HOMEWORK 2

Gruppo 3 - Canale 2

Capogruppo:

Andrea Sangiovanni

Componenti:

- → **Pietro Scala** 1955836
- → Alessandro Pace 2111921
- → Federico Nobili 2142334
- → Andrea Sangiovanni 2108098

Esercizio 1: Subnetting

Abbiamo suddiviso il blocco di classe B 130.63.0.0/16 nel seguente modo:

Per minimizzare lo spreco di indirizzi abbiamo fatto ricorso a **subnet a maschera variabile** creando le subnet più piccole che potessero soddisfare il numero di host richiesto. In particolare abbiamo suddiviso il blocco /16 in due subnet /17. La prima di queste è stata ulteriormente suddivisa in 4 subnet /19, ognuna delle quali è assegnata a Roma, Lodi, Pavia e Livorno.

La seconda /17 è stata ulteriormente divisa in due /18. La prima delle /18 contiene una /19 per Fiuggi, una /20 per Orta e 2 /21 per Como e Asti. Nell'ultimo blocco /18 sono invece state create la /21 per Gela, due /22 per Imola e Lucca e una /25 per Pisa.

L'assegnazione delle subnet è riassunta nella seguente tabella che indica per ogni città il numero di host richiesti, il numero indirizzi ip assegnati, la maschera della subnet assegnata, il primo indirizzo ip disponibile per gli host e l'ultimo, l'indirizzo di rete e di broadcast.

Città	#hosts	#indirizzi IP	Maschera	Primo Indirizzo Host	Ultimo Indirizzo Host	Indirizzo di Rete	Indirizzo Broadcast
Roma	7932	8192	255.255.224.0 /19	130.63.0.2	130.63.31.254	130.63.0.0	130.63.31.255
Lodi	7140	8192	255.255.224.0 /19	130.63.32.2	130.63.63.254	130.63.32.0	130.63.63.255
Pavia	5933	8192	255.255.224.0 /19	130.63.64.2	130.63.95.254	130.63.64.0	130.63.95.255
Livorno	4953	8192	255.255.224.0 /19	130.63.96.2	130.63.127.254	130.63.96.0	130.63.127.255
Fiuggi	4417	8192	255.255.224.0 /19	130.63.128.2	130.63.159.254	130.63.128.0	130.63.159.255
Orta	2838	4096	255.255.240.0 /20	130.63.160.2	130.63.175.254	130.63.160.0	130.63.175.255
Como	1763	2048	255.255.248.0 /21	130.63.176.2	130.63.183.254	130.63.176.0	130.63.183.255
Asti	1417	2048	255.255.248.0 /21	130.63.184.2	130.63.191.254	130.63.184.0	130.63.191.255
Gela	1024	2048	255.255.248.0 /21	130.63.192.2	130.63.199.254	130.63.192.0	130.63.199.255
Imola	765	1024	255.255.252.0 /22	130.63.200.2	130.63.203.254	130.63.200.0	130.63.203.255
Lucca	539	1024	255.255.252.0 /22	130.63.204.2	130.63.207.254	130.63.204.0	130.63.207.255
Pisa	89	128	255.255.255.128 /25	130.63.208.2	130.63.208.126	130.63.208.0	130.63.208.127

Esercizio 2: Routing Statico

Abbiamo creato il **laboratorio Kathará** in allegato seguendo le istruzioni fornite (cartella "esercizio2"), prendendo in considerazione la seguente **topologia di rete**:

Affinché il traffico tra le città e il router di bordo seguisse un senso orario lungo l'anello esterno abbiamo configurato i router posti agli angoli (R2, R4, R6, R8) con default via verso R1, i restanti router (R3,R5,R7,R9) con default via verso il router successivo in senso orario, mentre R1 ha default via verso l'ISP.

Inoltre i router di bordo sono stati configurati in modo che ogni indirizzo che ricade nel blocco di indirizzi che ci è stato assegnato (130.63.0.0/16) venga inoltrato al router successivo in senso orario, inserendo l'eccezione della subnet 130.63.255.252/30 contenente l'ISP e l'interfaccia di R1 ad esso collegata, per la quale il **next-hop** è R1 (questo nei router posti agli angoli che sono gli unici collegati a R1).

