Dataset: Fitness Tracker Data

This dataset contains information from a fitness tracker app. Each row represents a user's daily activity, including steps taken, calories burned, distance traveled, and active minutes.

Sample Data:

```
user_id, date, steps, calories, distance_km, active_minutes
1,2023-07-01,12000,500,8.5,90
2,2023-07-01,8000,350,5.6,60
3,2023-07-01,15000,600,10.2,120
1,2023-07-02,11000,480,7.9,85
2,2023-07-02,9000,400,6.2,70
3,2023-07-02,13000,520,9.0,100
1,2023-07-03,10000,450,7.1,80
2,2023-07-03,7000,320,4.9,55
3,2023-07-03,16000,620,11.0,130
```

Exercises:

- 1. Find the Total Steps Taken by Each User
 - Calculate the total number of steps taken by each user across all days.
- 2. Filter Days Where a User Burned More Than 500 Calories
 - Identify all days where a user burned more than 500 calories.
- 3. Calculate the Average Distance Traveled by Each User
 - Calculate the average distance traveled (distance_km) by each user across all days.
- 4. Identify the Day with the Maximum Steps for Each User
 - For each user, find the day when they took the maximum number of steps.
- 5. Find Users Who Were Active for More Than 100 Minutes on Any Day
 - $\circ\,$ Identify users who had active minutes greater than 100 on any day.
- 6. Calculate the Total Calories Burned per Day
 - Group by date and calculate the total number of calories burned by all users combined for each day.
- 7. Calculate the Average Steps per Day
 - \circ Find the average number of steps taken across all users for each day.
- 8. Rank Users by Total Distance Traveled
 - ullet Rank the users by their total distance traveled, from highest to lowest.
- 9. Find the Most Active User by Total Active Minutes
 - Identify the user with the highest total active minutes across all days.
- 10. Create a New Column for Calories Burned per Kilometer

 Add a new column called calories_per_km that calculates how many calories were burned per kilometer (calories / distance_km) for each row.

Dataset: Book Sales Data

This dataset contains information about book sales in a store. Each row represents a sale, including details about the book, author, genre, sale price, and the date of the transaction.

Sample Data:

```
sale_id,book_title,author,genre,sale_price,quantity,date

1,The Catcher in the Rye,J.D. Salinger,Fiction,15.99,2,2023-01-05

2,To Kill a Mockingbird,Harper Lee,Fiction,18.99,1,2023-01-10

3,Becoming,Michelle Obama,Biography,20.00,3,2023-02-12

4,Sapiens,Yuval Noah Harari,Non-Fiction,22.50,1,2023-02-15

5,Educated,Tara Westover,Biography,17.99,2,2023-03-10

6,The Great Gatsby,F. Scott Fitzgerald,Fiction,10.99,5,2023-03-15

7,Atomic Habits,James Clear,Self-Help,16.99,3,2023-04-01

8,Dune,Frank Herbert,Science Fiction,25.99,1,2023-04-10

9,1984,George Orwell,Fiction,14.99,2,2023-04-12

10,The Power of Habit,Charles Duhigg,Self-Help,18.00,1,2023-05-01
```

Exercises:

- 1. Find Total Sales Revenue per Genre
 - Group the data by genre and calculate the total sales revenue for each genre. (Hint: Multiply sale_price by quantity to get total sales for each book.)
- 2. Filter Books Sold in the "Fiction" Genre
 - Filter the dataset to include only books sold in the "Fiction" genre.
- 3. Find the Book with the Highest Sale Price
 - \bullet Identify the book with the highest individual sale price.
- 4. Calculate Total Quantity of Books Sold by Author
 - Group the data by author and calculate the total quantity of books sold for each author.
- ${\tt 5. \ Identify\ Sales\ Transactions\ Worth\ More\ Than\ \$50}\\$
 - Filter the sales transactions where the total sales amount (sale_price * quantity) is greater than \$50.
- 6. Find the Average Sale Price per Genre
 - Group the data by genre and calculate the average sale price for books in each genre.
- 7. Count the Number of Unique Authors in the Dataset

• Count how many unique authors are present in the dataset.

