

# INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI DEPARTMENT OF MECHANICAL ENGINEERING Guwahati – 781 039, Assam, India

BY

## Nishant Nanasaheb Jagtap

234103329

(j.nishant@iitg.ac.in)

## ME 670 Advance Computational Fluid Dynamics (Advance CFD)

<u> Assignment – 2</u>

Guided By Prof. Atul Soti March 2024

## Table of Contents

| 1. | Give    | en                                               | 3 |
|----|---------|--------------------------------------------------|---|
|    | 1.1.    | DATA                                             | 3 |
| 2. | FDN     | ለ (Finite Difference Method)                     | 3 |
|    | 2.1.    | Discretized Equation                             | 3 |
|    | 2.2.    | Code Explanation                                 | 4 |
| 3. | Algo    | orithm                                           | 5 |
|    | 3.1. Tv | vo-Grid Correction Scheme                        | 5 |
|    | 3.2. V- | CYCLE MULTIGRID                                  | 5 |
|    | 3.2.    | 1. Description of V-Cycle for n=16               | 5 |
|    | 3.3. FL | JLL MULTIGRID                                    | 6 |
|    | 3.3.    | 1. Description of Full Multigrid for n=16        | 6 |
| 4. | Res     | ults                                             | 7 |
|    | 4.1.    | Question 1 → V Cycle Multigrid                   | 7 |
|    | 4.1.    | V-Cycle Multigrid for various relaxation methods | 7 |
|    | 4.1.    | 2. V-Cycle Multigrid vs Normal Iterative Methods | 7 |
|    | 4.1.    | 3. PLOTS                                         | 7 |
|    | 4.2.    | Question 2 → Full Multigrid (FMG)                | 8 |
|    | 4.2.    | 1. K = 1                                         | 8 |
|    | 42      | 2 K = 10                                         | Ջ |

## **MULTIGRID ALGORITHM**

## 1. Given

1D problem

$$-u''(x) + \sigma u(x) = f(x)$$

- Homogeneous Boundary Conditions
- Finite Difference Method

#### 1.1. DATA

| n = 512 (513 points)                                                                               |                                                                                 |  |  |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| $\omega = 2/3 = 0.66667$ $v_1 = v_1 = 2$                                                           |                                                                                 |  |  |  |  |
| $\sigma = 1$                                                                                       | $C = \pi^2 k^2 + \sigma$                                                        |  |  |  |  |
| $f(x) = Csin(k\pi x)$ $Exact Solution \Rightarrow u(x) = \frac{c}{\pi^2 k^2 + \sigma} sin(k\pi x)$ |                                                                                 |  |  |  |  |
| Iterate till Residual 2-norm > $10^{-6}$                                                           |                                                                                 |  |  |  |  |
|                                                                                                    | $\omega = 2/3 = 0.66667$ $\sigma = 1$ $f(x) = C$ Exact Solution $\rightarrow u$ |  |  |  |  |

| K=1  | C = 10.869604       |
|------|---------------------|
| K=10 | C = 987.96044010893 |

## 2. FDM (Finite Difference Method)

0<= x <=1

0<=i<=n (n+1) points

$$h = \frac{1.0}{n}$$

$$x_i = i * h$$

For internal nodes - 0<i<n (n-1) points

#### 2.1. Discretized Equation

$$\frac{-u_{i+1} + 2u_i - u_{i-1}}{h^2} + \sigma u_i = f_i$$

$$LHS = \frac{-u_{i+1} + 2u_i - u_{i-1}}{h^2} + \sigma u_i$$

$$RHS = f_i$$

$$u_i = \frac{h^2 f_i + u_{i+1} + u_{i-1}}{2 + \sigma h^2}$$

$$Residual = RHS - LHS$$

#### 2.2. Code Explanation

 $m=N = 512 \rightarrow 513$  points

Total number of levels  $\rightarrow level_{max} = \frac{\log{(N)}}{\log{(2)}} = 9$ 

 $1 \le level \le 9$ 

$$n = \frac{N}{2^{level-1}}$$

#### Arrays →

For the Code, 4 2D arrays are used for each level having size of finest grid-

| f→ RHS value        | v → v value array   | e → error value     | r → residual value  |
|---------------------|---------------------|---------------------|---------------------|
| array               | v / v value allay   | array               | array               |
| f[level_max+1][m+1] | v[level_max+1][m+1] | e[level_max+1][m+1] | r[level_max+1][m+1] |
| f[10][513]          | v[10][513]          | e[10][513]          | r[10][513]          |

Relaxations are done by Weighted Jacobi Method or Gauss Seidel Method – Relaxations are done by at start of level while going down the V Cycle and are applied at last while coming back up in the V Cycle

**Restriction Formula** – All residuals are restricted and stored as RHS (f array) on next grid level which will be used for relaxation

$$v_j^{2h} = \frac{1}{4} \left( v_{2j-1}^h + 2 v_{2j}^h + v_{2j+1}^h \right), \qquad 1 \le j \le \frac{n}{2} - 1.$$

