# Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

## Отчёт по лабораторной работе № 3

Дисциплина: Вычислительная математика

| Выполнил студент гр. 3530901/10001 | (подпись) | _ Д.Л. Симоновский |
|------------------------------------|-----------|--------------------|
| Руководитель _                     | (подпись) | В.Н. Цыган         |

"<u>28</u>" февраля 2023 г.

Санкт-Петербург

### Оглавление

| Задание:               | 2  |
|------------------------|----|
| Инструменты:           |    |
| Ход выполнения работы: | 2  |
| Порядок действий:      | 2  |
| Первая задача:         | 2  |
| Полная формулировка:   | 2  |
| Решение:               | 3  |
| Вторая задача:         | 3  |
| Полная формулировка:   | 3  |
| Решение:               | 3  |
| Результат:             | 6  |
| Замечание:             | 10 |
| Вывод:                 | 14 |
| Листинг кода:          | 15 |
| Соглами                | 10 |

## Задание:

#### Вариант 11:

Привести дифференциальное уравнение: ty'' - (t+1)y' - 2(t-1)y = 0 к системе двух дифференциальных уравнений первого порядка.

Начальные условия:  $y(t = 1) = e^2$ ;  $y'(t = 1) = 2e^2$ 

Точное решение:  $y(t) = e^{2t}$ 

Решить на интервале:  $1 \le t \le 2$ 

- 1. Используя программу RKF45 с шагом печати  $h_{print}$ = 0.1 и выбранной вами погрешностью EPS в диапазоне 0.001-0.00001, а также составить собственную программу и решить с шагом интегрирования  $h_{int}$  = 0.1
- 2. Используя метод Рунге-Кутты 3-й степени точности.

Сравнить результаты, полученные заданными приближенными способами, с точным решением.

Исследовать влияние величины шага интегрирования  $h_{int}$  на величины локальной и глобальной погрешностей решения заданного уравнения для чего решить уравнение, используя 2-3 значения шага интегрирования, существенно меньшие исходной величины 0.1 (например,  $h_{int} = 0.05$ ;  $h_{int} = 0.025$ ;  $h_{int} = 0.0125$ )

## Инструменты:

Для работы был выбран язык программирования Python версии 3.11 по причине удобства его использования для поставленной задачи. Были выбраны следующие библиотеки:

- NumPy для большей скорости расчетов и простоты обработки
- SciPy для функции расчета решения дифура
- PrettyTable для красивого вывода таблицы в консоль
- MatPlotLib для вывода графиков

## Ход выполнения работы:

#### Порядок действий:

Поставленное задание легко можно разбить на две глобальные задачи:

- 1. Сведение поставленной задачи к системе двух дифференциальных уравнений первого порядка.
- 2. Получить решение используя RKF45 и методы Рунге-Кутты 3-й степени

## Первая задача:

Полная формулировка:

Привести дифференциальное уравнение: ty'' - (t+1)y' - 2(t-1)y = 0 к системе двух дифференциальных уравнений первого порядка.

#### Решение:

В начале сделаем коэффициент при старшей степени равным 1, для этого поделим уравнение на t:

$$y''-\frac{(t+1)}{t}y'-\frac{2(t-1)}{t}y=0$$
 Возьмем  $\alpha_1=-\frac{(t+1)}{t}$  и  $\alpha_2=-\frac{2(t-1)}{t}$ , получим: 
$$y''+\alpha_1y'+\alpha_2y=0$$

Решение этого уравнение эквивалентно решению системы  $\frac{dx}{dt} = Ax + f(t)$ , где f(t) = 0, А — матрица Фробениуса вида:  $A = \begin{pmatrix} -\alpha_1 & -\alpha_2 \\ 1 & 0 \end{pmatrix}$ ,  $x = \begin{pmatrix} x^{(1)} \\ x^{(2)} \end{pmatrix} = \begin{pmatrix} y' \\ y \end{pmatrix}$ . Таким образом получим систему:

$$\begin{cases} x^{(2)'} = x^{(1)} \\ x^{(1)'} = -\alpha_1 x^{(1)} - \alpha_2 x^{(2)} \end{cases}$$

#### Вторая задача:

Полная формулировка:

Решить систему дифференциальных уравнений перового порядка.

Начальные условия:  $y(t = 1) = e^2$ ;  $y'(t = 1) = 2e^2$ 

Точное решение:  $y(t) = e^{2t}$ 

Решить на интервале:  $1 \le t \le 2$ 

- 1. Используя программу RKF45 с шагом печати  $h_{print}$ = 0.1 и выбранной вами погрешностью EPS в диапазоне 0.001-0.00001, а также составить собственную программу и решить с шагом интегрирования  $h_{int}$  = 0.1
- 2. Используя метод Рунге-Кутты 3-й степени точности.

Сравнить результаты, полученные заданными приближенными способами, с точным решением.

Исследовать влияние величины шага интегрирования  $h_{int}$  на величины локальной и глобальной погрешностей решения заданного уравнения для чего решить уравнение, используя 2-3 значения шага интегрирования, существенно меньшие исходной величины 0.1 (например,  $h_{int} = 0.05$ ;  $h_{int} = 0.025$ ;  $h_{int} = 0.0125$ )

#### Решение:

Для дальнейшего использования сразу же зададим функцию, для получения значений системы уравнений:

```
def f(t, X):
    dX = np.zeros(X.shape)
    dX[0] = X[1]
    dX[1] = (t + 1) / t * X[1] + 2 * (t - 1) / t * X[0]
    return dX
```

Так же нам понадобится функция для получения точно значения решения (чтоб сравнивать погрешности):

```
def g(T):
    return np.e ** (2 * T)
```

Далее нам понадобится функция, которая будет моделировать RKF45, к счастью, в библиотеке scipy уже имеется подходящий вариант, правда требующий дополнительной настройки, а конкретно передачу параметра 'dopri5' для настройки интегратора и выставления параметра погрешности atol на значение 0.0001:

```
def rkf45(f, T, X0):
    runge = ode(f).set_integrator('dopri5', atol=0.0001).set_initial_value(X0, T[0])
    X = [X0, *[runge.integrate(T[i]) for i in range(1, len(T))]]
    return np.array([i[0] for i in X]), np.array([i[1] for i in X])
```

Метод Рунге-Кутты по заданию необходимо написать самостоятельно. Для начала вспомним, как выглядит метод Рунге-Кутты третьей степени:

$$\begin{cases} x_{n+1} = x_n + \frac{2k_1 + 3k_2 + 4k_3}{9}, \\ k_1 = hf(t_n, x_n), \\ k_2 = hf(t_n + \frac{h}{2}, x_n + \frac{k_1}{2}), \\ k_3 = hf(t_n + \frac{3h}{4}, x_n + \frac{3k_2}{4}) \end{cases}$$

