

Calcolo differenziale — Compito di pre-esonero 25 Dicembre 2023 — Compito n. 00194

Istruzioni: le prime due caselle (V / F) permettono di selezionare la risposta vero/falso. La casella "C" serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \boxtimes).

Nome:					
Cognome:	_				
Matricola:					

	1A	1B	1C	1D	2A	2B	2C	2D	3A	3B	3C	3D	4A	4B	4C	4D
V																
F																
C																

- 1) Dire se le seguenti affermazioni sono vere o false.
- 1A)

$$\lim_{x \to 0} \frac{\sin^2(3x)}{1 - \cos(4x)} = \frac{9}{32}.$$

1B)

$$\lim_{x \to 5} \frac{\log(x-4)}{\tan(4(x-5))} = \frac{1}{4}.$$

1C)

$$\lim_{x \to -\infty} \frac{e^x x^2}{6 x^3 + 2^x} = +\infty.$$

1D)
$$\lim_{x \to +\infty} (1 + e^{-4x})^{e^{7x}} = +\infty.$$

2) Sia

$$f(x) = \begin{cases} 5x^2 + x(e^{6x} - 1) & \text{se } x \ge 0, \\ \frac{\sin(5x^3)}{x} & \text{se } x < 0. \end{cases}$$

- **2A)** La funzione f(x) non è continua in x = 0.
- **2B)** La funzione f(x) non è derivabile in x = 0.
- **2C)** Non esiste $\xi < 0$ tale che $f'(\xi) = 0$.
- **2D)** Esiste $0 < \xi < 1$ tale che $f'(\xi) = e^6 + 4$.

3) Sia

$$f(x) = \begin{cases} 5x^2 & \text{se } x \ge 0, \\ 6 - 3x^2 & \text{se } x < 0. \end{cases}$$

- **3A)** La funzione f(x) è decrescente su $(0, +\infty)$.
- **3B)** La funzione f(x) è decrescente su $(-\infty,0)$.
- **3C)** La funzione f(x) è crescente su \mathbb{R} .
- **3D)** Si ha $f(\mathbb{R}) = \mathbb{R}$.
- 4) Dire se le seguenti affermazioni sono vere o false.
- 4A)

$$T_3(\sin(3x);0) = 3x + \frac{9}{2}x^3.$$

4B)

$$T_3(x^2(e^{2x}-1);0) = 2x^3.$$

4C)
$$\frac{1 - \cos(6x^2)}{x^2} = -18x^2 + o(x^2).$$

4D) $e^{6x} - 1 - \sin(6x) = 18x^2 + o(x^2)$.

Docente

- Garroni [A, F]
 - Orsina [G, Z]

$$f(x) = \frac{(x^2 + 7)(x + 3)}{x - 3}.$$

a) Calcolare

$$\lim_{x \to +\infty} f(x), \qquad e \qquad \lim_{x \to -\infty} f(x).$$

$$\lim_{x \to 3^+} f(x), \qquad e \qquad \lim_{x \to 3^-} f(x).$$

 $\lim_{x\to -\infty} f(x)\,,\qquad \text{e}\qquad \lim_{x\to 3^-} f(x)\,.$ c) Dimostrare che esiste il minimo di f(x) su $(3,+\infty)$. d) Dimostrare che $f((-\infty,3))=\mathbb{R}$.

Cognome	Nome	Matricola	Compito 00194
---------	------	-----------	---------------

$$f(x) = (x^2 - 2x - 14)e^x$$

- b) Sia
 f(x) = (x² 2x 14) e².
 a) Calcolare i limiti di f(x) a più infinito e meno infinito.
 b) Calcolare T₂(x; 0).
 c) Determinare i punti stazionari di f(x) su R, studiandone la natura.
 d) Determinare massimi e minimi relativi ed assoluti di f(x) sull'intervallo [3, 5].

Soluzioni del compito 00194

1) Dire se le seguenti affermazioni sono vere o false.

