ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY MCQ TEST PAPER

BE- SEM – 4 – COMPUTER ENGINEERING 3140708 – DISCRETE MATHEMATICS

Answer the following short questions by selecting the correct answer from the given options.

1. Which of the following statement is a proposition?
a) Get me a glass of milkshake
b) God bless you!
c) What is the time now?
d) The only odd prime number is 2
2. The truth value of given statement is
$^{4}4 + 3 = 7 \text{ or } 5 \text{ is not prime}^{2}.$
a) False
b) True
3. Which of the following option is true?
a) If the Sun is a planet, elephants will fly
b) $3+2=8$ if $5-2=7$
c) 1 > 3 and 3 is a positive integer
d) $-2 > 3$ or 3 is a negative integer
4. What is the value of x after this statement, assuming initial value of x is 5?
'If x equals to one then $x = x + 2$ else $x = 0$ '.
a) 1 b) 3 c) 0 d) 2
5. Let P: I am in Bangalore. , Q: I love cricket. ; Then $q \rightarrow p$ (q implies p) is:
a) If I love cricket then I am in Bangalore
b) If I am in Bangalore then I love cricket
c) I am not in Bangalore

d) I love cricket

	wls, Saurabh hits a cei and Q is false then w	• , •	owls, Sahil gets out on first g can be true?
a) Raju bowled and Sahi	il got out on first ball	b) Raju did not	bowled
c) Sahil bowled and Saur	rabh hits a century	d) Sahil bowled	l and Saurabh got out
7. The truth value of	given statement is		
'If 9 is prime then 3	is even'.		
a) False			
b) True			
8. Let P: I am in Del	hi. , Q: Delhi is clean.	; Then q ^ p (q and	p) is:
a) Delhi is clean and I an	n in Delhi	b) Delhi is not clean or	I am in Delhi
c) I am in Delhi and Dell	ni is not clean	d) Delhi is clean but I a	m in Mumbai
9. Let P: This is a gr	eat website, Q: You s	hould not come back	here.
Then 'This is a great	t website and you sho	uld come back here.	is best represented by:
a) ~P V ~Q	b) P ∧ ~ Q		
c) P V Q	d) P A Q		
10. Let P: We should overconfident.	l be honest., Q: We sh	nould be dedicated.,	R: We should be
Then 'We should be	honest or dedicated b	out not overconfiden	t.' is best represented by:
a) ~P V ~Q V R	b) P \lambda \sigma Q \lambda R		
c) P V Q A R	d) P V Q A ~R		
11. Let P and Q be s	tatements, then $P \leftrightarrow 0$	Q is logically equival	ent to
a) $P \leftrightarrow \sim Q$	$b) \sim P \leftrightarrow Q$	$c) \sim \!\! P \leftrightarrow \sim \!\! Q$	d) None of the mentioned
12. What is the nega	tion of the statement	$A \rightarrow (B \ v \ (or) \ C)$?	
a) A \(\simes B \(\simes C \)	$b) \mathrel{A} \to B \to C$	c) ~A ∧ B v C	d) None of the mentioned
13. The compound strespectively	tatement $A \rightarrow (A \rightarrow I$	3) is false, then the tr	ruth values of A, B are
a) T, T b) F, T	c) T, F	d) F, F	
14. The statement w	hich is logically equiv	alent to A \wedge (and) B	is
$a)\;A\to B$	b) ~A \(\sim \) ~ B	c) A \(\sim \cdot B	$\mathbf{d}) \sim (\mathbf{A} \rightarrow \sim \mathbf{B})$

15. Let P: We give a nice overall squad performance, Q: We will win the match. Then the symbolic form of "We will win the match if and only if we give a nice overall squad performance. "is a) P v O b) O \wedge P c) $\mathbf{O} \leftrightarrow \mathbf{P}$ d) ~P v O 16. Let P, Q, R be true, false true, respectively, which of the following is true b) $P \land \sim Q \land \sim R$ c) $Q \rightarrow (P \land R)$ a) $P \wedge Q \wedge R$ d) $P \rightarrow (Q \land R)$ 17. "Match will be played only if it is not a humid day." The negation of this statement is a) Match will be played but it is a humid day b) Match will be played or it is a humid day c) All of the mentioned statement are correct d) None of the mentioned. 18. Consider the following statements A: Raju should exercise. B: Raju is not a decent table tennis player. C: Raju wants to play good table tennis. The symbolic form of "Raju is not a decent table tennis player and if he wants to play good table tennis then he should exercise." is b) B \wedge (C \rightarrow A) a) $A \rightarrow B \rightarrow C$ c) $C \rightarrow B \land A$ d) $B \leftrightarrow A \land C$ 19. The statement ($\sim P \leftrightarrow Q$) $\land \sim Q$ is true when a) P:True Q: False b) P:True Q:True c) P:False Q:True d) P:False Q:False 20. Let P, Q, R be true, false, false, respectively, which of the following is true b) $(P \rightarrow Q) \land \sim R$ a) $P \wedge (Q \wedge R)$ c) $Q \leftrightarrow (P \land R)$ d) $P \leftrightarrow (Q \vee R)$ 21. Which of the following statements is the negation of the statements "4 is odd or -9 is positive"? a) 4 is even or -9 is not negative b) 4 is odd or -9 is not negative c) 4 is even and -9 is negative d) 4 is odd and -9 is not negative 22. Which of the following represents: ~A (negation of A) if A stands for "I like badminton but hate maths"? a) I hate badminton and maths b) I do not like badminton or maths