R1 invece ha una route specifica per ogni città, fatta eccezione per Roma e Pavia per le quali abbiamo eseguito un supernetting aggregandole in una subnet /17, però questa supernet include anche gli indirizzi di Lodi e Livorno, ma sfruttando la regola del **longest prefix matching**, ci è bastato inserire la loro specifica route per ottenere la logica corretta. Questo procedimento ci ha permesso di risparmiare una riga nella tabella di routing.

Non è stato possibile sfruttare ulteriormente il supernetting per la mancanza di indirizzi adiacenti utili.

Riportiamo in formato tabellare le tabelle di routing dei vari router.

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
R1	eth0: 130.63.255.209/30	1	130.63.32.0/19	130.63.255.210	eth0
	eth1: 130.63.255.253/30	2	130.63.96.0/19	130.63.255.214	eth2
	eth2: 130.63.255.213/30	3	130.63.0.0/17	130.63.255.206	eth4

eth3: 130.63.255.217/30	4	130.63.128.0/19	130.63.255.206	eth4
eth4: 130.63.255.205/30	5	130.63.160.0/20	130.63.255.218	eth3
	6	130.63.176.0/21	130.63.255.218	eth3
	7	130.63.184.0/21	130.63.255.214	eth2
	8	130.63.192.0/21	130.63.255.210	eth0
	9	130.63.200.0/22	130.63.255.210	eth0
	10	130.63.204.0/22	130.63.255.218	eth3
	11	130.63.208.0/25	130.63.255.214	eth2
	12	130.63.255.232/29	130.63.255.210	eth0
	13	130.63.255.240/29	130.63.255.214	eth2
	14	130.63.255.224/27	130.63.255.218	eth3
	15	130.63.255.220/30	130.63.255.206	eth4
	16	130.63.255.228/30	130.63.255.206	eth4
	17	default	130.63.255.254	eth1

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
R2	eth0: 130.63.0.1/19	1	130.63.255.252/30	130.63.255.205	eth2
	eth1: 130.63.255.221/30	2	130.63.0.0/16	130.63.255.222	eth1
	eth2: 130.63.255.206/30	3	default	130.63.255.205	eth2
	eth3: 130.63.255.225/30				
	eth4: 130.63.64.1/19				

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
R3	eth0: 130.63.128.1/19	1	default	130.63.255.230	eth1
	eth1: 130.63.255.229/30				
	eth2: 130.63.255.222/30				

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
R4	eth0: 130.63.192.1/21	1	130.63.255.252/30	130.63.255.209	eth3
	eth1: 130.63.32.1/19	2	130.63.0.0/16	130.63.255.234	eth2
	eth2: 130.63.255.233/30	3	default	130.63.255.209	eth3
	eth3: 130.63.255.210/30				
	eth4: 130.63.255.230/30				

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
R5	eth0: 130.63.255.234/30	1	default	130.63.255.238	eth2
	eth1: 130.63.200.1/22				
	eth2: 130.63.255.237/30				

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
R6	eth0: 130.63.255.238/30	1	130.63.255.252/30	130.63.255.213	eth4

6	eth1: 130.63.208.1/25	2	130.63.0.0/16	130.63.255.242	eth3
6	eth2: 130.63.96.1/19	3	default	130.63.255.213	eth4
6	eth3: 130.63.255.241/30				
6	eth4: 130.63.255.214/30				

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
R7	eth0: 130.63.255.242/30	1	default	130.63.255.246	eth2
	eth1: 130.63.184.1/21				
	eth2: 130.63.255.245/30				

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
R8	eth0: 130.63.255.249/30	1	130.63.255.252/30	130.63.255.217	eth1
	eth1: 130.63.255.218/30	2	130.63.0.0/16	130.63.255.250	eth0
	eth2: 130.63.255.246/30	3	default	130.63.255.217	eth1
	eth3: 130.63.160.1/20				
	eth4: 130.63.204.1/22				

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
R9	eth0: 130.63.255.226/30	1	default	130.63.255.225	eth0
	eth1: 130.63.255.250/30				
	eth2: 130.63.176.1/21				

Esercizio 3: Connettività Internet

Nel nostro caso il router isolato è R9.

