What is inside MC generators... ...and why it is wrong

Tomasz Golan University of Rochester / Fermilab

NuSTEC, Okayama 2015

Monte Carlo method

Buffon's needle problem

Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor. What is the probability that the needle will lie across a line between two strips?

Georges-Louis Leclerc, Comte de Buffon 18th century

blue are good red are bad

Monte Carlo without computers

If needle length (l) < lines width (t):

$$P = \frac{2l}{t\pi}$$

which can be used to estimate π :

$$\pi = \frac{2l}{tP}$$

MC experiment was performed by Mario Lazzarini in 1901 by throwing 3408 needles:

$$\pi = \frac{2l \cdot 3408}{t \cdot \#red} = \frac{355}{113} = 3.14159292$$

From Solitaire to Monte Carlo method

- Stanisław Ulam was a Polish mathematician
- He invented the Monte Carlo method while playing solitaire
- The method was used in Los Alamos, performed by ENIAC computer

- What is a probability of success in solitaire?
 - Too complex for an analytical calculations
 - Lets try N = 100 times and count wins
 - lacktriangle With $N \to \infty$ we are getting closer to correct result

Newton-Pepys problem

Monte Carlo method
Buffon's needle problem
From Solitaire to MC

Newton-Pepys problem

PRNG

Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Which of the following three propositions has the greatest chance of success?

- A Six fair dice are tossed independently and at least one "6" appears.
- B Twelve fair dice are tossed independently and at least two "6"s appear.
- C Eighteen fair dice are tossed independently and at least three "6"s appear.

Newton-Pepys problem: analytical attempt

Monte Carlo method
Buffon's needle problem
From Solitaire to MC

Newton-Pepys problem

PRNG

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF CDF discrete CDF continuous

Quasi-elastic scattering

Acceptance-rejection

Tutorial MC

MC generators

u N interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- First, lets go back to high school and calculate this analytically
- \blacksquare Let $p=\frac{1}{6}$ be the probability of rolling 6
- The probability of not rolling 6 is (1-p)
- A six attempts, at least one six

$$P_A = 1 - (1 - p)^6 \approx 0.6651$$

B twelve attempts, at least two sixes

$$P_B = 1 - (1-p)^{12} - {12 \choose 1} p(1-p)^{11} \approx 0.6187$$

C eighteen attempts, at least three sixes

$$P_C = 1 - (1-p)^{18} - {18 \choose 1} p(1-p)^{17} - {18 \choose 2} p^2 (1-p)^{16} \approx 0.5973$$

Newton-Pepys problem: MC attempt

- MC attempt is just "performing the experiment", so we will be rolling dices
- Roll 6n times and check if number of sixes is greater or equal n
- Repeat N times and your probability is given by:

$$P = \frac{\text{number of successes}}{N}$$

```
def throw (nSixes):
 n = 0
  for _ in range (6 * nSixes):
    if random.randint (1, 6) == 6: n += 1
  return n >= nSixes
def MC (nSixes, nAttempts):
 n = 0
  for _ in range (nAttempts):
    n += throw (nSixes)
  return float (n) / nAttempts
if __name__ == "__main__":
  for i in range (1, 4):
    print MC (i, 1000)
```


Newton-Pepys problem: summary

Monte Carlo method
Buffon's needle problem
From Solitaire to MC

Newton-Pepys problem

PRNG

Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF
CDF discrete
CDF continuous

Quasi-elastic scattering

Acceptance-rejection

Tutorial MC

MC generators

 νN interactions

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

- lacksquare Your MC result depends on N
- Results for N = 100:

$$P_A = 0.71, 0.68, 0.76, 0.65, 0.68$$
 $P_A^{true} = 0.6651$
 $P_B = 0.70, 0.56, 0.60, 0.63, 0.69$ $P_B^{true} = 0.6187$
 $P_C = 0.62, 0.62, 0.53, 0.57, 0.62$ $P_C^{true} = 0.5973$

Results for $N = 10^6$:

$$P_A = 0.6655, 0.6648, 0.6653, 0.6662, 0.6653$$

 $P_B = 0.6188, 0.6191, 0.6191, 0.6190, 0.6182$
 $P_C = 0.5975, 0.5979, 0.5972, 0.5978, 0.5973$

Your MC results also depends on the way how random numbers were generated

Pseudorandom number generator

Monte Carlo method
Buffon's needle problem
From Solitaire to MC
Newton-Pepys problem

PRNG

Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- PRNG is an algorithm for generating a sequence of "random" numbers
- Example: middle-square method (used in ENIAC)
 - lacktriangle take n-digit number as your seed
 - lack square it to get 2n-digit number (add leading zeroes if necessary)
 - lacktriangleq n middle digits are the result and the seed for next number
- Middle-square method for n = 4 and base seed = 1111:

$$1111^2 = 01234321 \rightarrow 2343$$

$$2343^2 = 05489649 \rightarrow 4896$$

i

$$1111^2 = 01234321 \rightarrow 2343$$

Pseudorandom number generator

Monte Carlo method
Buffon's needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF CDF discrete

Quasi-elastic scattering

Tutorial MC

MC generators

CDF continuous Acceptance-rejection

u N interactions

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

- Nowadays, more sophisticated PRNGs exist, but they also suffer on some common problems:
 - periodicity / different periodicity for different base seed
 - nonuniformity of number distributions
 - correlation of successive numbers

Fig. 2. LCG(2³¹, 65539, 0, 1) Dimension 3: The 15 planes.

