Overview of the package LMMstar

Brice Ozenne

July 26, 2023

This vignette describes the main functionalities of the **LMMstar** package. This package implements specific types of linear mixed models, mainly useful when having repeated observations over a discrete variable: $\mathbf{Y} = (Y_1, \dots, Y_T)$ where T can be for example be time (chronological ordering of the repetitions) or brain region (arbitrary ordering of the repetitions). Denoting by X the associated covariates and $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_T)$, the model can be written:

$$\mathbf{Y} = X\beta + \boldsymbol{\varepsilon} \text{ where } \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \Omega)$$

where β are the mean parameters and the residual variance-covariance matrix, Ω , depends on a set of variance-covariance parameters (say γ) distinct of β . Key assumptions are:

- we observe n independent replicates of $\mathcal{O} = (Y, X)$, i.e. at the cluster level, observations $(\mathcal{O}_1, \dots, \mathcal{O}_n)$ are independent. The replicates should also be identically distributed up to a categorical variable (called strata variable in the following).
- the residual variance is independent of the mean value.

Additional assumptions are necessary in presence of missing values, typically correct specification of the conditional mean to have consistent estimates of the mean parameters. This case will sometimes be examplified by considering that only last outcome may be missing: the conditional mean $\mathbb{E}[Y_T|Y_1, Y_2, \dots, Y_{T-1}]$ is then abreviated as $\mathbb{E}[Y_T|Y_{T-1}]$. Note that we do not require the residuals to be normally distributed to have valid estimates or statistical inference in large samples.

To get start, one should load the LMMstar package in the R session:

library(LMMstar)

This package is under active development. Newer package versions may include additional functionalities and fix previous bugs. The version of the package that is being used for this overview is:

utils::packageVersion("LMMstar")

[1] '1.0.0'

The user interface of the LMMstar package is made of the following functions:

- the function lmm is the main function of the package which fits linear mixed models. The user can interact with *lmm* objects using:
 - anova to perform Wald tests, i.e. test linear combinations of coefficients $(\hat{\beta}_1 + \hat{\beta}_2 = 0)$ or $\hat{\beta}_1 = \hat{\beta}_2 = 0$. The output obtained with different lmm can be combined using rbind.
 - coef to extract the estimated model parameters ($\hat{\beta}$ and possibly $\hat{\gamma}$).
 - confint to extract the estimates with their confidence intervals.
 - dummy.coef to extract the estimated (marginal) mean for each combination of categorical covariate.
 - estimate to test non-linear combinations of coefficients (Wald test via a first order delta method, e.g. $\hat{\beta}_1/\hat{\beta}_2 = 1$).
 - fitted to output the fitted mean $(X\widehat{\beta})$ or the conditional mean for observations with missing outcome (e.g. $X\widehat{\beta} + \widehat{\mathbb{E}}[\varepsilon_T | \varepsilon_{-T}]$).
 - iid to extract the influence function of the estimated parameters (φ) , which satisfies $\sqrt{n}(\hat{\beta} \beta) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varphi(\mathcal{O}_i) + o_p(1)$
 - levels to extract the reference level for the mean structure. (i.e. what (Intercept) refers to
 in presence of categorical. covariates).
 - logLik to output the log-likelihood of the estimated model.
 - model.tables to extract the estimates, standard errors, p-value, and confidence intervals.
 - plot to obtain a diagnostic plots, partial residual plots, or a graphical display of the fitted values
 - predict to compute the mean conditional on covariates and possible outcome values.
 - profile to display the likelihood or profile likelihood of the model.
 - resample to use non-parametric bootstrap or permutation test for statistical inference.
 - residuals to extract the observed residuals of the fitted model, possibly normalized $(\widehat{\Omega}^{-\frac{1}{2}}\widehat{\varepsilon})$.
 - sigma to extract the modeled residual variance covariance matrix $(\widehat{\Omega})$.
 - summary to obtain a summary of the input, model fit, and estimated values.
 - vcov to extract the variance-covariance matrix of the mean parameters $(\widehat{\Sigma}_{\widehat{\beta}})$.
- the mlmm function to fit group-specific linear mixed models and gather the estimated coefficients.
- the summarize function to compute summary statistics, possibly stratified on a categorical variable
- the summarizeNA function to identify missing data patterns.
- the partialCor function to compute partial correlation between two variables.
- the sampleRem function to simulate longitudinal data.
- the LMMstar.options function enables the user to display the default values used in the LMMstar package. The function can also change the default values to better match the user needs.

1 Illustrative dataset

To illustrate the functionalities of the package, we will use the gastricbypass dataset. The long format can be imported using:

```
data(gastricbypassL, package = "LMMstar")
head(gastricbypassL)
```

```
id visit
                   time weight glucagonAUC
1
  1
        1 3monthsBefore 127.2
                                  5032.50
2
 2
        1 3monthsBefore 165.2
                                 12142.50
3 3
        1 3monthsBefore 109.7
                                 10321.35
4 4
        1 3monthsBefore 146.2
                                  6693.00
5 5
        1 3monthsBefore 113.1
                                  7090.50
 6
        1 3monthsBefore 158.8
                                 10386.00
```

See ?gastricbypassL for a presentation of the dataset. We will shorten the values of the time variable:

rescale the glucagon values

```
gastricbypassL$glucagon <- as.double(scale(gastricbypassL$glucagonAUC))+5</pre>
```

and add a group variable:

```
gastricbypassL$group <- as.numeric(gastricbypassL$id)%%2</pre>
```

The corresponding wide format is

```
data(gastricbypassW, package = "LMMstar")
head(gastricbypassW)
```

```
id weight1 weight2 weight3 weight4 glucagonAUC1 glucagonAUC2 glucagonAUC3 glucagonAUC4
      127.2
              120.7
1
  1
                      115.5
                             108.1
                                        5032.50
                                                      4942.5
                                                                 20421.0
                                                                              9249.45
2
  2
      165.2
              153.4
                      149.2
                             132.0
                                       12142.50
                                                     14083.5
                                                                 10945.5
                                                                              7612.50
3 3
      109.7 101.6 97.7
                             87.1
                                       10321.35
                                                      6202.5
                                                                 20121.0
                                                                             17704.50
4 4
      146.2 142.4 136.7
                                                      6631.5
                                                                 13090.5
                             123.0
                                        6693.00
                                                                              4551.00
      113.1
                                        7090.50
5
 5
              105.6
                    99.9
                              87.7
                                                          NA
                                                                 19155.0
                                                                             12345.00
6
 6
      158.8 143.6
                     134.6
                             108.7
                                       10386.00
                                                      7609.5
                                                                 11778.0
                                                                              8014.80
```

for which we can also add the group variable:

```
gastricbypassW$group <- as.numeric(gastricbypassW$id)%%2</pre>
```

Finally we will remove observation with missing glucagon values:

```
dfL <- gastricbypassL[!is.na(gastricbypassL$glucagonAUC),]
```

2 Descriptive statistics

2.1 Summary statistics

Mean, standard deviation, and other summary statistic can be computed with respect to a categorical variable (typically time) using the summarize function:

```
sss <- summarize(weight+glucagon \sim time, data = gastricbypassL, na.rm = TRUE) print(sss, digits = 3)
```

```
outcome time observed missing
                                             sd
                                                   min
                                                           q1 median
                                                                          q3
                                    mean
                                                                                max
                                0 128.97 20.269 100.90 115.30 123.10 139.82 173.00
    weight B3m
                      20
2
            B1w
                      20
                               0 121.24 18.910
                                                95.70 107.78 114.50 134.53 162.20
3
                      20
                               0 115.70 18.275
                                                 89.90 102.22 110.60 128.38 155.00
            A1w
                               0 102.36 17.054
4
                      20
                                                78.80 90.40 98.50 108.25 148.00
            A3m
            B3m
                      20
                                   4.51 0.641
                                                  3.61
                                                         4.06
                                                                4.33
                                                                        4.93
5 glucagon
6
                               1
                                    4.39 0.558
                                                  3.58
                                                         4.05
                                                                4.23
                                                                        4.55
                                                                               5.95
            B1w
                      19
7
                                    6.06 1.044
                                                 4.52
                                                         5.30
                                                                5.94
            A1w
                      19
                                1
                                                                        6.62
                                                                               8.27
                                    5.06 0.760
                                                                        5.27
                                                                               7.12
8
            A3m
                      20
                                0
                                                  3.95
                                                         4.52
                                                                5.03
```

Correlation matrices are also outure when a cluster and ordering variable have been specified (here respectively id and time):

```
sss <- summarize(weight \sim time|id, data = gastricbypassL, na.rm = TRUE) print(sss, digits = 3)
```

```
time observed missing mean
                                         q1 median q3 max
                             sd
                                  min
 B3m
            20
                     0 129 20.3 100.9 115.3 123.1 140 173
1
2
 B1w
            20
                     0 121 18.9 95.7 107.8 114.5 135 162
3 A1w
            20
                     0 116 18.3 89.9 102.2 110.6 128 155
                     0 102 17.1 78.8 90.4
  АЗm
            20
                                             98.5 108 148
```

Pearson's correlation:

```
B3m B1w A1w A3m
B3m 1.000 0.990 0.986 0.946
B1w 0.990 1.000 0.997 0.959
A1w 0.986 0.997 1.000 0.966
A3m 0.946 0.959 0.966 1.000
```

Alternatively, the partialCor function can be used to compute correlation from the wide format, e.g.:

```
partialCor(weight1 + weight4 \sim 1, data = gastricbypassW)
```

```
estimate se df lower upper p.value rho(weight1,weight4) 0.946 0.105 31.1 0.867 0.978 8.46e-09
```

Partial correlations can be also computed, e.g.:

```
partialCor(list(weight1 \sim glucagonAUC1, weight4 \sim glucagonAUC4), data = gastricbypassW)
```

```
rho(weight1,weight4) estimate se df lower upper p.value 0.946 0.109 19.6 0.859 0.98 3.62e-07
```

The partialCor function can also be used to obtain group-specific correlations:

```
partialCor(weight + glucagonAUC \sim 1, by = "group", data = gastricbypassL)
```

```
estimate se df lower upper p.value
0: rho(weight,glucagonAUC) -0.281 0.148 21.1 -0.552 0.0442 0.0858
1: rho(weight,glucagonAUC) -0.336 0.144 22.2 -0.594 -0.0156 0.0410
```

A p-value for the difference can be obtained specifying the argument effects:

```
partialCor(weight + glucagonAUC \sim 1, by = "group", effects = "Dunnett", data = gastricbypassL)
```

```
estimate se df lower upper p.value 1:rho(weight,glucagonAUC) - 0:rho(weight,glucagonAUC) - 0.055 NA NA NA NA 0.789
```

2.2 Missing data patterns

The summarizeNA identify the possible combinations of observed/missing data:

```
mp <- summarizeNA(gastricbypassL)
mp</pre>
```

```
frequency missing.pattern n.missing id visit time weight glucagonAUC baseline glucagon group
       78
                 0000000
                                      0
                                             0
                                                  0
                                                         0
                                                                                               0
        2
                 00001010
                                   2 0
                                             0
                                                         0
                                                                      1
                                                                                         1
                                                  0
                                                                                               0
```

A graphical representation can be obtained using plot:

```
plot(mp)
```


3 Linear mixed model (LMM)

3.1 Classical covariance patterns

Several build-in covariance patterns can be used when specifying the linear model. The most basic ones are the **identity** structure:

```
eId.lmm <- lmm(weight ~ time + glucagon, repetition = ~time|id, structure = "ID", data = dfL)
eId.lmm
cat(" modeled residual variance-covariance: \n");sigma(eId.lmm)
```

Linear regression

```
outcome/cluster/time: weight/id/time
```

data : 78 observations from 20 clusters

parameter : 5 mean ((Intercept) timeB1w timeA1w timeA3m glucagon)

1 variance (sigma)

log-restr.likelihood: -323.086426918519
convergence : TRUE (0 iterations)

modeled residual variance-covariance:

B3m B1w A1w A3

B1w A1w A3m B3m 330.0427 0.0000 0.0000 0.0000 B₁w 0.0000 330.0427 0.0000 0.0000 A1w 0.0000 0.0000 330.0427 0.0000 A3m 0.0000 0.0000 0.0000 330.0427

and the **independence** structure:

```
eInd.lmm <- lmm(weight ~ time + glucagon, repetition = ~time|id, structure = "IND", data = dfL)
eInd.lmm
cat(" modeled residual variance-covariance: \n");sigma(eInd.lmm)
```

Linear regression with heterogeneous residual variance

```
outcome/cluster/time: weight/id/time
```

data : 78 observations from 20 clusters

parameter : 5 mean ((Intercept) timeB1w timeA1w timeA3m glucagon)

4 variance (sigma k.B1w k.A1w k.A3m)

log-restr.likelihood: -321.457830361849
convergence : TRUE (8 iterations)

modeled residual variance-covariance: B3mB1w A1w A3m B3m 442.6475 0.0000 0.0000 0.0000 0.0000 418.9934 0.0000 0.0000 B1w A1w 0.0000 0.0000 222.8463 0.0000 АЗm 0.0000 0.0000 0.0000 237.2049 The most common linear mixed model uses a **compound symmetry** structure:

```
eCS.lmm <- lmm(weight ~ time + glucagon, repetition = ~time|id, structure = "CS", data = dfL)
eCS.lmm
cat(" modeled residual variance-covariance: \n");sigma(eCS.lmm)
```

Linear Mixed Model with a compound symmetry covariance matrix

outcome/cluster/time: weight/id/time

data : 78 observations from 20 clusters

parameter : 5 mean ((Intercept) timeB1w timeA1w timeA3m glucagon)

1 variance (sigma)
1 correlation (rho)
log-restr.likelihood: -243.600523870252
convergence : TRUE (9 iterations)
modeled residual variance-covariance:

B3m B1w A1w A3m B3m 355.3062 344.6236 344.6236 344.6236 B1w 344.6236 355.3062 344.6236 344.6236 A1w 344.6236 344.6236 355.3062 344.6236 A3m 344.6236 344.6236 344.6236 355.3062

A more flexible model can be obtained with a **toeplitz** covariance matrix:

outcome/cluster/time: weight/id/time

data : 78 observations from 20 clusters

parameter : 8 mean ((Intercept) timeB1w timeA1w timeA3m group timeB1w:group timeA1w:grou

4 variance (sigma k.B1w k.A1w k.A3m) 3 correlation (rho(1) rho(2) rho(3))

log-restr.likelihood: -221.152940926053
convergence : TRUE (21 iterations)

modeled residual correlation:

 B3m
 B1w
 A1w
 A3m

 B3m
 1.0000000
 0.9854133
 0.9676223
 0.9489216

 B1w
 0.9854133
 1.0000000
 0.9854133
 0.9676223

 A1w
 0.9676223
 0.9854133
 1.0000000
 0.9854133

 A3m
 0.9489216
 0.9676223
 0.9854133
 1.0000000

And an even more flexible model can be obtained with an **unstructured** covariance matrix:

```
eUN.lmm <- lmm(weight ~ time + glucagon, repetition = ~time|id, structure = "UN", data = dfL)
eUN.lmm
cat(" modeled residual variance-covariance: \n");sigma(eUN.lmm)
```

Linear Mixed Model with an unstructured covariance matrix

outcome/cluster/time: weight/id/time

data : 78 observations from 20 clusters

parameter : 5 mean ((Intercept) timeB1w timeA1w timeA3m glucagon)

4 variance (sigma k.B1w k.A1w k.A3m)

6 correlation (rho(B3m,B1w) rho(B3m,A1w) rho(B3m,A3m) rho(B1w,A1w) rho(B1w,A

B3m 411.3114 381.9734 352.6400 318.8573 B1w 381.9734 362.7326 335.4649 304.6314 A1w 352.6400 335.4649 311.6921 285.8077 A3m 318.8573 304.6314 285.8077 280.9323

Stratification of the covariance structure on a categorical variable is also possible:

• e.g. to get a stratified compound symmetry

Linear Mixed Model with a stratified compound symmetry covariance matrix

outcome/cluster/time: weight/id/time

data : 78 observations from 20 clusters

parameter : 8 mean ((Intercept) timeB1w timeA1w timeA3m group timeB1w:group timeA1w:group

2 variance (sigma:0 sigma:1)
2 correlation (rho:0 rho:1)

log-restr.likelihood: -229.203435252784
convergence : TRUE (6 iterations)

• e.g. **stratified unstructured** covariance matrix:

Linear Mixed Model with a stratified unstructured covariance matrix

outcome/cluster/time: weight/id/time

data : 78 observations from 20 clusters

parameter : 9 mean ((Intercept) timeB1w timeA1w timeA3m group glucagon timeB1w:group time

8 variance (sigma:0 sigma:1 k.B1w:0 k.A1w:0 k.A3m:0 k.B1w:1 k.A1w:1 k.A3m:1)

