МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Программирование»

Тема: Условия, циклы, оператор switch

Студент гр. 1304	 Крупин Н. С
Преподаватель	 Чайка К. В.

Санкт-Петербург 2021

Цель работы.

Усвоить на практике использование в языке C условий, циклов, а также оператора выбора switch.

Задание.

Вариант 6.

«Напишите программу, выделив каждую подзадачу в отдельную функцию.

Реализуйте программу, на вход которой подается одно из значений 0, 1, 2, 3 и массив целых чисел размера не больше 100. Числа разделены пробелами. Строка заканчивается символом перевода строки.

В зависимости от значения, функция должна выводить следующее:

0: индекс первого отрицательного элемента. (index first negative)

1 : индекс последнего отрицательного элемента. (index_last_negative)

2 : Найти сумму модулей элементов массива, расположенных от первого отрицательного элемента (включая элемент) и до последнего отрицательного (не включая элемент). (sum_between_negative)

3 : Найти сумму модулей элементов массива, расположенных до первого отрицательного элемента (не включая элемент) и после последнего отрицательного (включая элемент). (sum_before_and_after_negative)

ИНАЧЕ: необходимо вывести строку "Данные некорректны".

Ошибкой в данном задании считается дублирование кода!

Подсказка: функция нахождения модуля числа находится в заголовочном файле stdlib.h стандартной библиотеки языка Си.

При выводе результата не забудьте символ переноса строки».

Выполнение работы.

Фукция main начинается с последовательного считывания входных данных: код задачи от 0 до 3 перехватывается переменной type; статически выделяется память на 100 целочисленных значений, указатель на её начало хранится в переменной агг; далее адрес начала массива передаётся в функцию scan_arr, которая считывает массив и записывает по переданному адресу, возвращая количество задействованных элементов, которое перехватывается переменной count. Далее реализуется вывод результата в зависимости от кода задачи, используется оператор switch, для каждого случая печатается результат работы одной из функций, также проводится примитивная обработка ошибок — в случае ввода несуществующего кода задачи или попытки вывода индекса не присутствующего в массиве отрицательного элемента вызывается функция print_err, печатающая сообщение об ошибке.

Функция scan_arr принимает в качестве аргумента указатель на начало массива arr и записывает в него числа из введённой строки, пока не встретит символ её окончания. Функция использует переменную-счётчик і для хранения текущего индекса элемента и накапливания их количества и символьную переменную gap, хранящую в себе символ, следующий за введённым числом, для возможности его проверки. Функция возвращает количество записанных элементов.

Функция print_err печатает на экран сообщение «Данные некорректны», ничего не возвращает.

Функция index_first_negative принимает в качестве аргументов указатель на начало массива агт и количество его элементов count. Использует переменную-счётчик і для хранения текущего индекса элемента и сохранения после выполнения цикла индекса первого отрицательного элемента, а если такового не окажется, принимает значение count. Функция возвращает индекс первого отрицательного элемента или значение count, если такого не существует.

Функция index_last_negative принимает в качестве аргументов указатель на начало массива агг и количество его элементов count. Использует переменную-счётчик і для хранения текущего индекса элемента и сохранения после выполнения цикла индекса последнего отрицательного элемента, а если такового не окажется, принимает значение -1. Функция возвращает индекс последнего отрицательного элемента или значение -1, если такого не существует.

Функция sum_between_negative принимает в качестве аргументов указатель на начало массива агг и количество его элементов count. Использует переменную-счётчик і для хранения текущего индекса элемента и переменную sum для накопления суммы модулей элементов с индексами от index_first_negative (включительно) до index_last_negative (не включительно), данные значения индексов подсчитываются названными функциями. Функция возвращает сумму модулей элементов в указанном промежутке или значение 0, если промежуток пуст (при единственном отрицательном или их полном отсутствии).

sum_before_and_after_negative Функция принимает В качестве аргументов указатель на начало массива arr и количество его элементов count. Использует переменную-счётчик і для хранения текущего индекса элемента и переменную sum для накопления суммы модулей элементов с индексами index first negative включительно) либо больше меньше (не index_last_negative (включительно), данные значения индексов подсчитываются названными функциями. Функция возвращает модулей элементов в указанных промежутках, а в случае единственного отрицательного элемента или их полном отсутствии – сумму модулей всех элементов массива.

Разработанный программный код см. в приложении А.

Тестирование.

