

IFT3395/6390 Fondements de l'apprentissage machine

Formalisation des problèmes d'apprentissage Méthodes de type histogramme Malédiction de la dimensionalité

Professeur: Pascal Vincent

Au programme aujourd'hui

- ◆ Petit rappel de terminologie.
- ♦ Ex. de problème de classification, régression, estimation de densité
- ♦ Méthodes de type histogramme, illustrées pour classification, régression, estimation de densité.
- ◆ Malédiction de la dimensionalité.
- ◆ Formalisation du problème de l'apprentissage. Notion de capacité.

Dn Ensemble de données d'entrainement (training set) entrées: cibles: "cheval"

Taille de l'ensemble, nombre d'exemples:

n

Point de test:

Dimensionalité de l'entrée: cibles: entrées: X (vecteur de traits caractéristiques) X₁ (3.5, -2, ..., 127, 0, ...) prétraitement, extraction de caractéristiques (-9.2, 32, ..., 24, 1, ...) etc... preprocessing, feature extraction (6.8, 54, ..., 17, -3, ...)

Représentation des données

Un ensemble de données est vu comme un ensemble de points en haute dimension.

Terminologie de l'apprentissage supervisé

Ensemble de données d'entrainement (training set)

Une entrée est généralement représentée par un vecteur de dimension d.

$$x \in \mathbb{R}^d$$

dimensionalité de l'entrée 1 entrée, observation, input, x_1

2 entrée, observation, input, x₂

3 entrée, observation, input, x_3

cible, target, sortie désirée, y₁

cible, target, sortie désirée, y₂

cible, target, sortie désirée, y₃

etc...

entrée, observation, input, x_n

cible, target, sortie désirée, y_n

point de test

3 3 3

taille de l'ensemble, nombre d'exemples, d'échantilons. On cherche un algorithme qui produit une sortie (output) qui est une bonne prédiction de la cible. Cet algorithme trouve une bonne fonction $x \rightarrow y$

Problème d'apprentissage

- Données
 - $D_n = (Z_1, Z_2, ..., Z_n)$ générées par la "nature" pour l'apprentissage supervisé $Z_i = (X_i, Y_i)$
- IID: "independent and identically distributed"
 - tirés de la même distribution INCONNUE p(Z)
 - de manière indépendante

signifie que l'ordre des exemples ne contient pas d'information => on devrait pouvoir les mélanger sans que ça ait d'influence!

(Attention: IID n'est pas valide pour tous les types de données!)

Problème d'apprentissage

• Les trois problèmes considérés

- classification: $Z=(X,Y)\in\mathbb{R}^d\times \ \{ \text{-1,1} \} \ \, \text{ou \{0,1\} classification binaire}$ ou bien $\{1,...,m\}$ ou $\{0,1,...,m-1\}$ classification muliclasse
- régression: $Z = (X, Y) \in \mathbb{R}^d \times \mathbb{R}$
- estimation de densité: $Z \in \mathbb{R}^d$

• Ensemble de fonctions F (solutions possibles), $f \in F$:

- classification: $f:\mathbb{R}^d \to \{-1,1\}$ ou $\{0,1\}$ classification binaire ou bien $\{1,...,m\}$ ou $\{0,1,...,m-1\}$ classification muliclasse
- régression: $f: \mathbb{R}^d \to \mathbb{R}$
- estimation de densité: F contient des fonctions de densité

Les types de problèmes ou tâches classiques en apprentissage

	supervisé	supervisé	non-supervisé
	Classification	Régression	Estimation de densité
Signification de la cible y	indique une classe parmi m classes.	une valeur réelle à prédire.	pas de cible $y!$
Domaine de <i>y</i>	$y \in \{-1,1\}$ ou $y \in \{1,, m\}$ ou $y \in \{0, 1,, m-1\}$	$y \in \mathbb{R}$	pas de cible y!
Ce que $f(x)$ vise à prédire	la classe de X (la classe la plus probablement associée à X)	la valeur espérée de y (le y "moyen") correspondant à x . $E[Y \mid X = x]$	la densité $p(x)$ (l'observation x est-elle fort ou peu probable?)
Fonction de perte (ou coût) que l'on	l'erreur de classification:	l'erreur quadratique:	la log-vraisemblance négative:
veut habituellement minimiser.	L((x,y),f) =	L((x,y),f) =	L(x,f) =
	$I_{\{f(x)\neq y\}}$	$(f(x)-y)^2$	$-\log f(x)$

Ex. de problème de classification

Iris flower data set

From Wikipedia, the free encyclopedia

The **Iris flower data set** or **Fisher's Iris data set** is a multivariate data set introduced by Sir Ronald Aylmer Fisher (1936) as an example of discriminant analysis.^[1] It is sometimes called **Anderson's Iris data set** because Edgar Anderson collected the data to quantify the geographic variation of *Iris* flowers in the Gaspé Peninsula.^[2]

The dataset consists of 50 samples from each of three species of *Iris* flowers (*Iris setosa*, *Iris virginica* and *Iris versicolor*). Four features were measured from each sample, they are the length and the width of sepal and petal, in centimeters. Based on the combination of the four features, Fisher developed a linear discriminant model to distinguish the species from each other. It is used as a typical test for many other classification techniques.

