# Table of Contents

| Summary:                      |     |
|-------------------------------|-----|
| Boxplot:                      | 2   |
| Feature Selection:            |     |
|                               |     |
| Model Evaluation:             |     |
| Model 1:                      |     |
| Model 2:                      | 5   |
| Comparing Model1 and Model 2: | 6   |
| Conclusion:                   | 6   |
| Summary:                      | 7   |
| Boxplot:                      | 7   |
| Train and Test Data:          |     |
| Model 1:                      | 8   |
| Model 2:                      | 10  |
| Comparing ROC curves:         | 11  |
| Tabulation:                   | 12  |
| Conclusions                   | 1.7 |

# Question No 1:

Whether the client has subscribed a term deposit or not

Available columns are: age","job","marital", "education", "default","balance", "housing", "loan", "contact", "day", "month", "duration", "campaign", "pdays", "previous", "poutcome", "y"

Target Variable is: "y" i.e. in Categorical

## Summary:

| age           | balance       | day           | duration       | campaign       | pdays         | previous        |
|---------------|---------------|---------------|----------------|----------------|---------------|-----------------|
| Min. :18.00   | Min. : -8019  | Min. : 1.00   | Min. : 0.0     | Min. : 1.000   | Min. : -1.0   | Min. : 0.0000   |
| 1st Qu.:33.00 | 1st Qu.: 72   | 1st Qu.: 8.00 | 1st Qu.: 103.0 | 1st Qu.: 1.000 | 1st Qu.: -1.0 | 1st Qu.: 0.0000 |
| Median :39.00 | Median: 448   | Median :16.00 | Median: 180.0  | Median: 2.000  | Median: -1.0  | Median: 0.0000  |
| Mean :40.94   | Mean : 1362   | Mean :15.81   | Mean : 258.2   | Mean : 2.764   | Mean : 40.2   | Mean : 0.5803   |
| 3rd Qu.:48.00 | 3rd Qu.: 1428 | 3rd Qu.:21.00 | 3rd Qu.: 319.0 | 3rd Qu.: 3.000 | 3rd Qu.: -1.0 | 3rd Qu.: 0.0000 |
| Max. :95.00   | Max. :102127  | Max. :31.00   | Max. :4918.0   | Max. :63.000   | Max. :871.0   | Max. :275.0000  |

We can see significant difference between the mean and median of some of the variables in the dataset.

| marital        | education       | default   | housing   | loan      | contact         | poutcome      | У         |
|----------------|-----------------|-----------|-----------|-----------|-----------------|---------------|-----------|
| divorced: 5207 | primary: 6851   | no :44396 | no :20081 | no :37967 | cellular :29285 | failure: 4901 | no :39922 |
| married:27214  | secondary:23202 | yes: 815  | yes:25130 | yes: 7244 | telephone: 2906 | other: 1840   | yes: 5289 |
| single :12790  | tertiary:13301  |           |           |           | unknown:13020   | success: 1511 |           |
|                | unknown: 1857   |           |           |           |                 | unknown:36959 |           |

Here in the column Default and y, the categories are not balanced, and as it's a natural data we can't

| job              | month         |  |
|------------------|---------------|--|
| blue-collar:9732 | may :13766    |  |
| management :9458 | jul : 6895    |  |
| technician :7597 | aug : 6247    |  |
| admin. :5171     | jun : 5341    |  |
| services :4154   | nov : 3970    |  |
| retired :2264    | apr : 2932    |  |
| (Other) :6835    | (Other): 6060 |  |

## Boxplot:



## Feature Selection:

Train data set contains 31648 records and Test data set contains 13563 records

## Model Evaluation:

#### Model 1:

In model 1 I have considered all the columns as well as all the Train data records in my model.

 $model_B1 \leftarrow glm(y^-.,data = Train_B,family = binomial(link = "logit"))$  Here we get AIC = 15017

Plotting the prediction of the model below, where red means wrong prediction and green points means actual prediction.





#### **Confusion Matrix:**

|       | no  | yes  |
|-------|-----|------|
| FALSE |     | 1065 |
|       |     |      |
| TRUE  | 287 | 551  |

Efficiency: 0.900317



## Influence Plot:



## Model 2:

In model 2 I removed some of the influencing records. And removed some of the insignificant columns.

