

FCC PART 22H, PART 24E MEASUREMENT AND TEST REPORT

For

Posh Mobile Limited

1011A, 10/F., Harbour Centre Tower 1, No. 1 Hok Cheung St., Hung Hom, Kowloon, Hong Kong

FCC ID: 2ABN6X700

Report Type: Original Report		Product Name: Equal Plus			
Test Engineer:	Lorin Biar	า	Lorin Dian		
Report Number:	RDG1609				
Report Date:	2016-11-0)7			
	Henry Dir		Henry Ding		
Reviewed By:	EMC Lea	der			
Test Laboratory:	Bay Area Compliance Laboratories Corp. (Chengdu 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China Tel: 028-65523123, Fax: 028-65525125 www.baclcorp.com				

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S)TEST METHODOLOGY	
Test Facility	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	6
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §1.1310 & §2.1093- RF EXPOSURE	9
APPLICABLE STANDARD	
Test Result	
FCC §2.1047 - MODULATION CHARACTERISTIC	10
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF OUTPUT POWER	11
APPLICABLE STANDARD	
Test Procedure	11
TEST EQUIPMENT LIST AND DETAILS	
Test Data	
FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
FCC §2.1051, §22.917(A) & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS.	
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	
FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS	35
APPLICABLE STANDARD	35
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §22.917(A) & §24.238(A) - BAND EDGES	
APPLICABLE STANDARDTEST PROCEDURE	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	

Bay Area Compliance Laboratories Corp. (Chengdu)

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY	50
APPLICABLE STANDARD	50
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	

Report No.: RDG160913001B Page 3 of 56

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The **Posh Mobile Limited** 's product, model number: **X700 (FCC ID: 2ABN6X700)** (the "EUT") in this report was a **Equal Plus**, which was measured approximately: 19.2 cm (L) × 10.2 cm (W) × 0.8 cm (H), rated input voltage: DC3.8V rechargeable Li-ion battery or DC5V from adapter.

Adapter information: Model: A31-501000

Input: 100-240V~50/60Hz 0.2A

Output: DC 5.0V, 1A

Note: The series product, model X700, X700A, X700B, X700C are electrically identical, the difference between them just have the different model name and appearance(colour), we selected X700 for fully testing, the details was explained in the declaration letter.

*All measurement and test data in this report was gathered from final production sample, serial number: 160913001 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2016-09-13, and EUT conformed to test requirement.

Objective

This report is prepared on behalf of **Posh Mobile Limited** in accordance with: Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communications Commission's rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2ABN6X700 FCC Part 15C DSS submissions with FCC ID: 2ABN6X700 FCC Part 15C DTS submissions with FCC ID: 2ABN6X700

Report No.: RDG160913001B Page 4 of 56

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J, Part 22 Subpart H, Part 24 Subpart E.

Applicable Standards: TIA/EIA 603-D-2010.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu).

Test Facility

The test site used by BACL to collect test data is located in the 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on April 24, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: RDG160913001B Page 5 of 56

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D 2010.

The test items were performed with the EUT operating at testing mode.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Universial Radio Communication Tester	CMU200	11-9435686-111

Configuration of Test Setup

Report No.: RDG160913001B Page 6 of 56

Block Diagram of Test Setup

Report No.: RDG160913001B Page 7 of 56

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310, §2.1093	RF Exposure	Compliance
§2.1046; § 22.913 (a); § 24.232 (c)	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
§ 2.1049; § 22.905 § 22.917; § 24.238	Occupied Bandwidth	Compliance
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliance
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	Compliance
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliance
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance

Report No.: RDG160913001B Page 8 of 56

Bay Area Compliance Laboratories Corp. (Chengdu)

FCC §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: RDG160913001-20.

Report No.: RDG160913001B Page 9 of 56

Bay Area Compliance Laboratories Corp. (Chengdu) FCC §2.1047 - MODULATION CHARACTERISTIC According to FCC § 2.1047(d), Part 22H & 24E, there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Report No.: RDG160913001B Page 10 of 56

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications..

