Linux 课程安排

课程简述

本课程是Linux User Group的学生成员面向全校各院系本科生开设的公共选修课。本课程以应用角度出发,带领学生从零开始了解开源Linux系统并学会初步应用。本课程主要讲授在Linux系统下的基础操作、文件系统、Shell脚本、数据处理、C/C++编程、网络配置与高级操作维护等知识。同时,本课程在讲授过程中将贯穿开源思想,并向学生普及开源世界的相关知识。本课程重视实践,学生通过学习课程内容即可动手使用Linux系统为自己和他人带来便利。

本课程在 2018 年春季学期进行, 约 7 次, 每次 75~120 分钟左右, 地点固定, 时间安排在周末, 具体时间根据每周情况微调。

预备工作

安装 Linux

在第一次课程之前在东西区各举行一次 Linux Install Party,确保大家参与课程之前能有一个能使用的 Linux 环境。

安排讲师

开学前将每节课程的讲师确定,如无特殊情况不做大的改动。 每次课程开始提前两周联系讲师准备课程使用的演示实验和讲稿。 每次的演示资料和讲稿要提前一周上传到 LUG FTP。

安排地点和时间

开学后根据同学们的习题课,课外活动等时间安排,每次课提前一周确定时间和地点并通知。 安排一人向学校申请教室并和讲师沟通。

收集参与者联系方式

收集参加课程的同学联系方式. 包括邮箱和联系电话. 方便后续的通知。

课程内容

课表

课次	主题	讲师	时间
1	初识Linux(1)	李嘉豪	
2	初识Linux(2)	金孜达	
3	文件操作与软件安装	杨肇峰	
4	进程、服务和任务	马凯	
5	分区、备份与批处理(1)	邓胜亮	
6	分区、备份与批处理(2)	崔灏	
7	未定		

详细内容

第一部分 初识Linux

//这一部分的应用场景是为实验室安装远程服务器并且连接上去。

老师让学生了解20世纪系统的发展历程。

在20世纪,除了大名鼎鼎的Windows系统的起源DOS以外,还有开源的UNIX系统,它逐渐演化成了如今的MacOS系统和Linux系列,如今Linux系统的各种发行版

(Ubuntu/Debian/CentOS/Arch)被广泛用于各种服务器。

老师要讲解Linux系统与常见的Windows和MacOS系统的区别。

Linux系统的核心在其命令行(或者说Shell)操作。

Linux系统对大小写敏感。

Linux系统大部分都是开源版本,旗下的很多程序也都是开源的,开源思想是Linux哲学的一部分。

老师要告诉学生Linux擅长的环境、告诉学生他们学会Linux系统以后可以做什么。

Linux系统在Shell操作下万能灵活,本身比较安全,可以担当服务器系统。

Linux系统下有很多其他系统没有的专业软件,而且是开源的。可以直接使用软件,或者阅读软件源码了解软件,甚至可以基于其他软件自己开发。

学生在学习Linux基础以后,可以为自己的实验室搭建专属服务器,已经有服务器的可以去维护。

老师要指导大家往自己的电脑上安装最新的某一Linux发行版。

介绍一下科大源Mirrors@USTC,告诉学生科大对Linux的重大贡献和对周边地区的辐射影响。

通过事先准备的U盘或者网路络上的镜像文件,让学生在电脑上安装某一Linux发行版,或者在虚拟机上安装系统。跟随系统安装的每一步,指导安装过程。

老师要演示如何简单使用图形界面,以及开启Shell进行操作。

介绍一下桌面,任务栏,资源管理器,开关机。

打开Shell,试着输入第一个命令(比如ping_www.ustc.edu.cn,然后ctrl+c中断),修改命令的参数再试一次(比如ping –c 3_www.ustc.edu.cn)。这样就可以引导学生学会自助学习(比如 man ping)。

老师要带领学生进入开源圈子。

介绍若干网站(比如Ubuntu社区 community.ubuntu.com; Github github.com)。

邀请加入科大Linux QQ群,介绍Linux@USTC社团。

教导学生敢于提问, 善于提问。

老师引导学生安装第一个程序。

可以先让学生改成科大源。

如果维护一个服务器,一定会不时要远程连接,因此需要为这个服务器安装ssh服务端。安装第一个程序ssh(比如sudo apt install ssh)并让它成为开机启动的守护进程(sudo systemctl enable ssh)。这里不要深入讲解apt和systemd。

