

## Southeastern European Regional Programming Contest Bucharest, Romania October 18, 2014

## Problem D Frame

Input File: D.in

Output File: standard output

Program Source File: D.c, D.cpp, D.java

Let's consider a  $\mathbf{x} \times \mathbf{y}$  rectangle with the middle  $(\mathbf{x} - 2) \times (\mathbf{y} - 2)$  rectangle cut out. We will call this figure a frame with size  $\mathbf{x} \times \mathbf{y}$ . Picture 1 shows the frame 5  $\times$  6.



Picture 1. Frame 5 × 6



Picture 2. Frame 5 × 6, paved with tiles 3 × 1

Let's assume that we have unlimited number of tiles with size  $\mathbf{A} \times 1$ . We consider the following problem: is it possible to completely pave a frame with size  $\mathbf{x} \times \mathbf{y}$  using these tiles (tiles can be rotated by 90 degrees). For example, frame  $5 \times 6$  from Picture 1 can be paved completely with tiles of size  $3 \times 1$  (one way to do so is shown in Picture 2), but can't be paved with tiles of size  $4 \times 1$ .

## Input

The first input line contains 2 integers –  $\mathbf{x}$  and  $\mathbf{y}$  (3  $\leq$   $\mathbf{x}$   $\leq$  106, 3  $\leq$   $\mathbf{y}$   $\leq$  106). The second line contains integer  $\mathbf{n}$  – the number of tile types to be analyzed (1  $\leq$   $\mathbf{n}$   $\leq$  1000). Each of following  $\mathbf{n}$  lines contains one integer, not exceeding 106. We designate with  $\mathbf{a}_{\mathbf{k}}$  the integer on the ( $\mathbf{k}$ +2)-th line of the input file.

## Output

Your goal is to print n lines, where the  $\kappa$ -th line should contain the word "YES", if it is possible to tile the frame with size  $n \times n$  with tiles  $n \times n$ , and the word "NO" otherwise.

| Sample input | Sample output |
|--------------|---------------|
| 5 6          | YES           |
| 2            | NO            |
| 3            |               |
| 4            |               |