Per identificare il guasto abbiamo testato le connessioni tramite **traceroute**. Abbiamo lanciato dei **ping** dall'ISP verso Fiuggi, Imola, Asti e Como, che essendo posti ai lati consentono di verificare con un ping solo che tre router funzionano (il router collegato alla lan, il precedente e il successivo) per come è strutturato il routing.

```
root@isp:/# traceroute 130.63.128.2
traceroute to 130.63.128.2 (130.63.128.2), 30 hops max, 60 byte packets
1 130.63.255.253 (130.63.255.253) 1.173 ms 0.867 ms 0.850 ms
2 130.63.255.206 (130.63.255.206) 2.930 ms 2.922 ms 3.355 ms
3 130.63.255.209 (130.63.255.209) 6.038 ms 6.057 ms 6.045 ms
4 130.63.128.2 (130.63.128.2) 6.210 ms 6.204 ms 6.192 ms
root@isp:/# traceroute 130.63.200.2
traceroute to 130.63.200.2 (130.63.200.2), 30 hops max, 60 byte packets
1 130.63.255.253 (130.63.255.253) 1.376 ms 1.292 ms 1.277 ms
2 130.63.255.210 (130.63.255.210) 2.030 ms 2.808 ms 2.878 ms
3 130.63.255.237 (130.63.255.237) 4.874 ms 5.099 ms 5.090 ms
4 130.63.255.237 (130.63.255.237) 4.874 ms 5.099 ms 5.090 ms
4 130.63.255.253 (130.63.255.253) 1.473 ms 1.439 ms 1.929 ms
2 130.63.255.253 (130.63.255.253) 1.473 ms 1.439 ms 1.929 ms
2 130.63.255.253 (130.63.255.253) 1.473 ms 1.439 ms 1.929 ms
2 130.63.255.253 (130.63.255.253) 1.473 ms 1.439 ms 1.929 ms
2 130.63.255.214 (130.63.255.253) 1.473 ms 1.439 ms 1.929 ms
2 130.63.255.253 (130.63.255.253) 1.473 ms 1.439 ms 1.929 ms
2 130.63.255.253 (130.63.255.253) 2.406 ms 6.066 ms 6.096 ms
4 130.63.184.2 (130.63.184.2) 7.940 ms 7.937 ms 7.928 ms
root@isp:/# traceroute 130.63.176.2 traceroute to 130.63.176.2 (130.63.176.2), 30 hops max, 60 byte packets
1 130.63.255.253 (130.63.255.253) 2.406 ms 2.251 ms 2.238 ms
2 130.63.255.218 (130.63.255.251) 2.406 ms 2.251 ms 2.238 ms
2 130.63.255.218 (130.63.255.218) 8.264 ms 8.341 ms 8.403 ms
3 130.63.255.218 (130.63.255.218) 8.264 ms 8.341 ms 8.403 ms
3 130.63.255.218 (130.63.255.218) 8.264 ms 8.341 ms 8.403 ms
```

Solo il ping verso Como non va a buon fine e il traffico si interrompe ad R8, per confermare che fosse il router R9 ad essere isolato abbiamo effettuato dei ping anche verso le città di Lucca e Orta, questi ping vanno a buon fine dunque deduciamo che il router R9 è isolato.

```
root@isp:/# traceroute 130.63.160.2

traceroute to 130.63.160.2 (130.63.160.2), 30 hops max, 60 byte packets

1 130.63.255.253 (130.63.255.253) 0.985 ms 1.009 ms 1.163 ms

2 130.63.255.218 (130.63.255.218) 2.476 ms 3.036 ms 3.116 ms

3 130.63.160.2 (130.63.160.2) 3.857 ms 4.244 ms 4.353 ms

root@isp:/# traceroute 130.63.204.2

traceroute to 130.63.204.2 (130.63.204.2), 30 hops max, 60 byte packets

1 130.63.255.253 (130.63.255.253) 0.958 ms 1.953 ms 1.955 ms

2 130.63.255.218 (130.63.255.218) 2.943 ms 3.001 ms 3.065 ms

3 130.63.204.2 (130.63.204.2) 4.727 ms 4.832 ms 4.971 ms
```