12 correlation (rho(B3m,B1w):0 rho(B3m,A1w):0 rho(B3m,A3m):0 rho(B1w,A1w):0 r

log-restr.likelihood: -197.171312062211
convergence : TRUE (50 iterations)

with modeled residual variance-covariance:

sigma(eSCS.lmm)					sigma(eSUN.lmm)		
\$'0'					\$'O'		
	B3m	B1w	A1w	A3m	B3m B1w A1w A3m		
B3m	348.0783	334.7404	334.7404	334.7404	B3m 417.3374 382.8829 362.5674 301.7430		
B1w	334.7404	348.0783	334.7404	334.7404	B1w 382.8829 364.4515 346.4039 292.7507		
A1w	334.7404	334.7404	348.0783	334.7404	A1w 362.5674 346.4039 331.1789 282.9301		
АЗm	334.7404	334.7404	334.7404	348.0783	A3m 301.7430 292.7507 282.9301 253.3324		
\$'1'					\$'1'		
	B3m	B1w	A1w	A3m	B3m B1w A1w A3m		
B3m	345.5863	340.1538	340.1538	340.1538	B3m 383.8877 363.6405 336.5771 350.0416		
B1w	340.1538	345.5863	340.1538	340.1538	B1w 363.6405 347.9898 321.5908 331.5182		
A1w	340.1538	340.1538	345.5863	340.1538	A1w 336.5771 321.5908 297.5329 308.1345		
АЗm	340.1538	340.1538	340.1538	345.5863	A3m 350.0416 331.5182 308.1345 334.8267		

Finally the some covariance patterns like the compound symmetry structure may depend on covariates:

• e.g. to obtain a **block compound symmetry** structure¹:

```
eBCS.lmm <- lmm(weight ~ time*group,repetition = ~time|id,
structure = CS(~baseline, type = "homogeneous"), data = dfL)
eBCS.lmm
cat(" modeled residual variance-covariance: \n");sigma(eBCS.lmm)
```

Linear Mixed Model with a block compound symmetry covariance matrix

outcome/cluster/time: weight/id/time

data : 78 observations from 20 clusters

parameter : 8 mean ((Intercept) timeB1w timeA1w timeA3m group timeB1w:group timeA1w:grou

1 variance (sigma)

2 correlation (rho rho(FALSE,TRUE))

• e.g. to obtain a **block unstructured** covariance matrix:

```
eBUN.lmm <- lmm(weight ~ time*group, repetition = ~time|id,
structure = CS(~baseline, type = "heterogeneous"), data = dfL)
eBUN.lmm
cat(" modeled residual variance-covariance: \n");sigma(eBUN.lmm)
```

Linear Mixed Model with a block unstructured covariance matrix

outcome/cluster/time: weight/id/time

data : 78 observations from 20 clusters

parameter : 8 mean ((Intercept) timeB1w timeA1w timeA3m group timeB1w:group timeA1w:grou

2 variance (sigma k.TRUE)

3 correlation (rho(FALSE) rho(FALSE,TRUE) rho(TRUE))

log-restr.likelihood: -227.461008305704
convergence : TRUE (6 iterations)
modeled residual variance-covariance:

 modeled residual variance-covariance:

 B3m
 B1w
 A1w
 A3m

 B3m
 372.8100
 336.3064
 336.3064

 B1w
 372.8100
 378.0328
 336.3064
 336.3064

 A1w
 336.3064
 336.3064
 315.6358
 306.0647

 A3m
 336.3064
 336.3064
 306.0647
 315.6358

¹similar to nested random effects

3.2 User-specific covariance patterns

It is possible input user-specific covariance patterns under the following model for the residuals:

$$\Omega = \boldsymbol{\sigma}^{\mathsf{T}} R \boldsymbol{\sigma}$$

where:

- $\sigma = f(\theta_{\sigma}, Z_{\sigma})$ is a vector of residual standard errors depending on a vector of parameters θ_{σ} and possible covariates via the design matrix Z_{σ} .
- $R = g(\boldsymbol{\theta}_R, Z_R)$ is a matrix of residual correlations depending on a vector of parameters $\boldsymbol{\theta}_R$ and possible covariates via the design matrix Z_R .

To be more concrete, consider the following correlation matrix

```
[,1] [,2] [,3] [,4] [,5] [,6] [1,] 1.00 0.25 0.5 0.10 0.10 0.1 [2,] 0.25 1.00 0.4 0.10 0.10 0.1 [3,] 0.50 0.40 1.0 0.10 0.10 0.1 [4,] 0.10 0.10 0.1 1.00 0.25 0.5 [5,] 0.10 0.10 0.1 0.25 1.00 0.4 [6,] 0.10 0.10 0.1 0.50 0.40 1.0
```

and the corresponding dataset:

```
set.seed(11)
n <- 1000
Y <- rmvnorm(n, mean = rep(0,6), sigma = Rho)
dfL2 <- reshape2::melt(cbind(id = 1:n, as.data.frame(Y)), id.vars = "id")
dfL2$time <- dfL2$variable
dfL2 <- dfL2[order(dfL2$id),]
dfL2[1:8,]</pre>
```

```
id variable value time
1 1 V1 -0.9842079 V1
```

```
1001
    1
              V2 -0.3681245
                              V2
                              ٧3
2001
    1
              V3 -1.6174652
3001
              V4 -1.4994103
                              V4
4001 1
              V5 0.7493107
                              ۷5
              V6 -1.0719657
5001 1
                              V6
      2
              V1
                 1.2402726
                              V1
1002 2
              V2 0.6494215
                              ۷2
```

To estimate the corresponding mixed model we first define a new covariance structure:

and then call 1mm with this structure structure:

[1] -7962.243

The optimization procedure may be slow but should eventually reaches an optimum. We can then output the estimated correlation matrix:

```
cov2cor(sigma(e.lmmCUSTOM))
```

```
        V1
        V2
        V3
        V4
        V5
        V6

        V1
        1.00000000
        0.24898095
        0.50058994
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.09053785
        0.24898095
        1.00000000
        0.36110943

        V6
        0.09053785
        0.09053785
        0.09053785
        0.50058994
        0.36110943
        1.00000000
```

Comparison to build-in structure: consider the following model using a build-in compound symmetry structure:

```
bruger system forløbet 0.17 0.00 0.18
```

Using instead CUSTOM to specifying this structure:

is considerably slower than using the pre-specified structure:

```
bruger system forløbet 1.16 0.02 1.17
```

but will lead to the same estimates:

```
logLik(e.lmmDEFAULT.CS)
logLik(e.lmmCUSTOM.CS)
```

```
[1] -8186.859
[1] -8186.859
```

There are two reasons for the slower execution time: slower evaluation of the derivatives (since they are obtained by numerical differentiation) and worse starting point, as reflected by the larger number of interations needed to reach convergence:

```
e.lmmDEFAULT.CS$opt$n.iter
e.lmmCUSTOM.CS$opt$n.iter
```

```
[1] 1[1] 4
```

Faster execution time can be obtained by specifying the first and second derivative regarding each parameter:

```
myCS.wD <- CUSTOM(\sim1,
                  FCT.sigma = function(p,n.time,X){rep(p,n.time)},
                  dFCT.sigma = function(p,n.time,X){list(sigma = rep(1,n.time))},
                  d2FCT.sigma = function(p,n.time,X){list(sigma = rep(0,n.time))},
                  init.sigma = c("sigma"=1),
                  FCT.rho = function(p,n.time,X){p+diag(1-p,n.time,n.time)},
                  dFCT.rho = function(p,n.time,X){list(rho = 1-diag(1,n.time,n.time))},
                  d2FCT.rho = function(p,n.time,X){list(rho = matrix(0,n.time,n.time))},
                  init.rho = c("rho"=0.5))
system.time(
  e.lmmCUSTOMwD.CS <- lmm(value\simtime,
                          repetition = \simtime|id,
                          structure = myCS.wD,
                          data = dfL2, df = FALSE
                          )
)
```

```
bruger system forløbet 0.84 0.02 0.87
```

3.3 Estimation procedure

Initialiation: by default the mean parameters are initialized using Ordinary Least Squares (OLS) and the variance and correlation parameters are initialized by minimizing the difference between the observed and residuals variance-covariance matrix. These values can be visualized by specifying the argument control:

```
eCS.lmm.bis <- update(eCS.lmm, control = list(trace = 2))
```

Initialization:

```
(Intercept) timeB1w timeA1w timeA3m glucagon sigma rho
159.1349871 -7.7137607 -2.3202963 -22.9747234 -6.6820191 18.1670760 0.8960476
```

Loop:

```
(Intercept) timeB1w timeA1w timeA3m glucagon sigma rho
125.2601602 -7.6194918 -14.4951323 -27.0514694 0.8217879 18.8495686 0.9699341
Convergence after 9 iterations: max score=3.680809e-06 | max change in coefficient=1.877273e-06
```

It is possible to input user-defined value:

• for all parameters (vector)

```
init.all <- coef(eCS.lmm, effects = "all")
eCS.lmm.bis <- update(eCS.lmm, control = list(init = init.all, trace = 2))</pre>
```

Initialization:

```
(Intercept) timeB1w timeA1w timeA3m glucagon sigma rho
125.2601602 -7.6194918 -14.4951323 -27.0514694 0.8217879 18.8495686 0.9699341
```

Loop:

```
(Intercept) timeB1w timeA1w timeA3m glucagon sigma rho 125.2601602 -7.6194918 -14.4951323 -27.0514694 0.8217879 18.8495686 0.9699341 Convergence after 0 iteration: max score=3.680809e-06
```

• the mean parameters only (vector)

```
init.mean <- coef(eCS.lmm, effects = "mean")
eCS.lmm.bis <- update(eCS.lmm, control = list(init = init.mean, trace = 2))</pre>
```

Initialization:

```
(Intercept) timeB1w timeA1w timeA3m glucagon sigma rho
125.2601602 -7.6194918 -14.4951323 -27.0514694 0.8217879 19.0853249 0.9737808
```

Loop:

```
(Intercept) timeB1w timeA1w timeA3m glucagon sigma rho
125.2601601 -7.6194918 -14.4951323 -27.0514694 0.8217879 18.8495690 0.9699341
Convergence after 5 iterations: max score=2.820304e-06 | max change in coefficient=4.171839e-06
```

• a full data variance-covariance matrix (matrix).

```
init.vcov <- sigma(eCS.lmm)
eCS.lmm.bis <- update(eSCS.lmm, control = list(init = init.vcov, trace = 2))</pre>
```

```
Initialization:
```

```
(Intercept)
                     timeB1w
                                                                    group timeB1w:group
                                   timeA1w
                                                  timeA3m
                                                             -10.6000000
  134.2700000
                  -8.2800000
                               -14.1100000
                                              -29.6100000
                                                                              1.0505605
timeA1w:group timeA3m:group
                                   sigma:0
                                                  sigma:1
                                                                   rho:0
                                                                                  rho:1
    1.7562258
                   6.0100000
                                18.8495686
                                               18.8495686
                                                               0.9699341
                                                                              0.9699341
```

Loop:

```
(Intercept)
                    timeB1w
                                   timeA1w
                                                  timeA3m
                                                                   group timeB1w:group
  134.2700000
                 -8.2800000
                               -14.1100000
                                              -29.6100000
                                                            -10.6000000
                                                                             1.0444208
timeA1w:group timeA3m:group
                                   sigma:0
                                                  sigma:1
                                                                  rho:0
                                                                                 rho:1
    1.7525468
                  6.0100000
                                18.6568561
                                               18.5899521
                                                              0.9616812
                                                                             0.9842804
Convergence after 7 iterations: max score=2.208526e-05 | max change in coefficient=6.343994e-06
```

Optimizer: by default the optimizer is a Newton Raphson algorithm with backtracking. At each iteration:

- it computes the first two moments (score, information) according to the current parameters values.
- it updates the variance-covariance parameters according to the gradient multiplied by the inverse of the information.
- it updates the mean parameters by generalized least squares (using the updated variance-covariance parameters).
- it checks whether the log-likelihoood at the u.pdated estimates is well defined and higher than at the previous estimates. If this is not the case, the step is re-run with half the update of the variance-covariance parameters (backtracking).

One can modify the maximum number of iterations (n.iter), maximum number of backtracking steps (n.backtracking), the maximum score (absolute) value over all parameters (tol.score) and (absolute) maximum difference in parameter value between to iterations (tol.param) used to declare convergence. It is also possible to use another optimizer (optimizer). All these elements should be passed to the argument control of lmm using a list.

3.4 Model output

The summary method can be used to display the main information relative to the model fit:

```
summary(eUN.lmm)
```

```
Linear Mixed Model
Dataset: dfL
  - 20 clusters
  - 78 observations
  - between 3 and 4 observations per cluster
Summary of the outcome and covariates:
    $ weight : num 127 165 110 146 113 ...
             : Factor w/ 4 levels "B3m", "B1w", "A1w", ...: 1 1 1 1 1 1 1 1 1 1 ...
    $ glucagon: num 4.03 5.24 4.93 4.32 4.38 ...
    reference level: time=B3m
Estimation procedure
  - Restricted Maximum Likelihood (REML)
  - log-likelihood :-216.3189
  - parameters: mean = 5, variance = 4, correlation = 6
  - convergence: TRUE (22 iterations)
    largest |score| = 7.024709e-05 for k.A1w
            |change|= 1.0958537757233e-06 for (Intercept)
Residual variance-covariance: unstructured
  - correlation structure: ~0 + time
          B3m B1w A1w A3m
    B3m 1.000 0.989 0.985 0.938
    B1w 0.989 1.000 0.998 0.954
    A1w 0.985 0.998 1.000 0.966
    A3m 0.938 0.954 0.966 1.000
  - variance structure: ~time
```

 standard.deviation ratio

 sigma.B3m
 20.3
 1.000

 sigma.B1w
 19.0
 0.939

 sigma.A1w
 17.7
 0.871

 sigma.A3m
 16.8
 0.826

Fixed effects: weight ~ time + glucagon

```
estimate
                              df
                                   lower
                                           upper p.value
              132.98 4.664 19.8 123.243 142.717 < 2e-16 ***
 (Intercept)
               -7.882 0.713 19.2 -9.374
                                          -6.39 9.27e-10 ***
 timeB1w
 timeA1w
              -11.788 1.018 21.6 -13.9 -9.676 9.55e-11 ***
              -26.122 1.656 18.8 -29.591 -22.654 2.62e-12 ***
 timeA3m
               -0.888 0.242 13.7 -1.408 -0.369 0.00257 **
 glucagon
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1.
Columns lower and upper contain 95% pointwise confidence intervals for each coefficient.
Model-based standard errors are derived from the observed information (column se).
Degrees of freedom were computed using a Satterthwaite approximation (column df).
```

<u>Note:</u> the calculation of the degrees of freedom, especially when using the observed information can be quite slow. Setting the arguments df to FALSE and type.information to "expected" when calling 1mm should lead to a more reasonnable computation time.

3.5 Extract estimated coefficients

The value of the estimated coefficients can be output using coef:

```
coef(eUN.lmm)
```

```
(Intercept) timeB1w timeA1w timeA3m glucagon 132.9801355 -7.8822331 -11.7879545 -26.1223908 -0.8883081
```

Variance coefficients can be output by specifying the effects argument:

```
coef(eUN.lmm, effects = "variance")
```

```
sigma k.B1w k.A1w k.A3m
20.2808131 0.9390916 0.8705176 0.8264480
```

It is possible to apply specific transformation on the variance coefficients, for instance to obtain the residual variance relative to each outcome:

```
coef(eUN.lmm, effects = "variance", transform.k = "sd")
```

```
sigma.B3m sigma.B1w sigma.A1w sigma.A3m 20.28081 19.04554 17.65480 16.76104
```

The marginal means at each timepoint can be obtained using dummy.coef:

```
dummy.coef(eUN.lmm)
```

```
time estimate se df lower upper
1 B3m 128.5386 4.536445 18.97584 119.04289 138.0343
2 B1w 120.6564 4.261691 19.04078 111.73783 129.5749
3 A1w 116.7506 3.956964 19.04925 108.47007 125.0312
4 A3m 102.4162 3.747908 19.05531 94.57328 110.2591
```

3.6 Extract estimated coefficient and associated uncertainty

The uncertainty about the mean coefficients can be obtained using the model.tables method ²:

```
model.tables(eUN.lmm)
```

```
estimate se df lower upper p.value (Intercept) 132.9801355 4.6642475 19.75815 123.243045 142.7172256 0.000000e+00 timeBlw -7.8822331 0.7131797 19.17147 -9.374032 -6.3904339 9.273644e-10 timeAlw -11.7879545 1.0175135 21.64404 -13.900162 -9.6757467 9.552470e-11 timeA3m -26.1223908 1.6564077 18.84049 -29.591280 -22.6535021 2.617462e-12 glucagon -0.8883081 0.2416081 13.70759 -1.407545 -0.3690712 2.571605e-03
```

Values for the all correlation parameters can be displayed too, by specifying effect="all":

```
model.tables(eUN.lmm, effect = "all")
```

```
estimate
                                            df
                                                      lower
                                                                             p.value
                                   se
                                                                  upper
(Intercept)
             132.9801355 4.664247e+00 19.75815 123.2430454 142.7172256 0.000000e+00
              -7.8822331 7.131797e-01 19.17147
                                                 -9.3740323
                                                             -6.3904339 9.273644e-10
timeB1w
             -11.7879545 1.017513e+00 21.64404 -13.9001622
                                                             -9.6757467 9.552470e-11
timeA1w
             -26.1223908 1.656408e+00 18.84049 -29.5912795 -22.6535021 2.617462e-12
timeA3m
              -0.8883081 2.416081e-01 13.70759
                                                 -1.4075449
                                                             -0.3690712 2.571605e-03
glucagon
              20.2808131 1.042207e+08 17.94875
                                                 14.4225150
                                                             28.5187001
sigma
               0.9390916 8.746246e-02 19.25090
                                                  0.8742815
                                                              1.0087060 8.159293e-02
k.B1w
               0.8705176 9.733113e-02 20.32066
                                                  0.7996375
                                                              0.9476805 2.778019e-03
k.A1w
k.A3m
               0.8264480 1.820402e-01 19.48030
                                                  0.6997216
                                                              0.9761257 2.692889e-02
rho(B3m,B1w)
               0.9889048 9.815766e-02 32.79091
                                                  0.9719687
                                                              0.9956310 7.778223e-13
               0.9848800 9.911546e-02 26.28819
rho(B3m,A1w)
                                                  0.9614535
                                                              0.9941119 5.780221e-11
rho(B3m,A3m)
               0.9380157 1.061121e-01 23.56847
                                                  0.8470249
                                                              0.9755995 1.153945e-07
               0.9976791 9.925175e-02 27.01628
rho(B1w,A1w)
                                                  0.9939113
                                                              0.9991163 3.730349e-14
               0.9542904 1.035349e-01 24.72224
rho(B1w,A3m)
                                                  0.8860968
                                                              0.9820453 1.782705e-08
               0.9658511 1.015050e-01 27.88667
                                                  0.9147964
                                                              0.9865286 1.450026e-09
rho(A1w, A3m)
```