According to §24.232 (d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Procedure

GSM/GPRS/EGPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of

time slots and power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850

> 30 dBm for GPRS 1900

> 27 dBm for EGPRS 850

> 26 dBm for EGPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH

channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stable)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH

channel (test channel) and BCCH channel]

Channel Type > Off

Bay Area Compliance Laboratories Corp. (Chengdu)

P0 > 4 dB

Slot Config > Unchanged (if already set under MS signal)

TCH > choose desired test channel

Hopping > Off Main Timeslot > 3

Network Coding Scheme > CS4 (GPRS) and MCS5 (EGPRS)

Bit Stream > 2E9-1 PSR Bit Stream

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Connection Press Signal on to turn on the signal and change settings

WCDMA-Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP

TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

	Loopback Mode	Test Mode 1		
WCDMA	Rel99 RMC	12.2kbps RMC		
General Settings	Power Control Algorithm	Algorithm2		
	βc / βd	8/15		

WCDMA HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP

TS34.121-1 specification.

	Mode	HSDPA	HSDPA	HSDPA	HSDPA	
	Subset	1	2	3	4	
	Loopback Mode			Test Mode	1	
	Rel99 RMC			12.2kbps RM	1C	
	HSDPA FRC			H-Set1		
MODMA	Power Control Algorithm			Algorithm2		
WCDMA General	βς	2/15	12/15	15/15	15/15	
Settings	βd	15/15	15/15	8/15	4/15	
Settings	βd (SF)		64			
	βc/ βd	2/15	12/15	15/8	15/4	
	βhs	4/15	24/15	30/15	30/15	
	MPR(dB)	0	0	0.5	0.5	
	DACK			8		
	DNAK			8		
HSDPA	DCQI	8				
Specific Settings	ecific Ack-Nack repetition		3			
Settings	CQI Feedback			4ms		
	CQI Repetition Factor			2		
	Ahs=βhs/ βc			30/15		

Report No.: RDG160913001B Page 12 of 56

WCDMA HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the $3\mathsf{GPP}$ TS34.121-1 specification.

Compact Com		Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA		
Rel99 RMC		Subset	1			-	5		
HSDPA FRC			ck Mode Test Mode 1						
HSUPA Test		Rel99 RMC							
Power Control Algorithm2 Algorithm2 βc		HSDPA FRC							
Algorithm Algorithm Algorithm Algorithm Algorithm Be Be Be Be Be Be Be B				HS	UPA Loopba	ack			
Settings βc	WCDMA				Algorithm2				
Settings βd 15/15 15/15 9/15 15/15 0 βec 209/225 12/15 30/15 2/15 5/15 βc/ βd 11/15 6/15 15/9 2/15 5/15 βhs 22/15 12/15 30/15 4/15 5/15 CM(dB) 1.0 3.0 2.0 3.0 1.0 MPR(dB) 0 2 1 2 0 DACK 8 DNAK 8 DCQI 8 Ack-Nack repetition factor 3 Settings CQI Feedback 4ms CQI Repetition Factor 2 Ahs=βhs/βc 30/15 DE-DPCCH 6 8 8 5 7 DHARQ 0 0 0 0 0 AG Index 20 12 15 17 21 ETFCI 75 67 92 71 81 Associated Max UL Data Rate kbps 242.1 174.9 482.8 205.8 308.9 HSUPA Specific Settings Reference E_FCIs E-TFCI PO 18 E-TFCI PO 18 E-TFCI PO 18 E-TFCI PO 23 92 E-TFCI PO 23 E-TFCI PO 26 E-TFCI PO 26 E-TFCI PO 26 E-TFCI	General	o	11/15	6/15	15/15	2/15	15/15		
Sec 209/225 12/15 30/15 2/15 5/15 βec 209/225 12/15 30/15 2/15 5/15 βhs 22/15 12/15 30/15 4/15 5/15 CM(dB) 1.0 3.0 2.0 3.0 1.0 MPR(dB) 0 2 1 2 0 DACK 8 DNAK 8 DCQI 8 Ack-Nack repetition factor 3 Settings CQI Repetition Factor 2 Ahs=βhs/βc 30/15 CQI Repetition Factor 2 Ahs=βhs/βc 30/15 DE-DPCCH 6 8 8 5 7 DHARQ 0 0 0 0 0 AG Index 20 12 15 17 21 ETFCI 75 67 92 71 81 Associated Max UL Data Rate kbps 242.1 174.9 482.8 205.8 308.9 HSUPA Specific Settings Reference E_FCIs E-TFCI PO 4 E-TFCI PO 4 11 E-TFCI PO 4 E-TFCI PO 18 E-TFCI PO 18 E-TFCI PO 18 E-TFCI PO 23 92 E-TFCI PO 23 E-TFCI PO 26 E-TFCI PO 26 E-TFCI PO 26 E-TFCI PO 26 E-TFCI PO 26 E-TFCI PO 26 E-TFCI PO 36 E-TFCI PO 26 E-TFCI PO 36 E-TFCI PO 36 E-TFCI PO 36 E-TFCI PO 36	Settings								
Sc/ βd									
Shs 22/15 12/15 30/15 4/15 5/15							3/13		
CM(dB) 1.0 3.0 2.0 3.0 1.0 MPR(dB) 0 2 1 2 0 DACK 8 DNAK 8 DNAK 8 DNAK 8 DCQI 8 Ack-Nack repetition factor 3 Settings CQI Feedback 4ms CQI Repetition Factor 2 Ass=βhs/βc 30/15 DE-DPCCH 6 8 8 5 7 DHARQ 0 0 0 0 0 0 0 AG Index 20 12 15 17 21 ETFCI 75 67 92 71 81 Associated Max UL Data Rate kbps 242.1 174.9 482.8 205.8 308.9 Settings Reference E_FCIs E-TFCI PO 4 E-TFCI PO 4 E-TFCI PO 18 E-TFCI							- E/1E		
MPR(dB)									
HSDPA Specific Settings Ack-Nack repetition factor Settings Ack-Nack repetition factor Settings Ack-Nack repetition Gactor Settings Ack-Nack repetition Gactor Ack-Nack repetition Gactor Settings Ack-Nack repetition Gactor Settings Ack-Nack repetition Gactor Settings Ack-Nack repetition Gactor Settings Settings Ack-Nack repetition Settings Settings Settings Ack-Nack repetition Settings Setti									
HSDPA Specific Settings Ack-Nack repetition factor Settings CQI Feedback Ams CQI Repetition Factor 2 Settings DE-DPCCH 6 8 8 5 7 Settings DHARQ 0 0 0 0 0 O O O O O			U				U		
HSDPA Specific Settings Ack-Nack repetition factor Settings									
Ack-Nack repetition factor 3 3 3 3 3 3 3 3 3									
Specific Settings	HEDDA								
CQI Feedback		factor			3				
CQI Repetition Factor 2			Ame						
Factor	Octungs		n						
Ahs=βhs/βc 30/15									
DE-DPCCH 6 8 8 5 7			30/15						
DHARQ			6	8		5	7		
AG Index 20 12 15 17 21 ETFCI 75 67 92 71 81 Associated Max UL Data Rate kbps 242.1 174.9 482.8 205.8 308.9 E-TFCI 11 E							-		
HSUPA Specific Settings Reference E_FCls Re			_	_	_	-	-		
Associated Max UL									
HSUPA Specific Settings E-TFCI 11 E E-TFCI 12 E-TFCI 13 E-TFCI 14 E-TFCI 15 E-TF									
HSUPA Specific Settings Reference E_FCls Reference E_FCls E-TFCl PO 4 E-TFCl PO 4 E-TFCl PO 4 E-TFCl PO 18 E-TFCl PO 18 E-TFCl PO 18 E-TFCl PO 18 E-TFCl PO 23 E-TFCl PO 18 E-TFCl PO 23 E-TFCl PO 18 E-TFCl PO 26 E-TFCl PO 18		Data Rate kbps	242.1	174.9	482.8	205.8	308.9		
	Specific	Reference E_FCls	E-TFC E-TFCI E-TFCI E-TFCI E-TFCI E-TFCI	I PO 4 CI 67 PO 18 CI 71 I PO23 CI 75 I PO26 CI 81	11 E-TFCI PO4 E-TFCI 92 E-TFCI	E-TFC E-TFCI E-TFC E-TFC E-TFC E-TFC E-TFC	EI PO 4 CI 67 I PO 18 CI 71 I PO23 CI 75 I PO26 CI 81		

Report No.: RDG160913001B Page 13 of 56

HSPA+

The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34.121-1

Sub- test	β _c (Note3)	β _d	β _{HS} (Note1)	β_{ec}	β _{ed} (2xSF2) (Note 4)	β _{ed} (2xSF4) (Note 4)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	(Note 5)	E-TFCI (boost)
1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
	Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hz} = 30/15 * β_c .										
	Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0).										
Note 3	Note 3: DPDCH is not configured, therefore the β_c is set to 1 and β_d = 0 by default. Note 4: β_{ed} can not be set directly; it is set by Absolute Grant Value.										
	Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-										
Note 5	DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH										

DC-HSDPA

The following tests were conducted according to the test requirements in Table C.8.1.12 of 3GPP TS 34.121-1

configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm.

Table C.8.1.12: Fixed Reference Channel H-Set 12

Parameter Unit Value						
Nominal	Avg. Inf. Bit Rate	kbps	60			
Inter-TTI	Distance	TTľs	1			
Number	of HARQ Processes	Proces	6			
		ses	· ·			
Informati	on Bit Payload (N_{INF})	Bits	120			
Number	Code Blocks	Blocks	1			
Binary Cl	hannel Bits Per TTI	Bits	960			
Total Ava	ailable SML's in UE	SML's	19200			
Number (of SML's per HARQ Proc.	SML's	3200			
Coding F	Rate		0.15			
Number (of Physical Channel Codes	Codes	1			
Modulatio			QPSK			
Note 1: The RMC is intended to be used for DC-HSDPA						
mode and both cells shall transmit with identical						
parameters as listed in the table.						
Note 2: Maximum number of transmission is limited to 1, i.e.,						
	retransmission is not allowed. The		cy and			
	constellation version 0 shall be use	ed.				

Report No.: RDG160913001B Page 14 of 56

Radiated method:

ANSI/TIA-603-D section 2.2.17

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2015-12-02	2016-12-01
Sunol Sciences	Broadband Antenna	JB3	A101808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2015-12-02	2016-12-01
ETS	Horn Antenna	3115	003-6076	2015-12-02	2016-12-01
ETS	Horn Antenna	3115	6751	2014-06-16	2017-06-15
EMCO	Adjustable Dipole Antenna	3121C	9109-258	N/A	N/A
HP	Signal Generator	8648C	3623A04150	2016-5-23	2017-5-22
WILTRON	SWEPT FREQUENCY SYNTHESIZER	6737	213001	2016-5-23	2017-5-22
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2015-11-10	2016-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2015-11-10	2016-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2015-11-10	2016-11-09
R&S	Universal Radio Communication Tester	CMU200	11-9435686- 111	2016-07-28	2017-07-27

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RDG160913001B Page 15 of 56

Test Data

Environmental Conditions

Temperature:	28.8 °C
Relative Humidity:	49 %
ATM Pressure:	101 kPa

The testing was performed by Lorin Bian on 2016-11-06.

Conducted Output Power

Cellular Band (Part 22H) & PCS Band (Part 24E)

		Peak Output Power (dBm)								
Band	Channel No.	GSM	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1 TX Slot	EDGE 2 TX Slot	EDGE 3 TX Slot	EDGE 4 TX Slot
	128	32.24	32.23	31.40	29.61	28.87	26.67	25.74	23.92	22.98
Cellular	190	32.16	32.18	31.28	29.44	28.69	26.17	25.30	23.46	22.57
	251	32.14	32.16	31.21	29.39	28.68	25.96	24.97	23.21	22.26
	512	30.75	30.62	29.70	27.48	26.30	25.41	24.16	22.12	20.98
PCS	661	30.98	30.91	30.13	28.13	26.80	26.24	25.17	22.95	21.85
	810	30.96	30.90	30.16	28.32	27.01	26.55	25.54	23.36	22.15

WCDMA Band II

			Average Output Power (dBm)							
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)			
Rel 99	1	22.26	2.77	22.65	3.05	22.77	2.77			
	1	21.19	2.74	21.70	2.95	21.79	2.84			
HSDPA	2	21.15	2.71	21.56	3.17	21.62	2.69			
(QPSK)	3	20.93	2.88	21.58	3.04	21.69	2.81			
	4	21.05	2.72	21.58	2.99	21.58	2.69			
	1	21.01	2.84	21.61	3.10	21.76	2.70			
LICLIDA	2	21.02	2.65	21.62	3.03	21.81	2.67			
HSUPA (QPSK)	3	21.16	2.80	21.62	2.98	21.67	2.77			
(QI SIV)	4	21.11	2.89	21.63	3.05	21.58	2.87			
	5	21.24	2.79	21.58	2.99	21.85	2.77			
D0	1	21.27	2.75	21.69	3.00	21.65	2.74			
DC-	2	21.20	2.69	21.49	3.15	21.94	2.87			
HSDPA (QPSK)	3	21.37	2.70	21.53	3.05	21.68	2.82			
(QI OIL)	4	21.17	2.87	21.63	3.02	21.70	2.88			
HSPA+ (16QAM)	1	21.02	2.81	21.61	3.16	21.89	2.66			

