باسمه تعالى

دانشگاه صنعتی شریف

دانشکده مهندسی برق

۲۵۷۴۲ گروه ۳ _ سیگنالها و سیستمها _ بهار ۱۳۹۸ _ ۹۹

يروژه_ فاز اول

موعد تحویل: ۹ خرداد ۱۳۹۹، ساعت ۲۳:۵۵

نحوهى تحويل:

- گزارش پروژه خود را در قالب یک فایل pdf. تحویل دهید. در گزارش لازم است تمامی خروجیها و نتایج نهایی، پرسشهای متن تمرین، و توضیح مختصری از فرآیند حل مسألهی خود در هر قسمت را ذکر کنید.
- کد کامل تمرین را در قالب یک فایل m. تحویل دهید. لازم است بخشهای مختلف پروژه در sectionهای مختلف تفکیک شوند و کد تحویلی منظم و دارای کامنتگذاری مناسب باشد. بدیهی است آپلود کردن کدی که به درستی اجرا نشود، به منزلهی فاقد اعتبار بودن نتایج گزارششده نیز میباشد.
- توابعی را که (در صورت لزوم) نوشته اید، در فالب فایلهای m. در کنار فایلهای گزارش و کد اصلی پروژه، ضمیمه کنند.
- مجموعهی تمامی فایلها (گزارش، کد اصلی، توابع، و خروجیهای دیگر در صورت لزوم) را در قالب یک فایل zip/.rar. ذخیره کرده و از طریق سامانهی CW تحویل دهید.
 - نامگذاری فایلهای تحویلی را به صورت

ProjectPh1 StudentNumber StudentNumber.pdf/.m/.zip/.rar

انجام دهید.

معیار نمره دهی:

- ساختار مرتب و حرفهای گزارش
- استفاده از توابع و الگوریتمهای مناسب
- پاسخ به سؤالات تئوري و توضيح روشهاي مطلوب سوال
 - كد و گزارش خروجي كد براي خواستههاي مسأله

نكات تكميلي:

- همواره در تمامی تمارین و پروژهها، تا سقف %۱۰ نمره اضافه برای قسمتهای امتیازی و نیز هر گونه روشهای ابتکاری و فرادرسی در نظر گرفته میشود و سقف نمره قابل کسب معادل با ۱۱۰/۱۰۰ میباشد.
- شرافت انسانی ارزشی به مراتب والاتر از تعلّقات دنیوی دارد. رونویسی تمارین، زیر پا گذاشتن شرافت خویشتن است؛ به کسانی که شرافتشان را زیر پا میگذارند هیچ نمرهای تعلّق نمیگیرد.

در این فاز از پروژه ابتدا به مباحث تئوری تبدیل فوریه گسسته و نمونهبرداری، تا حدی که در پروژه لازم است میپردازیم. بدیهی است که تمامی نکات ذکر نشدهاند و به صورت کامل تر در ادامهی درس و همچنین درس پردازش سیگنالهای دیجیتال به آنها پرداخته خواهد شد. در قسمت دوم فاز اول، با سیگنالهای EEG آشنا میشویم و به پیش پردازش دادهها نگاهی خواهیم کرد.

تبديل فوريه گسسته

همانطور که میدانید، با ورود به دنیای کامپیوتر، همهی چیز کوانتیزه و گسسته میشود؛ پس نیاز داریم برای استفاده از تبدیل فوریه و امکاناتی که حوزه فرکانسی در اختیار ما قرار میدهد تعریفی برای تبدیل فوریه گسسته داشته باشیم. ابتدا به معرفی تبدیل فوریه زمانگسسته DTF۲ میپردازیم.

تبدیل فوریه زمانگسسته _ DTFT

برای محاسبه طیف فرکانسی سیگنالهای گسسته، از این تبدیل فوریه استفاده می شود. طبق تعریف، تبدیل فوریه سیگنال گسسته زمان x[n] به صورت زیر حساب می شود:

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} \tag{1}$$

در نگاه اول، به نظر میرسد که این تعریف همان تعریف تبدیل z به ازای $z=e^{j\Omega}$ است اما این مشاهده دقیق نیست و تبدیل فوریه همان تبدیل z به ازای $e^{j\Omega}$ نیست. چرا که ممکن است تبدیل z موجود نباشد اما تبدیل فوریه تعریف شده باشد. حالت تساوی شرطهایی دارد که یکی از آنها بودن دایره واحد در ROC تبدیل z است.

