

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f \bar{f}$ der Nähe der 2

Das OPAL

Λ......

Cuts st-Kanaltrennu

Zerfallsbreite Vorwärts-Rückwärts-Asymmetrie

Zusammer

Quelle

Z^0 -Resonanz

Moritz Wiehe, Frank Schäfer

23. April 2015

Inhaltsverzeichnis

 Z^0 -Resonanz

Moritz Wieh Frank Schäf

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f ar f$ i der Nähe der Z Resonanz

Das OPAL-Experiment

Auswertung Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammer fassung Ziele

2 Theoretische Grundlagen

Allgemeines

ullet Der Prozess $e^+e^- o far f$ in der Nähe der Z^0 Resonanz

Oas OPAL- Experiment

4 Auswertung

Cuts

st- Kanaltrennung

Zerfallsbreiten

Vorwärts-Rückwärts-Asymmetrie

Zusammenfassung

6 Referenzen

Inhaltsverzeichnis

Z⁰-Resonanz

7iele

Ziele

Allgemeines

• Der Prozess $e^+e^- \rightarrow f\bar{f}$ in der Nähe der Z^0 Resonanz

Cuts

st- Kanaltrennung

Zerfallsbreiten

Vorwärts-Rückwärts-Asymmetrie

23. April 2015

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ i der Nähe der Z Resonanz

Experiment

Cuts
stKanaltrennut
Zerfallsbreite
Vorwärts-

Zusammer fassung

- Theoretische Berechnung der Zerfallsbreiten & Wirkungsquerschnitte für die verschiedenen Fermionpaare
- Untersuchung der Abhängigkeit der Zerfallsbreite von der Anzahl der möglichen Zerfälle, auch im Hinblick auf die Anzahl leichter Neutrino-Generation
- **3** Darstellung der erwarteten Formen der Winkelverteilungen für die Prozesse $e^- + e^+ \rightarrow e^- + e^+$ und $e^- + e^+ \rightarrow \mu^- + \mu^+$.
- **1** Bestimmung der gesamten, leptonischen und hadronischen Zerfallsbreite des Z0, sowie der Masse M_Z .
- Serechnung der Vorwärts-Rückwärts-Asymmetrie

Inhaltsverzeichnis

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen

Allgemeines
Der Prozess $e^+e^- o f\bar{f}$ der Nähe der z
Resonanz

Das OPAL-Experiment

Auswertung

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-

Zusammen assung Ziele

- 2 Theoretische Grundlagen
 - Allgemeines
 - ullet Der Prozess $e^+e^- o far f$ in der Nähe der Z^0 Resonanz
- 3 Das OPAL- Experiment
- 4 Auswertung
 - Cuts
 - st- Kanaltrennung
 - Zerfallsbreiten
 - Vorwärts-Rückwärts-Asymmetrie
- 5 Zusammenfassung
- 6 Referenzen

23. April 2015

Elektroschwache Wechselwirkung

Allgemeines

- Ahnliche Kopplungskonstanten bei hohen Energien zwischen elektromagnetischer und schwacher WW → Vorschlag: Vereinheitlichung (Glashow, 1961)
- Brout- Englert- Higgs Mechanismus wird integriert
- (Weinberg & Salam, 1967) Renormierbarkeit (Veltmann & t'Hooft, 1973)
- $\rightarrow (W_u^1, W_u^2, W_u^3)$ koppeln an den schwachen Isospin I linkshändiger Fermionen

 Z^0 -Resonanz

 $\rightarrow B_{\mu}$ koppelt an Hyperladung $Y = 2 \cdot Q - 2 \cdot I_3$ Es ergeben sich die physikalischen Felder:

$$W^{\pm} := \frac{1}{\sqrt{2}} \left\{ W_{\mu}^{1} \mp i W_{\mu}^{2} \right\}$$
$$\gamma := B_{\mu} \cdot \cos \theta_{w} + W_{\mu}^{3} \cdot \sin \theta_{w}$$
$$Z_{0} := -B_{\mu} \cdot \sin \theta_{w} + W_{\mu}^{3} \cdot \cos \theta_{w}$$

Moritz Wiehe Frank Schäfe

Ziel

Grundlagen
Allgemeines

Der Prozess $e^+e^- \rightarrow f\bar{f}$ ider Nähe der Z Resonanz

Das OPAL Experimen

Auswertung

st-Kanaltrennun Zerfallsbreiter Vorwärts-Rückwärts-

Zusamme fassung θ_w bezeichnet hierbei den **weak mixing angle**. Für θ_w kann man folgende Beziehungen aus der elektroschwachen WW und dem Higgs-Mechanismus ableiten:

$$\cos \theta_w = \frac{m_W}{m_Z}$$
$$\sin^2 \theta_w = \frac{\alpha_{em}}{\alpha_w}$$

23. April 2015

Moritz Wiehe Frank Schäfe

Ziel

Grundlagen

Allgemeines

Der Prozess $e^+e^- o f\bar{f}$ in

der Nähe der Z

Resonanz

Das OPAL-Experiment

Auswertung
Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusammer fassung

- ullet Der Wirkungsquerschnitt σ ist ein Maß für die Wahrscheinlichkeit einer Wechselwirkung
- ullet Die Proportionalität zwischen Ereignisrate $rac{dN}{dt}$ und Wirkungsquerschnitt σ wird Luminosität L genannt
- Luminosität ist nur durch experimentellen Aufbau bedingt

$$rac{dN}{dt} = L \cdot \sigma$$

Durch Integration der Gleichung ist es möglich, aus der gemessenen Teilchenanzahl auf den Wirkungsquerschnitt zu schließen.

$$\sigma = \frac{N}{\int L \, dt}$$

Der Prozess

- Bhabha-Streuung: elastische Elektron-Positron Streuung
- Annihilation in Z^0 oder Photon, welches anschließend in ein Fermion- Antifermion Paar zerfällt (s. Abbildung 1)

Abbildung: Streuung eines Elektrons mit Impuls p_1 an einem Positron mit Impuls p_2 [4], links s- Kanal; rechts t- Kanal

