[8] Inner Product

Inner Product

DEFINITION: Let $\vec{x}, \vec{y} \in \mathbb{R}^n$. The inner product of \vec{x} and \vec{y} , denoted $\langle \vec{x}, \vec{y} \rangle$, is a scalar defined by $\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \vec{x} * \vec{y}$

Properties:

i.
$$\langle \vec{x}, \vec{x} \rangle \neq 0 \text{ if } \vec{x} \neq \vec{0}$$

ii.
$$\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$$
 (commutative)

iii.
$$\langle \lambda \vec{x}, \vec{y} \rangle = \lambda \langle \vec{x}, \vec{y} \rangle$$

iv.
$$\langle \vec{x} + \vec{z}, \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{z}, \vec{y} \rangle$$

$$v. \quad \langle \vec{0}, \vec{y} \rangle = 0$$

Inner Product (Proof of properties)

i.
$$\langle \vec{x}, \vec{x} \rangle \neq 0 \text{ if } \vec{x} \neq \vec{0}$$

•
$$\langle \vec{x}, \vec{x} \rangle = x_1 x_1 + x_2 x_2 + \dots + x_n x_n = x_1^2 + x_2^2 + \dots + x_n^2$$

• As long as $x_i \neq 0$ for any $i \in [1, n]$, this cannot equal 0

ii.
$$\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$$

•
$$\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = y_1 x_1 + y_2 x_2 + \dots + y_n x_n$$
 (by commutativity of multiplication)

•
$$\langle \vec{y}, \vec{x} \rangle = y_1 x_1 + y_2 x_2 + \dots + y_n x_n = \langle \vec{x}, \vec{y} \rangle$$

iii.
$$\langle \lambda \vec{x}, \vec{y} \rangle = \lambda \langle \vec{x}, \vec{y} \rangle$$

•
$$\langle \lambda \vec{x}, \vec{y} \rangle = \lambda x_1 y_1 + \lambda x_2 y_2 + \dots + \lambda x_n y_n = \lambda (x_1 y_1 + x_2 y_2 + \dots + x_n y_n) = \lambda \langle \vec{x}, \vec{y} \rangle$$

Inner Product (Proof of properties)

iv.
$$\langle \vec{x} + \vec{z}, \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{z}, \vec{y} \rangle$$

• $\langle \vec{x} + \vec{z}, \vec{y} \rangle = (x_1 + z_1)y_1 + (x_2 + z_2)y_2 + \dots + (x_n + z_n)y_n = x_1y_1 + z_1y_1 + z_2y_2 + z_2y_2 + \dots + z_ny_n + z_ny_n = x_1y_1 + x_2y_2 + \dots + x_ny_n + z_1y_1 + z_2y_2 + \dots + z_ny_n = \langle \vec{x}, \vec{y} \rangle + \langle \vec{z}, \vec{y} \rangle$

$$\nu$$
. $\langle \vec{0}, \vec{y} \rangle = 0$

•
$$\langle \vec{0}, \vec{y} \rangle = 0y_1 + 0y_2 + \dots + 0y_n = 0$$

Inner Product (Example)

Find
$$(\vec{x}, \vec{x})$$
 and (\vec{x}, \vec{y}) for $\vec{x} = \begin{bmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{bmatrix}, \vec{y} = [1, 2, 3, -4]$

Solution:

$$\langle \vec{x}, \vec{x} \rangle = \frac{1}{2} * \frac{1}{2} + \frac{1}{2} * \frac{1}{2} + \frac{1}{2} * \frac{1}{2} + \frac{1}{2} * \frac{1}{2} = 4\left(\frac{1}{2}\right) = 1$$
$$\langle \vec{x}, \vec{y} \rangle = \frac{1}{2} * 1 + \frac{1}{2} * 2 + \frac{1}{2} * 3 + \frac{1}{2} * (-4) = \frac{1}{2} + 1 + \frac{3}{2} - 2 = 1$$

Vector Norm

DEFINITION: The norm of a vector \vec{x} , denoted $||\vec{x}||$, is defined as $||\vec{x}||^2 = \langle \vec{x}, \vec{x} \rangle \rightarrow ||\vec{x}|| = \sqrt{\langle \vec{x}, \vec{x} \rangle}$

Properties:

- $\|\vec{x}\|$ is a nonnegative real number.
- $\|\vec{x}\|$ is zero if and only if \vec{x} is a zero vector.
- For any scalar , $\|\alpha \vec{x}\| = \alpha \|\vec{x}\|$.
- $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$ (triangle inequality).