• نشان دهید که تبدیل فوریه گسسته زمان متناوب است و دوره تناوب آن را بیان کنید.

همانگونه که در بالا نشان دادیم، تبدیل فوریه گسسته زمان با دوره تناوب 2π متناوب است و داشتن بازهی $[-\pi,\pi]$ ، تمام محتوای فرکانسی را برای ما مشخص میکند.

• نشان دهید که برای سیگنالهای حقیقی، تنها داشتن بازهی $[0,\pi]$ کافی است و میتوان سیگنال اولیه را از روی آن بازسازی کرد.

همانگونه که انتظار میرود، در این تبدیل، فرکانس صفر معادل فرکانس صفر برای سیگنال های پیوسته است اما اینکه فرکانس π نماینده چه فرکانسی است را در بخش بعدی فرا خواهیم گرفت.

تبديل فوريه گسسته _ DFT

در این قسمت ابتدا به بررسی ارتباط بین سری فوریه و تبدیل فوریه سیگنالهای پیوسته می پردازیم.

• سیگنال پیوسته و متناوب x(t) با دوره تناوب T را در نظر بگیرید. سیگنال $\widetilde{x}(t)$ را یک دوره تناوب از سیگنال اولیه در نظر بگیرید؛ یعنی:

$$x(t) = \begin{cases} \widetilde{x}(t) & |t| < T/2 \\ 0 & O.W \end{cases}$$

اگر c_k ما ضرایب سری فوریه مختلط سیگنال x(t) باشند، مقدار c_k را برحسب تبدیل فوریه ویه x(t) بیابید.

 $^{^{1} {\}bf Discrete\text{-}Time\ Fourier\ Transform}$

تبدیل فوریه گسسته زمان اگرچه تبدیل فوریه یک سیگنال گسسته را بدست می دهد اما خروجی آن خود یک طیف پیوسته فرکانس است پس نمی توان آن را در دنیای گسسته کامپیوتر پیاده کرد. در این جا است که تبدیل فوریه گسسته تعریف می شود. همانطوری که در بالا نشان دادید، سری فوریه را می توان به دید نمونه های تبدیل فوریه پیوسته دید. تعریف مشابهی برای تبدیل فوریه گسسته بر حسب DTFT داریم:

$$X[k] := \begin{cases} X_c(e^{j\Omega})|_{\Omega = \frac{2k\pi}{N}} & k = 0, 1, ..., N - 1\\ 0 & O.W \end{cases}$$
 (Y)

که $X_c(e^{j\Omega})$ تبدیل فوریه زمان گسسته و X[k] تبدیل فوریه گسسته N نقطهای سیگنال گسسته $X_c(e^{j\Omega})$ است. اگر توجه کرده باشید متوجه می شوید که در تعریف تبدیل فوریه گسسته، متغیر N ای وجود دارد که خود یکی از مشخصه ها و متغیرهای تبدیل است؛ برخلاف سری فوریه که خود یک متغیر T (دوره تناوب) دارد اما به صورت یکتا از روی سیگنال و تعیین می شود. متغیر N می تواند هر مقدار طبیعی به خود بگیرد اما به ازای تمام این مقادیر، لزوماً نمی توان سیگنال اولیه را بازسازی کرد. اگر سیگنال گسسته زمان X[n] به طول X[n] باشد، شرط لازم و کافی بازسازی X[n] از روی X[n] باشد.

- شرط لازم و کافی برای بازسازی x[n] از روی \widetilde{X} را بیان کنید.
- یک روش بازسازی سیگنال اولیه از روی تبدیل فوریه گسسته، طی مراحل زیر است:
 - N بریودیک کردن تبدیل فوریه گسسته با N
 - ۲. سری فوریه وارون گرفتن
 - N. انتخاب دوره تناوب اول N تایی

صحت مراحل ذکر شده را در حالتی که شرطی که بیان کرده بودید برقرار است بررسی کنید. برای این کار تعریف سری فوریه گسسته را از اینترنت جستجو کنید و با طی مراحلی مشابه مراحل طی شده تا کنون، صحت مراحل فوق را بررسی کنید.

