Bilgisayar Bilimlerinde Hesaplama Kuramı

Hüseyin Hışıl

Bilgisayar Mühendisliği Bölümü Mühendislik Fakültesi Yaşar Üniversitesi

8 Mart 2012 / İzmir

Bilgisayar için en basit model

2/38

Alfabe, sözcük, kurallı dil (formal language)

Tanım

- Σ alfabesi: Sonlu sayıda elemana (karaktere) sahip küme
- ullet Sözcük: arepsilon (boş sözcük) de dahil olmak üzere Σ 'dan sıralı olarak seçilen sonlu sayıda eleman
- Kurallı dil: Σ üzerine tanımlı sözcüklerden oluşan küme
- Σ*: Σ üzerine tanımlı tüm sözcüklerin oluşturduğu kurallı dil
- Σⁿ: Σ üzerine tanımlı n tane karakterden oluşan tüm sözcüklerin oluşturduğu kurallı dil

Örnek

 $\Sigma = \{a, b\}$ olsun. Σ üzerine a ile başlayıp en fazla üç karakterden oluşan tüm sözcükleri içeren L_1 dili tanımlanmıştır. L_1 dilini belirtiniz.

 $L_1 = \{a, aa, ab, aaa, aab, aba, abb\}.$

Tanım

 Σ bir alfabe olsun. Σ üzerine tanımlanmış L ve K dilleri için;

• Birbirine bağlama:

$$LK = \{xy \mid x \in L \text{ and } y \in K\}.$$

• Birleştirme:

$$L \cup K = \{x \mid x \in L \text{ or } x \in K\}.$$

• Kleene tamamlaması :

 $L^* = \{x \mid x, L \text{ dilinden birbiriyle bağlanmış sonlu sayıda sözcük}\}.$

Örnek

$$L_1 = \{ \mho\mho, \clubsuit, \clubsuit\mho \}, L_2 = \{ \spadesuit, \clubsuit \spadesuit \}$$
 olsun.

 $L_1L_2 = ?$

2 $L_1 \cup L_2 = ?$

Örnek

$$L_1 = \{ \mho\mho, \clubsuit, \clubsuit\mho \}, L_2 = \{ \spadesuit, \clubsuit \spadesuit \}$$
 olsun.

2 $L_1 \cup L_2 = ?$

Örnek

$$L_1 = \{ \mho\mho, \clubsuit, \clubsuit\mho \}, L_2 = \{ \spadesuit, \clubsuit \spadesuit \}$$
 olsun.

2 $L_1 \cup L_2 = ?$

- $2 L_1 \cup L_2 = \{ UU, \clubsuit, \clubsuit U, \spadesuit, \clubsuit \spadesuit \}.$

Örnek

$$L_1 = \{ \mho\mho, \clubsuit, \clubsuit\mho \}, L_2 = \{ \spadesuit, \clubsuit \spadesuit \}$$
 olsun.

2 $L_1 \cup L_2 = ?$

- $2 L_1 \cup L_2 = \{ UU, \clubsuit, \clubsuit U, \spadesuit, \clubsuit \spadesuit \}.$
- $(L_1 \cup L_2)^* =$

 $\{x \mid x, L_1 \cup L_2 \text{ dilinden birbiriyle bağlanmış sonlu sayıda sözcük}\}.$

Hesaplayıcı (Finite state machine - FSM)

Hesaplayıcının özellikleri:

- Kural bağımlı / Güdümlü (Deterministic)
- Araç / Düzenek / Makine (Machine)

- Aşama / Evre (State)
- Sonlu (Finite)

Tanım

Hesaplayıcı K

- Q: Sonlu sayıda eleman (evre) içeren bir küme,
- ullet Σ alfabesi : Sonlu sayıda karakterden oluşan bir küme,
- δ : $Q \times \Sigma \rightarrow Q$ şeklinde tanımlanmış bir fonksiyon,
- q₀ ∈ Q: başlangıç evresi,
- F ⊆ Q: Sonlu sayıda bitiş evresi

olmak üzere $K := (Q, \Sigma, \delta, q_0, F)$ ile tanımlanan soyut bir makinedir.

Hesaplayıcı nasıl çalışır?

