Deep Learning

Jameson Watts, Ph.D.

04/19/2020

Agenda

- 1. Q&A with CravenSpeed
- 2. Anatomy of a Technical Presentation
- 3. Quick Review of Bagging and Boosting
- 4. Deep Learning Concepts
- 5. Dinner
- 6. Neural net implementation
- 7. Groupwork

Review of Bagging and Boosting

The goal is to decrease the variance (bagging) or bias (boosting) in our models.

- Step 1: producing a distribution of simple ML models on subsets of the original data.
- Step 2: combine the distribution into one "aggregated" model.

Dinner and (virtual) high fives

Neural Net implementations

Setup

```
knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
library(tidymodels)
library(tidyverse)
bank <- read_rds("../resources/BankChurners.rds") %>%
```

```
mutate(Churn = as_factor(Churn)) %>%
mutate(Churn = fct_relevel(Churn, "yes", "no"))

set.seed(504)
data_split <- initial_split(bank, prop = 3/4)

bank_train <- training(data_split)
bank_test <- testing(data_split)</pre>
```

Set a baseline with extreme gradient boosting

```
recipe(Churn ~ ., data = bank_train) %>%
  step_BoxCox(all_numeric()) %>%
  step_normalize(all_numeric()) %>%
  step_dummy(all_nominal(), -all_outcomes()) %>% # dummy variables for all factor/character columns ex
  step_zv(all_predictors()) %>% # remove all zero variance predictors (i.e. low frequency dummies)
  step_upsample(Churn)
xgb_spec <-
   boost_tree() %>%
   set_engine("xgboost") %>%
   set_mode("classification")
bank_wflow <-
  workflow() %>%
  add_model(xgb_spec) %>%
  add_recipe(bank_rec)
bank_fit <- ## fit the model</pre>
  bank_wflow %>%
  fit(data = bank_train)
## [16:58:17] WARNING: amalgamation/../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default eval
cm <- predict(bank_fit, bank_test) %>%
  bind_cols(bank_test %>% select(Churn)) %>%
  conf_mat(truth = Churn, .pred_class)
cm %>% autoplot()
```


cm %>% summary()

imator .estimate
ary 0.9593046
ary 0.8553678
ary 0.9172749
ary 0.9674528
ary 0.8452915
ary 0.9836930
ary 0.8564027
ary 0.8847278
ary 0.9423639
ary 0.1762149
ary 0.8452915
ary 0.9172749
ary 0.8798133

Compare with Neural Net

```
nnet_spec <-
  mlp(hidden_units = 11) %>%
  set_engine("nnet") %>%
  set_mode("classification")
```

```
bank_wflow <-
workflow() %>%
add_model(nnet_spec) %>%
add_recipe(bank_rec)

bank_fit <- ## fit the model
bank_wflow %>%
fit(data = bank_train)

cm <- predict(bank_fit, bank_test) %>%
bind_cols(bank_test %>% select(Churn)) %>%
conf_mat(truth = Churn, .pred_class)

cm %>% autoplot()
```


cm %>% summary()

.metric	.estimator	.estimate
accuracy	binary	0.9344133
kap	binary	0.7710284
sens	binary	0.8637470
spec	binary	0.9481132
ppv	binary	0.7634409
npv	binary	0.9728945

.metric	.estimator	.estimate
mcc	binary	0.7731761
j_index	binary	0.8118602
bal_accuracy	binary	0.9059301
detection_prevalence	binary	0.1837218
precision	binary	0.7634409
recall	binary	0.8637470
f_{meas}	binary	0.8105023

