Министерство образования Республики Беларусь УО «Полоцкий государственный университет»

Факультет информационных технологий Кафедра технологий программирования

Методы численного анализа Лабораторная работа №4 На тему: «Метод редукции, метод стрельбы для решения краевой задачи ОДУ»

Название: «Метод редукции, метод стрельбы для решения краевой задачи обыкновенных дифференциальных уравнений».

Цель работы: Изучить основные методы для нахождения решения краевой задачи обыкновенных дифференциальных уравнений.

Теоретическая часть:

Метод редукции

Пусть на отрезке [a,b] задано линейное ОДУ n-го порядка с непрерывными коэффициентами $p_i(x)$ i=0,1,2,...,n и функцией правой части f(x):

$$p_0(x)u^{(n)}(x) + p_1(x)u^{(n-1)}(x) + p_2(x)u^{(n-2)}(x) + \dots + p_n(x)u(x) = f(x)$$
 (2)

При этом $p_0(x) > 0$ для $x \in [a,b]$.

Кроме этого на отрезке $x \in [a,b]$ заданы граничные условия вида:

$$\sum_{k=0}^{n-1} \alpha_{ik} u^{(k)}(a) + \sum_{k=0}^{n-1} \beta_{ik} u^{(k)}(b) = \gamma_i \qquad i = 1, 2, ..., n \quad (3)$$

Требуется найти решение поставленной краевой задачи (2)-(3) на отрезке [a,b] <u>методом</u> <u>редукции</u>. Суть метода состоит в том, *чтобы поиск решения свести к решению задач Коши*.

Известно, что искомое решение задачи (2)- (3) можно представить в виде линейной комбинации: $u(x) \approx y(x) = Y0(x) + \sum_{i=1}^{n} c_i Yi(x) \tag{4} , где Y0 - является частным решением$

неоднородного ДУ (2), а Yi ,i=1,2,...,n- линейно независимые решения однородного ДУ $\sum_{i=0}^n p_i(x) u^{(n-i)}(x) = 0\,,\quad c_i\,\text{- произвольные константы}.$

Метод редукции к задачам Коши состоит из следующих этапов:

- 1. На отрезке поиска решения [a,b] любым известным методом находим численные решения Yi ,i=0,1,2,...,n.
 - 2. Используя общий вид решения (4) и краевые условия (3), определяем $c_1, c_2, ..., c_n$.
 - 3. Вычисляем по формуле (4) искомое решение задачи (2)-(3).

Рассмотрим метод *редукции для двухточечной краевой задачи* на основе обыкновенного дифференциального уравнения второго порядка.

$$u''(x) + p(x)u'(x) + q(x)u(x) = f(x) x \in [a,b] (8)$$

$$\alpha_1 u(a) + \beta_1 u'(a) = \gamma_1 \tag{9}$$

$$\alpha_2 u(b) + \beta_2 u'(b) = \gamma_2 \tag{10}$$

где p(x),q(x),f(x) — известные функции, определенные на отрезке поиска решения, а параметры $\alpha_1,\alpha_2,\beta_1,\beta_2,\gamma_1,\gamma_2$ имеют конкретное числовое значение, причем выполняется условие $\alpha_i^2+\beta_i^2>0, i=1,2$.

Ищем общее решение в виде: $u(x) \approx y(x) = Y0(x) + c1Y1(x) + c2Y2(x)$ (11)

Далее необходимо решить три задачи Коши (12)-(14):

$$\begin{cases} Y0''(x) + p(x)Y0'(x) + q(x)Y0(x) = f(x) & x \in [a,b] \\ Y0(a) = 0 & Y1''(x) + p(x)Y1'(x) + q(x)Y1(x) = 0 & x \in [a,b] \\ Y1(a) = 1 & Y1'(a) = 0 \end{cases}$$

$$\begin{cases} Y2''(x) + p(x)Y2'(x) + q(x)Y2(x) = 0 & x \in [a,b] \\ Y2(a) = 0 \\ Y2'(a) = 1 \end{cases}$$

Решив эти системы (12)-(14) численным методом, получим в узлах выбранной сетки значения функций *Y0,Y1,Y2*. Подставим эти найденные значения в краевые условия:

$$\begin{cases} \alpha_1 [Y0(a) + c1Y1(a) + c2Y2(a)] + \beta_1 [Y0'(a) + c1Y1'(a) + c2Y2'(a)] = \gamma_1 \\ \alpha_2 [Y0(b) + c1Y1(b) + c2Y2(b)] + \beta_2 [Y0'(b) + c1Y1'(b) + c2Y2'(b)] = \gamma_2 \end{cases}$$
(15)