Per **ripristinare la connessione** abbiamo sfruttato la connessione R2-R9 per collegare R9 all'ISP inoltre abbiamo sfruttato il collegamento R8-R9 per collegare R8 con l'ISP. Gli indirizzi ip che prima appartenevano a R2 e a R9, nelle connessioni R2R9 e R8R9 rispettivamente sono state assegnate a due nuove interfacce dell'ISP, arrivando a questa nuova configurazione di rete

Per far si che il traffico potesse arrivare a R9 abbiamo modificato la tabella di routing di R8 in modo che se l'indirizzo di destinazione è all'interno del nostro blocco di indirizzi il pacchetto viene inoltrato verso l'ISP, mentre di default i pacchetti vengono inviati a R1, in questo modo l'ISP viene trattato come next-hop dell'anello dopo R8, mentre viene preservata la logica originale quando un pacchetto è diretto verso internet, ovvero che sarà R1 a inoltrare verso l'ISP il pacchetto.

Anche la tabella di routing dell'ISP è stata aggiornata, inserendo una regola per indicare che la rete di Como era collegata al router R9 e che le reti di Lucca e Orta erano collegate al router R8, non è stata necessaria nessun'altra modifica agli altri router.

Di seguito le tabelle di routing che sono state modificate.

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
R8	eth0: 130.63.255.249/30	1	130.63.176.0/21	130.63.255.250	eth0
	eth1: 130.63.255.218/30	2	default	130.63.255.217	eth1

eth2: 130.63.255.246/30			
eth3: 130.63.160.1/20			
eth4: 130.63.204.1/22			

Router	Interfaces & Addresses	Static Route #	Destination	Gateway	Interface
ISP	eth0: 130.63.255.254/30	1	130.63.176.0/21	130.63.255.226	eth1
	eth1: 130.63.255.225/30	2	130.63.204.0/22	130.63.255.249	eth2
	eth2: 130.63.255.250/30	3	130.63.160.0/20	130.63.255.249	eth2
		4	default	130.63.255.253	eth0

Esercizio 4: Traffico Anomalo

Abbiamo assegnato a **SERVER_IP>** l'indirizzo 130.63.16.0 posto al centro delle subnet di Roma. Il server è posizionato all'interno della lan di Roma ma ha anche un collegamento diretto con il router R1, di conseguenza la topologia di rete risultante da questo cambiamento è la seguente

In cui abbiamo inserito il nuovo nodo server con l'indirizzo **SERVER_IP>** sull'interfaccia 0, collegata al dominio di collisione A, ad R1 è stata aggiunta un'interfaccia (la 5) a cui è stato assegnato l'indirizzo ip 130.63.16.1 ed è stata collegata al dominio di collisione A, in questo modo il server ha un collegamento diretto con il router R1, che è indicato come default gateway del server.

Per indirizzare il traffico diretto al server attraverso R1 abbiamo aggiunto delle regole di routing ai router agli angoli (R2, R4, R6, R8) che utilizzano il longest prefix matching per indirizzare solo i pacchetti indirizzati verso il server ad R1, concretamente la riga che abbiamo aggiunto è

ip route add 130.63.16.0/32 via <R1_INTERFACE> dev ethX

dove <R1_INTERFACE> è l'indirizzo ip dell'interfaccia di R1 collegata al router in questione e ethX è l'interfaccia del router che è collegata con essa.