Let's do some tuning

```
mlp_spec <-
  mlp(hidden_units = tune(), penalty = tune(), epochs = tune()) %>%
  set_engine("nnet", trace = 0) %>%
  set_mode("classification")
mlp_param <- parameters(mlp_spec)</pre>
mlp_param %>% pull_dials_object("hidden_units")
## # Hidden Units (quantitative)
## Range: [1, 10]
mlp_param %>% pull_dials_object("penalty")
## Amount of Regularization (quantitative)
## Transformer: log-10
## Range (transformed scale): [-10, 0]
mlp_param %>% pull_dials_object("epochs")
## # Epochs (quantitative)
## Range: [10, 1000]
defining your own grid
crossing(
  hidden_units = 1:3,
  penalty = c(0.0, 0.1),
  epochs = c(100, 200)
```

```
hidden_units
                penalty
                          epochs
            1
                              100
                    0.0
                              200
            1
                    0.0
            1
                    0.1
                              100
                              200
            1
                    0.1
            2
                    0.0
                              100
            2
                    0.0
                              200
            2
                    0.1
                              100
            2
                     0.1
                              200
            3
                    0.0
                              100
            3
                    0.0
                              200
```

hidden_units	penalty	epochs
3	0.1	100
3	0.1	200

using grid_regular

```
grid_regular(mlp_param, levels = 2)
```

hidden_units	penalty	epochs
1	0	10
10	0	10
1	1	10
10	1	10
1	0	1000
10	0	1000
1	1	1000
10	1	1000

setting different levels

```
grid_regular(mlp_param, levels = c(hidden_units = 3, penalty = 2, epochs = 2))
```

hidden_	_units	penalty	epochs
	1	0	10
	5	0	10
	10	0	10
	1	1	10
	5	1	10
	10	1	10
	1	0	1000
	5	0	1000
	10	0	1000
	1	1	1000
	5	1	1000
	10	1	1000

let's change the defaults

```
mlp_wflow <-
  workflow() %>%
  add_model(mlp_spec) %>%
  add_recipe(bank_rec)

mlp_param <-
  mlp_wflow %>%
  parameters() %>%
  update(
   epochs = epochs(c(100, 500)),
   hidden_units = hidden_units(c(5, 50))
```

)

run all models across the grid

```
set.seed(504)
folds <- vfold_cv(bank_train, v = 2)

mlp_reg_tune <-
    mlp_wflow %>%
    tune_grid(
    folds,
        grid = mlp_param %>% grid_regular(levels = 3)
    )

autoplot(mlp_reg_tune)
```


show_best(mlp_reg_tune) %>% select(-.estimator)

hidden_units	penalty	epochs	.metric	mean	n	$\mathrm{std}_{-\mathrm{err}}$.config
27	1	500	roc_auc	0.9833093	2	0.0014108	Preprocessor1_Model26
27	1	300	roc_auc	0.9832088	2	0.0008288	Preprocessor1_Model17
27	1	100	roc_auc	0.9826945	2	0.0004908	Preprocessor1_Model08
5	1	100	roc auc	0.9770975	2	0.0022923	Preprocessor1 Model07

hidden_units	penalty	epochs	.metric	mean	n	std_err	.config
5	1	500	roc_auc	0.9706361	2	0.0001105	Preprocessor1_Model25

Finalize, fit and pull our optimized model

```
best_net <- mlp_reg_tune %>%
    select_best("roc_auc")

final_wflow <-
    mlp_wflow %>%
    finalize_workflow(best_net)

bank_fit <-
    final_wflow %>%
    fit(data = bank_train)

library(vip)

bank_fit %>%
    pull_workflow_fit() %>%
    vip()
```


Let's see how it does out of sample

```
cm <- predict(bank_fit, bank_test) %>%
  bind_cols(bank_test %>% select(Churn)) %>%
  conf_mat(truth = Churn, .pred_class)

cm %>% autoplot()
```


cm %>% summary()

.metric	.estimator	.estimate
accuracy	binary	0.9577242
kap	binary	0.8494656
sens	binary	0.9099757
spec	binary	0.9669811
ppv	binary	0.8423423
npv	binary	0.9822712
mcc	binary	0.8503825
j index	binary	0.8769568
bal accuracy	binary	0.9384784
detection prevalence	binary	0.1754247
precision	binary	0.8423423
recall	binary	0.9099757
f_meas	binary	0.8748538

Other resources

 $\rm https://srdas.github.io/DLBook/$