Computer Vision for Robotics

What are "Autonomous Robots"?

- Mobile machines with power, sensing, and computing on-board
- Environments
 - Land (on and under)
 - Water (ditto)
 - Air
 - Space
 - 555

What is (computer) vision?

26-Sep-17 3

Computer vision vs human vision

What we see

What a computer sees

What Skills Do Robots Need?

- **Identification**: What/who is that?
 - Object detection, recognition
- Movement: How do I move safely?
 - Obstacle avoidance, homing
- Manipulation: How do I change that?
 - Interacting with objects/environment
- Navigation: Where am 1?
 - Mapping, localization

Why Vision?

Pluses

- Rich stream of complex information about the environment
- Primary human sense
- Good cameras are fairly cheap
- Passive → stealthy

Minuses

- Line of sight only
- Passive → Dependent on ambient illumination

The Vision Problem

Computer Vision Outline

- Image formation
- Image processing
- Motion & Estimation
- Classification & Clustering

Outline: Image Formation

- 3-D geometry
- Physics of light
- Camera properties
 - Focal length
 - Distortion
- Sampling issues
 - Spatial
 - Temporal

Outline: Image Processing

- Filtering
 - Edge
 - Color
 - Shape
 - Texture
- Feature detection
- Pattern comparison

Outline: Motion & Estimation

- Computing temporal image change
 - Magnitude
 - Direction
- Fitting parameters to data
 - Static
 - Dynamic (e.g., tracking)
- Applications
 - Motion Compensation
 - Structure from Motion

Outline: Classification & Clustering

- Categorization
 - Assignment to known groups
- Clustering
 - Inference of group existence from data
 - Special case: Segmentation

Visual Skills: Identification

- Recognizing face/body/structure: Who/what do I see?
 - Use shape, color, pattern, other static attributes to distinguish from background, other hypotheses
- Gesture/activity: What is it doing?
 - From low-level motion detection & tracking to categorizing high-level temporal patterns
- Feedback between static and dynamic

Minerva Face Detection

Finding people to interact with

Visual Skills: Movement

Steering, foot placement or landing spot for entire vehicle

MAKRO sewer shape pattern

Demeter region boundary detection

UBM Lane & vehicle tracking (with radar)

Visual Skills: Manipulation

- Moving other things
 - Grasping: Door opener (KTH)
 - Pushing, digging, cranes

KTH robot & typical handle

Clodbusters push a box cooperatively

Visual Skills: Navigation

- Building a map
- Localization/place recognition
 - Where are you in the map?

Laser-based wall map (CMU)

Minerva's ceiling map

Outline: Image Formation

- Geometry
 - Coordinate systems, transformations
 - Perspective projection
 - Lenses
- Radiometry
 - Light emission, interaction with surfaces
- Analog → Digital
 - Spatial sampling
 - Dynamic range
 - Temporal integration

The Image Formation Pipeline

Coordinate System Conventions

- i, j, k unit vectors along positive $k = i \times j$ axes, X, Y, Z respectively;
- Right- vs. left-handed coordinates
- Local coordinate systems: camera, world, etc.

Image Processing Outline

- Images
- Binary operators
- Filtering
 - Smoothing
 - Edge, corner detection
- Modeling, matching
- Scale space

Images

- ullet An image is a matrix of pixels ${f I}(x,y)$
- Resolution
 - Digital cameras: 1600 X 1200 at a minimum
 - Video cameras: ~640 X 480
- Grayscale: generally 8 bits per pixel → Intensities in range [0...255]
- ullet RGB color: 3 8-bit color planes ${f I}_{R},{f I}_{G},{f I}_{B}$

Image Conversion

 RGB → Grayscale: Mean color value, or weight by perceptual importance

 Grayscale → Binary: Choose threshold based on histogram of image intensities

Color Representation

- RGB, HSV (hue, saturation, value), YUV, etc.
- Luminance: Perceived intensity
- Chrominance: Perceived color
 - HS(V), (Y)UV, etc.
 - Normalized RGB removes some illumination dependence:

$$r = \frac{R}{R+G+B}, g = \frac{G}{R+G+B}$$

Binary Operations

- Dilation, erosion
 - Dilation: All 0's next to a $1 \rightarrow 1$ (Enlarge foreground)
 - Erosion: All 1's next to a $0 \rightarrow 0$ (Enlarge background)
- Connected components
 - Uniquely label each n-connected region in binary image
 - 4- and 8-connectedness
- Moments: Region statistics
 - Zeroth-order: Size
 - First-order: Position (centroid)
 - Second-order: Orientation

