class 08

Breast Cancer Project

```
wisc.data <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.data)</pre>
```

	diagnosis radio	ıs_mean	texture_mean	perimeter_mean	area_mean	L
842302	M	17.99	10.38	122.80	1001.0	1
842517	M	20.57	17.77	132.90	1326.0	1
84300903	M	19.69	21.25	130.00	1203.0	1
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	1
843786	M	12.45	15.70	82.57	477.1	
	smoothness_mean	n compa	ctness_mean co	ncavity_mean co	oncave.poi	nts_mean
842302	0.11840)	0.27760	0.3001		0.14710
842517	0.08474	ŀ	0.07864	0.0869		0.07017
84300903	0.10960)	0.15990	0.1974		0.12790
84348301	0.14250)	0.28390	0.2414		0.10520
84358402	0.10030)	0.13280	0.1980		0.10430
843786	0.12780)	0.17000	0.1578		0.08089
	symmetry_mean	ractal	_dimension_mea	n radius_se te	xture_se p	erimeter_se
842302	0.2419		0.0787	1 1.0950	0.9053	8.589
842517	0.1812		0.0566	7 0.5435	0.7339	3.398
84300903	0.2069		0.0599	9 0.7456	0.7869	4.585
84348301	0.2597		0.0974	4 0.4956	1.1560	3.445
84358402	0.1809		0.0588	3 0.7572	0.7813	5.438
843786	0.2087		0.0761	3 0.3345	0.8902	2.217
	area_se smooth	ness_se	compactness_s	e concavity_se	concave.p	oints_se
842302	153.40 0	006399	0.0490	4 0.05373		0.01587
842517	74.08 0	005225	0.0130	8 0.01860		0.01340
84300903	94.03 0	006150	0.0400	6 0.03832		0.02058

84348301	27.23	0.009110	0.07458	0.05661	0.01867			
84358402		0.009110	0.07456		0.01885			
843786	27.19	0.007510	0.03345		0.01137			
symmetry_se fractal_dimension_se radius_worst texture_worst								
842302	0.03003		006193	25.38	17.33			
842517	0.01389		003532	24.99	23.41			
84300903			004571	23.57	25.53			
84348301	0.05963	0.0	009208	14.91	26.50			
84358402	0.01756	0.0	005115	22.54	16.67			
843786	0.02165	0.0	005082	15.47	23.75			
	perimeter_wor	rst area_worst	smoothness	s_worst compact	ness_worst			
842302	184	.60 2019.0		0.1622	0.6656			
842517	158	.80 1956.0		0.1238	0.1866			
84300903	152	.50 1709.0		0.1444	0.4245			
84348301	98.	.87 567.7		0.2098	0.8663			
84358402	152	.20 1575.0		0.1374	0.2050			
843786	103	.40 741.6		0.1791	0.5249			
	concavity_wor	rst concave.po	ints_worst	symmetry_worst	;			
842302	0.71	119	0.2654	0.4601				
842517	0.24	116	0.1860	0.2750				
84300903	0.45	504	0.2430	0.3613	}			
84348301	0.68	369	0.2575	0.6638	}			
84358402	0.40	000	0.1625	0.2364	:			
843786	0.53	355	0.1741	0.3985				
	fractal_dimer	nsion_worst						
842302	_	0.11890						
842517		0.08902						
84300903		0.08758						
84348301		0.17300						
84358402		0.07678						
843786		0.12440						
3 10 1 0 0		0.12110						

Q. How many patient samples are in this dataset?

nrow(wisc.data)

[1] 569

There are 569 patients in this dataset.

Q. How many cancer (M) and non cancer (B) samples are there?

```
table(wisc.data$diagnosis)
```

```
B M
357 212
```

Save the diagnosis for later use as a reference to compare how weel we do with PCA etc.

```
diagnosis <- as.factor(wisc.data$diagnosis)
#diagnosis</pre>
```

Now exclude the diagnosis column from the data

```
wisc <- wisc.data[,-1]
   Q How many "dimensions", "variables", "columns" are there in this dataset?
ncol(wisc)</pre>
```

[1] 30

Principal Component Analysis (PCA)

To perform PCA in R we can use the prcomp() function, it takes as input a numeric dataset and optional scale=FALSE/TRUE argument

We generally always want to scale=TRUE but let's make sure by checking if the mean and standard deviation values are different across 30 columns

```
round( colMeans(wisc) )
```

radius_mean 14	texture_mean 19	perimeter_mean 92
area_mean	${\tt smoothness_mean}$	compactness_mean
655	0	0
concavity_mean	concave.points_mean	symmetry_mean
0	0	0
fractal_dimension_mean	radius_se	texture_se
0	0	1

```
perimeter_se
                                                          smoothness_se
                                       area_se
                    3
                                            40
                                                                       0
                                                      concave.points_se
      compactness_se
                                 concavity_se
                    0
         symmetry_se
                         fractal dimension se
                                                           radius worst
                    0
       texture worst
                              perimeter worst
                                                             area worst
                   26
                                           107
                                                                     881
    smoothness_worst
                            compactness_worst
                                                        concavity_worst
concave.points_worst
                               symmetry_worst fractal_dimension_worst
                    0
                                             0
                                                                       0
```

pca <- prcomp(wisc, scale=TRUE)
summary(pca)</pre>

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                                                        PC12
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                           PC19
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

attributes(pca)


```
library(ggplot2)

x <- as.data.frame(pca$x)

ggplot(x) +
  aes(PC1, PC2, col=diagnosis) +
  geom_point()</pre>
```


Q. How much variance is captured in the top 3 PCs?

They capture 72.6% of the total variance.

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean? This tells us how much this original feature contributes to the first PC.

```
pca$rotation["concave.points_mean", 1]
```

[1] -0.2608538

attributes(pca)

```
$names
```

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

Combine PCA results with clustering

We can use our new PCA variables (i.e. the scores along the PCs contained in t pca\$x) as input for other methods such as clustering.

```
# Hclust needs a distance matrix as input
d <- dist( pca$x[,1:3] )
hc <- hclust(d, method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get our cluster membership vector we can use the cutree() function and specify a height: (h) or number of groups (k).

```
grps <- cutree(hc, h=80)
table(grps)

grps
    1      2
203 366</pre>
```

I want to find out how many diagnosis "M" and "B" are in each group?

```
table(diagnosis)
```

diagnosis B M 357 212

table(diagnosis, grps)

grps diagnosis 1 2 B 24 333 M 179 33

We can also plot our results using our clustering vector grps

```
plot(pca$x[,1], pca$x[,2], col=grps)
```



```
library(ggplot2)

x <- as.data.frame(pca$x)

ggplot(x) +
   aes(PC1, PC2) +
   geom_point(col=grps)</pre>
```


Q15. What is the specificity and sensitivity of our current results?

```
#Sensitivity 179/(179+33)
```

[1] 0.8443396

#Specificity 333/(333+24)

[1] 0.9327731

Q16. Which of these new patients should we prioritize for follow up based on your results?

We should prioritize patient 2 because it is most similar to our previous results.