Прогнозирование вероятности оттока пользователей для фитнес-центров

Описание данных

Заказчик подготовил данные, которые содержат данные на месяц до оттока и факт оттока на определённый месяц. Набор данных включает следующие поля:

- Churn факт оттока в текущем месяце;
- Текущие поля в датасете:
 - Данные пользователя за предыдущий до проверки факта оттока месяц:
 - ∘ gender пол
 - Near_Location проживание или работа в районе, где находится фитнесцентр
 - Partner сотрудник компании-партнёра клуба (сотрудничество с компаниями, чьи сотрудники могут получать скидки на абонемент в таком случае фитнес-центр хранит информацию о работодателе клиента)
 - Promo_friends факт первоначальной записи в рамках акции «приведи друга» (использовал промо-код от знакомого при оплате первого абонемента)
 - Phone наличие контактного телефона
 - Аде возраст
 - Lifetime время с момента первого обращения в фитнес-центр (в месяцах)
 - Информация на основе журнала посещений, покупок и информация о текущем статусе абонемента клиента
 - Contract_period длительность текущего действующего абонемента (месяц, 3 месяца, 6 месяцев, год)
 - Month_to_end_contract срок до окончания текущего действующего абонемента (в месяцах)
 - Group_visits факт посещения групповых занятий
 - Avg_class_frequency_total средняя частота посещений в неделю за все время с начала действия абонемента
 - Avg_class_frequency_current_month средняя частота посещений в неделю за предыдущий месяц
 - Avg_additional_charges_total суммарная выручка от других услуг фитнес-центра: кафе, спорт-товары, косметический и массажный салон

1. Импорт и загрузка данных

```
Collecting scikit-learn
          Downloading scikit learn-1.1.2-cp39-cp39-manylinux 2 17 x86 64.manylinux2014 x86 6
        4.whl (30.8 MB)
                                              ■| 30.8 MB 2.4 MB/s eta 0:00:01 eta 0:00:04
        Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.9/site-
        packages (from scikit-learn) (3.1.0)
        Requirement already satisfied: numpy>=1.17.3 in /opt/conda/lib/python3.9/site-package
        s (from scikit-learn) (1.21.1)
        Requirement already satisfied: joblib>=1.0.0 in /opt/conda/lib/python3.9/site-package
        s (from scikit-learn) (1.1.0)
        Requirement already satisfied: scipy>=1.3.2 in /opt/conda/lib/python3.9/site-packages
        (from scikit-learn) (1.8.0)
        Installing collected packages: scikit-learn
          Attempting uninstall: scikit-learn
            Found existing installation: scikit-learn 0.24.1
            Uninstalling scikit-learn-0.24.1:
               Successfully uninstalled scikit-learn-0.24.1
        Successfully installed scikit-learn-1.1.2
        Note: you may need to restart the kernel to use updated packages.
In [2]:
        # Убираю предупреждения
        import warnings
        warnings.filterwarnings('ignore')
        # Для анализа и визуализации
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        # sklearn
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.linear model import LogisticRegression
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import accuracy score, precision score, recall score
        # кластеризация
        from scipy.cluster.hierarchy import dendrogram, linkage
        from sklearn.cluster import KMeans
        # Виджеты
        import ipywidgets as widgets
        from ipywidgets import interact
        from ipywidgets import interact manual
In [3]: try:
            df = pd.read csv('gym churn.csv')
        except:
            df = pd.read csv('https://code.s3.yandex.net/datasets/gym churn.csv')
In [4]:
        df.head()
Out[4]:
           gender
                  Near_Location Partner Promo_friends Phone Contract_period Group_visits Age Avg_ac
        0
                1
                             1
                                     1
                                                  1
                                                         0
                                                                       6
                                                                                    1
                                                                                       29
         1
                0
                                     0
                                                  0
                                                         1
                                                                       12
                                                                                    1
                                                                                       31
         2
                0
                             1
                                     1
                                                  0
                                                         1
                                                                        1
                                                                                   0
                                                                                       28
         3
                0
                                     1
                                                  1
                                                         1
                                                                       12
                                                                                   1
                                                                                       33
         4
                1
                             1
                                     1
                                                  1
                                                         1
                                                                        1
                                                                                   0
                                                                                       26
```

Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.9/site-packages

Data columns (total 14 columns): Non-Null Count Dtype Column 0 4000 non-null int64 gender 1 4000 non-null int64 Near Location 2 4000 non-null int64 Partner 3 Promo_friends 4000 non-null int64 4 Phone 4000 non-null int64 5 Contract_period 4000 non-null int64 6 4000 non-null int64 Group_visits 7 4000 non-null int64 Age 8 Avg_additional_charges_total 4000 non-null float64 4000 non-null float64 9 Month_to_end_contract 10 Lifetime 4000 non-null int64 4000 non-null float64 11 Avg_class_frequency_total 12 Avg_class_frequency_current_month 4000 non-null float64 13 Churn 4000 non-null int64

dtypes: float64(4), int64(10) memory usage: 437.6 KB

RangeIndex: 4000 entries, 0 to 3999

Судя по результатам .info() данные не содержат пропусков и типы данных заданы корректно. Единственное, что мне не нравится - названия метрик содержат разный регистр. Исправлю это и начну выполнение проекта.

```
In [6]: df.columns = df.columns.str.lower()
```

2. Исследовательский анализ данных (EDA)

Посмотрите на датасет: есть ли в нем отсутствующие признаки, изучите средние значения и стандартные отклонения

<pre>df.describe().T.sort val</pre>	l			Falaa)			
df.describe().T.sort_val	tues (by=	mean	, ascendin	g=ratse)			
	•	count	mean	std	min	25%	50%
avg_additional_charge	s_total 4	0.000	146.943728	96.355602	0.148205	68.868830	136.220159
	age 4	0.000	29.184250	3.258367	18.000000	27.000000	29.000000
contract_	_period 4	0.000	4.681250	4.549706	1.000000	1.000000	1.000000
month_to_end_c	ontract 4	0.000	4.322750	4.191297	1.000000	1.000000	1.000000
1	lifetime 4	0.000	3.724750	3.749267	0.000000	1.000000	3.000000
avg_class_frequenc	y_total 4	0.000	1.879020	0.972245	0.000000	1.180875	1.832768
avg_class_frequency_current_	_month 4	0.000	1.767052	1.052906	0.000000	0.963003	1.719574
	phone 4	0.000	0.903500	0.295313	0.000000	1.000000	1.000000
near_l	ocation 4	0.000	0.845250	0.361711	0.000000	1.000000	1.000000
	gender 4	0.000	0.510250	0.499957	0.000000	0.000000	1.000000
ı	partner 4	0.000	0.486750	0.499887	0.000000	0.000000	0.000000
group	_visits 4	0.000	0.412250	0.492301	0.000000	0.000000	0.000000
promo_	friends 4	0.000	0.308500	0.461932	0.000000	0.000000	0.000000

0.265250

0.441521

0.000000

churn 4000.0

0.000000

0.000000

Если добавить сортировку по убыванию значения среднего, то станет заметно, что все метрики делятся на два типа:

- 1. Не бинарные: avg_additional_charges_total, age, contract_period,
 month_to_end_contract, lifetime, avg_class_frequency_total,
 avg_class_frequency_current_month
- Бинарыне: phone, near_location, gender, partner, group_visits, promo_friends, churn.

Так как описание данные не содержит расшифровку бинарных значений, то буду считать, что

0 - это значит **нет**, а 1 - значит **да**. В случае с распределением по полу буду считать, что

0 - женщины, 1 - мужчины.

Посмотрите на средние значения признаков в двух группах — тех, кто ушел в отток и тех, кто остался

В таблицу сравнения средних добавлю и разницу между этими средними. Но так как в данном контексте (как мне кажется) знак разницы (положительный или отрицательный) не важен, то возьму модуль разницы.

