Digital Image Processing (CS/ECE 545) Lecture 6: Morphological Filters

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

- Originally operated on Binary (black and white) images
- Binary images?
 - Faxes, digitally printed images
 - Obtained from thresholding grayscale images
- Morphological filters alter local structures in an image

Translation

- A is set of pixels in binary image
- w = (x,y) is a particular coordinate point
- A is set A "translated" in direction (x,y). i.e

$$A_x = \{(a,b) + (x,y) : (a,b) \in A\}.$$

• Example: If A is the cross-shaped set, and w = (2,2)

Reflection

- A is set of pixels
- Reflection of *A* is given by

$$\hat{A} = \{(-x, -y) : (x, y) \in A\}.$$

• An example of a reflection

	-3	-2	-1	0	1	2	3
-3			0				
-2		0	0				
-1	0	0	0				
0		0				•	
1					•	•	•
2					•	•	
3					•		

- 2 basic mathematical morphology operations, (built from translations and reflections)
 - Dilation
 - Erosion

Also several composite relations

- Closing and Opening
- Conditional Dilation
- . . .

Dilation

• Dilation expands connected sets of 1s of a binary image. It can be used for

1. Growing features

2. Filling holes and gaps

Erosion

- Erosion shrinks connected sets of 1s in binary image.
- Can be used for

1. shrinking features

2. Removing bridges, branches and small protrusions

Shrink and Let Grow

Shrinking: remove border pixels

Growing: add layer of pixels at border

Shrinking and Let Grow

- Image structures are iteratively shrunk by peeling off a layer of thickness (layer of pixel) at boundaries
- Shrinking removes smaller structures, leaving only large structures
- Remaining structures are then grown back by same amount
- Eventually, large structures back to original size while smaller regions have disappeared

- Definitions:
 - 4-Neighborhood (N_4): 4 pixels adjacent to given pixel in horizontal and vertical directions
 - 8-Neighborhood (N_8): : 4 pixels in N_4 + 4 pixels adjacent along diagonals

Formal Specification as Point Sets

- Morphological operations can be expressed by describing images as 2D point sets
- For example, for a binary image ($I(u,v) \in \{0,1\}$)

$$Q_I = \{ \boldsymbol{p} \mid I(\boldsymbol{p}) = 1 \}$$

• Example: OR operation union of individual sets

$$\mathcal{Q}_{I_1 \vee I_2} = \mathcal{Q}_{I_1} \cup \mathcal{Q}_{I_2}$$

Dilation

Suppose A and B are sets of pixels, dilation of A by B

$$A \oplus B = \bigcup_{x \in B} A_x.$$

- Also called Minkowski addition. Meaning?
- Replace every pixel in A with copy of B (or vice versa)
- For every pixel x in B,
 - Translate A by x
 - Take union of all these translations

$$A \oplus B = \{(x, y) + (u, v) : (x, y) \in A, (u, v) \in B\}.$$

For A and B shown below

$$B = \{(0,0), (1,1), (-1,1), (1,-1), (-1,-1)\}$$

 $A_{(1,1)}$

Translation of *A* by (1,1)

Dilation Example

6

	1	2	3	4	5
1	•	•			
2	•	•			
3	•	•			
4	•	•	•		
5		•	•		
5 6					
7					
		4			

$$A_{(-1,-1)}$$

Union of all translations

Another Dilation Example

- Dilation increases size of structure
- A and B do not have to overlap
- Example: For the same A, if we change B to

$$B = \{(7,3), (6,2), (6,4), (8,2), (8,4)\}$$

so that

$$A \oplus B = A_{(7,3)} \cup A_{(6,2)} \cup A_{(6,4)} \cup A_{(8,2)} \cup A_{(8,4)}$$

Cross-Correlation Used To Locate A Known Target in an Image

> Text Running In Another Direction

Cross-Correlation Used To Locate A Known Target in an Image

> Text Running In Another Direction

Dilation

- We usually assume
 - A is being processed
 - B is a smaller set of pixels, called the structuring element

The Structuring Element

- A structuring element is a shape mask used in the basic morphological operations
- They can be any shape and size that is digitally representable, and each has an origin.

