16. Integration Strategy

Lec 15 mini review.

useful trig identities:	expression:	identity:	substitution:
$\cos^2(x) + \sin^2(x) = 1$	$\sqrt{1-x^2}$	$1 - \sin^2 \theta = \cos^2 \theta$	$x = \sin \theta$
$1 + \tan^2(x) = \sec^2(x)$	VI W	2 0112 0 000 0	$x = \sin \theta$ $\left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right)$
$\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$	$\sqrt{1+x^2}$	$1 + \tan^2 \theta = \sec^2 \theta$	$x = \tan \theta$
$\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$	/ 2		$\left(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\right)$
$\sin(2x) = 2\sin(x)\cos(x)$	$\sqrt{x^2-1}$	$\sec^2 \theta - 1 = \tan^2 \theta$	$x = \sec \theta$
2511(20) 2511(0) 255(0)			$\left(0 \le \theta < \frac{\pi}{2}, \pi \le \theta < \frac{3\pi}{2}\right)$

partial fractions: denominator factors into product of

▶ distinct linear factors: partial fractions expression

$$\frac{N(x)}{D(x)} = \frac{N(x)}{(a_1x + b_1)\dots(a_kx + b_k)} = \frac{A_1}{a_1x + b_1} + \dots + \frac{A_k}{a_kx + b_k}$$

▶ distinct irreducible quadratic factors: partial fractions expression

$$\frac{N(x)}{D(x)} = \frac{N(x)}{(a_1x^2 + b_1 + c_1)\dots(a_kx^2 + b_kx + c_k)} = \frac{A_1x + B_1}{a_1x^2 + b_1x + c_1} + \dots + \frac{A_kx + B_k}{a_kx^2 + b_kx + c_k}$$

 \blacktriangleright if a linear factor is repeated, say $(ax+b)^r$ appears in factorization of denominator, we use

$$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_r}{(ax+b)^r}$$
 intead of the single term $\frac{A}{ax+b}$

▶ if an irreducible quadratic factor is repeated, say $(ax^2 + bx + c)^r$ appears in factorization of denominator, we use

$$\frac{A_1x+B_1}{ax^2+bx+c}+\frac{A_2x+B_2}{(ax^2+bx+c)^2}+\cdots+\frac{A_rx+B_r}{(ax^2+bx+c)^r}\quad \text{intead of the single term}\quad \frac{Ax+B}{ax^2+bx+c}$$

INTEGRATION STRATEGY

- o simple antiderivative? minor simplification first?
- \circ possible u-substitution? looks like aftermath of a chain rule?
- \circ *u*-substitution not working? are you sure you can't cancel the old variable by restating x in terms of u in another way?
- maybe integration by parts is needed? what will the new integral look like? possible tie situation in IBP?
- o possible substitution in combination with IBP?
- o a trig integral? could trig identities be of help?
- $\circ\,$ in need of a trig substitution?
- o a rational function? maybe long division would help? what about partial fractions?

^{*} These notes are solely for the personal use of students registered in MAT1320. ©EJM All rights reserved.

Example 16.7. $\int \frac{x^3 - x + \pi}{x^{2/3}} dx$

Example 16.8. $\int 5^x dx$

Example 16.9. $\int \sqrt{x}(1-x^3+2\sqrt{x})dx$

Example 16.10. $\int \frac{\tan(x)}{\sec(x)} dx$

Example 16.11. $\int \frac{dx}{x^2 - 6x + 14}$

Example 16.12. $\int_{1}^{2} \frac{e^{1/x}}{x^2} dx$

Example 16.13. $\int \frac{e^{1/x}}{x^3} dx$

Example 16.14. $\int \frac{\sin^3(x)}{\cos(x)} dx$

Example 16.15. $\int \frac{x^2}{\sqrt{1-3x^2}} dx$

Example 16.16. $\int \frac{2x-3}{x^3+3x} dx$

MUST-KNOW CONCEPTS/FORMULAS FOR INTEGRATION

\square all basic antiderivatives
\square approximation of definite integral using Riemann sums (with n rectangles)
\square definition of definite integral as infinite limit of Riemann sum
\square how to use FTC 1 to differentiate
\square how to use FTC 2 to evaluate definite integrals
\Box interpretation of a definite integral as net area (or net change)
\square difference between definite/indefinite integrals
\square when to write $+C$ versus subtract $F(b)-F(a)$
\square recipe for u -substitution
\Box formula for integration by parts
\Box the useful trig identities
\Box the three main strategies for trig substitution
\square general strategies for integrating (<i>e.g.</i> using simplifications such as trig identities, completing the square, long division, using IBP, using IBP multiple times, using u -substitution, using u -substitution in combination with IBP, using trig substitution, other simplifications)
☐ method of partial fractions, including scenarios with repeated factors in the denominator