Теперь необходимо реализовать его в виде метода:

```
def RK3(f, T, X0):
    X = np.zeros((len(T), len(X0)))
    X[0] = X0
    h = T[1] - T[0]
    for i in range(0, len(T) - 1):
        k_1 = h * f(T[i], X[i])
        k_2 = h * f(T[i] + h / 2, X[i] + k_1 / 2)
        k_3 = h * f(T[i] + 3 * h / 4, X[i] + 3 * k_2 / 4)
        X[i + 1] = (X[i] + (2 * k_1 + 3 * k_2 + 4 * k_3) / 9)
    return X[:, 0]
```

Все методы, необходимые для подсчета реализованы. Создадим отдельную функцию для подсчета решения с разным шагом (т.к. этого требует задание), в ней сразу же зададим начальные значения, узлы, по которым будет искаться решение и значение функции в этих точках (для дальнейшего подсчета погрешности):

```
def evaluate(h):
    # Начальные значения
    X0 = np.array([np.e ** 2, 2 * np.e ** 2])
    # Значения в узлах
    T = np.arange(1, 2 + h, h)
    Y = g(T)
```

Воспользовавшись методами, которые были приведены выше, выполним расчеты:

```
# Расчет RKF45
Y_RKF45, Y_derivative_RKF45 = rkf45(f, T, X0)
# Расчет Рунге-Кутты
Y_Runge_Kutta = Runge_Kutta(f, T, X0)
# Погрешности
Y_RKF45_error = Y - Y_RKF45
Y_Runge_Kutta_error = Y - Y_Runge_Kutta
```

Далее необходимо вывести полученные значения на экран, используем для этого библиотеку MatPlotLib. Отдельно выведем графики погрешности и полученные значения:

```
def print_one_graph(t, y, title, id, count_graphs):
      Функция для отрисовки одного графика
      plt.subplot(1, count_graphs, id)
plt.xlabel('t')
      plt.ylabel('y')
      plt.grid()
      plt.title(title)
       plt.plot(t, y, '-o')
  def print_graph(t_find, y_real, Y_RKF45, Y_Runge_Kutta, h):
      Функция для отрисовки всех графиков
      mpl.use('TkAgg')
      plt.figure(figsize=(15, 4))
      print_one_graph(t_find, y_real, 'Исходный график', 1, 3)
print_one_graph(t_find, Y_RKF45, 'График RKF45', 2, 3)
print_one_graph(t_find, Y_Runge_Kutta, 'График Рунге-Кутты', 3, 3)
       plt.savefig(f"Graphs_{h}.jpg")
       plt.show()
  def print_error_graph(t_find, Y_RKF45_error, Y_Runge_Kutta_error, h):
      Функция для отрисовки погрешности
      mpl.use('TkAgg')
      plt.figure(figsize=(15, 4))
       # Собственно сам график
       print_one_graph(t_find, Y_RKF45_error, 'Погрешность RKF45', 1, 2)
       print_one_graph(t_find, Y_Runge_Kutta_error, 'Погрешность Рунге-Кутты', 2, 2)
       plt.savefig(f"Error_{h}.jpg")
       plt.show()
```

Вызовем их из функции evaluate, для отрисовки всех графиков:

```
# Рисуем графики
print_graph(T, Y, Y_RKF45, Y_Runge_Kutta, h)
print_error_graph(T, Y_RKF45_error, Y_Runge_Kutta_error, h)
```

Далее для дополнительного анализа выведем значения в консоль, используя библиотеку prettytable:

```
def print_table(t_find, y_real, Y_RKF45, Y_RKF45_error, Y_Runge_Kutta, Y_Runge_Kutta_error,
  h):
       print(f'h = \{h\}')
       koef = {0.1: 1, 0.05: 2, 0.025: 4, 0.0125: 8}.get(h)
       pt = PrettyTable()
       pt.add_column('t', [f'{i:.1f}' for i in t_find[::koef]])
pt.add_column('real y', [f'{i:.15f}' for i in y_real[::koef]])
pt.add_column('RKF45 y', [f'{i:.15f}' for i in Y_RKF45[::koef]])
       pt.add_column('Delta RKF45 y', [f'{i:.15f}' for i in Y_RKF45_error[::koef]])
pt.add_column('Runge Kutta y', [f'{i:.15f}' for i in Y_Runge_Kutta[::koef]])
       pt.add_column('Delta Runge Kutta y', [f'{i:.15f}' for i in
  Y_Runge_Kutta_error[::koef]])
       print(pt)
       print('First step of RKF45:', Y_RKF45_error[1])
       print('First step of Runge Kutta:', Y_Runge_Kutta_error[1])
       print('Global of RKF45:', Y_RKF45_error[::koef].sum())
       print('Global of Runge Kutta:', Y_Runge_Kutta_error[::koef].sum())
       print('h^4 is about:', h ** 4)
       print('h^4 / Runge Kutta first step:', h ** 4 / Y_Runge_Kutta_error[1])
```

Еще необходимо выполнить анализ погрешности, для этого будем сохранять её при вызове функции evaluate, а после выведем все это на экран в виде таблицы, используя уже известную библиотеку:

```
def print_table_error(Y_RKF45_error, Y_Runge_Kutta_error, h_list):
     pt = PrettyTable()
     pt.add_column('h', [f'{i:.4f}' for i in h_list])
     pt.add_column("Runge Kutta Error local", [f'{i[1]:.15f}' for i in Y_Runge_Kutta_error])
     pt.add_column('h**4 / Runge Kutta Error local')
                       [f'{i ** 4 / j[1]:.15f}' for i, j in zip(h_list, Y_Runge_Kutta_error)])
     print(pt)
     pt.clear()
     pt.add_column('h', [f'{i:.4f}' for i in h_list])
     pt.add_column("Runge Kutta Error global", [f'{i.sum():.15f}' for i in
Y_Runge_Kutta_error])
     pt.add_column('h**2 / Runge Kutta Error global',
                       [f'{i ** 2 / j.sum():.15f}' for i, j in zip(h_list, Y_Runge_Kutta_error)])
     print(pt)
     pt.clear()
     pt.add_column('h', [f'{i:.4f}' for i in h_list])
    pt.add_column("RKF45 Error local", [f'{i[1]:.15f}' for i in Y_RKF45_error])
pt.add_column("RKF45 Error global", [f'{i.sum():.15f}' for i in Y_RKF45_error])
pt.add_column("Runge Kutta Error local", [f'{i[1]:.15f}' for i in Y_Runge_Kutta_error])
pt.add_column("Runge Kutta Error global", [f'{i.sum():.15f}' for i in
Y_Runge_Kutta_error])
     print(pt)
```

#### Результат:

Как и ожидалось, полученные графики практически не отличаются:



Рис. 1. График решения при h = 0.1



Рис. 4. График решения при h = 0.0125

#### Больший интерес представляют графики погрешности:



Рис. 5. График погрешности при h = 0.1



Рис. 8. График погрешности при h = 0.0125

Как можно заметить, форма самого графика остается одинаковой, однако порядок сильно меняется, при изменении шага.

Так же даже по графику заметно, что погрешность метода Рунге-Кутты третьей степени значительно проигрывает программе RKF45, что достаточно ожидаемо, ведь в основе этой программы лежат методы Рунге-Кутты четвертой и пятой степени точности.

