

²⁰⁹Po and ²¹⁰Pb Radioactivity Standards:

A REVIEW

R. Collé

Physics Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8462 USA

Recent events may have led to increasing interest in Po & ²¹⁰Pb, but they have been of interest to our laboratory for many years

This is a review of about 20 years of work by me (and colleagues)

1 <i>992</i> *	carrier free	Po solu	ution stability
----------------	--------------	---------	-----------------

1994 * 205Pb (209Po decay) confounding of LS measurements

1995 * 209 Po standard (SRM 4326)

1996 * 209 Po decay data -- photon emission probabilities (γ & K_{α} x)

2005 re-standardization of ²⁰⁹Po

2007 * 210Pb standard (SRM 4337)

2007 * 209Po half-life error

2008 * 209Po / 210Pb links

2007 international comparison(s)

of UK (NPL) & USA (NIST) ²¹⁰Pb standards

2008-9 "

review not given in chronological order

Characteristic Elements of NIST Radioactivity Standardization Program (R. Collé)

Choice of nuclides / standards based on identified <u>user needs</u>

Standardization based on at least one primary method

Validity of primary method supported & confirmed by one or more independent confirmatory methods

Standardizations typically utilize **many trials**, with widely varying experimental conditions,

minimizing type-B uncertainty assessments

Any new standardization **linked back** to all previous ones (when possible)

through stored solutions or calibration factors for secondary instruments

Disseminated standards from primary methods used as SRM transfer standards

and/or employed as sources for quality assurance, & proficiency testing programs

Primary standardization <u>uncertainties</u> (k = 2) are typically < 1 % (few tenths at k = 1)

<u>Comparisons</u> with others metrology labs to demonstrate & ensure international consistency

World needs a Po tracer standard!

²¹⁰Po

0.4 a

5.3 MeV α

²⁰⁸Po

2.9 a

5.1 MeV α

²⁰⁹Po

102 a

4.9 MeV α + junk

at NIST

< 1980 only ²¹⁰Po calibration sources

1984 <u>208Po</u> standard (SRM 4327)

1994 <u>209Po</u> standard (SRM 4326)

> 2007 <u>no Po</u> tracer standard available (now underway)

Carrier-free Po solutions & standards are stable

"Long-term stability of carrier-free polonium solution standards"

R. Collé, Radioact. Radiochem. 4, no.2, 20-35 (1993).

The Periodic Table of the Elements

H Hydrogen 1,00794																	2 He Helium 4,003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	О	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12											13	14	15	16	17	18
Na Sodium 22.989770	Mg Magnesium 24.3050											Al Aluminum 26.981538	Si Silicon 28.0855	P Phosphorus 30.973761	S Sulfur 32.066	Cl Chlorine 35.4527	Ar Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Potassium 39.0983	Ca Calcium 40.078	Sc Scandium 44.955910	Ti Titanium 47.867	V Vanadium 50.9415	Cr Chromium 51.9961	Mn Manganese 54.938049	Fe Iron 55.845	Co Cobalt 58.933200	Ni Nickel 58.6934	Cu Copper 63.546	Zn Zinc 65.39	Ga Gallium 69.723	Ge Germanium 72.61	As Arsenic 74.92160	Se Selenium 78.90	Br Bromine 79.904	Kr Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Rubidium 85.4678	Sr Strontium 87.62	Y Yttrium 88.90585	Zr Zirconium 91.224	Nb Niobium 92.90638	Mo Molybdenum 95.94	Tc Technetium (98)	Ru Ruthenium 101.07	Rh Rhodium 102.90550	Pd Palladium 106.42	Ag Silver 107.8682	Cd Cadmium 112.411	In Indium 114.818	Sn Tin 118.710	St Antimoty 121.76	Te Tellurium 127.60	I lodine 26.90447	Xe Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs Cesium 132.90545	Ba Barium 137.327	La Lanthanum 138.9055	Hf Hafnium 178.49	Ta Tantalum 180.9479	W Tungsten 183.84	Re Rhenium 186.207	Os Osmium 190.23	Ir Iridium 192.217	Pt Platinum 195.078	Au Gold 196.96655	Hg Mercury 200.59	Tl Thallium 204.3833	Pb Lead 207.2	Bi Bismut 208.980.8	Po Polonium (209)	At Astatine (210)	Rn Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr Francium (223)	Ra Radium (226)	Ac Actinium (227)	Rf Rutherfordium (261)	Db Dubnium (262)	Sg Seaborgium (263)	Bh Bohrium (262)	Hs Hassium (265)	Mt Meitnerium (266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Carrier free --

How strong acid?

