DATE : 30.01.2025

DT/NT:

LESSON: POWER BI

SUBJECT: DAX FUNCTIONS

BATCH: 304-305

POWER BI – DAX

Data Science Program **Session-8**

Power Bl Lesson Content

Bugün ne öğreneceğiz?

Power Bl

- DAX (Data Analysis Expressions)
- O DAX Formula Syntax
- DAX Functions
- Calculated Columns
- Measures

DAX (Data Analysis Expressions) nedir?

- OData Analysis Expressions (DAX); Power Bl'da kullanılan bir formül dilidir.
- OPower BI raporlarında veri modellemesi ve analizi için kullanılan bir araçtır.
- ODAX, tablo ve sütunlarla çalışarak veri analizi, hesaplamalar, ölçümler ve filtrelemeler gibi işlemleri gerçekleştirmek için kullanılır.
- ODAX formülleri, tablolar arasındaki ilişkileri kullanarak verileri işleyebilir ve sonuçları hesaplayabilir.
- OModelinizde zaten bulunan verilerden yeni bilgiler oluşturmanıza yardımcı olabilir.

DAX & M LANGUAGE

	DAX	\mathbf{M}
Why?	Calculations and analysis	Transformation and connections
Where?	Used in Power BI Desktop.	Used in Power Query Editor.
What?	Returns a single value, column, or table. Can make calculations using fields from many tables?	Control's shape of data when loaded into Power BI. Transforms one table at a time or combine tables.

Calculated Columns

- O Veri modelindeki tablolara yeni, formül tabanlı sütunlar eklemenizi sağlar.
- O Mevcut sütunlar veya diğer hesaplanmış sütunlardan değerleri alarak yeni bir değer üretir.
- O Bu değerler, veri modelinin "Data" görünümünde tablolar içinde görünür.
- O Statik veya sabit değerler için kullanılır. Agregasyon işlemleri (toplama, sayma vb.) için measures kullanılmalıdır

Calculated Columns

- O "row context" yani satır bağlamınında kullanılırlar. Bu, bir hesaplanmış sütunun, tablodaki her bir satır için bağımsız değerler hesaplayabileceği anlamına gelir.
- O Örneğin, bir tabloda bulunan "fiyat" ve "miktar" sütunlarından "gelir" adında bir hesaplanmış sütun oluşturabilirsiniz. Bu hesaplanmış sütun, her satır için fiyatı miktarla çarparak geliri hesaplar.

Measures

rzchpa

- Measures, raporlarınızda önemli metrikleri ve performans göstergelerini temsil etmek için kullanılır.
- O Power BI raporlarında kullanılan ölçeklendirilebilir ve toplanabilir sayısal değerlerdir. Genellikle bir özetleme veya hesaplama işlemi sonucu elde edilir.
- O Örneğin, satış geliri, toplam satış miktarı, ortalama fiyat, kar marjı gibi metrikler measures olarak tanımlanabilir.
- O Ölçüler, tablolar içinde doğrudan görünmez; yalnızca bir görselleştirmede (örneğin bir grafik, tablo veya matris) "görülebilir".

Measures

- OÖlçüler, "filter context "bağlamında değerlendirilir ve etrafındaki alanlar veya filtreler değiştiğinde yeniden hesaplanır. Bu, ölçülerin raporun farklı bölümleri arasında etkileşimli olabileceği ve farklı dilimleyiciler veya filtreler uygulandığında farklı sonuçlar verebileceği anlamına gelir.
- O Tek bir satırın cevap veremediği veya birden fazla satırdaki değerlerin toplanması gerektiğinde kullanılması gerekir. Bu, ölçülerin toplama, ortalama, maksimum, minimum ve diğer agregat hesaplamalar için kullanılması gerektiğini gösterir.

Calculated Columns & Measures

Calculated Columns

Measures

- Değerler, tablonun her bir satırındaki bilgilere dayanarak hesaplanır, bu da "satır bağlamı" (row context) olarak adlandırılır.
- Değerler, rapordaki herhangi bir filtreden gelen bilgilere dayanarak hesaplanır, bu da "filtre bağlamı" (filter context) olarak adlandırılır.
- Her bir satıra statik değerler ekler ve bu değerler veri modelinde saklanır, bu da dosya boyutunu artırır.
- Tabloların kendilerinde yeni veri oluşturmazlar, bu nedenle dosya boyutunu artırmazlar.
- Veri kaynağı yenilendiğinde veya temel sütunlarda değişiklik yapıldığında yeniden hesaplanırlar.
- Rapor içerisindeki filtrelerdeki herhangi bir değişikliğe yanıt olarak yeniden hesaplanırlar.

