Fast Liveness Using DJ Graphs

Dibyendu Das, IBM India Ramakrishna Upadrasta, INRIA Saclay

Agenda

- DJ Graphs and Merge Sets
- Top-down Merge Set Computation
- Liveness Analysis Boissinot et al
- Liveness Analysis using Merge Sets
- Conclusion

DJ Graphs

- For a CFG G=(V,E), an edge e=(s,t) is a J-edge when s does not strictly dominate t.
- J-edges are a subset of E
- A DJ Graph[Sreedhar POPL '95] G_{DJ}=(V,E_{DJ})
 such that

$$-E_{DJ} = E_{D-tree} U J$$

$$- E_{DJ} = E U E_{D-tree}$$

DJ Graphs (contd ...)

 DJ Graphs consist of dominator edges (Dedges) and J-edges

Merge Set

- Definition: Merge Set [Pingali et al JACM 2003] of a node n is the set of nodes, denoted as Merge(n), where a Φ needs to be placed if a variable is defined in n.
- Merge Sets of the nodes in a CFG can be computed, irrespective of where the definitions finally appear.
- The advantages are in re-using Merge(n) information when variables are defined in same/ similar nodes. As long as the CFG remains unchanged Φ-placement can re-use Merge(n) information.

04/29/information.

Top-Down Merge Set Computation(TDMSC)

- The algorithm proceeds top-down on the DJ Graph starting at the start node and computing level-by-level [Das and Ramakrishna TOPLAS 2005]
- At each level we look for J-edge=(s,t) targets and update the merge set of each node x lying between the levels of the source and target in the dominator tree using Merge(x) = Merge(x)U Merge(t) U $\{t\}$. Implies $Merge(x) \supseteq Merge(t)$.

04/29/09

TDMSC -an example

Merge(4)	={5} U Merge(5);	{5,8}
Merge(5)	={5,8} U Merge(5) U Merge(8);	{5,8}
Merge(6)	={7} U Merge(7);	{5,7,8}
Merge(7)	={5,8} U Merge(5) U Merge(8);	{5,8}
Merge(9)	={10} U Merge(10);	{10}
Merge(14)	={10} U Merge(10);	{10}
Merge(15)	={16} U Merge(16);	{10,16}
Merge(16)	={10} U Merge(10);	{10}
Merge(17)	={22} U Merge(22);	{10,22}
Merge(18)	={18,21} U Merge(18) U Merge(21); {10,18,21,22}	
Merge(19)	={20} U Merge(20);	{10,18,20,21,22}
Merge(20)	={18,21} U Merge(18) U Merge(21); {10,18,21,22}	
Merge(21)	={22} U Merge(22);	{10,22}
Merge(22)	={10} U Merge(10);	{10}
Merge(23)	={5,8} U Merge(5) U Merge(8);	{5,8}

Advantages of TDMSC

- Can be applied to any arbitrary CFG reducible or irreducible
- May require multiple passes(iterative) for the Merge sets to reach respective fixed points
- Analyses using SPEC CPU2000 shows that almost for 80% of cases a single top down pass suffices.

Liveness Analysis using Merge Sets

 Merge sets can also be used to compute fast liveness (proposed by Boissinot et al [CGO 2008])

Fast Liveness Analysis

- IsLiveIn(v,n): A variable v is live-in at node n if there exists a path from n to a use of v that does not pass through a def of v
- IsLiveIn uses the dominator tree and the $\mathbf{T}_{\mathbf{q}}$ and $\mathbf{R}_{\mathbf{q}}$ sets
- T_q is the set of target nodes of back-edges in a CFG that "affect" node q
- $\mathbf{R}_{\mathbf{q}}$ is the set of nodes reachable from q in the back-edge-free CFG

Fast Liveness Using T_q and $R_q - a$ motivating example

IsLiveIn(10,x)?


```
T_{1} = \{1\}
T_{2} = \{2\}
T_{3} = \{2,3\}
T_{4} = \{2,4\}
T_{5} = \{2,5\}
T_{6} = \{2,5,6\}
T_{7} = \{2,7\}
T_{8} = \{2,5,8\}
T_{9} = \{2,5,8,9\}
T_{10} = \{2,5,8,10\}
T_{11} = \{11\}
```

$$R_9 = \{6,7,9,10\}$$

 $R_7 = \{7\}$

The DJ Graph and Merge Sets for the same example

Here are the merge sets for the same example:

How are Merge and T_q related?

