

RAPPORT PROJETS RO

Adrien André

Table des matières

1	Par	tie san	s contraintes
	1.1	Algori	thme de Newton Local
		1.1.1	Tests
		1.1.2	Réponses aux questions d'interprétation
	1.2	Région	de confiance - pas de Cauchy
		1.2.1	Calcul du pas de Cauchy
		1.2.2	Tests de l'algo des régions de confiance
		1.2.3	Réponses aux questions d'interprétation
	1.3	Régior	de confiance - gradient conjugué tronqué
		1.3.1	Méthode du gradient conjugué
		1.3.2	Tests
		1.3.3	Réponses aux questions d'interprétation
2	Par	tie ave	c contraintes
		2.0.1	Tests
		2.0.2	Réponses aux questions d'interprétation

1 Partie sans contraintes

1.1 Algorithme de Newton Local

1.1.1 Tests

Tests résultants du fichier de tests test_newton_local.m:

f	x0	x*	f(x*)	Nombre d'itérations	Type d'arrêt
f1	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	1.9722e - 31	1 itération	Convergence
f1	$\begin{pmatrix} 10 \\ 3 \\ -2.2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	4.9008e - 29	1 itération	Convergence
f2	$\begin{pmatrix} -1.2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -5.6428 \\ -5.264281 \end{pmatrix}$	1.4055e + 05	1000 itérations	nombre max d'itérations
f2	$\begin{pmatrix} 10 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 7.0629 \\ 7.0629 \end{pmatrix}$	1.8341e + 05	1000 itérations	nombre max d'itérations
f2		$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	0	1 itération	Convergence

1.1.2 Réponses aux questions d'interprétation

- 1. On remarque que la fonction f1 est égale à son développement de Taylor à l'ordre 2. Ainsi, sur f1, l'algorithme de Newton local converge en une seule itération car il minimise directement la quadratique.
- 2. Il faut que x0 soit assez proche d'un zéro régulier de la fonction (point en lequel la dérivée de la fonction ne s'annule pas), pour que la convergence de l'algorithme soit assurée. En effet, l'approximation de la fonction par son développement de Taylor à l'ordre 2 conduit à une fonction pouvant conduire dans le sens oppose à un minimum.

1.2 Région de confiance - pas de Cauchy

1.2.1 Calcul du pas de Cauchy

Tests résultants du fichier de tests test_pas_Cauchy.m:

Quadratique	pas obtenu
Quadratique 1	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Quadratique 2	$ \begin{pmatrix} -0.9231 \\ -0.3077 \end{pmatrix} $
Quadratique 3	$ \begin{pmatrix} 0.8944 \\ -0.4472 \end{pmatrix} $

1.2.2 Tests de l'algo des régions de confiance

Tests résultants du fichier de tests test_RC_Cauchy.m:

f	x0	x*	f(x*)	Nombre d'itérations	Type d'arrêt
f1	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{pmatrix} 1.003 \\ 1.0004 \\ 0.9978 \end{pmatrix} $	1.6343e - 05	15 itérations	Convergence
f1	$\begin{pmatrix} 10 \\ 3 \\ -2.2 \end{pmatrix}$	$ \begin{pmatrix} 1.0093 \\ 0.9993 \\ 0.9892 \end{pmatrix} $	2.1080e - 04	16 itérations	Convergence
f2	$\begin{pmatrix} -1.2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1.2 \\ 1.0 \end{pmatrix}$	24.2	50 itérations	nombre max d'itérations
f2	$\begin{pmatrix} 10 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1.3430 \\ 1.3324 \end{pmatrix}$	27.7081	50 itérations	nombre max d'itérations
f2		0 0.0050	1.0025	50 itérations	nombre max d'itérations

1.2.3 Réponses aux questions d'interprétation

- 1. La fonction test f1 est polynomiale de degré 2, donc elle est égale à son développement de Taylor à l'ordre 2. Cela permet à la méthode de Newton de converger en une seule itération, tandis que la méthode des régions de confiances nécessite 15 itérations pour un résultats moins précis.
- 2. On peut également faire varier ces différents paramètres pour optimiser l'exécution de l'algorithme des régions de confiances :
 - γ_1 et γ_2 : facteurs d'agrandissement et de réduction de la région de confiance
 - η_1 et η_2 : critères d'agrandissement et de réduction de la région de confiance
 - Δ_{max} : rayon de confiance max

On remarque que le fait d'augmenter Δ_{max} réduit le nombre d'itérations et le fait de diminuer γ_1 augmente le nombre d'itérations.

