Project Report ML Perspective

Data-Driven Market Segmentation: A Machine Learning Perspective

Feature Engineering & Scaling Techniques

- Scaling Techniques: Standardization with StandardScaler (fit and transform).
- **Dimensionality Reduction:** Principal Component Analysis (PCA) was applied to reduce dimensions for better visualization.
- **Visualization:** Transformed dataset into 2D for effective visualization.
- **K-Value Determination:** Used the Elbow Method and Silhouette Score to determine the optimal number of clusters.

Insight: Optimal K-Value = 3

• Statistical Test: Conducted a One-Way ANOVA test to analyze feature significance.

```
Column: BALANCE
F-statistic: 13546.2555
P-value: 0
Result: Statistically significant difference between groups
Column: BALANCE_FREQUENCY
F-statistic: 1817.7030
   P-value: 0
Result: Statistically significant difference between groups
Column: PURCHASES
F-statistic: 16006.0741
P-value: 0
Result: Statistically significant difference between groups
Column: ONEOFF_PURCHASES
F-statistic: 9397.5773
   Result: Statistically significant difference between groups
Column: INSTALLMENTS_PURCHASES
F-statistic: 8709.5991
P-value: 0
Result: Statistically significant difference between groups
Column: CASH_ADVANCE
F-statistic: 18280.6685
   P-value: 0
Result: Statistically significant difference between groups
Column: PURCHASES_FREQUENCY
   F-statistic: 8448.0923
   Result: Statistically significant difference between groups
Column: ONEOFF_PURCHASES_FREQUENCY
F-statistic: 15958.4270
P-value: 0
Result: Statistically significant difference between groups
Column: PURCHASES_INSTALLMENTS_FREQUENCY
F-statistic: 5493.5721
   P-value: 0
Result: Statistically significant difference between groups
Column: CASH_ADVANCE_FREQUENCY
F-statistic: 27464.8890
   Result: Statistically significant difference between groups
```

Column: CASH_ADVANCE_TRX F-statistic: 16045.4287 P-value: 0
Result: Statistically significant difference between groups Column: PURCHASES_TRX F-statistic: 20973.7154 P-value: 0 Result: Statistically significant difference between groups Column: CREDIT LIMIT F-statistic: 8663.4739
P-value: 0
Result: Statistically significant difference between groups Column: PAYMENTS F-statistic: 5790.1256 Result: Statistically significant difference between groups Column: MINIMUM_PAYMENTS F-statistic: 1095.2634 Result: Statistically significant difference between groups Column: PRC_FULL_PAYMENT F-statistic: 1677.3445 P-value: 0 Result: Statistically significant difference between groups Column: TENURE F-statistic: 383.4717

Result: Statistically significant difference between groups

Anova Insight:

- **P-Value**: All p-values are 0, meaning the differences between clusters are statistically significant.
- **F-Statistic**: High values indicate strong differences between cluster means for each variable.
- Conclusion: Each cluster shows distinct customer behaviors (e.g., balances, purchases). This confirms meaningful segmentation and can guide targeted actions.

Data Balancing

SMOTE Technique (Synthetic Minority Over-sampling Technique): Utilized SMOTE to balance the dataset and address class imbalance.

Imbalance Data Set:

After Applying SMOTE Techniques:

Model Selection

Selected Models for Comparison:

- a) Decision Tree
- b) Random Forest
- c) XG-Boost

Reason for Selection: These models are suitable for classification tasks, offer flexibility in handling various data types, and provide feature interpretation insights.

Model Training

Training Process: Each selected model was trained on the preprocessed data. (70-30)

Parameters and Settings: Model-specific parameters were set based on initial tuning efforts.

Comparative Analysis of Evaluation Metrics

Evaluation Metrics: The models were evaluated based on Accuracy (Train and Test), Precision, Recall, and F1-Score.

Results Comparison Table: Comparative results of Accuracy, Precision, Recall, and F1-Score for each model on test data were presented in a table format.

Model	Training Accuracy	Testing Accuracy	Precision	Recall	F1-Score
Decision Tree	1.0	0.9991	0.998301	0.999078	0.998689
XGBoost	1.0	0.9994	0.998593	0.999711	0.999151
Random Forest	1.0	0.9994	0.998593	0.999711	0.999151

Summary & Conclusion

- The Decision Tree model was chosen over XGBoost and Random Forest.
- All models achieved similar high accuracy, making them effective for the task.
- XGBoost and Random Forest are ensemble methods with higher computational costs.
- Decision Tree provides comparable accuracy with lower computational requirements.
- Therefore, Decision Tree was the more efficient choice for this task.