Mathematics and Computers in Simulations 46 (1998) 485-505

MC integration (hit-or-miss method)

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method

MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Lets do the following integration using MC method:

$$\int_0^1 f(x)dx = \int_0^1 \left(\frac{1}{2}x\right)dx = \left.\frac{1}{2}\frac{x^2}{2}\right|_0^1 = \frac{1}{4}$$

- \blacksquare take a random point from the $[0,1]\times[0,1]$ square
- \blacksquare compare it to your f(x)
- lacktriangleright repeat N times
- lacktriangle count n points below the function
- you results is given by

$$\int_0^1 f(x)dx = P_{\square} \cdot \frac{n}{N} = \frac{n}{N}$$

Optimization of MC

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method MC integration results

Optimization of MC

Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 $\nu\,A \,\, {\rm interactions}$

Final state interactions

Formation time

Summary

Tutorial generators

- You want to avoid generating "red" points as they do not contribute to your integral
- You can choose any rectangle as far as it contains maximum of f(x) in given range

Optimization of MC

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method MC integration results

Optimization of MC

Crude method Methods comparison Random from PDF CDF CDF discrete CDF continuous

Quasi-elastic scattering

Acceptance-rejection

Tutorial MC

MC generators

 νN interactions

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

Lets consider the following function:

$$F(Q^2) = \frac{1}{(1+Q^2)^2}$$

more or less dipole form factor

- Integrating this function over Q^2 is highly inefficient
- However, one can integrate by substitution to get better performance, e.g.

$$x = \log_{10}(Q^2)$$

don't forget about Jacobian

MC integration (crude method)

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method MC integration results Optimization of MC

Crude method

Methods comparison Random from PDF CDF CDF discrete

CDF continuous Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Lets do the following integration using MC method once again:

$$\int_0^1 f(x)dx = \int_0^1 \left(\frac{1}{2}x\right)dx = \left.\frac{1}{2}\frac{x^2}{2}\right|_0^1 = \frac{1}{4}$$

One can approximate integral

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1}^{N} f(x_i)$$

where x_i is a random number from [a, b]

- It can be shown that crude method is more accurate than hit-or-miss
- We will skip the math and look at some comparisons

Random numbers from probability density function

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison

Random from PDF

CDF

CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 $\nu\,A \,\, {\rm interactions}$

Final state interactions

Formation time

Summary

Tutorial generators

- How to generate a random number from probability density function?
- Lets consider $f(x) = 3x^2$
- Which means that x=1 should be thrown 2 times more often than $x=\frac{\sqrt{2}}{2}$

Cumulative distribution function

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF

CDF

CDF discrete CDF continuous Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

u N interactions

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

Cumulative distribution function of a random variable X:

$$F(x) = P(X \le x)$$

Note: $0 \le F(x) \le 1$ for all x

 \blacksquare Discrete random variable X:

$$F(x) = \sum_{x_i \le x} f(x_i)$$

where f is probability mass function (PMF)

 \blacksquare Continuous random variable X:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

where f is probability density function (PDF)

Cumulative distribution function - discrete example

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF

CDF discrete

CDF continuous Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

u N interactions

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

- Probability mass function $f(x)=3x^2$ with discrete random variables X is $\{\sqrt{\frac{1}{30}},\sqrt{\frac{2}{30}},\sqrt{\frac{3}{30}},\sqrt{\frac{4}{30}},\}$
- CDF is given by:

$$F(x) = \begin{cases} \frac{1}{10} & \text{if } x \le \sqrt{\frac{1}{30}} \\ \frac{3}{10} & \text{if } x \le \sqrt{\frac{2}{30}} \\ \frac{6}{10} & \text{if } x \le \sqrt{\frac{3}{30}} \\ \frac{10}{10} & \text{if } x \le \sqrt{\frac{4}{30}} \end{cases} \qquad 0.5$$

With P=1 the random number is less or equal to $\sqrt{\frac{4}{30}}$, with P=0.6 the random number is less or equal $\sqrt{\frac{3}{30}}$...

Cumulative distribution function - discrete example

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF

CDF discrete

CDF continuous Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- To generate a random number from X according to $3x^2$:
 - lacktriangle generate a random number u from [0,1]

• if
$$u \le 0.1$$
: $x = \sqrt{\frac{1}{30}}$

- $\bullet \quad \text{else if } u \leq 0.3 \colon \ x = \sqrt{\frac{2}{30}} \ \dots$
- Results for N = 10000:

x	n	n/N	f(x)
$\sqrt{\frac{1}{30}}$	989	0.0989	0.1
$\sqrt{\frac{2}{30}}$	1959	0.1959	0.2
$\sqrt{\frac{3}{30}}$	2949	0.2949	0.3
$\sqrt{\frac{4}{30}}$	4103	0.4103	0.4

Cumulative distribution function - continuous example

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF

CDF discrete

CDF continuous

Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 $u\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

- CDF is given by:

$$F(x) = \int_{0}^{x} f(t)dt$$
$$= \int_{0}^{x} 3t^{2}dt$$
$$= t^{3}|_{0}^{x} = x^{3}$$

■ Blue area gives the probability that $x \leq 0.75$

Cumulative distribution function - continuous example

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF

CDF discrete

CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

u N interactions

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

- To generate a random number from X according to $3x^2$:
 - lacktriangle generate a random number u from [0,1]
 - find x for which F(x) = u, i.e. $x = F^{-1}(u)$
 - lack x is your guy
- \blacksquare Results for N=10000:

Unfortunately, usually F^{-1} is unknown, which makes this method pretty useless (at least directly).

Acceptance-rejection method

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF CDF discrete CDF continuous

Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Lets consider

$$f(x) = A \cdot x^3 \cdot e^{-x^2}$$

with
$$x \in [0, 1]$$
, $A = \frac{2e}{e-2}$

■ CDF is given by

$$F(x) = \frac{N}{2}(x^2 - 1)e^{-x^2}$$

- Since, we do not know F^{-1} we have to find another way to generate x from f(x) distribution
- We will use acceptance-rejection method (do you remember MC integration via hit-or-miss?)

