lista 1 - controle digital

1. Exercícios apostila antiga

a) Refazer o procedimento para obter a função discreta em forma recursiva para o seguinte caso. Compare com os resultados do exemplo da página 17.

Em forma discreta, nosso caso terá a seguinte função:

$$x(kT_0)=rac{1}{T_1}\sum_{v=1}^k T_0\omega(vT_0)$$

Importante notar que não alteramos somente o valor final de k-1 para k, alteramos também o valor inicial, já que, para casos onde $\omega(0) \neq 0$ estaríamos contabilizando a área entre $-1T_0$ e 0.

Para o período de amostragem seguinte, podemos seguir o padrão e montar a seguinte expressão:

$$x((k+1)T_0) = rac{1}{T_1} \sum_{v=1}^{k+1} T_0 \omega(vT_0)$$

Visando obter a expressão recursiva $x_T(t)=x(kT_0)$ subtraímos a última equação da primeira:

$$x((k+1)T_0)-x(kT_0)=rac{T_0}{T_1}\omega((k+1)T_0)$$

Aplicando a normalização $kT_0 = k$:

$$x(k+1)-x(k)=rac{T_0}{T_1}\omega(k+1)$$

Adotando $k+1=k,\, b_1=rac{T_0}{T_1}$ e $a_1=-1$:

$$x(k)+a_1x(k-1)=b_1\omega(k)$$

Nessa situação, em contrates com o outro resultado, temos um sistema que depende da entrada no mesmo instante da saída.

b) Obter a Transformada Z para $x(t)=a^t$

Primeiro passamos a função contínua $x(t)=a^t$ para sua versão discreta: $x_T(t)=x(kT_0)=a^{kT_0}$, pela definição da transformada Z, obtemos $x(z)=\sum_{k=0}^{\infty}x(kT_0)z^{-k}=[1+(a^{-T_0}z)^{-1}+(a^{-T_0}z)^{-2}+(a^{-T_0}z)^{-3}+\dots]$ aplicando séries geométricas $\frac{1}{1-(a^{-T_0}z)^{-1}}=\frac{z}{z-a^{T_0}}$. O que condiz com a Tabela de Transformadas $e^{-at}\stackrel{z}{\to}\frac{z}{z-e^{-at}}$.

c) Obter a Transformada Z para $x(t) = sen(\omega_1 t)$

$$x_T(t) = x(kT_0) = \sin(\omega_1 kT_0) \text{ de modo que pela transformada Z podemos chegar a: } x(z) = \sum_{k=0}^{\infty} x(kT_0)z^{-k} = \sum_{k=0}^{\infty} \sin(\omega_1 kT_0)z^{-k}$$

Pela Tabela chegamos a $\dfrac{z\sin(\omega_1 T_0)}{z^2 - 2z\cos(\omega_1 T_0) + 1}$

d) Obter a Transformada Z para a sequência $x(kT_0)=0,1,2,3,0,0,0,\ldots$

$$x(z) = [z^{-1} + 2z^{-2} + 3z^{-3}] = \frac{z^2 + 2z + 3}{z^3}$$

e) Obter a Transformada Z Inversa para os seguintes casos, sendo $T_0=1$. Avalie o valor final $x(k)\Big|_{k\to\infty}$, o valor inicial $x(k)\Big|_{k\to0}$ e $k=_0/^{10}$ (iterações nos instantes discretos de 0 a 10):

i - Use o método da Divisão Contínua até o quinto termo:
$$X(z)=\dfrac{1.6z^2-0.8}{z^3-2.6z^2-2.2z-0.6}$$

Primeiro igualamos a ordem dos polinômios do denominador e numerador de modo que: $N(z)=0z^3+1.6z^2+0z-0.8$ e $D(z)=z^3-2.6z^2-2.2z-0.6$ e assim podemos iniciar nossa divisão polinomial $\frac{N(z)}{D(z)}$.

Para usar a tabela abaixo pense o seguinte: preciso zerar o termo de maior ordem de N utilizando R, que é a multiplicação entre D e M. Como inicio tento um valor de N e um valor de D, vou precisar encontrar um valor de M para que o termo de maior ordem de N e R sejam iguais e eu possa fazer a subtração N-R.

#	N	D	M	R
1	$0z^3 + 1.6z^2 + 0z - 0.8$	$z^3 - 2.6z^2 - 2.2z - 0.6$	0	$0z^3 + 0z^2 + 0z + 0$
2	$1.6z^2 + 0z - 0.8$	$z^3 - 2.6z^2 - 2.2z - 0.6$	$1.6z^{-1}$	$1.6z^2 - 4.16z - 3.52 - 0.96z^{-1}$
3	$4.16z + 2.72 + 0.96z^{-1}$	$z^3 - 2.6z^2 - 2.2z - 0.6$	$4.16z^{-2}$	$4.16z - 10.816 - 9.152z^{-1} - 2.496z^{-2}$
4	$13.536 + 10.112z^{-1} + 2.496z^{-2}$	$z^3 - 2.6z^2 - 2.2z - 0.6$	$13.536z^{-3}$	$13.536 - 35.1936z^{-1} - 29.7792z^{-2} - 8.1216z^{-3}$
5	$45.3056z^{-1} + 32.2752z^{-2} + 8.1216z^{-3}$	$z^3 - 2.6z^2 - 2.2z - 0.6$	$45.3056z^{-4}$	