Raporlarda verileri filtrelemek için çoğunlukla kullanılırlar.

- Rapor görsellerinde değerleri toplamak için çoğunlukla kullanılırlar.
- Hesaplanmış sütunlar tablolar içinde "yaşar", yani veri modelinin "Data" görünümünde görsel olarak gözlemlenebilirler.
- Ölçüler görsellerde "yaşar", yani sadece rapor görünümündeki çizelgelerde veya diğer görselleştirmelerde gösterilirler.

QUICK MEASURES

- O Kullanıcıların yaygın hesaplama ihtiyaçlarını karşılamak için hızlı ve kolay bir şekilde DAX formülleri oluşturmalarına olanak tanıyan bir araçtır.
- Onceden oluşturulmuş şablonları veya doğal dil sorgularını kullanarak formüller oluşturmanızı sağlar. Bu, sık kullanılan hesaplamaları (ağırlıklı ortalamalar, yüzde farklar, zaman zekası işlemleri vb.) hızlı bir şekilde yapmanıza yardımcı olur.
- O Başlangıç seviyesindeki kullanıcılar için veya daha karmaşık formüller oluşturmayı öğrenirken faydalı bir araç olabilir.

Power BI DAX

EDUCATION

DAX Syntax

Bu formül, aşağıdaki söz dizimi öğelerini içerir:

- A. Ölçü adı: Total Sales.
- B. Formülün başlangıcını gösteren eşittir işareti işleci (=). Hesaplama gerçekleştirildiğinde bir sonuç döndürür.
- C. Sales[SalesAmount] sütunundaki tüm sayıları toplayan DAX işlevi SUM.
- D. Bir veya daha fazla bağımsız değişken içeren ifadeyi içine alan ayraçlar (). Çoğu işlev için en az bir bağımsız değişken gerekir. Bağımsız değişken, bir işleve değer geçirir.
- E. Başvurulan tablo: Sales.
- F. Sales tablosunda başvurulan sütun: [SalesAmount]. Bu bağımsız değişken ile SUM işlevi, bir SUM oluşturmak için hangi sütunların toplanacağını belirtir.

DAX Syntax

Bu formülü daha iyi anlamak için tıpkı diğerlerinde olduğu gibi bu formülü de parçalara ayırarak inceleyebiliriz.

Bu formül, aşağıdaki söz dizimi öğelerini içerir:

- A. Ölçü adı: Store Sales.
- B. Formülün başlangıcını gösteren eşittir işareti işleci (=).
- C. Belirtilen filtrelere göre değiştirilen bir bağlamda bir ifadeyi bağımsız değişken olarak değerlendiren CALCULATE işlevi.
- D. Bir veya daha fazla bağımsız değişken içeren bir ifadeyi çevreleyen ayraçlar ().
- E. Aynı tabloda bir ifade olarak bulunan [Total Sales]. Total Sales ölçüsün şu formüle sahiptir: =SUM(Sales[SalesAmount]).
- F. İlk ifade bağımsız değişkenini filtre bağımsız değişkeninden ayıran virgül (,).
- G. Başvurulan sütunun tam adı: Channel[ChannelName]. Bu, bizim satır bağlamımızdır. Bu sütundaki her bir satır Store veya Online gibi bir kanalı belirtir.
- H. Filtre olarak kullanılan belirli değer: Store. Bu, bizim filtre bağlamımızdır.

Bu formül, filtre olarak Channel[ChannelName] sütunundaki yalnızca Store değerini içeren satırlar için yalnızca Total Sales ölçüsüyle tanımlanan satışların hesaplanmasını sağlar.

DAX OPERATORS

Arithmetic Operator	Meaning	Example
+	Addition	2 + 7
-	Subtraction	5 – 3
*	Multiplication	2 * 6
/	Division	4/2
۸	Exponent	2 ^ 5

Comparison Operator Meaning		Example
=	Equal to	[City]="Boston"
>	Greater than	[Quantity]>10
<	Less than [Quan	
>=	Greater than or equal to [Unit Price]>=2.5	
<= Less than or equal to [Unit Price]<		[Unit Price]<=2.5
<> Not equal to [Country]<>		[Country]<>"Mexico"

Pay attention to these!

