7600017 - Introdução à Física Computacional - 2019 Prof. Guilherme Sipahi

Segundo Projeto

Instruções

- Crie um diretório $\operatorname{\mathbf{proj2}}_{-} \# usp$ em /public/IntroFisComp19/projeto2
- Proteja seu diretório para não ser lido por g e o
- Deixe no diretório apenas 3 arquivos, de nomes exerA.f90, exerB.f90 e exerC.f90
- Os códigos devem seguir rigorosamente os padrões especificados abaixo para entrada/saída
- Note: se deixar de fazer algum exercício não inclua o arquivo correspondente

Exercícios

A) Considere o problema da diferenciação numérica. Dada uma função

$$f_n = f(x_n) = f(x_0 + nh)$$
 com $n = 0, \pm 1, \pm 2, \dots$

pode-se usar a expansão de Taylor ao redor de x_0

$$f(x) = f_0 + (x - x_0)f' + \frac{(x - x_0)^2}{2!}f'' + \frac{(x - x_0)^3}{3!}f''' + \dots$$

onde

$$f' = \frac{df}{dx}\Big|_{x=x_0}$$
 $f'' = \frac{d^2f}{dx^2}\Big|_{x=x_0}$ $f''' = \frac{d^3f}{dx^3}\Big|_{x=x_0}$...

Usando a relação $x_n = x_0 + nh$ podemos também escrever

$$f_n = f_0 + nhf' + \frac{n^2h^2}{2!}f'' + \frac{n^3h^3}{3!}f''' + \dots$$

Isso nos permite obter as relações:

- derivada para frente de 2 pontos

$$f' = \frac{f_1 - f_0}{h} + \mathcal{O}(h)$$

- derivada para trás de 2 pontos

$$f' = \frac{f_0 - f_{-1}}{h} + \mathcal{O}(h)$$

- derivada simétrica de 3 pontos

$$f' = \frac{f_1 - f_{-1}}{2h} + \mathcal{O}(h^2)$$

- derivada simétrica de 5 pontos

$$f' = \frac{-f_2 + 8f_1 - 8f_{-1} + f_{-2}}{12h} + \mathcal{O}(h^4)$$

- derivada segunda simétrica de 3 pontos

$$f'' = \frac{f_1 - 2f_0 + f_{-1}}{h^2} + \mathcal{O}(h^2)$$

- derivada segunda simétrica de 5 pontos

$$f'' = \frac{-f_2 + 16f_1 - 30f_0 + 16f_{-1} - f_{-2}}{12h^2} + \mathcal{O}(h^4)$$

- derivada terceira anti-simétrica de 5 pontos

$$f''' = \frac{f_2 - 2f_1 + 2f_{-1} - f_{-2}}{2h^3} + \mathcal{O}(h^2)$$

Escreva um código que forneça os dados da tabela abaixo para as derivadas da função $f(x) = \exp(x)\cos^2(x/2)$ para x = 1/5. Escreva na tabela apenas os desvios (não se preocupe com o sinal do desvio) em relação aos resultados exatos.

Leia a partir de um arquivo de entrada tabA_in.dat:

- 1. o número de valores de h (na primeira linha)
- 2. a sequência destes valores de h (na segunda linha) a serem testados.

O ponto de cálculo da função (x=1/5) deverá ser fixado como parâmetro do programa. A saída deve ser uma tabela, no arquivo $tabA_out.dat$, contendo na primeira coluna o valor de h e nas colunas seguintes os resultados dos vários desvios, como descrito na tabela abaixo.

Obs: a primeira linha do arquivo de saída pode ser reservada para descrição das colunas, desde que seja uma linha só. Deste modo, a tabela para 14 valores de h poderá ter 15 linhas. Enfim, no terminal, diga em cada caso qual o valor mais apropriado de h e justifique sua escolha (no formato que achar melhor).

	derivada	derivada	derivada	derivada	derivada	derivada
\parallel h	simétrica	para frente	para trás	simétrica	$_{ m segunda}$	terceira
	3 pontos	2 pontos	2 pontos	5 pontos	$\operatorname{sim\'etrica}$	anti-simétrica
					5 pontos	5 pontos
0.5						
0.2						
0.1						
0.05						
0.01						
0.005						
0.001						
0.0005						
0.0001						
0.00005						
0.00001						
0.000001						
0.0000001						
0.00000001						

B) Considere o problema da quadratura numérica. Dada a integral

$$\int_a^b f(x)dx ,$$

seja N=(b-a)/h um número inteiro par. Podemos então escrever

$$\int_{a}^{b} f(x)dx = \int_{a}^{a+2h} f(x)dx + \int_{a+2h}^{a+4h} f(x)dx + \int_{a+4h}^{a+6h} f(x)dx + \dots + \int_{b-2h}^{b} f(x)dx$$

Para cada intervalo de extensão 2h, i.e. para cada integral do tipo

$$\int_{-h}^{h} f(x)dx ,$$

podemos usar uma das seguintes regras:

- regra do trapézio

$$\int_{-h}^{h} f(x)dx = \frac{h}{2} (f_1 + 2f_0 + f_{-1}) + \mathcal{O}(h^3)$$

- regra de Simpson

$$\int_{-h}^{h} f(x)dx = \frac{h}{3} (f_1 + 4f_0 + f_{-1}) + \mathcal{O}(h^5)$$

onde $f_{\pm 1} = f(\pm h)$ e $f_0 = f(0)$.

