Categorial – Propositional set – Partition

Take-home message

(1) [which girl smiled]] w_0 (categorial) $= \lambda x \lambda w : \text{hmn}_{w_0}(x).\text{smiled}_{w}(x) \qquad \text{(categorial)}$ $= \lambda p \exists x \in \text{hmn}_{w_0} : p = \lambda w.\text{smiled}_{w}(x) \qquad \text{(p-set)} \qquad \text{(7)}$ $= \lambda w \lambda w'.\{x \mid \text{simled}_{w}(x)\} = \{x \mid \text{smiled}_{w'}(x)\} \qquad \text{(partition)}$

The three kinds of denotations can be ordered by informativeness

Categorial > Propositional set > Partition

A > B: any information that is derivable from meaning B is also derivable from meaning A, but not the other direction.

Mapping one approach to another

$Categorial \rightarrow Propositional set$

(2)
$$\pi(R) = \lambda p \exists \vec{x}. p = R(\vec{x})$$

$Propositional \ set \rightarrow Partition$

(3)
$$\delta(Q) = \lambda w \lambda w' \{ p \in Q \mid p(w) = 1 \} = \{ p \in Q \mid p(w') = 1 \}$$

$Categorial \rightarrow Partition$

(4) $\rho(R) = \lambda w \lambda w'. \{\vec{x} \mid R(\vec{x})(w) = 1\} = \{\vec{x} \mid R(\vec{x})(w') = 1\} \text{ or } \rho = \delta \circ \pi$

Propositional set, Partition → **Categorial**: Short answers cannot be retrieved from the former two approaches.

Partition → **Propositional set**: Mention-some questions cannot be derived from the former.

(5) [where can I buy coffee] (w_0) = $\lambda w'$.{I can buy coffee at x in $w_0 \mid x \in \mathsf{cafe}_{w_0}$ } = {I can buy coffee at x in $w' \mid x \in \mathsf{cafe}_{w'}$ }

Mention-some questions

- (6) a. Where can I buy coffee? Peets' coffee.
 - b. Who is in your committee, for example? Anna.
- (7) Jenny knows where you can buy coffee.→ There is a coffee house x and John knows you can buy coffee at x.

Different answerhood operators

Beck & Rullmann (1999)

(8) $\operatorname{Ans}_{w_0}^{\exists}(Q) = \exists p \in Q : p(w_0)$

Over-generation: Any question would be ambiguous between a mention-all and mention-some reading.

Covert distributivity and scope

Fox (2013), see also Xiang (2022)

- (9) a. Where $_1$ can $[t_1-\mathbb{D}]_2$ I buy coffee t_2 b. $\{ \diamond (\forall y \leq_{\mathsf{atom}} x.\mathsf{buy\text{-}coffee}(y)) \mid x \in \mathsf{*place} \}$
- (10) a. Where₁ $[t_1-\mathbb{D}]_2$ can I buy coffee t_2 b. $\{\forall y \leq_{\text{atom}} x. \diamond (\text{buy-coffee}(y)) \mid x \in \text{*place}\}$

Modifying Dayal's answerhood operator:

- (11) $\operatorname{Ans}_{w_0}^{Fox}(Q) = \{ p \in Q \mid p(w_0) \land \forall q \in Q : q(w_0) \to q \not\subset p \}$
- (12) a. $\mathbf{Ans}_{w_0}^{Fox}(9\text{-b})$ Mention-some b. $\mathbf{Ans}_{w_0}^{Fox}(10\text{-b})$ Mention-all

[Note: a and b are two places; f stands for buy-coffee]

Pragmatic view

Groenendijk & Stokhof (1984); van Rooij & Schulz (2004)

Mention-some answers are partial answers that are sufficient for the conversational goal behind the question.

- (13) Where can I buy coffee?
 - a. Goal: find a coffee house Mention-some
 - o. Goal: investigate the local market Mention-all

Weak vs. strong exhaustivity

Different question-embedding predicates license different kinds of exhaustive readings. (Heim 1994; Uegaki 2015)

Strong exhaustivity

Suppose that Anna and Becky smiled, but Cindy didn't.

(14) Jenny knows who smiled. → John believes A and B smiled and C didn't.

Weak exhaustivity

Among Anna, Becky, and Cindy, Jenny expected that everyone would come. In fact, Anna and Becky came but Cindy didn't.

- (15) It surprised Jenny who came. False

 → It surprised Jenny that Anna and Becky came.
- (16) It surprised Jenny who didn't come. True

 → It surprised Jenny that Cindy didn't come.

Based on propositional sets, we can define **two kinds of answerhood operators** to capture the two types of exhaustivity.

- (17) $\mathbf{Ans}_{w_0}^W(Q) = \iota p.p(w_0) \land \forall q \in Q : q(w_0) \to p \subseteq q$
- (18) $\operatorname{Ans}_{w_0}^{S}(Q) = \lambda w. \operatorname{Ans}_{w_0}^{W}(Q) = \operatorname{Ans}_{w'}^{W}(Q)$

A flexible approach

- The question meaning defined in the categorial approach is taken as the base.
- The propositional set and the partition are generated when needed.

Revisiting wh-coordination

- (19) Peter knows who came and who brought what.
 - $\lambda w.\mathsf{know}_w(\pi(\lambda x \lambda w.\mathsf{came}_w(x)) \sqcap$

 $\pi(\lambda x \lambda y \lambda w. brought_{w}(x)(y)))(p)$

b. $\lambda w.\mathsf{know}_w(\rho(\lambda x \lambda w.\mathsf{came}_w(x)) \wedge$

 $\rho(\lambda x \lambda y \lambda w. brought_{...}(x)(y)))(p)$

Prediction: Wh-coordination should not admit short answers.

- (20) A: What dish did you eat and what wine did you drink?
 - B: ?Beans, (and) wine.