

<u>Home</u>

<u>Gameboard</u>

Biology

Physiology

Nervous System Organisation

Nervous System Organisation

The vertebrate nervous system can be categorised into different subsystems, based on structure and/or function.

autonomic

parasympathetic

somatic

peripheral

Part A Levels of organisation

Complete the table below to show the organisation of the vertebrate nervous system. central nervous system nervous system nervous system sympathetic nervous system nervous system nervous system nervous system Items:

https://isaacphysics.org/questions/nervous_system_organisation?board=smart24_b_3_42&stage=all

Part B Nervous subsystem descriptions

Match the nervous subsystem to the description in the table below.

Description	Nervous subsystem
the brain and spinal cord	
all of the neurones that connect the central nervous system to other organs/tissues	
the parts of the nervous system that are under subconscious control	
the parts of the nervous system that are under conscious control	
the parts of the autonomic nervous system that are involved in triggering a "fight-or-flight" response	
the parts of the autonomic nervous system that are involved in "rest & digest" functions	
Items:	
central nervous system (CNS) autonomic nervous system sympathetic i	nervous system
parasympathetic nervous system somatic nervous system peripheral ne	ervous system (PNS)

breathing

Part C	Somatic nervous system
Which of	of the following actions/behaviours are mainly controlled by the somatic nervous system? Select all oly.
	typing on a keyboard
	stomach peristalsis
	pupil dilation
	blinking
	dancing
	producing saliva
Part D	Autonomic nervous system
Which o	of the following actions/behaviours are mainly controlled by the autonomic nervous system? Select apply.
	sweating
	decreasing heart rate
	chewing food
	increasing heart rate
	running away from a predator

Created for isaacphysics.org by Lewis Thomson. Part A adapted with permission from CIE A Level Biology, June 2005, Paper 6, Question 3

<u>Home</u> <u>Gameboard</u> Biology Physiology Neurone Structure

Neurone Structure

Neurones are highly specialised cells with a unique structure. The various parts of a neurone carry out different roles in the overall function of the neurone.

Figure 1: Part of a motor neurone.

Part A Label the neurone

Match the letter in Figure 1 to the region/structure in the table below.

Letter	Region/structure
А	
В	
С	
D	
Е	
F	

Items:

axon	dendron	dendrites	cell body (soma)	node of Ranvier	myelin sheath	

at
at
at
the
all
all

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 42

<u>Home</u>

<u>Gameboard</u>

Biology

Physiology

Neurone Types

Neurone Types

There are many different types of neurones, but most can be grouped into one of three main categories: motor neurones, sensory neurones, and relay neurones (interneurons).

Part A Types & functions

Match the type of neurone to the function in the table below.

Neurone type	Function
	(also called afferent neurones) receive impulses from a sense organ (e.g. skin, eyes, etc.) and transmit them to one or more neurones
	(also called efferent neurones) receive impulses from one or more neurones and transmit them to a muscle or gland
	(also called interneurons) transmit impulses from one neurone to another

Items:

sensory neurones

relay neurons

motor neurones

Part B Characteristics

Match the neurone type(s) to the characteristic in the table below.

Characteristic	Neurone type(s)
is myelinated	
may form a synapse with a relay neurone	
cell body lies within the CNS	
dendron is usually longer than the axon	
cell body lies outside of the CNS	
has many dendrites	
motor neurones only sensory neurones only both sensory	y and motor neurones
, .	Salact all that apply
Which of the following are examples of sensory neurones? thermoreceptors (neurones in the skin and other organs/tissues	that respond to changes in temperature and send impulses
Which of the following are examples of sensory neurones? thermoreceptors (neurones in the skin and other organs/tissues towards the CNS)	that respond to changes in temperature and send impulses espond to odours and send an impulse towards the brain)
Which of the following are examples of sensory neurones? thermoreceptors (neurones in the skin and other organs/tissues towards the CNS) olfactory receptor neurones (neurones in the nasal cavity that re	that respond to changes in temperature and send impulses espond to odours and send an impulse towards the brain) at respond to light and send impulses towards the brain)

Part D Motor neurone examples

Which	of the following are examples of motor neurones? Select all that apply.
	mechanoreceptor neurones (neurones in the skin and other organs/tissues that respond to pressure/movement and send impulses towards the CNS)
	neurones in the infundibulum that send impulses from the hypothalamus to the posterior pituitary gland to cause the release of hormones into the bloodstream
	neurones in the oculomotor nerve that send impulses from the brain to muscles in the eye to cause eye movement
	retinal ganglion cells (neurons that receive impulses from photoreceptor cells and send impulses to neurons in the brain)

Created for isaacphysics.org by Lewis Thomson. Part B adapted with permission from CIE A Level Biology, Nov 2014, Paper 4, Question 6

Gameboard:

STEM SMART Biology Week 42

<u>Home</u>

Part A

Items:

Gameboard

Biology Physiology

The Resting Membrane Potential

The Resting Membrane Potential

The sodium-potassium pump

5

inside

outside

positive

negative

The resting membrane potential is the membrane potential of a neuron when it is "at rest" i.e. not firing. The resting membrane potential of most neurones is approximately $-65\,\mathrm{mV}$ i.e. the inside of the cell is $65\,\mathrm{mV}$ more negative than the outside of the cell.

