Maintaining a Constant Competitive Steiner Tree Online

Xu Shunyi

Syllabus

Steiner Tree Problem(STP)

• Primal Dual of STP

GGK Algorithm(STOC 2013)

Syllabus

Steiner Tree Problem(STP)

• Primal Dual of STP

• GGK Algorithm(STOC 2013)

Steiner Tree Problem

• Input:

- undirected graph G = (V, E);
- non-negative edge costs $c : E \rightarrow R^+$;
- terminal-set $R = \{s_1, \ldots, s_k\} \subseteq V$

- Terminal
- O Non Terminals

Output

• Compute a Spanning Tree on R that's of minimum total edge cost

$$C(T) = 5$$

- Terminal
- O Non Terminals

Steiner Tree Problem --- Application

Multicast Network Design

Circuit Layout Design

Syllabus

• Steiner Tree Problem(STP)

• Primal Dual of STP

• GGK Algorithm(STOC 2013)

Primal Dual of STP

Primal

 $\delta(U)$: Edges with exactly one endpoint in U.

Dual

$$\max \quad \sum_{U} y_U$$
 s.t.
$$\sum_{U:\ e \in \delta(U)} y_U \ \le \ c_e \quad \forall e \in E$$

$$y_U \ \ge \ 0 \quad \forall U$$

 $\delta(U)$: Edges with exactly one endpoint in U.

• Steiner Cut: Subset of nodes that separates at least one terminal pair (s, t) ∈ R

Can visualize y_U as disks around U with radius y_U . Example: Terminal pair $(s,t) \in R$, edge (s,t) with cost 4

$$y_s = y_t = 0$$

Can visualize y_U as disks around U with radius y_U . Example: Terminal pair $(s,t) \in R$, edge (s,t) with cost 4

$$y_s = y_t = 1$$

Can visualize y_U as disks around U with radius y_U . Example: Terminal pair $(s,t) \in R$, edge (s,t) with cost 4

 $y_s = y_t = 2$ Have: $y_s + y_t = 4 = c_{st}$. Edge (s, t) is tight.

Syllabus

• Steiner Tree Problem(STP)

• Primal Dual of STP

GGK Algorithm(STOC 2013)

GGK Algorithm(STOC 2013)

- Related work:
 - [IW91]--O(log n) competive ratio, no swaps
 - [MSVW12, Ver12] $-O(1+\epsilon)$ completive ratio and $O(1/\epsilon)$ log1/ ϵ) swaps in amortized sense per vertex arrival.
- GGK claims:
 - constant competitive with ratio $C = 2 \alpha^5/(\alpha-1)^2$ and $K=2 \alpha$ swaps per vertex arrival
 - differs from previous work in 1) establishing a constant competitive ratio and 2) make a constant swaps per vertex arrival instead of in an amortized sense

- (a) running a clustering algorithm on the vertex set [i]
 (all the terminals that have arrived by round i) which defines the rank function ρi: [i] → Z≥ο
- (b) getting a virtual rank function vi from the actual rank function ρi
- (c) constructing the tree Ti given the virtual rank function

- (a) running a clustering algorithm on the vertex set [i]
 (all the terminals that have arrived by round i) which defines the rank function ρi: [i] → Z≥ο
- (b) getting a virtual rank function vi from the actual rank function pi
- (c) constructing the tree Ti given the virtual rank function

rank function ρ_i : [i] $\rightarrow Z \ge 0$

- $\xi_i(t)$: clusters in the i-th round, after phase t finishes.
- We start with $\xi_i(o)$, which consists of trivial clusters $\{\{o\}, \{1\}, \{2\},...\{i\}\}$
- At beginning of any t, if two clusters from ξ_i (t-1) satisfy $d(C,C') < 2\alpha^{t+1}$, We merge them into a new Cluster
- We maintain the invariant: at end of t that two distinct cluster C, C' ξ_i (t) satisfy $d(C,C') >= 2\alpha^{t+1}$

rank function ρ_i : [i] $\rightarrow Z \ge 0$

• For each cluster $C \in \xi_i(t)$, define C's leader as the vertex with least index.