Report No.: RDG160913001B Page 16 of 56

WCDMA Band V

			Average Output Power (dBm)							
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)			
Rel 99 (QPSK)	1	22.13	3.21	22.18	3.17	22.05	3.33			
	1	21.04	3.20	20.99	3.21	21.26	3.26			
HSDPA	2	21.07	3.26	21.06	3.23	21.23	3.39			
(QPSK)	3	21.03	3.27	21.18	3.14	21.12	3.3			
	4	20.90	3.14	21.03	3.25	21.15	3.4			
	1	21.14	3.25	21.06	3.28	21.22	3.35			
HSUPA	2	21.13	3.17	20.99	3.16	21.12	3.39			
(QPSK)	3	20.99	3.18	21.00	3.18	21.03	3.45			
	4	20.98	3.20	21.01	3.28	20.94	3.31			
	1	21.14	3.13	21.03	3.19	21.04	3.23			
	2	20.97	3.32	20.92	3.21	20.90	3.22			
DC-HSDPA	3	20.91	3.15	21.22	3.08	20.94	3.24			
(QPSK)	4	21.01	3.24	21.23	3.05	20.89	3.42			
	5	21.06	3.29	21.02	3.22	20.96	3.27			
HSPA+ (16QAM)	1	21.00	3.18	21.07	3.22	21.08	3.22			

Report No.: RDG160913001B Page 17 of 56

Peak-to-average ratio (PAR)

WCDMA Band II

Low Channel

Middle Channel

Report No.: RDG160913001B Page 18 of 56

Bay Area Compliance Laboratories Corp. (Chengdu)

WCDMA Band V

Low Channel

Report No.: RDG160913001B Page 19 of 56

Middle Channel

High Channel

Bay Area Compliance Laboratories Corp. (Chengdu)

ERP & EIRP

		Descione	Su	bstituted Me	ethod	Absolute		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
			GSM 8	50 Middle C	hannel			
836.6	Н	95.6	18.5	0.0	0.6	17.9	38.45	20.6
836.6	V	105.9	30.9	0.0	0.6	30.3	38.45	8.2
			EDGE 8	850 Middle C	Channel			
836.6	Н	89.43	12.3	0.0	0.6	11.7	38.45	26.8
836.6	V	99.89	24.9	0.0	0.6	24.3	38.45	14.2
	WCDMA Band V Middle Channel							
836.6	Н	88.5	11.4	0.0	0.6	10.8	38.45	27.7
836.6	V	95.9	20.9	0.0	0.6	20.3	38.45	18.2
			PCS 19	900 Middle C	hannel			
1880	Н	94.36	20.7	8.0	0.9	27.8	33.0	5.2
1880	V	97.09	24.7	8.0	0.9	31.8	33.0	1.2
EGPRS 1900 Middle Channel								
1880	Н	90.28	16.7	8.0	0.9	23.8	33.0	9.2
1880	V	92.8	20.4	8.0	0.9	27.5	33.0	5.5
	WCDMA Band II Middle Channel							
1880	Н	88.97	15.4	8.0	0.9	22.5	33.0	10.5
1880	V	89.25	16.9	8.0	0.9	24.0	33.0	9.0

Note:

Report No.: RDG160913001B Page 21 of 56

The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
 Absolute Level = SG Level - Cable loss + Antenna Gain
 Margin = Limit-Absolute Level

FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH

Applicable Standard

FCC §2.1049, §22.917 and §22.905, §24.238.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1
N/A	Two-way Spliter	N/A	OE0120121	Each Time	1
N/A	10dB Attenuator	N/A	N/A	Each Time	1

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RDG160913001B Page 22 of 56

Test Data

Environmental Conditions

Temperature:	28.8 °C
Relative Humidity:	49 %
ATM Pressure:	101 kPa

The testing was performed by Lorin Bian on 2016-11-06.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

Band	Test Channel	Mode	99% Occupied Bandwidth (kHz)	26 dB Occupied Bandwidth (kHz)
Cellular		GSM	248	315
Octidiai		EDGE	248	311
PCS	M	PCS	244	319
PCS		EDGE	254	318
WCDMA Band		Rel 99	4168	4669
WCDIVIA Bariu		HSDPA	4188	4709
11		HSUPA	4188	4689
WCDMA Band		Rel 99	4168	4709
		HSDPA	4168	4669
V		HSUPA	4168	4709

Report No.: RDG160913001B Page 23 of 56

GMSK 850 Cellular Band

GMSK PCS Band

EDGE 850 Cellular Band

EDGE PCS Band

REL99 Band II

HSDPA Band II

HSUPA Band II

REL99 Band V

HSDPA Band V

HSUPA Band V

FCC §2.1051, §22.917(a) & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, §22.917(a) and §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1
N/A	Two-way Spliter	N/A	OE0120121	Each Time	1
N/A	10dB Attenuator	N/A	N/A	Each Time	/

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RDG160913001B Page 29 of 56

Test Data

Environmental Conditions

Temperature:	28.8 °C		
Relative Humidity:	49 %		
ATM Pressure:	101 kPa		

The testing was performed by Lorin Bian on 2016-11-06.