d) I hate badminton or like maths

c) I dislike badminton but love maths

23. The compound statement A v	$\sim (A \land B)$ is always
a) True	
b) False	
24. Which of the following are De-	Morgan's laws?
a) $P \land (Q \lor R) \Xi (P \land Q) \lor (P \land R)$	b) $\sim (P \land R) \Xi \sim P v \sim R, \sim (P \lor R) \Xi \sim P \land \sim R$
c) P v ~P \(\pi \) True, P \(\lambda ~P \) \(\pi \) False	d) none of the mentioned
25. What is the dual of $(A \wedge B) v$	$(C \wedge D)$?
a) (A V B) v (C v D)	b) (A V B) ^ (C v D)
c) (A V B) v (C A D)	d) (A ∧ B) v (C v D)
26. ~ A v ~ B is logically equivalen	t to
$a) \sim A \rightarrow \sim B$	b) ~ A \(\simes B \)
c) $A \rightarrow \sim B$	d) B V A
27. Negation of statement (A \wedge B)	\rightarrow (B \land C)
$a)\;(A\;\wedge\;B)\to ({\sim}B\;\wedge\;{\sim}C)$	$b) \sim (A \wedge B) \vee (B \vee C)$
$c) \sim (A \to B) \to (\sim B \land C)$	d) None of the mentioned
28. Which of the following satisfies	s commutative law?
$a) \land \qquad \qquad b) \ v \qquad \qquad c) \leftrightarrow$	d) All of the mentioned
29. If the truth value of A v B is tr	ue, then truth value of ~A ∧ B can be
a) True if A is false	b) False if A is false
c) False if B is true and A is false	d) None of the mentioned
30. If P is always against the testin a	nony of Q ,then the compound statement $P \to (P \ v \ \hbox{$\sim$} Q)$ is
a) Tautology	b) Contradiction
c) Contingency	d) None of the mentioned
31. A compound proposition that i	s always is called a tautology.
a) True	
b) False	
32. A compound proposition that i	is always is called a contradiction.
a) True	
b) False	

33. If A is any state	ment, then w	hich of th	e follov	ving is a tauto	ology?
a) A \wedge F	b) A V F	c) A V	$\neg \mathbf{A}$	d) A \wedge T	
34. If A is any state	ment, then w	hich of th	e follov	wing is not a c	ontradiction?
a) A ∧ ¬A	b) A V F	c) A A F	र	d) None of men	tioned.
35. A compound pr	oposition tha	t is neithe	er a tau	tology nor a c	contradiction is called a
a) Contingency	h) Equivalan	00	a) Cond	lition	d) Inference
•	•		c) Conc	пион	d) interence
36. ¬ (A ∨ q) ∧ (A ∧	_		\ Q		
			c) Cont	ingency	d) None of the mentioned
37. (A ∨ ¬ A) ∨ (q ∨	T) is a				
a) Tautology	b) Contradic	tion	c) Cont	ingency	d) None of the mentioned
38. A ∧ ¬ (A ∨ (A ∧	T)) is always	S			
a) True					
b) False					
39. (A V F) V (A V 7	Γ) is always _				
a) True					
b) False					
40. $A \rightarrow (A \lor q)$ is a	a				
a) Tautology	b) Contradic	tion	c) Cont	ingency	d) None of the mentioned
41. The contra posi	tive of $p \rightarrow q$	is the pro	positio	n:	
$a) \lnot p \to \lnot q$	$b) \lnot q \to \lnot p$		c) $q \rightarrow$	p	$\mathbf{d}) \neg \mathbf{q} \rightarrow \mathbf{p}$
42. The inverse of p	$0 \rightarrow q$ is the p	roposition	n:		
$a) \mathbin{\neg} p \to \mathbin{\neg} q$	$b) \lnot q \to \lnot p$		c) $q \rightarrow$	p	$\mathbf{d}) \neg \mathbf{q} \rightarrow \mathbf{p}$
43. The converse of	$p \rightarrow q$ is the	propositi	on:		
$a) \mathbin{\neg} p \to \mathbin{\neg} q$	$b) \neg q \rightarrow \neg p$		c) $\mathbf{q} \rightarrow$	p	$\mathbf{d}) \lnot \mathbf{q} \to \mathbf{p}$
44. What is the con whenever it is drizz	-	f the cond	itional	statement? "]	The home team misses
a) If it is drizzling, then	n home team mis	sses			
b) If the home team mi	sses, then it is d	rizzling			
c) If it is not drizzling,	then the home t	eam does no	ot misses	;	
d) If the home team win	ns, then it is not	drizzling			

45. What is the converse of the conditional statement "If it ices today, I will play ice hockey tomorrow.

- a) "I will play ice hockey tomorrow only if it ices today."
- b) "If I do not play ice hockey tomorrow, then it will not have iced today."
- c) "If it does not ice today, then I will not play ice hockey tomorrow."
- d) "I will not play ice hockey tomorrow only if it ices today."

46. What are the contrapositive of the conditional statement "I come to class whenever there is going to be a test.

- a) "If I come to class, then there will be a test."
- b) "If I do not come to class, then there will not be a test."
- c) "If there is not going to be a test, then I don't come to class."
- d) "If there is going to be a test, then I don't come to class."

47. What are the inverse of the conditional statement "A positive integer is a composite only if it has divisors other than 1 and itself."