Assim, obtemos:

x(0)	x(1)	x(2)	x(3)	x(4)
0	1.6	4.16	13.536	45.3056

Derivando a equação diferença, para isso precisamos primeiro dividir em cima e embaixo por z^3 para escrever o polinômio em função de z^{-1} :

$$X(z) = rac{1.6z^{-1} - 0.8z^{-3}}{1 - 2.6z^{-1} - 2.2z^{-2} - 0.6z^{-3}}$$

Em seguida, fazemos a multiplicação cruzada:

$$X(z) \cdot (1 - 2.6z^{-1} - 2.2z^{-2} - 0.6z^{-3}) = 1.6z^{-1} - 0.8z^{-3}$$

Como $X(z) = \sum_{k=0}^{\infty} x(k) z^{-k}$, podemos reescrever nossa equação de diferença como:

$$(\sum_{k=0}^{\infty} x(k)z^{-k}) \cdot (1 - 2.6z^{-1} - 2.2z^{-2} - 0.6z^{-3}) = 1.6z^{-1} - 0.8z^{-3}$$

E aplicando a convolução no domínio do tempo teremos, do lado esquerdo:

$$\sum_{k=0}^{\infty} x(k) z^{-k} - 2.6 \sum_{k=0}^{\infty} x(k) z^{-k-1} - 2.2 \sum_{k=0}^{\infty} x(k) z^{-k-2} - 0.6 \sum_{k=0}^{\infty} x(k) z^{-k-3} = \sum_{k=0}^{\infty} [x(k) - 2.6x(k-1) - 2.2x(k-2) - 0.6x(k-3)] z^{-k} - 2.6 \sum_{k=0}^{\infty} x(k) z^{-k}$$

E do lado direito:

$$1.6z^{-1} - 0.8z^{-3} = \sum_{k=0}^{\infty} [1.6\delta(k-1) - 0.8\delta(k-3)]z^{-k}$$

Como temos de ambos os lados $\sum_{k=0}^{\infty} z^{-k}$, sabemos que:

$$x(k) - 2.6x(k-1) - 2.2x(k-2) - 0.6x(k-3) = 1.6\delta(k-1) - 0.8\delta(k-3)$$

E por fim:

$$x(k) = 2.6x(k-1) + 2.2x(k-2) + 0.6x(k-3) + 1.6\delta(k-1) - 0.8\delta(k-3)$$

E assim temos nossa equação diferença, com alguns termos já calculados podemos iniciar os cálculos em x(5):

$$x(5) = 2.6x(4) + 2.2x(3) + 0.6x(1) + 1.6\delta(4) - 0.8\delta(2) = 2.6 \cdot 45.3056 + 2.2 \cdot 13.536 + 0.6 \cdot 4.16 + 0.6 \cdot 0 - 0.8 \cdot 0 = 150.06976$$

$$x(6) = 2.6 \cdot 150.06976 + 2.2 \cdot 45.3056 + 0.6 \cdot 13.536 = 497.975296$$

$$x(7) = 2.6 \cdot 497.975296 + 2.2 \cdot 150.06976 + 0.6 \cdot 45.3056 = 1652.0726016$$

$$x(8) = 2.6 \cdot 1652.0726016 + 2.2 \cdot 497.975296 + 0.6 \cdot 150.06976 = 5480.97627136$$

$$x(9) = 2.6 \cdot 5480.97627136 + 2.2 \cdot 1652.0726016 + 0.6 \cdot 497.975296 = 18183.883206656$$

$$x(10) = 2.6 \cdot 18183.883206656 + 2.2 \cdot 5480.97627136 + 0.6 \cdot 1652.0726016 = 60327.4876952576$$

Nossa tabela para k = 0 /10 será:

x(0)	x(1)	x(2)	x(3)	x(4)	x(5)	x(6)	x(7)	x(8)	x(9)	x(10)
0	1.6	4.16	13.536	45.3056	150.06976	497.975296	1652.0726016	5480.97627136	18183.883206656	60327.4876952576

Além disso temos que o valor inicial $x(k)\Big|_{k\to 0}$ é 0 e o valor final $x(k)\Big|_{k\to \infty}$ é ∞ pois a função visivelmente cresce de forma exponencial.

ii - Use o método da Divisão Contínua até o quinto termo: $X(z)=rac{0.6z}{z^2-1.7z+0.7}$

$$N(z) = 0z^2 + 0.6z + 0$$
 e $D(z) = z^2 - 1.7z + 0.7$

#	N	D	M	R
1	$0z^2 + 0.6z + 0$	$z^2 - 1.7z + 0.7$	0	$0z^2 + 0z + 0$
2	0.6z	$z^2 - 1.7z + 0.7$	$0.6z^{-1}$	$0.6z - 1.02 + 0.42z^{-1}$
3	$1.02 - 0.42z^{-1}$	$z^2 - 1.7z + 0.7$	$1.02z^{-2}$	$1.02 - 1.743z^{-1} + 0.714z^{-2}$
4	$1.323z^{-1} - 0.714z^{-2}$	$z^2 - 1.7z + 0.7$	$1.323z^{-3}$	$1.323z^{-1} - 2.2491z^{-2} + 0.9261z^{-3}$
5	$1.5351z^{-2} - 0.9261z^{-3}$	$z^2 - 1.7z + 0.7$	$1.5351z^{-4}$	

