1 Запись функции, определяющей зависимость полей и векторных потенциалов гармонической плоской волны в линии передачи от времени t и продольной координаты z. Понятия частоты, временного периода, продольного волнового числа, длины волны, фазовой и групповой

$$\{\vec{E},\vec{H}\}=\{\vec{E_0},\vec{H_0}\}e^{i(wt-hz)},\ \vec{A}^{e,m}=\vec{z_0}\psi^{e,m}(r_\perp)e^{-ihz}$$
 ψ - произвольная скалярная функция(амплитуда векторного потенциала), $(wt-hz)$ - фаза $\varkappa^2=k^2-h^2$ - поперечное волновое число, $k=\frac{w}{c}\sqrt{\mu\varepsilon}$ - волновое число в среде, h - продольное волновое число. $T=\frac{2\pi}{w}, \lambda_{\rm B}=\frac{2\pi}{h}, V_{\Phi}=\frac{w}{h}, V_{\rm FP}=\frac{{\rm d}w}{{\rm d}h}$. Для волновода без заполнения $V_{\Phi}V_{\rm FP}=c^2$. $V_{\rm FP}\leq c$.

2 Волновое уравнение для векторного потенциала в отсутствие источников при произвольной и гармонической зависимости от времени. Дифференциальное уравнение для скалярных поперечных волновых функций $\Psi^{(e),(m)}(r_{\perp})$, определяющих зависимость полей в линии передачи от поперечных координат. Понятие поперечного волнового числа.

$$\Delta \vec{A} - k^2 \vec{A} = 0, \Delta = \frac{\partial^2}{\partial z^2} + \Delta_\perp, \Delta_\perp = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2}, \frac{\partial^2}{\partial z^2} = -h^2.$$

При гармонической зависимости от t: $\Delta \vec{A_{\perp}} - (k^2 - h^2) \vec{A} = 0$. или каппа?

Решение: $\vec{a}^{e,m} = \vec{z_0} \psi^{e,m}(r_\perp) e^{-ihz}$ (в отсутствии сторонних источников);

$$TE(E_z = 0): \Delta_{\perp} \psi^m + \varkappa^2 \psi^m = 0;$$

$$TM(H_z = 0): \Delta_{\perp} \psi^e + \varkappa^2 \psi^e = 0;$$

$$TEM(E_z = 0)$$
: $\Delta_{\perp} \psi = 0$. $\varkappa^2 = k^2 - h^2$ - поперечное волновое число.

$$\varkappa = \kappa - n$$
 - поперечное волновое число.

$$\varkappa_n = \sqrt{\frac{w^2}{c^2}\mu\varepsilon + h_n^2}, n = 1, 2, 3, \dots$$
 - номер моды.

3 Понятие о ТЕ, ТМ и ТЕМ волнах. Импедансная связь поперечных компонент полей. Определение поперечного волнового импеданса.

$$\begin{cases} \vec{H}, \vec{E} \rbrace = \vec{z_0} \lbrace H_z, E_z \rbrace + \lbrace \vec{H_\perp}, \vec{E_\perp} \rbrace \\ \text{TE}(H_z = 0) & \text{TM}(E_z = 0) \\ E_z = \frac{\varkappa^2}{ik_0 \varepsilon \mu} \psi^e \\ \vec{E_\perp} = \frac{-h}{k_0 \varepsilon \mu} \nabla_\perp \psi^e \\ \vec{H_\perp} = \frac{1}{\mu} [\nabla_\perp \psi^e, \vec{z_0}] \end{cases} e^{i(wt-hz)} \qquad \vec{H_\perp} = \frac{-h}{k_0 \varepsilon \mu} \nabla_\perp \psi^m \\ \vec{E_\perp} = \frac{1}{\varepsilon} [\nabla_\perp \psi^m, \vec{z_0}] \end{cases} e^{i(wt-hz)} \qquad \vec{H_\perp} = \frac{1}{\mu} [\nabla_\perp \psi, \vec{z_0}] \end{cases} e^{i(wt-hz)}$$

 $E_{\perp} = \zeta_{\perp}[\vec{H_{\perp}}, \vec{z_0}]$ - импедансная связь

Поперечный импеданс(ζ_{\perp}):

TE TM TEM
$$\sqrt{\frac{\mu}{\varepsilon}} \frac{k}{h} \sqrt{\frac{\mu}{\varepsilon}} \frac{k}{h} \sqrt{\frac{\mu}{\varepsilon}}$$

