IN THE CLAIMS

COMPLETE LISTING OF ALL CLAIMS, WITH MARKINGS AND STATUS IDENTIFIERS (Currently amended claims showing deletions by strikethrough and additions by underlining)

This listing of claims will replace all prior versions and listings of the claims in the application.

Listing of Claims:

1. (currently amended) A compound of formula (I), $(\mathsf{R}^2\mathsf{R}^3) - \mathsf{A}^7 - \mathsf{A}^8 - \mathsf{A}^9 - \mathsf{A}^{10} - \mathsf{A}^{11} - \mathsf{A}^{12} - \mathsf{A}^{13} - \mathsf{A}^{14} - \mathsf{A}^{15} - \mathsf{A}^{16} - \mathsf{A}^{17} - \mathsf{A}^{18} - \mathsf{A}^{19} - \mathsf{A}^{20} - \mathsf{A}^{21} - \mathsf{A}^{22} - \mathsf{A}^{23} - \mathsf{A}^{24} - \mathsf{A}^{25} - \mathsf{A}^{26} - \mathsf{A}^{27} - \mathsf{A}^{28} - \mathsf{A}^{29} - \mathsf{A}^{30} - \mathsf{A}^{31} - \mathsf{A}^{32} - \mathsf{A}^{33} - \mathsf{A}^{34} - \mathsf{A}^{35} - \mathsf{A}^{36} - \mathsf{A}^{37} - \mathsf{A}^{38} - \mathsf{A}^{39} - \mathsf{R}^1 \ ,$

(1)

wherein

A⁷ is L-His, Ura, Paa, Pta, Amp, Tma-His, des-amino-His, or deleted;

A8 is Ala, B-Ala, Gly, Ser, D-Ala, Aib, Acc, N-Me-Ala, N-Me-D-Ala or N-Me-Gly;

A⁹ is Glu, N-Me-Glu, N-Me-Asp or Asp;

A¹⁰ is Gly, Acc, B-Ala or Aib;

A¹¹ is Thr or Ser:

A¹² is Phe, Acc, Aic, Aib, 2-Pal, 3-Pal, 4-Pal, 1Nal, 2Nal, Cha, Trp or (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe;

A¹³ is Thr or Ser;

A¹⁴ is Ser or Aib;

A¹⁵ is Asp or Glu;

A¹⁶ is Val, Acc, Aib, Leu, Ile, Tle, Nle, Abu, Ala or Cha;

A¹⁷ is Ser, Aib or Thr;

A¹⁸ is Ser, Lys or Thr;

A¹⁹ is Tyr, Cha, Phe, 2-Pal, 3-Pal, 4-Pal, 1Nal, 2Nal, Acc or (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe;

A²⁰ is Leu. Acc. Aib. Nle. Ile. Cha. Tle. Val. Phe or (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe;

A²¹ is Glu or Asp;

A²² is Gly, Acc, B-Ala, Glu or Aib;

A²³ is Gln, Asp, Asn or Glu;

A²⁴ is Ala, Aib, Val, Abu, Tle or Acc;

 A^{25} is Ala, Aib, Val, Abu, Tle, Acc, Lys, Arg, hArg, Orn, HN-CH((CH₂)_n-N(R¹⁰R¹¹))-C(O) or HN-CH((CH₂)_e-X³)-C(O);

 A^{26} is Lys, Arg, hArg, Orn, Lys(N^{ϵ}-decanoyl)), HN-CH((CH_{ϵ})_n-N(R¹⁰R¹¹))-C(O) or HN-CH((CH_{ϵ})_e-X³)-C(O);

A²⁷ is Glu, Asp, Leu, Aib or Lys;

 A^{28} is Phe, 2-Pal, 3-Pal, 4-Pal, 1Nal, 2Nal, $(X^6, X^7, X^8, X^9, X^{10})$ Phe, Aic, Acc, Aib, Cha or Trp; A^{29} is Ile, Acc, Aib, Leu, Nle, Cha, Tle, Val, Abu, Ala or Phe;

A³⁰ is Ala. Aib or Acc:

A³¹ is Trp, 2-Pal, 3-Pal, 4-Pal, 1Nal, 2Nal, Phe, Acc, Aib, (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe or Cha;

A³² is Leu, Acc, Aib, Nle, Ile, Cha, Tle, Phe, (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe or Ala;

A³³ is Val. Acc. Aib, Leu, Ile, Tle, Nle, Cha, Ala, Phe, Abu, Lys or (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe;

 A^{34} is Lys, Arg, hArg, Orn, HN-CH((CH₂)_n-N(R¹⁰R¹¹))-C(O) or HN-CH((CH₂)_e-X³)-C(O);

