Quiz 2

Due Apr 12 at 11:59pm **Points** 8 **Questions** 8

Available Apr 3 at 11:59pm - Apr 12 at 11:59pm 9 days Time Limit 15 Minutes

This quiz was locked Apr 12 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	15 minutes	5 out of 8

Score for this quiz: **5** out of 8 Submitted Apr 12 at 11:04pm This attempt took 15 minutes.

	Question 1	1 / 1 pts
	Which are part of the steps at each level of recursion?	
	Conquer	
	O Divide	
Correct!	All of the above.	
	Combine	

Question 2 1 / 1 pts

What methods does the textbook present for solving recurrences by guessing a bound and using mathematical induction to prove accuracy?

6/19/2020

Correct!

- The master method
- The substitution method
- The iterative functions method
- The recursion tree method

Question 3

1 / 1 pts

When using the master method, how many cases are required to memorize for the ability to easily determine asymptomatic bounds for many simple recurrences?

0 10

Correct!

- 3
- 5
- 2

Question 4

1 / 1 pts

Using Divide and Conquer, use recurrence of asymptotic running time to solve

$$T\left(n
ight)=\{rac{if\;n=1}{T(n-1)+1}\quad egin{array}{cc} if\;n=1 \ if\;n>1 \end{array}$$

Correct!

- T(n) = n
- $T(n) = n \lg n$
- $T(n) = \lg n$
- $T(n) = n^2$

Question 5

0 / 1 pts

Which one is true about $\,T(n)=2T(\lfloor n/2 \rfloor)+n\,$?

orrect Answer

All of the above.

ou Answered

- \bigcirc $O(n \lg n)$
- $\Omega(n \lg n)$
- $\theta(n \lg n)$

Question 6

0 / 1 pts

What is the solution of $\,T(n)=4T(n/2)+n\sqrt{n}\,\,$ using the Master theorem?

ou Answered

- lacksquare $\Theta\left(n\sqrt{n}
 ight)$, Case 3
- $\Theta(n \lg n)$, Case 2

orrect Answer

- $\Theta(n^2)$, Case 1
- $\Theta(n^2)$, Case 3

Question 7

0 / 1 pts

What is the solution of $T\left(n\right)=2T\left(n\left/4\right)+\sqrt{n}$ using the Master theorem?

orrect Answer

- $\Theta(\sqrt{n} \lg n)$, Case 2
- Master method does not apply

ou Answered

- lacktriangledown $\Theta\left(\sqrt{n}\ \lg\ n
 ight)$, Case 1
- $\Theta(\sqrt{n} \lg n)$, Case 3

Question 8

1 / 1 pts

What is the solution of $\,T(n)=2T(n/2)+n^2\,$ using the Master theorem?

Correct!

- $igotimes \Theta(n^2)$, Case 3
- $\Theta(n \lg n)$, Case 2
- $\Theta(n \lg n)$, Case 3

 \bigcirc $\Theta(n^2)$, Case 1

Quiz Score: 5 out of 8