# Session 7: Quality Management

Dr Feryal Erhun fe251@cam.ac.uk



#### **Process Improvement**

A wealth of methodologies: JIT, TPS, MRP I /II, ERP, TOC, TQM, SPC, CIM, FMS

#### Manufacturing techniques

 Just-in-Time (JIT), Lean Production, Lean Thinking, Toyota Production System (TPS), Theory of Constraints (TOC)

#### **Quality movement**

 Total Quality Management (TQM), Statistical Process Control (SPC), Six Sigma, Lean Six Sigma

#### Responsive manufacturing and supply

Flexible Manufacturing Systems (FMS), Mass Customization

#### Information Technology related methodologies

 MRP/ERP, Computer Integrated Manufacturing (CIM), "Digital Factory"

### **Objectives for Today**

- Give a brief review of the quality gurus and their approaches to quality
- Recognize the multidimensional view of product quality
- Understand the concepts of process capability and statistical process control
- Understand the role of inspection and apply sampling plans
- Recognize the DMAIC framework and the philosophy of Six Sigma

### **Poor Product/Service Quality**

What happens when quality is poor?

- Costs increase
- Customers complain → more costs
- Customers don't come back → highest costs

And along with increasing costs, you have fewer goods or services to sell.

# History and Gurus

#### **Walter Shewhart**

- A statistician at Bell Laboratories in 1920s, he studied randomness in industrial processes
- Developed a system for workers to determine whether those processes were "in control"
- First defined quality as the goodness of the product
- Known as the father of Statistical Process Control (SPC)



#### W. Edwards Deming

- Believed in management as a system
- Natural variation is inherent in all processes, but if reduce variation, productivity and quality both increase
- Influenced post WWII Japan's production

"Quality is not mandatory. You can choose to go out of business."



"In God We Trust ...
- all others must bring data."

### Joseph Juran

- Defined quality as fitness for use
- Focused on quality costs
- Stressed the point-in-time trade-offs of quality decisions
- In 1957 published Quality Control Handbook



#### **Cost of Quality to the Firm**

#### **Four Categories of Cost:**

- Cost of Prevention
- Cost of Appraisal
- Cost of Internal Failure
- Cost of External Failure



**Conformance Quality Level** 

#### Kauro Ishikawa

- Stressed basic quality tools
- Advocated quality circles
- Believed in worker involvement
- Customer satisfaction is the basis for definitions of quality



"to practice quality control is to develop, design, produce and service a quality product which is most economical, most useful and always satisfactory to the consumer"



### **Genichi Taguchi**

- Taguchi contributed to both quality philosophy and quality tools
- He said that there is a loss to society whenever there is a problem with the quality of a good or service
- He also developed tools to facilitate the design of experiments for building in product quality

### **Philip Crosby**

- Defined quality as conformance to requirements
- Emphasized the importance of zero defects
- Quality is Free!



### What is Quality?



# **Product Quality**

### The Dimensions of Quality

If we want to manage quality, we have to not only know what we mean by quality, but be able to measure it

### **Dimensions of Product Quality**

**Performance:** Primary operating characteristics

Features: Secondary characteristics

Conformance: How well specifications are met

Reliability: Consistency of performance

**Durability:** Product life

Perceived Quality: Brand image/reputation

Serviceability: Ease of service/friendliness of server.

Aesthetics: Effect on senses

Source: David Garvin (1987)

# **Identifying Service Quality**



### **Dimensions of Service Quality**

**Reliability:** The ability to perform the promised service dependably and accurately

**Tangibles:** The appearance of physical facilities, equipment, personnel, and communications materials

**Responsiveness:** The willingness to help customers and to provide prompt service

**Assurance:** The knowledge and courtesy of employees and their ability to convey trust and confidence

**Empathy:** The provision of caring, individualized attention to customers

Source: Berry, Zeithaml & Parasuraman (1990)

### **Definition of Service Quality**

**Quality of Service = Perceived Performance – Expectation** 

Relationship between what is expected and what is actually delivered

- > Service quality is relative
- > Determined by customer, not by provider
- > Varies from one customer to another
- Quality enhanced by meeting or exceeding expectations and by controlling customer expectations

### Service Quality: The Gap Model



Gap analysis identifies the differences between desired and actual performance.

