Best Available Copy

The Patent Office Concept House **Cardiff Road** Newport South Wales NP10 800

REC'D 13 MAY 2004

I. the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 22 April 2004

An Executive Agency of the Denartment of Trade and Industry

Patents Act 1977 (Rule 16)

this form)

(See the notes on the back of this form. You can

explanatory leaflet from the Patent Office to help you fill in

c) any named applicant is a corporate body.

See note (d))

19APR03 EB01278-1 002246 P01/7700.0.00-0308988.5

The Patent Office

Cardiff Road Newport South Wales

		_		NP10 8QQ	
 l.	Your reference	P015404GB CYK		•	
2.	Patent application number (The Patent Office will fill in this part)	0308988.	.)	7 APR 2003	
	Full name, address and postcode of the or of each applicant (underline all surnames)	National University of Singa 10 Kent Ridge Crescent Singapore 119260	and Research 10 Science Pa	Agency for Science, Technology and Research (A*STAR) 10 Science Park Road #01/01-03 The Alpha	
	Patents ADP number (If you know it)	1056211001	Singapore Sci Singapore 117	7684	
	If the applicant is a corporate body, give the country/state of its incorporation	Singapore	Singapore	1001	
4.	Title of the invention	Molecule			
5.	Name of your agent (if you have one)	D Young & Co			
	"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)	21 New Fetter Lane London EC4A 1DA			
	Patents ADP number (if you know it)	59006			
6.	If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number	•	riority application number (if you know it)	Date of filing (day / month / year)	
7.	If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application	Number of earlier application	n ·	Date of filing (day / month / year)	
8.	Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer Yes' if: a) any applicant named in part 3 is not an inventor, b) there is an inventor who is not named as an applicant or	Yes or			

Patents Form 1/77

9.	Enter the number of sheets for any of the
	following items you are filing with this form.
	Do not count copies of the same document

			_	
Continuation	sheets of	`this	form	- 1

Description 206

Claim (s) 12

Abstract 1

Drawing (s) 50

10. If you are also filing any of the following, state how many against each item.

Priority documents 0

Translations of priority documents 0

Statement of inventorship and right 0 to grant of a patent (Patents Form 7/77)

Request for preliminary examination 1 and search (Patents Form 9/77)

Request for substantive examination 0 (Patents Form 10/77)

> Any other documents 0 (please specify)

> > I/We request the grant of a patent on the basis of this application.

Date | April 2003

D Young & Co (Agents for the Applicants)

12. Name and daytime telephone number of person to contact in the United Kingdom

Chong-Yee Khoo

023 8071 9500

Warning

11.

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

MOLECULE

FIELD

The present invention relates to the fields of microbiology. It also relates to the fields of medicine, especially therapy and diagnosis.

5 BACKGROUND

10

15

20

25

Some microorganisms are capable of acting as immunomodulating agents, such as *Mycobacterium smegmatis* used in Freund's complete adjuvant and OK432 from *Streptococcus pygens* as the anti-tumor potentiator. Many polysaccharide immunomodulating agents have also been detected and isolated from *Basidiomycetes* class of fungi, such as lentinan, schizophyllan, TML and SF AI. A novel family of fungal immunomodulatory proteins has been isolated from the edible mushrooms, such as Vvo from *Volvariella volvacea* (grass mushroom), LZ-S from *Ganoderma lucidum* (Ling-Zhi), Gts from *Ganoderma tsugae* (songshan lingzhi), and Fve from *Flammulina velutipes* (golden needle mushroom).

Although the therapeutic value of a number of mushrooms has been documented, the active components that confer such therapeutic effects are not well understood.

Ko et al (Eur. J. Biochem., 228, 244-2419) describes the isolation and purification of a protein known as FIP-fve from Golden Needle Mushroom extracts. The authors describe a method of extracting this protein, as well as some biochemical properties of FIP-fve. The amino acid sequence of FIP-fve is presented. FIP-fve is shown to cause proliferation of human peripheral blood lymphocytes, and mice sensitised to BSA are protected against anaphylactic shock by periodic injections of FIP-fve. A hind-paw edema test shows that FIP-fve inhibits antibody production against antigen 48/80. Finally, the authors show that FIP-fve induces expression of IL-2 and IFN-γ in spleen cells from mouse.

An amino acid sequence of FIP-fve is found as GenBank accession numbers:S69147 immunomodulatory protein FIP-fve - golden needle mushroom gi|7438667|pir||S69147[7438667] and P80412 IMMUNOMODULATORY PROTEIN FIP-FVE gi|729544|sp|P80412|FVE_FLAVE[729544].

5 SUMMARY

10

15

20

According to a first aspect of the present invention, we provide an Fve polypeptide comprising at least one biological activity of native Fve protein, and being a fragment, homologue, variant or derivative thereof.

Preferably, the Fve polypeptide comprises an immunomodulatory activity. Preferably, the biological activity is selected from the group consisting of: up-regulation of expression of Th1/Tc1 cytokines, preferably IFN-γ and TNF-α, down-regulation of expression of Th2/Tc2 cytokines, preferably IL-4 and IL-13, up-regulation of expression of T regulatory (Tr) cytokines IL-10 and TGF-β, hemagglutination activity, cell aggregation activity, lymphocyte aggregation activity, lymphoproliferation activity, up-regulation of expression of IL-2, IFN-γ, TNF-α, but not IL-4 in CD3⁺ T cells, interaction with T and NK cells, adjuvant activity, stimulation of CD3⁺ CD16⁺ CD56⁺ natural killer (NK) T cells and CD3⁺ CD8⁺ CD18^{+ bright} T cells, and up-regulation of allergen specific Th1 immune responses.

Preferably, the polypeptide comprises between 2 to 20 residues of amino acid sequence flanking the glycine residue corresponding to position 28 of Fve.

Preferably, the polypeptide comprises the sequence RGT or the sequence RGD.

Preferably, the polypeptide has a sequence as set out in Appendix A or Appendix B.

15

20

25

There is provided, according to a second aspect of the present invention, a Fve polypeptide comprising an sequence selected from the group consisting of: Fve R27A, Fve T29A, GST-Fve (wild type), GST-Fve R27A, and GST-Fve T29A, and fragments, homologues, variants and derivatives thereof.

We provide, according to a third aspect of the present invention, a polypeptide comprising a first portion comprising at least a portion of Fve and a second portion comprising at least a portion of an allergen.

Preferably, the allergen comprises an allergen from a mite, preferably from Family Glycyphagidae or Family Pyroglyphidae, preferably a group 1 allergen (Der p 1, Der f 1, Blo t 1, Eur m1, Lep d 1), a group 2 allergen (Der p 2, Der f 2, Blo t 2, Eur m 2, Lep d 2), a group 5 allergen (Blo t 5, Der p 5, Der f 5, Eur m 5, Lep d 5) a group 15 allergen (Der p 15, Der f 15, Blot 15, Eur m 15, Lep d 15).

Preferably, the Fve polypeptide or a polypeptide is selected from the group consisting of: Blo t 5-Fve, Blo t 5-FveR27A, Blo t 5-FveT29A, GST-Der p 2-FveR27A, GST-Der p 2-FveT29A, Blo t 5-Der p 2-FveT29A, and Blo t 5-Der p 2-FveT29A. More preferably, it comprises Blo t 5-FveT29A, Der p 2-FveT29A, or Blo t 5-Der p 2-FveT29A.

Preferably, the allergen is selected from the group consisting of: tree pollen allergen, Bet v 1 and Bet v 2 from birch tree; grass pollen allergen, Phl p 1 and Phl p 2 from timothy grass; weed pollen allergen, antigen E from ragweed; major feline antigen, Fel'd; major fungal allergen, Asp f1, Asp f2, and Asp f3 from Aspergillus fumigatus.

As a fourth aspect of the present invention, there is provided a polypeptide comprising a first portion comprising at least a portion of Fve and a second portion comprising at least a portion of a viral antigen selected from the group consisting of: E6 and E7 from HPV; core Ag and E2 from HCV; core and surface antigens from HBV; LMP-1, LMP-2, EBNA-2, EBNA-3 from EBV; and Tax from HTLV-1.

Preferably, it comprises HCV Core23-FveT29A, or HPV E7-FveT29A.

We also provide a polypeptide comprising a first portion comprising at least a portion of Fve and a second portion comprising at least a portion of a viral antigen selected from the group consisting of antigens from Adenovirus, Parainfluenza 3 virus, Human Immunodeficiency Virus (HIV), Herpes simplex virus, HSV, Respiratory syncytial virus, RSV, and Influenza A, Flu A.

5

10

We provide, according to a fifth aspect of the present invention, a polypeptide comprising a first portion comprising at least a portion of Fve and a second portion comprising at least a portion of a tumour-associated antigen selected from the group consisting of: MAGE-1, MAGE-2, MAGE-3, BAGE, GAGE, PRAME, SSX-2, Tyrosinase, MART-1, NY-ESO-1, gp100, TRP-1, TRP-2, A2 melanotope, BCR/ABL, Proteinase-3/Myeloblastin, HER2/neu, CEA, P1A, HK2, PAPA, PSA, PSCA, PSMA, pg75, MUM-1, MUC-1, BTA, GnT-V, β-catenin, CDK4, and P15.

Preferably, it comprises MAGE3-FveT29A, MART1-FveT29A or CEA-FveT29A.

The present invention, in a sixth aspect, provides a nucleic acid encoding a Fve polypeptide or a polypeptide according to any preceding statement of invention.

Preferably, the nucleic acid comprises CGT GGT ACC, or a sequence which differs from the above by virtue of the degeneracy of the genetic code and which encodes a sequence RGT.

In a seventh aspect of the present invention, there is provided a nucleic acid comprising a sequence encoding at least a portion of Fve and a sequence encoding at least a portion of an allergen.

Preferably, it comprises Blo t 5-FveT29A, Der p 2-FveT29A, or Blo t 5-Der p 2-FveT29A.

5

10

15

According to an eighth aspect of the present invention, we provide a nucleic acid comprising a sequence encoding at least a portion of Fve and a sequence encoding at least a portion of a viral antigen selected from the group consisting of: E6 and E7 from HPV; core Ag and E2 from HCV; core and surface antigens from HBV; LMP-1, LMP-2, EBNA-2, EBNA-3 from EBV; and Tax from HTLV-1.

Preferably, it comprises HCV Core23-FveT29A, or HPV E7-FveT29A.

We also provide a nucleic acid comprising a sequence encoding at least a portion of Fve and a sequence encoding at least a portion of a viral antigen selected from the group consisting of antigens from Adenovirus, Parainfluenza 3 virus, Human Immunodeficiency Virus (HIV), Herpes simplex virus, HSV, Respiratory syncytial virus, RSV, and Influenza A, Flu A.

We provide, according to a ninth aspect of the invention, a nucleic acid comprising a sequence encoding at least a portion of Fve and a sequence encoding at least a portion of a tumour associated antigen selected from the group consisting of: MAGE-1, MAGE-2, MAGE-3, BAGE, GAGE, PRAME, SSX-2, Tyrosinase, MART-1, NY-ESO-1, gp100, TRP-1, TRP-2, A2 melanotope, BCR/ABL, Proteinase-3/Myeloblastin, HER2/neu, CEA, P1A, HK2, PAPA, PSA, PSCA, PSMA, pg75, MUM-1, MUC-1, BTA, GnT-V, β-catenin, CDK4, and P15.

Preferably, it comprises MAGE3-FveT29A, MART1-FveT29A or CEA-FveT29A.

There is provided, in accordance with a tenth aspect of the present invention, a nucleic acid selected from the group consisting of: Fve R27A, Fve T29A, GST-Fve (wild type), GST-Fve R27A, GST-Fve T29A, Blo t 5-Fve, Blo t 5-FveR27A, Blo t 5-FveT29A, GST-Der p 2-FveR27A, GST-Der p 2-FveT29A, Blo t 5-Der p 2-FveT29A, and fragments, homologues, variants and derivatives thereof.

As an eleventh aspect of the invention, we provide a vector, preferably an expression vector, comprising a nucleic acid sequence as set out above.

5

10

15

20

We provide, according to a twelfth aspect of the invention, there is provided DNA vaccine comprising a nucleic acid encoding Fve, a nucleic acid, or a vector as set out above.

According to a thirteenth aspect of the present invention, we provide host cell comprising a nucleic acid encoding Fve, a nucleic acid, or a vector as set out above.

There is provided, according to a fourteenth aspect of the present invention, transgenic non-human organism comprising a nucleic acid encoding Fve, a nucleic acid, or a vector as set out above.

Preferably, the transgenic non-human organism is a bacterium, a yeast, a fungus, a plant or an animal, preferably a mouse.

According to a sixteenth aspect of the present invention, we provide a pharmaceutical composition comprising a polypeptide, a nucleic acid, a vector, a DNA vaccine, or a host cell as set out above, together with a pharmaceutically acceptable carrier or diluent.

According to a seventeenth aspect of the present invention, we provide the use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition as set out above as an immumodulator.

According to an eighteenth aspect of the present invention, we provide the use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition as set out above to enhance an immune response in a mammal.

According to a nineteenth aspect of the present invention, we provide the use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition as set out above to stimulate proliferation of CD3⁺ CD8⁺ CD18^{+ bright} T cells.

According to a twentieth aspect of the present invention, we provide the use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition as set out above to stimulate proliferation of CD3⁺ CD16⁺ CD56⁺ natural killer (NK) T cells.

5

20

According to a twenty first aspect of the present invention, we provide the use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition as set out above to stimulate production of IL-2, IL-10, TGF-β, IFN-γ or TNF-α in CD3⁺ cells.

Preferably, production of IL-4 is not stimulated in the CD3⁺ cells.

According to a twenty second aspect of the present invention, we provide the use
of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine,
host cell, transgenic organism, or a pharmaceutical composition as set out above as an
adjuvant for a vaccine.

According to a twenty third aspect of the present invention, we provide the use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition as set out above in a method of treatment or prophylaxis of a disease.

According to a twenty fourth aspect of the present invention, we provide the use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector or host cell as set out above for the preparation of a pharmaceutical composition for the treatment of a disease.

10

15

According to a twenty fifth aspect of the present invention, we provide a method of treating an individual suffering from a disease or preventing the occurrence of a disease in an individual, the method comprising administering to the individual a therapeutically or prophylactically effective amount of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition as set out above.

Preferably, the use or method is such that disease comprises an atopic disease or allergy.

Preferably, the allergy is selected from the group consisting of: allergic asthma, a seasonal respiratory allergy, a perennial respiratory allergy, allergic rhinitis, hayfever, nonallergic rhinitis, vasomotor rhinitis, irritant rhinitis, an allergy against grass pollen, weed pollen, tree pollen or animal danders, an allergy associated with allergic asthma and a food allergy.

Preferably, the allergy is to a house dust mite from Family Glyphagidae, preferably Blomia tropicalis or from Family Pyroglyphidae, preferably Dermatophagoides pteronyssinus or Dermatophagoides farinae, or to fungi or fungal spores, preferably Aspergillus fumigatus.

In an alternative embodiment, the disease comprises a cancer.

According to a twenty seventh aspect of the present invention, we provide the use of a DNA vaccine as described, in a method of treatment or prevention of a cancer, or in a method of suppressing tumour progression.

Preferably, the cancer comprises a T cell lymphoma, melanoma, lung cancer, colon cancer, breast cancer or prostate cancer.

10

According to a twenty eighth aspect of the present invention, we provide a method of identifying a molecule capable of binding to Fve, the method comprising exposing a native Fve polypeptide, or an Fve polypeptide or nucleic acid, vector, host cell or transgenic organism according as set out above to a candidate molecule and detecting whether the candidate molecule binds to the native Fve polypeptide, or an Fve polypeptide or nucleic acid, vector, host cell or transgenic organism.

According to a twenty ninth aspect of the present invention, we provide a method of identifying an agonist or antagonist of an Fve polypeptide, the method comprising: (a) providing a cell or organism; (b) exposing the cell or organism to a native Fve polypeptide, or an Fve polypeptide or nucleic acid, vector, host cell or transgenic organism as set out above; (c) exposing the cell to a candidate molecule; and (d) detecting an Fve mediated effect.

Preferably, the Fve mediated effect is selected from the biological activities set out above.

Preferably, the method further comprises isolating or synthesising a selected or identified molecule.

According to a thirtieth aspect of the present invention, we provide a molecule identified or selected using such a method.

According to a thirty first aspect of the present invention, we provide a native Fve polypeptide, or an Fve polypeptide in crystalline form.

Preferably, the crystal has the structural coordinates shown in Appendix C.

According to a thirty second aspect of the present invention, we provide a model for at least part of Fve made using such a crystal.

Ļ

せいせいひょう マ

10

15

20

According to a thirty third aspect of the present invention, we provide a method of screening for a receptor capable of binding to Fve, or designing a ligand capable of modulating the interaction between Fve and an Fve receptor, comprising the use of such a model.

According to a thirty fourth aspect of the present invention, we provide a computer readable medium having stored thereon the structure of such a crystal or such a model.

According to a thirty fifth aspect of the present invention, we provide a ligand identified by the method set out above.

According to a thirty sixth aspect of the present invention, we provide a use of such a molecule or such a ligand for the treatment or prevention of a disease in an individual.

According to a thirty seventh aspect of the present invention, we provide a pharmaceutical composition comprising such a molecule or such a ligand and optionally a pharmaceutically acceptable carrier, diluent, excipient or adjuvant or any combination thereof.

According to a thirty eighth aspect of the present invention, we provide a method of treating and/or preventing a disease comprising administering such a molecule or such a ligand and/or such a pharmaceutical composition to a mammalian patient.

According to a thirty ninth aspect of the present invention, we provide a method of amplifying a sub-population of cells, the method comprising: (a) obtaining a population of cells from an individual; (b) amplifying CD3⁺ CD8⁺ and CD18^{+ bright} T cells by exposing the population of cells to a native Fve polypeptide, or an Fve polypeptide or nucleic acid, vector, host cell or transgenic organism as set out above.

Preferably, the method further comprises the step of: (c) isolating the CD3⁺ CD8⁺ and CD18⁺ bright T cells.

According to a fortieth aspect of the present invention, we provide a method of treating an individual suffering from a disease or preventing the occurrence of a disease in an individual, the method comprising amplifying a CD3⁺ CD8⁺ and CD18^{+ bright} T cell by such a method, and administering the amplified CD3⁺ CD8⁺ and CD18^{+ bright} T cell to an individual.

According to a forty first aspect of the present invention, we provide a combination comprising a first component comprising an immunomodulator and a second component comprising at least a portion of an allergen, a viral antigen or a tumour associated antigen.

Preferably, the first component is separate from the second component.

Alternatively, or in addition, the first component may be associated with the second component. Preferably, the combination comprises a fusion protein.

5

15

20

25

The first component may comprise a native Fve polypeptide, or a polypeptide as set out above. The second component may comprise an allergen selected from the group consisting of: a mite allergen, an mite allergen from Family Glycyphagidae or Family Pyroglyphidae, a group 1 allergen (Der p 1, Der f 1, Blo t 1, Eur m1, Lep d 1), a group 2 allergen (Der p 2, Der f 2, Blo t 2, Eur m 2, Lep d 2), a group 5 allergen (Blo t 5, Der p 5, Der f 5, Eur m 5, Lep d 5), a group 15 allergen (Der p 15, Der f 15, Blot 15, Eur m 15, Lep d 15), a tree pollen allergen, Bet v 1 and Bet v 2 from birch tree; grass pollen allergen, Phl p 1 and Phl p 2 from timothy grass; weed pollen allergen, antigen E from ragweed; major feline antigen, Fel d; major fungal allergen, Asp f1, Asp f2, and Asp f3 from Aspergillus fumigatus.

In preferred embodiments, the second component comprises a viral antigen selected from the group consisting of: E6 and E7 from HPV; core Ag and E2 from HCV; core and surface antigens from HBV; LMP-1, LMP-2, EBNA-2, EBNA-3 from EBV; and Tax from HTLV-1. Alternatively, or in addition, the second component may comprise a tumour-associated antigen selected from the group consisting of: MAGE-1, MAGE-2, MAGE-3, BAGE, GAGE, PRAME, SSX-2, Tyrosinase, MART-1, NY-ESO-1, gp100,

20

25

TRP-1, TRP-2, A2 melanotope, BCR/ABL, Proteinase-3/Myeloblastin, HER2/neu, CEA, P1A, HK2, PAPA, PSA, PSCA, PSMA, pg75, MUM-1, MUC-1, BTA, GnT-V, β-catenin, CDK4, and P15.

We further disclose an immunomodulator-antigen conjugate, preferably an immunomodulator-allergen conjugate, an immunomodulator-tumour associated antigen conjugate or a immunomodulator-viral antigen conjugate, in which the immunomodulator preferably comprises an Fve polypeptide.

BRIEF DESCRIPTION OF THE DRAWINGS

chromatography. (a). The native Fve protein purified by cation and anion exchange chromatography is analyzed by Tricine SDS-PAGE. Fve protein gave a single band with an apparent molecular mass of 12.7 kDa. Lane M, molecular mass markers; lane 1, purified native Fve protein. (b) Elution profile of calibration proteins by Superdex 75 chromatography. Peaks, 1. bovine serum albumin (67 kDa); 2. ovalbumin (43 kDa); 3. chymotrypsinogen A (25 kDa); 4. ribonuclease A (13.7 kDa). (c) Purified native Fve formed homodimer at 25.5 kDa.

Figure 2 shows a profile of cytokines and iNOS produced by mouse splenocytes upon stimulation with Fve protein. Mouse spleen cells from Balb/cJ mice are stimulated with 20µg of Fve. The mRNAs of cytokines are analyzed by RT-PCR after culturing for 48 hours. A: A non-stimulated culture as negative controls, B: A culture stimulated with 20µg of Fve.

Figure 3 shows a profile of human cytokines, transcriptional factors, adhesion molecule and anti-apoptotic protein produced by human PBMC upon stimulation with Fve protein. Human PBMC from healthy donor are stimulated with 20µg of Fve. The mRNA expression is analyzed by RT-PCR after culturing for 48 hours. A: A non-stimulated culture as negative control, B: A culture stimulated with 20µg of Fve.

15

20

- Figure 4. A schematic representation showing the principle of overlap extension PCR for the generation of single amino acid residue substitution (A) and deletion mutagenesis of DNA (B).
- Figure 5. A schematic representation of the strategy used to generate mutants. On the basis of the structures predicted by PHD prediction program, eleven deletion mutants and three point mutants of Fve plasmid DNA are generated by PCR-based mutagenesis.
 - Figure 6. SDS-PAGE analysis of recombinant Fve mutant proteins.
 - Figure 7. In vitro proliferation assay of mouse splenocytes. Mouse splenocytes from Balb/cJ is stimulated with 2.5µg/ml, 5µg/ml, 10µg/ml, and 20µg/ml, respectively, with 13 of Fve mutant proteins for 48 hours. Recombinant GST-Fve is positive control. GST is negative control.
 - Figure 8. Lymphoproliferation activity of human PBMC at 48 hours. Human PBMC from a healthy donor is stimulated with 2.5µg/ml, 5µg/ml, 10µg/ml, and 20µg/ml, respectively, with eleven of Fve mutant proteins for 48 hours. Recombinant GST-Fve and native Fve are positive control. GST and Blo t 5 are negative control.
 - Figure 9. Recombinant GST-Fve (wild type) and GST-FveT29 mutant protein showed strong lymphoproliferative activity. Human PBMC from healthy donor are cultured with: (A) no antigen, (B) GST, (C) wild type GST-Fve, (D) GST-FveT29, each protein is used at 20µg /ml. The percentage of CD3⁺ T lymphocytes is analyzed at day 5 by using flow cytometry.
 - Figure 10. Increased production of TNF-α, IFN-γ, IL-2 but not IL-4 in CD3⁺ T lymphocytes after stimulation with native Fve protein. The production of (A) IL-4; (B) IL-2; (C) IFN-γ and (D) TNF-α by human PBMC after stimulation with 20μg/ml of native Fve protein for three days. The data are analyzed by flow cytometry.

10

15

20

25

Figure 11. Recombinant wild type GST-Fve and mutant GST-FveT29A, but not mutant GST-FveG28A, maintained IFN-γ cytokine production activity. Human PBMC from healthy donor are cultured with 20μg of GST (1); GST-Fve (2); GST-FveR27A (3); GST-FveG28A (4); GST-FveT29A (5). IFN-γ cytokine by T cells is detected at day 3 by staining with anti-CD3 PerCP and anti-IFN-γ FITC specific monoclonal antibody. IFN-γ secretion by small granular lymphocytes and large granular lymphocytes are shown in (a) and (b), respectively. The total amount of IFN-γ production by T cells is the sum of (a) and (b).

Figure 12. Recombinant wild type GST-Fve and mutant GST-FveT29A, but not mutant GST-FveG28A, maintained TNF-α production activity. Human PBMC from healthy donor are cultured with 20μg of GST (1); GST-Fve (2); GST-FveR27A (3); GST-FveG28A (4); GST-FveT29A (5). IFN-γ cytokine by T cells is detected at day 3 by staining with anti-CD3 PerCP and anti- TNF-α FITC specific monoclonal antibody. TNF-α secretion by small granular lymphocytes and large granular lymphocytes are shown in (a) and (b), respectively. The total amount of TNF-α production by T cells is the sum of (a) and (b).

Figure 13. Schematic representation of the experimental design of the *in vivo* study Balb/cJ mice are immunized with Der p 2 in aluminum hydroxide at day 0 and boosted at day 21 by intraperitoneal injection. Treatment with Der p 2 alone or Der p 2 plus Fve is started at day 28 by given 6 subcuteneous injections over 12 days. Mice are challenged with Der p 2 at day 42.

Figure 14. Enhanced anti-Der p 2 IgG2a by adjuvanicity of Fve protein. IgG2a response in mice that are subcutaneously injected six times with Der p 2 alone (close circle), or Der p 2 plus Fve (close square) twenty-eight days after the initial sensitization with Der p 2 in alum. Mice received third intraperitoneal injection with Der p 2 in alum at day 42. Results are shown as mean titers and error bars indicate the standard deviations from the mean titers.

15

20

25

Figure 15. Fve could reduce wheal and erythematic flare formation on skin prick test-positive human subject. Both the left and right hands of the house dust mite allergen sensitized human subject are challenged with saline, histamine, Der p 2, and mixture of Der p 2 and Fve at the separated sites on hands. The diameter sizes of wheel (A) and erythematic flare (B) are measured after 10 minutes incubation time

Figure 16. A schematic representation of the seven fusion proteins of Bt5-Fve (wild type), Bt5-FveR27A, Bt5-FveT29A, Dp2-FveR27A, Dp2-FveT29A, Bt5-Dp2-FveR27A, and Bt5-Dp2-FveT29A.

Figure 17. Expression and purification of recombinant fusion protein Bt5-Fve, Bt510 FveR27A, and GST-Dp2-FveR27A. Lane 1 and 10 are protein marker. Lane 2 to 9 are
GST; Blo t 5; Fve; Bt5-Fve; Bt5-FveR27A; Der p 2; Fve; and GST-Bt5, respectively.

Figure 18. Functional characterization of recombinant fusion proteins of Fve and allergen. The morphology of human lymphocytes upon stimulation with three different fusion proteins for three days. All photographs are taken at a magnification of x10 and ×40 with a confocal microscope. 1(a) Control: Non-stimulated (10x10 magnification); 1(b) Control: Non-stimulated (40x10 magnification); 2(a): 20μg of GST 10x10; 2(b): 20μg of GST 40x10; 3(a): 20μg of Blo t 5 10x10; 3(b): 20μg of Blo t 5 40x10; 4(a): 20μg of native Fve 10x10; 4(b): 20μg of native Fve 40x10; 5(a): 20μg of Bt5-Fve 10x10; 5(b): 20μg of Bt5-Fve 40x10; 6(a): 40μg of Bt5-Fve 10x10; 6(b): 40μg of Bt5-Fve 40x10; 7(a) 40μg of Bt5-FveR27A 10x10; 7(b): 40μg of Bt5-FveR27A 40x10; 8(a): 20μg of Der p 2 10x10; 8(b): 20μg of Der p 2 40x10; 9(a): 40μg of GST-Dp2-FveR27A 10x10; 9(b): 40μg of GST-Dp2-FveR27A 40x10. Human lymphocytes maintained aggregation ability upon stimulation with Bt5-Fve (5a, 5b, 6a, 6b) and Bt5-FveR27A (7a, 7b) for 3 days. Native Fve (4a, 4b) is a positive control. Non-stimulated cells (1a, 1b), GST (2a, 2b), Blo t 5 (3a, 3b), and Der p 2 (8a, 8b) are negative controls. The aggregation ability of GST-Dp2-FveR27A is not apparent at day 3 (9a, 9b).

404UD 1. 40

5

10

15

20

25

Figure 19. Cell number comparison of human PBMC after 7 days cultured with tested antigens. Human PBMC are cultured with different doses of recombinant allergen and Fve fusion proteins. Non-stimulated cells and cells stimulated with either 20μg of Blo t 5; 20μg of Fve; 20μg of Bt5-Fve; 40μg of Bt5-Fve; 20μg of Bt5-FveR27A; and 40μg of Bt5-FveR27A are shown in Figure 19A. Cells stimulated with 20μg of Der p 2; 20μg of GST-Dp2-FveR27A; and 40μg of GST-Dp2-FveR27A are shown in Figure 19B. The cells are collected and counted at day 7.

Figure 20. The lymphoproliferation activity of human lymphocytes upon stimulation with recombinant fusion protein Bt5-Fve for 72 hours. Human PBMC from a healthy donor is co-cultured with 5µg/ml, 10µg/ml, 20µg/ml, and 40µg/ml, respectively, with fusion protein Bt5-Fve (BFwt). Recombinant GST and Blo t 5 are used as negative controls. Fve is used a positive control.

Figure 21. Bt5Fve fusion protein maintained CD8 T cells polarization activity. Human PBMC are isolated from healthy donar and stimulated with 20μg of GST (b), 20μg of Blo t 5 allergen (c), 20μg of Fve (d), 20μg of Bt5Fve (e), 40μg of Bt5Fve (f), 20μg of Bt5FveR27 (g), and 40μg of Bt5FveR27 (h) for 5 days. Cells without any stimulation served as negative control (a). Cultured cells are stained with CD3-PerCP and CD8-FITC monoclonal antibodies and analyzed with FACSCalibur cytometry.

Figure 22. Fve and allergen-Fve fusion protein are able to induce T helper type 1 and T regulatory immune responses. (A). Fve induced IFN-γ and IL-10 production. Human PBMC from seven individuals are cultured with 20μg of Fve. The production of IFN-γ, IL-4 and IL-10 is assayed by ELISA at day 3. (B). Comparable levels of IFN-γ production are induced by Fve and allergen – Fve fusion protein. Human PBMC are stimulated with Fve, Blot5, Blot5-Fve (wild type) and Blot5-FveR27A (mutant), respectively. The production of IL-4 and IFN-γ is detected by ELISA at day 3 and day 7.

Figure 23. Competitive inhibition assay. Varying concentrations of inhibitors are used to inhibit the binding of human IgE to GST-Blot5 bound to the Elisa plate. The

10

15

20

25

concentration of different inhibitors ranged from 0.01ng to 10000ng/ml. Results are obtained from serum of a representative allergic subject with high IgE reactivity to house dust mite allergens. GST: Glutathione S-transferase. GF: GST-Fve. GFB: GST-Fve-Blot5. GBF: GST-Blot5-Fve. BF: Blot5-Fve. B: Blo t 5.

Figure 24. Human PBMC stimulated with native Fve protein for five days showed a significant increase in CD16⁺ and CD56⁺ cells. The CD3⁺ cells and CD16⁺ + CD56⁺ cells are analyzed by FACScan after staining with anti-CD3 FITC, anti-CD16 PE and anti-CD56 PE conjugated mouse anti-human specific monoclonal antibody. Cells stimulated with (a) no antigen; (b). 5μg of Der p 2 house dust mite allergen as negative control; (c). 5μg of PHA; (d). 5μg of Fve; (e). 25μg of Fve.

Figure 25. Human PBMC stimulated with Fve protein for ten days showed a significant increase in CD8⁺ cells. The proportion of CD4⁺ and CD8⁺ T cells are analyzed by FACScan after staining with anti-CD4 FITC and anti-CD8 PE conjugated mouse anti-human specific monoclonal antibody. Cells are stimulated with (a). no antigen; (b). 5µg of Der p 2 house dust mite allergen as negative control; (c). 5µg of PHA; (d). 5µg of Fve; (e). 25µg of Fve.

Figure 26. Expanded human CD3⁺CD18^{+Bright} T cells subset in human PBMC after stimulation with Fve protein for five days. Human PBMC from healthy donor are cultured alone (a and c) or with 20µg of native Fve protein (b and d) for 5 days. Cells are then analyzed by flow cytometry after staining with anti-CD3 PerCP, anti-CD8 PE and anti-CD18 FITC.

Figure 27. Expanded CD3⁺CD8^{+Bright}CD18^{+Bright}T cells in human PBMC after cultured with Fve protein for five days. Human PBMC from healthy donor are cultured alone (a and c) or with 20µg of native Fve protein (b and d) for five days. Cells are analyzed by flow cytometry after staining with anti-CD3 PerCP, anti-CD8 PE and anti-CD18 FITC.

10

15

20

25

Figure 28. Proportion of *in vivo* BrdU incorporated natural killer (NK) cells from spleen of C57BL/6J naïve mice (a), or mouse received three consecutive subcutaneous injections with 10µg of Fve (b), 50µg of Fve (c), 250µg of Fve (d). Splenocytes are stained with anti-Pan NK PE and anti-BrdU FITC monoclonal antibodies and then analyzed with flow cytometry.

Figure 29. Proportion of *in vivo* BrdU incorporated CD8⁺ T cells from spleen of C57BL/6J naïve mice (a), or mouse received three consecutive subcutaneous injections with 10µg of Fve (b), 50µg of Fve (c), 250µg of Fve (d). Splenocytes are stained with anti-CD8 PE and anti-BrdU FITC monoclonal antibodies and then analyzed with flow cytometry.

Figure 30. Proportion of *in vivo* BrdU incorporated CD4⁺ T cells from spleen of C57BL/6J naïve mice (a), or mouse received three consecutive subcutaneous injections with 10μg of Fve (b), 50μg of Fve (c), 250μg of Fve (d). Splenocytes are stained with anti-CD4 PE and anti-BrdU FITC monoclonal antibodies and then analyzed with flow cytometry.

Figure 31. Proportion of *in vivo* BrdU incorporated CD19⁺ B cells from spleen of C57BL/6J naïve mice (a), or mouse received three consecutive subcutaneous injections with 10µg of Fve (b), 50µg of Fve (c), 250µg of Fve (d). Splenocytes are stained with anti-CD19 PE and anti-BrdU FITC monoclonal antibodies and then analyzed with flow cytometry.

Figure 32. Proportion of *in vivo* BrdU incorporated CD8⁺ T cells from lymph nodes of C57BL/6J naïve mice (a), or mouse received three consecutive subcutaneous injections with 10µg of Fve (b), 50µg of Fve (c), 250µg of Fve (d). Lymph nodes are stained with anti-CD8 PE and anti-BrdU FITC monoclonal antibodies and then analyzed with flow cytometry.

Figure 33. Proportion of CD4⁺ and CD8⁺ T cell subsets from mouse peripheral blood mononuclear cells of Balb/cJ naïve mouse (a), or mouse received seven consecutive subcutaneous injections with 125µg of Fve. Panels (b), (c), (d) represent results for three respective individual mouse. Mouse peripheral blood mononuclear cells are collected in a tube with anti-coagulant. Cells are stained with anti-CD8 PE and anti-CD4 FITC monoclonal antibodies and then analyzed by flow cytometry.

5

10

15

Figure 34. Schematic representative of two mammalian eukaryotic expression vectors. (A) pCI-neo can constitutively express high level of recombinant protein in mammalian cells (Picture adopted from Promega, USA). (B) pDisplay can display recombinant protein to the surface of mammalian cells (Picture adopted from Invitrogen life technologies, USA).

Figure 35. Growth suppression of EL4 solid tumor. C57BL mice are inoculated with 8x10⁶ EL4 cells have reduced tumor growing rate in the group treated with pCIneo-fve plasmid DNA and Fve protein (Square curve). The control group received pCIneo DNA vector alone and 1xPBS (Diamond curve). EL4 tumor formation is observed at day 3. 100μg of pCIneo-fve DNA is intramuscularly injected into the tibialis muscle at days 0 and 7. 20μg of Fve protein is given by subcutaneous injection at days 5, 7, 9, 11, 13, 15, and 18, respectively.

Figure 36. C57BL/6J mice with EL4 solid tumor have extended mean survival time following treatment with the native Fve protein. Eight weeks old female C57BL mice are inoculated with EL4 tumor in the dorsal back. Tumor formation is observed 3 days after inoculation. Red line: 100μg of pCIneo-fve plasmid DNA is intramuscularly injected at the tribilis muscle at days 0 and 7. Mice are received 20μg of native Fve protein treatment by subcutaneous injection surrounding the tumor site at days 5, 7, 9, 11, 13, 15, and 18, respectively. Blue line: Mice received 100μg of pCIneo vector alone and 1xPBS as control group.

10

15

20

25

Figure 37. C57BL/6J mice with B16-F1 melanoma have extended mean survival time following treatment with native Fve protein. Mice are inoculated with B16-F1 tumor cells in the dorsal back. Tumor formation is observed at day 3. Red line: 200µg of pCIneo-fve plasmid DNA is intramuscularly injected at the tribilis muscle at days -30 and day -1. 50µg of Fve protein is given by subcutaneous injection surrounding the tumor site at days 4, 7, 9, and 12, respectively. Blue line: Mice received 200µg of pCIneo vector and 1xPBS as control group.

Figure 38. B16-Fve transfectant has longer survival rate as comparing with B16-vec transfectant. Two groups of C56BL/6J female mice are inoculated either with 5×10^4 of B16-Fve (Red line) or 5×10^4 of B16-vec (Blue line) transfectants in the right flank. Transfectant melanoma solid tumor is established at days 5-7. The fatal rates of mice are recorded and presented-as survival curve.

Figure 39. Combined DNA vaccination and Fve gene-transduced melanoma cells synergizes the extension of life span in solid tumor-established mice. C57BL/6J mice are separated into three groups and each group consisted of ten mice. Mice are inoculated with 5x10⁴ of B16-F1 tumor transfectants in the dorsal back. Tumor formation is observed at day 5-7. 100μg of pCIneo-fve plasmid DNA is intramuscularly injected at the right and left tribilis muscle of C57BL/6J at day -77, day -35 and day -21. Mice are subcutaneously injected with 5x10⁴ of B16-Fve transfectants (Red line) and B16-vec transfectant (Green Line) at day 0, respectively. 100μg of pCIneo plasmid DNA is operated as same experimental procedure and mice are subcutaneously injected with 5x10⁴ of B16-vec transfectants as negative control (Blue line).

Figure 40. Strategy of oral primed with Fve protein and intramuscular boosted with plasmid DNA could extend the survival rate of mice with lung metastasis. Two groups of five C57BL/6J mice are given with 10mg/ml of Fve protein in the drinking water at day - 35, -28 and -21, and each water providing is maintained consecutively for one week. Mice are intravenously injected with $2x10^4$ of B16-F1 (wild type) melanoma cells at day 0. One week after, mice are intramuscularly injected with $100\mu\text{g}$ of pClneo-fve plasmid DNA into

10

20

the right and left tribilis muscle, respectively. The mixture of $5x10^4$ of B16-Fve cells lysate plus $10\mu g$ of Fve protein (Red line) or $10\mu g$ of Fve protein alone (Green line) are subcutaneously injected to mice at the following three weeks. Negative control group of mice received same amount of 1xPBS in the drinking water, intravenously injected with $2x10^4$ of B16-F1 melanoma cells, followed by intramuscularly injected with plasmid DNA vector pCIneo, and finally subcutaneously injected with B16-vec cells lysate plus 1xPBS (Blue line).

Figure 41. Two representative crystals of Fve. Tetragonal crystal is grown in 2% PEG 400, 2.0 M Ammonium Sulfate; 0.1 M Tris-HCl pH 8.5. The crystal dimensions are approximately 1 mm \times 0.9 mm \times 0.5 mm.

Figure 42. 1° oscillation image of Fve crystal. The edge of the image corresponds to a resolution of 1.4Å. Image displayed with Mosflm/Scala.

Figure 43, 44A, 44B, 44C, 45A and 45B show structures of Fve.

SEQUENCES

Appendix A shows the nucleic acid and/or aminio acid sequences of the deletiion mutants Fve D6-18, Fve D19-33, Fve D34-46, Fve D47-60, Fve D61-72, Fve D73-84, Fve D85-97, Fve D98-106, Fve D107-115, Fve D61-97, Fve p55-100.

Appendix A also shows the nucleic acid and/or aminio acid sequences of the substitution mutants Fve R27A, Fve G28A, Fve T29A, as well as the fusion proteins Blo t 5-Fve (two-in-one chimeric wild type), Blo t 5-Fve R27A (two-in-one chimeric mutant), Blo t 5-Fve T29A (two-in-one chimeric mutant), Der p 2-Fve R27A (two-in-one chimeric mutant), Der p 2-Fve T29A(two-in-one chimeric mutant), Blo t 5-Der p 2-Fve R27A(three-in-one chimeric mutant).

Appendix A also shows the nucleic acid and/or aminio acid sequences of the Fusion Proteins of Viral Antigen and Fve, HPV E7-FveT29A and HCV Core23-FveT29A, as well as the nucleic acid and/or aminio acid sequences of the Fusion Proteins of Tumor-Associated Antigen and Fve, MAGE3-FveT29A, MART1-FveT29A and CEA-FveT29A.

Appendix A also shows the sequences of the primers Fd6-18F (36 mer), Fd6-18R (36 mer), Fd19-33F(36 mer), Fd19-33R(36 mer), Fd34-46F(36 mer), Fd34-46R(36 mer), Fd47-60F(36 mer), Fd47-60R(36 mer), Fd61-72F(36 mer), Fd61-72R(36 mer), Fd73-84F(36 mer), Fd73-84F(36 mer), Fd73-84R(36 mer), Fd85-97F(36 mer), Fd85-97R(36 mer), Fd98-106F (36 mer), Fd98-106R (36 mer), Fd107-115R(39 mer), d(61-97)-F(36mer), d(61-97)-R(36mer), F(55-100]-F(48mer), [Fv55-100]-R(42mer), F(R27A)-F (27 mer), F(R27A)-R (27 mer), F(G28A)-F (27 mer), F(G28A)-R (27 mer), F(T29A)-F (27 mer), F(T29A)-R (27 mer), Bt5Fv-F (36mer), Bt5Fv-R (36mer), Dp2Fv-F (36mer), Dp2Fv-R (36mer), Bt5Dp2-F(36mer), Bt5Dp2-R(36mer).

Appendix B shows the sequences of fragments of Fve, which comprise all or part of the RGT motif.

Appendix C shows the crystal coordinates of Fve protein.

The methods and compositions described here may suitably employ any one or more of the sequences shown in the Appendices.

DETAILED DESCRIPTION

11 24U4CID 1: 10

We have identified an immunoregulatory protein, designated as native Fve, from Flammulina velutipes. The cDNA encoding Fve protein has been isolated and biologically active recombinant Fve has been successfully produced in E.coli.

Our studies show that native Fve is capable of inducing high levels of expression of IFN- γ , TNF- α and ICAM-I gene expression in activated human T -and NK cells. It also

10

15

20

25

up-regulates transcription factors IRF-I and NF-kB (c-Rel), but down-regulates ll.-4. In allergic murine model, mice treated with Der p 2, a major house dust mite allergen from *Dermatophagoides pteronyssinus*, plus native Fve show a significant boost of Der p 2-specific IgG2a production. Native Fve also reduces wheel and erythematic flare formation on Der p 2 skin prick test-positive human subject. We also find that fragments, homologues, variants derivatives of native Fve disclosed here (termed "Fve polypeptides") as well as nucleic acids encoding these, also have such activities.

Furthermore, we show in the Examples that Fve polypeptide and native Fve polypeptide is a potent adjuvant that can be codelivered with specific allergens for desensitization of allergic disorders such as asthma, rhinitis and atopic dermatitis. In addition, Fve selectively induces polarization of NK (natural killer) cells and cytotoxic CD8⁺T cells *in vitro* and *in vivo*. We therefore disclose anti-cancer therapies and methods which employ these immunostimulatory or immunomodulatory effects. We disclose *in vivo* animal studies which show that this protein prolongs survival rate in solid tumor-transplanted mice.

Fve and its polypeptides may therefore be used for any application where upregulation of a immune response is desired or necessary. Fve polypeptides may in particular be used in therapy, for example for the treatment of diseases such as infections, cancer, etc.

We further disclose a combination of Fve polypeptide or native Fve, with an allergen, for example in the form of a fusion protein. Such a combination is able to counteract an established allergic reaction. Combinations of Fve polypeptide or native Fve with a tumour associated protein or viral oncogenic protein may be used to prevent or treat cancer, or specifically for preventing tumour progression.

We disclose immunotherapeutic methods and reagents for allergy and virus infections, which take advantage of these immunomodulatory effects of native Fve and Fve polypeptides. We also disclose methods of treatment or prevention of a cancer,

10

15

20

tumour, neoplasm or cancerous cell, by use of the Fve polypeptides and nucleic acids described here. DNA vaccines, expression vectors, host cells and transgenic organisms comprising such Fve nucleic acids, or a fragment, homologue, variant or derivative thereof, may also be used for such a purpose. In general, any use of a Fve polypeptide described here may employ a nucleic acid encoding such, or a DNA vaccine, expression vector, host cell and transgenic organism comprising such, and the disclosure should be read accordingly.

We also show that native Fve stimulates gene expression of human IFN- γ , TNF- α , IL-1 β , IL-2, IRF-1, c-Rel, Bcl-X_L, ICAM-1 and iNOS. In addition, we show that Fve upregulates a novel subset of CD8⁺ T cells (CD3⁺ CD8⁺ CD18^{+ bright}), and induces NK cell and CD8 ⁺ T cell proliferation *in vivo*. Animal studies show that Fve prolongs survival rate of tumor-inoculated mice treated with Fve gene and protein. We disclose methods and reagents for cancer therapy using the Fve gene, protein and products, for example in the form of cell-based vaccines for cancers.

Fve may be used *in vitro* to stimulate the proliferation of CD3⁺ CD8^{+bright}
CD18^{+bright} populations, and the amplified populations may then be administered to the individual in need of treatment. Thus, while it is possible to stimulate CD3⁺ CD8^{+bright}
CD18^{+bright} populations in the context of the body of the animal, it will be apparent that such amplification is also possible *in vitro*. We therefore disclose the use of Fve polypeptides to stimulate such cells *in vitro*. Such amplified populations may then be infused into or otherwise administered to the individual in need of treatment. The starting cell population may come from another individual, but preferably it is derived from the same individual who requires treatment.

We also disclose a crystal of FIP, which has been crystallised for the first time.

Such a crystal may be used for modelling, or designing ligands which may interact with Fve. The crystal or model may be stored on a computer, or on a computer readable medium, and manipulated using methods known to the skilled person. A computer readable medium comprising a data representation of the crystal is therefore provided.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA and immunology, which are within the capabilities of a person of ordinary skill in the art. Such techniques are explained in the literature. See, for example, J. Sambrook, E. F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Second 5 Edition, Books 1-3, Cold Spring Harbor Laboratory Press; Ausubel, F. M. et al. (1995 and periodic supplements; Current Protocols in Molecular Biology, ch. 9, 13, and 16, John Wiley & Sons, New York, N.Y.); B. Roe, J. Crabtree, and A. Kahn, 1996, DNA Isolation and Sequencing: Essential Techniques, John Wiley & Sons; J. M. Polak and James O'D. McGee, 1990, In Situ Hybridization: Principles and Practice; Oxford University Press; M. 10 J. Gait (Editor), 1984, Oligonucleotide Synthesis: A Practical Approach, Irl Press; and, D. M. J. Lilley and J. E. Dahlberg, 1992, Methods of Enzymology: DNA Structure Part A: Synthesis and Physical Analysis of DNA Methods in Enzymology, Academic Press. Each of these general texts is herein incorporated by reference.

15 NATIVE FVE

20

25

The terms "native Fve polypeptide" or "native Fve protein", as used in this document, should be taken to refer to the immunoregulatory protein Fve from *Flammulina velutipes*, preferably in isolated form. The term "wild type Fve" should be understood to be synonymous with "native" Fve; furthermore, the term "nFve" is sometimes used to refer to native Fve.

Preferably, "native" Fve has an amino acid sequence set out as as GenBank accession numbers: S69147 immunomodulatory protein FIP-fve - golden needle mushroom gi|7438667|pir||S69147[7438667] and P80412 IMMUNOMODULATORY PROTEIN FIP-FVE gi|729544|sp|P80412|FVE_FLAVE[729544]. A polypeptide and nucleic acid sequence of "native" or "wild type" Fve is also shown in **Appendix A**, and the term "native FIP" preferably refers to a polypeptide or nucleic acid, as the case may be, having such sequence. Methods of isolating the "native" Fve gene and protein from Flammulina velutipes are known in the art, and are also set out in the Examples.

A "native" Fve may comprise a methionine residue at the N terminus; however, a native Fve may include versions which lack the initial methionine. The nucleic acid sequence which encodes such a native Fve may therefore comprise or not comprise an initial ATG codon.

As noted above, we have identified certain previously unknown properties of native Fve, including immunomodulatory and stimulatory properties, and one aspect of the invention is directed to such new uses of native Fve nucleic acid and native Fve polypeptide. These are disclosed in further detail below.

It should be understood, therefore, that the invention preferably does not include
wild-type or native Fve protein; however, it does encompass the uses of this in
immunomodulation, enhancing immune response and in allergy and cancer treatment.
Furthermore, we disclose a fusion protein comprising gluthathione S transferase (GST)
and native Fve; such a fusion protein is shown in the Examples to have the beneficial
properties of native Fve itself. The sequence of GST-Fve is shown in Appendix A.

Therefore, the invention includes this GST-Fve fusion protein (also referred to as rGSTFve and GST-Fve (wild type)), and nucleic acids encoding it.

We further disclose a nucleic acid sequence encoding native Fve, termed here a "native Fve nucleic acid sequence". The Examples describe the cloning and isolation of a cDNA encoding native Fve protein. The sequence of this is set out as "Fve (Wild type)" in Appendix A. Preferably such a sequence is in isolated form.

FVE POLYPEPTIDES

20

25

Additionally, we have identified various fragments, homologues, variants and derivatives of "native Fve", which are previously unknown. Such fragments, homologues, variants and derivatives are referred to here as "Fve polypeptides" (as contrasted with "native Fve polypeptides"). We disclose such Fve polypeptides, and their uses.

It will be apparent that the terms "Fve" and "Fve polypeptide", as they is used in this document, preferably exclude the wild type or native Fve protein or gene encoding this, and includes only molecules derived from native Fve, being fragments, homologues, variants and derivatives of native Fve (i.e., Fve polypeptides).

The Fve polypeptides are preferably are at least as biologically active as native Fve. However, they may have 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or more of the biological activity of native Fve, for example as assayed by any of the tests set out below. As used herein "biologically active" refers to a sequence having a similar structural function (but not necessarily to the same degree), and/or similar regulatory function (but not necessarily to the same degree), and/or similar biochemical function (but not necessarily to the same degree) of the naturally occurring sequence.

"Fve polypeptides" preferably comprise at least one biological activity of native Fve. By "biological activity" in relation to Fve, we refer to at least one of the following activities: up-regulation of expression of Th1 cytokines, preferably IFN-γ and TNF-α, down-regulation of expression of Th2 cytokines, preferably IL-4 and IL-13, hemagglutination activity, cell aggregation activity, lymphocyte aggregation activity, lymphoproliferation activity, up-regulation of expression of IL-2, IFN-γ, TNF-α, but not IL-4 in CD3⁺ T cells, interaction with T and NK cells, adjuvant activity, stimulation of CD3⁺ CD16⁺ CD56⁺ natural killer (NK) T cells, and up-regulation of expression of allergen specific IgG2a antibody. Further biological activities preferably comprised by Fve polypeptides as described here include prevention of systemic anaphylactic reactions and/or decreased footpad edema, preferably as assayed using the Arthus reaction (Ko et al, 1995). In particular, Fve polypeptides preferably comprise at least some of useful properties, preferably medically or therapeutically useful properties, of native Fve.

Assays for each of these activities are set out in the Examples, and preferably, whether a Fve polypeptide comprises a "biological activity" of Fve is to be assessed according to the relevant assay set out in the Examples.

10

15

20

25

Preferably, Fve polypeptides comprise at least one or more of the biological activities for the relevant use, preferably use as an immunomodulator, or for upregulating immune response. Preferably, they comprise at least one or more of the biological activities which enable use as a cancer therapy or allergy therapy.

Preferably, Fve polypeptides comprise two or more biological activities of native Fve, preferably substantially all the biological activities of native Fve.

We show in the Examples that the sequence RGT at positions 27-29 of the native Fve polypeptide sequence plays a crucial role in the biological activity of native Fve. In particular, the RGT is shown to mediate the ability of native Fve to cause lymphocyte aggregation and adhesion. This sequence is also shown to mediate lymphoproliferation, and stimulation of IL-2, IFN- γ and TNF- γ secretion in T cells, preferably CD3⁺T cells.

Accordingly, in preferred embodiments, the Fve polypeptides comprise at least one, two or all three of the RGT residues (or a functional variant such as RGD) at or about a position corresponding to position 28 of the native Fve polypeptide. By functional variant of RGT, we mean any change in the residues of RGT (or a sequence surrounding it) which does not substantially abolish its function, preferably its function in mediating the activities set out above. Preferably, the Fve polypeptide comprises between 2 to 50, more preferably between 2 to 40, more preferably between 2 to 30, most preferably between 2 to 20 residues of amino acid sequence flanking the glycine residue corresponding to position 28 of native Fve. More preferably, the Fve polypeptide comprises the sequence RGT or the sequence RGD.

However, we show that mutations of R at position 27, as well as mutations of T at position 29, have advantageous effects, in that they independently increase activity of a Fve polypeptide comprising either or both of these mutations. Furthermore, each of the mutations, or in combination, have the potential to increase the solubility of the Fve polypeptide comprising it or them. One, each or both of R27 and T29 may therefore be independently mutated advantageously, by substitution or deletion.

In preferred embodiments, the or each of R27 and T29 are mutated by substitution. The R27 and / or T29 may be substituted by any other residue, but preferably a neutral residue such as G or A. We therefore disclose Fve polypeptides in which R at position 27 is changed to another residue, for example, Fve polypeptides in which R27 is mutated to A, i.e., a Fve polypeptide comprising R27A. We therefore disclose Fve polypeptides in which T at position 29 is changed to another residue, for example, Fve polypeptides in which T29 is mutated to A, i.e., a Fve polypeptide comprising T29A.

Combinations are also possible; hence we disclose Fve polypeptides in which R at position 27 and T at position 29 are independently changed to one or more other residues.

For example, we disclose Fve polypeptides in which R27 is mutated to A, and T29 is mutated to A, i.e., a Fve polypeptide comprising R27A and T29A. As noted above, the polypeptide may comprise between 2 to 50, 40, 30 or preferably 20 residues of amino acid flanking the glycine residue at position 28 of native Fve.

Fve polypeptides may comprise fragments of native Fve. For example, Fve D6-18,

Fve D19-33, Fve D34-46, Fve D47-60, Fve D61-72, Fve D73-84, Fve D85-97, Fve D98106, Fve D107-115, Fve D61-97, and Fvep55-100. Fusion proteins comprising these
deletion fragments and GST are also disclosed. Fve polypeptides may comprise
substitutions, including FveR27A, FveG28A and FveT29A. Further examples of Fve
polypeptides are shown in Appendix B, each of which includes at least a portion of the

RGT sequence (preferably the whole of the RGT sequence) discussed above. Preferably,
the length of such a fragment is 9 amino acid residues or more, e.g., fragment numbers 34403.

Fve polypeptides may comprise fusion proteins, particularly fusion proteins between an allergen and a Fve polypeptide as defined here. Such allergenimmunomodulator combinations include Blo t 5-Fve(two-in-one chimeric wild type), Blo t 5-FveR27A (two-in-one chimeric mutant), Blo t 5-FveT29A (two-in-one chimeric mutant), Der p 2-FveR27A (two-in-one chimeric mutant), Der p 2-FveT29A (two-in-one chimeric mutant) and Blo t 5-Der p 2-FveR27A (three-in-one chimeric mutant).

10

25

Fragments, homologues, variants and derivatives of each of these Fve polypeptides are also included.

The Fve polypeptides may be made by biochemical methods, for example, protein digestion of native Fve, or preferably by recombinant DNA methods as known in the art. Accordingly, it will be understood that Fve polypeptides specifically include recombinant Fve polypeptides. For example, we disclose in the Examples successful production in *E.coli* of biologically active recombinant Fve polypeptide.

The Fve polypeptides disclosed also include homologous sequences obtained from any source, for example related viral/bacterial proteins, cellular homologues and synthetic peptides, as well as variants or derivatives thereof. Thus polypeptides also include those encoding homologues of Fve from other species including other microorganisms. Furthermore, homologues from higher animals such as mammals (e.g. mice, rats or rabbits), especially primates, more especially humans are also included.

Homologues

In the context of this document, a "homologous" sequence is taken to include an amino acid sequence which is at least 15, 20, 25, 30, 40, 50, 60, 70, 80 or 90% identical, preferably at least 95 or 98% identical at the amino acid level over at least 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110 or 114 amino acids with the sequence of native Fve shown as "Fve (Wild type)" in Appendix A. In particular, homology should typically be considered with respect to those regions of the sequence known to be essential for protein function rather than non-essential neighbouring sequences. This is especially important when considering homologous sequences from distantly related organisms.

Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present document it is preferred to express homology in terms of sequence identity.

10

15

20

25

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These publicly and commercially available computer programs can calculate % homology between two or more sequences.

% homology may be calculated over contiguous sequences, i.e. one sequence is aligned with the other sequence and each amino acid in one sequence directly compared with the corresponding amino acid in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues (for example less than 50 contiguous amino acids).

Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion will cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed. Consequently, most sequence comparison methods are designed to produce optimal alignments that take into consideration possible insertions and deletions without penalising unduly the overall homology score. This is achieved by inserting "gaps" in the sequence alignment to try to maximise local homology.

However, these more complex methods assign "gap penalties" to each gap that occurs in the alignment so that, for the same number of identical amino acids, a sequence alignment with as few gaps as possible - reflecting higher relatedness between the two compared sequences - will achieve a higher score than one with many gaps. "Affine gap costs" are typically used that charge a relatively high cost for the existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties will of course produce optimised alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use the default values when using such software for sequence comparisons. For example when using the GCG Wisconsin Bestfit package (see below) the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension.

10

15

20

25

Calculation of maximum % homology therefore firstly requires the production of an optimal alignment, taking into consideration gap penalties. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A; Devereux et al., 1984, Nucleic Acids Research 12:387). Examples of other software than can perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 ibid – Chapter 18), FASTA (Atschul et al., 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999 ibid, pages 7-58 to 7-60). However it is preferred to use the GCG Bestfit program.

Although the final % homology can be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pairwise comparison based on chemical similarity or evolutionary distance. An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table if supplied (see user manual for further details). It is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.

Advantageously, the BLAST algorithm is employed, with parameters set to default values. The BLAST algorithm is described in detail at http://www.ncbi.nih.gov/BLAST/blast_help.html, which is incorporated herein by reference. The search parameters are defined as follows, can be advantageously set to the defined default parameters.

Advantageously, "substantial identity" when assessed by BLAST equates to sequences which match with an EXPECT value of at least about 7, preferably at least about 9 and most preferably 10 or more. The default threshold for EXPECT in BLAST searching is usually 10.

10

15

25

BLAST (Basic Local Alignment Search Tool) is the heuristic search algorithm employed by the programs blastp, blastn, blastx, tblastn, and tblastx; these programs ascribe significance to their findings using the statistical methods of Karlin and Altschul (Karlin and Altschul 1990, *Proc. Natl. Acad. Sci. USA* 87:2264-68; Karlin and Altschul, 1993, *Proc. Natl. Acad. Sci. USA* 90:5873-7; see http://www.ncbi.nih.gov/BLAST/blast_help.html) with a few enhancements. The BLAST programs are tailored for sequence similarity searching, for example to identify homologues to a query sequence. For a discussion of basic issues in similarity searching of sequence databases, see Altschul *et al* (1994) Nature Genetics 6:119-129.

The five BLAST programs available at http://www.ncbi.nlm.nih.gov perform the following tasks: blastp - compares an amino acid query sequence against a protein sequence database; blastn - compares a nucleotide query sequence against a nucleotide sequence database; blastx - compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database; tblastn - compares a protein query sequence against a nucleotide sequence database dynamically translated in all six reading frames (both strands); tblastx - compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database.

BLAST uses the following search parameters:

20 HISTOGRAM - Display a histogram of scores for each search; default is yes. (See parameter H in the BLAST Manual).

DESCRIPTIONS - Restricts the number of short descriptions of matching sequences reported to the number specified; default limit is 100 descriptions. (See parameter V in the manual page).

EXPECT - The statistical significance threshold for reporting matches against database sequences; the default value is 10, such that 10 matches are expected to be found

10

15

20

25

merely by chance, according to the stochastic model of Karlin and Altschul (1990). If the statistical significance ascribed to a match is greater than the EXPECT threshold, the match will not be reported. Lower EXPECT thresholds are more stringent, leading to fewer chance matches being reported. Fractional values are acceptable. (See parameter E in the BLAST Manual).

CUTOFF - Cutoff score for reporting high-scoring segment pairs. The default value is calculated from the EXPECT value (see above). HSPs are reported for a database sequence only if the statistical significance ascribed to them is at least as high as would be ascribed to a lone HSP having a score equal to the CUTOFF value. Higher CUTOFF values are more stringent, leading to fewer chance matches being reported. (See parameter S in the BLAST Manual). Typically, significance thresholds can be more intuitively managed using EXPECT.

ALIGNMENTS - Restricts database sequences to the number specified for which high-scoring segment pairs (HSPs) are reported; the default limit is 50. If more database sequences than this happen to satisfy the statistical significance threshold for reporting (see EXPECT and CUTOFF below), only the matches ascribed the greatest statistical significance are reported. (See parameter B in the BLAST Manual).

MATRIX - Specify an alternate scoring matrix for BLASTP, BLASTX, TBLASTN and TBLASTX. The default matrix is BLOSUM62 (Henikoff & Henikoff, 1992). The valid alternative choices include: PAM40, PAM120, PAM250 and IDENTITY. No alternate scoring matrices are available for BLASTN; specifying the MATRIX directive in BLASTN requests returns an error response.

STRAND - Restrict a TBLASTN search to just the top or bottom strand of the database sequences; or restrict a BLASTN, BLASTX or TBLASTX search to just reading frames on the top or bottom strand of the query sequence.

15

20

FILTER - Mask off segments of the query sequence that have low compositional complexity, as determined by the SEG program of Wootton & Federhen (1993) Computers and Chemistry 17:149-163, or segments consisting of short-periodicity internal repeats, as determined by the XNU program of Claverie & States (1993) Computers and Chemistry 17:191-201, or, for BLASTN, by the DUST program of Tatusov and Lipman (see http://www.ncbi.nlm.nih.gov). Filtering can eliminate statistically significant but biologically uninteresting reports from the blast output (e.g., hits against common acidic, basic- or proline-rich regions), leaving the more biologically interesting regions of the query sequence available for specific matching against database sequences.

Low complexity sequence found by a filter program is substituted using the letter "N" in nucleotide sequence (e.g., "NNNNNNNNNNNNNN") and the letter "X" in protein sequences (e.g., "XXXXXXXXXX").

Filtering is only applied to the query sequence (or its translation products), not to database sequences. Default filtering is DUST for BLASTN, SEG for other programs.

It is not unusual for nothing at all to be masked by SEG, XNU, or both, when applied to sequences in SWISS-PROT, so filtering should not be expected to always yield an effect. Furthermore, in some cases, sequences are masked in their entirety, indicating that the statistical significance of any matches reported against the unfiltered query sequence should be suspect.

NCBI-gi - Causes NCBI gi identifiers to be shown in the output, in addition to the accession and/or locus name.

Most preferably, sequence comparisons are conducted using the simple BLAST search algorithm provided at http://www.ncbi.nlm.nih.gov/BLAST. In some embodiments, no gap penalties are used when determining sequence identity.

10

15

20

Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

Variants and Derivatives

The terms "variant" or "derivative" in relation to the amino acid sequences disclosed here includes any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) amino acids from or to the sequence providing the resultant amino acid sequence retains substantially the same activity as the unmodified sequence. Preferably, the modified sequence has at least one biological activity as the unmodified sequence, preferably all the biological activities of the unmodified sequence. Preferably, the "variant" or "derivative" has at least one biological activity of native Fve, as described above.

Polypeptides having the amino acid sequence shown in the description and Examples, or fragments or homologues thereof may be modified for use in the methods and compositions described here. Typically, modifications are made that maintain the biological activity of the sequence. Amino acid substitutions may be made, for example from 1, 2 or 3 to 10, 20 or 30 substitutions provided that the modified sequence retains the biological activity of the unmodified sequence. Alternatively, modifications may be made to deliberately inactivate one or more functional domains of the polypeptides described here. Functional domains of native Fve include the α helix at the N terminus, any of the six β helices, as well as the "loop-like" structures at the N and C termini. Preferably, the functional domain of native Fve comprises the N-terminus helix and the loop/strand, which are essential for protein dimerization.

Amino acid substitutions may include the use of non-naturally occurring
analogues, for example to increase blood plasma half-life of a therapeutically administered polypeptide.

10

15

20

Conservative substitutions may be made, for example according to the Table below. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

ALIPHATIC Non-polar	GAP
·	ILV
Polar - uncharged	CSTM
	NQ
Polar - charged	DE
	KR
	HFWY
	Polar - uncharged

Polypeptides also include fragments of the full length sequence of native Fve, or any of the Fve polypeptides disclosed here. Preferably fragments comprise at least one epitope. Methods of identifying epitopes are well known in the art. Fragments will typically comprise at least 6 amino acids, more preferably at least 10, 20, 30, 50 or 100 amino acids.

Fve polypeptides, fragments, homologues, variants and derivatives, are typically made by recombinant means, for example as described below in the Examples. However they may also be made by synthetic means using techniques well known to skilled persons such as solid phase synthesis. The proteins may also be produced as fusion proteins, for example to aid in extraction and purification. Examples of fusion protein partners include glutathione-S-transferase (GST), 6xHis, GAL4 (DNA binding and/or transcriptional activation domains) and β -galactosidase. It may also be convenient to include a proteolytic cleavage site between the fusion protein partner and the protein sequence of interest to allow removal of fusion protein sequences. Preferably the fusion protein will not hinder the function of the protein of interest sequence. Proteins may also be obtained by purification of cell extracts from animal cells.

The Fve polypeptides, variants, homologues, fragments and derivatives disclosed here may be in a substantially isolated form. It will be understood that such polypeptides

10

15

20

25

may be mixed with carriers or diluents which will not interfere with the intended purpose of the protein and still be regarded as substantially isolated. A Fve variant, homologue, fragment or derivative may also be in a substantially purified form, in which case it will generally comprise the protein in a preparation in which more than 90%, e.g. 95%, 98% or 99% of the protein in the preparation is a protein.

The Fve polypeptides, variants, homologues, fragments and derivatives disclosed here may be labelled with a revealing label. The revealing label may be any suitable label which allows the polypeptide, etc to be detected. Suitable labels include radioisotopes, e.g. ¹²⁵I, enzymes, antibodies, polynucleotides and linkers such as biotin. Labelled polypeptides may be used in diagnostic procedures such as immunoassays to determine the amount of a polypeptide in a sample. Polypeptides or labelled polypeptides may also be used in serological or cell-mediated immune assays for the detection of immune reactivity to said polypeptides in animals and humans using standard protocols.

A Fve polypeptide, variant, homologue, fragment or derivative disclosed here, optionally labelled, my also be fixed to a solid phase, for example the surface of an immunoassay well or dipstick. Such labelled and/or immobilised polypeptides may be packaged into kits in a suitable container along with suitable reagents, controls, instructions and the like. Such polypeptides and kits may be used in methods of detection of antibodies to the polypeptides or their allelic or species variants by immunoassay.

Immunoassay methods are well known in the art and will generally comprise: (a) providing a polypeptide comprising an epitope bindable by an antibody against said protein; (b) incubating a biological sample with said polypeptide under conditions which allow for the formation of an antibody-antigen complex; and (c) determining whether antibody-antigen complex comprising said polypeptide is formed.

The Fve polypeptides, variants, homologues, fragments and derivatives disclosed here may be used in *in vitro* or *in vivo* cell culture systems to study the role of their corresponding genes and homologues thereof in cell function, including their function in

10

15

20

25

disease. For example, truncated or modified polypeptides may be introduced into a cell to disrupt the normal functions which occur in the cell. The polypeptides may be introduced into the cell by *in situ* expression of the polypeptide from a recombinant expression vector (see below). The expression vector optionally carries an inducible promoter to control the expression of the polypeptide.

The use of appropriate host cells, such as insect cells or mammalian cells, is expected to provide for such post-translational modifications (e.g. myristolation, glycosylation, truncation, lapidation and tyrosine, serine or threonine phosphorylation) as may be needed to confer optimal biological activity on recombinant expression products. Such cell culture systems in which the Fve polypeptides, variants, homologues, fragments and derivatives disclosed here are expressed may be used in assay systems to identify candidate substances which interfere with or enhance the functions of the polypeptides in the cell.

IMMUNOMODULATOR-ANTIGEN COMBINATIONS AND CONJUGATES

We show throughout this document (for the first time) that Fve has immunomodulatory properties, and in particular can act to potentiate an immune response. The adjuvant property of Fve may be exploited by administering Fve polypeptide or nucleic acid (or a fragment, homologue, variant or derivative thereof, or a host cell or vector comprising such) as described below, along with a molecule to which an immune response is desired.

The Fve polypeptide, etc may be administered to an individual either in combination, sequentially or simultaneously or in succession with the molecule to which an immune response is desired. We therefore provide for the first time a combination of a Fve polypeptide, etc with an antigenic molecule.

Where the Fve polypeptide, etc and the molecule are administered in combination, this may be achieved by administering a mixture of the Fve polypeptide, etc and the

10

15

20

25

molecule. We therefore provide a simple combination of the Fve polypeptide, etc and the molecule, preferably as a kit. The kit may comprise the Fve polypeptide, etc and the molecule to which an immune response is desired in separate containers, and may optionally comprise instructions to administer these simultaneously, sequentially, etc.

The molecule to which an immune response is desired may comprise an allergen.

These are set out in further detail in the following section.

The molecule to which an immune response is desired may comprise a tumour associated antigen. In preferred embodiments, the tumour associated antigen comprises MAGE-1, MAGE-2, MAGE-3, BAGE, GAGE, PRAME, SSX-2, Tyrosinase, MART-1, NY-ESO-1, gp100, TRP-1, TRP-2, A2 melanotope, BCR/ABL, Proteinase-3/Myeloblastin, HER2/neu, CEA, P1A, HK2, PAPA, PSA, PSCA, PSMA, pg75, MUM-1, MUC-1, BTA, GnT-V, β-catenin, CDK4, or P15. Nucleic acid and amino acid sequences of these antigens are known in the art, and the skilled person will know how to produce tumour associated antigens, including those set out above. We therefore disclose combinations, preferably in the form of kits, comprising an Fve polypeptide or nucleic acid (or a fragment, homologue, variant or derivative thereof, or a host cell or vector comprising such), together with a tumour associated antigen, for example as set out above.

The molecule to which an immune response is desired may comprise a viral antigen. In preferred embodiments, the viral antigen comprises a protein from an oncogenic virus; such viruses are known in the art. Preferably the oncogenic viral antigen comprises E6 and E7 from HPV; core Ag and E2 from HCV; core and surface antigens from HBV; LMP-1, LMP-2, EBNA-2, EBNA-3 from EBV; or Tax from HTLV-1.

In a further embodiment, the viral antigen comprises an antigen, preferably a protein, more preferably an antigenic protein or fragment thereof from an infectious virus. Such immunomodulator-viral antigen conjugates may be used to treat or prevent a viral infectious disease, i.e., the cognate disease. For example, an immunomodulator-HSV antigen conjugate, for example, a Fve polypeptide-HSV antigen conjugate, may be used to

treat or prevent Herpes Simplex Virus infection. Other preferred viral antigens include those from Adenovirus, Parainfluenza 3 virus, Human Immunodeficiency Virus (HIV), Herpes simplex virus, HSV, Respiratory syncytial virus, RSV, and Influenza A, Flu A. These viruses, and the diseases they cause, are well known in the art, and methods for making and purifying antigens from such viruses are also well known. For example, US Patent Number 4,313,927 (Fridlender) discloses detailed protocols for preparation of rubella and Cytomegalovirus (CMV) antigen.

5

10

15

20

25

Nucleic acid and amino acid sequences of these viral antigens are known in the art, and the skilled person will know how to produce viral antigen antigens, including these set out above. We therefore disclose combinations, preferably in the form of kits, comprising an Fve polypeptide or nucleic acid (or a fragment, homologue, variant or derivative thereof, or a host cell or vector comprising such), together with a viral antigen, for example as set out above.

In preferred embodiments, we provide administration of the Fve polypeptide, etc and the molecule to which an immune response is desired, in which there is some degree of association between the Fve polypeptide, etc and the molecule in question.

We therefore disclose for the first time an an agent which comprises an immunomodulator coupled, fused, mixed, combined, or otherwise joined to an allergen. Such a construct is referred to as a "immunomodulator-allergen conjugate" in this document. In particular, we disclose the use of Fve adjuvanted allergen vaccines, as explained in further detail in Examples 13 and 14.

The coupling, etc between the immunomodulator and the allergen may be permanent or transient, and may involve covalent or non-covalent interactions (including ionic interactions, hydrophobic forces, Van der Waals interactions, etc). The exact mode of coupling is not important, so long as the immunomodulator-allergen conjugate.

Accordingly, where reference is made to "comprising", "conjugation", "coupling", etc,

10

15

20

25

these references should be taken to include any form of interaction between the immunomodulator and the allergen.

Thus, the immunodulator may be a polypeptide which is provided as a fusion protein with the allergen, for example as shown in Example 13 for Fve/Allergen. An expression vector may be constructed by standard recombinant DNA technology to include a nucleotide sequence capable of expressing a immunodulator, such that a fusion protein is expressed comprising the allergen of interest fused to the immunodulator. The expression vector is transfected or transformed into a suitable host for large scale production of fusion protein, by means known in the art. Purification of the fusion protein may also be carried out by known means. Alternatively, or in addition, and as discussed above, the allergen may be physically associated with the immunomodulator, and attached to it by chemical conjugation. Thus, Example 14 below describes the use of allergen physically conjugated to Fve.

In preferred embodiments, the immunomodulator-allergen conjugate is capable of at least one of the following, preferably two or more, more preferably all: increase the number of human PBMC, to stimulate the proliferation of human lymphocytes, to polarize human CD8⁺ T cells, and to increase the production of IFN-γ (Th1 response) and IL-10 (Tr response). Preferably, the immunomodulator-allergen conjugate is capable of inducing both Th1 and Tr immune responses. Preferably, the Th1 response inhibits the development of Th2 cells via IFN-γ, more preferably it is capable of inducing a life-long (or substantially long lasting) protective Th1 memory immune response. Allergen specific Tr cells may in turn dampen the anti-allergic Th1 immune response, ensuring a well-balanced protective but nonpathological Th1 response. Allergen-Fve fusion proteins meet these criteria since they induce cytokine IL-10, and these are therefore preferred.

Where the conjugate comprises Fve, the Fve portion of the conjugate may comprise the whole molecule, or fragments of it. It may for example comprise the native Fve, or any Fve polypeptide as disclosed above. The allergen portion may comprise any allergen, whether proteinaceous or not. Advantageously, proteinaceous allergens are conjugated to

10

15

20

25

the immunomodulator portion by means of covalent bonds, for example, amide bonds (for example, as a fusion protein).

The allergen may comprise for example the whole or a portion of Blo t 5 or Der p 2 allergen. In highly preferred embodiments, the immunomodulator-allergen conjugate comprises Bt5-Fve, Bt5-FveR27 or GST-Dp2-FveR27. Examples of other allergens suitable for use in the immunomodulator-allergen conjugate described here are provided below.

Furthermore, protein-protein conjugation also provides a convenient and alternative choice to develop allergen vaccine. Any suitable means of conjugation, for example, chemical conjugation may be used to couple the immunomodulator and the allergen. Cross-linkers, for example, heterobifunctional cross linkers are known in the art, and may be used. Furthermore, other conjugation agents, for example, poly-lactic acid (PLA) and polyethylene glycol (PEG) may also be employed.

ALLERGENS

In general, the allergen from which an immunomodulator-allergen conjugate may be constructed may come from any source, for example, a source known to induce allergenic responses in humans. For example, the allergen may comprise a tree pollen allergen, a grass pollen allergen, a weed pollen allergen, a feline antigen, or a fungal allergen. Thus, the allergen may comprise a tree pollen allergen, for example Bet v 1 and Bet v 2 from birch tree. It may comprise a grass pollen allergen, for example, Phl p 1 and Phl p 2 from timothy grass. It may comprise a weed pollen allergen, for example, antigen E from ragweed. It may comprise a major feline antigen, for example, Fel d 1. It may comprise a major fungal allergen, for example, Asp f1, Asp f2, and Asp f3 from Aspergillus fumigatus.

In preferred embodiments, the allergen comprises a dust mite allergen, preferably a house dust mite allergen. In particular, the allergen is preferably derived from a mite from

10

20

25

Family Glycyphagidae or Family Pyroglyphidae. Dust mites of Family Glycyphagidae include those in the genera Aeroglyphus, Austroglycyphagus, Blomia, Ctenoglyphus, Glycyphagus, Gohieria, Lepidoglyphus. Dust mites of Family Pyroglyphidae include those in the genera Dermatophagoides, Euroglyphus, Pyroglyphus. In preferred embodiments, the allergen is preferably an allergen from a species in any of these genera.

In highly preferred embodiments, the allergen is a group 1 allergen (Der p 1, Der f 1, Blo t 1, Eur m1, Lep d 1), a group 2 allergen (Der p 2, Der f 2, Blo t 2, Eur m 2, Lep d 2), a group 5 allergen (Blo t 5, Der p 5, Der f 5, Eur m 5, Lep d 5) or a group 15 allergen (Der p 15, Der f 15, Blot 15, Eur m 15, Lep d 15) from dust mite. Nucleic acid and amino acid sequences of these allergens are known in the art, and the skilled person will know how to produce allergen-immunomodulator conjugates from any of these allergens using such sequences.

OTHER IMMUNOMODULATOR CONJUGATES

Immunomodulator-Tumour Associated Antigen Conjugates

We also disclose for the first time an an agent which comprises an immunomodulator coupled, fused, mixed, combined, or otherwise joined to an tumour associated antigen. Such a construct is referred to as a "immunomodulator-tumour associated antigen conjugate" in this document.

As the term is used here, "tumour associated antigen" generally includes a cancer protein or a cancer antigen, i.e., a protein which is preferentially expressed in a tumour cell or a transformed cell, compared to a "normal" non-cancerous cell.

In highly preferred embodiments, the tumour associated antigen may comprise MAGE-1, MAGE-2, MAGE-3, BAGE, GAGE, PRAME, SSX-2, Tyrosinase, MART-1, NY-ESO-1, gp100, TRP-1, TRP-2, A2 melanotope, BCR/ABL, Proteinase-3/Myeloblastin, HER2/neu, CEA, P1A, HK2, PAPA, PSA, PSCA, PSMA, pg75, MUM-1, MUC-1, BTA, GnT-V, β-catenin, CDK4, or P15. Nucleic acid and amino acid sequences

15

20

25

of these antigens are known in the art, and the skilled person will know how to produce tumour associated antigen-immunomodulator conjugates from any of these allergens using such sequences.

We present in Appendix A the sequences of MAGE3-FveT29A, MART1
5 FveT29A and CEA-FveT29A, which are preferred Immunomodulator-Tumour Associated Antigen Conjugates suitable for use in the methods and compositions described here.

Immunomodulator-Viral Antigen Conjugates

We further disclose an agent comprising an immunodulator coupled, etc to a viral antigen. In highly preferred embodiments, the viral antigen comprises a protein from an oncogenic virus; such viruses are known in the art. Preferably the oncogenic viral antigen comprises E6 and E7 from HPV; core Ag and E2 from HCV; core and surface antigens from HBV; LMP-1, LMP-2, EBNA-2, EBNA-3 from EBV; or Tax from HTLV-1. Nucleic acid and amino acid sequences of these viral antigens are known in the art, and the skilled person will know how to produce viral antigen-immunomodulator conjugates from any of these allergens using such sequences.

We also provide an agent (for example a polypeptide) comprising a first portion comprising at least a portion of Fve and a second portion comprising at least a portion of a viral antigen, preferably coupled together. The viral antigen may be selected from the group consisting of antigens from Adenovirus, Parainfluenza 3 virus, Herpes simplex virus, HSV, Respiratory syncytial virus, RSV, and Influenza A, Flu A.

The viral antigen may comprise any portion of the native viral antigen, for example, a portion of the HCV core antigen. We have established that a deletion of the HCV core antigen, particularly a deletion of 23 amino acids from residues 141 to 163 of the core antigen leads to an increase in efficiency of protein production. Accordingly, we provide an agent comprising an immunodulator coupled, etc to a viral antigen, which viral antigen comprises such a deleted core antigen (here referred to as "Core23"), e.g., the fusion protein HCV Core23-FveT29A.

10

15

20

25

In particular, we find that the polypeptides HCV Core23-FveT29A and HPV E7-FveT29A (the sequences of which are shown in **Appendix A**) are particularly useful as Immunomodulator-Viral Antigen conjugates.

The coupling, etc between the immunomodulator and the tumour associated antigen, and the viral antigen, may be as described above for the immunomodulator-allergen conjugate.

FVE NUCLEIC ACIDS

We provide for a nucleic acid encoding a Fve polypeptide, which we refer to as a "Fve nucleic acid". We also provide nucleic acids encoding variants, homologues, derivatives and fragments of native Fve, as well as fragments, homologues, derivatives and variants of Fve nucleic acids.

Preferably, the Fve nucleic acid is derived from a natural or native Fve sequence, for example, the nucleic sequence shown as "Fve (Wild type)" in Appendix A. In a preferred embodiment, the Fve nucleic acid is a recombinant fragment of native Fve nucleic acid, or any fragment, homologue, variant or derivative thereof. Fragments, homologues, variants and derivatives of each of the above sequences are also included.

"Fve nucleic acids" preferably encode polypeptides which have at least one biological activity of native Fve, as described above. Preferably, Fve nucleic acids encode polypeptides which comprise two or more biological activities of native Fve, preferably substantially all the biological activities of native Fve.

In preferred embodiments, the Fve nucleic acids encode polypeptides which comprise at least one, two or all three of the RGT residues (or a functional variant as defined above, such as RGD) at or about a position corresponding to position 28 of the native Fve polypeptide. In particular, the Fve nucleic acid may comprise the sequence CGTGGTACC. Alternatively, the Fve nucleic acid may comprise the sequence

10

15

20

25

CGTGGTGAT or the sequence CGTGGTGAC. The Fve nucleic acid may comprise a nucleotide sequence which encodes the same amino acids as a result of the redundancy of the genetic code.

The Fve nucleic acid maycomprise a sequence comprising three codons, with a first codon selected from the group consisting of: CGT, CGC, CGA, CGG, AGA and AGG, a second codon selected from the group consisting of: GGT, GGC, GGA and GGG, and a third codon selected from the group consisting of: ACT, ACC, ACA and ACG. Alternatively, the third codon may be selected from the group consisting of: GAT and GAC,

Preferably, the Fve polypeptide comprises between 2 to 60 residues of nucleic acid sequence flanking the codon for the glycine residue corresponding to position 28 of native Fve.

In preferred embodiments, Fve nucleic acids may comprise nucleic acids encoding fragments of native Fve. For example, Fve nucleic acids may comprise the nucleic acid sequences depicted in Appendix A as Fve D6-18, Fve D19-33, Fve D34-46, Fve D47-60, Fve D61-72, Fve D73-84, Fve D85-97, Fve D98-106, Fve D107-115, Fve D61-97, and Fvep55-100. Nucleic acids encoding fusion proteins comprising these deletion fragments and GST are also disclosed. Fve nucleic acids may comprise those encoding substitutions, including FveR27A, FveG28A and FveT29A. Fve nucleic acids include those which encode the polypeptide sequences shown in Appendix A.

We also disclose Fve nucleic acids which encode Fve polypeptides comprising fusion proteins, particularly fusion proteins between an allergen and a Fve polypeptide as defined here. We disclose in particular nucleic acid sequences of Blo t 5-Fve(two-in-one chimeric wild type), Blo t 5-FveR27A (two-in-one chimeric mutant), Blo t 5-FveT29A (two-in-one chimeric mutant), Der p 2-FveR27A (two-in-one chimeric mutant), Der p 2-FveT29A (two-in-one chimeric mutant) and Blo t 5-Der p 2-FveR27A (three-in-one chimeric mutant), and shown in Appendix A.

10

15

20

As used here in this document, the terms "polynucleotide", "nucleotide", and nucleic acid are intended to be synonymous with each other. "Polynucleotide" generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotides" include, without limitation single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and doublestranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term polynucleotide also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications has been made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short polynucleotides, often referred to as oligonucleotides.

It will be understood by a skilled person that numerous different polynucleotides and nucleic acids can encode the same polypeptide as a result of the degeneracy of the genetic code. In addition, it is to be understood that skilled persons may, using routine techniques, make nucleotide substitutions that do not affect the polypeptide sequence encoded by the polynucleotides described here to reflect the codon usage of any particular host organism in which the polypeptides are to be expressed.

Fve nucleic acids, variants, fragments, derivatives and homologues may comprise

DNA or RNA. They may be single-stranded or double-stranded. They may also be
polynucleotides which include within them synthetic or modified nucleotides. A number of
different types of modification to oligonucleotides are known in the art. These include
methylphosphonate and phosphorothioate backbones, addition of acridine or polylysine
chains at the 3' and/or 5' ends of the molecule. For the purposes of this document, it is to

5

10

15

20

25

be understood that the polynucleotides may be modified by any method available in the art. Such modifications may be carried out in order to enhance the *in vivo* activity or life span of polynucleotides of interest.

The terms "variant", "homologue" or "derivative" in relation to a nucleotide sequence include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the sequence. Preferably said variant, homologues or derivatives code for a polypeptide having biological activity.

As indicated above, with respect to sequence homology, preferably there is at least 50 or 75%, more preferably at least 85%, more preferably at least 90% homology to the sequences shown in the sequence listing herein. More preferably there is at least 95%, more preferably at least 98%, homology. Nucleotide homology comparisons may be conducted as described above. A preferred sequence comparison program is the GCG Wisconsin Bestfit program described above. The default scoring matrix has a match value of 10 for each identical nucleotide and -9 for each mismatch. The default gap creation penalty is -50 and the default gap extension penalty is -3 for each nucleotide.

We further describe nucleotide sequences that are capable of hybridising selectively to the sequences presented herein, or any variant, fragment or derivative thereof, or to the complement of any of the above. Nucleotide sequences are preferably at least 15 nucleotides in length, more preferably at least 20, 30, 40 or 50 nucleotides in length.

The term "hybridization" as used herein shall include "the process by which a strand of nucleic acid joins with a complementary strand through base pairing" as well as the process of amplification as carried out in polymerase chain reaction technologies.

Polynucleotides capable of selectively hybridising to the nucleotide sequences presented herein, or to their complement, will be generally at least 70%, preferably at least 80 or 90% and more preferably at least 95% or 98% homologous to the corresponding

10

15

20

25

nucleotide sequences presented herein over a region of at least 20, preferably at least 25 or 30, for instance at least 40, 60 or 100 or more contiguous nucleotides.

The term "selectively hybridizable" means that the polynucleotide used as a probe is used under conditions where a target polynucleotide is found to hybridize to the probe at a level significantly above background. The background hybridization may occur because of other polynucleotides present, for example, in the cDNA or genomic DNA library being screening. In this event, background implies a level of signal generated by interaction between the probe and a non-specific DNA member of the library which is less than 10 fold, preferably less than 100 fold as intense as the specific interaction observed with the target DNA. The intensity of interaction may be measured, for example, by radiolabelling the probe, e.g. with ³²P.

Hybridization conditions are based on the melting temperature (Tm) of the nucleic acid binding complex, as taught in Berger and Kimmel (1987, Guide to Molecular Cloning Techniques, Methods in Enzymology, Vol 152, Academic Press, San Diego CA), and confer a defined "stringency" as explained below.

Maximum stringency typically occurs at about Tm-5°C (5°C below the Tm of the probe); high stringency at about 5°C to 10°C below Tm; intermediate stringency at about 10°C to 20°C below Tm; and low stringency at about 20°C to 25°C below Tm. As will be understood by those of skill in the art, a maximum stringency hybridization can be used to identify or detect identical polynucleotide sequences while an intermediate (or low) stringency hybridization can be used to identify or detect similar or related polynucleotide sequences.

In a preferred aspect, we provide nucleotide sequences that can hybridise to the Fve nucleic acids, fragments, variants, homologues or derivatives dislosed here under stringent conditions (e.g. 65° C and 0.1xSSC {1xSSC = 0.15 M NaCl, 0.015 M Na₃ Citrate pH 7.0).

10

15

20

25

Where the polynucleotide is double-stranded, both strands of the duplex, either individually or in combination, are encompassed by the methods and compositions described here. Where the polynucleotide is single-stranded, it is to be understood that the complementary sequence of that polynucleotide is also included.

Polynucleotides which are not 100% homologous to the Fve sequences disclosed here but which are also included can be obtained in a number of ways. Other variants of the sequences may be obtained for example by probing DNA libraries made from a range of individuals, for example individuals from different populations. For example, Fve homologues may be identified from other individuals, or other species. Further recombinant Fve nucleic acids and polypeptides may be produced by identifying corresponding positions in the homologues, and synthesising or producing the molecule as described elsewhere in this document. Furthermore, the collagen region, neck region and carbohydrate binding domain in such homologues may be identified, for example, by sequence gazing or computer assisted comparisons, and selected for combination into or production of a recombinant Fve which has one or more biological activities of native Fve.

In addition, other viral/bacterial, or cellular homologues of Fve particularly cellular homologues found in mammalian cells (e.g. rat, mouse, bovine and primate cells), may be obtained and such homologues and fragments thereof in general will be capable of selectively hybridising to Fve. Such homologues may be used to design non-human Fve nucleic acids, fragments, variants and homologues. Mutagenesis may be carried out by means known in the art to produce further variety.

Sequences of Fve homologues may be obtained by probing cDNA libraries made from or genomic DNA libraries from other animal or non-animal species, particularly microbial or fungal species, and probing such libraries with probes comprising all or part of any of the Fve nucleic acids, fragments, variants and homologues, or other fragments of Fve under conditions of medium to high stringency.

Similar considerations apply to obtaining species homologues and allelic variants of the polypeptide or nucleotide sequences disclosed here.

Variants and strain/species homologues may also be obtained using degenerate PCR which will use primers designed to target sequences within the variants and homologues encoding conserved amino acid sequences within the sequences of the Fve nucleic acids. Conserved sequences can be predicted, for example, by aligning the amino acid sequences from several variants/homologues. Sequence alignments can be performed using computer software known in the art. For example the GCG Wisconsin PileUp program is widely used.

5

The primers used in degenerate PCR will contain one or more degenerate positions and will be used at stringency conditions lower than those used for cloning sequences with single sequence primers against known sequences. It will be appreciated by the skilled person that overall nucleotide homology between sequences from distantly related organisms is likely to be very low and thus in these situations degenerate PCR may be the method of choice rather than screening libraries with labelled fragments the Fve sequences.

In addition, homologous sequences may be identified by searching nucleotide and/or protein databases using search algorithms such as the BLAST suite of programs.

Alternatively, such polynucleotides may be obtained by site directed mutagenesis
of characterised sequences, for example, Fve nucleic acids, or variants, homologues,
derivatives or fragments thereof. This may be useful where for example silent codon
changes are required to sequences to optimise codon preferences for a particular host cell
in which the polynucleotide sequences are being expressed. Other sequence changes may
be desired in order to introduce restriction enzyme recognition sites, or to alter the property
or function of the polypeptides encoded by the polynucleotides.

10

15

20

The polynucleotides described here may be used to produce a primer, e.g. a PCR primer, a primer for an alternative amplification reaction, a probe e.g. labelled with a revealing label by conventional means using radioactive or non-radioactive labels, or the polynucleotides may be cloned into vectors. Such primers, probes and other fragments will be at least 8, 9, 10, or 15, preferably at least 20, for example at least 25, 30 or 40 nucleotides in length, and are also encompassed by the term "polynucleotides" as used herein.

Polynucleotides such as a DNA polynucleotides and probes may be produced recombinantly, synthetically, or by any means available to those of skill in the art. They may also be cloned by standard techniques.

In general, primers will be produced by synthetic means, involving a step wise manufacture of the desired nucleic acid sequence one nucleotide at a time. Techniques for accomplishing this using automated techniques are readily available in the art.

Longer polynucleotides will generally be produced using recombinant means, for example using a PCR (polymerase chain reaction) cloning techniques. This will involve making a pair of primers (e.g. of about 15 to 30 nucleotides) flanking a region of the lipid targeting sequence which it is desired to clone, bringing the primers into contact with mRNA or cDNA obtained from an animal or human cell, performing a polymerase chain reaction under conditions which bring about amplification of the desired region, isolating the amplified fragment (e.g. by purifying the reaction mixture on an agarose gel) and recovering the amplified DNA. The primers may be designed to contain suitable restriction enzyme recognition sites so that the amplified DNA can be cloned into a suitable cloning vector

Polynucleotides or primers may carry a revealing label. Suitable labels include
25 radioisotopes such as ³²P or ³⁵S, enzyme labels, or other protein labels such as biotin. Such labels may be added to polynucleotides or primers and may be detected using by techniques known *per se*. Polynucleotides or primers or fragments thereof labelled or

10

15

20

unlabeled may be used by a person skilled in the art in nucleic acid-based tests for detecting or sequencing polynucleotides in the human or animal body.

Such tests for detecting generally comprise bringing a biological sample containing DNA or RNA into contact with a probe comprising a polynucleotide or primer under hybridising conditions and detecting any duplex formed between the probe and nucleic acid in the sample. Such detection may be achieved using techniques such as PCR or by immobilising the probe on a solid support, removing nucleic acid in the sample which is not hybridised to the probe, and then detecting nucleic acid which has hybridised to the probe. Alternatively, the sample nucleic acid may be immobilised on a solid support, and the amount of probe bound to such a support can be detected. Suitable assay methods of this and other formats can be found in for example WO89/03891 and WO90/13667.

