Vizsgakvíz 2022.05.23. 9:00-9:45

Határidő máj 23, 09:50 Pont 15 Kérdések 15

Elérhető máj 23, 09:05 - máj 23, 09:55 körülbelül 1 óra Időkorlát 60 perc

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
LEGUTOLSÓ	1. próbálkozás	32 perc	9 az összesen elérhető 15 pontból

Ezen kvíz eredménye: 9 az összesen elérhető 15 pontból

Beadva ekkor: máj 23, 09:37

Ez a próbálkozás ennyi időt vett igénybe: 32 perc

Az alábbi számok közül melyiket NEM tartalmazza az M(5, -3, 3) gépi számhalmaz?

- (A) [01101 | 0]
- (B) [10000|-3]
- (C) [10101|-1]
- (D) Egyiket sem.

Helyes!

O D

Ha a $\sqrt{5}$ szám értékét a 2-vel közelítjük, melyik a jó abszolút hibakorlát az alábbiak közül?

- (A) $\Delta_2 = 0.15$.
- (B) $\Delta_2 = 0.05$.
- (C) $\Delta_2 = 0.2$.
- (D) Egyik sem.

3. kérdés	1 / 1 pont

Alap 4 / 16

Egy városban csak észak-déli, kelet-nyugati irányú utcákon közlekedhetünk. A fenti ábrán a kék vonal egy olyan megengedett útvonalat szemléltet, melyen el lehet jutni A-ból B-be. A zöld vonal nem egy valós útvonal, mert átlós utak nincsenek. Ha az A és B pontokat kétdimenziós vektorokkal adjuk meg, akkor a kékkel jelölt útvonal hossza melyik távolságnak felel meg?

- (A) $||A B||_2$.
- (B) $||A B||_1$.
- (C) $||A B||_{\infty}$.
- (D) $||A B||_{F}$.

	107107127127 2 940
○ A	
O D	
○ C	
B	

Helyes!

Alap

5 / 16

Tekintsük az Ax = b lineáris egyenletrendszert. Mikor érdemes használni az LU felbontást?

- (A) Ha ki akarjuk számolni A sajátértékeit.
- (B) Ha több különböző jobb oldali *b* vektorra akarjuk kiszámolni az egyenletrendszer megoldását.
- (C) A főelemkiválasztásos GE hatékony kiszámításához.
- (D) Igazából semmire nem jó, csak a vizsgára kell...

	4 B > 4 중 > 4 중 > 4 중 > 중 - 4
○ C	
○ A	
○ D	
B	

Helyes!

5, kérdés 0 / 1 pont

Alap

6 / 16

Melyik ábra szerinti távolságok négyzetösszegét minimalizálja az előadáson tanult legkisebb négyezetes egyenesillesztés?

- (A) A bal oldali ábrán lévő távolságokat.
- (B) A jobb oldali ábrán lévő távolságokat.
- (C) Mindkettőt.
- (D) Egyiket sem.

Közép

7 / 16

Az alábbi, P értékeire vonatkozó Horner-algoritmusból adódó táblázat alapján mi lesz P(1)+P''(1) értéke?

a _i	1	-9	23	-15
ξ_i	1	1	-8	15
$a_i^{(1)}$	1	-8	15	0
ξ_i	1	1	-7	
$a_i^{(2)}$	1	-7	8	
ξ_i	1	1		
$a_i^{(3)}$	1	-6		8

- (A) 2
- (B) -12
- (C) 0
- (D) -4

	(日) (信) (言) (言) (言) (言) (言) (言) (字)	90
○ C		
O D		
○ A		
B		

Helyes!

Helyes!

Közép

8 / 16

Tekintsük az (x_i, y_i) , i = 0, ..., n alappontokra illeszkedő interpolációs polinom Lagrange-alakját $L_n(x)$ és a Newton-alakját $N_n(x)$. Melyik állítás igaz az alábbiak közül?

- (A) $\exists x \in \mathbb{R} : L_n(x) \neq N_n(x)$
- (B) $\forall x \in \mathbb{R} : L_n(x) = N_n(x) N_{n-1}(x)$
- (C) $\forall x \in \mathbb{R} : L_n(x) = N_n(x)$
- (D) Egyik sem.

	40 140 140 140 140 140 140 140 140 140 1	E
ОВ		
○ A		
O D		

8. kérdés 0 / 1 pont

Közép

9 / 16

Legyenek a $\varphi_i:[a;b] \to [a;b]$ (i=1,2) függvények kontrakciók az [a;b] intervallumon a $q_1=1/8$ és a $q_2=1/2$ kontrakciós együtthatókkal. Melyik φ fügvénnyel definiált fixpont-iteráció lesz a gyorsabb?

