Convex nonsmooth optimization Part III: Algorithms

Barbara Pascal

LS2N, CNRS, Centrale Nantes, Nantes University, Nantes, France barbara.pascal@cnrs.fr

Collaboration

This course is a direct adaptation of the course built by Jean-Christophe Pesquet (CentraleSupélec) and Nelly Pustelnik (LPENSL)

Reconstruction of a piecewise noisy signal

Ground truth

$$\overline{x} \in \mathbb{R}^N$$

Reconstruction of a piecewise noisy signal

Ground truth

$$\overline{x} \in \mathbb{R}^N$$

Gaussian noise with $\sigma = 0.04$

$$y = \overline{x} + \xi \in \mathbb{R}^N$$

Purpose: recover the true signal with sharp transitions

Denoising by functional minimization

Regularized scheme	D : differential operator, $\ \cdot\ _p$: ℓ_p -norm
â	$\lambda \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ \frac{1}{2} \ x - y\ _2^2 + \lambda \ \mathbf{D}x\ _p^p$

Denoising by functional minimization

D: differential operator, $\|\cdot\|_p$: ℓ_p -norm

$$\widehat{x}_{\lambda} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ \frac{1}{2} \|x - y\|_2^2 + \lambda \|\mathbf{D}x\|_p^p$$

Tikhonov regularizer $\|\mathbf{D}x\|_2^2$

Smooth: gradient descent

X fuzzy transitions

Denoising by functional minimization

D: differential operator, $\|\cdot\|_p$: ℓ_p -norm

$$\widehat{x}_{\lambda} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ \frac{1}{2} \|x - y\|_2^2 + \lambda \|\mathbf{D}x\|_{\rho}^p$$

Tikhonov regularizer $\|\mathbf{D}x\|_2^2$

Smooth: gradient descent

X fuzzy transitions

Nonsmooth: proximal algorithm

✓ sharp transitions

Piecewise denoising

$$\widehat{x}_{\lambda} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ \frac{1}{2} \|x - y\|_2^2 + \lambda \|\mathbf{D}x\|_1$$

Piecewise denoising

$$\widehat{x}_{\lambda} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ \frac{1}{2} \|x - y\|_2^2 + \lambda \|\mathbf{D}x\|_1$$

Smooth data-fidelity
$$f(x) = \frac{1}{2}||x - y||_2^2$$

Piecewise denoising

$$\widehat{x}_{\lambda} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ \frac{1}{2} \|x - y\|_2^2 + \lambda \|\mathbf{D}x\|_1$$

- Smooth data-fidelity $f(x) = \frac{1}{2}||x y||_2^2$
- Non-smooth regularizer $h(\mathbf{L}x) = \lambda \|\mathbf{D}x\|_1$, with $h(z) = \lambda \|z\|_1$

Piecewise denoising

$$\widehat{x}_{\lambda} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ \frac{1}{2} \|x - y\|_2^2 + \lambda \|\mathbf{D}x\|_1$$

- Smooth data-fidelity $f(x) = \frac{1}{2}||x y||_2^2$
- Non-smooth regularizer $h(\mathbf{L}x) = \lambda \|\mathbf{D}x\|_1$, with $h(z) = \lambda \|z\|_1$

General form:

$$\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \{ f(x) + h(\mathbf{L}x) = f(x) + g(x) \}$$

f smooth; h and $g = h(\mathbf{L} \cdot)$ nonsmooth.

Optimization algorithm: Forward-Backward

Let \mathcal{H} be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$ be differentiable with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$. Let $g \in \Gamma_0(\mathcal{H})$.

Let $\gamma \in]0,2/\nu[$ and $\delta = \min\{1,1/(\nu\gamma)\}+1/2.$

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta[$ such that $\sum_{n\in\mathbb{N}}\lambda_n(\delta-\lambda_n)=+\infty.$

Assume that $\operatorname{Argmin}(f+g) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma \nabla f(x_n) \\ x_{n+1} = x_n + \lambda_n (\operatorname{prox}_{\gamma g} y_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer of f+g