In early 1990's not known (differing reports)

tests on 208 Po solutions over 1.2 to \cong 9 years in range 0.1 to 1 mol L⁻¹ HCl

< 0.3 N unstable

0.3-0.5 N equivocal

> 1 N clearly stable

R. Collé, *Radioact. Radiochem* **4,** no. 2, 20 (1993).

electronic homologues

Po [Xe]
$$4f^{14} \underline{5d^{10} 6s^2 6p^4}$$

Te [Kr] $\underline{4d^{10} 5s^2 5p^4}$

Solutions & standards – needs Te carrier or strong acid Po at trace concentrations (under alkaline, neutral & weak acid conditions) known to be unstable: can be readily hydrolyzed, chemically deposited, volatilized; exhibit "radiocollodial behavior; "plate out & adsorption onto glass surfaces.

209P₀ ²⁰⁹Po $I_{EC} = 0.0048$ $I_{\alpha(\mathsf{TOT})} = 0.9952$ $P_L +_M + \cdots / P_K \approx 0.4$ $\omega_{K} = 0.97$ $\varpi_{M} = 0.035$ 5/2- 761.4 $E_{\gamma} \approx 896.6 \text{ keV}$ $I_{\nu} = 0.0047$ $\alpha_{T} = 0.0209$ 3/2- 576.2. 9/2 ²⁰⁹Bi E_α= 4.622 MeV $l_{\alpha} = 0.0092$ 3/2- 262.8 **Previously unknown** $E_{\gamma} = 262.8$ $E_{\nu} = 260.5 \text{ keV}$ branching recently measured $I_{\gamma} = 0.0022$ ' = 0.0067 $E_{\alpha} = 4.883$ by NIST (Boulder Lab) by $\alpha_{T} = 0.630$ $\alpha_{T} = 0.616$ + 4.885 MeV cryogenic calorimeter -- 19.4 $I_{\alpha} = 0.9860$ 80% (6) % & 80.6 (6) %

Fig. 2. Partial decay scheme for the 219 Po alpha and electron capture branch decays.

20%

²⁰⁵Pb

4

Fig. 11. LS counting rate concentrations $R_{\alpha e}$ (closed triangles) and R_{α} (closed circles) obtained with the Beckman instrument for the N series samples as a function of m_s (and sample quenching). The solid lines are linear regressions fitted to the data.

Fig. 12. LS counting rate concentrations $R_{\alpha e}$ and R_{α} as a function of m_s (analogous to that of Fig. 11) as obtained with the Packard instrument.

Fig. 13. LS counting rate concentrations $R_{\alpha e}$ and R_{α} obtained with the two LS systems for the P and Q series samples in 1994. Closed squares ($R_{\alpha e}$) and open squares ($R_{\alpha e}$) represent the mean values for samples Q5 through Q8 with the Packard; closed and open triangles represent $R_{\alpha e}$ and $R_{\alpha e}$, respectively, for samples P1 through P5 with the Packard; closed and open triangles ($R_{\alpha e}$ and R_{α}) are for samples Q1 through Q4 with the Beckman; and closed and open circles ($R_{\alpha e}$ and R_{α}) are for samples P1 through P5 with the Beckman. Each plotted value corresponds to the mean of 5 to 18 replicate measurements on each sample. The error bars represent standard deviation uncertainty intervals on the means. The solid lines are unweighted linear fits to the data. Although the $R_{\alpha e}$ values vary with the instrument used to perform the measurements (Packard or Beckman) and with sample compositions, all of the R_{α} values are statistically equivalent and invariant.

In 1994

LS result confirmed by $2\pi\alpha$ proportional counting

from

Collé, et al., *J. Res. Natl. Inst. Stds. Tech.* **100**, 1 (1995).

