Supplemental Online Content

Shen X, Liu T, Xu S, et al. Optimal timing of anterior cruciate ligament reconstruction in patients with anterior cruciate ligament tear: a systematic review and meta-analysis. *JAMA Netw Open*. 2022;5(11):e2242742. doi:10.1001/jamanetworkopen.2022.42742

eMethods

- eTable 1. Study Inclusion and Exclusion criteria
- eTable 2. Risk of Bias of Assessment for the Included RCTs Using Cochrane Collaboration's Tool
- eTable 3. Patient and Treatment Characteristics of Included Trials
- eTable 4. Summary of Adverse Events After Early and Delayed ACLR in Included RCTs
- **eFigure 1.** Forest Plot Depicting the Operative Time of Early ACLR Versus Elective Delayed ACLR
- **eFigure 2.** Forest Plots Depicting the Extension Deficit and Flexion Deficit of Early ACLR Versus Elective Delayed ACLR
- eFigure 3. Forest Plot Depicting the Tegner Score of Early ACLR Versus Elective Delayed ACLR
- **eFigure 4.** Forest Plots Depicting the IKDC Score and IDKC Rating Scale of Early ACLR Versus Elective Delayed ACLR
- **eFigure 5.** KOOS Subscales for Early ACLR and Elective Delayed ACLR Cohorts From Four Included Studies
- eFigure 6. Forest Plot of the Results of Re-Tear of Early ACLR Versus Elective Delayed ACLR
- eFigure 7. Forest Plot of the Results Infection of Early ACLR Versus Elective Delayed ACLR
- **eFigure 8.** Forest Plots Depicting the Extension Deficit and Flexion Deficit of Early ACLR Versus Elective Delayed ACLR After Redefinition
- **eFigure 9.** Forest Plot Depicting the Knee Laxity of Early ACLR Versus Elective Delayed ACLR After Redefinition
- **eFigure 10.** Forest Plot Depicting the Lysholm Score of Early ACLR Versus Elective Delayed ACL After Redefinition
- **eFigure 11.** Forest Plot Depicting the Tegner Score of Early ACLR Versus Elective Delayed ACLR After Redefinition

eFigure 12. Forest Plots Depicting the IKDC Score and IKDC Rating Scale of Early ACLR Versus Elective Delayed ACLR After Redefinition

eFigure 13. Forest Plot of the Results of Re-Tear of Early ACLR Versus Elective Delayed ACLR After Redefinition

eFigure 14. Forest Plot of the Results Infection of Early ACLR Versus Elective Delayed ACLR After Redefinition

This supplemental material has been provided by the authors to give readers additional information about their work.

eMethods

Search strategy and trial selection

The protocol for the systematic review is registered on PROSPERO (CRD42018089972). The PubMed, Cochrane Library, and Web of Science databases were systematically searched in September 2022. Using a search strategy for combined terms (((anterior cruciate ligament OR ACL) AND (reconstruction OR surgery OR repair)) AND (early OR acute)) AND (delayed OR chronic). The references in the included articles were further reviewed to identify additional studies.

The inclusion and exclusion criteria were reported in eTable 1 in Supplement. To ensure that the selected articles met the specified inclusion criteria, the titles and abstracts of the studies were independently reviewed by two authors (XYS and BC) in a blinded manner. Any disagreements on trial inclusion and data were resolved through discussion and consensus with the participation of a senior reviewer (JLX).

Data extraction

The extracted data included the following: study design, randomization, definition of surgery timing, inclusion/exclusion criteria, operative technique, rehabilitation protocols, and follow-up duration. The following participant and surgical characteristics were also collected: participants' sample size, age, sex, graft type, associated lesions, injury mechanisms, injury-to-surgery time, and rehabilitation principle. The selected clinical outcomes took into account the most commonly used outcome measures in recent publications.

Statistical analysis

To evaluate the outcomes of early vs. elective delayed ACLR after different follow-up durations, we recorded the data given for all follow-up time points. The included trials were grouped according to their follow-up durations as follows: 6 months, 1 year, 2 years, and 5 years. If the relevant outcomes were reported at multiple follow-up time points, the data were analyzed separately for each time point. When same RCTs were included in subgroup analyses of different follow-up duration, only subtotals were calculated. All eligible studies were included in the meta-analyses and subgroup analyses, as applicable.

