Learning Algorithm

The learning algorithm used is the Dueling Deep Q Network with the feature having state size as input and 128 layers. Both advantage and value have 128 layers each. Each sequential model has RELU as an activation function (Reference).

Dueling DQN

Above: Regular DQN with a single stream for Q-values. Below: Dueling DQN where the value and advantage are calculated separately and then combined only at the final layer into a Q value.

Figure

The code and hypermeters have been adapted from the lesson for DQN. The hypermeters are as follows:

5000: maximum number of training episodes

1000: maximum number of timesteps per episode

1.0: starting value of epsilon for epsilon-greedy action selection

0.01: minimum value of epsilon

0.995: multiplicative factor per episode for decreasing epsilon

Plot of rewards per episode

```
Episode 100
               Average Score: 1.17
Episode 200
              Average Score: 4.94
Episode 300
               Average Score: 8.17
Episode 400
                Average Score: 10.22
Episode 500
                Average Score: 12.38
Episode 578
                Average Score: 13.05
Environment solved in 478 episodes!
                                        Average Score: 13.05
  20
  15
                                      500
                                            600
                               400
                         300
                      Episode #
```

Ideas for Future Work

Include researching and implementing different improvements to DQN such as prioritized experience replay, noisy networks for exploration, rainbow, quantile regression and hierarchical DQN.