

AcF302: Corporate Finance

Capital Budgeting and Valuation with Leverage - Part II

Week 12

Mohamed Ghaly m.ghaly@lancaster.ac.uk

Relaxing the assumption that the project has average risk:

- In the real world, a specific project may have different market risk than the average project for the firm.
- In this case, the firms' average cost of capital cannot be used to value the project.
- How can we calculate the project's cost of capital in this case?

- Suppose Avco launches a new plastics manufacturing division that faces different market risks to its main packaging business.
 - The unlevered cost of capital for the plastics division can be estimated by looking at other single-division plastics firms that have similar business risks.
- Assume two firms are comparable to the plastics division and have the following characteristics:

Firm	Equity Cost of Capital	Debt Cost of Capital	Debt-to-Value Ratio		
Comparable #1	12.0%	6.0%	40%		
Comparable #2	10.7%	5.5%	25%		

 Assuming that both firms maintain a target leverage ratio, the unlevered cost of capital for each competitor can be estimated by calculating their pretax WACC.

Competitor 1 :
$$r_U = 0.60 \times 12.0\% + 0.40 \times 6.0\% = 9.6\%$$

Competitor 2 :
$$r_{ij} = 0.75 \times 10.7\% + 0.25 \times 5.5\% = 9.4\%$$

- Based on the average R_u of these comparable firms, we can estimate an unlevered cost of capital for the plastics division of 9.5%.
- To use the WACC method we need to estimate the project's equity cost of capital. Why can't we use the original cost of equity of 10%?

The project's equity cost of capital can be calculated as follows:

$$r_E = r_U + \frac{D}{E}(r_U - r_D)$$

- Assume that Avco plans to maintain its debt-to-value ratio of 50% as it expands into plastics manufacturing, and it expects its borrowing cost to remain at 6%.
 - Given the unlevered cost of capital estimate of 9.5%, the plastics division's equity cost of capital is estimated to be

$$r_E = 9.5\% + \frac{0.50}{0.50}(9.5\% - 6\%) = 13.0\%$$

The division's WACC can now be estimated to be

$$r_{WACC} = 0.50 \times 13.0\% + 0.50 \times 6.0\% \times (1 - 0.40) = 8.3\%$$

Alternatively,
$$r_{\text{wacc}} = r_{\text{u}} - d T_{\text{c}} r_{\text{d}} = 9.5\% - (50\% * 40\% * 6\%) = 8.3\%$$

Relaxing the assumption of constant Debt-to-Equity ratio:

- Up to this point, it has been assumed that the firm wishes to maintain a constant debt-equity ratio.
- Two alternative leverage policies will now be examined.
 - Constant interest coverage.
 - Predetermined debt levels.

Constant Interest Coverage Ratio

- When a firm keeps its interest payments equal to a target fraction of its free cash flows (FCF / Interest Expense = constant)
- If the target fraction is k, then

 Interest Paid in Year $t = k \times FCF_t$
- To implement the APV approach, the PV of the tax shield under this policy needs to be computed:

$$PV(Interest Tax Shield) = PV(\tau_c k \times FCF) = \tau_c k \times PV(FCF)$$

= $\tau_c k \times V^U$

 With a constant interest coverage policy, the present value of the interest tax shield is proportional to the project's unlevered value.

Constant Interest Coverage Ratio

• The value of the levered project, using the APV method, is:

$$V^{L} = V^{U} + PV$$
(interest tax shield) = $V^{U} + \tau_{c}k \times V^{U}$
= $(1 + \tau_{c}k)V^{U}$

Back to the acquisition example

Valuing an Acquisition with Target Interest Coverage Problem

Consider again Avco's acquisition.

Remember that the acquisition will contribute \$3.8 million in free cash flows the first year, growing by 3% per year thereafter.

The acquisition cost of \$80 million will be financed with \$50 million in new debt initially.

Compute the value of the acquisition using the APV method assuming Avco will maintain a constant interest coverage ratio for the acquisition.

Solution

Given Avco's unlevered cost of capital of r_U = 8%, the acquisition has an unlevered value of

$$V^{U} = \frac{3.8}{(8\% - 3\%)} = $76$$
million

With \$50 million in new debt and a 6% interest rate, the interest expense the first year is 6% × 50 = \$3 million, or $k = \frac{\text{Interest}}{\text{FCF}} = \frac{3}{3.8} = 78.95\%$.

Because Avco will maintain this interest coverage, we can compute the levered value as:

$$V^{L} = (1 + T_{C}k)V^{U} = [1 + 0.4(78.95\%)]76 = $100 \text{ million}$$

Predetermined Debt Levels

- Rather than set debt according to a target debt-equity ratio or interest coverage level, a firm may adjust its debt according to a fixed schedule that is known in advance.
- Assume now that Avco plans to borrow \$30.62 million and then will reduce the debt on a fixed schedule
 - to \$20 million after one year, to \$10 million after two years,
 and to \$0 after three years
- The RFX project will have no other consequences for Avco's leverage. Because Avco does not want to maintain a constant D/E ratio, the company's debt in future periods is independent of the project's cash flows.

