Discrete-Continuous Dynamic Choice Models: Identification and Conditional Choice Probability Estimation

CHRISTOPHE BRUNEEL

christophe.bruneel@gmail.com

August 20, 2021

Many economic problems involve joint **discrete** and **continuous dynamic** choices.

→ Labor force participation and Consumption

Many economic problems involve joint **discrete** and **continuous dynamic** choices.

- → Labor force participation and Consumption
- → Retirement and Consumption
- \rightarrow Product choice and quantity consumed
- ightarrow Housing Tenure and Housing size
- → Product quality and Sale price
- → Pricing scheme and Price level
- → Student major choice and effort level

Many economic problems involve joint **discrete** and **continuous dynamic** choices.

But the empirical analysis of discrete-continuous models is limited because

Many economic problems involve joint **discrete** and **continuous dynamic** choices.

But the empirical analysis of discrete-continuous models is limited because

1. Identification is difficult

 \rightarrow Impose assumptions on the unobserved errors/selection or on the timing.

Many economic problems involve joint **discrete** and **continuous dynamic** choices.

But the empirical analysis of discrete-continuous models is limited because

1. Identification is difficult

 \rightarrow Impose assumptions on the unobserved errors/selection or on the timing.

- 2. Hard to estimate, sometimes intractable: SMM, indirect inference
 - → Limits the number of parameters, covariates, periods...

Fast estimation techniques of Dynamic **Discrete** Choice such as CCP (Hotz-Miller, 1993) do not apply directly here.

Many economic problems involve joint **discrete** and **continuous dynamic** choices.

But the empirical analysis of **discrete-continuous** models is **limited** because

1. Identification is difficult

- \rightarrow Impose assumptions on the unobserved errors/selection or on the timing.
- 2. Hard to estimate, sometimes intractable: SMM, indirect inference
 - \rightarrow Limits the number of parameters, covariates, periods...

Fast estimation techniques of Dynamic **Discrete** Choice such as CCP (Hotz-Miller, 1993) do not apply directly here.

This paper: addresses both issues altogether and extends Conditional Choice Probability Estimation insights to Dynamic Discrete-Continuous Choice models.

This paper:

This paper:

Constructive proof of identification and new *faster* estimation tools for a general class of Discrete-Continuous Dynamic Choice models

→ **Identification** of the model in two main steps.

This paper:

- → Identification of the model in two main steps.
 - Identify the optimal choices from <u>data</u> using an *instrument*. Conditional (Discrete) Choice Probabilities (CCPs) and Conditional Continuous Choices (CCCs).

This paper:

- → **Identification** of the model in two main steps.
 - Identify the optimal choices from <u>data</u> using an *instrument*. Conditional (Discrete) Choice Probabilities (CCPs) and Conditional Continuous Choices (CCCs).
 - Use the identified CCPs and CCCs to identify the primitives (payoffs, utility) of the model, which are linked to the optimal choices through first order conditions, Euler equation, ...

This paper:

- → Identification of the model in two main steps.
 - Identify the optimal choices from <u>data</u> using an *instrument*. Conditional (Discrete) Choice Probabilities (CCPs) and Conditional Continuous Choices (CCCs).
 - Use the identified CCPs and CCCs to identify the primitives (payoffs, utility) of the model, which are linked to the optimal choices through first order conditions, Euler equation, ...
- → **Two-step estimation** procedure building upon identification.
 - \rightarrow Do not need to solve the model/value function.
 - \rightarrow **Sizeable computation gains**: 50 times faster in 2 period toy model. The **more complex** the model, the **larger the gains**.

This paper:

Constructive proof of identification and new *faster* estimation tools for a general class of Discrete-Continuous Dynamic Choice models

- → Identification of the model in two main steps.
- ightarrow **Two-step estimation** procedure building upon identification.
 - \rightarrow Do <u>not</u> need to solve the model/value function.
 - ightarrow Sizeable computation gains: 50 times faster in 2 period toy model. The more complex the model, the larger the gains.

Objective:

Facilitate and spread the use of discrete-continuous dynamic models.

Many applications in labor (this paper), housing, education, IO, ...

Roadmap

Framework
Identification of the optimal choice policy functions
Dynamic Models and Identification of the Primitives
Estimation
Application
Conclusion

Roadmap

Framework

Identification of the optimal choice policy functions

Dynamic Models and Identification of the Primitives

Estimation

Application

Conclusion

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

Two unobserved iid shocks:

Additive Discrete-choice specific shock: ϵ_d

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

- Additive Discrete-choice specific shock: ϵ_d
 - ▶ Additivity \implies no impact on c_d choice.

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

- Additive Discrete-choice specific shock: ϵ_d
 - Additivity \implies no impact on c_d choice.
 - ► Only impacts discrete choice *d*:

$$d = 1 \iff \max_{c_1} v_1(c_1, \eta, x) + \epsilon_1 > \max_{c_0} v_0(c_0, \eta, x) + \epsilon_0$$
$$\iff \max_{c_1} v_1(c_1, \eta, x) - \max_{c_0} v_0(c_0, \eta, x) > \epsilon_0 - \epsilon_1$$

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d,\eta,x) + m_d(w,\eta,x) + \epsilon_d$$

- Additive Discrete-choice specific shock: ϵ_d
- Non-separable shock: η (same in both alternatives: rank invariance)

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

- Additive Discrete-choice specific shock: ϵ_d
- Non-separable shock: η (same in both alternatives: rank invariance)
 - Non-separable \implies impacts marginal payoff with respect to c_d . \implies impacts continuous choice c_d .

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

- Additive Discrete-choice specific shock: ϵ_d
- Non-separable shock: η (same in both alternatives: rank invariance)
 - Non-separable ⇒ impacts marginal payoff with respect to c_d. ⇒ impacts continuous choice c_d.
 - ► Also impacts discrete choice *d*

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

Example:

- ightharpoonup d is labor force participation, d = 1 if work, d = 0 if unemployed.
- $ightharpoonup c_d$ is consumption.
- x can include family background variables, education, work experience, asset, income, etc.
- \triangleright η are unobserved idiosyncratic taste for consumption shocks.
- ightharpoonup ϵ are unobserved idiosyncratic preference for work.

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

Assumptions:

MONOTONE CHOICE: the payoff functions are such that the optimal policies functions $c_d^*(\eta, x)$ are \mathcal{C}^1 and strictly increasing with respect to η .

$$\frac{\partial^2 v_d(c_d, \eta, x)}{\partial c_d \partial \eta} > 0$$

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

Assumptions:

MONOTONE CHOICE: the payoff functions are such that the optimal policies functions $c_d^*(\eta, x)$ are \mathcal{C}^1 and strictly increasing with respect to η .

$$\frac{\partial^2 v_d(c_d, \eta, x)}{\partial c_d \partial \eta} > 0$$

► Shock independence: $\eta \perp (x, w)$, $\epsilon \perp (x, w)$, $\eta \perp \epsilon$

Given a state x, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to maximize:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

Assumptions:

MONOTONE CHOICE: the payoff functions are such that the optimal policies functions $c_d^*(\eta, x)$ are \mathcal{C}^1 and strictly increasing with respect to η .

$$\frac{\partial^2 v_d(c_d, \eta, x)}{\partial c_d \partial \eta} > 0$$

- ► Shock independence: $\eta \perp (x, w)$, $\epsilon \perp (x, w)$, $\eta \perp \epsilon$
- ▶ Normalization: $\eta \sim \mathcal{U}(0, 1)$

Given a state x, and instrument w, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to max:

$$\max_{\substack{d, c_d \ d, c_d}} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

- \rightarrow Instrument w:
 - \rightarrow impacting the selection $Pr(D=0|\eta,W,X)$ (and thus $F_{C_d|d,w,x}(c)$) but not the continuous choice $c_d^*(\eta,x)$.

Given a state x, and instrument w, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in \mathcal{C}_d$ in order to max:

$$\max_{\substack{d, c_d \ d, c_d}} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

- \rightarrow Instrument w:
 - \rightarrow impacting the selection $Pr(D=0|\eta, W, X)$ (and thus $F_{C_d|d,w,x}(c)$) but not the continuous choice $c_d^*(\eta, x)$.
 - (i) *excluded* from the marginal utility of the continuous choice: $c_d^*(\eta,x) \perp w$

Given a state x, and instrument w, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to max:

$$\max_{\substack{d, c_d \ d, c_d}} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

- \rightarrow Instrument w:
 - \rightarrow impacting the selection $Pr(D=0|\eta,W,X)$ (and thus $F_{C_d|d,w,x}(c)$) but not the continuous choice $c_d^*(\eta,x)$.
 - (i) *excluded* from the marginal utility of the continuous choice: $c_d^*(\eta,x) \perp w$
 - (ii) relevant: impacts the level of utility (and the discrete choice)

Given a state x, and instrument w, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in \mathcal{C}_d$ in order to max:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

- \rightarrow Instrument w:
 - \rightarrow impacting the selection $Pr(D=0|\eta, W, X)$ (and thus $F_{C_d|d,w,x}(c)$) but not the continuous choice $c_d^*(\eta, x)$.
 - (i) *excluded* from the marginal utility of the continuous choice: $c_d^*(\eta,x) \perp w$
 - (ii) relevant: impacts the level of utility (and the discrete choice)

Example: w can be the *previous labor force participation*. If switching cost in and out of employment, conditional on current d it does not impact the consumption c_d . But it impacts the probability of working.

Given a state x, and instrument w, the agent *simultaneously* makes a discrete choice $d \in \{0, 1\}$ and a continuous choice $c_d \in C_d$ in order to max:

$$\max_{d,c_d} v_d(c_d, \eta, x) + m_d(w, \eta, x) + \epsilon_d$$

→ Triangular structure for the reduced forms:

$$\begin{cases} C_d = c_d^*(X, \eta) \\ D = d^*(X, W, \eta, \epsilon) \end{cases}$$

Roadmap

Framework

Identification of the optimal choice policy functions Conditional Continuous Choices (CCCs) Conditional Choice Probabilities (CCPs)

Dynamic Models and Identification of the Primitives

Estimation

Application

Conclusion

What is observed by the econometrician?

- ► (C_d, D, W, X) for all individuals. Where $c_d = c_0 (1 - d) + c_1 d \rightarrow$ do not observe *both* choices c_0 and c_1 .
- Reduced forms: joint distributions

$$Pr(D = d|W = w, X = x)$$
 and $F_{C_d|D=d, W=w, X=x}(c_d)$

What is observed by the econometrician?

- ► (C_d, D, W, X) for all individuals. Where $c_d = c_0 (1 - d) + c_1 d \rightarrow$ do not observe *both* choices c_0 and c_1 .
- ▶ **Reduced forms**: joint distributions

$$Pr(D = d|W = w, X = x)$$
 and $F_{C_d|D=d, W=w, X=x}(c_d)$

What is unobserved by the econometrician? ϵ and η .

What is observed by the econometrician?

- ► (C_d, D, W, X) for all individuals. Where $c_d = c_0 (1 - d) + c_1 d \rightarrow$ do not observe *both* choices c_0 and c_1 .
- ▶ Reduced forms: joint distributions

$$Pr(D = d|W = w, X = x)$$
 and $F_{C_d|D=d, W=w, X=x}(c_d)$

What is unobserved by the econometrician? ϵ and η .

Want to identify the optimal choices:

- 1. The Conditional Continuous Choices (CCCs) policy functions $c_d^*(\eta, x)$.
- 2. The Conditional Choice Probabilities (CCPs): $Pr(D = d | \eta, W = w, X = x)$.

What is observed by the econometrician?

