8 - La Topologia Debole

☆ Definizione: Topologia forte

Sia $(E, \|\cdot\|)$ uno spazio normato.

La topologia τ indotta dalla metrica d indotta dalla norma $\|\cdot\|$ prende il nome di **topologia forte** su E.

☆ Definizione: Convergenza debole di una successione generalizzata

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

Sia $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}\subseteq E$ una successione generalizzata.

Sia $\tilde{\mathbf{x}} \in E$.

Si dice che $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge debolmente a $\tilde{\mathbf{x}}$ quando

 $\lim_{lpha} T(\mathbf{x}_lpha) = T(ilde{\mathbf{x}})$ per ogni $T \in E^*$.

Q Osservazione 1

La convergenza forte, ossia la convergenza indotta dalla topologia forte, implica la convergenza debole.

Infatti, sia $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ una successione generalizzata convergente fortemente a $\tilde{\mathbf{x}}$; ciò significa che $\lim_{\alpha}\|\mathbf{x}_{\alpha}-\tilde{\mathbf{x}}\|=0$.

Poiché per ogni $T \in E^*$ si ha $(0 \le) |T(\mathbf{x}_{\alpha}) - T(\tilde{\mathbf{x}})| = |T(\mathbf{x}_{\alpha} - \tilde{\mathbf{x}})| \le ||T||_{E^*} ||\mathbf{x}_{\alpha} - \tilde{\mathbf{x}}||$, segue la convergenza debole per confronto.

the Insieme debolmente aperto

Sia $(E,\|\cdot\|_E)$ uno spazio normato. Sia $A\subset E$.

A si dice debolmente aperto quando

per ogni $\tilde{\mathbf{x}} \in A$ e per ogni successione generalizzata $\{\mathbf{x}_{\alpha}\}_{\alpha \in D} \subseteq E$ convergente debolmente a $\tilde{\mathbf{x}}$, esiste $\overline{\alpha} \in D$ tale che, per ogni $\alpha \succeq \overline{\alpha}$, valga $\mathbf{x}_{\alpha} \in A$.

Proposizione 8.1: Insiemi debolmente aperti costituiscono una topologia

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

L'insieme degli insiemi debolmente aperti di E è una topologia su di esso.

Dimostrazione

Chiaramente, E è debolmente aperto.

Infatti, sia $\tilde{\mathbf{x}} \in E$ e sia $\{\mathbf{x}_{\alpha}\}_{\alpha \in D} \subseteq E$ una successione generalizzata convergente a $\tilde{\mathbf{x}}$.

Essendo $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}\subseteq E$ si ha $\mathbf{x}_{\alpha}\in E$ per ogni $\alpha\in D$; pertanto, basta fissare arbitrariamente $\alpha_{0}\in D$, e ottenere così a maggior ragione $\mathbf{x}_{\alpha}\in E$ per ogni $\alpha\succeq\alpha_{0}$.

Ø è debolmente aperto, per vacua verità.

Se A_1 e A_2 sono debolmente aperti, allora $A_1 \cap A_2$ è debolmente aperto.

Infatti, sia $\tilde{\mathbf{x}} \in A_1 \cap A_2$, e sia $\{\mathbf{x}_{\alpha}\}_{{\alpha} \in D}$ una successione generalizzata convergente a $\tilde{\mathbf{x}}$.

Essendo $\tilde{\mathbf{x}} \in A_1$, esiste $\alpha_1 \in D$ tale che $\mathbf{x}_{\alpha} \in A_1$ per ogni $\alpha \succeq \alpha_1$;

analogamente, essendo $\tilde{\mathbf{x}} \in A_2$, esiste $\alpha_2 \in D$ tale che $\mathbf{x}_{\alpha} \in A_2$ per ogni $\alpha \succeq \alpha_2$;

Per filtranza di \leq esiste $\beta \in D$ tale che $\alpha_1, \alpha_2 \leq \beta$;

per transitività di \leq segue allora che, per ogni $\alpha \succeq \beta$, vale $\mathbf{x}_{\alpha} \in A_1 \cap A_2$.

Evidentemente, se A è una famiglia di insiemi debolmente aperti di E, allora $\bigcup A$ è debolmente aperto.