Результаты тестирования представлены в таблице 1. Все результаты соответствуют ожидаемым.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	0 1 -2 3 -4 5 -6 7 8	1	Больше 2 отрицательных.
2.	11-23-45-678	5	
3.	2 1 -2 3 -4 5 -6 7 8	14	
4.	3 1 -2 3 -4 5 -6 7 8	22	
5.	0 -2 3 -4	0	2 отрицательных.
6.	1 -2 3 -4	2	
7.	2 -2 3 -4	5	
8.	3 -2 3 -4	4	
9.	0 1 -2 3	1	1 отрицательный
10.	11-23	1	
11.	2 1 -2 3	0	
12.	3 1 -2 3	6	
13.	0 0 1 2	Данные некорректны	Нет отрицательных.
14.	1012	Данные некорректны	
15.	2012	0	
16.	3012	3	
17.	-1 0 -1 2 -3 4	Данные некорректны	Неверный код задачи.
18.	4 0 -1 2 -3 4	Данные некорректны	
19.	0 1 2 3 4 5 6 7 8 9 10 11 12	99	Массив на 100.
	13 14 15 16 17 18 19 20 21		
	22 23 24 25 26 27 28 29 30		
	31 32 33 34 35 36 37 38 39		
	40 41 42 43 44 45 46 47 48		
	49 50 51 52 53 54 55 56 57		
	58 59 60 61 62 63 64 65 66		
	67 68 69 70 71 72 73 74 75		
	76 77 78 79 80 81 82 83 84		
	85 86 87 88 89 90 91 92 93		
	94 95 96 97 98 99 -100		
	J4 JJ JU J/ JO JJ -100		

Выводы.

Были изучены основные управляющие конструкции языка C, а именно условия, циклы и оператор switch.

Разработана программа, выполняющая считывание с клавиатуры исходных данных и команды пользователя (кода задачи). Для обработки команд пользователя использовался оператор switch, позволяющий также выполнить примитивную проверку корректности введённого кода. Для поиска соответствующих значений в вычисляющих функциях применялись циклы for и условные операторы if. Во избежание возникновения исключительных ситуаций при выводе индекса несуществующего элемента в главной функции добавляется обработка оператором if-else.

Не проведена полная проверка на соответствие введённых данных заявленным требованиям (такая задача не формулировалась, но программа из-за этого становится опасной в применении — например, может обращаться к невыделенной памяти, если будет введено более 100 чисел массива).

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: Krupin_Nikita_lb1.c

```
#include <stdio.h>
#include <stdlib.h> //int abs(int);
#define LIMIT 100 //Limit of array.
int index_first_negative(int* arr, int count){
  for (i = 0; i < count; i++)</pre>
    if (arr[i] < 0) break;</pre>
  return i;
  //If i = count, there aren't negatives.
int index_last_negative(int* arr, int count){
  int i;
  for (i = count-1; i >= 0; i--)
    if (arr[i] < 0) break;
  return i;
  //If i < 0, there aren't negatives.
int sum_between_negative(int* arr, int count){
  int sum = 0;
  for (int i = index_first_negative(arr, count);
                         i < index_last_negative(arr, count); i++)</pre>
    sum += abs(arr[i]);
  return sum;
  //If there aren't negatives or there's only one, sum = 0.
int sum_before_and_after_negative(int* arr, int count){
  int sum = 0;
  for (int i = 0; i < count; i++)</pre>
    if (i < index_first_negative(arr, count) || i >=
                                   index_last_negative(arr, count))
      sum += abs(arr[i]);
  return sum;
  //If there aren't negatives or there's only one, return sum of
                               absolute values all array elements.
}
int scan_arr(int* arr){
  int i; char gap;
  for (i = 0, gap = ' '; gap != ' n'; i++)
    scanf("%d%c", &arr[i], &gap);
  return i;
  //Return count of elements.
}
```

```
void print_err(){
  printf("Данные некорректны\n");
  //Universal error message.
}
int main(){
  //Scan type of task and array of int.
  int type; scanf("%d\n", &type);
  int arr[LIMIT]; int count = scan_arr(arr);
  //Print result of current task.
  switch (type){
    case 0:
      if (index_first_negative(arr, count) < count)</pre>
        printf("%d\n", index_first_negative(arr, count));
      else print_err();
      break;
    case 1:
      if (index_last_negative(arr, count) >= 0)
        printf("%d\n", index_last_negative(arr, count));
      else print_err();
      break;
    case 2:
      printf("%d\n", sum_between_negative(arr, count));
      break;
    case 3:
      printf("%d\n", sum_before_and_after_negative(arr, count));
      break;
    default:
      print_err();
  }
  return 0;
}
```