The $\mathrm{Na}^+/\mathrm{K}^+$ pump (also called $\mathrm{Na}^+/\mathrm{K}^+$ -ATPase) plays an essential role in maintaining the membrane potential in all animal cells including neurones. Fill in the blanks below to explain how this works.
1. \bigcirc molecule(s) of ATP binds to a $\mathrm{Na}^+/\mathrm{K}^+$ pump.
2. This allows Na^+ ions to bind to the Na^+/K^+ pump on the of the membrane.
3. The ATP is converted to ADP and P $_{\rm i}$, which phosphorylates the ${ m Na}^+/{ m K}^+$ pump. This causes a
conformational change in the shape of the $\mathrm{Na}^+/\mathrm{K}^+$ pump.
4. This causes the Na^+ ions to be released to the $\overline{}$ of the membrane.
5. $ Arg K^+$ ions bind to the $ m Na^+/K^+$ pump on the $ Arg of$ of the membrane. This causes
$\stackrel{\smile}{dephosphorylation}$ of the $\mathrm{Na}^+/\mathrm{K}^+$ pump, which causes a conformational change back to the original
shape.
6. This causes the ${ m K}^+$ ions to be released to the ${ m f f f}$ of the membrane. The process is now ready
to begin again.
Because this process results in a net loss of charges from the cell, the inside of the cell
becomes ly charged relative to the outside.

Part B Ion leakage

On its own, the $\mathrm{Na}^+/\mathrm{K}^+$ pump would result in the cell becoming increasingly negative until there were no more Na^+ ions inside the cell. However, this is not the case. There are some ion channels that allow Na^+ to leak into the cell, and other ion channels that allow K^+ ions to leak out of the cell.

What is the name given to this kind of transport, in which ions move through channels down/with their concentration gradient?

Part C K^+ equilibrium potential

On its own, the concentration gradient of K^+ ions would cause them to leak out of the cell. However, the outside of the cell is more positively charged than the inside of the cell, which will counteract this movement of K^+ ions. The movement of ions across a membrane is, therefore, based on **both** the chemical gradient **and** the electrical potential across the membrane. The electrical potential for which these two things balance out (for a particular ion) is called the equilibrium potential. At the equilibrium potential, the net movement of that ion across the membrane through its ion channel will be zero.

The Nernst equation can be used to calculate the equilibrium potential (E) in millivolts (mV) for a particular ion (X) given its valency (z), concentration inside the cell $([X]_i)$, and concentration outside the cell $([X]_o)$. The equation is as follows:

$$E_X = rac{61}{z} imes \log_{10} rac{[X]_o}{[X]_{
m i}}$$

Use the Nernst equation (above) to calculate the equilibrium potential for ${
m K}^+$ ions ($E_{{
m K}^+}$) when:

- ullet K concentration inside the cell ([K+]i) = $120\,\mathrm{mM}$
- ${
 m K}^+$ concentration outside the cell $([{
 m K}^+]_o)=4\,{
 m mM}$

Give your answer to 2 significant figures.

Part D Na^+ equilibrium potential

The Nernst equation can be used to calculate the equilibrium potential (E) in millivolts (mV) for a particular ion (X) given its valency (z), concentration inside the cell $([X]_i)$, and concentration outside the cell $([X]_o)$. The equation is as follows:

$$E_X = rac{61}{z} imes \log_{10} rac{[X]_o}{[X]_{
m i}}$$

Use the Nernst equation (above) to calculate the equilibrium potential for ${
m Na}^+$ ions ($E_{{
m Na}^+}$) when:

- Na^+ concentration inside the cell ($[Na^+]_i)=15\,\mathrm{mM}$
- ullet Na^+ concentration outside the cell ($[\mathrm{Na}^+]_o$) $=145\,\mathrm{mM}$

Give your answer to 2 significant figures.

Part E Neurone resting membrane potential

The resting membrane potential of most neurones is $\approx -65\,\mathrm{mV}$. Based on your answers to the previous sections, which of the following conclusions can you draw? Select all that apply.