Because these parameters are constrained (e.g. strictly positive), they uncertainty is by default computed after transformation (e.g. log) and then backtransformed. The column argument can be used to extract more or less information, e.g.:

```
model.tables(eUN.lmm, columns = c("estimate", "p.value"))
```

```
estimate p.value (Intercept) 132.9801355 0.000000e+00 timeB1w -7.8822331 9.273644e-10 timeA1w -11.7879545 9.552470e-11 timeA3m -26.1223908 2.617462e-12 glucagon -0.8883081 2.571605e-03
```

²it is equivalent to confint method except that by default it also outputs se and p.value

The functions add (resp. remove) can be used to add (resp. remove) one or several columns from the default display, e.g.:

```
model.tables(eUN.lmm, columns = add("statistic"))
```

```
estimate se statistic df lower upper p.value (Intercept) 132.9801355 4.6642475 28.510523 19.75815 123.243045 142.7172256 0.000000e+00 timeB1w -7.8822331 0.7131797 -11.052240 19.17147 -9.374032 -6.3904339 9.273644e-10 timeA1w -11.7879545 1.0175135 -11.585060 21.64404 -13.900162 -9.6757467 9.552470e-11 timeA3m -26.1223908 1.6564077 -15.770508 18.84049 -29.591280 -22.6535021 2.617462e-12 glucagon -0.8883081 0.2416081 -3.676648 13.70759 -1.407545 -0.3690712 2.571605e-03
```

3.7 Extract estimated residual variance-covariance structure

The method sigma can be used to output the modeled residual covariance structure:

```
Sigma <- sigma(eUN.lmm)
Sigma
```

```
B3m B1w A1w A3m
B3m 411.3114 381.9734 352.6400 318.8573
B1w 381.9734 362.7326 335.4649 304.6314
A1w 352.6400 335.4649 311.6921 285.8077
A3m 318.8573 304.6314 285.8077 280.9323
```

and then converted to a correlation matrix using cov2cor:

```
cov2cor(Sigma)
```

```
      B3m
      B1w
      A1w
      A3m

      B3m
      1.0000000
      0.9889048
      0.9848800
      0.9380157

      B1w
      0.9889048
      1.0000000
      0.9976791
      0.9542904

      A1w
      0.9848800
      0.9976791
      1.0000000
      0.9658511

      A3m
      0.9380157
      0.9542904
      0.9658511
      1.0000000
```

The method can also be used to extract the residual covariance relative to a "known" individual:

```
sigma(eUN.lmm, cluster = 5)
```

```
B3m A1w A3m
B3m 411.3114 352.6400 318.8573
A1w 352.6400 311.6921 285.8077
A3m 318.8573 285.8077 280.9323
```

or for a new individual:

```
newdata <- data.frame(id = "X", time = c("B3m", "B1w", "A1w", "A3m"))
sigma(eUN.lmm, cluster = newdata)</pre>
```

```
B3m B1w A1w A3m
B3m 411.3114 381.9734 352.6400 318.8573
B1w 381.9734 362.7326 335.4649 304.6314
A1w 352.6400 335.4649 311.6921 285.8077
A3m 318.8573 304.6314 285.8077 280.9323
```

3.8 Random effects

Mixed model having a compound symmetry structure with positive correlation parameters may be equivalent to random intercept models, possibly with nested random effects. Indeed in some case the residual variance-covariance matrix can then be decomposed as:

$$\Omega = Z\Psi Z^{\intercal} + \Delta$$

where:

- Z is the design matrix associated to the random effect (e.g. patient id)
- Ψ is the variance-covariance of the random effects
- Δ the residual variance covariance conditional to the random effects.

One can the use lme4 syntax to fit random intercept models with lmm:

```
eRI.lmm <- eCS.lmm <- lmm(weight \sim time + glucagon + (1|id), data = dfL) eRI.lmm
```

Linear Mixed Model with a random intercept

outcome/cluster/time: weight/id/XXtimeXX

data : 78 observations from 20 clusters

parameter : 5 mean ((Intercept) timeB1w timeA1w timeA3m glucagon)

1 variance (sigma)
1 correlation (rho)
-243.600523870252

log-restr.likelihood: -243.600523870252
convergence : TRUE (9 iterations)

It is also possible to specify cross or nested random effects, e.g.:

```
eNRI.lmm <- lmm(weight \sim time*group + (1|id/baseline), data = dfL) eNRI.lmm
```

Linear Mixed Model with nested random intercepts

outcome/cluster/time: weight/id/XXtimeXX

data : 78 observations from 20 clusters

parameter : 8 mean ((Intercept) timeB1w timeA1w timeA3m group timeB1w:group timeA1w:group

1 variance (sigma)

2 correlation (rho rho(FALSE,TRUE))

log-restr.likelihood: -230.532819632968
convergence : TRUE (6 iterations)

We obtain the same log-likelihood as, respectively, eCS.lmm and eBCS.lmm. Indeed, as previously mentioned, with positive residual correlation the random effect structure is equivalent to a compound symmetry structure.

A random slopes are not currently supported in LMMstar.

the proposed implementation can be very inefficient compared to lme4.

The joint distribution between the outcome Y and the random effects η can be explicit as:

$$\begin{bmatrix} \boldsymbol{Y} \\ \boldsymbol{\eta} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{0} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Omega} & \boldsymbol{Z} \boldsymbol{\Psi} \\ \boldsymbol{\Psi} \boldsymbol{Z}^\intercal & \boldsymbol{\Psi} \end{bmatrix} \right)$$

Denote by $\varepsilon_i = \mathbf{Y}_i - \boldsymbol{\mu}_i$ the vector of marginal residuals relative to individual i, Ω_i its variance-covariance matrix, and $\psi_j = (\Psi)_{jj}$ the variance of the j-th random effect. We can re-express the expected value of the j-th random effect for individual i as:

$$\eta_{ij} = \psi_j Z_{ij} \Omega_i^{-1} \varepsilon_i$$

This is what the ranef method returns:

head(<pre>(ranef(eCS.lmm, format = "wide"</pre>	head(ranef(eNRI.lmm, format = "wide"))
id	estimate	id estimate estimate.0 estimate.1
1 1	0.9036038	1 1 4.931442 0.52901983 -0.4829138
2 2	32.5542378	2 2 28.390660 -0.09204109 0.3574766
3 3	-18.3099658	3 3 -13.728389 0.18951039 -0.3178625
4 4	20.2561307	4 4 15.645550 0.82309894 -0.6768225
5 5	-15.4258816	5 5 -11.246852 -0.30658155 0.2014303
6 6	19.3751847	6 6 15.002108 -2.64303027 2.7832909

It is also possible to extract the variance decomposition by setting the argument effects to "variance":

```
ranef(eCS.lmm, effects = "variance", format = "wide", simplify = FALSE)
```

```
ranef(eNRI.lmm, effects = "variance", format = "wide", simplify = FALSE)
```

3.9 Sum of squares

The definition of the sum of squares is not straightforward with mixed models. Intuitively summing residuals across several outcomes will be hard to interpret unless all outcomes have the same variance. This is why LMMstar does not provide them. Nevertheless for specific covariance structure, namely independence and compound symmetry (with positive correlation) structure, sum of squares can be deduced from the 1mm object - see appendix C for the theoretical derivations. Importantly, with these structures the residuals can be reparametrised as random effects plus independent residuals, i.e. $\Omega = Z\Psi Z^{\dagger} + \delta I$ where I is the identity matrix and δ the variance of these independent residuals.

Appendix C illustrate how to extract the sum of squares for univariate linear regression (i.e. independence structure) and here we illustrate the case of a compound symmetry structure. A key step is to extract from the 1mm object the conditional variance δ :

```
sigma2 <- coef(eCS.lmm, effect = "variance")^2
tau <- coef(eCS.lmm, effect = "correlation")*sigma2
delta <- unname(sigma2 - tau)</pre>
```

This step will typically depend on the covariance structure. The residual sum of squares (SSE) equals the residual degrees of freedom times the conditional variance:

```
df.res <- df.residual(eCS.lmm)
SSE <- df.res * delta
c(df.res = df.res, SSE = SSE)</pre>
```

```
df.res SSE
73.0000 779.8304
```

For the regression sum of squares (SSR), we first extract the mean parameters and their variance-covariance based on the expected information:

```
eBeta.lmm <- coef(eCS.lmm)
eVcov.lmm <- vcov(eCS.lmm, type.information = "expected")
```

Parameters are grouped with respect to the original variable:

```
attr(model.matrix(eCS.lmm), "assign")
```

[1] 0 1 1 1 2

So we respect this grouping when computing the normalized SSR:

```
SSRstar.time <- eBeta.lmm[2:4] %*% solve(eVcov.lmm[2:4,2:4]) %*% eBeta.lmm[2:4]
SSRstar.glucagon <- eBeta.lmm[5] %*% solve(eVcov.lmm[5,5]) %*% eBeta.lmm[5]
```

The SSR is obtained by multiplying the normalized SSR by the conditional variance:

```
SSR.time <- as.double(SSRstar.time * delta)
SSR.glucagon <- as.double(SSRstar.glucagon * delta)
c(time = SSR.time, glucagon = SSR.glucagon)
```

```
time glucagon 6986.78351 18.83074
```

3.10 Proportion of explained variance and partial correlation

The definition of explained variance is not straightforward with mixed models. Intuitively considering the variance across several outcomes will be hard to interpret unless all outcomes have the same variance. Similar consideration holds for partial correlation. This is why LMMstar does not output these quantities by default. Nevertheless for specific covariance structure, namely independence and compound symmetry (with positive correlation) structure, explained variance and partial correlation can be deduced from the 1mm object. Importantly, with these structures the residuals can be reparametrised as random effects plus independent residuals, i.e. $\Omega = Z\Psi Z^{\intercal} + \delta I$ where I is the identity matrix and δ the variance of these independent residuals.

The proportion of explained variance, also called partial R^2 or partial η^2 , is defined as the ratio between sum of squares (e.g. Lakens (2013), equation 12):

$$R^2 = \frac{SSR}{SSR + SSE}$$

```
c(SSR.time/ (SSR.time + SSE),
SSR.glucagon/ (SSR.glucagon + SSE))
```

[1] 0.89959197 0.02357789

Computing the SSR for each individual coefficients, taking its squared root, and multiplying by the sign of the corresponding coefficient leads to the partial correlation

```
eCS.R2 <- partialCor(eCS.lmm, R2 = TRUE) summary(eCS.R2)
```

Partial correlation

```
estimate se df lower upper p.value
timeB1w -0.646 0.055 18.6 -0.762 -0.53 5.11e-10
timeA1w -0.765 0.035 9.5 -0.845 -0.686 2.07e-09
```

```
timeA3m -0.946 0.006 2.4 -0.969 -0.923 6.80e-06 glucagon 0.154 0.114 45.3 -0.076 0.383 0.184
```

Columns lower and upper contain 95% pointwise confidence intervals for each coefficient. Degrees of freedom were computed using a Satterthwaite approximation (column df).

Coefficient of determination (R2)

```
estimate se df lower upper p.value time 0.9 0.011 2.4 0.857 0.942 4.09e-05 glucagon 0.024 0.035 45.3 -0.047 0.094 0.503 global 0.906 0.011 2.3 0.866 0.946 4.51e-05
```

Columns lower and upper contain 95% pointwise confidence intervals for each coefficient. Degrees of freedom were computed using a Satterthwaite approximation (column df).

Here the line "global" refer to the R2 for all covariates, computed based on the SSR relative to all mean parameters but the intercept.

partialCor will compute values for all types of mixed models. But their interpretation as partial correlation and proportion of explained variance outside the covariance structures mentioned in this section is questionnable.

<u>Note</u>: Other software packages like effectsize::eta_squared uses another formula to estimate the partial R2:

$$R^2 = \frac{Fdf_{num}}{Fdf_{num} + df_{denom}}$$

where F denote the F-statistic, df_{num} (resp. df_{denom}) the degrees of freedom of the numerator (resp. denominator) of this statistic. However since the calculation of degrees of freedom in LMM is approximate, I would expect this approach to be less reliable than the one of partialCor based on the SSR and SSE.

```
aCS.aov <- anova(eCS.lmm)$multivariate setNames(with(aCS.aov, statistic*df.num/(statistic*df.num+df.denom)), aCS.aov$test)
```

time glucagon 0.92380363 0.03162017

3.11 Model diagnostic

The method plot can be used to display diagnostic plots about:

• misspecification of the mean structure

• misspecification of the variance structure

• misspecification of the correlation structure

```
plot(eUN.lmm, type = "correlation", type.residual = "response")
plot(eUN.lmm, type = "correlation", type.residual = "normalized")
```


• residual distribution vs. normal distribution ³:

```
plot(eUN.lmm, type = "qqplot", engine.qqplot = "qqtest")
## Note: the qqtest package to be installed to use the argument engine.plot = "qqtest"
```


³see Oldford (2016) for guidance about how to read quantile-quantile plots.

The method residuals returns the residulas in the wide format:

```
eUN.diagW <- residuals(eUN.lmm, type = "normalized", format = "wide")
colnames(eUN.diagW) <- gsub("normalized.","",colnames(eUN.diagW))
head(eUN.diagW)</pre>
```

```
r.A1w
               r.B3m
                          r.B1w
  cluster
                                                 r.A3m
1
        1 -0.1082872  0.4283943  0.7477306  0.91794015
2
        2 1.8182348 -0.3516996 1.5698307 -0.98743171
        3 -0.9318737 -0.7728221 0.6315751 0.16549699
3
        4 0.8408969 1.8695564 0.3485784 -0.09662565
4
5
        5 -0.7882340
                             NA -0.6128276 0.09933842
6
        6 1.4896141 -1.9727358 -1.9672939 -1.37068983
```

or in the long format:

```
eUN.diagL <- residuals(eUN.lmm, type = "normalized", format = "long")
head(eUN.diagL)</pre>
```

```
[1] -0.1082872 1.8182348 -0.9318737 0.8408969 -0.7882340 1.4896141
```

Various type of residuals can be extract but the normalized one are recommanded when doing model checking.

