MOwNiT - laboratorium 3 Rozwiązywanie równań i układów równań nieliniowych

Ćwiczenie zostało wykonane w języku C++, kompilowane przy użyciu gcc, poleceniem g++, testy przeprowadzane były na laptopie wyposażonym w Intel Core i5-7200U i 8GB RAM, na systemie Linux.

1. Treść zadania:

Stosując metodę Newtona oraz metodę siecznych wyznacz pierwiastki równania f(x) = 0 w zadanym przedziale [a, b]. Dla metody Newtona wybierz punkty startowe rozpoczynając od wartości końców przedziału, zmniejszając je o 0.1 w kolejnych eksperymentach numerycznych. Odpowiednio dla metody siecznej jeden z końców przedziału stanowić powinna wartość punktu startowego dla metody Newtona, a drugi – początek, a następnie koniec przedziału [a, b].

Porównaj liczbę iteracji dla obu tych metod (dla różnych dokładności ρ), stosując jako kryterium stopu:

1)
$$|x^{(i+1)} - x^{(i)}| < \rho$$

2)
$$|f(x^{(i)})| < \rho$$

W mojej wersji zadania funkcja f oraz przedział [a, b] przyjmują postać:

$$f(x) = (x - 1) * e^{-16x} + x^{14}$$

 $[a, b] = [0.2, 2.5]$

Używając narzędzia WolframAlpha wyznaczyłem wykres funkcji f i wyliczyłem jej miejsca zerowe.

Rys 1: Wykres funkcji f(x) na przedziale [0.2, 2.5]

Aby łatwo zaobserwować przebieg funkcji w pobliżu miejsca zerowego wyznaczyłem również wykres f(x) na przedziale [0.2, 0.8].

Rys 2: Wykres funkcji f(x) na przedziale [0.2, 0.8]

Funkcja f na zadanym przedziale ma dokładnie jedno miejsce zerowe: $x_0 \approx 0.522247$

Eksperyment wykonałem dla każdej kombinacji opisanych w zadaniu miejsc startowych metod siecznych i Newtona. W każdym przypadku badałem liczbę iteracji potrzebną do spełnienia warunku stopu i wartość wyliczonego miejsca zerowego (wyliczone x_0). Obliczenia wykonywane były dla ρ = 0.0001, ρ = 1e-07, ρ = 1e-10, oddzielnie dla obu warunków stopu. Warunek o przeciwnych znakach funkcji w punktach startowych metody siecznych, zgodnie z poleceniem, nie był sprawdzany.

Tabela 1: Liczba iteracji i wyliczone miejsce zerowe funkcji w zależności od punktu startowego i przyjętej dokładności ρ. Do obliczeń wykorzystano **metodę Newtona** oraz **pierwszy warunek stopu**.

punkt $\rho = 0.0001$		ŀ	o = 1e-07	ρ = 1e-10		
startowy metody	liczba iteracji	wyliczone x ₀	liczba iteracji	,		wyliczone x ₀
2.5	23	0.522253	24	0.522247	25	0.522247
2.4	23	0.522247	23	0.522247	24	0.522247
2.3	22	0.522249	23	0.522247	23	0.522247
2.2	21	0.522284	22	0.522247	23	0.522247

2.1	21	0.522247	22	0.522247	22	0.522247
2.0	20	0.522252	21	0.522247	22	0.522247
1.9	19	0.522289	20	0.522247	21	0.522247
1.8	19	0.522247	20	0.522247	20	0.522247
1.7	18	0.522248	19	0.522247	19	0.522247
1.6	17	0.522252	18	0.522247	18	0.522247
1.5	16	0.522259	17	0.522247	18	0.522247
1.4	15	0.522267	16	0.522247	17	0.522247
1.3	14	0.522267	15	0.522247	16	0.522247
1.2	13	0.522258	14	0.522247	15	0.522247
1.1	12	0.52225	13	0.522247	13	0.522247
1.0	11	0.522247	12	0.522247	12	0.522247
0.9	9	0.522272	10	0.522247	11	0.522247
0.8	8	0.522247	9	0.522247	9	0.522247
0.7	6	0.522248	7	0.522247	7	0.522247
0.6	4	0.522247	5	0.522247	5	0.522247
0.5	2	0.522247	3	0.522247	3	0.522247
0.4	4	0.522247	5	0.522247	5	0.522247
0.3	6	0.522247	7	0.522247	7	0.522247
0.2	7	0.522264	8	0.522247	9	0.522247

