

ARQUITETURA DE COMPUTADORES

Conteúdos

- 1. Barramentos
- 2. Tipos de barramentos
- 3. Classificação dos barramentos
- 4. Variedade de barramentos

Barramentos

- Um barramento é um mecanismo que permite interligar os diferentes componentes de um computador
 - CPU
 - Memória
 - Controladores de I/O
- Um barramento é constituído por um conjunto de fios condutores e respetivas regras para que seja possível ler e escrever informação desses/nesses mesmos fios
- Um barramento é um meio de comunicação que permite a dois ou mais componentes trocar sinais de controlo e/ou dados

Barramentos

Tipos de barramentos

- Barramentos internos:
 - Interligam os componentes internos de um computador
 - Taxas de transferência elevadas (20 GB/seg)
 - Comprimento reduzido máximo (30 a 40 cm)
- Barramentos externos:
 - Interligam os componentes internos com componentes externos (ex: USB)
 - Taxas de transferência reduzidas (comparativamente como os barramentos internos)
 - Comprimentos maiores (comparativamente com os barramentos internos)
 - Permitem fazer hot swap dos dispositivos (capacidade de retirar e de substituir componentes de um computador, sem que seja necessário reiniciar o computador)

Classificação dos barramentos

- Podemos classificar os barramentos quanto:
 - Largura
 - Dedicados ou Multiplexados
 - Síncronos ou Assíncronos
 - Protocolo de Arbítrio Centralizado/Distribuído
 - Operações

Barramentos: Largura

- A largura de um barramento corresponde ao número de fios condutores
- Quanto mais fios um barramento tiver mais dados podem ser transportados em simultâneo
 - Um barramento de 8 fios pode transmitir em simultâneo 8 bits
 - Um barramento de 16 fios pode transmitir em simultâneo 16 bits
- Quanto mais fios o barramento tiver, maior é o endereçamento de memória possível
 - N fios permitem endereçar diretamente 2^N localizações diferentes de memória
- Quanto mais linhas o barramento tiver, mais hardware é necessário na sua implementação

Barramentos: Dedicado/Multiplexado

- Num barramento dedicado
 - Existem fios condutores para dados e endereços em separado
 - Uma operação de armazenamento pode colocar endereços e dados no barramento ao mesmo tempo
 - Havendo linhas de dados e de endereços em separado, o protocolo de comunicação no barramento é bastante mais simples

Barramentos: Dedicado/Multiplexado

- Num barramento multiplexado:
 - Os mesmos fios condutores são usados para endereços e dados
 - Os barramentos multiplexados requerem menos linhas
 - Os dados e os endereços podem aparecer no barramento mas tal só pode acontecer em instantes diferentes

Barramentos: Síncronos/Assíncronos

- Num barramento Síncrono:
 - Todos os eventos no barramento são controlados pelo sinal de relógio
 - Todos os eventos ocorrem no início de um ciclo de relógio

Barramentos: Síncronos/Assíncronos

- Num barramento Assíncrono:
 - Os eventos do sistema ocorrem e dependem apenas da ocorrência de outros eventos
 - É um barramento mais flexível do que o barramento síncrono, mas mais complicado de implementar
 - Este tipo de barramento tira partido das velocidades dos dispositivos, particularmente dos mais rápidos, uma vez que não está à espera do sinal de relógio para processar o próximo evento

- O protocolo de arbítrio determina quem pode usar o barramento num determinado instante
- O protocolo de arbítrio pode ser centralizado ou distribuído

- O protocolo de arbítrio determina quem pode usar
 o barramento num determinado instante
- O protocolo de arbítrio pode ser centralizado ou distribuído

Barramentos: Protocolo de Arbítrio Centralizado/Distribuído

 O protocolo de arbítrio determina quem pode usar o barramento num determinado instante

 O protocolo de arbítrio pode ser centralizado ou distribuído

Barramentos: Protocolo de Arbítrio Centralizado/Distribuído

- Num arbítrio centralizado, existe um único dispositivo de hardware, conhecido como central de arbítrio, que é responsável por alocar tempo de utilização do barramento a cada módulo do sistema
- O dispositivo de arbítrio pode ser um módulo separado ou fazer parte do processador

Barramentos: Protocolo de Arbítrio Centralizado/Distribuído

- Num arbítrio distribuído,
 não existe um
 controlador de arbítrio
- Cada módulo do sistema contém uma lógica de controlo de acesso e os módulos agem de forma conjunta para partilhar o barramento

Barramentos: Bridges

- Um computador tem vários
 barramentos porque os dispositivos
 têm requisitos diferentes
- Para ligar vários barramentos utilizam-se Bridges
- A bridge converte os endereços e os protocolos entre diferentes barramentos

Barramentos: Frontside Bus e Chipset

- □ O frontside bus:
 - É um barramento primário que liga o processador à memoria
 - É o barramento mais rápido do sistema
 - Todos os outros barramentos ligam-se direta ou indiretamente ao frontside bus
- O chipset controla o frontside bus e as demais bridges

Barramentos: ISA

- □ ISA (Industrial Standard Architecture)
 - Primeiro open standard para PC's
 - Barramentos de <mark>8 e 16 bits</mark>

Barramentos: MCA

- MCA (Micro Channel Architecture)
 - Oferecia melhoramentos em relação ao barramento ISA
 - Melhor desempenho
 - Protocolo de Arbítrio
 - Configuração automática
 - Nunca obteve aceitação pelo mercado
 - Suporte de periféricos limitado
 - Grande divulgação do barramento ISA

Barramentos: EISA

- □ EISA (Extended ISA)
 - Barramentos de 8 e 16 bits da dados
 - Barramento compatível com os barramentos ISA
 - Quase o dobro do desempenho do ISA

Barramentos: VESA

- VESA VL BUS (Video Local Bus)
 - Com a implementação definitiva do Windows e das interfaces gráficas, passou a ser necessário um tráfego mais intenso entre o CPU e a controladora gráfica
 - Implementado em conjunto com ISA e EISA para o suporte de outros periféricos
 - Qualquer placa compatível com a norma VESA podia ser ligada ao VL Bus

Barramentos: PCI

- PCI (Peripheral Component Interface bus)
 - Introduzido pela Intel
 - Independente do processador
 - Barramentos com 64 bits de dados e endereços
 - Plug and Play
 - Barramento síncrono
 - Protocolo de Arbítrio Centralizado

Barramentos: AGP

- AGP (Accelerated Graphics Port bus)
 - Barramento de alta velocidade para ligar interfaces gráficas à motherboard do computador
 - Foi muito usado para auxiliar a aceleração gráfica a
 3D

Barramentos: PCle

- PCI Express (Peripheral Component Interface bus)
 - □ Conhecido por PCI-E ou PCIe
 - Melhorias sobretudo em relação às velocidades que proporciona