Data Science for Everyone – Visualization Pt 2

Dr. Ab Mosca (they/them)

Plan for Today

- Visualization Guiding Principles
- Visualization Ethics

Visualization Guiding Principles

Recall

- Visualizations (i.e. visual encodings) are made up of marks and channels
- We select marks and channels based on goals, data, and other principles

Jacques Bertin, Semiologie Graphique (Semiology of Graphics), 1967.

Principle 1: Expressiveness

Encode all the facts and only the facts

What data is in the top chart and not in the bottom chart?

Principle 1: Expressiveness

Encode all the facts and only the facts

What data is in the top chart and not in the bottom chart?

Principle 1: Expressiveness

Encode all the facts and only the facts

What "extra" data is included in this visualization?

Principle 1: Expressiveness

Encode all the facts and **only the facts**

What "extra facts" are included in this visualization?

Principle 1: Expressiveness

Encode all the facts and only the facts

What is wrong with this visualization?

https://www.nytimes.com/interac tive/2020/11/03/us/elections/result s-president.html

Principle 1: Expressiveness

Encode all the facts and only the facts

What is wrong with this visualization?

https://www.nytimes.com/interac tive/2020/11/03/us/elections/result s-president.html

Colors highlight *electoral votes* per state

Principle 1: Expressiveness Encode all the facts and only the facts

https://www.nytimes.com/interac tive/2020/11/03/us/elections/result s-president.html

Principle 2: Effectiveness

Most effective channels should be used for most important data

Effectiveness = Based on a compilation of research, how well a channel supports:

- Accuracy
- Discriminability
- Separability
- Visual popout
- Grouping

Principle 2: Effectiveness

Most effective channels should be used for most important data

Principle 3: Consistency *Use consistent axes for comparisons*

improved

Raina SZ, et al. (2005) Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Res 15: 665-673.

M. Krzwinski, behind every great visualization is a design principle, 2012

Principle 3: Consistency Order legend items according to appearance

Principle 3: Separability

Avoid visually similar encodings for independent variables

Principle 3: Separability

Avoid visually similar encodings for independent variables

MOST WICKETS IN DEATH OVERS IN ODIS

SINCE THE START OF JANUARY 2017

NUMBERS UPDATED TILL MAY 14, 2019

Principle 4: Simplicity Avoid double encoding data

Principle 4: Simplicity Navigational aids should not compete with data

Heer J, Bostock M (2010) Crowdsourcing graphical perception: using mechanical turk to assess visualization design. Proceedings of the 28th international conference on Human factors in computing systems. Atlanta, Georgia, USA: ACM. pp. 203-212.

Responsible Creation and Consumption of Vis

1. Goal

2. Data Types

Goal → What do you want to communicate or facilitate?

2. Data Types

1. Goal → What do you want to communicate or facilitate?

2. Data Types → What kinds of data do you need to show?

Goal → What do you want to communicate or facilitate?

2. Data Types → What kinds of data do you need to show?

Rank	Major_category	Total	Men	Women	Share_ women	Median_ earnings
1	Engineering	2339	2057	282	12%	110000
7	Physical Sciences	1792	832	960	54%	62000
19	Computers & Mathematics	128319	99743	28576	22%	53000
27	Health	209394	21773	187621	90%	48000
36	Biology & Life Science	1762	515	1247	71%	45000

Bar charts

- 1. Goal \rightarrow Comparison
- 2. Data Types → Categorical or Ordinal vs. Quantitative

Rank	Major_category	Total	Men	Women	Share_ women	Median_ earnings
1	Engineering	2339	2057	282	12%	110000
7	Physical Sciences	1792	832	960	54%	62000
19	Computers & Mathematics	128319	99743	28576	22%	53000
27	Health	209394	21773	187621	90%	48000
36	Biology & Life Science	1762	515	1247	71%	45000

Share of Women per Major Category

Data:

Line charts

- 1. Goal \rightarrow Trend
- 2. Data Types \rightarrow Ordinal or Quantitative vs. Quantitative

Rank	Major_category	Total	Men	Women	Share_ women	Median_ earnings
1	Engineering	2339	2057	282	12%	110000
7	Physical Sciences	1792	832	960	54%	62000
19	Computers & Mathematics	128319	99743	28576	22%	53000
27	Health	209394	21773	187621	90%	48000
36	Biology & Life Science	1762	515	1247	71%	45000

Data:

https://github.com/fivethirtyeight/data/blob/ master/college-majors/women-stem.csv

Share of Women vs Median Earnings

Avoiding Bias and Trickery

Inspect the data

→ Source?

→ Biases?

Rank	Major_category	Total	Men	Women	Share_ women	Median_ earnings
1	Engineering	2339	2057	282	12%	110000
7	Physical Sciences	1792	832	960	54%	62000
19	Computers & Mathematics	128319	99743	28576	22%	53000
27	Health	209394	21773	187621	90%	48000
36	Biology & Life Science	1762	515	1247	71%	45000

Data:

Design Contentiously & Read Critically → What's shown vs not?

Data:

Design Contentiously & Read Critically

- → Goal
- → Data types

Data:

Design Contentiously & Read Critically → Aspect ratio

Data:

Design Contentiously & Read Critically → Axes

Data:

Take a critical look at this chart. Notice anything?

Graffiti on public transportation off the chart in Tempe

According to City of Tempe, graffiti that city workers noticed and reported in 2015 were exceedingly high for public transportation.

Source: City of Tempe, 2015

Take a critical look at this chart. Notice anything?

Re-design the chart (you can add more data if you want)

Graffiti on public transportation off the chart in Tempe

According to City of Tempe, graffiti that city workers noticed and reported in 2015 were exceedingly high for public transportation.

Source: City of Tempe, 2015

Take a critical look at this chart. Notice anything?

Within the last 5 years, our water supply at Lake Mead has plummeted.

Take a critical look at this chart. Notice anything?

Re-design the chart (you can add more data if you want)

Within the last 5 years, our water supply at Lake Mead has plummeted.

