Árboles binomiales

Profesor: Miguel Jiménez

Árboles binomiales

Técnica para valuar opciones

Los árboles binomiales son un diagrama que representa diversas trayectoria que podría seguir el precio de la acción durante la vida de la opción.

Árbol binomial de un paso

Árboles binomiales

Mundo Neutral al Riesgo

En un mundo neutral al riesgo todos los individuos son indiferentes al riesgo. En un mundo como este, los inversionistas no requieren ninguna compensación por el riesgo y el rendimiento esperado sobre todos los títulos es la tasa libre de riesgo.

Coeficiente de ascenso:

$$u = e^{\sigma\sqrt{\Delta t}}$$

Coeficiente de descenso:

$$d = \frac{1}{u}$$

Δt es la duración de un intervalo en el árbol r: Tasa libre de riesgo.

Probabilidad de ascenso:

$$p = \frac{e^{r\Delta t} - d}{u - d}$$

Probabilidad de descenso:

$$q = 1 - p$$

- **S**₀: Precio actual de la acción.
- u: Coeficiente de ascenso.
- d: Coeficiente de descenso.
- p: Probabilidad de ascenso.
- q: Probabilidad de descenso.

Ejemplo:

S₀: \$200.

r: 5% c. anual.

Δt: 3 meses.

Volatilidad de la acción: σ: 30% c. anual.

u = ?

d = ?

p = ?

q = ?

¿Valor arriba de la acción?

¿Valor abajo de la acción?

Ejemplo:

S₀: \$200.

r: 5% c. anual.

Δt: 3 meses.

σ: 30% c. anual.

$$\Delta t = \frac{3 \text{ meses}}{12 \text{ meses}} = 0,25 \text{ años}$$

$$u = e^{0.30\sqrt{0.25}} = 1.162$$

$$d = \frac{1}{1,162} = 0,861$$

$$p = \frac{e^{0.05 \times 0.25} - 0.861}{1,162 - 0.861} = 0.504$$

$$q = 1 - 0.504 = 0.496$$

Ejemplo:

Ejemplo:

Largo en opción de compra (Largo en Call) europea:

K = \$220.

¿Dónde se ejerce la opción?

Ejemplo:

Largo en Call:

Ganancia = \$0

f = Precio actual de la opción

Valor de la opción

$$f = e^{-r\Delta t}[pf_u + (1-p)f_d]$$

El precio de la opción es igual a su beneficio esperado en un mundo neutral al riesgo, descontado a la tasa libre de riesgo.

$$f = e^{-0.05 \times 0.25} [0.504 \times 12.37 + 0.496 \times 1] = 6, 16$$

$$f_u = e^{-r\Delta t} [p f_{uu} + (1-p) f_{ud}]$$

$$f_d = e^{-r\Delta t}[pf_{ud} + (1-p)f_{dd}]$$

$$f = e^{-r\Delta t}[pf_u + (1-p)f_d]$$

Otra forma:

$$f = e^{-2r\Delta t} [p^2 f_{uu} + 2p(1-p)f_{ud} + (1-p)^2 f_{dd}]$$

Ejemplo:

Considere una opción de venta europea a dos años con un precio de ejercicio de \$52 sobre una acción cuyo precio actual es de \$50. Suponiendo que hay dos intervalos de un año y, en cada uno, el precio de la acción sube o baja un monto proporcional de 20%. Además, suponga que la tasa libre de riesgo es de 5%.

Ejemplo:

El precio de la acción sube o baja un monto proporcional de 20%.

$$u = 1,20$$

$$d = 0.80$$

$$p = \frac{e^{0.05 \times 1} - 0.80}{1,20 - 0.80} = 0.6282$$

$$q = 1 - 0.6282 = 0.3718$$

Ejemplo:

Precio de la acción

Ejemplo:

Opción de

Venta:

K = \$52

		\$72
	\$60	\$0
\$50		\$48
	\$40	\$4
		\$32
		\$20

Ejemplo:

		\$72
	\$60	\$0
\$50	\$1,415	\$48
\$4,193	\$40	\$4
	\$9,464	\$32
		\$20

$$f_u = e^{-0.05 \times 1} [0.6282 \times \$0 + 0.3718 \times \$4]$$
 $f_u = \$1,415$
 $f_d = e^{-0.05 \times 1} [0.6282 \times \$4 + 0.3718 \times \$20]$
 $f_d = \$9,464$
 $f = e^{-0.05 \times 1} [0.6282 \times \$1,415 + 0.3718 \times \$9,464]$
 $f = \$4,193$

Otra forma:

$$f = e^{-2 \times 0.05 \times 1} [0.6282^2 \times \$0 + 2 \times 0.6282 \times 0.3718 \times \$4 + 0.3718^2 \times \$20] = \$4,193$$

Con las opciones americanas se puede ejercer en cualquier nodo del árbol binomial.

El procedimiento consiste en retroceder a lo largo del árbol, desde el fin hasta el inicio, probando cada nodo para ver si el ejercicio anticipado es lo óptimo.

Opción de Venta:

$$K = $52$$

		\$72
	\$60	\$0
\$50		\$48
	\$40	\$4
		\$32

Máx [$K - S_T$; 0]

\$20

Opción de Venta:

$$K = $52$$

 $Máx [K - S_T; 0]$

Óptimo: Esperar $f_u = $1,415$

		\$72
	\$60	\$0
\$50	f,,	\$48
	\$40	\$4
		\$32
		\$20

Óptimo: Ejercer anticipado

$$f_{d} = $12$$

		\$72
	\$60	\$0
\$50	1,415	\$48
f	\$40	\$4
	12	\$32
		\$20

Ejercer anticipado
$$f = MAX[\$52 - \$50; 0] = \$2$$

Esperar $f = e^{-0.05 \times 1}[0.6282 \times \$1.415 + 0.3718 \times \$12] = \$5,0896$

Óptimo: Esperar f = \$5,0896

		\$72
	\$60	\$0
\$50	1,415	\$48
5,0896	\$40	\$4
	12	\$32
		\$20

Valor de la opción \$5,0896

Árboles binomiales

Gracias

Profesor: Miguel Jiménez