- a) "A positive integer is a composite if it has divisors other than 1 and itself."
- b) "If a positive integer has no divisors other than 1 and itself, then it is not composite."
- c) "If a positive integer is not composite, then it has no divisors other than 1 and itself."
- d) None of the mentioned

48. What are the converse of the conditional statement "When Raj stay up late, it is necessary that Raj sleep until noon."

- a) "If Raj stay up late, then Raj sleep until noon."
- b) "If Raj does not stay up late, then Raj does not sleep until noon."
- c) "If Raj does not sleep until noon, then Raj does not stay up late."
- d) "If Raj sleep until noon, then Raj stay up late."

49. What are the contrapositive of the conditional statement "Medha will find a decent job when she labour hard."?

- a) "If Medhalabour hard, then she will find a decent job."
- b) "If Medha will not find a decent job, then she not labour hard."
- c) "If Medha will find a decent job, then she labour hard."
- d) "If Medha not labour hard, then she will not find a decent job."

50. What are the inconvenient in exam		nal statement "If you n	nake your notes, it will be a
a) "If you make notes, t	hen it will be a convenier	nt in exams."	
b) "If you do not make	notes, then it will not be	a convenient in exams."	
c) "If it will not be a con	nvenient in exams, then y	ou did not make your note	s."
d) "If it will be a conver	nient in exams, then you	make your notes	
51. A non empty set	A is termed as an al	gebraic structure	
a) With respect to binar	ry operation *	b) With respect to terna	ry operation?
c) With respect to binar	ry operation +	d) With respect to unar	y operation –
52. An algebraic str	ructure is called	a semigroup.	
a) (P, *) b) (Q,	+, *) c) (P,	+) d) (+, *)	
53. Condition for m	onoid is		
$\mathbf{a})\;(\mathbf{a}+\mathbf{e})=\mathbf{a}$	b) $(a * e) = (a + e)$	c) $a = (a * (a + c))$	e) \mathbf{d}) ($\mathbf{a} * \mathbf{e}$) = ($\mathbf{e} * \mathbf{a}$) = \mathbf{a}
54. A monoid is call	ed a group if	_	
a) (a * a) = a = (a + c)	b) $(a * c) = (a - a)$	+ c) $c) (a + c) = a$	d) $(a * c) = (c * a) = e$
55. A group (M,*) is	s said to be abelian if		
$\mathbf{a})\;(\mathbf{x}+\mathbf{y})=(\mathbf{y}+\mathbf{x})$	b) $(x * y) = (y * y)$	(x + y) = x	$\mathbf{d})\ (\mathbf{y}\ *\ \mathbf{x}) = (\mathbf{x} + \mathbf{y})$
56. Matrix multiplie	cation is a/an pr	roperty.	
a) Commutative	b) Associative	c) Additive	d) Disjunctive
57. A cyclic group o	an be generated by a	n/an element.	
a) Singular	b) Non-singula	ar c) Inverse	d) Multiplicative
58. How many prop	erties can be held by	a group?	
a) 2 b) 3 c) 5	d) 4		
59. A cyclic group is	s always		
a) Abelian group	b) Monoid	c) Semigroup	d) Subgroup
60. {1, i, -i, -1} is			
a) Semi group	b) Subgroup	c) Cyclic group	d) Abelian group
61 are	called group postula	tes.	
a) Group lemmas	b) Group theories	c) Group axioms	d) Group

62. A subgroup has t	he properties	of			
a) Closure, associative		b) Commutative, associative, closure			
c) Inverse, identity, assoc	iative	d) Clos	ure, associative, Identity	y, Inverse	
63. If $a * b = a$ such t	hat a * (b * c)	= a * b	$\mathbf{o} = \mathbf{a} \text{ and } (\mathbf{a} * \mathbf{b}) * \mathbf{c}$	= a * b =	a then
a) * is associative	b) * is commutat	tive	c) * is closure	d) * is a	belian
64. The set of odd an	d even positiv	e integ	ers closed under mu	ıltiplicati	on is
a) a free semi group of (M	1 ,×)	b) a sul	b semi group of (M, ×)		
c) a semi group of (M, \times)		d) a sul	bgroup of (M, \times)		
65. If F is a free semi	group on a set	S, the	n concatenation of t	wo even	words is
a) a semi group of F		b) a sul	ogroup of F		
c) Monoid of F d) Cyclic group of F					
66. The set of rationa	al numbers for	m an a	abelian group under	•	
a) Association	b) Closure		c) Multiplication		d) Addition
67. Condition of sem	igroup homon	orphi	sm should be		
$\mathbf{a})\ \mathbf{f}(\mathbf{x}\ *\ \mathbf{x}) = \mathbf{f}(\mathbf{x}\ *\ \mathbf{y})$	b) f (x) =	f (y)	c) f(x) * f(y) =	f(y)	d) $f(x * y) = f(x) * f(y)$
68. A function f:(M,*	e)→(N,×) is a h	omom	orphism if		
$\mathbf{a)}\;\mathbf{f}(\mathbf{a,b})=\mathbf{a}\;*\;\mathbf{b}$	b) $f(a, b) = a/b$		c) $f(a, b) = f(a) + f(b)$		d) $f(a, b) = f(a) * f(a)$
69. A function define numbers, then		x such	1 that f(x+y) = 2x + 1	y under	the group of real
a) Isomorphism exists		b) Hon	nomorphism exists		
c) Heteromorphic exists		d) Asso	ciation exists		
70. If $x * y = x + y + z$	x y then (G, *)	is			
a) Monoid	b) Abelian group	p	c) Commutative semi ş	group	d) Cyclic group
71. Let $(A7, \otimes 7) = (\{3, 6\}, Y = \{2, 3, 5\}. W$				o sub gro	$ups X and Y. X = \{1$
a) 65 b) 5	c) 32		d) 18		
72. A relation (34×7)	$(8) \times 57 = 57 \times$	(78 × 3	34) can have	pro	perty.
a) Distributive	b) Associative		c) Commutative	d) Clos	ure