Fig. 6. Comparison of the ²⁰⁹Po LS spectra obtained with the Beckman and Packard instruments.

Fig. 14. LS spectra of increasingly quenched samples Q5 through Q8 obtained with the Packard counting system.

Fig. 15. Details of the broad alpha peaks shown in the full spectra of Fig. 14. The peak widths (FWHM) on a relative basis and peak areas are approximately equal in all four samples Q5 through Q8.

²⁰⁹Po half-life in error by 25 %!!

Result supported by work on ²¹⁰Pb – previous story

15 march 1994 $R_{\alpha} = (85.42 \pm 0.18) \text{ s}^{-1}\text{g}^{-1}$

15 November 2005 $R_{\alpha} = (80.20 \pm 0.22) \text{ s}^{-1} \text{ g}^{-1}$

2 point fit gives

$$T_{1/2} = 128 \text{ a}$$

$$U = 5.5 \% (7 a)$$

Not considered a new determination

210Pb

Difficult case

rarely done by metrology labs

different methods used

Comparisons with NPL standard (via PTB too)

INADEQUATE TIME TO COVER

²¹⁰Pb standardization methods & data are published

L. Laureano-Perez, R. Collé, et al., Appl. Radiat. Isot. 65, 1368 (2007).

Ask or see me if interested -- I have 6 back-up slides of information!

²¹⁰Pb standardization results (SRM 4337)

	primary method	relative standard uncertainty	confirmatory measurements	percent differences	
²¹⁰ P b	4παβ LS CNET	1.2 %	$4\pi\alpha\beta$ (LS)-γ(NaI) anticoin. Counting (± 1.7 %)	+ 0.7	many assumptions, big extrapolation
			²¹⁰ Po α spect. (102 a ²⁰⁹ Po tracer) (<u>+</u> 1 %)	- 3.0	²⁰⁹ Po half-life link
			210 Po α spect. (128 a 209 Po tracer) (± 1 %)	- 1.3	J
			HPGe photon spect. (<u>+</u> 4.2 %)	+ 4.7	big unc. if don't use some other ²¹⁰ Pb std

uncertainty atypically large compared to most NIST radioactivity standardizations

* probable error due to ²¹⁰Bi bremsstrahlung

Relatively large 2.4 % uncertainty (k = 2) because of

- (1) LS cocktail composition effects
- (2) tracing code differences & assumptions,
- (3) lack of good confirmatory measurements,

209Po

LINKED

In applications

- use of ²⁰⁹Po tracer for ²¹⁰Po (²¹⁰Pb assays)

In our standardization measurements

²¹⁰Pb standardization results (SRM 4337)

	primary method	relative standard uncertainty	confirmatory measurements	Percent differences	
²¹⁰ Pb	4παβ LS CNET	1.2 %	$4\pi\alpha\beta$ (LS)-γ(NaI) anticoin. Counting	+ 0.7	
	Needs longer h	alf-life	²¹⁰ Po α spect. (102 a ²⁰⁹ Po tracer) ²¹⁰ Po α spect. (128 a ²⁰⁹ Po tracer)	- 3.0 - 1.3	
	for consistency		HPGe photon spect.	+ 4.7	*

* probable error due to ²¹⁰Bi bremsstrahlung

uncertainty atypically large compared to most NIST radioactivity standardizations

2007 Comparison of the NIST and NPL ²¹⁰Pb standards by five measurement methods.

method	NPL / NIST ratio	relative standard uncertainty	difference
NPL and NIST certified values from primary standardizations	0.037484	1.5 %	
4πγ(NaI)	0.037373	0.56 %	- 0.30 %
HPGe spectrometry.	0.036542	0.71 %	- 2.6 %
4παβ(LS)	0.037249	0.17 %	- 0.63 %
²¹⁰ Po assay (2πα spect.)	0.03736	0.75 %	- 0.33 %
Si(Li) low-energy spectrometry	0.0381	1.9 %	+ 1.6 %

^{*} probable error due to ^{210}Bi bremsstrahlung

²¹⁰Pb NPL / NIST comparisons

similar 0.6 % NPL / NIST agreement – consistent with previous comparison (for $\cong 1$ % combined standard uncertainty in two standards)

For data, see **Lena Johansson** poster – *this conference*

Summary important points:

- carrier-free Po solutions, $\geq 1 \text{ mol } L^{-1} \text{ HCl}$
- 205Pb isomeric state may confound ²⁰⁹Po standardization / measurements
- 209Po standard will be limited by half-life uncertainty
- 209Po & 210Pb linked through standards
- 210Pb standard uncertainty may be over-estimated
- reasonable international agreement on ²¹⁰Pb standards ²¹⁰Pb

Thank you.