3.12 Model fit

The fitted values can be displayed via the plot method or using the emmeans package:

```
library(ggplot2) ## left panel
plot(eUN.lmm, type = "fit", color = "id", ci.alpha = NA, size.text = 20)
```

```
library(emmeans) ## right panel
emmip(eUN.lmm, ~time) + theme(text = element_text(size=20))
```


In the first case each possible curve is displayed while in the latter the average curve (over glucagon values). With the plot method, it is possible to display a curve specific to a glucagon value via the argument at:

```
plot(eUN.lmm, type = "fit", at = data.frame(glucagon = 10), color = "glucagon")
## result not shown
```

It is also possible to display the observed values along with the fitted values by setting the argument obs.alpha to a strictly positive value below or equal to 1. This argument controls the transparency of the color used to display the observed values:

```
gg <- autoplot(eUN.lmm, type = "fit", obs.alpha = 0.25, ci = FALSE)$plot
gg <- gg + facet_wrap(~id, labeller = label_both)
gg <- gg + theme(axis.text.x=element_text(angle = 90, hjust = 0))
gg</pre>
```


3.13 Partial residuals

Partial residuals can also be displayed via the plot method:

```
gg1 <- autoplot(eUN.lmm, type = "partial", var = "glucagon")$plot
gg2 <- autoplot(eUN.lmm, type = "partial", var = c("(Intercept)", "glucagon"))$plot
ggarrange(gg1,gg2)</pre>
```


Their value can be extracted via the residuals method, e.g.:

```
df.pres <- residuals(eUN.lmm, type = "partial", var = "glucagon", keep.data = TRUE)
head(df.pres)</pre>
```

```
id visit time weight glucagonAUC baseline glucagon group
                                                                r.partial
1
   1
             B3m
                  127.2
                             5032.50
                                          TRUE 4.034616
                                                                -5.780135
2
   2
         1
             B3m
                  165.2
                            12142.50
                                          TRUE 5.240766
                                                             0
                                                                32.219865
3
   3
         1
             B3m
                  109.7
                            10321.35
                                          TRUE 4.931824
                                                             1 -23.280135
4
   4
         1
            B3m
                  146.2
                             6693.00
                                          TRUE 4.316306
                                                                 13.219865
   5
            B3m
                  113.1
                             7090.50
                                          TRUE 4.383738
                                                             1 -19.880135
5
         1
6
                  158.8
                            10386.00
                                          TRUE 4.942791
                                                                 25.819865
   6
            B3m
```

This matches manual calculation:

```
m.pres <- dfL$weight - model.matrix(~time,dfL) %*% coef(eUN.lmm)[1:4]
range(df.pres$r.partial - m.pres, na.rm = TRUE)</pre>
```

[1] -1.065814e-14 1.421085e-14

Note: to match the partial residuals obtained from 1m:

```
eIID.lm <- lm(glucagon ~ time + weight, data = dfL)
pRes.lm <- residuals(eIID.lm, type = "partial")[,"weight"]
```

one should use type equal to "partial-center" which also removes the average effect of the covariate:

```
eIID.lmm <- lmm(glucagon ~ time + weight, data = dfL)
pRes.lmm <- residuals(eIID.lmm, type = "partial-center", var = "weight")
range(pRes.lm-na.omit(pRes.lmm))
```

```
[1] -6.883383e-15 8.881784e-15
```

3.14 Statistical inference (linear)

The anova method can be use to test one or several linear combinations of the model coefficients using Wald tests. By default, it will simultaneously test all parameters associated to a variable:

```
anova(eUN.lmm)
```

Multivariate Wald test

```
F-statistic df p.value
mean: time 86.743 (3,19.0) 2.84e-11 ***
: glucagon 13.518 (1,13.7) 0.00257 **
```

Note that here the p-values are not adjust for multiple comparisons over variables. It is possible to specify a null hypothesis to be test: e.g. is there a change in average weight just after taking the treatment:

```
anova(eUN.lmm, effects = c("timeA1w-timeB1w=0"))
```

Multivariate Wald test

```
F-statistic df p.value all: 1 43.141 (1,17.9) 3.72e-06 ***
```

One can also simulateneously tests several null hypotheses:

```
e.anova <- anova(eUN.lmm, effects = c("timeA1w-timeB1w=0","timeA3m-timeB1w=0"))
summary(e.anova)</pre>
```

Multivariate Wald test

Univariate Wald test

Degrees of freedom were computed using a Satterthwaite approximation (column df).

or return all pairwise comparisons for a given factor using the mcp function of the multcomp package:

```
library(multcomp)
summary(anova(eUN.lmm, effects = mcp(time = "Tukey")))
Singular contrast matrix: contrasts "A1w - B1w" "A3m - B1w" "A3m - A1w" have been removed.
               Multivariate Wald test
            F-statistic df p.value
              86.743 (3,19.0) 2.84e-11 ***
  all: time
   _____
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1.
  Degrees of freedom were computed using a Satterthwaite approximation (column df).
               Univariate Wald test
            estimate se df lower upper p.value
  B1w - B3m -7.882 0.713 19.2 -9.83 -5.935 <1e-05 ***
  A1w - B3m -11.788 1.018 21.6 -14.567 -9.009 <1e-05 ***
  A3m - B3m -26.122 1.656 18.8 -30.646 -21.599 <1e-05 ***
  A1w - B1w -3.906 0.595 17.9 -5.53 -2.282 4e-05 ***
  A3m - B1w -18.24 1.323 19 -21.853 -14.627 <1e-05 ***
  A3m - A1w -14.334 1.057 20.3 -17.22 -11.449 <1e-05 ***
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1.
  Columns lower/upper/p.value adjusted for multiple comparisons -- max-test.
  (1e+05 samples have been used)
  Model-based standard errors are derived from the observed information (column se).
 Degrees of freedom were computed using a Satterthwaite approximation (column df).
   Here the summary method prints not only the global test but also the result associated to each hypoth-
esis. When testing transformed variance or correlation parameters, parentheses (as in log(k).Blw) cause
problem for recognizing parameters:
try(
 anova(eUN.lmm,
       effects = c("log(k).B1w=0","log(k).A1w=0","log(k).A3m=0"))
Error in .anova_Wald(object, effects = effects, robust = robust, rhs = rhs, :
 Possible mispecification of the argument 'effects' as running mulcomp::glht lead to the following
Error in parse(text = ex[i]) : <text>:1:7: uventet symbol
1: log(k).B1w
```

It is then advised to build a contrast matrix, e.g.:

```
name.coef <- rownames(confint(eUN.lmm, effects = "all"))
name.varcoef <- grep("^k",name.coef, value = TRUE)
C <- matrix(0, nrow = 3, ncol = length(name.coef), dimnames = list(name.varcoef, name.coef))
diag(C[name.varcoef,name.varcoef]) <- 1
C[,1:9]</pre>
```

```
(Intercept) timeB1w timeA1w timeA3m glucagon sigma k.B1w k.A1w k.A3m
                  0
                          0
                                   0
                                            0
                                                      0
                                                                                 0
k.B1w
                  0
                          0
                                   0
                                            0
                                                      0
k.A1w
                                                             0
                                                                    0
                                                                          1
                                                                                 0
                          0
                                            0
                                                      0
                                                                          0
k.A3m
                  0
                                   0
                                                             0
                                                                    0
                                                                                 1
```

And then call the anova method specifying the null hypothesis via the contrast matrix:

```
anova(eUN.lmm, effects = C)
```

Multivariate Wald test

```
F-statistic df p.value all: 1 6.203 (3,18.0) 0.00442 **
```

Chi2-statistic

Note that using the approach of Pipper et al. (2012) it is also possible to adjust for multiple testing across several lmm objects. To do so, one first fit the mixed models, then use the anova method to indicate which hypotheses are being tested, and combine them using rbind. Here is an (artificial) example:

Multivariate Wald test

```
6.393 (3,Inf) 0.000251 ***
all: 1
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1.
             Univariate Wald test
              estimate
                               df
                                    lower upper p.value
Ind: glucagon
                 -8.27 2.574 34.2 -14.848 -1.692 0.0116 *
CS: glucagon
                 0.822 0.59 53.8 -0.687
                                            2.33 0.4321
UN: glucagon
                -0.888 0.353 13.7
                                    -1.79 0.014 0.0546 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1.
Columns lower/upper/p.value adjusted for multiple comparisons -- max-test.
(1e+05 samples have been used)
Robust standard errors are derived from the observed information (column se).
```

df p.value

3.15 Statistical inference (non-linear)

The estimate function can be used to test one or several non-linear combinations of model coefficients, using a first order delta method to quantify uncertainty. The combination has to be specified via a function (argument f). To illustrate its use consider an ANCOVA analysis:

$$Y_{i1} = \alpha + \beta Y_{i,0} + \gamma X_i + e_i$$

```
e.ANCOVA <- lm(weight4 \sim weight1 + group, data = gastricbypassW) summary(e.ANCOVA)$coef
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.9285136 8.78006389 -0.6752244 5.086140e-01
weight1 0.8236279 0.06411563 12.8459772 3.524665e-10
group 4.1404554 2.53335466 1.6343765 1.205604e-01
```

We can replicate this analysis by first fitting a mixed model:

$$Y_{ij} = \alpha_j + \gamma_j X_i + \varepsilon_{i,j} \text{ where } \varepsilon_i \sim \mathcal{N}\left(\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2\\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

and then perform a first order delta-method:

```
lava::estimate(e.lmmANCOVA, f = function(p){
   c(Y1 = as.double(p["rho(B3m,A3m)"]*p["k.A3m"]),
     X1 = as.double(p["timeA3m:group"]-p["rho(B3m,A3m)"]*p["k.A3m"]*p["timeB3m:group"]))
})
```

```
estimate se df lower upper p.value
Y1 0.8236279 0.06230919 9.874633 0.6845551 0.9627007 1.332743e-07
X1 4.1404554 2.46197819 15.161269 -1.1022695 9.3831803 1.130927e-01
```

Indeed:

$$\mathbb{E}[Y_{i2}|Y_{i1}, X_i] = \alpha_2 + \gamma_2 X_i + \rho \frac{\sigma_2}{\sigma_1} (Y_{i1} - \alpha_1 - \gamma_1 X_i)$$

$$= \alpha_2 - \rho \frac{\sigma_2}{\sigma_1} \alpha_1 + \rho \frac{\sigma_2}{\sigma_1} Y_{i1} + (\gamma_2 - \rho \frac{\sigma_2}{\sigma_1} \gamma_1) X_i$$

We obtain identical estimate but different standard-errors/degrees of freedom compared to the univariate linear model approach. The later is to be prefer as it does not rely on approximation. The former is nevertheless useful as it can handle missing data in the outcome variable.

3.16 Baseline adjustment

In clinical trial the group and intervention variable often do not coincide, e.g., in presence of baseline measurement. In our running example, the first two measurement are pre-treatment (i.e. treatment should be "none") while the last two measurements are post-treatment (i.e. treatment should be 1 or 2). The baselineAdjustment function can be helpful to:

• define the treatment variable from the time and allocation variable, where baseline has its specific value

```
, , group = 0
     time
treat B3m B1w A1w A3m
                 0
 none 10
           10
 0
         0
            0
               10
                   10
        0
            0
                0
                     0
  1
 , group = 1
     time
treat B3m B1w A1w A3m
 none 10
           10
                0
 0
         0
            0
                 0
                     0
            0
               10 10
```

• define the treatment variable from the time and allocation variable, where baseline corresponds to the reference group

```
time
treat B3m B1w A1w A3m
1 10 10 0 0
0 0 0 10 10
```

```
time
treat B3m B1w A1w A3m
1 10 10 10 10
0 0 0 0 0
```

• define a time varying treatment variable from the time and allocation variable

```
, , group = 0
       time
treat
        B3m B1w A1w A3m
 B3m
         10
              0
                   0
                       0
 B1w
          0
             10
                   0
                       0
  Alw.O
          0
              0
                 10
                       0
  A3m.O
          0
              0
                  0 10
                     0
  Alw.1
              0
                   0
              0
                   0
  A3m.1
                       0
, , group = 1
       time
        B3m B1w A1w A3m
treat
              0
  B3m
         10
                   0
          0
             10
                   0
                       0
  B<sub>1</sub>w
             0
  Alw.O
          0
                 0 0
  A3m.O
          0
              0
                 0
                       0
 Alw.1
          0
              0 10
                       0
  A3m.1
              0
                   0 10
```

We would then typically like to model group differences only after baseline (i.e. only at 1 week and 3 months after). This can be performed using the time varying treatment variable, e.g.:

```
eC.lmm <- lmm(weight ~ timeXtreat, data = gastricbypassL, repetition = ~time|id, structure = "UN") coef(eC.lmm) ## change from baseline
```

```
(Intercept) timeXtreatB1w timeXtreatA1w.0 timeXtreatA3m.0 timeXtreatA1w.1 timeXtreatA3m.1 128.97000 -7.73000 -13.38978 -28.52130 -13.15022 -24.68870
```

or

```
eC2.lmm <- lmm(weight ~ 0 + timeXtreat, data = gastricbypassL, repetition = ~time|id, structure = "UN") coef(eC2.lmm) ## absolute value
```

```
timeXtreatB3m timeXtreatB1w timeXtreatA1w.0 timeXtreatA3m.0 timeXtreatA1w.1 timeXtreatA3m.1 128.9700 121.2400 115.5802 100.4487 115.8198 104.2813
```

The parametrization however does not (directly) output treatment effects. Instead one may be tempted to use a formula like treatment*time. However this will lead to a non-indentifiable model. Indeed we are only able to estimate a total of 6 means when constraining the expected baseline value between the two groups to be the same. Therefore can at most identify 6 effects. However the design matrix for the interaction model:

```
colnames(model.matrix(weight \sim treat*time, data = gastricbypassL))
```

```
[1] "(Intercept)" "treat0" "treat1" "timeB1w" "timeA1w"
[6] "timeA3m" "treat0:timeB1w" "treat1:timeB1w" "treat0:timeA1w" "treat1:timeA1w"
[11] "treat0:timeA3m" "treat1:timeA3m"
```

contains 12 parameters (i.e. 6 too many). Fortunately, the 1mm will drop non-identifiable effects from the model and fit the resulting simplified model:

```
eC3.lmm <- lmm(weight \sim treat2*time, data = gastricbypassL, repetition = \simtime|id, structure = "UN")
```

Constant values in the design matrix for the mean structure. Coefficients "treat20" "treat20:timeB1w" relative to interactions "treat2:time" have been removed.

with the following coefficients:

```
model.tables(eC3.lmm)
```

```
estimate
                                           df
                                                   lower
                                                                          p.value
                                  se
                                                               upper
               128.9700000 4.5323695 18.98130 119.483009 138.4569912 0.000000e+00
(Intercept)
timeB1w
                -7.7300000 0.6974427 18.97552 -9.189892 -6.2701082 9.938186e-10
timeA1w
               -13.1502219 0.8970429 22.87334 -15.006465 -11.2939786 4.058975e-13
               -24.6886957 1.7751662 22.25061 -28.367762 -21.0096290 1.863398e-12
timeA3m
treat20:timeA1w -0.2395562 0.6484895 17.66860 -1.603816 1.1247037 7.162149e-01
treat20:timeA3m -3.8326086 2.1066817 17.60613 -8.265691 0.6004734 8.592047e-02
```

One can vizualize the baseline adjustment via the plot function:

```
plot(eC3.lmm, color = "group", ci = FALSE, size.text = 20, obs.alpha = 0.1)
```


3.17 Marginal means

The emmeans package can be used to output marginal means. Consider the following model:

We can for instance compute the average value over time assuming balanced groups:

```
emmeans(e.group, specs=~time)
```

```
NOTE: Results may be misleading due to involvement in interactions
                       df lower.CL upper.CL
                 SE
 time emmean
 B3m
        4.45 0.156 18.0
                              4.12
                                        4.78
        4.32 0.131 18.0
                              4.05
                                        4.60
 B<sub>1</sub>w
        5.95 0.262 18.4
                              5.40
                                        6.50
 A1w
        5.12 0.187 18.0
                              4.73
 A3m
                                        5.51
```

Results are averaged over the levels of: group2 Confidence level used: 0.95

This differs from the average value over time over the whole sample:

```
df.pred <- cbind(gastricbypassL, predict(e.group, newdata = gastricbypassL))
summarize(formula = estimate~time, data = df.pred)</pre>
```

```
time observed missing
                                                                 median
                            mean
                                         sd
                                                 min
                                                            q1
                                                                              q3
                      0 4.514352 0.1502565 4.290643 4.290643 4.610227 4.610227 4.610227
1
  B3m
             20
                      0 4.390071 0.1617778 4.149209 4.149209 4.493298 4.493298 4.493298
2
             20
  B1w
                      0 6.044056 0.2109650 5.729961 5.729961 6.178668 6.178668 6.178668
3
             20
  A1w
                      0 5.057642 0.1465315 4.964144 4.964144 4.964144 5.275805 5.275805
  A3m
```

as the groups are not balanced:

```
table(group = dfL$group2, time = dfL$time)
```

```
time
group B3m B1w A1w A3m
FALSE 14 13 14 14
TRUE 6 6 5 6
```

The "emmeans" approach gives equal "weight" to the expected value of both group:

```
emmeans predict 4.450435 4.514352
```

Which one is relevant depends on the application. The emmeans function can also be used to display expected value in each group over time:

```
emmeans.group <- emmeans(e.group, specs = ~group2|time)
emmeans.group</pre>
```

```
time = B3m:
 group2 emmean
                 SE
                      df lower.CL upper.CL
FALSE
         4.61 0.171 18.0
                             4.25
                                      4.97
         4.29 0.262 18.0
 TRUE
                             3.74
                                      4.84
time = B1w:
 group2 emmean
               SE
                      df lower.CL upper.CL
                            4.19
FALSE
         4.49 0.145 18.4
                                      4.80
 TRUE
         4.15 0.219 17.9
                             3.69
                                      4.61
time = A1w:
 group2 emmean
                 SE
                      df lower.CL upper.CL
FALSE
         6.18 0.277 17.8
                             5.60
         5.73 0.446 18.6
 TRUE
                             4.80
                                      6.66
time = A3m:
                      df lower.CL upper.CL
 group2 emmean
                 SE
FALSE
         4.96 0.205 18.0
                             4.53
                                      5.39
         5.28 0.313 18.0
                             4.62
                                      5.93
 TRUE
```

Confidence level used: 0.95

Using the pair function displays the differences:

epairs.group <- pairs(emmeans.group, reverse = TRUE)</pre>

```
epairs.group
time = B3m:
             estimate
                         SE
                              df t.ratio p.value
 contrast
 TRUE - FALSE -0.320 0.313 18.0 -1.022 0.3202
time = B1w:
             estimate
                         SE
                              df t.ratio p.value
 contrast
TRUE - FALSE -0.344 0.262 18.0 -1.311 0.2062
time = A1w:
                              df t.ratio p.value
             estimate
 contrast
                         SE
 TRUE - FALSE -0.449 0.525 18.4 -0.855 0.4034
time = A3m:
                               df t.ratio p.value
 contrast
             estimate
                         SE
 TRUE - FALSE
                0.312 0.374 18.0
                                   0.834 0.4153
```

One can adjust for multiple comparison via the adjust argument and display confidence intervals setting the argument infer to TRUE:

```
summary(epairs.group, by = NULL, adjust = "mvt", infer = TRUE)
```

```
SE
                                 df lower.CL upper.CL t.ratio p.value
contrast
            time estimate
TRUE - FALSE B3m
                   -0.320 0.313 18.0
                                                0.517 -1.022 0.6926
                                      -1.156
TRUE - FALSE B1w
                  -0.344 0.262 18.0
                                      -1.046
                                                0.358 -1.311 0.5065
TRUE - FALSE A1w
                  -0.449 0.525 18.4
                                      -1.852
                                                0.955 -0.855 0.7960
TRUE - FALSE A3m
                   0.312 0.374 18.0
                                      -0.688
                                                1.312
                                                      0.834 0.8085
```

