

IRF230-233/IRF630-633 T-39-4 MTP12N18/12N20 N-Channel Power MOSFETs, 12 A, 150-200 V Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low R_{DS(on)}
- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA

IRF230

IRF231 IRF232 IRF233 TO-220AB

IRF630 IRF631 IRF632 IRF633 MTP12N18

MTP12N20

Product Summary

Part Number	V _{DSS}	R _{DS (on)}	I _D at T _C = 25°C	I _D at T _C = 100°C	Case Style
IRF230	200 V	0.40 Ω	9.0 A	6.0 A	TO-204AA
IRF231	150 V	0.40 Ω	9.0 A	6.0 A	
IRF232	200 V	0.50 Ω	8.0 A	5.0 A	
IRF233	150 V	0.50 Ω	8.0 A	5.0 A	
IRF630	200 V	0.40 Ω	9.0 A	6.0 A	TO-220AB
IRF631	150 V	0.40 Ω	9.0 A	6.0 A	
IRF632	200 V	0.50 Ω	8.0 A	5.0 A	
IRF633	150 V	0.50 Ω	8.0 A	5.0 A	
MTP12N18	180 V	0.35 Ω	12 A	8.5 A	
MTP12N20	200 V	0.35 Ω	12 A	8.5 A	

For information concerning connection diagram and package outline, refer to Section 7.

P

IRF230-233/IRF630-633 MTP12N18/12N20

T-39-11

T.39.13

Maximum Ratings

Symbol	Characteristic	Rating IRF220/222 IRF620/622 MTP7N20	Rating MTP7N18	Rating IRF222/223 IRF622/623	Unit
V _{DSS}	Drain to Source Voltage ¹	200	180	150	V
V _{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	200	180	150	٧
V _{GS}	Gate to Source Voltage	± 20	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	275	°C

Maximum Thermal Characteristics

		IRF220 - 233 IRF630 - 633	MTP12N18/20	
R _{ØJC}	Thermal Resistance, Junction to Case	1.67	1.25	°C/W
PD	Total Power Dissipation at T _C = 25°C	75	100	W
I _{DM}	Pulsed Drain Current ²	40	40	А

Electrical Characteristics ($T_C = 25$ °C unless otherwise noted)

Symbol	Characteristic	Min	Max	Unit	Test Conditions
ff Charac	teristics				
V _{(BR)DSS}	Drain Source Breakdown Voltage			V	$V_{GS} = 0 \text{ V, } I_D = 250 \mu A$
	IRF230/232/630/632/ MTP12N20	200			
	MTP12N18	180			
	IRF231/233/631/633	150			
I _{DSS}	Zero Gate Voltage Drain Current		250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
			1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 125^{\circ}\text{C}$
lgss	Gate-Body Leakage Current			nA	V _{GS} = ± 20 V, V _{DS} = 0 V
•	IRF230-233		±100		
	IRF630-633/ MTP12N18/12N20		± 500		

Total Gate Charge

IRF230-233/IRF630-633 MTP12N18/12N20

T-39-11

T.39.13

 $V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ $V_{DD} = 120 \text{ V}$

пC

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
On Charac	cteristics					
V _{GS(th)}	Gate Threshold Voltage			V		
	IRF230/233/630/633	2.0	4.0		$I_D = 250 \ \mu A, \ V_{DS} = V_{GS}$	
	MTP12N18/12N20	2.0	4.5		$I_D = 1$ mA, $V_{DS} = V_{GS}$	
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V, I _D = 5.0 A	
	IRF230/231/630/631		0.40			
	IRF232/233/632/633		0.50			
	MTP12N18/12N20		0.35	1	I _D = 6.0 A	
V _{DS(on)}	Drain-Source On-Voltage ²		2.1	٧	V _{GS} = 10 V; I _D = 6.0 A	
	MTP12N18/12N20		5.0	٧	V _{GS} = 10 V; I _D = 12.0 A;	
			4.2	V	$V_{GS} = 10 \text{ V}; I_D = 6.0 \text{ A}$ $T_C = 100^{\circ}\text{C}$	
9fs	Forward Transconductance	3.0		S (U)	V _{DS} = 10 V, I _D = 5.0 A	
ynamic C	Characteristics					
C _{iss}	Input Capacitance		800	pF	V _{DS} = 25 V, V _{GS} = 0 V	
Coss	Output Capacitance		450	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance		150	pF]	
witching	Characteristics ($T_C = 25$ °C, Figures 1,	2) ¹				
t _{d(on)}	Turn-On Delay Time		30	ns	$V_{DD} = 90 \text{ V, } I_{D} = 5.0 \text{ A}$	
t _r	Rise Time		50	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 15 \Omega$ $R_{GS} = 15 \Omega$	
t _{d(off)}	Turn-Off Delay Time		50	ns		
t _f	Fall Time		40	ns		
t _{d(on)}	Turn-On Delay Time		50	ns	$V_{DD} = 25 \text{ V}, I_{D} = 6.0 \text{ A}$ $V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$	
t _r	Rise Time		250	ns		
t _{d(off)}	Turn-Off Delay Time		100	ns]	
t _f	Fall Time		120	ns	1	

IRF230-233/IRF630-633 MTP12N18/12N20

T-39-11

T.39-13

Electrical Characteristics	(Cont.)	$(T_0 = 25^{\circ}C)$ unless	otherwise	noted)
CIECLICAL CHAIACLEHSICS	(00111.)	(1(; - 20 C amcos	Ou loi Wiloo	110104)

Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics				
V _{SD}	Diode Forward Voltage IRF230/231/630/631	1.25	2.0	٧	I _S = 9.0 A; V _{GS} = 0 V
	IRF232/233/632/633	1.25	1.8	٧	I _S = 8.0 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	450		ns	I _S = 4.0 A; I _S /dt = 25 A/μS

- Notes 1. $T_J \approx +25^{\circ}C$ to $+150^{\circ}C$ 2. Pulse width limited by T_J . 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics

Figure 1 Switching Test Circuit

Figure 2 Switching Waveforms

Typical Performance Curves

Figure 3 Output Characteristics

Figure 4 Static Drain to Source Resistance vs Drain Current

IRF230-233/IRF630-633 MTP12N18/12N20

T-39-11

T-39-13

Typical Performance Curves (Cont.)

Figure 5 Transfer Characteristics

Figure 7 Capacitance vs Drain to Source Voltage

Figure 9 Forward Biased Safe Operating Area for IRF230-233 and IRF630-633

Figure 6 Temperature Variation of Gate to Source Threshold Voltage

Figure 8 Gate to Source Voltage vs **Total Gate Charge**

Figure 10 Transient Thermal Resistance vs Time for IRF230-233 and IRF630-633

IRF230-233/IRF630-633 MTP12N18/12N20

T-39-11

T.39-13

Typical Performance Curves (Cont.)

Figure 11 Forward Biased Safe Operating Area for MTP12N18/12N20

Figure 12 Transient Thermal Resistance vs Time for MTP12N18/12N20