Для анализа зависимости шага интегрирования  $h_{int}$  и величины локальной и глобальной погрешностей решения заданного уравнения обратимся к численным результатам исследования:

First step of RKF45: -1.743556410360725e-08 First step of Runge Kutta: 0.0005129839401529779 Global of RKF45: -1.937042049959814e-05

Global of Runge Kutta: 0.10432030445312179 h^4 is about: 0.00010000000000000000

h^4 / Runge Kutta first step: 0.1949378765545347

Рис. 9. Результат исследования при h = 0.1

| h | _ | a a5 |  |
|---|---|------|--|
|   | _ | 0.00 |  |

|   | +                                                         | <b></b>                                                                                                                                                                    | +                                                                                                                                                                          | <b></b>                                                            | <b>+</b>                                                                                                                                                                   | ++                                                                  |
|---|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|   | t                                                         | real y                                                                                                                                                                     | RKF45 y                                                                                                                                                                    | Delta RKF45 y                                                      | Runge Kutta y                                                                                                                                                              | Delta Runge Kutta y                                                 |
| - | 1.0<br>  1.1<br>  1.2<br>  1.3<br>  1.4<br>  1.5<br>  1.6 | 7.389056098930650<br>9.025013499434122<br>11.023176380641605<br>13.463738035001695<br>16.444646771097059<br>20.085536923187682<br>24.532530197109370<br>29.964100047397046 | 7.389056098930650<br>9.025013501625160<br>11.023176388458154<br>13.463738050827361<br>16.444646798095160<br>20.085536965529673<br>24.532530260266185<br>29.964100138510030 | 0.00000000000000000000000000000000000                              | 7.389056098930650<br>9.024944064111462<br>11.023006764304872<br>13.463427281404844<br>16.444140699310093<br>20.084764279314374<br>24.531397750236174<br>29.962486350914514 | 0.00000000000000000000000000000000000                               |
|   | 1.8<br>  1.9<br>  2.0                                     | 36.598234443678031<br>44.701184493300886<br>54.598150033144321                                                                                                             | 36.598234572030442<br>44.701184670916255<br>54.598150275544839                                                                                                             | -0.000000128352411<br>  -0.000000177615370<br>  -0.000000242400517 | 36.595981911389273<br>44.698089349913182<br>54.593949586335228                                                                                                             | 0.002252532288757  <br>  0.003095143387704  <br>  0.004200446809094 |
|   |                                                           |                                                                                                                                                                            |                                                                                                                                                                            |                                                                    | L                                                                                                                                                                          |                                                                     |

First step of RKF45: -7.847944516470307e-11 First step of Runge Kutta: 3.1413899460375205e-05 Global of RKF45: -1.4647554884561487e-06 Global of Runge Kutta: 0.025995142229312762

h^4 is about: 6.250000000000001e-06

h^4 / Runge Kutta first step: 0.1989565162988954

Рис. 10. Результат исследования при h = 0.05

h = 0.025

| 1 | t   | real y             | RKF45 y            | Delta RKF45 y      | Runge Kutta y      | Delta Runge Kutta y |
|---|-----|--------------------|--------------------|--------------------|--------------------|---------------------|
| Ĭ | 1.0 | 7.389056098930650  | 7.389056098930650  | 0.0000000000000000 | 7.389056098930650  | 0.0000000000000000  |
| j | 1.1 | 9.025013499434113  | 9.025013499577801  | -0.000000000143688 | 9.025004466700494  | 0.000009032733619   |
| Ì | 1.2 | 11.023176380641585 | 11.023176380992583 | -0.000000000350997 | 11.023154315441113 | 0.000022065200472   |
|   | 1.3 | 13.463738035001660 | 13.463738035644724 | -0.000000000643064 | 13.463697609276819 | 0.000040425724841   |
| Ì | 1.4 | 16.444646771097002 | 16.444646772144257 | -0.000000001047255 | 16.444580936340852 | 0.000065834756150   |
|   | 1.5 | 20.085536923187593 | 20.085536924786492 | -0.000000001598899 | 20.085436409796969 | 0.000100513390624   |
| Ì | 1.6 | 24.532530197109239 | 24.532530199452719 | -0.000000002343480 | 24.532382876383917 | 0.000147320725322   |
|   | 1.7 | 29.964100047396858 | 29.964100050736249 | -0.000000003339391 | 29.963890119904967 | 0.000209927491891   |
| ı | 1.8 | 36.598234443677775 | 36.598234448339191 | -0.000000004661416 | 36.597941408375718 | 0.000293035302057   |
| Ì | 1.9 | 44.701184493300531 | 44.701184499705683 | -0.000000006405152 | 44.700781840110089 | 0.000402653190442   |
|   | 2.0 | 54.598150033143838 | 54.598150041836362 | -0.000000008692524 | 54.597603587064640 | 0.000546446079198   |
| + |     | <b></b>            | <b></b>            | L                  | <b></b>            | ++                  |

First step of RKF45: -3.091749078976136e-11

First step of Runge Kutta: 1.9436371978542866e-06

Global of RKF45: -1.0308740350239987e-07 Global of Runge Kutta: 0.006480486576304401 h^4 is about: 3.906250000000007e-07

h^4 / Runge Kutta first step: 0.2009762935342242

Рис. 11. Результат исследования при h = 0.025

| t   | real y             | RKF45 y            | Delta RKF45 y      | Runge Kutta y      | Delta Runge Kutta y |
|-----|--------------------|--------------------|--------------------|--------------------|---------------------|
| 1.0 | 7.389056098930650  | 7.389056098930650  | 0.0000000000000000 | 7.389056098930650  | 0.0000000000000000  |
| 1.1 | 9.025013499434113  | 9.025013499438806  | -0.000000000004693 | 9.025012347561770  | 0.000001151872343   |
| 1.2 | 11.023176380641585 | 11.023176380653045 | -0.000000000011459 | 11.023173566841647 | 0.000002813799938   |
| 1.3 | 13.463738035001660 | 13.463738035022654 | -0.000000000020995 | 13.463732879827486 | 0.000005155174174   |
| 1.4 | 16.444646771097002 | 16.444646771131190 | -0.000000000034188 | 16.444638375705598 | 0.000008395391404   |
| 1.5 | 20.085536923187593 | 20.085536923239793 | -0.000000000052200 | 20.085524105495647 | 0.000012817691946   |
| 1.6 | 24.532530197109239 | 24.532530197185743 | -0.000000000076504 | 24.532511410433283 | 0.000018786675955   |
| 1.7 | 29.964100047396858 | 29.964100047505873 | -0.000000000109015 | 29.964073276951098 | 0.000026770445761   |
| 1.8 | 36.598234443677775 | 36.598234443829952 | -0.000000000152177 | 36.598197075112964 | 0.000037368564811   |
| 1.9 | 44.701184493300531 | 44.701184493509636 | -0.000000000209106 | 44.701133145977167 | 0.000051347323364   |
| 2.0 | 54.598150033143838 | 54.598150033427601 | -0.000000000283762 | 54.598080348967869 | 0.000069684175969   |

