Inverse problems for linear and non-linear elliptic equations

Karthik Iyer

17th May 2018

Outline of talk

- Introduction
- 2 Cloaking in electrostatics model
- 3 Polyharmonic first order perturbation

Calderón problem

Consider a body $\Omega \subset \mathbb{R}^N$, $N \geq 2$ with conductivity $\gamma(x)$ where $x \in \Omega$. An electrical potential u(x) causes the current $I(x) = \gamma(x)\nabla u(x)$.

The conductivity $\gamma(x)$ can be isotropic (scalar valued), or anisotropic (matrix valued).

If the current has no sources or sinks, we have

$$-div(\gamma(x)\nabla u(x)) = 0$$
 in Ω .

Dirichlet-to-Neumann map

Consider the following boundary value problem

$$-div(\gamma(x)\nabla u(x)) = 0 \text{ in } \Omega,$$

$$u = f \text{ on } \partial\Omega.$$

$$\gamma(x) = \text{conductivity},$$

 $f = \text{voltage potential at } \partial \Omega.$

• Current flux at $\partial\Omega = (\nu \cdot \gamma \nabla u)|_{\partial\Omega}$ were ν is the unit outer normal.

Information is encoded in map
$$\left| \Lambda_{\gamma}(f) =
u \cdot \gamma
abla u
ight|_{\partial\Omega}$$

• Inverse problem

Does
$$\Lambda_{\gamma}$$
 determine γ ?

$$\Lambda_{\gamma} = \mathsf{Dirichlet} ext{-to-Neumann map}$$

Different aspects of an inverse problem

- Uniqueness
- Stability
- Reconstruction techniques
- Numerical implementation
- Partial data problems
- Interior uniqueness: Does $\Lambda_{\gamma_1} = \Lambda_{\gamma_2}$ imply $\gamma_1 = \gamma_2$ in Ω ?
- Yes, if γ_i are scalar valued. First answered in 1987 for $N \ge 3$ by Sylvester and Uhlmann for C^2 conductivities.
- Mathematics of the problem for N = 2 is quite different.

Past work: Scalar case

- Uniqueness result was generalized for $N \geq 3$ by Brown and Torres in 1996 for $\gamma \in W^{\frac{3}{2},p}$ with p > 2N, Haberman and Tataru in 2013 for $\gamma \in C^1$ and Caro and Rogers in 2016 for $\gamma \in C^{0,1}$.
- For N=2, the global uniqueness problem was first solved by Nachman in 1996 for $\gamma \in W^{2,p}$ for p>1.
- This result was completely generalized by Astala and Päivärinta in 2005 for $\gamma \in L^{\infty}$.

Diffeomorphism: Anisotropic conductivities

• No for anisotropic conductivities. Choose a smooth diffeomorphism $\Phi:\Omega\to\Omega$ such that $\Phi(x)=x$ on $\partial\Omega$ and define

$$\Phi_*\gamma(y) = \frac{D\Phi(x)^T\gamma(x)D\Phi(x)}{|D\Phi|} \circ \Phi^{-1}(y),$$

where $\Phi(x) = y$.

• $\Phi^*\gamma(y)$ is the push-forward of the conductivity γ by Φ . Since $\Phi=Id$ on $\partial\Omega$, we get

$$\Lambda_{\gamma} = \Lambda_{\Phi_* \gamma}$$
.

- Such a restricted uniqueness was first shown in 1989 by Lee and Uhlmann for $N \geq 3$ for real analytic conductivities, and in 2006 by Astala, Lassas and Päivärinta for N = 2 for $\gamma \in L^{\infty}$.
- Uniqueness up to diffeomorphism holds only when we have upper and lower bounds for γ .

Outline of talk

Introduction

2 Cloaking in electrostatics model

3 Polyharmonic first order perturbation

Three key ideas

There are 3 key ideas associated with such a *non-uniqueness* result:

- Cloaking
- Approximate cloaking
- Isotropic approximate cloaking

Cloaking

• Let $E \subset \Omega$ be fixed and let σ_c be a non negative matrix valued function defined on $\Omega \setminus E$. We say σ_c cloaks E if any extension of σ_c across E of following form,

$$\sigma_A(x) = \begin{cases} A(x) & x \in E, \\ \sigma_c(x) & x \in \Omega \setminus E, \end{cases}$$

produces the same DN map as a uniform isotropic region, irrespective of the choice of A(x).