Örnek

 δ parçalı fonksiyonu

•
$$\delta(q_0,0) = q_0$$

•
$$\delta(q_1,0) = q_0$$
,

•
$$\delta(q_2,0) = q_2$$
,

•
$$\delta(q_0, 1) = q_1$$

•
$$\delta(q_1,1) = q_2$$
,

•
$$\delta(q_2,1) = q_1$$

olmak üzere

$$K = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$$

olsun. K hesaplayıcısı 01 sözcüğünü kabul eder mi?

$$\delta(q_0,0) = q_0,$$

$$\delta(q_0,1) = q_1.$$

q₁ bitiş evresi olduğu için 01 sözcüğü kabul edilir.

Hesaplayıcı nasıl çalışır?

Örnek

 δ parçalı fonksiyonu

•
$$\delta(q_0,0) = q_0$$
,

•
$$\delta(q_2,0) = q_2$$
,

•
$$\delta(q_0, 1) = q_1$$
,

•
$$\delta(q_1,1) = q_2$$
,

•
$$\delta(q_2,1) = q_1$$

olmak üzere

$$K = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$$

olsun. K hesaplayıcısı 110 sözcüğünü kabul eder mi?

$$\delta(q_0,1) = q_1,$$

$$\delta(q_1,1) = q_2,$$

q₂ bitiş evresi olmadığı için 110 sözcüğü kabul edilmez.

Hesaplayıcı nasıl çalışır?

K hesaplayıcısı 10011101 sözcüğünü kabul eder mi?

$$q_0 \ 1 \ q_1 \ 0 \ q_0 \ 0 \ q_0 \ 1q_1 \ 1q_2 \ 1 \ q_1 \ 0 \ q_0 \ 1 \ q_1$$

Kabul edilir.

Serbest Hesaplayıcı (Non-deterministic FSM)

Serbest hesaplayıcının özellikleri:

- Kural bağımsız / Güdümsüz / Serbest (Non-Deterministic)
- Sonlu

- Aşama / Evre
- Araç / Makine

Tanım

Serbest hesaplayıcı S

• δ : Q × ($\Sigma \cup \{\epsilon\}$) \rightarrow 2^Q şeklinde tanımlanmış bir fonksiyon

olmak üzere

$$S := (Q, \Sigma, \delta, q_0, F)$$

ile tanımlanan soyut bir makinedir.

Not: 2^Q ifadesi Q kümesinin özaltkümesini temsil etmektedir.

Serbest hesaplayıcının (kural-bağımlı) hesaplayıcıdan farkı nedir?

 $lack \delta$ 'nın değer kümesi Q'dan seçilen bir eleman olarak değil Q'nun bir altkümesi olarak verilmiştir. Örneğin,

$$\delta(q_1,a)=\{{\color{red}q_0,q_2}\}$$

- δ fonksiyonunun ikinci parametresi olarak ε verilebilir. Bu serbest hesaplayıcının karakter getirmeden bir evreden başka bir evreye geçebileceğine ya da aynı evrede kalmaya devam edebileceğine işaret eder.
- § $\emptyset \in 2^Q$ bulunulan evreden geçiş yapılabilecek hiçbir evre olmayabileceğini gösterir.
- Verilen bir sözcük, bitiş evresine ulaşmanın bir yolu varsa kabul edilir.

Serbest hesaplayıcı nasıl çalışır?

Örnek

Verilen serbest hesaplayıcı tarafından

- ε, 10, 1010, 101010 sözcükleri kabul edilir.
- 110, 10100 sözcükleri kabul edilmez.

Hesaplayıcı için genişletilmiş gösterim

 δ fonksiyonunun yardımı ile δ^* fonksiyonunu tanımlayalım.

Tanım

$$\delta^* \colon \mathsf{Q} \times \mathsf{\Sigma}^* \to \mathsf{Q},$$

$$\delta^*(q,\varepsilon) = q,$$
 [TEMEL] $\delta^*(q,wa) = \delta(\delta^*(q,w),a)$ [ÖZYİNELEME]

öyleki q ∈ Q, w ∈ Σ *, a ∈ Σ şeklinde tanımlanmış bir fonksiyon olsun.

