Многослойный персептрон

Виктор Китов victorkitov.github.io

Содержание

- 1 Архитектура
- 2 Необходимое количество слоев
- ③ Функции активации
- 4 Выходы и функции потерь

История

• Нейронные сети появились как попытка моделировать работу человеческого мозга.

- Человеческий мозг состоит из взаимосвязанных нейронов.
 - порядка 86 миллиардов нейронов
- нейроны связаны аксонами вытянутыми отростками нервных клеток
- взаимодействие нейронов осуществляется электро-химическими сигналами по аксонам

Простая модель нейрона

- Несколько входов посылают сигналы, которые домножаются на вес связи
- Нейрон принимает суммарный сигнал
- Нейрон активируется в полупространстве $w_0 + w_1 x^1 + w_2 x^2 + ... + w_D x^D \le 0$.
- ullet w_0 отвечает за смещение

Архитектура многослойного персептрона

многослойный персептрон - ациклический направленный граф

- Несколько слоев, связи между соседними слоями каждый с каждым.
- Каждый нейрон имеет свои собственные связи.

Слои

- Слои многослойного персептрона:
 - 1-входной слой (не учитывается в полном количестве слоев сети)
 - 2-скрытые слои
 - 3-выходной слой

Многослойный персептрон и ансамбли

- В стэкинге фиксируются базовые модели при настройке агрегирующей ф-ции.
- В бустинге фиксируются предыдущие базовые модели.
- В многослойном персептроне ранние и поздние нейроны настраиваются одновременно.
 - более сильное переобучение

Содержание

- П Архитектура
- 2 Необходимое количество слоев
- ③ Функции активации
- 4 Выходы и функции потерь

Одномерная регрессия

• 1-мерная регрессия:

$$f(x)=\sum_i f(b_i)\mathbb{I}[x\in(b_i,b_{i+1}]]=\sum_i f(b_i)\left(\mathbb{I}[x\leq b_{i+1}]-\mathbb{I}[x\leq b_i]
ight)$$
 $=\sum_i f(b_i)\mathbb{I}[x\leq b_{i+1}]-\sum_i f(b_i)\mathbb{I}[x\leq b_i]$ 2-х слойный персептрон

Многомерная регрессия

• AND/OR функции для $x_1, x_2 \in \{0, 1\}$ можно сделать 1 слойным персептроном:1:

AND function
$$\mathbb{I}[x_1 + x_2 \ge 2] = \mathbb{I}[-x_1 - x_2 \le -2]$$

OR function $\mathbb{I}[x_1 + x_2 \ge 1] = \mathbb{I}[-x_1 - x_2 \le -1]$

- D-мерная регрессия:
 - один слой приближает линейную ф-цию
 - 2-х слойный персептрон моделирует индикаторную ф-цию на произвольном выпуклом многоугольнике (через AND)
 - 3-х слойный персептрон приближает произвольную непрерывную функцию (Липшицеву) (как взвешенную сумму индикаторов выпуклых многоугольников)
- Таким образом, 3-х слоев достаточно для приближения всех регулярных зависимостей.

¹How to make XOR (exclusive OR) function?

Классификация

• Классификация:

- один слой выделяет полупространства
- 2-х слойный персептрон моделирует индикаторную ф-цию на произвольном выпуклом многоугольнике (через AND)
 - приближает произвольное выпуклое множество
- 3-х слойный персептрон выделяет произвольный многоугольник (через OR) как объединение выпуклых многоугольников
- Таким образом, 3-х слоев достаточно для приближения любого множества.

Выбор числа слоёв

- Зачем использовать больше 3-х слоёв?
- 3-х слойные сети способны приближать любые регулярные зависимости, но может потребоваться слишком много нейронов - переобучение.
- Более глубокие слои могут переиспользовать ранние нейроны.
 - нужно меньше нейронов, меньше связей, меньше переобучение

Содержание

- 1 Архитектура
- 2 Необходимое количество слоев
- ③ Функции активации
- 4 Выходы и функции потерь

Непрерывные активации

- $\mathbb{I}[w^Tx w_0 \le 0]$ кусочно-постоянная, производная=0, не можем оптимизировать веса.
- Заменим $\mathbb{I}[w^T x w_0 \le 0]$ непрерывной функцией активации $\phi(w^T x w_0)$.

Основные функции активации

- ullet сигмоида: $\sigma(x)=rac{1}{1+e^{-x}}$
 - 1 нейрон с сигмоидой моделирует логистическую регрессию
- ullet гиперболический тангенс: $angh(x) = rac{e^x e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) 1$
 - преимущество: если $\mathbb{E} x = 0$, то $\mathbb{E} \operatorname{tangh}(x) = 0$.

