Week 10 Revision notes

Week 10 - IPv6: Features, Benefits, and Transition Techniques

1. Introduction to IP Addressing and IPv4 Limitations

Core Functions of the Internet:

- Addressing: Assigns unique IP addresses to identify devices on a network.
- Naming: Associates domain names with IP addresses for user-friendly navigation.
- Routing: Directs packets across networks from source to destination.

• IP Ownership:

 The Internet doesn't have a single owner; rather, it's managed by organizations like IANA (Internet Assigned Numbers Authority) and Regional Internet Registries (RIRs).

IPv4 Address Exhaustion:

- IPv4 uses a 32-bit address format, which can represent around 4.3 billion addresses.
- Due to increased internet use, IPv4 addresses have nearly been depleted, prompting the shift to IPv6.

2. Addressing Allocation: IANA and RIRs

IANA's Role:

- IANA oversees IP address allocation and delegates responsibilities to 5 regional registries (RIRs):
 - AfriNIC: Africa
 - ARIN: US, Canada, and parts of the Caribbean
 - APNIC: Asia-Pacific region
 - LACNIC: Latin America and Caribbean regions
 - RIPE NCC: Europe, Middle East, and Central Asia

3. Strategies for Addressing IPv4 Exhaustion

Reclamation of Unused IPs:

- Reassigning previously allocated but unused IP blocks.
- Network Address Translation (NAT):

- NAT allows multiple devices on a local network to share a single public IP address, conserving IP addresses.
- Private IP Ranges: Defined ranges for local use only:

• Class A: 10.0.0.0 - 10.255.255.255

• Class B: 172.16.0.0 - 172.31.255.255

• Class C: 192.168.0.0 - 192.168.255.255

• IPv6 Adoption:

 IPv6 was developed as a long-term solution to address exhaustion, with a vastly larger address space.

4. IPv6: Key Features and Enhancements

Address Length:

• IPv6 uses 128-bit addresses, supporting 340 undecillion (3.4 x 10^38) unique addresses.

Auto-Configuration:

 IPv6 devices can configure their IP addresses without a DHCP server, using the EUI-64 format derived from the MAC address.

Quality of Service (QoS):

 IPv6 headers include fields for Traffic Class and Flow Label to prioritize real-time data (e.g., video streaming, VoIP).

• Built-in Security:

• IPv6 incorporates **IPSec** (Internet Protocol Security) by default, allowing encryption and data integrity checks, unlike IPv4 where it's optional.

5. IPv4 vs. IPv6: Key Differences

Attribute	IPv4	IPv6
Address Length	32 bits	128 bits
Address Notation	Dotted decimal (e.g., 192.168.0.1)	Hexadecimal, colon-separated (e.g., 2001:0db8::1)
Total Address Space	4.3 billion addresses	340 undecillion addresses
Header Size	Variable (20-60 bytes)	Fixed (40 bytes)
Fragmentation	Routers and senders	Only senders
Security	Optional (IPSec)	Mandatory (IPSec included)
Checksum	Required	Not used

6. Compact IPv6 Notation

IPv6 Address Simplification:

- Zero Compression: Use :: to replace consecutive zeros (only once per address).
- Leading Zeros: Can be omitted within each 16-bit block.
- Example:
 - Full: 1090:0000:0000:0000:0009:0900:210D:325F
 - Compact: 1090::9:900:210D:325F

7. IPv6 Network Prefix

Prefix Notation:

- IPv6 uses prefix lengths (similar to subnet masks in IPv4) to identify the network portion.
- **Example**: 2001:0DB8:2021::/48 where /48 indicates the first 48 bits represent the network portion.

8. Transition Techniques from IPv4 to IPv6

• Dual-Stack:

- Devices are configured with both IPv4 and IPv6 addresses, allowing communication over both protocols.
- Pros: Smooth transition as it supports both protocols.
- Cons: Still relies on IPv4, doesn't address its depletion.

Tunneling:

- Encapsulates IPv6 packets within IPv4 to traverse IPv4 networks, or vice versa.
- Use Case: Connects isolated IPv6 networks over existing IPv4 infrastructure.

Translation:

- Converts IPv4 addresses to IPv6 (and vice versa), typically using NAT64 at the network layer.
- Limitation: Undermines IPv6's benefits like address hierarchy and streamlined headers.

9. Advantages of IPv6 Over IPv4

Expanded Address Space:

- Eliminates the need for NAT, supporting true end-to-end communication.
- Simplified Header Structure:

• IPv6 headers are streamlined with fewer fields, reducing processing overhead.

Enhanced Routing Efficiency:

IPv6's large address blocks improve aggregation and reduce the size of global routing tables.

Improved Multicasting:

 IPv6 replaces broadcast with multicast, reducing unnecessary traffic and enhancing network performance.

10. Security in IPv6

Built-in IPSec:

IPv6 includes IPSec, ensuring encrypted and authenticated communications.

New Security Challenges:

- IPv6 introduces potential vulnerabilities such as neighbor discovery attacks and extension header manipulation.
- Despite misconceptions, NAT is not required for IPv6 security as other firewalls and security measures remain necessary.

11. IPv6 Adoption Challenges

Deployment Costs:

Upgrading infrastructure to support IPv6 can be costly, especially for legacy systems.

Need for Training:

Network administrators and IT staff need new skills to manage and troubleshoot IPv6.

NAT Usage:

 NAT is still used in some IPv6 environments, despite its limitations, for additional address management or legacy support.

Incentives for Adoption:

 Businesses may hesitate to switch due to limited immediate benefits, relying on NAT and IPv4 for the time being.

Summary

- IPv6 is essential to address the limitations of IPv4, providing a nearly unlimited address space, improved security, and support for modern internet applications.
- Transition strategies like Dual-Stack, Tunneling, and Translation aid the gradual shift from IPv4 to IPv6.

W .

• IPv6 brings enhanced efficiency and functionality, but adoption barriers such as cost and training

requirements remain.