Complement

- Fie baza d > 1
- Complementul unei cifre:
 - Pentru o cifră $a \in \{0,1,...d-1\}$ $c_d(a) = (d-1) - a$
 - Pentru d = 2 şi b \in {0,1}: $c_2(b) = (2 - 1) - b = 1 - b \rightarrow \overline{b}$
- Dar complementul unui şir de biţi?

Complement față de bază și față de cifra maximă

- Extinderea definiției complementului la un șir de biți se poate face în două moduri:
 - Conform definiției pentru un bit (complement față de cifra maximă)

$$C_1(1011) = 0100$$
 $C_1(0100) = 1011$

 Adaptând definiţia pentru şiruri (complement faţă de bază)

$$C_2(1011) = 0100 + 0001 = 0101$$

 $C_2(0101) = 1010 + 0001 = 1011$

- Cel mai frecvent utilizată
- Adunarea şi scăderea cu acelaşi algoritm / circuit
- Testarea automată a depășirilor

C₂ - definiție

- Complement față de 2: C₂
- $Val_{C2}^{n,m} (a_{n-1}a_{n-2}...a_1a_0a_{-1}...a_m) =$ $\begin{cases}
 a_{n-2} \times 2^{n-2} + ... + a_{-m} \times 2^{-m}, & \text{dacă } a_{n-1} = 0 \\
 (a_{n-2} \times 2^{n-2} + ... + a_{-m} \times 2^{-m}) 2^{n-1}, & \text{dacă } a_{n-1} = 1
 \end{cases}$
- Temă: strict negativ pentru $a_{n-1}=1$
 - Deci a_{n-1} reprezintă semnul

- Cele 2^{n+m} reprezentări diferite (șiruri diferite de biți) corespund la 2^{n+m} numere diferite
 - Neredundantă: $0 = Val_{C2}^{n+m}(00...0)$
 - Temă: 0 nu poate fi reprezentat ca număr negativ
- Cel mai mic număr reprezentabil este $\min_{C2}^{n,m} = \operatorname{val}_{C2}^{n,m}(10...0) = -2^{n-1}$
- Cel mai mare număr reprezentabil este $\max_{C2}{}^{n,m} = val_{C2}{}^{n,m}(01...1) = 2^{n-1} 2^{-m}$
- Intervalul pe care se află numerele reprezentabile este deci [- 2ⁿ⁻¹; + (2ⁿ⁻¹ 2^{-m})]

- Numerele reprezentabile **exact** sunt cele începând cu min = 2ⁿ⁻¹, cu pasul 2^{-m}
- Celelalte numere din interval se reprezintă aproximativ, cu eroare de cel mult 2^{-m}
- **Precizia** reprezentării este 2^{-m}
 - pentru numere întregi, m=0, deci precizia este 1
- Pentru n+m fixat
 - creşterea magnitudinii duce la aproximare mai slabă
 - precizie mai bună duce la magnitudine scăzută

• $Val_{C2}^{8,0}(00110011) = 51$ $00110011 \rightarrow +(2^0 + 2^1 + 2^4 + 2^5) = 51$

•
$$Val_{C2}^{6,2}(00110011) = 12,75 = 51:2^2$$

 $00110011 \rightarrow +(2^{-2}+2^{-1}+2^2+2^3) = 12,75$

• $Val_{C2}^{4,4}(00110011) = 3,1875 = 51:2^4$ $00110011 \rightarrow + (2^{-4} + 2^{-3} + 2^0 + 2^1) = 3,1875$

• $Val_{C2}^{8,0}(10110011) = -77$

10110011
$$\rightarrow$$
 $(2^0 + 2^1 + 2^4 + 2^5) - 2^7 = 51 - 128 = -77$

- $\min_{C_2}^{8,0} = \operatorname{val}_{C_2}^{8,0}(10000000) = 0 2^7 = 0 128 = -128$
- $\max_{C2}^{8,0} = \text{val}_{C2}^{8,0}(011111111) = 2^7 2^0 = 128 1 = 127$
- $[-128; 127] \rightarrow 256$ numere, din 1 în 1
- $Val_{C2}^{4,4}(10110011) = -4,8125 = -77:24$
- $10110011 \rightarrow (2^{-4} + 2^{-3} + 2^{0} + 2^{1}) 2^{3} = 3,1875 8 = -4,8125$
- $\min_{C_2}^{4,4} = \operatorname{val}_{C_2}^{4,4}(10000000) = 0 2^3 = -8 = -128 : 2^4$
- $\max_{C2}^{4,4} = \text{val}_{C2}^{4,4}(011111111) = 2^3 2^{-4} = 8 0,0625 = 7,9375$ = 127 : 24
- $[-8; 7,9375] \rightarrow 256$ numere din 0,0625 în 0,0625