To estimate the standardized mean difference (sMD), we calculated the mean and standard deviation (SD) values. If the mean and SD data were not provided in the included studies, the sMD was calculated using the P value and sample size. The I² statistic was considered to evaluate the data

for heterogeneity among studies and confirm the appropriateness of pooling among groups. Clinical
heterogeneity was assumed present, a random-effects model was preferred.

eTable 1. Study Inclusion and Exclusion Criteria

Inclusion Criteria	Exclusion Criteria				
Randomized clinical Trial	Non-English articles				
	Case series and reviews				
Clinical or functional outcomes and adverse	Not compare clinical outcomes between early				
complications associated with early versus	and delayed ACLR				
elective delayed ACLR	Not clearly define specific cutoff points for				
	early and elective delayed surgery				

Note: ACLR, anterior cruciate ligament reconstruction.

eTable 2. Risk of Bias of Assessment for the Included RCTs Using Cochrane Collaboration's Tool

Author (Year)	Sequence generation	Allocation concealment	Blinding	Incomplete outcome data	Selective outcome report	Free of other bias
Meighan et al. ¹⁹ (2003)	✓	✓	✓	?	✓	✓
Bottoni et al. ²⁰ (2008)	✓	✓	✓	✓	✓	✓
Raviraj et al. ²¹ (2010)	✓	✓	✓	×	?	?
Frobell et al. ²² (2010)	✓	✓	✓	✓	✓	✓
Frobell et al. ²³ (2013)	✓	✓	✓	✓	✓	✓
Chen et al. ²⁴ (2015)	✓	✓	✓	✓	?	?
Manandhar et al. ²⁵ (2018)	×	×	✓	✓	✓	?
Eriksson et al. ²⁶ (2018)	✓	✓	✓	✓	✓	?
von Essen et al. ¹⁶ (2020)	✓	✓	✓	✓	✓	?
von Essen et al. ²⁷ (2020)	✓	✓	✓	✓	✓	?
Reijman et al. ¹⁷ (2021)	✓	✓	✓	✓	✓	✓

Note: \checkmark = Low risk of bias, ? = Unclear risk of bias, \times = High risk of bias.

eTable 3. Patient and Treatment Characteristics of Included Trials

						Associat	ed lesions			
Author (Year)	Timing of ACLR	No. of Patients	Age	M/F	Graft type	Meniscal injury	Chondral injuries	Mechanisms of injury	Injury to surgery	Operation time (min)
Meighan et	Early	13	21 (15 25)	28/3	hamstring	3	NA	10 football 6 makes 4 hadrathall	NA	67
al.19 (2003)	Delayed	18	21 (15-35)	28/3	hamstring	4	NA	18 football, 6 rugby, 4 basketball	NA	74
Bottoni et	Early	35	26.4 (18-40)	29/6	hamstring	32	9	49 sports, 13 falls, 4 training	9.0 ± 4.4	64.0 ± 25.5
al.20 (2008)	Delayed	35	27.5(19-43)	29/6	hamstring	24	5	accidents, 4 vehicle accidents	84.8 ± 38.2	61.5 ± 23.9
Raviraj et	Early	51	31.6 ± 5.3	25/26	hamstring	38	29	23 fall, 21 sports injury, 7 traffic accidents	7 (2-14)	64.9 ± 7.8
al. ²¹ (2010)	Delayed	48	31.2 ± 5.3	26/22	hamstring	35	31	15 fall, 24 sports injury, 9 traffic accidents	32 (29-42)	64.2 ± 7.8
F 1 11 4	Early	62	26.3 ± 5.1	48/12	36 hamstring, 25 BPTB	39	NA	35 soccer, 9 Alphine skiing, 7 floor hockey, 11 others	23.4 ± 9.5	NA
Frobell et al. ²² (2010)	Delayed	23	25.8 ± 4.7	16/7	10 hamstring, 13 BPTB	30	NA	42 soccer, 7 Alphine skiing, 2	347 ± 124	NA
	Rehabilitation	36		23/13	NA			floor hockey, 8 others	NA	
E. L. H. 4	Early	62	26.6 ± 5.1	47/12	36 hamstring, 25 BPTB	NA	NA	35 soccer, 9 Alphine skiing, 7 floor hockey, 11 others	23.4 ± 9.5	NA
Frobell et al. ²³ (2013)	Delayed	30	25.2 ± 4.5	19/11	15 hamstring, 15 BPTB	NA	NA	42 soccer, 7 Alphine skiing, 2	867 (743-1695)	NA
	Rehabilitation	29	26.4 ± 4.9	20/9	NA	NA	NA	floor hockey, 8 others	NA	NA
Chen et al.24	Acute	27	29.4 ± 5.8	15/12	LARS graft	NA	NA	NA	5.4 w (3–7)	NA
(2015)	Chronic	28	31.9 ± 7.0	11/17	LARS graft	NA	NA	NA	7.2 m (6–11)	NA
Manandhara	Early	53	30 (18-55)	83/21	hamstring	22	10	73 sports injury, 26 road traffic	11.20 (4-21)	NA

