Gleesso

September 3, 2017

R topics documented:

+	overload '+' operator to allow character strings concatenation	
Index		6
	Gleesso_pipeline	
	create_graph	4
	Compute_graph	2
	+	

Description

overload '+' operator to allow character strings concatenation

Usage

 ${\tt Compute_community_abondance}$

compute community abundances

Description

Compute the sum of abundance of species in each community given the abundance matrix by species and the graph community Also compute the p-value of difference of abundance given a contrast vector with to class (2 classes)

2 Compute_graph

Usage

```
Compute_community_abondance(Nodes, abundance, species_taxo, contrast = NULL,
   community_kind = "walktrap_community")
```

Arguments

Nodes: The network node table with the a community attribution column

abundance: The Metagenomic species abundance table species_taxo: The Metagenomic species taxonomy table

contrast: a boolean vector to form two group of samples. for each community the rank

test difference of abundance p-value is calculated between the two groups.

community kind: the algorithm of used to compute the community: "spinglass_community",

"walktrap_community"

Value

a table of community abundance and composition

Compute_graph Compute Glasso

Description

Compute the Glasso model from the MGS abundances on individuals with a true value in the contrast vector.

Usage

```
Compute_graph(MGS_abundance, contrast_vector, fout,
  abundance_treshold = 10^-7, occurence_treshold = 0.05, nlambda = 20,
  lambda.min.ratio = 0.1, lambda = NULL, rep.num = 20)
```

Arguments

contrast_vector

: a boolean vector to select a subset of the cohort (the model will be infered on

samples with a TRUE value)

MGS_abundance: The Metagenomic species abundance table

fout: where to save the model object

community: Should the community structure be calculated?

nlambda: Number of regularisation parameter that will be tested (see huge::huge() docu-

mentation)

lambda.min.ratio:

the smallest value of lambda as a fraction of its maximum (see huge::huge()

documentation)

create_graph 3

occurence_treshold:

minimum fraction of samples where a species must be present to be taken into account in the analysis

abundance_threshold:

minimum mean abundances for a species to be included in the analysis

rep.num: Number of subsampling to compute the edge stability with "StarS" (see huge::huge.select

documentation)

lambda: A sequence of regularisation parameter. If not null, it will override the automatic

computation of the lambda sequence (with nlambda and lambda.min.ratio)

create_graph

Create a gephi format graph from the graphical Lasso model

Description

The Function also compute the community structure of the graph with various algorithms (betweeness community, walktrap community...) community specified by the user

Usage

```
create_graph(file_input, file_output, MGS_by_taxo_species, species_taxo,
  nspins = 20, mod_rep = 10, community = FALSE, additional_info = NULL,
  spinglass_opt = FALSE, variability_treshold = NULL)
```

Arguments

spinglass_opt : Should the number of spin of the spinglass community be optimized?

file_input: emplacement of the GLASSO model object file_output: where to save the network representation file

MGS_by_taxo_species:

The Metagenomic species abundance table

species_taxo: The Metagenomic species taxonomy table

nspins: number of spin for the spinglass community detection algorithm

community: Should the community structure be calculated?

additional_info:

a vector or data.frame containing information to add to the nodes table of the

network

variability_treshold:

The maximum mean variability for graph edge presence. If null, the optimal covariance matrix will correspond to a variability of 0.05

4 Gleesso_pipeline

```
generate_graph_from_tables
```

generate_graph_from_tables create a gephi graph from a Nodes table and Glasso model object

Description

generate_graph_from_tables create a gephi graph from a Nodes table and Glasso model object

Usage

```
generate_graph_from_tables(fout, nodes_viz_att, fgraph_model,
  variability_treshold = NULL)
```

Gleesso_pipeline

Pipeline launcher

Description

Launching the complete glasso analysis (data prep, graph inference, community detection, community abundances computation) Warning: folder shouldn't be indicated with an / at the end

Usage

```
Gleesso_pipeline(data_folder, MGS_file, taxo_file, model_folder, graph_folder,
  contrast_vector, tag_model, tag_graph, community = TRUE, nlambda = 20,
  lambda.min.ratio = 0.1, occurence_treshold = 0.05,
  abundance_treshold = 10^-7, variability_treshold = NULL,
  analysis_step = NULL, species_mode = TRUE)
```

Arguments

data_folder : where the community abundance table will be written

contrast_vector

: a boolean vector to select a subset of the cohort (the model will be infered on

samples with a TRUE value)

tag_model : a tag that will be inserted in output file to recognize the model parameter

tag_graph : a tag that will be inserted in output file to recognize the graph

species_mode : should the graph inference be done on MGS (FALSE) or with MGS of the

same specied merged togethere (TRUE)

MGS_file: The Metagenomic species abundance file in the RDS format

model_folder: where to save the graphical Lasso model object (output of the spiec.easi func-

tion)

opt_spinglass_com 5

graph_folder: where the graphical representation of the model will be saved (in the gephi for-

mat)

community: Should the community structure be calculated?

nlambda: Number of regularisation parameter that will be tested (see huge::huge() docu-

mentation)

lambda.min.ratio:

the smallest value of lambda as a fraction of its maximum (see huge::huge() documentation)

occurence_treshold:

minimum fraction of samples where a species must be present to be taken into account in the analysis

abundance_threshold:

minimum mean abundances for a species to be included in the analysis

variability_treshold:

The maximum mean variability for graph edge presence. If null, the optimal covariance matrix will correspond to a variability of 0.05

analysis_step: At which step the analysis should be started (0: from scratch, 1: model infer-

ences, 2: save gephi network, 3: Community detection). If NULL (default), the step will be infered from the files present in the output folders. Use analy-

sis_step=0 to force computation from scratch.

opt_spinglass_com

Computing spinglass communities and their modularity for a range of number of spin We then retrieve the optimal number of spin according to modularity

Description

Computing spinglass communities and their modularity for a range of number of spin We then retrieve the optimal number of spin according to modularity

Usage

```
opt_spinglass_com(con.grph, mod_rep, nspins)
```

Index

```
+, 1

Compute_community_abondance, 1
Compute_graph, 2
create_graph, 3

generate_graph_from_tables, 4
Gleesso_pipeline, 4

opt_spinglass_com, 5
```