Online Payments Fraud Detection with Machine Learning

Sreeparna Ray

To identify online payment fraud with machine learning, we need to train a machine learning model for classifying fraudulent and non-fraudulent payments. For this, we need a dataset containing information about online payment fraud, so that we can understand what type of transactions lead to fraud.

Online Payments Fraud Detection using Python

```
import pandas as pd
In [9]:
        import numpy as np
        import plotly.express as px
In [2]: data = pd.read csv("data.csv")
In [3]: print(data.head())
                                                                 newbalanceOrig \
                                        nameOrig
           step
                             amount
                                                  oldbalanceOrg
                     type
                  PAYMENT
                            9839.64 C1231006815
                                                       170136.0
                                                                      160296.36
        1
                  PAYMENT
                            1864.28 C1666544295
                                                        21249.0
                                                                       19384.72
              1 TRANSFER
                             181.00 C1305486145
                                                          181.0
                                                                           0.00
              1 CASH OUT
                             181.00 C840083671
                                                          181.0
                                                                           0.00
                  PAYMENT 11668.14 C2048537720
                                                        41554.0
                                                                       29885.86
              nameDest oldbalanceDest newbalanceDest isFraud
                                                                 isFlaggedFraud
        0 M1979787155
                                   0.0
                                                   0.0
                                                              0
                                                                              0
          M2044282225
                                   0.0
                                                   0.0
           C553264065
                                   0.0
                                                   0.0
                                                                              0
             C38997010
                               21182.0
                                                   0.0
                                                              1
        4 M1230701703
                                   0.0
                                                   0.0
```

```
In [4]: # Check whether this dataset has any null values or not
         print(data.isnull().sum())
         step
         type
         amount
         nameOrig
         oldbalanceOrg
         newbalanceOrig
         nameDest
         oldbalanceDest
         newbalanceDest
         isFraud
         isFlaggedFraud
         dtype: int64
         So, the above dataset does not have any null values
 In [6]: # Check the type of transaction mentioned in the dataset
         print(data.type.value counts())
         CASH OUT
                     2237500
         PAYMENT
                     2151495
                     1399284
         CASH IN
         TRANSFER
                      532909
         DEBIT
                       41432
         Name: type, dtype: int64
 In [7]: types = data["type"].value_counts()
         transactions = types.index
         quantity = types.values
In [10]: figure = px.pie(data, values=quantity, names=transactions, hole = 0.5, title = "Distribution of Transaction Ty
         figure.show()
```

```
In [11]: # Check the correlation between the features of the data with the isFraud column
         correlation = data.corr()
         print(correlation["isFraud"].sort values(ascending = False))
         isFraud
                           1.000000
                            0.076688
         amount
                           0.044109
         isFlaggedFraud
                           0.031578
         step
         oldbalanceOrg
                           0.010154
         newbalanceDest
                           0.000535
         oldbalanceDest
                           -0.005885
         newbalanceOrig
                          -0.008148
         Name: isFraud, dtype: float64
```

Now let's transform the categorical features into numerical. Here I will also transform the values of the isFraud column into No Fraud and Fraud labels to have a better understanding of the output.

```
In [12]: data["type"] = data["type"].map({"CASH_OUT":1,"PAYMENT":2,"CASH_IN":3,"TRANSFER":4,"DEBIT":5})
data["isFraud"] = data["isFraud"].map({0:"No Fraud",1:"Fraud"})
```

In [13]: print(data.head(20))

	-4					-1-db-1	0		م نی ۵ م م م م د د د ا	,
0	step	type	amount		meOrig			_	balanceOrig	\
0	1 1	2 2	9839.64	C1231006815		170136.00			160296.36 19384.72	
1 2	1	4	1864.28 181.00	C1666544295 C1305486145		21249.00 181.00			0.00	
3	1	1	181.00		486145 083671		81.6		0.00	
3 4	1	2	11668.14		537720		54.6		29885.86	
4 5	1	2	7817.71		045638		60.6		46042.29	
6	1	2	7017.71		.988899				176087.23	
7	1	2	7861.64		.850431				168225.59	
8	1	2	4024.36		012928		71.6		0.00	
9	1	5	5337.77		410124		20.6		36382.23	
10	1	5	9644.94		366749		65.6		0.00	
11	1	2	3099.97		177573		71.6		17671.03	
12	1	2	2560.74		232591		70.6		2509.26	
13	1	2	11633.76		932897		27.6		0.00	
14	1	2	4098.78		483832				499165.22	
15	1	1	229133.94		080434		25.6		0.00	
16	1	2	1563.82		750706		50.6		0.00	
17	1	2	1157.86		762639		56.6		19998.14	
18	1	2	671.64		524545		23.6		14451.36	
19	1	4	215310.30		993182		05.6		0.00	
	nameDest		oldbalanceDest		newba	lanceDest	is	Fraud	isFlaggedFr	aud
0	M1979	787155		0.0		0.00	No	Fraud		0
1	M2044282225		0.0			0.00	No	Fraud		0
2	C553264065		0.0			0.00		Fraud		0
3	C38997010		21182.0			0.00		Fraud		0
4	M1230701703		0.0			0.00	No	Fraud		0
5	M573487274		0.0			0.00		Fraud		0
6	M408069119		0.0			0.00		Fraud		0
7	M633326333		0.0			0.00		Fraud		0
8		11176932104		0.0		0.00		Fraud		0
9	C195600860		41898.0			40348.79		Fraud		0
10	C997608398		10845.0			157982.12		Fraud		0
11		539129		0.0		0.00		Fraud		0
12		865270		0.0		0.00		Fraud		0
13	M801569151		0.0			0.00		Fraud		0
14	M1635378213		0.0			0.00 No Fraud				0
15			083.0		51513.44		Fraud		0	
16		M1731217984		0.0		0.00		Fraud		0
17	M1877	062907		0.0		0.00	No	Fraud		0

18	M473053293	0.0	0.00 No Fraud	0
19	C1100439041	22425.0	0.00 No Fraud	0

Online Payments Fraud Detection Model

Let train a classification model to classify fraud and non-fraud transactions.

```
In [14]: # Before training the model, I will split the data into training and test sets
    from sklearn.model_selection import train_test_split

In [15]: x = np.array(data[["type","amount","oldbalanceOrg","newbalanceOrig"]])
    y = np.array(data[["isFraud"]])
```

Let's train the online payments fraud detection model

```
In [17]: # training a machine learning model
    from sklearn.tree import DecisionTreeClassifier
    xtrain, xtest, ytrain, ytest = train_test_split(x,y,test_size=0.10, random_state=42)
    model = DecisionTreeClassifier()
    model.fit(xtrain,ytrain)
    print(model.score(xtest,ytest))
```

0.9997375295082843

Let's classify whether a transaction is a fraud or not by feeding about a transaction into the model

```
In [20]: # prediction
# features = [type, amount, oldbalanceOrg, newbalanceOrig]
features = np.array([[4, 9000.60, 9000.60, 0.0]])
print(model.predict(features))

['Fraud']
```

So this is how we can detect online payments fraud with machine learning using Python.