Name:	Exercise T	'ype:
J#:	\mathbf{Quiz}	
Date: 2017 July 25		
Standard: This student is able to		Mark:
C07: DoubleInt. Compute and apply double integrals.		Mark.
⋆ reat	tempt due on:	

Find a double iterated integral that equals the area of the region bounded by y=2x and $y=x^2$. (Do not solve this integral.)

Name:	Exercise T	ype:
J#:	\mathbf{Quiz}	
Date: 2017 July 25		
Standard: This student is able to C09: PolCylSph. Apply polar, cylindrical, and spherical transformations of variables.		Mark:
* reat	sempt due on:	

Express the volume of the sphere $x^2 + y^2 + z^2 = 49$ as a triple iterated integral of either cylindrical or spherical coordinates. (Do not solve this integral.)

Name:	Exercise T	Type:
J#:	Quiz	
Date: 2017 July 25		
Standard: This student is able to		Mark:
C11: LineInt. Compute and apply line integrals.		
* reat	tempt due on:	

Rewrite $\int_C yz\,ds$ as a definite integral with respect to t, where C is the line segment beginning at $\langle 3,2,1\rangle$ and ending at $\langle 0,2,5\rangle$. (Do not solve this integral.)

Name:	Exercise T	ype:
J#:	Quiz	
Date: 2017 July 25		
Standard: This student is able to		Mark:
S10: SurfInt. Compute and apply surface integrals.		
	⋆ reattempt due on:	

The function $\mathbf{r}(u,v) = \langle 1-u+3v, 2-2u+v, 3+u-v \rangle$ where $0 \le u \le 1$ and $0 \le v \le 1$ parametrizes the parallelogram S with vertices $\langle 1,2,3 \rangle$, $\langle -1,0,4 \rangle$, $\langle 2,1,3 \rangle$, $\langle 4,3,2 \rangle$, oriented in the direction of $\left\langle \frac{1}{\sqrt{18}}, \frac{1}{\sqrt{18}}, \frac{4}{\sqrt{18}} \right\rangle$. Compute the flux $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$ where $\mathbf{F} = \langle x+z,4,y \rangle$.

Name:	Exercise T	Type:
J#:	\mathbf{Quiz}	
Date: 2017 July 25		
Standard: This student is able to S11: GreenStokes. Apply Green's Theorem and Stokes's Theorem.		Mark:
* reat	tempt due on:	

Green's Theorem states that if the boundary ∂R of a 2D region R is oriented counterclockwise, then circulation may be computed as $\int_{\partial R} \mathbf{F} \cdot d\mathbf{r} = \iint_R \operatorname{curl} \mathbf{F} \cdot \mathbf{k} \, dA$. Let C be the boundary of the unit square where $0 \le x \le 1$ and $0 \le y \le 1$ oriented counterclockwise. Express the circulation of the vector field $\langle 3y^2, 4x + 3y \rangle$ around C as a double iterated integral. (Do not solve this integral.)

Name:	Exercise T	ype:
J#:	Quiz	
Date: 2017 July 25		
Standard: This student is able to		Mark:
S12: DivThm. Apply the Divergence Theorem.		
	\star reattempt due on:	

The Divergence Theorem states that if ∂D is the outward-oriented boundary of a 3D solid D, then flux may be computed as $\iint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iiint_{D} \operatorname{div} \mathbf{F} \, dV$. Let D be the cube where $1 \leq x \leq 4$, $1 \leq y \leq 4$, and $1 \leq z \leq 4$. Express the flux $\iint_{\partial D} \langle xz, 4xy^2, 3xyz \rangle \cdot \mathbf{n} \, d\sigma$ as a triple iterated integral. (Do not solve this integral.)