APPENDIX

A. Proof of Theorem 4

Proof. This can be seen from Figure 9. Let us first define $\overline{N_P^*}(v) = \overline{N_P}(v) - \{v\}$, so $|\overline{N_P^*}(v)| \le k-1$. In Case (i) where $(u,v) \not\in E$, any vertex $w \in P$ can only fall in the following 3 scenarios: (1) $w \in \overline{N_P^*}(u)$ (which contains v), (2) $w \in \overline{N_P^*}(v)$ (which contains u), and (3) $w \in N_P(u) \cap N_P(v)$. Note that w may be in both (1) and (2). So we have:

$$|P| = |N_{P}(u) \cap N_{P}(v)| + |\overline{N_{P}^{*}}(u) \cup \overline{N_{P}^{*}}(v)|$$

$$\leq |N_{P}(u) \cap N_{P}(v)| + |\overline{N_{P}^{*}}(u)| + |\overline{N_{P}^{*}}(v)|$$

$$\leq |N_{P}(u) \cap N_{P}(v)| + 2(k-1)$$

$$= |N_{P}(u) \cap N_{P}(v)| + 2k - 2,$$

so
$$|N_P(u) \cap N_P(v)| \ge |P| - 2k + 2 \ge q - 2k + 2$$
.

In Case (ii) where $(u, v) \in E$, any vertex $w \in P$ can only be in one of the following 4 scenarios: (1) w = u, (2) w = v, (3) $w \in N_P(u) \cap N_P(v)$, and (4) $w \in \overline{N_P^*}(u) \cup \overline{N_P^*}(v)$, so:

$$|P| = 2 + |N_{P}(u) \cap N_{P}(v)| + |\overline{N_{P}^{*}}(u) \cup \overline{N_{P}^{*}}(v)|$$

$$\leq 2 + |N_{P}(u) \cap N_{P}(v)| + |\overline{N_{P}^{*}}(u)| + |\overline{N_{P}^{*}}(v)|$$

$$\leq 2 + |N_{P}(u) \cap N_{P}(v)| + 2(k - 1)$$

$$= |N_{P}(u) \cap N_{P}(v)| + 2k,$$

so
$$|N_P(u) \cap N_P(v)| \ge |P| - 2k \ge q - 2k$$
.

Fig. 9. Second-Order Pruning

B. Proof of Theorem 6

Proof. We prove by contradiction. Assume that there exists $K' = P_m \cap N_C(v_p)$ with |K'| > |K|. Also, let us denote by $\psi = \{w_1, w_2, \dots, w_\ell\}$ the vertex ordering of $w \in N_C(v_p)$ in Line [5] to create K, as illustrated in Figure [10].

Specifically, Figure 10 top illustrates the execution flow of Lines 48 in Algorithm 3 where w_1 , w_3 and w_4 select their non-neighbor u_1 as u_m in Line 5 w_2 and w_5 select u_2 as u_m , and w_6 selects u_3 as u_m . We define $\{w_1, w_3, w_4\}$ as u_1 -group, $\{w_2, w_5\}$ as u_2 -group, and $\{w_6\}$ as u_3 -group.

Let us consider the update of $\sup_P(u_1)$, whose initial value computed by Line $\ 2$ is assumed to be 2. When processing w_1 , Line $\ 7$ decrements $\sup_P(u_1)$ as 1. Then, w_3 decrements it as 0. When processing w_4 , since Line $\ 4$ already finds that $\sup_P(u_1)=0$, w_4 is excluded from K (i.e., Line $\ 8$ does not add it to ub). In a similar spirit, $w_5 \notin K$ since $\sup_P(u_2)=0$, and $w_6 \notin K$ since $\sup_P(u_3)=0$.

Fig. 10. Illustration of the Proof of Theorem 6

Note that since w_1 , w_3 and w_4 cannot co-exist in a k-plex containing $P \cup \{v_p\}$, they cannot all belong to K'. In other words, if $w_4 \notin K$ belongs to K', then at least one of w_1 and w_3 is not in K'. In a similar spirit, if $w_5 \notin K$ belongs to K', then $w_2 \notin K'$. As for those u_i whose initial value of $\sup_P (u_i)$ is 0, we can show that any element in u_i -group can belong to neither K nor K'. See u_3 -group = $\{w_6\}$ in Figure 10 for example. This is because if w is added to P, then $\overline{d_P}(u_i) > k$ so P cannot be a k-plex.