**Source:** Parasuraman et al. (1985) The Gap Model of Service Quality

# **Technical/Functional Service Quality**

**Technical:** the what of service

Functional: the how of service

### **Challenges Delivering Service Quality**

"Managers do not control the quality of the product when the product is a service .... the quality of the service is in a precarious state – it is in the hands of the service workers who 'produce' and deliver it."

- Karl Albrecht

#### However, Metrics Drive Behaviour

You cannot manage what you do not measure.

What you get is what you measure.

# **The White Bead Company**

### **Deming's 14 Points**

- 1. Create constancy of purpose for continuous improvement
- 2. Adopt the new philosophy (mistakes and negativism are unacceptable)
- 3. Cease dependence upon mass inspection
- 4. End the practice of awarding business on price tag alone
- 5. Improve constantly and forever the system of production and service
- 6. Institute training
- 7. Institute leadership
- 8. Drive out fear
- 9. Break down barriers between staff areas
- 10. Eliminate slogans, exhortations, and targets for the workforce
- 11. Eliminate numerical quotas
- 12. Remove barriers to pride of workmanship
- 13. Institute a vigorous program of education and training
- 14. Take action to accomplish the transformation

# Capability & Control

### **Capability Study**

If specifications (specs) are outside at least 3 standard deviations, the process is capable

If specs are within 3 sigma, process is not capable of consistently producing within customer requirements





### **Capability Study**

#### Steps:

- 1. Determine process requirements
- 2. Collect baseline data on process output when process is not exhibiting "unusual" behavior; calculate process mean and standard deviation (σ)
- 3. Compare specs to process mean  $\pm$  3  $\sigma$
- 4. If specs are outside  $\pm$  3  $\sigma$ , process is capable

# CP

 Compares the "natural tolerance" of the process (its natural variation) to the specs

$$C_P = \frac{engineering tolerance}{natural tolerance} = \frac{customer specification range}{6\sigma}$$

 A C<sub>P</sub> of 1 denotes a capable process – but to allow for drift, 1.33 is often used as the acceptable minimum

Disadvantage: C<sub>P</sub> does not account for process centering

# CPK

 Compares the "natural tolerance" of the process (its natural variation) to the specs for process centering

$$C_{PK} = \frac{min(Z_L, Z_U)}{3}$$

where

$$Z_{U} = \frac{Upper specification - \overline{X}}{\sigma}$$

$$Z_L = \frac{\overline{X} - Lower specification}{\sigma}$$

# $C_{PK}$

- We are looking at the difference between the mean and the upper and lower specs
  - > In a centered process, we would expect these to be equal
  - > When a process is not centered around the mean, one Z will be smaller than the other

• If that Z divided by 3 is at least 1 (preferably 1.33, then the process is capable)

# **C<sub>PK</sub>** and the Comparison Method

- Basically, C<sub>P</sub> and C<sub>PK</sub> are computing a single value to determine whether a process is capable
- We did this visually, ensuring that the process specs are outside at least ±3 sigma on each side



### **Capability Study**

- When a process is not capable, we have to inspect to find the output that does not meet the requirements, which adds cost
- If we need to rework or scrap bad output, that adds even more cost!

