Problem Sheet 1 (Matrix Algebras–MA20107)

(1) Using Gram-Schmidt orthogonalization process, find the orthonormal sets for the following linearly independent vectors

(i)
$$(1,2,1), (1,0,1), (1,0,2)$$
 in \mathbb{R}^3

(ii)
$$(2,1,0), (0,1,1), (2,0,2)$$
 in \mathbb{R}^3

$$(iii)(0,3,4),(3,5,0),(2,5,5)$$
 in \mathbb{R}^3

(iv)
$$(1, 1, 0, 1), (1, 2, 1, 0), (0, 1, 2, 1), (1, 0, 1, 1)$$
 in \mathbb{R}^4 .

(2) Find x, y so that (x, y, 1) is orthogonal to both (1, 2, 3), (1, 1, 1).

(3) Find
$$A^{39}$$
 for $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$.

(4) Find
$$A^{202} - 3A^{147} + 2I$$
, for $A = \begin{bmatrix} -2 & 3 \\ -1 & 2 \end{bmatrix}$

(4) Find
$$A^{202} - 3A^{147} + 2I$$
, for $A = \begin{bmatrix} -2 & 3 \\ -1 & 2 \end{bmatrix}$.
(5) Find $A^{24} - 3A^{15}$, for $A = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 1 & 0 \\ -1 & -3 & -1 \end{bmatrix}$.

(6) Let
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & -7 & 3 \end{bmatrix}$$
. Find a non-singular matrix P such that $P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & -2 & 1 \end{bmatrix}$.

(7) Find e^A , where

(i)
$$A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$

(i)
$$A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$

(ii) $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

(8) Find
$$\cos(A)$$
, where $A = \begin{bmatrix} \pi & 3\pi \\ 2\pi & 2\pi \end{bmatrix}$

(9) Find a unitary matrix (or orthogonal matrix) S such that S^*AS is an upper triangular matrix, where

1

(i)
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$

(ii) $A = \begin{bmatrix} 1 & i & 1 \\ -i & 2 & i \\ 1 & -i & 1 \end{bmatrix}$.

(ii)
$$A = \begin{bmatrix} 1 & i & 1 \\ -i & 2 & i \\ 1 & -i & 1 \end{bmatrix}$$

- (10) Find a unitary matrix (or orthogonal matrix) S such that S^*AS is a diagonal matrix, where
 - (i) $A = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$ (ii) $A = \begin{bmatrix} 6 & 4 & -2 \\ 4 & 12 & -4 \\ -2 & -4 & 13 \end{bmatrix}$.