

Guided Source Separation Meets a Strong ASR Backend: Hitachi/Paderborn University Joint Investigation for Dinner Party ASR

Naoyuki Kanda¹, Christoph Boeddeker², Jens Heitkaemper², Yusuke Fujita¹, Shota Horiguchi¹, Kenji Nagamatsu¹, Reinhold Haeb-Umbach²

> ¹Hitachi Ltd., Japan ²Paderborn University, Germany

11:00, September 17, 2019

Table of contents

- ① Introduction/Motivation
- ② Front-end: Guided Source Separation (GSS)
- 3 Back-end: Automatic Speech Recognition (ASR)
- ④ Simulation results
- ⑤ Conclusion

CHiME-5 Dataset: Dinner party automatic speech recognition

- 16+2+2 sessions with ca. 2 h
- 4 participants in each scenario
- 6 Kinect microphone arrays

Difficulties

- Natural conversation
- Overlap
- No simulated data, only in-ear microphone signals
- Realistic recording (e.g. device failure, lost samples)

Motivation

Baseline 81.1 % (DEV) 73.3 % (EVAL)

Motivation

Baseline 81.1 % (DEV) 73.3 % (EVAL)

Challenge

Paderborn (GSS) 61.7 % (DEV) 69.0 % (EVAL) Pure frontend contribution

 $C_{h_{all_{enge}}}$

Motivation

Challenge

Paderborn (GSS) 61.7 % (DEV) 69.0 % (EVAL) Pure frontend contribution Hitachi-JHU (ASR) 54.0% (DEV) 50.6% (EVAL) Main gain from speech recognizer

Motivation

Interaction: Do they profit from each other?

Can we use external data to boost the performance?

Can we tune the system?

Guided Source Separation (GSS) - Spatial Mixture Model

Guided Source Separation (GSS) - Spatial Mixture Model

Guided Source Separation (GSS) - Spatial Mixture Model

ASR - Hypothesis Deduplication (HD)

Same words were sometimes recognized for overlapped utterances

Hypothesis deduplication:

- Compensates weak source separation system
- Indicator which source separation worked better

ASR - Hypothesis Deduplication (HD)

Same words were sometimes recognized for overlapped utterances

Hypothesis deduplication:

- Compensates weak source separation system
- Indicator which source separation worked better

ASR - Hypothesis Deduplication (HD)

Same words were sometimes recognized for overlapped utterances

Hypothesis deduplication:

- Compensates weak source separation system
- Indicator which source separation worked better

Simulation results – WER – Challenge conform

	DEV (%)	EVAL (%)
Baseline (single)	81.1	73.3
USTC/iFlytek	45.0	46.1
Proposed	39.94	41.64
Speech enhancement (multi array – 24 channels)	DEV (%)	EVAL (%)
Hitachi-JHU	57.50	
Paderborn	49.21	
Paderborn + BF w/o context	46.54	51.99
${\sf Paderborn} + {\sf BF} \ {\sf w/o} \ {\sf context} + {\sf ASR} \ {\sf feedback}$	45.14	47.29
Model combination RNN-LM HD	DEV (%)	EVAL (%)
	45.14	47.29
\checkmark	41.67	43.70
\checkmark	39.94	41.64
✓	40.26	42.00

Simulation results - WER - Challenge conform

	DEV (%)	EVAL (%)
Baseline (single)	81.1	73.3
USTC/iFlytek	45.0	46.1
Proposed	39.94	41.64

Speech enhancement (multi array – 24 channels)	DEV (%)	EVAL (%)
Hitachi-JHU	57.50	
Paderborn	49.21	
Paderborn $+$ BF w/o context	46.54	51.99
${\sf Paderborn} + {\sf BF} \ {\sf w/o} \ {\sf context} + {\sf ASR} \ {\sf feedback}$	45.14	47.29

Model combination	RNN-LM	HD	DEV (%)	EVAL (%)
			45.14	47.29
\checkmark			41.67	43.70
\checkmark	\checkmark		39.94	41.64
\checkmark	\checkmark	\checkmark	40.26	42.00

Simulation results - WER - Challenge conform

	DEV (%)	EVAL (%)
Baseline (single)	81.1	73.3
USTC/iFlytek	45.0	46.1
Proposed	39.94	41.64

Speech enhancement (multi array – 24 channels)	DEV (%)	EVAL (%)
Hitachi-JHU	57.50	
Paderborn	49.21	
Paderborn + BF w/o context	46.54	51.99
${\sf Paderborn} + {\sf BF} \ {\sf w/o} \ {\sf context} + {\sf ASR} \ {\sf feedback}$	45.14	47.29

Model combination	RNN-LM	HD	DEV (%)	EVAL (%)
			45.14	47.29
\checkmark			41.67	43.70
\checkmark	\checkmark		39.94	41.64
\checkmark	\checkmark	\checkmark	40.26	42.00

Simulation results - WER - External data

ASR difficulty on CHiME-5: training data has only 40 h

AM	Training Data	DEV (%)
CNN-TDNN-LSTM	LibriSpeech (960h)	62.09
Baseline TDNN	CHiME-5 (40h)	58.39
CNN-TDNN-RBiLSTM	CHiME-5 (40h)	45.14

Naive use of 960 hours does not improve performance Possible causes:

- Conversational/spontaneous speech
- Enhanced speech not close enough to clean speech

Simulation results - WER - External data

3-gram LM Training Data	# of Words	DEV	
		PPL	WER (%)
CHiME-5 (Baseline)	0.4M	155	45.14
$CHiME ext{-5} + AMI$	1.2M	140	45.10
CHiME-5 + LibriSpeech	9.8M	134	44.49
CHiME-5 + AMI + LibriSpeech	10.6M	131	44.21

Larger gain expected.

Conclusion

- + GSS front-end can boost second best challenge system (Hitachi-JHU)
- + CHiME-5: New best WER (DEV 39.94 % and EVAL 41.64 %)
- + Annotation fine-tuning with ASR
- + Dropping context for beamforming
- o Taking more data for AM and LM needs more investigations

Thank you for listening!

Conclusion

- + GSS front-end can boost second best challenge system (Hitachi-JHU)
- + CHiME-5: New best WER (DEV 39.94 % and EVAL 41.64 %)
- + Annotation fine-tuning with ASR
- + Dropping context for beamforming
 - Taking more data for AM and LM needs more investigations

Thank you for listening!

CHiME 5 result table

Track	Sess	sion	Kitchen	Dining	Living	Overall
Single	Dev	S02 S09	62.33 51.87	52.82 54.02	44.62 48.09	52.07
Jingie	Eval	S01 S21	60.07 49.09	40.88 38.14	60.94 42.67	47.31
Multiple	Dev	S02 S09	46.66 36.40	45.07 39.43	36.19 35.33	39.94
	Eval	S01 S21	53.93 46.43	35.66 34.53	49.78 36.64	41.64

Single array to multi array

Arrays	Context in BF On Off	
1	58.05	58.13
3	52.30	48.81
6	49.21	46.54