**Prolongation Formula -** All errors are prolongated and added to earlier computed solution (v array) on previous grid level which will be used for relaxation

$$\begin{array}{rcl} v_{2j}^h & = & v_j^{2h}, \\ \\ v_{2j+1}^h & = & \frac{1}{2} \left( v_j^{2h} + v_{j+1}^{2h} \right), \quad 0 \leq j \leq \frac{n}{2} - 1. \end{array}$$

The Algorithm is as described below which is further expanded using for loop for V Cycle and Full Multigrid

## 3. Algorithm

#### 3.1. Two-Grid Correction Scheme

## Two-Grid Correction Scheme

$$\mathbf{v}^h \leftarrow MG(\mathbf{v}^h, \mathbf{f}^h).$$

- Relax  $\nu_1$  times on  $A^h \mathbf{u}^h = \mathbf{f}^h$  on  $\Omega^h$  with initial guess  $\mathbf{v}^h$ .
- Compute the fine-grid residual  $\mathbf{r}^h = \mathbf{f}^h A^h \mathbf{v}^h$  and restrict it to the coarse grid by  $\mathbf{r}^{2h} = I_h^{2h} r^h$ .
- Solve  $A^{2h}\mathbf{e}^{2h} = \mathbf{r}^{2h}$  on  $\Omega^{2h}$ .
- Interpolate the coarse-grid error to the fine grid by  $\mathbf{e}^h = I_{2h}^h \mathbf{e}^{2h}$  and correct the fine-grid approximation by  $\mathbf{v}^h \leftarrow \mathbf{v}^h + \mathbf{e}^h$ .
- Relax  $\nu_2$  times on  $A^h \mathbf{u}^h = \mathbf{f}^h$  on  $\Omega^h$  with initial guess  $\mathbf{v}^h$ .

#### 3.2. V-CYCLE MULTIGRID

Algorithm

## V-Cycle Scheme

$$\mathbf{v}^h \leftarrow V^h(\mathbf{v}^h, \mathbf{f}^h)$$

- Relax on  $A^h \mathbf{u}^h = \mathbf{f}^h \ \nu_1$  times with initial guess  $\mathbf{v}^h$ .
- Compute  $\mathbf{f}^{2h} = I_h^{2h} \mathbf{r}^h$ .
  - Relax on  $A^{2h}\mathbf{u}^{2h} = \mathbf{f}^{2h} \ \nu_1$  times with initial guess  $\mathbf{v}^{2h} = \mathbf{0}$ .
  - Compute  $\mathbf{f}^{4h} = I_{2h}^{4h} \mathbf{r}^{2h}$ .
    - Relax on  $A^{4h}\mathbf{u}^{4h} = \mathbf{f}^{4h} \ \nu_1$  times with initial guess  $\mathbf{v}^{4h} = \mathbf{0}$ .
    - Compute  $\mathbf{f}^{8h} = I_{4h}^{8h} \mathbf{r}^{4h}$ .

• Solve  $A^{Lh}\mathbf{u}^{Lh} = \mathbf{f}^{Lh}$ .

- Correct v<sup>4h</sup> ← v<sup>4h</sup> + I<sup>4h</sup><sub>8h</sub>v<sup>8h</sup>.
  Relax on A<sup>4h</sup>u<sup>4h</sup> = f<sup>4h</sup> ν<sub>2</sub> times with initial guess v<sup>4h</sup>.
  Correct v<sup>2h</sup> ← v<sup>2h</sup> + I<sup>2h</sup><sub>4h</sub>v<sup>4h</sup>.
  Relax on A<sup>2h</sup>u<sup>2h</sup> = f<sup>2h</sup> ν<sub>2</sub> times with initial guess v<sup>2h</sup>.
- Correct v<sup>h</sup> ← v<sup>h</sup> + I<sup>h</sup><sub>2h</sub>v<sup>2h</sup>.
   Relax on A<sup>h</sup>u<sup>h</sup> = f<sup>h</sup> ν<sub>2</sub> times with initial guess v<sup>h</sup>.

## 3.2.1. Description of V-Cycle for n=16

 $v_1 =$  Gauss Siedel iteration at start of each level while Going down the V Cycle

 $v_2 =$  Gauss Siedel iteration at each level while Going back up the V Cycle

V Cycle Multigrid Algorithm (For n=16)



