TEST LIBRERÍA PI-OSISOFT (AF Client) + PYTHON

creada por: Roberto Sánchez (rg.sanchez.a@gmail.com)

Es necesario para el uso de esta librería:

- Python 3.6 (por compatibilidad con Pythonnet)
- PI-SDK (version 2014 mínimo)
- AF-Client (version 2016 mínimo)
- Instalar Pythonnet: conda install -c pythonnet pythonnet

1. Importación de DLL y librerías

```
In [1]: import pi_connect as p #Librería de conexión con Pi-Server import pandas as pd #Librería de análisis de datos import matplotlib.pyplot as plt #Librería de gráficos (plots) %matplotlib inline
```

2. Conexión servidor PI

```
In [2]: pi_svr = p.PIserver()
```

3. Traer datos desde el servidor PI

```
In [3]: tag_name = "CAL_DIST_QUITO_P.CARGA_TOT_1_CAL.AV" #Nombre de la Tag
    time_range = pi_svr.time_range("2018-02-12", "2018-02-14") #Rango de tiempo en el
    que se desea consultar
    pt = p.PI_point(pi_svr, tag_name) #Punto PI (None si no ex
    iste)
```

3.1. Valor en el momento

```
In [4]: value1 = pt.snapshot()
    print("value1:" + str(value1))
    value2 = pt.current_value()
    print("value2:" + str(value2))

    value1:576.7722
    value2:576.7722
```

3.2. Valores guardados (registrados)

```
In [5]: df_raw = pt.recorded_values(time_range)
    df_raw.plot(title="Recorded values")
```

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x17f4292bba8>

3.3. Diferentes maneras de traer datos:

```
In [6]: n_pixels = 130
    df_plot = pt.plot_values(time_range, n_pixels)
    df_plot.plot(title="Ploteo para " + str(n_pixels))
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x17f43f6f0f0>


```
In [7]: #Span en el que se desea realizar cálculos, interpolaciones, etc.
# df_plot = df_raw
span = pi_svr.span("1h")
# span = pi_svr.span("1h 30m")
df_interpolated = pt.interpolated(time_range, span)
int_label = "Interporlada cada " + str(span)
df_interpolated.columns = [int_label]
df_new = pd.concat([df_plot, df_interpolated], axis=1)
df_new.head(40)
```

Out[7]:

	CAL_DIST_QUITO_P.CARGA_TOT_1_CAL.AV	Interporlada cada 1hr
2018-02-12 00:00:00	374.7252	374.7252
2018-02-12 00:07:56	365.7029	NaN
2018-02-12 00:13:16	410.0081	NaN
2018-02-12 00:22:04	393.3328	NaN
2018-02-12 00:22:16	392.5262	NaN
2018-02-12 00:26:36	398.8338	NaN
2018-02-12 00:41:44	348.7035	NaN
2018-02-12 00:44:16	349.3263	NaN
2018-02-12 00:44:24	349.4553	NaN
2018-02-12 00:47:16	384.8138	NaN
2018-02-12 01:00:00	NaN	375.8502
2018-02-12 01:00:56	344.3187	NaN
2018-02-12 01:06:24	369.3279	NaN
2018-02-12 01:06:36	369.2850	NaN
2018-02-12 01:07:16	376.5108	NaN
2018-02-12 01:27:24	337.8579	NaN
2018-02-12 01:28:36	339.5704	NaN
2018-02-12 01:28:44	337.7782	NaN
2018-02-12 01:35:04	373.1414	NaN
2018-02-12 01:44:44	333.6454	NaN
2018-02-12 01:50:44	344.9850	NaN
2018-02-12 01:50:56	349.8914	NaN
2018-02-12 01:59:24	366.4359	NaN
2018-02-12 02:00:00	NaN	361.7854
2018-02-12 02:10:36	329.6935	NaN
2018-02-12 02:12:44	359.5676	NaN
2018-02-12 02:12:56	362.8280	NaN
2018-02-12 02:24:36	329.9762	NaN
2018-02-12 02:26:36	365.6944	NaN
2018-02-12 02:35:04	357.7415	NaN
2018-02-12 02:35:16	356.8914	NaN
2018-02-12 02:46:04	325.8422	NaN
2018-02-12 02:54:44	360.0164	NaN
2018-02-12 02:57:04	361.8953	NaN
2018-02-12 02:57:16	357.9715	NaN
2018-02-12 02:59:56	364.2855	NaN
2018-02-12 03:00:00	NaN	364.2855
2018-02-12 03:06:44	325.0577	NaN
2018-02-12 03:19:12	352.5183	NaN
2018-02-12 03:19:24	352.0245	NaN