- ► (C_d, D, W, X) for all individuals. Where $c_d = c_0 (1 - d) + c_1 d \rightarrow$ do not observe *both* choices c_0 and c_1 .
- ▶ Reduced forms: joint distributions

$$Pr(D = d|W = w, X = x)$$
 and $F_{C_d|D=d, W=w, X=x}(c_d)$

What is unobserved by the econometrician? ϵ and η .

Want to identify the optimal choices:

- 1. The Conditional Continuous Choices (CCCs) policy functions $c_d^*(\eta, x)$.
- 2. The Conditional Choice Probabilities (CCPs): $Pr(D = d|\eta, W = w, X = x)$.

Abstract from *X* without loss of generality in this section.

Roadmap

Framework

Identification of the optimal choice policy functions Conditional Continuous Choices (CCCs)

Conditional Choice Probabilities (CCPs)

Dynamic Models and Identification of the Primitives

Estimation

Application

Conclusion

The econometrician observes (C_d, D, W) for all individuals. i.e. observes the *reduced forms*: $F_{C_d|d,w}(c)$ and Pr(D=d|W=w).

Gives the following system of equations $\forall h$:

$$\begin{cases} h = F_{C_0|D=0,W=0}(c_0(h))Pr(D=0|W=0) + F_{C_1|D=1,W=0}(c_1(h))Pr(D=1|W=0) \\ h = F_{C_0|D=0,W=1}(c_0(h))Pr(D=0|W=1) + F_{C_1|D=1,W=1}(c_1(h))Pr(D=1|W=1) \end{cases}$$

observed or known; unknown

The econometrician observes (C_d, D, W) for all individuals. i.e. observes the *reduced forms*: $F_{C_d|d,w}(c)$ and Pr(D=d|W=w).

Gives the following system of equations $\forall h$:

$$\begin{cases} h = F_{C_0|D=0,W=0}(c_0(h))Pr(D=0|W=0) + F_{C_1|D=1,W=0}(c_1(h))Pr(D=1|W=0) \\ h = F_{C_0|D=0,W=1}(c_0(h))Pr(D=0|W=1) + F_{C_1|D=1,W=1}(c_1(h))Pr(D=1|W=1) \end{cases}$$

observed or known; unknown

Proof: since $\eta \sim \mathcal{U}(0, 1)$ and $w \perp \eta$, we have, $\forall w, \forall h$:

$$\begin{split} h &= Pr(\eta \leq h) = Pr(\eta \leq h|w) \\ &= Pr(\eta \leq h \mid D = 0, w) Pr(D = 0|w) + Pr(\eta \leq h \mid D = 1, w) Pr(D = 1|w) \\ &= Pr(C_0 \leq c_0^*(h) \mid D = 0, w) Pr(D = 0|w) \\ &+ Pr(C_1 \leq c_1^*(h) \mid D = 1, w) Pr(D = 1|w) \quad \text{by monotonicity of } c_d^*(h) \\ &= F_{C_0 \mid D = 0, w}(c_0^*(h)) Pr(D = 0|w) + F_{C_1 \mid D = 1, w}(c_1^*(h)) Pr(D = 1|w) \end{split}$$

The econometrician observes (C_d, D, W) for all individuals. i.e. observes the *reduced forms*: $F_{C_d|d,w}(c)$ and Pr(D=d|W=w).

Gives the following system of equations $\forall h$:

$$\begin{cases} h = F_{C_0|D=0,W=0}(c_0(h))Pr(D=0|W=0) + F_{C_1|D=1,W=0}(c_1(h))Pr(D=1|W=0) \\ h = F_{C_0|D=0,W=1}(c_0(h))Pr(D=0|W=1) + F_{C_1|D=1,W=1}(c_1(h))Pr(D=1|W=1) \end{cases}$$

observed or known; unknown

IDENTIFICATION:

The policy functions $c_d^*(h)$ are identified iff there exists a **unique solution** with *increasing* $c_d(h)$ to the system.

 \rightarrow Uniqueness requires an additional assumption on the effect of the instrument.

ASSUMPTION: RELEVANT INSTRUMENT

The additive terms of the payoff are such that:

$$m_0(w = 0, h) - m_1(w = 0, h) \neq m_0(w = 1, h) - m_1(w = 1, h)$$
 except, at most, at a finite set of points.

Equivalently,

$$Pr(D=0|\eta=h,\mathbf{W}=\mathbf{1})\neq Pr(D=0|\eta=h,\mathbf{W}=\mathbf{0})$$
 except, at most, at a finite set of points.

THEOREM: IDENTIFICATION

Under our assumptions, for any reduced form drawn from the model, there exists unique CCCs $c_d^0(h)$ mapping [0,1] into C_d which are strictly increasing and solve the system of equation.

This unique solution identifies the optimal CCCs.

Data on (C_d, D, W) (and X). Only observes $c_d = c_0(1 - d) + c_1 d$. \rightarrow Observed reduced forms: $F_{C_d|d,w}(c)$ and Pr(D = d|W = w).

Data on (C_d, D, W) (and X). Only observes $c_d = c_0(1 - d) + c_1 d$. \rightarrow Observed reduced forms: $F_{C_d|d,w}(c)$ and Pr(D = d|W = w).

Figure: Joint distributions $F_{C_d|d,w}(c_d)Pr(d|w)$

Assumptions: $c_d^*(\eta) \perp w$ and $w \perp \eta$

⇒ Observable differences caused by unobserved:

$$Pr(D = 0|\eta, W = 1) - Pr(D = 0|\eta, W = 0)$$

Data on (C_d, D, W) (and X). Only observes $c_d = c_0(1 - d) + c_1 d$. \rightarrow Observed reduced forms: $F_{C_d|d,w}(c)$ and Pr(D = d|W = w).

Figure: Joint distributions $F_{C_d|d,w}(c_d)Pr(d|w)$

Similarly for the **other choice D** = 1. Moreover, link between D = 1 and D = 0: Pr(D = 0|w) = 1 - Pr(D = 1|w) \implies the differences between the conditional distributions of c_d are related.

Figure: Joint distributions $F_{C_d|d,w}(c_d)Pr(d|w)$

Bayes:
$$F_{C_1|1,w=1}(c_1(\eta))Pr(1|w=1) - F_{C_1|1,w=0}(c_1(\eta))Pr(1|w=0)$$

= $-\left(F_{C_0|0,w=1}(c_0(\eta))Pr(0|w=1) - F_{C_0|0,w=0}(c_0(\eta))Pr(0|w=0\right)$

Figure: <u>Difference</u> within joint distributions \implies Identified CCCs

$$\Delta F_{C_0}(c_0(\eta)) = \Delta F_{C_1}(c_1(\eta)) \iff \Delta F_{C_0}(c_0(c_1)) = \Delta F_{C_1}(c_1)$$

where $\Delta F_{C_d}(c_d)$ are observed. The only unknown is the **mapping** $c_0(c_1)$.

Figure: $\underline{\text{Difference}}$ within joint distributions \implies Identified CCCs

where $\Delta F_{C_d}(c_d)$ are observed. The only unknown is the **mapping** $c_0(c_1)$.

Figure: Difference within joint distribution ⇒ Identified CCCs

where $\Delta F_{C_d}(c_d)$ are observed. The only unknown is the **mapping** $c_0(c_1)$.

Figure: Difference within joint distribution ⇒ **Identified CCCs**

- \rightarrow **Identifies** correspondence between c_0 and c_1 : $c_0(c_1)$.
- ightarrow Then use system to find corresponding η :

$$\eta(c_1) = F_{C_0|D=0,w}(c_0(c_1))Pr(D=0|w) + F_{C_1|D=1,w}(c_1)Pr(D=1|w) \quad \forall c_1 \in C_1$$

What is the role of the relevance assumption?

Determines the **shape of** ΔF_{C_d} functions.

► Here *monotone* $\Delta F_{C_d} \iff$ strict relevance:

$$Pr(D = 0|\eta, W = 0) < Pr(D = 0|\eta, W = 1)$$
 $\forall \eta$

General relevance assumption

$$Pr(D=0|\eta=h,W=1)\neq Pr(D=0|\eta=h,W=0)$$
 except at a finite set of points.

$$\iff$$
 Piecewise monotone ΔF_{C_d} .

▶ If not relevant on a segment: flat ΔF_{C_d} , partial identification.

Roadmap

Framework

Identification of the optimal choice policy functions

Conditional Continuous Choices (CCCs)

Conditional Choice Probabilities (CCPs)

Dynamic Models and Identification of the Primitives

Estimation

Application

Conclusion

Identification: Conditional Choice Probabilities (CCPs)

To recover the Conditional Choice Probabilities (CCPs): $Pr(D = d|\eta, W = w)$:

First, invert the policy function to identify η from the observed c_d^{obs} :

$$\eta=c_d^{*-1}(c_d^{obs})$$

Identification: Conditional Choice Probabilities (CCPs)

To recover the Conditional Choice Probabilities (CCPs): $Pr(D = d|\eta, W = w)$:

First, invert the policy function to identify η from the observed c_d^{obs} :

$$\eta = c_d^{*-1}(c_d^{obs})$$

as if η was **observed** from now on.

Identification: Conditional Choice Probabilities (CCPs)

To recover the Conditional Choice Probabilities (CCPs): $Pr(D = d | \eta, W = w)$:

First, invert the policy function to identify η from the observed c_d^{obs} :

$$\eta = c_d^{*-1}(c_d^{obs})$$

as if η was **observed** from now on.

► Then using it, recover the conditional choice probabilities $Pr(D = d | \eta, W = w) \forall \eta, \forall w$ (at the optimal continuous policy choice) from data (η, D, W) .

Roadmap

Framework

Identification of the optimal choice policy functions

Dynamic Models and Identification of the Primitives

Estimation

Application

Conclusion

Extension to dynamic: How do dynamic models enter the general framework?

Extension to dynamic: How do dynamic models enter the general framework?

► Period utility:

$$u_{dt}(c_t, \eta_t, \tilde{\mathbf{x}}_t) + m_{dt}(\mathbf{w}_t, \eta_t, \tilde{\mathbf{x}}_t) + \epsilon_{dt}$$

subject to:
$$a_{t+1} = (1+r)a_t - c_t + \text{income}_t d_t$$

Extension to dynamic: How do dynamic models enter the general framework?

► Period utility:

$$u_{dt}(c_t, \eta_t, \tilde{x}_t) + m_{dt}(w_t, \eta_t, \tilde{x}_t) + \epsilon_{dt}$$

subject to:
$$a_{t+1} = (1+r)a_t - c_t + \text{income}_t d_t$$

▶ Given states $x_t = (\tilde{x}_t, \text{income}_t, a_t)$, the agent solves:

$$\max_{d,c_{dt}} u_{dt}(c_{dt}, \eta_t, \tilde{x}_t) + m_{dt}(w_t, \eta_t, \tilde{x}_t) + \epsilon_{dt} + \beta \mathbb{E}_t \left[V_{t+1}(x_{t+1}, w_{t+1} | x_t, d_t, c_t, w_t) \right]$$

Extension to dynamic: How do dynamic models enter the general framework?