Moritz Wiehe Frank Schäfe

Ziele

Theoretisch Grundlagen Allgemeines

Der Prozess $e^+e^- \rightarrow f\bar{f}$ in der Nähe der Z^0 Resonanz

Das OPAL Experimer

Auswertung Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammer fassung

- Annihilation des e^+e^- in zwei oder 3 reelle Photonen
- Inelastische e^+e^- Streuung mit zusätzlicher WW zweier Photonen (2-Photon-Physik)

Abbildung: Annihilation in zwei oder drei reelle Photonen (links) und 2-Photon-Ereignisse (rechts)

Moritz Wiehe Frank Schäfe

Ziel

Grundlagen
Allgemeines
Der Prozess $e^+e^- o f\bar{f}$ in
der Nähe der z^0 Resonanz

Experimen

Auswertung Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

- Vektorkopplung $g_V^f = I_3^f 2Q_f \sin^2 \theta_W$ \rightarrow negativ unter Paritätstransformation
- Axialkopplung $g_A^f = I_3^f$ \rightarrow positiv unter Paritätstransformation
- \Rightarrow Paritätsverletzung der schwachen WW
- \Rightarrow Asymmetrie

Moritz Wiehe Frank Schäfe

Ziel

I heoretische Grundlagen
Allgemeines
Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Das OPAL Experimen

Auswertung
Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusamme fassung Die totale Zerfallsbreite Γ_Z des Z^0 ist:

$$\Gamma_{Z} = \Gamma_{e} + \Gamma_{\mu} + \Gamma_{\tau} + \Gamma_{had} + \textit{N}_{\nu} \cdot \Gamma_{\nu} + \Gamma_{unbekannt}$$

ullet Zerfall des Z^0 in $t\bar{t}$ energetisch nicht möglich

 Z^0 -Resonanz

• $\Gamma_{unbekannt}$ umfasst Beiträge, die nicht im Standardmodell enthalten sind, hier $\Gamma_{unbekannt} = 0$

Moritz Wiehe Frank Schäfe

Zie

Grundlagen
Allgemeines
Der Prozess
e+e → ff in
der Nähe der Z

Das OPAL-Experiment

Auswertun Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammer fassung

$$\sigma(e^+e^- \to f\bar{f}) = \sigma_{\gamma} + \sigma_{Z^0} + \sigma_{\gamma Z}$$

Bei Energien in der Nähe der Z^0 -Resonanz \to Wirkungsquerschnitt durch den Z^0 Austauschterm dominiert, Born-Näherung:

$$\sigma_f = \frac{12\pi}{M_Z^2} \cdot \frac{s\Gamma_e\Gamma_f}{(s - M_Z^2)^2 + (s^2\Gamma_Z^2/M_Z^2)}$$

wobei die Partialbreite gegeben ist durch:

$$\Gamma_f = \frac{N_c^f \sqrt{2}}{12\pi} \cdot G_F \cdot M_Z^3 \cdot (g_V^{f^2} + g_A^{f^2})$$

am Peak reduziert sich die Formel auf:

$$\sigma_f^{\textit{peak}} = \frac{12\pi}{M_Z^2} \cdot \frac{\Gamma_e}{\Gamma_Z} \cdot \frac{\Gamma_f}{\Gamma_Z}$$

Moritz Wiehe Frank Schäfe

Ziel

Theoretisch Grundlagen

Der Prozess $e^+e^- \rightarrow f\bar{f}$ in der Nähe der Z Resonanz

Experimer

Cuts
stKanaltrennur
Zerfallsbreite
VorwärtsRückwärts-

Zusammer fassung

	e, μ , $ au$	Neutrinos	d,s,b-Quarks	u,c- Quarks
Γ_f	83.39	165.84	367.79	285.34
$\sigma(Z^0 o f \bar{f})$	2.09	4.16	9.22	7.16

Tabelle: Theoretisch berechnete Zerfallsbreiten in MeV und Wirkungsquerschnitte in nb

Änderung der Zerfallsbreite des Z^0 bei Zerfall in ein weiteres Fermion

- $7\% \cong$ neutrales Lepton
- 15%
 ^ˆ d,s,b Quark
- 12%
 ^ˆ u.c Quark

Wirkungsquerschnitte gegen Schwerpunktsenergie

Z⁰-Resonanz

Der Prozess Resonanz

Abbildung: Totaler Wirkungsquerschnitt als Funktion der Schwerpunktsenergie.

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess

Resonanz Das OPAL-

Experimen

Cuts st-Kanaltrennur

Zerfallsbreite Vorwärts-Rückwärts-Asymmetrie

Zusammer fassung Die Asymmetrie wird definiert als:

$$A_{FB}^{f} = \frac{\int_{0}^{1} \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^{0} \frac{d\sigma}{d\cos\theta} d\cos\theta}{\int_{-1}^{1} \frac{d\sigma}{d\cos\theta} d\cos\theta}$$

$$A_{FB}^{f,Peak} \approx 3 \frac{(g_V^f)^2}{(g_A^f)^2} \approx 3(1 - 4\sin^2\theta_w)^2 \tag{1}$$

23. April 2015

Moritz Wiehe Frank Schäfe

Ziele

Theoretisch Grundlagen

Der Prozess $e^+e^- \rightarrow f\bar{f}$ in
der Nähe der Z^0 Resonanz

Experimen

Auswertung Cuts

st-Kanaltrennun Zerfallsbreiter Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

- z - kyn

Abbildung: Reelle Strahlungskorrekturen: Abstrahlung eines Photons im Anfangszustand (initial state radiation) und Bremsstrahlung im Endzustand (final state radiation)[2]

Strahlungskorrekturen

Z⁰-Resonanz

Der Prozess Resonanz

Abbildung: Virtuelle Strahlungskorrekturen: selber Anfangs- und Endzustand wie in Born'scher Näherung)[2]

Strahlungskorrekturen

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfer

Ziele

Theoretisch Grundlagen

Der Prozess $e^+e^- \rightarrow f\bar{f}$ in der Nähe der Z^0 Resonanz

Das OPAL

Auswertun

st-Kanaltrennu Zerfallsbreite Vorwärts-

Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

fassung

Abbildung: QCD Strahlungskorrekturen: Abstrahlung eines Gluons[2]

