Formelblad elektriska kretsar och fält EEM076

Edvin Alestig

May 14, 2021

1 Storheter och enheter

Storhet	Enhet
Effekt (P)	Watt (W)
Elektriskt flöde, flux (Φ_E)	$(V \cdot m)$
Elektriskt fält (E)	(N/C)
Energi (W)	Joule (J)
Frekvens (f)	Hertz (Hz)
Impedans (Z)	Ohm (Ω)
Induktans (L)	Henry (H)
Kapacitans (C)	Farad (F)
Konduktivitet (σ)	$(\Omega \cdot m)^{-1}$
Kraft (F)	Newton (N)
Laddning (Q)	Coloumb (C)
Magnetfält (B)	Tesla (T)
Magnetiskt flöde, flux (Φ_B)	Weber (Wb)
Potentiell energi (U)	Joule (J)
Resistans (R)	Ohm (Ω)
Resistivitet (ρ)	$(\Omega \cdot m)$
Spänning (v)	Volt (V)
Ström (I)	Ampere (A)
Strömdensitet (J)	(A/m^2)
Vinkelhastighet (ω)	(rad/s)

2 Lagar

v = RIOhms lag $P = Iv = RI^2 = \frac{v^2}{R}$ Effektlagen $\sum v = 0$ i en loop Kirchhoffs spänningslag (KVL) $\sum I_{in} = \sum I_{out}$ i en nod Kirchhoffs strömlag (KCL) $\sum P = 0$ i en krets Energiprincipen $\vec{F}_{12} = k_e \frac{q_1 q_2}{r^2} \hat{r}_{12}$ Coloumbs lag $\vec{\Phi_E} = \oiint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$ $\vec{B} = \int d\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \hat{r}}{r^2}$ Gauss lag Biot-Savarts lag $\oint \vec{B} \cdot d\vec{s} = \mu_0 \cdot I_{enc}$ Amperes lag $\vec{\Phi_B} = \iint \vec{B} \cdot d\vec{A} = BA \cos \theta = BA \cos \omega t$ Faradays lag $\varepsilon = \Delta V = \oint \vec{E} \cdot d\vec{s} = -N \frac{d\Phi_B}{dt}$ $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$ Lorentzkraft

3 Maxwells ekvationer

Faradays lag:
$$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$$
 Gauss lag (EF):
$$\Phi_E = \oiint \vec{E} \cdot d\vec{A} = \frac{Q}{\mu_0}$$
 Gauss lag (MF):
$$\Phi_B = \oiint \vec{B} \cdot d\vec{A}$$
 Ampere-Maxwells lag:
$$\varepsilon = \oint \vec{B} \cdot d\vec{s} = \mu_0 (I + \varepsilon_0 \frac{d\Phi_E}{dt})$$

4 Konstanter

Coloumbkonstanten $k_e = \frac{1}{4\pi\varepsilon_0} = 8.99 \cdot 10^9 \frac{Nm^2}{C^2}$ Elektrisk permittivitet i vakuum $\varepsilon_0 = \frac{10^{-9}}{36\pi}$ Elementarladdningen $e = 1.602 \cdot 10^{-19} \text{ C}$ Tomrummets permeabilitet $\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m (Tm/A)}$ Ljusets hastighet i vakuum $c = 299 \ 792 \ 458 \text{ m/s}$

5 Formler

5.1 Kretsar

$$I(t) = \frac{dq(t)}{dt}$$

$$Q(t) = \int_{t_0}^{t} I(t) \cdot dt + Q(t_0)$$
$$W = \int_{t_1}^{t_2} P(t) \cdot dt$$

I kondensatorer:

$$Q = Cv$$

$$I = \frac{dQ}{dt} = C\frac{dv}{dt}$$

$$P = IV = Cv\frac{dv}{dt}$$

$$W = \int_{t_0}^t P(t) \cdot dt = \int_{t_0}^t Cv\frac{dv}{dt} = C\int_{v(t_0)}^{v(t)} v \cdot dv = \frac{C}{2}(v(t)^2 - v(t_0)^2)$$

$$W = \frac{Cv^2}{2}, v(t_0) = 0$$

$$v(t) = \frac{1}{C}\int_{t_0}^t I(t) \cdot dt + v(t_0)$$

$$C = \varepsilon_0 \frac{A}{d} = \frac{Q}{|Ed|}$$

$$U = \frac{1}{2}\varepsilon_0 E^2 Ad = \frac{1}{2}C|V| \text{ (Potentiell energi)}$$

