ADDITIONS AND CORRECTIONS

1996, Volume 100

Murthy S. Gudipati*,† and Daniel H. Katayama*,‡: Corrected Rate Constants for Collision-Induced Electronic Transitions from the N_2 $a^1\Pi_g$ (v=0 and 1) Levels

Pages 7854-7858. Several years ago, one of the present authors (DHK) and colleagues published two papers ^{1,2} on the collision-induced electronic transitions (CIET) between the nested vibronic levels of the electronic states $a^1\Pi_g$ and $a'^1\Sigma_u^-$ of N₂. Using a double-resonance-enhanced multiphoton ionization (REMPI) technique, rate constants and branching ratios between the adjacent vibrational levels of the a and a' states were determined in these studies.

Recently, one of us (MSG) found an error in the straightforward numerical analysis of eq 8 in ref 2. This arithmetical error led to incorrect rate constants being reported for $N_2a(v=1)$ in Table 1 of this reference. We correct these errors in the present work because of the important role played by these rate constants in modeling the earth's upper atmosphere.³

With the correct values for eq 8, eq 14 in ref 2 will become

$$A(t) = A'_{0} \{19.23 \exp(-83.8k_{1 \to 1}[Q]t) + 63.8 \exp(-0.77k_{1 \to 1}[Q]t)\}$$
 (1)

and the second term dominates as a single exponential function, resulting in eq 16 of this reference being written as

$$1/\tau = 0.77 \mathbf{k}_{1 \to 1}[Q] \tag{2}$$

Using these equations, the rate constants and cross sections for

TABLE 1: State-Specific Rate Constants and Cross Sections for Quenching the N_2 $a^l\Pi_g(v=0$ and 1) Levels as a Function of Collision Partner at 295 K^a

data for $v = 1$						
collision partner	$k_{1\rightarrow 2}^{\ b}$	$\sigma_{1\rightarrow 2}$	$k_{2\rightarrow 1}$ b	$\sigma_{2\rightarrow 1}$	$k_{1\rightarrow 1}$ ^c	$\sigma_{1\rightarrow 1}$
helium argon nitrogen	7.8 19.5 48.7	5.8 33 74	25.3 62 164	19.5 103 245	0.39 0.97 2.53	0.29 1.56 3.9
		data for	v = 0			
collision partner	$k_{0\rightarrow 1}$ ^c	$\sigma_{0\rightarrow 1}$	$k_{1\rightarrow 0}$ ^c	$\sigma_{1\rightarrow0}$	$k_{0\rightarrow0}$ ^c	$\sigma_{0\rightarrow0}$
helium argon nitrogen	0.5 0.8 1.7	0.4 1.3 2.6	3.9 6.6 14.3	3.0 10.8 21.5	0.7 1.2 2.6	0.5 2.0 3.9

^a The rate constants, k, are in units of 10^{-11} molecule⁻¹ s⁻¹ cm³, and the cross sections, σ , are in 10^{-16} cm². ^b The estimated error for these rate constants is ± 1 . ^c The estimated error for this rate constant is ± 0.1 .

 $N_2a(v=1)$ given in Table 1 of ref 2 are corrected and summarized in Table 1 here. We also include the rate constants and cross sections for $N_2a(v=0)$ at room temperature given in Table 1 of ref 1, for which erroneous values of $k_{1\rightarrow0}$ and $\sigma_{1\rightarrow0}$ have been corrected.

Finally, in section IV (Discussion and Conclusions) of ref 2, there are typographical errors. The second sentence should read "... deactivation path from a(v=1) is to the a'(v=2) and 1) levels, respectively." Similarly, the fourth sentence should read, "The branching ratio from a(v=1) to a'(v=2) and 1) is independent of these collision partners…".

References and Notes

- (1) Katayama. D. H.; Dentamaro, A. V.; Welsh, J. A. *J. Chem. Phys.* **1984**, *101*, 9422–9428.
- (2) Katayama, D. H.; Dentamaro, A. V.; Welsh, J. A. J. Phys. Chem. 1996, 100, 7854-7858.
 - (3) Eastes, R. W. J. Geophys. Res. 2000, 105, 18557-18573.

10.1021/jp0213046 Published on Web 07/10/2002

^{*} To whom correspondence should be addressed.

[†] Institute of Physical Sciences and Technology, University of Maryland, College Park, MD 20742 (also at the Institute of Physical Chemistry, University of Cologne, Germany). E-mail: murthy.gudipati@sri.com.

[‡] 1525 Ohialoke St., Honolulu, Hawaii 96821-1413. E-mail: janedan@lava.net.