ĐẠI SỐ TUYẾN TÍNH

CHUONG III

ĐỊNH THỰC CỦA MA TRẬN VUÔNG

I. ĐỊNH THỨC:

1.1/ KHÁI NIỆM: Với mỗi $A \in M_n(\mathbf{R})$, người ta xác định duy nhất một giá trị thực c_A gắn liền với A và gọi c_A là định thức (determinant) của A.

Ta ký hiệu $c_A = det(A)$ hay $c_A = |A|$.

Giá trị det(A) = |A| thể hiện *tính khả nghịch* hoặc *không khả nghịch* của A.

Nếu $|A| \neq 0$ thì A khả nghịch. Nếu |A| = 0 thì A không khả nghịch.

1.2/ ĐỊNH THỨC MA TRẬN CẤP 1, 2, 3:

- a) Nếu $A = (a) \in M_1(\mathbf{R})$ thì |A| = a.
- b) Nếu $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbf{R})$ thì A có đường chéo xuôi (\) là d và d và đường chéo ngược (/) là d. Ta đặt |A| = ad bc.
- c) Nếu A = $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in M_3(\mathbf{R})$ thì ta $vi\acute{e}t$ lại cột (1) và cột (2) kế cận A như

sau
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} g \begin{pmatrix} a & b \\ d & e \end{pmatrix} d$$
 dê hình thành 6 đường chéo [3 đường chéo xuôi (\))

Ta có qui tắc SARRUS tính định thức của A theo 6 đường chéo như sau:

$$|A| = (aei + bfg + cdh) - (ceg + afh + bdi).$$

a)
$$A = (-\sqrt{6}) \in M_1(\mathbf{R})$$
 có $|A| = -\sqrt{6}$.

b)
$$A = \begin{pmatrix} -8 & 7 \\ -5 & 2 \end{pmatrix} \in M_2(\mathbf{R})$$
 có $|A| = (-8)2 - 7(-5) = -16 - (-35) = 19$.

c)
$$A = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} \in M_3(\mathbf{R})$$
 thì ta *viết lại* $\begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} -5 & 2$ và có

$$|A| = [4.3(-6) + (-1).1.(-5) + 2(-2).2] - [2.3(-5) + 4.1.2 + (-1)(-2)(-6)]$$
$$= (-72 + 5 - 8) - (-30 + 8 - 12) = (-75) - (-34) = -75 + 34 = -41.$$

1.3/ <u>KÝ HIỆU:</u>

Cho $A \in M_n(\mathbf{R})$ với $n \ge 2$ và $1 \le i, j \le n$.

Đặt $A(\mathbf{i},\mathbf{j})$ là ma trận A xóa dòng (\mathbf{i}) và cột (\mathbf{j}) , nghĩa là $A(\mathbf{i},\mathbf{j}) \in M_{n-1}(\mathbf{R})$.

Ta nói A(i, j) là ma trận đồng thừa của A tại vị trí (i, j).

Đặt $C_{ij}^A = (-1)^{i+j} |A(i,j)|$. Nếu *không có sự ngộ nhận*, ta viết gọn $C_{ij}^A = C_{ij}$.

Ta nói C_{ii}^{A} là $h\hat{e}$ số đồng thừa của A tại vị trí (i,j).

Ví dụ:

$$\text{Cho } A = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} \in M_3(\textbf{R}). \text{ X\'et } A = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix}.$$

Ta có A(2, 3) =
$$\begin{pmatrix} 4 & -1 \\ -5 & 2 \end{pmatrix}$$
 và $C_{23}^{A} = C_{23} = (-1)^{2+3} |A(2, 3)| = -\begin{vmatrix} 4 & -1 \\ -5 & 2 \end{vmatrix} = -3.$

Ta có A(3, 1) =
$$\begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix}$$
 và $C_{31}^{A} = C_{31} = (-1)^{3+1} |A(3, 1)| = \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = -7.$

1.4/ ĐỊNH THÚC MA TRẬN CẤP $n (n \ge 2)$:

Cho A = $(a_{ij})_{1 \le i \le n} \in M_n(\mathbf{R})$ với $n \ge 2$. Xét $1 \le i, j \le n$.

 $\mid A \mid$ được tính theo định thức của các ma trận đồng thừa [$\emph{cáp}$ (n – 1)] của $\mid A \mid$

[hình thức đệ qui : định thức cấp n được tính theo các định thức cấp (n-1)].

Ta có thể tính | A | theo bất kỳ một dòng hay một cột nào của A.

| A | được tính theo dòng (i) như sau :

$$|A| = a_{i1} C_{i1}^A + a_{i2} C_{i2}^A + \dots + a_{in} C_{in}^A = \sum_{k=1}^n a_{ik} C_{ik}^A.$$

| A | được tính theo cột (j) như sau :

$$|A| = a_{1j}C_{1j}^A + a_{2j}C_{2j}^A + \dots + a_{nj}C_{nj}^A = \sum_{k=1}^n a_{kj}C_{kj}^A.$$

Ví dụ:

Cho
$$A = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} \in M_3(\mathbf{R}). \text{ X\'et } A = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix}.$$

|A| được tính theo dòng (1) như sau : $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$

$$= 4(-1)^{1+1} |A(1,1)| - (-1)^{1+2} |A(1,2)| + 2(-1)^{1+3} |A(1,3)|$$

$$= 4 \begin{vmatrix} 3 & 1 \\ 2 & -6 \end{vmatrix} + \begin{vmatrix} -2 & 1 \\ -5 & -6 \end{vmatrix} + 2 \begin{vmatrix} -2 & 3 \\ -5 & 2 \end{vmatrix} = 4(-20) + 17 + 2(11) = -80 + 17 + 22 = -41.$$

 $\mid A \mid \text{ dwoc tinh theo } cột$ (2) như sau : $\mid A \mid = a_{12} C_{12} + a_{22} C_{22} + a_{32} C_{32}$

$$= -(-1)^{1+2} |A(1,2)| + 3(-1)^{2+2} |A(2,2)| + 2(-1)^{3+2} |A(3,2)|$$

$$= \begin{vmatrix} -2 & 1 \\ -5 & -6 \end{vmatrix} + 3 \begin{vmatrix} 4 & 2 \\ -5 & -6 \end{vmatrix} - 2 \begin{vmatrix} 4 & 2 \\ -2 & 1 \end{vmatrix} = 17 + 3(-14) - 2(8) = 17 - 42 - 16 = -41.$$

1.5/ NHẬN XÉT:

Cho A =
$$(a_{ij})_{1 \le i \le n} \in M_n(\mathbf{R})$$
. Xét $1 \le \mathbf{r}, s \le n$.

Nếu $a_{rs} = 0$ thì a_{rs} $C_{rs}^{A} = 0$ mà không cần tính C_{rs}^{A} .

Như vậy ta sẽ tính | A | theo một dòng hay một cột nào đó có số lượng hệ số bằng 0 là nhiều nhất.

Cho
$$A = (a_{ij})_{1 \le i,j \le 4} = \begin{pmatrix} 1 & 5 & 9 & -3 \\ 0 & -2 & 0 & 0 \\ 7 & 6 & 2 & 0 \\ -8 & 1 & -4 & 0 \end{pmatrix} \in M_4(\mathbf{R}) [\text{dòng (2) có } nhiều hệ số 0 nhất]$$

$$\mathbf{B} = \mathbf{A}(\mathbf{2}, 2) = \begin{pmatrix} b_{ij} \end{pmatrix}_{1 \le i, j \le 3} = \begin{pmatrix} 1 & 9 & -3 \\ 7 & 2 & 0 \\ -8 & -4 & 0 \end{pmatrix} \in \mathbf{M}_{3}(\mathbf{R}) \left[\text{ cột (3) có } nhiều hệ số } \mathbf{0} \text{ nhất } \right]$$

$$D = B(1, 3) = \begin{pmatrix} 7 & 2 \\ -8 & -4 \end{pmatrix} \in M_2(\mathbf{R}).$$

Ta có | A | =
$$\begin{vmatrix} 1 & 5 & 9 & -3 \\ 0 & -2 & 0 & 0 \\ 7 & 6 & 2 & 0 \\ -8 & 1 & -4 & 0 \end{vmatrix} = a_{22} C_{22}^{A} \text{ (vì } a_{21} = a_{23} = a_{24} = 0 \text{)} = -2(-1)^{2+2} | B |$$

$$= -2 \begin{vmatrix} 1 & 9 & -3 \\ 7 & 2 & 0 \\ -8 & -4 & 0 \end{vmatrix} = -2b_{13}C_{13}^{B} \text{ (vì } b_{23} = b_{33} = 0 \text{)} = -2(-3)(-1)^{1+3} | D | =$$

$$=6\begin{vmatrix} 7 & 2 \\ -8 & -4 \end{vmatrix} = 6[-28 - (-16)] = 6[-28 + 16] = -72.$$

[| A | được tính theo dòng (2) và | B | được tính theo cột (3)].

1.6/ <u>MÊNH ĐỀ:</u>

Cho A =
$$(a_{ij})_{1 \le i, j \le n} \in M_n(\mathbf{R})$$
.

- a) Nếu A có một dòng (hay một cột) nào đó toàn hệ số 0 thì |A| = 0.
- b) Nếu A có hai dòng (hay hai cột) nào đó tỉ lệ với nhau (đặc biệt bằng nhau)
 thì | A | = 0.
- c) Nếu A là *ma trận tam giác trên* hoặc *dưới* (đặc biệt là *ma trận đường chéo*) thì $|A| = a_{11}a_{22}...a_{nn}$ [*tích các hệ số trên đường chéo chính* (\)].
- d) $|A^t| = |A|$.

$$\begin{vmatrix} 0 & 0 & 0 \\ a & b & c \\ x & y & z \end{vmatrix} = 0 = \begin{vmatrix} a & 0 & x \\ b & 0 & y \\ c & 0 & z \end{vmatrix}.$$

$$\begin{vmatrix} 0 & 0 & 0 \\ a & b & c \\ x & y & z \end{vmatrix} = 0 = \begin{vmatrix} a & 0 & x \\ b & 0 & y \\ c & 0 & z \end{vmatrix}.$$
$$\begin{vmatrix} a & b & c \\ -2 & 6 & -4 \\ 3 & -9 & 6 \end{vmatrix} = 0 = \begin{vmatrix} a & x & a \\ b & y & b \\ c & z & c \end{vmatrix}.$$

$$\begin{vmatrix} 4 & a & b \\ 0 & -3 & c \\ 0 & 0 & -2 \end{vmatrix} = 4(-3)(-2) = 24.$$

$$\begin{vmatrix} 9 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -6 \end{vmatrix} = 9.0.(-6) = 0.$$

Cho
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} v \grave{a} A^t = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} \in M_3(\mathbf{R}).$$

Ta có $|A^t| = (aei + dhc + gbf) - (gec + ahf + dbi) = |A|$.

