Test 5.1: Magnetic Force

Which of the following statements is totally correct?

- (a) An electric charge in the presence of a non-zero magnetic field $\bf B$ experiences a magnetic force $\bf F_m$ acting on it, whether or not the chare is moving.
- (b) An electric charge in the presence of a non-zero magnetic field ${\bf B}$ experiences a magnetic force ${\bf F}_m$ acting on it so long as it is moving, regardless of its direction.
- (c) An electric charge in the presence of a non-zero magnetic field $\bf B$ experiences a magnetic force ${\bf F}_m$ acting on it so long as it is moving in a direction other than parallel to the direction of $\bf B$.
- (d) None of the above three statements is correct.

Test 5.2: Magnetic Force

An electron moving in the +y direction in the presence of a magnetic field **B** pointing in the +x direction will experience a magnetic force in what direction?

- (a) \mathbf{F}_{m} points along $-\hat{\mathbf{z}}$
- **(b)** \mathbf{F}_{m} points along $+\hat{\mathbf{z}}$
- (c) $\mathbf{F}_{\rm m} = 0$
- (d) \mathbf{F}_{m} points along $\hat{\mathbf{\theta}}$ direction

Test 5.3: Magnetic Moment

The magnetic moment of the loop shown in the figure is:

- (a) m = 0
- **(b)** $\mathbf{m} = -\hat{\mathbf{x}}0.69 + \hat{\mathbf{y}}0.4 \text{ (A} \cdot \text{m}^2)$
- (c) $\mathbf{m} = -\hat{\mathbf{x}}0.4 \hat{\mathbf{y}}0.69 \text{ (A} \cdot \text{m}^2)$
- (d) $\mathbf{m} = \hat{\mathbf{x}}0.69 \hat{\mathbf{y}}0.4 \text{ (A} \cdot \text{m}^2)$

Test 5.4: Magnetic Torque

What is the direction of the torque acting on the current loop?

- (a) T points in $+\hat{y}$ direction
- **(b)** T points in $-\hat{y}$ direction
- (c) T points in $+\hat{x}$ direction
- (d) T points in $-\hat{\mathbf{x}}$ direction

Test 5.5: Magnetic Force

Which statement is totally correct?

Two linear conductors attract each other with maximum magnetic force only if:

- (a) their currents point along orthogonal directions
- (b) their currents point along parallel directions
- (c) their currents point along anti-parallel directions
- (d) they carry ac currents.

Test 5.6: Magnetic Force

For the two infinitely long, parallel wires carrying currents in opposite directions, what is the magnetic flux density \mathbf{B} at point P?

(a)
$$\mathbf{B} = \hat{\mathbf{\phi}} \, 8 \, \frac{\mu_0}{\pi}$$

(b)
$$\mathbf{B} = \hat{\phi} 4.8 \frac{\mu_0}{\pi}$$

(c)
$$\mathbf{B} = -\hat{\mathbf{\phi}} 4.8 \frac{\mu_0}{\pi}$$

(d)
$$\mathbf{B} = -\hat{\phi} 9.6 \frac{\ddot{\mu}_0}{\pi}$$

Test 5.7: Magnetic Field

For the toroidal coil shown in the figure, which statement is totally true?

(a) $\mathbf{H} = 0$ only for r > b

- **(b)** $\mathbf{H} = 0$ only for r < a
- (c) $\mathbf{H} = 0$ only for a < r < b
- (d) $\mathbf{H} = 0$ for r < a and r > b

Test 5.8: Boundary Conditions

Given $\mathbf{H}_1 = \hat{\mathbf{x}}4 + \hat{\mathbf{z}}16$ (A/m) in medium 1, $\mu_1 = \mu_0$, and $\mu_2 = 8\mu_0$, determine \mathbf{H}_2 in medium 2. Neither medium is a perfect conductor or superconductor.