- ullet با جست و جو در اینترنت تعریف فرمال و دقیق رابطه تبدیل فوریه گسسته N نقطهای و عکس آن را بدست آورید.
 - با جست وجو در اینترنت رابطه پارسوال برای تبدیل فوریه گسسته را بیان کرده و آن را اثبات کنید.

• فایل داده شده تحت عنوان y.mat را لود کنید و اندازه و فاز آن را رسم کرده و در گزارش ذکر کنید. آیا ماهیت تقارنی ذکر شده مشهود است؟ علّت چیست؟ با حذف نویزهایی که باعث این مورد شدهاند، عکس نهایی تبدیل فوریه پس از حذف این دادهها را نیز در گزارش کار بیاورید.

$Sampling _$ نمونهبرداری

برای انجام داشتن معادل یک سیگنال پیوسته در دنیای دیجیتال کامپیوتر و انجام محاسبات بر روی آن، بایستی از سیگنال پیوسته نمونه برداری کنیم. در واقع کار تمامی سنسورها و ابزارآلات ذخیرهسازی دیجیتال نیز همین نمونهبرداری است.

نمونهبرداری معمولاً با یک نرخ ثابت Fs هرتز انجام میپذیرد؛ یعنی در هر $\frac{1}{Fs}$ ثانیه، از ورودی سنسور اطلاعات خوانده می شود و در حافظه ذخیره می شود (بایستی توجه شود که بعد از فرایند نمونه برداری، هیچ نشانی از Fs در خود داده ها وجود ندارد و به همین دلیل خود Fs بایستی به صورت جداگانه در گزارش ها ذکر شود و هر کجا که لازم باشد، به صورت دستی به عنوان ورودی سیستم داده شود).

مشابه تعداد نمونههایی که در قسمت پیش برای نمونهبرداری از تبدیل فوریه گسسته زمان دیدیم، برای نمونه برداری نیز شرطی وجود دارد که با برقرار بودن آن، سیگنال و تبدیل فوریه آن یکتا از روی یکدیگر قابل بازسازی هستند اما در صورتی که آن را رعایت نکنیم، حتماً اطلاعاتی را از دست خواهیم داد.

رابطهی حوزهی زمان نمونهبرداری به صورت زیر است:

$$x[n] = x_c(nT) \tag{Y}$$

در معادله بالا، سیگنال گسسته زمان است و x_c همان سیگنال پیوسته است. میتوان نشان داد که رابطه x معادلی در حوزه فرکانس با رابطه زیر دارد:

$$X(e^{j\Omega}) = \frac{1}{T} \sum_{r=-\infty}^{\infty} X_c(j(\frac{\Omega}{T} - \frac{2r\pi}{T}))$$
 (*)

در واقع می توان به این دید به معادله بالا نگاه کرد که ابتدا طیف X_c را با T مقیاس می کنیم و سپس با پریود 2π متناوب می کنیم و نهایتاً در یک ضریب $\frac{1}{T}$ ضرب میکنیم. با استفاده از این تعریف می خواهیم حد پایین فرکانس نمونه برداری را بیابیم. با توجه به فرمول بالا می توان دید که اگر ω را فرکانس برای سیگنال پیوسته در نظر بگیریم و Ω را برای فرکانس سیستم گسسته، رابطه زیر بر قرار است:

$$\Omega = \omega T \tag{(2)}$$

یعنی با ضرب مقادیر فرکانس گسسته در فرکانس نمونهبرداری، فرکانس معادل سیگنال پیوسته بدست می آید. همانگونه که قبلا گفته شد، اطلاعات T در نمونهبرداری از بین می روند؛ پس این که هر فرکانس Ω نمایانگر چه فرکانس سیگنال پیوسته است.

در شکل زیر یک نمونه پوش اندازه تبدیل فوریه یک سیگنال حقیقی فرضی داده شده است. همانگونه که مشاهده میکنید، شکل تقارن ذاتی دارد.

