WHAT IS CLAIMED IS:

a

N N N

- 1. An isolated nucleic acid sequence encoding a microtubule motor

 protein, wherein the protein has the following properties:

 (i) the protein's activity includes plus end-directed microtubule motor activity; and
 - (ii) the protein has a tail domain that has greater than 60% amino acid sequence identity to a TL-γ tail domain as measured using a sequence comparison algorithm.
 - 2. An isolated nucleic acid sequence of claim 1, wherein the protein
 specifically binds to polyclonal antibodies to TL-γ.
 - 3. An isolated nucleic acid sequence of claim 1, wherein the nucleic
 acid encodes PL-γ.
 - 4. An isolated nucleic acid sequence of claim 1, wherein the nucleic acid encodes SEQ ID NO:1(Af seq)
 - 5. An isolated nucleic acid sequence of claim 1, wherein the nucleic acid has a nucleotide sequence of SEQ ID NO:2.
 - 1 6. An isolated nucleic acid sequence of claim 1, wherein the sequence 2 comparison algorithm is PHLEUP.
 - 7. An isolated nucleic acid sequence of claim 1, wherein the nucleic acid is amplified by primers that selectively hybridize under stringent hybridization conditions to the same sequence as the primer set:
 - 5' ATGTCGGGCGGTGGAAATATC 3' (SEQ ID NO:3)
 - 5' GAATTCCTGCTTCGCTGXTTTCA 3' (SEQ ID NO:4)
 - 8. An isolated nucleic acid sequence of claim 1, wherein the nucleic 2 acid has identity to a Tl-γ derived from a hyphal fungi.

1

1

1

1 2

3

4

5

1

9. An isolated nucleic acid sequence of claim 8, wherein the nucleic acid has identity to a TL- γ derived from *Thermomyces lanuginosus*.

- 1 10. An isolated nucleic acid sequence of claim 1, wherein the nucleic 2 acid selectively hybridizes under stringent hybridization conditions to SEQ ID NO:2.
 - 11. An expression vector comprising a nucleic acid encoding a microtubule motor protein, wherein the protein has the following properties:
 - (i) the protein's activity includes plus end-directed microtubule motor activity; and
 - (ii) the protein has a tail domain that has greater than 60% amino acid sequence identity to a TL- γ tail domain, as measured using a sequence comparison algorithm.
 - 12. A expression vector of claim 11, wherein the protein specifically binds to polyclonal antibodies to $TL-\gamma$.
 - 13. A host cell transfected with the vector of claim 11.
 - 14. An isolated microtubule motor protein, wherein the protein has the following properties:
 - (i) the protein's activity includes plus end-directed microtubule motor activity; and
 - (ii) the protein has a tail domain that has greater than 60% amino acid sequence identity to a TL- γ core tail domain as measured using a sequence comparison algorithm.
- 1 15. An isolated protein of claim 14, wherein the protein specifically 2 binds to polyclonal antibodies to TL-γ.
 - 16. An isolated protein of claim 14, wherein the protein is TL- γ .
- 1 17. An isolated protein of claim 14, wherein the protein has an amino 2 acid sequence of SEQ ID NO:1.

18.

An isolated protein of claim 14, wherein the protein has identity to

m IŲ (Į) 1

1	29. A method for diagnosing hyphal fungal infections by detecting the
2	presence of TL- γ in a sample, the method comprising the steps of:
3	(a) obtaining a biological sample;
4	(ii) contacting the biological sample with a TL-γ specific reagent that selectively
5	associates with $TL-\gamma$; and,
6	(iii) detecting the level of TL- γ specific reagent that selectively associates with the
7	sample.
1	30. A method of claim 29, wherein the TL- γ specific reagent is selected
2	from the group consisting of: TL- γ specific antibodies, TL- γ specific oligonucleotide
3	primers, and TL-γ nucleic acid probes.
1	31. A method of claim 29, wherein the sample is from a human.
1	32. A method of claim 29, wherein the sample is from an animal.
1	33. A method of claim 29, wherein the TL- γ specific reagent is part of
2	a gene or protein array.
1	34. A method for screening for modulators of TL- γ , the method
2	comprising the steps of:
3	(i) providing biologically active TL- γ , wherein the TL- γ has the following
4	properties
5	(a) the protein's activity includes plus end-directed microtubule motor
6	activity; and
7	(b) the protein has a tail domain that has greater than 60% amino acid
8	sequence identity to a TL-γ tail domain as measured using a sequence comparison
9	algorithm;
10	(ii) contacting biologically active TL- γ with a candidate agent in a test and control
11	concentration; and