Inhaltsverzeichnis

Z⁰-Resonanz

Das OPAL-Experiment

Allgemeines

• Der Prozess $e^+e^- \rightarrow f\bar{f}$ in der Nähe der Z^0 Resonanz

Open Das OPAL- Experiment

Cuts

st- Kanaltrennung

Zerfallsbreiten

Vorwärts-Rückwärts-Asymmetrie

Das OPAL-Experiment

27km Umfang, in 50-100m Tiefe, Betrieb von 1989 bis 2000

19 / 59

Moritz Wiehe Frank Schäfe

Zie

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ ig der Nähe der Z Resonanz

Das OPAL-Experiment

Auswertung
Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärts-

Zusammei fassung OPAL wurde betrieben am LEP-Beschleuniger, CERN von 1989 - 2000

- Schwerpunktenergie von 80 bis über 200 GeV
- Wichtigste Resultate:
 - Exakte Vermessung der Z⁰-Masse
 - Erzeugung von W-Boson-Paaren
 - Suche nach Hinweisen auf Higgs-Mechanismus

Moritz Wieh Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f \bar{f}$ der Nähe der Resonanz

Das OPAL-Experiment

Auswertung
Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusammer fassung Dient der Rekonstruktion von Teilchenbahnen. Identifikation von Zerfallsprodukten des Z^0 . Funktionsweise durch Ionisation und Anregung.

- Mikrovertex-Detektor (Cyan):
 Silizium-Streifen-Detektor
- Vertex-Kammer (Magenta): Vieldrahtproportionalkammer mit axial angeordneten Drähten, Ortsauflösung: 55 μm

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f \bar{f}$ der Nähe der Resonanz

Das OPAL-Experiment

Cuts
stKanaltrennun
Zerfallsbreiter
VorwärtsRückwärts-

Zusammen fassung • Jet-Kammer (Rot): ebenfalls Zähldrähte parallel zur Strahlachse, Ortsauflösung: $\approx 135 \ \mu m$

Außerdem:

- Z- Kammern (radial angeordnete Detektoren)
- Time-of-Flight-System: Szintillationszähler zur Messung der Flugzeit und Triggerung
- Magnetfeld 0,435 T in Strahlrichtung

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ ir der Nähe der z^0 Resonanz

Das OPAL-Experiment

Auswertung
Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärts-

Zusammei fassung

- Besteht aus Bleiglasblöcken
- Deckt 98 % des vollen Raumwinkels ab (zusammen mit Endkappenkalorimeter)
- Kathodenpads hinter
 Bleiglasblöcken zur
 Bestimmung von Energie
 und Position EM-Schauer

Moritz Wiehe Frank Schäfe

Zie

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ i der Nähe der Z Resonanz

Das OPAL-Experiment

Auswertung
Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusammei fassung Außerhalb des ECAL

- Besteht hauptsächlich aus Eisen
- Hadronen, die das ECAL verlassen, werden hier gestoppt
- Unterstützt bei der Identifikation von Myonen

Außerdem:

Forward-Kalorimeter an Enden des Detektors zur Bestimmung der Luminosität

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Zie

Theoretische Grundlagen Allgemeines Der Prozess $_{e}^{+}e^{-}\rightarrow f\bar{f}$ der Nähe der $_{e}^{2}$ Resonanz

Das OPAL-Experiment

Auswertung Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung Myonen haben sehr hohes Durchdringungsvermögen und werden nicht von em- und hadronischem Kalorimeter gestoppt.

- Myon-Kammern bestehen aus Driftkammern (je 1,2m x 9cm)
- Myonen hinterlassen deutliche Spur, Impuls genau bestimmbar

Inhaltsverzeichnis

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ it der Nähe der z^\prime Resonanz

Das OPAL-Experiment

Auswertung

Cuts st-Kanaltrennur Zerfallsbreite Vorwärts-Rückwärts-Asymmetrie

Zusammer assung Ziele

2 Theoretische Grundlager

Allgemeines

ullet Der Prozess $e^+e^- o far f$ in der Nähe der Z^0 Resonanz

3 Das OPAL- Experiment

4 Auswertung

Cuts

st- Kanaltrennung

Zerfallsbreiten

Vorwärts-Rückwärts-Asymmetrie

5 Zusammenfassung

6 Referenzer

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der Z

Das OPAL Experimen

Auswertung

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammei fassung

Quellei

2 geladene Spuren

- große
 Energiedeposition im el.-magn.

 Kalorimeter
- geringe
 Energiedeposition
 im hadr.
 Kalorimeter

Run;event 2566;167987 Date 911027 Time 164811 Ctrk(N= 2 Sump= 83.8) Ecal(N= 5 SumE= 87.5) Hoal(N= 0 SumE Ebeam 45.61 Evis 84.4 Eniss 6.8 Vtx (-0.10, 0.11, 0.50) Huon(N= 0) Sec Vtx(N= 0) Fdet(N= 0 SunE Bz=0.001 Bunchlet 1/1 Thrust=0.9976 Aplan=0.0000 Oblat=0.0049 Spher=0.0001

$\mu^+\mu^-$ - Ereignisse

Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ i der Nähe der Z Resonanz

Das OPAL Experimen

Auswertung

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

∠usamme fassung 2 geladene Spuren

- geringe
 Energiedeposition
 im el.-magn.
 Kalorimeter
- geringe
 Energiedeposition
 im hadr.
 Kalorimeter
- Signal in den Myondetektoren

Moritz Wiehe, Frank Schäfer

$au^+ au^-$ - Ereignisse

Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Das OPAL-Experiment

Auswertung

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung 2-6 geladene
 Spuren

- geringere
 Energiedeposition
 im el.-magn.
 Kalorimeter als
 Flektronen
- ähnliche
 Energiedeposition
 im hadr.
 Kalorimeter wie
 hadronische
 Endzustände

_Z⁰-Resonanz

Moritz Wiehe, Frank Schäfer

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ ir der Nähe der z^0 Resonanz

Das OPAL-Experiment

Auswertung

st-Kanaltrennun Zerfallsbreiter Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