First step of RKF45: -4.920508445138694e-13

First step of Runge Kutta: 1.2086842193781422e-07

Global of RKF45: -6.880966907374386e-09 Global of Runge Kutta: 0.001689689679643891 h^4 is about: 2.4414062500000004e-08

h^4 / Runge Kutta first step: 0.201988758590402

Рис. 12. Результат исследования при h = 0.0125

Можно заметить, что локальная погрешность первого шага метода Рунге-Кутты пропорциональна четвертой степени шага интегрирования, как и было предсказано:

| h      | Runge Kutta Error local | h**4 / Runge Kutta Error local |
|--------|-------------------------|--------------------------------|
| 0.1000 | 0.000512983940153       | 0.194937876554535              |
| 0.0500 | 0.000031413899460       | 0.198956516298895              |
| 0.0250 | 0.000001943637198       | 0.200976293534224              |
| 0.0125 | 0.000000120868422       | 0.201988758590402              |

Из анализа результатов глобальной погрешности заметна её зависимость от квадрата шага интегрирования, что явно сильно хуже, чем если рассматривать локальную погрешность:

| h   Runge Kutta Error global   h**2 / Runge Kutta Error glo                                                                                                                                                                                                       | +                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 0.1000         0.104320304453122       0.095858615946560           0.0500         0.025995142229313       0.096171814639311           0.0250         0.006480486576304       0.096443375453517           0.0125         0.001689689679644       0.092472601260683 | <br> <br> <br> <br> |

Так же из приведенных результатов (рис. 5-12) более заметна разница между методами Рунге-Кутты 3 степени точности и программой RKF45, как после первого шага, так и при подсчете глобальной погрешности, что сильнее проявляется при уменьшении шага:

|     | n                                  | RKF45 Error local                                                                     | RKF45 Error global                                                                   | Runge Kutta Error local                                                          | Runge Kutta Error global                                                      |
|-----|------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 0.6 | 1000  <br>0500  <br>0250  <br>0125 | -0.000000017435564<br>-0.000000000078479<br>-0.000000000030917<br>-0.0000000000000492 | -0.000019370420500<br>-0.000001464755488<br>-0.000000103087404<br>-0.000000006880967 | 0.000512983940153<br>0.000031413899460<br>0.000001943637198<br>0.000000120868422 | 0.104320304453122   0.025995142229313   0.006480486576304   0.001689689679644 |

#### Замечание:

В ходе анализа замечено, что знак погрешности у метода Рунге-Кутты 3 степени отличается от знака погрешности аналога программы RKF45, что сомнительно, поскольку функция  $e^{2t}$  а также её первая производная  $2e^{2t}$  являются монотонно растущими функциями.

В ходе проверки кода ошибки замечено не было.

Данные, полученные в ходе решения методом Рунге-Кутты 3 степени кажутся более правдоподобными, потому дополнительно проанализируем аналог программы RKF45. Для этого дополнительно проанализируем значение первой производной, полученное в ходе решения, для этого выведем её на экран:

```
def print_additiontal_research(T, Y_derivative_real, Y_derivative_RKF45):
    pt = PrettyTable()
    pt.add_column("T", [f'{i:.4f}' for i in T])
    pt.add_column("Y' real", Y_derivative_real)
    pt.add_column("Y' RKF45", Y_derivative_RKF45)
    pt.add_column("Y' delta", Y_derivative_real - Y_derivative_RKF45)
    print(pt)
    print('=' * 110)
```

#### Результат:

| 4 |        | L                  | L                  | L                       |
|---|--------|--------------------|--------------------|-------------------------|
| İ | Т      | Y' real            | Y' RKF45           | Y' delta                |
| + |        | <b>+</b>           | <b>+</b>           | tt                      |
|   | 1.0000 | 14.778112197861299 | 14.778112197861299 | 0.0                     |
|   | 1.1000 | 18.050026998868244 | 18.050027033739372 | -3.48711282072145e-08   |
|   | 1.2000 | 22.04635276128321  | 22.046353077750915 | -3.1646770537463453e-07 |
|   | 1.3000 | 26.92747607000339  | 26.92747679105084  | -7.21047449303569e-07   |
|   | 1.4000 | 32.88929354219412  | 32.88929483145847  | -1.2892643539430537e-06 |
| Ì | 1.5000 | 40.171073846375364 | 40.171075920121055 | -2.073745690722717e-06  |
| ĺ | 1.6000 | 49.06506039421874  | 49.06506353661975  | -3.1424010131786417e-06 |
|   | 1.7000 | 59.92820009479409  | 59.928204677403585 | -4.58260949187661e-06   |
|   | 1.8000 | 73.19646888735606  | 73.19647539386838  | -6.50651232092514e-06   |
|   | 1.9000 | 89.40236898660177  | 89.40237792937474  | -8.942772964815049e-06  |
|   | 2.0000 | 109.19630006628864 | 109.19631119743752 | -1.113114888084965e-05  |
|   |        |                    |                    |                         |

Рис. 13. Результат исследования при h = 0.1

| T      | Y' real            | Y' RKF45           | Y' delta                |
|--------|--------------------|--------------------|-------------------------|
| 1.0000 | 14.778112197861299 | 14.778112197861299 | 0.0                     |
| 1.0500 | 16.3323398251353   | 16.33233982529226  | -1.5695889032940613e-10 |
| 1.1000 | 18.050026998868244 | 18.05002700325032  | -4.382076923548084e-09  |
| 1.1500 | 19.948364909629444 | 19.948364919123623 | -9.49417966467081e-09   |
| 1.2000 | 22.04635276128321  | 22.046352776916308 | -1.5633098371381493e-08 |
| 1.2500 | 24.364987921406954 | 24.364987944365232 | -2.29582788335847e-08   |
| 1.3000 | 26.92747607000339  | 26.927476101654722 | -3.165133222182703e-08  |
| 1.3500 | 29.75946344974568  | 29.75946349166464  | -4.1918958970654785e-08 |
| 1.4000 | 32.88929354219412  | 32.88929359619032  | -5.399620306434372e-08  |
| 1.4500 | 36.34829073888614  | 36.34829080703628  | -6.815013620098398e-08  |
| 1.5000 | 40.171073846375364 | 40.17107393105935  | -8.46839824930612e-08   |
| 1.5500 | 44.3959025628833   | 44.39590266682509  | -1.039417867332304e-07  |
| 1.6000 | 49.06506039421874  | 49.06506052053237  | -1.2631362977799654e-07 |
| 1.6500 | 54.22527784131583  | 54.22527799355734  | -1.5224151184156653e-07 |
| 1.7000 | 59.92820009479409  | 59.92820027702006  | -1.8222596764871923e-07 |
| 1.7500 | 66.23090391738471  | 66.23090413421819  | -2.1683348450096673e-07 |
| 1.8000 | 73.19646888735606  | 73.19646914406088  | -2.5670482273199013e-07 |
| 1.8500 | 80.89460872013488  | 80.89460902269927  | -3.025643877663242e-07  |
| 1.9000 | 89.40236898660177  | 89.40236934183251  | -3.5523073904641933e-07 |
| 1.9500 | 98.80489821106049  | 98.8048986266889   | -4.156284063583371e-07  |
| 2.0000 | 109.19630006628864 | 109.19630055108968 | -4.848010348723619e-07  |

