

Parallel and Distributed Computing

Mr. Hassan Sardar

Lecturer, Department of Computer Science

COMSATS University Islamabad, Wah Campus

՛ 🚐

Email: hassan@ciitwah.edu.pk

Lesson

Today' Lecture

What is a Distributed System?

- O Models of Distributed Systems
- Enabling Technologies for Distributed Systems
- Software Environments for Distributed Systems
- Performance in Distributed Systems
- Security in Distributed Systems
- Energy Efficiency in Distributed Systems

Introduction to Distributed Systems

What is a Distributed System?

- A collection of independent computers that appear as a single system.
- Aim to improve performance, fault tolerance, and scalability.
- Examples of Distributed Systems:
 - Cloud Computing (AWS, Google Cloud)
 - Distributed Databases (Cassandra, Hadoop)

Distributed Systems

Models of Distributed Systems

Client-Server Model:

- Clients send requests, servers respond w services.
 - Widely used in web applications.

Peer-to-Peer (P2P) Model:

- Nodes communicate directly without a central server.
 - Example: BitTorrent.

Message-Passing Model:

- Components communicate by passing messages over a network.
 - Examples: MPI, RabbitMQ.

Enabling Technologies for Distributed Systems

- Networking Technologies:
 - High-speed networks (Ethernet, InfiniBand).
 - Network Protocols (TCP/IP, UDP, HTTP).
- O Middleware:
 - Provides communication, data management, and services (CORBA, Java RMI).
- Cloud and Edge Computing:
 - Offloading computation to the cloud.
 - Edge computing brings processing closer to the data source.

Software Environments for Distributed Systems

- Operating Systems:
- Distributed OS manage resources across machines (e.g., Linux).
- O Distributed File Systems:
 - Manage files over a network, ensuring consistency (e.g., HDFS, NFS).
- O Programming Environments:

- Hadoop, Spark, MPI, OpenMP for building distributed systems.

Performance in Distributed Systems

- Scalability:
- Horizontal vs. Vertical scaling.
- Coad Balancing:
 - Distributing workload across servers or nodes.
- Catency and Bandwidth:
 - Influences communication speed between nodes.
- O Performance Metrics:
 - Throughput, response time, fault tolerance, availability.

Security in Distributed Systems

- O Authentication and Authorization:
- Ensuring legitimate access (OAuth, Kerberos).
- O Data Encryption:
 - Protecting data using TLS/SSL, AES.
- Fault Tolerance and Redundancy:
 - Using replication to avoid data loss.
- O DDoS Mitigation:
 - Traffic filtering, rate-limiting, DDoS protection.

Energy Efficiency in Distributed Systems

- O Energy-Efficient Algorithms:
- Optimizing tasks to reduce power consumption.
- O Dynamic Power Management:
 - Scaling CPU frequencies or turning off idle components.
- O Virtualization:
 - Efficient resource allocation through virtualization (VMware, Docker).
- O Green Data Centers:
 - Optimizing cooling, power usage, hardware efficiency.

Case Study: HPC in Distributed Systems

O HPC Clusters:

- Solving complex computations using distributed systems.
- OpenMP:
 - Distributing tasks across multiple nodes.
- O Applications:
 - Weather simulations, scientific research, big data analysis.

Conclusion

- Key Takeaways:
- Distributed systems improve scalability, reliability, and performance.
- O Future Trends:
 - Edge computing, quantum computing, Al integration.