4 Граничные условия для полей и поперечных волновых функций $\Psi^{(e)}$ и $\Psi^{(m)}$ в линиях передачи с идеально проводящими границами. Математическая формулировка задачи отыскания собственных волн различных типов в идеальной линии.

$$E_{\tau}=0, H_n=0 \text{ - }\Gamma. \text{ У.}$$
 TE:
$$\begin{cases} \Delta_{\perp}\psi^m+\varkappa^2\psi^m=0 \\ \frac{\partial\psi^m}{\partial n}|_{L}=0 \text{ - условие Дирихле} \end{cases} \text{ TM: } \begin{cases} \Delta_{\perp}\psi^e+\varkappa^2\psi^e=0 \\ \frac{\partial\psi^e}{\partial n}|_{L}=0 \text{ - условие Неймана} \end{cases} \begin{cases} \Delta_{\perp}\psi=0 \\ \psi=const_i|_{L}=0 \end{cases}$$

Дисперсионное уравнение для волн в идеальных линиях. Понятие критической частоты и критической длины волны. Графики зависимости полей от продольной координаты в различные моменты времени при частотах, больших или меньших критической. Зависимости длины волны, фазовой и групповой скорости в линии передачи от частоты.

$$h_n = \pm \sqrt{k^2 - \varkappa^2} = \pm \sqrt{\frac{w^2}{c^2} \varepsilon \mu + \varkappa_n}, \varkappa_n = 1, 2, 3, \dots$$

В ИЛП есть бесконечные наборы ТЕ и ТМ волн, называемые модой. Любой моде соответствует своё дисперсионное соотношение. При этом \varkappa_n не зависит от ε, μ, w , а определяется геометрией

Существует критическая частота, при которой осуществляется переход от распространения волны $(w > w_{\text{кр}})$ к нераспространению $(w < w_{\text{кр}})$.

$$w_{\rm kp} = \varkappa_n \frac{c}{\sqrt{\varepsilon \mu}}$$
, в вакууме $\lambda_{\rm kp} = 2\pi/\varkappa_n$.

$$\lambda_{\rm B} = 2\pi/h = \frac{\lambda_0}{\sqrt{1 - \frac{w_{\rm Kp}^2}{w^2}}}, V_{\rm Fp} = c\sqrt{1 - \frac{w_{\rm Kp}^2}{w^2}}, V_{\Phi} = \frac{c}{\sqrt{1 - \frac{w_{\rm Kp}^2}{w^2}}}$$

$$h=\sqrt{\frac{w^2}{c^2}-\varkappa^2}, k=w/c$$
 - дисперсионное уравнение для плоской волны.

- 6 В каких линиях могут существовать главные (ТЕМ) волны? Поля ТЕМ волны в коаксиальной линии (форма силовых линий и зависимость от координат).
- Спектр поперечных волновых чисел прямоугольного волновода. Низшая мода (поперечное волновое число, графики поля, картина силовых линий). Низшая мода круглого волновода (поперечное волновое число, картина силовых линий)
- 8 Причины затухания волн в линиях передачи. Описание затухания, обусловленного потерями энергии в заполняющей среде. Графики зависимости поля в линии передачи с потерями от продольной координаты в различные моменты времени.
- Описание главных волн в линиях передачи в терминах тока и напряжения: определения величин тока и напряжения, погонной емкости и индуктивности, определения волнового сопротивления, импеданса нагрузки, импеданса в любом сечении линии с произвольной нагрузкой на конце.
- Коэффициент отражения волны от нагрузки на конце линии. Понятие согласования линии с
- Спектр собственных частот идеального прямоугольного резонатора. Низшая мода прямоуголь-11 ного резонатора (собственная частота, структура поля).
- 12 Причины затухания колебаний в реальных резонаторах. Описание затухания, обусловленного потерями энергии в заполняющей среде. График зависимости поля собственного колебания в реальном резонаторе от времени.
- 13 Представление полей, создаваемых в волноводе заданными сторонними токами, в виде суперпозиции полей собственных мод (общий вид формул возбуждения волноводов).
- Представление полей, создаваемых в резонаторе заданными сторонними токами, в виде суперпозиции полей собственных колебаний (общий вид формул возбуждения резонатора). Резонансные свойства полей.
- 15 Способы возбуждения волноводов и резонаторов при помощи штыря и петли.
- Определения дифференциального и полного сечений рассеяния тела. Выражение для амплитуды поля и плотности потока энергии рассеянной волны в дальней зоне через дифференциальное сечение рассеяния.
- 17 Приближение геометрической оптики и условия его применимости в задачах дифракции плоской волны на теле. Понятие луча и лучевой трубки.