Índice de desenvolvimento Bruto

Ebenézer Dorneles

31/10/2022

Introdução

O Projeto tem como um dos objetivos principais elaborar um modelo para a criação do Índice Bruto de Desenvolvimento (IDB) para os municipios que constituem a Região Geográfica Intermediária de Chapecó.

As informações foram coletadas em plataformas digitais com dados abertos. São estes: DATASUS, IBGE Cidades, SIDRA, IPEADATA e Atlas Brasil. Todos os dados são oriundos do Instituto Brasileiro de Geografia e Estatística entre os períodos do Censo 2000 e Censo 2010.

Váriáveis	nome
Densidade Demográfica	x1
% de população urbana	x2
% de pessoas em domicílios com energia elétrica 2010	x3
%da população em domicílios com água encanada 2010	x4
N° Estabelecimentos de saúde	x5
N°de leitos em estabelecimentos de saúde	x6
Taxa de analfabetismo - 15 anos ou mais de idade 2010	x7
População economicamente ativa de 18 anos ou mais de idade 2010	x8
Taxa de desocupação - 18 anos ou mais de idade 2010	x9
PIB percapta	x10
Receitas	x11
VAB Serviços	x12
VAB Industria	x13
VAB Agropecuária	x14
Mortalidade infantil 2010	x15
IDMH	x16
IG	x17
% de pessoas em domicílios urbanos com coleta de lixo 2010	x18

Análise Fatorial (AF)

A Análise Fatorial de acordo Hair et al.(2006), é uma série de técnicas em um processo estatístico multivariado tornando possível a observação de variáveis conjuntas que apresentam a mesma estrutura subjacente. O método reduz o conjunto de dados em fatores ou dimensões que resumem as variáveis observadas. Um fator é a combinação linear das variáveis, com um peso que determina o quanto a variável contribui para o conjunto de dados observado. Antes de criarmos os fatores, precisamos verificar o quão adequado o modelo AF é para o conjunto de dados. Nesse processo utilizaremos os testes de correlação de Pearson, de Esfericidade de Bartlett e o teste de Kaiser-Meyer-Olkin (KMO). Os testes foram realizados no Rstudio em linguagem R com os pacotes GPArotation, psych e corrplot.

Teste de correlação de Pearson

Para determinar a matriz de correlação no conjunto de dados utilizaremos o método de correlação de Pearson que mede a relação linear entre duas variáveis quantitativas. Esse método correlaçiona as variáveis pela variância compartilhada. Sendo assim, em um modelo de correlação linear supõe-se que o crescimento e o decrescimento de uma variável afete outra em mesmo impacto. Portanto, a correlação de Pearson exige um compartilhamento de variância e que essa variação seja distribuída linearmente (FIGUEIREDO FILHO E SILVA JÚNIOR, 2009). O coeficiente varia entre 1(relação positiva) e -1(relação negativa). Sendo o 0 a indicação de que não há correlação. No gráfico abaixo vemos a correlação das variáveis, os círculos em azul forte indicam uma relação próxima a 1 enquanto círculos na cor vermelha indicam uma relação próxima a -1.

Teste de correlação para 2000

Destarte nota-se que para o ano 2000, além das variáveis x1 e x10, as variáveis x5, x6, x9 e x18 não possuem relação nenhuma com as demais variáveis. A hipótese é que esses dados possuam valores faltantes para algumas observações, impossibilitando o cálculo de correlação. Para evitar que essas variáveis influenciem os testes seguintes será retirado esse conjunto dos dados para a análise.

Teste de correlação para 2010

Para o ano de 2010 a correlação entre as variáveis aumentou positivamente, porém a variável x9 ainda demonstra uma incoerência em seus valores que impossibilita a efetivação do cálculo de correlação.

Teste de Esfericidade de Bartlett

O teste de Esfericidade de Bartlett requer que as variáveis tenham distribuição normal. Sendo assim o teste verifica a correlação dos dados com a hipótese nula: H0 (matriz identidade), indicando que não há correlação entre as variáveis. Rejeitando a hipótese nula, temos que as variáveis se correlacionam entre si. Segundo Figueiredo filho e Silva Júnior (2010), o valor obtido com o teste de Esfericidade de Bartlett deve ser estatisticamente significante (P-valor < 0.05).

Table 2: Teste para o ano 2000

 $\frac{\text{p-value}}{0.0059751}$

Table 3: Teste para o ano 2010

p-value 0.0200491

Teste de Kaiser-Meyer-Olkin (KMO)

O teste KMO verifica a adequação do conjunto de dados com o modelo da Análise Fatorial. Segundo Mingoti (2007), quando as correlações parciais estão próximas a zero, o coeficiente KMO está próximo de um, o que indica que o modelo está bem ajustado com os dados. O mínimo para que o modelo fatorial seja adequado

varia de autor para autor. Destarte, aceita-se que o modelo seja adequado quando KMO > 0,5. Caso o valor não esteja ajustado, a correção nos dados amostrais deverá ser feita através da exclusão de variáveis dentre as avaliadas, ou então, a inclusão de novas variáveis para melhorar a adequação do modelo.