DEFINITION: The distance between two vectors is defined as $\|\vec{x} - \vec{y}\|$

Unit Vector

DEFINITION: Let $\vec{x} \in \mathbb{F}^n$. If $\langle \vec{x}, \vec{x} \rangle = 1$ then \vec{x} is called a unit vector (i.e. $||\vec{x}||^2 = 1 \to ||\vec{x}|| = 1$). Also, the unit vector $y = \frac{\vec{x}}{||\vec{x}||}$ is called a normalized vector, because it has magnitude 1 and was created from another vector

CLAIM:
$$\langle \vec{x}, \vec{y} \rangle = \|\vec{x}\| * \|\vec{y}\| \cos \theta$$
 where θ is the angle between the vectors For proof use the law of cosines: $a^2 = b^2 + c^2 - 2bc \cos A$
$$\|\vec{x} - \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2 - 2\|\vec{x}\| \|\vec{y}\| \cos \theta$$

$$\langle \vec{x} - \vec{y}, \vec{x} - \vec{y} \rangle = \langle \vec{x}, \vec{x} \rangle + \langle \vec{y}, \vec{y} \rangle - 2\|\vec{x}\| \|\vec{y}\| \cos \theta$$

$$-\frac{1}{2} \langle \vec{x} - \vec{y}, \vec{x} - \vec{y} \rangle + \frac{1}{2} \langle \vec{x}, \vec{x} \rangle + \frac{1}{2} \langle \vec{y}, \vec{y} \rangle = \|\vec{x}\| \|\vec{y}\| \cos \theta$$

$$-\frac{1}{2} \langle -2\vec{x}, -2\vec{y} \rangle = \|\vec{x}\| \|\vec{y}\| \cos \theta$$

$$\langle \vec{x}, \vec{y} \rangle = \|\vec{x}\| * \|\vec{y}\| \cos \theta$$

[9] Orthogonality

Orthogonality

DEFINITION: Let $\vec{x}, \vec{y} \in \mathbb{R}^n$. We say that \vec{x} and \vec{y} are orthogonal, denoted $\vec{x} \perp \vec{y}$, if $\langle \vec{x}, \vec{y} \rangle = 0$

Example: Determine if the following vectors are orthogonal:

$$\vec{x} = [3,3], \vec{y} = [1,-1], \vec{z} = [2,3]$$

$$\langle \vec{x}, \vec{y} \rangle = 3 * 1 + 3 * (-1) = 0 \rightarrow not \ orthogonal$$

$$\langle \vec{x}, \vec{z} \rangle = 3 * 2 + 3 * 3 = 15 \rightarrow not \ orthogonal$$

$$\langle \vec{y}, \vec{z} \rangle = 1 * 2 + (-1) * 3 = -1 \rightarrow not \ orthogonal$$

Orthonormal

DEFINITION: A set $V = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ is said to be orthonormal if:

- *i.* $\forall \vec{v}_i, \vec{v}_j : i \neq j \rightarrow \vec{v}_i \perp \vec{v}_j$ (all vectors are orthogonal to each other)
- *ii.* $\|\vec{v}_i\| = 1$ for i = 1, 2, ..., k

DEFINITION: Kronecker Delta -
$$S_{ij} = \{1 \text{ if } i = j, 0 \text{ if } i \neq j\}$$

Notes:

- *i.* V is orthonormal iff $\langle \vec{v}_i, \vec{v}_j \rangle = S_{ij}$
 - E.g. $S_{11} = \langle \vec{v}_1, \vec{v}_1 \rangle = ||\vec{v}_1||^2$
 - $S_{12} = \langle \vec{v}_1, \vec{v}_2 \rangle = 0$
- ii. An orthogonal set can be made orthonormal by normalizing each vector in the set
- iii. Any orthonormal set that spans V is a basis for V

Projection

DEFINITION: Let $\vec{x}, \vec{y} \in \mathbb{F}^n$. The projection of \vec{x} onto \vec{y} is defined as $\text{proj}_{\vec{y}}(\vec{x}) = \frac{\langle \vec{x}, \vec{y} \rangle}{\langle \vec{y}, \vec{y} \rangle} \vec{y}$

Remarks:

- i. $\vec{x}^{||\vec{u}|} = \operatorname{proj}_{\vec{u}}(\vec{x})$
- ii. $\vec{x}^{\perp \vec{u}} = \vec{x} \operatorname{proj}_{\vec{u}}(\vec{x})$
- iii. Given basis $B = {\vec{x}, \vec{u}}$ of $V \in \mathbb{R}^2$
 - $T = {\vec{x} \text{proj}_{\vec{u}}(\vec{x}), \vec{u}}$ is an orthogonal basis for V
 - $N = \left\{ \frac{\vec{x} \text{proj}_{\vec{u}}(\vec{x})}{\|\vec{x} \text{proj}_{\vec{v}}(\vec{x})\|}, \frac{\vec{u}}{\|\vec{u}\|} \right\}$ is an orthonormal basis for V

Gram-Schmidt Algorithm

Input: $\{\vec{x}_1, \vec{x}_2, ..., \vec{x}_n\}$ linearly independent; possibly a basis for vector space V

Output: $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$ orthonormal set/basis

Step 1:
$$\vec{y}_1 = \vec{x}_1$$
 and $\vec{u}_1 = \frac{\vec{y}_1}{\|\vec{y}_1\|}$

Step k: for
$$i = 2,3,...,m$$
: $\vec{y}_i = \vec{x}_i - \sum_{k=1}^{i-1} \frac{\langle \vec{x}_i, \vec{y}_k \rangle}{\langle \vec{y}_k, \vec{y}_k \rangle} \vec{y}_k$ and $\vec{u}_i = \frac{\vec{y}_i}{\|\vec{y}_i\|}$

Gram-Schmidt Algorithm (Example)

Use the Gram-Schmidt algorithm to construct an orthonormal set of vectors from

$$\{\vec{x}_1 = [1,1,0], \vec{x}_2 = [0,1,1], \vec{x}_3 = [1,0,1]\}$$

Step 1:
$$\vec{y}_1 = \vec{x}_1$$
 and $\vec{u}_1 = \frac{\vec{y}_1}{\|\vec{y}_1\|} = \frac{1}{\sqrt{2}}[1,1,0] = \left[\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right]$

Step 2:
$$\vec{y}_2 = \vec{x}_2 - \sum_{k=1}^{1} \frac{\langle \vec{x}_2, \vec{y}_k \rangle}{\langle \vec{y}_k, \vec{y}_k \rangle} \vec{y}_k = \vec{x}_2 - \frac{\langle \vec{x}_2, \vec{y}_1 \rangle}{\langle \vec{y}_1, \vec{y}_1 \rangle} \vec{y}_1 = [0,1,1] - \frac{1}{2}[1,1,0] = \left[-\frac{1}{2}, \frac{1}{2}, 1 \right]$$

$$\vec{u}_2 = \frac{\vec{y}_2}{\|\vec{y}_2\|} = \frac{\vec{y}_2}{\sqrt{6}/2} = \frac{\sqrt{6}}{3} \left[-\frac{1}{2}, \frac{1}{2}, 1 \right] = \left[-\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3} \right]$$

Step 3:
$$\vec{y}_3 = \vec{x}_3 - \sum_{k=1}^2 \frac{\langle \vec{x}_3, \vec{y}_k \rangle}{\langle \vec{y}_k, \vec{y}_k \rangle} \vec{y}_k = \vec{x}_3 - \left(\frac{\langle \vec{x}_3, \vec{y}_1 \rangle}{\langle \vec{y}_1, \vec{y}_1 \rangle} \vec{y}_1 + \frac{\langle \vec{x}_3, \vec{y}_2 \rangle}{\langle \vec{y}_2, \vec{y}_2 \rangle} \vec{y}_2 \right) = [1,0,1] - \left(\frac{1}{2} [1,1,0] + \frac{1}{3} \left[-\frac{1}{2}, \frac{1}{2}, 1 \right] \right)$$

$$=\left[\frac{2}{3},-\frac{2}{3},\frac{2}{3}\right]\rightarrow\vec{u}_{2}=\frac{\vec{y}_{2}}{\|\vec{y}_{2}\|}=\frac{\vec{y}_{2}}{2/\sqrt{3}}=\frac{\sqrt{3}}{2}\left[\frac{2}{3},-\frac{2}{3},\frac{2}{3}\right]=\left[\frac{\sqrt{3}}{3},-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}\right]$$