- Existence of such cloaks first shown by Greenleaf, Lassas and Uhlmann in 2003.
- A change-of-variable scheme is employed which essentially blows up a point to a region in space and is highly singular.

Approximate cloaking

- Consider a regularized change-of-variable scheme which blows a small ball to the region being cloaked.
- One can look at the asymptotic behavior as radius of the ball goes to 0 and recover the singular transform.
- For simplicity, let $\Omega = B_2$ and restrict our attention the case when $E = B_1$ needs to be nearly cloaked.
- Fix a small parameter r > 0.

Regular change of variables

• Consider $F^r: B_2 \to B_2$ such that

$$F^{r}(x) = \begin{cases} \frac{x}{r} & |x| \leq r, \\ (\frac{2-2r}{2-r} + \frac{1}{2-r}|x|)\frac{x}{|x|} & r \leq |x| \leq 2. \end{cases}$$

Consider

$$\sigma_A^r(x) = \begin{cases} A(x) & x \in B_1, \\ F_*^r 1 & x \in B_2 \setminus B_1. \end{cases}$$

• By approximate cloaking, we mean

$$|\langle \Lambda_{\sigma_A'}f,g\rangle - \langle \Lambda_1f,g\rangle| = \mathrm{o}(1)||f||_{H^{\frac{1}{2}}(\partial B_2)}||g||_{H^{\frac{1}{2}}(\partial B_2)},$$

where the o(1) term is independent of f and g.

Isotropic approximate cloaking

- The approximate cloaks using regular change of variables are anisotropic.
- In 2008, Greenleaf, Kurylev, Lassas and Uhlmann constructed isotropic and nonsingular parameters that give approximate cloaking to any desired degree of accuracy.
- They used the notion of H-convergence in linear settings to construct such isotropic cloaks.
- The H-limit of a sequence of isotropic cloaks need not be isotropic, and this key property allowed them to construct isotropic approximate cloaks.

Our work

- We extend previously known results in electrostatics on cloaking, approximate cloaking and isotropic approximate cloaking to a *quasi-linear* operator.
- This is achieved using the same techniques:
 - singular change of variables for cloaking,
 - regular change of variables for approximate cloaking &
 - H-convergence for isotropic approximate cloaking.

Basic Set up: quasi-linear equation

Consider

$$-div(A(x, u(x))\nabla u(x)) = 0 \text{ in } \Omega,$$

$$u = f \text{ on } \partial\Omega,$$

where
$$A(x, t) \in \mathcal{M}(\alpha, \beta, L; B_2 \times \mathbb{R})$$
.

- The above equation arises in modeling of thermal conductivity of the Earth's crust and heat conduction in composite materials.
- More specifically, steady state heat conduction in an inhomogeneous anisotropic nonlinear medium with Dirichlet boundary conditions is governed by the above equation.

Quasi-linear approximate cloaking: [Ghosh, I '18]

Consider

$$\sigma_A^r(x,t) = \begin{cases} A(x,t) & (x,t) \in B_1 \times \mathbb{R}, \\ F_*^r 1 & (x,t) \in B_2 \setminus B_1 \times \mathbb{R}, \end{cases}$$

where $A(x, t) \in \mathcal{M}(\alpha, \beta, L; B_2 \times \mathbb{R})$.

We show

$$|\langle \Lambda_{(F^r)_*^{-1}\sigma_A^r} f, g \rangle - \langle \Lambda_1 f, g \rangle| = o(1)||f||_{H^{\frac{1}{2}}(\partial B_2)}||g||_{H^{\frac{1}{2}}(\partial B_2)},$$

where

$$(F^r)_*^{-1}\sigma_A^r = egin{cases} (F^r)_*^{-1}A = \widetilde{A}^r(x,t) & (x,t) \in B_r imes \mathbb{R}, \ 1 & (x,t) \in (B_2 \setminus B_r) imes \mathbb{R}. \end{cases}$$

