Optimisation convexe

$28~{\rm janvier}~2015$

Table des matières

Ι	Ensembles convexes	2
1	Définitions et premières propriétés	2
2	Enveloppe affine et enveloppe convexe	2
3	Propriétés topologiques des convexes 3.1 Ouverture et fermeture des convexes	2 2 2
4	Opérations sur les ensembles convexes 4.1 Projection sur un convexe fermé 4.2 Séparation des ensembles convexes 4.3 Enveloppe convexe fermée	2 2 2 2
5	Cônes convexes 5.1 Cône normal 5.2 Cône dual	3 4
6	Hyperplan d'appui	5
7	Lemme de Farkas	5
II	Fonctions convexes	6
1	Définitions et propriétés	6
2	Fonctions d'appui	8
3	Transformée de Fenchel	8
4	Continuité des fonctions convexes	10
5	Différentiabilité des fonctions convexes 5.1 Dérivées directionnelles des fonctions convexes	11 11 11
6	Sous-différentiabilité des fonctions convexes 6.1 Définitions et premières propriétés	11 11 13 14 14

Première partie

Ensembles convexes

- 1 Définitions et premières propriétés
- 2 Enveloppe affine et enveloppe convexe
- 3 Propriétés topologiques des convexes
- 3.1 Ouverture et fermeture des convexes
- 3.2 Intérieur relatif
- 4 Opérations sur les ensembles convexes
- 4.1 Projection sur un convexe fermé
- 4.2 Séparation des ensembles convexes
- 4.3 Enveloppe convexe fermée

L'enveloppe convexe d'un fermé n'est pas nécessairement fermée. Exemple : Dans \mathbb{R}^2 , $C = \{xy \ge 1\} \cup \{0\}$: fermé. $\operatorname{conv}(C) = \{x > 0, y > 0\} \cup \{0\}$: non fermé.

♦ Définition:

 $A \subset E$. On définit l'enveloppe convexe fermée, noté $\overline{conv}(A)$, comme l'intersection de tous les convexes fermés contenant A.

IPropriété:

 $-A_1 \subset A_2 \Rightarrow \overline{conv}(A_1) \subset \overline{conv}(A_2)$ $-A \subset conv(A) \subset \overline{conv}(\bar{A}) \subset \overline{conv}(A) \text{ et } \overline{conv}(A) = \overline{conv}(\bar{A}) = \overline{conv}(\bar{A})$

♦ Définition:

Soit H un Hilbert.

Un demi-espace fermé de H est un ensemble de la forme :

$$H^{-}(\xi, \alpha) = \{x \in H; (x, \xi) < \alpha\}$$

où $\xi \in H \neq \{0\}$ et $\alpha \in \mathbb{R}$

 $\overline{conv}(A)$ est l'intersection de tous les demi-espaces fermés contenant A.

⇔ Corollaire:

Soit C un ensemble convexe.

Alors l'intersection de tous les demi-espaces fermés contenant C est \overline{C} .

⇔ Corollaire:

C convexe fermés $\Leftrightarrow C$ est l'intersection de tous les demi-espaces fermés contenant C.

⇔ Théorème:

Soient H de dimension finie et A un compact de H. Alors conv(A) est compact.

5 Cônes convexes

A Définition: Cône

Un ensemble C est un cône si $\lambda \in \mathbb{R}_+, \, \forall x \in C, \, \lambda x \in C$

❖ Définition: Enveloppe conique

Soit $A \subset E$. L'enveloppe conique A, notée cone(A), est l'intersection de tous les coônes convexes contenant A.

🔩 Définition: Combinaison conique

On appelle combinaison conique d'élements de A un point x tel que $x=\sum_{i=1}^n \lambda_i x_i,\ \lambda_i\geq 0,\ x_i\in A$

- C est un cône convexe si et seulement s'il contient toutes les combinaisons coniques de ses éléments.

$$cone(A) = \left\{ \sum_{i=1}^{n} \lambda_i x_i, n \in \mathbb{N}^*, \lambda_i \ge {}^{\circ}, x_i \in A \right\}$$

🛂 Définition: Enveloppe conique fermée

On définit l'enveloppe conique fermée de A, notée $\overline{cone}A$, comme étant l'intersection de tous les cônes convexes

IPropriété:

- $\begin{array}{l} -A\subset B\Rightarrow \overline{cone}(A)\subset \overline{cone}(B)\\ -A\subset cone(A)\subset cone(\bar{A})\subset \overline{cone}(A) \ \mathrm{et}\ \overline{cone}(A)=\overline{cone}(\bar{A})=\overline{cone}(A) \end{array}$

5.1 Cône normal

Soient H de Hilbert, $C \subset H$, $x \in C$.