A³⁵ is B-Ala, D-Ala, Gaba, Ava, HN-(CH₂)_m-C(O), Aib, Acc, D-Arg or a D-amino acid;

 A^{36} is L- or D-Arg, D- or L-Lys, or Lys(N^{ϵ} -decanoyl) or Lys(N^{ϵ} -dodecanoyl) or D- or L-hArg, D- or L-Orn or HN-CH((CH_2)₀-N($R^{10}R^{11}$))-C(O), or HN-CH((CH_2)_e- X^3)-C(O);

A³⁷ is Gly, ß-Ala, Gaba, Aib, Acc, Act, Apc, Aun, Ava, Pro, Dhp, Dmt, Pip, 3-Hpr, 4-Hpr, L- or A³⁷ is Gly, ß-Ala, Gaba, Aib, Acc, Act, Apc, Aun, Ava, Pro, Dhp, Dmt, Pip, L- or

D- Arg, L- or D- Asp or Glu, Lys(N $^{\epsilon}$ -decanoyl), Lys(N $^{\epsilon}$ -dodecanoyl), Lys(N $^{\epsilon}$ -octanoyl), Lys(N $^{\epsilon}$ -tetradecanoyl), or Ser(O-decanoyl);

A³⁸ is D- or L- His, L- or D-Ala, Asn, Gln, Ser, Thr, Acc, Ado, Aib, Apc, Act, Arg, Ava, Gly, ß-Ala. Gaba. or HN-(CH₂)_s-C(O):

A³⁹ is D- or L- His, L- or D-Ala, Asn, Gln, Ser, Thr, Acc, Ado, Aib, Apc, Act, Arg, Aun, Gly, ß-Ala, Gaba, Lys(N^ε-octanoyl), HN-(CH₂)_s-C(O), or deleted;

 R^1 is OH, NH_2 ; (C_1-C_{30}) alkoxy, or $NH-X^2-CH_2-Z^0$, wherein X^2 is a (C_0-C_2) , (C_4-C_9) or $(C_{11}-C_{19})$ hydrocarbon moiety and Z^0 is H, OH, CO_2H or $CONH_2$;

or -C(O)-NHR¹², wherein X⁴ is, independently for each occurrence, -C(O)-, -NH-C(O)- or $-CH_{2^-}$, and wherein f is, independently for each occurrence, an integer from 1 to 29 inclusive; each of R² and R³ is independently selected from the group consisting of H, $(C_1$ - $C_{30})$ alkyl, $(C_2$ - $C_{30})$ alkenyl, optionally substituted phenyl(C_1 - $C_{30})$ alkyl, optionally substituted naphthyl(C_1 - $C_{30})$ alkyl, hydroxy(C_1 - C_{30})alkyl, hydroxy(C_1 - C_{30})alkyl, and hydroxynaphthyl(C_1 - C_{30})alkyl;

wherein the phenyl group of said optionally substituted phenyl(C_1 - C_{30})alkyl moiety, and said naphthyl group of said optionally substituted naphthyl(C_1 - C_{30})alkyl moiety each is, independently for each occurrence, substituted with 1 or more substituents selected, independently for each occurrence, from the group consisting of halo, OH, NH₂, NO₂ and CN;

or one of R^2 and R^3 is $(CH_3)_2$ -N-C=N(CH₃)₂, $(C_1$ -C₃₀)acyl, $(C_1$ -C₃₀)alkylsulfonyl, C(O)X⁵,

$$Y(CH_2)_r - N$$
 $N - (CH_2)_q SO_2 - Y(CH_2)_r - N$
 $N - (CH_2)_q - CO -$
; wherein Y is H, OH or

NH₂; r is 0 to 4; q is 0 to 4; and X^5 is (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy (C_1-C_{30}) alkyl, hydroxy (C_2-C_{30}) alkenyl, hydroxyphenyl (C_1-C_{30}) alkyl,

C₃₀)alkyl or hydroxynaphthyl(C₁-C₃₀)alkyl;

 $X^6, X^7, X^8, X^9, X^{10}$ for each occurrence is independently selected from the group consisting of H, (C_1-C_6) alkyl, OH, OR⁴, NO₂, CN, and halo;

 R^4 is (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy (C_1-C_{30}) alkyl, hydroxy (C_2-C_{30}) alkenyl, hydroxyphenyl (C_1-C_{30}) alkyl or hydroxynaphthyl (C_1-C_{30}) alkyl;

e is, independently for each occurrence, an integer from 1 to 4 inclusive; m is, independently for each occurrence, an integer from 5 to 24 inclusive;

s is, independently for each occurrence, an integer from 5 to 10 or from 12 to 20 inclusive;

n is, independently for each occurrence, an integer from 1 to 5, inclusive;

each of R^{10} and R^{11} is, independently for each occurrence, H, $(C_1 - C_{30})$ alkyl, $(C_1 - C_{30})$ acyl, $(C_1 - C_{30}$