(iii) assaying for the level of TL- γ activity, wherein the TL- γ activity plus end-1 directed microtubule motor activity, binding activity or ATPase activity, and wherein a change in activity between the test and control concentration indicates a modulator. 3 A method of claim 34, wherein the protein specifically binds to 1 35. polyclonal antibodies to TL- γ . A method of claim 34, further comprising the step of isolating 36. 1 biologically active TLY from a cell sample. 2 A method of claim 34, wherein the biologically active $TL-\gamma$ is 1 37. recombinant. 2 A method of claim 34, wherein the biologically active TL- γ has 1 38. identity to a TL- γ derived from Thermomyces lanuginosus. A method of claim 34, wherein the candidate agent is selected from 39. 1 the group consisting of antibodies, proteins, oligonucleotides and small molecules. A method of claim 34, wherein the screening occurs in a multi-well 40. plate as part of a high-throughput screen. 2 A method of claim 34, wherein the biologically active TL- γ 41. 1 comprises a motor domain having identity to the motor domain of Thermomyces 2 lanuginosus TL- γ . 3 A method of claim 34, wherein the biologically active $TL-\gamma$ 42. 1 comprises an amino acid sequence of a TL- γ motor domain of SEQ ID NO.1. 2 A kit for screening for modulators of TL- γ , the kit comprising; 43. 1 a container holding biologically active $TL-\gamma$; and 2 (i)

	I	(ii) instructions for assaying for $1L-\gamma$ activity, wherein the $1L-\gamma$ activity is
	2	plus end directed microtubule motor activity, bindig activity, or ATPase activity.
	1	$\sqrt{44}$. A kit of claim 43, wherein the biologically active TL- γ has identity
	2	to a TL-γ derived from Thermomyces lanuginosus.
	1	45. A kit of claim 43, wherein the biologically active TL- γ comprises a
	2	motor domain that has identity to the motor domain of Thermomyces lanuginosus TL-γ.
	1	46. A kit of claim 43, wherein the biologically active TL- γ is
	2	recombinant.
7	•	
j	1	47. In a computer system, a method of screening for mutations of
Ą.	1	
# #	2	microtubule motor protein genes, the method comprising the steps of:
Ä	3	(i) entering at least 30 nucleotides of a first nucleic acid sequence encoding a plus
<u></u>	4	end-directed microtubule motor protein having a nucleotide sequence of SEQ ID NO:2
•	5	and conservatively modified versions thereof;
á á	6	(ii) comparing the first nucleic acid sequence with a second nucleic acid sequence
ij	7	having substantial identity to the first nucleic acid sequence; and
	8	(iii) identifying nucleotide differences between the first and second nucleic acid
	9	sequences.
	1	48. In a computer system, a method for identifying a three-dimensional
	2	structure of microtubule motor proteins, the method comprising the steps of:
	3	(i) entering an amino acid sequence of at least 10 amino acids of a plus
	4	end-directed microtubule motor protein or a nucleotide sequence of at least 30 nucleotides
	5	of a gene encoding the motor protein, the protein having an amino acid sequence of SEQ
	6	ID NO:1 and conservatively modified versions thereof; and
	7	(ii) generating a three-dimensional structure of the protein encoded by the
	8	amino acid sequence.
		\

1	49. An isolated nucleic acid comprising a sequence which has greater
2	than 60% sequence identity with SEQ ID NO:2.
1	50. An isolated nucleic acid comprising a sequence which has greater
2	than 70% sequence identity with nucleotides 1-1071 of SEQ ID NO:2.
\1	51. An isolated nucleic acid comprising a sequence which has greater
12>	than 60% sequence identity with nucleotides 1327-1803 of SEQ ID NO:2.
<i>r</i>	
1	52. An isolated nucleic acid comprising a sequence which has greater
2	than 60% sequence identity with nucleotides 1804-2352 of SEQ ID NO:2.
1	53. An isolated nucleic acid sequence which hybridizes under stringent
2	conditions to a complement of SEQ ID NO:2.
1	54. An isolated nucleic acid sequence which hybridizes under stringent
2	conditions to a complement of nucleotides 1-1071 of SEQ ID NO:2.
为	55. An isolated nucleic acid sequence which hybridizes under stringent
3/	conditions to a complement of nucleotides 1327-1803 of SEQ ID NO:2.
1	
1	56. An isolated nucleic acid sequence which hybridizes under stringent
2	conditions to a complement of nucleotides 1804-2352 of SEQ ID NO:2.
1	57. An method for identifying sequence changes among homologs
2	comprising: sequencing the nucleic acid of any one of claims 49-53 and identifying
3	sequence changes compared to the corresponding sequence of SEQ ID NO:2.
1	58. A method for identifying agents which binds to TL- γ or portions
2	thereof, wherein a portion refers to the stark, motor, or tail domain of TL- γ , comprising
3	adding a candidate agent to TL- γ or a portion thereof and identifying any agents which
4	bind thereto.

addy6