Hesaplayıcı için genişletilmiş gösterim

Tanımladığımız δ^* fonksiyonunu ile K hesaplayıcısını kullanalım.

$$\begin{split} \delta^*(q, \text{11001}) &= \delta(\delta^*(q_0, \text{1001}), 1) \\ &= \delta(\delta(\delta^*(q_0, \text{001}), 1), 1) \\ &= \delta(\delta(\delta(\delta^*(q_0, \text{01}), 1), 1), 0) \\ &= \delta(\delta(\delta(\delta(\delta^*(q_0, 1), 1), 1), 0), 0) \\ &= \delta(\delta(\delta(\delta(\delta(\delta^*(q_0, \varepsilon), 1), 1), 0), 0), 1) \\ &= \delta(\delta(\delta(\delta(\delta(q_0, 1), 1), 0), 0), 1) \\ &= \delta(\delta(\delta(\delta(q_1, 1), 0), 0), 1) \\ &= \delta(\delta(\delta(q_2, 0), 0), 1) \\ &= \delta(\delta(q_2, 1)) \\ &= q_1 \end{split}$$

Hesaplayıcının kabul ettiği dil

Kural-bağımlı ya da serbest

$$M := (Q, \Sigma, \delta^*, q_0, F)$$

hesaplayıcısının kabul ettiği dili tanımlayalım.

Tanım (M hesaplayıcısının kabul ettiği dil)

$$L(M) := \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}.$$

Hesaplayıcıların eşdeğerliği

Tanım

 M_1 ve M_2 hesaplayıcıları verilsin.

 $L(M_1) = L(M_2)$ ise M_1 ve M_2 eşdeğer hesaplayıcılar olarak nitelenir.

Kuram

S serbest hesaplayıcı ve L(S) verilsin.

L(S) = L(M) olacak şekilde bir kural-bağımlı hesaplayıcı M vardır.

Sonuç: Kural-bağımlı hesaplayıcı ve serbest hesaplayıcı eşdeğerdir.

Düzenli dil (Regular language)

Tanım

L bir dil olmak üzere eğer

L dilini kabul eden bir hesaplayıcı tanımlanabiliyor

ise

L düzenli bir dildir.

Not : $p \to q$ şeklindeki mantıksal ifadeler matematiksel tanımlara özel olarak $p \leftrightarrow q$ olarak yorumlanır.

Düzenli dili tanımlayan hesaplayıcı(lar)

Örnek

 $L := \{awa: w \in \{a, b\}^*\}$ verilsin.

L dilinin düzenli olduğunu gösteriniz.

Hesaplayıcının kabul ettiği (düzenli) dil

Örnek

Şekilde verilen K hesaplayıcısının kabul ettiği (düzenli) dili bulunuz.

$$L(K) = L(\mathbf{a}^*\mathbf{b}).$$

Not: a*b şeklinde bir anlatımı henüz tanımlamadık.

Düzenli anlatım (Regular expression)

Tanım

 Σ bir alfabe olsun.

- **(1) [TEMEL]** \emptyset , ε , $a \in \Sigma$ düzenli anlatımdır.
- [ÖZYİNELEME] Eğer r₁ ve r₂ düzenli anlatım ise
 - $(r_1|r_2)$ ile gösterilen r_1 ya da r_2 ,
 - $(r_1 r_2)$ ile gösterilen r_1 'i takip eden r_2 ,
 - (r_1^*) ile gösterilen değişken sayıda r_1 'in birbirini takip etmesi anlatımları da düzenli anlatımdır.
- [SINIRLAMA] Bu iki kural dışında kalan hiçbir anlatım düzenli anlatım değildir.

Düzenli anlatım ile tanımlanan diller

Tanım

Düzenli anlatım q ile tanımlanan L(q) dili aşağıda belirtilen kurallara göre oluşturulur.

- **① [TEMEL]** $L(\emptyset) = \emptyset$, $L(\varepsilon) = \{\varepsilon\}$, $\forall a \in \Sigma, L(a) = \{a\}$.
- [ÖZYİNELEME]

 - $2 L(q|r) = L(q) \cup L(r),$
 - 3 $L(q^*) = (L(q))^*$.

