Stochastic Optimization Problems for Domestic and Reserve Microgrid Management

ICSP Trondheim, August 1^{rst} 2019

Adrien Le Franc, Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara

Basic components of a microgrid

1

Stochasticity arises from PV production and electrical demand

50 daily PV scenarios observed on the same site

50 daily demand scenarios observed on the same site

PhD thesis context

Schneider Electric and Efficacity institute are interested in

- Testing stochastic methods against Model Predictive Control on a benchmark of real microgrid data for a basic domestic power management problem
- Designing control algorithms to manage microgrids enrolled in reserve services resulting in additional controls, costs and time scales

Outline of the presentation

- 1. Optimal domestic power management in microgrids
- 2. Co-management of domestic power usage and reserve services
- 3. Perspectives

Outline of the presentation

- 1. Optimal domestic power management in microgrids
- 2. Co-management of domestic power usage and reserve services
- 3. Perspectives

Outline of the section

- 1. Optimal domestic power management in microgrids
- 1.1 Multistage stochastic optimization problem
- 1.2 Numerical methods and results

We model the microgrid as a dynamical system

State of charge of the battery SoC_t

uncertain production PV_t (kWh)

Imported energy E_t (kWh)

uncertain demand D_t (kWh)

Information structure and decision chronology

Uncertainties are modeled as random processes

$$\mathbf{D} : \omega \in \Omega \mapsto (\mathbf{D}_1(\omega), ..., \mathbf{D}_T(\omega)) \in \mathbb{R}^T$$

$$\mathbf{PV} : \omega \in \Omega \mapsto (\mathbf{PV}_1(\omega), ..., \mathbf{PV}_T(\omega)) \in \mathbb{R}^T$$

- \bullet $\,{\bf P}_t^{dom}$ is the power exchanged to (dis)charge the battery
- Controls \mathbf{P}_t^{dom} are taken observing the history process $\mathbf{H}_t = (\mathbf{D}_1, \mathbf{PV}_1, ..., \mathbf{D}_t, \mathbf{PV}_t)$ $\sigma(\mathbf{P}_t^{dom}) \subset \sigma(\mathbf{H}_t) \qquad \rightarrow \mathbf{P}_t^{dom} \text{ is non anticipative}$

$$\begin{array}{c|c} \mathbf{P}_{t}^{dom} & & \mathbf{E}_{t+1}, \mathbf{D}_{t+1} \\ \hline & \mathbf{SoC}_{t} & & \mathbf{SoC}_{t+1} \\ \hline & \Delta t = 15 \text{ min} \end{array}$$

Stochastic domestic microgrid management problem

$$\begin{split} \min_{\mathbf{P}_0^{dom},\mathbf{P}_1^{dom}...\mathbf{P}_{T-1}^{dom}} & \mathbb{E}\Big[\sum_{t=0}^{T-1} \rho_{buy,t} \mathbf{E}_{t+1}^+ - \rho_{sell,t} \mathbf{E}_{t+1}^-\Big] \\ & \underbrace{\mathbf{E}_{t+1} = \mathbf{D}_{t+1} - \mathbf{PV}_{t+1} + \mathbf{P}_t^{dom} \cdot \Delta t}_{\text{national grid recourse}} \\ & \underbrace{\mathbf{SoC}_{t+1} = \mathbf{SoC}_t + \left\{\rho_c \mathbf{P}_t^{dom,+} - \frac{1}{\rho_d} \mathbf{P}_t^{dom,-}\right\} \cdot \frac{\Delta t}{c}}_{\text{battery dynamics}} \\ & \mathbf{SoC}_0 = soc_0 \\ & 0 \leq \mathbf{SoC}_t \leq 1 \\ & - \rho \Delta_t \leq \mathbf{P}_t^{dom} \leq \rho \Delta_t \\ & \underbrace{\sigma(\mathbf{P}_t^{dom}) \subset \sigma(\mathbf{H}_t)}_{\text{non anticipativity}} \end{split}$$

Compact notations

State

$$\mathbf{X}_t = \mathbf{SoC}_t$$

Noise

$$\mathbf{W}_t = \mathbf{D}_t - \mathbf{PV}_t$$

Control

$$\mathbf{U}_t = \mathbf{P}_t^{dom} \cdot \Delta t$$

Stochastic optimization problem in generic form

$$\begin{aligned} \min_{\mathbf{U}_0,\mathbf{U}_1...\mathbf{U}_{T-1}} \quad \mathbb{E}\big[\sum_{t=0}^{T-1} L_t(\mathbf{X}_t,\mathbf{U}_t,\mathbf{W}_{t+1})\big] \\ \mathbf{X}_0 &= x_0 \\ \mathbf{X}_{t+1} &= f_t(\mathbf{X}_t,\mathbf{U}_t,\mathbf{W}_{t+1}) \\ \mathbf{U}_t &\in \mathcal{U}_t^{\mathrm{ad}}(\mathbf{X}_t) \\ \sigma(\mathbf{U}_t) \subset \sigma(x_0,\mathbf{W}_1,...,\mathbf{W}_t) \end{aligned}$$

$$\mathsf{dim}\ \mathbb{X}=1\quad \mathsf{dim}\ \mathbb{U}=1\quad \mathsf{dim}\ \mathbb{W}=1$$