$2n$, x_n) w	here x _n sta		olication-modulo-m"	cation-modulo-n" and B_2 : ({0, 1, are the two statements. Both B_1
a) Groups	b)	Semi groups	c) Subgroups	d) Associative subgroup
_	_	65 elements and der of K inters	-	os namely K and L with order 14
a) 10	b) 42	c) 5	d) 35	
75. Consider properties of		y operations on	X, a * b = a + b + 4,	for $a, b \in X$. It satisfies the
a) Abelian grou	up	b) \$	Semi group	
c) Multiplicativ	ve group	d)]	Isomorphic group	
	•	-	ne rational number g at for the group?	iven by $a * b = a + b + ab$. Which
a) Closure pro	perty	b)]	dentity property	
c) Symmetric p	oroperty	d) <i>a</i>	Associative property	
77. Let G be Determine the	_	-	ıb groups M & N suc	ch that M =56 and N =123.
a) 1	b) 56	c) 14	d) 78	
78. A group	$G, (\{0\}, +)$	under addition	operation satisfies v	which of the following properties?
a) Identity, mu	ltiplicity and	inverse		
b) Closure, ass	ociativity, in	verse and identity		
c) Multiplicity,	associativity	and closure		
d) Inverse and	closure			
79. If (M, *)	is a cyclic	group of order	73, then number of g	generator of G is equal to
a) 89	b) 23	c) 72	d) 17	
		ıral numbers, { properties will		ed under addition operation.
a) Closure pro	perty	b) <i>a</i>	Associative property	
c) Symmetric p	oroperty	d)]	dentity property	
81. In a grou	ıp there mı	ust be only	element.	
a) 1	b) 2	c) 3	d) 5	

82 is the	multiplica	tive identity o	of natural numbers	,
a) 0 b) -1	c) 1	d) 2	
83. An identity	element of	a group has _	element.	
a) Associative	b) Cor	nmutative	c) Inverse	d) Homomorphic
84 matr	ices do not	have multipli	cative inverses.	
a) Non-singular	b) Sin	gular	c) Triangular	d) Inverse
85. If X is an id	lempotent n	onsingular m	natrix, then X must	be
a) Singular matrix	K	b) Id	entity matrix	
c) Idempotent ma	trix	d) No	onsingular matrix	
86. If A, B, and	l C are inve	rtible matrice	es, the expression (A	AB ⁻¹) ⁻¹ (CA ⁻¹) ⁻¹ C2 evaluates to
a) BC b	o) C ⁻¹ BC	a) A I	B ⁻¹ d) C ⁻¹ B	
,		ŕ	,	
8%. If the sum (of elements	in each row o	i an n×n matrix Z	is zero, then the matrix is
a) Inverse	— b) Noi	n-singular	c) Additive inverse	d) Singular
88	_ are the sy	mmetry grou	ips used in the Star	idard model.
a) Lie groups	b) Sub	ogroups	c) Cyclic groups	d) Poincare groups
89. A semigrou	p S under b	oinary operat	ion * that has an id	entity is called
a) Multiplicative i	dentity	b) Monoid	c) Subgrou	d) Homomorphism
90. An element	a in a mon	oid is called a	n idempotent if	
a) $a^{-1} = a*a^{-1}$	b) a*a	$a^2=a$	c) $a^2 = a * a = a$	d) a ³ =a*a
91. A trivial su	bgroup con	sists of		
a) Identity elemen	ıt	b) Coset	c) Inverse element	d) Ring
92. Minimum s	subgroup of	a group is ca	lled	_
a) A commutative	subgroup		b) A lattice	
c) A trivial group			d) A monoid	
93. Let K be a the size of H is	_			of K and H <k. is="" it="" known="" td="" that<=""></k.>
) 2	c) 3	d) 4	

94 is 1	not necessarily a	a property of a	a Group.	
a) Commutativity		b) Existence of	inverse for	every element
c) Existence of Identity	y	d) Associativity	7	
95. A group of rati	onal numbers is	s an example o	of	
a) A subgroup of a gro	oup of integers		b) A sub	group of a group of real numbers
c) A subgroup of a gro	up of irrational nu	ımbers	d) A sub	group of a group of complex numbers
96. Intersection of	subgroups is a			
a) Group	b) Subgroup	c) Sem	igroup	d) Cyclic group
97. The group of m invertible matrices			is	s a subgroup of the group of
a) 2 b) 3	c) 1	d) 4		
98. What is a circle	e group?			
a) A subgroup comple	x numbers having	magnitude 1 of t	he group of	f nonzero complex elements
b) A subgroup rationa	l numbers having	magnitude 2 of t	ne group of	f real elements
c) A subgroup irration	al numbers having	g magnitude 2 of	the group	of nonzero complex elements
d) A subgroup comple	x numbers having	magnitude 1 of t	he group o	f whole numbers
99. A normal subg	roup is			
a) A subgroup under r	nultiplication by tl	ne elements of th	e group	
b) An invariant under	closure by the eler	nents of that gro	up	
c) A monoid with same	e number of eleme	nts of the origina	l group	
d) An invariant equip	oed with conjugation	on by the elemen	ts of origin	al group
100. Two groups a	re isomorphic i	f and only if _		_ is existed between them.
a) Homomorphism		b) Endomorph	ism	
c) Isomorphism		d) Association		
101. a * H is a set o	of coset.			
a) Right	b) Left	c) Sub		d) Semi
102. $a * H = H * a$	relation holds if	f		
a) H is semi group of a	n abelian group	b) H is	monoid of	a group
c) H is a cyclic group		d) H is	subgroup	of an abelian group

