Aula 21 - Generais Bizantinos (cont.)

Wednesday, May 25, 2016

13:45

		-						
	1				J			
	Nodo 5:		7					
5	Passo	Valoresssssss	ssss	Valoressssssssss	Valoressssssssss	Valoressssssssss	Vá	aloressssssssss
٧)	GB(2)	$v_0 = R$						
	GB(1)	$v_{1,0} = A$		$v_{2,0} = A$	$v_{3,0} = R$	$v_{4,0}=R$	v_{ϵ}	$_{5,0} = R$
	GB(0)	$v_{2,1,0} = A$		$v_{1,2,0} = A$	$v_{1,3,0} = R$	$v_{1,4,0} = R$	v_1	$_{\downarrow,6,0}=R$
		$v_{3,1,0} = R$, N	$v_{3,2,0} = R$	$v_{2,3,0} = R$	$v_{2,4,0} = R$	v_{z}	$_{2,6,0}=R$
	م ا	$v_{4,1,0} = A$	$\setminus \setminus$	$v_{4,2} _{Q} = A$	$v_{4,3,0} = R$	$v_{3,4,0} = R$	v_{ε}	$_{3,6,0}=R$
		$y_{6,1,0} = A$	ノリ	$v_{6,3,0} = A$	$v_{6,3,0} = R$	$v_{6,4,0} = R$	v_4	$_{l,6,0}=R$
	MOST	$v_1 = A$		$v_2 \neq A$	$v_3 = R$	$v_4 = R$	v_{ϵ}	$_{5}=R$
	Nodo 5 e	executa R!						

Nodo 2:

Passo	Valoressssssssss	Valoressssssssss	Valoressssssssss	Valoressssssssss	Vi	aloressssssssss
GB(2)	$v_0 = A$					
GB(1)	$v_{1,0} = A$	$v_{3,0} = A$	$v_{4,0} = R$	$v_{5,0} = R$	v_{ϵ}	$_{5,0} = R$
GB(0)	$v_{3,1,0} = A$ $v_{4,1,0} = R$ $v_{5,1,0} = R$ $v_{6,1,0} = R$	$v_{1,3,0} = A$ $v_{4,3,0} = R$ $v_{5,3,0} = R$ $v_{6,3,0} = R$	$v_{1,4,0} = R$ $v_{3,4,0} = A$ $v_{5,4,0} = R$ $v_{6,4,0} = R$	$v_{1,5,0} = R$ $v_{3,5,0} = A$ $v_{4,5,0} = R$ $v_{6,5,0} = R$	v_1 v_2 v_4 v_5	$A_{1,6,0} = R$ $A_{3,6,0} = A$ $A_{1,6,0} = R$ $A_{5,6,0} = R$
MOST	$v_1 = R$	$v_3 = R$	$v_4 = R$	$v_5 = R$	v_{ϵ}	$_{5}=R$

Nodo 2 executa R!

O seguinte teorema prova que o algoritmo genbiz(m) resolve o problema dos generais

Teorema

Para qualquer valor de m , a algoritmo genhizlm) satisfaz IC1 e IC2 se e número de gen. Para slm > 2m

bizantinos:

rara quarquer varor de m, o algoritmo genora(m) satisfaz ione ione se o mumero de genore erais n > sm, sendo, no máximo, m traidores.

Prova

Por indução em m

- Se m=0 então não há traidores
- Portanto genbiz(0) satisfaz IC1 e IC2

A seguir, consideramos 2 casos:

- (i) O comandante é leal;
- (ii) O comandante é traidor.

Para (i),

Fazendo m = k no lema 1, genbiz(m) satisfaz IC2.

IC1 segue de IC2 pois o comandante é leal.

Para (ii),

No total temos m traidores.

Entre os comandados há (m-1) traidores.

Como o número total de generais n > 3m, então n - 1 > 3m - 1

$$Como 3m - 1 > 3(m - 1)$$

Portanto
$$n-1 > 3(m-1)$$

Conclusão: mais de $\frac{2}{3}$ dos comandados são leais.

Portanto, é possível executar genbiz(m-1) entre os comandados

Para qualquer comandado j, os demais comandados vão executar v_i de acordo c com IC1 e IC2.

Ou seja, se j é leal, todos os comandados "executam v_i "

Se j é traidor, todos os comandados leais terão um mesmo valor para v_i .

Portanto, todos os comandados leais executam a MESMA MAIORIA.

Passo	Valoresssss sssss	Valoresssss sssss	Valoresssss sssss	Valoresssss sssss	Valoresssss sssss	Valore sssss	SSSSSS	Valoresssss sssss
GB(2)	$v_0 = A$							
GB(1)	$v_{2,0} = A$	$v_{3,0} = A$	$v_{4,0} = A$	$v_{5,0} = A$	$v_{6,0} = R$	v _{7,0} =	R	$v_{8,0} = R$
GB(0)	$v_{3,2,0} = A$ $v_{4,2,0} = A$ $v_{5,2,0} = A$ $v_{6,2,0} = R$ $v_{7,2,0} = R$ $v_{8,2,0} = R$	$v_{2,3,0} = A$ $v_{4,3,0} = A$ $v_{5,3,0} = A$ $v_{6,3,0} = R$ $v_{7,3,0} = R$ $v_{8,3,0} = R$	$v_{2,4,0} = A$ $v_{3,4,0} = A$ $v_{5,4,0} = A$ $v_{6,4,0} = R$ $v_{7,4,0} = R$ $v_{8,4,0} = R$	$v_{3,5,0} = A$ $v_{4,5,0} = A$ $v_{6,5,0} = R$ $v_{7,5,0} = R$	$v_{2,6,0} = R$ $v_{3,6,0} = R$ $v_{4,6,0} = R$ $v_{5,6,0} = R$ $v_{5,6,0} = R$ $v_{5,6,0} = R$	$v_{2,7,0} = v_{3,7,0} = v_{4,7,0} = v_{5,7,0} = v_{6,7,0} = v_{8,7,0} = v_{8$	= A = R = R = R	$v_{1,6,0} = R$ $v_{3,6,0} = A$ $v_{4,6,0} = R$ $v_{5,6,0} = R$

MOST	$v_2 = A$	$v_3 = A$	$v_4 = A$	$v_5 = A$	$v_6 = R$	$v_6 = I$	$v_6 = R$