

集成数码管驱动的 2A 充电/2.4A 放电移动电源 SOC

1 特性

• 同步开关充放电

- ◆ 2.4A 同步升压转换
- ♦ 升压效率最高达 93%
- ◆ 充电效率最高达 92%
- ◆ 内置电源路径管理,支持边充边放
- ◆ 支持线补

• 充电

- ◆ 自动调节充电电流,匹配适配器输出能力
- ◆ 2A 同步开关充电
- ◆ 支持 4.20V、4.30V、4.35V 和 4.4V 电池

• 电量显示

- ◆ 内置 14bit ADC 和精准库伦计算法
- ◆ 支持 5/4/3/2/1 颗 LED 电量或数码管显示
- ◆ 支持外部 PIN 选电芯初始容量
- ◆ 支持电芯容量自校准

• 功能丰富

- ◆ 内置照明灯驱动
- ◆ 自动检测负载插入/拔出

• 低功耗

- ◆ 智能识别负载,自动进待机
- ♦ 待机功耗小于 100 μA

BOM 极简

- ◆ 功率 MOS 内置, 1uH 单电感实现充放电
- ◆ 内置多种数码管驱动电路

• 多重保护、高可靠性

- ◆ 输出过流、过压、短路保护
- ◆ 输入过压、过充、过放、过流放电保护
- ◇ 整机过温保护
- ➤ ESD 4KV, Vin 瞬态耐压高达 18V

• 深度定制

◆ 可灵活低成本定制方案

• 封装 ESOP16

2 应用

- 移动电源/充电宝
- 手机、平板电脑等便携式设备
- 补水仪/暖手宝

3 简介

IP5506 是一款集成升压转换器、锂电池充电管理、电池电量指示的多功能电源管理 SOC,为数码管显示移动电源提供完整的电源解决方案。

IP5506 的高集成度与丰富功能,使其在应用时仅需极少的外围器件,并有效减小整体方案的尺寸,降低 BOM 成本。

IP5506 只需一个电感实现降压与升压功能。 DC-DC 转换器工作在 500KHz,可以支持低成本电感和电容。

IP5506 的同步升压系统提供额定 2.4A 输出电流,转换效率高至 93%。空载时,自动进入休眠状态,静态电流降至 100uA 以内。

IP5506 采用开关充电技术,提供额定 2A 充电电流,充电效率高至 92%。内置 IC 温度和输入电压智能调节充电电流。

IP5506 内置 14bit ADC,可精确测量电池电压和电流。IP5506 的内置库仑计算法可准确获取电池电量信息。

IP5506可支持 5/4/3/2/1 颗 LED 电量或数码管 显示和照明手电筒功能。

IP5506 采用 ESOP16 封装。

图 1 IP5506 简化应用原理图(数码管显示电量)

4 引脚定义

图 2 IP5506 引脚图

引脚		描述
序号	名称	
1	VOUT	DC-DC 5V 升压输出 pin
2	VIN	DC-DC 5V 充电输入 pin
3,	KEY	按键和手电筒驱动 pin
4、	LED5	数码管/LED 驱动 pin5
5	LED4	数码管/LED 驱动 pin4
6	LED3	数码管/LED 驱动 pin3
7	LED2	数码管/LED 驱动 pin2
8	FCap	电芯初始容量设定 pin
9	FSEL	按键方式设定 pin
10	LED1	数码管/LED 驱动 pin1

IP5506

11	VSET	电池类型设置,4.20V/4.3V/4.35V/4.40V
12	GND	系统地
13	VCC	LDO 3.1V 输出
14	VBAT	系统供电和电芯电压采样 pin
15	CSIN	电芯电压采样 pin
16	LX	DCDC 开关节点,连接电感
17	GND	功率地和散热地,需要保持与 GND 良好接触

