

ANSWER KE	YS	74. unethengo	///. Interdiency	///. Interhorigo	7% methongo	7%. umetthelingo	//. Interfrence //
. (450)	2. (1)	3. (1)	4. (2)	5. (4)	6. (18)	7. (3)	8. (4)
. (4) nathong	10. (1) athongo	11. (2) thongo	//12. (2) thongo	/// 13. (4) hongo	/// 14. (7) hongo	15. (3)	// 16. (1) ongo //
7. (1)	18. (1)	19. (5)	20. (125)	21. (3)	22. (1)	23. (44)	24. (2)
5. (3) mathongo	26. (9)	27. (180)	28. (4)	29. (51)	30. (2)		
. (450)							
Given,							
P(-2, -1, 1)	1) and $Q\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$	be the vertices of the	he rhombus $PRQS$. If the direction rati	os of the diagonal RS	S are $\alpha, -1, \beta$, where	e both α and β are
integers of n	ninimum absolute val	ues, then $\alpha^2 + \beta^2$ is	equal to				
		and the second s					
/	ratio of $PQ \equiv \left(\frac{56}{17} + \frac{1}{17}\right)$	/					
$\equiv \left(\frac{90}{17}, \frac{60}{17}, \frac{9}{1}\right)$							
	ow that diagonal of rhow $\frac{0}{7}(-1) + \frac{94}{17}\beta = 0$	ombus are perpendic	ular,				
$\Rightarrow \beta = \frac{60-9}{94}$							
30 (2	-3α						
$\Rightarrow eta = -30$	$\frac{(3\alpha-2)}{94}$ mothongo						
$\Rightarrow \beta = \frac{-15}{47}$	(3lpha-2)						
$\nearrow \Rightarrow \frac{\beta}{c+15} = \frac{3c}{3}$	$\frac{x-z}{47}$ mathongo	/// mathongo					
$\Rightarrow p = -15$	$egin{aligned} , & lpha = -15 & \{ ext{as } lpha \ \& \ eta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	are integer}					
	$n^2=n^2=\left(\ell+m ight)^2$						
$\Rightarrow 2\ell m = 0$)						
	$2\mathrm{n}^2=1\Rightarrow n=\pmrac{1}{\sqrt{2}}$	•					
$m=n=\pm$	$\frac{1}{\sqrt{2}}$ ///. mathongo						
And, If $m =$	$0 \Rightarrow n = \ell = \pm \frac{1}{\sqrt{2}}$						
	$=rac{1}{2}\&\ l+m=rac{1}{\sqrt{2}}$						
_							
	$=\frac{1}{\sqrt{2}}$ or $l=\frac{1}{\sqrt{2}},\ m$						
So, direction $\begin{pmatrix} 0 & \frac{1}{2} & 1 \end{pmatrix}$	cosines of two lines and $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$	mathongo					
$(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ Thus,	$\left(\sqrt{2}, 0, \frac{1}{\sqrt{2}}\right)$						
	$0+0+\frac{1}{2}=\frac{1}{2}$						
$\Rightarrow \alpha = \frac{\pi}{3}$							
$\therefore \sin^4 \alpha +$	$\cos^4 lpha = 1 - rac{1}{2} \sin^2 \Bigl($	$\left(2lpha ight)=1-rac{1}{2}\cdotrac{3}{4}=$	<u>5</u> 8				

er Keys and Solutions			
(1)athongo /// mathongo /// mathongo			
Given, $l + m - n = 0 \& 3l^2 + m^2 + cln = 0$			
Now taking $n=l+m$ and putting in $3l^2+m^2+cln$ $3l^2+m^2+cl(l+m)=0$	= 0 we get,		
$\Rightarrow 3l^2 + m^2 + cl^2 + clm = 0$			
$\Rightarrow (3+c)l^2 + clm + m^2 = 0$ $\Rightarrow (3+c)\left(\frac{l}{m}\right)^2 + c\left(\frac{l}{m}\right) + 1 = 0 \text{ equation (i)}$			
$\Rightarrow (3+c)\left(\frac{l}{m}\right)^2 + c\left(\frac{l}{m}\right) + 1 = 0$ equation (i)			
∵ lies are parallel.			
