Diabete ML1

```
"ignore les warning"
import warnings
warnings.filterwarnings('ignore')
```

Import Pandas et le .csv

```
import pandas as pd

df = pd.read_csv("./data/train_with_id.csv")

df.head()
```

	ID	Δαρ	Gender	Polyuria	Polydipsia	sudden weight	waaknass	Polyphagia	Genital		Itchina	Irritahility	de
_	<u> </u>	Age	Gender	roiyuna	roiyaipsia	1033	weakiiess	rollypilagia	unusn	Diarring	Ittillig	IIIItability	
0	1	60	Female	Yes	No	Yes	Yes	No	Yes	Yes	Yes	No	Ye
1	2	85	Male	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Ye
2	3	48	Male	Yes	Yes	Yes	No	Yes	Yes	No	No	No	Ye
3	4	41	Male	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Nc
4	5	57	Male	No	No	No	No	Yes	No	Yes	No	No	Nc
4													•

Vérifie si il ya des données manquantes dans certains index

```
df.isna().sum()
ID
Age
                       0
Gender
                       0
Polyuria
Polydipsia
sudden weight loss
weakness
Polyphagia
Genital thrush
                       0
visual blurring
                       0
Itching
                       0
Irritability
                       0
delayed healing
partial paresis
                       0
muscle stiffness
                       0
Alopecia
                       0
                       0
Obesity
```

localhost:7993 1/6

class
dtype: int64

Vérifie le type de données dans train_with_id.csv

df.dtypes	
ID	int64
Age	int64
Gender	object
Polyuria	object
Polydipsia	object
sudden weight loss	object
weakness	object
Polyphagia	object
Genital thrush	object
visual blurring	object
Itching	object
Irritability	object
delayed healing	object
partial paresis	object
muscle stiffness	object
Alopecia	object
Obesity	object
class	object
dtype: object	

Nettoyage des colonnes, transforme les object en 'boolean' (int)

```
for col in df.select_dtypes(include='object').columns:
    df[col] = df[col].map({"Yes":1,"No":0, "Male":1, "Female":0, "Positive":1, "Negative":0})
df.head()
```

						sudden weight			Genital	visual			de
	ID	Age	Gender	Polyuria	Polydipsia	loss	weakness	Polyphagia	thrush	blurring	Itching	Irritability	he
0	1	60	0	1	0	1	1	0	1	1	1	0	1
1	2	85	1	1	1	1	1	1	1	1	1	0	1
2	3	48	1	1	1	1	0	1	1	0	0	0	1
3	4	41	1	1	1	1	1	1	1	1	1	1	0
4	5	57	1	0	0	0	0	1	0	1	0	0	0
4													•

```
df['Age'].describe() # Détails la colonne age, pas d'incohérence
```

localhost:7993 2/6

```
count
         416.000000
          47.963942
mean
std
          12.137412
min
          16.000000
25%
          38.750000
50%
          48.000000
75%
          57.000000
          90.000000
max
Name: Age, dtype: float64
```

Corrige les index, tout en minuscule et snake_case

Supression id

```
df.drop(columns=['id'], inplace=True)
df.head()
```

	age	gender	polyuria	polydipsia	sudden_weight_loss	weakness	polyphagia	genital_thrush	visual_blurring
0	60	0	1	0	1	1	0	1	1
1	85	1	1	1	1	1	1	1	1
2	48	1	1	1	1	0	1	1	0
3	41	1	1	1	1	1	1	1	1
4	57	1	0	0	0	0	1	0	1
4									•

Export en .csv vers ./data/diabetes_clean.csv

localhost:7993 3/6

```
df.to_csv('./data/diabetes_clean.csv', index=False)
df_clean = pd.read_csv('./data/diabetes_clean.csv')
df_clean.head()
```

	age	gender	polyuria	polydipsia	sudden_weight_loss	weakness	polyphagia	genital_thrush	visual_blurring
0	60	0	1	0	1	1	0	1	1
1	85	1	1	1	1	1	1	1	1
2	48	1	1	1	1	0	1	1	0
3	41	1	1	1	1	1	1	1	1
4	57	1	0	0	0	0	1	0	1
4									

Ignore (seuleument pour Anna)

```
# %pip install seaborn
# %pip install matplotlib
```