Example: bounded least-squares

Observation model:

$$y = \mathbf{A}\overline{x} + \xi \in \mathbb{R}^P$$
,

linear operator $\mathbf{A} \in \mathbb{R}^{P \times N}$, ξ Gaussian noise, ground truth $\overline{\mathbf{x}} \in \mathbb{R}^{N}$, s.t.

$$\forall i \in \{1, \ldots, N\}, \quad m \leq \overline{x}_i \leq M$$

Bounded least-squares

$$\widehat{x} \in \underset{x \in C}{\operatorname{Argmin}} \frac{1}{2} \|y - \mathbf{A}x\|_2^2$$

$$\iff$$
 $\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ \frac{1}{2} \|y - \mathbf{A}x\|_2^2 + \frac{\iota_{\mathcal{C}}(x)}{\Vert x \Vert_2^2}$

Optimization algorithm: projected gradient

Let \mathcal{H} be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$ be differentiable with a ν -Lipschitzian gradient where $\nu \in [0, +\infty[$. Let C a nonempty closed convex subset of \mathcal{H} and P_C the projection on C.

Let $\gamma \in]0, 2/\nu[$ and $\delta = \min\{1, 1/(\nu\gamma)\} + 1/2.$

Let
$$\gamma \in]0, 2/\nu[$$
 and $\delta = \min\{1, 1/(\nu\gamma)\} + 1/2$.
Let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in $[0, \delta[$ such that $\sum_{n \in \mathbb{N}} \lambda_n(\delta - \lambda_n) = +\infty$.

Assume that $\operatorname{Argmin}_{x \in C} g(x) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma \nabla f(x_n) \\ x_{n+1} = x_n + \lambda_n (P_C y_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer of g over C

Optimization algorithm: gradient descent

Let ${\cal H}$ be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$ differentiable with a ν -Lipschitz gradient, $\nu \in \]0,+\infty[$.

Le $\gamma \in]0,2/\nu[$.

Assume that $\operatorname{Argmin} f \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma \nabla f(x_n)$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer of f

Let ${\mathcal H}$ be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$.

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ z_n = \operatorname{prox}_{\gamma f} (2y_n - x_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

Let \mathcal{H} be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$.

Let $\gamma \in]0, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ a sequence in [0,2] s.t. $\sum_{n \in \mathbb{N}} \lambda_n(2-\lambda_n) = +\infty.$

Assume that $\operatorname{Argmin}(f+g) \neq \varnothing$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ z_n = \operatorname{prox}_{\gamma f} (2y_n - x_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

The following properties are satisfied:

$$\triangleright x_n \rightharpoonup \widehat{x}$$

$$ightharpoonup z_n - y_n o 0, \ y_n o \widehat{y}, \ z_n o \widehat{y} \text{ where } \widehat{y} = \operatorname{prox}_{\gamma g} \widehat{x} \in \operatorname{Argmin}(f + g)$$

Let ${\mathcal H}$ and ${\mathcal G}$ be two finite dimensional Hilbert spaces.

Let $g \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G},\mathcal{H})$ s.t. L^*L is a isomorphism .

Let $\gamma \in]0, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ a sequence in [0,2] such that $\sum_{n \in \mathbb{N}} \lambda_n (2 - \lambda_n) = +\infty.$

Assume that $\operatorname{Argmin}(g \circ L) \neq \emptyset$. Let $x_0 \in \mathcal{H}, \ v_0 = (L^*L)^{-1}L^*x_0$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ c_n = (L^* L)^{-1} L^* y_n \\ x_{n+1} = x_n + \lambda_n (L(2c_n - v_n) - y_n) \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

We have then $v_n \rightharpoonup \widehat{v}$ where $\widehat{v} \in \operatorname{Argmin}(g \circ L)$.

Sketch of proof:

where $E = \operatorname{ran} L$.

We apply Douglas-Rachford algorithm with

$$f = \iota_E \Rightarrow \operatorname{prox}_{\gamma f} = P_E$$
 by setting

$$(\forall n \in \mathbb{N})$$
 $P_E y_n = Lc_n \text{ and } P_E x_n = Lv_n$

where
$$c_n = \underset{c \in \mathcal{H}}{\operatorname{argmin}} \|y_n - Lc\|^2 = (L^*L)^{-1}L^*y_n$$
.