So, roots of equation (i) must be equal mothongo			
$\Rightarrow D = 0$			
$\Rightarrow c^2 - 4(3+c) = 0$			
$\Rightarrow c^2 + 4c - 12 = 0$ nathongo /// mathongo			
$\Rightarrow (c-6)(c+2) = 0$			
c=6 or c=-2			
So, positive value of $c=6$ most methongo			
(2)			
Given equations of direction cosies			
$2\ell + 2m - n = 0 \dots (i)$			
$mn+n\ell+\ell m=0.\dots(ii)$			
$\ell m + n(\ell + m) = 0$			
Trom equation (t)			
$n=2(\ell+m)$			
$\ell m + 2(\ell + m)^2 = 0$ mathongo mathongo			
$2\ell^2+2m^2+5\ell m=0$			
Dividing by m^2 on both sides			
$2\left(\frac{\ell}{m}\right)^2 + 2 + 5\left(\frac{\ell}{m}\right) = 0$ ongo mathongo			
Let $\frac{\ell}{m} = t$			
$2t^2 + 5t + 2 = 0$			
$2t^2+5t+2=0$ mathongo $2t^2+4t+t+2=0$			
(t+2)(2t+1) = 0			
$t = -2 - \frac{1}{2}$ mathongo mathongo			
Case 1			
$\frac{\ell}{m} = -\frac{1}{2}$			
$m = -2\ell, n = -2\ell_{\text{mathongo}}$ /// mathongo			
$(\ell,-2\ell,-2\ell) \Rightarrow (1,-2,-2)$			
Case 2			
$\frac{\ell}{m}$ $\exists \exists \exists 2$ $\exists 1$ mathongo $\exists 1$ mathongo			
$\ell=-2m,\ n=-2m$			
$(-2m, m, -2m) \Rightarrow (-2, 1, -2)$			
$\cos\theta = \frac{1 \times (-2) + (-2) \times 1 + (-2) \times (-2)}{\sqrt{1^2 + (-2)^2 + (-2)^2} \sqrt{(-2)^2 + 1^2 + (-2)^2}} $ though			
$\cos \theta = \frac{-2 - 2 + 4}{9} = 0$			
$\theta \equiv \frac{\pi}{2}$ ongo //// mathongo //// mathongo			
(4) Given lines			
$\frac{x+2}{1} = \frac{y}{-2} = \frac{z-5}{2} & \frac{x-4}{1} = \frac{y-1}{2} = \frac{z+3}{0}$			
Formula for shortest distance 0 mathons			
$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{vmatrix}$			
S.D. = $\begin{vmatrix} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$ $\begin{vmatrix} i & \bar{j} & k \\ a_1 & b_1 & c_1 \\ c_1 & b_2 & c_2 \end{vmatrix}$			
S.D. $=\frac{\begin{vmatrix} a_2 & b_2 & c_2 \end{vmatrix}}{\begin{vmatrix} i & \bar{j} & k \end{vmatrix}}$ mathongo			
$=\frac{\begin{vmatrix} 6 & 1 & -8 \\ 1 & -2 & 2 \\ 1 & 2 & 0 \\ \hline \begin{vmatrix} i & j & \bar{k} \\ 1 & -2 & 2 \end{vmatrix}}{\begin{vmatrix} i & j & \bar{k} \\ 1 & -2 & 2 \end{vmatrix}} = \frac{54}{6} = 9$			
$=\frac{1}{\begin{vmatrix} i & j & \bar{k} \\ 1 & 2 & 2 \end{vmatrix}} = \frac{6}{6} = 9$			
1 2 0			
mathongo ///. mathongo ///. mathongo			

6. (18) If the lines $\frac{-1}{2} = \frac{2-w}{3} = \frac{-2}{3}$ matheneo m	
Point on first line (1, 2, 3) and point on second line (4, 1, 0): mathons with the vector joining both points is $-3\hat{i}+\hat{j}+3\hat{k}$. Now vector along first line is $2\hat{i}+3\hat{j}+a\hat{k}$. Also vector along second line is $5\hat{i}+2\hat{j}+3\hat{k}$ mathons with the vectors must be coplanar. $\begin{vmatrix} 2 & 3 & \alpha \\ -3 & \alpha \end{vmatrix} = 0$ $\begin{vmatrix} 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & \alpha \\ -3 & 3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 $	
Point on first line (1, 2, 3) and point on second line (4, 1, 0): mathons with the vector joining both points is $-3\hat{i}+\hat{j}+3\hat{k}$. Now vector along first line is $2\hat{i}+3\hat{j}+a\hat{k}$. Also vector along second line is $5\hat{i}+2\hat{j}+3\hat{k}$ mathons with the vectors must be coplanar. $\begin{vmatrix} 2 & 3 & \alpha \\ -3 & \alpha \end{vmatrix} = 0$ $\begin{vmatrix} 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 1 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & \alpha \\ -3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & \alpha \\ -3 & 3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 1 & 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 $	
Now vector along first line is $2\hat{i} + 3\hat{j} + \alpha\hat{k}$ Also vector along second line is $5\hat{i} + 2\hat{j} + \beta\hat{k}$ mongo. Mow these three vectors must be coplanar $\begin{vmatrix} 2 & 3 & \alpha \\ \Rightarrow 5 & 2 & \beta \\ \Rightarrow 1 & 3 & 1 & 3 \end{vmatrix} = 0$ mathongo.	