On définit le cône normal à C en x, noté $\mathcal{N}_x C$ ou $\mathcal{N}_C(x)$ par :

$$\mathcal{N}_C(x) = \{ d \in H; (d, y - x) \le 0 \forall y \in C \}$$

Les éléments de $\mathcal{N}_x C$ sont appelés les normales à C en x.

1 Proposition:

Soit H de Hilbert de dimension fnie.

Si $C \subset H$ et $x \in \partial C$, alors $\mathcal{N}_x C$ contient au moins un élément non nul.

Remarque : Le résultat reste vrai en dimension infini si \mathring{C} est non vide.

5.2Cône dual

Soit $P \subset H$. On appelle cône dual de P, noté P^* , l'ensemble :

$$P^* = \{x \in H; (x, y) \ge 0 \ \forall y \in P\}$$

On appelle cône bidual de $P: P^{**} = (P^*)^*$

On appelle cône polaire (ou dual négatif) P^- l'ensemble

$$P^{-} = \{x \in H; (x, y) \le 0 \ \forall y \in P\} = -P^{*}$$

1 Proposition:

 P^* est un cône convexe fermé non vide.

6 Hyperplan d'appui

♦ Définition:

Un hyperplan d'affine d'équation (s,x)=r est appelé hyperplan d'appui à C en \bar{x} si :

$$(s,x) \le r \ \forall x \in C$$

$$(s, \bar{x}) = r$$

⇔ Théorème:

Soit C un ensemble convexe d'un Hilbert H. On suppose soit que H est de dimension finie soit que $\mathring{C} \neq \emptyset$. Soit $\bar{x} \in \partial C$. Alors il existe un hyperplan d'appui à C en \bar{x} .

7 Lemme de Farkas

\Rightarrow Lemme:

Soient H un espace de Hilbert, $(\xi_j)_{j\in J}\subset H$ et $(\alpha_j)_{j\in J}\subset \mathbb{R}$. On suppoer que le système

$$(\xi_j, x) \le \alpha_j \ \forall j \in J$$

admet au moins une solution.

Soit $(s, \beta) \in H \times \mathbb{R}$. On a équivalence entre les 2 propositions :

1.

$$\forall x \in H, [\forall j \in J, (\xi_j, x) \le \alpha_j \Rightarrow (s, x) \le \beta]$$

2.

$$(s,\beta) \in \overline{cone} ((\xi_j,\alpha_j)_{j \in J} \cup (0,1)) \subset H \times \mathbb{R}$$

⇔ Corollaire:

Sous les mêmes hypothèses avec $\alpha_j = 0 \ \forall j \in J$. On a pour $s \in H$:

1.

$$\forall x \in H, [\forall j \in J, (\xi_j, x) \le 0 \Rightarrow (s, x) \le 0]$$

2.

$$s \in \overline{cone}\left((\xi_j)_{j \in J}\right)$$

⇔ Lemme:

Si C est un cône convexe fermé, alors $C^{**} = C$.

Deuxième partie

Fonctions convexes

1 Définitions et propriétés

$$f:H\to\overline{\mathbb{R}}=\mathbb{R}\bigcup\{+\infty\}$$

♦ Définition:

$$Dom(f) = \{x \in H; f(x) < +\infty\}$$
$$epi(f) = \{(\alpha, x) \in \mathbb{R} \times H, \alpha \ge f(x)\}$$

$$epi_S(f) = \{(\alpha, x) \in \mathbb{R} \times H, \alpha > f(x)\}$$

On dit que f est propre si f n'est pas identiquement égal à $+\infty$.

On dit que f est convexe si epi(f) est convexe.

On dit que f est concave si -f est convexe.

1 Proposition:

Si f est convexe, alors Dom(f) est convexe.

De plus, f est convexe si et seulement si : $\forall x, y \in Dom(f), \, \forall \lambda \in [0, 1],$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

♦ Définition:

On dit que f est strictement convexe si $\forall x,y \in Dom(f), \ x \neq y, \ \forall \lambda \in]0,1[$

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

♦ Définition:

On dit que f est fortement convexe de module α si $\forall x, y \in Dom(f), \forall \lambda \in]0,1[$

$$\frac{\alpha}{2}\lambda(1-\lambda)\|x-y\|^2 + f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$$

I Propriété: opérations conservant la convexité

- 1. Pour $(f_i)_{i\in I}$ une famille quelconque de fonctions convexes, $\sup_{i\in I} f_i$ est convexe.
- 2. $\alpha \geq 0$, si f convexe, alors αf est convexe
- 3. Si f_1 et f_2 convexes, alors $f_1 + f_2$ convexes.

