Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 3. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **C)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1-e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 5. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 0, y[4] = 1, y[8] = 3
- **B)** y[1] = 1, y[4] = 1, y[8] = 1
- **C)** y[1] = 3, y[4] = 1, y[8] = 3
- **D)** y[1] = 1, y[4] = 3, y[8] = 1

Esercizio 6. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- C) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Esercizio 7. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) + x(n)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = \frac{1}{4}y(n-2) x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = T^2N_0/4$
- C) $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/16$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- **B)** $E\{Z(t)Y(t)\} = T^2N_0/2$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0 T h_2(t)/2$

Esercizio 2. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) Il segnale $x_3(t)$ non è causale
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 3. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- C) $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- **D)** Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$

Esercizio 4. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- B) Nessuna delle altre risposte corretta.

C)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

D)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

Esercizio 5. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Esercizio 6. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per } |t| \le 2T/3\\ 1/2 & \text{per } 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

B)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 8. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = 1$

B)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = -1$

C)
$$y[1] = 1$$
, $y[3] = 4$, $y[5] = 3$

D)
$$y[1] = 1, y[3] = 3, y[5] = 2$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

C)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 2. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)

Esercizio 3. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- C) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 4. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- C) $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- **D)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- **C)** $E\{Z(t)Y(t)\} = N_0T$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/2$

Esercizio 6. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **B)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) x(n)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 7. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 2, y[3] = 1, y[5] = 2
- **B)** y[1] = 1, y[3] = 1, y[5] = 1
- C) y[1] = 2, y[3] = 0, y[5] = -2
- **D)** y[1] = 1, y[3] = 0, y[5] = -1

Esercizio 8. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** $y_2(t)$ ha sempre supporto limitato

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- **D)** $N_{FFT} = 128 e f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- **B)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) x(n)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 3. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 0, y[5] = -1
- **B)** y[1] = 5, y[3] = 0, y[5] = -3
- C) y[1] = 2, y[3] = 1, y[5] = 2
- **D)** y[1] = 5, y[3] = 2, y[5] = 3

Esercizio 4. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=0.

- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 5. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/2$
- **B)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0T$

Esercizio 8. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1, y[3] = 4, y[5] = 3$$

B)
$$y[1] = 1$$
, $y[3] = 3$, $y[5] = 2$

C)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

D)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = 1$

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per} \quad |t| \le 3T/4 \\ 2 & \text{per} \quad 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A)
$$E\{Z(t)Y(t)\} = N_0T^2/16$$

B)
$$E\{Z(t)Y(t)\} = T^2N_0/4$$

C)
$$E\{Z(t)Y(t)\} = N_0Th_2(t)/4$$

D) nessuna delle affermazioni è corretta

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$

Esercizio 6. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 8. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- **B)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- C) Nessuna delle altre risposte corretta.
- **D)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)

Esercizio 2. (1.5 punti) Un segnale discreto x[n] che vale 1 per n=0,1,2,3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1, vale -1 per n=2,3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 2, y[3] = 1, y[5] = 2
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- C) y[1] = 2, y[3] = 0, y[5] = -2
- **D)** y[1] = 1, y[3] = 1, y[5] = 1

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = N_0T$
- C) $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/2$

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

D) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 5. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **B)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 8. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- **B)** $y(n) = \frac{1}{4}y(n-2) + x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **D)** Nessuna delle altre risposte corretta.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 3. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 5, y[3] = 2, y[5] = 3
- **B)** y[1] = 5, y[3] = 0, y[5] = -3
- C) y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 2, y[3] = 1, y[5] = 2

Esercizio 4. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- **B)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- C) $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$

D) Nessuna delle altre risposte corretta.

Esercizio 5. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = 2\delta(f) - \frac{\sin(i\pi/3)}{i\pi}$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **B)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/4$
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- C) $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$
- D) nessuna delle affermazioni è corretta

Esercizio 8. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase costante non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

B)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

C)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

D) Nessuna delle altre risposte corretta.

Esercizio 2. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 5$$
, $y[3] = 0$, $y[5] = -3$

B)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

C)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

D)
$$y[1] = 5$$
, $y[3] = 2$, $y[5] = 3$

Esercizio 3. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

A)
$$N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$$

B)
$$N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$$

C)
$$N_{FFT} = 256 e f_c = 64 \text{ kHz}$$

D)
$$N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$$

E) Nessuna delle altre risposte è corretta.

Esercizio 4. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

1

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) Si ha DTFT
$$\{h[n]\}=0$$
 per $f=0$.

B) Si ha
$$e^{j\frac{2\pi}{N}n} * h[n] = 0$$
.

- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- B) nessuna delle affermazioni è corretta
- **C)** $E\{Z(t)Y(t)\} = N_0T$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/2$

Esercizio 6. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare non distorce il segnale x(t)
- **B)** Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C) Una quantità diversa da tutte le altre risposte

D)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 8. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto illimitato per ogni valore di B

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 128 e f_c = 60 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **D)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- **E)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 3. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A) Nessuna delle altre risposte corretta.

B)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

C)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

D)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = N_0T^2/2$
- **D)** $E\{Z(t)Y(t)\} = N_0T$

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per } |t| \le 2T/3\\ 1/2 & \text{per } 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B) Una quantità diversa da tutte le altre risposte

C)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

Esercizio 8. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 5$$
, $y[3] = 0$, $y[5] = -3$

B)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

C)
$$y[1] = 5$$
, $y[3] = 2$, $y[5] = 3$

D)
$$y[1] = 2, y[3] = 1, y[5] = 2$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 2. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare non distorce il segnale x(t)
- B) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)

Esercizio 3. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 4, y[5] = 3
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- **C)** y[1] = 1, y[3] = 3, y[5] = 2
- **D)** y[1] = 1, y[3] = 0, y[5] = 1

Esercizio 4. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

B) Una quantità diversa da tutte le altre risposte

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

E)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 5. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Il segnale $x_3(t)$ non è causale
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$

Esercizio 7. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- B) Nessuna delle altre risposte corretta.

C)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

D)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = N_0 T h_2(t)/2$
- **D)** $E\{Z(t)Y(t)\} = T^2N_0/2$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **B)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- D) Nessuna delle altre risposte è corretta.
- E) $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **C**) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T$
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/2$
- C) $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- D) nessuna delle affermazioni è corretta

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

1

A) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

- B) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) Il segnale $x_3(t)$ non è causale
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- C) $y(n) = \frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = \frac{1}{4}y(n-2) x(n)$

Esercizio 6. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per} \quad |t| \le 2T/3\\ 1/2 & \text{per} \quad 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

B)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 8. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 5$$
, $y[3] = 2$, $y[5] = 3$

B)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

C)
$$y[1] = 5$$
, $y[3] = 0$, $y[5] = -3$

D)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = -1$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 2. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = -1$

B)
$$y[1] = 2, y[3] = 1, y[5] = 2$$

C)
$$y[1] = 5, y[3] = 0, y[5] = -3$$

D)
$$y[1] = 5, y[3] = 2, y[5] = 3$$

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

B) Nessuna delle altre risposte corretta.

