

UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANN, TACNA

FACULTAD DE INGENIERÍA
DEPARTAMENTO ACADÉMICO DE INGENIERÍA EN INFORMÁTICA Y SISTEMAS

PROGRAMACIÓN DEL SÍLABO DE APRENDIZAJE

I. DATOS GENERALES

5. Escuela Profesional

1. Nombre de la asignatura : Programación gráfica

2. Código del curso : IIS.0326

3. Cantidad de horas semanal : 04 (Teoría: 02 | Práctica: 02)

Créditos

: 03 : Ing

: Ingeniería en Informática y Sistemas

6. Ciclo académico : Segundo ciclo

7. Docentes responsables : Dra. Karin Yanet Supo Gavancho

ksupog@unjbg.edu.pe

Ing. Hugo Manuel Barraza Vizcarra

hmbarrazav@unjbg.edu.pe

8. Jefe de prácticas : Ing. Edith Elizabeth Alfaro Gonzales

ealfarog@unibg.edu.pe

9. Duración : 17 semanas

10. Fecha de inicio : 01 de setiembre de 2016

11. Fecha de término : 16 de diciembre de 2016

12. Régimen : Flexible

13. Periodo académico : 2016 – Il Semestre

II. APORTE AL PERFIL PROFESIONAL

La asignatura de Programación gráfica, contribuye a que el futuro profesional de Ingeniería en Informática y Sistemas incremente su capacidad de análisis de hechos o fenómenos del campo de la Ingeniería; y provee los conceptos introductorios a la robótica mediante la utilización de tecnología de ensamblaje de mecanismos robotizados.

III. SUMILLA

El curso contiene lo siguientes temas: Introducción a la robótica, tecnología LEGO Mindstorm, elementos de hardware y software de los Legos Mindstorm, diseño, programación y manipulación de robots mediante la tecnología NXT.

IV. COMPETENCIAS DE LA ASIGNATURA

- Capacidad de comprender los conceptos básicos de la robótica.
- Capacidad de manejar recursos TIC e internet para el diseño de robots.
- Capacidad de comprender los principios físicos y matemáticos necesarios para el diseño y construcción de robots.
- Capacidad de diseñar, construir y programar con los nuevos robots LEGO Mindstorms NXT.
- Capacidad de manejar de servomotores y sensores de luz, sonido, contacto y distancia.
- Capacidad de programar con el lenguaje NXT-G.
- Capacidad para conocer los mecanismos sencillos de entrada/salida y el funcionamiento interno de los periféricos más usuales a usar.

V. PROGRAMACIÓN DE CONTENIDOS

UNIDAD DE APRENDIZAJE I:

VISIÓN GENERAL Y DESCRIPCIÓN DE LOS MECANISMOS ROBOTIZADOS

SEM	CONCEPTUAL	PROCEDIMENTAL	ACTITUDINAL
1	Introducción: Robótica. Historia, Definiciones, Mecanismos utilizados.	Comprende los conceptos introductorios sobre robótica.	Aporta ideas sobre el tema en discusión.
2	Introducción al Kit Lego Mindstorms NXT. Creación de Grupos de Trabajo	Identifica las características de las la tecnología Mindstorm y sus versiones.	Aporta ideas sobre el tema en discusión.
3	Componentes del Kit Lego Mindstorms NXT. Laboratorio: Identificando los		Muestra responsabilidad por su aprendizaje y disposición por el trabajo

SEM	CONCEPTUAL	PROCEDIMENTAL	ACTITUDINAL
	componentes del Kit Lego Mindstorms NXT.		en equipo
4	Descripción del software NXT-G 2.0 bloques elementales. Laboratorio: Inventario de componentes NXT	Identifica los componentes de software del Kit LEGO Mindstorm NXT 2.0. Realiza un inventario de piezas.	Muestra responsabilidad por su aprendizaje y disposición por el trabajo en equipo.
5	Servomotores: Comandos de Movimiento Laboratorio: Diseño e implementación del Shooter Boot	Conoce la teoría y el uso de los Servomotores. Implementa un diseño utilizando servomotores.	por su aprendizaje y
6	Sensores: Sensor de Luz, implementación, codificación Laboratorio: Diseño e implementación de Llama Robot	Conoce la teoría y el uso del Sensor de Luz. Implementa un diseño utilizando sensores de Luz.	por su aprendizaje y
7	Sensores: Sensor Ultrasónico, implementación y codificación Laboratorio: Diseño e implementación de Catapulta	Conoce la teoría y el uso del Sensor de Ultrasonido. Implementa un diseño utilizando sensores ultrasónicos	por su aprendizaje y
8	PRIMER EXAMEN PARCIAL		

ESTRATEGIAS DIDACTICAS

- Conferencia para la teoría.
- Participación activa en clase en la solución de ejercicios.
- Talleres grupales.
- Prácticas.

TIEMPO: 08 SEMANAS

UNIDAD DE APRENDIZAJE II:

PROGRAMACIÓN DE MECANISMOS ROBOTIZADOS MEDIANTE PROGRAMACIÓN GRÁFICA

SEM	CONCEPTUAL	PROCEDIMENTAL	ACTITUDINAL
9	Sensores: Sensor de Contacto implementación y codificación. Laboratorio: Diseño e implementación de Mantis Robot.	Conoce la teoría y el uso del Sensor de Contacto. Implementa un diseño utilizando sensores Contacto	por su aprendizaje y
10	Brix (Cerebro/Ladrillo) del Lego Mindstorm. Configuración, comandos básicos, envío de datos desde el PC mediante cable USB, Bluetooth. Laboratorio: Diseño e implementación de Robogator.	Conoce el funcionamiento del ladrillo del Lego NXT.	Muestra responsabilidad por su aprendizaje y disposición por el trabajo en equipo
11	Manejando diseños con más de un Sensor. Laboratorio: Diseño e implementación de Robot MORPH.	Genera diseños utilizando servomotores y combinando lo diferentes tipos de sensores.	
12	Software NXT – 2.0. Descripción de la pantalla principal, bloques de programación y compilación. Laboratorio: Generación de Código de básico y traslado al BRIX.	Conoce el lenguaje de programación gráfica utilizado en la tecnología NXT.	Muestra responsabilidad por su aprendizaje y disposición por el trabajo en equipo
13	Software NXT – 2.0: Bloques de movimiento, configuración. Laboratorio: Diseño e implementación de Pinball.	Conoce las operaciones y algoritmos utilizando bloques de movimiento en el software NXT-G.	
14	Software NXT – 2.0: Bloques de condición (switch), configuración.	Conoce las operaciones y algoritmos utilizando bloques de	

SEM	CONCEPTUAL	PROCEDIMENTAL	ACTITUDINAL
	Laboratorio: Diseño e implementación de Robot Hopper.	condición (switch) en el software NXT-G.	disposición por el trabajo en equipo.
15	Software NXT – 2.0: Ciclos, configuración. Movimiento, condición y manejo de sensores en el interior de los ciclos. Laboratorio: Diseño e implementación de un Robot seguidor de líneas.	algoritmos utilizando Ciclos o Bucles e interacciona con los bloques de movimiento y	
16	Software de Diseño: Lego Designer, Pantalla principal, bloques de construcción, generador de guías. Laboratorio: Construcción en Lego Designer de prototipos.	software de diseño Lego Designer.	Muestra responsabilidad por su aprendizaje. Trabajo interactivo en grupo. Sustenta sus diseños.
17	SEGUNDO EXAMEN PARCIAL		

ESTRATEGIAS DIDACTICAS

- Conferencia para la teoría.
- Participación activa en clase en la solución de ejercicios.
- · Talleres grupales.
- Prácticas.

TIEMPO: 09 SEMANAS

VI. SISTEMA DE EVALUACIÓN

	PROCEDIMIENTOS	PORCENTAJE	PONDERACIÓN
TEORÍA	Exámenes parciales	50%	10
60%	Asistencia, evaluación continua, esfuerzo personal	10%	2
PRÁCTICA 40%	Trabajo de investigación	20%	4
	Prácticas de laboratorio	20%	4

OBSERVACIÓN:

- La calificación será vigesimal (de 00 a 20) siendo la nota mínima de aprobación 11 (once).
- Solo para el promedio final se considerará 0.5 a favor del estudiante.
- Los estudiantes que no se presenten a rendir sus evaluaciones en las fechas indicadas y definidas en clase tendrán la calificación 00. En caso la inasistencia sea debidamente justificada mediante los canales respectivos, según normas vigentes de la universidad, se reprogramará dicha evaluación.
- La evaluación de los estudiantes es permanente y el contenido de los exámenes es de todo el desarrollo del curso a la fecha de aplicación de la evaluación. La evaluación del estudiante es continua y no necesariamente requiere de aviso previo (excepto los exámenes parciales), siempre que las evaluaciones se realicen en horarios establecidos para el curso.
- El porcentaje de inasistencia a clases y/o laboratorios de más del 30% será causal de desaprobación del curso.

El promedio final del curso se obtiene de acuerdo a los criterios de evaluación que se señalaron anteriormente.

VII. ESTRATEGIAS METODOLÓGICAS

MÉTODO DE ENSEÑANZA APRENDIZAJE

- Exposiciones: De parte del profesor y los alumnos (en forma individual y grupal), para ofrecer información sobre una materia de estudio; los temas serán entregados con anticipación para su preparación.
- Ejercicios. Permiten a los alumnos reforzar su aprendizaje a un ritmo propio y en un lugar fuera del aula; los ejercicios serán entregados con anticipación para su ejecución.

TÉCNICA DE ENSEÑANZA APRENDIZAJE

- Las exposiciones se harán en el aula de clase utilizando plumones, pizarra y ayudas audiovisuales
- Se utilizarán materiales y equipos (Módulos NXT 2.0) para realizar prácticas en grupos organizados.

 Se utilizará el software NXT-G 2.0 para la simulación y programación de modelos, y para su diseño el software LEGO DESIGNER.

VIII. MATERIALES EDUCATIVOS Y OTROS RECURSOS DIDÁCTICOS

- Bibliografía seleccionada.
- · Lecturas programadas y artículos seleccionados.
- Se utilizará material impreso y en formato digital.
- Pizarra acrílica, plumones, proyector multimedia y el computador.

IX. BIBLIOGRAFÍA

BÁSICA

- Jonathan B. Knudsen. The Unofficial Guide to LEGO MINDSTORMS Robots. O'REILLY.
- Pablo Iván Romero De La Rosa. Programación de Robots LEGO Mindstorm.
- Jerry Lee, Jr. Ford. Lego Mindstorms NXT 2.0 for Teens (For Teens (Course Technology))
- Laurens Valk. The LEGO MINDSTORMS NXT 2.0 Discovery Book.

COMPLEMENTARIA

- Gasperi, M., Hurbain, P. (2009). Extreme NXT. Extending the LEGO MINDSTORMS NXT to the Next Level, 2ed. Apress.
- Griffin, T. (2010). The Art of Lego Mindstorms NXT-G Programming. No Starch Press.
- Kelly, J.F. (2010). Lego Mindstorms NXT-G Programming Guide, 2ed. Apress.
- Barnes, D.J. (2009). Programming LEGO robots with BlueJ. SIGCSE 2009. Disponible online: http://www.bluej.org/bluej-greenfoot-day/content/bluej-nxt.pdf.