8. Find the Top 3 Best-Selling Books by Quantity

• Identify the top 3 best-selling books based on the total quantity sold.

9. Calculate Total Sales for Each Month

• Group the sales data by month and calculate the total sales revenue for each month.

10. Create a New Column for Total Sales Amount

• Add a new column total_sales that calculates the total sales amount for each transaction (sale_price * quantity).

Dataset: Food Delivery Orders

This dataset contains information about food delivery orders placed by customers. Each row represents a single order, including details like the **order ID**, **customer ID**, **restaurant name**, **food item**, **quantity**, **price**, **delivery time**, and **order date**.

Sample Data:

```
order_id, customer_id, restaurant_name, food_item, quantity, price, delivery_time_mins, order_c

1,201, McDonald's, Burger, 2, 5.99, 30, 2023-06-15

2,202, Pizza Hut, Pizza, 1,12.99, 45, 2023-06-16

3,203, KFC, Fried Chicken, 3, 8.99, 25, 2023-06-17

4,201, Subway, Sandwich, 2, 6.50, 20, 2023-06-17

5,204, Domino's, Pizza, 2, 11.99, 40, 2023-06-18

6,205, Starbucks, Coffee, 1, 4.50, 15, 2023-06-18

7,202, KFC, Fried Chicken, 1, 8.99, 25, 2023-06-19

8,206, McDonald's, Fries, 3, 2.99, 15, 2023-06-19

9,207, Burger King, Burger, 1, 6.99, 30, 2023-06-20

10,203, Starbucks, Coffee, 2, 4.50, 20, 2023-06-20
```

Exercises:

1. Calculate Total Revenue per Restaurant

• Group the data by restaurant_name and calculate the total revenue for each restaurant. (Hint: Multiply price by quantity to get total revenue per order.)

2. Find the Fastest Delivery

 \bullet Identify the order with the fastest delivery time.

3. Calculate Average Delivery Time per Restaurant

• Group the data by restaurant_name and calculate the average delivery time for each restaurant.

4. Filter Orders for a Specific Customer

• Filter the dataset to include only orders placed by a specific customer (e.g., customer_id = 201).

5. Find Orders Where Total Amount Spent is Greater Than \$20

• Filter orders where the total amount spent (price * quantity) is greater than \$20.

6. Calculate the Total Quantity of Each Food Item Sold

• Group the data by food_item and calculate the total quantity of each food item sold.

7. Find the Top 3 Most Popular Restaurants by Number of Orders

• Identify the top 3 restaurants with the highest number of orders placed.

8. Calculate Total Revenue per Day

• Group the data by order_date and calculate the total revenue for each day.

9. Find the Longest Delivery Time for Each Restaurant

• For each restaurant, find the longest delivery time.

10. Create a New Column for Total Order Value

• Add a new column total_order_value that calculates the total value of each order (price * quantity).

Dataset: Weather Data

This dataset contains daily weather observations recorded in different cities. Each row represents the weather data for a specific city on a given day, including the temperature, humidity, wind speed, and the condition of the day.

Sample Data:

```
date, city, temperature_c, humidity, wind_speed_kph, condition
2023-01-01, New York, 5, 60, 20, Cloudy
2023-01-01, Los Angeles, 15, 40, 10, Sunny
2023-01-01, Chicago, -2, 75, 25, Snow
2023-01-02, New York, 3, 65, 15, Rain
2023-01-02, Los Angeles, 18, 35, 8, Sunny
2023-01-02, Chicago, -5, 80, 30, Snow
2023-01-03, New York, 6, 55, 22, Sunny
2023-01-03, Los Angeles, 20, 38, 12, Sunny
2023-01-03, Chicago, -1, 70, 18, Cloudy
```

Exercises:

1. Find the Average Temperature for Each City

• Group the data by city and calculate the average temperature for each city.

2. Filter Days with Temperature Below Freezing

 \circ Filter the data to show only the days where the temperature was below freezing (below 0°C).

