Lecture 9: Priority Queues and Heaps

Michael Dinitz

September 23, 2025 601.433/633 Introduction to Algorithms

Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

- ▶ Insert(H, x): insert element x into heap H.
- Extract-Min(H): remove and return an element with smallest key
- ▶ Decrease-Key(H, x, k): decrease the key of x to k.
- ▶ Meld(H_1, H_2): replace heaps H_1 and H_2 with their union

Extra Operations:

- ► Find-Min(*H*): return the element with smallest key
- ▶ Delete(H, x): delete element x from heap H

Min-Heap, but can also do Max-Heap.

Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

- ▶ Insert(H, x): insert element x into heap H.
- Extract-Min(H): remove and return an element with smallest key
- ▶ Decrease-Key(H, x, k): decrease the key of x to k.
- lacktriangledown Meld (H_1, H_2) : replace heaps H_1 and H_2 with their union

Extra Operations:

- ► Find-Min(*H*): return the element with smallest key
- ▶ Delete(H, x): delete element x from heap H

Min-Heap, but can also do Max-Heap.

Note: x is a *pointer* to an element. No way to lookup, so need a pointer to an element to change it.

	Insert	Extract-Min	Decrease-Key	Meld
Linked List				

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	<i>O</i> (1)	O(1)

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O(1)	<i>O</i> (1)
Sorted Array				

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	<i>O</i> (1)	O (1)
Sorted Array	<i>O(n)</i>	O(1)	O(n)	O(n)

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	<i>O</i> (1)	O(n)	<i>O</i> (1)	<i>O</i> (1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree				

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	<i>O</i> (1)	O (1)
Sorted Array	<i>O</i> (<i>n</i>)	<i>O</i> (1)	O(n)	O(n)
Balanced Search Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	<i>O</i> (1)	O(1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)

Goal: get as many of these to O(1) as possible

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	<i>O</i> (1)	O (1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	<i>O</i> (1)	O(1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other $O(\log n)$?

Today and State of the Art

State of the art: strict Fibonacci Heaps.

▶ Too complicated for this class, not practical. See CLRS 19 for Fibonacci Heaps.

Today: binary heaps (should be review), then binomial heaps

▶ Binomial heaps not quite as complicated as Fibonacci heaps, many of same core ideas

Binary Heaps

- Complete binary tree, except possibly at bottom level.
- ▶ Heap order: key of any node no larger than key of its children.

Binary Heaps

- Complete binary tree, except possibly at bottom level.
- ▶ Heap order: key of any node no larger than key of its children.

Properties:

- Since (almost) complete binary tree, depth Θ(log n)
- Min must be at root

Representation:

- Pointers to root and rightmost leaf
- Every node has pointers to parent and children

Insert(H, x)

Preserve heap *structure*: insert *x* into next open spot (bottom right, or left of new level if bottom level full)

▶ Might violate heap *order*!

Insert(H, x)

Preserve heap structure: insert x into next open spot (bottom right, or left of new level if bottom level full)

Might violate heap order!

"Swim up": as long as x smaller than its parent, swap with parent

Insert(H, x)

Preserve heap structure: insert x into next open spot (bottom right, or left of new level if bottom level full)

"Swim up": as long as x smaller than its parent, swap with parent

▶ Might violate heap *order*!

Running time: $O(\log n)$ worst case (also amortized) via depth

Extract-Min(*H*)

Min is definitely at root. How to remove it while still have binary tree?

Extract-Min(*H*)

Min is definitely at root. How to remove it while still have binary tree?

- ▶ Swap root with final heap element, remove former root.
- ▶ Sink down: swap root with smaller of its children until heap order restored

Extract-Min(H)

Min is definitely at root. How to remove it while still have binary tree?

- ▶ Swap root with final heap element, remove former root.
- ► Sink down: swap root with smaller of its children until heap order restored

Running time: $O(\log n)$ worst case (via depth). Amortized: O(1) (not obvious)

Decrease-Key(H, x, k)

Decrease key of x to k, "swim up" until heap order restored.

Running time: $O(\log n)$ (depth)

$\mathsf{Meld}(H_1,H_2)$

Assume both heaps have size n.

• Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

$\mathsf{Meld}(H_1,H_2)$

Assume both heaps have size n.

▶ Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of **H**₂ all at once (not fixing heap order)
- ▶ Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Assume both heaps have size n.

• Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of *H*₂ all at once (not fixing heap order)
- ▶ Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)

Assume both heaps have size n.

▶ Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of **H**₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)

Running Time:

▶ Inserting: **O**(**n**) total

Assume both heaps have size n.

• Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of **H**₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)

Running Time:

- ▶ Inserting: **O**(**n**) total
- ► Sinking down:
 - ▶ Nodes at height **h** might have to sink down **h**.
 - At most $n/2^h$ nodes at height h

Assume both heaps have size n.

• Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of **H**₂ all at once (not fixing heap order)
- ▶ Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)

Running Time:

- ▶ Inserting: **O**(**n**) total
- ► Sinking down:
 - ▶ Nodes at height **h** might have to sink down **h**.
 - At most $n/2^{\bar{h}}$ nodes at height h

$$\sum_{h=0}^{\log n} h\left(\frac{n}{2^h}\right) = n \sum_{h=0}^{\log n} \frac{h}{2^h} \le O(n)$$

Weights: w(x) = depth of x

▶ Root has weight **0**, its children have weight **1**, etc.

Potential: $\Phi(H) = \sum_{x} w(x)$

Weights: w(x) = depth of x

▶ Root has weight **0**, its children have weight **1**, etc.

Potential: $\Phi(H) = \sum_{x} w(x)$

Insert: $\Delta \Phi = O(\log n) \implies \text{amortized cost} \le O(\log n) + O(\log n) = O(\log n)$

Weights: w(x) = depth of x

▶ Root has weight **0**, its children have weight **1**, etc.

Potential: $\Phi(H) = \sum_{x} w(x)$

Insert:
$$\Delta \Phi = O(\log n) \implies \text{amortized cost } \leq O(\log n) + O(\log n) = O(\log n)$$

Extract-Min:

- ▶ True cost: height $h = \Theta(\log n)$ of tree, plus O(1) (for initial swap).
- ▶ $\Delta\Phi$: one less node at depth $h \implies \Delta\Phi = -h$
- Amortized cost: h + O(1) h = O(1).

Weights: w(x) = depth of x

▶ Root has weight **0**, its children have weight **1**, etc.

Potential: $\Phi(H) = \sum_{x} w(x)$

Insert: $\Delta \Phi = O(\log n) \implies \text{amortized cost } \leq O(\log n) + O(\log n) = O(\log n)$

Extract-Min:

- ▶ True cost: height $h = \Theta(\log n)$ of tree, plus O(1) (for initial swap).
- ▶ $\Delta\Phi$: one less node at depth $h \implies \Delta\Phi = -h$
- Amortized cost: h + O(1) h = O(1).

Uses Inserts to "pay for" Extract-Mins.

Improvements

Downsides of binary heaps:

- ▶ Do at least as many Inserts as Extract-Mins! Want O(1) Insert, $O(\log n)$ Extract-Min
- ▶ Meld in O(n) is better than trivial, but still not great.

Improvements

Downsides of binary heaps:

- ▶ Do at least as many Inserts as Extract-Mins! Want O(1) Insert, $O(\log n)$ Extract-Min
- ▶ Meld in O(n) is better than trivial, but still not great.

Binomial Heaps:

- Get Insert down to O(1) (amortized)
- ▶ Meld in *O*(log *n*) (worst-case and amortized)
- ▶ Downside: $O(\log n)$ Extract-Min, $O(\log n)$ Find-Min

Improvements

Downsides of binary heaps:

- ▶ Do at least as many Inserts as Extract-Mins! Want O(1) Insert, $O(\log n)$ Extract-Min
- ▶ Meld in O(n) is better than trivial, but still not great.

Binomial Heaps:

- Get Insert down to O(1) (amortized)
- ▶ Meld in $O(\log n)$ (worst-case and amortized)
- ▶ Downside: $O(\log n)$ Extract-Min, $O(\log n)$ Find-Min

Fibonacci Heaps:

▶ Everything O(1) (amortized) except $O(\log n)$ Extract-Min (amortized)

Binomial Heaps

Not based on binary tree anymore! Based on binomial tree.

Binomial Heaps

Not based on binary tree anymore! Based on binomial tree.

- ▶ B_0 = single node.
- ▶ B_k = one B_{k-1} linked to another B_{k-1} .

Structure Lemma

Lemma

The order k binomial tree B_k has the following properties:

- 1. Its height is k.
- 2. It has **2**^k nodes
- 3. The degree of the root is k
- 4. If we delete the root, we get k binomial trees B_{k-1}, \ldots, B_0 .

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly $\mathbf{0}$ or $\mathbf{1}$ tree of order \mathbf{k} for each integer \mathbf{k} .

Keep roots of trees in linked list, from smallest order (not key!) to largest

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly $\mathbf{0}$ or $\mathbf{1}$ tree of order \mathbf{k} for each integer \mathbf{k} .

Keep roots of trees in linked list, from smallest order (not key!) to largest

With n items, no choices about which binomial trees exist in heap!

