Rappel de cours

Definition 1. Un groupe (G, *) est un ensemble G auquel est associé une opération * (la loi de composition) vérifiant les 4 propriétés suivantes:

- $\forall x, y \in G, x * y \in G$. * est une loi de composition interne.
- $\forall x, y, z \in G, (x * y) * z = x * (y * z)$ la loi est associative
- $\exists e \in G, \forall x \in G, x * e = e * x = x.$ e est l'élément neutre
- $\forall x \in G, \exists x' \in G, x * x' = e. \ x'$ est l'inverse de x et est noté x^{-1} .

Exercice 1

Pour que \mathbb{R} , muni de la multiplication soit un groupe, il faut qu'il véfifie les 4 propriétés d'un groupe. La multiplication est une loi de composition interne pour \mathbb{R} . La multiplication est associative dans \mathbb{R} . 1 est l'élément neutre pour la multiplication dans \mathbb{R} . Vérifions si tout les él'éments de \mathbb{R} ont un inverse dans \mathbb{R} . 0, n'a pas d'inverse dans \mathbb{R} , donc $(\mathbb{R}, *)$ n'est pas un groupe.

Exercice 2

On a $G = \{a, b, e\}$, (G, .) est un groupe et e lélément neutre du groupe (G, .). Donc $\forall x \in G, \exists x' \in G, x.x' = e$ et $\forall x, y, \in G, x.y \in G = \{a, b, e\}$.

Donc $a.b \in a, b, e$. Plusieurs cas possibles:

- b est l'inverse de a dans le groupe. Donc, a.b = e
- b n'est pas l'inverse de a dans le groupe. donc $a.b \in a, b$. Soit a.b = a, as possible car a.e = a et $b \neq e$, ou a.b = b pas possible car $(a.b).b \neq a.(b.b)$.

Donc a.b = e

Exercice 3

Non. a et b premiers entre eux donc gcd(a, b) = 1 et b et c premiers entre eux donc gcd(b, c) = 1. Prenons, a = 3, b = 5, c = 9, on a gcd(3, 5) = 1 et gcd(5, 9) = 1 mais gcd(3, 9) = 3. Donc a et c ne sont pas premiers entre eux.

Exercice 4

Exercice 5

Exercice 5.1

 $p^2 - 1 = (p+1)(p-1)$, comme p est un nombre premier supérieur à 5, p est impair. Donc $p^2 - 1 = (2k+1-1)(2k+1+1) = 2k(2k+2) = 4k(k+1)$.

Exercice 5.2

 $8|p^2 - 1 \text{ si } \exists n, p^2 - 1 = 8n.$

- k est pair donc k=2k' et 4k(k+1)=8k'(2k'+1) donc n=k'(2k'+1)
- k est impair donc k = 2k' + 1 et 4k(k+1) = 4(2k'+1)(2k'+1+1) = 4(2k'+1)(2k'+2) = 8(2k'+1)(k'+1) donc n = (2k'+1)(k'+1).

n existe, donc $8|p^2-1$.

 $16|p^4-1$ si $\exists n, p^4-1=16n$. $p^4-1=(p^2-1)(p^2+1)$ et $8|p^2-1$ mais p est impair donc p^2 est impair et p^2+1 est pair. Par conséquent $2|p^2+1$. Par conséquent, $(p^2-1)(p^2+1)=8n.2n'=16nn'$ donc $16|p^4-1$.

Exercice 5.3

QED