C)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

D)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

1

A) z(t) ha supporto illimitato per ogni valore di B

- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **C)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- D) Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 6. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 7. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare non distorce il segnale x(t)

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = T^2N_0/4$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- C) $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- **D)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$

Esercizio 3. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per} \quad |t| \le 2T/3\\ 1/2 & \text{per} \quad 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

C)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 4. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 3, y[4] = 1, y[8] = 3
- **B)** y[1] = 1, y[4] = 3, y[8] = 1
- **C)** y[1] = 0, y[4] = 1, y[8] = 3
- **D)** y[1] = 1, y[4] = 1, y[8] = 1

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/2$
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0 T h_2(t)/2$

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- C) $N_{FFT} = 128 e f_c = 32 \text{ kHz}$
- **D)** Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Esercizio 8. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare non distorce il segnale x(t)
- B) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

E)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 3. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **C)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **E)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$

Esercizio 4. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = \frac{1}{4}y(n-2) + x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = \frac{1}{4}y(n-2) x(n)$

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0 T h_2(t)/2$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = N_0T^2/4$
- **D)** $E\{Z(t)Y(t)\} = T^2N_0/2$

Esercizio 7. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 0, y[5] = 1
- **B)** y[1] = 1, y[3] = 3, y[5] = 2
- C) y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 1, y[3] = 4, y[5] = 3

Esercizio 8. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto illimitato per ogni valore di B

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- B) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A)
$$E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$$

B)
$$E\{Z(t)Y(t)\} = N_0T$$

C)
$$E\{Z(t)Y(t)\} = N_0T^2/2$$

D) nessuna delle affermazioni è corretta

Esercizio 4. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 3$$
, $y[4] = 1$, $y[8] = 3$

- **B)** y[1] = 0, y[4] = 1, y[8] = 3
- **C)** y[1] = 1, y[4] = 3, y[8] = 1
- **D)** y[1] = 1, y[4] = 1, y[8] = 1

Esercizio 5. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- **C)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$

Esercizio 7. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare non distorce il segnale x(t)

Esercizio 8. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = \frac{1}{4}y(n-2) + x(n)$
- **C)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[4] = 3, y[8] = 1
- **B)** y[1] = 3, y[4] = 1, y[8] = 3
- **C)** y[1] = 1, y[4] = 1, y[8] = 1
- **D)** y[1] = 0, y[4] = 1, y[8] = 3

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro è $H(z) = (1-z^{-N})^2/(1-z^{-1})$.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Esercizio 3. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- **B)** Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A)
$$E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$$

- **B)** $E\{Z(t)Y(t)\} = N_0T$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/2$

Esercizio 5. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- **B)** $N_{FFT} = 128 e f_c = 32 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$

Esercizio 7. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Il segnale $x_3(t)$ non è causale
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 8. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = \frac{1}{4}y(n-2) + x(n)$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/2$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- **D)** $E\{Z(t)Y(t)\} = N_0T$

Esercizio 2. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- **A)** Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)

Esercizio 3. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[4] = 3, y[8] = 1
- **B)** y[1] = 1, y[4] = 1, y[8] = 1
- C) y[1] = 3, y[4] = 1, y[8] = 3
- **D)** y[1] = 0, y[4] = 1, y[8] = 3

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto limitato

D) $y_2(t)$ ha sempre supporto illimitato

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- **B)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- C) $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- **B)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 8. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

2

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

C)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin{(i\pi)}}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = T^2N_0/4$
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$

Esercizio 3. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = -\frac{1}{4}y(n-2) x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = \frac{1}{4}y(n-2) x(n)$

Esercizio 6. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con |H(f)| costante non distorce il segnale x(t)

Esercizio 7. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 0, y[5] = 1
- **B)** y[1] = 1, y[3] = 3, y[5] = 2
- C) y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 1, y[3] = 4, y[5] = 3

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- C) $N_{FFT} = 256 e f_c = 60 \text{ kHz}$
- **D)** Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A) Nessuna delle altre risposte corretta.

B)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

C)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

D)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 3. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)

Esercizio 4. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **C)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- D) Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$

Esercizio 5. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 6. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 5, y[3] = 0, y[5] = -3
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- **C)** y[1] = 2, y[3] = 1, y[5] = 2
- **D)** y[1] = 5, y[3] = 2, y[5] = 3

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1-e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/2$
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/2$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1$$
, $y[4] = 3$, $y[8] = 1$

B)
$$y[1] = 0$$
, $y[4] = 1$, $y[8] = 3$

C)
$$y[1] = 3, y[4] = 1, y[8] = 3$$

D)
$$y[1] = 1$$
, $y[4] = 1$, $y[8] = 1$

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A) nessuna delle affermazioni è corretta

B)
$$E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$$

C)
$$E\{Z(t)Y(t)\} = N_0T^2/2$$

D)
$$E\{Z(t)Y(t)\} = N_0T$$

Esercizio 3. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) Si ha
$$e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 - e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$$
.

- **B)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 4. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

A)
$$N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$$

B)
$$N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$$

- C) $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- D) Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$

Esercizio 5. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per } |t| \le 2T/3\\ 1/2 & \text{per } 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B) Una quantità diversa da tutte le altre risposte

C)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin{(i\pi/3)}}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 7. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

A) Nessuna delle altre risposte corretta.

B)
$$y(n) = \frac{1}{4}y(n-2) + x(n)$$

C)
$$y(n) = -\frac{1}{4}y(n-2) + x(n)$$

D)
$$y(n) = \frac{1}{4}y(n-2) - x(n)$$

Esercizio 8. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto illimitato

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **B)** Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)

Esercizio 2. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 256 e f_c = 128 \text{ kHz}$
- **D)** $N_{FFT} = 256 e f_c = 120 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/2$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = N_0T^2/4$
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/2$

Esercizio 4. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 0, y[5] = 1
- **B)** y[1] = 1, y[3] = 3, y[5] = 2

C)
$$y[1] = 1, y[3] = 4, y[5] = 3$$

D)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = -1$

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

A)
$$y(n) = -\frac{1}{4}y(n-2) + x(n)$$

B)
$$y(n) = \frac{1}{4}y(n-2) - x(n)$$

C)
$$y(n) = -\frac{1}{4}y(n-2) - x(n)$$

D) Nessuna delle altre risposte corretta.

Esercizio 6. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) Il segnale $x_3(t)$ non è causale
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 8. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

2

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

C)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

	Nome	
	Cognome	
	Matricola	
Ì	Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- A) Nessuna delle altre risposte è corretta.
- **B)** N_{FFT} = 256 e f_c =128 kHz
- C) $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **D)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 2. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) + x(n)$
- B) Nessuna delle altre risposte corretta.
- **C)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T$
- B) nessuna delle affermazioni è corretta

- C) $E\{Z(t)Y(t)\} = N_0T^2/2$
- **D)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$

Esercizio 5. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

- A) $Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f \frac{i}{2T})$
- B) Una quantità diversa da tutte le altre risposte
- C) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f \frac{i}{2T})$
- **D)** $Y(f) = 2\delta(f) \frac{\sin(3i\pi/8)}{i\pi}$
- E) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f \frac{i}{2T})$

Esercizio 7. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 0, y[5] = 1
- **B)** y[1] = 1, y[3] = 3, y[5] = 2
- C) y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 1, y[3] = 4, y[5] = 3

Esercizio 8. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase costante non distorce il segnale x(t)
- B) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- **B)** $E\{Z(t)Y(t)\} = T^2N_0/4$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- C) $y(n) = \frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = \frac{1}{4}y(n-2) x(n)$

Esercizio 3. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase costante non distorce il segnale x(t)
- B) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)

Esercizio 4. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 0, y[5] = -1
- **B)** y[1] = 1, y[3] = 1, y[5] = 1
- C) y[1] = 2, y[3] = 0, y[5] = -2

D)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

Esercizio 5. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per} \quad |t| \le 3T/4 \\ 2 & \text{per} \quad 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 128 e f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A) nessuna delle affermazioni è corretta

B)
$$E\{Z(t)Y(t)\} = N_0T^2/2$$

C)
$$E\{Z(t)Y(t)\} = N_0T$$

D)
$$E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$$

Esercizio 2. (1.5 punti) Un segnale discreto x[n], che vale 1 per n=1,3, vale 2 per n=2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2,3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1, y[3] = 4, y[5] = 3$$

B)
$$y[1] = 1, y[3] = 0, y[5] = 1$$

C)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

D)
$$y[1] = 1, y[3] = 3, y[5] = 2$$

Esercizio 3. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

A) Nessuna delle altre risposte è corretta.

B)
$$N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$$

C)
$$N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$$

D)
$$N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$$

E)
$$N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$$

Esercizio 4. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

- **B)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 5. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- **B)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare non distorce il segnale x(t)

Esercizio 6. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 7. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = \frac{1}{4}y(n-2) + x(n)$

Esercizio 8. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

2

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

C)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- **B)** $N_{FFT} = 256 e f_c = 128 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 128 e f_c = 64 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per} \quad |t| \le 2T/3\\ 1/2 & \text{per} \quad 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

- A) $Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f \frac{i}{2T})$
- B) Una quantità diversa da tutte le altre risposte

C)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- B) Nessuna delle altre risposte corretta.