- Write n in binary: $b_a b_{a-1} \dots b_1 b_0$.
- ▶ Tree B_k exists if and only if $b_k = 1$

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly $\mathbf{0}$ or $\mathbf{1}$ tree of order \mathbf{k} for each integer \mathbf{k} .

Keep roots of trees in linked list, from smallest order (not key!) to largest

With *n* items, no choices about which binomial trees exist in heap!

- Write n in binary: $b_a b_{a-1} \dots b_1 b_0$.
- ▶ Tree B_k exists if and only if $b_k = 1$

 \implies at most $\log n$ trees, and by lemma each has height $\leq \log n$

Analyze all operations both worst-case and amortized.

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- ► Initially **0**
- Never negative

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- ► Initially **0**
- Never negative

Find-Min(*H*):

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- ► Initially **0**
- Never negative

Find-Min(H): Scan through roots of trees in H, return min

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- ► Initially **0**
- Never negative

Find-Min(**H**): Scan through roots of trees in **H**, return min

► Correct: each tree heap-ordered, so global min one of the roots

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- ► Initially **0**
- Never negative

Find-Min(*H*): Scan through roots of trees in *H*, return min

- Correct: each tree heap-ordered, so global min one of the roots
- ► Worst-case: $O(\log n)$
- ▶ Amortized: doesn't change potential, also $O(\log n)$.

$\mathsf{Meld}(H_1,H_2)$: Link

Key operation: we'll use Meld to do Insert and Extract-Min

$Meld(H_1, H_2)$: Link

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: H_1 , H_2 both single trees of same order k.

- ▶ Union has size $2^k + 2^k = 2^{k+1}$: just a single B_{k+1}
- Easy to make a B_{k+1} out of two B_k 's!

$Meld(H_1, H_2)$: Link

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: H_1 , H_2 both single trees of same order k.

- ▶ Union has size $2^k + 2^k = 2^{k+1}$: just a single B_{k+1}
- Easy to make a B_{k+1} out of two B_k 's!

$Meld(H_1, H_2)$: Link

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: H_1 , H_2 both single trees of same order k.

- ▶ Union has size $2^k + 2^k = 2^{k+1}$: just a single B_{k+1}
- Easy to make a B_{k+1} out of two B_k 's!

Link of two trees.

- Worst-case time: O(1) (create a single link). Normalize: call 1
- **\triangle \Phi**: two trees to one: -1
- Amortized cost:
 1 − 1 = 0 = O(1).

$Meld(H_1, H_2)$: General Case

(Almost) just like binary addition!

$Meld(H_1, H_2)$: Analysis

Easy to prove correct (exercise for home).

Running time:

- ▶ Worst case: O(1) per "order" $k \implies \le O(\log n)$
- ▶ Amortized: Potential does not go up, but could stay the same $\implies O(\log n)$ amortized

Insert(H, x)

Use Meld:

- Create new heap H' with one B_0 consisting of just x
- ► Meld(*H*, *H*′)

Correctness: Obvious

Insert(H, x)

Use Meld:

- Create new heap H' with one B_0 consisting of just x
- ► Meld(*H*, *H*′)

Correctness: Obvious

Running Time:

► Worst case: $O(\log n)$ (via Meld)

Insert(H, x)

Use Meld:

- Create new heap H' with one B_0 consisting of just x
- ► Meld(*H*, *H*′)

Correctness: Obvious

Running Time:

- ► Worst case: $O(\log n)$ (via Meld)
- Amortized:
 - Like incrementing a binary counter!

Insert(H,x)

Use Meld:

- Create new heap H' with one B_0 consisting of just x
- ► Meld(*H*, *H*′)

Correctness: Obvious

Running Time:

- ► Worst case: $O(\log n)$ (via Meld)
- Amortized:
 - Like incrementing a binary counter!
 - If we link k trees, potential goes down by k-1
 - Cost = # links plus 1 (for making new heap)
 - Amortized cost = $k + 1 + \Delta \Phi = k + 1 (k 1) = 2 = O(1)$

Extract-Min(*H*)

Use Meld again!

- \triangleright $O(\log n)$ to Find-Min: one of the roots.
- ▶ Delete and return this root: tree turns into a new heap!
- Meld with original heap (minus the tree)

Correctness: Obvious

Extract-Min(*H*)

Use Meld again!

- \triangleright $O(\log n)$ to Find-Min: one of the roots.
- Delete and return this root: tree turns into a new heap!
- Meld with original heap (minus the tree)

Correctness: Obvious

Running Time:

- ▶ Worst-Case: **O**(log **n**) from creating new heap, Meld
- Amortized:
 - ▶ Potential can go up! But by at most log n
 - Amortized time at most $O(\log n) + \log n = O(\log n)$