

EIGRP

- Enhanced Interior Gateway Routing Protocol
 - □ 시스코에서 만든 Distance Vector Routing
 Protocol
 - Split-Horizon 적용
 - Major Network 경계에서 자동 축약
 - □ 라우팅 정보 전송을 위해 IP 프로토콜 번호 88 번 사용
 - Unequal Cost 부하 분산 지원

EIGRP 장점과 단점

- 장점
 - □ 기본적 설정이 간단
- 단점
 - □ 시스코 라우터에서만 동작
 - □ 대규모 네트워크에서 관리가 힘들다.
 - SIA(Stuck In Active) 현상이 발생할 수 있다.

기본적 EIGRP 設定

- 기본적 EIGRP 설정
 - R(cfg)# router eigrp [AS 번호]
 - AS번호는 1-65535 사이의 적당한 값
 - □ R(c-r)# eigrp router-id [IP 주소형식]
 - If not, Loopback 인터페이스에 설정된 IP 주소 중 가장 높은 것이 Router ID로 지정
 - R(c-r)# network [net-id] [Wildcard]
 - 인터페이스 주소와 함께 Wildcard o.o.o.o을 사용하면 실수가 적고 편리
 - ▶ 서브넷팅되지 않은 네트워크는 Wildcard 생략 가능

EIGRP 라우팅 경로 計算

- ■절차
 - Neighbor 구성
 - Neighbor Table 생성
 - R# show ip eigrp neighbor
 - □ 라우팅 정보 교환
 - Topology Table 생성
 - R# show ip eigrp topology
 - □ 라우팅 경로 계산
 - Routing Table 저장
 - R# show ip route eigrp

EIGRP Packet

- Hello
 - 인접성 맺고 유지
- Update
 - □ 전체적 정보 교환
- Query
 - □ 새로운 정보에 대한 질의
- Reply
 - Query에 대한 응답
- ACK
 - Update, Query, Reply에 대한 응답

1. Hello Packet

- 네이버를 구성하고 유지하기 위해 사용
 - 목적지 주소: 224.0.0.10
- ■확인
 - R# debug eigrp hello packet
- Hold Time
 - Hello 주기의 3배에 해당되는 기간 동안에 Hello Packet을 받지 못하면 인접 라우터에 문제가 발생했다고 간주하고 관계를 해제

Hello 주기와 HoldTime

Encapsulation	Hello Interval(초)	Hold Time(초)
Ethernet, HDLC, PPP, F/R P ₂ P Sub-Interface	5	15
T1 이하의 NBMA Interface, F/R Multipoint Sub-Interface	60	180

- Hello Packet 전송주기 변경
 - R(c-i)# ip hello-interval eigrp 1 10
- Hold Time 변경
 - R(c-i)# ip hold-time eigrp 1 30

2. Update Packet

- 라우팅 정보를 전송할 때 사용되는 Packet
- 경우에 따라 Unicast | Multicast 주소 사용
 - Etherenet: Multicast(224.0.0.10)
 - NBMA: Unicast
 - P2P: Unicast
 - 특정 네이버에게서 수신확인 패킷을 수신하지 못하면, 해당 네이버에게만 Unicast 주소로 설정 하여 재전송

3. Query Packet

- 라우팅 정보를 요청할 때 사용하는 패킷
 - □ 자신의 라우팅 테이블에 있는 경로가 다운되거 나 Metric 값이 증가
 - Topology Table에 대체경로가 없을 때 인접 라우 터에게 해당 경로에 대한 정보를 요청
- 경우에 따라 Unicast or Multicast 주소 사용
- 확인 방법
 - R# debug eigrp packet
 - R# debug ip packet

4. Reply Packet

- 요청받은 라우팅 정보를 전송할 때 사용
- 목적지 주소는 항상 Unicast 사용

5. ACK Packet

- Update, Query, Reply 패킷의 수신을 확인 할 때 사용 = 수신 확인
- ACK와 Hello는 수신 확인하지 않는다.
- 목적지 주소는 항상 Unicast

