Diszkrét matematika II. feladatok

Második alkalom

Bemelegítő feladatok

1. Az euklideszi algoritmussal számolja ki az alábbi számpárok legnagyobb közös osztóját, és adja meg a legkisebb közös többszörösüket is.

a)
$$a = 13, b = 14$$
; b) $a = 16, b = 37$; c) $a = 90, b = 111$; d) $a = 168, b = 219$; e) $a = 180, b = 219$; f) $a = 756, b = 795$; g) $a = 1440, b = 1587$; h) $a = 3048, b = 4611$.

Megoldás:

Megoldás:				
	a = 13			
a)	b = 14	$q_0 = 0$		
	$r_1 = 13$	$q_1 = 1$	_	
	$r_2 = 1$	$q_2 = 13$	_	
	$r_3 = 0$		_	
b)	a = 16			
	b = 37	$q_0 = 0$		
	$r_1 = 16$	$q_1 = 2$	_	
	$r_2 = 5$	$q_2 = 3$		
	$r_3 = 1$	$q_3 = 5$		
	$r_4 = 0$		_	
	a = 90			
c)	b = 111	$q_0 = 0$	_	
	$r_1 = 90$	$q_1 = 1$	_	
	$r_2 = 21$	$q_2 = 4$	— ;	
	$r_3 = 6$	$q_3 = 3$	_	
	$r_4 = 3$	$q_4 = 2$		
	$r_5 = 0$			
	a = 168			
	b = 219	$q_0 = 0$		
	$r_1 = 168$	$q_1 = 1$		
٦)	$r_2 = 51$	$q_2 = 3$		
d)	$r_3 = 15$	$q_3 = 3$		
	$r_4 = 6$	$q_4=2$		
	$r_5 = 3$	$q_5 = 2$		
	$r_6 = 0$			
	a = 180			
	b = 219	$q_0 = 0$		
	$r_1 = 180$	$q_1 = 1$		
	$r_2 = 39$	$q_2 = 4$		
e)	$r_3 = 24$	$q_3 = 1$		
	$r_4 = 15$	$q_4 = 1$		
	$r_5 = 9$	$q_5 = 1$		
	$r_6 = 6$	$q_6 = 1$		
	$r_7 = 3$	$q_7 = 2$		
	$r_8 = 0$			

azaz
$$\gcd(13, 14) = r_2 = 1$$
, $[13, 14] = \frac{13 \cdot 14}{\gcd(13, 14)} = 182$

azaz
$$gcd(16, 37) = r_3 = 1$$
, $[16, 37] = \frac{16 \cdot 37}{gcd(16, 37)} = 592$

azaz
$$gcd(90, 111) = r_4 = 3$$
, $[90, 111] = \frac{90 \cdot 111}{gcd(90, 111)} = 3330$

azaz
$$gcd(168, 219) = r_5 = 3,$$

$$[168, 219] = \frac{168 \cdot 219}{\gcd(168, 219)} = 12\ 264$$

azaz
$$gcd(180, 219) = r_7 = 3,$$

$$[180, 219] = \frac{180 \cdot 219}{\gcd(90, 111)} = 13\ 140$$

´ - -	a = 756			
	b = 795	$q_0 = 0$		
	$r_1 = 756$	$q_1 = 1$	azaz $gcd(756, 795) = r_6 = 3,$	
	$r_2 = 39$	$q_2 = 19$		
	$r_3 = 15$	$q_3 = 2$	$ 756 \cdot 795$	
	$r_4 = 9$	$q_4 = 1$	$ [756, 795] = \frac{756 \cdot 795}{\gcd(756, 795)} = 200 \ 340 $	
	$r_5 = 6$	$q_5 = 1$	gcu(150, 195)	
	$r_6 = 3$	$q_6 = 2$		
	$r_7 = 0$		_	
g) _	a = 1440		azaz $\gcd(1440, 1587) = r_7 = 3,$	
	b = 1587	$q_0 = 0$		
	$r_1 = 1440$	$q_1 = 1$		
	$r_2 = 147$	$q_2 = 9$		
	$r_3 = 117$	$q_3 = 1$		
	$r_4 = 30$	$q_4 = 3$		
	$r_5 = 27$	$q_5 = 1$	gcd(1440, 1997)	
	$r_6 = 3$	$q_6 = 9$		
	$r_7 = 0$			
-	a = 3048			
	b = 4611	$q_0 = 0$	azaz $\gcd(3048, 4611) = r_6 = 3,$ $= [3048, 4611] = \frac{3048 \cdot 4611}{\gcd(3048, 4611)} = 4 684 776$	
	$r_1 = 3048$	$q_1 = 1$		
	$r_2 = 1563$ $r_3 = 1485$	$q_2 = 1$		
	$r_3 = 1485$	$q_1 = 1$		
	$r_1 = 78$	$q_1 = 19$	$ = \gcd(3048, 4611) = \gcd(3048, 4611) $	
	$r_1 = 3$	$q_1 = 26$		
	$r_3 = 0$			
_				