Outline of the section

- 1. Optimal domestic power management in microgrids
- 1.1 Multistage stochastic optimization problem
- 1.2 Numerical methods and results

Numerical methods

We compute controls u_t for the domestic microgrid management problem with three methods

- Based on Schneider's forecasts we apply Model Predictive Control (MPC)
- We apply Stochastic Dynamic Programming (SDP)
- We apply SDP modeling stagewise dependent uncertainties with an AR-1 process (SDP-AR)

Model Predictive Control (MPC)

- At each stage $t \in \{1, ..., T-1\}$ we receive a forecast $(\widetilde{w}_{t+1}, ..., \widetilde{w}_{t+H})$ of **W** over horizon H = 24h
- ullet We solve a **deterministic** optimization problem (LP) to compute u_t

$$\min_{\substack{u_t, u_t \dots u_{t+H-1} \\ u_t, u_t \dots u_{t+H-1}}} \sum_{h=t}^{t+H-1} p_{buy,h} (\widetilde{w}_{h+1} + u_h)^+ - p_{sell,h} (\widetilde{w}_{h+1} + u_h)^-$$

$$x_t = soc_t$$

$$x_{h+1} = x_h + \frac{\rho_c}{c} u_h^+ - \frac{1}{c\rho_d} u_h^-$$

$$0 \le x_h \le 1$$

$$-p\Delta_t \le u_h \le p\Delta_t$$

Stochastic Dynamic Programming (SDP)

We compute value functions offline using the Bellman equations

$$\begin{split} V_{\mathcal{T}}(x) &= 0 \\ V_{t}(x) &= \min_{u \in \mathcal{U}_{t}^{\mathrm{ad}}(x)} \ \mathbb{E}_{\mathbf{W}_{t+1}} \Big[L_{t}(x, u, \mathbf{W}_{t+1}) + V_{t+1} \big(f_{t}(x, u, \mathbf{W}_{t+1}) \big) \Big] \end{split}$$

We compute optimal controls online

$$u_t \in \operatorname*{arg\,min}_{u \in \mathcal{U}_t^{\mathrm{ad}}(x)} \mathbb{E}_{\mathbf{W}_{t+1}} \Big[L_t(x,u,\mathbf{W}_{t+1}) + V_{t+1} \big(f_t(x,u,\mathbf{W}_{t+1}) \big) \Big]$$

(When uncertainties $(\mathbf{W}_1, ..., \mathbf{W}_T)$ are stagewise independent, this gives an optimal solution)

Modeling stagewise dependent uncertainties (SDP-AR)

We apply SDP to an extended-state version of the problem

$$\begin{split} V_t(x, \mathbf{w}) &= \min_{\mathbf{U}_t, \mathbf{U}_{t+1} \dots \mathbf{U}_{T-1}} & \mathbb{E}_{\mathbf{\varepsilon}} \Big[\sum_{s=t}^{T-1} \ p_{buy,s} \big[\mathbf{U}_s + \mathbf{W}_{s+1} \big]^+ - p_{sell,s} \big[\mathbf{U}_s + \mathbf{W}_{s+1} \big]^- \Big] \\ & \mathbf{X}_t = x \\ & \mathbf{X}_{s+1} = \mathbf{X}_s + \frac{\rho_c}{c} \mathbf{U}_s^+ - \frac{1}{c\rho_d} \mathbf{U}_s^- \\ & \mathbf{W}_t = \mathbf{w} \\ & \mathbf{W}_{s+1} = \alpha_s \mathbf{W}_s + \beta_s + \varepsilon_{s+1} \\ & \mathbf{U}_s \in \mathcal{U}_s^{\mathrm{ad}}(\mathbf{X}_s) \\ & \sigma(\mathbf{U}_s) \subset \sigma(\mathbf{x}, \varepsilon_t, \dots, \varepsilon_s) \end{split}$$

(When errors $(\varepsilon_1,...,\varepsilon_T)$ are stagewise independent, this gives an optimal solution)

Results

We compare MPC with stochastic methods for the domestic power management problem on real microgrid data from Schneider

- We use training data for model calibration
- We use testing data for the simulation of microgrid management over 10 days periods
- We compute **scores** by averaging the gain of a method against a naive policy that applies $u_t = 0$ (i.e. no energy storage)

Testing data is organized in periods of 10 consecutive days

11 sites to manage separately

2 settings of battery per site

 ~ 10 periods of 10 days per site

Our results

Method	SDP	SDP AR-1	MPC
Score (%)	16.1	17.1	18.2

Average score on all testing periods. Higher is the better.