103. Lagrange	s theorem specifies			
a) The order of se	migroup is finite			
b) The order of th	e subgroup divides the o	order of the fini	e group	
c) The order of ar	abelian group is infinite	2		
d) The order of th	e semigroup is added to	the order of the	group	
104. A function	is defined by $f(x)=2$	\mathbf{x} and $\mathbf{f}(\mathbf{x} + \mathbf{y})$	$= \mathbf{f}(\mathbf{x}) + \mathbf{f}(\mathbf{y}) \mathbf{i}\mathbf{s}$	called
a) Isomorphic	b) Homomorphic	e	c) Cyclic group	d) Heteromorphic
105. An isomor	phism of a group on	ito itself is ca	lled	
a) Homomorphisi	n	b) Heteromorp	hism	
c) Epimorphism		d) Automorphi	sm	
106. The eleme	nts of a vector space	form a/an _	under vecto	r addition.
a) Abelian group		b) Commutativ	e group	
c) Associative gro	up	d) Semi group		
107. A set of re	presentatives of all t	he cosets is c	alled	_
a) Transitive	b) Reversal	c) Equ	ivalent	d) Transversal
108. Which of	the following stateme	ent is true?		
a) The set of all ra	ntional negative numbers	forms a group	under multiplicati	ion
b) The set of all m	atrices forms a group ur	nder multiplicat	ion	
c) The set of all no	on-singular matrices for	ns a group und	er multiplication	
d) The set of matr	rices forms a subgroup u	nder multiplica	tion	
109. How man	y different non-isom	orphic Abelia	n groups of or	der 8 are there?
a) 5	c) 4 c) 2	d) 3		
	the set B* of all strin operator for strings	~	lphabet set B =	{0, 1} with the
a) Does not form	a group			
b) Does not have	the right identity element	t		
c) Forms a non-co	mmutative group			
d) Forms a group	if the empty string is rea	noved from		
111. An infinit	e cyclic group does n	ot have a	series.	
a) AP	o) GP c) Comp	osite	d) Finite	

112. Every cyclic gi	oup is a/an				
a) Infinite subgroup		b) Abelian grou	иp		
c) Monoid		d) Commutativ	e semi grouj	p	
113. What is an irre	educible modul	le?			
a) A cyclic module in a	ring with any non	ı-zero element as	its generato	r	
b) A cyclic module in a	ring with any pos	itive integer as it	s generator		
c) An acyclic module in	a ring with ration	nal elements as it	s generator		
d) A linearly independe	ent module in a sei	migroup with a s	et of real nu	mbers	
114. A finite group	G of order 219	is	_		
a) A semi group	b) A subgroup	c) A co	mmutative i	inverse	d) A cyclic group
115. The number of	f generators of	cyclic group o	of order 21	9 is	<u></u>
a) 144 b) 124	c) 56	d) 218			
116. The order of a	simple abelian	group is			
a) Infinite	b) Real number	c) Fini	te d)) Prime	
117. The Number o	f Elements Sati	isfying g7=e ir	ı a finite G	roup F is	
a) Even b) Not	a number	c) Odd	d) Rationa	ւլ	
118. All the rings of	f order p2 is				
a) Associative	b) Cyclic	c) Inve	erse	d) Co	mmutative
119. An element of	a commutative	ring R(1≠0) i	s nilpotent	if	
a) a+1=0		b) $a^n = 0$, for so	me positive	integer n	
c) $a^n = 1$, for some integ	ger n	$\mathbf{d}) \mathbf{a}^2 = 0$			
120. A group G of o	order 20 is				
a) Solvable	b) Unsolvable	c) 1	d)) Not determi	ined
121. Consider an in p is	teger 23 such t	hat 23 >= 3p f	or a 2p-cy	cle in a per	rmutation group, then
a) Odd prime	b) Even prime	c) Rati	ional numbe	r	d) Negative prime
122. Suppose $K_m =$ subgroup of S_{m} .	$\{P \in S_m, P \text{ is } 0$	odd prime}. D	etermine (the set for	which $m \ge 3 K_m a$
a) {3, 5, 7, 11, 13,}		b) {-14	1, -8, -3, 0, 3,	8, 14}	
c) {2, 4, 6, 8, 10, 12}		d) {12,	25, 56, 78, 1	34,}	