Sketch of proof

- If $A \in \mathcal{M}(\alpha, \beta, L; B_1 \times \mathbb{R})$, then $\widetilde{A}^r(x, t) \in \mathcal{M}(\frac{\alpha}{r^{N-2}}, \frac{\beta}{r^{N-2}}, L; B_r \times \mathbb{R})$.
- This implies that for $r \ll 1, (F^r)^{-1}_* \sigma_A^r \in \mathcal{M}(1, \frac{\beta}{r^{N-2}}, L; B_r \times \mathbb{R}).$
- This gives us

$$|\langle \Lambda_{(F^r)_*^{-1}\sigma_A^r}f,g\rangle - \langle \Lambda_1f,g\rangle| \leq Cr^{-\frac{N}{2}+2}||f||_{H^{\frac{1}{2}}(\partial B_2)}||g||_{H^{\frac{1}{2}}(\partial B_2)}.$$

ullet Pass to the limit as r o 0 for perfect cloaking.

Homogenization set up

- The approximate cloaks discussed earlier are anisotropic. We will now construct isotropic approximate cloaks.
- Set up: Let $A(x,y,t) = [a_{ij}(x,y,t)] \in \mathcal{M}(\alpha,\beta,L;\Omega \times Y \times \mathbb{R})$ be such that $y \mapsto a_{ij}(x,y,t)$ are $Y = [0,1]^N$ -periodic functions for a.e $(x,t) \in \Omega \times \mathbb{R}$.

Let

$$A^{\epsilon}(x,t) = \left[a_{ij}(x,\frac{x}{\epsilon},t)\right], \quad (x,t) \in \Omega \times \mathbb{R}.$$

Quasi-linear H-convergence: [Ghosh, I '18]

Theorem

Let A^{ϵ} and A^* belong to $\mathcal{M}(\alpha, \beta, L; \Omega \times \mathbb{R})$. We say $A^{\epsilon} \xrightarrow{H} A^*$, if up to a subsequence, the corresponding solutions $\{u^{\epsilon}\}$ to

$$-\operatorname{div}\left(A^{\epsilon}(x,u^{\epsilon})\nabla u^{\epsilon}(x)\right) = 0 \text{ in } \Omega,$$

$$u^{\epsilon} = f \in H^{\frac{1}{2}}(\partial\Omega),$$

are such that

$$u^{\epsilon} \rightharpoonup u$$
 weakly in $H^{1}(\Omega)$ and $A^{\epsilon}(x, u^{\epsilon}) \nabla u^{\epsilon} \rightharpoonup A^{*}(x, u) \nabla u$ weakly in $L^{2}(\Omega)^{N}$,

where $u \in H^1(\Omega)$ uniquely solves

$$-div\left(A^*(x,u(x))\nabla u(x)\right) = 0 \text{ in } \Omega,$$

$$u = f \text{ on } \partial\Omega.$$

H-limit

The homogenized conductivity $A^*(x,t)$

$$A^*(x,t) = [a_{ij}^*(x,t)] \in \mathcal{M}(\widetilde{\alpha},\widetilde{\beta},\widetilde{L};\Omega \times \mathbb{R}),$$

can be defined by its entries as

$$a_{kl}^*(x,t) = \int_Y a_{ij}(x,y,t) \frac{\partial}{\partial y_i} (\chi_k(x,y,t) + y_k) \frac{\partial}{\partial y_j} (\chi_l(x,y,t) + y_l) dy,$$

where for each canonical basis vector $e_k \in \mathbb{R}^N$, $\chi_k(x, y, t)$ satisfy the following cell-problem for almost every $(x, t) \in \Omega \times \mathbb{R}$:

$$-\operatorname{div}_y \ A(x,y,t)(\nabla_y \chi_k(x,y,t) + e_k) = 0 \quad \text{in } \mathbb{R}^N,$$
$$y \to \chi_k(x,y,t) \quad \text{is } Y\text{-periodic for all } (x,t) \in \Omega \times \mathbb{R}.$$

Isotropic approximate cloaking

• Our isotropic cloaks take the form

$$A^{\epsilon}(x,t) = \sigma\left(x, \frac{|x|}{\epsilon}, t\right) I_{N \times N}, \quad (x,t) \in \Omega \times \mathbb{R}.$$

- Temporarily fix R > 1 and introduce a new parameter $\eta > 0$.
- More specifically,

$$\sigma_n(x,t) := \left[1 + a_{R_n,\eta_n}^1(x,t)\zeta_1\left(\frac{r}{\varepsilon_n}\right) - a_{R_n,\eta_n}^2(x,t)\zeta_2\left(\frac{r}{\varepsilon_n}\right)\right]^2, \quad r = |x|,$$

where a_1 , a_2 , ζ_1 , ζ_2 are chosen to satisfy Lipschitz condition in t variable and periodicity in r variable.

Concluding steps

- We first let $\epsilon_n \to 0$ (approximate isotropic \to approximate anisotropic).
- Then let $\eta_n \to 0$ and finally $R_n \searrow 1$ (approximate anisotropic \to cloaking).
- We get the desired strong convergence of the DN maps,

$$||(\Lambda_{\sigma_n}-\Lambda_1)(f)||_{H^{\frac{1}{2}}(\partial\Omega)} o 0 \text{ as } n o\infty.$$

• This finishes the proof.

Outline of talk

Introduction

- 2 Cloaking in electrostatics model
- 3 Polyharmonic first order perturbation

Preliminaries

- Let $\Omega \subset \mathbb{R}^N$, $N \geq 3$ be a bounded open set with C^{∞} boundary.
- Consider the operator $\mathcal{H}_{A,q} = -\Delta + A \cdot D + q$, where A is a vector-valued potential and q is a scalar valued potential.
- If 0 is not a Dirichlet eigenvalue of $\mathcal{H}_{A,q}$, then we can define the DN map $\Lambda_{A,q}^{\mathcal{H}}$.
- Research question Are A and q uniquely determined by $\Lambda_{A,q}^{\mathcal{H}}$?
- No. When $A \neq 0$, there is a natural obstruction to uniqueness.

Counter example

Consider the magnetic Schrödinger operator

$$\mathcal{M}_{A,q} = \sum_{j=1}^{N} (-i \frac{\partial}{\partial x_j} + A_j(x))^2 + q(x).$$

- Let $A' = A + \nabla g$, where $g = \frac{\partial g}{\partial N} = 0$ on $\partial \Omega$.
- $\bullet \ \Lambda_{A',q}^{\mathcal{M}} = \Lambda_{A,q}^{\mathcal{M}}$
- Research question: Is this the only obstruction to uniqueness?
- Yes. In 1993, Sun proved such a restricted uniqueness result for $A \in W^{2,\infty}(\mathbb{R}^N) \cap \mathcal{E}'(\bar{\Omega})$ and $q \in L^{\infty}(\Omega)$.

Polyharmonic operator

Surprisingly, for the polyharmonic operator

$$\mathcal{L}_{A,q} = (-\Delta)^m + A \cdot D + q, \quad m \ge 2,$$

one can uniquely recover both A and q.

- This result was first proved by Krupchyk, Lassas and Uhlmann in 2014, for $A \in W^{1,\infty}(\mathbb{R}^N) \cap \mathcal{E}'(\bar{\Omega})$ and $q \in L^{\infty}(\Omega)$.
- Higher order polyharmonic operators occur in areas of physics and geometry such as
 - Kirchoff plate equation in the theory of elasticity.
 - Paneitz-Branson operator in conformal geometry.

Definition of A and q

• Let first order perturbation A be in $W^{-\frac{m}{2}+1,p'}(\mathbb{R}^N)\cap \mathcal{E}'(\bar{\Omega})$, where

$$\begin{cases} p' \in [2N/m, \infty) & \text{if} \quad m < N, \\ p' \in (2, \infty) & \text{if} \quad m = N \quad \text{or} \quad m = N + 2, \\ p' \in [2, \infty) & \text{otherwise.} \end{cases}$$
 (A)

• For a fixed δ with $0 < \delta < \frac{1}{2}$, let the zeroth order perturbation q be in $W^{-\frac{m}{2}+\delta,r'}(\mathbb{R}^N) \cap \mathcal{E}'(\bar{\Omega})$, where

$$\begin{cases} r' \in [2N/(m-2\delta), \infty), & \text{if } m < N, \\ r' \in [2N/(m-2\delta), \infty), & \text{if } m = N, \\ r' \in [2, \infty), & \text{if } m \ge N+1. \end{cases}$$
 (q)

Main Result

Theorem (Assylbekov-I '17)

Let $\Omega \subset \mathbb{R}^N$, $N \geq 3$ be a bounded open set with C^∞ boundary, and let $m \geq 2$ be an integer. Let $0 < \delta < 1/2$. Suppose that A_1 , A_2 satisfy (A) and q_1 , q_2 satisfy (q) and 0 is not in the spectrum of \mathcal{L}_{A_1,q_1} and \mathcal{L}_{A_2,q_2} .