1.3 Région de confiance - gradient conjugué tronqué

1.3.1 Méthode du gradient conjugué

Tests résultants du fichier de tests ${\tt test_cg.m}$:

Quadratique	pas obtenu
Quadratique 1	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Quadratique 2	$\begin{pmatrix} -0.9231 \\ -0.3077 \end{pmatrix}$
Quadratique 3	$\begin{pmatrix} 0.8944 \\ -0.4472 \end{pmatrix}$
Quadratique 4	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Quadratique 5	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

1.3.2 Tests

Tests résultants du fichier de tests ${\tt test_RC_CG.m}$:

f	x0	x*	f(x*)	Nombre d'itérations	Type d'arrêt
f1	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{pmatrix} 1.2278 \\ 0.8920 \\ 0.5615 \end{pmatrix} $	0.4252	8 itérations	Distance entre les f(itérés) trop faible
f1	$\begin{pmatrix} 10 \\ 3 \\ -2.2 \end{pmatrix}$	$ \begin{pmatrix} 1.4394 \\ 1.1062 \\ 0.7731 \end{pmatrix} $	0.4252	17 itérations	Distance entre les f(itérés) trop faible
f2	$\begin{pmatrix} -1.2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1.2 \\ 1.0 \end{pmatrix}$	24.2	50 itérations	nombre max d'itérations
f2	$\begin{pmatrix} 10 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1.3430 \\ 1.3324 \end{pmatrix}$	27.7081	50 itérations	nombre max d'itérations
f2		0 0.0050	1.0025	50 itérations	nombre max d'itérations

1.3.3 Réponses aux questions d'interprétation

- 1. La première itération des deux méthodes (pas de cauchy et gradient conjugué tronqué) donne le même pas.
- 2. La complexité de l'algorithme du pas de Cauchy est meilleure

	Méthodes	Avantages	Incovénients		
3.	Pas de Cauchy	Bonne complexité	Précision moyenne		
	Gradient conjugué tronqué	Compléxité moyenne	Bonne précision		

2 Partie avec contraintes

2.0.1 Tests

Tests résultants du fichier de tests ${\tt test_LA.m}$:

1. Pour la fonction test f1 ayant les contraintes c1

x_0	Méthode	x*	f(x*)	μ_k	λ_k	Nombre d'ités
$ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} $	Région de confiance - CG	$\begin{pmatrix} 0.1667 \\ 1.0833 \\ 1.1667 \end{pmatrix}$	1.5278	5	2	2 itérations
$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	Région de confiance - Cauchy	$\begin{pmatrix} 0.1667 \\ 1.0833 \\ 1.1667 \end{pmatrix}$	0.4252	5	2	2 itérations
$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	Newton	$\begin{pmatrix} -0.2857\\ 1.1169\\ 1.8181 \end{pmatrix}$	2.7047	0.0781	4.2299	50 itérations
$ \begin{array}{ c c } \hline \begin{pmatrix} 0.5 \\ 1.25 \\ 1 \end{pmatrix} $	Région de confiance - CG	$\begin{pmatrix} 0.5 \\ 1.25 \\ 1 \end{pmatrix}$	0.7500	2.5	2	3 itérations
$ \begin{array}{ c c } \hline & 0.5 \\ & 1.25 \\ & 1 \end{array} $	Région de confiance - Cauchy	$\begin{pmatrix} 0.5\\ 1.25\\ 1 \end{pmatrix}$	0.75	2.5	2	3 itérations
$ \begin{pmatrix} 0.5 \\ 1.25 \\ 1 \end{pmatrix} $	Newton	$\begin{pmatrix} -0.2857\\ 1.1169\\ 1.8181 \end{pmatrix}$	2.7047	0.0781	4.2299	50 itérations

2. Pour la fonction test f2 ayant les contraintes c2

x_0	Méthode	x*	f(x*)	μ_k	λ_k	Nombre d'ités
	Région de confiance - CG	$\begin{pmatrix} 0.3729 \\ 0.3475 \end{pmatrix}$	4.7371	0.0781	2	8 itérations
$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	Région de confiance - Cauchy	$\begin{pmatrix} 0.3729 \\ 0.3521 \end{pmatrix}$	4.9541	0.0781	2	8 itérations
	Newton	$ \begin{pmatrix} 1.0126 \\ 0.9935 \end{pmatrix} $	4.9541	0.1562	2.08	8 itérations
$ \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} $	Région de confiance - CG	$\begin{pmatrix} 0.8660 \\ 0.8660 \end{pmatrix}$	0.1014	10	2	8 itérations
$ \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} $	Région de confiance - Cauchy	$\begin{pmatrix} 0.8660 \\ 0.8660 \end{pmatrix}$	1.3641	10	2	1 itération
$\begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$	Newton	$\begin{pmatrix} 0.8790 \\ 0.8618 \end{pmatrix}$	0.8086	0.0391	2.006	1 itération

2.0.2 Réponses aux questions d'interprétation

- 1. Certains résultats semble incohérents (notamment pour la méthode de Newton). Cela est sûrement du à une erreur lors de l'implémentaiton de l'algorithme que je n'ai pas réussi à résoudre. On remarque cependant que
- 2. Il ne faut pas prendre une valeur de τ trop importante car cela influe négativement sur la performance de l'algorithme.