C)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

D)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

Esercizio 4. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[4] = 1, y[8] = 1
- **B)** y[1] = 1, y[4] = 3, y[8] = 1
- C) y[1] = 3, y[4] = 1, y[8] = 3
- **D)** y[1] = 0, y[4] = 1, y[8] = 3

Esercizio 5. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto illimitato per ogni valore di B
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 6. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- **B)** Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- C) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/2$
- B) nessuna delle affermazioni è corretta
- **C)** $E\{Z(t)Y(t)\} = N_0T$
- **D)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- **B)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- C) $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- **B)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- C) Nessuna delle altre risposte corretta.

D)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

Esercizio 3. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 2, y[3] = 1, y[5] = 2
- **B)** y[1] = 2, y[3] = 0, y[5] = -2
- **C)** y[1] = 1, y[3] = 1, y[5] = 1
- **D)** y[1] = 1, y[3] = 0, y[5] = -1

Esercizio 4. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)

- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)

Esercizio 5. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per } |t| \le 2T/3\\ 1/2 & \text{per } 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

C)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 7. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto illimitato per ogni valore di B
- B) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- C) $E\{Z(t)Y(t)\} = T^2N_0/4$
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- **B)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- C) Nessuna delle altre risposte corretta.
- **D)** $y(n) = \frac{1}{4}y(n-2) + x(n)$

Esercizio 3. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 0, y[5] = -1
- **B)** y[1] = 1, y[3] = 3, y[5] = 2
- C) y[1] = 1, y[3] = 4, y[5] = 3
- **D)** y[1] = 1, y[3] = 0, y[5] = 1

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- **C)** $E\{Z(t)Y(t)\} = N_0T$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/2$

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- C) $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- D) Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

- C) Una quantità diversa da tutte le altre risposte
- **D)** $Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f \frac{i}{2T})$
- **E)** $Y(f) = 2\delta(f) \frac{\sin(3i\pi/8)}{i\pi}$

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) Si ha DTFT $\{h[n]\} = 0$ per f = k/2N (k intero qualsiasi).
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 8. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **B)** Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 4, y[5] = 3
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- **C)** y[1] = 1, y[3] = 0, y[5] = 1
- **D)** y[1] = 1, y[3] = 3, y[5] = 2

Esercizio 2. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **D)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 3. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- B) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)

Esercizio 4. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = \frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

Esercizio 6. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto illimitato per ogni valore di B
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = N_0T$
- C) $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/2$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

C)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 2. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- B) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Esercizio 3. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1, y[3] = 1, y[5] = 1$$

B)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

C)
$$y[1] = 2$$
, $y[3] = 0$, $y[5] = -2$

D)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

Esercizio 4. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **B)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **E)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{4}y(n-2) x(n)$
- **B)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 6. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- C) $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$
- **D)** $E\{Z(t)Y(t)\} = T^2N_0/4$

Esercizio 8. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

2

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- **B)** $E\{Z(t)Y(t)\} = T^2N_0/2$
- C) $E\{Z(t)Y(t)\} = N_0 T h_2(t)/2$
- D) nessuna delle affermazioni è corretta

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 3. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

D)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 4. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$

Esercizio 5. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 6. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = \frac{1}{4}y(n-2) x(n)$
- **D)** $y(n) = \frac{1}{4}y(n-2) + x(n)$

Esercizio 7. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase costante non distorce il segnale x(t)
- B) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)

Esercizio 8. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 0, y[4] = 1, y[8] = 3
- **B)** y[1] = 1, y[4] = 1, y[8] = 1
- C) y[1] = 3, y[4] = 1, y[8] = 3
- **D)** y[1] = 1, y[4] = 3, y[8] = 1

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 2, y[3] = 1, y[5] = 2
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- C) y[1] = 5, y[3] = 0, y[5] = -3
- **D)** y[1] = 5, y[3] = 2, y[5] = 3

Esercizio 2. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T$
- **B)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/2$

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) z(t) ha supporto illimitato per ogni valore di B

D) Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 5. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Esercizio 6. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- **B)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- C) Nessuna delle altre risposte corretta.
- **D)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$

Esercizio 7. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 8. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

2

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = 2\delta(f) - \frac{\sin(i\pi/3)}{i\pi}$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- B) z(t) ha supporto illimitato per ogni valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- ${f D}$) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 2. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **D)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- **B)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$
- C) $E\{Z(t)Y(t)\} = T^2N_0/4$
- D) nessuna delle affermazioni è corretta

Esercizio 4. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[4] = 3, y[8] = 1
- **B)** y[1] = 0, y[4] = 1, y[8] = 3
- C) y[1] = 1, y[4] = 1, y[8] = 1

D)
$$y[1] = 3$$
, $y[4] = 1$, $y[8] = 3$

Esercizio 5. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4 \\ 2/5 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

D)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 6. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)

Esercizio 7. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- **B)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) x(n)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 8. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

2

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **D)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- C) La funzione di trasferimento del filtro è $H(z) = (1-z^{-N})^2/(1-z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = T^2N_0/4$
- C) $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/16$

Esercizio 4. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- B) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare non distorce il segnale x(t)

Esercizio 5. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

C) Una quantità diversa da tutte le altre risposte

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

Esercizio 6. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 2, y[3] = 1, y[5] = 2$$

B)
$$y[1] = 1, y[3] = 1, y[5] = 1$$

C)
$$y[1] = 2$$
, $y[3] = 0$, $y[5] = -2$

D)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

Esercizio 7. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 8. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

B)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

C)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

D) Nessuna delle altre risposte corretta.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = T^2N_0/4$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/16$

Esercizio 2. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)

Esercizio 3. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 4. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{4}y(n-2) x(n)$
- **B)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

- C) $y(n) = \frac{1}{4}y(n-2) x(n)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 5. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1, y[4] = 1, y[8] = 1$$

B)
$$y[1] = 0, y[4] = 1, y[8] = 3$$

C)
$$y[1] = 3$$
, $y[4] = 1$, $y[8] = 3$

D)
$$y[1] = 1$$
, $y[4] = 3$, $y[8] = 1$

Esercizio 6. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

C) Una quantità diversa da tutte le altre risposte

D)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

A)
$$N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$$

B)
$$N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$$

C)
$$N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$$

- D) Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)

Esercizio 2. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 2, y[3] = 0, y[5] = -2
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- **C)** y[1] = 2, y[3] = 1, y[5] = 2
- **D)** y[1] = 1, y[3] = 1, y[5] = 1

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- **D)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$

Esercizio 4. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per} \quad |t| \le 3T/4\\ 2/5 & \text{per} \quad 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

B)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- **B)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = T^2N_0/4$

Esercizio 7. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Esercizio 8. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

2

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- A) $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- **D)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$

Esercizio 3. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 4. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$

- C) $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- **E)** $N_{FFT} = 256 e f_c = 128 \text{ kHz}$

Esercizio 5. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Esercizio 6. (1.5 punti) Un segnale discreto x[n], che vale 3 per n = 0, vale 2 per n = 1, vale 1 per n = 2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, vale -1 per n = 3, 4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 5, y[3] = 0, y[5] = -3
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- C) y[1] = 2, y[3] = 1, y[5] = 2
- **D)** y[1] = 5, y[3] = 2, y[5] = 3

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/4$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/16$

Esercizio 8. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

2

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B) Una quantità diversa da tutte le altre risposte

C)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

D)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1-z^{-N})^2/(1-z^{-1})$.