II. ĐỊNH THỰC VÀ CÁC PHÉP BIẾN ĐỔI SƠ CẤP TRÊN DÒNG VÀ CỘT CỦA MA TRẬN:

2.1/ CÁC PHÉP BIẾN ĐỔI SƠ CẤP TRÊN CỘT CHO MA TRÂN:

Cho $A \in M_{m \times n}(\mathbf{R})$. Xét $1 \le i \ne j \le n$.

Có 3 hình thức biến đổi sơ cấp trên cột cho ma trận:

- a) Hoán vị cột (i) với cột (j). Ta ghi (i)' \leftrightarrow (j)'.
- b) Nhân cột (i) với $s\hat{o}$ $c \in \mathbb{R} \setminus \{0\}$. Ta ghi (i)' $\rightarrow c(i)$ '.
- c) Thể cột (i) bằng [cột (i) + c.cột (j)] với $c \in \mathbf{R}$.

Ta ghi
$$(i)' \rightarrow [(i)' + c(j)'].$$

Các phép biến đổi đảo ngược của các phép biến đổi sơ cấp trên cột nói trên lần

lượt là
$$(i)$$
' \leftrightarrow (j) ', (i) ' \rightarrow $c^{-1}(i)$ ' và (i) ' \rightarrow $[(i)$ ' $c(j)$ '].

Ví dụ:

$$A = \begin{pmatrix} -3 & 2 & 4 & 5 \\ 7 & 0 & -1 & 8 \\ -2 & 9 & -6 & -4 \end{pmatrix} \rightarrow A_1 = \begin{pmatrix} 4^* & 2 & -3^* & 5 \\ -1^* & 0 & 7^* & 8 \\ -6^* & 9 & -2^* & -4 \end{pmatrix}$$
qua phép biến đổi (1)' \leftrightarrow (3)'

$$A = \begin{pmatrix} -3 & 2 & 4 & 5 \\ 7 & 0 & -1 & 8 \\ -2 & 9 & -6 & -4 \end{pmatrix} \rightarrow A_2 = \begin{pmatrix} -3 & -6^* & 4 & 5 \\ 7 & 0^* & -1 & 8 \\ -2 & -27^* & -6 & -4 \end{pmatrix}$$
qua phép biến đổi (2)' \rightarrow -3(2)'

$$A = \begin{pmatrix} -3 & 2 & 4 & 5 \\ 7 & 0 & -1 & 8 \\ -2 & 9 & -6 & -4 \end{pmatrix} \rightarrow A_3 = \begin{pmatrix} -3 & 2 & 14^* & 5 \\ 7 & 0 & 15^* & 8 \\ -2 & 9 & -14^* & -4 \end{pmatrix} \text{ qua phép biến đổi}$$

$$(3)' \rightarrow [(3)' + 2(4)'].$$

Các phép biến đổi đảo ngược của các phép biến đổi sơ cấp trên cột nói trên lần

lượt là
$$(1)$$
' \leftrightarrow (3) ', (2) ' $\rightarrow -\frac{1}{3}(2)$ ' và (3) ' \rightarrow $[(3)$ ' $-2(4)$ '].

2.2/ MÊNH ĐÈ: Cho $A \in M_n(\mathbf{R})$. Xét $1 \le i \ne j \le n$.

Giả sử $A \rightarrow A'$ bằng phép biến đổi sơ cấp (i) \leftrightarrow (j) [hoặc (i)' \leftrightarrow (j)']. Khi đó |A'| = -|A| (đổi dấu).

Ví dụ:

a)
$$A = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } |A| = -41(\mathbf{Vi dụ 1.2}).$$

$$A \to A_1 = \begin{pmatrix} 4 & -1 & 2 \\ -5^* & 2^* & -6^* \\ -2^* & 3^* & 1^* \end{pmatrix} [(2) \longleftrightarrow (3)] \text{ và } A \to A_2 = \begin{pmatrix} 2^* & -1 & 4^* \\ 1^* & 3 & -2^* \\ -6^* & 2 & -5 \end{pmatrix} [(1)^* \longleftrightarrow (3)^*]$$

Ta có $|A_1| = -|A| = 41$ và $|A_2| = -|A| = 41$.

b)
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \rightarrow B = \begin{pmatrix} a & c^* & b^* \\ d & f^* & e^* \\ g & i^* & h^* \end{pmatrix} = \begin{pmatrix} a & c & b \\ d & f & e \\ g & i & h \end{pmatrix} \rightarrow C = \begin{pmatrix} g^* & i^* & h^* \\ d & f & e \\ a^* & c^* & b^* \end{pmatrix}$$

do [(2)'
$$\leftrightarrow$$
 (3)'] và [(1) \leftrightarrow (3)]. Ta có | C | = - | B | = - (- | A |) = | A |.

2.3/ $\underline{\mathbf{M}} \hat{\mathbf{E}} \mathbf{N} \mathbf{H} \mathbf{D} \hat{\mathbf{E}} \mathbf{:}$ Cho $A \in M_n(\mathbf{R})$. Xét $1 \le \mathbf{i} \le n$ và $c \in \mathbf{R} \setminus \{0\}$.

Giả sử $A \rightarrow A'$ bằng phép biến đổi sơ cấp (i) \rightarrow c(i) [hoặc (i)' \rightarrow c(i)']. Khi đó |A'| = c. |A| (bội c).

Cho A =
$$\begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } |A| = -41.$$

$$A \to A_1 = \begin{pmatrix} 4 & -1 & 2 \\ -6^* & 9^* & 3^* \\ -5 & 2 & -6 \end{pmatrix} [(2) \to 3(2)] \text{ và } A \to A_2 = \begin{pmatrix} 4 & -1 & -4^* \\ -2 & 3 & -2^* \\ -5 & 2 & 12^* \end{pmatrix} [(3)^\circ \to -2(3)^\circ]$$

Ta có
$$|A_1| = 3|A| = -123$$
 và $|A_2| = -2|A| = 82$.

- **2.4**/ $\underline{\mathbf{H}}\hat{\mathbf{E}}$ $\underline{\mathbf{Q}}\underline{\mathbf{U}}\hat{\mathbf{A}}$: Cho $\mathbf{A} \in \mathbf{M}_{n}(\mathbf{R})$ và $\mathbf{c} \in \mathbf{R}$. Khi đó
 - a) $|cA| = c^n |A|$ (vì $A \rightarrow cA$ bằng cách nhân n dòng của A với c).
 - b) Có thể rút thừa số chung ở mỗi dòng (hay mỗi cột) của A ra ngoài dấu định thức.

Ví dụ:

a)
$$A = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } |A| = -41 \text{ và } B = -2A = \begin{pmatrix} -8 & 2 & -4 \\ 4 & -6 & -2 \\ 10 & -4 & 12 \end{pmatrix}.$$

Ta có
$$|B| = (-2)^3 |A| = -8(-41) = 328.$$

b)
$$\begin{vmatrix} 28^* & -40^* & 76^* & -12^* \\ -1 & 25 & 6 & -3 \\ 4 & 10 & -5 & 2 \\ -7 & -35 & 9 & 1 \end{vmatrix} = 4 \begin{vmatrix} 7 & -10^* & 19 & -3 \\ -1 & 25^* & 6 & -3 \\ 4 & 10^* & -5 & 2 \\ -7 & -35^* & 9 & 1 \end{vmatrix} = (4 \times 5) \begin{vmatrix} 7 & -2^* & 19 & -3 \\ -1 & 5^* & 6 & -3 \\ 4 & 2^* & -5 & 2 \\ -7 & -7^* & 9 & 1 \end{vmatrix}.$$

bằng cách rút các thừa số chung từ dòng (1) và cột (2).

2.5/ MÊNH ĐÊ: Cho $A \in M_n(\mathbf{R})$. Xét $1 \le i \ne j \le n$ và $c \in \mathbf{R}$.

Giả sử
$$A \to A'$$
 bằng phép biến đổi sơ cấp $(i) \to [(i) + c(j)]$ (hoặc $[(i)' \to (i)' + c(j)']$).

Khi đó |A'| = |A| (không thay đổi và độc lập với c).

GHI CHÚ: Hạng của ma trận không đổi khi dùng các phép biến đổi sơ cấp trên cột.

Ví du:

Cho
$$A = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } |A| = -41.$$

$$A \to A_1 = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ 3^* & 0^* & -2^* \end{pmatrix} \text{ và } A \to A_2 = \begin{pmatrix} 7^* & -1 & 2 \\ -11^* & 3 & 1 \\ -11^* & 2 & -6 \end{pmatrix}. \text{ Ta c\'o}$$

$$|A_1| = |A| \text{ do } (3) \rightarrow [(3) + 2(1)] \text{ và } |A_2| = |A| \text{ do } (1)' \rightarrow [(1)' - 3(2)'].$$

2.6/ MÊNH ĐÈ: Cho $A \in M_n(\mathbf{R})$.

Ta có thể *phân tích* | A | thành *tổng của hai định thức* dựa theo *một dòng* (hay *một cột*) *nào đó*. Chẳng hạn *phân tích đối với định thức cấp* 3 *như dưới đây*:

$$\begin{vmatrix} a+a' & b+b' & c+c' \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + \begin{vmatrix} a' & b' & c' \\ d & e & f \\ g & h & i \end{vmatrix} [phân tích theo dòng (1)].$$

$$\begin{vmatrix} a & b+b' & c \\ d & e+e' & f \\ g & h+h' & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + \begin{vmatrix} a & b' & c \\ d & e' & f \\ g & h' & i \end{vmatrix} [phân tích theo cột (2)].$$