Infatti, sia $\tilde{\mathbf{x}} \in \bigcup \mathcal{A}$, e sia $\{\mathbf{x}_{\alpha}\}_{\alpha \in D}$ una successione generalizzata convergente a $\tilde{\mathbf{x}}$.

Essendo $\tilde{\mathbf{x}} \in \bigcup \mathcal{A}$, esiste $A \in \mathcal{A}$ tale che $\tilde{\mathbf{x}} \in A$.

Essendo A debolmente aperto per definizione di \mathcal{A} , esiste $\overline{\alpha} \in D$ tale che $\mathbf{x}_{\alpha} \in A \subseteq \bigcup \mathcal{A}$ per ogni $\alpha \succeq \overline{\alpha}$.

♯ Definizione: Topologia debole

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

L'insieme degli insiemi debolmente aperti di E, che è una topologia per quanto appena mostrato, prende il nome di **topologia debole** su E.

Q Osservazione 2

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

Sia $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}\subseteq E$ una successione generalizzata.

Sia $\tilde{\mathbf{x}} \in E$.

 $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge a $\tilde{\mathbf{x}}$ secondo la topologia debole su E se e solo se $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge debolmente a $\tilde{\mathbf{x}}$.

Dimostrazione

Si supponga che $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge a $\tilde{\mathbf{x}}$ secondo la topologia debole su E.

Ciò significa che, per ogni U intorno debolmente aperto di $\tilde{\mathbf{x}}$, esiste $\alpha_0 \in D$ tale che $\mathbf{x}_\alpha \in U$ per ogni $\alpha \succeq \alpha_0$.

Sia $T \in E^*$; si provi che $\lim_{lpha} T(\mathbf{x}_lpha) = T(\mathbf{ ilde{x}}).$

Si fissi $\varepsilon > 0$.

L'insieme $T^{-1}(|T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon|)$ è un intorno debolmente aperto di $\tilde{\mathbf{x}}$.

Infatti, tale insieme evidentemente possiede $\tilde{\mathbf{x}}$; si provi che esso è debolmente aperto.

Sia dunque $\mathbf{y} \in T^{-1}(]T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon[)$, e sia $\{\mathbf{y}_{\alpha}\}_{\alpha \in D} \subseteq E$ una successione generalizzata in E convergente debolmente a \mathbf{y} .

Si ha allora $\lim_{\alpha} T(\mathbf{y}_{\alpha}) = T(\mathbf{y}) \in \]T(\mathbf{ ilde{x}}) - arepsilon; T(\mathbf{ ilde{x}}) + arepsilon[;$

per permanenza del segno, ne segue che esiste $\overline{\alpha} \in D$ tale che $T(\mathbf{y}_{\alpha}) \in]T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon[$ per ogni $\alpha \succeq \overline{\alpha}$.

Dunque, $\mathbf{y}_{\alpha} \in T^{-1}(]T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon[)$ per ogni $\alpha \succeq \overline{\alpha}$; pertanto, $T^{-1}(]T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon[)$ è debolmente aperto.

Allora, per ipotesi di convergenza, esiste $\alpha_0 \in D$ tale che $\mathbf{x}_\alpha \in T^{-1}(]T(\tilde{\mathbf{x}}) - \varepsilon; T(\tilde{\mathbf{x}}) + \varepsilon[)$, ossia $|T(\mathbf{x}_\alpha) - T(\tilde{\mathbf{x}})| < \varepsilon$, per ogni $\alpha \succeq \alpha_0$.

Pertanto, ne viene che $\lim_{lpha} T(\mathbf{x}_{lpha}) = T(\tilde{\mathbf{x}})$ per arbitrarietà di arepsilon > 0.

Si supponga ora che $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge debolmente a $\tilde{\mathbf{x}}$.

Sia U un intorno debolmente aperto di $\tilde{\mathbf{x}}$;

poiché $\{\mathbf{x}_{\alpha}\}_{\alpha\in D}$ converge debolmente a $\tilde{\mathbf{x}}$, per definizione di insieme debolmente aperto esiste $\alpha_0\in D$ tale che $\mathbf{x}_{\alpha}\in U$ per ogni $\alpha\succeq\alpha_0$.