```
In [8]: import matplotlib.dates as mdates
        # seteo del tamaño de figura
        plt.figure(figsize=(12, 6))
        ax = plt.subplot(1, 1, 1)
        ax.plot(df_new.index, df_new[tag_name])
        ax.plot(df new.index, df new[int label], marker='o')
        # Creación de leyendas y personalización de ticks:
        ax.legend([tag name, int label], loc='best')
        # ticks periods = 4 determina 4 ticks
        # 1b = pd.date range(df new.index[0], df new.index[-1], periods=5)
        # lb = [x.strftime("%Y-%m-%d %H") for x in lb]
        # ax.xticks(lb)
        locator = mdates.AutoDateLocator(minticks=3, maxticks=7)
        formatter = mdates.ConciseDateFormatter(locator)
        ax.xaxis.set_major_locator(locator)
        ax.xaxis.set_major_formatter(formatter)
```



```
In [9]: df_average = pt.average(time_range, span)
    lb_av = "Promediada cada " + str(span)
    df_average.columns = [lb_av]
    df_new = pd.concat([df_plot, df_average], axis=1)
    df_new.head(40)
```

Out[9]:

	CAL_DIST_QUITO_P.CARGA_TOT_1_CAL.AV	Promediada cada 1hr
2018-02-12 00:00:00	374.7252	378.666455
2018-02-12 00:07:56	365.7029	NaN
2018-02-12 00:13:16	410.0081	NaN
2018-02-12 00:22:04	393.3328	NaN
2018-02-12 00:22:16	392.5262	NaN
2018-02-12 00:26:36	398.8338	NaN
2018-02-12 00:41:44	348.7035	NaN
2018-02-12 00:44:16	349.3263	NaN
2018-02-12 00:44:24	349.4553	NaN
2018-02-12 00:47:16	384.8138	NaN
2018-02-12 01:00:00	NaN	359.292500
2018-02-12 01:00:56	344.3187	NaN
2018-02-12 01:06:24	369.3279	NaN
2018-02-12 01:06:36	369.2850	NaN
2018-02-12 01:07:16	376.5108	NaN
2018-02-12 01:27:24	337.8579	NaN
2018-02-12 01:28:36	339.5704	NaN
2018-02-12 01:28:44	337.7782	NaN
2018-02-12 01:35:04	373.1414	NaN
2018-02-12 01:44:44	333.6454	NaN
2018-02-12 01:50:44	344.9850	NaN
2018-02-12 01:50:56	349.8914	NaN
2018-02-12 01:59:24	366.4359	NaN
2018-02-12 02:00:00	NaN	349.428504
2018-02-12 02:10:36	329.6935	NaN
2018-02-12 02:12:44	359.5676	NaN
2018-02-12 02:12:56	362.8280	NaN
2018-02-12 02:24:36	329.9762	NaN
2018-02-12 02:26:36	365.6944	NaN
2018-02-12 02:35:04	357.7415	NaN
2018-02-12 02:35:16	356.8914	NaN
2018-02-12 02:46:04	325.8422	NaN
2018-02-12 02:54:44	360.0164	NaN
2018-02-12 02:57:04	361.8953	NaN
2018-02-12 02:57:16	357.9715	NaN
2018-02-12 02:59:56	364.2855	NaN
2018-02-12 03:00:00	NaN	349.322400
2018-02-12 03:06:44	325.0577	NaN
2018-02-12 03:19:12	352.5183	NaN
2018-02-12 03:19:24	352.0245	NaN

7 de 14

```
In [10]: plt.figure(figsize=(12, 6))
    ax = plt.subplot(1, 1, 1)
    ax.plot(df_new.index, df_new[tag_name])
    ax.plot(df_new.index, df_new[lb_av], marker='o')

# Creación de leyendas y personalización de ticks:
    ax.legend([tag_name, lb_av], loc='best')
    locator = mdates.AutoDateLocator(minticks=3, maxticks=7)
    formatter = mdates.ConciseDateFormatter(locator)
    ax.xaxis.set_major_locator(locator)
    ax.xaxis.set_major_formatter(formatter)
```