Period utility:

subject to:

$$u_{dt}(c_t, \eta_t, \tilde{\mathbf{x}}_t) + m_{dt}(w_t, \eta_t, \tilde{\mathbf{x}}_t) + \epsilon_{dt}$$

 $a_{t+1} = (1+r)a_t - c_t + \text{income}_t d_t$

► Given states $x_t = (\tilde{x}_t, \text{income}_t, a_t)$, the agent solves:

$$\max_{d,c_{dt}} u_{dt}(c_{dt}, \eta_t, \tilde{x}_t) + m_{dt}(w_t, \eta_t, \tilde{x}_t) + \epsilon_{dt}$$

$$+ \beta \mathbb{E}_t \left[V_{t+1}(x_{t+1}, w_{t+1} | x_t, d_t, c_t, \mathbf{w}_t) \right]$$

And we obtain back general form (where a_t is part of x_t):

$$\max_{\substack{d,c_{dt}\\d,c_{dt}}} \underbrace{u_{dt}(c_{dt},\eta_t,\tilde{x}_t) + \beta \mathbb{E}_t \left[V_{t+1}(x_{t+1},w_{t+1}|x_t,d_t,c_t,w_t)\right] + m_{dt}(w_t,\eta_t,\tilde{x}_t) + \epsilon_{dt}}_{=v_{dt}(c_{dt},\eta_t,\tilde{x}_t) + \beta \mathbb{E}_t \left[V_{t+1}(x_{t+1},w_{t+1}|x_t,d_t,c_t,w_t)\right] + m_{dt}(w_t,\eta_t,\tilde{x}_t) + \epsilon_{dt}$$

Problem: w_t not excluded from c_t optimal choice without additional assumptions.

Extension to dynamic: How do dynamic models enter the general framework?

► Period utility:

$$u_{dt}(c_t, \eta_t, \tilde{x}_t) + m_{dt}(w_t, \eta_t, \tilde{x}_t) + \epsilon_{dt}$$

subject to:
$$a_{t+1} = (1+r)a_t - c_t + \text{income}_t d_t$$

► Given states $x_t = (\tilde{x}_t, \text{income}_t, a_t)$, the agent solves:

$$\max_{d,c_{dt}} u_{dt}(c_{dt}, \eta_t, \tilde{x}_t) + m_{dt}(w_t, \eta_t, \tilde{x}_t) + \epsilon_{dt}$$

$$+ \beta \mathbb{E}_t \left[V_{t+1}(x_{t+1}, w_{t+1} | x_t, d_t, c_t, \mathbf{w}_t) \right]$$

 \rightarrow Need instrument exclusion, also from transitions: $f(x_{t+1}, w_{t+1}|x_t, d_t, c_t, w_t)$.

Extension to dynamic: How do dynamic models enter the general framework?

Period utility:

$$u_{dt}(c_t, \eta_t, \tilde{x}_t) + m_{dt}(w_t, \eta_t, \tilde{x}_t) + \epsilon_{dt}$$

subject to: $a_{t+1} = (1+r)a_t - c_t + \text{income}_t d_t$

► Given states $x_t = (\tilde{x}_t, \text{income}_t, a_t)$, the agent solves:

$$\max_{d,c_{dt}} u_{dt}(c_{dt}, \eta_t, \tilde{x}_t) + m_{dt}(w_t, \eta_t, \tilde{x}_t) + \epsilon_{dt}$$

$$+ \beta \mathbb{E}_t \left[V_{t+1}(x_{t+1}, w_{t+1} | x_t, d_t, c_t, \mathbf{w}_t) \right]$$

- \rightarrow Need instrument exclusion, also from transitions: $f(x_{t+1}, w_{t+1}|x_t, d_t, c_t, w_t)$.
- ▶ Good *example* of instrument: $w_t = d_{t-1}$.
 - \rightarrow Excluded from transition to w_{t+1} conditional on d_t ... since $w_{t+1} = d_t$.
 - \rightarrow *Excluded from c*_d conditional on d_t ...
 - \rightarrow Relevant for d_t if switching costs.

Extension to dynamic: How do dynamic models enter the general framework?

Period utility:

subject to:

$$u_{dt}(c_t, \eta_t, \tilde{\mathbf{x}}_t) + m_{dt}(\mathbf{w}_t, \eta_t, \tilde{\mathbf{x}}_t) + \epsilon_{dt}$$
$$a_{t+1} = (1+r)a_t - c_t + \text{income}_t d_t$$

• Given states $x_t = (\tilde{x}_t, \text{income}_t, a_t)$, the agent solves:

$$\max_{d,c_{dt}} u_{dt}(c_{dt}, \eta_t, \tilde{x}_t) + m_{dt}(w_t, \eta_t, \tilde{x}_t) + \epsilon_{dt} \\ + \beta \mathbb{E}_t \left[V_{t+1}(x_{t+1}, w_{t+1} | x_t, d_t, c_t, \mathbf{w}_t) \right]$$

- \rightarrow Need instrument exclusion, also from transitions: $f(x_{t+1}, w_{t+1}|x_t, d_t, c_t, w_t)$.
- ▶ And we obtain back static general form (where a_t is part of x_t):

$$\max_{\substack{d,c_{dt}\\d,c_{dt}}} \underbrace{u_{dt}(c_{dt},\eta_t,\tilde{x}_t) + \beta \mathbb{E}_t \left[V_{t+1}(x_{t+1},w_{t+1}|x_t,d_t,c_t)\right] + m_{dt}(w_t,\eta_t,\tilde{x}_t) + \epsilon_{dt}}_{}$$

About the transitions:

If $w_t = d_{t-1}$: need **no time-dependence** in η : $\eta_t \perp \eta_{t+1}$.

Otherwise, instrument independence from shocks is violated: $w_0 = d_{-1} \cancel{x} \eta_0$.

Then, how to exploit **observable information about the transitions**?

About the transitions:

▶ If $w_t = d_{t-1}$: need **no time-dependence** in η : $\eta_t \perp \eta_{t+1}$.

Otherwise, instrument independence from shocks is violated: $w_0 = d_{-1} \cancel{x} \eta_0$.

Then, how to exploit observable information about the transitions?

1. Include unobserved individual types (Arcidiacono and Miller, 2011).

About the transitions:

If $w_t = d_{t-1}$: need **no time-dependence** in η : $\eta_t \perp \eta_{t+1}$.

Otherwise, instrument independence from shocks is violated: $w_0 = d_{-1} \not \perp \eta_0$.

Then, how to exploit observable information about the transitions?

- 1. Include unobserved individual types (Arcidiacono and Miller, 2011).
- Find another instrument, to identify η₀ in initial period.
 Then can use w_t = d_{t-1} for all the other periods by including η_{t-1} in the t state variables: instrument independence conditional on η_{t-1}.
 → identify and estimate f(η_{t+1}|η_t).

CCCs and CCPs identified as before (period by period). Transitions $f_t(x_{t+1}|x_t, d_t, c_t)$ identified directly from the data.

Use First Order Conditions relating the model and the optimal choices to identify the primitives of the model:

- Use First Order Conditions relating the model and the optimal choices to identify the primitives of the model:
 - → Marginal (period) utility (and discount factor) identified by Euler Equation at optimal choices (Escanciano et al., 2020).

- Use First Order Conditions relating the model and the optimal choices to identify the primitives of the model:
 - → Marginal (period) utility (and discount factor) identified by Euler Equation at optimal choices (Escanciano et al., 2020).
 - → Conditional value (at the optimal CCCs) identified via FOC with respect to the asset (Blundell et al., 1997).

- Use First Order Conditions relating the model and the optimal choices to identify the primitives of the model:
 - → Marginal (period) utility (and discount factor) identified by Euler Equation at optimal choices (Escanciano et al., 2020).
 - → Conditional value (at the optimal CCCs) identified via FOC with respect to the asset (Blundell et al., 1997).
 - \rightarrow Differences in additive m_d terms identified via the CCPs.

Roadmap

Framework

Identification of the optimal choice policy functions

Dynamic Models and Identification of the Primitives

Estimation

Optimal choice policy functions Structural parameters

Application

Conclusion

▶ Application

'Two-step' estimation procedure, à la Hotz and Miller, 1993:

1. Estimate optimal policy functions:

- 1. Estimate optimal policy functions:
 - Estimate the CCCs, $c_{dt}(\eta_t, x_t)$, and the CCPs, $Pr(D_t = 1 | \eta_t, w_t, x_t)$. Parametric (MLE or GMM) or **Nonparametric**.

- 1. Estimate optimal policy functions:
 - Estimate the CCCs, $c_{dt}(\eta_t, x_t)$, and the CCPs, $Pr(D_t = 1 | \eta_t, w_t, x_t)$. Parametric (MLE or GMM) or **Nonparametric**.
 - ▶ Also recover the transitions $f(x_{t+1}|x_t, d_t, c_t)$ from data for simulation.

- 1. Estimate optimal policy functions:
 - Estimate the CCCs, $c_{dt}(\eta_t, x_t)$, and the CCPs, $Pr(D_t = 1 | \eta_t, w_t, x_t)$. Parametric (MLE or GMM) or **Nonparametric**.
 - Also recover the transitions $f(x_{t+1}|x_t, d_t, c_t)$ from data for simulation.
- 2. Recover the payoffs based on the 1st stage policies: naturally linked with structural models, through *first order conditions, Euler equation*.
 - \implies Do <u>not</u> need to solve the model.

- 1. Estimate optimal policy functions:
 - Estimate the CCCs, $c_{dt}(\eta_t, x_t)$, and the CCPs, $Pr(D_t = 1 | \eta_t, w_t, x_t)$. Parametric (MLE or GMM) or **Nonparametric**.
 - ▶ Also recover the transitions $f(x_{t+1}|x_t, d_t, c_t)$ from data for simulation.
- 2. Recover the payoffs based on the 1st stage policies: naturally linked with structural models, through *first order conditions, Euler equation*.
 - \implies Do <u>not</u> need to solve the model.
- → Computation gains: compared with other methods (SMM...).
 The more complex (covariates, number of periods, ...) the model, the higher the gains.

Roadmap

Framework

Identification of the optimal choice policy functions

Dynamic Models and Identification of the Primitives

Estimation

Optimal choice policy functions

Structural parameters

Application

Conclusion

Estimation: CCCs

From data on (D_t, C_{dt}, X_t, W_t) , estimate the reduced forms $\hat{F}_{C_{dt}|d_t, x_t, w_t, t}(c_{dt})$ and $Pr(D_t = d|X_t = x_t, W_t = w_t, t)$.

Nonparametric Kernel, Sieve logistic/probit regressions.

- From data on (D_t, C_{dt}, X_t, W_t) , estimate the reduced forms $\hat{F}_{C_{dt}|d_t, x_t, w_t, t}(c_{dt})$ and $Pr(D_t = d|X_t = x_t, W_t = w_t, t)$. Nonparametric Kernel, Sieve logistic/probit regressions.
- **E**stimate the monotone functions $\hat{c}_{dt}(h, x)$ which solves $\forall h, \forall w_t$:

$$h = \hat{F}_{C_0|D_t=0,w_t,x_t}(c_{0t}(h,x_t))Pr(\widehat{D_t=0|w_t,x_t})$$

$$+ \hat{F}_{C_1|D_t=1,w_t,x_t}(c_{1t}(h,x))Pr(\widehat{D_t=1|w_t,x_t})$$

$$\equiv g_{w_t,x_t}(c_{0t}(h,x_t),c_{1t}(h,x_t))$$

We find the CCCs as strictly monotone functions, solution to:

Remark: proceed x_t by x_t and period by period, and solve for the whole functions each time.

Recover $\hat{\eta}_t$ from every observed (c_{dt}^{obs}, d_t, x_t) by inverting the CCCs:

$$\hat{\eta} = \widehat{c_{dt}^{-1}}(c_{dt}^{obs}, x_t)$$

Consider $\hat{\eta}$ as *observed* from here onwards.