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/2$
- **B)** $E\{Z(t)Y(t)\} = T^2N_0/2$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/4$

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) z(t) ha supporto illimitato per ogni valore di B
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 5. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

- B) Una quantità diversa da tutte le altre risposte
- C) $Y(f) = 2\delta(f) \frac{\sin(3i\pi/8)}{i\pi}$
- **D)** $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f \frac{i}{2T})$
- E) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f \frac{i}{2T})$

Esercizio 6. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- **D)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$

Esercizio 7. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[4] = 1, y[8] = 1
- **B)** y[1] = 3, y[4] = 1, y[8] = 3
- C) y[1] = 1, y[4] = 3, y[8] = 1
- **D)** y[1] = 0, y[4] = 1, y[8] = 3

Esercizio 8. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) x(n)$

Esercizio 3. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[4] = 1, y[8] = 1
- **B)** y[1] = 3, y[4] = 1, y[8] = 3
- C) y[1] = 0, y[4] = 1, y[8] = 3
- **D)** y[1] = 1, y[4] = 3, y[8] = 1

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

1

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T

D) z(t) ha supporto illimitato per ogni valore di B

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/2$
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0 T h_2(t)/2$

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f - \frac{i}{2T})$$

- B) Una quantità diversa da tutte le altre risposte
- C) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f \frac{i}{2T})$
- **D)** $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f \frac{i}{2T})$
- **E)** $Y(f) = 2\delta(f) \frac{\sin(3i\pi/8)}{i\pi}$

Esercizio 7. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- C) $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 8. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- B) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/2$
- B) nessuna delle affermazioni è corretta
- **C)** $E\{Z(t)Y(t)\} = N_0T$
- **D)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$

Esercizio 3. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

- C) $Y(f) = 2\delta(f) \frac{\sin(i\pi/3)}{i\pi}$
- D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 4. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

1

- **A)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- B) Nessuna delle altre risposte corretta.

C)
$$y(n) = \frac{1}{4}y(n-2) + x(n)$$

D)
$$y(n) = -\frac{1}{4}y(n-2) + x(n)$$

Esercizio 5. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1$$
, $y[3] = 3$, $y[5] = 2$

B)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = -1$

C)
$$y[1] = 1, y[3] = 0, y[5] = 1$$

D)
$$y[1] = 1, y[3] = 4, y[5] = 3$$

Esercizio 6. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 7. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 8. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **D)** Qualunque canale con |H(f)| costante non distorce il segnale x(t)

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 2. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 3, y[4] = 1, y[8] = 3
- **B)** y[1] = 1, y[4] = 3, y[8] = 1
- C) y[1] = 0, y[4] = 1, y[8] = 3
- **D)** y[1] = 1, y[4] = 1, y[8] = 1

Esercizio 3. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 4. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per} \quad |t| \le 2T/3\\ 1/2 & \text{per} \quad 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

D)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi}\right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- C) $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- **D)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **C)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- **D)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 7. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase costante non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- **B)** $E\{Z(t)Y(t)\} = T^2N_0/4$
- C) $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$
- D) nessuna delle affermazioni è corretta

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- **B)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- C) $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- D) Nessuna delle altre risposte corretta.

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 3. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata $T x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- B) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 4. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per} \quad |t| \le 2T/3\\ 1/2 & \text{per} \quad 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A)
$$E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$$

B)
$$E\{Z(t)Y(t)\} = N_0T^2/16$$

C) nessuna delle affermazioni è corretta

D)
$$E\{Z(t)Y(t)\} = T^2N_0/4$$

Esercizio 6. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- B) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)

Esercizio 7. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1$$
, $y[3] = 4$, $y[5] = 3$

B)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

C)
$$y[1] = 1, y[3] = 0, y[5] = 1$$

D)
$$y[1] = 1, y[3] = 3, y[5] = 2$$

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- **C)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **D)** $N_{FFT} = 128 e f_c = 30 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **B)** $N_{FFT} = 256 e f_c = 120 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- D) Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$

Esercizio 2. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 3. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1-z^{-N})^2/(1-z^{-1})$.

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A)
$$E\{Z(t)Y(t)\} = T^2N_0/4$$

B) nessuna delle affermazioni è corretta

C)
$$E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$$

D)
$$E\{Z(t)Y(t)\} = N_0T^2/16$$

Esercizio 5. (1.5 punti) Un segnale discreto x[n] che vale 1 per n=0,1,2,3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1, vale -1 per n=2,3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1, y[3] = 1, y[5] = 1$$

B)
$$y[1] = 2$$
, $y[3] = 0$, $y[5] = -2$

C)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

D)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = 2\delta(f) - \frac{\sin(i\pi/3)}{i\pi}$$

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 7. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

A) Nessuna delle altre risposte corretta.

B)
$$y(n) = \frac{1}{4}y(n-2) - x(n)$$

C)
$$y(n) = -\frac{1}{4}y(n-2) + x(n)$$

D)
$$y(n) = \frac{1}{4}y(n-2) + x(n)$$

Esercizio 8. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

2

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **D)** Qualunque canale con |H(f)| costante non distorce il segnale x(t)

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = -1$

B)
$$y[1] = 1, y[3] = 3, y[5] = 2$$

C)
$$y[1] = 1, y[3] = 4, y[5] = 3$$

D)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = 1$

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

B)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

C) Nessuna delle altre risposte corretta.

D)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

Esercizio 3. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

E)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 4. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

1

- **A)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- **B)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = T^2N_0/2$
- **D)** $E\{Z(t)Y(t)\} = N_0 T h_2(t)/2$

Esercizio 6. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 7. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase costante non distorce il segnale x(t)
- B) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- C) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)

Esercizio 8. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- **B)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = 2\delta(f) - \frac{\sin(i\pi/3)}{i\pi}$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 2. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1$$
, $y[3] = 4$, $y[5] = 3$

B)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

C)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = 1$

D)
$$y[1] = 1, y[3] = 3, y[5] = 2$$

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A) nessuna delle affermazioni è corretta

B)
$$E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$$

C)
$$E\{Z(t)Y(t)\} = N_0T$$

D)
$$E\{Z(t)Y(t)\} = N_0T^2/2$$

Esercizio 4. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1-e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 5. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 6. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- **B)** Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare non distorce il segnale x(t)

Esercizio 7. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **B)** $N_{FFT} = 128 e f_c = 32 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$

Esercizio 8. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- **B)** $y(n) = \frac{1}{4}y(n-2) + x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **D)** Nessuna delle altre risposte corretta.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 256 e f_c = 120 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$
- C) $E\{Z(t)Y(t)\} = N_0T^2/16$
- **D)** $E\{Z(t)Y(t)\} = T^2N_0/4$

Esercizio 3. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)

Esercizio 4. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 1, y[5] = 1
- **B)** y[1] = 2, y[3] = 1, y[5] = 2

C)
$$y[1] = 2$$
, $y[3] = 0$, $y[5] = -2$

D)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = -1$

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

B)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

C)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

D) Nessuna delle altre risposte corretta.

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per} \quad |t| \le 2T/3\\ 1/2 & \text{per} \quad 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

C) Una quantità diversa da tutte le altre risposte

D)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin{(i\pi/3)}}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 8. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha sempre supporto limitato

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) Il segnale $x_3(t)$ non è causale
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 2. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- **D)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- A) $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- **B)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- C) Nessuna delle altre risposte corretta.
- **D)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$

Esercizio 4. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

B) Una quantità diversa da tutte le altre risposte

C)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

Esercizio 5. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 6. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/2$
- **B)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0T$

Esercizio 8. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = -1$

B)
$$y[1] = 5$$
, $y[3] = 2$, $y[5] = 3$

C)
$$y[1] = 5$$
, $y[3] = 0$, $y[5] = -3$

D)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- C) $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Esercizio 3. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- **A)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare non distorce il segnale x(t)

Esercizio 4. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

D)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 5. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 3$$
, $y[4] = 1$, $y[8] = 3$

B)
$$y[1] = 1, y[4] = 1, y[8] = 1$$

C)
$$y[1] = 0, y[4] = 1, y[8] = 3$$

D)
$$y[1] = 1, y[4] = 3, y[8] = 1$$

Esercizio 6. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

B) Nessuna delle altre risposte corretta.