#### Capable Processes in Control

- When a process is capable, it can produce output that meets customer specifications
- However, a process is only in control when it haves as expected, that is it exhibits only random variation
- When a process is capable and in control, the process is producing output that meets customer specifications consistently

#### **Statistical Analysis of Processes**

#### **Statistical Analysis**

- Requires less labor (reduces costs)
- Useful when testing destroys products

#### **Categories of Statistical Tools**

- Acceptance sampling
  - Assesses the quality of parts or products after they have been produced
- Statistical process control
  - > Assesses whether or not an ongoing process is performing within established limits

### **Statistical Process Control (SPC)**





#### **Normal curve**





#### **Attributes and Variables**

#### Attribute data

 Data that count items, such as the number of defective items in a sample

#### Variable data

 Data that measure of a particular product characteristic such as length or width

#### **Control Charts**

- There are a number of types of control charts
- What type of control chart should be used depends on
  - > The type of data
  - > The size of the sample
- With variable data the key is sample size
- With attribute data, we must determine whether
  - ➤ We are counting defectives (whether a unit of output is good or bad within a sample of units) or
  - > Defects (number of occurrences of a flaw on a single unit) and

### **Two Basic Types of Control Charts**

#### Counted Data ("Attribute Data"):

- Nominal data
  - > Need just one chart, because mean determines standard deviation
  - > p chart

#### Measured Data ("Variables Data"):

- Ratio and interval data
  - Need two charts, because mean and standard deviation are independent
  - > X-bar and R charts

#### Variation Occurs Because Of ...

- Worker Operator error, e.g., lack of training
- Machine Worn parts, e.g., improper maintenance
- Materials Variation in raw materials, e.g., wood grain
- Methods Differences in procedures or setups

Only when a process is in control can you know its true capability

How do we identify whether a process is in or out of control?

# **Control Chart Interpretation: In Control - Random Pattern**



### **Typical Out-of-Control Patterns**

- Point outside control limits
- Sudden shift in process average
- Cycles
- Trends
- Hugging the center line
- Hugging the control limits
- Instability

# **Control Chart Interpretation: Points Outside Limits**

One sample mean above UCL; investigate for assignable cause.





One sample mean below LCL; investigate for assignable cause.

# Control Chart Interpretation: Two-in-a-Row Between 2&3σ

Two consecutive sample means between +2 and +3  $\sigma$ ; investigate for assignable cause.





Two consecutive sample means between -2 and -3  $\sigma$ . Investigate for assignable cause.

### Control Chart Interpretation: Two-out-of-Three Between 2&3σ

Two out of 3 sample means between +2 and +3  $\sigma$ ; investigate for assignable cause.





Two out of 3 sample means between -2 and -3  $\sigma$ . Investigate for assignable cause.

# Control Chart Interpretation: Four-out-of-Five Between 1&3σ

Four out of five sample means between +1 and +3  $\sigma$ ; investigate for assignable cause.





Four out of five sample means between -1 and -3  $\sigma$ . Investigate for assignable cause.

# Control Chart Interpretation: Five-in-a-Row on One Side of CL

Run of five sample means below Center Line; investigate for assignable cause.





Run of five sample means above Center Line; investigate for assignable cause.

# **Control Chart Interpretation: Trends**

6 in a row steadily increasing; investigate for assignable cause.





6 in a row steadily decreasing; investigate for assignable cause.

### Control Chart Interpretation: Eight-in-a-Row on Between 2&3σ

 $UCL = +3\sigma$ 

Center Line

 $LCL = -3\sigma$ 



# Control Chart Interpretation: Fourteen-in-a-Row Alternating



# Control Chart Interpretation: Fifteen-in-a-Row within $\pm 1 \sigma$



# **Control Chart Interpretation: In or Out of Control?**



### For Attribute Data - p Chart

$$UCL = \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

$$CL = \overline{p}$$

$$LCL = \overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

where  $\overline{p}$  is the observed value of the average fraction defective/defects