Strutturando il routing in questo modo possiamo verificare che solo il traffico verso il server viene instradato verso R1, mentre quello diretto alla lan di Roma segue il percorso normale, come possiamo evincere dagli screenshot dei traceroute inseriti di seguito.

```
root@isp:/# traceroute 130.63.16.0
traceroute to 130.63.16.0 (130.63.16.0), 30 hops max, 60 byte packets
1 130.63.255.253 (130.63.255.253) 1.124 ms 1.136 ms 1.210 ms
2 130.63.16.0 (130.63.16.0) 2.892 ms 3.124 ms 3.509 ms
root@isp:/# traceroute 130.63.0.2
traceroute to 130.63.0.2 (130.63.0.2), 30 hops max, 60 byte packets
1 130.63.255.253 (130.63.255.253) 0.823 ms 1.081 ms 1.206 ms
2 130.63.255.206 (130.63.255.206) 2.827 ms 3.374 ms 3.403 ms
3 130.63.0.2 (130.63.0.2) 5.312 ms 5.324 ms 6.112 ms
root@isp:/# traceroute 130.63.176.2
traceroute to 130.63.176.2 (130.63.176.2), 30 hops max, 60 byte packets
1 130.63.255.253 (130.63.255.253) 0.685 ms 0.961 ms 0.962 ms
2 130.63.255.218 (130.63.255.218) 2.883 ms 2.975 ms 3.072 ms
3 130.63.255.226 (130.63.255.226) 5.924 ms 5.936 ms 6.029 ms
4 130.63.176.2 (130.63.176.2) 6.375 ms 6.142 ms 6.117 ms
```

Facendo il traceroute dall'ISP vediamo che per giungere al server (primo comando) passiamo solo per R1, per giungere all'host di Roma passiamo per R1 e R2 (secondo comando) e per giungere a Como passiamo per R1, R8 ed R9 (terzo comando, Como è stata presa come esempio per mostrare che il traffico per le altre lan rimane invariato).

```
root@r1:/# traceroute 130.63.16.0
traceroute to 130.63.16.0 (130.63.16.0), 30 hops max, 60 byte packets
1 130.63.16.0 (130.63.16.0) 0.958 ms 0.960 ms 1.052 ms
root@r1:/# traceroute 130.63.0.2
traceroute to 130.63.0.2 (130.63.0.2), 30 hops max, 60 byte packets
1 130.63.255.206 (130.63.255.206) 0.958 ms 1.054 ms 1.689 ms
2 130.63.0.2 (130.63.0.2) 2.316 ms 3.551 ms 3.542 ms
root@r1:/# traceroute 130.63.176.2
traceroute to 130.63.176.2 (130.63.176.2), 30 hops max, 60 byte packets
1 130.63.255.218 (130.63.255.218) 1.465 ms 1.430 ms 1.412 ms
2 130.63.255.226 (130.63.255.226) 6.736 ms 6.733 ms 6.698 ms
3 130.63.176.2 (130.63.176.2) 7.198 ms 7.398 ms 7.557 ms
```