شكل ١: تبديل فوريه گسسته زمان سيگنال نمونه

SemiBandFFT (InputSignal, Fs, f)

- در این سوال میخواهیم حد پایین فرکانس نمونه برداری را محاسبه کنیم. برای این کار فرض کنید که سیگنال شما حقیقی و پایینگذر است؛ یعنی بعد از فرکانسی مانند $2\pi f_{max}$ محتوای فرکانسی ندارد. با توجه به نکاتی که تا کنون گفته شده از اینکه هر فرکانس گسسته نمایانگر چه فرکانس پیوسته ای است، نکات قسمت تبدیل فوریه گسسته و به کمک شکل ۱ حد فرکانس نمونه برداری را پیدا کنید که پهنای باند قسمت معادل $[0,\pi]$ با پهنای باند متقارن خود که از نقطه ی 2π شروع شده و تا π امتداد دارد، تداخلی نداشته باشد. به طور معادل، یعنی در شکل بالا دو مثلث ناقص با یکدیگر تداخلی نداشته باشند. این حد پایین فرکانس نمونه برداری، فرکانس نایکوئیست نام دارد.
- فرض کنید که نمودار شکل ۱ نمونه برداری شده از یک سیگنال با فرکانس نمونهبرداری $\frac{1}{12}$ است. پهنای باند سیگنال اولیه چند بوده است؟ با استفاده از رابطه ۴ و تعبیری که از آن داده شد، اگر از سیگنال ذکر شده به جای فرکانس $\frac{1}{6}$ با فرکانس $\frac{1}{4}$ نمونه برمی داشتیم، چه اتفاقی می افتاد؟ شکل متناظر با این حالت را به کمک متلب رسم کرده و در گزارش کار ذکر کنید. به این پدیده aliasing گفته می شود.

آشنایی با سیگنالهای EEG

برای دادهبرداری از مغز ابزارهای متفاوتی وجود دارند که هر یک مزایا و معایبی دارد. یکی از روشهای ذخیره سیگنالهای مغزی، مغزی، خوبه سیگنالهای مغزی، مغزی، توجه سیگنالها در واقع تغییرات سطح ولتاژهایی هستند که در اثر تغییرات و سیگنالهای مغزی، در سطح الکترودهای دستگاه حس شدهاند. این ولتاژها در سطح میکروولت هستند پس به شدت میتوانند تحت تاثیر کوچکترین نویزها قرار بگیرند. از مزایای EEG دقت زمانی بالا، یعنی فرکانس نمونه برداری بالا است اما از معایب آن، میتوان به دقت مکانی کم اشاره کرد. از دیگر مزیتهای EEG اندازه کوچکتر آن در مقایسه با مثلا دستگاه fMRI است که به خودی خود یک اتاق را اشغال میکنند در حالی نسخههای قابل حمل EEG نیز موجودند.

• با جست جو در اینترنت فرق دادهگیری invasive و noninvasive سیگنالهای EEG را بیابید. هر کدام از روشهای فوق در چه حالاتی مورد استفاده قرار میگیرند؟

کلاههای EEG ابزار ذخیره سیگنالهای EEG هستند. این کلاهها می توانند تعداد زیادی الکترود داشته باشند. برای مثال کلاههایی با ۲۵۶ الکترود موجود هستند. این که هر الکترود در کدام نقطه از سر قرار بگیرد به صورت استاندارد موجود است. برای مثال، استاندارد کلاه ۶۴ الکترودی به شکل زیر است:

هر کدام از الکترودها نیز اسمی دارند که بر حسب موقعیت مکانی روی سر و اینکه چه ناحیهای از مغز را پوشش میدهند تعیین شدهاست.

سیگنالهای EEG فعالیتهای متفاوت، مشخصههای متفاوتی دارند. برخی از این مشخصهها در حوزه زمان و برخی دیگر در حوزه فرکانسی است و از مشخصههای فرکانسی میتوان به باندهای فرکانسی میتوان به باندهای فرکانسی مختلف که هر یک نمایانگر دسته فعالیتهای متفاوت هستند اشاره کرد.

