

cmos028fdsoi Technology

PDC vs MC Noise report for LVT models

DK1.2_RF_mmW

Please use the bookmark to navigate

General information on PDC vs MC Noise report for LVT models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 30nm to 10um.
 - ✓ Drawn transistor width varies from 80nm to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

dormieub

Output parameters definitions

● Model(s): lvtnfet_acc, lvtpfet_acc

dormieub

lvtnfet_acc Electrical characteristics per geometry

lvtnfet_acc@ w=20e-6, l=2.0e-6, pre_layout_local=1, nf=4, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, devtype=PCELLwoWPE, as=4.25e-13, ad=4.25e-13, ps=1.017e-05, pd=1.017e-05, vbs=0, vdd=1, temp=25

	TT_Noisedev=4	TT_Noisedev=0	TT_Noisedev=2	PRO_MC_PARAM_	PRO_MC_PARAM_	PRO_MC_PARAM_
				TT_1_MC_AVG-3S	TT_1_MC_AVG	TT_1_MC_AVG+3S
logSi2@1Hz	-18.11	-17.94	-17.78	-18.11	-17.94	-17.78
[log10(A ² /Hz)]						
logSi2ovId2@1Hz	-9.51	-9.34	-9.18	-9.51	-9.34	-9.18
[log10(1/Hz)]						
logSv2@1Hz	-11.65	-11.49	-11.33	-11.66	-11.49	-11.33
$[\log 10(V^2/Hz)]$				•		

dormieub

lvtpfet_acc Electrical characteristics per geometry

lvtpfet_acc @ w=0.30e-6, l=0.030e-6, pre_layout_local=1, nf=1, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=5.700e-08, pcpastrx_bot=8.000e-08, devtype=PCELLwoWPE, as=2.55e-14, ad=2.55e-14, ps=7.7e-07, pd=7.7e-07, vbs=1, vdd=1, temp=25

	TT_Noisedev=4	TT_Noisedev=0	TT_Noisedev=2	PRO_MC_PARAM_	PRO_MC_PARAM_	PRO_MC_PARAM_
			TT_1_MC_AVG-3S	TT_1_MC_AVG	TT_1_MC_AVG+3S	
logSi2@1Hz	-16.67	-15.66	-14.65	-16.68	-15.66	-14.65
[log10(A ² /Hz)]						
logSi2ovId2@1Hz	-7.28	-6.26	-5.25	-7.28	-6.26	-5.25
[log10(1/Hz)]						
logSv2@1Hz	-8.89	-7.88	-6.87	-8.89	-7.88	-6.87
$[\log 10(V^2/Hz)]$						

lvtpfet_acc@ w=20e-6, l=2.0e-6, pre_layout_local=1, nf=4, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, devtype=PCELLwoWPE, as=4.25e-13, ad=4.25e-13, ps=1.017e-05, pd=1.017e-05, vbs=1, vdd=1, temp=25

	TT_Noisedev=4	TT_Noisedev=0	TT_Noisedev=2	PRO_MC_PARAM_	PRO_MC_PARAM_	PRO_MC_PARAM_
				TT_1_MC_AVG-3S	TT_1_MC_AVG	TT_1_MC_AVG+3S
logSi2@1Hz	-19.24	-19	-18.76	-19.24	-19	-18.76
[log10(A ² /Hz)]						
logSi2ovId2@1Hz	-9.84	-9.6	-9.36	-9.84	-9.6	-9.36
[log10(1/Hz)]						
logSv2@1Hz	-11.88	-11.65	-11.41	-11.89	-11.65	-11.41
$[\log 10(V^2/Hz)]$				•		•

lvtnfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10 and W/NF<5e-6

lvtnfet_acc, logSi2@1Hz+log10(nf) vs "L=W/10 [m]"

W/L==10 and Temp==25

lvtnfet_acc, logSi2ovId2@1Hz+log10(nf) vs "L=W/10 [m]"

W/L==10 and Temp==25

- **DK1.2_RF_mmW_TT_Noisedev=0**
- -- DK1.2_RF_mmW_TT_Noisedev=2
- --- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S
- --- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG
- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S

ST Confidential

lvtnfet_acc, logSv2@1Hz+log10(nf) vs "L=W/10 [m]"

W/L==10 and Temp==25

lvtpfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10 and W/NF<5e-6

lvtpfet_acc, logSi2@1Hz+log10(nf) vs "L=W/10 [m]"

W/L==10 and Temp==25

lvtpfet_acc, logSi2ovId2@1Hz+log10(nf) vs "L=W/10 [m]"

W/L==10 and Temp==25

- **DK1.2_RF_mmW_TT_Noisedev=0**
- DK1.2_RF_mmW_TT_Noisedev=2
- **DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S**
- --- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG
- **DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S**

lvtpfet_acc, logSv2@1Hz+log10(nf) vs "L=W/10 [m]"

W/L==10 and Temp==25

- **DK1.2_RF_mmW_TT_Noisedev=0**
- -- DK1.2_RF_mmW_TT_Noisedev=2
- **DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S**
- --- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG
- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S

ST Confidential

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model lvtnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** ams_release = 2018.3
 - \times mc_runs = 500
 - \mathbf{X} iana = 5e-6 A
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - \star f_ext = 100k Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{x} vbs = 0 V
 - **x** model_version = 1.3.e
 - X vds_ana = Vdd/4 V
 - **x** mc_nsigma = 3
 - \mathbf{x} vdd = 1 V
 - ✓ Sweep Parameters
 - ✓ Extra parameters

Sep 25, 2018

ST Confidential

- X lvt_dev = 0
- Model lvtpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** ams_release = 2018.3
 - **x** mc_runs = 500
 - **x** iana = 2e-6 A
 - **x** temp = $25 \, ^{\circ}$ C
 - \mathbf{x} mc_sens = 0
 - \star f_ext = 100k Hz
 - **x** sbenchlsf_release = Alpha
 - \mathbf{x} vbs = 1 V
 - **x** model_version = 1.3.e
 - \mathbf{X} vds_ana = Vdd/4 V
 - **x** mc_nsigma = 3
 - \times vdd = 1 V
 - ✓ Sweep Parameters
 - ✓ Extra parameters
 - X lvt_dev = 0

Sep 25, 2018