2001 Higher School Certificate Trial Examination

Mathematics Extension 1

LORETO KIRRIBILLI 85 CARABELLA ST KIRRIBILLI 2061

General Instructions

- Reading time 5minutes
- Working time 2 hours
- Write using black or blue pen
- · Board approved calculators may be used
- A table of standard integrals is provided on the last page
- All necessary working should be shown in every question

Total marks (84)

Attempt Questions 1-7

All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

STUDENT NAME/NUMBER:

Qı	nestion 1 (Start a new work book)	Marks
a.	Determine the ratio in which the point $C(6, 9)$ divides the interval AB, where A is the point $(-1, -5)$ and B the point $(3, 3)$.	3
Ъ.	Solve the inequality $x - 1 \le \frac{1}{x - 1}$.	3
C.	For the polynomial $P(x) = x^3 - 2x^2 - x + 2$	
	i. show that $x - 1$ is a factor. ii. Hence, or otherwise, find all the factors of $P(x)$.	1 1
d.	i. If $t = \tan \frac{\theta}{2}$, show that $\sin \theta = \frac{2t}{1+t^2}$ and $\cos \theta = \frac{1-t^2}{1+t^2}$.	2
	ii. Using these results, show that $\frac{1-\cos\theta}{\sin\theta} = \tan\frac{\theta}{2}$.	1
	iii. Hence find the exact value of tan 15°.	1
Qu	estion 2 (Start a new work book)	
a.	For the parabola defined by the parametric equations $x = 4t$, $y = 2t^2$	
	i. by differentiation, show that the gradient of the tangent at the point, P, where $t = 3$, is 3.	1
	ii. find the gradient of the focal chord through P.	1
	iii. calculate the acute angle between the tangent at P and the focal chord through P.	2
b.	Use one iteration of Newton's method to find an approximation to the root of the equation $x \log_e x - 2x = 0$ near $x = 7$. Give your answer to 1 decimal place.	3
c.	Six people attend a dinner party.	
	i. In how many different ways can they be arranged around a round table?	1
	ii. In how many different ways can they be arranged if a particular couple must sit together?	1
	iii. What is the probability that, if the people are seated at random, the couple	1

Question 2 (continued)

Marks

2

d. PC and PD are equal chords of a circle. A tangent, AB, is drawn at P.

Prove that AB is parallel to CD

Question 3 (Start a new work book)

- a. Jane, a netball goal shooter, has a 70% probability of scoring a goal at any attempt. In her next 10 attempts at scoring, what is the probability that she scores at least 8 times? Give your answer as a decimal to 2 significant figures.
- b. Show that the equation of the circle whose diameter is the join of the points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $(x x_1)(x x_2) + (y y_1)(y y_2) = 0$
- c. Use the Principle of Mathematical Induction to prove that $2^{3n} 3^n$ is divisible by 5 for all positive integers n.
- d. The arc of the curve $y = \cos 2x$ between x = 0 and $x = \frac{\pi}{6}$ is rotated through 360° about the x-axis.

Find the exact volume of the solid formed.

Question 4 (Start a new work book)

a. If
$$\binom{n}{r} = \binom{n}{r+1}$$
, where n and r are positive integers, show that n is odd.

b. i. Express
$$x^2 + 6x + 13$$
 in the form $(x + a)^2 + b^2$

ii. Hence, using the substitution
$$u = x + 3$$
, find $\int \frac{dx}{x^2 + 6x + 13}$

STUDENT NAME/NUMBER:

Q	Question 4 (continued)		
c.	Show that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \frac{\pi}{2}$	3	
d.	If $y = \frac{1}{2}(e^x - e^{-x})$, show that $x = \log_e(y + \sqrt{y^2 + 1})$	3	
_			
Qı	lestion 5 (Start a new work book)		
a.	A particle's motion is defined by the equation $v^2 = 12 + 4x - x^2$, where x is its displacement from the origin in metres and v its velocity in ms ⁻¹ . Initially, the particle is 6 metres to the right of the origin.		
	i. Show that the particle is moving in Simple Harmonic Motion	1	
	ii. Find the centre, the period and the amplitude of the motion	3	
	iii. The displacement of the particle at any time t is given by the equation $x = a \sin(nt + \theta) + b$.		
	Find the values of θ and b , given $0 \le \theta \le 2\pi$	2	
b.	Newton's Law of Cooling states that the rate of change in the temperature, T° , of a body is proportional to the difference between the temperature of the body and the surrounding temperature, P° .		
	i. If A and k are constants, show that the equation $T = P + Ae^{kt}$ satisfies Newton's Law of Cooling.	2	
	ii. A cup of tea with a temperature of 100° C is too hot to drink. Two minutes later, the temperature has dropped to 93° C. If the surrounding temperature is 23° C, calculate A and k.	2	
	iii. The tea will be drinkable when the temperature has dropped to 80°C. How long, to the nearest minute, will this take?	2	

Question 7 (Start a new work book)

Marks

a. In the circle, the chord AB is 6 metres long. The chord is produced to the point P and BP is a metres.

A tangent to the circle cuts the chord at P. PT is x metres.

Show that $x = \sqrt{a(a + 6)}$.

2

b. In a rugby game, teams score points by placing the ball over the try line at the end of the field. A kicker may then take the ball back at right angles from the try line and attempt to kick the ball between the goal posts.

In the diagram, a try has been scored α metres to the right of the goal posts. The kicker has brought the ball back to the point P to attempt his kick. The kicker wants to maximise θ , his angle of view of the goalposts.

Let PT be x metres and assume that the goal posts are 6 metres wide.

i. Show that
$$\tan \theta = \frac{6x}{a^2 + 6a + x^2}$$
.

3

ii. Letting $T = \tan \theta$, find the value of x for which T is a maximum.

2

2

iii. Hence show that the maximum angle, θ , is given by $\theta = \tan^{-1} \left(\frac{3}{\sqrt{a^2 + 6a}} \right)$

2

iv. If a try is scored 10 metres to the right of the goal posts, find the maximum value of θ (to the nearest minute) and the corresponding value of x (to the nearest centimetre).

v. Explain why the goal kicker, to maximise his angle of view of the goal posts, should imagine himself at the point of contact of a tangent to the circle passing through the goal posts.

1

2001 INDEPENDENT TRIALS: MATHEMATICS EXTENSION 1 SAMPLE SOLUTIONS

Question 1:

a.
$$x = \frac{kx_2 + lx_1}{k + l}$$

$$6 = \frac{k \times 3 + l \times -1}{k + l}$$

$$6k + 6l = 3k - l$$

$$3k = -7l$$

$$k: l = -7:3$$

LORETO KIRRIBILLI 85 CARABULLA ST KIRRIBILLI 2061

i.e. C divides AB externally in the ratio 7:3

b. Critical points:
$$x = 1$$
 and $x - 1 = \frac{1}{x - 1}$

Solving:
$$(x - 1)^2 = 1$$

 $x - 1 = \pm 1$
 $\therefore x = 0, 2$

Testing regions x < 0, 0 < x < 1, 1 < x < 2 and x > 2 gives solutions

$$x < 0$$
 and $1 < x \le 2$

c. i.
$$P(1) = 1^3 - 2 \times 1^2 - 1 + 2 = 0$$
. Hence $x - 1$ is a factor

ii.
$$P(x) = x^2(x-2) - (x-2) = (x-2)(x^2-1) = (x-2)(x-1)(x+1)$$

ii.
$$1 - \frac{1 - t^2}{1 + t^2} = \frac{1 + t^2 - 1 + t^2}{2t}$$

$$= t$$

$$= \tan \frac{\theta}{2}$$
iii. $\tan 15^\circ = \frac{1 - \cos 30^\circ}{\sin 30^\circ} = \frac{1 - \frac{\sqrt{3}}{2}}{\frac{1}{2}} = 2 - \sqrt{3}$

Question 2:

a. i.
$$\frac{dy}{dx} = \frac{dy/dx}{dx/dt} = \frac{4t}{4} = t$$
; therefore, $m = 3$

ii. Focus (0, 2) and point (12, 18); therefore
$$m = \frac{4}{3}$$

Question 2 (continued)

iii.
$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{3 - \frac{4}{3}}{1 + 3 \times \frac{4}{3}} \right| = \frac{1}{3}$$