Учтем из (12)-(14), что Y0(a)=0, Y0'(a)=0, Y1(a)=1, Y1'(a)=0, Y2(a)=0, Y2'(a)=1 и

получаем систему:
$$\begin{cases} \alpha_1 c1 + \beta_1 c2 = \gamma_1 \\ \alpha_2 \big[Y0(b) + c1Y1(b) + c2Y2(b) \big] + \beta_2 \big[Y0'(b) + c1Y1'(b) + c2Y2'(b) \big] = \gamma_2 \end{cases}$$
 (16)

Из системы (16) найдем значения коэффициентов c1, c2 и подставим их в соотношение (11), на основании которого можем найти искомое решение в любой точке отрезка поиска решения.

<u>Пример</u>. Методом редукции найти решение следующей граничной задачи:

$$u''(x) + (x+1)u'(x) - 2u(x) = 2 x \in [0,1]$$

$$u(0) - u'(0) = -1$$

$$u(1) = 4$$

Решение найти на отрезке с шагом 0.1. Для решения вспомогательных задач Коши воспользоваться методом Эйлера с шагом 0.01.

Приближенное решение ищем в виде $u(x) \approx y(x) = Y0(x) + c1Y1(x) + c2Y2(x)$.

Для поиска коэффициентов этого разложения построим три задачи Коши:

$$\begin{cases} Y0''(x) + (x+1)Y0'(x) - 2Y0(x) = 2 \\ Y0(0) = 0 \\ Y0'(0) = 0 \end{cases} \begin{cases} Y1''(x) + (x+1)Y1'(x) - 2Y1(x) = 0 \\ Y1(0) = 1 \\ Y1'(0) = 0 \end{cases} \begin{cases} Y2''(x) + (x+1)Y2'(x) - 2Y2(x) = 0 \\ Y2(0) = 0 \\ Y2'(0) = 1 \end{cases}$$

Каждая из этих задач основана на уравнении второго порядка, следовательно, понижением порядка уравнений получаем системы дифференциальных уравнений вида:

$$\begin{cases} Y0'(x) = S0(x) \\ S0'(x) = -(x+1)S0(x) + 2Y0(x) + 2 \\ Y0(0) = 0 \\ S0(0) = 0 \end{cases} \qquad \begin{cases} Y1'(x) = S1(x) \\ S1'(x) = -(x+1)S1(x) + 2Y1(x) \\ Y1(0) = 1 \\ S1(0) = 0 \end{cases} \qquad \begin{cases} Y2'(x) = S2(x) \\ S2'(x) = -(x+1)S2(x) + 2Y2(x) \\ Y2(0) = 0 \\ S2(0) = 1 \end{cases}$$

Решаем эти системы методом Эйлера с шагом 0.01, все вычисления занесем в таблицу.

Решение первой задачи Коши осуществим средствами MathCad и одновременно сформируем столбцы сводной таблицы:

$$nz := \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad D(x, u) := \begin{bmatrix} u_1 \\ -(x+1) \cdot u_1 + 2u_0 + 2 \end{bmatrix}$$

$$Z := \text{rkfixed}(nz, 0, 1, 10, D)$$

$$X := Z^{\langle 0 \rangle} \qquad S0 := Z^{\langle 2 \rangle} \qquad Y0 := Z^{\langle 1 \rangle}$$

Аналогично решаем вторую задачу Коши:

$$nz \coloneqq \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad D(x,u) \coloneqq \begin{bmatrix} u_1 \\ -(x+1) \cdot u_1 + 2u_0 \end{bmatrix} \qquad \qquad Z \coloneqq \text{rkfixed}(nz,0,1,10,D)$$

И формируем столбцы сводной таблицы: $Y1 := Z^{\langle 1 \rangle}$ $S1 := Z^{\langle 2 \rangle}$.

Решение третьей задачи Коши:

$$nz := \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \qquad D(x,u) := \begin{bmatrix} u_1 \\ -(x+1) \cdot u_1 + 2u_0 \end{bmatrix} \qquad \qquad Z := rkfixed(nz,0,1,10,D)$$

Формируем столбцы сводной таблицы: $Y2 \coloneqq Z^{\langle 1 \rangle}$ $S2 \coloneqq Z^{\langle 2 \rangle}$.