Acceptance-rejection method

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete

Acceptance-rejection

CDF continuous

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

■ Evaluate $f_{max} \ge \max(f)$

Note: $f_{max} > max(f)$ will affect performance, but the result will be still correct

- \blacksquare Generate random x
- Accept x with $P = \frac{f(x)}{f_{max}}$
 - generate a random u from $[0, f_{max}]$
 - lack accept if u < f(x)
- The plot on the right shows the results for $N = 10^5$

Acceptance-rejection method - optimization

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF CDF discrete

Acceptance-rejection

CDF continuous

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- The area under the plot of f(x) is ~ 0.13
- \blacksquare The total area is 0.4
- Thus, only about 30% of points gives contribution to the final distribution
- One can find g(x) for which CDF method is possible and which encapsulates f(x) in given range and generate x according to g(x)
- For g(x) = 0.4x the total area is 0.2, so we speed up twice

Acceptance-rejection method - optimization

Monte Carlo method

Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNG Hit-or-miss method MC integration results

Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete

CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

u N interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

lacksquare Cumulative distribution function for g(x)=2x

$$G(x) = \int_0^x g(t)dt = x^2 \Rightarrow G^{-1}(x) = \sqrt{x}$$

Note: PDF must be normalized to 1 for CDF

- Generate random number $u \in [0, 1]$
- lacksquare Calculate your $x = G^{-1}(u)$
- Accept x with probability P = f(x)/g(x)

instead of using constant f_{max} we are using $f_{max}(x) \equiv g(x)$

Quasi-elastic scattering

Building a generator step by step

Quasi-elastic scattering on a free nucleon

Llewellyn-Smith formula

$$\frac{d\sigma}{d|q^2|} \binom{\nu_l + n \to l^- + p}{\bar{\nu}_l + p \to l^+ + n} = \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_\nu^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right]$$

Notation

- lacktriangle Constants: M nucleon mass, G_F Fermi constant, $heta_C$ Cabibbo angle,
- \blacksquare E_{ν} neutrino energy
- $lacksquare s = (k+k')^2$ and $u = (k-p')^2$ Mandelstam variables

Quasi-elastic scattering on a free nucleon

Llewellyn-Smith formula

$$\frac{d\sigma}{d|q^2|} \binom{\nu_l + n \to l^- + p}{\bar{\nu}_l + p \to l^+ + n} = \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_\nu^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right]$$

General idea

- \blacksquare Having k and p, generate k' and p'
- Calculate q^2 and $(s-u)=4ME_{\nu}+q^2-m^2$ based on generated kinematics
- Calculate cross section
- lacktriangle Repeat N times and the result is given by:

$$\sigma_{total} \sim \frac{1}{N} \sum_{i=1}^{N} \sigma(q_i^2)$$

Generating kinematics

Monte Carlo method

Quasi-elastic scattering

QEL on free N

$Generating\ kinematics$

Cross section

Generating events

A few more steps

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- Lets consider kinematics in center-of-mass system
- \blacksquare Mandelstam s is invariant under Lorentz transformation

$$s = (k+p)^2 = (E+E_p)^2 - (\vec{k}+\vec{p})^2 = (E^*+E_p^*)^2$$

lacksquare \sqrt{s} is the total energy in CMS

$$\sqrt{s} = E^* + E_p^* = \sqrt{p^{*2} + m^2} + \sqrt{p^{*2} + M^2}$$

■ We will use it to calculate p*

Generating kinematics

Monte Carlo method

Quasi-elastic scattering

QEL on free N

Generating kinematics

 $LAB \leftrightarrows CMS$

Cross section

Generating events

A few more steps

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Lets do some simple algebra:

$$\begin{array}{rcl} \sqrt{s} & = & E^* + E_p^* = \sqrt{p^{*2} + m^2} + \sqrt{p^{*^2} + M^2} \\ \sqrt{s} & = & E^* + \sqrt{E^{*2} - m^2 + M^2} \\ s & = & E^{*2} + E^{*2} - m^2 + M^2 + 2E^* E_p^* \\ s & = & 2E^* (E^* + E_p^*) - m^2 + M^2 \\ s & = & 2E^* \sqrt{s} - m^2 + M^2 \\ E^* & = & \frac{s + m^2 - M^2}{2\sqrt{s}} \\ E_p^* & = & \frac{s + M^2 - m^2}{2\sqrt{s}} \text{ (analogously)} \end{array}$$

■ After more algebra we get:

$$p^* = \sqrt{E^{*2} - m^2} = \frac{[s - (m - M)^2] \cdot [s - (m + M)^2]}{2\sqrt{s}}$$

Generating kinematics

Monte Carlo method

Quasi-elastic scattering

QEL on free N

$Generating\ kinematics$

 $LAB \leftrightarrows CMS$

Cross section

Generating events

A few more steps

Tutorial MC

MC generators

u N interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

We use spherical coordinate system to determine momentum direction in CMS:

$$\vec{p}^* = p^* \cdot (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$$

Generate random angles:

$$\phi = 2\pi \cdot \mathsf{random}[0,1] \Rightarrow \sin \phi, \cos \phi$$

$$\cos \theta = 2 \cdot \mathsf{random}[0, 1] - 1 \Rightarrow \sin \theta, \cos \theta$$

■ All we need to do is to go back to LAB frame

$LAB \leftrightarrows CMS$

Monte Carlo method

Quasi-elastic scattering

QEL on free N Generating kinematics

LAB ≒ CMS

Cross section
Generating events
A few more steps

Tutorial MC

MC generators

u N interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

■ Lorentz boost in direction $\hat{n} = \frac{\vec{v}}{v}$ of (t, \vec{r}) :

$$t' = \gamma (t - v\hat{n} \cdot \vec{r})$$

$$\vec{r}' = \vec{r} + (\gamma - 1)(\hat{n} \cdot \vec{r})\hat{n} - \gamma t v \hat{n}$$

■ In our case

$$\vec{v} = \frac{\vec{p}_{\nu} + \vec{p}_{N}}{E_{\nu} + E_{N}}$$

- lacktriangle Boost from LAB to CMS in $ec{v}$ direction
- Boost from CMS to LAB in $-\vec{v}$ direction

Calculating cross section

Llewellyn-Smith formula

$$\frac{d\sigma}{d|q^2|} \binom{\nu_l + n \to l^- + p}{\bar{\nu}_l + p \to l^+ + n} = \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_\nu^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right]$$

Calculation

- lacktriangle Once we have p' and k' in LAB frame we can calculate q^2 and (s-u)
- lacksquare Once we have q^2 we can calculate $A(q^2)$, $B(q^2)$, $C(q^2)$
- We have everything to calculate cross section
- Do we? Or maybe we are still missing something?

