সৃষ্টি কলেজ অব টাঙ্গাইল

প্রয়োজনীয় সূত্র - যোগজীকরণ/অন্তরীকরণ

উচ্চতর গণিত ১ম পত্র অধ্যায় ৯+১০

1.	$\frac{d}{dx}(x^n) = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ where } n \neq -1$
2.	$\frac{d}{dx}(e^{mx}) = me^{mx}$	$\int e^{mx} dx = \frac{e^{mx}}{m} + c$
3.	$\frac{d}{dx}(a^x) = a^x lna$	$\int a^x dx = \frac{a^x}{\ln a} + c$
4.	$\frac{d}{dx}(lnx) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$
5.	$\frac{d}{dx}(\sin x) = \cos x$	$\int \cos x dx = \sin x + c$
6.	$\frac{d}{dx}(\cos x) = -\sin x$	$\int \sin x dx = -\cos x + c$
7.	$\frac{d}{dx}(tanx) = \sec^2 x$	$\int \sec^2 x \ dx = tanx + c$
8.	$\frac{d}{dx}(cotx) = -cosec^2x$	$\int cosec^2x \ dx = -cotx + c$
9.	$\frac{d}{dx}(secx) = secx \ tanx$	$\int secx \ tanx \ dx = secx + c$
10.	$\frac{d}{dx}(cosecx) = -cosecx \ cotx$	$\int cosecx \ cotx \ dx = -cosecx + c$
11	$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x + c$
12.		$\int -\frac{dx}{\sqrt{1-x^2}} = \cos^{-1}x + c$
13.	$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$
14.	$\frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$	$\int \frac{-1}{1=x^2} dx = \cot^{-1} x + c$
15.	$\frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$ $\frac{d}{dx}\sec^{-1}x = \frac{1}{x\sqrt{x^2-1}}$	$\int \frac{dx}{x\sqrt{x^2 - 1}} = \sec^{-1} x + c$
16.	$\frac{d}{dx}cosec^{-1}x = -\frac{1}{x\sqrt{x^2 - 1}}$	$\int \frac{-dx}{x\sqrt{x^2 - 1}} = cosec^{-1}x + c$
18.	$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right + c$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \left \frac{x - a}{x + a} \right + c$
19.	$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left x + \sqrt{x^2 - a^2}\right + c$	$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left x + \sqrt{x^2 + a^2}\right + c$
20.	$\int uvdx = u\int vdx$	$\int \left\{ \frac{d}{dx} u \int v dx \right\} dx$