Supplementary Table 1. Alignment precision computed over all uniquely mapped reads

				GSNAP		TopHat2		STAR		OLego		SOAPsplice	
8M	50 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.993 79.633 15.533	± 0.000 ± 0.609 ± 0.299	0.992 80.776 15.167	± 0.001 ± 0.545 ± 0.291	0.985 80.447 14.595	± 0.000 ± 0.604 ± 0.318	0.845 90.665 4.422	± 0.004 ± 0.361 ± 0.093	0.788 95.226 4.588	± 0.005 ± 0.101 ± 0.099
		PE	PPV Unique (%) Unmapped (%)	0.988 82.732 14.124	± 0.000 ± 0.668 ± 0.411	0.992 81.723 15.072	± 0.001 ± 0.608 ± 0.435	0.984 77.875 19.204	± 0.001 ± 0.747 ± 0.563	0.846 90.773 4.398	± 0.004 ± 0.509 ± 0.095	0.928 74.886 24.912	± 0.002 ± 0.656 ± 0.640
	76 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.974 83.453 12.599	± 0.001 ± 0.507 ± 0.247	0.995 80.342 16.523	± 0.001 ± 0.506 ± 0.294	0.981 81.703 14.612	± 0.001 ± 0.549 ± 0.285	0.862 87.974 6.667	± 0.003 ± 0.452 ± 0.105	0.806 92.409 7.165	± 0.004 ± 0.148 ± 0.123
		PE	PPV Unique (%) Unmapped (%)	0.974 84.802 12.432	± 0.001 ± 0.488 ± 0.175	0.995 81.078 16.461	± 0.000 ± 0.456 ± 0.219	0.977 79.378 18.079	± 0.000 ± 0.473 ± 0.278	0.862 87.766 6.655	± 0.002 ± 0.515 ± 0.084	0.848 84.188 15.378	± 0.002 ± 0.466 ± 0.415
20M	50 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.993 79.588 15.563	± 0.000 ± 0.478 ± 0.489	0.992 80.715 15.194	± 0.001 ± 0.434 ± 0.483	0.985 80.382 14.611	± 0.000 ± 0.459 ± 0.514	0.845 90.585 4.401	± 0.005 ± 0.171 ± 0.101	0.788 95.243 4.574	± 0.004 ± 0.073 ± 0.073
		PE	PPV Unique (%) Unmapped (%)	0.988 82.969 13.782	± 0.000 ± 0.543 ± 0.297	0.991 82.028 14.721	± 0.005 ± 0.447 ± 0.317	0.985 78.199 18.853	± 0.000 ± 0.557 ± 0.434	0.848 90.822 4.328	± 0.003 ± 0.544 ± 0.076	0.929 75.068 24.716	± 0.002 ± 0.537 ± 0.532
	76 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.974 83.476 12.541	± 0.001 ± 0.473 ± 0.307	0.995 80.404 16.444	± 0.000 ± 0.555 ± 0.371	0.981 81.739 14.553	± 0.001 ± 0.506 ± 0.374	0.863 87.926 6.65	± 0.004 ± 0.404 ± 0.128	0.808 92.361 7.174	± 0.004 ± 0.226 ± 0.121
		PE	PPV Unique (%) Unmapped (%)	0.974 84.731 12.546	± 0.001 ± 0.296 ± 0.338	0.995 80.888 16.612	± 0.001 ± 0.337 ± 0.440	0.977 79.212 18.272	± 0.000 ± 0.425 ± 0.494	0.86 88.404 6.692	± 0.005 ± 1.679 ± 0.161	0.848 84.337 15.233	± 0.003 ± 0.356 ± 0.376
40M	50 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.993 79.381 15.7	± 0.000 ± 0.532 ± 0.413	0.993 80.56 15.319	± 0.001 ± 0.556 ± 0.403	0.985 80.19 14.721	± 0.000 ± 0.519 ± 0.408	0.843 90.482 4.447	± 0.004 ± 0.414 ± 0.081	0.786 95.221 4.596	± 0.005 ± 0.067 ± 0.061
		PE	PPV Unique (%) Unmapped (%)	0.988 82.916 14.12	± 0.000 ± 0.571 ± 0.330	0.992 81.878 15.074	± 0.000 ± 0.541 ± 0.341	0.984 78.027 19.21	± 0.000 ± 0.620 ± 0.439	0.846 90.979 4.406	± 0.004 ± 0.277 ± 0.058	0.928 74.944 24.847	± 0.002 ± 0.631 ± 0.608
	76 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.973 83.227 12.685	± 0.001 ± 0.595 ± 0.206	0.995 80.088 16.637	± 0.000 ± 0.645 ± 0.263	0.98 81.464 14.716	± 0.001 ± 0.603 ± 0.249	0.861 87.769 6.712	± 0.003 ± 0.487 ± 0.099	0.805 92.402 7.175	± 0.004 ± 0.111 ± 0.072
	- Spp	PE	PPV Unique (%) Unmapped (%)	0.974 84.73 12.502	± 0.001 ± 0.513 ± 0.353	0.994 80.973 16.567	± 0.001 ± 0.575 ± 0.462	0.976 79.229 18.199	± 0.001 ± 0.643 ± 0.552	0.861 87.643 6.679	± 0.004 ± 0.323 ± 0.156	0.848 84.171 15.39	± 0.004 ± 0.406 ± 0.395