The resting membrane potential is closer to the equilibrium potential of $ m K^+$ than to the equilibrium potential of $ m Na^+$
The resting membrane potential is closer to the equilibrium potential of Na^+ than to the equilibrium potential of K^+
There is more leakage of K^+ ions across the neurone membrane than leakage of Na^+ ions across the neurone membrane
There is more leakage of ${ m Na}^+$ ions across the neurone membrane than leakage of ${ m K}^+$ ions across the neurone membrane
There is the same amount of leakage of both types of ions across the neurone membrane

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 42

<u>Home</u> <u>Gameboard</u> <u>Biology</u> Physiology Action Potentials

Action Potentials

An action potential is a sequence of changes in membrane potential that occur at a particular point of a cell membrane in response to a stimulus. An action potential at one point of a cell membrane can trigger an action potential at a nearby point of a cell membrane. In neurones, this propagation of action potentials along the cell membrane is called a nerve impulse.

Figure 1: A series of action potentials. The membrane potential at a particular point of a cell membrane is shown over time.

Part A Resting membrane potential

State the value of the resting membrane potential in Figure 1

Part B	Depolarisation
Which o	of the following events occur between 1 and 1.5 milliseconds in Figure 1?
Select a	all that apply.
	voltage-gated K^{+} channels open
	voltage-gated Na^+ channels open
	$K^{^{+}}$ ions flow into the cell through voltage-gated $K^{^{+}}$ channels
	$K^{^{+}}$ ions flow out of the cell through voltage-gated $K^{^{+}}$ channels
	$\mathrm{Na}^{^{+}}$ ions flow into the cell through voltage-gated $\mathrm{Na}^{^{+}}$ channels
	$\mathrm{Na}^{^{+}}$ ions flow out of the cell through voltage-gated $\mathrm{Na}^{^{+}}$ channels
Part C	Repolarisation & hyperpolarisation
	Repolarisation & hyperpolarisation of the following events occur between 1.5 and 4 milliseconds in Figure 1?
Which o	
Which o	of the following events occur between 1.5 and 4 milliseconds in Figure 1 ?
Which o	of the following events occur between 1.5 and 4 milliseconds in Figure 1 ?
Which o	of the following events occur between 1.5 and 4 milliseconds in Figure 1 ? all that apply. $K^+ \text{ ions flow into } \text{the cell through voltage-gated } K^+ \text{ channels}$
Which o	of the following events occur between 1.5 and 4 milliseconds in Figure 1 ? all that apply. $K^+ \text{ ions flow into } \text{the cell through voltage-gated } K^+ \text{ channels}$ voltage-gated Na^+ channels close
Which o	of the following events occur between 1.5 and 4 milliseconds in Figure 1 ? All that apply. K^+ ions flow into the cell through voltage-gated K^+ channels voltage-gated Na^+ channels close Na^+ ions flow out of the cell through voltage-gated Na^+ channels
Which o	of the following events occur between 1.5 and 4 milliseconds in Figure 1? all that apply. K ⁺ ions flow into the cell through voltage-gated K ⁺ channels voltage-gated Na ⁺ channels close Na ⁺ ions flow out of the cell through voltage-gated Na ⁺ channels Na ⁺ ions flow into the cell through voltage-gated Na ⁺ channels
Which o	of the following events occur between 1.5 and 4 milliseconds in Figure 1? all that apply. K ⁺ ions flow into the cell through voltage-gated K ⁺ channels voltage-gated Na ⁺ channels close Na ⁺ ions flow out of the cell through voltage-gated Na ⁺ channels Na ⁺ ions flow into the cell through voltage-gated Na ⁺ channels voltage-gated K ⁺ channels open
Which o	of the following events occur between 1.5 and 4 milliseconds in Figure 1? all that apply. K^+ ions flow into the cell through voltage-gated K^+ channels voltage-gated Na^+ channels close Na^+ ions flow out of the cell through voltage-gated Na^+ channels Na^+ ions flow into the cell through voltage-gated Na^+ channels voltage-gated K^+ channels open voltage-gated K^+ channels close

Adapted with permission from OCR A Level June 1999, Biology Foundation, Question $3\,$

Gameboard:

STEM SMART Biology Week 42

<u>Home</u> <u>Gameboard</u> Biology Physiology Synapses

Synapses

A synapse is the junction between two neurones (or between a neurone and an effector e.g. a muscle fibre or gland cell). There are two types of synapse: electrical and chemical. Electrical synapses involve the direct movement of ions from one cell to another. Chemical synapses involve the transmission of an impulse via chemical messengers (neurotransmitters). Electrical synapses can transmit impulses more quickly, but chemical synapses are more flexible in terms of processing the impulses. Because of this, chemical synapses are far more common than electrical synapses.

