6.9 Classwork: Unit circle

CCSS.HSG.SRT.C.8

- 1. Do Now: A vector from the origin \overrightarrow{OA} is shown rotated counterclockwise around O.
 - (a) Using a protractor, measure the angle of rotation.
 - (b) Write down the slope of $\overrightarrow{OA'}$.
 - (c) Mark and label the point B(4, -3). Draw \overrightarrow{OB} .
 - (d) Write down the slope of \overrightarrow{OB} .
 - (e) What is the product of the slopes of $\overrightarrow{OA'}$ and \overrightarrow{OB} ?

2. Complete the table mapping angle of rotation onto slope. (six entries)

y(0,13)-13 angle slope 12 0 11 10 (9,9)5/12(12,5)3 2 -13 -11 -9-53 5 7 -7-3-11 9 11 13

Mastery topic: Algebraic solution

(2 stars each)

3. Solve each equation for x, rounding to the nearest hundredth.

(a)
$$\tan 63^\circ = \frac{x}{14}$$

(c)
$$\sin 46^{\circ} = \frac{x}{3.5}$$

(b)
$$\tan 77^{\circ} = \frac{10}{x}$$

$$(d) \cos 35^\circ = \frac{x}{21}$$

4. Solve for x, rounding to the nearest whole degree.

(a)
$$x = \tan^{-1}(\frac{12}{5})$$

(b)
$$\tan x^{\circ} = \frac{3.2}{4.8}$$

Mastery topic: Calculator use

5. Express the result to the nearest thousandth.

(1 star each)

(a)
$$\tan 22^{\circ} =$$

(c)
$$\tan 15^{\circ} =$$

(b)
$$\tan 81^{\circ} =$$

(d)
$$\tan 65^{\circ} =$$

6. Round each value to the nearest degree.

(1 star each)

(a)
$$\tan^{-1}(2) =$$

(c)
$$\tan^{-1}(1) =$$

(b)
$$\tan^{-1}(0.5) =$$

(d)
$$\tan^{-1}(\sqrt{3}) =$$

7. Round each value to the nearest hundredth.

(2 stars each)

(a)
$$AB = \sqrt{11^2 + 7^2}$$

(c)
$$AB = \sqrt{(-8.0)^2 + (14.5)^2}$$

(b)
$$AB = \sqrt{3.2^2 + 1.9^2}$$

(d)
$$AB = \sqrt{(4-3)^2 + (7-11)^2}$$

Modeling: Mark each diagram and write and equation. Do Not Solve!

Write an equation expressing $tan(\angle)$ as a ratio of *opposite* over *adjacent*.

8. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}$, JK = 8, $m \angle J = 24^{\circ}$. Let x be the length of the side opposite $\angle J$, x = KL.

9. Given right $\triangle ABC$ with $m \angle C = 90^{\circ}$, BC = 15, $m \angle A = 41^{\circ}$. Let x = AC. (2 stars)

10. Given right $\triangle ABC$ with $m \angle C = 90^{\circ}$, BC = 4, AC = 19, and $m \angle A = x^{\circ}$. (2 stars)

11. Given right $\triangle ABC$ with $\overline{AC} \perp \overline{BC}$, BC = 7, $m \angle B = 55^{\circ}$. Let x = AC. (3 stars)

