9:15
a)
$$f(x) = \frac{3x-1}{x-1}$$
 v bodě $x_0 = 2$

Spočítáme tečnu k funkci f(x) v bodě $x_0 = 2$ následovně, víme, že tečna má rovnici obecně danou jako

$$y(x) = f(x_0) + f'(x_0)(x - x_0)$$
 resp.,
 $y(x) = f'(x_0)x + f(x_0) - f'(x_0)x_0$ (ve tvaru $y(x) = ax + b$).

Spočítáme si derivaci funkce f(x), ta je v podílovém tvaru, tedy

$$f'(x) = \frac{3 \cdot (x-1) - (3x-1) \cdot 1}{(x-1)^2} = -\frac{2}{(x-1)^2},$$

Nyní dosadíme bod $x_0 = 2$ do předpisu pro f(x) a f'(x), tedy

$$f(2) = 5$$
 $f'(2) = -2$.

Takže rovnice tečny je (využijme druhý způsob zápisu) potom

$$y(x) = -2x + 5 - (-2) \cdot 2 = -2x + 9$$
.

Bod dotyku je $T = [x_0, f(x_0)] = [2, 5]$. Naše zadaná funkce f(x) je lineární lomená funkce takže ji ještě převedeme f(x) do středového tvaru, abychom ji byli schopni nakreslit

$$(3x-1):(x-1)=3+\frac{2}{x-1}$$
,

střed je tedy v bodě S = [1, 3], 1. a 3. kvadrant.

11:00
a)
$$f(x) = \frac{2x-1}{x+2}$$
 v bodě $x_0 = -1$

Spočítáme tečnu k funkci f(x) v bodě $x_0 = -1$ následovně, víme, že tečna má rovnici obecně danou jako

$$y(x) = f(x_0) + f'(x_0)(x - x_0)$$
 resp.,
 $y(x) = f'(x_0)x + f(x_0) - f'(x_0)x_0$ (ve tvaru $y(x) = ax + b$).

Spočítáme si derivaci funkce f(x), ta je v podílovém tvaru, tedy

$$f'(x) = \frac{2 \cdot (x+2) - (2x-1) \cdot 1}{(x+2)^2} = \frac{5}{(x+2)^2},$$

Nyní dosadíme bod $x_0 = -1$ do předpisu pro f(x) a f'(x), tedy

$$f(-1) = -3$$
 $f'(-1) = 5$.

Takže rovnice tečny je (využijme druhý způsob zápisu) potom

$$y(x) = 5x - 3 - 5 \cdot (-1) = 5x + 2$$
.

Bod dotyku je $T = [x_0, f(x_0)] = [-1, -3]$. Naše zadaná funkce f(x) je lineární lomená funkce takže ji ještě převedeme f(x) do středového tvaru, abychom ji byli schopni nakreslit

$$(2x-1): (x+2) = 2 + \frac{-5}{x-(-2)},$$

střed je tedy v bodě S = [-2, 2], 2. a 4. kvadrant.

Grafy obou funkcí a tečen si můžete vykreslit např. v Desmosu: https://www.desmos.com/calculator?lang=en

Figure 1: Obrázek k úloze z 9:00

Figure 2: Obrázek k úloze z 11:00