- Our first SDP-based attempts score lower than MPC
- Modeling stagewise dependence of uncertainties helps bridging the gap
- Forecasting was easy on these sites,
 Schneider provided new data that should be more challenging for MPC

Outline of the presentation

- 1. Optimal domestic power management in microgrids
- 2. Co-management of domestic power usage and reserve services
- 3. Perspectives

Activation of the reserve for frequency regulation

We deliver reserve power on top of domestic power usage

Outline of the section

- 2. Co-management of domestic power usage and reserve services
- 2.1 Optimal daily reserve sizing
- 2.2 Daily co-management problem
- 2.3 Hourly co-management problem

The reserve mechanism

In order to **instantaneously** maintain the frequency balance, the operator relies on microgrids enrolled as **reserve providers**

- Providers submit day-ahead hourly power reserve proposals (R_h)_{h=0,...,H-1}
- During the day, reserve power controls \mathbf{P}_t^{del} are activated if the frequency violates the dead band of 50.00 \pm 0.05 Hz

Optimal daily reserve sizing

We must decide **day ahead** on a reserve proposal $(R_h)_{h=0,...,H-1}$ which minimizes the daily cost

$$\min_{R} \underbrace{-c^{T}R}_{\text{reserve reward}} + \underbrace{\Phi(R)}_{\text{co-management cost}}$$

- R is an open loop control
- $\Phi(R)$ is the value of a stochastic optimization problem

Outline of the section

- 2. Co-management of domestic power usage and reserve services
- 2.1 Optimal daily reserve sizing
- 2.2 Daily co-management problem
- 2.3 Hourly co-management problem

Compact notations for hourly decomposition

State

$$\mathbf{X}_h = \mathbf{SoC}_h$$
; $\mathbf{X}_{[h]} = \mathbf{SoC}_{[h:h+1]}$

Noise

$$\mathbf{W}_{[h]} = (\mathbf{D}_{[h:h+1]}, \mathbf{PV}_{[h:h+1]}, \mathbf{\Delta f}_{[h:h+1]})$$

Control

$$\mathbf{U}_{[h]} = (\mathbf{P}_{[h:h+1]}^{dom}, \mathbf{P}_{[h:h+1]}^{del})$$

Two-stages structure of the optimal reserve sizing problem

$$\begin{aligned} \min_{R} \quad \underbrace{-c^T R}_{\text{reserve reward}} + \quad \underbrace{\min_{\mathbf{U}} \; \mathbb{E}_{\mathbf{W}} \Big[\sum_{h=0}^{H-1} L_h(R_h, \mathbf{X}_{[h]}, \mathbf{U}_{[h]}, \mathbf{W}_{[h+1]}) \Big]}_{\mathbf{X}_0 = x_0} \\ \mathbf{X}_{h+1} = f_h(R_h, \mathbf{X}_{[h]}, \mathbf{U}_{[h]}, \mathbf{W}_{[h+1]}) \\ \mathbf{U} \quad \text{is non anticipative} \end{aligned}$$

 $\Phi(R)$ is the value of a **multistage** stochastic problem

Outline of the section

- 2. Co-management of domestic power usage and reserve services
- 2.1 Optimal daily reserve sizing
- 2.2 Daily co-management problem
- 2.3 Hourly co-management problem

Recall of the domestic microgrid management problem

$$\begin{aligned} \min_{\mathbf{P}_0^{dom},\mathbf{P}_1^{dom}...\mathbf{P}_{T-1}^{dom}} & \mathbb{E}\left[\sum_{t=0}^{T-1} p_{buy,t} \mathbf{E}_{t+1}^+ - p_{sell,t} \mathbf{E}_{t+1}^-\right] \\ & \underbrace{\mathbf{E}_{t+1} = \mathbf{D}_{t+1} - \mathbf{PV}_{t+1} + \mathbf{P}_t^{dom} \cdot \Delta t}_{\text{national grid recourse}} \\ & \underbrace{\mathbf{SoC}_{t+1} = \mathbf{SoC}_t + \{\rho_c \mathbf{P}_t^{dom,+} - \frac{1}{\rho_d} \mathbf{P}_t^{dom,-}\} \cdot \frac{\Delta t}{c}}_{\text{battery dynamics}} \end{aligned}$$

