

IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended): A sensor head, comprising:

a three-dimensional base body having a curved surface allowing definition of a circular orbital band;

an interdigital electroacoustic transducer arranged on the orbital band of the three-dimensional base body, and configured to excite a surface acoustic wave to perform multiple roundtrips along the orbital band; and

a gas-sensitive sensitive film at least a part of which is formed on at least a part of the orbital band of the three-dimensional base body, and configured to react with a specific gas molecule so as to develop a change in a propagation characteristic of the surface acoustic wave,

wherein the interdigital transducer converts the surface acoustic wave orbiting along the orbital band into a high frequency electric signal so as to detect the change in the propagation characteristic.

2. (Original) The sensor head of claim 1, wherein the orbital band is defined on the surface of the outer periphery of the three-dimensional base body.

3. (Original) The sensor head of claim 1, wherein the orbital band is defined on the interior face of a cavity of the three-dimensional base body.

4. (Currently Amended) The sensor head of claim 1, wherein the thickness of the sensitive gas-sensitive film is 100 nanometers or less.

5. (Currently Amended) The sensor head of claim 1, wherein the thickness of the sensitive gas-sensitive film is one five hundredth of the wavelength of the surface acoustic wave or less.

6. (Currently Amended) The sensor head of claim 1, wherein the thickness of the sensitive gas-sensitive film is one thousandth of the wavelength of the surface acoustic wave or less.

7. (Currently Amended) The sensor head of claim 1, wherein the sensitive gas-sensitive film is a film containing palladium.

8. (Original) The sensor head of claim 1 further comprising a temperature sensor on the surface of the three-dimensional base body configured to measure the surface temperature.

9. (Original) The sensor head of claim 8, wherein the temperature sensor includes a resistance-detection pattern provided on at least a part of the orbital band.

10. (Withdrawn, Currently Amended) A gas sensor, comprising:
a three-dimensional base body having a curved surface allowing definition of a circular orbital band;
an interdigital electroacoustic transducer arranged on the orbital band of the three-dimensional base body, and configured to excite a surface acoustic wave to perform multiple roundtrips along the orbital band and generate a high frequency electric signal from the surface acoustic wave being experienced the multiple roundtrips;

a gas-sensitive film at least a part of which is formed on at least a part of the orbital band of the three-dimensional base body and configured to react with a specific gas molecule so as to develop a change in a propagation characteristic of the surface acoustic wave, wherein the interdigital transducer converts the surface acoustic wave orbiting along the orbital band into a high frequency electric signal so as to detect the change in the propagation characteristic;

a high frequency generator configured to feed a high frequency electric signal to the electroacoustic transducer; and

a detection/ output unit configured to measure the high frequency electric signal pertaining to propagation characteristic of the surface acoustic wave from the electroacoustic transducer.

11. (Withdrawn) The gas sensor of claim 10, wherein the high frequency generator and the detection/ output unit are integrated onto the three-dimensional base body.

12. (Withdrawn) The gas sensor of claim 10 further comprising a temperature sensor on the surface of the three-dimensional base body configured to measure the surface temperature.

13. (Withdrawn) The gas sensor of claim 12, wherein the temperature sensor includes a resistance-detection pattern delineated on at least a part of the orbital band.

14. (Withdrawn, Currently Amended) A sensor unit, comprising:
a three-dimensional base body having a curved surface allowing definition of a circular orbital band;

an interdigital electroacoustic transducer arranged on the orbital band of the three-dimensional substrate and configured to excite a surface acoustic wave to perform multiple roundtrips along the orbital band and generate a high frequency electric signal from the surface acoustic wave being experienced the multiple roundtrips;

a gas-sensitive film at least a part of which is formed on at least a part of the orbital band of the three-dimensional base body and configured to react with a specific gas molecule so as to develop a change in a propagation characteristic of the surface acoustic wave, wherein the interdigital transducer converts the surface acoustic wave orbiting along the orbital band into a high frequency electric signal so as to detect the change in the propagation characteristic;

a packaging board on which the three-dimensional base body is mounted;

a high frequency generator arranged on the packaging board and to feed a high frequency electric signal to the electroacoustic transducer;

a detection/ output unit arranged on the packaging board and measure the high frequency electric signal pertaining to the propagation characteristics of the surface acoustic wave from the electroacoustic transducer;

a first board wiring arranged on the surface of the packaging board and be electrically connected to the high frequency generator;

a second board wiring arranged on the surface of the packaging board and be electrically connected to the detection/ output unit; and

conductive connectors configured to electrically connect the first and the second board wiring to the electroacoustic transducer, respectively.