No caso de um intervalo de extensão 4h, i.e. para cada integral do tipo

$$\int_{x_0}^{x_4} f(x) dx$$

podemos usar a regra:

- regra de Bode

$$\int_{x_0}^{x_4} f(x)dx = \frac{2h}{45} \left(7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4 \right) + \mathcal{O}(h^7)$$

onde $f_i = f(x_i)$, $x_1 = x_0 + h$, $x_2 = x_0 + 2h$, $x_3 = x_0 + 3h$ e $x_4 = x_0 + 4h$. Claramente, neste caso N deve ser um múltiplo inteiro de 4.

Escreva um código que calcule a integral $\int_0^1 \cos(x) \sin(x/2) dx$ usando os diversos métodos acima e para diferentes números N de pontos. Estime apenas os desvios (não se preocupe com o sinal dos desvios) em relação ao valor exato.

Leia a partir de um arquivo de entrada tabB_in.dat:

- 1. o número de valores de N (na primeira linha)
- 2. a sequência destes valores de N (na segunda linha) a serem testados.

Seu programa calculará os valores correspondentes de h. A saída deverá ser uma tabela, no arquivo $tabB_out.dat$, contendo na primeira coluna o valor de N, na segunda coluna o valor de h e nas colunas seguintes os resultados dos vários desvios, como descrito na tabela acima.

Obs: a primeira linha do arquivo de saída pode ser reservada para descrição das colunas, desde que seja uma linha só. Enfim, no terminal, diga em cada caso qual o valor mais apropriado de N e justifique sua escolha (no formato que achar melhor).

N	h	Regra do trapézio	Regra de Simpson	Regra de Bode
4	0.25000000			
8	0.12500000			
16	0.06250000			
32	0.03125000			
64	0.15625000			
128	0.00781250			
256	0.00399625			
512	0.00195312			
1024	0.00097656			
2048	0.00048828			
4096	0.00024414			

C) Considere o problema de encontrar raízes de uma função f(x). Como primeira tentativa, pode-se *chutar* iterativamente valores x_i ao redor da raiz e verificar quando o valor de f(x) se aproxima de zero, por exemplo verificando as mudanças de sinal de $f(x_i)$. Este método de busca direta claramente não será o mais eficiente.

No método de Newton-Raphson as raízes de f(x) são calculadas usando as seguintes iterações

 $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$ com $i = 0, 1, 2, \dots$

Para entender essa relação observe que a equação da tangente à função no ponto x_i é dada por $f(x_i) + (x - x_i)$ $f'(x_i)$. Assim x_{i+1} representa a intersecção da tangente com o eixo das abscissas. Note que a convergência (ou a não convergência) do método de Newton-Raphson depende da escolha do chute inicial x_0 .

No **método da secante** as iterações podem ser escritas como

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} \text{ com } i = 0, 1, 2, \dots$$

Essa relação coincide com a relação do método de Newton-Raphson usando-se para a derivada no ponto x_i a aproximação

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

Geometricamente, note que

$$f(x_i) + (x - x_i) \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

é a equação da reta que passa nos pontos $(x_{i-1}, f(x_{i-1}))$ e $(x_i, f(x_i))$, i.e. da secante à função f(x) nesses dois pontos. Assim, x_{i+1} é a intersecção da secante com o eixo das abscissas. Claramente, o método da secante requer dois valores iniciais, i.e. x_0 e x_1 , que devem ser preferencialmente escolhidos próximos da raiz.

Escreva um código que calcule as (três) raízes (positivas e/ou negativas) da função

$$f(x) = 2x^3 - 4x^2 - x + 2 ,$$

usando os diferentes métodos acima para cálculo de raízes

Leia do terminal o número de iterações (por exemplo, 6) a serem realizadas. A escolha dos valores iniciais será feita dentro do próprio programa. Escreva a saída no arquivo tabC_out.dat, contendo 10 colunas, como na tabela abaixo. A primeira linha pode ser usada para descrição das colunas, por exemplo:

iter dir1 dir2 dir3 NR1 NR2 NR3 sec1 sec2 sec3

Dica: para chutar os valores iniciais para busca oriente-se pelo gráfico de f(x), obtido com o programa gnuplot.

	Busca Direta	Newton-Raphson	método da Secante
Iteração	$r1 \ r2 \ r3$	$r1 \ r2 \ r3$	r1 $r2$ $r3$
1			
2			
3			
4			
5			
6			