BrainScanNet: Diagnósticos Inteligentes Para Tumores Cerebrais Usando IA

Gabriel Carvalho

gdc2@cin.ufpe.br

CCSA - UFPE

Recife, Brasil

Leandro Freitas

lllf@cin.ufpe.br

Cln-UFPE

CIN - UFPE

Recife, Brasil

Lucas Sales

lfasm@cin.ufpe.br

CIn - UFPE

Recife, Brasil

23 de março de 2025

1/29

Programação

- Introdução
- 2 Ferramentas Utilizadas
- 3 Banco de Dados
- 4 Análise Exploratória dos Dados
 - Proporção Dataset
 - Amostragem de Ressonâncias
 - Resolução das Imagens
 - Tamanho das Imagens e Canal de Cores
 - Ruído e Brilho
 - Pré-processamento
- 5 Modelo BrainScanNet
 - Estrutura da Rede
- 6 Hiperparâmetros do Treinamento
- 7 Desempenho do Modelo
 - Fase de Treinamento
 - Fase de Teste
- 8 Conclusão

Introdução

Introdução

0

- * Tumores do SNC representam 1,4% a 1,8% de todos os tumores malignos (INC).
- * Estudo aborda Glioma, Meningioma, Tumores Pituitários.
- * Objetivo: Desenvolver e avaliar um modelo CNN para melhorar a precisão do diagnóstico e detecção precoce. Utilizando Ressonância magnética.

Ferramentas Utilizadas

Linguagem de Programação, IDE e Bibliotecas

* Linguagem de Programação:

Python

* Ambiente de Desenvolvimento:

Google Colab

- * Bibliotecas:
 - 1) Manipulação de Dados:

Pandas

Kaggle (para acesso ao Dataset)

2) Matemática e Estatística:

NumPy

3) Machine Learning e Deep Learning:

Scikit-learn PyTorch

4) Geração de Gráficos:

Matplotlib

Banco de Dados

Base de Dados

* Dataset: Brain Tumor MRI Dataset (Kaggle).

Link: https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-m

* Contém imagens de ressonância magnética (MRI) rotuladas de tumores cerebrais.

Análise Exploratória dos Dados

Introdução Ferramentas Utilizadas Banco de Dados Análise Exploratória dos Dados Modelo BrainScanNet Hiperparâmetros do Treinamento Desempei 00000000

Distribuição das Classes (Treino)

Figura: Divisão do Dataset

Treino: 81.3% (5712 imagens) Teste: 18.7% (1311 imagens)

Classes balanceadas no treino: 25% cada.

Amostragem de Ressonâncias

Figura: Amostras de Imagens (3 por classe)

trodução Ferramentas Utilizadas Banco de Dados Análise Exploratória dos Dados Modelo BrainScanNet Hiperparâmetros do Treinamento Desemper

Figura: Dispersão da Resolução

- * Variação na resolução.
- * Necessidade de redimensionamento para CNN.

o Ferramentas Utilizadas Banco de Dados Análise Exploratória dos Dados Modelo BrainScanNet Hiperparâmetros do Treinamento I

Canal de Cores e Tamanho das Imagens

* Conversão para escala de cinza (1 canal) para redução da complexidade computacional.

Figura: Tamanho das Imagens (KB)

^{*} Tamanho: Outliers e necessidade de padronização.

Figura: Histogramas de Desvio Padrão e Média

- * Variação no contraste e brilho.
- * Normalização (Z-score) como solução.

60

Desvio Padrão dos Pixels (0-255)

140

Média de Intensidade dos Pixels (0-255)

Exemplos de Imagens

Figura: Imagens com Diferentes Características

dução Ferramentas Utilizadas Banco de Dados Análise Exploratória dos Dados Modelo BrainScanNet Hiperparâmetros do Treinamento Desemper

Pré-processamento

Pré-processamento

- * Conversão para 1 canal (escala de cinza).
- * Redimensionamento: 224x224 pixels.
- * Normalização Z-score.
- * Rotação aleatória (até 5 graus).

Treinamento e Validação

- * Divisão: 80% treino, 20% validação.
- * Batch size: 32.
- * Transformações replicadas na base de teste.

Modelo BrainScanNet

Modelo BrainScanNet

Figura: Arquitetura do Modelo

- * 4 blocos convolucionais (Conv -> BN -> ReLU -> MaxPool).
- * Camadas totalmente conectadas (FC).

Hiperparâmetros do Treinamento

Hiperparâmetros

- * Otimizador: Adam.
- * Learning rate inicial: 0.001.
- * ReduceLROnPlateau.
- * Dropout: 50%
- * Épocas: 25.

Desempenho do Modelo

Introdução Ferramentas Utilizadas Banco de Dados Análise Exploratória dos Dados Modelo BrainScanNet Hiperparâmetros do Treinamento Desemper

Desempenho do Modelo durante o Treinamento

Métrica	Valor
Train Loss	1.78%
Val Loss	18.99%
Train Acc	99.32%
Val Acc	95.88%

Tabela: Resultados Finais

000000

Introdução Ferramentas Utilizadas Banco de Dados Análise Exploratória dos Dados Modelo BrainScanNet Hiperparâmetros do Treinamento

Desempenho do Modelo durante o Treinamento

Figura: Loss e Acurácia

entas Utilizadas Banco de Dados Análise Exploratória dos Dados Modelo BrainScanNet Hiperparâmetros do Treinamento Desemper

Fase de Teste

Etapa de Teste

Figura: Matriz de Confusão

F1-Score

* F1-Score: A métrica F1-Score é calculada como a média harmônica da precisão (precision) e recall:

$$F1$$
- $Score = 2 \cdot \frac{Precisão \cdot Recall}{Precisão + Recall}$

- * F1-Score do BrainScanNet: 97.32%
- * Bom equilíbrio entre acurácia e recall.
- * Modelo com boa performance em novas observações.

Visão do Modelo

Figura: Heatmap do Modelo

ão Ferramentas Utilizadas Banco de Dados Análise Exploratória dos Dados Modelo BrainScanNet Hiperparâmetros do Treinamento Desemp

Conclusão

Introdução Ferramentas Utilizadas Banco de Dados Análise Exploratória dos Dados Modelo BrainScanNet Hiperparâmetros do Treinamento Desemper

Conclusão

- * CNNs podem ser úteis na saúde pública.
- * Modelo BrainScanNet promissor para detecção precoce.
- * Potencial para auxiliar médicos.
- * Contribuição para a melhoria da detecção e tratamento de tumores.