Düzenli anlatım ile tanımlanan diller

Örnek

 $\{a,b\}$ alfabesi üzerine tanımlanmış $L(a^*b(a|b)^*)$ dilindeki sözcükleri örnekleyiniz.

b, ab, abbb, abaaa, ababba.

$$L(a^*b(a|b)^*) = L(a^*)L(b)L((a|b)^*)$$

$$= (L(a))^*L(b)(L(a|b))^*$$

$$= (L(a))^*L(b)(L(a) \cup L(b)))^*$$

$$= \{a\}^*\{b\}(\{a\} \cup \{b\})^*.$$

Düzenli anlatım, düzenli dil ve hesaplayıcıların ilişkisi

Kuram

r bir düzenli anlatım olsun.

L(r) dilini kabul eden bir hesaplayıcı vardır.

Dolayısıyla, L(r) düzenli bir dildir.

Kuram

T bir düzenli dil olsun.

T = L(r) olacak şekilde bir düzenli anlatım vardır.

Genel bakış

Geride bıraktığımız sunularda

- Kurallı ve düzenli dili tanımladık.
- Bilgisayar için soyut bir model olabileceğine inandığımız hesaplayıcıyı tanımladık.
- Hesaplama yapmanın anlamına dair sormak istediğimiz sorulara cevap araken mantık ilkelerini kullanabileceğimiz bir altyapı hazırladık.

Temel Kuramlar

Kuram

 L/Σ , düzenli anlatımla ya da hesaplıcıyla tanımlanan düzenli bir dil olsun.

Seçilen $w \in \Sigma^*$ sözcüğü L dilinin elemanı olup olmadığını belirleyecek sonlu sayıda adımla ifade edilebilen bir yöntem (algoritma) vardır.

Kanıt.

L dilini tanımlayan hesaplayıcı ile *w* sözcüğünün kabul edilip edilmeğini sınanır.

Temel Kuramlar

Kuram

 L/Σ herhangi bir düzenli dil olsun.

L dilinin boş, sonlu veya sonsuz küme olduğunu sınacak bir algoritma vardır.

Kanıt.

- L dilini tanımlayan hesaplayıcı geçiş diyagramı olarak temsil edilir.
- Eğer başlangıç evresinden bitiş evresine bir bağlantı bulunmuyorsa $L=\emptyset$ kanıtlanmış olur.
- Eğer başlangıç evresinden bitiş evresine bir bağlantı bulunuyorsa $L \neq \emptyset$ kanıtlanmış olur.
- $L \neq \emptyset$ durumunda geçiş diyagramı bir döngü içeriyorsa L sonsuz kümedir; döngü içermiyorsa L sonlu kümedir.

 $L = \{a^n b^n : n \ge 0\}$ bir düzenli dil midir? Cevap : Düzenli dil değildir!

 $L = \{a^n b^n : n \ge 0\}$ bir düzenli dil midir? Cevap : Düzenli dil değildir!

Olmayana ergi yöntemi ile ispatlayalım.

① L dilinin düzenli olduğunu varsayalım. O halde $M = (Q, a, b, \delta, q_0, F)$ gibi tanımlabilecek bir hesaplayıcı vardır.

 $L = \{a^n b^n : n \ge 0\}$ bir düzenli dil midir? Cevap : Düzenli dil değildir!

- 1 L dilinin düzenli olduğunu varsayalım. O halde $M = (Q, a, b, \delta, q_0, F)$ gibi tanımlabilecek bir hesaplayıcı vardır.
- $i=1,2,3,\ldots$ için $\delta^*(q_0,a^i)$ ifadesini inceleyelim. M hesaplayıcısında sonlu sayıda evre bulunmasına karşılık sınırsız sayıda i değeri bulunmaktadır.

 $L = \{a^n b^n : n \ge 0\}$ bir düzenli dil midir? Cevap : Düzenli dil değildir!

- ① L dilinin düzenli olduğunu varsayalım. O halde $M = (Q, a, b, \delta, q_0, F)$ gibi tanımlabilecek bir hesaplayıcı vardır.
- $i=1,2,3,\ldots$ için $\delta^*(q_0,a^i)$ ifadesini inceleyelim. M hesaplayıcısında sonlu sayıda evre bulunmasına karşılık sınırsız sayıda i değeri bulunmaktadır.
- **3** O halde $m \neq n$ olacak şekilde $\delta^*(q_0, a^n) = q$ ve $\delta^*(q_0, a^m) = q$ durumunun mutlaka oluşacaktır.

 $L = \{a^n b^n : n \ge 0\}$ bir düzenli dil midir? Cevap : Düzenli dil değildir!

