最优化理论

陈鸿峥

2019.03*

目录

1	简介	1
	1.1 优化概述	
	1.2 分类	2
	1.3 历史	2
2	凸集	3
3	凸函数	5
4	凸优化问题	10
	4.1 标准型	10
	4.2 线性规划	12

1 简介

1.1 优化概述

优化(optimization): 从一个可行解的集合中寻找出最好的元素

例 1. • 最小二乘线性拟合(凸问题)

• 深度神经网络(非凸,见下)

$$\mathbf{x}_{1}^{(i)} = f_{1}(\mathbf{x}_{0}^{(i)}, \mathbf{w}_{1})$$

$$\cdots = \cdots$$

$$\mathbf{x}_{n}^{(i)} = f_{n}(\mathbf{x}_{n-1}^{(i)}, \mathbf{w}_{n})$$

$$\min \sum_{i=1}^{m} (\mathbf{y}^{(i)} - \mathbf{x}_{n}^{(i)})^{2}$$

^{*}Build 20190321

• 图像处理,自然图像通常都是分块光滑的,原图 Φ_0 ,有噪声的新图 Φ 全变参TV, $Total\ Variation$)范数,计算图像每个像素点左侧和下侧的差异

$$\|\Phi\|_{TV} = \sum_{y} \sum_{x} \sqrt{(\Phi(x,y) - \Phi(x,y-1))^2 + (\Phi(x,y) - \Phi(x-1,y))^2}$$

可得优化目标:近似自然图像,而且跟原图不能差太远

$$\min(\|\Phi\|_{TV} + \lambda \|\Phi - \Phi_0\|_F^2)$$

• 推荐系统: Netflix问题

矩阵横向为用户,纵向为电影,值为评分值 $(1 \sim 5)$,问题是把矩阵补全,这样就可以做推荐了 \rightarrow 低 秩矩阵补全

电影很多,但类型不多,关联关系有限 \rightarrow 近似低秩 1

低秩本来需要最小化z的非零奇异值数目 $||z||_0$,但是非凸的;转化为最小化和范数 2 $||z||_*$

min
$$\|\mathbf{z}\|_{\star} := \|\mathbf{z}\|_{1}$$
s.t. $\mathbf{z}_{ij} = \mathbf{M}_{ij}, (i, j) \in \Omega$

1.2 分类

- 线性规划/非线性规划
- 凸规划/非凸规划(更好的分类)

目标函数凸函数,可行解集为凸集则是凸优化,一般容易求解

1.3 历史

- Newton-Raphson算法: 求零点,等价于求min $f^2(x)$
- Gauss-Seidel算法: 求解线性方程组 $A\mathbf{x} = \mathbf{b}$,等价于求min $||A\mathbf{x} \mathbf{b}||_2^2$
- Lagrange
- Kantoronc: 苏联,线性规划,诺贝尔经济学奖
- Dantzig: 美国,优化决策,线性规划单纯形
- Von Neumann: 线性规划问题对偶理论
- Karmarkar: 80年代,线性规划内点法
- Nesterov: 后80年代,非线性凸优化内点法
- 现代: 并行、随机算法

 $^{^{1}}A$ 的秩等于非零奇异值 $\sqrt{eig(A^{T}A)}$ 数目

²矩阵所有奇异值之和

2 凸集

定义 1. 一些集合概念如下

• 仿射集(affine set)

$$\mathcal{C}$$
为仿射集 \iff 过 \mathcal{C} 内任意两点的**直线**都在 \mathcal{C} 内 $\iff \forall x_1, x_2 \in \mathcal{C}, \theta \in \mathbb{R}, \theta x_1 + (1-\theta)x_2 \in \mathcal{C}$

例 2. 用定义易证线性方程组的解集 $C = \{ \mathbf{x} \mid A\mathbf{x} = \mathbf{b} \}$ 是仿射集; 反过来, 每一个仿射集都可以用 线性方程组的解集表示

• 仿射组合

$$\forall x_1, x_2, \dots, x_k \in \mathcal{C}, \theta_1, \dots, \theta_k \in \mathbb{R}, \frac{\theta_1 + \dots + \theta_k}{1} = 1 : \theta_1 x_1 + \dots + \theta_k x_k \in \mathcal{C}$$

• 仿射包(hull): 所有仿射组合的集合

aff
$$C := \{\theta_1 x_1 + \dots + \theta_k x_k \mid \forall x_1, \dots, x_k \in C, \theta_1 + \dots + \theta_k = 1\}$$

● 凸集(convex set)

$$\mathcal{C}$$
为凸集 \iff 过 \mathcal{C} 内任意两点的**线段**都在 \mathcal{C} 内 $\iff \forall x_1, x_2 \in \mathcal{C}, \theta \in [\mathbf{0}, \mathbf{1}], \theta x_1 + (1 - \theta)x_2 \in \mathcal{C}$

• 凸组合

$$\forall x_1, x_2, \dots, x_k \in \mathcal{C}, \theta_1, \dots, \theta_k \in [0, 1], \theta_1 + \dots + \theta_k = 1 : \theta_1 x_1 + \dots + \theta_k x_k \in \mathcal{C}$$

• 凸包: 最小的凸集

$$\operatorname{conv} \mathcal{C} := \{ \theta_1 x_1 + \dots + \theta_k x_k \mid \forall x_1, \dots, x_k \in \mathcal{C}, \theta_1, \dots, \theta_k \in [0, 1], \theta_1 + \dots + \theta_k = 1 \}$$

● 凸锥(convex cone)

$$\mathcal{C}$$
为凸锥 $\iff \forall x_1, x_2 \in \mathcal{C}, \theta_1, \theta_2 \geq 0, \theta_1 x_1 + \theta_2 x_2 \in \mathcal{C}$

除了空集的凸锥都得包含原点 (取 $\theta_1 = \theta_2 = 0$)

• 凸锥组合/非负线性组合:

$$\forall x_1, x_2, \dots, x_k \in \mathcal{C}, \theta_1, \dots, \theta_k \geq 0 : \theta_1 x_1 + \dots + \theta_k x_k \in \mathcal{C}$$

• 凸锥包: 类似前面定义

由上面的定义易知, 仿射组合/凸锥组合(强条件)一定是凸组合。

定义 2 (超平面(hyperplane)与半空间(halfspace)). 超平面都是比原空间低一维

$$\{\mathbf{x} \mid \mathbf{a}^{\mathrm{T}}\mathbf{x} = b, \mathbf{x}, \mathbf{a} \in \mathbb{R}^{n}, b \in \mathbb{R}, \mathbf{a} \neq 0\}$$

超平面将空间划分为两个部分, 即半空间

$$\{\mathbf{x} \mid \mathbf{a}^{\mathrm{T}}\mathbf{x} \le b, \mathbf{a} \ne 0\}$$

若方程特解为 \mathbf{x}_0 ,则 $\mathbf{a} \perp (\mathbf{x} - \mathbf{x}_0)$

定义 3 (欧式球(Euclidean ball)).

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\}$$

范数(norm)球可类似定义

定义 4 (椭球(ellipsoid)).

$$\varepsilon(x_c, P) = \{x \mid (x - x_c)^{\mathrm{T}} P^{-1} (x - x_c) \le 1\}, P > 0$$

其中 $P \succ 0$ 代表P对称且正定 $(P = P^T)$

分析. 定义内积 $\langle x^{\mathrm{T}}P^{-1}y\rangle$ (需证满足内积条件),进而P-范数 $\|x\|_P := \sqrt{x^{\mathrm{T}}Px}$ 是范数,而椭球不过是P-范数意义下的球,由定理得椭球是凸的

定义 5 (多面体(polyhedron)).

$$P = \{\mathbf{x} \mid \mathbf{a}_i^{\mathrm{T}} \mathbf{x} \leq b_i, \mathbf{c}_i^{\mathrm{T}} \mathbf{x} = d_i, i = 1, \dots, m, j = 1, \dots, p\}$$

例 3. • 空集、点、 \mathbb{R}^n 空间均为仿射

- 任意直线为仿射; 若过原点则为凸锥
- ℝⁿ空间的子空间³为仿射和凸锥
- 超平面为仿射
- 半空间、欧式球、椭球、多面体为凸集

定义 6 (仿射函数).

$$f: \mathbb{R}^n \mapsto \mathbb{R}^m$$
 $f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}, A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$

性质如下:

³零元、加法封闭、数乘封闭

- $S \subset \mathbb{R}^n$ 为 凸 $\Longrightarrow f(S) = \{f\}\mathbf{x} \mid \mathbf{x} \in S\}$ 为 凸
- $C \subset \mathbb{R}^m$ 为 凸 $\Longrightarrow f^{-1}(C) = \{\mathbf{x} \in \mathbb{R}^n \mid f(\mathbf{x}) \in C\}$ 为 凸

