Consider

$$\alpha = \int_0^1 h(x)dx$$

where

$$h(x) = 100 \cdot I_{(0,1/100]}(x) + 1 \cdot I_{(1/100,1)}(x).$$

- Implement Pseudocode for omc_integral(n):
 - Generate n iid samples

$$\{iid\ Y_i \sim U(0,1): i=1,2,\ldots,n\};$$

- Compute n X samples by

$${X_i = h(Y_i) : i = 1, 2, \dots, n};$$

- Take average of X_i 's
- Demonstrate convergence rate numerically by doing the following:
 - Fix a batch number m = 100;
 - For i in range(5, 10):
 - * run m times of omc_integral($n = 2^i$), store it into $\{\alpha_{ij} : j = 1, \dots m\}$.
 - * compute standard deviation (numpy.std) of $\{\alpha_{ij}: j=1,\ldots m\}$, save it to σ_i .
 - plot and find slope (scipy.stats.linregress) for the data

$$\{(i, -\log_2 \sigma_i) : i = 5, \dots, 10\}.$$

• Find its convergence rate by the following procedure: Compute RMSE (root MSE) for $\hat{\alpha}_n$ in terms of $Cn^{-\alpha}$. We say α as the convergence rate.