 $\therefore \theta = 18^{\circ}26^{\circ}$

b.
$$x' = x - \frac{f(x)}{f'(x)} = 7 - \frac{7\ln 7 - 2 \times 7}{\ln 7 - 1} = 6.5997199$$
, so $x = 6.6$

- c. i. (n-1)! = 5! = 120
 - ii. Counting the couple as one, $4! \times 2! = 48$
 - iii. There are 48 ways they can sit together so there are 120 48 = 72 ways to sit apart P(sit apart) = 72/120 = 3/5
- d. ∠APC = ∠PDC (angles between tangent and chord equals angle in the alt. segment)
 ∠PDC = ∠PCD (base angles in isosceles triangle are equal)
 ∴ ∠APC = ∠PCD and AB | CD (if alternate angles are equal, lines are parallel)

Question 3

a. Let
$$p = \text{probability of scoring a goal} = .7$$

Let $q = \text{probability of missing} = .3$

Let n = 10 and r = number of goals scored

Then
$$P(X = r) = \binom{n}{r} p^r q^{n-r}$$
 and
$$P(X \ge 8) = P(X = 8 \text{ or } X = 9 \text{ or } X = 10)$$

$$= \binom{10}{8} 0.7^8 \times 0.3^2 + \binom{10}{9} 0.7^9 \times 0.3 + \binom{10}{10} 0.7^{10}$$

$$= 0.382827864 = 0.38$$

b. Let P(x, y) be a point on the circle. Then $\angle APB = 90^{\circ}$ (angle in a semicircle is a rt angle) Hence $AP \perp PB$ and $m_{AP} m_{PB} = -1$

$$\frac{y - y_1}{x - x_1} \times \frac{y - y_2}{x - x_2} = -1$$
whence $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$

c. Let $f(n) = 2^{3n} - 3^n$ Then $f(1) = 2^3 - 3 = 5$ which is divisible by 5

Assume that $f(k) = 2^{3k} - 3^k$ is divisible by 5 for k a positive integer, and show that f(k + 1) is therefore also divisible by 5

Question 3 (continued)

Then
$$f(k + 1) = 2^{3(k + 1)} - 3^{k + 1}$$

 $= 2^{3k} \times 2^3 - 3^k \times 3$
 $= 8 \times 2^{3k} - 3 \times 3^k$
 $= 5 \times 2^{3k} + 3 \times 2^{3k} - 3 \times 3^k$
 $= 5 \times 2^{3k} + 3 \times (2^{3k} - 3^k)$

The first term is clearly divisible by 5 and $2^{3k} - 3^k$ is also divisible by 5 by our assumption above. Therefore f(k + 1) is divisible by 5 if f(k) is divisible by 5

But f(1) is divisible by 5, so f(2) is divisible by 5 and so on for all positive integers n.

d.
$$V = \pi \int_0^{\frac{\pi}{6}} \cos^2 2x \, dx$$
$$= \pi \times \frac{1}{2} \left[x - \frac{1}{4} \sin 4x \right]_0^{\frac{\pi}{6}}$$
$$= \frac{\pi}{2} \times \left[\left(\frac{\pi}{6} + \frac{1}{4} \sin \frac{2\pi}{3} \right) - (0 - 0) \right]$$
$$= \frac{\pi}{2} \left[\frac{\pi}{6} + \frac{\sqrt{3}}{8} \right]$$

Question 4

a.
$$\binom{n}{r} = \binom{n}{r+1}$$

$$\frac{n!}{r!(n-r)!} = \frac{n!}{(r+1)!(n-r-1)!}$$

$$\frac{(n-r-1)!}{(n-r)!} = \frac{r!}{(r+1)!}$$

$$\frac{1}{n-r} = \frac{1}{r+1}$$

$$\therefore r+1 = n-r$$

$$n = 2r+1$$

and since r is a positive integer, n is odd

b. i.
$$x^2 + 6x + 13 = x^2 + 6x + 9 + 4 = (x + 3)^2 + 4$$

ii. $u = x + 3 \rightarrow du = dx$ so
$$\int \frac{dx}{x^2 + 6x + 13} = \int \frac{dx}{(x + 3)^2 + 4}$$

