Package 'ADMM'

October 12, 2022

00000112, 2022
Type Package
Title Algorithms using Alternating Direction Method of Multipliers
Version 0.3.3
Description Provides algorithms to solve popular optimization problems in statistics such as regression or denoising based on Alternating Direction Method of Multipliers (ADMM). See Boyd et al (2010) <doi:10.1561 2200000016=""> for complete introduction to the method.</doi:10.1561>
License GPL (>= 3)
Encoding UTF-8
Imports Rcpp, Matrix, Rdpack, stats, doParallel, foreach, parallel, utils
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.1
RdMacros Rdpack
NeedsCompilation yes
Author Kisung You [aut, cre] (https://orcid.org/0000-0002-8584-459X), Xiaozhi Zhu [aut]
Maintainer Kisung You <kisungyou@outlook.com></kisungyou@outlook.com>
Repository CRAN
Date/Publication 2021-08-08 04:20:08 UTC
24.67 4.67.44.54. 2021 00 00 0 1120100 0 10
R topics documented:
ADMM admm.bp admm.enet admm.genlasso admm.lad admm.lasso admm.rpca admm.sdp admm.spca admm.spca 1
admm.tv

2 admm.bp

Index 20

ADMM : Algorithms using Alternating Direction Method of Multipliers

Description

An introduction of Alternating Direction Method of Multipliers (ADMM) method has been a break-through in solving complex and non-convex optimization problems in a reasonably stable as well as scalable fashion. Our package aims at providing handy tools for fast computation on well-known problems using the method. For interested users/readers, please visit Prof. Stephen Boyd's website entirely devoted to the topic.

admm.bp

Basis Pursuit

Description

For an underdetermined system, Basis Pursuit aims to find a sparse solution that solves

$$\min_{x} ||x||_1$$
 s.t $Ax = b$

which is a relaxed version of strict non-zero support finding problem. The implementation is borrowed from Stephen Boyd's MATLAB code.

Usage

```
admm.bp(
   A,
   b,
   xinit = NA,
   rho = 1,
   alpha = 1,
   abstol = 1e-04,
   reltol = 0.01,
   maxiter = 1000
)
```

Arguments

```
an (m \times n) regressor matrix
Α
b
                   a length-m response vector
xinit
                   a length-n vector for initial value
rho
                   an augmented Lagrangian parameter
alpha
                   an overrelaxation parameter in [1,2]
abstol
                   absolute tolerance stopping criterion
reltol
                   relative tolerance stopping criterion
                   maximum number of iterations
maxiter
```

admm.bp 3

Value

a named list containing

 \mathbf{x} a length-n solution vector

history dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

```
    objval object (cost) function value
    r_norm norm of primal residual
    s_norm norm of dual residual
    eps_pri feasibility tolerance for primal feasibility condition
    eps_dual feasibility tolerance for dual feasibility condition
```

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

```
## generate sample data
n = 30
m = 10
A = matrix(rnorm(n*m), nrow=m) # design matrix
x = c(stats::rnorm(3),rep(0,n-3)) # coefficient
x = base::sample(x)
b = as.vector(A%*%x)
                                  # response
## run example
output = admm.bp(A, b)
niter = length(output$history$s_norm)
history = output$history
## report convergence plot
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
```

4 admm.enet

admm.enet

Elastic Net Regularization

Description

Elastic Net regularization is a combination of ℓ_2 stability and ℓ_1 sparsity constraint simulatenously solving the following,

$$\min_x \frac{1}{2} \|Ax - b\|_2^2 + \lambda_1 \|x\|_1 + \lambda_2 \|x\|_2^2$$

with nonnegative constraints λ_1 and λ_2 . Note that if both lambda values are 0, it reduces to least-squares solution.

Usage

```
admm.enet(
    A,
    b,
    lambda1 = 1,
    lambda2 = 1,
    rho = 1,
    abstol = 1e-04,
    reltol = 0.01,
    maxiter = 1000
)
```

Arguments

A	an $(m \times n)$ regressor matrix
b	a length- m response vector
lambda1	a regularization parameter for ℓ_1 term
lambda2	a regularization parameter for ℓ_2 term
rho	an augmented Lagrangian parameter
abstol	absolute tolerance stopping criterion
reltol	relative tolerance stopping criterion
maxiter	maximum number of iterations

Value

a named list containing

 ${\bf x}$ a length-n solution vector

history dataframe recording iteration numerics. See the section for more details.

admm.enet 5

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

```
objval object (cost) function value
r_norm norm of primal residual
s_norm norm of dual residual
eps_pri feasibility tolerance for primal feasibility condition
eps_dual feasibility tolerance for dual feasibility condition
```

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

Author(s)

Xiaozhi Zhu

References

Zou H, Hastie T (2005). "Regularization and variable selection via the elastic net." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **67**(2), 301–320. ISSN 1369-7412, 1467-9868, doi: 10.1111/j.14679868.2005.00503.x.

