Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ 2018

	Arkusz II
Czas pracy: 150 minut	Liczba punktów do uzyskania: 35

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron (zadania 4-6). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz poniżej zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, pseudokodu lub języka programowania, który wybrałaś/eś na egzamin.

Dane uzupełn	ia ucze	ń:							
WYBRANE:					(śro	dowi	 sko)	•••••	
					(ko	 mpila	 tor)	•••••	
				•••••	(pro	ogram	 użyt	kowy	 ⁄)
PESEL:									
Klasa:]						

Zadanie 4.

Przykład. W ciągu liczb poniżej, najdłuższy podciąg rosnący tworzą liczby na szarym tle:

3	2	3	6	4	7	5	7

Zauważ, że elementy tego podciągu nie muszą stać koło siebie.

Specyfikacja problemu:

Dane:

ciąg n liczb całkowitych.

Wyniki:

m – liczba elementów w najdłuższym rosnącym podciągu danego ciągu, kolejne elementy najdłuższego rosnącego podciągu danych.

Zadanie 4.1 (0-2)

W następujących ciągach, zaznacz elementy wybranego najdłuższego rosnącego podciągu.

3	1	3	5	4	5	7	6
1	2	3	4	4	3	2	4
8	7	6	5	4	3	2	1

Zadanie 4.2 (0-2)

To zadanie ma Ci ułatwić później napisanie programu w Zadaniu 4.3.

Uzupełnij poniższą tabelę:

Numery elementów ciągu	0	1	2	3	4	5	6	7
Dany ciąg	3	1	3	5	4	5	7	6
Długość najdłuższego rosnącego podciągu, kończącego się aktualnie rozpatrywanym elementem ciągu		1	2		3			5
Numer elementu w ciągu, poprzedzającego aktualnie rozpatrywany element w najdłuższym podciągu, który się kończy aktualnym elementem. Jeśli jest to pierwszy element takiego podciągu, to wstawiamy 0.		0	1		2			5

Zadanie 4.3 (0-7)

W wybranym języku programowania napisz program realizujący algorytm dla podanej poniżej specyfikacji.

Dane:

k (0<k<100) ciągów o długości n (0<n<50), o wartościach wyrazów będących liczbami całkowitymi z przedziału [– 50,50].

Wyniki:

Dla każdego z ciągów liczba elementów w najdłuższym rosnącym podciągu danego ciągu.

Dane są zapisane w pliku ciagi.txt.

W pierwszym wierszu pliku ciagi.txt znajduje się liczba k. W każdym z kolejnych k wierszy znajduje się liczba n oraz n wyrazów ciągu, wszystkie te liczby są oddzielone spacją.

Wynik zapisz w pliku podciagi.txt. W kolejnych k wierszach pliku podciagi.txt zapisz długość najdłuższego rosnącego podciągu dla kolejnych ciągów.

Do oceny oddajesz:

Do oceny oddajesz ten arkusz, plik podciagi. txt oraz komputerową realizację rozwiązań w pliku o nazwie (wpisz nazwę pliku ze swoim programem):

......

	Nr zadania	4.1	4.2	4.3	Suma
Wypelnia egzaminator	Maksymalna liczba punktów	2	2	7	11
S	Uzyskana liczba punktów				

Zadanie 5.

Jan Maturalski posiada konto w Banku Maturalskim. Postanowił dokonać analizy swoich operacji bankowych. Plik dane.txt zawiera dane wykonywanych wypłat z ostatnich trzech lat styczeń 2015 – grudzień 2017. Dane oddzielone są średnikami: data_operacji, kwota_wypłaty, kategoria_wydatków, a pierwszy wiersz jest nagłówkowy:

data;kwota1;kategoria

2015-01-01;71,99;ubranie

2015-01-02;7,06;sport i kultura

2015-01-03;130,16;żywność

Zadanie 5.1 (0-1)

Zaimportuj dane z pliku dane. txt w celu wykonania na nich dalszych obliczeń.

Zadanie 5.2 (0-2)

Podaj miesiąc i rok, w którym wykonano najwięcej wypłat i liczbę tych wypłat, oraz miesiąc i rok, w którym dokonano najwyższej wypłaty i wielkość tej wypłaty.

Zadanie 5.3 (0-2)

Oblicz sumę wypłat w poszczególnych kategoriach z podziałem na lata. Sporządź wykres słupkowy obrazujący wypłaty z podziałem na kategorie i lata.

Zadanie 5.4 (0-1)

Dla każdej kategorii podaj średnią wypłatę w 2017 roku.

Zadanie 5.5 (0-1)

Podaj, w którym dniu tygodnia wykonywanych było najwięcej wypłat, podaj liczbę tych wypłat.

Zadanie 5.6 (0-2)

Od stycznia 2015 roku każdego 27. dnia miesiąca na konto wpływało wynagrodzenie. W styczniu, w lutym i w marcu 2015 wynagrodzenie wynosiło netto 3400. Począwszy od drugiego kwartału 2015 roku, w każdym pierwszym miesiącu kwartału wynagrodzenie było waloryzowane o 1,5% swojej dotychczasowej wartości. Dołącz kwoty wynagrodzenia, z uwzględnieniem waloryzacji, do obecnych danych i podaj stan konta na koniec dnia 14 lutego 2017 roku.

Zadanie 5.7 (0-2)

Podaj obroty konta w każdym miesiącu. Poprzez obroty rozumiemy różnicę sumy wpływów i wypłat wykonywanych w danym miesiącu. Wyniki zobrazuj wykresem.

