Evaluating a Learning Algorithm

Termanteus

 $20~{\rm January}~2020$

Contents

I. Evaluating a Hypothesis	3
The test set error	3

I. Evaluating a Hypothesis

- Someway to improve our algorithm:
 - Getting more training examples
 - Trying smaller sets of features
 - Trying additional features
 - Trying polynomial features
 - Increasing or decreasing

After doing the mentioned solution, we can move on to evaluate our new hypothesis.

A hypothesis might have low error for training set but inaccurate in real situation (overfitting). Thus, to evaluate it, we divide the training set to 2 sets: a training set and a test set. Training set $\sim 70\%$ and the test set $\sim 30\%$.

The new procedure using these two sets is: 1. Learn Θ and minimize $J_{train}(\Theta)$ using the training set 2. Compute the test set error $J_{test}(\Theta)$

The test set error

- 1. For linear regression: $J_{test}(\Theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\Theta}(x_{test}^{(i)}) y_{test}^{(i)})^2$ 2. For classification ~ Misclassification error (aka 0/1 misclassification error):

$$err(h_{\Theta}(x),y)=1:if\ h_{\Theta}(x)>=0.5\ and\ y=0\ or\ h_{\Theta}(x)<0.5\ and\ y=1$$

$$err(h_{\Theta}(x),y)=0:otherwise$$

This gives us a binary 0 or 1 error result. The average test error for the test set

$$Test_Error = \frac{1}{m_{test}} \sum_{i=1}^{m_{test}} err(h_{\Theta}(x_{test}^{(i)}, y_{test}^{(i)}))$$