Aplicação de modelos multiestados para análise de dados de sobrevivência

Trabalho de Conclusão de Curso em Estatística

Henrique Aparecido Laureano Emerson Rigoni Profa. Dra. Suely Ruiz Giolo (Orientadora)

> Universidade Federal do Paraná UFPR

23 de agosto de 2016

Roteiro

- 1 Conceitos básicos e metodologia usual
- 2 Representações de um modelo multiestado
- Modelos multiestados: conceitos básicos
- 4 Inferências disponíveis
- Qualidade do ajuste
- 6 Aplicação I
- 7 Aplicação II
- 8 Considerações finais

Conceitos básicos

Análise de sobrevivência ou de confiabilidade:

Variável resposta é o tempo até a ocorrência do evento de interesse

Censura:

Não ocorrência do evento de interesse durante o período de acompanhamento ou ocorrência por causa distinta das envolvidas no estudo

Metodologia usual

Estimador de Kaplan-Meier ¹ e Modelo de Cox²:

Consideram a existência de apenas um tipo de desfecho

Aplicação limitada quando se quer estudar as causas do evento de interesse ou mais de um evento de interesse

¹Kaplan EL, Meier P. (1958). Nonparametric estimation from incomplete observations. *Journal of the American Statistical Association*, 53(282):457-481

²Cox DR. (1972). Regression models and life tables. *Journal of the Royal Statistical Association, Series B*, 34(2):187-220

Representação usual da situação de um dado de sobrevivência:

Multiestado:

Riscos competitivos:

Modelos multiestados: conceitos básicos

Modelo usual com vetor de covariáveis Z em que é assumido efeito comum a todas as transições:

$$q_{rs}(\mathbf{Z}) = q_{rs}^0 \exp(\boldsymbol{\beta}^\top \mathbf{Z}),$$

em que q_{rs}^0 é a intensidade de transição ou taxa de falha de base para a transição do estado r para o estado s,

$$q_{rs}(t) = \lim_{\delta t \to 0} \frac{P(X(t + \delta t) = s | X(t) = r)}{\delta t}.$$

Um modelo multiestado pode ser:

Paramétrico

- Não markoviano
 Semimarkoviano
 Markoviano
 - Modelos markovianos são fundamentados no pressuposto markoviano de que uma futura transição depende apenas do estado atual

Um modelo multiestado markoviano pode ser de três tipos:

- - Aplicação de modelos multiestados

Modelo paramétrico (package msm³ do R⁴):

Foco da implementação: dados de sobrevivência intervalar

Distribuição de probabilidade assumida para o tempo médio de permanênia em cada estado transiente r, comumente exponencial

Ele pode ser de dois tipos:

Henrique Laureano et al. (UFPR)

Tempo homogêneo: intensidades de transição constantes ao longo do tempo (independentes de t)

Tempo não homogêneo: intensidades de transição variáveis ao longo do tempo, constantes sob segmentos

Aplicação de modelos multiestados

³ Jackson CH. (2011). Multi-State Models for Panel Data: The msm Package for R. *Journal of Statistical Software*, 38(8):1-29. http://www.jstatsoft.org/v38/i08/

⁴R Core Team (2016). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Modelo (não e) semiparamétrico (package mstate ^{5 6 7} do R):

Foco da implementação: dados de sobrevivência não intervalar

Modelo de Cox estratificado por transição. Na ausência de covariáveis temos um modelo não paramétrico

Além do modelo usual, permite a especificação de modelos mais elaborados:

- Diferentes efeitos das covariáveis em cada transição
- Intensidades de transição proporcionais
- Covariáveis que aparecem apenas em algumas transições

10 / 32

 $^{^5}$ de Wreede LC, Fiocco M, Putter H. (2011). mstate: An R Package for the Analysis of Competing Risks and Multi-State Models. *Journal of Statistical Software*, 38(7):1-30. http://www.jstatsoft.org/v38/i07/

⁶de Wreede LC, Fiocco M, Putter H. (2010). The mstate Package for Estimation and Prediction in Non- and Semi-Parametric Multi-State and Competing Risks Models. *Computer Methods and Programs in Biomedicine*, (99):261-274

⁷Putter H, Fiocco M, Geskus RB. (2007). Tutorial in Biostatistics: Competing Risks and Multi-State Models. *Statistics in Medicine*, 26:2389-2340