- با جستجو در اینترنت در مورد مشخصه P300 ، P300 و N100 که نمونههایی از مشخصههای ERP مستند،
 اطلاعات کسب کنید و به صورت خلاصه در گزارش ذکر کنید.
- با جستجو در اینترنت در مورد باندهای فرکانسی مختلف اطلاعات لازم را بدست آورید و در گزارش ذکر کنید. هر باند فرکانسی نمایانگر چه فعالیتهایی است؟
- با توجه به این باندهای فرکانسی و قضیه نایکوئیست، چه فرکانسهای نمونه بر داری مناسب سیگنالهای EEG است؟

(9)

²Electroencephalography

³Event Related Potential

اکنون که با مبانی سیگنالهای EEG آشنا شده اید، به دادههای موجود میپردازیم. در این فاز از پروژه تنها به دادههای یک فرد دسترسی داریم. دادهگیری توسط کلاه EEG با ۸ الکترود است. اگرچه مقالهی موجود ذکر کرده است که این ۸ الکترود معادل کدام یک از الکترودهای یک کلاه ۶۴ کاناله هستند اما در هیچ جای دیتابیس موجود ذکر نشده است که هر یک از بردارهایی که در متلب موجودهستند، کدام یک از این ۸ الکترود هستند. این ۸ الکترود عبارتند از:

Fz, Cz, Pz, P4, P3, Oz, Po7, Po8

فایل داده شده تحت عنوان Subject1.mat را در متلب باز کنید. این فایل حاوی ماتریسی با ۱۱ سطر است. سطر اول، زمان آزمایش است و هر یک از سطرهای دوم تا نهم، داده های یکی از الکترودها هستند. سطرهای دهم و یازدهم مربوط به ساختار آزمایش هستند که در فاز بعدی با آن آشنا خواهیم شد.

• با استفاده از سطر اول، فركانس نمونه برداري را محاسبه كنيد.

دادههای EEG به شدت میتوانند تحت تاثیر نویز قرار بگیرند و به همین دلیل و برای حذف نویز یکی از مراحل ابتدایی پیش پردازش دادهها، فیلتر کردن آنها است. ساخت فیلتر خود یک مبحثی مهم است که در فاز دوم پروژه به آن خواهیم پرداخت. در این فاز با استفاده از توابع متلب میخواهیم فیلتری ساخته و نتیجهی اعمال آن را بر دادهها ببینیم.

- به کمک اطلاعاتی که از باندهای فرکانسی بدست آوردید، چه فرکانس قطعی مناسب است؟
- به کمک تابعی که در قسمت قبل نوشتهاید، اندازه طیف فرکانسی کانالها را بکشید. با توجه به این نمودارها چه فرکانسی به عنوان فرکانس قطع مناسب است؟
- معیاری دیگر برای انتخاب فرکانس قطع میتواند انرژی سیگنال باشد. با استفاده از توابعی که نوشته اید، فرکانسی را بیابید که بخش بزرگی از انرژی سیگنال در فرکانسهای کوچکتر از آن تجمیع شده باشد. (برای این کار البته بهتر است از فرکانس DC که ممکن است بخش بزرگی از انرژی سیگنال در آن ذخیره شده باشد، صرف نظر کنید.)
 - به کمک موارد بالا، فرکانس قطع فیلتر پایینگذر را نهایی کنید.

با توجه به اینکه فرکانس DC اطلاعاتی را منتقل نمیکند، آن را نیز از داده ها بایستی حذف کنیم. برای این کار، در مرحله اول میانگین سیگنال را از آن کم میکنیم و سپس یک فیلتر بالاگذر بر سیگنال اعمال میکنیم. با توجه به اینکه هم به یک فیلتر پایین گذر و هم یک فیلتر بالاگذر داریم، میتوانیم با استفاده از یک فیلتر میانگذر، مراحل بالا را خلاصه کنیم. پس به طور خلاصه، پس از کمکردن میانگین داده ها، یک فیلتر میانگذر بر سیگنال اعمال میکنیم.