I induktorer:

$$v = L\frac{dI}{dt}$$

$$W = \frac{LI^2}{2}, I(t_0) = 0$$

$$I(t) = \frac{1}{L} \int_{t_0}^t v(t) \cdot dt + I(t_0)$$

$$P = IV = LI\frac{di}{dt}$$
 Self-inductance: $\varepsilon_L = -N\frac{d\Phi_B}{dt} = L\frac{dI}{dt}$
$$L = \frac{N\Phi_B}{I} = \frac{\mu_0 N^2 A}{l}$$

$$U = \frac{1}{2}LI^2$$

The power, or rate at which an external emf works to overcome self-induced emf and pass current:

$$P_L = \frac{dW_{ext}}{dt} = IL\frac{dI}{dt}$$

5.2 Elektriska fält

$$\vec{E} = k_e \frac{q}{r^2} \hat{r}_{12}$$

$$\vec{F}_E = q \vec{E}$$

$$\vec{E}_{total} = \sum_{l} \vec{E}_i \text{ (diskreta laddningar)}$$

$$\vec{E}_{total} = \int_{L1}^{L2} \vec{E}_l \cdot dl \text{ (kontinuerliga laddningar)}$$

Flytta laddningar:

$$W=\int_R^\infty \vec{F}\cdot d\vec{r}=rac{-k_eq_1q_2}{R}$$
 (utanför fält)
$$W=-qE_0r$$

Dipoler:

$$\vec{P} = q\vec{d}$$

$$\vec{\tau} = \vec{p} \times \vec{E}$$

$$\tau = p \cdot E \cdot \sin \theta$$

$$U = Ep(\sin \theta_1 - \sin \theta_0)$$

Elektriskt flöde (flux):

$$\vec{\Phi} = \sum \vec{E}_i$$

$$\vec{\Phi} = \int_{L1}^{L2} \vec{E}_l \cdot d\vec{l}$$

$$\vec{\Phi} = \iint \vec{E} \hat{n} \cdot d\vec{A} = \iint \vec{E} \cdot d\vec{A} \cdot \cos \theta \text{ i två dimensioner}$$

Elektrisk potential:

$$\frac{W}{q} = -\int_{A}^{B} \vec{E} \cdot d\vec{r} = -Ed = \Delta V$$

$$\vec{E} = -\frac{dV}{d\vec{r}} = -\nabla v = -grad(v)$$
 (typ flerdimensionell derivata)

Ström, konduktivitet & resitivitet:

$$I = \iint \vec{J} \cdot d\vec{A} = \frac{dQ}{A \cdot dt}$$

$$\vec{J} = \sigma \vec{E}$$

$$J = \sigma E = \sigma \frac{\Delta V}{l} = \frac{I}{A} \text{ (uniform field)}$$

$$\Delta V = \frac{l}{\sigma} J = \frac{l}{\sigma A} I = RI$$
$$\rho = \frac{1}{\sigma}$$

 $\rho = \rho_0 [1 + \alpha (T - T_0)]$ när det beror på temperatur

Magnetfält, generatorer, motorer och induktion:

$$\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \hat{r}}{r^2} \implies B = \frac{\mu_0 I}{2\pi r} \text{ i en oändlig wire}$$

$$B = \frac{\mu_0 N I}{l} = \mu_0 n I \text{ i en oändlig solenoid}$$

$$I = \frac{|\varepsilon|}{R} = \frac{NBA\omega}{R} \sin \omega t$$

$$P = \frac{(NBA\omega)^2}{R} \sin^2 \omega t$$

Total work done by external source to increase current from 0 to I in a magnetic field/inductor:

$$W_{ext} = U_B = \int_0^I LI \cdot dI = \frac{1}{2}LI^2$$

Elektromagnetiska vågor:

$$c = \lambda f = \frac{\omega}{k} = \frac{E}{B}$$

$$\vec{E} = E_y(x,t)\hat{j} = E_0 \cos(kx - \omega t)\hat{j}$$

$$\vec{B} = B_z(x,t(\hat{k} = B_0 \cos(kx - \omega t)\hat{k})$$

$$\frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}$$

$$\frac{\partial E_y}{\partial x} = -kE_0 \sin(kx - \omega t)$$

$$\frac{\partial B_z}{\partial t} = \omega B_0 \sin(kx - \omega t)$$

5.3 Växelström

Grundläggande:

$$v(t) = V_m \cos(\omega t + \theta)$$
$$\omega = 2\pi f$$
$$\sin(z) = \cos(z - 90^\circ)$$