 C_{30})alkylsulfonyl, $-C((NH)(NH_2))$ or

 R^{12} and R^{13} each is, independently for each occurrence, (C_1-C_{30}) alkyl; provided that:

when A⁷ is Ura, Paa or Pta, then R² and R³ are deleted;

when R^{10} is (C_1-C_{30}) acyl, (C_1-C_{30}) alkylsulfonyl, $-C((NH)(NH_2))$ or

-C(O)-CH
$$_2$$
-N $_2$ -CH $_3$, then R 11 is H or (C $_1$ -C $_{30}$)alkyl;

(i) at least one amino acid of a compound of formula (I) is not the same as the native sequence of hGLP-1(7-38 or -39)NH₂ or hGLP-1(7-38 or -39)OH;

(ii) a compound of formula (I) is not an analogue of hGLP-1(7-38 or -39)NH₂ or hGLP-1(7-38, or -39)OH wherein a single position has been substituted by Ala;

(iii) a compound of formula (I) is not $(Arg^{26,34}, Lys^{38})hGLP-1(7-38)-E$, $(Lys^{26}(N^{\epsilon}-alkanoyl))hGLP-1(7-38)-E$, $(Lys^{34}(N^{\epsilon}-alkanoyl))hGLP-1(7-38)-E$, $(Lys^{26,34}-bis(N^{\epsilon}-alkanoyl))hGLP-1(7-38)-E$

alkanoyl))hGLP-1(7-38)-E, (Arg²⁶, Lys³⁴(N^{ϵ}-alkanoyl))hGLP-1(8-38)-E, (Arg^{26,34}, Lys³⁶(N^{ϵ}-alkanoyl))hGLP-1(7-38)-E, wherein E is -OH or -NH₂;

- (iv) a compound of formula (I) is not Z¹-hGLP-1(7-38)-OH, Z¹-hGLP-1(7-38)-NH₂; wherein Z¹ is selected from the group consisting of:
 - (a) (Arg^{26}) , (Arg^{34}) , $(Arg^{26,34})$, (Lys^{36}) , $(Arg^{26}$, $Lys^{36})$, $(Arg^{34}$, $Lys^{36})$, $(D-Lys^{36})$, (Arg^{36}) , $(Arg^{26,34}$, $Lys^{36})$ or $(Arg^{26,36}$, $Lys^{34})$;
 - (b) (Asp²¹);
 - (c) at least one of (Aib8), (D-Ala8) and (Asp9); and
 - (d) (Tyr⁷), (N-acyl-His⁷), (N-alkyl-His⁷), (N-acyl-D-His⁷) or (N-alkyl-D-His⁷); and
- (v) a compound of formula (I) is not a combination of any two of the substitutions listed in groups (a) to (d);

or a pharmaceutically acceptable salt thereof.

- 2. (original) A compound according to claim 1, wherein A^{11} is Thr; A^{13} is Thr; A^{15} is Asp; A^{17} is Ser; A^{18} is Ser or Lys; A^{21} is Glu; A^{23} is Gln or Glu; A^{27} is Glu, Leu, Aib or Lys; and A^{31} is Trp, Phe, 1Nal or 2Nal; or a pharmaceutically acceptable salt thereof.
- 3. (original) A compound according to claim 2, wherein A^9 is Glu, N-Me-Glu or N-Me-Asp; A^{12} is Phe, Acc, 1Nal, 2Nal, or Aic; A^{16} is Val, Acc or Aib; A^{19} is Tyr, 1Nal or 2Nal; A^{20} is Leu, Acc or Cha; A^{24} is Ala, Aib or Acc; A^{25} is Ala, Aib, Acc, Lys, Arg, hArg, Orn, HN-CH((CH₂)_n-N(R¹⁰R¹¹))-C(O) or HN-CH((CH₂)_e-X³)-C(O); A^{28} is Phe, 1Nal or 2Nal; A^{29} is lle or Acc; A^{30} is Ala or Aib; A^{32} is Leu, Acc or Cha; and A^{33} is Val, Lys or Acc; or a pharmaceutically acceptable salt thereof.
- 4. (original) A compound according to claim 1, wherein A⁸ is Ala, Gly, Ser, D-Ala, Aib, A6c, A5c, N-Me-Ala, N-Me-D-Ala or N-Me-Gly; A¹⁰ is Gly; A¹² is Phe, 1Nal, 2Nal, A6c or A5c; A¹⁶ is Val, A6c or A5c; A²⁰ is Leu, A6c, A5c or Cha; A²² is Gly, ß-Ala, Glu or Aib; A²⁴ is Ala or Aib; A²⁹ is Ile, A6c or A5c; A³² is Leu, A6c, A5c or Cha; A³³ is Val, Lys, A6c or A5c; A³⁵ is Aib, ß-Ala, Ado, A6c, A5c, D-Arg or Acc; A³⁷ is Gly, Aib, ß-Ala, D-Ala, Pro, Asp, Aun or D-Asp; A³⁸ is D- or L- His, Asn, Ser, Apc, Act, Gly, ß-Ala or Gaba; and A³⁹ is Ser, Thr or Aib; or a pharmaceutically acceptable salt thereof.
- 5. (original) A compound according to claim 4 or a pharmaceutically acceptable salt thereof, X^4 for each occurrence is -C(O)-; and R^1 is OH or NH₂; or a pharmaceutically acceptable salt thereof.

