

Identifying and Predicting Healthcare Fraud

by Lucas Kim, Ryan Park, and Sita Thomas NYCDSA Capstone Project, October 2020

What Is Healthcare Fraud?

- Fake or altered medical claims
- It is difficult to identify
- It increases medical costs
- Reducing fraud saves money

Audience and Goals

WHO IS THIS PROJECT FOR?

A healthcare insurance company

WHAT ARE THE PROJECT GOALS?

Flag potentially fraudulent claims

Minimize financial loss

Pre-processing: Claims Dataframe

Inpatient Claim Data

Outpatient Claim Data

Patient Data

Potential Fraud Flag

4 .CSV FILES

550,000+ CLAIMS 56 FEATURES

EDA: Number of Unique Patients Per Provider

EDA: Number of Unique States Per Provider

Assumptions

01

100 1010 01

ENCODED FEATURES
FROM 1 AND 2 TO 1 AND 0

02

DUPLICATED CLAIMS HAVE
THE SAME SET OF PROCEDURE
AND DIAGNOSIS CODES

03

MISSING VALUES ARE ALL MNAR

Pre-processing: Providers Dataframe

550,000+ claims 56 features

>

5,410 providers 87 features

Model Scoring Metrics

Minimize false negatives

MONEY SAVED

Balance false negatives and false positives to lower review costs

Classification Models

Linear Models

- Logistic Regression
 - L1-norm penalty (Lasso)
 - o Reduced features from 87 to 13
 - o Recall score: Train 0.9181

Test 0.9145

- Ridge Classifier
 - o Improved positive features
 - o Recall score: Train 0.9294

K-Nearest Neighbors

- Highly interpretable model
- Fewest false negativesbut many false positives
- Recall score: Train 0.9898

Gaussian Naive Bayes

- Assumes features are independent
- Minimal parameter tuning required
- Recall score: Train 0.8842

Tree-Based Models

- Capture non-linear relationships
- Show feature importances

- Random Forest
 - o Recall score: Train 0.9096

Test 0.9013

- Gradient Boosting Decision Trees
 - Complex but computationally expensive
 - o Recall score: Train 0.9265

Support Vector Machine

- Computationally less expensive
- Expands feature space
- Avoids bias/variance tradeoff
- Recall score: Train 0.9294

Modeling Iterations 2 and 3

Production Model Selection

Confusion Matrices

K-Nearest Neighbors

Saves \$86,000*

Gradient Boosting

Saves \$100,000*

ROC/AUC Curve

Insights: Feature Importances

Insights: Patients

Insights: Duration

Insights: Cost

Further Insights

Limit number of contracts with providers offering inpatient services

Cancel contracts with providers who demonstrate fraudulent behaviour

Regularly audit providers

Recruit doctors to review claims

Incentivize patients to review claims

Future Work

Summary

Thank you!

LUCAS KIM

/kiml1

RYAN PARK

SITA THOMAS

/sitathomas