Closing the Loop

David Austin

Robotic Systems Lab
Research School of Information Sciences and Engineering
Australian National University

Outline

- Loop Closing Problem
- Fundamental Limitations
- Some Approaches
 - Laser Scan Matching (Gutman & Konolige)
 - E-M Mapping (Thrun, Burgard & Fox)
- Other limitations of SLAM
- Summary

Loop Closing Problem

- During the SLAM mapping process, the robot may come to a place that it has been to before
- Most existing techniques need to have an explicit method to utilise this extra information

A Matter of Scale

- All techniques can close small loops
- All techniques can be made to fail
- Most techniques will become unreliable with some size of loop
- The loop size depends strongly on the system characteristics: odometric drift, sensing rate, sensor quality

Closing the Loop

- 1. Recognise a place that we have seen before
- 2. Add link to represent new knowledge
- 3. Update path taken to represent additional knowledge gained (propagate info backwards)

1) Place Recognition

- For loop closing, we must be able to recognise places that we have previously visited.
- Whole problem in itself

Dudek '00

Raw Sensor Data Recognition • E.g. Laser scan matching • Not suitable for many sensors [C. Früh] The Australian National University

PCA Based Recognition

- Principal Components
 Analysis (selection of most useful aspects of the images for storage)
- Compare PCA of new images to stored PCA values
- Need an attention operator to focus on "interesting" things

Place Recognition Summary

Cannot be done with absolute certainty

- ⇒ must maintain multiple map hypotheses OR
- ⇒ be able to correct mistakes

3) Update path taken

- Need to propagate backwards the new information gained by closing the loop
- For arbitrarily large loops, the computation can be arbitrarily large
- However, computation usually not a significant issue

Fundamental Limitations

- As the size of the loop increases, so does the uncertainty, and so does the size of the search for matches
- Complexity blows up as we consider uncertainty in recognition
- Positional uncertainty will still grow with increasing radial distance from the origin

Approach 1 –Konolidge and Gutmann

- Three parts:
 - 1. Scan matching
 - 2. Consistent pose estimation
 - 3. Global registration
- Depends quite heavily on good estimates of position (must run frequently)
- Laser range scanner specific

Scan Matching

- Estimate the translation and rotation between scans
- Nonlinear
- Different points of view, occlusion
- Requires some computation
- Many approaches
- Line-based vs point-based

Scan Matching II reference scan line extraction projection filter current line extraction scan enough lines in no yes use ext. use extended idc $(dx, dy, d\alpha)$ matcher Σ_{error} [Konolige & Gutmann '99] THE AUSTRALIAN NATIONAL UNIVERSITY

Consistent Pose Estimation

- Have two types of relationships
 - 1. Scan matches
 - 2. Odometric information

Both are uncertain and non-linear.

Complex optimisation problem to find best estimate

Assume good initial estimate and linearise

Pose Relations from Scan Matching

Matching points of the two scans leads to a (complex) relationship between the origins of the scans

The complex relationship is linearised to simplify the optimisation step

Consistent Pose Estimation II

Solve linearised optimisation problem

$$W = \sum (D_{ij} - \overline{D}_{ij})^T C_{ij}^{-1} (D_{ij} - \overline{D}_{ij})$$

Iterate linear solution to converge

Consistent Pose Estimation III

[Konolige & Gutmann '99]

Global Registration

- Correlation of recent local map with relevant area of global map
- Search area grows as pose uncertainty grows
- False matches a real problem

Results

- (a) Raw data
- (b) & (c) Closing first small loop
- (d) & (e) Closing second, larger loop
- (f) Final map

[Konolige & Gutmann '99]

Results II (a) [Konolige & Gutmann '99] THE AUSTRALIAN NATIONAL UNIVERSITY

Summary – Konolige & Gutmann

- Performs quite well
- Runs fast enough for on-line estimation
- However,
 - Laser range scanner specific
 - Needs good initial estimates of poses (frequent updates)

Approach 2 – Thrun, Burgard, Fox

- Use E-M to simultaneously estimate the map and the pose of the robot
- Requires considerable computation
- It is assumed that the robot observes a series of (indistinguishable) landmarks

E-M Mapping

- Computing the maximum likelihood map, given the data
 - 1. Estimate the path of the robot, given current map
 - 2. Estimate the map, given current path
- Hill climbing approach
- Computationally expensive(!)
- No explicit loop-closing algorithm

Results

[Thrun, Burgard and Fox '98]

Summary – Thrun, Burgard, Fox

- General method, few assumptions
- High computational costs
- Not (yet) suited to on-line execution

Loop Closing Summary

- Practical loop closing is not so difficult
- Next (significant) advances will address problems of false loop closing/false correspondences
- Still issues with the amount of computation required to close large loops consistently

Other Limitations of SLAM

Need to keep in mind fundamental assumptions:

- 1. Independent observations
- 2. Stationary environment
- 3. Usefulness of position in an absolute map?

Also:

 Positional uncertainty will always grow with increasing radial distance from the origin

Independent Observations

- We assume that the observations are independent.
- This is plainly false
- Practical approach is to require a certain amount of movement for independence

Stationary Environment

- Assumption of stationary environment introduced through use of state
- Very few environments can be approximated this way.
- Motion (other than selfmotion) is normally ignored or treated as noise.

Absolute Position

 Position in absolute map doesn't always help solve the task

E.g. Door opening, manipulation tasks in general

Summary

- Loop closing highly worthwhile reduces uncertainty back along the path taken
- Closing the loop still an interesting problem
 - Trade-off between generality and computation
 - Correspondence problem rears its ugly head again
- The cost of closing loops will rise as the size of the environment grows, but seems to be manageable for indoor environments

Bibliography

- Dudek and Jugessur, "Robust Place Recognition using Local Appearance based Methods", Proceedings of IEEE International Conference in Robotics and Automation, San Francisco, CA, April 2000, pp 466-474.
- 2. Konolige and Gutmann, "Incremental Mapping of Large Cyclic Environments", International Symposium on Computational Intelligence in Robotics and Automation (CIRA'99), Monterey, November 1999.
- 3. Lu and Milios, "Globally Consistent Range Scan Alignment for Environment Mapping", J. Autonomous Robots, 4, pp333-349.
- 4. Gutmann and Schlegel, "AMOS: Comparison of Scan-Matching Approaches for Self-Localization in Indoor Environments", in *Proceedings of the 1st Euromicro Workshop on Advanced Mobile Robots*, IEEE Computer Society Press, 1996.
- Thrun, Burgard and Fox, "A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots", *Machine Learning*, 31:29-53, 1998. also appeared in Autonomous Robots 5, 253-271.
- 6. Thrun, "Robotic Mapping: A Survey", http://www.cs.cmu.edu/~thrun/papers/thrun.mapping-tr.html