Tests for sequencing nucleotides, for example, the Fve nucleic acids, involve bringing a biological sample containing target DNA or RNA into contact with a probe comprising a polynucleotide or primer under hybridising conditions and determining the sequence by, for example the Sanger dideoxy chain termination method (see Sambrook et al.).

Such a method generally comprises elongating, in the presence of suitable reagents, the primer by synthesis of a strand complementary to the target DNA or RNA and selectively terminating the elongation reaction at one or more of an A, C, G or T/U residue; allowing strand elongation and termination reaction to occur; separating out according to size the elongated products to determine the sequence of the nucleotides at which selective termination has occurred. Suitable reagents include a DNA polymerase enzyme, the deoxynucleotides dATP, dCTP, dGTP and dTTP, a buffer and ATP. Dideoxynucleotides are used for selective termination.

10

20

PROTEIN EXPRESSION AND PURIFICATION

Host cells comprising polynucleotides may be used to express polypeptides, such as Fve polypeptides, fragments, homologues, variants or derivatives thereof. Host cells may be cultured under suitable conditions which allow expression of the proteins. Expression of the polypeptides may be constitutive such that they are continually produced, or inducible, requiring a stimulus to initiate expression. In the case of inducible

produced, or inducible, requiring a stimulus to initiate expression. In the case of inducible expression, protein production can be initiated when required by, for example, addition of an inducer substance to the culture medium, for example dexamethasone or IPTG.

Polypeptides can be extracted from host cells by a variety of techniques known in the art, including enzymatic, chemical and/or osmotic lysis and physical disruption.

Polypeptides may also be produced recombinantly in an *in vitro* cell-free system, such as the TnTTM (Promega) rabbit reticulocyte system.

FVE NUCLEIC ACID MOLECULES

We disclose a nucleic molecule that: a) has a strand that encodes an Fve polypeptide disclosed here, b) has a strand that is complementary with a strand as described in a) above; or c) has a strand that hybridises with a molecule as described in a) or b) above.

Unless the context indicates otherwise, such nucleic acid molecules, which are included within the term "Fve nucleic acid molecule" may have one or more of the following characteristics:

1) They may be DNA or RNA (including variants of naturally occurring DNA or RNA structures, which have non-naturally occurring bases and/or non-naturally occurring backbones).

10

- 2) They may be single-stranded or double-stranded (or in some cases higher stranded, e.g. triple- stranded).
- 3) They may be provided in recombinant form i.e. covalently linked to a heterologous 5' and/or 3' flanking sequence to provide a chimeric molecule (e.g. a vector) that does not occur in nature.
- 4) They may be provided with or without 5' and/or 3' flanking sequences that normally occur in nature.
- 5) They may be provided in substantially pure form, e.g. by using probes to isolate cloned molecules having a desired target sequence or by using chemical synthesis techniques. Thus they may be provided in a form that is substantially free from contaminating proteins and/or from other nucleic acids.
 - 6) They may be provided with introns (e.g. as a full-length gene) or without introns (e.g. as DNA).
 - 7) They may be provided in linear or non-linear (e.g. circular) form.
- These Fve molecules include not only molecules with classical DNA or RNA structures, but also variants with modified (non-phosphodiester) backbones e.g. morpholino derivatives and peptide nucleic acids (PNAs), which contain an N-(2-aminoethyl)glycine-based pseudopeptide backbone. (See Nielsen, P.E., Annual Review of Biophysics & Biomolecular Structure, 24:167-83 (1995)). Nucleic acid variants with modified backbones can have increased stability relative to unmodified nucleic acids and are particularly useful where hybridisation is desired over a relatively long period (e.g. in antisense therapy).

Nucleic acid molecules and uses thereof are discussed in further detail below:

10

15

20

a) Coding nucleic acid molecules

The Fve polypeptides can be coded for by a large variety of nucleic acid molecules, taking into account the well-known degeneracy of the genetic code. All of these coding nucleic acid molecules are within the scope of the present document.

The Fve nucleic acids may be administered to an individual and used to express polypeptides disclosed here. Thus, they may be used for the same treatments as the Fve polypeptides.

The Fve nucleic acid molecules may be provided in the form of vectors, although this is not essential. Preferred vectors for use in treatment include replication-deficient adenoviruses, retroviruses and adeno-associated viruses.

Fve nucleic acid molecules may be administered to a patient by physical methods. These methods include topical application of the nucleic acid in an appropriate vehicle, for example in solution in a pharmaceutically acceptable excipient, such as phosphate buffered saline (PBS). They also include particle bombardment (which is sometimes known as "gene gun" technology and is described in US Patent No. 5371015). Here inert particles, such as gold beads coated with a nucleic acid, can be accelerated at speeds sufficient to enable them to penetrate cells. They can be used for example to penetrate the skin of a patient and may be administered by means of discharge under high pressure from a projecting device. Other physical methods of administering the Fve nucleic acid directly to a recipient include ultrasound, electrical stimulation (including iontophoresis) and microseeding (see e.g. US Patent No. 5697901). Alternatively, the Fve nucleic acid molecules may simply be injected at appropriate site (e.g. muscle). They may be incorporated in or on a carrier (which may be a lipid-based carrier, such as a liposome).

Fve nucleic acid molecules may be introduced into host cells (optionally in the
form of vectors) to enable the expression of polypeptides. Alternatively, cell-free
expression systems may be used. By using an appropriate expression system the Fve
polypeptides can be produced in a desired form. For example, the Fve polypeptides can be

10

15

20

25

produced by micro-organisms such as bacteria or yeast, by cultured insect cells (which may be baculovirus-infected), by mammalian cells (such as CHO cells) or by transgenic animals that, for instance, secrete the Fve proteins in milk (see e.g. international patent application WO88/00239). Where glycosylation is desired, eukaryotic (e.g. mammalian or insect) expression systems are preferred.

Whatever means is used to obtain expression, transcriptional and translational control sequences will normally be present and will be operatively linked to a sequence encoding a polypeptide to be expressed. These control sequences may be heterologous to the sequence encoding the Fve polypeptide or may be found associated with it *in vivo*. Promoter, operator and /or enhancer sequences may, for example, be provided, as may polyadenylation sites, splice sites, stop and start codons, upstream and downstream regulatory regions, etc. If desired, a constitutive promoter may be provided. Alternatively, a regulatable promoter may be provided to enable transcription to be controlled by administration of a regulator. The promoter (if present) may be tissue-specific or non tissue-specific.

Polypeptides comprising N-terminal methionine may be produced using certain expression systems, whilst in others the mature polypeptide may lack this residue. Fve polypeptides may initially be expressed so as to include signal sequences. Different signal sequences may be provided for different expression systems. Alternatively, signal sequences may be absent, if not needed.

Once expressed, Fve polypeptides may be purified by a wide variety of techniques. Purification techniques may be used under reducing conditions (in order prevent disulphide bond formation) or non-reducing conditions. Available purification techniques include, for example, electrophoretic techniques, such as SDS PAGE (see e.g. Hunkapiller et al, Methods Enzymol. 91:227 (1983), which discloses "Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis."); affinity techniques (e.g. immunoaffinity chromatography); HPLC; gel filtration; ion-exchange

chromatography; isoelectric focussing; etc. If desired, combinations of different purification steps may be used and/or individual purification steps may be repeated.

In summary, techniques for cloning, expressing and purifying polypeptides are well known to the skilled person. Various such techniques are disclosed in standard text-books, such as in Sambrook et al [Molecular Cloning 2nd Edition, Cold Spring Harbor Laboratory Press (1989)]; in Old & Primrose [Principles of Gene Manipulation 5th Edition, Blackwell Scientific Publications (1994)]; and in Stryer [Biochemistry 4th Edition, W H Freeman and Company (1995)].

b) Complementary nucleic acid molecules

We also describe nucleic acid strands complementary thereto, whether or not the coding and complementary strands are associated in a duplex. Thus, for example, mRNA and cDNA molecules are included.

c) Hybridising nucleic acid molecules

Nucleic acid molecules that can hybridise to one or more of the Fve nucleic acid molecules discussed above are also disclosed. Such nucleic acid molecules are referred to herein as "hybridising" nucleic acid molecules. Desirably hybridising molecules are at least 10 nucleotides in length and preferably are at least 20, at least 50, at least 100, or at least 200 nucleotides in length.

A hybridising nucleic acid molecule may have a high degree of sequence identity
along its length with a nucleic acid molecule within the scope of b) or a) above (e.g. at
least 50%, at least 75% or at least 90% sequence identity), although this is not essential.

The greater the degree of sequence identity that a given single stranded nucleic acid
molecule has with a strand of a nucleic acid molecule, the greater the likelihood that it will
hybridise to the complement of said strand.

15

20

25

Most preferably, hybridising nucleic acid molecules hybridise to either DNA strand of a Fve nucleic acid, for example a sequence shown in Appendix A, or to an RNA equivalent thereof, or to a strand that is complementary to either of the aforesaid strands.

Hybridising nucleic acid molecules can be useful as probes or primers, for example.

Probes can be used to purify and/or to identify Fve nucleic acids. They may be used in diagnosis. For example, probes may be used to determine whether or not an organism such as a fungus has a wild-type gene encoding a Fve polypeptide described here, or whether or not one or more deletions, insertions and/or replacements of bases relative to the wild-type sequence are present. It may therefore be used to identify organisms that do not express Fve polypeptides or that express Fve polypeptides having reduced activity (including inactive polypeptides).

Primers are useful in synthesising nucleic acids or parts thereof based upon a template to which a probe hybridises. They can be used in techniques such as PCR to provide large numbers of nucleic acid molecules.

Hybridising molecules also include antisense strands. These hybridise with "sense" strands so as to inhibit transcription and /or translation. An antisense strand can be synthesised based upon knowledge of a sense strand and base pairing rules. It may be exactly complementary with a sense strand, although it should be noted that exact complementarity is not always essential. It may also be produced by genetic engineering, whereby a part of a DNA molecule is provided in an antisense orientation relative to a promoter and is then used to transcribe RNA molecules. Large numbers of antisense molecules can be provided (e.g. by cloning, by transcription, by PCR, by reverse PCR, etc.

Hybridising molecules include ribozymes. Ribozymes can also be used to regulate expression by binding to and cleaving RNA molecules that include particular target sequences recognised by the ribozymes. Ribozymes can be regarded as special types of

10

15

20

25

61

antisense molecule. They are discussed, for example, by Haselhoff and Gerlach (Nature (1988) 334:585-91).

Antisense molecules may be DNA or RNA molecules. They may be used in antisense therapy to prevent or reduce undesired expression or activity. Antisense molecules may be administered directly to a patient (e.g. by injection). Alternatively, they may be synthesised *in situ* via a vector that has been administered to a patient.

In addition to the uses described above, the Fve nucleic acid molecules disclosed here (of whatever nature) may be used in screening. Screening can be done to identify moieties that bind to said nucleic acid molecules (e.g. to identify hybridising molecules). It can also be done to identify moieties that affect transcription or translation from said nucleic acid molecules.

It can be used to analyse expression, including analysing expression levels or expression patterns (e.g. by analysing mRNA or cDNA), etc. It can be used to identify particular nucleic acid molecules in a sample. This is useful for in identifying biological material from a given source (e.g. from a human or non-human animal). For example, a reference nucleic acid molecule (or part of it) can be digested with restriction enzymes and the resultant nucleic acid fragments can be run on a gel. This can provide a restriction fragment pattern or "fingerprint" that can be compared with a sample. If the comparison provides a match that is unlikely to have occurred by chance, a conclusion can be reached that the sample and the reference molecule are likely to have originated from a common source. By performing statistical analysis a specific degree of confidence that such a conclusion is correct can be provided.

We also describe a library having a Fve nucleic acid molecule described here, as well as an array comprising such an Fve nucleic acid molecule (which may be a library). Preferably the array is a regular array. The array may have a predetermined pattern. It may have a grid-like pattern. The discussion provided herein in respect of libraries and arrays

10

15

20

25

comprising a polypeptide described here applies *mutatis mutandis* to libraries and arrays comprising the corresponding nucleic acid molecule.

One or more Fve nucleic acid molecules may be immobilised upon a surface (e.g. the surface of a bead or a chip). The surface may, for example, be silicon surface, glass, quartz, a membrane, etc. Techniques for immobilising nucleic acid molecules upon a surface are known and are disclosed, for example, in EP-A-0487104, WO96/04404, WO90/02205, WO96/12014, WO98/44151. In some cases they may include a step of nucleic acid amplification, which may involve PCR. Immobilisation is not however essential. For example nucleic acids may be provided in wells or other containment means (e.g. in a fluid environment).

The Fve nucleic acids may be used in various ways. For example, sequence information can be used in predicting structure and/or function, in homology or identity studies, etc.

VECTORS

As indicated above the nucleic acid molecules described here may be provided in the form of vectors.

Vectors comprising such nucleic acid include plasmids, phasmids, cosmids, viruses (including bacteriophages), YACs, PACs, etc. They will usually include an origin of replication and may include one or more selectable markers e.g. drug resistance markers and/or markers enabling growth on a particular medium. A vector may include a marker that is inactivated when a nucleic acid molecule, such as the ones described here, is inserted into the vector. Here a further marker may be provided that is different from the marker that is inactivated (e.g. it encodes a different type of drug resistance).

Vectors may include one or more regions necessary for transcription of RNA encoding a polypeptide. Such vectors are often referred to as expression vectors. They will

10

15

20

usually contain a promoter and may contain additional regulatory regions – e.g. operator sequences, enhancer sequences, etc. Translation can be provided by a host cell or by a cell free expression system.

Vectors need not be used for expression. They may be provided for maintaining a given nucleic acid sequence, for replicating that sequence, for manipulating, it or for transferring it between different locations (e.g. between different organisms).

Large nucleic acid molecules may be incorporated into high capacity vectors (e.g. cosmids, phasmids, YACs or PACs). Smaller nucleic acid molecules may be incorporated into a wide variety of vectors.

Fve polynucleotides, for example those described here, can be incorporated into a recombinant replicable vector. The vector may be used to replicate the nucleic acid in a compatible host cell. Thus in a further embodiment, we provide a method of making polynucleotides by introducing a polynucleotide into a replicable vector, introducing the vector into a compatible host cell, and growing the host cell under conditions which bring about replication of the vector. The vector may be recovered from the host cell. Suitable host cells include bacteria such as *E. coli*, yeast, mammalian cell lines and other eukaryotic cell lines, for example insect Sf9 cells.

Preferably, a polynucleotide in a vector is operably linked to a control sequence that is capable of providing for the expression of the coding sequence by the host cell, i.e. the vector is an expression vector. The term "operably linked" means that the components described are in a relationship permitting them to function in their intended manner. A regulatory sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under condition compatible with the control sequences.

10

15

20

25

The control sequences may be modified, for example by the addition of further transcriptional regulatory elements to make the level of transcription directed by the control sequences more responsive to transcriptional modulators.

Vectors may be transformed or transfected into a suitable host cell as described below to provide for expression of a protein. This process may comprise culturing a host cell transformed with an expression vector as described above under conditions to provide for expression by the vector of a coding sequence encoding the protein, and optionally recovering the expressed protein. Vectors will be chosen that are compatible with the host cell used.

The vectors may be for example, plasmid or virus vectors provided with an origin of replication, optionally a promoter for the expression of the said polynucleotide and optionally a regulator of the promoter. The vectors may contain one or more selectable marker genes, for example an ampicillin resistance gene in the case of a bacterial plasmid or a neomycin resistance gene for a mammalian vector. Vectors may be used, for example, to transfect or transform a host cell.

Control sequences operably linked to sequences encoding the polypeptide include promoters/enhancers and other expression regulation signals. These control sequences may be selected to be compatible with the host cell for which the expression vector is designed to be used in. The term promoter is well-known in the art and encompasses nucleic acid regions ranging in size and complexity from minimal promoters to promoters including upstream elements and enhancers.

The promoter is typically selected from promoters which are functional in mammalian cells, although prokaryotic promoters and promoters functional in other eukaryotic cells, such as insect cells, may be used. The promoter is typically derived from promoter sequences of viral or eukaryotic genes. For example, it may be a promoter derived from the genome of a cell in which expression is to occur. With respect to eukaryotic promoters, they may be promoters that function in a ubiquitous manner (such as

10

15

20

25

promoters of α -actin, β -actin, tubulin) or, alternatively, a tissue-specific manner (such as promoters of the genes for pyruvate kinase). They may also be promoters that respond to specific stimuli, for example promoters that bind steroid hormone receptors. Viral promoters may also be used, for example the Moloney murine leukaemia virus long terminal repeat (MMLV LTR) promoter, the rous sarcoma virus (RSV) LTR promoter or the human cytomegalovirus (CMV) IE promoter.

It may also be advantageous for the promoters to be inducible so that the levels of expression of the heterologous gene can be regulated during the life-time of the cell. Inducible means that the levels of expression obtained using the promoter can be regulated.

In addition, any of these promoters may be modified by the addition of further regulatory sequences, for example enhancer sequences. Chimeric promoters may also be used comprising sequence elements from two or more different promoters described above.

Polynucleotides may also be inserted into the vectors described above in an antisense orientation to provide for the production of antisense RNA. Antisense RNA or other antisense polynucleotides may also be produced by synthetic means. Such antisense polynucleotides may be used in a method of controlling the levels of RNAs transcribed from genes comprising any one of the polynucleotides described here.

HOST CELLS

Vectors and polynucleotides or nucleic acids comprising or encoding Fve nucleic acids, fragments, homologues, variants or derivatives thereof may be introduced into host cells for the purpose of replicating the vectors/polynucleotides and/or expressing the polypeptides encoded by the polynucleotides. Although the polypeptides may be produced using prokaryotic cells as host cells, it is preferred to use eukaryotic cells, for example yeast, insect or mammalian cells, in particular mammalian cells.

15

20

25

Vectors/polynucleotides may be introduced into suitable host cells using a variety of techniques known in the art, such as transfection, transformation and electroporation. Where vectors/polynucleotides are to be administered to animals, several techniques are known in the art, for example infection with recombinant viral vectors such as retroviruses, herpes simplex viruses and adenoviruses, direct injection of nucleic acids and biolistic transformation.

We therefore further disclose cells comprising Fve nucleic acid molecules or vectors. These may for example be used for expression, as described herein.

A cell capable of expressing a Fve polypeptide described here can be cultured and used to provide the Fve polypeptide, which can then be purified.

Alternatively, the cell may be used in therapy for the same purposes as the Fve polypeptide. For example, cells may be provided from a patient (e.g. via a biopsy), transfected with a nucleic acid molecule or vector and, if desired, cultured *in vitro*, prior to being returned to the patient (e.g. by injection). The cells can then produce the Fve polypeptide *in vivo*. Preferably the cells comprise a regulatable promoter enabling transcription to be controlled via administration of one or more regulator molecules. If desired, the promoter may be tissue specific.

Expression is not however essential since the cells may be provided simply for maintaining a given nucleic acid sequence, for replicating the sequence, for manipulating it, etc.

Such cells may be provided in any appropriate form. For example, they may be provided in isolated form, in culture, in stored form, etc. Storage may, for example, involve cryopreservation, buffering, sterile conditions, etc. Such cells may be provided by gene cloning techniques, by stem cell technology or by any other means. They may be part of a tissue or an organ, which may itself be provided in any of the forms discussed above. The cell, tissue or organ may be stored and used later for implantation, if desired.

10

15

20

Techniques for providing tissues or organs, include stem cell technology, the provision of cells tissues or organs from transgenic animals, retroviral and non-retroviral techniques for introducing nucleic acids, etc.

In some case cells may be provided together with other material to aid the structure or function or of an implant. For example scaffolds may be provided to hold cells in position, to provide mechanical strength, etc. These may be in the form of matrixes of biodegradable or non-biodegradable material. WO95/01810 describes various materials that can be used for this purpose.

ANIMALS

We also disclose transgenic animals, preferably non-human transgenic animals. Such animals may be useful for producing the particular Fve polypeptides described here (e.g. via secretion in milk, as described herein). Alternatively, they may be useful as test animals for analysing the effect(s) of such Fve polypeptides.

Techniques for producing transgenic animals are well known and are described e.g. in US patents 4870009 and 4873191. For example, a nucleic acid encoding a Fve polypeptide of interest may be microinjected into a pronucleus of a fertilised oocyte. The oocyte may then be allowed to develop in a pseudopregnant female foster animal. The animal resulting from development of the oocyte can be tested (e.g. with antibodies) to determine whether or not it expresses the particular polypeptide. Alternatively, it can be tested with a probe to determine if it has a transgene (even if there is no expression).

A transgenic animal can be used as a founder animal, which may be bred from in order to produce further transgenic animals. Two transgenic animals may be crossed. For example, in some cases transgenic animals may be haploid for a given gene and it may be desired to try to provide a diploid offspring via crossing.

A transgenic animal may be cloned, e.g. by using the procedures set out in WO97/07668 and WO97/07699 (see also Nature 385:810-813 (1997)). Thus a quiescent cell can be provided and combined with an oocyte from which the nucleus has been removed combined. This can be achieved using electrical discharges. The resultant cell can be allowed to develop in culture and can then be transferred to a pseudopregnant female.

ANALYTICAL TOOLS AND SYSTEMS

5

10

We disclose a moiety comprising a Fve polypeptide, a Fve nucleic acid, a vector comprising Fve, a cell expressing Fve, an Fve binding agent, a moiety identified/identifiable by a screen as described here, when used as an analytical tool or when present in a system suitable for analysis, especially high throughput analysis.

Such an analytical tool or system is useful for a plethora of different purposes. These include diagnosis, forensic science, screening, the identification or characterisation of individuals or populations, preventative medicine, etc.

Libraries comprising such a Fve moiety may be used for the above purposes. A

library will generally comprise a plurality of heterologous moieties. Preferred libraries comprise at least 100, at least 10,000, at least 1,000,000, or at least 1,000,000,000 heterologous moieties. Desirably a moiety is provided at a predetermined position within a library. In some cases a plurality of moieties may be present within a library at predetermined positions. A predetermined position may be assigned spatial co-ordinates.

These may be stored or processed in a computer in order to assist in analysis.

We further disclose an array comprising such a Fve moiety (whether or not the array is also a library). Preferably the array is a regular array. The array may have a predetermined pattern. It may have a grid-like pattern. Preferred arrays comprise at least 100, at least 1,000,000, at least 1,000,000, or at least 1,000,000,000 components.

10

15

20

25

A library or array may include naturally occurring moieties, non-naturally occurring moieties, or a mixture of naturally occurring and non-naturally occurring moieties. The moieties may provided in solution, on beads, on chips (see e.g. Fodor (1993) Nature 364:555-556), on bacteria (see e.g. US Patent 5223409), on spores (see e.g. US Patent 5223409), on 'phage (see e.g. Scott and Smith (1990) Science 249:386-90 and US Patent 5223409), etc.

Such Fve moieties may be immobilised upon a surface, if desired. For example, one or more nucleic acid molecules may be immobilised upon a surface (e.g. the surface of a bead or a chip). The surface may, for example, be silicon, glass, quartz, a membrane, etc. Techniques for immobilising nucleic acid molecules upon a surface are known and are disclosed, for example, in EP-A-0487104, WO96/04404, WO90/02205, WO96/12014, WO98/44151. In some cases they may include a step of nucleic acid amplification, and may involve PCR.

Immobilisation is not however essential, even if moieties are to be used in high throughput analysis. For example, they may be provided in wells, channels, grooves or other containment means.

Whether or not present in a library, an array or in immobilised or non-immobilised form, it is often desirable to locate the position of one or more moieties being analysed or being used in analysis. This can be done by assigning it spatial co-ordinates, which may be provided, stored or processed or provided by a computer. In some cases the location may be determined by a sensor (e.g. a CCD device), which may be operatively linked with a computer.

DNA VACCINES

Any of the Fve nucleic acids disclosed here may be administered to an individual in the form of a DNA vaccine. DNA vaccines are known in the art, and are described in detail in, for example, WO03012117, WO03007986, etc.

10

15

20

25

The Fve may be administered to an individual in the form of a DNA vaccine. A DNA encoding the Fve, for example, a Fve nucleic acid as disclosed here, may be in any form, for example in the form of a cloned plasmid DNA or a synthetic oligonucleotide. The DNA may be delivered together with a cytokine, for example, IL-2, and / or other costimulatory molecules. The cytokines and / or co-stimulatory molecules may themselves be delivered in the form of plasmid or oligonucleotic DNA.

The response to a DNA vaccine has been shown to be increased by the presence of immunostimulatory DNA sequences (ISS). These can take the form of hexameric motifs containing methylated CpG, according to the formula: 5' purine-purine-CG-pyrimidine-pyrimidine-3'. The DNA vaccines may incorporate these or other ISSs, in the DNA encoding the Fve, in the DNA encoding the cytokine or other co-stimulatory molecules, or in both. A review of the advantages of DNA vaccination is provided by Tighe et al (1998, Immunology Today, 19(2), 89-97).

ANTIBODIES

We also provide monoclonal or polyclonal antibodies to polypeptides or fragments thereof. Thus, we further provide a process for the production of monoclonal or polyclonal antibodies to an Fve polypeptide, fragment, homologue, variant or derivative thereof

If polyclonal antibodies are desired, a selected mammal (e.g., mouse, rabbit, goat, horse, etc.) is immunised with an immunogenic polypeptide bearing an epitope(s) from a polypeptide. Serum from the immunised animal is collected and treated according to known procedures. If serum containing polyclonal antibodies to an epitope from a polypeptide contains antibodies to other antigens, the polyclonal antibodies can be purified by immunoaffinity chromatography. Techniques for producing and processing polyclonal antisera are known in the art. In order that such antibodies may be made, we also provide polypeptides or fragments thereof haptenised to another polypeptide for use as immunogens in animals or humans.

10

15

20

25

71

Monoclonal antibodies directed against epitopes in the polypeptides can also be readily produced by one skilled in the art. The general methodology for making monoclonal antibodies by hybridomas is well known. Immortal antibody-producing cell lines can be created by cell fusion, and also by other techniques such as direct transformation of B lymphocytes with oncogenic DNA, or transfection with Epstein-Barr virus. Panels of monoclonal antibodies produced against epitopes in the polypeptides can be screened for various properties; i.e., for isotype and epitope affinity.

An alternative technique involves screening phage display libraries where, for example the phage express scFv fragments on the surface of their coat with a large variety of complementarity determining regions (CDRs). This technique is well known in the art.

Antibodies, both monoclonal and polyclonal, which are directed against epitopes from polypeptides are particularly useful in diagnosis, and those which are neutralising are useful in passive immunotherapy. Monoclonal antibodies, in particular, may be used to raise anti-idiotype antibodies. Anti-idiotype antibodies are immunoglobulins which carry an "internal image" of the antigen of the agent against which protection is desired.

Techniques for raising anti-idiotype antibodies are known in the art. These antiidiotype antibodies may also be useful in therapy.

For the purposes of this document, the term "antibody", unless specified to the contrary, includes fragments of whole antibodies which retain their binding activity for a target antigen. Such fragments include Fv, F(ab') and F(ab')₂ fragments, as well as single chain antibodies (scFv). Furthermore, the antibodies and fragments thereof may be humanised antibodies, for example as described in EP-A-239400.

Antibodies may be used in method of detecting polypeptides present in biological samples by a method which comprises: (a) providing an antibody; (b) incubating a biological sample with said antibody under conditions which allow for the formation of an

15

antibody-antigen complex; and (c) determining whether antibody-antigen complex comprising said antibody is formed.

Suitable samples include extracts tissues such as brain, breast, ovary, lung, colon, pancreas, testes, liver, muscle and bone tissues or from neoplastic growths derived from such tissues.

Antibodies may be bound to a solid support and/or packaged into kits in a suitable container along with suitable reagents, controls, instructions and the like.

ASSAYS

We disclose assays that are suitable for identifying substances which bind to Fve polypeptides, or fragments, homologues, variants or derivatives thereof

In general, such binding assays involve exposing a Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof to a candidate molecule and detecting an interaction or binding between the Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof and the candidate molecule. The binding assay may be conducted *in vitro*, or *in vivo*.

We disclose assays for identifying substances which are capable of potentiating the activities of Fve polypeptide. Activities of Fve have been described in detail above. Such compounds may be employed as agonists of Fve polypeptide, and may for example be co-administered to an individual to enhance any desired effect.

In general, an assay to identify such substances or compounds involves providing a cell or organism, exposing the cell or organism to a Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof, exposing the cell to a candidate molecule, and detecting an effect associated with Fve. Any Fve polypeptide mediated

effect or funciton, as disclosed in this document, particularly the Examples, may be detected.

5

10

15

20

In particular, the Fve polypeptide mediated effect is preferably chosen from the group consisting of: up-regulation of expression of Th1 cytokines, preferably IFN- γ and TNF- α , down-regulation of expression of Th2 cytokines, preferably IL-4 and IL-13, hemagglutination activity, cell aggregation activity, lymphocyte aggregation activity, lymphoproliferation activity, up-regulation of expression of IL-2, IFN- γ , TNF- α , but not IL-4 in CD3⁺ T cells, interaction with T and NK cells, adjuvant activity, stimulation of CD3⁺ CD16⁺ CD56⁺ natural killer (NK) T cells, up-regulation of expression of allergen specific IgG2a antibody, prevention of systemic anaphylactic reactions and/or descreased footpad edema, prefereably as assayed using the Arthus reaction (Ko et al, 1995).

In order to identify agonists, an additive or preferably synergistic effect is detected. Thus, while Fve polypeptide on its own is, for example, capable of reducing a level or number, or down-regulation of expression of a molecule, the assays identify molecules which further reduce the level, number or further down-regulate the expression of a molecule. Thus, preferably, the candidate molecule in conjunction with the Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof, down-regulates the expression of, or reduces the level or number, by more than 10%, more than 20%, more than 30%, more than 40%, more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, or more compared to an Fve polypeptide on its own. Thus, for example, a candidate molecule suitable for use as an agonist is one which is capable of enhancing by 10% more the up-regulation of expression of Th1 cytokines, preferably IFN-γ and TNF-α, achieved by Fve polypeptide on its own.

Conversely, assays to identify antagonists involve the detection of a reduction in Fve polypeptide mediated effect. Preferably, the down-regulation of expression or reduction in number or level achieved by Fve polypeptide is reduced in the presence of a suitable candidate molecule. Preferably, the reduction is at least 10%, preferably at least 20%, preferably at least 30%, preferably at least 40%, preferably at least 50%, preferably

10

15

20

at least 60%, preferably at least 70%, preferably at least 80%, preferably at least 90%, or more compared to an Fve polypeptide on its own. Thus, for example, a candidate molecule suitable for use as an antagonist is one which is capable of reducing by 10% more the upregulation of expression of Th1 cytokines, preferably IFN- γ and TNF- α , achieved by Fve polypeptide on its own.

As an illustration, if N1 is the expression of Th1 cytokines, in an untreated organism or cell, and N2 the expression in an organism or cell exposed to Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof, the expression of Th1 cytokines is increased by $R = (N2-N1)/N1 \times 100\%$. Agonists increase R, by a factor x, where x is greater than 1 (e.g., x = 1, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5, 10, 20, 50, 100 etc); while antagonists decrease R, by a factor x, where x is less than 1 (e.g., x = 0.9, 0.9, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 etc).

For example, an organism may be exposed to a Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof and a candidate molecule, and any of the biological activities as set out above, or any combination, detected. Preferred candidate molecules are those which provide an additive or synergistic effect in combination with Fve.

Also disclosed are assays to identify antagonists of Fve polypeptide. Such assays involve detecting a reduced effect on exposure of a cell or organism to an Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof in conjunction with a candidate molecule.

In a preferred embodiment, the assays are conducted on whole organisms rather than cells. Preferably, the organism is one which suffers from a disease as disclosed in this document, or exhibits one or more symptoms of such a disease.

10

CANDIDATE MOLECULES

Suitable candidate molecules for use in the above assays include peptides, especially of from about 5 to 30 or 10 to 25 amino acids in size. Peptides from panels of peptides comprising random sequences or sequences which have been varied consistently to provide a maximally diverse panel of peptides may be used.

Suitable candidate molecules also include antibody products (for example, monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies and CDR-grafted antibodies). Furthermore, combinatorial libraries, peptide and peptide mimetics, defined chemical entities, oligonucleotides, and natural product libraries may be screened for activity. The candidate molecules may be used in an initial screen in batches of, for example 10 types of molecules per reaction, and the molecules of those batches which show enhancement or reduction of a Fve polypeptide mediated effect tested individually.

LIBRARIES

15

Libraries of candidate molecules, such as libraries of polypeptides or nucleic acids, may be employed in the methods and compositions described here. Such libraries are exposed a cell or organism in the presence of a Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof, and an Fve polypeptide mediated effect detected and assayed as described above.

20

25

Selection protocols for isolating desired members of large libraries are known in the art, as typified by phage display techniques. Such systems, in which diverse peptide sequences are displayed on the surface of filamentous bacteriophage (Scott and Smith (1990 supra), have proven useful for creating libraries of antibody fragments (and the nucleotide sequences that encoding them) for the *in vitro* selection and amplification of specific antibody fragments that bind a target antigen. The nucleotide sequences encoding the V_H and V_L regions are linked to gene fragments which encode leader signals that direct

20

25

them to the periplasmic space of *E. coli* and as a result the resultant antibody fragments are displayed on the surface of the bacteriophage, typically as fusions to bacteriophage coat proteins (e.g., pIII or pVIII). Alternatively, antibody fragments are displayed externally on lambda phage capsids (phagebodies). An advantage of phage-based display systems is that, because they are biological systems, selected library members can be amplified simply by growing the phage containing the selected library member in bacterial cells. Furthermore, since the nucleotide sequence that encodes the polypeptide library member is contained on a phage or phagemid vector, sequencing, expression and subsequent genetic manipulation is relatively straightforward.

lambda phage expression libraries are well known in the art (McCafferty et al. (1990) supra; Kang et al. (1991) Proc. Natl. Acad. Sci. U.S.A., 88: 4363; Clackson et al. (1991) Nature, 352: 624; Lowman et al. (1991) Biochemistry, 30: 10832; Burton et al. (1991) Proc. Natl. Acad. Sci. U.S.A., 88: 10134; Hoogenboom et al. (1991) Nucleic Acids Res., 19: 4133; Chang et al. (1991) J. Immunol., 147: 3610; Breitling et al. (1991) Gene, 104: 147; Marks et al. (1991) supra; Barbas et al. (1992) supra; Hawkins and Winter (1992) J. Immunol., 22: 867; Marks et al., 1992, J. Biol. Chem., 267: 16007; Lerner et al. (1992) Science, 258: 1313, incorporated herein by reference). Such techniques may be modified if necessary for the expression generally of polypeptide libraries.

One particularly advantageous approach has been the use of scFv phage-libraries (Bird, R.E., et al. (1988) Science 242: 423-6, Huston et al., 1988, Proc. Natl. Acad. Sci U.S.A., 85: 5879-5883; Chaudhary et al. (1990) Proc. Natl. Acad. Sci U.S.A., 87: 1066-1070; McCafferty et al. (1990) supra; Clackson et al. (1991) supra; Marks et al. (1991) supra; Chiswell et al. (1992) Trends Biotech., 10: 80; Marks et al. (1992) supra). Various embodiments of scFv libraries displayed on bacteriophage coat proteins have been described. Refinements of phage display approaches are also known, for example as described in WO96/06213 and WO92/01047 (Medical Research Council et al.) and WO97/08320 (Morphosys, supra), which are incorporated herein by reference.

10

15

20

25

77

Alternative library selection technologies include bacteriophage lambda expression systems, which may be screened directly as bacteriophage plaques or as colonies of lysogens, both as previously described (Huse et al. (1989) Science, 246: 1275; Caton and Koprowski (1990) Proc. Natl. Acad. Sci. U.S.A., 87; Mullinax et al. (1990) Proc. Natl. Acad. Sci. U.S.A., 87: 8095; Persson et al. (1991) Proc. Natl. Acad. Sci. U.S.A., 88: 2432) and are of use. These expression systems may be used to screen a large number of different members of a library, in the order of about 10⁶ or even more. Other screening systems rely, for example, on direct chemical synthesis of library members. One early method involves the synthesis of peptides on a set of pins or rods, such as described in WO84/03564. A similar method involving peptide synthesis on beads, which forms a peptide library in which each bead is an individual library member, is described in U.S. Patent No. 4,631,211 and a related method is described in WO92/00091. A significant improvement of the bead-based methods involves tagging each bead with a unique identifier tag, such as an oligonucleotide, so as to facilitate identification of the amino acid sequence of each library member. These improved bead-based methods are described in WO93/06121.

Another chemical synthesis method involves the synthesis of arrays of peptides (or peptidomimetics) on a surface in a manner that places each distinct library member (e.g., unique peptide sequence) at a discrete, predefined location in the array. The identity of each library member is determined by its spatial location in the array. The locations in the array where binding interactions between a predetermined molecule (e.g., a receptor) and reactive library members occur is determined, thereby identifying the sequences of the reactive library members on the basis of spatial location. These methods are described in U.S. Patent No. 5,143,854; WO90/15070 and WO92/10092; Fodor et al. (1991) Science, 251: 767; Dower and Fodor (1991) Ann. Rep. Med. Chem., 26: 271.

Other systems for generating libraries of polypeptides or nucleotides involve the use of cell-free enzymatic machinery for the *in vitro* synthesis of the library members. In one method, RNA molecules are selected by alternate rounds of selection against a target ligand and PCR amplification (Tuerk and Gold (1990) *Science*, 249: 505; Ellington and Szostak (1990) *Nature*, 346: 818). A similar technique may be used to identify DNA

10

15

20

25

sequences which bind a predetermined human transcription factor (Thiesen and Bach (1990) Nucleic Acids Res., 18: 3203; Beaudry and Joyce (1992) Science, 257: 635; WO92/05258 and WO92/14843). In a similar way, in vitro translation can be used to synthesise polypeptides as a method for generating large libraries. These methods which generally comprise stabilised polysome complexes, are described further in WO88/08453, WO90/05785, WO90/07003, WO91/02076, WO91/05058, and WO92/02536. Alternative display systems which are not phage-based, such as those disclosed in WO95/22625 and WO95/11922 (Affymax) use the polysomes to display polypeptides for selection. These and all the foregoing documents also are incorporated herein by reference.

COMBINATORIAL LIBRARIES

Libraries, in particular, libraries of candidate molecules, may suitably be in the form of combinatorial libraries (also known as combinatorial chemical libraries).

A "combinatorial library", as the term is used in this document, is a collection of multiple species of chemical compounds that consist of randomly selected subunits. Combinatorial libraries may be screened for molecules which are capable of potentiating, enhancing, reducing or minimising the a Fve polypeptide mediated effect when exposed to a cell or organism.

Various combinatorial libraries of chemical compounds are currently available, including libraries active against proteolytic and non-proteolytic enzymes, libraries of agonists and antagonists of G-protein coupled receptors (GPCRs), libraries active against non-GPCR targets (e.g., integrins, ion channels, domain interactions, nuclear receptors, and transcription factors) and libraries of whole-cell oncology and anti-infective targets, among others. A comprehensive review of combinatorial libraries, in particular their construction and uses is provided in Dolle and Nelson (1999), Journal of Combinatorial Chemistry, Vol 1 No 4, 235-282. Reference is also made to Combinatorial peptide library protocols (edited by Shmuel Cabilly, Totowa, N.J.: Humana Press, c1998. Methods in Molecular Biology; v. 87).

Further references describing chemical combinatorial libraries, their production and use include those available from the URL http://www.netsci.org/Science/Combichem/, including The Chemical Generation of Molecular Diversity. Michael R. Pavia, Sphinx Pharmaceuticals, A Division of Eli Lilly (Published July, 1995); Combinatorial Chemistry: 5 A Strategy for the Future - MDL Information Systems discusses the role its Project Library plays in managing diversity libraries (Published July, 1995); Solid Support Combinatorial Chemistry in Lead Discovery and SAR Optimization, Adnan M. M. Mjalli and Barry E. Toyonaga, Ontogen Corporation (Published July, 1995); Non-Peptidic Bradykinin Receptor Antagonists From a Structurally Directed Non-Peptide Library. Sarvajit 10 Chakravarty, Babu J. Mavunkel, Robin Andy, Donald J. Kyle*, Scios Nova Inc. (Published July, 1995); Combinatorial Chemistry Library Design using Pharmacophore Diversity Keith Davies and Clive Briant, Chemical Design Ltd. (Published July, 1995); A Database System for Combinatorial Synthesis Experiments - Craig James and David Weininger, Daylight Chemical Information Systems, Inc. (Published July, 1995); An 15 Information Management Architecture for Combinatorial Chemistry, Keith Davies and Catherine White, Chemical Design Ltd. (Published July, 1995); Novel Software Tools for Addressing Chemical Diversity, R. S. Pearlman, Laboratory for Molecular Graphics and Theoretical Modeling, College of Pharmacy, University of Texas (Published June/July, 1996); Opportunities for Computational Chemists Afforded by the New Strategies in Drug 20 Discovery: An Opinion, Yvonne Connolly Martin, Computer Assisted Molecular Design Project, Abbott Laboratories (Published June/July, 1996); Combinatorial Chemistry and Molecular Diversity Course at the University of Louisville: A Description, Arno F. Spatola, Department of Chemistry, University of Louisville (Published June/July, 1996); Chemically Generated Screening Libraries: Present and Future. Michael R. Pavia, Sphinx Pharmaceuticals, A Division of Eli Lilly (Published June/July, 1996); Chemical Strategies 25 For Introducing Carbohydrate Molecular Diversity Into The Drug Discovery Process.. Michael J. Sofia, Transcell Technologies Inc. (Published June/July, 1996); Data Management for Combinatorial Chemistry. Maryjo Zaborowski, Chiron Corporation and Sheila H. DeWitt, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert 30 Company (Published November, 1995); and The Impact of High Throughput Organic Synthesis on R&D in Bio-Based Industries, John P. Devlin (Published March, 1996).

10

15

20

25

Techniques in combinatorial chemistry are gaining wide acceptance among modern methods for the generation of new pharmaceutical leads (Gallop, M. A. et al., 1994, J. Med. Chem. 37:1233-1251; Gordon, E. M. et al., 1994, J. Med. Chem. 37:1385-1401.). One combinatorial approach in use is based on a strategy involving the synthesis of libraries containing a different structure on each particle of the solid phase support, interaction of the library with a soluble receptor, identification of the 'bead' which interacts with the macromolecular target, and determination of the structure carried by the identified 'bead' (Lam, K. S. et al., 1991, Nature 354:82-84). An alternative to this approach is the sequential release of defined aliquots of the compounds from the solid support, with subsequent determination of activity in solution, identification of the particle from which the active compound was released, and elucidation of its structure by direct sequencing (Salmon, S. E. et al., 1993, Proc.Natl.Acad.Sci.USA 90:11708-11712), or by reading its code (Kerr, J. M. et al., 1993, J.Am.Chem.Soc. 115:2529-2531; Nikolaiev, V. et al., 1993, Pept. Res. 6:161-170; Ohlmeyer, M. H. J. et al., 1993, Proc.Natl.Acad.Sci.USA 90:10922-10926).

Soluble random combinatorial libraries may be synthesized using a simple principle for the generation of equimolar mixtures of peptides which was first described by Furka (Furka, A. et al., 1988, Xth International Symposium on Medicinal Chemistry, Budapest 1988; Furka, A. et al., 1988, 14th International Congress of Biochemistry, Prague 1988; Furka, A. et al., 1991, Int. J. Peptide Protein Res. 37:487-493). The construction of soluble libraries for iterative screening has also been described (Houghten, R. A. et al.1991, Nature 354:84-86). K. S. Lam disclosed the novel and unexpectedly powerful technique of using insoluble random combinatorial libraries. Lam synthesized random combinatorial libraries on solid phase supports, so that each support had a test compound of uniform molecular structure, and screened the libraries without prior removal of the test compounds from the support by solid phase binding protocols (Lam, K. S. et al., 1991, Nature 354:82-84).

Thus, a library of candidate molecules may be a synthetic combinatorial library (e.g., a combinatorial chemical library), a cellular extract, a bodily fluid (e.g., urine, blood,

10

15

20

25

81

tears, sweat, or saliva), or other mixture of synthetic or natural products (e.g., a library of small molecules or a fermentation mixture).

A library of molecules may include, for example, amino acids, oligopeptides, polypeptides, proteins, or fragments of peptides or proteins; nucleic acids (e.g., antisense; DNA; RNA; or peptide nucleic acids, PNA); aptamers; or carbohydrates or polysaccharides. Each member of the library can be singular or can be a part of a mixture (e.g., a compressed library). The library may contain purified compounds or can be "dirty" (i.e., containing a significant quantity of impurities). Commercially available libraries (e.g., from Affymetrix, ArQule, Neose Technologies, Sarco, Ciddco, Oxford Asymmetry, Maybridge, Aldrich, Panlabs, Pharmacopoeia, Sigma, or Tripose) may also be used with the methods described here.

In addition to libraries as described above, special libraries called diversity files can be used to assess the specificity, reliability, or reproducibility of the new methods. Diversity files contain a large number of compounds (e.g., 1000 or more small molecules) representative of many classes of compounds that could potentially result in nonspecific detection in an assay. Diversity files are commercially available or can also be assembled from individual compounds commercially available from the vendors listed above.

CANDIDATE SUBSTANCES

Suitable candidate substances include peptides, especially of from about 5 to 30 or 10 to 25 amino acids in size, based on the sequence of the polypeptides described in the Examples, or variants of such peptides in which one or more residues have been substituted. Peptides from panels of peptides comprising random sequences or sequences which have been varied consistently to provide a maximally diverse panel of peptides may be used.

Suitable candidate substances also include antibody products (for example, monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies and

10

15

20

25

CDR-grafted antibodies) which are specific for a polypeptide. Furthermore, combinatorial libraries, peptide and peptide mimetics, defined chemical entities, oligonucleotides, and natural product libraries may be screened for activity as inhibitors of binding of a polypeptide to the cell division cycle machinery, for example mitotic/meiotic apparatus (such as microtubules). The candidate substances may be used in an initial screen in batches of, for example 10 substances per reaction, and the substances of those batches which show inhibition tested individually. Candidate substances which show activity in *in vitro* screens such as those described below can then be tested in whole cell systems, such as mammalian cells which will be exposed to the inhibitor and tested for inhibition of any of the stages of the cell cycle.

POLYPEPTIDE BINDING ASSAYS

One type of assay for identifying substances that bind to a polypeptide involves contacting a polypeptide, which is immobilised on a solid support, with a non-immobilised candidate substance determining whether and/or to what extent the polypeptide and candidate substance bind to each other. Alternatively, the candidate substance may be immobilised and the polypeptide non-immobilised. This may be used to detect substances capable of binding to Fve polypeptides, or fragments, homologues, variants or derivatives thereof.

In a preferred assay method, the polypeptide is immobilised on beads such as agarose beads. Typically this is achieved by expressing the Fve polypeptide, or a fragment, homologue, variant or derivative thereof as a GST-fusion protein in bacteria, yeast or higher eukaryotic cell lines and purifying the GST-fusion protein from crude cell extracts using glutathione-agarose beads (Smith and Johnson, 1988). As a control, binding of the candidate substance, which is not a GST-fusion protein, to the immobilised polypeptide is determined in the absence of the polypeptide. The binding of the candidate substance to the immobilised polypeptide is then determined. This type of assay is known in the art as a GST pulldown assay. Again, the candidate substance may be immobilised and the polypeptide non-immobilised.

•

5

10

20

25

It is also possible to perform this type of assay using different affinity purification systems for immobilising one of the components, for example Ni-NTA agarose and histidine-tagged components.

Binding of the Fve polypeptide, or a fragment, homologue, variant or derivative thereof to the candidate substance may be determined by a variety of methods well-known in the art. For example, the non-immobilised component may be labeled (with for example, a radioactive label, an epitope tag or an enzyme-antibody conjugate). Alternatively, binding may be determined by immunological detection techniques. For example, the reaction mixture can be Western blotted and the blot probed with an antibody that detects the non-immobilised component. ELISA techniques may also be used.

Candidate substances are typically added to a final concentration of from 1 to 1000 nmol/ml, more preferably from 1 to 100 nmol/ml. In the case of antibodies, the final concentration used is typically from 100 to 500 μ g/ml, more preferably from 200 to 300 μ g/ml.

15 FVE DISEASES

As disclosed elsewhere in this document, Fve polypeptides, nucleic acids, and fragments, homologues, variants and derivatives thereof, host cells, vectors, DNA vaccines, etc, are suitable for treating or preventing various diseases (here referred to as "Fve diseases"). They may be be administered in an amount in the range of 1 microgram to 1 gramme to an average human patient or individual to be vaccinated. It is preferred to use a smaller dose in the ragne of 1 microgram to 1 milligram for each administration, however.

The Fve polypeptides, etc may be adminisstered togeher, either simultaneously or separately with compounds such as cytokines and / or or growth factors, such as interleukin-2 (IL-2), Interleukin 12 (IL-12), GM-CSF or the like in order to strenghthen the immune response. The Fve polypeptides, etc can be used in a vaccine or a therapeutic

10

15

20

25

composition either alone or in combination with other materials, for example, in the form of a lipopeptide conjugate which is known to induce a high-affinity cytotoxic T cell responses (Deres, 1989, Nature 342).

In particular, Fve diseases include allergies and cancer, described in further detail below.

Cancer

Fve polypeptides, nucleic acids, and fragments, homologues, variants and derivatives thereof, are suitable for treating or preventing cancer.

The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, smallcell lung cancer, non-small cell lung cancer, gastric cancer, pancreatic cancer, glial cell tumors such as glioblastoma and neurofibromatosis, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial carcinoma, salivary gland carcinoma, kidney cancer, renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer. Further examples are solid tumor cancer including colon cancer, breast cancer, lung cancer and prostrate cancer, hematopoietic malignancies including leukemias and lymphomas, Hodgkin's disease, aplastic anemia, skin cancer and familiar adenomatous polyposis. Further examples include brain neoplasms, colorectal neoplasms, breast neoplasms, cervix neoplasms, eye neoplasms, liver neoplasms, lung neoplasms, pancreatic neoplasms, ovarian neoplasms, prostatic neoplasms, skin neoplasms, testicular neoplasms, neoplasms, bone neoplasms, yellow fevertrophoblastic neoplasms, fallopian tube neoplasms, rectal neoplasms, colonic neoplasms, kidney neoplasms, stomach neoplasms, and parathyroid neoplasms. Breast cancer, prostate cancer, pancreatic cancer, colorectal cancer, lung cancer, malignant melanoma, leukaemia, lympyhoma, ovarian cancer, cervical cancer and biliary tract carcinoma are also included.

10

In preferred embodiments, Fve polypeptide, nucleic acid, and fragments, homologues, variants and derivatives thereof are used to treat T cell lymphoma, melanoma or lung cancer.

The Fve polypeptides and nucleic acids, etc, as described here, may also be used in combination with anticancer agents such as endostatin and angiostatin or cytotoxic agents or chemotherapeutic agent. For example, drugs such as such as adriamycin, daunomycin, cis-platinum, etoposide, taxol, taxotere and alkaloids, such as vincristine, and antimetabolites such as methotrexate. The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g. I, Y, Pr), chemotherapeutic agents, and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin, or fragments thereof.

10

15

20

Also, the term includes oncogene product/tyrosine kinase inhibitors, such as the bicyclic ansamycins disclosed in WO 94/22867; 1,2-bis(arylamino) benzoic acid derivatives disclosed in EP 600832; 6,7-diamino-phthalazin-1-one derivatives disclosed in EP 600831; 4,5-bis(arylamino)-phthalimide derivatives as disclosed in EP 516598; or peptides which inhibit binding of a tyrosine kinase to a SH2-containing substrate protein (see WO 94/07913, for example). A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include Adriamycin, Doxorubicin, 5-Fluorouracil (5-FU), Cytosine arabinoside (Ara-C), Cyclophosphamide, Thiotepa, Busulfan, Cytoxin, Taxol, Methotrexate, Cisplatin, Melphalan, Vinblastine, Bleomycin, Etoposide, Ifosfamide, Mitomycin C, Mitoxantrone, Vincristine, VP-16, Vinorelbine, Carboplatin, Teniposide, Daunomycin, Carminomycin, Aminopterin, Dactinomycin, Mitomycins, Nicotinamide, Esperamicins (see U.S. Pat. No. 4,675,187), Melphalan and other related nitrogen mustards, and endocrine therapies (such as diethylstilbestrol (DES), Tamoxifen, LHRH antagonizing drugs, progestins, anti-progestins etc).

Allergies

Existing treatments for allergies typically involve the long-term use of steroids to depress the immune system. There are undesirable side effects with long-term steroid therapy. We demonstrate that Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof (as well as DNA vaccines, host cells and transgenic organisms comprising any of these) may be used to alleviate the symptoms of allergy, or to treat allergy. The term "allergy" as used here, refers to any allergic reactions such as allergic contact hypersensitivity.

In general, the allergy may be to an allergen from any source, for example, a source known to induce allergenic responses in humans. For example, the allergy may be to a tree pollen allergen, a grass pollen allergen, a weed pollen allergen, a feline antigen, or a fungal allergen. Thus, the allergy may be to a tree pollen allergen, for example Bet v 1 and Bet v 2 from birch tree. The allergy may be to a grass pollen allergen, for example, Phl p 1 and Phl p 2 from timothy grass. It may be to a weed pollen allergen, for example, antigen E

15

20

25

from ragweed. It may be to an animal allergen, for example, a canine or feline antigen. Specifically, it may be to a major feline antigen, for example, Fel d 1. The allergy may be to a fungal allergen, for example a major fungal allergen, for example, Asp f1, Asp f2, and Asp f3 from Aspergillus fumigatus.

In preferred embodiments, the allergy is to a dust mite allergen, preferably a house dust mite allergen. In particular, the allergen is preferably derived from a mite from Family Glycyphagidae or Family Pyroglyphidae. Dust mites of Family Glycyphagidae include those in the genera Aeroglyphus, Austroglycyphagus, Blomia, Ctenoglyphus, Glycyphagus, Gohieria, Lepidoglyphus. Dust mites of Family Pyroglyphidae include those in the genera Dermatophagoides, Euroglyphus, Pyroglyphus. In preferred embodiments, the allergy is preferably to an allergen from a species in any of these genera.

In highly preferred embodiments, the allergy is to an allergen which is a group 1 allergen (Der p 1, Der f 1, Blo t 1, Eur m1, Lep d 1), a group 2 allergen (Der p 2, Der f 2, Blo t 2, Eur m 2, Lep d 2), a group 5 allergen (Blo t 5, Der p 5, Der f 5, Eur m 5, Lep d 5) or a group 15 allergen (Der p 15, Der f 15, Blot 15, Eur m 15, Lep d 15) from dust mite.

Allergies suitable for treatment with Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof may therefore include a seasonal respiratory allergy, allergic rhinitis, hayfever, nonallergic rhinitis, vasomotor rhinitis, irritant rhinitis, an allergy against grass pollens, tree pollens or animal danders, an allergy associated with allergic asthma, and food allergies. In particular, and as described elsewhere, Fve polypeptide, nucleic acid, or a fragment, homologue, variant or derivative thereof may be used to treat allergies to house dust mite (*Dermatophagoides* spp), preferably *Dermatophagoides pteronyssinus* or *Dermatophagoides farinae*, or to fungi or fungal spores, preferably *Aspergillus fumigatus*. Preferably, the allergens are comprised in faeces of *Dermatophagoides spp*.

10

Viral Infections

The immunomodulator-viral infectious antigen combinations, preferably conjugates, may be used to treat or prevent any of a number of viral infectious diseases. The virus concerned may be an RNA virus or a DNA virus. Preferably, the virus is an integrating virus. Preferably, the virus is selected from a lentivirus and a herpesvirus. More preferably, the virus is an HIV virus or a HSV virus.

The methods described here can therefore be used to prevent the development and establishment of diseases caused by or associated with any of the above viruses, including human immunodeficiency virus, such as HIV-1 and HIV-2, and herpesvirus, for example HSV-1, HSV-2, HSV-7 and HSV-8, as well as human cytomegalovirus, varicella-zoster virus, Epstein-Barr virus and human herpesvirus 6.in humans.

Examples of viruses which may be targeted using the methods and compositions described here are given in the tables below.

		DNA VIRUSES	
Family	Genus or (Subfamily)	Example	Diseases
Herpesviridae	[Alphaherpes- virinae]	Herpes simplex virus type 1 (aka HHV-1)	Encephalitis, cold sores, gingivostomatitis
	vii masj	Herpes simplex virus type 2 (aka HHV-2)	Genital herpes, encephalitis
		Varicella zoster virus (aka HHV-3)	Chickenpox, shingles
	[Gammaherpesviri nae]	Epstein Barr virus (aka HHV-4)	Mononucleoisis, hepatitis, tumors (BL, NPC)
		Kaposi's sarcoma associated herpesvirus, KSHV (aka	?Probably: tumors, inc. Kaposi's sarcoma (KS) and some B cell lymphomas
	[Betaherpesvirinae]	Human herpesvirus 8) Human cytomegalovirus (aka HHV-5) Human herpesvirus 6	Mononucleosis, hepatitis, pneumonitis, congenital Roseola (aka E. subitum), pneumonitis
Adenoviridae Papovaviridae	Mastadenovirus Papillomavirus	Human herpesvirus 7 Human adenoviruses Human papillomaviruses	Some cases of roseola? 50 serotypes (species); respiratory infections 80 species; warts and tumors Mild usually; JC causes PML in AIDS
Hepadnaviridae Poxviridae	Polyomavirus Orthohepadnavirus Orthopoxvirus	JC, BK viruses Hepatitis B virus (HBV) Hepatitis C virus (HCV) Vaccinia virus	Hepatitis (chronic), cirrhosis, liver tumors Hepatitis (chronic), cirrhosis, liver tumors Smallpox vaccine virus
	Orthopoxyrus	Monkeypox virus	Smallpox-like disease; a rare zoonosis (recent outbreak in Congo; 92 cases from 2/96 - 2/97)
Parvoviridae	Parapoxvirus	Orf virus	Skin lesions ("pocks") E. infectiousum (aka Fifth disease), aplastic
	Erythrovirus	B19 parvovirus	crisis, fetal loss Useful for gene therapy; integrates into
Circoviridae	Dependovirus	Adeno-associated virus	chromosome

,	Circovirus	TT virus (TTV)	Linked to hepatitis of unknown etiology
		RNA VIRUSES	•
Family	Genus or [Subfamily]	Example	Diseases
Picornaviridae	Enterovirus	Polioviruses	3 types; Aseptic meningitis, paralytic poliomyelitis
Caliciviridae	Hepatovirus Rhinovirus Calicivirus	Echoviruses Coxsackieviruses Hepatitis A virus Human rhinoviruses Norwalk virus	30 types; Aseptic meningitis, rashes 30 types; Aseptic meningitis, myopericarditis Acute hepatitis (fecal-oral spread) 115 types; Common cold Gastrointestinal illness
Paramyxoviridae	Paramyxovirus	Parainfluenza viruses	4 types; Common cold, bronchiolitis, pneumonia
	Rubulavirus	Mumps virus	Mumps: parotitis, aseptic meningitis (rare: orchitis, encephalitis)
	Morbillivirus	Measles virus	Measles: fever, rash (rare: encephalitis, SSPE)
0.41	Pneumovirus	Respiratory syncytial virus	Common cold (adults), bronchiolitis, pneumonia (infants) Flu: fever, myalgia, malaise, cough,
Orthomyxo- viridae	Influenzavirus A	Influenza virus A	pneumonia
	Influenzavirus B	Influenza virus B	Flu: fever, myalgia, malaise, cough, pneumonia
Rhabdoviridae	Lyssavirus	Rabies virus	Rabies: long incubation, then CNS disease, death
Filoviridae	Filovirus	Ebola and Marburg viruses	Hemorrhagic fever, death Uncertain; linked to schizophrenia-like
Bornaviridae	Bornavirus	Borna disease virus	disease in some animals
Retroviridae	Deltaretrovirus	Human T-lymphotropic virus type-1	Adult T-cell leukemia (ATL), tropical spastic paraparesis (TSP) No disease known
	Spumavirus Lentivirus	Human foamy viruses Human immunodeficiency virus type-1 and -2	AIDS, CNS disease
Togaviridae	Rubivirus	Rubella virus	Mild exanthem; congenital fetal defects
	Alphavirus	Equine encephalitis viruses (WEE, EEE, VEE)	Mosquito-born, encephalitis
Flaviviridae	Flavivirus	Yellow fever virus	Mosquito-born; fever, hepatitis (yellow fever!)
	Hepacivirus	Dengue virus St. Louis Encephalitis virus Hepatitis C virus Hepatitis G virus	Mosquito-born; hemorrhagic fever Mosquito-born; encephalitis Hepatitis (often chronic), liver cancer Hepatitis???
Reoviridae	Rotavirus Coltivirus Orthoreovirus	Human rotaviruses Colorado Tick Fever virus Human reoviruses	Numerous serotypes; Diarrhea Tick-born; fever Minimal disease
Bunyaviridae	Hantavirus	Pulmonary Syndrome Hantavirus	Rodent spread; pulmonary illness (can be lethal, "Four Corners" outbreak) Rodent spread; hemorrhagic fever with renal
		Hantaan virus	syndrome
	Phlebovirus	Rift Valley Fever virus Crimean-Congo Hemorrhagic	Mosquito-born; hemorrhagic fever
	Nairovirus	Fever virus Lymphocytic	Mosquito-born; hemorrhagic fever
Arenaviridae	Arenavirus	Choriomeningitis virus	Rodent-born; fever, aseptic meningitis
		Lassa virus	Rodent-born; severe hemorrhagic fever (BL4 agents; also: Machupo, Junin)
Coronaviridae Astroviridae	Deltavirus Coronavirus Astrovirus	Hepatitis Delta virus Human coronaviruses Human astroviruses	Requires HBV to grow; hepatitis, liver cancer Mild common cold-like illness Gastroenteritis
Unclassified	"Hepatitis E-like viruses"	Hepatitis E virus	Hepatitis (acute); fecal-oral spread

Human Immunodeficiency Virus-1 (HIV-1)

5

10

15

20

25

The combinations and conjugates described here, including Fve polypeptide combinations and conjugates, may be used to treat or prevent Human Immunodeficiency Virus (HIV) infection. The methods described here can therefore be used to prevent the development and establishment of diseases caused by or associated with human immunodeficiency virus, such as HIV-1 and HIV-2.

Human Immunodeficiency Virus (HIV) is a retrovirus which infects cells of the immune system, most importantly CD4⁺ T lymphocytes. CD4⁺ T lymphocytes are important, not only in terms of their direct role in immune function, but also in stimulating normal function in other components of the immune system, including CD8⁺ T-lymphocytes. These HIV infected cells have their function disturbed by several mechanisms and/or are rapidly killed by viral replication. The end result of chronic HIV infection is gradual depletion of CD4⁺ T lymphocytes, reduced immune capacity, and ultimately the development of AIDS, leading to death.

The regulation of HIV gene expression is accomplished by a combination of both cellular and viral factors. HIV gene expression is regulated at both the transcriptional and post-transcriptional levels. The HIV genes can be divided into the early genes and the late genes. The early genes, Tat, Rev, and Nef, are expressed in a Rev-independent manner. The mRNAs encoding the late genes, Gag, Pol, Env, Vpr, Vpu, and Vif require Rev to be cytoplasmically localized and expressed. HIV transcription is mediated by a single promoter in the 5' LTR. Expression from the 5' LTR generates a 9-kb primary transcript that has the potential to encode all nine HIV genes. The primary transcript is roughly 600 bases shorter than the provirus. The primary transcript can be spliced into one of more than 30 mRNA species or packaged without further modification into virion particles (to serve as the viral RNA genome).

Any of the HIV proteins disclosed here may be used as a viral infectious antigen for productions of conjugates and combinations as described above.

10

15

20

25

Herpes Virus

The combinations and conjugates described here, including Fve polypeptide combinations and conjugates, may be used to treat or prevent Herpesvirus infection. The methods described here can therefore be used to prevent the development and establishment of diseases caused by or associated with herpesvirus, for example HSV-1, HSV-2, HSV-7 and HSV-8.

Particular examples of herpesvirus include: herpes simplex virus 1 ("HSV-1"), herpes simplex virus 2 ("HSV-2"), human cytomegalovirus ("HCMV"), varicella-zoster virus ("VZV"), Epstein-Barr virus ("EBV"), human herpesvirus 6 ("HHV6"), herpes simplex virus 7 ("HSV-7") and herpes simplex virus 8 ("HSV-8").

Herpesviruses have also been isolated from horses, cattle, pigs (pseudorabies virus ("PSV") and porcine cytomegalovirus), chickens (infectious larygotracheitis), chimpanzees, birds (Marck's disease herpesvirus 1 and 2), turkeys and fish (see "Herpesviridae: A Brief Introduction", Virology, Second Edition, edited by B. N. Fields, Chapter 64, 1787 (1990)).

Herpes simplex viral ("HSV") infection is generally a recurrent viral infection characterized by the appearance on the skin or mucous membranes of single or multiple clusters of small vesicles, filled with clear fluid, on slightly raised inflammatory bases. The herpes simplex virus is a relatively large-sized virus. HSV-2 commonly causes herpes labialis. HSV-2 is usually, though not always, recoverable from genital lesions. Ordinarily, HSV-2 is transmitted venereally.

Diseases caused by varicella-zoster virus (human herpesvirus 3) include varicella (chickenpox) and zoster (shingles). Cytomegalovirus (human herpesvirus 5) is responsible for cytomegalic inclusion disease in infants. There is presently no specific treatment for treating patients infected with cytomegalovirus. Epstein-Barr virus (human herpesvirus 4) is the causative agent of infectious mononucleosis and has been associated with Burkitt's lymphoma and nasopharyngeal carcinoma. Animal herpesviruses which may pose a

problem for humans include B virus (herpesvirus of Old World Monkeys) and Marmoset herpesvirus (herpesvirus of New World Monkeys).

Herpes simplex virus 1 (HSV-1) is a human pathogen capable of becoming latent in nerve cells. Like all the other members of *Herpesviridae* it has a complex architecture and double-stranded linear DNA genome which encodes for variety of viral proteins including DNA pol. and TK.

5

10

HSV gene expression proceeds in a sequential and strictly regulated manner and can be divided into at least three phases, termed immediate-early (IE or α), early (β) and late (γ). The cascade of HSV-1 gene expression starts from IE genes, which are expressed immediately after lytic infection begins. The IE proteins regulate the expression of later classes of genes (early and late) as well as their own expression. The product of IE175k (ICP4) gene is critical for HSV-1 gene regulation and ts mutants in this gene are blocked at IE stage of infection.

The IE genes themselves are activated by a virion structural protein VP16

(expressed late in the replicative cycle and incorporated into HSV particle). All 5 IE genes of HSV-1 (IE110k - 2 copies/HSV genome, IE175 - 2 copies/HSV genome, IE68k, IE63k and IE12k) have at least one copy of a conserved promoter/enhancer sequence - TAATGARAT. This sequence is recognized by the transactivation complex which consists of; Oct-1, HCF and VP16. The GARAT element is required for efficient transactivation by VP16. This mechanism of gene activation is unique for HSV and despite Oct-1 being a common transcription factor, the Oct-1/HCF/VP16 complex activates specifically only HSV IE genes.

Any of the herpesvirus proteins disclosed here may be used as a viral infectious antigen for productions of conjugates and combinations as described above.

CYTOKINES

5

10

15

20

In a further embodiment, the Fve polypeptide, nucleic acid, fragment, homologue, variant or derivative thereof is used to modulate cytokine levels in an individual. Preferably, the level of inflammatory cytokines is down-regulated. Examples of inflammatory cytokines include Granulocyte-Macrophage-Colony stimulating factor (GM-CSF), as well as any cytokine that mediates migration of alveolar macrophages into the lung and act to increase cell proliferation.

The term "cytokine" may be used to refer to any of a number of soluble molecules (e.g., glycoproteins) released by cells of the immune system, which act nonenzymatically through specific receptors to regulate immune responses. Cytokines resemble hormones in that they act at low concentrations bound with high affinity to a specific receptor. Preferably, the term "cytokine" refers to a diverse group of soluble proteins and peptides which act as humoral regulators at nano- to picomolar concentrations and which, either under normal or pathological conditions, modulate the functional activities of individual cells and tissues.

Particular examples of cytokines which are suitable for use in the methods and compositions described include interleukins, lymphokine, interferon, Colony Stimulating Factors (CSFs) such as Granulocyte-Colony Stimulating Factor (G-CSF), Macrophage-Colony stimulating factor (M-CSF) and Granulocyte-Macrophage-Colony stimulating factor (GM-CSF), GSF, Platelet-Activating Factors (PAF), Tumor Necrosis Factor (TNF).

Thus, interleukins such as IL1, IL2 and IL4, as well as interferons such as IFN- α , IFN- β and IFN- γ are included. Tumour necrosis factors TNF- α (cachetin), TNF- β (lymphotoxin) may also be suitably employed.

Preferred cytokines are those which are capable of recruiting immune responses,

for example, stimulation of dendritic cell or cytotoxic T cell activity, or which are capable

of recruiting macrophages to the target site. In a highly preferred embodiment, the cytokine comprises IL-2, GM-CSF or GSF.

CHEMICAL COUPLING

As noted above, the immunomodulator may be coupled to the allergen by a number of methods. Crosslinkers are divided into homobifunctional crosslinkers, containing two identical reactive groups, or heterobifunctional crosslinkers, with two different reactive groups. Heterobifunctional crosslinkers allow sequential conjugations, minimizing polymerization.

Any of the homobifunctional or heterobifunctional crosslinkers presented in the table below may be used to couple the allergen with the immunomodulator to produce an immunomodulator-allergen conjugate.

Homobifunctional

Reagent	Cat. No.	Modifi ed Group	Solubility	Comments	Refs
BMME	442635-Y .	-SH	DMF, Acetone	Homobifunctional crosslinker useful for formation of conjugates via thiol groups.	Weston, P.D., et al. 1980. Biochem. Biophys Acta. 612, 40.
BSOCOE S	203851-Y	-NH2	Water	Base cleavable crosslinker useful for studying receptors and mapping surface polypeptide antigens on lymphocytes.	Howard, A.D., et al. 1985. J. Biol. Chem.260, 10833.
DSP	322133-Y	-NH2	Water	Thiol cleavable crosslinker used to immobilize proteins on supports containing amino groups.	Lee, W.T., and Conrad, D.H. 1985. J. Immunol.134, 518.
DSS	322131-Y	-NH2	Water	Non-cleavable, membrane impermeable crosslinker widely used for conjugating radiolabeled ligands to cell surface receptors and for detecting conformational changes in membrane proteins.	D'Souza, S.E., et al. 1988. J. Biol. Chem.263, 3943.
EGS	324550-Y	-NH2	DMSO	Hydroxylamine cleavable reagent for crosslinking and reversible immobilization of proteins through their primary amine groups. Useful for studying structure-function relationships.	Geisler, N., et al. 1992. Eur. J. Biochem.206, 841. 14. Moenner, M., et al. 1986. Proc. Natl. Acad. Sci. USA83, 5024.

EGS, Water Soluble	324551-Y	-NH2		reacts rapidly with dilute proteins at neutral pH. Crosslinked proteins are readily cleaved with hydroxylamine at pH 8.5 for 3-6 hours, 37°C.	Yanagi, T., et al. 1989. Agric. Biol. Chem. 53, 525.
Glutarald ehyde	354400-Y	-ОН		Used for crosslinking proteins and polyhydroxy materials. Conjugates haptens to carrier proteins; also used as a tissue fixative.	Harlow, E., and Lane, D. 1988. Antibodies: A Laboratory Manual, Cold Spring Harbor Publications, N.Y., p. 349.
SATA	573100-Y	-NH2	DMSO	Introduces protected thiols via primary amines. When treated with hydroxylamine, yields a free sulhydryl group that can be conjugated to maleimide-modified proteins.	Duncan, R.J.S., et al. 1983. Anal. Biochem.132, 68.
H	Heterobifund	ctional			
Reagent	Cat. No.	Modifi ed Group	Solubility	Comments	Refs
GMBS	442630-Y	-NH2, -SH	DMSO	Heterobifunctional crosslinker useful for preparing enzymeantibody conjugates (e.ggal-IgG) and for immobilizing enzymes on solid supports.	Kitagwa, T., et al. 1983. J. Biochem.94, 1160.19. Rusin, K.M., et al. 1992. Biosens. Bioelectron.7, 367.
MBS	442625-Y 442626-Y	-NH2, -SH -NH2, -SH	DMSO, Water	Thiol cleavable, heterobifunctional reagent especially useful for preparing peptide-carrier conjugates and conjugating toxins to antibodies.	Green, N., et al. 1982. Cell 28, 477.
PMPI	528250-Y	-SH2, - OH	DMSO, DMF	Used in the preparation of alkaline phosphatase conjugates of estradiol, progesterone, serine-enriched peptides, and vitamin B12.	Aithal, H.N., et al. 1988. J. Immunol. Methods112, 63.
SMCC	573114-Y 573115-Y		DMF, AN Acetonitril e Water	Heterobifunctional reagent for enzyme labeling of antibodies and antibody fragments. The cyclohexane bridge provides extra stability to the maleimide group. Ideal reagent for preserving enzyme activity and antibody specificity after coupling.	
SPDP	573112-Y	-NH2, -SH	DMF, AN Acetonitril e	Introduces protected thiol groups	Caruelle, D., et al. 1988. Anal. Biochem.173, 328.

10

		containing molecule.	

Each of these reagents may be obtained from a number of manufacturers, for example, from Calbiochem (catalogue number in column 2), or Piece Chemical Company.

PHARMACEUTICAL COMPOSITIONS

Fve polypeptides may be produced in large amounts at low cost in a bioactive form, allowing the development of Fve containing formulations by aerosolisation, nebulisation, intranasal:or intratracheal administration.

While it is possible for the composition comprising the Fve polypeptide or nucleic acid to be administered alone, it is preferable to formulate the active ingredient as a pharmaceutical formulation. We therefore also disclose pharmaceutical compositions comprising Fve polypeptide or nucleic acid, or a fragment, homologue, variant or derivative thereof. Such pharmaceutical compositions are useful for delivery of Fve polypeptide, nucleic acid, fragment, homologue, variant or derivative thereof to an individual for the treatment or alleviation of symptoms as described.

The composition may include the Fve polypeptide, nucleic acid, fragment,

homologue, variant or derivative thereof, a structurally related compound, or an acidic salt thereof. The pharmaceutical formulations comprise an effective amount of Fve polypeptide, nucleic acid, fragment, homologue, variant or derivative thereof, together with one or more pharmaceutically-acceptable carriers. An "effective amount" of an Fve polypeptide, nucleic acid fragment, homologue, variant or derivative thereof is the amount sufficient to alleviate at least one symptom of a disease as described.

The effective amount will vary depending upon the particular disease or syndrome to be treated or alleviated, as well as other factors including the age and weight of the patient, how advanced the disease etc state is, the general health of the patient, the severity of the symptoms, and whether the Fve polypeptide, nucleic acid, fragment, homologue,

variant or derivative thereof is being administered alone or in combination with other therapies.

Suitable pharmaceutically acceptable carriers are well known in the art and vary with the desired form and mode of administration of the pharmaceutical formulation. For example, they can include diluents or excipients such as fillers, binders, wetting agents, disintegrators, surface-active agents, lubricants and the like. Typically, the carrier is a solid, a liquid or a vaporizable carrier, or a combination thereof. Each carrier should be "acceptable" in the sense of being compatible with the other ingredients in the formulation and not injurious to the patient. The carrier should be biologically acceptable without eliciting an adverse reaction (e.g. immune response) when administered to the host.

The pharmaceutical compositions disclosed here include those suitable for topical and oral administration, with topical formulations being preferred where the tissue affected is primarily the skin or epidermis (for example, psoriasis, eczema and other epidermal diseases). The topical formulations include those pharmaceutical forms in which the composition is applied externally by direct contact with the skin surface to be treated. A conventional pharmaceutical form for topical application includes a soak, an ointment, a cream, a lotion, a paste, a gel, a stick, a spray, an aerosol, a bath oil, a solution and the like. Topical therapy is delivered by various vehicles, the choice of vehicle can be important and generally is related to whether an acute or chronic disease is to be treated. Other formulations for topical application include shampoos, soaps, shake lotions, and the like, particularly those formulated to leave a residue on the underlying skin, such as the scalp (Arndt et al, in Dermatology In General Medicine 2:2838 (1993)).

In general, the concentration of the Fve polypeptide, nucleic acid, fragment, homologue, variant or derivative thereof composition in the topical formulation is in an amount of about 0.5 to 50% by weight of the composition, preferably about 1 to 30%, more preferably about 2-20%, and most preferably about 5-10%. The concentration used can be in the upper portion of the range initially, as treatment continues, the concentration can be lowered or the application of the formulation may be less frequent. Topical

10

15

20

25

applications are often applied twice daily. However, once-daily application of a larger dose or more frequent applications of a smaller dose may be effective. The stratum corneum may act as a reservoir and allow gradual penetration of a drug into the viable skin layers over a prolonged period of time.

In a topical application, a sufficient amount of active ingredient must penetrate a patient's skin in order to obtain a desired pharmacological effect. It is generally understood that the absorption of drug into the skin is a function of the nature of the drug, the behaviour of the vehicle, and the skin. Three major variables account for differences in the rate of absorption or flux of different topical drugs or the same drug in different vehicles; the concentration of drug in the vehicle, the partition coefficient of drug between the stratum corneum and the vehicle and the diffusion coefficient of drug in the stratum corneum. To be effective for treatment, a drug must cross the stratum corneum which is responsible for the barrier function of the skin. In general, a topical formulation which exerts a high *in vitro* skin penetration is effective *in vivo*. Ostrenga et al (J. Pharm. Sci., 60:1175-1179 (1971) demonstrated that *in vivo* efficacy of topically applied steroids was proportional to the steroid penetration rate into dermatomed human skin *in vitro*.

A skin penetration enhancer which is dermatologically acceptable and compatible with the agent can be incorporated into the formulation to increase the penetration of the active compound(s) from the skin surface into epidermal keratinocytes. A skin enhancer which increases the absorption of the active compound(s) into the skin reduces the amount of agent needed for an effective treatment and provides for a longer lasting effect of the formulation. Skin penetration enhancers are well known in the art. For example, dimethyl sulfoxide (U.S. Pat. No. 3,711,602); oleic acid, 1,2-butanediol surfactant (Cooper, J. Pharm. Sci., 73:1153-1156 (1984)); a combination of ethanol and oleic acid or oleyl alcohol (EP 267,617), 2-ethyl-1,3-hexanediol (WO 87/03490); decyl methyl sulphoxide and Azone.RTM. (Hadgraft, Eur. J. Drug. Metab. Pharmacokinet, 21:165-173 (1996)); alcohols, sulphoxides, fatty acids, esters, Azone.RTM., pyrrolidones, urea and polyoles (Kalbitz et al, Pharmazie, 51:619-637 (1996));

10

15

20

25

Terpenes such as 1,8-cineole, menthone, limonene and nerolidol (Yamane, J. Pharmacy & Pharmocology, 47:978-989 (1995)); Azone.RTM. and Transcutol (Harrison et al, Pharmaceutical Res. 13:542-546 (1996)); and oleic acid, polyethylene glycol and propylene glycol (Singh et al, Pharmazie, 51:741-744 (1996)) are known to improve skin penetration of an active ingredient.

Levels of penetration of an agent or composition can be determined by techniques known to those of skill in the art. For example, radiolabeling of the active compound, followed by measurement of the amount of radiolabeled compound absorbed by the skin enables one of skill in the art to determine levels of the composition absorbed using any of several methods of determining skin penetration of the test compound. Publications relating to skin penetration studies include Reinfenrath, W G and G S Hawkins. The Weaning Yorkshire Pig as an Animal Model for Measuring Percutaneous Penetration. In:Swine in Biomedical Research (M. E. Tumbleson, Ed.) Plenum, New York, 1986, and Hawkins, G. S. Methodology for the Execution of In Vitro Skin Penetration Determinations. In: Methods for Skin Absorption, B W Kemppainen and W G Reifenrath, Eds., CRC Press, Boca Raton, 1990, pp.67-80; and W. G. Reifenrath, Cosmetics & Toiletries, 110:3-9 (1995).

For some applications, it is preferable to administer a long acting form of agent or composition using formulations known in the arts, such as polymers. The agent can be incorporated into a dermal patch (Junginger, H. E., in Acta Pharmaceutica Nordica 4:117 (1992); Thacharodi et al, in Biomaterials 16:145-148 (1995); Niedner R., in Hautarzt 39:761-766 (1988)) or a bandage according to methods known in the arts, to increase the efficiency of delivery of the drug to the areas to be treated.

Optionally, the topical formulations can have additional excipients for example; preservatives such as methylparaben, benzyl alcohol, sorbic acid or quaternary ammonium compound; stabilizers such as EDTA, antioxidants such as butylated hydroxytoluene or butylated hydroxanisole, and buffers such as citrate and phosphate.

The pharmaceutical composition can be administered in an oral formulation in the form of tablets, capsules or solutions. An effective amount of the oral formulation is administered to patients 1 to 3 times daily until the symptoms of the disease alleviated. The effective amount of agent depends on the age, weight and condition of a patient. In general, the daily oral dose of agent is less than 1200 mg, and more than 100 mg. The preferred daily oral dose is about 300-600 mg. Oral formulations are conveniently presented in a unit dosage form and may be prepared by any method known in the art of pharmacy. The composition may be formulated together with a suitable pharmaceutically acceptable carrier into any desired dosage form. Typical unit dosage forms include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories. In general, the formulations are prepared by uniformly and intimately bringing into association the agent composition with liquid carriers or finely divided solid carriers or both, and as necessary, shaping the product. The active ingredient can be incorporated into a variety of basic materials in the form of a liquid, powder, tablets or capsules to give an effective amount of active ingredient to treat the disease.

Other therapeutic agents suitable for use herein are any compatible drugs that are effective for the intended purpose, or drugs that are complementary to the agent formulation. The formulation utilized in a combination therapy may be administered simultaneously, or sequentially with other treatment, such that a combined effect is achieved.

The invention is described further, for the purpose of illustration only, in the following examples.

EXAMPLES

5

10

15

20

25

In each of the Examples presented below, where an activity is described for a Fve polypeptide comprising a GST (glutathione S transferase) portion (for example, as a GST-FIP fusion protein), we find that the polypeptide itself, without the GST portion, has

substantially the same activity. This is to be expected, as the GST domain does not have any relevant biological activity as far as FIP is concerned.

Example 1. Isolation and Purification of Native Fve Protein from Golden Needle Mushroom

Methods and materials

5

20

25

Two kilograms of the fruit bodies of *Flammulina velutipes* are homogenized with 2L ice-cold 5% acetic acid in the presence of 0.05 M 2-mercaptoethanol and 0.3 M sodium chloride. The proteins in the supernatant are precipitated by 95% saturated ammonium sulfate.

The precipitate is re-dissolved and dialyzed against 10 mM Tris-HCl pH 8.5 (buffer A) at 4°C for 48 hours with six to eight changes of dialysis buffer. The protein solution is applied to the Q Sepharose FF column (2.6 × 10 cm, Pharmacia) that has been previously equilibrated with buffer A. The unbound fraction is collected and dialyzed against 10 mM sodium acetate pH 5.0 (buffer B) at 4°C for 48 hours with six to eight changes of dialysis buffer and then further purified by applying to the SP Sepharose FF column (2.6 × 10 cm, Pharmacia) that has been previously equilibrated with buffer B.

The protein is eluted with a gradient of 0-0.5 M NaCl in buffer B. Fractions containing Fve protein are collected and analyzed by a 7.5% Tris-Tricine SDS-PAGE.

Results

High yield of native Fve protein is purified from Flammulina velutipes

The native Fve protein has an apparent molecular weight of 12.7 kDa as determined by SDS-PAGE (Figure 1A). However, it appears to be a homodimer with a molecular weight of 25.5 kDa as determined by Superdex 75 (26 × 60 cm, Pharmacia) gel filtration chromatography (Figure 1B and 1C). The running buffer for gel filtration is 10 mM Tris-HCl pH 7.5, 0.2 M sodium chloride.

ويلتي أينا

15

20

25

Fve protein is the major component in the crude extract from the mushroom fruit bodies. By removing the cap of the mushroom, we managed to reduce the amount of polysaccharides that cause undesirable interference in the process of protein purification.

The yield of native Fve protein is 40 mg from 1 kg wet-weight of starting material.

5 Example 2. Measurement of gene expression profile at mRNA level after Fve stimulation

Methods and Materials

Two subsets of effector Th cells have been defined on the basis of their distinct cytokine secretion patterns and immunomodulatory effects (Mosmann et al., 1989; Paul and seder, 1994; Abbas et al., 1996). Th1 cells produce inflammatory cytokines, such as IFN-γ, TNF-α, IL-12, IL-15 and IL-18, and enhance cellular immunity mediated by macrophages. In contrast, Th2 cells produce a different group of cytokines, such as IL-4, IL-5, IL-6 and IL-13. The differentiation of precursor T cells into Th1 or Th2 cells has important biologic implication in terms of susceptibility or resistance to a particular disease.

In order to characterize the cytokines expression pattern induced by Fve, human PBMC from healthy donor and splenocytes from 8 week-old BALB/cJ mice are collected and cultured with 20µg of native Fve. The mRNA is extracted at 48 hours using RNeasy Mini mRNA Purification Kit (QIAGÉN). First-strand cDNA is then generated from the mRNA template using oligo-dT primers and MMLV reverse transcriptase (Promega).

PCR reactions are performed with Taq polymerase (Promega) with standard conditions and optimized annealing temperatures. The amplified products are analysed by electrophoresis in 1.5% agarose gel containing ethidium bromide (0.5μg/ml) and photographed with UV exposure. Messenger RNA for various cytokines and transcription factors are measured. House keeping genes mRNA for hypoxanthine ribosyl-transferase (HPRT) and cyclophilin are used as internal controls.

15

20

25

103

Results

Enhanced expression of IFN- γ , TNF- α , IL- 1β , IL-2, IRF-1, c-Rel, Bcl- X_L , ICAM-1, and iNOS mRNA

Human PBMC and spleen cells from BALB/cJ mice are cultured with 20µg of Fve and analyzed for cytokine mRNA expression at 48hr. The results indicated that there is an increase in IFN-γ, TNF-α, iNOS mRNA production by spleen cells cultured with Fve protein. Mouse IL-12 remains unchanged. This phenomenon occurred in a dose dependent manner.

Similar results are seen in human PBMC. The mRNA for human cytokines IL-1β, IL-2, IFN-γ and TNF-α; transcription factor IRF-1 and c-Rel; adhesion molecule ICAM-1 and anti-apoptotic protein Bcl-X_L is up regulated after Fve stimulation. Figure 2 and Figure 3 show the patterns of mRNA expression for transcription factors, cytokines and adhesion molecules of the splenocytes and PBMC stimulated by Fve.

Example 3. Generation of Fve Mutants By PCR-Based Mutagenesis

Materials and Methods

A cDNA encoding for the Fve protein is cloned into the BamHI and EcoRI site of pGEX-4T1. This DNA template is used to generate a panel of mutants by recombinant-PCR method (Figure 4). A schematic representation of the strategy used to generate mutants is shown in Figure 5.

As predicted by PHD prediction program, Fve contains one α -helix, six β -strands and two β -turns. Each of these predicted secondary structures is serially deleted by recombinant-PCR method. In addition, we also examined the potential function of the R27, G28, T29 residues, which resembles the cell aggregating RGD motif, located in the N-terminal β -turn of Fve protein by point mutation. Each of the amino acid residues of RGT is substituted by alanine residue.

A partial list of fragments of Fve is shown in Appendix B.

Example 4. Production of the Fve-Derived Mutant Proteins

Materials and methods

5

15

20

Eleven deletion mutants and three point mutants of Fve DNA are generated. Each of the polypeptides is expressed in TG1 *E.coli* cells as fusion protein with GST carrier protein and purified by glutathione affinity column. All the mutants could express protein except insoluble mutant D6-18, in which α-helix has been deleted.

Figure 6 shows the panel of the affinity purified mutant proteins on a SDS-PAGE.

These purified proteins are used for the cell aggregation, hemagglutination and

lymphocytes proliferation assay.

Example 5. Comparison of Hemagglutination Activity of Fve Mutants

Materials and methods

5ml of whole human blood obtained from a healthy volunteer is centrifuged at 2500Xg for 10min. The plasma is removed and 2ml of packed red blood cells are collected from the bottom of the tube.

The red blood cells (RBC) are diluted 5X with 1xPBS buffer and centrifuged at 1200Xg for 10min. RBC pellet is resuspended in 1.5%(v/v) of 1xPBS. 50ul of 2x serial dilutions (from 64µg/ml to 0.25µg/ml) of each Fve mutant protein is added into 50ul of 0.2% gelatin in 1xPBS (pH 7.4) and then mixed with 100ul of 1.5% RBC in each well of the 96-well round bottom microtiter plates. Cells are incubated at room temperature and examined for hemagglutination after 2 hours and over night, respectively (Table 1).

15

20

Example 6. Lymphocytes Aggregation Activity of Fve and Its Mutants

Materials and methods

Human peripheral blood mononuclear cells (PBMC) from a healthy donor are isolated and cells are then cultured with $20\mu g$ /ml of various Fve mutants in 24-well plates. Cells aggregation is observed by inverted light microscopy after 24 hours (Table 1).

Results

 ${\it Mutant~GST-FveG28A~lost~the~hemagglutination~and~lymphocytes~aggregation}$ activity

Native Fve, GST-Fve (wild type) and two point mutants, GST-FveR27A and GST
FveT29A, show positive aggregation and hemagglutination activity. These properties are not seen in all the deletion mutants and a point mutant GST-FveG28A. PHA and ConA are used as positive controls; GST and Blo t 5 are used as negative controls. These results are summarized in Table 1.

The Arg-Gly-Asp (RGD) tripeptide sequence is the most common molecular recognition site implicated in several immunological reactions. Normally RGD motif is located in the β-turn structure. According to the PHD prediction, residue 19 to 33 is a β-turn structure. Therefore, we propose that glycine residue of RGT (RGD-like motif) tripeptide sequence at position 28 plays an important role on lymphocyte aggregation/adhesion. The potentially interaction between Fve and the proteins of integrin family will be addressed.

Cell aggregation	Hemagglutination
-	·
_	
_	
	-
_	-
	Cell aggregation

10

15

D61-97	-	-
*R27A	+	+
**G28A	-	~
***T29A	+	+
rGST-Fve	+	+
nFve	+	+
GST	-	-
Blot5	-	-
ConA	+	+
PHA	+	+

Table 1. Lymphocytes aggregation and RBC hemagglutination activities of Fve mutants

Example 7. Lymphoproliferation Activity of Fve Mutants

Materials and methods

Splenocytes from Balb/cJ mice and peripheral blood mononuclear cells (PBMC) from a healthy donor are stimulated with $2.5\mu g$ /ml, $5\mu g$ /ml, $10\mu g$ /ml or $20\mu g$ /ml respectively of Fve mutant proteins for 24 hours. Then $1\mu Ci$ [3H]-thymidine is added to the culture and further incubated for 18 hours. [3H]-thymidine incorporation is measured in triplicates by a β counter (Beckman).

Results

Figure 7 and 8 show the results of the proliferation assay for the panel of proteins tested. Deletion mutants D19-33, D73-84, P55-100, and mutant with single amino acid substitution G28A showed significant reduction in lymphoproliferation activity in mouse splenocytes, whereas, such reduction is less pronounced for the rest of the mutants tested (Figure 7).

Interestingly, some mutants such as D34-46, D47-60 and D61-72, which show negative hemagglutination and cell aggregation, retain similar lypmphoproliferative

15

activity as the wild type protein. For the result of human PBMC, deletion mutant D61-72 and mutant with single amino acid substitution G28A show more than 50% reduction in lymphoproliferation activity (Figure 8). Taken together the proliferation results from mouse splenocytes and human PBMC demonstrate that glycine at position 28 plays an key role in lymphocyte proliferation.

Example 8. Recombinant GST-Fve (Wild Type) and GST-FveT29A (Mutant) Show Similar Proliferative Activity of CD3⁺ T Cells as the Native Fve

Materials and methods

Human peripheral blood mononuclear cells (PBMC) from a healthy donor are isolated according to the standard protocol (Coligan et al., 1998). The cells are then cultured with 20µg /ml of recombinant wild type GST-Fve and mutant GST-FveT29A for 5 days. Cells are stained with anti-CD3⁺ PerCP monoclonal antibody (Becton Dickinson), and analyzed by FACScan flow cytometry (Becton Dickinson).

Results

A histogram shows that 8% and 17% enrichment of T cells are detected after stimulation with recombinant wild type GST-Fve and mutant GST-FveT29A for 5 days (Figure 9). Results showed that both recombinant wild type GST-Fve and mutant GST-FveT29A showed comparable lymphoproliferative activity of T lymphocytes as well as the native Fve protein.

These data suggest that Fve-mediated T cell polarization and enrichment is detectable at day 5.

10

20

25

Example 9. Detection of IFN-γ and TNF-α by Intracellular Cytokine Staining After Stimulation with Recombinant GST-Fve Protein

Methods and Materials

Intracellular cytokine staining is done by modification of a standard method from PharMingen. Briefly, human PBMC are stimulated *in vitro* with 20µg of native Fve protein, GST, recombinant GST-Fve, GST-R27A, GST-G28A, or with GST-T29A. GlogiPlugTM (PharMingen) is added 48hr after the cultures are initiated, cells are collected 14 hr later and then stained for T cells surface marker (CD3) in FACS buffer containing GlogiPlugTM. Cells are then treated with Cytofix/Cytoperm (PharMingen) for 30min. Cells are incubated with cytokine antibodies for 30min after washing with Perm Wash buffer (PharMingen). Finally, cells are washed with PBS containing 1% paraformaldehyde and then analyzed by FACSCalibur flow cytometry (BD Biosciences). CellQuest software (BD Biosciences) is used for data analysis.

Results

The results show that native Fve protein is able to stimulate production of IL-2, IFN-γ, TNF-α, but not IL-4 in CD3⁺ T cells (Figure 10). Similar results are seen for the recombinant wild type GST-Fve and two mutants GST-FveR27A, GST-FveT29A. Strikingly, recombinant mutant GST-FveG28A failed to stimulate the production of such cytokines (Figure 11 and 12).