#### For Variable Data - X-bar & R Charts

$$\overline{X}$$
 chart

$$UCL = \overline{x} + A_2 \overline{r}$$

$$CL = \overline{x}$$

$$LCL = \overline{x} - A_2 \overline{r}$$

$$R$$
 chart

$$UCL = D_4 \bar{r}$$

$$CL = \bar{r}$$

$$LCL = D_3 \bar{r}$$

#### **Determining SPC Sample Size**

#### For attributes (data you count):

- Want to collect a large enough sample that you find, on average, two
  of the attribute you are looking for
- For example, in a p chart if you have a baseline percent defective of 10%, what should sample size be?
  - ➤ There would be one defect every 10 units, on average, so you'd need a sample of size 20

#### For variables (data you measure):

 Sample size is typically 4 or 5 – because measured data is continuous and is therefore more "powerful" for finding changes

### When to Sample?

Frequency depends on two factors:

- How often a process is likely to change.
- How much the sampling process costs.

### **SPC Summary**

- SPC does not stop the production of defects (but it does minimize them!)
- SPC does not measure the quality of a worker
- SPC tests whether the system is operating as intended
- SPC lies at the core of continuous improvement

### Six Sigma

### What is Six Sigma?

- Is a philosophy of doing business
- Focuses on eliminating defects through reducing variation
- Uses teams for maximum effectiveness
- Focuses on results

A rigorous, focused, and highly effective implementation of proven quality principles and techniques ... that aims for error-free business performance.

The Six Sigma Handbook, Thomas Pyzdek

#### **M&M Game**

#### **Variation**

The output of all processes will exhibit variation



#### **The Normal Distribution**



# Defect Rates for Different Levels of Sigma (σ)

| Defects per Million |
|---------------------|
| 500,000             |
| 308,300             |
| 158,650             |
| 67,000              |
| 22,700              |
| 6,220               |
| 1,350               |
| 233                 |
| 32                  |
| 3.4                 |
|                     |

### Six Sigma Results

#### At 3 Sigma:

- 20,000 wrong drug prescriptions a year.
- More than 25,000 newborn babies dropped by nurses or doctors each year.
- No electricity, water, or heat for 8.6 hours each.
- 730 short or long landings at O'Hare Airport each year.
- Almost 500 incorrect surgical operations each week.

#### At 6 Sigma:

- 25 wrong drug prescriptions a year.
- Thirty newborn babies dropped each year.
- No electricity, water, or heat for 0.6 minutes each year.
- One short or long landing in a year
- One incorrect surgical operation every two weeks.

**Source:** Don Desfosse Raytheon Six Sigma Black Belt

### Magnitude of Difference Between σ Levels

- Phone-in tax advise 2.2σ
- Restaurant bills, doctors prescription writing, and payroll processing - 2.9σ
- Average company 3.0σ
- Airline baggage handling 3.2σ
- Best in class companies 5.7σ
- U.S. Navy aircraft accidents 5.7σ
- Watch off by 2 seconds in 31 years 6σ
- Airline industry fatality rate 6.2σ

**Source:** Don Desfosse Raytheon Six Sigma Black Belt

### The Six Sigma DMAIC Framework

**Define:** the goals of the improvement activity

**Measure:** the existing system

**Analyze:** the system to eliminate the gap between the

current performance of the system or process

and the desired goal

**Improve:** the system

**Control:** the new system

#### The Six Sigma DMADV Framework

**Define:** the goals of the development/change activity

**Measure:** the customer requirements and specifications

Analyze: the system options to meet the customer need

or the desired goal

**Design:** the system

**Verify:** the new system

### **Benefits from Six Sigma**

- Motorola reduced manufacturing costs by \$1.4 billion from 1987-1994
- Six Sigma reportedly saved Motorola \$15 billion over the last 11 years
- GE produces annual benefits of over \$2.5 billion across the organization from Six Sigma
- GE saved \$12 billion over five years and added \$1 to its earnings per share
- Honeywell (AlliedSignal) recorded more than \$800 million in savings

# **Operations Management**

Dr Feryal Erhun fe251@cam.ac.uk