Распределенные методы использующие сжатые коммуникации для решения вариационных неравенств

Александр Безносиков

MIPT

23 сентября 2022

A. Beznosikov, P. Richtárik, M. Diskin, M. Ryabinin, A. Gasnikov. Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees [3]

Распределенное вариационное неравенство

Определение

Найти $z^* \in \mathbb{R}^d$ такую, что $\langle F(z^*), z-z^* \rangle \geq 0, \; \forall z \in \mathbb{R}^d,$

rде $F: \mathbb{R}^d o \mathbb{R}^d$ некоторый оператор. Мы предполагаем, что F распределен между M рабочими/агентами/устройствами:

$$F(z) \stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^{M} F_m(z),$$

где $F_m:\mathbb{R}^d o\mathbb{R}^d$ для всех $m\in\{1,2,\ldots,M\}.$

Эта формулировка эквивалентна:

Найти $z^* \in \mathbb{R}^d$ такую, что $F(z^*) = 0$.

Вариацинное неравенство

• Задача минимизация:

$$\min_{z\in\mathbb{R}^d}f(z).$$

Мы берем $F(z) \stackrel{\mathsf{def}}{=} \nabla f(z)$. Ищем $\nabla f(z^*)$.

• Седловая задача:

$$\min_{x \in \mathbb{R}^{d_x}} \min_{y \in \mathbb{R}^{d_y}} g(x, y).$$

Здесь
$$F(z) \stackrel{\mathsf{def}}{=} F(x,y) = [\nabla_x g(x,y), -\nabla_y g(x,y)]$$
. Ищем $\nabla_x g(x^*,y^*) = 0$.

• Поиск стационарной точки оператора:

Найти
$$z^* \in \mathbb{R}^d$$
 такую, что $T(z^*) = z^*$,

где $T: \mathbb{R}^d o \mathbb{R}^d$ оператор. Берем F(z) = z - T(z).

Вариационное неравенство: пример

• Задача минимизация:

$$\min_{z\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n I(f(x_i,z),y_i),$$

где $\{x_i, y_i\}_{i=1}^n$ — данные, f — модель в параметрами z, l — функция потерь.

Распределенный вариант:

$$\min_{z \in \mathbb{R}^d} \frac{1}{M} \sum_{m=1}^M \frac{1}{n_m} \sum_{i=1}^{n_m} I(f(x_i, z), y_i).$$

• Седловая задача:

$$\min_{z \in \mathbb{R}^d} \max_{\|\delta_i\| \le e} \frac{1}{n} \sum_{i=1}^n I(f(x_i + \delta_i, z), y_i),$$

где δ_i – состязательный шум.

Распределенные задачи

- Кластерное обучение
- Федеративное обучение

Figure: Централизованное распределенное/федеративное обучение

Распределенные задачи

- Кластерное обучение
- Федеративное обучение

Figure: Централизованное распределенное/федеративное обучение

Квантизация и компрессия

Определение (Квантизация)

Стохастический оператор $Q:\mathbb{R}^d o \mathbb{R}^d$ называется квантизацией если существует константа $q \geq 1$ такая, что

$$Q(z) = z$$
, $\mathbb{E}||Q(z)||^2 \le q||z||^2$, $\forall z \in \mathbb{R}^d$.

Ожидаемое/среднее сжатие (насколько меньше занимает в памяти сжатый вектор): $\beta^{-1} \stackrel{\text{def}}{=} \frac{\mathbb{E}\|Q(z)\|_{\text{bits}}}{\|z\|_{\text{bits}}}$. Отметим, что $\beta \geq 1$. Примеры: случайный выбор координат.

Определение (Компрессия)

(Стохастический) оператор $C:\mathbb{R}^d o \mathbb{R}^d$ называется компрессией, если существует $\delta \geq 1$ такая, что

$$|E||C(z) - z||^2 \le (1 - 1/\delta)||z||^2, \quad \forall z \in \mathbb{R}^d.$$

Ожидаемое/среднее сжатие (насколько меньше занимает в памяти сжатый вектор): $\beta^{-1} \stackrel{\text{def}}{=} \frac{\mathbb{E}\|C(z)\|_{\text{bits}}}{\|z\|_{\text{bits}}}$. Отметим, что $\beta \geq 1$.

