

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	СТ «Информатика и системы управления»
КАФЕЛРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 5 по курсу «Анализ алгоритмов»

Студент _	ИУ7-52Б (Группа)	-	(Подпись, дата)	Новиков А. А. (И. О. Фамилия)
Преподаватель			(Подпись, дата)	Строганов Д. В. (И. О. Фамилия)

СОДЕРЖАНИЕ

B	ВЕДЕНИЕ	3
1	Входные и выходные данные	
2	Тестирование	5
3	Описание исследования	6
	3.1 Технические характеристики	6
	3.2 Полученные результаты	6
34	АКЛЮЧЕНИЕ	S
\mathbf{C}	ПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	10

ВВЕДЕНИЕ

В современном программировании эффективная обработка данных играет ключевую роль в повышении производительности приложений. Одним из методов оптимизации является конвейерная обработка, которая разделяет процесс обработки данных на отдельные последовательные этапы. Это позволяет каждой стадии работать независимо, что способствует параллельной обработке и более рациональному использованию системных ресурсов.

Цель лабораторной работы — освоение навыков организации параллельных вычислений на основе принципа конвейерной обработки. Для достижения этой цели необходимо решить следующие задачи:

- описать входные, выходные данные программы;
- реализовать алгоритм обработки данных с использованием конвейерной обработки;
- протестировать разработанный алгоритм по методологии черного ящика;
- проанализировать полученную из лог-файлов информацию.

1 Входные и выходные данные

Входные данные: директория со скачанными рецептами для обработки.

Выходные данные: SQLite база данных, содержащая информацию о каждом рецепте (ID, номер варианта, URL, название, ингредиенты, шаги); лог-файлы, фиксирующие время начала и завершения потоком обработки задачи.

2 Тестирование

В таблице 2.1 представлены функциональные тесты для разработанного программного обеспечения. Все тесты пройдены успешно.

Таблица 2.1 – Описание тестовых случаев

Nº	Входные данные	Ожидаемый результат	Результат теста
1	Директория с выгруженны-	База данных $MySQL$	Пройден
	ми рецептами recipes		
2	Пустая директория	Вывод сообщения об ошиб-	Пройден
		ке	
3	Неверная директория	Вывод сообщения об ошиб-	Пройден
		ке	

3 Описание исследования

В ходе исследования требуется сформировать лог обработки задач для наглядной демонстрации работы параллельных потоков по конвейерному принципу.

3.1 Технические характеристики

Технические характеристики используемого устройства:

- операционная система Ubuntu Linux x86 64 [1]
- память 16 Гб.
- процессор AMD Ryzen 5 5500U (6х2.10 ГГц) [2]

3.2 Полученные результаты

В таблице 3.1 приведен лог для 5 задач.

Таблица 3.1 – Лог выполнения программы.

Время	Событие
13:02:12.107	задача 1 начала обрабатываться 1 обработчиком
13:02:12.107	задача 1 закончила обрабатываться 1 обработчиком
13:02:12.107	задача 2 начала обрабатываться 1 обработчиком
13:02:12.107	задача 2 закончила обрабатываться 1 обработчиком
13:02:12.107	задача 3 начала обрабатываться 1 обработчиком
13:02:12.107	задача 3 закончила обрабатываться 1 обработчиком
13:02:12.107	задача 4 начала обрабатываться 1 обработчиком
13:02:12.107	задача 4 закончила обрабатываться 1 обработчиком
13:02:12.107	задача 5 начала обрабатываться 1 обработчиком
13:02:12.107	задача 5 закончила обрабатываться 1 обработчиком
13:02:12.107	задача 1 начала обрабатываться 2 обработчиком
13:02:12.109	задача 1 закончила обрабатываться 2 обработчиком
13:02:12.109	задача 2 начала обрабатываться 2 обработчиком
13:02:12.110	задача 2 закончила обрабатываться 2 обработчиком
13:02:12.110	задача 3 начала обрабатываться 2 обработчиком
13:02:12.111	задача 3 закончила обрабатываться 2 обработчиком
13:02:12.111	задача 4 начала обрабатываться 2 обработчиком
13:02:12.112	задача 4 закончила обрабатываться 2 обработчиком
13:02:12.112	задача 5 начала обрабатываться 2 обработчиком
13:02:12.113	задача 5 закончила обрабатываться 2 обработчиком
13:02:12.109	задача 1 начала обрабатываться 3 обработчиком
13:02:12.109	задача 1 закончила обрабатываться 3 обработчиком
13:02:12.110	задача 2 начала обрабатываться 3 обработчиком
13:02:12.110	задача 2 закончила обрабатываться 3 обработчиком
13:02:12.111	задача 3 начала обрабатываться 3 обработчиком
13:02:12.111	задача 3 закончила обрабатываться 3 обработчиком
13:02:12.112	задача 4 начала обрабатываться 3 обработчиком
13:02:12.112	задача 4 закончила обрабатываться 3 обработчиком
13:02:12.113	задача 5 начала обрабатываться 3 обработчиком
13:02:12.113	задача 5 закончила обрабатываться 3 обработчиком

В результате анализа логов было подтверждено, что конвейерная обработка задач выполняется параллельно. Особенно заметно это при рассмотрении работы второго и третьего обработчиков. Закончив обработку текущей задачи, обработчик берет следующую задачу с конвейера. Если конвейер пуст, то обработчик ожидает, пока задача не появится. Такая обработка получается производительнее, чем последовательная обработка.

Среднее время обработки задачи — 0.54, 1.49, 0, 54 секунд для первого, второго и третьего обработчика соответственно. Среднее время ожидания задачи в очереди — 0.44, 1.25, 0.67 для первой, второй и третьей очереди соответственно.

ЗАКЛЮЧЕНИЕ

Цель работы достигнута: получен навык организации параллельных вычислений по конвейерному принципу.

В ходе выполнения данной лабораторной работы были решены следующие задачи:

- описаны входные, выходные данные программы;
- реализован алгоритм обработки данных с использованием конвейерной обработки;
- протестирован разработанный алгоритм по методологии черного ящика;
- проанализирована информация, полученная из лог-файлов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Ubuntu technical documentation for developers and IT pros [Электронный ресурс]. URL: https://ubuntu.com/tutorials (дата обращения 25.10.2024).
- 2. AMD Ryzen 5 5500U Processor [Электронный ресурс]. URL: https://www.amd.com/en/products/apu/amd-ryzen-5-5500u (дата обращения 25.10.2024).