

Investigating the Effect of Multiple Smoking Exposures on Lung Function and Structure in Young Persons Using Hyperpolarized ¹²⁹Xenon MRI and CT

My Lan Nguyen¹, Roy Li¹, Helen Lin¹, Viola Chen¹, Alexandra Schmidt¹

¹The University of British Columbia, Vancouver, BC

Introduction

- Cannabis legalization and vaping have increased multiple smoking exposures among Canadian young adults¹
- Long-term cigarette effects are well known, but combined effects of cigarettes, cannabis, and vaping remain under-researched
- 129Xe MRI and computed tomography (CT) are more sensitive to early lung abnormalities compared to traditional pulmonary tests²

What are the effects of multiple smoking exposures on the lungs?

Objective

Evaluate how multiple smoking exposures may alter lung structure via ²⁹Xe MRI.

Methods

Study Participants and Design

- Participants ≥19yrs were enrolled:
- Self-reported current or previous vaping, cigarette smoking, or cannabis joint smoking
- Age matched and healthy, never-vaping, never-smoking controls
- Pulmonary function tests (PFT) reported using GLI race-neutral reference equations³
- COPD assessment test (CAT) and St. George's Respiratory Questionnaire (SGRQ) administered

MRI

- ¹²⁹Xe MRI performed using 3.0T Vida (Siemens Healthineers), 1-point Dixon gas exchange (**Figure** 1)⁴:
- Ventilation defect percent (VDP)
- Membrane to gas ratio (Mem/Gas)
- RBC to gas ratio (RBC/Gas)
- RBC to membrane ratio (RBC/Mem)
- ** Figure of Gas Exchange Scheme **

CT

•CT performed at full inspiration using Revolution HD (GE Healthcare) to measure quantitative lung density (VIDA insights)

Statistical Analysis

Measurements compared using the Wilcoxon rank-sum test

Results **Never-vaping** 24yo male, 23yo male, 25yo male, 20yo male, 26yo female THC/CBD/nicotine THC/CBD/nicotine THC/CBD/nicotine, THC/CBD/nicotine, *5yrs cannabis* 12yrs cannabis *3yrs cannabis 3yrs cannabis* 3yrs vaping 13yrs smoking 2yrs smoking 5yrs vaping 6yrs vaping N/Ayrs vaping Mean ± SD or Control **Exposure** p-value (n=81)(n=34)Median (range) 30 ± 8 32 ± 9 Age yrs 9 (26) 41(51) Male n (%) BMI kg/m² 25 ± 4 25 ± 4 **Exposure** 3 (0.5 - 6) Yrs vaping 5 (1-175) Vaping times/day 12 (48) THC/CBD only n *. <mark>8 (32)</mark> Control **Exposure Control** Exposure Nicotine only n <mark>5 (20)</mark> THC/CBD & nicotine n (%) **PFTs** 0.03083 104 ± 14 110 ± 14 Pre fev1 pp gli 83 ± 7 80 ± 6 0.02944 Pre Fev1 FVC 0.00092 Pre fvc pp gli 106 ± 15 117 ± 15 109 ± 13 115 ± 15 0.03174 Post fev1 pp gli

 105 ± 13

BMI=body mass index; FEV₁=forced expiratory volume in 1s; %_{pred}=GLI

percent predicted; FVC=forced vital capacity; DL_{CO}=diffusing capacity of the

DLCO pp gli

lungs for carbon monoxide.

•

Control

Exposure

Control

Exposure

 108 ± 17

0.4528

Symptoms

Expected group to a reater respiratory symptoms than

PFTs

 Decreased FEV1 and FVC in exposure group compared to controls

¹²⁹XenonMRI

RBC/Gas ratio exposure > control

CT Scan

mean lung density control >> exposure

Study Challenges

- Symptom questionnaires rely on self reported information, subjective and may be biased
- Large amount of variability in smoking exposure (current, previous, years, frequency)

Future Work

- Longer term continuous study tracking participants over years
 - Long term effects on function and structure change
 - Determines whether early structural abnormalities detected via 129Xenon can progress into chronic conditions
- RBC signal has been found to be increased increased in males
 - Future work should further investigate this by controlling for sex and by sex matching the exposure

Coacha

While both the exposure and control groups were young and relatively healthy, but symptomatic and had similar MRI results, it was found that there were signs that potentially indicated early disease manifestation, such as lower lung density and higher red blood cell to gas ratio.

