1) f n'est pas définie si $x^2 - 9 = (x+3)(x-3) = 0$. Donc $D_f = \mathbb{R} - \{-3, 3\}$. 4.6

(a)
$$\lim_{x \to -3} \frac{9}{x^2 - 9} = \frac{9}{0} = \infty$$

x = -3 est une asymptote verticale de f.

(b)
$$\lim_{x\to 3} \frac{9}{x^2 - 9} = \frac{9}{0} = \infty$$

x = 3 est une asymptote verticale de f.

(c)
$$\begin{array}{c|c} 9 & x^2 - 9 \\ \hline 0 & 0 \\ \hline \end{array}$$

$$y = 0$$
 est une asymptote horizontale de f .
$$\delta(x) = \frac{9}{x^2 - 9} = \frac{9}{(x+3)(x-3)}$$

2) f n'est pas définie si $x^2 - 3x - 10 = (x + 2)(x - 5) = 0$. C'est pourquoi $D_f = \mathbb{R} - \{-2; 5\}$.

(a)
$$\lim_{x\to -2}\frac{x^2-6\,x+5}{x^2-3\,x-10}=\frac{21}{0}=\infty$$

$$x=-2 \text{ est une asymptote verticale de } f$$

(b)
$$\lim_{x\to 5} \frac{x^2 - 6x + 5}{x^2 - 3x - 10} = \frac{0}{0}$$
: indéterminé

$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{x^2 - 6x + 5} = \lim_{x \to 5} \frac{(x - 1)(x - 5)}{(x + 2)(x - 5)} = \lim_{x \to 5} \frac{x - 1}{x + 2} = \frac{4}{7}$$

Le point $(5; \frac{4}{7})$ est un trou.

(c)
$$\begin{array}{c|cccc} x^2 - 6x + 5 & x^2 - 3x - 10 \\ -x^2 + 3x + 10 & 1 \\ \hline -3x + 15 & \end{array}$$

$$y = 1$$
 est une asymptote horizontale de f .

$$\delta(x) = \frac{-3x + 15}{x^2 - 3x - 10} = \frac{-3(x - 5)}{(x + 2)(x - 5)} = \frac{-3}{x + 2}$$

3) fn'est pas définie si x=0. D'où $\mathbf{D}_f=\mathbb{R}-\{0\}\,.$

(a)
$$\lim_{x \to 0} \frac{x^2 - 1}{x} = \frac{-1}{0} = \infty$$

x = 0 est une asymptote verticale de f.

(b)
$$\begin{array}{c|c} x^2 - 1 & x \\ -x^2 & x \\ \hline & -1 \end{array}$$

y = x est une asymptote oblique de f.

$$\delta(x) = \frac{-1}{x}$$

- 4) Manifestement $D_f = \mathbb{R} \{-1; 3\}$.
 - (a) $\lim_{x \to -1} \frac{2(x+2)^2}{(x+1)(x-3)} = \frac{2}{0} = \infty$ x = -1 est une asymptote verticale de f.
 - (b) $\lim_{x\to 3} \frac{2(x+2)^2}{(x+1)(x-3)} = \frac{50}{0} = \infty$ x = 3 est une asymptote verticale de f.

(c)
$$f(x) = \frac{2(x+2)^2}{(x+1)(x-3)} = \frac{2x^2+8x+8}{x^2-2x-3}$$

y = 2 est une asymptote horizontale de f.

$$\delta(x) = \frac{12x + 14}{x^2 - 2x - 3} = \frac{2(6x + 7)}{(x+1)(x-3)}$$

	$-\frac{1}{6}$ -1 3				
2	+	+	+	+	
6x + 7		+	+	+	
x+1	1	-	+	+	
x-3	-	_	_	+	
δ	-	+	_	+	

5) Il est clair que $D_f = \mathbb{R} - \{0\}$.

(a)
$$\lim_{x \to 0} \frac{x^3 - 4}{x^2} = \frac{-4}{0} = \infty$$

x = 0 est une asymptote verticale de f.

