Uniform convergence and differentiability

For a sequence of functions (f_n) such that $f_n \to f$ pointwise, we know $f' = \lim_{n \to \infty} f'_n$ when the sequence (f'_n) converges uniformly. But we can say something stronger. Particularly, when (f'_n) converges uniformly, not only does $f' = \lim_{n \to \infty} f'_n$, but (f_n) converges uniformly too.

Exercise 6.3.7 in Understanding Analysis

Claim: Let (f_n) be a sequence of differentiable functions defined on the closed interval [a,b] such that $f_n \to f$ pointwise. Assume $f'_n \to g$ uniformly on [a,b]. If there exists a point x_0 in [a,b] such that $(f_n(x_0)) \to f(x_0)$, then $f_n \to f$ uniformly on [a,b].

Proof. Let $\epsilon > 0$. To show (f_n) converges uniformly, we use the Cauchy Criterion for uniform convergence i.e. we show there exists $N \in \mathbb{N}$ such that for $n, m \geq N$ and for all $x \in [a, b]$, we have

$$|f_n(x) - f_m(x)| < \epsilon.$$

First, define $g_{n,m}(x) = f_n(x) - f_m(x)$., By the triangle inequality, we have

$$|f_n(x) - f_m(x)| \le |(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)|$$

= $|g_{n,m}(x) - g_{n,m}(x_0)| + |f_n(x_0) - f_m(x_0)|.$

Since $(f_n(x_0))$ converges by assumption, by the Cauchy criterion, we choose N_1 such that for $n, m \ge N_1$, we have $|f_n(x_0) - f_m(x_0)| < \frac{\epsilon}{2}$. Each f_n is differentiable by assumption, and thus $g'_{n,m} = f'_n - f'_m$, so we can apply the Mean Value Theorem to $g_{n,m}$. Specifically, there exists $c \in (x, x_0)$ such that

$$g'_{n,m}(c) = \frac{g_{n,m}(x) - g_{n,m}(x_0)}{x - x_0}.$$

Thus, we have

$$|g_{n,m}(x) - g_{n,m}(x_0)| + |f_n(x_0) - f_m(x_0)| = |x - x_0| \left| \frac{g_{n,m}(x) - g_{n,m}(x_0)}{x - x_0} \right| + |f_n(x_0) - f_m(x_0)|$$

$$= |x - x_0| |g'_{n,m}(c)| + |f_n(x_0) - f_m(x_0)|$$

$$\leq |b - a| |g'_{n,m}(c)| + |f_n(x_0) - f_m(x_0)|.$$

By assumption, $(g'_{n,m})$ converges uniformly to 0 as both n and m tend to ∞ . So we can pick $N_2 \in \mathbb{N}$ such that for $n, m \geq N_2$ we have $|g'_{n,m}(c)| < \frac{\epsilon}{2|b-a|}$. Let $N = \max\{N_1, N_2\}$. Then for $n, m \geq N$, we have

$$|b-a||g'_{n,m}(c)| + |f_n(x_0) - f_m(x_0)| < |b-a| \frac{\epsilon}{2|b-a|} + \frac{\epsilon}{2}$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

So $|f_n(x) - f_m(x)| < \epsilon$ for any $x \in [a, b]$, and thus (f_n) converges uniformly on [a, b].