• Define $\rho_i(x)$ of vertex x the largest t of which x is still the leader of its cluster.

time	Cluster
0	{1}, {2}, {3},
1	threshold = $\alpha^{A}2$, {1}, {2}, {3}
2	threshold = $\alpha^{A}3$, {1,2}, {3}
3	threshold = α^{4} , {1,2}, {3},
4	threshold = α^{4} 5, {1,2,3},

hence
$$p(1) = \infty$$
, $p(2) = 1$, $p(3) = 3$

Analysis

- Why do we want a rank function?
 - Rank is defined on vertex while cost is defined on edges.
 - If we can convert edge cost to vertex rank, we can analyze the SPT using its dual form.
- Define $Wt_j(f) = \sum_{L=1...j} \alpha^{f(L)}$
- We claim that $Wt_i(p_i) \le OPT([i])/(\alpha-1)$

Proof

Remember the dual of a Steiner Tree Problem

$$\max \sum_{S} y_{S}$$

$$\sum_{S:|S \cap \{j,l\}|=1} y_{S} \le d(j,l) \qquad \forall j,l \in [i]$$

$$y_{S} \ge 0.$$

- it we can find a teasible solution y such that $\sum_s y_s >= Wt_i(p_i)(\alpha-1)$, by weak duality, this will imply the claim.
- In fact we can find such a feasible set defined as: For each cluster $C \in \xi_i(t)$ which doesn't contain vertex o (a Steiner cut by nature), let $y_C = \alpha^t(\alpha 1)$ for other steiner cut S, let S =

$$\max \sum_{S} y_{S}$$

$$\sum_{S:|S \cap \{j,l\}|=1} y_{S} \leq d(j,l) \qquad \forall j,l \in [i]$$

$$y_{S} \geq 0.$$

- Check feasibility:
 - For any edge (j, l), let t be the last phase such that j and l lie in different clusters in $\xi_i(t)$
 - For all phases t'<=t, we contribute $2\alpha^{t'}(\alpha 1)$ to LHS
 - We have LHS = $\sum_{t'=0}^{t} 2\alpha^{t'}(\alpha 1) = 2(\alpha^{t+1} 1) \le d(j, l)$
- objective function:

$$\sum_{C} y_{C} \geq \sum_{j=1}^{i} \alpha^{\rho_{i}(j)}(\alpha - 1) = \mathsf{Wt}_{i}(\rho_{i}) \cdot (\alpha - 1).$$

• Therefore we proved $\sum_s y_s >= Wt_i(p_i)(\alpha-1)$

- (a) running a clustering algorithm on the vertex set [i] (all the terminals that have arrived by round i) which defines the rank function ρ_i : [i] \rightarrow Z \geq 0
- (b) getting a virtual rank function ν_i from the actual rank function ρ_i
- (c) constructing the tree Ti given the virtual rank function

- (a) running a clustering algorithm on the vertex set [i]
 (all the terminals that have arrived by round i) which defines the rank function ρi: [i] → Z≥ο
- (b) getting a virtual rank function vi from the actual rank function pi
- (c) constructing the tree Ti given the virtual rank function

- (a) running a clustering algorithm on the vertex set [i]
 (all the terminals that have arrived by round i) which defines the rank function ρi: [i] → Z≥ο
- (b) getting a virtual rank function vi from the actual rank function pi
- (c) constructing the tree Ti given the virtual rank function given an admissible function

Admissible function \(\beta \)

- Define Init(j) = $p_i(j)$, (i.e., the rank of j at round j)
- β : [i] \rightarrow $Z_{>=0}$ is admissible if $\beta(j) \in [p_i(j)...Init(j)]$ for all $j \in [i]$
- Let's also define a tree valid with respect to β if we can partition the edge set E_T into sets E_{T^1} , E_{T^2} ,..., E_{T^8} , such that the following hold
 - Let $E_T^{<=L}$ denote E_T^1 U... U E_T^{L} . For any connected component of $E_T^{<=L}$, let j be the head of this component. Then we require $\beta(j) >= L$ (head means the vertex has biggest β)
 - Each edge in E_T^L has length at most $2\alpha^{L+1}$

Why need a generalized admissible function?

 Because we can show that the total cost of any tree T valid respect to β is at most 2 $\alpha^3/(\alpha-1)$ $Wt_i(\beta)$ based on the definition of admissible and valid tree T.