- Structuring element somewhat similar to a filter
- Contains only 0 and 1 values
- Hot spot marks origin of coordinate system of H
- Example of structuring element: 1-elements marked with •,
 0-cells are empty

$$H(i,j) \in \{0,1\}$$

$$H = \bullet \bullet \bullet \bullet$$

origin (hot spot)

Given sets A and B, the erosion of A by B

$$A \ominus B = \{w : B_w \subseteq A\}.$$

• Find all occurrences of B in A

Example: 1 occurrence of *B* in *A*

Erosion

All occurrences of B in A

For each occurrences
Mark center of B

Erosion: union of center of all occurrences of *B* in *A*

Another Erosion Example

- The structuring element (B) does not have to contain the origin
- Another example where **B** does not contain the origin

Example: Erosion of Binary Image

Erosion

Erosion related to minkowski subtraction

$$A - B = \bigcap_{b \in B} A_b.$$

- Erosion and dilation are inverses of each other
- It can be shown that

$$\overline{A \ominus B} = \overline{A} \oplus \hat{B}.$$

And also that

$$\overline{A \oplus B} = \overline{A} \ominus \hat{B}.$$

An Application: Boundary Detection

Given an image A and structuring element B

We can define external boundary

An Application: Boundary Detection

Dilation of image A - erosion image A (by structuring element B)

We can define morphological gradient

$$(A \oplus B) - (A \ominus B)$$

Morphological gradient = Dilation - erosion

Example: Internal Boundary of Binary Image

• We can also define internal boundary as

$$A - (A \ominus B)$$

Example: External Boundary and Morphological Gradient

Image

External Boundary

Morphological Gradient

Example: Extraction of Boundary Pixels using Morphological Operations

Dilation operation is commutative

$$I \oplus H = H \oplus I$$

Dilation is associative (ordering of applying it not important)

$$(I_1 \oplus I_2) \oplus I_3 = I_1 \oplus (I_2 \oplus I_3)$$

 Thus as with separable filters, more efficient to apply large structuring element as sequence of smaller structuring elements

$$I \oplus H_{\text{big}} = (\dots((I \oplus H_1) \oplus H_2) \oplus \dots \oplus H_K)$$

Properties of Erosion

Erosion is not commutative

$$I \ominus H \neq H \ominus I$$

If erosion and dilation are combined, this chain rule holds

$$(I_1 \ominus I_2) \ominus I_3 = I_1 \ominus (I_2 \oplus I_3)$$

Dilation of foreground = inverting (erosion of background)


```
1: DILATE (I, H)
               I: binary image of size w \times h
               H: binary structuring element defined over region \mathcal{R}_H
               Returns the dilated image I' = I \oplus H
           I' \leftarrow \text{new binary image of size } w \times h
          I'(u,v) \leftarrow 0, for all (u,v)
                                                                                                    \triangleright I' \leftarrow \varnothing
                                                                                                 \triangleright (i,j) = q
        for all (i, j) \in \mathcal{R}_H do
                                                                                                     \triangleright q \in H
                 if H(i,j) = 1 then
 5:
                                                                                            \triangleright I' \leftarrow I' \cup I_q
                      Merge the shifted I_q with I':
 6:
                      for u \leftarrow 0 \dots (w-1) do
 7:
                            for v \leftarrow 0 \dots (h-1) do
                                                                                               \triangleright (u,v) = p
 8:

ho \stackrel{\cdot}{m p} \in \stackrel{\cdot}{I}

ho I' \leftarrow I' \cup (m p + m q)
                                  if I(u,v)=1 then
 9:
                                        I'(u+i,v+j) \leftarrow 1
10:
11:
           return I'.
       Erode (I, H)
                                                                                                     \triangleright \bar{I} \leftarrow \neg I
           \bar{I} \leftarrow \text{INVERT}(I)
13:
           H^* \leftarrow \text{Reflect}(H)
14:
                                                                                    \triangleright I \oplus H = (\bar{I} \oplus H^*)
           return Invert(Dilate(\bar{I}, H^*)).
15:
```


- A morphological filter is specified by:
 - Type of operation (e.g. dilation, erosion)
 - Contents of structuring element

- In practice, quasi-circular shaped structuring elements used
- Dilation with circular structuring of radius r adds thickness r
- Erosion with circular structuring of radius r removes thickness r

Example: Dilation and Erosion

 What if we erode and dilate the following image with diskshaped structuring element?

Original image

Apply dilation and erosion to this close up section

Dilation

Erosion

r = 1.0

r = 2.5

NOC

Example: Dilation and **Erosion**

Dilation and Erosion using Different Structuring Elements

Example: Composing Large Filters by Repeatedly Applying Smaller Filters

- More efficient
- E.g. composing Isotropic filter

References

- Wilhelm Burger and Mark J. Burge, Digital Image Processing, Springer, 2008
- University of Utah, CS 4640: Image Processing Basics,
 Spring 2012
- Rutgers University, CS 334, Introduction to Imaging and Multimedia, Fall 2012
- Gonzales and Woods, Digital Image Processing (3rd edition), Prentice Hall