Оценка качества алгоритмов машинного обучения. Кроссвалидация.

Екатерина Кондратьева Полина Полунина

from sklearn.linear_model import LinearRegression

lr = LinearRegression()

lr.fit(X_train,y_train)

lr.predict(X test)

1. Выбор метрики валидации

2. Валидация и выбор модели: валидация, чаще кросс валидация(выбор модели)

3. Тестирование лучшей модели

1. Выбор метрики валидации

2. Выбор модели: валидация (чаще кросс - валидация)

3. Тестирование лучшей модели

1. Выбор метрики валидации

2. Выбор модели:
валидация (чаще кросс - валидация)

3. Тестирование лучшей модели

ОДНО ЗНАЧЕНИЕ, ФИНАЛЬНАЯ характеристика модели

Метрики

Кластерный анализ, мультикласс

Оценка качества алгоритмов машинного обучения с учителем

Accuracy TP Rate *Confusion matrix TN Rate FP Rate FN Rate Классификация Precision Recall/Sensitivity Specificity ROC AUC PR_AUC F1 Score F-Beta Score Log Loss...

MAE MAPE MSE Регрессия **RMSE** R^2 R² adjusted

Без учителя?

Метрики для задачи классификации: Confusion Matrix

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Метрики для задачи классификации:

• F1 Score = 2 * Precision * Recall / (Precision + Recall)

$$ullet F_eta = (1+eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

• ROC_AUC - площадь под ROC кривой

• PR_AUC – площадь под Precision-Recall кривод

Метрики для задачи классификации: ROC кривая

Двигаем ползунок порога, при котором объект причисляется к классу 0 или 1.

Какой дефолтный порог?

Метрики для задачи классификации: Log Loss


```
def logloss(true_label, predicted, eps=1e-15):
   p = np.clip(predicted, eps, 1 - eps)
   if true_label == 1:
      return -log(p)
   else:
      return -log(1 - p)
```

Метрики для задачи регрессии:

$$extbf{MAE} = rac{\sum_{i=1}^n |y_i - x_i|}{n} = rac{\sum_{i=1}^n |e_i|}{n}$$

$$\bullet \qquad \mathrm{MSE} = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

• RMSE = sqrt(MSE)

$$\mathsf{MAPE} = \quad \frac{100\%}{n} \sum_{t=1}^n \left| \frac{A_t - F_t}{A_t} \right|$$

MAE или RMSE более устойчива к выбросам?

Метрики для задачи регрессии: RMSE

CASE 1: Evenly distributed errors

 ID
 Error
 Error
 Error Pror/2

 1
 2
 2
 4

 2
 2
 2
 4

 3
 2
 2
 4

 4
 2
 2
 4

 5
 2
 2
 4

 6
 2
 2
 4

 7
 2
 2
 4

 8
 2
 2
 4

 9
 2
 2
 4

 10
 2
 2
 4

CASE 2: Small variance in errors

ID	Error	Error	Error^2
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	1	1	1
6	3	3	9
7	3	3	9
8	3	3	9
9	3	3	9
10	3	3	9

CASE 3: Large error outlier

ID	Error	Error	Error^2
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0
9	0	0	0
10	20	20	400

MAE	RMSE
2.000	2.000

MAE	RMSE
2.000	2.236

MAE	RMSE
2.000	6.325

Метрики для задачи **регрессии**: R^2

$$R^2=1-rac{D[y|x]}{D[y]}=1-rac{\sigma^2}{\sigma_y^2},$$
 дисперсия од дисперсия сл

дисперсия ошибки модели

дисперсия случайной величины у

R^2 (Coefficient of determination) - это доля дисперсии зависимой переменной, объясняемая рассматриваемой моделью зависимости, то есть объясняющими переменными.

При оценке регрессионных моделей это интерпретируется как соответствие модели данным.

Plots of Observed Responses Versus Fitted Responses for Two Regression Models Observed responses Observed responses R2 = 38% R2 = 87%

Может ли R2 быть отрицательным?

можно ли оценить регрессионную модель в точности (accuracy)?

Кластерный анализ и мульномиальная регрессия

Кластерный анализ

Silhouette analysis for KMeans clustering on sample data with n clusters = 6

Мультиклассовая классификация

One-vs-rest or One-vs-One:

Тогда для нового объекта выборки решение будет принято в соответствии с наибольшим скором одного из классификаторов:

$$\hat{y} = \operatorname*{argmax}_{k \in \{1 \ldots K\}} f_k(x)$$

Разделение данных

Подход к разделению данных на подвыборки

Подход к разделению данных на подвыборки

Основная идея: разделить выборку на несколько независимых частей, чтобы оценить обобщающую способность модели

Методы валидации:

- Train/Test Split: С одной стороны, k может быть равно 1, т.е. всего одно разделение на train/test
- LOOCV: С другой стороны, к может быть равно кол-ву наблюдений в датасете, т.е. предсказание делается каждый раз на одном наблюдении. Такой подход называется leave-one-out cross-validation
- Repeated: Разбиваем на k фолдов несколько раз (KFold)
 - *Stratified: В задачах классификации с несбалансированными данными возникает потребность разбить данные на куски так, чтобы в каждом куске пропорция классов сохранялась.