Part A Synaptic transmission

Drag the items below into the correct order on the right to show how one neurone excites another neurone at a chemical synapse.

Available items

Va	ıır	an	< \	NΩ	r

an action potential is propagated along the axon of a presynaptic neurone

the membrane of the axon terminal is depolarised

voltage-gated Ca^{2+} channels in the membrane of the axon terminal open and Ca^{2+} ions move in

vesicles containing neurotransmitters fuse with the axon terminal membrane

neurotransmitters are released into the synaptic cleft

neurotransmitters bind to Na^+ channels on the membrane of the postsynaptic neurone

 Na^+ channels on the membrane of the postsynaptic neurone open and Na^+ ions move in

an action potential is triggered in the postsynaptic neurone and propagates along its dendron/axon

Part B Synapse statements

Which c	f the following statements are correct? Select all that apply.
	neurotransmitters are released by simple diffusion
	neurotransmitters are released by exocytosis
	neurotransmitters can only excite neurones (i.e. trigger an action potential), they cannot inhibit them (i.e. prevent an action potential)
	some neurotransmitters excite neurones (i.e. trigger an action potential) while others inhibit neurones (i.e. prevent an action potential)
	a postsynaptic neurone might require multiple action potentials in a short space of time from the same presynaptic neurone in order for it to produce its own action potential
	a postsynaptic neurone might require multiple, simultaneous action potentials from several presynaptic neurones in order for it to produce its own action potential
Part C	Electrical vs chemical synapses
In electr ions to r not phys	Electrical vs chemical synapses ical synapses, the two neurones are physically connected by membrane protein channels that allow move directly from the cytoplasm of one cell to the next. In chemical synapses, the two neurones are sically connected to each other. The impulse in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone.
In electrions to rent of the contract of the c	ical synapses, the two neurones are physically connected by membrane protein channels that allow move directly from the cytoplasm of one cell to the next. In chemical synapses, the two neurones are sically connected to each other. The impulse in the presynaptic neurone triggers a release of
In electrions to rent of the contract of the c	ical synapses, the two neurones are physically connected by membrane protein channels that allow move directly from the cytoplasm of one cell to the next. In chemical synapses, the two neurones are sically connected to each other. The impulse in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone.
In electrions to rent of the contract of the c	ical synapses, the two neurones are physically connected by membrane protein channels that allow move directly from the cytoplasm of one cell to the next. In chemical synapses, the two neurones are sically connected to each other. The impulse in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. e the advantages of a chemical synapse over an electrical synapse? Select all that apply.
In electrions to represent the second	ical synapses, the two neurones are physically connected by membrane protein channels that allow move directly from the cytoplasm of one cell to the next. In chemical synapses, the two neurones are sically connected to each other. The impulse in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. The impulse in the postsynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. The impulse in the postsynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. The impulse in the postsynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. The impulse in the postsynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. The impulse in the postsynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone.
In electrions to represent the second	rical synapses, the two neurones are physically connected by membrane protein channels that allow move directly from the cytoplasm of one cell to the next. In chemical synapses, the two neurones are sically connected to each other. The impulse in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. The impulse in the postsynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. The impulse in the postsynaptic neurone that apply the advantages of a chemical synapse over an electrical synapse? Select all that apply the chemical synapses can transmit impulses much faster than electrical synapses can only be used for excitation chemical synapses allow impulse movement in both directions, whereas electrical synapses only allow an impulse to move in
In electrions to represent the second	ical synapses, the two neurones are physically connected by membrane protein channels that allow move directly from the cytoplasm of one cell to the next. In chemical synapses, the two neurones are sically connected to each other. The impulse in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. The impulse in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. The impulse in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone. The impulse in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynapse? Select all that apply. The impulse in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse entries in the presynaptic neurone triggers a release of ansmitters which can then trigger an impulse in the postsynaptic neurone triggers a release of ansmitters which can then trigger an impulse entries in the presynaptic neurone triggers a release of ansmitters which can then triggers an impulse in the presynaptic neurone triggers a release of ansmitters which can then triggers a release of ansmitters which can then triggers an impulse in the presynaptic neurone triggers a release of ansmitters which can then triggers and impulse to entries the presynaptic neurone triggers a release of ansmitters which can then triggers and impulse to entries the presynaptic neurone triggers are release of ansmitters which can the presynaptic neurone triggers are release of ansmitters which can the presynaptic neurone.

Created for isaacphysics.org by Lewis Thomson