

Introduction

<u>Purpose</u>: Explore different ways to test and analyze protein expression and purification

Proteins: Ypet-Ubc9 and CyPet-SUMO1

- These two proteins play an essential role in the SUMOylation process.
- Yellow and Cyan Fluorescent Proteins

Experimental Design

Electroporation: Used to increase the permeability of the E. coli cells so we could transform our plasmid into the cells

Affinity Chromatography: Used to purify the protein by having it bind to the beads and washing everything else off

Gel Electrophoresis: Used to separate molecules by size and charge in order to verify if a protein is being expressed

FRET (Förster Resonance Energy Transfer): Characterize the spectral properties of the donor and acceptor in protein-protein interactions

Lab 1-3: Molecular Cloning Techniques for Protein Synthesis

- E. coli transformation via electroporation
- Plasmid Purification
- DNA digestion with restriction enzymes
- PCR
- Gel Electrophoresis
- DNA sequencing and analysis

Lab 4-6: Protein Expression and Purification

- Inducible protein expression
- Protein purification via affinity-based chromatography

Lab 7-8: Understand protein quantification and characterization, determine protein-protein interactions

- Bradford Assay
- SDS-PAGE
- FRET Assay

Lab 1-3: cDNA construct qualification and validation

- (1) Bacterial transformation and antibiotic selection
- (2) DNA qualification via PCR and Endonuclease
- (3) Validation of DNA Sequence

Lab 4-6: Expression, isolation, and purification of genes

- (1) Controlled expression of tagged genes CyPet-SUMO1 or YPet-Ubc9
- (2) Perform IMAC via Nickel-NTA and 6xHis tag

Lab 7-8: Validation of SUMO1-Ubc9 Interaction utilizing FRET principles

- (3) Qualify purified proteins through SDS-PAGE gel and Coomassie Staining
- (4) Characterization of fluorescent proteins
- (5) Measure FRET signal and resolve FRET signal through fluorescent data

Experimental Results Lab 1-3

TOP10 E.Coli Transformation with Kanamycin Resistance

Electrophoresis results for gene check by PCR showing a band at the 1.2 kb mark

Electrophoresis results for gene check by restriction enzyme digestion showing a band at the 1.2 kb mark

CLC sequence viewer (top) and 4Peaks (bottom) used to compare our sequence with literature template, which showed a machine error

Bacterial culture of BL₂₁(DE₃) E. Coli

Supernatant and the pellet containing unwanted cellular debris, etc. (After sonication and centrifugation)

Supernatant containing protein of interest

Isolated protein prepared for dialysis

Experimental Results Lab 7-8

Calibration curve of BSA standards used to find concentration of our unknown protein - 11029 ng/µL

Fluorescence Concentration

Total Protein Concentration from Bradford Assay $\frac{13772.6978 \frac{ng}{\mu L}}{11020 \frac{ng}{\mu L}} \times 100\% = 124.88\%$

Fluorescence Standard Curve used to calculate the fluorescence concentration of our protein - 13772 ng/µL

SDS-PAGE results showing a band at 45 kDa indicating the presence of YPet

R.F.U. of mixtures containing 100 μ M, 10 μ M, and 1 μ M of CyPet-SUMO1 with differing concentrations of YPet-Ubc9 at wavelengths from 455 nm to 600 nm

CyPet-SUMO1	YPet-UBC9	FRET Ratio
100 uM	100 uM	3.127402
100 uM	10 uM	0.490876
100 uM	1 uM	0.312801
100 uM	0 uM	0.283376

CyPet-SUMO1	YPet-UBC9	FRET Ratio
10 uM	100 uM	4.7392
10 uM	10 uM	1.15659
10 uM	1 uM	0.351589
10 uM	0 uM	0.309615

CyPet-SUMO1	YPet-UBC9	FRET Ratio
1 uM	100 uM	13.04637
1 uM	10 uM	2.450828
1 uM	1 uM	0.384866
1 uM	0 uM	0.32944

FRET Ratios (calculated by dividing the peak emission value at 530 nm by peak emission value at 475 nm)

Conclusion & Future Directions

Conclusion

- The SUMOylation process is a post-translational modification involved in many cellular functions. Many diseases have abnormal expression of proteins involved in SUMOylation and use SUMOylation for disease progression.
- Various methods, including FRET technology are used to elucidate the noncovalent interactions between the two proteins from the SUMOylation process, SUMO1 and UBC9

Future Directions

- The expression and purification methods from this lab can be used for:
 - Future cancer research and technologies
 - Drug delivery techniques
 - Gene therapies