Gyakorló feladatok

- 2. Milyen $x \in \mathbb{Z}$ egészek elégítik ki a következő kongruenciákat:
 - a) $x \equiv 1 \mod 3$;
- b) $2x \equiv 1 \mod 3$; c) $2x \equiv 1 \mod 4$; d) $2x \equiv 2 \mod 4$

- e) $x(x-2) \equiv 0 \mod 8$; f) $x^2 \equiv 1 \mod 5$; g) $x^2 \equiv 1 \mod 6$; h) $x^4 \equiv 1 \mod 5$

Megoldás: a) $x \equiv 1 \pmod{3}$, azaz $x = 3k + 1 : k \in \mathbb{Z}$

- b) $2x \equiv 1 \equiv 4 \pmod{3}$. Mivel 2 relatív prím a 3-hoz, ezért egyszerűsíthetünk: $x \equiv 2 \pmod{3}$, azaz $x = 3k + 2 : k \in \mathbb{Z}$
- c) $2x \equiv 1 \pmod{4}$, mivel 2x mindig páros, nem lehet a néggyel vett osztási maradéka 1, ezért NINCS megoldás.

2(x-2k)=1, de 2(x-2k) minden egész k és minden egész x esetén páros, ami ellentmondás.)

d) $2x \equiv 2 \pmod{4} \iff \exists k \in \mathbb{Z} : 2x - 2 = 4k \iff \exists k \in \mathbb{Z} : x - 1 = 2k, \text{ azaz } x = 2k + 1 : k \in \mathbb{Z}.$

Alternatív megoldás: $2x \equiv 2 \pmod{4} \iff x \equiv 1 \pmod{2}$, azaz $x = 2k + 1 : k \in \mathbb{Z}$.

e) $x(x-2) \equiv 0 \pmod{8}$, nézzünk végig egy teljes maradékrendszert modulo 8, például az $x \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ elemeket: $1 \cdot (1-2) = -1 \equiv 7 \pmod{8}$, $2 \cdot (2-2) = 0 \equiv 0 \pmod{8}$, $3 \cdot (3-2) \equiv 3 \pmod{8}, \quad 4 \cdot (4-2) = 8 \equiv 0 \pmod{8}, \quad 5 \cdot (5-2) = 15 \equiv 7 \pmod{8},$ $6 \cdot (6-2) = 24 \equiv 0 \pmod{8}, \quad 7 \cdot (7-2) = 35 \equiv 3 \pmod{8}, \quad 8 \cdot (8-2) = 48 \equiv 0 \pmod{8}.$

Tehát $x \in \{2, 4, 6, 8\}$ számok, és nyilván az összes ezekkel modulo 8 kongruens szám elégíti ki az $x \cdot (x-2) \equiv 0 \pmod{8}$ nemlineáris kongruenciát, vagyis a páros számok.

Alternatív megoldás: Páratlan x esetén x-2 is páratlan, és így nyilván $x \cdot (x-2)$ is páratlan, azaz nem lehet osztható nyolccal.

Páros x = 2k esetén $x \cdot (x - 2) = 2k \cdot (2k - 2) = 4 \cdot k \cdot (k - 1)$. Mivel két szomszédos szám közül az egyik mindig páros, ezért $k \cdot (k - 1)$ szorzat páros, ennek négyszerese nyolccal is osztható.

