Graph theory basics

Introduction to Network Science Carlos Castillo Topic 04

Contents

- Notation for graphs
- Degree distributions
- Adjacency matrices

Sources

- Albert László Barabási: Network Science.
 Cambridge University Press, 2016.
 - Follows almost section-by-section chapter 02
- URLs cited in the footer of specific slides

The seven bridges of Königsberg

http://networksciencebook.com/images/ch-02/video-2-1.m4v

Quick Question

Can one walk across the 7 bridges without crossing the same bridge twice?

Basic concepts

Notation for a graph

- G = (V,E)
 - V: nodes or vertices
 - E: links or edges
- |V| = N size of graph
- |E| = L number of links

Typical notation variations

- You may find that G is denoted by (N, A), this is typical of directed graphs, means "nodes, arcs"
- You may find that
 - |V| is denoted by n or N
 - |E| is denoted by m, M, or L

Directed vs undirected graphs

- In an undirected graph
 - E is a symmetric relation

$$(u,v) \in E \Rightarrow (v,u) \in E$$

- In a directed graph, also known as "digraph"
 - E is not a symmetric relation

$$(u,v) \in E \Rightarrow (v,u) \in E$$

Example graphs we will use

Network	[V]	E
Zachary's Karate Club (karate.gml)	34	78
Game of Thrones (got-relationships.csv)	84	216
US companies ownership	1351	6721
Marvel comics (hero-network.csv)	6K	167K

Degree

- Node i has degree k_i
 - This is the number of links incident on this node
 - The total number of links L is given by $\,L=rac{1}{2}\sum_{i=1}^{N}k_{i}\,$
- Average degree $\langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2L}{N}$

In directed networks

- We distinguish in-degree from out-degree
 - Incoming and outgoing links, respectively
- Degree is the sum of both $k_i = k_i^{\rm in} + k_i^{\rm out}$
- Counting total number of links:

$$L = \sum_{i=1}^{N} k_i^{\text{in}} = \sum_{i=1}^{N} k_i^{\text{out}}$$

Degree distribution

- If there are N_k nodes with degree k
- The degree distribution is given by $p_k = \frac{N_k}{N}$

• The average degree is then $\langle k \rangle = \sum_{k=0}^{\infty} k p_k$

Degree distribution; two toy graphs

Exercise

Answer in
Google Spreadsheet
(Link to be provided during class)

Draw the degree distribution of these graphs

Degree distribution; real graph

Adjacency matrix

What is an adjacency matrix

- A is the adjacency matrix of G = (V, E) iff:
 - A has |V| rows and |V| columns
 - $-A_{ij} = 1$ if $(i,j) \in E$
 - A_{ii} = 0 if (i,j)∉ E
- A_{ij} always means row i, column j
 - Sometimes Barabási's book has this wrong

Examples

Undirected graph

$$A_{ij} = \begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$$

Directed graph

$$A_{ij} = \begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$$

A_{ii} always means row i, column j

Undirected graph

$$A_{ij} = \begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$$

Directed graph

 $A_{ij} = \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$

Row 2 Column 4

Quick Question

• In terms of A, what is the expression for:

$$k_i^{\text{in}} = k_i^{\text{out}} =$$

Some "graphology" ...

- G is undirected ⇔ A is symmetric
- G has a self-loop
 ⇔ A has a non-zero element in the diagonal
- G is complete

 A_{ii} ≠ 0 (except if i=j)

Summary

Things to remember

- Definitions:
 - Degree, in-degree, out-degree
- Writing the adjacency matrix of a graph and drawing a graph given its adjacency matrix

Practice on your own

Draw the indegree, outdegree, degree distribution

Write the adjacency matrix