If $\Lambda_{A_1,q_1}^{\mathcal{L}}=\Lambda_{A_2,q_2}^{\mathcal{L}}$, then $A_1=A_2$ and $q_1=q_2$.

Key steps

We use the following two key steps in the proof:

- Carleman estimates
- ullet Construction of Complex Geometric Optics (CGO) solutions to $\mathcal{L}_{A,q}$.

Carleman estimates

ullet Carleman estimates : For $0 < h \ll 1$, we have

$$||u||_{H^{m/2}_{scl}(\mathbb{R}^N)} \lesssim \frac{1}{h^m} ||e^{\phi/h}(h^{2m}\mathcal{L}_{A,q})e^{-\phi/h}u||_{H^{-3m/2}_{scl}(\mathbb{R}^N)}$$

for all $u \in C_0^{\infty}(\Omega)$.

- Here, ϕ is the so-called Limiting Carleman Weight for $-h^2\Delta$ and $H^s_{scl}(\mathbb{R}^N)$ are weighted Sobolev spaces.
- The two key ingredients in the proof of the Carleman estimates are:
 - Estimates for the Laplacian due to Salo and Tzou with a gain of two derivatives and
 - Continuity of multiplication between two Sobolev spaces.

CGO solutions

Proposition

Let $\zeta\in\mathbb{C}^N$ and h>0 be such that $\zeta\cdot\zeta=0$, $\zeta=\zeta_0+\zeta_1$ with ζ_0 independent of h and $\zeta_1=\mathcal{O}(h)$ as $h\to 0$. For all h>0 small enough, there exists $u(x,\zeta;h)\in H^{m/2}(\Omega)$ solving $\mathcal{L}_{A,q}u=0$, and of the form

$$u(x,\zeta;h)=e^{\frac{ix\cdot\zeta}{h}}(a(x,\zeta_0)+h^{m/2}r(x,\zeta;h)),$$

where $a(\cdot,\zeta_0)\in C^\infty(\overline{\Omega})$ satisfies

$$(\zeta_0 \cdot \nabla)^2 a = 0$$
 in Ω ,

and the correction term r is such that $||r||_{H^{m/2}(\Omega)} = \mathcal{O}(1)$ as $h \to 0$.

Concluding steps

• Construct $u_2(\cdot,\zeta_2;h)$ and $v(\cdot,\zeta_1;h)$ in $H^{\frac{m}{2}}(\Omega)$ solving $\mathcal{L}_{A_2,q_2}u_2=0$ and $\mathcal{L}^*_{A_1,q_1}v=0$ in Ω and plug them in to the following integral identity,

$$\int_{\Omega} ((A_2 - A_1) \cdot Du_2) \bar{v} \, dx + \int_{\Omega} (q_2 - q_1) u_2 \bar{v} \, dx = 0.$$

- First let $h \to 0$ and obtain $A_1 = A_2$.
- Now plug in $A_1 = A_2$ and $a_1 = a_2 = 1$ into the integral identity, and let $h \to 0$ to get $q_1 = q_2$, which finishes the proof.
- Remark: Obtain conditions on A and q by working backwards from construction of CGO solutions.

Summary

- We looked at the injectivity of the DN map for two different PDEs, one quasi-linear and one linear.
- For the quasi-linear PDE, the DN map is not injective. Uniqueness up to diffeomorphism fails in certain cases and this gives a recipe for cloaking.
- We used the same ideas as in the linear settings, to give a scheme for cloaking, approximate cloaking and isotropic approximate cloaking in quasi-linear settings.
- For the linear poly-harmonic PDE, the DN map is injective and goal of our work was to prove injectivity of the DN map for rough A and q.
- Our main contribution is Carleman estimates and construction of CGO solutions with proper decay of remainder term.