Assim. obtemos:

x(0)	x(1)	x(2)	x(3)	x(4)
0	0.6	1.02	1.323	1.5351

Derivando a equação diferença, para isso precisamos primeiro dividir em cima e embaixo por z^2 para escrever o polinômio em função de z^{-1} :

$$X(z) = rac{0.6z^{-1}}{1 - 1.7z^{-1} + 0.7z^{-2}}$$

Em seguida, fazemos a multiplicação cruzada:

$$X(z) \cdot (1 - 1.7z^{-1} + 0.7z^{-2}) = 0.6z^{-1}$$

Aplicando a convolução do domínio do tempo:

$$x(k) - 1.7x(k-1) + 0.7x(k-2) = 0.6\delta(k-1)$$

Colocando em função de x(k):

$$x(k) = 1.7x(k-1) - 0.7x(k-2) + 0.6\delta(k-1)$$

Iniciando nossos cálculos em x(5):

$$x(5) = 1.7 \cdot 1.5351 - 0.7 \cdot 1.323 = 1.68357$$

$$x(6) = 1.7 \cdot 1.68357 - 0.7 \cdot 1.5351 = 1.787499$$

$$x(7) = 1.7 \cdot 1.787499 - 0.7 \cdot 1.68357 = 1.8602493$$

$$x(8) = 1.7 \cdot 1.8602493 - 0.7 \cdot 1.787499 = 1.91117451$$

$$x(9) = 1.7 \cdot 1.91117451 - 0.7 \cdot 1.8602493 = 1.946822157$$

$$x(10) = 1.7 \cdot 1.946822157 - 0.7 \cdot 1.91117451 = 1.9717755099$$

Nossa tabela para $k=_0/^{10}$ será:

x(0)	x(1)	x(2)	x(3)	x(4)	x(5)	x(6)	x(7)	x(8)	x(9)	x(10)
0	0.6	1.02	1.323	1.5351	1.68357	1.787499	1.8602493	1.91117451	1.946822157	1.9717755099

Além disso temos que o valor inicial $x(k)\Big|_{k\to 0}$ é 0 e o valor final $x(k)\Big|_{k\to \infty}$ é algo próximo a 2, pois é evidente que a função cresce cada vez menos sem passar de 2.

iii - Use o método da Fatoração e indique a expressão da função discreta associada:

$$X(z) = \frac{z}{(z-1)^2 \cdot (z-2)}$$

$$X(z) = rac{Az}{(z-2)} + rac{Bz}{(z-1)^2} + rac{Cz}{(z-1)}$$

$$\text{Como } X(z) = X(z) \text{ temos que } \frac{z}{(z-1)^2 \cdot (z-2)} = \frac{Az}{(z-2)} + \frac{Bz}{(z-1)^2} + \frac{Cz}{(z-1)}, \text{ multiplicando ambos os lados por } (z-1)^2 \cdot (z-2) \text{ temos: } \frac{z}{(z-1)^2} + \frac{Cz}{(z-1)^2} + \frac{$$

$$z = Az \cdot (z-1)^2 + Bz \cdot (z-2) + Cz \cdot (z-1)(z-2)$$

Expandindo o termo a direita e agrupando por z:

$$A(z^3 - 2z^2 + z) + B(z^2 - 2z) + C(z^3 - 3z^2 + 2z) = z^3(A + C) + z^2(-2A + B - 3C) + z(A - 2B + 2C)$$

Como o esse termo precisa ser igual a z podemos obter o sistema:

$$A+C=0$$

$$B-2A-3C=0$$

$$A - 2B + 2C = 1$$

Onde:

$$A = -C$$
:

$$B-2(-C)-3C=0 \rightarrow B+2C-3C=0 \rightarrow B-C=0 \rightarrow B=C$$

$$-C-2C+2C=1 \rightarrow -C=1 \rightarrow C=-1$$

Portanto:

$$A=1,\,B=-1$$
 e $C=-1$

Desse modo:

$$X(z) = rac{z}{(z-2)} - rac{z}{(z-1)^2} - rac{z}{(z-1)}$$

Assim, podemos obter x(t) pela tabela. Primeiramente sabemos que:

- $\frac{z}{z-1}$ tem uma conversão direta para 1
- $\frac{z}{(z-1)^2}$ pode ser visto como $\frac{T_0z}{(z-1)^2}$, mas como T_0 é um, temos uma conversão direta para t• $\frac{z}{(z-2)}$ pode ser visto como $\frac{z}{z-e^{-aT_0}}$, como T_0 é um, precisamos que $e^{-a}=2$, de modo que a=ln(2) e finalmente convertemos para

Finalmente obtemos a inversa da nossa transformada Z:

$$x(t) = e^{-0.6931t} - t - 1$$

Avaliando o valor inicial $x(k)\Big|_{k\to\infty}$ teremos 0 e o valor final $x(k)\Big|_{k\to\infty}$ tende a $-\infty$, pois $e^{-0.6931t}$ tende a 0, fazendo com que t domine e leve o resultado a $-\infty$