Предположения

Определение (Липшецевость)

Каждый оператор F_m является L-Липшецевым, если для любых $z_1,z_2\in\mathbb{R}^d$ мы имеем $\|F_m(z_1)-F_m(z_2)\|\leq L\|z_1-z_2\|.$

Для минимизации и седел, эти свойства эквиваленты гладкости.

Definition (Монотонность)

- **(SM)** Сильная монотонность. Оператор F является μ -сильно монотонным, если для любых $z_1, z_2 \in \mathbb{R}^d$ мы имеем $\langle F(z_1) F(z_2), z_1 z_2 \rangle \ge \mu \|z_1 z_2\|^2$.
- **(M) Монотонность.** Оператор F является монотонным, если для любых $z_1, z_2 \in \mathbb{R}^d$ мы имеем $\langle F(z_1) F(z_2), z_1 z_2 \rangle \geq 0$.
- **(NM) Minty/немонотонность.** Оператор F удовлетворяет условию Minty, если существует $z^* \in \mathbb{R}^d$ такая, что для любой $z \in \mathbb{R}^d$ мы имеем $\langle F(z), z-z^* \rangle \geq 0$.

Для минимизации это эквивалентно (сильной) выпуклости, а для седловых задач (сильной) выпуклости—(сильной) вогнутости.

- Идея первая: использовать уже имеющиеся методы для задач минимизации.
- Например, квантизованный градиентный спуск

$$z^{k+1} = z^k - \gamma \cdot \frac{1}{M} \sum_{m=1}^{M} Q(F_m(z^k))$$

- Суть:
 - 1) пересылаем на сервер $Q(F_m(z^k))$ на сервер,
 - 2) сервер делает апдейт: $z^{k+1} = z^k \gamma \cdot \frac{1}{M} \sum_{m=1}^{M} Q(F_m(z^k)),$
 - 3) сервер рассылает всем устройствам z^{k+1} .

- Идея первая: использовать уже имеющиеся методы для задач минимизации.
- Доказательство:

- Идея первая: использовать уже имеющиеся методы для задач минимизации.
- Доказательство:

- Идея первая: использовать уже имеющиеся методы для задач минимизации.
- Получается оценка на число итераций в сильно монотонном случае с $F_m(z^*)=0$:

$$\mathcal{O}\left(q\cdot\frac{\mathit{L}^{2}}{\mu^{2}}\right).$$

Оценка на число бит:

$$\mathcal{O}\left(\frac{q}{\beta}\cdot\frac{L^2}{\mu^2}\right)$$
.

• Это не очень хорошая оценка. Более того, в монотонном случае вообще не получится доказать сходимость.

- Идея вторая: вставить квантизацию или компрессию в методы для вариационных неравенств.
- Например, квантизованный экстраградиентный метод

$$z^{k+1/2} = z^k - \gamma \cdot \frac{1}{M} \sum_{m=1}^{M} Q_1(F_m(z^k))$$

$$z^{k+1} = z^k - \gamma \cdot \frac{1}{M} \sum_{m=1}^{M} Q_2(F_m(z^{k+1/2}))$$

• Здесь взяты разные Q. По факту это может быть одинаковый оператор с точки зрения физики, но с разной или одинаковой случайностью.

- Идея вторая: вставить квантизацию или компрессию в методы для вариационных неравенств.
- Доказательство:

- Идея вторая: вставить квантизацию или компрессию в методы для вариационных неравенств.
- Доказательство:

- Идея вторая: вставить квантизацию или компрессию в методы для вариационных неравенств.
- Получается оценка на число итераций в сильно монотонном случае с $F_m(z^*)=0$:

$$\mathcal{O}\left(q\cdot\frac{L^2}{\mu^2}\right)$$
.

Оценка на число бит:

$$\mathcal{O}\left(\frac{q}{\beta}\cdot\frac{L^2}{\mu^2}\right)$$
.

• Эта оценка не отличается от той, что мы имели ранее и она так же не очень хорошая. Более того, в монотонном случае вообще не получится доказать сходимость.

