BERT

- ✓ 如何训练BERT
 - ♂ 方法1: 句子中有15%的词汇被随机mask掉

 - ❷ 词语的可能性太多了,中文一般是字

BERT

✓ 如何训练BERT

♂ 方法2: 预测两个句子是否应该连在一起

∅ [seq]: 两个句子之前的连接符, [cls]: 表示要做分类的向量

- ✓ 要解决的问题 (A Lite BERT, 轻量级的BERT)

 - ❷ 但是如果模型很大,权重参数就会非常多,训练是一个大问题(显存都装不下)
 - ∅ 训练速度也是一个事,现在大厂模型都要以月为单位、速度巨慢

✅ 隐层特征越多,效果一定越好吗?

Model	Hidden Size	Parameters	RACE (Accuracy)
BERT-large (Devlin et al., 2019)	1024	334M	72.0%
BERT-large (ours)	1024	334M	73.9%
BERT-xlarge (ours)	2048	1270M	54.3%

❤ 先记住这几个字母

Ø E: 词嵌入大小,也就是第一层Embedding后得到向量的维度

♂ H: 隐藏层大小,比如经过attention后得到768维向量

❷ V: 语料库中词的个数, 比如咱们的字典中─共有20000个词

✅ 嵌入向量参数化的因式分解

∅ 通过一个中介,将一层转换为两层,但是参数量可以大幅降低

∅ 此时如果H>>E, 就达到了咱们的目的 (E越小可能会效果越差)

❷ 但是Embedding层只是第一步,Attention如何简化才是重头戏

❤ 嵌入向量参数化的因式分解

♂ 不同E值对结果的影响, E小一些会影响结果, 但是不大

E	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
64	87M	89.9/82.9	80.1/77.8	82.9	91.5	66.7	81.3
128	89M	89.9/82.8	80.3/77.3	83.7	91.5	67.9	81.7
256	93M	90.2/83.2	80.3/77.4	84.1	91.9	67.3	81.8
768	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3
64	10M	88.7/81.4	77.5/74.8	80.8	89.4	63.5	79.0
128	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1
256	16M	88.8/81.5	79.1/76.3	81.5	90.3	63.4	79.6
768	31M	88.6/81.5	79.2/76.6	82.0	90.6	63.3	79.8
	64 128 256 768 64 128 256	64 87M 128 89M 256 93M 768 108M 64 10M 128 12M 256 16M	64 87M 89.9/82.9 128 89M 89.9/82.8 256 93M 90.2/83.2 768 108M 90.4/83.2 64 10M 88.7/81.4 128 12M 89.3/82.3 256 16M 88.8/81.5	64 87M 89.9/82.9 80.1/77.8 128 89M 89.9/82.8 80.3/77.3 256 93M 90.2/83.2 80.3/77.4 768 108M 90.4/83.2 80.4/77.6 64 10M 88.7/81.4 77.5/74.8 128 12M 89.3/82.3 80.0/77.1 256 16M 88.8/81.5 79.1/76.3	64 87M 89.9/82.9 80.1/77.8 82.9 128 89M 89.9/82.8 80.3/77.3 83.7 256 93M 90.2/83.2 80.3/77.4 84.1 768 108M 90.4/83.2 80.4/77.6 84.5 64 10M 88.7/81.4 77.5/74.8 80.8 128 12M 89.3/82.3 80.0/77.1 81.6 256 16M 88.8/81.5 79.1/76.3 81.5	64 87M 89.9/82.9 80.1/77.8 82.9 91.5 128 89M 89.9/82.8 80.3/77.3 83.7 91.5 256 93M 90.2/83.2 80.3/77.4 84.1 91.9 768 108M 90.4/83.2 80.4/77.6 84.5 92.8 64 10M 88.7/81.4 77.5/74.8 80.8 89.4 128 12M 89.3/82.3 80.0/77.1 81.6 90.3 256 16M 88.8/81.5 79.1/76.3 81.5 90.3	64 87M 89.9/82.9 80.1/77.8 82.9 91.5 66.7 128 89M 89.9/82.8 80.3/77.3 83.7 91.5 67.9 256 93M 90.2/83.2 80.3/77.4 84.1 91.9 67.3 768 108M 90.4/83.2 80.4/77.6 84.5 92.8 68.2 64 10M 88.7/81.4 77.5/74.8 80.8 89.4 63.5 128 12M 89.3/82.3 80.0/77.1 81.6 90.3 64.0 256 16M 88.8/81.5 79.1/76.3 81.5 90.3 63.4

