Géométrie avancée

Champs de vecteurs

Question 1/19

Flot de champ de vecteur X

Réponse 1/19

$$\varphi^X \colon \Omega \longrightarrow U$$

$$(t, x) \longmapsto c_x(t)$$
On note $\varphi_t^X = \varphi^X(t, \cdot)$

Question 2/19

$$X \in \Gamma(M, TM)$$
, une courbe lisse c est itégrable

Réponse 2/19

$$c' = X_c = X \circ c$$

Question 3/19

Solutions à
$$c'_x = X_{c_x}, X \in \Gamma(U, TU)$$

Réponse 3/19

Si $x \in U$ alors il existe un intervalle I ouvert et contenant 0 et une courbe intégrable c_x tels que $c_x(0) = x$ et $c' = X_c$, un tel c est unique et on peut définir un intervalle maximal de définition I(x) = [a(x), b(x)] de c $\Omega = \bigcup (I(x) \times \{x\})$ est un ouvert qui $x \in U$ contient $\{0\} \times U$

Question 4/19

Identité de Jacobi

Réponse 4/19

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

Question 5/19

Lien entre $\Gamma(U, TU)$ et $Der(U), U \subseteq \mathbb{R}^n$ ouvert

Réponse 5/19

L'application

 $X = (X_1, \dots, X_n) \mapsto L_X = \sum_{i=1}^n \left(X_i \frac{\partial}{\partial x_i} \right) \text{ est}$

un isomorphisme d'espaces vectoriels sur \mathbb{R}

Question 6/19

$$[\delta_1, \delta_2], \, \delta_1, \delta_2 \in \mathrm{Der}(M)$$

Réponse 6/19

$$\delta_1 \delta_2 - \delta_2 \delta_1 \in \mathrm{Der}(M)$$

Question 7/19

 $\Omega \subseteq I \times U$ ouvert tel que $\{0\} \times U \subseteq \Omega$ $h: \Omega \to U$ est un groupe à 1-paramètre

Réponse 7/19

$$h(0,\cdot) = \mathrm{id}_U$$

Dès que ça a un sens,
 $h(t,h(t',x)) = h(t+t',x)$

Question 8/19

$$[X,Y], X,Y \in \Gamma(M,TM)$$

Réponse 8/19

L'unique élément de
$$Der(M)$$
 tel que $L_{[X,Y]} = [L_X, L_Y]$

Question 9/19

$$\varphi: M \to N$$
 difféomorphisme $\varphi_*[X,Y)$

Réponse 9/19

$$[\varphi_*X, \varphi_*Y]$$

Question 10/19

$$\Gamma(U, \mathrm{T}U)$$

Réponse 10/19

Ensemble des champs de vecteurs lisses sur UEnsemble des sections lisses $s:U\to TU$

Question 11/19

Construction de dérivations sur M

Réponse 11/19

Si (U_i) est un recouvrement d'ouverts de M et $\delta_i \in \operatorname{Der}(U_i)$ sont des dérivations telles que $\delta_{i|U_i \cap U_j} = \delta_{j|U_i \cap U_j}$ alors il existe une unique dérivation $\delta \in \operatorname{Der}(M)$ telle que $\delta_{|U_i} = \delta_i$

Question 12/19

$$\psi: U \to V$$
 difféomorphisme $\varphi^{\psi_* X}$

Réponse 12/19

$$\psi \circ \varphi^X \circ \psi^{-1}$$

Question 13/19

Lien entre $\Gamma(M, TM)$ et $\mathrm{Der}(M), M$ variété différentielle

Réponse 13/19

L'application $X \mapsto L_X = x \mapsto d_x f(X(x))$ est un isomorphisme d'espaces vectoriels sur \mathbb{R}

Question 14/19

$$X \in \Gamma(M, TM), \varphi: M \to N$$
 difféomorphisme φ_*X

Réponse 14/19

$$\varphi_* X : N \longrightarrow TN \qquad \in \Gamma(N, TN)$$
$$y \longmapsto d_{\varphi^{-1}(y)} \varphi(X_{\varphi^{-1}(y)})$$

Question 15/19

Dérivation sur $U \subseteq M$ un ouvert dans une vériété différentielle

Réponse 15/19

Application linéaire $\delta: \mathcal{C}^{\infty}(U, \mathbb{R}) \to \mathcal{C}^{\infty}(U, \mathbb{R})$ qui vérifie la règle de Leibniz : $\delta(fg) = \delta(f)g + f\delta(g)$ On note $\mathrm{Der}(U)$ les dérivations sur U

Question 16/19

Restriction d'une dérivation

Réponse 16/19

Si $U \subseteq V \subseteq M$ sont ouverts alors on dispose d'une application canonique de restriction $\rho: \operatorname{Der}(V) \to \operatorname{Der}(U)$ définie par $\rho(\delta)(f) = \delta_{|U}(f)$

Question 17/19

$$\varphi: M \to N$$
 difféomorphisme φ^*

Réponse 17/19

$$\varphi^* X = (\varphi_*)^{-1}$$

Question 18/19

$$X \in \mathrm{Der}(M), \, \varphi : M \to N \, \text{diff\'eomorphisme}$$

$$\varphi_* \delta$$

Réponse 18/19

$$\varphi_*\delta: \mathcal{C}^{\infty}N \longrightarrow \mathcal{C}^{\infty}N$$
$$f \longmapsto \delta(f \circ \varphi) \circ \varphi^{-1}$$

Question 19/19

Propriétés de φ^X

Réponse 19/19

$$\begin{split} \varphi_0^X &= \mathrm{id}_U \\ \varphi_{t_2}^X \circ \varphi_{t_1}^X &= \varphi_{t_1+t_2}^X = \varphi_{t_1}^X \circ \varphi_{t_2}^X \\ \varphi^X \colon \Omega \cap (\{t\} \times U) \to \Omega \cap (\{-t\} \times U) \text{ est un} \\ \mathrm{diff\'{e}omorphisme} \end{split}$$