Ví dụ: Rút gọn định thức sau đây (trước khi tính bằng qui tắc SARRUS):

$$\Delta = \begin{vmatrix} a+bx & b-ax & c \\ d+ex & e-dx & f \\ g+hx & h-gx & i \end{vmatrix}.$$

$$\Delta = \begin{vmatrix} a & b - ax & c \\ d & e - dx & f \\ g & h - gx & i \end{vmatrix} + \begin{vmatrix} bx & b - ax & c \\ ex & e - dx & f \\ hx & h - gx & i \end{vmatrix} [phân tích theo cột (1)].$$

$$= \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + \begin{vmatrix} a & -ax & c \\ d & -dx & f \\ g & -gx & i \end{vmatrix} + \begin{vmatrix} bx & b & c \\ ex & e & f \\ hx & h & i \end{vmatrix} + \begin{vmatrix} bx & -ax & c \\ ex & -dx & f \\ hx & -gx & i \end{vmatrix}$$
 [phân tích theo cột (2)]

$$= \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + 0 + 0 - x^2 \begin{vmatrix} b & a & c \\ e & d & f \\ h & g & i \end{vmatrix} = (x^2 + 1) \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} (tinh ti lệ và sự hoán vị)$$

=
$$(x^2 + 1)[(aei + bfg + cdh) - (ceg + afh + bdi)](qui tắc SARRUS).$$

2.7/ ÁP DUNG: Trước khi tính định thức một ma trận, ta có thể dùng các phép biến đổi sơ cấp trên dòng (hay cột) thích hợp để tạo nhiều hệ số 0 trên một dòng (hay cột) nào đó. Các hệ số 0 này được tạo ra dựa vào hệ số ±1 có trên dòng (hay cột) tương ứng hoặc dựa vào quan hệ bội số - ước số. Nếu không có sẵn hệ số ±1, ta lại dùng các phép biến đổi sơ cấp trên dòng (hay cột) thích hợp để tạo ±1.

Ví dụ:

a)
$$\begin{vmatrix} 3/4 & 2 & -1/2 & -5 \\ 1 & -2 & 3/2 & 8 \\ 5/6 & -4/3 & 4/3 & 14/3 \\ 2/5 & -4/5 & 1/2 & 12/5 \end{vmatrix} = \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{6} \cdot \frac{1}{10} \begin{vmatrix} 3 & 8 & -2 & -20 \\ 2 & -4 & 3 & 16 \\ 5 & -8 & 8 & 28 \\ 4 & -8 & 5 & 24 \end{vmatrix} = \frac{4.4}{480} \begin{vmatrix} 3 & 2 & -2 & -5 \\ 2 & -1 & 3 & 4 \\ 5 & -2 & 8 & 7 \\ 4 & -2 & 5 & 6 \end{vmatrix}$$

$$= \frac{1}{30} \begin{vmatrix} 7 & 0 & 3 & 1 \\ 2 & -1^* & 3 & 4 \\ 1 & 0 & 3 & 1 \\ 0 & 0 & -1 & -2 \end{vmatrix} = -\frac{1}{30} \begin{vmatrix} 7 & 3 & 1 \\ 1 & 3 & 1 \\ 0 & -1^* & -2 \end{vmatrix} = -\frac{1}{30} \begin{vmatrix} 7 & 3 & -5 \\ 1 & 3 & -5 \\ 0 & -1^* & 0 \end{vmatrix} = -\frac{1}{30} \begin{vmatrix} 7 & -5 \\ 1 & -5 \end{vmatrix} = 1.$$

b)
$$\begin{vmatrix} -3 & 2 & 5 \\ 7 & -4 & 3 \\ -5 & 6 & -2 \end{vmatrix} = \begin{vmatrix} -3 & 2 & 5 \\ 2 & 2 & 1 \\ -5 & 6 & -2 \end{vmatrix} = \begin{vmatrix} -13 & 5 & 5 \\ 0 & 0 & 1^* \\ -1 & 11 & -2 \end{vmatrix} = - \begin{vmatrix} -13 & 5 \\ -1 & 11 \end{vmatrix} = 138 \text{ (cách 1)}.$$

$$\begin{vmatrix} -3 & 2 & 5 \\ 7 & -4 & 3 \\ -5 & 6 & -2 \end{vmatrix} = \begin{vmatrix} -3 & 2^* & 5 \\ 1 & 0 & 13 \\ 4 & 0 & -17 \end{vmatrix} = -2 \begin{vmatrix} 1 & 13 \\ 4 & -17 \end{vmatrix} = 138 \text{ (cách 2)}.$$

c)
$$\begin{vmatrix} a & a & a & a \\ b & x & b & b \\ c & c & y & c \\ d & d & d & z \end{vmatrix} = \begin{vmatrix} a^* & 0 & 0 & 0 \\ b & x-b & 0 & 0 \\ c & 0 & y-c & 0 \\ d & 0 & 0 & z-d \end{vmatrix} = a(x-b)(y-c)(z-d) [\Delta \ dw\'{o}i].$$

d)
$$\begin{vmatrix} \cos 2a & d & 2\sin^2 a \\ (\sin b - \cos b)^2 & 2d & (\sin b + \cos b)^2 \\ -2\cos^2 c & -d & \cos 2c \end{vmatrix} = \begin{vmatrix} 1 & d & 2\sin^2 a \\ 2 & 2d & (\sin b + \cos b)^2 \\ -1 & -d & \cos 2c \end{vmatrix} = 0 (2 \text{ cột } tỉ lệ).$$

e)
$$\begin{vmatrix} 657.419 & 656.419 \\ 928.308 & 927.308 \end{vmatrix} = \begin{vmatrix} 1.000 & 656.419 \\ 1.000 & 927.308 \end{vmatrix} = 1.000 \begin{vmatrix} 1 & 656.419 \\ 1 & 927.308 \end{vmatrix} =$$

III. ĐỊNH THỰC VÀ MA TRẬN VUÔNG KHẢ NGHỊCH:

3.1/ $\underline{\mathbf{M}}\underline{\hat{\mathbf{E}}}\underline{\mathbf{N}}\underline{\mathbf{H}}\underline{\mathbf{D}}\underline{\hat{\mathbf{E}}}\underline{\hat{\mathbf{E}}}$ Cho $\mathbf{A} \in \mathbf{M}_n(\mathbf{R})$. Khi đó

- a) A khả nghịch \Leftrightarrow | A | \neq 0.
- b) A không khả nghịch $\Leftrightarrow |A| = 0$.