		<u></u>	
Text/Logical Operator		Meaning	
&		Concatenates two values to produce one text string	[City] & " " & [State]
&&		Create an AND condition between two logical expressions	([State]="MA") && ([Quantity]>10)
(double pipe)		Create an OR condition between two logical expressions	([State]="MA") ([State]="CT")
IN Crea		ates a logical OR condition based on a given list (using curly brackets)	'Store Lookup'[State] IN { "MA", "CT", "NY" }

COMMON FUNCTION CATEGORIES

MATH & STATS Functions

Functions used for aggregation or iterative, row-level calculations

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions that use conditional expressions (IF/THEN statements)

Common Examples:

- IF
- IFERROR
- AND
- OR
- NOT
- SWITCH
- TRUE
- FALSE

TEXTFunctions

Functions used to manipulate **text strings** or **value formats**

Common Examples:

- CONCATENATE
- COMBINEVALUES
- FORMAT
- LEFT/MID/RIGHT
- UPPER/LOWER
- LEN
- SEARCH/FIND
- REPLACE
- SUBSTITUTE
- TRIM

FILTER Functions

Functions used to manipulate table and filter contexts

Common Examples:

- CALCULATE
- FILTER
- ALL
- ALLEXCEPT
- ALLSELECTED
- KEEPFILTERS
- REMOVEFILTERS
- SELECTEDVALUE

TABLE

Functions

Functions that **create** or **manipulate tables** and output tables vs. scalar values

Common Examples:

- SUMMARIZE
- ADDCOLUMNS
- GENERATESERIES
- DISTINCT
- VALUES
- UNION
- INTERSECT
- TOPN

DATE & TIME Functions

Functions used to

manipulate date & time
values or handle time
intelligence calculations

Common Examples:

- DATE
- DATEDIFF
- YEARFRAC
- YEAR/MONTH
- DAY/HOUR
- TODAY/NOW
- WEEKDAYWEEKNUM
- NETWORKDAYS

Time Intelligence:

- DATESYTD
- DATESMTD
- DATEADD
- DATESBETWEEN

RELATIONSHIP

Functions

Functions used to manage & modify table relationships

Common Examples:

- RELATED
- RELATEDTABLE
- CROSSFILTER
- USERELATIONSHIP

BASIC MATH & STATS FUNCTIONS

SUM

Evaluates the sum of a column

=SUM(ColumnName)

AVERAGE

Returns the average (arithmetic mean) of all the numbers in a column

=AVERAGE(ColumnName)

MAX

Returns the largest value in a column or between two scalar expressions

=MAX(ColumnNameOrScalar1, [Scalar2])

MIN

Returns the smallest value in a column or between two scalar expressions

=MIN(ColumnNameOrScalar1, [Scalar2])

DIVIDE

Performs division and returns the alternate result (or blank) if DIV/0

=DIVIDE(Numerator, Denominator, [AlternateResult])

1) SUM:

Returns the sum of all the numbers in a column.

Syntax: SUM(ColumnName)

Example: Calculate the total quantity sold.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	Α	2	500	North
2	В	1	800	South
3	Α	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation:

Quantity		
2	SUM	Qty Sold=SUM(Sales[Quantity])
1		ęty sota som(sates[ęaamtity])
3	9	Qty Sold=SUM(2+1+3+1+2)
1		Oty Sold = 9
2		

2 AVERAGE:

Returns the average (arithmetic mean) of all the numbers in a column.

Syntax: AVERAGE(ColumnName)

Example: Calculate the average price of transactions.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	Α	2	500	North
2	В	1	800	South
3	А	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation:

Price	
500	AVERAGE
800	
450	700
900	
850	

AVG Price=

AVERAGE(Sales[Price])

AVG Price=

(500+800+450+900+850)/5

AVG Price=700

Returns the smallest value in a column, or between two scalar expressions.

Syntax: MIN(ColumnName) or MIN(Expression1, Expression2)

Example: Find the smallest price.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	Α	2	500	North
2	В	1	800	South
3	Α	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation:

Price	
500	MINIMUM
800	
450	450
900	
850	

MIN Price=

MIN(Sales[Price])

MIN Price=

MIN(500,800,450,900,850)

MIN Price= 450

4 MAX:

Returns the largest value in a column, or between two scalar expressions.

Syntax: MAX(ColumnName) or MAX(Expression1, Expression2)

Example: Find the largest price.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	Α	2	500	North
2	В	1	800	South
3	Α	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation:

Price	
500	MAXIMUM
800	
450	900
900	
850	

MAX Price=

MAX(Sales[Price])

MAX Price=

MAX(500,800,450,900,850)

MIN Price= 900

SUMX:

Returns the sum of an expression evaluated for each row in a table.

Syntax: SUMX(Table, Expression)

Example: Calculate the total sales value (Quantity * Price for each transaction).

