SM-2302 R Individual Assignment Report

HAZIQJ Dr. Haziq Jamil

2022-10-25

Total marks (out of 30): NA

Latest commit time: 2022-10-25 09:20:38. Penalty marks: 0 (0 days late).

Item	Points	Weight	Marks
Code correctness (10)	NA	0.6	NA
Code styling (5)	NA	0.1	NA
Creativity (5)	NA	0.1	NA
Use of GitHub (5)	NA	0.1	NA
Following instructions (5)	NA	0.1	NA

Checks

Context	No	Test	Result
Q1	1	Test pdf values	Success
	2	Returns 0 for values of $x < beta$	Success
	3	Error for invalid parameter values	Success
Q2	4	Test deviance value (single x)	Success
	5	Test deviance value (multiple x)	Success
Q 3	6	X correctly loaded	Success
	7	Correct MLE alpha value	Success
	8	Correct MLE beta value	Success
Q4	9	Test cdf values	Success
	10	Check quantile values	Success

Pareto distribution for α = 1.5 and β = 3

Git log

```
## 9ad203f Haziq Jamil Tue Oct 25 09:20:38 2022 +0800 Update README.md
## cb60ece
          Haziq Jamil Mon Oct 24 21:03:50 2022 +0800
                                                      Update README.md
## 9cb3909 Haziq Jamil Mon Oct 24 20:47:52 2022 +0800
                                                      Update README.md
## 6404189 Haziq Jamil Mon Oct 24 20:35:11 2022 +0800
                                                      Update README.md
## 49d5a30 Haziq Jamil Mon Oct 24 20:34:39 2022 +0800
                                                      Update README.md
## 240e24e Haziq Jamil Mon Oct 24 20:30:18 2022 +0800
                                                      Update README.md
## b332536 Haziq Jamil Mon Oct 24 20:11:34 2022 +0800
                                                      Add data file to repo
## 76c593a Haziq Jamil Mon Oct 24 20:10:00 2022 +0800
                                                      Adjust tolerance for optim
## a98fbe7 Haziq Jamil Mon Oct 24 20:02:13 2022 +0800
                                                      Edit data import line
## bb84c38 Haziq Jamil Mon Oct 24 19:54:25 2022 +0800
                                                      Complete Q5
## aeee6b8 Haziq Jamil Mon Oct 24 19:53:21 2022 +0800
                                                      Complete Q4
## 1694ea2 Haziq Jamil Mon Oct 24 19:48:49 2022 +0800
                                                      Complete Q3
## 3999f54 Haziq Jamil Mon Oct 24 19:46:57 2022 +0800
                                                      Complete Q2
## 372e8cf Haziq Jamil Mon Oct 24 19:46:49 2022 +0800 Complete Q1
## ddb0408 Haziq Jamil Mon Oct 24 19:34:31 2022 +0800 First commit
## 17545a7 github-classroom[bot] Mon Oct 24 11:31:13 2022 +0000 Initial commit
```

Source

```
# Load libraries -
   library(tidyverse)
   pareto_pdf <- function(x, alpha, beta) {</pre>
      # First test for invalid parameter values
      if (alpha <= 0 | beta <= 0)</pre>
        stop("Parameters alpha and beta must be > 0.")
      # The Pareto pdf
10
      res <- alpha * beta ^ alpha / x ^ (alpha + 1)
11
      res[x < beta] <- 0 # pdf is zero when x < beta
12
      return(res)
13
14
15
   # Some tests:
16
   # pareto_pdf(10, 5, 5)
17
   # pareto_pdf(10:15, 5, 5) # it's vectorised too
18
19
20
   pareto_dev <- function(alpha, beta, x) {</pre>
      # First test for invalid parameter values
22
      if (alpha <= 0 | beta <= 0)</pre>
        stop("Parameters alpha and beta must be > 0.")
24
25
      # Return the log-likelihood
26
      res \leftarrow -2 * log(alpha) - 2 * alpha * log(beta) +
27
        2 * (alpha + 1) * log(x[x >= beta]) # only interested in values for which
28
                                                 \# x \ge beta
29
      sum(res)
30
   }
31
32
```

```
# Some tests:
   # pareto_dev(2, 2, 2:10)
   \# sum(-2 * log(pareto_pdf(x = 2:10, alpha = 2, beta = 2)))
35
   # Note: It's fine to do sum(-2 * log(pareto_pdf)), but it breaks down easily
   # because the pdf explodes with large values of alpha. Better to use log scale
   # directly.
39
41
   # Read in the data set
   X <- scan("haziqj.txt") # other functions like read.table() are fine
                              # as long as it's vectorised
44
   # Compute the MLE
46
   beta_hat <- min(X)</pre>
47
   res <- optim(5, pareto_dev, method = "L-BFGS-B", lower = 0, x = X,
48
                 beta = beta_hat)
   alpha_hat <- res$par</pre>
50
51
   # Alternatively, can code the alpha_hat directly based on the formulae from
52
   # Wikipedia or differentiation by hand.
53
54
   # Q4 -----
55
   pareto_cdf <- function(x, alpha, beta) {</pre>
56
     # First test for invalid parameter values
57
     if (alpha <= 0 | beta <= 0)</pre>
58
       stop("Parameters alpha and beta must be > 0.")
59
     # Return the cdf
61
     res <- 1 - (beta / x) ^ alpha
     res[x < beta] \leftarrow 0 \# F(x) >= 0
63
     return(res)
65
   # If using integrate(), one can do the following:
67
   # pareto_cdf <- function(x, alpha, beta) {</pre>
      res <- integrate(pareto_pdf, lower = -Inf, upper = x, alpha = alpha,
69
                          beta = beta)
       return(res$value)
71
   # }
72
73
   # Since the cdf is available in closed form (either from Wikipedia or
   # integration by hand), best to code that directly rather than use a numerical
75
   # integrator.
76
77
   # 05 ----
78
   B <- 1000
   xvals <- seq(min(X), max(X), length = B)</pre>
   cdf_vals <- rep(NA, B)</pre>
   for (i in seq_along(xvals)) {
82
     cdf_vals[i] <- pareto_cdf(xvals[i], alpha = alpha_hat, beta = beta_hat)</pre>
   }
84
```

```
qvals <- rep(NA, 5)
quantiles <- c(0.05, 0.25, 0.5, 0.75, 0.95)
for (j in seq_along(quantiles)) {
    qvals[j] <- xvals[which.min(abs(cdf_vals - quantiles[j]))]
}</pre>
```

Feedback

NA