Genome Editing and Engineering

Course No: BT-637

LECTURE-6

Dr. Kusum K. Singh
Department of Biosciences and Bioengineering
Indian Institute of Technology Guwahati

Introduction

- Fokl (Flavobacterium okeanokoites)
- Biochemical and crystal structure
- Single catalytic domain
- Rearrange in higher order structure
- Cleave both strands of DNA

Proc. Natl. Acad. Sci. USA

Vol. 95, pp. 10564-10569, September 1998

Biophysics

Structure of FokI has implications for DNA cleavage

David A. Wah*, Jurate Bitinaite†, Ira Schildkraut†, and Aneel K. Aggarwal*‡

*Structural Biology Program, Department of Physiology and Biophysics, Box 1677, 1425 Madison Avenue, Mount Sinai School of Medicine, New York, NY 10029; and †New England Biolabs, 32 Tozer Road, Beverly, MA 01915

Proc. Natl. Acad. Sci. USA Vol. 95, pp. 10570–10575, September 1998 Biochemistry

FokI dimerization is required for DNA cleavage

JURATE BITINAITE*, DAVID A. WAH[†], ANEEL K. AGGARWAL[†], AND IRA SCHILDKRAUT*[‡]

*New England Biolabs, Inc., 32 Tozer Road, Beverly, MA 01915; and †Structural Biology Program, Department of Physiology and Biophysics, Box 1677, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029

Proc. Natl. Acad. Sci. USA Vol. 95, pp. 10564–10569, September 1998 Biophysics

Structure of FokI has implications for DNA cleavage

DAVID A. WAH*, JURATE BITINAITE†, IRA SCHILDKRAUT†, AND ANEEL K. AGGARWAL*‡

*Structural Biology Program, Department of Physiology and Biophysics, Box 1677, 1425 Madison Avenue, Mount Sinai School of Medicine, New York, NY 10029; and †New England Biolabs, 32 Tozer Road, Beverly, MA 01915

Proc. Natl. Acad. Sci. USA Vol. 95, pp. 10570–10575, September 1998 Biochemistry

FokI dimerization is required for DNA cleavage

JURATE BITINAITE*, DAVID A. WAH[†], ANEEL K. AGGARWAL[†], AND IRA SCHILDKRAUT*[‡]

*New England Biolabs, Inc., 32 Tozer Road, Beverly, MA 01915; and †Structural Biology Program, Department of Physiology and Biophysics, Box 1677, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029

Fok N13Y

Fok N13Y

- Fok CD
- 196 a.a.
- 25 kDa

Fok N13Y

Consensus

P D β-turn

E/D K

Eco RI (88-113)

Fok I (447-469)

Eco RV (71-92)

F T L Y - - K P S E P N K K - - I A I D I K

Fok CD/D450A

D450**A**;

Wt. Fokl interacts with Fok N13Y

Wt. Fokl interacts with Fok CD

Wt. Fokl does not interacts with Fok CD/D450A

Interface D483A; R487A mutants

Dimer model

- Fokl first binds to DNA as monomer
- The complex is inactive
- A second Fokl monomer arrives:
- i) when DNA is scanned until
- ii) the monomer collides
- Correct orientation = dimerize
- Cleavage of ds DNA= Fok dimers (Mg⁺²)

FokI binds

Fok! binds

dimerization and cleavage

Conclusions of Lecture-6

- Cleavage of both strand= after FOKI dimerization (Mg)
- Dimerization model offers (two control)
- i) The release of CD depends on seq.-spe. binding
- ii) Dimerization of CD = phosphodiester bond cleavage

Thank You!