See Also

```
admm.lasso
```

```
## generate underdetermined design matrix
m = 50
n = 100
p = 0.1
          # percentange of non-zero elements
x0 = matrix(Matrix::rsparsematrix(n,1,p))
A = matrix(rnorm(m*n),nrow=m)
for (i in 1:ncol(A)){
  A[,i] = A[,i]/sqrt(sum(A[,i]*A[,i]))
b = A%*%x0 + sqrt(0.001)*matrix(rnorm(m))
## run example with both regularization values = 1
output = admm.enet(A, b, lambda1=1, lambda2=1)
niter = length(output$history$s_norm)
history = output$history
## report convergence plot
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
```

6 admm.genlasso

```
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
```

admm.genlasso

Generalized LASSO

Description

Generalized LASSO is solving the following equation,

$$\min_x \, \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|Dx\|_1$$

where the choice of regularization matrix D leads to different problem formulations.

Usage

```
admm.genlasso(
    A,
    b,
    D = diag(length(b)),
    lambda = 1,
    rho = 1,
    alpha = 1,
    abstol = 1e-04,
    reltol = 0.01,
    maxiter = 1000
)
```

Arguments

A	an $(m \times n)$ regressor matrix
b	a length- m response vector
D	a regularization matrix of n columns
lambda	a regularization parameter
rho	an augmented Lagrangian parameter
alpha	an overrelaxation parameter in [1,2]
abstol	absolute tolerance stopping criterion
reltol	relative tolerance stopping criterion
maxiter	maximum number of iterations

admm.genlasso 7

Value

```
a named list containing
```

 \mathbf{x} a length-n solution vector

history dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

```
objval object (cost) function valuer_norm norm of primal residual
```

s_norm norm of dual residual

eps_pri feasibility tolerance for primal feasibility condition

eps_dual feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

Author(s)

Xiaozhi Zhu

References

Tibshirani RJ, Taylor J (2011). "The solution path of the generalized lasso." *The Annals of Statistics*, **39**(3), 1335–1371. ISSN 0090-5364, doi: 10.1214/11AOS878.

Zhu Y (2017). "An Augmented ADMM Algorithm With Application to the Generalized Lasso Problem." *Journal of Computational and Graphical Statistics*, **26**(1), 195–204. ISSN 1061-8600, 1537-2715, doi: 10.1080/10618600.2015.1114491.

```
## generate sample data
m = 100
n = 200
p = 0.1  # percentange of non-zero elements

x0 = matrix(Matrix::rsparsematrix(n,1,p))
A = matrix(rnorm(m*n),nrow=m)
for (i in 1:ncol(A)){
    A[,i] = A[,i]/sqrt(sum(A[,i]*A[,i]))
}
b = A%*%x0 + sqrt(0.001)*matrix(rnorm(m))
D = diag(n);

## set regularization lambda value
regval = 0.1*Matrix::norm(t(A)%*%b, 'I')
```

8 admm.lad

```
## solve LASSO via reducing from Generalized LASSO
output = admm.genlasso(A,b,D,lambda=regval) # set D as identity matrix
niter = length(output$history$s_norm)
history = output$history

## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)</pre>
```

admm.lad

Least Absolute Deviations

Description

Least Absolute Deviations (LAD) is an alternative to traditional Least Sqaures by using cost function

$$\min_{x} \|Ax - b\|_1$$

to use ℓ_1 norm instead of square loss for robust estimation of coefficient.