Facendo il traceroute da R1 notiamo il collegamento diretto con il server (primo ping), il traffico normale sulle lan di Roma e Como (secondo e terzo ping).

```
root@imola:/# traceroute 130.63.16.0
traceroute to 130.63.16.0 (130.63.16.0), 30 hops max, 60 byte packets 1 130.63.200.1 (130.63.200.1) 1.788 ms 1.826 ms 1.825 ms 2 130.63.255.241 (130.63.255.241) 5.645 ms 5.768 ms 5.782 ms 3 130.63.255.209 (130.63.255.209) 3.397 ms 3.934 ms 4.207 ms 4 130.63.16.0 (130.63.16.0) 4.677 ms 4.700 ms 4.715 ms
root@imola:/# traceroute 130.63.0.2
traceroute to 130.63.0.2 (130.63.0.2), 30 hops max, 60 byte packets
1 130.63.200.1 (130.63.200.1) 0.853 ms 0.830 ms 0.825 ms
2 130.63.255.241 (130.63.255.241) 3.964 ms 3.999 ms 4.019 ms
3 130.63.255.245 (130.63.255.245) 4.925 ms 4.932 ms 4.924 ms
       130,63,255,249 (130,63,255,249)
                                                                                                        4.906 ms
                                                                                  4.920 ms
       130,63,255,226 (130,63,255,226)
                                                                                  4.895 ms
                                                                                                        4.887 ms
                                                                                                                               4.979 ms
       130,63,255,221 (130,63,255,221)
                                                                                  4.974 ms 3.811 ms
                                                                                                                               3.818 ms
       130,63,0,2 (130,63,0,2) 5,508 ms
                                                                                      4.319 ms 4.341 ms
root@imola:/# traceroute 130.63.176.2
 traceroute to 130.63.176.2 (130.63.176.2), 30 hops max, 60 byte packets
 traceroute to 130,63,176,2 (130,63,176,2), 30 hops max, 60 byt
1 130,63,200,1 (130,63,200,1) 1,029 ms 0,944 ms 0,940 ms
2 130,63,255,241 (130,63,255,241) 2,828 ms 3,003 ms 3,004
3 130,63,255,245 (130,63,255,245) 3,749 ms 4,618 ms 4,438
4 130,63,255,249 (130,63,255,249) 4,504 ms 4,759 ms 4,759
5 130,63,255,226 (130,63,255,226) 5,466 ms 5,466 ms 5,671
6 130,63,176,2 (130,63,176,2) 5,671 ms 5,524 ms 5,518 ms
                                                                                                                               4.438 ms
                                                                                  4,504 ms 4,759 ms 4,759 ms
                                                                                 5,466 ms 5,466 ms 5,671 ms
```

Quest'ultimo screenshot è preso dal terminale dell'host di Imola, notiamo che il percorso per arrivare al server passa per R1 (terzo hop del primo ping), mentre per arrivare all'host di Roma o di Como seguiamo il percorso normale.

Time	Source	Destination	Protocol	Length Info
1 0.000000000	130.63.16.0	130.63.200.2	ICMP	98 Echo (ping) reply id=0x000b, seq=1/256, ttl=63
2 -0.001255877	130.63.200.2	130.63.16.0	ICMP	98 Echo (ping) request id=0x000b, seq=1/256, ttl=62 (no response found!)
3 -0.001237381	130.63.200.2	130.63.16.0	ICMP	98 Echo (ping) request id=0x000b, seq=1/256, ttl=61 (reply in 4)
4 -0.000013877	130.63.16.0	130.63.200.2	ICMP	98 Echo (ping) reply id=0x000b, seq=1/256, ttl=64 (request in 3)
5 5.171185966	62:c4:80:cb:1a:25	e6:99:57:42:90:1a	ARP	42 Who has 130.63.16.0? Tell 130.63.16.1
6 5.171378243	e6:99:57:42:90:1a	62:c4:80:cb:1a:25	ARP	60 Who has 130.63.16.1? Tell 130.63.16.0
7 5.171388413	62:c4:80:cb:1a:25	e6:99:57:42:90:1a	ARP	42 130.63.16.1 is at 62:c4:80:cb:1a:25
8 5.171982386	e6:99:57:42:90:1a	62:c4:80:cb:1a:25	ARP	60 130.63.16.0 is at e6:99:57:42:90:1a
9 5.171178753	b6:89:13:88:ed:9e	1e:f2:ad:37:e2:22	ARP	42 Who has 130.63.255.210? Tell 130.63.255.209
10 5.171971825	1e:f2:ad:37:e2:22	b6:89:13:88:ed:9e	ARP	60 130.63.255.210 is at 1e:f2:ad:37:e2:22
11 5.171660682	66:1f:06:2f:5d:ab	0e:76:b5:84:e4:a5	ARP	60 Who has 130.63.255.213? Tell 130.63.255.214
12 5.171666242	0e:76:b5:84:e4:a5	66:1f:06:2f:5d:ab	ARP	42 130.63.255.213 is at 0e:76:b5:84:e4:a5

Un'ulteriore conferma viene da questo screenshot di **wireshark** in ascolto su R1, si vede il ping fatto dall'host di Imola verso il server, insieme a dei pacchetti ARP, che quindi passa per R1, mentre su R2 vediamo i frame ma il mac di destinazione e/o quello di sorgente non sono di R2 quindi non vengono presi in considerazione.

