cisco live!

SRv6 based Transport – Design, Deployment, Best Practices & Challenges

Ankush Arora, Principal Architect Atahar Khan, Sr Delivery Architect BRKMPL-2117

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKMPL-2117

Transport Fabric Evolution

Centralized Management, Leaner & Highly Scalable

Services LDP

Transport RSVP
LDP

IGP

MPLS

- · Operational complexity
- Integrated HW & SW
- · Limited data plane scaling

MPLS SR with controller

Services Transport

- Leaner & optimised routing
- Centralised orchestration
- Distributed control plane
- · Limited data plane scaling

Services MP-BGP
Transport IGP/SR SDN
IPv6

- All of SR-MPLS features plus
- Massive data plane scaling
- Programmable control plane
- Service chaining

Understanding Today's Service Creation

SR-MPLS: SDN ready "Network as a Fabric" for Service Creation

SRv6: SDN, NfV, 5G ready "Network as an API" for Service Creation

Agenda

- Transport Challenges SRv6
 Opportunities
- SRv6 Recap
- Case Study: Native IPv6 GRT to SRv6
- Case Study: MPLS to SRv6
- SRv6 Design Best Practices
- Summary

Transport Challenges - SRv6 Opportunities

IPv4 limitations & work-arounds

Network Functions	IPv4
Reachability	IPv4 Header
Engineered Load Balancing	MPLS Entropy Label, VxLAN UDP
VPN	MPLS VPN's, VxLAN
Traffic Engineering	RSVP-TE, SR-TE MPLS
Source Routing	SR-TE MPLS
Service Chaining	NSH

Address space 32-bit limitation
No optional header
IPv4 header doesn't support
VPN
Traffic Engineer
Service Chaining
Engineered Flow optimization
Source-Routing

work-arounds

BRKMPL-2117

SRv6 Solution

Network Functions	IPv6
Reachability	IPv6 Header
Engineered Load Balancing	IPv6 Header
VPN	IPv6 Header
Traffic Engineering	IPv6 Header
Source Routing	IPv6 Header
Service Chaining	IPv6 Header

IPv6 Address 128bits
IPv6 Flow Header
Engineered Flow optimization
SRv6 Header
Source-Routing
Traffic Engineering
VPN
Service Chaining

Data (L5,L6 & L7)

Socket header (L4)

IPv4 header (L3)

NSH

MPLX /PN

VxLAN

MPLS

Ethernet (L2)

Data (L5,L6 & L7)
Socket header (L4)
IPv6 header (L3)
Ethernet (L2)

BRKMPL-2117

SRv6 Recap

Segment Routing Data Plane with IPv6

Control Plane: IGP with SR

MPLS

Data Plane: MPLS

SID replaces Label

Label Stack → SID Stack

IPv6

Control Plane: IGP with SR

Data Plane: IPv6

Source Routing Extension Header

SID = IPv6 Address

SRH Extension → SID Stack

Segment = **Instructions** such as "go to node N using the shortest path"

Routing with SRv6

- Source Routing
 - the topological and service (NFV) path is encoded in packet header
- Back to basic IP routing and summarization
 - No BGP Labelled Unicast
- Scalability
 - the network fabric does not hold any per-flow state for TE or NFV
- Simplicity
 - automation: TILFA sub-50msec FRR
 - protocol elimination: LDP, RSVP-TE, VxLAN, NSH, GTP, ...
- End-to-End
 - DC, Metro, WAN

SRv6 Header - RFC8754

SRv6 SID Introduction

Base SID

Locator Function

1111 : 2222 : 3333 : 4444 : 5555 : 0000 : 0000 : 0000

SRv6 SID Block Router ID Local Function

- 128 bit Segment ID with Locator + Function
- Only 1 instruction included in 1 carrier (128 bits)
- 64 bits locator helps with addressing scheme

uSID

- Natural extension to SRv6 that optimizes it
- Upto 6 uSID in 1 carrier (128 bits)
- Bigger addressing space available for consumption with 48-bit locator & multiple uSID

We will be using SRv6 uSID in further case study & best practices

Srv6 uSID format

```
: 0100 : = SRV6 uSID
```

16 bits here, but can be anything

SRV6 uSID Carrier

```
2001 :0db8 : 0100 : 0200 : 0300 : 0400 : 0500 : 0000

SRv6 uSID uSID uSID uSID uSID EoC

Block 1 2 3 4 5 6
```

