МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

_	_	
Факультет	Естественнонаучні	ый
Направление	Ірикладная информатика и	информатика
Квалификация _	бакалавр	
Специализация _	математическое модел	лирование
Кафедра <u>высш</u> е	е й математики Группа	A3401
ОКОП	СНИТЕЛЬНАЯ ЗАП	ИСКА
К ВЫПУСК	ной квалификационн	НОЙ РАБОТЕ
СИМПЛЕ	КТИЧЕСКИЕ МЕТОДЫ ИНТЕГР	ИРОВАНИЯ
	УРАВНЕНИЯ ЛАНДАУ-ЛИФШИІ	ЦА
Автор квалифик	ационной работы <u>Плотников</u>	А. М. (подпись)
Руководитель	Лобанов И. С.	(подпись)

К защите допустить		
Зав. кафедрой	Попов И. Ю.	(подпись)
22 мая 2016 г.		

1 ПОСТАНОВКА ПРОБЛЕМЫ

1.1 Симплектический интегратор

Для того чтобы сохранить сохранить энергию системы можно воспользоваться симплектическим интегратором. Опираясь на работу Markiewicz (1999, стр. 3), в общем виде итерационная система имеет вид:

Рис. 1.1: Таблица для общего вида

$$S_{n+1} = S_n + h \sum_{j=1}^{s} b_j f(t_n + c_j h, \xi_j)$$

$$\xi_j = y_n + h \sum_{j=1}^{s} a_{ji} f(t_n + c_j h, \xi_i)$$
(1.1)

В данной работе рассматривается симплектический интегратор Рунге-Кутта второго порядка, он же метод Гаусса-Лежандра-Рунге-Кутта(далее ГЛРК). Для него таблица 1.1 выглядит как таблица 1.2.

$$\begin{array}{c|ccccc}
\frac{1}{2} - \frac{\sqrt{3}}{6} & \frac{1}{4} & \frac{1}{4} - \frac{\sqrt{3}}{6} \\
\frac{1}{2} + \frac{\sqrt{3}}{6} & \frac{1}{4} + \frac{\sqrt{3}}{6} & \frac{1}{4} \\
\hline
& \frac{1}{2} & \frac{1}{2}
\end{array}$$

Рис. 1.2: Таблица для метода Гаусса-Лагранжа-Рунге-Кутта

Для исследуемой модели f(x) есть правая часть уравнения Ландау-Лифшица $\ref{Mathieu}$. Тогда итерационная схема 1.1 для исследуемой модели будет записана в виде:

$$S_{n+1} = S_n + h \sum_{j=1}^{s} b_j \cdot \left(-\gamma S_n \times H_n^{eff} - \gamma \lambda S_n \times \left(S_n \times H_n^{eff} \right) \right)$$
 (1.2)

$$H_{n,j}^{eff} = S_n + h \sum_{i=1}^{s} a_{ji} \cdot \left(-\gamma S_n \times H_{n,j}^{eff} - \gamma \lambda S_n \times \left(S_n \times H_{n,j}^{eff} \right) \right)$$
 (1.3)

Замечание 1. Нужно отметить что в виде 1.2 энергия сохраняться не будет из-за диссипации энергии. Поэтому далее, при проведении эксперимента, для наглядности того, что энергия сохраняется коэффициент диссипации λ следует положить равным 0.

Для вычисления каждого следующего состояния системы необходимо решить нелинейное уравнение 1.3. Для этого можно воспользоваться методом Ньютона.

1.2 Метод Ньютона

2 РЕШЕНИЕ ПРОБЛЕМЫ

2.1 Переход к новому базису

Для того, чтобы воспользоваться симплектическим методом нужно представить Гамильтониан в виде:

$$\begin{cases} \dot{q}_i = \frac{\partial H}{\partial p_i} \\ \dot{p}_i = -\frac{\partial H}{\partial q_i} \end{cases}$$
(2.1)

Для этого в каждом состоянии системы для каждого атома введем пару базисных векторов (\bar{e}_{p_i} и \bar{e}_{q_i}) в касательной плоскости, к единичной сфере с центром в координате атома, в точке пересечения сферы и луча, пущенного из центра сферы в направлении спина атома (\bar{s}_i).

Рис. 2.1: Введение базисных векторов

ЛИТЕРАТУРА

Markiewicz, Daniel W (1999). «Survey on symplectic integrators». B
:Spring272, c. 1—13.