在Windows/MacOS系统上安装SSH客户端。

测试一下远程连接。

老师开始初步介绍用户、用户组、文件和文件权限。

介绍用户和用户组,UID和GID的概念,介绍root用户。

查看自己的用户信息(id)。为系统添加一个组(groupadd);为系统添加一个用户(useradd);设置初始密码(passwd);把新用户加进新组(usermod –g);删除用户组(groupdel);删除用户(userdel –r)。

Linux文件系统目录从根目录(/) 开始,启动Shell的时候从家目录开始(root用户:/root/;一般用户:/home/xxx/)。查看自己所在的目录(pwd),进入某一目录(比如家目录cd~),查看目录下的文件(Is -al)。

介绍文件和文件夹的读、写、执行权限,每个文件的所属用户和用户组。为文件修改所属用户(chown)或者用户组(chgrp),修改文件的权限设置(chmod)。

介绍执行用户切换(sudo),用户切换(su)。

老师介绍系统的关机和重启命令。

关机 (shutdown), 重启 (reboot)。

第一周内容提炼

UNIX和Linux的历史(20)

Linux系列的特性(10)

Linux目前的主要用途(15)

安装Linux发行版(20)

操作图形界面(10)

操作Shell: ping(10)

介绍开源文化(5)

合计90分钟

第二周内容提炼

基础软件安装: apt, systemctl(5)

远程连接: ssh(5) 介绍用户和用户组(20) 目录操作: pwd, cd, ls(5) 介绍文件和文件夹的权限(20)

文件权限操作: chown, chgrp, chmod(15)

用户切换: sudo, su(15)

合计90分钟

第二部分 文件操作与软件安装

//这一部分的应用场景是处理实验数据,以及安装一些必须的工作软件或者系统软件。

老师讲解如何获取并阅读数据。

连接到远程主机下载数据(scp),或者从网站上下载数据(wget)。

创建目录(mkdir),并把下载的数据放到那里(mv, cp)。

讲解打包(.tar)和常见压缩类型(.bz2/.gz),解压文件(tar-jxvf)。

查看数据(cat, less, head, tail)。

老师讲解如何操作数据。

对比一下两组实验数据(行比较用diff、字节比较用cmp)。

介绍文本编辑器nano/vim的用法,修改数据文件。

把修改好的文件打包压缩(tar -icvf), 上传(scp), 删除压缩包(rm)。

老师给学生介绍软件的下载、安装、更新和删除。

apt是一个很好用的软件管理器,它可以很方便地操作软件安装而无需担心复杂的问题,例如依赖。可以用安装mysql服务端举例。找到想要的软件的名称(apt search),安装起来(apt install)。更新软件信息(apt update),升级软件(apt upgrade)。删除不要的软件(apt autoremove)。

很多软件的安装需要其他软件作为前提,这就是依赖。删除这个软件的时候,会删除一些不再需要的依赖。介绍自动安装标记,可以将某个软件标记成手动安装以避免被自动除去(apt-mark)。

老师给学生介绍开源软件的安装特性。

一般情况可以直接用apt来安装已经编译好的二进制文件,但是很多时候有些软件可能没有专门为你的发行版准备二进制文件。因此为了让程序能在不同平台运作,很多作者会开放程序源代码,这时候就可以进行开源编译。开源编译是Linux系统的特色。

为了能够进行编译安装,需要先安装build-essentials。

老师演示编译安装一个开源软件(mpv)。

作为实验室的服务器,很可能需要一个网页服务,可以用apache2作为例子。

从官网上下载安装包,解压到/usr/local下,进入解压目录。浏览README(如果是apache2,会告诉你到INSTALL下阅读说明)。然后执行三步命令(./configure, make, make install),执行过程中稍微讲解一下每一步是干什么的。

把程序的帮助文件链接到man下(/etc/manpath.config)。

老师说一下执行目录的环境变量。

源码目录下的configure也是一个命令,但是它只能在源码目录下用./configure执行(或者说需要指定命令地址);命令Is在/bin下,但随时随地可以直接用Is执行。因此引出\$PATH,让学生试着把.加入\$PATH,在源码目录下就可以直接configure。随后让其移除,因为这样不安全。

老师要指出编译安装需要自己解决依赖问题。

apt一般会自动解决依赖问题,但是编译安装则只能自己解决。一般阅读README来找到依赖,或者通过./configure提示丢失的头文件找到依赖(apt-find)。给出一个例子。

老师让学生找一下安装好的软件放在哪里。

安装好的软件和命令一定有个存放地点,找一下他们的位置(which, locate, find),介绍这些命令的区别。

第三周内容提炼

远程下载/上传数据: scp, wget(10) 操作文件/目录: mkdir, mv, cp, rm(15)

文件打包压缩:tar(10)

