CSES Problem Set

Dice Combinations

TASK | SUBMIT | RESULTS | STATISTICS | TESTS | QUEUE

Submission details

Task:	Dice Combinations	
Sender:	glali1978	
Submission time:	2024-11-20 22:06:09 +0200	
Language:	Python3 (CPython3)	
Status:	READY	
Result:	RUNTIME ERROR	

Test results A

test	verdict	time	
#1	ACCEPTED	0.02 s	<u>>></u>
#2	ACCEPTED	0.02 s	<u>>></u>
#3	ACCEPTED	0.02 s	<u>>></u>
#4	ACCEPTED	0.02 s	<u>>></u>
#5	ACCEPTED	0.02 s	<u>>></u>
#6	ACCEPTED	0.02 s	<u>>></u>
#7	ACCEPTED	0.02 s	<u>>></u>
#8	ACCEPTED	0.02 s	<u>>></u>
#9	ACCEPTED	0.02 s	<u>>></u>
#10	ACCEPTED	0.02 s	<u>>></u>
#11	ACCEPTED	0.02 s	<u>>></u>
#12	ACCEPTED	0.02 s	<u>>></u>
#13	ACCEPTED	0.56 s	<u>>></u>
#14	RUNTIME ERROR	0.63 s	<u>>></u>
#15	RUNTIME ERROR	0.63 s	<u>>></u>
#16	RUNTIME ERROR	0.62 s	<u>>></u>
#17	RUNTIME ERROR	0.63 s	<u>>></u>
#18	ACCEPTED	0.02 s	<u>>></u>
#19	RUNTIME ERROR	0.63 s	<u>>></u>
#20	ACCEPTED	0.02 s	<u>>></u>

Code A

```
1 MOD = 10 ** 9 + 7
   sys.setrecursionlimit(10**6) # Allitsuk a maximális rekurziós mélységet magasabi
  # Memorization tároló az eredményekhez
  nemo = {}
10 def kiszamitas(n):
       # Alapeset: Az összeg 0 elérésének egyetlen módja van (nem dobunk semmít)
11
12
       if n == 0:
          return 1
13
       # Ha a szám kisebb, mint 0, nincs lehetséges megoldás
14
15
      if n < 0:
16
          return 0
       # Ha az eredmény már ki van számolva, térjünk vissza a tárolt értékkel
17
      if n in memo:
18
19
          return memo[n]
20
21
      # Számítsuk ki az n-hez vezető összes lehetőséget az utolsó legfeljebb 6 lépe
       memo[n] = 0
      for i in range(1, 7):
```

Dynamic Programming Dice Combinations ~ Minimizing Coins -Coin Combinations I -Coin Combinations II -Removing Digits Grid Paths -Book Shop Array Description Your submissions 2024-11-20 22:06:09 × 2024-11-20 22:03:39 2024-09-20 16:08:10

#20 ACCEPTED 0.02 s

Code A

```
1 MOD = 10 ** 9 + 7
   import sys
   sys.setrecursionlimit(10**6) # Állítsuk a maximális rekurziós mélységet magasabi
6 # Memorization tároló az eredményekhez
  nemo = {}
10 def kiszamitas(n):
11
       # Alapeset: Az összeg 0 elérésének egyetlen módja van (nem dobunk semmit)
12
13
           return 1
       # Ha a szám kisebb, mint 0, nincs lehetséges megoldás
14
15
       if n < 0:
16
           return 0
       # Ha az eredmény már ki van számolva, térjünk vissza a tárolt értékkel
17
18
       if n in memo:
           return memo[n]
19
20
21
22
23
24
25
       # Számítsuk ki az n-hez vezető összes lehetőséget az utolsó legfeljebb 6 lépe
       memo[n] = 0
for i in range(1, 7):
           memo[n] += kiszamitas(n - i)
memo[n] %= MOD # Tartsuk a számokat a MOO tartományon belül
26
27
28
       return memo[n]
29
30
31 n = int(input().strip())
32 print(kiszamitas(n))
                                                                                     >
```

SHARE CODE TO OTHERS

Test details A

Test 1

Verdict: ACCEPTED

Test 2

Verdict: ACCEPTED

