LECTURE 4: SMALL-WORLD PHENOMENA

Small world: a simplistic argument

- How many people would you recognize by name?
 '67 M. Gurevitch (MIT): about 500
- Roughly, how many are socially related to you?

	how close to you?	Compares to	%. НК рор.
500	direct acquaintance	C.S. dept	0.0067%
250,000	share an acquaintance with you	TKO district (398,479)	3.382%
125m	share an acquaintance with a friend of yours	Guangdong Province (113m)	1691%

Six Degrees of Kevin Bacon

Origins of a small-world idea:

- ☐ The Bacon number:
 - Create a network of Hollywood actors
 - Connect two actors if they co-appeared in the movie
 - Bacon number: number of steps to Kevin Bacon
- As of Dec 2007, the highest (finite)
 Bacon number reported is 8
- Only approx. 12% of all actors cannot be linked to Bacon

The Small-World Experiment

- What is the typical shortest path length between any two people?
 - Experiment on the global friendship network
 - Can't measure, need to probe explicitly
- □ Small-world experiment [Milgram '67]
 - Picked 300 people in Omaha, Nebraska and Wichita, Kansas
 - Ask them to get a letter to a stock-broker in Boston by passing it through friends
- □ How many steps did it take?

The Small-World Experiment

□ 64 chains completed:

(i.e., 64 letters reached the target)

It took 6.2 steps on the average, thus "6 degrees of separation"

□ Further observations:

- People what owned stock had shortest paths to the stockbroker than random people: 5.4 vs. 5.7
- People from the Boston area have even closer paths: 4.4

Milgram: Further Observations

- Boston vs. occupation networks:
- □ Criticism:

■ Funneling:

- 31 of 64 chains passed through 1 of 3 people as their final step → Not all links/nodes are equal
- Starting points and the target were non-random
- People refused to participate (25% for Milgram)
- Some sort of social search: People in the experiment follow some strategy (e.g., geographic routing) instead of forwarding the letter to everyone. They are not finding the shortest path!
- There are not many samples (only 64)
- People might have used extra information resources

Columbia Small-World Study

- In 2003 Dodds, Muhamad and Watts performed the experiment using e-mail:
 - 18 targets of various backgrounds
 - 24,000 first steps (~1,500 per target)
 - □ 65% dropout per step
 - 384 chains completed (1.5%)

Avg. chain length = 4.01

Problem: People stop participating

Correction factor:

$$n^*(h) = \frac{n(h)}{\prod_{i=0}^{h-1} (1 - r_i)}$$

 r_i drop-out rate at hop i

Small-World in Email Study

- □ After the correction:
 - Typical path length h = 7
- Some not well understood phenomena in social networks:
 - Funneling effect: Some target's friends are more likely to be the final step.
 - Conjecture: High reputation/authority
 - Effects of target's characteristics:
 Structurally why are high-status target easier to find
 - Conjecture: Core-periphery net structure

The MSN Messenger

- MSN Messenger activity in June 2006:
 - 245 million users logged in
 - 180 million users engaged in conversations
 - More than 30 billion conversations
 - More than 255 billion exchanged messages

Messaging as a Network

Messaging as a Network

MSN Network: Connectivity

MSN: Degree Distribution

MSN: Log-Log Degree Distribution

We plot the same data as on the previous slide, just the axes are now logarithmic.

MSN: Clustering

Avg. clustering of the MSN: C = 0.1140

Avg. clustering of corresponding G_{np} : $C = \overline{k}/n \approx 8.10^{-8}$

$$C_k$$
: average C_i of nodes i of degree k : $C_k = \frac{1}{N_k} \sum_{i:k_i=k} C_i$

Avg. path length 6.6 90% of the people can be reached in < 8 hops

	Steps		#Nodes				
		0	1				
	-	1	10				
	-	2	78				
	-	3	3.96				
Ta	ble:	use	the				
expansion							
terminology: j and							
Sj.		0.09	/ · and				
٠١٠		· ·	32,333,770				
	an	9	10,321,008				
	a rand	10	1,955,007				
	of	11	518,410				
	out						
	0	12	149,945				
	BFS	13	44,616				
		14	13,740				
	op	15	4,476				
	as we	16	1,542				
	SE	17	536				

nodes

18

19

20

21

22

23

24 25 167

71

29 16

10

3

2

3

Two Questions

- □ (Today) What is the structure of a social network?
- (Later) Which mechanisms do people use to route and find the target?

6-Degrees: Should We Be Surprised?

Assume each human is connected to 100 other people.

Then:

- □ Step 1: reach 100 people
- \square Step 2: reach 100*100 = 10,000 people
- Step 3: reach 100*100*100 = 1,000,000 people
- Step 4: reach 100*100*100*100 = 100M people
- In 5 steps we can reach 10 billion people
- What's wrong here?
 - 92% of new FB friendships are to a friend-of-a-friend [Backstom-Leskovec '11]

Scientific Collaborations

Clustering Implies Edge Locality

■ MSN network has 7 orders of magnitude larger clustering than the corresponding G_{np}!

