

Information Visualization and Visual Analytics (M1522.000500)

Perception and Visual Patterns

Jinwook Seo, Ph. D.

Professor, Dept. of Computer Science and Engineering Seoul National University

Visual Patterns

Visual Patterns

- Key to information visualization
- Understanding patterns to build knowledge
- Using vision to think (finding patterns)
 - Patterns showing groups
 - Patterns showing structure
 - When are patterns similar?
 - How should we organize information on the screen?

Gestalt Laws

- Principles of perceptual organization
 - the whole is different from the sum of its parts
 - how smaller objects are grouped to form larger ones
 - "gestalt": German for "pattern/form/shape"
 - "leaving us with a set of descriptive principles, but without a model of perceptual processing"
 - rules themselves still very useful
- Law of Prägnanz
 - law of simplicity, law of good figure
 - fundamental principle of gestalt perception
 - tend to order our experience in a manner that is regular, orderly, symmetric, and simple
 - simplest possibility wins

Principles

the dog is perceived as a **whole**

the experienced percept contains more
explicit spatial information than the sensory
stimulus on which it is based

Principles

Invariance

http://www-personal.umich.edu/~esrabkin/pics/ThreeProngedTuningFork.jpg

Gestalt Principles

- Grouping
 - Proximity: tendency of elements to be associated with nearby elements
 - Similarity: tendency of elements to be associated with similar elements
 - **Continuity**: preference for continuous, unbroken, smoothest contours with the *simplest possible* physical explanation
 - Common Fate: things moving together

Gestalt Principles

- Perception of Forms
 - Closure
 - form complete, closed figures to increase regularity
 - Area/Figure and Ground/Relative size
 - smaller one as figure, larger one as ground
 - Symmetry
 - when we perceive objects, we tend to perceive them as symmetrical shapes that form around their center.
 - symmetrical images are perceived collectively, even in spite of distance

Proximity

Similarity

Similarity

b

Proximity and Similarity

Continuity

• Visual entities tend to be smooth and continuous

Connectedness

- assumed in Continuity
- can overrule size, shape

Continuity in Diagrams

- Connections using smooth lines
 - easier to perceive than using lines with abrupt changes

Symmetry

- sense of a holistic figure
- emphasizes relationships

Symmetry

• symmetry to show Similarities between time series data

Closure

• Prefer closed contours

- Overrule proximity
- Segment visual field
- Provide reference frames

Closure

Closed contours to show set relationship

Area / Figure & Ground / Relative Size

• smaller components perceived as objects

Area / Figure & Ground / Relative Size

- determined by combination of previous laws
 - symmetry, contour

Proximity Examples

MTV Music Awards 2002

http://www.interaction-design.org/encyclopedia/gestalt principles of form perception.html

Similarity Examples

http://www.interaction-design.org/encyclopedia/gestalt_principles_of_form_perception.html http://graphicdesign.spokanefalls.edu/tutorials/process/gestaltprinciples/gestaltprinc.htm

Grouping

- Help users parse the display into sub-units
 - Rely on Gestalt principles
 - Avoid explicit grouping

Hierarhcy

- Provide a context for each piece of information
 - Example: distinctive style for labels

Relationship

- Parallel between presentation and relationship
 - Example: present folder before its content

Balance

- Harmonious global arrangement
 - Can be symmetrical or asymmetrical
 - smaller elements can offset the visual weight of larger elements, how?

Balance

- Harmonious global arrangement
 - Can be symmetrical or asymmetrical
 - smaller elements can offset the **visual weight** of larger elements, how?

- Straight edges appear larger than curved edges
- Curved edges appear larger than sharp edges
- Optical adjustment

- Straight edges appear larger than curved edges
- Curved edges appear larger than sharp edges
- Optical adjustment

- Straight edges appear larger than curved edges
- Curved edges appear larger than sharp edges
- Optical adjustment

- Straight edges appear larger than curved edges
- Curved edges appear larger than sharp edges
- Optical adjustment

Human Visual System

How human visual system works

- "What visual properties draw our eyes, and therefore our focus of attention to a particular object in a scene?"
- Visual attention: mechanisms that help determine which regions of an image are selected for more detailed analysis
- **Detailed vision** for shape and color is only possible within a small portion of the visual field (1 degree of visual angle, **foveal vision**)
- fixation-saccade cycle