The percentages of IFN-γ production induced by GST, GST-Fve, GST-FveR27A, GST-FveG28A, GST-FveT29A are 0.8%, 12.3%, 14.3%, 1.8%, 17.6%, respectively. In contrast, the percentages of TNF-α production which induced by GST, GST-Fve, GST-FveR27A, GST-FveG28A, GST-FveT29A are 1.2%, 21.5%, 18.7%, 1.5%, 14.4%, respectively (Table 2). This data provides further evidence that the glycine residue at position 28 of Fve protein plays an important role in the biological function such as aggregation/adhesion, cytokines production, proliferation, and differentiation of lymphocytes. Further examination of the physiological role of RGT sequence in Fve protein by using blocking monoclonal antibodies and peptide inhibition assay are carried

15

20

out to confirm this function. The possibility of integrin-mediated T/NK-cell adhesion is also investigated.

In summary, mutants FveR27A and FveT29A show enhanced mitogenic activities as compared to that of wild type Fve. In addition, the solubility of both mutant proteins is significantly increased in comparison with that of wild type Fve. This improved solubility will greatly facilitate the large scale production of such recombinant protein.

Recombinant proteins	Intracellular IFN-γ	Intracellular TNF-α
GST	0.8%	1.2%
GST-FveWT	12.3%	21.5%
GST-FveR27A	14.3%	18.7%
GST-FveG28A	1.8%	1.5%
GST-FveT29A	17.6%	14.4%

Table 2: The percentage of intracellular cytokines production in CD3⁺ T lymphocytes during stimulation with three different Fve mutants with single amino acid substitution

10 Example 10. Applications of Fve in Allergy

The increasing prevalence of atopic diseases such as hayfever or allergic asthma is a major problem in most developing and developed countries. Accumulating evidence indicates that appropriate immunotherapy prevents the onset of new sensitization and the progress of allergic rhinitis to asthma.

The central role of allergen-specific Th2 cells in the regulation of allergic inflammation has been highlighted. Exploration of novel and effective treatment for atopic diseases is active area of allergy research. Induction of allergen-specific T regulatory immune response, suppression of the effects of IL-4, IL-5 and IL-13 cytokines, and redirecting/balancing Th2 immune response in allergy is an attractive and promising approach to pursue (Akbari et al., 2002; Scanga and Le Gros, 2000; Zuany-Amorim et al., 2002).

10

15

20

Our in vitro and in vivo studies reveal that Fve interacts with T and NK cells.

Fve-activated T cells produce Th1-skewed cytokines in high levels, and suppress Th2 cytokines (IL-4 and IL-13) production. Thus these biological activities of Fve can be exploited to treat Th2-associated diseases such allergic asthma and rhinitis. The use of the immunomodulatory properties of Fve to treat allergic diseases is novel because there are a number of differences between Fve approach and other existing methods such as hexameric motifs, called CpG motifs or DNA immunostimulatory sequences (ISS).

The function of ISS is act as a danger signal to stimulate non-specific innate immune response (Krieg 2000). It is known that ISS is recognized by the toll-like receptor 9 on B cells and CD123⁺ dendritic cells. It is unexpected that TLR9 is also involved in autoimmunity (Leadbetter et al., 2002; Krieg 2002; Vinuesa and Goodnow, 2002). Upon the detection of CpG motifs or ISS element, B cells are induced to proliferate and secrete immunoglobulin (Ig), and dendritic cells (DCs) secrete a wide array of cytokines, interferons and chemokines that promote T helper type 1 (Th1) cells. Both B and DCs upregulate costimulatory molecules and have enhanced abilities to induce Th1 cell immune responses. In contrast, Fve is directly target on T and NK cells to involve in the acquire immunity.

Example 11. In vivo Study of the Adjuvant Effect of Fve Using a Murine Allergic Asthma Model

Immunotherapy with recombinant allergen in combination with certain immunomodulator enhancing Th1 but suppressing Th2 immune response is a novel approach to achieve higher efficacies in immunotherapy. Since Fve protein is an activator of Th1/Tc1 immune response, it may be used as such an immunomodulator to provide the adjuvant effects to enhance Th1-skewed immunity.

10

15

20

25

We investigated the adjuvant effects of Fve for allergy immunotherapy with a combination of a recombinant house dust mite major allergen, Der p 2 and Fve using an animal model.

Methods and Materials

A schematic representation of the experimental design is shown in Figure 13.

8 to 10 week old male BALB/cJ mice obtained from the Sembawang Laboratory Animal Center of Singapore are divided into two groups for each experiment. Mice are sensitized by intraperitoneal injection of 10µg of recombinant Der p 2 in aluminum hydroxide at day 0 and day 21. Twenty-eight days after the sensitization, each group of mice is subcutaneously injected with 50µg of Der p 2 and 50µg of Der p 2 plus 40µg of Fve, respectively. A total of six injections are performed at every alternative day over a period of 12 days. Mice are then challenged with the third intraperitoneal injection of 10µg of Der p 2 plus aluminum hydroxide at day 42. Der p 2-specific IgG1 and IgG2a are determined weekly starting at day 14 by ELISA. Since IgG2a is the hallmark of Th1 immunity in mouse, titer of IgG2a is used a measure of Th1 immunity.

Results

Increase allergen-specific IgG2a production in the treatment group with combination of Fve and allergen

As shown in Figure 13, mice that are subcutaneously treated with 50µg of Der p 2 alone produced relatively lower titers of Der p 2-specific IgG2a, whereas mice treated with 50µg of Der p 2 plus 40µg of Fve showed a significant boost of Der p 2-specific IgG2a production (Figure 14).

Upon challenge with intraperitoneal immunization of Der p 2 in alum at day 42, the Der p 2-specific IgG2a in Fve administered mice is further increased at day 49. It is interesting to note that the Fve-specific IgG1 and IgG2a remained low (data not shown). Similar results are observed in similar experiments performed with another house dust mite major allergen, Blo t 5, from *Bromia tropicalis* (data not shown).

15

20

25

Taken together, the data suggested that Fve protein may act as a potent adjuvant/immunomodulator to boost antigen-specific Th1-skewed immune response, therefore it may serves as a useful reagent to improve the efficacies of immunotherapeutic treatment of allergy in humans. The adjuvanticity and immunomodulatory property of Fve protein may be improved by biomolecular engineering.

While not wishing to be bound by theory, it is postulated that this molecule may activate NK cells and CD8⁺ T cells and thus result in production of IFN-γ. These may induce a strong cellular-mediated immune response and promote isotype switching to specific IgG2a predominantly.

10 Example 12. Assessment of Erythema Flare and Wheal Diameter Formation Induced by Skin Prick Tests in Human Allergic Subject

Materials and methods

The skin prick test is a convenient diagnostic method test for allergy in the clinics. The aim of this study is to evaluate the suppression effect of Fve protein to allergen hypersensitivity. As an *in vivo* topical challenge method, the skin prick test is administered to a human subject with history of sensitization to house dust mite *Dermatophagoides* pteronyssinus.

25μg/ml of purified recombinant Der p 2 allergen mixed with same concentration of native Fve protein or Der p 2 allergen alone, is applied to the skin of left and right hand of human subject for 10 minutes. Histamine is used as a positive control. The size of the wheel and erythematic flare diameter is measured manually.

Results

Fve reducse wheal and erythematic flare formation on $Der\ p\ 2$ skin prick testpositive human subject

The formation of wheal and erythematic flare could be detected in the challenged site of histamine, Der p 2, and Der p 2 combined with Fve. The diameter of the wheals in

10

15

both left and right hand induced by Der p 2 is 22mm and 24mm, respectively. Interestingly, the mixture of Der p 2 and Fve reduces the wheal's diameter in both hands to 15mm and 18mm, respectively (Figure 15A). A similar reduction is also seen in the size of erythematic flare (Figure 15B, Table 3A and 3B).

The data indicats that there is a suppression of allergic reaction mediated by immunomodulatory effects of Fve protein. The results provide additional evidence that Fve could be used as an adjuvant for allergens immunotherapy.

Besides indoor allergens, outdoor allergens are also important triggering factors that lead to allergic diseases. Hay fever and allergic asthma triggered by grass pollen allergens affect approximately 20% of the population in cool temperate climates. Worldwide more than 200 million individuals are allergic to group 1 grass pollen allergens, and over 100 million individuals exhibit IgE-mediated allergic reactions against Phl p 2, a major allergen from timothy grass (*Phleum pratense*) pollen.

Therefore, we propose that recombinant Fve as well as the native Fve may also be applied in the treatment of other allergies that induced by tree pollen allergen (Bet v 1 and Bet v 2 from birch), grass pollen allergen (Phl p 1 and Phl p 2 from timothy grass), weed pollen allergen (antigen E from ragweed), major feline antigen (Fel d 1), major canine allergen (Der f 15), etc. Other allergens will be known to the person skilled in the art.

Another useful application of Fve protein in allergy is to conjugate or co-deliver with allergenic crude extracts such as mite extracts, pollen extracts, cat and dog extracts, cockroach extracts, fungal and mold extracts for desensitization by immunotherapy.

<u> </u>	Wheal Diameter (mm)		
	Left hand	Right hand	
Saline (negative control)	0	0	
Histamine	7	5	
Der p 2	22	24	
Der p $2 + \text{Fve } (1:1 \text{ w/w})$	15	18	

Table 3A: Wheal formation on skin after challenged with Der p 2

10

	Erythematic Flare Diameter (mm)		
	Left hand	Right hand	
Saline (negative control)	0	0	
Histamine	30x25	35x30	
Der p 2	55x40	50x43	
Der p 2 + Fve (1:1 w/w)	45x35	45x35	

Table 3B: Erythematic flare formation on skin after challenge with Der p 2

FVE ADJUVANTED ALLERGEN VACCINES

Example 13. Fusion Proteins of Fve and Allergen

Materials and methods

Treatment of recombinant allergen or vaccination with naked DNA encoding a specific allergen has been shown previously to elevate allergen-specific Th1 immune response against Th2 immune reaction (Maecker et al., 2001). To enhance the effectiveness of immunotherapy or DNA vaccine therapy, we generated several fusion proteins consisting of the complete Fve molecule and the mature form of Blo t 5 or Der p 2 allergen. Figure 16 shows the construction of seven fusion proteins of Fve and major house dust mite allergen from *Dermatophagoides ptenyssinus* and *Blomia tropicalis*

The fused cDNAs are successfully expressed in E coli (Figure 17) and the biological properties of the recombinant proteins are examined.

Results

The morphology of lymphocyte culture upon stimulation with three recombinant fusion proteins is photographed with inverted microscope (Figure 18A-C). Each of Bt5-Fve, Bt5-FveR27, GST-Dp2-FveR27 are able to increase the number of human PBMC (Figure 19A and 19B), to stimulate the proliferation of human lymphocytes (Figure 20), to polarize human CD8⁺ T cells (Figure 21), and to increase the production of IFN-γ (Th1 response) and IL-10 (Tr response) (Figure 22).

10

15

20

25

115

A well-balanced vaccine that induces both Th1 and Tr immune response may be the most valuable and desirable. The Th1 response may very efficiently inhibit the development of Th2 cells via IFN-γ, leading to a life-long protective Th1 memory immune response. Allergen specific Tr cells may in turn dampen the anti-allergic Th1 immune response, ensuring a well-balanced protective but nonpathological Th1 response. Allergen-Fve fusion proteins meet these criteria since they induce cytokine IL-10.

Thus, combining Fve protein with allergen in the form of a fusion protein may be used effectively to induce antigen-specific adjuvant effect that augment the Th1 and Tr responses, which in turn down-regulate the Th2 allergic responses.

To test the antigenecity of a Blo t 5-Fve fusion protein, competitive inhibition ELISA is performed using varying concentrations of proteins (GST, GST-Blo t5, GST-Fve, GST-Blo t5-Fve, GST-Fve-Blo t5, Blo t5-Fve). The results show that fusion protein Blo t 5-Fve, un-cleaved GST-Blo t5-Fve and GST-Fve-Blo t5 have lower IgE binding affinity compared to Blo t5 alone and un-cleaved GST-Blo t5 (Figure 23). The fusion protein Blo t5-Fve inhibited IgE binding to a maximum of 70% whereas Blo t5 is able to inhibit the binding of antibody to GST-Bt5 to 100% at inhibitor concentration of 10 μg/ml. Control GST and GST-Fve are not able to inhibit the binding of IgE to GST-Blo t5 (background levels). In summary, there is a reduction in the IgE binding affinity of Blo t5 when it is in the fusion forms of Blo t5-Fve, GST-Blo t5-Fve and GST-Fve-Blo t5 indicating that the antigenicity of Blo t5 with Fve in fusion forms is lowered.

Example 14. Allergen Conjugated to Fve

Beside the use of gene fusions to produce fusion proteins, protein-protein conjugation also provides a convenient and alternative choice to develop allergen vaccine.

To date, allergen conjugated adjuvants which have been reported include crystalline bacteria cell surface layer (S-layers) (Jahn-Schmid et al., 1996), CpG

oligodeoxynucleotides (CpG motifs) (Shirota et al., 2000), cholera toxin B subunit (CTB) (Rask et al., 2000), and Brucella abortus (Scharf et al., 2001).

Here we disclose Fve protein which is isolated from edible mushroom can also be an ideal adjuvant coupling to allergen vaccine. Poly-lactic acid (PLA) and polyethylene glycol (PEG) are two materials which may be used to couple Fve and house dust mite allergen (Der p 2 or Blo t 5), although other materials will be evident to the skilled reader.

5

10

15

20

25

Particular coss-linking reagents which may be used to conjugate an allergen and immumodulator, such as Fve, include N,N'-dicyclohexylcarbodiimide (DCC), N-succinimidyl-S-acetyl-thioacetate (SATA), N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP), ortho-phenylenedimaleimide (o-PDM), and sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC). A chemical conjugation protocol which may be used is that provided in the Protein-Protein Crosslinking Kit (P6305) from Molecular Probes, Eugene, USA. Protocols for conjugation using SPDP are disclosed in Clinical Experimental Allergy 30: 1024-1032, 2000 and European Journal of Immunology 28: 424-432, 1998.

For example, native Fve or recombinant Fve from *E coli* is conjugated with N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP, Molecular Probes) as a bifunctional coupling reagent. The resulting Allergen-Fve conjugates are purified by gel filtration and characterized for their allergenicity and adjuvanicity by *in vitro* and *in vivo* assays.

Example 15. Human Cytokine Assay in Purified CD4⁺ and CD8⁺ T Cell Subsets Materials and Methods

To elucidate and identify subsets of human T lymphocytes responding to Fve stimulation, purified CD4⁺ T cells and CD8⁺ T cells from four human tonsillectomy patients (subject 1, 6 yrs-old Chinese; subject 2, 16 yrs-old Indian; subject 3, 17 yrs-old Malay; subject 4, 27 yrs-old Malay) are stimulated with 20µg of Fve after AutoMACS

10

seperation. AutoMACS is an automated magnetic cell sorter from Miltenyi-Biotec, Germany. The differential cytokine production profiles of these subsets are determined by intracellular cytokines staining after 48 hours in vitro culture.

Results

Fve Triggers Th1/Tc1 Cytokine Production in Human T Cells

The human cytokines induction studies show that Fve stimulates the production of IL-2, IFN-γ, TNF-α, whereas IL-4 and IL-10 are nearly undetectable. In addition, purified CD4⁺ T cells produce higher levels of TNF-α than purified CD8⁺ T cells (CD4⁺ vs CD8⁺: 11.4% vs 2.5%), whereas purified CD8⁺ T cells produce higher levels of IFN-γ than purified CD4⁺ T cells (CD4⁺ vs CD8⁺: 3.6% vs 8.5%) upon Fve stimulation (Table 4). Therefore, the enrichment of CD8⁺ T cells seems to derive from a protein-cell direct interaction. Taken together, this data supported that Fve could trigger Th1/TC1 cytokines production in human T lymphocytes.

Intracellular	Purified CD8 ⁺ T cells		Purified C	Purified CD4 ⁺ T cells		
Cytokines	from human tonsil		from hum	from human tonsil		
Scretion	None	Fve	None	Fve		
IL-2	0.1%	0.6%	0.2%	6.8%		
IL-4	0.1%	0.3%	0.1%	0.9%		
IL-10	0.6%	0.5%	2.3%	0.9%		
IFN-γ	0.1%	8.5%	0.6%	3.6%		
TNF-α	0.2%	2.5%	0.4%	11.4%		

Table 4. Cytokines profile of purified human T cells subsets

10

20

Example 16. Lymphocyte Aggregation Activity of Fve

Materials and Methods

Human CD4⁺ and CD8⁺ T cells subset are purified from AutoMACS (an automated magnetic cell sorter from Miltenyi-Biotec, Germany). The morphology of the cells is observed by light microscope at day 3.

Six human cell lines are also used for the cell aggregation study. Promyelocytic HL-60 cells, Jurkat-T cells, monocytic leukemia U937 cells, myeloid leukemia K562 cells, Raji B cells, natural killer NK-92 cells are cultured with native Fve protein with 2.5µg/ml, 5µg/ml, 10µg/ml, 20µg /ml and 40µg/ml, respectively. Cells aggregation is observed by inverted light microscopy after 24 hours.

Results

Fve induced aggregation of human CD4+ and CD8+ T cells subsets. HL-60, Jurkat-T cells, and NK-92 Cells

Human CD4⁺ and CD8⁺ T cells subset are purified from the tonsil of human subject. The aggregation of CD4⁺ and CD8⁺ T cells upon stimulation with 20µg of Fve protein is observed by confocal microscope at day 3 (photographed data not shown).

From the human cell line study, we found that Fve could induce HL-60 aggregation at low concentration of 2.5µg/ml. Jurkats-T cells and NK-92 also induced aggregation by Fve at concentration of 10µg/ml and 20µg/ml, respectively, where as U937, K562 and Raji didn't induce cell aggregation (Table 5). From the result, it seems that the level of cell aggregation correlates with the level of certain surface protein(s) expression in different cell lines. Promyelocytic cell line HL-60 seems to be an idea cell line to identify Fve receptor.

Human Cell	Fve							
Lines	2.5µg/ml	5μg/ml	10μg/ml	20μg /ml	40µg/ml			
HL-60	+	+	+	+	+			
Jurkat T	+/-	+/-	+	+	+			
U937	-	-	-	-	+/-			
K562	-	-	-	-	+/-			
Raji	-	-	-	-	-			
NK-92	-	-	+/-	+	+			

Table 5. Cell aggregation activity of human cell lines

Example 17. In vitro Polarization of Human NK cells and CD8 + T Cells

Materials and Methods

Human peripheral blood mononuclear cells (PBMC) from a healthy donor are.

5 isolated as standard protocol (Coligan et al., 1998). The cells are then cultured in 24-well plates with native Fve (5μg/ml or 25μg/ml). At days 5 and 10, cell culture are stained with anti-CD4⁺ FITC, anti-CD8⁺ PE, anti-CD16⁺ PE plus anti-CD56⁺ PE monoclonal antibodies (Becton Dickinson), and analyzed by FACScan flow cytometry (Becton Dickinson).

10 Results

15

Sequential polarization of cells by Fve, NK cells and NKT cells are proportionally increased at day 5 whereas CD8 † T cells are increased at day 10

The results show a 10% increase of CD16⁺ and CD56⁺ double positive cells (Natural Killer cells) after stimulation with Fve protein for 5 days (Figure 24). In addition, CD8⁺ T cells but not CD4⁺ cells are increased up to 35% after culturing for 10 days (Figure 25). This result showed that native Fve protein could stimulate both natural killer

cells and CD8⁺ T cells and the stimulation of these cells occurred sequentially with polarization of NK cells and CD8⁺ T cells peaked at day 5 and day 10, respectively.

The data also showed that cell culture consisted of 10% of CD3⁺CD16⁺CD56⁺ NKT cells after stimulation with 25µg /ml of native Fve protein (Figure 24E). This subset of cytotoxic NKT cells has a unique feature in that they mediate non-MHC-restricted cytotoxicity (Lanier et al., 1986).

Example 18. Up- Regulation of a Novel Subset of CD8⁺ T Cells (CD3⁺ CD8⁺ CD18⁺ bright)

Materials and Methods

5

20

Repeated subcutaneous injection of IL-12 in patients with cancer resulted in the selective expansion of a unique subset of peripheral blood CD8⁺ T cells. This subset expressed high levels of CD18⁺ and up- regulated IL-12 receptor expression after IL-12 treatment in vivo. They appeared morphologically as large granular lymphocytes, increased high IFN-γ production and enhanced non-MHC-restricted cytolytic activity.

Thus, these T cells may play an important role in innate as well as acquired immunity to tumors and infectious pathogens.

To determine whether CD3⁺ CD8⁺ CD18⁺ bright T cells can be enriched by native Fve protein, human peripheral blood mononuclear cells (PBMC) from a healthy donor are isolated and cultured with 20µg /ml of native Fve protein. Cell culture are stained with anti-CD18 FITC, anti-CD8 PE, anti-CD3 PerCP monoclonal antiboodies (Becton Dickinson) at day 5, and then analyzed by FACSCalibur flow cytometry (Becton Dickinson).

Results

Result showed that CD3⁺CD18^{+bright} T cells are increased from 8% to 31% of total cell population (Figure 26), and CD3⁺CD8^{+bright}CD18^{+bright} T cells are increased nearly three times, from 3.5% to 9% of the total cell population (Figure 27) after stimulation with

20μg/ml of native Fve protein. Furthermore, some CD18⁺CD8⁻ cells started to differentiate into CD18⁺CD8^{+dim} cells after stimulated with native Fve protein (Figure 27B). This data suggested that Fve protein from the golden needle mushroom has a potential ability to stimulate cellular immune responses directed against malignancies in human.

Example 19. In vivo Lymphocyte Proliferation Assays

Materials and Methods

5

10

15

20

25

Since Fve protein can activate human NK cells and CD8⁺ T cells *in vitro*, we sought to determine whether Fve would enhance activation of these cells *in vivo*. Mouse provides a good model system for such a study.

A group of three C57BL/6J mice are subcutaneously injected with 10µg, 50µg or 250µg Fve protein consecutively for three days, respectively. Another three BALB/cJ mice are treated with 125µg of Fve protein each for seven days by subcutaneous injection. For continuous BrdU labeling, mice are given 0.5mg/ml BrdU (Sigma) in the drinking water, which is changed every 3 days and then each mouse received one intraperitoneal injection of 1mg of BrdU in PBS at 6 hours before being sacrificed. PBMC, lymph node and spleen are isolated and resuspended in 200ul of washing buffer (1xPBS containing 1% bovine calf serum), then stained with anti CD4+-FITC, anti CD8+-PE, anti CD19+-PE or anti PanNK-PE monoclonal antibody (Pharmingen) for 30 minutes on ice. After two washings with washing buffer, the samples are fixed with FACS Permeabilizing Solution (Becton Dickinson) for 16 hours. After that samples are treated with 50U DNase I (Sigma) for 1hr at room temperature. The cells are washed and stained with anti BrdU-FITC mAb (Becton Dickinson) in PBS for 30 minutes. 1-5 x 10⁵ viable (forward and side scatter gated) PBMC, lymphocytes in lymph nodes or splenocytes per sample are analyzed with FACScan (Becton Dickinson) and data are processed using the CellQuest software (Becton Dickinson).

10

15

20

Results

Fve induced NK cells and CD8 + T cells proliferation in vivo

FACScan analysis data showed that Fve could induce increased proliferation of NK cells and CD8⁺ T cells in a dose-dependent manner in C57BL/6J mice (Figure 28 and Figure 29). In contrast, CD4⁺ T cells and CD19⁺ B cells showed no significant increase (Figure 30 and Figure 31). Similar CD8⁺ T cell polarization is also seen in lymph nodes of C57BL/6J mice (Figure 32) and so the peripheral blood mononuclear cells (PBMC) of Balb/cJ mice that are subcutaneous injected for seven consecutive days with 125µg of Fve protein. The CD8⁺ versus CD4⁺ T cells ratio is significantly increased in each of the Fvetreated BALB/cJ mouse as compared to the naïve control (Figure 33). Data from the experiment are presented in Table 6 below.

	PB			
Naïve Balb/cJ mouse	CD4 ⁺ T cells	CD8 [†] T cells	CD8 ⁺ /CD4 ⁺ ratio	
#1 None	40.3 %	15.7 %	0.389	
#2 125μg nFve	40.2 %	26.2 %	0.651	
#3 125μg nFve	40.7 %	21.8 %	0.535	
#4 125µg nFve	33.3 %	19.6 %	0.588	

Table 6. Data showing results of Figure 33.

In summary, for NK cells in spleen, 10µg Fve caused one fold increase proliferation. The proliferation increased to 5-6 fold when 50µg and 250µg of Fve protein is added. Similar finding is observed in CD8 positive T cells in spleen and lymph nodes. 250µg Fve protein caused 2-3 fold increase proliferation as compared to non-treated mouse. By contrast, Fve failed to stimulate CD4 positive T cells and has very mild stimulation to CD19 B cells (Table 7). Similar phenomenon is also seen in the peripheral blood mononuclear cells. The proportional of CD8 T cells increased up to 6-10% after 125µg of Fve protein are subcutaneous injected to Balb/cJ mice for seven days (Table 8).

These *in vivo* data are in concordance with those derived from *in vitro* studies, which clearly indicate that Fve induces selective polarization of NK cells and CD8⁺ T cells. Furthermore, these immunostimulatory effects of Fve are independent of the genetic background of mouse strains. Thus, Fve appears to be a potent immunostimulator for cellular mediated immune response. Purified NK cells and CD8⁺ T cells will be used for future studies to examine the molecular and cellular basis for the polarization of cell subsets.

	Spleen	Lymph nodes			
Naïve C57BL/6J mouse	BrdU incorporated NK cells	BrdU incorporated CD4 ⁺ T cells	BrdU incorporated CD8 ⁺ T cells	BrdU incorporated CD19 ⁺ B cells	BrdU incorporated CD8 ⁺ T cells
#1 None	0.63%	3.49 %	2.22 %	3.48 %	5.83 %
#2 10μg Fve	1.20 %	3.32 %	2.81 %	3.43 %	5.72 %
#3 50μg Fve	3.53 %	3.47 %	3.34 %	4.11 %	9.19 %
#4 250µg Fve	4.00 %	2.55 %	7.31 %	4.55 %	12.05 %

Table 7. In vivo stimulation of C57BL/6J mouse lymphocytes

Naïve Balb/cJ mouse	PBMC			
The Part of Mouse	CD4 ⁺ T cells	CD8 ⁺ T cells	CD8 ⁺ /CD4 ⁺ ratio	
#1 None	40.3 %	15.7 %	0.389	
#2 125µg Fve	40.2 %	26.2 %	0.651	
#3 125µg Fve	40.7 %	21.8 %	0.535	
#4 125µg Fve	33.3 %	19.6 %	0.588	

Table 8. In vivo stimulation of Balb/cJ mouse lymphocytes

10

15

20

25

Example 20. In vivo Evaluation of the Potential Use of Fve for Immunotherapy of Solid Tumors

There are several approaches to treat cancer such as surgery; radiation therapy; given tumor cell arrested drugs; induced apoptosis in cancerous cells; inhibited angiogenesis; elevated tumor recognition and specific killing ability of immune system to eliminate cancerous cells.

Previous data have indicated that Fve protein stimulate enhanced production of various cytokines, particularly IFN-γ, TNF-α and IL-2; induced polarization of natural killer cells and CD8⁺ T lymphocytes; and triggered a Th1/Tc1-like cellular-mediated immune response. Each of these biological properties may contribute to suppression of tumor growth and to prevent the risk of cancer recurrence by inducing various forms of nonspecific or even specific immunity after surgery.

Malignant melanoma is a very common cancer in the western world. A subset of patient with metastatic melanoma can be successfully treated by the administration of recombinant IL-2, sometimes given together with autologous melanoma-reactive lymphocytes that have been expanded ex vivo. Since melanocyte differentiation antigens, including MART-1/Melan-A, gp100, tyrosinase, TRP-1, and TRP-2, and cancer-testis antigens, including MAGE-3, BAGE, GAGE, NY-ESO-1, are recognized by human T lymphocytes, therefore they become the attractive targets for melanoma vaccines. However, from an immunological point of view, these melanocytes differentiation antigens and cancer-testis antigens are "self" antigens. It may induce central or peripheral tolerance, and thus potentially hampering the induction of powerful anti-melanoma immune responses. Therefore, induction of a strong tumor specific immunity with an immunopotentiator or novel adjuvant could be a useful treatment strategy to overcome immune ignorance and tolerance.

In order to investigate the anti-tumor effect of Fve, C57BL/6J mice are subcutaneously inoculated either with T cell lymphoma EL4 or melanoma B16-F1, the

5

10

15

20

later is a well established and widely used tumor model for which treatment is notoriously difficult. The tumor growth and survival rate of mice are monitored.

Materials and Methods

Construction of pCIneo-fve and pDisplay-fve recombinant plasmid DNA

The pCIneo vector is designed for high level and constitutive expression of cloned DNA inserts in mammalian cells (Figure 34A). Fve DNA is amplified from pGEX-fve and subcloned into the Xho I and EcoR I restriction enzyme cutting sites of pCIneo vector. The pCIneo-fve is used for priming the immune response by intramuscular injection.

The pDisplay vector is a mammalian expression vector that is designed to target and to display recombinant proteins to the surface of mammalian cells (Figure 34B). Fusion DNA of Fve and murine Ig kappa chain V-J2-C signal peptide without hemagglutinin A epitope is generated by recombinant PCR and subcloned into the EcoR I and Pst I restriction enzyme cutting sites of pDisplay vector. The Fve protein expressed from the pDisplay-fve acts as triggering signal for immune system and recruiting T lymphocytes to recognize tumor cells.

Transfection of B16-F1 cells with pDisplay-fve

The murine melanoma cells B16-F1 is purchased from ATCC, USA. Tumor cells are grown in DMEM supplemented with 10% FBS in 5% CO₂. Cells in the exponential growth phase within four passages are used in this investigation. To obtain stable transfectants, endotoxin free plasmid pDisplay-fve is mixed with polyfect transfection reagent (QIAGEN, Germany) and transfected into B16-F1 cells. Colonies resistant to G418 (Geneticin, GIBCO BRL) at 1000µg /ml for 25-30 days are isolated and designated as B16-Fve. The control B16-F1 cells which are transfected with pDisplay vector alone are designated as B16-vec.

20

EL4 protection assay

Six to eight weeks old C57BL/6J mice are inoculated with 8x10⁶ EL4 cells. Tumor formation is observed at day 3. 100µg of pCIneo-fve recombinant plasmid DNA is intramuscularly injected into the tibialis muscle at day 0 and day 7. 20µg of Fve protein is given by subcutaneous injection surrounding the tumor site at day 5, 7, 9, 11, 13, 15, and 18, respectively. The diameters of tumors are measured with a caliper and tumor volume is calculated by long diameter time short diameter. Finally the survival rate is recorded.

DNA vaccination and B16-F1 tumor protection experiments

Endotoxin free pCIneo and pCIneo-fve are purified from the QIAGEN plasmid
 DNA extraction and purification kits. 100μg of pCIneo-fve is intramuscularly injected into the tibialis muscle of C57BL/6 mice at day -30 and day -1. Muscles are pulsed with Electro Square Porator ECM830 (BTX, Genetronics, USA) equipped with a two needle array electrode after DNA injection. Mice are inoculated with 5x10⁵ B16-F1 cells. Small tumor nodule developed at day 3. 50μg of Fve protein is given by subcutaneous injection surrounding the tumor site at day 4, 7, 9, and 12, respectively.

Experimental lung metastasis

B16-F1 cells are trypsinized from monolayer cultures, counted and spun down at 1,200 rpm for 5 min and resuspended with DMEM. Five C57BL/6 syngenic 6-week-old female mice are intravenously injected with 2×10^4 of B16-F1 melanoma cells in a final volume of 120 μ l. About 4 weeks after injection, tumor nodules are established in lung. Mice are kept until they died to assess survival.

Example 21. Prolonged Survival Rate of Tumor-Inoculated Mice Receiving with Fve Gene and Protein

Our results show that tumor established mice that received pCIneo-fve DNA and

Fve protein had shown a reduction of T cell lymphoma growth rate (Figure 35) and an

10

25

extension of survival time (Figure 36). Similar results are also seen in melanoma B16-F1 inoculated C57BL/6J mice (Figure 37).

These data indicate that Fve induces some protection against the solid EL4 tumor and B16-F1 melanoma, suggesting that Fve could be a potential candidate molecule for the development of the immunotherapeutic reagents for treatment of some cancers. The results also show that DNA vaccine-mediated treatment using the gene of Fve can be further exploited for effective cancer treatment. Nowadays, DNA vaccination is being explored as a potential strategy for combating cancer. However, tumor antigens are often weak and the immune system of patients may be compromised. Like the concept of allergen-Fve fusion protein, fusion of Fve to specific tumor antigen may an effective way to activate protective anti-tumor immune response. Genetic immunization with chemeric gene encoding Fve and tumor antigen may augment and direct immune attack on a range of target tumor antigens.

Example 22. Life Span in Solid Tumor Model is Extended in Fve Transfectant

In previous study, we have proved that using Fve plasmid DNA primed in muscle
and Fve protein boosted in tumor region could initiate anti-tumor immune response and
thus prolong the survival time of tumor-inoculated mice. Instead of injection Fve
surrounding the tumor, we specifically targeted Fve gene into tumor cells and tried to
create an inducible-antigenic tumor for cancer therapy. This genetically modified tumor
cells may provide signals for antigen presenting cells and both helper and cytotoxic T

cells.

To determine whether introduction of the Fve gene into malignant cells would result in enhanced tumor recognition ability via Fve display and lead to extended survival rate in solid tumor experiment. Recombinant plasmid DNA pDisplay-fve is transfected into wild type B16-F1 mouse melanoma and then G418 resistant colonies are selected. Five female of C57BL/6J mice are inoculated with 5×10^4 of B16-Fve transfectant. The antigenicity of B16-vec and B16-Fve transfectants are compared through the life span of two groups of tumor-inoculated mice.

Result demonstrated that artificially expressed Fve on the surface of B16-F1 mouse melanoma extended survival rate as compared to B16-vec inoculated mice (Figure 38). We propose that the characteristics of highly antigenecity and lymphocytes mitogenecity of Fve may elevate immune function to fight against tumor when it displayed on the surface of melanoma. Therefore, Fve may use as immune response activator and enhancer especially for those poorly recognized and low immunogenic tumor, which escaped from cancer surveillance and immune clearance by altering immune recognition and modulating cytotoxic response.

Example 23. Fve DNA Vaccination Retards Tumor Progression

5

10

15

20

Cancer vaccines are designed to prevent and treat cancer. In general, research has shown that the most effective anti-tumor immune responses are achieved by stimulating T cells, which can recognize and kill tumor cells directly. Most current cancer vaccines try to activate T cells directly, try to enlist APCs to activate T cells, or both. Some novel ways in which researchers are attempting to better activate T cells are: (1) Altering tumor cells so molecules that are normally only express on APCs are now express on the tumor cell. These molecules are capable of giving T cells a stronger activating signal than the original tumor cells. (2) Testing more cytokines and adjuvants to determine which are best candidates for recruiting APCs to areas where they are needed. (3) Using dendritic cells and other APCs fused with tumor cells as the cancer vaccines. These cells go into the body carrying tumor antigen and ready to activate T cells. Early cancer vaccine clinical trials involved mainly patients with melanoma. Currently, cancer vaccines are also being tested in the treatment of many other types of cancer, including prostate cancer, breast cancer, colon cancer, and lymphoma.

Here, we accessed tumor immunity that stimulated by recombinant Fve DNA
 vaccination alone and the combination of Fve DNA vaccination and Fve-transduced tumor cells. C57BL/6J mice are separated into three groups and each group consisted of ten mice.
 Mice are inoculated either with 5x10⁴ of B16-Fve or B16-vec tumor transfectants in the dorsal back. Tumor formation is observed at day 5-7. 100μg of pCIneo-fve plasmid DNA

is intramuscularly injected at the right and left tribilis muscle of C57BL/6J at day -77, day -35 and day -21. Mice are subcutaneously injected with $5x10^4$ of B16-Fve transfectant and B16-vec transfectant at day 0, respectively. $100\mu g$ of pCIneo plasmid DNA is administered following similar experimental procedure and mice are subcutaneously injected with $5x10^4$ of B16-vec transfectant as negative control. The fatal rate of mice are recorded and data are presented as survival curves.

Result showed that Fve DNA vaccination contained certain degree of tumor protection (Green line in Figure 39) as compared with vector DNA vaccination (Blue line in Figure 39). In addition, the combination of Fve DNA vaccination and B16-Fve transfectant exerted a stronger tumor protection effect (Red line in Figure 39). Based on the result, we propose Fve is a novel protein to activate T cells directly. This protein is capable of giving T cells a strong activating signal when it is displayed on the surface of poorly immunogenic tumor cells. Therefore, the phenomenon of extended survival rate is observed in the experimental tumor-inoculated mice.

In future, the adjuvant effect of fusion proteins between Fve and tumor antigens to enhance tumor immunity will be determined. In particular, DNA fusion vaccine strategy, whereby target tumor antigen is genetically linked to immunostimulatory molecules such as Fve, is currently being explored. The introduction of fusion gene encoding tumor-associated antigen with Fve into antigen-presenting cells hold considerable promise for the treatment of patients with cancer. The ease of DNA manipulation has allowed incorporation of a wide variety of molecules able to promote antigen uptake, processing and presentation by professional antigen-presenting cells, to provide critical CD4⁺ T-cell help and to activate more effective immune effector pathways (Zhu and Stevenson 2002). The concept of DNA fusion vaccine strategy is particularly important for cancer vaccines to increase their immunogenicity and to overcome tolerance.

10

15

20

25

Example 24. Fve Extends the Survival Rate of Lung Metastatic Mice

2x10⁴ of B16-F1 melanoma cells is delivered to C57BL/6J via tail vein injection. The effect of combination of distill water and DNA vector pCIneo versus Fve protein and plasmid DNA pCIneo-fve administration on survival after the establishment of lung metastasis is determined. Survival extended in both metastatic experimental groups undergoing Fve protein orally primed and DNA intramuscularly boosted strategy.

Two groups of five C57BL/6J mice are given with 10mg/ml of Fve protein in the drinking water at days -35, -28 and -21, and each water providing is maintained consecutively for one week. Mice are intravenously injected with 2x10⁴ of B16-F1 (wild type) melanoma cells at day 0. One week after, mice are intramuscularly injected with 100µg of pCIneo-fve plasmid DNA into the right and left tribilis muscle, respectively. The mixture of 5x10⁴ of B16-Fve cells lysate plus 10µg of Fve protein (Red line in Figure 40) or 10µg of Fve protein alone (Green line in Figure 40) are subcutaneously injected into mice at the following three weeks. Negative control group of mice received same amount of 1xPBS in the drinking water, intravenously injected with 2x10⁴ of B16-F1 melanoma cells, followed by intramuscularly injected with plasmid DNA vector pCIneo, and finally subcutaneously injected with B16-vec cells lysate plus 1xPBS (Blue line in Figure 40).

Results showed that the strategy of orally primed with Fve protein before tumor introduced into the lung and intramuscularly boosted the immune response with the plasmid DNA pCIneo-fve after tumor established in lung could extend the survival rate of mice as compared with the control group (Figure 40). This data provided another evidence suggesting Fve could augment anti-tumor immune response against developing or metastatic tumor cells. The inhibition of B16-F1 melanoma experimental lung metastasis by Fve may go through induction of IFN- γ , TNF- α and activation of anti-tumor host mechanisms. IFN- γ - $^{-1}$ and TNF- α - $^{-1}$ gene knockout mice and in vivo depletions of CD4+, CD8+, or NK1.1+ cells may provide supportive evidence to this phenomenon.

10

15

20

Example 25. Global Gene Expression Profiling of Human T Cells and NK Cells After Activation with Fve

The invention of microarray technology allows the simultaneous monitoring of the transcriptional behavior of thousands of genes. This technology has been repeatedly shown to be useful in the analysis of the response of a variety of cellular systems to stimuli, in the classification of human cancer, and in the analysis of animal models of human disease (Churchill 2002; Slonim 2002; van Berkum and Holstege, 2001). To characterize the transcriptional profile of Fve, we analyzed gene expression patterns in T and NK cells from either healthy donor or human cell lines stimulation with Fve by using oligonucleotide microarrays and compared them with gene expression patterns in non-stimulation cells. In future, protein microarray assays would also be used to study protein–protein interactions on a genome-wide scale (Templin et al., 2002; Zhu et al., 2001).

Materials and Methods

Cells collection and total RNA purification

Peripheral blood mononuclear cells (PBMC) are collected from healthy donors. CD8-positive T lymphocytes and natural killer cells isolation are performed by immunomagnetic bead selection with monoclonal mouse anti-human CD8 antibodies and monoclonal mouse anti-human CD56 antibodies using the AutoMACS automated separation system (Miltenyi-Biotec, Germany). CD8-positive T cells and CD56-positive natural killer cells purity of more than 94% and 88% homogeneity are confirmed by two-color flow cytometry using CD3⁺/CD8⁺ and CD56⁺ criteria (Becton Dickinson, USA). Human T cell lines (Jurkat T cell, MOLT-4) and NK cell line (NK-92) are grown as recommended (ATCC, USA). Cells are stimulated with Fve and total RNA is isolated with RNeasy Mini Kit (Qiagen, Germany) after 2 and 48 hours, respectively.

25 Preparation of labeled complementary RNA and hybridization to high-density microarray

Double-stranded complementary DNA (cDNA) and biotinylated complementary RNA (cRNA) are synthesized from total RNA and hybridized to human GeneChip

10

15

microarray (Affymetrix, USA), which are washed and scanned according to procedures developed by the manufacturer. The arrays are scanned using laser scanner and visualized using Affymetrix 3.3 software (Affymetrix).

GeneChip data analysis

Differentially expressed genes are analysed by functional assays

Example 26. X-Ray Crystallographic Study of Fve: Materials and Methods

The three dimensional structural of Fve provides a good basis for the understanding of protein functions, immunomodulations and therapeutic applications in allergy and other diseases. We have crystallized the well-diffracting crystals of Fve and show that it diffracts to -1.4 Å resolution when exposed to synchrotron radiation.

This and the follwing Examples describe a 1.6 A° x-ray structure of Fve, determined by Single Anomalous Diffraction (SAD) using the anomalous signal of bromide ions present in the crystal for phasing. Fve represents a novel structure, wherein each monomer consists of an N-terminal α-helix followed by an immunoglobulin fold (beta-sandwich). The structure strongly suggests that dimerization, critical for the activity of FIP proteins, occurs by 3-D domain swapping of these helices and is stabilized predominantly by strong hydrophobic interactions between them.

Crystallization

Fve protein is obtained as described above. It is concentrated to 4 mg/ml in 10 mM Tris-HCl pH 7.5. Initial crystallization screening is done by the sparse matrix crystallization screening kit 1 & 2 from Hampton Research (Jancarik and Kim, 1991; Cudney, et al., 1994). All the screening and crystals growth are accomplished by hanging drops vapor diffusion method at 21°C in VDX multi-well plates with 650 μl reservoir solutions. Drops consisting of 4 μl precipitant buffer from reservoirs and 4 μl protein sample (4 mg/ml) are equilibrated over the well solution for one week.

15

After extensive screening, plates-like crystals are obtained at two different low salt conditions: (1) 30% PEG 4000, 0.1 M Tris-HCl pH 8.5, 0.2 M MgCl₂; (2) 30% PEG 4000, 0.1 M Tris-HCl pH 8.5, 0.2 M NaOAc. 3D cubic-shaped and octahedral crystals also appeared after 3 days at two different high salt conditions: (1) 2.0 M (NH₄)₂SO₄, 0.1 M Tris-HCl pH 8.5; (2) 2% PEG 400; 0.1 M Na Hepes pH 7.5, 2.0 M (NH₄)₂SO₄. To optimize the crystallization condition, combinations of varied protein and salt concentrations, different molecular weights of PEG, and different pH are screened.

133

The best crystals formed at the high salt condition is optimized to 2.5% PEG 400, $2.0 \text{ M} \text{ (NH}_4)_2\text{SO}_4$, 0.1 M Tris-HCl pH 8.5 at 21°C. They grew to the approximate dimensions of $1.0 \times 0.9 \times 0.5 \text{ mm}$ within five days. The micrographs of Fve crystals are captured by inverted light microscope (Figure 41).

High resolution protein crystals are therefore grown by vapor diffusion from hanging drop at 2.0% PEG 400, 2.0 M (NH₄)₂SO₄, 0.1 M Tris-Base, pH 8.5 for 1-2 weeks. Heavy atom derivatives are prepared by soaking the crystals in mother liquor containing 25% glycerol and 1M NaBr. The crystals are flash-frozen at 100 K after a 1-min soak in the heavy atom (Br) solution. SAD data from a derivatized crystal are collected at the National Synchrotron Light Source (NSLS) beam line X12C) at one wavelength (***) around the Br absorption edge. The crystal diffracted to 1.7 Å.

X-ray analysis

The X-ray diffraction intensities from Fve crystals are measured at 100 K on beamline BL9-2 from the Stanford Synchrotron Radiation Laboratory facility with ADSC Quantum-315 CCD detector. Data are collected at a wavelength of 1.07Å. All the data are processed by MOSFLM (Leslie, 1992) and X-ray intensities are scaled with SCALA (CCP4, 1994). Well-ordered diffraction data at 1.4 Å resolution are collected from larger crystals (Figure 42).

Analysis of the collected data (Table 9) indicated that Fve crystals belong to the tetragonal space group $P4_32_12$ with unit cell dimensions of a = b = 96.92 Å, c = 61.42 Å.

15

The Matthews parameter ($V_{\rm M}$) of these crystals is 2.84 Å³ per Da and thus the solvent content is 56.37% assuming two molecules of Fve per asymmetric unit (Matthews, 1968). A total of 344079 observations are obtained at 1.4 Å resolution giving approximate 56993 unique reflections (99.7% complete, $R_{\rm merge} = 0.047$).

X-ray source, beamline	SSRL, BL9-2
Wavelength	1.07Å
Detector distance	99.97mm, Q-315 CCD Detector
Cell angles (°)	90.00, 90.00, 90.00
Unit cell dimensions (Å)	96.92, 96.92, 61.42
Space group	P4 ₃ 2 ₁ 2
Number of molecules per ASU	2
Number of observed reflections	344079
Number of unique reflections	56993
Solvent (%)	56.37
$V_{\rm M}$ (Å 3 Da $^{-1}$)	2.84
Resolution range (Å)	33.5-1.4
Average $I/\sigma(I)$	10.1
R _{merge} a	0.047
Completeness (%)	99.7

 $[^]aR_{\text{merge}} = \sum |I_i - \langle I \rangle| / \sum I_i$, where I_i is the mean intensity of symmetry-related measurements of this reflection.

Table 9. Data Collection and Statistics of Fve Crystal

Data Processing

The SAD data are processed and scaled using DENZO and SCALEPACK from the HKL2000 suite of programs (Otwinowski and Minor, 1997).

The crystal of Fve belongs to the tetragonal space group P43212 and has unit cell dimensions a = b = 97.12, c = 61.41 and $\alpha = \beta = \gamma = 90.0$. All of the bromine heavy atom positions are located and refined by the program SOLVE at 1.7 Å (Terwilliger and Berendzen, 1999) and solvent flattened map is calculated using RESOLVE (Terwilliger, 2001). The resulting electron density map reveals secondary structure elements and side chains. In principle, it is possible to build an initial model by standard protein map-tracing methods. However, the phases obtained from RESOLVE are directly used in ARP/wARP (Morris et al., 2001) for automated main chains tracing, result in 4 continuous fragments

10

that contained 97% of model. The rest of the model and side chains are fitted manually using XtalView (McRee, 1999). The refinement is carried out in REFMAC 5 (Murshudov et al., 1999) using resolution range 30.02 - 1.7 and water molecules are picked up by ARP/WARP later in the refinement.

In chain A, C-terminal residue 114 is modeled as Ala residue, whereas in chain B, C-terminal residue 113 and 114 are omitted from the final model, due to the poor interpretable density. The quality of the final model is verified with PROCHECK (Laskowski et al., 1993). However, the Ramachandran plot shows that Lys 14 in both A and B chains is in the disallowed region, although this residue fits very well in the 2fo-fc map.

Example 27. X-Ray Crystallographic Study of Fve: Results

The crystal structure is solved by single anomalous scattering using Br as the heavy-atom, and is refined to a resolution of 1.7 Å. The atomic coordinates are presented in Appendix C.

15 In total, two chains with a total of 226 residues, 16 bromine atoms and 136 solvent molecules are built into a high quality electron density map. Fve comprises almost exclusively of β -sheet structure with an Ig-like fold, which is formed by seven major antiparallel β -strands arranged into two sheets of four (D, E, H and I) and three (B, C and F) strands packed again each other . The N-terminal domain is composed of a α -helix which spans a length of 12 residues from Ala2 to Val13 and a β-sheet (A). The N-terminal 20 serine residue is blocked by an acetyl group the density of which is also observed. Six loops connect the two main β-sheets and one loop connects the N-terminal domain with β -sheet structure. The loop between the β -sheets F and H contains a short β -strand and a 3_{10} helix.

25 The structure of Fve (Figure 43) reveals that exists as a dimer. This is corroborated experimentally by running Fve on a gel filtration column against standard molecular

10

15

20

25

weight markers (data not shown). From the structure, there are two extended regions of subunit-subunit interactions: between the two N-terminal α -helical regions (residues 2 to 13) and the β -stranded region (A and A').

The buried side chains of the α -helical regions form a hydrophobic core (Figure 44A), containing residues Ala 2, Leu 5, Leu 9 and Val 13 whereas the side chains of β -strand (A and A') make inter-subunit hydrogen bonds (Figure 44B). These hydrophobic interactions and hydrogen bonds are responsible for dimer formation. The two monomers, A and B chains, of Fve can be closely superimposed: the RMSD between corresponding C_{α} positions of 112 residues is 0.29 Å (Figure 44C).

Domain Swapping

Domain swapping is a very efficient method of forming oligomers since the interactions within the monomer are reused in the dimer. There is thus no need to evolve a new site on the surface which in one monomer mutually recognizes the corresponding site on the other monomer, since in the domain swapped dimer the recognition requirement has already largely been accounted for (Bennett et al., 1995).

Domain-swapped proteins have a C-interface generally with many specifics interaction, formed between domains linked by a hinge loop (Bennett et al., 1995). In p13suc1, two proline residues, located in the hinge region, have been shown to be essential and control the domain-swapping process (Rousseau et al., 2001).

As shown in Figure 45A, half of the dimer of Fve contains one N-terminal helix, forming a C-interface with hydrophobic core, which is linked to rest of its subunit by a hinge loop, stretching from residue Val 13 to Pro 22. Furthermore, Fve contains a proline residue at the end of the hinge region, which could adopt alternative conformation in the dimer by releasing the tension in the monomer. These observations suggest that domain-swapping could be the mechanism for forming dimer protein from its monomer. The monomer is modeled (Figure 45B).

10

Structural Similarity with Other Proteins

Fve has no sequence homology to any other non-FIP proteins. However, a search for similar structure in the DALI database (Holm and Sander, 1993) reveals that the protein has a significantly similar fold to 140 proteins but none with the significant sequence similarity to Fve. Among 140 similar fold protein, fibronectin type III family emerged with less topology diversity to Fve β-sandwich fold: the heparin and integrin binding segment of human fibronectin (FN12-15; PDB entry 1FNH), the fragment of human fibronectin type III repeat (FN7-10; 1FNF), The p40 domain of human interlukin-12 (p40; 1F42) and the antibody a6 fragment interferon-gamma receptor alpha chain (IFNγR1-108; 1JRH). An alignment of FN12-15, FN7-10, p40, IFNγR1-108 and Fve on the basis of structural similarity shows topology diversity in the range 11-17, calculated by Topp program (Lu, 1996) (Table 10).

	Name	PDB ID	Z- Sco re	RM SD	Leng th of align ed seg ment	Topo logic al Dive rsity	Superfa mily (Family)	Species
1	Interleukin-4 receptor alpha chain fragment: b:1-96	1iar-B	5.8	3	78	8.5	Fn III (FNIII)	Homo sapiens
2	mhc class ii i-ak: a:82-181	1iak-A	5.8	4.7	83	18.6	Ig (C1)	Mus musculus
3	mhc class il i-ak: b:93-190	1iak-B	5.6	3.5	74	17.8	Ig (C1)	Mus musculus
4	igg2a intact antibody - mab23, kappa L chain: a:1-108	1igt-B	5.5	3.8	86	18.4	lg (V)	Mus musculus
5	class ii histocompatibility antigen, HLA- DM: a:94-196	1hdm- B	5.3	4.7	82	18.4	ig (C1)	Homo sapiens
6	fibronectin fragment, heparin & integrin binding segment: a:93-182	1fnh-A	5.3	3	73	11.1	Fn III (FNIII)	Homo sapiens
7	ch3 domain of mak33 antibody fragment:chain a	1cqk-A	5.3	3.3	76	18.5	lg (C1)	Mus musculus
8	CD1, beta2-microglobulin and alpha-3 domain: d	1cid	5.3	2.8	76	17.8	lg (V)	Rattus rattus
9	fibronectin fragment, ED-B domain:chain a	2fnb-A	5.2	3.9	72	17	Fn III (FNIII)	Homo sapiens
10	hiv-1 gag peptide: a:182-276	1agd-A	5.2	3.8	84	20.1	Ig (C1)	Homo sapiens
11	igg1 antibody 32c2 fragment: a:1-110	32c2-A	5.1	5.6	80	19.4	lg (V)	Mus musculus
12	fibronectin repeat 7: 1142-1235	1fnf	5.1	2.7	71	10.8	Fn III (FNIII)	Homo sapiens
13	interleukin-12 beta chain fragment: a:88-211	1f42-A	5.1	2.8	70	12.8	Fn III (FNIII)	Homo sapiens
14	Mutant growth hormone receptor fragment: b:131-236	1axi-B	5.1	3.2	72	14.7	Fn III (FNIII)	Homo sapiens

Table 10

REFERENCES

5

10

15

25

Akbari O, Freeman GJ, Meyer EH, Greenfield EA, Chang TT, Sharpe AH, Berry G, DeKruyff RH, and Umetsu DT. (2002) Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 8:1024-1032.

Arkwright PD and David TJ. (2001) Intradermal administration of a killed Mycobacterium vaccae suspension (SRL 172) is associated with improvement in atopic dermatitis in children with moderate-to-severe disease. J. Allergy Clin. Immunol. 107:531-534.

Banos, V., Gomez, J., Garcia, A., Ruiz, J., Alvarez, R., Lorenzo, M., Canteras, M., and Valdes, M. (1997) Effectiveness of immunomodulating treatment (thymostimulin) in chronic obstructive pulmonary disease. *Respiration*. 64, 220-223.

Bennett, M.J., Schlunegger, M.P. & Eisenberg, D. 3D domain swapping - a mechanism for oligomer assembly, *Protein Science*, 4, 2455-2468, (1995).

Bonde, J., Dahl, R., Edelstein, R., Kok-Jensen, A., Lazer, L., Punakivi, L., Seppala, A., Soes-Petersen, U., and Viskum, K. (1986) The effect of RU 41.740, an immune modulating compound, in the prevention of acute exacerbations in patients with chronic bronchitis. *Eur. J. Respir. Dis.* 69, 235-241.

Braga, P.C., Dal Sasso, M., Maci, S., Piatti, G., Palmieri, R., Bruno, L., and Albanese, C. (1994) Restoration of polymorphonuclear leukocyte function in elderly subjects by thymomodulin. *J. Chemother.* 6, 354-359.

Chihara, G., Maeda, Y., Hamuro, J., Sasaki, T., and Fukuoka, F. (1969) Inhibition of mouse sarcoma 180 by polysaccharide from Lentinus edodes(Berk) sing. *Nature*. 222, 687-688.

Churchill GA. (2002) Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32 Suppl 2:490-495. Collaborative Computational Computor Project 4. (1994) The CCP4 suite: programs for protein crystallography. *Acta Crystallogr.* **D50**, 760-763.

Cross ML and Gill HS. (2001) Can immunoregulatory Lactic acid bacteria be used as dietary supplements to Limit Allergies? Int. Arch. Allergy Immunol. 125:112-119.

Cudney, B., Patel, S., Weisgraber, K., and Newhouse, Y. (1994) Screening and optimization strategies for macromolecular crystal growth. *Acta Crystallogr.* **D50**, 414-423.

Daniell H, Streatfield SJ, and Wycoff K. (2001) Medical molecular farming:

production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant
Sci. 6:219-226.

Darji A, Guzman CA, Gerstel B, Wachholz P, Timmis KN, Wehland J, Chakraborty T, and Weiss S. (1997) Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 91:765-775.

Donnelly JJ, Ulmer JB, Shiver JW, and Liu MA. (1997) DNA vaccines. Annu. Rev. Immunol. 15:617-648.

During MJ, Symes CW, Lawlor PA, Lin J, Dunning J, Fitzsimons HL, Poulsen D, Leone P, Xu R, Dicker BL, Lipski J, and Young D. (2000) An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science 287:1453-1460.

Erbacher, P., Zou, S., Bettinger, T., Steffan, A.M. & Remy, J.S. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. *Pharm. Res.* 15: 1332-1339, 1998.

15

Eriksson K and Holmgren J. (2002) Recent advances in mucosal vaccines and adjuvants. Curr. Opin. Immunol. 14:666-672.

Federico, M., Gobbi, P.G., Moretti, G., Avanzini, P., Di Renzo, N., Cavanna, L., Ascari, E., and Silingardi, V. (1995) Effects of thymostimulin with combination chemotherapy in patients with aggressive non-Hodgkin's lymphoma. A report from the Italian Lymphoma Study Group (GISL). *Am. J. Clin. Oncol.* 18, 8-14.

Fenske DB, MacLachlan I, and Cullis PR. (2002) Stabilized plasmid-lipid particles: a systemic gene therapy vector. Methods Enzymol. 346:36-71.

Fischer R and Emans N. (2000) Molecular farming of pharmaceutical proteins.

10 Transgenic Res. 9:279-99.

Fisher, M., and Yang, L. X. (2002) Anticancer effects and mechanisms of polysaccharide-K (PSK): implications of cancer immunotherapy. *Anticancer Res.* 22, 1737-1754.

Fujimiya, Y., Suzuki, Y., Katakura, R., and Ebina, T. (1999) Tumor-specific cytocidal and immunopotentiating effects of relatively low molecular weight products derived from the basidiomycete, Agaricus blazei Murill. *Anticancer Res.* 19, 113-118.

Giddings G, Allison G, Brooks D, and Carter A. (2000) Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18:1151-1155.

Hirasawa, M., Shouji, N., Neta, T., Fukushima, K., and Takada, K. (1999) Three kinds of antibacterial substances from Lentinus edodes (Berk.) Sing. (Shiitake, an edible mushroom). *Int. J. Antimicrobial Agents.* 11, 151-157.

Holm, L & Sander, C. Protein structure comparison by alignment of distance matrices. *J.Mol.Biol.* 233, 123-138 (1993).

15

141

Holm, L & Sander, C. Protein structure comparison by alignment of distance matrices. *J.Mol.Biol.* 233, 123-138 (1993).

Hsu CH, Chua KY, Tao MH, Lai YL, Wu HD, Huang SK, and Hsieh KH. (1996) Immunoprophylaxis of allergen-induced immunoglobulin E synthesis and airway hyperresponsiveness *in vivo* by genetic immunization. Nat. Med. 2:540-544.

Hsu, H.C., Hsu, C.I., Lin, R.H., Kao, C.L., and Lin, J.Y. (1997) Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. *Biochem. J.* 323, 557-565.

Iguchi, C., Nio, Y., Takeda, H., Yamasawa, K., Hirahara, N., Toga, T., Itakura, M., and Tamura, K. (2001) Plant polysaccharide PSK: cytostatic effects on growth and invasion; modulating effect on the expression of HLA and adhesion molecules on human gastric and colonic tumor cell surface. *Anticancer Res.* 21, 1007-1013.

Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, and Davis SS. (2001) Chitosan as a novel nasal delivery system for vaccines. Adv. Drug Deliv. Rev. 51:81-96.

Jahn-Schmid B, Graninger M, Glozik M, Kupcu S, Ebner C, Unger FM, Sleytr UB, and Messner P. (1996) Immunoreactivity of allergen (Bet v 1) conjugated to crystalline bacterial cell surface layers (S-layers). Immunotechnology 1996 2:103-113.

Jancarik, J., and Kim, S.H. (1991) Sparse matrix sampling: a screening method for crystallization of proteins. *J. Appl. Crystallogr.* 24, 409-411.

Johnson-Saliba M, and Jans DA. (2001) Gene therapy: optimising DNA delivery to the nucleus. Curr. Drug Targets 2:371-399.

20

Jones DH, Corris S, McDonald S, Clegg JC, and Farrar GH. (1997) Poly(DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 15:814-817.

Jong, et al. Immunomodulatory Substances of Fungal Origin, J. Immunol.

Immunopharmacol., Vol.XI, No.3, 1991. pp.115-122.

Kakuta S, Tagawa Y, Shibata S, Nanno M, and Iwakura Y. (2002) Inhibition of B16 melanoma experimental metastasis by interferon-gamma through direct inhibition of cell proliferation and activation of antitumour host mechanisms. Immunology 105:92-100.

Kamat, A.M., and Lamm, D.L. (2001) Immunotherapy for bladder cancer. Curr.

10 Urol. Rep. 2, 62-69.

Kas, H.S. Chitosan: properties, preparations and application to microparticulate systems. J. Microencapsul. 14: 689-711, 1997.

Kino, K., Yamashita, A., Yamaoka, K., Watanabe, J., Tanaka, S., Ko, K., Shimizu, K., and Tsunoo, H. (1989) Isolation and characterization of a new immunomodulatory protein, Ling Zhi-8 (LZ-8), from Ganoderma lucidium. *J. Biol. Chem.* 264, 472-478.

Klaenhammer TR. (1995) Genetics of intestinal lactobacilli. Int. Dairy J. 5:1019-1058.

Ko JL, Hsu CI, Lin RH, Kao CL, Lin JY, A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. *Eur. J Biochem* 228(2):244-9 (1995)

Ko, J.L., Lin, S.J., Hsu, C.I., Kao, C.L & Lin, J.Y. Molecular cloning and expression of a fungal immunomodulatory protein, FIP-fve, from flammulina velutipes. J Forms Med Assoc. 96, 517-524, (1997).

Komatsu, N., Okuto, S., Kikumoto, S., Kimura, K., Saito, G., and Sakai, S. (1969) Host mediated antitumor action of Schizophyllan, a glucan produced by Schizophyllaum commune. *Gann.* 60, 137-144.

Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, and Thanavala Y. (2001)

Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc. Natl. Acad. Sci. USA 98:11539-11544.

Kraulis, P.J. A program to produce both detailed and schematic plots of protein. J. Appl. Crystallogr. 24, 946-950 (1991).

Krieg AM. (2000) The role of CpG motifs in innate immunity. Curr. Opin.

10 Immunol. 12:35-43.

Krieg AM. (2002) A role for toll in autoimmunity. Nat. Immunol. 3: 423-424.

Kruger C, Hu Y, Pan Q, Marcotte H, Hultberg A, Delwar D, Van Dalen PJ, Pouwels PH, Leer RJ, Kelly CG, Van Dollenweerd C, Ma JK, and Hammarstrom L. (2002) In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat. Biotechnol. 20:702-706.

15

La Mantia, I., Grillo, C., Mattina, T., Zaccone, P., Xiang, M., Di Mauro, M., Meroni, P.L., and Nicoletti, F. (1999) Prophylaxis with the novel immunomodulator pidotimod reduces the frequency and severity of upper respiratory tract infections in children with Down's syndrome. *J. Chemother.* 11, 126-130.

20 Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thorton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283-290 (1993).

Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603-607.

Leslie, A.G.W. (1992) Recent changes to the Mosflm package for processing film and image plate data. *Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography*. No. 26. SERC Daresbury Laboratory, Warrington, UK.

Liao, H.F., Chou, C.J., Wu, S.H., Khoo, K.H., Chen, C.F., and Wang, S.Y. (2001) Isolation and characterization of an active compound from black soybean [Glycine max (L.) Merr.] and its effect on proliferation and differentiation of human leukemic U937 cells. *Anticancer Drugs.* 12, 841-846.

Lin, W.H., Hung, C.H., Hsu, C.I., and Lin, J.Y. (1997) Dimerization of the N-terminal amphipathic α-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J. Biol. Chem. 272, 20044-20048.

Lu G., A WWW service system for automatic comparison of protein structures.

Protein Data Bank Quarterly Newsletter. 78, 10-11 (1996).

Maassen CB. A rapid and safe plasmid isolation method for efficient engineering of recombinant lactobacilli expressing immunogenic or tolerogenic epitopes for oral administration. J. Immunol. Methods 223: 131-136, 1999.

20 MacLaughlin, F.C., Mumper, R.J., Wang, J., Tagliaferri, J.M., Gill, I., Hinchcliffe, M. & Rolland, A.P. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. *J. Controlled Release* 56: 259-272, 1998.

Maecker HT, Hansen G, Walter DM, DeKruyff RH, Levy S, and Umetsu DT. (2001) Vaccination with allergen-IL-18 fusion DNA protects against, and reverses established, airway hyperreactivity in a murine asthma model. J. Immunol. 166:959-965.

Maeda, Y.Y. and Chihara, G. (1971) Lentinan, a new immuno-accelerator of cellmediated responses. *Nature*. 229, 634.

Matthews, B.W. (1968) Solvent content of protein crystals. J. Mol. Biol. 33, 491-497.

McRee, D.E. XtalView/Xfit - A Versatile Program for Manipulating Atomic Coordinates and Electron Density. *Journal Structural Biology*, **125**, 156-165 (1999)

Meneses, G., Delgado, M.A., Perez-Machado, M.A., Prieto, A., Alonso, R., Carrion, F., Lanzos, E., and Alvarez-Mon, M. (1997) Thymostimulin increases natural cytotoxic activity in patients with breast cancer. *Int. J. Immunopharmacol.* 19, 187-193.

Mercenier A, Muller-Alouf H, and Grangette C. (2000) Lactic acid bacteria as live vaccines. Curr. Issues Mol. Biol. 2:17-25.

Merrit, E.A.& Bacon, D.J. RASTER3D. Methods Enzymol. 277, 505-524 (1997).

Morales, A. (1984) Long term results and complications of intracavitary bacillus Calmette-Guerin therapy for bladder cancer. *J. Urol.* 132, 457-459.

Morris, R. J., Perrakis, A. & Lamzin, V. S. Arp/warp's model-building algorithms. i. the main chain. *Acta Crystallogr. D* 58, 968-975 (2002)

Murshudov, G.N., Lebedev, A., Vagin, A.A., Wilson, K.S. & Dodson, E.J .Efficient anisotropic refinement of Macromolecular structures using FFT *Acta*Crystallogr. D 55, 247-255 (1999)

Nakamura, K., Yamaguchi, Y., Kagota, S., Kwon, Y.M., Shinozuka, K., and Kunitomo, M. (1999) Inhibitory effect of Cordyceps sinensis on spontaneous liver metastasis of Lewis lung carcinoma and B16 melanoma cells in syngeneic mice. *Jpn. J. Pharmacol.* 79, 335-341.

Namba, K., Yamamura, E., Nitanai, H., Otani, T., and Azuma, I. (1997)

Romurtide, a synthetic muramyl dipeptide derivative, promotes megakaryocytopoiesis through stimulation of cytokine production in nonhuman primates with myelosuppression. *Vaccine*. **15**, 405-413.

Okamoto, M., Kaji, R., Kasetani, H., Yoshida, H., Moriya, Y., Saito, M., and Sato, M. (1993) Purification and characterization of interferon-gamma-inducing molecule of OK-432, a penicillin-killed streptococcal preparation, by monoclonal antibody neutralizing interferon-gamma-inducing activity of OK-432. *J. Immunother.* 13, 232-242.

Otwinowski, Z. M. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol.* 276, 307-326 (1997).

Piraino, F. and Brandt, C.R. (1999) Isolation and partial characterization of an antiviral, RC-183, from the edible mushroom Rozites caperata. *Antiviral Res.* 43, 67-78.

Pochard P, Gosset P, Grangette C, Andre C, Tonnel AB, Pestel J, and Mercenier A. (2002) Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients. J. Allergy Clin. Immunol. 110:617-623.

Rask C, Holmgren J, Fredriksson M, Lindblad M, Nordstrom I, Sun JB, and Czerkinsky C. (2000) Prolonged oral treatment with low doses of allergen conjugated to cholera toxin B subunit suppresses immunoglobulin E antibody responses in sensitized mice. Clin. Exp. Allergy 30:1024-32.

Rost, B. (2001) Review: protein secondary structure prediction continues to rise. *J. Struct. Biol.* 134, 204-218.

Rousseau, F., Schymkowitz, J.W.H., Wilkinson, H.R., & Itzhaki, L.S. Three-dimensional domain swapping in p13suc1 occurs in the unfolded and controlled by conserved proline residues. *Proc.Natl Acad.Sci.USA*. 98, 5596-5601, (2001).

Roy, K., Mao, H.Q., Huang, S.K. & Leong, K.W. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy.

Nat. Med. 5: 387-391, 1999.

Scanga CB and Le Gros G. (2000) Development of an asthma vaccine: research into BCG. Drugs 59:1217-1221.

Scharf O, Agranovich I, Lee K, Eller NL, Levy L, Inman J, Scott DE, and Golding B. (2001) Ontogeny of Th1 memory responses against a Brucella abortus conjugate. Infect Immun 69:5417-5422.

Scheppler L, Vogel M, Zuercher AW, Zuercher M, Germond JE, Miescher SM, and Stadler BM. (2002) Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle. Vaccine 20:2913-2920.

Shea LD, Smiley E, Bonadio J, and Mooney DJ. (1999) DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551-554.

Shimizu, Y., Hasumi, K., and Masubuchi, K. (1992) Augmenting effect of sizofiran on the immunofunction of regional lymph nodes in cervical cancer. *Cancer*. **69**, 1184-1194.

Shirota H, Sano K, Kikuchi T, Tamura G, and Shirato K. (2000) Regulation of murine airway eosinophilia and Th2 cells by antigen-conjugated CpG

oligodeoxynucleotides as a novel antigen-specific immunomodulator. J. Immunol. 2000 164:5575-5582.

Singh, V.K., Biswas, S., Mathur, K.B., Haq, W., Garg, S.K., and Agarwal, S.S. (1998) Thymopentin and splenopentin as immunomodulators. Current status. *Immunol Res.* 17, 345-368.

5

10

Slonim DK. (2002) From patterns to pathways: gene expression data analysis comes of age. Nat. Genet. 32 Suppl 2:502-508.

Solomon, P., Wasser & Alexander, L.W. Therapeutic effect of substance occurring in higher Basidiomycetes Mushroom: A modern perspective. Critical Review in Immunology.19, 65-96 (1999).

Taal, B.G., Van Tinteren, H., Zoetmulder, F.A., and NACCP group. (2001) Adjuvant 5FU plus levamisole in colonic or rectal cancer: improved survival in stage II and III. *Br. J. Cancer.* **85**, 1437-1443.

Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, and Arntzen CJ.

(1998) Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 4:607-609.

Templin MF, Stoll D, Schrenk M, Traub PC, Vohringer CF, and Joos TO. (2002) Protein microarray technology. Trends Biotechnol. 20:160-166.

Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849-861 (1999).

Terwilliger. Map-likelihood phasing Acta Crysallogr. D 57, 1763-1775 (2001)

van Berkum NL and Holstege FC. (2001) DNA microarrays: raising the profile. Curr. Opin. Biotechnol.12:48-52.

Viland, H. and Blomgren, H. (1987) Augmentation of spontaneous cytotoxicity of human lymphocytes by RU 41.740, a glucoprotein extract of Klebsiella pneumoniae.

Anticancer Res. 7, 17-22.

Vinuesa CG and Goodnow CC. (2002) Immunology: DNA drives autoimmunity.

Nature 416:595-598.

Wasson, V.P & Wasson, R.G. Mushroom, Russia and History, Pantheon Books, New York, 433, 1957.

Wohlleben G and Erb KJ. (2001) Atopic disorders: a vaccine around the corner? Trends Immunol. 22:618-626.

Yoshino, S., Tabata, T., Hazama, S., Iizuka, N., Yamamoto, K., Hirayama, M., Tangoku, A., and Oka, M. (2000) Immunoregulatory effects of the antitumor polysaccharide lentinan on Th1/Th2 balance in patients with digestive cancers. *Anticancer Res.* 20, 4707-4711.

Zhu D and Stevenson FK. (2002) DNA gene fusion vaccines against cancer. Curr.

Opin. Mol. Ther. 4:41-48.

Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, and Snyder M. (2001) Global analysis of protein activities using proteome chips. Science 293: 2101-2105.

Zuany-Amorim C, Sawicka E, Manlius C, Le Moine A, Brunet LR, Kemeny DM,
Bowen G, Rook G, and Walker C. (2002) Suppression of airway eosinophilia by killed
Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat. Med. 8:625-629.

Each of the applications and patents mentioned in this document, and each document cited or referenced in each of the above applications and patents, including

during the prosecution of each of the applications and patents ("application cited documents") and any manufacturer's instructions or catalogues for any products cited or mentioned in each of the applications and patents and in any of the application cited documents, are hereby incorporated herein by reference. Furthermore, all documents cited in this text, and all documents cited or referenced in documents cited in this text, and any manufacturer's instructions or catalogues for any products cited or mentioned in this text, are hereby incorporated herein by reference.

5

10

Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the claims.

35

40

APPENDIX A: SEQUENCES

Fve is isolated from Golden Needle Mushroom (*Flammulina velutipes*).

ORGANISM: Flammulina velutipes. Eukaryota; Fungi; Basidiomycota; Hymenomycetes;

Agaricales; Tricholomataceae; Flammulina.

5 Fve (Wild type)

ATGTCCGCCACGTCGCTCACCTTCCAGCTTGCCTACTTGGTGAAGAAGATCGACTTCGAC TACACCCCCAACTGGGGCCGTGGTACCCCAAGCAGCTACATCGACAACCTTACCTTCCCC AAGGTTCTCACCGACAAAAATACTCGTACCGCGTCGTGGTCAATGGCTCTGACCTTGGC GTCGAGTCCAACTTCGCAGTGACACCGTCCGGTGGGCAGACCATCAACTTCCTCCAGTAC 10 AACAAGGGGTATGGTGTCGCGGACACCAAAACGATTCAAGTTTTCGTTGTCATTCCAGAT ACCGGCAACTCGGAGGAGTACATCATCGCTGAGTGGAAGAAGACTTGA msatsltfqlaylvkkidfdytpnwgrgtpssyidnltfpkvltdkkysyrvvvngsdlg vesnfavtpsggqtinflqynkgygvadtktiqvfvvipdtgnseeyiiaewkkt ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/ AAG/ATC/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/GGT/ACC/CCA/ 15 AGC/AGC/TAC/ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/ AAA/AAA/TAC/TCG/TAC/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/ GTC/GAG/TCC/AAC/TTC/GCA/GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/ AAC/TTC/CTC/CAG/TAC/AAC/AAG/GGG/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ ACG/ATT/CAA/GTT/TTC/GTT/GTC/ATT/CCA/GAT/ACC/GGC/AAC/TCG/GAG/ 20 GAG/TAC/ATC/GCT/GAG/TGG/AAG/AAG/ACT/TGA

A Fve (Wild type) sequence may also comprise a sequence as set out above, but lacking the initial methionine (M) in the amino acid sequence, or lacking the initial ATG in the nucleic acid sequence.

25 GST-Fve (Wild type) Nucleotide Sequence

10

GGTGGGCAGACCATCAACTTCCTCCAGTACAACAAGGGGTATGGTGTCGCGGACACCAAA ACGATTCAAGTTTTCGTTGTCATTCCAGATACCGGCAACTCGGAGGAGTACATCATCGCT GAGTGGAAGAAGACTTGA

GST-Fve (Wild type) Amino Acid Sequence

MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYID GDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKV DFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFK KRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDLEVLFQGPLGSSATSLTFQL AYLVKKIDFDYTPNWGRGTPSSYIDNLTFPKVLTDKKYSYRVVVNGSDLGVESNFAVTPS GGQTINFLQYNKGYGVADTKTIQVFVVIPDTGNSEEYIIAEWKKT

FVE DELETION MUTANTS

Fve D6-18

ATG/TCC/GCC/ACG/TCG/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/GGT/ACC/CC

15 A/AGC/AGC/TAC/ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/
AAA/TAC/TCG/TAC/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/GTC/GAG/TC
C/AAC/TTC/GCA/GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/
TAC/AAC/AAG/GGG/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GT
T/GTC/ATT/CCA/GAT/ACC/GGC/AAC/TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TGG/
20 AAG/AAG/ACT/TGA

msats/fdytpnwgrgtpssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinfl qynkgygvadtktiqvfvvipdtgnseeyiiaewkkt

Fve D19-33

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/AT

C/GAC/ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/AAA/TAC/
TCG/TAC/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/GTC/GAG/TCC/AAC/TT
C/GCA/GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/TAC/AAC/
AAG/GGG/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GTT/GTC/AT
T/CCA/GAT/ACC/GGC/AAC/TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TGG/AAG/AAG/
ACT/TGA

msatsltfqlaylvkkid/idnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqy nkgygvadtktiqvfvvipdtgnseeyiiaewkkt

Fve D34-46

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/AT

C/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/GGT/ACC/CCA/AGC/AGC/TAC/
AAA/TAC/TCG/TAC/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/GTC/GAG/TC
C/AAC/TTC/GCA/GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/
TAC/AAC/AAG/GGG/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GT
T/GTC/ATT/CCA/GAT/ACC/GGC/AAC/TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TGG/

AAG/AAG/ACT/TGA

msatsltfqlaylvkkidfdytpnwgrgtpssy/kysyrvvvngsdlgvesnfavtpsggqtinfl qynkgygvadtktiqvfvvipdtgnseeyiiaewkkt

Fve D47-60

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/AT

C/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/ACC/CCA/AGC/AGC/TAC/
ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/GTC/GAG/TCC/AA

153

C/TTC/GCA/GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/TAC/AAC/AAG/GGG/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GTT/GTC/ATT/CCA/GAT/ACC/GGC/AAC/TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TGG/AAG/AAG/ACT/TGA

5 msatsltfqlaylvkkidfdytpnwgrgtpssyidnltfpkvltdk/vesnfavtpsggqtinflq ynkgygvadtktiqvfvvipdtgnseeyiiaewkkt

Fve D61-72

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/AT C/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/GGT/ACC/CCA/AGC/AGC/TAC/ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/AAA/TAC/TCG/TA C/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/CAG/ACC/ATC/AAC/TTC/CTC/CAG/TAC/AAC/AAG/GGG/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TT C/GTT/GTC/ATT/CCA/GAT/ACC/GGC/AAC/TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TGG/AAG/AAG/ACT/TGA

15 msatsltfqlaylvkkidfdytpnwgrgtpssyidnltfpkvltdkkysyrvvvngsdlg/qtinf lqynkgygvadtktiqvfvvipdtgnseeyiiaewkkt

Fve D73-84

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/ATC/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TTG/GGC/CGT/GGT/ACC/CCA/AGC/AAC/TAC/ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/AAA/TAC/TCG/TAC/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/GTC/GAG/TCC/AAC/TTC/GCA/GTG/ACA/CCG/TCC/GGT/GGG/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GTT/GTC/ATT/CCA/GAT/ACC/GGC/AAC/TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TGG/AAG/AAG/ACT/TGA

25 msatsltfqlaylvkkidfdytpnwgrgtpssyidnltfpkvltdkkysyrvvvngsdlgvesnfa vtpsgg/gvadtktiqvfvvipdtgnseeyiiaewkkt

Fve D85-97

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/AT C/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/GGT/ACC/CCA/AGC/AGC/TAC/

30 ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/AAA/TAC/TCG/TA C/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/GTC/GAG/TCC/AAC/TTC/GCA/GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/TAC/AAC/AAG/GG G/TAT/GTC/ATT/CCA/GAT/ACC/GGC/AAC/TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TGG/AAG/AAG/ACT/TGA

35 msatsltfqlaylvkkidfdytpnwgrgtpssyidnltfpkvltdkkysyrvvvngsdlgvesnfa vtpsggqtinflqynkgy/ipdtgnseeyiiaewkkt

Fve D98-106

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/AT C/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/GGT/ACC/CCA/AGC/TAC/ACC/TTC/GCC/AAC/TGG/GGC/CGT/GAC/AAA/AAA/TAC/TCG/TA C/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/GTC/GAG/TCC/AAC/TTC/GCA/GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/TAC/AAC/AAG/GGG/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GTT/GTC/TAC/ATC/ATC/GCT/GAG/TGG/AAG/AAG/ACT/TGA

45 msatsltfqlaylvkkidfdytpnwgrgtpssyidnltfpkvltdkkysyrvvvngsdlgvesnfa vtpsggqtinflqynkgygvadtktiqvfvv/yiiaewkkt

Fve D107-115

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/ATC/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/ACC/CCA/AGC/AGC/TAC/

20

ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/AAA/TAC/TCG/TA C/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/GTC/GAG/TCC/AAC/TTC/GCA/ GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/TAC/AAC/AAG/GG G/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GTT/GTC/ATT/CCA/ GAT/ACC/GGC/AAC/TCG/GAG/GAG/TGA

msatsltfqlaylvkkidfdytpnwgrgtpssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqynkgygvadtktiqvfvvipdtgnsee/

Fve D61-97

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/AT

C/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/GGT/ACC/CCA/AGC/AGC/TAC/

ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/AAA/TAC/TCG/TA

C/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/ATT/CCA/GAT/ACC/GGC/AAC/

TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TGG/AAG/AAG/ACT/TGA

msatsltfqlaylvkkidfdytpnwgrgtpssyidnltfpkvltdkkysyrvvvngsdlg/ipdtg

nseeyiiaewkkt

Fve p55-100

AAT/GGC/TCT/GAC/CTT/GGC/GTC/GAG/TCC/AAC/TTC/GCA/GTG/ACA/CCG/TCC/GG T/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/TAC/AAC/AAG/GGG/TAT/GGT/GTC/GCG/ GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GTT/GTC/ATT/CCA/GAT/ Ngsdlgvesnfavtpsggqtinflqynkgygvadtktiqvfvvipd

FVE MUTANTS WITH SINGLE AMINO ACID SUBSTITUTIONS

FveR27A

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/AT
C/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/GCA/GGT/ACC/CCA/AGC/AGC/TAC/
C/GAC/TTC/GAC/ACC/ACC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/AAA/TAC/TCG/TA
ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/GAG/TCC/AAC/TTC/GCA/
C/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/GTC/CAG/TAC/AAC/AAG/GG
GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/TAC/AAC/AAG/GG
G/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GTT/GTC/ATT/CCA/
GAT/ACC/GGC/AAC/TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TGG/AAG/AAG/ACT/TG
30
A

 $\verb|msats|| tfqlaylvkkidfdytpnwg| \textbf{a} gtpssyidnltfpkvltdkkysyrvvvngsdlgvesnf| avtpsggqtinflqynkgygvadtktiqvfvvipdtgnseeyiiaewkkt|$

FveG28A

ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/AT

C/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/GCA/ACC/CCA/AGC/AGC/TAC/

ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/AAA/TAC/TCG/TA

C/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/GTC/GAG/TCC/AAC/TTC/GCA/

GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/TAC/AAG/GG

G/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GTT/GTC/ATT/CCA/

GAT/ACC/GGC/AAC/TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TAG/AAG/AAG/ACT/TG

 $\verb|msats|| tfqlaylvkkidfdytpnwgratpssyidn|| tfpkv|| tdkkysyrvvvngsd|| gvesnfavtpsggqtinflqynkgygvadtktiqvfvvipdtgnseeyiiaewkkt||$

FveT29A

45 ATG/TCC/GCC/ACG/TCG/CTC/ACC/TTC/CAG/CTT/GCC/TAC/TTG/GTG/AAG/AAG/AT C/GAC/TTC/GAC/TAC/ACC/CCC/AAC/TGG/GGC/CGT/GGT/GCA/CCA/AGC/AGC/TAC/

•

5

ATC/GAC/AAC/CTT/ACC/TTC/CCC/AAG/GTT/CTC/ACC/GAC/AAA/AAA/TAC/TCG/TA C/CGC/GTC/GTG/GTC/AAT/GGC/TCT/GAC/CTT/GGC/GTC/GAG/TCC/AAC/TTC/GCA/ GTG/ACA/CCG/TCC/GGT/GGG/CAG/ACC/ATC/AAC/TTC/CTC/CAG/TAC/AAC/AAG/GG G/TAT/GGT/GTC/GCG/GAC/ACC/AAA/ACG/ATT/CAA/GTT/TTC/GTT/GTC/ATT/CCA/ GAT/ACC/GGC/AAC/TCG/GAG/GAG/TAC/ATC/ATC/GCT/GAG/TGG/AAG/AAG/ACT/TG

msatsltfqlaylvkkidfdytpnwgrgapssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqynkgygvadtktiqvfvvipdtqnseeyiiaewkkt

FUSION PROTEINS OF MAJOR HOUSE DUST MITE ALLERGEN (BLO T 5 OR DER P 2) AND

10 FUNGAL IMMUNOMODULATORY PROTEIN FVE

Blo t 5-Fve (two-in-one chimeric wild type)

caagagcacaagccaaagaaggatgatttccgaaacgaattcgatcacttgttgatcgaacaggca aaccatgctatcgaaaagggagaacatcaattgctttacttgcaacaccaactcgacgaattgaat gaaaacaagagcaaggaattgcaagagaaaatcattcgagaacttgatgttgtttgcgccatgatc 15 gaaggagcccaaggagctttggaacgtgaattgaagcgaactgatcttaacattttggaacgattc aactacgaagaggctcaaactctcagcaagatcttgcttaaggatttgaaggaaaccgaacaaaa gtgaaggatattcaaacccaaTCCGCCACGTCGCTCACCTTCCAGCTTGCCTACTTGGTGAAGAAG ATCGACTTCGACTACACCCCCAACTGGGGCCGTGGTACCCCAAGCAGCTACATCGACAACCTTACC TTCCCCAAGGTTCTCACCGACAAAAATACTCGTACCGCGTCGTGGTCAATGGCTCTGACCTTGGC 20 GTCGAGTCCAACTTCGCAGTGACACCGTCCGGTGGGCAGACCATCAACTTCCTCCAGTACAACAAG GGGTATGGTGTCGCGGACACCAAAACGATTCAAGTTTTCGTTGTCATTCCAGATACCGGCAACTCG GAGGAGTACATCATCGCTGAGTGGAAGAAGACTTGA QEHKPKKDDFRNEFDHLLIEQANHAIEKGEHQLLYLQHQLDELNENKSKELQEKIIRELDVVCAMI EGAQGALERELKRTDLNILERFNYEEAQTLSKILLKDLKETEQKVKDIQTQsatsltfqlaylvkk 25 idfdytpnwgrgtpssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqynk

Blo t 5-FveR27A (two-in-one chimeric mutant)

gygvadtktiqvfvvipdtgnseeyiiaewkkt

caagagcacaagccaaagaaggatgatttccgaaacgaattcgatcacttgttgatcgaacaggca
aaccatgctatcgaaaagggagaacatcaattgctttacttgcaacaccaactcgacgaattgaat
gaaaacaagagcaaggaattgcaagagaaaatcattcgagaacttgatgttgtttgcgccatgatc
gaaggagcccaaggagctttggaacgtgaattgaagcgaactgatcttaacattttggaacgattc
aactacgaagaggctcaaactctcagcaagatcttgcttaaggatttgaaggaaaccgaacaaaaa
gtgaaggatattcaaacccaaTCCGCCACGTCGCTCACCTTCCAGCTTGCCTACTTGGTGAAGAAG
ATCGACTTCGACTACACCCCCAACTGGGGCGCAGGTACCCCAAGCAGCTACATCGACAACCTTAC
CTTCCCCAAGGTTCTCACCGACAAAAAAATACTCGTACCGCGTCGTGGTCAATGGCTCTGACCTTGG
CGTCGAGTCCAACTTCGCAGTGACACCGTCCGGTGGGCAGACCATCAACTTCCTCCAGTACAACAA
GGGGTATGGTGTCGCGGACACCAAAACGATTCAAGTTTTCGTTGTCATTCCAGATACCGGCAACTC
GGAGGAGTACATCATCGCTGAGTGGAAGAAGACTTGA
QEHKPKKDDFRNEFDHLLIEQANHAIEKGEHQLLYLQHQLDELNENKSKELQEKIIRELDVVCAMI

40 EGAQGALERELKRTDLNILERFNYEEAQTLSKILLKDLKETEQKVKDIQTQsatsltfqlaylvkk idfdytpnwgagtpssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqyn kgygvadtktiqvfvvipdtgnseeyiiaewkkt

Blo t 5-FveT29A (two-in-one chimeric mutant)

caagagcacaagccaaagaaggatgatttccgaaacgaattcgatcacttgttgatcgaacaggca
45 aaccatgctatcgaaaagggagaacatcaattgctttacttgcaacaccaactcgacgaattgaat
gaaaacaagagcaaggaattgcaagagaaaatcattcgagaacttgatgttgtttgcgccatgatc
gaaggagcccaaggagctttggaacgtgaattgaagcgaactgatcttaacattttggaacgattc
aactacgaagaggctcaaactctcagcaagatcttgcttaaggatttgaaggaaaccgaacaaaa

10

15

20

25

45

50

gtgaaggatattcaaacccaaTCCGCCACGTCGCTCACCTTCCAGCTTGCCTACTTGGTGAAGAAG
ATCGACTTCGACTACACCCCCAACTGGGGCCGTGGT**GCA**CCAAGCAGCTACATCGACAACCTTAC
CTTCCCCAAGGTTCTCACCGACAAAAAATACTCGTACCGCGTCGTGGTCAATGGCTCTGACCTTGG
CGTCGAGTCCAACTTCGCAGTGACACCGTCCGGTGGGCAGACCATCAACTTCCTCCAGTACAACAA
GGGGTATGGTGTCGCGGACACCAAAACGATTCAAGTTTTCGTTGTCATTCCAGATACCGGCAACTC
GGAGGAGTACATCATCGCTGAGTGGAAGAAGACTTGA
QEHKPKKDDFRNEFDHLLIEQANHAIEKGEHQLLYLQHQLDELNENKSKELQEKIIRELDVVCAMI
EGAQGALERELKRTDLNILERFNYEEAQTLSKILLKDLKETEQKVKDIQTQsatsltfqlaylvkk
idfdytpnwgrgapssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqyn
kgygvadtktiqvfvvipdtgnseeyiiaewkkt

Der p 2-FveR27A (two-in-one chimeric mutant)

DQVDVKDCANHEIKKVLVPGCHGSEPCIIHRGKPFQLEAVFEANQNTKTAKIEIKASIDGLEVDVP GIDPNACHYMKCPLVKGQQYDIKYTWNVPKIAPKSENVVVTVKVMGDDGVLACAIATHAKIRDsat sltfqlaylvkkidfdytpnwgagtpssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtp sggqtinflqynkgygvadtktiqvfvvipdtgnseeyiiaewkkt

Der p 2-FveT29A (two-in-one chimeric mutant)

GACTTGA
DQVDVKDCANHEIKKVLVPGCHGSEPCIIHRGKPFQLEAVFEANQNTKTAKIEIKASIDGLEVDVP
GIDPNACHYMKCPLVKGQQYDIKYTWNVPKIAPKSENVVVTVKVMGDDGVLACAIATHAKIRDsat
sltfqlaylvkkidfdytpnwgrgapssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtp
sggqtinflqynkgygvadtktiqvfvvipdtgnseeyiiaewkkt

Blo t 5-Der p 2-FveR27A (three-in-one chimeric mutant)

caagagcacaagccaaagaaggatgatttccgaaacgaattcgatcacttgttgatcgaacaggca aaccatgctatcgaaaagggagaacatcaattgctttacttgcaacaccaactcgacgaattgaat gaaaacaagagcaaggaattgcaagagaaaatcattcgagaacttgatgttgtttgcgccatgatc gaaggagcccaaggagctttggaacgtgaattgaagcgaactgatcttaacattttggaacgattc aactacgaagaggctcaaactctcagcaagatcttgcttaaggatttgaaggaaaccgaacaaaa

10

15

35

45

157

gtgaaggatattcaaacccaagatcaagtcgatgtcaaagattgtgccaatcatgaaatcaaaaa gaagccgttttcgaagccaaccaaaacacaaaacggctaaaattgaaatcaaagcctcaatcgat aaaggacaacaatatgatattaaatatacatggaatgttccgaaaattgcaccaaaatctgaaaat gttgtcgtcactgttaaagttatgggtgatgatggtgttttggcctgtgctattgctactcatgct aaaatccgcgatTCCGCCACGTCGCTCACCTTCCAGCTTGCCTACTTGGTGAAGAAGATCGACTTC GACTACACCCCAACTGGGGC**GCA**GGTACCCCAAGCAGCTACATCGACAACCTTACCTTCCCCAA GGTTCTCACCGACAAAAATACTCGTACCGCGTCGTGGTCAATGGCTCTGACCTTGGCGTCGAGTC CAACTTCGCAGTGACACCGTCCGGTGGGCAGACCATCAACTTCCTCCAGTACAACAAGGGGTATGG TGTCGCGGACACCAAAACGATTCAAGTTTTCGTTGTCATTCCAGATACCGGCAACTCGGAGGAGTA CATCATCGCTGAGTGGAAGAAGACTTGA QEHKPKKDDFRNEFDHLLIEQANHAIEKGEHQLLYLQHQLDELNENKSKELQEKIIRELDVVCAMI EGAQGALERELKRTDLNILERFNYEEAQTLSKILLKDLKETEQKVKDIQTQDQVDVKDCANHEIKK VLVPGCHGSEPCIIHRGKPFQLEAVFEANQNTKTAKIEIKASIDGLEVDVPGIDPNACHYMKCPLV KGQQYDIKYTWNVPKIAPKSENVVVTVKVMGDDGVLACAIATHAKIRDsatsltfqlaylvkkidf $ext{dytpnwg} oldsymbol{a}$ gtpssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqynkgy

FUSION PROTEINS OF VIRAL ANTIGEN AND FVE

qvadtktiqvfvvipdtgnseeyiiaewkkt

20 *HPV E7-FveT29A*

MHGDTPTLHEYMLDLQPETTDLYCYEQLNDSSEEEDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLR LCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPsatsltfqlaylvkkidfdytpnwgrgapssyid nltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqynkgygvadtktiqvfvvipdt gnseeyiiaewkkt

HCV Core23-FveT29A

Deletion of the 23 amino acids of core antigen from 141-163 amino acid residues leads to increased protein production efficiency

MSTNPKPQRKTKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPRLGVRATRKTSERSQPRGRRQPIP

40 KARQPEGRAWAQPGYPWPLYGNEGLGWAGWLLSPRGSRPSWGPTDPRRRSRNLGKVIDTLTCGFAD

LMGYLPLVYATGNLPGCSFSIFLLALLSCLTIPASAsatsltfqlaylvkkidfdytpnwgrgaps

syidnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqynkgygvadtktiqvfvv

ipdtqnseeyiiaewkkt

atgagcacgaatcctaaacctcaaagaaaaaccaaacgtaacaccaaccgccgcccacaggacgtc aagttcccgggcggtggtcagatcgtcggtggagtttacctgttgccgcgcaggggccccaggttg ggtgtgcgcgcgactaggaagacttccgagcggtcgcaacctcgtggaaggcgacaacctatcccc aaggctcgccagcccgagggtaggcctgggctcagcccgggtacccctggccctctatggcaat

15

20

25

30

35

10 FUSION PROTEINS OF TUMOR-ASSOCIATED ANTIGEN AND FVE

MAGE3-FveT29A

mpleqrsqhckpeegleargealglvgaqapateeqeaasssstlvevtlgevpaaespdppqspq gasslpttmnyplwsqsyedssnqeeegpstfpdlesefqaalsrkvaelvhflllkyrarepvtk aemlgsvvgnwqyffpvifskassslqlvfgielmevdpighlyifatclglsydgllgdnqimpk aglliivlaiiaregdcapeekiweelsvlevfegredsilgdpkklltqhfvqenyleyrqvpgs dpacyeflwgpralvetsyvkvlhhmvkisggphisypplhewvlregeesatsltfqlaylvkki dfdytpnwgrgapssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqynkg ygvadtktiqvfvvipdtgnseeyiiaewkkt

atgcctcttgagcagaggagtcagcactgcaagcctgaagaaggccttgaggcccgaggagaggcc ctgggcctggtgggtgcgcaggctcctgctactgaggagcaggaggctgcctcctcctcttctact ctagttgaagtcaccctgggggaggtgcctgctgccgagtcaccagatcctccccagagtcctcag ggagcctccagcctccccactaccatgaactaccctctctggagccaatcctatgaggactccagc aaccaagaagagggggccaagcaccttccctgacctggagtccgagttccaagcagcactcagt aggaaggtggccgagttggttcattttctgctcctcaagtatcgagccagggagccggtcacaaag ${\tt tccagttccttgcagctggtctttggcatcgagctgatggaagtggaccccatcggccacttgtac}$ ${\tt atctttgccacctgcctgggcctctcctacgatggcctgctgggtgacaatcagatcatgcccaag}$ gcaggcctcctgataatcgtcctggccataatcgcaagagggggactgtgcccctgaggagaaa ${\tt aagaagctgctcacccaacatttcgtgcaggaaaactacctggagtaccggcaggtccccggcagt}$ gatcctgcatgttatgaattcctgtggggtccaagggccctcgttgaaaccagctatgtgaaagtc ttgagagaggggaagagTCCGCCACGTCGCTCACCTTCCAGCTTGCCTACTTGGTGAAGAAGATC GACTTCGACTACACCCCCAACTGGGGCCGTGGTGCACCAAGCAGCTACATCGACAACCTTACCTTC CCCAAGGTTCTCACCGACAAAAAATACTCGTACCGCGTCGTGGTCAATGGCTCTGACCTTGGCGTC GAGTCCAACTTCGCAGTGACACCGTCCGGTGGGCAGACCATCAACTTCCTCCAGTACAACAAGGGG TATGGTGTCGCGGACACCAAAACGATTCAAGTTTTCGTTGTCATTCCAGATACCGGCAACTCGGAG

MARTI-FveT29A

GAGTACATCATCGCTGAGTGGAAGAAGACTTGA

- 40 mpredahfiygypkkghghsyttaeeaagigiltvilgvllligcwycrrrngyralmdkslhvgt qcaltrrcpqegfdhrdskvslqekncepvvpnappayeklsaeqspppyspsatsltfqlaylvk kidfdytpnwgrgapssyidnltfpkvltdkkysyrvvvngsdlgvesnfavtpsggqtinflqyn kgygvadtktiqvfvvipdtgnseeyiiaewkkt
- atgccaagagaagatgctcacttcatctatggttaccccaagaaggggcacggccactcttacacc
 45 acggctgaagaggccgctgggatcggcatcctgacagtgatcctgggagtcttactgctcatcggc
 tgttggtattgtagaagacgaaatggatacagagccttgatggataaaagtcttcatgttggcact
 caatgtgccttaacaagaagatgcccacaagaagggtttgatcatcgggacagcaaagtgtctctt
 caagagaaaaactgtgaacctgtggttcccaatgctccacctgcttatgagaaactctctgcagaa
 cagtcaccaccaccttattcacctTCCGCCACGTCGCTCACCTTCCAGCTTGCCTACTTGGTGAAG
 50 AAGATCGACTTCGACTACACCCCCAACTGGGGCCGTGGTGCACCAAGCAGCTACATCGACAACCTT
 ACCTTCCCCAAGGTTCTCACCGACAAAAAATACTCGTACCGCGTCGTGGTCAATGGCTCTGACCTT

15

20

25

30

35

40

45

50

159

GGCGTCGAGTCCAACTTCGCAGTGACACCGTCCGGTGGGCAGACCATCAACTTCCTCCAGTACAAC AAGGGGTATGGTGTCGCGGACACCAAAACGATTCAAGTTTTCGTTGTCATTCCAGATACCGGCAAC TCGGAGGAGTACATCATCGCTGAGTGGAAGAAGACTTGA

5 CEA-FveT29A

kltiestpfnvaegkevlllvhnlpghlfqyswykgervdgnrqiigyvigtqqatpgpaysgrei iy pnasl liq niiq ndt g fytlh viks d lvne eat g q fr vypelpk ps is snnsk pvedk davaftcepetqdatylwwvnnqslpvsprlqlsngnrtltlfnvtrndtasykcetqnpvsarrsdsviln $\verb|vlygpdaptisplntsyrsgenlnlschaasnppaqyswfvngtfqqstqelfipnitvnnsgsyt|\\$ cqahnsdtglnrttvttitvyaeppkpfitsnnsnpvededavaltcepeiqnttylwwvnnqslp vsprlqlsndnrtltllsvtrndvgpyecgiqnelsvdhsdpvilnvlygpddptispsytyyrpg vnlslschaasnppaqyswlidgniqqhtqelfisniteknsglytcqannsasghsrttvktitv saelpkpsissnnskpvedkdavaftcepeaqnttylwwvngqslpvsprlqlsngnrtltlfnvt rndarayvçqiqnsvsanrsdpvtldvlyqpdtpiisppdssylsganlnlschsasnpspqyswr ingipqqhtqvlfiakitpnnngtyacfvsnlatgrnnsivksitvsasgtspglsagatvgimig vlvgvalisatsltfqlaylvkkidfdytpnwgrgapssyidnltfpkvltdkkysyrvvvngsdl gvesnfavtpsggqtinflqynkgygvadtktiqvfvvipdtgnseeyiiaewkkt aagctcactattgaatccacgccgttcaatgtcgcagaggggaaggaggtgcttctacttgtccac aatctgccccagcatctttttggctacagctggtacaaaggtgaaagagtggatggcaaccgtcaa attataggatatgtaataggaactcaacaagctaccccagggcccgcatacagtggtcgagagata atataccccaatgcatccctgctgatccagaacatcatccagaatgacacaggattctacacccta cacgtcataaagtcagatcttgtgaatgaagaagcaactggccagttccgggtatacccggagctg cccaagccctccatctccagcaacaactccaaacccgtggaggacaaggatgctgtggccttcacc tgtgaacctgagactcaggacgcaacctacctgtggtgggtaaacaatcagagcctcccggtcagt cccaggctgcagctgtccaatggcaacaggaccctcactctattcaatgtcacaagaaatgacaca gcaagctacaaatgtgaaacccagaacccagtgagtgccaggcgcagtgattcagtcatcctgaat qtcctctatqqcccqqatqccccaccatttcccctctaaacacatcttacagatcaggggaaaat ctgaacctctcctgccatgcagcctctaacccacctgcacagtactcttggtttgtcaatgggact ttccagcaatccacccaagagctctttatccccaacatcactgtgaataatagtggatcctatacg tgccaagcccataactcagacactggcctcaataggaccacagtcacgacgatcacagtctatgca gagccacccaaacccttcatcaccagcaacaactccaaccccgtggaggatgaggatgctgtagcc ttaacctgtgaacctgagattcagaacacaacctacctgtggtgggtaaataatcagagcctcccg gtcagtcccaggctgcagctgtccaatgacaacaggaccctcactctactcagtgtcacaaggaat gatgtaggaccctatgagtgtggaatccagaacgaattaagtgttgaccacagcgacccagtcatc ctgaatgtcctctatggcccagacgaccccaccatttccccctcatacacctattaccgtccaggg gggaacatccagcaacacacaagagctctttatctccaacatcactgagaagaacagcggactc tatacctqccaqqccaataactcaqccaqtqgccacagcaggactacagtcaagacaatcacagtc tctgcggagctgcccaagccctccatctccagcaacaactccaaacccgtggaggacaaggatgct ctcccaqtcaqtcccaqqctqcaqctqtccaatggcaacaggaccctcactctattcaatgtcaca gtcaccctggatgtcctctatgggccggacacccccatcatttcccccccagactcgtcttacctt tcgggagcgaacctcaacctctcctgccactcggcctctaacccatccccgcagtattcttggcgt atcaatgggataccgcagcaacacacaagttctctttatcgccaaaatcacgccaaataataac gggacctatgcctgttttgtctctaacttggctactggccgcaataattccatagtcaagagcatc ${\tt acagtctctgcatctggaacttctcctggtctctcagctggggccactgtcggcatcatgattgga}$ $\verb|gtgctggttgggttgctctgataTCCGCCACGTCGCTCACCTTCCAGCTTGCCTACTTGGTGAAG|$ AAGATCGACTTCGACTACACCCCCAACTGGGGCCGTGGTGCACCAAGCAGCTACATCGACAACCTT ACCTTCCCCAAGGTTCTCACCGACAAAAATACTCGTACCGCGTCGTGGTCAATGGCTCTGACCTT GGCGTCGAGTCCAACTTCGCAGTGACACCGTCCGGTGGGCAGACCATCAACTTCCTCCAGTACAAC AAGGGGTATGGTGTCGCGGACACCAAAACGATTCAAGTTTTCGTTGTCATTCCAGATACCGGCAAC

TCGGAGGAGTACATCATCGCTGAGTGGAAGAAGACTTGA

PRIMERS FOR CONSTRUCTION OF FVE DELETION MUTANTS

	Fd6-18F (36 mer)
	5'-ggA/TCC/TCC/gCC/ACg/TCg/TTC/gAC/TAC/ACC/CCC/AAC- 3'
	Fd6-18R (36 mer)
5	5'-gTT/ggg/ggT/gTA/gTC/gAA/CgA/CgT/ggC/ggA/ggA/TCC- 3'
	Fd19-33F (36 mer)
	5'-TTg/gTg/AAg/AAg/ATC/gAC/ATC/gAC/AAC/CTT/ACC/TTC- 3'
	Fd19-33R (36 mer)
	5'-gAA/ggT/AAg/gTT/gTC/gAT/gTC/gAT/CTT/CTT/CAC/CAA- 3'
10	Fd34-46F (36 mer)
	5'-ggT/ACC/CCA/AgC/AgC/TAC/AAA/TAC/TCg/TAC/CgC/gTC- 3'
	Fd34-46R (36 mer)
	5'-gAC/gCg/gTA/CgA/gTA/TTT/gTA/gCT/gCT/Tgg/ggT/ACC- 3'
	Fd47-60F (36 mer)
15	5'-AAg/gTT/CTC/ACC/gAC/AAA/gTC/gAg/TCC/AAC/TTC/gCA- 3'
	Fd47-60R (36 mer)
	5'-TgC/gAA/gTT/ggA/CTC/gAC/TTT/gTC/ggT/gAg/AAC/CTT- 3'
	Fd61-72F (36 mer)
	5'-AAT/ggC/TCT/gAC/CTT/ggC/CAg/ACC/ATC/AAC/TTC/CTC- 3'
20	Fd61-72R (36 mer)
	5'-gAg/gAA/gTT/gAT/ggT/CTg/gCC/AAg/gTC/AgA/gCC/ATT- 3
	Fd73-84F (36 mer)
	5'-gTg/ACA/CCg/TCC/ggT/ggg/ggT/gTC/gCg/gAC/ACC/AAA- 3
	Fd73-84R (36 mer)
25	5'-TTT/ggT/gTC/CgC/gAC/ACC/CCC/ACC/ggA/Cgg/TgT/CAC- 3
	Fd85-97F (36 mer)
	5'-CAg/TAC/AAC/AAg/ggg/TAT/ATT/CCA/gAT/ACC/ggC/AAC- 3
	Fd85-97R (36 mer)
	5'-gTT/gCC/ggT/ATC/Tgg/AAT/ATA/CCC/CTT/gTT/gTA/CTg- 3
30	Fd98-106F (36 mer)
	5'-ATT/CAA/gTT/TTC/gTT/gTC/TAC/ATC/ATC/gCT/gAg/Tgg-3
	Fd98-106R (36 mer)
	5'-CCA/CTC/AgC/gAT/gAT/gTA/gAC/AAC/gAA/AAC/TTg/AAT- 3

Fd107-115R (39 mer)

5'-gAT/gCA/ACT/gAA/TTC/TTA/TTA/CTC/CTC/CgA/gTT/gCC/ggT- 3'

161

PRIMERS FOR CONSTRUCTION OF LARGE FRAGMENT DELETION OF FVE

d(61-97)-F(36mer)

5 5'-/AAT/ggC/TCT/gAC/CTT/ggC/ATT/CCA/gAT/ACC/ggC/AAC/-3'

d(61-97)-R (36mer)

5'-/gTT/gCC/ggT/ATC/Tgg/AAT/gCC/AAg/gTC/AgA/gCC/ATT/-3'

PRIMERS FOR CONSTRUCTION OF SMALL FRAGMENT OF FVE (FROM 55AA TO 100AA)

[Fv55-100]-F (48mer)

10 5'/gTT/CCg/CgT/ggA/TCC/ATC/gAA/ggT/CgT/AAT/ggC/TCT/gAC/CTT/ggC/gTC/3' .

