Computational Finance

Dealing with Data

More Datatypes

NumPy Arrays

- The most fundamental data type in scientific Python is ndarray, provided by the NumPy package (<u>user guide (https://docs.scipy.org/doc/numpy/user/index.html)</u>).
- An array is similar to a list, except that
 - it can have more than one dimension;
 - its elements are homogenous (they all have the same type).
- NumPy provides a large number of functions (*ufuncs*) that operate elementwise on arrays. Allows *vectorized* code, avoiding loops (which are slow in Python).

Constructing Arrays

• Arrays can be constructed using the array function which takes sequences (e.g, lists), and converts them into arrays. The data type is inferred automatically or can be specified.

```
In [2]: import numpy as np
    a=np.array([1, 2, 3, 4])
    a.dtype

Out[2]: dtype('int64')

In [3]: a=np.array([1, 2, 3, 4],dtype='float64') #or np.array([1., 2., 3., 4.])
    a.dtype

Out[3]: dtype('float64')
```

• NumPy uses C++ data types which differ from Python (though float64 is equivalent to Python's float).

• Nested lists result in multidimensional arrays. We won't need anything beyond two-dimensional (i.e., a matrix or table).

• Other functions for creating arrays:

```
In [7]:
         np.eye(3, dtype='float64') #identity matrix. float64 is the default dtype and can b
         e omitted
         array([[ 1., 0., 0.],
Out[71:
                [ 0., 1., 0.],
                [0., 0., 1.]
In [8]:
         np.ones([2,3]) #there's also np.zeros, and np.empty (which result in an uninitializ
         ed array)
         array([[ 1., 1., 1.],
Out[8]:
                [1., 1., 1.]
In [9]:
         np.arange(0,10,2) #like range, but creates an array instead of a list
         array([0, 2, 4, 6, 8])
Out[9]:
In [10]:
        np.linspace(0,10,5) #5 equally spaced points between 0 and 10
Out[10]: array([ 0. , 2.5, 5. , 7.5, 10.])
```

Indexing

• Indexing and slicing operations are similar to lists:

```
In [11]: a=np.array([[1., 2.], [3., 4.]])
    a[0, 0] #indexing [row, column]. Equivalent to b[0][0]

Out[11]: 1.0

In [12]: b=a[:, 0]; b #First column. Note that this yields a 1-dimensional array, not a matr
    ix

Out[12]: array([ 1., 3.])
```

• Slicing returns *views* into the original array (unlike slicing lists):

• Apart from indexing by row and column, arrays also support *Boolean* indexing:

```
In [15]: a=np.arange(10); a
Out[15]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [16]: ind=a<5; ind
Out[16]: array([ True, True, True, True, False, False, False, False, False], dt
ype=bool)
In [17]: a[ind]
Out[17]: array([0, 1, 2, 3, 4])</pre>
```

Concatenation and reshaping

• To combine two arrays in NumPy, use concatenate or stack:

• reshape(n,m) changes the shape of an array into (n,m), taking the elements row-wise. A dimension given as -1 will be computed automatically

Arithmetic and ufuncs

• NumPy ufuncs are functions that operate elementwise:

```
In [22]:
         a=np.arange(1,5); np.sqrt(a)
         array([ 1.
                            , 1.41421356, 1.73205081, 2.
                                                                   ])
Out[22]:

    Other useful ufuncs are exp, log, abs, sqrt.

            • Basic arithmetic on arrays works elementwise:
In [23]:
         a=np.arange(1,5); b=np.arange(5,9); a, b, a + b, a - b, a / b
          (array([1, 2, 3, 4]),
Out[23]:
           array([5, 6, 7, 8]),
           array([ 6, 8, 10, 12]),
           array([-4, -4, -4, -4]),
           array([0, 0, 0, 0]))
```

Broadcasting

• Operations between scalars and arrays are also supported:

```
In [24]: np.array([1,2,3,4])+2
Out[24]: array([3, 4, 5, 6])
```

- This is a special case of a more general concept known as *broadcasting*, which allows operations between arrays of different shapes.
- NumPy compares the shapes of two arrays element-wise. It starts with the trailing dimensions, and works its way forward. Two dimensions are compatible if
 - they are equal, or
 - one of them is 1 (or not present)
- In the latter case, the singleton dimension is "stretched" to match the larger array.