Recover $\hat{\eta}_t$ from every observed (c_{dt}^{obs}, d_t, x_t) by inverting the CCCs:

$$\hat{\eta} = \widehat{c_{dt}^{-1}}(c_{dt}^{obs}, x_t)$$

Consider $\hat{\eta}$ as *observed* from here onwards.

• Use $\hat{\eta}$ to estimate (nonparametrically or parametrically) the CCPs (at opti *c*):

$$Pr(D_t = d_t | \eta, w_t, x_t) \quad \forall \eta_t, \ \forall w_t, \ \forall x_t$$

Roadmap

Framework

Identification of the optimal choice policy functions

Dynamic Models and Identification of the Primitives

Estimation

Optimal choice policy functions

Structural parameters

Application

Conclusion

Take **1st stage** estimated *CCCs*, *CCPs*, and *transitions* as given:

1. Pick a set of parameters θ . θ determines the period utility functional forms: $u_{dt}(), u'_{dt}()$, and $m_{dt}()$.

Take **1st stage** estimated *CCCs*, *CCPs*, and *transitions* as given:

- 1. Pick a set of parameters θ . θ determines the period utility functional forms: $u_{dt}()$, $u'_{dt}()$, and $m_{dt}()$.
- 2. Differences in Euler Equation.

Given θ , CCCs, CCPs and transition, estimate both sides of the **Euler equation** for each individuals.

For the expectation on the RHS, use forward one period-ahead simulation.

Take **1st stage** estimated *CCCs*, *CCPs*, and *transitions* as given:

- 1. Pick a set of parameters θ . θ determines the period utility functional forms: $u_{dt}()$, $u'_{dt}()$, and $m_{dt}()$.
- Differences in Euler Equation.
 Given θ, CCCs, CCPs and transition, estimate both sides of the Euler equation for each individuals.
 For the expectation on the RHS, use forward one period-ahead simulation.
- 3. Differences in Probabilities Estimate the *conditional value functions* by *forward life-cycle simulations*. From there, compute **theoretical probabilities given** θ , compare them with estimated CCPs.

Take **1st stage** estimated *CCCs*, *CCPs*, and *transitions* as given:

- 1. Pick a set of parameters θ . θ determines the period utility functional forms: $u_{dt}()$, $u'_{dt}()$, and $m_{dt}()$.
- Differences in Euler Equation.
 Given θ, CCCs, CCPs and transition, estimate both sides of the Euler equation for each individuals.

 For the expectation on the RHS, use forward one period-ahead simulation.
- Differences in Probabilities
 Estimate the conditional value functions by forward life-cycle simulations.
 From there, compute theoretical probabilities given θ, compare them with estimated CCPs.
- 4. $\widehat{\theta}$ minimizes an objective made of the differences in probabilities and in the Euler equation.

Take **1st stage** estimated *CCCs*, *CCPs*, and *transitions* as given:

- 1. Pick a set of parameters θ . θ determines the period utility functional forms: $u_{dt}()$, $u'_{dt}()$, and $m_{dt}()$.
- Differences in Euler Equation.
 Given θ, CCCs, CCPs and transition, estimate both sides of the Euler equation for each individuals.

 For the expectation on the RHS, use forward one period-ahead simulation.
- 3. Differences in Probabilities
 Estimate the conditional value functions by forward life-cycle simulations.
 From there, compute **theoretical probabilities given** θ , compare them with estimated CCPs.
- 4. $\widehat{\theta}$ minimizes an objective made of the differences in probabilities and in the Euler equation.
- 5. Inference: *in progress*, tentative by bootstrap.

Roadmap

Framework

Identification of the optimal choice policy functions

Dynamic Models and Identification of the Primitives

Estimation

Application Setup Data Results

Conclusion

- ▶ Dynamic life-cycle model of women Labor Participation and Consumption.
- 1st stage:
 Estimate distribution of consumption and work probabilities.
- ► 2nd stage: Recover structural parameters (relative risk aversion, utility cost of work, ...).

Roadmap

Framework

Identification of the optimal choice policy functions

Dynamic Models and Identification of the Primitives

Estimation

Application Setup

Data

Results

Conclusion

Working Life: (T periods)
Period utility:

$$\textit{u}(\textit{c}_t,\textit{d}_t,\textit{w}_t,\textit{x}_t,\eta_t,\epsilon_t) = \left\{ \begin{array}{l} \left(\textit{c}_t/\textit{n}_t\right)^{1-\sigma}/(1-\sigma) \ \tilde{\eta}_t^0(\eta_t,\textit{couple}_t,\textit{nchild}_t) + \epsilon_{0t} \\ \left(\textit{c}_t/\textit{n}_t\right)^{1-\sigma}/(1-\sigma) \ \tilde{\eta}_t^1(\eta_t,\textit{couple}_t,\textit{nchild}_t) + \alpha + \omega(1-\textit{w}_t) + \epsilon_{1t} \end{array} \right.$$

Where

- ▶ *t* is the **age**. c_t is household consumption. d_t is labor choice. $w_t = d_{t-1}$.
- $ightharpoonup n_t$ is an equivalence scale for hh consumption to individual consumption.
- $\widetilde{\eta}_t^d \sim \mathcal{LN}(\gamma_d + \gamma_d^c couple_t + \gamma_d^n nchild_t, s_d).$ So, $\widetilde{\eta}$ are just transformations of η : η^{th} quantiles of the lognormal.
- $(\gamma_0, \gamma_1, s_0, s_1)$ measures the effect of the unobserved heterogeneity. Moreover, (γ_d^n, γ_d^c) determines the effect of the family situation, conditional on employment.
- \triangleright σ is constant relative risk aversion.
- \triangleright ω is utility cost of searching for a job when previously unemployed.
- $ightharpoonup \alpha$ is utility cost of working.

Working Life: (T periods)
Period utility:

$$\textit{u}(\textit{c}_t,\textit{d}_t,\textit{w}_t,\textit{x}_t,\eta_t,\epsilon_t) = \left\{ \begin{array}{l} \left(\textit{c}_t/\textit{n}_t\right)^{1-\sigma}/(1-\sigma) \ \tilde{\eta}_t^0(\eta_t,\textit{couple}_t,\textit{nchild}_t) + \epsilon_{0t} \\ \left(\textit{c}_t/\textit{n}_t\right)^{1-\sigma}/(1-\sigma) \ \tilde{\eta}_t^1(\eta_t,\textit{couple}_t,\textit{nchild}_t) + \alpha + \omega(1-\textit{w}_t) + \epsilon_{1t} \end{array} \right.$$

subject to the budget constraint:

$$a_{t+1} = (1+r)a_t - c_t + d_t y_t + \text{couple}_t d_t^p y_t^p + T(d_t, x_t)$$

Where

- $ightharpoonup a_t$ is the household asset.
- \triangleright y_t is the woman earnings.
- \triangleright y_t^p is the partner's earnings. d_t^p indicates if the husband works.
- ▶ Missing incomes: estimated with *Heckman Correction* beforehand.
- ▶ $T(d_t, x_t)$ are benefits, depending on labor choice and x_t (which includes asset, income, family information).

Working Life: (T periods)

Transitions of the state variables, estimated in first stage:

asset transition given by the budget constraint.

$$a_{t+1} = (1+r)a_t - c_t + d_t y_t + \text{couple}_t y_t^p + T(d_t, x_t)$$

- couple_t and educ_t fixed.
- ▶ $nchild_{t+1}|nchild_t, couple_t, a_t, y_t, y_t^p, educ_t, t$
- \triangleright y_t evolves through time according to an auto-regressive process:

$$y_{t+1} = (\rho_y^{educ} y_t + \rho_d^{educ} d_t + \rho_{age}^{educ} t) + u_t$$

$$y_{t+1}^p = \rho_y^p y_t^p + v_t$$

 \rightarrow **Education** only plays a role in the transitions. It affects c_{dt} through this.

Retirement:

- ▶ At age T = 60, the woman retires. Gets the same utility as when did not work, with $d_t = 0$.
- She lives for another 15 years from her accumulated assets and gets a pension which is a proportion of her last income y_T (and potential husband income). Proportion set to 50% (taux plein).
- No bequest motive.
- ▶ Solve retiree problem and get retirement value:

$$R(x_T) = R(a_T, y_T, y_T^p, couple_T, nchild_T)$$

Parameters:

- **Discount future with** β . Fixed.
- Set $\gamma_0 = 0$, $s_0 = 0.5$ (normalize the effect of unemployed single with no child).
- Transition function parameters estimated in first stage.
- 9 structural parameters to estimate:

$$\theta = (\sigma, \gamma_0^n, \gamma_0^c, \gamma_1, \gamma_1^n, \gamma_1^c, s_1, \alpha, \omega)$$

Roadmap

Framework

Identification of the optimal choice policy functions

Dynamic Models and Identification of the Primitives

Estimation

Application

Setup

Data

Results

Conclusion

Descriptive statistics

Table: EU-SILC French unbalanced panel, 2004 — 2015, 7391 women

Statistic	N	Mean	St. Dev.	Min	Median	Max
Choices:						
Annual household c (k euros)	21,945	36.58	20.99	3.88	32.54	211.54
c d=0	5,330	30.04	19.32	4.02	25.58	204.48
c d=1	16,615	38.67	21.07	3.88	34.78	211.54
d	21,945	0.76	0.43	0	1	1
$w = d_{-1}$	21,945	0.76	0.43	0	1	1
d w=0	5,354	0.14	0.35	0	0	1
d w=1	16,591	0.96	0.20	0	1	1
Covariates:						
Age	21,945	42.37	9.39	26	42	60
Annual Income y (Heckman)	21,945	19.74	5.29	8.10	19.07	43.32
Asset	21,945	108.29	118.55	-32	69.0	528
Nb of children	21,945	1.71	1.09	0	2	4
Couple	21,945	0.75	0.43	0	1	1
Working partner Couple	16,442	0.93	0.25	0	1	1
Partner's income y ^p Couple	16,442	26.41	13.21	4.02	23.20	147.54
Completed Education	21,945					
≤ Secondary	5,240	0.24	0.43	0	0	1
High School	9,999	0.46	0.50	0	0	1
University	6,706	0.30	0.46	0	0	1
Other:						
Receives Benefits	21,945	0.66	0.47	0	1	1
Benefits Benefits > 0	14,478	5.16	4.46	0.002	3.60	23.07

 c, y, y^p , asset and benefits expressed in real terms (base 2010) and in thousands of euros.

Roadmap

Framework

Identification of the optimal choice policy functions

Dynamic Models and Identification of the Primitives

Estimation

Application

Setu

Results

Conclusion

CCCs and CCPs

CCCs and CCPs:

▶ 1st stage

Average evolution of a woman with median characteristics: 26y.o. woman, high-school education, with income 17k5 euros, no asset, in couple, no child, with a partner earning 22k euros.

h

Structural parameters

Table: Structural parameter estimates

▶ 2nd stage

	Parameter	estimates
	Parameter	Estimate
Discount factor	β	0.98
		(fixed)
Relative Risk Aversion	σ	1.63
Effect of η by family		
when unemployed:		
$\mathcal{LN}(\gamma_0^c couple + \gamma_0^n nchild, s_0)$	γ_0	0
		(fixed)
	γ_0^c	-1.80
	γ_0^n	-0.31
	S_0	0.50
		(fixed)
when employed:	γ_1	-1.04
$\mathcal{LN}(\gamma_1 + \gamma_1^c couple + \gamma_1^n nchild, s_1)$	γ_1^c	-0.65
	γ_1^n	-0.10
	s_1	0.54
Additive terms:		
Utility cost of working	α	-0.04
Utility cost of search	ω	-2.14

How does my two-step method compare with alternative methods?

How does my two-step method compare with alternative methods?

