

Implementasi *Microsoft Power BI* Dalam Memantau Kehadiran dan Transportasi Pegawai

Shabrina Zata Yumni^{1,*} dan Widowati¹

¹Departemen Matematika, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Jawa Tengah, Indonesia

*email korespondensi: shabrinazatayumni@students.undip.ac.id

Received: 11 November 2020; Revised: 22 November 2020; Accepted: 24 Februari 2021; Published: 1 April 2021

ABSTRAK

Absensi karyawan merupakan suatu hal yang penting dalam operasional kantor. Absensi secara tidak langsung dapat menggambarkan pola kerja dari karyawan yang terdapat di suatu perusahaan. Absensi juga dapat memengaruhi hal-hal lain, salah satunya adalah keproduktivitasan karyawan. Jika tingkat produktivitas karyawan dalam suatu perusahaan relatif tinggi, maka karyawan mampu memenuhi target yang telah ditentukan oleh perusahaan. Dengan informasi dari data-data tersebut akan diperoleh data yang besar dan belum di proses. Agar data tersebut dapat diolah menjadi informasi yang bernilai, dibutuhkan sebuah bisnis intelliqence (BI) software yang dapat memvisualisasikan datadata tersebut sehingga dapat menampilkan informasi mengenai data kehadiran dan data transportasi. Penelitian ini bertujuan untuk mendapatkan dashboard yang menggambarkan mengenai data kehadiran sehingga perusahaan mengetahui trend dari kehadiran mengenai jam kehadiran hingga status kehadiran karyawan dan data transportasi dari pengeluaran tiap jenis kendaraan hingga tiap kode perjalanan yang nantinya akan mempermudah perusahaan dalam memantau. Penelitian ini dilakukan menggunakan BI software, yaitu Microsoft Power BI untuk dapat memvisualisasikan mengenai data yang didapat dan Microsoft SQL Server Management Studio untuk membuat gudang data. Hasil dari penelitian ini adalah dashboard daily attendance dengan grafik Clock In memperlihatkan presensi terbanyak pada pukul 10.00 dan grafik Clock Out memperlihatkan presensi terbanyak pada pukul 18.00. Lalu, dashboard trip dengan informasi total tarif terbesar berdasarkan kode perjalanan adalah "19AC0113" dengan total melebihi Rp. 9.000.000,00 dari karyawan PT. ATG dan dashboard trip information memperlihatkan penggunaan transportasi terjadi pada tiga kota, yaitu Jakarta, Bandung, dan Surabaya dengan total tarif terbesar terdapat di Jakarta sebesar Rp. 99.552.000.

Kata-kata kunci: basis data; bisnis intelligence; Microsoft Power BI; SQL Server Management Studio; visualisasi

PENDAHULUAN

Absen atau kehadiran karyawan merupakan suatu hal yang penting dalam operasional kantor. Absensi secara tidak langsung dapat menggambarkan pola kerja dari karyawan yang terdapat di perusahaan tersebut. Zaman sekarang, terdapat banyak kantor yang menggunakan suatu website yang dapat digunakan dalam memasukkan data kehadiran para karyawan. Hal ini memudahkan baik dari pihak karyawan ataupun Human Resource Department (HRD) sebuah perusahaan dalam memantau jam kerja karyawannya.

Absensi juga dapat memengaruhi dalam hal keproduktivitasan kerja. Menurut Siagian (2009), produktivitas kerja adalah kemampuan memperoleh manfaat sebesar-besarnya dari sarana dan prasarana yang tersedia dengan menghasilkan *output* yang optimal, kalau mungkin yang maksimal (Siagian, 2009).

Jika tingkat produktivitas karyawan dalam suatu perusahaan relatif tinggi, maka karyawan mampu menghasilkan hasil yang lebih atau dapat memenuhi target yang telah ditentukan oleh perusahaan. Keproduktivitasan karyawan juga didukung oleh perusahaan. Salah satunya adalah pembiayaan dalam hal transportasi. Bukan hanya keproduktivitasan pada karyawan saja yang dapat digambarkan, tetapi masih terdapat banyak hal yaitu perusahaan dapat melihat pengeluaran dalam bidang transportasi, yaitu seberapa besar suatu proyek dapat mengeluarkan biaya. Hal-hal tersebut tentu saja dapat mempengaruhi beberapa kebijakan yang akan dibuat oleh perusahaan tersebut. PT. ATG menggunakan sebuah website dalam memasukkan dan memproses absensi karyawannya. Website tersebut dapat memantau clock in (jam kehadiran) dan clock out (jam pulang) para karyawan.

