

Applied Machine Learning

Lecture 13
Unsupervised Learning
(Clustering)

Ekarat Rattagan, Ph.D.

Outline

- 1. Unsupervised learning
- 2. K-means algorithm
- 3. Optimization objective
- 4. Random initialization
- 5. Choosing the number of clusters

Unsupervised Learning

Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Applications of clustering

Market segmentation

Organize computing clusters

Social network analysis

Astronomical data analysis

K-means algorithm

K-means optimization objective

 $c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned

 μ_k = cluster centroid k ($\mu_k \in \mathbb{R}^n$)

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)}, \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

K-means algorithm

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n
Repeat {
          for i = 1 to m
              c^{(i)} = index (from 1 to K ) of cluster centroid closest to \boldsymbol{x}^{(i)}
          for k = 1 to K
                \mu_k := average (mean) of points assigned to cluster k
```


Limitation of K-Means

Limitation

- 1. The user has to specify k (the number of clusters) in the beginning.
- 2.Initial seeds have a strong impact on the final results.

Choosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Choosing the value of K

Silhouette analysis:

$$s(i) = \begin{cases} 1 - \frac{a(i)}{b(i)} & \text{if } a(i) < b(i) \\ 0 & \text{if } a(i) = b(i) \\ \frac{b(i)}{a(i)} - 1 & \text{if } a(i) > b(i) \end{cases}$$
 a(i) : the average distance between 'i' and all other data within the same cluster
$$s(i) = \begin{cases} 1 - \frac{a(i)}{b(i)} & \text{if } a(i) < b(i) \\ 0 & \text{other data within the same cluster} \end{cases}$$
 b(i) : the lowest average distance of 'i' to all points in any other clusters, of which 'i' is not a member

a(i): the average distance between 'i' and all

member

This metric ranges from -1 to 1 for each observation in your data and can be interpreted as follows:

- Values close to 1 suggest that the observation is well matched to the assigned cluster
- Values close to 0 suggest that the observation is borderline matched between two clusters
- Values close to -1 suggest that the observations may be assigned to the wrong cluster

Choosing the value of K

Silhouette analysis:

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

Random initialization

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n$

```
Repeat {  for \ i = 1 \ to \ m   c^{(i)} := index \ (from 1 \ to \ K) \ of \ cluster \ centroid   closest \ to \ x^{(i)}   for \ k = 1 \ to \ K   \mu_k := average \ (mean) \ of \ points \ assigned \ to \ cluster \ k  }
```

Random initialization

Should have K < m

Randomly pick K training examples.

Set μ_1, \dots, μ_K equal to these K examples.

Solution I

Random initialization

```
For i = 1 to 100 {  \text{Randomly initialize K-means.} \\ \text{Run K-means. Get } c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K \\ \text{Compute cost function (distortion)} \\ J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K) \\ \}
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Solution II

Random initialization

The k-means++ algorithm

We propose a specific way of choosing centers for the k-means algorithm. In particular, let D(x) denote the shortest distance from a data point to the closest center we have already chosen. Then, we define the following algorithm, which we call k-means++.

- 1a. Take one center c_1 , chosen uniformly at random from \mathcal{X} .
- 1b. Take a new center c_i , choosing $x \in \mathcal{X}$ with probability $\frac{D(x)^2}{\sum_{x \in \mathcal{X}} D(x)^2}$. (Assign probability to each x)
- 1c. Repeat Step 1b. until we have taken k centers altogether.

Arthur, David, and Sergei Vassilvitskii. "k-means++: The Advantages of Careful Seeding."

Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We begin by randomly selecting (7,4) to be a cluster center.

X	prob
(7,4)	-
(8,3)	2/103
(5,9)	29/103
(3,3)	17/103
(1,3)	37/103
(10,1)	18/103

Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We add (1,3) to the list of cluster centers.

X	prob
(7,4)	-
(8,3)	2/53
(5,9)	29/53
(3,3)	4/53
(1,3)	-
(10,1)	18/53

Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We add (5,9) to the list of cluster centers.

X	prob
(7,4)	-
(8,3)	
(5,9)	-
(3,3)	
(1,3)	-
(10,1)	

