Thus finally, the Case 1 step response is:

$$y(t) = G(0) \left[1 - \left(\frac{\omega_n}{\omega_d} \right) e^{\sigma t} \sin(\omega_d t + \cos^{-t} t) \right]$$

We can now solve for important transient parameters

=> t_c : Solve for first $t > 0$ such that

=>
$$\frac{1}{4}$$
: Solve for f rist f >0 such that
$$y(t) = \frac{1}{5}(t) = G(0)$$
=> $\sin(\omega_4 t + \cos^2 t) = 0$

$$= \frac{1}{C} = \frac{\pi - \cos^{-1} \xi}{\omega_d}$$

or:
$$f_c = \frac{\pi - \rho}{\omega_d}$$

Substituting:

$$y_{P} = y(t_{P}) = G(0)[1 + C^{-1/\omega_{a}}]$$

$$M_{P} = C_{(2\pi/m^{4})}$$

Peak Overshoot

$$\Rightarrow M_{P} \text{ is the Normalized peak overshoot}$$

$$y_{P} = G(o)[1+M_{P}] \Longrightarrow M_{P} = \frac{y_{P} - G(o)}{G(o)} = \frac{y_{P} - y_{SS}}{y_{SS}}$$

$$\Rightarrow$$
 Mp is entirely determined by damping ratio {
$$M_p = \exp\left[\frac{\sigma\pi}{\omega_d}\right]$$

$$= GXD \left[\frac{(-\xi n^{\nu})u}{(-\xi n^{\nu})u} \right]$$

OR

$$M_{P} = exp \left[\frac{-\xi \pi}{\sqrt{1-\xi^{2}}} \right]$$

0/005 = 100×MP

Settling Time

As usual, we can use the approximation

But to a actually a Sunction of & also here:

$$\frac{C(\{\})}{\sqrt{\sigma/2}}$$

with
$$3 \le C(\xi) \le 5$$
 for most $0 \le \xi \le 0.9$

50 4 is an "average" value for C({)

Summary: Case I step response;
$$P_1 = \sigma + j\omega_d$$

"Natural" frequency: $\omega_n = \sqrt{\sigma^2 + \omega_d^2} = /P_1/2$

Damping ratio: $\xi = \frac{/\sigma/2}{\omega_n}$

$$\frac{\int_{-\infty}^{\infty} \frac{d^2 + \omega_d}{dt}}{\int_{-\infty}^{\infty} \frac{dt}{dt}} = \frac{\pi - \omega}{\omega_d}, \quad \xi = \cos \omega$$

$$\frac{\int_{-\infty}^{\infty} \frac{dt}{dt}}{\int_{-\infty}^{\infty} \frac{dt}{dt}} = \frac{\pi - \omega}{\omega_d}, \quad \xi = \cos \omega$$

Mormalized overshoot: $M_p = \exp\left[\frac{\sigma \pi}{\omega_d}\right] = \exp\left[\frac{-f\pi}{\sqrt{1-f^2}}\right]$

M. (Yp.-Yss)

$$M_{p} = \left[\frac{Y_{p} - Y_{ss}}{Y_{ss}} \right]$$

$$\{->\emptyset=>\emptyset=>\emptyset=-\{\omega_n\to\emptyset\Rightarrow P_i=j\omega_d \text{ (Pure imaginary)}\}$$

Overshoot $M_p=e^{(\sigma\pi/\omega_d)}\to 1$ (100% OS)

Settling time:
$$t_s \approx \frac{4}{101} = \infty$$

Never settles!

Response oscillates infinitely between
$$\emptyset$$
 and $2G(\emptyset)$ with frequency $W_d = W_n \sqrt{1-\xi^2} = W_n$

"Undamped"

$$\{-1\} = \sigma = -\{\omega_n \rightarrow -\omega_n\}$$

Response does Not oscillate!

Overshoot:
$$M_P = e^{(rT)}\omega_d = -\omega_n T/\omega = \emptyset$$

No overshoot

$$\frac{\int_{S^{+}}^{S^{+}} crossing:}{t_{c}} = \frac{TT - cos^{-1} \Gamma}{\omega_{d}} = \frac{T\sqrt{2}}{\phi} = \infty$$

Settling: Ls & 6 here

Graphical Interpretation of {:

Lines of constant { Lie on <u>rays</u> in upper left quadrant of complex plane:

- => 1st and 2nd order step responses are
 "building blocks" by which we can Understand
 response of more Complex systems
- => each real pole introduces a new decaying exponential into transpent response.
- => each complex pole pair introduces a decaying oscillation into the transient
- => An arbitrary number of poles of different types
 will typically require numerical simulation to quantify
 yp, tc, tp,ts
- => However in some cases we can still accurately predict these features.

Suppose: $G(s) = \frac{K}{(s-p_i)(s^2+2\gamma\omega_n s + \omega_n^2)}$ with {<1 $= \frac{K}{(5-P_1)(5-P_2)(5-P_2)}$ For a unit step input u(t) = II(t) we Know $y_{ss} = G(0) = \frac{K}{-\omega_{n}^{2}P_{i}}$ But what can we say about Yp, tp, tc, ts? In general, Not much Unless either 1P, >10/Re [P] or |Re [P] >10/P,1

19,1>10/Kezpzz or /Kezpzz >10/pz/ i.e. if one of the modes is dominant.

Dominant modes revisited

When a single mode is dominant, we can approximate the features of the response using just that made

An arbitrarily complex system can be well approximated in this fashion.

Effect of zeros

Stepresponsed

$$G(s) = \frac{\beta_1 s + \beta_0}{s^2 + \alpha_1 s + \alpha_0}$$
 Zero at
$$Z_1 = -\beta_0/\beta_1$$

3 important effects:

- (1) "Input absorbing" property
- 2. Transient suppression
- 3. Transient amplification Yes

Depending on System

Note:

- => Zeros do not contribute new modes to The response.
- => Zeros do not affect stability?
- => Zeros do affect the coefficient of each mode in general Sol'n (change residues).
- => Hence zeros will affect the transport

 (and possibly steady-state) Parts of a

 step response.

For unit step response of stable system

$$\gamma_{ss}(t) = G(\phi)$$

Suppose
$$2_1 = -\beta_0/\beta_1 = \phi \implies \beta_0 = \phi$$

Zero at origin

$$G(s) = \frac{\beta_1 s}{5^2 + 4_1 s + 4_0}$$

Then
$$y_{ss}(t) = G(\emptyset) = \emptyset \iff Steady-State is zero$$

response contains only transient terms

In fact, y(t) is the impulse response of $G_1(s) = \frac{B_1}{5^2 + \alpha_1 s + \alpha_0}$

$$\frac{\left(\int_{1}^{s}(s)=1\right)}{5^{2}+2\left(1\right)}$$