CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 22 GIUGNO 2015

Svolgere i seguenti esercizi, giustificando **pienamente** tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di partizione di un insieme A. Supposto poi |A| = 5:

- (i) qual è la cardinalità minima possibile per una partizione di A? E qual è la cardinalità massima possibile per una partizione di A?
- (ii) Quante sono le partizioni di A costituite da due elementi, uno di ordine 2 ed uno di ordine 3?

Esercizio 2. Sia $S = \{a, b, c\}$, un insieme di cardinalità 3, e sia $T = \mathcal{P}(S) \times \mathcal{P}(S)$. Si consideri l'applicazione

$$f: (X,Y) \in T \longmapsto |X| \cdot |Y| \in \{0,1,2,3,4,5,6,7,8,9\}.$$

- (i) f è iniettiva? f è suriettiva?
- (ii) Detto \mathcal{R} il nucleo di equivalenza di f, determinare $|T/\mathcal{R}|$, $|[(\{a\},\{b\})]_{\mathcal{R}}|$, $|[(\varnothing,\{a,b\})]_{\mathcal{R}}|$ e $|[(S,S)]_{\mathcal{R}}|$.

Considerata in T la relazione d'ordine Σ definita ponendo, per ogni $(X,Y),(Z,R)\in T$,

$$(X,Y) \Sigma (Z,R) \iff ((X,Y) = (Z,R) \vee |X| \cdot |Y| < |Z| \cdot |R|),$$

- (iii) determinare gli elementi minimali, massimali e gli eventuali minimo e massimo in (T, Σ) .
- (iv) (T, Σ) è un reticolo?

Sia $L = \{A, B, C, D, E, F, G, H\} \subseteq T$, dove

$$A = (\varnothing, S), \qquad B = (\{a\}, \{b\}), \qquad C = (\{b\}, \{a\}), \qquad D = (\{a\}, \{b, c\}),$$

$$E = (\{a, b\}, \{c\}), \quad F = (\{a, b\}, \{a\}), \quad G = (\{a, b\}, \{a, b\}), \quad H = (\{a, c\}, S).$$

- (v) Disegnare il diagramma di Hasse di (L, Σ) .
- (vi) (L,Σ) non è un reticolo. Perché?
- (vii) Qual è il minimo numero di elementi da eliminare da L per ottenere:
 - (α) un reticolo;
 - (β) un reticolo distributivo;
 - (γ) un reticolo booleano.

Esercizio 3. Nell'insieme $M = \mathbb{Z}_8 \times \mathbb{Z}_8$ si consideri l'operazione binaria * definita ponendo, per ogni $a, b, c, d \in \mathbb{Z}_8$,

$$(a,b)*(c,d) = (a+c+\bar{2},\bar{3}bd).$$

- (i) Verificare che (M,*) è un semigruppo commutativo. Stabilire se è un monoide (studiando un'opportuna equazione congruenziale) e, nel caso, determinarne gli elementi invertibili.
- (ii) Verificare che $K := \{(\overline{2h}, \overline{2k}) \mid h, k \in \mathbb{Z}\}$ è una parte chiusa in (M, *).
- (iii) Spiegare perché, se $h, t \in \mathbb{Z}$ e t è dispari, non si può avere $\overline{2h} = \overline{t}$; calcolare |K|.
- (iv) Caratterizzare gli interi m > 1 tali che l'operazione \bullet , definita in $\mathbb{Z}_m \times \mathbb{Z}_m$ ponendo $(a,b) \bullet (c,d) = (a+c+\overline{2},\overline{3}bd)$ per ogni $a,b,c,d \in \mathbb{Z}_m$, non ammetta elemento neutro.

Esercizio 4.

- (i) Sia $f = x^2 + ax + b$ un polinomio (monico) irriducibile in $\mathbb{Z}_3[x]$. Spiegare perché, necessariamente, $b \neq \bar{0}$.
- (ii) Si elenchino i polinomi monici di grado due irriducibili in $\mathbb{Z}_3[x]$.
- (iii) Si descrivano (senza fare calcoli ulteriori) i polinomi monici di grado quattro in $\mathbb{Z}_3[x]$ che non abbiano radici in \mathbb{Z}_3 e non siano irriducibili in $\mathbb{Z}_3[x]$. Quanti ne sono?