Supplementary Table 2. Alignment precision computed over all uniquely mapped reads spanning known junctions

				GSI	NAP	Topl	lat2	ST	AR	OLe	ego
8M	50 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.974 94.425 1.121	± 0.000 ± 0.294 ± 0.097	0.999 94.795 0.724	± 0.000 ± 0.343 ± 0.051	0.954 93.496 0.277	± 0.001 ± 0.335 ± 0.032	0.908 84.319 5.815	± 0.002 ± 0.387 ± 0.236
		PE	PPV Unique (%) Unmapped (%)	0.98 96.769 0.49	± 0.001 ± 0.376 ± 0.090	0.998 95.504 0.775	± 0.000 ± 0.308 ± 0.118	0.951 92.088 4.972	± 0.000 ± 0.367 ± 0.262	0.906 85.447 5.777	± 0.001 ± 0.361 ± 0.156
	76 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.974 95.995 0.088	± 0.001 ± 0.388 ± 0.016	0.999 94.761 1.587	± 0.000 ± 0.320 ± 0.156	0.967 95.776 0.48	± 0.001 ± 0.355 ± 0.083	0.94 85.688 3.288	± 0.001 ± 0.630 ± 0.141
		PE	PPV Unique (%) Unmapped (%)	0.976 97.273 0.065	± 0.001 ± 0.278 ± 0.015	0.998 95.453 1.566	± 0.000 ± 0.258 ± 0.081	0.95 93.324 3.914	± 0.001 ± 0.262 ± 0.174	0.94 86.539 3.302	± 0.001 ± 0.558 ± 0.123
20M	50 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.974 94.454 1.177	± 0.000 ± 0.300 ± 0.083	0.999 94.891 0.764	± 0.000 ± 0.280 ± 0.065	0.955 93.467 0.318	± 0.001 ± 0.357 ± 0.076	0.908 84.285 5.733	± 0.003 ± 0.530 ± 0.114
		PE	PPV Unique (%) Unmapped (%)	0.98 96.628 0.4	± 0.000 ± 0.357 ± 0.039	0.998 95.301 0.699	± 0.000 ± 0.334 ± 0.055	0.951 92.141 4.806	± 0.000 ± 0.436 ± 0.298	0.907 85.202 5.772	± 0.001 ± 0.400 ± 0.118
	76 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.974 95.774 0.125	± 0.001 ± 0.919 ± 0.081	0.998 94.413 1.687	± 0.000 ± 0.899 ± 0.188	0.968 95.463 0.598	± 0.001 ± 0.928 ± 0.173	0.941 85.535 3.445	± 0.001 ± 1.064 ± 0.164
		PE	Unique (%) Unmapped (%)	0.976 97.109 0.077	± 0.001 ± 0.445 ± 0.020	0.998 95.214 1.595	± 0.000 ± 0.410 ± 0.115	0.95 93.079 3.936	± 0.000 ± 0.450 ± 0.184	0.938 87.679 3.293	± 0.007 ± 3.101 ± 0.118
40M	50 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.974 94.307 1.189	± 0.000 ± 0.335 ± 0.137	0.999 94.903 0.732	± 0.000 ± 0.357 ± 0.095	0.955 93.375 0.325	± 0.001 ± 0.295 ± 0.098	0.908 84.111 5.815	± 0.001 ± 0.575 ± 0.097
		PE	PPV Unique (%) Unmapped (%)	0.98 96.454 0.434	± 0.000 ± 0.908 ± 0.031	0.998 95.208 0.734	± 0.000 ± 0.818 ± 0.041	0.951 91.853 4.876	± 0.001 ± 0.917 ± 0.286	0.905 85.069 5.82	± 0.004 ± 0.667 ± 0.111
	76 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.974 96.005 0.095	± 0.001 ± 0.651 ± 0.028	0.998 94.571 1.63	± 0.000 ± 0.558 ± 0.093	0.967 95.706 0.524	± 0.001 ± 0.633 ± 0.078	0.942 85.629 3.375	± 0.001 ± 0.902 ± 0.087
	, O _{bp}	PE	PPV Unique (%) Unmapped (%)	0.975 97.216 0.089	± 0.001 ± 0.436 ± 0.041	0.998 95.229 1.67	± 0.000 ± 0.425 ± 0.155	0.95 93.195 3.91	± 0.001 ± 0.506 ± 0.253	0.94 86.25 3.366	± 0.001 ± 0.555 ± 0.185