1A)

$$\lim_{x \to 0} \frac{\sin^2(3x)}{1 - \cos(4x)} = \frac{9}{32}.$$

Falso: Ricordando che quando t tende a zero si ha $\sin(t) \approx t$, e $1 - \cos(t) \approx t^2/2$, si ha

$$\lim_{x \to 0} \frac{\sin^2(3x)}{1 - \cos(4x)} = \lim_{x \to 0} \frac{(3x)^2}{(4x)^2/2} = \lim_{x \to 0} \frac{2 \cdot 3^2}{4^2} = \frac{9}{8} \neq \frac{9}{32}.$$

1B)

$$\lim_{x \to 5} \frac{\log(x-4)}{\tan(4(x-5))} = \frac{1}{4}.$$

Vero: Scriviamo $\log(x-4) = \log(1+(x-5))$. Pertanto, ricordando che quando t tende a zero si ha $\log(1+t) \approx t$ e $\tan(t) \approx t$, si ha

$$\lim_{x \to 5} \frac{\log(x-4)}{\tan(4(x-5))} = \lim_{x \to 5} \frac{x-5}{4(x-5)} = \frac{1}{4}.$$

1C)

$$\lim_{x \to -\infty} \frac{e^x x^2}{6 x^3 + 2^x} = +\infty.$$

Falso: Ricordando che

$$\lim_{x \to -\infty} e^x = 0, \qquad e \qquad \lim_{x \to -\infty} 2^x = 0,$$

e che x^3 (x^2 quando x tende a $-\infty$, si ha

$$\lim_{x \to -\infty} \frac{e^x x^2}{6x^3 + 2^x} = \lim_{x \to -\infty} e^x \frac{x^2}{x^3} \frac{1}{6 + \frac{2^x}{x^3}} = \lim_{x \to -\infty} e^x \frac{1}{x} \frac{1}{6 + \frac{2^x}{x^3}} = 0 \cdot 0 \cdot \frac{1}{6 + 0} = 0 \neq +\infty.$$

1D)

$$\lim_{x \to +\infty} (1 + e^{-4x})^{e^{7x}} = +\infty.$$

Vero: Ricordando che

$$\lim_{t\to +\infty} \left(1+\frac{1}{t}\right)^t = \mathrm{e}\,,$$

e che

$$\lim_{x \to +\infty} \frac{e^{7x}}{e^{4x}} = \lim_{x \to +\infty} e^{3x} = +\infty,$$

si ha

$$\lim_{x \to +\infty} (1 + e^{-4x})^{e^{7x}} = \lim_{x \to +\infty} \left(1 + \frac{1}{e^{4x}} \right)^{e^{7x}} = \lim_{x \to +\infty} \left[\left(1 + \frac{1}{e^{4x}} \right)^{e^{4x}} \right]^{\frac{e^{7x}}{e^{4x}}} = [e]^{+\infty} = +\infty.$$

$$f(x) = \begin{cases} 5x^2 + x(e^{6x} - 1) & \text{se } x \ge 0, \\ \frac{\sin(5x^3)}{x} & \text{se } x < 0. \end{cases}$$

2A) La funzione f(x) non è continua in x = 0.

Falso: Si ha

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left[5x^2 + x \left(e^{6x} - 1 \right) \right] = 0 + 0 \cdot 0 = 0,$$

 \mathbf{e}

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sin(5 \, x^3)}{x} = \lim_{x \to 0^-} \, x^2 \, \frac{\sin(5 \, x^3)}{x^3} = 0 \cdot 5 = 0 \, .$$

Dato che i due limiti sono uguali, esiste

$$\lim_{x \to 0} f(x) = 0 = f(0),$$

e quindi la funzione è continua in x = 0.

2B) La funzione f(x) non è derivabile in x = 0.

