M-Estimators

1.1 Definition

Definition 1.1.1. For any function $\psi(y; \theta)$, define the functional $T(F) = \theta_0$, where θ_0 is a solution to the equation:

$$\Psi_F(\boldsymbol{\theta}_0) \equiv \int \boldsymbol{\psi}(\boldsymbol{y}; \boldsymbol{\theta}_0) dF(\boldsymbol{y}) = 0. \tag{1.1.1}$$

Suppose $(y_i)_{i=1}^n$ is a random sample from F with empirical distribution function \mathbb{F}_n . The **M-estimator** corresponding to ψ is $\hat{\theta}_n = T(\mathbb{F}_n)$, which is a solution to the equation:

$$oldsymbol{\Psi}_n(\hat{oldsymbol{ heta}}_n) \equiv rac{1}{n} \sum_{i=1}^n oldsymbol{\psi}(oldsymbol{y}_i; \hat{oldsymbol{ heta}}_n) = oldsymbol{0}.$$

Discussion 1.1.1. Often, $\psi(y;\theta)$ arises as the gradient of an objective function $q(y;\theta)$:

$$\boldsymbol{\psi}(\boldsymbol{y};\boldsymbol{ heta}_0) = rac{\partial}{\partial \boldsymbol{ heta}_0} q(\boldsymbol{y};\boldsymbol{ heta}_0),$$

and θ_0 solving (1.1.1) is a solution to the minimization problem:

$$\boldsymbol{\theta}_0 = \arg\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \int q(\boldsymbol{y}; \boldsymbol{\theta}) dF(\boldsymbol{y}).$$

For example, suppose F is a parametric distribution $F(\boldsymbol{y};\boldsymbol{\theta}_0)$ and the goal is to estimate $\boldsymbol{\theta}_0$. Consider specifying the negative log likelihood $-\ln f(\boldsymbol{y};\boldsymbol{\theta})$ as the objective $q(\boldsymbol{y};\boldsymbol{\theta})$. The gradient $\boldsymbol{\psi}(\boldsymbol{y};\boldsymbol{\theta})$ of $q(\boldsymbol{y};\boldsymbol{\theta})$ is the parametric score equation:

$$\Psi_n(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial \boldsymbol{\theta}} \ln f(\boldsymbol{y}_i; \boldsymbol{\theta}).$$

The maximum likelihood estimator $\hat{\theta}_n$, which satisfies $\Psi_n(\hat{\theta}_n) = \mathbf{0}$, is therefore an example of an M-estimator. See section (1.3) for additional examples.

Created: Jun 2017

1.2 Asymptotics

Theorem 1.1.1 (Consistency). Suppose $(y_i)_{i=1}^n$ is a random sample from F, and that θ belongs to a compact parameter space Θ . Assume that:

- i. $\Psi_F(\boldsymbol{\theta})$ exists for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$, and that $\boldsymbol{\theta}_0$ is the unique zero of $\Psi_F(\boldsymbol{\theta})$.
- ii. Each component of $\psi(y; \theta)$ is continuous and θ and bounded by an integrable function of y, not depending on θ .

If
$$\Psi_n(\hat{\boldsymbol{\theta}}_n) \stackrel{as}{\longrightarrow} \mathbf{0}$$
, then $\hat{\boldsymbol{\theta}}_n \stackrel{as}{\longrightarrow} \boldsymbol{\theta}_0$.

Remark 1.1.1. See Boos and Stefanski (2013), theorem 7.1.

Theorem 1.1.2 (Asymptotic Normality). Suppose $(y_i)_{i=1}^n$ is a random sample from F, and θ belongs to a compact parameter space Θ . Assume that:

- i. $\Psi_F(\boldsymbol{\theta})$ exists for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$, and that $\boldsymbol{\theta}_0$ is the unique zero of $\Psi_F(\boldsymbol{\theta})$.
- ii. $\psi(y;\theta)$ is continuous and twice differentiable with respect to θ for all y in the support of F and θ in a neighborhood of θ_0 .
- iii. For $\boldsymbol{\theta}$ in a neighborhood of $\boldsymbol{\theta}_0$, there exists an integrable function $g(\boldsymbol{y})$ such that:

$$\left| \frac{\partial^2}{\partial \theta_{j_1} \partial \theta_{j_2}} \psi_{j_3}(\boldsymbol{y}; \boldsymbol{\theta}) \right| \leq g(\boldsymbol{y})$$

for $\forall (j_1, j_2, j_3) \in \{1, \dots, \dim(\boldsymbol{\theta})\}^3$, and $\int g(y)dF(y)$.