32 bits here, but can be anything

SRv6 Base SID Encapsulation

```
SA:2001::1

DA:2001:db8:0:100:0:0:0

NH:RH

Type:4(SRH)

NH:IPv4|SL:1

Segment List:
[0]: 2001:db8:0:500:0:0:0

[1]: 2001:db8:0:400:0:0:0

[2]: 2001:db8:0:300:0:0:0

[3]: 2001:db8:0:200:0:0:0

[4]: 2001:db8:0:200:0:0:0

SA:7.5.4.3

DA:11.6.19.71

Port:UDP

UDP Header/Data
```

SRv6 uSID Encapsulation

```
SA:2001::1
DA:2001:db8:100:200:300:400:500::
NH:Ipv4

SA:7.5.4.3
DA:11.6.19.71
Port:UDP

UDP Header/Data
```

SRv6 SID Examples

	SRv6 Base	SRv6 uSID	Difference
Locator	FCBB:BBBB:BBAA:AAAA::/64	FCBB:BBBB:AAAA::/48	16 bits
Node SID	END FCBB:BBBB:BBAA:AAAA:0001: :	uN FCBB:BBBB:AAAA::	No difference +shift &forward
Adj SID	END.X FCBB:BBBB:BBAA:AAAA:0042: :	uA FCBB:BBBB:AAAA:e000: :	No difference +shift &forward
Service SID	END.DX ,END.DT FCBB:BBBB:BBAA:AAAA:0043: :	uDX,uDT FCBB:BBBB:AAAA:e001: :	No difference

We will be using SRv6 uSID in further case study & best practices

uSID Summary

- Global ID block (GIB)
 - First nibble: 0x0 to 0xd (57k entries)
 - 0x0000 is reserved for Fnd-of-Carrier
 - uSIDs allocated from GIB are block-specific
 - Globally-significant uSIDs (e.g., node, anycast)
- Local ID block (LIB)
 - First nibble: 0xe and 0xf (8k entries), divided in:
 - Dynamic allocation
 - Explicit allocation (ELIB)
 - Reserved values (last 256 entries)
 - uSIDs allocated from LIB are block- and node-specific
 - Locally-significant uSIDs (e.g., adjacency, BSID, VPN)

SRv6 functions: Steering and Services (Refer to : draft-ietf-spring-srv6-network-programming)

Codename	Behavior	
uN_shift	Endpoint	[PSP/USP flavors]
uA_shift	Endpoint with Layer-3 cross-connect	[PSP/USP flavors]
uB6_Insert	Endpoint bound to an SRv6 policy	[BSID]
uB6.Encaps	Endpoint bound to an SRv6 encapsulation policy	[BSID]
uDX6	Endpoint with decapsulation and IPv6 cross-connect	[Per-CE VPN label]
uDX4	Endpoint with decapsulation and IPv4 cross-connect	[Per-CE VPN label]
uDT6	Endpoint with decapsulation and specific IPv6 table lookup	[Per-VRF VPN label]
uDT4	Endpoint with decapsulation and specific IPv4 table lookup	[Per-VRF VPN label]
uDX2	Endpoint with decapsulation and L2 cross-connect	[E-LINE]
uDT2U/M	Endpoint with decapsulation and L2 unicast lookup / flooding	[E-LAN]
uBM	Endpoint bound to an SR-MPLS policy	[Interworking]

SRv6 uSID Forwarding Example

- → Matches local SID 2001:db8:1::/48
- → Applies "Next" Behavior
- → DA becomes 2001:db8:2:3:48:4:eeee::

Terminates micro-program

BRKMPL-2117

Overlay L3VPN Service

- One single SID is needed
 - B:3:V9
 - "go to 3, decaps and lookup in VRF 9"
- No new procol (just BGP)
 - No new SAFI
 - Light ext. to BGP Prefix-SID attribute
- Automated
 - No tunnel to configure
- Efficient
 - SRv6 for everything
 - No other protocol, just IPv6 with SRv6
 - In fact, SRH not even needed (one single SID fits DA)

Overlay Services (L2)

Solution

IPv6 native L2VPN services overlay with intent-based underlay

SRv6 not only eliminates unneeded overlay protocols; SRv6 solves problems that these protocols cannot solve

Benefits

Simplicity and Automation

No tunnel to configure
No new protocol (just BGP)

Efficiency

SRv6 for everything Re-use BGP/EVPN signaling

Tight SLAs

L2VPN (EVPN-VPWS Multi-Homing)

