Where is the Triangle?

Miniature - 10

Where is the Triangle?

Does a given graph contain a triangle?

A triangle in a graph is defined as a set of three vertices where each vertex is connected to the other two by an edge i.e. three vertices **u**, **v**, **w**, every two of them connected by an edge.

Consider this graph with 5 vertices

Adjacency matrix of the graph:

$$a_{ij} = \begin{cases} 1 & \text{if } i \neq j \text{ and } \{i, j\} \in E(G), \\ 0 & \text{otherwise.} \end{cases}$$

	Matrix A					
	A1	A2	A 3	A4	A 5	
A 1	0	1	0	0	1	
A2	1	0	1	0	1	
A 3	0	1	0	1	0	
A4	0	0	1	0	1	
A 5	1	1	0	1	0	

A naive algorithm for finding a triangle inspects every triple of vertices, and thus it needs roughly **n^3** operations for a n-vertex graph.

The known approach for breaking the n³ barrier is algebraic and it is based on fast matrix multiplication.

Matrix A							Mat	trix A	^2		
	A1	A2	А3	A4	A 5		A1	A2	A 3	A 4	A 5
A 1	0	1	0	0	1	A1	2	1	1	1	1
A2	1	0	1	0	1	A2	1	3	0	2	1
A 3	0	1	0	1	0	A3	1	0	2	0	2
A4	0	0	1	0	1	A4	1	2	0	2	0
A 5	1	1	0	1	0	A5	1	1	2	0	3
							L				

Finding a triangle is equivalent to finding two adjacent vertices i, j with a common neighbor k. So we look for two indices i, j such that both $a_{ij} \neq 0$ and $b_{ij} \neq 0$.

Indices which are non-zero in both A and A^2 : {(1,2), (2,1), (1,5), (5,1), (2,5), (5,2)}

——— Graph contains a triangle

Simple matrix multiplication needs n^3 arithmetic operations.

Known fast-matrix multiplication algorithms can do this in roughly **n^2.3** arithmetic operations

Timeline of matrix multiplication exponent

Year	Bound on omega	Authors
1969	2.8074	Strassen ^[1]
1978	2.796	Pan ^[10]
1979	2.780	Bini, Capovani [it], Romani ^[11]
1981	2.522	Schönhage ^[12]
1981	2.517	Romani ^[13]
1981	2.496	Coppersmith, Winograd ^[14]
1986	2.479	Strassen ^[15]
1990	2.3755	Coppersmith, Winograd ^[16]
2010	2.3737	Stothers ^[17]
2012	2.3729	Williams ^{[18][19]}
2014	2.3728639	Le Gall ^[20]
2020	2.3728596	Alman, Williams ^{[21][22]}
2022	2.371866	Duan, Wu, Zhou ^[23]
2024	2.371552	Williams, Xu, Xu, and Zhou ^[2]