Tabela 2: Liczba iteracji i wyliczone miejsce zerowe funkcji w zależności od punktu startowego i przyjętej dokładności ρ. Do obliczeń wykorzystano **metodę Newtona** oraz **drugi warunek stopu**.

punkt startowy	ρ = 0.0001		ŀ	o = 1e-07	ρ = 1e-10		
metody	liczba iteracji	wyliczone x ₀	liczba iteracji	wyliczone x ₀	liczba iteracji	wyliczone x ₀	
2.5	21	0.537183	23	0.522253	24	0.522247	

2.4	21	0.527046	23	0.522247	24	0.522247
2.3	20	0.534289	22	0.522249	23	0.522247
2.2	20	0.525223	22	0.522247	22	0.522247
2.1	19	0.52991	21	0.522247	22	0.522247
2.0	18	0.536914	20	0.522252	21	0.522247
1.9	18	0.525418	20	0.522247	20	0.522247
1.8	17	0.528647	19	0.522247	20	0.522247
1.7	16	0.532638	18	0.522248	19	0.522247
1.6	15	0.536647	17	0.522252	18	0.522247
1.5	14	0.539915	16	0.522259	17	0.522247
1.4	14	0.524445	16	0.522247	16	0.522247
1.3	13	0.524445	15	0.522247	15	0.522247
1.2	11	0.539622	13	0.522258	14	0.522247
1.1	10	0.535336	12	0.52225	13	0.522247
1.0	9	0.529719	11	0.522247	12	0.522247
0.9	8	0.524723	10	0.522247	10	0.522247
0.8	6	0.529538	8	0.522247	9	0.522247
0.7	4	0.533181	6	0.522248	7	0.522247
0.6	2	0.531382	4	0.522247	5	0.522247
0.5	1	0.522566	2	0.522247	2	0.522247
0.4	2	0.505723	4	0.522247	5	0.522247
0.3	4	0.514236	6	0.522247	7	0.522247
0.2	6	0.520037	7	0.522264	8	0.522247

Tabela 3: Liczba iteracji i wyliczone miejsce zerowe funkcji, przy pierwszym punkcie startowym metody 0.2, w zależności od drugiego punktu startowego i przyjętej dokładności ρ. Do obliczeń wykorzystano **metodę siecznych** oraz **pierwszy warunek stopu**.

pierwszy	drugi	ρ	= 0.0001	þ	o = 1e-07	ŀ	ρ = 1e-10	
punkt startowy metody	punkt startowy metody	liczba iteracji	wyliczone x ₀	liczba iteracji	wyliczone x ₀	liczba iteracji	wyliczone x ₀	
0.2	2.5	2	0.2	14	0.522247	15	0.522247	
0.2	2.4	2	0.200001	14	0.522247	15	0.522247	
0.2	2.3	2	0.200001	14	0.522247	15	0.522247	
0.2	2.2	2	0.200002	14	0.522247	15	0.522247	
0.2	2.1	2	0.200004	14	0.522247	15	0.522247	
0.2	2.0	2	0.200007	14	0.522247	15	0.522247	
0.2	1.9	2	0.200014	14	0.522247	15	0.522247	
0.2	1.8	2	0.200028	14	0.522247	15	0.522247	
0.2	1.7	2	0.200058	14	0.522247	15	0.522247	
0.2	1.6	2	0.200127	14	0.522247	15	0.522247	
0.2	1.5	13	0.522247	14	0.522247	15	0.522247	
0.2	1.4	13	0.522247	14	0.522247	15	0.522247	
0.2	1.3	13	0.522247	14	0.522247	15	0.522247	
0.2	1.2	13	0.522247	14	0.522247	15	0.522247	
0.2	1.1	13	0.522247	14	0.522247	15	0.522247	
0.2	1.0	12	0.522247	13	0.522247	14	0.522247	
0.2	0.9	10	0.522247	12	0.522247	12	0.522247	
0.2	0.8	6	0.522246	8	0.522247	9	0.522247	
0.2	0.7	8	0.522247	9	0.522247	10	0.522247	
0.2	0.6	7	0.522247	8	0.522247	9	0.522247	
0.2	0.5	4	0.522247	5	0.522247	6	0.522247	
0.2	0.4	7	0.522247	8	0.522247	9	0.522247	
0.2	0.3	9	0.522247	10	0.522247	11	0.522247	