Définition:

Soit $f: H \to \overline{\mathbb{R}}$ et $\alpha \in \overline{\mathbb{R}}$.

On appelle sous ensemble de niveau de f au niveau α noté $\Gamma_{\alpha}(f)$ l'ensemble

$$\Gamma_{\alpha}(f) = \{x \in H; f(x) < \alpha\}$$

Remarque: f convexe $\Rightarrow \Gamma_{\alpha}(f)$ convexe $\forall \alpha \in \mathbb{R}$ Si $\Gamma_{\alpha}(f)$ est convexe $\forall \alpha \in \mathbb{R}$, alors on dit que f est quasi-convexe.

♦ Définition:

Soit $P\subset H.$ On appelle fonction indicatrice de P la fonction :

$$\mathbb{1}_P(x) = \left\{ \begin{array}{ccc} 0 & \text{si} & x \in P \\ +\infty & \text{sinon} \end{array} \right.$$

Remarque : Si P convexe, alors $\mathbb{1}_P$ est convexe. Si $\alpha > 0$, $\alpha \in \mathbb{R}$, alors $\Gamma_{\alpha}(\mathbb{1}_P) = P$ donc $\mathbb{1}_P$ caractérise P.

Fonctions d'appui $\mathbf{2}$

On appelle fonction d'appui à S et on note σ_S la fonction définie par :

$$\sigma_S(d) = \sup_{s \in S} (s, d)$$

Remarque : σ_S est toujours convexe (même si S ne l'est pas).

⇒ Théorème:

Soit S un sous-ensemble non vide de H. Alors $s \in \overline{conv}(S)$ si et seulement si

$$\forall d \in H, (s,d) \leq \sigma_S(d)$$

De plus, $\sigma_S = \sigma_{\overline{conv}(S)}$

Remarque : Soient S_1 et S_2 2 convexes fermés. $S_1 = S_2 \Leftrightarrow \sigma_{S_1} = \sigma_{S_2}$.

Soient S_1 et S_2 deux sous-ensembles de H non vides.

- 1. $\sigma_{S_1+S_2} = \sigma_{S_1} + \sigma_{S_2}$ 2. $\sigma_{S_1 \cup S_2} = \max{\{\sigma_{S_1}, \sigma_{S_2}\}}$

3 Transformée de Fenchel

On va chercher les fonctions affines minorantes :

$$\langle p, x \rangle + \alpha \le f(x)$$

$$-\alpha \ge \langle p, x \rangle - f(x)$$

On va prendre $-\alpha = \sup_{x \in H} \{ \langle p, x \rangle - f(x) \} = f^*(p).$

🛂 Définition: Transformée de Fenchel

Soit H un Hilbert et $f:H\to\overline{\mathbb{R}}.$ On définit la transformée de Fenchel de f, notée $f^*:H\to\overline{\mathbb{R}}$ par :

$$f^*(p) = \sup_{x \in H} \{ \langle p, x \rangle - f(x) \}$$

i Propriété: Inégalité de Young

$$\forall p, x \in H, \ f^*(p) + f(x) \ge \langle p, x \rangle$$

I Proposition: Semi-continue inférieurement

Soit $f: H \to \mathbb{R}$. On dit que f est semi-continue inférieurement (sci) si l'une des deux propositions équivalentes suivantes est vérifiée :

- 1. $\forall x \in H, \ \forall x_n \to x, \ \liminf_{n \to +\infty} f(x_n) \ge f(x)$
- 2. epi(f) est fermé.

1 Proposition:

Soit $(f_i)_{i\in I}$ une famille de fonctions sci. Alors $\sup_{i\in I} f_i$ est sci.

⇔ Corollaire:

 f^* est sci et convexe.

♣ Définition: Biconiuauée

La biconjuguée de f, notée f^{**} est définie par :

$$f^{**}(x) = \sup_{p \in H} \{ \langle p, x \rangle - f^*(p) \}$$

oxtimes Propriété:

$$-f^{**}(x) + f^{*}(p) \ge \langle p, x \rangle$$

- $f(x) \ge f^{**}(x)$

Si f est convexe, sci et propre, alors f^* est convexe, sci et propre.