EIGRP Metric

- EIGRP Metric
 - □ 라우팅 경로 결정시 사용하는 기준
- Vector Metric
 - Bandwidth, Delay, Reliability, Load, MTU 및 Hop Count
- Composite Metric
 - □ 하나의 값으로 계산된 Metric
- 확인
 - R# show interface so/o

Composite Metric 計算

- 기본적 K 상수값
 - K1 = K3 = 1
 - $K_2 = K_4 = K_5 = 0$
- K5 = o인 경우
 - □ 복합 메트릭 = [K1*BW + K2*BW/(256-load) + K3*DLY] * 256
- K5 = o이 아닌 경우
 - 복합메트릭 = [K1*BW + K2*BW/(256-load) + K3*DLY] * 256 * K5/(Reliability + K4)

실제 Composite Metric

- 실제 복합 메트릭 = [BW + DLY] * 256
 - □ BW = 10¹⁰ /가장 느린 대역폭
 - BW값 계산할 때 소수점 이하는 버린다.
 - □ DLY = 목적지까지의 모든 지연의 합/10
 - Reliability = 인터페이스의 에러발생
 - □ Load = 인터페이스의 부하
 - □ MTU = MTU 중 가장 작은 것
 - Hop Count = 기본적으로 100
 - ▶ 100을 초과하면 도달 불가능한 경로로 간주

Metric 값 調整

- Hop Count 조정
 - R(c-r)# metric maximum-hops?
 - <1-255> Hop count
- K 상수값 조정
 - R(c-r)# metric weight 0 1 1 1 0 0
 - 첫번째는TOS(Type of Service) = 항상 o
 - 나머지는 K1-K5
- 동일 EIGRP AS내에서는 모든 라우터의 K 상수값이 동일해야 한다.

EIGRP AD

- 내부네트워크(D) = AD 90
 - 동일한 EIGRP AS내에서 network 명령을 사용하여 EIGRP에 포함시킨 네트워크
- 외부 네트워크(D EX) = AD 170
 - Redistribute 명령어를 사용하여 EIGRP에 재 분배시킨 네트워크
- 축약 네트워크 = AD 5
 - 축약하면 해당 라우터에서만 AD 5

EIGRP 설정 확인

- R# show ip protocols
 - EIGRP [AS번호]
 - K 상수값
 - □ 최대 Hop Count
 - □ 재분배되고 있는 프로토콜
 - □ 현재 라우터에서 network 명령어를 사용하여 EIGRP에 포함시킨 네트워크
 - EIGRP의 내부와 외부 네트워크 AD

네이버구성 및 네이버 테이블 생성

- 네이버관계구성
 - □ 인접 라우터에서 Hello Packet을 수신하면 바로 해당 라우터는 네이버로 간주
 - AS번호, K 상수값, EIGRP 암호 등이 일치해야
 - EIGRP Hello Packet의 출발지 주소와 수신 인터페 이스의 서브넷이 동일해야 네이버가 된다.
 - Not on Common Subnet ← 서브넷 다르다는 의미

EIGRP 네이버 확인

- R# show ip eigrp neighbors
 - 해당 네이버가 네이버 테이블에 생성된 순서
 - ▶ 네이버가 리셋되어도 순서는 변하지 않는다.
 - □ 네이버의 IP 주소
 - □ 연결된 현재 라우터의 인터페이스
 - □ 네이버가 알려준 Hold Time
 - □ 네이버가 살아있는 시간
 - SRTT(Smooth Round Trip Timer): 해당 네이버까지 패 킷이 전송되었다가 돌아오는 시간
 - RTO(Retransmission Time-Out): 수신확인 패킷을 RTO 시간 내에 수신하지 못하면 재전송

DUAL(Diffusing Update Algorithm)

- 최적 라우팅 계산
- Topology Table
 - □ 인접 라우터에게서 수신한 네트워크와 그 네 트워크의 Metric 정보를 저장하는 Database
 - R# show ip eigrp topology
 - Successor와 Feasible Successor 확인
 - R# show ip eigrp topology all-links
 - R# show ip eigrp topology detail-links
 - Topology Table의 모든 내용 확인