Tabela 4: Liczba iteracji i wyliczone miejsce zerowe funkcji, przy pierwszym punkcie startowym metody 2.5, w zależności od drugiego punktu startowego i przyjętej dokładności ρ. Do obliczeń wykorzystano **metodę siecznych** oraz **pierwszy warunek stopu**.

pierwszy	drugi	ρ	= 0.0001	ŕ	o = 1e-07	ŀ	ρ = 1e-10	
punkt startowy metody	punkt startowy metody	liczba iteracji	wyliczone x ₀	liczba iteracji	wyliczone x ₀	liczba iteracji	wyliczone x ₀	
2.5	2.4	33	0.522247	34	0.522247	35	0.522247	
2.5	2.3	33	0.522247	34	0.522247	35	0.522247	
2.5	2.2	32	0.522247	33	0.522247	34	0.522247	
2.5	2.1	31	0.522247	32	0.522247	33	0.522247	
2.5	2.0	30	0.522247	32	0.522247	32	0.522247	
2.5	1.9	29	0.522247	31	0.522247	31	0.522247	
2.5	1.8	28	0.522247	30	0.522247	30	0.522247	
2.5	1.7	27	0.522247	28	0.522247	29	0.522247	
2.5	1.6	26	0.522247	27	0.522247	28	0.522247	
2.5	1.5	25	0.522247	26	0.522247	27	0.522247	
2.5	1.4	23	0.522247	25	0.522247	26	0.522247	
2.5	1.3	22	0.522247	23	0.522247	24	0.522247	
2.5	1.2	1	1.19996	22	0.522247	23	0.522247	
2.5	1.1	1	1.09999	20	0.522247	21	0.522247	
2.5	1.0	1	0.999996	18	0.522247	29	0.522247	
2.5	0.9	1	0.899999	16	0.522247	17	0.522247	
2.5	0.8	1	0.8	14	0.522247	15	0.522247	
2.5	0.7	1	0.7	1	0.7	12	0.522247	
2.5	0.6	1	0.6	1	0.6	9	0.522247	
2.5	0.5	1	0.5	1	0.5	6	0.522247	
2.5	0.4	1	0.4	1	0.4	9	0.522247	
2.5	0.3	1	0.3	1	0.3	11	0.522247	
2.5	0.2	1	0.2	13	0.522247	14	0.522247	

Tabela 5: Liczba iteracji i wyliczone miejsce zerowe funkcji, przy pierwszym punkcie startowym metody 0.2, w zależności od drugiego punktu startowego i przyjętej dokładności ρ. Do obliczeń wykorzystano **metodę siecznych** oraz **drugi warunek stopu**.