Quelle

große Anzahl geladener Spuren6

große
 Energiedeposition im hadr.
 Kalorimeter

70-Resonanz

 Kompromiss zwischen hoher Effizienz (kleine Akzeptanzverluste) und hoher Reinheit (geringer Untergrund)

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen
Allgemeines
Der Prozess $e^+e^- o f\bar{f}$ in
der Nähe der ZResonanz

Das OPAL-Experiment

Auswertung Cuts

st-Kanaltrennun Zerfallsbreiter Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

Berechnung der Elemente der Effizienzmatrix

$$\epsilon_{ij} = \frac{N_i^{Cut}}{N_j^{MC}}$$

 $N_i^{Cut} \hat{=}$ Anzahl aller selektierten Ereignisse nach dem Cut auf das i-te Endprodukt

 N_j^{MC} $\hat{=}$ Gesamtanzahl der Ereignisse in der j-ten Monte Carlo-Simulation

23. April 2015

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen
Allgemeines
Der Prozess
e+e → ff
der Nähe der 2

Das OPAL-Experiment

Auswertung Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

Berechnung der Elemente der Effizienzmatrix

$$\epsilon_{ij} = \frac{N_i^{Cut}}{N_i^{MC}}$$

 N_i^{Cut} Anzahl aller selektierten Ereignisse nach dem Cut auf das i-te Endprodukt

 N_j^{MC} $\hat{=}$ Gesamtanzahl der Ereignisse in der j-ten Monte Carlo-Simulation

 \longrightarrow optimaler Weise ist $\epsilon = 1$

Moritz Wieh Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der Z Resonanz

Das OPAL-Experiment

Auswertun Cuts

st-Kanaltrennun Zerfallsbreiter Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung Abzählung der erfolgreichen Versuche N_i^{Cut} bei N_j^{MC} durchgeführten Versuchen

• Binomialverteilung mit $\sigma^2(N_i^{Cut}) = N_j^{MC} \cdot \epsilon_{ij} \cdot (1 - \epsilon_{ij})$

•
$$\sigma(\epsilon_{ij}) = \sqrt{\frac{\epsilon_{ij} \cdot (1 - \epsilon_{ij})}{N_j^{MC}}}$$

 Berechnung des Fehlers auf inverse Effizienzmatrix erfolgt numerisch

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ ir der Nähe der Z^0 Resonanz

Das OPAL-Experiment

Auswertung Cuts

st-Kanaltrennun Zerfallsbreiter Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

(a) Ncharged: Lineare Skalierung (b) Ncharged: Log. Skalierung Events

Abbildung: Verteilungen der Anzahl der Fermionen entlang der jeweiligen Variable aus MC-File

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähen Resonanz

Das OPAL-Experiment

Auswertung Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

(a) E_Ecal: Lineare Skalierung (b) E_Ecal: Log. Skalierung Events Events

Abbildung: Verteilungen der Anzahl der Fermionen entlang der jeweiligen Variable aus MC-File

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ ir der Nähe der Z 0 Resonanz

Das OPAL-Experiment

Auswertung Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

(a) E_Hcal: Lineare Skalierung (b) E_Hcal: Log. Skalierung Events

Abbildung: Verteilungen der Anzahl der Fermionen entlang der jeweiligen Variable aus MC-File

Z⁰-Resonanz

Pcharged: Lineare Skalierung (b) Pcharged: Skalierung Log. Events **Events**

Abbildung: Verteilungen der Anzahl der Fermionen entlang der jeweiligen Variable aus MC-File

Moritz Wieh Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ in der Nähe der Z Resonanz

Das OPAL-Experiment

Auswertung Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammer fassung

Ncharged E_Ecal Pcharged $Z^0
ightarrow e^+e^-$ < 5 > 46 $< 4 \lor > 60$ $Z^0 \rightarrow \mu^+ \mu^-$ < 46 > 80 $Z^0 \rightarrow \tau^+ \tau^-$ < 6 < 60 $< 70 \land > 5$ $Z^0 \rightarrow q\bar{q}$ > 35

Tabelle: Festgelegte Cuts anhand der Monte Carlo Simulationen

Die Effizienzmatrix ϵ , mit den von uns festgelegten Schnitten:

Cut	$e^+e^ MC$	$\mu^+\mu^ MC$	$ au^+ au^ MC$	$qar{q} - MC$
e^+e^-	$/$ 0.879 \pm 0.001	$(4.2 \pm 2.1) \cdot 10^{-5}$	0.0191 ± 0.0005	$(4.1 \pm 0.6) \cdot 10^{-4}$
$\mu^+\mu^-$		$\textbf{0.886} \pm \textbf{0.001}$	$(5.2 \pm 0.3) \cdot 10^{-3}$	$(1.0 \pm 1.0) \cdot 10^{-5}$
$ au^+ au^-$	$(8.9 \pm 0.98) \cdot 10^{-4}$	0.0299 ± 0.0006	$\boldsymbol{0.913 \pm 0.001}$	$(2.1 \pm 0.1) \cdot 10^{-3}$
qq	$(2.7 \pm 00.5) \cdot 10^{-4}$	0 ± 0	$(7.0 \pm 0.03) \cdot 10^{-3}$	0.9679 ± 0.006

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f ar f$ in der Nähe der Z Resonanz

Das OPAL-Experiment

Auswertun

st-Kanaltrennun Zerfallsbreiter Vorwärts-Rückwärts-

Zusamme fassung

	Ncharged	E_Ecal	Pcharged
$Z^0 o e^+e^-$	≤ 5	≥ 46	$<$ 4 \lor \geq 60
$Z^0 ightarrow \mu^+ \mu^-$	≤ 5	< 46	≥ 80
$Z^0 ightarrow au^+ au^-$	≤ 6	≤ 60	$\leq 70 \ \land > 5$
$Z^0 o qar q$	≥ 7	\geq 35	

