

Cell-Cell Interaction Analysis in Multi-volumetric Tissue Data

Kevin Sidak, Visiting Grad Student

Advisors:

Robert Krueger, Johanna Beyer, Zoltan Maligan, Sandro Santagata, Torsten Moeller

Data

- PCA-Dataset / Cutaneous melanoma
- 3D Cycif Data
- 42 cubes
- 110 μm x 110 μm x 5 μm
- 21 markers

Volume Rendering

- Direct Volume Rendering
- Threejs + Typescript + Webgl
- Multichannel support
- Channel Customization

Cell Interactions

- What are cell interactions?
 - proteins between cells

- The interaction between cells can be represented as a graph where:
 - cells are vertices
 - interactions are edges

Understanding Cell-Cell Interactions

Traditionally cell-cell interactions are inspected manually

How can we quantify cell-cell interaction automatic without segmentation?

- using simple shapes like cylinders and cones as approximation
- projecting the measurements on to a line
- displaying the resulting histogram

After that we can also compare the interactions via different distribution metr

Polarizations of Markers

- analyze polarization for a single cell
 - abstract via a simple shape
 - with segmentation mask
- compare marker distributions
- analyze strength of polarity

Tool

What can it do so far?

- display 3D multi-channel data
- customize channel visualization
- compute interaction in real time
- show interaction profiles of desired channels
- rank similar interactions

Demo

Future Work

- compare interactions
- group interactions
- measure marker polarizations
- compare marker polarizations

Acknowledgements

VCG

LSP

U. of Vienna

