LES NOMBRES PREMIERS

Module n° 1

1. Le cadre

L'ensemble des nombres entiers relatifs est noté \mathbb{Z} .

On note aussi $\mathbb{Z} = \{ \dots ; -3; -2; -1; 0; 1; 2; 3; \dots \}.$

Le nombre entier positif 3 et le nombre entier négatif -7 sont des éléments de l'ensemble \mathbb{Z} .

On note $3 \in \mathbb{Z}$, et on dit « 3 appartient à \mathbb{Z} », ou « 3 est élément de \mathbb{Z} ».

On note $-7 \in \mathbb{Z}$.

On note $\{3; -7\} \subset \mathbb{Z}$, et on dit $\{3; -7\}$ est inclus dans $\mathbb{Z} \times \{3; -7\}$. est contenu dans $\mathbb{Z} \times \{3; -7\}$.

L'ensemble $\mathbb Z$ contient l'ensemble des entiers naturels $\mathbb N$, constitué des entiers positifs ou nuls. Cette inclusion se note $\mathbb N \subset \mathbb Z$.

L'entier naturel 7 est élément de \mathbb{N} mais -3 ne l'est pas, ce que l'on note : $3 \in \mathbb{N}$ et $-7 \notin \mathbb{N}$.

Sur la droite numérique ci-dessous faire apparaître les ensembles de nombres $\mathbb N$ et $\mathbb Z$.

2. Définir un nombre premier

Ecrire chacun des nombres 28 et 90 sous forme d'un produit de nombres entiers, puis chercher la décomposition contenant le plus de facteurs.

Dans l'ensemble \mathbb{N} des entiers naturels, on dit que 7 divise 28 car le résultat de la division de 28 par 7 est un entier naturel.

Pour le nombre entier 17, on ne peut pas procéder à une telle décomposition ; on dit que 17 est un nombre premier.

DÉFINITION

On dit qu'un entier naturel est premier s'il a exactement deux diviseurs, 1 et lui-même.

On note $\mathbb P$ l'ensemble des nombres premiers.

3. Applications de la décomposition en produit de facteurs premiers

Nous admettrons que tout entier naturel supérieur ou égal à 2 peut s'écrire comme produit de nombres premiers, et que cette décomposition est unique à l'ordre près des facteurs.

1. Décomposer en produit de facteurs premiers les nombres ci-dessous :

$$A = 28$$
 , $B = 90$, $C = 70$, $D = 600$.

2. En déduire une simplication des expressions :

$$\frac{A}{C}$$
 , \sqrt{B} , \sqrt{D} .

Seconde Module

4. Chercher des nombres premiers

- 1. Trouver tous les nombres premiers inférieurs ou égaux à 10.
- 2. Compléter chacune des phrases ci-dessous avec l'une des expressions :

	$\in \mathbb{P}$ $\notin \mathbb{P}$ $\in \mathbb{N}$	$\subset \mathbb{P}$ $\subset \mathbb{Z}$
a. 5	c7	e. {2}
b. P	d. 10	f. {3; 1; -7}

- 3. On cherche maintenant à trouver tous les nombres premiers compris entre 1 et 100. Pour cela on utilise un procédé systématique appelé algorithme, le crible d'ERATOSTHÈNE.
 - On dresse la liste des entiers de 1 à 100.
 - On élimine 1 qui n'est pas premier. Pourquoi?
 - ☼ 2 est le plus petit entier premier. On élimine tous les multiples de 2, sauf 2. Ces nombres étant divisibles par 2, ils ne sont pas premier.
 - \bigcirc On conserve 3, et on élimine tous les multiples de 3, à partir de $3^2 = 9$. Pourquoi?
 - Son conserve 5, et on élimine tous les multiples de 5, à partir de
 - On réitère ce procédé pour les entiers suivants. A partir de quand sait-on que le processus est terminé?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

5. Recherche mathématique

On sait démontrer qu'il existe une infinité de nombres premiers.

Mais il n'existe pas de formule donnant leur répartition dans l'ensemble \mathbb{N} , et il existe encore de grandes énigmes les concernant.

Pour les conjectures suivantes, on ne sait pas dire si elles sont vraies ou fausses :

- La conjecture de GOLDBACH
 - « Tout nombre pair, supérieur à 2, est la somme de deux nombres premiers. »
- Nombres de Mersenne
 - « Il y a une infinité de nombres premiers de la forme $2^n 1$. »

Plus un nombre est grand plus il est fastidieux de déterminer s'il est premier, et il existe un record du plus grand nombre premier découvert, ce nombre appartient à la famille des nombres premiers de MERSENNE, et comporte 17425170 chiffres!

Seconde Module