LEC-4 Deep Generative Modeling	
Unsupervised Learning	
	/ 1,00 / 1, ab., t.
n adia, no labels —	Learn hidden Junderlying structure
Generative modeling	
	les lange some distribution o
Goal: Take as input fraining same learn a model that repr	wents that dishibution
Density estimateon	
Outliner delection	V
Latent Variable mo	dels
Autrencodes &	G. H. Adverse II
Sutvencoders & Variational encoders	Generatina Adversial Networks (GAN,)
Autoenwaers	
Emoders learns mapping from the dat	a x to a low dimensional latent space 2
n Z	
$\angle (u,\hat{n})$	$= \chi - \hat{\mu} ^2$

Bottleneck hidden layer forces network to I cam a compressed latent representation Luonstruction loss forces latent representation to capture/emode as much information as possible.

Variational Autoencoder non-deterministic autoencoder mean vector

latent variable 'z'

standard

devication

vector envolu: q(2, x) Devoder $p_0(x|2)$ $\angle (\phi, \sigma, u) = (\text{reconstruction loss}) + (\text{regularization loss})$ enwder dewder

D (9p (2|x) | p(2)) différence between portbability distributions

Generative Adversial Naturals Idea: do not emplicitly model density - use samples for new instances Solution: sample from something simple (noise) learn a transformation to the data distribution noise [2] G X fake sample from learned representation of data distribution Network G moise

| A | Make | D | Cy from fake | Pake generalor turns noise into an imitation of data to hick discriminato

GAN loss function arg max Ez, z [log D(6(z)) + log (1-D(x))] Discriminator hies to identify synthesized images Generalor arg min $E_{z,z}$ [log D(G(z)) + log (1-D(x))] final loss function arg max min E = , x [log D (6(2)) + log (1-D(x))]