2 Otoczka wypukła w 2D

2.1 Sformułowanie problemu

Zadanie

Dla danych punktów na płaszczyźnie: p_1, \ldots, p_n , znaleźć otoczkę wypukłą zbioru tych punktów.

Definicje

- Zbiór P nazywamy wypukłym, jeżeli wraz z każdą parą punktów $p,q\in P,$ do zbioru należy odcinek \overline{pq}
- ullet Otoczką wypukłą (ang. convex hull) zbioru P nazywamy najmniejszy zbiór wypukły zawierający zbiór P. Oznaczenie $\mathsf{CH}(P)$.

Charakteryzacja

Otoczka wypukła zboru P to część wspólna wszystkich zbiorów wypukłych zawierających P.

2.2 Analiza problemu

- Tak sformułowana definicja otoczki wypukłej jest nieprzydatna:
 - zawiera nieskończoną liczbę obiektów do rozważenia
 - nie pozwala rozwiązać problemu w skończonej liczbie kroków
 - nie mówi czym jest otoczka wypukła
- Aby móc rozwiązać problem otoczki wypukłej algorytmicznie musimy znaleźć charakteryzację która jest pozbawiona tych wad.

Rysunek 1: Otoczkę wypukłą możemy sobie wyobrazić jako gumkę recepturkę rozpiętą na zbiorze.

Charakteryzacja:

Otoczka wypukła (skończonego) zbioru P to wielokąt wypukły, którego wierzchołki są punktami ze zbioru P, zawierający wszystkie punkty P. Jest on wyznaczony jednoznacznie.

Wnioski:

- ullet odcinek tworzący bok wielokąta zawiera dokładnie dwa punkty zbioru P jako swoje końce
- wielokąt wypukły jest częścią wspólną półpłaszczyzn wyznaczonych przez proste zawierające jego boki

Rozważmy dwa kolejne wierzchołki $p,q\in P$ wielokąta $\mathsf{CH}(P)$ oraz krawędź (skierowaną) \overline{pq} .

Obserwacja 1

Wszystkie punkty zbioru P leżą po tej samej stronie prostej \overline{pq}

Obserwacja 2

Jeżeli wszystkie punkty zbioru $P \setminus \{p, q\}$ leżą po tej samej stronie prostej \overline{pq} , to \overline{pq} jest krawędzią $\mathsf{CH}(P)$.

Przeformułowanie problemu

Dla danej listy punktów P na płaszczyźnie wyznaczyć listę tych elementów które są wierzchołkami wielokąta $\mathsf{CH}(P).$

Reprezentacja wielokąta

Wielokąt opisujemy jako listę wierzchołków, wypisanych w kolejności zgodnej z ruchem wskazówek zegara. Lista może się zaczynać od dowolnego wierzchołka.

2.3 Algorytm naiwny

Algorytm 1 NaiveConvexHull(P)

```
Input: P - zbiór punktów na płaszczyźnie

Output: lista wierzchołków wielokąta \mathsf{CH}(P)

1: E = \emptyset

2: for all p, q \in P do

3: valid = \mathbf{true}

4: for all r \in P, r \neq p, q do

5: if r leży po lewej stronie prostej \overline{pq} then

6: valid = \mathbf{false}

7: if valid then

8: valid = \overline{pq} do valid do v
```

Duża złożoność obliczeniowa

Algorytm naiwny ma złożoność obliczeniową $O(n^3)$, gdzie n - liczba wierzchołków. Zbyt dużą dla zastosowań, poza małymi zbiorami.

Nie zawsze działa poprawnie

W przypadku zdegenerowanym - punkty współliniowe - algorytm działa niepoprawnie. Jeżeli punkty p,q,r są współliniowe, to nie dodaje krawędzi.