Dual용어

- S(Successor)
 - □ 최적 경로상의 Next Hop Router = 최적 경로
- FS(Feasible Successor)
 - Successor가 아닌 라우터중에서 RD<FD를 조건 을 만족하는 Next Hop Router = 백업 경로
- FD(Feasible Distance)
 - 현재 라우터에서 특정 목적지 네트워크까지의 최적 Metric 값
- RD(Reported Distance)
 - Next Hop Router에서 목적지 네트워크까지의 Metric 값

EIGRP 네트워크 구성

- 정상적 상황의 중소규모 네트워크에서 잘 동작
 - 제대로 설계되지 않은 대규모 네트워크에선 여러 문제 유발
- F/R 네트워크 구간
 - R# show frame map
- Hub & Spoke 구간
 - R(c-if)# no ip split-horizon eigrp [AS번호]

EIGRP Router-ID

- Router-ID 지정: 라우터의 실질적 이름
 - R(c-r)# eigrp router-id [ID]
- Router-ID 선출 기준
 - 1. 지정된 Router-ID
 - 2. Loopback Interface IP 주소중 가장 높은 것
 - 3. 물리적 Interface IP 주소중 가장 높은 것
- Router-ID 동일 > 라우팅 정보폐기 > 라우팅 테이블에 저장되지 않는다.

EIGRP 제어용대역폭제한

- 기본적으로 EIGRP Packet은 대여폭의 50%까지 사용할 수 있다.
- 비율 조정
 - □ R(c-if)# ip bandwidth-percent eigrp [AS번호] [퍼센트]
 - 1-999,999 사이 번호
 - ▶ 100% 이상의 값을 지정할 수 있는 이유는 실제 속 도와 설정된 대역폭 값이 서로 다를 수 있기 때문

EIGRP 네트워크 축약

■ EIGRP는 Distance Vector 프로토콜이므로 Major Network 경계에서 자동으로 축약 이 이루어진다.

- 또 임의의 길이로 수동 축약도 가능하다.
 - □ 다른 Classless 라우팅 프로토콜과 마찬가지 로 EIGRP도 임의의 크기로 네트워크 축약 가 능

1. EIGRP 자동 축약

- 자동 축약을 중지하려면
 - R(cfg)# no auto-summary
- RIP과 달리 EIGRP는 하나의 라우터에만 명령어 사용하면 된다.

2. EIGRP 수동 축약

- 축약 네트워크를 전송하는 인터페이스에서
 - R(c-subif)# ip summary-address eigrp [x][Network] [Subnet Mask]
 - 축약이 이루어지는 라우터의 Routing Table에 축약 네트워크의 게이트웨이가 Null o 인터페이스로 설정되는 이유
 - Routing Loop를 방지하기 위해
 - 목적지가 Null o인 패킷은 폐기
- EIGRP 축약 네트워크의 AD는 5
 - 상세 네트워크가 모두 다운되어야 축약 네트워 크의 광고를 중지한다.

SIA(Stuck in Active)

SIA

- □ EIGRP 라우팅 정보 요청 패킷(Query Packet) 을 보낸 후에 응답 패킷을 받지 못한 상태가 장시간 계속되는 것
- □ 기본적으로 3분간 기다리면, 이 기간이 경과 하면 네이버 관계를 해제한다.
- SIA가 발생하는 것은 Query Packet의 성능이 떨어지고 저속의 링크로 연결된 말단 라우터 까지 전송되었다가, 응답을 받지 못하기 때 문

SIA 방지 대책

- SIA Timer 조정
- ■축약
- 네트워크 차단
- Stub Routing
- 재분배

1. SIA Timer 조정

- SIA 때문에 네이버 관계 해제되는 것 지연
 - R(cfg)# router eigrp x
 - R(c-r)# timers active-time x
 - □ 분 단위
 - □ 네이버 해제 시간을 연장

2. 축약

- Query Scouping
 - Query Packet을 적당한 곳에서 멈추게 하는 것
 - 축약을 설정한 바로 다은 라우터까지만Query가 전송
 - EIGRP 라우터는 Query 받은 것과 동일한 네트워크 가 Topology Table에 존재하지 않으면 다른 네이버 에게 더 이상 Query Packet을 전파하지 않는다.
 - R(c-if)# ip summary-address eigrp x [Network] [Subnet Mask]

3. 네트워크 차단

- 특정 네트워크를 차단
 - Topology Table에 저장되는 것 방지
 - □ Query의 전송 범위를 제한
 - R(cfg)# ip prefix-list BlockRx deny [Network]
 - R(c-r)# distribute-list prefix BlockRx in so/o
- 네트워크 차단은 Query의 범위를 제한할 수 있지만, 해당 네트워크에 대한 라우팅 이 제대로 이뤄지지 않는다.

