Type CCINP

1 Neige artificielle - 14 points

Des gouttes d'eau de taille D = 1mm sont pulvérisées à la température $T_i = 10^{\circ}C$ supposée uniforme dans la goutte, dans l'air de température $T_e = -15^{\circ}C$.

- 1) Quelle équation différentielle du premier ordre est vérifiée par la température de la goutte ?
- 2) Résoudre cette équation. Au bout de quel temps t_1 la température de la goutte devient-elle négative?
- 3) Pour de telles tailles, la tension superficielle peut empêcher la goutte d'eau de commencer à solidifier en dessous de sa température de fusion, il y a alors "surfusion" de l'eau. Une goutte d'eau liquide est descendue à la température T_e . Elle revient à $T_{fus} = 0^{o}C$ de manière adiabatique, isobare et réversible. Une fois la transformation terminée, il reste une proportion massique x d'eau liquide dans la goutte.
- i) Quelle fonction d'état reste constante lors de cette transformation ?
- ii) Déterminer x.
- 4) Déterminer le temps t_2 au bout duquel la goutte est entièrement solide.

2 Tonneau percé - 6 points

On considère un tonneau rempli d'eau à la hauteur $z_M = 1, 2m$ percé à trois niveaux $z_1 = 0, 1m, z_2 = 0, 4m, z_3 = 0, 8m$.

- 1) Déterminer la vitesse d'ejection de l'eau pour chaque trou. Hypothèses?
- 2) Donner la distance d'arrivée selon l'axe x pour chacun des jets.

3 Données

• Chaleur latente de fusion de l'eau - $L_{fus} = 335,55 \,\mathrm{kJ}\cdot\mathrm{kg}^{-1}$

Correction: https://urls.fr/STnEYB - Questions: thomas.cloarec@ens-paris-saclay.fr