pierwszy	drugi	ρ = 0.0001		t	o = 1e-07	ŀ	ρ = 1e-10	
punkt startowy metody	punkt startowy metody	liczba iteracji	wyliczone x ₀	liczba iteracji	wyliczone x ₀	liczba iteracji	wyliczone x ₀	
0.2	2.5	10	0.515162	12	0.522242	13	0.522247	
0.2	2.4	10	0.515162	12	0.522242	13	0.522247	
0.2	2.3	10	0.515163	12	0.522242	13	0.522247	
0.2	2.2	10	0.515163	12	0.522242	13	0.522247	
0.2	2.1	10	0.515164	12	0.522242	13	0.522247	
0.2	2.0	10	0.515165	12	0.522242	13	0.522247	
0.2	1.9	10	0.515167	12	0.522242	13	0.522247	
0.2	1.8	10	0.515172	12	0.522242	13	0.522247	
0.2	1.7	10	0.515183	12	0.522242	13	0.522247	
0.2	1.6	10	0.515208	12	0.522242	13	0.522247	
0.2	1.5	10	0.515266	12	0.522242	13	0.522247	
0.2	1.4	10	0.515412	12	0.522242	13	0.522247	
0.2	1.3	10	0.515795	12	0.522242	13	0.522247	
0.2	1.2	10	0.51683	12	0.522243	13	0.522247	
0.2	1.1	10	0.519374	12	0.522245	13	0.522247	
0.2	1.0	9	0.512928	11	0.522242	12	0.522247	
0.2	0.9	7	0.502972	10	0.522247	11	0.522247	
0.2	0.8	3	0.50622	6	0.522246	7	0.522247	
0.2	0.7	5	0.527719	7	0.52226	9	0.522247	
0.2	0.6	3	0.537315	6	0.52225	7	0.522247	
0.2	0.5	2	0.522586	3	0.52223	5	0.522247	
0.2	0.4	4	0.517339	6	0.522243	7	0.522247	
0.2	0.3	6	0.512106	8	0.522244	9	0.522247	

Tabela 6: Liczba iteracji i wyliczone miejsce zerowe funkcji, przy pierwszym punkcie startowym metody 2.5, w zależności od drugiego punktu startowego i przyjętej dokładności ρ. Do obliczeń wykorzystano **metodę siecznych** oraz **drugi warunek stopu**.

pierwszy punkt	drugi punkt	ρ	= 0.0001	t	o = 1e-07	ŀ	ρ = 1e-10	
startowy	startowy	liczba iteracji	wyliczone x ₀	liczba iteracji	wyliczone x ₀	liczba iteracji	wyliczone x ₀	
2.5	2.4	30	0.529385	33	0.522247	34	0.522247	
2.5	2.3	29	0.534463	32	0.522248	33	0.522247	
2.5	2.2	28	0.539483	31	0.522253	32	0.522247	
2.5	2.1	28	0.528371	30	0.522265	32	0.522247	
2.5	2.0	27	0.529829	30	0.522247	31	0.522247	
2.5	1.9	26	0.530523	29	0.522247	30	0.522247	
2.5	1.8	25	0.530333	28	0.522247	29	0.522247	
2.5	1.7	24	0.529298	27	0.522247	28	0.522247	
2.5	1.6	23	0.527616	25	0.522259	27	0.522247	
2.5	1.5	21	0.537503	24	0.52225	25	0.522247	
2.5	1.4	20	0.532283	23	0.522247	24	0.522247	
2.5	1.3	19	0.527344	21	0.522258	23	0.522247	
2.5	1.2	17	0.532303	20	0.522247	21	0.522247	
2.5	1.1	15	0.536966	18	0.52225	19	0.522247	
2.5	1.0	13	0.539498	16	0.522253	17	0.522247	
2.5	0.9	11	0.538583	14	0.522252	15	0.522247	
2.5	0.8	9	0.533825	12	0.522248	13	0.522247	
2.5	0.7	7	0.526924	9	0.522255	10	0.522247	
2.5	0.6	4	0.526623	6	0.522254	7	0.522247	
2.5	0.5	2	0.522566	3	0.52223	5	0.522247	
2.5	0.4	4	0.515797	6	0.522243	7	0.522247	

2.5	0.3	6	0.503463	9	0.522247	10	0.522247
2.5	0.2	9	0.515162	11	0.522242	12	0.522247

Wnioski:

Niezależnie od punktu startowego zastosowanie metody Newtona pozwoliło nam na uzyskanie zbliżonych do oczekiwanych wyników. Im bliżej miejsca zerowego funkcji f znajdował się punkt startowy metody, tym mniej iteracji było potrzebnych do spełnienia warunku stopu. W tym przypadku stosowanie drugiego warunku stopu pozwalało na minimalnie niższą liczbę iteracji (około 1, 2 iteracje mniej, niż w przypadku zastosowania pierwszego warunku stopu). Natomiast stosowanie pierwszego warunku stopu pozwalało na uzyskanie dokładniejszego wyniku. Wynika to zapewne z bardzo zbliżonych do zera wartości w punktach otaczających miejsce zerowe funkcji f.