Confidence level used: 0.95

Conf-level adjustment: mvt method for 4 estimates

P value adjustment: mvt method for 4 tests

This should also work when doing baseline adjustment (because of baseline adjustment no difference is expected at the first two timepoints):

```
|summary(pairs(emmeans(eC3.lmm , specs = \simtreat2|time), reverse = TRUE), by = NULL)
```

```
Note: adjust = "tukey" was changed to "sidak"
because "tukey" is only appropriate for one set of pairwise comparisons
 contrast
                   time estimate
                                    SE df t.ratio p.value
 treat20 - treat21 B3m
                            0.00 0.000 Inf
                                                \mathtt{NaN}
                                                        NaN
 treat20 - treat21 B1w
                           0.00 0.000 Inf
                                                \mathtt{NaN}
                                                        NaN
                           -0.24 0.648 18 -0.369 0.9935
 treat20 - treat21 A1w
 treat20 - treat21 A3m
                        -3.83 2.107 18 -1.819 0.3019
```

P value adjustment: sidak method for 4 tests

3.18 Predictions

Two types of predictions can be performed with the predict method:

• static predictions that are only conditional on the covariates:

```
news <- dfL[dfL$id==1,]
news$glucagon <- 0
predict(eUN.lmm, newdata = news)</pre>
```

```
estimate se df lower upper

1 132.9801 4.664247 19.75815 123.24305 142.7172

2 125.0979 4.388294 19.91418 115.94155 134.2543

3 121.1922 4.214230 20.55331 112.41660 129.9678

4 106.8577 3.942058 20.95499 98.65871 115.0568
```

which can be computing by creating a design matrix:

```
X.12 <- model.matrix(formula(eUN.lmm), news)
X.12</pre>
```

```
(Intercept) timeB1w timeA1w timeA3m glucagon
1
              1
                      0
                               0
21
             1
                      1
                               0
                                       0
                                                 0
                      0
                                                 0
41
             1
                               1
                                       0
                      0
                               0
                                       1
                                                 0
61
attr(,"assign")
[1] 0 1 1 1 2
attr(,"contrasts")
attr(,"contrasts")$time
[1] "contr.treatment"
```

and then multiplying it with the regression coefficients:

```
X.12 %*% coef(eUN.lmm)
```

```
[,1]
1 132.9801
21 125.0979
41 121.1922
61 106.8577
```

• dynamic predictions that are conditional on the covariates and the outcome measured at other timepoints. Consider two subjects for who we would like to predict the weight 1 week before the intervention based on the weight 3 months before the intervention:

```
newd <- rbind(
  data.frame(id = 1, time = "B3m", weight = coef(eUN.lmm)["(Intercept)"], glucagon = 0),
  data.frame(id = 1, time = "B1w", weight = NA, glucagon = 0),
  data.frame(id = 2, time = "B3m", weight = 100, glucagon = 0),
  data.frame(id = 2, time = "B1w", weight = NA, glucagon = 0)
)
predict(eUN.lmm, newdata = newd, type = "dynamic", keep.newdata = TRUE)</pre>
```

```
id time
             weight glucagon
                                 estimate
                                                        df
                                                                lower
                                                   se
                                                                          upper
      B3m 132.9801
   1
                             0
                                                        NA
                                                                              {\tt NA}
1
                                        NA
                                                   NA
                                                                   NA
2
   1
                             0 125.09790 0.6362754 Inf 123.85083 126.3450
      B<sub>1</sub>w
                  NA
   2
      B3m 100.0000
                             0
                                        NA
                                                   NA
                                                        NA
                                                                   NA
                                                                              NA
4
   2
      B1w
                             0
                                 94.47017 7.2279385 Inf 80.30367 108.6367
                  NA
```

The first subjects has the average weight while the second has a much lower weight. The predicted weight for the first subject is then the average weight one week before while it is lower for the second subject due to the positive correlation over time. The predicted value is computed using the formula of the conditional mean for a Gaussian vector:

```
mu1 <- coef(eUN.lmm)[1]
mu2 <- sum(coef(eUN.lmm)[1:2])
Omega_11 <- sigma(eUN.lmm)["B3m","B3m"]
Omega_21 <- sigma(eUN.lmm)["B1w","B3m"]
as.double(mu2 + Omega_21 * (100 - mu1) / Omega_11)
```

[1] 94.47017

4 Equivalence with other statistical methods

4.1 T-test

A t-test:

```
	exttt{t.test(weight4} \sim 	exttt{group, data = gastricbypassW)}
```

is equivalent to an independent covariance pattern with a different variable for each group:

```
e.ttest4 <- lmm(weight4 ~ group, structure = IND(~group),
data = gastricbypassW, trace = FALSE)
model.tables(e.ttest4)
```

```
estimate se df lower upper p.value (Intercept) 104.66 5.104469 9.00180 93.11324 116.20676 7.270954e-09 group -4.59 7.760674 17.68244 -20.91558 11.73558 5.617090e-01
```

Multiple t-tests:

can be adjusted for multiple comparison by first using the anova function to specify the parameter of interest and combining the results using rbind:

```
estimate
                               se
                                        df
                                               lower
                                                        upper p.value
                 -10.60 8.971747 17.96464 -35.49775 14.29775
weight1: group
                                                                     1
weight2: group
                  -9.50 8.395143 17.98540 -32.79464 13.79464
                                                                     1
weight3: group
                  -8.92 8.129458 17.95876 -31.48110 13.64110
                                                                     1
                  -4.59 7.760674 17.68244 -26.16472 16.98472
weight4: group
                                                                     1
```

fficient adjustment for multiple comparisons (like "single-step") will not be valid as the correlation structure has not be specified. To do so it is more conveniently to work with a the long format:

```
by parameter estimate
                                         df
                                                lower
                                                                  p.value
                               se
                                                          upper
                  -10.60 8.971747 17.96464 -30.89407
                                                      9.694068 0.3155368
1 B3m
          group
2 B1w
                   -9.50 8.395143 17.98540 -28.48979 9.489791 0.3387166
          group
3 A1w
                   -8.92 8.129458 17.95876 -27.30881 9.468813 0.3554664
          group
                   -4.59 7.760674 17.68244 -22.14462 12.964624 0.6640334
4 A3m
          group
```

or call the dedicated function mt.test:

```
{	t mt.test(weight1+weight2+weight3+weight4}{	t oup, data = gastricbypassW)}
```

```
by parameter estimate
                                            df
                                                   lower
                                                             upper
                                                                     p.value
                                   se
                      -10.60 8.971747 17.96464 -30.97670 9.776698 0.3197968
1 weight1
              group
2 weight2
                       -9.50 8.395143 17.98540 -28.56711 9.567110 0.3423566
              group
3 weight3
                       -8.92 8.129458 17.95876 -27.38368 9.543685 0.3584364
              group
4 weight4
              group
                       -4.59 7.760674 17.68244 -22.21610 13.036099 0.6649434
```

4.2 Linear regression on the change

A widely spread approach to analyze longitudinal data is to reduce the number of repetitions to 1 by working on the change and then apply 'usual' statistical methods. For instance one could compare the pre- and post- operation values using:

```
gastricbypassW$changeG41 <- gastricbypassW$glucagonAUC4-gastricbypassW$glucagonAUC1 e.change41 <- lm(changeG41 \sim weight1, data = gastricbypassW) summary(e.change41)$coef
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 17865.953 9292.61106 1.922598 0.07050076
weight1 -113.696 71.22173 -1.596367 0.12781371
```

This turns out to be equivalent to the following mixed model:

```
estimate
                                             df
                                                      lower
                                                                          p.value
                                                                 upper
                7730.051990 5737.22268 18.00298 -4323.26268 19783.36666 0.19458155
(Intercept)
timeA3m
               17865.953183 9292.61106 18.00104 -1657.01749 37388.92385 0.07049983
weight1
                              43.97202 18.00298 -91.36968
                                                              93.39171 0.98190941
                   1.011014
timeA3m:weight1 -113.695981
                              71.22173 18.00104 -263.32666
                                                               35.93469 0.12781271
```

This equivalence only holds as there is no missing data.

```
index.missing41 <- which(is.na(gastricbypassW$changeG41))
index.missing41</pre>
```

```
integer(0)
```

4.3 Correlation between changes

In some studies, one is interested in studying the relation between two evolutions. Say weight and glucagon before and after the operation:

```
gastricbypassW$changeG41 <- gastricbypassW$glucagonAUC4-gastricbypassW$glucagonAUC1 gastricbypassW$changeW41 <- gastricbypassW$weight4-gastricbypassW$weight1
```

One can evaluate their correlation:

```
cor.test(gastricbypassW$changeW41, gastricbypassW$changeG41)
```

Pearson's product-moment correlation

```
data: gastricbypassW$changeW41 and gastricbypassW$changeG41
t = 1.8667, df = 18, p-value = 0.07831
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
   -0.0484149   0.7174011
sample estimates:
        cor
0.4027343
```

or regress one against the other:

```
e2.change41 <- lm(changeG41 \sim changeW41, data = gastricbypassW) summary(e2.change41)$coef
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 13321.9427 5592.8058 2.381978 0.02845909
changeW41 380.3556 203.7541 1.866738 0.07831464
```

This problem can be recast using all measurement as outcomes:

```
id type value
1.1 1 weight1 127.20
1.2 1 weight4 108.10
1.3 1 glucagonAUC1 5032.50
1.4 1 glucagonAUC4 9249.45
2.1 2 weight1 165.20
2.2 2 weight4 132.00
```

fitting an unstructured mixed model:

```
e.lmm4 <- lmm(value ~ type,
repetition = ~type|id, structure = "UN",
data = gastricbypassL4)
```

extract the residual covariance matrix:

```
sigma.lmm4 <- sigma(e.lmm4)
sigma.lmm4
```

```
weight1
                             weight4 glucagonAUC1 glucagonAUC4
                410.8475
                            326.8357
                                          415.3727
                                                      -46296.33
weight1
weight4
                326.8357
                            290.8350
                                        -5983.5871
                                                      -34434.03
glucagonAUC1
                415.3727
                          -5983.5871 14299430.9269 -4229230.69
glucagonAUC4 -46296.3339 -34434.0320 -4229230.6877 20065722.32
```

Deduce the residual covariance matrix for the change:

```
d.weight d.glucagonAUC
d.weight 48.01103 18261.26
d.glucagonAUC 18261.26175 42823614.62
```

and the corrrelation or covariance:

```
cov2cor(sigmeChange.lmm4)[1,2]
sigmeChange.lmm4[1,2]/sigmeChange.lmm4[1,1]
```

```
[1] 0.4027343
[1] 380.3556
```

The uncertainty can be quantified using a delta method:

```
estimate(e.lmm4, function(p){
   Sigma.change <- t(Mcon) %*% sigma(e.lmm4, p = p) %*% Mcon
   c(cor = cov2cor(Sigma.change)[1,2],
   beta = Sigma.change[1,2]/Sigma.change[1,1])
})</pre>
```

```
estimate se df lower upper p.value cor 0.4027343 0.1922078 2.660595 -0.2555602 1.061029 0.1386265 beta 380.3555798 198.3453360 2.798661 -277.3518013 1038.062961 0.1575655
```

The standard errors and degrees of freedom do not match the univariate analysis, suggesting probably poor small sample properties of this technic.

5 Missing values and imputation

We reconsider the example of the previous section, but now in presence of missing values. The **summarize** function can be used to describe the amount of missing data at each repetition:

```
sss <- summarize(glucagon \sim time, data = gastricbypassL, na.rm = TRUE) cbind(sss[,1:4], pc = paste0(100 * sss$missing / (sss$missing + sss$observed), "%"))
```

```
      outcome
      time
      observed
      missing
      pc

      1 glucagon
      B3m
      20
      0 0%

      2 glucagon
      B1w
      19
      1 5%

      3 glucagon
      A1w
      19
      1 5%

      4 glucagon
      A3m
      20
      0 0%
```

For more detail about the missing data patters, see the summarizeNA function:

```
oxed{	text{summarizeNA(data = gastricbypassL, repetition = $\sim$ time|id)}
```

variable	frequency	${\tt missing.pattern}$	n.missing	id	B3m	B1w	A1w	АЗm
visit	20	00000	0	0	0	0	0	0
weight	20	00000	0	0	0	0	0	0
${\tt glucagonAUC}$	18	00000	0	0	0	0	0	0
	1	00100	1	0	0	1	0	0
	1	00010	1	0	0	0	1	0
baseline	20	00000	0	0	0	0	0	0
glucagon	18	00000	0	0	0	0	0	0
	1	00100	1	0	0	1	0	0
	1	00010	1	0	0	0	1	0
group	20	00000	0	0	0	0	0	0

To begin with we will only consider 1 week before and 1 week after surgery:

```
## long format
gastricbypassL32 <- gastricbypassL[gastricbypassL$visit %in% c(3,2),]
gastricbypassL32$time <- droplevels(gastricbypassL32$time)
gastricbypassL32$weight1 <- gastricbypassW$weight1[gastricbypassL32$id]
## wide format
gastricbypassW$changeG32 <- gastricbypassW$glucagonAUC3-gastricbypassW$glucagonAUC2</pre>
```

5.1 Full information approach

LMM uses a full information approach:

```
estimate
                                             df
                                                       lower
                                                                              p.value
                                    se
                                                                   upper
                 2226.30678 4973.21491 17.01148 -8265.72037 12718.33393 0.6600471546
(Intercept)
                37469.89400 8950.26818 17.88948 18657.74792 56282.04008 0.0005612515
timeA1w
weight1
                   37.90933
                              37.87004 17.01113
                                                  -41.98548
                                                               117.80414 0.3308362562
timeA1w:weight1 -213.20181
                              68.15807 17.71309 -356.56304
                                                               -69.84058 0.0058968630
```

whereas a linear model would perform a complete case approach:

```
e.change32 <- lm(changeG32 \sim weight1, data = gastricbypassW) summary(e.change32)$coef
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 38101.9400 9417.61506 4.045816 0.0009373023
weight1 -217.2672 71.25218 -3.049271 0.0076504030
```

In the former the likelihood is evaluated using all observations, even those from individuals with some (but not all) missing outcome values: baseline is used even if follow-up is missing. In the later the likelihood is only evaluated on individuals with no missing outcome values: if follow-up is missing then baseline is not used. Indeed:

```
coef(lm(changeG32 \sim weight1, data = gastricbypassW[-c(5,15),]))
```

```
(Intercept) weight1 38101.9400 -217.2672
```

The estimates of the LMM can be retrived using a linear model where we have imputed the conditional expectation of the missing values given the observed value and the estimated model parameters: (see section 5.3 for a graphical representation)

```
gastricbypassWA <- fitted(e.lmm32, impute = TRUE, keep.newdata = TRUE, format = "wide") gastricbypassWA$change32 <- gastricbypassWA$glucagonAUC.A1w - gastricbypassWA$glucagonAUC.B1w coef(lm(change32 ~ weight1, data = gastricbypassWA))
```

```
(Intercept) weight1 37469.8940 -213.2018
```

⚠ Standard errors, confidence intervals, and p-values from this linear model should not be trusted as they do not account for the uncertainty in the imputed values.

5.2 Complete case approach

The lmmCC can be used to obtain the LMM that is equivalent to a linear regression. In the case of the comparing the change between groups, the repetition argument should indicate how the change has been computed:

```
e.lmmCC <- lmmCC(e.change32, repetition = changeG32 ~ glucagonAUC3-glucagonAUC2|id) model.tables(e.lmmCC)
```

```
Remove 2 clusters (4 observations)
 - 2 observations with missing data (2 clusters)
- 0 missing repetitions (0 clusters)
                estimate
                                           df
                                                     lower
                                                                  upper
                                                                             p.value
(Intercept) -36283.0356 12841.66795 15.99997 -63506.15929 -9059.91191 0.0121849728
              38101.9400 9417.61506 16.00030
                                               18137.51789 58066.36212 0.0009372705
time
                257.7767
                            97.15802 15.99997
                                                  51.81085
                                                              463.74249 0.0173566171
weight1
time:weight1
               -217.2672
                            71.25218 16.00030
                                                -368.31484
                                                              -66.21956 0.0076502759
```

As output, the data from two clusters (i.e. 4 observations) has been excluded before fitting the LMM (instead of just the 2 observations with missing values for the full information approach). The interaction term of the LMM matches the regression coefficient of the linear model:

```
summary(e.change32)$coef
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 38101.9400 9417.61506 4.045816 0.0009373023
weight1 -217.2672 71.25218 -3.049271 0.0076504030
```

In the case of regressing two changes:

```
gastricbypassW$changeW32 <- gastricbypassW$weight3 - gastricbypassW$weight2
e2g.change32 <- lm(changeG32 ~ changeW32 + group, data = gastricbypassW)
summary(e2g.change32)$coef
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2720.5540 6930.588 0.3925430 0.7001787
changeW32 -783.8895 1122.541 -0.6983171 0.4956633
group 6059.7378 3525.140 1.7190062 0.1061756
```

the repetition argument should indicate how each change has been computed:

```
e2.lmmCC <- lmmCC(e2g.change32, repetition = list(changeG32 \sim glucagonAUC3-glucagonAUC2|id, changeW32 \sim weight3-weight2|id)) model.tables(e2.lmmCC)
```

```
Remove 2 clusters (8 observations)
- 2 observations with missing data (2 clusters)
- 0 missing repetitions (0 clusters)
estimate se df lower upper p.value
cor -0.1774435 0.2416113 1.714523 -1.401851 1.046964 0.5499188
beta -783.8895353 1081.5567036 2.338122 -4848.482516 3280.703446 0.5342415
```

We retrieve the same estimate for the effect of change in weights but the uncertainty (standard error, confidence intervals, p.value) do not match. They should be asymptotically correct but may not have very good small smaple properties.