Avaliando para k = 0 /10:

x(0)	x(1)	x(2)	x(3)	x(4)	x(5)	x(6)	x(7)	x(8)	x(9)	x(10)
0		-1.499976	-2.749976	-3.874982	-4.937488	-5.968742	-6.98437	-7.992184	-8.996092	-9.998046	-10.999022

iv - Use o método da Fatoração e indique a expressão da função discreta associada:

$$X(z) = rac{0.1(z+1)z}{(z-1)^2 \cdot (z-0.6)}$$

$$\frac{0.1(z+1)z}{(z-1)^2 \cdot (z-0.6)} = \frac{Az}{(z-0.6)} + \frac{Bz}{(z-1)^2} + \frac{Cz}{(z-1)}, \text{ multiplicando ambos os lados por } (z-1)^2 \cdot (z-0.6) = \frac{Az}{(z-1)^2} + \frac{Bz}{(z-1)^2} + \frac{Cz}{(z-1)^2} +$$

$$0.1(z+1)z = Az(z-1)^2 + Bz(z-0.6) + Cz(z-1)(z-0.6)$$

Expandindo o lado direito:

$$A(z^3+2z^2+z)+B(z^2-0.6z)+C(z^3-1.6z^2+0.6z)=z^3(A+C)+z^2(2A+B-1.6C)+z(A-0.6B+0.6C)$$

Expandindo o lado esquerdo:

$$0.1z^2 + 0.1z$$

Igualando ambos os lados:

$$0.1z^2 + 0.1z = z^3(A+C) + z^2(2A+B-1.6C) + z(A-0.6B+0.6C)$$

Gerando o sistema:

$$A+C=0$$

$$2A + B - 1.6C = 0.1$$

$$A - 0.6B + 0.6C = 0.1$$

Resolvendo:

- A = 0.0625
- B = -0.125

Por fim temos a equação:

$$X(z) = 0.0625 \frac{z}{(z - 0.6)} - 0.125 \frac{z}{(z - 1)^2} - 0.0625 \frac{z}{(z - 1)}$$

- $\frac{z}{(z-1)^2} \text{ pode ser visto como } \frac{T_0z}{(z-1)^2}, \text{ mas como } T_0 \text{ \'e um, temos uma conversão direta para } t$ $\frac{z}{(z-0.6)} \text{ pode ser visto como } \frac{z}{z-e^{-aT_0}}, \text{ como } T_0 \text{ \'e 1, precisamos que } e^{-a} = 0.6, \text{ de modo que } a = ln(0.6) \text{ e finalmente convertemos para } t$

Finalmente obtemos a inversa da nossa transformada Z:

$$x(t) = 0.0625e^{0.510825t} - 0.125t - 0.0625$$

Avaliando o valor inicial $x(k)\Big|_{k\to 0}$ teremos 0 e o valor final $x(k)\Big|_{k\to \infty}$ tende a ∞ , pois $e^{0.510825t}$ tende a ∞ . Avaliando para k = 0 /10:

x(0)	x(1)	x(2)	x(3)	x(4)	x(5)	x(6)	x(7)	x(8)	x(9)	x(10)
0	-0.083333	-0.138889	-0.148148	-0.080248	0.116252	0.527086	1.295143	2.65857	5.014279	9.023792

f) Obter a sequência
$$y(kT_0)$$
 para $G(z)=\dfrac{0.13333}{1-0.5866z^{-1}}$ e $H_0G(z)=\dfrac{0.4134z^{-1}}{1-0.5866z^{-1}}$, para

 $k=_0/^{10}$. Colocar os resultados em um mesmo gráfico e comparar as respostas considerando uma entrada do tipo degrau unitário. Avaliar a mesma situação para pelo menos 4 valores de T_0 diferentes.

As funções G são funções de transferência, assim, por definição, nossa saída será essa função multiplicado por uma entrada:

$$u(t)$$
 $u(k)$ $g(t)$ $y(t)$ $y(k)$

Portanto, quando o exercício pede para obtermos a sequência $y(kT_0)$ considerando uma entrada do tipo degrau unitário u(k), precisamos fazer uma multiplicação.

$$\mathbf{i} - G(z) = \frac{0.13333}{1 - 0.5866z^{-1}}$$

$$Y(z) = G(z)U(z) \rightarrow Y(z) = \frac{0.13333}{1 - 0.5866z^{-1}} \cdot \sum_{k=0}^{\infty} u(kT_0)z^{-k} \rightarrow Y(z) = \frac{0.13333}{1 - 0.5866z^{-1}} \cdot \frac{1}{1 - z^{-1}}$$

$$Y(z) = \frac{0.13333z \cdot z}{(z - 0.5866)(z - 1)} \rightarrow Y(z) = \frac{0.13333z^2}{(z - 0.5866)(z - 1)} \rightarrow Y(z) = \frac{Az}{z - 0.5866} + \frac{Bz}{z - 1}$$

$$0.13333z^2 = Az(z - 1) + Bz(z - 0.5866) \rightarrow 0.13333z^2 = A(z^2 - z) + B(z^2 - 0.5866z) \rightarrow 0.13333z^2 = z^2(A + B) + z(-A - 0.5866B)$$

Montando o sistema:

- -A 0.5866B = 0
 - A = -0.5866B
- A + B = 0.13333

$$-0.5866B + B = 0.13333 \rightarrow 0.4134B = 0.13333$$

B=0.3225205612

A = -0.1891905612

$$Y(z) = 0.3225205612 \cdot \frac{z}{z - 1} - 0.1891905612 \cdot \frac{z}{z - 0.5866}$$

