

EE/COE 152: Basic Electronics

Lecture 3

A.S Agbemenu

https://sites.google.com/site/agbemenu/courses/ee-coe-152

Books:

Microelcetronic Circuit Design (Jaeger/Blalock) Microelectronic Circuits (Sedra/Smith)

EE/COE 152 – A.S Agbemenu

Outline

- PN Junction
- Diode Operation Modes
- Diode Models
- Diode Circuit Analysis
- Rectifier Circuits

PN Junction

- A PN junction is formed when a P-type (acceptor) semiconductor is joined to a N-type (donor) semiconductor such that the crystal structure remains continuous at the boundary
- This type of semiconductor configuration is call a *diode*

The PN Characteristics

- Electrons diffuse from the n-region junction to the p-region junction
- This diffusion created negative ions at the p-side of the junction and positive ions at the n-side of the junction
- Enough potential is built up to prevent any further diffusion of charge carriers
- This potential is Barrier/Junction Potential and the charged region Depletion region/layer

The Diode

- The diode operates in three modes
 - No Bias Mode
 - When no external voltage is applied to the terminals
 - Forward Bias Mode
 - When the terminals are connected such that the positive terminal is connected to the P-region and the negative terminal is connected to the N-region
 - Reverse Bias Mode
 - When the negative terminal is connected to the P-region and the positive terminal to the N-region

EE/COE 152 – A.S Agbemenu

No Bias Mode

- Majority carriers diffuse into other region causing diffusion current, $I_{\scriptscriptstyle D}$
- Thermally generated minority charge carriers drift (generate drift current, I_s) across the junction due to electric field generated by the depletion region.

Reverse Bias Mode

- In this mode the junction potential is effectively reinforced widening the depletion layer
- Free electrons from the n-region are attracted towards the positive terminal and electrons from the negative terminal enter the p-region widening the depletion layer

EE/COE 152 - A.S Agbemenu

Reverse Bias Mode

- In reverse bias mode a small *leakage current* flows through the junction
- Increasing the reverse voltage sufficiently will overheat the junction. This voltage is the *breakdown voltage*
- The thermal energy created large electron-hole pair causing large currents to flow in a phenomenon called avalanche breakdown

Forward Bias Mode

- In this mode, the electric filed is applied in the opposite direction to the barrier potential which results in the depletion layer becoming very thin
- When the applied voltage is greater than the barrier potential (0.7V for silicon and 0.3V for germanium), the diode starts conducting

Generalized Diode Operation

Diode Models

- In the forward bias mode, the diode can be modeled with
 - Ideal Model
 - The diode is modeled as a switch with no resistance
 - Constant Voltage Drop Model
 - The diode is modeled as having a constant voltage drop after which it behave as a switch
 - Exponential I-V Model
 - The diode equation defines the operation of the diode

EE/COE 152 – A.S Agbemenu

Ideal Diode Model

Diode does not drop any voltage across the terminal

EE/COE 152 – A.S Agbemenu

Constant Voltage Drop Model

$$v_D < 0.7 \Rightarrow i_D = 0$$

$$i_D > 0 \Rightarrow v_D = 0.7$$

Constant Voltage Drop Model

EE/COE 152 – A.S Agbemenu

Exponential I-V Model

Diode Equation

$$i_D = I_S \left[\exp \left(\frac{q v_D}{nkT} \right) - 1 \right] = I_S \left[\exp \left(\frac{v_D}{nV_T} \right) - 1 \right]$$

where I_s = reverse saturation current (A)

 v_D = voltage applied to diode (V)

q = electronic charge (1.60 x 10⁻¹⁹ C)

k = Boltzmann's constant (1.38 x 10⁻²³ J/K)

T = absolute temperature

n = nonideality factor (dimensionless)

 $V_T = \frac{kT}{a}$ = thermal voltage (V) (25 mV at room temp.)

 $I_{\rm S}$ is typically between 10⁻¹⁸ and 10⁻⁹ A, and is strongly temperature dependent due to its dependence on n_i^2 . The nonideality factor is typically close to 1, but approaches 2 for devices with high current densities. It is assumed to be 1 in this text.

EE/COE 152 - A.S Agbemenu

Diode Equation

 $I_{\rm s}$, the reverse bias saturation current for an ideal p-n diode is

$$I_{\rm S} = eA\left(\sqrt{\frac{D_{\rm p}}{\tau_{\rm p}}}\frac{n_{\rm i}^2}{N_{\rm D}} + \sqrt{\frac{D_{\rm n}}{\tau_{\rm n}}}\frac{n_{\rm i}^2}{N_{\rm A}}\right), \tag{Schubert 2006, 61}$$

where

 $I_{\rm s}$ is the reverse bias saturation current,

e is elementary charge

A is the cross-sectional area

 $D_{\rm pp}$ are the diffusion coefficients of holes and electrons, respectively,

 $N_{\rm D,A}$ are the donor and acceptor concentrations at the n side and p side, respectively,

 n_i is the intrinsic carrier concentration in the semiconductor material,

 $\tau_{p,n}$ are the carrier lifetimes of holes and electrons, respectively.