SRv6 Locator with L3VPN Configuration

```
segment-routing
 srv6
  logging locator status
  encapsulation
   source-address FC00:7000:2001::1
  locators
   locator Locator SRv6
                                               SRv6 uSID
   micro-segment behavior unode psp-usd
                                               Locator
    prefix FC00:7000:2001::/48 _____
router ISIS cess-id>
address-family ipv6 unicast
  metric-style wide
  segment-routing srv6
                          <<< Enable/Activate SRv6
   locator Locator SRv6
```

```
router bgp 100
bgp router-id X.X.X.X
bgp graceful-restart
 address-family vpnv4 unicast
 nexthop trigger-delay critical 100
address-family vpnv6 unicast
 nexthop trigger-delay critical 100
address-family 12vpn evpn
 nexthop trigger-delay critical 100
vrf SRv6
  rd auto
address-family ipv6 unicast
  maximum-paths ibgp 2
   segment-routing srv6
    locator Locator SRv6
    alloc mode per-vrf
```


EVPN Single-Homed L2VPN with SRv6 Configuration

EVPN Single-Homed

```
interface <Interface>.<ID> 12transport
 encapsulation dot1q <dot1q ID>
 rewrite ingress tag dot1q <dot1q ID> symmetric
evpn
evi <EVI ID> segment-routing srv6
 locator Locator SRv6
segment-routing srv6
12vpn
xconnect group 1
 p2p 1
  interface <Interface>
  neighbor evpn evi <EVI ID> service <ID> segment-routing srv6
```


EVPN MH L2VPN with SRv6 Configuration

EVPN MH Port Active

```
interface Bundle-Fther1
lacp system mac 1213.1213.1213
evpn
evi <EVI ID> segment-routing srv6
 locator Locator SRv6
interface Bundle-Fther1
 ethernet-segment
   identifier type 0 00.11.03.11.11.11.00.00.5D
  load-balancing-mode port-active
12vpn
xconnect group 1
 p2p 1
  interface Bundle-Fther1.1
  neighbor evpn evi <EVI ID> service <Service ID> segment-
routing srv6
```

EVPN MH All Active

```
interface Bundle-Fther1
lacp system mac 1213.1213.1213
evpn
evi <EVI ID> segment-routing srv6
  locator Locator SRv6
 interface Bundle-Fther1
  ethernet-segment
   identifier type 0 00.11.03.11.11.11.00.00.5D
L2vpn
load-balancing flow src-dst-ip
xconnect group 1
  p2p 1
   interface Bundle-Fther1.1
   neighbor evpn evi <EVI ID> service <Service ID> segment-
routing srv6
```


Case Study: Native IPv6-GRT to SRv6

Tier-1 MNO: Native IPv6 GRT to SRv6 Transition

Outcomes

- Network Scale
- Configuration Complexity
- No VPN Service Technology
- Complex service options

- · SRv6 data plane
- IPv6 Summarization
- EVPN based overlay service

- Simplified Underlay
- Improved convergence
- New Service avenues
- Seamless migration

Existing network with Native IPv6

SRv6 Locator Planning

- SID Space: The IPv6 address block used to allocate the SID locator. All SID Blocks in the network must come from the same 24-bit SID space
- Block ID: Common prefix of a block of uSIDs. Its size depends on the uSID format, which
 is 8-bits in uSID format
- Set IDs: Any group of uSIDs that share a certain value for the first two nibbles of the ID. A 16-bit uSID space contains 256 sets. Each set represents 256 uSID values. A set is uniquely bound to an algorithm
- Node ID: Global node SID, Adjacency SID or IP overlay service SID.

SRv6 uSID Planning Example

SRv6 Design

Case Study: MPLS to SRv6

Tier-1 SP: MPLS to SRv6 Transition

Challenge

- Network Scale
- Complex Protocol stack
- Legacy service options

Solution

- SRv6 data plane
- EVPN based overlay service
- MPLS to SRv6 GW function

Outcomes

- Simplified protocol stack
- Improved convergence
- Seamless migration

Initial State - MPLS with BGP LU

SRv6 parallel Setup with MPLS

- SRv6 with TI-LFA will be configured parallel with existing network
- SRv6 Locator blocks will be redistributed between the domains
- As of now, services will be on MPLS based

SRv6 co-exist with MPLS

- Migration of services will be customer/VPN based on priority.
- West ring will be running on SRv6 /w TI-LFA, and from AG-1 onwards MPLS/LDP/BGP-LU till east ACC.
- IGP separation will be there in the ring eventually.

