Kartographierung des Sonnensystems

Projektpräsentation Gruppe F

Team: Natalia Beller, Maximilian Behr, Matthias Faß

Problembeschreibung

- Ziel: Aufgrund eines Datensatzes mit Features aus der Astronomie soll man die Zielvariable ("diameter") vorhersagen können
- Herausforderungen:
 - Vorverarbeitungsprozess
 - Sichtung der Daten
 - Missing Values
 - Skalierung, Transformation
 - Feature Analyse
 - Visualisierungen
 - Modellsuche und –auswahl für Vorhersagen
 - Hoher Zeitaufwand für Hyperparametersuche

Datenexploration

- Erste Sichtung
 - Vertraut machen mit Features (Beschreibung)
 - Datensatz laden und zwei Teile "mit" und "ohne" Zielvariable trennen
- Zweite Sichtung
 - Analyse der Daten hinsichtlich benötigter Vorverarbeitungsschritte
 - Missing Values; nicht relevante Spalten; nominale, ordinale numerische Features
 - Skalierung
 - Zielvariable (Umwandlung in log10, Zusammenhänge mit Features...)

Transformation des Durchmessers (y)

Korrelationsmatrix (reduziert, nur lineare Zusammenhänge)

Preprocessing

- Grundidee: Pipeline mit ColumnTransformer bauen für Vorverarbeitung
- Missing Values:
 - SimpleImputer benutzen mit Ersetzungsstrategie median, most-frequent
- Ordinale und Nominale Daten enkodiert:
 - OrdinalEncoder und OneHotEncoder benutzen um in numerische Werte umzuwandeln
- Daten skalieren:
 - MinMaxScaler benutzen

Beispiel: Numerische Features skaliert

Modellvergleich

Lineare Regression

• Erster Schritt: Nochmal Datensplitting der Trainingsdaten in Trainingsund Validierungsdaten für alle Modelle

- einfaches Einstiegs-Modell zum ersten Test
- RMSE auf Test und Validierungsdaten war akzeptabel und rel. klein
- kein Overfitting bzw. Underfitting
- R2 score für Trainings-, Validierungs- und Testdaten ungefähr 0.94.

Feature Expansion für Quadratische Regression

- etwas komplexeres Model
- Ergebnis: Overfitting -> Fehler auf Validierungsdaten riesig
 - R2 Train = 0.963
 - R2 Validierung= -8.899067976653561e+20
- Idee: Ridge Regularisierung

Ridge Regularisierung

- Hyperparametersuche manuell α =[0.0005,0.001,...,3,5]
 - ungefähr α =0.03 (Grad 2)
- Nochmal Kreuzvalidierung mit zusätzlicher Variation des degrees
 - beste Hyperparameter: α =0.003 und Grad 1

Random Forest

- 100 Bäume zum schnellen Testen
- gute RMSE und R2 Werte auf Trainings- und Testdaten
- Idee: Hyperparametersuche Kreuzvalidierung GridSearchCV

Hyperparametersuche Kreuzvalidierung GridSearchCV

- Anzahl der Bäume
- Tiefe der Bäume
- Ergebnis: {'max_depth': 16, 'n_estimators': 200}
 - leichte Verbesserung erzielt

Diagramm (Heatmap, Kreuzvalidierung)

Gradient Boosting

- Kreuzvalidierung über learning rate und Anzahl der Bäume
 - für '5 best Features'
 - Mit und ohne "H2" und "albedo"
- Ergebnis: keine wesentliche Veränderungen mehr

Gradient Boosting (5 best Features)

Experimental 1

- Wichtigste Features f
 ür Regression (Grundlage: RandomForest)
- Ergebnisse vom RandomForest feature_importances_
- 'H', 'albedo', 'n', 'moid', ... (von wichtig zu unwichtig geordnet)
- Hier wird bei der Best Feature Suche erkannt, dass H und Albeldo sehr wichtig sind. Dies war anfänglich nicht aus der Korrelationsmatrix ersichtlich, weil zwischen albedo (a) und diameter (d) ein nichtlinearer Zusammenhang besteht
- Beweis:
 - $d = 10^{(3.1236 0.5 \log_{10}(a) 0.2H)}$

Experimental 2

Mean 'diameter' = 7.515 km. Std 'diameter' = 702.79 km.

Mean 'diameter' = 3.52 km. Std 'diameter' = 15.615 km.

Mean 'diameter' = 3.962 km. Std 'diameter' = 20.558 km.

Experimental 3

- Features ohne H und Albedo (Grundlage: Gradient Boosting)
- drastische Verschlechterung
 - 5 best Features
 - (without 'H', 'albedo') ---
 - R2 Test = 0.794
- wichtigste Features nicht mehr vorhanden -> deutlich spürbar