Learning Outcomes: What should you be able to after watching the videos?

- Video 1: General Inverse Functions
 - Draw an arrow diagram to represent a function and its inverse.
 - Sketch the graph of the inverse of a function by reflecting it across the y=x line.
- Video 2: Inverse Trigonometric Functions
 - State the domain and range of the inverse sine, inverse cosine, and inverse tangent functions.
 - Evaluate the inverse sine, inverse cosine, and inverse tangent functions on special values.
 - Identify the graphs of the inverse sine, inverse cosine, and inverse tangent functions.
- Video 3: Geometric Interpretations of Inverse Trigonometric Functions
 - Draw a triangle with an angle corresponding to a specific inverse trigonometric function.
 - Evaluate compositions of trigonometric functions and inverse trigonometric functions using triangles.
- #1) Draw the arrows to represent the function $f(x) = x^2$ in the arrow diagram below.

#2) In the diagram above, you should not have drawn an arrow pointing to the number 3. Does this mean that there is no number x such that $x^2 = 3$? Explain your answer.

#3) A function f has been defined by the arrow diagram below. Draw an arrow diagram for the inverse f^{-1} . For this problem, assume that the drawing is a complete representation.

#4) In the previous problem, is f^{-1} a function? Explain your reasoning.

#5) Two functions have been drawn in the diagram below. Sketch the inverses on the same coordinate axes.

#6) Do the inverse graphs for the problem above represent functions? Explain your reasoning.

#7) Identify each graph below as the inverse sine, inverse cosine, or inverse tangent function. Then state the domain and range of the function.

#8) Complete the following charts of values for the inverse trigonometric functions. (Note: The x values have been listed in increasing order.)

x	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\sin^{-1}(x)$									

x	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos^{-1}(x)$									

x	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$
$ \tan^{-1}(x) $							

#9) For each inverse trigonometric function, draw a triangle that can be used to represent the angle.

$$\cos^{-1}\left(\frac{3}{5}\right) \qquad \tan^{-1}\left(\frac{4}{9}\right)$$

#10) Compute $\tan\left(\sin^{-1}\left(\frac{5}{7}\right)\right)$. Show your work in an organized manner.

Was any aspect of any of the videos confusing or unclear? Do you have any questions?