5.3 Imputation

It is possible to extract the most likely value for these missing observation using the fitted function with argument impute=TRUE:

```
fitted(eUN.lmmNA, impute = TRUE)
```

[1] 4.256984 6.497856

When using the argument keep.newdata=TRUE, the missing outcome value has been replaced by its most likely value (which is the same as the dynamic prediction, describedy previously):

```
eData <- fitted(eUN.lmmNA, impute = TRUE, keep.newdata = TRUE)
eData$treat <- eData$treat2 <- eData$timeXtreat <- NULL
eData[eData$id %in% eData[eData$imputed,"id"],]
```

```
id visit time weight glucagonAUC baseline glucagon group group2 imputed
                                           TRUE 4.383738
    5
             B3m
                   113.1
                               7090.5
5
          1
                                                              1
                                                                 FALSE
                                                                          FALSE
                               5410.5
15 15
          1
             B3m
                   115.0
                                           TRUE 4.098741
                                                                  TRUE
                                                                          FALSE
                                                              1
   5
          2
             B1w
                   105.6
                                           TRUE 4.256984
                                                                 FALSE
                                                                           TRUE
25
                                   NA
                                                              1
35 15
          2
             B1w
                   109.7
                               7833.0
                                          TRUE 4.509697
                                                                  TRUE
                                                                          FALSE
                                                              1
   5
          3
                    99.9
                              19155.0
                                         FALSE 6.430376
                                                                 FALSE
                                                                          FALSE
45
             A1w
                                                              1
55 15
          3
             A1w
                  103.5
                                   NA
                                         FALSE 6.497856
                                                                  TRUE
                                                                           TRUE
          4
   5
             A3m
                    87.7
                              12345.0
                                         FALSE 5.275118
                                                              1
                                                                 FALSE
                                                                          FALSE
65
          4
             A3m
                    94.1
                                         FALSE 6.259632
                                                                  TRUE
75 15
                              18148.5
                                                              1
                                                                          FALSE
```

Visually:

```
ggplot(eData, aes(x=time,y=glucagon, group=id)) + geom_line() + geom_point(aes(color=imputed))
```


It is possible to sample from the estimated distribution of the missing value instead of using the most likely value, e.g. accounting for residual variance and uncertainty related to parameter estimation:

```
set.seed(10)
fitted(eUN.lmmNA, impute = TRUE, se = "total")
fitted(eUN.lmmNA, impute = TRUE, se = "total")
fitted(eUN.lmmNA, impute = TRUE, se = "total")
```

- [1] 4.262434 6.305287
- [1] 3.858267 5.871642
- [1] 4.342624 6.905246

5.4 Multiple imputation

The mlmm function can used to perform stratify analyses, typically useful when performing multiple imputations. Consider the wide format of the dataset where a few values are missing:

```
data(gastricbypassW, package = "LMMstar")
colSums(is.na(gastricbypassW))
```

```
id weight1 weight2 weight3 weight4 glucagonAUC1 glucagonAUC2 0 0 0 0 0 0 0 1 glucagonAUC3 glucagonAUC4 1 0
```

We use mice to generate a number of imputed datasets (here 5):

```
library(mice)
set.seed(10)
gastricbypassW.mice <- mice(gastricbypassW, m = 5, printFlag = FALSE)
gastricbypassW.NNA <- complete(gastricbypassW.mice, action = "long")
table(gastricbypassW.NNA$.imp)</pre>
```

Advarselsbesked:

```
Number of logged events: 110

1 2 3 4 5
20 20 20 20 20
```

We can then use mlmm to perform a separate linear regression per dataset:

```
e.mlmm <- mlmm(glucagonAUC3~glucagonAUC2+weight2, data=gastricbypassW.NNA, by = ".imp", effects = "weight2=0", trace = FALSE) model.tables(e.mlmm)
```

```
by parameter estimate
                                       df
                                              lower
                                                        upper
                                                                  p.value
                               se
       weight2 -204.6291 62.88617 17.0034 -337.3053 -71.95289 0.004670840
1
  2
       weight2 -194.4004 62.31006 17.0034 -325.8611 -62.93968 0.006231893
       weight2 -211.9042 65.51654 17.0034 -350.1299 -73.67848 0.004872354
3
  3
       weight2 -199.8417 62.12071 17.0034 -330.9029 -68.78041 0.005058119
4
  4
       weight2 -199.9269 62.16057 17.0034 -331.0722 -68.78152 0.005065662
  5
```

and pool the results using Rubin's rule:

```
model.tables(e.mlmm, method = "pool.rubin")
```

```
estimate se df lower upper p.value <1, 5> -202.1404 63.4192 15.09811 -337.2388 -67.04208 0.006078676
```

This matches⁴ the results obtained with the mice package:

⁴almost exactly, only the degrees of freedom are a little different

 $e.mice <- with (data=gastricbypassW.mice,exp=lm(glucagonAUC3 \sim glucagonAUC2 + weight2)) \\ summary(pool(e.mice))$

```
term estimate std.error statistic df p.value 
1 (Intercept) 4.119699e+04 7674.2675772 5.3681988 15.08457 7.675819e-05 
2 glucagonAUC2 7.038742e-02 0.3689445 0.1907805 15.23549 8.512165e-01 
3 weight2 -2.021404e+02 63.4191998 -3.1873698 15.09481 6.080058e-03
```

One can use the plot function to obtain a forest plot of the individual estimates along with the pooled estimate:

plot(e.mlmm, method = c("pool.rubin", "none"))

6 Data generation

Simulate some data in the wide format:

```
set.seed(10) ## ensure reproductibility
n.obs <- 100
n.times <- 4
mu <- rep(0,4)
gamma <- matrix(0, nrow = n.times, ncol = 10) ## add interaction
gamma[,6] <- c(0,1,1.5,1.5)
dW <- sampleRem(n.obs, n.times = n.times, mu = mu, gamma = gamma, format = "wide")
head(round(dW,3))</pre>
```

```
id X1 X2 X3 X4 X5
                           X7
                                  8X
                                        Х9
                                              X10
                     Х6
                                                      Υ1
                                                            Y2
                                                                   Y3
                                                                          Y4
            1
               0 -0.367
                        1.534 -1.894 1.729 0.959 1.791
                                                         2.429
                                                                3.958
                                                                       2.991
2
               0 -0.410 2.065
                              1.766 0.761 -0.563 2.500 4.272
         1
                                                                3.002
3
         2
            1
               0 -1.720 -0.178 2.357 1.966 1.215 -3.208 -5.908 -4.277 -5.154
   0
              0 0.923 -2.089 0.233 1.307 -0.906 -2.062 0.397
                                                                1.757 - 1.380
4
      0
         0
            1
         2
            1 0 0.987 5.880 0.385 0.028 0.820 7.963 7.870 7.388 8.609
5
   0
      0
               2 -1.075  0.479  2.202  0.900 -0.739  0.109 -1.602 -1.496 -1.841
```

Simulate some data in the long format:

```
set.seed(10) ## ensure reproductibility
dL <- sampleRem(n.obs, n.times = n.times, mu = mu, gamma = gamma, format = "long")
head(dL)</pre>
```

```
Y X1 X2 X3 X4 X5
                                          Х6
                                                   X7
                                                            Х8
                                                                      Х9
                                                                                X10
                         1 1 0 -0.3665251 1.533815 -1.894425 1.7288665
1
  1
        1 1.791444
                                                                          0.9592499
                          1 1 0 -0.3665251 1.533815 -1.894425 1.7288665
2
        2 2.428570
                       0
                                                                         0.9592499
  1
                    1
3
        3 3.958350
                       0
                             1
                                0 -0.3665251 1.533815 -1.894425 1.7288665
        4 2.991198
                       0
                          1
                            1 0 -0.3665251 1.533815 -1.894425 1.7288665
4
  1
                   1
                                                                          0.9592499
                       0
                             2 0 -0.4097541 2.065413 1.765841 0.7613348 -0.5630173
5
  2
        1 2.500179
                   1
                          1
6
        2 4.272357
                   1 0 1 2 0 -0.4097541 2.065413 1.765841 0.7613348 -0.5630173
  2
```

7 Modifying default options

The LMMstar.options method enable to get and set the default options used by the package. For instance, the default option for the information matrix is:

LMMstar.options("type.information")

\$type.information
[1] "observed"

To change the default option to "expected" (faster to compute but less accurate p-values and confidence intervals in small samples) use:

LMMstar.options(type.information = "expected")

To restore the original default options do:

LMMstar.options(reinitialise = TRUE)

8 R session

Details of the R session used to generate this document:

sessionInfo()

[77] vctrs_0.5.1

R version 4.2.0 (2022-04-22 ucrt) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 10 x64 (build 19045) Matrix products: default locale: [1] LC_COLLATE=Danish_Denmark.utf8 LC_CTYPE=Danish_Denmark.utf8 LC_MONETARY=Danish_Denmark.utf8 LC_TIME=Danish_Denmark.utf8 [4] LC_NUMERIC=C attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] mice_3.14.0 Matrix_1.5-1 LMMstar_0.8.10 lme4_1.1-29 ggpubr_0.4.0 multcomp_1.4-20 [5] nlme_3.1-158 TH.data_1.1-1 [9] MASS_7.3-57 survival_3.3-1 mvtnorm_1.1-3 qqtest_1.2.0 [13] emmeans_1.8.1-90002 ggplot2_3.4.0 loaded via a namespace (and not attached): [1] tidyr_1.2.0 splines_4.2.0 carData_3.0-5 datawizard_0.6.1 [5] assertthat_0.2.1 stats4_4.2.0 bayestestR_0.13.0 globals_0.16.1 [9] numDeriv_2016.8-1.1 pillar_1.8.1 backports_1.4.1 lattice_0.20-45 [13] glue_1.6.2 digest_0.6.29 ggsignif_0.6.3 minqa_1.2.4 cowplot_1.1.1 [17] colorspace_2.0-3 sandwich_3.0-2 plyr_1.8.7 [21] pcaPP_2.0-2 pkgconfig_2.0.3 broom_0.8.0 listenv_0.8.0 [25] purrr_0.3.4 $xtable_1.8-4$ scales_1.2.1 copula_1.1-0 [29] lava_1.6.10 tibble_3.1.8 mgcv_1.8-40 ADGofTest_0.3 [33] generics_0.1.2 farver_2.1.1 car_3.1-0 withr_2.5.0 [37] cli_3.4.1 effectsize_0.7.0.5 magrittr_2.0.3 estimability_1.4.1 [41] future_1.28.0 parallelly_1.32.1 gsl_2.1-7.1 fansi_1.0.3 [45] rstatix_0.7.0 textshaping_0.3.6 tools_4.2.0 lifecycle_1.0.3 [49] pspline_1.0-19 stringr_1.4.0 munsell_0.5.0 stabledist_0.7-1 [53] compiler_4.2.0 systemfonts_1.0.4 rlang_1.0.6 grid_4.2.0 [57] nloptr_2.0.3 parameters_0.18.2 labeling_0.4.2 boot_1.3-28 [61] lmerTest_3.1-3 gtable_0.3.1 codetools_0.2-18 $abind_1.4-5$ [65] DBI_1.1.3 reshape2_1.4.4 R6_2.5.1 zoo_1.8-11 [69] dplyr_1.0.9 future.apply_1.9.1 utf8_1.2.2 insight_0.18.4 Rcpp_1.0.8.3 [73] ragg_1.2.2 stringi_1.7.6 parallel_4.2.0

coda_0.19-4

tidyselect_1.1.2

References

- Christensen, R. (2011). Plane answers to complex questions (4th edition), volume 35. Springer.
- Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and anovas. *Frontiers in psychology*, 4:863.
- Oldford, R. W. (2016). Self-calibrating quantile-quantile plots. The American Statistician, 70(1):74–90.
- Pipper, C. B., Ritz, C., and Bisgaard, H. (2012). A versatile method for confirmatory evaluation of the effects of a covariate in multiple models. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 61(2):315–326.

Appendix A Likelihood in a linear mixed model

Denote by Y a vector of m outcomes, X a vector of p covariates, $\mu(\Theta, X)$ the modeled mean, and $\Omega(\Theta, X)$ the modeled residual variance-covariance. We consider n replicates (i.e. Y_1, \ldots, Y_n) and VX_1, \ldots, X_n) along with a vector of weights $\omega = (w_1, \ldots, w_n)$, which are by default all equal to 1.

A.1 Log-likelihood

The restricted log-likelihood in a linear mixed model can then be written:

$$\mathcal{L}(\boldsymbol{\Theta}|\boldsymbol{Y},\boldsymbol{X}) = \frac{p}{2}\log(2\pi) - \frac{1}{2}\log\left(\left|\sum_{i=1}^{n} w_{i}\boldsymbol{X}_{i}\Omega_{i}^{-1}(\boldsymbol{\Theta})\boldsymbol{X}_{i}^{\mathsf{T}}\right|\right) + \sum_{i=1}^{n} w_{i}\left(-\frac{m}{2}\log(2\pi) - \frac{1}{2}\log|\Omega_{i}(\boldsymbol{\Theta})| - \frac{1}{2}(\boldsymbol{Y}_{i} - \mu(\boldsymbol{\Theta},\boldsymbol{X}_{i}))\Omega_{i}(\boldsymbol{\Theta})^{-1}(\boldsymbol{Y}_{i} - \mu(\boldsymbol{\Theta},\boldsymbol{X}_{i}))^{\mathsf{T}}\right)$$
(A)

This is what the logLik method is computing for the REML criteria. The red term is specific to the REML criteria and prevents from computing individual contributions to the likelihood⁵. The blue term is what logLik outputs for the ML criteria when setting the argument indiv to TRUE.

A.2 Score

Using that $\partial \log(\det(X)) = tr(X^{-1}\partial(X))$, the score is obtained by derivating once the log-likelihood, i.e., for $\theta \in \Theta$:

$$S(\theta) = \frac{\partial \mathcal{L}(\boldsymbol{\Theta}|\boldsymbol{Y}, \boldsymbol{X})}{\partial \theta} = \frac{1}{2} tr \left(\left(\sum_{i=1}^{n} w_{i} \boldsymbol{X}_{i} \Omega_{i}^{-1}(\boldsymbol{\Theta}) \boldsymbol{X}_{i}^{\mathsf{T}} \right)^{-1} \left(\sum_{i=1}^{n} w_{i} \boldsymbol{X}_{i} \Omega_{i}^{-1}(\boldsymbol{\Theta}) \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \theta} \Omega_{i}(\boldsymbol{\Theta})^{-1} \boldsymbol{X}_{i}^{\mathsf{T}} \right) \right)$$

$$+ \sum_{i=1}^{n} w_{i} \left(-\frac{1}{2} tr \left(\Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \theta} \right) + \frac{\partial \mu(\boldsymbol{\Theta}, \boldsymbol{X}_{i})}{\partial \theta} \Omega_{i}(\boldsymbol{\Theta})^{-1} (\boldsymbol{Y}_{i} - \mu(\boldsymbol{\Theta}, \boldsymbol{X}_{i}))^{\mathsf{T}} \right)$$

$$+ \frac{1}{2} (\boldsymbol{Y}_{i} - \mu(\boldsymbol{\Theta}, \boldsymbol{X}_{i})) \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \theta} \Omega_{i}(\boldsymbol{\Theta})^{-1} (\boldsymbol{Y}_{i} - \mu(\boldsymbol{\Theta}, \boldsymbol{X}_{i}))^{\mathsf{T}} \right).$$

This is what the **score** method is computing for the REML criteria. The red term is specific to the REML criteria and prevents from computing the score relative to each cluster. The blue term is what **score** outputs for the ML criteria when setting the argument **indiv** to TRUE.