Falso: Si ha

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{5h^2 + h(e^{6h} - 1) - 0}{h} = \lim_{h \to 0^+} [5h + e^{6h} - 1] = 0 + 0 = 0,$$

e

$$\lim_{h\to 0^-} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0^-} \frac{\frac{\sin(5\,h^3)}{h}-0}{h} = \lim_{h\to 0^-} \frac{\sin(5\,h^3)}{h^2} = \lim_{h\to 0^+} h \frac{\sin(5\,h^3)}{h^3} = 0 \cdot 5 = 0 \,.$$

Dato che i due limiti sono uguali (e finiti) la funzione f(x) è derivabile in x = 0, e si ha f'(0) = 0.

2C) Non esiste $\xi < 0$ tale che $f'(\xi) = 0$.

Falso: Per gli esercizi **2A**) e **2B**) la funzione f(x) è continua e derivabile su $(-\infty, 0]$. Inoltre, f(0) = 0 e (ad esempio)

$$f(-\sqrt[3]{\pi}) = \frac{\sin(-5\pi)}{-\sqrt[3]{\pi}} = 0.$$

Per il teorema di Rolle, applicato all'intervallo $[-\sqrt[3]{\pi}, 0]$, esiste ξ in tale intervallo tale che $f'(\xi) = 0$.

2D) Esiste $0 < \xi < 1$ tale che $f'(\xi) = e^6 + 4$.

Vero: Per gli esercizi **2A)** e **2B)** la funzione f(x) è continua e derivabile in [0,1], ed è tale che f(0) = 0 e $f(1) = e^6 + 4$. Per il teorema di Lagrange, esiste ξ in (0,1) tale che

$$f'(\xi) = \frac{f(1) - f(0)}{1 - 0} = e^6 + 4$$
.

$$f(x) = \begin{cases} 5x^2 & \text{se } x \ge 0, \\ 6 - 3x^2 & \text{se } x < 0. \end{cases}$$

Disegno non in scala

3A) La funzione f(x) è decrescente su $(0, +\infty)$.

Falso: Dato che per $x \ge 0$ si ha $f(x) = 5x^2$, si ha

$$f'(x) = 10 x$$
, $\forall x > 0$.

Dato che $f'(x) \ge 0$ per ogni x > 0, la funzione f(x) è crescente su $(0, +\infty)$.

3B) La funzione f(x) è decrescente su $(-\infty,0)$.

Falso: Dato che $f(x) = 6 - 3x^2$ per x < 0, si ha

$$f'(x) = -6x$$
, $\forall x < 0$.

Dato che $f'(x) \ge 0$ per ogni x < 0, la funzione f(x) è crescente su $(-\infty, 0)$.

3C) La funzione f(x) è crescente su \mathbb{R} .

Falso: Per dimostrare che f(x) non è crescente è sufficiente osservare che

$$f(-1) = 6 - 3 = 3 > 0 = f(0)$$
.

3D) Si ha $f(\mathbb{R}) = \mathbb{R}$.

Vero: Dato che f(x) è monotona crescente su $(0, +\infty)$, e che f(0) = 0 e

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 5 x^2 = +\infty,$$

per una generalizzazione del teorema dei valori intermedi si ha

$$(1) f([0,+\infty)) = [0,+\infty).$$

Dato che f(x) è crescente anche su $(-\infty,0)$, e che

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [6 - 3x^2] = -\infty, \qquad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} [6 - 3x^2] = 6,$$

per una generalizzazione del teorema dei valori intermedi si ha

(2)
$$f((-\infty,0)) = (-\infty,6)$$
.

Da (1) e da (2) si ha quindi

$$f(\mathbb{R}) = f((-\infty, 0)) \cup f([0, +\infty)) = (-\infty, 6) \cup [0, +\infty) = \mathbb{R}$$
.

4A)

$$T_3(\sin(3x);0) = 3x + \frac{9}{2}x^3$$
.