Now vector along first line is $2\hat{i} + 2\hat{j} + 3\hat{k}$. Also vector along second line is $5\hat{i} + 2\hat{j} + 3\hat{k}$ longs. Mow these three vectors must be coplanar $\begin{vmatrix} 2 & 3 & \alpha \\ 5 & 2 & \beta \\ 1 & 3 & 1 \end{vmatrix} = 0$ mathongs. Mathongs	
Also vector along second line is $5\hat{1} + 2\hat{j} + \beta\hat{k}$ now these three vectors must be coplanar $\begin{vmatrix} 2 & 3 & \alpha \\ mol & 5 & 2 & \beta \\ mol & -3 & 1 & 3 \end{vmatrix} = 0$ mathongs whathongs w	
Now these three vectors must be coplanar	
$\begin{vmatrix} 2 & 3 & \alpha \\ 5 & 2 & \beta \\ 3 & 3 & 3 \\ \Rightarrow 2(6-\beta)-3(15+3\beta)+\alpha(11)=0 \\ \Rightarrow \alpha-\beta=3 \\ \text{Now } \alpha=3+\beta \\ \text{mathongo} \\ math$	
$\Rightarrow 2(6-\beta)-3(15+3\beta)+\alpha(11)=0$ $\Rightarrow \alpha-\beta=3$ Now $\alpha=3+\beta$ mothons with mathenage wit mathenage with mathenage with mathenage with mathenage with mat	
$\Rightarrow 2(6-\beta)-3(15+3\beta)+\alpha(11)=0$ $\Rightarrow \alpha-\beta=3$ Now $\alpha=3+\beta$ mothons with mathenage wit mathenage with mathenage with mathenage with mathenage with mat	
$\Rightarrow \alpha - \beta = 3$ Now $\alpha = 3 + \beta$ mathons with mathons witha	
Given expression $8(3+\beta)\cdot\beta=8\left(\beta^2+3\beta\right)$ $=8\left(\beta^2+3\beta+\frac{9}{4}-\frac{9}{4}\right)=8\left(\beta+\frac{3}{2}\right)^2-18$ So magnitude of minimum value $=18$ 7. (3) **Shortest distance between two lines mathons w	
$=8\left(\beta^{2}+3\beta+\frac{9}{4},-\frac{9}{4}\right)=8\left(\beta+\frac{3}{2}\right)^{2}-18 \\ \text{mathongo} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
7. (3) W. Shortest distance between two lines $\frac{z-x_1}{x_1} = \frac{y-y_1}{y_1} = \frac{z-z_1}{c_1}$ and $\frac{z-z_2}{x_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{c_2}$ is given as $\frac{z-z_1}{x_1} = \frac{y-y_1}{y_1} = \frac{z-z_1}{c_1}$ and $\frac{z-z_2}{x_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{c_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{y_1} = \frac{z-z_1}{z_1} = \frac{y-y_1}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{y_2} = \frac{z-z_2}{y_1-y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{x_1} = \frac{z-z_1}{x_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{x_1} = \frac{z-z_1}{x_2} = \frac{y-y_1}{y_2} = \frac{z-z_2}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{x_2} = \frac{z-z_2}{y_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_1}{x_1} = \frac{y-y_1}{x_2} = \frac{y-y_2}{y_2} = \frac{y-y_2}{y_2}$	