Рис. 14. Результат исследования при h = 0.05

| ++     |                    |                    |                         |
|--------|--------------------|--------------------|-------------------------|
| T      | Y' real            | Y' RKF45           | Y' delta                |
| 1.0000 | 14.778112197861299 | 14.778112197861299 | 0.0                     |
| 1.0250 | 15.53580221261354  | 15.535802212675375 | -6.183498157952272e-11  |
| 1.0500 | 16.332339825135293 | 16.332339825265304 | -1.3001155707570433e-10 |
| 1.0750 | 17.169716794355775 | 17.169716794560795 | -2.050200009762193e-10  |
| 1.1000 | 18.050026998868226 | 18.0500269991556   | -2.873754567644937e-10  |
| 1.1250 | 18.97547167271703  | 18.975471673094667 | -3.7763570048809925e-10 |
| 1.1500 | 19.94836490962942  | 19.948364910105813 | -4.763940353313956e-10  |
| 1.1750 | 20.97113944945512  | 20.97113945003941  | -5.842899497565668e-10  |
| 1.2000 | 22.04635276128317  | 22.046352761985165 | -7.019949066489062e-10  |
| 1.2250 | 23.176693438446737 | 23.176693439276974 | -8.302372123125679e-10  |
| 1.2500 | 24.3649879214069   | 24.36498792237668  | -9.69780700188494e-10   |
| 1.2750 | 25.614207565326012 | 25.61420756644746  | -1.1214495998501661e-09 |
| 1.3000 | 26.92747607000332  | 26.927476071289448 | -1.2861285370036057e-09 |
| 1.3250 | 28.308077290751537 | 28.30807729221628  | -1.464741217205301e-09  |
| 1.3500 | 29.75946344974559  | 29.75946345140388  | -1.6582930584263522e-09 |
| 1.3750 | 31.285263768376254 | 31.285263770244093 | -1.8678392166293634e-09 |
| 1.4000 | 32.889293542194004 | 32.88929354428851  | -2.094509454764193e-09  |
| 1.4250 | 34.57556368113517  | 34.575563683474684 | -2.339511695481633e-09  |
| 1.4500 | 36.348290738886    | 36.34829074149014  | -2.604139126560767e-09  |
| 1.4750 | 38.21190745646316  | 38.21190745935291  | -2.889748884626897e-09  |
| 1.5000 | 40.17107384637519  | 40.171073849572984 | -3.197797582288331e-09  |
| 1.5250 | 42.23068884508106  | 42.2306888486109   | -3.5298413081363833e-09 |
| 1.5500 | 44.39590256288309  | 44.395902566770616 | -3.887528521318018e-09  |
| 1.5750 | 46.67212916188523  | 46.672129166157845 | -4.272614262390562e-09  |
| 1.6000 | 49.06506039421848  | 49.065060398905445 | -4.686967258749064e-09  |
| 1.6250 | 51.58067983438588  | 51.58067983951846  | -5.132577030053653e-09  |
| 1.6500 | 54.22527784131552  | 54.22527784692707  | -5.611553888229537e-09  |
| 1.6750 | 57.00546728753427  | 57.00546729366043  | -6.126157359176432e-09  |
| 1.7000 | 59.928200094793716 | 59.9282001014725   | -6.67878197191385e-09   |
| 1.7250 | 63.000784617495526 | 63.00078462476749  | -7.271964364008454e-09  |
| 1.7500 | 66.23090391738427  | 66.23090392529268  | -7.908411703283491e-09  |
| 1.7750 | 69.62663497520364  | 69.62663498379467  | -8.59103010952822e-09   |
| 1.8000 | 73.19646888735555  | 73.19646889667838  | -9.322832283942262e-09  |
| 1.8250 | 76.94933209806378  | 76.94933210817089  | -1.0107115144819545e-08 |
| 1.8500 | 80.89460872013427  | 80.89460873108156  | -1.0947289297291718e-08 |
| 1.8750 | 85.04216400012503  | 85.04216401197208  | -1.1847049563584733e-08 |
| 1.9000 | 89.40236898660106  | 89.40236899941137  | -1.281030392874527e-08  |
| 1.9250 | 93.98612646315793  | 93.98612647699912  | -1.3841187751495454e-08 |
| 1.9500 | 98.80489821105967  | 98.80489822600377  | -1.4944106396796997e-08 |
| 1.9750 | 103.87073366966213 | 103.87073368578586 | -1.61237352358512e-08   |
| 2.0000 | 109.19630006628768 | 109.19630008367272 | -1.7385048067808384e-08 |
| +      | +                  | <b></b>            | ·                       |

