模块一 相关定理的基本应用

第1节 正弦定理、余弦定理基础模型(★★)

强化训练

1. (\bigstar **) 在 ΔABC 中, $A=30^{\circ}$, $B=45^{\circ}$, a=2 , 则 c= .

答案: $\sqrt{6} + \sqrt{2}$

解析: 已知A, B 可求C, 则题干的a, c, A, C 即为两边两对角, 可用正弦定理求c,

由题意, $A = 30^{\circ}$, $B = 45^{\circ}$,所以 $C = 180^{\circ} - A - B = 105^{\circ}$,

故 $\sin C = \sin 105^\circ = \sin(60^\circ + 45^\circ) = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ = \frac{\sqrt{6 + \sqrt{2}}}{\sqrt{4}}$,

由正弦定理, $\frac{a}{\sin A} = \frac{c}{\sin C}$, 所以 $c = \frac{a \sin C}{\sin A} = \sqrt{6} + \sqrt{2}$.

2. $(2022 \cdot 内江期末 \cdot \star \star)$ ΔABC 的内角 A, B, C 的对边分别为 a, b, c, 若 $a\cos B = b\sin A$, $C = \frac{n}{2}$,

 $c = \frac{3}{2}$, 则b = () 《一数•高考数学核心方法》

- (A) $\frac{\sqrt{6}}{2}$ (B) $\frac{3\sqrt{2}}{2}$ (C) $\frac{3\sqrt{2}+\sqrt{6}}{4}$ (D) $\frac{3\sqrt{3}-3}{2}$

答案: A

解析: 等式 $a\cos B = b\sin A$ 左右两侧都有边,可利用正弦定理边化角,看能否求出某内角,

因为 $a\cos B = b\sin A$,所以 $\sin A\cos B = \sin B\sin A$,又 $0 < A < \pi$,所以 $\sin A > 0$,故 $\cos B = \sin B$,

从而 $\tan B = 1$, 结合 $0 < B < \pi$ 可得 $B = \frac{\pi}{4}$,

到此就已知了B,C和c,求b,这是两边两对角问题,用正弦定理解,

由正弦定理, $\frac{b}{\sin B} = \frac{c}{\sin C}$, 所以 $b = \frac{c \sin B}{\sin C} = \frac{\sqrt{6}}{2}$.

3. (2022 •南京模拟 •★★)已知 △ABC 中,内角 A,B,C 的对边分别为 a,b,c,若 b=2c, $a=\sqrt{6}$, $\cos A=\frac{7}{6}$,

则 $\triangle ABC$ 的面积为 ()

- (A) $\frac{\sqrt{30}}{2}$ (B) $\sqrt{15}$ (C) $\sqrt{30}$ (D) $\frac{\sqrt{15}}{2}$

答案: D

解析: 所给条件涉及三边一角, 可用余弦定理建立方程, 求边,

由余弦定理, $a^2 = b^2 + c^2 - 2bc \cos A$,将 $a = \sqrt{6} \pi \cos A = \frac{7}{8}$ 代入可得: $b^2 + c^2 - \frac{7}{4}bc = 6$ ①,

又b=2c,代入式①可得 $4c^2+c^2-\frac{7}{4}\cdot 2c\cdot c=6$,解得: c=2,所以b=4,

因为已知 $\cos A$,所以算面积选择公式 $S = \frac{1}{2}bc\sin A$,

又
$$\cos A = \frac{7}{8}$$
,且 $0 < A < \pi$,所以 $\sin A > 0$,从而 $\sin A = \sqrt{1 - \cos^2 A} = \frac{\sqrt{15}}{8}$,

故
$$S_{\Delta ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \times 4 \times 2 \times \frac{\sqrt{15}}{8} = \frac{\sqrt{15}}{2}$$
.

4. (★★) 在 $\triangle ABC$ 中,内角 A, B, C 所对的边长分别为 a, b, c,若 $A = \frac{\pi}{3}$, b = 4, $\triangle ABC$ 的面积为 $3\sqrt{3}$,

则 $\sin B =$ ()

(A)
$$\frac{2\sqrt{39}}{13}$$
 (B) $\frac{\sqrt{39}}{13}$ (C) $\frac{5\sqrt{2}}{13}$ (D) $\frac{3\sqrt{13}}{13}$

答案: A

解析: 给出了角 A, 边 b 和面积, 那面积可用 $S = \frac{1}{2}bc\sin A$ 来算,

由题意,
$$S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \times 4 \times c \times \sin \frac{\pi}{3} = \sqrt{3}c = 3\sqrt{3}$$
,所以 $c = 3$,

到此就已知了两边及夹角,可先用余弦定理求第三边,再用正弦定理求 $\sin B$,

由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A = 16 + 9 - 2 \times 4 \times 3 \times \cos \frac{\pi}{3} = 13$, 所以 $a = \sqrt{13}$,

由正弦定理,
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
,所以 $\sin B = \frac{b \sin A}{a} = \frac{4 \times \frac{\sqrt{3}}{2}}{\sqrt{13}} = \frac{2\sqrt{39}}{13}$.