7. (3) W. Shortest distance between two lines $\frac{z-x_1}{x_1} = \frac{y-y_1}{y_1} = \frac{z-z_1}{c_1}$ and $\frac{z-z_2}{x_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{c_2}$ is given as $\frac{z-z_1}{x_1} = \frac{y-y_1}{y_1} = \frac{z-z_1}{c_1}$ and $\frac{z-z_2}{x_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{c_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{y_1} = \frac{z-z_1}{z_1} = \frac{y-y_1}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{y_2} = \frac{z-z_2}{y_1-y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{x_1} = \frac{z-z_1}{x_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{x_1} = \frac{z-z_1}{x_2} = \frac{y-y_1}{y_2} = \frac{z-z_2}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{x_2} = \frac{z-z_2}{y_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_1}{x_1} = \frac{y-y_1}{x_2} = \frac{y-y_2}{y_2} = \frac{y-y_2}{y_2}$	
7. (3) W. Shortest distance between two lines $\frac{z-x_1}{x_1} = \frac{y-y_1}{y_1} = \frac{z-z_1}{c_1}$ and $\frac{z-z_2}{x_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{c_2}$ is given as $\frac{z-z_1}{x_1} = \frac{y-y_1}{y_1} = \frac{z-z_1}{c_1}$ and $\frac{z-z_2}{x_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{c_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{y_1} = \frac{z-z_1}{z_1} = \frac{y-y_1}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{y_2} = \frac{z-z_2}{y_1-y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{x_1} = \frac{z-z_1}{x_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{x_1} = \frac{z-z_1}{x_2} = \frac{y-y_1}{y_2} = \frac{z-z_2}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_2}{x_1} = \frac{y-y_1}{x_2} = \frac{z-z_2}{y_2} = \frac{y-y_2}{y_2} = \frac{z-z_2}{z_2}$ is given as $\frac{z-z_1}{x_1} = \frac{y-y_1}{x_2} = \frac{y-y_2}{y_2} = \frac{y-y_2}{y_2}$	
Shortest distance between two lines $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{x-z_1}{c_1}$ and $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{x-z_2}{c_2}$ is given as $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{x-z_1}{c_1}$ and $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{x-z_2}{c_2}$ is given as $\frac{x-x_1}{a_1} = \frac{y-y_2}{b_1} = \frac{x-z_1}{c_1}$ and $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{x-z_2}{c_2}$ is given as $\frac{x-x_2}{\sqrt{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(c_1a_2-c_2a_1)^2}}$ mathongo $\frac{x}{\sqrt{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(c_1a_2-c_2a_1)^2}}$ mathongo $\frac{x}{\sqrt{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(c_1a_2-c_2a_1)^2}}$ mathongo $\frac{x}{\sqrt{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(c_1a_2-c_2a_1)^2}}}$ mathongo $\frac{x}{\sqrt{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(c_1a_2-c_2a_1)^2}}}$ mathongo $\frac{x}{\sqrt{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(c_1b_1c_2)^2+(-3+b)^2}}}$ mathongo $\frac{x}{\sqrt{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(c_1b_1c_2)^2+(-3+b)^2}}}$ mathongo $\frac{x}{\sqrt{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(c_1b_1c_2)^2+(-3+b)^2}}}$ mathongo $\frac{x}{\sqrt{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(c_1b_1c_2)^2+(-3+b)^2}}}$ mathongo $\frac{x}{\sqrt{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(c_1b_1c_2)^2+(-3+b)^2}}}$ mathongo $\frac{x}{(a_1b_2-a_2b_1)^2+(b_1c_2-b_2c_1)^2+(b_1c_2-b_2c_1b_2c_1)^2+(b_1c_2-b_2c_1b_1b_2c_1b_1b_2c_1b_2c_1b_2c_1b_2c_1b_2c_1b_2c_1b_2c_$	