Remember: With a constant Debt-to-Equity ratio

		Year	0	1	2	3	4
Inte	erest Tax Shield (\$ million)						
1	Debt Capacity, D_t (at $d = 50\%$)		30.62	23.71	16.32	8.43	-
2	Interest Paid (at $r_D = 6\%$)			1.84	1.42	0.98	0.51
3	Interest Tax Shield (at $\tau_c = 40\%$)			0.73	0.57	0.39	0.20

With a fixed debt schedule

		Year	0	1	2	3	4
Inte	erest Tax Shield (\$ million)						
1	Debt Capacity, D_t (fixed schedule)		30.62	20.00	10.00	_	-
2	Interest Paid (at $r_D = 6\%$)			1.84	1.20	0.60	-
3	Interest Tax Shield (at $\tau_c = 40\%$)			0.73	0.48	0.24	-

Predetermined Debt Levels

 Note: When debt levels are set according to a fixed schedule, we can discount the predetermined interest tax shields using the debt cost of capital.

$$PV$$
(interest tax shield) = $\frac{0.73}{1.06} + \frac{0.48}{1.06^2} + \frac{0.24}{1.06^3} = 1.32 million

The levered value of Avco's project is:

$$V^{L} = V^{U} + PV$$
(Interest tax shield) = 59.62 + 1.32 = \$60.94 million

Week 11 Slide 30

 Special case of predetermined debt level: When a firm has permanent fixed debt, maintaining the same level of debt forever, the levered value of the project simplifies to

Levered Value with Permanent Debt
$$V^{L} = V^{U} + \tau_{c} \times D$$

A Comparison of Methods

- Typically, the WACC method is the easiest to use when the firm will maintain a constant debt-to-equity ratio over the life of the investment.
- With other leverage policies (e.g., constant interest coverage and fixed debt schedules), when we relax the assumption of a constant debt-equity ratio, the equity cost of capital and WACC for a project will change over time as the debt-equity ratio changes.
- As a result, the WACC and FTE methods are difficult to implement and the APV method is usually the simplest approach.

Relaxing the assumption that corporate taxes are the only imperfection:

Issuance and Other Financing Costs

- When a firm raises capital by issuing securities, the banks that provide the loan or underwrite the sale of the securities charge fees.
- These fees should be included as part of the project's required investment, reducing the NPV of the project.

For example, suppose a project has a levered value of \$20 million and requires an initial investment of \$15 million. To finance the project, the firm will borrow \$10 million and fund the remaining \$5 million by reducing dividends. If the bank providing the loan charges fees (after any tax deductions) totaling \$200,000, the project NPV is

```
NPV = V_L - (Investment) - (After Tax Issuance Costs)
= 20 - 15 - 0.2
= $4.8 million
```


Typical Issuance Costs for Different Securities, as a Percentage of Proceeds

Financing Type	Underwriting Fees
Bank loans	< 2%
Corporate bonds	
Investment grade	1 – 2%
Non – investment grade	2 - 3%
Equity issues	
Initial public offering	8 - 9%
Seasoned equity offering	5 - 6%

Security Mispricing

- If the financing of the project involves an equity issue, and
 if management believes that the equity will sell at a price
 that is less than its true value, this mispricing is a cost of
 the project for existing shareholders.
- It should be deducted from the project NPV in addition to other issuance costs.

Financial Distress and Agency Costs

- The free cash flow estimates for a project should be adjusted to include expected financial distress and agency costs.
- Financial distress and agency costs also impact the cost of capital.
 - For example, financial distress costs tend to increase the sensitivity of the firm's value to market risk, raising the unlevered cost of capital for highly levered firms.

Advanced Topics

Periodically Adjusted Debt

- To this point, we have considered leverage policies in which debt is either adjusted continuously to a target leverage ratio or set according to a fixed plan that will never change.
- In the "real world," most firms allow their debt-to-equity ratio
 to deviate from its target and periodically adjust leverage to
 bring it back into line with the target.

• Suppose the firm adjusts its leverage every s periods. The firm's interest tax shields up to date s are predetermined and should be discounted at rate r_D .

- Interest tax shields that occur after date s depend on future adjustments the firm will make to its debt, so they are risky.
- Therefore, the future interest tax shields should be discounted at rate r_D for the periods that they are known, but at rate r_U for all earlier periods when they are still risky.

Periodically Adjusted Debt

 An important special case is when the debt is adjusted annually.

$$PV(\tau_c \times Int_t) = \frac{\tau_c \times Int_t}{(1 + r_U)^{t-1} (1 + r_D)} = \frac{\tau_c \times Int_t}{(1 + r_U)^t} \times \left(\frac{1 + r_U}{1 + r_D}\right)$$

$$r_{WACC} = r_U - d\tau_c r_D \frac{1 + r_U}{1 + r_D} \qquad V^L = \left(1 + \tau_c \kappa \frac{1 + r_U}{1 + r_D}\right) V^U$$

• We can then value the tax shield by discounting it at rate r_U as before, and then multiply the result by the factor $(1 + r_U)/(1 + r_D)$ to account for the fact that the tax shield is known one year in advance.

