CONVERGENCE

Xie zejian

xiezej@gmail.com

December 1, 2020

In the following paragraph, (Ω, τ) is a topological space. x is point of Ω and $\mathcal{N}(x)$ is all the neighborhoods. \mathcal{F} is a filter on Ω , x. is a net.

1 Filter

A **filter** is a non-empty collection \mathcal{F} of subset in Ω s.t.

- 1. $A \in \mathcal{F}, A \subset \mathcal{B} \implies \mathcal{B} \in \mathcal{F}$
- 2. Closed under finite intersection.
- 3. $\emptyset \notin \mathcal{F}$

Note the definition of \mathcal{F} is independent with topology τ .

A collection \mathcal{B} of subset in Ω is a **base** for the fliter if

- 1. $\mathcal{B} \subset \mathcal{F}$
- 2. $\forall N \in \mathcal{F}, \exists W \in \mathcal{B} \ni W \subset N$

We say \mathcal{B} generates \mathcal{F} , where

$$\mathcal{F} = \mathcal{B}^{\uparrow} = \{ X \in \mathcal{P}(\Omega) : \exists A \in \mathcal{B} \ni X \supset A \}$$

For example,

- 1. Suppose A is any non-empty subset of Ω , all the subsets of Ω include A is a filter while $\{A\}$ is a base for it.
- 2. Suppose $x \in \Omega$ then

$$\mathcal{N}(x) = \{\text{All neighbourhoods of } x\}$$

is a filter on Ω , that is, **neighbourhood filter**, while each neighborhood base is a base for this filter. Note

$$\tau(x) = \{X \in \tau : x \in X\}$$

is a base for $\mathcal{N}(x)$ and thus $\mathcal{N}(x) = \tau(x)^{\uparrow}$.

3. Suppose Ω is infinite, the collection of all cofinite subsets (subset s with finite complement) is a filter on Ω , such filter is called **Frechet filter**.

To assert a collection is a base, we have

Theorem 1 Let \mathcal{B} be a collection of nonempty subsets. Then \mathcal{B} is a filter base, that is, \mathcal{B} may generates a filter iff 1. The intersection of each finite family of sets in \mathcal{B} inclueds a set in \mathcal{B} 2. \mathcal{B} is non-empty and $\emptyset \notin \mathcal{B}$.

Proof

$$\mathcal{F} = \{ X \in \mathcal{P}(\Omega) : \exists A \in \mathcal{B} \ni X \supset A \}$$

 \mathcal{F} is the filter generated by \mathcal{B} .

Let A be a collection of subsets of nonempty subsets, then construct A' by taking all finite intersection, if $\emptyset \notin A'$, it's a base for some filter \mathcal{F} , we call \mathcal{F} the filter generated by A.

Suppose \mathcal{F} and G be filters on Ω . Then

$$X \in F \cap G \iff \exists P \in F \text{ and } Q \in G \ni X = P \cup G$$

$$X \in \{\text{finite intersection in } F \cup G\} \iff \exists P \in F \text{ and } Q \in G \ni X = P \cap Q$$

Suppose R is an order relation on Ω , then Ω is said to be **inductivelt ordered** by R if every totally ordered subset has an **supremum**.

Zorn's Lemma states that every inductively ordered set has a maximal element.

Theorem 2 The set of all filters on Ω is inductively ordered by inclusion.

Proof Suppose a collection A of filters is totally ordered, it's a base by theorem 1 since it's finite intersection is just a fliter in A with totally ordered. Then the supremum is just the fliter generates by A.

By Zorn's lemma, the set of all filters has maximal filters and we call such fliters ultrafilters.

Theorem 3 Let \mathcal{F} be an ultrafilter on Ω , if A and B are subsets of Ω s.t. $A \cup B \in \mathcal{F}$ then either $A \in \mathcal{F}$ or $B \in \mathcal{F}$.

Proof If $A \notin \mathcal{F}$ and $B \notin \mathcal{F}$, suppose $\mathcal{F}' = \{X : A \cup X \in \mathcal{F}\}$, and easy to verify $\mathcal{F}' \supset \mathcal{F}$, a contradiction.

To assert a filter is ultra, we have:

Theorem 4 Let A be a collection of subsets and \mathcal{F} the filter generates by A. If

$$\forall X \subset \Omega$$
, either $X \in A$ or $X^c \in A$

then A is an ultrafilter on Ω .