Stosowanie metody siecznych dla miejsc startowych dobieranych w sposób opisany w treści zadania spowodowało otrzymanie nieoczekiwanych wyników w relatywnie wielu przypadkach. Warto jednak zauważyć, że błędne wyniki były otrzymywane tylko dla pierwszego kryterium stopu. W tabeli 3 błędne wyniki były bardzo zbliżone do lewego krańca przedziału. Wynikało to z bardzo dużej wartości na prawym krańcu przedziału, w stosunku do wartości na lewym krańcu, przez co wykres prostej łączącej punkty $(x_1, f(x_1))$ i $(x_2, f(x_2))$ był na tyle "pionowy", że lewy koniec przedziału nie zmieniał się na tyle szybko, aby pierwszy warunek stopu nie został spełniony już po dwóch iteracjach. Zastosowanie odpowiednio niskiego ρ = 1e-07 zwalczało opisany problem. W tabeli 4 błędne wyniki wynikały z analogicznego problemu, możemy jednak zauważyć, że tam dopiero ρ = 1e-10 było odpowiednio niskie, aby uniknąć przekłamań.

Warto również zauważyć, że dla rozpatrywanej funkcji brak sprawdzania warunku na punkty startowe w metodzie siecznych (gwarantującego przeciwne znaki wartości w występujących w punktach startowych) nie był problemem, gdyż charakterystyka f pozwalała na znajdywanie kolejnych punktów przybliżających rozwiązanie w przedziale [0.2, 2.5] w przypadku każdej rozpatrywanej pary punktów początkowych.

Pozostałe wyniki uzyskiwane za pomocą metody siecznych były bardzo zbliżone do wyników otrzymywanych metodą Newtona. Przy zastosowaniu pierwszego kryterium stopu liczba iteracji metody siecznych była nieco wyższa, natomiast oferowała wyższą dokładność wyliczonego x₀. Stosowanie drugiego warunku stopu znacząco zmniejszało liczbę iteracji gdy jednym z krańców przedziału było 0.2 oraz pozwalało uzyskiwać nieco mniej dokładne wyniki, natomiast gdy jednym z krańców przedziału było 2.5 dokładność wyników była bardzo podobna do uzyskiwanej w metodzie Newtona przy drugim warunku stopu, niestety liczba iteracji była nieco wyższa.

2. Treść zadania:

Rozwiąż wskazany układ równań metodą Newtona:

$$\begin{cases} x_1^2 + x_2^2 + x_3 = 1\\ 2x_1^2 + x_2^2 + x_3^3 = 2\\ 3x_1 - 2x_2^3 - 2x_3^2 = 3 \end{cases}$$

Przeprowadź eksperymenty dla różnych wektorów początkowych. Sprawdź, ile rozwiązań ma układ. Przy jakich wektorach początkowych metoda nie zbiega do rozwiązania? Jakie wektory początkowe doprowadzają do jakiego rozwiązania? Należy także zastosować dwa różne kryteria stopu.

