SPETTED.

AC215 • Fall 2023 • Midterm Presentation

GROUP MEMBERS

Alex Coward • Olga Leushina • Jonathan Sessa

PROBLEM STATEMENT

When a pet goes missing, there currently exists a significant **information disconnect** between **lost pet owners** looking for them and **spotters** who find them.

PROPOSED SOLUTION

PROPOSED SOLUTION

Golden Retriever 72.3% Labrador Retriever . . . 12.3% Chesapeake Bay . . . 8.3% Great Pyrenees . . . 5.8%

Match Likelihood: 76.3%

Match Likelihood: 18.7%

Object Detection

Breed Classification

Matching

DATA: BY THE NUMBERS

96,000 DOG BREED IMAGES

REPRESENTED DOG BREEDS

95%
INCLUDE BOUNDING BOXES

161,000 TOTAL IMAGES

65,000

SHELTER DOG IMAGES

14,000

INDIVIDUAL DOGS

DATA: PIPELINE

VERTEX AI PIPELINE

DATA EXTRACTION

DATA TRANSFORMATION

DATA PREPROCESSING

DATA PROCESSING

DATA VERSIONING

MODEL TRAINING

Download compressed images and annotations

Extract data and upload using GCSFuse and Dask/Multiprocessing

Extract labels and rename files using GCSFuse and Multiprocessing

Convert annotations to JSON and common schema

Resize and pad images using GCSFuse and Multiprocessing

Create train/validation/test split stratified on breed

Convert data and annotations to **TFRecords** (96,000 Files -> 17 Files)

Create shards using GCSFuse and Multiprocessing

Create **DVC** files for new datasets

Update **GitHub** with next version number

Select appropriate dataset from GCS depending on model

Train model using **Vertex AI** and save to **GCS**

DATA: OPTIMIZATION

DATA EXTRACTION: Copying 20K Images & 20K Annotations

Uploading one file at a time

GCSFuse & Multiprocessing (4 CPUs)

GCSFuse & Multiprocessing (32 CPUs)

7:53

DATA TRANSFORMATION: Resizing 20K Images & Writing 20K Annotations

MODELING: BREED CLASSIFICATION

Performance on Stanford Dogs Dataset (20K images, 120 Breeds, Colab 10 epochs)

Performance on Full Dataset (96K images, 149 Breeds, serverless 30 epochs)

Best results: EfficientNetV2_B7 after fine-tuning

MODELING: BREED CLASSIFICATION

To prevent overfitting we will proceed with:

- Data augmentation
- Regularization, play with dropout, optimizers, other models
- Dimensionality reduction (breeds)
- Incorporate object detection

Lesson learned: for model distillation Student has to be more comparable to the Teacher

name	optimizer	epochs	batch_size	learning_rate	model_size	accuracy	loss	execution_time	trainable_parameters
EfficientNetV2_train_base	Adam	10	64	0.00001	73.440 MB	83.50%	0.64	9.87 mins	6,014,984
student_distill	Adam	35	64	0.00100	1.532 MB	3.06%	14.19	6.99 mins	377,832
student_scratch	Adam	5	64	0.00100	4.575 MB	2.67%	6.88	0.17 mins	377,832

NEXT STEPS: OBJECT DETECTION

Ground Truth

Model Inference

NEXT STEPS: MATCHING MODEL

VECTOR LIBRARIES

google-research / scann /

VECTOR DATABASES

NEXT STEPS: WEB APPLICATION

Model Improvements

- Additional training and fine-tuning
- Model compression and quantization

Application Development

- Build and design web application
- Test and deploy final application

Model Monitoring

- Incorporate user data into workflow
- Monitor models for data drift