- 5. (2023・全国乙卷・★★★)在 $\triangle ABC$ 中,已知 $\angle BAC=120^{\circ}$, AB=2 , AC=1.
- (1) 求 $\sin \angle ABC$;
- (2) 若 D 为 BC 上一点,且 $\angle BAD = 90^{\circ}$,求 ΔADC 的面积.

解:(1)(已知两边及夹角,可先用余弦定理求第三边,再用正弦定理求角)

由余弦定理, $BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos \angle BAC$

$$=2^2+1^2-2\times2\times1\times\cos120^\circ=7$$
,所以 $BC=\sqrt{7}$,

由正弦定理,
$$\frac{AC}{\sin \angle ABC} = \frac{BC}{\sin \angle BAC}$$
,

所以
$$\sin \angle ABC = \frac{AC \cdot \sin \angle BAC}{BC} = \frac{1 \times \sin 120^{\circ}}{\sqrt{7}} = \frac{\sqrt{21}}{14}$$
.

(2) 如图, 因为 \(\angle BAC = 120^\circ \), \(\angle BAD = 90^\circ \),

所以 $\angle CAD = 30^{\circ}$,

 $(求 S_{\Delta ADC}$ 还差 AD,只要求出 $\angle ABC$,就能在 ΔABD 中求 AD, $\angle ABC$ 可放到 ΔABC 中来求)

由余弦定理推论,
$$\cos \angle ABC = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC}$$

$$=\frac{2^2+(\sqrt{7})^2-1^2}{2\times2\times\sqrt{7}}=\frac{5}{2\sqrt{7}},$$

所以
$$BD = \frac{AB}{\cos \angle ABC} = \frac{4\sqrt{7}}{5}$$
, $AD = \sqrt{BD^2 - AB^2} = \frac{2\sqrt{3}}{5}$,

故
$$S_{\triangle ADC} = \frac{1}{2}AC \cdot AD \cdot \sin \angle CAD = \frac{1}{2} \times 1 \times \frac{2\sqrt{3}}{5} \times \sin 30^{\circ} = \frac{\sqrt{3}}{10}$$
.

- 6. (2023 · 新高考 I 卷 · ★★★) 已知在 ΔABC 中, A+B=3C, 2sin(A-C)=sin B.
- (1) 求 $\sin A$;
- (2) 设AB = 5, 求AB边上的高.

解: (1) 由题意,
$$A+B=\pi-C=3C$$
 ,所以 $C=\frac{\pi}{4}$,

(要求的是 $\sin A$, 故用 $C = \frac{\pi}{4}$ 和 $A + B = \frac{3\pi}{4}$ 将 $2\sin(A - C) = \sin B$ 消元, 把变量统一成 A)

代入
$$2\sin(A-C) = \sin B$$
 可得 $2\sin(A-\frac{\pi}{4}) = \sin(\frac{3\pi}{4}-A)$,

所以
$$2(\sin A\cos\frac{\pi}{4} - \cos A\sin\frac{\pi}{4}) = \sin\frac{3\pi}{4}\cos A - \cos\frac{3\pi}{4}\sin A$$

整理得:
$$\cos A = \frac{1}{3}\sin A$$
,

代入
$$\sin^2 A + \cos^2 A = 1$$
 可得 $\sin^2 A + \frac{1}{9} \sin^2 A = 1$,

所以
$$\sin A = \pm \frac{3\sqrt{10}}{10}$$
,结合 $0 < A < \pi$ 可得 $\sin A = \frac{3\sqrt{10}}{10}$.

(2) 设内角A, B, C 的对边分别为a, b, c,

则
$$c = AB = 5$$
,如图,作 $CD \perp AB$ 于点 D ,

则
$$AB$$
 边上的高 $CD = b \sin A = \frac{3\sqrt{10}}{10}b$ ①,

(接下来求 b. 已知 A, C 可用内角和为 π 求 B, 题干又给了 a, 故已知三角一边,用正弦定理求 b)

$$\sin B = \sin(\frac{3\pi}{4} - A) = \frac{\sqrt{2}}{2}\cos A + \frac{\sqrt{2}}{2}\sin A = \frac{2}{\sqrt{5}},$$

由正弦定理,
$$\frac{b}{\sin B} = \frac{c}{\sin C}$$
, 所以 $b = \frac{c \sin B}{\sin C} = 2\sqrt{10}$,

代入①得 $CD = \frac{3\sqrt{10}}{10} \times 2\sqrt{10} = 6$,故AB边上的高为 6.

《一数•高考数学核心方法》