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$

$$I_{rms} = \frac{I_m}{\sqrt{2}}$$

$$P_{avg} = V_{rms} \cdot I_{rms} = \frac{V_{rms}^2}{R} = I_{rms}^2 R$$

$$v(t) = V_m \cos(\omega t + \theta) \leftrightarrow V = V_m / \theta$$

Notation:

$$z = x + jy = |z|(\cos\theta + j\sin\theta) = |z|\underline{/\theta} = |z|e^{j\theta}$$

$$z = r\underline{/\theta} \to z = r(\cos\theta + j \cdot \sin\theta)$$

$$z = x + jy \to z = \sqrt{x^2 + y^2}\underline{/\tan^{-1}\frac{y}{x}}$$

$$(b\underline{/c})(d\underline{/e}) = bd\underline{/c} + e$$

$$\frac{b\underline{/c}}{d\underline{/e}} = \frac{b}{d}\underline{/c} - e$$

Induktorer:

$$V_L = V_m \underline{/\theta}$$

$$I_L = I_m / \theta - \frac{\pi}{2}$$

Kondensatorer:

$$V_L = V_m \underline{/\theta}$$

$$I_L = I_m / \theta + \frac{\pi}{2}$$

Tids-/frekvensdomäner:

Över en resistor:
$$v=Ri \leftrightarrow V=RI$$

Över en induktor: $v=L\frac{di}{dt} \leftrightarrow V=j\omega LI$
Över en kondensator: $v=\frac{1}{C}\int i\cdot dt \leftrightarrow V=\frac{1}{j\omega C}I$

Impedans:

$$Z=\frac{V}{I}\Leftrightarrow V=IZ$$

$$Z_R=R,\quad Z_L=j\omega L,\quad Z_C=\frac{1}{j\omega C}$$
 Reaktans $=Im(Z),\quad \text{Resistans}\ =Re(Z)$

Resonans:

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \to Im(Z) = 0$$
 Kvalitetsfaktor $Q_s = \frac{2\pi f_0 L}{R} = \frac{1}{2\pi f_0 CR}$
$$Z_s = R \left[1 + jQ_s \left(\frac{f}{f_0} - \frac{f_0}{f} \right) \right]$$

5.3.1 Effekt

Resistive load ($\theta = 0$):

$$v(t) = V_m \cos(\omega t), \quad i(t) = I_m \cos(\omega t)$$

$$P(t) = V_m I_m \cos^2(\omega t)$$

$$P_{avg} = \frac{V_m I_m}{2} = V_{rms} \cdot I_{rms}$$

Inductive load $(z = \omega L/90^{\circ})$:

$$v(t)=V_m\cos(\omega t), \quad i(t)=I_m\cos(\omega t-90^\circ)=I_m\sin(\omega t)$$

$$P(t)=\frac{V_mI_m}{2}\sin 2\omega t$$

$$P_{ava}=0$$

Capacitive load $(z = \frac{1}{\omega C} / -90^{\circ})$:

$$v(t)=V_m\cos(\omega t),\quad i(t)=I_m\cos(\omega t+90^\circ)=-I_m\sin(\omega t)$$

$$P(t)=-\frac{V_mI_m}{2}\sin(2\omega t)$$

$$P_{avg}=0$$

Effekttyper:

Real power:
$$P = V_{rms}I_{rms}\cos(\theta_v - \phi_i)$$

Reactive power:
$$Q = V_{rms}I_{rms}\sin(\theta_v - \phi_i)$$
 (enhet: VAR)

Complex power:
$$S = P + jQ = V_{rms}I_{rms}/\theta_v - \phi_i$$
 (enhet: VA)

Apparent power:
$$|S| = V_{rms}I_{rms}$$
 (enhet: VA)