文件查看: cat, less, head, tail(10)

数据差异比较:diff, cmp(5) 文本编辑器:nano, vim(15) 软件管理:apt, apt-mark(15) 开源软件和编译安装(20)

执行目录环境变量:\$PATH(5)

解决依赖问题(10)

命令和文件查找: which, locate, find(10)

合计125分钟

第三部分 进程、服务和任务

//这一部分的应用场景是日常监测执行学术任务的实验室机器的情况,并且自己写一些能后台 执行/自动执行的任务。

老师告诉学生什么是进程。

进程是程序的实例,每个运行中的程序都是一个进程,每个进程有唯一PID。

因为命令也是程序, 因此运行一条命令也会启动一个进程。

进程也可以产生进程,分别叫父进程和子进程,产生的过程是一个fork&exec。

老师讲解前台和后台的概念和使用。

对于一个Shell,它有前台和后台之分。运行在前台的进程接受标准输入流,运行在后台的进程无法接受标准输入流,但是仍然使用标准输出流和标准错误流。

运行一个前台进程(比如ping <u>www.ustc.edu.cn</u>),使用ctrl+z暂停到后台,使用jobs命令查看后台命令,发现是停止的。使用bg %1让它跑起来(屏幕上会出现ping 输出)。关闭这个后台任务(kill -9 %1)。讲解一下jobs, fg, bg, kill的详细用法。

运行一个后台进程(比如ping <u>www.ustc.edu.cn</u> &),观察其仍可输出但是无法用ctrl+c终止,使用fg %1移动到前台,ctrl+c关闭。

老师讲解一些与前后台进程有关的程序。

用nohup运行一个后台进程(比如nohup ping –c 10 <u>www.ustc.edu.cn</u> &),观察其已经没有输出,依据提示进入到nohup.out下查看结果。

安装tmux,新建若干会话,并行执行不同命令,再关闭它们。关闭当前Shell再打开一个新的Shell,列出tmux窗口,发现它们没有被清除。

老师演示监控进程和资源。

运行一个命令(比如nohup ping <u>www.ustc.edu.cn</u> &),查看一下当前运行的进程(ps)。 安装htop,用htop查看所有进程,搜索特定进程,查看资源占用率,把htop和Windows的任务 管理器进程板块类比。

使用资源命令free(free -h) 查看当前内存和交换空间的使用情况。

老师演示结束进程。

从ps或者htop中获得PID, 关闭该进程(kill)。

老师告诉学生什么是服务。

那些常驻在内存中的进程,而且它们可以提供一些系统或者网络功能的,这个进程就是服务。

指出一些常见的服务(比如systemd, httpd, mysgld, crond)。

老师告诉学生怎么管理服务。

使用systemctl工具管理服务。用一个常见的服务作为例子(比如sshd),开启此服务(systemctl start),关闭此服务(systemctl stop),查看服务状态(systemctl status),系统自启动(systemctl enable),关闭自启动(systemctl disable)。检查一下服务开启和关闭时的不同(比如ssh 127.0.0.1在sshd关闭的时候是不会成功的),确认一下自启动的程序在重启以后确实是开启状态。

老师告诉学生什么是任务。

系统会执行各种任务,有些是要延期执行的一次性任务,有些是反复执行的例行性任务。 更新locate数据库,删除临时文件等都是系统的自带任务。

老师解释如何安排任务。

利用atd服务和at命令安排延迟一次性任务,比如6小时后重启机器,配置/etc/at.allow和/etc/at.deny来给予at权限。

利用crond服务和crontab命令安排例行性任务,比如每天从网站上拉取数据,配置/etc/cron.allow和/etc/cron.deny来给予cron权限。

可以使用crontab的@reboot来安排开机启动的任务,比如给一个欢迎信息或者实验室规范提示。

crontab假设24小时不断电,但是这可能是不成立的。anacron在开机启动一次,判断有没有未被crontab执行的命令,如果有,就会延迟一定时间后执行(规则写在/etc/anacrontab里)。

第四周内容提炼

进程的概念(10)

前台进程和后台进程: jobs fg bg kill(20)

前后台进程工具: nohup, tmux(20) 进程监控工具: ps, free, htop(20)

服务的概念(10)

服务管理:systemctl(15)

一次性任务: at(10)

例行性任务: crontab, anacron(15)

