Witness

 $\phi=(x\vee y\vee z)(\bar x\vee \bar y)(x\vee \bar z)$ <- Conjuntive normal form $\phi\in SAT\equiv \phi$ has a satisfying truth assignment

Witness is a truth statement.

If it's satisfiable, there has to be a witness.

 $\phi \in Co-Sat \equiv \phi$ has no satisfying assignment iff $\phi \in SAT$.

NP-Completeness

L is NP-complete \equiv L is in NP and L is NP-hard.

 $NP \equiv \exists \text{ witness}$

 $CoNP \equiv \forall \text{ witnesses}$

 $\exists x \forall y \text{ verifyable in poly time} \equiv \sum_z$

 $\forall x \exists y = \Pi_z$

Proofing

You can do a transfer proof, by showing that a NP-foo problem can be transformed into whatever problem, thus it must have an lower limit of NP-foo.

True Quantified Boolean Formulas

 $\forall x \exists y \forall z (x \vee y \vee z) (\bar{x} \vee \bar{y})$

Approximation Algorithms

You can make an approximation to an NP problem in P time. This can have provable performance limits. Heuristics however, don't have any guarantees. An algorithm A is a ρ -approximation algorithm if for every input I with optimal solution value OPT(I).