Оформляем таблицу:

$$M^{\left\langle 0\right\rangle} \coloneqq X \hspace{1cm} M^{\left\langle 1\right\rangle} \coloneqq Y0 \hspace{1cm} M^{\left\langle 2\right\rangle} \coloneqq S0 \hspace{1cm} M^{\left\langle 3\right\rangle} \coloneqq Y1 \hspace{1cm} M^{\left\langle 4\right\rangle} \coloneqq S1$$

$$M^{\langle 5 \rangle} := Y2$$
 $M^{\langle 6 \rangle} := S2$

	X	Y0	S0	Y1	S1	Y2	S2
0	0	0	0	1	0	0	1
1	0,1	0.00967	0.19	1.01	0.19	0.095	0.91
2	0.2	0.037	0.363	1.037	0.363	0.183	0.837
3	0.3	0.082	0.519	1.082	0.519	0.263	0.781
4	0.4	0.141	0.661	1.141	0.661	0.339	0.739
5	0.5	0.213	0.791	1.213	0.791	0.412	0.709
6	0.6	0.299	0.91	1.299	0.91	0.481	0.69
7	0.7	0.395	1.02	1.395	1.02	0.55	0.68
8	0.8	0.502	1.122	1.502	1.122	0.618	0.678
9	0.9	0.619	1.217	1.619	1.217	0.686	0.683
10	1.0	0.745	1.307	1.745	1.307	0.755	0.693

Составим систему уравнений относительно параметров с1 и с2, учитывая, что

$$\alpha_1 = 1 \qquad \alpha_2 = 1 \qquad \beta_1 = -1 \quad \beta_2 = 0 \quad \gamma_1 = -1 \quad \gamma_2 = 4 \text{ . Имеем: } \begin{cases} c1 - c2 = -1 \\ 0.745 + 1.745c1 + 0.755c2 = 4 \end{cases}$$

Решаем систему и получаем c1=1, c2=2.

Строим приближенное решение исходной задачи $u(x) \approx y(x) = Y0(x) + Y1(x) + 2Y2(x)$.

Вычисляем значение приближенного решения во всех точках сетки и строим график:

	X	Y
0	0	1
1	0,1	1.3
2	0.2	1.603
3	0.3	1.908
4	0.4	2.219
5	0.5	2.537
6	0.6	2.861
7	0.7	3.195
8	0.8	3.538
9	0.9	3.891
10	1.0	4.255

Т.к. мы применяли метод Эйлера, получили достаточно большую погрешность:

$$\epsilon \coloneqq \frac{4.255 - 4.0}{4}$$
 $\epsilon = 0.064$ или 6.4%

Метод стрельбы

Рассмотрим метод стрельбы для двухточечной краевой задачи на основе ОДУ-2.

$$u''(x) + p(x)u'(x) + q(x)u(x) = f(x) x \in [a,b] (1)$$

$$\alpha_1 u(a) + \beta_1 u'(a) = \gamma_1 \tag{2}$$

$$\alpha_2 u(b) + \beta_2 u'(b) = \gamma_2 \tag{3}$$

где p(x),q(x),f(x) — известные функции, определенные на отрезке поиска решения, а параметры $\alpha_1,\alpha_2,\beta_1,\beta_2,\gamma_1,\gamma_2$ имеют конкретное числовое значение, причем выполняется условие $\alpha_i^2+\beta_i^2>0, i=1,2$.

Суть этого метода заключается <u>в сведении решения краевой задачи к многократному</u> решению задач Коши. Будем предполагать, что отрезок поиска решения задачи [0,1]. Известно, что любой отрезок [a,b] можно заменить отрезком [0,1], путем ввода замены переменной вида: $t = \frac{x-a}{b-a}$ (4). <u>Граничные условия</u> на концах рассматриваемого отрезка также примем в простейшем виде, т.е. $u(0) \sim y(0) = Y0$, $u(1) \sim y(1) = Y1$ (5).

