Status-quo prospect theory

$$\kappa_{SK}^{G} = 0.11805961426066629$$
 $\kappa_{SK}^{L} = 1.0$ $\sigma_{KS}^{G} = \text{nan}$ $\sigma_{KS}^{L} = 1.0$ $\lambda_{KQ}^{G} = \text{nan}$ $\lambda_{KQ}^{L} = 0.0$ $\lambda_{SQ}^{L} = 0.0$ $\lambda_{SQ}^{L} = 0.0$ $\sigma_{SK}^{G} = 0.0$ $\sigma_{SK}^{L} = 0.0$ $\sigma_{SK}^{L} = 0.0$ $\sigma_{KS}^{L} = 0.0$ $\sigma_{KS}^{L} = 0.0$ $\sigma_{SQ}^{L} = 0.0$ $\sigma_{SQ}^{L} = 0.0$ $\sigma_{SQ}^{L} = 0.0$

$$\kappa^G = 0.019876257471111013$$
 $\kappa^L = 0.609639736580517$ $\rho^G = 0.0$ $\rho^L = 0.0$

PGR = 0.14848154714805206PLR = 0.1114401963220676

Model parameters : β = 0.9, λ = 3 Stochastic environment : τ = 2, n = 4 p_h = 0.55, p_l = 0.45, u = 1.45, d = 0.7 θ = 2.0