(We omit some constraints for readability)

Hourly co-management problem (1/2)

We consider a fixed hour $h \in \{0, ..., 23\}$

$$\begin{split} \min_{\mathbf{P}_{h,m}^{dom},\ \mathbf{P}_{h,m,s}^{del}} & \mathbb{E}\Big[\sum_{m=0}^{M-1} \rho_{h,m}^{buy} \mathbf{E}_{h,m+1}^{+} - \rho_{h,m}^{sell} \mathbf{E}_{h,m+1}^{-} + \sum_{s=0}^{S-1} \Pi_{h,m,s} (R_h, \Delta \mathbf{f}_{h,m+1,s+1}, \mathbf{P}_{h,m,s}^{del}) \Big] \\ & \mathbf{E}_{h,m+1} = \mathbf{D}_{h,m+1} - \mathbf{P} \mathbf{V}_{h,m+1} + \mathbf{P}_{h,m}^{dom} \cdot \Delta m + \sum_{s=0}^{S-1} \mathbf{P}_{h,m,s}^{del} \cdot \Delta s \\ & \mathbf{SoC}_{h,m,s+1} = \mathbf{SoC}_{h,m,s} + \{\rho_c(\mathbf{P}_{h,m}^{dom} + \mathbf{P}_{h,m,s}^{del})^+ - \frac{1}{\rho_d}(\mathbf{P}_{h,m}^{dom} + \mathbf{P}_{h,m,s}^{del})^-\} \cdot \frac{\Delta s}{c} \\ & \sigma(\mathbf{P}_{h,m}^{dom}) \subset \sigma(soc_0, ..., \Delta \mathbf{f}_{h,m,1:S}, \mathbf{D}_{h,m}, \mathbf{P} \mathbf{V}_{h,m}) \\ & \sigma(\mathbf{P}_{h,m,s}^{del}) \subset \sigma(soc_0, ..., \Delta \mathbf{f}_{h,m,1:S}, \mathbf{D}_{h,m}, \mathbf{P} \mathbf{V}_{h,m}, \Delta \mathbf{f}_{h,m+1,1:s}) \\ & \text{new non anticipative control} \end{split}$$

What is new?

• We have a **new uncertainty** $\Delta f_{h,m,s}$ for frequency deviation

What is new?

- We have a **new control** $P_{h,m,s}^{del}$ for reserve power delivery
- We have a **new time scale** for controlling $\mathbf{P}_{h,m,s}^{del}$ every $\Delta s = 10$ seconds to follow the fluctuations of $\Delta \mathbf{f}_{h,m,s}$
- We have a **new cost** since $\mathbf{P}_{h,m,s}^{del}$ might induce a penalty $\Pi_{h,m,s}(R_h, \Delta \mathbf{f}_{h,m+1,s+1}, \mathbf{P}_{h,m,s}^{del})$

Hourly co-management problem (2/2)

We merge domestic time scale with reserve time scale: $(h, m, s) \rightarrow (h, s)$

What did we change?

- We reduced the time scale of \mathbf{P}_h^{dom} to $\Delta s=10$ seconds to avoid mixing two time scales within 1 hour
- We must guarantee the observability of P^{del}_{h,s}
 so the grid operator imposes a new constraint

$$|\mathbf{\Delta f}_{h,s}| > \delta \Rightarrow \mathbf{P}_{h,s}^{\mathit{dom}} = \mathbf{P}_{h,s-1}^{\mathit{dom}}$$

Outline of the presentation

- 1. Optimal domestic power management in microgrids
- 2. Co-management of domestic power usage and reserve services

3. Perspectives

Conclusion - what we did

- We wrote a stochastic optimization problem for domestic microgrid management
- We showcased numerical results on Schneider's data for a benchmark of methods
- We proposed decompositions for the optimal sizing of reserve power
- Optimal reserve sizing introduces a mix of open loop and closed loop controls
- We identified the main challenges of the daily co-management problem
 - We have to deal with several time scales
 - ullet The process Δf is very difficult to model

References i

P. Carpentier, J.-P. Chancelier, G. Cohen, and M. De Lara. **Stochastic multi-stage optimization.**

In *Probability Theory and Stochastic Modelling*, volume 75. Springer, 2015.

N. Löhndorf and A. Shapiro.

Modeling time-dependent randomness in stochastic dual dynamic programming.

European Journal of Operational Research, 273(2):650-661, 2019.

T. Rigaut, P. Carpentier, J. P. Chancelier, M. De Lara, and

J. Waeytens.

Stochastic optimization of braking energy storage and ventilation in a subway station.

IEEE Transactions on Power Systems, 34(2):1256-1263, 2019.