Observation: The Merge set of a node q denoted as Merge(q) and T_q are related by the following formula:

$$T_q - \{q\} \subseteq Merge(q)$$

$$T_{9} = \{2,5,8,9\}, Merge(9) = \{2,5,6,8\}$$

$$T_{q} - \{9\} \subseteq Merge(9)$$

IsLiveIn and IsLiveInMergeSet

```
bool IsLiveIn(var a, node q){
    T_{(q,a)} \leftarrow T_q \cap sdom(def(a))
    // sdom(x) contains all nodes strictly dominated by x
    for t in T_{(q,a)} do
         if R_t \cap uses(a) \neq \Phi then return true
    return false
                                                  JsLiveIn= IsLiveInMergeSet
bool IsLiveInMergeSet(var a, node q){
    M_{(q,a)} \leftarrow (Merge(q)U \{q\}) \cap sdom(def(a))
      for t in M_{(q,a)} do
         if R_t \cap uses(a) \neq \Phi then return true
    return false
```

IsLiveInMergeSetUsingDJGraph

```
bool IsLiveInMergeSetUsingDJGraph(q,a) {
    (1) M_{(q,a)} \leftarrow (Merge(q)U \{q\})
    (2) for t in uses(a) do {
    (3) while (level(t)!=level(def(a)) && t!= def(a))
                if ( t ∩ M<sub>(q,a)</sub> )
    (4)
    (5)
                 return true
           t = dom-parent(t)
    (6)
                //Climb up from node t in the Diffraph
    (7) } // end while
    (8) } // end for
                         IsLiveIn= IsLiveInMergeSetUsingDJGraph
    (9) return false
```

04/29/09

IsLiveIn(10,w) → False

04/29/09

$$T_{10} = \{2,5,8,10\}$$

$$T_{10,w} = T_{10} \cap sdom(def(w))$$

$$= T_{10} \cap sdom(3)$$

$$= \{2,5,8,10\} \cap \{3 \dots 10\}$$

$$= \{5,8,10\}$$
uses(w) = \{4\}

uses(w) =
$$\{4\}$$

R₅, R₈, R₁₀ $\cap \{4\}$ = $\{\}$

SSA 2009

IsLiveIn(10,w) → False

$$T_{10} = \{2,5,8,10\}$$

$$T_{10,w} = T_{10} \cap sdom(def(w))$$

$$= T_{10} \cap sdom(3)$$

$$= \{2,5,8,10\} \cap \{3 \dots 10\}$$

$$= \{5,8,10\}$$

uses(w) =
$$\{4\}$$

R₅, R₈, R₁₀ $\cap \{4\}$ = $\{\}$

SSA 2009

IsLiveInMergeSetUsingDJGraph(10,w) → False

• IsLiveIn(10,x) \rightarrow True

$$T_{10} = \{2,5,8,10\}$$

$$T_{10,y} = T_{10} \cap sdom(def(x))$$

$$= T_{10} \cap sdom(3)$$

$$= \{2,5,8,10\} \cap \{3 \dots 10\}$$

$$= \{5,8,10\}$$

uses(x) =
$$\{9\}$$

R₁₀,R₅, R₈ $\cap \{9\} \neq \{\}$

• IsLiveIn(10,x) \rightarrow True

IsLiveInMergeSetUsingDJGraph(10,x) → True

Conclusion

- New algorithm for handling Liveness Analysis using DJ Graphs
- Simplified handling via the usage of Merge Sets
 removes the need of computing T_a and R_a sets
- Merge Sets can be computed easily for both reducible and irreducible graphs efficiently