Endomorphismes des espaces euclidiens

Dans tout le chapitre, E est un espace **euclidien**, c'est-à-dire un espace vectoriel de dimension finie sur \mathbb{R} , muni d'un produit scalaire. On pose $n = \dim E$.

I. Matrices orthogonales

I.1. Généralités

Définition. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{R})$ est dite orthogonale si $A^{\top}A = I_n$.

Proposition I.1. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Alors, les trois énoncés suivants sont équivalents :

- i. A est orthogonale;
- ii. la famille des colonnes de A est orthonormée pour le produit scalaire usuel;
- iii. la famille des lignes de A est orthonormée pour le produit scalaire usuel.

Proposition I.2. Soient \mathcal{B} une base **orthonormée** de E et \mathcal{C} une autre base de E. Alors, \mathcal{C} est orthonormée si et seulement si la matrice de passage de \mathcal{B} à \mathcal{C} est orthogonale.

Proposition I.3. Les matrices orthogonales de $\mathcal{M}_2(\mathbb{R})$ sont les matrices $R(\theta) =$

$$\begin{pmatrix} \cos\theta - \sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \ et \ S(\theta) = \begin{pmatrix} \cos\theta & \sin\theta \\ \\ \sin\theta - \cos\theta \end{pmatrix} \ où \ \theta \ est \ un \ r\'eel \ quelconque.$$

I.2. Le groupe orthogonal

Proposition I.4. Le produit de deux matrices orthogonales est une matrice orthogonale.

 $L'inverse\ d'une\ matrice\ orthogonale\ est\ une\ matrice\ orthogonale.$

Proposition I.5. Le déterminant d'une matrice orthogonale vaut 1 ou -1.

Définition. Les matrices orthogonales de déterminant 1 (resp^t -1) sont dites directes ou positives (resp^t indirectes ou négatives).

Proposition I.6. L'ensemble $O_n(\mathbb{R})$ des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$ est un sous-groupe de $GL_n(\mathbb{R})$, appelé groupe orthogonal d'ordre n.

L'ensemble $SO_n(\mathbb{R})$ des matrices orthogonales directes forme un sous-groupe de $O_n(\mathbb{R})$, appelé groupe spécial orthogonal d'ordre n.

I.3. Orientation de l'espace

Soit F un espace vectoriel de dimension finie p > 0 sur \mathbb{R} . Sur l'ensemble des bases de F, on définit une relation \sim par : $\mathcal{B} \sim \mathcal{C} \iff \det_{\mathcal{B}}(\mathcal{C}) > 0$. Si $\mathcal{B} \sim \mathcal{C}$, on dit que \mathcal{B} est de même sens que \mathcal{C} .

Proposition I.7. La relation \sim est une relation d'équivalence, qui admet exactement deux classes d'équivalence.

Définition. Orienter l'espace F, c'est choisir l'une de ces deux classe comme ensemble des bases directes; les bases de l'autre classe sont alors qualifiées d'indirectes.

Théorème I.8. Soit E un espace euclidien orienté. Si \mathcal{B} et \mathcal{C} sont deux bases orthonormées directes, alors $\det_{\mathcal{B}} = \det_{\mathcal{C}}$.

Définition. Sous les hypothèses du théorème **I.8**, le déterminant dans une base orthonormée directe quelconque est appelé **produit mixte**.

II. Isométries vectorielles

II.1. Généralités

Définition. Une application f de E dans E est appelée une **isométrie vectorielle** de E, ou un **endomorphisme orthogonal**, si f est linéaire et vérifie $\forall x \in E \quad ||f(x)|| = ||x||$.

Proposition II.1. Soit $f \in \mathcal{L}(E)$. Alors, f est une isométrie de E si et seulement f si $\forall (x,y) \in E^2$ f(x)|f(y)| = f(x)|f(y)|.

Proposition II.2. Soient $\mathcal{B} = (e_1, \ldots, e_n)$ une base orthonormée de E et $f \in \mathcal{L}(E)$. Alors, f est une isométrie si et seulement si $f(\mathcal{B}) = (f(e_1), \ldots, f(e_n))$ est une base orthonormée.

Par suite, f est une isométrie si et seulement si sa matrice dans $\mathcal B$ est une matrice orthogonale.

Corollaire II.3. Le déterminant d'une isométrie vectorielle vaut 1 ou -1.

II.2. Le groupe orthogonal de E

Proposition II.4. Toute isométrie vectorielle est un isomorphisme.