- **f**) $x^2 \equiv 1 \pmod{5}$, nézzünk végig egy teljes maradékrendszer négyzeteit modulo 5, például az $x \in \{1, 2, 3, 4, 5\}$ elemekét: $1^2 = 1 \equiv 1 \pmod{5}$, $2^2 = 4 \equiv 4 \pmod{5}$, $3^2 = 9 \equiv 4 \pmod{5}$, $4^2 = 16 \equiv 1 \pmod{5}$, $5^2 = 25 \equiv 0 \pmod{5}$. Tehát modulo 5 két inkongruens megoldás van: $x \equiv 1 \pmod{5}$ és $x \equiv 4 \pmod{5}$, más szavakkal $x = 5k \pm 1$: $k \in \mathbb{Z}$.
- g) $x^2 \equiv 1 \pmod{6}$, nézzünk végig egy teljes maradékrendszer négyzeteit modulo 6, például az $x \in \{1, 2, 3, 4, 5, 6\}$ elemekét: $1^2 = 1 \equiv 1 \pmod{6}$, $2^2 = 4 \equiv 4 \pmod{6}$, $3^2 = 9 \equiv 3 \pmod{6}$, $4^2 = 16 \equiv 4 \pmod{6}$, $5^2 = 25 \equiv 1 \pmod{6}$, $6^2 \equiv 0 \pmod{6}$.

Vagyis $x \equiv 1 \pmod{6}$ és $x \equiv 5 \pmod{6}$ elégíti ki a kongruenciát, azaz $x = 6k \pm 1 : k \in \mathbb{Z}$.

h) $x^4 \equiv 1 \pmod 5$, nézzünk végig egy teljes maradékrendszer négyzeteit modulo 5, például az $x \in \{1,2,3,4,5\}$ elemekét: $1^4 = 1 \equiv 1 \pmod 5$, $2^4 = 16 \equiv 1 \pmod 5$, $3^4 = 81 \equiv 1 \pmod 5$, $4^4 = 256 \equiv 1 \pmod 5$, $5^4 = 0 \equiv 0 \pmod 5$. Azaz az öttel NEM osztható számok mindegyike megoldás. (Aki ismeri az Euler-Fermat tételt vagy a "Kis" Fermat tételt, azt ez nem lepi meg.)

Érdekes feladatok

3. Legyenek z=i és $w=\frac{1}{2}+\frac{\sqrt{3}}{2}i$ komplex számok. Mely n egészekre teljesül, hogy $z^n=w^n=1$? Válaszát indokolja!

Megoldás: Trigonometrikus alakban $z = i = 1 \cdot (\cos 90^{\circ} + i \cdot \sin 90^{\circ})$, tehát z egy primitív negyedik egységgyök, azaz $z^{n} = 1 \iff n = 4k : k \in \mathbb{Z}$.

Hasonlóan $w=\frac{1}{2}+\frac{\sqrt{3}}{2}i=1\cdot(\cos 60^\circ+i\cdot\sin 60^\circ)$, tehát w egy primitív hatodik egységgyök, azaz $w^n=1\Longleftrightarrow n=6k:k\in\mathbb{Z}.$

Tehát $z^n = w^n = 1$ pontosan azokra az egész n számokra teljesül, amikre egyszerre teljesül, hogy n a 4-nek is többszöröse és a 6-nak is többszöröse, vagyis a 4 és 6 közös többszöröseire. A 4 és 6 legkisebb közös többszöröse [4,6]=12, azaz $z^n=w^n=1 \iff n=12k: k \in \mathbb{Z}$.

4. Mutassa meg, hogy (ca, cb) = c(a, b) ill. (a, b) = (a - b, b). Az összefüggések segítségével számolja ki a $(2^{13} - 1, 2^8 - 1)$ ill. $(2^{15} - 1, 2^9 - 1)$ legnagyobb közös osztókat!