C)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

D)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

Esercizio 7. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **B)** Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) z(t) ha supporto illimitato per ogni valore di B
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A)
$$E\{Z(t)Y(t)\} = N_0Th_2(t)/2$$

B) nessuna delle affermazioni è corretta

C)
$$E\{Z(t)Y(t)\} = T^2N_0/2$$

D)
$$E\{Z(t)Y(t)\} = N_0T^2/4$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase costante non distorce il segnale x(t)
- B) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 3. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 4. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A) Nessuna delle altre risposte corretta.

B)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

C)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

D)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

A)
$$N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$$

B)
$$N_{FFT} = 128 e f_c = 30 \text{ kHz}$$

C)
$$N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$$

D) Nessuna delle altre risposte è corretta.

E)
$$N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$$

Esercizio 6. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 0, y[4] = 1, y[8] = 3$$

B)
$$y[1] = 3$$
, $y[4] = 1$, $y[8] = 3$

C)
$$y[1] = 1, y[4] = 1, y[8] = 1$$

D)
$$y[1] = 1$$
, $y[4] = 3$, $y[8] = 1$

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per} \quad |t| \le 2T/3\\ 1/2 & \text{per} \quad 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B) Una quantità diversa da tutte le altre risposte

C)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A)
$$E\{Z(t)Y(t)\} = N_0T$$

B) nessuna delle affermazioni è corretta

C)
$$E\{Z(t)Y(t)\} = N_0T^2/2$$

D)
$$E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- B) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T$
- **B)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- C) $E\{Z(t)Y(t)\} = N_0T^2/2$
- D) nessuna delle affermazioni è corretta

Esercizio 3. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- C) $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 4. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 0, y[5] = -1
- **B)** y[1] = 2, y[3] = 0, y[5] = -2

C)
$$y[1] = 2, y[3] = 1, y[5] = 2$$

D)
$$y[1] = 1$$
, $y[3] = 1$, $y[5] = 1$

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

A) Nessuna delle altre risposte corretta.

B)
$$y(n) = \frac{1}{4}y(n-2) - x(n)$$

C)
$$y(n) = \frac{1}{4}y(n-2) + x(n)$$

D)
$$y(n) = -\frac{1}{4}y(n-2) + x(n)$$

Esercizio 6. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) Il segnale $x_3(t)$ non è causale
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

C)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 8. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

2

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **C**) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 2. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **B)** $y(n) = \frac{1}{4}y(n-2) + x(n)$
- C) $y(n) = \frac{1}{4}y(n-2) x(n)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 4. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

1

A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)

- B) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Esercizio 5. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

C) Una quantità diversa da tutte le altre risposte

D)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A)
$$E\{Z(t)Y(t)\} = N_0Th_2(t)/2$$

B)
$$E\{Z(t)Y(t)\} = N_0T^2/4$$

C) nessuna delle affermazioni è corretta

D)
$$E\{Z(t)Y(t)\} = T^2N_0/2$$

Esercizio 7. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

B)
$$y[1] = 1$$
, $y[3] = 1$, $y[5] = 1$

C)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

D)
$$y[1] = 2$$
, $y[3] = 0$, $y[5] = -2$

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

A)
$$N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$$

B) Nessuna delle altre risposte è corretta.

C)
$$N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$$

D)
$$N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$$

E)
$$N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/4$
- **B)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/16$

Esercizio 3. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare non distorce il segnale x(t)

Esercizio 4. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = 2\delta(f) - \frac{\sin(i\pi/3)}{i\pi}$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 5. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **B)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- **C)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- D) Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$

Esercizio 7. (1.5 punti) Un segnale discreto x[n] che vale 1 per n=0,1,2,3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1, vale -1 per n=2,3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 0, y[5] = -1
- **B)** y[1] = 2, y[3] = 0, y[5] = -2
- **C)** y[1] = 2, y[3] = 1, y[5] = 2
- **D)** y[1] = 1, y[3] = 1, y[5] = 1

Esercizio 8. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- C) $y(n) = \frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = \frac{1}{4}y(n-2) x(n)$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = T^2N_0/4$
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per } |t| \le 2T/3\\ 1/2 & \text{per } 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

C)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin{(i\pi/3)}}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

1

A) Nessuna delle altre risposte corretta.

B)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

C)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

D)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

Esercizio 4. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **C)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 6. (1.5 punti) Un segnale discreto x[n] che vale 1 per n=0,1,2,3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1, vale -1 per n=2,3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 2, y[3] = 1, y[5] = 2
- **B)** y[1] = 2, y[3] = 0, y[5] = -2
- C) y[1] = 1, y[3] = 1, y[5] = 1
- **D)** y[1] = 1, y[3] = 0, y[5] = -1

Esercizio 7. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)

Esercizio 8. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- B) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto illimitato

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Il segnale $x_3(t)$ non è causale
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

C)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 3. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

1

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1-e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- B) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/2$
- **B)** $E\{Z(t)Y(t)\} = N_0T$
- C) $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- D) nessuna delle affermazioni è corretta

Esercizio 6. (1.5 punti) Un segnale discreto x[n] che vale 1 per n=0,1,2,3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1, vale -1 per n=2,3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 2, y[3] = 0, y[5] = -2
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- C) y[1] = 2, y[3] = 1, y[5] = 2
- **D)** y[1] = 1, y[3] = 1, y[5] = 1

Esercizio 7. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- C) $y(n) = \frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **D)** $N_{FFT} = 128 e f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- C) $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- D) Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = \frac{1}{4}y(n-2) x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) x(n)$

Esercizio 3. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 4. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per} \quad |t| \le 3T/4 \\ 2 & \text{per} \quad 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

- **B)** $Y(f) = 2\delta(f) \frac{\sin(3i\pi/8)}{i\pi}$
- C) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f \frac{i}{2T})$
- D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 5. (1.5 punti) Un segnale discreto x[n], che vale 3 per n = 0, vale 2 per n = 1, vale 1 per n = 2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, vale -1 per n = 3, 4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 5, y[3] = 0, y[5] = -3
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- **C)** y[1] = 5, y[3] = 2, y[5] = 3
- **D)** y[1] = 2, y[3] = 1, y[5] = 2

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- C) $E\{Z(t)Y(t)\} = T^2N_0/4$
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$

Esercizio 7. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- B) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)

Esercizio 8. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

2

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro è $H(z) = (1-z^{-N})^2/(1-z^{-1})$.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$
- C) $E\{Z(t)Y(t)\} = T^2N_0/4$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/16$

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- C) $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- **D)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$

Esercizio 3. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = 2\delta(f) - \frac{\sin(i\pi/3)}{i\pi}$$

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 4. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

1

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- A) $N_{FFT} = 128 e f_c = 60 \text{ kHz}$
- **B)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **D)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 6. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)

Esercizio 7. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Il segnale $x_3(t)$ non è causale
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 8. (1.5 punti) Un segnale discreto x[n], che vale 3 per n = 0, vale 2 per n = 1, vale 1 per n = 2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, vale -1 per n = 3, 4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 5, y[3] = 2, y[5] = 3
- **B)** y[1] = 2, y[3] = 1, y[5] = 2
- C) y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 5, y[3] = 0, y[5] = -3

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/4$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/16$

Esercizio 3. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B) Una quantità diversa da tutte le altre risposte

C)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

D)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 4. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- **B)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- C) $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 5. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- B) z(t) ha supporto illimitato per ogni valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 6. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare non distorce il segnale x(t)

Esercizio 7. (1.5 punti) Un segnale discreto x[n], che vale 3 per n = 0, vale 2 per n = 1, vale 1 per n = 2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, vale -1 per n = 3, 4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 5, y[3] = 2, y[5] = 3
- **B)** y[1] = 2, y[3] = 1, y[5] = 2
- C) y[1] = 5, y[3] = 0, y[5] = -3
- **D)** y[1] = 1, y[3] = 0, y[5] = -1

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **D)** Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t)*h_2(t)$
- B) nessuna delle affermazioni è corretta
- **C)** $E\{Z(t)Y(t)\} = N_0T$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/2$

Esercizio 3. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1}).$
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Esercizio 4. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1, y[3] = 1, y[5] = 1$$

B)
$$y[1] = 2$$
, $y[3] = 0$, $y[5] = -2$

C)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

D)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

Esercizio 5. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

C) Una quantità diversa da tutte le altre risposte

D)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(2i\pi/3)}}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = 2\delta(f) - \frac{\sin(i\pi/3)}{i\pi}$$

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$

Esercizio 7. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase costante non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- C) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)

Esercizio 8. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

B)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

C)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

D) Nessuna delle altre risposte corretta.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	57

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- **B)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- C) $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- D) Nessuna delle altre risposte corretta.