例 4. 两个集合的和 $S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$ 保凸

分析. 直积 $S_1 \times S_2 = \{(x,y) \mid x \in S_1, y \in S_2\}$ 显然可以保凸(相当于在两个集合同时画线)令 $A = \begin{bmatrix} I & I \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x & y \end{bmatrix}^{\mathrm{T}}, \mathbf{b} = 0$,由仿射函数性质知

定义 7 (透视(perspective)函数⁴). 透视函数 $P: \mathbb{R}^{n+1} \mapsto \mathbb{R}^n, \operatorname{dom} P = \mathbb{R}^n \times \mathbb{R}_{++}$ 定义如下

$$P(z,t) = \frac{z}{t}, z \in \mathbb{R}^n, t \in \mathbb{R}_{++}$$

反透视函数

$$P^{-1}(c) := \{(x,t) \in \mathbb{R}^{n+1} \mid \frac{x}{t} \in c, t > 0\}$$

分析.

$$P(\theta x + (1 - \theta)y) = \frac{\theta \tilde{x} + (1 - \theta)\tilde{y}}{\theta x_{n+1} + (1 - \theta y_{n+1})} = \frac{\theta x_{n+1}}{\theta x_{n+1} + (1 - \theta)y_{n+1}} \frac{\tilde{x}}{x_{n+1}} + \frac{(1 - \theta)y_{n+1}}{\theta x_{n+1} + (1 - \theta)y_{n+1}} \frac{\tilde{y}}{y_{n+1}}$$

定义 8 (线性分数函数). 仿射函数

$$g(x) = \begin{bmatrix} A \\ C^{T} \end{bmatrix} x + \begin{bmatrix} b \\ d \end{bmatrix}, A \in \mathbb{R}^{m \times n}, b \in C \in \mathbb{R}^{n}, d \in \mathbb{R}$$

线性分数函数 $f: \mathbb{R}^n \mapsto = \mathbf{p} \circ \mathbf{g}$

$$f(x) = \frac{Ax + b}{c^{\mathrm{T}}x + d}, \text{dom } f = \{x \mid c^{\mathrm{T}} + d > 0\}$$

保凸性

- 凸集的交
- 仿射、逆仿射
- 透视函数
- 线性分数函数

3 凸函数

定义 9 (凸函数). 1. $f: \mathbb{R}^n \to \mathbb{R}$ 为凸 \iff dom f为凸且 $\forall x, y \in$ dom $f, \theta \in [0, 1]$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

⁴⁺代表≥0,++代表>0

• 严格凸: $\theta \in (0,1)$, 不等式不能取等

● 凹函数: 若-f为凸

2. 高维定义: $f: \mathbb{R}^n \to \mathbb{R}$ 为凸 \iff dom f为凸

$$\forall x \in \operatorname{dom} f, v \in \mathbb{R}^n : g(t) := f(x + tv) \, \not \to \, \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

相当于每一个剖面上的低维函数都是凸的

3. 一阶条件(first-order condition)⁵

$$f(y) \ge f(x) + \nabla^{\mathrm{T}} f(x)(y - x)$$

4. 二阶条件: $f: \mathbb{R}^n \to \mathbb{R}$ 为凸 \iff dom f为凸

$$\forall x \in \text{dom } f: \nabla^2 f(x) \succeq 0$$

• 凹函数: $\nabla^2 f(x) \leq 0$

• 严格凸: \leftarrow $\nabla^2 f(x) > 0$, 反例 $f(x) = x^4$ (在一个点斜率不变并不要紧)

例 5. $f(x) = a^{\mathrm{T}}x + b$

分析. 有 $\nabla f(x) = a$, 进而

$$f(y) = a^{\mathrm{T}}y + b \ge a^{\mathrm{T}}x + b + a^{\mathrm{T}}(y - x) = a^{\mathrm{T}}y + b$$

定义 10 (凸函数的扩展(extended-value)). 尽管凸函数的定义域为凸, 但往往不好处理, 那就将其扩展到 全空间。 $x \in \text{dom } f \subset \mathbb{R}^n, \text{dom } \widetilde{f} = \mathbb{R}^n$, 会有

$$\widetilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f \\ +\infty & x \notin \text{dom } f \end{cases}$$