Ghi chú: Khi xét tính khả nghịch của A, tìm | A | thì thuận lợi hơn là tìm RA.

Ví dụ:

Xét tính khả nghịch của $A = \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix} \in M_3(\mathbf{R})$ (a, b, c là *các tham số thực*)

Ta có
$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = \begin{vmatrix} 1^* & 0 & 0 \\ a & b-a & c-a \\ a^2 & b^2-a^2 & c^2-a^2 \end{vmatrix} = \begin{vmatrix} b-a & c-a \\ b^2-a^2 & c^2-a^2 \end{vmatrix} =$$

$$= (b-a)(c-a)\begin{vmatrix} 1 & 1 \\ b+a & c+a \end{vmatrix} = (b-a)(c-a)(c-b) = (a-b)(b-c)(c-a).$$

Suy ra: A khả nghịch \Leftrightarrow | A | \neq 0 \Leftrightarrow a \neq b \neq c \neq a.

A không khả nghịch \Leftrightarrow | A | = 0 \Leftrightarrow (a = b) hay (b = c) hay (c = a).

3.2/ MÊNH ĐÈ: Giả sử $A \in M_n(\mathbf{R})$ và A khả nghịch (nghĩa là $|A| \neq 0$).

Ta xác định ma trận nghịch đảo A^{-1} bằng phương pháp định thức như sau:

- * Tính n^2 hệ số đồng thừa $C_{ij}^A = (-1)^{i+j} | A(i,j) | (1 \le i,j \le n)$ của A.
- * Lập ma trận $C = \left(C_{ij}^A\right)_{1 \leq i,i \leq n} \in M_n(\mathbf{R})$ [ma trận của n^2 hệ số đồng thừa].

* Ta có
$$A^{-1} = \frac{1}{|A|}C^{t}$$
 (t = transposition) và

C^t gọi là ma trận phụ hợp của A.

Ký hiệu
$$C^t = Adj(A)$$
 [$Adj = Adjoint$].

<u>Ví dụ:</u> Cho $A = \begin{pmatrix} 4 & -1 & 2 \\ -2 & 3 & 1 \\ -5 & 2 & -6 \end{pmatrix}$ ∈ $M_3(\mathbf{R})$ có $|A| = -41 \neq 0$ nên A khả nghịch.

Ta tính đầy đủ $3^2 = 9$ hệ số đồng thừa $C_{ij}^A = C_{ij} (1 \le i, j \le 3)$ như sau:

$$C_{11} = (-1)^{1+1} |A(1,1)| = \begin{vmatrix} 3 & 1 \\ 2 & -6 \end{vmatrix} = -20, C_{12} = (-1)^{1+2} |A(1,2)| = -\begin{vmatrix} -2 & 1 \\ -5 & -6 \end{vmatrix} = -17$$

$$C_{13} = (-1)^{1+3} |A(1,3)| = \begin{vmatrix} -2 & 3 \\ -5 & 2 \end{vmatrix} = 11, \quad C_{21} = (-1)^{2+1} |A(2,1)| = -\begin{vmatrix} -1 & 2 \\ 2 & -6 \end{vmatrix} = -2$$

$$C_{22} = (-1)^{2+2} |A(2,2)| = \begin{vmatrix} 4 & 2 \\ -5 & -6 \end{vmatrix} = -14, C_{23} = (-1)^{2+3} |A(2,3)| = -\begin{vmatrix} 4 & -1 \\ -5 & 2 \end{vmatrix} = -3$$

$$C_{31} = (-1)^{3+1} |A(3,1)| = \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = -7, C_{32} = (-1)^{3+2} |A(3,2)| = -\begin{vmatrix} 4 & 2 \\ -2 & 1 \end{vmatrix} = -8$$

$$C_{33} = (-1)^{3+3} |A(3,3)| = \begin{vmatrix} 4 & -1 \\ -2 & 3 \end{vmatrix} = 10.$$

Lập
$$C = (C_{ij})_{1 \le i, j \le 3} = \begin{pmatrix} -20 & -17 & 11 \\ -2 & -14 & -3 \\ -7 & -8 & 10 \end{pmatrix} \in M_3(\mathbf{R}).$$

Ta có
$$A^{-1} = \frac{1}{|A|}C^{t} = -\frac{1}{41} \begin{pmatrix} -20 & -2 & -7 \\ -17 & -14 & -8 \\ 11 & -3 & 10 \end{pmatrix} = \frac{1}{41} \begin{pmatrix} 20 & 2 & 7 \\ 17 & 14 & 8 \\ -11 & 3 & -10 \end{pmatrix}.$$

3.3/ GHI CHÚ: Giả sử
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbf{R})$$
 và A khả nghịch. [nghĩa là $\Delta = |A| = (ad - bc) \neq 0$].

