Análise assintótica: ordens O, Omega e Theta

Ao ver uma expressão como n+10 ou n^2+1 , a maioria das pessoas pensa automaticamente em valores pequenos de n. A análise de algoritmos faz exatamente o contrário: ignora os valores pequenos e concentra-se nos valores enormes de n. Para valores enormes de n, as funções

```
n^2, (3/2)n^2, 9999n^2, n^2/1000, n^2+100n, etc.
```

crescem todas com a mesma velocidade e portanto são todas "equivalentes". Esse tipo de matemática, interessado somente em valores *enormes* de n, é chamado *assintótico*. Nessa matemática, as funções são classificadas em "ordens" (como as ordens religiosas da Idade Média); todas as funções de uma mesma ordem são "equivalentes". As cinco funções acima, por exemplo, pertencem à mesma ordem.

Veja o verbete <u>Big O notation</u> na Wikipedia.

Ordem O

Convém restringir a atenção a funções assintoticamente não negativas, ou seja, funções f tais que $f(n) \ge 0$ para todo n suficientemente grande. Mais explicitamente: f é assintoticamente não negativa se existe n_0 tal que $f(n) \ge 0$ para todo n maior que n_0 . Agora podemos definir a ordem O. [Esta letra é um O maiúsculo. Ou melhor, um \hat{o} micron grego maiúsculo, conforme Knuth.]

DEFINIÇÃO: Dadas funções assintoticamente não negativas $f \in g$, dizemos que f está na ordem O de g e escrevemos f = O(g) se $f(n) \le c \cdot g(n)$ para $algum \ c$ positivo e para $todo \ n$ suficientemente grande. Em outras palavras, existe um número positivo c e um número n_0 tais que $f(n) \le c \cdot g(n)$ para $todo \ n$ maior que n_0 .

(A notação "O(*)" empregada nesta definição é conhecida como notação assintótica ou <u>notação de Landau</u>.)

Exemplo 1: Se $f(n) \le 9999 \ g(n)$ para todo $n \ge 1000 \ \text{então} \ f = O(g)$. (Cuidado: a recíproca não é verdadeira!)

Exemplo 2: Suponha que $f(n) = 2n^2 + 3n + 4$ e $g(n) = n^2$. Observe que

$$2n^2 + 3n + 4 \le 2n^2 + 3n^2 + 4n^2 = 9n^2$$

desde que $n \ge 1$. Resumindo, $f(n) \le 9$ g(n) para todo $n \ge 1$. Portanto, f(n) = O(g(n)).

Exemplo 3: Suponha que f(n) = 3 + 2/n e que $g(n) = n^0$, ou seja, g(n) = 1. Então

$$3 + 2/n \le 3 + 1 = 4 = 4n^0$$

desde que $n \ge 2$. Resumindo, $f(n) \le 4$ g(n) para todo $n \ge 2$. Portanto, f(n) = O(g(n)).

Exemplo 4: Suponha que $f(n) = n^3$ e que $g(n) = 200n^2$. Não é verdade que f(n) = O(g(n)). De fato, se existissem c e n_0 tais que $f(n) \le c$ g(n), teríamos $n \le 200c$ para todo $n \ge n_0$. Mas isso é absurdo!

Exercícios

- 1. Faz sentido dizer "f(n) está em $O(n^2)$ para $n \ge 4$ "?
- 2. Fica bem dizer "f(n) está em $O(n^2)$ com c=12 e $n_0=4$ "?
- 3. Critique a seguinte definição alternativa da classe O: "Dizemos que f está em O(g) se existem números positivos c, n_0 e $n \ge n_0$ tais que $f(n) \le c$ g(n)."
- 4. Critique a seguinte definição alternativa da classe O: "Dizemos que f está em O(g) se existe um <u>número natural</u> n_0 tal que $f(n) \le c \ g(n)$ para algum número positivo c e para todo $n \ge n_0$."
- 5. [Interessante] A cláusula "n suficientemente grande" na definição da classe O é supérflua quando estamos lidando com funções estritamente positivas. De fato, suponha que $f \in O(g)$ e g(n) > 0 para todo n natural e mostre que existe um número positivo c' tal que $f(n) \le c'$ g(n) para todo g(n) natural e mostre que existe um número positivo g(n) para todo g(n)
- 6. Critique o seguinte raciocínio: "A derivada de $4n^2+2n$ é 8n+2. A derivada de n^2 é 2n. Como 8n+2>2n, podemos concluir que $4n^2+2n$ cresce mais que n^2 e portanto $4n^2+2n$ não é $O(n^2)$." Critique o seguinte raciocínio: "A derivada de $4n^2+2n$ é 8n+2. A derivada de $9n^2$ é 18n. Como $8n+2\le 18n$ para $n\ge 1$, podemos concluir que $4n^2+2n$ é $O(9n^2)$."
- 7. É verdade que 10n = O(n)? É verdade que $10n^2 = O(n)$? É verdade que $10n^{55} = O(2^n)$?
- 8. É verdade que $n^2 + 200n + 300 = O(n^2)$?
- 9. É verdade que $n^2 200n 300 = O(n)$?
- 10. É verdade que $(3/2)n^2 + (7/2)n 4 = O(n)$? É verdade que $(3/2)n^2 + (7/2)n 4 = O(n^2)$?
- 11. É verdade que n^3 -999999 n^2 -1000000 = $O(n^2)$?
- 12. Seja $\binom{n_k}{i}$ o número de combinações de n objetos tomados k a k. Mostre $\binom{n_2}{i} = O(n^2)$. Mostre que $\binom{n_3}{i} = O(n^3)$. É verdade que, para qualquer número natural $k \le n$, tem-se $\binom{n_k}{i} = O(n^k)$?
- 13. É verdade que 2^{n+1} está em $O(2^n)$? É verdade que 3^n está em $O(2^n)$?
- 14. É verdade que $\log_2 n = O(\log_3 n)$? É verdade que $\log_3 n = O(\log_2 n)$?
- 15. É verdade que $\lceil \lg n \rceil = O(\lg n)$? (Veja as definições de teto e \lg no $\underline{\text{dicion\'ario}}$.)
- 16. Prove que $n=\mathrm{O}(2^n)$. (Sugestão: use indução matemática para provar que $n\leq 2^n$ para todo n suficientemente grande.)
- 17. Prove que lg n está em $\mathrm{O}(n)$
- 18. Prove que $n \in O(2^{n/4})$. (Sugestão: use indução matemática para provar que $n \le 2^{n/4}$ para todo n suficientemente grande.)
- 19. Prove que 4 lg n está em O(n).
- 20. Prove que 100 lg n-10n+2n lg n está em $\mathrm{O}(n$ lg n).

