南京大学数学课程试卷 (商学院11级)

<u>2012/2013</u> 学年 第<u>一</u> 学期 考试形式 <u>闭卷</u> 课程名称 <u>概率统计 (A卷)</u>

考试时间_2013.1.9 系别 ______ 学号 _____ 姓名____

题号	— 36	二10	三12	四 10	五 10	六12	七10	合计
得分								

 Φ (1.0)=0.8413, Φ (1.28) = 0.90 , Φ (1.64) = 0.95 , Φ (1.96) = 0.975 , Φ (2.33) = 0.99 , Φ (2.58)=0.995, $\mathbf{t}_{0.025}$ (16)=2.12, $\mathbf{t}_{0.025}$ (17)=2.11, $\mathbf{t}_{0.05}$ (16)=1.746, $\mathbf{t}_{0.05}$ (17)=1.740

- 一. (6分×6=36分)
 - 1. 某产品有15件,其中有次品2件,现从中任取3件,求至少取到1件次品的概率.
 - 2. 设随机变量 $\xi \sim N(1,4)$, $\eta \sim E(\frac{1}{3})$, 且 $\xi = \eta$ 独立,求 $E(5\xi 3\eta)$ 和 $D(5\xi 3\eta)$ 的值.

3. 设随机变量 X 和 Y 的 EX=EY=2, DX=1, DY=4, r_{xy} =0.5, 用切比雪夫不等式计算 $P(|X - Y| \ge 6)$ 至多为多少?

4.设总体 X 与 Y 相互独立, 且都服从 $N(0, \sigma^2)$, (X_1, X_2, X_3) 和 (Y_1, Y_2, Y_3, Y_4) 分别是来自 X和 Y 的样本,求统计量 $T = \frac{\sum_{i=1}^{3} X_{i}^{2}}{\sum_{i=1}^{4} (Y_{i} - \overline{Y})^{2}}$ 的分布(如有自由度,须给出).

5. 若总体 $\xi \sim N(\mu, 0.9^2)$,取自总体的容量为 9 的样本均值 \bar{x} =5,求未知参数 μ 的置信度为 0.95 的置信区间.

6. 已知总体 \mathbf{X} 的概率密度函数为 $\mathbf{f}(\mathbf{x},\ \theta) = \begin{cases} e^{-(\mathbf{x}-\theta)}, & \mathbf{x} > \theta \\ 0, & \mathbf{x} \leq \theta \end{cases}$, θ 为未知参数, \mathbf{X}_1 , \mathbf{X}_2 , … \mathbf{X}_n 为样本,求 θ 的极大似然估计量.

二. (10 分)设事件 A 在一次试验中发生的概率为 $\frac{1}{4}$. 如果做了四次伯努利独立试验,事件 A 均未发生,则事件 B 也不发生;如果四次伯努利试验中事件 A 发生一次,则事件 B 发生的概率为 $\frac{2}{3}$;而四次试验中若事件 A 发生两次及两次以上,则事件 B 一定发生. 试求: (1)P(B); (2)若已知事件 B 已经发生,问四次试验中事件 A 至少发生两次及两次以上的概率.

四. (10 分)设某种电子元件的使用寿命(单位:小时)服从参数为 $\lambda = 0.1$ 的指数分布,其使用情况是第一个损坏第二个立即使用,第二个损坏第三个立即使用等等.已知每个元件的价格为 10 元,那么在一年中至少需要多少元才能以 95%的概率保证该元件够用(假设一年有 306 个工作日,每个工作日为 8 小时).

五. (10 分)设 $X_1, X_2, \dots X_n$ 为取自总体 X 的样本, $E(X) = \mu$, $D(X) = \sigma^2$,试问统计量 $T = \frac{2}{n(n+1)} \sum_{i=1}^{n} i X_i \ \ \ell \mu$ 的无偏和一致估计量吗?(须说明理由).

六. (12 分)设有两总体 X~N(μ_1 , σ^2)和 Y~N(μ_2 , σ^2),且相互独立,X₁,X₂ ,…,X_{n₁} 与 Y₁, Y₂ ,…,Y_{n₂} 分别是取自 X 与 Y 的样本,设 S₁² = $\frac{1}{n_1-1}\sum_{i=1}^{n_1}(X_i-\overline{X})^2$ 和 S₂² = $\frac{1}{n_2-1}\sum_{i=1}^{n_2}(Y_i-\overline{Y})^2$,(1)试证对任意常数 a 和 b , a+b=1, 有 T=aS₁²+bS₂²均是 σ^2 的无偏估计;(2)试确定常数 a 和 b , 使 方差 D(T)达到最小.

七. (10 分)已知某种罐头中维生素 C(Vc)的含量 X 服从正态分布,按照规定 Vc 的平均含量不得少于 21 毫克,现从一批罐头中取了 17 罐,算得 Vc 含量平均值 \bar{x} =19,样本标准差 $S=\sqrt{\frac{1}{16}\sum_{i=1}^{17}(x_i-\bar{x})^2}$ =3.98, (1) 问该批罐头 Vc 的含量是否合格? (α =0.05) (2) 求 μ =EX 的置信度为 95%的置信区间.

第 4 页 (共 四 页)