Please refer to the following plots.

GSM850_Middle Channel

Report No.: RDG160913001B Page 30 of 56

PCS 1900_ Middle Channel

REL99 Band II_ Middle Channel

Start 1 GHz

6.NOV.2016 13:39:33

900 MHz/

Stop 10 GHz

Bay Area Compliance Laboratories Corp. (Chengdu)

Report No.: RDG160913001B Page 34 of 56

FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, §22.917 and § 24.238.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = 10 lg (TXpwr in Watts/0.001) – the absolute level

Spurious attenuation limit in dB = $43 + 10 \text{ Log}_{10}$ (power out in Watts)

Report No.: RDG160913001B Page 35 of 56

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2015-12-02	2016-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2015-12-02	2016-12-01
Sunol Sciences	Broadband Antenna	JB3	A101808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2015-12-02	2016-12-01
ETS	Horn Antenna	3115	003-6076	2015-12-02	2016-12-01
ETS	Horn Antenna	3115	6751	2014-06-16	2017-06-15
EMCO	Adjustable Dipole Antenna	3121C	9109-258	N/A	N/A
HP	Signal Generator	8648C	3623A04150	2016-5-23	2017-05-22
WILTRON	SWEPT FREQUENCY SYNTHESIZER	6737	213001	2016-5-23	2017-5-22
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2016-05-20	2017-05-19
HP	Amplifier	8449B	3008A00277	2015-12-02	2016-12-01
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2015-11-10	2016-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2015-11-10	2016-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2015-11-10	2016-11-09
Ducommun Technolagies	Horn Antenna	ARH-4223- 02	1007726-01 1315	2016-08-18	2017-08-18
Ducommun Technolagies	Horn Antenna	ARH-2823- 02	1007726-01 1312	2016-08-18	2017-08-18

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.2 °C	
Relative Humidity:	50 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Lorin Bian on 2016-11-03.

Report No.: RDG160913001B Page 36 of 56

EUT Operation Mode: Transmitting

Cellular Band (PART 22H)

30 MHz-10 GHz:

		Danaissan	Su	bstituted Me	ethod	Abaaluta		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
		G	SM850, Fr	equency:836.	600 MHz			
1673.2	Н	44.99	-58.1	7.9	0.8	-51.0	-13.0	38.0
1673.2	V	43.85	-57.5	7.9	0.8	-50.4	-13.0	37.4
2509.8	Н	55.98	-43.8	8.9	1.3	-36.2	-13.0	23.2
2509.8	V	52.49	-45	8.9	1.3	-37.4	-13.0	24.4
3346.4	Н	50.62	-46.1	8.7	1.3	-38.7	-13.0	25.7
3346.4	V	45.25	-51.5	8.7	1.3	-44.1	-13.0	31.1
140.58	Н	31.36	-82.9	0.0	0.2	-83.1	-13.0	70.1
140.56	V	29.68	-78.7	0.0	0.2	-78.9	-13.0	65.9
		WCDM	A Band V F	R99,Frequenc	y:836.600 MH	Z		
1673.2	Н	43.16	-60	7.9	0.8	-52.9	-13.0	39.9
1673.2	V	41.8	-59.6	7.9	0.8	-52.5	-13.0	39.5
2509.8	Н	48.12	-51.6	8.9	1.3	-44.0	-13.0	31.0
2509.8	V	46	-51.5	8.9	1.3	-43.9	-13.0	30.9
3346.4	Н	40.36	-56.3	8.7	1.3	-48.9	-13.0	35.9
3346.4	V	36.35	-60.4	8.7	1.3	-53.0	-13.0	40.0
140.58	Н	31.53	-82.7	0.0	0.2	-82.9	-13.0	69.9
140.56	V	29.67	-78.7	0.0	0.2	-78.9	-13.0	65.9

Report No.: RDG160913001B Page 37 of 56

PCS Band (PART 24E)