6. (original) A compound according to claim 5 or a pharmaceutically acceptable salt thereof, wherein R^2 is H and R^3 is (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, (C_1-C_{30}) acyl, (C_1-C_{30}) alkylsulfonyl,

7. (original) A compound according to claim 5 or a pharmaceutically acceptable salt thereof, wherein R^{10} is (C_1-C_{30}) acyl, (C_1-C_{30}) alkylsulfonyl or

-C(O)-CH
$$_2$$
—N—(CH $_2$) $_f$ -CH $_3$, and R 11 is H.

8. (original) A compound according to claim 7 or a pharmaceutically acceptable salt thereof, wherein R^{10} is (C_4-C_{20}) acyl, (C_4-C_{20}) alkylsulfonyl or

$$-C(O)-CH_2-N$$
 $N-(CH_2)_f-CH_3$

9. (original) A compound according to claim 1, wherein:

A⁸ is Ala, D-Ala, Aib, A6c, A5c, N-Me-Ala, N-Me-D-Ala or N-Me-Gly; A¹⁰ is Gly; A¹² is Phe, 1Nal, 2Nal, A6c or A5c; A¹⁶ is Val, A6c or A5c; A²⁰ is Leu, A6c, A5c or Cha; A²² is Gly, \mathcal{B} -Ala, Glu or Aib; A²⁴ is Ala or Aib; A²⁹ is Ile, A6c or A5c; A³² is Leu, A6c, A5c or Cha; A³³ is Val, Lys, A6c or A5c; A³⁵ is Aib, \mathcal{B} -Ala, Ado, A6c, A5c or D-Arg; and A³⁷ is Gly, Aib, \mathcal{B} -Ala, D-Ala, Pro or D-Asp; A³⁸ is D- or L- His, Asn, Ser, Gly, \mathcal{B} -Ala or Gaba; and A³⁹ is Ser, or deleted; X⁴ for each occurrence is -C(O)-; e for each occurrence is independently 1 or 2; R¹ is OH or NH₂; R¹⁰ is

-C(O)-CH
$$_2$$
-N-(CH $_2$) $_f$ -CH $_3$, and R 11 is H;

(C₁-C₃₀)acyl, (C₁-C₃₀)alkylsulfonyl or or a pharmaceutically acceptable salt thereof.

10. (original) A compound according to claim 9, wherein R¹⁰ is (C₄-C₂₀)acyl, (C₄-

C₂₀)alkylsulfonyl or

, or a pharmaceutically

acceptable salt thereof.

- 11. (original) A compound according to claim 1 wherein said compound is according to the formula:
- (Aib^{8,35}, Arg^{26,34}, Phe³¹, Pro³⁷, Ser^{38, 39})hGLP-1(7-39)- NH₂;
- (Aib^{8,35,37}, Arg^{26,34}, Phe³¹, Asn³⁸)hGLP-1(7-38)- NH₂;
- (Aib 8,35,37, Arg 26,34, Phe31, Ser 38)hGLP-1(7-38) NH2;
- (Aib 8,35,37, Gaba38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37, Arg 26,34, Phe31, His38)hGLP-1(7-38) NH2;
- (Aib 8,35, Arg 26,34, Phe 31, β-Ala 37, His 38)hGLP-1(7-38) NH₂;
- (Aib ^{8,35,37}, Arg ^{26,34}, D-His³⁸)hGLP-1(7-38) NH₂;
- (Aib 8,35,37 , β -Ala 38)hGLP-1(7-38) NH₂;
- (Aib 8,35 , Arg 26,34 , β -Ala 37 , His 38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37, Arg 26,34, Phe31, Gly38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37, Arg 26,34, Gly38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37, Arg 26,34, β-Ala 38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37, Arg 26,34, Gaba38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37 , Arg 34 , Phe 31 , His 38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37, Arg 26,34, His 38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37, Arg 26,34, Phe31, Gaba38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37, Arg 26,34, Phe31, Ava38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37, Arg 26,34, Ava38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37 , Arg 34 , Phe 31 , D-His 38)hGLP-1(7-38) NH₂;
- (Aib ^{8,35,37}, Arg³⁴, Phe³¹, Gly³⁸)hGLP-1(7-38) NH₂;
- (Aib 8,35,37, Gly38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37 , Arg 26,34 , Phe 31 , D-His 38)hGLP-1(7-38) NH₂;
- (Aib 8,35 , Arg 26,34 , Phe 31 , β -Ala 37 , D-His 38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37 , Arg 26,34 , Phe 31 , β -Ala 38)hGLP-1(7-38) NH₂;
- (Aib 8,35 , Arg 26,34 , Phe 31 , β -Ala 37,38)hGLP-1(7-38) NH₂;
- (Aib 8,35,37 , Arg 34 , Phe 31 , β -Ala 38)hGLP-1(7-38) NH2; or
- (Aib 8,35,37, Arg34, Phe31, Gaba38)hGLP-1(7-38) NH₂;

or a pharmaceutically acceptable salt thereof.

- 12. (original) A pharmaceutical composition comprising an effective amount of a compound according to claim 1 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent.
- 13. (original) A method of eliciting an agonist effect from a GLP-1 receptor in a subject in need thereof which comprises administering to said subject an effective amount of a compound according to claim 1 or a pharmaceutically acceptable salt thereof.
- 14. (original) A method of treating a disease selected from the group consisting of Type I diabetes, Type II diabetes, obesity, glucagonomas, secretory disorders of the airway, metabolic disorder, arthritis, osteoporosis, central nervous system disease, restenosis, neurodegenerative disease, renal failure, congestive heart failure, nephrotic syndrome, cirrhosis, pulmonary edema, hypertension, treatment of respiratory distress, disorders wherein the reduction of food intake is desired, hypoglycemia and malabsorption syndrome associated with gastroectomy or small bowel resection, in a subject in need thereof which comprises administering to said subject an effective amount of a compound according to claim 1 or a pharmaceutically acceptable salt thereof.
- 15. (original) A method according to claim 14 wherein said disease is Type I diabetes or Type II diabetes.
- 16. (currently amended) A compound of formula (II),

 R^{7} - A^{8} - A^{9} - A^{10} - A^{11} - A^{12} - A^{13} - A^{14} - A^{15} - A^{16} - A^{17} - A^{18} - A^{19} - A^{20} - A^{21} - A^{22} - A^{23} - A^{24} - A^{25} - A^{26} - A^{27} - A^{28} - A^{29} - A^{30} - A^{31} - A^{32} - A^{33} - A^{34} - A^{35} - A^{36} - A^{37} - A^{38} - A^{39} - R^{1}

(II)

wherein

$$R^7$$
 is Z^3 or N X^4 Z^5

A⁸ is Ala, ß-Ala, Gly, Ser, D-Ala, Aib, Acc, N-Me-Ala, N-Me-D-Ala or N-Me-Gly; A⁹ is Glu, N-Me-Glu, N-Me-Asp or Asp;

