3 - Introducción al Álgebra Lineal

Definición 1. Utilizando la definición de vector en física, dado que la definición matemática nunca se utiliza en ingeniería, considere como vector \vec{p} a un segmento de recta del punto A hacia B.

- **Nota 1.** 1. El vector \vec{p} , el cual también se puede denotar \vec{AB} , posee magnitud (longitud o norma) y dirección (ángulo que forma el vector con el eje positivo x en radianes).
 - 2. La posición estándar de un vector es aquella cuando su punto inicial A es el origen 0.
 - 3. El punto P = (x, y) es el punto final del vector $\vec{p} = [x, y]$.
 - 4. Se tiene

vector renglón =
$$\begin{bmatrix} x & y \end{bmatrix}$$
, vector columna = $\begin{bmatrix} x \\ y \end{bmatrix}$

Definición 2. El vector cero se denota $\vec{0}$ y es aquel con n componentes iguales a 0 en \mathbb{R}^n .

Nota 2. 1. El negativo de un vector es igual al negativo de sus componentes.

- 2. Dos vectores son iguales o equivalentes si sus componentes respectivas son iguales.
- 3. Sean \vec{v} y \vec{u} vectores en la misma dimensión.

 \vec{v} y \vec{u} paralelos se denota $\vec{u} \parallel \vec{v}.$

 \vec{v} y \vec{u} ortogonales se denota $\vec{v} \perp \vec{u}$.

Suma de vectores denotado $\vec{u} + \vec{v}$ se realiza por componentes.

Diferencia de vectores $\vec{v} - \vec{u} = \vec{v} + (-\vec{u})$.

Si $c \in \mathbb{R}$, entonces el producto $c\vec{u}$ se realiza por componentes.

1 Propiedades Algebraicas de los vectores en \mathbb{R}^n

- 1. Cerradura bajo adición
- 2. Conmutatividad
- 3. Asociatividad
- 4. Elemento neutro
- 5. Inverso aditivo
- 6. Cerradura bajo la multiplicación escalar

7. Distributividad respecto a los vectores y a un escalar

Definición 3. El vector \vec{v} es una combinación lineal de vectores v_1, v_2, \ldots, v_k si existen escalares c_1, c_2, \ldots, c_k tal que

$$v = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

Se dice que c_1, c_2, \ldots, c_k son los coeficientes de la combinación lineal.

Ejemplo 1. Sean $\vec{u} = [-1, 1, 0], \ \vec{v} = [2, -3, 1] \ y \ \vec{w} = [3, 0, -2].$ Encontrar \vec{x} tal que $2\vec{x} + 3\vec{w} = 4\vec{v} + 66\vec{u}$.

Propiedad 1. Dos vectores son paralelos ssi son múltiplos escalares uno del otro.

Definición 4. El producto punto de dos vectores \vec{u} y \vec{v} , ambos n dimensionales, se define como

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

el cual es un número real, no un vector.

Nota 3. Si dos vectores no tienen la misma cantidad de componentes y desea encontrar el producto punto, coloque ceros hasta que ambos tengan la misma dimensión.

Propiedad 2 (Producto punto). El producto punto de dos vectores cumple con:

- 1. Conmutatividad
- 2. Distributividad respecto a vectores y a escalares
- 3. $\vec{u} \cdot \vec{u} \ge 0$
- 4. $\vec{u} \cdot \vec{u} = 0$ ssi u = 0

Definición 5 (Norma). La longitud o norma de un vector \vec{v} es un escalar no negativo definido como

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Propiedad 3. Respecto a la norma de un vector \vec{v} :

- 1. $\|\vec{v}\| = 0 \text{ ssi } \vec{v} = 0.$
- 2. Sea $c \in \mathbb{R}$, entonces $||c\vec{v}|| = |c|||v||$.

Definición 6 (Vector unitario). Los vectores unitarios en \mathbb{R}^n son aquellos con longitud 1. En particular, los vectores elementales son vectores unitarios con una única componente igual a 1 mientras las demás son nulas.

Ejemplo 2. En \mathbb{R}^3 , los vectores elementales son

$$\vec{e_1} = [1, 0, 0], \quad \vec{e_2} = [0, 1, 0], \quad \vec{e_3} = [0, 0, 1]$$

Ejemplo 3. Escriba al vector [3, -2, 4] como combinación lineal de los vectores unitarios.

Definición 7 (Normalización). La normalización de un vector \vec{v} es el proceso de encontrar un vector unitario con su misma dirección. Para el vector \vec{v} ,

$$\vec{u} = \frac{1}{\|\vec{v}\|} \vec{v}$$

 \vec{u} es la normalización de \vec{v} .

Teorema 1 (Designaldad de Cauchy-Schwarz). Para todos los vectores \vec{u} y \vec{v} en \mathbb{R}^n

$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| ||\vec{v}||$$

Teorema 2. Para todos los vectores \vec{u} y \vec{v} en \mathbb{R}^n

$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$$

Definición 8. La distancia euclideana entre dos vectores \vec{u} y \vec{v} es

$$d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||$$

Definición 9. El ángulo entre dos vectores es

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

Definición 10. Dos vectores \vec{u} y \vec{v} son ortogonales si $\vec{u} \cdot \vec{v} = 0$.

Teorema 3 (Teorema de Pitágoras).

Para todos los vectores \vec{u} y \vec{v} en \mathbb{R}^n

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2(\vec{u} + \vec{v}) + \|\vec{v}\|^2$$