Ta có thể tính nhẩm ma trận nghịch đảo A⁻¹ một cách nhanh chóng như sau:

$$A^{-1} = \frac{1}{\Delta} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
(hoán vị đường chéo xuối và đổi dấu đường chéo ngược).

Ví du:
$$A = \begin{pmatrix} 4 & -9 \\ 8 & -3 \end{pmatrix} \in M_2(\mathbf{R})$$
 có $|A| = 60 \neq 0$ nên A khả nghịch và
$$\mathbf{A}^{-1} = \frac{1}{60} \begin{pmatrix} -3 & 9 \\ -8 & 4 \end{pmatrix}.$$

3.4/ $\underline{\mathbf{M}\hat{\mathbf{E}}\mathbf{N}\mathbf{H}\;\mathbf{D}\hat{\mathbf{E}}}$: Cho A, B, A₁, A₂, ..., A_k \in M_n(\mathbf{R}) với k \geq 2. Khi đó:

$$a)\mid AB\mid \ =\ \mid A\mid .\mid B\mid \ v\grave{a}\ \mid A_{1}A_{2}\;...\;A_{k}\mid \ =\ \mid A_{1}\mid .\mid A_{2}\mid ...\mid A_{k}\mid ...\mid A_$$

b) Suy ra
$$\forall k \geq 2$$
, $|A^{k}| = |A|^{k}$ (áp dụng khi $A_{1} = A_{2} = ... = A_{k} = A$).

c) Nếu A khả nghịch (a = | A |
$$\neq$$
 0) thì | A^{-1} | = $\frac{1}{|A|}$ và $\forall r \in \mathbb{Z}$, | A^r | = | A | r .

Do đó
$$|\operatorname{Adj}(A)| = |\operatorname{C}^t| = |\operatorname{a} A^{-1}| = a^n |\operatorname{A}^{-1}| = a^n. \ a^{-1} = a^{n-1} = |\operatorname{A}|^{n-1}.$$

Ví dụ: A, B, C
$$\in$$
 M_n(R) có | A | = -3, | B | = 4 và | C | = -6. Ta có

$$|AB| = |A| . |B| = (-3)4 = -12 \text{ và} |ABC| = |A| . |B| . |C| = (-3)4(-6) = 72$$

$$|\mathbf{A}^4| = |\mathbf{A}|^4 = (-3)^4 = 81, |\mathbf{A}^{-1}| = \frac{1}{|A|} = \frac{-1}{3} \text{ và } |\mathbf{A}^{-5}| = |\mathbf{A}|^{-5} = (-3)^{-5} = \frac{-1}{243}$$

 $|\mathbf{A}d\mathbf{j}(\mathbf{A})| = |\mathbf{C}^t| = |\mathbf{A}|^{n-1} = (-3)^{n-1}.$

IV. QUI TĂC CRAMER:

Định thức được áp dụng vào việc khảo sát *các hệ phương trình tuyến tính* có số phương trình và số ẩn bằng nhau.

4.1/ \underline{KY} \underline{HIEU} : \underline{X} \underline{EU} : \underline{X} \underline{EU} : \underline{EU}

và n
$$\mathring{an} s\acute{o}$$
) trong đó $\mathbf{A} \in \mathbf{M}_{n}(\mathbf{R}), \mathbf{B} \in \mathbf{M}_{n \times 1}(\mathbf{R})$ và $\mathbf{X} = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$.

Với $1 \le j \le n$, đặt

 $\Delta = |A| \text{ và } \Delta_i = |A_i| \text{ trong dó } A_i \text{ là } A \text{ xóa cột (j) và thay bằng cột } B.$

- 4.2/ MÊNH ĐỀ: Với các ký hiệu như trên:
 - a) $\Delta \mathbf{x}_i = \Delta_i$ khi $1 \le j \le n$.
 - b) Nếu $\Delta \neq 0$ thì hệ có *nghiệm duy nhất* là $\mathbf{x}_j = (\Delta_j / \Delta)$ khi $1 \leq j \leq n$.
 - c) Nếu $\Delta = 0$ và $\exists k \in \{1, 2, ..., n\}, \Delta_k \neq 0$ thì hệ *vô nghiệm*. (lúc đó đẳng thức $\Delta x_k = \Delta_k$ vô nghĩa).
 - d) Nếu $\Delta = 0$ và $\Delta_1 = \Delta_2 = \dots = \Delta_n = 0$ thì hệ *vô nghiệm* hoặc *vô số nghiệm*. Khi đó ta phải *giải hệ* bằng *phương pháp Gauss* hay *Gauss – Jordan* để có

a) Giải và biện luận hệ phương trình tuyến tính sau theo tham số thực m:

$$\begin{cases} x_1 + 2x_2 + 2x_3 = 0\\ (m-2)x_2 + (m-5)x_3 - 2x_1 = 2\\ (m+1)x_3 + mx_1 + x_2 = -2 \end{cases}$$

 $H\hat{e}$ phương trình trên có dạng AX = B với

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ -2 & m-2 & m-5 \\ m & 1 & m+1 \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ và } \mathbf{B} = \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix}.$$

Ta tính Δ , Δ_1 , Δ_2 và Δ_3 .