et al. ²⁵ (2018)	Delayed	51			hamstring	34	28	accidents, 5 others	48 (42-60)	NA
E il	Early	33	27.7±6.5	23/10	hamstring	20	10	13 soccer, 6 indoor floorball 7 Alphine skiing, 1 handball, 3 wrestling, 2 gymnastics, 1 Dance	5 ± 2	93 ± 20
Eriksson et al. ²⁶ (2018)	Delayed	35	26.1±5.7	24/11	hamstring	12	4	13 soccer, 10 indoor floorball, 3 Alphine skiing, 4 handball, 1 Ice hockey, 1 football, 1badminton, 1basketball, 1 tennis	55 ± 8	83 ± 18
von Essen et	Early	33	27.7±6.5	23/10	hamstring	20	10	13 soccer, 6 indoor floorball, 7 Alphine skiing, 7 other sports activity	5 ± 2	93 ± 20
al. ¹⁶ (2020)	Delayed	35	26.1±5.7	24/11	hamstring	12	4	13 soccer, 10 indoor floorball, 3 Alphine skiing, 9 other sports activity	55 ± 8	83 ± 18
von Essen et	Early	34	27.7 ± 6.5	24/10	hamstring	20	10	14 soccer, 6 indoor floorball, 7 Alphine skiing, 7 other sports activity	5 ± 2	93 ± 20
al. ²⁷ (2020)	Delayed	35	26.1±5.7	24/11	hamstring	12	4	13 soccer, 10 indoor floorball, 3 Alphine skiing, 9 other sports activity	55 ± 8	83 ± 18
D.''	Early	85	31.2±10.3	36/49	78hamstring, 4BPTB	38	23	NA	39.0 (25.5-53.0)	NA
Reijman et al. ¹⁷ (2021)	Rehabilitation with optional delayed	82	31.4±10.7	31/51	41ACLR, (38hamstring, 3BPTB)	37	16	NA	40.5 (29.8-52.5)	NA

Note: ACLR, anterior cruciate ligament reconstruction; BPTB, bone-patellar tendon-bone; NA, not available; LARS, ligament advanced reinforcement system.

eTable 4. Summary of Adverse Events After Early and Delayed ACLR in Included RCTs