$\frac{x-2}{a_1} = \frac{y-y_1}{b_1} = \frac{z-2}{c_1} \text{ and } \frac{y-xy_2}{b_2} = \frac{y-y_2}{b_2} = \frac{z-2}{c_2} \text{ is given as}$ $\frac{x_1-x_2}{\sqrt{2}} = \frac{y-y_1}{y_1} = \frac{z-2}{y_1-y_2} = \frac{y-y_2}{b_2} = \frac{z-2}{c_2} \text{ is given as}$ $\frac{x_1-x_2}{\sqrt{2}} = \frac{y-y_1}{y_1} = \frac{z-2}{y_1-y_2} = \frac{y-y_2}{b_2} = \frac{z-2}{c_2} \text{ is given as}$ $\frac{x_1-x_2}{\sqrt{2}} = \frac{y-y_1}{y_1} = \frac{z-2}{y_1-y_2} = \frac{y-y_2}{y_1-y_2} = \frac{z-2}{b_2} = \frac{z-2}{b_2} = \frac{z-2}{c_2} \text{ is given as}$ $\frac{x_1-x_2}{\sqrt{2}} = \frac{y-y_1}{y_1-y_2} = \frac{y-y_2}{y_1-y_2} = $	
## math \$\frac{1}{1} \frac{2}{2} \frac{3}{17} # mathongo # math	
## math \$\frac{1}{1} \frac{2}{2} \frac{3}{17} # mathongo # math	
## math \$\frac{1}{1} \frac{2}{2} \frac{3}{17} # mathongo # math	
$\frac{\sqrt{(2)^2+(2)^2+(2)^2}}{ 8(-10+12)-7(-5+3)+3(4-2) }}{ 8(-10+12)-7(-5+3)+3(4-2) } = \frac{ 8(-10+12)-7(-5+3)+3(4-2) }{\sqrt{12}} = \frac{36}{2\sqrt{3}}$ $= \frac{18}{\sqrt{3}} = 6\sqrt{3}$ 8. (4) mathongo /// matho	
$\frac{\sqrt{(2)^2+(2)^2+(2)^2}}{ 8(-10+12)-7(-5+3)+3(4-2) }}{ 8(-10+12)-7(-5+3)+3(4-2) } = \frac{ 8(-10+12)-7(-5+3)+3(4-2) }{\sqrt{12}} = \frac{36}{2\sqrt{3}}$ $= \frac{18}{\sqrt{3}} = 6\sqrt{3}$ 8. (4) mathongo /// matho	
$= \frac{18}{\sqrt{3}} = 6\sqrt{3}$ **Mathongo ***Mathongo ***Mat	
$= \frac{18}{\sqrt{3}} = 6\sqrt{3}$ **Mathongo ***Mathongo ***Mat	
Mathongo *Mathongo ***Math	
/// mathongo /// m	
/// mathongo /// m	
/// mathongo /// m	
/// mathongo M/// mathongo /// mathongo	
The equation of line passing through the point $(-3, 2, 3)$ and parallel to a line with direction ratios $3, 3, -1$ will be,	
$\frac{x+3}{3} = \frac{y-2}{3} = \frac{z-3}{-1} = \lambda$ Now let any point on the line will be, $M(3\lambda - 3, 3\lambda + 2, 3 - \lambda)$	
Now let any point on the line will be, $M(3\lambda - 3, 3\lambda + 2, 3 - \lambda)$	
We know the direction ratios of the line joining the points (x_1, y_1, z_1) and (x_2, y_2, z_2) is given by	
$(x_2 + x_1, y_2 - y_1, z_2 + z_1)_{\text{ongo}}$ /// mathongo // mat	
Therefore, the direction ratios of line PM,	
D.R of PM $(3\lambda-7,3\lambda-4,5-\lambda)$	
Since, PM is perpendicular to the line mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///	
$\Rightarrow 3(3\lambda - 7) + 3(3\lambda - 4) - 1(5 - \lambda) = 0$ $\Rightarrow \lambda = 2$	
$\gg M(3,8,1)$ mathong	
$\Rightarrow PM = \sqrt{(3-4)^2 + (8-6)^2 + (1+2)^2}$	
$\Rightarrow PM = \sqrt{(3-4)^2 + (8-6)^2 + (1+2)^2}$ $\Rightarrow PM = \sqrt{14}$ mathongo /// mathongo // matho	

swer keys and solutions			JEE Maill Clasii Cou
mathongo $\frac{1}{3}$ mathongo $\frac{1}{3}$ mathongo			