Time	Source	Destination	Protocol	Length Info		
1 0.000000000	130.63.200.2	130.63.0.2	ICMP	98 Echo (ping) request	id=0x000d,	seq=1/256, ttl=59 (no response found!)
2 0.000031179	130.63.200.2	130.63.0.2	ICMP	98 Echo (ping) request	id=0x000d,	seq=1/256, ttl=58 (reply in 3)
3 0.000318285	130.63.0.2	130.63.200.2	ICMP	98 Echo (ping) reply	id=0x000d,	seq=1/256, ttl=64 (request in 2)
4 0.000326450	130.63.0.2	130.63.200.2	ICMP	98 Echo (ping) reply	id=0x000d,	seq=1/256, ttl=63

Se invece proviamo, sempre da Imola a pingare Roma otteniamo questo traffico su R2, su R1 invece vediamo sempre il pacchetto in uscita e in entrata ma non essendo indirizzati ad esso R1 li ignora. Questo comportamento si verifica perché R1, R2, Roma e il server sono nello stesso dominio di collisione dunque i dati in transito vengono visti da tutti loro ma solo coloro che vengono citati come sorgente o destinazione interagiscono con questi frame.

Esercizio 5: ARP e Ping

In questo esercizio partiamo da uno stato iniziale dove la rete è appena stata creata e le tabelle arp di tutti gli host, dei router e dell'ISP sono vuote.

Andiamo ad effettuare il ping Imola → Pisa tramite il comando: ping -c 1 130.63.208.2, che effettua un singolo ping verso Pisa. Una volta effettuato il ping le solo le tabelle ARP dei nodi interessati dalla comunicazione saranno cambiate, come vediamo nei seguenti screenshot:

root@imola:/# arp -e Address 130,63,200,1	HWtype ether		Flags Mask C	Iface eth0
root@pisa:/# arp -e Address 130.63.208.1	HWtype ether	HWaddress 72:4c:33:c9:9d:0d	Flags Mask C	Iface eth0
root@r2:/# arp -e Address 130.63.255.222 130.63.255.226	HWtype ether ether		Flags Mask C C	Iface eth1 eth3
root@r3:/# arp -e Address 130.63.255.221 130.63.255.230	HWtype ether ether	HWaddress 6e:81:bb:b4:f2:4e e2:27:21:51:3b:71	Flags Mask C C	Iface eth2 eth1
root@r4:/# arp -e Address 130.63.255.234 130.63.255. <u>2</u> 29	HWtype ether ether	HWaddress be:bd:f3:cd:73:54 8e:14:4f:f5:2b:4c	Flags Mask C C	Iface eth2 eth4

root@r5:/# arp -e Address 130.63.200.2 130.63.255.233 130.63.255. <u>2</u> 38	HWtype ether ether ether	HWaddress 36:9a:48:14:4b:63 8e:33:c1:34:95:da 76:58:ab:24:99:e6	Flags Mask C C C	Iface eth1 eth0 eth2
root@r6:/# arp -e Address 130.63.255.237 130.63.208.2 130.63.255.242	HWtype ether ether ether	HWaddress 4a:c6:db:4f:79:a0 76:33:97:3f:28:dd 6e:e5:5c:32:d5:a3	Flags Mask C C C	Iface eth0 eth1 eth3
root@r7:/# arp -e Address 130.63.255.241 130.63.255. <u>2</u> 46	HWtype ether ether	HWaddress 9e:e8:9f:d8:64:5a 76:63:fa:4a:c2:e7	Flags Mask C C	Iface eth0 eth2
root@r8:/# arp -e Address 130.63.255.245 130.63.255. <u>2</u> 50	HWtype ether ether	HWaddress 1a:95:91:5f:13:52 c6:f9:ff:88:3f:ec	Flags Mask C C	Iface eth2 eth0
root@r9:/# arp -e Address 130.63.255.225 130.63.255.249	HWtype ether ether	HWaddress 12:a3:c3:b7:bd:f9 96:e1:a8:bf:c0:6b	Flags Mask C C	Iface eth0 eth1

