

Lecture 14:

Filter Design: FIR

Outlines

Windowed Impulse Response

Window Shapes

Design by Iterative Optimization

1. FIR Filter Design

FIR filters

- no poles (just zeros)
- no precedent in analog filter design
- Approaches
 - windowing ideal impulse response
 - iterative (computer-aided) design

Least Integral-Squared Error

• Given desired FR $H_d(e^{j\omega})$, what is the best finite $h_t[n]$ to approximate it?

best in what sense?

Can try to minimize Integral Squared Error (ISE) of frequency responses:

$$\phi = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| H_d(e^{j\omega}) - H_t(e^{j\omega}) \right|^2 d\omega$$

$$= \text{DTFT}\{h_t[n]\}$$

Least Integral-Squared Error

- Ideal IR is $h_d[n] = \text{IDTFT}\{H_d(e^{j\omega})\}$, (usually infinite-extent)
- By Parseval, ISE $\phi = \sum_{n=-\infty} |h_d[n] h_t[n]|^2$
- But: $h_t[n]$ only exists for n = -M..M,

$$\Rightarrow \phi = \sum_{n=-M}^{M} |h_d[n] - h_t[n]|^2 + \sum_{n<-M, n>M} |h_d[n]|^2$$

minimized by making $h_t[n] = h_d[n], -M \le n \le M$

not altered by $h_t[n]$

Least Integral-Squared Error

Thus, minimum mean-squared error approximation in 2M+1 point FIR is truncated IDTFT:

$$h_t[n] = \begin{cases} \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega & -M \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

Make causal by delaying by M points

$$\rightarrow h'_{t}[n] = 0 \text{ for } n < 0$$

Approximating Ideal Filters

From topic 6, ideal lowpass

has:

$$H_{LP}(e^{j\omega}) = \begin{cases} 1\\0 \end{cases}$$

$$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}$$

(doubly infinite)

$$|\omega| < \omega_c$$

$$\omega_c < |\omega| < \pi$$

Approximating Ideal Filters

 Thus, minimum ISE causal approximation to an ideal lowpass

$$\hat{h}_{LP}[n] = \begin{cases} \frac{\sin \omega_c(n-M)}{\pi(n-M)} & 0 \le n \le 2M \\ 0 & \text{otherwise} \end{cases}$$
Causal shift
$$\frac{\sum_{k=0}^{12} \frac{1}{2k}}{2k} = \frac{1}{2k} \frac{1}{2k} \frac{1}{2k} \frac{1}{2k} \frac{1}{2k} = \frac{1}{2k} \frac{1}{2k} \frac{1}{2k} \frac{1}{2k} = \frac{1}{2k} \frac{1}{$$

Gibbs Phenomenon

Truncated ideal filters have Gibbs' Ears:

Increasing filter length

→ narrower ears
(reduces ISE)

but height the same

→ **not** optimal by minimax criterion

Where Gibbs comes from

■ Truncation of $h_d[n]$ to 2M+1 points is multiplication by a rectangular window:

$$h_t[n] = h_d[n] \cdot w_R[n]$$

$$w_R[n] = \begin{cases} 1 & -M \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

$$w_R[n] = \begin{cases} 0.05 & 0.05 \\ 0.05 & 0.05 \\ 0.05 & 0.05 \end{cases}$$

• Multiplication in time domain is convolution in frequency domain:

$$g[n] \cdot h[n] \leftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$$

convanim.mp4

Where Gibbs comes from

Thus, FR of truncated response is convolution of ideal FR and FR of rectangular window (pd.sinc):

Where Gibbs comes from

Where Gibbs comes from

Rectangular window:

$$w_R[n] = \begin{cases} 1 & -M \le n \le M \\ 0 & \text{otherwise} \end{cases} \Rightarrow W_R(e^{j\omega}) = \sum_{n=-M}^{M} e^{-j\omega n} \\ = \frac{\sin(2M+1)\frac{\omega}{2}}{\sin\frac{\omega}{2}}$$

- Mainlobe width $(\propto 1/L)$ determines transition band
- Sidelobe *height*determines ripples

≈ ınvarıant with length

2. Window Shapes for Filters

- Windowing (infinite) ideal response
 - \rightarrow FIR filter: $h_t[n] = h_d[n] \cdot w[n]$
- Rectangular window has best ISE error
- Other "tapered windows" vary in:
 - mainlobe → transition band width
 - sidelobes → size of ripples near transition
- Variety of 'classic' windows...