Out[8]:		churn_false	churn_true	delta
	avg_additional_charges_total	158.445715	115.082899	43.362816
	contract_period	5.747193	1.728558	4.018635
	lifetime	4.711807	0.990575	3.721232
	month_to_end_contract	5.283089	1.662582	3.620507
	age	29.976523	26.989632	2.986890

month_to_end_contract	5.283089	1.662582	3.620507
age	29.976523	26.989632	2.986890
avg_class_frequency_current_month	2.027882	1.044546	0.983336
avg_class_frequency_total	2.024876	1.474995	0.549881
group_visits	0.464103	0.268615	0.195489
partner	0.534195	0.355325	0.178870
promo_friends	0.353522	0.183789	0.169733
near_location	0.873086	0.768143	0.104943
gender	0.510037	0.510839	0.000801
phone	0.903709	0.902922	0.000787

Возможно, что я пока забегаю вперед, но если отсортировать таблицу по убывания модуля разницы средних значений (churn_true - churn_false), то возможно получится предварительный рейтинг метрик прогнозирующих потенциальный отток пользователей.

Чтобы визуализировать данные сравнения в графиках и сохранить вывод графиков по уменьшению модуля разности средних:

- чуть-чуть преобразую получившуюся таблицу
- вывод графиков спрячу в «ручной» виджет, а то их слишком много получается.

interactive(children=(Button(description='Run Interact', style=ButtonStyle()), Output
()), _dom_classes=('widge...

Постройте столбчатые гистограммы и распределения признаков для тех, кто ушёл (отток) и тех, кто остался (не попали в отток);

Я решил сохранить полученный ранее ТОП признаков и использовать данный порядок для вывода графиков.

```
In [10]: for i in churn_group.index:
    fig = plt.figure(figsize=(15,5))
    sns.distplot(df[df['churn']==0][i], bins=10, label='churn_false')
    sns.distplot(df[df['churn']==1][i], bins=10, label='churn_true')
    plt.legend()
    plt.title(i, fontsize=20)
    plt.show();
```


Краткие выводы по увиденному:

- avg_additional_charges_total хм, получается достаточно интересно распределение. Пользователи которые ушли из клуба тратят меньше на сопутствующие услуги. Но при этом в диапазоне трат до 150 денег (так как валюта не известна, то буду измерять траты в «деньгах») таких пользователей больше. Иными словами меньшие суммы они тратят чаще тех кто остался в клубе.
- contract_period похоже здесь есть какая-то закономерность. График позволяет предположить, что чем больше период абонемента, тем меньше пользователей уходят.
- lifetime похоже, что это дополнительный «взгляд» на предыдущий вывод. Чем меньше времени с первого обращения, тем больше посетителей уходит из клуба.
- month_to_end_contract история аналогичная двум предыдущим пунктам.
- age возраст в обоих группах имеет ярко выраженное нормальное распределение.

 Отличие тольк в смещении по оси х (возраст). Пользователи которые покидают клуб более молодые. Может быть они просто находятся в постоянном поиске? Или пользуются

- какими-то акциями для новых посетителей клуба (если такие есть) и экономят деньги на занятиях.
- avg_class_frequency_current_month интересно, что у оставшихся посетителей распределение частоты посещений нормальное. А вот у ушедших оно смещено в одну сторону. Очень заметно смещение (у ушедших) в сторону 0-1 посещения за предыдущий месяц.
- avg_class_frequency_total подтверждение предыдущего вывода, но на другом масштабе посещений (по неделям). Большая часть ушедших пользователей не очень часто посещала еженедельные тренировки (1-2 раза).
- group_visits хм, похоже, что среди ушедших пользователей доминируют интроверты) Почему-то они не очень любят посещать групповые тренировки.
- partner доля ушедших среди посетителей-партнеров заметно меньше, чем у посетителей-не партнеров. Может быть корпоративный дух положительно влияет на занятия спортом?)
- promo_friends полные условия данной акции не известны, но скорее всего там были какие-то скидки/бонусы. График наглядно показывает разницу между тем кто пришел заниматься сам (по собственному желанию) и теми, кто воспользовался акцией от клуба.
- near_location доля отказников среди посетителей из соседних районов сильно выше, чем тех кто остался. Но в масштабах всех посетителей это не так важно. Так как всего посетителей из соседних районов только 15%
- phone, gender по данным метрикам нет никаких видимых отличий. Думаю, что в дальнейшем анализе их можно будет не использовать.

