1

Homework Section 1.3

Mark Petersen

Exercises 1,4,7,8,906/22/2020

Exercise 1. a) Write a formal definition in the style of Definition 1.3.2 for the infimum or greatest lower bound of a set. b) Now state and prove a version of Lemma 1.3.8 for greatest lower bounds.

- 1) A real number s is the greatest lower bound for a set $A \subseteq \mathbb{R}$ if it meets the following two criteria:
 - a) s is a lower bound for A;
 - b) if b is a lower bound for A, then $s \ge b$.
- 2) Assume $s \in \mathbb{R}$ is an lower bound for a set $A \subseteq \mathbb{R}$. Then, $s = \inf(A)$ if and only if, for every choice of $\epsilon > 0$, there exists and element $a \in A$ satisfying $s + \epsilon > a$.

Proof: Since this is a bijection, we must show both ways.

 (\Longrightarrow) : We assume directly that $s=\inf(A)$, then $s+\epsilon>s$. So there must exists an element $s< a< s+\epsilon$ such that $a\in A$. If $s+\epsilon\neq A$, then let a be any element in A. If $s+\epsilon\in A$, then let $a=s+\epsilon/2$. Thus regardless of ϵ , we can find an a such that $s+\epsilon>a$.

(\Leftarrow): We assume contrapositively that s is a lower bound and that $s \neq \inf(A)$, then $s - \inf(A) > 0$. Let $\epsilon = \frac{s - \inf(A)}{2}$, then $s + \epsilon < \inf(A)$, hence $s + \epsilon < a$ for all $a \in A$. Therefore, for every $a \in A$, there exists and $\epsilon > 0$, such that $s + \epsilon \leq a$. Since the contrapositive is true, the original implication must be true.

Since we have proven both ways, we have proven the biconditional statement is true.

Exercise 2. Let A_1, A_2, A_3, \ldots be a collection of nonempty sets, each of which is bounded above.

- 1) Find a formula for $\sup (A_1 \cup A_2)$. Extend this to $\sup (\bigcup_{k=1}^n A_k)$.
 - a) Conjecture: $\sup (A_1 \cup A_2) = \max (\sup (A_1), \sup (A_2)).$

Proof: We will show that $\sup(A_1 \cup A_2) = \max(\sup(A_1), \sup(A_2))$ by proving the inequalities $\sup(A_1 \cup A_2) \ge \max(\sup(A_1), \sup(A_2))$ and $\sup(A_1 \cup A_2) \le \max(\sup(A_1), \sup(A_2))$.

 (\geq) : Let $x = \sup(A_1 \cup A_2)$, then for all $a \in A_1 \cup A_2$, we have that $a \leq x$. Since $A_1 \subseteq A_1 \cup A_2$, then for all $b \in A_1$ we have that $b \leq x$. Similarly, since $A_2 \subseteq A_1 \cup A_2$, then for all $c \in A_2$, it must be that $c \leq x$. Thus x is an upper bound for A_1 and A_2 . This implies that $\sup(A_1) \leq x$ and $\sup(A_2) \leq x$. Thus $\max(\sup(A_1), \sup(A_2)) \leq x = \sup(A_1 \cup A_2)$.

(\leq): Let $x = \max(\sup(A_1), \sup(A_2))$, then x is an upper bound for A_1 and A_2 . In other words, for all $b \in A_1$, $b \leq x$, and for all $c \in A_2$, $c \leq x$. Since $A_1 \cup A_2 = \{h : h \in A_1 \text{ or } h \in A_2\}$, we know that for all $d \in A_1 \cup A_2$, $d \leq x$. Thus x is an upper bound for $A_1 \cup A_2$. This means that $\sup(A_1 \cup A_2) \leq x$. Thus $\sup(A_1 \cup A_2) \leq \max(\sup(A_1), \sup(A_2))$.

Since both inequalities hold, we have that $\sup (A_1 \cup A_2) = \max (\sup (A_1), \sup (A_2))$.

b) Conjecture: $\sup (\bigcup_{k=1}^n A_k) = \max (\sup (A_1), \sup (A_2), \dots, \sup (A_n)).$

Proof: Let $n, k \in \mathbb{N}$ and $A_k \subseteq \mathbb{R}$ be bounded from above. We want to show that the open sentence

$$P(n) : \sup (\bigcup_{k=1}^{n} A_k) = \max (\sup (A_1), \sup (A_2), \dots, \sup (A_n))$$

is true for all $n \in \mathbb{N}$. We work this by induction.

Base Case: P(1) is trivial since $\sup (A_1) = \max (\sup (A_1))$. P(2) has been proven above.