- $\frac{z}{z-1}$ tem uma conversão direta para 1
- $\frac{z}{(z-0.5866)}$ pode ser visto como $\frac{z}{z-e^{-aT_0}}$, como T_0 é pode assumir vários valores precisamos deixar em função dele, assim é necessário que $(e^{-a})^{T_0}=0.5866$, de modo que $e^{-a}=0.5866$ $\frac{1}{T_0}$, portanto podemos considerar a inversa como 0.5866 $\frac{1}{T_0}$ Finalmente: $y(t) = 0.3225205612 - 0.1891905612 \cdot 0.5866^{\frac{1}{10}}$, com essa equação podemos plugar os diferentes T_0 e fazer a discretização kT_0 .

ii -
$$H_0G(z)=rac{0.4134z^{-1}}{1-0.5866z^{-1}}$$

$$Y(z) = G(z)U(z) \rightarrow Y(z) = \frac{0.4134z^{-1}}{1 - 0.5866z^{-1}} \cdot \sum_{k=0}^{\infty} u(kT_0)z^{-k} \rightarrow Y(z) = \frac{0.4134z^{-1}}{1 - 0.5866z^{-1}} \cdot \frac{1}{1 - z^{-1}}$$

é a mesma merda do outro vei, vsi

g) Considere o sistema de controle realimentado $H_0G_p(z)=rac{b_1z^{-1}+b_2z^{-2}}{1+a_1z^{-1}+a_2z^{-2}}$ e $G_R(z)=q_0$. Avalie a faixa de valores de q_0 que garantem a estabilidade do sistema em malha fechada.

A estabilidade de um sistema é dado pela equação característica (dominador simplificado da equação de transferência em z) na forma padrão:

$$A(z) = a_m z^m + a_{m-1} z^{m-1} + a_{m-2} z^{m-2} + \ldots + a_1 z + a_0$$

Sendo $a_m > 0$ e m a ordem do processo. Para sabermos se o sistema é estável precisamos checar as primeiras m+1 condições da seguinte lista:

- A(1) > 0
- $(-1)^m A(-1) > 0$
- $|a_0| < a_m$
- $|b_0| > |b_{m-1}|$
- $|c_0| > |c_{m-2}|$
- $|d_0| > |d_{m-3}|$

Sendo que a_k são os coeficientes da equação característica e o resto é dado por:

$$egin{aligned} oldsymbol{\circ} & b_k = \det egin{array}{ccc} a_0 & a_{m-k} \ a_m & a_k \ \end{array} \ egin{array}{ccc} oldsymbol{\circ} & b_m & b_{m-k-1} \ b_{m-1} & b_k \ \end{array} \ egin{array}{ccc} oldsymbol{\circ} & c_{m-k-2} \ c_{m-2} & c_k \ \end{array} \ \end{array} \ egin{array}{cccc}$$

$$G_{MF}(z) = rac{q_0(rac{b_1z^{-1} + b_2z^{-2}}{1 + a_1z^{-1} + a_2z^{-2}})}{1 + q_0(rac{b_1z^{-1} + b_2z^{-2}}{1 + a_1z^{-1} + a_2z^{-2}})}$$

$$\frac{1}{\frac{q_0(b_1z+b_2)}{q_0(b_1z+b_2)} + \frac{z^2+a_1z+a_2}{q_0(b_1z+b_2)}} = \frac{1}{\frac{z^2+z(a_1+b_1q_0)+b_2q_0+a_2}{q_0(b_1z+b_2)}} = \frac{q_0b_1z+q_0b_2}{z^2+z(a_1+q_0b_1)+(q_0b_2+a_2)}$$

Assim a equação característica do sistema será $z^2+z(a_1+q_0b_1)+(q_0b_2+a_2)$. De modo que $p_2=1,\ p_1=a_1+q_0b_1$ e $p_0=a_2+q_0b_2$. Portanto precisamos que os seguintes critérios sejam válidos:

$$\bullet \ \ A(1)>0 \to 1+(a_1+q_0b_1)+(a_2+q_0b_2)>0 \to a_1+a_2+q_0(b_1+b_2)>-1$$

$$\bullet \ \ (-1)^2A(-1)>0 \to 1-(a_1+q_0b_1)+(a_2+q_0b_2)>0 \to a_2-a_1+q_0(b_2-b_1)>-1$$

$$ullet |p_0| < p_2
ightarrow |a_2 + q_0 b_2| < 1
ightarrow -1 < a_2 + q_0 b_2 < 1$$

O resultado final vai exigir que q_0 obedece as seguintes condições:

•
$$q_0 > \frac{-1-a_1-a_2}{b_1+b_2}$$

•
$$q_0 > \frac{a_1 - a_2 - 1}{b_2 - b_1}$$

$$\begin{array}{l} \bullet \ \, q_0 > \frac{-1-a_1-a_2}{b_1+b_2} \\ \bullet \ \, q_0 > \frac{a_1-a_2-1}{b_2-b_1} \\ \bullet \ \, \frac{-1-a_2}{b_2} < q_0 < \frac{1-a_2}{b_2} \end{array}$$

h) Obter as matrizes F e H da equação diferencial $\ddot{y}(t)+3\dot{y}(t)+2y(t)=u(t)$ (pg. 67), pelo método de expansão em série, com truncamento no 3º elemento da série.