SRv6 Locator

MPLS to SRv6 - Loop Method

#CiscoLive

BRKMPL-2117

- With loop method approach, we will migrate customers from MPLS to SRv6 partially with VRF-to-VRF Inter-AS option A.
- From Left ACC to AG3/4, services will be on SRv6 and from AG3/4 it will run on Legacy MPLS/LDP-RSVP/BGP-LU
- Eventually, few services will be running on SRv6, and few will be running on legacy MPLS

SRv6 Locator

Redistribution

How SRv6/MPLS Interworking Gateway Works?

The SRv6/MPLS L3 Service Interworking Gateway provides both transport and service termination at the gateway node.

The gateway generates both SRv6 VPN SIDs and MPLS VPN labels for all prefixes under the VRF configured for re-origination.

SRv6 domain to MPLS domain, the gateway removes the outer IPv6 header, looks up the destination prefix, and pushes the VPN and nexthop MPLS labels.

The gateway supports traffic forwarding from MPLS domain to SRv6 domain by popping the MPLS VPN label, looking up the destination prefix, and pushing the appropriate SRv6 encapsulation.

L3VPN service interworking

- Gateway acts as intermediary for interworked L3VPN services
 - GW terminates the L3VPN services.
- GW has the VRFs configured that need SRv6/MPLS interworking with 2 sets of RTs
 - MPLS L3VPN RTs
 - SRv6 L3VPN RTs (called "stitching RTs")
- GW imports service routes received from one domain (MPLS | SRv6)
- GW re-advertises exported service routes to the other domain (next-hop-self)
- GW stitches the service on the data plane (using VRF IP lookup of service route)
- Illustration shows VPNv4 example also applies to VPNv6

MPLS to SRv6 Interworking (Gateway)

Key Points:

- The L3 service SRv6/MPLS gateway enables customers to extend their L3 services between MPLS and SRv6 domains by providing service continuity on the control plane and data plane
- Gateway acts as intermediary for L3 services on control plane and data plane

41

SRv6/MPLS L3 Service Interworking Gateway

```
vrf ACME
address-family ipv4 unicast
import route-target
1:1 ; MPLS
2:2 stitching ; SRv6
!
export route-target
1:1 ; MPLS
2:2 stitching ; SRv6
```

Stitch MPLS domain RTs to SRv6 domain ("stitching") RTs (note: MPLS RTs can also be stitching with SRv6 RTs nonstitching)

Allocate VPN label and SRv6 SID

MPLS to SRv6 - SRv6 Gateway Function

SRv6 co-exist with MPLS

- When running half services on SRv6 and rest services on MPLS, is known as Dual stack
- The East & the West ring will be running on SRv6 and from AG, while the AG & Core will continue with MPLS/LDP/BGP-LU.
- There will not be any impact on the services with this dual stack approach

SRv6 Locator Redistribution

MPLS traffic

Target Architecture

SRv6 Services Transition

- 3 Steps services transition to SRv6
 - L3VPN (VPNv4 & VPNv6)
 - L2VPN VPWS to EVPN ELINE
 - L2VPN VPLS to EVPN ELAN

Step 1

Step 2

Step 3

Target State

SRv6 Design Best Practices

Best Practise#1: Prefix Summarization

- Back to basic IP routing and summarization
- No BGP inter-AS Option A/B/C

Multi-domain Summerization with FlexAlog

Best Practise#2: Loopback from uSID Locator

- Allocate a loopback address within the uSID locator prefix
 - E.g. uSID locator BBBB:BB00:0001/48
 → loopback address can be BBBB:BB00:0001::L/128 with L=1..F
- ISIS advertises locator (locator + prefix for algo 0)
- Loopback under locator can be reachable via locator prefix, does not have to be separately advertised as /128 prefix

Key Takeaways

SRv6 Advantages for Converged SDN Transport

Flexibility

- Any service (L3VPN,ELINE & ELAN) over SRv6 data plane
- Seamless Migration from IPv6 GRT or MPLS to SRv6

Network Efficiency

- Hyper scale with network summarization
- Simplified protocol stack

Network Simplicity

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

Pay for Learning with Cisco Learning Credits

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

Learn

Train

Certify

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology, and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

Cisco Training Bootcamps

Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses

Cisco Certifications and Specialist Certifications

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuing Education Program

Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education. with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

cisco live!