Falso: Ricordando che

$$\sin(t) = t - \frac{t^3}{6} + o(t^3),$$

si ha, ponendo t = 3x,

$$\sin(3x) = 3x - \frac{(3x)^3}{6} + o(x^3) = 3x - \frac{9}{2}x^3 + o(x^3),$$

da cui segue che

$$T_3(\sin(3x);0) = 3x - \frac{9}{2}x^3 \neq 3x + \frac{9}{2}x^3.$$

4B)

$$T_3(x^2(e^{2x}-1);0) = 2x^3.$$

Vero: Ricordando che

$$e^t = 1 + t + o(t),$$

si ha, ponendo t = 2x,

$$e^{2t} = 1 + 2x + o(x)$$
,

da cui segue che

$$x^{2}(e^{2x}-1) = x^{2}(1+2x+o(x)-1) = x^{2}(2x+o(x)) = 2x^{3}+o(x^{3}),$$

da cui segue che

$$T_3(x^2(e^{2x}-1);0) = 2x^3.$$

4C)

$$\frac{1 - \cos(6x^2)}{x^2} = -18x^2 + o(x^2).$$

Falso: Ricordando che si ha

$$\cos(t) = 1 - \frac{t^2}{2} + o(t^2),$$

si ha, ponendo $t = 6 x^2$,

$$\cos(6x^2) = 1 - \frac{(6x^2)^2}{2} + o((x^2)^2) = 1 - 18x^4 + o(x^4).$$

Pertanto

$$\frac{1 - \cos(6\,x^2)}{x^2} = \frac{1 - 1 + 18\,x^4 + \mathrm{o}(x^4)}{x^2} = \frac{18\,x^4 + \mathrm{o}(x^4)}{x^2} = 18\,x^2 + \mathrm{o}(x^2) \neq -18\,x^2 + \mathrm{o}(x^2) \,.$$

4D)

$$e^{6x} - 1 - \sin(6x) = 18x^2 + o(x^2)$$
.

Vero: Ricordando che

$$e^{t} = 1 + t + \frac{t^{2}}{2} + o(t^{2}), \quad \sin(t) = t - \frac{t^{3}}{6} + o(t^{3}) = t + o(t^{2}),$$

si ha, ponendo t = 6x,

$$e^{6x} = 1 + 6x + 18x^2 + o(x^2), \quad \sin(6x) = 6x + o(x^2).$$

Pertanto,

$$e^{6x} - 1 - \sin(6x) = 1 + 6x + 18x^2 + o(x^2) - 1 - 6x + o(x^2) = 18x^2 + o(x^2)$$
.

$$f(x) = \frac{(x^2 + 7)(x + 3)}{x - 3}.$$

a) Calcolare

$$\lim_{x \to +\infty} f(x)$$
, e $\lim_{x \to -\infty} f(x)$.

b) Calcolare

$$\lim_{x \to 3^+} f(x), \qquad e \qquad \lim_{x \to 3^-} f(x).$$

- c) Dimostrare che esiste il minimo di f(x) su $(3, +\infty)$.
- **d)** Dimostrare che $f((-\infty,3)) = \mathbb{R}$.

Soluzione:

a) Si ha

$$f(x) = \frac{(x^2 + 7)(x + 3)}{x - 3} = \frac{x^3}{x} \frac{\left(1 + \frac{7}{x^2}\right)\left(1 + \frac{3}{x}\right)}{1 - \frac{3}{x}} = x^2 \frac{\left(1 + \frac{7}{x^2}\right)\left(1 + \frac{3}{x}\right)}{1 - \frac{3}{x}}.$$

Si ha pertanto

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 \frac{\left(1 + \frac{7}{x^2}\right)\left(1 + \frac{3}{x}\right)}{1 - \frac{3}{x}} = (+\infty) \cdot \frac{(1+0)\left(1 + 0\right)}{1 - 0} = +\infty,$$

e

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 \frac{\left(1 + \frac{7}{x^2}\right) \left(1 + \frac{3}{x}\right)}{1 - \frac{3}{x}} = (+\infty) \cdot \frac{(1+0)(1+0)}{1-0} = +\infty.$$

b) Osserviamo che quando x tende a 3 da destra il binomio x-3 è positivo, mentre è negativo quando x tende a 3 da sinistra. Pertanto,

$$\lim_{x \to 3^+} \frac{1}{x - 3} = +\infty, \qquad e \qquad \lim_{x \to 3^-} \frac{1}{x - 3} = -\infty.$$

