Design Problem 1 – Pump and Piping Design

- 1. Objectives
- 2. Problem statement.
- 3. Constraints and additional information.
- 4. Submission requirements.

Objectives

The objectives of Design Problem 1 are to: (1) update the cost index in CHEMCAD, (2) use CHEMCAD to perform an optimized design and pricing of a section of pipeline, and (3) determine the purchased price and power requirements for a pump.

Problem Statement

Your assignment is to use CHEMCAD to design the piping and pump to deliver feed liquid to a distillation process. The feed temperature, pressure, and component flow rates are given in Table 1, and you will determine the size and cost of the pump and pipeline needed to deliver the feed to the column. You will also determine the size and cost of fittings and valves, the cost of paint for the pipe, and the energy requirements for one year of operation. Finally, this type of system must be *optimized* for peak economic efficiency, and you will discuss why your solution is considered to be optimized. Your design will be subject to the constraints and specifications described below.

Table 1. Feed Component Flow Rates (298 K and 202.650 kPa)

Component	Feed Rate, lb-mol/h	
Toluene	91.50	
Naphthalene	299.81	
Biphenyl	3156.56	
Diphenylenemethane (Fluorene)	192.94	
Phenanthrene	144.19	
M-Terphenyl	<u>359.81</u>	
Total	4244.81	

Constraints and Additional Information

- You are designing the pump and the pipe connecting the pump to the column. You will *not* be designing the distillation column or column internals (trays, shell, condenser, reboiler). This has already been designed by another group.
- Pump constraints and specs:
 - The pump and motor costs must be calculated in CHEMCAD. The pump is centrifugal, one stage, 3550 rpm vertical split casing (VSC), cast steel, and explosion proof, and the pump motor is 1200 rpm, and installed costs are 2.8 times the purchased equipment cost.
 - CHEMCAD cost information must be updated to January 2024 by entering the current Chemical Engineering Plant Cost Indices. Values can be viewed in "Tools," then "Edit Cost Index."

- Energy cost based on one year of operation (365d=1yr) at \$0.0646 per kWh and the pump is 79% efficient.

(energy costs found at https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a)

• Piping constraints and specs:

- Pipe, valve, and fitting costs cannot be calculated in CHEMCAD. Pipe costs can be found in the PTW textbook. Any cost data taken from the textbook is referenced to January 2002.
- Fittings costs are not in the 2002 edition of the textbook. They can be found in the "1979 Pipe & Fitting Prices" document found in your SharePoint (Fig. 13-4, PTW, 3rd ed., p. 529). This data is referenced to January 1979.
- Installed costs are 2.8 times the purchased equipment cost.
- The pipe diameter is determined in CHEMCAD. Fluid flow in the pipeline is single-phase, and the pipe sizing option in CHEMCAD is "1 Design, single-phase flow."
- All pipe and fittings are Sch. 40 welded commercial (carbon) steel and must be painted.
- The length of the pipeline is 153 feet with a net elevation change of 19 feet.
- The pipeline has 12 90° standard elbows, two gate valves, three globe valves, and one sudden expansion where the fluid emerges into the column. The diameter ratio for the expansion can be taken as 0.001.
- The feed must enter the column at 298 K and 353.5 kPa.

Submission Requirements

- 1. Download, complete and upload the CHEMCAD template found in Canvas.
- 2. Download, complete and upload the Excel template found in Canvas, including:
 - a. Diameter, purchased and installed costs in January 2024 for pipe, elbows, valves, and paint.
 - c. Purchased and installed cost of pump and motor in January 2024.
 - d. Pump NPSH, power, energy, and energy cost for 1 year of operation.
 - d. Total cost of installed equipment and energy for one year of operation.
 - e. Print the bordered areas from the Excel template as a pdf, attach a cover sheet, and submit the combined pdf to Canvas.
- 3. Discuss how the design has been *optimized*. Answer this question in the space provided in Excel.
- 4. All three electronic files (CHEMCAD, Excel, and PDF) must be uploaded to Canvas.

Addendum - Process Sketch

Vertical split-case pump (VSC), https://www.statesupply.com/bell-andgossett/pump/series-vsx. Casing split is perpendicular to motor shaft axis.

Horizontal split-case pump (HSC), https://www.ruhrpumpen.com/en/products/ between-bearing-pumps/hsc-pump. Casing split is parallel to motor shaft axis.

Solution

The CHEMCAD flowsheet is shown below. Pump ΔP is adjusted until the pressure in stream 3 is on spec. The resulting stream and unit ops reports are shown on the following pages for 2.5-inch nominal pipe size. The calculation of the NPSH and the resulting value are shown in the unit ops report for the pump on page 5. The cost and optimization information are shown in the Excel spreadsheet on pages 7 and 8 of this document.

CHEMCAD pump is set to "Specify pressure increase" mode. A value of 296.18 kPa puts stream 3 on spec.