A¹⁰ is Gly, Acc, B-Ala or Aib; A¹¹ is Thr or Ser; A¹² is Phe, Acc, Aic, Aib, 2-Pal, 3-Pal, 4-Pal, 1Nal, 2Nal, Cha, Trp or (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe; A¹³ is Thr or Ser; A¹⁴ is Ser or Aib; A¹⁵ is Asp or Glu: A¹⁶ is Val, Acc, Aib, Leu, Ile, Tle, Nle, Abu, Ala or Cha: A¹⁷ is Ser, Aib or Thr; A¹⁸ is Ser, Lys or Thr; A¹⁹ is Tyr, Cha, Phe, 2-Pal, 3-Pal, 4-Pal, 1Nal, 2Nal, Acc or (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe; A²⁰ is Leu. Acc. Aib. Nle. Ile. Cha. Tle. Val. Phe or (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe; A²¹ is Glu or Asp: A²² is Gly, Acc, B-Ala, Glu or Aib; A²³ is Gln. Asp. Asn or Glu; A²⁴ is Ala, Aib, Val, Abu, Tle or Acc: A²⁵ is Ala, Aib, Val, Abu, Tle, Acc, Lys, Arg, hArg, Orn, HN-CH((CH₂)_n-N(R¹⁰R¹¹))-C(O) or HN- $CH((CH_2)_e-X^3)-C(O);$ A^{26} is Lys, Arg, hArg, Orn, Lys(N^e-decanoyl)), HN-CH((CH₂)_n-N(R¹⁰R¹¹))-C(O) or HN- $CH((CH_2)_e-X^3)-C(O);$ A²⁷ is Glu Asp, Leu, Aib or Lys; A²⁸ is Phe. 2-Pal. 3-Pal. 4-Pal. 1Nal. 2Nal. (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe, Aic, Acc, Aib, Cha or Trp; A²⁹ is Ile. Acc. Aib. Leu. Nle. Cha. Tle, Val. Abu, Ala or Phe; A³⁰ is Ala, Aib or Acc; A³¹ is Trp, 2-Pal, 3-Pal, 4-Pal, 1Nal, 2Nal, Phe, Acc, Aib, (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe or Cha; A³² is Leu, Acc, Aib, Nle, Ile, Cha, Tle, Phe, (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe or Ala; A³³ is Val, Acc, Aib, Leu, Ile, Tle, Nle, Cha, Ala, Phe, Abu, Lys or (X⁶,X⁷,X⁸,X⁹,X¹⁰)Phe; A^{34} is Lys, Arg, hArg, Orn, HN-CH((CH₂)_n-N(R¹⁰R¹¹))-C(O) or HN-CH((CH₂)_e-X³)-C(O); A³⁵ is B-Ala, D-Ala, Gaba, Ava, HN-(CH₂)_m-C(O), Aib, Acc, D-Arg, a D-amino acid or deleted; A^{36} is L- or D-Arg, D- or L-Lys, or Lys(N^{ϵ}-decanoyl) or Lys(N^{ϵ}-dodecanoyl) or D- or L-hArg, D- or L-Orn or HN-CH((CH_2)_n-N($R^{10}R^{11}$))-C(O), HN-CH((CH_2)_e- X^3)-C(O), or deleted; A³⁷-is Gly, &-Ala, Gaba, Aib, Acc, Act, Apc, Aun, Ava, Pro, Dhp, Dmt, Pip, 3-Hpr, 4-Hpr, L-or A³⁷ is Gly, B-Ala, Gaba, Aib, Acc, Act, Apc, Aun, Ava, Pro, Dhp, Dmt, Pip, L- or D- Arg, L- or D- Asp or Glu, Lys(N^{ϵ} -decanoyl), Lys(N^{ϵ} -dodecanoyl), Lys(N^{ϵ} -octanoyl), Lys(N^ε-tetradecanoyl), Ser(O-decanoyl), or deleted; A³⁸ is D- or L- His, L- or D-Ala, Asn, Gln, Ser, Thr, Acc, Ado, Aib, Apc, Act, Arg, Ava, Gly, B-

Ala, Gaba, HN-(CH₂)_s-C(O) HN-(CH₂)_m-C(O), or deleted;

 A^{39} is D- or L- His, L- or D-Ala, Asn, Gln, Ser, Thr, Acc, Ado, Aib, Apc, Act, Arg, Aun, Gly, ß-Ala, Gaba, Lys(N^ε-octanoyl), HN-(CH₂)_s-C(O) HN-(CH₂)_m-C(O), or deleted; R¹ is OH, NH₂; (C₁-C₃₀)alkoxy, or NH-X²-CH₂-Z⁰, wherein X² is a (C₀-C₂₀)hydrocarbon moiety and Z⁰ is H, OH, CO₂H or CONH₂;

or -C(O)-NHR¹², wherein X⁴ is, independently for each occurrence, -C(O)-, -NH-C(O)- or $-CH_2$ -, and wherein f is, independently for each occurrence, an integer from 1 to 29 inclusive; $X^6, X^7, X^8, X^9, X^{10}$ for each occurrence is independently selected from the group consisting of H, $(C_1$ - C_6)alkyl, OH, OR⁴, NO₂, CN, and halo;

 R^4 is (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy (C_1-C_{30}) alkyl, hydroxy (C_2-C_{30}) alkenyl, hydroxyphenyl (C_1-C_{30}) alkyl or hydroxynaphthyl (C_1-C_{30}) alkyl; Z^1, Z^2, Z^3, Z^4, Z^5 for each occurrence is independently selected from the group consisting of H, (C_4-C_6) alkyl, OH, OR 4 , NO $_2$, CN, and halo; Z^1 and Z^2 can joint together to form a ring system; (C_1-C_6) alkyl, OH, OR 4 , NO $_2$, CN, and halo; Z^1 and Z^2 can join together to form a ring system; e is, independently for each occurrence, an integer from 1 to 4 inclusive; m is, independently for each occurrence, an integer from 5 to 24 inclusive;

n is, independently for each occurrence, an integer from 1 to 5, inclusive;

iris, independently for each oboditioned, all integer from 1 to 5, inclusive,

t is, independently for each occurrence, an integer from 0 to 4, inclusive;

each of R¹⁰ and R¹¹ is, independently for each occurrence, H, (C₁-C₃₀)alkyl, (C₁-C₃₀)acyl, (C₁-