❤ 跨层参数共享

	Model	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
ALBERT	all-shared	31M	88.6/81.5	79.2/76.6	82.0	90.6	63.3	79.8
base	shared-attention	83M	89.9/82.7	80.0/77.2	84.0	91.4	67.7	81.6
E=768	shared-FFN	57M	89.2/82.1	78.2/75.4	81.5	90.8	62.6	79.5
not-sha	not-shared	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3
ALBERT	all-shared	12M	89.3/82.3	80.0/77.1	82.0	90.3	64.0	80.1
base	shared-attention	64M	89.9/82.8	80.7/77.9	83.4	91.9	67.6	81.7
E=128	shared-FFN	38M	88.9/81.6	78.6/75.6	82.3	91.7	64.4	80.2
L-120	not-shared	89M	89.9/82.8	80.3/77.3	83.2	91.5	67.9	81.6
								5.6

✅ 实验中还告诉我们的故事

∅ 层数一定越多越好嘛,目前来看是的

Number of layers	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
1	18M	31.1/22.9	50.1/50.1	66.4	80.8	40.1	52.9
3	18M	79.8/69.7	64.4/61.7	77.7	86.7	54.0	71.2
6	18M	86.4/78.4	73.8/71.1	81.2	88.9	60.9	77.2
12	18M	89.8/83.3	80.7/77.9	83.3	91.7	66.7	81.5
24	18M	90.3/83.3	81.8/79.0	83.3	91.5	68.7	82.1
48	18M	90.0/83.1	81.8/78.9	83.4	91.9	66.9	81.8

❷ 隐层特征要越大越好嘛,目前来看是的

Hidden size	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
1024	18M	79.8/69.7	64.4/61.7	77.7	86.7	54.0	71.2
2048	60M	83.3/74.1	69.1/66.6	79.7	88.6	58.2	74.6
4096	225M	85.0/76.4	71.0/68.1	80.3	90.4	60.4	76.3
6144	499M	84.7/75.8	67.8/65.4	78.1	89.1	56.0	74.0

RoBERTa

Robustly optimized BERT approach

Masking	SQuAD 2.0	MNLI-m	SST-2	
reference	76.3	84.3	92.8	
Our reimp	lementation:			
static	78.3	84.3	92.5	
dynamic	lynamic 78.7		92.9	

♂ 最核心的就是如何在语言模型中设计mask:

♂ 动态mask光听感觉肯定都比静态的要强,也就是这篇论文的核心

Ø 取消NSP任务 (Next Sentence Prediction) 后效果反而好

RoBERTa

❤ 优化点

❷ BatchSize基本也是大家公认的:

bsz	bsz steps		ppl	MNLI-m	SST-2
256	1M	1e-4	3.99	84.7	92.7
2K	125K	7e-4	3.68	85.2	92.9
8K	31K	1e-3	3.77	84.6	92.8

∅ 用了更多的数据集,训练了更久,提升了一点效果

♂ 分词方式做了一点改进, 让英文拆的更细致 (与中文无关)

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4

RoBERTa

- ✓ RoBERTa-wwm

 - ♂ 这个挺重要, 1.我喜欢吃XXX正宗烤冷面; 2.我喜欢吃哈X滨正宗烤冷面
 - Ø 对中文场景的训练来说肯定wwm是比较重要的

说明	样例
原始文本	我喜欢吃西瓜,还喜欢跑步
原始Mask	我喜欢吃Mask瓜,还喜欢跑Mask
分词文本	我 喜欢 吃 西瓜 ,还 喜欢 跑步
全词Mask	我喜欢吃Mask Mask, 还喜欢Mask Mask

DistilBERT

- A distilled version of BERT: smaller, faster, cheaper and lighter
 - ♂ 梦回2019, 当年大家就发现模型越来越大这个趋势了
 - ❷ 学术上一贯是可暴力出奇迹
 - ❷ 工程上该怎么办,还得小一些
 - ❷ 既小效果还得保障,怎么办呢

DistilBERT

A distilled version of BERT: smaller, faster, cheaper and lighter

₫ 差不多减少了40%的参数,主要是预测速度快

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

₫ 蒸馏后效果还能保持97%,但是却被大大瘦身了

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3