指示/示信(indicator)函数不一定是凸的

$$f(x) = \begin{cases} 0 & x \in C \\ +\infty & x \notin C \end{cases}$$

定理 1. 若f为凸, 可微, 则 $\exists x \in \text{dom } f, \nabla f(x) = 0$

例 6. 二次函数
$$f(x) = \frac{1}{2}x^{\mathrm{T}}Px + q^{\mathrm{T}}x + r$$
, $P \in S^n$ (对称矩阵), $q^{\mathrm{T}} \in \mathbb{R}^n$, $r \in \mathbb{R}$

分析.
$$\nabla^2 f(x) = P$$

$$\frac{P \in S^n_+ \, \text{凸}}{{}^5\nabla^{\mathrm{T}} f(x) = [\nabla f(x)]^{\mathrm{T}}}$$

$${}^{5}\nabla^{\mathrm{T}}f(x) = [\nabla f(x)]^{\mathrm{T}}$$

例 7. $f(x) = \frac{1}{x^2}, \text{dom } f = \{x \in \mathbb{R}, x \neq 0\}$

分析. 注意dom f不是凸集

- 指数函数 $f(x) = e^{ax}$
- 幂函数 $f(x) = x^a$
- 绝对值的幂函数 $f(x) = |x|^p, x \in \mathbb{R}, p > 0$: $p \in [1, +\infty)$ 凸, $p \in (0, 1)$ 既不凸又不凹分析.

$$f''(x) = \begin{cases} p(p-1)x^{p-2} & x < 0\\ p(p-1)(-x)^{p-2} & x < 0 \end{cases}$$

- 对数函数 $f(x) = \log x$
- 熵 $f(x) = -x \log x$
- 极大值函数 $f(x) = \max\{x_1, \dots, x_n\}, x \in \mathbb{R}^n$

定义 11 (解析近似). 无穷阶可微

极大值函数的解析近似是 $f(x) = \log(e^{x_1} + \dots + e^{x_n})$

$$\max\{x_1, \dots, x_n\} \le f(x) \le \max\{x_1, \dots, x_n\} + \log n$$

分析.

$$\frac{\partial f}{\partial x_i} = \frac{e^{x_i}}{e^{x_i} + \dots + e^{x_n}}$$

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \begin{cases} \frac{-e^{x_i} e^{x_i}}{i} = j \\ i \neq j \end{cases}$$

$$z := \begin{bmatrix} e^{x_1} & \dots & e^{x_n} \end{bmatrix}^T$$

求Hessian矩阵

$$H = \frac{1}{(\mathbb{1}^{\mathrm{T}}z)^2} (-z \cdot z^{\mathrm{T}} + (\mathbb{1}^{\mathrm{T}}z)\operatorname{diag}(z))$$

将前面常量丢弃6

$$a_i := v_i \sqrt{z_i} = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}^T, b_i = \sqrt{z_i}$$

$$v^T H v = (\mathbb{1}^T z) v^T \operatorname{diag}(z) v - v^T z z^T v$$

$$= (\sum_i z_i) (\sum_i v_i^2 z_i) - (\sum_i v_i z_i)^2$$

$$= (b^T b) (a^T a) - (a^T b)^2 \qquad Cauchy$$

$$\geq 0$$

 $^{^{6}}H$ 半正定,则 $\forall v \in \mathbb{R}^{n}: v^{\mathrm{T}}Hv \geq 0$

定义 12 (范数). p(x) 为范数

1. p(ax) = |a|p(x)

2.
$$p(x+y) \le p(x) + p(y)$$

3.
$$p(x) = 0 \iff x = 0$$

零范数 $||x||_0$: 非零元素数目,是伪范数(不符合第一个定义)

 \mathbb{R}^n 中的范数都是凸函数,正则化!

