Bayesian estimation for NHPP using rstan

Miao Cai miao.cai@slu.edu 2019-05-24

1 One estimation result each at N = 5, 10, 50, 500, 1000

I set the theoretical values as: $\beta=2, \theta=5$

Then I ran one simulation per each number of shifts. I tried the number of shifts (N) as 5, 10, 50, 500, 1000.

Table 1: Parameter estimates when N=5

	mean	sd	2.5%	50%	97.5%
beta	2.778	0.649	1.724	2.720	4.236
theta	4.198	0.594	2.962	4.217	5.282
lp	-18.571	1.033	-21.450	-18.263	-17.546

Table 2: Parameter estimates when N = 10

	mean	sd	2.5%	50%	97.5%
beta	1.991	0.219	1.607	1.983	2.398
theta	5.495	0.667	4.240	5.474	6.846
lp	-92.420	0.980	-94.860	-92.173	-91.422

Table 3: Parameter estimates when N=50

	mean	sd	2.5%	50%	97.5%
beta	2.103	0.106	1.906	2.099	2.319
theta	5.296	0.286	4.798	5.316	5.896
lp	-409.260	1.109	-412.175	-408.970	-408.196

Table 4: Parameter estimates when N = 100

	mean	sd	2.5%	50%	97.5%
beta	2.074	0.083	1.916	2.080	2.225
theta	5.076	0.210	4.669	5.078	5.450
lp	-756.363	1.011	-759.102	-756.064	-755.341

Table 5: Parameter estimates when N = 500

	mean	sd	2.5%	50%	97.5%
beta	1.978	0.037	1.909	1.977	2.055
theta	4.948	0.101	4.754	4.949	5.154
lp	-3774.525	1.066	-3777.162	-3774.204	-3773.444

Table 6: Parameter estimates when N = 1000

	mean	sd	2.5%	50%	97.5%
beta	2.032	0.024	1.984	2.032	2.080
theta	5.066	0.063	4.936	5.066	5.179
lp	-7357.631	0.896	-7359.840	-7357.375	-7356.686

The parameter estimates at different sample sizes seem to be quite well: the points estimates are getting closer to true parameter values as the number of shifts increases.

However, this is only one simluation for each sample size, which may be subject to sampling error (but at least the estimates seem reasonably well). In the following section, I need to scale up the simulation to see if we get consistently good results as we perform repeated simulations.

2 30 simulations and estimations per each N = 5, 10, 50, 100, 500

I simulated NHPP for 30 times and accordingly performed 30 Bayesian estimation for $\beta = 2$ and $\theta = 5$ at each sample size (N = 5, 10, 50, 100, 500).

Table 7: Summary results for parameter β

sample size	mean of the posterior means	s.d. of the posterior means	mean of the posterior s.e.
5	2.068	0.294	0.398
10	2.011	0.242	0.255
50	2.049	0.121	0.117
100	2.020	0.066	0.082
500	2.007	0.042	0.036

Table 8: Summary results for parameter θ

sample size	mean of the posterior means	s.d. of the posterior means	mean of the posterior s.e.
5	4.912	0.855	0.909
10	5.116	0.699	0.695
50	5.148	0.265	0.308
100	5.007	0.154	0.216
500	5.031	0.110	0.097

It seems that Bayesian estimates of β and θ are getting closer to true parameter values as the number of shifts increase:

- The bias was getting smaller: $|\hat{\beta} \beta|$ is getting closer to 0 as N increases (the 2nd column),
- The standard error of posterior mean was getting smaller, as we can tell from the 3rd column.

Appendix - stan code

```
functions{
  real nhpp_log(vector t, real beta, real theta, real tau){
    vector[num_elements(t)] loglik_part;
    real loglikelihood;
    for (i in 1:num_elements(t)){
      loglik_part[i] = log(beta) - beta*log(theta) + (beta - 1)*log(t[i]);
    }
    loglikelihood = sum(loglik_part) - (tau/theta)^beta;
    return loglikelihood;
  }
}
data {
  int<lower=0> N; //total # of obs
  int<lower=0> K; //total # of groups
  vector<lower=0>[K] tau;//truncated time
  vector<lower=0>[N] event_time; //failure time
  int s[K]; //group sizes
parameters{
  real<lower=0> beta;
  real<lower=0> theta;
}
model{
  int position;
  position = 1;
  for (k in 1:K){
    segment(event_time, position, s[k]) ~ nhpp(beta, theta, tau[k]);
    position = position + s[k];
//PRIORS
  beta ~ gamma(1, 1);
  theta ~ gamma(1, 0.01);
}
```