# **PCA-Machine Learning Concept**

### **PCA**

- It stands for Principal Component Analysis.
- It is a procedure to convert corelated variables into new components such that these components are un corelated to each other and there is no multicollinearity.
- We try and convert large datasets into smaller ones that has fewer variables.
- This improves model performance

#### **Problem**

- There are lot of variables to visualize and explore.
- In the figure below our original data set has **M rows and N columns** for EDA.



### **Solution**

• Once we have applied PCA by specifying the no. of components we get a transformed data set with M\*k features

#### Math behind PCA

- Vectorial Representation of data
- If we have data set as below:

| Patient ID | Height (cm) | Weight (kg) |
|------------|-------------|-------------|
| P1         | 165         | 55          |
| P2         | 155         | 71          |

- We will create a matrix out of this i.e., [165,55] and represent this as a vector.
- Vector representation will be (165,55), [165,55]<sup>T</sup> (transpose) etc.
- It can also be written as 165i+55i
- We calculate the magnitude using the Pythagoras theorem.
- In vector addition we add the i<sup>th</sup> terms together.

### **Basis Vector**

- We find the basis vector which is along the best fit line that maximizes the variance. That will be **PC1**.
- Next is to find the vector is which is perpendicular to that component. This will be PC2.
- If there were 3 dimension's we would have found PC3 as we found PC1 and PC2. It will be perpendicular 1<sup>st</sup> and 2<sup>nd</sup> principal component.
- Original dataset → PCA basis

- The number of principal component are same as no. of columns.
- The algorithm by which PCA maximizes the variance is by eigen decomposition of the covariance matrix.

## Applying PCA

- StandardScaler function. we did x=scaler.fit\_transform(x) to have values in the same range
- We import PCA using from sklearn.decomposition import PCA and then do the fit.
- pca.components gives us the basis vectors
- pca.explained\_variance\_ratio\_ gives us the amount of variance explained by each component it is same as the no. of attributes.

### Scree Plot

- The plot gives us the amount of variance of each component on the Y-axis whereas X-axis is the no. of components.
- We can decide how many components we need as per this.

We can then use the obtained features and perform other ML techniques to improve model performance.