4. Stub Routing

- 특정 EIGRP 라우터를 Stub Router로 지정
 - R(cfg)# router eigrp x
 - R(c-r)# eigrp stub
 - Connected / Receive-only
 - Redistributed / Static / Summary
 - 무옵션: connected + summary
- Stub Router로 지정하면 네이버가 Query Packet을 전송하지 않는다. Stub Router 자신은 네이버에게 Query Packet을 전송

5. 재분배

■ EIGRP와 다른 라우팅 프로토콜을 혼합 사용하여 Query 전송 범위를 줄이는 것

Unequal Cost 부하 분산

- EIGRP는 IOS버전에 따라 최대 6개 또는 16개까지 동일한 Metric 값을 갖는 경로에 대해 부하분산을 지원
- Unequal Cost Load Balancing 조건
 - □ FS를 통하는 경로이어야 한다. 즉 AD<FD
 - R# show ip eigrp topology ← 확인
 - □ 부하 분산시키고자 하는 경로의 Metric 값이 최적 FD x Variance 값보다 적어야 한다.

Variance 값 지정

- Variance 값 지정
 - R(cfg)# router eigrp x
 - R(c-r)# variance y
 - Variance값은 1-128 사이
 - ▶ Variance값의 역할: Unequal Cost 부하 분산시킬 Metric 값의 범위를 지정
 - 부하분산 비율은 Variance 값과는 상관없이, Metric 값에 역비례
 - R# clear ip eigrp neighbor
 - ▶ 네이버 재구성

Unequal Cost 부하 분산 설정

- 설정 방법 2가지(Metric 조정)
 - □ Vector Metric 조정
 - Offset List 이용(Composite Metric)
- 인접 라우터에게서 수신한 모든 경로 확 인
 - R# show ip eigrp topology all-links

1. Vector Metric 조정

- 지연값 조금 증가
 - R(cfg)# int so/o
 - R(c-r)# delay 2001
 - 지연값 20,010마이크로초
- Variance 값 지정
 - R(cfg)# router eigrp x
 - R(c-r)# variance 2

2. Offset List

- Offset-List를 이용
 - 특정 인터페이스를 통해 특정 네트워크에 대한 라우팅 정보를 송수신할 때 Metric 값을 증가
 - Access List 사용
 - R(cfg)# ip access-list standard [Name]
 - R(c-std-nacl)# permit 2.2.34.0 0.0.0.255
 - Offset List 명령
 - R(c-r)# offset-list [Name] {in|out} 증가메트릭값 so/o
 - Variance 값 지정
 - R(c-r)# variance 2

EIGRP 네트워크 保安

- EIGRP Packet 인증
 - R(cfg)# key chain [Name]
 - R(c-keychain)# key[값]
 - R(c-keychain-key)# key-string [암호]
 - R(c-if)# ip authentication key-chain eigrp x[Name]
 - R(c-if)# ip authentication mode eigrp x md5

EIGRP Packet 인증

- EIGRP 인증 변경시 네이버 관계가 재구성 된다.
 - R# show ip eigrp neighbor
 - 네이버 구성 확인
 - R# debug eigrp packet hello
 - Hello Packet 디버깅

EIGRP 추가적 보안 대책

- Passive Interface 설정
 - R(c-r)# passive-interface so/o
 - 해당 인터페이스로 Hello Packet을 전송하지 않으며, 수 신하지도 않아 네이버 관계를 구성하지 않는다.
 - 그러나 해당 인터페이스에 대한 네트워크 정보는 EIGRP를 통해 다른 <u>라우터에 전송</u>
- 특정 네트워크만 수신
 - IP Prefix List를 이용
 - R(cfg)# ip prefix-list [N] permit [Net/Prefix]
 - R(c-r)# distribute-list prefix [N] in 인터페이스