Stochastic Financial Models 14

Michael Tehranchi

6 November 2023

1 Optional sampling theorem

Definition. Let $(X_t)_{t\geq 0}$ be an (either discrete- or continuous-time) adapted process and T a stopping time. The *stopped process* $(X_{t\wedge T})_{t\geq 0}$ is defined by

$$X_{t \wedge T} = \begin{cases} X_t & \text{if } t \leq T \\ X_T & \text{if } t > T \end{cases}$$

Remark. Recall the notation $a \wedge b = \min\{a, b\}$ for real numbers a, b. For the rest of the lecture, **time is discrete.**

Proposition. Let $(X_n)_{n\geq 0}$ be an adapted process and and T a stopping time. Then the stopped process $(X_{n\wedge T})_{n\geq 0}$ is X_0 plus a martingale transform.

Proof. Note that

$$X_{n \wedge T} = X_0 + \sum_{k=1}^{n} \mathbb{1}_{\{k \le T\}} (X_k - X_{k-1})$$

Since $\{k \leq T\} = \{T \leq k-1\}^c \in \mathcal{F}_{k-1} \text{ for all } k \geq 1 \text{ the process } (\mathbb{1}_{\{n \leq T\}})_n \text{ is previsible.} \quad \Box$

Corollary. A stopped martingale is a martingale.

Proof. This follows from the theorem that says the martingale transform of a bounded previsible process with respect to a martingale is again a martingale. \Box

Theorem (Optional stopping theorem). Let T be a stopping time and $(X_n)_{n\geq 0}$ be a martingale such that $(X_{n\wedge T})_n$ bounded and $T<\infty$ almost surely. Then

$$\mathbb{E}(X_T) = X_0$$

Remark. Recall our convention that $\mathcal{F}_0 = \{\emptyset, \Omega\}$ so X_0 is constant.

Proof. Let $M_n = X_{n \wedge T}$. Note $(M_n)_{n \geq 0}$ is a martingale so that

$$\mathbb{E}(X_{n\wedge T}) = \mathbb{E}(M_n|\mathcal{F}_0) = M_0 = X_0$$

for all non-random n, by the definition of martingale and the convention on \mathcal{F}_0 .

Now by assumption there exists a constant C > 0 such that $|X_{n \wedge T}| \leq C$ a.s. for all n. Also, since T is a.s. finite we have $X_{n \wedge T} \to X_T$ a.s., and hence $|X_T| \leq C$ a.s. In particular, we have

$$|X_{n\wedge T} - X_T| \le 2C \mathbb{1}_{\{T > n\}}$$

by the triangle inequality.

Combining the two observations above,

$$|\mathbb{E}(X_T) - X_0| = |\mathbb{E}(X_T - X_{n \wedge T})|$$

$$\leq \mathbb{E}(|X_T - X_{n \wedge T}|)$$

$$\leq 2C\mathbb{P}(T > n)$$

$$\to 0$$

Remark. It turns out that we do not need to assume that T is finite nor do we need to assume that $(X_{n \wedge T})_n$ is bounded to get the conclusion. A much weaker version of the OST is

Theorem. (A more general optional stopping theorem). Let $(X_n)_n$ be a martingale and T a stopping time such that $(X_{n \wedge T})_n$ is uniformly integrable. Then $\mathbb{E}(X_T) = X_0$.

2 Examples of the optional stopping theorem

Let $(S_n)_{n\geq 0}$ be a simple symmetric random walk starting from $S_0=0$, i.e. $S_n=\xi_1+\ldots+\xi_n$ where $(\xi_n)_{n\geq 1}$ are IID $\mathbb{P}(\xi_n=\pm 1)=\frac{1}{2}$. Example 1.

- Fix integers a, b > 0 and let $T = \inf\{n \ge 0 : S_n \in \{-a, b\}.$
- By Markov Chains, $T < \infty$ almost surely.
- Let $p = \mathbb{P}(S_T = -a)$ and $q = \mathbb{P}(S_T = b)$.
- By optional stopping $S_0 = 0 = \mathbb{E}(S_T) = -ap + bq$
- $p = \frac{b}{a+b}$ and $q = \frac{a}{a+b}$
- Optional stopping is justified since $|S_{T \wedge n}| \leq \max\{a, b\}$ for all n.

Counterexample 2.

- Now let $\tau = \inf\{n \ge 0 : S_n = -a\}.$
- By Markov Chains, $\tau < \infty$ almost surely. So $S_{\tau} = -a$.
- $\mathbb{E}(S_{\tau}) = -a \neq 0 = S_0$ in apparent contradiction to the optional stopping theorem.
- But note that $S_{n \wedge \tau}$ is not bounded from above, so there is no a priori reason to believe that the optional stopping theorem is applicable.

Example 3. Our goal is to find the probability generating function $\mathbb{E}(z^{\tau})$ for fixed 0 < z < 1. Claim: the process $w^{S_n}z^n$ is a martingale iff $w + w^{-1} = 2z^{-1}$. Indeed, note

$$\frac{\mathbb{E}(w^{S_n}z^n|\mathcal{F}_{n-1})}{w^{S_{n-1}}z^{n-1}} = z\mathbb{E}(w^{\xi_n}) = \frac{z}{2}(w+w^{-1})$$

Let $M_n = w^{S_n} z^n$ where $w + w^{-1} = 2z^{-1}$. This is a martingale with $M_\tau = w^{-a} z^\tau$. We want to apply the optional stopping theorem to conclude

$$\mathbb{E}(M_{\tau}) = w^{-a}\mathbb{E}(z^{\tau}) = M_0 = 1$$

or

$$\mathbb{E}(z^{\tau}) = w^a.$$

But which value of w makes the above identity true? Given z, there are two possible solutions

$$w_{\pm} = \frac{1 \pm \sqrt{1 - z^2}}{z}$$

and $0 < w_- < 1$ while $w_+ > 1$. In particular, since $S_{n \wedge \tau} \ge -a$ for all n and z < 1, then

$$w^{S_{n\wedge\tau}}z^{n\wedge T} \le w^{-a} \text{ for all } n$$

Hence the OST is applicable and the correct formula is with $w = w_{-}$, i.e.

$$\mathbb{E}(z^{\tau}) = w_{-}^{a} = \left(\frac{1 - \sqrt{1 - z^2}}{z}\right)^{a}.$$