30 MHz-20 GHz:

		Descione	Su	bstituted Me	ethod	Absolute		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
		GS	SM1900, Fr	equency:1880	0.000 MHz			
3760	Н	52.47	-42.4	8.8	1.4	-35.0	-13.0	22.0
3760	V	48.14	-46.7	8.8	1.4	-39.3	-13.0	26.3
5640	Н	48.9	-44.2	10.3	1.8	-35.7	-13.0	22.7
5640	V	46.64	-46.5	10.3	1.8	-38.0	-13.0	25.0
7520	Н	56.5	-33.1	10.3	2.3	-25.1	-13.0	12.1
7520	V	53.1	-37.8	10.3	2.3	-29.8	-13.0	16.8
140.58	Н	31.33	-82.9	0.0	0.2	-83.1	-13.0	70.1
140.56	V	29.57	-78.8	0.0	0.2	-79.0	-13.0	66.0
		WCDMA	Band II, R	99, Frequenc	y:1880.000 MI	Hz		
3760	Н	49.14	-45.7	8.8	1.4	-38.3	-13.0	25.3
3760	V	46.9	-48	8.8	1.4	-40.6	-13.0	27.6
5640	Н	41.36	-51.7	10.3	1.8	-43.2	-13.0	30.2
5640	V	40.95	-52.2	10.3	1.8	-43.7	-13.0	30.7
7520	Н	48.76	-40.9	10.3	2.3	-32.9	-13.0	19.9
7520	V	45.4	-45.5	10.3	2.3	-37.5	-13.0	24.5
140.58	Н	31.2	-83	0.0	0.2	-83.2	-13.0	70.2
140.56	V	29.66	-78.7	0.0	0.2	-78.9	-13.0	65.9

Note:

Report No.: RDG160913001B Page 38 of 56

¹⁾ The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.

²⁾ Absolute Level = SG Level - Cable loss + Antenna Gain

³⁾ Margin = Limit-Absolute Level

FCC §22.917(a) & §24.238(a) - BAND EDGES

Applicable Standard

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1
N/A	Two-way Spliter	N/A	OE0120121	Each Time	1
N/A	10dB Attenuator	N/A	N/A	Each Time	1

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.8 °C
Relative Humidity:	49 %
ATM Pressure:	101 kPa

The testing was performed by Lorin Bian on 2016-11-06.

Report No.: RDG160913001B Page 39 of 56

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following plots.

GSM 850, Left Band Edge

GSM 850, Right Band Edge

Report No.: RDG160913001B Page 40 of 56

EDGE 850, Left Band Edge

EDGE 850, Right Band Edge

EDGE 1900, Left Band Edge

EDGE 1900, Right Band Edge

WCDMA Band II:

REL99 Band II, Left Band Edge

REL99 Band II, Right Band Edge

Report No.: RDG160913001B Page 44 of 56

HSDPA Band II, Left Band Edge

HSDPA Band II, Right Band Edge

HSUPA Band II, Left Band Edge

HSUPA Band II, Right Band Edge

WCDMA Band V

REL99 Band V, Left Band Edge

REL99 Band V Right Band Edge

Report No.: RDG160913001B Page 47 of 56

HSDPA Band V, Left Band Edge

HSDPA Band V, Right Band Edge

HSUPA Band V, Left Band Edge

HSUPA Band V, Right Band Edge

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §22.355, §24.235

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Range (MHz)	Base, fixed (ppm)	Mobile > 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Report No.: RDG160913001B Page 50 of 56

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
FLUKE	Multimeter	1587	27870099	2015-12-30	2015-12-29
R&S	Universal Radio Communication Tester	CMU200	11-9435686- 111	2016-07-28	2017-07-27
N/A	RF Cable	N/A	N/A	Each Time	1
BACL	High Temperature Test Chamber	BTH-150	30024	2015-12-02	2016-12-01

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.2 °C
Relative Humidity:	50 %
ATM Pressure:	101.2 kPa

The testing was performed by Lorin Bian on 2016-11-03.

Cellular Band (Part 22H)

GMSK, Middle Channel, f _c = 836.6 MHz							
Temperature	Voltage	Frequency Error	Frequency Error	Limit			
℃	V _{DC}	Hz	ppm	ppm			
-30		-7	-0.008				
-20		-9	-0.011				
-10		-11	-0.013				
0		-6	-0.007				
10	3.8	-2	-0.002				
20		-8	-0.010	2.5			
30		-10	-0.012				
40		-10	-0.012				
50		-10	-0.012				
20	3.4	-7	-0.008				
20	4.3	-14	-0.017				

Report No.: RDG160913001B Page 51 of 56

Cellular Band (Part 22H)