Рис. 15. Результат исследования при h=0.025

| T                                                                                      | Y' real                                                                                                 | Y' RKF45                                                                                                 | Y' delta                                                                   |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1.0000                                                                                 | 14.778112197861299                                                                                      | 14.778112197861299                                                                                       | 0.0                                                                        |
| 1.0125                                                                                 | 15.152221889273688                                                                                      | 15.152221889274673                                                                                       | -9.841016890277388e-13                                                     |
| 1.0250                                                                                 | 15.53580221261354                                                                                       | 15.535802212615557                                                                                       | -2.0179413695586845e-12                                                    |
| 1.0375                                                                                 | 15.929092918069538                                                                                      | 15.929092918072643                                                                                       | -3.105071755271638e-12                                                     |
| 1.0500                                                                                 | 16.332339825135293                                                                                      | 16.332339825139538                                                                                       |                                                                            |
|                                                                                        |                                                                                                         | !                                                                                                        | -4.245492846166599e-12                                                     |
| 1.0625                                                                                 | 16.74579497625452                                                                                       | 16.745794976259962                                                                                       | -5.4427573559223674e-12                                                    |
| 1.0750                                                                                 | 17.169716794355775                                                                                      | 17.169716794362472                                                                                       | -6.696865284538944e-12                                                     |
| 1.0875                                                                                 | 17.6043702443752                                                                                        | 17.604370244383208                                                                                       | -8.007816632016329e-12                                                     |
| 1.1000                                                                                 | 18.050026998868226                                                                                      | 18.05002699887761                                                                                        | -9.382716825712123e-12                                                     |
| 1.1125                                                                                 | 18.50696560781377                                                                                       | 18.50696560782459                                                                                        | -1.0821565865626326e-11                                                    |
| 1.1250                                                                                 | 18.97547167271703                                                                                       | 18.97547167272936                                                                                        | -1.2327916465437738e-11                                                    |
| 1.1375                                                                                 | 19.455838025119746                                                                                      | 19.45583802513365                                                                                        | -1.390532133882516e-11                                                     |
| 1.1500                                                                                 | 19.94836490962942                                                                                       | 19.94836490964497                                                                                        | -1.5550227772109793e-11                                                    |
| 1.1625                                                                                 | 20.45336017158197                                                                                       | 20.453360171599247                                                                                       | -1.7276846620006836e-11                                                    |
| 1.1750                                                                                 | 20.97113944945512                                                                                       | 20.971139449474194                                                                                       | -1.907451974147989e-11                                                     |
| 1.1875                                                                                 | 21.502026372152677                                                                                      | 21.50202637217363                                                                                        | -2.0953905277565354e-11                                                    |
| 1.2000                                                                                 | 22.04635276128317                                                                                       | 22.046352761306085                                                                                       | -2.291500322826323e-11                                                     |
|                                                                                        |                                                                                                         |                                                                                                          |                                                                            |
| 1.2125                                                                                 | 22.604458838559125                                                                                      | 22.60445883858409                                                                                        | -2.496491902093112e-11                                                     |
| 1.2250                                                                                 | 23.176693438446737                                                                                      | 23.17669343847384                                                                                        | -2.710365265556902e-11                                                     |
| 1.2375                                                                                 | 23.763414226198755                                                                                      | 23.763414226228086                                                                                       | -2.9331204132176936e-11                                                    |
| 1.2500                                                                                 | 24.3649879214069                                                                                        | 24.36498792143856                                                                                        | -3.1658231591791264e-11                                                    |
| 1.2625                                                                                 | 24.981790527213565                                                                                      | 24.98179052724765                                                                                        | -3.4084735034412006e-11                                                    |
| 1.2750                                                                                 | 25.614207565326012                                                                                      | 25.61420756536262                                                                                        | -3.660716174636036e-11                                                     |
| 1.2875                                                                                 | 26.262634316979973                                                                                      | 26.262634317019216                                                                                       | -3.9243275296030333e-11                                                    |
| 1.3000                                                                                 | 26.92747607000332                                                                                       | 26.927476070045305                                                                                       | -4.198597025606432e-11                                                     |
|                                                                                        |                                                                                                         |                                                                                                          | :                                                                          |
| 1.3125                                                                                 | 27.609148372134126                                                                                      | 27.609148372178968                                                                                       | -4.484235205381992e-11                                                     |
| 1.3250                                                                                 | 28.308077290751537                                                                                      | 28.308077290799353                                                                                       | -4.781597340297594e-11                                                     |
| 1.3375                                                                                 | 29.024699679181754                                                                                      | 29.02469967923267                                                                                        | -5.091393973088998e-11                                                     |
| 1.3500                                                                                 | 29.75946344974559                                                                                       | 29.759463449799725                                                                                       | -5.413625103756203e-11                                                     |
| 1.3625                                                                                 | 30.512827853718232                                                                                      | 30.51282785377572                                                                                        | -5.7486460036670906e-11                                                    |
| 1.3750                                                                                 | 31.285263768376254                                                                                      | 31.28526376843723                                                                                        | -6.0975224869253e-11                                                       |
| 1.3875                                                                                 | 32.077253991311245                                                                                      | 32.07725399137585                                                                                        | -6.460254553530831e-11                                                     |
| 1.4000                                                                                 | 32.889293542194004                                                                                      | 32.88929354226238                                                                                        | -6.837552746219444e-11                                                     |
| 1.4125                                                                                 | 33.72188997217796                                                                                       | 33.72188997225026                                                                                        | -7.22977233635902e-11                                                      |
|                                                                                        |                                                                                                         |                                                                                                          | !                                                                          |
| 1.4250                                                                                 | 34.57556368113517                                                                                       | 34.57556368121155                                                                                        | -7.637623866685317e-11                                                     |
| 1.4375                                                                                 | 35.450848242923165                                                                                      | 35.45084824300378                                                                                        | -8.061817879934097e-11                                                     |
| 1.4500                                                                                 | 36.348290738886                                                                                         | 36.348290738971016                                                                                       | -8.501643833369599e-11                                                     |
| 1.4625                                                                                 | 37.26845209979788                                                                                       | 37.26845209988747                                                                                        | -8.959233355199103e-11                                                     |
| 1.4750                                                                                 | 38.21190745646316                                                                                       | 38.211907456557505                                                                                       | -9.43458644542261e-11                                                      |
| 1.4875                                                                                 | 39.17924649919184                                                                                       | 39.17924649929112                                                                                        | -9.92770310404012e-11                                                      |
