Classificando o impacto humano sobre a floresta amazônica a partir de imagens de satélite

•••

Jonathan J. M. Nunes, Felipe M. Tavares, Lucas David, Rodrigo A. M. Franco

Notícias recentes (2019~2020)

- Aumento de 61% de aumento de pontos de queimada no ano passado em comparação com o ano anterior
- Nos primeiros sete meses de 2020 uma área equivalente a 8 vezes a cidade de Londres foi queimada na floresta amazônica
- Impunidade aos criminosos e intimidação de defensores do meio ambiente
- Expansão da agropecuária e venda ilegal de madeiras

A importância da floresta Amazônica

- Um dos maiores ecossistemas do mundo
- Grande biodiversidade
- Ciclo de carbono
- Reserva de água doce
- Controle climático
- Potencial biotecnologia

O problema

- Exploração ilegal de madeira
- Expansão da Agropecuária
- Carbono na atmosfera
- Aquecimento global

Metas de desenvolvimento sustentável

- Definidos em 2015 por 195 nações e acordados com a Organização das Nações Unidas.
- Meta de atingir objetivos até 2030

Competição no Kaggle

- "Planet: Understanding the Amazon from Space"

 https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/overview
- Impulsionar monitoramento autônomo
- Solução para identificar diversos tipos de intervenção humana a partir de imagens aéreas
- Amostras Multi-label
- Conjunto de teste altamente desbalanceado

Pré-processamento

- Utilizadas imagens RGB
- Imagens JPEG convertidas para formato TF-Records

Baseline

- Rede Neural *EfficientNet-B3* como modelo pré-treinado
- Camada densa igual ao número de classes do problema
- Classification head treinado inicialmente por até 80 épocas, camadas congeladas
- Novo treinamento com pesos descongelados por até mais 80 épocas, chamado de fine tuning

Data Balance

- Divisão das amostras entre dominantes e dominados
- Labels agriculture, clear e primary como dominantes e as demais como dominadas
- Subdivisão das dominantes com máximo de uma label
- Subdivisão das dominadas por label
- Amostragem a partir destes subconjuntos

Experimento: Data Augmentation

- Usado para aumento artificial dos dados e melhorar a generalização do algoritmo
- Aplicado operações de transformação de imagens nas amostras
- Auto Augmentation, utilizando políticas pré-treinadas para escolher melhores transformações

Otimizadores

- Treinamento em dois estágios
- Peso das camadas do *backbone* são congelados e a camada de classificação treinada
- 60% das camadas superiores do *backbone* descongeladas e treinadas novamente com

learning rate reduzido

Experimento: Focal Loss

Resolução do problema de treinamento de problemas de classificação em base de dados desbalanceados.

diminuir o peso de classes bem representadas e focar o treinamento nas classes difíceis.

$$FL(p_t) = -\alpha (1 - p_t)^{\gamma} log(p_t)$$

pt: Probabilidade ground truth

α: Fator de balanceamento

γ: Fator de modulação

- https://www.tensorflow.org/addons/api_docs/python/tfa/losses/SigmoidFocalCrossEntropy
- https://paperswithcode.com/method/focal-loss

Spatial Pyramid Pooling

- Rede EfficientNet-B3 usada como backbone
- Spatial Pyramid Pooling é utilizado para extrair sinais de features
- Sinal é transformado em um vetor de *features* concatenados em um vetor descritor da amostra

Experimento: Model Averaging

- Utilizado o método Stochastic Weight Averaging (SWA)
- Intuito de maior generalização para predição de dados não vistos
- Experimentos ambos iniciando na primeira época e salvando pesos a cada 10 épocas:
 - SWA apenas durante a etapa de fine tuning
 - SWA durante etapa de classification head até a etapa de fine tuning

Figure 1: Illustrations of SWA and SGD with a Preactivation ResNet-164 on CIFAR-100¹. Left: test error surface for three FGE samples and the corresponding SWA solution (averaging in weight space). Middle and Right: test error and train loss surfaces showing the weights proposed by SGD (at convergence) and SWA, starting from the same initialization of SGD after 125 training epochs.

Tabela de resultados finais no conjunto de validação e nos conjuntos de teste

Label	EB3 (baseline)	ЕВ3-В	EB3-SPP	EB3-AdamW	EB3-AA-IN-8	EB3-FL	EB3-SWA
agriculture	84.69%	73.56%	83.21%	83.86%	83.39%	61.55%	84.12%
artisinal_mine	80.87%	90.17%	83.49%	77.15%	74.60%	63.79%	80.36%
bare_ground	12.52%	15.74%	24.16%	11.09%	7.40%	0.00%	12.52%
blooming	0.00%	59.03%	0.00%	0.00%	0.00%	0.00%	0.00%
blow_down	0.00%	35.26%	0.00%	0.00%	0.00%	0.00%	0.00%
clear	96.87%	96.50%	96.63%	97.20%	97.14%	95.62%	96.84%
cloudy	85.23%	88.91%	86.41%	83.31%	80.16%	78.91%	84.60%
conventional_mine	0.00%	76.09%	21.05%	0.00%	0.00%	0.00%	0.00%
cultivation	48.45%	52.67%	51.41%	41.75%	57.93%	12.64%	46.72%
habitation	63.12%	63.86%	60.91%	60.06%	66.69%	20.50%	63.35%
haze	66.14%	66.16%	65.27%	62.90%	65.13%	50.29%	66.48%
partly_cloudy	91.62%	89.78%	90.70%	89.52%	90.20%	83.97%	91.80%
primary	98.56%	98.48%	98.23%	98.54%	98.82%	97.70%	98.69%
road	82.99%	81.35%	83.74%	82.84%	86.02%	63.72%	82.79%
selective_logging	3.70%	38.72%	18.39%	0.00%	0.00%	0.00%	3.69%
slash_burn	0.00%	17.72%	0.00%	0.00%	0.00%	0.00%	0.00%
water	76.44%	73.79%	76.12%	71.90%	71.60%	55.02%	77.13%
Valid Avg. macro	52.42%	65.75%	55.28%	50.60%	51.71%	40.22%	52.30%
Valid Avg. weighted	88.14%	80.39%	87.98%	87.20%	88.26%	78.55%	88.09%
Test Public	90.06%	88.05%	90.06%	89.41%	89.98%	81.09%	90.14%
Test Private	89.78%	87.80%	89.83%	89.22%	89.65%	80.61%	89.90%

Conclusão

Planet: Understanding Amazon from Space

Foram aplicadas diversas técnicas para solucionar o desafio *Planet: Understanding Amazon from Space*, o experimento usando a técnica SWA apresentou os melhores resultados.

Obrigado!