Diode Equation

Diode I-V characteristics curve showing Is

EE/COE 152 – A.S Agbemenu

Diode Models

- In the forward bias mode, the diode can be modeled with
 - Ideal Model
 - The diode is modeled as a switch with no resistance
 - Constant Voltage Drop Model
 - The diode is modeled as having a constant voltage drop after which it behave as a switch
 - Exponential I-V Model
 - The diode equation defines the operation of the diode

Diode Equations

• Reverse Bias:
$$i_D = I_S \left[\exp \left(\frac{v_D}{nV_T} \right) - 1 \right] \cong I_S [0-1] \cong -I_S$$

• No Bias:
$$i_D = I_S \left[\exp \left(\frac{v_D}{nV_T} \right) - 1 \right] \cong I_S [1-1] \cong 0$$

• Forward Bias:
$$i_D = I_S \left[\exp \left(\frac{v_D}{nV_T} \right) - 1 \right] \cong I_S \exp \left(\frac{v_D}{nV_T} \right)$$

EE/COE 152 – A.S Agbemenu

Diode Circuit Analysis

V and R may represent the Thévenin equivalent of a more complex 2-terminal network. The objective of diode circuit analysis is to find the quiescent operating point for the diode.

Q-Point =
$$(I_D, V_D)$$

The loop equation for the diode circuit is:

$$V = I_D R + V_D$$

- This is also called the load line for the diode. The solution to this equation can be found by:
- Graphical analysis using the load-line method.
- Analysis with the diode's exponential model.
- Simplified analysis with the ideal diode model.
- Simplified analysis using the constant voltage drop (CVD) model.

Graphical Analysis Example

Problem: Find diode Q-point **Given data:** *V* = 10 V, *R* =

10kΩ. Analysis:

 $10 = I_{\scriptscriptstyle D} 10^4 + V_{\scriptscriptstyle D}$ To define the load line we use,

For
$$V_D = 0$$
, $I_D = (10V/10k\Omega) = 1 mA$
For $V_D = 5V$, $I_D = (5V/10k\Omega) = 0.5 mA$

 These points and the resulting load line are plotted. Q-point is given by intersection of load line and diode characteristic:

Q-point = (0.95 mA, 0.6 V)

EE/COE 152 – A.S Agbemenu

Ideal diode

characteristic

Analysis Using Ideal Model

A iD

If an ideal diode is forward-biased, the voltage across the diode is zero. If an ideal diode is reverse-biased, the current through the diode is zero. v = 0 for i > 0 and i = 0 for v < 0

 $v_D = 0$ for $i_D > 0$ and $i_D = 0$ for $v_D < 0$

Thus, the diode is assumed to be either on or off. Analysis is conducted in following steps:

- · Select a diode model.
- Identify anode and cathode of the diode and label v_D and i_D .
- Guess diode's region of operation from circuit.
- Analyze circuit using diode model appropriate for assumed region of operation.
- Check results to check consistency with assumptions.

Analysis using Ideal Model

Since source appears to force positive current through diode, assume diode is on.

$$I_D = \frac{(10-0)V}{10k\Omega} = 1 \text{ mA} \quad | \quad I_D \ge 0$$

Our assumption is correct, and the Q-Point = (1 mA, 0V)

Since source is forcing current backward through diode assume diode is off. Hence $I_D = 0$. Loop equation is:

$$10 + V_D + 10^4 I_D = 0$$
$$V_D = -10V \mid V_D < 0$$

Our assumption is correct and the Q-Point = (0, -10 V)

EE/COE 152 – A.S Agbemenu

Analysis using Constant Voltage **Drop Model**

Analysis:

Since the 10-V source appears to force positive current through the diode, assume diode is on.

$$v_D = V_{on}$$
 for $i_D > 0$
and $v_D = 0$ for v_D
 $< V_{on}$.

$$I_{D} = \frac{(10 - V_{on})V}{10k\Omega}$$
$$= \frac{(10 - 0.6)V}{10k\Omega} = 0.940 \text{ mA}$$

Constant

Rectifier Circuits

EE/COE 152 – A.S Agbemenu

Half-Wave Rectifier

 $\text{PIV} = \hat{V}_S$

Full-Wave Rectifier

 $PIV = 2\hat{V}_S - 0.7$

EE/COE 152 – A.S Agbemenu

Bridge Rectifier

$$\text{PIV} = \hat{V}_S - 0.7$$

Next Lecture

- Diode Rectifier Circuit Analysis
- BJT