EDGE, Middle Channel, f _c = 836.6 MHz							
Temperature	Voltage	Frequency Error	Frequency Error	Limit			
°C	V _{DC}	Hz	ppm	ppm			
-30		-11	-0.013				
-20		-9	-0.011				
-10		-3	-0.004				
0		-4	-0.005				
10	3.8	-10	-0.012				
20		-4	-0.005	2.5			
30		-13	-0.016				
40		-11	-0.013				
50		-8	-0.010				
20	3.4	-4	-0.005				
20	4.3	-10	-0.012				

PCS Band (Part 24E)

	GMSK, Middle Channel, f _c = 1880.0 MHz						
Temperature	Voltage	Frequency Error	Frequency Error	Result			
${\mathbb C}$	V _{DC}	Hz	ppm				
-30		15	0.008				
-20		19	0.010				
-10		16	0.009				
0		18	0.010				
10	3.8	12	0.006				
20		13	0.007	Compliance			
30		13	0.007				
40		20	0.011				
50		20	0.011				
20	3.4	13	0.007				
20	4.3	12	0.006				

Report No.: RDG160913001B Page 52 of 56

PCS Band (Part 24E)

EDGE, Middle Channel, f _c = 1880.0 MHz						
Temperature	Voltage	Frequency Error	Frequency Error	Result		
${\mathbb C}$	V_{DC}	Hz	ppm			
-30		17	0.009			
-20		12	0.006			
-10		11	0.006			
0		7	0.004			
10	3.8	9	0.005			
20		6	0.003	Compliance		
30		7	0.004			
40		12	0.006			
50		4	0.002			
20	3.4	9	0.005			
20	4.3	14	0.007			

WCDMA Band V: Re99

Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit
°C	V _{DC}	Hz	ppm	ppm
-30		7	0.008	2.5
-20		5	0.006	2.5
-10		5	0.006	2.5
0		9	0.011	2.5
10	3.8	7	0.008	2.5
20		10	0.012	2.5
30		10	0.012	2.5
40		9	0.011	2.5
50		13	0.016	2.5
20	3.4	7	0.008	2.5
20	4.3	10	0.012	2.5

Report No.: RDG160913001B Page 53 of 56

WCDMA Band II: Re99

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
℃	V _{DC}	Hz	ppm	
-30		15	0.008	
-20		12	0.006	
-10		10	0.005	
0		10	0.005	
10	3.8	10	0.005	
20		13	0.007	Compliance
30		4	0.002	
40		11	0.006	
50		13	0.007	
20	3.4	8	0.004	
20	4.3	3	0.002	

WCDMA Band V: HSDPA

Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit
${\mathbb C}$	V _{DC}	Hz	ppm	ppm
-30		9	0.011	2.5
-20		10	0.012	2.5
-10		6	0.007	2.5
0		9	0.011	2.5
10	3.8	10	0.012	2.5
20		4	0.005	2.5
30		5	0.006	2.5
40		10	0.012	2.5
50		5	0.006	2.5
20	3.4	5	0.006	2.5
20	4.3	13	0.016	2.5

Report No.: RDG160913001B Page 54 of 56

WCDMA Band II: HSDPA

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
℃	V _{DC}	Hz	ppm	
-30		11	0.006	
-20		9	0.005	
-10		12	0.006	
0		21	0.011	
10	3.8	15	0.008	
20		12	0.006	Compliance
30		11	0.006	
40		12	0.006	
50		14	0.007	
20	3.4	15	0.008	
20	4.3	14	0.007	

WCDMA Band V: HSUPA

Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit
°C	V _{DC}	Hz	ppm	ppm
-30		8	0.010	2.5
-20		10	0.012	2.5
-10		7	0.008	2.5
0		11	0.013	2.5
10	3.8	8	0.010	2.5
20		10	0.012	2.5
30		9	0.011	2.5
40		3	0.004	2.5
50		11	0.013	2.5
20	3.4	9	0.011	2.5
20	4.3	5	0.006	2.5

Report No.: RDG160913001B Page 55 of 56

WCDMA Band II: HSUPA

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
℃	V _{DC}	Hz	ppm	
-30		18	0.010	
-20		19	0.010	
-10		16	0.009	
0		10	0.005	
10	3.8	20	0.011	
20		18	0.010	Compliance
30		20	0.011	
40		22	0.012	
50		15	0.008	
20	3.4	16	0.009	
20	4.3	12	0.006	

***** END OF REPORT *****

Report No.: RDG160913001B Page 56 of 56