

SARS-CoV-2 Case Study

Advanced Data Science Capstone

Submitted By: -

Sanuj Kumar sanujsriv@gmail.com

Overview

- Background
- Motivation
- High level model
- Analysis
 - Spread Progression
 - Trend Projection
 - o Daily Rise
- Models
 - Machine Learning
 - Deep Learning
- Visualizations
- Conclusion

	Confirmed	Deaths	Recovered	Active	Incident_Rate	Mortality Rate (per 100)
continent						
Africa	721282	15169	380245	325868	3966.78	2.10
Asia	3348464	79140	2385810	883514	15840.23	2.36
Australia	13665	145	9976	3544	82.71	1.06
Europe	2660158	199052	1535157	854287	15503.29	7.48
North America	4439272	193803	1605861	2639608	4843.68	4.37
Others	15392	219	5860	9306	1971.80	1.42
South America	3251990	117634	2200818	933538	5718.37	3.62

Background

- o COVID-19 is the name of the "novel coronavirus" disease
- o SARS-CoV-2 is the name of the virus that causes COVID-19
- COVID-19 is a new coronavirus disease
- Coronaviruses cause mild respiratory illnesses, such as the common cold
 - Severe Acute Respiratory Syndrome (SARS)
 - Middle East Respiratory Syndrome (MERS)
- o Emerged from Hubei Province, China in December 2019

Motivation

" As the pandemic is spreading all over the world, it becomes more important to understand about this spread"

Confirmed Deaths Recovered Active Incident_Rate Mortality Rate (per 100) 14538115 606922 8188292 5670485 48131.42 4.17

This project is an effort to analyze the spread progression, prediction of active cases, daily analysis of what is happening and visualization of cumulative data of confirmed, deaths, and recovered cases over time.

Analysis

About Dataset

The data source is a repository from GitHub: https://github.com/CSSEGISandData/COVID-19.

This data repository is owned and operated by **Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)** who are constantly working towards the cause i.e. analysis of COVID-19 and is deemed as a trustable source.

It gets updated on a daily basis which makes it an ideal choice

Have a look at the dataset

Province/State Country/Region

0	NaN	Afghan	istan 33.93	8911 67	7.709953	0	0 0	0	0 0	0	0 0 0	0 (0	0
1	NaN	Alb	ania 41.15	330 20	.168300	0	0 0	0	0 0	0	0 0 0	0	0	0
	Country_Region	Last_Update	Confirmed	Deaths	Recovered	Active	Delta_Confirmed	Delta_Recovered	Incident_Rate	People_Tested	People_Hospitalized	Province_State	FIPS	UID
0	Country_Region Afghanistan	Last_Update 2020-01-22	Confirmed 0	Deaths 0		Active NaN	Delta_Confirmed 0.0	Delta_Recovered NaN	Incident_Rate 0.0	People_Tested NaN	People_Hospitalized NaN		FIPS NaN	UID 4
												NaN		UID 4 4

Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 1/28/20 1/29/20 1/30/20 1/31/20 2/1/20 2/2/20 2/3/20

	Country_Region	Last_Update	Last_Update Lat Long_ Confirmed Deaths		Deaths	Recovered	Active	<pre>Incident_Rate</pre>	
0	Australia	2020-07-20 18:46:32	-25.0000	133.0000	12070.0	123.0	8395.0	3552.0	47.408257
1	Austria	2020-07-20 18:46:32	47.5162	14.5501	19743.0	711.0	17659.0	1373.0	219.210783

Preprocessing

Data preprocessing – Scaling , Normalization , handling missing values, renaming , pruning, filling empty records

Correlation between the features was essential for data exploration.

	country	continent	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20
0	Afghanistan	Asia	33.939110	67.709953	0	0	0	0
1	Albania	Europe	41.153300	20.168300	0	0	0	0
2	Algeria	Africa	28.033900	1.659600	0	0	0	0
3	Andorra	Europe	42.506300	1.521800	0	0	0	0
4	Angola	Africa	-11.202700	17.873900	0	0	0	0
							•••	
261	Sao Tome and Principe	Africa	0.186400	6.613100	0	0	0	0
262	Yemen	Asia	15.552727	48.516388	0	0	0	0
263	Comoros	Africa	-11.645500	43.333300	0	0	0	0
264	Tajikistan	Asia	38.861000	71.276100	0	0	0	0
265	Lesotho	Africa	-29.610000	28.233600	0	0	0	0

country
USA
Brazil
India
Russia
Peru
South Africa
Mexico
Chile
United Kingdom
Iran
Pakistan
Spain
Saudi Arabia
Italy
Turkey
France
Bangladesh

Confirme	d Deaths	Recovere	d Active	Incident_Rate	Mortality Rate (per 100)
3800442	140787	1131121	2528534	1153.51	3.70
2098389	79488	1489635	529266	987.20	3.79
1118206	27497	700087	390622	81.03	2.46
776212	12408	552644	211160	531.89	1.60
369429	13957	241955	113517	1120.44	3.78
364328	5033	191059	168236	614.29	1.38
349396	39485	259812	50099	273.41	11.30
330930	8503	301794	20633	1731.15	2.57
296944	45397	1413	250134	437.42	15.29
276202	14405	240087	21710	328.84	5.22
265083	5599	205929	53555	120.01	2.11
264836	28422	150376	86038	566.44	10.73
253349	2523	203259	47567	727.72	1.00
244624	35058	197162	12404	404.59	14.33
220572	5508	203002	12062	261.53	2.50
214023	30180	79668	104175	327.89	14.10

After cleansing...

Models

Machine Learning Model

Python package Used: sklearn

Machine Learning Model used: Support Vector Regressor &

Polynomial Regression

The dataset I am using is highly dimensional which is suitable for models like Support Vector Machines & Polynomial Regression.

SVM is famous for efficiently performing a non-linear classification using what is called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces.

Also, the dataset which I am using grows daily making SVM and polynomial regression an ideal choice as they scale relatively well in these cases.

Evaluation

Deep Learning Model

Framework Used: Keras

Keras a high-level deep learning framework that sits on top of backend frameworks like TensorFlow.

Keras is excellent because it allows you to experiment with different neural-nets with great speed! It sits atop other excellent frameworks like TensorFlow and lends well to the experienced as well as to novice data scientists! It doesn't require nearly as much code to get up and running!

Keras provides you with the flexibility to build all types of architectures; that could be recurrent neural networks, convolutional neural networks, simple neural networks, deep neural networks, etc.

Evaluation

Visualization

World Trends

Trend Comparison of Different Countries and India (confirmed)

Trend Comparison

Daily Cases

Mortality Rate

Top 10 Countries: Confirmed, Death and Recovered

Prediction Curve

USA Covid-19 Analysis

Conclusion

Everyone wants to turn the page on COVID-19 as soon as possible. But lessons are inevitable. And it's up to each of us to decide if those lessons are right.

Throughout mankind's long history, there have been many such cases but no one expected something like this to happen in the 21st century.

We have to stay strong and stay indoors as much as possible for our own sake and continue to act from a moral perspective. After all, our best bet is a happy future for all who live on Earth, our common home.