```
In [11]: df_max = pt.max(time_range, span)
    df_min = pt.min(time_range, span)
    mx_lb = "Máxima cada " + str(span)
    mn_lb = "Mínima cada " + str(span)
    df_max.columns = [mx_lb]
    df_min.columns = [mn_lb]
    df_new = pd.concat([df_plot, df_max, df_min], axis=1)
    df_new.head(40)
```

Out[11]:

	CAL_DIST_QUITO_P.CARGA_TOT_1_CAL.AV	Máxima cada 1hr	Mínima cada 1hr
2018-02-12 00:00:00	374.7252	NaN	NaN
2018-02-12 00:07:56	365.7029	NaN	NaN
2018-02-12 00:13:16	410.0081	410.008057	NaN
2018-02-12 00:22:04	393.3328	NaN	NaN
2018-02-12 00:22:16	392.5262	NaN	NaN
2018-02-12 00:26:36	398.8338	NaN	NaN
2018-02-12 00:41:44	348.7035	NaN	348.703491
2018-02-12 00:44:16	349.3263	NaN	NaN
2018-02-12 00:44:24	349.4553	NaN	NaN
2018-02-12 00:47:16	384.8138	NaN	NaN
2018-02-12 01:00:56	344.3187	NaN	NaN
2018-02-12 01:05:36	NaN	376.986511	NaN
2018-02-12 01:06:24	369.3279	NaN	NaN
2018-02-12 01:06:36	369.2850	NaN	NaN
2018-02-12 01:07:16	376.5108	NaN	NaN
2018-02-12 01:27:24	337.8579	NaN	NaN
2018-02-12 01:28:36	339.5704	NaN	NaN
2018-02-12 01:28:44	337.7782	NaN	NaN
2018-02-12 01:35:04	373.1414	NaN	NaN
2018-02-12 01:44:44	333.6454	NaN	333.645447
2018-02-12 01:50:44	344.9850	NaN	NaN
2018-02-12 01:50:56	349.8914	NaN	NaN
2018-02-12 01:59:24	366.4359	NaN	NaN
2018-02-12 02:10:36	329.6935	NaN	NaN
2018-02-12 02:12:44	359.5676	NaN	NaN
2018-02-12 02:12:56	362.8280	NaN	NaN
2018-02-12 02:24:36	329.9762	NaN	NaN
2018-02-12 02:26:36	365.6944	365.694397	NaN
2018-02-12 02:35:04	357.7415	NaN	NaN
2018-02-12 02:35:16	356.8914	NaN	NaN
2018-02-12 02:46:04	325.8422	NaN	325.842163
2018-02-12 02:54:44	360.0164	NaN	NaN
2018-02-12 02:57:04	361.8953	NaN	NaN
2018-02-12 02:57:16	357.9715	NaN	NaN
2018-02-12 02:59:56	364.2855	NaN	NaN
2018-02-12 03:06:44	325.0577	NaN	NaN
2018-02-12 03:19:12	352.5183	NaN	NaN
2018-02-12 03:19:24	352.0245	NaN	NaN
2018-02-12 03:30:44	323.1518	NaN	323.151764
2018-02-12 03:38:36	361.6958	NaN	NaN

10 de 14

```
In [12]: plt.figure(figsize=(12, 6))
    ax = plt.subplot(1, 1, 1)
    ax.plot(df_new.index, df_new[tag_name])
    ax.plot(df_new.index, df_new[mx_lb], 'ro')
    ax.plot(df_new.index, df_new[mn_lb], 'kX')

# Creación de leyendas y personalización de ticks:
    ax.legend([tag_name, mx_lb, mn_lb], loc='best')
    locator = mdates.AutoDateLocator(minticks=3, maxticks=7)
    formatter = mdates.ConciseDateFormatter(locator)
    ax.xaxis.set_major_locator(locator)
    ax.xaxis.set_major_formatter(formatter)
```


3.4. Cálculos avanzados:

Cálculo del cumplimiento de una condición en un periodo de tiempo:

```
In [13]: # limit = 324
limit = 350
filter_expression = "'{0}' < {1}".format(tag_name, limit)
print("La expresión a usar es: " + "\n\n" + filter_expression)
df_filter = pt.recorded_values(time_range, filterExpression=filter_expression)
lb_fil = filter_expression
df_filter.columns = [lb_fil]
df_filter</pre>
```

La expresión a usar es:

'CAL_DIST_QUITO_P.CARGA_TOT_1_CAL.AV' < 350

Out[13]:

'CAL DIST QUITO P.CARGA TOT 1 CAL.AV' < 350

	CAL_DIST_QOTTO_F.CARGA_TOT_T_CAL.AV \ 330
2018-02-12 00:41:44	348.7035
2018-02-12 00:42:36	349.9134
2018-02-12 00:42:44	349.2024
2018-02-12 00:42:56	348.7139
2018-02-12 00:43:04	349.3289
2018-02-13 07:06:12	348.9105
2018-02-13 07:15:12	346.8138
2018-02-13 07:15:24	347.4648
2018-02-13 07:15:32	346.5060
2018-02-13 07:15:44	348.5477

1310 rows × 1 columns


```
In [15]: # instalar ploity si no está disponible:
import subprocess as sub
sub.run("pip install plotly")
```

Out[15]: CompletedProcess(args='pip install plotly', returncode=0)

```
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
plot1 = go.Scatter(x=df_new.index, y=df_new[tag_name], name=tag_name)
plot2 = go.Scatter(x=df_new.index, y=df_new[lb_fil], name=lb_fil)
plot3 = go.Scatter(x=df_new.index, y=[limit]*len(df_new.index), name=str(limit))
iplot([plot1, plot2, plot3])
```



```
In [17]: plot([plot1, plot2, plot3])
Out[17]: 'temp-plot.html'
In []:
```