Modern amplitude techniques

Taro V. Brown^a

^aDepartment of Physics, UC Davis, One Shields Avenue, Davis, CA 95616, USA

E-mail: taro.brown@nbi.ku.dk

ABSTRACT: Notes on modern amplitude techniques written as part of a research project with Jaroslav Trnka.

$\boldsymbol{\alpha}$		1
Co	nte	nts

1 Problem 1 2

1 Problem 1

We will take the rotated null coordinates given by,

$$u = t - x$$
 $v = t + x$
 $U = \operatorname{atan} u$ $V = \operatorname{atan} v$ (1.1)
 $T = V + U$, $X = V - U$

Which combined give

$$T = \operatorname{atan}[t+x] + \operatorname{atan}[t-x], \qquad X = \operatorname{atan}[t+x] - \operatorname{atan}[t-x]$$
 (1.2)

2 Problem 2

We will take the rotated null coordinates given by,

$$u = t - x$$
 $v = t + x$
 $U = \operatorname{atan} u$ $V = \operatorname{atan} v$ (2.1)
 $T = V + U$, $X = V - U$

Which combined give

$$T = \operatorname{atan}[t+x] + \operatorname{atan}[t-x], \qquad X = \operatorname{atan}[t+x] - \operatorname{atan}[t-x]$$
 (2.2)