Akan tetapi, dalam permasalahan ini, terdapat beberapa hal yang dirasa kurang dimanfaatkan. Pengelolaan data yang baik dapat membuat perusahaan memberikan keputusan yang tepat. Sedangkan

data-data yang tersedia masih belum diproses sehingga sulit untuk dianalisa. Salah satunya adalah dalam hal pengilustrasian tentang waktu kerja dari karyawan dan pengeluaran dari data transportasi. Kelemahan sistem yang sudah ada adalah bahwa dalam implementasinya, pihak *Human Resource Department* (HRD) masih merasa kesulitan dalam memantau karyawannya karena keterbatasan fitur-fitur dari sistem yang digunakan.

Dibutuhkan suatu basis Data yang gunanya untuk mengelompokkan data (arsip) yang saling berhubungan sedemikian rupa agar kelak dapat dimanfaatkan kembali dengan cepat dan mudah. Suatu basis data tersebut dipelihara dan dibuat oleh sekumpulan program aplikasi yang dibuat secara khusus untuk menyelesaikan suatu permasalahan yaitu dengan menggunakan sebuah sistem yang disebut dengan Sistem Manajemen Basis Data (SMBD). Sistem Manajemen Basis Data juga diartikan sebagai suatu program komputer yang dapat digunakan untuk memasukkan, mengubah, menghapus, memanipulasi, dan memperoleh data atau informasi dengan praktis dan efisien (Kadir, 2002).

Dalam hal ini, dibutuhkan sistem Bisnis Intelligence (BI) dalam mengumpulkan, mengolah, dan menganalisis data sehingga nanti hasilnya dapat diperkirakan oleh perusahaan dan hasilnya dapat diperbarui secara berkala ataupun real-time (Luminita & Magdalena, 2012). Bisnis Intelligence menjelaskan tentang konsep dan metode bagaimana untuk meningkatkan kualitas dalam pengambilan keputusan bisnis berdasarkan sistem yang berbasiskan data. Bisnis Intelligence seringkali disamakan sebagaimana briefing books, report dan query tools, dan sistem informasi eksekutif. BI merupakan sistem pendukung pengambilan keputusan yang berbasiskan data-data (Akbar, et al., 2017). Aplikasi BI dibutuhkan karena dapat menampilkan pengilustrasian sehingga dapat memudahkan pihak yang membutuhkan agar dapat mengolah dalam hal pengambilan keputusan dengan kecepatan dan kualitas yang baik (Darman, 2018). Selain itu, BI memiliki banyak kegunaan bagi perusahaan, seperti mempercepat operasional, memperpendek siklus pengembangan produk, mengantisipasi peluang baru (Zaky Nur Husni, 2014).

Hasil penelitian ini sejalan dengan penelitian yang dilakukan oleh Fadil Muhammad Putra (Putra & Sari, 2016), bahwa solusi BI yang dihasilkan terdiri dari *report* dengan *dashboard* yang menjadi alat visualisasi untuk menampilkan informasi yang dibutuhkan oleh perusahaan untuk memantau dan membuat keputusan. *Microsoft Power BI* adalah sebuah layanan data analisis yang dibuat oleh *Microsoft* yang berbasis cloud dan dapat memberikan sebuah solusi analisis bisnis. *Power BI* mampu memvisualisasikan data dari berbagai sumber, pengilustrasian dirasa dibutuhkan agar karyawan PT. ATG yang berwenang mampu memonitor karyawannya (Gowthami & Kumar, 2017). Hasil-hasil tersebut dapat divisualisasikan sehingga nanti *trend* atau permasalahannya dapat diamati dengan cukup mudah ketika informasi ditampilkan. Solusi Bisnis *Intelligence* juga mencakup efisiensi operasional, profitabilitas, pengurangan biaya, produktivitas karyawan, dan juga kepuasan klien (Luminita & Magdalena, 2012).

EKSPERIMEN

Pengumpulan data dilakukan pada bulan April 2020 di PT. ATG. Data yang dikumpulkan adalah data kehadiran yang didapat dari *database* yang diintegrasi dari website www.hadirr.com dan *Power Apps*. Proses pengolahan data menggunakan beberapa perangkat lunak untuk melakukan pemrosesan data seperti *Microsoft SQL Server Management Studio* dan *Microsoft Power BI*.