 C_{30})alkylsulfonyl, $-C((NH)(NH_2))$ or

 R^{12} and R^{13} each is, independently for each occurrence, $(C_1\text{-}C_{30})$ alkyl;

provided that:

 R^7 is not $C(O)X^{11}$, wherein X^{11} is phenyl(C_1 - C_{30})alkyl, naphthyl(C_1 - C_{30})alkyl, hydroxy(C_1 - C_{30})alkyl, hydroxy(C_2 - C_{30})alkenyl, hydroxyphenyl(C_1 - C_{30})alkyl or hydroxynaphthyl(C_1 - C_{30})alkyl;

when
$$R^{10}$$
 is (C_1-C_{30}) acyl, (C_1-C_{30}) alkylsulfonyl, $-C((NH)(NH_2))$ or $-C(O)-CH_2-N$ $N-(CH_2)_f-CH_3$, then R^{11} is H or (C_1-C_{30}) alkyl;

or a pharmaceutically acceptable salt thereof.

- 17. (orginal) A compound according to claim 16, wherein A¹¹ is Thr; A¹³ is Thr; A¹⁵ is Asp; A¹⁷ is Ser; A¹⁸ is Ser or Lys; A²¹ is Glu; A²³ is Gln or Glu; A²⁷ is Glu, Leu, Aib or Lys; and A³¹ is Trp, Phe, 1Nal or 2Nal; or a pharmaceutically acceptable salt thereof.
- 18. (original) A compound according to claim 17, A⁷ is 4-imidazol-carbonyl, 4-nitrophenyl-acetyl, 3-chloro-4-hydroxyphenyl-acetyl, 4-hydroxyphenyl-acetyl, 3-(4-aminophenyl)-propionyl, 3-(4-nitrophenyl)-propionyl, 3-(3,4-difluorophenyl)-propionyl, 3-fluoro-4-hydroxyphenyl-acetyl or 4-aminophenyl-acetyl; A⁹ is Glu, N-Me-Glu or N-Me-Asp; A¹² is Phe, Acc, 1Nal, 2Nal, or Aic; A¹⁶ is Val, Acc or Aib; A¹⁹ is Tyr, 1Nal or 2Nal; A²⁰ is Leu, Acc or Cha; A²⁴ is Ala, Aib or Acc; A²⁵ is Ala, Aib, Acc, Lys, Arg, hArg, Orn, HN-CH((CH₂)_n-N(R¹⁰R¹¹))-C(O) or HN-CH((CH₂)_e-X³)-C(O); A²⁸ is Phe, 1Nal or 2Nal; A²⁹ is lle or Acc; A³⁰ is Ala or Aib; A³² is Leu, Acc or Cha; and A³³ is Val, Lys or Acc; or a pharmaceutically acceptable salt thereof.
- 19. (original) A compound according to claim 18, wherein A⁸ is Ala, Gly, Ser, D-Ala, Aib, A6c, A5c, N-Me-Ala, N-Me-D-Ala or N-Me-Gly; A¹⁰ is Gly; A¹² is Phe, 1Nal, 2Nal, A6c or A5c; A¹⁶ is Val, A6c or A5c; A²⁰ is Leu, A6c, A5c or Cha; A²² is Gly, ß-Ala, Glu or Aib; A²⁴ is Ala or Aib; A²⁹ is Ile, A6c or A5c; A³² is Leu, A6c, A5c or Cha; A³³ is Val, Lys, A6c or A5c; A³⁵ is Aib, ß-Ala, Ado, A6c, A5c, D-Arg, Acc or Gly; A³⁷ is Gly, Aib, ß-Ala, D-Ala, Pro, Asp, Aun or D-Asp; A³⁸ is D- or L- His, Asn, Ser, Apc, Act, Gly, ß-Ala or Gaba; and A³⁹ is Ser, Thr or Aib; or a pharmaceutically acceptable salt thereof.
- 20. (original) A compound according to claim 19 or a pharmaceutically acceptable salt thereof, wherein X⁴ for each occurrence is -C(O)-; and R¹ is OH or NH₂; or a pharmaceutically acceptable salt thereof.
- 21. (original) A compound according to claim 16 wherein A⁸ is Ala, D-Ala, Aib, A6c, A5c, N-Me-Ala, N-Me-D-Ala or N-Me-Gly; A¹⁰ is Gly; A¹² is Phe, 1Nal, 2Nal, A6c or A5c; A¹⁶ is Val, A6c or A5c; A²⁰ is Leu, A6c, A5c or Cha; A²² is Gly, ß-Ala, Glu or Aib; A²⁴ is Ala or Aib; A²⁹ is lle, A6c or A5c; A³² is Leu, A6c, A5c or Cha; A³³ is Val, Lys, A6c or A5c; A³⁵ is Aib, ß-Ala, Ado, A6c, A5c D-Arg or Gly; and A³⁷ is Gly, Aib, ß-Ala, D-Ala, Pro or D-Asp; A³⁸ is D- or L- His, Asn, Ser, Gly, ß-Ala or Gaba; and A³⁹ is Ser, or deleted; X⁴ for each occurrence is -C(O)-; e for each occurrence is independently 1 or 2; R¹ is OH or NH₂; R¹⁰ is (C₁-C₃₀)acyl, (C₁-C₁-C₂₀)acyl, (C₁-C₁-C₂₀)acyl, (C₁-C₁-C₂₀)acyl, (C₁-C₂₀)acyl, (C₁-C₂₀-C₂₀)acyl, (C₁-C₂₀-C₂₀-C₂₀-C₂₀-C₂₀-C₂₀-C₂₀-C₂₀-C₂