Inferências disponíveis

Diferenciais em relação ao estimador de Kaplan-Meier e ao modelo de Cox:

Probabilidades de transição e de sobrevivência:

Modelo paramétrico: Equações diferenciais de Kolmogorov ⁸ (KFE, *Kolmogorov Forward Equations*)

Modelo (não e) semiparamétrico: estimador similar ao de Aalen-Johansen

Tempos médios esperados:

Modelo paramétrico: de permanência em estados, através das intensidades de transição

Modelo (não e) semiparamétrico: para transição entre estados, através das probabilidades de transição

 $^{^8 \}mbox{Cox}$ DR, Miller HD. (1965). The theory of stochastic processes. Chapman & Hall

Qualidade do ajuste

Qualidade do ajuste

Modelo paramétrico:

Métodos formais (estatística de teste e um valor p): em geral de difícil obtenção, ou assintóticos, ou instáveis, o que os tornam viáveis em poucas situações

Métodos informais: comparação das curvas de sobrevivência; contagens de prevalência

Modelo (não e) semiparamétrico:

Verificação usual: análise gráfica dos resíduos e verificação da suposição de taxas de falha proporcionais (na presença de covariáveis)

Resíduos:

Cox-Snell

Martingal

Deviance

Schoenfeld

Aplicação I

Follic ⁹ ¹⁰: 541 pacientes com linfoma de células foliculares no *Princess* Margaret Hospital de Toronto

CR: pacientes com remissão

Henrique Laureano et al. (UFPR)

L: recidiva local

D: recidiva distante ⁹Pintilie, M. (2006). *Competing risks: apractical perspective*. John Wiley & Sons

Aplicação de modelos multiestados

NR: pacientes sem remissão B: recidiva local e distante

¹⁰https://www.jstatsoft.org/article/view/v038i02

Follic

Entre os pacientes que não entraram em óbito, cerca de 75% tiveram um tempo de primeira falha (recidiva ou censura) menor ou igual a quinze anos

Entre os pacientes que entraram em óbito, cerca de 90% tiveram um tempo de primeira falha (recidiva ou óbito) menor ou igual a quinze anos

Pacientes que não entraram em óbito (285 ou 53%)

Pacientes que entraram em óbito (256 ou 47%)

Aqui, o termo falha foi utilizado num sentido mais amplo, englobando também as censuras

Modelagem

Covariáveis: Estágio clínico (I [362] ou II [179]),

Tratamento (radioterapia [423] ou radio e quimioterapia [118]),

Idade (< 58 anos (mediana) [263] ou \geq 58 anos [278]),

Hemoglobina (< 140 g/l (mediana) [247] ou \geq 140 g/l [294])

Covariáveis significativas:

541 pacientes (dois estados iniciais)

Modelo paramétrico: todas as quatro

Modelo (não e) semiparamétrico: Estágio clínico, Tratamento e Idade

517 (um estado inicial, sem os pacientes que não entraram em remissão)

Modelo paramétrico: todas as quatro

Modelo (não e) semiparamétrico: todas as quatro

Follic: modelo multiestado markoviano paramétrico

Probabilidades de transição entre estados para o período de 1 ano

56 pacientes 13 pacientes

Estágio clínico I, hemoglobina < 140 g/l, idade < 58 anos e tratados com radioterapia

	DESTINO								
		1	2	3	4	5	6		
	1	0.949	0	0.005	0.041	0.002	0.001		
ORIGEM	2	0	0	0	0	0	1		
	3	0	0	0.952	0	0	0.048		
ĕ	4	0	0	0	0.945	0	0.055		
O	5	0	0	0	0	0.869	0.13		
	6	0	0	0	0	0	1		

2: sem remissão;

Estágio clínico II, hemoglobina ≥ 140 g/l, idade ≥ 58 anos e tratados com radioterapia e quimioterapia

				DES	TINO		
		1	2	3	4	5	6
	1	0.855	0	0,003	0.091	0.015	0,036
ORIGEM	2	0	0.347	0	0	0	0,653
	3	0	0	0.03	0	0	0.97
ĕ	4	0	0	0	0.648	0	0.352
٥	5	0	0	0	0	0.552	0.448
	6	0	0	0	0	0	1

Tempos médios de permanência, em anos, para cada estado transiente

4: recidiva distante;

3: recidiva local:

56 pacientes

1: remissão:

Estágio clínico I, hemoglobina < 140 g/I, idade < 58 anos e tratados com radioterapia

		Estimativa	Erro padrão	Mínimo	Máximo
	\	pontual	Erro paurao	(IC de 95%)	(IC de 95%)
	1	19.31	2.57	14.87	25.07
ESTADO	2	0.03	35392	0	ω
	3	20.23	11.07	6.92	59.11
ES	4	17.69	3.51	11.99	26.11
	5	7.15	5.55	1.56	32.77

13 pacientes

Estágio clínico II, hemoglobina ≥ 140 g/l, idade ≥ 58 anos e tratados com radioterapia e quimioterapia

5: recidiva local e distante;

_	tratados com radioterapia e quimioterapia							
		Estimativa	Erro padrão	Mínimo	Máximo (IC de 95%)			
		pontual	LITO Paurao	(IC de 95%)				
	1	6.4	1.28	4.32	9.47			
0	2	0.94	1.09	0.1	9.12			
ESTADO	3	0.28	0.23	0.06	1.36			
ES	4	2.3	0.79	1.18	4.51			
	5	1.68	1.44	0.31	9.03			

6: morte

Follic: modelo multiestado markoviano paramétrico

Curvas de sobrevivência para os estados transitórios

Follic: modelo multiestado markoviano (não e) semiparamétrico

Follic: modelo multiestado markoviano (não e) semiparamétrico

Tempos esperados de permanência, em anos, para cada transição entre estados 130 pacientes 28 pacientes Estágio clínico I. idade < 58 anos e tratados com Estágio clínico II. idade ≥ 58 anos e tratados com radioterapia radioterapia e quimioterapia DESTINO DESTINO 5 5 2 4 6 2 4 6 16.67 0.3 0.28 9.68 8.28 0.24 18.84 0 4.16 0 0.19 3.55 14.8 5.58 2 0 0 O 0 16.3 2 0 0 0 0 25.51 DRIGEM 3 0 0 10.73 0 0 20.37 3 0 0 3.85 0 0 27.24 13.25 4 6.36 4 0 0 0 17.85 0 0 0 0 24.74 0.97 5 0 0 0 0 6.88 24.22 5 0 0 0 0 30.13 6 0 0 0 O 0 31.1 0 0 0 0 0 31.1 1: remissão: 2: sem remissão: 3: recidiva local: 4: recidiva distante: 5: recidiva local e distante: 6: morte

Aplicação II

DACM: 611 pacientes com doença arterial coronariana multiarterial

(1) TM: Tratamento Médico

(2) ICP: Intervenção Coronária Percutânea (angioplastia) (3) CRM: Cirurgia de Revascularização Miocárdica Evento isquêmico: (6) IAM: Infarto Agudo do Miocárdio

(7) AVC: Acidente Vascular Cerebral

(8) Angina

DACM

Pacientes que não entraram em óbito (448)

Pacientes que entraram em óbito (163)

Tempo até a primeira falha • Tempo de sobrevivência *
Aplicação de modelos multiestados

Modelagem

Covariáveis: Grupo de risco (médio [157] ou alto [454]), Histórico de IAM (não [341] ou sim [270])

O grupo de risco foi determinado com base nas covariáveis:

sexo, idade, colesterol da lipoproteína de alta densidade, colesterol total, histórico de hipertensão, fumo e histórico de diabetes

Covariáveis significativas:

Modelo completo (9 estados)

Modelo paramétrico: sem covariáveis

Modelo (não e) semiparamétrico: sem covariáveis

Modelo reduzido (7 estados)

Modelo paramétrico: grupo de risco

Modelo (não e) semiparamétrico: sem covariáveis

Modelos marginais completos e reduzidos (7 e 5 estados) 6 modelos paramétricos e 6 modelos (não e) semiparamétricos

DACM: modelo multiestado markoviano paramétrico

7 pacientes tiveram angina (8), mas todos permaneceram nesse estado, assim, a angina foi considerado como um estado absorvente