$$= \int \frac{du}{u^2 + 4}$$

$$= \frac{1}{2} \tan^{-1} \frac{u}{2} + C$$

$$= \frac{1}{2} \tan^{-1} \frac{(x + 3)}{2} + C$$

Question 5 (continued)

b. i. Newton's Law is
$$\frac{dT}{dt} = k(T - P)$$

If $T = P + Ae^{kt}$ then $\frac{dT}{dt} = k \times Ae^{kt} = k(T - P)$
ii. $100 = 23 + Ae^0 \Rightarrow A = 77$

ii.
$$100 = 23 + Ae^0 \Rightarrow A = 77$$

and $93 = 23 + 77e^{k \times 2} \Rightarrow e^{2k} = \frac{70}{77}$

$$\therefore k = \frac{1}{2} \ln \frac{70}{77} = -0.0476550899 = -0.0477$$

iii.
$$80 = 23 + 77 \times e^{-0.0477 \times t} \Rightarrow t = \frac{\ln \frac{57}{77}}{-0.0477} = 6.31106047 \approx 6 \text{ minutes}$$

Question 6

a. i. In the x direction:
$$\ddot{x} = 0 \Rightarrow \dot{x} = \int 0 \, dt = C_1$$
When $t = 0$, $\dot{x} = V \Rightarrow C_1 = V$

$$\therefore \dot{x} = V$$

$$x = \int V \, dt = Vt + C_2$$
When $t = 0$, $x = 0 \Rightarrow C_2 = 0$

$$\therefore x = Vt$$

In the y direction:
$$\ddot{y} = -g \rightarrow \dot{y} = \int -g dt = -gt + C_3$$
When $t = 0$, $\dot{y} = 0 \rightarrow C_3 = 0$

$$\dot{y} = -gt$$

$$y = \int -gt dt = -\frac{1}{2}gt^2 + C_4$$
When $t = 0$, $y = h \rightarrow C_4 = h$

$$\dot{y} = -\frac{1}{2}gt^2 + h$$

ii.
$$x = Vt \Rightarrow t = \frac{x}{V}$$
. Substitute into $y = -\frac{1}{2}gt^2 + h$

$$y = -\frac{1}{2}g \times \left(\frac{x}{V}\right)^2 + h$$

$$= \frac{-gx^2}{2V^2} + h$$

$$= \frac{-gx^2 + 2V^2h}{2V^2}$$

iii. We require
$$y = 0$$
 thus $\frac{-gx^2 + 2V^2h}{2V^2} = 0 \rightarrow x^2 = \frac{2V^2h}{g} \rightarrow x = \pm \sqrt{\frac{2V^2h}{g}}$
But the particle is moving in a positive direction so $x = V\sqrt{\frac{2h}{g}}$

Question 6 (continued)

b. i.
$$\frac{d}{dx}[\frac{1}{2}v^2] = 10x - 2x^3$$

$$\therefore \frac{1}{2}v^{2} = \int 10x - 2x^{3} dx = 5x^{2} - \frac{x^{4}}{2} + C$$

$$v^{2} = 10x^{2} - x^{4} + K \text{ and when } v = 0, x = -1 \Rightarrow K = -9$$

$$v^{2} = 10x^{2} - x^{4} \Rightarrow 9$$

$$v = \pm \sqrt{10x^{2} - x^{4} \Rightarrow 9}$$

ii.
$$v^2 = -(x^4 - 10x^2 + 9) = -(x^2 - 1)(x^2 - 9) = -(x - 1)(x + 1)(x - 3)(x + 3)$$

Hence v = 0 when x = -3, -1, 1, 3From graph, between x = -1 and $x = 1, v^2 < 0$ so the motion cannot exist between x = -1and x = 1

iii. If x = 0, then acceleration is zero. Since v = 0, the particle would remain stationary.

