

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В. Ломоносова

Суперкомпьютерное моделирование и технологии

Отчет по заданию №2 «Численное интегрирование многомерных функций методом Монте-Карло»

Вариант №9

студент 628 группы Гугучкин Егор Павлович

1. Математическая постановка задачи

Функция f(x, y, z) непрерывна в ограниченной замкнутой области $G \in \mathbb{R}$. Требуется вычислить определённый интеграл:

$$I = \iiint\limits_G f(x, y, z) \, dx dy dz,$$

где:

$$f(x, y, z) = xy^2z^3$$

G ограничена поверхностями z = xy, y = x, x = 1, z = 0.

2. Численный метод решения задачи

Пусть область G ограниченна параллелепипедом П. П: $\begin{cases} a_1 \leq x \leq b_1 \\ a_2 \leq x \leq b_2 \\ a_3 \leq x \leq b_3 \end{cases}$

Рассмотрим функцию:
$$F(x,y,z) = \begin{cases} f(x,y,z), (x,y,z) \in G \\ 0, (x,y,z) \notin G \end{cases}$$

Преобразуем искомый интеграл:

$$I = \iiint_{G} f(x, y, z) dx dy dz = \iiint_{\Pi} F(x, y, z) dx dy dz$$

Пусть $p_1(x_1, y_1, z_1)$, $p_2(x_2, y_2, z_2)$, ... — случайные точки, равномерно распределённые в П. Возьмём n таких случайных точек. В качестве приближённого значения интеграла предлагается использовать выражение:

$$I \approx |\Pi| \cdot \frac{1}{n} \sum_{i=1}^{n} F(p_i)$$

где $|\Pi|$ – объём параллелепипеда Π . $|\Pi|=(b_1-a_1)(b_2-a_2)(b_3-a_3)$

3. Аналитическое решение интеграла

При заданном G:

$$I = \iiint_{G} f(x, y, z) dx dy dz = \int_{0}^{1} x dx \int_{0}^{x} y^{2} dy \int_{0}^{xy} z^{3} dz = \frac{1}{364}$$

4. Программная реализация

Реализована параллельную MPI-программу, которая принимает на вход требуемую точность и генерирует случайные точки до тех пор, пока требуемая точность не будет достигнута. Программа вычисляет точность как модуль разности между приближённым значением, полученным методом Монте-Карло, и точным значением, вычисленным аналитически.

Программа считывает в качестве аргумента командной строки требуемую точность є и выводит четыре числа:

- Посчитанное приближённое значение интеграла.
- Ошибка посчитанного значения: модуль разности между приближённым и точным значениями интеграла.
- Количество сгенерированных случайных точек.
- Время работы программы в секундах.

Время работы программы измеряется следующим образом. Каждый МРІ-процесс измеряет своё время выполнения, затем среди полученных значений берётся максимум.

В данном варианте использовалась парадигма "мастер-рабочие". Процесс "мастер", генерировал для каждого процесса "рабочего" 10 случайных точек в единичном кубе, затем передовал их процессам "рабочим". Процессы "рабочие" вычисляют элементы суммы приближенного интеграла и суммируют результаты процессу "мастеру" с помощью операции редукции. Процесс "мастер", вычисляет погрешность полученного интеграла, и если она больше допустимой, генерирует еще по 10 точек.

5. Результаты экспериментов

Точность ε	Число МРІ-процессов	Время работы программы	Ускорение	Ошибка
3.0 · 10 ⁻⁵	2	0.0027607	1	2.69055E-05
	4	0.0017670	1.5624	2.69055E-05
	16	0.0022534	1.2251	2.17040E-05
	32	0.0033649	0.8204	5.25321E-06
$5.0 \cdot 10^{-6}$	2	0.0024459	1	1.34452E-06
	4	0.0016993	1.4394	2.69160E-06
	16	0.0064930	0.3767	5.27521E-07
	32	0.0110297	0.2218	2.95871E-06
1.5 · 10 ⁻⁶	2	0.0026011	1	1.34452E-06
	4	0.0019757	1.3166	4.51280E-08
	16	0.0054469	0.4775	5.27521E-07
	32	0.0107896	0.2410	1.27965E-07

Таблица 1: Таблица с результатами расчётов для системы Polus (усредненное от трех запусков)

6. Выводы

Достичь адекватной масштабируемости не удалось, поскольку на каждом запуске генерировалось разное число точек, необходимое для достижения требуемой погрешности.

Если бы эксперимент проводился для фиксированного количества генерируемых точек, с подсчетом получаемой погрешности, то удалось бы достичь ускорения n-1, где n-1 число MPI-процессов.