Project Group:

You can have a maximum of 5 students in a group.

Project Group details and project title:

- You need to submit your project group details and project title in the google form: https://forms.gle/mZ7GT8eS1X3FRzCc9
- For project title you can choose a project from the sample project list or you can propose
 your own project. For your proposed project you need to get approval from course
 instructor.

List of sample project:

- **Develop a game of Sudoku solver.** In your project you need to demonstrate the following three approaches.
 - By using Genetic algorithm
 - Use alpha beta pruning to solve the puzzle.
 - Solve as a constraint satisfaction problem.
- Create a game of Tic Tac Toe. In your project you need to demonstrate the following three approaches.
 - alpha beta pruning
 - o a genetic algorithm to choose the best move for each player
 - uses constraint satisfaction to choose the best move for each player
- Implement a puzzle game (e.g. Rubik's Cube, Sliding Puzzle, etc.). In your project you need to demonstrate the following approaches.
 - a genetic algorithm to choose the best move for each player
 - uses constraint satisfaction to choose the best move for each player
- Develop a game of checkers. In your project you need to demonstrate the following approaches.
 - o alpha beta pruning
 - a genetic algorithm to choose the best move for each player
 - uses constraint satisfaction to choose the best move for each player
- Create a game of chess. In your project you need to demonstrate the following approaches.
 - alpha beta pruning
 - o a genetic algorithm to choose the best move for each player
 - uses constraint satisfaction to choose the best move for each player
- Create a card game (e.g. Blackjack, Poker, etc.). In your project you need to demonstrate the following approaches.
 - alpha beta pruning
 - a genetic algorithm to choose the best move for each player
 - uses constraint satisfaction to choose the best move for each player

Evaluation:

- Total Mark for project is 25
- Report: 5
- Project demonstration:5
- Viva: 15

Evaluation criteria:

- Code Clarity
- Demonstration details
- Able to answer questions on algorithms as well as on implementation.

Project Report format:

- Cover page
- Table of Contents
 - o Introduction: here you need to provide a description of your project.
 - o Details of algorithm used
 - o Pseudo Code
 - o Python Implementation
 - Algorithm Analysis: (note: here you need to provide details analysis of each approach)
 - Time complexity
 - Space complexity
 - Completeness
 - Optimality
- Conclusion