La composée de deux isométries, et la réciproque d'une isométrie, sont encore des isométries.

Proposition II.5. L'ensemble O(E) des isométries de E, muni de la loi \circ , est un sous-groupe de $\mathrm{GL}(E)$, appelé groupe orthogonal de E.

L'ensemble SO(E) des isométries de déterminant 1 (isométries directes) forme un sous-groupe de O(E), appelé groupe spécial orthogonal de E.

II.3. Isométries en dimension 2

Proposition II.6. Les isométries indirectes d'un plan vectoriel sont les symétries orthogonales par rapport à des droites.

Définition. Les isométries directes d'un plan vectoriel sont appelées rotations (planes).

Pour
$$\theta \in \mathbb{R}$$
, on note toujours $R(\theta)$ la matrice $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

Proposition II.7. Soit E un plan euclidien orienté.

- i. Si r est une rotation de E, il existe $\theta \in \mathbb{R}$ tel que la matrice de r dans n'importe quelle base orthonormée directe de E est $R(\theta)$; θ est appelé (mesure de) l'angle orienté de la rotation r.
- ii. Si a et b sont deux vecteurs non nuls de E, il existe une unique rotation r qui transforme $a/\|a\|$ en $b/\|b\|$; l'angle de cette rotation est appelé (mesure de) l'angle orienté (a,b).

Proposition II.8. i. Pour tout $(\alpha, \beta) \in \mathbb{R}^2$, $R(\alpha)R(\beta) = R(\alpha + \beta)$.

- ii. L'application $\varphi : \mathbb{R} \longrightarrow SO_2(\mathbb{R}), \ \alpha \longmapsto R(\alpha)$ est un morphisme de groupes surjectif de $(\mathbb{R}, +)$ dans $(SO_2(\mathbb{R}), .)$; son noyau est $2\pi\mathbb{R}$.
- iii. Il existe un isomorphisme de groupes ψ de $(\mathbb{U},.)$ dans $(SO_2(\mathbb{R}),.)$ vérifiant $\psi(e^{i\theta}) = R(\theta)$ pour tout $\theta \in \mathbb{R}$.

II.4. Réduction

Lemme II.9. Soit F un espace vectoriel de dimension finie sur \mathbb{R} , et $f \in \mathcal{L}(F)$. Alors, f admet un sous-espace stable de dimension 1 ou 2.

Lemme II.10. Soit $f \in O(E)$, admettant un sous-espace stable F. Alors, F^{\perp} est aussi stable par f.

Théorème II.11. Soit $f \in O(E)$. Alors, il existe une base **orthonormée** de E dans laquelle la matrice de f est une matrice diagonale par blocs de la forme

$$\begin{pmatrix} I_p & 0 & \cdots & \cdots & 0 \\ 0 & -I_q & \ddots & & \vdots \\ \vdots & \ddots & R(\theta_1) & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & & 0 & R(\theta_r) \end{pmatrix}$$

où p, q et r sont des entiers naturels éventuellement nuls, et les θ_i appartiennent à $\mathbb{R} \setminus \pi \mathbb{Z}$.

En particulier, l'espace E est somme directe orthogonale de sous-espaces stables de dimension 1 ou 2.

Corollaire II.12. Si f est une isométrie directe d'un espace euclidien E_3 de dimension 3, alors il existe une base orthonormée (e_1, e_2, e_3) dans laquelle la matrice

$$de \ f \ est \ de \ la \ forme \left(egin{matrix} 1 & 0 \ 0 \ R(heta) \end{matrix}
ight).$$

Si de plus $f \neq \operatorname{Id}_E$, alors $\operatorname{Vect}(e_1) = \operatorname{Ker}(f - \operatorname{Id}_E)$ et $\operatorname{tr} f = 1 + 2\cos\theta$; on dit que f est une rotation d'axe $\operatorname{Vect}(e_1)$ et d'angle non orienté θ .

III. Adjoint d'un endomorphisme

III.1. Définition

Proposition III.1. Soit $f \in \mathcal{L}(E)$.

- **i.** Pour tout $a \in E$, il existe un et un seul vecteur $b \in E$ vérifiant $\forall x \in E$ (f(x) | a) = (x | b); posons $b = f^*(a)$.
- ii. L'application f^* est un endomorphisme de E.

Définition. Avec les notations précédentes, f^* est appelé l'endomorphisme adjoint de f.