Dame Commons from CHEMCAD		
Pump Summary from CHEMCAD Pressure increase kPa	<mark>296.</mark> 1800	Dumn snog set by addets Dressure
Efficiency	0.7900	☐ Pump spec set by cadets. Pressure
Calculated power kJ/sec	30.5755	increase is iterated, and efficiency
Calculated Pout kPa	498.8300	was given.
Head m	28.9756	
Vol. flow rate m3/h	293.4264	
Mass flow rate lb/sec	187.2978	
NPSH available m	19.8175	
Cost estimation flag	19.01/3	
Material	1	
	2	
Motor type Motor RPM	2	
Install factor	2.8000	Civan in publish statement
Basic pump cost \$	18139.73	☐ Given in problem statement.
Basic motor cost \$	9849.54	
		Pump costs carried forward to
Total purchase cost \$ Total installed cost \$	27989.28 78369.97	spreadsheet.
Total installed cost \$	76369.97	•
Pipe / Line Sizing Summary	, from CHEMCAD	
Method	2	
Pipe schedule	40	
Nominal size DN mm	200	Calculated by CHEMCAD using
Nominal size NPS in	8	design mode (optimal economic pipe
Calculated ID m	0.2027	
Wall thickness m	0.0082	diameter.
Pipe length m	46.6344	☐ Total length of pipe = 153 feet
	1.5720e-005	
Elevation change m	5.7912	☐ Must subtract feed pipe height from
Sizing option	1	pipe outlet height at column:
Pressure drop kPa	145.3295	33 ft - 14 ft = 19 ft = 5.7912 m
Reynolds # liq	152945.4219	33 It - 14 It - 17 It - 3.7712 III
Fric factor liq	0.0179	
Avg density kg/m3	1042.3170	
Calc. velocity m/sec	2.5254	
Min. velocity m/sec	0.9847	
DP friction kPa	86.1339	
DP elevation kPa	59.1954	
Output press. kPa	353.5005 <	Constraint. System must
DP/100ft, psi	1.2993	deliver this pressure to
Liquid flow lb/sec	187.2978	column.
Liquid density kg/m3	1042.3170	Column.
Liq viscosity N-s/m2	0.0035	
Surface tension N/m	0.0418	
EL. fittings m	246.4270	
Total ELength m	293.0614	
Gate valve	2	
Glb seat flatBevelPlug	3	
Standard elbow 90 deg. 12		
Friction fac. model	1	
Incl. expansion fac.	1	
Pipe wall cond. W/m-K	51.2818	
Inclination angle	7.1336	

	•		•••
nominal size	in	8"	200 mm
pipe inside diameter, actual	m	0.2027	ID, inches, page 962
pipe length	m	46.63	ib, inches, page 302
pipe price per length, 2002	\$/m	40.03	Fig 12-4, page 503
pipe price, total, 2002	\$	2285	Fig 12-4, page 303
pipe price, total, JAN 2024	\$	5257	
pipe installed price	\$	14719	
pipe installed price	J	14/13	
number of elbows		12	
elbow price each, 1979	\$ each	40	See "1979 Pipe & Fitting Prices"
elbow price, total, 1979	\$	480	Found in Lesson 2 on Website
elbow price, total, JAN 2024	\$	2044	Fig 13-4, PTW 3rd Ed., p. 529
elbow installed price	\$	5723	3 11 1/1 11 11 11 11 11
number of gate valves		2	
gate valve price each, 2002	\$ each	700	Fig 12-8, page 505
gate valve price, total, 2002	\$	1400	
gate valve price, total, JAN 2024	\$	3221	
gate valve installed price	\$	9019	
number of globe valves		3	
globe valve price, each, 2002	\$ each	900	Fig 12-8, page 505
globe valve price, total, 2002	\$	2700	
globe valve price, total, JAN 2024	1\$	6212	
globe valve installed price		17393	
paint price, 2002	\$/m	1.6	Fig 12-12, page 507
paint price, total, 2002	\$	75	
paint, total, JAN 2024	\$	172	
		40.00	
pump NPSH	m	19.82	
pump ΔP	kPa	296.18	
pump cost, JAN 2024	\$	18140	CHEMCAD
motor cost, JAN 2024	\$	9850	CHEMCAD
total price, pump+motor	\$	27990	
pump+motor installed price	\$	78372	
Electrical Power			
pump efficiency	0.79		
pump input power	kW	22.019	CHEMCAD
operating time	h	8760	OTTENIO/ ID
pump power	kWh	267841	
power cost per unit	\$/kWh	0.0646	
power cost per unit	\$	17303	
201101 0000	•	17000	
Total cost	\$	\$142,699	

Calculations are embedded in the spreadsheet. The optimization of the pipeline diameter was conducted using the "Sizing" tool in CHEMCAD, resulting in 8-inch nominal pipe.

CE Plant Cost Indices	
Pipe, Valves, and Fittings, 1979	300.3
Pipe, Valves, and Fittings, 2002	555.8
Pipe, Valves, and Fittings, JAN 2024	1278.7
Pipes, Valves and Fittings, 2002 to JAN 2024	2.301
Pipes, Valves and Fittings, 1979 to JAN 2024	4 .258
Installation Factors	
Install factor for pumps	2.8
Install factor for pipes, valves, and fittings	2.8

CE Plant Cost Index values are found in the "CE Plant Cost Index" linked to the main course web page and are used in the spreadsheet to update prices from 1979 or 2002 to 2024.

How has the design been optimized? (Answer in the space below.

CHEMCAD computes pipe diameter using optimium diameter equations discussed in Lesson 1 in "How to find the Pipe Diameter."