C₂ - complementare

- Dată reprezentarea lui q, se poate afla automat reprezentarea lui -q?
- Dacă da, atunci scăderea p-q devine adunare, după generarea automată a reprezentării lui -q: p - q = p + (-q)
- Reprezentarea lui -q: complementul față de 2 al reprezentării lui q
- Exemplu: $q = -77 = Val_{C2}^{8,0}(10110011)$ $-q = 77 = Val_{C2}^{8,0}(01001100 + 00000001)$ $Val_{C2}^{8,0}(01001101) = 64 + 8 + 4 + 1$

Temă

- Reprezentarea în C_2 pe N biţi a numărului întreg negativ q este de fapt reprezentarea pe N biţi a numărului $q + 2^N = 2^N |q|$
- $a + \overline{a} = 11....11 \rightarrow -1$, deci $(-a) = \overline{a} + 1$
 - a notează negația bit cu bit a reprezentării numărului a
 - a notează atât numărul, cât şi reprezentarea sa;
 se foloseşte aici implicit faptul că numerele
 pozitive se reprezintă ca în baza 2

Reprezentări în virgulă fixă, ^{4,0}

şirul de biţi	A+S	$\mathbf{C_1}$	$\mathbf{C_2}$	XS-7
0000	+0	+0	0	-7
0001	+1	+1	+1	-6
0010	+2	+2	+2	-5
0011	+3	+3	+3	-4
0100	+4	+4	+4	-3
0101	+5	+5	+5	-2
0110	+6	+6	+6	-1
0111	+7	+7	+7	0
1000	-0	-7	-8	+1
1001	-1	-6	-7	+2
1010	-2	-5	-6	+3
1011	-3	-4	-5	+4
1100	-4	-3	-4	+5
1101	-5	-2	-3	+6
1110	-6	-1	-2	+7
1111	-7	-0	-1	+8

IV.4.7.

Depășiri pentru operații cu reprezentări în virgulă fixă

Trecerea la reprezentări mai lungi

- Adăugare de cifre nesemnificative *la partea întreagă*
- Ce înseamnă cifră nesemnificativă?
 - A+S: zerouri imediat după cifra semn

```
» Val_{A+S}^{8,0}(00110011) = 51

» Val_{A+S}^{16,0}(000000000110011) = 51

» Val_{A+S}^{8,0}(10110011) = -51

» Val_{A+S}^{16,0}(100000000110011) = -51
```

• C₁, C₂: repetări ale cifrei semn imediat după ea

• Interesează mai mult trecerea la reprezentări mai scurte: încape reprezentarea corectă a rezultatului pe n+m biţi?

Mulțimea numerelor reprezentabile

- Submulţime finită a mulţimii numerelor raţionale
- $Q_{rep}^{n,m}$, unde $rep \in \{A+S, C_1, C_2\}$
- $Q_{rep}^{n,m} \subset [min; max]$
- $Q_{C2}^{8,0} = \{-128; -127; -126; ... -1; 0; 1; ... 127\}$
- $Q_{C2}^{4,4} = \{-8; -7,9375; \dots -0,0625; 0; 0,0625; \dots 7,9375\}$
- $Q_{A+S}^{n,m} = \{-(2^{n-1}-2^{-m}); -(2^{n-1}-2^{-m+1}); -(2^{n-1}-3\times2^{-m}); \dots -2^{-m}; 0; +2^{-m}; \dots (2^{n-1}-2^{-m})\}$
- $\mathbf{Q_{rep}}^{\mathbf{n,m}} \subset \mathbf{Q_{rep}}^{\mathbf{n+k,m}}, k=1,2,...$

Importanța reprezentării în complement față de 2

- Cel mai simplu circuit de adunare a două reprezentări: sumator complet la fiecare rang și ignorarea transportului de la rangul cel mai semnificativ
 - **Temă**: adunarea în C₁ implică o operație suplimentară
- Testare simplă a depășirilor
- Un număr în plus reprezentat pe aceeași lungime (reprezentare neredundantă)

Operații în C₂

- Vom prezenta pe scurt doar proprietăți ale adunării şi scăderii (suma algebrică) în C₂
- Termenii sumei şi rezultatul se reprezintă pe acelaşi număr de biţi
 - Uneori această restricție cauzează depășiri
- Înmulțirea și împărțirea ar trebui să aibă, pentru reprezentarea rezultatului, o lungime dublă față de lungimea comună a operanzilor
 - Aceeași definiție a depășirii