$$\Delta = |A| = \begin{vmatrix} 1 & 2 & 2 \\ -2 & m-2 & m-5 \\ m & 1 & m+1 \end{vmatrix} = \begin{vmatrix} 1^* & 0 & 0 \\ -2 & 3 & m-1 \\ m & -m & 1-m \end{vmatrix} = \begin{vmatrix} 3 & m-1 \\ -m & 1-m \end{vmatrix} = \begin{vmatrix} 3 & m-1 \\ 3-m & 0 \end{vmatrix} =$$

$$=(m-1)(m-3).$$

$$\Delta_{1} = |\mathbf{A}_{1}| = \begin{vmatrix} 0 & 2 & 2 \\ 2 & m-2 & m-5 \\ -2 & 1 & m+1 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 2 \\ 2^{*} & m-2 & m-5 \\ 0 & m-1 & 2m-4 \end{vmatrix} = -2 \begin{vmatrix} 2 & 2 \\ m-1 & 2m-4 \end{vmatrix} = 4(3-m).$$

$$\Delta_2 = |A_2| = \begin{vmatrix} 1 & 0 & 2 \\ -2 & 2 & m-5 \\ m & -2 & m+1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 \\ -2 & 2^* & m-5 \\ m-2 & 0 & 2m-4 \end{vmatrix} = 0 \text{ [dòng (1) } ti \text{ lệ với dòng (3)]}.$$

$$\Delta_3 = |A_3| = \begin{vmatrix} 1 & 2 & 0 \\ -2 & m-2 & 2 \\ m & 1 & -2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 0 \\ -2 & m-2 & 2^* \\ m-2 & m-1 & 0 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 \\ m-2 & m-1 \end{vmatrix} = 2(m-3).$$

* Nếu $1 \neq m \neq 3$ thì $\Delta \neq 0$ nên hệ có nghiệm duy nhất là

$$x_1 = \frac{\Delta_1}{\Delta} = \frac{4}{1-m}$$
, $x_2 = \frac{\Delta_2}{\Delta} = 0$ và $x_3 = \frac{\Delta_3}{\Delta} = \frac{2}{m-1}$.

* Nếu m = 1 thì $\Delta = 0 \neq \Delta_1 = 8$ nên hệ *vô nghiệm*.

* Nếu m=3 thì $\Delta=0=\Delta_1=\Delta_2=\Delta_3$, ta thế m=3 vào hệ và giải hệ

bằng phương pháp Gauss - Jordan:

$$\begin{pmatrix}
1 & 2 & 2 & 0 \\
-2 & 1 & -2 & 2 \\
3 & 1 & 4 & -2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1^* & 2 & 2 & 0 \\
0 & 5 & 2 & 2 \\
0 & -5 & -2 & -2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1^* & 0 & 6/5 & -4/5 \\
0 & 1^* & 2/5 & 2/5 \\
0 & 0 & 0 & 0
\end{pmatrix}.$$

Hệ có vô số nghiệm như sau: $x_3 = a$ ($a \in \mathbb{R}$), $\frac{x_1}{5} = -\frac{6a+4}{5}$ và $\frac{x_2}{5} = \frac{2(1-a)}{5}$.

b) Xét 4 hệ phương trình tuyến tính (2 ẩn số x, y và m, p, q là các hằng số thực)

Hệ (1):
$$\forall m, p, q \in \mathbf{R}, \Delta = \begin{vmatrix} m-3 & -1 \\ 5-m & m \end{vmatrix} = m^2 - 4m + 5 = (m-2)^2 + 1 \ge 1 > 0,$$

$$\Delta_{\mathbf{x}} = \begin{vmatrix} p & -1 \\ q & m \end{vmatrix} = mp + q \quad \text{và} \quad \Delta_{\mathbf{y}} = \begin{vmatrix} m-3 & p \\ 5-m & q \end{vmatrix} = m(p+q) - (5p+3q)$$

nên hệ có nghiệm duy nhất

$$x = \frac{\Delta_x}{\Delta} = \frac{mp+q}{m^2 - 4m + 5}$$
 và $y = \frac{\Delta_y}{\Delta} = \frac{m(p+q) - (5p + 3q)}{m^2 - 4m + 5}$.

Hệ (2):
$$\Delta = \begin{vmatrix} 3 & 1 \\ -6 & -2 \end{vmatrix} = 0 \neq \Delta_y = \begin{vmatrix} 3 & -4 \\ -6 & 1 \end{vmatrix} = -21$$
 nên hệ *vô nghiệm*.

Hệ (3):
$$\Delta = \begin{vmatrix} 2 & -3 \\ -4 & 6 \end{vmatrix} = 0 = \Delta_{x} = \begin{vmatrix} 1 & -3 \\ -2 & 6 \end{vmatrix} = \Delta_{y} = \begin{vmatrix} 2 & 1 \\ -4 & -2 \end{vmatrix}$$
 và hệ \Leftrightarrow (2x - 3y = 1)

Ta thấy hệ có vô số nghiệm với một ẩn tự do $y \in \mathbb{R}, x = \frac{3y+1}{2}$.

Hệ (4):
$$\Delta = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 0 = \Delta_{x} = \begin{vmatrix} -1 & 0 \\ 2 & 0 \end{vmatrix} = \Delta_{y} = \begin{vmatrix} 0 & -1 \\ 0 & 2 \end{vmatrix}.$$

Ta thấy hệ *vô nghiệm* vì hệ có phương trình $0x + 0y = 2 \neq 0$.
