$$\begin{aligned} &-\frac{d^2y_n}{dx^2} + xy_n = \lambda_n y_n \\ &\text{on } 0 \leqslant x \leqslant \infty, \text{ with } y(0) = y(\infty) = 0. \\ &\text{To this equation the solution is:} \\ &y_n = C_1 \text{Ai}(x - \lambda_n) \end{aligned}$$

Where C_1 is an arbitrary constant, and $-\lambda_n$ are the zeros of the Airy function, Ai(x), on the negative x axis, i.e. $Ai(-\lambda_n) = 0 \quad \forall n$.

n	λ_n
1	2.33811
2	4.08795
3	5.52056
4	6.78671
5	7.94413
6	10.0402

To numerically integrate this solution let us use a Chebyshev spectral method.

If
$$t_m$$
 comprises points on the Chebyshev extrema grid, that is:
$$t_m = -\cos\left(\frac{\pi m}{N}\right), \qquad m \in [0,1,2,\dots,N]$$
 then:
$$x_m = L\left(\frac{1+t_m}{1-t_m}\right)$$

This is a rational transformation from the Chebyshev extrema grid to the semi-infinite domain.