[Fv55-100]-R (42mer)

5'-/gAT/gCA/ACT/gAA/TTC/TTA/TCA/ATC/Tgg/AAT/gAC/AAC/gAA/AAC/-3'

15 PRIMERS FOR CONSTRUCTION OF POINT MUTANTS OF FVE

F(R27A)-F(27 mer)

5'- CCC/AAC/Tgg/ggC/gCA/ggT/ACC/CCA/AgC - 3'

F(R27A)-R(27 mer)

5'- gCT/Tgg/ggT/ACC/TgC/gCC/CCA/gTT/ggg - 3'

20 F(G28A)-F(27 mer)

5'- AAC/Tgg/ggC/CgT/gCA/ACC/CCA/AgC/AgC - 3'

F(G28A)-R(27 mer)

5'- gCT/gCT/Tgg/ggT/TgC/ACg/gCC/CCA/gTT - 3'

F(T29A)-F (27 mer)

25 5'- Tgg/ggC/CgT/ggT/gCA/CCA/AgC/AgC/TAC - 3'

F(T29A)-R(27 mer)

5'- gTA/gCT/Tgg/TgC/ACC/ACg/gCC/CCA - 3'

PRIMERS FOR BLO T 5-FVE FUSION PROTEIN

Bt5Fv-F (36mer)

30 5'-/AAg/gAT/ATT/CAA/ACC/CAA/TCC/gCC/ACg/TCg/CTC/ACC/-3'

Bt5Fv-R (36mer)
5'-/ggT/gAg/CgA/CgT/ggC/ggA/TTg/ggT/TTg/AAT/ATC/CTT/-3'

PRIMERS FOR DER P 2-FVE FUSION PROTEIN

Dp2Fv-F (36mer)

5'-/CAT/gCT/AAA/ATC/CgC/gAT/TCC/gCC/ACg/TCg/CTC/ACC-3'

Dp2Fv-R (36mer)

5'-/ggT/gAg/CgA/CgT/ggC/ggA/ATC/gCg/gAT/TTT/AgC/ATg-3'

PRIMERS FOR BLO T 5-DER P 2-FVE FUSION PROTEIN

Bt5Dp2-F (36mer)

5'-/aag/gat/att/caa/acc/caa/gat/caa/gtc/gat/gtc/aaa/-3'

Bt5Dp2-R (36mer)

5'-/ttt/gac/atc/gac/ttg/atc/ttg/ggt/ttg/aat/atc/ctt/-3'

Fragment	Residues	Sequence
Number	24-28	WGRGT
1	25-29	GRGTP
2		RGTPS
3	26-30 27-31	GTPSS
4		TPSSY
5	28-32	NWGRGT
0	23-28	WGRGTP
7		GRGTPS
8	25-30	RGTPSS
9	26-31	GTPSSY
10	27-32	TPŞSYI
11	28-33	PNWGRGT
12	22-28	NWGRGTP
13	23-29	WGRGTPS
14	24-30	GRGTPSS
15	25-31	RGTPSSY
16	26-32	GTPSSYI
17	27-33	TPSSYID
18	28-34	TPNWGRGT
19	21-28	PNWGRGTP
20	22-29	NWGRGTPS
21	23-30	WGRGTPS
22	24-31	
23	25-32	GRGTPSSY
24	26-33	RGTPSSYI
25	27-34	GTPSSYID
26	28-35	TPSSYIDN
27	20-28	YTPNWGRGT
28	21-29	TPNWGRGTP
29	22-30	PNWGRGTPS
30	23-31	NWGRGTPSS
31	24-32	WGRGTPSSY
32	25-33	GRGTPSSYI
33	26-34	RGTPSSYID
34	27-35	GTPSSYIDN
35	28-36	TPSSYIDNL
36	19-28	DYTPNWGRGT
37	20-29	YTPNWGRGTP
38	21-30	TPNWGRGTPS
39	22-31	PNWGRGTPSS
40	23-32	NWGRGTPSSY

Fragment	Residues	Sequence
Number		•
41	24-33	WGRGTPSSYI
42	25-34	GRGTPSSYID
43	26-35	RGTPSSYIDN
44	27-36	GTPSSYIDNL
45	28-37	TPSSYIDNLT
46	18-28	FDYTPNWGRGT
47	19-29	DYTPNWGRGTP
48	20-30	YTPNWGRGTPS
49	21-31	TPNWGRGTPSS
50	22-32	PNWGRGTPSSY
51	23-33	NWGRGTPSSYI
52	24-34	WGRGTPSSYID
53	25-35	GRGTPSSYIDN
54	26-36	RGTPSSYIDNL
55	27-37	GTPSSYIDNLT
56	28-38	TPSSYIDNLTF
57	17-28	DFDYTPNWGRGT
58	18-29	FDYTPNWGRGTP
59	19-30	DYTPNWGRGTPS
60	20-31	YTPNWGRGTPSS
61	21-32	TPNWGRGTPSSY
62	22-33	PNWGRGTPSSYI
63	23-34	NWGRGTPSSYID
64	24-35	WGRGTPSSYIDN
65	25-36	GRGTPSSYIDNL
66	26-37	RGTPSSYIDNLT
67	27-38	GTPSSYIDNLTF
68	28-39	TPSSYIDNLTFP
69	16-28	IDFDYTPNWGRGT
70	17-29	DFDYTPNWGRGTP
71	18-30	FDYTPNWGRGTPS
72	19-31	DYTPNWGRGTPSS
73	20-32	YTPNWGRGTPSSY
74	21-33	TPNWGRGTPSSYI
75	22-34	PNWGRGTPSSYID
76	23-35	NWGRGTPSSYIDN
77	24-36	WGRGTPSSYIDNL
78	25-37	GRGTPSSYIDNLT
79	26-38	RGTPSSYIDNLTF
80	27-39	GTPSSYIDNLTFP
81	28-40	TPSSYIDNLTFPK
82	15-28	KIDFDYTPNWGRGT
83	16-29	IDFDYTPNWGRGTP

Fragment Number	Residues	Sequence
84	17-30	DFDYTPNWGRGTPS
85	18-31	FDYTPNWGRGTPSS
86	19-32	DYTPNWGRGTPSSY
87	20-33	YTPNWGRGTPSSYI
88	21-34	TPNWGRGTPSSYID
89	22-35	PNWGRGTPSSYIDN
90	23-36	NWGRGTPSSYIDNL
91	24-37	WGRGTPSSYIDNLT
92	25-38	GRGTPSSYIDNLTF
93	26-39	RGTPSSYIDNLTFP
94	27-40	GTPSSYIDNLTFPK
95	28-41	TPSSYIDNLTFPKV
96	14-28	KKIDFDYTPNWGRGT
97	15-29	KIDFDYTPNWGRGTP
98	16-30	IDFDYTPNWGRGTPS
99	17-31	DFDYTPNWGRGTPSS
100	18-32	FDYTPNWGRGTPSSY
101	19-33	DYTPNWGRGTPSSYI
102	20-34	YTPNWGRGTPSSYID
103	21-35	TPNWGRGTPSSYIDN
104	22-36	PNWGRGTPSSYIDNL
105	23-37	NWGRGTPSSYIDNLT
106	24-38	WGRGTPSSYIDNLTF
107	25-39	GRGTPSSYIDNLTFP
108	26-40	RGTPSSYIDNLTFPK
109	27-41	GTPSSYIDNLTFPKV
110	28-42	TPSSYIDNLTFPKVL
111	13-28	VKKIDFDYTPNWGRGT
112	14-29	KKIDFDYTPNWGRGTP
113	15-30	KIDFDYTPNWGRGTPS
114	16-31	IDFDYTPNWGRGTPSS
115	17-32	DFDYTPNWGRGTPSSY
116	18-33 .	FDYTPNWGRGTPSSYI
117	19-34	DYTPNWGRGTPSSYID
118	20-35	YTPNWGRGTPSSYIDN
119	21-36	TPNWGRGTPSSYIDNL
120	22-37	PNWGRGTPSSYIDNLT
121	23-38	NWGRGTPSSYIDNLTF
122	24-39	WGRGTPSSYIDNLTFP
123	25-40	GRGTPSSYIDNLTFPK
124	26-41	RGTPSSYIDNLTFPKV
125	27-42	GTPSSYIDNLTFPKVL
126	28-43	TPSSYIDNLTFPKVLT

Fragment	Residues	Sequence
Number		
127	12-28	LVKKIDFDYTPNWGRGT
128	13-29	VKKIDFDYTPNWGRGTP
129	14-30	KKIDFDYTPNWGRGTPS
130	15-31	KIDFDYTPNWGRGTPSS
131	16-32	IDFDYTPNWGRGTPSSY
132	17-33	DFDYTPNWGRGTPSSYI
133	18-34	FDYTPNWGRGTPSSYID
134	19-35	DYTPNWGRGTPSSYIDN
135	20-36	YTPNWGRGTPSSYIDNL
136	21-37	TPNWGRGTPSSYIDNLT
137	22-38	PNWGRGTPSSYIDNLTF
138	23-39	NWGRGTPSSYIDNLTFP
139	24-40	WGRGTPSSYIDNLTFPK
140	25-41	GRGTPSSYIDNLTFPKV
141	26-42	RGTPSSYIDNLTFPKVL
142	27-43	GTPSSYIDNLTFPKVLT
143	28-44	TPSSYIDNLTFPKVLTD
144	11-28	YLVKKIDFDYTPNWGRGT
145	12-29	LVKKIDFDYTPNWGRGTP
146	13-30	VKKIDFDYTPNWGRGTPS
147	14-31	KKIDFDYTPNWGRGTPSS
148	15-32	KIDFDYTPNWGRGTPSSY
149	16-33	IDFDYTPNWGRGTPSSYI
150	17-34	DFDYTPNWGRGTPSSYID
151	18-35	FDYTPNWGRGTPSSYIDN
152	19-36	DYTPNWGRGTPSSYIDNL
153	20-37	YTPNWGRGTPSSYIDNLT
154	21-38	TPNWGRGTPSSYIDNLTF
155	22-39	PNWGRGTPSSYIDNLTFP
156	23-40	NWGRGTPSSYIDNLTFPK
157	24-41	WGRGTPSSYIDNLTFPKV
158	25-42	GRGTPSSYIDNLTFPKVL
159	26-43	RGTPSSYIDNLTFPKVLT
160	27-44	GTPSSYIDNLTFPKVLTD
161	28-45	TPSSYIDNLTFPKVLTDK
162	10-28	AYLVKKIDFDYTPNWGRGT
163	11-29	YLVKKIDFDYTPNWGRGTP
164	12-30	LVKKIDFDYTPNWGRGTPS
165	13-31	VKKIDFDYTPNWGRGTPSS
166	14-32	KKIDFDYTPNWGRGTPSSY
167	15-33	KIDFDYTPNWGRGTPSSYI
168	16-34	IDFDYTPNWGRGTPSSYID
169	17-35	DFDYTPNWGRGTPSSYIDN

Fragment	Residues	Sequence			
Number	1006	EDVEDNIGOCEDCOVIDAL			
170	18-36	FDYTPNWGRGTPSSYIDNL DYTPNWGRGTPSSYIDNLT			
171	19-37				
172	20-38	YTPNWGRGTPSSYIDNLTF			
173	21-39	TPNWGRGTPSSYIDNLTFP			
174	22-40	PNWGRGTPSSYIDNLTFPK			
175	23-41	NWGRGTPSSYIDNLTFPKV			
176	24-42	WGRGTPSSYIDNLTFPKVL			
177	25-43	GRGTPSSYIDNLTFPKVLT			
178	26-44	RGTPSSYIDNLTFPKVLTD			
179	27-45	GTPSSYIDNLTFPKVLTDK			
180	28-46	TPSSYIDNLTFPKVLTDKK			
181	9-28	LAYLVKKIDFDYTPNWGRGT			
182	10-29	AYLVKKIDFDYTPNWGRGTP			
183	11-30	YLVKKIDFDYTPNWGRGTPS			
184	12-31	LVKKIDFDYTPNWGRGTPSS			
185	13-32	VKKIDFDYTPNWGRGTPSSY			
186	14-33	KKIDFDYTPNWGRGTPSSYI			
187	15-34	KIDFDYTPNWGRGTPSSYID			
188	16-35	IDFDYTPNWGRGTPSSYIDN			
189	17-36	DFDYTPNWGRGTPSSYIDNL			
190	18-37	FDYTPNWGRGTPSSYIDNLT			
191	19-38	DYTPNWGRGTPSSYIDNLTF			
192	20-39	YTPNWGRGTPSSYIDNLTFP			
193	21-40	TPNWGRGTPSSYIDNLTFPK			
194	22-41	PNWGRGTPSSYIDNLTFPKV			
195	23-42	NWGRGTPSSYIDNLTFPKVL			
196	24-43	WGRGTPSSYIDNLTFPKVLT			
197	25-44	GRGTPSSYIDNLTFPKVLTD ·			
198	26-45	RGTPSSYIDNLTFPKVLTDK			
199	27-46	GTPSSYIDNLTFPKVLTDKK			
200	28-47	TPSSYIDNLTFPKVLTDKKY			
201	8-28	QLAYLVKKIDFDYTPNWGRGT			
202	9-29	LAYLVKKIDFDYTPNWGRGTP			
203	10-30	AYLVKKIDFDYTPNWGRGTPS			
204	11-31	YLVKKIDFDYTPNWGRGTPSS			
205	12-32	LVKKIDFDYTPNWGRGTPSSY			
206	13-33	VKKIDFDYTPNWGRGTPSSYI			
207	14-34	KKIDFDYTPNWGRGTPSSYID			
208	15-35	KIDFDYTPNWGRGTPSSYIDN			
209	16-36	IDFDYTPNWGRGTPSSYIDNL			
210	17-37	DFDYTPNWGRGTPSSYIDNLT			
211	18-38	FDYTPNWGRGTPSSYIDNLTF			
212	19-39	DYTPNWGRGTPSSYIDNLTFP			
212	19-39	DITEMMONGITOOTTOWNIEL			

Fragment Number	Residues .	Sequence
213	20-40	YTPNWGRGTPSSYIDNLTFPK
214	21-41	TPNWGRGTPSSYIDNLTFPKV
215	22-42	PNWGRGTPSSYIDNLTFPKVL
216	23-43	NWGRGTPSSYIDNLTFPKVLT
217	24-44	WGRGTPSSYIDNLTFPKVLTD
218	25-45	GRGTPSSYIDNLTFPKVLTDK
219	26-46	RGTPSSYIDNLTFPKVLTDKK
220	27-47	GTPSSYIDNLTFPKVLTDKKY
221	28-48	TPSSYIDNLTFPKVLTDKKYS
222	7-28	FQLAYLVKKIDFDYTPNWGRGT
223	8-29	QLAYLVKKIDFDYTPNWGRGTP
224	9-30	LAYLVKKIDFDYTPNWGRGTPS
225	10-31	AYLVKKIDFDYTPNWGRGTPSS
226	11-32	YLVKKIDFDYTPNWGRGTPSSY
227	12-33	LVKKIDFDYTPNWGRGTPSSYI
228	13-34	VKKIDFDYTPNWGRGTPSSYID
229	14-35	-KKIDFDYTPNWGRGTPSSYIDN
230	15-36	KIDFDYTPNWGRGTPSSYIDNL
231	16-37	IDFDYTPNWGRGTPSSYIDNLT
232	17-38	DFDYTPNWGRGTPSSYIDNLTF
233	18-39	FDYTPNWGRGTPSSYIDNLTFP
234	19-40	DYTPNWGRGTPSSYIDNLTFPK
235	20-41	YTPNWGRGTPSSYIDNLTFPKV
236	21-42	TPNWGRGTPSSYIDNLTFPKVL
237	22-43	PNWGRGTPSSYIDNLTFPKVLT
238	23-44	NWGRGTPSSYIDNLTFPKVLTD
239	24-45	WGRGTPSSYIDNLTFPKVLTDK
240	25-46	GRGTPSSYIDNLTFPKVLTDKK
241	26-47	RGTPSSYIDNLTFPKVLTDKKY
242	27-48	GTPSSYIDNLTFPKVLTDKKYS
243	28-49	TPSSYIDNLTFPKVLTDKKYSY
244	6-28	TFQLAYLVKKIDFDYTPNWGRGT
245	7-29	FQLAYLVKKIDFDYTPNWGRGTP
246	8-30	QLAYLVKKIDFDYTPNWGRGTPS
247	9-31	LAYLVKKIDFDYTPNWGRGTPSS
248	10-32	AYLVKKIDFDYTPNWGRGTPSSY
249	11-33	YLVKKIDFDYTPNWGRGTPSSYI
250	12-34	LVKKIDFDYTPNWGRGTPSSYID
251	13-35	VKKIDFDYTPNWGRGTPSSYIDN
252	14-36	KKIDFDYTPNWGRGTPSSYIDNL
253	15-37	KIDFDYTPNWGRGTPSSYIDNLT
254	16-38	IDFDYTPNWGRGTPSSYIDNLTF
255	17-39	DFDYTPNWGRGTPSSYIDNLTFP

Fragment	Residues	Sequence
Number		Soquence
256	18-40	FDYTPNWGRGTPSSYIDNLTFPK
257	19-41	DYTPNWGRGTPSSYIDNLTFPKV
258	20-42	YTPNWGRGTPSSYIDNLTFPKVL
259	21-43	TPNWGRGTPSSYIDNLTFPKVLT
260	22-44	PNWGRGTPSSYIDNLTFPKVLTD
261	23-45	NWGRGTPSSYIDNLTFPKVLTDK
262	24-46	WGRGTPSSYIDNLTFPKVLTDKK
263	25-47	GRGTPSSYIDNLTFPKVLTDKKY
264	26-48	RGTPSSYIDNLTFPKVLTDKKYS
265	27-49	GTPSSYIDNLTFPKVLTDKKYSY
266	28-50	TPSSYIDNLTFPKVLTDKKYSYR
267	5-28	LTFQLAYLVKKIDFDYTPNWGRGT
268	6-29	TFQLAYLVKKIDFDYTPNWGRGTP
269	7-30	FQLAYLVKKIDFDYTPNWGRGTPS
270	8-31	QLAYLVKKIDFDYTPNWGRGTPSS
271	9-32	LAYLVKKIDFDYTPNWGRGTPSSY
272	10-33	AYLVKKIDFDYTPNWGRGTPSSYI
273	11-34	YLVKKIDFDYTPNWGRGTPSSYID
274	12-35	LVKKIDFDYTPNWGRGTPSSYIDN
275	13-36	VKKIDFDYTPNWGRGTPSSYIDNL
276	14-37	KKIDFDYTPNWGRGTPSSYIDNLT
277	15-38	KIDFDYTPNWGRGTPSSYIDNLTF
278	16-39	IDFDYTPNWGRGTPSSYIDNLTFP
279	17-40	DFDYTPNWGRGTPSSYIDNLTFPK
280	18-41	FDYTPNWGRGTPSSYIDNLTFPKV
281	19-42	DYTPNWGRGTPSSYIDNLTFPKVL
282	20-43	YTPNWGRGTPSSYIDNLTFPKVLT
283	21-44	TPNWGRGTPSSYIDNLTFPKVLTD
284	22-45	PNWGRGTPSSYIDNLTFPKVLTDK
285	23-46	NWGRGTPSSYIDNLTFPKVLTDKK
286	24-47	WGRGTPSSYIDNLTFPKVLTDKKY
287	25-48	GRGTPSSYIDNLTFPKVLTDKKYS
288	26-49	RGTPSSYIDNLTFPKVLTDKKYSY
289	27-50	GTPSSYIDNLTFPKVLTDKKYSYR
290	28-51	TPSSYIDNLTFPKVLTDKKYSYRV
291	4-28	SLTFQLAYLVKKIDFDYTPNWGRGT
292	5-29	LTFQLAYLVKKIDFDYTPNWGRGTP
293	6-30	TFQLAYLVKKIDFDYTPNWGRGTPS
294	7-31	FQLAYLVKKIDFDYTPNWGRGTPSS
295	8-32	QLAYLVKKIDFDYTPNWGRGTPSSY
296	9-33	LAYLVKKIDFDYTPNWGRGTPSSYI
297	10-34	AYLVKKIDFDYTPNWGRGTPSSYID
298	11-35	YLVKKIDFDYTPNWGRGTPSSYIDN

Fragment Number	Residues	Sequence					
299	12-36	LVKKIDFDYTPNWGRGTPSSYIDNL					
300	13-37	VKKIDFDYTPNWGRGTPSSYIDNLT					
301	14-38	KKIDFDYTPNWGRGTPSSYIDNLTF					
302	15-39	KIDFDYTPNWGRGTPSSYIDNLTFP					
303	16-40	IDFDYTPNWGRGTPSSYIDNLTFPK					
304	17-41	DFDYTPNWGRGTPSSYIDNLTFPKV					
305	18-42	FDYTPNWGRGTPSSYIDNLTFPKVL					
306	19-43	DYTPNWGRGTPSSYIDNLTFPKVLT					
307	20-44	YTPNWGRGTPSSYIDNLTFPKVLTD					
308	21-45	TPNWGRGTPSSYIDNLTFPKVLTDK					
309	22-46	PNWGRGTPSSYIDNLTFPKVLTDKK					
310	23-47	NWGRGTPSSYIDNLTFPKVLTDKKY					
311	24-48	WGRGTPSSYIDNLTFPKVLTDKKYS					
312	25-49	GRGTPSSYIDNLTFPKVLTDKKYSY					
313	26-50	RGTPSSYIDNLTFPKVLTDKKYSYR					
314	27-51	GTPSSYIDNLTFPKVLTDKKYSYRV					
315	28-52	TPSSYIDNLTFPKVLTDKKYSYRVV					
316	3-28	TSLTFQLAYLVKKIDFDYTPNWGRGT					
317	4-29	SLTFQLAYLVKKIDFDYTPNWGRGTP					
318	5-30	LTFQLAYLVKKIDFDYTPNWGRGTPS					
319	6-31	TFQLAYLVKKIDFDYTPNWGRGTPSS					
320	7-32	FQLAYLVKKIDFDYTPNWGRGTPSSY					
321	8-33	QLAYLVKKIDFDYTPNWGRGTPSSYI					
322	9-34	LAYLVKKIDFDYTPNWGRGTPSSYID					
323	10-35	AYLVKKIDFDYTPNWGRGTPSSYIDN					
324	11-36	YLVKKIDFDYTPNWGRGTPSSYIDNL					
325	12-37	LVKKIDFDYTPNWGRGTPSSYIDNLT					
326	13-38	VKKIDFDYTPNWGRGTPSSYIDNLTF					
327	14-39	KKIDFDYTPNWGRGTPSSYIDNLTFP					
328	15-40	KIDFDYTPNWGRGTPSSYIDNLTFPK					
329	16-41	IDFDYTPNWGRGTPSSYIDNLTFPKV					
330	17-42	DFDYTPNWGRGTPSSYIDNLTFPKVL					
331	18-43	FDYTPNWGRGTPSSYIDNLTFPKVLT					
332	19-44	DYTPNWGRGTPSSYIDNLTFPKVLTD					
333	20-45	YTPNWGRGTPSSYIDNLTFPKVLTDK					
334	21-46	TPNWGRGTPSSYIDNLTFPKVLTDKK					
335	22-47	PNWGRGTPSSYIDNLTFPKVLTDKKY					
336	23-48	NWGRGTPSSYIDNLTFPKVLTDKKYS					
337	24-49	WGRGTPSSYIDNLTFPKVLTDKKYSY					
338	25-50	GRGTPSSYIDNLTFPKVLTDKKYSYR					
339	26-51	RGTPSSYIDNLTFPKVLTDKKYSYRV					
340	27-52	GTPSSYIDNLTFPKVLTDKKYSYRVV					
341	28-53	TPSSYIDNLTFPKVLTDKKYSYRVVV					

Fragment	Residues	Sequence				
Number						
342	2-28	ATSLTFQLAYLVKKIDFDYTPNWGRGT				
343	3-29	TSLTFQLAYLVKKIDFDYTPNWGRGTP				
344	4-30	SLTFQLAYLVKKIDFDYTPNWGRGTPS				
345	5-31	LTFQLAYLVKKIDFDYTPNWGRGTPSS				
346	6-32	TFQLAYLVKKIDFDYTPNWGRGTPSSY				
347	7-33	FQLAYLVKKIDFDYTPNWGRGTPSSYI				
348	8-34	QLAYLVKKIDFDYTPNWGRGTPSSYID				
349	9-35	LAYLVKKIDFDYTPNWGRGTPSSYIDN				
350	10-36	AYLVKKIDFDYTPNWGRGTPSSYIDNL				
351	11-37	YLVKKIDFDYTPNWGRGTPSSYIDNLT				
352	12-38	LVKKIDFDYTPNWGRGTPSSYIDNLTF				
353	13-39	VKKIDFDYTPNWGRGTPSSYIDNLTFP				
354	14-40	KKIDFDYTPNWGRGTPSSYIDNLTFPK				
355	15-41	KIDFDYTPNWGRGTPSSYIDNLTFPKV				
356	16-42	IDFDYTPNWGRGTPSSYIDNLTFPKVL				
357	17-43	DFDYTPNWGRGTPSSYIDNLTFPKVLT				
358	18-44	FDYTPNWGRGTPSSYIDNLTFPKVLTD				
359	19-45	DYTPNWGRGTPSSYIDNLTFPKVLTDK				
360	20-46	YTPNWGRGTPSSYIDNLTFPKVLTDKK				
361	21-47	TPNWGRGTPSSYIDNLTFPKVLTDKKY				
362	22-48	PNWGRGTPSSYIDNLTFPKVLTDKKYS				
363	23-49	NWGRGTPSSYIDNLTFPKVLTDKKYSY				
364	24-50	WGRGTPSSYIDNLTFPKVLTDKKYSYR				
365	25-51	GRGTPSSYIDNLTFPKVLTDKKYSYRV				
366	26-52	RGTPSSYIDNLTFPKVLTDKKYSYRVV				
367	27-53	GTPSSYIDNLTFPKVLTDKKYSYRVVV				
368	28-54	TPSSYIDNLTFPKVLTDKKYSYRVVVN				
369	1-28	SATSLTFQLAYLVKKIDFDYTPNWGRGT				
370	2-29	ATSLTFQLAYLVKKIDFDYTPNWGRGTP				
371	3-30	TSLTFQLAYLVKKIDFDYTPNWGRGTPS				
372	4-31	SLTFQLAYLVKKIDFDYTPNWGRGTPSS				
373	5-32	LTFQLAYLVKKIDFDYTPNWGRGTPSSY				
374	6-33	TFQLAYLVKKIDFDYTPNWGRGTPSSYI				
375	7-34	FQLAYLVKKIDFDYTPNWGRGTPSSYID				
376	8-35	QLAYLVKKIDFDYTPNWGRGTPSSYIDN				
377	9-36	LAYLVKKIDFDYTPNWGRGTPSSYIDNL				
378	10-37	AYLVKKIDFDYTPNWGRGTPSSYIDNLT				
379	11-38	YLVKKIDFDYTPNWGRGTPSSYIDNLTF				
380	12-39	LVKKIDFDYTPNWGRGTPSSYIDNLTFP				
381	13-40	VKKIDFDYTPNWGRGTPSSYIDNLTFPK				
382	14-41	KKIDFDYTPNWGRGTPSSYIDNLTFPKV				
383	15-42	KIDFDYTPNWGRGTPSSYIDNLTFPKVL				
384	16-43	IDFDYTPNWGRGTPSSYIDNLTFPKVLT				

Fragment	Residues	Sequence
Number		
385	17-44	DFDYTPNWGRGTPSSYIDNLTFPKVLTD
386	18-45	FDYTPNWGRGTPSSYIDNLTFPKVLTDK
387	19-46	DYTPNWGRGTPSSYIDNLTFPKVLTDKK
388	20-47	YTPNWGRGTPSSYIDNLTFPKVLTDKKY
389	21-48	TPNWGRGTPSSYIDNLTFPKVLTDKKYS
390	22-49	PNWGRGTPSSYIDNLTFPKVLTDKKYSY
391	23-50	NWGRGTPSSYIDNLTFPKVLTDKKYSYR
392	24-51	WGRGTPSSYIDNLTFPKVLTDKKYSYRV
393	25-52	GRGTPSSYIDNLTFPKVLTDKKYSYRVV
394	26-53	RGTPSSYIDNLTFPKVLTDKKYSYRVVV
395	27-54	GTPSSYIDNLTFPKVLTDKKYSYRVVVN
396	28-55	TPSSYIDNLTFPKVLTDKKYSYRVVVNG

<u>.</u>

•

APPENDIX C: CRYSTAL COORDINATES OF FVE PROTEIN

```
XX-XXX-XX
                                                                  XXXX
  HEADER
   COMPND
            3
   REMARK
            3 REFINEMENT.
  REMARK
                            : REFMAC 5.0
                PROGRAM
   REMARK
            3
                          : MURSHUDOV, VAGIN, DODSON
            3
                AUTHORS
   REMARK
   REMARK
            3
                REFINEMENT TARGET : MAXIMUM LIKELIHOOD
            3
   REMARK
10 REMARK
               DATA USED IN REFINEMENT.
   REMARK
                                                       1.70
                RESOLUTION RANGE HIGH (ANGSTROMS) :
            3
   REMARK
                RESOLUTION RANGE LOW (ANGSTROMS) :
                                                      30.02
            3
   REMARK
                                        (SIGMA(F)) : NONE
                DATA CUTOFF
            3
   REMARK
                                               (%): 98.80
                COMPLETENESS FOR RANGE
15 REMARK
                                                        30783
                NUMBER OF REFLECTIONS
   REMARK
   REMARK
            3
               FIT TO DATA USED IN REFINEMENT.
   REMARK
                                                   : THROUGHOUT
                CROSS-VALIDATION METHOD
   REMARK
                FREE R VALUE TEST SET SELECTION : RANDOM
20 REMARK
                             (WORKING + TEST SET) : 0.18358
                 R VALUE
   REMARK
                                     (WORKING SET) : 0.18218
                 R VALUE
             3
   REMARK
                                                      0.21016
                 FREE R VALUE
   REMARK
                                               (8):
                                                      5.1
                 FREE R VALUE TEST SET SIZE
   REMARK
                                                     1650
                 FREE R VALUE TEST SET COUNT
25 REMARK
    REMARK
             3 FIT IN THE HIGHEST RESOLUTION BIN.
    REMARK
                                                              20
                 TOTAL NUMBER OF BINS USED
    REMARK
             3
                                                            1.701
                 BIN RESOLUTION RANGE HIGH
    REMARK
             3
                                                            1.745
                 BIN RESOLUTION RANGE LOW
30 REMARK
                                         (WORKING SET)
                                                             2183
                 REFLECTION IN BIN
    REMARK
             3
                                                            0.160
                                         (WORKING SET)
                 BIN R VALUE
    REMARK
                                                             114
                 BIN FREE R VALUE SET COUNT
    REMARK
                                                            0.197
                 BIN FREE R VALUE
    REMARK
 35 REMARK
                NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
    REMARK
                                                  1940
                 ALL ATOMS
    REMARK
    REMARK
                B VALUES.
              3
                                     (A**2) : NULL
(OVERALL, A**2) : 13.666
    REMARK
                 FROM WILSON PLOT
 40 REMARK
              3
                  MEAN B VALUE
              3
    REMARK
                  OVERALL ANISOTROPIC B VALUE.
    REMARK
                   B11 (A**2) :
                                   -0.02
              3
    REMARK
                   B22 (A**2) :
                                    -0.02
              3
     REMARK
                                     0.03
                   B33 (A**2) :
 45 REMARK
              3
                                     0.00
                   B12 (A**2) :
     REMARK
              3
                                     0.00
                   B13 (A**2) :
              3
     REMARK
                                     0.00
                   B23 (A**2):
              3
     REMARK
              3
     REMARK
                 ESTIMATED OVERALL COORDINATE ERROR.
 50 REMARK
                                                                            0.092
                                                                     (A):
                  ESU BASED ON R VALUE
     REMARK
                                                                            0.092
                                                                     (A):
                  ESU BASED ON FREE R VALUE
     REMARK
              3
                                                                            0.075
                                                                     (A):
                  ESU BASED ON MAXIMUM LIKELIHOOD
              3
                  ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD (A**2):
     REMARK
                                                                            2.208
               3
     REMARK
  55 REMARK
               3 CORRELATION COEFFICIENTS.
     REMARK
                                                           0.947
                   CORRELATION COEFFICIENT FO-FC
     REMARK
               3
                   CORRELATION COEFFICIENT FO-FC FREE:
                                                           0.933
               3
     REMARK
     REMARK
                                                                     RMS
                                                                            WEIGHT
                                                           COUNT
                 RMS DEVIATIONS FROM IDEAL VALUES
  60 REMARK
```

```
BOND LENGTHS REFINED ATOMS
   REMARK
                                                   (A):
                                                         1830 ; 0.010 ; 0.022
                BOND LENGTHS OTHERS
                                                         1593 ; 0.001 ; 0.020
   REMARK
                                                   (A):
            3
                                                         2490 ; 1.466 ; 1.941
   REMARK
            3
                BOND ANGLES REFINED ATOMS
                                             (DEGREES):
                                                         3724 ; 0.921 ; 3.000
   REMARK
                BOND ANGLES OTHERS
                                             (DEGREES):
                                                          224 ; 4.899 ; 3.000
  REMARK
                TORSION ANGLES, PERIOD 1
                                             (DEGREES):
   REMARK
            3
                TORSION ANGLES, PERIOD 3
                                             (DEGREES):
                                                          311 ;16.844 ;15.000
                                                (A**3):
                CHIRAL-CENTER RESTRAINTS
   REMARK
            3
                                                          280 ; 0.231 ; 0.200
   REMARK
                                                   (A):
            3
                GENERAL PLANES REFINED ATOMS
                                                         2026 ; 0.006 ; 0.020
   REMARK
            3
                GENERAL PLANES OTHERS
                                                    (A):
                                                          374 ; 0.003 ; 0.020
10 REMARK
                NON-BONDED CONTACTS REFINED ATOMS (A):
            3
                                                          327 ; 0.271 ; 0.300
                                                         1447 ; 0.212 ; 0.300
   REMARK
            3
                NON-BONDED CONTACTS OTHERS
                                                    (A):
                H-BOND (X...Y) REFINED ATOMS
   REMARK
            3
                                                    (A):
                                                          131 ; 0.131 ; 0.500
                SYMMETRY VDW REFINED ATOMS
   REMARK
            3
                                                    (A):
                                                            8 ; 0.310 ; 0.300
                SYMMETRY VDW OTHERS
                                                    (A):
                                                            17; 0.291; 0.300
   REMARK
            3
15 REMARK
                SYMMETRY H-BOND REFINED ATOMS
                                                           14 ; 0.144 ; 0.500
                                                    (A):
   REMARK
            3
               ISOTROPIC THERMAL FACTOR RESTRAINTS.
                                                         COUNT
                                                                  RMS
   REMARK
            3
                                                                         WEIGHT
   REMARK
            3
                MAIN-CHAIN BOND REFINED ATOMS (A**2):
                                                         1124 ; 0.898 ; 1.500
                MAIN-CHAIN ANGLE REFINED ATOMS (A**2):
   REMARK
            3
                                                         1827 ; 1.603 ; 2.000
20 REMARK
                                                          706; 2.292; 3.000
663; 3.839; 4.500
                SIDE-CHAIN BOND REFINED ATOMS
                                                (A**2):
   REMARK
            3
                SIDE-CHAIN ANGLE REFINED ATOMS (A**2):
   REMARK
               NCS RESTRAINTS STATISTICS
   REMARK
            3
   REMARK
                NUMBER OF NCS GROUPS : NULL
25 REMARK
            3
   REMARK
            3
   REMARK
            3
               TLS DETAILS
   REMARK
                NUMBER OF TLS GROUPS :
                                            2
   REMARK
            3
30 REMARK
                TLS GROUP :
            3
                 NUMBER OF COMPONENTS GROUP:
   REMARK
                               C SSSEQI
E : A 1
   REMARK
             3
                 COMPONENTS
                                               TO C SSSEQI
                 RESIDUE RANGE :
                                                  A 113
   REMARK
            3
   REMARK
                 ORIGIN FOR THE GROUP (A): 31.8380 34.4130 15.9540
            3
35 REMARK
             3
                 T TENSOR
                           0.0826 T22:
                                         0.0528
   REMARK
             3
                    T11:
                           0.0022 T12:
                    T33:
                                         0.0085
   REMARK
            3
                           0.0118 T23:
             3
                    T13:
                                         0.0066
   REMARK
                 L TENSOR
   REMARK
40 REMARK
                           0.3236 L22:
                                         1.6346
             3
                   L11:
                                        -0.4538
                          0.0319 L12:
   REMARK
                    L33:
            3
   REMARK
             3
                   L13:
                          -0.1060 L23:
                                        -0.1134
   REMARK
             3
                 S TENSOR
                           0.0668 S12:
                                         0.0317 S13:
                                                       0.0266
   REMARK
             3
                    S11:
45 REMARK
                          -0.0158 S22:
                                       -0.0508 S23:
                                                     -0.0656
                    S21:
             3
   REMARK
             3
                    S31:
                          -0.0111 S32:
                                        0.0027 s33: -0.0160
   REMARK
                                 2
    REMARK
             3
                 TLS GROUP :
                  NUMBER OF COMPONENTS GROUP:
   REMARK
             3
                                                   1
50 REMARK
                                    C SSSEQI
                  COMPONENTS
                                                TO C SSSEQI
             3
                                   В
                  RESIDUE RANGE:
    REMARK
             3
                                          1
                                                    В
                                                        112
                  ORIGIN FOR THE GROUP (A): 33.7580
    REMARK
                                                        2.5150 18.4210
    REMARK
             3
                  T TENSOR
             3
                    T11:
                           0.0638 T22:
                                          0.0608
   REMARK
55 REMARK
                           0.0227 T12:
             3
                    T33:
                                          0.0019
                          -0.0064 T23: -0.0055
    REMARK
                    T13:
    REMARK
             3
                  L TENSOR
    REMARK
             3
                    L11:
                           0.0923 L22:
                                         0.6926
             3
                           0.1427 L12:
                                        -0.1092
    REMARK
                    L33:
60 REMARK
             3
                    L13:
                          -0.1135 L23:
                                        -0.0160
                  S TENSOR
    REMARK
             3
                                        0.0276 S13: -0.0212
                           0.0096 S12:
    REMARK
             3
                    S11:
                    S21:
                          -0.0046 S22: ·-0.0327 S23: 0.0279
             3
    REMARK
```

```
REMARK
             3
                    S31: -0.0061 S32: -0.0095 S33:
                                                          0.0231
   REMARK
             3
   REMARK
             3
   REMARK
             3
                BULK SOLVENT MODELLING.
  REMARK
             3
                 METHOD USED: BABINET MODEL WITH MASK
   REMARK
             3
                 PARAMETERS FOR MASK CALCULATION
   REMARK
             3
                 VDW PROBE RADIUS
                                     :
                                          1.40
   REMARK
             3
                 ION PROBE RADIUS
                                          0.80
                 SHRINKAGE RADIUS
   REMARK
             3
                                          0.80
10 REMARK
             3
                OTHER REFINEMENT REMARKS:
   REMARK
   REMARK
                HYDROGENS HAVE BEEN ADDED IN THE RIDING POSITIONS
   REMARK
             3
   CISPEP
             1 THR A
                        28
                              PRO A
                                       29
                                                               0.00
15 CISPEP
             2 THR B
                       28
                              PRO B
                                      29
                                                               0.00
             97.118
                                61.413 90.00 90.00 90.00 P 43 21 2
   CRYST1
                       97.118
   SCALE1
                0.010297
                           0.000000
                                      0.000000
                                                       0.00000
                0.000000
                           0.010297
                                      0.000000
                                                       0.00000
   SCALE2
                0.000000
                          0.000000
                                      0.016283
                                                       0.00000
   SCALE3
20 ATOM
                                      39.758 17.815
              1 0
                      ACE A
                              0
                                                        6.621
                                                                1.00 32.04
                                                                                       0
   ATOM
              2
                 С
                      ACE A
                              0
                                      38.470
                                              17.959
                                                        6.297
                                                                1.00 30.44
   MOTA
              3
                 CA
                     ACE A
                              0
                                      37.841
                                              19.332
                                                        5.940
                                                               1.00 30.13
                                                                                       C
   MOTA
                                                                1.00 19.18
              4
                 N
                      SER A
                              1
                                      37.877
                                              16.775
                                                        5.643
                                                                                       N
                                                                1.00 17.19
              6
                 CA
                                      36.408
                                               16.741
                                                        5.468
   MOTA
                      SER A
                              1
                                                                                       C
25 атом
                                                                1.00 17.15
              8
                 CB
                      SER A
                              1
                                      35.991
                                               15.421
                                                        4.841
                                                                                       C
                                                        5.768
                                                                1.00 16.56
                                      36.194
                                               14.363
   ATOM
                 OG
                      SER A
                              1
                                                                                       0
             11
   ATOM
             13
                 С
                      SER A
                                      35.748
                                               16.842
                                                        6.834
                                                                1.00 16.94
                                                                                       C
                              1
   MOTA
             14
                 0
                      SER A
                              1
                                      36.412
                                               16.630
                                                        7.854
                                                                1.00 16.93
                                                                                       0
             17
                              2
                                      34.500
                                               17.297
                                                        6.850
   MOTA
                 N
                      ALA A
                                                                1.00 17.11
                                                                                       N
                                      33.637
                                               17.247
30 ATOM
             19
                 CA
                     ALA A
                              2
                                                        8.031
                                                                1.00 16.12
                                                                                       C
                                                                1.00 16.40
1.00 15.10
1.00 13.93
                              2
                                               17.465
                                                        7.619
   MOTA
             21
                 CB
                     ALA A
                                      32.200
                                                                                       C
   ATOM
             25
                 С
                      ALA A
                              2
                                      33.762
                                               15.907
                                                        8.757
   MOTA
             26
                 0
                      ALA A
                              2
                                      33.901
                                               15.848
                                                        9.975
                                                                                       0
                                                                1.00 14.66
             27
                      THR A
                                      33.680
                                               14.823
                                                        8.009
   ATOM
                 N
                              3
                                                                                       N
35 ATOM
             29
                                      33.773
                                               13.515
                                                        8.630
                                                                1.00 13.12
                 CA
                      THR A
                               3
                                                        7.599
                  CB
                                      33.497
                                                                1.00 13.38
   ATOM
             31
                      THR A
                               3
                                               12.440
                                               12.599
                                                                1.00 13.50
   ATOM
             33
                  OG1 THR A
                               3
                                      32.154
                                                        7.122
                                                                                       0
                                                                1.00 14.13
1.00 12.51
1.00 10.83
                                               11.067
   ATOM
             35
                  CG2 THR A
                               3
                                      33.517
                                                         8.238
                                                                                       С
             39
                               3
                                      35.111
                                               13.272
                                                         9.307
                                                                                       С
    MOTA
                  С
                      THR A
40 ATOM
                                      35.141
                                               12.780
                                                       10.440
             40
                  0
                      THR A
                               3
                                                                                       0
                                                                1.00 11.39
                                               13.578
    MOTA
             41
                  N
                      SER A
                               4
                                      36.216
                                                        8.632
                                                                                       N
                                                                1.00 12.60
   ATOM
             43
                  CA
                      SER A
                               4
                                      37.538
                                               13.356
                                                         9.244
                                                                                       C
             45
                  CB
                                      38.694
                                               13.609
                                                         8.266
                                                                1.00 13.31
                                                                                       C
    MOTA
                      SER A
                                                                1.00 19.57
    ATOM
             48
                  OG
                      SER A
                               4
                                      38.566
                                               14.874
                                                        7.668
45 ATOM
                                               14.223
             50
                                                        10.471
                                                                1.00 11.69
                  С
                               4
                                      37.726
                                                                                       C
                      SER A
    ATOM
             51
                  0
                      SER A
                               4
                                      38.223
                                               13.765
                                                        11.484
                                                                1.00 10.87
                                                                                       0
                                                                1.00 11.95
1.00 11.00
                                                        10.379
    MOTA
             52
                  N
                      LEU A
                               5
                                      37.331
                                               15.484
                                               16.382
                                                        11.515
             54
                                      37.478
    MOTA
                  CA
                      LEU A
                               5
                                                                                       C
                                                                1.00 11.44
             56
                  CB
                      LEU A
                                      37.047
                                               17.801
                                                        11.149
                                                                                       C
    ATOM
                               5
50 атом
                                               18.509
                                                                1.00 13.46
             59
                  CG
                      LEU A
                               5
                                      37.928
                                                        10.117
                                                                                       C
              61
                  CD1 LEU A
                                      37.267
                                               19.790
                                                         9.651
                                                                1.00 15.05
    ATOM
                                                      10.731
    ATOM
              65
                  CD2 LEU A
                               5
                                      39.270
                                               18.807
                                                                1.00 15.52
                                               15.900
                                                                1.00 10.25
              69
                      LEU A
                               5
                                      36.658
                                                       12.698
                                                                                        C
    ATOM
                  C
    ATOM
                      LEU A
             70
                  0
                               5
                                      37.114
                                               15.947
                                                        13.852
                                                                1.00
                                                                      9.79
                                                                                        0
55 ATOM
              71
                  N
                      THR A
                               6
                                       35.440
                                               15.446
                                                        12.417
                                                                 1.00
                                                                       9.51
                                                                                        N
                                               14.953
    MOTA
              73
                  CA
                      THR A
                               6
                                       34.547
                                                        13.459
                                                                 1.00
                                                                       9.80
                                                                                        C
              75
                  CB
                                      33.250
                                               14.425
                                                        12.840
                                                                       9.84
                                                                                        С
    ATOM
                      THR A
                               6
                                                                 1.00
                  OG1 THR A
    MOTA
              77
                               6
                                      32.454
                                               15.510
                                                        12.319
                                                                 1.00 10.30
                                                                                        0
                  CG2 THR A
    ATOM
              79
                               6
                                      32.388
                                               13.749
                                                        13.859
                                                                 1.00
                                                                       9.40
                                                                                        C
60 ATOM
              83
                                      35.186
                                               13.816
                                                        14.236
                                                                 1.00
                                                                       9.72
                       THR A
                               6
                                                                                        C
    ATOM
              84
                  0
                      THR A
                               6
                                      35.215
                                               13.845
                                                        15.451
                                                                 1.00
                                                                       9.30
                                               12.796
              85
                  N
                               7
                                      35.679
                                                        13.545
                                                                       9.95
                      PHE A
                                                                 1.00
    MOTA
                                                                                        N
              87
                  CA
                      PHE A
                               7
                                      36.185
                                               11.642
                                                        14.278
                                                                 1.00
                                                                       8.92
                                                                                        C
    MOTA
```

	- mov	0.0	CD 1	מוני א	7		35.993	10.367	13.490	1.00	3.90	С
	ATOM ATOM	89 92		PHE A	7 7		34.552	9.988	13.365		8.19	Ċ
	ATOM	93		PHE A	'n		33.848	9.583	14.485	1.00 1		С
	ATOM	95		PHE A	7		32.512	9.267	14.407		0.95	С
	ATOM	97		PHE A	7		31.848	9.370	13.217	1.00 1		С
	ATOM	99		PHE A	7		32.532	9.791	12.080		0.55	Ç
	ATOM	101		PHE A	7		33.872	10.127	12.165		0.65	C
	MOTA	103		PHE A			37.603	11.819	14.812		9.58	C
	ATOM	104		PHE A			37.970	11.203	15.811		9.17	0
10	ATOM	105		GLN A			38.405	12.669	14.177	1.00 1.00 1	9.36	N C
	MOTA	107		GLN A			39.683	12.999	14.778 13.891	1.00 1		C
	ATOM	109		GLN A			40.476	13.937 13.322	12.692	1.00 1		č
	MOTA	112		GLN A			41.097 41.805	14.419	11.894	1.00 1		Č
15	MOTA	115 116		GLN A GLN A			41.409	14.742	10.787	1.00 2		Ō
15	ATOM ATOM	117		GLN A			42.799	15.056	12.517		0.28	N
	ATOM	120		GLN A			39.409	13.716	16.116	1.00 1		С
	ATOM	121		GLN A			40.049	13.416	17.118	1.00 1		0
	ATOM	122		LEU A			38.457	14.654	16.122	1.00	9.95	N
20	ATOM	124	CA	LEU A	. 9	1	38.145	15.413	17.332	1.00	9.62	C
	MOTA	126		LEU A			37.162	16.537	17.057	1.00	9.66	C C
	MOTA	129		LEU A			36.767	17.375	18.278	1.00	9.80	C
	MOTA	131		LEU P			37.974	18.098 18.397	18.862 17.886		2.75	č
25	ATOM	135		LEU F			35.701 37.541	14.467	18.346	1.00	9.58	Č
25	ATOM ATOM	139 140	C O	LEU F			37.935	14.484	19.514	1.00	9.46	0
	ATOM	141	N	ALA A			36.588	13.637	17.917	1.00	9.20	N
	ATOM	143	CA	ALA A			35.952	12.701	18.856	1.00	9.03	C
	ATOM	145	CB	ALA A	A 10)	34.875	11.850	18.154	1.00	8.72	C
30	MOTA	149	C	ALA A			36.949	11.802	19.605	1.00	8.50	C
	MOTA	150	0	ALA A			36.855	11.615	20.825	1.00 1.00	8.50 9.18	O N
	MOTA	151	N	TYR A			37.918	11.242 10.359	18.899 19.541	1.00	8.12	C
	ATOM	153	CA	TYR A			38.865 39.716	9.664	18.491	1.00	8.30	č
35	MOTA	155 158	CB CG	TYR A			40.642	8.638	19.075	1.00	7.61	C
33	MOTA MOTA	159	CD1				40.156	7.495	19.699	1.00	9.07	С
	ATOM	161	CE1				41.008	6.560	20.229	1.00		С
	ATOM	163	CZ	TYR			42.359	6.768	20.170	1.00		C
	ATOM	164	OH	TYR :	A 1		43.210	5.831	20.740	1.00		0
40	ATOM	166		TYR .			42.868	7.898	19.571	1.00		C
	ATOM	168	CD2				42.014	8.827	19.027 20.530	1.00 1.00	8.66	c
	MOTA	170	C	TYR			39.752 40.158	11.139 10.596		1.00	8.96	ŏ
	MOTA	171	0	TYR			40.136	12.412	20.245	1.00	8.35	N
45	MOTA	172	N	LEU LEU		2 2	40.899	13.238				C
43	MOTA MOTA	174 176	CA CB	LEU		2	41.501	14.374		1.00	10.19	С
	ATOM	179	CG	LEU		2	42.469	13.943	19.152		15.33	С
	ATOM	181		LEU		2	43.187	15.145			18.28	C
	MOTA	185		LEU		.2	43.464	12.905			18.55	C
50	MOTA	189	С	LEU		.2	40.242	13.812	22.351		9.19	C O
	MOTA	190		LEU		.2	40.851				10.13	й
	MOTA	191		VAL		.3	39.010				8.52	Č
	MOTA	193		VAL		.3	38.357 38.013				8.78	Č
55	MOTA	195 197		VAL VAL		.3 .3	39.251				10.74	C
رر	MOTA MOTA	201		VAL		13	36.864				9.49	C
	ATOM	205		VAL		13	37.131			1.00	8.44	C
	ATOM	206		VAL		13	36.592		24.947	1.00	8.60	0
	ATOM	207		LYS		4	36.709	13.218			8.48	Й
60		209		LYS	A :	14	35.583				8.98	C
	MOTA	211	. CB	LYS		14	35.771					C
	MOTA	214		LYS		14	37.127				7.66 8.44	C
	MOTA	217	CD	LYS	Α.	14	37.513	10.044	± 43.334	<u></u>	0.44	

)

	ATOM	220	CE	LYS	A 1	L4	38.818	9.318	24.229	1.00 7.68	С
	ATOM	223	NZ	LYS	A 1	4	39.160	8.416	23.087	1.00 7.55	N
	ATOM	227	С	LYS	A 1	L 4	34.187	12.932	23.465	1.00 10.23	Č
	ATOM	228	0	LYS			33.306	12.332	22.864	1.00 9.28	ŏ
5	ATOM	229	N	LYS		L 5	33.976	14.083	24.089	1.00 10.78	N
	ATOM	231	CA	LYS		L 5	32.636	14.648	24.202	1.00 12.04	C
	ATOM	233	CB	LYS		1.5	32.058	14.428	25.615	1.00 13.87	c
	ATOM	236	CG	LYS		1.5	30.626	14.970	25.767	1.00 18.29	Ċ
	ATOM	239	CD	LYS		1.5	30.411	15.838	26.991	1.00 25.35	c
10	ATOM	242	CE	LYS		15	29.648	17.144	26.648	1.00 26.80	C
	ATOM	245	NZ	LYS		15	30.479	18.398	26.848	1.00 28.04	N
	ATOM	249	C	LYS		15	32.701	16.124	23.876	1.00 20.04	C
	ATOM	250	ŏ	LYS		15	33.603	16.825	24.333	1.00 12.92	o
	ATOM	251	N	ILE		16	31.770	16.587	23.054	1.00 12.32	N
15	ATOM	253	CA	ILE		16	31.631	18.011	22.795	1.00 11.71	C
	ATOM	255	CB	ILE		16	32.644	18.502	21.769	1.00 12.21	c
	ATOM	257		ILE		16	32.966	19.980	22.019	1.00 12.21	c
	ATOM	260		ILE		16	34.167	20.459	21.239	1.00 12.01	C
	ATOM	264		ILE		16	32.154	18.226	20.357	1.00 10.07	C
20	ATOM	268	C	ILE		16	30.193	18.273	22.375	1.00 12.02	c
	ATOM	269	ŏ	ILE		16	29.515	17.396	21.835	1.00 10.05	0
	ATOM	270	N	ASP		17	29.729	19.495	22.614	1.00 10.03	N
	ATOM	272	CA	ASP		17	28.357	19.861	22.315	1.00 11.36	C
	ATOM	274	CB	ASP		17	27.503	19.570	23.548	1.00 12.18	c
25	ATOM	277	ĊĠ	ASP		17	26.019	19.854	23.363	1.00 13.83	Č
	ATOM	278		ASP		17	25.558	20.190	22.262	1.00 14.93	Ö
	ATOM	279		ASP		17	25.207	19.726	24.327	1.00 17.34	ő
	ATOM	280	C	ASP		17	28.354	21.342	22.018	1.00 10.94	č
	ATOM	281	0	ASP		17	28.505	22.158	22.930	1.00 12.08	ŏ
30	ATOM	282	N	PHE		18	28.220	21.709	20.754	1.00 9.97	N
	ATOM	284	CA	PHE	A :	18	28.208	23.121	20.420	1.00 9.42	Ċ
	ATOM	286	CB	PHE	A :	18	29.621	23.630	20.070	1.00 9.10	Ċ
	ATOM	289	CG	PHE	A :	18	30.262	22.990	18.849	1.00 9.30	Č
	ATOM	290	CD1	PHE	A :	18	31.457	22.269	18.966	1.00 11.84	Č
35	ATOM	292	CE1	PHE	A :	18	32.069	21.704	17.850	1.00 11.09	Ċ
	ATOM	294	cz	PHE	A :	18	31.520	21.860	16.619	1.00 10.73	C
	ATOM	296		PHE		18	30.335	22.573	16.470	1.00 11.19	С
	ATOM	298		PHE		18	29.725	23.157	17.586	1.00 8.90	С
40	ATOM	300	С	PHE		18	27.226	23.431	19.299	1.00 9.78	C
40	ATOM	301	0	PHE		18	26.794	22.537	18.568	1.00 9.84	0
	MOTA	302	N	ASP		19	26.899	24.711	19.156	1.00 10.97	N
	ATOM	304	CA	ASP		19	26.059	25.169	18.060	1.00 10.37	С
	MOTA	306	CB	ASP		19 ·	24.575	25.130	18.429	1.00 10.87	. C
4 ~	ATOM	309	CG	ASP		19	23.674	25.452	17.267	,1.00 11.55	С
43	ATOM	310		ASP		19	24.180	25.843	16.178	1.00 11.30	0
	ATOM	311		ASP		19	22.418	25.322	17.350	1.00 12.10	0
	ATOM	312	C	ASP		19	26.497	26.590	17.705	1.00 10.71	С
	MOTA	313	0	ASP		19	26.136	27.575	18.388	1.00 10.19	0
50	ATOM	314	N	TYR		20	27.297	26.678	16.646	1.00 10.10	N
50	ATOM	316	CA	TYR		20	27.788	27.942	16.103	1.00 9.68	С
	ATOM	318	CB	TYR		20	29.308	27.879	15.911	1.00 9.82	С
	ATOM	321	CG	TYR		20	30.089	28.043	17.181	1.00 8.36	С
	ATOM	322		TYR		20	30.459	26.943	17.934	1.00 9.01	С
55	ATOM	324		TYR		20	31.175	27.087	19.115	1.00 9.44	С
55		326	CZ	TYR		20	31.514	28.335	19.546	1.00 10.02	С
	ATOM	327	OH	TYR		20	32.228	28.469	20.703	1.00 9.07	0
	ATOM	329		TYR		20	31.167	29.441	18.804	1.00 10.02	С
	ATOM	331	CD2			20	30.451	29.303	17.648	1.00 8.62	С
60	ATOM	333	C	TYR		20	27.054	28.282	14.786	1.00 10.92	С
60	ATOM	334	0	TYR		20	27.600	28.930	13.878	1.00 11.60	0
	ATOM	335	N	THR		21	25.800	27.857	14.694	1.00 12.18	N
	ATOM	337	CA	THR		21	24.980	28.261	13.567	1.00 12.37	С
	ATOM	339	CB	THR	A	21	23.584	27.692	13.676	1.00 12.82	,c

	MOTA	341	റദ1	THR .	A	21	23.623	26.259	13.737	1.00		0
	ATOM			THR		21	22.832	27.997	12.401	1.00		C
	ATOM			THR		21	24.871	29.776	13.598	1.00		C
	ATOM			THR		21	24.445	30.332	14.595	1.00		0
	ATOM		N	PRO		22	25.259	30.460	12.528	1.00		N
_	ATOM		CA	PRO		22	25.263	31.917	12.549	1.00		C
	ATOM		CB	PRO		22	26.214	32.276	11.409	1.00		C
	ATOM		CG	PRO		22	26.064	31.150	10.423		12.51	C
	ATOM		CD	PRO		22	25.773	29.925	11.259		12.22	C
.0	ATOM		С	PRO	A	22	23.890	32.509	12.337		12.87	C
	ATOM	362	0	PRO	Α	22	23.281	32.302	11.282		14.33	О И
	ATOM		N	ASN	Α	23	23.405	33.202	13.363		12.69	C
	ATOM	365	CA	ASN		23	22.145	33.920	13.285		12.96	c
	ATOM	367	CB	ASN		23	21.290	33.568	14.497		13.22	c
l5	ATOM	370	CG	ASN		23	20.761	32.141	14.427		16.73	Ö
	ATOM	371		ASN		23	19.705	31.904	13.821		22.06 18.52	N
	MOTA	372	ND2	ASN		23	21.511	31.174	14.977		12.31	. C
	ATOM	375	С	ASN		23	22.449	35.415	13.208 14.185		12.34	Ö
	MOTA	376	0	ASN		23	22.904	36.007 36.016	12.048		12.92	N
20		377	N	TRP		24	22.216	37.408	11.814		12.37	Ċ
	ATOM	379	CA	TRP		24	22.554 22.990	37.400	10.367		13.22	Ċ
	MOTA	381	CB	TRP		24	24.130	36.740	9.944	1.00	12.12	C
	ATOM	384	CG	TRP		24 24	24.130	35.556	9.279		11.86	С
35	ATOM	385		TRP		24	25.292	35.046	9.042		13.92	N
25		387	NE1	TRP TRP		24	26.230	35.904	9.547		11.19	С
	MOTA	389 390		TRP		24	25.536	36.989	10.123		10.96	С
	MOTA	391		TRP		24	26.276	38.003	10.726	1.00	11.62	С
	ATOM ATOM	393		TRP		24	27.660	37.925	10.707	1.00	13.20	C
30		395		TRP		24	28.317	36.833	10.136	1.00	11.66	C
50	ATOM	397	CZ2			24	27.619	35.814	9.545	1.00	10.81	Ç
	ATOM	399	C	TRP		24	21.343	38.268	12.120	1.00	12.73	C
	ATOM	400	Ō	TRE	Α	24	20.282		11.532		13.03	0
	MOTA	401	N	GLY	Α	25	21.488		13.029		12.00	И С
35		403	CA	GLY	Α	25	20.370		13.398		11.21	C
	MOTA	406	С	GLY		25	20.495		12.706		11.71	ŏ
	MOTA	407	0	GL		25	21.592		12.603		11.79	N
	MOTA	408	N	ARC		26	19.375		12.233 11.486		12.49	Č
	MOTA	410	CA	ARC		26	19.388		10.267		12.94	Č
40		412	CB	ARC		26	18.460 18.999		9.202		16.01	С
	ATOM	415	CG	ARC			18.019		8.062		20.32	С
	MOTA	418	CD		3 A		18.565				24.78	N
	MOTA	421	NE CZ		3 A 3 A		19.426				25.04	С
15	ATOM ATOM	423 424		1 AR			19.860				29.16	N
43	ATOM	427		2 AR			19.863			1.00	0 19.47	N
	ATOM	430	C		G A		19.010			1.00	0 12.60	С
	ATOM	431	ŏ		G A		18.369		13.398		0 12.88	0
	MOTA	432	N		Y A		19.413				0 12.77	N
50		434	CA		Y A		19.17				0 12.32	C
-	ATOM	437	C		Y A		18.09				0 13.21	C
	ATOM	438	0		Y A		17.16				0 11.98	0
	ATOM	439	N		R P		18.20				0 14.26	N C
	ATOM	441	CA	TH	RF	28	17.26				0 14.60	C
55		443		TH	RF	A 28	16.52				0 13.94	0
	ATOM	445	OG	1 TH			15.80				0 12.38	
	MOTA	447	CG	2 TH			15.46				0 14.06	
	ATOM	451	С		IR A		18.03				0 15.60 0 15.37	
	ATOM	452			IR A		18.82				0 17.62	
60		453			10 I		17.87				0 17.02	_
	MOTA	454			10 2		17.02				0 17.70	
	MOTA	456			10		16.95				0 17.70	
	MOTA	459	e co	j PI	RO I	A 29	18.21	1 51.65	, ,,,,,,			

_	TO14	462 CD PRO A 29	18.513 52.1	09 8.878	1.00 17.56	С
	TOM		17.586 48.7	772 8.752	1.00 17.76	С
	MOT	405 0 2210	18.751 48.5	9.061	1.00 16.07	0
	MOT		16.742 47.8	373 8.242	1.00 18.81	N
	MOT		17.050 46.4		1.00 18.37	С
	MOT	469 CA SER A 30 471 CB SER A 30	15.805 45.6		1.00 18.99	C
	MOTA	471 CB SBR A 30	15.343 45.9		1.00 20.21	0
	MOTA	474 OG SER A 30	18.169 46.0		1.00 17.73	· Č
	MOTA	477 O SER A 30	18.593 44.		1.00 17.30	0
	MOTA	478 N SER A 31	18.638 47.	019 6.442	1.00 17.71	N
	MOTA MOTA	480 CA SER A 31	19.762 46.		1.00 16.65	C
		482 CB SER A 31	19.806 47.		1.00 16.79	C
	MOTA MOTA	485 OG SER A 31	19.921 49.		1.00 17.30	0
	MOTA	487 C SER A 31	21.098 46.		1.00 16.11	C
	MOTA	488 O SER A 31		365 5.704	1.00 15.78	0
	MOTA	489 N TYR A 32		032 7.597	1.00 14.64	N C
	MOTA	491 CA TYR A 32		896 8.439	1.00 14.65	C
	ATOM	493 CB TYR A 32		046 9.422	1.00 14.98	c
	ATOM	496 CG TYR A 32		334 8.714	1.00 18.51	c
20 7		497 CD1 TYR A 32		674 8.496	1.00 21.23	C
	MOTA	499 CE1 TYR A 32		838 7.829	1.00 23.56	č
	MOTA	501 CZ TYR A 32		7.369	1.00 24.54 1.00 26.67	ŏ
	ATOM	502 OH TYR A 32		.830 6.706	1.00 28.87	č
	ATOM	504 CE2 TYR A 32		.341 7.555	1.00 23.37	č
	ATOM	506 CD2 TYR A 32		.174 8.225	1.00 21.00	Č
	MOTA	508 C TYR A 32		.591 9.229	1.00 13.02	ŏ
	MOTA	509 O TYR A 32		.198 9.725 .911 9.286	1.00 13.10	N
	MOTA	510 N ILE A 33		.911 9.286 .751 10.157	1.00 12.63	C
	MOTA	512 CA ILE A 33		.754 9.534	1.00 12.46	, C
	MOTA	514 CB ILE A 33		.259 8.180	1.00 15.30	С
	MOTA	516 CG1 ILE A 33		.668 8.218	1.00 17.61	C
	MOTA	519 CD1 ILE A 33		.551 10.448	1.00 12.99	С
	MOTA	523 CG2 ILE A 33 527 C ILE A 33		.290 11.450	1.00 12.11	C
0.5	ATOM			.828 11.452	1.00 11.53	0
35	ATOM	-	23.471 44	.131 12.551	1.00 12.39	N
	ATOM			.688 13.831	1.00 11.42	C
	ATOM	531 CA ASP A 34 533 CB ASP A 34		3.171 14.607	1.00 11.00	C
	MOTA MOTA	536 CG ASP A 34	22.217 46	5.584 14.234		C
40	ATOM	537 OD1 ASP A 34	22.658 47	7.096 13.183		0
70	ATOM	538 OD2 ASP A 34	21.399 47	7.223 14.951		o c
	MOTA	539 C ASP A 34		3.675 14.723		Ö
	ATOM	540 O ASP A 34	25.317 44	4.056 15.621		N
	MOTA	541 N ASN A 35		2.394 14.504	1.00 10.16	C
45	MOTA	543 CA ASN A 35		1.393 15.433		č
	ATOM	545 CB ASN A 35		1.450 16.727		č
	ATOM	548 CG ASN A 35		1.273 16.473		ō
	MOTA	549 OD1 ASN A 35		0.167		N
	ATOM	550 ND2 ASN A 35				C
50	MOTA	553 C ASN A 35		9.977 14.875 9.693 13.82		0
	MOTA	554 O ASN A 35		9.087 15.60		N
	MOTA	555 N LEU A 36		7.689 15.26		C
	MOTA	557 CA LEU A 36	27.042 3	7.442 14.75		С
	MOTA	559 CB LEU A 36		6.000 14.53		С
55		562 CG LEU A 36		5.300 13.48		С
	ATOM	564 CD1 LEU A 36		35.986 14.16		С
	MOTA	568 CD2 LEU A 36		36.881 16.53	5 1.00 10.20	С
	MOTA	572 C LEUA 36 573 O LEUA 36		37.111 17.53	9 1.00 10.03	0
C 0	MOTA			35.941 16.50	2 1.00 10.24	Ŋ
60				35.099 17.66	1.00 10.84	C
	MOTA	576 CA THR A 37 578 CB THR A 37		35.234 18.06	3 1.00 11.04	C
	MOTA	580 OG1 THR A 37		36.591 18.42	21 1.00 12.32	0
	ATOM	J00 002 1mm n 0.				

	ATOM	582	CG2	THR A	37	22.397	34.382	19.308	1.00 11.78	С
	ATOM	586	C	THR A		24.484	33.647	17.365		
	ATOM	587							1.00 10.36	C
			0	THR A		24.103	33.128	16.314	1.00 11.69	0
_	ATOM	588	N	PHE A		25.183	33.002	18.288	1.00 10.33	N
5	MOTA	590	CA	PHE A	38	25.435	31.568	18.220	1.00 10.67	. C
	MOTA	592	CB	PHE A	38	26.892	31.285	18.520	1.00 10.97	C
	ATOM	595	CG	PHE A		27.844	31.792	17.480	1.00 9.37	Č
	ATOM	596		PHE A		28.952	32.543	17.835	1.00 10.78	
	ATOM									C
10		598		PHE A		29.844	32.982	16.879	1.00 10.42	C
10	MOTA	600	CZ	PHE A		29.659	32.667	15.590	1.00 12.03	С
	ATOM	602		PHE A		28.559	31.898	15.215	1.00 10.68	С
	ATOM	604	CD2	PHE A	38	27.660	31.476	16.146	1.00 10.68	С
	ATOM	606	C.	PHE A	38	24.595	30.912	19.303	1.00 11.13	C
	ATOM	607	o ·	PHE A		24.678	31.328	20.444	1.00 11.20	ō
15	ATOM	608	N	PRO A		23.777	29.911	18.995	1.00 11.41	N
	ATOM	609	CA	PRO A		22.920	29.317			
	ATOM							20.033	1.00 11.03	C
		611	CB	PRO A		22.047	28.347	19.251	1.00 11.55	С
	MOTA	614	CG	PRO A		22.138	28.792	17.827	1.00 11.41	C
	MOTA	617	CD	PRO A	39	23.501	29.337	17.671	1.00 10.69	С
20	MOTA	620	С	PRO P	39	23.593	28.585	21.186	1.00 10.78	С
	ATOM	621	0	PRO A	39	23.007	28.537	22.272	1.00 11.13	0
	ATOM	622	N	LYS F		24.756	27.986	20.961	1.00 10.03	Ŋ
	ATOM	624	CA	LYS A		25.420	27.246	22.033	1.00 10.05	
	ATOM	626	CB							C
25				LYS A		24.930	25.808	22.100	1.00 11.81	C
25	ATOM	629	CG	LYS F		25.329	25.153	23.413	1.00 15.47	C
	MOTA	632	CD	LYS F		25.020	23.673	23.445	1.00 21.03	C
	ATOM	635	CE	LYS A		25.654	23.024	24.665	1.00 26.85	С
	ATOM	638	NZ	LYS A	4 40	24.928	23.362	25.917	1.00 35.22	N
	MOTA	642	С	LYS A	4 40	26.939	27.297	21.877	1.00 11.13	С
30	ATOM	643	0	LYS A	40	27.540	26.454	21.211	1.00 11.86	O
	ATOM	644	N	VAL A		27.549	28.310	22.479	1.00 10.84	N
	ATOM	646	CA	VAL A		28.995	28.462	22.410	1.00 10.68	C
	ATOM	648	CB	VAL A						C
						29.449	29.903	22.641	1.00 10.07	C
25	ATOM	650		VAL A		28.907	30.826	21.533	1.00 10.33	C
35	ATOM	654		VAL A		29.040	30.419	24.007	1.00 10.45	С
	ATOM	658	С	VAL A		29.690	27.564	23.425	1.00 11.85	C
	ATOM	659	0	VAL A	41	29.093	27.111	24.425	1.00 12.38	0
	MOTA	660	N	LEU A	A 42	30.957	27.305	23.165	1.00 13.03	N
	ATOM	662	CA	LEU A	A 42	31.803	26.664	24.159	1.00 15.12	С
40	ATOM	664	CB	LEU A		33.126	26.219	23.556	1.00 14.97	C
	ATOM	667	CG	LEU A		32.873	25.139	22.491	1.00 15.42	č
	ATOM	669		LEU A		34.128	24.763	21.705	1.00 16.85	č
	ATOM	673		LEU A						
						32.303	23.917	23.125	1.00 17.26	C
15	ATOM	677	C	LEU A		32.012	27.709	25.245	1.00 17.87	С
45		678	0			32.083	28.897		1.00 17.12	0
	ATOM	679	N	THR A	A 43	32.171	27.279	26.476	1.00 21.75	N
	ATOM	681	CA	THR A	A 43	32.188	28.272	27.549	1.00 24.61	С
	ATOM	683	CB	THR A	A 43	30.761	28.365	28.043	1.00 24.82	C
	MOTA	685	OG1	THR A		29.883	29.292	27.424	1.00 27.15	ō
50	ATOM	687		THR A		30.199	27.229	28.835	1.00 24.68	č
•	ATOM	691	C					28.620		
				THR I		33.197	27.863		1.00 26.54	Ç
	MOTA	692	0	THR A		33.185	28.377	29.738	1.00 27.45	0
	MOTA	693	N	ASP I		34.103	26.963	28.249	1.00 28.93	N
	ATOM	695	CA	ASP A	A 44	35.103	26.469	29.179	1.00 29.14	С
55	MOTA	697	CB	ASP I	A 44	35.855	25.271	28.602	1.00 28.74	C
	MOTA	700	CG	ASP 2	A 44	36.401	25.521	27.217	1.00 28.34	č
	ATOM	701		ASP		37.572	25.172	26.990	1.00 26.28	Ö
	ATOM	702		ASP I		35.734		26.286	1.00 24.46	
							26.028			0
۲۸	MOTA	703	C	ASP A		36.063	27.575	29.547	1.00 30.53	C
60	ATOM	704	0	ASP A		36.513	27.663	30.699	1.00 30.19	0
	MOTA	705	N	LYS :			28.422	28.568	1.00 31.95	N
	MOTA	707	CA	LYS .	A 45		29.547	28.790	1.00 31.72	С
	ATOM	709	CB	LYS :			29.244	28.320	1.00 31.90	Č
					-		-			•

,...