Tabelle: Festgelegte Cuts anhand der Monte Carlo Simulationen

$$R_{e^+e^-} = 0.973$$

$$R_{\mu^+\mu^-} = 0.995$$

$$R_{\tau^+\tau^-} = 0.911$$

$$R_{a\bar{a}} = 0.999$$

Anwendung der Effizienzmatrix

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Das OPAL Experimen

Auswertun

st-Kanaltrennur Zerfallsbreite Vorwärts-Rückwärts-

Zusammer fassung Die Anzahl der Ereignisse in der jeweiligen MC-Simulation (N^{MC}) und die Anzahl nach den Cuts (N^{Cut}) der Simulation ergeben die Effizienzmatrix:

$$N^{Cut} = \epsilon \cdot N^{MC}$$

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{i}$ in der Nähe der z^0 Resonanz

Das OPAL-Experiment

Auswertun Cuts

Kanaltrennur Zerfallsbreite Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung Die Anzahl der Ereignisse in der jeweiligen MC-Simulation (N^{MC}) und die Anzahl nach den Cuts (N^{Cut}) der Simulation ergeben die Effizienzmatrix:

$$N^{Cut} = \epsilon \cdot N^{MC}$$

 Inverses Problem bei den echten Daten! Die Schnitte ermöglichen eine Selektion der jeweiligen Ereignisse aus dem Datensatz → N^{Cut}. Die gesuchte ursprüngliche Anzahl an Ereignissen im Datensatz (N^{wahr}) berechnet sich damit zu:

 Z^0 -Resonanz

$$N^{wahr} = r \cdot \epsilon^{-1} N^{Cut}$$
 $r = \text{st-Kanal-Trennung} (e^+e^-)$

Anwendung der Effizienzmatrix

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Das OPAL-Experiment

Auswertun Cuts

Kanaltrennun_i Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammen fassung Die Anzahl der Ereignisse in der jeweiligen MC-Simulation (N^{MC}) und die Anzahl nach den Cuts (N^{Cut}) der Simulation ergeben die Effizienzmatrix:

$$N^{Cut} = \epsilon \cdot N^{MC}$$

• Inverses Problem bei den echten Daten! Die Schnitte ermöglichen eine Selektion der jeweiligen Ereignisse aus dem Datensatz $\rightarrow N^{Cut}$. Die gesuchte ursprüngliche Anzahl an Ereignissen im Datensatz (N^{wahr}) berechnet sich damit zu:

$$N^{wahr} = r \cdot \epsilon^{-1} N^{Cut}$$
 $r = \text{st-Kanal-Trennung} (e^+e^-)$

Wirkungsquerschnitte sind berechenbar über:

$$\sigma = \frac{\mathit{N}^\mathit{wahr}}{\mathit{f}\,\mathit{Ldt}} + \mathit{S} \qquad \mathit{S} \,\, \widehat{=} \,\, \mathsf{Strahlungskorrekturen}$$

70-Resonanz

h_E_ecal_vs_Pcharged_daten_4

Daten ohne Cuts

Abbildung: Daten: Variablen Pcharged und EEcal

Gecuttete Daten

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Das OPAL Experimen

Auswertun Cuts

st-Kanaltrennur Zerfallsbreite Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

Quelle

Abbildung: Daten: Variablen Pcharged und EEcal

Gecuttete Daten

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der Z Resonanz

Das OPAL Experiment

Auswertur Cuts

st-Kanaltrennur Zerfallsbreite Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

Quell

Abbildung: Daten: Variablen Pcharged und EEcal

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen
Allgemeines
Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Das OPAL-Experiment

Auswertung Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammer fassung Idee

•
$$e^+e^- \rightarrow e^+e^-$$
- Prozess \mapsto s und t Kanalbeiträge

Nur s- Kanalbeiträge sind relevant

$$f(\cos \theta) = \underbrace{A \cdot (1 + \cos^2 \theta)}_{s - Kanal} + \underbrace{B(1 - \cos \theta)^{-2}}_{t - kanal}$$

• Gesucht ist der Anteil der s-Kanal-Ereignisse an der Gesamtzahl der e^+e^- -Ereignisse $\hat{=}$ r-Faktor

Moritz Wiehe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f \bar{t}$ in der Nähe der Zerschanz

Das OPAL-Experiment

Auswertun; Cuts

Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammer fassung Winkelverteilung Elektronen Daten4

Moritz Wieh

Frank Schäf

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ ir der Nähe der Z^0 Resonanz

Das OPAL-Experiment

Auswertung Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung • Wert für $\cos \theta = -1$ erheblich größer als der theoretisch erwartete Verlauf

- nicht identifizierbare Werte bei $\cos \theta = 999 \rightarrow \mathsf{falsche}$ Zuordnung
- ullet Divergenz der t Kanal Funktion für $\cos heta o 1$
- Cut auf Pcharged korreliert mit $\cos \theta$

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{i}$ in der Nähe der Z^0 Resonanz

Das OPAL-Experiment

Auswertung Cuts

Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-

Zusammer fassung Elektron-Ereignisse mit nicht messbarem Impuls nahe der Strahlachse (hauptsächlich Bhabha-Streuung)

ightarrow Begrenzte Auflösung des Detektors in diesem Bereich

 $cos_thet \{Ncharged <= 5 \&\& E_ecal >= 46 \&\& (Pcharged < 4)\}$

Abbildung: Elektron Ereignisse für Pcharged < 4

Kanaltrennung

- Zuhilfenahme der Einträge im Histogramm
 - Integration der s-Kanal Funktion aus Fit zwischen -1 und 1
 - ullet Quotient aus Ergebnis und Gesamtzahl der Einträge ightarrow r
 - Divergente t-Kanal Funktion wird nicht benötigt
- Annahme geltender Leptonuniversalität
- Integration zwischen -0.9 und 0.9 + zusätzlichen Cut auf $\cos \theta$

$$r = \frac{\int_{-0.9}^{0.9} A \cdot (1 + \cos^2 \theta) d \cos \theta}{\int_{-0.9}^{0.9} A \cdot (1 + \cos^2 \theta) d \cos \theta + \int_{-0.9}^{0.9} B \cdot (1 - \cos \theta)^{-2} d \cos \theta}$$

Lösungsansätze zur Bestimmung von r

 Z^0 -Resonanz

Moritz Wieh Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Das OPAL-Experiment

Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusammenassung Zuhilfenahme der Einträge im Histogramm