Usage

```
admm.lad(
    A,
    b,
    xinit = NA,
    rho = 1,
    alpha = 1,
    abstol = 1e-04,
    reltol = 0.01,
    maxiter = 1000
)
```

Arguments

```
Α
                   an (m \times n) regressor matrix
b
                   a length-m response vector
xinit
                   a length-n vector for initial value
                   an augmented Lagrangian parameter
rho
alpha
                   an overrelaxation parameter in [1,2]
abstol
                   absolute tolerance stopping criterion
reltol
                   relative tolerance stopping criterion
                   maximum number of iterations
maxiter
```

admm.lad 9

Value

a named list containing

 \mathbf{x} a length-n solution vector

history dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

```
objval object (cost) function value
r_norm norm of primal residual
s_norm norm of dual residual
eps_pri feasibility tolerance for primal feasibility condition
eps_dual feasibility tolerance for dual feasibility condition
```

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

```
## generate data
m = 1000
n = 100
A = matrix(rnorm(m*n), nrow=m)
x = 10*matrix(rnorm(n))
## add impulsive noise to 10% of positions
idx = sample(1:m, round(m/10))
b[idx] = b[idx] + 100*rnorm(length(idx))
## run the code
output = admm.lad(A,b)
niter = length(output$history$s_norm)
history = output$history
## report convergence plot
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
```

10 admm.lasso

admm.lasso

Least Absolute Shrinkage and Selection Operator

Description

LASSO, or L1-regularized regression, is an optimization problem to solve

$$\min_x \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1$$

for sparsifying the coefficient vector x. The implementation is borrowed from Stephen Boyd's MATLAB code.

Usage

```
admm.lasso(
    A,
    b,
    lambda = 1,
    rho = 1,
    alpha = 1,
    abstol = 1e-04,
    reltol = 0.01,
    maxiter = 1000
)
```

Arguments

A	an $(m \times n)$ regressor matrix
b	a length- m response vector
lambda	a regularization parameter
rho	an augmented Lagrangian parameter
alpha	an overrelaxation parameter in [1,2]
abstol	absolute tolerance stopping criterion
reltol	relative tolerance stopping criterion
maxiter	maximum number of iterations

Value

a named list containing

 \mathbf{x} a length-n solution vector

history dataframe recording iteration numerics. See the section for more details.

admm.lasso 11

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

```
    objval object (cost) function value
    r_norm norm of primal residual
    s_norm norm of dual residual
    eps_pri feasibility tolerance for primal feasibility condition
    eps_dual feasibility tolerance for dual feasibility condition
```

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

References

Tibshirani R (1996). "Regression Shrinkage and Selection via the Lasso." *Journal of the Royal Statistical Society. Series B (Methodological)*, **58**(1), 267–288. ISSN 00359246.

```
## generate sample data
m = 50
n = 100
p = 0.1
          # percentange of non-zero elements
x0 = matrix(Matrix::rsparsematrix(n,1,p))
A = matrix(rnorm(m*n),nrow=m)
for (i in 1:ncol(A)){
  A[,i] = A[,i]/sqrt(sum(A[,i]*A[,i]))
b = A\% *\% x0 + sqrt(0.001) *matrix(rnorm(m))
## set regularization lambda value
lambda = 0.1*base::norm(t(A)%*%b, "F")
## run example
output = admm.lasso(A, b, lambda)
niter = length(output$history$s_norm)
history = output$history
## report convergence plot
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
```

12 admm.rpca

admm.rpca

Robust Principal Component Analysis

Description

Given a data matrix M, it finds a decomposition

$$\min \|L\|_* + \lambda \|S\|_1 \quad \text{s.t.} \quad L + S = M$$

where $||L||_*$ represents a nuclear norm for a matrix L and $||S||_1 = \sum |S_{i,j}|$, and λ a balancing/regularization parameter. The choice of such norms leads to impose low-rank property for Land *sparsity* on S.

Usage

```
admm.rpca(
 Μ,
 lambda = 1/sqrt(max(nrow(M), ncol(M))),
 mu = 1,
  tol = 1e-07,
 maxiter = 1000
)
```

Arguments

М an $(m \times n)$ data matrix lambda a regularization parameter

mu an augmented Lagrangian parameter tol relative tolerance stopping criterion maximum number of iterations maxiter

Value

a named list containing

L an $(m \times n)$ low-rank matrix

S an $(m \times n)$ sparse matrix

history dataframe recording iteration numerics. See the section for more details.

Iteration History

For RPCA implementation, we chose a very simple stopping criterion

$$||M - (L_k + S_k)||_F \le tol * ||M||_F$$

for each iteration step k. So for this method, we provide a vector of only relative errors,

error relative error computed

admm.sdp 13

References

Candès EJ, Li X, Ma Y, Wright J (2011). "Robust principal component analysis?" *Journal of the ACM*, **58**(3), 1–37. ISSN 00045411, doi: 10.1145/1970392.1970395.