			PROBABILIE	ADES DE TRAN	ISIÇÃO ENTRE I	ESTADOS PARA	O PERÍODO D	E 1 ANO		
						DESTINO				
ſ		1	2	3	4	5	6	7	8	9
		(TM)	(ICP)	(CRM)	(CRM)	(ICP)	(IAM)	(AVC)	(ANGINA)	(MORTE)
	1	0.882	0	0	0.041	0.022	0.032	0.004	0.0008	0.018
	(TM)	[0.86 - 0.897]	U	U	[0.03 - 0.053]	[0.015 - 0.031]	[0.024 - 0.043]	[0.001 - 0.009]	[0 - 0.005]	[0.012 - 0.026]
	2	0	0.907	0	0.019	0.041	0.019	0.003	0.002	0.007
	(ICP)	U	[0.886 - 0.92]	U	[0.014 - 0.028]	[0.031 - 0.053]	[0.013 - 0.028]	[0.001 - 0.008]	[0 - 0.007]	[0.005 - 0.013]
	3	0	0	0.949	0.002	0.007	0.01	0.003	0.002	0.026
	(CRM)	U	U	[0.935 - 0.958]	[0 - 0.005]	[0.004 - 0.012]	[0.006 - 0.016]	[0.001 - 0.007]	[0 - 0.006]	[0.02 - 0.035]
	4	0	0	0	0.954	0	0	0.002	0	0.044
_	(CRM)	0	U	U	[0.929 - 0.968]	0	U	[0 - 0.013]	U	[0.03 - 0.065]
픮	5	0		0		0.941				0.059
ORIGEM	(ICP)	U	0	U	0	[0.918 - 0.958]	0	0	0	[0.042 - 0.081]
٦ [6	0	0	0	0	0	0.916	0	0	0.083
	(IAM)	U	U	U	U	U	[0.885 - 0.939]	U	U	[0.06 - 0.115]
Γ	7	0	0	0	0	0	0	0.905	0	0.094
	(AVC)	U	U	U	U	U	U	[0.769 - 0.964]	U	[0.035 - 0.23]
Γ	8	0	0	0	0	0	0	0	1	0
L	(ANGINA)	U	U	U	U	U	U	U	-1	U
	9 (MORTE)	0	0	0	0	0	0	0	0	1

(1) TM: Tratamento Médico

(2) ICP: Intervenção Coronária Percutânea (angioplastia) Evento isquêmico: (6) IAM: Infarto Agudo do Miocárdio (3) CRM: Cirurgia de Revascularização Miocárdica

(7) AVC: Acidente Vascular Cerebral (8) Angina

DACM: modelo multiestado markoviano paramétrico

	Tempos médios de permanência, em anos, para cada estado transiente								
		Estimativa pontual	Erro padrão	Mínimo - IC de 95%	Máximo - IC de 95%				
	1: TM	7.98	0.66	6.71	9.27				
	2: ICP	10.26	0.91	8.38	11.99				
ESTADO	3: CRM	19.25	2.13	14.99	23.59				
	4: CRM	21.43	4.59	13.51	31.13				
	5: ICP	16.41	3.09	11.7	23.98				
	6: IAM	11.46	1.9	8.27	16.15				
	7: AVC	10.09	5.91	3.9	26.23				

Curvas de sobrevivência para os estados transientes

DACM: modelo multiestado markoviano (não e) semiparamétrico

14

DACM: modelo multiestado markoviano (não e) semiparamétrico

					DESTINO				
	1: TM	2: ICP	3: CRM	4: CRM	5: ICP	6: IAM	7: AVC	8: ANGINA	9: MORTI
1: TM	6.38	0	0	2.11	1.14	1.31	0.14	0.04	2.64
2: ICP	0	7.28	0	1.07	1.97	0.92	0.1	0.09	2.33
3: CRM	0	0	9.65	0.13	0.43	0.59	0.14	0.09	2.73
≥ 4: CRM	0	0	0	9.04	0	0	0.05	0	4.67
4: CRM 5: ICP 6: IAM	0	0	0	0	10.05	0	0	0	3.72
6: IAM	0	0	0	0	0	3.89	0	0	9.88
7: AVC	0	0	0	0	0	0	10.44	0	3.33
8: ANGINA	0	0	0	0	0	0	0	13.77	0
9: MORTE	0	0	0	0	0	0	0	0	13.77

Considerações finais

Considerações finais

- Ambos os modelos geraram inferências muito similares, independente do delineamento (dados de sobrevivência intervalar ou não intervalar)
- Modelo (não e) semiparamétrico se mostrou mais robusto
- Ambos os modelos se mostraram altamente dependentes do tamanho amostral
 - Grande amostra
 - ⊗ Grande amostra em cada transição