					_	4	20 071	00 445	26.860	1.00 32.28
	ATOM	712	CG	LYS		45	38.971	29.445 28.149	26.171	1.00 32.20
	ATOM	715	CD	LYS		45	39.201			1.00 33.73
	ATOM '	718	CE	LYS		45	40.448	27.462	26.609	1.00 36.70
_	ATOM	721	NZ	LYS		45	40.509	26.190	25.855	1.00 30.70
5	ATOM	725	C	LYS		45	36.715	30.803	28.140	1.00 31.38
	ATOM	726	0	LYS		45	35.679	30.756	27.482	
	MOTA	727	N	LYS		46	37.399	31.925	28.352	1.00 31.71
	ATOM	729	CA	LYS		46	36.910	33.224	27.903	1.00 29.44
	ATOM	731	CB	LYS		46	37.338	34.330	28.875	1.00 30.08
10	MOTA	734	CG	LYS		46	38.819	34.397	29.144	1.00 32.08
	ATOM	737	CD	LYS		46	39.083	34.836	30.591	1.00 35.03
	MOTA	740	CE	LYS		46	40.571	34.941	30.910	1.00 36.79
	ATOM	743	NZ	LYS		46	40.827	34.716	32.367	1.00 37.85
	MOTA	747	С	LYS	Α	46	37.335	33.551	26.488	1.00 26.70
15	ATOM	748	0	LYS	Α	46	38.347	34.201	26.240	1.00 26.57
	MOTA	749	N	TYR	Α	47	36.542	33.083	25.544	1.00 24.74
	MOTA	751	CA	TYR	A	47	36.802	33.387	24.144	1.00 20.86
	MOTA	753	CB	TYR	Α	47	35.966	32.476	23.252	1.00 19.97
	MOTA	756	CG	TYR	Α	47	36.251	31.026	23.482	1.00 17.82
20	ATOM	757	CD1	TYR	Α	47	35.393	30.240	24.244	1.00 17.29
	MOTA	759	CE1	TYR	Α	47	35.654	28.910	24.468	1.00 17.53
	ATOM	761	CZ	TYR	Α	47	36.797	28.346	23.956	1.00 16.67
	MOTA	762	OH	TYR	Α	47	37.076	27.005	24.174	1.00 20.90
	ATOM	764	CE2	TYR	Α	47	37.670	29.109	23.205	1.00 17.26
25	ATOM	766	CD2	TYR	Α	47	37.395	30.446	22.984	1.00 16.93
	ATOM	768	С	TYR	Α	47	36.482	34.836	23.806	1.00 18.65
	MOTA	769	0	TYR	Α	47	35.575	35.432	24.361	1.00 19.20
	MOTA	770	N	SER	Α	48	37.229	35.388	22.863	1.00 16.14
	ATOM	772	CA	SER	Α	48	36.957	36.716	22.329	1.00 14.79
30	ATOM	774	CB	SER	Α	48	38.168	37.624	22.472	1.00 15.65
	MOTA	777	OG	SER	A	48	38.434	37.890	23.830	1.00 17.92
	ATOM	779	С	SER		48	36.638	36.586	20.852	1.00 12.87
	ATOM	780	0	SER		48	36.836		20.255	1.00 11.78
	MOTA	781	N	TYR		49	36.173		20.249	1.00 10.68
35	MOTA	783	CA	TYR		49	35.870		18.822	1.00 11.65
	MOTA	785	CB	TYR		49	34.362		18.580	1.00 11.29
	ATOM	788	CG	TYR		49	33.668		19.256	1.00 10.85
	MOTA	789	CD:			49	33.098	36.593		1.00 10.38
	MOTA	791		l TYP			32.475			1.00 10.61
40	MOTA	793	CZ	TYF		49	32.404			1.00 12.03 1.00 13.62
	MOTA	794	OH	TYF			31.781			1.00 13.02
	MOTA	796		2 TYF			32.980			1.00 10.96
	MOTA	798	CD.				33.598			1.00 11.17
4 ~	ATOM	800	C	TYF			36.446	38.895	18.119 18.564	
45		801	0			49		40.028	17.004	1.00 12.07
	ATOM	802	N	ARC			37.122			1.00 13.41
	ATOM	804					37.603			1.00 13.03
	MOTA	806					38.983			1.00 15.89
	MOTA	809					39.542			1.00 19.76
50		812					40.799			
	MOTA	815					41.825			
	MOTA	817			3 A		42.474			
	MOTA	818		1 AR			43.391			
	MOTA	821		2 AR			42.224			
55	MOTA	824			G A		36.632			
	ATOM	825			G A		36.175			1.00 12.78
	MOTA	826			L A		36.338			
	MOTA	828			L A		35.419			
	MOTA	830			L A		34.20			
60		832		1 VA			33.34			1.00 12.65
	ATOM	836		32 VA			33.38			
	ATOM	840			L P		36.16			
	MOTA	841	L O	VA	L A	A 51	36.85	1 43.15	3 12.738	1.00 13.27

	ATOM	842	N	VAL .		52 ·	36.074	41.685	11.206	1.00 14.90		
	ATOM	844	CA	VAL		52	36.768 37.834	42.287 41.307	10.070 9.534	1.00 14.9	-	
	ATOM ATOM	846 848	CB	VAL .		52 52	38.577	41.908	8.360	1.00 15.5		
5	ATOM	852		VAL		52	38.819	40.945	10.636	1.00 15.6		
,	ATOM	856	C	VAL		52	35.733	42.590	8.981	1.00 15.2		
	ATOM	857	Ö	VAL		52	35.001	41.691	8.577	1.00 14.9		
	ATOM	858	N	VAL		53	35.680	43.840	8.506	1.00 15.3		
	ATOM	860	CA	VAL		53	34.663	44.255	7.542	1.00 16.3	6 C	
10	ATOM	862	СВ	VAL	A	53	33.805	45.395	8.090	1.00 16.5	0 C	
	ATOM	864		VAL	Α	53	32.827	45.905	7.043	1.00 16.9		
	ATOM	868	CG2	VAL	A	53	33.037	44.923	9.314	1.00 16.6	8 ° C	
	ATOM	872	С	VAL		53	35.366	44.712	6.284	1.00 17.9		
	ATOM	873	0	VAL		53	36.121	45.670	6.321	1.00 17.8		
15	ATOM	874	И	ASN		54	35.099	44.024	5.182	1.00 19.8		
	MOTA	876	CA	ASN		54	35.764	44.316	3.916	1.00 20.9 1.00 20.7		
	ATOM	878	CB	ASN		54	35.225 33.946	45.606 45.408	3.324 2.504	1.00 20.7		
	ATOM	881 882	CG	ASN ASN		54 54	33.395	46.382	1.976	1.00 20.0		
20	ATOM ATOM	883		ASN		54	33.474	44.168	2.388	1.00 18.4		
20	ATOM	886	C	ASN		54	37.281	44.421	4.100	1.00 22.0		
	MOTA	887	ŏ	ASN		54	37.924	45.291	3.513	1.00 22.8		
	ATOM	888	N	GLY		55	37.851	43.545	4.924	1.00 23.6		
	MOTA	890	CA	GLY		55	39.288	43.532	5.134	1.00 22.5		
25	MOTA	893	С	GLY		55	39.767	44.478	6.212	1.00 22.0		
	MOTA	894	0	GLY		55	40.936	44.441	6.586	1.00 22.0		
	ATOM	895	N	SER		56	38.883	45.332	6.712	1.00 21.2		
	MOTA	897	CA	SER		56	39.268	46.257	7.764	1.00 20.8		
20	ATOM	899	CB	SER		56 56	38.434 38.925	47.521 48.496	7.666 8.556	1.00 21.1		
30	ATOM ATOM	902 904	OG C	SER SER		56 56	39.068	45.628	9.138	1.00 19.9		
	ATOM	905	Ö	SER		56	37.961	45.229	9.477	1.00 18.8		
	MOTA	906	N	ASP		57	40.129	45.590	9.937	1.00 19.2		
	ATOM	908	CA	ASP		57	40.100	44.953	11.252	1.00 19.0)5 C	
35	ATOM	910	CB	ASP	A	57	41.547	44.599	11.610	1.00 19.3		
	MOTA	913	CG	ASP		57	41.704	43.926	12.947	1.00 20.0	67 C	
	ATOM	914		ASP		57	40.717	43.476	13.545	1.00 19.9		
	MOTA	915		ASP		57	42.833	43.786	13.472	1.00 25.2		
40	MOTA	916	C	ASP		57	39.483	45.908	12.263	1.00 18.0		
40	MOTA	917	0	ASP LEU		57 58	40.031 38.337	46.992 45.517	12.524 12.823	1.00 17.		
	MOTA MOTA	918 920	N CA	LEU		58	37.660	46.339	13.821	1.00 17.		
	ATOM	922	CB	LEU		58	36.140	46.283	13.638	1.00 17.		
	ATOM	925	CG	LEU		58	35.587	46.711	12.271	1.00 18.		<u>:</u>
45	ATOM	927		LEU		58	34.067	46.915	12.314	1.00 18.	79 C	
	MOTA	931	CD2	LEU	Α	58	36.271	47.970	11.777	1.00 20.		
	ATOM	935	C	LEU		58	38.058	45.955	15.248	1.00 17.		
	ATOM	936	0	LEU		58	37.539	46.510	16.221	1.00 17.		
	MOTA	937	N	GLY		59	38.978	45.010		1.00 16.		
50		939	CA	GLY		59	39.503	44.667	16.686	1.00 16.		
	ATOM	942	C	GLY		59	38.781	43.524		1.00 16. 1.00 13.		
	ATOM	943	0	GLY		59 60	37.953 39.070	42.845 43.377		1.00 16.		
	ATOM ATOM	944 946	N CA	VAL VAL		60	38.664	42.216		1.00 16.		
55		948	CB	VAL		60	39.909	41.452				
55	ATOM	950		L VAL		60	39.536	40.267		1.00 17.	82 C	;
	ATOM	954		VAL		60	40.719	40.997		1.00 17.	98 C	7
	ATOM	958	C	VAL		60	37.883	42.635	20.638	1.00 17.	13 0	;
	ATOM	959	0	VAI		60	38.254	43.594				
60	MOTA	960	N	GLU	JA	61	36.806	41.913				
	ATOM	962		GLU		61	35.954	42.215				
	ATOM	964		GLU		61	34.759					
	ATOM	967	CG	GLU	ΙA	61	35.079	44.412	20.956	1.00 20.	64 C	ذ

	_	
1		
- 1	••	,

	MOTA	970	CD C	GLU A	61	35.548			1.00 24.07
	ATOM	971		GLU A	61	35.294			1.00 25.24
	ATOM	972		GLU A	61	36.174			1.00 24.17
	ATOM	973		GLU A	61	35.477			1.00 18.17
	MOTA	974	_	GLU A	61	35.387	39.870	21.972	1.00 15.50
-	ATOM	975		SER A	62	35.171	40.917	23.964	1.00 19.13
	ATOM	977		SER A	62	34.710	39.697	24.634	1.00 20.18
	ATOM	979		SER A	62	35.838	39.109	25.479	1.00 20.45
	ATOM	982		SER A	62	36.229	40.016	26.499	1.00 21.81
10	ATOM	984		SER A	62	33.488	39.884	25.537	1.00 20.19
	ATOM	985		SER A	62	32.920	38.912	26.038	1.00 20.33
	ATOM	986		ASN A	63	33.073	41.120	25.735	1.00 20.95
	ATOM	988		ASN A	63	32.043	41.388	26.729	1.00 21.35
	ATOM	990		ASN A	63	32.310	42.725	27.418	1.00 22.62
15	ATOM	993		ASN A	63	31.947	43.893	26.582	1.00 26.10
	ATOM	994		ASN A	63	31.697	44.985	27.106	1.00 33.95
	ATOM	995		ASN A	63	31.936	43.704	25.268	1.00 38.69
	ATOM	998	С	ASN A	63	30.655	41.248	26.135	1.00 19.66
	ATOM	999	0	ASN A	63	29.954	42.221	25.801	1.00 20.53
20	ATOM	1000	N	PHE A	64	30.318	39.982	25.925	1.00 17.32
	ATOM	1002	CA	PHE A	64	29.024	39.592	25.437	1.00 15.47
	ATOM	1004	CB	PHE A	64	29.125	39.076	23.995	1.00 14.91
	ATOM	1007	CG	PHE A	64	29.885	40.014	23.077	1.00 13.87
	ATOM	1008	CD1	PHE A	64	29.388	41.270	22.792	1.00 14.13
25	MOTA	1010	CE1	PHE A	64	30.091	42.136	21.982	1.00 14.78
	ATOM	1012	CZ	PHE A	64	31.299	41.748	21.441	1.00 12.67
	ATOM	1014	CE2	PHE A	64	31.808	40.511	21.723	1.00 13.44
	MOTA	1016	CD2	PHE A	64	31.108	39.644	22.529	1.00 13.11
	MOTA	1018	С	PHE A	64	28.561	38.496	26.376	1.00 14.27 1.00 12.73
30	MOTA	1019	0	PHE A	64	29.242	37.490	26.585	
	ATOM	1020	N	ALA A		27.382	38.708	26.928	1.00 14.30 1.00 14.41
	MOTA	1022	CA	ALA A		26.782	37.806	27.875	1.00 14.45
	MOTA	1024	CB	ALA A		25.441	38.380	28.300 27.282	1.00 14.45
	MOTA	1028	С	ALA A		26.581	36.424	26.098	1.00 15.01
35		1029	0	ALA A		26.244	36.311	28.086	1.00 15.36
	MOTA	1030	N	VAL A		26.796	35.389	27.683	1.00 15.61
	ATOM	1032	CA	VAL A		26.427	34.049 32.994	27.972	1.00 15.66
	MOTA	1034	СВ	VAL A		27.484	31.609	27.592	1.00 17.06
40	MOTA	1036				26.958	33.275	27.215	1.00 16.50
40		1040	CG2			28.754	33.766	28.476	1.00 15.70
	ATOM	1044	C	VAL A		25.158 25.098	33.700	29.705	1.00 17.12
	ATOM	1045		VAL A		24.115	33.379	27.777	1.00 15.06
	MOTA	1046		THR A		22.854	33.106	28.439	1.00 15.98
45	ATOM	1048		THR F		21.681	33.345	27.491	1.00 15.54
45		1050				21.794	32.535	26.311	1.00 14.59
	MOTA	1052		THR A		21.718		26.958	1.00 15.99
	MOTA	1054		THR A		22.910		29.016	
	MOTA	1058		THR A		23.742			
50	MOTA	1059				22.150			
50		1060		PRO I		22.093			
	ATOM	1061		PRO 2		20.997			
	ATOM	1063		PRO 2		21.101			
	MOTA	1066				21.436			1.00 18.90
55	ATOM	1069		PRO		21.826			1.00 20.21
٦.		1072		PRO .		22.274			1.00 19.65
	MOTA	1073		SER .		21.145			1.00 22.19
	MOTA	1074 1074				20.918			1.00 21.01
	MOTA					19.822			1.00 21.48
6	MOTA O	1079 1083				20.198			1.00 21.75
O		108		SER		22.18			1.00 20.29
	ATOM	108		SER		22.27			
	MOTA	108		GLY		23.18			
	MOTA	700	J 14	2117	/0	==		•••	

	ATOM	1087	CA	GLY A	A 70	24.455	28.736	26.089	1.00 16.37	C
	ATOM	1090	C	GLY A		24.635		24.941	1.00 14.59	č
	ATOM	1091	0	GLY A		25.655	29.678	24.275	1.00 14.71	0
	ATOM	1092	N	GLY A	A 71	23.655	30.564	24.707	1.00 12.55	N
5	ATOM	1094	CA	GLY A		23.758		23.587	1.00 11.79	Ċ
9										
	ATOM	1097	С	GLY A	A 71	24.646	32.689	23.872	1.00 11.04	С
	ATOM	1098	0	GLY A	A 71	24.827	33.109	25.024	1.00 11.27	0
	ATOM	1099	N	GLN A		25.209		22.807	1.00 10.97	
										N
	ATOM	1101	CA	GLN A		26.016	34.462	22.914	1.00 10.54	С
10	ATOM	1103	CB	GLN A	A 72	27.497	34.125	23.115	1.00 10.98	С
	ATOM	1106	CG	GLN A		28.414		23.430	1.00 12.20	č
	ATOM	1109	CD	GLN A		29.834	34.862	23.853	1.00 15.65	С
	ATOM	1110	OE1	GLN A	A 72	30.449	35.487	24.742	1.00 17.66	0
	ATOM	1111		GLN A		30.354		23.222	1.00 10.29	
15										N
15		1114	С	GLN A		25.807		21.675	1.00 11.06	С
	ATOM	1115	0	GLN A	A 72	25.877	34.821	20.533	1.00 11.31	0
	ATOM	1116	N	THR A		25.535		21.904	1.00 10.95	N
	ATOM	1118	CA	THR A		25.337		20.830	1.00 9.80	С
	ATOM	1120	CB	THR A	A 73	24.021	38.290	21.035	1.00 10.73	C
20	MOTA	1122	OG1	THR A		22.912	37.385	21.013	1.00 11.04	ō
20										
	MOTA	1124	CG2	THR A		23.786		19.891	1.00 10.78	C
	ATOM	1128	С	THR A	A 73	26.475	38.540	20.782	1.00 9.92	С
	ATOM	1129	0	THR A	A 73	26.722		21.745	1.00 10.19	^
							30.554			
0.5	MOTA	1130	N	ILE A		27.161		19.643	1.00 9.37	N
25	MOTA	1132	CA	ILE A	A 74	28.232	39.493	19.364	1.00 10.19	C
	ATOM	1134	CB	ILE A	A 74	29.235	38.855	18.371	1.00 10.48	С
	ATOM	1136								č
				ILE 2		29.843		18.972	1.00 12.71	С
	ATOM	1139	CD1	ILE A	A 74	30.471	36.666	17.946	1.00 16.05	С
	ATOM	1143	CG2	ILE A	A 74	30.296	39.860	17.986	1.00 10.70	С
30	ATOM	1147	C	ILE		27.609		18.756		č
50									1.00 10.18	
	MOTA	1148	0	ILE A		27.052		17.660	1.00 11.08	0
	MOTA	1149	N	ASN .	A 75	27.674	41.851	19.489	1.00 9.17	N
	ATOM	1151	CA	ASN .		27.079		19.040	1.00 9.50	Ċ
	MOTA	1153	CB	ASN .		26.600		20.274	1.00 9.51	С
35	MOTA	1156	CG	ASN 3	A 75	25.994	45.177	19.950	1.00 10.45	С
	MOTA	1157	001	ASN .		25.558		18.827	1.00 9.62	0
	ATOM	1158		ASN .		25.931		20.959	1.00 12.30	N
	MOTA	1161	С	ASN .	A 75	28.050	43.975	18.248	1.00 9.58	С
	ATOM	1162	0	ASN .	A 75	28.992		18.807	1.00 10.09	Ō
40	ATOM	1163	N	PHE		27.817		16.945		
70									1.00 10.23	N
	MOTA	1165	CA	PHE .	A 76	28.751	44.809	16.087	1.00 10.31	C
	MOTA	1167	CB	PHE .	A 76	28.464	44.552	14.610	1.00 10.82	C
	MOTA	1170	CG	PHE		28.596		14.199	1.00 11.07	č
										С
	ATOM	1171		PHE .		29.568		14.737	1.00 13.37	С
45	ATOM	1173	CE1	PHE .	A 76	29.681	40.936	14.328	1.00 10.49	С
	ATOM	1175	CZ	PHE		28.820		13.411	1.00 10.42	
										C
	MOTA	1177		PHE.		27.856		12.865	1.00 11.96	C
	ATOM	1179	CD2	PHE	A 76	27.746	42.568	13.258	1.00 12.00	C
	MOTA	1181	С	PHE		28.780		16.409	1.00 10.53	
50	ATOM									C
20	MOTA	1182	0	PHE		29.743		16.059	1.00 10.34	0
	ATOM	1183	N	LEU	A 77	27.746	46.826	17.073	1.00 10.19	N
	ATOM	1185	CA	LEU		27.754		17.446	1.00 11.27	
										С
	ATOM	1187	CB	LEU		26.443		18.120	1.00 11.26	C
	MOTA	1190	CG	LEU	A 77	25.267	7 48.913	17.154	1.00 12.41	С
55	ATOM	1192		LEU		24.989		16.232		č
23									1.00 12.55	С
	ATOM	1196	CD2	LEU		23.977		17.911	1.00 13.90	С
	MOTA	1200	С	LEU	A 77	28.933		18.368	1.00 12.07	C
	ATOM	1201	0	LEU		29.399		18.371	1.00 13.10	0
_	ATOM	1202	N	GLN	A 78	29.416	47.580	19.112	1.00 12.87	N
60	ATOM	1204	CA	GLN		30.562		20.011	1.00 13.30	Ċ
- •										
	ATOM	1206	CB	GLN		30.588			1.00 13.42	С
	MOTA	1209	CG	GLN	A 78	29.408	3 46.690	22.022	1.00 14.19	C
	ATOM	1212	CD	GLN		29.25			1.00 17.92	Č
						47.20.	5.550		x: , JE	C

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

ATOM

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

MOTA

ATOM

MOTA

MOTA

MOTA

ATOM

MOTA

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

ATOM

MOTA

MOTA

ATOM

MOTA

MOTA

MOTA

50 ATOM

55 ATOM

60

ATOM

40 ATOM

MOTA

15

20

25

30

35

45

23.165 . 1.00 20.68 0 45.045 78 28.141 OE1 GLN A 1213 1.00 21.02 45.212 23.726 30.316 78 NE2 GLN A 1214 1.00 14.14 19.231 31.892 47.837 GLN A 78 1217 С 1.00 16.34 19.774 48.303 32.905 78 GLN A 1218 0 1.00 13.44 47.398 17.979 31.896 79 TYR A 1219 N 1.00 13.76 17.143 47.443 33.101 79 TYR A 1221 CA 1.00 13.39 16.311 46.165 33.220 TYR A 79 1223 CB 17.041 1.00 12.44 44.856 33.402 TYR A 79 c CG 1226 1.00 11.93 17.117 34.649 44.249 CD1 TYR A 79 1227 1.00 11.71 43.040 17.755 34.816 CE1 TYR A 79 C 1229 1.00 12.16 18.310 42.414 33.712 79 TYR A 0 1231 CZ 1.00 13.43 41.215 18.929 79 33.873 1232 TYR A C OH 1.00 10.82 18.239 43.002 32.463 79 CE2 TYR A 1234 1.00 11.32 17.607 44.204 32.319 CD2 TYR A 79 С 1236 1.00 14.75 48.571 16.111 33.092 79 TYR A 1238 C 0 1.00 14.73 15.600 48.964 34.154 79 TYR A 1239 0 1.00 15.93 N 15.786 49.072 31.899 ASN A 80 1240 N C 1.00 15.93 14.614 49.928 31.702 80 CA ASN A С 1242 1.00 15.91 13.619 49.164 30.814 ASN A 80 1244 CB С 1.00 17.60 12.203 49.703 30.884 80 1247 CG ASN A 0 1.00 22.84 11.507 29.863 49.757 80 OD1 ASN A 1248 N 1.00 16.39 11.767 50.104 32.067 80 ND2 ASN A С 1249 1.00 16.30 14.941 51.293 31.101 ASN A 80 1252 C 0 1.00 16.27 14.220 51.789 30.238 . ASN A 80 1253 0 N 1.00 16.66 16.042 51.881 31.559 LYS A 81 1254 N C 1.00 17.75 16.448 53.238 31.166 LYS A 81 CA С 1256 1.00 18.72 15.485 15.279 54.274 31.753 LYS A 81 1258 CB C 1.00 22.17 54.164 33.275 LYS A 81 CG C 1261 1.00 28.26 16.494 34.098 53.637 1264 CD LYS A 81 C 1.00 31.88 17.816 54.432 33.999 LYS A 81 1267 N CE 1.00 34.98 18.908 53.895 34.916 LYS A 81 C 1270 NZ 1.00 17.22 16.590 53.445 29.660 LYS A 81 1274 С 0 1.00 16.93 54.507 16.230 29.139 81 LYS A 0 1275 N 1.00 16.00 17.115 17.393 52.429 28.969 1276 N GLY A 82 C 1.00 16.21 52.523 27.546 82 GLY A 1278 CA C 1.00 16.87 16.232 52.249 26.612. GLY A 82 0 1281 C 1.00 16.37 16.362 25.406 27.152 52.461 GLY A 82 1282 0 N 1.00 16.99 51.772 15.111 83 TYR A 1283 C N 1.00 17.84 51.425 13.958 26.342 TYR A 83 1285 CA C 1.00 18.95 12.735 26.751 52.240 83 C TYR A CB 1287 1.00 24.21 53.678 12.816 26.375 TYR A 83 C 1290 CG 1.00 29.21 12.373 54.103 25.138 TYR A 83 С 1291 CD1 1.00 31.15 12.440 55.428 24.775 TYR A 83 C 1293 CE1 1.00 32.63 25.660 56.351 12.956 TYR A 83 O CZ 1295 1.00 35.54 13.016 25.291 57.680 TYR A 83 С 1296 OH 1.00 31.21 13.404 55.954 26.906 83 CE2 TYR A C 1298 1.00 28.33 54.618 13.327 27.258 TYR A 83 Ċ 1300 CD2 1.00 16.45 13.590 49.990 26.576 TYR A 83 O C 1302 1.00 16.18 49.438 13.854 27.652 TYR A 83 0 N 1303 1.00 14.45 25.570 49.372 12.982 GLY A 84 C 1304 N 1.00 14.93 12.430 48.049 25.761 84 1306 CA GLY A 1.00 15.19 11.109 48.187 26.514 GLY A 84 0 1309 С 1.00 15.50 10.757 49.273 27,001 GLY A 84 N 0 1310 1.00 15.19 47.099 10.353 26.565 C 85 1311 N VAL A 1.00 15.08 47.043 9.112 27.352 85 VAL A CA 1313 1.00 15.27 9.143 28.332 45.860 VAL A 85 С CB 1315 1.00 15.21 7.872 45.794 29.157 85 VAL A C CG1 1317 1.00 15.25 45.956 10.329 29.255 85 C CG₂ VAL A 1321 1.00 15.53 7.911 46.873 26.438 VAL A 85 1325 C 1.00 14.72 7.910 46.025 25.551 85 1326 0 VAL A 1.00 15.80 6.875 26.648 47.673 86 C ALA A 1327 N 1.00 16.04 5.698 47.548 25.802 ALA A 86 CA 1.00 16.32 1329 48.488 4.631 26,250 86 CB ALA A 1331

	ATOM	1335	С	ALA A	4 86	25.861	46.128	E 106	1 00 15 55	-
	ATOM	1336	ŏ					5.186	1.00 15.57	С
				ALA A		26.941	45.575	5.059	1.00 15.01	0
	MOTA	1337	N	ASP P	A 87	24.708	45.558	4.842	1.00 16.64	N
	ATOM	1339	CA	ASP F	¥ 87	24.658	44.160	4.402		
5	MOTA	1341	CB						1.00 16.37	С
				ASP A		23.253		4.495	1.00 16.92	C
	MOTA	1344	CG	ASP A	A 87	22.293	44.088	3.472	1.00 17.15	C
	ATOM	1345	OD1	ASP A	A 87	21.117	43.677	3.520	-	
	MOTA	1346		ASP A					1.00 17.33	0
						22.615	44.920	2.605	1.00 17.89	0
• •	ATOM	1347	. C	ASP A	¥ 87	25.316	43.899	3.046	1.00 16.95	C
10	ATOM	1348	0	ASP A	87	25.392	42.753	2.623	1.00 16.19	
	MOTA	1349	N	THR A						0
						25.812	44.949	2.398	1.00 18.29	N
	ATOM	1351	CA	THR A		26.566	44.803	1.146	1.00 17.50	C
	ATOM	1353	CB	THR A	88	26.427	46.084	0.327	1.00 17.73	
	ATOM	1355	റദ1	THR A		26.702				С
15	ATOM						47.225	1.150	1.00 16.82	0
13		1357		THR A		25.020	46.269	-0.109	1.00 18.14	С
	ATOM	1361	С	THR A	88	28.052	44.563	1.361	1.00 17.57	
	ATOM	1362	0	THR A		28.820				Ç
	ATOM						44.404	0.409	1.00 16.74	0
		1363	N	LYS A		28.477	44.594	2.609	1.00 17.46	N
	ATOM	1365	CA	LYS A	89	29.871	44.389	2.919	1.00 17.25	C
20	ATOM	1367	CB	LYS A	89	30.312	45.388			C
	ATOM	1370						3.978	1.00 17.22	С
			CG	LYS A		30.058	46.844	3.579	1.00 18.92	C
	ATOM	1373	CD	LYS A	89	30.818	47.788	4.471	1.00 22.27	C
	MOTA	1376	CE	LYS A	89	30.590	49.242	4.055		0
	ATOM	1379	NZ	LYS A					1.00 25.20	C
25						31.208	50.160	5.042	1.00 29.86	N
23	ATOM	1383	С	LYS A	89	30.069	42.968	3.411	1.00 17.09	C
	MOTA	1384	0	LYS A	89	29.122	42.311	3.818	1.00 16.84	0
	ATOM	1385	N	THR A						0
	ATOM					31.300	42.493	3.343	1.00 17.10	N
		1387	CA	THR A		31.662	41.181	3.842	1.00 16.27	С
	MOTA	1389	CB	THR A	90	32.860	40.644	3.086	1.00 17.13	Č
30	ATOM	1391	OG1	THR A	90	32.533	40.515			
	ATOM	1393						1.704	1.00 15.79	0
				THR A		33.199	39.226	3.543	1.00 17.35	C
	MOTA	1397	C	THR A	90	32.068	41.322	5.296	1.00 15.60	С
	ATOM	1398	0	THR A	90	32.930	42.137	5.613		
	ATOM	1399	N	ILE A					1.00 14.66	0
35						31.451	40.543	6.170	1.00 15.11	N
33	MOTA	1401	CA	ILE A	91	31.823	40.561	7.577	1.00 14.05	С
	ATOM	1403	CB	ILE A	91	30.596	40.777	8.475	1.00 14.05	ĕ
	ATOM	1405	CG1	ILE A		29.771				C
	ATOM						41.971	7.995	1.00 13.77	C
		1408		ILE A		28.482	42.119	8.725	1.00 15.25	C
	ATOM	1412	CG2	ILE A	91	31.039	40.924	9.949	1.00 13.82	Č
40	ATOM	1416	С	ILE A		32.435	39.221	7.914		_
	ATOM	1417							1.00 14.03	C
			0	ILE A		31.795	38.191	7.702	1.00 14.85	0
	MOTA	1418	N	GLN A	92	33.679	39.230	8.382	1.00 12.86	N
	MOTA	1420	CA	GLN A	92	34.298	38.028	8.919		
	MOTA	1422	CB	GLN A					1.00 13.25	C
45						35.678	37.818	8.338	1.00 14.29	C
73	MOTA	1425	CG	GLN A		35.645	37.428	6.904	1.00 16.51	C
	MOTA	1428	CD	GLN A	92	37.020	37.515	6.275	1.00 21.30	C
	ATOM	1429		GLN A		37.536				
	ATOM	1430					36.517	5.775	1.00 25.59	0
				GLN A		37.627	38.701	6.319	1.00 23.68	N
	ATOM	1433	С	GLN A	92	34.443	38.120	10.423	1.00 12.74	C
50	ATOM	1434	0	GLN A		34.914	39.127			
	ATOM	1435						10.940	1.00 12.27	0
			N	VAL A		34.072	37.051	11.115	1.00 11.90	N
	ATOM	1437	CA	VAL A	93	34.217	36.985	12.564	1.00 11.73	C
	MOTA	1439	CB	VAL A		32.865	36.841	13.257		_
	ATOM	1441							1.00 11.43	С
55				VAL A		33.048	36.856	14.771	1.00 12.22	C
55	MOTA	1445	CG2	VAL A	93	31.925	37.956	12.809	1.00 12.10	Ċ
	MOTA	1449	С	VAL A		35.118	35.797	12.912		_
	ATOM								1.00 11.97	С
		1450	0	VAL A		34.953	34.707	12.379	1.00 11.23	0
	ATOM	1451	N	PHE A	94	36.096	36.055	13.773	1.00 11.48	N
	ATOM	1453	CA	PHE A		37.069	35.064	14.188	1.00 12.22	
60	ATOM	1455	CB							С
55				PHE A		38.473	35.563	13.871	1.00 12.62	С
	ATOM	1458	CG	PHE A		38.736	35.743	12.404	1.00 12.77	C
	ATOM	1459	CD1	PHE A	94	38.345	36.900	11.763	1.00 14.64	č
	ATOM	1461		PHE A						C
				מ שווי	. 54	38.598	37.083	10.420	1.00 16.13	С

ATTOM 1463 CZ: PHE A 94	39.255 36.106 9.711 1.00 15.54
AION 1405 GE	39 660 34 948 10.345 1.00 16.06
AIOM 1403 CLE TIPE TO CA	39.409 34.768 11.682 1.00 13.20
	36.984 34.837 15.681 1.00 12.26
Alon 1100	36 882 35 794 16.458 1.00 11.72
J AIOM 14.0	36 998 33 581 16.097 1.00 12.66
AIOH TOTAL	37 063 33 304 17.530 1.00 13.63
Alon 11.0 of	36 390 31 976 17.924 1.00 13.74
Alon 2110	27 054 30 809 17.246 1.00 15.18
Alon 21	36 307 31 814 19.473 1.00 15.16
TO ATOM THE TOTAL TOTAL	39 554 33 362 17.882 1.00 13.85
AIOH	39 399 32.777 17.203 1.00 13.33
Alon 2100	39 862 34 116 18.924 1.00 14.98
ATOM 1407	40 221 34 355 19 364 1.00 16.25
ATOM 1405 OIL	40 478 35 868 19.524 1.00 16.70
IJ AIOM 1431	41 904 36 141 20.002 1.00 17.91
ATOM 1493 CG1 VAL A 96	40 202 36 576 18.209 1.00 17.10
ATOM 1457	40 466 33 634 20.691 1.00 17.27
ATOM 1501 C VAL A 96	39 695 33 788 21.641 1.00 16.34
ATOM 1302	41 522 32 830 20.726 1.00 18.96
20 ATOM 1503 N ILE A 97	41 842 32 001 21.883 1.00 20.35
ATOM 1505 CA ILE A 97	42 745 30.808 21.453 1.00 20.22
ATOM 1507 CB ILE A 97	42 107 30 040 20.289 1.00 19.14
ATOM 1509 CG1 ILE A 97	40 750 29 510 20 588 1.00 18.75
ATOM 1512 CD1 ILE A 97	43 031 29 889 22.639 1.00 20.66
25 ATOM 1516 CG2 ILE A 97	42 545 32 863 22,925 1.00 22.26
ATOM 1520 C ILE A 97	43 457 33 599 22.579 1.00 22.69
ATOM 1521 O ILE A 97	42 099 32 814 24.176 1.00 24.62
ATOM 1522 N PRO A 98	42 733 33 599 25.240 1.00 26.52
ATOM 1523 CA PRO A 98	41 778 33 441 26.426 1.00 25.97
30 ATOM 1525 CB PRO A 98	40 990 32 213 26.153 1.00 25.73
ATOM 1528 CG PRO A 98	40.942 32.054 24.669 1.00 24.63
ATOM 1531 CD PRO A 98	44 114 33 108 25.621 1.00 28.91
ATOM 1534 C PRO A 98	44 507 31 975 25.313 1.00 28.13
ATOM 1535 O PRO A 98	44 938 33 999 26.295 1.00 32.98
35 ATOM 1536 N ASP A 99	46 175 33 735 26.804 1.00 34.16
ATOM 1333	46 000 32 683 27.897 1.00 34.51
ATOM 1540 CB ASP A 99	.45 238 33 162 29.064 1.00 36.30
ATOM 1543 CG ASP A 99	45 547 34 247 29.608 1.00 39.17
AIOM 1911	44 222 32 559 29.481 1.00 39.73
40 ATOM 1545 OD2 ASP A 99	47 083 33.361 25.645 1.00 35.01
ATOM ASSESSMENT OF	47 925 32 468 25.733 1.00 35.21
Alon 100	46 914 34 118 24.568 1.00 36.50
min 7 100	47.559 33.836 23.307 1.00 35.94
*** ***	46 536 33 051 22 457 1.00 36.18
75 77 77 77 77 77 77 77 77 77 77 77 77 7	47.151 31.891 21.882 1.00 36.31
100	46.021 33.845 21.282 1.00 35.16
	49 034 35 115 22.606 1.00 36.08
100	48 650 35 058 21.542 1.00 35.70
- 101	47 776 36 267 23.220 1.00 36.43
101	49 151 37 550 22.636 1.00 36.52
ATOM TO STATE A 101	47 365 37.850 21.368 1.00 36.69
C CTV B 101	47 842 38 551 20 467 1.00 36.66
ATOM 1568 O GLY A 101	46.149 37.309 21.305 1.00 37.04
ATOM 1569 N ASN A 102	45.279 37.436 20.135 1.00 35.46
55 ATOM 1571 CA ASN A 102	44 881 38.904 19.889 1.00 35.74
ATOM 1573 CB ASN A 102	44 070 39.509 21.044 1.00 36.19
ATOM 1576 CG ASN A 102	42 556 38 795 21.914 1.00 36.82
ATOM 1577 OD1 ASN A 102	43 948 40.836 21.046 1.00 38.45
ATOM 1578 ND2 ASN A 102	45 884 36.813 18.855 1.00 34.28
60 ATOM 1581 C ASN A 102	45 401 37 081 17 757 1.00 34.09
ATOM 1582 O ASN A 102	46 019 35 978 18 997 1.00 32.94
ATOM 1583 N SER A 103	47.608 35.359 17.852 1.00 30.99
ATOM 1585 CA SER A 103	47.000 33.003 2 =

	ATOM	1587	CB		A 103	49.068	35.070	18.214	1.00 31.29	С
	ATOM	1590	OG	SER .	A 103	49.175	34.552	19.532	1.00 32.26	0
	ATOM	1592	С	SER	A 103	46.981	34.072	17.315	1.00 28.93	Č
	ATOM	1593	0		A 103	47.135	33.752	16.140	1.00 29.01	ŏ
5	ATOM	1594	N		A 104	46.308	33.320	18.173	1.00 26.74	N
_	ATOM	1596	CA		A 104	45.648	32.098	17.739	1.00 23.55	
	ATOM	1598	CB							C C
					A 104	45.821	30.969	18.759	1.00 23.10	С
	ATOM	1601	CG		A 104	45.217	29.652	18.294	1.00 22.29	С
10	ATOM	1604	CD		A 104	45.267	28.539	19.335	1.00 20.79	С
10	ATOM	1605			A 104	44.705	27.459	19.063	1.00 18.27	0
	ATOM	1606	OE2	GLU	A 104	45.872	28.735	20.405	1.00 19.73	0
	MOTA	1607	C	GLU	A 104	44.166	32.431	17.527	1.00 21.26	C
	MOTA	1608	0	GLU	A 104	43.463	32.788	18.468	1.00 20.20	ō
	ATOM	1609	N		A 105	43.706	32.342	16.286	1.00 19.27	N
15	ATOM	1611	CA		A 105	42.310	32.652	15.989	1.00 17.92	
	ATOM	1613	СВ		A 105	42.119	34.141	15.658	1.00 17.32	C
	ATOM	1616	CG		A 105	42.614	34.515	14.283		C
	ATOM	1619	CD		A 105	42.443	35.986		1.00 19.41	C
								13.960	1.00 21.46	C
20	ATOM	1620	OE1		A 105	42.657	36.346	12.779	1.00 22.55	
20		1621			A 105	42.097	36.770	14.872	1.00 19.79	0
	ATOM	1622	С		A 105	41.807	31.788	14.851	1.00 16.31	C
	ATOM	1623	0		A 105	42.589	31.268	14.050	1.00 16.35	0
	ATOM	1624	N	TYR	A 106	40.489	31.642	14.779	1.00 14.92	N
	MOTA	1626	CA	TYR	A 106	39.856	30.789	13.784	1.00 13.70	
25	ATOM	1628	CB	TYR	A 106	39.466	29.416	14.400	1.00 12.91	C
	ATOM	1631	CG	TYR	A 106	40.630	28.705	15.037	1.00 13.45	č
	MOTA	1632	CD1		A 106	41.441	27.863	14.296	1.00 15.31	č
	ATOM	1634	CE1		A 106	42.517	27.226	14.869	1.00 15.32	č
	ATOM	1636	CZ		A 106	42.812	27.428	16.186	1.00 15.25	č
30	ATOM	1637	ОН		A 106	43.904	26.776	16.728	1.00 15.25	Ö
	ATOM	1639	CE2		A 106	42.027	28.251	16.961	1.00 15.75	C
	ATOM	1641	CD2		A 106	40.934	28.890			<u> </u>
	ATOM	1643	CDZ			38.605		16.379	1.00 13.75	C
	ATOM				A 106		31.460	13.230	1.00 13.16	C
35	ATOM	1644	0		A 106	37.789	31.993	14.001	1.00 12.90	0
55		1645	N		A 107	38.432	31.416	11.911	1.00 12.87	N
	ATOM	1647	CA		A 107	37.219	31.954	11.296	1.00 13.04	С
	MOTA	1649	CB		A 107	37.271	31.865	9.734	1.00 13.61	С
	MOTA	1651	CG1		A 107	36.049	32.531	9.105	1.00 16.08	С
40	MOTA	1654			A 107	36.054	33.996	9.131	1.00 19.25	С
40		1658	CG2		A 107	37.277	30.431	9.234	1.00 14.39	С
	ATOM	1662	C		A 107	36.026	31.203	11.890	1.00 12.69	С
	MOTA	1663	0	ILE	A 107	36.050	29.967	11.991	1.00 12.26	0
	ATOM	1664	N	ILE	A 108	34.994	31.931	12.314	1.00 10.96	N
	MOTA	1666	CA		A 108	33.831	31.283	12.892	1.00 11.58	Ċ
45	MOTA	1668	CB		A 108	33.823		14.438	1.00 11.47	č
	ATOM	1670			A 108	32.825	30.527	15.117	1.00 12.45	č
	ATOM	1673			A 108	33.138	29.042	14.913	1.00 14.07	C
	ATOM	1677			A 108	33.541	32.903	14.825	1.00 11.20	
	ATOM	1681	C		A 108	32.516	31.695		1.00 11.20	C
50	MOTA	1682	Ö		A 108			12.234		C
30	MOTA					31.510	31.041	12.437	1.00 13.19	0
		1683	N		A 109	32.512	32.756	11.438	1.00 11.35	N
	MOTA	1685	CA		A 109	31.319	33.139	10.675	1.00 12.23	C
	MOTA	1687	СВ		A 109	30.290	33.798	11.582	1.00 12.13	С
~ ~	MOTA	1691	С		A 109	31.699	34.113	9.557	1.00 12.08	С
55	ATOM	1692	0		A 109	32.648	34.879	9.714	1.00 12.05	0
	ATOM	1693	N	GLU	A 110	30.956	34.090	8.448	1.00 13.59	N
	ATOM	1695	CA		A 110	31.147	35.085	7.399	1.00 13.30	Č
	MOTA	1697	CB		A 110	32.149	34.594	6.336	1.00 14.11	č
	ATOM	1700	CG		A 110	32.258	35.509	5.123	1.00 15.16	Č
60	ATOM	1703	CD		A 110	33.187	34.947	4.059	1.00 13.16	
	ATOM	1704			A 110	34.393	35.270	4.085	1.00 10.76	C
	ATOM	1705			A 110	32.706	34.165	3.204		0
	ATOM	1706	C		A 110	29.814	35.470	6.762	1.00 21.90 1.00 13.12	0
	-11 011	2.00	~	220		~J.014	33.470	0.702	1.00 13.12	С

ATOM 1706 N TRP A 111 29.559 36.772 6.709 1.00 12.93 N ATOM 1710 CA TRP A 111 28.402 37.335 6.032 1.00 14.60 C C ATOM 1712 CB TRP A 111 22.809 38.507 6.808 1.00 15.14 C C ATOM 1715 CG TRP A 111 26.838 0.164 5.110 1.00 16.10 C ATOM 1718 NBI TRP A 111 25.661 40.149 5.110 1.00 16.10 N ATOM 1720 CE2 TRP A 111 25.661 40.149 4.489 1.00 16.03 N ATOM 1721 CDZ TRP A 111 25.367 38.507 6.806 1.00 15.14 C C ATOM 1722 CE3 TRP A 111 25.367 38.507 6.806 1.00 19.20 C C ATOM 1722 CE3 TRP A 111 25.367 38.695 6.5891 1.00 18.16 C ATOM 1724 C23 TRP A 111 25.367 38.695 6.5891 1.00 18.16 C ATOM 1724 C23 TRP A 111 23.277 37.560 6.189 1.00 18.16 C ATOM 1728 CZZ TRP A 111 23.362 38.307 4.626 1.00 19.20 C C ATOM 1728 CZZ TRP A 111 23.362 38.307 4.626 1.00 19.20 C C ATOM 1728 CZZ TRP A 111 23.362 38.307 4.626 1.00 19.73 C C TRP A 111 29.813 38.692 4.622 1.00 19.73 C C ATOM 1731 C TRP A 111 29.813 38.692 4.621 1.00 16.60 C C C TRP A 111 29.813 38.692 4.622 1.00 19.73 C C TRP A 111 29.813 38.692 4.622 1.00 19.73 C C TRP A 111 29.813 38.692 4.622 1.00 19.65 N A ATOM 1734 C B LIS A 112 29.93 37.762 1.00 19.65 N A ATOM 1735 C C TRP A 111 29.813 38.692 4.622 1.00 19.65 N A ATOM 1736 C D LIS A 112 29.93 37.797 4.626 1.00 19.65 N A ATOM 1736 C D LIS A 112 29.93 37.797 4.626 1.00 19.65 N A ATOM 1735 C D LIS A 112 29.93 37.797 4.626 1.00 19.65 N A ATOM 1735 C D LIS A 112 29.93 37.797 4.626 1.00 19.65 N A ATOM 1735 C D LIS A 112 29.93 37.797 4.626 1.00 19.65 N A ATOM 1735 C LIS A 112 29.30 37.972 0.444 1.00 24.07 C C ATOM 1735 C LIS A 112 27.394 37.622 1.452 1.00 23.68 C C ATOM 1735 C LIS A 112 27.394 37.622 1.452 1.00 23.68 C C ATOM 1735 C LIS A 112 27.394 37.622 1.452 1.00 23.68 C C ATOM 1735 C LIS A 112 27.394 37.622 1.452 1.00 23.68 C C ATOM 1735 C LIS A 113 25.433 38.696 5.691 1.00 29.56 C C ATOM 1735 C LIS A 113 25.433 38.696 5.691 1.00 29.55 C C ATOM 1735 C LIS A 113 25.433 38.696 5.691 1.00 29.55 C C ATOM 1735 C LIS A 113 25.433 38.696 5.691 1.00 23.51 1.00 28.67 C C ATOM 1735 C LIS A 113 25.433 38.696 5.691 1.00 23.51 1.00 23.68 C C ATOM 17		ATOM	1707	0	GLU A 110		29.028	34.608	6.372	1.00 13.60	0
ATOM 1712 CB TRP A 111 28.420 37.335 6.032 1.00 14.60 C ATOM 1712 CB TRP A 111 27.809 38.507 6.808 1.00 15.69 C ATOM 1715 CG TRP A 111 26.726 39.127 5.988 1.00 15.69 C ATOM 1716 CD TRP A 111 26.726 39.127 5.988 1.00 15.69 C ATOM 1718 NE1 TRP A 111 26.726 39.127 5.988 1.00 15.69 C ATOM 1720 CEZ TRP A 111 26.671 39.500 4.949 1.00 16.03 N ATOM 1721 CD2 TRP A 111 24.727 39.530 4.949 1.00 16.03 N ATOM 1722 CEZ TRP A 111 24.618 37.689 6.510 1.00 19.20 C ATOM 1724 CZZ TRP A 111 22.673 38.695 5.891 1.00 18.12 C ATOM 1726 CZZ TRP A 111 22.673 38.410 5.255 1.00 20.77 C ATOM 1726 CZZ TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1730 C TRP A 111 29.813 38.692 4.621 1.00 19.73 C ATOM 1731 C TRP A 111 29.813 38.692 4.621 1.00 19.73 C ATOM 1732 N LYS A 112 28.344 37.323 3.618 1.00 18.75 N ATOM 1734 CA LYS A 112 28.630 37.843 2.288 1.00 21.65 C ATOM 1735 C LYS A 112 29.829 37.176 1.651 1.00 19.20 C ATOM 1736 CB LYS A 112 29.829 37.176 1.651 1.00 19.73 C ATOM 1736 CB LYS A 112 30.317 37.972 0.444 1.00 24.07 C ATOM 1737 C LYS A 112 31.330 37.217 -0.360 1.00 28.61 C ATOM 1738 N LYS A 112 31.330 37.217 -0.360 1.00 24.07 C ATOM 1745 CD LYS A 112 31.330 37.217 -0.360 1.00 24.07 C ATOM 1746 N LYS A 112 31.330 37.217 -0.360 1.00 24.07 C ATOM 1746 N LYS A 112 31.330 37.217 -0.360 1.00 24.07 C ATOM 1746 N LYS A 112 27.394 39.602 1.00 24.61 C ATOM 1750 C LYS A 112 23.644 36.62 1.00 1.00 24.61 C ATOM 1750 C LYS A 112 23.644 36.62 1.00 1.00 24.61 C ATOM 1750 C LYS A 112 29.603 37.403 37.217 -0.360 1.00 23.66 N ATOM 1750 C LYS A 112 27.394 39.608 0.0551 1.00 29.15 C ATOM 1750 C LYS A 112 27.394 39.608 0.0551 1.00 29.15 C ATOM 1750 C LYS A 112 27.394 39.608 0.0551 1.00 29.15 C ATOM 1750 C LYS A 112 27.394 39.608 0.0551 1.00 29.15 C ATOM 1750 C LYS A 112 27.394 39.608 0.0551 1.00 29.15 C ATOM 1750 C LYS A 112 27.394 39.608 0.0551 1.00 29.15 C ATOM 1750 C LYS A 112 27.394 39.608 0.0551 1.00 29.15 C ATOM 1750 C LYS A 112 27.394 39.608 0.0551 1.00 29.15 C ATOM 1750 C LYS A 113 20.811 0.056 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000											
ATOM 1712 CB TRP A 111 27.809 38.507 6.808 1.00 15.14 C ATOM 1716 CD1 TRP A 111 26.726 39.127 5.988 1.00 15.69 C ATOM 1718 NRI TRP A 111 25.661 40.149 5.110 1.00 16.10 N ATOM 1720 CEZ TRP A 111 25.661 40.149 4.489 1.00 18.16 C ATOM 1721 CDZ TRP A 111 25.367 38.530 4.949 1.00 18.16 C ATOM 1722 CE3 TRP A 111 25.367 38.530 4.949 1.00 18.16 C ATOM 1724 C23 TRP A 111 22.4727 37.560 6.189 1.00 18.16 C ATOM 1724 C23 TRP A 111 22.673 38.530 4.949 1.00 18.16 C ATOM 1724 C23 TRP A 111 22.673 38.610 5.255 1.00 20.75 C ATOM 1728 CZ TRP A 111 23.362 38.397 4.622 1.00 19.20 C ATOM 1728 CZ TRP A 111 23.362 38.397 4.622 1.00 19.73 C ATOM 1731 O TRP A 111 28.912 37.84 4.684 1.00 17.73 C ATOM 1731 O TRP A 111 28.912 37.84 4.624 1.00 19.73 C ATOM 1731 O TRP A 112 29.639 37.550 4.622 1.00 19.73 C ATOM 1731 O TRP A 112 29.839 37.501 4.622 1.00 19.73 C ATOM 1731 O TRP A 112 29.839 37.501 4.622 1.00 19.73 C ATOM 1731 O TRP A 112 29.839 37.501 4.622 1.00 19.73 C ATOM 1731 O TRP A 112 29.839 37.501 4.622 1.00 19.73 C ATOM 1735 C LYS A 112 29.839 37.176 1.651 1.00 11.00 18.75 N ATOM 1745 C LYS A 112 29.839 37.176 1.651 1.00 21.69 C ATOM 1745 C LYS A 112 31.393 37.217 -0.360 1.00 28.67 C ATOM 1745 N LYS A 112 31.393 37.217 -0.360 1.00 28.67 C ATOM 1755 C LYS A 112 31.393 37.217 -0.360 1.00 28.67 C ATOM 1755 C LYS A 112 27.097 36.495 1.002 23.68 C ATOM 1756 C LYS A 113 25.423 38.686 0.536 1.00 29.56 C ATOM 1757 C LYS A 113 25.423 38.686 0.536 1.00 29.56 C ATOM 1756 C LYS A 113 22.799 41.488 0.522 1.00 23.68 N ATOM 1756 C LYS A 113 22.799 36.495 1.002 23.68 N ATOM 1756 C LYS A 113 22.799 36.495 1.00 23.59 C ATOM 1757 C LYS A 113 22.799 36.495 1.00 23.51 1.00 28.67 C ATOM 1757 C LYS A 113 22.799 36.495 1.00 23.51 1.00 28.67 C ATOM 1757 C LYS A 113 22.799 36.495 1.00 23.51 1.00 29.56 C ATOM 1757 C LYS A 113 21.264 41.352 7.990 1.00 33.22 C ATOM 1757 C LYS A 113 21.264 41.352 7.990 1.00 33.22 C ATOM 1758 C B LYS A 113 21.254 41.35 37.490 1.100 33.22 C ATOM 1758 C B LYS A 113 21.254 41.35 37.490 1.100 33.22 C ATOM 1758 C B LYS A 113 21.254 41.										1.00 14.60	
5 ATOM 1715 CG TRP A 111						•		38.507			
ATOM 1718 NEL TRP A 111	5		1715								
##TOM 1720 CEZ TRP A 111		MOTA	1716								
NATION 1721 CD2 TRP A 111 25.367 38.695 5.891 1.00 18.12 CD ATOM 1722 CD2 TRP A 111 23.277 37.560 6.189 1.00 19.20 CD ATOM 1724 CD2 TRP A 111 23.277 37.560 6.189 1.00 21.05 CD ATOM 1726 CD2 TRP A 111 23.327 37.560 6.189 1.00 21.05 CD ATOM 1726 CD2 TRP A 111 23.322 39.397 4.626 1.00 19.73 CD ATOM 1730 CTRP A 111 28.912 37.854 4.684 1.00 16.60 CD ATOM 1731 CTRP A 111 29.813 38.692 4.621 1.00 15.60 CD ATOM 1732 CD LVS A 112 28.630 37.843 2.288 1.00 21.69 CD ATOM 1736 CD LVS A 112 28.630 37.843 2.288 1.00 21.69 CD ATOM 1736 CD LVS A 112 29.829 37.176 1.651 1.00 21.83 CD ATOM 1732 CD LVS A 112 29.829 37.176 1.651 1.00 21.83 CD ATOM 1734 CD LVS A 112 30.317 37.972 0.444 1.00 24.07 CD ATOM 1748 CD LVS A 112 31.300 37.217 -0.360 1.00 26.681 CD ATOM 1748 CD LVS A 112 32.648 37.120 0.351 1.00 28.667 CD ATOM 1745 CD LVS A 112 27.394 37.622 1.452 1.00 23.68 CD ATOM 1753 CD LVS A 112 27.394 37.622 1.452 1.00 23.68 CD ATOM 1753 CD LVS A 113 26.678 38.708 1.266 1.00 29.15 CD ATOM 1756 CD LVS A 113 26.678 38.708 1.266 1.00 29.15 CD ATOM 1756 CD LVS A 113 26.678 38.708 1.266 1.00 29.15 CD ATOM 1756 CD LVS A 113 26.678 38.708 1.266 1.00 29.15 CD ATOM 1756 CD LVS A 113 26.678 38.708 1.00 31.24 CD ATOM 1756 CD LVS A 113 22.790 41.480 0.542 1.00 24.51 CD 29.15 CD ATOM 1756 CD LVS A 113 22.790 41.480 0.542 1.00 33.22 CD ATOM 1756 CD LVS A 113 22.790 41.480 0.542 1.00 37.50 CD ATOM 1757 CD LVS A 113 22.790 41.480 0.542 1.00 37.50 CD ATOM 1757											
ATOM 1726 CH2 TRP A 111 22.673 38.410 5.255 1.00 20.777 C ATOM 1738 C2 TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1738 C2 TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1732 N LYS A 112 28.344 37.323 3.618 1.00 18.75 N ATOM 1734 CA LYS A 112 28.834 37.323 3.618 1.00 18.75 N ATOM 1735 CE LYS A 112 29.829 37.176 1.651 1.00 21.83 C ATOM 1739 CG LYS A 112 30.317 37.772 0.444 1.00 24.07 C ATOM 1745 CE LYS A 112 32.683 37.176 1.651 1.00 21.83 C ATOM 1745 CE LYS A 112 32.684 37.120 0.351 1.00 28.67 C ATOM 1748 NZ LYS A 112 32.684 37.120 0.351 1.00 28.67 C ATOM 1753 C LYS A 112 27.097 36.495 1.0042 1.00 23.68 C ATOM 1753 C LYS A 112 27.097 36.495 1.0042 1.00 23.68 C ATOM 1753 C LYS A 112 27.097 36.495 1.0042 1.00 24.51 O ATOM 1755 C LYS A 113 26.678 38.708 1.226 1.00 24.51 O ATOM 1756 CB LYS A 113 22.7097 36.495 1.0042 1.00 24.51 O ATOM 1756 CB LYS A 113 22.7097 36.495 1.0042 1.00 24.55 C ATOM 1754 N LYS A 113 22.7097 36.495 1.0042 1.00 29.55 C ATOM 1754 C LYS A 113 22.7097 36.495 1.0042 1.00 29.55 C ATOM 1754 C LYS A 113 22.7097 36.495 1.0042 1.00 33.22 C ATOM 1756 CB LYS A 113 22.7097 36.495 1.003 1.00 29.55 C ATOM 1756 CB LYS A 113 22.7097 36.495 1.003 1.00 29.55 C ATOM 1756 CB LYS A 113 22.7097 40.148 0.542 1.00 33.22 C C ATOM 1756 CB LYS A 113 22.709 41.498 0.542 1.00 33.22 C C ATOM 1757 N ATOM 1757 C LYS A 113 22.599 40.115 0.501 1.00 33.22 C C ATOM 1757 C LYS A 113 22.599 40.115 0.501 1.00 33.22 C C ATOM 1757 C LYS A 113 22.599 40.115 0.501 1.00 33.51 C ATOM 1757 C LYS A 113 22.591 30.591 1.00 33.22 C C ATOM 1757 C LYS A 113 22.591 30.591 1.00 33.51 C ATOM 1757 C LYS A 113 22.591 30.591 1.00 33.51 C ATOM 1757 C ACE B 0 45.942 19.784 19.795 1.00 33.51 C ATOM 1756 CB ATOM 1756											
ATOM 1726 CH2 TRP A 111 22.673 38.410 5.255 1.00 20.777 C ATOM 1738 C2 TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1738 C2 TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1732 N LYS A 112 28.344 37.323 3.618 1.00 18.75 N ATOM 1734 CA LYS A 112 28.834 37.323 3.618 1.00 18.75 N ATOM 1735 CE LYS A 112 29.829 37.176 1.651 1.00 21.83 C ATOM 1739 CG LYS A 112 30.317 37.772 0.444 1.00 24.07 C ATOM 1745 CE LYS A 112 32.683 37.176 1.651 1.00 21.83 C ATOM 1745 CE LYS A 112 32.684 37.120 0.351 1.00 28.67 C ATOM 1748 NZ LYS A 112 32.684 37.120 0.351 1.00 28.67 C ATOM 1753 C LYS A 112 27.097 36.495 1.0042 1.00 23.68 C ATOM 1753 C LYS A 112 27.097 36.495 1.0042 1.00 23.68 C ATOM 1753 C LYS A 112 27.097 36.495 1.0042 1.00 24.51 O ATOM 1755 C LYS A 113 26.678 38.708 1.226 1.00 24.51 O ATOM 1756 CB LYS A 113 22.7097 36.495 1.0042 1.00 24.51 O ATOM 1756 CB LYS A 113 22.7097 36.495 1.0042 1.00 24.55 C ATOM 1754 N LYS A 113 22.7097 36.495 1.0042 1.00 29.55 C ATOM 1754 C LYS A 113 22.7097 36.495 1.0042 1.00 29.55 C ATOM 1754 C LYS A 113 22.7097 36.495 1.0042 1.00 33.22 C ATOM 1756 CB LYS A 113 22.7097 36.495 1.003 1.00 29.55 C ATOM 1756 CB LYS A 113 22.7097 36.495 1.003 1.00 29.55 C ATOM 1756 CB LYS A 113 22.7097 40.148 0.542 1.00 33.22 C C ATOM 1756 CB LYS A 113 22.709 41.498 0.542 1.00 33.22 C C ATOM 1757 N ATOM 1757 C LYS A 113 22.599 40.115 0.501 1.00 33.22 C C ATOM 1757 C LYS A 113 22.599 40.115 0.501 1.00 33.22 C C ATOM 1757 C LYS A 113 22.599 40.115 0.501 1.00 33.51 C ATOM 1757 C LYS A 113 22.591 30.591 1.00 33.22 C C ATOM 1757 C LYS A 113 22.591 30.591 1.00 33.51 C ATOM 1757 C LYS A 113 22.591 30.591 1.00 33.51 C ATOM 1757 C ACE B 0 45.942 19.784 19.795 1.00 33.51 C ATOM 1756 CB ATOM 1756	10										C
ATOM 1726 CH2 TRP A 111 22.673 38.410 5.255 1.00 20.777 C ATOM 1738 C2 TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1738 C2 TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1731 O TRP A 111 28.912 37.854 4.684 1.00 16.60 C ATOM 1732 N LYS A 112 28.344 37.323 3.618 1.00 18.75 N ATOM 1734 CA LYS A 112 28.834 37.323 3.618 1.00 18.75 N ATOM 1735 CE LYS A 112 29.829 37.176 1.651 1.00 21.83 C ATOM 1739 CG LYS A 112 30.317 37.772 0.444 1.00 24.07 C ATOM 1745 CE LYS A 112 32.683 37.176 1.651 1.00 21.83 C ATOM 1745 CE LYS A 112 32.684 37.120 0.351 1.00 28.67 C ATOM 1748 NZ LYS A 112 32.684 37.120 0.351 1.00 28.67 C ATOM 1753 C LYS A 112 27.097 36.495 1.0042 1.00 23.68 C ATOM 1753 C LYS A 112 27.097 36.495 1.0042 1.00 23.68 C ATOM 1753 C LYS A 112 27.097 36.495 1.0042 1.00 24.51 O ATOM 1755 C LYS A 113 26.678 38.708 1.226 1.00 24.51 O ATOM 1756 CB LYS A 113 22.7097 36.495 1.0042 1.00 24.51 O ATOM 1756 CB LYS A 113 22.7097 36.495 1.0042 1.00 24.55 C ATOM 1754 N LYS A 113 22.7097 36.495 1.0042 1.00 29.55 C ATOM 1754 C LYS A 113 22.7097 36.495 1.0042 1.00 29.55 C ATOM 1754 C LYS A 113 22.7097 36.495 1.0042 1.00 33.22 C ATOM 1756 CB LYS A 113 22.7097 36.495 1.003 1.00 29.55 C ATOM 1756 CB LYS A 113 22.7097 36.495 1.003 1.00 29.55 C ATOM 1756 CB LYS A 113 22.7097 40.148 0.542 1.00 33.22 C C ATOM 1756 CB LYS A 113 22.709 41.498 0.542 1.00 33.22 C C ATOM 1757 N ATOM 1757 C LYS A 113 22.599 40.115 0.501 1.00 33.22 C C ATOM 1757 C LYS A 113 22.599 40.115 0.501 1.00 33.22 C C ATOM 1757 C LYS A 113 22.599 40.115 0.501 1.00 33.51 C ATOM 1757 C LYS A 113 22.591 30.591 1.00 33.22 C C ATOM 1757 C LYS A 113 22.591 30.591 1.00 33.51 C ATOM 1757 C LYS A 113 22.591 30.591 1.00 33.51 C ATOM 1757 C ACE B 0 45.942 19.784 19.795 1.00 33.51 C ATOM 1756 CB ATOM 1756	10										Č
NATION 1730 C											č
NATION 1730 C											С
15 ATOM 1731 O TRP A 111									4.684	1.00 16.60	
ATOM 1734 CR LYS A 112 22.630 37.843 2.288 1.00 21.69 C ATOM 1736 CB LYS A 112 30.317 37.972 0.444 1.00 24.07 C ATOM 1739 CG LYS A 112 31.330 37.217 -0.360 1.00 26.81 C ATOM 1745 CE LYS A 112 31.330 37.217 -0.360 1.00 26.81 C ATOM 1745 CE LYS A 112 31.330 37.217 -0.360 1.00 28.67 C ATOM 1748 NZ LYS A 112 33.664 36.627 -0.601 1.00 23.68 C ATOM 1752 C LYS A 112 27.394 37.622 1.452 1.00 23.68 C ATOM 1753 O LYS A 112 27.394 37.622 1.452 1.00 23.68 C ATOM 1755 C LYS A 113 22.648 38.708 1.226 1.00 24.51 O 24.51 O 24.51 O 25.68 C ATOM 1756 CA LYS A 113 25.423 38.686 0.536 1.00 29.15 C ATOM 1756 CA LYS A 113 25.423 38.686 0.536 1.00 29.15 C ATOM 1761 CG LYS A 113 22.790 41.488 0.542 1.00 23.68 C ATOM 1761 CG LYS A 113 22.790 41.488 0.542 1.00 33.22 C C ATOM 1767 CE LYS A 113 22.790 41.488 0.542 1.00 33.22 C C ATOM 1767 CE LYS A 113 22.790 41.488 0.542 1.00 33.22 C C ATOM 1767 CE LYS A 113 20.811 40.425 1.911 1.00 34.661 N ATOM 1770 NZ LYS A 113 20.811 40.425 1.911 1.00 34.56 C ATOM 1770 NZ LYS A 113 22.589 38.215 -0.870 1.00 30.92 C ATOM 1776 C ALA A 114 24.484 37.015 -2.669 1.00 31.02 C C ATOM 1785 O ALA A 114 24.4575 37.490 -1.308 1.00 33.51 N ATOM 1786 CB ALA A 114 24.4575 37.490 -1.308 1.00 33.51 N ATOM 1786 CB ALA A 114 22.756 36.373 7.990 1.00 33.51 N ATOM 1786 CB ALA A 114 22.757 36.373 7.990 1.00 33.51 N ATOM 1786 CB ALA A 114 22.757 36.373 7.990 1.00 37.33 C ATOM 1786 CB ALA A 114 22.757 36.373 7.990 1.00 37.33 C ATOM 1786 CB ALA A 114 22.757 36.373 7.990 1.00 37.33 C ATOM 1786 CB ALA A 114 23.366 18.592 1.00 37.75 C ATOM 1786 CB ALA A 114 23.366 18.592 1.00 37.75 C ATOM 1786 CB ALA A 114 23.366 18.592 1.00 37.75 C ATOM 1786 CB ALA A 114 23.366 18.592 1.00 37.75 C ATOM 1786 CB ALA A 114 23.366 18.350 1.00 37.73 C C ATOM 1787 CB ALA B 2 44.966 18.078 16.167 1.00 38.58 C C ATOM 1810 C ALA B 2 44.966 18.078 16.167 1.00 18.61 C C ATOM 1810 C ALA B 2 44.966 18.078 16.167 1.00 18.61 C C ATOM 1810 C ALA B 2 44.966 18.078 18.180 19.902 1.00 16.13 C C ATOM 1810 C ALA B 2 44.966 18.078 19.902 1.00 16.13 C C ATOM 1810 C	15			0	TRP A 111						
ATOM 1736 CB LYS A 112 29.829 37.176 1.651 1.00 21.83 C ATOM 1739 CG LYS A 112 31.330 37.217 -0.360 1.00 24.07 C ATOM 1745 CD LYS A 112 31.330 37.217 -0.360 1.00 26.81 C ATOM 1745 CE LYS A 112 32.648 37.120 0.351 1.00 28.67 C ATOM 1745 CE LYS A 112 32.648 37.120 0.351 1.00 28.67 C ATOM 1752 C LYS A 112 27.394 37.622 1.452 1.00 23.68 C ATOM 1753 O LYS A 112 27.394 37.622 1.452 1.00 23.68 C ATOM 1754 N LYS A 113 26.678 38.708 1.226 1.00 24.51 O ATOM 1758 CE LYS A 113 26.678 38.708 1.226 1.00 29.15 C ATOM 1758 CE LYS A 113 24.840 40.091 0.501 1.00 29.15 C ATOM 1760 CG LYS A 113 22.790 41.488 0.534 1.00 29.56 C ATOM 1767 CE LYS A 113 22.790 41.488 0.534 1.00 31.24 C ATOM 1767 CE LYS A 113 22.790 41.488 0.542 1.00 33.22 C ATOM 1776 C LYS A 113 22.790 41.488 0.542 1.00 33.22 C ATOM 1776 C LYS A 113 22.549 40.115 0.396 1.00 34.61 N ATOM 1776 C LYS A 113 22.549 40.125 0.396 1.00 34.61 N ATOM 1776 C LYS A 113 22.5589 38.215 -0.870 1.00 34.61 N ATOM 1776 N ALA A 114 24.575 37.490 -1.308 1.00 31.04 C C ATOM 1776 N ALA A 114 24.484 37.015 -2.669 1.00 33.51 N ATOM 1776 C A ALA A 114 24.484 37.015 -2.669 1.00 33.51 N ATOM 1776 C A ALA A 114 24.484 37.015 -2.669 1.00 33.51 N ATOM 1776 N ALA A 114 24.484 37.015 -2.669 1.00 33.51 N ATOM 1776 C A ALA A 114 24.484 37.015 -2.669 1.00 33.51 N ATOM 1776 C A ALA A 114 24.484 37.015 -2.669 1.00 33.51 N ATOM 1776 C A ALA A 114 25.336 35.792 -2.859 1.00 35.33 C ATOM 1776 C A ALA A 114 24.484 37.015 -2.669 1.00 34.75 C ATOM 1780 C A ALA A 114 24.484 37.015 -2.669 1.00 34.75 C ATOM 1780 C A ALA A 114 25.366 B 1.00 35.91 C ATOM 1780 C A ALA A 114 25.366 B 1.00 35.91 C ATOM 1780 C A ALA A 114 25.366 B 1.00 35.91 C ATOM 1780 C A ALA A 114 25.366 B 1.00 35.91 C ATOM 1780 C A ALA A 114 25.366 B 1.00 35.91 C ATOM 1780 C A ALA B 2 44.849 1.952 1.9784 14.579 1.00 39.31 C ATOM 1780 C A ALA B 2 44.849 1.952 1.9784 14.579 1.00 17.78 C ATOM 1780 C A ATOM 1880 C A ACE B 0 44.965 18.078 18.350 1.00 38.58 C ATOM 1800 C A ALA B 2 44.965 22.977 18.387 1.00 17.78 C ATOM 1800 C A ALA B 2 44.965 22.977 18.38		ATOM		N							N
20 ATOM 1742 CD LYS A 112 31.330 37.217 -0.360 1.00 26.81 CC ATOM 1745 CE LYS A 112 32.648 37.120 0.351 1.00 28.67 CC ATOM 1748 NZ LYS A 112 33.684 36.627 -0.601 1.00 31.60 N ATOM 1752 C LYS A 112 27.097 36.495 1.042 1.00 24.51 O											C
20 ATOM 1742 CD LYS A 112 31.330 37.217 -0.360 1.00 26.81 CC ATOM 1745 CE LYS A 112 32.648 37.120 0.351 1.00 28.67 CC ATOM 1748 NZ LYS A 112 33.684 36.627 -0.601 1.00 31.60 N ATOM 1752 C LYS A 112 27.097 36.495 1.042 1.00 24.51 O											C
ATOM 1748 NZ LYS A 112 32.648 37.120 0.351 1.00 28.67 C ATOM 1748 NZ LYS A 112 33.684 36.627 -0.601 1.00 31.60 N 1753 C LYS A 112 27.394 37.622 1.452 1.00 23.68 C ATOM 1753 O LYS A 112 27.097 36.495 1.042 1.00 24.51 O 24.51 O 34.61 A 36.627 ATOM 1756 CA LYS A 113 25.423 38.686 1.226 1.00 26.48 N 1754 N LYS A 113 25.423 38.686 0.536 1.00 29.15 C ATOM 1758 CB LYS A 113 22.484 04.091 0.501 1.00 29.56 C ATOM 1756 CA LYS A 113 22.484 04.091 0.501 1.00 29.56 C ATOM 1756 CB LYS A 113 22.484 04.091 0.501 1.00 29.15 C ATOM 1756 CB LYS A 113 22.484 04.091 0.501 1.00 29.15 C ATOM 1761 CG LYS A 113 22.484 04.091 0.501 1.00 29.15 C ATOM 1764 CD LYS A 113 22.790 04.488 0.542 1.00 34.56 C ATOM 1764 CD LYS A 113 22.790 04.488 0.542 1.00 34.56 C ATOM 1770 NZ LYS A 113 20.811 0.0425 1.911 1.00 34.61 N ATOM 1770 NZ LYS A 113 20.811 0.0425 1.911 1.00 34.61 N ATOM 1775 O LYS A 113 25.589 38.215 -0.870 1.00 34.65 C ATOM 1775 O LYS A 113 26.581 38.511 -1.536 1.00 31.06 O ATOM 1776 CA ALA A 114 24.484 37.015 -2.669 1.00 34.75 C ATOM 1778 CA ALA A 114 24.484 37.015 -2.669 1.00 34.75 C ATOM 1778 CA ALA A 114 22.3016 36.693 -2.918 1.00 35.91 C ATOM 1785 O ALA A 114 22.3016 36.693 -2.918 1.00 37.33 C ATOM 1785 O ALA A 114 22.75 36.373 -1.973 1.00 37.33 O ATOM 1785 C ACE B O 45.727 19.383 15.830 1.00 37.33 O ATOM 1786 C ACE B O 45.727 19.383 15.830 1.00 37.33 O ATOM 1789 N SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1789 C SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1790 C SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1790 C SER B 1 44.966 18.078 16.165 1.00 19.77 N ATOM 1790 C SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1790 C SER B 1 43.169 20.599 16.659 1.00 19.77 N ATOM 1790 C SER B 1 43.169 20.599 16.659 1.00 19.77 N ATOM 1790 C SER B 1 43.169 20.599 16.659 1.00 19.77 N ATOM 1800 C ALA B 2 41.91 19.439 12.300 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1810 C ALA B 2 41.91 19.439 12.300 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00	20										C
ATOM 1748 NZ LYS A 112 33.684 36.627 -0.601 1.00 31.60 N ATOM 1752 C LYS A 112 27.394 37.622 1.452 1.00 23.68 C ATOM 1753 O LYS A 112 27.097 36.495 1.042 1.00 24.51 O ATOM 1754 N LYS A 113 26.678 38.708 1.226 1.00 26.48 N ATOM 1755 CA LYS A 113 25.423 38.686 0.536 1.00 29.15 C ATOM 1756 CA LYS A 113 24.840 40.091 0.501 1.00 29.56 C ATOM 1761 CG LYS A 113 22.790 41.488 0.542 1.00 33.22 C ATOM 1764 CD LYS A 113 22.790 41.488 0.542 1.00 33.22 C ATOM 1767 CE LYS A 113 21.264 41.332 0.752 1.00 34.56 C ATOM 1767 NZ LYS A 113 22.589 38.215 -0.870 1.00 34.61 N ATOM 1776 N ALA A 114 24.575 37.490 -1.308 1.00 31.06 O ATOM 1778 CA ALA A 114 22.575 37.490 -1.308 1.00 33.51 N ATOM 1778 CB ALA A 114 22.3016 36.693 -2.918 1.00 35.33 C ATOM 1784 C ALA A 114 22.575 37.490 -1.308 1.00 35.91 C ATOM 1786 O ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1787 C ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1789 N SER B 1 45.689 20.559 18.761 1.00 39.31 O ATOM 1789 C SER B 1 44.965 22.977 18.875 1.00 17.78 C ATOM 1789 C SER B 1 45.431 20.583 18.122 1.00 17.78 C ATOM 1789 C SER B 1 44.965 22.977 18.387 1.00 17.78 C ATOM 1789 C SER B 1 44.965 22.977 18.387 1.00 17.78 C ATOM 1789 C SER B 1 45.431 20.583 18.122 1.00 17.78 C ATOM 1789 C SER B 1 45.431 20.583 18.122 1.00 17.78 C ATOM 1789 C SER B 1 45.842 21.915 18.761 1.00 18.61 C ATOM 1789 C SER B 1 44.965 22.977 18.387 1.00 17.78 C ATOM 1789 C SER B 1 44.965 22.977 18.387 1.00 17.78 C ATOM 1789 C SER B 1 44.965 22.977 18.387 1.00 17.78 C ATOM 1802 C ALA B 2 41.991 19.992 1.00 16.68 C ATOM 1804 C ALA B 2 41.991 19.992 1.00 16.13 C ATOM 1806 C BALA B 2 41.991 19.992 1.00 16.414 C ATOM 1810 C ALA B 2 41.991 19.992 1.00 16.414 C ATOM 1810 C ALA B 2 41.991 19.992 1.00 16.414 C ATOM 1810 C ALA B 2 41.991 19.992 1.00 16.414 C ATOM 1810 C ALA B 2 41.991 19.992 1.00 16.414 C ATOM 1810 C ALA B 2 41.991 19.992 1.00 16.414 C ATOM 1810 C ALA B 3 42.272 24.402 21.826 1.00 16.414 C ATOM 1810 C ALA B 3 42.272 24.402 21.826 1.00 16.614 C ATOM 1810 C ALA B 3 42.272 24.402 21.826 1.00 16.144 C ATOM 1820	20										č
ATOM 1752 C IYS A 112 27.394 37.622 1.452 1.00 23.68 C ATOM 1753 N LYS A 113 26.678 38.708 1.226 1.002 24.51 O 24.51 O 25.470											
ATOM 1753 O LYS A 112 27.097 36.495 1.042 1.00 24.51 O 25 ATOM 1754 N LYS A 113 26.678 38.708 1.266 1.00 26.48 N ATOM 1755 CA LYS A 113 24.840 40.091 0.501 1.00 29.15 C ATOM 1761 CG LYS A 113 22.848 40.091 0.501 1.00 29.15 C ATOM 1761 CG LYS A 113 22.790 41.488 0.542 1.00 33.22 C ATOM 1767 CE LYS A 113 22.790 41.488 0.542 1.00 33.22 C ATOM 1767 CE LYS A 113 22.790 41.488 0.542 1.00 33.22 C ATOM 1770 NZ LYS A 113 22.811 40.425 1.911 1.00 34.61 N ATOM 1770 NZ LYS A 113 22.589 38.215 -0.870 1.00 34.56 C ATOM 1775 O LYS A 113 25.589 38.215 -0.870 1.00 30.92 C ATOM 1775 O LYS A 113 25.589 38.215 -0.870 1.00 30.92 C ATOM 1776 N ALA A 114 24.575 37.490 -1.308 1.00 33.51 N ATOM 1776 CA ALA A 114 24.575 37.490 -1.308 1.00 33.51 N ATOM 1780 CA ALA A 114 22.536 35.792 -2.859 1.00 34.75 C ATOM 1780 CA ALA A 114 22.016 36.693 -2.918 1.00 35.33 C ATOM 1786 O ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1785 C ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1789 N SER B 1 45.689 20.569 16.6167 1.00 39.31 O ATOM 1788 C ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1788 C ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1789 C SER B 1 45.842 21.915 18.761 1.00 38.68 C ATOM 1798 C SER B 1 45.842 21.915 18.761 1.00 19.77 N ATOM 1799 C SER B 1 45.842 21.915 18.761 1.00 18.61 C ATOM 1799 O SER B 1 45.842 21.915 18.761 1.00 18.61 C ATOM 1802 N ALA B 2 41.575 19.905 19.539 1.00 16.87 N ATOM 1800 C BALA B 2 41.991 19.493 21.370 1.00 16.68 C ATOM 1800 C BALA B 2 41.991 19.913 19.902 1.00 16.13 C ATOM 1800 C BALA B 2 41.991 19.913 19.902 1.00 16.13 C ATOM 1800 C BALA B 2 41.991 19.913 19.902 1.00 16.68 C ATOM 1810 C BALA B 2 41.991 19.913 19.902 1.00 16.68 C ATOM 1810 C BALA B 2 41.991 19.913 19.902 1.00 16.47 C ATOM 1810 C BALA B 2 41.991 19.913 19.902 1.00 16.68 C ATOM 1810 C BALA B 2 41.991 19.913 19.902 1.00 16.68 C ATOM 1810 C BALA B 2 41.991 19.913 19.902 1.00 16.14 C ATOM 1810 C BALA B 2 41.991 19.913 19.902 1.00 16.14 C ATOM 1810 C BALA B 2 41.991 19.913 19.902 1.00 16.68 C ATOM 1810 C BALA B 2 41.991 19.913 19.902 1.00 16.68 C											
25									1.042		
ATOM 1756 CA LYS A 113 25.423 38.686 0.536 1.00 29.15 C ATOM 1758 CB LYS A 113 24.480 40.091 0.501 1.00 29.56 C ATOM 1764 CD LYS A 113 23.349 40.115 0.396 1.00 31.24 C ATOM 1767 CE LYS A 113 22.790 41.488 0.542 1.00 33.22 C ATOM 1770 NZ LYS A 113 22.790 41.488 0.542 1.00 33.22 C ATOM 1770 NZ LYS A 113 20.811 40.425 1.911 1.00 34.61 N ATOM 1775 N ALA A 114 24.575 37.490 -1.308 1.00 33.09 C ATOM 1776 N ALA A 114 24.575 37.490 -1.308 1.00 33.51 N ATOM 1778 CA ALA A 114 24.484 37.015 -2.669 1.00 33.53 C ATOM 1780 CB ALA A 114 22.336 35.792 -2.859 1.00 35.31 C ATOM 1780 C ALA A 114 22.3536 35.792 -2.859 1.00 35.91 C ATOM 1785 O ALA A 114 22.275 36.373 -1.973 1.00 37.33 O ATOM 1786 C ALA A 114 22.275 36.373 -1.973 1.00 37.33 O ATOM 1786 C ALA A 114 22.275 36.373 -1.973 1.00 37.93 C ATOM 1786 C ACE B O 45.727 19.383 15.80 1.00 39.31 O ATOM 1788 CA ACE B O 44.966 18.078 16.167 1.00 38.68 C ATOM 1788 CA ACE B O 44.966 18.078 16.167 1.00 38.68 C ATOM 1788 C ACE B O 44.966 18.078 16.167 1.00 38.68 C ATOM 1788 C ACE B O 44.966 18.078 16.167 1.00 38.68 C ATOM 1793 C B SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1796 C SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1798 C SER B 1 45.431 20.583 18.122 1.00 17.78 C ATOM 1798 C SER B 1 45.431 20.583 18.122 1.00 17.78 C ATOM 1798 C SER B 1 45.431 20.583 18.122 1.00 17.78 C ATOM 1798 C SER B 1 45.431 20.583 18.122 1.00 17.78 C ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1804 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1804 C ALA B 2 41.991 19.439 21.370 1.00 16.13 C ATOM 1804 C ALA B 2 41.991 19.439 21.370 1.00 16.13 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.18 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.18 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.18 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 14.74 C ATOM 1811 C ALA B 2 41.405 21.112 19.611 1.00 14.74 C ATOM 1818 GGI THR B 3 42.264 24.598 20.403 1.00 14.31 C ATOM 1818 GGI THR B 3 41.264 24.598 20.403 1.00 14.36 C ATOM 1826	25										
ATOM 1761 CG LYS A 113 23.349 40.115 0.396 1.00 31.24 C ATOM 1764 CD LYS A 113 22.790 41.488 0.542 1.00 33.22 C ATOM 1767 CE LYS A 113 21.264 41.332 0.752 1.00 34.56 C ATOM 1770 NZ LYS A 113 20.811 40.425 1.911 1.00 34.61 N ATOM 1770 C LYS A 113 25.589 38.215 -0.870 1.00 30.92 C ATOM 1775 O LYS A 113 26.581 38.511 -1.536 1.00 31.06 O ATOM 1776 CA ALA A 114 24.575 37.490 -1.308 1.00 33.51 N ATOM 1778 CA ALA A 114 24.575 37.490 -1.308 1.00 33.51 N ATOM 1780 CB ALA A 114 25.336 35.792 -2.859 1.00 34.75 C ATOM 1780 CB ALA A 114 22.376 36.693 -2.918 1.00 35.33 C ATOM 1785 O ALA A 114 22.275 36.373 -1.973 1.00 35.91 C ATOM 1785 O ALA A 114 22.275 36.373 -1.973 1.00 37.33 O ATOM 1786 C ACE B 0 45.942 19.784 14.579 1.00 39.31 O ATOM 1788 CA ACE B 0 45.942 19.784 14.579 1.00 39.31 O ATOM 1788 CA ACE B 0 45.689 20.569 16.659 1.00 38.58 C ATOM 1798 C SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1793 CB SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1798 C SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1798 C SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1798 C SER B 1 44.965 22.977 18.387 1.00 16.99 O ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.87 N ATOM 1804 CA ALA B 2 41.995 20.368 18.350 1.00 17.78 C ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.902 1.00 16.13 C ATOM 1810 C ALA B 2 41.405 21.112 19.902 1.00 16.14 C ATOM 1811 O ALA B 2 41.405 21.112 19.901 1.00 14.56 O ATOM 1810 C ALA B 2 41.405 21.112 19.901 1.00 14.56 O ATOM 1810 C ALA B 2 41.405 21.112 19.901 1.00 14.74 C ATOM 1811 O ALA B 2 41.405 21.112 19.901 1.00 14.74 C ATOM 1816 CB THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1820 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1820 C T				CA							C
ATOM 1764 CD LYS A 113											C
ATOM											C
ATOM 1770 NZ LYS A 113 20.811 40.425 1.911 1.00 34.61 N ATOM 1774 C LYS A 113 25.589 38.215 -0.870 1.00 30.92 C ATOM 1775 O LYS A 113 25.589 38.215 -0.870 1.00 31.06 O ATOM 1776 N ALA A 114 24.575 37.490 -1.308 1.00 33.51 N 35 ATOM 1778 CA ALA A 114 24.575 37.490 -1.308 1.00 33.51 N ATOM 1780 CB ALA A 114 25.336 35.792 -2.859 1.00 35.33 C ATOM 1784 C ALA A 114 23.016 36.693 -2.918 1.00 35.91 C ATOM 1785 O ALA A 114 22.275 36.373 -1.973 1.00 35.91 C ATOM 1786 O ACE B O 45.942 19.784 14.579 1.00 39.31 O 40 ATOM 1787 C ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1788 CA ACE B O 44.966 18.078 16.167 1.00 38.58 C ATOM 1789 N SER B 1 45.689 20.559 16.659 1.00 19.77 N ATOM 1791 CA SER B 1 45.689 20.559 16.059 1.00 19.77 N ATOM 1793 CB SER B 1 45.842 21.915 18.761 1.00 17.98 C ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 16.99 O ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 16.99 O ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1802 N ALA B 2 42.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C 50 ATOM 1804 CA ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1814 CA THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1824 C THR B 3 44.267 22.4402 21.826 1.00 16.14	20										č
ATOM 1774 C LYS A 113 25.589 38.215 -0.870 1.00 30.92 C ATOM 1775 O LYS A 113 26.581 38.511 -1.536 1.00 31.06 O ATOM 1776 N ALA A 114 24.575 37.490 -1.308 1.00 33.51 N 3.51 ATOM 1778 CA ALA A 114 24.484 37.015 -2.669 1.00 34.75 C ATOM 1780 CB ALA A 114 25.336 35.792 -2.859 1.00 35.33 C ATOM 1785 O ALA A 114 23.016 36.693 -2.918 1.00 35.91 C ATOM 1785 O ALA A 114 23.016 36.693 -2.918 1.00 35.91 C ATOM 1786 O ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1786 C ACE B O 45.727 19.383 15.830 1.00 38.58 C ATOM 1788 CA ACE B O 44.966 18.078 16.167 1.00 38.68 C ATOM 1789 N SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1791 CA SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1793 CB SER B 1 45.842 21.915 18.761 1.00 18.61 C ATOM 1799 O SER B 1 44.965 22.977 18.387 1.00 18.61 C ATOM 1799 O SER B 1 44.965 22.977 18.387 1.00 17.78 C ATOM 1799 O SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 17.78 C ATOM 1804 CA ALA B 2 41.991 19.439 21.370 1.00 16.87 N ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 16.87 N ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 41.405 21.112 19.611 1.00 15.22 N ATOM 1812 N THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1814 CA THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1826 C THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1826 C THR B 3 4	30										
ATOM 1775 O LYS A 113											С
ATOM 1776 N ALA A 114 24.575 37.490 -1.308 1.00 33.51 N ATOM 1780 CB ALA A 114 24.484 37.015 -2.669 1.00 34.75 C ATOM 1780 CB ALA A 114 25.336 35.792 -2.859 1.00 35.33 C ATOM 1784 C ALA A 114 23.016 36.693 -2.918 1.00 35.91 C ATOM 1785 O ALA A 114 22.275 36.373 -1.973 1.00 37.33 O ATOM 1786 O ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1787 C ACE B O 45.727 19.383 15.830 1.00 38.58 C ATOM 1788 CA ACE B O 44.966 18.078 16.167 1.00 38.68 C ATOM 1789 N SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1791 CA SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1793 CB SER B 1 45.842 21.915 18.761 1.00 18.61 C ATOM 1798 C SER B 1 44.965 22.977 18.387 1.00 16.99 O ATOM 1798 C SER B 1 43.169 20.531 17.414 1.00 17.20 O ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.87 N ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1814 CA THR B 3 42.214 22.34 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 44.194 23.813 18.295 1.00 13.60 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.60 C ATOM 1825 O THR B 3 44.194 23.813 18.295 1.00 13.60 C									-1.536		
ATOM 1780 CB ALA A 114				N							
ATOM 1784 C ALA A 114 23.016 36.693 -2.918 1.00 35.91 C ATOM 1785 O ALA A 114 22.275 36.373 -1.973 1.00 37.33 O ATOM 1786 O ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1787 C ACE B O 45.727 19.383 15.830 1.00 38.58 C ATOM 1788 CA ACE B O 44.966 18.078 16.167 1.00 38.68 C ATOM 1789 N SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1791 CA SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1793 CB SER B 1 45.842 21.915 18.761 1.00 18.61 C 45 ATOM 1796 OG SER B 1 44.965 22.977 18.387 1.00 16.99 O ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 17.20 O ATOM 1799 O SER B 1 43.950 20.368 18.350 1.00 17.20 O ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C ATOM 1806 CB ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1811 O ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1814 CA THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 42.018 22.234 19.952 1.00 14.74 C ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 CGI THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 CGI THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 CGI THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1824 C THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1825 O THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92 N	35	MOTA									C
ATOM 1785 O ALA A 114 22.275 36.373 -1.973 1.00 37.33 O ATOM 1786 O ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1787 C ACE B O 45.942 19.784 14.579 1.00 39.31 O ATOM 1787 C ACE B O 45.727 19.383 15.830 1.00 38.58 C ATOM 1788 CA ACE B O 44.966 18.078 16.167 1.00 38.68 C ATOM 1789 N SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1791 CA SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1793 CB SER B 1 45.842 21.915 18.761 1.00 18.61 C ATOM 1796 OG SER B 1 44.965 22.977 18.387 1.00 16.99 O ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1799 O SER B 1 43.169 20.531 17.414 1.00 17.20 O ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.87 N ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG2 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1824 C THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1824 C THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1824 C THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1824 C THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1824 C THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92 N											C
ATOM 1786 O ACE B 0 45.942 19.784 14.579 1.00 39.31 O 40 ATOM 1787 C ACE B 0 45.727 19.383 15.830 1.00 38.58 C ATOM 1788 CA ACE B 0 44.966 18.078 16.167 1.00 38.68 C ATOM 1789 N SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1791 CA SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1793 CB SER B 1 45.842 21.915 18.761 1.00 18.61 C 45 ATOM 1796 OG SER B 1 44.965 22.977 18.387 1.00 16.99 O ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1799 O SER B 1 43.169 20.531 17.414 1.00 17.20 O ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C ATOM 1806 CB ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 14.31 C ATOM 1814 CA THR B 3 42.018 22.234 19.952 1.00 14.31 C ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.272 24.402 21.826 1.00 14.49 C ATOM 1824 C THR B 3 41.391 23.526 19.766 1.00 14.49 C ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92 N											Ö
40 ATOM 1787 C ACE B 0 45.727 19.383 15.830 1.00 38.58 C ATOM 1788 CA ACE B 0 44.966 18.078 16.167 1.00 38.68 C ATOM 1789 N SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1791 CA SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1793 CB SER B 1 45.842 21.915 18.761 1.00 18.61 C ATOM 1796 OG SER B 1 44.965 22.977 18.387 1.00 16.99 O ATOM 1799 O SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1799 O SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1799 O SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C ATOM 1810 C ALA B 2 42.161 19.821 19.902 1.00 16.68 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1811 O ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1812 N THR B 3 42.018 22.34 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 42.018 22.34 19.952 1.00 15.22 N ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1820 CG2 THR B 3 41.391 23.526 19.766 1.00 14.31 C ATOM 1820 CG2 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1820 CG2 THR B 3 41.994 23.813 18.295 1.00 13.68 C ATOM 1824 C THR B 3 42.272 24.402 21.826 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1824 C THR B 3 42.272 24.402 21.826 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O											
ATOM 1788 CA ACE B 0 44.966 18.078 16.167 1.00 38.68 ATOM 1789 N SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1791 CA SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1793 CB SER B 1 45.842 21.915 18.761 1.00 18.61 C 45 ATOM 1796 OG SER B 1 44.965 22.977 18.387 1.00 16.99 O ATOM 1799 C SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1799 O SER B 1 43.169 20.531 17.414 1.00 17.20 O ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C 50 ATOM 1806 CB ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 42.018 22.234 19.952 1.00 14.31 C 55 ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1820 CG2 THR B 3 41.194 23.813 18.295 1.00 13.08 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.01 O 60 ATOM 1825 O THR B 3 40.211 24.227 17.861 1.00 13.01	40					_					С
ATOM 1789 N SER B 1 45.689 20.569 16.659 1.00 19.77 N ATOM 1791 CA SER B 1 45.431 20.583 18.122 1.00 17.98 C ATOM 1793 CB SER B 1 45.842 21.915 18.761 1.00 18.61 C 45 ATOM 1796 OG SER B 1 44.965 22.977 18.387 1.00 16.99 O ATOM 1799 O SER B 1 43.169 20.531 17.414 1.00 17.20 O ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C 50 ATOM 1806 CB ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1811 O ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1820 CG2 THR B 3 42.272 24.402 21.826 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92								18.078		1.00 38.68	С
ATOM 1793 CB SER B 1 45.842 21.915 18.761 1.00 18.61 C 45 ATOM 1796 OG SER B 1 44.965 22.977 18.387 1.00 16.99 O ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1799 O SER B 1 43.169 20.531 17.414 1.00 17.20 O ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C ATOM 1806 CB ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 41.391 23.526 19.766 1.00 14.31 C 55 ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1820 CG2 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92						1					
45 ATOM 1796 OG SER B 1 44.965 22.977 18.387 1.00 16.99 O ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1799 O SER B 1 43.169 20.531 17.414 1.00 17.20 O ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 41.391 23.526 19.766 1.00 14.31 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1820 CG2 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92											
ATOM 1798 C SER B 1 43.950 20.368 18.350 1.00 17.78 C ATOM 1799 O SER B 1 43.169 20.531 17.414 1.00 17.20 O ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C ATOM 1810 C ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1811 O ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.31 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1820 CG2 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1824 C THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1825 O THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92	4 ~	MOTA									
ATOM 1799 O SER B 1 43.169 20.531 17.414 1.00 17.20 O ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C ATOM 1806 CB ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1820 CG2 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1824 C THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92	45								18.387	1.00 10.33	-
ATOM 1802 N ALA B 2 43.575 19.905 19.539 1.00 16.87 N ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C 50 ATOM 1806 CB ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 41.391 23.526 19.766 1.00 14.31 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1820 CG2 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1824 C THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92											
ATOM 1804 CA ALA B 2 42.161 19.821 19.902 1.00 16.13 C 50 ATOM 1806 CB ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 41.391 23.526 19.766 1.00 14.31 C 55 ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92								19.905			
50 ATOM 1806 CB ALA B 2 41.991 19.439 21.370 1.00 16.68 C ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 41.391 23.526 19.766 1.00 14.31 C ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92						2		19.821			С
ATOM 1810 C ALA B 2 41.405 21.112 19.611 1.00 15.41 C ATOM 1811 O ALA B 2 40.278 21.088 19.118 1.00 14.56 O ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 41.391 23.526 19.766 1.00 14.31 C ATOM 1818 OG1 THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92	50								21.370	1.00 16.68	
ATOM 1812 N THR B 3 42.018 22.234 19.952 1.00 15.22 N ATOM 1814 CA THR B 3 41.391 23.526 19.766 1.00 14.31 C T ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92						2				1.00 15.41	
ATOM 1814 CA THR B 3 41.391 23.526 19.766 1.00 14.31 C 55 ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92 N											
55 ATOM 1816 CB THR B 3 42.264 24.598 20.403 1.00 14.74 C ATOM 1818 OG1 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92 N											
ATOM 1818 OG1 THR B 3 42.272 24.402 21.826 1.00 16.14 O ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92 N	<i></i>										
ATOM 1820 CG2 THR B 3 41.660 25.961 20.217 1.00 14.49 C ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92 N	22										0
ATOM 1824 C THR B 3 41.194 23.813 18.295 1.00 13.68 C ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92 N											
ATOM 1825 O THR B 3 40.111 24.227 17.861 1.00 13.01 O 60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92 N						3					Č
60 ATOM 1826 N SER B 4 42.231 23.568 17.505 1.00 12.92 N										1.00 13.01	
	60						42.231	23.568	17.505	1.00 12.92	
ATOM 1828 CA SER B 4 42.114 23.823 16.074 1.00 12.63 C			1828	CA	SER B	4					
ATOM 1830 CB SER B 4 43.466 23.637 15.389 1.00 13.31 C		MOTA									
ATOM 1833 OG SER B 4 43.349 23.779 13.980 1.00 15.34 O		MOTA	1833	OG	SER B	4	43.349	23.779	13.980	1.00 15.34	0

	MOTA	1835	С	SER	В	4	41.042	22.939	15.427	1.00 11.99	С
	ATOM	1836	0	SER		4	40.232	23.408	14.613	1.00 11.15	Ō
	ATOM	1837	_	LEU			41.045	21.652	15.755	1.00 11.62	
			N			5					N
_	MOTA	1839	CA	LEU		5	40.036	20.744	15.224	1.00 10.95	С
5	MOTA	1841	CB	LEU	В	5	40.253	19.326	15.755	1.00 11.58	С
	ATOM	1844	CG	LEU	В	5	41.493	18.602	15.191	1.00 13.26	. C
	ATOM	1846		LEU		5	41.671	17.274	15.878	1.00 14.30	Ċ
	MOTA	1850		LEU		5	41.430	18.388	13.679	1.00 16.20	C
	ATOM	1854	С	LEU		5	38.633	21.207	15.621	1.00 10.05	С
10	ATOM	1855	0	LEU	В	5	37.713	21.115	14.830	1.00 9.60	0
	MOTA	1856	N	THR	В	6	38.482	21.669	16.858	1.00 9.83	N
	ATOM	1858	CA	THR		6	37.187	22.108	17.359	1.00 10.01	C
	ATOM					6	37.300	22.622	18.794	1.00 9.92	č
		1860	CB	THR							
	ATOM	1862		THR		6	37.622	21.536	19.681	1.00 10.43	0
15	ATOM	1864	CG2	THR	В	6	35.965	23.168	19.289	1.00 9.67	С
	ATOM	1868	С	THR	В	6	36.616	23.197	16.490	1.00 10.19	С
	MOTA	1869	0	THR		6	35.478	23.121	16.047	1.00 10.13	0
	ATOM	1870	N	PHE		7	37.416	24.217	16.232	1.00 10.95	N
00	ATOM	1872	CA	PHE		7	36.898	25.372	15.532	1.00 10.37	C
20	ATOM	1874	CB	PHE		7	37.576	26.643	16.024	1.00 10.33	С
	ATOM	1877	CG	PHE	В	7	37.149	27.021	17.415	1.00 10.12	С
	ATOM	1878	CD1	PHE	В	7	35.833	27.366	17.673	1.00 10.88	С
	ATOM	1880		PHE		7	35.417	27.659	18.945	1.00 11.19	С
	ATOM	1882	CZ	PHE		7	36.296	27.605	19.969	1.00 11.18	Č
25											2
25	ATOM	1884		PHE		7	37.605	27.245	19.734	1.00 12.59	C
	MOTA	1886	CD2	PHE	В	7	38.021	26.936	18.466	1.00 11.83	С
	ATOM	1888	С	PHE	В	7	36.909	25.194	14.025	1.00 10.94	С
	ATOM	1889	0	PHE	В	7	36.103	25.820	13.353	1.00 11.93	0
	ATOM	1890	N	GLN		8	37.767	24.329	13.489	1.00 11.93	N
30	ATOM	1892	CA	GLN		8	37.647	24.010	12.067	1.00 11.34	C
50											
	ATOM	1894	CB	GLN		8	38.761	23.087	11.621	1.00 12.48	C
	MOTA	1897	CG	GLN		8	40.113	23.720	11.528	1.00 14.22	С
	ATOM	1900	CD	GLN	В	8	41.117	22.698	11.051	1.00 15.81	C
	MOTA	1901	OE1	GLN	В	8	42.036	22.331	11.781	1.00 19.91	0
35	MOTA	1902		GLN		8	40.902	22.184	9.843	1.00 17.92	N
55	ATOM	1905	C	GLN		8	36.316	23.286	11.855	1.00 10.37	Ĉ
	MOTA	1906	0	GLN		8	35.580	23.546	10.908	1.00 10.98	0
	ATOM	1907	N	LEU		9	36.006	22.360	12.758	1.00 10.06	N
	ATOM	1909	CA	LEU	В	9	34.757	21.608	12.648	1.00 9.71	C
40	ATOM	1911	CB	LEU	В	9	34.726	20.455	13.634	1.00 9.51	С
	ATOM	1914	CG	LEU		9	33.493	19.574	13.606	1.00 10.41	С
	ATOM	1916		LEU		9	33.447	18.825	12.265	1.00 11.23	Ċ
											Č
	ATOM	1920		LEU		9	33.561	18.587	14.753	1.00 9.36	C
	MOTA	1924	C	LEU		9	33.552	22.498	12.880	1.00 9.33	C
45	ATOM	1925	0	LEU	В	9	32.566	22.409	12.160	1.00 10.21	0
	ATOM	1926	N	ALA	В	10	33.618	23.376	13.874	1.00 9.78	N
	ATOM	1928	CA	ALA		10	32.476	24.246	14.138	1.00 9.75	С
	ATOM	1930	СВ	ALA		10	32.727	25.091	15.353	1.00 10.03	Ċ
	MOTA	1934	С	ALA		10	32.145	25.126	12.919	1.00 9.57	C
20	ATOM	1935	0	ALA		10	30.982	25.275	12.554	1.00 8.63	, 0
	ATOM	1936	N	TYR	В	11	33.155	25.688	12.269	1.00 9.75	N
	ATOM	1938	CA	TYR	В	11	32.885	26.566	11.136	1.00 10.72	С
	ATOM	1940	СВ	TYR		11	34.159	27.237	10.688	1.00 10.48	C
									9.535	1.00 11.27	Č
ے ہے	ATOM	1943	CG	TYR		11	33.979	28.188			C
55		1944		TYR		11	34.664	27.988	8.352	1.00 11.30	С
	ATOM	1946	CE1	TYR	В	11	34.534	28.867	7.292	1.00 13.85	C
	MOTA	1948	CZ	TYR		11	33.706	29.949	7.409	1.00 14.97	С
	ATOM	1949	ОН	TYR		11	33.579	30.827	6.350	1.00 16.32	Õ
		1951		TYR				30.183	8.582	1.00 14.29	č
60	ATOM					11	33.022				Č
οU	MOTA	1953		TYR		11	33.159	29.300	9.640	1.00 12.05	C
	MOTA	1955	С	TYR		11	32.250	25.801	9.987	1.00 11.09	С
	MOTA	1956	0	TYR	В	11	31.380	26.310	9.272	1.00 11.19	0
	MOTA	1957	N	LEU		12	32.672	24.556	9.823	1.00 12.21	N
		,			_				-	= -	