$\mathbf{x} \in \mathbb{R}^4$	Fisher's Iris Data

n=

150

Sepal Length	Sepal Width	Petal Length	Petal Width	Species™
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa

etc...

5.7	2.8	4.5	1.3	versicolor
6.3	3.3	4.7	1.6	versicolor
4.9	2.4	3.3	1.0	versicolor
6.6	2.9	4.6	1.3	versicolor
5.2	2.7	3.9	1.4	versicolor
5.0	2.0	3.5	1.0	versicolor

etc...

7.7	3.0	6.1	2.3	virginica
6.3	3.4	5.6	2.4	virginica
6.4	3.1	5.5	1.8	virginica
6.0	3.0	4.8	1.8	virginica
6.9	3.1	5.4	2.1	virginica

etc...

Iris virginica

La classe en fonction de 2 traits caractéristiques

Iris Data (red=setosa,green=versicolor,blue=virginica)

Un même ensemble de donnée peut permettre de définir plusieurs tâches différentes!

- ◆ Classification: prédire l'espèce d'iris sachant les dimensions du pétale et sépale.
- ex régression:
 prédire les dimensions du pétale sachant les dimensions du sépale et la classe d'iris
- ◆ ex estimation de densité de probabilité: je mesure les dimensions de pétale et sépale d'une fleur donnée. Ressemblent-elles aux dimensions typiques d'une iris setosa?

Etapes d'un projet utilisant des algorithmes d'apprentissage

- Le problème à résoudre peut-il être reformulé sous la forme d'une des tâches standard de l'apprentissage? (classification, régression, estimation de densité, partitionnement, réduction de dimensionalité, ...) Quel coût veut-on réellement optimiser dans ce problème?
- Examiner les données dont on peut disposer pour l'entraînement/test. Y a-t-il suffisamment d'exemples?, bien comprendre leur format, leur sémantique.
- © Concevoir et coder les étapes de prétraitement des données. Le but est de les transformer dans une forme appropriée pour les algos d'apprentissage qu'on va utiliser.
- Entraîner/tester et évaluer correctement la performance "hors échantillon" des algorithmes considérés. (ex: découpage entraînement/test, validation croisée, ou bootstrap).

Etapes pratiques d'un projet de data-mining

- Identifier clairement le problème à résoudre
- Le formaliser comme une tâche d'apprentissage spécifique basée sur les données disponibles.
 - Extraire les données et les regrouper (dans un fichier, une table).
- "data plumbing" Prétraiter les données pour obtenir une représentation appropriée pour les algorithmes d'apprentissage envisagés.
 - Modélisation: appliquer plusieurs algorithmes d'apprentissage sur les données.
- de modèle
- sélection Évaluation de la performance de chaque algorithme, pour choisir la meilleure approche.
 - Déployer le système opérationnel chez le client.

Méthodes de type histogramme

Les algorithmes à base de quadrillages de l'espace (de type histogramme)

Une idée simple: découper l'espace en petits cubes...

Une idée simple pour la classification

Tout algo d'apprentissage doit pouvoir effectuer une prédiction pour n'importe quel point de test de l'espace d'entrée... (ex: $x \in \mathbb{R}^d$) Partant de là, voici une idée simple d'algorithme:

- ◆ Quadriller l'espace!
- ◆ Entraînement: Compter, pour chaque case, combien de points de chaque classe y tombent (parmi les points de l'ensemble d'apprentissage).
- ◆ Test: trouver la case dans laquelle tombe le point de test. Répondre la classe majoritaire tombée dans cette case.

Classification

• On suppose qu'il existe un processus inconnu qui génère des paires d'observations (x,y), ou y indique la classe (• ou •)

3D

dD ...

Régression

• On suppose qu'il existe un processus inconnu qui génère des paires d'observations (x,y), avec y réel.

3D ... dD ...

Estimation de densité

• On suppose qu'il existe un processus inconnu qui génère des observations x.

