

Tackling FOXP1 through Amino Acid Sequence Analysis

Presenters: Roshni Parulekar-Martins, Michael Samuel, Jason Wang, and Sharon Zhu

Problem

- FOXP1: important transcription factor for neurological functions
- Point mutations' effect on pathogenicity is poorly understood
- Analyze contributions to activity over others has not been closely analyzed.

Literature

- AlphaMissense: widely cited as accurate way to predict the structural effects of mutations in the protein sequence¹.
- FOXP1 interacts with
 multiple binding partners
 + DNA --> more sites in
 which a mutation could
 be pathogenic².

What data did our team work with?

- 1. Uniprot data: determine where FOXP1 domains were and their functions
- 2. AlphaMissense data: provided pathogenicity scores --> quickly **hone in** on certain mutants
- 3. UMich PEPPI tool: created **models** of mutated protein interactions with known partners as well as log(LR) **scores**

Methods/Workflow

STEP

Identify single point mutants from AlphaMissense. Compare these mutants against Uniprot annotations.

STEP

Isolate mutants with high pathogenicity.

STEP

Run k-mean clustering

STEP

Confirm

destabilized

interactions using

PEPPI and the

degree to which

the mutant loses

function

STEP

Determine the most likely downstream effects as a result of the pathogenic mutation in question

Results

PEPPI RESULTS¹

Wild-type FOXP1-FOXP2 dimerize with LR(3.915)

<u>Mutant Q142P FOXP1-FOXP2 lessen</u> <u>interaction with **LR(1.656)**</u>

Mutant Q340H FOXP1-FOXP2 slightly increase interaction with LR(3.926)

DOMAIN RESULTS

FOXP1 point mutations mapped using our k-means clustering algorithm, identifying areas of concern

1. Eric Bell, Jacob Schwartz, Peter Freddolino, Yang

Do our PEPPI results make sense?

Discussion

WHAT ARE THE
IMPLICATIONS OF OUR
PROJECT AND HOW CAN
IT BE CARRIED FORWARD

Wholistic and Target In-Silico Mutant Analysis

Our approach takes a target protein and is able to efficiently screen and characterize mutant on the the cellular level.

Integrate a DNA-Protein Interaction Aspect for Future

For proteins like transcription factors, we hope to be able to incorporate a path of analysis that allows us to determine perturbations to the DNA binding ability of TFs.

Promote patient-specific accessibility to genetic screens

Our efficient and streamlined process can be applied to any rare genetic disease while also taking into account patient specific parameters.