MUNKRES TOPOLOGY SOLUTIONS

JACK CERONI

Contents

1. Problem TG.1	2
2. Problem TG.3	2
3. Problem TG.4	2
4. Problem TG.5	3
4.1. Part A	3
4.2. Part B	3
4.3. Part C	3
4.4. Part D	3
5. Problem TG.6	3
6. Problem TG.7	4
6.1. Part A	4
6.2. Part B	4
6.3. Part C	4
6.4. Part D	4

Date: December 2021.

1. Problem TG.1

Let H denote a group that is a topological space satyisfying the T_1 axiom. Show that H is a topological group if and only if the map f sending $x \times y$ to $x \cdot y^{-1}$ is continuous.

Suppose the original definition of a topological group holds. Then the above map is a composition of continuous maps, so it is continuous.

Suppose the alternate definition holds. Let e be the identity element of H. Then, the map:

$$y \mapsto e \times y \mapsto e \cdot y^{-1} = y^{-1}$$

is clearly continuous, as it is the composition of continuous maps. Then, the map:

$$x \times y \to x \times y^{-1} \mapsto x \cdot (y^{-1})^{-1} = x \cdot y$$

as inversion is continuous, and maps into product that are continuous are themselves continuous.

2. Problem TG.3

Let H be a subspace of G. Show that if H is also a subgroup of G, then both H and \overline{H} are topological groups.

Let $f: G \times G \to G$ be defined as $f(x,y) = x \cdot y$ and $g: G \to G$ be defined as $g(x) = x^{-1}$. Clearly, the restrictions $f|_{H \times H}: H \times H \to H$ and $g|_{H}: H \to H$ are well-defined, as H is a subgroup. In addition, they are continuous, as restrictions of continuous functions are continuous.

Finally, it is clear that a subspace of a T_1 space is T_1 . Thus, H is a topological group.

It remains to show that \overline{H} is a topological group. Clearly, \overline{H} is T_1 . We need to show that the restrictions of the binary operation and inversion maps are well-defined. Indeed, note that for continuous p, we have $h(\overline{A}) \subset \overline{h(A)}$, for any set A. Setting A = H, note that $g(H) \subset H$, so $\overline{g(H)} \subset \overline{H}$. Thus:

$$g(\overline{H})\subset \overline{g(H)}\subset \overline{H}$$

In addition, recall that a product of closures is a closure of products, so:

$$f(\overline{H} \times \overline{H}) = f(\overline{H \times H}) \subset \overline{f(H \times H)} \subset \overline{H}$$

Thus, the restrictions of f and g to \overline{H} are both well-defined and continuous, from the same logic as above, so \overline{H} is a topological group as well.

3. Problem TG.4

Let $\alpha \in G$. Show that the maps $f_{\alpha}, g_{\alpha} : G \to G$ defined by $f_{\alpha}(x) = \alpha \cdot x$ and $g_{\alpha}(x) = x \cdot \alpha$ are homeomorphisms of G.

Clearly, both maps are continuous, as the binary operation map is continuous, so this map is effectively $x \mapsto (\alpha, x) \mapsto \alpha \cdot x$ or $x \mapsto (x, \alpha) \mapsto x \cdot \alpha$.

Clearly, both these maps are bijective, as $f_{\alpha}^{-1}(x) = \alpha^{-1} \cdot x$ and $g_{\alpha}^{-1}(x) = x \cdot \alpha^{-1}$ are well-defined inverses of f_{α} and g_{α} . Finally, it is easy to see that both these maps are continuous, from the same logic as above.

4. Problem TG.5

Let H be a subgroup of G. If $x \in G$, define $xH = \{x \cdot h \mid h \in H\}$. This set is called a **left coset** of H in G. Let G/H denote the collection of left cosets of H in G: it is a partition of G. Give G/H the quotient topology.

4.1. **Part A.** Show that if $\alpha \in G$, the map f_{α} induces a homeomorphism of G/H carrying xH to $(\alpha \cdot x)H$.

Let p be the quotient map which sends elements of G to elements of G/H. Let $g: G \to G/H$ be defined as $g(x) = (p \circ f_{\alpha})(x)$. Clearly, this is a quotient map, as both p and f_{α} are quotient maps.

Note that given some $xH \in G/H$, we have:

$$g^{-1}(\{xH\}) = (f_{\alpha}^{-1} \circ p^{-1})(\{xH\}) = f_{\alpha}^{-1}\{x \cdot h \mid h \in H\} = \{(\alpha^{-1} \cdot x) \cdot h \mid h \in H\} = (\alpha^{-1} \cdot x)H$$

Taking the collection of all such cosets clearly gives G/H, again.

Finally, let r be the map from G/H to G/H induced by p and $p \circ f_{\alpha}$ (in other words, $r \circ p = p \circ f_{\alpha}$), which we know exist from Corollary 22.3 of the previous section. We also know from this Corollary that this map will be a homeomorphism.

4.2. **Part B.** Show that if H is a closed set in the topology of G, then one-point sets are closed in G/H.

Let p be the quotient map from G to G/H. Note that $p^{-1}(xH) = \{x \cdot h \mid h \in H\} = f_x(H)$. Since f_x is a homeomorphism and H is closed, it follows that $p^{-1}(xH)$ is closed. Thus, since p is a quotient map, $\{xH\}$ is also closed.

- 4.3. Part C. Let U be open in G. It follows that
- 4.4. **Part D.** First, we know from Part B that G/H satisfies the T_1 axiom. It remains to check that G/H is indeed a group, and the binary operation/inversion operations are continuous.

Since H is normal, we know that G/H is a group, under the operations $xH \cdot yH = (x \cdot y)H$ and $(xH)^{-1} = x^{-1}H$. This is more of an exercise in algebra, so we won't do it here, but we will sketch the proof at the end of the document.

5. Problem TG.6

Quotienting \mathbb{Z} out of $(\mathbb{R},+)$ gives a familiar topological group. What is it?

This topological group is isomorphic to the circle group. To do: Proof

	6. Problem TG.7
6.1. Part A	
6.2. Part B	
6.3. Part C	
6.4. Part D	