| 1.5000                                                                                 | 40.17107384637519                                                                                       | 40.17107384647959                                                                                        | -1.0440004416523152e-10                                                    |
| 1.5125                                                                                 | 41.1880094223919                                                                                        | 41.18800942250162                                                                                        | -1.0972200925607467e-16                                                    |
| 1.5250                                                                                 | 42.23068884508106                                                                                       | 42.2306888451963                                                                                         | -1.1523582088557305e-16                                                    |
| 1.5375                                                                                 |                                                                                                         |                                                                                                          |                                                                            |
|                                                                                        | 43.29976382302394                                                                                       | 43.2997638231449                                                                                         | -1.2096279533579946e-16                                                    |
| 1.5500                                                                                 | 44.39590256288309                                                                                       | 44.39590256301                                                                                           | -1.269100380341115e-10                                                     |
| 1.5625                                                                                 | 45.51979018705327                                                                                       | 45.519790187186345                                                                                       | -1.3307754898050916e-10                                                    |
| 1.5750                                                                                 | 46.67212916188523                                                                                       | 46.67212916202471                                                                                        | -1.3947953902970767e-10                                                    |
| 1.5875                                                                                 | 47.85363973675006                                                                                       | 47.85363973689618                                                                                        | -1.46116008181707e-10                                                      |
| 1.6000                                                                                 | 49.06506039421848                                                                                       | 49.065060394371486                                                                                       | -1.5300827271857997e-10                                                    |
| 1.6125                                                                                 | 50.307148311636496                                                                                      | 50.307148311796645                                                                                       | -1.6014922721296898e-10                                                    |
| 1.6250                                                                                 | 51.58067983438588                                                                                       | 51.58067983455344                                                                                        | -1.6756018794694683e-10                                                    |
|                                                                                        | 52.886450961125334                                                                                      |                                                                                                          | -1.752340494931559e-10                                                     |
| 1.6375                                                                                 |                                                                                                         | 52.88645096130057                                                                                        |                                                                            |
| 1.6500                                                                                 | 54.22527784131552                                                                                       | 54.2252778414987                                                                                         | -1.8318502270631143e-10                                                    |
| 1.6625                                                                                 | 55.597997285339055                                                                                      | 55.59799728553049                                                                                        | -1.914344238684862e-10                                                     |
| 1.6750                                                                                 | 57.00546728753427                                                                                       | 57.00546728773426                                                                                        | -1.999893584070378e-10                                                     |
| 1.6875                                                                                 | 58.448567562469584                                                                                      | 58.448567562678434                                                                                       | -2.0884982632196625e-10                                                    |
| 1.7000                                                                                 | 59.928200094793716                                                                                      | 59.928200095011746                                                                                       | -2.1803003846798674e-10                                                    |
| 1.7125                                                                                 | 61.4452897030055                                                                                        | 61.445289703233044                                                                                       | -2.2754420569981448e-10                                                    |
| 1.7250                                                                                 | 63.000784617495526                                                                                      | 63.00078461773292                                                                                        | -2.3739232801744947e-10                                                    |
| 1.7375                                                                                 | 64.595657073221                                                                                         | 64.5956570734686                                                                                         | -2.475957217029645e-10                                                     |
| 1.7500                                                                                 | 66.23090391738427                                                                                       | 66.23090391764244                                                                                        | -2.581685976110748e-10                                                     |
|                                                                                        |                                                                                                         |                                                                                                          |                                                                            |
| 1.7625                                                                                 | 67.90754723249471                                                                                       | 67.90754723276383                                                                                        | -2.6912516659649555e-10                                                    |
| 1.7750                                                                                 | 69.62663497520364                                                                                       | 69.62663497548411                                                                                        | -2.8046542865922675e-10                                                    |
| 1.7875                                                                                 | 71.38924163131134                                                                                       | 71.38924163160354                                                                                        | -2.922035946539836e-10                                                     |
| 1.8000                                                                                 | 73.19646888735555                                                                                       | 73.1964688876599                                                                                         | -3.043538754354813e-10                                                     |
| 1.8125                                                                                 | 75.04944631920155                                                                                       | 75.0494463195185                                                                                         | -3.169446927131503e-10                                                     |
| 1.8250                                                                                 | 76.94933209806378                                                                                       | 76.94933209839375                                                                                        | -3.2997604648699053e-10                                                    |
| 1.8375                                                                                 | 78.89731371440057                                                                                       | 78.89731371474402                                                                                        | -3.43447936757002e-10                                                      |
| 1.8500                                                                                 | 80.89460872013427                                                                                       | 80.89460872049168                                                                                        | -3.574029960873304e-10                                                     |
| 1.8625                                                                                 | 82.94246548966098                                                                                       | 82.94246549003282                                                                                        | -3.7184122447797563e-10                                                    |
|                                                                                        | 85.04216400012503                                                                                       | 85.04216400051179                                                                                        | -3.8676262192893773e-10                                                    |
| 1.8750                                                                                 | 87.19501663144642                                                                                       | 87.19501663184865                                                                                        | -4.022240318590775e-10                                                     |
| 1.8750                                                                                 |                                                                                                         |                                                                                                          |                                                                            |
| 1.8875                                                                                 | 89.40236898660106                                                                                       | 89.40236898701927                                                                                        | -4.1821124341367977e-10                                                    |
| 1.8875<br>1.9000                                                                       | 04 0050007777                                                                                           | 91.66560073310107                                                                                        | -4.347668891568901e-10                                                     |
| 1.8875<br>1.9000<br>1.9125                                                             | 91.6656007326663                                                                                        |                                                                                                          | -4.518625473792781e-10                                                     |
| 1.8875<br>1.9000                                                                       | 91.6656007326663<br>93.98612646315793                                                                   | 93.98612646360979                                                                                        |                                                                            |
| 1.8875<br>1.9000<br>1.9125                                                             | !                                                                                                       | 96.36539658266653                                                                                        | -4.695692723544198e-10                                                     |
| 1.8875<br>1.9000<br>1.9125<br>1.9250                                                   | 93.98612646315793                                                                                       |                                                                                                          |                                                                            |
| 1.8875<br>1.9000<br>1.9125<br>1.9250<br>1.9375<br>1.9500                               | 93.98612646315793<br>96.36539658219696                                                                  | 96.36539658266653<br>98.80489821154752                                                                   | -4.695692723544198e-10<br>-4.878586423728848e-10<br>-5.067875008535339e-10 |
| 1.8875<br>1.9000<br>1.9125<br>1.9250<br>1.9375<br>1.9500<br>1.9625                     | 93.98612646315793<br>96.36539658219696<br>98.80489821105967<br>101.30615611767655                       | 96.36539658266653<br>  98.80489821154752<br>  101.30615611818334                                         | -4.878586423728848e-10<br>-5.067875008535339e-10                           |
| 1.8875<br>1.9000<br>1.9125<br>1.9250<br>1.9375<br>1.9500<br>1.9625<br>1.9750           | 93.98612646315793<br>96.36539658219696<br>98.80489821105967<br>101.30615611767655<br>103.87073366966213 | 96.36539658266653<br>  98.80489821154752<br>  101.30615611818334<br>  103.87073367018849                 | -4.878586423728848e-10<br>-5.067875008535339e-10<br>-5.26355847796367e-10  |
| 1.8875<br>1.9000<br>1.9125<br>1.9250<br>1.9375<br>1.9500<br>1.9625<br>1.9750<br>1.9875 | 93.98612646315793<br>96.36539658219696<br>98.80489821105967<br>101.30615611767655                       | 96.36539658266653<br>98.80489821154752<br>101.30615611818334<br>103.87073367018849<br>106.50023381201706 | -4.878586423728848e-10<br>-5.067875008535339e-10                           |