O primeiro passo é colocar o sistema numa representação de espaço de estados, para isso precisamos definir as variáveis de estado:

- $x_1(t) = y(t)$
- $x_2(t) = \dot{y}(t)$

Assim, podemos definir as derivadas como: $\dot{x}_1(t) = \dot{y}(t) = x_2(t)$ e $\dot{x}_2(t) = \ddot{y}(t)$. E reescrevendo nossa equação original: $\dot{x}_2(t) = -2x_1(t) - 3x_2(t) + u(t).$

As equações modelo do espaço de estados são $\underline{\dot{x}}(t) = \underline{A} \cdot \underline{x}(t) + \underline{B} \cdot u(t)$ e $y(t) = \underline{C} \cdot \underline{x}(t) + D \cdot u(t)$. De modo que: $\underline{x}(t) = \begin{vmatrix} x_1(t) \\ x_2(t) \end{vmatrix}$ e como $\dot{x}_1(t)=x_2(t),\,\dot{x}_2(t)=-2x_1(t)-3x_2(t)+u(t)\text{ e }y(t)=x_1(t)\text{ podemos definir }\underline{A},\,\underline{B}\text{ e }\underline{C}.$

$$\begin{vmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ -2 & -3 \end{vmatrix} \cdot \begin{vmatrix} x_1(t) \\ x_2(t) \end{vmatrix} + \begin{vmatrix} 0 \\ 1 \end{vmatrix} \cdot u(t) \rightarrow \underline{\dot{x}}(t) = \begin{vmatrix} 0 & 1 \\ -2 & -3 \end{vmatrix} \cdot \underline{x}(t) + \begin{vmatrix} 0 \\ 1 \end{vmatrix} \cdot u(t)$$
 $y(t) = \begin{vmatrix} 1 & 0 \end{vmatrix} \cdot \underline{x}(t) + 0 \cdot u(t)$

$$\bullet \ \underline{A} = \begin{vmatrix} 0 & 1 \\ -2 & -3 \end{vmatrix}$$

$$\bullet \ \underline{B} = \begin{vmatrix} 0 \\ 1 \end{vmatrix}$$

•
$$\underline{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

•
$$\underline{C} = |1 \qquad 0|$$

Precisamos encontrar \underline{F} e \underline{H} de modo que: $x[k+1] = \underline{F}x[k] + \underline{H}u[k]$, para isso podemos usar as fórmulas na versão de expansão em série:

- $\underline{F} = \underline{I} + \underline{A} \cdot \underline{L}$
- $\underline{L} = T_0 \cdot \sum_{i=1}^{M} \frac{(\underline{A}T_0)^v}{(v+1)!}$

Logo, o primeiro passo é calcular \underline{L} truncando até o terceiro elemento da série (M=2): $\underline{L} = T_0(\frac{(\underline{A}T_0)^0}{1!} + \frac{(\underline{A}T_0)^1}{2!} + \frac{(\underline{A}T_0)^2}{3!})$ $ightarrow \underline{L} = T_0 + T_0^2 rac{\underline{A}}{2} + T_0^3 rac{\underline{A}^2}{6}.$ Precisamos agora calcular \underline{A}^2 :

$$\underline{A}^2 = \begin{vmatrix} 0 & 1 \\ -2 & -3 \end{vmatrix} \cdot \begin{vmatrix} 0 & 1 \\ -2 & -3 \end{vmatrix} = \begin{vmatrix} -2 & -3 \\ 6 & 7 \end{vmatrix}$$

Assim

$$\underline{L} = T_0 + \frac{T_0^2}{2} \begin{vmatrix} 0 & 1 \\ -2 & -3 \end{vmatrix} + \frac{T_0^3}{6} \begin{vmatrix} -2 & -3 \\ 6 & 7 \end{vmatrix} = T_0 + T_0^2 \begin{vmatrix} 0 & 0.5 \\ -1 & -1.5 \end{vmatrix} + T_0^3 \begin{vmatrix} -\frac{1}{3} & -\frac{1}{2} \\ 1 & \frac{7}{6} \end{vmatrix} = T_0 + \begin{vmatrix} 0 & 0.5T_0^2 \\ -T_0^2 & -1.5T_0^2 \end{vmatrix} + \begin{vmatrix} -\frac{T_0^3}{3} & -\frac{T_0^3}{2} \\ T_0^3 & \frac{TT_0^3}{6} \end{vmatrix}$$

$$\underline{L} = T_0 + \begin{vmatrix} -\frac{T_0^3}{3} & 0.5T_0^2 - \frac{T_0^3}{2} \\ T_0^3 - T_0^2 & \frac{T_0^3}{6} - 1.5T_0^2 \end{vmatrix}$$

Com isso podemos calcular \underline{F} e \underline{H} :

$$\underline{H} = \left(T_0 + \begin{vmatrix} -\frac{T_0^3}{3} & 0.5T_0^2 - \frac{T_0^3}{2} \\ T_0^3 - T_0^2 & \frac{7T_0^3}{6} - 1.5T_0^2 \end{vmatrix}\right) \cdot \begin{vmatrix} 0 \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ T_0 \end{vmatrix} + \begin{vmatrix} \frac{T_0^2}{2} - \frac{T_0^3}{2} \\ \frac{7T_0^3}{6} - \frac{3T_0^2}{2} \end{vmatrix} = \begin{vmatrix} \frac{T_0^2}{2} - \frac{T_0^3}{2} \\ \frac{7T_0^3}{6} - \frac{3T_0^2}{2} + T_0 \end{vmatrix}$$

$$\underline{F} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + \begin{vmatrix} 0 & 1 \\ -2 & -3 \end{vmatrix} \cdot \left(T_0 + \begin{vmatrix} -\frac{T_0^3}{3} & 0.5T_0^2 - \frac{T_0^3}{2} \\ T_0^3 - T_0^2 & \frac{7T_0^3}{6} - 1.5T_0^2 \end{vmatrix}\right) = \begin{vmatrix} 1 - T_0^2 + T_0^3 & T_0 - \frac{3T_0^2}{2} + \frac{7T_0^3}{6} \\ -2T_0 + 3T_0^2 - \frac{7T_0^3}{3} & 1 - 3T_0 + \frac{7T_0^2}{2} - \frac{5T_0^3}{2} \end{vmatrix}$$

