EE272 F'24 Project V1.0

This semesters project is to build a calculation engine for AI. The engine is connected to a wide high speed bus to provide sufficient memory bandwidth. This bus is described later in the document. The engine uses FP11 (from HW1 and HW2). An engine module contains 4 of the FPM blocks connected to one FPA block. This is referred to as SUM4 in the document. This provides an addition of 4 multiplies. 4 SUM4 blocks are connected to an FPA block. This is referred to as SUM16 in the document. This will need to be pipelined to synthesize at 1ns cycle time.

The SUM16 block has 16 11 bit A and B inputs, and a single 11 bit output. A single operation requires 16*11 (176) bits of A data, and 16*11 (176) bits of B data. The bus has a read mechanism, and a separate write mechanism. The read mechanism is a 352 bit bus. The upper 176 bits contain 16 A values. The lower 176 bits contain 16 B values.

The read bus works in burst reads of 16 X 352 bit transfers. This will create 16 outputs. These are assembled into 176 bits, and transferred on the output bus. The output bus has 176 bits of data. It is single transfers.

The busses are named in honor of SJSU, so all the signal names begin with an 'S'. All S bus addresses reference a 352 or 176 bit word. It is not a byte address.

Name	Dir	Bits	Comment
Sclock	In	1	Active high clock for the bus
Sreset	In	1	Active high reset for the bus hardware
Srrequest	Out	1	Bus Request
Srack	In	1	Bus acknowledge. Request accepted
Sraddr	Out	48	Read address
Srstrobe	In	1	Read data strobe
Srdata	In	352	Read data
Swrequest	Out	1	Write request
Swack	In	1	Write request accepted
Swaddr	Out	48	Write address
Swdata	Out	176	Write data

A read operation starts with a Srrequest asserting while presenting the address. This is held on the read bus until Srack is asserted indicating the request has been accepted.

Srrequest		
Sraddr	Valid Addr	
Srack		

Another request for this device may not be made until the first data is returned in the 16 cycle burst. The system bus fabric (Which is part of the project design) will perform arbitration based on the Srrequest signals from each requester. (There will up to 4 of these in the system). The memory controller interface to the fabric is described later.

The bus waits for the Srstrobe signal indicating the first data is on the bus. Note the bus has no way to slow down data transfers. The Srstrobe signal is active for 16 cycles.

The write bus is like the read bus. There is no response. When a write is acknowledged, It will occur in a few cycles with no error. The address and data are latched, and do not need to be retained after the swack.

A simple register interface is provided. This interface is inspired by APB. However, there is no ready signal. All transfers are 2 cycles. The first cycle is used to decode the device, and the second cycle is used to transfer the data.

All signals on the register interface begin with the letter R for register interface.

Name	Dir	Bits	Comment	
Rclk	In	1	Read bus clock	
Rreset	In	1	Read bus reset	
Rwrite	In	1	Indicates the bus cycle type. 0=read, 1=write	
Rxfr	In	1	Indicates the second cycle where the data transfer will occur	
Raddr	In	64	Selects device registers. Only the lower 12 bits go to the device	
Rwdata	In	64	The register write data	
Rrdata	Out	64	The register read data	
$Rdevsel_X$	In	1	Indicates this device is selected. Decode of the upper 52 bits of Raddr according to the following table.	

All signals except the Rrdata are present in both cycles. The Rrdata is only present in the second cycle. The bus fabric and control is part of the test bench. The Raddr is in units of bytes for compatibility with existing software, even though the bus is in 64 bit chucks.

Each device has a unique address space. Rdevsel_x is decodes as follows:

Addr	Device (x)
0x5e00_0000_0000_0XXX	0
0x5e00_0000_0000_1XXX	1
0x5e00_0000_0000_2XXX	2
0x5e00_0000_0000_3XXX	3

The following Registers exist in each device:

Address (last 10 bits)	Name	Function
0x000	Econtrol	Controls the engine (See below)
0x008	Efetchaddr	The starting location to fetch data from
0x010	Efetchlen	Number of 352 bit data items to process in total
0x018	Estoreaddr	Location to store the 176 bit results

Note: the data will be fetched in 352 bit pieces. Any unneeded data will be set to zero by the software/test bench.

The Efetchlen may not be a multiple of 16. Make sure to store the last results which may only partially fill a 176 bit result word. The first result is stored in the low bits of the store location. Ensure all non stored bits are zero.

Econtrol			
Bit location	Name	Function	
63:4	Reserved	Read zeros, ignore writes	
3:1	Fetch Priority	A priority amount for request arbitration	
0	Start	The engine can run. Clears when the engine	
		finishes	

Efetchaddr			
Bit location	Name	Function	
63:48	Reserved	Read zeros, ignore writes	
47:0	Fetch starting address	The starting address to fetch data for operands. This register increments while the operation is in progress.	

Efetchlen			
Bit location	Name	Function	
63:16	Reserved	Read zeros, ignore writes	
15:0	Numwords	The number of 352 bit words to process	

Estoreaddr			
Bit location	Name	Function	
63:48	Reserved	Read zeros, ignore writes	
47:0	_	The starting address to store 176 bit results in	
		memory. Increments while processing.	