5 IP 系列移动电源 IC 型号选择表

IC	充放	电				主要	特点				封装	Ę
型号	放电	充电	LED 灯数	照明 灯	按键	I2C	DCP	USB C	QC 认证	PD3. 0 /PPS	规格	兼容
IP5303	1.0A	1.2A	1,2	√	√	_	_	_	-	_	eSOP8	Z
IP5305	1.0A	1.2A	1,2,3,4	√	√	1	-	-	ı	_	eSOP8	PIN2PIN
IP5306	2.4A	2.1A	1,2,3,4	√	√	1	-	-	ı	-	eSOP8	I
IP5206	2A(Max)	1.5A	3,4,5	~	√	1	-	-	ı	_	eSOP16	Z
IP5108E	2.0A	1.0A	3,4,5	√	√	1	-	-	ı	_	eSOP16	PINZPIN
IP5108	2.0A	2.0A	3,4,5	~	√	√	-	-	ı	_	eSOP16	Ы
IP5207	1.2A	1.2A	3,4,5	4	4	1	-	-	ı	_	QFN24	
IP5207T	1.2A	1.2A	1,2,3,4	√	4	4	√	-	ı	_	QFN24	PIN2PIN
IP5109	2.1A	2.1A	3,4,5	√	√	√	-	-	ı	_	QFN24	PIN
IP5209	2.4A	2.1A	3,4,5	~	√	7	√	_	ı	_	QFN24	
IP5219	2.4A	2.1A	1,2,3,4	√	√	√	√	√	ı	_	QFN24	
IP5310	3.1A	3.0A	1,2,3,4	√	√	√	√	√	ı	-	QFN32	
IP5312	15W	3.6A	2,3,4,5	√	√	√	√	-	-	_	QFN32	
IP5318Q	18W	4.0A	2,3,4,5	√	4	4	√	-	√	_	QFN40	PIN2 PIN
IP5318	18W	4.0A	2,3,4,5	√	4	4	√	√	√	_	QFN40	PIN
IP5322	18W	4.0A	1,2,3,4	√	√	1	√	_	1	_	QFN32	
IP5328	18W	4.0A	1,2,3,4	√	√	4	√	√	4	_	QFN40	2 7
IP5328P	18W	4.0A	1,2,3,4	√	√	√	√	√	√	√	QFN40	PIN2 PIN

6 极限参数

参数	符号	值	单位
端口输入电压范围	V _{IN}	-0.3 ~ 12	V
结温范围	T _J	-40 ~ 150	${\mathfrak C}$
存储温度范围	Tstg	-60 ~ 150	${\mathfrak C}$
热阻 (结温到环境)	θ_{JA}	50	℃/W
人体模型(HBM)	ESD	4	KV

^{*}高于绝对最大额定值部分所列数值的应力有可能对器件造成永久性的损害,在任何绝对最大额定值条件下暴露的时间过长都有可能影响器件的可靠性和使用寿命

7 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
输入电压	V _{IN}	4.5	5	5.8	V
工作环境温度	T _A	0		70	$^{\circ}\!$

^{*}超出这些工作条件,器件工作特性不能保证。

8 电气特性

除特别说明,TA=25℃,L=1uH

参数	符号	测试条件	最小 值	典型 值	最大 值	単位
充电系统						
输入电压	V _{IN}	VBAT=3.7V	4.5	5	5.8	V
输入过压	V_{INOV}		5.6	5.8	6	V
输入欠压保护	V _{INUV}		4.4	4.5	4.6	V
	CV _{4.2V}	VSET 接地	4.18	4.21	4.24	V
CV原压大电电压	CV _{4.30V}	VSET PIN 接 1V 电压	4.28	4.31	4.34	V
CV 恒压充电电压	CV _{4.35V}	VSET PIN 接 VCC	4.33	4.36	4.4	V
	CV _{4.4V}	VSET PIN 接 2V 电压	4.38	4.41	4.44	V
充电截止电流	Ivin _{stop}	输入 Vin=5V	200	300	500	mA
充电电流	I _{VIN}	VIN 口充电电流输入端电流, VBAT=3.7V	1.7	2	2.3	Α
涓流充电电流	I _{TRKL}	VIN=5v,BAT=2.7v	100	200	300	mA
涓流截止电压	V_{TRKL}		2.9	3	3.1	V
再充电阈值	V _{RCH}		4.07	4.1	4.13	V
充电截止时间	T _{END}		20	24	28	Hour
升压系统						
电池工作电压	V_{BAT}		3	3.7	4.4	V
低电关机电压	V_{BATLOW}	IOUT=2A	2.9	2.95	3.0	V
开关工作电池输入 电流	I _{BAT}	VBAT=3.7V,VOUT=5.1V,fs=500KHz (无数码管、无 led 显示、Vout 无负载)		2	6	mA
DC 输出电压	\ <u>'</u>	VBAT=3.7V @0A	5.0	5.12	5.25	V
100 棚田电压	V _{OUT}	VBAT=3.7V @2.4A	4.85	5	5.35	V

IP5506

输出电压纹波	ΔV_{OUT}	VBAT=3.0V~4.4V	50	100	150	mV
升压系统供电电流	I _{vout}	VBAT=3.0V~4.4V	0		2.4	Α
升压系统过流关断 电流	I _{vout}	VBAT=3.0V~4.4V	2.45	2.8	3.2	Α
负载过流检测时间	T _{UVD}	输出电压持续低于 4.2V		30		ms
控制系统						
工头压力	4-	放电开关频率	450	500	550	KHz
开关频率 	fs	充电开关频率	450	500	550	KHz
PMOS 导通电阻				40		mΩ
NMOS 导通电阻	r _{DSON}	À (35		mΩ
VIN 和 VOUT PMOS 导通电阻	20011	VIN=5V		90		mΩ
VIN 和 VOUT PMOS 过流保护	I _{IDOCP}	VIN=5V		3		А
VCC 电压	VCC	Vbat=3.7V	3.05	3.1	3.15	V
电池输入待机电流	I _{STB}	VIN=0V, VBAT=3.7V		80	120	uA
LED 照明驱动电流	llight	Λ'\	5	10	15	mA
IO 口驱动电流	I _{Gpio}		4	5	8	mA
无负载自动关机时 间	T _{loadD}	负载电流持续小于 45mA	27	30	33	s
轻载关机电流	Iplout	VBAT=3.7V	20	45	70	mA
短按按键时间	T _{OnDebounce}	Y	100		300	ms
长按按键时间	T _{Keylight}		2		3	s
热关断结温	T _{OTP}	上升温度	130	140	150	$^{\circ}\!\mathbb{C}$
热关断迟滞	$\Delta T_{ m OTP}$		30	40	50	$^{\circ}$

9 功能描述

系统框图

图 3 IP5506 内部系统框图

升压

IP5506 集成一个输出 5V,负载能力 2.4A 的升压 DC-DC 转换器。开关频率 500KHz,3.7V 输入,5V/1A 时效率为 94%。内置软启动功能,防止在启动时的冲击电流过大引起故障,集成输出过流,短路,过压,过温等保护功能,确保系统稳定可靠的工作。升压系统输出电流可随温度自动调节,确保 IC 温度在设定温度以下

图 4 IP5506 升压效率图

图 5 V/I 曲线

充电

IP5506 拥有一个同步开关结构的恒流、恒压锂电池充电器。当电池电压小于3V时,采用200mA涓流充电;当电池电压大于3V,进入恒流充电;当电池电压大于4.2V/4.35V/4.4V, 进入恒压充电。充电完成后,若电池电压低于4.1V后,重新开启电池充电。

IP5506支持5V/2A充电电流,同时检测输入电压和IC温度自动调节充电电流。

IP5506 内置电源路径管理,支持边充边放,充电状态下将输入 VIN 和输出 VOUT 的 PMOS 管开启可对外部设备充电,同时 IP5506 会将检测 VOUT 输出电压是否高压 4.55V,如果高于 4.55V 就以最大电流给电芯充电,低于 4.55V 就减小充电电流,自动适应适配器的负载输出能力。IP5506 边充边放时输入 VIN 和输出 VOUT 的 PMOS 管具有过温、3A 过流、短路保护等功能。

图 6 IP5506 路径管理示意图

按键与照明灯

IP5506 内置按键与照明灯功能,支持外部 PIN 选、按键开关机和开关照明灯的方式,具体参考如下:

FSEL 对地电阻	按键方式描述
1K	短按开机、连续两次短按关机、长按 2S 开关手电筒
33K	短按开机、长按 2S 开关手电筒、无按键关机功能
51K	短按开机、连续两次短按按键开关照明灯、无按键关机功能
82K	短按开机、连续两次短按按键开关照明灯、长按 2S 关机
100K	支持振动开关 摇动开关开机、按键无关机功能、无照明灯功能

图 7 KEY 按键与照明灯电路

电池电压的配置说明:

R10	R9	电池电压
NC	0R	4.20V
300K	150K	4.30V
0R	NC	4.35V
150K	300K	4.40V

图 8 Vset 电池电压配置电路

电量计和电量显示

IP5506 内置精准库仑计电量算法,根据电芯容量准确的显示电池剩余电量。

IP5506 可支持 1/2/3/4/5 颗 LED 灯、88 型、188 型、888 型数码管等多种电量显示。 具体对应型号如下:

IP5506_BZ_LED 支持 1/2/3/4/5 颗 LED 灯

IP5506_BZ_188 支持 5pin 188 型数码管(如需支持其他型号数码管,请详询本公司销售或 FAE)

LED 灯显模式

图 9 LED 显示配置电路

■ 5灯模式

放电

电量 C (%)	D1	D2	D3	D4	D5
C≥80%	亮	亮	亮	亮	亮
60%≤C<80%	亮	亮	亮	亮	灭
40%≤C<60%	亮	亮	亮	灭	灭
20%≤C<40%	亮	亮	灭	灭	灭
3%≤C<20%	亮	灭	灭	灭	灭
0% <c<3%< td=""><td>1Hz 闪烁</td><td>灭</td><td>灭</td><td>灭</td><td>灭</td></c<3%<>	1Hz 闪烁	灭	灭	灭	灭

充电

电量 C (%)	D1	D2	D3	D4	D5
充满	亮	亮	亮	亮	亮
C≥80%	亮	亮	亮	亮	0.5Hz 闪烁
60%≤C<80%	亮	亮	亮	0.5Hz 闪烁	灭
40%≤C<60%	亮	亮	0.5Hz 闪烁	灭	灭
20%≤C<40%	亮	0.5Hz 闪烁 灭 灭		灭	
<20%	0.5Hz 闪烁	灭	灭	灭	灭

■ 4灯模式

放电

电量 C (%)	D1	D2	D3	D4
C≥75%	亮	亮	亮	亮
50%≤C<75%	亮	亮	亮	灭
25%≤C<50%	亮	亮	灭	灭
3%≤C<25%	亮	灭	灭	灭
0% <c<3%< td=""><td>1Hz 闪烁</td><td>灭</td><td>灭</td><td>灭</td></c<3%<>	1Hz 闪烁	灭	灭	灭

充电

电量 C (%)	D1	D2	D3	D4
充满	亮	亮	亮	亮
75%≤C	亮	亮	亮	0.5Hz 闪烁
50%≤C<75%	亮	亮	0.5Hz 闪烁	灭
25%≤C<50%	亮	0.5Hz 闪烁	灭	灭
C<25%	0.5Hz 闪烁	灭	灭	灭

■ 3灯模式

放电

电量 C (%)	D1	D2	D3
C≥66%	亮	亮	亮
33%≤C<66%	亮	亮	灭
3%≤C<33%	亮	灭	灭
0% <c<3%< td=""><td>1Hz 闪烁</td><td>灭</td><td>灭</td></c<3%<>	1Hz 闪烁	灭	灭

充电

电量 C (%)	D1	D2	D3
75%≤C	亮	亮	亮
66%≤C<100%	亮	亮	0.5Hz 闪烁
33%≤C<66%	亮	0.5Hz 闪烁	灭
C<33%	0.5Hz 闪烁	灭	灭

■ 2灯模式

	状态	D1	D2
充电	充电过程	0.5Hz 闪烁	灭
	充满	亮	灭
放电	正常放电	灭	亮
	低电	灭	1Hz 闪烁

■ 1灯模式

	状态	D1
充电	充电过程	0.5Hz 闪烁
	充饱	亮
放电	正常放电	亮
	低电	1HZ 闪烁

数码管模式

数码管	充电		放电	
数 均目	未充满状态	充满状态	电量小于 5%	电量大于 5%
188 型(YF2252SR-5)	0-99% 0.5HZ 闪	常亮 100%	0-5% 1HZ 闪烁	5%-100% 常亮
	烁			

