Total Number of Pages: 03

Course: B. Tech Sub_Code: RCS5C003

5th Semester Regular/Back Examination: 2022-23

SUBJECT: Operating Systems

BRANCH(S): CSE, CSEAIME, CSIT, CST, ELECTRICAL & C.E, ELECTRONICS & C.E, IT

Time: 3 Hour Max Marks: 100 Q.Code: L315

Answer Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks.

Part-I

Q1 Answer the following questions:

 (2×10)

- What is a time-sharing operating system? —
- طر List out any four information management system calls? --
- Sh What does PCB contain? -
- d) Define race condition. -
- What is the basic method of Segmentation?
- Mhat is Demand Paging?
- g) Define deadlock? -
- Differences between Logical address space and physical address space. -
- What is the purpose of system programs?
- j) When does thrashing occur? _

Part-II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of (6 × 8) Twelve)

- List five services provided by an operating system and explain how each creates convenience for users. In which cases would it be impossible for user-level programs to provide these services? Explain your answer.
- Explain the purpose of system calls and discuss the calls related to device management and communications in brief. -
- Define a Thread? Give the benefits of multithreading. What resources are used when a thread is created? How do they differ from those used when a process is created?

Consider the following set of processes, with the length of the CPU burst given in milliseconds:

st given in mineseenas:					
Process	Burst	Priority			
	Time				
P1	2	2			
P2	1	1			
P3	8	4			
P4	4	2 ,			
P5	5	3			

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.

- a) What is the average turnaround time for these processes with the SJF scheduling algorithm?
- b) What is the average turnaround time for these processes with the PRIORITY scheduling algorithm?
- (e) Define Deadlock. State and explain conditions that are necessary for deadlocks to occur deadlock. How can it be prevented. Discuss with example?
 - Describe dining-philosopher problem? Device an algorithm to solve the problem, using semaphores.
 - Discuss the Peterson's solution for the race condition with algorithm. g)
- Consider page reference string 1, 3, 0, 3, 5, 6 with 3-page frames. Find number of page faults in FIFO, LRU and Optimal Page Replacement
 - What is Internal and External fragmentation? In which memory management technique internal fragmentation occurs, Explain the solution j)
 - Explain swap space management in detail. https://www.bputonline.com
 - Explain different Disk scheduling algorithms SCAN, CSCAN, CLOOK. k) 4
 - Write short notes on DNS and VM ware and LINUX system.

Q3

Only Long Answer Type Questions (Answer Any Two out of Four)

Explain the FCFS, preemptive and non-preemptive versions of Shortest-Job First and Round Robin (time slice = 2) scheduling algorithms with Gantt charts for the four processes given. Compare their average (16)

PROCESS	ADDU	_
1-1100	ARRIVAL	BURST
D4	TIME	
PI	0	TIME
P2	1	8
P3	2	4
P4	2	9
	3	5
	_	

Explain in detail about Banker's algorithm with example in deadlock. Consider a system that contains five processes P1, P2, P3, P4, P5 and the three resource types A, B and C. Following are the resource types: A has 10, B has 5 and the resource type C has 7 instances.

(16)

- F.3

Process	Allocation	Max	Available
	ABC	ΑВ	АВС
		C	
P1	0 1 0	753	3 3 2
P2	200	3 2 2	
P3	3 0 2	902	
P4	2 1 1	2 2 2	
P5	0 0 2	4 3 3	

Answer the following questions using the banker's algorithm:

- a) What is the reference of the need matrix?
- b) Determine if the system is safe or not.
- c) What will happen if the resource request (1, 0, 0) for process P1 can the system accept this request immediately?
- Explain the concept of demand paging in detail with neat diagram. (16)
 Consider the following page-Reference string:
 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6. How many page faults occur for the LRU, FIFO and optimal page replacement algorithms, assuming 3 frames and initially all frames are empty?
- Discuss the objectives for file management systems. Suppose the head of a moving- head disk with 200 tracks, numbered 0 to 199, is Currently serving a request at track 143 and has just finished a request at track 125. If the queue of requests is kept in FIFO order: 86, 147, 91, 177, 94, 150, 102, 175, 130. What is the total head movement to satisfy these requests for the following Disk scheduling algorithms.

 (a) FCFS (b) Random (d) SCAN (e) SSTF (f) C- SCAN

https://www.bputonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay से