DEMAND ESTIMATION WITH MACHINE LEARNING

Georg Zhelev

University of Hamburg georg.zhelev@gmail.com

January 24, 2021

Overview

Introduction

Theoretical Framework

Methodology

Results

Discussion

Appendix

Introduction: Machine Learning & Goal of Research

- Motivation: to enable techlogical services data must be stored and analysed
- **Definition**: Advanced statistical prediction techniques suitable to analyze **large** amounts of data
- Specific area: Demand Estimation in a discrete choice setting
- Problem: Standard statistical methods fail, when the number of features is very large compared to the number of observations
- Goal of Research empirical application of classical and machine learning methods
- simulated product data
- performance is measured and the number of features is varied

Theoretical Framework: Variables that Influence Demand

$$D_a = f(X_1, ..., X_n)$$

- 1. Price
- 2. Quality
- 3. Popularity

Goal: transform the general function f into a specific one: Determine to what extent variable affects demand.

Theoretical Framework: Utility Model

- customer n faces a buying decision among a set of competing alternatives j
- ullet a person obtains a net benefit U from choosing one product j
- β is a coefficient of how observed factors x contribute to U
- ullet captures the factors that are included in U, but are not observed
- ullet has an extreme value distribution (heterogenous individuals)

Theorem (Utility Model)

$$U_{nj} = \beta * x_{nj} + \epsilon_{nj}; \ \forall j,$$

Theorem (Utility Model Concise)

$$U_{ni} = V_{ni} + \epsilon_{ni}$$

Assign Indexes

$$n = 1, ..., N, p = 1, ..., P, j = 1, 2, 3.$$

Assign Coefficients

$$\begin{bmatrix} -5 & 3 & 5 & 0 & 0 & \dots & \beta_p \end{bmatrix}$$
.

Generate Product Characteristic-Means μ and name columns

	Alternative	Alternative Name	μ Price	μ Quality	μ Popularity
Ī	j=1 TF (Tiger Flakes)		3.90	5	2
	j=2	HB (Honey Bits)	3,50	1	4
-	j=3	NC (Nougat Crisps)	1.50	1	2
			*		1 = P = 1) \(\mathre{C}\)

Generate X-Variables using means and diagonal covariance structure

$$\begin{bmatrix} 3.9 & 5.0 & 2.0 & 0 & 0 & \dots & \mu_{p} & \end{bmatrix},$$

$$\begin{bmatrix} 0.2 & 0 & \dots & 0 \\ 0 & 0.2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0.2 \end{bmatrix}^{1} \rightarrow \begin{bmatrix} x_{1,1}^{(1)} & x_{1,2}^{(1)} & \dots & x_{1,p}^{(1)} \\ x_{2,1}^{(1)} & x_{2,2}^{(1)} & \dots & x_{2,p}^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p,1}^{(1)} & x_{p,2}^{(1)} & \dots & x_{p,p}^{(1)} \end{bmatrix}$$

Calculate Representative Utility using $V_{n,i} = \beta_p * t(X_{n,p})$,

$$\begin{bmatrix} v_{1,1} & v_{1,2} & v_{1,3} \\ v_{2,1} & v_{2,2} & v_{2,3} \\ \vdots & \vdots & \vdots \\ v_{n,1} & v_{n,2} & v_{n,3} \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix} * \begin{bmatrix} x_{1,1}^j & x_{1,2}^j & \dots & x_{1,p}^j \\ x_{2,1}^j & x_{2,2}^j & \dots & x_{2,p}^j \\ \vdots & \vdots & \vdots & \vdots \\ x_{n,1}^j & x_{n,2}^j & \dots & x_{n,p}^j \end{bmatrix}^T$$

¹diagonal matrix with variance $\sigma = 0.2$. Generated X's vary around means

Summary Statistics of Generated Utilities

V1	V2	V3
Min. :-6.176	Min. :-3.674	Min. :-3.395
Median: 5.508	Median : 6.087	Median: 5.802
Mean: 5.759	Mean: 5.718	Mean: 5.749
Max. :15.053	Max. :16.076	Max. :13.755

Generate a n * i matrix of the random error ϵ

 $\epsilon \sim \mathsf{Gumbel}(0, 1.64)$

Variance satisfies the extreme value distribution-assumption. Signal-to-Noise Ratio of 2-3.

Add Random Error to Utility

$$\begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} \\ u_{2,1} & u_{2,2} & u_{2,3} \\ \vdots & \vdots & \vdots \\ u_{n,1} & u_{n,2} & u_{n,3} \end{bmatrix} = \begin{bmatrix} v_{1,1} & v_{1,2} & v_{1,3} \\ v_{2,1} & v_{2,2} & v_{2,3} \\ \vdots & \vdots & \vdots \\ v_{n,1} & v_{n,2} & v_{n,3} \end{bmatrix} + \begin{bmatrix} \epsilon_{1,1} & \epsilon_{1,2} & \epsilon_{1,3} \\ \epsilon_{2,1} & \epsilon_{2,2} & \epsilon_{2,3} \\ \vdots & \vdots & \vdots \\ \epsilon_{n,1} & \epsilon_{n,2} & \epsilon_{n,3} \end{bmatrix}.$$

Generate Response Variable y

$$\sum_{i=1}^{J} P_{ni} = \sum_{i=1}^{J} \frac{e^{U_{ni}}}{\sum_{j} e^{U_{nj}}} = 1.$$

$$0 \le P_{n,i} \le 1.$$

$$\begin{bmatrix} 0.05 & 0.95 & 0.00 \\ 0.01 & 0.00 & 0.98 \\ 0.23 & 0.32 & 0.45 \\ \vdots & \vdots & \vdots \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \vdots & \vdots & \vdots \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ 3 \\ 3 \\ \vdots \\ y_n \end{bmatrix} \rightarrow \begin{bmatrix} HB \\ NC \\ NC \\ \vdots \\ y_n \end{bmatrix}$$

Methodology: Training, Making Predictions, Assessing Performance

Safe Data to a Data Frame

- 1. Data Split (Train/Test: 50/50)
- 2. Pre-Process (One-vs-rest Approach)
- 3. Train (estimate β 's)
- 4. Make Predictions (predict \hat{y})
- 5. Assess Performance $\left(\frac{\#correct}{all\ predictions}\right)$

observations	n = 300
features	p = (10, 50, 150, 290)
coefficients	$\beta_1 = -5, \ \beta_2 = 3,$
	$\beta_3 = 5$, $\beta_{rest} = 0$
run time	2 Minutes

Results: Prediction Accuracy all Models (in %)

	Train	Test		Train	Test
Logit	76	78	Logit	77	62
Linear Regression	76	71	Linear Regression	72	45
Lasso	72	77	Lasso	62	54
Decision Tree	67	49	Decision Tree	58	41
Random Forest	100	63	Random Forest	100	45
Gradient Boosting	88	61	Gradient Boosting	100	45

Table: p=10

Table: p=50

	Train	Test
Logit	100	41
Linear Regression	80	33
Lasso	70	65
Decision Tree	69	47
Random Forest	100	51
Gradient Boosting	100	49

Train Test Logit 100 36 Linear Regression 84 29 Lasso 74 64 Decision Tree 47 65 Random Forest 100 50 Gradient Boosting 100 47

Table: p=150

Table: p=290

Results: Coefficients

Table: Relevant Coefficients

	p=10	p=50	p=150	p=290		p=10	p=50	p=150	p=290
X1	-3.1	-3.4	-28.9	-12.3	X1.TF	-3.9	-4.3	-10.0	-677.7
X2	1.8	1.9	16.5	6.5	X2.TF	1.4	1.5	4.6	634.9
X3	3.1	3.1	31.8	11.2	X3.TF	2.1	2.9	6.1	-386.8

Table: Logit

Table: Linear Regression

	p=10	p=50	p=150	p=290
X1.TF	-3.9	-3.8	-4.2	-3.5
X2.TF	1.4	0.7	1.4	0.7
X3.TF	2.1	3.6	2.7	3.0

Table: Lasso

Results: Variable Splits of Tree Based Methods

(a) Tree Split p=10

(b) Random Forest Variable Importance p=10

Discussion & Conclusion

- Hypothesis 1: discrete choice model (Logit) is good for a small number of features p, but starts to overfit as p ⇒ n
- Hypothesis 2: ML methods perform better than classical methods, when p ⇒ n
- **Hypothesis 3**: Linear models will have a better prediction accuracy as non-linear models
- Hypothesis 4: A linear model, which practices variable selection will outperform a linear model which doesn't

The End

¹Link to Paper and Code:

Appendix

Appendix: Work-Environment

Appendix: Logit Model

$$Prob(U_{ni} > U_{nj})$$
 $P_{ni} = rac{e^{U_{ni}}}{\sum_{j} e^{U_{nj}}}$ $0 < P_i < 1$ $\sum_{i=1} P_i = 1$

• Estimation: choose β 's so the probabilty of reporoducing the observed model is maximized

Appendix: Linear Regression

- The ordinary least squares, estimates β that $\min_{\beta \in \mathbb{R}} \sum_i (Y_i \beta' X_i)^2$
- as $p \rightarrow n$, coefficients β not accurately estimated
- Sparsity: only subset of *p* are important, can apply Lasso

Applied Methods: Lasso Regression and Overfitting

- the lasso estimator is $\min_{\beta \in \mathbb{R}} \sum_i (Y_i \beta' X_i)^2 + \alpha * \sum_{j=1}^p |\beta_j|$
- penalty/regularization term adds to the loss
- all coefficients are reduced in direction of zero
- ensures lasso does not overfit

Appendix: Decision Tree, Random Forest and Gradient Boosting

- Partition characteristic space into regions
- chooses best features on which to divide the characteristic space
- predicted response of an observation by the mean response of the training observations

Appendix: Model Characteristics

observations	n = 300		
features	p = (10, 50, 150, 290)		
assigned coefficients	$\beta_1 = -5$, $\beta_2 = 3$, $\beta_3 = 5$, $\beta_{rest} = 0$		
total run time	2 Minutes		

Table: Signal-to-Noise Ratio

	Signal-to-Noise	Noise
p=10	2.24	1.64
p=50	3.02	1.64
p=150	2.43	1.64
p=290	2.84	1.64