Author (Voor)	Adverse Eve	ents				
Author (Year)	Early ACLR	Elective delayed ACLR				
Meighan et al. ¹⁹ (2003)	2 deep vein thrombosis; 1 wound infection; 1 extension deficit; 1	1 knee stiffness; 1 subjective instability; 1 retear				
Wieighan et al. (2005)	painful tibial fixation screw; 1 knee stiffness					
Bottoni et al. ²⁰ (2008)	1 intra-articular infection; 1 retear; one 5°-10° loss of extension;	1 retear; One >10° loss of extension; two 5°-10° loss of				
Dottom et al. (2000)	one > 10°loss of flexion; five 5°-10° loss of flexion	flexion; five 5°-10 loss of flexion				
Raviraj et al. ²¹ (2010)	2 superficial wound infection	1 pain				
	2 subjective or clinical instability; 1 meniscal signs and symptoms;	19 subjective or clinical instability; 13 meniscal signs				
Frobell et al. ²² (2010)	6 pain, swelling, or both; 4 decreased ROM;1 extension deficit; 1	and symptoms; 3 pain, swelling, or both; 1 decreased				
	arthrofibrosis; 3 retear	ROM; 1 retear				
Frobell et al. ²³ (2013)	19 radiographic osteoarthritis; 3 retear	10 radiographic osteoarthritis; 1 retear				
Chen et al. ²⁴ (2015)	1 mild arthrofibrosis; 1 arthralgia due to loosen screw	1 mild arthrofibrosis				
Manandhara et al. ²⁵ (2018)	1 infection	None				
Eriksson et al. ²⁶ (2018)	Seven > 5° extension defects	Thirteen > 5° extension defects				
von Essen et al. 16 (2020)	1 retear; four > 5° extension defects	1 retear; five > 5° extension defects				
von Essen et al. ²⁷ (2020)	NA	NA				
May Daii at al 17 (2021)	4 retear; 3 ruptures of contralateral ACL; 1 tibial screw events; 4	2 retear; 1 rupture of contralateral ACL; 2 tibial screw				
MaxReij et al. ¹⁷ (2021)	meniscal tear; 2 extension deficit	events; 3 meniscal tear; 4 extension deficit				

Note: ACLR, anterior cruciate ligament reconstruction; ROM, range of motion; NA, not available.

eFigure 1. Forest Plot Depicting the Operative Time of Early ACLR Versus Elective Delayed ACLR

	Ear	ly ACI	_R	Elective	delayed A	CLR		Mean Difference		Mea	an Differer	nce	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C		IV, R	andom, 9	5% CI	
Bottoni 2008	64	25.5	34	61.5	23.9	35	15.7%	2.50 [-9.17, 14.17]			-		
Eriksson 2018	93	20	33	83	18	35	21.3%	10.00 [0.94, 19.06]					
Raviraj 2010	64.9	7.8	51	64.2	7.8	48	41.5%	0.70 [-2.37, 3.77]			-		
von Essen (12m) 2020	93	20	34	83	18	35	21.5%	10.00 [1.01, 18.99]					
Total (95% CI)			152			153	100.0%	4.97 [-0.68, 10.61]					
Heterogeneity: Tau ² = 17			,	3 (P = 0.08)); I ² = 55%				-1 -20	-1 0	0	 10	
Test for overall effect: Z	= 1.72 (F	0.0 = د	18)							Early A	CLR Elec	tive delaye	d ACLR

eFigure 2. Forest Plots Depicting the Extension Deficit and Flexion Deficit of Early ACLR Versus Elective Delayed ACLR

eFigure 3. Forest Plot Depicting the Tegner Score of Early ACLR Versus Elective Delayed ACLR

	Elective	delayed A	ACLR	Ear	ly ACI	_R		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
3.1.1 Follow-up 6 mont	hs								
Mananandhar 2018 Subtotal (95% CI)	4.15	1.45	53 53	3.72	1.34		100.0% 100.0 %	0.43 [-0.10, 0.96] 0.43 [-0.10, 0.96]	
Heterogeneity: Not appli	cable					•	1001070		
Test for overall effect: Z		= 0.11)							
3.1.2 Follow-up 1 year									<u>_</u>
Chen 2015	6.3	1.1	27	6.1	0.9	28		0.20 [-0.33, 0.73]	
Subtotal (95% CI)			27			28	100.0%	0.20 [-0.33, 0.73]	
Heterogeneity: Not appli	cable								
Test for overall effect: Z	= 0.74 (P =	= 0.46)							
3.1.3 Follow-up 5 years	\$								<u> </u>
Chen 2015	6.3	1.3	27	6.3	1.2	28	100.0%	0.00 [-0.66, 0.66]	
Subtotal (95% CI)			27			28	100.0%	0.00 [-0.66, 0.66]	
Heterogeneity: Not appli	cable								
Test for overall effect: Z	= 0.00 (P =	= 1.00)							
									-2 -1 0 1 2
									Elective delayed ACLR Early ACLR

eFigure 4. Forest Plots Depicting the IKDC Score and IDKC Rating Scale of Early ACLR Versus Elective Delayed ACLR