Considerando $T_0 = 1$:

$$\underline{H} = \begin{vmatrix} \frac{1}{2} - \frac{1}{2} \\ \frac{7}{6} - \frac{3}{2} + 1 \end{vmatrix} = \begin{vmatrix} 0 \\ \frac{2}{3} \end{vmatrix}$$

$$\underline{F} = \begin{vmatrix} 1 - 1 + 1 & 1 - \frac{3}{2} + \frac{71}{6} \\ -2 + 3 - \frac{7}{3} & 1 - 3 + \frac{7}{2} - \frac{5}{2} \end{vmatrix} = \begin{vmatrix} 1 & \frac{2}{3} \\ -\frac{4}{3} & -1 \end{vmatrix}$$

2. Dado um sistema representado pela equação diferencial

$$4\ddot{y}(t) + 2\dot{y}(t) + y(t) = 2u(t)$$
:

a) obtenha a respectiva representação discreta por equação diferença usando: (trabalhe com $T_0=1s$)

i - aproximação da derivada

^45fd3f

 $\text{A equação da derivada aproximada \'e dada por: } \dot{y}(t) = \frac{y(t) - y(t - T_0)}{T_0} \text{ e } \ddot{y}(t) = \frac{\dot{y}(t) - \dot{y}(t - T_0)}{T_0} = \frac{\frac{y(t) - y(t - T_0)}{T_0} - \frac{y(t - T_0) - y(t - 2T_0)}{T_0}}{T_0} \\ \rightarrow \ddot{y}(t) = \frac{y(t) - 2y(t - T_0) + y(t - 2T_0)}{T_0^2} \; .$

Com essas equações em mão podemos substituir na equação diferencial original e simplificar $T_0=1$:

4[y(t)-2y(t-1)+y(t-2)]+2[y(t)-y(t-1)]+y(t)=2u(t) e terminando tudo temos:

$$7y(t) - 10y(t-1) + 4y(t-2) = 2u(t)$$

Finalmente podemos passar para discreto trocando o termo contínuo t para o discreto k:

$$7y[k] - 10y[k-1] + 4y[k-2] = 2u[k]$$

$$y[k] = \frac{10y[k-1] - 4y[k-2] + 2u[k]}{7}$$

ii - por transformada de Laplace convertida em Z

^cac5ea

Aplicando a transformada de Laplace em $4\ddot{y}(t)+2\dot{y}(t)+y(t)=2u(t)$ temos $4s^2Y(s)+2sY(s)+Y(s)=\frac{2}{s}$, agrupando e simplificando temos: $Y(s)=\frac{2}{s(4s^2+2s+1)}$, como $Y(s)=G(s)\cdot U(s)\to G(s)=\frac{Y(s)}{U(s)}$ nossa função de transferência será: $G(s)=\frac{2}{4s^2+2s+1}$ $\to G(s)=\frac{0.5}{s^2+0.5s+0.25}\to G(s)=\frac{0.5}{(s+0.25)^2+0.1875}$. Com isso podemos usar $\alpha e^{-at}\sin(w_1t)\stackrel{L}{\to}\alpha\frac{w_1}{(s+a)^2+w_1^2}$ com $w_1=0.25\sqrt{3}$, $\alpha=\frac{2\sqrt{3}}{3}$, a=0.25 e $T_0=1$, assim $G(z)=\frac{2\sqrt{3}}{3}\frac{ze^{-0.25}\sin(0.25\sqrt{3})}{z^2-2ze^{-0.25}\cos(0.25\sqrt{3})+e^{-0.5}}=\frac{0.377345z}{z^2-1.413843z+0.60653}=\frac{0.377345z^{-1}}{1-1.413843z^{-1}+0.60653z^{-2}}$. Como $G(z)=\frac{Y(z)}{U(z)}\to Y(z)=G(z)U(z)$ teremos que $Y(z)[1-1.413843z^{-1}+0.60653z^{-2}]=U(z)0.377345z^{-1}$ e aplicando as transformações temporais y[k]-1.413843y[k-1]+0.60653y[k-2]=0.377345u[k-1]:

$$y[k] = 1.413843 \\ y[k-1] - 0.60653 \\ y[k-2] + 0.377345 \\ u[k-1]$$

b) Usando a equação diferença da resposta y(k) do exercício 2.a) para uma entrada u(t) dada por um degrau unitário, apresente uma resposta gráfica para $k=_0/^{10}$ em cada caso, ou seja, para a resposta do item 2.a) i - e 2.a) ii -.