Image Transformations

- Geometric: Compute new pixel locations
 - Rotate
 - Scale

$$T(x,y) \rightarrow (x',y')$$

- Undistort (e.g., radial distortion from lens)
- Photometric: How to compute new pixel values when $T^{-1}(x', y')$ non-integral
 - Nearest neighbor: Value of closest pixel
 - Bilinear interpolation (2 x 2 neighborhood)
 - Bicubic interpolation (4 x 4)

Image Comparison: SSD

- Given a template image \mathbf{I}_T and an image \mathbf{I} , how to quantify the similarity between them for a given alignment?
- Sum of squared differences (SSD)

$$\sum_{x,y} [\mathbf{I}_T(x,y) - \mathbf{I}(x,y)]^2$$

Cross-Correlation for Template Matching

Note that SSD formula can be written:

$$\sum_{x,y} \mathbf{I}_T^2(x,y) + \mathbf{I}^2(x,y) - 2\mathbf{I}_T(x,y)\mathbf{I}(x,y)$$

 First two terms fixed → last term measures mismatch—the cross-correlation:

$$\sum_{x,y} \mathbf{I}_T(x,y) \cdot \mathbf{I}(x,y)$$

 \bullet In practice, normalize by image I magnitude when shifting template to search for matches

Filtering

- Idea: Analyze neighborhood around some point in image f with filter function h; put result in new image at corresponding location g
- System properties
 - Shift invariance: Same inputs give same outputs, regardless of location
 - Superposition: Output on sum of images =
 - Sum of outputs on separate images
 - Scaling: Output on scaled image = Scaled output on image
- Linear shift invariance → Convolution

Discrete Filtering

- Linear filter: Weighted sum of pixels over rectangular neighborhood—kernel defines weights
- Think of kernel as template being matched by correlation
- Convolution: Correlation with kernel rotated 180°
- Dealing with image edges
 - Zero-padding
 - Border replication

1	-1	-1
1	2	-1
1	1	1

Filtering Example 1:

$$I' = K * I$$

1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	S
2	2	1	2
1	3	2	2

1	1	1		
-1	4	2	2	3
-1	-2	1	3	3
	2	2	1	2
	1	3	2	2

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	1	1	
-2	4	2	3
-2	-1	3	3
2	2	1	2
1	3	2	2

[I

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

	1	1	1
2	-2	4	3
2	-1	-3	3
2	2	1	2
1	3	2	2

5	4	4	

I

 $\mathbf{I'}$

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

		1	_1_	1	
2	2	-2	6	1	
2	1	-3	-3	1	
2	2	1	2		
1	3	2	2		

5	4	4	-2

I

 $\mathbf{I'}$

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	ന	3
2	2	1	2
1	3	2	2

1	2	2	2	3
-1	4	1	3	3
-1	-2	2	1	2
	1	3	2	2

5	4	4	-2
9			

I

 $\mathbf{I'}$

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	ന	3
2	2	1	2
1	3	2	2

2	2	2	3
-2	2	3	3
-2	-2	1	2
1	3	2	2

5	4	4	-2
9	6		

 $\mathbf{I'}$

I

Final Result

5	4	4	-2
9	6	14	5
11	7	6	5
9	12	8	5

 $\mathbf{I'}$

Smoothing (Low-Pass) Filters

- Replace each pixel with average of neighbors
- Benefits: Suppress noise, aliasing
- Disadvantage: Sharp features blurred
- Types
 - Mean filter (box)
 - Median (nonlinear)
 - Gaussian

1	1	1	1
<u> </u>	1	1	1
9	1	1	1

3 x 3 box filter

Box Filter: Smoothing

Original image

7 x 7 kernel

Gaussian Kernel

 Idea: Weight contributions of neighboring pixels by nearness

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Gaussian: Smoothing

Original image

7 x 7 kernel

 $\sigma = 3$

Gradient

• Think of image intensities as a function I(x, y) Gradient of image is a vector field as for a normal 2-D height function:

$$abla \mathbf{I} = (\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y})^T = (\mathbf{I}_x, \mathbf{I}_y)^T$$