3. Find the City with the Highest Wind Speed on a Specific Day

 \circ Find the city with the highest wind speed on a specific day (e.g., 2023-01-02).

4. Calculate the Total Number of Days with Rainy Weather

• Count the number of days where the condition was "Rain."

5. Calculate the Average Humidity for Each Weather Condition

• Group the data by condition and calculate the average humidity for each weather condition (e.g., Sunny, Rainy, Cloudy).

6. Find the Hottest Day in Each City

• For each city, find the day with the highest recorded temperature.

7. Identify Cities That Experienced Snow

 \bullet Filter the dataset to show only the cities that experienced "Snow" in the condition .

8. Calculate the Average Wind Speed for Days When the Condition was Sunny

• Filter the dataset for condition = 'Sunny' and calculate the average wind speed on sunny days.

9. Find the Coldest Day Across All Cities

• Identify the day with the lowest temperature across all cities.

10. Create a New Column for Wind Chill

- Add a new column wind_chill that estimates the wind chill based on the formula: [\text{Wind Chill} = 13.12 + 0.6215 \times \text{Temperature} 11.37 \times (\text{Wind Speed}^{0.16}) + 0.3965 \times \text{Temperature} \times (\text{Wind Speed}^{0.16})]
- (Assume wind_speed_kph is the wind speed in kilometers per hour.)

Dataset: Airline Flight Data

This dataset contains information about flights, including details like the airline, flight number, departure and arrival times, delays, and the distance traveled.

Sample Data:

 $\verb|flight_id|, \verb|airline|, \verb|flight_number|, \verb|origin|, \verb|destination|, \verb|departure_time|, \verb|arrival_time|, \verb|delay_mir|, \verb|delay_mir|, \verb|destination|, \verb|departure_time|, \verb|arrival_time|, \verb|delay_mir|, \verb|delay_m$

```
1, Delta, DL123, JFK, LAX, 08:00, 11:00, 30, 3970, 2023-07-01
2, United, UA456, SF0, ORD, 09:30, 15:00, 45, 2960, 2023-07-01
3, Southwest, SW789, DAL, ATL, 06:00, 08:30, 0, 1150, 2023-07-01
4, Delta, DL124, LAX, JFK, 12:00, 20:00, 20, 3970, 2023-07-02
5, American, AA101, MIA, DEN, 07:00, 10:00, 15, 2770, 2023-07-02
6, United, UA457, ORD, SF0, 11:00, 14:30, 0, 2960, 2023-07-02
7, JetBlue, JB302, BOS, LAX, 06:30, 09:45, 10, 4180, 2023-07-03
```

8, American, AA102, DEN, MIA, 11:00, 14:00, 25, 2770, 2023-07-03 9, Southwest, SW790, ATL, DAL, 09:00, 11:00, 5, 1150, 2023-07-03 10, Delta, DL125, JFK, SEA, 13:00, 17:00, 0, 3900, 2023-07-04

Exercises:

1. Find the Total Distance Traveled by Each Airline

• Group the data by airline and calculate the total distance traveled for each airline.

2. Filter Flights with Delays Greater than 30 Minutes

• Filter the dataset to show only flights where the delay was greater than 30 minutes.

3. Find the Flight with the Longest Distance

• Identify the flight that covered the longest distance.

4. Calculate the Average Delay Time for Each Airline

• Group the data by airline and calculate the average delay time in minutes for each airline.

5. Identify Flights That Were Not Delayed

 \circ Filter the dataset to show only flights with delay_minutes = 0 .

6. Find the Top 3 Most Frequent Routes

• Group the data by origin and destination to find the top 3 most frequent flight routes.

7. Calculate the Total Number of Flights per Day

• Group the data by date and calculate the total number of flights on each day.

8. Find the Airline with the Most Flights

• Identify the airline that operated the most flights.

9. Calculate the Average Flight Distance per Day

• Group the data by date and calculate the average flight distance for each day.

10. Create a New Column for On-Time Status

• Add a new column called on_time that indicates whether a flight was on time (True if delay_minutes = 0 , otherwise False).