Proposition III.2. Soient $f \in \mathcal{L}(E)$ et \mathcal{B} une base orthonormée de E. Alors $\operatorname{Mat}_{\mathcal{B}}(f^*) = \operatorname{Mat}_{\mathcal{B}}(f)^{\top}$.

III.2. Propriétés

Proposition III.3. i. $\forall f \in \mathcal{L}(E) \quad (f^*)^* = f$.

ii. $\forall (f,g) \in \mathcal{L}(E)^2 \quad \forall (\lambda,\mu) \in \mathbb{R}^2 \quad (\lambda f + \mu g)^* = \lambda f^* + \mu g^*.$

iii. $\forall (f,g) \in \mathcal{L}(E) \quad (f \circ g)^* = g^* \circ f^*.$

Proposition III.4. Soient $f \in \mathcal{L}(E)$ et F un sous-espace de E. Si F est stable par f, alors F^{\perp} est stable par f^* .

Proposition III.5. Un endomorphisme f est une isométrie si et seulement si $f^* = f^{-1}$.

IV. Endomorphismes autoadjoints

IV.1. Définition

Définition. Un endomorphisme f de E est dit **autoadjoint** (ou **symétrique**) si $f^* = f$; cela revient à dire que, pour tout $(x, y) \in E^2$, on a (x|f(y)) = (f(x)|y).

Proposition IV.1. Soient $f \in \mathcal{L}(E)$, et \mathcal{B} une base **orthonormée** de E. L'endomorphisme f est autoadjoint si et seulement si sa matrice dans \mathcal{B} est symétrique.

Proposition IV.2. L'ensemble des endomorphismes autoadjoints de E est un espace vectoriel; on le notera S(E).

Proposition IV.3. Une projection est un endomorphisme autoadjoint si et seulement si c'est une projection orthogonale.

IV.2. Sous-espaces stables

Proposition IV.4. Soit $f \in \mathcal{S}(E)$, et F un sous-espace de E stable par f. Alors, F^{\perp} est aussi stable par f.

Théorème IV.5. Soit $f \in \mathcal{S}(E)$. Deux vecteurs propres de f associés à des valeurs propres distinctes sont forcément orthogonaux; les sous-espaces propres de f sont donc deux à deux orthogonaux.

IV.3. Réduction

Lemme IV.6. Soit $f \in S(E)$; alors, f admet au moins un vecteur propre.

Théorème IV.7 (théorème spectral). Soit $f \in \mathcal{L}(E)$. On a équivalence entre les trois énoncés :

- **i.** f est autoadjoint;
- ii. E est somme directe orthogonale des sous-espaces propres de f :
- iii. il existe une base orthonormée de E constituée de vecteurs propres pour f.

Théorème IV.8. Soit $S \in \mathcal{M}_n(\mathbb{R})$. Alors, S est symétrique si et seulement s'il existe une matrice diagonale D et une matrice **orthogonale** P telles que $P^{-1}SP = P^{\top}SP = D$.

IV.4. Endomorphismes autoadjoints positifs

Définition. On dit qu'un endomorphisme $f \in S(E)$ est **positif** (resp^t **défini positif**) si

$$\forall x \in E \quad (x \mid f(x)) \geqslant 0 \quad (resp^t \quad \forall x \in E \setminus \{0_E\} \quad (x \mid f(x)) > 0)$$

On dit qu'une matrice symétrique $A \in \mathcal{M}_n(\mathbb{R})$ est positive (resp^t définie positive) si

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \quad X^{\top}AX \geqslant 0 \qquad (resp^t \quad \forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\} \quad X^{\top}AX > 0)$$

L'ensemble des endomorphismes autoadjoints positifs (resp^t définis positifs) de E est noté $\mathcal{S}^+(E)$ (resp^t $\mathcal{S}^{++}(E)$). L'ensemble des matrice symétrique positives (resp^t définies positives) de $M_n(\mathbb{R})$ est noté $\mathcal{S}_n^+(\mathbb{R})$ (resp^t $\mathcal{S}_n^{++}(R)$).

Théorème IV.9. Un endomorphisme autoadjoint est positif (resp^t défini positif) si et seulement si ses valeurs propres sont toutes positives ou nulles (resp^t toutes strictement positives).

Une matrice symétrique réelle est positive ($resp^t$ définie positive) si et seulement si ses valeurs propres sont toutes positives ou nulles ($resp^t$ toutes strictement positives).