Power factor:

$$PF = \frac{P}{|S|} = \cos(\theta_v - \phi_i) \le 1$$

Power angle: $\theta_v - \phi_i$

Amplifier:

Voltage gain:
$$A_v = \frac{V_o}{V_i}$$

Current gain:
$$A_i = \frac{i_o}{i_i} = A_v \frac{R_i}{R_L}$$

Operational amplifier (op-amp):

Common mode signal: $V_{cm} = \frac{1}{2}(V_1 + V_2)$

Differential signal: $V_d = V_1 - V_2$

Ekvivalenta kretsar 6

6.1Seriekoppling

Resistans $R_{eq} = \sum R_n$

Kapacitans $C_{eq} = (\sum C_n^{-1})^{-1}$ $(C_{eq} = \frac{C_1 C_2}{C_1 + C_2})$ vid endast 2 kondensatorer)

Induktans $L_{eq} = \sum L_n$

Impedans $Z_{eq} = \sum Z_n$

Spänningsdelning

$$v_n = R_n I = \frac{R_n}{R_{eq}} \cdot v_{total}$$

6.2Parallellkoppling

Resistans $R_{eq} = (\sum R_n^{-1})^{-1}$

Kapacitans $C_{eq} = \sum C_n$

Induktans $L_{eq} = (\sum L_n^{-1})^{-1}$ Impedans $Z_{eq} = (\sum Z_n^{-1})^{-1}$

 $(R_{eq} = \frac{R_1 R_2}{R_1 + R_2} \text{ vid endast 2 resistorer})$

 $(L_{eq} = \frac{L_1 L_2}{L_1 + L_2} \text{ vid endast 2 induktorer})$ $(Z_{eq} = \frac{Z_1 Z_2}{Z_1 + Z_2} \text{ vid endast 2 impedanser})$

 $I_1 = \frac{R_2}{R_1 + R_2} \cdot I_{total}$ $I_2 = \frac{R_1}{R_1 + R_2} \cdot I_{total}$ Strömdelning

Thévenin equivalent circuit (behöver förbättras) 6.3

- 1. Disconnect the load \mathcal{R}_L and replace with an open circuit.
- 2. Find the open circuit voltage V_{oc} .
- 3. Find the equivalent resistance R_{eq} of the network with all independent sources turned off.
- 4. $v_{th} = v_{oc}$ and $R_{th} = R_{eq}$.

6.4 Norton equivalent circuit (behöver förbättras)

- 1. Replace the load \mathcal{R}_L with a short circuit.
- 2. Find the short circuit current I_{sc} .
- 3. Find the equivalent resistance R_{eq} of the network with all independent sources turned off.
- 4. $I_N = I_{sc}$ and $R_N = R_{eq}$.

6.5 Source transformation - Thévenin and Norton

 $R_{th} = R_N = R_{eq}$ and $v_{th} = I_N R_{eq}$

Genom att kombinera Thévenin och Norton kan man kraftigt förenkla en delkrets.

7 Verktyg och metoder

7.1 Kretsar

Node voltage analysis

Analysera spänningsskillnader gentemot en referensnod (jord eller den nod med flest kopplingar). Lös med ekvationssystem.

1. Välj en referensnod och sätt den till 0 V.

- 2. Sätt variabler för varje nod.
- 3. Applicera KCL på varje nod.
- 4. Räkna ut spänningen genom att räkna ut spänningsdifferensen mellan två noder.

Tips: Räkna I_{out} som positiv i varje resistor.

Supernod

Spänningskälla som ej är direkt kopplad till referensnoden kan göras om till en supernod. Nodens spänning är källans spänning och båda ändars kopplingar räknas som supernodens kopplingar.

Mesh current analysis

Analysera loopar i en krets (medsols). Applicera KVL på varje loop. Lös med ekvationssystem.

Supermesh

Strömkälla i kretsen. Kombinera loopar in i en större superloop. $I_{super} = I_1 - I_2$

Superposition

Går endast att applicera på linjära kretsar med flera ström- och/eller spänningskällor. Varje källa kan analyseras separat för att sedan läggas ihop.

- 1. Stäng av alla källor förutom en.
 - v = 0 blir en kortsluten krets.
 - I = 0 blir en öppen krets.
 - Räkna ut källans kretspåverkan.
- 2. Lägg ihop alla källors påverkan.