Zadanie 5.8 (0-1)

Bank rozważa nową funkcjonalność, w której dokonywane wypłaty zaokrąglane są do pełnej złotówki w górę, a różnica między kwotą zaokrągloną a rzeczywistą kwotą wypłaty gromadzona jest na tym samym rachunku. Oblicz, jaką kwotę na rachunku posiadałby Pan Maturalski na koniec dnia 31 grudnia 2017 roku, jeśli tę funkcjonalność bank wprowadziłby od 1 stycznia 2015 roku.

Do oceny oddajesz:

Plik	tekstowy	zadanie5	.txt zav	vierający	odpowiedzi	do	poszczególn	ych	zadań.
Odpo	wiedź do	każdego zad	dania powi	inna być	poprzedzona	jego	numerem.	Dod	atkowo
oddaj	jesz plik(i)	zawierający(e	e) komputei	rową reali:	zację Twoich	oblic	zeń o nazwie	: :	
• • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••	••••	•••••		•••••

Wypełnia egzaminator	Nr zadania	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	Suma
	Maks. liczba punktów	1	2	2	1	1	2	2	1	12
	Uzyskana liczba punktów									

Zadanie 6.

Ośrodek REKIN oferuje klientom możliwość skorzystania z basenu (P) lub sauny (S). Dodatkowo klient może na czas pobytu w ośrodku REKIN wynająć sejf, aby przechować wartościowe przedmioty i pieniądze. Płaci się według cennika za każdą rozpoczętą godzinę przebywania na pływalni lub korzystania z sauny. Za wynajęcie sejfu płaci się ryczałt według cennika.

Ośrodek czynny jest w godzinach od 8.00 do 21.00 w dni powszednie, weekendy i święta. Dane w plikach tekstowych obejmują maj i czerwiec 2017 roku. Wszyscy klienci, którzy kiedykolwiek korzystali z Ośrodka (zwani tu stałymi klientami) zarejestrowani są w pliku klienci.txt. Wszystkie wejścia do ośrodka w maju i czerwcu 2017 zarejestrowano w pliku użytkownicy.txt. Klient jest jednoznacznie identyfikowany przez indeks klienta, a system ośrodka każdorazowo rejestruje indeks klienta, datę wejścia, czas wejścia i czas wyjścia oraz rodzaj usługi (basen, sauna, sejf). Czasy rejestrowane są z dokładnością do minuty. Wszystkie imiona żeńskie kończą się na literę "a", na tę literę nie kończy się żadne imię męskie.

Cennik

Za co	Ile (w PLN)
Pływalnia – cena za każdą rozpoczętą godzinę	20
Sauna – cena za każdą rozpoczętą godzinę	40
Sejf – ryczałtowa cena za jednorazowe wynajęcie	50

W pliku klienci. txt zapisano dane stałych klientów – indeks klienta, numer klienta, nazwisko, imię, np.:

indeks klienta; Nr klienta; Nazwisko; Imię

1; 1344; Aabacka; Kancjanela

Dane oddzielone są średnikami, a pierwszy wiersz jest nagłówkowy.

W pliku użytkownicy.txt zapisano dane klientów korzystających z ośrodka w raportowanym okresie – indeks klienta, data wejścia, godzina wejścia, godzina wyjścia, rodzaj usługi – pływalnia (P) lub sauna (S), wynajęcie sejfu (T) lub rezygnacja sejfu (N), np.:

indeks klienta; data; Wejście; Wyjście; P/S; SEJF 2; 2017-06-26; 13:44:00; 15:20:00; P; N

Dane oddzielone są średnikami, a pierwszy wiersz jest nagłówkowy.

Wykorzystując dane z plików oraz dostępne narzędzia informatyczne, wykonaj poniższe zadania. Wyniki zapisz w pliku o nazwie zadanie6.txt, poprzedzając je oznaczeniami zadań.

Zadanie 6.1 (0-2)

Ile było wejść kobiet i wejść mężczyzn w raportowanym okresie na basen oraz do sauny?

Zadanie 6.2 (0-2)

Podaj liczbę klientów, którzy w raportowanym okresie więcej niż raz korzystali z sauny. Podaj ich indeks, imię i nazwisko, liczbę wejść.

Zadanie 6.3 (0-3)

Kto ze stałych klientów nie korzystał z REKINA w raportowanym okresie? Posortuj te osoby rosnąco ze względu na indeks klienta. Podaj liczbę osób, indeks, imię i nazwisko pierwszej i ostatniej osoby.

Zadanie 6.4 (0-5)

Jaki był przychód ośrodka REKIN w raportowanym okresie?

Wskazówki do zadania 6.4.

- 1. Obliczony rzeczywisty czas przebywania w ośrodku REKIN, należy, w celu uniknięcia kłopotów związanych z efektami numerycznych niedokładności, zaokraglić do czwartego miejsca po przecinku.
- 2. Liczbę rzeczywistą R można zaokrąglić w górę (do najbliższej większej od niej liczby całkowitej I) poprzez

$$I = -int(-R)$$

Do oceny oddajesz:

Plik tekstowy zadanie6.txt zawierający odpowiedzi do poszczególnych zadań. Odpowiedź do każdego zadania powinna być poprzedzona jego numerem. Dodatkowo oddajesz plik(i) zawierający(e) komputerową realizację Twoich obliczeń o nazwie:

Wypełnia egzaminator	Nr zadania	6.1	6.2	6.3	6.4	Suma
	Maksymalna liczba punktów	2	2	3	5	12
cg2ummutor	Uzyskana liczba punktów					

BRUDNOPIS (nie podlega ocenie)