Aufgabe: Zeige, dass ein Datentyp mit den Operatoren σ (Selektion), π (Projektion), γ (Aggregation) und \times (Kartesisches Produkt) die folgenden Tasks unterstützt...

1. Identifizieren:

 $A = \{a_1, ..., a_n\}$ sei eine Menge von n Objekten. Identifiziere Objekte in A die eine bestimmte Bedingung erfüllen.

Definition σ : Seien $D_1, ..., D_n$ Domänen und sei $R \subseteq D_1 \times ... \times D_n$ mit $R\{A_1 : D_1, ..., A_n : D_n\}$ eine n-stellige Relation auf diesen Domänen. Sei c eine Selektionsbedingung, d. h. ein Boolscher Ausdruck aus Attributen $(A_1, ..., A_n)$, Operatoren $(=, \neq, \geq, \leq, <, >)$ und logischen Junktoren (\land, \lor) . Dann ist die Selektion wie folgt definiert:

$$\sigma_c(R) := \{ \mu : (c [\mu] = true) \land (\mu \in R) \}$$

wobei μ die Tupel der Relation sind.

Die Datenstruktur enthält eine Menge A von Objekten. Die Objekte sind gleichförmige Elemente der Extension einer Relation, d.h. jedes Objekt ist ein Tupel einer bestimmten Relation R. Die Datenstruktur unterstützt weiterhin den Operator Selektion. Die Selektion σ ist äquivalent zu dem Task "Identifizieren", soweit sich die gefordeten Bedingungen als Boolscher Ausdruck beschreiben lassen. Somit lässt sich der Task "identifizieren" durch den Operator σ realisieren.

2. Vergleichen:

 $A = \{a_1, ..., a_n\}$ sei eine Menge von
n Objekten und $C^k = A \times_1 ... \times_k A$ eine beliebige Relation. Vergleiche Objekte $\{a_1, ..., a_k\}$ in A um geordnete Paare $a_{\pi(1)}Ca_{\pi(2)}C...Ca_{\pi(k-1)}Ca_{\pi(k)}$ zu erkennen die C^k erfüllen (π ist eine valide Permutation der Indizes).

3. Merkmale erkennen:

 $A = \{a_1, ..., a_n\}$ sei eine Menge von n Objekten und F_l eine Familie von Funktionen. Erkenne alle Untermengen $\{a_1, ..., a_k\}$, die eine Funktion $F \in F_l$ zu true auswerten.