-C(O)-CH
$$_2$$
-N-(CH $_2$) $_f$ -CH $_3$

C₃₀)alkylsulfonyl or , and R¹¹ is H; or a pharmaceutically acceptable salt thereof.

22. (original) A compound according to claim 21 wherein R¹⁰ is (C₄-C₂₀)acyl, (C₄-

C₂₀)alkylsulfonyl or acceptable salt thereof.

or a pharmaceutically

23. (original) A compound according to claim 16 wherein said compound is

(4Hppa⁷)GLP-1(7-36)NH₂;

(3Hppa⁷)GLP-1(7-36)NH₂;

(phenylacetyl⁷)hGLP-1(7-36)NH₂;

((3-fluoro-4-hydroxyphenyl-acetyl)⁷)hGLP-1(7-36)NH₂;

((4-imidazol-carbonyl)⁷)hGLP-1(7-36) NH₂;

((4-nitrophenyl-acetyl)⁷)hGLP-1(7-36) NH₂;

((3-chloro-4-hydroxyphenyl-acetyl)⁷)hGLP-1(7-36) NH₂;

((4-hydroxyphenylacetyl)⁷)hGLP-1(7-36) NH₂;

((4-aminophenyl-acetyl)7)hGLP-1(7-36) NH₂;

 $((3-(3-hydroxyphenyl)-propionyl)^7)hGLP-1(7-36) NH_2;$

((3-phenyl-propionyl)⁷)hGLP-1(7-36) NH₂;

 $((3-(4-aminophenyl)-propionyl)^7)hGLP-1(7-36) NH_2;$

((3-(4-nitrophenyl)-propionyl)⁷)hGLP-1(7-36) NH₂;

((3-(2-hydroxyphenyl)-propionyl)7)hGLP-1(7-36) NH₂;

((3-(3,4-difluorophenyl)-propionyl)⁷)hGLP-1(7-36) NH₂; or

((3-(2,4-dihydroxyphenyl)-propionyl)⁷)hGLP-1(7-36) NH₂;

or a pharmaceutically acceptable salt thereof.

- 24. (original) A pharmaceutical composition comprising an effective amount of a compound according to claim 16 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent.
- 25. (original) A method of eliciting an agonist effect from a GLP-1 receptor in a subject in need thereof which comprises administering to said subject an effective amount of a compound according to claim 16 or a pharmaceutically acceptable salt thereof.

26. (original) A method of treating a disease selected from the group consisting of Type I diabetes, Type II diabetes, obesity, glucagonomas, secretory disorders of the airway, metabolic disorder, arthritis, osteoporosis, central nervous system disease, restenosis, neurodegenerative disease, renal failure, congestive heart failure, nephrotic syndrome, cirrhosis, pulmonary edema, hypertension, treatment of respiratory distress, disorders wherein the reduction of food intake is desired, hypoglycemia and malabsorption syndrome associated with gastroectomy or small bowel resection, in a subject in need thereof which comprises administering to said subject an effective amount of a compound according to claim 16 or a pharmaceutically acceptable salt thereof.

27. (original) A method according to claim 26 wherein said disease is Type I diabetes or Type II diabetes.