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 3. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

- A) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f \frac{i}{2T})$
- B) Una quantità diversa da tutte le altre risposte
- C) $Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f \frac{i}{2T})$
- **D)** $Y(f) = 2\delta(f) \frac{\sin{(3i\pi/8)}}{i\pi}$
- E) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f \frac{i}{2T})$

Esercizio 4. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **C)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- **D)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 6. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Il segnale $x_3(t)$ non è causale
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 7. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 2, y[3] = 0, y[5] = -2
- **B)** y[1] = 2, y[3] = 1, y[5] = 2
- **C)** y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 1, y[3] = 1, y[5] = 1

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- **C)** $E\{Z(t)Y(t)\} = N_0T$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/2$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	58

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **B)** z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) + x(n)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = \frac{1}{4}y(n-2) x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

Esercizio 3. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per} \quad |t| \le 3T/4 \\ 2 & \text{per} \quad 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

C) Una quantità diversa da tutte le altre risposte

D)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- C) $E\{Z(t)Y(t)\} = T^2N_0/4$
- D) nessuna delle affermazioni è corretta

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- C) $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **D)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$

Esercizio 6. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 8. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1, y[3] = 4, y[5] = 3$$

B)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

C)
$$y[1] = 1, y[3] = 0, y[5] = 1$$

D)
$$y[1] = 1, y[3] = 3, y[5] = 2$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = -1$

B)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

C)
$$y[1] = 5, y[3] = 0, y[5] = -3$$

D)
$$y[1] = 5$$
, $y[3] = 2$, $y[5] = 3$

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A)
$$E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$$

B)
$$E\{Z(t)Y(t)\} = N_0T^2/2$$

C)
$$E\{Z(t)Y(t)\} = N_0T$$

D) nessuna delle affermazioni è corretta

Esercizio 3. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

A)
$$N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$$

B) Nessuna delle altre risposte è corretta.

C)
$$N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$$

D)
$$N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$$

E)
$$N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$$

Esercizio 4. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) Si ha DTFT
$$\{h[n]\} = 0$$
 per $f = 0$.

- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1-e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.

Esercizio 5. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- B) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)

Esercizio 6. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- **D)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$

Esercizio 7. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) Il segnale $x_3(t)$ non è causale
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 8. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

2

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = 2\delta(f) - \frac{\sin(i\pi/3)}{i\pi}$$

B)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(2i\pi/3)}}{i\pi} \delta(f - \frac{i}{2T})$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

D)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

E) Una quantità diversa da tutte le altre risposte

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- C) La funzione di trasferimento del filtro è $H(z) = (1-z^{-N})^2/(1-z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

B)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

C) Nessuna delle altre risposte corretta.

D)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

Esercizio 4. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **B)** $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 256 e f_c = 120 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 5. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 5, y[3] = 0, y[5] = -3
- **B)** y[1] = 5, y[3] = 2, y[5] = 3
- C) y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 2, y[3] = 1, y[5] = 2

Esercizio 6. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) Il segnale $x_3(t)$ non è causale
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = N_0T^2/16$
- **D)** $E\{Z(t)Y(t)\} = T^2N_0/4$

Esercizio 8. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- B) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- **B)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **D)** $N_{FFT} = 128 e f_c = 60 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- **B)** $E\{Z(t)Y(t)\} = T^2N_0/2$
- C) nessuna delle affermazioni è corretta
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/2$

Esercizio 3. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = 2\delta(f) - \frac{\sin{(i\pi/3)}}{i\pi}$$

C)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(2i\pi/3)}}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 4. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Esercizio 5. (1.5 punti) Un segnale discreto x[n], che vale 3 per n = 0, vale 2 per n = 1, vale 1 per n = 2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, vale -1 per n = 3, 4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 5, y[3] = 0, y[5] = -3
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- **C)** y[1] = 2, y[3] = 1, y[5] = 2
- **D)** y[1] = 5, y[3] = 2, y[5] = 3

Esercizio 6. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto limitato pari a 2T se $B=\mathrm{e}^{-\frac{T}{T_2}}$

Esercizio 7. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- **B)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- C) Nessuna delle altre risposte corretta.
- **D)** $y(n) = \frac{1}{4}y(n-2) + x(n)$

Esercizio 8. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- **A)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare non distorce il segnale x(t)

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1$$
, $y[3] = 3$, $y[5] = 2$

B)
$$y[1] = 1$$
, $y[3] = 4$, $y[5] = 3$

C)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = -1$

D)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = 1$

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

B) Una quantità diversa da tutte le altre risposte

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/8)}}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(5i\pi/4)}}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

A) nessuna delle affermazioni è corretta

B)
$$E\{Z(t)Y(t)\} = N_0Th_2(t)/2$$

C)
$$E\{Z(t)Y(t)\} = T^2N_0/2$$

D)
$$E\{Z(t)Y(t)\} = N_0T^2/4$$

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

1

A) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 5. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare non distorce il segnale x(t)
- B) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **B)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$

Esercizio 7. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **B)** $y(n) = -\frac{1}{4}y(n-2) x(n)$
- C) Nessuna delle altre risposte corretta.
- **D)** $y(n) = \frac{1}{4}y(n-2) x(n)$

Esercizio 8. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

2

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	63

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **C)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0 T h_2(t)/2$
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- C) $E\{Z(t)Y(t)\} = T^2N_0/2$
- D) nessuna delle affermazioni è corretta

Esercizio 3. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per } |t| \le 3T/4\\ 2/5 & \text{per } 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

1

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- **A)** Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)

Esercizio 5. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 1, y[5] = 1
- **B)** y[1] = 2, y[3] = 1, y[5] = 2
- C) y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 2, y[3] = 0, y[5] = -2

Esercizio 6. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- **D)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$

Esercizio 7. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **B)** z(t) ha supporto limitato pari a 2T se $B=\mathrm{e}^{-\frac{T}{T_2}}$
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 8. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

2

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 2. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con |H(f)| costante non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- **D)** Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/4$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = N_0T^2/16$
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$

Esercizio 4. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 0, y[4] = 1, y[8] = 3
- **B)** y[1] = 1, y[4] = 1, y[8] = 1
- **C)** y[1] = 1, y[4] = 3, y[8] = 1

D)
$$y[1] = 3$$
, $y[4] = 1$, $y[8] = 3$

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- **B)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **C)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- D) Nessuna delle altre risposte è corretta.
- **E)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

- **A)** $Y(f) = 2\delta(f) \frac{\sin(i\pi/3)}{i\pi}$
- **B)** $Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f \frac{i}{2T})$
- C) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f \frac{i}{2T})$
- D) Una quantità diversa da tutte le altre risposte
- **E)** $Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(2i\pi/3)}}{i\pi} \delta(f \frac{i}{2T})$

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 8. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

A) Nessuna delle altre risposte corretta.

