Sequence Models & Attention Mechanism

1. Question 1

Consider using this encoder-decoder model for machine translation.

True/False: This model is a "conditional language model" in the sense that the decoder portion (shown in purple) is modeling the probability of the output sentence y given the input sentence x.

○ False
True
∠ [™] Expand
○ Correct The encoder-decoder model for machine translation models the probability of the output sentence y conditioned on the input sentence x.

2. Question 2

In beam search, if you decrease the beam width $\clubsuit B$, which of the following would you expect to be true? Select all that apply.

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

1/1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

Would you expect increasing the beam width B to help correct this example?

- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

✓ Correct

1/1 point

False.

⊘ Correct

6. Question 6

Consider the attention model for machine translation.

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_{x}} \exp(e^{})}$$

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (**Note the indices in the superscripts.**)
 - ! This should not be selected We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$, not for $y^{< t'>}$
- - . This should not be selected $\text{We expect } \alpha^{< t, t'>} \text{ to be larger for activation values that are highly relevant to the value the network should output for } y^{< t>}.$
- $\hfill \qquad \alpha^{< t, t'>}$ is equal to the amount of attention $y^{< t>}$ should pay to $\alpha^{< t'>}$

⊗ Incorrect

You didn't select all the correct answers

7.	The network learns where to "pay attention" by learning the values $e^{< t, t^>}$, which are computed using a small neural network:	0 / 1 point
	We can replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network because $s^{< t>}$ is independent of $\alpha^{< t,t'>}$ and $e^{< t,t'>}$.	
	True	
	○ False	
	∠ [¬] Expand	
	$ \begin{array}{l} \color{red} \bigotimes \text{ Incorrect} \\ \text{We can't replace } s^{< t-1>} \text{ with } s^{< t>} \text{ as an input to this neural network. This is because } s^{< t>} \text{ depends on } \\ \color{red} \alpha^{< t, t'>} \text{ which in turn depends on and } e^{< t, t'>}; \text{so at the time we need to evaluate this network, we haven't computed } s^{< t>}. \end{array} $	
	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:	nt
	\bigcirc The input sequence length T_x is small.	
	$lacktriangledown$ The input sequence length T_x is large.	
	Z Expand	

Orrect

9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?			
	c_oo_o_kkb_oooooookkk			
	○ cook book			
	○ cokbok			
	○ coookkbooooookkk			
	∠ ⁷ Expand			
	Correct			
10.	In trigger word detection, $x^{< t>}$ is:	1/1 point		
	Whether the trigger word is being said at time t.			
	lacksquare Features of the audio (such as spectrogram features) at time t .			
	igcup Whether someone has just finished saying the trigger word at time t .			
	igcup The t -th input word, represented as either a one-hot vector or a word embedding.			
	∠ ⁷ Expand			
	⊘ Correct			