Supplementary Table 3. Alignment precision computed over all uniquely mapped reads spanning novel junctions

				GSNAP		TopHat2		STAR		OLego		SOAPsplice	
8M	50 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.892 57.148 39.407	± 0.010 ± 4.497 ± 4.140	0.955 81.237 11.86	± 0.012 ± 5.222 ± 5.264	0.779 90.915 0.979	± 0.011 ± 1.833 ± 0.725	0.885 66.846 24.786	± 0.007 ± 5.322 ± 5.312	0.709 81.498 17.436	± 0.003 ± 0.308 ± 0.253
		PE	PPV Unique (%) Unmapped (%)	0.851 91.111 5.382	± 0.026 ± 1.856 ± 0.969	0.942 85.545 8.411	± 0.053 ± 2.632 ± 1.859	0.769 88.082 8.071	± 0.031 ± 2.239 ± 1.649	0.886 68.43 22.986	± 0.014 ± 3.945 ± 2.733	0.762 76.631 22.243	± 0.002 ± 0.266 ± 0.190
	76 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.88 95.079 0.208	± 0.015 ± 1.709 ± 0.300	0.952 82.698 12.953	± 0.016 ± 4.804 ± 4.484	0.839 93.725 1.161	± 0.016 ± 3.222 ± 0.993	0.929 72.628 18.496	± 0.007 ± 4.936 ± 3.857	0.815 85.755 12.646	± 0.005 ± 0.319 ± 0.262
		PE	PPV Unique (%) Unmapped (%)	0.882 96.645 0.023	± 0.020 ± 1.722 ± 0.019	0.97 83.056 12.453	± 0.008 ± 3.900 ± 2.431	0.84 90.177 5.973	± 0.011 ± 4.212 ± 2.560	0.93 74.37 17.859	± 0.004 ± 2.844 ± 1.973	0.841 83.917 14.477	± 0.002 ± 0.387 ± 0.225
20M	50 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.874 56.927 38.182	± 0.041 ± 2.271 ± 2.672	0.948 82.368 8.973	± 0.015 ± 4.640 ± 1.783	0.759 91.044 0.827	± 0.033 ± 2.726 ± 0.608	0.881 68.583 21.561	± 0.011 ± 4.685 ± 2.151	0.708 81.604 17.347	± 0.006 ± 0.175 ± 0.144
		PE	PPV Unique (%) Unmapped (%)	0.85 90.198 6.207	± 0.014 ± 2.474 ± 1.295	0.94 84.705 9.101	± 0.032 ± 3.947 ± 2.281	0.776 88.285 8.254	± 0.011 ± 2.559 ± 1.885	0.886 70.165 23.08	± 0.011 ± 3.292 ± 2.750	0.763 76.572 22.225	± 0.002 ± 0.383 ± 0.282
	76 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.892 94.786 0.162	± 0.007 ± 2.508 ± 0.120	0.963 82.333 12.545	± 0.010 ± 2.764 ± 2.595	0.851 93.445 0.647	± 0.008 ± 2.607 ± 0.229	0.929 73.506 17.825	± 0.004 ± 1.949 ± 2.173	0.816 85.489 12.771	± 0.004 ± 0.753 ± 0.296
		PE	PPV Unique (%) Unmapped (%)	0.88 96.874 0.039	± 0.014 ± 1.669 ± 0.041	0.957 84.125 12.01	± 0.015 ± 3.757 ± 3.939	0.829 91.53 5.464	± 0.009 ± 2.139 ± 1.453	0.919 75.385 17.469	± 0.022 ± 3.111 ± 3.102	0.844 84.106 14.296	± 0.002 ± 0.323 ± 0.190
40M	50 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.896 57.425 38.395	± 0.012 ± 3.548 ± 4.281	0.964 84.291 8.204	± 0.009 ± 3.224 ± 1.888	0.78 91.6 0.709	± 0.016 ± 2.276 ± 0.340	0.889 69.378 22.495	± 0.008 ± 4.214 ± 3.795	0.707 81.582 17.373	± 0.005 ± 0.218 ± 0.172
		PE	PPV Unique (%) Unmapped (%)	0.851 91.965 5.479	± 0.014 ± 1.302 ± 1.276	0.936 85.946 8.638	± 0.029 ± 2.551 ± 3.036	0.775 89.424 7.123	± 0.011 ± 2.518 ± 1.932	0.884 70.052 22.773	± 0.010 ± 2.104 ± 2.821	0.76 76.391 22.441	± 0.003 ± 0.707 ± 0.552
	76 _{bp}	SE	PPV Unique (%) Unmapped (%)	0.894 95.806 0.072	± 0.015 ± 1.935 ± 0.073	0.962 83.378 11.958	± 0.016 ± 3.146 ± 2.522	0.85 94.702 0.521	± 0.013 ± 2.198 ± 0.234	0.931 75.558 15.717	± 0.007 ± 3.717 ± 1.739	0.816 85.746 12.663	± 0.005 ± 0.246 ± 0.125
	ьр	PE	PPV Unique (%) Unmapped (%)	0.872 96.792 0.015	± 0.017 ± 1.688 ± 0.009	0.943 83.07 12.836	± 0.028 ± 3.084 ± 2.883	0.833 91.606 4.687	± 0.013 ± 2.653 ± 0.946	0.924 71.622 17.885	± 0.006 ± 4.171 ± 1.924	0.843 83.972 14.404	± 0.002 ± 0.280 ± 0.145

