Reinforcement Pre-Training (arxiv)

Key Highlights

問題

- 這篇文章旨在解決什麼問題?這篇文章旨在解決將增強學習(RL)應用於大型語言模型(LLM)訓練的可擴展性和通用性挑戰。目前LLM的RL方法存在一些局限: RLHF依賴昂貴的人類偏好數據,容易受到獎勵欺騙的影響;而RLVR受限於帶有可驗證答案的註釋數據的稀缺性,使其僅限於領域特定的微調,而非通用的預訓練。
- 現有方法有哪些,並且它們有哪些局限性? 現有方法包括:(1)標準的下一個標 記預測預訓練,它學習表面的標記級相關性;(2)RLHF,成本高並易於獎勵欺 騙;(3)RLVR,受限於註釋數據的稀缺性且僅限於領域特定應用。

解決方案

- **這篇文章提出了什麼解決方案?** 這篇文章介紹了增強預訓練(RPT),將下一個標 記預測重新構建為使用RL訓練的推理任務。模型因正確預測下一個標記而獲得可驗 證的獎勵,將大量未註釋的文本數據轉化為無需外部註釋的通用RL巨大數據集。
- 這個想法的靈感來源是什麼?是否受其他文章影響? 該方法橋接了可擴展的自我監督預訓練與RL的力量,受現有RL應用於LLM訓練方法局限性而啟發。它基於 RLVR的概念但延伸至通用預訓練而非領域特定的微調。
- 什麼理論基礎支持這個方法? RPT使用前綴匹配獎勵系統,具體是如果模型預測的標記序列完全匹配真實前綴,則獲得1分獎勵,否則獲得0分。這提供了可驗證的基於規則的獎勵,最小化了獎勵欺騙並鼓勵下一個標記推理模式而非記憶。

實驗

- 實驗表現如何? RPT-14B在所有難度級別的下一個標記預測準確性上均超越基線模型。它的表現匹配顯著更大的模型(如R1-Distill-Qwen-32B)。擴展曲線顯示在簡單、中等和困難數據上的R²值分別為0.995、0.997和0.989,指示出隨著訓練計算增加的可靠提升。
- 這個方法有哪些局限或假設?實驗主要是在參數為14B的模型及數學文檔 (OmniMATH數據集)上進行的。訓練是從推理模型初始化而非標準基本語言模型開始。該方法需要在標記級數據過濾以專注於挑戰性標記。

創新

• **這篇文章有哪些重要或新穎的發現?** RPT是第一個將RL擴展至網絡文本語料庫以進行通用預訓練的方法。它證明了下一個標記預測可以有效地重新構建為推理任務,模型顯示出161.8%更大的假設模式使用和26.2%更大的演繹模式使用相比於標準問題解決方法。

評論/批判

- **這篇文章有哪些局限嗎?** 評估限於14B模型和主要數學領域。尚未證明其在更廣泛 文本領域和更大模型上的通用性。該方法需要從推理模型初始化,限制了從標準基 本模型開始的基礎影響洞察。
- **這篇文章是否有效證明了其主張?** 該文章提供了有力的實證證據,具有一致的擴展 屬性和詳細的推理模式分析。然而,範圍有限,在領域和模型大小上進行更廣泛的 驗證將加強對通用性的主張。

Comprehensive Analysis

Title

摘要資訊

- 我注意到你只提供了標題 "強化預訓練",而沒有提供該論文部分的實際內容。
- 為了給你有意義的摘要,我需要這個標題後面的實際文本內容。
- 你能否分享該部分的內容/正文?
- 一旦你提供了這個標題下的完整文本,我會很高興為你提供該部分討論的主要概念、方法和發現的簡潔摘要。

Authors and Affiliations

- 本節介紹了研究論文的作者名單及機構聯繫。
- 該工作涉及多個機構之間的合作:
- 作者: 董青秀, 董立, 湯耀, 葉天柱, 孫玉濤, 隋志芳, 韋福如
- 機構:
 - · 微軟研究院 (主要研究機構)
 - 。 北京大學
 - 清華大學
- 星號 (*) 表示前兩位作者 (董青秀和董立) 等量貢獻。
- 上標符號 (†, ‡, §, ♦) 表示各作者的具體機構聯繫。
- 這是一項來自微軟研究院及兩所中國著名大學的合作研究工作。
- 其他資源可在提供的網址(https://aka.ms/GeneralAI)獲得。