Имеем задачу (1)-(3). Доказывается, что в случае, когда для двух линейно независимых решений Y0 и Y1 этой задачи одно граничное условие выполняется, например $\alpha_1 u(a) + \beta_1 u'(a) = \gamma_1$, то общее решение задачи (1)-(3) будет теперь зависеть от одного произвольного параметра: $u(x) \sim Y(x) = Y0(x) + CY1(x)$ (8)

<u>Параметр С</u> находим из второго граничного условия $\alpha_2 u(b) + \beta_2 u'(b) = \gamma_2$. Получим:

$$C = \frac{\gamma_2 - \alpha_2 Y 0(b) - \beta_2 Y 0'(b)}{\alpha_2 Y 1(b) + \beta_2 Y 1'(b)} \tag{9}$$

Для реализации такого алгоритма выбираем на левом конце одно из начальных условий, вообще говоря, произвольно. *Например*, если $\alpha_1 \neq 0$, то принимаем $y'(a) = \varphi 1$ тогда из граничного условия (2) находим $y(a) = \frac{\gamma_1 - \beta_1 \varphi 1}{\alpha_1}$ и решаем следующую задачу Коши, решение

которой обозначаем как Y0:
$$\begin{cases} Y0''(x)+p(x)Y0'(x)+q(x)Y0(x)=f(x) & x\in[a,b]\\ Y0(a)=\frac{\gamma_1-\beta_1\varphi 1}{\alpha_1}\\ Y0'(a)=\varphi 1 \end{cases}$$

Затем выбираем другое значение $y'(a) = \varphi 2$ так, чтобы $\varphi 2 \neq \varphi 1$ (т.е. решения при этих $\varphi 1, \varphi 2$ должны быть линейно независимы).

Решаем следующую задачу Коши:
$$\begin{cases} Y1''(x) + p(x)Y1'(x) + q(x)Y1(x) = f(x) & x \in [a,b] \\ Y1(a) = \frac{\gamma_1 - \beta_1 \varphi 2}{\alpha_1} \\ Y1'(a) = \varphi 2 \end{cases}$$

Используя результаты решения этих задач Коши на правом конце отрезка, т.е в точке x=b, вычислим параметр С как соотношение (9) и по формуле (8) найдем решение исходной граничной задачи.

Пример. Методом стрельбы найти решение граничной задачи. Решение найти на отрезке с шагом 0.1. Для решения вспомогательных задач Коши воспользоваться методом Эйлера с шагом 0.01.

$$u''(x) + (x+1)u'(x) - 2u(x) = 2 x \in [0,1]$$

$$u(0) - u'(0) = -1$$

$$u(1) = 4$$

Приближенное решение ищем в виде $u(x) \approx y(x) = Y0(x) + CY1(x)$. Для поиска коэффициента этого разложения построим две задачи Коши.

$$\begin{cases} Y0''(x) + (x+1)Y0'(x) - 2Y0(x) = 2 \\ Y0(0) - Y0'(0) = -1 \end{cases} \begin{cases} Y1''(x) + (x+1)Y1'(x) - 2Y1(x) = 2 \\ Y1(0) - Y1'(0) = -1 \end{cases}$$

Каждая из этих задач основана на уравнении второго порядка, следовательно, понижением порядка уравнений получаем системы дифференциальных уравнений вида. Принимаем Y0(0)=1, тогда из граничного условия имеем 1-Y0'(0)=-1, т.е. Y0'(0)=2. Аналогично для второй задачи принимаем Y1(0)=-2, тогда Y1'(0)=-1. Имеем две системы уравнений:

$$\begin{cases} Y0'(x) = S0(x) \\ S0'(x) = -(x+1)S0(x) + 2Y0(x) + 2 \end{cases}$$

$$\begin{cases} Y1'(x) = S1(x) \\ S1'(x) = -(x+1)S1(x) + 2Y1(x) + 2 \end{cases}$$

$$\begin{cases} Y1'(x) = S1(x) \\ S1'(x) = -(x+1)S1(x) + 2Y1(x) + 2 \end{cases}$$

$$\begin{cases} Y1(x) = S1(x) \\ S1(x) = -(x+1)S1(x) + 2Y1(x) + 2 \end{cases}$$

$$\begin{cases} Y1(x) = S1(x) \\ S1(x) = -(x+1)S1(x) + 2Y1(x) + 2 \end{cases}$$

$$\begin{cases} Y1(x) = S1(x) \\ S1(x) = -(x+1)S1(x) + 2Y1(x) + 2 \end{cases}$$

$$\begin{cases} Y1(x) = S1(x) \\ S1(x) = -(x+1)S1(x) + 2Y1(x) + 2 \end{cases}$$

$$\begin{cases} Y1(x) = S1(x) \\ S1(x) = -(x+1)S1(x) + 2Y1(x) + 2 \end{cases}$$

Решение этих систем методом Эйлера приведено в таблице:

		РЕШЕНИЕ			
X	Y0	S0	Y1	S1	y
0	1	2	-2	-1	1,0051
0,1	1,209	2,1999	-2,1045	-1,1	1,214633
0,2	1,438	2,3996	-2,219	-1,1998	1,444217
0,3	1,6869	2,5992	-2,3436	-1,2996	1,693752
0,4	1,9558	2,7986	-2,4779	-1,3993	1,963337
0,5	2,2446	2,9979	-2,6223	-1,499	2,252874
0,6	2,5634	3,1971	-2,7767	-1,5986	2,572478
0,7	2,8821	3,3962	-2,941	-1,6981	2,891999
0,8	3,2307	3,5953	-3,1153	-1,7976	3,241488
0,9	3,5991	3,7942	-3,2996	-18971	3,610828
1	3,9875	3,9931	-3,4938	-1,9966	4,000218

Используя табличные значения S0(x), Y0'(x), S1(x), Y1'(x) найдем значение параметра C:

$$C = \frac{\gamma_2 - \alpha_2 Y 0(b) - \beta_2 Y 0'(b)}{\alpha_2 Y 1(b) + \beta_2 Y 1'(b)} = \frac{4 - 1 \cdot 3.9875 - 0 \cdot 3.9931}{1 \cdot (-3.4938) + 0 \cdot (-1.9966)} = -0.0017$$

Затем вычисляем решение исходной граничной задачи. Построим график и сравним решение с методом редукции:

Рисунок 1 – Графики функций решений по методу стрельбы и методу редукции

Для решения двухточечной краевой задачи на основе дифференциального уравнения второго порядка в пакете MathCad имеются функции *Odesolve*(*x*,b) и *sbval*(v,a,b,D,load,score).

Контрольные вопросы:

- 1. Суть метода редукции?
- 2. Суть метода стрельбы?
- 3. Сформулируйте этапы сведения метода редукции к задачам Коши.
- 4. Какие функции в пакете MathCad имеются для решения двухточечной краевой задачи на основе ОДУ-2?

Содержание задания:

Найти решения граничных задач с шагом h=0.1 на отрезке [a,b]:

- 1. используя метод редукции;
- 2. используя метод стрельбы.

Для решения задач Коши использовать метод Рунге-Кутта четвертого порядка с шагом h=0.1. Оценить погрешность полученного решения.

Варианты заданий:

Вариант	Задание
1	$\begin{cases} y'' + 2y' - \frac{4}{x}y = 1\\ y'(0.5) = 1.5\\ y(1) + y'(1) = 4 \end{cases} a = 0.5 b = 1$
2	$\begin{cases} y'' - \frac{6x}{3x^2 - 0.5} y' - \frac{1}{x} y = 0.5 - x^2 \\ y'(0.5) = 0.25 \\ 2y(1) + y'(1) = 3.5 \end{cases}$ $a = 0.5 \ b = 1$
3	$\begin{cases} y'' + \frac{1}{x}y' - \frac{1}{x^2}y = -\frac{2}{x^3} \\ y(0.5) = -2\ln(2) & a = 0.5 \ b = 1 \\ y(1) = 0 & \end{cases}$

4	$\begin{cases} y'' + \frac{1}{x}y' = \frac{1}{x} \\ y'(0.5) = 3 \\ y(1) = 1 \end{cases} a = 0.5 b = 1$
5	$\begin{cases} y'' + 2xy' - y = 2(x^2 + 1)\cos(x) \\ y(0) = 0 \\ y(0.5) = 0.5\sin(0.5) \end{cases}$ $a = 0 \ b = 0.5$
6	$\begin{cases} y'' + \frac{1}{x}y' - 2y = -2x^2 \\ y'(0.5) = 1 \\ y(1) + y'(1) = 5 \end{cases} $ $a = 0.5 \ b = 1$
7	$\begin{cases} y'' - 2tg(x)y' = -2tg(x) \\ y(0) - 3.5y'(0) = -7 \\ y(1) = 1 + tg(1) \end{cases} a = 0 b = 1$
8	$\begin{cases} y'' - \frac{1}{x+1}y' - 2y = -(x+1)^2 \\ y'(0) = 1 \\ 2y(0.5) + 1.5y'(0.5) = 2 \cdot 1.5^2 \end{cases} $ $a = 0$ $b = 0.5$
9	$\begin{cases} y'' - \frac{1}{2(x+1)}y' = -\frac{1}{\sqrt{(x+1)^3}} \\ y(0) - y'(0) = 1 \\ 0.5y(1) + 2y'(1) = 2 \cdot \sqrt{2} \end{cases} a = 0 b = 1$
10	$\begin{cases} y'' - x^2 y' - \frac{2}{x^2} y = 1\\ y(0.5) - y'(0.5) = 6\\ y(1) = 1 \end{cases} a = 0.5 b = 1$