iv. $A(\theta_0)$ exists and is non-singular, where:

$$A(\theta_0) = -E_F\{\dot{\psi}(y;\theta_0)\} = -\int \dot{\psi}(y;\theta_0)dF(y).$$

v. $B(\theta_0)$ exists and is finite, where:

$$\boldsymbol{B}(\boldsymbol{\theta}_0) = E_F \big\{ \boldsymbol{\psi}(\boldsymbol{y}; \boldsymbol{\theta}_0) \otimes \boldsymbol{\psi}(\boldsymbol{y}; \boldsymbol{\theta}_0) \big\} = \int \boldsymbol{\psi}(\boldsymbol{y}; \boldsymbol{\theta}_0) \otimes \boldsymbol{\psi}(\boldsymbol{y}; \boldsymbol{\theta}_0) dF(\boldsymbol{y}).$$

If $\Psi_n(\hat{\theta}_n) = o_p(n^{-1/2})$, then:

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \stackrel{d}{\longrightarrow} N\{\boldsymbol{0}, \boldsymbol{\Omega}(\boldsymbol{\theta}_0)\},$$

$$\mathbf{\Omega}(oldsymbol{ heta}_0) = oldsymbol{A}^{-1}(oldsymbol{ heta}_0) oldsymbol{A}^{-T}(oldsymbol{ heta}_0).$$

Remark 1.1.2. See Boos and Stefanski (2013), theorem 7.2.

Proof. By Taylor expansion:

$$o_p(n^{-1/2}) = \Psi_n(\hat{\boldsymbol{\theta}}_n) = \Psi_n(\boldsymbol{\theta}_0) + \dot{\Psi}_n(\boldsymbol{\theta}_0)(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) + \boldsymbol{R}_n(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0),$$

where the remainder:

$$\boldsymbol{R}_n = \sum_{j=1}^{\dim(\boldsymbol{\theta})} \frac{\partial \dot{\boldsymbol{\Psi}}_n}{\partial \theta_j} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_n^*} (\hat{\theta}_{n,j} - \theta_{0,j})$$

and $||\boldsymbol{\theta}_n^* - \boldsymbol{\theta}_0|| \le ||\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0||$. By condition (iii.), the matrix of partial derivatives appearing in the remainder is bounded by a function not depending on $\boldsymbol{\theta}$, hence:

$$||oldsymbol{R}_n|| = \mathcal{O}_pig(||\hat{oldsymbol{ heta}}_n - oldsymbol{ heta}_0||ig).$$

Since the conditions for consistency are contained within the conditions for asymptotic normality, $\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0 = o_p(1)$, which implies $\boldsymbol{R}_n = o_p(1)$. Now:

$$o_p(n^{-1/2}) = \Psi_n(\boldsymbol{\theta}_0) + \{\dot{\Psi}_n(\boldsymbol{\theta}_0) + o_p(1)\}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0),$$

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) = \{-\dot{\Psi}_n(\boldsymbol{\theta}_0) + o_p(1)\}^{-1}\sqrt{n}\Psi_n(\boldsymbol{\theta}_0).$$

By the LLN:

$$-\dot{\boldsymbol{\Psi}}_n(\boldsymbol{\theta}_0) + o_p(1) \stackrel{p}{\longrightarrow} -E\{\dot{\boldsymbol{\psi}}(\boldsymbol{y};\boldsymbol{\theta}_0)\} = \boldsymbol{A}(\boldsymbol{\theta}_0)$$

By continuous mapping:

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) = \sqrt{n}\boldsymbol{A}^{-1}(\boldsymbol{\theta}_0)\boldsymbol{\Psi}_n(\boldsymbol{\theta}_0) + o_p(1) = \frac{1}{\sqrt{n}}\sum_{i=1}^n \left\{\boldsymbol{A}^{-1}(\boldsymbol{\theta}_0)\boldsymbol{\psi}(\boldsymbol{y}_i;\boldsymbol{\theta}_0)\right\} + o_p(1).$$

Identify $\varphi(y_i; \theta_0) = A^{-1}(\theta_0)\psi(y_i; \theta_0)$ as the influence function of $\hat{\theta}_n$. By the CLT,

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \stackrel{d}{\longrightarrow} N\{\boldsymbol{0}, \boldsymbol{\Omega}(\boldsymbol{\theta}_0)\},$$

where:

$$\Omega(\boldsymbol{\theta}_0) = \operatorname{Var} \{ \boldsymbol{\varphi}(\boldsymbol{y}_i; \boldsymbol{\theta}_0) \} = \boldsymbol{A}^{-1}(\boldsymbol{\theta}_0) E \{ \boldsymbol{\psi}(\boldsymbol{y}_i; \boldsymbol{\theta}_0) \otimes \boldsymbol{\psi}(\boldsymbol{y}_i; \boldsymbol{\theta}_0) \} \boldsymbol{A}^{-T}(\boldsymbol{\theta}_0).$$

Created: Jun 2017

1.3 Examples

Example 1.1.1 (Non-linear Least Squares). Consider the model:

$$Y_i = q(\boldsymbol{x}_i, \boldsymbol{\beta}) + \epsilon_i,$$

where g is a known differentiable function, and $(\epsilon_i)_{i=1}^n$ are independent, random residuals with $E(\epsilon_i|\boldsymbol{x}_i) = 0$ and $Var(\epsilon_i|\boldsymbol{x}_i) = \sigma_i^2$. Define the squared error objective function:

$$Q(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \{Y_i - g(\boldsymbol{x}_i, \boldsymbol{\beta})\}^2.$$

Differentiating to obtain the estimating equation:

$$\Psi_n(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^n \{Y_i - g(\boldsymbol{x}_i, \boldsymbol{\beta})\} \dot{g}(\boldsymbol{x}_i, \boldsymbol{\beta}).$$

Identify $\psi(Y_i, \boldsymbol{x}_i; \boldsymbol{\beta}) = \{Y_i - g(\boldsymbol{x}_i, \boldsymbol{\beta})\}\dot{g}(\boldsymbol{x}_i, \boldsymbol{\beta})$. Let $\hat{\boldsymbol{\beta}}$ denote a solution to $\Psi_n(\hat{\boldsymbol{\beta}}) = \mathbf{0}$, then under the assumptions of theorem (1.1.2), $\hat{\boldsymbol{\beta}}$ is an M-estimator.

 $\mathbf{A}(\boldsymbol{\beta}_0)$ takes the form:

$$\boldsymbol{A}(\boldsymbol{\beta}_0) = -E_0\{\dot{\boldsymbol{\psi}}(Y_i, \boldsymbol{x}_i; \boldsymbol{\beta}_0)\} = E_0\{\dot{g}(\boldsymbol{x}_i, \boldsymbol{\beta}) \otimes \dot{g}(\boldsymbol{x}_i, \boldsymbol{\beta})\}.$$

The empirical estimate of $A(\beta_0)$ is:

$$\hat{A} = \frac{1}{n} \sum_{i=1}^{n} \dot{g}(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}}) \otimes \dot{g}(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}}).$$

 $B(\beta_0)$ takes the form:

$$\boldsymbol{B}(\boldsymbol{\beta}_0) = E_0 \Big[\big\{ Y_i - g(\boldsymbol{x}_i, \boldsymbol{\beta}) \big\}^2 \dot{g}(\boldsymbol{x}_i, \boldsymbol{\beta}) \otimes \dot{g}(\boldsymbol{x}_i, \boldsymbol{\beta}) \Big] = \sigma_i^2 \dot{g}(\boldsymbol{x}_i, \boldsymbol{\beta}) \otimes \dot{g}(\boldsymbol{x}_i, \boldsymbol{\beta}).$$