B)
$$y(n) = \frac{1}{2}y(n-1) + x(n) - \frac{1}{4}x(n-1) - \frac{1}{4}x(n-2)$$

C)
$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) - \frac{1}{4}x(n-1)$$

D)
$$y(n) = -\frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	65

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/2$
- **B)** $E\{Z(t)Y(t)\} = N_0T$
- C) $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- D) nessuna delle affermazioni è corretta

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A) Una quantità diversa da tutte le altre risposte

B)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = 2\delta(f) - \frac{\sin(i\pi/3)}{i\pi}$$

Esercizio 3. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

B)
$$y[1] = 1$$
, $y[3] = 4$, $y[5] = 3$

C)
$$y[1] = 1$$
, $y[3] = 0$, $y[5] = 1$

D)
$$y[1] = 1$$
, $y[3] = 3$, $y[5] = 2$

Esercizio 4. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- B) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)

Esercizio 5. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$
- C) $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- **D)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Esercizio 7. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) + x(n)$
- **B)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- C) Nessuna delle altre risposte corretta.
- **D)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

Esercizio 8. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

2

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	66

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- **B)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)

Esercizio 2. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$
- **B)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) x(n)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 4. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 3, y[5] = 2
- **B)** y[1] = 1, y[3] = 0, y[5] = -1
- **C)** y[1] = 1, y[3] = 0, y[5] = 1

D)
$$y[1] = 1$$
, $y[3] = 4$, $y[5] = 3$

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- C) $E\{Z(t)Y(t)\} = T^2N_0/2$
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/2$

Esercizio 6. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 256 \text{ e } f_c = 128 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1-e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 8. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

2

La trasformata di Fourier di y(t) vale:

- **A)** $Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f \frac{i}{2T})$
- B) Una quantità diversa da tutte le altre risposte
- C) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f \frac{i}{2T})$
- **D)** $Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f \frac{i}{2T})$
- **E)** $Y(f) = 2\delta(f) \frac{\sin(i\pi/3)}{i\pi}$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

A) Nessuna delle altre risposte corretta.

B)
$$y(n) = \frac{1}{4}y(n-2) + x(n)$$

C)
$$y(n) = \frac{1}{4}y(n-2) - x(n)$$

D)
$$y(n) = -\frac{1}{4}y(n-2) + x(n)$$

Esercizio 2. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

A) Si ha
$$e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1-e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$$
.

- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 3. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

A)
$$N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$$

B) Nessuna delle altre risposte è corretta.

C)
$$N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$$

D)
$$N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$$

E)
$$N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$$

Esercizio 4. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

B)
$$y[1] = 1$$
, $y[3] = 1$, $y[5] = 1$

C)
$$y[1] = 2$$
, $y[3] = 0$, $y[5] = -2$

D)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

Esercizio 5. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)
- B) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- **D)** Qualunque canale con fase costante non distorce il segnale x(t)

Esercizio 6. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f - \frac{i}{2T})$$

C)
$$Y(f) = 2\delta(f) - \frac{\sin(3i\pi/8)}{i\pi}$$

D) Una quantità diversa da tutte le altre risposte

E)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f - \frac{i}{2T})$$

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- **C)** $E\{Z(t)Y(t)\} = N_0T$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/2$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- **D)** Qualunque canale con |H(f)| costante non distorce il segnale x(t)

Esercizio 2. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 66 \text{ kHz}$

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- **B)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- C) $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 5. (1.5 punti) Un segnale discreto x[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, vale -1 per n = 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

B)
$$y[1] = 2, y[3] = 1, y[5] = 2$$

C)
$$y[1] = 2$$
, $y[3] = 0$, $y[5] = -2$

D)
$$y[1] = 1, y[3] = 1, y[5] = 1$$

Esercizio 6. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = T^2N_0/2$
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/2$

Esercizio 8. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per } |t| \le 2T/3\\ 1/2 & \text{per } 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

2

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B) Una quantità diversa da tutte le altre risposte

C)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

D)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	69

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- C) Qualunque canale con fase costante non distorce il segnale x(t)
- **D)** Qualunque canale con |H(f)| costante non distorce il segnale x(t)

Esercizio 2. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 4, 5 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 3, y[4] = 1, y[8] = 3
- **B)** y[1] = 0, y[4] = 1, y[8] = 3
- **C)** y[1] = 1, y[4] = 1, y[8] = 1
- **D)** y[1] = 1, y[4] = 3, y[8] = 1

Esercizio 3. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- C) Nessuna delle altre risposte è corretta.
- **D)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle affermazioni è corretta
- **B)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/2$

- C) $E\{Z(t)Y(t)\} = T^2N_0/2$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/4$

Esercizio 5. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1-e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 6. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- **A)** $y(n) = \frac{1}{4}y(n-2) x(n)$
- B) Nessuna delle altre risposte corretta.
- C) $y(n) = \frac{1}{4}y(n-2) + x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 3T/4 \\ 2 & \text{per } 3T/4 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

- **A)** $Y(f) = 2\delta(f) \frac{\sin(3i\pi/8)}{i\pi}$
- B) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/4)}{i\pi} \delta(f \frac{i}{2T})$
- C) Una quantità diversa da tutte le altre risposte
- **D)** $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin{(i\pi)}}{i\pi} \delta(f \frac{i}{2T})$
- **E)** $Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(5i\pi/8)}{i\pi} \delta(f \frac{i}{2T})$

Esercizio 8. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) z(t) ha supporto illimitato per ogni valore di B
- **B)** Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 2. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{3}\right) u(n)$$

- **A)** $y(n) = \frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) \frac{1}{4}x(n-1)$
- **B)** $y(n) = \frac{1}{2}y(n-1) + x(n) \frac{1}{4}x(n-1) \frac{1}{4}x(n-2)$
- C) $y(n) = -\frac{1}{2}y(n-1) \frac{1}{4}y(n-2) + x(n) + \frac{1}{4}x(n-1)$
- **D)** Nessuna delle altre risposte corretta.

Esercizio 3. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 3, y[5] = 2
- **B)** y[1] = 1, y[3] = 0, y[5] = 1
- C) y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 1, y[3] = 4, y[5] = 3

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) z(t) ha supporto illimitato per ogni valore di B

D) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 5. (1 punto) Il segnale

$$x(t) = A_1 \sin(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con $|H(f_1)| = |H(f_2)|$ e fase lineare non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con $|H(f)| = K \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ e fase lineare non distorce il segnale x(t)

Esercizio 6. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per} \quad |t| \le 2T/3 \\ 2 & \text{per} \quad 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

- A) $Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f \frac{i}{2T})$
- B) Una quantità diversa da tutte le altre risposte
- C) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f \frac{i}{2T})$
- **D)** $Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f \frac{i}{2T})$
- **E)** $Y(f) = 2\delta(f) \frac{\sin(i\pi/3)}{i\pi}$

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/4$
- **B)** $E\{Z(t)Y(t)\} = T^2N_0/2$
- C) $E\{Z(t)Y(t)\} = N_0 T h_2(t)/2$
- D) nessuna delle affermazioni è corretta

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 30$ kHz, si costruisce il segnale $y(t) = x^2(t)$. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 64 \text{ e } f_c = 32 \text{ kHz}$
- **B)** $N_{FFT} = 128 e f_c = 66 \text{ kHz}$
- C) $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 64 \text{ e } f_c = 30 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **B)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T^2/16$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = T^2N_0/4$
- **D)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/4$

Esercizio 3. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = \frac{1}{4}y(n-2) + x(n)$
- C) $y(n) = \frac{1}{4}y(n-2) x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

Esercizio 4. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 5, y[3] = 2, y[5] = 3
- **B)** y[1] = 2, y[3] = 1, y[5] = 2
- C) y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 5, y[3] = 0, y[5] = -3

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase lineare non distorce il segnale x(t)
- B) Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)

Esercizio 6. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 7. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

- **A)** $Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f \frac{i}{2T})$
- B) Una quantità diversa da tutte le altre risposte
- C) $Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f \frac{i}{2T})$
- **D)** $Y(f) = 2\delta(f) \frac{\sin(i\pi/3)}{i\pi}$
- **E)** $Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f \frac{i}{2T})$

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **B)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- **C)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- E) Nessuna delle altre risposte è corretta.