$$\begin{cases} y'' + \frac{2}{x}y' - xy = -1 \\ y'(0.5) = -4 \\ y(1) = 1 \end{cases} \qquad a = 0.5 \ b = 1 \end{cases}$$

$$12 \qquad \begin{cases} y'' + \frac{1}{x}y' = 0 \\ y'(0.5) = 2 \\ y(1) + y'(1) = 1 \end{cases} \qquad a = 0.5 \ b = 1 \end{cases}$$

$$13 \qquad \begin{cases} y'' + y' - \frac{1}{x}y = 2x + 4 \\ y(0) = 0 \\ y(1) = 3 \end{cases} \qquad a = 0 \ b = 1 \end{cases}$$

$$14 \qquad \begin{cases} y'' - \frac{1}{x}y' = \frac{-2}{x^2} \\ y'(0.5) = 2 \\ y'(1) = 1 \end{cases} \qquad a = 0.5 \ b = 1 \end{cases}$$

$$15 \qquad \begin{cases} y'' + y' - \frac{6x}{2x^2 + 1}y = 12x + 1 \\ y'(0) = 1 \\ y(1) = 3 \end{cases} \qquad a = 0 \ b = 1 \end{cases}$$

Порядок выполнения работы:

- 1. Ознакомиться с теоретической частью по данной теме.
- 2. Ответить на контрольные вопросы к лабораторной работе.
- 3. Получить вариант задания у преподавателя.
- 4. Выполнить индивидуальное задание в соответствии с вариантом задания.
- 5. Составить отчёт о проделанной работе.
- 6. Показать программу и отчёт преподавателю.

Содержание отчёта:

- 1. Титульный лист (идентификация).
- 2. Тема и цель работы.
- 3. Краткие теоретические сведения.
- 4. Вариант и условие задания.
- 5. Анализ задания (алгоритм выполнения задания).
- 6. Основные и промежуточные результаты по каждому пункту хода выполнения работы (листинг программного кода, реализующий данный алгоритм; скриншот результатов выполнения программы; скриншоты результатов работы в математическом пакете Mathcad).
- 7. Выводы о проделанной работе.

Защита лабораторной работы проводится индивидуально. Для сдачи работы студент должен предъявить программу, отчет, ответить на контрольные вопросы, дать пояснения по выполненной работе.

Дополнительное задание:

Найти решения граничных задач с шагом h=0.1 на отрезке [a,b]:

- 1. используя метод редукции;
- 2. используя метод стрельбы.

Оценить погрешность полученного решения.

Вариант	Задание
1	$\begin{cases} y'' + \frac{1}{x}y' - 2y = -2x^2 \\ y'(0.5) = 1 \\ y(1) = 3 \end{cases} \qquad a = 0.5 b = 1$
2	$\begin{cases} y'' - \frac{2}{x}y' - \frac{4}{x^2 + 2}y = -4\\ y(0) = 0\\ y'(1) = 8 \end{cases} \qquad a = 0 b = 1$

Ответы для метода редукции и стрельбы:

Вариант	Ответ
1	$y(x) = x^2 + 0.5x$
2	$y(x) = x(x^2 - 0.5)$
3	$y(x) = \frac{\ln(x)}{x}$ $y(x) = \ln(x) + x$
4	$y(x) = \ln(x) + x$
5	$y(x) = x\sin(x)$
6	$y(x) = x^2 + 2$
7	y(x) = x + tg(x)
8	$y(x) = \frac{(x+1)^2}{2}$ $y(x) = 2\sqrt{1+x}$
9	$y(x) = 2\sqrt{1+x}$
10	$y(x) = \frac{1}{x}$
11	$y(x) = \frac{1}{x}$
12	$y(x) = \ln(x)$
13	$y(x) = 2x^2 + x$
14	$y(x) = \ln(x)$
15	$y(x) = (2x^2 + 1)x$

Вариант	Ответы для дополнительного задания
1	$y(x) = x^2 + 2$
2	$y(x) = (x^2 + 2)x^2$