• Edge: Place where gradient magnitude is high; orthogonal to gradient direction

Edge Causes

- Depth discontinuity
- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)
- Illumination discontinuity (e.g., shadow)

Edge Detection

- Edge Types
 - Step edge (ramp)
 - Line edge (roof)

- Searching for Edges:
 - Filter: Smooth image
 - Enhance: Apply numerical derivative approximation
 - **Detect**: Threshold to find strong edges
 - Localize/analyze: Reject spurious edges, include weak but justified edges

Sobel Edge Detection: Gradient Approximation

Horizontal Vertical

Sobel vs. LoG Edge Detection:

Sobel LoG

Canny Edge Detection

- Derivative of Gaussian
- Non-maximum suppression
 - Thin multi-pixel wide "ridges" down to single pixel
- Thresholding
 - Low, high edge-strength thresholds
 - Accept all edges over low threshold that are connected to edge over high threshold

Canny Edge Detection: Example

(Matlab automatically set thresholds)

Corner Detection

- Basic idea: Find points where two edges meet—i.e., high gradient in orthogonal directions
- Harris corners (Harris & Stephens, 1988),
 Susan corners (Smith & Brady, 1997)

SUSAN corners

Outline

- Classification terminology
- Unsupervised learning (clustering)
- Supervised learning
 - *k*-Nearest neighbors
 - Linear discriminants
 - Perceptron, Relaxation, modern variants
 - Nonlinear discriminants
 - Neural networks, etc.
- Applications to computer vision
- Miscellaneous techniques

Classification Terms

- Data: A set of N vectors x
 - Features are parameters of **x**; **x** lives in *feature space*
 - May be whole, raw images; parts of images; filtered images; statistics of images; or something else entirely
- Labels: C categories; each x belongs to some c_i
- Classifier: Create formula(s) or rule(s) that will assign unlabeled data to correct category
 - Equivalent definition is to parametrize a decision surface in feature space separating category members

Key Classification Problems

- What features to use? How do we extract them from the image?
- Do we even have labels (i.e., examples from each category)?
- What do we know about the structure of the categories in feature space?

Unsupervised Learning

- May know number of categories *C*, but not labels
- If we don't know C, how to estimate?
 - Occam's razor (formalized as Minimum Description Length, or MDL, principle): Favor simpler classifiers over more complex ones
 - Akaike Information Criterion (AIC)
- Clustering methods
 - k-means
 - Hierarchical
 - Etc.

k-means Clustering

- Initialization: Given k categories, N points. Pick k points randomly; these are initial means μ_1 , ..., μ_k
- (1) Classify N points according to nearest μ_i
- (2) Recompute mean μ_{i} of each cluster from member points
- (3) If any means have changed, goto (1)

Supervised Learning: Assessing Classifier Performance

- Bias: Accuracy or quality of classification
- Variance: Precision or specificity—how stable is decision boundary for different data sets?
 - Related to generality of classification result → Overfitting to data at hand will often result in a very different boundary for new data

Supervised Learning: Procedures

- Validation: Split data into training and test set
 - Training set: Labeled data points used to guide parametrization of classifier
 - % misclassified guides learning
 - Test set: Labeled data points left out of training procedure
 - % misclassified taken to be overall classifier error
- m-fold Cross-validation
 - Randomly split data into m equal-sized subsets
 - Train *m* times on *m* 1 subsets, test on left-out subset
 - Error is mean test error over left-out subsets
- Jackknife: Cross-validation with 1 data point left out
 - Very accurate; variance allows confidence measuring

k-Nearest Neighbor Classification

- For a new point, grow sphere in feature space until k labeled points are enclosed
- Labels of points in sphere vote to classify
- Low bias, high variance: No structure assumed