123. The dih	edral gro	oup having or	der 6 ca	n have degre	e			
a) 3	b) 26	c) 326		d) 208				
124. Let (z, *	124. Let $(z, *)$ is a group with $x * y = x + y - 2$ then inverse of x is							
a) $-(x + 4)$		b) $(x^2 + 6)$		c) $(x + y) / 5$		$d) (3y + 4x^2)$		
125. Let X be exist?	e a n-squ	are matrix su	ch that	Y = X + 8I. V	Vhich of	f the following p	roperty will	
a) Idempotent		b) Y transpose i	s nilpotei	nt c) X nil	lpotent	d) Y inver	ese	
		lower triangu		rix with all di	iagonal	entries zero. The	e resultant	
a) Idempotent		b) Singular		c) Nilpotent		d) Inverse		
127. If Y ⁹⁸ (a of Y ⁹⁷ .	raised t	o the power o	$\mathbf{f}5)=0$	and Y is a 97-	-square	matrix. Determi	ine the value	
a) I+Y		b) -Y+3		c) 0		d) Y2		
128. If 54 th rerank of the n		7 th row matri	x is line	early independ	dent wit	th each other the	n find the	
a) 61		b) 54		c) 187		d) 32		
				ries such that the 4 x 4 ident		, for some $k \ge 1$. This is a second contact.	Find the	
a) 72		b) 1		c) 4		d) 36		
130. Suppose type of perm			are the	two permutat	ion gro	ups that form cy	cles. What	
a) odd		b) Even		c) Acyclic		d) Prime		
(131) A grap	h G is ca	lled a	, if it is	a connected a	cyclic g	raph		
a) Cyclic grap	h	b) Regular gra	ph	c) Tre	ee	d) Not a graph		
(132) What is with 3 chance	•	bability of ch	oosing (correctly an u	nknowi	n integer betwee	n 0 and 9	
a) 963/1000		b) 966/1000		c) 968/1000		d) 969/1000		
(133) In an u	ndirecte	d graph the n	umber	of nodes with	odd de	gree must be		
a) Zero		b) Odd	c) Prime	2	d) Even	ı		
(134) A grap	h is a col	llection of						
a) Row and co	lumns		b) Verti	ces and edges				
c) Equations			d) None	of these				

(135) The relation {	(1,2), (1,3), (3,1), (1,1), (3,3), (3,2), (1,4)	4), (4,2), (3,4)} is	
a) Reflexive	b) Transitive	c) Symmetric	d) Asymmetric	
(136) An undirected vertices are	d graph possesse	es a eulerian circuit if	and only if it is con	nected and its
a) All of even degree		b) All of odd degree		
c) Of any degree		d) Even in number		
(137) How many rewith n elements that		on a set with n elemend symmetric?	nts that are symme	tric and a set
a) 2n(n+1)/2 and 2n.3n	n(n-1)/2	b) 3n(n-1)/2 and	2n(n-1)	
c) 2n(n+1)/2 and 3n(n-	-1)/2	d) 2n(n+1)/2 and	2n(n-1)/2	
(138) The number of	of colors require	d to properly color th	e vertices of every p	planer graph is
a) 2	b) 3	c) 4	d) 5	
(139) In how many ways can a president and vice president be chosen from a set of 30 candidates?				
a) 820	b) 850	c) 880	d) 870	
(140) Consider an undirected random graph of eight vertices. The probability that there is an edge between a pair of vertices is $\frac{1}{2}$. What is the expected number of unordered cycles of length three?				
a) 1/8	b) 1	c) 7	d) 8	
(141) In a graph if e	e = (u, v) means			
a) u is adjacent to v but v is not adjacent to u				
b) e begins at u and en	ds at v			
c) u is processor and v is successor				
d) Both b and c				
(142) A minimal spa	anning tree of a	graph G is		
a) A spanning sub gra	ph	b) A tree		
c) Minimum weights		d) All of above		
(143) The number of	of leaf nodes in a	complete binary tree	of depth d is	
a) 2d	b) 2d-1+1	c) 2d+1+1	d) 2d+	1
(144) A partial orde	ered relation is t	ransitive, reflexive an	d	
a) Antisymmetric	b) Bisyn	nmetric c) Anti re	flexive. d) Asy	mmetric

(145) In a	graph if e = [u, v], Then u a	nd v are called			
a) Endpoin	ts of e	b) Adjacent	nodes	c) Neighbors	d) All of above	
	(146) In how many ways can a hungry student choose 3 toppings for his prize from a list of 10 delicious possibilities?					
a) 100	b) 120	c) 110	d) 150			
	aph with n ve of edges are	ertices will defi	nitely have a p	arallel edge or self	loop if the total	
a) Greater	than n – 1		b) less than	n (n – 1)		
c) Greater t	chan n (n – 1) / 2		d) less than	$n^2/2$		
(148) A ve	rtex of a grap	oh is called eve	n or odd depen	ding upon		
a) Total nu	mber of edges in	n a graph is even o	or odd			
b) Total nur	mber of vertices	in a graph is ever	n or odd			
c) Its degree	e is even or odd					
d) None of t	these					
(149) In an	ny undirected	graph the sun	n of degrees of	all the nodes		
a) Must be	even					
b) Are twice	b) Are twice the number of edges					
c) Must be o	c) Must be odd					
d) Need not	be even					
(150) The expression $a + a c$ is equivalent to						
a) a	b)	a+c	c) c	d) 1		
(151) A gr	aph with one	vertex and no	edges is			
a) Multigra	aph b)	Digraph	c) Isolated g	raph	l) Trivial graph	
(152) Leng	gth of the wal	k of a graph is				
a) The number of vertices in walk W b) The number of edges in walk W				<i>I</i>		
c) Total number of edges in a graph			d) Total nu	d) Total number of vertices in a graph		
(153) The	number of co	lors required t	o properly col	or vertices of every	planar graph is	
a) 2	b) 3	c) 4	d) 5			
(154) A gr	aph with no e	edges is known	as empty grap	h. Empty graph is	also known as	
a) Trivial graph b) Regular graph						
c) Bipartite graph d) No			None of these			