Question 7

a. Now $PT^2 = AP \times BP$ (On a circle, the square of the length of the tangent from an external point equals the product of the intercepts of the secant through the

Therefore $x^2 = a \times (a + 6) \rightarrow x = \sqrt{a(a + 6)}$

b. i. Now
$$\tan \alpha = \frac{x}{a+6}$$
, $\tan \beta = \frac{x}{a}$, $\theta = \beta - \alpha$

$$\therefore \tan \theta = \tan(\beta - \alpha) = \frac{\tan \beta - \tan \alpha}{1 + \tan \beta \tan \alpha}$$

$$= \frac{\frac{x}{a} - \frac{x}{a+6}}{1 + \frac{x}{a} \times \frac{x}{a+6}} = \frac{(a+6)x - ax}{a(a+6) + x^2} = \frac{6x}{a^2 + 6a + x^2}$$

ii.
$$\frac{dT}{dx} = \frac{(a^2 + 6a + x^2) \times 6 - 6x(2x)}{(a^2 + 6a + x^2)^2} = \frac{6a^2 + 36a - 6x^2}{(a^2 + 6a + x^2)^2} = 0$$
 when $x = \sqrt{a(a + 6)}$

When $x < \sqrt{a(a+6)}$, $\frac{dT}{dx} > 0$; when $x > \sqrt{a(a+6)}$, $\frac{dT}{dx} < 0$; therefore this is a max.

iii.
$$T = \tan \theta = \frac{6\sqrt{a(a+6)}}{a^2 + 6a + (a^2 + 6a)} = \frac{3}{\sqrt{a^2 + 6a}} \rightarrow \theta = \tan^{-1} \left(\frac{3}{\sqrt{a^2 + 6a}}\right)$$

iv. $x = 12.64911064 \approx 12.65 \text{ m}$ and $\theta = 13^{\circ}20'33'' = 13^{\circ}21'$

v. The maximum value of θ occurs when $x = \sqrt{a(a+6)}$. Using the result from part a., we see that, because the square of the tangent equals the product of the intercepts of the secant, the goal posts and the point P from which the kick is taken lie on a circle, with PT a tangent.

NSW INDEPENDENT TRIAL EXAMS -2001 MAPPING GRID for Mathematics Extension 1

.Q'n	Marks	Syllabus Area	Outcome	Draft Perf. Band
1a	3	Linear Functions and Lines	PE3	E2-E3
1b	3	Basic Arithmetic and Algebra	PE3	E2-E4
1c	2	Polynomials	PE3	E2-E3
1d	4	Further Trigonometry	PE2	E2-E3
2a.i,ii	2	Parametric Representation	PE4	E2-E3
2a.iii	2	Linear Functions and Lines	PE3	E2-E3
2b	3	Iterative methods	HE3	E2-E4
2c.i,ii	2	Permutations and Combinations	PE3	E2-E3
2c.iii	1	Probability	H5	E2-E3
2d	2	Circle Geometry	PE3	E2-E3
3a	2	Further Probability	HE3	E2-E3
3b	2	Linear Functions and Lines:Harder applications	H5	E3-E4
3c	4	Induction	HE2	E2-E4
3d	4	Primitive of cos ² x; Harder applications	H8; HE6	E2-E4
4a	3	Binomial Theorem	HE7!?	E3-E4
4b.i	1	Basic Arithmetic and Algebra	Н3	E2-E3
4b.ii	2	Methods of Integration and Inverse Functions	HE4; HE6	E2-E3
4c	3	Inverse Trigonometric Functions	HE4	E2-E4
4d	3	Harder applications	Н3	E3-E4
5a	6	Simple Harmonic Motion	HE3	E2-E4
5b	6	Equation $\frac{dN}{dt} = k(N - P)$	HE3	E2-E4
6a	6	Projectile Motion	HE3	E2-E4
6b	6	Velocity and acceleration as a function of x	HE5; HE7	E3-E4
7a	2	Circle Geometry	PE3	E2-E3
7b.i	3	Trigonometry and Further Trigonometry	HE1; HE7	E2-E4
7b.ii,iii,iv	6	Harder applications	H5; HE1; HE4	E2-E4
7b.v	1	Circle Geometry	HE1	E3-E4

The Trial HSC examination, marking guidelines/suggested answers and 'mapping grid' have been produced to help prepare students for the HSC to the best of our ability.

Individual teachers/schools may alter any parts of this product to suit their own requirements.