Рис. 16. Результат исследования при h = 0.0125

Из приведенных значений (рис. 13-16) видно, что не смотря на странности с погрешностью, значения все еще соответствуют ожиданиям, а именно:

1. При уменьшении шага точность увеличивается.

- 2. Чем дальше от начальных значений, тем меньше точность вычисленных результатов.
- 3. Результаты очень близки к реальным значениям.

Вероятнее всего ошибка кроется в реализации программы RKF45, однако для подтверждения необходимо читать исходный код используемой библиотеки.

### Вывод:

В ходе выполненной работы мы привели линейное дифференциальное уравнение к системе двух дифференциальных уравнений первого порядка, после чего решили эту систему при заданных НУ, используя методы Рунге-Кутты третьей степени точности, а также программу RKF45. Была найдена зависимость шага интегрирования h и величины глобальной и локальной погрешности а также наглядно продемонстрирована разница между используемыми методами.

## Листинг кода:

```
import numpy as np
from scipy.integrate import ode
import matplotlib as mpl
import matplotlib.pyplot as plt
from prettytable import PrettyTable
def rkf45(f, T, X0):
   Решает x' = f(t, x) для каждого t B T
   С начальным значением `X0`, используя аналог rkf45
   return np.array([i[0] for i in X]), np.array([i[1] for i in X])
def RK3(f, T, X0):
   Решает x' = f(t, x) для каждого t B T
   С начальным значением `ХО`, используя формулы Рунге-Кутты 3 степени
   X = np.zeros((len(T), len(X0)))
   X[0] = X0
h = T[1] - T[0]
   for i in range(0, len(T) - 1):
       k_1 = h * f(T[i], X[i])
       k_2 = h * f(T[i] + h / 2, X[i] + k_1 / 2)
       k_3 = h * f(T[i] + 3 * h / 4, X[i] + 3 * k_2 / 4)
       X[i + 1] = (X[i] + (2 * k 1 + 3 * k 2 + 4 * k 3) / 9)
   return X[:, 0]
def f(t, X):
   Правая часть x' = f(t, x).
   dX = np.zeros(X.shape)
   dX[0] = X[1]
   dX[1] = (t + 1) / t * X[1] + 2 * (t - 1) / t * X[0]
   return dX
def g(T):
   Точное решение
   return np.e ** (2 * T)
def print_one_graph(t, y, title, id, count_graphs):
   Функция для отрисовки одного графика
   plt.subplot(1, count_graphs, id)
   plt.xlabel('t')
   plt.ylabel('y')
   plt.grid()
   plt.title(title)
   plt.plot(t, y, '-o')
```

```
def print graph(t find, y real, Y RKF45, Y Runge Kutta, h):
    Функция для отрисовки всех графиков
    mpl.use('TkAgg')
    plt.figure(figsize=(15, 4))
    print_one_graph(t_find, y_real, 'Исходный график', 1, 3)
print_one_graph(t_find, Y_RKF45, 'График RKF45', 2, 3)
print_one_graph(t_find, Y_Runge_Kutta, 'График Рунге-Кутты', 3, 3)
    plt.savefig(f"Graphs_{h}.jpg")
    plt.show()
def print_error_graph(t_find, Y_RKF45_error, Y_Runge_Kutta_error, h):
    Функция для отрисовки погрешности
    mpl.use('TkAgg')
    plt.figure(figsize=(15, 4))
    # Собственно сам график
    print_one_graph(t_find, Y_RKF45_error, 'Погрешность RKF45', 1, 2)
    print_one_graph(t_find, Y_Runge_Kutta_error, 'Погрешность Рунге-Кутты', 2, 2)
    plt.savefig(f"Error_{h}.jpg")
    plt.show()
def print_table(t_find, y_real, Y_RKF45, Y_RKF45_error, Y_Runge_Kutta,
Y_Runge_Kutta_error, h):
    Функция для отрисовки таблицы
    print(f'h = {h}')
    koef = {0.1: 1, 0.05: 2, 0.025: 4, 0.0125: 8}.get(h)
    pt = PrettyTable()
    pt.add_column('t', [f'{i:.1f}' for i in t_find[::koef]])
    pt.add_column('real y', [f'{i:.15f}' for i in y_real[::koef]])
pt.add_column('RKF45 y', [f'{i:.15f}' for i in Y_RKF45[::koef]])
    pt.add_column('Delta RKF45 y', [f'{i:.15f}' for i in Y_RKF45_error[::koef]])
    pt.add_column('Runge Kutta y', [f'{i:.15f}' for i in Y_Runge_Kutta[::koef]])
    pt.add_column('Delta Runge Kutta y', [f'{i:.15f}' for i in
Y_Runge_Kutta_error[::koef]])
    print(pt)
    print('First step of RKF45:', Y_RKF45_error[1])
    print('First step of Runge Kutta:', Y_Runge_Kutta_error[1])
    print('Global of RKF45:', Y_RKF45_error.sum())
    print('Global of Runge Kutta:', Y_Runge_Kutta_error.sum())
    print('h^4 is about:', h ** 4)
    print('h^4 / Runge Kutta first step:', h ** 4 / Y_Runge_Kutta_error[1])
def print additiontal research(T, Y derivative real, Y derivative RKF45):
    pt = PrettyTable()
    pt.add_column("T", [f'{i:.4f}' for i in T])
pt.add_column("Y' real", Y_derivative_real)
pt.add_column("Y' RKF45", Y_derivative_RKF45)
    pt.add_column("Y' delta", Y_derivative_real - Y_derivative_RKF45)
    print(pt)
    print('=' * 110)
```

```
def evaluate(h):
   Получение решения при разных шагах
    # Начальные значения
   X0 = np.array([np.e ** 2, 2 * np.e ** 2])
   # Значения в узлах
    T = np.arange(1, 2 + h, h)
   Y = g(T)
   # Расчет RKF45
   Y_RKF45, Y_derivative_RKF45 = rkf45(f, T, X0)
   # Расчет Рунге-Кутты
   Y Runge Kutta = RK3(f, T, X0)
   # Погрешности
   Y_RKF45_error = Y - Y_RKF45
   Y Runge Kutta error = Y - Y Runge Kutta
   # Рисуем графики
   print_graph(T, Y, Y_RKF45, Y_Runge_Kutta, h)
   print_error_graph(T, Y_RKF45_error, Y_Runge_Kutta_error, h)
   # Выводим данные в консоль
   print_table(T, Y, Y_RKF45, Y_RKF45_error, Y_Runge_Kutta, Y_Runge_Kutta_error, h)
    # Вывод для дополнительных исследований
   print_additiontal_research(T, 2 * (np.e ** (2 * T)), Y_derivative_RKF45)
    return Y_RKF45_error, Y_Runge_Kutta_error
def print_table_error(Y_RKF45_error, Y_Runge_Kutta_error, h_list):
   pt = PrettyTable()
    pt.add column('h', [f'{i:.4f}' for i in h list])
   pt.add column("Runge Kutta Error local", [f'{i[1]:.15f}' for i in
Y_Runge_Kutta_error])
   pt.add_column('h**4 / Runge Kutta Error local',
                  [f'{i ** 4 / j[1]:.15f}' for i, j in zip(h_list, Y_Runge_Kutta_error)])
    print(pt)
    pt.clear()
   pt.add_column('h', [f'{i:.4f}' for i in h_list])
    pt.add column("Runge Kutta Error global", [f'{i.sum():.15f}' for i in
Y_Runge_Kutta_error])
   pt.add_column('h**2 / Runge Kutta Error global',
                 [f'{i ** 2 / j.sum():.15f}' for i, j in zip(h_list,
Y_Runge_Kutta_error)])
   print(pt)
    pt.clear()
   pt.add_column('h', [f'{i:.4f}' for i in h_list])
   pt.add_column("RKF45 Error local", [f'{i[1]:.15f}' for i in Y_RKF45_error])
    pt.add_column("RKF45 Error global", [f'{i.sum():.15f}' for i in Y RKF45 error])
   pt.add_column("Runge Kutta Error local", [f'{i[1]:.15f}' for i in
Y_Runge_Kutta_error])
    pt.add_column("Runge Kutta Error global", [f'{i.sum():.15f}' for i in
Y Runge Kutta error])
   print(pt)
def main():
   h_list = [0.1 / (2 ** i) for i in range(4)]
    Y_RKF45_error = []
   Y_Runge_Kutta_error = []
    for h in h_list:
       error = evaluate(h)
        Y_RKF45_error.append(error[0])
       Y_Runge_Kutta_error.append(error[1])
    print table error(Y RKF45 error, Y Runge Kutta error, h list)
if __name__ == '__main__':
    main()
```

# Ссылки:

Листинг код: github.com

Документация по SciPy: docs.scipy.org