FEATURES

- Output Current up to 1 A
- Low Dropout Voltage (700mV at 1A Output Current)
- Three Terminal Adjustable or Fixed 1.5V, 1.8V, 2.5V, 2.85V, 3.0V, 3.3V, 5.0V
- 2.85V Device for SCSI-II Active Terminator
- 0.04% Line Regulation, 0.1% Load Regulation
- Very Low Quiescent Current
- Internal Current and Terminal Limit
- Logic-Controlled Electronics Shutdown
- Surface Mount Package SOT-223 & TO-263 (D2-Pack)
- 100% Thermal Limit Burn-In

APPLICATION

- Active SCSI Terminators
- Portable/Plan Top/Notebook Computers
- High Efficiency Linear Regulators
- SMPS Post Regulators
- Mother B/D Clock Supplies
- Disk Drives
- Battery Chargers

SOT-223 PKG (FRONT VIEW) PIN FUNCTION 1. Adj/Gnd 2. Vout 3. Vin TO-263 (D2 PKG, FRONT VIEW) PIN FUNCTION 1. Adj/Gnd 2. Vout 3. Vin 3. Vin

ORDERING INFORMATION

Device (Marking)	Package
LM1117S	SOT-223
LM1117S-XX	501-225
LM1117T	TO-263 (D2)
LM1117T-XX	10-263 (D2)

(X=Output Voltage=1.5V, 1.8V, 2.5V, 2.85V, '3.0V, 3.3V, 5.0V, Adjustable=AD)

DESCRIPTION

The LM1117 is a low power positive-voltage regulator designed to meet 1A output current and comply with SCSI-II specifications with a fixed output voltage of 2.85V. This device is an excellent choice for use in battery-powered applications, as active terminators for the SCSI bus, and portable computers. The LM1117 features very low quiescent current and very low dropout voltage of 700mV at a full load lower as output current decreases. LM1117 is available as an adjustable or fixed 1.5V, 1.8V, 2.5V, 2.85V, 3.0V, 3.3V, and 5.0V output voltages.

The LM1117 is offered in a 3-pin surface mount package SOT-223 & TO-263. The output capacitor of $10\mu^{\text{F}}$ or larger is needed for output stability of LM1117 as required by most of the other regulator circuits.

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
DC Input Voltage	V _{IN}		7	V
Lead Temperature (Soldering, 5 Seconds)	T _{sol}		260	$^{\circ}$
Storage Temperature Range	T _{STG}	-65	150	°C
Operating Junction Temperature Range	T _{OPR}	0	125	$^{\circ}$

THERMAL DATA

PARAMETER	SYMBOL	SOT-223	TO-263	UNIT
Thermal Resistance Junction-Case	R _{THJ-CASE}	15	3	$^{\circ}$

TYPICAL APPLICATION

ELECTRICAL CHARACTERISTICS FOR LM1117 s/T-AD(ADJUSTABLE)