(b)
$$\begin{array}{c|c} x^3 - 4 & x^2 \\ -x^3 & x \\ \hline & -4 & \end{array}$$

y = x est une asymptote oblique de f.

$$\delta(x) = -\frac{4}{x^2}$$

- 6) f n'est pas définie si $x^3+1=(x+1)(x^2-x+1)=0$, donc si x=-1. $x^2-x+1=0$ n'admet aucune solution, car $\Delta=(-1)^2-4\cdot 1\cdot 1=-3<0$. Par conséquent $D_f=\mathbb{R}-\{-1\}$.
 - (a) $\lim_{x \to -1} \frac{x^2 1}{x^3 + 1} = \frac{0}{0}$: indéterminé

$$\lim_{x \to -1} \frac{x^{2} + 1}{x^{3} + 1} = \lim_{x \to -1} \frac{(x+1)(x-1)}{(x+1)(x^{2} - x + 1)} = \lim_{x \to -1} \frac{x - 1}{x^{2} - x + 1} = -\frac{2}{3}$$

Le point $(-1; -\frac{2}{3})$ est un trou.

(b)
$$x^2 - 1$$
 $x^3 + 1$ 0 0 $x^2 - 1$

y = 0 est une asymptote horizontale de f.

$$\delta(x) = \frac{x^2 - 1}{x^3 + 1} = \frac{(x+1)(x-1)}{(x+1)(x^2 - x + 1)} = \frac{x-1}{x^2 - x + 1}$$

7) $x^2 \geqslant 0$ implique $x^2 + 2 \geqslant 2 > 0$, si bien que $D_f = \mathbb{R}$.

(a)
$$-x^3 + x^2$$
 $x^2 + 2x$ $-x + 1$

$$x^2 - x^2 - 2$$

$$x^3 - x + 1 \text{ ost two asymptote of } x^3 - x + 1 \text{ ost two asymptote of } x^3 - x + 1 \text{ ost two asymptote } x^3 - x + 1 \text{ ost two as$$

y = -x + 1 est une asymptote oblique de f. $\delta(x) = \frac{2x - 2}{x^2 + 2}$

$$\delta(x) = \frac{2x - 2}{x^2 + 2}$$

8) f n'est pas définie si $(x-1)^2=0$, à savoir si x=1. D'où $\mathbf{D}_f=\mathbb{R}-\{1\}$.

(a)
$$\lim_{x \to 1} \frac{(x+1)^3}{(x-1)^2} = \frac{8}{0} = \infty$$

x = 1 est une asymptote verticale de f.

(b)
$$f(x) = \frac{(x+1)^3}{(x-1)^2} = \frac{x^3 + 3x^2 + 3x + 1}{x^2 - 2x + 1}$$
$$x^3 + 3x^2 + 3x + 1 \quad x^2 - 2x + 1$$
$$-x^3 + 2x^2 - x \quad x + 5$$
$$5x^2 + 2x + 1$$
$$-5x^2 + 10x - 5$$
$$12x - 4$$

$$y = x + 5$$
 est une asymptote oblique de f .
 $\delta(x) = \frac{12x - 4}{x^2 - 2x + 1} = \frac{4(3x - 1)}{(x - 1)^2}$

	$\frac{1}{3}$ 1				
4	+	+	+		
3x - 1	_	+	+		
$(x-1)^2$	+	+	+		
δ	_	+	+		

9) De $x^2 \geqslant 0$ on tire que $x^2 + 1 \geqslant 1 > 0$, de sorte que $D_f = \mathbb{R}$.

On constate que
$$f(x) = -1 + \delta(x)$$
 où $\delta(x) = \frac{1}{x^2 + 1}$

et que
$$\lim_{x \to \infty} \delta(x) = \lim_{x \to \infty} \frac{1}{x^2 + 1} = \lim_{x \to \infty} \frac{1}{x^2} = 0$$

Il est dès lors évident que f admet y = -1 pour asymptote horizontale et que $\delta(x) > 0$ pour tout $x \in \mathbb{R}$.

10) fn'est pas définie si x-2=0, c'est-à-dire si x=2. Ainsi $\mathcal{D}_f=\mathbb{R}-\{2\}$.

(a)
$$\lim_{x \to 2} \frac{x}{3} + 1 + \frac{2}{x - 2} = \frac{2}{3} + 1 + \infty = \infty$$

x = 2 est une asymptote verticale de f.

(b) Manifestement $f(x) = \frac{1}{3}x + 1 + \delta(x)$ où $\delta(x) = \frac{2}{x-2}$ avec $\lim_{x \to \infty} \delta(x) = \lim_{x \to \infty} \frac{2}{x - 2} = \lim_{x \to \infty} \frac{2}{x} = 0$ $y = \frac{1}{3}x + 1$ est une asymptote oblique de f.

