Loretz-Transformation von Vierervektoren

Wir Betrachten einen linearen vierdimensionalen Vektoren, den sogenannten **Minkowski-Raum**. Er besteht aus 4 komponentigen Koordinatenvektoren bzw. Vierervektoren

$$x^{\mu} = \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix} = \begin{pmatrix} ct \\ \vec{x} \end{pmatrix}, \qquad x^0 = ct \tag{1}$$

bzw. in kovarianter Schreibweise

$$x_{\mu} = (x^{0}, -x^{1}, -x^{2}, -x^{3}) = (ct, -\vec{x})$$
(2)

Aus dem Viererortsvektor lässt sich mit Hilfe des Eigenzeitdifferentials

$$d\tau = dt\sqrt{1 - \frac{1}{c^2} \left(\frac{dx}{dt}\right)^2} \tag{3}$$

herleiten. Die Vierergeschwindigkeit u^{μ} als Ableitung vom Ort nach der Eigenzeit

$$u^{\mu} = \frac{dx^{\mu}}{d\tau} = \frac{dt}{d\tau} \frac{dx^{\mu}}{dt} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \begin{pmatrix} c \\ \vec{v} \end{pmatrix} \tag{4}$$

der Viererimpuls p^{μ} aus dem Produkt aus der Ruhemasse m_0 und der Vierergeschwindigkeit

$$p^{\mu} = m_0 u^{\mu} = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \begin{pmatrix} c \\ \vec{v} \end{pmatrix} = \begin{pmatrix} mc \\ \vec{p} \end{pmatrix} \quad \text{mit } m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 (5)

Sowie der Viererkraft F^{μ} als Ableitung des Viererimpuls nach der Eigenzeit

$$F^{\mu} = \frac{dp^{\mu}}{d\tau} = \frac{dt}{d\tau} \frac{dp^{\mu}}{dt} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \frac{dp^{\mu}}{dt} = \begin{pmatrix} c\frac{dm}{dt} \\ \vec{F} \end{pmatrix}. \tag{6}$$

Um zwischen den ko- und kontra-varianten Vektoren zu wechseln, benötigt man den metrischen Tensor

$$g^{\mu\nu} = g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 (7)

Damit gilt

$$x_{\mu} = g_{\mu\nu}x^{\nu}, \qquad x^{\nu} = g^{\nu\mu}x_{\mu} \tag{8}$$

weitere wichtige Relation

$$x^{\nu} = g^{\nu\mu} \underbrace{x_{\mu}}_{(8)} = g^{\nu\mu} g_{\mu\alpha} x^{\alpha} = g^{\nu}_{\alpha} x^{\alpha} \tag{9}$$

Aus der Gleichung (9) folgt

$$g^{\nu}_{\alpha} = \begin{cases} 1, & \nu = \alpha \\ 0, & \nu \neq \alpha \end{cases} = \delta^{\nu}_{\alpha} \tag{10}$$

 $x' = \Lambda x \text{ mit } x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$

Bsp: Boost in z-Richtung: $z' = \gamma(z - vt)$, $t' = \gamma(t - \frac{v}{c^2}z)$, x' = x, y' = y mit $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ Lorenztranformation erhält relative Länge:

$$x' \cdot x' = g_{\mu\nu} x^{'\mu} x^{'\nu} = \underbrace{\Lambda^{\mu}_{\rho} \Lambda^{\nu}_{\sigma} g_{\mu\nu}}_{g_{\rho\sigma}} x^{\rho} x^{\sigma} = x \cdot x = x^{\rho} x^{\sigma} g_{\sigma\rho}$$

Def. Eigenschaft einer Lorenztransformation

$$\Lambda^{\rho}_{\mu}\Lambda^{\mu}_{\sigma} = g^{\rho}_{\sigma} = \delta^{\rho}_{\sigma}$$

oder $(\Lambda^{-1})^{\rho}_{\mu} = \Lambda^{\ \rho}_{\mu}$ $\Rightarrow det \Lambda = \pm 1$ (Verallgemeinerung von orthogonalen Transformation)

Referenzen

- \bullet Claude Cohen-Tannoudji Quantenmechanik Band2
- Zettili Quanten Mehanics
- $\bullet\,$ Rollnik Quantentheorie 2