(Refer to the test circuits, $T_J=0$ to $125\,^{\circ}\text{C}$ $C_O=10\,\mu\text{F}$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Reference Voltage	V_{REF}	$V_{IN} - V_O = 2V$, $I_O = 100 \text{ mA}$, $T_J = 25 ^{\circ}\text{C}$	1.238	1.25	1.262	V
Reference Voltage	V_{REF}	$I_{\rm O} = 10$ to 1A, $V_{\rm IN} - V_{\rm O} = 1.4$ to 10V	1.230		1.270	V
Line Regulation	ΔV_{O}	$V_{IN} - V_{O} = 1.5$ to 13.75V, $I_{O} = 10$ mA		0.035	0.2	%
Load Regulation	ΔV_{O}	$V_{IN} - V_{O} = 3V$, $I_{O} = 10$ mA to 1A		0.1	0.4	%
Temperature Stability	ΔV_{O}			0.5		%
Long Term Stability	ΔV_{O}	1000 hrs, T _J = 125℃		0.3		%
Operating Input Voltage	V_{IN}				7	V
Adjustment Pin Current	I _{ADJ}	$V_{IN} \le 15V$, $I_{Load} = 10 \text{ mA}$		50	120	μA
Adjustment Pin Current	ΔI_{ADJ}	$V_{IN} - V_{O} = 1.4 \text{ to } 10V, I_{O} = 10\text{mA to } 1A$		1	5	μA
Change	ΔI _{ADJ}	V _{IN} V ₀ = 1.4 to 10V, 1 ₀ = 1011/A to 1A		ı	5	μΛ
Minimum Load Current	I _{O(MIN)}	V _{IN} = 15V		1.7	5	mA
Output Current	Io	$V_{IN} - V_{O} = 5V$, $T_{J} = 25 ^{\circ}C$	800	950	1200	mA
Output Noise (%V _O)	ΕN	B = 10Hz to 10kHz, $T_J = 25^{\circ}C$		0.003		%
Cupality Valtage Dejection	SVR	$I_{\rm O} = 40{\rm mA}$, f = 120Hz, $T_{\rm J} = 25{\rm ^{\circ}C}$	60	75		dB
Supply Voltage Rejection	SVH	$V_{IN} - V_{O} = 3V$, $V_{NIPPLE} = 1V_{PP}$	60	75		uБ
		$I_O = 100$ mA , $V_{IN} = V_{OUT} + 0.8$ V		1	1.1	V
Dropout Voltage	V_D	$I_O = 500$ mA , $V_{IN} = V_{OUT} + 0.8V$		1.00	1.15	V
		$I_O = 1A$, $V_{IN} = V_{OUT} + 0.8V$		1.0	1.3	V
Thermal Regulation		T _A = 25℃ 30ms Pulse		0.003		%/W

ELECTRICAL CHARACTERISTICS FOR LM1117 s/t-1.5

(Refer to the test circuits, $T_J=0$ to $125\,^{\circ}\text{C}$ $C_O=10\,\mu\text{F}$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V_{O}	V_{IN} = 4.5V, I_{O} = 10mA, T_{J} = 25°C	1.485	1.5	1.515	V
Output Voltage	Vo	$I_{\rm O} = 0$ to 1A, $V_{\rm IN} = 3.9$ to 10V	1.475		1.525	V
Line Regulation	ΔV_{O}	$V_{IN} = 3.9 \text{ to } 10\text{V}, I_{O} = 0\text{ mA}$		0.04	0.2	mV
Load Regulation	ΔV_{O}	$V_{IN} = 3.9V$, $I_{O} = 0$ to 1A		0.08	0.4	mV
Temperature Stability	ΔV_{O}			0.5		%
Long Term Stability	ΔV_{O}	1000 hrs, T _J = 125℃		0.3		%
Operating Input Voltage	V_{IN}	$I_{\rm O} = 100$ mA			7	V
Quiescent Current	I _D	$V_{IN} \le 10V$		5	10	mA
Output Current	lo	V _{IN} = 7.5V, T _J = 25℃	800	950	1200	mA
Output Noise Voltage	ΕN	B = 10Hz to 10kHz, $T_J = 25^{\circ}C$		100		μV
Supply Voltage Rejection	SVR	$I_O = 40 \text{ mA}$, $f = 120 \text{Hz}$, $T_J = 25 ^{\circ}\text{C}$ $V_{IN} = 5.5 \text{V}$, $V_{NIPPLE} = 1 V_{PP}$	60	75		dB
		$I_{\rm O} = 100$ mA		1	1.1	V
Dropout Voltage	V_D	$I_{\rm O} = 500$ mA		1.05	1.15	V
		$I_{\rm O} = 800$ mA		1.1	1.2	V
Thermal Regulation		T _A =25℃ 30ms Pulse		0.003		%/W