Zastosowane kryteria stopu to:

1)
$$\|\mathbf{x}^{(i+1)} - \mathbf{x}^{(i)}\| < \rho$$

2)
$$||F(\mathbf{x}^{(i)})|| < \rho$$

gdzie $\mathbf{x}^{(i)}$ oznacza wektor niewiadomych ([\mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3]) wyliczony w i-tej iteracji, a F($\mathbf{x}^{(i)}$) oznacza wektor otrzymany przez podstawienie niewiadomych wyliczonych w i-tej iteracji do wektora:

$$\begin{bmatrix} x_1^2 + x_2^2 + x_3 - 1 \\ 2x_1^2 + x_2^2 + x_3^3 - 2 \\ 3x_1 - 2x_2^3 - 2x_3^2 - 3 \end{bmatrix}$$

Podany układ równań ma 3 rzeczywiste rozwiązania, WolframAlpha podaje je jako:

$$\begin{aligned} &[1,-1,-1]\\ &[1,0,0]\\ &[0.953156,-0.428689,-0.0922802] \end{aligned}$$

Eksperyment przeprowadziłem dla dwóch różnych wartości ρ (ρ = 0.0001, ρ = 1e-10). Normą użytą do badania warunku stopu była **norma maksimum**. Jako wektory początkowe w kolejnych próbach przyjmowałem wektory [-10000, -10000, -10000], [0,0,0], [10000, 10000, 10000], [-1337.420, 20000, -0.001], [5, 10, 15], [1, -1, -1], [1, 0, 0], [0.953156, -0.42869, -0.0922802].

Tabela 7: Wyliczone za pomocą metody Newtona rozwiązania układu równań oraz liczba iteracji potrzebna do ich uzyskania przy zastosowaniu różnych wektorów początkowych i **pierwszego warunku stopu**

Wektor początkowy		ρ = 0.0001		ρ = 1e-10
	Liczba iteracji	Wektor wynikowy	Liczba iteracji	Wektor wynikowy
[-10000, -10000, -10000]	141	[1.0001, -1.00007, -1.00015]	160	[1, -1, -1]
[0,0,0]	22	[0.999933, -1.00016, -1.00012]	41	[1, -1, -1]
[10000, 10000, 10000]	395	[1.00013, -1.00002, -1.00015]	414	[1, -1, -1]
[-1337.420, 20000, -0.001]	58	[0.999944, -1.00016, -1.00016]	77	[1, -1, -1]
[5, 10, 15]	123	[1.00008, -1.00005, -1.00013]	142	[1, -1, -1]
[1, -1, -1]	0	[1, -1, -1]	0	[1, -1, -1]
[1, 0, 0]	0	[1, 0, 0]	0	[1, 0, 0]
[0.953156, -0.42869, -0.0922802]	0	[0.953156, -0.428689, -0.0922802]	100076	[1, -1.00002e-05, -1.27008e-10]

Tabela 8: Najbliższy wyliczonemu wektorowi wektor będący wzorcowym rozwiązaniem układu równań, a także różnica między nimi (norma maksimum różnicy tych wektorów, w tabeli nazwana po prostu różnicą), dla wektorów wyliczonych w poprzedniej tabeli.

Wektor początkowy	ρ = 0	.0001	ρ = 1	e-10
	Najbliższy wektor wzorcowy	Różnica	Najbliższy wektor wzorcowy	Różnica
[-10000, -10000, -10000]	[1, -1, -1]	0.00014845	[1, -1, -1]	1.5186e-10
[0,0,0]	[1, -1, -1]	0.000160689	[1, -1, -1]	1.64408e-10
[10000, 10000, 10000]	[1, -1, -1]	0.000152813	[1, -1, -1]	1.56337e-10
[-1337.420, 20000, -0.001]	[1, -1, -1]	0.000161032	[1, -1, -1]	1.64761e-10
[5, 10, 15]	[1, -1, -1]	0.000128694	[1, -1, -1]	1.31656e-10
[1, -1, -1]	[1, -1, -1]	0	[1, -1, -1]	0
[1, 0, 0]	[1, 0, 0]	0	[1, 0, 0]	0
[0.953156, -0.42869, -0.0922802]	[0.953156, -0.42869, -0.0922802]	0	[1, 0, 0]	1.00002e-05

Tabela 9: Wyliczone za pomocą metody Newtona rozwiązania układu równań oraz liczba iteracji potrzebna do ich uzyskania przy zastosowaniu różnych wektorów początkowych i **drugiego warunku stopu**