ATOM 1950 CA LEU B 12 33.187 22.514 8.470 1.00 12.45 C ATOM 1966 CDI LEU B 12 33.011 21.779 7.209 1.00 16.64 C C ATOM 1966 CDI LEU B 12 33.011 21.779 7.209 1.00 16.64 C C ATOM 1966 CDI LEU B 12 32.907 22.662 5.962 1.00 17.27 C C ATOM 1970 CDI LEU B 12 32.907 22.662 5.962 1.00 17.27 C C ATOM 1970 CDI LEU B 12 32.907 22.662 5.962 1.00 17.27 C C ATOM 1970 CDI LEU B 12 32.907 22.662 5.962 1.00 17.27 C C ATOM 1970 CDI LEU B 12 32.907 22.662 5.962 1.00 17.27 C C ATOM 1970 CDI LEU B 12 32.907 22.662 5.962 1.00 17.27 C C ATOM 1975 O LEU B 12 32.907 22.662 5.962 1.00 12.30 C C ATOM 1975 O LEU B 12 32.907 22.662 5.962 1.00 12.30 C C ATOM 1976 C AVAI B 13 39.514 22.555 10.103 1.00 12.51 C C ATOM 1976 C AVAI B 13 39.514 22.555 10.103 1.00 12.51 C C ATOM 1980 C C VAL B 13 39.485 20.381 10.894 1.00 13.37 C C ATOM 1980 C C VAL B 13 39.495 20.381 10.894 1.00 13.37 C C ATOM 1990 C VAL B 13 28.273 22.541 11.237 1.00 12.00 C C ATOM 1991 C VAL B 13 28.273 22.541 11.237 1.00 12.00 C C ATOM 1991 C VAL B 13 28.273 22.541 11.237 1.00 12.00 C C ATOM 1992 N VAL B 13 28.273 22.541 11.319 1.00 11.68 C C ATOM 1992 N VAL B 13 28.273 22.541 11.319 1.00 11.40 N ATOM 1994 CA LYS B 14 28.775 23.558 11.917 1.00 11.40 N ATOM 1995 C C LYS B 14 22.693 26.448 9.653 1.00 14.91 C C ATOM 2002 CD LYS B 14 22.694 22.604 1.00 11.19 C C ATOM 2002 CD LYS B 14 22.694 22.604 1.00 11.19 C C ATOM 2002 CD LYS B 14 22.694 22.694 1.00 10.731 1.00 11.40 N ATOM 2003 C C LYS B 14 27.795 24.489 9.653 1.00 12.24 N ATOM 2002 CD LYS B 14 27.795 24.489 9.653 1.00 12.24 N ATOM 2002 CD LYS B 14 27.549 23.895 11.00 10.00 10.66 C ATOM 2002 CD LYS B 14 27.549 23.895 11.00 10.00 10.66 C ATOM 2002 CD LYS B 15 26.282 22.175 10.00 10.01 1.00 10.66 C ATOM 2002 CD LYS B 15 26.282 22.175 10.00 10.01 1.00 10.66 C ATOM 2002 CD LYS B 15 26.282 22.175 10.00 10.01 1.00 10.10 10.00 1											
ATOM 1964 CB LEU B 12 33.1017 22.614 8.470 1.00 12.95 C ATOM 1966 CD LEU B 12 33.012 21.779 7.209 1.00 16.64 CD CD ATOM 1970 CD2 LEU B 12 33.012 21.779 7.209 1.00 16.64 CD CD ATOM 1970 CD2 LEU B 12 34.193 20.804 7.093 1.00 18.06 CD ATOM 1971 CD2 LEU B 12 34.193 20.804 8.956 1.00 12.37 CD ATOM 1975 C LEU B 12 34.193 20.804 8.956 1.00 12.37 CD ATOM 1975 C LEU B 12 34.193 20.804 8.956 1.00 12.37 CD ATOM 1975 C LEU B 12 34.193 20.804 8.956 1.00 12.37 CD ATOM 1975 C LEU B 12 34.193 20.804 8.956 1.00 13.09 C ATOM 1975 C LEU B 13 30.767 23.156 8.956 1.00 12.37 C LEU B 12 34.193 20.804 8.956 1.00 13.09 C LEU B 12 34.193 20.804 8.956 1.00 13.09 C LEU B 12 34.193 20.804 8.956 1.00 12.37 C LEU B 12 34.193 20.804 8.956 1.00 12.37 C LEU B 12 34.193 20.804 8.956 1.00 12.37 C LEU B 12 34.193 20.804 8.956 1.00 12.37 C LEU B 13 34.193 29.22 20.386 1.00 1.033 1.00 12.51 C LEU B 13 34.492 19.606 10.804 1.00 13.53 C LEU B 13 34.492 19.606 10.804 1.00 13.53 C LEU B 13 34.492 19.606 10.804 1.00 13.53 C LEU B 13 34.492 19.606 10.804 1.00 13.53 C LEU B 13 34.492 19.606 10.804 1.00 13.50 C LEU B 13 34.492 19.606 10.804 1.00 13.00 14.08 C LEU B 13 34.492 19.606 10.804 1.00 13.00 14.08 C LEU B 13 34.492 19.606 10.804 1.00 13.00 14.08 C LEU B 13 34.492 19.606 10.804 1.00 13.00 14.00 N ATOM 1991 0 VAL B 13 27.106 22.172 11.39 1.00 12.00 C LEU B 13 27.00 1.00 1.00 11.40 N ATOM 1995 C LEU B 13 27.00 12.100 12.706 10.00 11.0		ATOM	1959	CA	LEU B	12	32.179	23.730	8.742	1.00 12.45	С
ATOM 1966 CDI LEU B 12 33.011 21.779 7.209 1.00 16.64 C ATOM 1976 CDI LEU B 12 32.907 22.662 5.962 1.00 17.27 C C ATOM 1970 CD2 LEU B 12 34.193 20.804 7.093 1.00 18.06 C ATOM 1975 O LEU B 12 34.193 20.804 7.093 1.00 18.06 C ATOM 1975 O LEU B 12 30.767 23.156 8.956 1.00 12.37 C ATOM 1975 O LEU B 12 30.767 23.156 8.956 1.00 12.37 C ATOM 1976 N VAL B 13 30.514 22.525 10.103 1.00 12.47 N ATOM 1978 N VAL B 13 30.514 22.525 10.103 1.00 12.47 N ATOM 1980 CB VAL B 13 29.256 21.805 10.355 1.00 12.51 C ATOM 1980 CB VAL B 13 29.256 21.805 10.355 1.00 12.51 C ATOM 1980 CB VAL B 13 29.256 21.805 10.355 1.00 12.51 C ATOM 1980 CB VAL B 13 29.256 21.805 10.355 1.00 12.51 C ATOM 1980 CB VAL B 13 29.256 21.805 10.355 1.00 12.51 C ATOM 1980 CB VAL B 13 29.922 20.388 12.336 1.00 14.08 C ATOM 1991 O VAL B 13 29.922 20.388 12.336 1.00 14.08 C C ATOM 1991 O VAL B 13 29.922 20.388 12.336 1.00 14.08 C C ATOM 1999 O VAL B 13 29.77 CB 25.51 11.371 1.00 11.68 C C ATOM 1991 O VAL B 13 29.77 CB 25.51 11.371 1.00 11.68 C C ATOM 1994 CA LYS B 14 26.759 25.002 12.035 11.917 1.00 11.98 C ATOM 1999 CG LYS B 14 26.759 25.002 12.035 11.917 1.00 11.19 N C ATOM 1999 CG LYS B 14 26.759 25.002 12.035 11.917 1.00 11.19 N C ATOM 2002 CD LYS B 14 26.759 25.002 12.035 11.001 11.19 C C ATOM 2002 CD LYS B 14 28.402 27.549 23.850 10.824 1.00 9.20 C C ATOM 2002 CD LYS B 14 28.402 27.549 23.850 10.824 1.00 9.20 C C ATOM 2002 CD LYS B 14 29.602 28.448 9.653 1.00 12.14 N ATOM 2012 C LYS B 14 29.602 28.448 9.653 1.00 12.14 N ATOM 2012 C LYS B 14 29.602 28.448 9.653 1.00 10.01.10 S C ATOM 2014 N LYS B 15 26.914 22.664 11.004 1.00 10.98 C ATOM 2014 C LYS B 15 26.914 22.664 11.004 1.00 10.98 C ATOM 2014 C LYS B 15 26.914 22.664 11.004 1.00 10.98 C ATOM 2014 C LYS B 15 26.914 22.664 11.006 11.19 1.00 11.19 C ATOM 2014 C LYS B 15 26.914 22.664 11.006 11.19 1.00 11.10 C ATOM 2014 C LYS B 15 26.914 22.664 11.009 1.00 10.96 C ATOM 2020 C C LYS B 15 26.914 22.664 11.009 1.00 10.96 C ATOM 2020 C C LYS B 15 26.914 22.664 11.009 1.00 10.96 C ATOM 2020 C C LYS B 15 26.914 22.		MOTA	1961	CB	LEU B	12	33.187		8.470		
ATOM 1996 CD1 LEU B 12 34.1907 222.662 5.962 1.00 17.27 C ATOM 1970 CD2 LEU B 12 34.193 20.800 7.093 1.00 18.06 CC ATOM 1974 C LEU B 12 30.767 23.156 8.956 1.00 12.37 C ATOM 1975 O LEU B 12 29.914 23.302 8.071 1.00 13.09 O ATOM 1976 N VAL B 13 30.514 22.525 10.103 1.00 12.47 N ATOM 1976 N VAL B 13 29.255 21.805 10.335 1.00 12.47 N ATOM 1980 CB VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1980 CB VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1980 CC VAL B 13 29.922 20.389 12.336 1.00 14.08 C ATOM 1990 C VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1990 C VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1991 O VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1994 CA LYS B 14 28.775 23.558 11.917 1.00 11.68 O ATOM 1994 CA LYS B 14 28.775 23.558 11.917 1.00 11.00 N ATOM 1994 CA LYS B 14 26.755 25.042 12.035 11.00 11.18 C ATOM 2092 CD LYS B 14 26.755 25.042 12.035 11.00 11.18 C ATOM 2092 CD LYS B 14 28.122 27.790 J 9.566 11.00 11.19 C ATOM 2002 CD LYS B 14 28.122 27.790 J 9.566 11.00 11.19 C ATOM 2002 CD LYS B 14 29.602 28.448 9.256 11.00 11.19 C ATOM 2012 CD LYS B 14 29.602 28.448 9.856 11.00 11.00 11.32 N ATOM 2012 CD LYS B 14 27.795 24.452 12.035 1.00 11.86 C ATOM 2012 CD LYS B 14 27.795 24.452 12.035 1.00 11.87 C ATOM 2012 CD LYS B 14 27.795 24.422 15.165 1.00 10.55 C ATOM 2012 CD LYS B 15 26.282 22.127 15.256 1.00 12.24 N ATOM 2012 CD LYS B 15 26.282 22.127 15.256 1.00 12.24 N ATOM 2012 CD LYS B 15 26.282 22.127 15.256 1.00 12.26 N ATOM 2012 CD LYS B 15 26.282 22.127 15.256 1.00 12.26 N ATOM 2012 CD LYS B 15 26.282 22.127 15.256 1.00 12.26 N ATOM 2012 CD LYS B 15 22.382 21.146 11.00 13.15 CD CD ATOM 2012 CD LYS B 15 22.382 22.146 11.00 13.15 CD CD ATOM 2012 CD LYS B 15 22.382 22.146 11.00 13.15 CD CD ATOM 2021 CD LYS B 15 22.382 22.146 11.00 13.15 CD		ATOM	1964	CG							
5 ATOM 1974 C LEU B 12 30.767 23.158 8.956 1.00 12.37 C ATOM 1975 O LEU B 12 30.767 23.158 8.956 1.00 12.37 C ATOM 1975 N VAL B 13 30.514 22.525 10.103 1.00 12.07 N ATOM 1976 N VAL B 13 30.514 22.525 10.103 1.00 12.51 C ATOM 1980 CB VAL B 13 29.256 21.805 10.335 1.00 12.51 C ATOM 1980 CB VAL B 13 29.485 20.381 10.894 1.00 13.70 C ATOM 1980 CG VAL B 13 29.485 20.381 10.894 1.00 13.77 C ATOM 1980 CG VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1980 CC VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1980 C VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1980 C VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1980 C VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1990 C VAL B 13 29.22 20.398 12.336 1.00 12.00 C ATOM 1990 C VAL B 13 27.106 22.172 11.319 1.00 11.68 O ATOM 1991 O VAL B 13 27.106 22.172 11.319 1.00 11.68 O ATOM 1994 CA LYS B 14 28.775 23.558 11.917 1.00 111.40 N ATOM 1994 CA LYS B 14 27.795 25.042 12.035 1.00 111.48 C ATOM 1995 CG LYS B 14 27.795 25.042 12.035 1.00 111.48 C ATOM 1999 C LYS B 14 28.190 26.750 10.624 1.00 9.92 C ATOM 2002 CD LYS B 14 28.190 26.750 10.624 1.00 9.92 C ATOM 2002 CD LYS B 14 28.190 26.750 10.624 1.00 9.92 C ATOM 2002 CD LYS B 14 28.190 26.750 10.024 1.00 10.95 C ATOM 2012 C LYS B 14 27.759 28.4482 15.1655 1.00 10.55 O ATOM 2012 C LYS B 14 27.759 24.432 15.1655 1.00 10.55 O ATOM 2018 C LYS B 14 27.759 24.432 15.1655 1.00 10.55 O ATOM 2018 C LYS B 15 26.915 22.684 11.00 9.50 11.00 10.566 N ATOM 2018 C LYS B 15 26.915 22.684 11.00 9.50 10.00 10.566 N ATOM 2018 C LYS B 15 24.892 21.895 14.104 1.00 10.95 C ATOM 2018 C LYS B 15 24.892 21.895 14.104 1.00 10.95 C ATOM 2018 C LYS B 15 24.892 21.895 14.104 1.00 10.95 C ATOM 2018 C LYS B 15 24.892 21.895 14.104 1.00 10.95 C ATOM 2018 C LYS B 15 24.892 21.895 14.104 11.00 10.10 10.566 N ATOM 2018 C LYS B 15 24.893 18.104 14.921 1.00 22.11 C C ATOM 2024 C LYS B 15 26.561 10.91 11.00 11.10 1.00 11.00 C ATOM 2024 C LYS B 15 26.561 10.91 11.00 11.10 1.00 1.00 C ATOM 2024 C LYS B 15 26.562 19.913 14.4921 1.00 22.11 C C ATOM 2024 C LYS B 15											C
ATOM 1974 C LEU B 12 29.914 23.302 8.071 1.00 12.37 ATOM 1975 O LEU B 12 29.914 23.302 8.071 1.00 12.37 ATOM 1976 N VAL B 13 30.514 22.525 10.103 1.00 12.47 N ATOM 1978 CA VAL B 13 29.256 21.805 10.335 1.00 12.47 N ATOM 1980 CB VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1980 CG VAL B 13 30.514 29.10 10.042 1.00 15.30 C ATOM 1980 CG VAL B 13 30.514 29.10 10.042 1.00 15.30 C ATOM 1980 CG VAL B 13 29.922 20.388 12.336 1.00 14.08 C ATOM 1990 C VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1990 C VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1991 O VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1991 O VAL B 13 27.106 22.172 11.339 1.00 11.68 O ATOM 1991 O VAL B 13 27.106 22.172 11.339 1.00 11.68 O ATOM 1994 CA LYS B 14 28.775 23.558 11.917 1.00 11.40 N ATOM 1994 CA LYS B 14 26.795 25.042 12.035 11.00 11.48 C ATOM 1995 CG LYS B 14 26.795 25.042 12.035 11.00 11.48 C ATOM 2002 CD LYS B 14 28.472 7991 20.459 12.2055 1.00 11.14 C ATOM 2002 CD LYS B 14 28.422 27.540 9.5266 1.00 10.11.4 C ATOM 2012 C LYS B 14 28.422 7.540 9.5266 1.00 10.11.14 C ATOM 2012 C LYS B 14 28.422 7.540 9.5266 1.00 10.11.14 C ATOM 2012 C LYS B 14 28.422 7.540 9.5266 1.00 10.55 C ATOM 2016 CA LYS B 14 26.602 28.4469 14.605 1.00 10.55 C ATOM 2016 CA LYS B 15 26.282 22.127 15.2566 1.00 10.55 C ATOM 2016 CA LYS B 15 26.282 22.127 15.2566 1.00 10.55 C ATOM 2012 C LYS B 15 26.282 22.127 15.2566 1.00 10.55 C ATOM 2014 N LYS B 15 26.582 22.127 15.2566 1.00 10.55 C ATOM 2014 N LYS B 15 26.582 22.127 15.2566 1.00 10.55 C ATOM 2012 C LYS B 15 22.3828 22.146 16.068 N 1.00 10.55 C ATOM 2014 C LYS B 15 26.582 22.127 15.2566 1.00 10.55 C ATOM 2014 C LYS B 15 22.3828 22.146 16.068 N 1.00 10.55 C ATOM 2014 C LYS B 15 22.3828 22.146 16.068 N 1.00 10.55 C ATOM 2014 C LYS B 15 22.3828 22.146 16.068 N 1.00 10.55 N ATOM 2024 C LYS B 15 22.3828 22.146 16.068 N 1.00 10.55 N ATOM 2024 C LYS B 15 22.3828 22.146 16.068 N 1.00 10.55 N ATOM 2024 C C LYS B 15 22.3828 22.146 1.00 10.00 10.55 N ATOM 2024 C C LYS B 15 22.3828 22.146 1.00 10.00 10.55 N ATOM 2024 C C LYS B	5										
ATOM 1975 O LEU B 12 29.914 23.302 8.071 1.00 13.09 ATOM 1976 N VAL B 13 30.514 22.525 10.103 1.00 12.47 N N ATOM 1978 CA VAL B 13 29.256 21.805 10.103 1.00 12.47 N ATOM 1980 CB VAL B 13 29.256 21.805 10.335 1.00 12.51 C ATOM 1980 CB VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1980 CG VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1986 CG VAL B 13 29.495 20.389 12.336 1.00 12.51 C ATOM 1990 C VAL B 13 29.922 20.398 12.336 1.00 12.00 C ATOM 1990 C VAL B 13 29.922 20.398 12.336 1.00 12.00 C ATOM 1990 C VAL B 13 27.106 22.172 11.319 1.00 11.68 C ATOM 1991 O VAL B 13 27.106 22.172 11.319 1.00 11.06 C ATOM 1992 N LYS B 14 28.775 23.558 11.917 1.00 11.40 N ATOM 1994 CA LYS B 14 27.991 24.459 12.764 1.00 111.40 N ATOM 1996 CB LYS B 14 27.991 24.459 12.764 1.00 111.40 N ATOM 1999 C LYS B 14 27.993 25.042 12.035 1.00 11.48 C ATOM 1999 C LYS B 14 28.190 26.750 10.031 1.00 111.48 C ATOM 2002 CD LYS B 14 28.190 26.750 10.0324 1.00 9.92 C ATOM 2002 CD LYS B 14 28.190 26.750 10.024 1.00 10.12 C ATOM 2002 CD LYS B 14 28.190 26.750 10.024 1.00 10.12 C ATOM 2002 CD LYS B 14 27.795 24.432 15.165 1.00 10.55 O ATOM 2012 C LYS B 14 27.755 24.432 15.165 1.00 10.55 O ATOM 2012 C LYS B 14 27.755 24.432 15.165 1.00 10.55 O ATOM 2018 CB LYS B 15 26.912 22.664 10.00 10.15 C ATOM 2018 CB LYS B 15 26.912 22.664 10.00 10.15 C ATOM 2018 CB LYS B 15 26.912 22.664 10.00 10.15 C ATOM 2018 CB LYS B 15 26.912 22.664 10.00 10.15 C ATOM 2018 CB LYS B 15 26.912 22.664 10.00 10.15 C ATOM 2018 CB LYS B 15 22.882 22.137 15.1565 1.00 10.55 O ATOM 2018 CB LYS B 15 22.882 22.137 15.1565 1.00 10.55 O ATOM 2018 CB LYS B 15 22.882 22.137 15.1565 1.00 10.55 O ATOM 2024 CD LYS B 15 22.882 22.137 15.1565 1.00 10.55 O ATOM 2024 CD LYS B 15 22.677 20.10 CB LYS B 15 20.279 11.902 14.547 1.00 21.10 CB LYS B 15 20.279 11.902 14.547 1.00 21.10 CB LYS B 15 20.279 11.902 14.547 1.00 21.10 CB LYS B 15 20.279 11.902 14.547 1.00 21.10 CB LYS B 15 20.279 11.902 14.547 1.00 21.10 CB LYS B 15 20.279 11.902 14.547 1.00 21.10 CB LYS B 15 20.279 11.902 14.547 1.00 21.10 CB	9										
ATOM 1975 O LEU B 12 29,914 23,302 8.071 1.00 13.09 O ATOM 1976 N VAL B 13 30.514 22,525 10.103 1.00 12.47 N ATOM 1978 CA VAL B 13 30.492 19.620 10.335 1.00 12.51 C ATOM 1980 CB VAL B 13 29,256 21.805 10.335 1.00 12.51 C ATOM 1982 CGI VAL B 13 29,256 21.805 10.335 1.00 12.51 C ATOM 1985 CG2 VAL B 13 29,922 20.381 10.894 1.00 13.37 C ATOM 1986 CG2 VAL B 13 29,922 20.389 12.336 1.00 14.08 C ATOM 1990 C VAL B 13 29,922 20.389 12.336 1.00 14.08 C ATOM 1991 O VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1991 O VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1992 N LYS B 14 28.775 23.558 11.917 1.00 11.68 O ATOM 1992 N LYS B 14 27.791 24.459 12.764 1.00 11.19 C ATOM 1994 CB LYS B 14 27.791 24.459 12.764 1.00 11.19 C ATOM 2002 CD LYS B 14 27.791 24.459 12.764 1.00 11.19 C ATOM 2002 CD LYS B 14 27.791 24.459 12.764 1.00 11.14 C ATOM 2008 N LYS B 14 27.791 24.459 12.764 1.00 11.14 C ATOM 2008 N LYS B 14 27.791 24.459 12.764 1.00 11.14 C ATOM 2008 N LYS B 14 27.791 24.459 12.764 1.00 11.14 C ATOM 2008 N LYS B 14 27.792 24.459 12.764 1.00 11.14 C ATOM 2008 N LYS B 14 27.792 24.459 12.764 1.00 11.14 C ATOM 2008 N LYS B 14 27.795 24.451 10.791 1.00 11.14 C ATOM 2008 N LYS B 14 27.795 24.451 10.791 1.00 11.14 C ATOM 2008 N LYS B 14 27.795 24.452 1.00 0.855 1.00 10.05 N ATOM 2013 O LYS B 14 27.795 24.452 1.00 0.855 0 N ATOM 2013 O LYS B 15 26.914 22.684 14.069 1.00 10.55 O ATOM 2013 O LYS B 15 26.914 22.684 14.069 1.00 10.36 N ATOM 2014 CD LYS B 15 26.914 22.684 14.069 1.00 10.36 N ATOM 2021 CD LYS B 15 24.753 22.337 15.149 1.00 13.78 N ATOM 2021 CD LYS B 15 24.753 22.337 15.149 1.00 13.78 N ATOM 2021 CD LYS B 15 24.753 22.337 15.149 1.00 13.76 N ATOM 2023 C LYS B 15 24.753 22.337 15.149 1.00 13.76 N ATOM 2024 CD LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2025 C LYS B 15 22.382 22.146 16.068 1.00 13.03 N D LYS B 15 24.753 22.337 1.00 18.00 12.47 N C ATOM 2026 C LYS B 15 24.753 22.337 12.00 18.00 12.47 N C ATOM 2026 C LYS B 15 24.753 22.337 12.00 18.00 12.47 N C ATOM 2026 C N LYS B 15 22.382 22.146 18.784 11.00 13.16 N				С			30.767	23.156		1.00 12.37	С
ATOM 1976 N VAL B 13 30.514 22.525 10.103 1.00 12.47 ATOM 1980 CB VAL B 13 29.485 20.381 10.894 1.00 13.37 C ATOM 1980 CG VAL B 13 30.492 19.620 10.042 1.00 15.30 C ATOM 1980 CG VAL B 13 30.492 19.620 10.042 1.00 15.30 C ATOM 1990 C VAL B 13 29.922 20.398 12.336 1.00 14.08 C ATOM 1990 C VAL B 13 29.922 20.398 12.336 1.00 14.08 C ATOM 1991 O VAL B 13 29.922 20.398 12.336 1.00 11.68 C ATOM 1991 C VAL B 13 29.922 20.398 12.336 1.00 11.68 C ATOM 1992 N 14/8 B 14 28.775 23.558 11.917 1.00 11.68 C ATOM 1992 C N 14/8 B 14 27.991 24.459 12.764 1.00 11.10 N ATOM 1994 CA 14/8 B 14 27.991 24.459 12.764 1.00 11.10 N ATOM 1999 C LYS B 14 26.759 25.042 12.035 1.00 11.48 C ATOM 2002 CD 14/8 B 14 28.422 27.540 9.526 1.00 11.14 C ATOM 2005 CE 14/8 B 14 28.422 27.540 9.526 1.00 10.31 C ATOM 2005 CE 14/8 B 14 29.062 28.448 9.653 1.00 12.24 N ATOM 2013 C 14/8 B 14 27.995 24.432 15.165 1.00 10.55 C ATOM 2013 C 14/8 B 15 26.914 22.684 14.069 9.526 1.00 10.55 C ATOM 2013 C 14/8 B 15 26.914 22.684 14.069 1.00 15.50 C ATOM 2013 C 14/8 B 15 26.914 22.686 14.069 1.00 10.55 C ATOM 2016 CA 14/8 B 15 22.385 21.17 15.256 1.00 10.55 C ATOM 2016 CA 14/8 B 15 22.385 22.127 15.256 1.00 12.66 C ATOM 2018 CB 14/8 B 15 22.385 21.17 10.00 13.78 C ATOM 2018 CB 14/8 B 15 22.382 22.137 15.149 1.00 13.78 C ATOM 2020 C 14/8 B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2021 C 14/8 B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2021 C 14/8 B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2021 C 14/8 B 15 22.382 22.146 16.068 1.00 13.78 C ATOM 2021 C 14/8 B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2021 C 14/8 B 15 22.382 22.146 16.068 1.00 13.78 C ATOM 2021 C 14/8 B 15 22.382 22.385 22.146 10.069 10.00 13.79 C ATOM 2020 C 14/8 B 15 22.385 22.385 22.127 15.256 1.00 11.30 O ATOM 2020 C 14/8 B 15 22.385 22.385 22.146 10.069 10.00 13.79 C ATOM 2020 C 14/8 B 15 22.385 11.00 12.50 1.00 13.79 C ATOM 2035 C 14/8 B 15 22.385 17.00 12.57 1.00 12.10 C ATOM 2035 C 14/8 B 15 22.385 1.00 12.59 1.00 13.79 C ATOM 2036 C 24/8 B 17 25.288 17.00 12.		ATOM	1975	0	LEU B	12	29.914	23.302	8.071	1.00 13.09	
ATOM 1988 CA VAL B 13 29.256 21.805 10.335 1.00 12.51 C ADM 1980 CB VAL B 13 29.256 21.805 10.335 1.00 12.51 C ATOM 1986 CG2 VAL B 13 29.222 0.381 10.894 1.00 13.37 C ATOM 1986 CG2 VAL B 13 29.922 20.398 12.336 1.00 14.08 C ATOM 1990 C VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1991 O VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1991 O VAL B 13 28.273 22.541 11.237 1.00 12.00 15.30 C ATOM 1994 CA LYS B 14 27.795 23.558 11.917 1.00 11.40 N ATOM 1994 CA LYS B 14 27.795 25.042 12.035 1.00 11.40 N ATOM 1995 CB LYS B 14 27.039 25.761 10.731 1.00 11.10 C ATOM 1999 CC LYS B 14 28.755 25.042 12.035 1.00 11.44 C ATOM 1999 CC LYS B 14 28.759 25.042 12.035 1.00 11.14 C ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2005 CC LYS B 14 29.602 28.448 9.653 1.00 12.24 N ATOM 2012 C LYS B 14 27.795 24.432 15.165 1.00 10.31 C ATOM 2012 C LYS B 14 27.795 24.432 15.165 1.00 10.98 N ATOM 2014 N LYS B 15 26.282 22.127 15.256 1.00 10.98 C ATOM 2014 N LYS B 15 26.282 22.127 15.256 1.00 10.86 N ATOM 2018 CB LYS B 15 26.282 22.127 15.256 1.00 10.86 N ATOM 2014 N LYS B 15 26.282 22.127 15.256 1.00 12.66 C ATOM 2014 CD LYS B 15 22.882 21.795 10.337 15.109 1.00 18.00 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.66 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.66 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.66 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.66 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.66 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.66 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.66 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.66 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.60 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.60 C ATOM 2024 CD LYS B 15 22.872 22.127 15.256 1.00 12.60 C ATOM 2025 CD LYS B 15 22.872 22.127 12.127		ATOM	1976	N	VAL B	1.3					
10 ATOM 1980 CB VAL B 13 30.492 19.620 10.002 1.00 13.37 C ATOM 1986 CG2 VAL B 13 30.492 19.620 10.002 1.00 15.30 C ATOM 1986 CG2 VAL B 13 30.992 20.398 12.336 1.00 14.08 C ATOM 1990 C VAL B 13 29.922 20.398 12.336 1.00 14.08 C ATOM 1991 O VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1991 O VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1991 O VAL B 13 28.775 23.558 11.917 1.00 11.68 O ATOM 1992 K D LYS B 14 28.775 23.558 11.917 1.00 11.40 N ATOM 1994 CA LYS B 14 26.759 25.042 12.035 1.00 11.40 N ATOM 1995 CB LYS B 14 26.759 25.042 12.035 1.00 11.40 C ATOM 1999 CG LYS B 14 26.759 25.042 12.035 1.00 11.40 C ATOM 1999 CG LYS B 14 28.190 26.759 25.042 12.035 1.00 11.40 C ATOM 2002 CD LYS B 14 28.190 26.759 10.824 1.00 9.92 C C ATOM 2005 CE LYS B 14 28.492 27.540 9.526 1.00 10.31 C ATOM 2008 NZ LYS B 14 28.492 27.540 9.526 1.00 10.31 C ATOM 2013 O LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2013 O LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2013 O LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2013 O LYS B 15 26.914 22.684 14.069 1.00 10.55 C ATOM 2016 CA LYS B 15 26.914 22.684 14.069 1.00 10.56 C ATOM 2016 CA LYS B 15 26.914 22.684 14.069 1.00 10.56 C ATOM 2016 CB LYS B 15 26.822 22.127 15.256 1.00 12.66 C ATOM 2016 CB LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2016 CB LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2016 CB LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2016 CB LYS B 15 24.753 22.337 14.01 18.00 C ATOM 2021 CB LYS B 15 24.753 22.337 14.01 18.00 C ATOM 2021 CB LYS B 15 24.753 22.337 14.01 18.00 C ATOM 2021 CB LYS B 15 24.753 22.337 14.01 18.00 13.78 ATOM 2020 CB LYS B 15 24.753 22.337 14.01 18.00 13.78 ATOM 2020 CB LYS B 15 24.753 22.337 14.00 18.00 C ATOM 2020 CB LYS B 15 24.753 22.337 14.00 18.00 CB ATOM 2020 CB LYS B 15 24.753 22.337 14.00 18.00 CB ATOM 2020 CB LYS B 15 26.561 20.01 14.57 1.00 13.03 O CB ATOM 2020 CB LYS B 15 26.561 20.01 14.57 1.00 13.16 N ATOM 2020 CB LYS B 15 26.561 20.01 14.57 1.00 13.03 O CB ATOM 2035 CB LYS B 15 26.561 20.01 14.57 1.00 13.03 O CB ATOM 20											
ATOM 1982 CG1 VAL B 13	10										Ç
ATOM 1996 CC2 VAL B 13 29.922 20.398 12.336 1.00 14.08 C ATOM 1991 O VAL B 13 29.922 20.398 12.336 1.00 12.00 C ATOM 1991 O VAL B 13 27.106 22.172 11.337 1.00 12.00 C ATOM 1992 N LYS B 14 27.106 22.172 11.319 1.00 11.68 O ATOM 1994 CA LYS B 14 27.991 24.459 12.764 1.00 11.19 N ATOM 1994 CA LYS B 14 27.991 24.459 12.764 1.00 11.19 C ATOM 1996 CG LYS B 14 27.039 25.761 10.731 1.00 11.40 N ATOM 1999 CG LYS B 14 27.039 25.761 10.731 1.00 11.14 C ATOM 1999 CG LYS B 14 27.039 25.761 10.731 1.00 11.14 C ATOM 2002 CD LYS B 14 28.422 27.540 9.526 1.00 10.31 C ATOM 2002 CD LYS B 14 28.422 27.540 9.526 1.00 10.31 C ATOM 2008 NZ LYS B 14 28.422 27.540 9.526 1.00 10.31 C ATOM 2010 NZ LYS B 14 27.549 23.850 14.104 1.00 12.24 N ATOM 2013 O LYS B 14 27.549 23.850 14.104 1.00 12.24 N ATOM 2013 O LYS B 14 27.549 23.850 14.104 1.00 10.55 O ATOM 2014 N LYS B 15 26.914 22.684 14.069 1.00 10.55 O ATOM 2016 CA LYS B 15 26.922 22.77 15.256 1.00 10.31 C ATOM 2016 CA LYS B 15 26.922 22.77 15.256 1.00 10.366 N ATOM 2016 CG LYS B 15 23.879 21.39 16.237 1.00 13.78 C ATOM 2021 CC LYS B 15 23.879 21.39 16.237 1.00 13.78 C ATOM 2021 CC LYS B 15 23.879 21.39 16.237 1.00 13.79 C ATOM 2021 CC LYS B 15 22.382 21.46 16.068 1.00 10.57 N ATOM 2021 CC LYS B 15 22.382 21.46 16.068 1.00 13.78 C ATOM 2021 CC LYS B 15 22.382 21.47 16.00 16.00 C ATOM 2021 CC LYS B 15 26.637 20.600 15.355 1.00 12.47 C ATOM 2021 CC LYS B 15 26.637 20.600 15.355 1.00 12.47 C ATOM 2021 CC LYS B 15 26.637 20.600 15.355 1.00 12.47 C ATOM 2023 CC LYS B 15 26.637 20.600 15.355 1.00 12.17 C ATOM 2023 CC LYS B 15 26.637 20.600 15.355 1.00 12.17 C ATOM 2024 CC LYS B 15 26.637 20.600 15.355 1.00 12.17 C ATOM 2025 C LYS B 15 26.637 20.600 15.355 1.00 12.17 C ATOM 2025 C LYS B 15 26.637 20.600 15.355 1.00 12.17 C ATOM 2025 C LYS B 15 26.637 20.600 15.355 1.00 12.17 C ATOM 2025 C LYS B 15 26.637 20.600 15.355 1.00 12.17 C ATOM 2025 C LYS B 15 26.637 20.600 15.355 1.00 12.17 C ATOM 2025 C LYS B 17 25.268 17.00 10.350 1.00 12.17 C ATOM 2025 C C LYS B 17 25.268 17.00 10.350 1.00 12.17 C AT	10										
ATOM 1990 C VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1991 O VAL B 13 27.106 22.172 11.319 1.00 11.68 C ATOM 1992 N LYS B 14 28.775 23.558 11.917 1.00 11.40 N ATOM 1994 CA LYS B 14 28.775 23.558 11.917 1.00 11.40 N ATOM 1996 CB LYS B 14 26.759 25.042 12.035 1.00 11.18 C ATOM 1999 CG LYS B 14 26.759 25.042 12.035 1.00 11.48 C ATOM 2095 CE LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 10.31 C ATOM 2005 CE LYS B 14 28.422 27.540 9.526 1.00 10.31 C ATOM 2012 C LYS B 14 27.795 24.442 1.00 9.52 C ATOM 2012 C LYS B 14 27.795 24.442 1.00 10.01 1.224 N ATOM 2014 O LYS B 14 27.795 24.442 1.00 10.01 10.98 C ATOM 2014 N LYS B 15 26.914 22.684 14.069 1.00 10.55 O ATOM 2014 N LYS B 15 26.914 22.684 14.069 1.00 10.55 O ATOM 2014 N LYS B 15 26.914 22.684 14.069 1.00 10.86 N ATOM 2012 CC LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2016 CA LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2012 CC LYS B 15 22.382 21.175 15.26 1.00 12.266 C ATOM 2021 CC LYS B 15 22.382 21.146 16.068 N 10.00 13.78 C ATOM 2021 CC LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2021 CC LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2021 CC LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2020 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2034 C LYS B 15 26.637 20.640 15.355 1.00 13.06 C ATOM 2034 C LYS B 15 26.6526 19.913 14.363 1.00 13.03 O ATOM 2034 C LYS B 15 26.6526 19.913 14.363 1.00 13.03 O ATOM 2035 N LILB B 16 27.368 18.784 16.760 1.00 12.47 C ATOM 2034 C LYS B 15 26.6526 19.913 14.363 1.00 13.16 N ATOM 2035 C LYS B 15 26.6526 19.913 14.363 1.00 13.09 C LYA C ATOM 2035 N LILB B 16 27.366 18.794 11.795 1.00 12.47 C ATOM 2035 N LILB B 16 27.366 18.794 11.795 1.00 12.04 C ATOM 2035 N LILB B 16 27.366 18.794 11.795 1.00 12.04 C ATOM 2035 N ASP B 17 26.704 14.91 1.00 27.17 C ATOM 2045 C C ASP B 17 26.704 14.91 1.00 12.01 1.179 C ATOM 2055 C ASP B 17 26.704 14.91 1.00 12.19 C ATOM 2055 C ASP B 17 26.704 14.91 1.00 11.79 C ATOM 2055 C ASP										1.00 15.30	C
ATOM 1990 C VAL B 13 28.273 22.541 11.237 1.00 12.00 C ATOM 1991 O VAL B 13 27.106 22.172 11.319 1.00 11.68 O ATOM 1992 N LYS B 14 28.775 23.558 11.917 1.00 11.40 N ATOM 1994 CA LYS B 14 28.775 23.558 11.917 1.00 11.40 N ATOM 1996 CB LYS B 14 26.759 25.042 12.035 1.00 11.19 C ATOM 1999 CG LYS B 14 26.759 25.042 12.035 1.00 11.48 C ATOM 1999 CG LYS B 14 26.759 25.042 12.035 1.00 11.48 C ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2005 CC LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2012 C LYS B 14 29.602 28.448 9.526 1.00 10.31 C ATOM 2012 C LYS B 14 29.602 28.448 9.525 1.00 11.24 N ATOM 2012 C LYS B 14 27.795 24.432 15.165 1.00 10.98 C ATOM 2012 C LYS B 14 27.795 24.432 15.165 1.00 10.55 O ATOM 2014 O LYS B 15 26.914 22.684 14.069 1.00 10.85 O ATOM 2014 O LYS B 15 26.914 22.684 14.069 1.00 10.85 O ATOM 2014 O LYS B 15 26.914 22.684 14.069 1.00 10.86 N ATOM 2014 CA LYS B 15 24.753 22.337 15.256 1.00 12.266 C ATOM 2016 CB LYS B 15 23.879 21.139 16.237 1.00 18.00 C ATOM 2021 CC LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2021 CC LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2021 CC LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2021 CC LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2023 C LYS B 15 26.526 19.913 14.363 1.00 12.47 C ATOM 2034 C LYS B 15 26.526 19.913 14.363 1.00 13.03 O ATOM 2034 C LYS B 15 26.526 19.913 14.363 1.00 13.16 N ATOM 2034 C LYS B 15 26.526 19.913 14.365 1.00 13.16 N ATOM 2034 C LYS B 15 26.526 19.913 14.365 1.00 13.16 N ATOM 2034 C LYS B 15 26.526 19.913 14.365 1.00 13.16 N ATOM 2035 N LILE B 16 27.368 18.784 16.760 1.00 12.47 C ATOM 2035 N LILE B 16 27.368 18.784 16.760 1.00 12.11 C C ATOM 2035 N ASP B 17 26.7094 20.207 16.587 1.00 13.16 N ATOM 2040 C CB LILE B 16 27.516 19.360 19.098 1.00 11.30 O C ATOM 2040 C CB LILE B 16 27.516 19.360 19.098 1.00 11.37 N ATOM 2055 C ASP B 17 26.701 16.850 19.977 1.00 11.97 C ATOM 2055 C ASP B 17 26.701 16.850 19.979 1.00 11.79 C ATOM 2055 C ASP B 17 26.701 16.850 19.991		MOTA	1986	CG2	VAL B	13	29.922	20.398	12.336	1.00 14.08	
ATOM 1991 O VAL B 13		MOTA	1990	C	VAL B	13	28,273	22.541			
15 ATOM 1992 N LYS B 14 28.775 23.558 11.917 1.00 11.40 N ATOM 1994 CC LYS B 14 26.759 25.042 12.035 1.00 11.48 C ATOM 1996 CB LYS B 14 26.759 25.042 12.035 1.00 11.48 C ATOM 1999 CG LYS B 14 26.759 25.042 12.035 1.00 11.48 C ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 10.31 C ATOM 2012 C LYS B 14 28.492 27.540 9.526 1.00 10.31 C ATOM 2012 C LYS B 14 27.795 24.442 1.00 10.00 10.98 C ATOM 2014 N LYS B 14 27.795 24.442 1.00 10.00 10.98 C ATOM 2014 N LYS B 15 26.914 22.684 14.069 1.00 10.55 O ATOM 2014 N LYS B 15 26.914 22.684 14.069 1.00 10.55 O ATOM 2014 N LYS B 15 26.282 22.127 15.256 1.00 10.266 C ATOM 2018 CB LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2012 CC LYS B 15 22.382 21.146 16.068 N 10.00 10.86 N ATOM 2012 CC LYS B 15 22.382 21.146 16.068 1.00 23.19 C ATOM 2021 CC LYS B 15 22.382 21.146 16.068 1.00 23.19 C ATOM 2021 CC LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2021 CC LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2023 C LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2034 C LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2034 C LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2035 C LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2035 C LYS B 15 26.637 20.040 13.16 N ATOM 2036 C LYS B 15 26.526 19.913 14.363 1.00 13.16 N ATOM 2036 C LYS B 15 26.637 20.040 13.16 N ATOM 2036 C LYS B 15 26.637 20.440 14.921 1.00 27.17 C C ATOM 2036 C LYS B 15 26.637 20.440 14.921 1.00 13.79 C ATOM 2036 C LYS B 15 26.637 20.440 14.921 1.00 13.79 C ATOM 2036 C LYS B 15 26.637 20.440 14.921 1.00 13.16 N ATOM 2036 C LYS B 15 26.637 20.440 14.921 1.00 13.16 N ATOM 2036 C LYS B 15 26.637 20.440 14.921 1.00 13.16 N ATOM 2036 C LYS B 15 26.637 20.440 14.921 1.00 12.47 C LYS B 15 26.637 20.440 14.921 1.00 12.47 C LYS B 15 26.637 20.440 14.921 1.00 12.47 C LYS B 15 26.637 20.440 14.921 1.00 12.47 C LYS B 15 26.637 20.440 14.940 14.940 14.940 14.940 14.940 14.940 14.940 14.940 14.940 14.940 14.940 14.940 14.		ATOM									
AROM 1994 CB LYS B 14 27.991 24.459 12.764 1.00 11.19 C AROM 1999 CG LYS B 14 26.759 25.042 12.035 1.00 11.48 C AROM 1999 CG LYS B 14 27.039 25.761 10.731 1.00 11.14 C AROM 2002 CD LYS B 14 28.190 26.750 10.24 1.00 9.92 C AROM 2005 CE LYS B 14 28.190 26.750 10.24 1.00 9.92 C AROM 2008 NZ LYS B 14 28.190 26.750 10.24 1.00 9.92 C AROM 2012 C LYS B 14 28.190 26.750 10.24 1.00 10.31 C AROM 2012 C LYS B 14 29.602 28.448 9.653 1.00 12.24 N AROM 2013 O LYS B 14 27.795 24.432 15.165 1.00 10.98 C AROM 2014 N LYS B 15 26.914 22.684 14.069 1.00 10.98 C AROM 2016 CA LYS B 15 26.914 22.684 14.069 1.00 10.86 N AROM 2018 CB LYS B 15 26.282 22.127 15.256 1.00 13.78 C AROM 2012 CG LYS B 15 23.878 21.739 16.237 1.00 18.00 C AROM 2021 CG LYS B 15 23.878 21.739 16.237 1.00 18.00 C AROM 2021 CG LYS B 15 22.382 22.146 16.068 1.00 23.19 C AROM 2024 CD LYS B 15 22.382 21.146 16.068 1.00 23.19 C AROM 2030 NZ LYS B 15 22.382 21.146 16.068 1.00 23.19 C AROM 2030 NZ LYS B 15 22.382 21.146 16.068 1.00 23.19 C AROM 2030 NZ LYS B 15 22.382 21.146 16.068 1.00 12.47 C C AROM 2030 NZ LYS B 15 26.526 19.913 14.547 1.00 13.03 C AROM 2036 N LEB B 16 27.094 20.207 16.526 1.00 13.03 C AROM 2036 N LEB B 16 27.368 18.784 16.760 1.00 12.11 C AROM 2038 CA LEB B 16 27.368 18.784 16.760 1.00 12.11 C AROM 2035 C LIE B 16 28.707 18.380 16.149 1.00 12.61 C AROM 2035 C LIE B 16 29.831 18.704 17.105 1.00 12.09 C AROM 2045 CGI LIE B 16 29.831 18.704 17.105 1.00 12.09 C AROM 2055 N ASP B 17 26.701 16.850 19.997 1.00 11.37 N AROM 2055 C ASP B 17 26.701 16.850 19.997 1.00 11.37 N AROM 2056 C ASP B 17 26.701 16.850 19.997 1.00 11.37 N AROM 2057 CA ASP B 17 26.701 16.850 19.997 1.00 11.99 C AROM 2060 C ASP B 17 26.701 16.850 19.997 1.00 11.99 C AROM 2060 C ASP B 17 26.701 16.850 19.997 1.00 11.99 C AROM 2060 C ASP B 17 26.701 16.850 19.997 1.00 11.99 C AROM 2060 C ASP B 17 26.701 16.850 19.998 1.00 11.37 N AROM 2060 C ASP B 17 26.701 16.850 19.998 1.00 11.79 C AROM 2060 C ASP B 17 26.701 16.850 19.998 1.00 11.79 C AROM 2060 C ASP B 18 29.365 14.332 21.324 11.00 9.85	15										
ATOM 1996 CB LYS B 14 26.759 25.042 12.035 1.00 11.48 C ATOM 1999 CG LYS B 14 27.039 25.761 10.731 1.00 11.14 CC ATOM 2002 CD LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 19.92 C ATOM 2005 CE LYS B 14 28.422 27.540 9.526 1.00 10.31 C ATOM 2008 NZ LYS B 14 27.0549 23.850 14.104 1.00 10.98 C ATOM 2013 O LYS B 14 27.795 24.432 15.165 1.00 10.55 O ATOM 2013 O LYS B 14 27.795 24.432 15.165 1.00 10.55 O ATOM 2014 N LYS B 15 26.914 22.684 14.069 1.00 10.98 C ATOM 2014 N LYS B 15 26.914 22.684 14.069 1.00 10.86 N ATOM 2016 CA LYS B 15 26.282 22.127 15.256 1.00 12.66 C ATOM 2016 CG LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2021 CG LYS B 15 22.3878 21.739 16.237 1.00 18.00 C ATOM 2021 CG LYS B 15 22.3872 21.394 14.921 1.00 27.17 C ATOM 2027 CE LYS B 15 22.3872 21.394 14.921 1.00 27.17 C ATOM 2034 C LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2034 C LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2036 N LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2036 N LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2036 N LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2038 CA LYS B 16 27.094 20.207 16.526 1.00 13.03 O ATOM 2038 CA LYS B 16 27.094 20.207 16.526 1.00 13.03 O ATOM 2038 CA LYS B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2045 CG LYS B 16 27.368 18.784 16.760 1.00 12.51 C ATOM 2045 CG LYS B 16 27.368 18.784 16.760 1.00 12.51 C ATOM 2045 CG AYD											
ATOM 2002 CD LYS B 14 27.039 25.761 10.731 1.00 11.14 C ATOM 2002 CD LYS B 14 28.190 26.750 10.824 1.00 10.31 C ATOM 2008 NZ LYS B 14 28.422 27.540 9.526 1.00 10.31 C ATOM 2013 O LYS B 14 29.602 28.448 9.563 1.00 12.24 N ATOM 2013 O LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2013 O LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2013 O LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2014 N LYS B 15 26.914 22.684 14.669 1.00 10.66 N ATOM 2018 CB LYS B 15 26.914 22.684 14.669 1.00 10.66 N ATOM 2018 CB LYS B 15 26.282 22.127 15.256 1.00 10.55 O ATOM 2018 CB LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2012 CG LYS B 15 23.878 21.739 16.237 1.00 18.00 C ATOM 2024 CD LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2030 NZ LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2030 NZ LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2035 N LYS B 15 26.526 19.913 14.363 1.00 13.03 N ATOM 2036 N LEB B 16 27.094 20.207 16.526 1.00 13.03 O ATOM 2036 N LEB B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2042 CG LYS B 15 26.526 19.913 14.363 1.00 12.11 C ATOM 2045 CG LYS B 15 26.526 19.913 14.363 1.00 12.11 C ATOM 2045 CG LYS B 16 28.600 16.894 15.756 1.00 12.11 C ATOM 2045 CG LYS B 16 28.600 16.894 15.756 1.00 12.11 C ATOM 2045 CG LYS B 16 28.600 16.894 15.756 1.00 12.01 C ATOM 2045 CG LYS B 16 28.600 16.894 15.756 1.00 12.01 C ATOM 2045 CG LYB B 16 27.566 19.897 18.756 1.00 12.01 C ATOM 2045 CG LYB B 16 27.566 19.897 18.589 1.00 12.09 C C ATOM 2045 CG LYB B 16 27.566 19.897 18.589 1.00 12.09 C C ATOM 2045 CG LYB B 16 27.566 19.303 17.257 18.587 1.00 12.09 C C ATOM 2045 CG LYB B 16 27.576 18.487 18.289 1.00 12.09 C C ATOM 2045 CG LYB B 16 27.576 18.487 19.300 11.30 N D LYB B 17 25.834 18.704 17.105 1.00 12.04 C C ATOM 2045 CG ASP B 17 26.701 16.850 19.977 1.00 11.37 N N ATOM 2055 CA ASP B 17 25.238 17.000 20.347 1.00 12.09 C C ATOM 2065 CA ASP B 17 25.584 16.488 22.212 1.00 11.37 N N ATOM 2065 CA ASP B 17 25.584 18.895 1.00 10.57 N N O 11.30 N O 11.30 N O 11.30 N O 11.30											
ATOM 2002 CD LYS B 14 28.190 26.750 10.824 1.00 9.92 C C 20 ATOM 2005 CE LYS B 14 28.422 27.540 9.526 1.00 10.31 C ATOM 2006 NZ LYS B 14 27.595 23.850 14.104 1.00 10.98 C ATOM 2013 O LYS B 14 27.595 24.432 15.165 1.00 10.55 O ATOM 2016 CA LYS B 15 26.914 22.684 14.069 1.00 10.86 N LYS B 15 26.914 22.684 14.069 1.00 10.86 N ATOM 2016 CA LYS B 15 26.282 22.127 15.256 1.00 12.66 C ATOM 2016 CA LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2016 CG LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2016 CG LYS B 15 22.3878 21.739 16.237 1.00 18.00 C C ATOM 2027 CE LYS B 15 22.3878 21.739 16.237 1.00 18.00 C C ATOM 2027 CE LYS B 15 22.3878 21.739 16.237 1.00 18.00 C C ATOM 2027 CE LYS B 15 22.387 22.387 15.149 1.00 27.17 C C ATOM 2027 CE LYS B 15 22.387 20.640 15.355 1.00 12.47 N ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2034 C LYS B 15 26.637 20.640 15.355 1.00 12.47 N ATOM 2036 N LLE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2036 N LLE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2036 C LIE B 16 28.707 18.380 16.149 1.00 13.16 N ATOM 2042 CG1 LLE B 16 28.660 16.894 15.756 1.00 13.16 N ATOM 2042 CG1 LLE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2045 CD1 LLE B 16 27.516 18.487 14.991 1.00 12.61 C ATOM 2045 CD1 LLE B 16 27.516 18.487 14.991 1.00 12.00 C ATOM 2045 CD1 LLE B 16 27.516 18.487 18.258 1.00 12.09 C ATOM 2045 CD1 LLE B 16 27.516 18.487 18.258 1.00 12.09 C ATOM 2054 CD1 LLE B 16 27.516 18.487 18.258 1.00 12.09 C ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2056 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2056 C ASP B 17 26.903 17.257 18.587 1.00 11.30 O C ATOM 2057 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N C ATOM 2057 C ASP B 17 25.238 17.060 20.347 1.00 12.04 C ATOM 2057 C ASP B 17 25.498 17.00 15.375 1.00 15.71 N C ATOM 2057 C ASP B 17 25.706 18.487 18.258 1.00 12.09 9.71 C ATOM 2067 C ASP B 17 25.706 18.487 18.258 1.00 12.09 9.71 C ATOM 2067 C ASP B 17 25.706 18.487 18.258 1.00 10.0 10.57 N ATOM 2068 C ASP B 17 25.706 18.387 19.913 1.00 9.71 C ATOM 2067 C ASP B									12.035	1.00 11.48	С
ATOM 2005 CE LYS B 14 28.190 26.750 10.824 1.00 9.92 C ATOM 2005 CE LYS B 14 28.422 27.540 9.526 1.00 10.31 C ATOM 2006 NZ LYS B 14 29.602 28.448 9.653 1.00 12.24 N ATOM 2012 C LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2014 N LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2014 N LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2014 N LYS B 15 26.914 22.694 14.069 1.00 10.86 N ATOM 2014 N LYS B 15 26.914 22.694 14.069 1.00 10.86 N ATOM 2014 C LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2012 CG LYS B 15 22.3878 21.739 16.237 1.00 18.00 C ATOM 2021 CG LYS B 15 22.3878 21.739 16.237 1.00 18.00 C ATOM 2021 CG LYS B 15 22.382 22.146 16.068 1.00 27.17 C ATOM 2027 CE LYS B 15 22.3872 22.146 16.068 1.00 27.17 C ATOM 2027 CE LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2036 N LEB B 16 27.094 20.207 16.526 1.00 12.47 C ATOM 2036 N LEB B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2036 CA LIE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2040 CB LIE B 16 27.094 20.207 16.526 1.00 13.03 O ATOM 2040 CB LIE B 16 28.600 16.894 15.756 1.00 12.11 C ATOM 2049 CGI LIE B 16 28.600 16.894 15.756 1.00 12.01 2.11 C ATOM 2049 CGI LIE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2045 CGI LIE B 16 29.821 18.704 17.105 1.00 12.04 C ATOM 2045 CGI LIE B 16 29.821 18.704 17.105 1.00 12.04 C ATOM 2045 CGI LIE B 16 29.831 18.704 17.105 1.00 12.09 C ATOM 2045 CGI LIE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2045 CG ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2045 CG ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2045 CG ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2045 CG ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2045 CG ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2045 CG ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2045 CC ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2045 CC ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2045 CC ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2045 CC ASP B 17 26.904 18.304 18.201 11.00 10.47 CC ATOM 2045 CC ASP B 18 18		ATOM	1999	CG	LYS B	14	27.039	25.761	10.731	1.00 11.14	С
20 ATOM 2005 CE LYS B 14 28.422 27.540 9.526 1.00 10.31 C ATOM 2008 NZ LYS B 14 29.602 28.448 9.653 1.00 12.24 N ATOM 2012 C LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2013 O LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2014 N LYS B 15 26.914 22.684 14.069 1.00 10.86 N ATOM 2016 CA LYS B 15 26.914 22.684 14.069 1.00 10.86 N ATOM 2018 CB LYS B 15 26.282 22.127 15.256 1.00 12.66 C ATOM 2018 CB LYS B 15 22.873 22.337 15.149 1.00 13.78 C ATOM 2021 CG LYS B 15 22.882 22.147 15.256 1.00 12.66 C ATOM 2021 CG LYS B 15 23.878 21.739 16.237 1.00 18.00 C ATOM 2024 CC LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2030 NZ LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2036 N LE B 16 27.368 18.784 16.760 1.00 12.47 C ATOM 2036 N ILE B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2040 CG ILE B 16 28.600 16.894 15.756 1.00 13.03 O C ATOM 2040 CG ILE B 16 28.600 16.894 15.756 1.00 13.09 C ATOM 2040 CG ILE B 16 28.600 16.894 15.756 1.00 13.09 C ATOM 2040 CG ILE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2055 N ASP B 17 26.903 17.257 18.800 19.098 1.00 11.30 N C ATOM 2055 N ASP B 17 26.903 17.257 18.850 19.098 1.00 11.30 N C ATOM 2055 C ILE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2055 N ASP B 17 26.903 17.257 18.850 19.098 1.00 11.30 N C ATOM 2055 C ASP B 17 25.938 17.006 20.347 1.00 12.04 C ATOM 2055 C ASP B 17 25.938 17.006 20.347 1.00 12.91 C ATOM 2055 C ASP B 17 25.938 17.006 20.347 1.00 12.19 C ATOM 2055 C ASP B 17 25.938 17.006 20.347 1.00 12.19 C ATOM 2066 C ASP B 17 25.938 17.006 20.347 1.00 12.19 C ATOM 2066 C ASP B 17 25.938 17.006 20.347 1.00 12.19 C ATOM 2066 C ASP B 17 25.938 17.006 20.347 1.00 12.19 C ATOM 2066 C ASP B 17 25.938 17.006 20.347 1.00 12.19 C ATOM 2066 C ASP B 17 25.938 17.006 20.347 1.00 12.19 C ATOM 2067 C ASP B 17 25.938 17.006 20.347 1.00 12.19 C ATOM 2067 C ASP B 17 25.938 17.006 20.347 1.00 12.19 C ATOM 2067 C ASP B 17 25.938 17.006 20.347 1.00 12.19 C ATOM 2067 C ASP B 18 2		MOTA	2002	CD	LYS B	14	28,190	26,750	10.824		
ATOM 2012 CC LYS B 14 27.549 28.448 9.653 1.00 12.24 N ATOM 2012 C LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2013 O LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2016 CA LYS B 15 26.914 22.684 14.069 1.00 10.55 O ATOM 2016 CA LYS B 15 26.282 22.127 15.256 1.00 12.66 C ATOM 2016 CG LYS B 15 26.282 22.127 15.256 1.00 12.66 C ATOM 2016 CG LYS B 15 24.753 22.337 15.149 1.00 13.78 ATOM 2016 CG LYS B 15 22.387 21.399 16.237 1.00 18.00 C ATOM 2021 CC LYS B 15 22.387 21.399 16.237 1.00 18.00 C ATOM 2021 CC LYS B 15 22.382 22.127 14.00 18.00 C ATOM 2021 CC LYS B 15 22.382 22.146 16.068 1.00 27.17 C ATOM 2021 CL LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2035 O LYS B 15 26.526 19.913 14.363 1.00 13.16 N ATOM 2038 CA LLE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2038 CA LLE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2038 CA LLE B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2042 CCG LIE B 16 28.600 16.894 15.756 1.00 12.04 C ATOM 2040 CG LIE B 16 28.600 16.894 15.756 1.00 12.01 C ATOM 2042 CCG LIE B 16 29.831 18.704 17.105 1.00 14.91 C ATOM 2042 CCG LIE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2053 C LIE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2053 C LIE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 12.09 C ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2055 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2050 CA ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2050 CA ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2050 CA ASP B 17 26.903 17.257 18.587 1.00 15.47 C ATOM 2060 CA ASP B 17 26.903 17.257 18.587 1.00 15.47 C ATOM 2060 CA ASP B 17 26.903 17.257 18.587 1.00 15.47 C ATOM 2060 CA ASP B 17 26.903 17.257 18.587 1.00 15.47 C ATOM 2060 CA ASP B 17 26.903 17.257 18.587 1.00 15.47 C ATOM 2060 CA ASP B 17 26.903 17.257 18.587 1.00 15.47 C ATOM 2060 CA ASP B 17 26.246 14.552 20.266 1.00 10.07 1.77 C ATOM 2060 CA ASP B 17 26.246 14.552 20.266 1.00 10.07 1.77 C ATOM 2060 CA ASP B 18 28.298 18.39	20			CE							
ATOM 2012 C LYS B 14 27.549 23.850 14.104 1.00 10.98 C ATOM 2013 O LYS B 14 27.795 24.432 15.165 1.00 10.55 O ATOM 2013 O LYS B 15 26.914 22.684 14.069 1.00 10.86 N ATOM 2016 CA LYS B 15 26.924 22.127 15.256 1.00 12.66 C ATOM 2016 CB LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2021 CG LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2021 CD LYS B 15 22.3878 21.739 16.237 1.00 18.00 C ATOM 2024 CD LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2027 CE LYS B 15 22.382 22.146 16.068 1.00 27.17 C ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2030 NZ LYS B 15 26.526 19.913 14.363 1.00 13.03 O ATOM 2035 N LIE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2038 CA LIE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2038 CA LIE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2030 CB LIE B 16 28.707 18.380 16.149 1.00 12.61 C ATOM 2035 C LIE B 16 28.707 18.380 16.149 1.00 12.61 C ATOM 2040 CG LIE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2045 CD LIE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2045 CD LIE B 16 29.821 16.894 15.756 1.00 13.09 C ATOM 2053 C LIE B 16 29.821 16.894 15.756 1.00 13.09 C ATOM 2055 C LIE B 16 29.821 16.894 18.258 1.00 12.09 C ATOM 2055 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2055 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2055 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2055 C ASP B 17 25.238 17.060 20.347 1.00 11.37 N ATOM 2055 C ASP B 17 22.938 17.060 20.347 1.00 12.19 C ATOM 2055 C ASP B 17 22.938 17.060 20.347 1.00 12.19 C ATOM 2055 C ASP B 17 22.938 17.060 20.347 1.00 12.19 C ATOM 2055 C ASP B 17 22.938 17.060 20.347 1.00 12.19 C ATOM 2055 C ASP B 17 22.938 17.060 20.347 1.00 12.19 C ATOM 2055 C ASP B 17 22.938 17.329 18.587 1.00 11.37 N ATOM 2065 C ASP B 17 22.348 18.219 19.350 20.040 1.00 10.57 N C ATOM 2065 C ASP B 17 22.348 18.219 22.348 18.211 1.00 1.00 9.71 C ATOM 2065 C ASP B 18 33.172 13.049 19.033 1.00 9.71 C ATOM 2065 C ASP B 18 33.172 13										•	
ATOM 2014 N LYS B 14 22.795 24.492 15.165 1.00 10.55 O ATOM 2014 N LYS B 15 26.914 22.2127 15.256 1.00 10.86 N ATOM 2018 CB LYS B 15 26.282 22.127 15.256 1.00 12.66 C ATOM 2016 CG LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2017 CE LYS B 15 23.878 21.739 16.237 15.214 1.00 13.78 C ATOM 2024 CD LYS B 15 22.382 22.127 15.256 1.00 12.66 C ATOM 2021 CE LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2027 CE LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2027 CE LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2027 CE LYS B 15 22.679 21.902 14.547 1.00 34.39 N ATOM 2030 NZ LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2035 C LYS B 15 26.526 19.913 14.363 1.00 13.03 O ATOM 2035 C LYS B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2038 CA ILE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2038 CA ILE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2032 C ATOM 2040 CB ILE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2042 CGI ILE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2045 CDI ILE B 16 29.821 18.704 17.105 1.00 12.01 C ATOM 2045 CDI ILE B 16 29.821 18.704 17.105 1.00 12.04 C ATOM 2045 CDI ILE B 16 29.821 18.704 17.105 1.00 12.04 C ATOM 2053 C ILE B 16 29.821 18.704 17.105 1.00 12.04 C ATOM 2053 C ILE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2050 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2050 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2050 C ASP B 17 25.238 17.060 20.347 1.00 12.94 C ATOM 2055 C ASP B 17 25.238 17.060 20.347 1.00 12.95 C ATOM 2050 C ASP B 17 25.238 17.050 20.347 1.00 12.95 C ATOM 2050 C ASP B 17 25.238 17.050 20.347 1.00 12.95 C ATOM 2050 C ASP B 17 25.238 17.050 20.347 1.00 12.95 C ATOM 2050 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2050 C ASP B 17 25.238 17.050 20.3566 1.00 10.577 C ATOM 2050 C ASP B 17 25.238 17.050 20.3566 1.00 10.577 C ATOM 2050 C ASP B 17 25.238 17.050 20.3566 1.00 10.47 C ATOM 2050 C ASP B 18 33.172 13.348 22.212 1.00 21.94 0.00 10.47 C ATOM 2050 C ASP B 18 33.172 13.344 13.344 13.344 13.00 9.85 C ATO											
ATOM 2016 CA LYS B 15 26.914 22.684 14.069 1.00 10.866 N A ATOM 2018 CB LYS B 15 26.282 22.127 15.256 1.00 12.66 C A ATOM 2018 CB LYS B 15 24.753 22.337 15.149 1.00 13.78 C ATOM 2024 CD LYS B 15 23.878 21.739 16.237 1.00 18.00 C A ATOM 2024 CD LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2027 CE LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N A ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N A ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N A ATOM 2035 O LYS B 15 26.526 19.913 14.363 1.00 13.03 O A ATOM 2036 N ILE B 16 27.094 20.207 16.526 1.00 13.03 O A ATOM 2036 N LIE B 16 27.094 20.207 16.526 1.00 13.16 N A ATOM 2036 CA LIE B 16 28.707 18.380 16.149 1.00 12.11 C A ATOM 2042 CG1 LIE B 16 28.707 18.380 16.149 1.00 12.61 C A ATOM 2042 CG1 LIE B 16 28.707 18.380 16.149 1.00 12.61 C A ATOM 2049 CG2 ILE B 16 29.821 16.471 1.00 14.91 C A ATOM 2049 CG2 ILE B 16 29.821 18.704 17.105 1.00 12.04 C A ATOM 2049 CG2 ILE B 16 29.831 18.704 17.105 1.00 12.04 C A ATOM 2053 C ILE B 16 29.831 18.704 17.105 1.00 12.04 C A ATOM 2055 N ASP B 17 26.701 16.856 19.906 19.098 100 11.30 O A ATOM 2055 N ASP B 17 26.701 16.856 19.906 19.098 100 11.30 O A ATOM 2055 C A ASP B 17 22.3746 16.838 22.602 1.00 11.37 N A ATOM 2055 C A ASP B 17 22.3746 16.838 22.602 1.00 15.47 C A ATOM 2055 C A ASP B 17 22.3746 16.838 22.602 1.00 15.71 O A ATOM 2065 C ASP B 17 22.3746 16.838 22.602 1.00 15.71 C A ATOM 2065 C ASP B 17 23.746 16.838 22.602 1.00 15.77 C A ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 23.746 16.838 22.602 1.00 15.77 C A ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 23.746 16.838 22.602 1.00 15.77 C A ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 23.746 16.838 22.602 1.00 15.77 C A ASP B 17 25.238 13.15 19.479 1.00 15.47 C ATOM 2065 C ASP B 17 23.746 16.838 22.602 1.00 15.77 C ATOM 2065 C ASP B 17 23.746 16.838 22.602 1.00 15.77 C ATOM 2065 C ASP B 18 30.792 13.663 20.275 1.00 10.57 N A ATOM 2065 C ASP B 18 30.9							27.549			-	С
ATOM 2016 CA				0		14	27.795		15.165	1.00 10.55	0
25 ATOM 2016 CA LYS B 15			2014	N	LYS B	15	26.914	22.684	14.069	1.00 10.86	N
ATOM 2016 CB LYS B 15 22.377 15.149 1.00 13.78 C ATOM 2021 CG LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2027 CE LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2030 NZ LYS B 15 20.279 21.902 14.527 1.00 34.39 N ATOM 2030 NZ LYS B 15 20.279 21.902 14.527 1.00 34.39 N ATOM 2035 C LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2035 O LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2035 O LYS B 15 26.526 19.913 14.363 1.00 13.03 O ATOM 2036 N LLE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2035 C LLE B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2035 C LLE B 16 28.707 18.380 16.149 1.00 12.11 C ATOM 2045 CD1 LLE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2045 CD1 LLE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2045 CD1 LLE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 12.09 C ATOM 2057 CA ASP B 17 26.701 16.850 19.098 1.00 11.37 N ATOM 2055 CA ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2055 CA ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2055 CA ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2055 CA ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2055 CA ASP B 17 25.238 17.060 20.347 1.00 11.37 N ATOM 2055 CA ASP B 17 25.238 17.060 20.347 1.00 11.37 N ATOM 2055 CA ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2062 CG ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2067 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2067 C C ASP B 17 25.238 17.060 20.347 1.00 10.47 C C ATOM 2067 C C ASP B 17 25.238 17.060 20.347 1.00 10.47 C C ATOM 2067 C C ASP B 18 8 33.752 13.155 19.479 10.00 10.47 C C ATOM 2074 C C PHE B 18 30.797 14.584 18.211 1.00 9.77 C C ATOM 2075 C C PHE B 18 30.079 14.58	25	ATOM	2016	CA	LYS B	15	26.282				
ATOM 2021 CG LYS B 15 23.878 21.739 16.237 1.00 18.00 C ATOM 2027 CE LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2027 CE LYS B 15 22.382 22.146 16.068 1.00 23.19 C ATOM 2027 CE LYS B 15 21.671 21.394 14.921 1.00 27.17 C ATOM 2030 NZ LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2030 NZ LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2035 O LYS B 15 26.526 19.913 14.363 1.00 13.03 O ATOM 2038 CA ILE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2038 CA ILE B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2036 N ILE B 16 28.707 18.380 16.149 1.00 12.11 C ATOM 2040 CB ILE B 16 28.707 18.380 16.149 1.00 12.61 C ATOM 2045 CD1 ILE B 16 29.821 18.704 17.105 1.00 13.09 C ATOM 2049 CG2 ILE B 16 29.821 18.704 17.105 1.00 12.04 C ATOM 2049 CG2 ILE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2053 C ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2055 N ASP B 17 26.701 16.850 19.977 1.00 11.30 O ATOM 2055 C ASP B 17 26.701 16.850 19.977 1.00 11.37 N ATOM 2055 C ASP B 17 26.701 16.850 19.977 1.00 11.97 C ATOM 2056 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2066 O ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2066 O ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2065 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2066 O ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2066 O ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2066 O ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2067 N PHE B 18 28.552 13.620 20.686 1.00 10.57 N ATOM 2067 C APE B 18 28.552 13.620 20.686 1.00 10.57 N ATOM 2067 C APE B 18 28.552 13.620 20.686 1.00 10.57 N ATOM 2067 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2070 C PHE B 18 30.979 14.584 18.062 1.00 9.60 C ATOM 2085 C PHE B 18 30.979 14.584 18.062 1.00 9.60 C ATOM 2087 C PHE B 18 30.979 14.584 18.211 1.00 9.51 C ATOM 2086 O PHE B 18 30.979 14.584 18.211 1.00 9.60 C ATOM 2087 C PHE B 18 30.979 14.584 18.221 1.00 9.72 C ATOM 2080 C PHE B 18 30.979 14.584 22.222.2691 1.00 10.77		ATOM	2018								
ATOM 2024 CD LYS B 15											
ATOM 2027 CE LYS B 15 21.671 21.394 14.921 1.00 27.17 C ATOM 2034 C LYS B 15 20.279 21.902 14.547 1.00 34.39 N ATOM 2035 C LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2036 N ILE B 16 27.094 20.207 16.526 1.00 13.03 O ATOM 2036 N ILE B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2038 CA ILE B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2040 CB ILE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2042 CG1 ILE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2045 CD1 ILE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2045 CD1 ILE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2053 C ILE B 16 29.822 16.447 14.941 1.00 12.04 C ATOM 2053 C ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2054 O ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2059 CB ASP B 17 25.238 17.060 20.347 1.00 11.97 C ATOM 2060 O ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2064 OD2 ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2065 C ASP B 17 25.834 16.488 22.212 1.00 21.94 O ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.552 13.620 20.686 1.00 10.57 N ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.57 N ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.57 N ATOM 2067 N PHE B 18 28.552 13.620 20.686 1.00 10.57 N ATOM 2067 CD1 PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2077 CE1 PHE B 18 32.936 14.220 22.691 1.00 10.47 C ATOM 2080 C PHE B 18 32.936 14.220 22.691 1.00 10.07 C ATOM 2080 C PHE B 18 32.936 14.220 22.691 1.00 10.07 C ATOM 2080 C PHE B 18 32.936 14.220 22.691 1.00 10.09 O ATOM 2080 C PHE B 18 32.936 14.220 22.691 1.00 9.09 N ATOM 2080 C PHE B 18 32.936 14.220 22.691 1.00 9.09 O ATOM 2080 C PHE B 18 32.936 14.220 22.691 1.00 9.09 O ATOM 2080 C PHE B 18 32.936 14.220 22.691 1.00 9.09 O ATOM 2080 C PHE B 18 32.936 12.041 22.306 1.00 9.09 O ATOM 2080 C PHE B 18 32.936 12.041 22.306 1.00 9.09											Ç
ATOM 2030											C
ATOM 2034 C LYS B 15 26.637 20.640 15.355 1.00 12.47 C ATOM 2035 O LYS B 15 26.526 19.913 14.363 1.00 13.03 O ATOM 2036 N ILE B 16 27.094 20.127 16.526 1.00 13.16 N ATOM 2038 CA LLE B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2040 CB LLE B 16 28.707 18.380 16.149 1.00 12.61 C ATOM 2042 CG1 LLE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2045 CD1 LLE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2045 CD1 LLE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2045 CD1 LLE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2053 C LLE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2055 C LLE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2055 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2055 C ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2055 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2055 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2055 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2055 C ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2055 C ASP B 17 25.834 16.488 22.602 1.00 15.71 C ATOM 2055 C ASP B 17 25.834 16.488 22.602 1.00 15.71 C ATOM 2065 C ASP B 17 25.834 16.488 22.602 1.00 15.71 C ATOM 2065 C ASP B 17 25.834 16.488 22.602 1.00 15.71 C ATOM 2065 C ASP B 17 25.834 16.488 22.602 1.00 15.71 C ATOM 2065 C ASP B 17 25.834 16.488 22.602 1.00 15.71 C ATOM 2065 C ASP B 17 25.835 13.115 19.479 1.00 12.85 O ATOM 2067 C APHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2067 C APHE B 18 28.190 15.029 20.566 1.00 10.47 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2075 CD1 PHE B 18 32.936 14.318 20.131 1.00 9.88 C ATOM 2083 CD2 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2085 C PHE B 18 30.979 14.584 18.211 1.00 9.60 C ATOM 2081 CE2 PHE B 18 30.979 14.584 18.211 1.00 9.72 C ATOM 2085 C PHE B 18 30.979 14.584 18.211 1.00 9.72 C ATOM 2085 C PHE B 18 30.979 14.584 18.211 1.00 9.72 C ATOM 2086 O PHE B 18 30.979 14.584 18.211 1.00 9.72 C ATOM 2086 O PHE B 18 29.326 12.041 22.306 1.00 9.72 C ATOM 2087 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C	20										С
ATOM 2034 C LYS B 15	30			NZ	LYS B		20.279	21.902	14.547	1.00 34.39	N
ATOM 2035 O LYS B 15 26.526 19.913 14.363 1.00 13.03 O ATOM 2036 N ILE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2038 CA ILE B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2040 CB ILE B 16 28.707 18.380 16.149 1.00 12.61 C ATOM 2040 CGB ILE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2040 CGI ILE B 16 29.821 16.447 14.941 1.00 14.91 C ATOM 2045 CDI ILE B 16 29.831 18.704 17.105 1.00 12.09 C ATOM 2049 CG2 ILE B 16 29.831 18.704 17.105 1.00 12.09 C ATOM 2053 C ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2055 N ASP B 16 27.516 19.360 19.098 1.00 11.30 O ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2059 CB ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2050 CD ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2050 CD ASP B 17 25.834 16.488 22.602 1.00 15.47 C ATOM 2064 CD ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2065 C ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2065 C ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2066 C ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2066 C ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2066 C ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2066 C ASP B 17 25.834 16.488 22.602 1.00 12.95 C ATOM 2066 C ASP B 17 25.834 16.488 22.602 1.00 12.95 C ATOM 2066 C ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 CD APE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2075 CD PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2075 CD PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD PHE B 18 31.732 13.633 20.275 1.00 7.77 C ATOM 2075 CD PHE B 18 32.194 15.226 18.062 1.00 9.85 C ATOM 2075 CD PHE B 18 32.194 15.226 18.062 1.00 9.08 N ATOM 2085 CD PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2085 CD PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2085 CD PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2085 CD PHE B 18 29.261 13.324 21.983 1.00 9.72 C ATOM 2085 CD PHE B 18 29.366 12.041 22.306 1.00 9.08 N ATOM 2087 CD PHE B 18 29.366 12.041 22.306 1.00 9.08 N ATOM 2087 CD PHE B 18 29.926 11.1569 23.459 1.00		MOTA	2034	C	LYS B	. 15	26.637	20.640	15.355	1.00 12.47	
ATOM 2036 N ILE B 16 27.094 20.207 16.526 1.00 13.16 N ATOM 2038 CA ILE B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2040 CB ILE B 16 28.707 18.380 16.149 1.00 12.61 C ATOM 2042 CG1 ILE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2045 CD1 ILE B 16 29.821 16.447 14.941 1.00 14.91 C ATOM 2049 CG2 ILE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2053 C ILE B 16 29.831 18.704 17.105 1.00 12.09 C ATOM 2053 C ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.30 O ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2055 CA ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2059 CB ASP B 17 25.238 17.060 20.347 1.00 11.97 C ATOM 2059 CB ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2062 CG ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2064 OD2 ASP B 17 23.746 16.488 22.602 1.00 15.71 O ATOM 2064 OD2 ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 18 28.190 15.029 20.566 1.00 10.47 C ATOM 2074 CG PHE B 18 28.150 15.029 20.566 1.00 10.47 C ATOM 2074 CG PHE B 18 28.355 13.620 20.686 1.00 10.47 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.85 C ATOM 2075 CD1 PHE B 18 30.728 13.797 19.316 1.00 9.85 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.85 C ATOM 2075 CD1 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2081 CD2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2081 CD2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2081 CD2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2085 CD PHE B 18 32.194 15.226 18.062 1.00 9.77 C ATOM 2085 CD PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 CD PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 CD PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 CD PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 CD PHE B 18 29.760 14.220 22.691 1.00 10.09 9.72 C ATOM 2087 CD2 PHE B 18 29.760 14.220 22.691 1.00 9.08 N ATOM 2081 CD2 PHE B 18 29.760 14.220 22.691 1.00 9.72 C ATOM 2081 CD2 PHE B 18 29.760 14.22		MOTA	2035	0	LYS B						
ATOM 2038 CA ILE B 16 27.368 18.784 16.760 1.00 12.11 C ATOM 2040 CB ILE B 16 28.707 18.380 16.149 1.00 12.61 C ATOM 2040 CG1 ILE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2045 CD1 ILE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2049 CG2 ILE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2049 CG2 ILE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2053 C ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2053 C ILE B 16 27.276 19.360 19.098 1.00 11.30 O ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2055 CA ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2059 CB ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2050 CG ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.47 C ATOM 2064 OD2 ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2064 OD2 ASP B 17 25.834 16.488 22.202 1.00 21.94 O ATOM 2064 OD2 ASP B 17 25.834 16.488 22.212 1.00 21.94 O ATOM 2066 C ASP B 17 25.834 16.488 22.212 1.00 21.94 O ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.79 C ATOM 2066 C ASP B 17 26.246 14.552 19.554 1.00 10.57 N ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2071 CB PHE B 18 28.390 15.029 20.566 1.00 10.47 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2077 CC1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2085 CD PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2085 CD PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2085 CD PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2085 CD PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2086 CD PHE B 18 29.281 13.324 12.983 1.00 9.72 C ATOM 2085 CD PHE B 18 29.281 13.325 22.4716 1.00 9.54 C C ATOM 2086 CD PHE B 18 29.281 13.324 12.983 1.00 9.72 C C ATOM 2086 CD PHE B 18 29.281 13.324 12.983 1.00 9.72 C C ATOM 2087 CD PHE B 18 29.281 13.324 12.983 1.00 9.72 C C ATOM 2081 CD PHE B 18 29.281 13.324 12.983 1.00 9.72 C C ATOM 2081 CD PHE B 18 29.281 13											
ATOM 2040 CB ILE B 16 28.707 18.380 16.149 1.00 12.61 C ATOM 2042 CG1 ILE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2049 CG2 ILE B 16 29.821 16.447 14.941 1.00 14.91 C ATOM 2049 CG2 ILE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2053 C ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2054 O ILE B 16 27.516 19.360 19.098 1.00 11.30 O ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2059 CB ASP B 17 26.701 16.850 19.977 1.00 11.97 C ATOM 2059 CB ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2062 CG ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2063 OD1 ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2064 OD2 ASP B 17 25.834 16.488 22.202 1.00 15.71 O ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2069 CA PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2075 CD1 PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2085 CD PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 CD PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2086 O PHE B 18 29.365 13.05 12.041 1.00 9.00 9.70 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2088 CA ASP B 19 29.326 12.041 22.306 1.00 9.09 N ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.09 N ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.09 N ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2080 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2081 CB ASP B 19 29.326 12.041 22.306 1.00 9.72 C											
ATOM 2042 CG1 ILE B 16 28.660 16.894 15.756 1.00 13.09 C ATOM 2045 CD1 ILE B 16 29.822 16.447 14.941 1.00 14.91 C ATOM 2045 CG2 ILE B 16 29.823 18.704 17.105 1.00 12.04 C ATOM 2053 C ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2053 C ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.30 O ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 26.701 16.850 19.977 1.00 11.97 C ATOM 2059 CB ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2059 CB ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2063 OD1 ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2064 OD2 ASP B 17 27.026 15.373 20.040 1.00 11.079 C ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2067 CA PHE B 18 28.190 15.029 20.566 1.00 10.47 C ATOM 2071 CB PHE B 18 28.352 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2071 CB PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2079 CZ PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2083 CD2 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2083 CD2 PHE B 18 32.936 14.318 20.131 1.00 9.60 C ATOM 2081 CE2 PHE B 18 32.936 14.318 20.131 1.00 9.60 C ATOM 2085 CD PHE B 18 32.936 14.318 20.131 1.00 9.60 C ATOM 2085 CD PHE B 18 32.936 14.318 20.131 1.00 9.60 C ATOM 2085 CD PHE B 18 32.936 14.318 20.131 1.00 9.60 C ATOM 2085 CD PHE B 18 32.936 14.318 20.131 1.00 9.60 C ATOM 2085 CD PHE B 18 32.936 14.318 20.131 1.00 9.60 C ATOM 2085 CD PHE B 18 32.936 14.318 20.131 1.00 9.72 C ATOM 2086 CD PHE B 18 30.979 14.584 18.211 1.00 9.72 C ATOM 2087 CD PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2080 CD PHE B 18 29.326 12.041 22.306	25										С
ATOM 2049 CG2 ILE B 16 29.822 16.447 14.941 1.00 14.91 CC ATOM 2049 CG2 ILE B 16 29.831 18.704 17.105 1.00 12.04 CC ATOM 2053 C ILE B 16 27.276 18.487 18.258 1.00 12.09 CC 40 ATOM 2054 O ILE B 16 27.276 19.360 19.098 1.00 11.30 OC ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 26.701 16.850 19.977 1.00 11.97 CC ATOM 2059 CB ASP B 17 25.238 17.060 20.347 1.00 12.19 CC ATOM 2063 OD1 ASP B 17 24.929 16.770 21.795 1.00 15.47 CC ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.71 OC ATOM 2064 OD2 ASP B 17 23.746 16.838 22.212 1.00 21.94 OC ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 CC ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 OC ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N 50 ATOM 2069 CA PHE B 18 28.190 15.029 20.566 1.00 10.47 CC ATOM 2074 CG PHE B 18 30.728 13.620 20.686 1.00 10.47 CC ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 CC ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 CC ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 CC ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 CC ATOM 2079 CZ PHE B 18 32.936 14.318 20.131 1.00 9.60 CC ATOM 2083 CD2 PHE B 18 32.194 15.226 18.062 1.00 9.60 CC ATOM 2083 CD2 PHE B 18 32.194 15.226 18.062 1.00 9.60 CC ATOM 2085 C PHE B 18 30.979 14.584 18.211 1.00 9.21 CC ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.72 CC ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.72 CC ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.72 CC ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.72 CC ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.72 CC ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.72 CC ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.72 CC ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 CC ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 CC ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 CC ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 CC	33										С
ATOM 2049 CG2 ILE B 16						16	28.660	16.894	15.756	1.00 13.09	С
ATOM 2049 CG2 ILE B 16 29.831 18.704 17.105 1.00 12.04 C ATOM 2053 C ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2054 O ILE B 16 27.516 19.360 19.098 1.00 11.30 O ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 26.701 16.850 19.977 1.00 11.37 N ATOM 2059 CB ASP B 17 26.701 16.850 19.977 1.00 11.97 C ATOM 2062 CG ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.47 C ATOM 2064 OD2 ASP B 17 23.746 16.838 22.212 1.00 21.94 O ATOM 2065 C ASP B 17 23.746 16.838 22.212 1.00 21.94 O ATOM 2066 O ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N 50 ATOM 2069 CA PHE B 18 28.190 15.029 20.566 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2070 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2070 CZ PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C		ATOM	2045	CD1	ILE B	16	29.822	16.447	14.941	1.00 14.91	С
ATOM 2054 C ILE B 16 27.276 18.487 18.258 1.00 12.09 C ATOM 2054 O ILE B 16 27.516 19.360 19.098 1.00 11.30 O ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 26.701 16.850 19.977 1.00 11.97 C ATOM 2059 CB ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2063 OD1 ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2063 OD1 ASP B 17 25.238 17.060 20.347 1.00 15.47 C ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2064 OD2 ASP B 17 23.746 16.838 22.212 1.00 21.94 O ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2067 N PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2071 CB PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2071 CB PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2083 CD2 PHE B 18 32.936 14.318 20.131 1.00 9.60 C ATOM 2083 CD2 PHE B 18 32.936 14.318 20.131 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 30.979 14.584 18.211 1.00 9.72 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.72 C ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.54 C		MOTA	2049	CG2	ILE B	16	29.831	18.704			C
40 ATOM 2054 O ILE B 16 27.516 19.360 19.098 1.00 11.30 O ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 26.701 16.850 19.977 1.00 11.97 C ATOM 2059 CB ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2062 CG ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2064 OD2 ASP B 17 23.746 16.838 22.212 1.00 21.94 O ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2069 CA PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2071 CB PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2083 CD2 PHE B 18 32.936 14.584 18.211 1.00 9.21 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.54		ATOM									Č
ATOM 2055 N ASP B 17 26.903 17.257 18.587 1.00 11.37 N ATOM 2057 CA ASP B 17 26.701 16.850 19.977 1.00 11.97 C ATOM 2059 CB ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2062 CG ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2064 OD2 ASP B 17 23.746 16.838 22.212 1.00 21.94 O ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 30.979 14.584 18.211 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C	40										
ATOM 2057 CA ASP B 17 26.701 16.850 19.977 1.00 11.97 C ATOM 2059 CB ASP B 17 25.238 17.060 20.347 1.00 12.19 C ATOM 2062 CG ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2064 OD2 ASP B 17 23.746 16.838 22.212 1.00 21.94 O ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 32.936 13.115 19.479 1.00 9.88 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 29.193 11.549 24.716 1.00 9.54 C				_							
ATOM 2059 CB ASP B 17											
ATOM 2062 CG ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2064 OD2 ASP B 17 23.746 16.838 22.212 1.00 21.94 O ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 29.193 11.549 24.716 1.00 9.54											С
ATOM 2062 CG ASP B 17 24.929 16.770 21.795 1.00 15.47 C ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2064 OD2 ASP B 17 23.746 16.838 22.212 1.00 21.94 O ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2085 C PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 9.08 N ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 29.193 11.549 24.716 1.00 9.54				CB			25.238	17.060	20.347	1.00 12.19	С
ATOM 2063 OD1 ASP B 17 25.834 16.488 22.602 1.00 15.71 O ATOM 2064 OD2 ASP B 17 23.746 16.838 22.212 1.00 21.94 O ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N 50 ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C 55 ATOM 2079 CZ PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 29.193 11.549 24.716 1.00 9.54		MOTA	2062	CG	ASP B	17	24.929	16.770	21.795	1.00 15.47	С
ATOM 2064 OD2 ASP B 17 23.746 16.838 22.212 1.00 21.94 OD4 ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 OD4 ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2081 CE2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 29.193 11.549 24.716 1.00 9.54	45	MOTA	2063	OD1	ASP B	17	25.834	16.488	22,602	1.00 15.71	
ATOM 2065 C ASP B 17 27.026 15.373 20.040 1.00 11.79 C ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N S ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 10.09 O ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54											
ATOM 2066 O ASP B 17 26.246 14.552 19.554 1.00 12.85 O ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 29.193 11.549 24.716 1.00 9.54											
ATOM 2067 N PHE B 18 28.190 15.029 20.566 1.00 10.57 N ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C 55 ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2081 CB ASP B 19 29.193 11.549 24.716 1.00 9.54											
50 ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2081 CB ASP B 19 29.193 11.549 24.716 1.00 9.54											
50 ATOM 2069 CA PHE B 18 28.552 13.620 20.686 1.00 10.47 C ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C 55 ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B				N	PHE B	18			20.566	1.00 10.57	N
ATOM 2071 CB PHE B 18 29.385 13.115 19.479 1.00 9.71 C ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 10.09 O ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54	50	MOTA	2069	CA	PHE B	18	28.552	13.620	20.686		
ATOM 2074 CG PHE B 18 30.728 13.797 19.316 1.00 9.88 C ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54		ATOM	2071	CB			29.385				
ATOM 2075 CD1 PHE B 18 31.732 13.663 20.275 1.00 7.77 C ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C 55 ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 10.09 O 60 ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54											
ATOM 2077 CE1 PHE B 18 32.936 14.318 20.131 1.00 9.85 C 55 ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 10.09 O ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54											
55 ATOM 2079 CZ PHE B 18 33.172 15.094 19.013 1.00 10.47 C ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 10.09 O ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54											C
ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 CATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 CATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 CATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 10.09 OATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 NATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 CATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54 C	<i></i>										C
ATOM 2081 CE2 PHE B 18 32.194 15.226 18.062 1.00 9.60 C ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 10.09 O ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54 C	22		2079		PHE B	18	33.172	15.094	19.013	1.00 10.47	С
ATOM 2083 CD2 PHE B 18 30.979 14.584 18.211 1.00 9.21 C ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 10.09 O ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54 C		MOTA	2081	CE2	PHE B	18	32.194	15.226	18.062		Ċ
ATOM 2085 C PHE B 18 29.281 13.324 21.983 1.00 9.72 C ATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 10.09 O ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54 C											
ATOM 2086 O PHE B 18 29.760 14.220 22.691 1.00 10.09 O 60 ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54 C											
60 ATOM 2087 N ASP B 19 29.326 12.041 22.306 1.00 9.08 N ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54 C											
ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54 C	60										
ATOM 2089 CA ASP B 19 30.050 11.562 23.459 1.00 9.72 C ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54 C	Oυ									1.00 9.08	N
ATOM 2091 CB ASP B 19 29.193 11.549 24.716 1.00 9.54 C			2089	CA	ASP B	19	30.050	11.562	23.459		
		MOTA	2091	CB							
					-~L D				20.557	1.00 11.00	C

	095 OD1 ASP B 19 096 OD2 ASP B 19	29.498 11.408 27.093 1.00 13.80 31.149 10.767 25.834 1.00 10.64	
	097 C ASP B 19	30.543 10.155 23.160 1.00 9.57 30.765 9.177 23.218 1.00 10.53	
	098 O ASP B 19	29.703 9.177 23.223 1 00 0 01	
	099 N TYR B 20	31.030 10.003 22.022 1 00 9 11	
	101 CA TYR B 20	32.303	
	103 CB TYR B 20	33.232 8.896 21.163 1.00 7.80 32.292 8.800 19.966 1.00 7.18	
	106 CG TYR B 20	31.765 9.933 19.381 1.00 8.23	
	107 CD1 TYR B 20	30 897 9.849 18.286 1.00 8.63	
		30.570 8.623 17.777 1.00 8.76	
	111 CZ TYR B 20 112 OH TYR B 20	29.690 8.504 16.698 1.00 7.11	
	2114 CE2 TYR B 20	31.081 7.492 18.358 1.00 7.59	
	2116 CD2 TYR B 20	31.929 7.580 19.435 1.00 8.21 33.453 8.446 23.657 1.00 7.82	
	2118 C TYR B 20	33.433	
	2119 O TYR B 20	34.433	
ATOM 2	2120 N THR B 21	33.120 0.031	
	2122 CA THR B 21	33.897 8.365 26.046 1.00 6.61 33.320 8.922 27.334 1.00 9.96	
	2124 CB THR B 21	33.372 10.363 27.299 1.00 10.43	
· · · · · · · · · · · · · · · ·	2126 OG1 THR B 21 2128 CG2 THR B 21	34.222 8.512 28.491 1.00 9.86	
	2128 CG2 THR B 21 2132 C THR B 21	33.804 6.831 26.040 1.00 9.35	
	2132 C THR B 21	32.692 6.291 26.011 1.00 9.22	
	2134 N PRO B 22	34.922 6.111 26.025 1.00 9.19 34.924 4.647 25.905 1.00 9.50	
	2135 CA PRO B 22	34.044 4.04.	
	2137 CB PRO B 22	36.209 4.200 23.302 2.00 0 26	
	2140 CG PRO B 22	37.138 5.334 25.941 1.00 9.20 36.320 6.589 26.015 1.00 9.34	
	2143 CD PRO B 22	34.616 3.930 27.227 1.00 10.16	;
	2146 C PRO B 22 2147 O PRO B 22	35.520 3.898 28.070 1.00 10.91	
		33.413 3.394 27.413 1.00 10.40	
	2148 N ASN B 23 2150 CA ASN B 23	33.082 2.645 28.614 1.00 10.55	
	2152 CB ASN B 23	31.680 3.014 29.089 1.00 11.14 31.595 4.472 29.590 1.00 13.44	1 1
MOTA	2155 CG ASN B 23	31.333	
35 ATOM	2156 OD1 ASN B 23	31.010 4.721 30.765 1 00 14 26	
MOTA	2157 ND2 ASN B 23	33 228 1 143 28.312 1.00 9.85	5
MOTA	2160 C ASN B 23 2161 O ASN B 23	32 499 0 595 27.483 1.00 10.1	1
ATOM	2161 O ASN B 23 2162 N TRP B 24	34.208 0.502 28.942 1.00 8.9	
ATOM	2162 N TRP B 24	34.524 -0.899 28.684 1.00 8.9	
40 ATOM ATOM	2166 CB TRP B 24	36.032 -1.117 28.760 1.00 8.9	
MOTA	2169 CG TRP B 24	36.799 -0.230 27.31	
ATOM	2170 CD1 TRP B 24	37.373	
MOTA	2172 NE1 TRP B 24	37 860 0 574 25,967 1.00 9.6	0
45 ATOM	2174 CE2 TRP B 24	37.099 -0.517 26.446 1.00 9.2	1
ATOM	2175 CD2 TRP B 24 2176 CE3 TRP B 24	36.824 -1.577 25.560 1.00 9.0	
ATOM	2176 CE3 TRP B 24 2178 CZ3 TRP B 24	37.292 -1.502 24.264 1.00 9.0	
ATOM ATOM	2180 CH2 TRP B 24	38.045 -0.414 23.829 1.00 7.7	
50 ATOM	2182 CZ2 TRP B 24	38.337 0.636 24.661 1.00 8.7 33.806 -1.771 29.715 1.00 10.0	
ATOM	2184 C TRP B 24	33.000 2 20 000 1 00 11 3	35
MOTA	2185 O TRP B 24	J4.024	43
MOTA	2186 N GLY B 25	32.931 -2.655 29.234 1.00 10.4 32.143 -3.516 30.098 1.00 9.	
ATOM	2188 CA GLY B 25	32 749 -4 894 30.176 1.00 10.	10
55 ATOM	2191 C GLY B 25	33.220 -5.444 29.184 1.00 10.	44
MOTA	2132 0 0-1	32.721 -5.470 31.372 1.00 9.	
MOTA	2193 N ARG B 26 2195 CA ARG B 26	33.393 -6.738 31.594 1.00 10.	
MOTA MOTA	2197 CB ARG B 26	34.185 -6.692 32.897 1.00 11.	20 61
MOTA 06	2200 CG ARG B 26	33.410 3.732 - 00 10	
ATOM	2203 CD ARG B 26	30.100 3.303 22 212 1 00 22	
MOTA	2206 NE ARG B 26	37.333	92
MOTA	2208 CZ ARG B 26	38.526 -5.167 33.274 1.00 20.	