Dato che

$$\lim_{x \to 3} (x^2 + 7)(x + 3) = 16 \cdot 6 = 96 > 0,$$

Si ha

$$\lim_{x \to 3^{+}} f(x) = 96 \cdot (+\infty) = +\infty, \qquad e \qquad \lim_{x \to 3^{-}} f(x) = 96 \cdot (-\infty) = -\infty.$$

c) Dal punto a) si ha che

$$\lim_{x \to +\infty} f(x) = +\infty,$$

mentre dal punto **b**) si ha che

$$\lim_{x \to 3^+} f(x) = +\infty.$$

Pertanto, per una generalizzazione del teorema di Weierstrass, esiste il minimo di f(x) sulla semiretta $(3, +\infty)$.

d) Dal punto a) si ha che

$$\lim_{x \to -\infty} f(x) = +\infty,$$

mentre dal punto b) si ha che

$$\lim_{x \to 3^{-}} f(x) = -\infty.$$

Pertanto, per una generalizzazione del teorema dei valori intermedi si ha $f((-\infty,3)) = \mathbb{R}$.

$$f(x) = (x^2 - 2x - 14) e^x$$
.

- a) Calcolare i limiti di f(x) a più infinito e meno infinito.
- **b)** Calcolare $T_2(x;0)$.
- c) Determinare i punti stazionari di f(x) su \mathbb{R} , studiandone la natura.
- d) Determinare massimi e minimi relativi ed assoluti di f(x) sull'intervallo [3, 5].

Soluzione:

a) Si ha

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x^2 - 2x - 14) e^x = (+\infty) \cdot (+\infty) = +\infty.$$

Per il limite a meno infinito, poniamo y = -x; allora

$$\lim_{x \to -\infty} f(x) = \lim_{y \to +\infty} ((-y)^2 - 2(-y) - 14) e^{-y} = \lim_{y \to +\infty} \frac{y^2 + 2y - 14}{e^y} = 0,$$

dato che $e^y \otimes y^k$ per ogni k.

- b) Derivando, si ha
- (1) $f'(x) = (2x 2)e^x + (x^2 2x 14)e^x = (x^2 16)e^x,$
- e, derivando ancora,

$$f''(x) = 2x e^x + (x^2 - 16) e^x = (x^2 + 2x - 16) e^x$$
.

Dato che f(0) = -14, che f'(0) = -16 e che f''(0) = -16, si ha

$$T_2(x;0) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 = -14 - 16x - 8x^2.$$

c) Dalla (1) si ha $f'(x) = (x^2 - 16) e^x$, che si annulla se e solo se $x^2 - 16 = 0$, ovvero se e solo se $x = \pm 4$. Studiando il segno di f'(x) si ha il seguente schema:

da cui si deduce che x = -4 è un punto di massimo relativo, mentre x = 4 è di minimo relativo.

d) Dallo studio del segno della derivata prima, si ha che x=3 è di massimo relativo (dato che f'(3) < 0); che x=4 è di minimo relativo (come già sapevamo); che x=5 è di massimo relativo (dato che f'(5) > 0).

Si ha poi

$$f(3) = -11 e^3$$
, $f(4) = -6 e^4$, $f(5) = e^5$.

Osservando che la funzione f(x) è decrescente in [3,4], si ha f(3) > f(4), e quindi

$$\max(\{f(x)\,,\;x\in[3,5]\})=f(5)=\mathrm{e}^5\,,\qquad \min(\{f(x)\,,\;x\in[3,5]\})=f(4)=-6\,\mathrm{e}^4\,.$$