(1) Shor test distance = $\frac{\begin{vmatrix} 2\lambda & 3 & -12 \end{vmatrix}}{\begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \end{vmatrix}}$ mathongo mathongo mathongo			
$13 = rac{ 153 + 8\lambda }{\left 4ar{i} + 3ar{j} - 12\hat{k}^- ight }$			
$\begin{vmatrix} 4\bar{i} + 3\bar{j} - 12\hat{k}^{-} \\ \frac{153 + 8\lambda}{13} \end{vmatrix} = \frac{ 153 + 8\lambda }{13}$			
$ 153 + 8\lambda = 169$ $153 + 8\lambda = 169, -169$ thongo mathongo $\lambda = \frac{16}{9} \cdot \frac{-322}{9}$			
$8 \sum_{\lambda} \lambda = 306 \% \text{ mathongo} $			
(5) Let $\ell = (0\hat{\mathbf{i}} + 0\hat{\mathbf{j}} + 0\hat{\mathbf{k}}) + y(\mathbf{a}\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\mathbf{k})$			
$r = \gamma(a\hat{i} + \hat{b}\hat{j} + \hat{k}) \text{ mathongo}$ $a\hat{i} + b\hat{j} + c\hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \end{vmatrix}$			
mathongo 2 2 n 2 n 1 $ $ mgc $ $ mathongo $=\hat{i}(2-6)-\hat{j}(1-6)+\hat{k}(2-4)$			
$= -4\hat{i} - 5\hat{j} - 2\hat{k}$ $\ell = \gamma(-4\hat{i} + 5\hat{j} - 2\hat{k}) \text{ thongo}$ We mathongo			
P is intersection of ℓ and ℓ_1 $-4\gamma=1+\lambda, 5\gamma=-11+2\lambda, -2\gamma=-7+3\lambda$			
By solving there equation $y=-1, P(4,-5,2)$ ongo Let $Q(-1+2\mu,2\mu,1+\mu)$			
$\overrightarrow{PQ} \cdot (2\hat{i} + 2\hat{j} + \hat{k}) = 0$ $-2 + 4\mu + 4\mu + 1 + \mu = 0$ $9\mu = 1$			
$\mu = \frac{1}{9}$ mathongo /// mathongo			
$Q\left(\frac{-7}{9}, \frac{2}{9}, \frac{10}{9}\right)$			
$9(\alpha + \beta + \gamma) = 9\left(\frac{-7}{9} + \frac{2}{9} + \frac{10}{9}\right)$ mathongo = 5			

We have,								
$L: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{y+1}{2}$ Any point on L is L	$\frac{z-3}{1} = \lambda$ $P((2\lambda + 1), (-\lambda))$	$(-1),(\lambda+3))$						
It lies on plane $2x$	+y+3z=16, s	80						
$\Rightarrow 2(2\lambda + 1) + (-\lambda + 6\lambda + 10 = 16 = 0)$ $\Rightarrow 6\lambda + 10 = 16 = 0$ $\Rightarrow R = (2 - 2 - 4)$	$\lambda = 1$	mathongo						
$P \equiv (3, -2, 4)$ Let $Q((2\mu + 1), (-1))$ Direction ratios of	$(\mu-1),(\mu+3)$) QR is							
$<2\mu, -\mu, \mu + 6>$ Direction ratios of Since, $QR \perp L$, so		///. mathonge						
$4\mu + \mu + \mu + 6 =$ $\Rightarrow \mu = -1$ $Q \equiv (-1, 0, 2)$								
	R(1,-1,-	3) mathongo						
	mathongo							
mathongo ///.	Qathongo	///. mathongo						
Now, $\overrightarrow{QR} = 2\hat{i} - \hat{j} - 5\hat{k}$								
$QP = 4\hat{i} - 2\hat{j} + 2\hat{j}$ Hence, $\overrightarrow{QR} \times \overrightarrow{QP} = \begin{vmatrix} \hat{i} & \hat{j} \\ 2 & -\hat{j} \end{vmatrix}$		///. mathongo						
Therefore,	mathongo	///. mathongo						
$\alpha = \frac{1}{2} \times \sqrt{144 + 5}$ $\Rightarrow \alpha^2 = \frac{720}{4} = 180$	mathongo							

	passes through the po	int $(2, 6, 2)$ and is p	erpend	icular to the li	ne 2a	z+y-2z=1	U the	n,			
$l_1: \frac{x-2}{2}:$ Let the sh	$= \frac{y-6}{1} = \frac{z-2}{-2}$ ortest distance between	l_1 and the line $\frac{x+1}{2}$	$=\frac{y+4}{-3}$	$=\frac{z}{2}$ is S.D.							