分析.

$$\forall x, y, \theta \in [0, 1] p(\theta x + (1 - \theta)y) \le p(\theta x) + p((1 - \theta)y) \le \theta p(x) + (1 - \theta)p(y)$$

行列式的对数 $f(x) = \log \det(x)$, $\operatorname{dom} f = S_{++}^n n = 1$ 凹函数证n > 1也为凹,用高维定义

$$\begin{split} g(t) &= f(z+tv) \\ &= \log \det(z+tv) \\ &= \log \det(z^{1/2}(I+tz^{1/2}vz^{-1/2})z^{1/2}, \quad z^{1/2} \in S^n_{++}, z^{1/2}z^{1/2} = z \\ &= \log \det(z) + \log \det(I+tz^{1/2}vz^{-1/2}) \\ &= \log \det(z) + \sum_{i=1}^n \log(1+t\lambda_i), \quad \lambda_i = z^{-1/2}vz^{1/2}$$
的特征值

$$g'(t) = \sum_{i=1}^{n} \frac{\lambda_i}{1 + t\lambda_i}$$
$$g''(t) = \sum_{i=1}^{n} -\frac{\lambda_i^2}{(1 + t\lambda_i)^2}$$

补充证明: 对对称阵特征值分解 $tz^{1/2}vz^{1/2}=tQ\Lambda Q^{\mathrm{T}}$,对角阵 Λ 即为 $QQ^{\mathrm{T}}=I$,Q为酉矩阵

$$I + tz^{-1/2}vz^{-1/2} = QQ^{\mathrm{T}} + tQ\Lambda Q^{\mathrm{T}} = Q(I + t\Lambda)Q^{\mathrm{T}}$$

$$\log \det(I + tz^{-1/2}vz^{-1/2}) = \log \det(Q) + \log \det(I + t\Lambda) + \log \det(Q^{\mathrm{T}})$$

保持函数凸性

• 非负加权和 f_1, \ldots, f_m 为凸, 定义域 \mathbb{R}^n

$$f := \sum_{i=1}^{m} w_i f_i, w_i \ge 0$$

• 非负积分f(x,y)对 $y \in A$ 均为凸(A不一定为凸), $w(y) \ge 0$

$$g(x) := \int_{y \in A} w(y) f(x, y) \, \mathrm{d}y$$

• 仿射映射 $f: \mathbb{R}^n \to \mathbb{R}$ 为凸, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n$, $\operatorname{dom} g = \{x \mid Ax + b \in \operatorname{dom} f\}$

$$g(x) := f(Ax + b)$$

分析. $-\operatorname{dom} f$ 为凸,则 $\operatorname{dom} g$ 为凸

 $-\ \forall x,y\in\mathrm{dom}\,g,\forall\theta\in[0,1]$

$$g(\theta x + (1 - \theta)y) = f(A(\theta x + (1 - \theta)y) + b)$$

$$= f(\theta(Ax + b) + (1 - \theta)(Ay + b))$$

$$\leq \theta f(Ax + b) + (1 - \theta)f(Ay + b)$$

$$= \theta g(x) + (1 - \theta)g(y)$$

- 其实只是在定义域上改变,而不是改变值域,因而函数凸性不会改变
- 两个函数的极大值函数, f_1, f_2 为凸

$$f(x) := \max\{f_1(x), f_2(x)\}, \text{dom } f = \text{dom } f_1 \cap \text{dom } f_2$$

• 任意个凸函数极大值函数为凸

$$f(x) = \max\{a_1^{\mathrm{T}}x + b_1, \dots, a_m^{\mathrm{T}} + b_m\}$$

• 无限个凸函数, $y \in A$, f(x,y)对于x为凸, 则

$$g(x) := \sup_{y \in A} f(x, y)$$

例 8. 点x到集合C的最远距离

$$f(x) = \sup_{y \in A} ||x - y||$$

位移对于范数凸性不会有影响

例 9. $x \in \mathbb{R}^n$, x[i]为第i大元素, $x[1] \ge x[2] \ge \cdots \ge x[r] \ge \cdots \ge x[n]$

$$f(x) := \sum_{i=1}^{r} x[i]$$

$$-r = 1$$
: $f(x) = x[1] = \max\{x_1, \dots, x_n\}$, 每一项都是 $\mathbf{e}_i^{\mathrm{T}} x_i$
 $-r > 1$: $f(x) = \max\{x_{i_1} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$

• 函数的组合: $h: \mathbb{R}^k \to \mathbb{R}, q: \mathbb{R}^n \to \mathbb{R}^k$

$$f := h \circ g : \mathbb{R}^n \mapsto \mathbb{R}$$

先考虑 $n=k=1, \operatorname{dom} g=\mathbb{R}^n, \operatorname{dom} h=\mathbb{R}^k, \operatorname{dom} f=\mathbb{R},\ h,g$ 二阶可微

$$f'(x) = h'(g(x)) \cdot g'(x)$$

$$f''(x) = h''(g(x))(g'(x))^{2} + h'(g(x))g''(x) > 0$$

即当g为凸,h为凸且不降;g为凹,h为凸且不增时,f(x)为凸 (若定义域非全空间)当g为凸,h为凸,扩展值函数 \tilde{h} 不降;g为凹,h为凸, \tilde{h} 不增时,f(x)为凸

