

RAJARATA UNIVERSITY OF SRI LANKA

FACULTY OF APPLIED SCIENCES - DEPARTMENT OF PHYSICAL SCIENCES

B.Sc. Four Year Degree in Industrial Mathematics

Fourth Year – Semester II Examination – September / October 2013

MAT 4311 - FLUID DYNAMICS - II

Time: THREE HOURS.

Answer FIVE questions only, including Q.4 and Q.6

1. State clearly, without proof, Milne-Thomson's circle theorem.

A straight, infinite, rectilinear vortex filament of strength κ per unit length, is placed parallel to the axis of a rigid circular cylinder with cross-section C, |z|=a, and this filament meets the complex z- plane at the point representing number $z_1=r_1e^{i\theta}$, $r_1>a$. Using the circle theorem of Milne- Thomson, show that the complex potential w of the resulting fluid motion is given by $w=i\kappa\log(z-z_1)-i\kappa\log(z-\frac{a^2}{\overline{z}_1})+i\kappa\log z$ + constant.

Identify the image system and obtain the complex velocity, $Q = -\frac{dw}{dz}$.

- Show that the integral $\oint_C Q dz = 0$, and by considering its real and imaginary parts, give a physical interpretation of this result.
- (ii) Evaluate the integral $\oint_C \left(-\frac{\rho}{2}\right) Q^2 dz = X iY$, where ρ denotes the density and interpret the real number pair (X, Y). Hence determine the magnitude and direction of the resultant fluid thrust \mathbf{F} on the cylinder, calculated per unit length of the cylinder.
- (iii) Derive the velocity induced on vortex filament, and discuss its motion.

[P.T.O.

2. An inviscid liquid of constant density flows past a fixed cylinder of cross-section $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The

velocity at infinity has constant components $(-U\cos\alpha, -U\sin\alpha)$, where U is positive and α is acute. The pressure at infinity is p_{∞} . Using the conformal transformation $Z = \left(z + \sqrt{z^2 - c^2}\right)/(a+b)$, or its inverse, where $c^2 = a^2 - b^2 > 0$, map the above ellipse, Γ , into the circle C, |Z| = 1, points outside Γ into points outside C and the stream at infinity in the z-plane, into a stream $(-V\cos\beta, -V\sin\beta)$ in the Z-plane, where V and β are to be determined, in terms of given constants. Hence obtain the complex potential in the form w = F(Z), and show that when $Z = re^{i\theta}$, $r \ge a$, the stream function in either of the two planes is $\psi = \frac{U(a+b)}{2} \left(r - \frac{a^2}{r}\right) \sin(\theta - \alpha)$.

Sketch the dividing streamline and two streamlines on either side of it, indicating the directions of flow, in the *z*-plane.

Derive the complex velocity and deduce that the fluid speed q at any point $(a\cos\theta, b\sin\theta)$ on Γ is given by $\frac{q}{U} = \frac{(a+b)\sin(\theta-\alpha)}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}, \ 0 \le \theta \le \pi.$

Identify the points of maximum pressure p_0 , find the value of p_0 and calculate the moment of the couple experienced by the cylinder, per unit length.

3. An incompressible inviscid fluid moves in the z-plane, within the region $-a \le x \le a, y \ge 0$.

Using Schwarz-Christoffel theorem, map the flow region into the upper-half of a certain $\zeta - plane$ in such a way that the two corners correspond to the points $\zeta = \mp 1$, and derive the relation $\zeta = \sin\left(\frac{\pi z}{2a}\right)$.

If the motion is due to a doublet of strength μ placed at the point $z_0 = ib$ with its axis pointing towards

the origin, show that the complex potential is $w = \frac{(\pi \mu / 2a) \sinh(\pi b / a)}{\sin^2(\pi z / 2a) + \sinh^2(\pi b / 2a)}$.

Derive the complex velocity and locate the points of stagnation.

Find the fluid velocity at any point

(i) on the line segment: -a < x < a, y = 0, and (ii) on the axis of the doublet x = 0, $y \ne b$.

Sketch the streamlines and mark the directions of motion at all points on the boundaries.

Find the points of maximum fluid speed q_0 on the boundaries, and the value of q_0 .

4. In a two-dimensional motion under no body forces, liquid issues symmetrically from a very large vessel through a slit, $-a \le x \le a$, in one of the straight walls y=0. The ultimate width of the issuing jet is 2b as $y \to -\infty$, and the uniform velocity there has components (0, -U), where U is equal to the constant speed on either of the free streamlines.