Visualisations exploratoires

```
import seaborn as sns
import matplotlib.pyplot as plt
# Configuration du style
sns.set_style("whitegrid")
plt.rcParams['figure.figsize'] = (16, 12)
# Créer une figure avec plusieurs subplots
fig, axes = plt.subplots(2, 3, figsize=(18, 12))
# 1. Distribution de l'âge selon la classe
sns.histplot(data=df_clean, x='age', hue='class', bins=20, kde=True, ax=axes[0, 0], palette='v
axes[0, 0].set_title("Distribution de l'âge selon la classe (0=Négatif, 1=Positif)", fontsize=
axes[0, 0].set_xlabel('Âge')
axes[0, 0].set_ylabel('Fréquence')
# 2. Répartition des classes par genre
class_gender = df_clean.groupby(['gender', 'class']).size().reset_index(name='count')
sns.barplot(data=class_gender, x='gender', y='count', hue='class', ax=axes[0, 1], palette='coo
axes[0, 1].set_title('Répartition Diabète par Genre (0=Femme, 1=Homme)', fontsize=12, fontweig
axes[0, 1].set_xticklabels(['Femme', 'Homme'])
axes[0, 1].set ylabel('Nombre de patients')
# 3. Top 10 symptômes les plus fréquents
symptom_cols = ['polyuria', 'polydipsia', 'sudden_weight_loss', 'weakness', 'polyphagia',
                'genital_thrush', 'visual_blurring', 'itching', 'irritability', 'delayed_heali
                'partial_paresis', 'muscle_stiffness', 'alopecia', 'obesity']
symptom freq = df clean[symptom cols].sum().sort values(ascending=False).head(10)
```

localhost:7993 4/6

```
sns.barplot(x=symptom_freq.values, y=symptom_freq.index, ax=axes[0, 2], palette='rocket')
axes[0, 2].set_title('Top 10 Symptômes les plus fréquents', fontsize=12, fontweight='bold')
axes[0, 2].set xlabel('Nombre de cas')
# 4. Symptôme par sexe
symptom_by_gender = df_clean.groupby('gender')[symptom_cols].mean()
symptom_by_gender.T.plot(kind='barh', ax=axes[1, 0], color=["#ea5c7b", "#30b3a3"])
axes[1, 0].set_title('Prévalence moyenne des symptômes par classe', fontsize=12, fontweight='be
axes[1, 0].set xlabel('Proportion (0-1)')
axes[1, 0].legend(['Female', 'Male'])
# 5. Prévalence des symptômes chez les diabétiques vs non-diabétiques
symptom_by_class = df_clean.groupby('class')[symptom_cols].mean()
symptom_by_class.T.plot(kind='barh', ax=axes[1, 1], color=['#3498db', '#e74c3c'])
axes[1, 1].set title('Prévalence moyenne des symptômes par classe', fontsize=12, fontweight='be
axes[1, 1].set_xlabel('Proportion (0-1)')
axes[1, 1].legend(['Négatif', 'Positif'])
# 6. Boxplot âge par classe
sns.boxplot(data=df_clean, x='class', y='age', ax=axes[1, 2], palette='Set2')
axes[1, 2].set title('Distribution de l\'âge par classe', fontsize=12, fontweight='bold')
axes[1, 2].set_xticklabels(['Négatif', 'Positif'])
axes[1, 2].set_ylabel('Âge')
plt.tight_layout()
plt.show()
# Statistiques descriptives supplémentaires
print("=" * 60)
print("STATISTIQUES DESCRIPTIVES")
print("=" * 60)
print(f"\nNombre total de patients : {len(df_clean)}")
print(f"Cas positifs : {df_clean['class'].sum()} ({df_clean['class'].sum()/len(df_clean)*100:.
print(f"Cas négatifs : {len(df_clean) - df_clean['class'].sum()} ({(1-df_clean['class'].sum()/
print(f"\nÂge moyen des positifs : {df_clean[df_clean['class']==1]['age'].mean():.1f} ans")
print(f"Âge moyen des négatifs : {df_clean[df_clean['class']==0]['age'].mean():.1f} ans")
```

localhost:7993 5/6

STATISTIQUES DESCRIPTIVES

Nombre total de patients : 416 Cas positifs : 256 (61.5%) Cas négatifs : 160 (38.5%)

Âge moyen des positifs : 48.8 ans Âge moyen des négatifs : 46.6 ans

localhost:7993