- 1. Data kehadiran di www.hadirr.com dan data transportasi dari *Power Apps* disambungkan dengan database.
- 2. Data kehadiran dan data transportasi yang sudah disambungkan terhadap *database* digunakan sebagai sumber untuk *Power BI*.
- 3. Data kehadiran dan data transportasi diolah di Microsoft SQL Server Management Studio.
- 4. Data yang sudah terkumpul kemudian dibuat menjadi sebuah reports di Power BI.

Reports yang sudah dibuat lalu dapat dikelompokkan. Mengelompokkan karyawan dengan "Manage Roles" button agar lead hanya dapat melihat informasi dari karyawannya tanpa mengetahui informasi dari divisi lain.

HASIL DAN PEMBAHSAN

Alur pengerjaan pengimplementasian Microsoft Power BI dalam memantau kehadiran dan data transportasi pegawai adalah sebagai berikut:

Gambar 1. Diagram Alur

Analisis Data yang Digunakan

Pada tahap ini, dilakukan analisis dan penetuan data dan informasi. Data-data yang digunakan berasal dari database PT. ATG dimana data yang diambil adalah data yang hanya terkait dengan kehadiran dan penggunaan transportasi. Sumber *database* ini berbasis *SQL Server*. Penetuan data dan informasi dari data-data yang tersedia, yaitu data kepegawaian, data kehadiran, dan data penggunaan transportasi.

1. Tabel Kepegawain

Tabel 1. Tabel Kepegawaian

			. 0
No	Nama Kolom	Tipe Data	Keterangan
1	Code	VARCHAR	Foreign key
			Nomor karyawan
2	Position	VARCHAR	Posisi karyawan

2. Tabel Data Kehadiran

Tabel 2. Tabel Data Kehadiran

No	Nama Kolom	Tipe Data	Keterangan
1	Employee ID	VARCHAR	Foreign key
			Nomor karyawan
2	Clock In	DATETIME	Jam masuk kerja karyawan
3	Clock Out	DATETIME	Jam pulang kerja karyawan
4	Status	VARCHAR	Status kehadiran karyawan

3. Tabel Data Transportasi

Tabel 3. Tabel Data Transportasi

raber or raber bata transportasi					
No	Nama Kolom	Tipe Data	Keterangan		
1	Employee Code	VARCHAR	Foreign key		
			Nomor karyawan		
2	Vehicle Type	VARCHAR	Jenis kendaraan yang digunakan		
3	Fare	FLOAT	Biaya		
4	Pick Up	VARCHAR	Tempat penjemputan		

No	Nama Kolom	Tipe Data	Keterangan
5	Drop Off	VARCHAR	Tempat destinasi
6	Date	DATETIME	Tanggal pelaksanaan
7	Ride Distance	REAL	Jarak destinasi
8	Payment Method	VARCHAR	Jenis pembayaran
9	Vendor	VARCHAR	Vendor
10	City	VARCHAR	Kota penggunaan
11	Trip Code	VARCHAR	Kode trip, masing-masing projek memiliki kode
			trip
12	Tolls	FLOAT	Biaya masuk tol

Desain Storyboard

Komponen yang akan digunakan dalam membangun *dashboard* dibuat secara sederhana agar pengguna dapat dengan mudah mendesainnya. Secara umum *dashboard* memiliki beberapa komponen, yaitu:

- 1. Dimensi, menggambarkan tabel dimensi yang dapat pengguna pilih dan *filter*. Visual *filter* yang akan digunakan adalah *slicer*.
- 2. Objek data utama akan menunjukkan data inti dari setiap *dashboard*. Data-data ini akan ditampilkan dalam bentuk *bar chart, line chart, dan donut chart*.
- 3. Objek data pendukung data utama akan menunjukkan data yang mendukung data-data utama seperti tabel matriks, map, dan kartu.

Pembuatan Report dalam Power BI

Setelah data sudah dipersiapkan dan di-*import*, langkah selanjutnya adalah membuat *report* agar mempermudah dalam menganalisa. Terdapat beberapa langkah dalam mengolah data yang sudah didapat di Microsoft *Power BI*, yaitu:

- 1. Membuka Microsoft Power BI.
- 2. Pilih menu Get Data untuk mengambil data yang akan diolah.

Gambar 2. Tampilan memilih data

3. Pilih jenis data yang akan diolah, pada data ini, penulis menggunakan *database*. Masukkan URL dari *database* ke *server* dan pilih *Data Connectivity Mode*.