Table 4: Teste para o ano 2000

KMO geral 0.7925168

Table 5: Teste para o ano 2010

 $\frac{\rm KMO~geral}{0.7811909}$

Análise Fatorial Exploratória

No decorrer dos testes de correlação, Esfericidade de Bartlett e Kaiser-Meyer-Olkin foi preciso realizar ajustes no conjunto de variáveis para que o modelo seja o mais adequado possível, pois a análise se baseia na matriz de correlação/covariância para elaboração dos fatores. A partir desses testes podemos adequar e melhorar o conjunto de dados para o modelo de análise fatorial.

Portanto, precisamos determinar as variáveis latentes do nosso conjunto, sendo assim utilizaremos a técnica de análise paralela do pacote physis. Esta função realiza interações entre os principais autovalores dos fatores com o peso de cada fator determinado pela variância do conjunto de dados. Por meio dessas interações é possível determinar o número adequado de fatores para utilização. Além deste teste, utilizaremos o critério empregado por De Oliveira e Da Silva (2017), em que consideramos a escolha dos fatores aqueles que possuem um autovalor > 1.

Análise Exploratória para 2000

Para o ano 2000, temos dois fatores significativos para análise com um autovalor maior que um. Além disso, para cada fator existem as seguintes correlações.

Análise Paralela

Parallel analysis suggests that the number of factors = 2 and the number of components = NA

Factor Analysis

Análise Exploratória para 2010

Para o ano de 2010, também é indicado a utilização de dois fatores, ambos com autovalores maiores que um, possuindo as seguintes correlações.

Análise Paralela

Parallel analysis suggests that the number of factors = 2 and the number of components = NA

Factor Analysis

Índice de Desenvolvimento Bruto

Ao determinarmos os fatores e os seus principais autovalores podemos determinar os scores fatoriais para cada observação do nosso conjunto de dados pelo método de regressão (Field, 2009). Destarte, obtemos o Índice de Desenvolvimento Bruto através da média ponderada pela raiz característica de cada fator.

Índice de desenvolvimento Bruto para 2000

Dados descritivo);
Min. :-1.4701	
1st Qu.:-0.4168	
Median := 0.0197	
Mean: 0.0000	
3rd Qu.: 0.1803	
Max. : 4.7023	

Índice de desenvolvimento Bruto para $2010\,$

Dados descritivos
Min. :-1.1167
1st Qu.:-0.4095
Median: -0.1237
Mean: 0.0000
3rd Qu.: 0.1616
Max. : 5.0335

Referências

- DE OLIVEIRA, Marines Rute; DA SILVA, Gerson Henrique. Análise espacial do desenvolvimento econômico dos municípios do oeste do Paraná. Revista Capital Científico-Eletrônica (RCC)-ISSN 2177-4153, v. 15, n. 2, p. 62-78, 2017.
- 2. HAIR, Jr; BLACK, W. C; BABIN, B. J; ANDERSON, R. E e TATHAM, R. L. **Multivariate Data Analysis.** 6ª edição. Upper Saddle River, NJ: Pearson Prentice Hall, 2006.
- 3. MINGOTI, S. Análise de dados através de métodos de estatística multivariada: uma Abordagem Aplicada. Editora UFMG, 2007.
- 4. FIGUEIREDO FILHO, Dalson Britto; SILVA JUNIOR, José Alexandre. **Desvendando os Mistérios do Coeficiente de Correlação de Pearson (r)**. Revista Política Hoje, v. 18, n. 1, p. 115-146, 2009.
- 5. FIGUEIREDO FILHO, Dalson Brito; SILVA JÚNIOR, José Alexandre da. Visão além do alcance: uma introdução à análise fatorial. Opinião pública, v. 16, n. 1, p. 160-185, 2010.
- 6. REVELLE, W. (2020) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA, https://CRAN.R-project.org/package=psych Version = 2.0.12,.
- 7. BERNAARDS, Coen A. and JENNRICH, Robert I. (2005) Gradient Projection Algorithms and Software for ArbitraryRotation Criteria in Factor Analysis, Educational and Psychological Measurement: 65, 676-696. http://www.stat.ucla.edu/research/gpa
- 8. TAIYUN wei and VILIAM Simko (2017). R package "corrplot": Visualization of a Correlation Matrix (Version 0.84). Available from https://github.com/taiyun/corrplot