Human Visual System

ha lab

Fixation-Saccade Cycle

http://www.outofmygord.com/images/outofmygord_com/eyetrackingsaccades.gif

Human Visual System

Fixation-Saccade Cycle

- fixation: brief stationary period when detail information is acquired
- saccade: flicking rapidly to a new location during a brief period of blindness
 - saccade takes at least 200 ms to initiate
- repeats 3~4 times each second
- makes seeing highly dynamic
- bottom-up: information from fixation → mental experience
- top-down: current mental states (tasks and goals) → guiding saccades

Visual Expectation and Memory

Visual Expectation and Memory

- "What do we **remember** about an object or a scene when we stop attending to it and look at something else?"
- role of memory and expectation in seeing
- current state of mind plays a critical role
 - determining what is being seen, what is not being seen, what will be seen next
- postattentive amnesia, memory-guided search, change blindness, inattentional blindness, attentional blink

Preattentive Tasks

Postattentive Amnesia

- Does previewing of stimuli make search faster?
 - Extract detail rapidly on demand?
- Human vision is not an optical camera
 - Region of the most recent focus of attention
 - Detail is only available there

Postattentive Amnesia

Can studying a display offers assistance in searching for specific data values?

• traditional search vs. postattentive search

Traditional Search

GREEN VERTICAL

Wolfe, Klempen, Dahlen, "Post Attentive Vision," JEP: HPP 26 (2), 2000.

Traditional Search

Wolfe, Klempen, Dahlen, "Post Attentive Vision," JEP: HPP 26 (2), 2000.

Traditional Search

Wolfe, Klempen, Dahlen, "Post Attentive Vision," JEP: HPP 26 (2), 2000.

Postattentive Search

Wolfe, Klempen, Dahlen, "Post Attentive Vision," JEP: HPP 26 (2), 2000.

Postattentive Search

Wolfe, Klempen, Dahlen, "Post Attentive Vision," JEP: HPP 26 (2), 2000.

Postattentive Amnesia

- Postattentive search was as slow (or slower) than the traditional search
 - with approximately 25-40 ms per object
 - studying a display offers no assistance in searching for specific data values

- Implications for visualization design
 - In most cases, visualization displays are novel
 - their contents cannot be committed to LTM.
 - preattentive methods are critical for efficient data exploration
 - draw attention to areas of potential interest

Preattentive Tasks

- visual features that are detected very rapidly by low-level, fast-acting visual processes
- seems to precede focused attention
 - occurring within a single fixation
 - attention plays a critical role in what we see in this early stage
- preattentive tasks: performed on large multi-element displays in less than 200-250 ms
 - saccade takes at least 200 ms to initiate
- "pop out" of a display
 - easily detected regardless of the number of distractors
 - vs. time-consuming visual search
- Target detection, Boundary detection, Region tracking, Counting and estimation

How many sevens?

Slide Idea from Colin Ware

Color Makes Them Pop Out

Slide Idea from Colin Ware

Segmentation

Slide Idea from Colin Ware

What Kinds of Tasks?

- Target detection
 - Is something there?
- Boundary detection
 - Can the elements be grouped?
- Region tracking
 - Can a distinctive moving group be traced?
- Counting and estimation
 - How many elements of a certain type are present?
 - Estimate the number of elements with a unique visual feature

Laws of preattentive display

- Must stand out on some simple dimension
 - color,
 - simple shape = orientation, size
 - motion,
 - depth

Color Hue, Simple Shading, Semantic depth of field

• Lessons for highlighting – one of each

Hue and Shape

• Determine if a red circle is present

- Cannot be done preattentively
- Must perform a sequential search
- Conjunction of features (shape and hue) causes it

Brightness and Shape

• Is there a boundary?

- Left can be done preattentively since each group contains one unique featrue
- Right cannot since the two features are mixed (fill and shape)

Hue versus Shape

• Is there a boundary?

- Left: Boundary detected preattentively based on hue regardless of shape
- Right: Cannot do mixed color shapes preattentively

Hue versus brightness

• Is there a boundary?

- Left: Varying brightness seems to interfere
- Right: Boundary based on brightness can be done preattentively

Preattentive Visual Features

- Perception in Visualization (by Chris Healey, NC State)
- Preattentive Visual Features
 - line (blob) orientation
 - length, width
 - closure
 - size
 - curvature
 - density, contrast
 - number, estimation
 - colour (hue)
 - intensity, binocular lustre
 - intersection
 - terminators
 - 3D depth cues, stereoscopic depth
 - flicker
 - direction of motion
 - velocity of motion
 - lighting direction
 - 3D orientation
 - artistic properties

http://www.csc.ncsu.edu/faculty/healey/PP/PP.html