Examples

```
## generate data matrix from standard normal
X = matrix(rnorm(20*5),nrow=5)

## try different regularization values
out1 = admm.rpca(X, lambda=0.01)
out2 = admm.rpca(X, lambda=0.1)
out3 = admm.rpca(X, lambda=1)

## visualize sparsity
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
image(out1$S, main="lambda=0.01")
image(out2$S, main="lambda=0.1")
image(out3$S, main="lambda=1")
par(opar)</pre>
```

admm.sdp

Semidefinite Programming

Description

We solve the following standard semidefinite programming (SDP) problem

$$\min_{X} \operatorname{tr}(CX)$$
s.t. $A(X) = b, \ X \ge 0$

with $A(X)_i = \operatorname{tr}(A_i^\top X) = b_i$ for $i = 1, \dots, m$ and $X \ge 0$ stands for positive-definiteness of the matrix X. In the standard form, matrices C, A_1, A_2, \dots, A_m are symmetric and solution X would be symmetric and positive semidefinite. This function implements alternating direction augmented Lagrangian methods.

Usage

```
admm.sdp(
    C,
    A,
    b,
    mu = 1,
    rho = 1,
    abstol = 1e-10,
    maxiter = 496,
    print.progress = FALSE
)
```

14 admm.sdp

Arguments

C an $(n \times n)$ symmetric matrix for cost.

A a length-m list of $(n \times n)$ symmetric matrices for constraint.

b a length-m vector for equality condition.

mu penalty parameter; positive real number.

 $\text{ rho } \qquad \qquad \text{step size for updating in } \big(0, \tfrac{1+\sqrt{5}}{2}\big).$

abstol absolute tolerance stopping criterion.

maxiter maximum number of iterations.

print.progress a logical; TRUE to show the progress, FALSE to go silent.

Value

a named list containing

 \mathbf{x} a length-n solution vector

history dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

objval object (cost) function value

eps_pri feasibility tolerance for primal feasibility condition

eps_dual feasibility tolerance for dual feasibility condition

gap gap between primal and dual cost function.

We use the stopping criterion which breaks the iteration when all eps_pri,eps_dual, and gap become smaller than abstol.

Author(s)

Kisung You

References

Wen Z, Goldfarb D, Yin W (2010). "Alternating direction augmented Lagrangian methods for semidefinite programming." *Mathematical Programming Computation*, **2**(3-4), 203–230. ISSN 1867-2949, 1867-2957, doi: 10.1007/s1253201000171.

admm.spca 15

```
## a toy example
# generate parameters
C = matrix(c(1,2,3,2,9,0,3,0,7),nrow=3,byrow=TRUE)
A1 = matrix(c(1,0,1,0,3,7,1,7,5),nrow=3,byrow=TRUE)
A2 = matrix(c(0,2,8,2,6,0,8,0,4),nrow=3,byrow=TRUE)
A = list(A1, A2)
b = c(11, 19)
# run the algorithm
run = admm.sdp(C,A,b)
hst = run$history
# visualize
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(2,2))
plot(hst$objval, type="b", cex=0.25, main="objective value")
plot(hst$eps_pri, type="b", cex=0.25, main="primal feasibility")
plot(hst$eps_dual, type="b", cex=0.25, main="dual feasibility")
                type="b", cex=0.25, main="primal-dual gap")
plot(hst$gap,
par(opar)
## Not run:
## comparison with CVXR's result
require(CVXR)
# problems definition
X = Variable(3,3,PSD=TRUE)
myobj = Minimize(sum_entries(C*X)) # objective
                                   # constraint
mycon = list(
  sum_entries(A[[1]]*X) == b[1],
  sum_entries(A[[2]]*X) == b[2]
myp = Problem(myobj, mycon)
                                   # problem
# run and visualize
res = solve(myp)
Xsol = res$getValue(X)
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(run$X, axes=FALSE, main="ADMM result")
image(Xsol, axes=FALSE, main="CVXR result")
par(opar)
## End(Not run)
```

16 admm.spca

Description

Sparse Principal Component Analysis aims at finding a sparse vector by solving

$$\max_{x} x^{T} \Sigma x$$
 s.t. $||x||_{2} \le 1$, $||x||_{0} \le K$

where $||x||_0$ is the number of non-zero elements in a vector x. A convex relaxation of this problem was proposed to solve the following problem,

$$\max_{X} < \Sigma, X > \text{ s.t. } Tr(X) = 1, \ \|X\|_{0} \le K^{2}, \ X \ge 0, \ \text{rank}(X) = 1$$

where $X = xx^T$ is a $(p \times p)$ matrix that is outer product of a vector x by itself, and $X \ge 0$ means the matrix X is positive semidefinite. With the rank condition dropped, it can be restated as

$$\max_{X} < \Sigma, X > -\rho ||X||_1$$
 s.t. $Tr(X) = 1, X \ge 0$.