^3e6fec

Usando o modo de Tabela da Casio fx-911LAX:

	y[0]	y[1]	y[2]	y[3]	y[4]	y[5]	y[6]	y[7]	y[8]	y[9]	y[10]
derivada	0.2587	0.6938	1.1137	1.4802	1.7639	1.9597	2.0774	2.1335	2.1465	2.133	2.1063
laplace	0	0.3773	0.9108	1.4362	1.8555	2.1296	2.2629	2.285	2.2355	2.152	2.0641

c) Represente a resposta gráfica do item 2.a) no caso da função de excitação ser uma sequência de dois impulsos do tipo $u(t) = \delta(t) + \delta(t-2)$ (somente no caso 2.a) ii -).

	y[0]	y[1]	y[2]	y[3]	y[4]	y[5]	y[6]	y[7]	y[8]	y[9]	y[10]
lapla	e 0	0.3773	0.5335	0.9027	0.9527	0.7995	0.5525	0.2962	0.0837	-0.061	-0.137

d) Obtenha a respectiva função discreta $y(kT_0)$ para o sistema considerando-se a entrada degrau do item 2.b).

Aplicando a transformada de Laplace em $4\ddot{y}(t)+2\dot{y}(t)+y(t)=2u(t)$ temos $4s^2Y(s)+2sY(s)+Y(s)=2U(s)$, agrupando e simplificando temos: $\frac{Y(s)}{U(s)}=\frac{2}{4s^2+2s+1}$, como $G(s)=\frac{Y(s)}{U(s)}$ nossa função de transferência será: $G(s)=\frac{0.5}{s^2+0.5s+0.25}$. Aplicando uma entrada degrau $u(t)\xrightarrow{L}\frac{1}{s}$ temos que $Y(s)=\frac{0.5}{s(s^2+0.5s+0.25)}=\frac{A}{s}+\frac{Bs+C}{(s^2+0.5s+0.25)}$ solucionando a fração parcial:

$$0.5 = A(s^2 + 0.5s + 0.25) + (Bs + C)s \rightarrow 0.5 = As^2 + 0.5As + 0.25A + Bs^2 + Cs \rightarrow 0.5 = s^2(A + B) + s(0.5A + C) + 0.25A + 0$$

Assim é possível montar o sistema:

- 1A + 1B + 0C = 0
- 0.5A + 0B + 1C = 0
- 0.25A + 0B + 0C = 0.5

Onde A=2, B=-2 e C=-1. Com isso podemos colocar os valores numéricos e fazer transformações matemáticas que exigem mais visão do que o Dr. Estranho vendo todos os multiversos.

$$Y(s) = \frac{2}{s} + \frac{-2s - 1}{\left(s^2 + 0.5s + 0.25\right)} = \frac{2}{s} + \frac{-2(s + 0.25) - 0.5}{\left(s + 0.25\right)^2 + 0.1875} = \frac{2}{s} - 2 \cdot \frac{s + 0.25}{\left(s + 0.25\right)^2 + 0.1875} - \frac{0.5}{\left(s + 0.25\right)^2 + 0.1875}$$

$$Y(s) = \left(2 \cdot \frac{1}{s}\right) - \left(2 \cdot \frac{s + 0.25}{\left(s + 0.25\right)^2 + \left(0.25\sqrt{3}\right)^2}\right) - \left(\frac{2\sqrt{3}}{3} \cdot \frac{0.25\sqrt{3}}{\left(s + 0.25\right)^2 + \left(0.25\sqrt{3}\right)^2}\right)$$

Aplicando a inversa nos caras certos:

$$y(t) = 2u(t) - 2e^{-0.25t}\cos(0.25\sqrt{3}\cdot t) - \frac{2\sqrt{3}}{3}e^{-0.25t}\sin(0.25\sqrt{3}\cdot t)$$

$$y(t) = 2u(t) - e^{-0.25t}[2\cos(0.25\sqrt{3}\cdot t) + rac{2\sqrt{3}}{3}\sin(0.25\sqrt{3}\cdot t)]$$

Discretizando:

$$y[kT_0] = 2u[kT_0] - e^{-0.25kT_0}(2 \cdot \cos[0.433 \cdot kT_0] + 1.1574 \cdot \sin[0.433 \cdot kT_0])$$

3. Dado o processo
$$y(k)+a_1y(k-1)+0.72y(k-2)+0.32y(k-3)=0.4u(k-1)-0.4u(k-2)+0.84u(k-3)$$
 com $a_1=1.2$

a) Obtenha a descrição do processo em forma da Função Transferência Discreta:

$$y(k) + a_1 y(k-1) + 0.72 y(k-2) + 0.32 y(k-3) = 0.4 u(k-1) - 0.4 u(k-2) + 0.84 u(k-3) \ \text{reescrevendo em } z : \\ Y(z) (1 + 1.2 z^{-1} + 0.72 z^{-2} + 0.32 z^{-3}) = U(z) (0.4 z^{-1} - 0.4 z^{-2} + 0.84 z^{-3})$$

$$G(z) = rac{Y(z)}{U(z)} = rac{0.4z^{-1} - 0.4z^{-2} + 0.84z^{-3}}{1 + 1.2z^{-1} + 0.72z^{-2} + 0.32z^{-3}}$$

b) Obter a equação característica (denominador da Função de Transferência):

A equação característica é dada pelo denominador da função de transferência discreta sem expoentes negativos:

$$A(z) = z^3 + 1.2z^2 + 0.72z^1 + 0.32$$