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	72

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 & \text{per } |t| \le 2T/3 \\ 2 & \text{per } 2T/3 \le |t| \le T \\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \frac{\sin(i\pi)}{i\pi} \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \frac{\sin(2i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

C) Una quantità diversa da tutte le altre risposte

D)
$$Y(f) = \sum_{i=-\infty}^{+\infty} \frac{\sin(4i\pi/3)}{i\pi} \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = 2\delta(f) - \frac{\sin(i\pi/3)}{i\pi}$$

Esercizio 2. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) z(t) ha supporto illimitato per ogni valore di B
- ${f B}$) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 3. (1.5 punti) Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1, vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

A)
$$y[1] = 5$$
, $y[3] = 2$, $y[5] = 3$

B)
$$y[1] = 2$$
, $y[3] = 1$, $y[5] = 2$

C)
$$y[1] = 5$$
, $y[3] = 0$, $y[5] = -3$

D)
$$y[1] = 1, y[3] = 0, y[5] = -1$$

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T/2 e ampiezza unitaria, non nulli nell'intervallo (0, T/2). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/4$
- B) nessuna delle affermazioni è corretta
- C) $E\{Z(t)Y(t)\} = N_0 T h_2(t)/4$
- **D)** $E\{Z(t)Y(t)\} = N_0T^2/16$

Esercizio 5. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = -\frac{1}{4}y(n-2) x(n)$
- C) $y(n) = \frac{1}{4}y(n-2) x(n)$
- **D)** $y(n) = -\frac{1}{4}y(n-2) + x(n)$

Esercizio 6. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 7. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- B) Qualunque canale con fase costante non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- **D)** Qualunque canale con |H(f)| costante non distorce il segnale x(t)

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\cos(2\pi f_y t)$, con $f_y = 50$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 500 Hz, evitando il fenomeno dell'aliasing in frequenza::

- **A)** $N_{FFT} = 256 \text{ e } f_c = 120 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 128 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 64 \text{ kHz}$
- **E)** N_{FFT} = 256 e f_c =128 kHz

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 2. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 4, y[5] = 3
- **B)** y[1] = 1, y[3] = 0, y[5] = 1
- C) y[1] = 1, y[3] = 0, y[5] = -1
- **D)** y[1] = 1, y[3] = 3, y[5] = 2

Esercizio 3. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 4. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(-\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

- A) Nessuna delle altre risposte corretta.
- **B)** $y(n) = -\frac{1}{4}y(n-2) x(n)$
- C) $y(n) = -\frac{1}{4}y(n-2) + x(n)$

D)
$$y(n) = \frac{1}{4}y(n-2) - x(n)$$

Esercizio 5. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per} \quad |t| \le 2T/3\\ 1/2 & \text{per} \quad 2T/3 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{3}{2} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 + 1/2\delta(f)$$

C) Una quantità diversa da tutte le altre risposte

D)
$$Y(f) = \frac{3}{2} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(2i\pi/3)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = 2\sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi/2)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a N_0 , stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = N_0T$
- **B)** $E\{Z(t)Y(t)\} = (N_0/2)Th_1(t) * h_2(t)$
- C) $E\{Z(t)Y(t)\} = N_0T^2/2$
- D) nessuna delle affermazioni è corretta

Esercizio 7. (1 punto) Il segnale

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

con $A_1, A_2 \neq 0$ e $f_1 \neq f_2$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con fase costante non distorce il segnale x(t)
- B) Qualunque canale con fase lineare e $|H(f_1)| = |H(f_2)|$ non distorce il segnale x(t)
- C) Qualunque canale con banda assoluta maggiore di $\max(f_1, f_2)$ non distorce il segnale x(t)
- **D)** Qualunque canale con |H(f)| costante non distorce il segnale x(t)

Esercizio 8. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- A) Nessuna delle altre risposte è corretta.
- **B)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$
- C) $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- **D)** $N_{FFT} = 128 \text{ e } f_c = 30 \text{ kHz}$
- **E)** $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$

Appello TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	74

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Ricavare la relazione ingresso/uscita del filtro numerico LTI caratterizzato dalla seguente risposta all'impulso:

$$h(n) = \left(\frac{1}{2}\right)^n \cos\left(\pi \frac{n}{2}\right) u(n)$$

A) Nessuna delle altre risposte corretta.

B)
$$y(n) = \frac{1}{4}y(n-2) - x(n)$$

C)
$$y(n) = \frac{1}{4}y(n-2) + x(n)$$

D)
$$y(n) = -\frac{1}{4}y(n-2) + x(n)$$

Esercizio 2. (1.5 punti) È dato il segnale $y(t) = \sum_{i=-\infty}^{+\infty} x(t-2iT)$, dove

$$x(t) = \begin{cases} 1 - \frac{4|t|}{5T} & \text{per} \quad |t| \le 3T/4\\ 2/5 & \text{per} \quad 3T/4 \le |t| \le T\\ 0 & \text{altrove} \end{cases}$$

La trasformata di Fourier di y(t) vale:

A)
$$Y(f) = \frac{1}{2T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(i\pi)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

B)
$$Y(f) = \frac{8}{5} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

C) Una quantità diversa da tutte le altre risposte

D)
$$Y(f) = \frac{1}{T} \sum_{i=-\infty}^{+\infty} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 \delta(f - \frac{i}{2T})$$

E)
$$Y(f) = \frac{8}{5} \left[\frac{\sin(5i\pi/8)}{i\pi} \right]^2 + 2/5\delta(f)$$

Esercizio 3. (1 punto) Il segnale

$$x(t) = A\sin(2\pi f_A t) + B\sin(2\pi f_B t)$$

con $A, B \neq 0$ e $f_A \neq f_B$ viene trasmesso attraverso un canale LTI reale che ha funzione di trasferimento H(f). Quale delle seguenti affermazioni è corretta?

- A) Qualunque canale con banda a 3-dB maggiore di $\max(f_A, f_B)$ non distorce il segnale x(t)
- B) Qualunque canale con fase lineare non distorce il segnale x(t)
- C) Qualunque canale con fase lineare e $H(f_A) = H(f_B) \neq 0$ non distorce il segnale x(t)
- **D)** Qualunque canale con $|H(f_A)| = |H(f_B)| \neq 0$ non distorce il segnale x(t)

Esercizio 4. (1.5 punti) L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 5. (1 punto) Dato il segnale x(t) il cui spettro è nullo per $|f| > f_x$, con $f_x = 10$ kHz, si costruisce il segnale $y(t) = x(t)\sin(2\pi f_y t)$, con $f_y = 20$ kHz. Si vuole valutare lo spettro Y(f) usando una FFT su N_{FFT} campioni, con N_{FFT} potenza di 2. Indicare quale delle seguenti scelte di N_{FFT} e della frequenza di campionamento f_c consentono di ottere una risoluzione in frequenza di 250 Hz, evitando il fenomeno dell'aliasing in frequenza:

- **A)** $N_{FFT} = 256 \text{ e } f_c = 60 \text{ kHz}$
- B) Nessuna delle altre risposte è corretta.
- C) $N_{FFT} = 256 \text{ e } f_c = 64 \text{ kHz}$
- **D)** $N_{FFT} = 128 e f_c = 30 \text{ kHz}$
- **E)** $N_{FFT} = 128 \text{ e } f_c = 32 \text{ kHz}$

Esercizio 6. (1.5 punti) Un segnale discreto x[n], che vale 1 per n = 1, 3, vale 2 per n = 2, e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n = 0, 1, 2, 3 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- **A)** y[1] = 1, y[3] = 0, y[5] = -1
- **B)** y[1] = 1, y[3] = 0, y[5] = 1
- **C)** y[1] = 1, y[3] = 3, y[5] = 2
- **D)** y[1] = 1, y[3] = 4, y[5] = 3

Esercizio 7. (1.5 punti) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco, con densità spettrale di potenza pari a $N_0/2$, stazionario a media nulla N(t) è posto all'ingresso di un sistema LTI con risposta all'impulso $h_1(t)$. Il processo che si ottiene in uscita Y(t) viene posto all'ingresso di un altro sistema LTI con risposta all'impulso $h_2(t)$, producendo in uscita il processo Z(t). $h_1(t)$ e $h_2(t)$ sono due impulsi rettangolari di durata T e ampiezza unitaria, non nulli nell'intervallo (0,T). Si consideri il valore atteso $E\{Z(t)Y(t)\}$. Dire quale delle seguenti affermazioni è corretta.

- **A)** $E\{Z(t)Y(t)\} = T^2N_0/2$
- **B)** $E\{Z(t)Y(t)\} = N_0Th_2(t)/2$
- C) $E\{Z(t)Y(t)\} = N_0T^2/4$
- D) nessuna delle affermazioni è corretta