Choosing the stream function $\psi = 0$ on the central streamline x = 0, and the velocity potential $\phi = 0$ at the two edges $(\mp a,0)$ of the slit, sketch the liquid boundary in the w - plane, where $w = \phi + i\psi$.

Defining Kirchoff's function $\Omega = \log_e(U/Q)$, where Q is the complex velocity, map both the w-plane and the Ω -plane into the same ζ -plane in such a way that the two points corresponding to the edges $(\mp a, 0)$ map into the points $\zeta = \mp 1$, respectively. Hence express ζ in terms of w, and in terms of Ω .

Show that $x = -a + \frac{2b}{\pi} (1 - \cos \theta)$ on the free streamline on which $Q = Ue^{-i\theta}$, $0 \ge \theta > -\frac{\pi}{2}$.

Deduce that the coefficient of contraction of the issuing jet is $\pi/(\pi+2)$.

5. Define Stokes' stream function $\psi(r,\theta)$ for axi-symmetric motion of an incompressible fluid, and write down the components of the velocity vector $\underline{\mathbf{q}} = q_r \underline{\mathbf{e}}_r + q_\theta \underline{\mathbf{e}}_\theta + q_\omega \underline{\mathbf{e}}_\omega$, in terms of spherical polar coordinates (r,θ,ω) and partial derivatives of ψ .

Show that, if the motion is irrotational as well, then $\psi(r,\theta)$ satisfies the partial differential equation $\frac{\partial^2 \psi}{\partial r^2} + \frac{\sin \theta}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial \psi}{\partial \theta} \right) = 0.$

Find the stream function due to each of the following flows, and establish irrotationality, in each case:

- (i) A uniform stream U parallel to the axis of symmetry $\theta = 0$.
- (ii) A spherically symmetric radial flow issuing from a point source of strength m at the origin.

[P.T.O.

The equation $r\sin(\theta/2)=a$ represents the surface S of a rigid cylinder, symmetric about the axis $\theta=0$. An inviscid incompressible fluid flows irrotationally past this cylinder, velocity far from the cylinder being U parallel to the axis of the cylinder. Show the sum of the stream functions in (i) and (ii) above, with $m=Ua^2$, may be used as the stream function Ψ to represent this flow, so that S is the stream surface $\Psi=C$, through the point of stagnation, where C is a constant.

Find the components of velocity $\underline{\mathbf{q}}$ at any point P (r,θ,ω) and verify that this vector is normal to the surface $\Psi = \text{constant}$ through point P. Show further that the pressure on the surface of the cylinder is $p = p_{\infty} - \rho U^2 (1 + 2\cos\theta - 3\cos^2\theta)/8$.

6. A rigid sphere r=a is fixed in a steady stream of liquid of constant density ρ and constant viscosity μ , whose velocity at infinity is $U(-\underline{\mathbf{i}})$. Assuming the liquid to be Newtonian in a motion with small Reynold's number $\left(R=\frac{a\rho U}{\mu}<<1\right)$, derive an approximate equation for the liquid velocity $\underline{\mathbf{q}}$

in the form $\operatorname{curl}\operatorname{curl}\underline{q}=\underline{0}$, stating clearly, the boundary conditions satisfied by the velocity \underline{q} .

Using a Stokes stream function Ψ , show that the vorticity vector takes the form $\underline{\zeta} = \frac{\underline{\mathbf{e}}_{\omega}}{r \sin \theta} D^2 \Psi$,

where $D^2 = \frac{\partial^2}{\partial r^2} + \frac{\sin \theta}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \right)$, and (r, θ, ω) denote spherical polar coordinates.

Hence derive an equivalent differential equation satisfied by Ψ in the form $D^2(D^2\Psi)=0$.

Stating clearly, the boundary conditions satisfied by Ψ , find possible values of n such that

 $\Psi = r^n \sin^2 \theta$ satisfies the above partial differential equation and all the boundary conditions.

Deduce that the vorticity vector $\underline{\zeta}$ is of magnitude $\zeta = \left(\frac{3aU}{2r^2}\right)\sin^2\theta$, and find its direction.

Assuming the formula $W = \mu \int_V \zeta^2 dV$ for the rate W of dissipation (loss) of energy due to viscosity, where V denotes the entire volume of fluid outside the sphere, show that the viscous drag on the sphere is $6\pi\mu\,aU$.