Structure of linear algebraic groups I: commutative and solvable groups

Yang: In this section, everything is defined on an algebraically closed field k.

1 Commutative algebraic groups and character groups

Definition 1. Let G be a linear algebraic group over a field \mathbb{k} . The *character group* of G, denoted by $\chi(G)$, is defined to be the group of all homomorphisms of linear algebraic groups from G to the multiplicative group \mathbb{G}_m :

$$\chi(G) = \operatorname{Hom}_{\operatorname{AlgGrp}_{\mathbb{k}}}(G, \mathbb{G}_m).$$

The group operation on $\chi(G)$ is given by pointwise multiplication of characters.

Example 2. Let us compute the character group of the multiplicative group \mathbb{G}_m . Let $\varphi: \mathbb{G}_m \to \mathbb{G}_m$ be a character of \mathbb{G}_m . Since φ is a morphism of algebraic varieties, it induces a homomorphism of coordinate rings $\varphi^{\sharp}: \mathbb{k}[T, T^{-1}] \to \mathbb{k}[T, T^{-1}]$. Note that $(\mathbb{k}[T, T^{-1}])^{\times} = \{cT^n \mid c \in \mathbb{k}^{\times}, n \in \mathbb{Z}\}$. Thus, we have $\varphi^{\sharp}(T) = cT^n$ for some $c \in \mathbb{k}^{\times}$ and $n \in \mathbb{Z}$. That is, $\varphi(a) = ca^n$ for all $a \in \mathbb{G}_m(\mathbb{k}) = \mathbb{k}^{\times}$. However, since φ is a group homomorphism, we must have $\varphi(1) = c = 1$. Therefore, $\varphi(a) = a^n$ for some integer n. Conversely, for each integer n, the map $\chi_n: \mathbb{G}_m \to \mathbb{G}_m$ defined by $\chi_n(a) = a^n$ is indeed a character of \mathbb{G}_m . Hence, we have shown that $\chi(\mathbb{G}_m) \cong \mathbb{Z}$.

Example 3. The character group of the additive group \mathbb{G}_a is trivial, i.e., $\chi(\mathbb{G}_a) = \{0\}$. Indeed, every morphism from \mathbb{A}^1 to $\mathbb{A}^1 \setminus \{0\}$ is constant since every regular function on \mathbb{A}^1 is a polynomial, and there is no non-constant polynomial function without zeros.

Definition 4. A linear algebraic group T over a field \mathbbm{k} is called a *torus* if T is isomorphic to a finite product of copies of the multiplicative group \mathbb{G}_m , i.e., $T \cong \mathbb{G}_m^n$ for some non-negative integer n.

Lemma 5. Let T be a torus and H be a connected closed algebraic subgroup of T. Then H is also a torus.

Proof. Yang: To be continued.

Recall that for a linear operator $T:V\to V$ of finite-dimensional \mathbb{k} -vector space V is called *semisimple* if it is diagonalizable, and unipotent if $T-\mathrm{id}_V$ is nilpotent.

Proposition 6. Let $T \subset GL_n(\mathbb{k})$ be a torus. Then every element of $T(\mathbb{k})$ is semisimple. Conversely, if $g \in GL_n(\mathbb{k})$ is semisimple and of infinite order, then the neutral component of the algebraic subgroup generated by g is a torus.

Proposition 7. Let $g \subset GL_n(\mathbb{k})$. Then g is unipotent if and only if the algebraic subgroup generated by g is isomorphic to \mathbb{G}_a . Yang: To be revised.

Date: October 29, 2025, Author: Tianle Yang, My Homepage

Theorem 8. Let G be a connected commutative linear algebraic group over an algebraically closed field \mathbb{k} of characteristic zero. Then G is isomorphic to $\mathbb{G}_m^r \times \mathbb{G}_a^s$ for some non-negative integers r and s

Proof. Yang: To be continued.

2 Jordan-Chevalley Decomposition of elements

Definition 9. Let G be a linear algebraic group and $g \in G(\mathbb{k})$. We say that g is *semisimple* (resp. *unipotent*) if its image under some (equivalently, any) faithful linear representation of G is a semisimple (resp. unipotent) linear operator.

Lemma 10. The notion of semisimple and unipotent elements in Definition 9 does not depend on the choice of faithful linear representation.

Proof. Yang: To be added.

Theorem 11 (Jordan-Chevalley Decomposition). Let G be a linear algebraic group and $g \in G(\mathbb{k})$. Then there exist unique commuting elements $g_s, g_u \in G(\mathbb{k})$ such that $g = g_s g_u$, where g_s is semisimple and g_u is unipotent.

Moreover, this decomposition is functorial in the sense that for any homomorphism of linear algebraic groups $\varphi: G \to H$, we have $\varphi(g)_s = \varphi(g_s)$ and $\varphi(g)_u = \varphi(g_u)$. Yang: To be checked

Proof. Yang: To be continued.

3 Solvable groups and Borel subgroups

Definition 12. A group G is said to be solvable if there exists a finite sequence of algebraic subgroups

$$G = G_0 \triangleright G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n = \{e\}$$

such that each G_{i+1} is normal in G_i and the quotient group G_i/G_{i+1} is commutative for all $0 \le i < n$. Yang: to be checked.

Theorem 13. Let G be a solvable linear algebraic group acting on a proper variety X. Then there exists a fixed point $x \in X(\mathbb{k})$ such that $g \cdot x = x$ for all $g \in G(\mathbb{k})$.

Corollary 14 (Lie-Kolchin Theorem). Let $G < GL_n(\mathbb{k})$ be a solvable linear algebraic group over an algebraically closed field \mathbb{k} . Then there exists a basis of \mathbb{k}^n such that G is contained in the group of upper triangular matrices with respect to this basis.

Theorem 15. Let G be a linear algebraic group of dimension 1 over an algebraically closed field k. Then G is isomorphic to either \mathbb{G}_m or \mathbb{G}_a .

3

4 Decomposition of linear algebraic groups

Definition 16. Let G be a linear algebraic group over a field \mathbb{k} . The radical of G, denoted by rad(G), is defined to be the unique maximal connected normal solvable subgroup of G.

Yang: Well-defined?

Definition 17. Let G be a linear algebraic group. The *unipotent radical* of G, denoted by $rad_u(G)$, is defined to be the subgroup of rad(G) consisting of all unipotent elements.

Yang: Why a group?

Definition 18. Let G be a linear algebraic group over a field k. We say that G is *semisimple* if rad(G) is trivial.

Definition 19. Let G be a linear algebraic group over a field k. We say that G is reductive if the unipotent radical of G is trivial.

Slogan

"unipotent radical"
$$\rightarrow \leftarrow$$
 "reductive"
$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
"solvable radical" $\rightarrow \leftarrow$ "semisimple"

Theorem 20 (Levi Decomposition). Let G be a linear algebraic group over an algebraically closed field \mathbbm{k} . Then there exists a reductive subgroup H of G such that the multiplication map $\mathrm{rad}_u(G) \rtimes H \to G$ is an isomorphism of algebraic groups. Such a subgroup H is called a *Levi subgroup* of G. Yang: To be checked.

| Proof. Yang: To be continued.

