

Quiz #2

Monday, Febuary 5 2018

Duration: 15 min	
NAME:	
Please write clearly and properly.	

Problem	Grade
1	
2	
3	
Total	

Problem	1	(~ 4	points).

In each of the following cases, are the vectors \vec{u} and \vec{v} orthogonal? Explain.

(1) $\vec{u} = (-2, 2)$ and $\vec{v} = (1, 1)$.

(2) $\vec{u} = (1, 2, 3)$ and $\vec{v} = (1, 2, -1)$.

Proble	em 2	(~ 4	points)).
			POINTED	•

In each of the following cases, find a vector that is orthogonal to both \vec{u} and \vec{v} .

(1) $\vec{u} = (0, 1, 0)$ and $\vec{v} = (0, 0, 1)$.

(2) $\vec{u} = (2, 1, 0)$ and $\vec{v} = (-1, 1, 0)$.

Problem 3 (\sim 2 points).

True or false? No explanations required.

- (1) For any two vectors \vec{u} and \vec{v} , if $\vec{u} \times \vec{v} = \vec{0}$, then \vec{u} and \vec{v} are parallel.
- (2) If \vec{u} is a vector that lies in the *xy*-plane, then $\vec{u} \cdot \vec{k} = 0$. Recall that \vec{k} is the coordinate vector $\vec{k} = (0, 0, 1)$.
- (3) For any two vectors \vec{u} and \vec{v} , $\vec{u} \cdot (\vec{u} \times \vec{v}) = 0.$
- (4) For any two vectors \vec{u} and \vec{v} ,

$$(\vec{u} \cdot \vec{v})^2 + ||\vec{u} \times \vec{v}||^2 = ||\vec{u}||^2 ||\vec{v}||^2$$
.