Gambar 3. Tampilan mengkoneksikan data

- 4. Setelah data yang ditampilkan muncul, pilih Load.
- 5. Pilihlah diagram yang akan digunakan dalam membuat gambaran atau visualisasi pada menu *Visualization*.

Apabila dibandingkan dengan hasil penelitian sebelumnya (Putra & Sari, 2016), dashboard yang ditampilkan menunjukkan sales sedangkan pada penelitian ini, manfaat dari dashboard menunjukkan kehadiran dan juga data transportasi yang berguna untuk memantau produktivitas karyawan.

- 1. Reports untuk data kehadiran
 - a. Dashboard Daily Attendance

Gambar 4. Tampilan Dashboard Daily Attendance

Pada dashboard Daily Attendance, data yang ditampilkan adalah data pada bulan November 2019-April 2020. Dari rancangan dashboard tersebut, terdapat beberapa menu dan visualisasi yang beragam untuk membantu dalam menganalisa data-data yang digunakan.

Pada grafik *status by position*, didapatkan informasi bahwa divisi *Back End Developer* menempati posisi paling atas untuk jumlah status, hal ini karena pada divisi *Back End Developer* memiliki pegawai yang paling banyak. Pada grafik *Clock In*, dapat dilihat karyawan pada PT. ATG rata-rata presensi pada jam 9.00-11.00 dan jam dengan total absen terbanyak adalah pukul 10.00 dengan total presensi sebanyak 84 kali. Pada grafik *Clock Out*, dapat dilihat karyawan pada PT. ATG rata-rata presensi pada jam 17.00 (5.00 PM) - 19.00 (7.00 PM) dan jam dengan total presensi terbanyak adalah pukul 18.00 (6.00 PM) dengan total presensi sebanyak 149 kali.

Penjelasan jumlah status ID pegawai jika ditampilkan menggunakan visualisasi matriks. Tampilan data dapat didetailkan dengan memilih tanggal yang ingin dilihat datanya. Dengan ditampilkan data dalam bentuk card, Human Resource Department dapat melihat jam masuk kerja paling awal dan jam pulang kerja paling akhir. Pada daftar ID Pegawai tersebut dapat dipilih salah satu untuk menampilkan data yang ingin dicari. Dengan adanya menu pilihan daftar ID pegawai, Human Resource Department dapat melihat datadata yang diperlukan secara lebih mudah. Menu pilihan tanggal digunakan sebagai filter agar Human Resource Department dapat lebih fokus menunjukkan data-data apa saja yang ada pada tanggal tersebut.

- 1. Reports untuk data transportasi
 - a. Dashboard Trip

Gambar 5. Tampilan Dashboard Trip

Pada *dashboard Trip*, data yang ditampilkan adalah data pada bulan September 2019-Februari 2020. Dari rancangan *dashboard* tersebut, terdapat beberapa menu dan visualisasi yang beragam untuk membantu dalam menganalisa data-data yang digunakan.

Pada daftar *trip code* dapat dipilih salah satu untuk menampilkan data yang ingin dicari. Dengan adanya menu pilihan daftar *trip code*, HRD dapat melihat data-data yang diperlukan secara lebih mudah.

Menu pilihan tanggal digunakan sebagai *filter* agar *Human Resource Department* dapat lebih fokus menunjukkan data-data apa saja yang ada pada tanggal tersebut. Jika dilihat secara lebih rinci, pada tampilan diagram garis setiap bulannya, terlihat bahwa tarif penggunaan transportasi mengalami fluktuasi Berdasarkan grafik pada *dashboard*, didapatkan informasi bahwa penjemputan paling banyak berada di Jl. Tebet Barat yang merupakan alamat dari kantor PT. ATG dengan total sebanyak lebih dari 700 pemesanan.

Berdasarkan grafik pada *dashboard*, didapatkan informasi bahwa pengantaran paling banyak berada di Jl. Tebet Barat yang merupakan alamat dari kantor PT. ATG dengan total sebanyak lebih dari 700 pemesanan. Berdasarkan grafik tersebut, didapatkan informasi bahwa kode perjalanan yang paling besar total tarifnya adalah "19AC0113", dengan total tarif melebihi Rp. 9.000.000,00. Berdasarkan grafik didapatkan informasi bahwa pengantaran penggunaan jenis kendaraan paling banyak adalah mobil (GrabCar) dengan total pemesanan sebesar 1.060. Berdasarkan grafik Tersebut, didapatkan informasi bahwa perusahaan transportasi yang paling banyak digunakan adalah GRAB dengan persenan sebesar 100%.

b. Dashboard Trip Information

Gambar 6. Tampilan Dashboard Trip Information

Dari rancangan *dashboard* tersebut, terdapat beberapa menu dan visualisasi yang beragam untuk membantu dalam menganalisa data-data yang digunakan.