□ Other examples:

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree $\overline{k} = 61$

Electrical power grid: N = 4,941 nodes, $\overline{k} = 2.67$

Network of neurons: N = 282 nodes, $\overline{k} = 14$

Network	h _{actual}	h _{random}	C actual	C _{random}
Film actors	3.65	2.99	0.79	0.00027
Power Grid	18.70	12.40	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

h ... Average shortest path length

C ... Average clustering coefficient

Back to the Small-World

- Consequence of expansion:
 - \blacksquare Short paths: $O(\log n)$
 - This is "best" we can do if the have a constant degree
 - and there are *n* nodes
- But networks have local structure:
 - **□** Triadic closure:

Friend of a friend is my friend

How can we have both?

Clustering vs. Randomness

Where should we place social networks?

Clustered?

Random?

Simplest Model of Graphs

- Erdös-Renyi Random Graphs [Erdös-Renyi, '60]
- □ Two variants:
 - \square $G_{n,p}$: undirected graph on n nodes and each edge (u,v) appears i.i.d. with probability p
 - $\square G_{n,m}$: undirected graph with n nodes, and m uniformly at random picked edges

What kinds of networks does such model produce?

Random Graph Model

- extstyle extstyle extstyle extstyle n and p do not uniquely determine the graph!
 - The graph is a result of a random process
- We can have many different realizations

n = 10p= 1/6

Random Graph Model: Edges

- $lue{}$ How likely is a graph on E edges?
- \square P(E): the probability that a given G_{np} generates a graph on exactly E edges:

graph on exactly
$$E$$
 edges:
$$P(E) = \begin{pmatrix} E^{\text{max}} \\ E \end{pmatrix} p^{E} (1-p)^{E_{\text{max}}-E}$$

where $E_{max}=n(n-1)/2$ is the maximum possible number of edges in an undirected graph of n nodes $P_{0.5(n+15)}$

Binomial distribution >>>

Node Degrees in a Random Graph

What is expected degree of a node?

- \blacksquare Let X_v be a rnd. var. measuring the degree of node v
- We want to know: $E[X_v] = \sum_{i=1}^{n-1} j P(X_v = j)$
 - For the calculation we will need: Linearity of expectation
 - For any random variables $Y_1, Y_2, ..., Y_k$
 - If $Y = Y_1 + Y_2 + ... Y_k$, then $E[Y] = \sum_i E[Y_i]$

□ Easier way:

- lacksquare Decompose X_v to $X_v = X_{v,1} + X_{v,2} + \dots + X_{v,n-1}$
 - lacksquare where X_{vu} is a $\{0,1\}$ -random variable which tells if edge (v,u) exists or not

$$E[X_v] = \sum_{u=1}^{n-1} E[X_{vu}] = (n-1)p$$
How to think about this?

• Prob. of node *u* linking to a can link (flips a coin) to the contract of the contrac

- Prob. of node *u* linking to node v is *p*
- *u* can link (flips a coin) to all other (*n*-1) nodes
- Thus, the expected degree of node u is: p(n-1)

Properties of G_{np}

Degree distribution: P(k)

Path length: h

Clustering coefficient: C

What are values of these properties for G_{np} ?

Degree Distribution

- \square Fact: Degree distribution of G_{np} is <u>Binomial</u>.
- \square Let P(k) denote a fraction of nodes with degree k:

$$P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$
Select k nodes out of n -1

Select k nodes out of n -1

Probability of missing the rest of the n -1- k edges

Mean, variance of a binomial distribution

$$\overline{k} = p(n-1)$$

$$S^2 = p(1-p)(n-1)$$

$$\frac{\sigma}{\overline{k}} = \left[\frac{1-p}{p} \frac{1}{(n-1)}\right]^{1/2} \approx \frac{1}{(n-1)^{1/2}}$$

As the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of k.

Clustering Coefficient of G_{np}

Remember:
$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

 \square Edges in G_{np} appear i.i.d with prob. p

$$e_i = p \frac{k_i^p(k_i - 1)}{2}$$
Each pair is connected with prob. p

No. of distinct pairs of neighbors of node i of degree k_i

$$C = \frac{p \cdot k_i (k_i - 1)}{k_i (k_i - 1)} = p = \frac{k}{N}$$

Clustering coefficient of a random graph is small. For a fixed avg. degree, C decreases with the graph size N.

Real Networks vs. G_{np}

- Are real networks like random graphs?
 - □ Giant connected component: [©]
 - Average path length: ©
 - □ Clustering Coefficient: ⊗
 - □ Degree Distribution: ⊗
- Problems with the random network model:
 - Degreed distribution differs from that of real networks
 - Giant component in most real network does NOT emerge through a phase transition
 - No local structure clustering coefficient is too low
- □ Most important: Are real networks random?
 - The answer is simply: NO!