		0000	1 BDC B	26	38.730 -6.471 33.093 1.00 16.47	N
	MOTA	2209 2212	NH1 ARG B NH2 ARG B		39.522 -4.318 33.028 1.00 21.83	N
	MOTA MOTA		C ARG B	26	32.431 -7.898 31.604 1.00 11.12	С
	ATOM		O ARG B		31.227 -7.721 31.802 1.00 11.55	0
	MOTA		N GLY B	27	32.990 -9.082 31.405 1.00 10.76	N
	ATOM		CA GLY B		32.203 -10.305 31.337 1.00 11.53	C
	ATOM		C GLY B		32.382 -11.170 32.553 1.00 12.49	C
	ATOM		O GLY B		32.588 -10.677 33.664 1.00 11.38	0
	ATOM	2224	N THR B	28	32.285 -12.468 32.308 1.00 14.02	N C
10	ATOM	2226	CA THR E		32.361 -13.494 33.325 1.00 14.82	C
	ATOM	2228	CB THR E		30.965 -14.118 33.495 1.00 14.80	0
	MOTA	2230	OG1 THR E		30.052 -13.151 34.032 1.00 15.92 30.974 -15.235 34.519 1.00 16.05	č
	MOTA	2232	CG2 THR E			č
	MOTA	2236	C THR E		33.327 -14.552 32.828 1.00 15.01 33.037 -15.215 31.838 1.00 15.21	ō
15	MOTA	2237	O THR E		34.490 -14.700 33.454 1.00 16.30	N
	MOTA	2238	N PRO E		34.948 -13.877 34.569 1.00 16.04	С
	MOTA	2239 2241	CB PRO I		36.219 -14.575 35.028 1.00 16.47	С
	ATOM ATOM	2241	CG PRO		36.636 -15.376 33.917 1.00 16.57	С
20	ATOM	2247	CD PRO I		35.467 -15.724 33.083 1.00 16.58	С
20	ATOM	2250	C PRO		35.286 -12.472 34.156 1.00 15.67	C
	ATOM	2251	O PRO		35.396 -12.161 32.977 1.00 14.52	0
	MOTA	2252	N SER	в 30	35.477 -11.643 35.164 1.00 15.56	N
	ATOM	2254	CA SER		35.592 -10.188 34.990 1.00 15.79	C C
25	MOTA	2256	CB SER		35.368 -9.479 36.338 1.00 16.72 36.454 -9.647 37.224 1.00 19.27	Ö
	MOTA	2259	OG SER			č
	ATOM	2261	C SER			ŏ
	MOTA	2262	O SER		37.028 -8.535 33.981 1.00 14.89 37.813 -10.644 34.117 1.00 15.18	N
20	MOTA	2263	N SER		39.073 -10.365 33.451 1.00 14.92	С
30	MOTA	2265	CA SER CB SER		40.078 -11.489 33.743 1.00 15.53	С
	MOTA MOTA	2267 2270	OG SER		39.588 -12.751 33.330 1.00 16.71	0
	ATOM	2272	C SER		38.833 -10.220 31.958 1.00 14.13	С
	ATOM	2273	O SER		39.704 -9.755 31.247 1.00 14.11	0
35	ATOM	2274	N TYR		37.655 -10.629 31.492 1.00 13.25	N
	ATOM	2276	CA TYR	B 32	37.263 -10.430 30.088 1.00 12.84	C
	MOTA	2278	CB TYR		36.386 -11.579 29.595 1.00 13.42	C
	MOTA	2281	CG TYR		37.194 -12.849 29.494 1.00 17.98 37.301 -13.710 30.586 1.00 22.94	č
	MOTA	2282	CD1 TYR		3,,000 =	Ċ
40		2284	CE1 TYR		38.065 -14.852	C.C
	MOTA	2286	CZ TYR		39.505 -16.288 29.289 1.00 27.54	Ō
	ATOM	2287	OH TYR CE2 TYR		38.663 -14.298 28.266 1.00 23.63	C
	MOTA	2289 2291	CD2 TYR		37.895 -13.159 28.344 1.00 21.29	C
15	MOTA MOTA	2291			36.533 -9.112 29.846 1.00 11.60	С
73	ATOM	2294	O TYR		35.685 -8.695 30.647 1.00 10.60	0
	ATOM	2295			36.880 -8.444 28.745 1.00 10.45	N
	ATOM	2297	CA ILE		36.165 -7.242 28.298 1.00 10.39	C
	ATOM	2299		в 33	37.144 -6.198 27.724 1.00 10.57	C
50		2301	CG1 ILE		38.031 -5.676 28.860 1.00 13.06	C
	MOTA	2304			39.008 -4.662 28.440 1.00 16.01 36.395 -5.062 26.975 1.00 10.92	Ċ
	MOTA	2308				č
	MOTA	2312			33.1.0	ŏ
	ATOM	2313				И
55		2314			33,1000	ĉ
	ATOM	2316			32.03	Č
	ATOM	2318			31.665 -8.615 27.367 1.00 9.19 31.881 -10.030 27.892 1.00 11.22	Č
	ATOM	2321			33.013 -10.576 27.882 1.00 10.96	0
	MOTA	2322			30.916 -10.660 28.362 1.00 11.64	0
6		2323			32.306 -7.017 25.640 1.00 9.26	С
	ATOM	2324 2325			31.726 -7.362 24.616 1.00 8.27	0
	ATOM ATOM				32.465 -5.740 25.959 1.00 9.55	N
	ATOM	232(, ., .,	. 2 00	* · · · ·	

	ATOM ATOM ATOM	2328 2330 2333	CB A	ASN B ASN B	35 35 35	31.791 30.278 29.970	-4.730 -4.762 -4.723	25.152 25.446 26.949	1.00 8.99 1.00 9.72 1.00 11.37	c c	
5	ATOM ATOM ATOM ATOM	2334 2335 2338 2339			35 35 35 35	29.559 30.186 32.351 33.129	-5.741 -3.573 -3.341 -3.115	27.574 27.551 25.400 26.332	1.00 14.30 1.00 7.97 1.00 9.17 1.00 9.29	О И С О	
10	ATOM ATOM ATOM	2340 2342 2344	N I	LEU B	36 36 36	31.917 32.345 33.308	-2.413 -1.026 -0.779	24.552 24.581 23.414	1.00 9.41 1.00 9.12 1.00 8.17	N C C C	
	ATOM ATOM ATOM ATOM	2347 2349 2353 2357	CD1 I	LEU B LEU B LEU B	36 36 36 36	33.652 34.294 34.560 31.099	0.670 1.387 0.729 -0.186	23.053 24.199 21.837 24.369	1.00 9.08 1.00 9.44 1.00 10.64 1.00 9.10	0000	
15	ATOM ATOM ATOM	2358 2359 2361	O 1	LEU B THR B	36 37 37	30.382 30.824 29.653	-0.391 0.737 1.596	23.385 25.279 25.151	1.00 8.92 1.00 9.13 1.00 8.93	о И С	
20	MOTA MOTA MOTA	2363 2365 2367 2371	OG1 S	THR B THR B THR B	37 37 37 : 37	28.725 28.238 27.474 30.041	1.447 0.095 2.316 3.056	26.372 26.458 26.234 25.034	1.00 9.51 1.00 10.29 1.00 10.22 1.00 8.89	C 0 C	
	ATOM ATOM ATOM	2372 2373 2375	O S N CA	THR B PHE B PHE B	∵37 ≃38 38	30.857 29.450 29.584	3.557 3.724 5.161	25.814 24.042 23.853	1.00 8.97 1.00 7.97 1.00 8.58	O N C	
25	ATOM ATOM ATOM ATOM	2377 2380 2381 2383	CG CD1	PHE B PHE B PHE B	38 38 38 38	29.827 31.134 32.340 33.544	5.456 4.951 5.237 4.811	22.386 21.847 22.482 21.942	1.00 8.85 1.00 7.28 1.00 7.91 1.00 8.72	0000	
30	ATOM ATOM ATOM	2385 2387 2389	CZ CE2 CD2	PHE B PHE B PHE B	38 38 38	33.555 32.366 31.163 28.269	4.102 3.817 4.243 5.844	20.756 20.120 20.661 24.273	1.00 11.58 1.00 9.53 1.00 7.95 1.00 8.73	0000	
35	ATOM ATOM ATOM ATOM	2391 2392 2393 2394	O N CA	PHE B PHE B PRO B PRO B	38 39 · 39	27.216 28.293 27.036	5.431 6.842 7.460	23.811 25.163 25.636	1.00 9.98 1.00 8.76 1.00 8.86	. И С	
	ATOM ATOM ATOM	2396 2399 2402 2405		PRO B PRO B PRO B	39 39	27.497 28.785 29.448 26.209	8.386 7.866 7.348 8.230	26.780 27.199 25.916 24.627	1.00 9.34 1.00 9.35 1.00 9.58 1.00 9.13	C C C	
40	ATOM ATOM ATOM	2406 2407 2409	O N CA	PRO E	39 40 40	24.991 26.834 26.061	8.328 8.794 9.548	24.796 23.602 22.618	1.00 8.44 1.00 9.49 1.00 9.43	О И С	
45	MOTA MOTA MOTA	2411 2414 2417 2420	CB CG CD CE	LYS E LYS E LYS E	3 40 3 40	25.784 24.760 24.661 24.030	10.967 11.685 13.182 13.456	23.094 22.232 22.550 23.916		c c c	
	ATOM ATOM ATOM	2423 2427 2428	NZ C O	LYS E	3 40 3 40 3 40	24.148 26.748 27.597	14.904 9.529 10.355	24.336 21.265 20.962	1.00 28.45 1.00 9.14 1.00 9.57	N C O	
50	ATOM ATOM ATOM ATOM	2429 2431 2433 2435	N CA CB	VAL E VAL E VAL E	3 41 3 41	26.393 26.969 26.967 27.769	8.544 8.438 6.970 6.059		1.00 9.08 1.00 9.12	И С С	
55	MOTA MOTA MOTA	2439 2443 2444	CG2 C O	VAL I	3 41 3 41 3 41	25.556 26.243 25.107	6.453 9.323 9.759	18.410 18.136 18.350	1.00 8.61 1.00 9.87 1.00 9.30	с с 0	
60	MOTA MOTA MOTA	2445 2447 2449 2452	CA CB	LEU I LEU I	B 42 B 42	26.907 26.261 27.303 28.246	10.288 10.820	15.932 14.948	1.00 11.90 1.00 11.82	и С С С	
00	MOTA MOTA MOTA	2454 2458 2462	CD1 CD2	LEU :	B 42 B 42	29.484 27.504 25.303	12.076 13.150	14.765 15.923	1.00 17.49 1.00 13.74	C	; ;

1.00 13.30 15.208 25.559 8.103 42 LEU B MOTA 2463 0 1.00 16.10 14.717 24.203 9.824 43 THR B 2464 MOTA N 1.00 17.45 14.082 8.949 23.223 43 THR B MOTA 2466 CA 14.935 1.00 17.82 21.953 8.828 43 2468 CB THR B MOTA 1.00 20.64 15.252 10.123 43 21.431 OG1 THR B MOTA 2470 1.00 18.56 8.193 16.296 22.241 CG2 THR B 43 2472 MOTA 12.691 1.00 18.34 22.842 9.433 THR B 43 2476 С MOTA 12.117 1.00 18.70 8.947 21.866 43 0 THR B MOTA 2477 1.00 18.36 12.148 10.367 23.614 ASP B 44 2478 N ATOM 1.00 19.37 10.776 23.349 10.867 44 2480 ASP B CA 10 ATOM 1.00 18.75 10.514 24.158 12.130 44 ASP В 2482 CB MOTA 1.00 20.65 10.660 11.906 25.649 ASP В 44 2485 CG MOTA 1.00 22.24 9.975 26.435 12.599 2486 OD1 ASP 44 MOTA 1.00 18.51 11.081 11.464 26.119 44 2487 OD2 ASP B MOTA 1.00 20.76 9.640 9.875 23.632 ASP B 44 2488 C ATOM 1.00 20.73 8.516 23.120 10.045 ASP B 44 2489 0 MOTA 1.00 22.30 9.910 24.451 8.858 В 45 2490 LYS N MOTA 1.00 22.65 8.930 7.850 24.845 LYS В 45 2492 CA ATOM 1.00 23.02 8.416 8.089 26.271 45 2494 CB LYS В MOTA 1.00 25.19 7.807 26.515 9.467 45 LYS В 20 ATOM 2497 CG 1.00 29.05 7.419 27.968 9.681 2500 LYS B 45 CD ATOM 1.00 32.51 6.672 10.993 28.158 45 LYS B 2503 CE MOTA 1.00 36.79 11.592 6.878 LYS B 45 29.514 2506 NZ MOTA 1.00 23.32 9.640 6.500 24.790 LYS B 45 2510 С MOTA 1.00 23.05 10.878 6.441 24.775 В 45 LYS 25 MOTA 2511 0 8.856 1.00 24.20 5.425 24.771 46 LYS В 2512 N MOTA 1.00 23.77 9.398 4.075 24.712 46 2514 CA LYS B MOTA 8.406 1.00 23.95 3.132 24.033 LYS B 46 2516 CB MOTA 1.00 24.89 7.903 3.632 22.685 LYS B 46 2519 CG MOTA 1.00 24.88 7.139 4.957 22.803 46 LYS B 30 2522 CD MOTA 1.00 24.51 5.919 4.858 23.693 LYS B 46 2525 CE ATOM 1.00 20.23 5.572 24.316 6.162 LYS B 46 2528 NZ MOTA 1.00 22.13 9.655 3.598 26.127 2532 С LYS B 46 **ATOM** 1.00 23.19 2.916 8.828 26.717 46 LYS B 2533 0 MOTA 1.00 21.82 10.814 26.678 3.932 TYR B 47 35 2534 N ATOM 1.00 17.30 11.084 3.580 28.065 TYR B 47 2536 CA MOTA 1.00 16.73 12.199 4.461 28.630 TYR B 47 2538 CB MOTA 1.00 14.44 11.880 28.584 5.926 47 TYR B ATOM 2541 CG 11.022 1.00 14.82 6.494 29.504 47 TYR B CD1 ATOM 2542 1.00 15.44 10.736 29.475 7.842 47 40 ATOM 2544 CE1 TYR B 1.00 14.96 11.305 8.629 28.502 47 CZTYR B 2546 MOTA 1.00 16.74 11.010 28.457 9.966 TYR B 47 2547 OH ATOM 1.00 15.51 12.165 8.078 27.572 CE2 TYR B 47 2549 MOTA 1.00 15.33 12.446 6.748 27.616 47 CD2 TYR B 2551 MOTA 1.00 15.49 11.467 2.119 28.239 47 TYR B 45 ATOM 2553 C 1.00 15.48 12.055 1.501 27.349 TYR B 47 2554 0 ATOM 1.00 12.97 11.086 29.376 1.550 SER B 48 N 2555 ATOM 1.00 12.31 11.553 0.219 29.731 SER B 48 2557 CA MOTA 1.00 13.21 10.419 -0.78729.852 48 2559 CB SER B MOTA 1.00 17.27 9.425 -0.272 30.688 48 SER B 50 ATOM 2562 OG 1.00 10.66 12.277 31.064 0.343 48 SER B С MOTA 2564 12.295 1.00 9.38 1.401 31.687 SER B 48 0 2565 **ATOM** 9.05 1.00 -0.754 12.890 31.478 49 TYR B 2566 N 1.00 MOTA 8.64 -0.772 13.663 32.700 TYR B 49 2568 CA ATOM 1.00 15.142 8.24 -0.79032.345 49 TYR B 55 ATOM CB 2570 7.93 15.574 1.00 0.419 31.547 TYR B 49 CG 2573 ATOM 9.31 1.00 15.704 0.348 30.173 49 2574 CD1 TYR B ATOM 16.089 1.00 10.10 1.443 29.444 49 2576 CE1 TYR B MOTA 9.43 1.00 2.635 16.361 30.076 49 2578 CZ TYR B MOTA 11.22 16.755 1.00 29.321 3.726 49 2579 OH TYR B ATOM 1.00 7.22 16.222 2.741 31.442 49 CE2 TYR B 2581 MOTA 7.22 1.00 1.629 15.833 32.169 CD2 TYR B 49 2583 ATOM 1.00 8.84 13.338 -1.997 33.542 49 2585 С TYR B MOTA

C 0 C С C 0 0 C 0 C Ċ С С С N C 0 N C С С C C N C 0 N C С С C 0 C C C 0 N C 0 C 0 N C C C

	MOTA	2586	0	TYR E	3 49	33.035	-3.120	13.301	1.00 8.75	0
	ATOM	2587	N	ARG E	3 50	34.838	-1.764	13.149	1.00 8.80	N
	MOTA	2589	CA	ARG E	3 50	35.811	-2.821	12.915	1.00 8.50	С
	ATOM	2591	CB	ARG E	3 50	36.725	-2.427	11.771	1.00 8.52	C
5	MOTA	2594	CG	ARG E	3 50	37.615	-3.545	11.308	1.00 9.29	Č
	ATOM	2597	CD	ARG E		38.349	-3.220	10.048	1.00 9.53	Č
	ATOM	2600	NE	ARG I		39.382	-2.205	10.191	1.00 8.80	N
	ATOM	2602	CZ	ARG E		40.631	-2.476	10.566	1.00 11.23	č
	ATOM	2603		ARG I		40.986	-3.721	10.901	1.00 11.51	N
10	ATOM	2606		ARG I		41.533	-1.506	10.650	1.00 13.88	
	ATOM	2609	C	ARG I		36.627	-2.987	14.186	1.00 13.88	И С
	ATOM	2610	ŏ	ARG I		37.063	-2.001	14.787		
	ATOM	2611	N	VAL I		36.797			1.00 8.89	0
	ATOM	2613	CA	VAL I			-4.230	14.609	1.00 9.25	N
15						37.467	-4.543	15.860	1.00 9.05	C
1,5	MOTA	2615	CB	VAL I		36.503	-5.312	16.778	1.00 9.51	C
	ATOM	2617		VAL E		37.193	-5.808	18.029	1.00 10.94	C
	ATOM	2621		VAL I		35.356	-4.425	17.179	1.00 9.48	С
	ATOM	2625	C	VAL I		38.729	-5.378	15.614	1.00 9.31	С
20	ATOM	2626	0	VAL E		38.692	-6.344	14.865	1.00 9.58	0
20	ATOM	2627	N	VAL I		39.827	-5.004	16.274	1.00 8.69	N
	ATOM	2629	CA	VAL I		41.136	-5.638	16.112	1.00 8.61	С
	ATOM	2631	CB	VAL I		42.132	-4.664	15.406	1.00 8.82	С
	ATOM	2633	CG1	VAL I		43.432	-5.350	15.057	1.00 8.22	С
~ -	ATOM	2637	CG2	VAL I	B 52	41.503	-4.031	14.166	1.00 8.20	С
25	ATOM	2641	С	VAL I		41.680	-6.010	17.490	1.00 8.96	С
	MOTA	2642	0	VAL I	B 52	41.759	-5.166	18.367	1.00 9.37	0
	MOTA	2643	N	VAL I	B 53	42.050	-7.276	17.677	1.00 8.28	N
	ATOM	2645	CA	VAL 1	B 53	42.521	-7.758	18.973	1.00 9.11	С
	ATOM	2647	CB	VAL I	B 53	41.645	-8.918	19.482	1.00 9.88	С
30	ATOM	2649	CG1	VAL I	B 53	42.248	-9.531	20.746	1.00 10.11	C
	MOTA	2653	CG2	VAL 1	B 53	40.207	-8.420	19.731	1.00 10.75	c
	MOTA	2657	С	VAL 1	B 53	43.965	-8.214	18.850	1.00 9.11	Ċ
	ATOM	2658	0	VAL		44.254	-9.170	18.105	1.00 9.06	Ö
	MOTA	2659	N	ASN I		44.873	-7.543	19.563	1.00 8.85	N
35	MOTA	2661	CA	ASN I		46.310	-7.827	19.435	1.00 9.61	C
	ATOM	2663	СВ	ASN I		46.676	-9.140	20.109	1.00 10.03	Ċ
	MOTA	2666	CG	ASN I		47.031	-8.996	21.586	1.00 11.16	Ċ
	ATOM	2667		ASN		47.247		22.267	1.00 16.89	ŏ
	ATOM	2668		ASN		47.126	-7.781	22.076	1.00 9.72	N
40	MOTA	2671	С	ASN		46.747	-7.870	17.956	1.00 10.26	Ċ
	ATOM	2672	O	ASN		47.522	-8.745	17.548	1.00 11.02	ŏ
	ATOM	2673	N	GLY		46.238	-6.928	17.168	1.00 10.54	N
	ATOM	2675	CA	GLY I		46.575	-6.793	15.760	1.00 9.95	Č
	ATOM	2678	C	GLY :		45.844	-7.707	14.792	1.00 9.84	C
45	ATOM	2679	ŏ	GLY :		45.998	-7.522	13.579	1.00 9.89	0
	ATOM	2680	Ň	SER		45.036	-8.629	15.310	1.00 9.14	
	ATOM	2682	CA	SER		44.226		14.506	1.00 9.52	N
	ATOM	2684	CB	SER :			-10.867	15.235	1.00 9.32	C
	ATOM	2687	OG	SER		44.022	-11.730	14.503	1.00 10.18	C
50		2689								0
50	ATOM	2690	C	SER :		42.858	-8.888	14.232	1.00 9.17	C
			0	SER		42.065	-8.653	15.148	1.00 8.64	0
	ATOM	2691	N	ASP		42.613	-8.558	12.976	1.00 9.04	N
	ATOM	2693	CA	ASP		41.358	-7.950	12.530	1.00 8.46	C
55	ATOM	2695	CB	ASP		41.559	-7.526	11.067	1.00 8.57	С
55	ATOM	2698	CG	ASP		40.364	-6.842	10.457	1.00 9.39	С
	MOTA	2699		ASP		40.383	-6.708	9.193	1.00 9.52	0
	MOTA	2700		ASP		39.385	-6.414	11.106	1.00 9.56	0
	MOTA	2701	С	ASP		40.201	-8.950	12.628	1.00 8.72	С
	MOTA	2702	0	ASP		40.218	-10.003	11.966	1.00 8.92	0
60	MOTA	2703	N	LEU		39.217	-8.665	13.478	1.00 9.29	N
	MOTA	2705	CA	LEU		38.021	-9.508	13.542	1.00 9.33	C
	MOTA	2707	CB	LEU		37.508	-9.582	14.977	1.00 9.53	Ċ
	MOTA	2710	CG	LEU		38.564	-9.973	16.005	1.00 9.47	Č
							_			•

	ATOM	2712	CD1	LEU E	58	37 925	-10.156	17.379	1.00 11.17	С
	ATOM	2716		LEU E			-11.242	15.604	1.00 11.86	č
	ATOM	2720	C	LEU E		36.897	-9.037	12.608	1.00 11.00	
	ATOM	2721	Ö	LEU E		35.797	-9.607	12.608	1.00 10.79	O
5	ATOM	2722						11.826		
5			N	GLY E		37.166	-8.006		1.00 9.53	N
	ATOM	2724	CA	GLY E		36.245	-7.517	10.815	1.00 9.73	C
	ATOM	2727	C	GLY E		35.209	-6.570	11.375	1.00 9.94	. С
	MOTA	2728	0	GLY E		35.355	-6.046	12.482	1.00 9.32	0
	ATOM	2729	N	VAL E		34.133	-6.407	10.614	1.00 10.86	N
10	ATOM	2731	CA	VAL E		33.165	-5.356	10.840	1.00 11.57	C
	ATOM	2733	CB	VAL E		33.048	-4.476	9.571	1.00 11.80	С
	MOTA	2735	CG1	VAL E	60	32.330	-3.170	9.845	1.00 13.91	C
	ATOM	2739	CG2	VAL E	3 60	32.361	-5.227	8.443	1.00 13.46	С
	ATOM	2743	С	VAL E	3 60	31.806	-5.894	11.230	1.00 11.41	С
15	ATOM	2744	0	VAL E		31.409		10.849	1.00 11.80	O
	ATOM	2745	N	GLU E		31.090		11.998	1.00 10.41	N
	ATOM	2747	CA	GLU E		29.728	-5.416	12.391	1.00 11.68	č
	ATOM	2749	CB	GLU E		29.701	-6.352	13.600	1.00 11.99	
	ATOM	2752	CG	GLU I		28.316		14.051	1.00 16.37	CCC
20	ATOM	2755	CD	GLU I		27.469			1.00 18.62	C
20								12.931		C
	ATOM	2756	OE1			26.499		12.533	1.00 19.03	0
	ATOM	2757	OE2	GLU E		27.791		12.418	1.00 20.11	0
	ATOM	2758	C	GLU I		28.994		12.643	1.00 12.02	C
0.5	MOTA	2759	0	GLU I		29.616		12.944	1.00 10.24	0
25	MOTA	2760	N	SER I		27.673		12.540	1.00 13.34	N
	ATOM	2762	CA	SER I		26.908		12.741	1.00 13.52	. C
	ATOM	2764	CB	SER I	B 62	26.526		11.407	1.00 14.00	С
	MOTA	2767	OG	SER I	В 62	25.717		10.647	1.00 13.96	0
	MOTA	2769	C	SER I	B 62	25.631	-3.142	13.513	1.00 13.46	С
30	ATOM	2770	0	SER I	B 62	24.940	-2.159	13.807	1.00 14.34	0
	ATOM	2771	N	ASN I	B 63	25.333	-4.389	13.869	1.00 12.74	N
	ATOM	2773	CA	ASN I	B 63	24.037	-4.692	14.474	1.00 14.23	С
	ATOM	2775	CB	ASN I		23.557		14.156	1.00 15.00	C
	ATOM	2778	ĊĠ	ASN		22.193		14.798	1.00 16.84	Č
35	ATOM	2779		ASN		21.441		15.129	1.00 21.06	ō
	ATOM	2780		ASN		21.895		15.010	1.00 21.14	N
	ATOM	2783	C	ASN		24.089		15.971	1.00 13.99	Č
	ATOM	2784	ŏ	ASN		24.093		16.770	1.00 13.96	. 0
	ATOM	2785	N	PHE		24.126		16.308	1.00 13.90	N
40	ATOM	2787	CA	PHE		24.126		17.673	1.00 13.92	C
70										C
	ATOM	2789	CB	PHE		25.518		18.080	1.00 12.24	000
	ATOM	2792	CG	PHE		26.621		17.698	1.00 10.08	C
	ATOM	2793		PHE		26.707		18.267	1.00 9.82	C
4.5	ATOM	2795		PHE		27.717		17.900	1.00 10.20	, С
45	MOTA	2797		PHE		28.622			1.00 10.37	C
	MOTA	2799		PHE		28.533		16.383	1.00 10.15	С
	MOTA	2801	CD2	PHE	B 64	27.547		16.752	1.00 9.91	С
	ATOM	2803	С	PHE	B 64	23.135	-1.462	17.777	1.00 12.85	С
	ATOM	2804	0	PHE	B 64	23.282	-0.433	17.128	1.00 12.07	0
50	ATOM	2805	N	ALA	B 65	22.124	-1.637	18.613	1.00 13.52	N
	ATOM	2807	CA	ALA		21.038		18.719	1.00 13.11	С
	MOTA	2809	CB	ALA		19.990		19.701	1.00 13.88	
	ATOM	2813	С	ALA		21.554		19.215	1.00 13.59	C
	ATOM	2814	Ö	ALA		22.471		20.026	1.00 13.52	ŏ
55	ATOM	2815	N	VAL		20.985		18.716	1.00 13.32	N
55	ATOM	2817	CA	VAL		21.223		19.337	1.00 13.44	C
										C
	ATOM	2819	CB	VAL		21.412			1.00 13.46	C
	MOTA	2821		VAL		21.554		19.053	1.00 14.25	C
60	ATOM	2825		VAL		22.63			1.00 12.99	c
60	ATOM	2829	C	VAL		20.007			1.00 13.98	C
	ATOM	2830	0	VAL		18.860			1.00 14.47	0
	ATOM	2831	N	THR		20.243			1.00 13.83	N
	MOTA	2833	CA	THR	B 67	19,134	3.762	22.438	1.00 15.29	С

ATOM 2835 CB THR B 67	19.577 3.436 23.873 1.00 15.38
ATOM 2837 OG1 THR B 67	20.710 4.246 24.225 1.00 13.23
ATOM 2839 CG2 THR B 67	20.111 2.014 23.990 1.00 15.32
ATOM 2843 C THR B 67	18.644 5.220 22.269 1.00 16.76
	19.300 6.037 21.642 1.00 16.95
5 111011	17.459 5.547 22.766 1.00 20.60
Alon Co	16 921 6.907 22,635 1.00 20.58
Alon Co	15 605 6.822 23.400 1.00 21.01
Alon D	15.218 5.414 23.278 1.00 21.24
71011	16.507 4.646 23.423 1.00 19.89
0 ATOM 2854 CD PRO B 68	17.814 8.029 23.188 1.00 21.33
ATOM 2857 C PRO B 68	17.759 9.162 22.687 1.00 21.25
ATOM 2858 O PRO B 68	111100
ATOM 2859 N SER B 69	10,010
ATOM 2861 CA SER B 69	10.00
.5 ATOM 2863 CB SER B 69	20.002
ATOM 2866 OG SER B 69	20.01
ATOM 2868 C SER B 69	200
ATOM 2869 O SER B 69	21.000
ATOM 2870 N GLY B 70	20.897 8.016 22.908 1.00 18.48
20 ATOM 2872 CA GLY B 70	21.923 8.132 21.904 1.00 15.60
ATOM 2875 C GLY B 70	23.049 7.151 22.179 1.00 13.15
ATOM 2876 O GLY B 70	24.061 7.186 21.524 1.00 12.69
ATOM 2877 N GLY B 71	22.876 6.276 23.162 1.00 10.24
ATOM 2879 CA GLY B 71	23.942 5.354 23.525 1.00 10.32
Alon 2013 on The	24.044 4.180 22.570 1.00 10.01
25 A10H 2002 0	23.067 3.830 21.893 1.00 9.06
Alon Inches	25,221 3,567 22,513 1.00 9.21
Alon 200	25.427 2.402 21.654 1.00 9.07
ATOM 2000 CT	25 841 2.818 20.242 1.00 9.26
Alon 200	25.762 1.671 19.241 1.00 10.65
JO ATOM	25.989 2.078 17.779 1.00 11.82
Alon 200	25.420 1.465 16.838 1.00 14.64
ATOM 2895 OE1 GLN B 72	26.832 3.043 17.578 1.00 8.39
ATOM 2896 NE2 GLN B 72	26.482 1.500 22.251 1.00 8.92
ATOM 2899 C GLN B 72	27.562 1.958 22.606 1.00 9.57
35 ATOM 2900 O GLN B 72	26.154 0.216 22.363 1.00 8.86
ATOM 2901 N THR B 73	20.134 0.220
ATOM 2903 CA THR B 73	27.035
ATOM 2905 CB THR B 73	20.544 1.512
ATOM 2907 OG1 THR B 73	23.333
40 ATOM 2909 CG2 THR B 73	27.210
ATOM 2913 C THR B 73	27.505
ATOM 2914 O THR B 73	20.000
ATOM 2915 N ILE B 74	20.012 1.70.
ATOM 2917 CA ILE B 74	29.450 -2.002 20.005 1.00 0.30
45 ATOM 2919 CB ILE B 74	30.710
ATOM 2921 CG1 ILE B 74	0010=
ATOM 2924 CD1 ILE B 74	31,300 0 0 0 0 71
ATOM 2928 CG2 ILE B 74	71,474
ATOM 2932 C ILE B 74	23.773
50 ATOM 2933 O ILE B 74	30.333
ATOM 2934 N ASN B 75	29.117 -5.012 21.103 1.00 8.10
ATOM 2936 CA ASN B 75	29.257 -6.266 21.819 1.00 7.89
ATOM 2938 CB ASN B 75	27.908 -6.975 21.781 1.00 8.13
711011	27.942 -8.323 22.426 1.00 8.20
Alon 23:2	28.856 -8.662 23.195 1.00 7.74
55 MION 2512 - 35	26 946 -9.120 22.108 1.00 11.67
75	30.324 -7.129 21.149 1.00 8.35
Alon Day	30.128 -7.635 20.029 1.00 7.57
AION 231.	31.449 -7.309 21.831 1.00 8.93
ATOM 2948 N PHE B 76	32.572 -8.022 21.228 1.00 9.24
60 ATOM 2950 CA PHE B 76	32.372
ATOM 2952 CB PHE B 76	33.040
ATOM 2955 CG PHE B 76	34.319
ATOM 2956 CD1 PHE B 76	34.307 -5.628 20.921 1.00 10.03

	ATOM	2958	CE1	PHE B	76	;	34.715	-4.318	20.939	1.00	9.26		С
	ATOM	2960	CZ	PHE B	76		35.131	-3.763	22.112	1.00	8.99	•	С
	ATOM	2962		PHE B	76		35.143	-4.500	23.259	1.00			С
	ATOM	2964		PHE B	76	;	34.745	-5.806	23.246	1.00	10.62		С
5	ATOM	2966	C	PHE B		;	32.260	-9.502	20.999	1.00	9.01		С
_	ATOM	2967	0	PHE B		5	32.893	-10.149	20.169	1.00 .			0
	ATOM	2968	N	LEU B		•	31.268	-10.038	21.708	1.00	9.74		И
	ATOM	2970	CA	LEU B		7	30.894	-11.444	21.525	1.00	9.62		С
	ATOM	2972	СВ	LEU B		1		-11.840	22.565	1.00	9.60		С
10	ATOM	2975	CG	LEU B		1		-12.157	23.981	1.00			С
	ATOM	2977	CD1	LEU B		7	31.102	-11.029	24.640	1.00			C
	ATOM	2981	CD2	LEU B	7	7		-12.593	24.854	1.00			С
	MOTA	2985	С	LEU B	7	7		-11.713	20.077	1.00	9.32		C
	ATOM	2986	0	LEU B	7	7		-12.843	19.574	1.00			0
15	ATOM	2987	N	GLN E	3 71	3 .	29.907	-10.671	19.415		9.10		N
	ATOM	2989	CA	GLN E	3 78	3		-10.748	18.032	1.00			C
	MOTA	2991	CB	GLN E	3 7	3	28.517	-9.569	17.697		10.43		C
	ATOM	2994	CG	GĻN E			27.143	-9.734	18.379	1.00	9.66		C
	MOTA	2997	CD	GLN E			26.224	-8.538	18.295		11.71		C
20	MOTA	2998		GLN F			25.803	-8.019	19.329		11.16		0
	MOTA	2999		GLN F			25.871	-8.113	17.071		13.17		N C
	ATOM	3002	С	GLN F				-10.816	17.042		11.05		0
	MOTA	3003	0	GLN I				-11.128	15.859		13.23		N
	MOTA	3004	N	TYR I				-10.506	17.500		10.96 12.02		C
25	MOTA	3006	CA	TYR I				-10.570 -9.339	16.654 16.842		11.81		c
	MOTA	3008	СВ	TYR I			33.915		16.481		10.03		č
	ATOM	3011	CG	TYR I		9	33.345		15.280	1.00	8.25		č
	ATOM	3012		TYR		9 9	33.681 33.169		14.965	1.00	8.39		č
20	ATOM	3014	CE1	TYR I		9	32.322		15.842	1.00	8.21		Ċ
30	MOTA	3016	CZ OH	TYR		9	31.827		15.505	1.00	8.87		0
	ATOM	3017	CE2			9	31.972		17.033	1.00			С
	ATOM ATOM	3019 3021		TYR		9	32.487		17.345	1.00	9.93		С
	ATOM	3023	CD2	TYR		9		-11.728	16.985	1.00	13.56		С
35	ATOM	3023	ŏ	TYR		9		-12.190	16.120	1.00	13.49		0
55	ATOM	3025	N	ASN		10		-12.162	18.242	1.00	15.17		N
	ATOM	3027	CA	ASN		80		-13.076	18.751		14.48		С
	ATOM	3029	CB	ASN		30	35.582	-12.444	19.978		14.14		Ç
	ATOM	3032	CG	ASN		30	36.890	-13.105	20.361		14.62		C
40		3033	OD:	l ASN	в 8	30	37.651	-13.558	19.509		16.67		0
	ATOM	3034	ND:	2 ASN	B 8	30		3 -13.163	21.664		13.88		N
	ATOM	3037	C	ASN	B 8	30		2 -14.437	19.084		14.66		C
	MOTA	3038	0	ASN		30	34.712	2 -15.056	20.083		13.88		0
	MOTA	3039		LYS		31		2 -14.879	18.257		15.51		N C
45	MOTA	3041				31		-16.233	18.368	1.00	16.46 16.91		c
	MOTA	3043				81	33.94.	3 -17.263	17.992		20.41		Č
	MOTA	3046				81	34.644	4 -16.962	16.663 16.175		26.52		č
	ATOM	3049				81	35.61	6 -18.076 2 -18.798			31.18		č
50	MOTA	3052				81	30.33	5 -19.720			38.55		N
50		3055				81 01	37.32	6 - 16.559	19.735		15.91		Ċ
	ATOM	3059		LYS		81		2 -1 7.678			16.16		ō
	ATOM	3060		LYS		81 82		2 -17.676 2 -15.575			15.03		N
	ATOM	3061		GLY		82 82		5 -15.736			15.26		Ċ
55	MOTA	3063				82 82		2 -15.553			15.69		C
55		3066		GLY GLY	_	82 82		0 -15.833			15.34		Ö
	ATOM	3067		TYR		83		1 -15.052			16.90		N
	ATOM	3068				83		0 -14.806			17.19		C
	ATOM	3070			-	83		5 -15.667			18.20		Č
60	ATOM	3072 3075				83		3 -17.155			0 23.38		С
UU		3076) TYR		83	34.44	8 -17.745		1.00	0 28.89	€	С
	ATOM ATOM	3078		1 TYR		83	34.23	9 -19.105			0 31.0		С
	ATOM	3080				83		0 -19.896			0 32.6		С
	ATOM	5000	, 02										

```
33.962 -21.259
                                                         24.329
                                                                   1.00 36.36
   ATOM
           3081
                  OH
                      TYR B
                              83
                                       34.305 -19.340
                                                         22.930
                                                                   1.00 30.78
   ATOM
           3083
                  CE2 TYR B
                              83
                  CD2 TYR B
                                       34.506 -17.972
                                                         22.810
                                                                   1.00 28.62
   MOTA
           3085
                              83
   ATOM
                                       34.006 -13.355
                                                          23.925
           3087
                      TYR B
                              83
                                                                   1.00 16.15
                  С
  ATOM
           3088
                  0
                      TYR B
                              83
                                       34.169 -12.715
                                                          22.894
                                                                   1.00 15.94
                                       34.190 -12.828
                                                          25.134
                                                                   1.00 15.91
   ATOM
           3089
                  N
                      GLY B
                              84
                                       34.842 -11.539
                                                          25.278
                                                                   1.00 14.80
           3091
   MOTA
                  CA
                      GLY B
                              84
           3094
                      GLY B
                                       36.359 -11.675
                                                          25.047
                                                                   1.00 13.96
   MOTA
                  C
                              84
                                        36.882 -12.737
                                                          24.675
                                                                   1.00 14.24
           3095
                      GLY B
   ATOM
                  0
                              84
10 ATOM
           3096
                                        37.071 -10.586
                                                          25.311
                                                                   1.00 11.64
                  N
                      VAL B
                               85
   ATOM
           3098
                  CA
                      VAL B
                              85
                                        38.497 -10.478
                                                          25.027
                                                                   1.00 12.19
                                                                                           C
                                                          24.159
                                                                                           С
                                        38.761
                                                -9.214
                                                                   1.00 11.76
   ATOM
            3100
                  CB
                      VAL B
                               85
                                        40.254
                                                 -9.019
                                                          23.892
                                                                   1.00 12.27
                                                                                           С
                  CG1 VAL B
            3102
                               85
   ATOM
                                        37.970
                                                 -9.236
            3106
                  CG2 VAL B
                                                          22.852
                                                                   1.00 12.61
   MOTA
                               85
                                                          26.329
15
                                        39.258
                                               -10.315
                                                                   1.00 12.06
   ATOM
            3110
                  C
                       VAL B
                               85
                                                          27.133
                                                -9.435
                                                                   1.00 11.39
                                                                                           0
   MOTA
            3111
                       VAL B
                               85
                                        38.954
                  0
                                                          26.554
            3112
                                        40.263
                                               -11.154
                                                                   1.00 11.94
                                                                                           N
   ATOM
                  N
                      ALA B
                               86
                                                                                           C
                                        41.077
                                               -11.026
                                                          27.752
                                                                   1.00 12.43
   MOTA
            3114
                  CA
                      ALA B
                               86
                                                                                           C
                                        42.221
                                                -12.031
                                                          27.709
                                                                   1.00 12.46
            3116
                               86
   MOTA
                  CB
                      ALA B
                                                                                           C
20
            3120
                                        41.630
                                                 -9.606
                                                          27.895
                                                                   1.00 12.58
   ATOM
                  C
                       ALA B
                               86
                                        42.145
                                                          26.921
                                                                                           0
                                                 -9.034
                                                                   1.00 11.12
   ATOM
            3121
                  0
                       ALA B
                               86
                                                                   1.00 12.96
            3122
                                        41.542
                                                 -9.046
                                                          29.101
                                                                                           N
                  N
                       ASP B
                               87
   MOTA
                                                                   1.00 13.26
            3124
                  CA
                      ASP
                               87
                                        41.977
                                                 -7.664
                                                          29.319
    ATOM
                           B
                                                                                           C
                                                 -7.038
            3126
                                        41.413
                                                          30.599
                                                                   1.00 12.94
    ATOM
                  CB
                       ASP
                           В
                               87
                                                                                           C
                                        41.973
                                                 -7.621
                                                                   1.00 15.55
                                                          31.863
   MOTA
            3129
                  CG
                       ASP
                           В
                               87
                                                                                           0
                                        42.925
                                                 -8.435
                                                          31.811
                                                                   1.00 16.54
            3130
                      ASP
    MOTA
                  OD1
                           В
                               87
                                                                                           0
                               87
                                        41.478
                                                 -7.304
                                                          32.971
                                                                   1.00
                                                                        17.64
    ATOM
            3131
                  OD2
                      ASP B
                                                                                           С
                                                          29.177
                                                                   1.00 13.14
    MOTA
            3132
                                        43.473
                                                 -7.446
                  C
                       ASP B
                               87
                                                                                           0
                                                 -6.303
                                                          29.211
                                                                   1.00 13.88
    MOTA
            3133
                  0
                       ASP B
                               87
                                        43.923
30
                                                 -8.529
                                                          28.986
                                                                   1.00
                                                                                           N
            3134
                                        44.222
                                                                         13.35
                       THR B
                               88
   MOTA
                  N
                                                 -8.426
                                                          28.770
                                                                                           C
    MOTA
            3136
                  CA
                       THR B
                               88
                                        45.648
                                                                   1.00
                                                                         13.89
                                                 -9.702
                                                          29.223
                                                                                           С
                                        46.376
                                                                   1.00 13.97
    MOTA
            3138
                  CB
                       THR B
                               88
                                        45.720
                                                -10.853
                                                          28.692
                                                                   1.00 14.23
                                                                                            0
            3140
                  OG1 THR B.
    MOTA
                               88
                                                                                            C
                                        46.312
                                                 -9.865
                                                          30.728
                                                                    1.00 15.70
            3142
                  CG2 THR B
                               88
    MOTA
                                                                                            C
                                                          27.308
                                                                    1.00 14.14
            3146
                                        45.972
                                                 -8.179
    ATOM
                  С
                       THR B
                               88
                                        47.138
                                                 -7.960
                                                          26.978
                                                                    1.00 16.23
                                                                                            0
    MOTA
            3147
                  0
                       THR B
                               88
                                                          26.444
                                                                    1.00 13.28
                                                                                            N
                                        44.961
                                                  -8.217
    ATOM
            3148
                  N
                       LYS B
                               89
                                                                    1.00 13.04
                                                                                            C
                                        45.163
                                                  -7.962
                                                          25.021
            3150
                  CA
                       LYS B
                               89
    ATOM
                                                                                            C
                           В
                               89
                                        44.317
                                                 -8.922
                                                          24.185
                                                                    1.00 13.74
    MOTA
            3152
                  CB
                       LYS
                                        44.531 -10.371
                                                          24.562
                                                                    1.00 15.15
                                                                                            C
40
    MOTA
            3155
                  CG
                       LYS
                           В
                               89
                                        43.821 -11.309
                                                           23.612
                                                                    1.00 18.37
                                                                                            C
            3158
                  CD
                       LYS
                           В
                               89
    MOTA
                                                                                            C
    MOTA
            3161
                  CE
                       LYS B
                               89
                                        43.980 -12.771
                                                           24.006
                                                                    1.00 20.95
                                                           22.933
                                                                                            N
                                                                    1.00 24.82
                               89
                                        43.412 -13.640
    MOTA
            3164
                  NZ
                       LYS B
                                        44.798
                                                           24.667
                                                  -6.531
                                                                    1.00 12.47
                                                                                            C
                       LYS B
    MOTA
            3168
                   С
                               89
                                                                    1.00 12.82
                                                           25.369
                                                                                            0
45
                       LYS B
                                        44.022
                                                  -5.884
    ATOM
            3169
                   0
                               89
                                        45.377
                                                  -6.023
                                                           23.589
                                                                    1.00 11.85
                                                                                            N
            3170
                   N
                       THR B
                               90
    ATOM
                                                  -4.714
                                                           23.072
                                                                    1.00 11.57
                                                                                            С
    MOTA
            3172
                   CA
                       THR B
                               90
                                         45.017
                                                           22.273
                                                                    1.00 11.83
                                                                                            C
                                         46.177
                                                  -4.184
    MOTA
            3174
                   CB
                       THR B
                               90
                                                                                            0
                                         47.280
                                                  -3.912
                                                           23.164
                                                                    1.00 14.04
            3176
                       THR B
                               90
    MOTA
                   OG1
                                                  -2.872
                                                                                            С
50
            3178
                       THR B
                               90
                                         45.838
                                                           21.626
                                                                    1.00 13.14
                   CG2
    ATOM
                                                           22.180
                                                                    1.00 11.03
                                                                                            C
                                         43.780
                                                  -4.827
    ATOM
            3182
                   C
                        THR B
                                90
                                                                    1.00 10.60
                                                                                            0
                                                           21.355
            3183
                        THR B
                               90
                                         43.684
                                                  -5.748
    ATOM
                   0
                                         42.839
                                                  -3.893
                                                           22.344
                                                                    1.00 10.28
                                                                                            N
                        ILE B
                                91
    MOTA
            3184
                   N
                                                           21.530
22.361
23.238
                                                                    1.00 10.28
1.00 10.29
                               91
                                         41.640
                                                  -3.871
            3186
                   CA
                        ILE B
    MOTA
                                                                                            C
55
                                         40.361
                                                  -4.011
            3188
                        ILE B
                                91
   ATOM
                   CB
                                                                    1.00 11.66
                                                                                            C
            3190
                                         40.407
                                                  -5.261
    ATOM
                   CG1
                       ILE B
                                91
                                         39.298
                                                  -5.354
                                                           24.285
                                                                    1.00 13.60
                                                                                            C
    ATOM
            3193
                   CD1
                        ILE
                            В
                                91
                                                                    1.00 10.59
                                                                                            C
                                                  -4.060
                                                           21.408
                                91
                                         39.141
    MOTA
            3197
                   CG2
                       ILE
                            В
                        ILE
                                91
                                         41.597
                                                  -2.536
                                                           20.815
                                                                    1.00 10.62
    MOTA
            3201
                   С
                            В
                                         41.700
                                                                    1.00 10.66
                                                  -1.489
                                                           21.442
60
    MOTA
            3202
                   0
                        ILE
                            В
                                91
                                                           19.497
                                                                    1.00 10.49
                                92
                                         41.490
                                                  -2.563
    MOTA
            3203
                   N
                        GLN B
                                                           18.764
                                                  -1.326
                                                                    1.00 10.71
                                                                                            C
            3205
                   CA
                        GLN B
                                92
                                         41.313
    MOTA
                                                           17.719
                                                                    1.00 11.65
    MOTA
            3207
                   CB
                        GLN B
                                92
                                         42.410
                                                  -1.146
```


	ATOM	3210	CG	GLN	D	92		43.778	-0.942	18.282	1.00	15 30	С
	ATOM	3213	CD	GLN		92		44.809	-1.227	17.215	1.00		č
	ATOM	3214		GLN		92		45.030	-2.382	16.855		23.06	0
	ATOM	3215				92		45.388	-0.176	16.654	1.00	29.53	N
5	ATOM	3218	С	GLN		92		39.964	-1.384	18.063	1.00	9.76	С
	MOTA	3219	0	GLN		92		39.599	-2.416	17.499	1.00	9.52	0
	MOTA	3220	N	VAL		93		39.225	-0.286	18.109	1.00	8.49	N C
	MOTA	3222	CA	VAL		93		37.922	-0.204 -0.031	17.447 18.452	1.00	8.46 8.40	C
10	ATOM ATOM	3224 3226	CB CG1	VAL		93 93		36.754 35.408	-0.031	17.715	1.00	8.33	č
10	ATOM	3230		VAL		93		36.818	-1.110	19.565	1.00	9.21	Č
	ATOM	3234	C	VAL		93		37.954	0.979	16.498	1.00	8.80	С
	ATOM	3235	ō	VAL		93		38.313	2.100	16.913	1.00	9.38	0
	ATOM	3236	N	PHE	В	94		37.585	0.735	15.235	1.00	7.89	N
15	MOTA	3238	CA	PHE		94		37.514	1.756	14.207	1.00	8.32	C
	MOTA	3240	СВ	PHE		94		38.303	1.336	12.954	1.00	8.53	C
	MOTA	3243	CG	PHE		94		39.774 40.658	1.165 2.188	13.207 12.898	1.00	8.61 10.93	c
	ATOM ATOM	3244 3246		PHE PHE		94 94		42.001	2.100	13.153		11.25	č
20	MOTA	3248	CZ	PHE		94		42.482	0.899	13.732		10.46	С
40	ATOM	3250		PHE		94		41.644	-0.131	14.027		10.75	C
	ATOM	3252		PHE		94		40.273	0.003	13.776		10.71	С
	MOTA	3254	С	PHE		94		36.070	1.974	13.819	1.00	8.61	C
٥.	MOTA	3255	0	PHE		94		35.314	1.013	13.648	1.00	9.56	О И
25	ATOM	3256	N	VAL		95 05		35.687 34.370	3.231 3.546	13.647 13.104	1.00	8.45 9.19	C
	ATOM ATOM	3258 3260	CA CB	VAL VAL		95 95		33.767	4.834	13.104	1.00	9.11	č
	ATOM	3262		VAL				34.614	6.052	13.439		11.33	Ċ
	ATOM	3266		VAL		95		32.342	5.013	13.203		10.43	С
30	ATOM	3270	C	VAL		95		34.535	3.607	11.594	1.00	9.06	С
	ATOM	3271	0	VAL		95		35.480	4.251	11.094	1.00	9.36	0
	ATOM	3272	N	VAL		96		33.660	2.896	10.888		10.07	N C
	ATOM	3274	CA	VAL		96		33.731 33.633	2.760 1.287	9.435 9.027		10.75 11.31	
35	ATOM ATOM	3276 3278	CB CG1	VAL VAL		96 96		33.699	1.117	7.507		12.23	č
23	ATOM	3282		VAL		96		34.726	0.475	9.716		11.29	CCC
	ATOM	3286	C	VAL		96		32.598	3.544	8.811	1.00	11.08	С
	MOTA	3287	0	VAL		96		31.425	3.388	9.170		11.36	0
	MOTA	3288	N	ILE		97		32.948	4.403	7.866		11.39	N
40	ATOM	3290	CA	ILE		97		31.959	5.265			12.42	C
	ATOM	3292	CB	ILE		97		32.677	6.496 7.145	6.644 7.677		12.48 12.52	C
	ATOM ATOM	3294 3297	CG1 CD1			97 97		33.614 32.936	7.143			14.19	C C
	ATOM	3301		ILE		97		31.669	7.488			12.90	Ċ
45	ATOM	3305	C		В	_		31.234	4.501		1.00	13.56	С
	ATOM	3306		ILE		97		31.898	3.883	5.308	1.00	13.06	0
	MOTA	3307	N	PRO		98		29.898	4.524			15.09	N
	MOTA	3308	CA	PRO		98		29.132				16.07	. C
50	ATOM	3310	CB		В	98		27.696				15.86 16.80	c c
50		3313	CG	PRO		98		27.661 29.007				14.97	c
	ATOM ATOM	3316 3319		PRO	В	98 98		29.267				17.70	č
	MOTA	3320) B	98		29.605				17.04	Ō
	ATOM	3321			PB	99		29.014				20.10	N
55	ATOM	3323			Р В	99		29.082	4.091			20.04	С
	MOTA	3325	CB		P B	99		28.029				21.12	C
	ATOM	3328			PB	99	•	26.612				23.44	C
	MOTA	3329		1 AS		99		26.291				27.92	0
<i>د</i> ۸	MOTA	3330		2 AS:				25.761 30.494				19.38	C
60	MOTA MOTA	3331 3332			PB PB			30.494			1 00	19.30	Ö
	ATOM	3333				100		31.521				17.96	N
	MOTA	3335				100		32.917				18.27	C
								a ·					

			100	22 757	4.812	2.091	1.00 18.29	С
_	ATOM	3337 CE		33.757 33.964	3.969		1.00 16.21	Ō
	MOTA		G1 THR B 100 G2 THR B 100	33.041	6.065		1.00 18.22	С
	MOTA	3341 CG 3345 C		33.606	2.725		1.00 18.55	С
	MOTA MOTA	3346 O		34.839	2.644		1.00 18.17	0
-	ATOM ATOM	3347 N		32.813	1.676		1.00 19.93	N
	MOTA	3349 C		33.346	0.341	0.306	1.00 19.59	C
	ATOM	3352 C			-0.119	1.467	1.00 19.66	C
	ATOM	3353 0			-0.861	1.285	1.00 19.57	0
	ATOM	3354 N		33.856	0.343	2.661	1.00 19.84	И С
	ATOM	3356 C	CA ASN B 102	34.580	0.071	3.906	1.00 19.99 1.00 20.27	c
	MOTA		CB ASN B 102		-1.406	4.266	1.00 20.27	Č
	MOTA		G ASN B 102		-1.823	4.683 5.871	1.00 22.34	ŏ
_	MOTA		D1 ASN B 102	_	-1.970 -2.035	3.709	1.00 25.85	N
	ATOM		ND2 ASN B 102	32.293 36.016	0.557	3.943	1.00 19.98	C
	MOTA	3366 C		36.805	0.124	4.782	1.00 19.09	0
	ATOM	3367 O 3368 N		36.343	1.504	3.076	1.00 20.60	N
	MOTA		CA SER B 103	37.707	1.990	2.986	1.00 19.63	С
'n	ATOM ATOM		CB SER B 103	38.016	2.353	1.541	1.00 20.16	C
.υ	ATOM		OG SER B 103	37.253	3.481	1.156	1.00 22.36	0
	ATOM		C SER B 103	37.979	3.214	3.870	1.00 18.01	C
	ATOM		O SER B 103	39.137	3.525	4.144	1.00 18.98	О N
	ATOM	3379 N	N GLUB 104	36.936	3.918	4.294	1.00 15.67 1.00 13.43	C
:5	ATOM		CA GLU B 104	37.135	5.116	5,120 4.656	1.00 13.43	č
	MOTA		CB GLU B 104	36.265	6.297 7.618	5.313	1.00 12.01	Č
	MOTA		CG GLU B 104	36.679 35.732	8.776	5.029	1.00 14.64	С
	MOTA		CD GLU B 104	34.919	8.679	4.069	1.00 15.08	0
20	MOTA	-	OE1 GLU B 104 OE2 GLU B 104	35.814	9.803	5.742	1.00 14.12	0
bu	ATOM ATOM		C GLU B 104	36.797	4.780	6.558	1.00 12.23	C
	MOTA		O GLU B 104	35.659	4.435	6.855	1.00 11.79	0
	MOTA		N GLU B 105	37.793	4.856	7.439	1.00 11.65	N C
	ATOM		CA GLU B 105	37.573	4.534	8.845	1.00 10.60	C
35	MOTA		CB GLU B 105	37.830	3.047	9.102	1.00 10.23 1.00 11.51	c
	MOTA		CG GLU B 105	39.288	2.653	8.998 9.250	1.00 11.31	Č
	MOTA		CD GLU B 105	39.569	1.177	9.250	1.00 13.23	Ö
	MOTA	3405	OE1 GLU B 105	40.772	0.827 0.366	9.341	1.00 11.87	Ō
	MOTA		OE2 GLU B 105	38.617 38.476	5.381	9.732	1.00 9.65	С
40			C GLU B 105 O GLU B 105	39.492	5.931	9.272		0
	MOTA			38.112	5.465	11.014		N
	ATOM		N TYR B 106 CA TYR B 106	38.842	6.260	12.004		C
	ATOM ATOM		CB TYR B 106	38.119	7.593	12.258		C
45		3416	CG TYR B 106	37.989	8.388	10.990	1.00 9.70	C
,,,	ATOM	3417	CD1 TYR B 106	39.000	9.227	10.565	1.00 10.02	C
	ATOM	3419	CE1 TYR B 106	38.900	9.908	9.378		c
	MOTA	3421	CZ TYR B 106	37.797	9.755	8.584		ŏ
	MOTA	3422	OH TYR B 106	37.719		7.368 8.958		Č
50		3424	CE2 TYR B 106	36.784 36.887	8.909 8.224	10.166		Ċ
	MOTA	3426	CD2 TYR B 106	38.949		13.318	·	С
	MOTA	3428	C TYR B 106 O TYR B 106	37.963		13.774		0
	MOTA	3429		40.116				N
55	MOTA	3430 3432	N ILE B 107 CA ILE B 107	40.211		15.288	3 1.00 8.90	C
J	MOTA 6	3434	CB ILE B 107	41.652	5.037	15.848		C
	ATOM	3436	CG1 ILE B 107	41.770	4.245		5 1.00 10.76	C
	ATOM	3439	CD1 ILE B 107	41.571	2.765			C
	ATOM	3443	CG2 ILE B 107	42.088			1 1.00 9.73	C
60			C ILE B 107	39.211				o
	MOTA		O ILE B 107	39.102				N
	ATOM	3449	N ILE B 108	38.448		16.95 17.85		Č
	ATOM		CA ILE B 108	37.466	5 5.505	11.00	U 1.00 0.40	•

1	

	ATOM	3453	CB	ILE B	108	36.038	5.362	17.263	1.00 7.92	
	ATOM	3455			108	35.058	6.318	17.933		C
	ATOM	3458	CD1	ILE B		35.451	7.735	17.791		C
	ATOM	3462	CG2			35.548			1.00 10.51	Ç
5	ATOM	3466	C	ILE B			3.943	17.367	1.00 7.73	C
	ATOM	3467		ILE B		37.577	5.032	19.315	1.00 9.21	С
			0			37.028	5.675	20.206	1.00 9.94	0
	ATOM	3468	N	ALA B		38.295	3.939	19.566	1.00 8.98	N
	ATOM	3470	CA	ALA B		38.565	3.467	20.929	1.00 8.87	С
10	MOTA	3472	CB	ALA B		37.358	2.771	21.525	1.00 9.01	C
10	MOTA	3476	С	ALA B		39.744	2.507	20.935	1.00 8.73	. c
	ATOM	3477	0	ALA B	109	39.957	1.757	19.994	1.00 9.76	Ö
	ATOM	3478	N	GLU B	110	40.533	2.576	21.998	1.00 9.54	· N
	ATOM	3480	CA	GLU B		41.607	1.634	22.215	1.00 9.46	
	MOTA	3482	СВ	GLU B		42.946	2.257	21.824	1.00 10.74	C
15	ATOM	3485	CG	GLU B		44.120	1.290	21.888		C
	ATOM	3488	CD	GLU B		45.414			1.00 14.55	C
	ATOM	3489		GLU B		45.950	1.938	21.419	1.00 21.68	, C
	ATOM	3490	OE2	GLU B			2.812	22.134	1.00 25.49	. 0
	ATOM					45.877	1.587	20.321	1.00 27.22	0
20		3491	C .	GLU B		41.678	1.209	23.680	1.00 9.73	С
20	ATOM	3492	0	GLU B		41.720	2.056	24.582	1.00 10.15	0
	ATOM	3493	N	TRP B		41.703	-0.098	23.894	1.00 9.39	N
	MOTA	3495	CA	TRP B	111	41.990	-0.671	25.187	1.00 10.20	С
	ATOM	3497	CB	TRP B		41.076	-1.840	25.491	1.00 9.67	С
~-	ATOM	3500	CG	TRP B		41.470	-2.528	26.787	1.00 8.52	c
25	MOTA	3501	CD1	TRP B		42.308	-3.581	26.928	1.00 9.95	, c
	MOTA	3503	NE1	TRP B	111	42.456	-3.906	28.256	1.00 13.10	N
	ATOM	3505	CE2	TRP B	111	41.728	-3.017	29.010	1.00 10.98	
	MOTA	3506	CD2	TRP B	111	41.102	-2.128	28.116	1.00 9.50	č
	MOTA	3507	CE3	TRP B	111	40.282	-1.123	28.636	1.00 10.62	Č
30	ATOM	3509	CZ3	TRP B	111	40.114	-1.040	30.002	1.00 12.26	č
	ATOM	3511	CH2	TRP B		40.756	-1.929	30.857	1.00 9.96	č
	ATOM	3513	CZ2	TRP B		41.561	-2.926	30.385	1.00 12.41	00000
	ATOM	3515	С	TRP B		43.423	-1.193	25.169	1.00 13.35	C
	ATOM	3516	0	TRP B		43.775	-2.031	24.344	1.00 11.63	o
35	ATOM	3517	N	LYS B		44.263	-0.666	26.056	1.00 16.48	N
	ATOM	3519	CA	LYS B		45.593	-1.223	26.244	1.00 20.35	N
	ATOM	3521	CB	LYS B		46.627	-0.459	25.436	1.00 22.00	C
	ATOM	3524	CG	LYS B		47.926	-1.228	25.265	1.00 26.13	C
	MOTA	3527	CD	LYS B		49.024	-0.337	24.701	1.00 20.13	C
40	ATOM	3530	CE	LYS B		48.724	0.098	23.278	1.00 31.80	C
	ATOM	3533	NZ	LYS B		49.811	0.945	22.716	1.00 34.89	C
	ATOM	3537	C	LYS B		45.946	-1.177			N
	ATOM	3538	ŏ.	LYS B		46.204		27.725	1.00 22.27	C
	ATOM	3539	BR	BR1 C	1		-0.081	28.253	1.00 23.96	0
45	ATOM	3540	BR	BR1 C	2	32.421	56.008	18.617	1.00 7.69	В
	ATOM	3541		BR1 C		29.535	49.785	7.652	1.00 7.89	В
	ATOM	3542	BR BR		3	14.888	42.517	9.414	1.00 6.57	В
	ATOM	3543		BR1 C	4	25.062	15.958	16.407	1.00 10.90	В
			BR	BR1 C	5	33.144	18.262	4.026	1.00 20.03	В
50	MOTA	3544	BR	BR1 C	6	40.800	30.559	10.185	1.00 12.36	В
	MOTA	3545	BR	BR1 C	7	30.248	54.190	19.852	1.00 14.74	В
	ATOM	3546	BR	BR1 C	8	38.772	41.003	24.687	1.00 22.37	В
	ATOM	3547	BR	BR1 C	9	26.990	5.115	28.326	1.00 15.47	В
	ATOM	3548	BR	BR1 C	10	40.148	5.267	23.548	1.00 2.00	В
~~	ATOM	3549	BR	BR1 C	11	40.494	-13.035	23.333	1.00 14.97	В
55	ATOM	3550	BR	BR1 C	12	26.318	-12.293	15.448	1.00 14.38	В
	ATOM	3551	BR	BR1 C	13		-18.188	15.135	1.00 9.41	В
	ATOM	3552	BR	BR1 C	14		-14.040	15.742	1.00 12.63	. В
	MOTA	3553	BR	BR1 C	15	29.171	31.139	8.101	1.00 2.00	В
	ATOM	3554	BR	BR1 C	16	28.318	-4.326	9.061	1.00 2.00	В
60	ATOM	3555	0	HOH D	1	45.016	-8.481	11.093	1.00 14.02	0
	MOTA	3558	Ō	HOH D	2	39.945	9.187	15.069	1.00 13.06	
	ATOM	3561	Ō	HOH D	3	37.478	27.672	11.707	1.00 15.00	0
	ATOM	3564	Ö	HOH D	4	44.772	-4.577	18.363	1.00 16.80	0
			·		-3	22.//2	2.577	10.000	T.OO 14.20	0

