

Cassandra

Corso di Big Data a.a. 2021/2022

Prof. Roberto Pirrone

Sommario

- Caratteristiche principali
- Cassandra vs MongoDB
- Architettura
- Modello dei dati

- Column-oriented
 - Le colonne contengono direttamente i dati e non i metadati (i nomi dei campi)
- Architettura distribuita altamente scalabile
 - Basata sui concetti di nodo, data center e cluster, può essere facilmente scalata in entrambe le direzioni
 - Comunicazione master-slave o peer-to-peer tra i database
- Fault tolerant
 - Connessione ad anello tra i nodi, data center multipli, gestione del carico per singolo nodo/cluster

- Elevate prestazioni
 - È disegnato per la gestione rutinaria di elevatissime moli di dati
- Consistenza configurabile
 - Gestisce la consistenza stretta, quella «eventual», ma anche un mix delle due
- Schema lasco
 - Anche se sembra di interagire con un RDBMS, l'aggregato principale delle colonne è la «column family» cioè righe ciascuna delle quali può contenere gruppi di colonne differenti

- Applicazioni tipiche
 - Storage di dati molto eterogenei e in grande quantità (Digg)
 - Sviluppo del back-end delle applicazioni (Netflix, Google App Engine)
 - Analisi di serie temporali (WebEx di Cisco per lo storage dei feed utente)
 - Strumenti di monitoring (CERN)
 - Strumenti di Analytics (BlackRock)

Cassandra vs MongoDB

	Cassandra	MongoDB
Modello dei dati	Basato su tabelle con righe e colonne	Modello ricco ed espressivo object- oriented
Nodo master	Multipli: se uno va down, un altro prende il suo posto	Uno solo: processo di elezione necessario in caso di failure
Indici secondari	Supporto per indici su singole colonne che gestiscono solo l'uguaglianza dei valori (sono semplici cursori)	Ogni proprietà o sub-documento è indicizzabile
Scalabilità	Elevata	Limitata
Linguaggio di query	CQL (simile a SQL)	Nessuno: la query è un documento JSON
Aggregazione	Non peresente	Agregation framework che include anche MapReduce
Schema	Tipizzazione statica: l'utente deve definire il tipo di una colonna	Assolutamente schema free

- Nodi organizzati circolarmente in *cluster*
- I cluster possono essere suddivisi fisicamente su più data center dislocati in luoghi diversi
- Un nodo è un singolo server in un rack

- I nodi comunicano tra loro in modalità peer-to-peer usando il Gossip protocol per stabilire l'appartenenza al cluster
 - Comunicano randomicamente a coppie per *diffondere* le informazioni

• L'organizzazione circolare al suo interno suddivide gli intervalli di valori delle chiavi

 Una read/write dal client avviene verso un nodo qualunque del cluster che diviene il coordinatore

- Individua i nodi effettivamente responsabili dell'intervallo di valori di chiavi coinvolto
- Coordina la replicazione

- Strategie di replicazione
 - Replication factor standard pari a 3
 - Simple Strategy
 - Network Topology

• Strategie di replicazione

• Replication factor standard pari a 3

Simple Strategy

Network Topology

- Flusso di scrittura
 - Il write viene annotato nel Commit Log
 - La scrittura avviene fisicamente nella Mem Table
 - La memtable effettua poi il flushing nella SSTable

Flusso di lettura

 Se abilitata, viene consultata la row cache

Altrimenti la partition cache

 I dati recuperati dalle SSTables on disk -SSTables vengono spostati sulle relative MemTables

- Flusso di lettura (dettagliato) in caso di mancanza/fallimento della row cache
 - Il Bloom filter verifica se i dati sono direttamente nella MemTable
 - La Partition key cache, in caso di successo, va a indirizzare la compression offset map per individuare i dati su disco

- Flusso di lettura (dettagliato) in caso di mancanza/fallimento della row cache
 - Se la Partition key cache fallisce indicizza il Partition summary che accede al Partition index
 - Si ottiene il riferimento per la Compression offset map e l'effettiva lettura

Key space

- Può essercene più di uno per nodo
- E' equivalente al concetto di database
- E' la struttura di storage più esterna

Column family

- La suddivisione del key space
- Possono essere assimilate a tabelle
 - Si accedono come tabelle in CQL

 Rapporto tra Key space, righe e colonne

• Righe e colonne

Relational Model	Cassandra Model
Database	Keyspace
Table	Column Family (CF)
Primary key	Row key
Column name	Column name/key
Column value	Column value