Real Networks vs. G_{np}

- \Box If G_{np} is wrong, why did we spend time on it?
 - □ It is the reference model for the rest of the class.
 - It will help us calculate many quantities, that can then be compared to the real data
 - It will help us understand to what degree is a particular property the result of some random process

So, while G_{np} is WRONG, it will turn out to be extremly USEFUL!

Small-World: How?

- Could a network with high clustering be at the same time a small world?
 - How can we at the same time have high clustering and small diameter?

High clustering High diameter

Low clustering Low diameter

- Clustering implies edge "locality"
- Randomness enables "shortcuts"

Solution: The Small-World Model

Small-world Model [Watts-Strogatz '98]:

- 2 components to the model:
- (1) Start with a low-dimensional regular lattice
 - Has high clustering coefficient
- Now introduce randomness ("shortucts")
- □ **(2)** Rewire:
 - Add/remove edges to create shortcuts to join remote parts of the lattice
 - $lue{}$ For each edge with prob. p move the other end to a random node

35

The Small-World Model

REGULAR NETWORK

SMALL WORLD NETWORK

RANDOM NETWORK

P=0

High clustering High diameter

$$h = \frac{N}{2\bar{k}} \qquad C = \frac{3}{4}$$

INCREASING RANDOMNESS

High clustering Low diameter

Low clustering Low diameter

$$a = \frac{\log N}{\log \alpha}$$
 $C = \frac{\bar{k}}{N}$

P=1

Rewiring allows us to "interpolate" between a regular lattice and a random graph

Diameter of the Watts-Strogatz

Alternative formulation of the model:

- Start with a square grid
- Each node has 1 random long-range edge
 - Each node has 1 spoke. Then randomly connect them.

$$C_i = \frac{2 \cdot e_i}{k_i (k_i - 1)} = \frac{2 \cdot 12}{9 \cdot 8} \ge 0.33$$

There are already 12 triangles in the grid and the long-rage edge can only close more.

What's the diameter?

It is log(n) Why?

Diameter of the Watts-Strogatz

Proof:

- Consider a graph where we contract 2x2 subgraphs into supernodes
- Now we have 4 edges sticking out of each supernode
 - 4-regular random graph!
- From Thm. we have short paths between super nodes
- We can turn this into a path in a real graph by adding at most 2 steps per hop
 - ⇒ Diameter of the model is $O(2 \log n)$

4-regular random graph

Small-World: Summary

- Could a network with high clustering be at the same time a small world?
 - Yes. You don't need more than a few random links.
- □ The Watts Strogatz Model:
 - Provides insight on the interplay between clustering and the small-world
 - Captures the structure of many realistic networks
 - Accounts for the high clustering of real networks
 - Does not lead to the correct degree distribution
 - Does not enable navigation (next lecture)

How to Navigate the Network?

- □ (1) What is the structure of a social network?
- (Next) Which mechanisms do people use to route and find the target?

The 10 papers that will make you a social expert

10 sociological must-reads

- 1. S.Milgram, "The small world problem," Psychology today, 1967.
- 2. M. Granovetter, "The strength of weak ties: A network theory revisited," Sociological theory, vol. 1, pp. 201–233, 1983.
- 3. M. McPherson, L. Smith-Lovin, and J. M. Cook, "Birds of a Feather: Homophily in Social Networks," *Annual review of sociology*, vol. 27, pp. 415–444, Jan. 2001.
- 4. M. O. Lorenz, "Methods of measuring the concentration of wealth," *Publications of the American Statistical Association*, vol. 9, no. 70, pp. 209–219, 1905.
 - + H. Simon, "On a Class of Skew Distribution Functions," Biometrika, vol. 42, no. 3, pp. 425–440, 1955.
- 8. I. M. Dunbar, "Coevolution of Neocortical Size, Group-Size and Language in Humans," *Behav Brain Sci*, vol. 16, no. 4, pp. 681–694, 1993.
- 6. D. Cartwright and F. Harary, "Structural balance: a generalization of Heider's theory.," *Psychological Review*, vol. 63, no. 5, pp. 277–293, 1956.
- M. Granovetter, "Threshold Models of Collective Behavior," The American Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, May 1978.
- 8. B. Ryan and N. C. Gross, "The diffusion of hybrid seed corn in two lowa communities," *Rural sociology*, vol. 8, no. 1, pp. 15–24, 1943.
 - + S. Asch, "Opinions and social pressure," Scientific American, 1955.
- 9. R. S. Burt, Structural Holes: The Social Structure of Competition. Harvard University Press, 1992.
- 10. F. Galton, "Vox Populi," *Nature*, vol. 75, no. 1949, pp. 450–451, Mar. 1907.