ATOM 3567 O HOH D 5			
ATCM 3570 0 NOH D 6 23.544 U.8ab	7-04 3567 O HOH D 5		
APPLICATION 3576 O HOH D D 7 29,531 35,991 30,281 1,000 18,022 O APPLICATION 3579 O HOH D 9 33,3907 51,248 18,235 O 10,001 12,548 O APPLICATION 3585 O HOH D 10 29,468 6,269 10,200 10,001 12,548 O APPLICATION 3585 O HOH D 11 33,083 30,833 30,833 O 10,001 12,548 O APPLICATION 3585 O HOH D 12 22,901 44,585 B 335 1,000 14,733 O APPLICATION 3591 O HOH D 13 30,083 O 30,083 O 30,083 O 4,001 O 10,001 O 10,001 O O O O O APPLICATION	Alon.	23.544 0.467 24.663 1.00 16.56	
ATOM 3579 0 HOH D 9 33.907 37.500 18.02 0 O S ATOM 3582 0 HOH D 10 29.468 6.267 15.500 1.00 14.54 0 O ATOM 3582 0 HOH D 10 12 33.083 30.288 1.00 14.73 0 O ATOM 3585 0 HOH D 12 33.083 30.288 1.00 14.73 0 O ATOM 3586 0 HOH D 12 30.083 30.288 1.00 14.73 0 O ATOM 3589 0 HOH D 14 30.083 30.288 1.00 14.73 0 O ATOM 3591 0 HOH D 14 30.083 30.288 1.00 15.66 0 O ATOM 3594 0 HOH D 14 30.085 1 O ATOM 3597 0 HOH D 15 6 42.527 6.434 1.00 16.68 0 O ATOM 3597 0 HOH D 15 6 42.527 6.434 1.00 16.68 0 O ATOM 3600 0 HOH D 16 42.527 6.434 1.00 18.94 0 O ATOM 3600 0 HOH D 18 23.468 6.955 2.5616 1.00 18.06 0 O ATOM 3600 0 HOH D 19 22.7112 2.792 25.766 1.00 18.94 0 O ATOM 3601 0 HOH D 19 22.7112 2.792 25.766 1.00 18.94 0 O ATOM 3612 0 HOH D 20 13.244 50.277 14.00 16.98 10.00 17.11 0 O ATOM 3612 0 HOH D 20 13.244 50.277 14.00 16.98 10.00 17.11 0 O ATOM 3612 0 HOH D 22 22.335 36.795 13.262 10.00 17.11 0 O ATOM 3621 0 HOH D 22 22.353 36.795 12.00 26.399 0 O ATOM 3621 0 HOH D 23 18.6790 15.688 3.641 1.00 20.977 0 O ATOM 3621 0 HOH D 22 22.3356 -0.715 22.103 1.00 17.11 0 O ATOM 3621 0 HOH D 23 18.513 30.250 28.272 1.00 26.39 0 O ATOM 3621 0 HOH D 22 22.3356 -0.715 22.103 1.00 17.11 0 O ATOM 3621 0 HOH D 26 23.386 -0.715 22.103 1.00 17.11 0 O ATOM 3621 0 HOH D 27 29.074 -11.945 31.552 1.00 26.39 0 O ATOM 3621 0 HOH D 27 29.074 -11.945 31.552 1.00 26.39 0 O ATOM 3621 0 HOH D 27 29.074 -11.945 31.552 1.00 26.39 0 O ATOM 3621 0 HOH D 32 31.550 1.088 31.500 1.00 15.14 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 31.550 1.00 12.80 0 O ATOM 3621 0 HOH D 32 32.500 0 HOH D 33	AIOM 5570 C	29.331 3.321 1 00 15 51	
5 ATOM 3592 O HOH D 10 29,468 5,440 15,560 1.00 14,54 O ATOM 3598 O HOH D 10 29,468 5,440 15,560 1.00 14,54 O ATOM 3598 O HOH D 11 22,21,91 24,556 18,335 1.00 14,73 O ATOM 3598 O HOH D 12 22,91 24,556 18,335 1.00 14,73 O ATOM 3591 O HOH D 13 31,093 21,009 1.00 17,28 O ATOM 3591 O HOH D 15 42,527 6,434 12,302 1.00 19,56 O ATOM 3591 O HOH D 15 42,527 6,434 12,302 1.00 19,56 O ATOM 3591 O HOH D 15 42,527 6,434 12,302 1.00 18,94 O ATOM 3600 O HOH D 17 32,586 6,955 26,616 1.00 20,73 O ATOM 3600 O HOH D 19 22,3468 6,955 26,616 1.00 20,391 O ATOM 3615 O HOH D 19 22,712 2,972 25,766 1.00 20,00 O ATOM 3615 O HOH D 20 13,244 50,277 14,738 1.00 18,06 O ATOM 3621 O HOH D 20 136,790 15,994 26,953 1.00 17,55 O ATOM 3621 O HOH D 23 18,911 31,262 28,227 1.00 23,91 O O ATOM 3621 O HOH D 23 18,911 31,262 28,227 1.00 20,97 O ATOM 3621 O HOH D 24 36,790 15,994 26,953 1.00 17,55 O ATOM 3621 O HOH D 24 36,790 15,994 26,953 1.00 17,55 O ATOM 3621 O HOH D 24 36,790 15,994 26,953 1.00 17,55 O ATOM 3621 O HOH D 23 18,911 31,262 28,227 1.00 20,97 O O ATOM 3621 O HOH D 24 31,505 1.688 24,400 1.00 20,97 O O ATOM 3621 O HOH D 25 21,210 30,815 22,103 1.00 15,14 O O ATOM 3630 O HOH D 25 21,210 30,815 22,103 1.00 15,14 O O ATOM 3630 O HOH D 25 21,210 30,815 22,103 1.00 15,14 O O ATOM 3630 O HOH D 25 21,210 30,815 22,103 1.00 15,14 O O ATOM 3630 O HOH D 25 21,210 30,815 22,103 1.00 15,14 O O ATOM 3630 O HOH D 26 33,815 0 9,344 11,616 1.00 20,79 O O ATOM 3630 O HOH D 27 28,268 40,455 23,574 1.00 23,95 O O ATOM 3630 O HOH D 27 28,268 40,455 23,574 1.00 23,95 O O ATOM 3630 O HOH D 27 28,268 40,455 23,574 1.00 20,79 O O ATOM 3630 O HOH D 25 31,456 9,344 11,616 1.00 20,79 O O ATOM 3630 O HOH D 27 28,268 40,455 23,574 1.00 23,95 O O ATOM 3663 O HOH D 27 28,268 40,455 23,574 1.00 23,95 O O ATOM 3663 O HOH D 27 28,268 40,455 23,574 1.00 23,95 O O ATOM 3665 O HOH D 36 30,468 24,468 24,759 25,854 24,168 24,175	Alone of the control of	24.073 3	
ATOM 3585 0 HOR D 10 ATOM 3588 0 HOR D 11 ATOM 3588 0 HOR D 12 ATOM 3588 0 HOR D 12 ATOM 3591 0 HOR D 13 ATOM 3591 0 HOR D 13 ATOM 3594 0 HOR D 13 ATOM 3597 0 HOR D 15 ATOM 3690 0 HOR D 15 ATOM 3600 0 HOR D 15 ATOM 3600 0 HOR D 16 ATOM 3600 0 HOR D 17 ATOM 3600 0 HOR D 18 ATOM 3600 0 HOR D 18 ATOM 3600 0 HOR D 19 ATOM 3600 0 HOR D 20 ATOM 3600 0 HOR D 21 ATOM 3600 0 HOR D 22 ATOM 3600 0 HOR D 23 ATOM 3600 0 HOR D 24 ATOM 3600 0 HOR D 25 ATOM 3600 0 HOR D 24 ATOM 3600 0 HOR D 25 ATOM 3600 0 HOR D 25 ATOM 3600 0 HOR D 24 ATOM 3600 0 HOR D 25 ATOM 3600 0 HOR D 24 ATOM 3600 0 HOR D 25 ATOM 3600 0 HOR D 24 ATOM 3600 0 HOR D 25 ATOM 3600 0 HOR D 25 ATOM 3600 0 HOR D 26 ATOM 3600 0 HOR D 27 ATOM 3600 0 HOR D 30	71.0	33.907 34.22	
ATOM 3588 0 ROH D 12 32.901 44.556 18.335 1.00 14.73 0 ATOM 3591 0 ROH D 13 31.027 20.428 25.544 1.00 16.68 0 ATOM 3591 0 ROH D 13 31.027 20.428 25.544 1.00 16.68 0 ATOM 3591 0 ROH D 15 32.508 1.00 19.66 0 ATOM 3591 0 ROH D 15 32.508 1.00 19.66 0 ATOM 3591 0 ROH D 15 32.508 1.00 19.66 0 ATOM 3600 0 ROH D 15 32.508 14.749 4.982 1.00 23.91 0 ATOM 3600 0 ROH D 17 32.508 14.749 4.982 1.00 23.91 0 ATOM 3600 0 ROH D 19 23.468 6.955 26.616 1.00 18.06 0 ATOM 3612 0 ROH D 19 23.469 6.955 26.616 1.00 18.06 0 ATOM 3612 0 ROH D 19 13.244 50.277 14.738 1.00 18.37 0 ATOM 3613 0 ROH D 22 36.790 15.994 26.963 1.00 17.15 0 ATOM 3613 0 ROH D 23 18.911 31.260 28.272 1.00 26.39 0 ATOM 3613 0 ROH D 23 18.911 31.260 28.272 1.00 26.39 0 ATOM 3633 0 ROH D 25 21.210 33.851 24.000 1.00 1.00 21.24 ATOM 3633 0 ROH D 25 21.210 33.851 24.000 1.00 1.00 21.24 ATOM 3633 0 ROH D 25 21.210 33.851 24.000 1.00 1.00 21.24 ATOM 3633 0 ROH D 25 21.210 33.851 24.000 1.00 21.34 0 ATOM 3634 0 ROH D 26 23.366 -0.715 22.103 1.00 17.11 0 ATOM 3638 0 ROH D 27 29.074 -11.945 31.532 14.00 20.97 0 ATOM 3634 0 ROH D 26 23.366 -0.715 22.103 1.00 12.24 0 ATOM 3636 0 ROH D 26 33.156 -9.344 1.00 20.97 0 ATOM 3645 0 ROH D 27 29.074 -11.945 31.532 1.00 20.76 0 ATOM 3645 0 ROH D 27 29.074 -11.945 31.532 1.00 20.76 0 ATOM 3651 0 ROH D 25 33.156 -9.341 1.00 23.395 0 ATOM 3656 0 ROH D 33 42.788 1.7754 4.982 1.00 23.30 0 ATOM 3656 0 ROH D 33 42.788 1.7754 4.992 1.00 23.30 0 ATOM 3657 0 ROH D 33 42.788 1.7754 4.992 1.00 23.30 0 ATOM 3657 0 ROH D 35 35.789 1.2184 1.00 23.30 0 ATOM 3658 0 ROH D 37 22.226 24.366 1.60 1.00 21.34 0 O ATOM 3668 0 ROH D 37 22.226 24.366 1.60 1.00 21.34 0 O ATOM 3668 0 ROH D 37 22.226 24.366 1.60 1.00 23.340 0 O ATOM 3657 0 ROH D 35 35.799 1.2184 1.00 23.340 0 O ATOM 3668 0 ROH D 37 22.226 24.366 1.60 1.00 23.340 0 O ATOM 3668 0 ROH D 37 22.226 24.366 1.60 1.00 23.340 0 O ATOM 3668 0 ROH D 36 30.00 1.00 1.00 22.55 0 O ATOM 3669 0 ROH D 36 30.00 1.00 1.00 22.55 0 O ATOM 3669 0 ROH D 36 30.00 1.00 1.00 22.55 0 O ATOM 3669 0 ROH D 36 30.00 1.00 1.00	ATOM 3582 O HOH D 10	29.400	
ATOM 3598 0 HOH D 12 31.027 20.428 25.544 1.00 16.68 0 ATOM 3591 0 HOH D 13 30.995 8.205 30.208 1.00 19.66 0 ATOM 3597 0 HOH D 15 28.108 -13.792 35.951 1.00 20.73 0 ATOM 3600 0 HOH D 15 22.276 6.434 12.302 1.00 18.94 0 ATOM 3601 0 HOH D 15 22.57 6.434 12.302 1.00 18.94 0 ATOM 3603 0 HOH D 19 22.712 25.766 1.00 20.00 0 ATOM 3603 0 HOH D 19 22.712 29.72 25.766 1.00 20.00 0 ATOM 3603 0 HOH D 19 22.712 29.72 14.738 1.00 18.06 0 ATOM 3609 0 HOH D 20 13.244 50.277 14.738 1.00 18.05 0 ATOM 3613 0 HOH D 22 22.367 36.375 23.529 1.00 17.85 0 ATOM 3613 0 HOH D 22 22.367 36.375 23.529 1.00 17.85 0 ATOM 3621 0 HOH D 24 31.505 1.688 3.641 0.00 18.05 0 ATOM 3624 0 HOH D 24 31.505 1.688 3.641 0.00 15.14 0 ATOM 3630 0 HOH D 26 23.366 0 HOH D 26 23.366 0 HOH D 26 23.365 0 HOH D 27 29.074 11.945 31.505 1.00 17.00 15.74 0 ATOM 3630 0 HOH D 26 23.366 0 -7.15 24.000 1.00 15.14 0 ATOM 3630 0 HOH D 26 23.366 0 -7.15 24.000 1.00 15.14 0 ATOM 3630 0 HOH D 26 23.366 0 -7.15 24.000 1.00 15.14 0 ATOM 3630 0 HOH D 26 23.366 0 -7.15 24.000 1.00 15.14 0 ATOM 3630 0 HOH D 26 23.366 0 -7.15 24.000 1.00 21.97 0 ATOM 3630 0 HOH D 28 25.868 0 -0.45 31.535 1.00 24.32 0 ATOM 3630 0 HOH D 28 25.868 0 -0.45 31.535 1.00 24.32 0 ATOM 3630 0 HOH D 28 25.868 0 -0.45 31.535 1.00 24.32 0 ATOM 3630 0 HOH D 39 20.858 9 -7.854 11.945 11.00 20.97 0 ATOM 3640 0 HOH D 33 24.77.754 48.477 15.499 1.00 23.95 0 ATOM 3640 0 HOH D 33 24.790 5.858 27.705 18.709 1.00 21.26 0 ATOM 3667 0 HOH D 33 24.790 5.858 27.705 18.709 1.00 23.30 0 ATOM 3657 0 HOH D 34 27.861 15.691 24.120 1.00 23.30 0 ATOM 3667 0 HOH D 37 28.276 11.5691 24.124 1.00 20.79 0 ATOM 3667 0 HOH D 37 28.276 11.5691 24.124 1.00 20.79 0 ATOM 3667 0 HOH D 37 28.276 11.5691 24.124 1.00 20.79 0 ATOM 3667 0 HOH D 37 28.276 11.5691 24.124 1.00 20.79 0 ATOM 3667 0 HOH D 37 28.276 11.00 23.30 0 ATOM 3668 0 HOH D 37 28.276 11.00 23.30 0 ATOM 3668 0 HOH D 37 28.276 11.00 23.30 0 ATOM 3678 0 HOH D 37 28.276 11.00 23.30 0 ATOM 3680	ATOM 3585 O HOH D 11	33.003 20.00	
ATOM 35991 O HOH D 14 28.108 -13.792 35.951 1.00 20.73 O HOH D 15 35.095 18.205 30.208 1.00 19.66 O HOH D 15 32 35.095 18.205 30.208 1.00 19.66 O HOH D 15 32 35.095 18.205 30.208 1.00 19.66 O HOH D 15 32 35.095 18.205 30.208 1.00 18.94 O HOH D 15 32.507 14.738 1.00 18.94 O HOH D 15 32.508 14.749 4.982 1.00 23.91 O HOH D 19 20 13.244 50.277 14.738 1.00 18.37 O HOH D 19 21 36.790 15.994 26.963 1.00 17.85 O HOH D 19 23 18.91 31.244 50.277 14.738 1.00 18.37 O HOH D 23 HOH D 23 HOH D 24 31.505 16.88 3.641 1.00 20.00 O HOH D 23 HOH D 23 HOH D 24 31.505 1.688 3.641 1.00 20.97 O HOH D 25 12.20 33.851 24.000 1.00 21.38 O HOH D 25 12.10 33.851 24.000 1.00 21.38 O HOH D 25 21.30 33.851 24.000 1.00 21.38 O HOH D 25 21.30 33.851 24.000 1.00 21.38 O HOH D 25 21.30 33.851 24.000 1.00 21.38 O HOH D 26 23.886 -0.715 22.103 31.00 15.14 O HOH D 27 29.074 -11.945 31.532 1.00 23.95 O HOH D 27 29.074 -11.945 31.532 1.00 23.95 O HOH D 28 25.268 40.455 23.374 1.00 20.979 O HOH D 29 33.156 -9.344 11.616 1.00 20.79 O HOH D 29 33.156 -9.344 11.616 1.00 20.79 O HOH D 29 33.156 -9.344 11.616 1.00 20.79 O HOH D 29 33.156 -9.344 11.616 1.00 20.79 O HOH D 29 33.156 -9.344 11.616 1.00 20.79 O HOH D 30 ATOM 3645 O HOH D 32 HOH D 32 HOH D 32 HOH D 33 42.780 1.00 19.70 O HOH D 33 42.780 1.00 19.70 O HOH D 35 43.470 1.00 19.70 O HOH D 36 HOH D 37 22.26 24.446 1.00 23.30 O HOH D 37 22.26 24.486 27.00 1.00 19.70 O HOH D 37 22.26 24.486 27.00 1.00 19.70 O HOH D 37 22.26 24.486 27.00 1.00 19.70 O HOH D 37 22.26 24.486 27.00 1.00 19.70 O HOH D 37 22.26 24.486 27.00 1.00 21.31 O HOH D 37 22.26 24.486 27.00 1.00 21.31 O HOH D 37 22.26 24.475 9.59 12.883 1.00 22.368 O HOH D 37 22.26 24.475 9.59 12.883 1.00 22.368 O HOH D 37 22.26 24.475 9.59 12.883 1.00 22.30 O HOH D 37 22.26 24.475 9.59 12.883 1.00 22.30 O HOH D 37 22.26 24.475 9.59 12.883 1.00 22.30 O HOH D 37 22.26 24.475 9.59 12.883 1.00 22.30 O HOH D 37 22.26 24.475 9.59 12.883 1.00 22.30 O HOH D 37 22.26 24.475 9.59 23.50 1.00 22.30 O HOH D 37 22.26 24.475 9.59 23.50 1.00 22.30 O HOH D 37 22.26 24.4	ATOM 3588 O HOH D 12	22.901	
10 ATOM 35997 0 ROH D 15	AIOM 5551	30.005 8.205 30.208 1.00 19.66	
ATOM 3600 0 ROH D 16 42 .527 6 .434 12 .302 1.00 18.94 0 ATOM 3603 0 ROH D 17 32 .508 14.749 4 .492 1.00 23.91 0 ATOM 3606 0 ROH D 18 23 .468 6.955 26.616 1.00 18.06 0 ATOM 3606 0 ROH D 19 22 .712 2.712 2.726 1.00 20.00 0 ATOM 3618 0 ROH D 20 13.244 50.277 14.738 1.00 18.37 0 ATOM 3618 0 ROH D 21 36.790 15.994 26.963 1.00 17.85 0 ATOM 3618 0 ROH D 22 12 .367 36.375 23.529 1.00 17.11 0 ATOM 3618 0 ROH D 22 12 .367 36.375 23.529 1.00 17.11 0 ATOM 3618 0 ROH D 22 12 .367 36.375 23.529 1.00 17.11 0 ATOM 3621 0 ROH D 23 18.911 31.260 28.272 1.00 26.39 0 ATOM 3623 0 ROH D 25 21.210 33.851 24.000 1.00 21.28 0 ATOM 3633 0 ROH D 26 23.386 -0.715 22.103 1.00 15.14 0 ATOM 3633 0 ROH D 27 29.074 -11.945 31.532 1.00 24.32 0 ATOM 3635 0 ROH D 28 25.2268 40.455 23.574 1.00 23.95 0 ATOM 3636 0 ROH D 29 33.156 -9.314 11.616 1.00 20.75 0 ATOM 3636 0 ROH D 29 33.156 -9.314 11.616 1.00 20.75 0 ATOM 3636 0 ROH D 32 31.40 3.85 3.95 1.8780 1.00 1.070 0 ATOM 3636 0 ROH D 32 31.40 3.85 3.095 18.780 1.00 1.070 0 ATOM 3636 0 ROH D 32 31.40 3.85 3.095 18.780 1.00 1.070 0 ATOM 3648 0 ROH D 32 32.786 1 15.691 24.120 1.00 23.40 0 ATOM 3656 0 ROH D 32 32.786 1 15.691 24.120 1.00 23.30 0 ATOM 3665 0 ROH D 33 34 27.86 1 15.691 24.120 1.00 23.30 0 ATOM 3665 0 ROH D 33 32 42.790 5.884 23.394 1.00 23.30 0 ATOM 3665 0 ROH D 36 30.360 -0.992 28.013 1.00 16.72 0 ATOM 3665 0 ROH D 37 28.276 -16.372 24.124 61.00 23.30 0 ATOM 3665 0 ROH D 38 32.226 24.366 27.005 1.00 23.68 0 ATOM 3665 0 ROH D 39 32 0.858 29.760 23.162 1.00 23.30 0 ATOM 3665 0 ROH D 39 32 0.858 29.760 23.162 1.00 23.30 0 ATOM 3665 0 ROH D 39 32 0.858 29.760 23.162 1.00 23.30 0 ATOM 3675 0 ROH D 44 20.863 46.163 17.522 1.00 25.28 0 ATOM 3675 0 ROH D 50 40 49.235 18.819 15.583 1.00 25.35 0 ATOM 3670 0 ROH D 50 40 40 49.235 18.819 15.583 1.00 25.35 0 ATOM 3670 0 ROH D 50 40 40 40.286 40 40 40 40 40 40 40 40 40 40 40 40 40	IO ATOM 5354 5 15	28 108 -13.792 35.951 1.00 20.73	
ATOM 3603 O HOH D 17 32.508 14.749 4.982 1.00 23.93 O HOH D 18 23.468 6.955 26.616 1.00 18.06 O ATOM 3609 O HOH D 18 22.712 2.972 25.766 1.00 20.00 O ATOM 3609 O HOH D 19 12 22.712 2.972 25.766 1.00 20.00 O ATOM 3608 O HOH D 20 13.244 50.277 14.738 1.00 18.35 O ATOM 3618 O HOH D 21 36.790 15.994 26.963 1.00 17.81 O ATOM 3618 O HOH D 22 22.367 36.375 23.529 1.00 17.81 O ATOM 3621 O HOH D 22 22.367 36.375 23.529 1.00 17.81 O ATOM 3621 O HOH D 22 318.911 31.260 28.272 1.00 26.39 O ATOM 3621 O HOH D 24 31.505 1.688 3.641 1.00 20.97 O ATOM 3621 O HOH D 26 23.386 -0.715 22.103 1.00 13.24 O ATOM 3630 O HOH D 26 23.386 -0.715 22.103 1.00 13.24 O ATOM 3630 O HOH D 28 25.268 40.455 23.374 1.00 23.95 O ATOM 3630 O HOH D 28 25.268 40.455 23.374 1.00 23.95 O ATOM 3642 O HOH D 28 25.268 40.455 23.374 1.00 23.95 O ATOM 3642 O HOH D 28 25.268 40.455 23.374 1.00 23.95 O ATOM 3645 O HOH D 30 38.478 -5.911 7.639 1.00 21.26 O ATOM 3645 O HOH D 32 47.784 44.77 15.489 1.00 23.30 O ATOM 3645 O HOH D 32 47.784 44.77 15.489 1.00 23.30 O ATOM 3645 O HOH D 32 47.784 44.77 15.489 1.00 23.30 O ATOM 3645 O HOH D 32 47.786 1.569 1.00 20.76 O ATOM 3645 O HOH D 34 27.786 1.569 1.00 20.368 O ATOM 3657 O HOH D 35 37.797 12.184 44.16 1.00 20.76 O ATOM 3650 O HOH D 36 30.360 O HOH D 37 30	ATOM 555.	42.527 6.434 12.302 1.00 18.94	
ATOM 3600 0 HORLD 18 23.468 6.955 26.616 1.00 16.00 0 0 0 15 ATOM 3600 0 HORLD 19 22.712 2.972 25.766 1.00 20.00 0 0 0 15 ATOM 3612 0 HORLD 21 36.790 15.994 26.963 1.00 17.85 0 0 17.85 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATOM SOUR STATE	32,508 14.749 4.982 1.00 23.91	
15 ATOM 3612 O HOH D 19	AIOM SOUS STORY D. 19	23.468 6.955 26.616 1.00 18.06	
ATOM 3612 O HOH D 20 13.244 50.27/ 14.155 O HOH D 21 ATOM 3618 O HOH D 21 ATOM 3619 O HOH D 22 12.367 36.375 23.329 1.00 17.11 O ATOM 3618 O HOH D 23 H.911 31.260 28.72 1.00 26.39 O ATOM 3621 O HOH D 24 31.505 1.688 3.641 1.00 20.97 O ATOM 3624 O HOH D 25 21.210 33.851 24.000 1.00 21.28 O ATOM 3630 O HOH D 26 21.210 33.851 24.000 1.00 21.28 O ATOM 3630 O HOH D 27 29.074 -11.945 31.532 1.00 21.25 O ATOM 3633 O HOH D 27 29.074 -11.945 31.532 1.00 24.32 O ATOM 3633 O HOH D 28 29 33.156 -9.344 11.661 0.00 20.79 O ATOM 3640 O HOH D 29 33.156 -9.344 11.661 0.00 20.79 O ATOM 3645 O HOH D 30 38.478 -5.911 7.639 1.00 21.26 O ATOM 3645 O HOH D 31 24.308 53.095 18.780 1.00 19.70 O ATOM 3645 O HOH D 33 42.790 5.854 23.394 1.00 23.30 O ATOM 3651 O HOH D 33 42.790 5.854 23.394 1.00 23.30 O ATOM 3650 O HOH D 36 35.797 12.184 48.477 15.499 1.00 20.76 O ATOM 3660 O HOH D 36 35.797 12.184 48.477 15.091 1.00 23.30 O ATOM 3660 O HOH D 36 35.797 12.184 44.120 1.00 23.30 O ATOM 3660 O HOH D 36 35.797 12.184 44.120 1.00 23.30 O ATOM 3660 O HOH D 36 35.797 12.184 44.120 1.00 23.30 O ATOM 3660 O HOH D 36 35.797 12.184 44.120 1.00 23.30 O ATOM 3660 O HOH D 36 35.797 12.184 44.120 1.00 23.30 O ATOM 3660 O HOH D 36 35.797 12.184 44.161 1.00 20.65 O ATOM 3660 O HOH D 36 35.226 24.366 24.160 23.100 10.00 23.30 O ATOM 3660 O HOH D 36 35.226 24.366 25.700 5 1.00 23.68 O ATOM 3660 O HOH D 36 35.226 24.366 0.361 1.00 25.28 O ATOM 3660 O HOH D 42 26.332 -5.940 25.774 1.00 25.58 O ATOM 3660 O HOH D 42 24.467 -3.793 21.863 1.00 25.58 O ATOM 3661 O HOH D 44 24.799 5.920 23.503 1.00 25.58 O ATOM 3661 O HOH D 45 42.799 4.610 25.518 1.00 22.04 O ATOM 3661 O HOH D 46 24.799 5.920 23.503 1.00 25.58 O ATOM 3660 O HOH D 47 24.799 5.920 23.503 1.00 25.58 O ATOM 3660 O HOH D 48 24.799 5.920 23.503 1.00 25.58 O ATOM 3660 O HOH D 55 ATOM 3660 O HOH D 55 ATOM 3660 O HOH D 56 ATOM 3702 O HOH D 56 ATOM 3702 O HOH D 57 ATOM 3660 O HOH D 57 ATOM 3702 O HOH D 56 ATOM 3703 O HOH D 57 ATOM 3703 O HOH D 57 ATOM 3703 O HOH D 56 ATOM 3714 O HOH D 56 ATOM 3714 O HOH D 56	AIOM South	22.712	
ATOM 3615 O ROH D 21 32 18.911 31.260 28.272 1.00 26.39 O ATOM 3621 O ROH D 23 18.911 31.260 28.272 1.00 26.39 O ATOM 3621 O ROH D 24 31.505 1.688 3.641 1.00 20.97 O ATOM 3627 O ROH D 25 21.210 33.851 24.000 1.00 21.28 O ATOM 3630 O ROH D 26 23.386 -0.715 22.103 1.00 15.14 O ATOM 3630 O ROH D 27 29.074 -11.945 22.103 1.00 15.14 O ATOM 3630 O ROH D 28 25.268 40.455 23.574 1.00 21.26 O ATOM 3630 O ROH D 29 33.156 -9.344 11.616 1.00 20.79 O ATOM 3630 O ROH D 29 33.156 -9.344 11.616 1.00 20.79 O ATOM 3648 O ROH D 31 24.308 53.095 18.780 1.00 19.70 O ATOM 3648 O ROH D 32 42.7861 15.691 27.854 23.394 1.00 23.30 O ATOM 3651 O ROH D 33 42.796 5.854 23.394 1.00 23.30 O ATOM 3663 O ROH D 37 28.276 -16.367 24.126 1.00 23.40 O ATOM 3663 O ROH D 36 30.360 -0.992 28.013 1.00 16.72 O ATOM 3663 O ROH D 36 30.360 -0.992 28.013 1.00 16.72 O ATOM 3663 O ROH D 37 28.276 -16.367 24.126 1.00 23.368 O ATOM 3663 O ROH D 39 20.858 29.760 23.562 1.00 21.99 O ATOM 3678 O ROH D 42 26.332 -5.940 25.574 1.00 23.30 O ATOM 3678 O ROH D 42 26.332 -5.940 25.574 1.00 23.30 O ATOM 3678 O ROH D 44 26.332 -5.940 25.574 1.00 23.30 O ATOM 3678 O ROH D 44 22.355 18.819 15.583 1.00 25.355 O ATOM 3669 O ROH D 44 22.355 18.819 15.583 1.00 25.355 O ATOM 3669 O ROH D 45 42.794 2.619 9.388 1.00 25.355 O ATOM 3696 O ROH D 46 24.778 21.030 19.875 1.00 25.28 O ATOM 3696 O ROH D 47 24.779 22.350 0 POR ATOM 3696 O ROH D 47 24.779 22.350 0 POR ATOM 3697 O ROH D 46 24.778 21.030 19.875 1.00 25.28 O ATOM 3702 O ROH D 47 24.779 22.350 0 POR ATOM 3703 O ROH D 58 44.300 3702 O ROH D 58 44.300 3702 O ROH D 59 20.215 49.366 23.507 7.816 1.00 22.87 7.00 ATOM 3703 O ROH D 58 44.300 3703 O ROH D 58 44.300 3703 O ROH D 59 20.215 49.366 1.00 22.50 O ATOM 3703 O ROH D 58 44.300 3703 O ROH D 58 44.300 3703 O ROH D 59 20.215 49.366 1.00 22.50 O ATOM 3703 O ROH D 58 44.300 3703 O ROH D 58 44.300 3703 O ROH D 59 20.215 49.366 1.00 22.50 O ATOM 3703 O ROH D 50 20.215 49.366 1.00 22.50 O ATOM 3703 O ROH D 56 22.799 31.594 11.00 23.37 O ATOM 3703 O ROH D 56 22.799 31.594 11.00 23.37	15 A1011	13.233 00.37 05	
ATOM 3618 O HOH D 22	ATOM 3615 O HOH D 21	30.730 23.55 25.50 1 00 17 11	
ATOM 3621 O HOH D 24 31.505 1.688 3.641 1.00 20.97 O ATOM 3627 O HOH D 25 21.210 33.851 24.000 1.00 21.28 O ATOM 3623 O HOH D 26 23.386 -0.715 22.103 1.00 15.14 O ATOM 3633 O HOH D 27 29.074 -11.945 31.532 1.00 24.32 O ATOM 3633 O HOH D 28 25.268 40.455 23.574 1.00 23.95 O ATOM 3633 O HOH D 29 33.156 -9.344 11.616 1.00 20.79 O ATOM 3645 O HOH D 30 38.478 -5.911 7.639 1.00 21.26 O ATOM 3645 O HOH D 31 24.308 53.095 18.780 1.00 19.70 O ATOM 3645 O HOH D 32 47.754 48.477 15.499 1.00 23.30 O ATOM 3645 O HOH D 32 47.790 5.854 23.394 1.00 23.30 O ATOM 3655 O HOH D 35 36.797 12.184 4.416 1.00 21.31 O ATOM 3660 O HOH D 35 30.360 -0.992 28.013 1.00 16.72 O ATOM 3660 O HOH D 37 28.276 -16.367 24.116 1.00 23.40 O ATOM 3660 O HOH D 37 28.276 -16.367 24.116 1.00 23.40 O ATOM 3660 O HOH D 37 28.276 -16.367 24.116 1.00 23.40 O ATOM 3660 O HOH D 37 28.276 -16.367 24.116 1.00 23.40 O ATOM 3660 O HOH D 37 28.276 -16.367 24.116 1.00 23.40 O ATOM 3660 O HOH D 37 28.276 -16.367 24.116 1.00 23.40 O ATOM 3660 O HOH D 37 28.276 -16.367 24.116 1.00 23.68 O ATOM 3660 O HOH D 39 20.858 29.760 23.162 1.00 21.99 O ATOM 3660 O HOH D 42 44.467 -3.793 21.863 1.00 22.04 ATOM 3667 O HOH D 42 26.332 -5.940 25.774 1.00 25.58 O ATOM 3667 O HOH D 44 20.863 46.163 17.522 1.00 25.58 O ATOM 36693 O HOH D 44 20.863 46.163 17.522 1.00 25.58 O ATOM 3693 O HOH D 47 24.778 21.00 19.875 1.00 22.50 ATOM 3699 O HOH D 47 24.778 21.00 19.875 1.00 22.50 ATOM 3699 O HOH D 47 24.778 21.00 19.875 1.00 22.50 ATOM 3705 O HOH D 55 30.090 23.057 7.816 1.00 22.50 ATOM 3720 O HOH D 55 30.090 23.057 7.816 1.00 22.50 ATOM 3720 O HOH D 56 31.00 37.00 3720 O HOH D 57 44.100 1.00 23.37 O ATOM 3720 O HOH D 57 41.00 1.00 23.40 O ATOM 3720 O HOH D 57 41.00 1.00 23.40 O ATOM 3720 O HOH D 57 41.00 1.00 23.37 O ATOM 3720 O HOH D 56 31.00 25.58 ATOM 3720 O HOH D 57 41.00 25.58 ATOM 3720 O HOH D 57 41.00 25.58 ATOM 3720 O HOH D 57 41.00 25.58 ATOM 3720 O HOH D 58 46.170 -3.793 1.50 1.00 22.50 ATOM 3738 O HOH D 56 37.00 37.50 0 HOH D 57 41.00 25.50 ATOM 3730 O HOH D 57 41.00 25.50 ATO	ATOM 3618 O HOH D 22	22.307 30.00 1 00 26 30	
20 ATOM 3624 O HORB D 25	ATOM 3621 O HOH D 23	31 506 1 688 3.641 1.00 20.97	
ATOM 3633 O HORD D 26 ATOM 3633 O HORD D 27 ATOM 3633 O HORD D 28 ATOM 3639 O HORD D 29 ATOM 3639 O HORD D 39 ATOM 3645 O HORD D 31 ATOM 3645 O HORD D 31 ATOM 3645 O HORD D 31 ATOM 3645 O HORD D 32 ATOM 3645 O HORD D 32 ATOM 3651 O HORD D 32 ATOM 3651 O HORD D 33 ATOM 3651 O HORD D 34 ATOM 3651 O HORD D 35 ATOM 3650 O HORD D 35 ATOM 3666 O HORD D 35 ATOM 3666 O HORD D 37 ATOM 3666 O HORD D 37 ATOM 3666 O HORD D 38 ATOM 3667 O HORD D 38 ATOM 3668 O HORD D 38 ATOM 3668 O HORD D 38 ATOM 3669 O HORD D 39 ATOM 3669 O HORD D 39 ATOM 3669 O HORD D 39 ATOM 3669 O HORD D 40 ATOM 3669 O HORD D 42 ATOM 3669 O HORD D 42 ATOM 3669 O HORD D 44 ATOM 3669 O HORD D 44 ATOM 3669 O HORD D 44 ATOM 3669 O HORD D 48 ATOM 3669 O HORD D 49 ATOM 3669 O HORD D 50 ATOM 3705 O HORD D 50 ATOM 3705 O HORD D 50 ATOM 3708 O HORD D 51 ATOM 3708 O HORD D 55 ATOM 3711 O HORD D 55 ATOM 3720 O HORD D 59 ATOM 3720 O HORD D 59 ATOM 3720 O HORD D 59 ATOM 3721 O HORD D 59 ATOM 3722 O HORD D 59 ATOM 3723 O HORD D 59 ATOM 3724 O HORD D 59 ATOM 3735 O HORD D 59 ATOM 3736 O HORD D 59 ATOM 3737 O HORD D 59 ATOM 3737 O HORD D 59 ATOM 3741 O HORD D 66 ATOM 3744 O HORD D 66 ATOM 3745 O HORD D 66 ATOM 3745 O HORD D 66 ATOM 3745 O HORD D 66	20 ATOM 3024 0 11011 D 05	21 210 33.851 24.000 1.00 21.28	
ATOM 3633 O HOR D 27 29.074 -11.945 31.532 1.00 23.95 O ATOM 3636 O HOR D 28 25.268 40.455 23.574 1.00 23.95 O ATOM 3630 O HOR D 28 33.156 -9.344 11.616 1.00 20.79 O ATOM 3642 O HOR D 30 38.478 -5.911 7.639 1.00 21.26 O ATOM 3642 O HOR D 31 24.308 53.095 18.780 1.00 19.70 O ATOM 3645 O HOR D 32 17.754 48.477 15.499 1.00 23.30 O ATOM 3648 O HOR D 34 27.861 15.691 24.120 1.00 23.40 O ATOM 3651 O HOR D 34 27.861 15.691 24.120 1.00 23.40 O ATOM 3657 O HOR D 36 30.360 -0.992 28.013 1.00 16.72 O ATOM 3660 O HOR D 37 28.2676 1.6367 24.146 1.00 20.65 O ATOM 3660 O HOR D 38 32.226 24.366 27.005 1.00 23.68 O ATOM 3667 O HOR D 39 20.858 29.760 23.162 1.00 23.68 O ATOM 3675 O HOR D 49.235 18.819 15.583 1.00 25.35 O ATOM 3675 O HOR D 41 24.467 -3.793 21.861 10.00 25.58 O ATOM 3675 O HOR D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3684 O HOR D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3680 O HOR D 44 20.863 46.163 17.522 1.00 25.58 O ATOM 3690 O HOR D 44 22.794 2.619 9.388 1.00 25.58 O ATOM 3690 O HOR D 46 ATOM 3689 O HOR D 47 24.778 21.030 19.875 1.00 22.04 O ATOM 3690 O HOR D 48 24.759 -5.920 23.562 1.00 23.03 O ATOM 3690 O HOR D 48 24.759 -5.920 23.503 1.00 12.370 O ATOM 3690 O HOR D 48 24.759 -5.920 23.574 1.00 12.370 O ATOM 3690 O HOR D 48 24.759 -5.920 23.503 1.00 25.58 O ATOM 3690 O HOR D 48 24.759 -5.920 23.503 1.00 25.58 O ATOM 3690 O HOR D 48 24.759 -5.920 23.503 1.00 21.370 O ATOM 3705 O HOR D 50 20.215 49.361 14.399 1.00 22.550 O ATOM 3708 O HOR D 55 24.600 ATOM 3708 O HOR D 55 24.600 ATOM 3708 O HOR D 55 24.619 9.388 1.00 22.550 O ATOM 3708 O HOR D 55 24.600 ATOM 3714 O HOR D 55 39.089 24.475 9.924 11.00 22.500 O ATOM 3732 O HOR D 55 39.089 22.251 1.251 1.00 22.571 O ATOM 3735 O HOR D 55 44.616 -5.251 12.651 1.00 22.571 O ATOM 3735 O HOR D 56 36.990 7.023 22.512 1.00 22.570 O ATOM 3735 O HOR D 56 36.990 7.023 22.512 1.00 22.500 O ATOM 3731 O HOR D 56 37.347 -1.150 7.121 1.00 22.93 O ATOM 3735 O HOR D 56 37.347 -1.150 7.121 1.00 22.93 O ATOM 3735 O HOR D 56 37.347 -1.150 7.121 1.00 22.93 O ATOM 3735 O HOR D 56 37	ATOM Sozi	23.386 -0.715 22.103 1.00 15.14	
ATOM 3636 O HOH D 28 25.268 40.455 23.374 1.00 20.79 O ATOM 3645 O HOH D 30 38.478 -5.911 7.639 1.00 21.26 O ATOM 3645 O HOH D 31 17.754 48.477 15.499 1.00 20.76 O ATOM 3645 O HOH D 32 17.754 48.477 15.499 1.00 20.76 O ATOM 3651 O HOH D 33 42.790 5.854 23.394 1.00 23.30 O ATOM 3651 O HOH D 35 35.797 12.184 4.416 1.00 21.31 O ATOM 3654 O HOH D 35 35.797 12.184 4.416 1.00 21.31 O ATOM 3666 O HOH D 36 30.360 -0.992 28.013 1.00 16.72 O ATOM 3666 O HOH D 37 28.276 -16.367 24.146 1.00 23.40 O ATOM 3666 O HOH D 37 28.276 -16.367 24.146 1.00 23.40 O ATOM 3666 O HOH D 39 20.858 29.760 23.162 1.00 23.68 O ATOM 3669 O HOH D 39 20.858 29.760 23.162 1.00 23.55 O ATOM 3675 O HOH D 41 24.467 -3.793 21.863 1.00 25.35 O ATOM 3675 O HOH D 41 24.467 -3.793 21.863 1.00 25.35 O ATOM 3667 O HOH D 42 44.67 -3.793 21.863 1.00 25.35 O ATOM 3667 O HOH D 44 20.863 40.578 4.994 6.108 1.00 25.58 O ATOM 3667 O HOH D 44 20.863 40.578 4.994 6.108 1.00 25.28 O ATOM 3693 O HOH D 45 42.794 2.619 9.388 1.00 25.08 O ATOM 3693 O HOH D 45 42.794 2.619 9.388 1.00 25.08 O ATOM 3693 O HOH D 45 42.794 2.619 9.388 1.00 25.08 O ATOM 3693 O HOH D 48 24.7794 2.619 9.388 1.00 25.08 O ATOM 3693 O HOH D 48 24.7794 2.619 9.388 1.00 25.08 O ATOM 3693 O HOH D 49 36.889 24.475 8.531 1.00 23.00 O ATOM 3693 O HOH D 49 36.889 24.475 8.531 1.00 23.03 O ATOM 3693 O HOH D 49 36.889 24.475 8.531 1.00 23.03 O ATOM 3705 O HOH D 50 47.164 -5.215 12.615 1.00 22.87 O ATOM 3705 O HOH D 55 20.097 31.10 HOH D 50 20.215 49.361 14.399 10.00 23.03 O ATOM 3708 O HOH D 55 20.097 31.10 HOH D 50 40.00 23.05 O ATOM 3710 O HOH D 55 44.00 25.58 O ATOM 3720 O HOH D 59 36.365 41.70 12.926 1.00 27.76 O ATOM 3720 O HOH D 56 22.799 49.789 12.926 1.00 27.76 O ATOM 3730 O HOH D 56 22.799 49.789 12.926 1.00 27.76 O ATOM 3730 O HOH D 56 22.799 49.789 12.926 1.00 27.76 O ATOM 3730 O HOH D 56 30.098 -12.907 29.223 1.00 22.31 0 O ATOM 3731 O HOH D 66 30.098 -12.907 29.223 1.00 22.35 O ATOM 3731 O HOH D 66 30.098 -12.907 29.223 1.00 22.35 O ATOM 3731 O HOH D 66 30.098 -12.907 29.223 1.00 22.35 O ATOM	ATOM SOST D 27	29.074 -11.945 31.532 1.00 24.32	
ATOM 3639 O HOH D 29 33.1.56 -9.344 17.6.18 1.00 21.26 O ATOM 3642 O HOH D 31 24.308 33.095 18.780 1.00 19.70 O ATOM 3648 O HOH D 31 17.754 48.477 15.499 1.00 20.76 O ATOM 3651 O HOH D 32 42.790 5.854 23.394 1.00 23.30 O ATOM 3651 O HOH D 34 27.861 15.691 24.120 1.00 23.40 O ATOM 3657 O HOH D 35 35.797 12.184 4.416 1.00 21.31 O ATOM 3660 O HOH D 36 30.360 -0.992 28.013 1.00 16.72 O ATOM 3660 O HOH D 38 32.226 24.366 27.005 1.00 21.99 O ATOM 3667 O HOH D 39 20.858 29.760 23.162 1.00 21.99 O ATOM 3667 O HOH D 40 49.235 18.819 15.583 1.00 22.04 O ATOM 3667 O HOH D 40 42.6.332 -5.940 25.774 1.00 16.62 O ATOM 3668 O HOH D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3668 O HOH D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3669 O HOH D 43 40.578 4.994 6.163 1.00 25.58 O ATOM 3669 O HOH D 44 20.863 46.163 17.522 1.00 25.28 O ATOM 3669 O HOH D 45 42.794 2.619 9.388 1.00 25.00 O ATOM 3669 O HOH D 45 42.794 2.619 9.388 1.00 25.00 O ATOM 3669 O HOH D 45 42.794 2.619 9.388 1.00 25.00 O ATOM 3669 O HOH D 47 24.778 21.030 19.875 1.00 25.08 O ATOM 3690 O HOH D 48 42.794 2.619 9.388 1.00 25.00 O ATOM 3690 O HOH D 47 24.778 21.030 19.875 1.00 25.08 O ATOM 3690 O HOH D 48 36.889 24.475 8.631 1.00 22.50 O ATOM 3702 O HOH D 55 30.00 O ATOM 3702 O HOH D 55 30.00 O ATOM 3710 O HOH D 55 30.00 O ATOM 3710 O HOH D 55 30.00 O ATOM 3710 O HOH D 55 30.00 O ATOM 3720 O HOH D 55 30.00 O ATOM 3720 O HOH D 56 22.799 9.999 12.926 1.00 27.29 O ATOM 3732 O HOH D 56 22.799 9.999 12.926 1.00 27.76 O ATOM 3732 O HOH D 56 22.799 9.999 12.926 1.00 27.76 O ATOM 3732 O HOH D 56 22.799 9.999 12.926 1.00 27.76 O ATOM 3732 O HOH D 56 30.00 O ATOM 3735 O HOH D 56 30.00 O ATOM 3735 O HOH D 56 30.00 O ATOM 3735 O HOH D 56 30.00 O ATOM 3734 O HOH D 56 30.00 O ATOM 3735 O HOH D 66 30.00 O ATOM 3744 O HOH D 67 30.00 O ATOM 3744 O HOH D 67	AIOM 3033 C	25.268 40.455 23.574 1.00 23.33	
ATOM 3642 O HOH D 30 38.478 -5.917 1.00 20.76 O ATOM 3645 O HOH D 31 24.308 53.995 18.780 1.00 20.76 O ATOM 3648 O HOH D 32 17.754 48.477 15.499 1.00 20.76 O ATOM 3651 O HOH D 33 42.790 5.854 23.394 1.00 23.30 O ATOM 3651 O HOH D 33 42.790 5.854 23.394 1.00 23.30 O ATOM 3651 O HOH D 35 35.797 12.184 4.416 1.00 21.31 O ATOM 3665 O HOH D 35 35.797 12.184 4.416 1.00 21.31 O ATOM 3660 O HOH D 36 30.360 -0.992 28.013 1.00 16.72 O ATOM 3666 O HOH D 36 30.360 -0.992 28.013 1.00 16.72 O ATOM 3666 O HOH D 38 32.226 24.366 27.005 1.00 23.68 O ATOM 3666 O HOH D 39 49.235 18.819 15.563 1.00 22.04 O ATOM 3672 O HOH D 41 24.467 -3.793 21.863 1.00 22.04 O ATOM 3675 O HOH D 41 24.467 -3.793 21.863 1.00 22.04 O ATOM 3681 O HOH D 43 40.578 4.994 6.108 1.00 25.58 O ATOM 3684 O HOH D 45 42.0863 46.163 17.522 1.00 25.28 O ATOM 3693 O HOH D 45 42.794 2.619 9.388 1.00 23.00 O ATOM 3693 O HOH D 45 42.778 21.030 19.875 1.00 23.03 O ATOM 3693 O HOH D 45 42.778 21.030 19.875 1.00 21.37 O ATOM 3693 O HOH D 47 24.778 21.030 19.875 1.00 25.50 O ATOM 3705 O HOH D 48 24.778 21.030 19.875 1.00 22.50 O ATOM 3705 O HOH D 50 20.215 49.361 1.00 22.50 O ATOM 3708 O HOH D 55 39.089 24.475 8.631 1.00 22.50 O ATOM 3711 O HOH D 55 320.097 31.594 19.238 1.00 22.50 O ATOM 3723 O HOH D 55 320.097 31.594 19.238 1.00 22.37 O ATOM 3723 O HOH D 55 320.097 31.594 19.238 1.00 22.51 O ATOM 3723 O HOH D 55 320.097 31.594 19.238 1.00 22.71 O ATOM 3723 O HOH D 55 320.097 31.594 19.238 1.00 22.71 O ATOM 3738 O HOH D 56 22.799 49.899 12.926 1.00 27.76 O ATOM 3738 O HOH D 66 36.365 41.071 5.727 1.00 23.39 O ATOM 3738 O HOH D 66 36.365 41.071 5.727 1.00 23.99 O ATOM 3738 O HOH D 66 36.365 41.071 5.727 1.00 23.99 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.99 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.99 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.99 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.99 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.99 O ATOM 3738 O HOH D 66 320.055 28.469 14.698 1.00 26.12 O ATOM 3744 O HOH D 66 320.055 28.469	AIOM Soso S	33.130 3.00 31 26	
ATOM 3648 O HOH D 32 17.754 48.477 15.499 1.00 20.76 O ATOM 3651 O HOH D 33 42.790 5.854 23.394 1.00 23.30 O ATOM 3651 O HOH D 35 34 27.861 15.691 24.120 1.00 23.40 O ATOM 3657 O HOH D 35 35.797 12.184 4.416 1.00 21.31 O ATOM 3660 O HOH D 36 30.360 -0.992 28.013 1.00 16.72 O ATOM 3663 O HOH D 37 28.276 -16.367 24.146 1.00 20.65 O ATOM 3666 O HOH D 39 20.888 29.760 23.162 1.00 21.99 O ATOM 3666 O HOH D 39 20.888 29.760 23.162 1.00 21.99 O ATOM 3667 O HOH D 40 49.235 18.819 15.583 1.00 22.04 O ATOM 3675 O HOH D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3681 O HOH D 43 40.578 4.994 6.108 1.00 25.58 O ATOM 3684 O HOH D 43 40.578 4.994 6.108 1.00 25.58 O ATOM 3689 O HOH D 44 42.794 2.619 9.388 1.00 25.280 O ATOM 3690 O HOH D 46 20.611 25.977 15.514 1.00 25.08 O ATOM 3690 O HOH D 46 20.611 25.977 15.514 1.00 25.08 O ATOM 3699 O HOH D 48 24.778 21.030 19.875 1.00 21.37 O ATOM 3705 O HOH D 50 20.215 49.361 1.00 22.50 O ATOM 3705 O HOH D 50 20.215 49.361 1.00 22.57 O ATOM 3708 O HOH D 50 20.215 49.361 1.00 22.50 O ATOM 3711 O HOH D 55 32.099 371.594 19.238 1.00 22.287 O ATOM 3723 O HOH D 55 32.099 371.594 19.238 1.00 22.74 O ATOM 3723 O HOH D 55 32.099 371.594 19.238 1.00 22.74 O ATOM 3723 O HOH D 55 32.099 371.594 19.238 1.00 22.74 O ATOM 3723 O HOH D 55 32.099 371.594 19.238 1.00 22.370 O ATOM 3723 O HOH D 55 32.099 371.594 19.238 1.00 22.370 O ATOM 3723 O HOH D 56 22.799 49.789 12.926 1.00 27.76 O ATOM 3726 O HOH D 58 44.307 22.404 22.811 1.00 23.37 O ATOM 3735 O HOH D 56 22.799 49.789 12.926 1.00 27.76 O ATOM 3736 O HOH D 66 36.365 41.071 5.729 1.00 27.02 O ATOM 3737 O HOH D 66 37.347 O HOH D	ATOM 3642 O HOH D 30	30.470 3.344 15 700 1 00 10 70	
ATOM 3648 O HOR D 32	ATOM 3645 O HOH D 31	17 754 48 477 15 499 1.00 20.76	
ATOM 3651 O HOH D 34 27.861 15.691 24.120 1.00 23.40 O ATOM 3657 O HOH D 35 35.797 12.184 4.416 1.00 21.31 O ATOM 3660 O HOH D 36 35.797 12.184 4.416 1.00 21.31 O ATOM 3660 O HOH D 37 28.276 -16.367 24.146 1.00 23.68 O ATOM 3663 O HOH D 37 32.226 24.366 27.005 1.00 23.68 O ATOM 3666 O HOH D 38 20.858 29.760 23.162 1.00 21.99 O ATOM 3667 O HOH D 40 49.235 18.819 15.583 1.00 22.04 O ATOM 3675 O HOH D 41 24.467 -3.793 21.863 1.00 22.04 O ATOM 3678 O HOH D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3681 O HOH D 44 20.863 46.163 17.522 1.00 25.28 O ATOM 3681 O HOH D 45 42.794 2.619 9.388 1.00 23.00 O ATOM 3687 O HOH D 45 42.794 2.619 9.388 1.00 23.00 O ATOM 3693 O HOH D 47 24.778 21.030 19.875 1.00 21.37 O ATOM 3693 O HOH D 48 24.7794 2.619 9.388 1.00 23.00 O ATOM 3693 O HOH D 48 24.7794 2.619 9.388 1.00 23.00 O ATOM 3693 O HOH D 48 24.779 -5.920 23.503 1.00 16.11 O ATOM 3702 O HOH D 49 36.889 24.475 8.631 1.00 22.50 O ATOM 3702 O HOH D 50 47.164 -5.215 1.00 25.50 O ATOM 3711 O HOH D 53 47.164 -5.215 1.2615 1.00 25.71 O ATOM 3711 O HOH D 53 47.164 -5.215 1.6404 1.00 27.34 O ATOM 3702 O HOH D 55 47.164 -5.215 1.6404 1.00 27.34 O ATOM 3703 O HOH D 55 47.164 -5.215 1.6404 1.00 27.34 O ATOM 3703 O HOH D 55 47.164 -5.215 1.6404 1.00 27.34 O ATOM 3703 O HOH D 55 47.164 -5.215 1.6404 1.00 27.34 O ATOM 3703 O HOH D 55 47.164 -5.215 1.6404 1.00 27.34 O ATOM 3710 O HOH D 55 47.164 -5.215 1.6404 1.00 27.34 O ATOM 3720 O HOH D 55 47.164 -5.215 1.6404 1.00 27.34 O ATOM 3735 O HOH D 55 47.164 -5.215 1.6404 1.00 27.34 O ATOM 3735 O HOH D 56 22.799 49.789 12.926 1.00 27.76 O ATOM 3735 O HOH D 58 46.170 -13.085 20.994 1.00 27.02 O ATOM 3735 O HOH D 56 22.799 49.89 12.926 1.00 27.76 O ATOM 3735 O HOH D 56 38.998 -12.907 -0.23 22.511 1.00 23.92 O ATOM 3744 O HOH D 66 330.998 -12.907 -0.623 11.2074 1.00 23.92 O ATOM 3744 O HOH D 66 330.998 -12.907 -0.23 22.511 1.00 22.93 O ATOM 3744 O HOH D 66 330.998 -12.907 -0.623 11.274 1.00 30.88 O ATOM 3747 O HOH D 66 330.998 -12.907 -0.623 11.274 1.00 30.88 O ATOM 3747 O HOH D 66 330.998 -12.907 -	ATOM 3648 O HOH D 32	42 700 5 854 23.394 1.00 23.30	
ATOM 3657 O HOH D 35 35.797 12.184 4.416 1.00 16.72 O ATOM 3660 O HOH D 36 30.360 -0.992 28.013 1.00 16.72 O ATOM 3663 O HOH D 37 28.276 -16.367 24.146 1.00 20.65 O ATOM 3660 O HOH D 38 32.226 24.366 27.005 1.00 23.68 O ATOM 3660 O HOH D 39 20.858 29.760 23.162 1.00 21.99 O ATOM 3675 O HOH D 40 49.235 18.819 15.583 1.00 25.35 O ATOM 3676 O HOH D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3678 O HOH D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3678 O HOH D 43 40.578 4.994 6.108 1.00 25.58 O ATOM 3681 O HOH D 44 20.863 46.163 17.522 1.00 25.28 O ATOM 3690 O HOH D 45 42.794 2.619 9.386 1.00 23.00 O ATOM 3690 O HOH D 46 20.611 25.977 15.514 1.00 25.08 O ATOM 3690 O HOH D 47 24.778 21.030 19.875 1.00 21.37 O ATOM 3690 O HOH D 49 36.889 24.475 8.631 1.00 22.03 O O ATOM 3690 O HOH D 49 36.889 24.475 8.631 1.00 22.03 O O ATOM 3702 O HOH D 50 47.164 -5.215 12.615 1.00 22.87 O ATOM 3705 O HOH D 50 47.164 -5.215 12.615 1.00 22.87 O ATOM 3711 O HOH D 53 19.046 25.078 19.448 1.00 25.71 O ATOM 3711 O HOH D 55 40.04 25.078 19.448 1.00 25.71 O ATOM 3712 O HOH D 55 40.04 25.078 19.448 1.00 25.71 O ATOM 3714 O HOH D 55 40.04 25.078 19.448 1.00 27.29 O ATOM 3720 O HOH D 55 40.04 25.078 19.448 1.00 27.29 O ATOM 3720 O HOH D 55 40.04 25.078 19.448 1.00 27.34 O ATOM 3720 O HOH D 55 40.04 25.078 19.448 1.00 27.34 O ATOM 3720 O HOH D 55 40.04 25.078 19.448 1.00 27.76 O ATOM 3720 O HOH D 55 40.04 25.078 19.448 1.00 27.76 O ATOM 3720 O HOH D 55 40.04 25.078 19.448 1.00 27.76 O ATOM 3720 O HOH D 55 40.04 25.078 19.448 1.00 27.76 O ATOM 3720 O HOH D 56 22.799 49.789 12.926 1.00 27.76 O ATOM 3735 O HOH D 57 44.307 22.404 22.181 1.00 23.37 O ATOM 3735 O HOH D 57 44.307 22.404 22.181 1.00 23.37 O ATOM 3735 O HOH D 57 44.307 22.404 22.181 1.00 23.37 O ATOM 3731 O HOH D 56 30.998 7.2.907 7.023 22.551 1.00 23.92 O ATOM 3741 O HOH D 66 330.998 -12.907 7.223 22.551 1.00 23.92 O ATOM 3741 O HOH D 66 330.998 -12.907 7.223 22.551 1.00 23.95 O ATOM 3741 O HOH D 66 330.998 -12.907 7.75 1.15 1.00 22.93 O ATOM 3741 O HOH D 66 330.998 -12.907 7.223 22.551	ATOM SOSI S	27 861 15.691 24.120 1.00 23.40	
ATOM 3660 O HOH D 36	30 ATOM 355	35.797 12.184 4.416 1.00 21.31	
ATOM 3663 O HOH D 37 28.276 -16.367 24.146 1.00 23.68 O ATOM 3666 O HOH D 38 32.226 24.366 27.005 1.00 23.68 O ATOM 3666 O HOH D 39 20.858 29.760 23.162 1.00 21.99 O ATOM 3675 O HOH D 40 49.235 18.819 15.583 1.00 25.35 O ATOM 3678 O HOH D 41 24.467 -3.793 21.863 1.00 22.04 O ATOM 3678 O HOH D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3681 O HOH D 44 20.863 46.163 17.522 1.00 25.58 O ATOM 3684 O HOH D 45 42.794 2.619 9.388 1.00 23.00 O ATOM 3687 O HOH D 45 42.794 2.619 9.388 1.00 23.00 O ATOM 3690 O HOH D 47 24.778 21.030 19.875 1.00 21.37 O ATOM 3693 O HOH D 47 24.778 21.030 19.875 1.00 21.37 O ATOM 3690 O HOH D 48 36.889 24.475 8.631 1.00 23.03 O ATOM 3708 O HOH D 50 20.215 49.361 14.399 1.00 22.50 O ATOM 3708 O HOH D 51 46.004 25.078 19.488 1.00 23.03 O ATOM 3708 O HOH D 53 19.046 1.435 16.404 1.00 25.71 O ATOM 3711 O HOH D 53 19.046 1.435 16.404 1.00 25.71 O ATOM 3720 O HOH D 55 22.799 49.789 12.926 1.00 27.76 O ATOM 3723 O HOH D 57 21.681 37.631 15.807 1.00 23.37 O ATOM 3720 O HOH D 55 22.799 49.789 12.926 1.00 27.76 O ATOM 3723 O HOH D 57 44.307 22.404 22.181 1.00 23.37 O ATOM 3723 O HOH D 56 22.799 49.789 12.926 1.00 27.76 O ATOM 3720 O HOH D 56 22.799 49.789 12.926 1.00 27.76 O ATOM 3723 O HOH D 57 44.307 22.404 22.181 1.00 23.37 O ATOM 3735 O HOH D 59 46.070 13.085 20.941 1.00 27.702 O ATOM 3735 O HOH D 59 46.363 41.071 5.729 1.00 23.37 O ATOM 3735 O HOH D 60 36.365 41.071 5.729 1.00 23.92 O ATOM 3738 O HOH D 60 36.365 41.071 5.729 1.00 23.92 O ATOM 3738 O HOH D 63 30.998 23.057 7.816 1.00 22.71 O ATOM 3738 O HOH D 63 30.998 23.057 7.816 1.00 22.71 O ATOM 3737 O HOH D 63 30.998 23.057 7.816 1.00 22.71 O ATOM 3738 O HOH D 63 30.998 23.057 7.816 1.00 22.70 O ATOM 3738 O HOH D 66 330.998 23.057 7.816 1.00 22.93 O ATOM 3737 O HOH D 66 330.998 23.057 7.816 1.00 22.93 O ATOM 3738 O HOH D 66 330.998 23.057 7.816 1.00 22.93 O ATOM 3737 O HOH D 66 330.998 23.057 7.816 1.00 22.93 O ATOM 3738 O HOH D 66 330.998 23.057 7.816 1.00 22.93 O ATOM 3744 O HOH D 66 330.998 22.907 29.623 1.00 25.28 O ATOM 3744 O HOH D 66 3	AIOM SOST TO 36	30.360 -0.992 28.013 1.00 16.72	
ATOM 3666 O HOH D 38 32.226 24.366 23.162 1.00 21.99 O ATOM 3672 O HOH D 40 49.235 18.819 15.583 1.00 25.35 O ATOM 3675 O HOH D 41 24.4667 -3.793 21.863 1.00 25.35 O ATOM 3678 O HOH D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3681 O HOH D 43 40.578 4.994 6.108 1.00 25.58 O ATOM 3681 O HOH D 44 20.863 46.163 17.522 1.00 25.28 O ATOM 3687 O HOH D 45 42.794 2.619 9.388 1.00 23.00 O ATOM 3680 O HOH D 46 20.611 25.977 15.514 1.00 25.08 O ATOM 3693 O HOH D 47 24.778 21.030 19.875 1.00 21.37 O ATOM 3693 O HOH D 49 36.889 24.475 8.631 1.00 23.03 O ATOM 3693 O HOH D 50 20.215 49.361 14.399 1.00 22.50 O ATOM 3702 O HOH D 50 47.164 -5.215 12.615 1.00 22.87 O ATOM 3703 O HOH D 51 47.164 -5.215 12.615 1.00 22.87 O ATOM 3711 O HOH D 53 19.046 1.435 16.404 1.00 25.71 O ATOM 3711 O HOH D 54 19.046 1.435 16.404 1.00 27.34 O ATOM 3723 O HOH D 55 22.799 49.789 12.926 1.00 27.76 O ATOM 3720 O HOH D 55 39.089 23.057 7.816 1.00 23.37 O ATOM 3720 O HOH D 55 39.089 23.057 7.816 1.00 22.37 O ATOM 3720 O HOH D 55 39.089 23.057 7.816 1.00 22.37 O ATOM 3714 O HOH D 55 44.307 22.404 22.181 1.00 23.37 O ATOM 3720 O HOH D 55 44.307 22.404 22.181 1.00 23.37 O ATOM 3720 O HOH D 56 44.307 22.404 22.181 1.00 23.37 O ATOM 3735 O HOH D 56 36.365 41.071 5.729 1.00 27.76 O ATOM 3735 O HOH D 56 46.170 -13.085 20.9941 1.00 17.48 O ATOM 3735 O HOH D 56 44.309 7.023 22.512 1.00 22.71 O ATOM 3738 O HOH D 56 36.365 41.071 5.729 1.00 27.02 O ATOM 3738 O HOH D 60 36.365 41.071 5.729 1.00 22.71 O ATOM 3738 O HOH D 60 36.990 7.023 22.512 1.00 22.71 O ATOM 3738 O HOH D 60 36.990 7.023 22.512 1.00 22.71 O ATOM 3734 O HOH D 64 30.998 12.990 7.023 22.512 1.00 22.71 O ATOM 3741 O HOH D 66 30.998 12.990 7.023 22.512 1.00 22.93 O ATOM 3741 O HOH D 66 330.998 12.990 7.023 22.512 1.00 22.93 O ATOM 3741 O HOH D 66 330.998 12.990 7.023 22.512 1.00 22.93 O ATOM 3741 O HOH D 66 330.998 12.990 7.023 22.512 1.00 22.93 O ATOM 3741 O HOH D 66 330.998 12.990 7.023 22.512 1.00 22.93 O ATOM 3741 O HOH D 66 330.998 12.990 7.023 22.512 1.00 22.93 O ATOM 3741 O HOH D 66 330.998 12.	AIOM SOUR D 37	20.270 10.301 1 00 03 60	
35 ATOM 3669 O HOH D 40 ATOM 3672 O HOH D 40 ATOM 3675 O HOH D 41 ATOM 3675 O HOH D 41 ATOM 3675 O HOH D 42 ATOM 3676 O HOH D 42 ATOM 3678 O HOH D 42 ATOM 3681 O HOH D 43 ATOM 3684 O HOH D 44 ATOM 3687 O HOH D 45 ATOM 3687 O HOH D 45 ATOM 3690 O HOH D 46 ATOM 3690 O HOH D 48 ATOM 3690 O HOH D 50 ATOM 3702 O HOH D 50 ATOM 3705 O HOH D 51 ATOM 3705 O HOH D 51 ATOM 3708 O HOH D 52 ATOM 3711 O HOH D 53 ATOM 3711 O HOH D 54 ATOM 3711 O HOH D 55 ATOM 3711 O HOH D 55 ATOM 3720 O HOH D 54 ATOM 3720 O HOH D 55 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3735 O HOH D 57 ATOM 3735 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3735 O HOH D 57 ATOM 3735 O HOH D 57 ATOM 3735 O HOH D 58 ATOM 3735 O HOH D 59 ATOM 3735 O HOH D 60 ATOM 3741 O HOH D 66 ATOM 3744 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3	ATOM 3666 O HOH D 38	32.220 24.300 1 00 21 00	
ATOM 3675 O HOH D 41 24.467 -3.793 21.863 1.00 22.04 O ATOM 3678 O HOH D 42 26.332 -5.940 25.774 1.00 16.62 O ATOM 3678 O HOH D 43 40.578 4.994 6.108 1.00 25.58 O ATOM 3681 O HOH D 44 40.578 4.994 6.108 1.00 25.58 O ATOM 3684 O HOH D 45 42.794 2.619 9.388 1.00 23.00 O ATOM 3690 O HOH D 46 20.611 25.977 15.514 1.00 25.08 O ATOM 3693 O HOH D 47 24.778 21.030 19.875 1.00 21.37 O ATOM 3693 O HOH D 49 36.889 24.475 8.631 1.00 23.03 O ATOM 3699 O HOH D 49 36.889 24.475 8.631 1.00 23.03 O ATOM 3702 O HOH D 50 20.215 49.361 14.399 1.00 22.50 O ATOM 3703 O HOH D 51 47.164 -5.215 12.615 1.00 22.87 O ATOM 3711 O HOH D 53 20.097 31.594 19.238 1.00 27.29 O ATOM 3711 O HOH D 55 39.089 23.057 7.816 1.00 27.34 O ATOM 3723 O HOH D 55 39.089 23.057 7.816 1.00 22.346 O ATOM 3723 O HOH D 55 44.307 22.404 22.181 1.00 23.37 O ATOM 3723 O HOH D 55 44.307 22.404 22.181 1.00 23.37 O ATOM 3733 O HOH D 57 44.307 22.404 22.181 1.00 23.37 O ATOM 3733 O HOH D 58 44.307 22.404 22.181 1.00 23.37 O ATOM 3733 O HOH D 58 44.307 22.404 22.181 1.00 23.37 O ATOM 3733 O HOH D 58 46.170 -13.085 20.941 1.00 17.48 O ATOM 3733 O HOH D 59 46.170 -13.085 20.941 1.00 17.48 O ATOM 3733 O HOH D 59 46.170 -13.085 20.941 1.00 22.702 O ATOM 3734 O HOH D 66 36.365 41.071 5.729 1.00 23.92 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.92 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.92 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.92 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.92 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.92 O ATOM 3738 O HOH D 66 36.365 41.071 5.729 1.00 23.92 O ATOM 3734 O HOH D 66 30.998 -12.907 29.623 1.00 25.28 O ATOM 3747 O HOH D 66 30.998 -12.907 29.623 1.00 25.28 O ATOM 3747 O HOH D 66 30.098 -12.907 29.623 1.00 25.28 O ATOM 3747 O HOH D 66 330.031 -13.258 27.775 1.00 32.50 O ATOM 3747 O HOH D 66 330.031 -13.258 27.775 1.00 32.50 O ATOM 3747 O HOH D 66 330.031 -13.258 27.775 1.00 32.50 O ATOM 3747 O HOH D 66 330.031 -13.258 27.775 1.00 32.50 O ATOM 3747 O HOH D 66 330.031 -13.258 27.775 1.00 32.50 O ATOM 3750	35 ATOM 3669 O HOH D 39	20.000 20.100 1 00 25 35	
ATOM 3678 O HOH D 42 ATOM 3681 O HOH D 43 ATOM 3681 O HOH D 43 ATOM 3681 O HOH D 43 ATOM 3681 O HOH D 44 ATOM 3687 O HOH D 45 ATOM 3690 O HOH D 46 ATOM 3693 O HOH D 47 ATOM 3693 O HOH D 47 ATOM 3696 O HOH D 48 ATOM 3696 O HOH D 49 ATOM 3699 O HOH D 49 ATOM 3702 O HOH D 50 ATOM 3705 O HOH D 51 ATOM 3711 O HOH D 53 ATOM 3711 O HOH D 53 ATOM 3711 O HOH D 54 ATOM 3711 O HOH D 55 ATOM 3712 O HOH D 55 ATOM 3713 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 55 ATOM 3730 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 56 ATOM 3720 O HOH D 57 ATOM 3720 O HOH D 66 ATOM 3738 O HOH D 66 ATOM 3738 O HOH D 66 ATOM 3738 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3744 O HOH D 66 ATOM 3747 O HOH D 67 ATOM 37550 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3747 O HOH D 67 ATOM 37550 O HOH D 66 ATOM 37550 O HOH D 67 ATOM 37550 O HOH D 67 ATOM 37550 O HOH D 66 ATOM 37550 O HOH D 67 ATOM 37550 O HOH	ATOM 3672 O HOH D 40	24 467 -3 793 21.863 1.00 22.04	
ATOM 3681 O HOH D 43	ATOM 5075 0 HOLL 5	26.332 -5.940 25.774 1.00 16.62	
40 ATOM 3684 O HOH D 44 20.8613 17.322 1.00 23.00 O ATOM 3687 O HOH D 45 42.794 2.619 9.388 1.00 23.00 O ATOM 3693 O HOH D 47 24.778 21.030 19.875 1.00 21.37 O ATOM 3696 O HOH D 49 36.889 24.475 8.631 1.00 23.03 O ATOM 3705 O HOH D 50 20.215 49.361 14.399 1.00 22.50 O ATOM 3705 O HOH D 51 46.004 25.078 19.448 1.00 25.71 O ATOM 3708 O HOH D 52 46.004 25.078 19.448 1.00 25.71 O ATOM 3714 O HOH D 54 19.046 1.435 16.404 1.00 27.34 O ATOM 3717 O HOH D 55 22.799 49.789 12.926 1.00 27.76 O ATOM 3720 O HOH D 55 22.799 49.789 12.926 1.00 27.76 O ATOM 3720 O HOH D 55 22.799 49.789 12.926 1.00 27.76 O ATOM 3720 O HOH D 55 21.681 37.631 15.807 1.00 23.37 O ATOM 3720 O HOH D 55 21.681 37.631 15.807 1.00 23.46 O ATOM 3720 O HOH D 56 21.681 37.631 15.807 1.00 23.37 O ATOM 3720 O HOH D 56 21.681 37.631 15.807 1.00 23.37 O ATOM 3732 O HOH D 56 21.681 37.631 15.807 1.00 23.37 O ATOM 3732 O HOH D 56 21.681 37.631 15.807 1.00 23.37 O ATOM 3732 O HOH D 56 44.307 22.404 22.181 1.00 23.37 O ATOM 3732 O HOH D 60 36.365 41.071 5.729 1.00 27.02 O ATOM 3738 O HOH D 60 36.990 7.023 22.512 1.00 22.71 O ATOM 3738 O HOH D 61 36.990 7.023 22.512 1.00 22.71 O ATOM 3738 O HOH D 63 20.055 28.469 14.698 1.00 25.28 O ATOM 3744 O HOH D 63 30.998 -12.997 29.623 1.00 25.28 O ATOM 3744 O HOH D 64 30.998 -12.997 29.623 1.00 25.28 O ATOM 3744 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3744 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3744 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3744 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3744 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3747 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3747 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3747 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3744 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3747 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3744 O HOH D 66 30.998 -12.997 29.623 1.00 25.293 O ATOM 3744 O HOH D 66 30.998 -12.9907 29.623 1.00 25.293 O ATOM 3744 O HOH D 66 30.998 -12.9907 29.623 1.00	ATOM 5070 C MOUD 43	40.578 4.994 6.108 1.00 25.58	
ATOM 3687 O HOH D 45 ATOM 3690 O HOH D 46 ATOM 3693 O HOH D 47 ATOM 3693 O HOH D 47 ATOM 3696 O HOH D 47 ATOM 3699 O HOH D 49 ATOM 3699 O HOH D 49 ATOM 3699 O HOH D 50 ATOM 3702 O HOH D 51 ATOM 3705 O HOH D 51 ATOM 3708 O HOH D 52 ATOM 3711 O HOH D 53 ATOM 3711 O HOH D 53 ATOM 3711 O HOH D 54 ATOM 3717 O HOH D 55 ATOM 3717 O HOH D 55 ATOM 3717 O HOH D 55 ATOM 3723 O HOH D 55 ATOM 3723 O HOH D 57 ATOM 3723 O HOH D 57 ATOM 3724 O HOH D 58 ATOM 3725 O HOH D 57 ATOM 3725 O HOH D 57 ATOM 3726 O HOH D 58 ATOM 3727 O HOH D 59 ATOM 3738 O HOH D 59 ATOM 3738 O HOH D 59 ATOM 3730 O HOH D 59 ATOM 3731 O HOH D 59 ATOM 3731 O HOH D 58 ATOM 3732 O HOH D 59 ATOM 3734 O HOH D 59 ATOM 3735 O HOH D 60 ATOM 3738 O HOH D 61 ATOM 3738 O HOH D 60 ATOM 3738 O HOH D 61 ATOM 3738 O HOH D 63 ATOM 3738 O HOH D 63 ATOM 3744 O HOH D 64 ATOM 3744 O HOH D 64 ATOM 3744 O HOH D 64 ATOM 3744 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3750 O HOH D 66 ATOM 3750 O HOH D 66 ATOM 3750 O HOH D 66 ATOM 3744 O HOH D 66 ATOM 3750	AIOM SOUL S	20.003 40.1103 4 00 03 00	
ATOM 3690 O HOH D 46 ATOM 3693 O HOH D 47 ATOM 3693 O HOH D 47 ATOM 3696 O HOH D 48 ATOM 3699 O HOH D 49 ATOM 3702 O HOH D 50 ATOM 3705 O HOH D 51 ATOM 3708 O HOH D 52 ATOM 3711 O HOH D 53 ATOM 3711 O HOH D 54 ATOM 3714 O HOH D 55 ATOM 3723 O HOH D 55 ATOM 3723 O HOH D 56 ATOM 3726 O HOH D 57 ATOM 3726 O HOH D 57 ATOM 3728 O HOH D 57 ATOM 3728 O HOH D 57 ATOM 3728 O HOH D 57 ATOM 3738 O HOH D 56 ATOM 3714 O HOH D 57 ATOM 3728 O HOH D 57 ATOM 3729 O HOH D 57 ATOM 3728 O HOH D 57 ATOM 3728 O HOH D 58 ATOM 3729 O HOH D 59 ATOM 3738 O HOH D 59 ATOM 3738 O HOH D 59 ATOM 3738 O HOH D 60 ATOM 3738 O HOH D 60 ATOM 3738 O HOH D 61 ATOM 3738 O HOH D 62 ATOM 3738 O HOH D 63 ATOM 3738 O HOH D 64 ATOM 3738 O HOH D 66 ATOM 3744 O HOH D 63 ATOM 3747 O HOH D 64 ATOM 3747 O HOH D 64 ATOM 3747 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3750	40 ATOM 5004 0 11011 D 45	42.734 2.00 25 08	
ATOM 3693 O HOH D 47 ATOM 3696 O HOH D 48 ATOM 3699 O HOH D 49 ATOM 3702 O HOH D 50 ATOM 3705 O HOH D 51 ATOM 3708 O HOH D 52 ATOM 3711 O HOH D 53 ATOM 3711 O HOH D 54 ATOM 3714 O HOH D 55 ATOM 3723 O HOH D 55 ATOM 3726 O HOH D 57 ATOM 3726 O HOH D 57 ATOM 3728 O HOH D 57 ATOM 3729 O HOH D 57 ATOM 3729 O HOH D 57 ATOM 3732 O HOH D 57 ATOM 3735 O HOH D 58 ATOM 3736 O HOH D 57 ATOM 3736 O HOH D 58 ATOM 3737 O HOH D 57 ATOM 3738 O HOH D 58 ATOM 3740 O HOH D 58 ATOM 3740 O HOH D 58 ATOM 3740 O HOH D 59 ATOM 3735 O HOH D 59 ATOM 3736 O HOH D 60 ATOM 3737 O HOH D 60 ATOM 3737 O HOH D 61 ATOM 3738 O HOH D 61 ATOM 3738 O HOH D 62 ATOM 3738 O HOH D 63 ATOM 3738 O HOH D 63 ATOM 3738 O HOH D 64 ATOM 3738 O HOH D 63 ATOM 3740 O HOH D 64 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 64 ATOM 3747 O HOH D 65 ATOM 3747 O HOH D 65 ATOM 3747 O HOH D 65 ATOM 3747 O HOH D 66 ATOM 3747 O HOH D 65 ATOM 3747 O HOH D 65 ATOM 3747 O HOH D 65 ATOM 3747 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3750	ATOM 3690 O HOH D 46	20.011 23.31	
## ATOM 3696 O HOH D 48	ATOM 3693 O HOH D 47	24.750 -5 920 23 503 1.00 16.11	
45 ATOM 3702 O HOH D 50 ATOM 3705 O HOH D 51 ATOM 3708 O HOH D 52 ATOM 3711 O HOH D 53 ATOM 3714 O HOH D 55 ATOM 3723 O HOH D 55 ATOM 3726 O HOH D 57 ATOM 3723 O HOH D 57 ATOM 3724 O HOH D 58 ATOM 3735 O HOH D 59 ATOM 3736 O HOH D 59 ATOM 3737 O HOH D 59 ATOM 3737 O HOH D 59 ATOM 3738 O HOH D 59 ATOM 3738 O HOH D 60 ATOM 3739 O HOH D 61 ATOM 3736 O HOH D 61 ATOM 3737 O HOH D 62 ATOM 3737 O HOH D 63 ATOM 3738 O HOH D 64 ATOM 3738 O HOH D 63 ATOM 3738 O HOH D 63 ATOM 3738 O HOH D 64 ATOM 3738 O HOH D 63 ATOM 3741 O HOH D 64 ATOM 3741 O HOH D 65 ATOM 3741 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3750 O HOH D 66 ATOM 3740 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3744 O HOH D 66 ATOM 3745 O HOH D 66 ATOM 3746 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3740 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3740 O HOH D 66 ATOM 3740 O HOH D 66 ATOM 3740 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3740 O HOH D 66 ATOM 3740 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3740 O HOH D 66 ATOM 3740 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3744 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3740 O HOH D 66 ATOM 3741 O HOH D 66 ATOM 3	ATOM 3696 O HOH D 48	26 000 24 475 8.631 1.00 23.03	
ATOM 3702 O HOH D 51 ATOM 3708 O HOH D 52 ATOM 3711 O HOH D 53 ATOM 3711 O HOH D 54 ATOM 3714 O HOH D 55 ATOM 3720 O HOH D 55 ATOM 3723 O HOH D 57 ATOM 3723 O HOH D 57 ATOM 3726 O HOH D 58 ATOM 3726 O HOH D 59 ATOM 3732 O HOH D 59 ATOM 3732 O HOH D 59 ATOM 3735 O HOH D 59 ATOM 3735 O HOH D 60 ATOM 3735 O HOH D 61 ATOM 3738 O HOH D 61 ATOM 3738 O HOH D 62 ATOM 3738 O HOH D 63 ATOM 3737 O HOH D 63 ATOM 3738 O HOH D 63 ATOM 3738 O HOH D 63 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 64 ATOM 3744 O HOH D 65 ATOM 3747 O HOH D 65 ATOM 3747 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3755 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3755 O HOH D 66	45 ATOM SOSS	20 215 49.361 14.399 1.00 22.50	
ATOM 3708 O HOH D 52 ATOM 3711 O HOH D 53 50 ATOM 3714 O HOH D 54 ATOM 3717 O HOH D 55 ATOM 3720 O HOH D 57 ATOM 3723 O HOH D 57 ATOM 3726 O HOH D 58 ATOM 3729 O HOH D 59 ATOM 3732 O HOH D 59 ATOM 3732 O HOH D 59 ATOM 3732 O HOH D 59 ATOM 3735 O HOH D 60 ATOM 3735 O HOH D 61 ATOM 3735 O HOH D 61 ATOM 3736 O HOH D 62 ATOM 3738 O HOH D 63 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 64 ATOM 3741 O HOH D 65 ATOM 3741 O HOH D 64 ATOM 3741 O HOH D 65 ATOM 3741 O HOH D 66 ATOM 3744 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3750 O HOH D 66	ATOM STOR B E1	47 164 -5.215 12.615 1.00 22.87	
ATOM 3711 O HOH D 53 ATOM 3714 O HOH D 54 ATOM 3717 O HOH D 55 ATOM 3720 O HOH D 56 ATOM 3723 O HOH D 57 ATOM 3726 O HOH D 58 ATOM 3729 O HOH D 59 ATOM 3732 O HOH D 59 ATOM 3732 O HOH D 59 ATOM 3735 O HOH D 60 ATOM 3738 O HOH D 61 ATOM 3738 O HOH D 62 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 64 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 64 ATOM 3741 O HOH D 65 ATOM 3741 O HOH D 66 ATOM 3744 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3747 O HOH D 66 ATOM 3750 O HOH D 66	AION STORY DES	46.004 25.078 19.448 1.00 25.71	
50 ATOM 3714 O HOH D 54 ATOM 3717 O HOH D 55 ATOM 3720 O HOH D 56 ATOM 3723 O HOH D 57 ATOM 3726 O HOH D 58 ATOM 3729 O HOH D 59 ATOM 3732 O HOH D 60 ATOM 3735 O HOH D 61 ATOM 3735 O HOH D 61 ATOM 3735 O HOH D 62 ATOM 3738 O HOH D 62 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 64 ATOM 3744 O HOH D 64 ATOM 3747 O HOH D 65 ATOM 3747 O HOH D 65 ATOM 3747 O HOH D 66 ATOM 3750 O HOH D 66	ATOM 5700 5	20.037 32.00	
ATOM 3717 O HOH D 55 ATOM 3720 O HOH D 56 ATOM 3723 O HOH D 57 ATOM 3726 O HOH D 58 ATOM 3729 O HOH D 59 ATOM 3732 O HOH D 60 ATOM 3735 O HOH D 61 ATOM 3735 O HOH D 61 ATOM 3738 O HOH D 62 ATOM 3738 O HOH D 62 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 63 ATOM 3744 O HOH D 64 ATOM 3747 O HOH D 65 ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 32.50 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 30.88	50 ATOM 3714 O HOH D 54	19.040 1.100 - 10.00 10.10	
ATOM 3720 O HOH D 56 ATOM 3723 O HOH D 57 ATOM 3726 O HOH D 58 ATOM 3729 O HOH D 59 ATOM 3732 O HOH D 60 ATOM 3735 O HOH D 61 ATOM 3735 O HOH D 61 ATOM 3738 O HOH D 62 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 63 ATOM 3744 O HOH D 64 ATOM 3747 O HOH D 65 ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 32.50 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 30.88	ATOM 3717 O HOH D 55	39.003 23.00	
ATOM 3723 O HOH D 57 ATOM 3726 O HOH D 58 44.307 22.404 22.181 1.00 23.37 O HOH D 59 ATOM 3729 O HOH D 59 ATOM 3732 O HOH D 60 ATOM 3735 O HOH D 61 ATOM 3738 O HOH D 62 ATOM 3738 O HOH D 62 ATOM 3741 O HOH D 63 ATOM 3741 O HOH D 63 ATOM 3744 O HOH D 64 ATOM 3747 O HOH D 65 ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 32.50 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 30.88	ATOM 3720 O HOH D 56	21 601 37 631 15.807 1.00 23.46	
ATOM 3726 O HOH D 59 ATOM 3729 O HOH D 59 ATOM 3732 O HOH D 60 ATOM 3735 O HOH D 61 ATOM 3738 O HOH D 62 ATOM 3741 O HOH D 63 ATOM 3744 O HOH D 64 ATOM 3747 O HOH D 65 ATOM 3750 O HOH D 65 ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 30.88	ATOM 5725	44.307 22.404 22.181 1.00 23.37	
ATOM 3732 O HOH D 60 36.365 41.071 5.729 1.00 27.02 O ATOM 3735 O HOH D 61 36.990 7.023 22.512 1.00 22.71 O ATOM 3738 O HOH D 62 19.169 -8.584 16.372 1.00 23.92 O ATOM 3741 O HOH D 63 20.055 28.469 14.698 1.00 26.12 O ATOM 3744 O HOH D 64 30.998 -12.907 29.623 1.00 25.28 O ATOM 3747 O HOH D 65 37.347 -1.150 7.121 1.00 22.93 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 32.50 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 30.88	ATOM 5,25	46.170 -13.085 20.941 1.00 17.48	
ATOM 3735 O HOH D 61 36.990 7.023 22.512 1.00 22.71 ATOM 3735 O HOH D 62 19.169 -8.584 16.372 1.00 23.92 O ATOM 3741 O HOH D 63 20.055 28.469 14.698 1.00 26.12 O ATOM 3744 O HOH D 64 30.998 -12.907 29.623 1.00 25.28 O ATOM 3747 O HOH D 65 37.347 -1.150 7.121 1.00 22.93 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 32.50 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 30.88	JJ A10M 3723 0 "0" D 60	36.365 41.071 5.729 1.00 27.02	
ATOM 3738 O HOH D 62 19.169 -8.584 16.372 1.00 25.12 O ATOM 3741 O HOH D 64 30.998 -12.907 29.623 1.00 25.28 O ATOM 3747 O HOH D 65 37.347 -1.150 7.121 1.00 22.93 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 32.50 O ATOM 3750 O HOH D 66 32.945 -4.003 11.274 1.00 30.88	AION STAR O NOU D 61	36.990 7.023 22.512 1.00 22.71	
ATOM 3741 O HOH D 63 20.055 28.469 14.696 1.00 25.28 O 60 ATOM 3744 O HOH D 64 30.998 -12.907 29.623 1.00 25.28 O ATOM 3747 O HOH D 65 37.347 -1.150 7.121 1.00 22.93 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 32.50 O ATOM 3750 O HOH D 66 32.945 -4.003 11.274 1.00 30.88	ATOM 3738 O HOH D 62	19.109	
60 ATOM 3744 O HOH D 64 30.998 -12.907 29.023 1.00 22.93 O ATOM 3747 O HOH D 65 37.347 -1.150 7.121 1.00 22.93 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 32.50 O 32.945 -4.003 11.274 1.00 30.88	ATOM 3741 O HOH D 63	20.033 20.333 20.603 1 00 25 28	0
ATOM 3747 O HOH D 65 37.347 1.258 27.775 1.00 32.50 O ATOM 3750 O HOH D 66 33.031 -13.258 27.775 1.00 30.88 O	60 ATOM 3744 O HOH D 64	30.996 12.550 7.121 1.00 22.93	
ATOM 3750 O HOH D 66 33.031 13.274 1.00 30.88	ATOM 3747 O HOH D 65	33 031 -13.258 27.775 1.00 32.50	
ATOM 3753 O NOR D 07 ZZI 325	ATOM 3750 O HOH D 66	33.031 13.23	O
	ATOM 3753 O HOR D 67		

	7.MOM	2756	^	нон D 68	27.701 41.270 1.720 1.00 29.57	0
	ATOM ATOM	3756 3759	0	HOH D 69	25.980 -9.896 14.868 1.00 27.31	ō
	ATOM	3762	ŏ	HOH D 70	23.821 12.814 14.658 1.00 24.54	0
	ATOM	3765	ō	HOH D 71	35.006 43.534 25.083 1.00 28.85	0
5	MOTA	3768	0	HOH D 72	35.312 36.253 1.522 1.00 29.21	0
	MOTA	3771	0	HOH D 73	48.598 -9.901 24.935 1.00 25.55	0
	MOTA	3774	0	HOH D 74	42.294 -13.685 16.218 1.00 25.18	0
	MOTA	3777	0	HOH D 75	42.607 12.387 16.515 1.00 31.10	0
10	ATOM	3780	0	HOH D 76	26.330 35.006 4.050 1.00 31.74 32.850 10.209 3.504 1.00 27.19	0
10	ATOM	3783	0	HOH D 77	32.850 10.209 3.504 1.00 27.19 30.508 10.747 29.512 1.00 25.87	ŏ
	ATOM	3786	0	нон D 78 нон D 79	45.693 19.098 22.237 1.00 30.36	ŏ
	ATOM ATOM	3789 3792	0	HOH D 80	15.634 44.761 11.710 1.00 26.02	Ö
	ATOM	3795	Ö	HOH D 81	18.085 50.959 3.872 1.00 35.51	0
15	ATOM	3798	ŏ	HOH D 82	29.549 1.503 7.572 1.00 29.19	0
	ATOM	3801	ō	HOH D 83	39.725 31.841 30.695 1.00 40.77	0
	ATOM	3804	Ō	HOH D 84	20.283 36.188 -4.205 1.00 39.38	0
	ATOM	3807	0	HOH D 85	34.763 -11.883 13.146 1.00 21.47	0
	ATOM	3810	0	HOH D 86	26.410 32.901 7.289 1.00 24.64	0
20	MOTA	3813	0	HOH D 87	44.314 -2.758 11.932 1.00 23.95	0
	ATOM	3816	0	HOH D 88	30.034 -14.313 17.413 1.00 29.20	0
	MOTA	3819	0	HOH D 89	26.961 12.263 27.391 1.00 30.17 28.249 0.678 3.312 1.00 28.11	ő
	MOTA	3822	0	HOH D 90	28.249	ŏ
25	ATOM	3825 3828	0	НОН D 91 НОН D 92	28.299 -9.696 27.995 1.00 24.79	ŏ
25	MOTA MOTA	3831	Ö	HOH D 93	13.832 48.982 7.768 1.00 33.46	0
	ATOM	3834	ŏ	HOH D 94	43.000 -11.174 31.241 1.00 28.43	0
	ATOM	3837	ō	HOH D 95	35.944 8.335 1.385 1.00 29.40	0
	ATOM	3840	0	HOH D 96	29.165 29.895 11.877 1.00 24.28	0
30	MOTA	3843	0	HOH D 97	32.349 31.864 24.473 1.00 30.09	0
	MOTA	3846	0	HOH D 98	22.954 24.601 11.686 1.00 28.72	0
	MOTA	3849	0	HOH D 99	31.154 51.462 19.574 1.00 25.81 43.443 12.360 23.615 1.00 24.55	Ö
	MOTA	3852	0	HOH D 100	43.443 12.360 23.615 1.00 24.55 15.670 52.252 4.362 1.00 34.13	ŏ
35	MOTA MOTA	3855 3858	0	HOH D 101 HOH D 102	25.701 41.081 26.231 1.00 27.56	ŏ
22	ATOM	3861	0	HOH D 102	37.527 21.694 22.195 1.00 32.29	0
	ATOM	3864	ŏ	HOH D 104	33.325 -12.660 37.738 1.00 35.18	0
	ATOM	3867	ō	HOH D 105	26.319 5.217 15.262 1.00 26.13	0
	ATOM	3870	0	HOH D 106	33.848 22.140 26.173 1.00 31.07	0
40	MOTA	3873	0	HOH D 107	35.489 18.857 24.618 1.00 27.43	0
	ATOM	3876	0	HOH D 108	42.855 46.462 8.947 1.00 33.41	0
	ATOM	3879	0	HOH D 109	42.188 5.317 9.853 1.00 30.90 41.401 45.084 19.630 1.00 35.22	ŏ
	MOTA	3882	0	HOH D 110	41.401 45.084 19.630 1.00 35.22 45.990 -4.685 27.447 1.00 36.33	ŏ
15	MOTA MOTA	3885 3888	0	НОН D 111 НОН D 112		ŏ
73	ATOM	3891	Ö	HOH D 113	21.231 24.488 19.771 1.00 29.91	0
	ATOM	3894	ŏ	HOH D 114	28.991 22.460 25.768 1.00 32.28	0
	MOTA	3897	ŏ	HOH D 115	30.182 42.704 28.664 1.00 34.73	0
	MOTA	3900	0	HOH D 116	38.457 26.788 9.301 1.00 28.25	0
50	MOTA	3903	0	HOH D 117	33.010 8.247 32.080 1.00 30.38	0
	MOTA	3906		HOH D 118	40.296 -12.388 19.763 1.00 29.43	0
	MOTA	3909		HOH D 119	26.522 44.371 25.621 1.00 29.51 43.804 -4.826 10.570 1.00 33.46	0
	ATOM	3912		HOH D 120	43.804 -4.826 10.570 1.00 33.46 47.448 -11.680 26.748 1.00 37.40	ő
55	ATOM	3915		HOH D 121	40.716 -13.572 24.920 1.00 24.40	ő
55	MOTA MOTA	3918 3921	0	HOH D 122 HOH D 123	41.998 -1.274 34.849 1.00 32.74	ŏ
	ATOM	3921		HOH D 123	45.154 42.318 18.028 1.00 36.95	Ö
	ATOM	3927		HOH D 125	30.324 -11.134 10.862 1.00 29.46	0
	ATOM	3930			42.517 10.179 15.159 1.00 30.78	0
60		3933			48.214 -11.222 16.932 1.00 31.45	0
	ATOM	3936		HOH D 128	23.815 -9.373 14.042 1.00 33.96	0
	MOTA	3939			31.988 24.965 29.884 1.00 32.47	0
	MOTA	3942	0	HOH D 130	35.266 30.662 4.339 1.00 37.13	0

	2004	3945	^	HOH D 131	42.057	38.530	10.976	1.00 38.75	0
	MOTA	3943	U		12.00.	2 000	12 671	1.00 41.30	0
	ATOM	3948	Ω	HOH D 132	24.900	3.888	13.011	1.00 41.50	
			_	HOH D 133	11 797	-11 819	18.372	1.00 31.27	0
	MOTA	3951	U		44.131	11.020	C 460	1 00 30 03	0
	ATOM	3954	\circ	HOH D 134	31.380	27.561	6.462	1.00 38.93	0
_			_		04 505	-2 131	6 886	1.00 36.52	0
-5	ATOM	3957	0	HOH D 135	24.565	-2.131	0.000	1.00 30.00	^
_	MOTA	3960	^	HOH D 136	44.178	14.598	21.666	1.00 49.82	0
	A-LC NA	2200	U	HOH D TOO					

CLAIMS

- 1. An Fve polypeptide comprising at least one biological activity of native Fve protein, and being a fragment, homologue, variant or derivative thereof.
- 2. An Fve polypeptide according to Claim 1, which comprises an immunomodulatory activity.
 - 3. An Fve polypeptide according to Claim 1 or 2, which comprises a biological activity selected from the group consisting of: up-regulation of expression of Th1/Tc1 cytokines, preferably IFN-γ and TNF-α, down-regulation of expression of Th2/Tc2 cytokines, preferably IL-4 and IL-13, up-regulation of expression of T regulatory (Tr) cytokines IL-10 and TGF-β, hemagglutination activity, cell aggregation activity, lymphocyte aggregation activity, lymphoproliferation activity, up-regulation of expression of IL-2, IFN-γ, TNF-α, but not IL-4 in CD3⁺ T cells, interaction with T and NK cells, adjuvant activity, stimulation of CD3⁺ CD16⁺ CD56⁺ natural killer (NK) T cells and CD3⁺ CD8⁺ CD18⁺ bright T cells, and up-regulation of allergen specific Th1 immune responses.
- 15 3. An Fve polypeptide according to Claim 1, 2 or 3, in which the polypeptide comprises between 2 to 20 residues of amino acid sequence flanking the glycine residue corresponding to position 28 of Fve.
 - 4. An Fve polypeptide according to any preceding claim, in which the polypeptide comprises the sequence RGT or the sequence RGD.
- 20 5. An Fve polypeptide according to any preceding claim, in which the polypeptide has a sequence as set out in Appendix A or Appendix B.

15

20

- 6. An Fve polypeptide comprising an sequence selected from the group consisting of: Fve R27A, Fve T29A, GST-Fve (wild type), GST-Fve R27A, and GST-Fve T29A, and fragments, homologues, variants and derivatives thereof.
- 7. A polypeptide comprising a first portion comprising at least a fragment of native
 5 Fve, or an Fve polypeptide according to any preceding claim, and a second portion
 comprising at least a fragment of an allergen.
 - 8. A polypeptide according to Claim 7, in which the allergen comprises an allergen from a mite, preferably from Family *Glycyphagidae* or Family *Pyroglyphidae*, preferably a group 1 allergen (Der p 1, Der f 1, Blo t 1, Eur m1, Lep d 1), a group 2 allergen (Der p 2, Der f 2, Blo t 2, Eur m 2, Lep d 2), a group 5 allergen (Blo t 5, Der p 5, Der f 5, Eur m 5, Lep d 5) a group 15 allergen (Der p 15, Der f 15, Blot 15, Eur m 15, Lep d 15).
 - 9. A Fve polypeptide or a polypeptide according to Claim 7 or 8, which is selected from the group consisting of: Blo t 5-Fve, Blo t 5-FveR27A, Blo t 5-FveT29A, Der p 2-FveT29A, GST-Der p 2-FveR27A, GST-Der p 2-FveR27A and Blo t 5-Der p 2-FveT29A.
 - 10. A polypeptide according to Claim 7, in which the allergen is selected from the group consisting of: tree pollen allergen, Bet v 1 and Bet v 2 from birch tree; grass pollen allergen, Phl p 1 and Phl p 2 from timothy grass; weed pollen allergen, antigen E from ragweed; major feline antigen, Fel d; major fungal allergen, Asp f1, Asp f2, and Asp f3 from Aspergillus fumigatus.
 - 11. A polypeptide comprising a first portion comprising at least a fragment of native Fve, or an Fve polypeptide according to any of Claims 1 to 6, and a second portion comprising at least a fragment of a viral antigen selected from the group consisting of: E6 and E7 from HPV; core Ag and E2 from HCV; core and surface antigens from HBV; LMP-1, LMP-2, EBNA-2, EBNA-3 from EBV; and Tax from HTLV-1.

- 12. A polypeptide according to Claim 11, which comprises HCV Core23-FveT29A, or HPV E7-FveT29A.
- 13. A polypeptide comprising a first portion comprising at least a fragment of native Fve, or an Fve polypeptide according to any of Claims 1 to 6, and a second portion
 5 comprising at least a fragment of a tumour-associated antigen selected from the group consisting of: MAGE-1, MAGE-2, MAGE-3, preferably a sequence, BAGE, GAGE, PRAME, SSX-2, Tyrosinase, MART-1, NY-ESO-1, gp100, TRP-1, TRP-2, A2 melanotope, BCR/ABL, Proteinase-3/Myeloblastin, HER2/neu, CEA, P1A, HK2, PAPA, PSA, PSCA, PSMA, pg75, MUM-1, MUC-1, BTA, GnT-V, β-catenin, CDK4, and P15.
- 10 14. A polypeptide according to Claim 13, which comprises MAGE3-FveT29A, MART1-FveT29A or CEA-FveT29A.
 - 15. A nucleic acid encoding a Fve polypeptide or a polypeptide according to any preceding claim.
- 16. A nucleic acid according to Claim 15, in which the nucleic acid comprises CGT
 15 GGT ACC, or a sequence which differs from the above by virtue of the degeneracy of the genetic code and which encodes a sequence RGT.
 - 17. A nucleic acid comprising a first sequence encoding at least a fragment of native Fve, or an Fve polypeptide according to any of Claims 1 to 6, and a second sequence encoding at least a fragment of an allergen.
- 20 18. A nucleic acid according to Claim 17, which comprises Blo t 5-Fve, Blo t 5-FveR27A, Blo t 5-FveT29A, Der p 2-FveT29A, GST-Der p 2-FveT29A, Blo t 5-Der p 2-FveR27A or Blo t 5-Der p 2-FveT29A.

- 19. A nucleic acid comprising a first sequence encoding at least a fragment of native Fve, or an Fve polypeptide according to any of Claims 1 to 6, and a second sequence encoding at least a fragment of a viral antigen selected from the group consisting of: E6 and E7 from HPV; core Ag and E2 from HCV; core and surface antigens from HBV; LMP-1, LMP-2, EBNA-2, EBNA-3 from EBV; and Tax from HTLV-1.
- 20. A nucleic acid according to Claim 19, which comprises HCV Core23-FveT29A, or HPV E7-FveT29A.
- 21. A nucleic acid comprising a first sequence encoding at least a fragment of native Fve, or an Fve polypeptide according to any of Claims 1 to 6, and a second sequence encoding at least a fragment of a tumour associated antigen selected from the group consisting of: MAGE-1, MAGE-2, MAGE-3, BAGE, GAGE, PRAME, SSX-2, Tyrosinase, MART-1, NY-ESO-1, gp100, TRP-1, TRP-2, A2 melanotope, BCR/ABL, Proteinase-3/Myeloblastin, HER2/neu, CEA, P1A, HK2, PAPA, PSA, PSCA, PSMA, pg75, MUM-1, MUC-1, BTA, GnT-V, β-catenin, CDK4, and P15.
- 15 22. A nucleic acid according to Claim 21, which comprises MAGE3-FveT29A, MART1-FveT29A or CEA-FveT29A.
 - 23. A nucleic acid selected from the group consisting of: Fve R27A, Fve T29A, GST-Fve (wild type), GST-Fve R27A, GST-Fve T29A, Blo t 5-Fve, Blo t 5-FveR27A, Blo t 5-FveT29A, GST-Der p 2-FveR27A, GST-Der p 2-FveT29A, Blo t 5-Der p 2-FveR27A, Blo t 5-Der p 2-FveT29A, and fragments, homologues, variants and derivatives thereof.
 - 24. A vector, preferably an expression vector, comprising a nucleic acid sequence according to any of Claims 15 to 23.
 - 25. A DNA vaccine comprising a nucleic acid encoding Fve, a nucleic acid according to any of Claims 15 to 23, or a vector according to Claim 24.

- 26. A host cell comprising a nucleic acid encoding Fve, a nucleic acid according to any of Claims 15 to 23, or a vector according to Claim 24.
- 27. A transgenic non-human organism comprising a nucleic acid encoding Fve, a nucleic acid according to any of Claims 15 to 23, or a vector according to Claim 24.
- 5 28. A transgenic non-human organism according to Claim 27 which is a bacterium, a yeast, a fungus, a plant or an animal, preferably a mouse.
 - 29. A pharmaceutical composition comprising a polypeptide according to any of Claims 1 to 14, a nucleic acid according to any of Claims 15 to 23, a vector according to Claim 24, a DNA vaccine according to Claim 25, or a host cell according to Claim 26, together with a pharmaceutically acceptable carrier or diluent.
 - 30. Use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition according to any of Claims 1 to 29 as an immumodulator.
- 31. Use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition according to any of Claims 1 to 29 to enhance an immune response in a mammal.
 - 32. Use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition according to any of Claims 1 to 29 to stimulate proliferation of CD3⁺ CD8⁺ CD18⁺ bright T cells.
- 20 33. Use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition according to any of Claims 1 to 29 to stimulate proliferation of CD3⁺ CD16⁺ CD56⁺ natural killer (NK) T cells.

- 34. Use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition according to any of Claims 1 to 29 to stimulate production of IL-2, IL-10, TGF-β, IFN-γ or TNF-α in CD3⁺ cells.
- 5 35. Use according to Claim 34, in which production of IL-4 is not stimulated in the CD3⁺ cells.
 - 36. Use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition according to any of Claims 1 to 29 as an adjuvant for a vaccine.
- 10 37. Use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition according to any of Claims 1 to 29 in a method of treatment or prophylaxis of a disease.
 - 38. Use of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector or host cell according to any of Claims 1 to 29 for the preparation of a pharmaceutical composition for the treatment of a disease.

- 39. A method of treating an individual suffering from a disease or preventing the occurrence of a disease in an individual, the method comprising administering to the individual a therapeutically or prophylactically effective amount of a native Fve polypeptide, or an Fve polypeptide, nucleic acid, vector, DNA vaccine, host cell, transgenic organism, or a pharmaceutical composition according to any of Claims 1 to 29.
- 40. A use or method according to any of Claims 37, 38 or 39, in which the disease comprises an atopic disease or allergy.

- 41. Use of a DNA vaccine according to Claim 25, preferably as dependent on Claim 17 or 18, in a method of treatment or prevention of an allergy.
- 42. A use or method according to Claim 40 or 41, in which the allergy is selected from the group consisting of: allergic asthma, a seasonal respiratory allergy, a perennial respiratory allergy, allergic rhinitis, hayfever, nonallergic rhinitis, vasomotor rhinitis, irritant rhinitis, an allergy against grass pollen, weed pollen, tree pollen or animal danders, an allergy associated with allergic asthma and a food allergy.
- 43. A use or method according to Claim 40, 41 or 42, in which the allergy is to a house dust mite from Family Glyphagidae, preferably *Blomia tropicalis* or from Family

 10 Pyroglyphidae, preferably *Dermatophagoides pteronyssinus* or *Dermatophagoides farinae*, or to fungi or fungal spores, preferably *Aspergillus fumigatus*, or to tree pollen allergens, preferably from birch tree, or grass pollen allergens, preferably from timothy grass, or weed allergens, preferably ragweed.
- 44. A use or method according to any of Claims 37, 38 or 39, in which the disease comprises a cancer.
 - 45. Use of a DNA vaccine according to Claim 25, preferably as dependent on Claim 19 or 20, in a method of treatment or prevention of a cancer, or in a method of suppressing tumour progression.
- 46. Use of a DNA vaccine according to Claim 25, preferably as dependent on Claim
 20 21, in a method of treatment or prevention of a cancer, or in a method of suppressing tumour progression.
 - 47. A use or method according to Claim 44, 45 or 46, in which the cancer comprises a T cell lymphoma, melanoma, lung cancer, colon cancer, breast cancer or prostate cancer.

10

- 48. A method of identifying a molecule capable of binding to Fve, the method comprising exposing a native Fve polypeptide, or an Fve polypeptide or nucleic acid, vector, host cell or transgenic organism according to any of Claims 1 to 24, 26 and 27 to a candidate molecule and detecting whether the candidate molecule binds to the native Fve polypeptide, or an Fve polypeptide or nucleic acid, vector, host cell or transgenic organism.
- 49. A method of identifying an agonist or antagonist of an Fve polypeptide, the method comprising: (a) providing a cell or organism; (b) exposing the cell or organism to a native Fve polypeptide, or an Fve polypeptide or nucleic acid, vector, host cell or transgenic organism according to any of Claims 1 to 24, 26 and 27; (c) exposing the cell to a candidate molecule; and (d) detecting an Fve mediated effect.
- 50. A method according to Claim 49, in which the Fve mediated effect is selected from the biological activities set out in Claim 2.
- 51. A method according to Claim 48, 49 or 50, in which the method further comprises isolating or synthesising a selected or identified molecule.
 - 52. A molecule identified or selected using a method according to any of Claims 48 to 51.
 - 53. A native Fve polypeptide, or an Fve polypeptide in crystalline form.
- 54. A native Fve polypeptide, or an Fve polypeptide in crystalline form according to Claim 53, which has the structural coordinates shown in Appendix C.
 - 55. A model for at least part of Fve made using a crystal according to Claim 53 or 54.

- •
- 56. A method of screening for a receptor capable of binding to Fve, or designing a ligand capable of modulating the interaction between Fve and an Fve receptor, comprising the use of a model according to Claim 55.
- 57. A computer readable medium having stored thereon the structure of a crystal according to Claim 53 or 54, or a model according to Claim 55.
 - 58. A ligand identified by the method according to Claim 56.
 - 59. Use of a molecule according to Claim 52 or a ligand according to Claim 58 for the treatment or prevention of a disease in an individual.
- 60. A pharmaceutical composition comprising a molecule according to Claim 52 or a ligand according to Claim 58 and optionally a pharmaceutically acceptable carrier, diluent, excipient or adjuvant or any combination thereof.
 - 61. A method of treating and/or preventing a disease comprising administering a molecule according to Claim 52 or a ligand according to Claim 58 and/or a pharmaceutical composition according to Claim 60 to an individual in need of such treatment.
- obtaining a population of cells from an individual; (b) amplifying CD3⁺ CD8⁺ and CD18⁺ T cells by exposing the population of cells to a native Fve polypeptide, or an Fve polypeptide or nucleic acid, vector, host cell or transgenic organism according to any of Claims 1 to 24, 26 and 27.
- 20 63. A method according to Claim 62, further comprising the step of: (c) isolating the CD3⁺ CD8⁺ and CD18⁺ bright T cells.

- 64. A method of treating an individual suffering from a disease or preventing the occurrence of a disease in an individual, the method comprising amplifying a CD3⁺ CD8⁺ and CD18⁺ bright T cell by a method according to Claim 62 or 63, and administering the amplified CD3⁺ CD8⁺ and CD18⁺ bright T cell to an individual.
- 5 65. An amplified population of CD3⁺ CD8⁺ and CD18^{+ bright} T cells obtainable by a method according to Claim 62 or 63.
 - 66. A pharmaceutical composition comprising an amplified population of CD3⁺ CD8⁺ and CD18⁺ bright T cells according to Claim 65, together with a pharmaceutically acceptable excipient or carrier.
- 10 67. A combination comprising a first component comprising an immunomodulator and a second component comprising at least a fragment of an allergen, a viral antigen or a tumour associated antigen.
 - 68. A combination according to Claim 67 in which the first component is separate from the second component.
- 15 69. A combination according to Claim 67 in which the first component is associated with the second component.
 - 70. A combination according to Claim 67 which is a fusion protein.
 - 71. A combination according to Claim 67, in which the first component comprises a native Fve polypeptide, or a polypeptide according to any of Claims 1 to 14.
- 20 72. A combination according to any of Claims 67 to 71, in which the second component comprises an allergen selected from the group consisting of: a mite allergen, an mite allergen from Family Glycyphagidae or Family Pyroglyphidae, a group 1 allergen

10

20

25

(Der p 1, Der f 1, Blo t 1, Eur m1, Lep d 1), a group 2 allergen (Der p 2, Der f 2, Blo t 2, Eur m 2, Lep d 2), a group 5 allergen (Blo t 5, Der p 5, Der f 5, Eur m 5, Lep d 5), a group 15 allergen (Der p 15, Der f 15, Blot 15, Eur m 15, Lep d 15), a tree pollen allergen, Bet v 1 and Bet v 2 from birch tree; grass pollen allergen, Phl p 1 and Phl p 2 from timothy grass; weed pollen allergen, antigen E from ragweed; major feline antigen, Fel d; major fungal allergen, Asp f1, Asp f2, and Asp f3 from Aspergillus fumigatus.

- 73. A combination according to any of Claims 67 to 71, in which the second component comprises a viral antigen selected from the group consisting of: E6 and E7 from HPV; core Ag and E2 from HCV; core and surface antigens from HBV; LMP-1, LMP-2, EBNA-2, EBNA-3 from EBV; and Tax from HTLV-1.
- 74. A combination according to any of Claims 67 to 71, in which the second component comprises a tumour-associated antigen selected from the group consisting of: MAGE-1, MAGE-2, MAGE-3, BAGE, GAGE, PRAME, SSX-2, Tyrosinase, MART-1, NY-ESO-1, gp100, TRP-1, TRP-2, A2 melanotope, BCR/ABL, Proteinase3/Myeloblastin, HER2/neu, CEA, P1A, HK2, PAPA, PSA, PSCA, PSMA, pg75, MUM-1, MUC-1, BTA, GnT-V, β-catenin, CDK4, and P15.
 - 75. An immunomodulator-antigen conjugate, preferably an immunomodulator-allergen conjugate, an immunomodulator-tumour associated antigen conjugate or a immunomodulator-viral antigen conjugate, in which the immunomodulator preferably comprises an Fve polypeptide.
 - 76. A polypeptide comprising a first portion comprising at least a fragment of native Fve, or an Fve polypeptide according to any of Claims 1 to 6, and a second portion comprising at least a fragment of a viral antigen selected from the group consisting of an antigen from from Adenovirus, Parainfluenza 3 virus, Human Immunodeficiency Virus (HIV), Herpes simplex virus, HSV, Respiratory syncytial virus, RSV, or Influenza A, Flu A.

10

15

- 77. A nucleic acid comprising a first sequence encoding at least a fragment of native Fve, or an Fve polypeptide according to any of Claims 1 to 6, and a second sequence encoding at least a fragment of a viral antigen selected from the group consisting of an antigen from from Adenovirus, Parainfluenza 3 virus, Human Immunodeficiency Virus (HIV), Herpes simplex virus, HSV, Respiratory syncytial virus, RSV, or Influenza A, Flu A.
- 78. A combination according to any of Claims 67 to 71, in which the second component comprises a tumour-associated antigen selected from the group consisting of antigen from from Adenovirus, Parainfluenza 3 virus, Human Immunodeficiency Virus (HIV), Herpes simplex virus, HSV, Respiratory syncytial virus, RSV, or Influenza A, Flu A.
- 79. A nucleic acid sequence, including an Fve nucleic acid sequence, a polypeptide sequence, including a Fve polypeptide sequence, a method of treatment, a method of diagnosis, a host cell, vector, transgenic animal, a transgenic plant, a genetically-modified lactose bacilli, assay, vaccine, phamaceutical composition or agent substantially as hereinbefore described with reference to and as shown in the accompanying drawings.

219

ABSTRACT MOLECULES

We describe an Fve polypeptide being a fragment, homologue, variant or derivative of Fve protein, which comprises at least one biological activity of Fve protein. uses of such a polypeptide, etc, and nucleic acids encoding these, in the treatment and prevention of allergy and cancer are also disclosed.

Figure 1

FIGURE 1

<u>A</u> <u>B</u>		A	B		
mHPRT			•		
mIFN-γ		mTNF-α			
mIL-12		miNOS			
		Section of the sectio			

The following the second

A	<u>B</u> .	A	<i>B</i>
Cyclophilin			
hu-IFN-γ		hu-TNF-α	
-hu-IL-1β		hu-IL-2	
the an income of the state of			The second second
hu-IRF-1	·	hu-c-Rel	
	The state of the s	المجاهدة المراجعة المجاهدة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة ال المراجعة المراجعة ال	
hu-Bcl-X _L		hu-ICAM-1	

1	10	20	30	40	50	60	70	80	90	100	110	115	-
1												115	WT
1	5	19		· · · · · · · · · · · · · · · · · · ·			7					115	D6-18
1		18	34									115	D19-33
1			- 33		47							115	D34-46
1				_	46	61				•		115	D47-60
1					. <u> </u>	60	73					115	D61-72
1							72		85			115	D73-84
1									84	98		115	D85-97
1										97	107	115	D98-106
1			·								106		D107-115
1						60				98		115	D61-97
			***************************************			55				100			P55-100
1		R27	7A			•						115	R27A
1		*	28A			· · · · · · · · · · · · · · · · · · ·						115	G28A
1			* Г29А								•	115	T29A

FIGURE 7

(C).

(B).

(D).

FIGURE 10

IFN-y production at day 3

FIGURE 11

FIGURE 11 (CONTINUED)

TNF-α production at day 3

FIGURE 12

FIGURE 12 (CONTINUED)

FIGURE 14

FIGURE 15

GR Fve

	Blo t 5	Fve	Bt5-Fve
			•
	Blo t 5	FveR27A	Bt5-FveR27A
	•		٦
	Blo t 5	FveT29A	Bt5-FveT29A
	Der p 2	FveR27A	Dp2-FveR27A
	Der p 2	FveT29A	Dp2-FveT29A
			7
Blo t 5	Der p 2	FveR27A	Bt5-Dp2-FveR27A
	·		
Blo t 5	Der p 2	FveT29A	Bt5-Dp2-FveT29A

(1b) (1a) Control: Non-stimulated (10x10 magnification) Control: Non-stimulated (40x10 magnification) (2b) (2a)20ug of GST 40x10 20ug of GST 10x10 (3b) (3a) 20ug of Blo t 5 40x10 20ug of Blo t 5 10x10

FIGURE 18

(4a) 20ug of native FIP-Fve 10x10

(5a) 20ug of Bt5-Fve 10x10

(6a) 40ug of Bt5-Fve 10x10

FIGURE 18 (CONTINUED)

(4b) 20ug of native FIP-Fve 40x10

(5b) 20ug of Bt5-Fve 40x10

(6b) 40ug of Bt5-Fve 40x10

(7a) 40ug of Bt5-FveR27A 10x10

(8a) 20ug of Der p 2 10x10

(9a) 40ug of GST-Dp2-FveR27A 10x10

FIGURE 18 (CONTINUED)

(7b) 40ug of Bt5-FveR27A 40x10

20ug of Der p 2 40x10

(9b) 40ug of GST-Dp2-FveR27A 40x10

FIGURE 19

FIGURE 20

FIGURE 23

(a).

(d).

(b).

(e).

(c).

35% 2 30% 30% CD4FITC

(d).

(b).

(e).

(c).

FIGURE 26

FIGURE 27

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE 31

FIGURE 32

(B)

FIGURE 34

FIGURE 35

FIGURE 36

FIGURE 37

FIGURE 38

FIGURE 39

FIGURE 40

1

FIGURE 44A

FIGURE 44B

FIGURE 44C

FIGURE 45A

FIGURE 45B

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.