Example

Annual Debt Ratio Targeting

Celmax Corporation expects FCFs this year of \$7.36 million and a future growth rate of 4% per year.

The firm currently has \$30 million in debt outstanding. This leverage will remain fixed during the year, but at the end of each year Celmax will increase or decrease its debt to maintain a constant debt-to-equity ratio.

Celmax pays 5% interest on its debt, pays a corporate tax rate of 40%, and has an unlevered cost of capital of 12%.

Estimate Celmax's value with this leverage policy.

Solution

Using the APV approach, the unlevered value is $V^{U} = \frac{7.36}{(12\% - 4\%)} = 92.0 million.

In the first year, Celmax will have an interest tax shield of

$$\tau_c r_D D = 0.40 \times 5\% \times $30 \text{ million} = $0.6 \text{ million}.$$

Because Celmax will adjust its debt after one year, the tax shields are expected to grow by 4% per year with the firm. The present value of the interest tax shield is therefore

PV (Interest Tax Shield) =
$$\frac{0.6}{(12\% - 4\%)} \times \left(\frac{1.12}{1.05}\right) = $8.0 \text{ million}$$

PV at rate r_U Debt is set 1 year in advance

Therefore, $V^{L} = V^{U} + PV$ (Interest Tax Shield) = 92.0 + 8.0 = \$100.0 million.

Personal Taxes

- For individuals, interest income from debt is generally taxed more heavily than income from equity (capital gains and dividends).
 - So how do personal taxes affect our valuation methods?
- The equity and debt costs of capital in the market already reflect the effects of investor taxes.
- Therefore, the WACC method does not change in the presence of investor taxes.

Personal Taxes

- However, the APV approach requires modification in the presence of investor taxes because it requires the computation of the unlevered cost of capital.
 - r_D should be adjusted as follows:

$$r_D^* \equiv r_D \frac{(1-\tau_i)}{(1-\tau_e)}$$

What debtholders should ask for if they were paying the same lower personal taxes as equity holders. $r_D^*(1-\tau_e)=r_D(1-\tau_i)$

Personal Taxes

The unlevered cost of capital becomes

$$r_U = \frac{E}{E+D} r_E + \frac{D}{E+D} r_D^*$$

The effective tax rate is

$$\tau^* = 1 - \frac{(1 - \tau_c)(1 - \tau_e)}{(1 - \tau_i)}$$

The interest tax shield is then calculated as

Interest Tax Shield in Year
$$t = \tau^* \times r_D^* \times D_{t-1}$$

Example

Using the APV Method with Personal Taxes

Problem

Apex Corporation has an equity cost of capital of 14.4% and a debt cost of capital of 6%, and the firm maintains a debt-equity ratio of 1. Apex is considering an expansion that will contribute \$4 million in FCFs the first year, growing by 4% per year thereafter. The expansion will cost \$60 million and will be financed with \$40 million in new debt initially with a constant debt-equity ratio maintained thereafter. Apex's corporate tax rate is 40%; the tax rate on interest income is 40%; and the tax rate on equity income is 20%. Compute the value of the expansion using the APV method.

Solution

First, we compute the value without leverage (Vu). The debt cost of capital of 6% is equivalent to an equity rate of

$$r_D^* = r_D \frac{1 - \tau_i}{1 - \tau_e} = 6\% \times \frac{1 - 0.40}{1 - 0.20} = 4.5\%$$

$$r_U = \frac{E}{E + D^{*}} r_E + \frac{D}{E + D} r_D^{*} = 0.50 \times 14.4\% + 0.50 \times 4.5\% = 9.45\%$$

Therefore,
$$V^{U} = \frac{4}{(9.45\% - 4\%)} = $73.39$$
 million.

$$\tau^* = 1 - \frac{(1 - \tau_e)(1 - \tau_e)}{(1 - \tau_i)} = 1 - \frac{(1 - 0.40)(1 - 0.20)}{1 - 0.40} = 20\%$$

Apex will add new debt of \$40 million initially, so the <u>interest tax shield is</u> $20\% \times 4.5\% \times 40 = \0.36 million the first year (note that we use r_D^* here).

With a growth rate of 4%, the PV of the interest tax shield is

$$PV(Interest Tax Shield) = 0.36 \div (9.45\% - 4\%) = $6.61 million$$

Therefore, the value of the expansion with leverage is given by the APV:

$$V^{L} = V^{U} + PV$$
(Interest tax shield)=73.39 + 6.61 = \$80million

Given the cost of \$60 million, the expansion has an NPV of \$20 million.