Quiz 1 answer

Tzu-Yu Jeng

Spring 2018

Problem 1

(a)	Τ	Т	F	F
(b)	Т	F	F	F
(c)	Т	Т	Т	Т
(d)	Т	Т	F	F
(e)	F	F	F	F
(f)	Т	F	F	F
(g)	Τ	F	F	Т
(h)	F	F	F	Т
(i)	Т	F	F	F
(j)	Т	F	F	F
(k)	Τ	F	F	F

Problem 2

(a)	Т	Т	F
(b)	Т	Т	F
(c)	F	Τ	Т
(d)	Т	Τ	F
(e)	F	F	F
(f)	F	Т	F

Problem 3

(a)	F	F	F	F	F
(b)	Т	F	F	T/F	Τ
(c)	Т	F	Т	Т	Т
(d)	Т	F	F	Т	Τ

Problem 4

(a) Let

$$M = \sup_{c \in \mathcal{E}} (c^T x)$$

Then the original problem can be written as

minimize
$$M$$
subject to
$$\begin{cases} Ax \leq b \\ c_1^T x \leq M \\ \vdots \\ c_K^T x \leq M \end{cases}$$

where x is a slack variable. It is not difficult to see the form is a LP, if an extended matrix is defined. Namely, for block matrix

$$\begin{bmatrix} A \\ c_1^T \\ \vdots \\ c_K^T \end{bmatrix} x \preceq \begin{bmatrix} b \\ M \\ \vdots \\ M \end{bmatrix}$$

(b) Similarly, let M be defined the same way.

$$M = \sup_{c \in \mathcal{E}} (c^T x)$$

Notice that, if we let $u = c - c_0$, we arrive at constraint $||u||_2 \le \gamma$,

$$M = \sup_{c \in \mathcal{E}} (c^T x)$$

$$= \sup_{c \in \mathcal{E}} (c_0 + u)^T x$$

$$= c_0^T x + \sup_{\|u\|_2 \le \gamma} u^T x$$

$$= c_0^T x + \gamma \|x\|_2$$

Then the original problem can be written as

$$\text{subject to} \quad \begin{cases} \|x\|_2 \leq \frac{M}{\gamma} - \frac{c_0^T x}{\gamma} \\ \|0x + 0\|_2 \leq -A_{1,1} x_1 - \dots - A_{1,n} x_n + b_i \\ \vdots \leq \vdots \\ \|0x + 0\|_2 \leq -A_{n,1} x_1 - \dots - A_{n,n} x_n + b_i \end{cases}$$

where x is a slack variable. It is not difficult to see the form is a SOCP.