- Cannot compare in complete model: alternatives take too long (months). My method: about 5 hours in total.
- ► Simplified **Toy model**: 2 periods, binary high/low income, asset and no other covariates.
- ► Comparison via **Monte Carlo Simulations** of this Toy model.

Estimator Comparison: Toy model Monte Carlo

Table: T = 2 periods

		Metho	d
	Truth	DCC	SMM
N		10,000	10,000
7	1.60	1.6253	1.5924
		(0.0410)	(0.0156)
γ1	0.00	0.0070	-0.0052
		(0.0238)	(0.0055)
1	0.40	0.4078	0.4001
		(0.0228)	(0.0071)
¥	-0.50	-0.4727	-0.5023
		(0.0498)	(0.0348)
,	-1.00	-0.9982	-0.9972
		(0.0581)	(0.0523)
Average Time taken:			
1st stage: CCPs and CCCs		118s	9s
2nd stage: Structural parameters		170s	14328s
Overall		288s	14337s

Other initializations: Number of Monte-Carlo = 1,000 $Pr(w_1 = 1) = 0.70$. $y_1 = y_H$ with probability 0.50. $a_1 \sim \mathcal{U}(0,30)$. r = 0.05.

Consistent estimators.

- Consistent estimators.
- Efficiency loss due to the two-stage method.

- Consistent estimators.
- Efficiency loss due to the two-stage method.
- ▶ But already 50 times faster in this 2 period toy model.
 The more complex the model, the larger the computation gains.

- Consistent estimators.
- Efficiency loss due to the two-stage method.
- ► But already 50 times faster in this 2 period toy model.

 The more complex the model, the larger the computation gains.

How?

Estimator comparison

- Consistent estimators.
- Efficiency loss due to the two-stage method.
- But already 50 times faster in this 2 period toy model.
 The more complex the model, the larger the computation gains.

How?

→ Fixed cost of computing 1st stage policies.

Estimator comparison

- Consistent estimators.
- Efficiency loss due to the two-stage method.
- But already 50 times faster in this 2 period toy model.
 The more complex the model, the larger the computation gains.

How?

- → Fixed cost of computing 1st stage policies.
- ightarrow Then estimation of parameters is fast in 2nd stage: do not compute the value function.

Estimator comparison

- Consistent estimators.
- Efficiency loss due to the two-stage method.
- But already 50 times faster in this 2 period toy model.
 The more complex the model, the larger the computation gains.

How?

- → Fixed cost of computing 1st stage policies.
- → Then estimation of parameters is fast in 2nd stage: do not compute the value function.

Also avoids concerns about kinks in value/discontinuities in optimal policies (Iskhakov et al., 2017).

Roadmap

Framework

Identification of the optimal choice policy functions

Dynamic Models and Identification of the Primitives

Estimation

Application

 Introduce general framework of simultaneous Discrete-Continuous Dynamic Choice models.

Nest many models, and allow for unobserved heterogeneity on both choices.

► Introduce general framework of simultaneous Discrete-Continuous Dynamic Choice models.

Nest many models, and allow for unobserved heterogeneity on both choices.

Prove non-parametric identification, using an instrument.
Link dynamic structural models and reduced form identification literature.

► Introduce general framework of simultaneous Discrete-Continuous Dynamic Choice models.

Nest many models, and allow for unobserved heterogeneity on both choices.

- Prove non-parametric identification, using an instrument.
 Link dynamic structural models and reduced form identification literature.
- ► Faster estimation procedure based on identification.
 - '2 steps' in the spirit of Hotz and Miller (1993): introduces the CCCs.
 - \rightarrow Computation gains \rightarrow spread the use of Dynamic DC models.
 - → Many applications in labor, housing, education, IO...

- ► Introduce general framework of simultaneous Discrete-Continuous Dynamic Choice models.
 - Nest many models, and allow for unobserved heterogeneity on both choices.
- Prove non-parametric identification, using an instrument.
 Link dynamic structural models and reduced form identification literature.
- ► Faster estimation procedure based on identification.
 - '2 steps' in the spirit of Hotz and Miller (1993): introduces the CCCs.
 - \rightarrow Computation gains \rightarrow spread the use of Dynamic DC models.
 - → Many applications in labor, housing, education, IO...
- Future research:

- ► Introduce general framework of simultaneous Discrete-Continuous Dynamic Choice models.
 - Nest many models, and allow for unobserved heterogeneity on both choices.
- Prove non-parametric identification, using an instrument.
 Link dynamic structural models and reduced form identification literature.
- ► **Faster** estimation procedure based on identification.
 - '2 steps' in the spirit of Hotz and Miller (1993): introduces the CCCs.
 - \rightarrow Computation gains \rightarrow spread the use of Dynamic DC models.
 - → Many applications in labor, housing, education, IO...
- Future research:
 - Unobserved types. Hu and Shum, 2012, Kasahara and Shimotsu, 2009, Arcidiacono and Miller, 2011.

- ► Introduce general framework of simultaneous Discrete-Continuous Dynamic Choice models.
 - Nest many models, and allow for unobserved heterogeneity on both choices.
- Prove non-parametric identification, using an instrument.
 Link dynamic structural models and reduced form identification literature.
- ► **Faster** estimation procedure based on identification.
 - '2 steps' in the spirit of Hotz and Miller (1993): introduces the CCCs.
 - \rightarrow Computation gains \rightarrow spread the use of Dynamic DC models.
 - → Many applications in labor, housing, education, IO...
- Future research:
 - Unobserved types. Hu and Shum, 2012, Kasahara and Shimotsu, 2009, Arcidiacono and Miller, 2011.
 - ▶ Inference, test relevance, test literature nested models assumptions.

- ► Introduce general framework of simultaneous Discrete-Continuous Dynamic Choice models.
 - Nest many models, and allow for unobserved heterogeneity on both choices.
- Prove non-parametric identification, using an instrument.
 Link dynamic structural models and reduced form identification literature.
- ► **Faster** estimation procedure based on identification.
 - '2 steps' in the spirit of Hotz and Miller (1993): introduces the CCCs.
 - \rightarrow Computation gains \rightarrow spread the use of Dynamic DC models.
 - → Many applications in labor, housing, education, IO...
- Future research:
 - Unobserved types. Hu and Shum, 2012, Kasahara and Shimotsu, 2009, Arcidiacono and Miller, 2011.
 - ▶ Inference, test relevance, test literature nested models assumptions.
 - \triangleright Extension to J > 2 alternatives.

Thank you!

Contact: christophe.bruneel@gmail.com

Observe d, $c_d|d$ (and x) for every individual $\iff f_{c_d|d,x}(c_d)$ and Pr(d|x).

Pr(D=1|X) 0.7003

Figure: $F_{c_d|d}(c)$

► Cases with reverse interpretation on the selection $Pr(d|\eta)$ can be observationally equivalent... (yield the same observable $F_{c_x|d}(c)$ and Pr(d))

Corresponding unknown $c_d(h)$ is adjusted \rightarrow yield $F_{c_d|d}(c)$ and $Pr(d) \implies$ observationally equivalent to the *true selection*.

► Cases with reverse interpretation on the selection $Pr(d|\eta)$ can be observationally equivalent... (yield the same observable $F_{c_x|d}(c)$ and Pr(d))

Figure: $Pr(d|\eta)$

Figure: Corresponding $c_d(h)$

Corresponding unknown $c_d(h)$ is adjusted \rightarrow yield same $F_{c_d|d}(c)$ and Pr(d): observationally equivalent

► Cases with reverse interpretation on the selection $Pr(d|\eta)$ can be observationally equivalent... (yield the same observable $F_{c_1|d}(c)$ and Pr(d))

Figure: $Pr(d|\eta)$

Figure: Corresponding $c_d(h)$

Corresponding unknown $c_d(h)$ is adjusted \rightarrow yield same $F_{c_d|d}(c)$ and Pr(d): observationally equivalent

Relevance

Relevance condition for the instrument w: relevant as long as for two values of w, e.g. w = 0 and w = 1, we have:

▶ Back

$$m_0(w = 0, \eta, x) - m_1(w = 0, \eta, x) \neq m_0(w = 1, \eta, x) - m_1(w = 1, \eta, x)$$

Because:

$$Pr(D = 0 | \eta, x, w) = \mathbb{E}_{\epsilon} \left[\mathbb{1} \left\{ \underbrace{max v_0(c_0, \eta, x) - max v_1(c_1, \eta, x)}_{c_0} + m_0(1, \eta, x) - m_1(1, \eta, x) > \epsilon_1 - \epsilon_0 \right\} | \eta, x, w \right]$$

Idea of the proof:

▶ Back

▶ We observe $F_{c_d|d,w}(c_d)$ and $Pr(d|w) \forall d, w$.

Idea of the proof:

- ▶ We observe $F_{c_d|d,w}(c_d)$ and $Pr(d|w) \forall d, w$.
- \blacktriangleright \Longrightarrow for given d, observe the difference

$$F_{c_d|d,w=1}(c_d)Pr(d|w=1) - F_{c_d|d,w=0}(c_d)Pr(d|w=0) \equiv \Delta F_d(c_d)$$

Idea of the proof:

- ▶ We observe $F_{c_d|d,w}(c_d)$ and $Pr(d|w) \forall d, w$.
- \blacktriangleright for given d, observe the difference

$$F_{c_d|d,w=1}(c_d)Pr(d|w=1) - F_{c_d|d,w=0}(c_d)Pr(d|w=0) \equiv \Delta F_d(c_d)$$

Thanks to exclusion restriction, a given c_d , corresponds to same $h, \perp w$. $\Delta F_d(c_d)$ is related to Pr(d|h, w = 1) - Pr(d|h, w = 0).

Idea of the proof:

- ▶ We observe $F_{c_d|d,w}(c_d)$ and $Pr(d|w) \forall d, w$.
- ightharpoonup for given d, observe the difference

$$F_{c_d|d,w=1}(c_d)Pr(d|w=1) - F_{c_d|d,w=0}(c_d)Pr(d|w=0) \equiv \Delta F_d(c_d)$$

- ► Thanks to exclusion restriction, a given c_d , corresponds to same $h, \perp w$. $\Delta F_d(c_d)$ is related to Pr(d|h, w = 1) Pr(d|h, w = 0).
- Now, we also have a natural relation with the two choices:

$$Pr(d = 1|h, w = 1) - Pr(d = 1|h, w = 0)$$

= - (Pr(d = 0|h, w = 1) - Pr(d = 0|h, w = 0))

Idea of the proof:

▶ Back

- ▶ We observe $F_{c_d|d,w}(c_d)$ and $Pr(d|w) \forall d, w$.
- \blacktriangleright for given d, observe the difference

$$F_{c_d|d,w=1}(c_d)Pr(d|w=1) - F_{c_d|d,w=0}(c_d)Pr(d|w=0) \equiv \Delta F_d(c_d)$$

- ► Thanks to exclusion restriction, a given c_d , corresponds to same $h, \perp w$. $\Delta F_d(c_d)$ is related to Pr(d|h, w = 1) Pr(d|h, w = 0).
- Now, we also have a natural relation with the two choices:

$$Pr(d = 1|h, w = 1) - Pr(d = 1|h, w = 0)$$
$$= -(Pr(d = 0|h, w = 1) - Pr(d = 0|h, w = 0))$$

▶ Thus, if a given \tilde{c}_1 and \tilde{c}_0 corresponds to the same h, then:

$$\Delta F_1(\tilde{c}_1) = -\Delta F_0(\tilde{c}_0)$$

It holds for every *h*. And under some relevance condition, we can recover the unique mapping between the conditional choices.

