Table of Important Set Identities

1. 2.	$A \cup \emptyset = A$ $A \cap \mathcal{U} = A$	Identity Laws
3. 4.	$A \cup \mathcal{U} = \mathcal{U}$ $A \cap \emptyset = \emptyset$	Domination Laws
5. 6.	$A \cup A = A$ $A \cap A = A$	Idempotent Laws
7.	$\overline{\left(\overline{A}\right)} = A$	(Double) Complementation Law
8. 9.	$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative Laws
10. 11.	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative Laws
12. 13.	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive Laws
14. 15.	$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's Laws
16. 17.	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption Laws
18. 19.	$A \cup \overline{A} = \mathcal{U}$ $A \cap \overline{A} = \emptyset$	Complement Laws
20.	$A - B = A \cap \overline{B}$	Difference Law
21. 22.	$A \oplus B = (A - B) \cup (B - A)$ $A \oplus B = (A \cup B) - (A \cap B)$	Symmetric Difference Laws