Supplementary Table 4. Splice junction detection performance of all alignment methods

			GSNAP		TopHat2		STAR		OLego		SOAPsplice		
8M	50 _{bp}	SE	PPV Sensitivity F ₁ score	0.96 0.946 0.953	± 0.001 ± 0.001 ± 0.001	0.919 0.963 0.94	± 0.002 ± 0.001 ± 0.001	0.997 0.939 0.967	± 0.000 ± 0.002 ± 0.001	0.979 0.89 0.932	± 0.001 ± 0.002 ± 0.001	0.976 0.767 0.859	± 0.001 ± 0.002 ± 0.002
		PE	PPV Sensitivity F ₁ score	0.862 0.971 0.913	± 0.002 ± 0.002 ± 0.001	0.917 0.974 0.945	± 0.001 ± 0.001 ± 0.001	0.986 0.953 0.969	± 0.001 ± 0.002 ± 0.001	0.973 0.906 0.938	± 0.001 ± 0.002 ± 0.001	0.967 0.797 0.874	± 0.001 ± 0.003 ± 0.002
	76 _{bp}	SE	PPV Sensitivity F ₁ score	0.917 0.96 0.938	± 0.002 ± 0.001 ± 0.001	0.93 0.969 0.949	± 0.002 ± 0.001 ± 0.001	0.99 0.96 0.975	± 0.001 ± 0.001 ± 0.001	0.98 0.91 0.944	± 0.000 ± 0.001 ± 0.001	0.958 0.86 0.906	± 0.002 ± 0.001 ± 0.001
		PE	PPV Sensitivity F ₁ score	0.806 0.975 0.882	± 0.002 ± 0.001 ± 0.001	0.929 0.977 0.953	± 0.001 ± 0.001 ± 0.001	0.984 0.966 0.975	± 0.001 ± 0.001 ± 0.001	0.975 0.927 0.95	± 0.001 ± 0.002 ± 0.001	0.952 0.878 0.913	± 0.002 ± 0.002 ± 0.001
20M	50 _{bp}	SE	PPV Sensitivity	0.951 0.949	± 0.001 ± 0.002	0.908 0.965	± 0.002 ± 0.001	0.997 0.943	± 0.000 ± 0.002	0.973 0.9	± 0.001 ± 0.002	0.972 0.786	± 0.001 ± 0.003
		PE	F ₁ score PPV Sensitivity	0.95 0.814 0.973	± 0.001 ± 0.003 ± 0.001	0.936 0.903 0.976	± 0.001 ± 0.002 ± 0.001	0.969 0.983 0.958	± 0.001 ± 0.001 ± 0.001	0.935 0.965 0.915	± 0.001 ± 0.001 ± 0.002	0.869 0.959 0.817	± 0.002 ± 0.002 ± 0.003
