Big-O

TOTAL POINTS 7

1. Introduction and Learning Outcomes

The goal of this assignment is to practice with big-O notation.

Recall that we write f(n) = O(g(n)) to express the fact that f(n) grows no faster than g(n): there exist constants N and c>0 so that for all $n\geq N$, $f(n)\leq c\cdot g(n)$.

Is it true that $\log_2 n = O(n^2)$?

- Yes
- O No

✓ Correct

A logarithmic function grows slower than a polynomial function.

2. $n \log_2 n = O(n)$

1/1 point

O Yes

No

✓ Correct

To compare these two functions, one first cancels n. What is left is $\log_2 n$ versus 1. Clearly, $\log_2 n$ grows faster than 1.

3. $n^2 = O(n^3)$

1 / 1 point

- Yes
- O No

✓ Correct n^a grows slower than n^b for constants a < b.

4. $n = O(\sqrt{n})$

O Yes

1 / 1 point

No

✓ Correct $\sqrt{n}=n^{1/2}$ grows slower than $n=n^1$ as 1/2<1.

5. $5^{\log_2 n} = O(n^2)$

O Yes No

1/1 point

Recall that $a^{\log_b c} = c^{\log_b a}$ so $5^{\log_2 n} = n^{\log_2 5}$. This grows faster than n^2 since $\log_2 5 = 2.321... > 2.$

6. $n^5 = O(2^{3\log_2 n})$

O Yes

No

1/1 point

✓ Correct

 $2^{3\log_2 n} = \left(2^{\log_2 n}\right)^3 = n^3$ and n^3 grows slower than $n^5.$