Abstract

• 本論文介紹了**增強式預訓練(Reinforcement Pre-Training, RPT)**,這是一種結合增強學習與語言模型預訓練的新方法。

• 主要創新在於將傳統的下個詞預測重新構架為增強學習任務,使模型通過正確預測獲得獎勵。

主要貢獻: - 可擴展的RL範式:利用大量文本數據進行通用的增強學習訓練,無需特定領域的註釋 - 提高準確性:通過基於增強學習的推理激勵顯著提升下個詞預測的性能 - 堅實基礎:創建了適合進一步增強微調的穩健預訓練模型 - 一致擴展:展示了增加計算資源能可靠地提高預測準確性

• 該研究將RPT定位為一種有前景的新方向,通過利用大量可用的文本數據上的增強學習原則來擴展語言模型預訓練。

1 Introduction

- 本介紹中提出了強化預訓練(RPT),這是一種新的大型語言模型訓練範式,結合了自我監督預訓練的可擴展性與強化學習。
- 問題:目前RL(強化學習)在LLM(大型語言模型)訓練中的應用面臨限制:
 - ° RLHF(強化學習加人類偏好)需要昂貴的人類偏好數據,並且容易受到獎勵 操縱的影響
 - 。帶有可驗證獎勵的RL受到稀少標註數據的限制,僅適用於特定領域任務
- 解決方案:RPT重新框定下個token預測為一個推理過程:
 - 。模型被激勵在預測前先推理下一個token
 - 。 獎勵基於預測正確性相較於語料庫中的真實token
 - 將未標註的文本數據轉換為大規模RL數據集,而不需外部標註

• 主要優勢:

- 。**可擴展性與通用性**:使用現有的文本語料庫,無需額外標註
- 減少獎勵操縱:使用直接、基於規則的獎勵(預測正確性)
- 。**促進理解**:鼓勵推理而非記憶
- 計算效率:在每個預測步驟中分配更多的"思考"
- **結果**:RPT展示了改進的下個token預測準確性,更好的計算擴展性,更堅實的後續微調基礎,以及在下游任務上的零樣本性能提升。
- 本論文將RPT定位為一種有前景的新範式,通過連接自我監督學習與強化學習來推動LLM預訓練的進步。

"In this work, we introduce reinforcement pre-training (RPT), a novel paradigm that bridges the gap between scalable self-supervised pre-training and the power of reinforcement learning. RPT reframes the fundamental next-token prediction task as a next-token reasoning process."

在這項工作中,我們介紹了強化預訓練(RPT),一種新穎的範式,彌合了可擴展的自我 監督預訓練與強化學習的力量之間的差距。RPT將基本的下一個標記預測任務重新框架為 下一個標記推理過程。

"For any given context in a pre-training corpus, the model is incentivized to reason about the subsequent token before predicting it.

It receives a verifiable, intrinsic reward based on the correctness of its prediction against the ground-truth next token from the corpus itself."

對於預訓練語料庫中的任何給定上下文,模型受到激勵在預測之前推理後續標記。它根據 與語料庫本身中的真實下一個標記對比預測的正確性獲得可驗證的內在獎勵。

"By explicitly encouraging next-token reasoning patterns, RPT promotes deeper understanding and generalization instead of merely memorizing next tokens. The model learns to explore and validate hypotheses about why a certain token should follow, fostering more robust representations."

通過明確鼓勵下一個標記推理模式,RPT促進更深刻的理解和泛化,而不是僅僅記住下一個標記。模型學會探索並驗證某個標記應該跟隨的假設,從而培養更強大的表示。

2 Reinforcement Pre-Training

- 本節介紹兩種大型語言模型的主要訓練方法:
- 2.1 標準的下個詞預測:描述了一種傳統的訓練方法,模型通過最大化序列中每個詞在給定所有之前詞的情況下的對數概率來學習預測下一個詞。
- 2.2 具有可驗證獎勵的強化學習(RLVR):這是一種使用強化學習來提高特定技能的替代訓練方法。與標準訓練不同,RLVR:
 - 。 需要標註的問答數據集
 - 。 讓模型對問題生成回答
 - 使用確定性的驗證器根據答案的正確性計算獎勵
 - 。訓練模型以最大化期望獎勵而不是詞預測的可能性
- 關鍵區別在於,RLVR側重於通過可驗證的反饋來引導學習,優化特定任務的正確 答案,而不是一般的語言建模。

"RLVR employs a reinforcement learning objective to enhance specific skills with verifiable answers."