例 10. g为凸, $\exp g(x)$ 为凸; g为凹, g>0, $\log g(x)$ 为凹; g为凸, g>0, 1/g(x)为凸

例 11.
$$g(x) = x^2$$
, $\text{dom } g = \mathbb{R}$, $h(y) = 0$, $\text{dom } h = [1, 2]$, $f = h \circ g$, 注意 \tilde{h} 并非不降!

• 函数透视: $P: \mathbb{R}^{n+1} \mapsto \mathbb{R}^n, \operatorname{dom} P \in \mathbb{R}^n \times \mathbb{R}_{++}, P(z,t) = \frac{z}{t}$

$$f: \mathbb{R}^n \mapsto \mathbb{R}, g(x,t) = tf(\frac{x}{t}), \text{dom } g = \{(x,t) \mid \frac{x}{t} \in \text{dom } f\}, g: \mathbb{R}^n \times \mathbb{R}_{++} \mapsto \mathbb{R}_{++} \in \mathbb{R}_{++}$$

若f(x)为凸,则g(x,t)相对于(x,t)联合凸

例 12.
$$f(x) = x^{\mathrm{T}}x, g(x,t) = x^{\mathrm{T}}x/t$$

$$- f(x) = -\log x, g(x,t) = t\log(t/x)$$

 $-u,v\in\mathbb{R}^n_{++},\,g(u,v)=\sum_{i=1}^nu_i\log(u_i/v_i)$,信息论常用,衡量相似性,KL散度

$$D_{KL} := \sum_{i=1}^{n} \left(u_i \log \frac{u_i}{v_i} - u_i + v_i \right)$$

定义 13 $(\alpha$ 次水平集 $(\alpha$ -sub level set)). $f: \mathbb{R}^n \to \mathbb{R}, \ C_\alpha = \{x \in \text{dom } f \mid f(x) \leq \alpha\}$

定义 14 (拟凸函数(quasi-convex)). α 次水平集为凸集 \iff f为拟凸函数

拟凸函数有很好的性质→单模态/单峰函数 凸函数与凸集联系

- 凸函数定义域为凸集
- 凸函数的α次水平集为凸集

4 凸优化问题

4.1 标准型

广义定义:极小化凸函数,约束为凸集

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq 0$ $i = 1, ..., m$
 $h_j(\mathbf{x}) = 0$ $j = 1, ..., p$

- 优化变量 $\mathbf{x} \in \mathbb{R}^n$
- 目标/损失函数 $f_0: \mathbb{R}^n \to \mathbb{R}$
- 不等式约束函数 $f_i: \mathbb{R}^n \to \mathbb{R}$
- 等式约束函数 $h_i: \mathbb{R}^n \to \mathbb{R}$
- $\simp \mathcal{D} = \bigcap_{i=0}^m \operatorname{dom} f_i \cap \bigcap_{i=1}^p \operatorname{dom} h_i$
- 可行解 $\mathcal{X} = \{ \mathbf{z} \mid f_i(\mathbf{z}) \le 0, h_j(\mathbf{z}) = 0, i = 1, \dots, m, j = 1, \dots, p \}$
- 最优值 $P^* = \inf\{f_0(\mathbf{x}) \mid x \in \mathcal{X}\}$
- 最优解 $\mathbf{x}^* \iff \forall \mathbf{z} \in \mathbb{R}^n, \mathbf{z} \in \mathcal{X}: f_0(\mathbf{z}) \geq f_0(\mathbf{x}^*)$
- 最优解集 $X^* = \{x^* \mid f_0(\mathbf{x}^*) = P^*, \mathbf{x}^* \in \mathcal{S}\}$
- ε -次优解集 $X_{\varepsilon} = \{\mathbf{x} \mid f_0(\mathbf{x}) \leq P^* + \varepsilon, \mathbf{x} \in \mathcal{X}\}$
- 局部最优 $\exists R > 0, f_0(x) = \inf\{f_0(\mathbf{z}) \mid \mathbf{x} \in \mathcal{X}, \mathbf{z} \in \mathcal{X}, \|\mathbf{x} \mathbf{z}\| \le R\}$
- 局部最优解集 $x_{local} = \{ \mathbf{x} \mid \mathbf{x}$ 为局部最优}