Linear Discriminants

- Basic: $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$
 - **w** is weight vector, **x** is data, w_0 is bias or threshold weight
 - Number of categories
 - **Two**: Decide c_1 if $g(\mathbf{x}) < 0$, c_2 if $g(\mathbf{x}) > 0$. $g(\mathbf{x}) = 0$ is decision surface—a hyperplane when $g(\mathbf{x})$ linear
 - Multiple: Define C functions g_i(x) = w^T x_i + w_{i0}. Decide c_i if g_i(x)
 > g_i(x) for all j ≠ i
- Generalized: $g(x) = a^T y$
 - Augmented form: $\mathbf{y} = (1, \mathbf{x}^T)^T$, $\mathbf{a} = (w_0, \mathbf{w}^T)^T$
 - Functions $\mathbf{y}_i = \mathbf{y}_i(\mathbf{x})$ can be nonlinear—e.g., $\mathbf{y} = (1, \mathbf{x}, \mathbf{x}^2)^T$

Dimensionality Reduction

- Functions $\mathbf{y}_i = \mathbf{y}_i(\mathbf{x})$ can reduce dimensionality of feature space \rightarrow More efficient classification
- If chosen intelligently, we won't lose much information and classification is easier
- Common methods
 - Principal components analysis (PCA): Maximize total "scatter" of data $S_T = \sum_{k=1}^{N} (x_k \mu)(x_k \mu)^T$
 - Fisher's Linear Discriminant (FLD): Maximize ratio of between-class scatter to within-class scatter

Principal Component Analysis

- Orthogonalize feature vectors so that they are uncorrelated
- Inverse of this transformation takes zero mean, unit variance Gaussian to one describing covariance of data points
- Distance in transformed space is *Mahalanobis* distance
- By dropping eigenvectors of covariance matrix with low eigenvalues, we are essentially throwing away least important dimensions

PCA

FIGURE 2.8. The action of a linear transformation on the feature space will convert an arbitrary normal distribution into another normal distribution. One transformation, $\bf A$, takes the source distribution into distribution $N({\bf A}^t{\boldsymbol \mu}, {\bf A}^t{\boldsymbol \Sigma}{\bf A})$. Another linear transformation—a projection $\bf P$ onto a line defined by vector $\bf a$ —leads to $N(\mu, \sigma^2)$ measured along that line. While the transforms yield distributions in a different space, we show them superimposed on the original x_1x_2 -space. A whitening transform, ${\bf A}_w$, leads to a circularly symmetric Gaussian, here shown displaced. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Face Recognition (Belhumeur et al., 1996)

 Given cropped images {I} of faces with different lighting, expressions

- Nearest neighbor approach equivalent to correlation (I's normalized to 0 mean, variance 1)
 - Lots of computation, storage
- PCA projection ("Eigenfaces")
 - Better, but sensitive to variation in lighting conditions
- FLD projection ("Fisherfaces")
 - Best (for this problem)

Local Descriptors

- We know how to detect points
- Next question:

How to describe them for matching?

Point descriptor should be:

- 1. Invariant
- 2. Distinctive

Invariant Local Features

 Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Following slides credit: CVPR 2003 Tutorial on **Recognition and Matching Based on Local**Invariant Features David Lowe

Advantages of invariant local features

- Locality: features are local, so robust to occlusion and clutter (no prior segmentation)
- **Distinctiveness:** individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- Efficiency: close to real-time performance
- Extensibility: can easily be extended to wide range of differing feature types, with each adding robustness

Slide credit: Bastian Leibe

68

Features Detector: General Approach

- Find a set of distinctive key-points
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

17-Oct-17

SIFT descriptor formation

- Using precise gradient locations is fragile. We'd like to allow some "slop" in the image, and still produce a very similar descriptor
- Create array of orientation histograms (a 4x4 array is shown)
- Put the rotated gradients into their local orientation histograms
 - A gradients's contribution is divided among the nearby histograms based on distance. If it's halfway between two histogram locations, it gives a half contribution to both.
 - Also, scale down gradient contributions for gradients far from the center
- The SIFT authors found that best results were with 8 orientation bins per histogram, and a 4x4 histogram array.

Histogram of Oriented Gradients

Visualizing HoG

- a. Average gradient over positive examples
- b. Maximum positive weight in each block
- c. Maximum negative weight in each block
- d. A test image
- e. It's R-HOG descriptor
- f. R-HOG descriptor weighted by positive weights
- g. R-HOG descriptor weighted by negative weights

A simple pipeline - Training