RLVR 使用增強學習目標來提升具有可驗證答案的特定技能。

"A deterministic verifier calculates a verifiable reward r = V(o, a), and the model is trained to maximize the expected reward: $JRLVR(\theta) = E(q,a) \sim D$, $o \sim \pi\theta(\cdot|q)$ [r(o, a)]."

一個確定性驗證器計算可驗證的獎勵 r = V(o, a),模型被訓練以最大化期望獎勵: $JRLVR(\theta) = E(q,a) \sim D$, $o \sim \pi\theta(\cdot|q)$ [r(o,a)]。

"RLVR requires a labeled dataset of question-answer pairs."

RLVR 需要一個標註過的問答對數據集。

3 Reinforcement Pre-Training

• 本節介紹一種新的增強學習方法,用於預訓練語言模型,稱為「下一個標誌推理」 (next-token reasoning)。

• 主要成分:

- 。下一個標誌推理任務 (3.1): 模型不僅僅是簡單地預測下一個標誌,而是必 須在做出其預測(yt)之前生成一個連貫的推理鏈序列(ct)。這個推理過程 可以包括頭腦風暴、自我批評和自我糾正,將標準的預訓練從學習表層的標誌 模式轉變為理解更深層的知識結構。
- 增強學習預訓練方法 (3.2): 該方法使用策略增強學習,模型針對每個上下 文生成多條推理軌跡。一個「前綴匹配獎勵」系統評估預測是否與真實序列匹 配,即使是多張標誌或範圍外預測的情況。模型通過最大化期望獎勵進行訓 練。
- 。實驗設置 (3.3): 該方法使用OmniMATH數據集(競賽級數學問題)實施, 具體超參數包括8k的訓練長度和 1×10^{-6} 的學習率。
- **評估 (3.4)** : 預訓練模型可以直接應用於下一個標誌預測任務,或通過增強 學習進行細化以應用於下游應用。
- 核心創新是將預訓練從模式匹配轉移到顯式推理,使訓練過程更符合我們希望模型如何解決問題的方式。

"The next-token reasoning task reconstructs the pre-training corpus into a vast set of reasoning problems, shifting pre-training beyond learning superficial token-level correlations to understanding the hidden knowledge behind them and making RL scaling possible."

- "...透過重建訓練資料集成為大量推理問題,將預訓練從學習表面字符級聯結轉向理解其 背後隱藏的知識,並使強化學習擴展成為可能。"
- "In the next-token reasoning task, the model is required to generate a chainof-thought reasoning sequence, denoted by ct, before generating a prediction yt for the next token."
- "...模型需要在生成下一個字符的預測 yt 之前,生成一個被標記為 ct 的思維鏈推理序列。"
- "Reinforcement pre-training trains LLMs to perform next-token reasoning via on-policy reinforcement learning, as illustrated in Figure 3."
- "強化預訓練透過對策增強學習訓練大型語言模型執行下一個字符的推理,如圖 3 所示。"

4 Experiments

摘要

這部分展示了一種名為 RPT(強化預訓練)的方法在語言建模任務中的實驗結果。

主要發現:

- **4.1 語言建模表現:** 在 OmniMATH 數據集的三個難度等級(簡單、中等、困難)中的 200 個樣本上進行了評估 RPT-14B 顯著優於基線模型: **標準基線**: Qwen2.5-14B 和 R1-Distill-Qwen-14B 達到了類似的表現(20-42% 準確率) **推理基線**: R1-Distill-Qwen-14B 與下一個標記推理表現較差(1-3% 準確率) **RPT-14B**: 在所有難度等級上均達到了最佳結果(23.75-45.11% 準確率)
- **4.2 擴展分析:** 作者調查了 RPT 表現如何隨著訓練步驟的擴展而變化 他們使用冪律擴展來建模這一關係,表明隨著訓練的增加,表現有系統性改進

主要結論: - 與標準的語言建模方法和基於推理的方法相比,RPT 展示了優越的下一個標記預測準確率,而且這種性能提升在不同的問題難度上都是一致的。

"We report the next-token prediction accuracy to evaluate language modeling performance and scaling properties of RPT."