合计120分钟

第四部分 分区、备份与批处理

//这一部分的应用场景是需要对实验室的重要数据进行备份和还原。

老师讲解一下文件和目录的特殊权限和特殊属性。

文件和目录有三个特殊权限:SUID/SGID/SBIT。通过chmod可以设置这些权限。

文件还可以通过chattr增加其他属性(比如+a为仅附加、+i为写保护),用Isattr查看。

老师说明一下Linux的文件系统的文件夹命名规范。

介绍Linux常用的标准FHS,讲解几个主要的根目录下的一级目录都是储存什么的。引导学生回忆,管理员的主文件夹就是/root,之前的源码和安装好的程序都放在/usr下,配置文件都在/etc下,基础的命令都放在/bin下等。

强调一下Linux系统视一切信息为文件,所以/dev下面的是表示磁盘的文件。

老师演示如何查看磁盘和文件信息。

使用df查看各个设备的信息,使用du查看一个目录和它的下属目录与文件的大小信息。 老师演示关于备份的整个过程。 介绍一下磁盘的主分区、扩展分区和逻辑分区。插入一块新磁盘,使用fdisk工具为一个新磁盘分区,或者为旧磁盘调整分区,用partprobe热更新分区表。分区以后,用mkfs命令为分区格式化。

解释一下Linux系统的挂载概念,与Windows的分区做类比。利用mount命令,在/mnt下新建一个目录,再把设备挂载到该目录下。

使用dump工具为一个目录进行完整备份或者增量备份,或者用rsync备份。

利用umount命令卸载备份磁盘。

老师演示关于还原的整个过程。

一般要做还原可能是数据删除或者硬件损坏,遇到莫名其妙的错误时,可以用fsck检查磁盘有没有坏道。有坏道的话还原可能也没用,就需要挂载新磁盘。

挂载备份盘,用restore命令还原整个备份或者抽取出一部分备份。卸载备份磁盘。

老师演示自动挂载。

有时候备份盘可以一直插在主机上,但是所有设备的挂载关机以后就丢失了,因此需要自动挂载。在/etc/fstab下修改文件来自动挂载备份盘。

老师演示批量处理数据文件。

例如现在已经有了100个完整备份,要清除一些太老的备份腾出空间,可以选择前90个备份,或者选择2个月以前的备份。进一步讲解find的用法,找到它们,用xargs来移动到另外的磁盘(配合mv)或者直接删除(配合rm)。

老师演示使用Shell脚本一次性处理多个事件。

先讲解一下脚本的顺序、判断和循环操作,以及参数读入(\$0,\$1,\$2...)。

写一个脚本。例如,接受三个参数,如果是autodump /path/to/file /path/to/backup,那就自动把/path/to/file目录备份起来自动命名,存到/path/to/backup,然后在/path/to/bakcup下的某一个仅附加(chattr +a)的日志文件里加一笔记录;如果是autorestore /path/to/backup /path/to/file 那就读取/path/to/backup的一个日志文件,把其下最新的备份还原到/path/to/file下。更健壮更多功能的Shell可以留作作业。

第五周内容提炼

文件和目录的特殊权限:SUID/SGID/SBIT(15)

文件的隐藏属性: chattr, lsattr(10)

Linux目录标准配置FHS(10) 磁盘和目录信息: df, du(15) 磁盘分区: fdisk, partprobe(20)

磁盘格式化:mkfs(5) 挂载:mount, umount(15)

合计90分钟

第六周内容提炼

备份与还原: dump, rsync, restore(10)

自动挂载:fstab(10) 文件的查找:find(20) 参数代换:xargs(10) Shell Script应用(40)

合计90分钟

第五部分 未定:从以下主题备选并细化

备选主题1:日志处理

//这一部分的应用场景是通过阅读系统日志来排查服务器问题。

//内容有讲解数据流,正则表达式,数据处理、阅读日志和处理日志。

备选主题2:网络配置

//这一部分的应用场景是为实验室局域网做配置。

//内容有讲解必要的网络知识,网络配置,网络工具(mtr, iproute2等),防火墙和端口映射。

备选主题3:Linux上编程

//这一部分的应用场景是在实验室中,一些源码必须在Linux上编译运行的情况。 //内容有gcc/g++编译参数,makefile,简单的gdb调试和一些python的使用方法。

老师向同学介绍gcc/g++的一些参数

- -E:预处理文件
- -S:编译到汇编代码
- -c:编译到目标文件
- -o:指定输出文件名字
- -L:链接指定的目标文件
- -I:将指定文件夹加入编译时环境变量
- -On:指定优化级别
- -g:保留调试信息

高级:

-fsanitize=

thread:多线程竞争冲突检测

address:内存泄露或越界访问检测

undefined:未定义行为检测

-std=Cxx:指定标准版本

-mxx:指定支持某些架构或者指令集