density for (a) W-Z and (b) W+Z.

O.3 Let X and Y be independent and identically distributed (i.i.d.) G(0,1) random variables. Let $Z = a_1X + a_2Y$ and $W = b_1X + b_2Y$, where a_1, a_2, b_1 and b_2 are reals. Find $f_{ZW}(\cdot, \cdot)$.

(G.4) Let X & Y be independent random variables s.f. $X \sim \exp(\lambda_1)$ and $Y \sim \exp(\lambda_2)$ for $\lambda_1, \lambda_2 > 0$. Find $F_Z(\cdot)$ for () Z = aX + Y (2) Z = aX - Y (3) $Z = \frac{X}{Y}$ (4) $Z = \max\{X, Y\}$ and (5) $Z = \min\{X, Y\}$.

Q.5 Let $f_{xy}(x,y) = \begin{cases} 2e^{-(x+y)} & 0 < x < y < \infty \\ 0 & \text{otherwise.} \end{cases}$

Let Z=X+Y and W=Y/x. Prove or disprove: Z and W and independent.

- (0.6) x & Y are identically distributed random variables. Prove or disprove: Cov(x+Y, x-Y) = 0.
- [Q.7] $f_{XY}(x,y) = e^{-3}/y$ for $x \in (0,y) \land y \in (0,\omega)$ $= 0 \quad 0.\omega$. (i) Are $r.v.'s \quad x \land y \quad independent g$ (ii) Compute $E[x^3|Y=y]$.
- 0.8 Let ZNG(O,1). Find Cor(Z,Z2).
- distributed $G(0, \sigma^2)$. Define, $Z = a \times b \times b \times and \quad W = b \times -a \times a$, where

 a, b are non-zero reals.

 By looking at the definitions of Z + w,

 state your opion about whether Z and w are independent. Now, verify your opion with hand analysis.