Acknowledgements & Special Thanks to

Lizbeth Laureano-Perez

Ryan Fitzgerald

Lena Johansson (NPL)

Iisa Outola

Leticia Pibida

Arzu Arinc (NPL)

Chris Gilligan (NPL)

Philippe Cassette (LNHB)

Frank Schima

Zhichao Lin

Pamela Hodge

J.M.R. (Robin) Hutchinson

Joy Thomas

Bert Coursey

and probably others I inadvertently forgot

for their contributions over the years

FIN

Backup slides only follow

210Pb standardization data

²¹⁰Pb LS results (CN2003 code)

Pb-210

Series	Average	sd (%)	Normal	nc	ns	Counter	Scint	Age start	Age end	f _{H2O}	ε _{H-3}
	9037.397	0.029	Υ	3	11	Packard	HS	0.21	2.12		
	9043.779	0.008	Υ	3	11	Beckman	HS	2.95	4.65	1	
	9041.030	0.014	Υ	3	11	Wallac	HS	10.76	12.4	0.1	0.36-0.30
1	9030.169	0.021	Y*	3	11	Packard	HS	13	14.9	1	
72.7	9030.377	0.017	Y*	5	11	Packard	HS	17.22	20.46	1	
	9046.129	0.007	Y*	3	11	Wallac	HS	26.93	28.57	1	
	9034.269	0.031	N	5	7	Packard	PCS	0.11	4.06	0.01	
	9035.597	0.035	Υ	5	7	Packard	PCS	0.11	4.06	0.04	1
	9039.466	0.027	N	3	7	Wallac	PCS	4.78	6.91	0.01	1
2	9044.048	0.014	Υ	3	7	Wallac	PCS	4.78	6.91	0.04	0.40-0.22
	9040.539	0.026	no	3	7	Beckman	PCS	10.74	12.83	0.01	
	9041.935	0.026	yes	3	7	Beckman	PCS	10.74	12.83	0.04	
	9032.072	0.056	no	5	7	Packard	PCS	14.17	18.6	0.01	
	9026.263	0.034	yes	5	7	Packard	PCS	14.17	18.6	0.04	

* Data normal after removing sample with unstable cocktail

436 determinations

Series	Average	SD	SD (%)	Normal
1	9038.147	6.7577	0.07477	Yes
2	9036.774	5.8702	0.06496	Yes
Total	9037.362	6.0511	0.06696	Yes

CN2003 vs EFFY4 code differences

(just Beta efficiency part)

differences not due to spectra

CN2003 vs EFFY4 code differences – due to assumed Quench function

EFFY4 – for toluene cocktailsCN2003 – for DIN (like HS3 used)but also used xylene based (PCS)

Effect seen for other nuclides, like

 $^{63}\text{Ni}\,$ -- 17 keV $\text{E}_{\beta(\text{ave})}\,\text{allowed}$

²¹⁰Pb massic activity results

	kBq/g (k = 2)	diff from LS	
LS (CN2003)	9.037 ± 2.4 %		
γ-spect (HPGe)	9.46 ± 8.3 %	+ 4.7 %	big unc. if don't use ²¹⁰ Pb γ std
$4\pi\beta(LS)-\gamma(NaI)$ anticoincidence (attempt)	9.10 ± 3.3 %	+ 0.7 %	lots of assumptions, big extrapolation
α-spect	8.77	- 3.0 %	$T_{1/2} = 102 \text{ a}$
(Po tracer)	± 1 %		
	8.92	- 1.3 %	$T_{1/2} = 128 \text{ a}$

Relatively large 2.4 % uncertainty because of

- (1) LS cocktail composition effects
- (2) tracing code differences & assumptions,
- (3) lack of good confirmatory measurements,