	Early ACLR		_R	Elective	delayed A	CLR		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
4.1.1 Follow-up 6 mg	onths								
Mananandhar 2018	69.68	8.14	53	67.14	6.08	51	10.4%	2.54 [-0.21, 5.29]	<u> </u>
Reijman 2021	69.6	3.1	83	66.8	3	80	89.6%	2.80 [1.86, 3.74]	-
Subtotal (95% CI)			136			131	100.0%	2.77 [1.89, 3.66]	•
Heterogeneity: Tau ² =	0.00; CI	$hi^2 = 0.$	03, df =	1 (P = 0.86	3); I ² = 0%				
Test for overall effect:	Z = 6.13	3 (P < 0	0.00001)					
Total (95% CI)			136			131	100.0%	2.77 [1.89, 3.66]	•
Heterogeneity: Tau ² =	0.00; CI	$hi^2 = 0.$	03, df =	1 (P = 0.86	S_{1} ; $I^{2} = 0\%$				4 2 0 2 4
Test for overall effect:	Z = 6.13	3 (P < 0	0.00001)	•				-4 -2 0 2 4
Test for subgroup diffe	erences:	Not an	policable	.					Elective delayed ACLR Early ACLR

eFigure 5. KOOS Subscales for Early ACLR and Elective Delayed ACLR Cohorts From Four Included Studies

© 2022 Shen X et al. JAMA Network Open.

eFigure 6. Forest Plot of the Results of Re-Tear of Early ACLR Versus Elective Delayed ACLR

	Early A	CLR	Elective delayed	ACLR		Odds Ratio			Odd	s Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, Ran	dom, 95%	CI	
Meighan 2003	0	13	1	18	10.7%	0.43 [0.02, 11.47]	2003		•		_	
Bottoni 2008	1	34	1	35	14.5%	1.03 [0.06, 17.16]	2008			+		
Frobell 2010	3	62	1	59	21.8%	2.95 [0.30, 29.18]	2010			-		-
Chen 2015	0	27	0	28		Not estimable	2015					
von Essen (12m) 2020	1	34	1	35	14.5%	1.03 [0.06, 17.16]	2020			†		
Reijman 2021	4	85	2	82	38.5%	1.98 [0.35, 11.09]	2021			 	_	
Total (95% CI)		255		257	100.0%	1.52 [0.52, 4.43]			-			
Total events	9		6									
Heterogeneity: Tau ² = 0.	00; Chi ² =	1.12, df	$= 4 (P = 0.89); I^2 =$	0%				0.01	0.1	1	10	100
Test for overall effect: Z	= 0.76 (P =	= 0.44)						0.01	0.1 Early ACLF	R Elective	10 delayed	

eFigure 7. Forest Plot of the Results Infection of Early ACLR Versus Elective Delayed ACLR

	Early A	CLR	Elective Delayed	ACLR		Odds Ratio			C	odds Ratio	5	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	l Year		M-H, F	Random, 9	<u> 35% CI</u>	
Meighan 2003	1	13	0	18	23.7%	4.44 [0.17, 118.00]	2003				-	
Bottoni 2008	1	34	0	35	24.4%	3.18 [0.13, 80.79]	2008					
Raviraj 2010	2	51	0	48	27.3%	4.90 [0.23, 104.70]	2010		_		_	
Chen 2015	0	27	0	28		Not estimable	2015					
Mananandhar 2018	1	53	0	51	24.6%	2.94 [0.12, 73.92]	2018				-	
Total (95% CI)		178		180	100.0%	3.80 [0.77, 18.79]						
Total events	5		0									
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.07,	$df = 3 (P = 1.00); I^2$	= 0%				0.01	0.1	- -	10	100
Test for overall effect:	Z = 1.64 (F	P = 0.10))					0.01	0.1 Early A	CLR Elec	tive delaye	100 d ACLR

eFigure 8. Forest Plots Depicting the Extension Deficit and Flexion Deficit of Early ACLR Versus Elective Delayed ACLR After Redefinition

eFigure 9. Forest Plot Depicting the Knee Laxity of Early ACLR Versus Elective Delayed ACLR After Redefinition

eFigure 10. Forest Plot Depicting the Lysholm Score of Early ACLR Versus Elective Delayed ACL After Redefinition

eFigure 11. Forest Plot Depicting the Tegner Score of Early ACLR Versus Elective Delayed ACLR After Redefinition