Una volta effettuato il ping Roma → Lucca, solo le tabelle ARP di Roma, Lucca, R2 e R8 cambiano perchè durante il tragitto i router hanno già le corrispondenze tra indirizzi IP e indirizzi MAC dei nodi successivi e precedenti, ma nel caso di R2 e R8 vengono aggiunte le corrispondenze per gli host di Roma e Lucca rispettivamente perchè in questo caso avvengono degli scambi tra Roma e Lucca e i loro router, ovviamente anche Roma e Lucca aggiungono alle loro tabelle le corrispondenze MAC/IP di R2 e R8.

Vediamo come cambiano le tabelle negli screenshot seguenti:

root@roma:/# arp -e Address 130.63.0.1	HWtype ether	HWaddress fe:8b:72:fc:6a:2d	Flags Mask C	Iface eth0
root@lucca:/# arp -e Address 130,63,204,1	HWtype ether	HWaddress 7e:7d:db:ff:77:37	Flags Mask C	Iface eth0
root@r2:/# arp -e Address 130.63.255.222 130.63.0.2 130.63.255. <u>2</u> 26	HWtype ether ether ether	HWaddress 96:b3:0e:fe:72:c5 26:a7:b0:fb:b2:68 fe:af:98:ae:59:ab	Flags Mask C C C	Iface eth1 eth0 eth3
root@r8:/# arp -e Address 130.63.255.245 130.63.204.2 130.63.255.250	HWtype ether ether ether	HWaddress 1a:95:91:5f:13:52 ba:45:69:df:e5:c5 c6:f9:ff:88:3f:ec	Flags Mask C C C	Iface eth2 eth4 eth0

Infine effettuiamo il ping Lodi → Pavia, anche in questo caso sono solo le tabelle ARP di Lodi, Pavia, R2 e R4 a cambiare per lo stesso ragionamento fatto per il ping precedente.

Vediamo le tabelle ARP nel dettaglio nei seguenti screenshot:

root@lodi:/# arp -e Address 130.63.32.1	HWtype ether	HWaddress 56:30;b2:25:c9:e9	Flags Mask C	Iface eth0
root@pavia:/# arp -e Address 130.63.64.1	HWtype ether	HWaddress 8e:89:94:db:3e:5f	Flags Mask C	Iface eth0
root@r2:/# arp -e Address 130,63,255,222 130,63,64,2 130,63,0,2 130,63,255, <u>2</u> 26	HWtype ether ether ether ether	HWaddress 96;b3;0e;fe;72;c5 3a;d7;fe;5f;42;bd 26;a7;b0;fb;b2;68 fe;af;98;ae;59;ab	Flags Mask C C C C	Iface eth1 eth4 eth0 eth3
root@r4:/# arp -e Address 130.63.255.234 130.63.32.2 130.63.255.229	HWtype ether ether ether	HWaddress be:bd:f3:cd:73:54 02:2c:a3:2b:40:30 8e:14:4f:f5:2b:4c	Flags Mask C C C	Iface eth2 eth1 eth4

Dunque dopo i tre ping le tabelle ARP di R2, R3, R4, R5, R6, R7, R8, R9, Imola, Pisa, Roma, Lucca, Lodi e Pavia sono state popolate con le corrispondenze MAC/IP di quei nodi con cui hanno comunicato, quindi non tutte le tabelle possono dirsi"complete" perchè non con tutti i nodi connessi sono state instaurate connessioni e quindi non si conoscono le loro corrispondenze, ad esempio il router R4 non conosce la corrispondenza MAC/IP di R1 e di Gela, mentre le tabelle di Imola, Pisa, Roma, Lucca, Lodi e Pavia possono dirsi "complete" perché sono collegati solo ai loro router e dopo questi tre ping conoscono le corrispondenze MAC/IP di essi.