Calculating cross section

Llewellyn-Smith formula

$$\frac{d\sigma}{d|q^2|} \binom{\nu_l + n \to l^- + p}{\bar{\nu}_l + p \to l^+ + n} = \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_\nu^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right]$$

Calculation

- lacktriangle Once we have p' and k' in LAB frame we can calculate q^2 and (s-u)
- lacksquare Once we have q^2 we can calculate $A(q^2)$, $B(q^2)$, $C(q^2)$
- We have everything to calculate cross section
- Do we? Or maybe we are still missing something?

We change the variable we integrate over! We need Jacobian!

Calculating cross section

Express q^2 in terms of angle:

$$q^{2} = (k - k')^{2} = m^{2} - 2kk' = m^{2} - 2EE' + 2|\vec{k}||\vec{k}'|\cos\theta$$

■ Thus, the Jacobian is given by:

$$dq^2 = 2|\vec{k}||\vec{k}'|d(\cos\theta)$$

Note: must be calculated in CMS

■ Total cross section is given by:

$$\sigma = \int_{-1}^{1} \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_{\nu}^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right] 2|\vec{k}||\vec{k}'| d\cos\theta$$

$$\sigma_{MC} = \frac{2}{N} \sum_{i=1}^{N} \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_{\nu}^2} \left[A(q_i^2) \mp B(q_i^2) \frac{(s_i - u_i)}{M^2} + C(q_i^2) \frac{(s_i - u_i)^2}{M^4} \right] 2|\vec{k}_i||\vec{k}_i'|$$

Calculating cross section

Monte Carlo method

Quasi-elastic scattering
QEL on free N
Generating kinematics
LAB

CMS

Cross section

Generating events A few more steps

Tutorial MC

MC generators

 $u\,N$ interactions

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

- We want to avoid any sharp peaks
- They affect our efficiency and accuracy
- Lets change variable once again:

$$\cos\theta = 1 - 2x^2$$

where $x \in [0, 1]$

Note extra Jacobian and new integration limits

$$2\int_{-1}^{1} d(\cos \theta) \to \int_{1}^{0} dx(-4x) \to \int_{0}^{1} 4x dx$$

Calculating cross section

■ Finally, the cross section is given by:

$$\sigma = \int_{0}^{1} \frac{M^{2}G_{F}^{2}\cos\theta_{C}}{8\pi E_{\nu}^{2}} \left[A(q^{2}) \mp B(q^{2}) \frac{(s-u)}{M^{2}} + C(q^{2}) \frac{(s-u)^{2}}{M^{4}} \right] 2|\vec{k}||\vec{k}'| 4xdx$$

$$\sigma_{MC} = \frac{1}{N} \sum_{i=1}^{N} \frac{M^{2}G_{F}^{2}\cos\theta_{C}}{8\pi E_{\nu}^{2}} \left[A(q_{i}^{2}) \mp B(q_{i}^{2}) \frac{(s_{i}-u_{i})}{M^{2}} + C(q_{i}^{2}) \frac{(s_{i}-u_{i})^{2}}{M^{4}} \right] 2|\vec{k}_{i}||\vec{k}'_{i}| 4x$$

- In conclusion: do some kinematics and some boosts between CMS and LAB, change integration variable several times... and you are ready to calculate total cross section
- Now we need to generate some events. We want them to be distributed according to our cross section formula.

Generating events

Monte Carlo method

Quasi-elastic scattering

QEL on free N
Generating kinematics
LAB

CMS
Cross section

Generating events

A few more steps

Tutorial MC

MC generators

 νN interactions

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

- Generate $x \in [0:1]$
- Do kinematics

$$x \rightarrow \cos \theta$$

$$\cos \theta \rightarrow k'^*, p'^*$$

$$k'^*, p'^* \rightarrow k', p'$$

$$\vdots$$

- lacktriangle Calculate cross section σ
- Accept an event with the probability given by

$$P = \frac{\sigma}{\sigma_{max}}$$

And you almost have you MC neutrino-event generator, just a few more steps...

A few more steps

Monte Carlo method

Quasi-elastic scattering
QEL on free N
Generating kinematics
LAB

CMS
Cross section
Generating events

A few more steps

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- add other dynamics: resonance pion production, deep inelastic scattering...
- add support for nucleus as a target
- if you have nucleus add some two-body current interactions
- if you have nucleus add some nuclear effects: Pauli blocking, final state interactions, formation zone...
- add support for neutrino beam
- add support for detector geometry
- add some interface to set up simulations parameters and saving the output
- and your MC is done!