In general, in each u_i -group where $\sup_P(u_i) \neq 0$, if a vertex $w \in K' - K$ exists (e.g., w_4 in Figure $\boxed{10}$), then there must exist a different vertex $w' \in K - K'$ in the u_i -group (e.g., w_1 or w_3). This implies that $|K - K'| \geq |K' - K|$.

Therefore, we have

П

$$|K| = |K - K'| + |K \cap K'|$$

> $|K' - K| + |K \cap K'| = |K'|$,

which contradicts with our assumption |K'| > |K|.

C. Proof of Lemma 1

Proof. To implement Algorithm A given a seed graph $G_i = (V_i, E_i)$, we maintain $d_P(v)$ for every $v \in V_i$. These degrees $d_P(.)$ are incrementally updated; for example, when a vertex v_p is moved into P, we will increment $d_P(v)$ for every $v \in N_{G_i}(v_p)$. As a result, we can compute $\overline{d_P}(v) = |P| - d_P(v)$ and $\sup_P(v) = k - \overline{d_P}(u)$ in O(1) time.

Moreover, we materialize $\sup_P(u)$ for each vertex $u \in P$ in Line $\boxed{2}$ so that in Line $\boxed{5}$ we can access them directly to compute u_m , and Line $\boxed{7}$ can be updated in O(1) time.

Since P is a k-plex of G_i , |P| is bounded by O(D+k) by Theorem [5]. Thus, Line [2] takes O(D+k) time.

Also, $|N_C(v_p)|$ is bounded by O(D) since $N_C(v_p) \subseteq C_S = N_{G_i}(v_i)$, so the for-loop in Line $\boxed{4}$ is executed for O(D) iterations. In each iteration, Line $\boxed{5}$ takes O(k) time since $|\overline{N_P}(w)| \le k$, so the entire for-loop in Line $\boxed{4}$ takes O(kD).

Putting them together, the time complexity of Algorithm 4 is $O(D+k)+O(kD)=O(k+(k+1)D)\approx O(D)$ as k is usually very small constant.

D. Proof of Lemma 2

Proof. Since $\eta = \{v_1, \ldots, v_n\}$ is the degeneracy ordering of V and $V_i \subseteq \{v_i, v_{i+1}, \ldots, v_n\}$, we have $d_{G_i}(v_i) = |N_{G_i}(v_i)| \leq D$.

To show that $|N_{G_i}^2(v_i)| = O\left(\frac{D\Delta}{q-2k+2}\right)$, consider $E^* = \{(v,u) \,|\, v \in N_{G_i}(v_i) \land u \in N_{G_i}^2(v_i)\}$, which are those edges between $N_{G_i}(v_i)$ and $N_{G_i}^2(v_i)$ in Figure 2. Since $|N_{G_i}(v_i)| \leq D$, and each $v \in N_{G_i}(v_i)$ has at most Δ neighbors in $N_{G_i}^2(v_i)$, we have $|E^*| \leq D\Delta$. Also, let us denote by E' all those edges $(v,u) \in E^*$ that are valid (i.e., v and u can appear in a k-plex P in G_i with $|P| \geq q$), then $|E'| \leq |E^*| \leq D\Delta$.

Recall from Corollary $\boxed{1}$ that if $u \in N_{G_i}^2(v_i)$ belongs to a valid k-plex in G_i , then $|N_{G_i}(u) \cap N_{G_i}(v_i)| \geq q-2k+2$. This means that each valid $u \in N_{G_i}^2(v_i)$ share with v_i at least (q-2k+2) common neighbors that are in $N_{G_i}(v_i)$ (c.f., Figure $\boxed{2}$), or equivalently, u is adjacent to (or, uses) at least (q-2k+2) edges (v,u) in E'. Therefore, the number of valid $u \in N_{G_i}^2(v_i)$ is bounded by $\frac{|E'|}{a-2k+2} \leq \frac{DA_{k+2}}{a-2k+2}$.