狭义定义: $f_i(x)$, i = 0, 1, ...为凸函数, $h_i(x)$ 为仿射函数

例 13.

min
$$f_0(x) = x_1^2 + x_2^2$$

s.t. $f_1(x) = \frac{x_1}{1 + x_2^2} \le 0 \implies x_1 \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0 \implies x_1 + x_2 = 0$

定理 2. 凸问题局部最优等价于全局最优

分析. 若x为局部最优

$$\exists R > 0: f_0(x) = \inf\{f_0(z) \mid z \in \mathcal{X}, x \in \mathcal{X}, ||x - z||_2 \le R\}$$

反证法,设x不是全局最优,y为全局最优, $f_0(x) > f_0(y)$

$$z = \theta x + (1 - \theta)y, \theta = \frac{R}{2\|y - x\|_2}$$

$$||z - x||_2 = \frac{R||y - x||_2}{2||y - x||_2} = \frac{R}{2}$$

由 $||z - x||_2 \le R \implies f_0(x) \le f_0(z)$,有

$$f_0(z) \le \theta f_0(x) + (1 - \theta) f_0(y) < \theta f_0(z) + (1 - \theta) f_0(z) = f_0(z)$$

矛盾

可微凸目标函数

无约束 $\min f_0(x), \nabla f_0^{\star}(x) = 0$

$$\forall x, y : f_0(y) \ge f_0(x) + \langle \nabla f_0(x), y - x \rangle$$
$$f_0(y) \ge f_0(x^*) + \langle \nabla f_0(x^*), y - x \rangle = f_0(x^*)$$

有约束 $\min f_0(x)$, $s.t.x \in \mathcal{X}$

$$x^* \in \mathcal{X}, \langle \nabla f_0(x^*), y - x^* \rangle \ge, \forall y \in x$$

例 14. 等式约束 $\min f_0(x)$, $\operatorname{dom} f_0 \subset \mathbb{R}^n$, f_0 可微, 使得Ax = b

分析. x^* 最优, $Ax^* = b, \forall y Ay = b$

$$\langle \nabla f_0(x^*), y - x^* \rangle \ge 0$$

$$\begin{cases} y = x^* + v \\ Av = 0 \end{cases}, v \in \text{Nul } A$$

$$\forall v \in \text{Nul } A, \langle \nabla f_0(x^*), v \rangle \ge 0$$

- 1. Nul $A = \{0\}$
- 2. A不可逆, $\nabla f_0(x^*) \perp \text{Nul } A$

例 15. 正约束 $\min f_0(x), s.t.x \ge 0$

分析. 若 x^* 最优, $\iff x^* \ge 0, \forall y \ge 0, \langle \nabla f_0(x^*), y - x^* \rangle \ge 0$

$$\iff \langle \nabla f_0(x^*, y) \rangle \ge \langle \nabla f_0(x^*, x^*) \rangle$$

- 1. 若 $\nabla f_0(x^\star) \not\geq 0$ 有矛盾 (负数行乘上正无穷), 故 $\nabla f_0(x^\star) \geq 0$
- 2. 令y = 0, 有 $0 \ge \langle \nabla f_0(x^*), x^* \rangle \implies \sum_{i=1} n(\nabla f_0(x^*)_i x^*) \le 0$ 前面 ≥ 0 , 进而互补松弛条件
- 3. $x^* \ge 0$

4.2 线性规划

$$\min \quad c^{T}\mathbf{x} + \mathbf{d}$$
s.t. $G\mathbf{x} \le \mathbf{h}$

$$A\mathbf{x} = \mathbf{b}$$

$$\min \quad c^{T}\mathbf{x} + \mathbf{d}$$
s.t. $G\mathbf{x} + \mathbf{s} = \mathbf{h}$

$$A\mathbf{x} = \mathbf{b}$$

$$\mathbf{s} \ge 0$$

s为松弛变量(slack variable)

用 \mathbf{x}^+ 和 \mathbf{x}^- 拆分,得到 $\mathbf{x} = \mathbf{x}^+ - \mathbf{x}^-, \mathbf{x}^+ \ge 0, \mathbf{x}^- \ge 0, \mathbf{s} \ge 0$