Tutorial: Monte Carlo methods

PRNG

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

PRNG

- Task 1
- Task 2
- Task 3
- Task 4*

MC generators

 $\nu\,N$ interactions

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

- You can use whatever random number generator you want
- If you are using C++ you may consider using PRNG class, which wraps up mersenne twister engine [link to PRNG.h]
- Usage:

```
const PRNG random (min, max);
random.generate00(); // returns RN from (min, max)
random.generate01(); // returns RN from (min, max)
random.generate10(); // returns RN from [min, max)
random.generate11(); // returns RN from [min, max]
```


Task 1: evaluate π

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

PRNG

Task 1

Task 2

Task 3

Task 4*

MC generators

 $\nu\,N$ interactions

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

Evaluate π using MC method

- lacksquare get N random points from a square
- count how many points are inside a circle
- \blacksquare calculate π

Task 2: integration

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

PRNG

Task 1

Task 2

Task 3

Task 4*

MC generators

 $\nu \, N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Lets consider the following function:

$$F(Q^2) = \frac{1}{(1+Q^2)^2}$$

- a) Integrate this function over Q^2 using hit-or-miss method
- b) Integrate this function over $x = \log_{10}(Q^2)$ using the same method
- c) Compare efficiency
- d) Integrate this function using crude method

Task 3: generating number from distribution

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

PRNG

Task 1

Task 2

Task 3

Task 4*

MC generators

 $\nu \, N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Write a program to generate random numbers from [0,1] according to the following distribution:

$$f(x) = x^3$$

- a) using cumulative distribution function
- b) using acceptance-rejection method (consider substitution to get better performance)

Task 4*: neutrino-electron scattering

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

PRNG

Task 1

Task 2

Task 3

Task 4*

MC generators

 $\nu\,N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

For $E_{\nu} >> m_e$, the cross section for $\nu_{\mu} - e$ scattering can be approximated by:

$$\frac{d\sigma}{dy} = \frac{G_F^2 s}{\pi} \left[A^2 + B^2 \cdot (1 - y)^2 \right]$$

where G_F - Fermi weak coupling constant, s - Mandelstam variable, $y\equiv \frac{T_e}{E_\nu}$ with T_e - electron kinetic energy, $A=\frac{1}{2}-\sin^2\theta_W$, $B=\sin^2\theta_W$, θ_W - Weinberg angle

- a) Write a program to calculate total cross section for given neutrino energy
- b) Using results from a), generate $\frac{d\sigma}{dT_e}$ distribution
- c) Using results from a), generate $\frac{d\sigma}{d\cos\theta}$ distribution, hint:

$$T_e = \frac{2m_e E_{\nu}^2 \cos^2 \theta}{(m_e + E_{\nu})^2 - E_{\nu}^2 \cos^2 \theta} \approx 2m_e \frac{\cos^2 \theta}{1 - \cos^2 \theta}$$

Monte Carlo neutrino event generators

Monte Carlo event generators

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

Common generators

Why do we need them?
The main problem
Cooking generator

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- Monte Carlo generators simulate interactions
- Physicists have been using them since ENIAC
- Some common generators used in neutrino community:

- transport of particles through matter: Geant4, FLUKA
- high-energy collisions of elementary particles: PYTHIA
- neutrino interactions: GENIE, GIBUU, NEUT,
 NUANCE, NuWro

Why do we need them?

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

Common generators
Why do we need them?

The main problem Cooking generator

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- Monte Carlo event generators connect experiment (what we see) and theory (what we think we should see)
- Any neutrino analysis relies on MC generators
- From neutrino beam simulations, through neutrino interactions, to detector simulations
- Used to evaluate systematic uncertainties, backgrounds, acceptances...

Why do we need them?

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

Common generators
Why do we need them?

The main problem Cooking generator

 $u\,N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

EXPERIMENT

MONTE CARLO

What is the main problem?

"You use Monte Carlo until you understand the problem"

Mark Kac

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

Common generators Why do we need them?

The main problem

Cooking generator

 $u\,N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- In perfect world MC generators would contain "pure" theoretical models
- In real world theory does not cover everything
- Neutrino and non-neutrino data are used to tune generators

How to build generator

INGREDIENTS:

Phase space

RECIPE:

Neutrino interactions: free nucleon

(Quasi-)elastic scattering

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $\nu\,N$ interactions

(Q)EL scattering

Rein-Sehgal model Deep Inelastic Scattering AGKY model π in NuWro Transition region

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- Llewellyn-Smith model is usually used for charged current quasi-elastic scattering
- Not much difference here between generators (but default parameters)

 Nucleon structure is parametrized by form factors

- Vector → Conserved Vector Current (CVC)
- Pseudo-scalar → Partially Conserved Axial Current (PCAC)
- lacktriangle Axial ightarrow dipole form with one free parameter (axial mass, M_A)

Rein-Sehgal model

TABLE I

Nucleon Resonances below 2 GeV/c² according to Ref. [4]

Resonance Symbol ^a	Central mass value M [MeV/c²]	Total with Γ_0 [MeV]	Elasticity $x_E = \pi \mathcal{N}$ branching ratio	Quark-Model/ SU_6 -assignment
P ₃₃ (1234)	1234	124	1	⁴ (10) _{3/2} [56, 0 ⁺] ₀
$P_{11}(1450)$	1450	370	0.65	$^{2}(8)_{1/2}$ [56, 0 ⁺] ₂
$D_{10}(1525)$	1525	125	0.56	² (8) _{3/2} [70, 1 ⁻] ₁
$S_{11}(1540)$	1540	270	0.45	$^{2}(8)_{1/2}$ [70, 1 ⁻] ₁
$S_{31}(1620)$	1620	140	0,25	$^{2}(10)_{1/2}$ [70, 1 ⁻] ₁
S ₁₁ (1640)	1640	140	0.60	$^{4}(8)_{1/2}$ [70, 1] ₁
$P_{33}(1640)$	1640	370	0.20	$^{4}(10)_{3/2}$ [56, 0^{+}] ₂
$D_{13}(1670)$	1670	80	0.10	⁴ (8) _{3/2} [70, 1 ⁻] ₁
$D_{1b}(1680)$	1680	180	0.35	4(8) _{5/2} [70, 1 ⁻] ₁
$F_{15}(1680)$	1680	120	0.62	$^{2}(8)_{5/2}$ [56, 2 ⁺] ₂
$P_{11}(1710)$	1710	100	0.19	$^{2}(8)_{1/9}$ [70, 0+] $_{9}$
$D_{33}(1730)$	1730	300	0.12	$^{2}(10)_{3/2}$ [70, 1 ⁻] ₁
$P_{13}(1740)$	1740	210	0.19	$^{2}(8)_{3/2}$ [56, 2+] ₂
$P_{31}(1920)$	19 2 0	300	0.19	4(10) _{1/2} [56, 2+] ₂
$F_{35}(1920)$	1920	340	0.15	$^{4}(10)_{5/2}$ [56, 2+] ₂
$F_{37}(1950)$	1950	340	0.40	⁴ (10) _{7/2} [56, 2 ⁺] ₂
$P_{33}(1960)$	1960	300	0.17	4(10) _{3/2} [56, 2 ⁺] ₂
$F_{17}(1970)$	1970	325	0.06	$^{4}(8)_{7/2}$ [70, $2^{+}]_{2}$