• چرا تنها کم کردن میانگین داده ها از سیگنال برای حذف فرکانس DC کافی نیست؟

در نهایت با توجه به نکات بالا و اطلاعاتی که بدست آوردهاید فیلتری میانگذر را با استفاده از توابع متلب و یا هر تابع دیگری پیادهسازی کنید. میتوانید از افزونههای ساخت فیلتر متلب نیز استفاده کنید.

مرحلهی دیگری که معمولاً در پیش پردازش طی میشود، کاهش فرکانس نمونه برداری است. با توجه به اصل نایکوئیست، فرکانس نمونهبرداری معادل با ۲ برابر پهنایباند سیگنال برای انتقال کامل اطلاعات سیگنال کافی است پس میتوان فرکانس نمونه برداری را در صورتی که بیشتر از حد نایکوئیست باشد، تا آن حد کاهش دهیم.

• با توجه به نکتهای که گفته شد و با توجه به فرکانس قطعی که در مرحله پیش انتخاب کردید، فرکانس نمونه برداری را کاهش دهید.

توجه اثبات اینکه چرا ما قادر هستیم بعد از نمونهبرداری از سیگنال، همچنان فرکانس نمونهبرداری را کاهش دهیم، در اینجا بررسی نشدهاست. البته این اثبات چندان پیچیده نیست و افراد مشتاق میتوانند با جستجو در اینترنت آن را فراگیرند.

اغلب دادهگیریهایی که انجام میشوند به صورت آزمایش به آزمایش و یا دقیقتر، trial-trial هستند. یعنی به فرد در هر مرحله تحریکی داده میشود و یا از وی خواسته میشود که کاری را انجام دهد. پس میتوانیم این آزمایشهای پشتسرهم را نیز از یکدیگر جدا کنیم تا بررسی راحت تر شود. به این عمل epoching گفته میشود. به صورت کلی، منظور از

epoching تقسیم کردن سیگنال زمانی (با طول زیاد) به پنجرههای زمانی کوچکتر است که به هر یک از این پنجرهها، یک epoch (بخوانید «اییاک») گفته می شود.

• تابعی بنویسید که با ورودی گرفتن سیگنال تمامی الکترودها و ۲ عدد اضافی، ماتریس epoch شده را در خروجی برگرداند. عدد اول، مشخص میکند که از چه زمانی قبل از اعمال تحریک، شروع به نگهداری داده برای هر پنجره بکنیم و عدد دوم نشانگر پایان هر پنجره است. مشخص است که به زمان شروع تحریکها نیاز داریم. سطر دهم دادهها، این اطلاعات را دارد. هرجایی که داده ی غیر صفر آمده باشد، تحریک به فرد اعمال شده تا زمانی که تحریک بعدی برسد. پس تابع شما به صورت زیر خواهد بود:

epoching (InputSignal, #BackwardSamples, #ForwardSamples, StimuliOnset) خروجی این تابع، ماتریسی ۳ بعدی به شکل زیر است:

به کمک تابعی که نوشته اید، سیگال را به پنجره های حدودا ۱۰۰۰ میلی ثانیه ای تقسیم کنید که از حدود ۲۰۰ میلی ثانیه
 قبل از شروع تحریک، شروع به نگه داری داده کرده و تا حدود ۸۰۰ میلی ثانیه پس از اعمال تحریک ادامه دارد.

توجه در مراحلی که تا کنون طی کردهایم، لازم است که مرحله فیلترکردن داده قبل از همهی دیگر مراحل انجام شود. دلیل این امر را در سوالهای زیر بررسی میکنیم:

- با توجه به اصل نایکوئیست و پدیده aliasing بگویید که چرا نمی توانیم فرکانس نمونه برداری را قبل از فیلترکردن کاهش دهیم.
- فرض کنید از سیگنالی به طول ۱۰۰۰ نمونه، از نمونهی ۲۰۰ تا ۱۰۰۰ به شما داده شده است. فرض کنید فیلتری به طول ۱۰۰۰ در اختیار دارید، یعنی تنها درایههای تا ۹۹ مقادیر غیرصفر دارند. نکتهی گفته شده در بالا را بررسی کنید؛ در واقع به بررسی این بپردازید که با این کار که ابتدا epoch کنیم و سپس فیلتر، چه فرقی خواهد داشت با این که ابتدا فیلتر کنیم و سپس پنجره را انتخاب کرده و جدا کنیم.
- در صورتی که بخواهیم پس از epoch کردن سیگنال آن را فیلتر کنیم، لازم است چه رابطهای بین طول فیلتر و طول هر epoch وجود داشته باشد؟