Allora, $\{\mathbf{x}_{\alpha}\}_{{\alpha}\in D}$ converge a $\tilde{\mathbf{x}}$ secondo la topologia debole su E.

Q Osservazione 3

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

La topologia debole su E è di Hausdorff.

Infatti, siano $\{\mathbf{u}_{\alpha}\}_{\alpha\in D}\subseteq E$ una successione generalizzata, e siano $\mathbf{x},\mathbf{y}\in\mathbb{R}$ due suoi limiti rispetto alla topologia debole.

Essendo la convergenza rispetto alla topologia debole pari alla convergenza debole per la [Osservazione 2], si ha $T(\mathbf{x}) = \lim_{\alpha} T(\mathbf{u}_{\alpha}) = T(\mathbf{y})$ per ogni $T \in E^*$, ossia

 $T(\mathbf{x} - \mathbf{y}) = 0$ per ogni $T \in E^*$, per linearità delle applicazioni $T \in E^*$.

Per la [Proposizione 7.4], esiste $\psi \in E^*$ tale che $\psi(\mathbf{x} - \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_E$; d'altra parte, si ha $\psi(\mathbf{x} - \mathbf{y}) = 0$ per quanto osservato prima.

Dunque, $\|\mathbf{x} - \mathbf{y}\|_E = 0$, ossia $\mathbf{x} = \mathbf{y}$.

Dalla [Proposizione 1.1] segue che E è di Hausdorff con la topologia debole.

Proposizione 8.2: Finezza della topologia debole

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia τ la topologia forte su E.

Sia τ_d la topologia debole su E.

Allora, $\tau_d \subseteq \tau$.

Dimostrazione

Per l'[Osservazione 1], per ogni $\mathbf{x} \in E$ e per ogni successione generalizzata $\{x_{\alpha}\}_{\alpha \in D} \subseteq E$ convergente fortemente a \mathbf{x} , ossia convergente a \mathbf{x} secondo τ , $\{x_{\alpha}\}_{\alpha \in D}$ converge ivi debolmente, ossia secondo τ_d per l'[Osservazione 2].

La tesi segue allora direttamente dalla [Proposizione 1.3].

Si dimostra che le due topologie coincidono se e solo se lo spazio ha dimensione finita.

Si prova in particolare che, se E ha dimensione infinita, l'insieme $\{\mathbf{x} \in E : ||\mathbf{x}|| = 1\}$ non è debolmente chiuso (cioè chiuso rispetto alla topologia debole), sebbene esso sia chiuso.

Proposizione 8.3: Insiemi chiusi e convessi sono debolmente chiusi

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $C \subseteq E$ chiuso e convesso.

Allora, C è debolmente chiuso.

Dimostrazione

Sia $\mathbf{x}_0 \in \operatorname{cl}_d(C)$, dove $\operatorname{cl}_d(C)$ indica la chiusura di C rispetto alla topologia debole.

Si proceda per assurdo, supponendo che $\mathbf{x}_0 \notin C$.

Sia $K = \{x_0\}$; tale insieme è compatto.

Essendo C chiuso, per il [Teorema 7.9] esiste allora $\psi \in E^*$ tale che $\sup_{\mathbf{x} \in C} \psi(\mathbf{x}) < \psi(\mathbf{x}_0)$.

Essendo $\mathbf{x}_0 \in \mathrm{cl}_d(C)$, esiste una successione generalizzata $\{\mathbf{x}_\alpha\}_{\alpha \in D} \subseteq C$ che converge debolmente a \mathbf{x}_0 ; dalla definizione di convergenza debole segue allora che $\lim_{\alpha} \psi(\mathbf{x}_\alpha) = \psi(\mathbf{x}_0)$.

Tuttavia, ciò risulta essere in contrasto con il fatto che, essendo $\{\mathbf{x}_{\alpha}\}_{\alpha \in D} \subseteq C$, per confronto si ha $\lim_{\alpha} \psi(\mathbf{x}_{\alpha}) \leq \sup_{\mathbf{x} \in C} \psi(\mathbf{x}) < \psi(\mathbf{x}_{0})$.