Maths 1

Lecture	L
	1

Taylor's formula. If f has derivatives of all orders in an open interval I containing point a, then for each positive integer n and every $x \in I$, $f(x) = f(a) + f'(a) (x-a) + f''(a) (x-a) + \frac{f''(a)}{21}$ $\frac{f^{(n)}(a)}{n!} (x-a)^{n}$ + Rn(a) $R_{n}(a) = \frac{f^{(n+1)}(a)}{(2-a)^{n+1}}$ for some CE (a,x) or (2,a)

Particular case: a=0 (Maclaurin's formula)

$$f(x) = f(x) = \sin x \qquad a = \pi$$

$$f(x) = f(x) + f'(x) (x-a) + f''(x) (x-a)^{2}$$

$$+ \frac{f'''(x)}{3!} (x-a)^{3} + \dots + \frac{f^{(n)}(x)}{2!} (x-a)^{n}$$

$$+ f(x) = \sin x \qquad f(\pi) = 0$$

$$f'(x) = \cos x \qquad f'(\pi) = -1$$

$$f''(x) = -\sin x \qquad f''(\pi) = 0$$

$$f''(x) = -\sin x \qquad f'''(\pi) = 0$$

$$f'''(x) = \sin x \qquad f''''(\pi) = 0$$

$$f'''(x) = \cos x \qquad f''''(\pi) = 0$$

$$f'''(x) = \cos x \qquad f''''(\pi) = 0$$

$$f'''(x) = \cos x \qquad f''''(\pi) = -1$$

$$f'''(x) = \cos x \qquad f'''(\pi) = -1$$

$$f'''(x) = \cos x \qquad f''''(\pi) = -1$$

$$f'''(x) = \cos x \qquad f'''(\pi) = -1$$

$$f'''(x) = \cos x \qquad f''''(\pi) = 0$$

Similarly for
$$\alpha = 0$$

 $\sin \alpha = \alpha - \frac{\alpha^3}{3!} + \frac{\pi^5}{5!} + \frac{R_5(\alpha)}{5!}$

Desmos. com

Ex: Consider
$$f(x) = \frac{1}{1-x}$$

Find Maclaurin's formula for f(x) of any degree n.

$$f(x) = f(0) + f'(0) x + f''(0) x^{2} + f'''(0) x^{3}$$

$$+ \cdots + f''(0) x + f''(0) x^{2}$$

Here, $R_n(x) = \frac{2^{n+1}}{(1-c)^{n+2}}$ for c between

$$R_n(x) = \frac{x^{n+1}}{(1-c)^{n+2}}$$

fer (x1<0.1

where c is between od ?