Proof Suppose \mathcal{F}' is an ultrafilter include \mathcal{F} , we have $\mathcal{F}' \supset A$ clearly. Consider any $X \in \mathcal{F}'$, we claim that $X \in A$ since if $X^c \in A$ then $X^c \in \mathcal{F}'$ as $\mathcal{F}' \supset \mathcal{F} \supset A$ and $X \cap X^c = \emptyset \in \mathcal{F}'$ results in a contradiction. It follows that $A \supset \mathcal{F}'$ and thus $A = \mathcal{F}'$.

The kernel of ultrafilter is at most a singleton, if a filter has singleton kernel, it's ultra.

Theorem 5 Every filter \mathcal{F} is the intersection of all the ultrafilter which include \mathcal{F} .

Proof We claim that

$$\mathcal{F} = \cap \{ \text{ultrafilter generates by } \{x\} : x \in \cap \mathcal{F} \}$$

Theorem 6 Let f be a mapping from Ω to Ω' and \mathcal{B} a base for a fliter \mathcal{F} on Ω . Then $f(\mathcal{B}) = \{f(X)\}_{X \in \mathcal{B}}$ is also a base on Ω' . Moreover, if \mathcal{F} is ultra then $f(\mathcal{B})$ also generates an ultrafilter. **Proof** First assertion is straightforward and the second follows from \mathcal{B} is collection of supset for some $\{x\}$, then $f(\mathcal{B})$ generates the fliter that generates by $\{f(x)\}$.

Theorem 7 In the same situation as previous theorem. If \mathcal{B}' is a base on Ω' , then $f^{-1}(\mathcal{B}')$ is a base on Ω iff every set in \mathcal{B}' meets $f(\Omega)$

Proof We have

$$\Omega \in f^{-1}(\mathcal{B}') \implies f(\Omega) \subset X'$$

for some $X' \in f^{-1}(\mathcal{B}')$, by definition, \implies is immediately. For \iff , suppose any finite family $X_i \in \mathcal{B}'$, then

$$\bigcap_{i=1}^{n} f^{-1}(X_i) = f^{-1}(\bigcap_{i}^{n} X_i) \in f^{-1}(\mathcal{B}')$$

Then the claim follows from theorem 1. ■

2 Limit

A point $x \in \Omega$ is said to be a **limit** or a **limit point** of the fliter \mathcal{F} and \mathcal{F} is said to **converge** to x, or $\mathcal{F} \to x$, if the neighborhood filter $\mathcal{N}(x) \subset \mathcal{F}$. For filter base \mathcal{B} , we define on the filter generated by \mathcal{B} , that is, if $\mathcal{N}(x) \subset \mathcal{B}^{\uparrow}$.

This implies a equivalent definition of finer topology:

$$\tau \supset \tau' \iff \mathcal{N}_{\tau}(x) \supset \mathcal{N}_{\tau'}(x) \iff \mathcal{F} \to a \implies \mathcal{F}' \to a$$

also, an equivalent definition of continuity as follows:

 $f:(\Omega,\tau)\to(\Omega',\tau')$ is continous at x iff

$$\forall \mathcal{F} \to x, f(\mathcal{F}) \to f(x)$$

Proof By definition, $f(\mathcal{F}) \to f(x)$ if

$$\mathcal{N}(f(x)) \subset f(\mathcal{F})^{\uparrow}$$

That is, for any neighbourhood $N' \in \mathcal{N}(f(x))$, there exist some $A \in \mathcal{F}$ s.t. $f(A) \subset N'$, as $\mathcal{N}(x) \subset \mathcal{F}$ and f is continous at x, such A is always exists. Conversely, take $\mathcal{F} = \mathcal{N}(x)$ then the claim is follows \blacksquare

A point $x \in \Omega$ is said to be an **adherent point** of \mathcal{F} if x is an adherent point of every set in \mathcal{F} . The **adherence** of \mathcal{F} , $Adh_{\tau}(\mathcal{F})$ or $\overline{\mathcal{F}}$ is the set of all adherent points, thus

$$\overline{\mathcal{F}} = \bigcap_{X \in F} \overline{X}$$

Define similarly on filter base \mathcal{B} by the filter generated. By definition, we have

$$\overline{\mathcal{B}} = \bigcap_{X \in B} \overline{X}$$

Suppose A be a subset of Ω , then $x \in \overline{A}$ iff there is a filter \mathcal{F} s.t. $A \in \mathcal{F}$ and \mathcal{F} converges to x.

