Math Guide

Jonah Benedicto¹

September 2025

¹The University of Queensland

Preface

This is a math guide for The University of Queensland's MATH1051, MATH1052, MATH2001, MATH1061, and MATH2302 courses. It is intended to be a quick reference for students studying these subjects.

Contents

Ι	\mathbf{M}_{I}	ATH1051 Calculus & Linear Algebra I	5
1	Eige	envalues and Eigenvectors	7
	1.1	Eigenvalue Equation	7
	1.2	Eigenvector Equation	7
	1.3	Derivation of Eigenvalue and Eigenvector Equations	8
	1.4	Problems	8
2	Vect	tor Spaces	9
	2.1	Linear Combination	10
	2.2	Linear Independence	10
	2.3	Invertibility Equivalence	10
	2.4	Vector Space	10
	2.5	Subspace	10
	2.6	Eigenspace	10
	2.7	Null Space	10
	2.8	Span	10
	2.9	Basis	10
	2.10	Dimension	10
	2.11	Properties of Basis	10
	2.12	Problems	10
II ge	M ebra	IATH1052 Multivariable Calculus & Linear Al- I	11
3	Ord	inary Differential Equations	13
-	3.1	Introduction	13

4	ONTENTS
---	---------

III MATH2001 Calculus & Linear Algebra II	15
4 Solutions to First-Order Ordinary Differential Equations	17
IV MATH1061 Discrete Mathematics I	19
5 Logical Forms	21
V MATH2302 Discrete Mathematics II	23
6 Selections	25

Part I MATH1051 Calculus & Linear Algebra I

Eigenvalues and Eigenvectors

Consider a linear transformation represented by a square matrix, denoted A. When a vector is transformed by the matrix, its direction and magnitude can change. Consider the unique case of special vectors, called **eigenvectors**, denoted \underline{x} , that only change in magnitude (not direction) under this transformation. The magnitude by which this eigenvector is scaled is called the **eigenvalue**, denoted λ .

The relationship between a matrix A, its eigenvalues λ , and eigenvectors \underline{x} is given by the equation:

$$Ax = \lambda x$$

This is known as the **definition of eigenvalues and eigenvectors**.

1.1 Eigenvalue Equation

To find the eigenvalues λ of a matrix A, we solve the equation:

$$|A - \lambda I| = 0$$

1.2 Eigenvector Equation

To find the eigenvectors \underline{x} corresponding to a specific eigenvalue λ , we solve the equation:

$$(A - \lambda I)x = 0$$

1.3 Derivation of Eigenvalue and Eigenvector Equations

To find the eigenvector equation, we can rearrange the definition of eigenvalues and eigenvectors.

$$A\underline{x} = \lambda \underline{x}$$

$$\iff A\underline{x} = \lambda I\underline{x}$$

$$\iff A\underline{x} - \lambda \underline{x} = \underline{0}$$

$$\iff (A - \lambda I)x = 0$$

To find the eigenvalue equation, note that eigenvectors are non-zero vectors $\underline{x} \neq \underline{0}$. Therefore, the equation $(A - \lambda I)\underline{x} = \underline{0}$ must have non-trivial solutions. This occurs when the matrix $(A - \lambda I)$ is singular, when its determinant is zero:

$$|A - \lambda I| = 0$$

Therefore, we have derived both the eigenvalue and eigenvector equations from the definition of eigenvalues and eigenvectors.

1.4 Problems

Vector Spaces

- 2.1 Linear Combination
- 2.2 Linear Independence
- 2.3 Invertibility Equivalence
- 2.4 Vector Space
- 2.5 Subspace
- 2.6 Eigenspace
- 2.7 Null Space
- 2.8 Span
- 2.9 Basis
- 2.10 Dimension
- 2.11 Properties of Basis
- 2.12 Problems

Part II MATH1052 Multivariable Calculus & Linear Algebra I

Ordinary Differential Equations

3.1 Introduction

Part III MATH2001 Calculus & Linear Algebra II

Solutions to First-Order Ordinary Differential Equations 18CHAPTER 4. SOLUTIONS TO FIRST-ORDER ORDINARY DIFFERENTIAL EQUATION

Part IV MATH1061 Discrete Mathematics I

Chapter 5
Logical Forms

$\begin{array}{c} {\rm Part~V} \\ {\rm MATH2302~Discrete} \\ {\rm Mathematics~II} \end{array}$

Chapter 6
Selections