6) Fin el caso 3D tenemos que si ¿eis, define un sistema de coordenadas (dextrogiro) no necesariamente ortigenal, entences, demuestre que:

a) $e^{i} = \frac{e_{j} \times e_{k}}{e_{i} \cdot (e_{j} \times e_{k})}$, i, j, k = 1, 2, 3 y sus fermulationes $e_{i} \cdot (e_{j} \times e_{k})$ $c_{i} \cdot d_{i} c_{i} s$:

Sea d'= a'lei), de manera que:

ā=aie; ((a=1,2,3), 9 Sabimos que: e;ei=5;

 \Rightarrow $e_1e^2=0$, $e_1e^3=0$, $e_2e^1=0$, $e_2e^3=0$, $e_3e^1=0$, $e_3e^2=0$

y ademas: eie = 1, e2e = 1, e3e = 1. (x)

Como et es perpendicular a e_2 y $e_3 \Rightarrow e^1 = \alpha_1(e_2 \times e_3)$ Por en de $\Rightarrow e^2 = \alpha_2(e_3 \times e_1)$ y $e^3 = \alpha_3(e_1 \times e_2)$, (1 + x)

Entences, reemplazando los e' en (*) tenemos

 $e_1[\alpha_1(e_3 \times e_2)] = 1 \implies \alpha_1 e_1 \cdot (e_3 \times e_2) = 1$

 $= \frac{1}{\ell_1 \cdot (\ell_3 \times \ell_2)}$

y así:

 $\alpha_2 = \frac{1}{\ell_2 \cdot (\ell_1 \times \ell_3)}$

 $\alpha_3 = \frac{1}{\ell_3 \cdot (\ell_2 \times \ell_1)}$

Par lo tanto, al reemplatar los xi en (**), teremos que:

$$e^{2} = \frac{(e_{2} \times e_{3})}{e_{i}(e_{2} \times e_{3})}$$

$$e^{2} = \frac{(e_{3} \times e_{1})}{e_{2} \cdot (e_{3} \times e_{1})}$$

$$e^{3} = \frac{(e_{1} \times e_{2})}{e_{3} \cdot (e_{1} \times e_{2})}$$

$$= \frac{1}{2} e^{i} = \frac{(e_{i} \times e_{k})}{e_{i} \cdot (e_{i} \times e_{k})}$$

b) Si les voluments $V = \ell_1 \cdot (\ell_2 \times \ell_3)$ y $\tilde{V} = \ell'(\ell^2 \times \ell^3)$, en tences $V.\tilde{V} = 1$

tenemes que:

$$V.\tilde{V} = [e_1 \cdot (e_2 \times e_3)][e^!(e^2 \times e^3)]$$

$$= \left[e_{1} \left(e_{2} \times e_{3} \right) \right] \left[\frac{\left(e_{2} \times e_{3} \right)}{e_{1} \left(e_{2} \times e_{3} \right)} \left(e_{2} \times e_{3} \right) \right]$$

=
$$(\ell_2 \times \ell_3) (\ell_1^2 \times \ell_3^3)$$

$$= (e_{2}e^{2})(e_{3}e^{3}) - (e_{2}e^{3})(e_{3}e^{2})$$

$$= (e_{2}e^{2})(e_{3}e^{3}) = 1 \cdot 1 = 1$$

d)
$$\vec{w}_1 = 4\hat{i} + 3\hat{j} + \hat{k}$$
, $\vec{w}_2 = 3\hat{i} + 3\hat{j}$ y $\vec{w}_3 = 2\hat{i}$

1)
$$e^{i} = \frac{(w_{j} \times w_{k})}{w_{i} (w_{j} \times w_{k})} = 0$$

$$e^{1} = \frac{\left(w_{2} \times w_{3} \right)}{\left(w_{1} \cdot \left(w_{2} \times w_{3} \right) \right)} = \frac{\left| \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \right|}{\left| \frac{1}{3} \cdot \frac{1}{3$$

$$= 2 \cdot 2 = -\hat{i} + \frac{4}{3} \hat{j} = \frac{1}{4} \cdot 3 \cdot 1 = \frac{1}{3} \cdot 3 \cdot 4 \cdot 3 \cdot 1 = \frac{1}{3} \cdot 3 \cdot 1 = \frac{1}{$$