Wektor początkowy		ρ = 0.0001		ρ = 1e-10
	Liczba iteracji	Wektor wynikowy	Liczba iteracji	Wektor wynikowy
[-10000, -10000, -10000]	142	[1.00005, -1.00004, -1.00007]	161	[1, -1, -1]
[0,0,0]	24	[0.999984, -1.00004, -1.00003]	43	[1, -1, -1]
[10000, 10000, 10000]	396	[1.00006, -1.00001, -1.00007]	415	[1, -1, -1]
[-1337.420, 20000, -0.001]	60	[0.999987, -1.00004, -1.00004]	79	[1, -1, -1]
[5, 10, 15]	124	[1.00004, -1.00002, -1.00006]	143	[1, -1, -1]
[1, -1, -1]	0	[1, -1, -1]	0	[1, -1, -1]
[1, 0, 0]	0	[1, 0, 0]	0	[1, 0, 0]
[0.953156, -0.42869, -0.0922802]	0	[0.953156, -0.428689, -0.0922802]	264160	[1, -3.78675e-06, -1.82116e-11]

Tabela 10: Najbliższy wyliczonemu wektorowi wektor będący wzorcowym rozwiązaniem układu równań, a także różnica między nimi (norma maksimum różnicy tych wektorów, w tabeli nazwana po prostu różnica), dla wektorów wyliczonych w poprzedniej tabeli.

Wektor początkowy	ρ = 0.0001		ρ = 1e-10	
	Najbliższy wektor wzorcowy	Różnica	Najbliższy wektor wzorcowy	Różnica
[-10000, -10000, -10000]	[1, -1, -1]	7.18306e-05	[1, -1, -1]	7.34806e-11
[0,0,0]	[1, -1, -1]	3.76273e-05	[1, -1, -1]	3.8493e-11
[10000, 10000, 10000]	[1, -1, -1]	7.39454e-05	[1, -1, -1]	7.5647e-11
[-1337.420, 20000, -0.001]	[1, -1, -1]	3.77079e-05	[1, -1, -1]	3.85756e-11
[5, 10, 15]	[1, -1, -1]	6.22727e-05	[1, -1, -1]	6.37046e-11
[1, -1, -1]	[1, -1, -1]	0	[1, -1, -1]	0
[1, 0, 0]	[1, 0, 0]	0	[1, 0, 0]	0
[0.953156, -0.42869, -0.0922802]	[0.953156, -0.42869, -0.0922802]	0	[1, 0, 0]	3.78675e-06

Wnioski:

Eksperyment pokazuje, że metoda Newtona przy zastosowaniu odpowiednio niskiego ρ w warunku stopu potrafi w bardzo dokładny sposób przybliżyć nam wektor wynikowy. Analizując tabele możemy zauważyć, że zastosowanie drugiego warunku stopu powoduje wykonanie nieco większej liczby iteracji (w większości przypadków tylko jednej dodatkowej iteracji), przez co zapewnia wyniki około dziesięciokrotnie bliższe rzeczywistemu rozwiązaniu układu. Jak widzimy w przypadku zadanego układu metoda w zdecydowanej większości przypadków zbiega do wektora [1, -1, -1]. Tylko zastosowanie wektora startowego bardzo zbliżonego do innego rozwiązania układu pozwoliło nam uzyskać wynik bardzo bliski temu rozwiązaniu. Ostatni wiersz tabel pokazuje ciekawą sytuację, mianowicie zastosowanie jako wektora startowego wektora [0.953156, -0.42869, -0.0922802], podawanego przez WolframAlpha jako jedno z przybliżonych rozwiązań układu, dla zastosowania odpowiednio niskiego ρ (w moim przypadku ρ = 1e-10) spowodowało

uzyskanie wyniku najbardziej zbliżonego do innego wektora - [1, 0, 0]. Ta sytuacja pozwala myśleć, że bardzo niewiele wektorów startowych zbiega do trzeciego rozwiązania układu i są to tylko wektory bardzo bliskie temu rozwiązaniu. Nie udało mi się odnaleźć żadnego wektora startowego, dla którego metoda nie zbiegała by do żadnego z rozwiązań.