#### 3.3. FULL MULTIGRID

Algorithm

## Full Multigrid V-Cycle

$$\mathbf{v}^h \leftarrow FMG^h(\mathbf{f}^h).$$
 Initialize  $f^{2h} \leftarrow I_h^{2h}f^h, f^{4h} \leftarrow I_{2h}^{4h}f^{2h}, \dots$ 

$$\bullet \quad \text{Solve or relax on coarsest grid.}$$

$$\vdots$$

$$\bullet \quad \mathbf{v}^{4h} \leftarrow I_{8h}^{4h}\mathbf{v}^{8h}.$$

$$\bullet \quad \mathbf{v}^{4h} \leftarrow V^{4h}(\mathbf{v}^{4h}, \mathbf{f}^{4h}) \, \nu_0 \text{ times.}$$

$$\bullet \quad \mathbf{v}^{2h} \leftarrow I_{4h}^{2h}\mathbf{v}^{4h}.$$

$$\bullet \quad \mathbf{v}^{2h} \leftarrow V^{2h}(\mathbf{v}^{2h}, \mathbf{f}^{2h}) \, \nu_0 \text{ times.}$$

$$\bullet \quad \mathbf{v}^h \leftarrow I_{2h}^h\mathbf{v}^{2h}.$$

$$\bullet \quad \mathbf{v}^h \leftarrow V^h(\mathbf{v}^h, \mathbf{f}^h), \nu_0 \text{ times.}$$

## 3.3.1. Description of Full Multigrid for n=16

 $v_0 => Number of V Cycle at each level$ 



## 4. Results

## Question 1 → V Cycle Multigrid

## 4.1.1. V-Cycle Multigrid for various relaxation methods

|                                                                  | Number of Iteration |      |  |
|------------------------------------------------------------------|---------------------|------|--|
| Algorithm implemented for $v_1$ , $v_2$ ietartions at each level | K=1                 | K=10 |  |
| Gauss Seidel                                                     | 7                   | 8    |  |
| Weighted Jacobi                                                  | 9                   | 10   |  |

## 4.1.2. V-Cycle Multigrid vs Normal Iterative Methods

|      | Number of Iterations                                    |        |              |  |
|------|---------------------------------------------------------|--------|--------------|--|
|      | V_Cycle Multigrid (Gauss Weighted Jacobi Method Seidel) |        | Gauss Seidel |  |
|      | Iterated till Residual > $10^{-6}$                      |        |              |  |
| K=1  | 7                                                       | 457598 |              |  |
| K=10 | 8                                                       | 285561 |              |  |

## **Conclusion**: It is clearly seen that Multigrid is much more efficient than normal iterative methods from above table

#### 4.1.3. PLOTS





## 4.2. Question 2 → Full Multigrid (FMG)

## **Results for FMG Starting from Lowest Level**

## 4.2.1. K = 1

|                                          |                                                                     | Total Number of<br>all V cycle<br>Iteration in 1<br>FMG Cycle | Residual after<br>1 FMG Cycle | Total Number of<br>V Cycles after1<br>FMG |
|------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|-------------------------------------------|
| Number of V Cycle at each level of 1 FMG | Algorithm implemented for $v_1$ , $v_2 = 2$ itertions at each level |                                                               | K=1                           |                                           |
| $\nu_0 = 1$                              | Gauss Seidel                                                        | 8                                                             | 1.9516312678                  | 4                                         |
| $\nu_0 - 1$                              | Weighted Jacobi                                                     | 8                                                             | 1.9493234039                  | 4                                         |
| n – 2                                    | Gauss Seidel                                                        | 16                                                            | 0.0240847622                  | 3                                         |
| $v_0 = 2$                                | Weighted Jacobi                                                     | 16                                                            | 0.0240764275                  | 3                                         |
| 11 <b>–</b> 2                            | Gauss Seidel                                                        | 24                                                            | 0.0002980187                  | 2                                         |
| $v_0 = 3$                                | Weighted Jacobi                                                     | 24                                                            | 0.0002986768                  | 2                                         |

#### 4.2.2. K = 10

|                                                                                                                               | Total Number<br>of all V cycle<br>Iteration in 1<br>FMG Cycle | Residual after 1<br>FMG Cycle | Total Number<br>of V Cycles<br>after1 FMG |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|-------------------------------------------|
| Number of V Cycle at each level of 1 FMG Algorithm implement for $v_1$ , $v_2 = 2$ itertions at each level of $v_1 = v_2 = 1$ |                                                               | K=10                          |                                           |

| <u>-</u> 1  | Gauss Seidel    | 8  | 195.8608745361 | 5 |
|-------------|-----------------|----|----------------|---|
| $\nu_0 = 1$ | Weighted Jacobi | 8  | 192.5883211242 | 7 |
| – 2         | Gauss Seidel    | 16 | 2.5706697081   | 4 |
| $v_0 = 2$   | Weighted Jacobi | 16 | 2.4916103290   | 6 |
| – 2         | Gauss Seidel    | 24 | 0.0395367160   | 3 |
| $v_0 = 3$   | Weighted Jacobi | 24 | 0.0473146771   | 5 |

FMG Code can start from any level as well

## We see that Gauss Seidel method is more efficient than Weighed Jacobi for Multigrid

All the residuals after each iteration can be seen in the terminal after running the code

#### **Code Execution:**

## **V Cycle Code Output**

## **Full Multigrid Code Output**