Ordem Omega

A expressão "f = O(g)" tem o mesmo sabor que " $f \le g$ ". Agora precisamos de um conceito que tenha o sabor de " $f \ge g$ ".

Definição: Dadas funções assintoticamente não negativas $f \in g$, dizemos que f está na ordem Omega de g e escrevemos $f = \underline{\Omega}(g)$ se $\underline{f(n)} \geq \underline{c} \cdot \underline{g(n)}$ para algum c positivo e para $todo\ n$ suficientemente grande. Em outras palavras, existe um número positivo c e um número n_0 tais que $\underline{f(n)} \geq \underline{c} \cdot \underline{g(n)}$ para $todo\ n$ maior que n_0 .

Exemplo: Se $f(n) \ge g(n)/100000$ para todo $n \ge 888$ então $f = \Omega(g)$. (Cuidado: a recíproca não é verdadeira!)

Qual a relação entre O e Ω ? Não é difícil verificar que f = O(g) se e somente se $g = \Omega(f)$.

Exercício

- 1. Seja $\binom{n_k}{}$ o número de combinações de n objetos tomados k a k. Mostre $\binom{n_2}{} = \Omega(n^2)$. Mostre que $\binom{n_3}{} = \Omega(n^3)$. É verdade que, para qualquer número natural $k \le n$, tem-se $(n_k) = \Omega(n^k)$?
- 2. Prove que 100 lg n-10n+2n lg n está em $\Omega(n$ lg n).
- 3. É verdade que 2^{n+1} está em $\Omega(2^n)$? É verdade que 3^n está em $\Omega(2^n)$?

Ordem Theta

Além dos conceitos que têm o sabor de " $f \le g$ " e de " $f \ge g$ ", precisamos de um que tenha o sabor de "f = g".

DEFINIÇÃO: Dizemos que $f \in g$ estão na mesma e escrevemos $f = \Theta(g)$ se f = O(g) e f = O(g). Trocando em miúdos, $f = \Theta(g)$ significa que existe números positivos $c \in d$ tais que $c \in g(n) \le f(n) \le d \in g(n)$ para todo n suficientemente grande.

Exemplo: As funções abaixo pertencem todas à ordem $\Theta(n^2)$:

```
n^2 , (3/2)n^2 , 9999n^2 , n^2/1000 , n^2+100n .
```

Exercício

- 1. Quais das conjeturas abaixo são verdadeiras?
 - a. $(3/2)n^2 + (7/2)n^3 4 = \Theta(n^2)$ b. $9999 n^2 = \Theta(n^2)$

 - c. $n^2/1000 999n = \Theta(n^2)$
 - d. $\log_2 n + 1 = \Theta(\log_{10} n)$
 - e. $\lfloor \lg n \rfloor = \Omega(\lg n)$ (confira a <u>definição de piso</u>)

Onde as funções estão definidas?

A discussão acima supõe, implicitamente, que todas as funções estão definidas no conjunto dos <u>números naturais</u>. Mas tudo continua funcionando se as funções estiverem definidas em algum outro domínio. Eis algums exemplos de domínios:

- · números naturais maiores que 99
- potências inteiras de 2 (ou seja, 2⁰, 2¹, 2², etc.),
- potências inteiras de 1½,
- números racionais maiores que ½.

A mesma notação O é usada para todos os domínios. Por exemplo, se f é uma função assintoticamente não negativa definida nas potências inteiras de 2, dizer que $f(n) = O(n^2)$ é o mesmo que dizer que existe um número positivo c tal que $f(n) \le c$ n^2 para todo n da forma 2^k com k suficientemente grande.

As mesmas observações se aplicam à notação Ω e à notação Θ .

Veja <u>aula em video sobre notação assintótica</u> no <u>AcademicEarth</u>

Lista de fórmulas "Know Thy Complexities": complexidade de algoritmos básicos

http://www.ime.usp.br/~pf/analise_de_algoritmos/ Last modified: Mon Apr 13 07:07:56 BRT 2015 Paulo Feofiloff Paulo reojuojj <u>Departamento de Ciência da Computação</u> <u>Instituto de Matemática e Estatística</u> da <u>USP</u>