 $model_B2 \leftarrow glm(y^{\sim}, data = Train_B[-influence_B1, -c(1,14,5)], family = "binomial")$ 

Where I got AIC value as 15010



## Confusion Matrix:

no yes FALSE 11659 1067 TRUE 288 549

Efficiency: 0.9000958

## Comparing Model1 and Model 2:



| Model No | AIC   | Efficiency | F1 Score  |
|----------|-------|------------|-----------|
| Model 1  | 15017 | 0.900317   | 0.945201  |
| Model 2  | 15010 | 0.9000958  | 0.9450817 |

## Conclusion:

Here In model 1 and model 2 we can't see any major differences in our AIC, Efficiency as well as F1Score in both of the models up to 3 decimal point is almost same. As we know in our model 1 we have considered many insignificant variables and in model 2 we have considered only the significant variables for our model building. So I may consider my Model 2 as my final model.

# Question 2:

I have a dataset containing family information of married couples, which have around 10 variables & 600+ observations. Independent variables are ~ gender, age, years married, children, religion etc. I have one response variable which is number of extra marital affairs. Now, I want to know what all factor influence the chances of extra marital affair. Since extra marital affair is a binary variable (either a person will have or not), so we can fit logistic regression model here to predict the probability of extra marital affair.

#### Answer:

#### Available Columns:

"X", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating", "EMA" Target Variable is "EMA" Extra Marital Affair, which is a categorical variable with values "yes" and "no".

#### Summary:

| Х              | age           | Years married  | religiousness | education     | occupation  | rating        |
|----------------|---------------|----------------|---------------|---------------|-------------|---------------|
| Min. : 4.0     | Min. :17.50   | Min. : 0.125   | Min. :1.000   | Min. : 9.00   | Min. :1.0   | Min. :1.000   |
| 1st Qu.: 524.5 | 1st Qu.:27.00 | 1st Qu.: 4.000 | 1st Qu.:2.000 | 1st Qu.:14.00 | 1st Qu.:3.0 | 1st Qu.:3.000 |
| Median : 998.5 | Median :32.00 | Median : 7.000 | Median :3.000 | Median :16.00 | Median :5.0 | Median :4.000 |
| Mean : 993.0   | Mean :32.46   | Mean : 8.147   | Mean :3.119   | Mean :16.17   | Mean :4.2   | Mean :3.933   |
| 3rd Qu.:1447.0 | 3rd Qu.:37.00 | 3rd Qu.:15.000 | 3rd Qu.:4.000 | 3rd Qu.:18.00 | 3rd Qu.:6.0 | 3rd Qu.:5.000 |
| Max. :1960.0   | Max. :57.00   | Max. :15.000   | Max. :5.000   | Max. :20.00   | Max. :7.0   | Max. :5.000   |

| EMA     | gender     | children |
|---------|------------|----------|
| no :447 | female:313 | no :170  |
| yes:149 | male :283  | yes:426  |

From the summary we can say, possible There are negligible difference between the median and mean, may be data contains very a smaller number of outliers.

## **Boxplot:**



From boxplot we can say that age variable contains outlier.

## Train and Test Data:

Train Data contains 419 records and my test data contains 179 records in my data.

Model Building:

## Model 1:

In my model 1 i have considered all my variables and records from the Train data, where I get my AIC value as 429.34, and efficiency is 0.740113.





The red marks are wrong prediction and the green marks are correct prediction using my model 1.

## **ROC Curve:**



Here we can see that the area under the curve is very less.

#### Influence Plot:



We can see some Influencing value in our model, so we may remove the Influencing Records for my next model.

## Model 2:

I modeled my second model with only the significant columns and removing the influence index. As I have tested the model with all the columns and removing the influence index once, and come up with conclusion that, even if I remove the influence index, the variables are still insignificant, so in my model 2 I removed both influencing records as well as the insignificant columns.

Here in model 2 I come up with AIC as 421.8 which is less than our previous model, and efficiency as 0.7570621 i.e. little bit increased.





## **ROC Curve:**



# Comparing ROC curves:



Looking at the model 2 we can say that the area under the ROC curve is increased in model 2 as compare to model 1.

## Tabulation:

| Model No | AIC    | Efficiency | F1 Score  |
|----------|--------|------------|-----------|
| Model 1  | 429.34 | 0.740113   | 0.8413793 |
| Model 2  | 421.8  | 0.7570621  | 0.8512111 |

# Conclusion:

From the ROC curve and the above tabulation, I come up with conclusion that, in our model 2 we are getting less AIC, Higher Efficiency, and Higher F1 Score in our model 2. So I may prefer to go for my model 2.