15. (Withdrawn) The sensor unit of claim 14 further comprising a temperature sensor on the surface of the three-dimensional base body configured to measure the surface temperature.

16. (Withdrawn) The sensor unit of claim 15, wherein the temperature sensor includes a resistance-detection pattern delineated on at least a part of the orbital band.

17. (Withdrawn, Currently Amended) A sensor unit, comprising:

a three-dimensional base body having a curved surface allowing definition of a circular orbital band;

an interdigital electroacoustic transducer arranged on the orbital band of the three-dimensional substrate and configured to excite a surface acoustic wave to perform multiple roundtrips along the orbital band and generate a high frequency electric signal from the surface acoustic wave being experienced the multiple roundtrips;

a gas-sensitive film at least a part of which is formed on at least a part of the orbital band of the three-dimensional base body and configured to react with a specific gas molecule so as to develop a change in a propagation characteristic of the surface acoustic wave, wherein the interdigital transducer converts the surface acoustic wave orbiting along the orbital band into a high frequency electric signal so as to detect the change in the propagation characteristic;

a high frequency generator configured to be integrated on the three-dimensional base body and to feed a high frequency electric signal to the electroacoustic transducer;

a detection/ output unit integrated on the three-dimensional base body and configured to measure the high frequency electric signal pertaining to the propagation characteristics of the surface acoustic wave from the electroacoustic transducer;

a packaging board on which the three-dimensional base body is mounted;
a board wiring arranged on the surface of the packaging board; and
a conductive connector configured to electrically connect the first interconnect to the detection/ output unit.

18. (Withdrawn) The sensor unit of claim 17 further comprising a temperature sensor on the surface of the three-dimensional base body configured to measure the surface temperature.

19. (Withdrawn) The sensor unit of claim 18, wherein the temperature sensor includes a resistance-detection pattern delineated on at least a part of the orbital band.

20. (New) The sensor head of claim 1, wherein the high frequency electric signal converted by the interdigital transducer is used to determine the reaction with the specific gas molecule through the change in the propagation characteristic.

21. (New) The sensor head of claim 1, wherein an existence of the specific gas molecule or a density of the specific gas molecule is measured by a delay time or an amplitude of the surface acoustic wave orbiting along the orbital band, which has been converted into the high frequency electric signal by the interdigital transducer.

22. (New) The sensor head of claim 1, wherein the three-dimensional base body is made of piezoelectric crystal.

23. (New) The sensor head of claim 22, wherein the electroacoustic transducer is provided in an opening of the gas-sensitive film.

24. (New) The sensor head of claim 22, wherein the electroacoustic transducer is separated from the gas-sensitive film.

25. (New) The sensor head of claim 1, further comprising a piezoelectric film formed on the surface of the three-dimensional base body,
wherein the electroacoustic transducer is provided on the piezoelectric film.

26. (New) The sensor head of claim 25, wherein the gas-sensitive film is provided both on the surface of the three-dimensional base body and the piezoelectric film.

27. (New) A sensor head, comprising:
a three-dimensional base body having a curved surface allowing definition of a circular orbital band;
a first electroacoustic transducer arranged on the orbital band of the three-dimensional base body, and configured to excite a surface acoustic wave to perform multiple roundtrips along the orbital band;
a gas-sensitive film at least a part of which is formed on at least a part of the orbital band of the three-dimensional base body, and configured to react with a specific gas molecule so as to develop a change in the propagation characteristic of the surface acoustic wave; and
a second interdigital transducer arranged on the orbital band of the three-dimensional base body separated from the first electroacoustic transducer, and configured to convert the

surface acoustic wave orbiting along the orbital band into a high frequency electric signal so as to detect the change in the propagation characteristic.