• Example:

• NumPy's newaxis feature is sometimes useful to enable broadcasting. It introduces a nex dimension of length 1; e.g, it can turn a vector (1d array) into a matrix (2d array) with a single row or column. Example:

• In this particular case, the same result could have been obtained by taking the outer product of u and v (in mathematical notation, uv'):

Array Reductions

- Array reductions are operations on arrays that return scalars or lowerdimensional arrays, such as the mean function used above
- They can be used to summarize information about an array, e.g., compute the standard deviation:

```
In [28]: a=np.random.randn(300,3) #create a 300x3 matrix of standard normal variates a.std(axis=0) #or np.std(a, axis=0)
```

Out[28]: array([0.96146258, 0.97593249, 0.97978109])

- By default, reductions work on a flattened version of the array. For row- or columnwise operation, the axis argument has to be given.
- Other useful reductions are sum, median, min, max, argmin, argmax, any, and all (see help).

Saving Arrays to Disk

• There are several ways to save an array to disk:

```
In [29]:
         np.save('myfile.npy', a) #save a as a binary .npy file
In [30]:
         import os
         print(os.listdir('.'))
         ['README.md', 'week2.ipynb', 'myfile.npy', 'week4.ipynb', 'img', 'week1.ipynb',
          '.ipynb checkpoints', 'week3.ipynb']
In [31]:
         b=np.load('myfile.npy') #load the data into variable b
         os.remove('myfile.npy') #clean up
In [32]:
         np.savetxt('myfile.csv', a, delimiter=',') #save as CSV file (comma seperated value
         s, can be read by MS Excel)
In [33]:
         b=np.loadtxt('myfile.csv', delimiter=',') #load data into b
         os.remove('myfile.csv')
```

Pandas Dataframes

Introduction to Pandas

- pandas (from panel data) is another fundamental package in the SciPy stack (user quide (http://pandas.pydata.org/pandas-docs/stable/overview.html).
- It provides a number of datastructures (series, dataframes, and panels) designed for storing observational data, and powerful methods for manipulating (munging, or wrangling) these data.
- It is usually imported as pd:

In [34]: import pandas as pd

Series

In [37]:

Out[37]:

pop['NL']

17.0

• A pandas Series is essentially a NumPy array with an associated index:

• NumPy ufuncs operate on series and preserve the index:

```
In [38]:
         gdp=pd.Series([3494.898,769.930], name='Nominal GDP in Billion USD', index=['DE', '
          NL']); gdp
          DE
                3494.898
Out[38]:
                 769.930
          NL
          Name: Nominal GDP in Billion USD, dtype: float64
In [39]:
         gdp/pop
          DE
                42.259952
Out[391:
          DK
                      NaN
          NL
                45.290000
          dtype: float64
```

• One advantage of Series compared to NumPy arrays is that they can handle missing data, represented as NaN (not a number).

Dataframes

• A dataframe is a collection of series with a common index (which labels the rows).

```
In [40]: data=pd.concat([gdp,pop],axis=1); data #concatenate series
```

Out[40]:

	Nominal GDP in Billion USD	Population
DE	3494.898	82.7
DK	NaN	5.7
NL	769.930	17.0

• Columns are indexed by column name:

Name: Population, dtype: float64

```
In [41]: data.columns
Out[41]: Index([u'Nominal GDP in Billion USD', u'Population'], dtype='object')
In [42]: data['Population'] #data.Population works too
Out[42]: DE 82.7
    DK 5.7
    NL 17.0
```

• Rows are indexed with the loc method (note: the ix method listed in the book (p. 139) is deprecated):

In [43]: data.loc['NL']

Out[43]: Nominal GDP in Billion USD 769.93 Population 17.00

Name: NL, dtype: float64

- Unlike arrays, dataframes can have columns with different datatypes.
- There are different ways to add columns. One is to just assign to a new column:

In [44]: data['Language']=['German', 'Danish', 'Dutch']; #Add a new column from a list

• Another is to use the join method:

In [45]: s=pd.Series(['EUR', 'DKK', 'EUR', 'GBP'], index=['NL', 'DK', 'DE', 'UK'], name='Cur
rency')
data.join(s) #Add a new column from a series or dataframe

Out[45]:

	Nominal GDP in Billion USD	Population	Language	Currency
DE	3494.898	82.7	German	EUR
DK	NaN	5.7	Danish	DKK
NL	769.930	17.0	Dutch	EUR

• Notes:

- The entry for 'UK' has disappeared. Pandas takes the *intersection* of indexes ('inner join') by default.
- The returned series is a temporary object. If we want to modify data, we need to assign to it.
- To take the union of indexes ('outer join'), pass the keyword argument how='outer':

In [46]: data=data.join(s, how='outer'); data #assignment to store the modified frame

Out[46]:

	Nominal GDP in Billion USD	Population	Language	Currency
DE	3494.898	82.7	German	EUR
DK	NaN	5.7	Danish	DKK
NL	769.930	17.0	Dutch	EUR
UK	NaN	NaN	NaN	GBP

• The join method is in fact a convenience method that calls pd.merge under the hood, which is capable of more powerful SQL style operations.

