

Efficient Construction of Accurate Interatomic Potentials using Machine Learning¹

Tom A. Young, Tristan Johnston-Wood, Volker L. Deringer and Fernanda Duarte

Overview. Accurate molecular simulation requires fast and reactive interatomic potentials. Gaussian Approximation Potentials (GAPs) provide such a framework, and can now be trained quickly and autonomously for condensed and phase molecular systems. By leveraging active learning with backtracking, inter-intramolecular decomposition, hierarchical QM reference methods and maximumdiversity selection, GAPs can be generated efficiently using just 100s of total QM calculations.

Method

Highlights

- Systematically improvable
- Fully reactive
- Automated construction github.com/t-young31/gap-train

To calculate accurate free energies requires accurate underlying potential energies, however using conventional molecular mechanics, even for simple molecules, errors exceed: 8 kcal mol-1

SOAP atomic environment descriptor used in a GAP

Tested systems. $H_2O_{(I)}$, $AcOH_{(g)}$, $C_nH_{2n+2(g)}$, MeCN_(l), CH₃Cl+Cl, C₂H₄+C₄H₆...

Background. Gaussian Approximation Potentials (GAP) are a machine learning (ML) approach to building interatomic potentials (f_{GAP} : $\mathbf{R} \rightarrow E$). Using reference energies (E) and forces ($-dE/dR_x$) a Gaussian Process is trained to predict energies at new nuclear configurations $(\mathbf{R}^*).^2$

 $MAD(GAP) = 0.7 \text{ kcal mol}^{-1}$

[1] T. Young, et. al, Chem. Sci., 2021, 12, 10944.