			11	ALLEF	2 1													
_	RIES DE F		DNES	: M	IONU	MIU	5 4	TE	27(UR								
	ección 2.3					,												
T. to	cuación de	1	pero	101	homo	gen	٦.											
	6 4" = x4																	
0)	Resuelva 1	a ecu	acton	ho	mog	dne	a C	de	AI	ry	: 4	" -	xy	z (0 .			
	thuestre qu)e (c	1 5010	ucr	62													
	4(x) = 4 (0) [1	+ 1 x	3 +	1	x 6	+	1	+	4'	(6)	[x	+	1 x	(4	+ 1	F _X	
		L	6		180			1		3		Ī	1	12		50	4	
	U	- 5																
	y" - x y	- 0																
	$\left(\sum_{n=0}^{\infty}\right)$	an xn	1" -	X (Zi n=	o an	Xn) =	0									
	1 51 80 .		0-11	1-	~		0.14	,										
	$\left(\sum_{n=1}^{\infty} r\right)$	an X		(2)	n=0	90)	(11-1-1		= 0									
	(E po	n (n-	1) an	Xn-	2)	- (5/00	- 0	Or	. x '	7 + 1) =	0					
	n=2																	
		2 F K			12			111		K			K	-1				
	(\(\sum_{k=0}^{\infty} \)	(11)	1/4	.) /		VK	1		20				VK	1				
	1 W = 0	INTZ		1 1 4	11/12	7			0 1	(=1	Uy	6-1	7	+				
	(25)(1)																	
	202 +	500				: 89				7 3	0)	91	P					
	242 +	C K=1 [(K12) (K	11)	CIKA2		ax	-1]	X	= 0						
	Para cum																	
	20270																	
	anmol la				7													
	Omor (K12)	1K12 =					K	= 1	2	7		F		ION				
		11112	(K12) (K)	1)				. ~	, 5 .						A		
	K = 1	-)	Q3 =	ao														
	K=2		0	(3)	(2)													
			44															
	K=3	-				->	ds		_ (2	0			az		(1)	

y(x) = a0 + pa, x" 4 92 x2 to a3 x 3 ot a4 x 4 d 1918 43 - 2 2 2 ax xx x 2 + x (06 p + 112 + 0x + + 6x 1 + 1 (0) P - 12 1 P y(x) = a = 1 + 1 x 3 + 0 0 7 + a 1 | x 4 1 | x 4 + 0 0 0 Parti hallar 90, se liene que si q(0) = a0 y luego si Portanto, la solvaion deseada gueda como $y(x) = y(0) \int_{0}^{1} 4 \cdot 1 \times 3 + 000 \int_{0}^{1} 4 \cdot y'(0) \int_{0}^{1} x + 1 \times 4 + 000$ Comprobando a su vez la culverón planteada en el envirciolo. b) Resuelua la eclación inhomogénea de Airy y" - xy = x2. Compruebe que la solucion es: $y(x) = y(0) \left[\frac{1 + 1}{6} x^3 + \frac{1}{180} x^4 + \cdots \right] + y'(0) \left[x + \frac{1}{12} x^4 + \frac{1}{504} x^7 + \cdots \right] - x$ SOLUCION ECUACION HOMOBÉNEA. solución


```
Otra forma de hacer el geracio 76.
(Z = 0 (K+2) (K+1) aK+2 XK) - (Z = 1 ax-1 XK) - X = 0
 2012 - X2 + 5x=1 (K12) (K11) ax+2 - ax-1 J x = 0
   202 = 0 -) 02 = 0
   ay = 91 + 1
Entonces, la solvair queda.
y(x) = 00 + 01 x + 92 x 2 + 03 x 3 + 04 x 4 + 000
    = Zo= OKXK
y(x) = Q0 + Q1 x + Q0 x 3 + Q1+1 x4 + 000
               6 12
Tomando O como C = 9, +1 -> 91 = 0-1
y(x) = a0 + (c-1) x + a0 x3 + c x4 + 000

Cx + x 2 6 12
y(x) = a_0 \left[ 1 + 1 \times^3 + 000 \right] + c \left[ x + 1 \times 4 + 000 \right] + x
donde a0 = y(0) y c = y'(0) - 1
```

Sección 2.4.71 blandons noboug del condugado dos obsolo 4. Suponga conocida la formula de reflexión de Euler $\Gamma(z)\Gamma(1-z) = \frac{\pi}{Sin(\pi z)}$ y a partir de ella muestre que grafique ambos lados de la relación. $2^{\circ} = 1 + 2 \longrightarrow 1 - 2^{\circ} = 1 - 1 - 2 = 1 - 2$ Γ(2°)Γ(1-2°)= π $Sin\left(T\left(\frac{1}{2}+2\right)\right)$ SIN (TI + TIZ) COS (117)

6. Una forma de calcular numéricamente los valores de la función F(x) es aproximarla como un polinomio. Una de esas propuestas se le debe a Hustings y puede expresarre de la siguiente manera [(2+1) = 2! = 1 + 2 (a1 + 2 (a2 + 2 (a3 + 2 (a4 + 2 (a5 + 2 (96 + 2 (97 + 2 (98))))))) Encirentie esos roeficientes y luego compare esta aproximación con una mais estándar $\frac{1}{\Gamma(2)} = \sum_{\kappa=1}^{\infty} C_{\kappa} 2^{\kappa} \longrightarrow \frac{1}{\Gamma(2)} \approx \sum_{\kappa=1}^{\infty} C_{\kappa} 2^{\kappa}$ El valor de esus coeficientes los pueden encontrar la literatura de aproximaciones de funciones matemáticas 2 (46+ 9,2 + 08227) = (+1)7(9)7 1 + 2 (4 + 2 (4 2 + 2) (4 3 + 2 (4 4 2 (4 5 + 962 + 922 + 9823) 1 + 2 (01 + 2 0092 02 603 + 20 94 + as 2 + a6 22 + a7 23 + a824) 1 + 2 + 01 + 2/(02 + 12) (03 + 042 + 0522 + (40734 (1724 + 4825) 1 + 2 (9 1 + 2 (92 + 9 3 2 + 9 4 2 4 9 5 2 3 + a 6 24 + 9 7 2 5 0 0 8 7 50 N 100000 0 0 0 100 B 1+2(01+ 922+0322+0423+0524 19625 + 97 26 + 9827) 1 + 012 + 0222 + 0323 + 0424 + 0525 + 96 26 + 97 27 + 98 28. = 1 + 2 8 = 1 an 2 K $\Gamma(2+1) = 2\Gamma(2) = 2 \rho \propto x^{2-1} e^{-x} dx = \rho \propto x^{2} e^{-x} dx$ = 1 + 2 8 1 akak a6 = 0 4821 a1 = + 0 5 7 7 1 92 = 0.9882 az = - 0.1935 03 = -0 8970 94= 0.9182

												F							
(2)	1 = 2 00 CK 2 K	-		1	2		Z	8 K:	- 1	C	x Z	K							
	T(2)			(2															
	1 = 5,8=1 CKZK =	C1 21	4	C	22	2 .	4 (- 3	23	+	Cu	2	4 4	C	5 2	5	+		
	L(5)	0626	4	C	7 7	7	4	C	2	8 -									
	C1 = 1	Cs =	-	0. () 4 2	19													
	C2 = 0, 57721	C7 =	-	0.	009	62													
	C3 = - 0.65587	C8 =	6	.00	72	1													
	C4=-0.04200																		
5 .5	C5 = 0.16653																		