• To add rows, use loc or append:

In [47]: data.loc['AT']=[386.4, 8.7, 'German', 'EUR'] #Add a row with index 'AT' s=pd.DataFrame([[511.0, 9.9, 'Swedish', 'SEK']], index=['SE'], columns=data.columns) data=data.append(s) #Add a row by appending another dataframe. May create duplicate s data

Out[47]:

	Nominal GDP in Billion USD	Population	Language	Currency
DE	3494.898	82.7	German	EUR
DK	NaN	5.7	Danish	DKK
NL	769.930	17.0	Dutch	EUR
UK	NaN	NaN	NaN	GBP
AT	386.400	8.7	German	EUR
SE	511.000	9.9	Swedish	SEK

• The dropna method can be used to delete rows with missing values:

In [48]: data=data.dropna(); data

Out[48]:

	Nominal GDP in Billion USD	Population	Language	Currency
DE	3494.898	82.7	German	EUR
NL	769.930	17.0	Dutch	EUR
AT	386.400	8.7	German	EUR
SE	511.000	9.9	Swedish	SEK

• Useful methods for obtaining summary information about a dataframe are mean, std, info, describe, head, and tail.

In [49]: data.describe()

Out[49]:

	Nominal GDP in Billion USD	Population
count	4.000000	4.000000
mean	1290.557000	29.575000
std	1478.217475	35.605559
min	386.400000	8.700000
25%	479.850000	9.600000
50%	640.465000	13.450000
75%	1451.172000	33.425000
max	3494.898000	82.700000

In [50]: data.head() #show the first few rows. data.tail shows the last few

Out[50]:

	Nominal GDP in Billion USD	Population	Language	Currency
DE	3494.898	82.7	German	EUR
NL	769.930	17.0	Dutch	EUR
AT	386.400	8.7	German	EUR
SE	511.000	9.9	Swedish	SEK

• To save a dataframe to disk as a csv file, use

```
In [51]: data.to_csv('myfile.csv') #to_excel exists as well
```

```
In [52]: with open('myfile.csv', 'r') as f:
    print(f.read())
```

,Nominal GDP in Billion USD,Population,Language,Currency DE,3494.898,82.7,German,EUR NL,769.93,17.0,Dutch,EUR AT,386.4,8.7,German,EUR SE,511.0,9.9,Swedish,SEK

• To load data into a dataframe, use pd. read csv (see Table 6.6 in the book):

In [53]: pd.read_csv('myfile.csv', index_col=0)

Out[53]:

	Nominal GDP in Billion USD	Population	Language	Currency
DE	3494.898	82.7	German	EUR
NL	769.930	17.0	Dutch	EUR
AT	386.400	8.7	German	EUR
SE	511.000	9.9	Swedish	SEK

```
In [54]: os.remove('myfile.csv') #clean up
```

• Other, possibly more efficient, methods exist; see Chapter 7 of Hilpisch (2014).

Working with Time Series

Data Types

- Different datatypes for representing times and dates exist in Python.
- The most basic one is datetime from the eponymous package, and also accesible from Pandas:

```
In [55]: pd.datetime.today()
Out[55]: datetime.datetime(2017, 10, 18, 15, 36, 58, 684179)
```

• datetime objects can be created from strings using strptime and a format specifier:

```
In [56]: pd.datetime.strptime('2017-03-31', '%Y-%m-%d')
Out[56]: datetime.datetime(2017, 3, 31, 0, 0)
```

• Pandas uses Timestamps instead of datetime objects. Unlike timestamps, they store frequency and time zone information. The two can mostly be used interchangeably. See Appendix C for details.

```
In [57]: pd.Timestamp('2017-03-31')
Out[57]: Timestamp('2017-03-31 00:00:00')
```

- A time series is a Series with a special index, called a DatetimeIndex; essentially an array of Timestamps.
- Can be created using the date_range function; see Tables 6.2 and 6.3.

```
In [58]:
          myindex=pd.date range(end=pd.Timestamp.today(), normalize=True, periods=100, freg='
          B')
          P=20+np.random.randn(100).cumsum() #make up some share prices
          aapl=pd.Series(P, name="AAPL", index=myindex)
          aapl.tail()
          2017-10-12
                        17.375033
Out[58]:
          2017-10-13
                        16.842517
          2017-10-16
                        16.827251
          2017 - 10 - 17
                        17.142485
          2017-10-18
                        16,683099
          Freq: B, Name: AAPL, dtype: float64
```

