Oral Exam Syllabus

Mitchell Bast

August 15, 2022

Algebraic Topology

[Hatcher]

- Fundamental group
 - Covering spaces, their classification, deck transformations
 - Seifert-van Kampen theorem
- Homology
 - Simplicial and singular homology
 - Exact sequences and excision, the Mayer-Vietoris sequence
 - Cellular homology
 - Homology with coefficients, universal coefficient theorem
- Cohomology
 - Cup product and the cohomology ring
 - Künneth formula
 - Poincaré and Lefschetz duality
 - de Rham cohomology, de Rham's theorem

Riemann Surfaces

[Donaldson, Farkas - Kra]

- Examples of Riemann surfaces, properties of holomorphic maps
 - Quotients of group actions, algebraic curves, analytic continuation
 - Definition of holomorphicity, significance of meromorphic functions
 - Local behavior of holomorphic maps, degree, the Riemann-Hurwitz formula
 - Monodromy of covering spaces
- Calculus on Riemann surfaces
 - Differential forms, Stokes' theorem
 - Complexified tangent space, meromorphic 1-forms, the residue theorem
 - Poisson equation and its significance, Weyl's lemma
- Major results: Riemann-Roch formula, Abel-Jacobi map, Poincaré-Koebe uniformization, Riemann's existence theorem

Hyperbolic Geometry

[Hubbard]

- Plane hyperbolic geometry
 - Hyperbolic metric, geodesics
 - Normal form for automorphisms
 - Curvature of a metric
 - Hyperbolic trigonometry
- Hyperbolic geometry of Riemann surfaces
 - Geometric function theory: Schwarz lemma, length-area method, extremal length, the moduli of quadrilaterals and annuli
 - The hyperbolic metric of a Riemann surface, its properties, properties of geodesics
 - Right-angled hexagons and the trouser decomposition
 - The ideal boundary of a hyperbolic surface
 - Fundamental domain of a group action, Picard's little theorem

References

- [1] Simon Donaldson, Riemann Surfaces, Oxford University Press, 2011.
- [2] Hershel M. Farkas, Irwin Kra, Riemann Surfaces, Springer, 1991.
- [3] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2001.
- [4] John H. Hubbard, Teichmüller theory and Applications to Geometry, Topology, and Dynamics, Volume 1: Teichmüller theory, Matrix Editions, 2006.