⇔ Théorème: Fenchel-Moreau

Soit $f: H \to \overline{\mathbb{R}}$ une fonction propre. alors f est convexe et sci si et seulement si $f = f^{**}$

IRemarque:

On peut définir la transformée de Fenchel sur un espace normé ${\cal E}$ refléxif :

$$f^*: \begin{array}{ccc} E' & \to & \mathbb{R} \\ p & \mapsto & \sup_{x \in E} \{ \langle p, x \rangle_{E'E} - f(x) \} \end{array}$$

Dans ce cas, les propositions précédentes et le théorème de Fenchel-Moreau restent vraies.

⇔ Corollaire:

Soit f propre. alors f est convexe et sci si et seulement si f est l'eneoppe supérieure de ses minorantes affines.

4 Continuité des fonctions convexes

1 Proposition:

Soit $f: H \to \overline{\mathbb{R}}$ convexe et propre. On suppose qu'il existe une boule ouverte sur laquelle f est bornée. Alors f est continue sur l'intérieur de son domaine qui est non vide.

$\blacksquare Remarque:$

Si f est continue en un point, alors f est bornée sur une boule, et donc f est continue sur l'intérieur de son domaine.

Si $f: H \to \overline{\mathbb{R}}$ est convexe et propre avec H de dimension finie, alors f restreinte à l'intérieur relatif de son

Remarque: Si $f: H \to \mathbb{R}$, alors f continue sur H.

5 Différentiabilité des fonctions convexes

5.1 Dérivées directionnelles des fonctions convexes

⇔ Théorème:

Soient $f: H \to \overline{\mathbb{R}}, x \in Dom(f), d \in H$.

- 1. $\varepsilon \in \mathbb{R}_+^* \mapsto \frac{f(x+\varepsilon d)-f(x)}{\varepsilon}$ est croissante
- 2. f'(x,d) existe toujours et vaut éventuellement $\pm \infty$. De plus, $f'(x,d) = +\infty$ si et seulement si $x + \varepsilon d \notin$ Dom(F) pour tout ε petit, et :

$$f'(x,d) = \inf_{\varepsilon \in \mathbb{R}_+^*} \frac{f(x + \varepsilon d) - f(x)}{\varepsilon}$$

$$f'(x,d) \le f(x+d) - f(x)$$

3.
$$f'(x,d) \ge -f'(x,d)$$

Reconnaître une fonction convexe à l'aide de ses dérivées

⇒ Théorème:

Soit $f: H \to \overline{\mathbb{R}}$ une fonction propre. On suppose que f est différentiable sur un ouvert Ω de $Dom(f) \subset H$. On a équivalence entre les propositions suivantes :

- 1. f est convexe (resp. strictement convexe) sur Ω
- 2. $\forall x, y \in \Omega, f(y) \ge f(x) + f'(x, y x)$ (resp. f(y) > f(x) + f'(x, y x)) 3. $\forall x, y \in \Omega, (f'(y) f'(x))(y x) \ge 0$ (resp. $(f'(y) f'(x))(y x) \ge 0$)

⇔ Théorème:

Soit $f: H \to \overline{\mathbb{R}}$ propre et 2 fois différentiable sur un ouvert $\Omega \subset Dom(f)$.

Alors f est convexe si et seulement si $D^2 f(d, d) \ge 0 \ \forall d \in H$.

De plus, si $D^2 f(d,d) > 0$, alors f est strictement convexe (réciproque fausse : penser à $f(x) = x^4$)

6 Sous-différentiabilité des fonctions convexes

Définitions et premières propriétés

🔩 Définition: Fonction affine

a est affine si $\forall x, y \in H, \forall t \in \mathbb{R}$,

$$a(tx + (1-t)y) = ta(x) + (1-t)a(y)$$

Pour toute fonction affine, il existe x^* (la pente) et α (l'ordonnée) telles que $a(x) = \langle x^*, x \rangle + \alpha$.

🔩 Définition: Minorante affine

On dit que a est une minorante affine de f si a est affine et si :

$$\forall x \in H, \ f(x) \ge a(x)$$

On dit qu'une minorante affine est exacte en x_0 si $f(x_0) = a(x_0)$. Dans ce cas,

$$a(x) = \langle x^*, x - x_0 \rangle + f(x)$$

⇔ Théorème: Existence d'une minorante affine

Soit $f: H \to \overline{\mathbb{R}}$ convexe et propre. Alors f admet une minorante affine. De plus, celle-ci peut être choisie exacte en un point de ri(Dom(f)), ie : si $x \in ri(Dom(f))$,

$$\exists x^* \in H; \ f(y) \ge \langle x^*, y - x \rangle + f(x)$$

♣ Définition: Sous-différentiable

On dit que f convexe et propre est sous-différentiable en x s'il existe $x^* \in H$ tel que :

$$\forall y \in H, \ f(y) \ge \langle x^*, y - x \rangle + f(x)$$

Les éléments x^* sont appelés les sous-gradients de f en x, et on note $\partial f(x)$ l'ensemble des sous-gradients de f en x.

