

Mathématiques Discrètes

Jean-François Hêche 2016-2017

Fiche d'unité

Mathématiques discrètes

Domaine

Ingénierie et Architecture

Filière

Informatique

Orientation

Logiciel (IL)

Mode de formation

Plein temps

Informations générales

Nom:

: Mathématiques discrètes

Identifiant:

MAD

Responsable:

Jean-François Hêche

Charge de travail:

150 heures d'études

Périodes encadrées:

96 (= 72 heures)

Semestre	E1	S1	S2	E2	S3	S4	E3	S5	S6
Cours		96							

Connaissances préalables recommandées

L'étudiant-e doit connaître et savoir utiliser les notions suivantes :

 formalisme mathématique, algèbre élémentaire, définition et propriétés des fonctions usuelles, éléments de calcul vectoriel du programme de mathématiques de la Maturité Professionnelle Technique (MPT).

Conditions pour la programmation automatique de cette unité selon le plan d'études

L'étudiant-e doit avoir obtenu une note supérieure ou égale à la limite de compensation dans les unités : L'étudiant-e doit avoir suivi ou suivre en parallèle les unités :

Objectifs

Ensembles:

- Expliquer les notions d'élément, d'ensemble, de sous-ensemble, d'ensemble des parties et de partition ; faire la différence entre une appartenance et une inclusion.
- Vérifier des identités ensemblistes à l'aide de diagrammes de Venn, de tables d'appartenance ou des propriétés des opérations de base sur les ensembles.
- Expliciter le produit cartésien de plusieurs ensembles donnés ; illustrer graphiquement le produit cartésien de sous-ensembles de nombres réels.
- Préciser les notions d'ensemble fini, dénombrable et non dénombrable.

Version 2014 Page 1

Mathématiques discrètes

 Calculer le cardinal d'un ensemble fini, de l'ensemble des parties d'un tel ensemble, du produit cartésien de plusieurs ensembles ou de l'union de deux ou trois ensembles.

Relations et fonctions :

- Identifier et justifier les propriétés d'une relation (réflexivité, symétrie, antisymétrie, transitivité).
- Décider s'il s'agit d'une relation d'ordre ou d'équivalence et, le cas échéant, déterminer quelles sont les classes d'équivalence.
- Différencier un ordre partiel d'un ordre total et donner le diagramme de Hasse d'une relation d'ordre.
- Déterminer l'image d'une fonction ainsi que l'image d'un sous-ensemble de son domaine de définition ou la préimage d'un sous-ensemble de son codomaine.
- Déterminer si elle est injective ou surjective (et, le cas échéant, donner sa réciproque).
- Calculer la composition de plusieurs fonctions ou relations.

Combinatoire et probabilités discrètes :

- Résoudre des problèmes de dénombrement simples (principe d'addițion et de multiplication, permutations, arrangements et combinaisons, formule du binôme et triangle de Pascal, formule d'inclusion-exclusion).
- Calculer la probabilité d'un événement dans une expérience aux issues élémentaires équiprobables.

Suites et séries :

- Écrire, manipuler et simplifier des expressions mathématiques basées sur les symboles somme et produit.
- Calculer la valeur de séries, notamment arithmétiques et géométriques.
- Appliquer un raisonnement par induction, en particulier dans le cadre du calcul de séries et de problèmes d'arithmétique entière.

Géométrie vectorielle et analytique :

- Définir et utiliser les vecteurs (composantes, addition, Chasles, norme, multiplication par un scalaire, colinéarité).
- Définir et calculer les équations cartésiennes et paramétriques de la droite dans le plan et dans l'espace et du plan dans l'espace.
- Définir et utiliser le produit scalaire dans le plan et l'espace (angles, projection orthogonale).
- Définir et utiliser les produits vectoriel et mixte.
- Déterminer l'angle entre deux vecteurs, ainsi que la projection d'un vecteur sur un autre.
- Déterminer l'angle entre des droites ou des plans.
- Calculer la distance entre des points, droites ou plans.
- Définir et calculer l'équation d'un cercle en géométrie plane.
- Résoudre des problèmes de géométrie analytique dans le plan et l'espace.

Contenu et formes d'enseignement

Cours: 96 périodes

- Ensembles : appartenance, inclusion, opérations sur les ensembles, produit cartésien, ensemble des parties, cardinal.

12

Mathématiques discrètes

 Relations: représentation (graphes, matrices), composition, propriétés (réflexivité, symétrie, antisymétrie, transitivité), relations d'ordre, ordres partiels et totaux, diagrammes de Hasse, relations d'équivalence, classes d'équivalence, partitions. 	12
 Fonctions : domaine de définition et codomaine, image et préimage, composition, propriétés (injectivité, subjectivité, bijectivité), fonction réciproque, parties entières, ensembles dénombrables et non dénombrables. 	6
 Suites et séries : suites numériques, équations de récurrence, symbole somme, sommes multiples, calcul de séries usuelles, manipulation de sommes, symbole produit, fonction factorielle, raisonnement par induction. 	22
 Analyse combinatoire: principes d'addition et de multiplication, permutations, arrangements et combinaisons, formule du binôme et triangle de Pascal, formules d'inclusion-exclusion, introduction aux probabilités discrètes. 	18
 Géométrie vectorielle et analytique : opérations vectorielles, produit scalaire, orthogonalité, produits vectoriel et mixte, équations de la droite dans le plan, équations de la droite et du plan dans l'espace, angles et distances, équation du cercle 	26

Bibliographie

- Kenneth H. Rosen, Mathématiques discrètes, édition révisée, 2006, Chenelière, Montréal.
- Ronald L. Graham, Donald Ervin Knuth, Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science, 1994, Addison-Wesley.
- Earl W. Swokowski, Jeffrey A. Cole, Trigonométrie, géométrie vectorielle et géométrie analytique, 2007, LEP Loisirs et Pédagogie, Lausanne.

Contrôle de connaissances

cours: l'acquisition des matières de cet enseignement sera contrôlée au fur et à mesure par des tests et des travaux personnels tout au long de son déroulement. il y aura au moins 3 tests d'une durée totale de 6 périodes.

examen: l'atteinte de l'ensemble des objectifs de formation sera vérifiée lors d'un contrôle final commun d'une durée d'au moins 1.5 heures.

Calcul de la note finale

Note finale = moyenne cours x = 0.5 + moyenne examen x = 0.5

Version 2014 Page 3