- ① L dilinin düzenli olduğunu varsayalım. O halde $M = (Q, a, b, \delta, q_0, F)$ gibi tanımlabilecek bir hesaplayıcı vardır.
- $i=1,2,3,\ldots$ için $\delta^*(q_0,a^i)$ ifadesini inceleyelim. M hesaplayıcısında sonlu sayıda evre bulunmasına karşılık sınırsız sayıda i değeri bulunmaktadır.
- **3** O halde $m \neq n$ olacak şekilde $\delta^*(q_0, a^n) = q$ ve $\delta^*(q_0, a^m) = q$ durumunun mutlaka oluşacaktır.
- **1** M hesaplayıcısı a^nb^n sözcüğünü kabul ettiğine göre $\delta^*(q,b^n)=q_f\in F$.

 $L = \{a^n b^n : n \ge 0\}$ bir düzenli dil midir? Cevap : Düzenli dil değildir!

- ① L dilinin düzenli olduğunu varsayalım. O halde $M = (Q, a, b, \delta, q_0, F)$ gibi tanımlabilecek bir hesaplayıcı vardır.
- $i=1,2,3,\ldots$ için $\delta^*(q_0,a^i)$ ifadesini inceleyelim. M hesaplayıcısında sonlu sayıda evre bulunmasına karşılık sınırsız sayıda i değeri bulunmaktadır.
- **3** O halde $m \neq n$ olacak şekilde $\delta^*(q_0, a^n) = q$ ve $\delta^*(q_0, a^m) = q$ durumunun mutlaka oluşacaktır.
- **③** *M* hesaplayıcısı a^nb^n sözcüğünü kabul ettiğine göre $\delta^*(q,b^n) = q_f \in F$. O halde $\delta^*(q_0,a^mb^n) = \delta^*(\delta^*(q_0,a^m),b^n) = \delta^*(q,b^n) = q_f$.

 $L = \{a^n b^n : n \ge 0\}$ bir düzenli dil midir? Cevap : Düzenli dil değildir!

- ① L dilinin düzenli olduğunu varsayalım. O halde $M = (Q, a, b, \delta, q_0, F)$ gibi tanımlabilecek bir hesaplayıcı vardır.
- $i=1,2,3,\ldots$ için $\delta^*(q_0,a^i)$ ifadesini inceleyelim. M hesaplayıcısında sonlu sayıda evre bulunmasına karşılık sınırsız sayıda i değeri bulunmaktadır.
- ③ O halde $m \neq n$ olacak şekilde $\delta^*(q_0, a^n) = q$ ve $\delta^*(q_0, a^m) = q$ durumunun mutlaka oluşacaktır.
- **3** *M* hesaplayıcısı a^nb^n sözcüğünü kabul ettiğine göre $\delta^*(q,b^n) = q_f \in F$. O halde $\delta^*(q_0,a^mb^n) = \delta^*(\delta^*(q_0,a^m),b^n) = \delta^*(q,b^n) = q_f$. *M* hesaplayıcısının a^mb^n sözcüğünü kabul etmesi bir çelişkidir.

Nereye vardık?

Hesaplamanın doğasına ilişkin birçok soruyu cevaplayabilmesine karşın

hesaplayıcılar,

bilgisayarı soyut olarak modellemek için

yetersizdir!

Peki şimdi ne olacak?

Bilgisayarın soyut modeli var mıdır?

Geliştirilen diğer modeller:

- Düzenli gramer. YETERSİZ
- Bağlam-bağımsız diller (Context-free languages). YETERSİZ
- Bellekli hesaplayıcılar (Pushdown automata). YETERSİZ
- ...
- Turing makinesi. YETERSİZLİĞİ İSPATLANAMAMIŞTIR!
- ...

Daha fazla bilgi için bkz. Chomsky'nin sınıflandırması.

