The art of speed (Part 1)

Beginner's Companion to Optimize Deep Learning Model Inference

CodeSeoul MLA May 20, 2023

Outline

- Motivation
 - The Yin and Yang of Deep Learning: Training vs Inference
- (Part 1) A bit of background
 - Model complexity
 - Understanding inference performance
 - Optimization techniques
 - Weight quantization
 - Model pruning
- (Part 2) Hands-on tutorial
 - Installing prerequisites
 - Quantization
 - Model pruning
 - Benchmarking
 - Deployment with OpenVINO (Optional)
- 4 References

Overview

Figure 1: High-level deep learning workflow showing training, then followed by inference. [8]

Training vs Inference

Figure 2: Training uses multiple inputs in large batches to train a deep neural network, while inference extracts information from new inputs in smaller batches using the trained network. [2]

Why do we need inference optimization?

Figure 3: Inference optimization for deployment. [1]

- **Improved performance**: optimized models can deliver faster and more responsive predictions
- Efficient resource utilization: leads to cost savings, as less powerful hardware, or multiple models simultaneously
- **Deployment flexibility**: expands reach and applicability (mobile, edge, embedded systems, etc.)

Existing challenges...

- Accuracy-efficiency trade-off
- Model complexity and size
- Hardware and platform variability
- Compatibility with frameworks and libraries

Figure 4: Timeline of top NN models with the number of parameters (from ImageNet). [3]

Figure 5: Hardware platforms comparison [3]

Figure 6: Deep learning frameworks landscape

To sum up

 To optimize the model's performance, accuracy, and generalization on the training data. Focuses on latency, memory usage, power consumption as it directly impacts the real-time performance.

Number of parameters

A sample linear model in Tensorflow:

```
model = keras.Sequential([
    keras.layers.Dense(5, activation='relu', input_shape=(3,)),
    keras.layers.Dense(8, activation='relu', trainable=False),
    keras.layers.Dense(10, activation='relu', trainable=False),
    keras.layers.Dense(15, activation='relu'),
    keras.layers.Dense(4, activation='softmax'),
])
```

Checking model summary in Tensorflow:

(None,	5)	20
/11		
(None,	8)	48
(None,	10)	90
(None,	15)	165
(None,	4)	64
	(None,	(None, 10) (None, 15) (None, 4)

FLOPs

A computational cost of a model:

- A widely used metric as the proxy is FLOPS, the number of floating-point multiplication-and-addition operations.
- Alternative to FLOPs, **MAC**, the number of multiply-accumulate [6] as a single unit of operation is also used in the literature.

You can check this repo to get FLOPs for your model:

https:

//github.com/Mr-TalhaIlyas/Tensorflow-Keras-Model-Profiler

FLOPs

A sample linear model in Tensorflow:

Checking model summary in Tensorflow:

```
from model_profiler import model_profiler

Batch_size = 128
profile = model_profiler(model, Batch_size)
print(profile)
```

Checking model summary in Tensorflow:

Model Profile	Value	Unit
Selected GPUs	['0', '1']	GPU IDs
No. of FLOPs	0.30932349055999997	BFLOPs
GPU Memory Requirement	7.4066760912537575	GB
Model Parameters	138.357544	Million
Memory Required by Model Weights	527.7921447753906	MB

FLOPs

An example from FLOPS evaluations in papers:

Figure 7: Comparison of standard Transformers, Universal Transformers and Switch Transformers in terms of the number of parameters, FLOPs, and throughput[4]

Inference performance metrics

Performance means **how fast** the model processes the live data. Its two key metrics, *latency* and *throughput* are fundamentally interconnected:

Figure 8: Understanding latency and throughput. [5]

- Latency measures the required time to process a single input (ms)
- Throughput measures overall number of inferences per second (or frames per second, FPS for visual processing)

Inference performance metrics

If we were to be given two models, performing equally well on a given task, which one should we choose?

Figure 9: Pareto Optimality: Green dots represent pareto-optimal models (together forming the pareto-frontier), where none of the other models (red dots) get better accuracy with the same inference latency, or the other way around. [7]

Weight quantization

Figure 10: Quantizing floating-point continuous values to discrete values. [7]

Quantization and dequantization steps

$$quantize(x) = x_q = round\left(\frac{x}{s}\right) + z \tag{1}$$

$$dequantize(x) = \hat{x} = s(x_q - z)$$
 (2)

where s scale value, z zero-point value; more details at [7]

Model pruning

Model pruning **reduces the size** of a neural network by *removing unnecessary connections or weights*, improving computational efficiency without compromising performance.

Figure 11: A simplified illustration of pruning weights (connections) and neurons (nodes) in a neural network comprising of fully connected layers [7]

Model pruning

Figure 12: Understanding unstructured and structured pruning [9]

Model Architecture	Sparsity Type	Sparsity %	FLOPs	Top-1 Accuracy %	Source
MobileNet v2 - 1.0	Dense (Baseline)	0%	1x	72.0%	Sandler et al. [133]
	Unstructured	75%	0.27x	67.7%	Zhu et al. [167]
	Unstructured	75%	0.52x	71.9%	Evci et al. [54]
	Structured (block-wise)	85%	0.11x	69.7%	Elsen et al.
	Unstructured	90%	0.12x	61.8%	Zhu et al. [167]
	Unstructured	90%	0.12x	69.7%	Evci et al. [54]

Figure 13: A sample of various sparsity results on the MobileNet v2 architecture with depth multiplier = 1.0. [7]

20 / 23

References I

- [1] Michael Andersch. Dev Stack: How to Optimize Your Model for Inference?

 URL: https://www.devstack.co.kr/inference-optimization-using-tensorrt/.
- [2] Michael Andersch. Inference: The Next Step in GPU-Accelerated Deep Learning. URL: https://developer.nvidia.com/blog/inference-next-step-gpu-accelerated-deep-learning/.
- [3] Maurizio Capra et al. "Hardware and software optimizations for accelerating deep neural networks: Survey of current trends, challenges, and the road ahead". In: *IEEE Access* 8 (2020), pp. 225134–225180.
- [4] William Fedus, Barret Zoph, and Noam Shazeer. "Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity". In: *The Journal of Machine Learning Research* 23.1 (2022), pp. 5232–5270.
- [5] Introduction to Performance Optimization. URL: https://docs.openvino.ai/2022.1/openvino_docs_optimization_guide_dldt_optimization_guide.html.

References II

- [6] Jeff Johnson. "Rethinking floating point for deep learning". In: arXiv preprint arXiv:1811.01721 (2018).
- [7] Gaurav Menghani. "Efficient deep learning: A survey on making deep learning models smaller, faster, and better". In: ACM Computing Surveys 55.12 (2023), pp. 1–37.
- [8] Brad Nemire. NVIDIA Deep Learning Inference Platform Performance Study. URL: https://developer.nvidia.com/blog/nvidia-deep-learning-inference-platform-performance-study/.
- [9] neuralmagic. Part 1: What is Pruning in Machine Learning? URL: https://neuralmagic.com/blog/pruning-overview/.

Thank you for your attention!

- Lecture contents:
 - Slides: https://github.com/CodeSeoul/machine-learning/ 230520-inference/lecture-p1.pdf
 - Code:
- Connect with us:
 - Discord: https://discord.gg/HFknCs8
 - ► GitHub: https://github.com/CodeSeoul/machine-learning
 - ▶ Donations: We are a registered non-profit and run on donations from people like you! NongHyeop/농협은행 | 301 0275 2831 81 (코드서울)