	Earl	y ACL	.R	Dela	yed AC	CLR		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
11.1.1 Follow-up 6 mg	onths								
Mananandhar 2018	4.15	1.45	53	3.72	1.34	54	100.0%	0.43 [-0.10, 0.96]	+- - -
Subtotal (95% CI)			53			54	100.0%	0.43 [-0.10, 0.96]	
Heterogeneity: Not app	olicable								
Test for overall effect:	Z = 1.59	(P = 0)).11)						
Total (95% CI)			53			54	100.0%	0.43 [-0.10, 0.96]	
Heterogeneity: Not app	olicable								
Test for overall effect:	Z = 1.59	(P = 0)).11)						-2 -1 0 1 2
Test for subaroup diffe	rences:	Not an	plicabl	е					Elective delayed ACLR Early ACLR

eFigure 12. Forest Plots Depicting the IKDC Score and IKDC Rating Scale of Early ACLR Versus Elective Delayed ACLR After Redefinition

	Early ACLR			Delayed ACLR				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	IV, Random, 95% CI
12.1.1 Follow-up 6 m	onths								
Mananandhar 2018	69.68	8.14	53	67.14	6.08	51	10.1%	2.54 [-0.21, 5.29]	<u>-</u>
Reijman 2021	69.6	3.1	85	66.8	3	82	89.9%	2.80 [1.87, 3.73]	🛖
Subtotal (95% CI)			138			133	100.0%	2.77 [1.90, 3.65]	•
Heterogeneity: Tau ² =	0.00; Cł	$ni^2 = 0.$	03, df =	= 1 (P =	0.86);	$I^2 = 0\%$			
Test for overall effect:	Z = 6.20	(P < 0	0.0000	1)					
12.1.2 Follow-up 1 ye	ear								<u></u>
Reijman 2021	81.6	1.9	85	74.4	1.9	82	100.0%	7.20 [6.62, 7.78]	
Subtotal (95% CI)			85			82	100.0%	7.20 [6.62, 7.78]	•
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 24.4	8 (P <	0.0000	01)					
12.1.3 Follow-up 2 ye	ears								
Reijman 2021	84.7	3	85	79.4	3	82	100.0%	5.30 [4.39, 6.21]	
Subtotal (95% CI)			85			82	100.0%	5.30 [4.39, 6.21]	•
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 11.4	1 (P <	0.0000	01)					
									+ + + + + + + + + + + + + + + + + + + +
									-10 -5 0 5 10
									Elective delayed ACLR Early ACLR

	Early ACLR		Delayed ACLR			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
12.2.1 Follow-up 6 mon	ths						
Eriksson 2018	27	33	24	34	100.0%	1.88 [0.59, 5.93]	+
Subtotal (95% CI)		33		34	100.0%	1.88 [0.59, 5.93]	
Total events	27		24				
Heterogeneity: Not applic	cable						
Test for overall effect: Z =	= 1.07 (P =	0.28)					
12.2.2 Follow-up 1 year							
Meighan 2003	11	13	15	18	29.7%	1.10 [0.16, 7.74]	
von Essen (12m) 2020	26	31	27	34	70.3%	1.35 [0.38, 4.79]	* -
Subtotal (95% CI)		44		52	100.0%	1.27 [0.44, 3.67]	*
Total events	37		42				
Heterogeneity: Tau ² = 0.0	00; Chi² =	0.03, df	= 1 (P = 0.	.86); I ² =	0%		
Test for overall effect: Z =	= 0.44 (P =	0.66)					
12.2.3 Follow-up 2 years	S						
von Essen (24m) 2020	24	27	28	28	100.0%	0.12 [0.01, 2.50]	2
Subtotal (95% CI)		27		28	100.0%	0.12 [0.01, 2.50]	
Total events	24		28				
Heterogeneity: Not applic	able						
Test for overall effect: Z =	= 1.36 (P =	0.17)					
							a v l i su
							0.005 0.1 1 10 200
							Elective delayed ACLR Early ACLR

eFigure 13. Forest Plot of the Results of Re-Tear of Early ACLR Versus Elective Delayed ACLR After Redefinition

eFigure 14. Forest Plot of the Results Infection of Early ACLR Versus Elective Delayed ACLR After Redefinition

