

Amendments to the Claims

1-14. (Cancelled).

15. (New) A method of manufacturing a high-frequency assembly having a plurality of components, at least one of which is frequency-specific, using an automatic assembly apparatus, the method comprising:

- identifying a frequency-encoding feature on a frequency-specific component;
- accepting the frequency-specific component for connection to the high-frequency assembly if the frequency-encoding feature indicates that the frequency-specific component is a correct component for the assembly; and
- rejecting the frequency-specific component for connection to the high-frequency assembly if the frequency-encoding feature indicates that the frequency-specific component is not the correct component for the assembly.

16. (New) The method of claim 15 wherein the frequency-specific component is taken from a stock that comprises a plurality of frequency-specific components, the method further comprising:

- rejecting the entire stock of frequency-specific components if a predetermined number of frequency-specific components in the stock are successively rejected for connection.

17. (New) The method of claim 15 further comprising:

- searching for the frequency-encoding feature at a plurality of locations on the frequency-specific component; and
- determining an orientation of the frequency-specific component based on a location at which the frequency-encoding feature is found.

18. (New) The method of claim 17 further comprising:

identifying a reference point and a reference direction on the frequency-specific component;

forming a number of vectors beginning at the reference point, the vectors being of substantially equivalent length and forming pre-defined angles with respect to the reference direction; and

searching for the frequency-encoding feature at the ends of the vectors.

19. (New) The method of claim 18 wherein each vector includes an end that terminates at a corner of a square.

20. (New) The method of claim 18 further comprising:

determining a rotational position of the frequency-encoding feature; and

distinguishing which of a plurality of features is indicated by the frequency-encoding feature based on the orientation of the frequency-specific component.

21. (New) The method of claim 15 further comprising:

detecting an outline of the frequency-specific component;

locating the frequency-encoded feature based on the detected outline of the frequency-specific component; and

determining an orientation of the frequency-specific component based on the located frequency-encoded feature;

22. (New) The method of claim 15 wherein the frequency-specific component comprises a circuit board.

23. (New) The method of claim 22 wherein the frequency-encoded feature comprises a

conductive material.

24. (New) The method of claim 15 wherein the frequency-specific component comprises a mechanical component.

25. (New) The method of claim 24 wherein the mechanical component comprises a cover that covers a mounted component.

26. (New) The method of claim 15 wherein the frequency-encoded feature comprises a bore.

27. (New) The method of claim 15 wherein the frequency-encoded feature comprises an indication printed on the frequency-specific component.

28. (New) A frequency-specific component for a high-frequency assembly comprising:
a machine-detectable feature on the frequency-specific component; and
the machine-detectable feature being disposed on the frequency-specific component to indicate a specific operating frequency of the component.

29. (New) A manufacturing apparatus for the automatic manufacture of a high-frequency assembly comprising:

a placing apparatus to place one or more components on a high-frequency assembly,
wherein at least one of the components comprises a frequency-specific component;
a sensor to detect a frequency-encoded feature associated with the frequency-specific component that indicates an operating frequency of the frequency-specific component;
a controller operatively connected to the sensor and configured to:
receive a signal from the sensor responsive to the detection of the frequency-encoded feature; and
control the placing apparatus to place the frequency-specific component on the assembly, or to reject the frequency-specific component based on the received signal.