- ullet Integration der s-Kanal Funktion aus Fit zwischen -1 und 1
- ullet Quotient aus Ergebnis und Gesamtzahl der Einträge o r
- Divergente t-Kanal Funktion wird nicht benötigt
- Annahme geltender Leptonuniversalität

$$r = \frac{\int_{-0.9}^{0.9} A \cdot (1 + \cos^2 \theta) d \cos \theta}{\int_{-0.9}^{0.9} A \cdot (1 + \cos^2 \theta) d \cos \theta + \int_{-0.9}^{0.9} B \cdot (1 - \cos \theta)^{-2} d \cos \theta}$$

Integrationsgrenzen	r Faktor	
-0.8 bis 0.8	0.83	
-0.9 bis 0.9	0.74	
-0.95 bis 0.95	0.59	

Tabelle: Tabelle der r Faktoren unter Variation der Integrationsgrenzen am Resonanzmaximum

Moritz Wieh Frank Schäf

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ i der Nähe der Z Resonanz

Das OPAL-Experiment

Auswertun Cuts

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammenfassung

- Zuhilfenahme der Einträge im Histogramm
 - Integration der s-Kanal Funktion aus Fit zwischen -1 und 1
 - \bullet Quotient aus Ergebnis und Gesamtzahl der Einträge \to r
 - Divergente t-Kanal Funktion wird nicht benötigt
- Annahme geltender Leptonuniversalität
- Integration zwischen -0.9 und 0.9 + zusätzlichen Cut auf $\cos\theta$

$$r = \frac{\int_{-0.9}^{0.9} A \cdot (1 + \cos^2 \theta) d \cos \theta}{\int_{-0.9}^{0.9} A \cdot (1 + \cos^2 \theta) d \cos \theta + \int_{-0.9}^{0.9} B \cdot (1 - \cos \theta)^{-2} d \cos \theta}$$

Korrektes Vorgehen

Programme ALIBABA oder TOPAZ0

- Nicht-s-Kanalbeiträge werden getrennt berechnet
- 0.5 % systematischer Fehler durch fehlende Ordnungen

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der Z^0 Resonanz

Das OPAL-Experiment

Auswertung Cuts st-Kanaltrennun

Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammer fassung

- Wirkungsquerschnitte werden über Schwerpunktsenergie aufgetragen
- Fit mit Hilfe der relativistischen Breit Wigner Verteilung

$$\sigma_f = \frac{12\pi}{M_Z^2} \cdot \frac{s\Gamma_e\Gamma_f}{(s - M_Z^2)^2 + (s^2\Gamma_Z^2/M_Z^2)}$$

1. Methode: Zuhilfenahme der Entries im Histogramm

Z⁰-Resonanz

Zerfallsbreiten

(a) e^+e^- Wirkungsquerschnitt

1. Methode: Zuhilfenahme der Entries im Histogramm

Z⁰-Resonanz

Zerfallsbreiten

(a) $\mu^+\mu^-$ Wirkungsquerschnitt

Z⁰-Resonanz

Zerfallsbreiten

(a) $\tau^+\tau^-$ Wirkungsquerschnitt

1. Methode: Zuhilfenahme der Entries im Histogramm

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ ir der Nähe der Z^0

Das OPAL

Auswertung Cuts st-Kanaltrennu

Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammer fassung

(a) qq Wirkungsquerschnitt

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ ig der Nähe der Z Resonanz

Experiment

Auswertung Cuts

Kanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusammen fassung

Fit	Größe	Wert aus Fit[GeV]	Theor. Wert[GeV][2]	Abweichung von Theorie
e^+e^-	Ге	0.064 ± 0.004	0.0838	5σ
	Γ_Z	2.03 ± 0.16	2.4844	3σ
	M_Z	91.03 ± 0.06	91.188	3σ
$\mu^+\mu^-$	Γ_{μ}	0.104 ± 0.005	0.0838	5σ
	Γ_Z	2.48 ± 0.06	2.4844	1σ
	M_Z	91.2 ± 0.04	91.188	1σ
$\tau^+\tau^-$	$\Gamma_{ au}$	$\boldsymbol{0.098 \pm 0.005}$	0.0838	4σ
	Γ_Z	2.56 ± 0.07	2.4844	2σ
	M_Z	91.16 ± 0.04	91.188	1σ
qā	Γ_a	2.31 ± 0.05	1.732	$> 5\sigma$
	Γ_Z	2.54 ± 0.03	2.4844	2σ
	M_Z	91.19 ± 0.02	91.188	1σ

Tabelle: Tabelle der extrahierten Größen aus dem Fit: st Kanaltrennung unter Zuhilfenahme der Entries im Histogramm

2. Methode: Leptonuniversalität

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Experiment

Cuts st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-

Zusammer fassung

Fit	Größe	Wert aus Fit[GeV]	Theor. Wert[GeV][2]	Abweichung von Theorie
$\overline{\mu^+\mu^-}$	Γμ	0.082 ± 0.002	0.0838	1σ
	Γ_Z	2.48 ± 0.06	2.4844	1σ
	M_Z	91.20 ± 0.04	91.188	1σ
$\tau^+\tau^-$	$\Gamma_{ au}$	0.077 ± 0.004	0.0838	2σ
	Γ_Z	2.56 ± 0.07	2.4844	2σ
	M_Z	91.16 ± 0.04	91.188	1σ
$q\bar{q}$	Γ_q	1.81 ± 0.04	1.732	2σ
	Γ_Z	$\textbf{2.54} \pm \textbf{0.03}$	2.4844	2σ
	M_Z	91.19 ± 0.02	91.188	1σ

Tabelle: Tabelle der extrahierten Größen aus dem Fit unter der Annahme geltender Leptonuniversalität