- Идея третья: взять за основу метод редукции дисперсии.
- Для методов минимизации это делали в работах:

E. Gorbunov, K. Burlachenko, Z. Li, P. Richtárik. MARINA: Faster Non-Convex Distributed Learning with Compression [4]

X. Qian, P. Richtárik, T. Zhang. Error Compensated Distributed SGD Can Be Accelerated [5]

Метод редукции для ВН:

A. Alacaoglu, Y. Malitsky. Stochastic Variance Reduction for Variational Inequality Methods [1]

- Идея третья: взять за основу метод редукции дисперсии.
- Метод редукции дисперсии:
 Решается нераспределенная задача

$$\min_{z\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n f_i(z)$$

следующим методом:

$$z^{k+1} = z^k - \gamma \cdot (\nabla f_{i_k}(z^k) - \nabla f_{i_k}(w^k) + \nabla f(w^k))$$
 $w^{k+1} = \left\{egin{array}{ll} w^k & ext{c вероятностью} & au \ z^k & ext{c вероятностью} & 1- au \end{array}
ight.$

- Идея третья: взять за основу метод редукции дисперсии.
- Метод редукции дисперсии:

$$z^{k+1} = z^k - \gamma \cdot (\nabla f_{i_k}(z^k) - \nabla f_{i_k}(w^k) + \nabla f(w^k))$$

MASHA1 для квантизаций

Algorithm 1 MASHA1

```
Parameters: Stepsize \gamma > 0, parameter \tau \in (0; 1), number of iterations K.
Initialization: Choose z^0 = w^0 \in \mathcal{Z}.
Devices send F_m(w^0) to server and get F(w^0)
for k = 0, 1, 2, \dots, K-1 do
    for each device m in parallel do
        z^{k+1/2} = \tau z^k + (1-\tau)w^k - \gamma F(w^k)
        Sends q_m^k = Q_m^{\text{dev}}(F_m(z^{k+1/2}) - F_m(w^k)) to server
    end for
    for server do
        Sends to devices g^k = Q^{\text{serv}} \left[ \frac{1}{M} \sum_{m=1}^{M} g_m^k \right]
        Sends to devices one bit b_k: 1 with probability 1-\tau, 0 with with probability \tau
    end for
    for each device m in parallel do
        z^{k+1} = z^{k+1/2} - \gamma a^k
        If b_k = 1 then w^{k+1} = z^k, sends F_m(w^{k+1}) to server and gets F(w^{k+1})
        else w^{k+1} = w^k
```

end for

end for

Сходимость MASHA1

Сходимость MASHA1

Theorem

Пусть выполнено предположение о Липшецевости операторов, а также одно из предположений о монотонности. Тогда для некоторого шага γ и $1-\tau=1/\beta$ справедлива следующая оценка на число бит необходимое MASHA1, чтобы достигнуть точности ε

- ullet в сильно монотонном случае: $\mathcal{O}([1+\sqrt{rac{1}{M}+rac{1}{eta}\cdotrac{L}{\mu}}]\lograc{1}{arepsilon});$
- ullet в монотонном случае: $\mathcal{O}(\sqrt{rac{1}{M}+rac{1}{eta}}\cdotrac{L\|\dot{\mathbf{z}}^{\mathbf{o}}-\mathbf{z}^*\|^2}{arepsilon});$
- ullet в немонотонном случае: $\mathcal{O}([1+rac{q}{M}]rac{L^2\|z^0-z^*\|^2}{arepsilon^2}).$

Сложности для методов без квантизации:

- в сильно монотонном случае: $\mathcal{O}(\frac{L}{\mu}\log\frac{1}{\varepsilon})$;
- в монотонном случае: $\mathcal{O}(\frac{L\|z^{0}-z^{*}\|^{2}}{\varepsilon});$
- ullet в немонотонном случае: $\mathcal{O}(\frac{L^2 \|z^0 z^*\|^2}{arepsilon^2})$.

А что с компрессией?

• С компрессией могут быть проблемы. Рассмотрим d=3:

$$f_1(x)=\langle a,x\rangle^2+rac{1}{4}\|x\|^2, \quad f_2(x)=\langle b,x\rangle^2+rac{1}{4}\|x\|^2, \quad f_3(x)=\langle c,x\rangle^2+rac{1}{4}\|x\|^2,$$
 где $a=(-3,2,2),\ b=(2,-3,2),\ c=(2,2,-3),$ и Тор-1 компрессию.

