COIDS COSSTERMX Социалистических Республик

Гогударственный комитет Совета Министров СССР во делам изобратаний и открытий

ВСЕСОЮЗНАЯ BESTONA MEA

(11) 583278

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

ИЗОБРЕТЕНИЯ

писани

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 30.08.74 (21)2057843/22-03

с присоединением заявки М

(23) Приоритет

(43) Опубликовано 05.12.77. Бюллетень №45 (53) УДК 622.24.

(45) Дата опубликования описания 25.12.77

(51) М. Кл.

E 21 B 9/26

.051.57 (088.8)

(72) Авторы изобретения Р. С. Аликин, Г. С. Баршай и М. Я. Гельфгат

(71) Заявитель

Всесоюзный ордена Трудового Красного Знамени научно-исследовательский институт буровой техники

(5.4) ВСТАВНОЙ ЛОПАСТНОЙ РАСШИРИТЕЛЬ

Изобретение относится к области бурения скважин, а именно, к устройствам для расширения скважин, используемым при турбинном бурении скважин без подъема бурильных труб ив поверхность.

Известен раздвижной расширитель, извлекаемый через трубы, содержащий корпус, шток с поршнем, расширяющие рабочие органы на подпружиненных лапах, шарнирно установленных в пазах корпуса [1].

Недостаток указанного раздвижного расширителя заключается в ненадежности работы изза сложности перевода расширяющих рабочих органов из транспортного в рабочее положение.

Наиболее близким по технической сущности н достигвеному результату является вставной. лопастной расширитель, содержащий корпус, шток с поршнем, подпружиненные лопасти, шарнирно установленные в каретках штока н размещенные в пазах корпуса [2].

Вставной расширитель работает следующим

Подпружиненные лопасти расширителя в 20 процессе работы, перемещаясь в продольных пазах корпуса, взанмодействуют с башмаком обсадной колонны, передающим осевую нагрузку и вращательный момент. Шарнирное соединение в нижней части лопасти со штоком рас-

ширителя позволяет увеличить ее рабочую и калибрующую поверхности.

Недостаток этого расширителя заключается в том, что для перевода лопастей и закрепления их в рабочем положении необходимо наличне дополнительной подвижной системы детвлей, что снижает надежность работы расширителя.

К тому же взаимодействие лопастей расширителя с башмаком обсадной колонны в процессе работы не позволяет использовать расширитель совместно с турбобуром.

Целью изобретения является повышение надежности работы расширителя.

Это достигается тем, что концевая часть каждой лопасти выполнена с заплечиками, в корпус — с соответствующими выступами в па-

На фиг. 1 изображен вставной лопастной расширитель в транспортном положении, продольный разрез; на фиг. 2 — сечение А—А фиг. 1; на фиг. 3 — вид Б фиг. 1; на фиг. 4 вставной лопастной расширитель в рабочем положении.

Вставной лопастной расширитель включает корпус 1 с направляющими выступами 2.9 продольных пазах 3 с опорной боковой поверхностью 4, опорной поверхностью 5, опорную втулку 6, шток 7 с поршнем 8 я каретками 9, в

которых на осях 10 установлены лопасти 11 с хвостовивами 12, заплечиками 13, опорным уступом 14 и пружиной 15, переводник 16 для соединения с валом 17 турбобура 18, переводиик 19 для соединения с пилотным долотом 20. Колониа труб 21 имеет башмак 22 с кони-

ческим уступом 23.

Вставной лопастной расширитель транспортируется и забою скавжины и на поверхность внутря моюны труб 21 со сложенными лопастния 11, которые финсируются в таком положений при лимоми, 15, размещенимх в лопастяя 11 ниже осей 10.

После спуска аставного лопастного расширителя; соединенного черев переводник 16 с валом 17 турбобура 18 и посадки на конический устун 23 башмака 22 колонны труб 21, корпус 1 расширителя центрируется внутри колонны труб 21 при помощи опорной втулки 6, расположенной между переводимное 16 м корпусом 1 расширителя и соединенной с инии резьбой, лопасти 11 переводятся в рабочее положение за счет перемещения потока 7 с-каретками 9 под действием промывочной жидкости, которая воздействует на порщень В. При перемещении лопастей 11 вверх заплечнии 13 хвостовиков 12, которые расположены в концевых частях лопастей 11, скользят по направляющим выступам 2 в продольных пазах 3 корпуса 1. Передача осевой нагрузки во время расширения скважины осуществляется через вал 18 турбобура 19 на опорные поверхности 5 продольных пазов 3 и опорные уступы 14 лопастей II, а передача. вращающего момента осуществляется опорными боковыми поверхностями 4 продольных пазов 3 корпуса 1 расширителя.

При переводе вставного лопастного расширителя в транспортное положение наружные поверхности хвостовнков 12 взаямодействуют с коническим уступом 23 башмака 22 колоннытруб 21, в результате чего лопасти 11 смещаются относительно корпуса 1 расширителя и, поворачиваясь на осях 10 занимают транспортное положение в позах 3 корпуса 1 расширителя.

В начале процесса бурения аращение от турбобура 18 перепается через вал 17, переводник 16, корпус 1 расширителя и переводник 19, соединенный резьбой с инжией частью корпуса 1 расширителя; на пилотное долото 20.

Предлагаемый вставной лопастной расширитель надежен в работе и позволяет использовать его при турбинием бурении скважин без водъема бурильных труб.

Формула изобретения

Вставной лоцастной расширятель, содержащий корпус, шток с поршнем, подпружиненные лопасти, шарнирно установленные в каретках штока и размещенные в пазах корпуса, отличающийся тем, что, с целью повышения надежности работы расширителя, концевая часть каждой лопасти выполиена с заплечиками, в корпус — с соответствующими им направляющими выступами в пазах.

Источники информации, принятые во внима-

ние при экспертизе:

1. Патент США № 2754088, кл. 175—290, 1956.

2. Патент США № 3661219, кл. 175—260, 1972.

Коррентор Л. Небола Подлясное

ЦНИИПИ Государственного номитета Совете Министров СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская яаб., д. 4/5

Филими ППП, «Патент», г. Ужгород, ул. Проективи, 4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.