Постройте матрицу корреляций и отобразите её.

```
In [11]: # матрица корреляций
cm = df.corr()
fig, ax = plt.subplots(figsize=(15,10))

# тепловая карта
ax = sns.heatmap(cm, annot=True)
plt.show()
```


Ну здравствуй, мультиколлинеарность)

- contract_period μ month_to_end_contract = 0.97
- avg_class_frequency_total и avg_class_frequency_current_month = 0.95

Думаю, что можно было и без матрицы корреляций понять о существований этих связей. Да и предыдущие графики уже давали подсказки)

Так как наличие таких связей в данных может исказить все прогнозы и предсказания, то избавлюсь от некоторых метрик.

```
In [12]: df_clear = df.drop(['contract_period', 'avg_class_frequency_current_month'], axis = 1
```

3. Модель прогнозирования оттока пользователей

Думаю, что прежде чем начинать обучать алгоритмы и делать какие-то выводы, стоит посмотреть **баланс классов** по целевой переменной

```
In [16]: # Привожу данные к единому «масштабу».
         scaler = StandardScaler()
         # Обучаю scaler и одновременно трансформирую матрицу для обучающей выборки
         X_train_st = scaler.fit_transform(X_train)
In [17]: # Применяю стандартизацию к матрице признаков для тестовой выборки
         X_test_st = scaler.transform(X_test)
         Обучение моделей и вывод результатов оформлю через функцию.
In [18]:
         def make prediction(model, X train, y train, X test, y test):
             result = {}
             model = model
             model.fit(X_train, y_train)
             predict = model.predict(X_test)
             result[model] = {'Accuracy':round(accuracy_score(y_test, predict),3),
                              'Precision':round(precision_score(y_test, predict),3),
                              'Recall':round(recall_score(y_test, predict),3)}
             print(result)
In [19]: models = [LogisticRegression(random state=42), RandomForestClassifier(random state=42)
         for model in models:
             make_prediction(model, X_train_st, y_train, X_test_st, y_test)
             print('-'*100)
         {LogisticRegression(random state=42): {'Accuracy': 0.901, 'Precision': 0.806, 'Recal
         {RandomForestClassifier(random_state=42): {'Accuracy': 0.895, 'Precision': 0.814, 'Re
         call': 0.757}}
```

In [15]: # Чтобы сохранить возможность воспроизведения дальнейших расчетов использую фиксирова

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=

Итак, прежде чем подвести какие-то выводы и выбрать лучшую модель, позволю себе напомнить, что **Accuracy** - доля правильных ответов из всех прогнозов и очень чувствительная к **балансу классов** и соотношению 50/50. А так как в нашем случае такой баланс классов не выдерживается, то получается (как я понял) данная метрика не может использоваться как честное сравнение эффективности разных моделей.

Поэтому, для выбора лучшей модели остаются Precision и Recall . И если я все правильно понял из курса теории, то в данном сравнении нужно признать победителем LogisticRegression , так как полнота обнаружения реальных классов (recall) выше чем у RandomForestClassifier .

4. Кластеризация пользователей

Небольшая подготовка данных (убрать целевую метрику и нормализовать данные) и можно будте рисовать первую в жизни дендрограмму)

```
In [20]: df_clear
```

Out[20]:		gender	near_location	partner	promo_friends	phone	group_visits	age	avg_additional_charge
	0	1	1	1	1	0	1	29	14.
	1	0	1	0	0	1	1	31	113.:
	2	0	1	1	0	1	0	28	129.4
	3	0	1	1	1	1	1	33	62.6
	4	1	1	1	1	1	0	26	198.:
	•••	•••	•••		•••		•••		
	3995	1	1	1	0	1	0	33	2.4
	3996	0	1	0	0	1	1	29	68.8
	3997	1	1	1	1	1	0	28	78.:
	3998	0	1	1	1	1	0	32	61.
	3999	1	0	1	0	0	1	30	178.