例 16 (食谱问题). m种营养元素不小于 b_1,\ldots,b_m , n种食物, 单位含量 a_{1j},\ldots,a_{mj} , 食物量 x_1,\ldots,x_n , 价格 c_1,\ldots,c_n

min
$$\sum_{i=1}^{n} c_{j} x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}$$

$$x_{j} \ge 0$$

其中i = 1, ..., m, j = 1, ..., n

线性分数规划

min
$$f_0(x) = \frac{c^{\mathrm{T}}x + d}{e^{\mathrm{T}}x + f}$$
, dom $f = \{x \mid e^{\mathrm{T}}x + f > 0\}$
s.t. $Gx \le h$
 $Ax = b$

等价于

min
$$c^{\mathrm{T}}y + dz$$

s.t. $Gy - hz \le 0$
 $Ay - bz = 0$
 $e^{\mathrm{T}}y + fz = 1$
 $z \ge 0$

分析. 证明两个问题等价, P_0 与 P_1 若x在 P_0 内可行

$$y = \frac{x}{e^{\mathrm{T}}x + f}, z = \frac{1}{e^{\mathrm{T}}x + f}$$

若(y,z)在 P_1 中可行

$$x = \frac{y}{z}(z \neq 0)$$

若z=0, x_0 为 P_0 的可行解

$$x = x_0 + ty, t \ge 0$$

$$\lim_{t \to \infty} \frac{c^{\mathrm{T}}(x_0 + ty) + d}{e^{\mathrm{T}}(x_0 + ty) + f} = c^{\mathrm{T}}y$$

代入看所有条件结论都相同

二次规划(Quadratic Programming)

$$\min \quad \frac{1}{2}x^{\mathrm{T}}px + q^{\mathrm{T}} + r, \ p \succ 0$$
 s.t.
$$Gx \leq h$$

$$Ax = b$$

二次约束二次规划(QCQP)

min
$$\frac{1}{2}p_0x + q_0^{\mathrm{T}}x + r_0, p \succ 0$$
 s.t.
$$\frac{1}{2}x^{\mathrm{T}}p_ix + q_i^{\mathrm{T}}x + r_i \leq 0, i = 1, \dots, m, p_i \succ 0$$

$$Ax = b$$

最小二乘问题

$$\begin{aligned} \min_{x} \quad & \frac{1}{2} \|Ax - b\|_2^2 \\ \text{s.t.} \quad & b = Ax + e \\ & \frac{1}{2} (x^{\mathsf{T}} A^{\mathsf{T}} Ax - 2b^{\mathsf{T}} Ax + b^{\mathsf{T}} b) \end{aligned}$$

一范数规范化最小二乘

$$\min \frac{1}{2} ||Ax - b||_2^2 + \lambda_1 ||x||_1$$

本来用零范数,但用一范数拟合 改写

$$||x||_1 = \mathbb{1}^{\mathrm{T}}\mathbf{x}^+ + \mathbb{1}^{\mathrm{T}}\mathbf{x}^-$$

Basic Pursuit

$$\min \quad \frac{1}{2} ||Ax - b||_2^2$$

s.t.
$$||x||_1 \le \varepsilon_1$$

原式很难平衡两者,下式只需考虑 $\|x\|_1$ 的影响岭回归(Ridge):所有x差距不要太大

$$\min \frac{1}{2} ||Ax - b||_2^2 + \frac{1}{2} \lambda_2 ||x||_2^2$$

$$\min \frac{1}{2} ||Ax - b||_2^2$$
s.t.
$$||x||_2^2 \le \varepsilon_2$$

投资组合问题(portfolio optimization): 初始价格 x_1,\ldots,x_n , 最终价格 P_1x_1,\ldots,P_nx_n

$$\max P_1 x_1 + \dots + P_n x_n$$
s.t.
$$x_1 + \dots + x_n = B$$

$$x_1, \dots, x_n \ge 0$$

$$ar{P}=\mathbb{E}\left(P
ight)$$
已知, $\Sigma=\mathbb{D}\left(P
ight)$ min $x^{\mathrm{T}}\Sigma x$ s.t. $p^{\mathrm{T}}x\geq r_{\mathrm{min}}$ $x_1+\cdots+x_n=B$ $x_1,\ldots,x_n\geq 0$