- Rein-Sehgal model describes single pion production through baryon resonances below $W=2~{\rm GeV}$
- It is used by GENIE and NEUT
- However, GENIE includes only 16 resonances and interference between them is neglected

Deep inelastic scattering [DIS]

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

(Q)EL scattering Rein-Sehgal model

Deep Inelastic Scattering

AGKY model π in NuWro Transition region

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

- Quark-parton model is used for deep inelastic scattering
- Bodek-Young modification to the parton distributions at low Q^2 is included by most generators

Hadronization

- Hadronization is the process of formation hadrons from quarks
- Pythia is widely used at high invariant masses

Andreopoulos-Gallagher-Kehayias-Yang model

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

u N interactions

(Q)EL scattering Rein-Sehgal model Deep Inelastic Scattering

AGKY model

 π in NuWro Transition region

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

AGKY hadronization model is used in GENIE

- It includes phenomenological description of the low invariant mass based on Koba-Nielsen-Olesen (KNO) scaling
- Pythia is used for the high invariant mass
- The smooth transition between two models is made in a window $W \in [2.3, 3.0] \; \mathrm{GeV}$

Pion production in NuWro

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

(Q)EL scattering Rein-Sehgal model Deep Inelastic Scattering

AGKY model π in NuWro

Transition region

 $\nu\,A$ interactions

Final state interactions

Formation time

Summary

Tutorial generators

RES/DIS distinguish is arbitrary for each MC generator!

Transition region

- We factorized the reality to RES and DIS
- We must be careful to avoid double counting
- The smooth transition between RES and DIS is performed by each generator (but in slightly different way)
- E.g. in GENIE:

$$\frac{d^2 \sigma^{RES}}{dQ^2 dW} = \sum_{k} \left(\frac{d^2 \sigma^{R-S}}{dQ^2 dW} \right)_{k} \cdot \Theta(W_{cut} - W)$$

$$\frac{d^2 \sigma^{DIS}}{dQ^2 dW} = \frac{d^2 \sigma^{DIS,BY}}{dQ^2 dW} \cdot \Theta(W - W_{cut}) + \frac{d^2 \sigma^{DIS,BY}}{dQ^2 dW} \cdot \Theta(W_{cut} - W) \cdot \sum_{m} f_{m}$$

where k - sum over resonances in Rein-Sehgal model, m - sum over multiplicity, $f_m = R_m \cdot P_m$ with P_m - probability of given multiplicity (taken form hadronization model), R_m - tunable parameter

Neutrino interactions: nucleus

Impulse approximation

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $\nu \, N$ interactions

 νA interactions

Impulse approximation

Fermi gas
Spectral function
Two-body current
COH pion production
Summary

Final state interactions

Formation time

Summary

Tutorial generators

- In impulse approximation neutrino interacts with a single nucleon
- If $|\vec{q}|$ is low the impact area usually includes many nucleons
- For high $|\vec{q}|$ IA is justified

$$\sigma^A = \sum_{i=1}^{Z} \sigma_p + \sum_{i=1}^{A-Z} \sigma_n$$

High $|\vec{q}|$ means more than 400 MeV. However, IA is always assumed

Fermi gas

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $\nu \, N$ interactions

 νA interactions

Impulse approximation

Fermi gas

Spectral function Two-body current COH pion production Summary

Final state interactions

Formation time

Summary

Tutorial generators

Nucleons move freely within the nuclear volume in constant binding potential.

protons

Global Fermi Gas

$$p_F = \frac{\hbar}{r_0} \left(\frac{9\pi N}{4A} \right)^{1/3}$$

Local Fermi Gas

$$p_F(r) = \hbar \left(3\pi^2 \rho(r) \frac{N}{A} \right)^{1/3}$$

Spectral function

The probability of removing of a nucleon with momentum \vec{p} and leaving residual nucleus with excitation energy E.

$$P(\vec{p}, E) = P_{MF}(\vec{p}, E) + P_{corr}(\vec{p}, E)$$

Two-body current interactions

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Impulse approximation Fermi gas

Spectral function

Two-body current

COH pion production Summary

Final state interactions

Formation time

Summary

Tutorial generators

Two Body Current

2 particles - 2 holes (2p-2h)

Meson Exchange Current (MEC)

Models in generators

- Nieves model (GENIE coming soon, NEUT, NuWro)
- Transverse Enhancement (TE) model by Bodek (NuWro)
- Dytman model (GENIE)

Two-body current interactions

- Nieves model is microscopic calculation
- TE model introduce 2p-2h contribution by modification of the vector magnetic form factors

Total MEC cross section

MEC / (QEL + MEC)

Two-body current interactions

- Both models provide only the inclusive double differential cross section for the final state lepton
- Final nucleons momenta are set isotropically in CMS

Nieves

Transverse Enhancement

Coherent pion production

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Impulse approximation Fermi gas

Spectral function
Two-body current

COH pion production

Summary

Final state interactions

Formation time

Summary

Tutorial generators

- Rein-Sehgal model is commonly used for coherent pion production
- Note: it is different model than for RFS
- Berger-Sehgal model replaces RS (NuWro, GENIE - coming soon)