Lokasi penggunaan ditunjukkan dengan *icon bubble*. Apabila *pointer* mouse diarahkan keatas lokasi, akan ditampilkan total tarif yang digunakan pada kota tersebut. Terlihat pada gambar, penggunaan transportasi terjadi pada tiga kota, yaitu Jakarta, Bandung, dan Surabaya dengan total tarif terbesar terdapat di Jakarta sebesar Rp. 99.552.000. Penjelasan penggunaan transportasi dengan ID pegawai jika ditampilkan menggunakan visualisasi matriks. Pada kartu *Average of Ride Distance*, terlihat bahwa rata-rata jarak perjalanan adalah 10.46 km dan pada kartu *Max of Ride Distance*, terlihat bahwa jarak terjauh adalah 73,76 Km. Tampilan data dapat didetailkan dengan memilih tanggal yang ingin dilihat.

Terdapat pengamanan tambahan dalam *Power BI. Row-Level Security yang* dapat digunakan untuk membatasi akses data untuk pengguna tertentu dalam satu atau beberapa tabel *dataset. Row-level security* juga dapat dikonfigurasi pada dataset yang menggunakan *DirectQuery,* seperti *SQL Server* (Marco Russo, 2016).

Selanjutnya, dibahas tentang penggunaan dari *row level security* di *Power BI Desktop. User* dapat mendefinisikan peran dan aturan. Terdapat beberapa langkah dalam mendefinisikan peran kemanan (Rowlevel security (RLS) with Power BI, 2019).

- 1. Import data ke dalam report di Power BI Desktop, atau konfigurasi koneksi DirectQuery.
- 2. Pilih tab Modelling, lalu pilih Manager Roles.
- 3. Pilih Create dan berikan nama untuk peran tersebut.
- 4. Pilih tabel yang akan digunakan untuk diaplikasikan fungsi DAX.
- 5. Masukkan ekspresi DAX. Contohnya: [Entity ID]="Value" dengan Entity ID adalah kolom Position (jabatan) dan Value adalah nama dari masing-masing jabatan.
 - a. Developer Lead
 - [Position] IN {"Developer Team Lead","Developer Lead"}.
 - b. Developer Team Lead
 - [Position] IN {"Back End Developer","Developer Team Lead"}.
 - c. HR & GA Manager
 - [Position] IN {"HR & GA Manager"," HRD Staff"}.
 - d. Infrastructure Lead
 - [Position] IN {"Infrastructure Lead","Infrastructure Engineer","Infrastructure Project Manager"}.
 - e. Mobile Developer Lead

[Position] IN {"Mobile Developer Lead"," Mobile Developer Team Lead"," Mobile Project Manager"}.

- f. Mobile Developer Team Lead
 - [Position] IN {"Mobile Developer Team Lead"," Mobile Developer "}.
- g. Mobile Product Developer Team Lead
 - [Position] IN {"Mobile Product Developer"," Mobile Product Developer Team Lead"}.
- h. Office Manager
 - [Position] IN {"Office Manager", "Accounting Staff", "Household Assistant", "Security"}.
- i. Product Developer Team Lead
 - [Position] IN {"Product Developer Team Lead", "Product Developer", "Product Business Analyst"}.
- j. Product Manager
 - [Position] IN {"Product Manager"," Product Developer Team Lead"}.
- k. Project Lead
 - [Position] IN {"Project Manager Lead","Quality Assurance Lead","Project Lead"}.
- I. Project Manager Lead
 - [Position] IN {"Project Manager","Project Manager Lead","Business Analyst"}.
- m. Quality Assurance Lead
 - [Position] IN {"Quality Assurance Lead","Quality Assurance Staff"}.
- n. Researcher
 - [Position] IN {"AR/VR Developer","Researcher"}.
- o. Revenue Lead
 - [Position] IN {"Revenue Staff","Account Manager","Revenue Lead"}.
- p. Senior Front End Developer
 - [Position] IN {"Senior Front End Developer", "Front End Developer"}.
- q. UX Designer Lead
- r. [Position] IN {"UX Designer","UX Designer Lead"}.

Setelah membuat ekspresi DAX, *user* dapat memlih tanda centang yang berada di atas kotak dan pilih *save*.

