

25. Dans le plan de Gauss, la figure ci-dessous représente les trois racines de :

1. i
2. $i - 1$
3. $i + i$
4. i
5. $-i$

26. Si on augmente de $\pi/2$ l'argument d'un nombre complexe z , cela équivaut à :

1. multiplier z par i
2. Ajouter 1 à la partie imaginaire de z
3. multiplier z par $-i$
4. Multiplier z par \bar{z}
5. multiplier z par $-z$

27. Soient $z = x + iy \in \mathbb{C}$ et \bar{z} son conjugué. L'expression fausse est :

1. $z = 0$ ssi $x = 0$ et $y = 0$
 2. z^2 réel > 0 ssi $y = 0$ et $x \neq 0$
 3. z réelssi $z = \bar{z}$
 4. z imaginaire purssi $z + \bar{z} = 0$
 5. z^2 réel < 0 ssi $x = 0$ et $y \neq 0$
- (MB. - 80)

28. On note $a_1 ; a_2 ; a_3$ les trois racines cubiques de 1.

$$a_1^2 + a_2^2 + a_3^2 =$$

www.ecoles-rdc.net

1. 3
 2. 1
 3. $\frac{1}{2}$
 4. 0
 5. $i\sqrt{3}$
- (MB. - 80)

29. Dans \mathbb{C} , les solutions de, l'équation $z^2 - z - 1 = i(2z - 1)$ sont :

1. $1-i ; -i$
 2. $1-i ; -2i$
 3. $-2+i ; i$
 4. $1-i ; 2i$
 5. $1+i ; i$
- (MB. - 81)

30. Dans le plan de Gauss, les points A, B, D, E représentent les racines quatrièmes du nombre complexe dont l'image est :

1. D
2. B
3. A
4. E
5. C