Proof If $x \in \overline{A}$ then $\mathcal{F} = N(x) \cup \{A\}$ generates a fliter as required. Conversely,

$$N(x) \in \mathcal{F} \implies N \cap A \neq \emptyset \forall N \in N(x)$$

Then the calim follows. ■

Theorem 8 Suppose BN(x) a neighbourhood base of x, then

- 1. \mathcal{B} converges to x iff every set in BN(x) includes a set in \mathcal{B} .
- 2. $x \in \overline{\mathcal{B}}$ iff every set in BN(x) meets every set in \mathcal{B} .

Proof Directly from definition. ■

As consequence, we have

Corollary 1 x is adherent to a filter \mathcal{F} iff there is $\mathcal{F}' \supset \mathcal{F}$ and converges to x

Proof \Longrightarrow follows from taking $\mathcal{F} = BN(x)$. Conversely, $\forall N \in BN(x)$, we have $X' \subset N$ for some $X' \in \mathcal{F}'$, thus for any $X \in \mathcal{F}$, $N \cap X \subset X' \cap X \neq \emptyset$ as $X', X \in \mathcal{F}'$.

Corollary 2 Every limit point of \mathcal{F} is adherent to \mathcal{F}

Proof Clearly holds by applying 1 and 21.

Corollary 3 Every adherent point of an ultra-filter is a limit point of it.

Proof Clearly as kernal of ultrafilter is a one point set.

Suppose $f:(\Omega,\tau)\to(\Omega',\tau')$, a point $x'\in\Omega'$ is called

- 1. a **limit point** of f relative to \mathcal{F} if $f(\mathcal{F}) \to x$.
- 2. an **adherent point** of f relative \mathcal{F} if it's adherent point of $f(\mathcal{F})$.

Theorem 9

- 1. x' is a limit point of f relative to \mathcal{F} iff for any τ' neighbourhood $N' \in \mathcal{N}(x')$, we have $f^{-1}(N') \in \mathcal{F}$.
- 2. x' is an adherent point of f relative to \mathcal{F} iff for any τ' neighbourhood $N' \in \mathcal{N}(x')$, it meets f(X) for any $X \in \mathcal{F}$.

Proof x' is limit is equivalent to

$$\mathcal{N}(x') \subset f(\mathcal{F})^{\uparrow}$$

That is, there exist some $A = f(X) \subset N'$ for any N', followed by $X \subset f^{-1}f(X) \subset f^{-1}(N')$, then the claim follows from the definition of filter.

By theorem 8, x' is adherent to $f(\mathcal{F})$ iff

$$\forall N' \in BN(x'), \forall X \in \mathcal{F}, f(X) \cap N' \neq \emptyset$$

note for any $N' \in N'(x')$, there exist $N' \in BN(x') \ni N' \subset N'$, thus $f(X) \cap N' \neq \emptyset$ also holds. Conversely, making use of $BN(x') \subset N'(x')$.

For example, suppose $f:(\mathbb{N},\tau)\to (\Omega',\tau')$ and \mathcal{F} the frechet filter on \mathbb{N} . Then x' is limit of f relative to \mathcal{F} iff for all $N'\in N'(x'),\ f^{-1}(N')\in \mathcal{F}\iff f^{-1}(N')^c\subset [0,k]\iff f^{-1}(N')\supset \{n\in\mathbb{N}:n\geq k\}$ for some k, that is, $f(n)\in N'$ for any $n\geq k$.

Theorem 10 Suppose $f:(\Omega,\tau)\to (\Omega',\tau')$ and let $\mathcal{F}=\mathcal{N}(x)$. By theorm 9, x' is limit of f relative to $\mathcal{N}(x)$ iff for all $N'\in\mathcal{N}(x')$, $f^{-1}(N')\in\mathcal{N}(x)\iff N\subset f^{-1}(N')\iff f(N)\subset N'$ for some $N\in\mathcal{N}(x)$. That is, iff x'=f(x), f is continous at x. Such limit points also called limit points of f at x.

Proof Proved in statements. ■

3 Net

In the following paragraph, (D, \prec) is a ordered set. $x.(\nu)$ a net in Ω with domain D.

 (D, \preceq) is called a **directed set** if every couple $\{x, y\}$ in which has an upper bound. Let (D, \preceq) be a directed set, $\nu : D \to \Omega$ is called a **net** in Ω with domain D. We often write ν as x..