Window Shapes for FIR Filters

Rectangular:

$$w[n] = 1 \quad -M \le n \le M$$

Hann:

$$0.5 + 0.5\cos(2\pi \frac{n}{2M+1})$$

Hamming:

$$0.54 + 0.46\cos(2\pi \frac{n}{2M+1})$$

Blackman:

$$0.42 + 0.5\cos(2\pi \frac{n}{2M+1}) + 0.08\cos(2\pi \frac{2n}{2M+1})$$

Window Shapes for FIR Filters

Comparison on dB scale:

Adjustable Windows

- So far, discrete main-sidelobe tradeoffs..
- Kaiser window = parametric, continuous tradeoff: $I_0(\beta_0/1-(\frac{n}{L_0})^2)$

$$\begin{array}{c} \text{tradeoff:} \\ \text{modified zero-order} \quad \overline{w[n]} = \underbrace{I_0 \Big(\beta \sqrt{1 - (\frac{n}{M})^2}\Big)}_{I_0(\beta)} \\ \text{Bessel function} \end{array} \quad -M \leq n \leq M$$

• Empirically, for min. SB atten. of α dB:

$$\beta = \begin{cases} 0.11(\alpha - 8.7) & \alpha > 50 & \text{order} \\ 0.58(\alpha - 21)^{0.4} + 0.08(\alpha - 21) & 21 \leq \alpha \leq 50 \\ 0 & \alpha < 21 \end{cases} \quad N = \frac{\alpha - 8}{2.3\Delta\omega}$$

Commonly used Windows

COMPARISON OF COMMONLY USED WINDOWS

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, $20\log_{10}\delta$ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hann	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	-41	$8\pi/M$	-53	4.86	$6.27\pi/M$
Blackman	-57	$12\pi/M$	-74	7.04	$9.19\pi/M$

Windowed Filter Example

- Design a 25 point FIR low-pass filter with a cutoff of 600 Hz (SR = 8 kHz)
- No specific transition/ripple req's
 - → compromise: use Hamming window
- Convert the frequency to radians/ sample: $\omega_c = \frac{600}{8000} \times 2\pi = 0.15\pi$ / 8000 samp/sec

600 cyc/sec

Windowed Filter Example

Get ideal filter impulse response:

$$\omega_c = 0.15\pi \implies h_d[n] = \frac{\sin 0.15 \pi n}{\pi n}$$

2. Get window:

Hamming @
$$N = 25 \rightarrow M = 12 (N = 2M+1)$$

$$\Rightarrow w[n] = 0.54 + 0.46\cos(2\pi \frac{n}{25}) - 12 \le n \le 12$$

3. Apply window:

3. Apply window:
$$h[n] = h_d[n] \cdot w[n]$$

$$= \frac{\sin 0.15 \pi n}{\pi n} \left(0.54 + 0.46 \cos \frac{2\pi n}{25}\right) -12 \le n \le n$$

Freq. Resp. (FR) Arithmetic

Ideal LPF has pure-real FR i.e.

$$\theta(\omega) = 0, H(e^{j\omega}) = |H(e^{j\omega})|$$

→ Can build piecewise-constant FRs by

Window Technique: "Overdesign"

- - over design in either pass-band or stop-band

- non equal ripple in window design,
 - over design in part of the pass-band and stop-band

Note on IIR and FIR Design

passband edge freq. = 0.22 stopband edge freq. = 0.29 maximum passband gain = 0dB minimum passband gain = -1dB maximum stopband gain = -40dB

TABLE 7.3 ORDERS OF DESIGNED FILTERS.

Filter design	Order	
Butterworth	18	
Chebyshev I	8	
Chebyshev II	8	
Elliptic	5	
Kaiser	63	
Parks-McClellan	44	

- number of multiplications (symmetric structure)
 - Kaiser: 32 (linear phase)
 - Parks-McClellan: 23 (linear phase)
 - Elliptic: 8
- IIR design requires fewer order or fewer taps (less complexity)
- FIR can achieve linear phase no stability concern