ELECTRICAL CHARACTERISTICS FOR LM1117 s/T-1.8

(Refer to the test circuits, $T_J=0$ to $125\,^{\circ}\text{C}$ $C_O=10\,\mu\text{F}$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _O	$V_{IN} = 4.5V$, $I_{O} = 10$ mA, $T_{J} = 25$ °C	1.782	1.8	1.818	V
Output Voltage	Vo	$I_{\rm O} = 0$ to 1A, $V_{\rm IN} = 3.9$ to 10V	1.772		1.828	V
Line Regulation	ΔV_{O}	$V_{IN} = 3.9 \text{ to } 10\text{V}, I_{O} = 0\text{ mA}$		0.04	0.2	mV
Load Regulation	ΔV_{O}	V_{IN} = 3.9V, I_O = 0 to 1A		0.08	0.4	mV
Temperature Stability	ΔV_{O}			0.5		%
Long Term Stability	ΔV_{O}	1000 hrs, T _J = 125℃		0.3		%
Operating Input Voltage	V_{IN}	$I_{\rm O} = 100$ mA			7	V
Quiescent Current	I _D	$V_{IN} \le 10V$		5	10	mA
Output Current	Io	V_{IN} = 7.5V, T_J = 25°C	800	950	1200	mA
Output Noise Voltage	EΝ	B = 10Hz to 10kHz, $T_J = 25$ °C		100		μV
Supply Voltage Rejection	SVR	$I_O = 40 \text{ mA}$, $f = 120 \text{Hz}$, $T_J = 25 ^{\circ}\text{C}$ $V_{IN} = 5.5 \text{V}$, $V_{NIPPLE} = 1 V_{PP}$	60	75		dB
		$I_{\rm O} = 100$ mA		1	1.1	V
Dropout Voltage	V_D	$I_{O} = 500 \text{mA}$		1.05	1.15	V
		$I_{O} = 800 \text{mA}$		1.1	1.2	V
Thermal Regulation		T _A = 25℃ 30ms Pulse		0.003		%/W

ELECTRICAL CHARACTERISTICS FOR LM1117 S/T-2.5

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V_{O}	V_{IN} = 4.5V, I_{O} = 10mA, T_{J} = 25°C	2.475	2.5	2.525	V
Output Voltage	V_{O}	$I_{\rm O} = 0$ to 1A, $V_{\rm IN} = 3.9$ to 10V	2.46		2.54	V
Line Regulation	ΔV_{O}	$V_{IN} = 3.9 \text{ to } 10\text{V}, I_{O} = 0\text{ mA}$		0.04	0.2	mV
Load Regulation	ΔV_{O}	V_{IN} = 3.9V, I_{\odot} = 0 to 1A		0.08	0.4	mV
Temperature Stability	ΔV_{O}			0.5		%
Long Term Stability	ΔV_{O}	1000 hrs, T _J = 125℃		0.3		%
Operating Input Voltage	V_{IN}	$I_{\rm O} = 100$ mA			7	V
Quiescent Current	I_{D}	$V_{IN} \le 10V$		5	10	mA
Output Current	Io	V_{IN} = 7.5V, T_J = 25°C	800	950	1200	mA
Output Noise Voltage	ΕN	B = 10Hz to 10kHz, $T_J = 25^{\circ}C$		100		μV
Supply Voltage Rejection	SVR	$I_O = 40 \text{ mA}$, $f = 120 \text{ Hz}$, $T_J = 25 ^{\circ}\text{C}$ $V_{IN} = 5.5 \text{ V}$, $V_{NIPPLF} = 1 \text{ V}_{PP}$	60	75		dB
		I _O = 100mA		1	1.1	V
Dropout Voltage	V_D	$I_{O} = 500 \text{mA}$		1.05	1.15	V
		$I_{\rm O} = 800\mathrm{mA}$		1.1	1.2	V
Thermal Regulation		T _A = 25℃ 30ms Pulse		0.01	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LM1117 s/t-2.85