• Проблема: $\phi'(x) \approx 0$ вне интервала (-3,3).

Основные функции активации

- Rectified linear unit (ReLU): $\phi(x) = \max(0, x)$
 - аналог с гладкой производной SoftPlus: $\phi(x) = \ln(1+e^x)$
- Leaky ReLU: $\phi(x) = \begin{cases} x, & x \geq 0 \\ 0.01x, & x < 0 \end{cases}$
- ullet Parametric ReLU (lpha оценивается): $\phi(x|lpha) = egin{cases} x, & x \geq 0 \\ lpha x, & x < 0 \end{cases}$
- Exponential LU (α задано): $\phi(x)=\begin{cases} x, & x\geq 0\\ \alpha(e^x-1), & x<0 \end{cases}$

Содержание

- 1 Архитектура
- 2 Необходимое количество слоев
- ③ Функции активации
- 4 Выходы и функции потерь

Регрессия

- Регрессия: $\phi(I) = I$
- Скалярная регрессия $y \in \mathbb{R}$:

$$MSE(x,y) = \frac{1}{N} \sum_{n=1}^{N} (\widehat{y}(\mathbf{x}_n) - y_n)^2$$

$$MAE(x,y) = \frac{1}{N} \sum_{n=1}^{N} |\widehat{y}(\mathbf{x}_n) - y_n|$$

ullet Векторная регрессия $\mathbf{y} \in \mathbb{R}^K$:

$$MSE(x,y) = \frac{1}{N} \sum_{n=1}^{N} \|\widehat{\mathbf{y}}(\mathbf{x}_n) - \mathbf{y}_n\|_2^2$$

Классификация, вероятности классов

• Бинарная классификация: $y \in \{0,1\}$

$$p(y = +1|x) = \frac{1}{1 + e^{-I}}$$

$$\mathcal{L}(x,y) = -\ln p(y|x) = -\ln p(y=1|x)^{\mathbb{I}[y=1]} [1 - p(y=1|x)]^{\mathbb{I}[y\neq 1]}$$

Классификация, вероятности классов

• Бинарная классификация: $y \in \{0,1\}$

$$p(y = +1|x) = \frac{1}{1 + e^{-I}}$$

$$\mathcal{L}(x,y) = -\ln p(y|x) = -\ln p(y=1|x)^{\mathbb{I}[y=1]} [1 - p(y=1|x)]^{\mathbb{I}[y\neq 1]}$$

• Многоклассовая классификация: $y \in {1,2,...}C$

$${SoftMax(I_1,...I_C)}_j = p(y=j|x) = \frac{e^{I_j}}{\sum_{k=1}^C e^{I_k}}, \ j=1,2,...C$$

$$\mathcal{L}(x,y) = -\ln p(y|x) = -\ln \prod_{c=1}^{C} p(y=c|x)^{\mathbb{I}[y=c]}$$

Классификация, рейтинги классов

• Бинарная классификация: $y \in \{-1, 1\}$

$$g(x)={
m o}$$
тн. предпочтительность положит. класса

$$hinge(x,y) = [\alpha - yg(x)]_+$$

Классификация, рейтинги классов

• Бинарная классификация: $y \in \{-1, 1\}$

$$g(x)=$$
 отн. предпочтительность положит. класса
$$hinge(x,y)=\left[\alpha-yg(x)\right]_{+}$$

• Многоклассовая классификация: $y \in {1,2,...C}$:

$$\left\{g_{1}(x),...g_{C}(x)\right\} \text{ - рейтинги классов } 1,...C$$

$$hinge_{1}(x,y) = \left[\max_{c \neq y} g_{c}\left(x\right) + \alpha - g_{y}\left(x\right)\right]_{+}$$

$$hinge_{2}(x,y) = \sum_{c \neq y} \left[g_{c}\left(x\right) + \alpha - g_{y}\left(x\right)\right]_{+}$$

ullet lpha>0 - подбираемый гиперпараметр (baseline: 1)

Заключение

- Нейросети универсальный аппроксиматор: может моделировать сложные нелинейные зависимости.
- ReLU, LeakyReLU рекомендуемые функции нелинейности.
- Функции потерь:
 - регрессия: $(\widehat{y} y)^2$, $|\widehat{y} y|$
 - классификация: кросс-энтропийные потери, hinge.