	76 _{bp}	SE	F ₁ score PPV Sensitivity	0.887 0.894 0.962	± 0.002 ± 0.001 ± 0.001	0.938 0.92 0.97	± 0.001 ± 0.001 ± 0.001	0.97 0.988 0.962	± 0.001 ± 0.001 ± 0.002	0.94 0.974 0.918	± 0.001 ± 0.001 ± 0.002	0.882 0.949 0.872	± 0.002 ± 0.003 ± 0.002
		PE	F ₁ score PPV Sensitivity F ₁ score	0.927 0.741 0.977 0.843	± 0.001 ± 0.003 ± 0.001 ± 0.002	0.944 0.917 0.979 0.947	± 0.001 ± 0.002 ± 0.001 ± 0.001	0.975 0.981 0.97 0.976	± 0.001 ± 0.001 ± 0.001 ± 0.001	0.945 0.968 0.934 0.95	± 0.001 ± 0.001 ± 0.002 ± 0.001	0.909 0.942 0.89 0.915	± 0.002 ± 0.002 ± 0.002 ± 0.001
40M	50 _{bp}	SE	PPV Sensitivity F ₁ score	0.946 0.95 0.948	± 0.001 ± 0.001 ± 0.000	0.903 0.965 0.933	± 0.001 ± 0.001 ± 0.001	0.996 0.944 0.97	± 0.000 ± 0.001 ± 0.000	0.968 0.905 0.936	± 0.001 ± 0.001 ± 0.001	0.97 0.795 0.874	± 0.001 ± 0.002 ± 0.001
		PE	PPV Sensitivity F ₁ score	0.78 0.974 0.866	± 0.003 ± 0.001 ± 0.002	0.896 0.977 0.935	± 0.001 ± 0.001 ± 0.001	0.982 0.96 0.971	± 0.001 ± 0.001 ± 0.001	0.959 0.92 0.939	± 0.001 ± 0.001 ± 0.001	0.955 0.825 0.885	± 0.001 ± 0.003 ± 0.002
	76 _{bp}	SE	PPV Sensitivity F ₁ score	0.879 0.961 0.919	± 0.002 ± 0.001 ± 0.001	0.915 0.969 0.941	± 0.001 ± 0.001 ± 0.001	0.987 0.962 0.974	± 0.000 ± 0.001 ± 0.001	0.969 0.922 0.945	± 0.001 ± 0.001 ± 0.001	0.942 0.878 0.909	± 0.002 ± 0.002 ± 0.001
	bp	PE	PPV Sensitivity F ₁ score	0.693 0.978 0.811	± 0.004 ± 0.001 ± 0.003	0.91 0.98 0.944	± 0.002 ± 0.001 ± 0.001	0.979 0.971 0.975	± 0.001 ± 0.001 ± 0.001	0.961 0.937 0.949	± 0.001 ± 0.001 ± 0.001	0.933 0.895 0.914	± 0.003 ± 0.002 ± 0.001