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	$V_{IN} = 4.85V$, $I_{O} = 10$ mA, $T_{J} = 25$ °C	2.821	2.85	2.879	V
Output Voltage	Vo	$I_{\rm O} = 0$ to 1A, $V_{\rm IN} = 4.25$ to 10V	2.805		2.895	V
Line Regulation	ΔV_{O}	$V_{\rm IN} =$ 4.25 to 10V, $I_{\rm O} =$ 0mA		0.004	0.2	mV
Load Regulation	ΔV_{O}	$V_{IN} = 4.25V$, $I_{O} = 0$ to 1A		0.08	0.4	mV
Temperature Stability	ΔV_{O}			0.5		%
Long Term Stability	ΔV_{O}	1000 hrs, T _J = 125℃		0.3		%
Operating Input Voltage	V_{IN}	$I_{O} = 100 \text{mA}$			7	V
Quiescent Current	I _D	$V_{IN} \le 10V$		5	10	mA
Output Current	Io	V _{IN} = 7.85V, T _J = 25℃	800	950	1200	mA
Output Noise Voltage	EN	B = 10Hz to 10kHz, $T_J = 25$ °C		100		μV
Supply Voltage Rejection	SVR	$I_0 = 40 \text{ mA}$, $f = 120 \text{ Hz}$, $T_J = 25 ^{\circ}\text{C}$	60	75		dB
		$V_{IN} = 5.85V$, $V_{NIPPLE} = 1V_{PP}$				
		$I_{O} = 100 \text{ mA}$		1	1.1	V
Dropout Voltage	V_D	$I_{\rm O} = 500$ mA		1.05	1.15	V
		$I_{\rm O}=800$ mA		1.1	1.2	V
Thermal Regulation		T _A = 25℃ 30ms Pulse		0.003		%/W

ELECTRICAL CHARACTERISTICS FOR LM1117 S/T-3.0

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V_{O}	$V_{IN} = 5V$, $I_O = 10$ mA, $T_J = 25$ °C	2.97	3	3.03	V
Output Voltage	V _O	$I_{\rm O} = 0$ to 1A, $V_{\rm IN} = 4.5$ to 10V	2.95		3.05	V
Line Regulation	ΔV_{O}	$V_{IN} = 4.5$ to 12V, $I_{O} = 0$ mA		0.04	0.2	mV
Load Regulation	ΔV_{O}	V_{IN} = 4.5V, I_O = 0 to 1A		0.08	0.4	mV
Temperature Stability	ΔV_{O}			0.5		%
Long Term Stability	ΔV_{O}	1000 hrs, T _J = 125℃		0.3		%
Operating Input Voltage	V_{IN}	$I_{\rm O} = 100$ mA			7	V
Quiescent Current	I _D	$V_{IN} \le 12V$		5	10	mA
Output Current	Io	$V_{IN} = 8V$, $T_J = 25$ °C	800	950	1200	mA
Output Noise Voltage	ΕN	B = 10Hz to 10kHz, $T_J = 25^{\circ}C$		100		μV
Cupply Voltage Dejection	SVR	$I_{\rm O} = 40{\rm mA}$, f = 120Hz, $T_{\rm J} = 25{\rm ^{\circ}C}$	60	75		dB
Supply Voltage Rejection	SVH	$V_{IN} = 6V$, $V_{NIPPLE} = 1V_{PP}$	80	75		UD .
		$I_{O} = 100 \text{mA}$		1	1.1	V
Dropout Voltage	V_D	$I_{\rm O} = 500$ mA		1.05	1.15	V
		$I_{\rm O} = 800\mathrm{mA}$		1.1	1.2	V
Thermal Regulation		T _A = 25℃ 30ms Pulse		0.003	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LM1117 S/T-3.3