After acquiring each principal component vector, an iterative step based on Schur complement deflation method is applied to regress out the impact of previously-computed projection vectors. It should be noted that those sparse basis may *not be orthonormal*.

Usage

```
admm.spca(
    Sigma,
    numpc,
    mu = 1,
    rho = 1,
    abstol = 1e-04,
    reltol = 0.01,
    maxiter = 1000
)
```

Arguments

Sigma a $(p \times p)$ (sample) covariance matrix. numpc number of principal components to be extracted. mu an augmented Lagrangian parameter. rho a regularization parameter for sparsity. abstol absolute tolerance stopping criterion. reltol relative tolerance stopping criterion. maxiter maximum number of iterations.

Value

a named list containing

basis a $(p \times numpc)$ matrix whose columns are sparse principal components.

history a length-numpc list of dataframes recording iteration numerics. See the section for more details.

admm.tv 17

Iteration History

For SPCA implementation, main computation is sequentially performed for each projection vector. The history field is a list of length numpc, where each element is a data frame containing iteration history recording following fields over iterates,

r_norm norm of primal residual

s_norm norm of dual residual

eps_pri feasibility tolerance for primal feasibility condition

eps_dual feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

References

Ma S (2013). "Alternating Direction Method of Multipliers for Sparse Principal Component Analysis." *Journal of the Operations Research Society of China*, **1**(2), 253–274. ISSN 2194-668X, 2194-6698, doi: 10.1007/s4030501300169.

Examples

```
## generate a random matrix and compute its sample covariance
X = matrix(rnorm(1000*5),nrow=1000)
covX = stats::cov(X)

## compute 3 sparse basis
output = admm.spca(covX, 3)
```

admm.tv

Total Variation Minimization

Description

1-dimensional total variation minimization - also known as signal denoising - is to solve the following

$$\min_{x} \frac{1}{2} \|x - b\|_{2}^{2} + \lambda \sum_{i} |x_{i+1} - x_{i}|$$

for a given signal b. The implementation is borrowed from Stephen Boyd's MATLAB code.

18 admm.tv

Usage

```
admm.tv(
   b,
   lambda = 1,
   xinit = NA,
   rho = 1,
   alpha = 1,
   abstol = 1e-04,
   reltol = 0.01,
   maxiter = 1000
)
```

Arguments

b	a length-m response vector
lambda	regularization parameter
xinit	a length- m vector for initial value
rho	an augmented Lagrangian parameter
alpha	an overrelaxation parameter in $\left[1,2\right]$
abstol	absolute tolerance stopping criterion
reltol	relative tolerance stopping criterion
maxiter	maximum number of iterations

Value

a named list containing

 \mathbf{x} a length-m solution vector

history dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

```
objval object (cost) function value
r_norm norm of primal residual
s_norm norm of dual residual
eps_pri feasibility tolerance for primal feasibility condition
eps_dual feasibility tolerance for dual feasibility condition
```

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

admm.tv 19

```
## generate sample data
x1 = as.vector(sin(1:100)+0.1*rnorm(100))
x2 = as.vector(cos(1:100)+0.1*rnorm(100)+5)
x3 = as.vector(sin(1:100)+0.1*rnorm(100)+2.5)
xsignal = c(x1,x2,x3)

## run example
output = admm.tv(xsignal)

## visualize
opar <- par(no.readonly=TRUE)
plot(1:300, xsignal, type="l", main="TV Regularization")
lines(1:300, output$x, col="red", lwd=2)
par(opar)</pre>
```

Index

```
ADMM, 2
ADMM-package (ADMM), 2
admm.bp, 2
admm.enet, 4
admm.genlasso, 6
admm.lad, 8
admm.lasso, 5, 10
admm.rpca, 12
admm.sdp, 13
admm.spca, 15
admm.tv, 17
```