مراحلی که تاکنون انجام داده ایم، در کل برای پیش پردازش کافی است. البته کارهای فراتری نیز وجود دارند که برخی از آنها در برخی دیتاستها بیشتر نیاز هستند مانند اینکه برخی trial ها به صورت دستی حذف بشوند چرا که ممکن است فرد در آن آزمایش زیادی حرکت کرده باشد و داده ی نویزی داشته باشیم. برخی کارهای پیشرفته تری نیز مانند اعمال ICA وجود دارند که در مقال این پروژه نمی گنجد.

همانطور که قبلاً گفته شد، انرژی سیگنال از ویژگیهای مهم آن است. در این قسمت قرار است تابعی بنویسید که انرژی باندهای فرکانسی مختلف را در پنجرههای epoch شده بدست بیاورد. حتماً به نکاتی که در سوالهای بالا در مورد طول فیلتر گفته شد توجه کنید.

(\(\)

⁴Independent Component Analysis

• تابعی بنویسید که با ورودی گرفتن سیگنال epoch شده، و گرفتن پهنای باند فرکانسی موردنظر، سیگنال فیلترشده را در خروجی برگرداند. با استفاده از این تابع، انرژی باندهای فرکانسی سیگنال های EEG را در هر پنجره محاسبه کنید. با توجه به سوالهای بالا بایستی توجه کنید که تمامی داده های هر پنجره دیگر معتبر نیستند و بایستی در محاسبه انرژی، از برخی از آن ها صرف نظر کنید. تابع شما بایستی به صورت زیر باشد:

y = freqband (x, passband1, passband2, Fs)

که در آن پهنای باند فرکانسی بین [passband1, passband2] نگه داشته می شود.

توجه در نوشتن تابع بالا ممکن است برای ساخت فیلتر با مشکل مواجه شوید. در صورتی که تابع مناسبی برای ساخت فیلترها با طول دلخواه پیدا نکردهاید میتوانید از فایل BPF.m که در فولدر پروژه است استفاده کنید.

خوشهبندی بر مبنای همبستگی

در این بخش قصد داریم که الکترودهای مختلف را بر مبنای شباهت سیگنالهای زمانی هر کدام، به چند دسته تقسیم کنیم. یک معیار برای شباهت دو سیگنال زمانی، همبستگی متقابل این دو سیگنال در au=0 است. فرض کنید دو سیگنال زمانی کی معیار برای Y(t) در اختیار داریم، همان طور که می دانیم مقدار تابع خودهبستگی این دو سیگنال در au=0 برابر

$$R_{XY}(0) = \int_{-\infty}^{\infty} X(t)Y(t)dt$$

است.

• نشان دهید که

$$r_{XY} = \frac{\int_{-\infty}^{\infty} X(t)Y(t)dt}{\sqrt{\int_{-\infty}^{\infty} X^2(t)dt} \int_{-\infty}^{\infty} Y^2(t)dt}$$

عددی بین 1 و 1 است.

- نشان دهید $|r_{XY}|=1$ تنها در حالتی رخ می دهد که دو سیگنال تنها در یک ضریب تفاوت داشته باشند یعنی $|r_{XY}|=1$. $X(t)=\alpha Y(t)$
 - استدلال کنید که چرا این معیار، معیار مناسبی برای سنجش شباهت دو سیگنال است.

همانگونه که گفته شد، در دیتاست موجود، مکان ۸ الکترود به صورت دقیق مشخص نیستند و تنها می دانیم که این ۸ الکترود در کل کدام مجموعه الکترودها هستند. می خواهیم با استفاده از همبستگی و خوشه بندی به کمک آن، ببینیم که آیا می توانیم ارتباطی بین این الکترودها پیدا کنیم یا نه. برای این کار ابتدا بر روی دیتاست دیگری که مکان دقیق الکترودهای آن را می دانیم تابع خوشه بندی کننده را می نویسیم و پس از صحت از کارکرد آن، نهایتاً تابع را بر روی داده های آزمایش فعلی اعمال خواهیم کرد تا سعی کنیم ارتباطی میان الکترودها پیدا کنیم.