⁵The REML is the likelihood of the observations divided by the prior on the estimated mean parameters $\widehat{\Theta}_{\mu} \sim \mathcal{N}(\mu, (\boldsymbol{X}\Omega^{-1}(\boldsymbol{\Theta})\boldsymbol{X}^{\intercal})^{-1})$. This corresponds to $\frac{1}{\sqrt{2\pi^{p}}\left|\left(\sum_{i=1}^{n}\boldsymbol{X}_{i}\Omega_{i}^{-1}(\boldsymbol{\Theta})\boldsymbol{X}_{i}^{\intercal}\right)^{-1}\right|} \exp\left(-(\widehat{\Theta}_{\mu}-\mu)\left(2\sum_{i=1}^{n}\boldsymbol{X}_{i}\Omega_{i}^{-1}(\boldsymbol{\Theta})\boldsymbol{X}_{i}^{\intercal}\right)^{-1}\right)(\widehat{\Theta}_{\mu}-\mu)^{\intercal}\right) \text{ Since } \mu \text{ will be estimated to be } \widehat{\Theta}_{\mu}, \text{ the exponential term equals 1 and thus does not contribute to the log-likelihood. One divided by the other term gives <math display="block">\sqrt{2\pi^{p}}\left(\left|\sum_{i=1}^{n}\boldsymbol{X}_{i}\Omega_{i}^{-1}(\boldsymbol{\Theta})\boldsymbol{X}_{i}^{\intercal}\right|\right)^{-1}. \text{ The log of this term equals the red term}$

A.3 Hessian

Derivating a second time the log-likelihood gives the hessian, $\mathcal{H}(\Theta)$, with element⁶:

$$\begin{split} \mathcal{H}(\theta,\theta') &= \frac{\partial^{2}\mathcal{L}(\boldsymbol{\Theta}|\boldsymbol{Y},\boldsymbol{X})}{\partial\theta\partial\theta'} = \frac{\partial\mathcal{S}(\theta)}{\partial\theta'} \\ &= \frac{1}{2}tr\left(\left(\sum_{i=1}^{n}w_{i}\boldsymbol{X}_{i}\Omega_{i}^{-1}(\boldsymbol{\Theta})\boldsymbol{X}_{i}^{\intercal}\right)^{-1}\left\{\sum_{i=1}^{n}w_{i}\boldsymbol{X}_{i}\Omega_{i}^{-1}(\boldsymbol{\Theta})\left(\frac{\partial^{2}\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta\partial\theta'} - 2\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta}\Omega_{i}^{-1}(\boldsymbol{\Theta})\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta'}\right)\Omega_{i}(\boldsymbol{\Theta})^{-1}\boldsymbol{X}_{i}^{\intercal}\right) \\ &+ \left(\sum_{i=1}^{n}w_{i}\boldsymbol{X}_{i}\Omega_{i}^{-1}(\boldsymbol{\Theta})\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta}\Omega_{i}(\boldsymbol{\Theta})^{-1}\boldsymbol{X}_{i}^{\intercal}\right)\left(\sum_{i=1}^{n}w_{i}\boldsymbol{X}_{i}\Omega_{i}^{-1}(\boldsymbol{\Theta})\boldsymbol{X}_{i}^{\intercal}\right)^{-1}\left(\sum_{i=1}^{n}w_{i}\boldsymbol{X}_{i}\Omega_{i}^{-1}(\boldsymbol{\Theta})\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta'}\Omega_{i}(\boldsymbol{\Theta})^{-1}\boldsymbol{X}_{i}^{\intercal}\right)\right\} \\ &+ \sum_{i=1}^{n}w_{i}\left(\frac{1}{2}tr\left(\Omega_{i}(\boldsymbol{\Theta})^{-1}\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta'}\Omega_{i}(\boldsymbol{\Theta})^{-1}\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta} - \Omega_{i}(\boldsymbol{\Theta})^{-1}\frac{\partial^{2}\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta\partial\theta'}\right) \\ &- \frac{\partial\mu(\boldsymbol{\Theta},\boldsymbol{X}_{i})}{\partial\theta}\Omega_{i}(\boldsymbol{\Theta})^{-1}\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta'}\Omega_{i}(\boldsymbol{\Theta})^{-1}\varepsilon_{i}(\boldsymbol{\Theta})^{\intercal} - \frac{\partial\mu(\boldsymbol{\Theta},\boldsymbol{X}_{i})}{\partial\theta}\Omega_{i}(\boldsymbol{\Theta})^{-1}\frac{\partial\mu(\boldsymbol{\Theta},\boldsymbol{X}_{i})}{\partial\theta'} \\ &+ \frac{1}{2}\varepsilon_{i}(\boldsymbol{\Theta})\Omega_{i}(\boldsymbol{\Theta})^{-1}\left(\frac{\partial^{2}\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta\partial\theta'} - \frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta'}\Omega_{i}(\boldsymbol{\Theta})^{-1}\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta'}\Omega_{i}(\boldsymbol{\Theta})^{-1}\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta'}\Omega_{i}(\boldsymbol{\Theta})^{-1}\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta'}\Omega_{i}(\boldsymbol{\Theta})^{-1}\frac{\partial\Omega_{i}(\boldsymbol{\Theta})}{\partial\theta'}\Omega_{i}(\boldsymbol{\Theta})^{-1}\varepsilon_{i}(\boldsymbol{\Theta})^{\intercal}\right). \end{split}$$

where $\boldsymbol{\varepsilon}_i(\boldsymbol{\Theta}) = \boldsymbol{Y}_i - \mu(\boldsymbol{\Theta}, \boldsymbol{X}_i)$.

The information method will (by default) return the (observed) information which is the opposite of the hessian. So multiplying the previous formula by -1 gives what information output for the REML criteria. The red term is specific to the REML criteria and prevents from computing the information relative to each cluster. The blue term is what information outputs for the ML criteria (up to a factor -1) when setting the argument indiv to TRUE.

A possible simplification is to use the expected hessian at the maximum likelihood. Indeed for any deterministic matrix A:

•
$$\mathbb{E}\left[A(\boldsymbol{Y}_i - \mu(\boldsymbol{\Theta}, \boldsymbol{X}_i))^{\mathsf{T}} | \boldsymbol{X}_i\right] = 0$$

•
$$\mathbb{E}\left[(\boldsymbol{Y}_i - \mu(\boldsymbol{\Theta}, \boldsymbol{X}_i))A(\boldsymbol{Y}_i - \mu(\boldsymbol{\Theta}, \boldsymbol{X}_i))^{\mathsf{T}}||\boldsymbol{X}_i\right] = tr(A\mathbb{V}ar(\boldsymbol{Y}_i - \mu(\boldsymbol{\Theta}, \boldsymbol{X}_i)))$$

when $\mathbb{E}[\boldsymbol{Y}_i - \mu(\boldsymbol{\Theta}, \boldsymbol{X}_i)] = 0$. This leads to:

$$\mathbb{E}\left[\mathcal{H}(\theta, \theta') | \boldsymbol{X}\right]$$

$$= \frac{1}{2} tr \left(\left(\sum_{i=1}^{n} w_{i} \boldsymbol{X}_{i} \Omega_{i}^{-1}(\boldsymbol{\Theta}) \boldsymbol{X}_{i}^{\mathsf{T}} \right)^{-1} \left\{ \sum_{i=1}^{n} w_{i} \boldsymbol{X}_{i} \Omega_{i}^{-1}(\boldsymbol{\Theta}) \left(\frac{\partial^{2} \Omega_{i}(\boldsymbol{\Theta})}{\partial \theta \partial \theta'} - 2 \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \theta} \Omega_{i}^{-1}(\boldsymbol{\Theta}) \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \theta'} \right) \Omega_{i}(\boldsymbol{\Theta})^{-1} \boldsymbol{X}_{i}^{\mathsf{T}} \right\} + \left(\sum_{i=1}^{n} w_{i} \boldsymbol{X}_{i} \Omega_{i}^{-1}(\boldsymbol{\Theta}) \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \theta} \Omega_{i}(\boldsymbol{\Theta})^{-1} \boldsymbol{X}_{i}^{\mathsf{T}} \right) \left(\sum_{i=1}^{n} w_{i} \boldsymbol{X}_{i} \Omega_{i}^{-1}(\boldsymbol{\Theta}) \boldsymbol{X}_{i}^{\mathsf{T}} \right)^{-1} \left(\sum_{i=1}^{n} w_{i} \boldsymbol{X}_{i} \Omega_{i}^{-1}(\boldsymbol{\Theta}) \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \theta'} \Omega_{i}(\boldsymbol{\Theta})^{-1} \boldsymbol{X}_{i}^{\mathsf{T}} \right) \right\} \right) + \sum_{i=1}^{n} w_{i} \left(-\frac{1}{2} tr \left(\Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \theta'} \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \theta} \right) - \frac{\partial \mu(\boldsymbol{\Theta}, \boldsymbol{X}_{i})}{\partial \theta} \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \mu(\boldsymbol{\Theta}, \boldsymbol{X}_{i})}{\partial \theta'} \right) \right)$$
(B)

This is what information output when the argument type.information is set to "expected" (up to a factor -1).

⁶if one is relative to the mean and the other to the variance then they are respectively θ and θ'

A.4 Degrees of freedom

Degrees of freedom are computed using a Satterthwaite approximation, i.e. for an estimate coefficient $\widehat{\beta} \in \widehat{\Theta}$ with standard error $\sigma_{\widehat{\beta}}$, the degree of freedom is:

$$df\left(\sigma_{\widehat{\beta}}\right) = \frac{2\sigma_{\widehat{\beta}}^4}{\mathbb{V}ar\left[\widehat{\sigma}_{\widehat{\beta}}\right]}$$

Using a first order Taylor expansion we can approximate the variance term as:

$$\mathbb{V}ar\left[\widehat{\sigma}_{\widehat{\beta}}\right] \approx \frac{\partial \widehat{\sigma}_{\widehat{\beta}}}{\partial \mathbf{\Theta}} \Sigma_{\mathbf{\Theta}} \frac{\partial \widehat{\sigma}_{\widehat{\beta}}^{\mathsf{T}}}{\partial \mathbf{\Theta}} \\
\approx c_{\beta} \left(\widehat{\mathcal{I}}_{\widehat{\mathbf{\Theta}}}\right)^{-1} \frac{\partial \widehat{\mathcal{I}}_{\widehat{\mathbf{\Theta}}}}{\partial \mathbf{\Theta}} \left(\widehat{\mathcal{I}}_{\widehat{\mathbf{\Theta}}}\right)^{-1} c_{\beta}^{\mathsf{T}} \Sigma_{\mathbf{\Theta}} c_{\beta}^{\mathsf{T}} \left(\widehat{\mathcal{I}}_{\widehat{\mathbf{\Theta}}}\right)^{-1} \frac{\partial \widehat{\mathcal{I}}_{\widehat{\mathbf{\Theta}}}^{\mathsf{T}}}{\partial \mathbf{\Theta}} \left(\widehat{\mathcal{I}}_{\widehat{\mathbf{\Theta}}}\right)^{-1} c_{\beta}$$

where Σ_{Θ} is the variance-covariance matrix of all model coefficients, \mathcal{I}_{Θ} the information matrix for all model coefficients, c_{β} a matrix used to select the element relative to β in the first derivative of the information matrix, and $\frac{\partial}{\partial \Theta}$ denotes the vector of derivatives with respect to all model coefficients.

The derivative of the information matrix (i.e. negative hessian) can then be computed using numerical derivatives or using analytical formula. To obtain the later we first notice that:

$$\mathcal{H}(\theta, \theta') = \mathbb{E}\left[\mathcal{H}(\theta, \theta') | \mathbf{X}\right]$$

$$+ \sum_{i=1}^{n} w_{i} \left(tr\left(\Omega_{i}(\mathbf{\Theta})^{-1} \frac{\partial \Omega_{i}(\mathbf{\Theta})}{\partial \theta'} \Omega_{i}(\mathbf{\Theta})^{-1} \frac{\partial \Omega_{i}(\mathbf{\Theta})}{\partial \theta} - \Omega_{i}(\mathbf{\Theta})^{-1} \frac{\partial^{2} \Omega_{i}(\mathbf{\Theta})}{\partial \theta \partial \theta'} \right)$$

$$- \frac{\partial \mu(\mathbf{\Theta}, \mathbf{X}_{i})}{\partial \theta} \Omega_{i}(\mathbf{\Theta})^{-1} \frac{\partial \Omega_{i}(\mathbf{\Theta})}{\partial \theta'} \Omega_{i}(\mathbf{\Theta})^{-1} \boldsymbol{\varepsilon}_{i}(\mathbf{\Theta})^{\mathsf{T}}$$

$$+ \frac{1}{2} \boldsymbol{\varepsilon}_{i}(\mathbf{\Theta}) \Omega_{i}(\mathbf{\Theta})^{-1} \left(\frac{\partial^{2} \Omega_{i}(\mathbf{\Theta})}{\partial \theta \partial \theta'} - \frac{\partial \Omega_{i}(\mathbf{\Theta})}{\partial \theta'} \Omega_{i}(\mathbf{\Theta})^{-1} \frac{\partial \Omega_{i}(\mathbf{\Theta})}{\partial \theta} - \frac{\partial \Omega_{i}(\mathbf{\Theta})}{\partial \theta} \Omega_{i}(\mathbf{\Theta})^{-1} \frac{\partial \Omega_{i}(\mathbf{\Theta})}{\partial \theta'} \right) \Omega_{i}(\mathbf{\Theta})^{-1} \boldsymbol{\varepsilon}_{i}(\mathbf{\Theta})^{\mathsf{T}}$$

$$(C)$$

where

$$\mathbb{E}\left[\mathcal{H}(\theta, \theta') | \boldsymbol{X}\right] = \frac{1}{2} tr\left(A(\boldsymbol{\Theta})^{-1} \left(\sum_{i=1}^{n} w_{i} b_{i}(\boldsymbol{\Theta}) B_{i}(\boldsymbol{\Theta}) b_{i}^{\mathsf{T}}(\boldsymbol{\Theta}) + C(\boldsymbol{\Theta}) A(\boldsymbol{\Theta})^{-1} C^{\mathsf{T}}(\boldsymbol{\Theta})\right)\right) + E(\boldsymbol{\Theta})$$

So we will first derive the derivative of $\mathcal{H}(\theta, \theta')$ and then the one of the blue term in Equation C. To simplify the derivation of the formula we will only derive them at the maximum likelihood, i.e. when $\mathbb{E}\left[\frac{\partial \mathcal{H}(\theta, \theta' | \mathbf{X})}{\partial \theta''}\right] = \frac{\partial \mathbb{E}[\mathcal{H}(\theta, \theta' | \mathbf{X})]}{\partial \theta''}$ where the expectation is taken over \mathbf{X} . To find the derivative of $\mathcal{H}(\theta, \theta')$ we can therefore take the derivative of formula (B). Its derivative with respect to the mean parameters is 0.

So we just need to compute the derivative with respect to a variance parameter θ'' :

$$\frac{\partial A(\Theta)^{-1} \left(\sum_{i=1}^{n} w_{i} b_{i}(\Theta) B_{i}(\Theta) b_{i}^{\mathsf{T}}(\Theta) + C(\Theta) A(\Theta)^{-1} C^{\mathsf{T}}(\Theta)\right)}{\partial \theta''} \\
= A(\Theta)^{-1} \frac{\partial A(\Theta)}{\partial \theta''} A(\Theta)^{-1} \left(\sum_{i=1}^{n} w_{i} b_{i}(\Theta) B_{i}(\Theta) b_{i}^{\mathsf{T}}(\Theta) + C(\Theta) A(\Theta)^{-1} C^{\mathsf{T}}(\Theta)\right) \\
+ A(\Theta)^{-1} \left(\sum_{i=1}^{n} w_{i} \left(\frac{\partial b_{i}(\Theta)}{\partial \theta''} B_{i}(\Theta) b_{i}^{\mathsf{T}}(\Theta) + b_{i}(\Theta) \frac{\partial B_{i}(\Theta)}{\partial \theta''} b_{i}^{\mathsf{T}}(\Theta) + b_{i}(\Theta) B_{i}(\Theta) \frac{\partial b_{i}^{\mathsf{T}}(\Theta)}{\partial \theta''} + \frac{\partial C(\Theta)}{\partial \theta''} A^{-1}(\Theta) C^{\mathsf{T}}(\Theta) + C(\Theta) A^{-1} \frac{\partial A(\Theta)}{\partial \theta''} A^{-1} C^{\mathsf{T}}(\Theta) + C(\Theta) A^{-1}(\Theta) \frac{\partial C^{\mathsf{T}}(\Theta)}{\partial \theta''}\right)\right)$$

and

$$\begin{split} \frac{\partial E(\boldsymbol{\Theta})}{\partial \boldsymbol{\theta}''} &= \sum_{i=1}^{n} w_{i} \left(-\frac{1}{2} tr \left(-2\Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \boldsymbol{\theta}''} \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \boldsymbol{\theta}'} \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \boldsymbol{\theta}} \right. \\ &+ \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial^{2} \Omega_{i}(\boldsymbol{\Theta})}{\partial \boldsymbol{\theta}' \partial \boldsymbol{\theta}''} \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \boldsymbol{\theta}} + \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \boldsymbol{\theta}'} \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial^{2} \Omega_{i}(\boldsymbol{\Theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}''} \right) \\ &+ \frac{\partial \mu(\boldsymbol{\Theta}, \boldsymbol{X}_{i})}{\partial \boldsymbol{\theta}} \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \Omega_{i}(\boldsymbol{\Theta})}{\partial \boldsymbol{\theta}''} \Omega_{i}(\boldsymbol{\Theta})^{-1} \frac{\partial \mu(\boldsymbol{\Theta}, \boldsymbol{X}_{i})}{\partial \boldsymbol{\theta}'}^{\mathsf{T}} \right) \end{split}$$

where:

$$\begin{split} \frac{\partial A(\Theta)}{\partial \theta''} &= \sum_{i=1}^n w_i \boldsymbol{X}_i \Omega_i^{-1}(\Theta) \frac{\partial \Omega_i(\Theta)}{\partial \theta''} \Omega_i^{-1}(\Theta) \boldsymbol{X}_i^{\mathsf{T}} \\ \frac{\partial b_i(\Theta)}{\partial \theta''} &= \boldsymbol{X}_i \Omega_i^{-1}(\Theta) \frac{\partial \Omega_i(\Theta)}{\partial \theta''} \Omega_i^{-1}(\Theta) \\ \frac{\partial B_i(\Theta)}{\partial \theta''} &= \frac{\partial^3 \Omega_i(\Theta)}{\theta \theta' \theta''} \\ &- 2 \left(\frac{\partial^2 \Omega_i(\Theta)}{\partial \theta \partial \theta''} \Omega_i^{-1}(\Theta) \frac{\partial \Omega_i(\Theta)}{\partial \theta'} + \frac{\partial \Omega_i(\Theta)}{\partial \theta} \Omega_i^{-1}(\Theta) \frac{\partial \Omega_i(\Theta)}{\partial \theta'} \Omega_i^{-1}(\Theta) \frac{\partial \Omega_i(\Theta)}{\partial \theta''} \Omega_i^{-1}(\Theta) \frac{\partial \Omega_i(\Theta)}{\partial \theta'} + \frac{\partial \Omega_i(\Theta)}{\partial \theta} \Omega_i^{-1}(\Theta) \frac{\partial^2 \Omega_i(\Theta)}{\partial \theta' \partial \theta''} \right) \\ \frac{\partial C(\Theta)}{\partial \theta''} &= \sum_{i=1}^n w_i \boldsymbol{X}_i \Omega_i^{-1}(\Theta) \left(\frac{\partial \Omega_i(\Theta)}{\partial \theta''} \Omega_i^{-1}(\Theta) \frac{\partial \Omega_i(\Theta)}{\partial \theta''} \Omega_i^{-1}(\Theta) \frac{\partial \Omega_i(\Theta)}{\partial \theta} + \frac{\partial^2 \Omega_i(\Theta)}{\partial \theta \partial \theta''} \Omega_i^{-1}(\Theta) \frac{\partial \Omega_i(\Theta)}{\partial \theta'} \Omega_i^{-1}(\Theta) \boldsymbol{X}_i^{\mathsf{T}} \right) \end{split}$$

Appendix B Likelihood ratio test with the REML criterion

The blue term of Equation A in the log-likelihood is invariant to re-parameterisation while the red term is not. This means that a re-parametrisation of X into $\tilde{X} = BX$ with B invertible would not change the likelihood when using ML but would decrease the log-likelihood by $\log(|B|)$ when using REML.