Induction Step: Let $m \in \mathbb{N}$. We assume that P(m) is true and we want to show that P(m+1) is true which is the statement

$$\sup \left(\cup_{i=1}^{m+1} A_k \right) = \max \left(\sup \left(A_1 \right), \sup \left(A_2 \right), \dots, \sup \left(A_{m+1} \right) \right).$$

We can write the right hand side as

$$\max \left(\max \left(\sup \left(A_1\right),\sup \left(A_2\right),\ldots,\sup \left(A_m\right)\right),\sup \left(A_{m+1}\right)\right).$$

Since P(m) is true, we can reduce it to

$$\max \left(\sup \left(\bigcup_{j=1}^{m} A_j \right), \sup \left(A_{m+1} \right) \right)$$
$$\max \left(\sup \left(B \right), \sup \left(A_{m+1} \right) \right),$$

with $B = \bigcup_{j=1}^m A_j$ which is a subset of \mathbb{R} that is bounded from above. This problem then reduces to the base case P(2). Thus

$$\sup (B \cup A_{m+1}) = \max (\sup (B), \sup (A_{m+1}))$$

$$\sup ((\cup_{i=1}^m A_j) \cup A_{m+1}) = \max (\sup (B), \sup (A_{m+1}))$$

$$\sup (\cup_{i=1}^{m+1} A_k) = \max (\sup (B), \sup (A_{m+1})),$$

hence

$$\sup \left(\bigcup_{i=1}^{m+1} A_k \right) = \max \left(\sup \left(A_1 \right), \sup \left(A_2 \right), \dots, \sup \left(A_{m+1} \right) \right).$$

Since P(m+1) is true, we have shown that P(n) is true for all n.

- 2) Consider $\sup (\bigcup_{k=1}^{\infty} A_k)$. Does the formula in (a) extend to the infinite case?
 - a) No. Consider the upper bounded sets $A_i = \{i\}$ with $i \in \mathbb{N}$, then each set is bounded from above by i+1. However, the set $\bigcup_{k=1}^{\infty} A_k$ isn't bounded from above. To show this, suppose $y = \sup (\bigcup_{k=1}^{\infty} A_k)$, then y is not an upper bound of A_{y+1} . But since $A_{y+1} \subseteq \bigcup_{k=1}^{\infty} A_k$, y cannot be a supremem. This is a contradiction, thus $\sup (\bigcup_{k=1}^{\infty} A_k)$ does not exist.

Exercise 3. Prove that if a is an upper bound for A, and if a is also an element of A, then $a = \sup(A)$.

Proof: Let T be the set containing all of the upper bounds of A. We suppose directly that a is an upper bound for A, and $a \in A$. Let $t \in T$, then for every $b \in A$, $b \le t$. Since $a \in A$, then $a \le t$ for every $t \in T$. Thus by definition, a is the least upper bound, or in other words, $a = \sup(A)$.

Exercise 4. Compute, without proofs, the suprema and infima (if they exist) of the following sets:

- 1) $\{m/n : m, n \in \mathbb{N} \text{ with } m < n\}.$
 - a) suprema: 1
 - b) infima: 0
- 2) $\{(-1)^m / n : m, n \in \mathbb{N}\}.$
 - a) suprema: 1
 - b) infima: -1
- 3) $\{n/(3n+1): n \in \mathbb{N}\}.$
 - a) suprema: $\frac{1}{3}$
 - b) infima: $\frac{1}{4}$
- 4) $\{m/(m+n) : m, n \in \mathbb{N}\}.$
 - a) suprema: 1
 - b) infima: 0

Exercise 5. See problem description below.

- 1) If $\sup{(A)} < \sup{(B)}$, show that there exists an element $b \in B$ that is an upper bound for A. Proof: Let $a^* = \sup{(A)}$ and $b^* = \sup{(b)}$. We suppose directly that $a^* < b^*$. Then there must exists an $\epsilon > 0$ such that $b^* - a^* > \epsilon > 0$. By lemma 1.3.8, there exists a $b \in B$ for every $\delta > 0$, such that $b^* - \delta < b$. Therefore, there exists a b such that $a^* < b^* - \epsilon < b < b^*$. Therefore, b is an upper bound for b.
- 2) Give an example to show that this is not always the case if we assume $\sup (A) \leq \sup (B)$.
 - a) Let A = [0,1] and $B = \left\{\frac{n}{1+n} : n \in \mathbb{N}\right\}$, then $\sup{(A)} = 1$ and $\sup{(B)} = 1$. Thus $\sup{(A)} \le \sup{(B)}$. Since $1 \notin B$, there exists no element $b \in B$ that is an upper bound for A since no element in B is equal to or greater than 1.