Idea of the proof:

▶ Back

- ▶ We observe $F_{c_d|d,w}(c_d)$ and $Pr(d|w) \forall d, w$.
- \blacktriangleright for given d, observe the difference

$$F_{c_d|d,w=1}(c_d)Pr(d|w=1) - F_{c_d|d,w=0}(c_d)Pr(d|w=0) \equiv \Delta F_d(c_d)$$

- ► Thanks to exclusion restriction, a given c_d , corresponds to same $h, \perp w$. $\Delta F_d(c_d)$ is related to Pr(d|h, w = 1) Pr(d|h, w = 0).
- Now, we also have a natural relation with the two choices:

$$Pr(d = 1|h, w = 1) - Pr(d = 1|h, w = 0)$$

= - (Pr(d = 0|h, w = 1) - Pr(d = 0|h, w = 0))

▶ Thus, if a given \tilde{c}_1 and \tilde{c}_0 corresponds to the same h, then:

$$\Delta F_1(\tilde{c}_1) = -\Delta F_0(\tilde{c}_0)$$

It holds for every *h*. And under some relevance condition, we can recover the unique mapping between the conditional choices.

Once you get it, identify the corresponding h with our Bayesian formula.

"PROOF":

▶ Back

Denote $p_{d|w} = Pr(d|w)$. We have the system, $\forall h$:

$$\begin{cases} h = F_{c_0|d=0,w=0}(c_0(h))p_{0|0} + F_{c_1|d=1,w=0}(c_1(h))p_{1|0} \\ h = F_{c_0|d=0,w=1}(c_0(h))p_{0|1} + F_{c_1|d=1,w=0}(c_1(h))p_{1|1} \end{cases}$$

Rewrite the system (2) - (1):

$$F_{c_{0}|d=0,w=1}(c_{0}(h))p_{0|1} - F_{c_{0}|d=0,w=0}(c_{0}(h))p_{0|0} =$$

$$- \left(F_{c_{1}|d=1,w=1}(c_{1}(h))p_{1|1} - F_{c_{1}|d=1,w=0}(c_{1}(h))p_{1|0} \right)$$

$$\stackrel{def}{\iff} \Delta F_{0}(c_{0}(h)) = -\Delta F_{1}(c_{1}(h)) \quad \forall h$$

"Proof":

▶ Back

Rewrite the system (2) - (1):

$$F_{c_{0}|d=0,w=1}(c_{0}(h))p_{0|1} - F_{c_{0}|d=0,w=0}(c_{0}(h))p_{0|0} =$$

$$- \left(F_{c_{1}|d=1,w=1}(c_{1}(h))p_{1|1} - F_{c_{1}|d=1,w=0}(c_{1}(h))p_{1|0} \right)$$

$$\stackrel{def}{\iff} \Delta F_{0}(c_{0}(h)) = -\Delta F_{1}(c_{1}(h)) \quad \forall h$$

 \rightarrow What are the ΔF_d () functions?

$$\Delta F_d(c_d(h)) = F_{c_d|d,w=1}(c_d(h))p_{d|1} - F_{c_d|d,w=0}(c_0(h))p_{d|0}$$

$$= \int_0^h \left(Pr(D = d|\eta = \tilde{h}, w = 1) - Pr(D = d|\eta = \tilde{h}, w = 0) \right) d\tilde{h}$$

 \implies when $Pr(D=d|\eta=h,w=1)=Pr(D=d|\eta=h,w=0)$ the instrument is not 'relevant' at h. And in this case, $\Delta F_d(c)$ presents an inflexion point.

"PROOF":

Rewrite the system (2) - (1):

$$F_{c_{0}|d=0,w=1}(c_{0}(h))p_{0|1} - F_{c_{0}|d=0,w=0}(c_{0}(h))p_{0|0} =$$

$$- (F_{c_{1}|d=1,w=1}(c_{1}(h))p_{1|1} - F_{c_{1}|d=1,w=0}(c_{1}(h))p_{1|0})$$

$$\stackrel{def}{\iff} \Delta F_{0}(c_{0}(h)) = -\Delta F_{1}(c_{1}(h)) \quad \forall h$$

Since both $c_d(h)$ are increasing wrt h, can *first* focus on finding the increasing mapping $c_1(c_0)$ between the policies. We have:

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

"Proof":

Rewrite the system (2) - (1):

$$F_{c_{0}|d=0,w=1}(c_{0}(h))p_{0|1} - F_{c_{0}|d=0,w=0}(c_{0}(h))p_{0|0} =$$

$$- (F_{c_{1}|d=1,w=1}(c_{1}(h))p_{1|1} - F_{c_{1}|d=1,w=0}(c_{1}(h))p_{1|0})$$

$$\stackrel{def}{\iff} \Delta F_{0}(c_{0}(h)) = -\Delta F_{1}(c_{1}(h)) \quad \forall h$$

Since both $c_d(h)$ are increasing wrt h, can first focus on finding the increasing mapping $c_1(c_0)$ between the policies. We have:

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \quad \forall c_0$$

 \rightarrow when is the solution unique?

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

$$\iff m_0(w = 0, h) - m_1(w = 0, h) < m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

 $\iff Pr(D = 0 | \eta = h, W = 0) < Pr(D = 0 | \eta = h, W = 1) \quad \forall h$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

$$\iff m_0(w = 0, h) - m_1(w = 0, h) < m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

 $\iff Pr(D = 0 | \eta = h, W = 0) < Pr(D = 0 | \eta = h, W = 1) \quad \forall h$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

$$\iff m_0(w = 0, h) - m_1(w = 0, h) < m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

 $\iff Pr(D = 0 | \eta = h, W = 0) < Pr(D = 0 | \eta = h, W = 1) \quad \forall h$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

$$\iff m_0(w = 0, h) - m_1(w = 0, h) < m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

$$\iff Pr(D = 0 | \eta = h, W = 0) < Pr(D = 0 | \eta = h, W = 1) \quad \forall h$$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

$$\iff m_0(w = 0, h) - m_1(w = 0, h) < m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

$$\iff Pr(D = 0 | \eta = h, W = 0) < Pr(D = 0 | \eta = h, W = 1) \quad \forall h$$

Point identified:
$$c_1(c_0) = (\Delta F_1)^{-1} (\Delta F_0(c_0))$$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

▶ Back

$$\iff m_0(w = 0, h) - m_1(w = 0, h) = m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

 $\iff Pr(D = 0 | \eta = h, W = 0) = Pr(D = 0 | \eta = h, W = 1) \quad \forall h$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

▶ Back

$$\iff m_0(w = 0, h) - m_1(w = 0, h) = m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

 $\iff Pr(D = 0 | \eta = h, W = 0) = Pr(D = 0 | \eta = h, W = 1) \quad \forall h$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

▶ Back

$$\iff m_0(w = 0, h) - m_1(w = 0, h) = m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

$$\iff Pr(D = 0 | \eta = h, W = 0) = Pr(D = 0 | \eta = h, W = 1) \quad \forall h$$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

▶ Back

$$\iff m_0(w = 0, h) - m_1(w = 0, h) = m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

$$\iff Pr(D = 0 | \eta = h, W = 0) = Pr(D = 0 | \eta = h, W = 1) \quad \forall h$$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

Case 2: Piecewise Monotone $\Delta F_d()$

▶ Back

Only a finite number of points *h* such that:

$$\iff m_0(w = 0, h) - m_1(w = 0, h) = m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

$$\iff Pr(D = 0 | \eta = h, W = 0) = Pr(D = 0 | \eta = h, W = 1) \quad \forall h$$

Point identified: piecewise inversion to recover $c_1(c_0)$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

▶ Back

$$\iff m_0(w = 0, h) - m_1(w = 0, h) = m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

 $\iff Pr(D = 0 | \eta = h, W = 0) = Pr(D = 0 | \eta = h, W = 1) \quad \forall h$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

▶ Back

$$\iff m_0(w = 0, h) - m_1(w = 0, h) = m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

 $\iff Pr(D = 0 | \eta = h, W = 0) = Pr(D = 0 | \eta = h, W = 1) \quad \forall h$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

▶ Back

$$\iff m_0(w = 0, h) - m_1(w = 0, h) = m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

$$\iff Pr(D = 0 | \eta = h, W = 0) = Pr(D = 0 | \eta = h, W = 1) \quad \forall h$$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

▶ Back

$$\iff m_0(w = 0, h) - m_1(w = 0, h) = m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

$$\iff Pr(D = 0 | \eta = h, W = 0) = Pr(D = 0 | \eta = h, W = 1) \quad \forall h$$

$$\Delta F_0(c_0) = -\Delta F_1(c_1(c_0)) \qquad \forall c_0$$

▶ Back

$$\iff m_0(w = 0, h) - m_1(w = 0, h) = m_0(w = 1, h) - m_1(w = 1, h) \quad \forall h$$

 $\iff Pr(D = 0 | \eta = h, W = 0) = Pr(D = 0 | \eta = h, W = 1) \quad \forall h$

Only Partial identification of non-flat parts

Identification: full rank condition

The rank of $\Pi(c)$ is full for all c:

$$\Pi(c) = \begin{bmatrix} f_{c_0|D=0,W=0}(c_0)Pr(D=0|W=0) & f_{c_1|D=1,W=0}(c_1)Pr(D=1|W=0) \\ f_{c_0|D=0,W=1}(c_0)Pr(D=0|W=1) & f_{c_1|D=1,W=1}(c_1)Pr(D=1|W=1) \end{bmatrix}$$

Which implies a monotone likelihood ratio condition, $\forall c_0, c_1 \in \mathcal{C}_0 \times \mathcal{C}_1$:

$$\frac{f_{c_1|D=1,W=1}(c_1)Pr(D=1|W=1)}{f_{c_0|D=0,W=1}(c_0)Pr(D=0|W=1)} > \frac{f_{c_1|D=1,W=0}(c_1)Pr(D=1|W=0)}{f_{c_0|D=0,W=0}(c_0)Pr(D=0|W=0)}$$

► CCCs and CCPs identified as before (period by period). Transitions $f_t(x_{t+1}|x_t, d_t, c_t)$ identified directly from the data.

CCCs and CCPs identified as before (period by period). Transitions $f_t(x_{t+1}|x_t, d_t, c_t)$ identified directly from the data.

▶ Use First Order Conditions relating the structure and the optimal choices to identify the structure of the model.

▶ Back

- CCCs and CCPs identified as before (period by period). Transitions $f_t(x_{t+1}|x_t, d_t, c_t)$ identified directly from the data.
- Use First Order Conditions relating the structure and the optimal choices to identify the structure of the model.
- → Marginal (period) utility identified by Euler Equation at optimal choices

$$u_{d}^{\prime*}(x_{t}, \eta_{t}) = \beta \mathbb{E}_{t} \left[(1+r) \frac{\partial}{\partial c_{dt+1}} u_{d_{t+1}}^{\prime*}(x_{t+1}, \eta_{t+1}) \middle| x_{t}, c_{dt} = c_{dt}^{*}(\eta_{t}, x_{t}), d_{t} = d \right]$$

where the marginal utility at optimal choices are

$$u_d^{\prime *}(x_t, \eta_t) = \frac{\partial}{\partial c_{dt}} u_d(c_{dt}, \tilde{x}_t, \eta_t)|_{c_{dt} = c_{dt}^*(\eta_t, x_t)}.$$

- \rightarrow Escanciano et al., 2015: nonparametrically identified (up to a scale) if stationary period utility: $u_{dt} = u_d \ \forall t$, and if $\partial u_d / \partial c_d > 0 \ \forall c, d$.
- \rightarrow Parametric non stationary period utility can also be identified.