(155) Which two of the following are equivalent for an undirected graph G?			
(i) G is a tree			
(ii) There is at least one	path between any two dis	stinct vertices of G	
(iii) G contains no cycles	s and has (n-1) edges		
(iv)G has n edges			
a) (i) and (ii)	b) (i) and (iii)	c) (i) and (iv)	d) (ii) and (iii)
(156) Choose the mo	ost appropriate defini	tion of plane graph	
a) A graph drawn in a	plane in such a way that	any pair of edges meet on	ly at their end vertices.
	-	f the vertex set of graph c each edge of G has one er	an be partitioned into two non - nd in X and one end in Y.
c) A simple graph whic	h is Isomorphic to Hamilt	onian graph	
d) None of these			
(157) A continuous	non intersecting curv	e in the plane whose o	origin and terminus coincide
a) Planer	b) Jordan	c) Hamiltonian	d) All of these
(158) A graph with n vertices will definitely have a parallel edge or self loop of the total number of edges are			
a) more than n	b) more than $n+1$	c) more than (n + 1)/2	d) more than n (n - 1) / 2
(159) A debating team consists of 3 boys and 2 girls. Find the number of ways they can sit in a row?			
a) 120	b) 24	c) 720	d) 12
(160) Which one of	the following stateme	nts is incorrect?	
a) The number of region	ons corresponds to the cyc	clomatic complexity.	
b) Cyclometric complexity for a flow graph G is $V(G) = N - E + 2$, where E is the number of edges and N is the number of nodes in the flow graph.			
c) Cyclometric complexity for a flow graph G is $V\left(G\right)=E-N+2$, where E is the number of edges & N is the number of nodes in the flow graph.			
d) Cyclometric complex contained in the flow gr		V(G) = P + 1, where P is	the number of predicate nodes
(161) Which of the f	Collowing pair is not c	ongruent modulo 7?	
a) 10, 24	b) 25, 56	c) -31, 11	d) -64, -15
(162) The maximum degree of any vertex in a simple graph with n vertices is			
a) n-1	b) n + 1	c) 2n – 1	d) n

(163) The complete graph with four vertices has k edges where k is				
a) 3	b) 4	c) 5	d) 6	
(164) Consider a weighted undirected graph with positive edge weights and let (u, v) be an edge in the graph. It is known that the shortest path from source vertex s to u has weight 53 and shortest path from s to v has weight 65. Which statement is always true?				
a) Weight (u, v) <= 12		b) Weight $(u, v) = 12$		
c) Weight (u, v) >= 12		d) Weight $(u, v) > 12$		
(165) How many on 2-element set?	to (or surjective) fund	ctions are ther	e from an n-element	(n => 2) set to a
a) 2n	b) 2n – 1	c) 2n – 2	d) $2(2n-2)$	
(166) Suppose v is a	n isolated vertex in a	graph, then th	ne degree of v is	
a) 0	b) 1	c) 2	d) 3	
(167) The number of nodes in a complete binary tree of height h (with roots at level 0) is equal to				
a) 20 + 21 + 2h	a) $20 + 21 + \dots 2h$ b) $20 + 21 + \dots 2h - 1$			
c) $20 + 21 + \dots 2h + 1$	c) 20 + 21 + 2h + 1 d) 21 + 2h+1			
(168) Hasse diagram	n are drawn from			
a) Partially ordered se	ts b) Lattices	c) Bool	lean algebra	d) none of these
(169) In how many ways can 5 balls be chosen so that 2 are red and 3 are black?				
a) 910	b) 990	c) 970	d) 960	
(170) Circle has				
a) No vertices	b) Only 1 vertex	c) 8 vertices	d) None of the	ese
(171) How many different words can be formed out of the letters of the word VARANASI?				
a) 64	b) 120	c) 40320	d) 720	
(172) A graph is tree if and only if				
a) Is planar	b) Contains a c	ircuit		
c) Is minimally	d) Is completely	y connected		

(1	73) If B is a	Boolean alge	bra, then w	hich of the follo	owing is true
a)	B is a finite l	but not complem	ented lattice		
b)	B is a finite,	complemented a	nd distributiv	e lattice	
c)	B is a finite, o	distributive but r	not complemen	nted lattice	
		ibutive lattice	•		
(1 co	74) Let G b	e a simple und		U 1	0 vertices with 15 edges. If G is a n any embedding of G on the plane is
a)	3	b) 4	c) 5	d) 6	
(1 '	75) The nu	nber of distin	guishable n	ermutations of	the letters in the word BANANA are,
		b) 36	c) 20	d) 10	, , , , , , , , , , , , , , , , , , ,
	60	ŕ	,	,	
(1	76) If R is a	relation "Les	ss Than" fro	om $A = \{1, 2, 3,$	4} to B = $\{1, 3, 5\}$ then RoR ⁻¹ is
a)	{(3,3), (3,4), (3,5)} b) {(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)}				
c)	{(3,3), (3,5), (5,3), (5,5)}	d) {	{(1,3), (1,5), (2,3), ((2,5), (3,5), (4,5)}
	(177)	Two sets are	called disjo	int if there	is the empty set.
	a) Unio			Difference	
	c) Inter	section	d) C	Complement	
	(178)	The complen	nent of the s	set A is	
	a) A – E	-		J – A	
	c) A – U		d) B	$\mathbf{B} - \mathbf{A}$	
	(179)	The set differ	rence of the	set A with null	set is
	a) A		b) n	ull	
	c) U		d) B	3	
	(180)	How many e	ven 4-digit v	whole numbers	are there?
	a) 1358		b) 7		
	c) 4500		d) 3		
	(181)	How many fi	ve-digit nur	nbers can be m	ade from the digits 1 to 7 if repetition
	is allov	wed?			
	a)16807			4629	
	c) 23467	7	d) 3	2354	