4000 rows × 12 columns

```
In [21]: # создаём объект класса scaler (нормализатор)
scaler = StandardScaler()

# обучаем нормализатор и преобразуем набор данных
X_sc = scaler.fit_transform(df_clear.drop('churn', axis=1))

In [22]: linked = linkage(X_sc, method='ward')

In [23]: plt.figure(figsize=(20,10))
dendrogram(linked, orientation='top')
plt.title('Иерархическая кластеризация', fontsize=20)
plt.show();
```


Хоть далее по заданию и идет договоренность выделить пять кластеров, но у меня на графике почему-то прослеживается четкая разбивка на четыре кластера. Теперь настала очередь попробовать и K-means. Так как на предыдущем шаге я уже подготовил данные (убрал churn и провел нормализацию), то использую эти данные и для данного алгоритма.

```
km = KMeans(n_clusters = 5, random_state=42)
# применяем алгоритм к данным и формируем вектор кластеров
labels = km.fit_predict(X_sc)
```

```
In [25]: # добавлю метки кластеров в DataFrame df_clear['claster'] = labels
```

Посмотрите на средние значения признаков для кластеров. Можно ли сразу что-то заметить?

In [26]:	df_clear.groupby('claste	r').mean()) . T			
Out[26]:	claster	0	1	2	3	4
	gender	0.500000	0.505925	1.000000	0.523316	0.000000
	near_location	0.000000	0.994531	1.000000	0.862694	1.000000
	partner	0.487500	0.951686	0.209163	0.471503	0.249738
	promo_friends	0.075000	0.860529	0.074701	0.305699	0.057712
	phone	1.000000	1.000000	1.000000	0.000000	1.000000
	group_visits	0.235714	0.516864	0.421315	0.427461	0.379853
	age	28.719643	29.605287	29.085657	29.297927	29.030430
	avg_additional_charges_total	137.701147	155.900765	143.467288	144.208179	146.834854
	month_to_end_contract	2.837500	7.196901	2.984064	4.466321	3.239244
	lifetime	3.057143	4.418414	3.481076	3.940415	3.487933
	avg_class_frequency_total	1.769697	1.979657	1.898627	1.854211	1.816807
	churn	0.400000	0.116682	0.315737	0.266839	0.303253

- gender получилось два ярко выраженных противоположных кластера по полу. Один 100% мужской (кластер 2), другой 100% женский (кластер 4). В остальных кластерах распределение пола соответствует общей пропорции посетителей клуба 50/50
- near_location кластер 0 на 100% состоит из жителей соседних районов. И это еще и второй по массовости кластер (840 человек). Остальные кластеры по большей части состоят из жителей района расположения клуба.
- partner -не могу не отметить кластер 0. 48% данного кластера это посетители по партнерской программе. Возможно они ходят в данный клуб только из-за спец.предложения от своего работодателя.
- promo_friends пожалуй здесь можно выделить кластер 1 как самый «дружелюбный». 86% посетителей пришли по приглашению друзей.
- phone считаю, что данная метрика не несет никакой полезной аналитики. Потому строить теории почему пользователи кластера 3 не оставляют свой номер телефона не буду.
- group_visits опять выделяется кластер 0. Самая маленькая доля посещений групповых занятий (23%). Возможно, что данным посетителям не очень удобно добираться на групповые занятия? Им же приходится из других районов приезжать, вот они и не успевают
- age средний возраст всех кластеров крутится возле среднего возраста всех посетителей (29лет), так что здесь ничего удивительного нет.
- avg_additional_charges_total трудно судить почему такой «странный» шаг в разбивке по дополнительным тратам, но цифры говорят, что кластер 0 тратит меньше

всех

- month_to_end_contract и опять кластер 0 показывает рекорд по минимальным значениям. Думаю, что здесь стоит изучать подробности партнерской программы. Не исключено, что данные посетители приходят только из-за желания работодателя, а не изза любви к спорту.
- lifetime аналогично предыдущему пункту
- avg_class_frequency_total аналогично предыдущему пункту
- churn и здесь кластер 0 ставит рекорды. 40% пользователей покидают клуб. Возможно, что причина такого оттока прячется в двух факторах. Первый люди живут в других районах. Второй люди приходят в клуб из-за работодателя (партнерская программа).