▶ Back

- ► CCCs and CCPs identified as before (period by period). Transitions $f_t(x_{t+1}|x_t, d_t, c_t)$ identified directly from the data.
- Use First Order Conditions relating the structure and the optimal choices to identify the structure of the model.
- → Marginal (period) utility identified by Euler Equation at optimal choices
- \rightarrow Conditional value (at the optimal $c_{dt}^*(\eta_t, x_t)$) identified via FOC with respect to the asset (Blundell et al., 1997)

$$\forall d: \forall a_t \qquad \frac{\partial}{\partial a_t} v_{dt}^*(\tilde{\mathbf{x}}_t, a_t, \eta_t) = (1+r) \frac{\partial}{\partial c_{dt}} u_d^{\prime *}(\tilde{\mathbf{x}}_t, a_t, \eta_t)$$

Identified up to an additive constant of integration, normalized to zero.

▶ Back

- ► CCCs and CCPs identified as before (period by period). Transitions $f_t(x_{t+1}|x_t, d_t, c_t)$ identified directly from the data.
- Use First Order Conditions relating the structure and the optimal choices to identify the structure of the model.
- → Marginal (period) utility identified by Euler Equation at optimal choices
- \rightarrow Conditional value (at the optimal $c_{dt}^*(\eta_t, x_t)$) identified via FOC with respect to the asset (Blundell et al., 1997)

$$\forall d: \ \forall a_t \qquad \frac{\partial}{\partial a_t} v_{dt}^* (\tilde{\mathbf{x}}_t, a_t, \eta_t) = (1+r) \frac{\partial}{\partial c_{dt}} u_d'^* (\tilde{\mathbf{x}}_t, a_t, \eta_t)$$

 \rightarrow Differences in additive m_d terms identified via the CCPs, e.g. if ϵ_t is extreme-value type 1:

$$Pr(D_t = 0 | \eta_t, x_t, w_t) = \frac{1}{1 + exp(v_{1t}^*(x_t, \eta_t) - v_{0t}^*(x_t, \eta_t) + m_{1t}(w_t, \eta_t, x_t) - m_{0t}(w_t, \eta_t, x_t))}$$

Estimation: CCCs (faster)

▶ Back ▶ Results

From data on (D_t, C_{dt}, X_t, W_t) , estimate the reduced forms $\widehat{F}_{C_{dt}|d_t,x_t,w_t,t}(c_{dt})$ and $Pr(D_t = d|\widehat{X_t = x_t}, W_t = w_t, t)$. Nonparametric Kernel, Sieve logistic/probit regressions. \rightarrow gives estimates of $\widehat{\Delta F}_{C_{dt}|x_t}(c)$.

Estimation: CCCs (faster)

- From data on (D_t, C_{dt}, X_t, W_t) , estimate the reduced forms $\widehat{F}_{C_{dt}|d_t,x_t,w_t,t}(c_{dt})$ and $Pr(D_t = d|\widehat{X_t = x_t}, W_t = w_t, t)$. Nonparametric Kernel, Sieve logistic/probit regressions. \rightarrow gives estimates of $\widehat{\Delta F}_{C_{dt}|x_t}(c)$.
- **E**stimate the **mapping** $\hat{c_{0t}}(c_{1t}, x_t)$ using that the solution must satisfy:

$$\widehat{\Delta F}_{C_{0t}|x_t}(c_{0t}(c_{1t},x_t)) = -\widehat{\Delta F}_{C_{1t}|x_t}(c_{1t}) \qquad \forall c_{1t}$$

So, we solve (x_t by x_t and period by period) for the **complete monotone** function $\hat{c_{0t}}(c_{1t}, x_t)$:

$$\widehat{c_{0t}}(c_{1t}, x_t) = \underset{c_{0t}(c_{1t}, x_t)}{\operatorname{argmin}} \int_{\mathcal{C}_1} \left(\widehat{\Delta F}_{C_{0t}|x_t}(c_{0t}(c_{1t}, x_t)) + \widehat{\Delta F}_{C_{1t}|x_t}(c_{1t}) \right)^2 \operatorname{weight}(c_{1t}) dc_{1t}.$$

Estimation: CCCs (faster)

- From data on (D_t, C_{dt}, X_t, W_t) , estimate the reduced forms $\widehat{F}_{C_{dt}|d_t, x_t, w_t, t}(c_{dt})$ and $Pr(D_t = d|\widehat{X_t = x_t}, W_t = w_t, t)$. Nonparametric Kernel, Sieve logistic/probit regressions. \rightarrow gives estimates of $\widehat{\Delta F}_{C_{dt}|x_t}(c)$.
- Estimate the **mapping** $\hat{c_{0t}}(c_{1t}, x_t)$ using that the solution must satisfy:

$$\widehat{\Delta F}_{C_{0t}|x_t}(c_{0t}(c_{1t},x_t)) = -\widehat{\Delta F}_{C_{1t}|x_t}(c_{1t}) \qquad \forall c_{1t}$$

So, we solve (x_t by x_t and period by period) for the **complete monotone** function $\hat{c_{0t}}(c_{1t}, x_t)$:

$$\widehat{c_{0t}}(c_{1t}, x_t) = \underset{c_{0t}(c_{1t}, x_t)}{\operatorname{argmin}} \int_{\mathcal{C}_1} \left(\widehat{\Delta F}_{C_{0t}|x_t}(c_{0t}(c_{1t}, x_t)) + \widehat{\Delta F}_{C_{1t}|x_t}(c_{1t}) \right)^2 \operatorname{weight}(c_{1t}) dc_{1t}.$$

▶ Find the corresponding *h* to a given $(c_{1t}, \hat{c_{0t}}(c_{1t}, x_t), x_t)$:

$$\widehat{h}_{t}(c_{1t}, x_{t}) = \widehat{F}_{C_{0t}|D_{t}=0, w_{t}, x_{t}}(\widehat{c}_{0t}(c_{1t}, x_{t})) Pr(\widehat{D_{t}=0|w_{t}, x_{t}})
+ \widehat{F}_{C_{1t}|D_{t}=0, w_{t}, x_{t}}(c_{1t}) Pr(\widehat{D_{t}=1|w_{t}, x_{t}}).$$

Take CCCs, CCPs, and transitions as given:

1. Pick a set of parameters θ . Get the $u_{dt}(), u'_{dt}(),$ and $m_{dt}()$ given θ .

Take CCCs, CCPs, and transitions as given:

- 1. Pick a set of parameters θ . Get the $u_{dt}()$, $u'_{dt}()$, and $m_{dt}()$ given θ .
- 2. Estimate the expectation RHS of the Euler equation:

$$u_d^{\prime *}(\tilde{x}_t, a_t, \eta_t, \theta) = \beta \mathbb{E}_t \Big[(1+r) u_{d_{t+1}}^{\prime *}(\tilde{x}_{t+1}, a_{t+1}, \eta_{t+1}, \theta) \ \Big| x_t, c_{dt} = c_{dt}^*(\eta_t, x_t), d_t = d \Big]$$

Estimate it directly from the data or by forward one period-ahead simulation.

Take CCCs, CCPs, and transitions as given:

▶ Back ▶ Application

- 1. Pick a set of parameters θ . Get the $u_{dt}()$, $u'_{dt}()$, and $m_{dt}()$ given θ .
- 2. Estimate the expectation RHS of the Euler equation:

$$u_d^{\prime *}(\tilde{x}_t, a_t, \eta_t, \theta) = \beta \mathbb{E}_t \Big[(1+r) u_{d_{t+1}}^{\prime *}(\tilde{x}_{t+1}, a_{t+1}, \eta_{t+1}, \theta) \ \Big| x_t, c_{dt} = c_{dt}^*(\eta_t, x_t), d_t = d \Big]$$

Estimate it directly from the data or by forward one period-ahead simulation.

3. Estimate $v_{dt}(c_{dt}^*(\eta_t, x_t), \eta_t, x_t) \equiv v_{dt}^*(\eta_t, x_t)$ by simulating forward life-cycles.

Take CCCs, CCPs, and transitions as given:

▶ Back ▶ Application

- 1. Pick a set of parameters θ . Get the $u_{dt}()$, $u'_{dt}()$, and $m_{dt}()$ given θ .
- 2. Estimate the expectation RHS of the Euler equation:

$$u_d^{\prime *}(\tilde{\mathbf{x}}_t, a_t, \eta_t, \theta) = \beta \mathbb{E}_t \Big[(1+r) u_{d_{t+1}}^{\prime *}(\tilde{\mathbf{x}}_{t+1}, a_{t+1}, \eta_{t+1}, \theta) \ \Big| \ \mathbf{x}_t, c_{dt} = c_{dt}^*(\eta_t, \mathbf{x}_t), d_t = d \Big]$$

Estimate it directly from the data or by forward one period-ahead simulation.

- 3. Estimate $v_{dt}(c_{dt}^*(\eta_t, x_t), \eta_t, x_t) \equiv v_{dt}^*(\eta_t, x_t)$ by simulating forward life-cycles.
- 4. Use $v_{dt}^*(\eta_t, x_t)$ to compute the theoretical probabilities:

$$Pr(D_{t} = 0 | \eta_{t}, x_{t}, w_{t}, \theta) = \frac{1}{1 + exp(v_{1t}^{*}(x_{t}, \eta_{t}, \theta) + m_{1t}(x_{t}, w_{t}, \eta_{t}, \theta) - (v_{0t}^{*}(x_{t}, \eta_{t}, \theta) + m_{0}(x_{t}, w_{t}, \eta_{t}, \theta)))}$$

Compare these theoretical probabilities with the estimated CCPs.

Take CCCs, CCPs, and transitions as given:

▶ Back ▶ Application

- 1. Pick a set of parameters θ . Get the $u_{dt}()$, $u'_{dt}()$, and $m_{dt}()$ given θ .
- 2. Estimate the expectation RHS of the Euler equation:

$$u_d^{\prime*}(\tilde{x}_t, a_t, \eta_t, \theta) = \beta \mathbb{E}_t \Big[(1+r) u_{d_{t+1}}^{\prime*}(\tilde{x}_{t+1}, a_{t+1}, \eta_{t+1}, \theta) \ \Big| x_t, c_{dt} = c_{dt}^*(\eta_t, x_t), d_t = d \Big]$$

Estimate it directly from the data or by forward one period-ahead simulation.

- 3. Estimate $v_{dt}(c_{dt}^*(\eta_t, x_t), \eta_t, x_t) \equiv v_{dt}^*(\eta_t, x_t)$ by simulating forward life-cycles.
- 4. Use $v_{dt}^*(\eta_t, x_t)$ to compute the theoretical probabilities:

$$Pr(D_{t} = 0 | \eta_{t}, x_{t}, w_{t}, \theta) = \frac{1}{1 + exp(v_{1t}^{*}(x_{t}, \eta_{t}, \theta) + m_{1t}(x_{t}, w_{t}, \eta_{t}, \theta) - (v_{0t}^{*}(x_{t}, \eta_{t}, \theta) + m_{0}(x_{t}, w_{t}, \eta_{t}, \theta)))}$$

Compare these *theoretical probabilities* with the *estimated CCPs*.

5. $\widehat{\theta}$ minimizes an objective made of the differences in probabilities and in the Euler equation.