Quelle dimensionalité? exemple...

Exemple de classification

- Séparer deux types de poissons (saumon et bar) sur un tapis roulant
 - entrée des données (caméra)
 - traitement d'image
 - extraction des caractéristiques/traits (largeur, longueur, luminosité, etc.)
 - design d'une fonction de classification:

```
f : \{ \text{vecteur des traits} \} \mapsto \{ \text{saumon}, \text{bar} \}
```


Ex. de traits caractéristiques résultant du prétraitement (preprocessing + feature extraction):

x=(longueur, largeur, luminosité, taille de la nageoire dorsale, position de la bouche, etc...)

- Histogramme obtenu de l'ensemble d'entraînement
 - erreur d'entraînement

Nombre d'erreurs: 26+69 = 95 pour un classifieur linéaire

- Une autre variable/trait
 - coût de la mauvaise classification

Deux variables

• vecteurs de traits, espace de traits, frontière de décision

pour un histogramme 2D

Nombre d'erreurs: = 10

- ◆ Plus de dimensions (traits caractéristiques) c'est (généralement) plus d'information pour prendre la bonne décision.
- Les classes en sont plus facilement séparables
- ♦ C'est bien mais....

Malédiction (fléau) de la dimensionalité CURSE OF DIMENSIONALITY

Ex: combien de cases pour un quadrillage découpé en 10 en dimension d ?

♦ d=1: 10 cases

♦ d=2: 10x10=100 cases

♦ d=3: 10x10x10=1000 cases

 \bullet d=10 : 10¹⁰ = 10 000 000 000 cases dix milliards!

 Pour un quadrillage où chaque dimension est découpée en m, on a m^d cases.

La "taille" de l'espace explorable à modéliser croît exponentiellemet avec la dimensionalité!

Si on a n=100 000 points

d'entrainement répartis ± uniformément

d=1: 100 000/10 = 10000 points/case

 $d=2:100\ 000/100 = 1000\ points/case$

 $d=3:100\ 000/1000=100\ points/case$

 $d=10: 100 000/10^{10} = 10^{-5} points/case$

d=100 : 100 000/10¹⁰⁰ = 10 points/case

En haute dimension, la plupart des cases (où risque d'apparaître un point de test...) vont ête vide!!!

Sensibilité à la malédiction

- ◆ Les méthodes de type histogramme (quadrillage) fonctionnent bien en faible dimension (1, 2, voire 3)
- ◆ Mais sont catastrophiques en haute dimension!
- ◆ La malédiction de la dimensionalité affecte ± tous les algorithmes d'apprentissage, mais certains y sont beaucoup plus sensible que d'autres.

Etapes de conception d'un algorithme d'apprentissage

- © Compréhension intuitive de l'algorithme. Savoir l'expliquer en français!
- Formalisation mathématique de l'algorithme.
- Ecriture de l'algo sous forme de pseudo-code.
- Implémentation dans un langage/environnement de programmation.
- Entraînement/test de l'algo sur des problèmes simples en faible dimension, où on peut vérifier graphiquement si ça fait bien ce qu'on veut.
- Evaluation de preformance sur des problèmes réels, et comparaison avec d'autres algorithmes concurrents.

Ex: Histogramme pour la classification

hyper-paramètres

Classifieur Histogramme2D (m1, x1min, x1max, m2, x2min, x2max, nclasses)

```
tenseur(m1, m2, nclasses) initialisé à 0. paramètres
 taille1 = (x1max-x1min)/m1, taille2 = (x2max-x2min)/m2
               ensemble d'entraînement
apprends(Dn): # "train"
     Pour (x,y) \in D_n:
         i = floor((x[0]-x1min)/taille1), j = floor((x[1]-x2min)/taille2)
         C[i,j,y]++
                   point de test
class\_prob(x): # retourne un vecteur de probabilité que x soit de chaque classe.
      i = floor((x[0]-x1min)/taille1), j = floor((x[1]-x2min)/taille2)
      comptes = C[i,j]
      return comptes / sum(comptes)
    point de test
           # classifie x. Retourne l'indice de la classe la plus probable
       probs = class_prob(x)
       return ArgMax[probs]
```

Complexité algorithmique Histogramme pour la classification

Variables

```
n: nombre d'exemples,
 d: dimensionalité de l'entrée
 C: nombre de classes
 m: nombre de subdivisions,
Complexité mémoire (à l'entraînement et utilisation)
 O(C m^d)
Complexité temps de calcul pour l'entraînement
O(d n)
Complexité temps de calcul à l'utilisation (f)
O(d+C)
```