			Sens	sitivity	P	PV	<i>F</i> ₁ s	Realign w/	
			TopHat2	FineSplice	TopHat2	FineSplice	TopHat2	FineSplice	segment mismatches
8M	50 _{bp}	SE	0.963 0.963 0.963	0.939 0.930 0.922	0.920 0.929 0.929	0.982 0.977 0.977	0.941 0.946 0.946	0.960 0.953 0.948	- 1 2
	30 _{bp}	PE	0.973 0.972 0.972	0.954 0.955 0.955	0.919 0.921 0.921	0.985 0.983 0.983	0.945 0.946 0.946	0.969 0.969 0.969	- 1 2
	76 _{bp}	SE	0.968 0.967 0.967	0.943 0.927 0.927	0.930 0.939 0.939	0.994 0.995 0.995	0.949 0.953 0.953	0.968 0.960 0.960	- 1 2
		PE	0.977 0.976 0.976	0.965 0.966 0.966	0.929 0.925 0.925	0.989 0.987 0.987	0.952 0.950 0.950	0.977 0.976 0.976	1 2
20M	50 _{bp}	SE	0.966 0.966 0.966	0.941 0.922 0.922	0.908 0.919 0.918	0.989 0.987 0.986	0.936 0.942 0.941	0.964 0.953 0.953	- 1 2
		PE	0.978 0.977 0.978	0.960 0.966 0.966	0.906 0.902 0.902	0.984 0.973 0.973	0.940 0.938 0.938	0.972 0.969 0.969	- 1 2
	76 _{bp}	SE	0.967 0.967 0.967	0.950 0.911 0.911	0.919 0.929 0.929	0.993 0.990 0.990	0.943 0.947 0.947	0.971 0.949 0.949	- 1 2
		PE	0.978 0.978 0.978	0.961 0.971 0.971	0.917 0.901 0.901	0.991 0.974 0.974	0.947 0.938 0.938	0.976 0.973 0.973	- 1 2
40M	50	SE	0.966 0.966 0.966	0.941 0.922 0.925	0.905 0.916 0.915	0.989 0.991 0.991	0.934 0.940 0.940	0.964 0.955 0.956	- 1 2
	50 _{bp}	PE	0.977 0.977 0.977	0.955 0.960 0.960	0.897 0.892 0.892	0.984 0.977 0.977	0.936 0.933 0.932	0.970 0.968 0.968	- 1 2
	76 _{bp}	SE	0.969 0.969 0.969	0.943 0.935 0.935	0.916 0.925 0.925	0.994 0.994 0.994	0.942 0.947 0.947	0.968 0.963 0.963	- 1 2
	Бр	PE	0.981 0.981 0.981	0.965 0.970 0.970	0.913 0.887 0.887	0.990 0.982 0.982	0.946 0.932 0.932	0.977 0.976 0.976	- 1 2

Supplementary Figure 1. Summary table and quality plots for the experimental data used for estimating the 50 bp error profile (SRA Experiment SRX424347, run accession number on top panel)

Position in read (bp)

Position in read (bp)

Position in read (bp)

Position in read (bp)

Supplementary Figure 3. Summary tables and quality plots for the human low-quality dataset (SRA Experiment SRX011546, run accession number on top panel)

Supplementary Figure 5. Percentage of uniquely mapped reads (bar chart, *y*-axis) and positive predictive value (ratio of correctly aligned nucleotides, color coded), averaged over 10 simulated data sets per experimental condition, for each alignment method (on a separate panel). Left and right sides of each panel correspond to reads spanning known and novel junctions (except for SOAPsplice, which aligns exclusively *ab initio*) Each bar corresponds to a different simulation setup: 50 or 76 bp read length, single-end (SE) or paired-end (PE) library, at 8M (A), 20M (B) and 40M (C) sequencing depth.

Known

Novel

Known

Novel

Known

Novel

Known

Novel

Supplementary Figure 6. Junction detection sensitivity (*y*-axis) and positive predictive value (*x*-axis), averaged over 10 simulated data sets per experimental condition, at 8M (**A**), 20M (**B**) and 40M (**C**) reads sequencing depth. Panels correspond to different simulation setups: 50 or 76 bp read length, single-end (SE) or paired-end (PE) library.

Supplementary Figure 7. Relative quantification error (absolute difference between alignment counts and true read count relative to the true value, *y*-axis) at increasing percentiles (*x*-axis) for each aligner at 8M (**A**), 20M (**B**) and 40M (**C**) reads sequencing depth, all values being averaged over 10 simulated data sets per experimental condition. 50 and 76 bp reads are represented on separate panels, single-end (SE) and paired-end (PE) reads with, respectively, continuous and dashed lines.