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	А	2	500	North
2	В	1	800	South
3	Α	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation: Applying condition Quantity Price Quantity* Total Price= Price SUMX(Sales, Sales [Quantity] * Sales [Price]) SUM 500 1000 2 Total Price= 800 800 2*500+1*800+3*450+1*900+850 5750 450 1350 Total Price= 100+800+1350+900+1700 900 900 Total Price=5750 1700 850 2

5 CALCULATE:

Modifies the filter context for a given expression.

Syntax: CALCULATE(Expression, [Filter1, Filter2,...])

Example: Calculate the total quantity sold for the 'North' region.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	А	2	500	North
2	В	1	800	South
3	А	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation:

Transaction ID	Product ID	Quantity	Price	Region
1	А	2	500	North
3	Α	3	400	North

North QTY= CALCULATE(SUM(Sales[Quantity]),

Sales[Region]="North")

North QTY= 2+3

North QTY= 5

6 FILTER:

Returns a table that includes only the rows that meet a certain condition.

Syntax: FILTER(Expression, Filter)

Example: Filters transactions over North region.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	Α	2	500	North
2	В	1	800	South
3	Α	3	450	North
4	С	1	900	West
5	В	2	850	South

North QTY=

FILTER(Sales, Sales [Region] = "North")

Explanation:

Transaction ID	Product ID	Quantity	Price	Region
1	Α	2	500	North
3	А	3	400	North

7 ALL:

Returns all rows in a table or all values in a column ignoring any filters that might have been applied.

Syntax: ALL(TableName or ColumnName, [Column1,...])

Example: Calculate the total quantity ignoring the Region filter.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	А	2	500	North
2	В	1	800	South
3	А	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation:

Total QTY=

CALCULATE(SUM(Sales[Quantity]), ALL(Region)

Total QTY=2+1+3+1+2

Total QTY=9

Without Filters:

With Filters:

8 ALLEXCEPT:

Removes all context filters in the table except filters that have been applied to the specified columns.

Syntax: ALLEXCEPT(TableName, Column1,[Column2,...])

Example: Calculate the total quantity ignoring all filters except the Region filter.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	Α	2	500	North
2	В	1	800	South
3	А	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation:

Total QTY=

CALCULATE(SUM(Sales[Quantity]), ALLEXCEPT(Region)

Total QTY=2+1+3+1+2

Total QTY=9

With Region Filter:

9 DISTINCT:

Returns a table containing only distinct rows.

Syntax: DISTINCT(TableName)

Returns a column of unique values.

Syntax: DISTINCT(ColumnName)

Example: List unique product IDs sold.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	А	2	500	North
2	В	1	800	South
3	Α	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation:

Products=DISTINCT(Sales[ProductID])

Product ID
А
В
С

MATH AND TRIG FUNCTIONS:

These are functions in DAX that allow for the execution of mathematical and trigonometric operations on data.

10) ABS:

Returns the absolute value of a number.

Syntax: *ABS(Number)*

Example: ABS(10-15)

5

11 DIVIDE:

Performs division and returns an alternate result or BLANK on division by O.

Syntax: DIVIDE(Numerator, Denominator, [AlternateResult])

Example: = DIVIDE(8,2,0)

= 4

Example: DIVIDE(3,0,0)

Checks a condition, and returns one value if True, and another value if False.

Syntax: IF(LogicTest, ResultIfTrue, [ResultIfFalse])

Example: Categorize transactions as 'High' or 'Low' based on price.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	Α	2	500	North
2	В	1	800	South
3	Α	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation:

Category = IF(Sales[Price] >= 800, "High", "Low")

Price	Applying condition	Category
500		Low
800		High
450		Low
900		High
850		High

13) SWITCH:

Evaluates an expression against a list of values and returns the result corresponding to the first matching value.

Syntax: SWITCH(Expression, Value1, Result1, Value2, Result2, ..., [DefaultResult])

Example: Categorize transactions as 'High Price' or 'Medium Price' or 'Low Price' based on price.

'Sales' Table:

Transaction ID	Product ID	Quantity	Price	Region
1	Α	2	500	North
2	В	1	800	South
3	Α	3	450	North
4	С	1	900	West
5	В	2	850	South

Explanation:

```
Price Category = SWITCH(TRUE(),
    Sales[Price] >= 800, "High Price",
    Sales[Price] >= 500 && Sales[Price] < 800, "Medium Price",
    Sales[Price] < 500, "Low Price",
    "Undefined" // Default case if no other conditions are met
)</pre>
```

Price	Applying condition	Price Category
500		Medium Price
800		High Price
450		Low Price
900		High Price
850		High Price

Sorunuz var mi?

Power Bl Lesson Content

Sonraki derste ne öğreneceğiz? Power Bl

Project

00:00

Breaktime for PowerFoint by Flow Simulation Ltd.