1

Assignment 16

Rubeena Aafreen

Download the latex-tikz codes from

https://github.com/rubeenaafreen20/EE5609/tree/master/Assignment16

1 Problem

True or False? If a diagonalizable operator has only the characteristic values 0 and 1, it is a projection.

2 **Definitions**

Diagonalizable Operator	For a linear operator $T \colon V \longrightarrow V$, T is a diagonalizable operator if \exists some basis for V such that the matrix representing T is a diagonal matrix i.e. $T(X) = AX,$ $\Longrightarrow A$ is a diagonalizable matrix
Properties of Projection	If $n \times n$ matrix A is projection matrix, then $\mathbf{A}^2 = \mathbf{A}$

TABLE 1: Definitions

3 Solution

Diagonalizability	Let A be $n \times n$ matrix. Given that A is diagonalizable, it can be expressed as, $ \mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1} \\ \Rightarrow \mathbf{A} \mathbf{P} = \mathbf{P} \mathbf{\Lambda} \qquad \dots (1) $ where, $\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$
Eigen values	Given that \mathbf{A} has eigen values 0 and 1 $\Rightarrow \mathbf{\Lambda}$ has diagonal entries of 0s and 1s only $\Rightarrow \lambda_i = 0 \text{ or } 1, \qquad i = 0, 1, \dots, n$ $\Rightarrow \lambda_i^2 = 0 \text{ or } 1$ $\Rightarrow \lambda_i^2 = \lambda_i$ $\Rightarrow \mathbf{\Lambda}^2 = \mathbf{\Lambda} \mathbf{\Lambda} = \begin{pmatrix} \lambda_1^2 & 0 & \dots & 0 \\ 0 & \lambda_2^2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n^2 \end{pmatrix} = \mathbf{\Lambda} \qquad \dots (2)$
Projection	$\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ $\Rightarrow \mathbf{A} \mathbf{A} = \mathbf{A} \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ $\Rightarrow \mathbf{A}^{2} = (\mathbf{A} \mathbf{P}) \mathbf{\Lambda} \mathbf{P}^{-1}$ From (1), $\Rightarrow \mathbf{A}^{2} = \mathbf{P} \mathbf{\Lambda} \mathbf{A} \mathbf{P}^{-1}$ $= \mathbf{P} \mathbf{\Lambda}^{2} \mathbf{P}^{-1}$ From (2), $\Rightarrow \mathbf{A}^{2} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ $= \mathbf{A}$ Therefore, $\mathbf{A}^{2} = \mathbf{A}$ Hence, \mathbf{A} is a projection matrix
Conclusion	Given statement is True

TABLE 2: Checking for projection matrix