Nie jest stabilny numerycznie

Jeżeli punkty są prawie, prawie, ale to prawie współliniowe, to w błędy zaokrągleń mogą spowodować nieprzewidywalne zachowanie

Epic fail! Epic fail! Epic fail! Epic fail! Epic fail! Epic fail! Dodatkowy problem:

Punkty współliniowe

Punkty p,q,r są współliniowe i leżą na brzegu CH(P) w tej kolejności. Czy otoczka wypukła zawiera krawędzie \overline{pq} i \overline{qr} czy tylko \overline{pr} ?

2.4 Algorytm GiftWrapping

- \bullet Zastosujemy podejście przyrostowe wyznaczymy $\mathsf{CH}(P)$ dodając po jednym punkcie, za każdym razem aktualizując rozwiązanie.
- Na poczatek sortujemy punkty względem pierwszej współrzędnej.
- Nastepnie wyznaczymy górną krawędź zaczynając od "najbardziej lewego" punktu kończąc na "najbardziej prawym"
- Potem wyznaczymy dolną krawędź, przechodząc w przeciwnym kierunku.

Podstawowy krok:

- Załóżmy, że wyznaczyliśmy górna krawędź L_{up} dla dla punktów p_1, \ldots, p_{i-1} .
- Dodajemy kolejny punkt p_i .

- Obserwacja 1: poruszając się po brzegu wielokąta skręcamy w lewo lub w prawo.
- Obserwacja 2: jeżeli wielokąt jest wypukły, to skręcamy tylko w prawo

- Dodajemy p_i do L_{up} . Zauważmy, że p_i należy do otoczki wypukłej punktów p_1, \ldots, p_i , bo jest najbardziej na prawo.
- Jeżeli trzy ostatnie punkty tworzą zakręt w prawo: OK, dodajemy następny punkt

- W przeciwnym wypadku, usuwamy środkowy,
- Powtarzamy sprawdzenie dla nowych trzech ostatnich, lub aż zostaną tylko dwa lub pojawi się zakret prawo.

${\bf Algorytm~2~GiftWrapping(P)}$

```
Input: P - zbiór punktów na płaszczyźnie
```

Output: L - lista wierzchołków wielokąta CH(P)

- 1: posortuj wierzchołki wg pierwszej współrzędnej
- 2: $L_{up} \leftarrow p_1, L_{up} \leftarrow p_2,$
- 3: for i = 3 to n do
- 4: $L_{up} \leftarrow p_i$
- 5: while L_{up} zawiera więcej niż 3 punkty and ostanie trzy nie tworzą zakrętu w prawo do
- 6: usuń środkowy z trzech ostatnich
- 7: $L_{down} \leftarrow p_n, L_{down} \leftarrow p_{n-1}$
- 8: **for** i=n-2 **to** 1 **do**
- 9: $L_{down} \leftarrow p_i$
- 10: while L_{down} zawiera więcej niż 3 punkty and ostanie trzy nie tworzą zakrętu w prawo do
- 11: usuń środkowy z trzech ostatnich
- 12: Usuń pierwszy i ostatni punkt z L_{down}
- 13: **return** połączone listy L_{up} i L_{down}

Nie działa poprawnie

- Jeżeli dwa punkty mają tą samą pierwszą współrzędną, nie mamy dobrego porządku (co to powoduje?). Problem rozwiązujemy sortując leksykograficznie.
- Punkty współliniowe nie tworzą zakrętu. Należy je traktować, jako tworzące zakręt w lewo.

Dobra złożoność

Algorytm ma złożoność obliczeniową $O(n \log n)$, gdzie n - liczba wierzchołków. Bez sortowania leksykograficznego jest O(n), bo sortowanie zajmuje najwięcej czasu.

2.5 Inne algorytmy

Istnieje wiele algorytmów, także wyznaczających otoczkę w 3D:

- Naiwny $O(n^3)$
- GiftWrapping $O(n \log n)$
- Graham $O(n \log n)$
- Jarvis O(nh), pesymistyczna $O(n^2)$
- Quick Hull $O(n\log n),$ pesymistyczna
 $O(n^2)$
- Merge
- Chan (1996) $O(n \log h)$, pesymistyczna $O(n \log n)$