- (a) $\mathbf{H}_2 = (\hat{\mathbf{x}}4 + \hat{\mathbf{z}}2) \text{ (A/m)}$
- **(b)** $\mathbf{H}_2 = (\hat{\mathbf{x}}2 + \hat{\mathbf{z}}4) \text{ (A/m)}$
- (c) $\mathbf{H}_2 = (\hat{\mathbf{x}}4 + \hat{\mathbf{z}}8) \text{ (A/m)}$
- (d) $\mathbf{H}_2 = (\hat{\mathbf{x}}4 + \hat{\mathbf{z}}16) \text{ (A/m)}$

Test 5.9: LVDT

LVDT is an acronym for:

- (a) Large vehicle differential torque
- (b) Large vehicle differential transformer
- (c) Linear variable direct transformer
- (d) Linear variable differential transformer

Test 5.10: Solenoid

Consider two air-filled solenoids, both of identical radius a and $a \ll$ than the length of either solenoid. The two solenoids are characterized by:

	Solenoid 1	Solenoid 2
Current	$I_1 = 4 \text{ A}$	$I_2 = 2 \text{ A}$
# of turns		$N_2 = 45$
Length	$\ell_1 = 20 \text{ cm}$	$\ell_2 = 15 \text{ cm}$

Which solenoid generates a stronger magnetic field inside the solenoid?

- (a) solenoid 1
- **(b)** solenoid 2
- (c) Both solenoids generate the same magnetic field.
- (d) Cannot compute the magnetic fields without specifying the value of the radius a.

Test 5.11: Coaxial Line

The primary dimensions of a coaxial line are its length l and the radii of its inner and outer conductors, a and b, respectively. If the inductance of a coax with b/a = 2 is $L_1 = 500$ nH, what would the new inductance L_2 be if b/a is changed to 4, while keeping all other properties the same?

- (a) $L_2 = 250 \text{ nH}$
- **(b)** $L_2 = 1000 \text{ nH}$
- (c) $L_2 = 366 \text{ nH}$
- (d) $L_2 = 732 \text{ nH}$

Test 5.12: Boundary Conditions

The plane boundary defined by z=0 separates air from a block of iron. If $\mathbf{B}_1 = \hat{\mathbf{x}}2 - \hat{\mathbf{y}}3 + \hat{\mathbf{z}}8$ in air $(z \ge 0)$, find \mathbf{B}_2 in iron $(z \le 0)$, given that $\mu = 5000\mu_0$ for iron.

- (a) $\mathbf{B}_2 = \hat{\mathbf{x}} 10000 \hat{\mathbf{y}} 15000 + \hat{\mathbf{z}} 8 \text{ (wb/m}^2)$
- **(b)** $\mathbf{B}_2 = \hat{\mathbf{x}}2 \hat{\mathbf{y}}3 + \hat{\mathbf{z}}40000 \text{ (wb/m}^2)$
- (c) $\mathbf{B}_2 = \hat{\mathbf{x}}0.0004 \hat{\mathbf{y}}0.0006 + \hat{\mathbf{z}}8 \text{ (wb/m}^2)$
- (d) $\mathbf{B}_2 = \hat{\mathbf{x}}2 \hat{\mathbf{y}}3 + \hat{\mathbf{z}}0.0016 \text{ (wb/m}^2)$

Test 5.13: Magnetic Hysteresis

Which one of the following statements is correct?

Magnetic hysteresis refers to when certain materials:

- (a) become uncontrollable (hysteric) under the influence of a magnetic field.
- (b) exhibit a hysteresis curve relating **B** to **H**.
- (c) exhibit magnetic breakdown, similar to voltage breakdown.
- (d) are permanent magnets.

Test 5.14: Proximity Sensor

Select the most correct answer. An eddy-current proximity sensor uses coils to sense:

- (a) nearby magnetic fields
- (b) nearby current sources
- (c) nearby conductors
- (d) All of the above.

Test 5.15: Magnetic Energy

An imaginary circular tube is situated in the x-y plane and centered at the origin as shown in the figure. The tube has a circular cross-section of radius a = 2 cm and b = 1 m. How much magnetic energy is contained within the volume of the tube due to the infinitely long current-carrying conductor?

- (a) $W_{\rm m} = 2\mu_0 \times 10^{-2} \text{ (J)}$ (b) $W_{\rm m} = 16\mu_0 \times 10^{-6} \text{ (J)}$ (c) $W_{\rm m} = 4\mu_0 \times 10^{-4} \text{ (J)}$ (d) $W_{\rm m} = 4\mu_0 \times 10^{-2} \text{ (J)}$