Take CCCs, CCPs, and transitions as given:

► Back ► Application

- 1. Pick a set of parameters θ . Get the $u_{dt}()$, $u'_{dt}()$, and $m_{dt}()$ given θ .
- 2. Estimate the expectation RHS of the Euler equation:

$$u_d^{\prime *}(\tilde{\mathbf{x}}_t, a_t, \eta_t, \theta) = \beta \mathbb{E}_t \Big[(1+r) u_{d_{t+1}}^{\prime *}(\tilde{\mathbf{x}}_{t+1}, a_{t+1}, \eta_{t+1}, \theta) \ \Big| \ \mathbf{x}_t, c_{dt} = c_{dt}^*(\eta_t, \mathbf{x}_t), d_t = d \Big]$$

Estimate it directly from the data or by forward one period-ahead simulation.

- 3. Estimate $v_{dt}(c_{dt}^*(\eta_t, x_t), \eta_t, x_t) \equiv v_{dt}^*(\eta_t, x_t)$ by simulating forward life-cycles.
- 4. Use $v_{dt}^*(\eta_t, x_t)$ to compute the theoretical probabilities:

$$\begin{aligned} Pr(D_{t} = 0 | \eta_{t}, x_{t}, w_{t}, \theta) &= \\ \frac{1}{1 + exp\left(v_{1t}^{*}(x_{t}, \eta_{t}, \theta) + m_{1t}(x_{t}, w_{t}, \eta_{t}, \theta) - (v_{0t}^{*}(x_{t}, \eta_{t}, \theta) + m_{0}(x_{t}, w_{t}, \eta_{t}, \theta))\right)} \end{aligned}$$

Compare these *theoretical probabilities* with the *estimated CCPs*.

- 5. $\widehat{\theta}$ minimizes an objective made of the differences in probabilities and in the Euler equation.
- 6. Inference: in progress, tentative by bootstrap.

Estimator comparison

Comparison of estimators performances:

- ▶ Dynamic life-cycle toy model of Labor Participation and Consumption.
- ▶ Use Monte Carlo simulations.
- Compare my method with other (MLE, SMM).
 Measure statistical and computational efficiency differences.

Toy model: Labor Participation and Consumption

Working Life: (T periods)
Period utility:

$$u(c_t, d_t, w_t, x_t, \eta_t, \epsilon_t) = \begin{cases} c_t^{1-\sigma}/(1-\sigma) \, \tilde{\eta}_t^0(\eta_t, \gamma_0, s_0) + \epsilon_{0t} \\ c_t^{1-\sigma}/(1-\sigma) \, \tilde{\eta}_t^1(\eta_t, \gamma_1, s_1) + \alpha + \omega(1-w_t) + \epsilon_{1t} \end{cases}$$

Where

- ightharpoonup t is the age. c_t is individual consumption. d_t is labor choice.
- $\tilde{\eta}_t^d \sim \mathcal{LN}(\gamma_d, s_d)$. So, $\tilde{\eta}$ are just transformations of η : η^{th} quantiles of the lognormal.
- \triangleright $(\gamma_0, \gamma_1, s_0, s_1)$ measures the effect of the unobserved heterogeneity.
- \triangleright σ is risk aversion/intertemporal elasticity of substitution.
- \triangleright ω is utility cost of searching for a job when previously unemployed.
- $ightharpoonup \alpha$ is utility cost of working.

Toy model: Labor Participation and Consumption

Working Life: (T periods)
Period utility:

$$u(c_t, d_t, w_t, x_t, \eta_t, \epsilon_t) = \begin{cases} c_t^{1-\sigma}/(1-\sigma) \, \tilde{\eta}_t^0(\eta_t, \gamma_0, s_0) + \epsilon_{0t} \\ c_t^{1-\sigma}/(1-\sigma) \, \tilde{\eta}_t^1(\eta_t, \gamma_1, s_1) + \alpha + \omega(1-w_t) + \epsilon_{1t} \end{cases}$$

subject to the budget constraint:

$$a_{t+1} = (1+r)a_t - c_t + d_t y_t + (1-d_t)b_t$$

Where

- $ightharpoonup a_t$ is the household asset.
- y_t is the woman earnings. y_t takes two values: $y_L = 10$ and $y_H = 20$. With the following **transitions** (estimated in first stage):

$$Pr(y_{t+1} = y_H | d_t, y_t) = \Pi(d_t, y_t) = \begin{pmatrix} \pi_{0L} & \pi_{0H} \\ \pi_{1L} & \pi_{1H} \end{pmatrix} = \begin{pmatrix} 0.2 & 0.4 \\ 0.6 & 0.8 \end{pmatrix}$$

where $\pi_{1L} > \pi_{0L}$ and $\pi_{1H} > \pi_{0H}$. And $\pi_{1H} > \pi_{1L}$, and $\pi_{0H} > \pi_{0L}$.

▶ b_t are benefits for unemployed. We fix them to $b_t = 5$ for all simulation.

Toy model: Labor Participation and Consumption

Retirement: (T + 1)

- ▶ At age T + 1, the woman retires. Gets the same utility as when did not work, with $d_t = 0$.
- ▶ She lives for *one more period* and *dies* in T + 2. Without besquest motive.

$$\implies a_{T+2} = 0.$$

 \implies she consumes everything: $c_{T+1} = (1+r)a_{T+1} + pension(y_T)$.

▶ Where $pension(y_T)$ is the retirement pension, function of the last income. Set to $0.5y_T$ (taux plein).

Parameters:

- **Discount future with** β . Fixed.
- Set $\gamma_0 = 0$, $s_0 = 0.25$ (normalization).
- ▶ Transition function parameters estimated in first stage: $y_{t+1} \sim y_t$, d_t
- ▶ 5 structural parameters to estimate:

$$\theta = (\sigma, \gamma_1, s_1, \alpha, \omega)$$

ightarrow $(lpha,\omega)$ do not impact the marginal utility and consumption.

Table: T = 2 periods

	Method				
	Truth	DCC	SMM		
N		10,000	10,000		
σ	1.60	1.6253	1.5924		
		(0.0410)	(0.0156)		
γι	0.00	0.0070	-0.0052		
		(0.0298)	(0.0105)		
61	0.40	0.4078	0.4001		
		(0.0228)	(0.0090)		
χ	-0.50	-0.4727	-0.5023		
		(0.0498)	(0.0348)		
J	-1.00	-0.9982	-0.9972		
		(0.0581)	(0.0523)		
Average Time taken:					
1st stage: CCPs and CCCs		118s	9s		
2nd stage: Structural parameters		170s	14328s		
Overall		288s	14337s		

Other initializations: Number of Monte-Carlo = 1,000 $Pr(w_1 = 1) = 0.70$. $y_1 = y_H$ with probability 0.50. $a_1 \sim \mathcal{U}(0,30)$. r = 0.05.

Table: $T = 1 \implies$ closed form policies solution and likelihood

	Truth	DCC		Method MLE		SMM	
		1,000	10,000	1,000	10,000	1,000	10,000
σ	1.60	1.5806 (0.1759)	1.5782 (0.0827)	1.6042 (0.0444)	1.5992 (0.0137)	1.6135 (0.0560)	1.5970 (0.0211)
γ_1	0.00	0.0071 (0.0714)	0.0040 (0.0286)	-0.0061 (0.0205)	0.0007 (0.0072)	-0.0269 (0.0213)	-0.0009 (0.0078)
<i>s</i> ₁	0.40	0.4246 (0.0747)	0.4043 (0.0366)	0.4005 (0.0187)	0.4001 (0.0060)	0.3926 (0.0245)	0.3857 (0.0073)
α	-0.50	-0.4782 (0.3266)	-0.5092 (0.1016)	-0.4928 (0.0852)	-0.5000 (0.0268)	-0.4986 (0.0989)	-0.4850 (0.0401)
ω	-1.00	-1.0689 (0.1715)	-1.0044 (0.0484)	-1.0115 (0.1577)	-0.9931 (0.0441)	-1.0308 (0.2919)	-1.0029 (0.0665)
Avg Time taken:		16s	32s	1s	9s	16s	50s

Other initializations: Number of Monte-Carlo = 1,000. $Pr(w_1 = 1) = 0.7$. $y_1 = y_H$ with $Pr(y = y_H) = 1$. r = 0.05. $a_1 = 12.5$ for everyone here.

Comparison:

▶ Back

1. Statistical Efficiency

Comparison:

▶ Back

- 1. Statistical Efficiency
 - \rightarrow **Consistent** estimators.

Comparison:

- 1. Statistical Efficiency
 - → Consistent estimators.
 - $\rightarrow \textit{ Efficiency Loss}$ due to first stage consistent estimation.

Comparison:

▶ Back

- 1. Statistical Efficiency
 - → Consistent estimators.
 - \rightarrow Efficiency Loss due to first stage consistent estimation.
 - \rightarrow SMM with *Endogenous Grid Method more efficient* when both methods built upon the same reduced forms $F_{C_{dt}|d_t,w_t,x_t}(c_t)$ and $Pr(d_t|w_t,x_t)$. But...

Comparison:

▶ Back

- 1. Statistical Efficiency
 - → Consistent estimators.
 - \rightarrow Efficiency Loss due to first stage consistent estimation.
 - \rightarrow SMM with *Endogenous Grid Method more efficient* when both methods built upon the same reduced forms $F_{C_{dt}|d_t,w_t,x_t}(c_t)$ and $Pr(d_t|w_t,x_t)$. But...

Comparison:

▶ Back

1. Statistical Efficiency

- → Consistent estimators.
- $\rightarrow \textit{ Efficiency Loss}$ due to first stage consistent estimation.
- \rightarrow SMM with Endogenous Grid Method more efficient when both methods built upon the same reduced forms $F_{C_{dt}|d_t,w_t,x_t}(c_t)$ and $Pr(d_t|w_t,x_t)$. But...

2. Computational Efficiency

 \rightarrow EGM very long even with very simple T=2 periods model.

Comparison:

1. Statistical Efficiency

- → Consistent estimators.
- \rightarrow Efficiency Loss due to first stage consistent estimation.
- \rightarrow SMM with Endogenous Grid Method more efficient when both methods built upon the same reduced forms $F_{C_{dt}|d_t,w_t,x_t}(c_t)$ and $Pr(d_t|w_t,x_t)$. But...

- \rightarrow EGM very long even with very simple T=2 periods model.
- → My method: about 50 times faster here. Fixed cost of computing 1st stage policies. Then estimation of parameters is fast in the second stage: do not compute the value function.

Comparison:

1. Statistical Efficiency

- → Consistent estimators.
- \rightarrow Efficiency Loss due to first stage consistent estimation.
- \rightarrow SMM with Endogenous Grid Method more efficient when both methods built upon the same reduced forms $F_{C_{dt}|d_t,w_t,x_t}(c_t)$ and $Pr(d_t|w_t,x_t)$. But...

- \rightarrow EGM very long even with very simple T=2 periods model.
- → My method: about 50 times faster here. Fixed cost of computing 1st stage policies. Then estimation of parameters is fast in the second stage: do not compute the value function.
- → The more complex the models (number of periods, number of covariates), the faster my method relative to the others.

Comparison:

1. Statistical Efficiency

- → Consistent estimators.
- \rightarrow Efficiency Loss due to first stage consistent estimation.
- \rightarrow SMM with Endogenous Grid Method more efficient when both methods built upon the same reduced forms $F_{C_{dt}|d_t,w_t,x_t}(c_t)$ and $Pr(d_t|w_t,x_t)$. But...

- \rightarrow EGM very long even with very simple T=2 periods model.
- → My method: about 50 times faster here. Fixed cost of computing 1st stage policies. Then estimation of parameters is fast in the second stage: do not compute the value function.
- → The more complex the models (number of periods, number of covariates), the faster my method relative to the others.
- → Minimal cost of including covariates (as long as data is good enough to estimate correct distributions), or test several specifications.