

DDoS Attack Mitigation

Segurança Informática em Redes e Sistemas

Grupo A35 (Alameda)

Miguel Marques 83532

Pedro Figueiredo 83545

Rui Ribeiro 83562

Problema

Um ataque *Denial of Service* (DoS) é caraterizado por enviar um número intolerável de pedidos para uma máquina que se encontre acessível, numa tentativa de sobrecarregar este sistema, levando a que este deixe de conseguir processar qualquer tipo de pedidos ou mesmo ficando *offline*, até que seja possível filtrar os pedidos maliciosos. No entanto, a filtração de pedidos pode ser mais complicada se o ataque em questão for distribuído (*Distributed Denial of Service* ou DDoS), ou seja, se os pedidos forem enviados por várias máquinas diferentes ao mesmo tempo.

Num ambiente vulnerável, este ataque pode levar a que determinados serviços que são prestados através da internet fiquem indisponíveis por tempo indefinido, não conseguindo manter o seu funcionamento normal. Por isso, é necessária uma solução para permitir que o serviço se mantenha ativo em cenários como este e, principalmente, para garantir a qualidade do serviço.

Exemplificando, uma rede de pagamentos que seja alvo deste tipo de ataque e que fique desligada da internet durante algumas horas, poderá não só perder clientes como sofrer prejuízo monetário.

Os alvos da *botnet* são primariamente *IoT devices*, que são normalmente mais vulneráveis e possuem recursos limitados. Como tal, é necessário ter em conta estes parâmetros para aumentar a eficiência dos ataques.

Requisitos

- O sistema de destino deve identificar determinados padrões de tráfego e distinguir pedidos legítimos de pedidos feitos por atacantes.
- O sistema deve conseguir bloquear ou mitigar pedidos fraudulentos.
- O cliente tem que assegurar que mecanismos básicos de defesa, tais como manter o sistema atualizado e utilizar *passwords* seguras.
- Monitorizar o tráfego com destino à infraestrutura em causa.
- ${}^{\bullet}$ Os edge $\mathit{devices}$ devem filtrar tráfego à entrada da infraestrutura.
- O Sistema de Prevenção de Intrusões deve fornecer à firewall informações relativas ao tráfego suspeito.

Ferramentas

- Python libraries (well-tested): nmap, telnet, ssh, socket, threading
- *Snort* (tested)
- LOIC (simulador de DDoS, tested)
- *IPFire* (firewall, tested)
- *dnsmasq* (well-tested)

Proposta de Solução

Versão básica

Nesta versão apenas é considerado o lado atacante.

Vamos começar por desenvolver uma botnet que tem 2 funcionalidades:

- 1. Realizar ataques DDoS enviando pacotes UDP para portos aleatórios da infraestrutura de destino (UDP flooding)
- 2. Auto-replicar-se na rede onde se encontra:
 - a. Encontra todos os hosts nessa rede;
 - b. Tenta ganhar acesso testando passwords default (p.e., admin:admin);
 - c. Copia-se para dentro das máquinas vulneráveis e executa esse script.

Versão intermédia

Observando o diagrama acima, vai ser criado um servidor com Sistema de Prevenção de Intrusões (IPS) onde vai ser configurado o *Snort* (IDS). Deste modo podemos aliviar recursos de servidores que prestam serviços, como, por exemplo, o servidor web. O *Snort t*erá como funcionalidade analisar e detetar tráfego e este servidor irá posteriormente bloquear a entrada de pacotes cuja origem está assinalada como sendo suspeita.

Versão avançada

Nesta última versão, vamos explorar os recursos dos *edge devices*. Vamos configurar o router para adotar mecanismos de defesa básicos: *rate limiting*, descartar pacotes malformados e diminuir o UDP *flood threshold*. O IPS terá regras para detectar fluxo anormal de tráfego em

UDP bem como verificar se o endereço IP da origem é legítimo. Se o IP for *spoofed*, o IPS descartará os pacotes, caso contrário, irá comunicar com a Firewall para que esta impeça que o IP em questão envie mais pacotes.

Plano de Trabalho

	Miguel Marques	Pedro Figueiredo	Rui Ribeiro
29/10 - 2/11	Aprofundamento de conhecimentos relativos às ferramentas a utilizar.	Aprofundamento de conhecimentos relativos às ferramentas a utilizar.	Aprofundamento de conhecimentos relativos às ferramentas a utilizar.
5/11 - 9/11	Preparação da infraestrutura da <i>botnet</i> .	Preparação da infraestrutura da <i>botnet</i> .	Elaboração do script botnet.
12/11 - 16/11	Configuração do servidor a atacar. Teste e <i>tweaks botnet</i> . Versão básica.	Teste e <i>tweaks botnet</i> . Versão básica.	Teste e <i>tweaks botnet</i> . Versão básica.
19/11 - 23/11	Configuração do IPS e do <i>Snort</i> . Versão intermédia.	Configuração do IPS e do <i>Snort</i> . Versão intermédia.	Configuração do IPS e do <i>Snort</i> . Versão intermédia.
26/11 - 30/11	Configuração avançada do <i>router</i> . Versão avançada.	Comunicação entre o IPS e o <i>firewall</i> . Versão avançada.	Configuração avançada do <i>router</i> . Versão avançada.
3/12 - 12/12	Últimas modificações aos sistemas de mitigação. Testes e tweaks finais (foco no lado da vítima).	Últimas modificações aos sistemas de mitigação. Testes e tweaks finais (foco no lado atacante).	Últimas modificações aos sistemas de mitigação. Testes e tweaks finais (foco no lado da vítima).