報告所列的下一個標記預測準確性,以評估語言模型性能和RPT的擴展特性。

"RPT outperforms both the standard next-token prediction baselines and the reasoning-based prediction baseline."

RPT的性能超越了標準的下一個標記預測基線和基於推理的預測基線。

"We investigate the scaling properties of reinforcement pre-training. We model this relationship using a power-law form and evaluate the next-token prediction accuracy of RPT at various training steps."

我們研究強化預訓練的擴展特性。使用冪律形式建模這種關係,並在不同的訓練步驟中評估RPT的下一個標記預測準確性。

5 Related Work

• 第五節:相關工作的摘要

• 本節概述了與本文相關的兩個主要研究領域:

1. 大型語言模型的擴展模式:

- 。識別了兩種主要的 LLM 擴展方法:
 - **訓練期計算擴展**:通過增加模型的大小(參數)和訓練數據量,以進行下一步預測的預訓練。
 - **推理期計算擴展**:在模型推理過程中使用額外的計算資源,以增強模型 的推理能力。

2. 用於大型語言模型的強化學習:

- 。強調了強化學習在 LLM 開發後訓練階段的重要作用。
- 本節似乎通過引用這些已經建立的 LLM 改進方法,建立其理論基礎,很有可能是 為了使作者的貢獻與現有的擴展和訓練方法進行對比和定位。

'The advancements of large language models have been driven by two primary scaling dimensions: training-time compute and test-time compute.'

大型語言模型的進步主要由兩個主要擴展維度驅動:訓練時間計算和測試時間計算。

'Training-time scaling substantially increases model parameters and training data, using next-token prediction as the pre-training task.'

訓練時間擴展大幅增加模型參數和訓練數據,使用下一個標記預測作為預訓練任務。

'test-time scaling trades extended inference compute to improve the reasoning capabilities of large language models.'

測試時間擴展交換了延長的推論計算來提高大型語言模型的推理能力。

6 Conclusion and Future Work

結構化內容

摘要

• 這個結論部分介紹了**強化預訓練 (RPT)**,這是一種新的預訓練大型語言模型的方法,與傳統方法有所不同。

• 其主要創新點在於將下一個詞的預測視為一個可驗證正確性的推理任務,然後使用 基於預測是否正確的獎勵進行強化學習。

主要貢獻: - RPT使大型語言模型在預訓練期間可以使用更多的計算資源來發展更好的推理能力。 - 實驗結果顯示改進在於: - 下一個詞的預測準確性。 - 數學和一般推理表現 (無需額外訓練)。 - 作為後續強化學習微調的基礎的有效性。

• 這種方法實質上將標準的預訓練過程從簡單的模式匹配轉變為一個更高級的基於推理的學習範式,且可以被評估和獎勵其正確性。

圖片摘要

• (未提供圖片摘要)

"We introduce reinforcement pre-training (RPT), a novel paradigm for pre-training large language models."

我們介紹了增強預訓練(RPT),這是一種預訓練大型語言模型的新範式。

"By framing next-token prediction as a verifiable reasoning task and applying reinforcement learning with correctness-based rewards, RPT allows LLMs to leverage extended computation during pre-training to build stronger foundational reasoning capabilities."

通過將下一個詞的預測設定為可驗證的推理任務,並應用基於正確性的獎勵的增強學習, RPT允許大型語言模型在預訓練期間利用擴展計算來構建更強大的基礎推理能力。

"Our experiments demonstrate that RPT improves next-token prediction, enhances performance on mathematical and general reasoning benchmarks in zero-shot settings, and provides a better starting point for further RL fine-tuning."

我們的實驗表明,RPT改進了下一個詞的預測,提高了在零樣本設置下數學和一般推理基準的表現,並為進一步的增強學習微調提供了更好的起點。

Acknowledgement

簡介

- 這是一個簡短的致謝部分,作者感謝三位對本研究的技術貢獻:
- 江昱婷 負責維護 GPU 集群基礎設施

- 齊澤文 和 王洋 在 MI300 GPUs 上提供開發強化學習 (RL) 基礎設施的技術支援
- 致謝中指出這項研究涉及強化學習並使用了 AMD 的 MI300 GPU 硬體,這需要專門的基礎設施設定和維護支援。

References

No references found.