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ in der Nähe der Z

Experiment

Cuts st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-

Zusammen fassung

Fit	Größe	Wert aus Fit[GeV]	Theor. Wert[GeV][2]	Abweichung von Theorie
e^+e^-	Ге	0.098 ± 0.004	0.0838	4σ
	Γ_Z	2.32 ± 0.14	2.4844	2σ
	M_Z	91.13 ± 0.06	91.188	1σ
$\mu^+\mu^-$	Γ_{μ}	$\boldsymbol{0.068 \pm 0.003}$	0.0838	$>$ 5 σ
	Γ_Z	2.48 ± 0.06	2.4844	1σ
	M_Z	91.20 ± 0.04	91.188	1σ
$\tau^+\tau^-$	$\Gamma_{ au}$	0.064 ± 0.003	0.0838	$> 5\sigma$
	Γ_Z	2.56 ± 0.07	2.4844	2σ
	M_Z	91.16 ± 0.04	91.188	1σ
$q\bar{q}$	Γ_q	1.50 ± 0.04	1.732	$>$ 5 σ
	Γ_Z	2.54 ± 0.03	2.4844	2σ
	M_Z	91.19 ± 0.02	91.188	1σ

Tabelle: Tabelle der extrahierten Größen aus den gefitteten Wirkungsquerschnitten für r Faktoren integriert zwischen -0.9 und ± 0.9

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Das OPAL-Experiment

Cuts st-Kanaltrennung Zerfallsbreiten Vorwärts-Bückwärts

Zusamme fassung

Quellen

Mit Methode 2 und gemitteltem Wert für Γ_Z und theoretisch berechnetem Wert für Γ_ν ist

$$N_{
u} = rac{\Gamma_{Z} - \left(\Gamma_{e} + \Gamma_{\mu} + \Gamma_{ au} + \Gamma_{had}
ight)}{\Gamma_{
u}}$$

$$\sigma_{\mathcal{N}_{
u}} = rac{1}{\Gamma_{
u}} \cdot \sqrt{\sigma_{\Gamma_{Z}}^{2} + \sigma_{\Gamma_{lep}}^{2} + \sigma_{\Gamma_{qar{q}}}^{2}}$$

Anzahl leichter Neutrino-Generationen

$$N_{\nu} = 2.89 \pm 0.16$$

Vorwärts-Rückwärts-Asymmetrie

Moritz Wiehe Frank Schäfe

Zie

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ in der Nähe der z^0 Resonanz

Das OPAL-Experiment

Auswertung
Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusamme fassung Zur Bestimmung der Asymmetrie der Winkelverteilung der Events sind Myon-Ereignisse besonders geeignet:

- Verteilung der Elektronen stark asymmetrisch durch s- und t-Kanalbeiträge
- Hadronen und Taus schwer zu trennen
- Myonen müssen im s-Kanal entstanden sein
- Im Detektor sehr gut von anderen Teilchen zu unterscheiden

Berechnung des *Weak Mixing Angles* aus der Asymmetrie

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Experiment

Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärts-

Asymmetrie Zusammer fassung θ_W kann anhand folgender Gleichung berechnet werden:

$$\sin^2 \theta_W = \frac{1}{4} - \sqrt{\frac{A_{FB}^f}{48}} \tag{2}$$

$$\sigma_{\sin^2\theta_W} = \frac{\sigma_A}{8 \cdot \sqrt{3A}} \tag{3}$$

Der Literaturwert beträgt $(\sin^2 \theta_W)_{lit} = 0,23113 \pm 0,00015$ [7].

CosThet 0.004011 0.5768

Winkelverteilung Myonen aus MonteCarlo

70-Resonanz

Vorwärts-Riickwärts-Asymmetrie

Winkelverteilung Myonen E=89,47 GeV -0.02908 0.1347

Abbildung: Winkelverteilung der Myonen aus MC-Simulation und Datensatz

Winkelverteilung Myonen E=91.22 GeV CosThet -0.01071

Winkelverteilung Myonen E=92.96 GeV

Theor. Berechnung der Asymmetrie

Moritz Wiehe Frank Schäfe

Zie

Theoretische Grundlagen
Allgemeines
Der Prozess $e^+e^- o f\bar{f}$ der Nähe der 2
Resonanz

Experiment

Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusammei fassung • El.- Schwache WW: Erwartete Werte für die Asymmetrie in Abhängigkeit der Schwerpunktenergie für verschiedene Werte von $\sin(\theta_W)^2$.

$\sin(\theta_W)^2 \mid A_{FB}^f(91, 225 \; GeV) \mid$		$A_{FB}^{f}(89, 225 \ GeV)$	$A_{FB}^{f}(93, 225 \; GeV)$	
0,21	0,0761943	-0,0936944	0,231741	
0,23	0,0227831	-0,163934	0,196537	
0,25	0,00421544	-0,194922	0,19068	

Tabelle: Theoretische Berechnung der Vorwärts-Rückwärts-Asymmetrie

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ in der Nähe der z^0 Resonanz

Das OPAL-Experiment

Cuts st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammei fassung Zur Messung der Asymmetrie gibt es zwei mögliche Vorgehensweisen:

Zählen der Ereignisse in Vorwärts- und Rückwärtsrichtung:

$$A_{FB}^f = \frac{N_{fwd} - N_{bwd}}{N_{fwd} + N_{bwd}} \tag{4}$$

$$\sigma_A = \frac{1}{N_{fwd} + N_{bwd}} \cdot \sqrt{(1 + A_{FB}^f)(N_{fwd} + N_{bwd})} \quad (5)$$

• Fit der Winkelverteilung mit der Asymmetrie als freiem Parameter:

$$N = Const. \cdot \left(\frac{3}{8} \cdot (1 + \cos^2 \theta) + A_{FB}^f \cdot \cos \theta\right)$$
 (6)

Const. $\widehat{=}$ Normierungsfaktor $A_{FR}^f \widehat{=}$ Asymmetrie

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen
Allgemeines
Der Prozess $e^+e^- o f\bar{f}$ der Nähe der ZResonanz

Das OPAL Experimen

Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusamme fassung

Datensatz	A_{FB}^f	$\sigma_{\mathcal{A}}$	$\sin^2 \theta_W$	$\sigma_{\sin^2 \theta_W}$
Monte Carlo (mit Cut)	0,007	0,004	0,2380	0,0007
Daten4, $(\sqrt{s} = 91,22 \text{ GeV})$	-0,0045	0,02	/	/
Daten4 ($\sqrt{s} = 89,47 \text{ GeV}$)	-0,016	0,06	/	/
Daten4 $(\sqrt{s} = 92,96 \text{ GeV})$	0,194	0,07	/	/

