Задания

24 марта 2017 г.

- 1. Пусть $F: \mathbf{CMon} \to \mathbf{Ab}$ рефлектор вложения $i: \mathbf{Ab} \to \mathbf{CMon}$.
 - (a) Приведите пример конечного нетривиального коммутативного моноида X, такого что |F(X)| = |X|.
 - (b) Приведите пример конечного коммутативного моноида X, такого что |F(X)| < |X|.
 - (c) Докажите, что для любого конечного коммутативного моноида X верно |F(X)| < 2|X|.
 - (d) Приведите пример коммутативного моноида X, такого что $\eta_X:X \to i(F(X))$ не сюръективна.
- 2. На второй лекции мы видели, что морфизм групп является мономорфизмом тогда и только тогда, когда мономорфизмом является соответствующая ему функция на множествах. Сейчас мы можем обобщить это утверждение. Забывающий функтор $U: \mathbf{Grp} \to \mathbf{Set}$ является правым сопряженным и строгим. Для любого функтора, удовлетворяющего этим двум условиям, можно доказать аналогичное утверждение.

Пусть $U: \mathbf{C} \to \mathbf{D}$ – некоторый функтор. Докажите следующие утверждения:

- (a) Если U является правым сопряженным, то он сохраняет мономорфизмы.
- (b) Если U является строгим, то обратное верно, то есть если U(f) мономорфизм, то f также является мономорфизмом.
- 3. Докажите, что у забывающего функтора $U: \mathbf{Cat} \to \mathbf{Graph}$, сконструированного в предыдущем ДЗ, существует левый сопряженный.
- 4. Пусть **rGraph** категорий рефлексивных графов. Объекты этой категории это графы, в которых для каждой вершины x выбрана петля id_x в этой вершине. Морфизмы морфизмы графов, сохраняющие тождественные петли.

Категория графов в данном упражнении не будет работать, но вместо **rGraph** можно взять категорию малых группоидов или категорию малых категорий; решение при этом не изменится.

Докажите, что у функтора $\Gamma: \mathbf{rGraph} \to \mathbf{Set}$, сопоставляющего каждому рефлексивному графу множество его вершин, существует правый сопряженный $C: \mathbf{Set} \to \mathbf{rGraph}$ и левый сопряженный $D: \mathbf{Set} \to \mathbf{rGraph}$, и у D существует левый сопряженный $\Pi_0: \mathbf{rGraph} \to \mathbf{Set}$. Таким образом, мы получаем следующую цепочку сопряженных функторов:

$$\Pi_0 \dashv D \dashv \Gamma \dashv C$$

5. Пусть **С** — произвольная категория. Если X — объект **С**, то \mathbf{C}/X — категория объектов над X. Объекты категории \mathbf{C}/X — это морфизмы вида $A \to X$. Морфизмы в \mathbf{C}/X из $f:A \to X$ в $g:B \to X$ — это морфизмы $h:A \to B$ в **С**, такие что следующий треугольник коммутирует:

Тождественные морфизмы и композиция определяются как соответствующие операции в ${\bf C}$.

Существует функтор $\Sigma_X: \mathbf{C}/X \to \mathbf{C}$, сопоставляющий объекту $f:A\to X$ в \mathbf{C}/X объект A в \mathbf{C} . Докажите, что если в \mathbf{C} существуют бинарные произведения, то у этого функтора существует правый сопряженный.

- 6. Пусть $f: X \to Y$ морфизм в ${\bf C}$. Тогда можно определить функтор $\Sigma_f: {\bf C}_X \to {\bf C}_Y$, сопоставляющий объекту $g: A \to X$ в ${\bf C}/X$ объект $f \circ g$ в ${\bf C}/Y$. Докажите, что если в ${\bf C}$ существуют пулбэки, то у этого функтора существует правый сопряженный.
- 7. Докажите, что если в декартово замкнутой категории существует объект $2=1 \ \mathrm{II} \ 1$, то он является булевским.
- 8. Докажите, что в любой декртово замкнутой категории **C** выполнены следующие утверждения:
 - (a) Если в **C** существует начальный объект 0, то для любого объекта A существует изоморфизм $A^0 \simeq 1$.
 - (b) Если в **C** существует копроизведение $B \coprod C$, то для любого объекта A существует изоморфизм $A^{B \coprod C} \simeq A^B \times A^C$.
- 9. Докажите, что если в декартово замкнутой категории существует все копроизведения, то в ней существует объект натуральных чисел.