Megoldás: Az első két egyenlőség volt előadáson. Ezeken felül az is szükséges a megoldáshoz, hogy $gcd(c, b) = 1 \Longrightarrow gcd(a \cdot c, b) = gcd(a, b)$.

$$(2^{13}-1,2^8-1)=(2^{13}-2^8,2^8-1)=(2^8\cdot(2^5-1),2^8-1)=(2^5-1,2^8-1)=(2^5-1,2^8-2^5)=(2^5-1,2^5\cdot(2^3-1))=(2^5-1,2^3-1)=(2^5-2^3,2^3-1)=(2^3\cdot(2^2-1),2^3-1)=(2^2-1,2^3-1)=(4-1,8-1)=(3,7)=1.$$

$$(2^{15}-1,2^9-1)=(2^{15}-2^9,2^9-1)=(2^9\cdot(2^6-1),2^9-1)=(2^6-1,2^9-1)=(2^6-1,2^9-2^6)=(2^6-1,2^6\cdot(2^3-1))=(2^6-1,2^3-1)=(2^6-2^3,2^3-1)=(2^3\cdot(2^3-1),2^3-1)=(2^3-1,2^3-1$$

5. Legyen $F_1 = F_2 = 1$ és $n \ge 1$ esetén $F_{n+2} = F_{n+1} + F_n$. Ekkor az F_n sorozatot Fibonacci sorozatnak hívjuk, első néhány eleme: 1, 1, 2, 3, 5, 8, 13,... Mutassa meg, hogy $(F_{n+1}, F_n) = 1$

Megoldás: Teljes indukcióval. n=1 esetén $(F_{n+1},F_n)=(F_2,F_1)=(1,1)=1$ teljesül. Tegyük fel, hogy $\forall n \leq N: (F_{n+1},F_n)=1$ teljesül. Ekkor n=N+1 esetén $(F_{n+1},F_n)=(F_{N+2},F_{N+1})$. Mivel a rekurzív képlet szerint $F_{N+2}=F_{N+1}+F_N$, ezért $(F_{N+2},F_{N+1})=(F_{N+1}+F_N,F_{N+1})$. Tehát $(F_{N+2},F_{N+1})=(F_N,F_{N+1})=1$, az utolsó egyenlőség az indukciós feltevés miatt.

Szorgalmi feladatok

9. Legyen F_n az n-edik Fibonacci-szám! Mi lesz (F_{n+2}, F_n) ill. (F_{n+3}, F_n) ?

Megoldás:
$$(F_{n+2}, F_n) = (F_{n+1} + F_n, F_n) = (F_{n+1}, F_n) = 1.$$

A másikhoz is a rekurzív képletet használjuk, csak többször egymás után: $F_{n+3} = F_{n+2} + F_{n+1} = (F_{n+1} + F_n) + F_{n+1} = 2 \cdot F_{n+1} + F_n$

 $(F_{n+3},F_n)=(2\cdot F_{n+1}+F_n,F_n)=(2\cdot F_{n+1},F_n)$. Mivel F_n és F_{n+1} relatív prímek, ezért $\gcd(c,b)=1\Longrightarrow\gcd(a\cdot c,b)=\gcd(a,b)$ miatt $\gcd(2\cdot F_{n+1},F_n)=\gcd(2,F_n)$. Tehát $(F_{n+3},F_n)=(2,F_n)$, ami vagy 1 vagy 2, F_n paritásától függően.

 F_n paritása is kiszámolható a rekuzív képletből: $F_1 = F_2 = 1$, $F_3 = 1 + 1 = 2$, azaz van páros Fibonacci szám. Mivel a szomszédos Fibonacci számok relatív prímek, ezért ha F_n páros, akkor F_{n+1} páratlan, és $F_{n+2} = F_{n+1} + F_n$ páros és páratlan összege, tehát szintén páratlan, viszont $F_{n+3} = F_{n+2} + F_{n+1}$ két páratlan összege, azaz páros. Indukcióval tehát F_n páros pontosan akkor, ha n hárommal osztható.

 $(F_{n+3}, F_n) = (2, F_n) = 1$, ha n nem osztható 3-mal, és $(F_{n+3}, F_n) = (2, F_n) = 2$, ha n = 3k.