Supplementary Figure 8. Absolute quantification error (absolute difference between alignment counts and true read counts, *y*-axis) in a box plot representation encompassing all 10 simulated data sets, at 8M (**A**), 20M (**B**) and 40M (**C**) reads sequencing depth. 50 and 76 bp reads represented on separate panels, single-end (SE) and paired-end (PE) with distinct fill gradients.

Supplementary Figure 9. TopHat2 absolute quantification error before (blue bars) and after filtering with FineSplice (yellow bars) in a box plot representation (cf. Supplementary Figure 4). Different simulation settings are shown on separate panels: 50 and 76 bp read length, single-end (SE) and paired-end (PE) library, at 8M (A), 20M (B) and 40M (C) reads sequencing depth. Each bar corresponds to different TopHat2 alignment options, either default (-), or with realignment of ambiguously mapping multi-exon reads, allowing up to 1 or 2 mismatches in read segments alignment.

Supplementary Figure 10. TopHat2 relative quantification error percentiles (cf. Supplementary Figure 3), with and without FineSplice at 8M (A), 20M (B) and 40M (C) reads sequencing depth. Different simulation settings on separate panels: 50 and 76 bp read length, single-end (SE) and paired-end (PE) library.

Supplementary Figure 11. Comparison of FineSplice and TrueSight detection performance in simulated data. Sensitivity (*y*-axis) and positive predictive value (*x*-axis) of inferred junctions evaluated at increasing thresholds for the respective score (posterior probability), with larger dots (outlined) corresponding to the default behaviour of each algorithm (no threshold for TrueSight and TopHat2 alone, 0.5 for TopHat2 w/ FineSplice). Panels correspond to different simulation setups, at 8M (**A**), 20M (**B**) and 40M (**C**) reads sequencing depth.

Positive predictive value

A

Supplementary Figure 12. Splice junction detection performance in high-quality experimental data (human dataset comprising three high-depth, paired-end sequencing runs at 76 bp read length). Pseudo sensitivity and pseudo precision metrics, along with the corresponding F1 scores, have been evaluated by regarding as true those junctions with a median number of overlapping reads over all alignments greater than 0 (table A, mean \pm standard deviation). The bar plots show the number of concordant detections (B) and the mean read count across all alignments (C) for all junctions detected by each method (on separate panels) or accepted by FineSplice (top panel).

A

Supplementary Figure 13. Splice junction detection performance in low-quality experimental data (human dataset comprising two low-depth, paired-end sequencing runs at 45 bp read length). Pseudo sensitivity and pseudo precision metrics, along with the corresponding F1 scores, have been computed by regarding as true those junctions with a median number of overlapping reads over all alignments greater than $\hat{0}$ (table A, mean \pm standard deviation). The bar plots show the number of concordant detections (B) and the mean read count across all alignments (C) for all junctions detected by each method (on separate panels) or accepted by FineSplice (top panel).

Supplementary Figure 14. Splice junction detection performance in experimental data with poor transcript annotation (pig dataset, comprising three single-end sequencing runs at 51 bp read length). Pseudo sensitivity and pseudo precision metrics, along with the corresponding F1 scores, have been evaluated by regarding as true those junctions with a median number of overlapping reads over all alignments greater than 0 (table **A**, mean ± standard deviation). The bar plots show the number of concordant detections (**B**) and the mean read count across all alignments (**C**) for all junctions detected by each method (on separate panels) or accepted by FineSplice (top panel).

Supplementary Figure 15. Distribution of read overhangs across all alignment methods in experimental high-quality data (human dataset comprising three high-depth, paired-end sequencing runs at 76 bp read length). Read counts per overhang position for splice junctions accepted (**A**) or discarded (**B**) by FineSplice (all sequencing runs) are shown in a box plot representation for each alignment method.

Supplementary Figure 16. Distribution of read overhangs across all alignment methods in experimental low-quality data (human dataset comprising two low-depth, paired-end sequencing runs at 45 bp read length). Read counts per overhang position for splice junctions accepted (**A**) or discarded (**B**) by FineSplice (all sequencing runs) are shown in a box plot representation for each alignment method.

Supplementary Figure 17. Distribution of read overhangs across all alignment methods in experimental data with poor transcript annotation (pig dataset, comprising three single-end sequencing runs at 51 bp read length). Read counts per overhang position for splice junctions accepted (**A**) or discarded (**B**) by FineSplice (all sequencing runs) are shown in a box plot representation for each alignment method.