(182)

Which sets are not empty?

a) {x: x is an even prime greater than 3}
b) {x: x is a multiple of 2 and is odd}
c) {x: x is an even number and x+3 is even}
d) {x: x is a prime number less than 5 and is odd}

(183) In which of the formula a) A= {1, 2, 3}, B = {2, 3, 4} b) A= {1, 2, 3}, B = {1, 2, 3, 4} c) A= {1, 2, 3}, B = {2, 3, 1} d) A= {1, 2, 3, 4, 5, 6}, B = {2, 3, 1}	
elements and set $C \cap A$, the set B \cap C consists of 8 elements, set A \cap B consists of 7 consists of 7 elements then the minimum element in set A U
B U C will be	1) 44
a) 8	b) 14
c) 22	d) 15
(185) A function is said	d to be if and only if $f(a) = f(b)$ implies that
a = b for all a and b in t	he domain of f
a) One-to-many	b) One-to-one
c) Many-to-many	d) Many-to-one
(186) Which of the foll	lowing function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is not onto?
$\mathbf{a)}\ \mathbf{f}(\mathbf{a},\mathbf{b}) = \mathbf{a} + \mathbf{b}$	$\mathbf{b}) \mathbf{f}(\mathbf{a}, \mathbf{b}) = \mathbf{a}$
$c) \mathbf{f}(\mathbf{a}, \mathbf{b}) = \mathbf{b} $	$\mathbf{d}) \mathbf{f}(\mathbf{a}, \mathbf{b}) = \mathbf{a} - \mathbf{b}$
	e function from the set of integers to itself, defined by $f(x) =$ Then the composition of f and g is b) $6x + 7$ d) $6x + 8$
(188) The inverse of fu a) $f^{-1}(y) = (y-2)^{1/2}$ c) $f^{-1}(y) = (y)^{1/3}$	b) $f^{-1}(y) = (y-2)^{1/3}$ d) $f^{-1}(y) = (y-2)$
$\mathbf{c}(\mathbf{r}) = \mathbf{c}(\mathbf{r})$	\mathbf{u}_{j} 1 \mathbf{u}_{j} \mathbf{u}_{j} \mathbf{u}_{j}
(189) How many binar	ry relations are there on a set S with 9 distinct elements?
a) 2 ⁹⁰	b) 2 ¹⁰⁰
c) 2 ⁸¹	d) 2 ⁶⁰
	ation on a set S and R is reflexive if and only if
$\mathbf{a}) \ \mathbf{r}(\mathbf{R}) = \mathbf{R}$	$\mathbf{b})\;\mathbf{s}(\mathbf{R})=\mathbf{R}$
$\mathbf{c})\ \mathbf{t}(\mathbf{R}) = \mathbf{R}$	$\mathbf{d}) \mathbf{f}(\mathbf{R}) = \mathbf{R}$
	osure of the relation {(0,1), (1,2), (2,2), (3,4), (5,3), (5,4)} on b) {(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)}
a) Not a partial ordering becb) a partial ordering since itc) a partial ordering since it	ation, <, on a set of real numbers is eause it is not asymmetric and irreflexive equals antisymmetric is asymmetric and reflexive is antisymmetric and reflexive ause it is not antisymmetric and reflexive

```
(193) Suppose a relation R = {(3, 3), (5, 5), (5, 3), (5, 5), (6, 6)} on S = {3, 5, 6}. Here R is known as ______

a) Equivalence relation b) Reflexive relation c) Symmetric relation d) Transitive relation
```

(194) Consider the congruence 45≡3(mod 7). Find the set of equivalence class representatives

```
a) {..., 0, 7, 14, 28, ...}
b) {..., -3, 0, 6, 21, ...}
c) {..., 0, 4, 8, 16, ...}
d) {..., 3, 8, 15, 21, ...}
```

(195) Which of the following relations is the reflexive relation over the set $\{1, 2, 3, 4\}$?

```
a) {(0,0), (1,1), (2,2), (2,3)}
b) {(1,1), (1,2), (2,2), (3,3), (4,3), (4,4)}
c) {,(1,1), (1,2), (2,1), (2,3), (3,4)}
d) {(0,1), (1,1), (2,3), (2,2), (3,4), (3,1)
```

(196) For a, $b \in R$ define a = b to mean that |x| = |y|. If [x] is an equivalence relation in R. Find the equivalence relation for [17]

```
a) {...,-11, -7, 0, 7, 11,...}
b) {2, 4, 9, 11, 15,...}
c) {-17, 17}
d) {5, 25, 125,...}
```