Comments

- In COH the residual nucleus is left in the same state (not excited)
- The interaction occurs on a whole nucleus no final state interactions

Neutrino interactions - summary

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Impulse approximation Fermi gas Spectral function

Two-body current

COH pion production

Summary

Final state interactions

Formation time

Summary

Tutorial generators

Final state interactions

Final state interactions

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

FSI

Intranuclear cascade Cascade algorithm INC input FSI in GENIE

Formation time

Summary

Tutorial generators

FSI describe the propagation of particles created in a primary neutrino interaction through nucleus

All MC generators (but GIBUU) use intranuclear cascade model

Intranuclear cascade

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $\nu\,N$ interactions

 νA interactions

Final state interactions

FSI

Intranuclear cascade

Cascade algorithm INC input FSI in GENIF

Formation time

Summary

Tutorial generators

The probability of passing a distance λ (small enough to assume constant nuclear density) without any interaction is given by:

$$P(\lambda) = e^{-\lambda/\tilde{\lambda}}$$

$$\tilde{\lambda} = (\sigma
ho)^{-1}$$
 - mean free path

 σ - cross section

ho - nuclear density

Can be easily handled with MC methods.

The algorithm for intranuclear cascade

$$\tilde{\lambda}(r) = [\sigma \rho(r)]^{-1}$$

INC input

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $\nu\,N$ interactions

 νA interactions

Final state interactions

FSI

Intranuclear cascade Cascade algorithm

INC input

FSI in GENIE

Formation time

Summary

Tutorial generators

- The main input to the INC model is the particle-nucleon cross section
- Total cross section affects the mean free path
- Ratios of cross sections

$$\frac{\sigma_{qel}}{\sigma_{total}}, \quad \frac{\sigma_{cex}}{\sigma_{total}}, \quad \frac{\sigma_{abs}}{\sigma_{total}}, \quad \dots$$

are used to determine what kind of scattering happened

- NuWro and Neut use Oset model for low-energy pions and data-driven cross sections for all other cases
- GENIE has two models of FSI

FSI in GENIE

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $\nu\,N$ interactions

 $u\,A$ interactions

Final state interactions

FSI

Intranuclear cascade Cascade algorithm INC input

FSI in GENIE

Formation time

Summary

Tutorial generators

- intranuclear cascade
- data-driven cross sections
- Oset model for pions (coming soon)

- INC-like with one "effective" interaction
- tuned do hadron-nucleus data
- easy to reweight

Formation time

Landau Pomeranchuk effect

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

u N interactions

 νA interactions

Final state interactions

Formation time

LP effect

Formation time NOMAD

Summary

Tutorial generators

The concept of formation time was introduced by Landau and Pomeranchuk in the context of electrons passing through a layer of material.

- For high energy electrons they observed less radiated energy then expected.
- The energy radiated in such process is given by:

$$\frac{\mathrm{d}I}{\mathrm{d}^3k} \sim \left| \int_{-\infty}^{\infty} \vec{j}(\vec{x},t) e^{i(\omega t - \vec{k} \cdot \vec{x}(t))} \mathrm{d}^3x \mathrm{d}t \right|^2$$

 $\vec{x}(t)$ describes the trajectory of the electron.

 ω , \vec{k} are energy and momentum of the emitted photon.

Landau Pomeranchuk effect

Assuming the trajectory to be a series of straight lines (the current density $j \sim \delta^3(\vec{x} - \vec{v}t)$) the radiation integral is:

$$\sim \int_{path} e^{i(\vec{k}\vec{v}-\omega)t} \mathrm{d}t$$

■ Formation time is defined as:

$$t_f \equiv \frac{1}{\omega - \vec{k}\vec{v}} = \frac{E}{kp} = \frac{E}{m_e} \frac{1}{\omega_{r.f.}} = \gamma T_{r.f.}$$

k, p - photon, electron four-momenta $\omega_{r.f.}$ - photon frequency in the rest frame of the electron

■ Formation time can be interpreted as the "birth time" of photon.

- If time between collisions $t >> t_f$, there is no interference and total radiated energy is just the average emitted in one collision multiplied by the number of collisions.
- If $t << t_f$, a photon is produced coherently over entire length of formation zone, which reduces the bremsstrahlung.

Formation time in INC

- One may expect a similar effect in hadron-nucleus scattering.
- In terms of INC it means that particles produced in primary vertex travel some distance, before they can interact.

$$t_f = \tau_0 \frac{E \cdot M}{\mu_T^2}$$

where E , M - nucleon energy and mass, $\mu_T^2 = M^2 + p_T^2$ - transverse mass

- SKAT parametrization (similar but with $p_T = 0$)
- NEUT and GENIE use SKAT parametrization
- lacktriangle NuWro uses Ranft parametrization for DIS and a model based on Δ lifetime for RES

Comparison with NOMAD data

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $\nu \, N$ interactions

 νA interactions

Final state interactions

Formation time

LP effect

Formation time

NOMAD

Summary

Tutorial generators

Nomad data from Nucl. Phys. B609 (2001) 255.

■ The average number of backward going negative pions with the momentum from 350 to 800 MeV/c.

The observable is very sensitive to formation time effect.

 $\langle E_{\nu} \rangle \sim 24 \text{ GeV}$

Summary

Neutrino-nucleus interactions

For all channels (but coherent) neutrino interactions are factorized in the following way

- Is the physics really factorized this way?
- This factorization is common for all generators
- However, some pieces are done in different way

MiniBooNE data for CC π production

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $\nu\,N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Neutrino interactions

MiniBooNE CC π

Summary

Tutorial generators

The cross section for π^0 (π^+) production through charge current measured by MiniBooNE

- The signal is defined as: charged leptons, no charged pions and one neutral pion (one positive pion and no other pions) in the final state.
- The result depends on primary vertex and FSI, as pion can be:
 - produced in primary vertex
 - produced in FSI
 - affected by charge exchange
 - absorbed

MiniBooNE data for CC π production

Figure 3.1: The total CC cross section for single pion production.