matA(2,	6,2) M										
m atho n	go ///. mathongo										
	$\overrightarrow{B(-1, -4, 0)}$ Mathongo	///. mathongo									
Here, \overrightarrow{AB}	$=3\hat{i}+10\hat{j}+2\hat{k}$										
$\overrightarrow{MN} = 2$	$\begin{vmatrix} 1 & -2 \\ 1 & -2 \end{vmatrix} = -4\hat{i} - 8\hat{j}$	$\hat{j}-8\hat{k}$									
	$\begin{vmatrix} -3 & 2 \\ = \sqrt{16 + 64 + 64} = 12 \\ 7 = -12 - 80 - 16 = -12 \end{vmatrix}$										
So, shorte $= \left \frac{-108}{12} \right =$	$r^{2} = -12 - 80 - 16 = -6$ st distance (S.D.) $r^{2} -9 = 9$ units	///. mathongo									
Given,	go /// mathongo										
Line L_1 : mathon or $\frac{x-\frac{1}{8}}{1}$ =	$\frac{x-\frac{1}{8}}{\frac{1}{8}} = \frac{y}{-\frac{1}{4\sqrt{2}}} = \frac{z}{0}$ $\frac{y}{\sqrt{2}} = \frac{z}{0} \dots (1)$										
Equation	of $L_2: \frac{x+\frac{1}{8}}{-6\sqrt{3}} = \frac{y}{0} = \frac{z}{8}$ istance between two lir	/// mathongo									
	$\begin{vmatrix} \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{d}) \\ \overrightarrow{b} \times \overrightarrow{d} \end{vmatrix} = \frac{\left(\frac{1}{4}\widehat{i}\right) \cdot \left(\sqrt{4\sqrt{2}}\right)}{\sqrt{\left(4\sqrt{2}\right)}}$	-									
$=\frac{\sqrt{2}}{\sqrt{32+16}}$	$\frac{1}{1+54} = \frac{1}{\sqrt{51}}$ 51 // mathongo										

P(3,-1,2) mathongo				
O(1, 2, 4)				
$\overrightarrow{PR} \parallel 4\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\widehat{\mathbf{k}}$				
$\overrightarrow{QS} ig\ - 2 \hat{\mathrm{i}} + \hat{\mathrm{j}} - 2 \widehat{\mathrm{k}}$				
Dr's of normal to the plane conta $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \end{vmatrix}$	ining P, T and Q will b	e proportional to:		
$\left egin{array}{cccccccccccccccccccccccccccccccccccc$				
-2 _{th} 1 _{ng} -2 mathongo				
$\left \begin{array}{cc} \mathbf{o}^p & \mathbf{o}Q \end{array}\right $				
mathon o // mathongo				
T^{\checkmark}				
$ \frac{m}{0} \stackrel{\text{tho } m}{=} \frac{n}{4} = \frac{n}{2} \text{ mathongo} $				
For point, $T: \overrightarrow{PT} = \frac{x-3}{4} = \frac{y+1}{-1}$				
$\overrightarrow{QT} = \frac{x-1}{-2} = \frac{y-2}{1} = \frac{z+4}{-2} = \mu$				
$T\equiv (4\lambda+3,-\lambda-1,2\lambda+2)$				
$egin{aligned} Q \equiv &(2\mu+1,\mu+2,-2\mu-4) \ 4\lambda+3 = &-2\mu+1 \Rightarrow 2\lambda+\mu = \end{aligned}$	-// mathongo			
$egin{aligned} 4\lambda + 3 &= -2\mu + 1 \Rightarrow 2\lambda + \mu = \ \lambda + \mu &= -3 \Rightarrow \lambda = 2 \end{aligned}$	-1/ manongo /			
and $\mu=-5,\ \lambda+\mu=-3\Rightarrow\lambda$	= 2			
So point $T:(11,-3,6)$ $\longrightarrow (2i+k)$	`			
$\overrightarrow{OA} = \left(11\hat{\mathrm{i}} - 3\hat{\mathrm{j}} + 6\hat{\mathrm{k}}\right) \pm \left(\frac{2\hat{\mathrm{j}} + \hat{\mathrm{k}}}{\sqrt{5}}\right)$	/			
$\overrightarrow{OA} = \left(11\hat{\mathrm{i}} - 3\hat{\mathrm{j}} + 6\widehat{\mathrm{k}}\right) \pm \left(2\hat{\mathrm{j}} + \right)$	$(\hat{k})^{\prime\prime\prime}$ mathongo			
$\overrightarrow{OA} = 11\hat{i} - \hat{j} + 7\hat{k} \text{ or } 9\hat{i} - 5\hat{j}$				
$ \overrightarrow{OA} = \sqrt{121 + 1 + 49} = \sqrt{171}$	or $\sqrt{81 + 25 + 25} = $	$\sqrt{131}$ mathongo		