Par convention, si $x \notin Dom(f)$, alors $\partial f(x) = \emptyset$

■ Proposition: Sur l'optimalité

Soit $f: H \to \overline{\mathbb{R}}$ convexe et propre. Alors f atteint un minimum en x si et seulement si $0 \in \partial f(x)$.

Sous les mêmes hypothèses :

$$\partial f(x) = \{x^* \in H; \ f'(x,d) \ge \langle x^*, d \rangle, \ \forall d \in H\}$$

⇔ Théorème:

Soit $f: H \to \overline{\mathbb{R}}$ convexe et propre, et soit $x \in Dom(f)$. Les assertions suivantes sont équivalentes :

- 1. $\partial f(x) \neq \emptyset$
- 2. $\exists y \in ri(Dom(f)); f'(x, y x) > -\infty$
- 3. $f'(x, \bullet) \neq -\infty$

⇔ Corollaire:

Si f est convexe et propre et si f est continue en $x \in Dom(f)$, alors $\partial f(x) \neq \emptyset$

1 Proposition:

Soit f convexe et propre tel que f est continue en x. Alors

$$f'(x,d) = \sigma_{\partial f(x)}(d) = \sup_{p \in \partial f(x)} \langle d, p \rangle$$

6.2 Sous-différentiabilité et transformée de Fenchel

1 Proposition:

Soit $f: H \to \overline{\mathbb{R}}$ convexe et propre. Alors

$$\partial f(x) = \{ p \in H; \ f(x) + f^*(p) = \langle p, x \rangle \}$$

On définit de la même manière :

$$\partial f^*(p) = \{ x \in H; \ f^{**}(x) + f^*(p) = \langle p, x \rangle \}$$

Soit $f: H \to \overline{\mathbb{R}}$ convexe, propre et sci.

$$x \in \partial f^*(p) \Leftrightarrow p \in \partial f(x)$$

6.3 Liens avec la différentiabilité

1 Proposition:

Soit $f: H \to \overline{\mathbb{R}}$ convexe, sci et propre. On suppose que f est continue en x.

1. Si f est Gâteaux-différentiable en x, alors

$$\partial f(x) = \{\nabla f(x)\}\$$

2. Réciproquement, si $\partial f(x)$ est réduit à un seul élément, alors f est Gâteaux-différentiable en x et $\partial f(x) = \{\nabla f(x)\}$

6.4 Quelques règles de calcul

Dans toute la suite, on supposera la dimension de H finie.

♣ Définition: Homogène et sous linéaire

 $f'(x, \bullet)$ est dite homogène de degré $n \in \mathbb{R}^*$ si :

$$\forall \lambda \in \mathbb{R}, \ f'(x, \lambda d) = \lambda^n f'(x, d)$$

 $f'(x, \bullet)$ est dite sous-linéaire si :

$$\forall d \in H, \ \exists L > 0; \ |f'(x,d)| \le L \|d\|$$

1 Proposition:

Soient $f: H \to \mathbb{R}$ une fonction convexe et propre et $x \in H$. Alors $f'(x, \bullet)$ est convexe, homogène de degré 1 et sous-linéaire.

⇔ Corollaire:

Sous les mêmes hypothèses, $\partial f(x)$ est un convexe compact non vide.

${f 1} Proposition:$

Soient $f_1, f_2: H \to \mathbb{R}$ deux fonctions convexes, et $t_1, t_2 > 0$. Alors

$$\partial(t_1f_1 + t_2f_2)(x) = t_1\partial f_1(x) + t_2\partial f_2(x)$$

${\bf i} Proposition:$

Soient $A: \mathbb{R}^n \to \mathbb{R}^m$ une fonction affine $(Ax = A_0x + b, A \in \mathcal{M}_{m \times n}, b \in \mathbb{R}^m)$ et $g: \mathbb{R})^n \to \mathbb{R}$ une fonction convexe.

$$\partial(g \circ A)(x) = A_0^* \partial g(Ax)$$