Let's take an example:

```
## data(dfL, package = "LMMstar")
dfTest <- dfL
dfTest$glucagon2 <- dfTest$glucagon*2</pre>
```

where we multiply one column of the design matrix by 2. As mentionned previously this does not affect the log-likelihood when using ML:

```
eML.lmmUN <- lmm(weight \sim time+glucagon, data = dfTest, repetition = \simtime|id, method = "ML") eML.lmmUN2 <- lmm(weight \sim time+glucagon2, data = dfTest, repetition = \simtime|id, method = "ML") ")
```

```
logLik(eML.lmmUN)
logLik(eML.lmmUN2)
```

```
[1] -218.71
[1] -218.71
```

but it does when using REML:

```
eREML.lmmUN <- lmm(weight \sim time + glucagon, data = dfTest, repetition = \simtime|id, method = "REML") eREML.lmmUN2 <- lmm(weight \sim time + glucagon2, data = dfTest, repetition = \simtime|id, method = "REML")
```

```
logLik(eREML.lmmUN)-logLik(eREML.lmmUN2)
log(2)
```

```
[1] 0.6931472[1] 0.6931472
```

Therefore, when comparing models with different mean effects there is a risk that the difference (or part of it) in log-likelihood is due to a new parametrisation and no only to a difference in model fit. This would typically be the case when adding an interaction where we can have a smaller restricted log-likehood when considering a more complex model:

```
set.seed(5)
dfTest$ff <- rbinom(NROW(dfTest), size = 1, prob = 0.5)
logLik(lmm(weight ~ time+glucagon, data = dfTest, repetition = ~time|id, method = "REML"))
logLik(lmm(weight ~ time+glucagon*ff, data = dfTest, repetition = ~time|id, method = "REML"))</pre>
```

```
[1] -216.3189
[1] -216.8425
```

This is quite counter-intuitive as more complex model should lead to better fit and would never happen when using ML:

```
[1] -218.71
[1] -218.6259
```

This is why, unless one knows what he/she is doing, it is not recommanded to use likelihood ratio test to assess relevance of mean parameters in mixed models estimated with REML.

Appendix C Sum of squares in a linear mixed model

All mixed models implemented in LMMstar can be written as:

$$Y_{it} = X_{it}\beta + \varepsilon_{it} \text{ where } \varepsilon_i \sim \mathcal{N}\left(0,\Omega\right)$$

where Y denote the outcome repeteadly measured within each cluster i where t indexes the repetitions. X denotes the covariates, β the mean parameters, ε the residuals, and Ω the residual variance-covariance matrix. Ω must be positive definite so there must exist a square positive definite matrix $\Omega^{1/2}$ such that $\Omega^{1/2}\Omega^{1/2} = \Omega$. Therefore the previous model is equivalent to:

$$Y_{it}^{*} = X_{it}^{*}\beta + \varepsilon_{it}^{*} \text{ where } \varepsilon_{i} \sim \mathcal{N}\left(0, I_{T}\right)$$

where $Y_i^* = \Omega^{-1/2}Y_i$, $X_i^* = \Omega^{-1/2}X_i$, $\varepsilon_i^* = \Omega^{-1/2}\varepsilon_i$, and I_x is the identity matrix with x rows and columns. One can then introduce the projectors $H = X \left(X^\intercal \Omega^{-1} X \right)^{-1} X^\intercal \Omega^{-1}$ and $H^* = X^* \left(X^{*\intercal} X^* \right)^{-1} X^{*\intercal}$ onto the space spanned by X and X^* respectively. We can now define the "normalized" residual sum of squares as the squared sum of the normalized residuals:

$$SSE^* = \varepsilon^{*\mathsf{T}} \varepsilon^* = Y^{*\mathsf{T}} (I_{nT} - H^*) Y^*$$

$$= Y^{\mathsf{T}} \Omega^{-1} Y - Y^{\mathsf{T}} \Omega^{-1} X \left(X^{\mathsf{T}} \Omega^{-1} X \right)^{-1} X^{\mathsf{T}} \Omega^{-1} Y$$

$$= Y^{\mathsf{T}} (I_{nT} - H^{\mathsf{T}}) \Omega^{-1} (I_{nT} - H) Y$$

The previous to last line uses that: $(I_{nT} - H^{\dagger})\Omega^{-1}(I_{nT} - H) = \Omega^{-1} - H^{\dagger}\Omega^{-1} - \Omega^{-1}H + H^{\dagger}\Omega^{-1}H = \Omega^{-1} - H^{\dagger}\Omega^{-1}$ as $H^{\dagger}\Omega^{-1}H = \Omega^{-1}HH = \Omega^{-1}H$ since H is a projector. Note that compared to the "traditional" SSE defined for linear regression and random effect models (e.g. see Christensen (2011) section 2.7), $SSE = \delta SSE^*$ where δ is the residual variance conditional on any random effects, i.e. SSE^* are the residual degrees of freedom. This is because the same definition for the sum of squares is used except that $\varepsilon_i \sim \mathcal{N}(0, \delta\Omega)$.

We can also define the "normalized" regression sum of squares:

$$\begin{split} SSR^* &= (X^*\beta)^\mathsf{T} X^*\beta = (H^*Y^*)^\mathsf{T} H^*Y^* = Y^*\mathsf{T} H^*Y^* \\ &= Y^\mathsf{T} H^\mathsf{T} \Omega^{-1} Y^* = Y^\mathsf{T} H^\mathsf{T} H^\mathsf{T} \Omega^{-1} Y^* = Y^\mathsf{T} H^\mathsf{T} \Omega^{-1} HY^* \\ &= \widehat{\beta} X^\mathsf{T} \Omega^{-1} X \widehat{\beta} \end{split}$$

where $\hat{\beta} = (X^{\mathsf{T}}\Omega^{-1}X)^{-1}X^{\mathsf{T}}\Omega^{-1}Y$. Note that when using the expected information $SSR^* = \hat{\beta}\Sigma_{\hat{\beta}}^{-1}\hat{\beta}$, i.e. it is the F-statistics times the number of parameters. Again the "traditional" SSR defined for linear regression and random effect models is proportional to this normalized SSR: $SSR = \delta SSR^*$.

The proportion of explained variance of p parameters can thus be re-expressed as:

$$R^2 = \frac{SSR}{SSR + SSE} = \frac{SSR^*}{SSR^* + SSE^*} = \frac{Fp}{Fp + df}$$

where df denotes the residual degrees of freedom, typically n-p in a univariate linear model fitted with n observations.

⚠ In practice df is estimated using the Satterthwaite approximation of the degrees of freedom of the regression coefficient. This is only equivalent to the "SSR/SSE" formula in univariate linear regression.

Illustration for a univariate linear model:

Data without missing values:

Anova Table (Type II tests)

```
df.aov <- dfL[!is.na(dfL$glucagon),]</pre>
```

Traditional anova decomposition:

```
e.lm <- lm(weight ~ time + glucagon, data = df.aov)
car::Anova(e.lm, type = "II")
```

```
Response: weight
Sum Sq Df F value Pr(>F)

time 6367.3 3 6.4308 0.0006329 ***
glucagon 1964.8 1 5.9531 0.0171207 *

Residuals 24093.1 73
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
e.lmm <- lmm(weight ~ time + glucagon, data = df.aov)
```

Residual sum of squares (SSE):

```
SSEstar <- crossprod(residuals(e.lmm, type = "normalized"))
c(SSEstar = SSEstar, SSE = SSEstar * sigma(e.lmm))</pre>
```

```
SSEstar SSE
73.00 24093.11
```

Fit 1mm:

The normalized SSE can also be obtained using the df.residual method:

```
df.residual(e.lmm)
```

[1] 73

Regression sum of squares (SSR):

```
eBeta.lmm <- coef(e.lmm)
eVcov.lmm <- vcov(e.lmm, type.information = "expected")

SSRstar.glucagon <- eBeta.lmm[5] %*% solve(eVcov.lmm[5,5]) %*% eBeta.lmm[5]

SSRstar.time <- eBeta.lmm[2:4] %*% solve(eVcov.lmm[2:4,2:4]) %*% eBeta.lmm[2:4]
c(SSR.glucagon = SSRstar.glucagon * sigma(e.lmm),
    SSR.time = SSRstar.time * sigma(e.lmm),
    F.glucagon = SSRstar.glucagon,
    F.time = SSRstar.time/3)</pre>
```

```
SSR.glucagon SSR.time F.glucagon F.time
1964.764452 6367.324429 5.953062 6.430810
```

So the proportion of explained variance is:

```
R2.glucagon <- SSRstar.glucagon/(SSRstar.glucagon+SSEstar)
R2.glucagon
```

```
[,1]
[1,] 0.07540002
```

and the corresponding partial correlation is:

```
sign(coef(e.lmm)["glucagon"])*sqrt(R2.glucagon)
```

```
[,1]
[1,] -0.2745906
```

which matches the output of partialCor:

```
summary(partialCor(e.lmm, R2 = TRUE))
```

Partial correlation

```
estimate se df lower upper p.value
timeB1w -0.153 0.113 73 -0.378 0.072 0.1796
timeA1w -0.038 0.117 73 -0.27 0.195 0.7475
timeA3m -0.413 0.088 73 -0.589 -0.236 1.36e-05
glucagon -0.275 0.104 73 -0.482 -0.067 0.0102
```

Columns lower and upper contain 95% pointwise confidence intervals for each coefficient. Degrees of freedom were computed using a Satterthwaite approximation (column df).

Coefficient of determination (R2)

```
estimate se df lower upper p.value
time 0.209 0.075 73 0.059 0.359 0.006976
glucagon 0.075 0.057 73 -0.038 0.189 0.191156
global 0.285 0.076 73 0.134 0.435 0.000328
```

Columns lower and upper contain 95% pointwise confidence intervals for each coefficient. Degrees of freedom were computed using a Satterthwaite approximation (column df).

Appendix D Equivalent with other R packages

D.1 nlme package

The model class obtained with the lmm function overlaps the model class of the lme and gls functions from the nlme package.

```
library(nlme)
```

For instance, the compound symmetry is equivalent to corCompSymm correlation structure, or to a random intercept model (when the within subject correlation is positive):

```
'log Lik.' -243.6005 (df=7)
'log Lik.' -243.6005 (df=7)
[1] -243.6005
```

The estimated random effect also match:

```
range(coef(eCS.lmm, effects = "ranef")-ranef(eCS.lme))
```

```
[1] -3.136988e-08 2.384361e-08
```

Unstructured residual covariance matrix can also be obtained with gls:

```
'log Lik.' -216.3189 (df=15)
[1] -216.3189
```

D.2 lme4 package

The model class obtained with the lmm function overlaps the model class of the lmer function from the lme4 package.

```
library(lme4)
library(lmerTest)
```

For instance, the compound symmetry is equivalent to a random intercept model (when the within subject correlation is positive):

```
'log Lik.' -243.6005 (df=7)
[1] -243.6005
```

The estimated random effects match:

```
range(coef(eCS.lmm, effects = "ranef")-ranef(eCS.lmer)$id)
```

```
[1] -3.167863e-08 2.406745e-08
```

Nested random effects correspond to block unstructured:

```
'log Lik.' -230.5328 (df=11)
[1] -230.5328
```

And the estimated random effects still match:

```
[1] -7.457484e-05 1.182242e-04
[1] -0.0001493705 0.0001080902
```

An unstructure residual covariance matrix can also be obtained using random slopes:

```
'log Lik.' -216.3189 (df=16)
[1] -216.3189
```

Note that however the uncertainty is quantified in a slightly different way, e.g.:

```
anova(eUN.lmm)
```

Multivariate Wald test

```
F-statistic df p.value
mean: time 86.743 (3,19.0) 2.84e-11 ***
: glucagon 13.518 (1,13.7) 0.00257 **
```

do not match

```
anova(eUN.lmer)
```

```
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

time 114.275 38.092 3 20.483 87.242 7.784e-12 ***
glucagon 10.125 10.125 1 16.784 23.191 0.0001671 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

I think this is because lmer base uncertainty computation on the expected information (instead of the observed information). Doing so leads to more similar results:

```
eUN2.lmm <- lmm(weight ~ time + glucagon, repetition = ~time|id, structure = "UN", data = dfL, type.information = "expected") suppressWarnings(anova(eUN2.lmm))
```

Multivariate Wald test

```
F-statistic df p.value
mean: time 87.253 (3,22.5) 1.48e-12 ***
: glucagon 23.198 (1,19.4) 0.000114 ***
```

It is also possible to fit cross-random effects such as:

```
data("Penicillin") fm03 <- lmer(diameter \sim 1 + (1|plate) + (1|sample), Penicillin) logLik(fm03)
```

```
'log Lik.' -165.4303 (df=4)
```

using 1mm with a small hack: using a block compound symmetry structure with heterogeneous set to -1 to remove the correlation coefficient for pairs that have none of the covariate defining the blocks in common:

[1] -165.4303

D.3 mmrm package

The package mmrm is an alternative implementation of mixed models specified via covariance structures:

```
library(mmrm)
e.mmrm <- mmrm(
formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data
)</pre>
```

It leads nearly identical results compared to 1mm:

```
e.lmm <- lmm(
  formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT,
  repetition = ~ AVISIT | USUBJID, structure = "UN",
  data = fev_data, type.information = "expected"
)</pre>
```

```
logLik(e.mmrm) - logLik(e.lmm)
range(coef(e.mmrm) - coef(e.lmm))
range(vcov(e.mmrm) - vcov(e.lmm))
```

```
[1] -2.541298e-06
[1] -0.0001830095 0.0001626755
[1] -0.0003971008 0.0002047941
```

The main differences are:

• mmrm uses the expected information matrix to quantify uncertainty instead of the observed information matrix.

- mmrm implements the Kenward and Roger method for computing the degrees of freedom and not only the Satterthwaite approximation
- mmrm implements different covariance patterns
- mmrm is faster and probably more memorry efficient
- mmrm have fewer post-processing methods (e.g. no residuals function in the current CRAN version 0.2.2)

D.4 effectsize package (R^2 or η^2)

Partial η^2 can be computed based on lmer using the effectsize package:

```
library(effectsize)
eta_squared(eCS.lmer)
cat("\n")
```

Effect Size for ANOVA (Type III)

- One-sided CIs: upper bound fixed at [1.00].>

and are approximately equal to what one can compute "manually":

```
eCS.Wald <- anova(eCS.lmm)$multivariate
eCS.Wald$df.num*eCS.Wald$statistic/(eCS.Wald$df.num*eCS.Wald$statistic+eCS.Wald$df.denom)
```

[1] 0.92380363 0.03162017

The will not be true for heteroschedastic models:

```
eUN.Wald <- anova(eUN.lmm)$multivariate
eUN.Wald$df.num*eUN.Wald$statistic/(eUN.Wald$df.num*eUN.Wald$statistic+eUN.Wald$df.denom)
```

[1] 0.9319379 0.4965135

compared to:

```
eta_squared(eUN.lmer)
cat("\n")
```

Effect Size for ANOVA (Type III)

- One-sided CIs: upper bound fixed at [1.00].>

But in that case both may be misleading as the proportion of explained variance is not clearly defined.

D.5 MuMIn package (R^2)

```
library(MuMIn)
r.squaredGLMM(eCS.lmer)
cat("\n")
```

```
R2m R2c [1,] 0.2163302 0.9764382
```

To reproduce these R2, we extract from the random intercept model:

• the residual variance

```
sigmaW <- sigma(eCS.lmm)[1,1]-sigma(eCS.lmm)[1,2]
```

• the variance of the random effect

```
sigmaB <- sigma(eCS.lmm)[1,2]
```

• the variance of the fitted values:

```
sigma2_XB <- var(fitted(eCS.lmm))
```

and evalutae the ratios:

```
c(R2m = sigma2_XB/(sigmaW + sigmaB + sigma2_XB),
R2c = (sigma2_XB + sigmaB)/(sigmaW + sigmaB + sigma2_XB))
```

```
R2m R2c 0.2163302 0.9764382
```