Методы валидации:

- Train/Test Split: С одной стороны, k может Смещенная оценка т, т.е. всего одно разделение на train/test
- датасете, т.е. предсказание делается каждь вероятность переобучиться, но датасете, но датасет Такой подход называется leave-one-out cross требуется в специфической области дном наблюд Repeated: Разбиваем на к фолдов из дном наблюдении.
- - *Stratified: В задачах классификации с несбалуже пучше **ы**ными данными возникает потребность разбить данные на кусктак, чтобы в каждом куске пропорция классов сохранялась.

Методы валидации: Bootstrap

Сколько нинааада фолдов?

C. Beleites et al. / Chemometrics and Intelligent Laboratory Systems 79 (2005) 91–100

После тестирования модели:

Кейсы

Кейс: Классификация sklearn.datasets.load_diabets [442, 10]

1. Выбор метрики валидации

2. Разделение данных: валидация, чаще кросс валидация(выбор модели)

3. Тестирование лучшей модели

Кейс: Классификация sklearn.datasets.load_breast_cancer [569, 30]

- 1. Выбор метрики валидации ROC/AUC
- 2. Валидация и выбор модели: 10 Fold CV5 with Stratification
- 3. Тестирование лучшей модели Предсказание рака груди с точностью 89%

Кейс: Классификация sklearn.datasets.load_diabets [442, 10]

- 1. Выбор метрики валидации MAE, RMSE, R^2
- 2. Валидация и выбор модели: 10 Fold CV5
- 3. Тестирование лучшей модели Предсказание степени тяжести диабета с точностью 89% и относительной ошибкой 5%

Кейс: Классификация sklearn.datasets.load_diabets [442, 10]

- 1. Выбор метрики валидации MAE, RMSE, R^2
- 2. Валидация и выбор модели: 10 Fold CV5
- 3. Тестирование лучшей модели Предсказание степени тяжести диабета с точность за это? и относительной ошибкой 5%

EXBUSE IIIE

DO YOU HAVE A MOMENT TO TALK ABOUT INTERPRETABLE MACHINE LEARNING

Кейс: Классификация sklearn.datasets.load_diabets [442, 10]

- 1. Выбор метрики валидации MAE, RMSE, R^2
- 2. Валидация и выбор модели: 10 Fold CV5
- 3. Тестирование лучшей модели Предсказание степени тяжести диабета с точка отвечают за это? и относительной ошибкой 5%
- 4. Интерпретицая модели

Однозначная интерпретация результатов предсказания + к feature_importance

- 1. Корреляционный анализ
- 2. Дисперсионный анализ
- 3. Простейшие модели (Linear model, Decision Tree)

	Categorical	Continuous
Categorical	Lambda, Corrected Cramer's V	Point Biserial, Logistic Regression
Cantinuaua	Point Biserial, Logistic	Spearman, Kendall,
Continuous	Regression	Pearson

Корреляционный анализ

- 1. Continuous and continuous variable
 - Pearson corr

Проверяем линейную скоррелированность данных.

Статистический тест

- 1. Continuous and continuous variable
 - parametric t-test
 - unpaired exact t-test

Проверяем гипотезу, что выборки из одного распределения.

2- Sample что значит?

Дисперсионный анализ

ANOVA (от англ. ANalysis Of VAriance)

В случае однофакторного анализа == t-критерию Стьюдента для независимых выборок, и величина F-статистики равна квадрату соответствующей t-статистики.

Проверяем гипотезу о том, что средние выборок равны (или дисперсии равны).

sklearn.feature_selection: Feature Selection

The sklearn.feature selection module implements feature selection algorithm Пирсон selection methods and the recursive feature elimination algorithm. User guide: See the Feature selection section for further details. Из любой модели Univariate feature selector feature selection.GenericUnivariateSelect feature selection. SelectPercentile Select features according to a percentile of the highest scores. feature selection.SelectKBest (SCOTE func, k)) Select features according to the k highest scores. Filter: Select the pvalues feature selection. SelectFpr ([SCOTE func, alpha]) Filter: Select the p-values Для предобработки feature_selection.SelectFdr ([SCOTE_fune, alpha]) Meta-transformer for sele Датасета feature selection.SelectFromModel (estimator) weights. Filter: Select the p-values chi2 устойчивая статистика feature_selection.SelectFwe ([SCOTE_func, alpha]) Feature ranking with recu feature selection.RFE (estimator[, ...]) Feature ranking with recu validated selection of the feature selection.RFECV (estimator[, step, ...]) Пакет "Стандарт" Feature selector that removes all low-variance features. feature selection.VarianceThreshold ([threshold]) feature selection.chi2(X, V) Compute chi-squared stats between each non-negative feature and elass feature selection.f classif (X, y) Compute the ANOVA F-value for the provided sample. feature_selection.f_regression (X, y[, center]) Univariate linear regression tests. feature selection.mutual info classif (X, y) Estimate mutual information for a discrete target variable. feature selection.mutual info regression (X, y) Estimate mutual information for a continuous target variable.