The empirical estimate of $B(\beta_0)$ is:

$$\hat{\boldsymbol{B}} = \frac{1}{n} \sum_{i=1}^{n} \left\{ Y_i - g(\boldsymbol{x}_i, \boldsymbol{\beta}) \right\}^2 \dot{g}(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}}) \otimes \dot{g}(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}}).$$

The asymptotic approximation to the distribution of $\hat{\beta}$ is:

$$\hat{\boldsymbol{\beta}} \stackrel{.}{\sim} N(\boldsymbol{\beta}_0, n^{-1}\hat{\boldsymbol{\Omega}}),$$

where
$$\hat{\Omega} = \hat{A}^{-1}\hat{B}\hat{A}^{-T}$$
.

Created: Jun 2017

Example 1.1.2 (Robust Regression). Consider the model:

$$Y_i = \boldsymbol{x}_i' \boldsymbol{\beta} + \epsilon_i,$$

where $(\epsilon_i)_{i=1}^n$ are independent, random residuals with $E(\epsilon_i|\boldsymbol{x}_i) = 0$ and $Var(\epsilon_i|\boldsymbol{x}_i) = \sigma_i^2$. The standard least squares estimating equations are:

$$\frac{1}{n}\sum_{i=1}^{n} (Y_i - \boldsymbol{x}_i'\boldsymbol{\beta})\boldsymbol{x}_i.$$

Consider the robust estimating equations:

$$oldsymbol{\Psi}_n(oldsymbol{eta}) = \sum_{i=1}^n \psi_ auig(Y_i - oldsymbol{x}_i'oldsymbol{eta}ig)oldsymbol{x}_i.$$

Where ψ_{τ} is a bounded loss function, such as Huber's function:

$$\psi_{\tau}(t) = \begin{cases} -\tau, & t < -\tau, \\ x, & -\tau < t < \tau, \\ \tau, & t > \tau. \end{cases}$$

or Tukey's biweight function:

$$\psi_{\tau}(t) = \begin{cases} t \left(1 - \frac{t^2}{\tau^2}\right)^2, & |t| < \tau, \\ 0, & |t| > \tau. \end{cases}$$

Let $\hat{\boldsymbol{\beta}}$ denote a solution to $\Psi_n(\hat{\boldsymbol{\beta}}) = \mathbf{0}$, then under the assumptions of theorem (1.1.2), $\hat{\boldsymbol{\beta}}$ is an M-estimator.

 $\mathbf{A}(\boldsymbol{\beta}_0)$ takes the form:

$$A(\boldsymbol{\beta}_0) = -E_0 \{ \dot{\psi}_{\tau} (Y_i - \boldsymbol{x}_i' \boldsymbol{\beta}) \boldsymbol{x}_i \otimes \boldsymbol{x}_i \}.$$

The empirical estimate of $A(\beta_0)$ is:

$$\hat{m{A}} = rac{1}{n} \sum_{i=1}^n \dot{\psi}_{ au} (Y_i - m{x}_i' \hat{m{eta}}) m{x}_i \otimes m{x}_i.$$

 $B(\beta_0)$ takes the form:

$$\boldsymbol{B}(\boldsymbol{\beta}_0) = E_0 \big\{ \psi_{\tau}^2 (Y_i - \boldsymbol{x}_i' \boldsymbol{\beta}) \boldsymbol{x}_i \otimes \boldsymbol{x}_i \big\}.$$

The empirical estimate of $B(\beta_0)$ is:

$$\hat{\boldsymbol{B}} = \frac{1}{n} \sum_{i=1}^{n} \psi_{\tau}^{2} (Y_{i} - \boldsymbol{x}_{i}' \hat{\boldsymbol{\beta}}) \boldsymbol{x}_{i} \otimes \boldsymbol{x}_{i}.$$

The asymptotic approximation to the distribution of $\hat{\beta}$ is:

$$\hat{\boldsymbol{\beta}} \stackrel{.}{\sim} N(\boldsymbol{\beta}_0, n^{-1}\hat{\boldsymbol{\Omega}}),$$

where $\hat{\Omega} = \hat{A}^{-1}\hat{B}\hat{A}^{-T}$.

•