Міністерство освіти і науки України Національний університет «Львівська політехніка» Інститут комп'ютерних наук та інформаційних технологій Кафедра автоматизованих систем управління

Звіт до лабораторної роботи № 1 з дисципліни Моделювання процесів і смарт-систем на тему:

«Концепція моделі "чорний ящик" та встановлення зажежності між її вхідними і вихідними параметрами»

Виконала: студентка OI-32

Горяча І. В.

Прийняв: асистент каф. АСУ

Мельник Р. В.

Мета: Зрозуміти концепцію моделі "чорний ящик" та набути навички застосування методу найменших квадратів для визначення залежності між вхідними і вихідними параметрами моделі.

Завдання 1. Побудова прикладу моделі "чорний ящик".

1. Виберіть систему для моделювання. При виборі враховуйте, що вам повинні бути відомі хоча б загалом структура та принципи функціонування системи, а також її призначення.

Система "пральна машина".

Призначення: прання одягу.

- 2. Опишіть входи вибраної системи.
- Брудний одяг.
- Стан електромережі, для запуску програми.
- Пральний порошок, гель, кондиціонер і інші миючі засоби.
- Вода (з різною температурою).
- Вибір програми прання.
- Вибір температури води.
- Вибір кількості обертів для викручування.
- Кількість одягу наявна у барабані (вага не повинна перевищувати певного значення, яке машина може випрати за один раз).
- 3. Опишіть вихід системи.
- Чистий випраний та віджатий одяг.
- Мильна вода з прання.
- Чиста вода з ополіскування.
- 4. Перерахуйте небажані входи та виходи.

Небажані входи:

- Велика кількість одягу, що перевантажує барабан і знижує ефективність роботи машини.

- Високий рівень напруги в електромережі, працюючи при якому пральна машина може перегрітися/перевантажити систему і зламатися/згоріти.
- Брудна/Жорстка вода, що буде не очищувати, а забруднювати речі.

Небажані виходи:

- Невипраний або не віджатий одяг.
- Поломка/Перевантаження пральної машини.
- 5. Запропонуйте способи усунення недоліків системи.
 - Автоматичне визначення ваги завантаження, запобігаючи перевантаженню.
 - Система контролю за напругою, вбудовані стабілізатори напруги, які не дозволяють роботу пральної машини під час стрибків напруги.
 - Фільтри для пом'якшення води.
 - Регулярне очищення та обслуговування машини.
 - Системи захисту від перевантаження та перегріву, які зможуть припиняти роботу машини під час несправностей та повідомляти про це користувачів.

Завдання 2. Визначення залежності між вхідними і вихідними параметрами моделі.

Розглянемо модель системи, про склад та структуру якої нічого не відомо. Функціонування системи відбувається під дією двох вхідних параметрів x_1 та x_2 , а результатом є вихідний параметр y. Результати роботи системи для конкретних значень параметрів наведені в таблиці:

x_{1i}	0	0	0	1	1	2	2	2
x_{2i}	1,5	2,5	3,5	1,5	3,5	1,5	2,5	2,5
y_i	2,3	4+0,3n	2-0,1n	5-0,2n	4-0,2n	6,1+0,2 <i>n</i>	6,5-	7,2
							0,1n	

n — номер варіанта.

Варіант – 4

x_{1i}	0	0	0	1	1	2	2	2
							2,5	
y_i	2,3	5,2	1,6	4,2	3,2	6,9	6,1	7,2

Методом найменших квадратів отримати систему розв'язувальних рівнянь та відновити залежність $y=a_0+a_1x_1+a_2x_2$. Знайти значення функції у точці $x_1=1.5,\ x_2=3$; побудувати її графік та визначити коефіцієнт детермінації R^2 . Для цього написати код відповідної комп'ютерної програми (мова програмування на вибір).

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (\widetilde{y}_i - y_i)^2}{\sum_{i=1}^{n} (\overline{y}_i - y_i)^2}$$
, де \overline{y}_i – середнє значення величини y_i .

Результати виконання коду:

```
Розв'язання системи рівнянь:

a0 = 3.904867256637166

a1 = 1.7734513274336288

a2 = -0.45929203539822916

Значення функції у точці (1.5, 3): 5.187168141592922

Коефіцієнт детермінації R<sup>2</sup>: 0.6929219561954915
```

Побудова графіків програмно:

Метод найменших квадратів

Рис.1. Графік площини і точок.

Метод найменших квадратів

Рис.2. Графік площини і точок.

Код програми - репозиторій github: https://github.com/ira-horiacha/mpss

Висновок: Отже, під час виконання цієї лабораторної роботи я розібралась з концепцією чорного ящика, дослідила метод найменших квадратів та розв'язала його згідно з заданою таблицею точок, а також за заданим рівнянням знайшла шукані коефіцієнти a_0 , a_1 , a_2 . В результаті я отримала коефіцієнт детермінації 0.69 що наближено до 1 і означає, що площина непогано наближено апроксимує задані точки на площині, тобто визначила залежності між вхідними і вихідними параметрами моделі.