IM架构分享

张彦

- 基本的聊天功能
 - 点对点的聊天,支持收发文字、图片、语音、定位
 - ■实时获得好友最新信息(例如:个性签名)
- 作为其他业务的基础设施
 - ■触达:向特定的用户推送内容
 - 网络电话:信令交互

IM消息分类

- ●即肘消息
 - 若接收方不在线,可以丢弃
- ●离线消息
 - 若接收方不在线,服务器要存储该消息,等到接收 方上线后再发送
- 通知消息
 - 若用户在线, 通知消息和即时消息一样
 - 若用户离线,同一类型的通知消息,服务器只需要存储最后一条

技术选型

- 自行开发
- 基于开源项目
 - openfire+spark搭建基于xmpp的im系统

逻辑结构图

分层设计

●接入层

- ■和客户端保持长连接
- 根据业务码和功能码,转发客户端信息到后端业务 服务器
- 将服务器信息发送到客户端

●业务层

- 支持聊天业务
- 支持其他业务

- 登录验证服务器
 - 提供http服务接口
 - 密码验证, 生产token
 - o 最初的Token是和uid对应的一个随机字符串,登陆验证服务器还需要提供token验证的接口
 - o 由于token验证的并发量巨大,后期token修改为一个加密串,接入服务器通过对token解密来验证,减轻了登陆验证服务器的压力

● 接入管理服务器

- 监控接入服务器状态,主要是负载情况
- 根据用户所在区域及运营傻瓜,选择最优的接入点
- 接入管理服务器通常会返回3个接入服务器地址, 客户端选择最快的一个连接

●接入服务器

- 维护与客户端之间的长连接,线路空闲超过5分钟 会主动断开连接
- 转发上下行的消息
- 在消息头添加接入服务器编号
- 通过消息队列
 - 向位置查询服务器发送上线/离线通知
 - 向接入管理服务器发送负载报告

● 位置查询服务器

- 向业务层提供用户位置和状态查询,包括用户是否在线,若在线是连接到哪一台接入服务器,用户的网络状态,手机平台信息,客户端版本信息,等
- 向订阅了上线/离线通知的业务服务器发送相应的 通知

- ●消息转发服务器
 - 即肘消息转发服务器
 - 离线消息转发服务器
- 若消息头未记录服务器编号(或编号不符),会向发送方返回服务器编号
- 离线消息保存到mysql数据库,并通过redis缓 存加速
- ●订阅上线通知

● 通知服务器

- 存储/发送通知消息,和消息转发服务器类似,对 离线用户的通知也分为可丢弃和服务器存储2类
- 离线通知,支持同类型合并

- 业务服务器
 - 基于im提供的能力完成其他的业务
 - ■例如:网络电话、用户触达

- 配置管理
 - 配置参数
 - 监控各服务器运行状态
 - 新服务器注册

● 配置管理

- 基于zookeeper
- 存储配置参数
- 新服务器注册
- 监控各服务器运行状态,判断一个服务器是否不可用,还要结合心跳测试

⊙ 运维监控

收集各组件的实时和统计信息,并通过图表的形式 进行展示的后台系统

协议设计

- 报文头: bson格式
- 报文体: json格式
- ●后续为了提升网络电话业务质量,引入了 protobuf

服务器注册

- 首先向配置管理服务器注册,等待其他服务器 来连接
- ●连接后,要确认是否ready,双方都ready才能 发送消息

服务器注销

- 注销服务时,需要先在配置服务器注销,然后 向所有链接的服务器发送not ready信令
- 所有服务器都返回ack后,该服务器可重启

一些难点

- ◎ 客户端网络切换
- ●消息排序
- ◉跨域部署
- ●消息延时处理
- 网络抖动

客户端网络切换

● 关于上下线

- 若用户断线后在极短时间内重连成功,且连接到同一个接入服务器,可不通知业务服务器上下线
- 但是,若业务服务器对用户网络状态敏感,则需要 特殊处理
 - 例如,网络电话业务并不把2G连接视同在线

客户端网络切换

- 客户端网络切换,根据重连的时间间隔,连接到的接入服务器和用户网络状态,位置服务器对业务层发送的通知不同
 - 离线通知延时发送,等待用户重连
 - ■重连肘问短,连入同一个服务器,网络状态相似 (例如,多数时候3g和4g可认为相似),可以不发 送通知

跨域部署

- 域是个逻辑概念,一个域是可以跨越多个机房的
- ●在一个域内,多机房间采用专线互通
 - 位置查询服务器彼此是独立的,各自拥有自己的存储,其数据来源于消息队列
 - 消息转发服务器/通知服务器,存在一个集中的写入数据库,异地机房部署的服务器读写分离,读本地的从库,写入异地的主库
- 跨域通过跨域网关来实现互通,类似于电话网的分区,通过区号来区分用户所在的区

消息排序

- 客户端发送消息时要按顺序编号,编号的起点 是连接到接入服务器时获得的
- 在一次会话中,客户端的消息,原则上由同一个消息服务器处理
- ●接收方需要按顺序号调整显示效果

消息延时处理

- Im系统也许对延时不敏感,但电话系统对延时 很敏感
- 为了减少延时,一个主要的技术手段就是减少消息包的尺寸,经过测试,单个包不超过500字节为好
- 用protobuf 替换了bson/json格式

几种流行编码格式对比

对比测试结果如下

		消息类型	压缩效率				
类型	子类型	名称	方向	请求/应答	目前长度	最大压缩长度	压缩比
Call	Call_req	呼叫请求	上行	请求	357	142	60.2%
Call	Call_req_ack	VPS 收到呼叫请求的 ACK	下行	请求	122	43	64.8%
Call	Ring_rsp	响铃响应	下行	请求	239	127	46.9%
Call	Call_rsp	呼叫应答	下行	请求	251	136	45.8%
Call	Call_ack	呼叫应答确认	上行	请求	126	76	39.7%
Call	Bye_req	结束呼叫	上行	请求	112	65	42.0%

消息类型		报文头编码长度				报文体编码长度				
类型	子类型	BSON	JSON	MsgPack	TLV	protobuf	JSON	MsgPack	bzip2	protobuf
Call	Call_req	54	58	30	21	13	299	206	210	125
Call	Call_req_ack	118	134	71	39		0	0	0	
Call	Ring_rsp	118	133	71	42		117	81	131	
Call	Call_rsp	118	133	71	42		129	90	136	
Call	Call_ack	64	71	37	24		58	48	90	
Call	Bye_req	64	71	37	24		44	37	82	

网络抖动

- 接入服务器崩溃,则所有用户需要重新连接, 位置服务器要发送离线通知到所有订阅的业务 服务器;若实际上接入服务器未崩溃,则又需 要发送大量的上线通知
- 为了避免网络抖动造成的订阅消息爆炸,需要能识别抖动
- 当心跳测试超时或未收到心跳时,不会立即判断服务器不可用,会发送测试消息并重试3次,若测试消息全部超时,才会判定为服务器不可用

谢谢