- (A) φ_2 kétszer gyorsabb, mint φ_1
- (B) φ_1 kétszer gyorsabb, mint φ_2
- (C) φ_1 háromszor gyorsabb, mint φ_2
- (D) Mindkettő ugyanolyan gyors.

lelyes válasz

B

A

Legyen $x \in \mathbb{R}^n$. Ekkor

- **1** $||x||_p < ||x||_q$, ha $p \ge q \ge 1$.
- **2** $||x||_p \ge ||x||_q$, ha $p \ge q \ge 1$.
- **3** $||x||_p \le ||x||_q$, ha $p \ge q \ge 1$.
- 4 Egyik sem.

Helyes!

CBDA

10. kérdés

1 / 1 pont

Helyes!

Közép

11 / 16

イロトイクトイミトイミト き りので

Legyenek az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix sajátértékei: $\lambda_1, \lambda_2, \dots, \lambda_n$. Ha tudjuk, hogy minden $i = 1, \dots, n$ esetén $\lambda_i > 0$, akkor mit lehet mondani A egy tetszőleges Schur-komplementerének $[A|A_{11}]$ sajátértékeiről?

- (A) $[A|A_{11}]$ -nak csak negatív sajátértékei vannak.
- (B) [A|A₁₁]-nak csak pozitív sajátértékei vannak.
- (C) $[A|A_{11}]$ -nak pozitív és negatív sajátértékei is vannak.
- (D) $[A|A_{11}]$ -nak lesz nulla sajátértéke.

■ B○ C○ A○ D

11. kérdés 0 / 1 pont

Az $\int_{-2}^1 x^5-2x^2+1~\mathrm{d}x$ integrál értékét az $x_0,x_1,\ldots,x_4\in[-2,1]$ alappontokon zárt Newton-Cotes-formulával közelítjük. Mekkora az eredmény hibája?

- 10 0

	ОВ		
	O D		
legadott válasz			
lelyes válasz	O A		

12. kérdés	0 / 1 pont
hu/courses/26093/auizzes/88848	

Emelt

13 / 16

Az f függvényt a [-1,1] intervallumon az L_n Lagrange-interpolációs polinomjával közelítjük. Mit érünk el azzal, ha az x_0, x_1, \ldots, x_n alappontokat az n+1-ed fokú Csebisev polinom gyökeinek választjuk?

- (A) minimalizáljuk a pontos $||f L_n||_{\infty}$ hibát
- (B) minimalizáljuk a pontos $||f L_n||_1$ hibát
- (C) minimalizáljuk a pontos $||f L_n||_{\infty}$ hiba becslését
- (D) minimalizáljuk a pontos $||f L_n||_1$ hiba becslését

13. kérdés	1 / 1 pont

Helyes!

elt

14 / 16

$$A = \left[\begin{array}{rrr} 1 & 2 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array} \right]$$

A fenti mátrixxal felírt Ax = b lineáris egyenletrendszert melyik tanult módszerrel oldhatjuk meg a legkevesebb művelettel?

- (A) Gauss-eliminációval.
- (B) Progonka módszerrel.
- (C) LU felbontással.
- (D) Mindegyik ugyanannyi műveletet igényel.

	4 B > 4 B > 4 돌 > 4 돌 > 4 돌 > 9 Q
○ C	
○ A	
B	
O D	

Emelt

15 / 16

イロトイラトイラトイラト ラ りへの

A monoton konvergencia tétel a fenti $f \in C^2[0;2]$ függvényre garantálja-e az x_0 -ból indított Newton-módszer konvergenciáját?

- (A) Konvergens.
- (B) A tétel alapján nem lehet eldönteni.
- (C) Nem konvergens.
- (D) Egyik sem.

Helyes!

B			
O D			
O A			
0 C			

15. kérdés 0 / 1 pont

lelyes válasz

16 / 16

Melyik összefüggés helyes az $S_m(f)$ (m páros) összetett Simpson formulára vonatkozóan?

(A)

$$S_m(f) = \frac{h}{3} \left(f(x_0) + 4 \sum_{k=1}^{m-1} f(x_k) + f(x_m) - 2 \sum_{k=1}^{\frac{m}{2}} f(x_{2k}) \right)$$

(B)

$$S_m(f) = \frac{h}{3} \left(f(x_0) + 4 \sum_{k=1}^{\frac{m}{2}} f(x_{2k-1}) + f(x_m) + 2 \sum_{k=1}^{\frac{m}{2}-1} f(x_{2k}) \right)$$

- (C) $S_m(f) = \frac{4 \cdot T_{2m}(f) T_m(f)}{3}$
- (D) Mindegyik helyes.

B D legadott válasz A O C

Kvízeredmény: 9 az összesen elérhető 15 pontból