• Компенсация ошибки:

MASHA2 для компрессий

Algorithm 2 MASHA2

```
Parameters: Stepsize \gamma > 0, parameter \tau, number of iterations K.
Initialization: Choose z^0 = w^0 \in \mathcal{Z}, e_m^0 = 0, e^0 = 0.
Devices send F_m(w^0) to server and get F(w^0)
for k = 0, 1, 2, \dots, K - 1 do
    for each device m in parallel do
         z^{k+1/2} = \tau z^k + (1-\tau)w^k - \gamma F(w^k)
         Sends g_m^k = C_m^{\text{dev}}(\gamma F_m(z^{k+1/2}) - \gamma F_m(w^k) + e_m^k) to server
         e_m^{k+1} = e_m^k + \gamma F_m(z^{k+1/2}) - \gamma F_m(w^k) - q_m^k
    end for
    for server do
        Sends to devices g^k = C^{\text{serv}} \left[ \frac{1}{M} \sum_{m=1}^{M} g_m^k + e^k \right]
        e^{k+1} = e^k + \frac{1}{M} \sum_{m=1}^{M} g_m^k - g^k
         Sends to devices one bit b_k: 1 with probability 1-\tau, 0 with with probability \tau
    end for
    for each device m in parallel do
         z^{k+1} = z^{k+1/2} - \gamma q^k
         If b_k = 1 then w^{k+1} = z^k, sends F_m(w^{k+1}) to server and gets F(w^{k+1})
         else w^{k+1} = w^k
    end for
end for
```

Convergence of MASHA2

$\mathsf{Theorem}$

Пусть выполнено предположение о Липшецевости операторов, а также одно из предположений о монотонности. Тогда для некоторого шага γ и 1- au=1/eta справедлива следующая оценка на число бит необходимое MASHA2, чтобы достигнуть точности ε

- в сильно монотонном случае: $\mathcal{O}(\frac{L}{\mu}\log\frac{1}{\varepsilon})$;
- В монотонном случае: $\mathcal{O}(\frac{L\|z^0 z^*\|^2}{\varepsilon});$ В немонотонном случае: $\mathcal{O}(\delta \cdot \frac{L^2\|z^0 z^*\|^2}{\varepsilon^2}).$

Эксперименты

• Билинейная седловая задача:

$$\begin{split} \min_{x \in \mathbb{R}^{d_x}} \min_{y \in \mathbb{R}^{d_y}} g(x,y) &\stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^M g_m(x,y) \quad \mathsf{c} \\ g_m(x,y) &\stackrel{\text{def}}{=} x^\top A_m y + a_m^\top x + b_m^\top y + \frac{\lambda}{2} \|x\|^2 - \frac{\lambda}{2} \|y\|^2, \end{split}$$

где $A_m \in \mathbb{R}^{d \times d}$, $a_m, b_m \in \mathbb{R}^d$. Это задача λ -сильно выпуклая—сильно вогнутая и, более того, все функции g_m являются $\|A_m\|_2$ -гладкими. Мы берем d=100 и случайно генерируем положительно определенные матрицы A_m и векторы a_m, b_m , λ выбирается, как $\max_m \|A_m\|_2/10^5$.

• Мы сравниваем наши методы с 1) QGD [2] с Rand30% квантизацией, 2)GD с техникой компенсации ошибки [6] и Тор 30% компрессором, 3) квантизованным EG с Rand30% квантизацией.

Эксперименты: билинейная седловая задача

Figure: Сравнение MASHA1 и MASHA2 с QGD, GD с компенсацией ошибки, и квантизованным EG по итерациям и мегабайтам.

- Ahmet Alacaoglu and Yura Malitsky.
 Stochastic variance reduction for variational inequality methods.
 In *Conference on Learning Theory*, pages 778–816. PMLR, 2022.
 - Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-efficient SGD via gradient quantization and encoding.

In Advances in Neural Information Processing Systems, pages 1709–1720, 2017.

- Aleksandr Beznosikov, Peter Richtárik, Michael Diskin, Max Ryabinin, and Alexander Gasnikov.
- Distributed methods with compressed communication for solving variational inequalities, with theoretical guarantees.
- arXiv preprint arXiv:2110.03313, 2021.
- Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. Marina: Faster non-convex distributed learning with compression. In *International Conference on Machine Learning*, pages 3788–3798. PMLR, 2021.
- Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed sgd can be accelerated.

Advances in Neural Information Processing Systems, 34:30401–30413, 2021.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. arXiv preprint arXiv:1809.07599, 2018.

Thijs Vogels, Sai Praneeth Karinireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient compression for distributed optimization.

Advances In Neural Information Processing Systems 32 (Nips 2019), 32(CONF), 2019.