2021-2022 Session 1

Examen Techniques de Modélisation (durée 2 heures)

Exercice 1

Soit u une fonction régulière. Considérons le schéma aux différences finies suivants :

$$\frac{au_n + bu_{n+1} + cu_{n+2}}{h}$$

où u_n , u_{n+1} et u_{n+2} sont les approximations de $u(x_n)$, $u(x_{n+1})$ et de $u(x_{n+2})$ et h le pas de discrétisation.

Déterminer les réels a, b et c pour que ce schéma soit une approximation d'ordre 2 de $u'(x_n)$.

Exercice 2

Considérons le problème suivant :

$$-u''(x) = f(x)$$
, pour $x \in]0,1[$ avec $u'(0) = 0$ et $u'(1) = 0$

- 1. Montrer que $\int_0^1 f(x) dx = 1$.
- 2. Proposer un schéma d'ordre 2 pour l'équation principale. (Vous démontrerez qu'il est d'ordre 2).
- 3. Proposer une discrétisation d'ordre 1 pour les conditions aux limites.
- 4. Mettre sous forme matricielle ce schéma (équation principale et conditions aux limites).

Exercice 3

Considérons le problème (P_1) suivant :

$$u_t = u_{xx}$$
 pour $x \in \mathbb{R}$ et $t > 0$
 $u(x, 0) = 0$ si $x \le 0$, 1 sinon

1. En faisant le changement de variable u(x,t)=w(y) avec $y=x/\sqrt{t}$, montrer que (P_1) est équivalent à :

$$w''(y) + \frac{y}{2}w'(y) = 0$$

$$w(-\infty) = 0 \text{ et } w(+\infty) = 1$$

- 2. Quelle équation est vérifiée par $v(y) = \exp{(y^2/4)} w'(y)\,?$
- 3. En admettant que:

$$\int_{-\infty}^{+\infty} e^{-\theta^2} d\theta = \sqrt{\pi}$$

montrer que:

$$u(x,t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x/(2\sqrt{t})} e^{-\theta^2} d\theta$$

1

Exercice 4

Considérons le problème (E_1) suivant :

$$(1+t)\partial_t u(t,x) - \partial_{xx}^2 u(t,x) = 0 \quad t \ge 0, \quad x \in [0,1]$$

 $u(t,0) = 0, \quad u(t,1) = 0$
 $u(0,x) = f(x)$

- 1. Résoudre (E_1) en utilisant la méthode de séparation de variables avec :
 - (a) $f(x) = \sin(2\pi x) + \sin(4\pi x)$
 - (b) f(x) = x
- 2. Considérons à présent le problème (E_2) suivant :

$$(1+t)\partial_t u(t,x) - \partial_{xx}^2 u(t,x) = 0 \quad t \ge 0, \quad x \in [0,1]$$

 $u(t,0) = t, \quad u(t,1) = 0$
 $u(0,x) = \sin(2\pi x) + \sin(4\pi x)$

On pose v(t,x) = -t + xt + u(t,x).

- (a) Quel est le problème (E_3) vérifié par v.
- (b) Résoudre le problème homogène associé.
- (c) Comme pourrait-on trouver les solutions de (E_3) ?
- (d) En déduire la solution de (E_2) .