Tabelle: Ergebnisse der Messung der Vorwärts-Rückwärts-Asymmetrie durch Zäh

Vorwärts-Rückwärts-Asymmetrie durch Zählen der Ereignisse

Literaturwert

$$(\sin^2 \theta_W)_{lit} = 0,23113 \pm 0,00015$$
 [7]

Bestimmung der Asymmetrie durch Fit der Verteilung

 Z^0 -Resonanz

Moritz Wieh Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der z^0 Resonanz

Das OPAL-Experiment

Auswertung Cuts st-Kanaltrennu

Zerfallsbreite Vorwärts-Rückwärts-Asymmetrie

Zusamme fassung

Abbildung: Winkelverteilung der Myonen bei \sqrt{s} =91,22 GeV

Moritz Wieh Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ ir der Nähe der z^0 Resonanz

Das OPAL-Experiment

Auswertung
Cuts
stKanaltrennun
Zerfallsbreiter
Vorwärts-

Asymmetrie Zusammer fassung

Riickwärts-

 Bei beiden Methoden stimmt Asymmetrie am Resonanzmaximum mit Null überein

- $\rightarrow \text{ Keine Asymmetrie messbar!}$
- Weak Mixing Angle nur zu $\sin^2 \theta_W = 0.25$ bestimmbar
- Bei Ausreizung der Fehlergrenzen nach oben: $A_{FB}^f = 0.015 \rightarrow \sin^2 \theta_W = 0,232.$ (Angabe dient der Ungenauigkeitsabschätzung)

Moritz Wieh Frank Schäf

Ziel

Fheoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ in der Nähe der Z Resonanz

Das OPAL-Experiment

Auswertung
Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusammen fassung <u>Ursache</u>: Unzureichende Anzahl an Ereignissen im Datensatz!

- Im Datensatz ca. 140.000 Ereignisse, davon:
 - \approx 4.600 Myonen
 - ullet pprox 2.600 Myonen am Resonanzmaximum
- Bei Asymmetrie von 0.02 (vgl. Tab. 6) mit gewünschter statistischer Signifikanz von 3σ : ca. 22.500 Ereignisse notwendig (nach Umstellen von Gl. 5

$$\sigma_A = rac{1}{N_{fwd} + N_{bwd}} \cdot \sqrt{(1 + A_{FB}^f)(N_{fwd} + N_{bwd})}$$
)

Fernando Ferroni, Paolo Privitera, Electroweak Physics at LEP:

"The statistical error is the main limitation: since A_{FB} is only 2 % at the pole, one can obtain a measurement 3σ away from zero only with more than 10^5 leptons."

Inhaltsverzeichnis

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{t}$ in der Nähe der Z Resonanz

Das OPAL Experimen

Auswertung

Cuts st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwärts-Asymmetrie

Zusammenfassung Ziele

2 Theoretische Grundlagen

Allgemeines

ullet Der Prozess $e^+e^- o far f$ in der Nähe der Z^0 Resonanz

3 Das OPAL- Experiment

4 Auswertung

Cuts

st- Kanaltrennung

Zerfallsbreiten

Vorwärts-Rückwärts-Asymmetrie

Zusammenfassung

6 Referenzer

Moritz Wiehe Frank Schäfe

Ziel

Theoretische Grundlagen Allgemeines Der Prozess $e^+e^- o f\bar{f}$ is der Nähe der z^0 Resonanz

Das OPAL-Experiment

Auswertung
Cuts
stKanaltrennung
Zerfallsbreiten
VorwärtsRückwärtsAsymmetrie

Zusammenfassung

- Ereignisse hinterlassen charakteristische Spuren im Detektor
 - \rightarrow durch entsprechende Cuts gut unterscheidbar
- st- Kanaltrennung liefert (ohne exakte Kenntnis der Detektorgrenzen) kein vertrauenswürdiges Ergebnis
- Literaturwerte der Zerfallsbreiten können von uns nur unter der Annahme geltender Leptonuniversalität bestätigt werden
 - $\rightarrow N_{\nu} = 2.89 \pm 0.16$,
- Asymmetrie am Resonanzmaximum auf Grund der geringen Datenmenge nicht festzustellen

Inhaltsverzeichnis

 Z^0 -Resonanz

Moritz Wiehe Frank Schäfe

Ziele

Theoretische Grundlagen Allgemeines Der Prozess $_{e^{+}e^{-}}\rightarrow f\bar{f}$ i der Nähe der Z Resonanz

Das OPAL Experimen

Auswertung

st-Kanaltrennung Zerfallsbreiten Vorwärts-Rückwarts-

Zusammen fassung

Quellen

Ziele

2 Theoretische Grundlager

Allgemeines

ullet Der Prozess $e^+e^- o far f$ in der Nähe der Z^0 Resonanz

3 Das OPAL- Experiment

4 Auswertung

Cuts

st- Kanaltrennung

Zerfallsbreiten

Vorwärts-Rückwärts-Asymmetrie

 Z^0 -Resonanz

5 Zusammenfassung

6 Referenzen

Z⁰-Resonanz

Quellen

Z0-Resonanz, Physikalisches Institut Universität Freiburg, 2. März 2012.

Analyse von Z0-Zerfällen, Physikalisches Institut Universität Freiburg, 9. Februar 1995.

Karl Jakobs Experimentalphysik V. Freiburg, WS 2014/15

Lexikon der Physik http://www.spektrum.de/lexikon/physik/bhabha-streuung/1532.1998 Spektrum Akademischer Verlag, Heidelberg

CERN The OPAL Experiment at LEP 1989 - 2000 http://opal.web.cern.ch/Opal/, 12.03.2015

Fernando Ferroni, Paolo Privitera Electroweak Physics at LEP, IEKP-KA-91-02,1991 Institut für experimentelle Kernphsik, Universität Karlsruhe

Particle Data Group, The American Physical Society Physical Review D, Particles and Fields, 01.07.2002

Clarissa Hofmann Sensitivität des ATLAS-Experiments am LHC für die Entdeckung des Higgs-Bosons, Freiburg, 2011

Greiner, W., Müller, B. Gauge Theory of Weak Interaction (Band 13), Springer 2000.