MiniBooNE data for CC π production

Figure 3.2: The differential CC cross section over Q^2 for single pion production.

Summary

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $\nu \, N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Neutrino interactions MiniBooNE CC π

Summary

Tutorial generators

- MC generators are irreplaceable tools in high-energy physics
- People use them before experiment exists (feasibility studies, requirements ...)

- And during data analysis (systematics uncertainties, backgrounds ...)
- There are several neutrino event generators and they all differ slightly
- And, unfortunately, there is no one right generator

Tutorial: analyzing MC output

Introduction

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $u\,N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Introduction

gst files

Interactive ROOT

Script example

Task 1

Task 2

Task 3

Task 4

■ Each neutrino MC event generator performs simulations in two steps:

- cross section calculation
- event generation
- Usually, two output files are produced:
 - cross section per channel (sometimes as a function of energy - GENIE, sometimes integrated over flux - NuWro)
 - ◆ ROOT file with TTree of events

Introduction

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Introduction

gst files

Interactive ROOT

Script example

Task 1

Task 2

Task 3

Task 4

- During tutorial we are going to work with GENIE's gst file (as it requires only ROOT)
- You can find it here: [gst file]
- If you are interested in more technical details on running generators visit the web page of NuSTEC school in Liverpool:

NuSTEC Neutrino Generator School

gst files

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $u\,N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Introduction

gst files

Interactive ROOT

Script example

Task 1

Task 2

Task 3

Task 4

■ The 'gst' is a GENIE summary ntuple format

Selected branches:

iev number of events

Q2 momentum transfer squared

W invariant mass

nf number of final state particles in hadronic system

nfpip number of final state π^+

Ef(i) energy of *i*-th particle in hadronic system

You can find all of them in GENIE manual (p. 112): [GENIE manual]

Interactive ROOT

```
Monte Carlo method
```

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Introduction

gst files

Interactive ROOT

Script example

Task 1

Task 2

Task 3

Task 4

```
# load ROOT file
root [0] TFile *myFile = new TFile ("file.gst.root")
# load TTree
root [1] TTree *myTree = myFile->Get("gst")
# lepton energy distribution
root [2] myTree->Draw("El")
# lepton energy distribution for events with 1 hadron in the final state
root [3] myTree->Draw("El", "nf == 1")
# use TBrowser if you prefer mouse over keyboard
root [4] TBrowser t
```


Script example

```
void analyzeGST (const char *inputFile)
  TFile *file = new TFile (inputFile); // load root file
 TTree *tree = (TTree*)file->Get ("gst"); // get proper tree
  TH1D *leadingPip = new TH1D ("pip energy", "pip energy", 50, 0, 1);
 double leptonEnergy;  // lepton energy
 int nParticlesFS;  // number of particle in final state
                   // number of positive pion
  int nPip;
  double hadronEnergy[100]; // final state hadron energy
 // set up branches
 tree->SetBranchAddress ("El", &leptonEnergy);
 tree->SetBranchAddress ("nf", &nParticlesFS);
 tree->SetBranchAddress ("nfpip", &nPip);
 tree->SetBranchAddress ("pdgf", hadronPDG);
                              hadronEnergy);
  tree->SetBranchAddress ("Ef",
```


Script example

```
const int nEvents = tree->GetEntries(); // get number of events
for (int i = 0; i < nEvents; i++) // events loop
    tree->GetEntry (i); // get i-th event
    if (nPip == 0) continue;
    double maxEnergy = 0.0;
    for (int j = 0; j < nParticlesFS; j++) // particle loop
      if (hadronPDG[j] == 211 && hadronEnergy[j] > maxEnergy)
        maxEnergy = hadronEnergy[j];
    leadingPip->Fill (maxEnergy);
} // events loop
leadingPip->Draw();
```


Task 1: basic informations

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $u\,N$ interactions

u A interactions

Final state interactions

Formation time

Summary

Tutorial generators

Introduction gst files Interactive ROOT Script example

Task 1

Task 2

Task 3

Task 4

■ Using interactive ROOT find the following information on the simulation:

93 / 96

- number of events
- neutrino beam (flavor, energy)
- ◆ target
- dynamics

Task 2: basic distributions

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $\nu \, N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Introduction gst files
Interactive R

Interactive ROOT

Script example

Task 1 Task 2

Task 3 Task 4 ■ Using interactive ROOT plot the following distributions:

- proton energy (before FSI)
- proton energy (after FSI)
- lepton energy
- lepton energy for QEL
- ◆ lepton energy for all events with no meson in the final state

Task 3: QEL

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 $u\,N$ interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Introduction gst files Interactive ROOT Script example

Task 1

Task 2

Task 3
Task 4

■ Lets define QEL-like events as those without mesons in the final state

- On the same plot draw $\frac{d\sigma}{dQ^2}$ [in arbitrary units]:
 - ◆ total QEL-like
 - contribution from true QEL
 - background for QEL
- What cut could you apply to reduce background?

Task 4: reconstructed energy

Monte Carlo method

Quasi-elastic scattering

Tutorial MC

MC generators

 νN interactions

 νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Introduction gst files

Interactive ROOT

Script example

Task 1

Task 2

Task 4

Task 3

For QEL neutrino scattering on a nucleon at rest the incoming neutrino energy can be expressed by lepton kinematics:

$$E_{\nu}^{rec} = \frac{2(M_N - E_B)E_{\mu} - (E_B^2 - 2M_N E_B + m_{\mu}^2)}{2[M_N - E_B - E_{\mu} + |\vec{k}_{\mu}|\cos\theta_{\mu}]}$$

- Compare true and reconstructed neutrino energy for QEL events
- Compare true and reconstructed neutrino energy for QEL-like events