(Refer to the test circuits, T_J =0 to 125 $^{\circ}$ C C_O =10 $^{\mu}$ F unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _O	$V_{\text{IN}} = 5.3 \text{V}, I_{\text{O}} = 10 \text{mA}, T_{\text{J}} = 25 ^{\circ}\text{C}$	3.267	3.3	3.333	V
Output Voltage	Vo	$I_{\rm O} = 0$ to 1A, $V_{\rm IN} = 4.75$ to 10V	3.247		3.353	V
Line Regulation	ΔV_{O}	$V_{IN} = 4.75$ to 15V, $I_{\odot} = OmA$		0.04	0.2	mV
Load Regulation	ΔV_{O}	$V_{IN} = 4.75V$, $I_{O} = 0$ to 1A		0.08	0.4	mV
Temperature Stability	ΔV_{O}			0.5		%
Long Term Stability	ΔV_{O}	1000 hrs, T _J = 125℃		0.3		%
Operating Input Voltage	V_{IN}	$I_{O} = 100 \text{ mA}$			7	V
Quiescent Current	I _D	$V_{IN} \le 15V$		5	10	mA
Output Current	Io	V_{IN} = 8.3V, T_J = 25 $^{\circ}$ C	800	950	1200	mA
Output Noise Voltage	EN	B = 10Hz to 10kHz, $T_J = 25^{\circ}C$		100		μV
Supply Voltage Rejection	SVR	$I_O = 40 \text{mA}$, $f = 120 \text{Hz}$, $T_J = 25 ^{\circ}\text{C}$ $V_{IN} = 6.3 \text{V}$, $V_{\text{NIPPLE}} = 1 \text{V}_{\text{PP}}$	60	75		dB
		$I_{O} = 100 \text{ mA}$		1	1.1	V
Dropout Voltage	V_D	$I_{\rm O} = 500\mathrm{mA}$		1.05	1.15	V
		$I_{\rm O}=800$ mA		1.1	1.2	V
Thermal Regulation		T _A = 25℃ 30ms Pulse		0.003		%/W

ELECTRICAL CHARACTERISTICS FOR LM1117 S/T-5.0

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	$V_{IN} = 7V$, $I_{O} = 10$ mA, $T_{J} = 25$ °C	4.95	5	5.05	V
Output Voltage	Vo	$I_{\rm O} = 0$ to 1A, $V_{\rm IN} = 6.5$ to 15V	4.92		5.08	V
Line Regulation	ΔV_{O}	$V_{IN} = 6.5$ to 15V, $I_{O} = 0$ mA		0.04	0.2	mV
Load Regulation	ΔV_{O}	V_{IN} = 6.5V, I_O = 0 to 1A		0.08	0.4	mV
Temperature Stability	ΔV_{O}			0.5		%
Long Term Stability	ΔV_{O}	1000 hrs, T _J = 125℃		0.3		%
Operating Input Voltage	V_{IN}	$I_{O} = 100 \text{mA}$			7	V
Quiescent Current	I _D	$V_{IN} \le 15V$		5	10	mA
Output Current	Io	V_{IN} = 8.3V, T_J = 25°C	800	950	1200	mA
Output Noise Voltage	EN	B = 10Hz to 10kHz, $T_J = 25^{\circ}C$		100		μV
Supply Voltage Dejection	SVR	$I_{\rm O} = 40{\rm mA}$, f = 120Hz, $T_{\rm J} = 25{\rm ^{\circ}C}$	60	75		dB
Supply Voltage Rejection	SVN	$V_{IN} = 6.3V$, $V_{NIPPLE} = 1V_{PP}$	00	75		QD.
		$I_{\rm O} = 100$ mA		1	1.1	V
Dropout Voltage	V_D	$I_{\rm O} = 500$ mA		1.05	1.15	V
		$I_{\rm O} = 800$ mA		1.1	1.2	V
Thermal Regulation		T _A = 25℃ 30ms Pulse		0.003		%/W

LM1117 (ADJUSTABLE) ELECTRICAL CHARACTERISTICS