• Proof:

- The cost of each $E_T^{\leq (l-1)}$ in E_T^l can be charged to the heads of components of
- Any vertex j! E_T^l is charged $\lim_{t \to 0} E_T^l$ only if $t \le \beta(j) + 1$. Each edge in
- Each edge in is at most
- Total cha $\sum_{i=1}^{\beta(j)+1} 2\alpha^{l+1} \leq 2\frac{\alpha^3}{\alpha-1} \cdot \alpha^{\beta(j)}.$

 $C(T) \leq 2\alpha^3/(\alpha-1)^2OPT([i])$

Steps to build the tree

- Lemma in constructing valid tree in respect to β and β'
 - If T = ([i], E_T)is valid to β already, and β ' differs from β only at vertex j^* , then there's a tree T' = ([i], $E_{T'}$) that valid with respects to β ' and $|E_{T'} \triangle E_T| = 2$ (\triangle means symmetric difference)
- Proof:
 - Let $L^* = \beta'(j^*) + 1$. hence $\beta'(j^*) < L^*$
 - Let edges sets union $E_{T'}^{<=L^*-1} = E_{T}^{<=L^*-1}$. Nothing changes.
 - For edge set $E_T L^*$, if j^* is the head of some connected component C in $E_{T'}^{<=L^*}$, we may find β' $(j^*) < L^*$, a contradiction to the tree property $\beta(j) >= L$ for all L
 - Then we can find a vertex j in C' such that $d(j, C) \le 2\alpha^{(L^*+1)}$ let $E_{T'}L^* = E_{T'}L^*$ U (j, c) where c is the vertex in C closest to j. Hence C and C' is connected, and the head of C' is the head of the new component which satisfy $\beta'(j) = \beta(j) >= L$
 - For edges E_T^L where L>L*. Build E_T^L to be same as E_T^L except for edges that connect two vertices in the same component, hence we will drop only the edge that connect C and C' in E_T edge
 - This is an edge swap because we replace the old edge connecting C and C' with a new edge (j, c)

Lemma →

- Since rank function {p_i}_i is inherently admissible, if use p_i as the algorithm function. We can do the following to make sure the built tree is valid.
 - At new arrival of vertex i, we first add a single edge from i to [i-1](a shortest path to closest vertex in [i-1])
 - then there are at most $||p_i p_{i-1}||_H$ different value in the rank between round i and round i-1. Using last lemma, we can aggregate at most $||p_i p_{i-1}||_H$ edge swaps, each for one pair of difference.

Analysis

• Using p_i directly as the admissible function, achieves constant competitive ratio.

$$C(T) \leq 2\alpha^3/(\alpha-1)^2OPT([i])$$

Analysis

- but... it incurs non-constant swaps per vertex arrival.
- Reason being that at each round i, there's $||p_i-p_{i-1}||$ swaps. Therefore, we need to restrict the number of swaps tolerable to a constant.

- (a) running a clustering algorithm on the vertex set [i] (all the terminals that have arrived by round i) which defines the rank function ρ i: [i] \rightarrow Z \geq 0
- (b) getting a virtual rank function ν_i from the actual rank function ρ_i
- (c) constructing the tree Ti given the virtual rank function

Virtual Rank Function

K is used as a bottleneck to limit swaps in a round. Besides, we know that the Cost of $T_i \approx \sum_{j>o} \alpha^{vi(j)}$. We wanted to keep this as small as possible. A natural way to get v_i from v_{i-1} is to decrement those K vertices with highest $v_{i-1}(j)$

Virtual Ranks:

- 1. Initially, we just have the root vertex 0. Define $\nu_0(0) = \infty$.
- 2. For i = 1, 2, ...
 - Run the clustering algorithm R_i to define the rank function ρ_i.
 - (ii) Set ν_i(i) as Init(i).
 - (iii) Define $Q(i) = \{(j,k) \mid j \in [i-1], k \in [\rho_i(j) \dots (\nu_{i-1}(j)-1)]\}.$
 - (iv) Let Q_K be the set of the K highest pairs (w.r.t. \prec) from Q(i).
 - (v) Define the first i-1 coordinates of ν_i as follows:

$$\nu_i(j) := \begin{cases} \nu_{i-1}(j) & \text{if } (j, \star) \notin Q_K \\ \min\{k \mid (j, k) \in Q_K\} & \text{if } (j, \star) \in Q_K \end{cases}$$

We can prove that $Wt_i(v_i) < \alpha^2 Wt_i(p_i)$.

And this completes our proof:

for any n:

1.
$$Cost(T_n) \le 2\alpha^3/\alpha - 1 Wt_n(v_n) \le 2\alpha^5/\alpha - 1 Wt_n(p_n) \le 2\alpha^5/(\alpha - 1)^2 opt([n])$$

2. This is a **constant swap algorithm for each arrival round i**, since only K swaps are allowed(k coordinates of v_i and v_{i-1} differ by the definition of virtual rank function)

