Working with Data, Continued

Sebastian Ernst, PhD

Course: Data Engineering, EAIiIBISIS.Ii8K.5dfa09851a120.22

More data cleaning

Dealing with missing data

Pandas uses np.na to represent missing values; isna() and notna() can functions can be used to detect them, e.g.:

```
df.isna().sum()
```

- Values can be filled using fillna(), which takes a scaler, dict, Series or Dataframe.
- We can drop rows with missing values using dropna().
- The same can be done with rows by changing the axis:
 df.dropna(axis=1)

Applying lambdas (a.k.a the functional approach)

- Any function can be applied to a Series or an entire DataFrame
- The function can be a **Python lambda**:

```
df.one.apply(lambda x: 3.14*x)
```

- When applying to a Series, the function is called with scalars as arguments.
- Applied to a DataFrame, the function is called with Series:
 - column-by-column, argument's index is df.index:

```
df.apply(some_function)
df.apply(some_function, axis=0)
```

• row-by-row, argument's index is df.columns:

```
df.apply(some_function, axis=1)
```

Iterating over pandas objects (a.k.a the procedural approach)

DataFrames can be iterated over row-by-row using df.iterrows():

```
for i, r in df.iterrows():
    print(i) # index
    print(r) # row as Series, indexed with df.columns
```

- Similarly, we can use df.items() to iterate column-by-column
- As df.iterrows() returns Series, it does not preserve dtypes; use df.itertupes() if that's needed

Reshaping data

Pivoting

- Pivoting is a common reshaping procedure, provided by df.pivot().
- Essentially, DataFrames are converted from a long format (where attributes for an entity are described by separate rows) to a wide format (where we have columns for attributes):

Melting

• A wide dataframe can be unpivoted back to the long format using df.melt():

 first
 last
 height
 weight

 0
 John
 Doe
 5.5
 130

 1
 Mary
 Bo
 6.0
 150

	first	last	variable	value
0	John	Doe	height	5.5
1	Mary	Во	height	6.0
2	John	Doe	weight	130
3	Mary	Во	weight	150

df3.melt(id_vars=['first', 'last'])

More (un)pivoting

- The pivot_table() function is a generalisation of pivot() that can handle duplicate values by adding aggregation.
- If column names contain useful values (e.g. prefixed), such data can be processed using wide_to_long().

Aggregation and grouping

Aggregation

- Pandas provides many aggregation functions, such as sum(), max() or mean().
- The agg() function lets us combine various aggregation functions in one call and takes:
 - a list of function names:

```
df.agg(['sum', 'min'])
```

• a dictionary keyed by column names:

```
df.agg({'one': 'mean', 'four': 'sum'})
```

a tuples as keyword arguments (to rename columns):

```
df.agg(one_mean=('one', 'mean'), four_sum=('four', 'sum'))
tip: add sum(axis=1) to get a Series instead of a DataFrame here
```

Grouping

- Grouping is performed using groupby() which returns a groupby object.
- Calls to groupby() are usually chained with a groupby-compatible aggregate function, such as sum(), min(), max(), mean() or agg().
- A groupby object can also be iterated over:

```
for i, g in df.groupby('six'):
    print(i, g)
```

 Groups can also be filtered (equivalent of SQL HAVING) using filter(), which returns a DataFrame:

```
df.groupby('six').filter(lambda x: len(x) > 2)
```

Grouping categoricals

d+ + + + 61

When grouping by **categorical** dtypes, groups are created for **all categories**, even the **empty ones**:

```
>>> # "very good", "good", "very bad"
>>> df["grade"] = df["grade"].cat.set categories(
... ["very bad", "bad", "medium", "good", "very good"]
. . . )
>>> df.groupby("grade").size()
grade
very bad 1
bad
medium
good
very good
```

Merge, join, concatenate and

compare

Concatenating DataFrames

- Concatenation is a simple operation of "gluing" DataFrames along one of the axes.
- Implemented using pd.concat(), which takes a list of objects as argument.
- Common use case is appending several homogenous DFs:

Concatenating along column axis

Objects can be concatenated along any axis:

	df1					df4				Result						
											В	С	D	В	D	F
	Α	В	С	D		В	D	F	0	A0	B0	0	D0	NaN	NaN	NaN
0	A0	B0	0	D0	2	B2	D2	F2	1	A1	B1	C1	D1	NaN	NaN	NaN
1	Al	B1	C1	D1	3	В3	D3	F3	2	A2	B2	C2	D2	B2	D2	F2
2	A2	B2	C2	D2	6	B6	D6	F6	3	A3	В3	СЗ	D3	В3	D3	F3
3	A3	В3	C3	D3	7	В7	D7	F7	6	NaN	NaN	NaN	NaN	B6	D6	F6
									7	NaN	NaN	NaN	NaN	B7	D7	F7

Inner concatenation

To only include **common index entries**, we can add join='inner':

pd.concat([df1, df4], axis=1, join="inner")

		df1				df	f4		Result							
	Α	В	С	D		В	D	F								
0	A0	B0	α	D0	2	B2	D2	F2		Α	В	С	D	В	D	F
1	A1	B1	C1	D1	3	В3	D3	F3	2	A2	B2	C2	D2	B2	D2	F2
2	A2	B2	C2	D2	6	B6	D6	F6	3	A3	В3	СЗ	D3	В3	D3	F3
3	A3	В3	СЗ	D3	7	B7	D7	F7								

Using group keys

		df1			Result							
	Α	В	С	D								
0	A0	B0	8	D0			А	В	С	D		
1	A1	B1	CI	D1	×	0	AD	В0	8	D0		
2	A2	B2	CZ	D2	×	1	Al	B1	а	D1		
3	A3	В3	СЗ	D3	×	2	A2	B2	a	D2		
		df2								_		
	Α	В	С	D	×	3	A3	B3	СЗ	D3		
4	A4	B4	C4	D4	У	4	A4	В4	C4	D4		
5	A5	B5	C5	D5	У	5	A5	85	0	D5		
6	Аб	B6	C6	D6	У	6	Aß	86	CIS	D6		
7	A7	B7	C7	D7	У	7	A7	B7	a	D7		
		df3			=	8	AB	88	СВ	D8		
	Α	В	С	D	z	8	Als	100	CB	Lie		
8	A8	B8	C8	DB	z	9	A9	B9	C9	D9		
9	A9	B9	C9	D9	z	10	A10	B10	П0	D10		
10	A10	B10	C10	D10	z	11	A11	B11	αı	D11		
11	A11	B11	C11	D11								

Join

Performs a join of two or more DataFrames using their indexes (or, optionally, one key column):

Join can be inner, outer (left/right) or cross:

```
df1.join(df2, how='outer')
```

 Overlapping columns can be suffixed using lsuffix and rsuffix (only when merging 2!)

Merge

- Similar to join, available as pd.merge() and df.merge()
- Only handles exactly two DataFrames
- Easier key-to-key joins using left_on and right_on:

```
df1.join(df2.set_index('some_column'), on='my_column')
df1.merge(df2, left_on='my_column', right_on='some_column')
```

Can validate relationship type (one_to_one, one_to_many, many_to_one, many_to_many)

Visualising data

Plotting in pandas

- In Python, one of the most common plotting tools is matplotlib and its pyplot interface: import matplotlib.pyplot as plt

```
ts = ts.cumsum()
ts.plot()
```

 Besides the default line plot, available types include bar, histogram, box, area, scatter, hex bin and pie plots.

More plotting

Pandas provides plotting tools in the pd.plotting package:

- Pandas also supports different plotting backends, such as Plotly Express, Bokeh, Altair or hvPlot: pd.options.plotting.backend = "plotly"
- Many other tools (such as seaborn) support pandas objects.

