Θεωρία Iwasawa

Νούλας Δημήτριος dnoulas@math.uoa.gr

Περιεχόμενα

1	Εισαγωγή	3
2	Προαπαιτούμενα	4
	2.1 Άλγεβρική Θεωρία Αριθμών	4
	2.2 Κυκλοτομικά Σώματα	E.
	2.3 Άπειρη Θεωρία Galois	Ę
	2.4 Θεωρία Κλάσεων Σωμάτων	E

Κεφάλαιο 1 Εισαγωγή

Κεφάλαιο 2

Προαπαιτούμενα

2.1 Άλγεβρική Θεωρία Αριθμών

Έστω L/K μια πεπερασμένη επέκταση σωμάτων αριθμών με δακτύλιους ακεραίων \mathcal{O}_L και \mathcal{O}_K αντίστοιχα.

Θεώρημα 1. Κάθε γνήσιο μη-μηδενικό πρώτο ιδεώδες $\mathfrak{a} \subset \mathcal{O}_K$ έχει μοναδική παραγοντοποίηση:

$$\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$$

 $\mu \epsilon e_i > 0$ και τα \mathfrak{p}_i είναι πρώτα ιδεώδη.

 Δ οθέντος ενός πρώτου ιδεωδούς $\mathfrak{p}\subset\mathcal{O}_K$, μπορούμε να θεωρήσουμε το ιδεώδες $\mathfrak{p}\mathcal{O}_L$ στον δαχτύλιο \mathcal{O}_L . Με βάση το προηγούμενο θεώρημα μπορούμε να το παραγοντοποιήσουμε σε γινόμενο πρώτων ιδεωδών:

$$\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r} \tag{2.1}$$

με τα \mathfrak{p}_i να είναι πρώτα ιδεώδη του \mathcal{O}_L .

Ορισμός 1. Σε μια παραγοντοποίηση όπως στην 2.1, λεμε το $e_i = e(\mathfrak{p}_i/\mathfrak{p})$ δείκτη διακλάδωσης του \mathfrak{p} στο \mathfrak{p}_i . Θα λέμε ότι το πρώτο ιδεώδες \mathfrak{p} διακλαδίζεται στο L αν ισχύει $e_i > 1$ για κάποιο i. Ο βαθμός αδράνειας $f_i = f(\mathfrak{p}_i/\mathfrak{p})$ είναι η διάσταση του διανυσματικού χώρου $\mathcal{O}_L/\mathfrak{p}_i$ πάνω από το πεπερασμένο σώμα $\mathcal{O}_K/\mathfrak{p}$.

Πρόταση 1. Ένα πρώτο ιδεώδες \mathfrak{p} στο \mathcal{O}_K διακλαδίζεται στο \mathcal{O}_L αν και μόνο αν \mathfrak{p} | $\mathrm{disc}(\mathcal{O}_L/\mathcal{O}_K)$.

!Τι σημαίνει $disc(\mathcal{O}_L/\mathcal{O}_K)$ · η διαχρίνουσα ορίζεται για σώματα αριθμών. Λογικά:

$$disc_{\mathcal{O}_K}(\mathcal{O}_L) = \det(T_{L/K}(a_i a_j))$$

όπου a_i βάση του \mathcal{O}_L ως \mathcal{O}_K -πρότυπο, που σημαίνει τα a_i είναι βάση του L υπεράνω του K (σωστό με βάση Milne)

Θεώρημα 2. Με βάση τα παραπάνω έχουμε:

$$\sum_{i=1}^{r} e(\mathfrak{p}_i/\mathfrak{p}) f(\mathfrak{p}_i/\mathfrak{p}) = \sum_{i=1}^{r} e_i f_i = [L:K]$$
(2.2)

Στο εξής θα θεωρούμε ότι η επέχταση L/K είναι Galois. Έτσι μπορούμε να απλοιποιήσουμε το προηγούμενο θεώρημα αρχετά. Ξεχινάμε με την αχόλουθη πρόταση.

Πρόταση 2. Η ομάδα Gal(L/K) δρα μεταβατικά στο σύνολο των πρώτων ιδεωδών \mathfrak{p}_i του \mathcal{O}_L που βρίσκονται υπεράνω του \mathfrak{p} .

Aπόδειξη. Προς άτοπο, έστω ότι $\sigma(\mathfrak{p}_i) \neq \mathfrak{p}_j$ για κάθε $\sigma \in \operatorname{Gal}(L/K)$. Υπενθυμίζουμε ότι το $\sigma(\mathfrak{p}_i)$ θα είναι και αυτό πρώτο ιδεώδες που θα στέκεται πάνω από το \mathfrak{p} . Καθώς είμαστε σε περιοχές Dedekind τα \mathfrak{p}_i και $\sigma(p_i)$ θα είναι μεγιστικά. Άρα $\mathfrak{p}_i \not\subseteq \sigma(\mathfrak{p}_i)$. Από το αντιθετοαντίστροφο του λήμματος αποφυγής πρώτων παίρνουμε ότι

$$\mathfrak{p}_i \not\subseteq \bigcup_{\sigma \in \mathrm{Gal}(L/K)} \sigma(\mathfrak{p}_i)$$

δηλαδή, υπάρχει $x \in \mathfrak{p}_i$ που αποφεύγει όλα τα $\sigma(\mathfrak{p}_i)$. Για την νόρμα, παρατηρούμε ότι:

$$N_{L/K}(x) = \prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma(x)$$

βρίσκεται μέσα στο $\mathfrak{p}=\mathcal{O}_K\cap\mathfrak{p}_i$, διότι η νόρμα θα βρίσκεται μέσα στο \mathcal{O}_K καθώς και στο παραπάνω γινόμενο εμφανίζεται το x που ανήκει στο ιδεώδες \mathfrak{p}_i . Έχουμε ότι $x\not\in\sigma(p_i)$ και άρα $\sigma^{-1}(x)\not\in\mathfrak{p}_i$ για κάθε $\sigma\in\mathrm{Gal}(L/K)$. Άρα $\prod\sigma^{-1}(x)=\prod\sigma(x)\not\in\mathfrak{p}_i\cap\mathcal{O}_K=\mathfrak{p}$, το οποίο είναι άτοπο.

- 2.2 Κυκλοτομικά Σώματα
- 2.3 Άπειρη Θεωρία Galois
- 2.4 Θεωρία Κλάσεων Σωμάτων