Depășiri

- Fie *rep* o reprezentare şi *op* o operaţie cu numere. Fie a, $b \in Q_{rep}^{n,m}$
- Spunem că operația *op* aplicată *numerelor* a și b produce depășire dacă:

a
$$op b \notin [min; max] \leftarrow$$

- Este una din situațiile repr(n1) op repr(n2) ≠ repr (n1 op n2)
- Anume, eroare la partea întreagă
- Depășire înseamnă rezultat eronat
- Nu se poate produce depășire la partea fracționară
 - ci doar aproximare (rezultat aproximativ, nu eronat)

Depășire - exemplul 1

• În reprezentarea C_2 , cu n = 4, m = 0:

$$1111 + 1111 = 11110 \rightarrow 1110$$

» Se "pierde" o cifră (rezultatul nu "încape" pe 4 biţi)

$$val_{C2}^{4,0}(1111) = -1$$

$$(-1) + (-1) = -2$$

$$val_{C2}^{4,0}(1110) = -2$$

- » Rezultat corect, deci nu se produce depășire
- » Testarea depășirii cu definiția:

$$Q_{C2}^{4,0} \subset [-8;7]$$
 $-1 \in Q_{C2}^{4,0}$ $-2 \in [-8;7]$

$$-1 \in Q_{C2}^{4,0}$$

$$-2 \in [-8; 7]$$

» Calculatorul nu poate însă testa definiția, întrucât "știe" reprezentările, nu numerele reprezentate

Depășire - exemplul 2

• În reprezentarea C_2 , cu n = 4, m = 0:

$$0111 + 0111 = 1110$$

» Nu se "pierde" nici o cifră

$$val_{C2}^{4,0}(0111) = 7$$

$$7 + 7 = 14$$

$$val_{C2}^{4,0}(1110) = -2$$

- » Rezultat eronat, deci se produce depășire
- » Testarea depășirii cu definiția:

»
$$Q_{C2}^{4,0} \subset [-8;7]$$
 $7 \in Q_{C2}^{4,0}$ $14 \notin [-8;7]$

$$7 \in Q_{C2}^{4,0}$$

$$14 \notin [-8; 7]$$

» Calculatorul nu poate însă testa definiția, întrucât nu "știe" numerele reprezentate

Depășirea la adunare în C₂

- De fapt, cifra de transport de la rangul cel mai semnificativ (fie 0, fie 1) se pierde întotdeauna din rezultat
 - Dar se reține în indicatorul C (transport general)
- Trebuie găsită o condiție asupra reprezentărilor care, testată, să semnaleze depăşirea
 - Fără a folosi definiția numerele nu sunt disponibile
 - Testarea va fi făcută de un circuit atașat sumatorului

Condiția de depășire

- Un alt mod de a vedea depășirea la adunare:
 - Depăşire se produce numai atunci când ambii operanzi au acelaşi semn, iar reprezentarea rezultatului indică semn opus.

• Temă:

- Nu este posibil ca definiția depășirii (cu numere) să fie satisfăcută când numerele au semn opus.
- Studiul adunării reprezentărilor pentru cazurile: ambele numere pozitive, ambele numere negative. Concluzie.

Rezultate asupra sumei algebrice în C_2

• Teorema 1.

Dacă a, $b \in Q_{C2}^{\quad n,m}$, atunci a $\pm \, b \in Q_{C2}^{\quad n+1,m}$

• Lema 2.

Dacă

$$a=Val_{C2}^{\quad n+1,m}(\alpha_n\alpha_{n-1}....\alpha_1\alpha_0\alpha_{-1}....\alpha_m),\ cu\ \alpha_n=\alpha_{n-1}$$
 atunci

$$a = Val_{C2}^{n,m}(\alpha_{n-1}\alpha_{n-2}....\alpha_1\alpha_0\alpha_{-1}....\alpha_m)$$

Rezultate asupra sumei algebrice în C₂

• **Definiție.** Date reprezentările α și β ,

• Teorema 3. Dacă suma algebrică a numerelor reprezentate de α și β nu produce depășire, atunci reprezentarea rezultatului este

$$\gamma_{n-1} \dots \gamma_1 \gamma_0 \gamma_{-1} \dots \gamma_{-m}$$

- Consecință: sumatorul serial efectuează adunări corecte
 - semnul se adună ca oricare altă cifră

Testarea depășirii

- Teorema 4.
- Suma algebrică a numerelor reprezentate de α și β nu produce depășire dacă cifrele transport C_{n-1} și C_n coincid.
 - 1111 + 1111 : cifrele-transport C₃ și C₄ sunt identice (egale cu 1)
 - 0111 + 0111 : cifrele-transport C₃ și C₄ diferă (prima este 1, a doua este 0)
- Consecință: testarea depășirii în UAL prin adăugarea la sumatorul serial a unei porți NXOR
 - în care intră cifrele-transport C_{n-1} și C_n
 - şi din care iese bitul-flag **O** (Overflow)
 - cifra-transport C_n poziționează și bitul-flag C (carry)