دیتاستی که برای این قسمت اضافه در اختیار دارید، برای یک آزمایش BCI دیگر با هدف تشخیص نوع حرکت است. این دیتاست با فرکانس نمونه برداری ۲۴۰۰ اخذ شدهاست و خود دادهها به صورت epoch شده هستند. مکان ۶۴ الکترود این آزمایش در شکل زیر آمدهاند.

مراحل زیر را برای دیتاست موجود انجام دهید. توجه کنید که برای انجام صحیح این قسمت بایستی قسمتهای قبل را به درستی فهمیده باشید و توجه شما به تمامی نکاتی که در قسمتهای پیشین گفته شده ضروری است. مراحلی که بایستی طی کنید را به دقت در گزارش ذکر کرده و علت هر یک را با توجه به قسمتهای پیشین بنویسید. عدم رعایت هر یک از مراحل باعث کسر نمره و مهمتر از آن باعث نویزی شدن نتایج و کم شدن دقت و صحت دادهها می شود.

- با مشاهده طیف فرکانسی، در صورت لزوم فیلتری را بر دادهها اعمال کنید تا نویز در نتایج حاصل اثر هرچه کمتری داشته باشد.
 - فرکانس نمونهبرداری را تا حد معقولی کاهش دهید.
- با توجه به اینکه شصت و چهار سیگنال زمانی از کانالهای مختلف در اختیار دارید، ماتریسی 64×64 بسازید که درایهی ij آن برابر $r_{X_iX_j}$ است. بدیهی است که این ماتریس، ماتریسی متقارن است. به این ماتریس، ماتریس همبستگی می گویند.
- به کمک ماتریسی که در بالا پیدا کردید، برای خوشه بندی (یعنی دسته بندی کانالها) بر مبنای معیار شباهت، می توان از ایده ای مشابه ایده ی زیر استفاده کرد.
 - ۱. هر کانال را در یک خوشه قرار دهید.
 - ۲. دو خوشه با نزدیک ترین فاصله را با هم ادغام کنید.
 - ۳. قدم قبل را آن قدر تكرار كنيد تا تمام كانالها در يك خوشه قرار بگيرند.
- برای فاصلهی دو کانال، که زیاد بودن آن نشان دهندهی عدم شباهت دو کانال است، چه رابطهای را پیشنهاد میکنید؟ دو پیشنهاد برای فاصلهی دو خوشه (هر کدام متشکل از چند کانال) نیز ارائه دهید.
- الگوریتم فوق را پیاده سازی کنید. در پیادهسازی خود، از فواصلی که در بخش قبل پیشنهاد کردید استفاده کنید. تابع خود را به صورت زیر تعریف کنید. اگر به ورودیهای دیگری نیز نیاز دارید آنها را بیافزایید.

CorrelationCluster (InputCorrMat, DistanceMeasure)

- در هر مرحلهای که الگوریتم فوق را متوقف کنیم، یک خوشه بندی به دست میآید. به نظر شما چگونه میتوان خوشه بندی مناسب را پیدا کرد؟ معیاری برای مقایسهی خوشه بندی های مختلف معرفی شده توسط الگوریتم بالا که هر کدام تعداد خوشه های متفاوتی دارند ارائه کرده و به کمک این معیار، یک خوشه بندی را به عنوان خوشه بندی منتخب معرفی کنید.
- با توجه به نتایج حاصل از خوشهبندی و مکان الکترودها آیا رابطهای بین الکترودهای بین موجود در هر خوشه مشهود است؟
- پس از اطمینان از کارکرد الگوریتم و انتخاب معیار مناسب فاصله، تمام مراحل بالا را برای دیتاست اصلی ۸ الکترودی که میخواهیم بر روی آن کار کنیم پیادهسازی کنید. آیا ارتباطی بین الکترودها داریم؟