Тогда самым надежным кластером (минимум уходящих пользователей) будет 1, а самым не надежным (максимум уходящих пользователей) будет 0.

Постройте распределения признаков для кластеров. Можно ли что-то заметить по ним?

Если я правильно все понял, то визуализировать надо не бинарные признаки. Так как в бинарных признаках только два значения). Пока не уверен, что выбрал правильную визуализацию, но не хочется строить уйму графиков. Хочется на одной картинке все посмотреть. Поэтому и выбрал pairplot.

Честно говоря, трудно добавить что-то новое к предыдущим выводам. Либо я чего-то не вижу, либо я что-то сделал не так.

Для каждого полученного кластера посчитайте долю оттока (методом groupby()). Отличаются ли они по доле оттока? Какие кластеры склонны к оттоку, а какие — надёжны?

Логика расчета будет такая:

- количество пользователей в каждом кластере это количество любой метрики, например age .
- количество пользователей которые ушли это сумма метрики churn, так как те кто ушел имеют признак 1, а те кто не ушел имеют признак 0. Следовательно посчитав сумму получится количество ушедших в каждом кластере.

```
result = df_clear.groupby('claster').agg({'gender':'count', 'churn':'sum'})
result.columns = ['count_user', 'churn_true_count']
result['churn_true_share'] = result['churn_true_count']/result['count_user']
result.sort_values(by='churn_true_share')
```

claster			
1	1097	128	0.116682
3	386	103	0.266839
4	953	289	0.303253
2	1004	317	0.315737
0	560	224	0.400000

Получается, что данными расчетами я лишь подтвердил сделаные ранее выводы по надежности кластеров. Либо я опять где-то ошибся, но надеюсь, что нет)

В таблице выше кластеры отсортированы в порядке убывания надежности пользователей. Получается, что кластер 0 самый ненадежный, так как 40% пользователей данного кластера уже покинули клуб.

5. Выводы и рекомендации

Основной вывод - кластеры 0 и 2 являются лидерами по оттоку пользователей 40% и 31% соответственно. Считаю, что в первую очередь надо разобраться с оттоком именно по этим кластерам. В дальнейшем можно будет переходить к уменьшению оттока в остальных кластерах.

Рекомендации по кластеру 0:

- так как данный кластер на 100% состоит из пользователей «других» районов города, то скорее всего причину высокого оттока надо искать именно в этом.
- возможно, что посетитиле просто вынуждены ходить в клуб, так как их работодатель является участником партнерской программы. Значит надо проверить условия данной программы и возможно как-то ее скорректировать.
- возможно, что посетителям просто не очень удобно попадать на групповые занятий (в среднем только 23% ходят на них) из-за логистических сложностей. Надо провести анализ времени посещения клуба и сопоставить его с расписанием групповых занятий.
- возможно стоит внедрить отдельную программу promo_friends для жителей «других» районов. Если увеличить количество друзей в клубе, то возможно посетители будут чаще приходить на занятий, а значит будут оставаться в клубе дольше.

Рекомендации по кластеру 2:

- честно говоря, здесь не все так очевидно как в предыдущем случае, так как и групповые занятия есть (42%), и деньги тратят на сопутствующие услуги, и живут в районе с клубом.
- предположу, что здесь надо работать с метриками partner и promo_friends. Возможно, что отток данного кластера удастся уменьшить если работодатель начнет компенсировать часть абонемента. Или, если в у данных посетителей будет больше друзей в данном клубе. Возможно они будут стимулировать друг-друга на более частые посещения и продления абонементов.

Также хочу отметить, что в обоих кластерах (0 и 2) весьма схожи средние значения метрики month_to_end_contract . И там и там это порядка трех месяцев. Возможно, что данные посетители покупают абонемент на три месяца, а потом сталкиваются со всеми вышеперечисленными проблема и покидают клуб. В случае с партнерской программой - это

пять вопрос к условиям про анной программы?	 	 	J- 51111