 $\begin{array}{l} u \in N_{G_i}^2(v_i) \text{ is bounded by } \frac{|E'|}{q-2k+2} \leq \frac{D\Delta}{q-2k+2}. \\ \text{It may occur that } \frac{D\Delta}{q-2k+2} > n, \text{ in which case we use } |N_{G_i}^2(v_i)| = O(n) \text{ instead. Combining the above two cases, we have } |N_{G_i}^2(v_i)| = O(r_1) \text{ where } r_1 = \min \left\{ \frac{D\Delta}{q-2k+2}, n \right\}. \end{array}$

Finally, the number of subsets $S \subseteq N_{G_i}^2(v_i)$ $(|S| \le k-1)$ (c.f., Line 7 of Algorithm 2) is bounded by $C_{r_1}^0 + C_{r_1}^1 + \cdots + C_{r_1}^{k-1} \approx O\left(r_1^k\right)$, since k is a small constant.

E. Proof of Theorem 8

Proof. We just showed that the recursive body of Branch(.) takes time O(|P|(|C|+|X|)). Let us first bound |X|. Recall Algorithm \square where by Line \square vertices of $X\subseteq X_S$ are from either V_i' or $(N_{G_i}^2(v_i)-S)$. Moreover, by Line \square vertices of V_i' are from either $N_G(v_i)$ or $N_G^2(v_i)$. Since $(N_{G_i}^2(v_i)-S)\subseteq N_G^2(v_i)$, vertices of X are from either $N_G(v_i)$ or $N_G^2(v_i)$. Let us denote $X_1=X\cap N_G(v_i)$ and $X_2=X\cap N_G^2(v_i)$.

We first bound X_2 . Consider $E^*=\{(u,v)\,|\,u\in N_G(v_i)\wedge v\in X_2\}$. Since $|N_G(v_i)|\leq \Delta$, and each $v\in N_G(v_i)$ has at most Δ neighbors in $N_G^2(v_i)$, we have $|E^*|\leq \Delta^2$. Recall from Theorem 4 that if $v\in X_2$ belongs to k-plex P with $|P|\geq q$, then $|N_G(v)\cap N_G(v_i)|\geq q-2k+2$. This means that each $v\in X_2$ share with v_i at least (q-2k+2) common neighbors that are in $N_G(v_i)$, or equivalently, v is adjacent to (or, uses) at least (q-2k+2) edges (u,v) in E^* . Therefore, the number of $v\in X_2$ is bounded by $\frac{|E^*|}{q-2k+2}\leq \frac{\Delta^2}{q-2k+2}$. As for $X_1\subseteq N_G(v_i)$, we have $|X_1|\leq \Delta$. In general, we

As for $X_1 \subseteq N_G(v_i)$, we have $|X_1| \leq \Delta$. In general, we do not set q to be too large in reality, or there would be no results, so (q-2k+2) is often much smaller than Δ . Therefore, $|X| = |X_1| + |X_2| = O(\frac{\Delta^2}{q-2k+2} + \Delta) \approx O(\frac{\Delta^2}{q-2k+2})$.

Since |P| is bounded by $O(D+k) \approx O(D)$ by Theorem [5], and $C \subseteq C_S$ so $|C| \le D$, the recursive body of Branch(.) takes $O(|P|(|C|+|X|)) \approx O\left(D(D+\frac{\Delta^2}{q-2k+2})\right) \approx O\left(\frac{D\Delta^2}{q-2k+2}\right)$ time. This is because $\frac{\Delta^2}{q-2k+2} > \Delta \ge D$.

It may occur that $\frac{\Delta^{2^{2}}}{q-2k+2} > n$, in which case we use |X| = O(n) instead, so the recursive body of Branch(.) takes $O(|P|(|C| + |X|)) \approx O(D(D+n)) = O(nD)$ time.

Combining the above two cases, the recursive body of Branch(.) takes $O(r_2)$ time where $r_2 = \min\left\{\frac{D\Delta^2}{q-2k+2}, nD\right\}$.

By Lemma 3. Branch $(G_i, k, q, P_S, C_S, X_S)$ in Line 10 of Algorithm 2 recursively calls the body of Algorithm 4 for $O(\gamma_k^D)$ times, so the total time is $O(r_2\gamma_k^D)$.

F. Proof of Theorem 10

Proof. Assume that $u_1 \in N_{G_i}^2(v_i)$ and $u_2 \in N_{G_i}(v_i)$ cooccur in a k-plex P with $|P| \geq q$. Let us assume $u_1 \in S$ and $P^+ = P_S \cup \{u_2\}$, then $P^+ \subseteq P$. As the proof of Theorem 9 has shown, we have $|P_S| \leq k$, so $|P^+| \leq k+1$.

