Homework 8 solutions

1. Exercise A7.5

Solution.

(a) We write the measurement model as

$$\phi^{-1}(y_i) = a_i^T x + v_i, \quad i = 1, \dots, m.$$

The function ϕ^{-1} is unknown, but it has derivatives between $1/\beta$ and $1/\alpha$. Therefore the numbers $z_i = \phi^{-1}(y_i)$ and y_i must satisfy the inequalities

$$\frac{y_{i+1} - y_i}{\beta} \le z_{i+1} - z_i \le \frac{y_{i+1} - y_i}{\alpha}, \quad i = 1, \dots, m-1,$$

if we assume that data points are sorted with y_i in increasing order. Conversely, if z and y satisfy these inequalities, then there exists a nonlinear function ϕ with $y_i = \phi(z_i)$, $i = 1, \ldots, m$, and with derivatives between α and β (for example, a piecewise-linear function that interpolates the points). Therefore, as suggested in the problem statement, we can use z_1, \ldots, z_m as parameters instead of ϕ .

The log-likelihood function is

nonlin_meas_data;

$$l(z, x) = -\frac{1}{2\sigma^2} \sum_{i=1}^{m} (z_i - a_i^T x)^2 - m \log(\sigma \sqrt{2\pi}).$$

To find a maximum likelihood estimate of x and z one solves the problem

minimize
$$\sum_{i=1}^{m} (z_i - a_i^T x)^2$$
subject to $(y_{i+1} - y_i)/\beta \le z_{i+1} - z_i \le (y_{i+1} - y_i)/\alpha, \quad i = 1, \dots, m-1.$

This is a quadratic program with variables $z \in \mathbf{R}^m$ and $x \in \mathbf{R}^n$.

(b) The following MATLAB code solves the problem in the assignment.

```
B = [-eye(m-1), zeros(m-1,1)] + [zeros(m-1,1), eye(m-1)];
cvx_begin
    variables x(n) z(m);
    minimize( norm( z-A*x ) );
    subject to
        (B*y)/beta <= B*z;
        B*z <= (B*y)/alpha;
cvx_end</pre>
```

The solution x is x = (0.4819, -0.4657, 0.9364, 0.9297).

The figure shows the estimated function $\hat{\phi}$. This is a piecewise-linear function that satisfies $\hat{\phi}(z_i) = y_i$ for i = 1, ..., m, and interpolates linearly between the points.

The second figure shows $\hat{\phi}$ and the data points $a_i^T x, \, y_i$ as green circles.

2. Exercise A7.26.

Solution.

(a) We first assume x > 0, and consider the optimization problem

$$\begin{array}{ll} \mbox{minimize} & y^T \, \mathbf{diag}(x)^{-1} y \\ \mbox{subject to} & Ay+c=0 \end{array}$$

with variable y. Define $X = \operatorname{diag}(x)$. The optimality conditions are

$$2X^{-1}y + A^T u = 0,$$
 $Ay + c = 0.$

From the first equation, $y = -(1/2)XA^Tu$. Substituting this in the second equation gives an equation for u:

$$\frac{1}{2}AXA^Tu = c.$$

By assumption, c is in the range of AXA^T , so a solution is

$$u = 2(AXA^T)^{\dagger}c, \qquad y = -XA^T(AXA^T)^{\dagger}c.$$

Substituting this in the objective gives

$$y^{T}X^{-1}y = c^{T}(AXA^{T})^{\dagger}AXX^{-1}XA^{T}(AXA^{T})^{\dagger}c$$
$$= c^{T}(AXA^{T})^{\dagger}(AXA^{T})(AXA^{T})^{\dagger}c$$
$$= c^{T}(AXA^{T})^{\dagger}c.$$

This expression is still correct if x has zero components. If $x_k = 0$, then necessarily $y_k = 0$ at the optimum, because otherwise $h(x_k, y_k) = \infty$. The nonzero components of y_k are the solution of

$$\begin{array}{ll} \text{minimize} & \sum\limits_{k \in I} y_k^2/x_k \\ \text{subject to} & \sum\limits_{k \in I} y_k a_k + c = 0, \end{array}$$

where $I = \{k \mid x_k > 0\}$. This is the same problem as considered above, but with A replaced by its submatrix of columns indexed by I. We then find that for the optimal y,

$$\sum_{k} h(x_k, y_k) = \sum_{k \in I} \frac{y_k^2}{x_k}$$

$$= c^T (\sum_{k \in I} x_k a_k a_k^T)^{\dagger} c$$

$$= c^T (A \operatorname{diag}(x) A^T)^{\dagger} c$$

We conclude that if we optimize over y in problem (33) of the assignment, the problem reduces to (32), so the two problems are equivalent.

(b) We first assume that $y_k \neq 0$ for all k. Consider the problem

minimize
$$\sum_{k=1}^{n} y_k^2 / x_k$$

subject to
$$\mathbf{1}^T x = 1,$$

with implicit constraint $x \succ 0$. The optimality conditions are

$$x \succ 0, \qquad \mathbf{1}^T x = 1, \qquad \frac{y_k^2}{x_k^2} = \nu, \quad k = 1, \dots, n.$$

From the second equation, $x_k = |y_k|/\sqrt{\nu}$. Substituting this in $\mathbf{1}^T x = 1$ shows that $\sqrt{\nu} = ||y||_1$. Therefore $x_k = |y_k|/||y||_1$. Making this substitution in the cost function (33) gives

$$\sum_{k=1}^{n} \frac{y_k^2}{x_k} = ||y||_1^2,$$

so the problem reduces to (34).

This conclusion remains valid if y has zero elements. Suppose that at an optimal solution for (33), y has a zero component $y_k = 0$ and $x_k > 0$. Since $y_k^2/x_k = 0$ for all nonnegative values of x_k , we can set $x_k = 0$ without changing the objective value. Then $\mathbf{1}^T x < 1$, so we can increase a component x_j for which $y_j \neq 0$ and this decreases the cost function. (At least one component of y is nonzero, because $A^T y = -c \neq 0$.) Therefore at the optimum, $x_k = 0$ whenever $y_k = 0$, so the expression $x_k = |y_k|/||y||_1$ is still correct.

3. Exercise A8.1.

Solution.

(a) The ellipsoid $\mathcal{E} = \{Q^{1/2}y \mid ||y||_2 \leq 1\}$ is contained in C if and only if

$$||Q^{1/2}a_i||_2 = \sup_{||y||_2 \le 1} |a_i^T Q^{1/2} y| \le 1, \quad i = 1, \dots, p.$$

(b) The dual function is

$$\begin{split} g(\lambda) &= \inf_{Q \succ 0} L(Q, \lambda) \\ &= \inf_{Q \succ 0} \left(\log \det Q^{-1} + \sum_{i=1}^{p} \lambda_i (a_i^T Q a_i - 1) \right) \\ &= \inf_{Q \succ 0} \left(\log \det Q^{-1} + \mathbf{tr} \left((\sum_{i=1}^{p} \lambda_i a_i a_i^T) Q \right) - \sum_{i=1}^{p} \lambda_i \right). \end{split}$$

We now use the following fact:

$$\inf_{X \succ 0} \left(\log \det X^{-1} + \mathbf{tr}(XY) \right) = \begin{cases} \log \det Y + n & Y \succ 0 \\ -\infty & \text{otherwise.} \end{cases}$$

The value for Y > 0 follows by setting the gradient of log det $X^{-1} + \mathbf{tr}(XY)$ to zero. This gives $-X^{-1} + Y = 0$, so the minimizer is $X = Y^{-1}$ if Y > 0. If $Y \not> 0$, there exists a nonzero a with $a^T Y a \leq 0$. Choosing $X = I + taa^T$ gives det $X = 1 + t \|a\|_2^2$ and

$$\log \det X^{-1} + \mathbf{tr}(XY) = -\log(1 + ta^T a) + \mathbf{tr} Y + ta^T Y a.$$

If $a^T Y a \leq 0$ this goes to $-\infty$ as $t \to \infty$.

We conclude that the dual function is

$$g(\lambda) = \begin{cases} \log \det \sum_{i=1}^{p} (\lambda_i a_i a_i^T) - \sum_{i=1}^{p} \lambda_i + n & \text{if } \sum_{i=1}^{p} (\lambda_i a_i a_i^T) > 0 \\ -\infty & \text{otherwise.} \end{cases}$$

The resulting dual problem is

maximize
$$\log \det \sum_{i=1}^{p} (\lambda_i a_i a_i^T) - \sum_{i=1}^{p} \lambda_i + n$$

subject to $\lambda \succeq 0$.

- (c) The KKT conditions are:
 - Q is primal feasible: $Q \succ 0$ and $a_i^T Q a_i \leq 1$ for $i = 1, \ldots, p$.
 - Dual multipliers are nonnegativity: $\lambda \succeq 0$.
 - Complementary slackness: $\lambda_i(1 a_i^T Q a_i) = 0$ for $i = 1, \dots, p$.
 - Gradient of Lagrangian is zero:

$$Q^{-1} = \sum_{i=1}^{p} \lambda_i a_i a_i^T.$$
 (1)

The complementary slackness condition implies that $a_i^T Q a_i = 1$ if $\lambda_i > 0$. Now suppose Q and λ are primal and dual optimal. If we take the inner product of the two sides of the equation (1) with Q, we get

$$n = \sum_{i=1}^p \lambda_i \operatorname{\mathbf{tr}}(Q a_i a_i^T) = \sum_{i=1}^p \lambda_i a_i^T Q a_i = \sum_{i=1}^p \lambda_i.$$

The last step follows from the complementary slackness conditions. Finally, we note, again using (1), that

$$x^{T}Q^{-1}x = \sum_{i=1}^{p} \lambda_{i}(a_{i}^{T}x)^{2} \le \sum_{i=1}^{p} \lambda_{i} = n$$

if
$$x \in C$$
, *i.e.*, if $|a_i^T x| \le 1$ for $i = 1, ..., p$.

4. Maximum likelihood estimation from quantized measurements.