Particular case of Douglas-Rachford algorithm:

$$\mathcal{H} = \mathcal{H}_1 \times \cdots \mathcal{H}_m$$
 where $\mathcal{H}_1, \dots, \mathcal{H}_m$ Hilbert spaces

$$(\forall x = (x_1, \dots, x_m) \in \mathcal{H}) \ g(x) = \sum_{i=1}^m g_i(x_i)$$

where $(\forall i \in \{1, \dots, m\} \ g_i \in \Gamma_0(\mathcal{H}_i))$

 $L: v \mapsto (L_1 v, \dots, L_m v)$ where $(\forall i \in \{1, \dots, m\}) \ L_i \in \mathcal{B}(\mathcal{G}, \mathcal{H}_i)$.

PPXA+ algorithm

Let $(x_{0,i})_{1 \le i \le m} \in \mathcal{H}$, $v_0 = (\sum_{i=1}^m L_i^* L_i)^{-1} \sum_{i=1}^m L_i^* x_{0,i}$ and

$$(\forall n \in \mathbb{N}) \begin{cases} y_{n,i} = \operatorname{prox}_{\gamma g_i} x_{n,i}, & i \in \{1, \dots, m\} \\ c_n = (\sum_{i=1}^m L_i^* L_i)^{-1} \sum_{i=1}^m L_i^* y_{n,i} \\ x_{n+1,i} = x_{n,i} + \lambda_n (L_i (2c_n - v_n) - y_{n,i}), & i \in \{1, \dots, m\} \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

We have then $v_n \rightarrow \hat{v} \in \operatorname{Argmin} \sum_{i=1}^m g_i \circ L_i$.

Particular case of Douglas-Rachford algorithm:

$$\mathcal{H} = \mathcal{H}_1 \times \cdots \mathcal{H}_m$$
 where $\mathcal{H}_1 = \ldots = \mathcal{H}_m$ Hilbert spaces

$$(\forall x = (x_1, \dots, x_m) \in \mathcal{H}) \ g(x) = \sum_{i=1}^m g_i(x_i)$$

where
$$(\forall i \in \{1, ..., m\} \ g_i \in \Gamma_0(\mathcal{H}_i)$$

 $L: v \mapsto (L_1v, \ldots, L_mv)$ where $L_1 = \ldots = L_m = \mathrm{Id}$.

PPXA algorithm

Let $(x_{0,i})_{1 \le i \le m} \in \mathcal{H}$, $v_0 = \frac{1}{m} \sum_{i=1}^m x_{0,i}$ and

$$(\forall n \in \mathbb{N}) \begin{cases} y_{n,i} = \text{prox}_{\gamma g_i} x_{n,i}, & i \in \{1, \dots, m\} \\ c_n = \frac{1}{m} \sum_{i=1}^m y_{n,i} \\ x_{n+1,i} = x_{n,i} + \lambda_n (2c_n - v_n - y_{n,i}), & i \in \{1, \dots, m\} \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

We have then $v_n \rightarrow \hat{v} \in \operatorname{Argmin} \sum_{i=1}^m g_i$

Optimization algorithms

Forward-Backward	$f_1 + f_2$	f_1 gradient Lipschitz	[Combettes,Wajs,2005]
		$\operatorname{prox}_{f_2}$	
ISTA	f_1+f_2	f_1 gradient Lipschitz	[Daubechies et al, 2003]
		$f_2 = \lambda \ \cdot \ _1$	
Projected gradient	$f_1 + f_2$	f_1 gradient Lipschitz	
		$f_2 = \iota_C$	
Gradient descent	$f_1 + f_2$	f ₁ gradient Lipschitz	
		$f_2=0$	
Douglas-Rachford	$f_1 + f_2$	$\operatorname{prox}_{f_1}$	[Combettes,Pesquet, 2007]
		$\operatorname{prox}_{f_2}$	
PPXA	$\sum_{i} f_{i}$	$\operatorname{prox}_{f_i}$	[Combettes,Pesquet, 2008]
		,	
PPXA+	$\sum_{i} f_{i} \circ L_{i}$	$\operatorname{prox}_{f_i}$	[Pesquet, Pustelnik, 2012]
		$(\sum_{i=1}^{m} L_{i}^{*} L_{i})^{-1}$	