Міністерство освіти і науки України Національний університет «Львівська політехніка» Інститут комп'ютерних наук та інформаційних технологій Кафедра автоматизованих систем управління

Звіт до лабораторної роботи № 3 з дисципліни Моделювання процесів і смарт-систем на тему:

«Моделювання просторово-розподілених процесів.»

Виконала: студентка OI-32

Горяча I. B.

Прийняв: асистент каф. АСУ

Мельник Р. В.

Мета: Засвоїти основні поняття про моделі просторово-розподілених процесів та про їхні властивості, навчитися будувати і досліджувати такі моделі за допомогою чисельних методів. Оволодіння навичками моделювання систем, що описуються диференціальними рівняннями в частинних похідних, методом приведення до системи звичайних диференціальних рівнянь.

Завдання 1.

- змоделюйте процес зміни температури в стінці із заданого матеріалу методом приведення до системи звичайних диференціальних рівнянь задачі теплопровідності (11) (12). Вихідні дані для віповідної задачі теплопровідності представлені у таблиці 1;
- на мові Python напишіть програму реалізації методу Рунге-Кутта для числового інтегрування із кроком h та тривалістю T, отриманої в попередньому пункті системи звичайних диференціальних рівнянь із відповідними початковими та граничними умовами;

Варіант 4

Таблиця 1. Вихідні дані для моделювання задачі теплопровідності (11) – (12).

Варіант	Матеріал	a,	<i>L</i> , м	Т,	N	h	$\varphi_1(t)=\alpha$	$\varphi_2(t)=\beta$,	φ(y),
		$10^{-6} \text{ m}^2/\text{c}$		год.			°C	°C	°C
1	Дерево	0,082	0,3	72	100	3	1	20	0
2	Цегла	0,52	0,5	120	100	1	2	21	0
3	Скло	0,34	0,01	1	100	0,15	3	22	0
4	Мідь	111,0	0,07	1	100	0,15	4	23	0

Завдання 2.

- на мові Python напишіть програму для візуалізації у вигляді 3D графіка отриманого в попередньому завданні числового розв'язку задачі теплопровідності;

- зобразіть на отриманому 3D графіку також і аналітичний розвязок (17) відповідної задачі теплопровідності, обмежившись 30-ма доданками нескінченного ряду у формулі (17);
- на основі формул (18) обчисліть максимальну абсолютну (МАЕ) та середньостатистичну (МSE) похибки отриманого числового розв'язку у порівнянні із відповідним аналітичним розв'язком (17).

Результати:

Рис.1. Результат численього розв'язання методом Рунге-Кутта.

Аналітичний розв'язок

Рис.2. Результат аналітичного розв'язання.

Код програми - репозиторій github: https://github.com/ira-horiacha/mpss

Висновок: Отже, в результаті виконання цієї лабораторної роботи, я практично засвоїла методи побудови моделей просторово-розподілених процесів за допомогою чисельних методів, зокрема за допомогою методу Рунге-Кутта. Також змоделювала систему, що описується диференціальними рівняннями в частинних похідних, і привела її до системи звичайних диференціальних рівнянь.