Alan Turing (1912-1954)

Matematik, mantık, kriptografi, hesaplama alanlarında çalışmış İngiliz bilimadamı

http://upload.wikimedia.org/wikipedia/en/c/c8/Alan_Turing_photo.jpg

Turing Makinesi

Tanım

Turing Makinesi T

- Q: Sonlu sayıda eleman (evre) içeren bir küme,
- Γ alfabesi: Sonlu sayıda karakterden oluşan bir küme,
- Σ alfabesi: Sonlu sayıda karakterden oluşan bir küme

öyleki
$$\Sigma \subseteq \Gamma - \{\Box\}$$
,

- δ : $Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ şeklinde tanımlanmış bir fonksiyon,
- $\square \in F$: özel olarak tanımlanmış boşluk karakteri,
- $q_0 \in Q$: başlangıç evresi,
- F ⊆ Q: Sonlu sayıda bitiş evresi olmak üzere

$$T := (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$$

ile tanımlanan soyut bir makinedir.

Turing Makinesi

Turing Makinesi - Bilgisayar Benzerliği

Turing Makinesi	Bilgisayar
Г	Olası atama değerleri
δ	Program
q_0	Boot sector
L,R	İşlemci komutları
Sözcük bandı	Bellek ve Giriş/Çıkış Aygıtı

Turing Makinesi Nasıl Çalışır?

 $\{a,b\}$ alfabesi üzerine tanımlanan $\{a^nb^n\colon n\ge 1\}$ dilini kabul eden Turing makinesi aşağıda örneklenmiştir:

$$\delta(q_0,a)=(q_1,x,R), \qquad \delta(q_2,y)=(q_2,y,L), \qquad \delta(q_3,y)=(q_3,y,R), \ \delta(q_1,a)=(q_1,a,R), \qquad \delta(q_2,a)=(q_2,a,L), \qquad \delta(q_3,\Box)=(q_4,\Box,R). \ \delta(q_1,y)=(q_1,y,R), \qquad \delta(q_2,x)=(q_0,x,R), \ \delta(q_1,b)=(q_2,y,L), \qquad \delta(q_0,y)=(q_3,y,R),$$

olmak üzere

$$T := \{ \{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \{a, b, x, y, \square\}, \delta, q_0, \{q_4\} \}.$$

T makinesini sınamak için aabb sözcüğünü kullanalım:

 $q_0aabb \vdash xq_1abb \vdash xaq_1bb \vdash xq_2ayb \vdash q_2xayb \vdash xq_0ayb \vdash xxq_1yb \vdash xxyq_1b \vdash xxq_2yy \vdash xq_2xyy \vdash xxq_0yy \vdash xxyq_3y \vdash xxyyq_3 \Box \vdash xxyy\Box q_4\Box$.

Hesaplama tanımı ve Church-Turing Tezi

Tanım

T bir Turing makinesi olsun.

T'ti bitiş evresive getiren bir sözcük için evreler arasında yapılan geçişlerin tamamına hesaplama denir.

Church-Turing tezi.

Mekanik olarak yapılabilen her hesaplamayı yapabilecek bir Turing makinesi vardır.

Not: Church-Turing tezi hesaplamanın tanımı gereği bir tezden ziyade tanım hatta aksiyom olarak değerlendirilmektedir.

Turing Makinesi Neyi Hesaplayamaz?

Kuram

Bir Turing makinesinin verilen bir sözcük ile bitiş evresine ulaşıp ulaşamayacağını belirleyebilecek bir Turing makinesi yoktur.

Not: Turing makinesinin sınırsız işlem gücüyle çözemeyeceği birçok problem tanımlanmıştır.

Diğer konular

- Hesaplama Analizi
 - \triangleright $O(g(n)), \Omega(g(n)), \Theta(g(n)).$
- Karmaşıklık Teorisi
 - ▶ P, NP, NP-Bütün (NP-Complete), NP-Zor (NP-Hard)
- P sınıfı NP sınıfına eşdeğer midir?

NP-Bütün Prolemlerin Tanımlandığı Bazı Alanlar

- Graph theory (Graph coloring)
- Network design (Traveling salesman)
- Storage and retrieval (Dynamic storage allocation)
- Sequencing and scheduling (Multiprocessor scheduling)
- Mathematical programming (Knapsack)
- Algebra and number theory (Algebraic equations over any finite field.)
- Games and puzzles (Sudoku, Tetris)
- Logic (Boolean satisfiability)
- Automata and language theory (Reduction of incompletely specified automata)
- Program optimization (Register sufficiency for loops)

Kaynakça:

Peter Linz, "An Introduction to Formal Languages and Automata", Jones and Barlett Publishers, 2001.