Suppose A a subset of Ω , we say x. **eventually in** A if there exist some $k \in D$ s.t. $x_n \in A$ for all $n \succeq k$. And we say ν is **frequently** in A if for all $n \in D$, there exist an $n' \succeq n$ s.t. $x_{n'} \in A$.

Lemma If x. not frequently in A, then x. eventually in A^c . Thus, for any $X \in \Omega$, x. frequently in either X or X^c .

Proof Clearly from definition. ■

A subset B of D is called **cofinal** if for any $a \in D$, there exist $b \in B$ s.t. $a \leq b$. A map $f: D \to A$ is **final** if f(D) is cofinal of A.

Let x. and x.' are two nets in Ω with domains D and D' respectively. We say that x.' is a **subnet** of x. if there exists a final mapping $\varphi: D' \to D$ s.t. $x'_{\alpha} = x_{\varphi(\alpha)}$.

Theorem 11 Let \mathcal{A} be a collection of subsets that x. is frequently in. If \mathcal{A} is closed under finite intersection, then there exists a subnet x'. of x. and x.' eventually in every member of \mathcal{A} **Proof** (TODO).

Let

$$\mathcal{F}(x.) = \{X \in \mathcal{P}(\Omega) : x. \text{ is eventually in } X\}$$

Then $\mathcal{F}(x)$ is a filter and we call it the **filter associated with the net** x..

Motivated by the definition of filter that filter is closed under pairwise intersection, let $X \leq Y \iff X \supset Y$, then any mapping $\nu : \mathcal{F} \to \Omega$ s.t. $\nu(X) \in X$ is a **net associated with the filter** \mathcal{F} .

By definition, we claim that \mathcal{F} is the associated filter of every associated net and x. is an associated net of the associated filter.

Suppose $x \in \Omega$, then x is said **converge** to x, or $x \to x$ if x eventually in N for all $N \in \mathcal{N}(x)$, i.e., $\mathcal{N}(x) \subset \mathcal{F}(x)$. The point x is adherent to x if x frequently in N for all $N \in \mathcal{N}(x)$.

Suppose x.' is subnet of x., we have 1. $x \to x \implies x$.' $\to x$ 2. x adherent to x.' $\implies x$ adherent to x.

Proof Clearly from the definition. ■

Theorem 12 A point x is adherent to x. iff there is a subnet converges to x.

Proof \implies is clear by theorem 11. Conversely, suppose a is not adherent to x, there exist a neighborhood N that x. not frequently in, i.e., exist k s.t. $x_n \notin N$ for any $n \ge k$, thus there is no subnet eventually in N.

Theorem 13 Filter $\mathcal{F} \to x$ iff $x \to x$ for any x. associated with \mathcal{F} .

Proof Note

$$\forall N \in \mathcal{N}(x), x$$
 eventually in $N \iff \mathcal{N}(x) \subset \mathcal{F}(x)$

Then is sufficient to show that $\mathcal{F}(x) = \mathcal{F}$. It's follows from for any $X \in \mathcal{F}$, x. eventually in X.

Theorem 14

$$x. \to x \iff \mathcal{F}(x.) \to x$$

Proof Both side is equivalent to $\mathcal{N}(x) \subset \mathcal{F}(x)$

Theorem 15 Suppose $f:(\Omega,\tau)\to (\Omega,\tau)$, then f is continous at x iff $\forall x.\to x, f(x.)\to f(x)$.

Proof By theorem 13,14 and the equivalent definition stated before. ■

A net x. is called **ultranet** or **universal net** if for all $X \in \Omega$, we have either x. eventually in X or x. eventually in X^c . Clearly, subnet of ultranet is ultra and

Every net has a ultra subnet.

Proof Consider collection of \mathcal{Q} s.t. x. is frequently in every member and closed under finite intersection. By Zorn's Lemma, there is a maximal \mathcal{Q}_0 . By theorem 11, x. has a subnet x.' which eventually in every member of \mathcal{Q}_0 . We claim that this subnet is ultra since, \mathcal{Q}_0 is maximal and thus either $X \in \mathcal{Q}_0$ or $X^c \in \mathcal{Q}_0$.

If x, is ultra then the associated filter $\mathcal{F}(x)$ is also ultra and if \mathcal{F} is ultra, every associated net is ultra.

Proof Directly from Theorem 4. ■