5pin 188 型数码管原理图如下:

发光颜色:红色 (未注尺寸公差 Unspecified Tolerances is: ±0.2 0.80 6.2(.25") 8,00 PIN1 5.00 12.1 5 0.45 18.1±0.5 6.03 2.0*4=82.05 2.05 1.97 3 5 5 3 2 2 3 2 5 1 1 1 3 3 2 1 4

图 10 5pin 188 型数码管电路图

电量计

IP5506 支持外部设置电芯的初始化容量,利用电芯端电流和时间的积分来管理电芯的剩余容量,可以精准的显示当前电芯的容量;同时 IP5506 支持电量充电从 0%充电到 100%一次完整的充电过程自动校准当前电芯的总容量,更合理的管理电芯的实际容量。

IP5506 外部 PIN 设定电芯初始容量公式: 电池容量=R7*0.2 (mAH)

图 11 电池容量配置电路图

手机插入自动检测与轻载自动待机

IP5506 检测到手机插入后, 即刻从待机态唤醒, 打开升压 5V 给手机充电, 省去按键操作, 支持无按键模具方案。

IP5506 支持轻载自动待机功能,当 Vout 端负载电流小于 50mA 持续 30s 后即自动进入待机状态。

VCC

VCC 是一个恒开的 3.1V LDO, 负载能力 50mA。

Test

LED4/LED5/GND 是系统测试点,pcb layout 时注意一定要预留此测试点。

10 典型应用原理图

IP5506 只需要电感、电容、电阻, 即可实现完整功能的移动电源方案。

图 12 IP5506 数码管应用的典型应用原理图

电感推荐型号 SPM70701R0

DARFON PIN	Inductance (uH)	Tolerance	DC Resistance (mΩ) Typ. Max.		Heat Rating Current DC Amp.	Saturation Current DC Amps.	Measuring Condition
					Idc(A)Max.	Isat(A)Max.	
SPM70701R0	1.0	±20%	8.5	8	12	15	

锂电 IC 推荐型号

INJOINIC Pack age		Overcharge Detection	Overdischarge Detection	Overcurrent	
INJUINIC	Pack age	Voltage [VCU] (V)	Voltage [VDL] (V)	Detection Current [IOV] (A)	
IP3005A	ESOP8	4.28V	2.5V	7A	

11 封装信息

SYMBOL	MILLIMETER			
STWIDOL	MIN	NOM	MAX	
А	-	-	1.75	
A1	0.05	-	0.15	
A2	1.30	1.40	1.50	
А3	0.60	0.65	0.70	
b	0.39	-	0.48	
b1	0.38	0.41	0.43	
С	0.21	-	0.26	
c1	0.19	0.20	0.21	
D	9.70	9.90	10.10	
E	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
е		1.27BSC		
h	0.25	-	0.5	
L	0.50	-	0.80	
L1	1.05BSC			
D1	4.57			
E2		2.41		

12 责任及版权声明

英集芯科技有限公司有权对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时 所提供的销售条款与条件。

英集芯科技有限公司对应用帮助或客户产品设计不承担任何义务。客户应对其使用英集芯的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全验证。

客户认可并同意,尽管任何应用相关信息或支持仍可能由英集芯提供,但他们将独力负责满足与其产品及在其应用中使用英集芯产品相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类关键应用中使用任何英集芯产品而对英集芯及其代理造成的任何损失。

对于英集芯的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。英集芯对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

英集芯会不定期更新本文档内容,产品实际参数可能因型号或者其他事项不同有所差异,本文档不作为任何明示或暗示的担保或授权。

在转售英集芯产品时,如果对该产品参数的陈述与英集芯标明的参数相比存在差异或虚假成分,则会 失去相关英集芯产品的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。英集芯对任何此类虚假 陈述均不承担任何责任或义务。