References

- 1. Statistics Canada, 2023
- 2. Rao et al. European Radiology. 2024;34(11);, 7450–7459

Acknowledgments

Investigating the Effect of Vaping on Lungs Using 129Xe MRI

Alexandra Schmidt¹, Shiva Mostafavi¹, James A Liggins¹, Xuan Li¹, Dina Abbas¹, Jonathon A Leipsic³, Janice M Leung^{1,2}, Don D Sin^{1,2}, Rachel L

¹Centre for Heart Lung Innovation, St. Paul's Hospital, ²Division of Respiratory Medicine, Department of Medicine, ³Department of Radiology; CANADA

Introduction

 Vaping rates among Canadian teens and young adults have surged over the past decade¹

 $Eddy^{1,2}$

- There is limited information about the short- and long-term effects of vaping
- •Traditional tools such as pulmonary function tests (PFT) and computed tomography (CT) are not sensitive enough to to detect early-stage pulmonary abnormalities that may manifest in the small airways²

What are the effects of vaping on lungs? ODIECTIVE

Evaluate the lung structure-function effects of vaping using ¹²⁹Xe MRI.

Methods

Study Participants and Design

- Participants ≥19yrs were enrolled:
- Self-reported current vaping with <1.5 pack-year cigarette smoking and joint-year cannabis smoking
- Age and sex-matched healthy, never-vaping, never-smoking controls
- Pulmonary function tests (PFT) reported using GLI race-neutral reference equations³
- •COPD assessment test (CAT) and St. George's Respiratory Questionnaire (SGRQ) administered

MRI

- ¹²⁹Xe MRI performed using 3.0T Vida (Siemens Healthineers), 1-point Dixon gas exchange (**Figure** 1)⁴:
- Ventilation defect percent (VDP)
- Red blood cell (RBC) defect percent
- Membrane to gas ratio (Mem/Gas)
- •RBC to gas ratio (RBC/Gas)
- •RBC to membrane ratio (RBC/Mem)
- High and low signal % of membrane and RBC

Figure 1. Schematic of 129Xe MRI gas exchange and chemical shift.

Statistical Analysis

Measurements compared using the Wilcoxon rank-sum test

Results

Figure 2. Comparison between vaping and never-vaping groups show no difference in ¹²⁹Xe MRI measurements.

Figure 3. Further by participant inspection revealed ¹²⁹Xe MRI gas exchange abnormalities in vaping participants. D=defect (no signal); L=low signal; H=high signal.

Table 1. Participant Demographics and PFT Measurements.

Mean ± SD <i>or</i> Median (range)	Never-Vaping (n=15)	Vaping (n=25)
Female n (%)	9 (60)	11 (44)
BMI kg/m ²	25 ± 4	25 ± 6
Vaping Frequency		
Yrs vaping	_	3 (0.5 - 6)
Vaping times/day	_	5 (1-175)
THC/CBD only n (%)	_	12 (48)
Nicotine only n (%)	_	8 (32)
THC/CBD & nicotine n (%)		5 (20)
PFTs		, ,
FEV ₁ % _{pred}	106 ± 14	109 ± 17
FVC % pred	108 ± 14	115 ± 17
FEV ₁ % _{pred} FVC % _{pred} FEV ₁ /FVC %	84 ± 8	82 ± 8
RV/TLC % pred	117 ± 12	104 ± 16
DL _{CO} % _{pred}	108 ± 13	105 ± 23

predicted; FVC=forced vital capacity; RV=residual volume; TLC=total lung

capacity; DL_{CO}=diffusing capacity of the lungs for carbon monoxide.

Figure 4. Vaping participants reported a greater burden of respiratory symptoms

Discussion

- Heterogenous gas exchange patterns in participants who vape, despite normal PFTs
- •n=1 VDP
- n=3 reduced membrane xenon uptake
- •n=5 increased membrane xenon uptake
- •n=3 RBC defect percent
- n=2 reduced RBC xenon uptake
- n=4 increased RBC xenon uptake
- ¹²⁹Xe MRI may be more sensitive to early lung changes due to vaping
- ¹²⁹Xe MRI can be used for longitudinal monitoring and disease phenotyping

Study Challenges

- Vape use is difficult to quantify
- Sole vape users are rare
- Compound effects of vaping in addition to smoking cigarettes and cannabis joints is poorly understood

Future Work

- •Further comparison between participants who vape nicotine vs THC/CBD
- •Subset of participants underwent bronchoscopy to explore cellular and molecular airway profiles of vaping participants (**Figure 5**)
- Longitudinal follow-up visits to monitor changes in lung s

Figure 5. Image-guided bronchoscopy to characterize cellular and molecular pulmonary changes due to vaping.

Conclusions

Despite normal lung function tests, ¹²⁹Xe MRI gas exchange patterns were abnormal and heterogenous in some participants who reported vaping. These results highlight the potential impacts of vaping, even before decades-long exposures.

References

- 1. Government of Canada, 2023.
- 2. He et al. IJCOPD. 2021;16:3183-3187.
- 3. Bowerman et al. AJRCCM. 2023;207:768-74.
- 4. Wang et al. Med Phys. 2017;44(6):2415-28.

Acknowledgments

CONTACT: Alexandra.Schmidt@hli.ubc.ca, Rachel.Eddy@hli.ubc.ca

