Ensembles et applications Corrigé

DARVOUX Théo

Octobre 2023

Exercices.	
Exercice 5.1	2
Exercice 5.2	2
Exercice 5.3	3
Exercice 5.4	3
Exercice 5.5	4

Exercice 5.1 $[\Diamond \Diamond \Diamond]$

Soient A, B deux parties d'un ensemble E. Établir que

$$A \setminus (A \setminus B) = A \cap B$$
 et $A \setminus (A \cap B) = A \setminus B = (A \cup B) \setminus B$.

On a:

$$A \setminus (A \setminus B) = A \cap \overline{(A \cap \overline{B})}$$

$$= A \cap (\overline{A} \cup B)$$

$$= (A \cap \overline{A}) \cup (A \cap B)$$

$$= A \cap B$$

D'autre part :

$$A \setminus (A \cap B) = A \cap \overline{(A \cap B)}$$

$$= A \cap (\overline{A} \cup \overline{B})$$

$$= (A \cap \overline{A}) \cup (A \cap \overline{B})$$

$$= A \cap \overline{B}$$

$$= A \setminus B$$

Et :

$$(A \cup B) \setminus B = (A \cup B) \cap \overline{B}$$
$$= (A \cap \overline{B}) \cup (B \cap \overline{B})$$
$$= A \cap \overline{B}$$
$$= A \setminus B$$

Exercice 5.2 $[\Diamond \Diamond \Diamond]$

Soient A, B, C, D quatre parties d'un ensemble E, telles que

$$E = A \cup B \cup C, \qquad A \cap D \subset B, \qquad B \cap D \subset C, \qquad C \cap D \subset A.$$

Montrer que $D \subset A \cap B \cap C$.

Soit $x \in D$, on sait que $x \in E$. Alors $x \in A$ ou $x \in B$ ou $x \in C$.

- \odot Si $x \in A$, alors $x \in A \cap D$, donc $x \in B$.
- \odot Si $x \in B$, alors $x \in B \cap D$, donc $x \in C$.
- \odot Si $x \in C$, alors $x \in C \cap D$, donc $x \in A$.

On en déduit que $x \in A \cap B \cap C$.

Ainsi, $D \subset A \cap B \cap C$.

Exercice 5.3 $[\Diamond \Diamond \Diamond]$

Démontrer que

$$\mathbb{R} = \left\{ x \in \mathbb{R} \mid \exists a \in \mathbb{R}_{+}^{*} \exists b \in \mathbb{R}_{-}^{*} : x = a + b \right\}.$$

On note $A = \{x \in \mathbb{R} \mid \exists a \in \mathbb{R}_+^* \ \exists b \in \mathbb{R}_-^* : x = a + b\}$

 \odot Montrons que $\mathbb{R} \subset A$.

Soit $x \in \mathbb{R}$.

 \circ Si $x \le 0$, On pose a = 1 et b = x - 1, ainsi x = a + b donc $x \in A$.

o Si x > 0, On pose a = x + 1 et b = -1, ainsi x = a + b donc $x \in A$.

Dans tous les cas $x \in A$, on en conclut que $\mathbb{R} \subset A$.

 \odot Montrons que $A \subset \mathbb{R}$.

Soit $x \in A$, alors il existe $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_-^*$ tels que x = a + b.

Or $a + b \in \mathbb{R}$, donc $x \in \mathbb{R}$. On en conclut que $A \subset \mathbb{R}$.

Soit $n \in \mathbb{N}^*$ et A_1, A_2, \dots, A_n n parties de E telles que

$$A_n = E$$
 et $A_1 \subset A_2 \subset \cdots \subset A_n$.

On pose $B_1 = A_1$ et pour $k \in [2, n]$, on pose $B_k = A_k \setminus A_{k-1}$.

Prouver que $(B_k)_{1 \le k \le n}$ est un recouvrement disjoint de E.

Soit $x \in E$. Alors $x \in A_n$. Il existe alors k le plus petit entier tel que $x \in A_k$. Ainsi, $x \in B_k$ puisque $x \in A_k \land x \notin A_{k-1}$ par définition de k.

On en déduit que tout élément de E appartient à au moins un (B_k) .

Montrons maintenant que tout élément de E appartient aussi au plus à un B_k .

Soit $x \in E$. Supposons qu'il existe $i, j \in [1, n]$ tels que i < j et $x \in B_i$ et $x \in B_j$.

Or, puisque $x \in B_i$ et i < j, $x \notin A_i$. De plus, puisque $x \in B_i$, $x \in A_i$ ce qui est absurde.

Ainsi, tout élément de E appartient au plus à un (B_k) .

 $(B_k)_{1 \le k \le n}$ est donc un recouvrement disjoint de E.

Exercice 5.5 $[\blacklozenge \blacklozenge \lozenge]$

Soit E un ensemble et A, B deux parties de E. Démontrer que

$$B \subset A \iff (\forall X \in \mathcal{P}(E) \quad (A \cap X) \cup B = A \cap (X \cup B)).$$

Supposons $B \subset A$.

Soit $X \in \mathcal{P}(E)$.

On a:

$$(A \cap X) \cup B = (A \cup B) \cap (X \cup B) = A \cap (X \cup B)$$

Supposons $(\forall X \in \mathcal{P}(E) \quad (A \cap X) \cup B = A \cap (X \cup B)).$

On a $B \in \mathcal{P}(E)$, donc :

$$(A \cap B) \cup B = A \cap (B \cup B) \iff (A \cup B) \cap B = A \cap B$$

 $\iff (A \cup B) = A$
 $\iff B \subset A$

4 sur 4