• As a convenience, Pandas allows indexing timeseries with date strings:

```
In [59]:
         aapl['10/5/2017']
          16.906353105017057
Out[591:
In [60]:
         aapl['5/2017']
                                                   Traceback (most recent call last)
         KevError
         <ipython-input-60-db1bfc2a2e06> in <module>()
         ----> 1 aapl['5/2017']
         /home/sbrodal/anaconda2/lib/python2.7/site-packages/pandas/core/series.pyc in
         getitem (self, key)
             599
                          key = com. apply if callable(key, self)
             600
                         try:
         --> 601
                              result = self.index.get value(self, key)
             602
                             if not is scalar(result):
             603
         /home/sbrodal/anaconda2/lib/python2.7/site-packages/pandas/core/indexes/datetime
         s.pyc in get value(self, series, key)
            1387
                                  return self.get value maybe box(series, key)
            1388
                             except (TypeError, ValueError, KeyError):
                                  raise KeyError(key)
         -> 1389
            1390
            1391
                     def get value maybe box(self, series, key):
         KeyError: '5/2017'
In [ ]:
         aapl['10/5/2017':'10/10/2017']
```

Financial Returns

- We mostly work with returns rather than prices, because their statistical properties are more desirable (stationarity).
- ullet There exist two types of returns: simple returns $R_t \equiv (P_t P_{t-1})/P_{t-1}$, and log returns $r_t \equiv \log(P_t/P_{t-1}) = \log P_t \log P_{t-1}$.
- Log returns are usually preferred, though the difference is typically small.
- To convert from prices to returns, use shift(k) method which lags by k periods (or leads if k < 0).

```
In [ ]: ret=np.log(aapl)-np.log(aapl).shift(1)
    ret.tail()
```

- ullet Note: for some applications (e.g., CAPM regressions), excess returns $r_t-r_{f,t}$ are required, where $r_{f,t}$ is the return on a "risk-free" investment.
- These are conveniently constructed as follows: suppose you have a data frame containing raw returns for a bunch of assets:

```
In []: P=20+np.random.randn(100).cumsum() #some more share prices
    rf=1+np.random.randn(100)/100 #and a yield
    msft=pd.Series(P, name="MSFT", index=myindex)
    returns=pd.concat([aapl, msft], axis=1)
    returns.tail()
```

• Then the desired operation can be expressed as

```
In [ ]: excess_returns=returns.sub(rf, axis='index') #subtract series rf from all columns
```

Fetching Data

- pandas_datareader makes it easy to fetch data from the web (<u>user guide</u> (http://pandas-datareader.readthedocs.io/en/latest/remote_data.html).
- It is no longer included in pandas, so we need to install it.

```
In [ ]: #uncomment the next line to install. (Note: ! executes shell commands)
    #!conda install -y pandas-datareader
    import pandas_datareader.data as web #not 'import pandas.io.data as web' as in the
    book

In [ ]: start = pd.datetime(2010, 1, 1)
    end = pd.datetime.today()
    p = web.DataReader("^GSPC", 'yahoo', start, end) #S&P500
    p.tail()
```

Regression Analysis

- Like in the book, we analyze the *leverage effect*: negative stock returns decrease the value of equity and hence increase debt-to-equity, so cashflow to shareholders as residual claimants becomes more risky; i.e., volatility increases.
- Hilpisch uses the VSTOXX index. Here, we use the VIX, which measures the volatility of the S&P500 based on implied volatilities from the option market.
- We already have data on the S&P500. We'll convert them to returns and do the same for the VIX. We'll store everything in a dataframe df.

```
In [ ]: df=pd.DataFrame()
    df['SP500']=np.log(p['Adj Close'])-np.log(p['Adj Close']).shift(1) #make sure there
    's no ^ in the column name
    p = web.DataReader("^VIX", 'yahoo', start, end)
    df['VIX']=np.log(p['Adj Close'])-np.log(p['Adj Close']).shift(1)
    df.tail()
```

- Next, we run an OLS regression of the VIX returns on those of the S&P.
- Note that this functionality has been moved from Pandas to the <u>Statsmodels</u> <u>package (http://www.statsmodels.org/stable/index.html)</u>, so we have to use a different incantation than in the book.
- Also, we will use a different interface (API) which allows us to specify regressions using R-style formulas (<u>user guide (http://www.statsmodels.org/stable/example_formulas.html)</u>).
- We will use heteroskedasiticy and autocorrelation consistent (HAC) standard errors.

```
In [ ]: import statsmodels.formula.api as smf
model = smf.ols('VIX ~ SP500', data=df)
result=model.fit(cov_type="HAC", cov_kwds={'maxlags':5})
print(result.summary2())
```

- Conclusion: We indeed find a significant negative effect of the index returns, confirming the existence of the leverage effect.
- Note: for a regression without an intercept, we would use model = smf.ols('VIX ~ -1+SP500', data=df).
- The result object has useful methods and variables:

```
In [ ]: print(result.f_test('SP500=0, Intercept=0'))
In [ ]: result.params
```