Gambar 7. Tampilan data setelah digunakan RLS

Tampilan pada **Gambar 7** memperlihatkan bahwa peran yang digunakan adalah *Developer team lead*, sehingga *dashboard* hanya menampilkan data untuk peran tersebut, yaitu informasi mengenai karyawan dari *back end developer* dan *developer team lead* itu sendiri. Setelah diberi keamanan, *lead* dari divisi tersebut tidak dapat melihat data-data dari divisi lainnya. Pada penelitian sebelumnya (Putra & Sari, 2016), peneliti hanya sampai penggambaran *dashboard* sedangkan pada penelitian ini, dituliskan sampai penggunaan *Row Level Security*.

KESIMPULAN

Dari hasil pembahasan dapat disimpulkan bahwa penyajian data dan informasi mengenai data kehadiran dan data transportasi dapat menggunakan *Power BI*. Data-data yang sudah didapat dari sumber tersebut dapat menjadi acuan dalam membuat *dashboard* data kehadiran dan data transportasi. Data-data yang terkumpul mengandung informasi yang dapat dianalisis, sehingga dari kumpulan data tersebut dapat diperoleh suatu informasi yang dapat digunakan oleh perusahaan untuk mengetahui informasi mengenai kehadiran dan penggunaan transportasi. Ciri khas dari luaran penelitian ini yang merupakan kontribusi adalah terdiri dari dua *reports* yaitu, *reports* untuk data kehadiran yang terdiri dari satu *dashboard* yaitu, *dashboard daily attendance* dan *reports* untuk data transportasi yang terdiri dari dua *dashboard* yaitu, *dashboard trip* dan *dashboard trip information*. Hasil dari penelitian ini adalah *dashboard daily attendance* dengan grafik

Jurnal Sains dan Edukasi Sains, Vol.4, No.1, Februari 2021: 1-8

Clock In memperlihatkan presensi terbanyak pada pukul 10.00 dan grafik Clock Out memperlihatkan presensi terbanyak pada pukul 18.00. Lalu, dashboard trip dengan informasi total tarif terbesar berdasarkan kode perjalanan adalah "19AC0113" dengan total melebihi Rp. 9.000.000,00 dari karyawan PT. ATG dan dashboard trip information memperlihatkan penggunaan transportasi terjadi pada tiga kota, yaitu Jakarta, Bandung, dan Surabaya dengan total tarif terbesar terdapat di Jakarta sebesar Rp. 99.552.000. Reports yang sudah dibuat, dapat dilihat di Power BI Desktop atau Power BI Service sehingga masing-masing lead dapat melihat informasi mengenai anak buahnya dengan menggunakan pengamanan row-level security agar lead tidak dapat melihat informasi mengenai divisi lain.

DAFTAR PUSTAKA

- Akbar, R., Soniawan, A., Dinur, R., Adrian, J., Azim, R., & Zikri, A. (2017). Implementasi Business Intelligence untuk Menganalisis Data Persalinan Anak di Klinik Ani Padang dengan Menggunakan Aplikasi Tableau Public. *JOIN*, 2, 20-24.
- Darman, R. (2018). Analisis Data Tanaman Padi di Indonesia Menggunakan Power Bl. *Jurnal Inovtek Polbeng*, 155-163.
- Gowthami, K., & Kumar, M. R. (2017). Study on Business Intelligence Tools for Enterprise Dashboard Development. *International Research Journal of Engineering and Technology*, *04*(04), 2987-2992.
- Kadir, A. (2002). Konsep dan Tuntunan Praktis Basis Data. Yogyakarta: ANDI Yogyakarta.
- Luminita, S., & Magdalena, R. (2012). Optimizing time in business with Business Intelligence solution. *Procedia Social and Behavioral Sciences*, 638-648.
- Marco Russo, A. F. (2016). Introducing Microsoft Power BI. Washington: Microsoft Press.
- Putra, F. M., & Sari, R. (2016). Aplikasi Business Intelligence Dashboard sebagai Alat Monitoring dan Bahan Pengambilan Keputusan Sales and Account Receivable. *MULTINETICS*, 2, 35-42.
- Row-level security (RLS) with Power BI (2019). https://docs.microsoft.com/en-us/power-bi/service-admin-rls.
- Siagian, S. P. (2009). Kiat Meningkatkan Produktivitas Kerja. Jakarta: Rineka Cipta.
- Zaky Nur Husni, I. M. (2014). Implementasi Business Intelligence pada Manajemen Report Bank XYZ. *Jurnal Sains dan Senni POMITS*, 16-21.