Applying Eq (4) in Lemma 4 with $P = P^+$, $u = u_1$ and $v = u_2$, we require

$$\begin{split} |P^+| + \sup_{P^+}(u_1) + \sup_{P^+}(u_2) + |N_{C_S^-}(u_1) \cap N_{C_S^-}(u_2)| &\geq q, \\ \text{or equivalently (recall that } |P^+| &\leq k+1), \end{split}$$

$$|N_{C_s^-}(u_1)\cap N_{C_s^-}(u_2)| \geq q - (k+1) - \sup_{P^+}(u_1) - \sup_{P^+}(u_2).$$

If $(u_1, u_2) \in E_i$, then $\sup_{P^+}(u_1) \le k-2$ since $v_i \in P_S$ is a non-neighbor of u_1 besides u_1 itself in P_S , and $\sup_{P^+}(u_2) \le k-1$ since u_2 is a non-neighbor of itself in P_S . Thus,

$$|N_{C_S^-}(u_1) \cap N_{C_S^-}(u_2)| \ge q - (k+1) - \max\{k-2, 0\}$$

- $(k-1)$
= $q - 2k - \max\{k-2, 0\}$

While if $(u_1, u_2) \notin E_i$, then $\sup_{P^+}(u_1) \leq k - 3$ since $v_i \in P_S$ is a non-neighbor of u_1 besides $u_1, u_2 \in P^+$, and $\sup_{P^+}(u_2) \leq k - 2$ since $u_1, u_2 \subseteq P^+$ are the non-neighbors of u_2 . Thus, we have

$$\begin{split} |N_{C_S^-}(u_1) \cap N_{C_S^-}(u_2)| & \geq q - (k+1) - \max\{k-2,0\} \\ & - \max\{k-3,0\} \\ & = q - k - \max\{k-2,0\} \\ & - \max\{k-2,1\} \end{split}$$

This completes our proof of Theorem 10.

G. Proof of Theorem [1]

Proof. Assume that $u_1, u_2 \in N_{G_i}(v_i)$ co-occur in a k-plex P with $|P| \geq q$. Let us define $P^+ = P_S \cup \{u_1, u_2\}$, then $P^+ \subseteq P$. As the proof of Theorem 9 has shown, we have $|P_S| \leq k$, so $|P^+| \leq k+2$.

Applying Eq. (4) in Lemma 4 with $P = P^+$, $u = u_1$ and $v = u_2$, we require

$$|P^+| + \sup_{P^+}(u_1) + \sup_{P^+}(u_2) + |N_{C_S^-}(u_1) \cap N_{C_S^-}(u_2)| \ge q,$$

or equivalently (recall that $|P^+| \le k+2$),

$$|N_{C_S^-}(u_1)\cap N_{C_S^-}(u_2)| \geq q - (k+2) - \sup_{P^+}(u_1) - \sup_{P^+}(u_2).$$

Fig. 11. The Running Time (sec) of Parallel Ours with Different τ_{time} on Five Large Datasets

If $(u_1, u_2) \in E_i$, then $\sup_{P^+}(u_1) \leq k - 1$ (resp. $\sup_{P^+}(u_2) \leq k - 1$), since u_1 (resp. u_2) is a non-neighbor of itself in P^+ . Thus,

$$|N_{C_S^-}(u_1) \cap N_{C_S^-}(u_2)| \ge q - (k+2) - 2 \cdot (k-1) = q - 3k.$$

While if $(v_1,v_2) \notin E_i$, then $\sup_{P^+}(u_1) \leq k-2$ (resp. $\sup_{P^+}(u_2) \leq k-2$), since u_1 (resp. u_2) is a non-neighbor of $u_1,u_2 \in P^+$. Thus,

$$|N_{C_S^-}(u_1) \cap N_{C_S^-}(u_2)| \ge q - (k+2) - 2 \cdot \max\{k-2, 0\}$$

= $q - k - 2 \cdot \max\{k-1, 1\}.$

This completes our proof of Theorem $\boxed{11}$

H. Effect of τ_{time}

We vary τ_{time} from 10^{-3} to 100 and evaluate the running time of our parallel algorithm on five large datasets with the same parameters as Table [III] The results are shown in Figure [II] where we can see that an inappropriate parameter τ_{time} (e.g., one that is very long) can lead to a very slow performance. Note that without the timeout mechanism (as is the case in ListPlex and Ours), we are basically setting $\tau_{time} = \infty$ so the running time is expected to be longer (e.g., than when $\tau_{time} = 100$) due to poor load balancing.