Übersicht – Übung 4

Wiederholung / Hausaufgabe Bit-Stuffing

IPv4

Router

- → Im Allgemeinen
- → Distanzvektorverfahren (RIP)

HDLC

- Bit-Stuffing:
 - Beispiel: ASCII-Texte
 - 0x7E: ~ (Tilde)
 - Und sonst?
 - Stellen Sie das Payload-Feld eines HDLC-Frames "on the wire" dar, der folgende Nachricht enthält:

Ermäßigung? Nö!

- → ISO-8859-1 (Latin-1)
- → niederwertigstes Bit (LSB) immer zuerst

Scan- code			Zeichen	Scan- code		GCII dez	Zch.	Scan- code		CII dez	— :h.	Scan- code	ASCII ASCII ASCH.
	00	0	NUL ^@		20	32	SP		40	-	0	0D	60 96 .
	01	1	SOH ^A	02	21	33	İ	1E	41		٩	1E	61 97 a
	02	2	STX ^B	03	22	34	"	30	42		3	30	62 98 b
	03	3	ETX ^C	29	23	35	#	2E	43)	2E	63 99 c
	04	4	EOT ^D	05	24	36	\$	20	44)	20	64 100 d
	05	5	ENQ ^E	06	25	37	%	12	45		Ξ	12	65 101 e
	06	6	ACK ^F	07	26	38	&	21	46	70 F		21	66 102 f
	07	7	BEL ^G	0D	27	39	'.	22	47		3	22	67 103 g
0E	08	8	BS ^H	09	28	40	(23	48		1	23	68 104 h
0F	09	9	TAB ^I	0A	29	41) *	17	49			17	69 105 i
	0A	10	LF ^J	1B	2A	42		24	4A		J	24	6A 106 j
	0B	11	VT ^K	1B	2B	43	+	25	4B		(25	6B 107 k
4.0	00	12 13	FF ^L CR ^M	33	2C	44 45	,	26	4C		4	26	6C 108 I
1C	OD		SO AN	35 34	2D 2E	46	-	32 31	4D 4E		Λ	32 31	6D 109 m 6E 110 n
	0E 0F	14 15	SI ^O	08	2E	47		18	4E 4F		N	18	
	10	16	DLE ^P	08 0B	30	48	0	19	50)	19	
	11	17	DC1 ^Q	02	31	49	1	10	51		2	10	70 112 p 71 113 q
	12	18		03	32	50	2	13	52		λ .	13	71 113 q 72 114 r
	13	19		03	33	51	3	1F	53		5	1F	73 115 s
	14	20		05	34	52	4	14	54		Г	14	74 116 t
	15	21		06	35	53	5	16	55	85 L		16	75 117 u
	16		SYN ^V	07	36	54	6	2F	56		/	2F	76 117 u
	17		ETB ^W	08	37	55	7	11	57		٧	11	77 119 w
	18	24		09	38	56	8	2D	58		(2D	78 120 x
	19	25	EM ^Y	0A	39	57	9	2C	59		Y	2C	79 121 y
	1A	26		34	3A	58		15	5A		7	15	7A 122 z
01	1B	27	Esc ^[33	3B	59			5B	91			7B 123 {
	1C	28	FS ^\	2B	3C	60	<		5C		\		7C 124
	1D	29	GS ^]	0B	3D	61	=		5D	93]		7D 125 }
	1E	30	RS 🗥	2B	3E	62	>	29	5E		`		7E 126 ~
	1F	31	US ^_	0C	3F	63	?	35	5F	95	-	53	7 F 127 DEL

Latin-1(\ddot{a}) = **E4**

Latin-1(\mathbf{B}) = **DF**

Latin-1(**ö**) = **F6**

HDLC

M

10100010 01001110 10110110 00100111 10010110 11100110 11111011 10101110 B u 01110110 11100110 11111100 00000100 01110010 10000100

HDLC

10100010	01001110	10110110	00100111
11011101	11001011	01110011	01010111
00111011	01110011	01111101	00000001
00011100	10011011	111 <mark>0</mark> 0000	100

IPv4

- Auf welcher OSI-Schicht operiert das "Internet Protocol"?
- Erläutern Sie die Felder im IPv4-Header.

https://advancedinternettechnologies.files.wordpress.com/2012/01/ipv4-header.png

Router

 Skizzieren Sie den schematischen Aufbau eines Routers, der nach dem Store-and-Forward-Prinzip arbeitet. Nennen Sie Hard- und Softwareoptimierungen, um eine möglichst schnelle Weiterleitung der Pakete zu gewährleisten.

Router

- Warteschlangen / Queues (FIFO)
- Für Router besonders wichtige Felder im IP-Header:
 Zieladresse, Header- / Paketlänge, TTL, FCS (nur Header), ToS / DSCP
- Intern: Pointer auf Pakete
- DMA

Router

- Was wird unter dem Begriff "Cut-Through-Routing" verstanden? Wie unterscheidet sich die Arbeitsweise des Routers im Vergleich zu Storeand-Forward? Diskutieren Sie Vor- und Nachteile beider Prinzipien.
 - Pakete werden nicht zwischengespeichert
 - Höherer Durchsatz, geringerer Speicherplatzbedarf
 - Destination Address am Ende des (statischen) IP-Headers, FCS über den gesamten Header → Header muss gepuffert werden
 - Schicht 2: Medium muss bereit sein, Fehlersituationen während der Übertragung möglich

- Autonomous System (AS)
- Host A aus Netz 1 möchte ein Paket an Host B in Netz 3 senden. Erläutern Sie an diesem Beispiel das Problem des Routings bzw. der Suche nach dem kürzesten Weg. Greifen Sie auf Elemente aus der Graphentheorie zurück.
- Graph $G = \{V, E\}$:
 - Knoten $V = \{R_{1}, R_{2}, R_{3}, R_{4}\}$
 - Kanten $E = \{\{R_1, R_2\}, ...\}$
 - Kantengewichte $g: E \rightarrow \Re$

- Diskutieren Sie unterschiedliche Metriken zur Festlegung der Pfadkosten.
 - Hop-Count (Kante: 1)
 - Theoretischer / tatsächlicher Durchsatz
 - Latenz
 - Fehlerrate / Verlässlichkeit
 - Finanzielle Kosten
 - MTU

- Erklären Sie das Optimalitätsprinzip (nach Richard Bellman). Inwiefern erleichtert es das Routing entlang des kürzesten Weges?
- Die optimalen Lösungen einiger Optimierungsprobleme setzen sich aus optimalen Teillösungen zusammen.
- $R_1, R_2, ..., R_n$ kürzester Weg von R_1 nach R_n
 - $\rightarrow R_2...,R_n$ kürzester Weg von R_2 nach R_n

Interior-Gateway-Routing

 Weisen Sie den vier Routern in Abbildung 1 statische Routingtabellen zu. Verfolgen Sie damit den Weg eines Pakets von Host A zu Host B nach. Welche Vor- und Nachteile bietet diese Vorgehensweise?

R1			
N1	G1	0	
N2	L1	2	
N3	L1	3	
N4	L4	2	

R2			
N1	L1	2	
N2	G2	0	
N3	L2	1	
N4	L5	1	

Interior-Gateway-Routing

 Weisen Sie den vier Routern in Abbildung 1 statische Routingtabellen zu. Verfolgen Sie damit den Weg eines Pakets von Host A zu Host B nach. Welche Vor- und Nachteile bietet diese Vorgehensweise?

R3				
N1	L2	3		
N2	L2	1		
N3	G3	0		
N4	L2 L3	2		

R4			
N1	L4	2	
N2	L5	1	
N3	L3 L5	2	
N4	G4	0	

Interior-Gateway-Routing

- Ersetzen Sie die statischen Routingtabellen durch ein dynamisches Flooding-Verfahren nach den folgenden Regeln:
 - Paket für ein fremdes Netz
 → Kopie auf alle Links
 weiterleiten, Eingangslink
 ausnehmen
 - Paket für ein eigenes Netz
 → nur an das jeweilige
 Netz weiterleiten

Stellen Sie die Weiterleitung der Pakete als Baumstruktur dar.

ASBR Host B Netz 2 Netz 3 L2 (1) R₂ **R3 L3** (2) **L1** (2) R1 **R4** L4 (2) Netz 1 Netz 4 Host A

Interior-Gateway-Routing

Jonas Treumer treumer@tu-freiberg.de

Interior-Gateway-Routing

- Wie funktionieren Distanzvektorverfahren im Allgemeinen? Auf welchem graphentheoretischen Algorithmus basieren sie?
- Jeder Knoten verfügt nur über eine lokale Sicht auf die Topologie.
- Bellman-Ford-Algorithmus:
 - Startknoten S
 - Zu Beginn: Alle Distanzen auf ∞, alle Vorgänger auf null, Distanz für S auf 0
 - -|V|-1 mal iterieren:
 - Über alle Kanten {A,B} mit Gewicht g iterieren:
 - Wenn Distanz(A) + g < Distanz(B), dann:

Distanz(B) := Distanz(A) + g

Vorgänger(B) := A

- Am Schluss: Noch eine Iteration über alle Kanten → negative Zyklen erkennen
- Komplexität: $\mathcal{O}\left(n\cdot m\right)$
- Erläutern Sie die Funktionsweise des Routing Information Protocols (RIP).
 - Metrik: Hop-Count
 - Alle 30 Sekunden: Senden der eigenen Routing-Tabelle an die unmittelbaren Nachbarn (Advertisement), Update der kürzesten Wege
 - Beschränkung der Netze auf 15 Hops
 - " ∞=16 "

- Stellen Sie die Konvergenz der Routingtabellen in aufeinanderfolgenden Zeitschritten dar:
 - Im 0. Zeitschritt weiß jeder Router nur von den von ihm verwalteten Netzen.
 - In jedem weiteren Zeitschritt erhält jeder Router die aktuellen Routingtabellen seiner Nachbarn und passt seine eigene Tabelle an.
 - Interpretieren Sie die Kantengewichte als Hops über weitere, hier nicht abgebildete Zwischenstationen.

Interior-Gateway-Routing

R1 (t = 0)

R2 (t = 0)

N1 G1 0

N2 G2 0

R3 (t = 0)

R4 (t = 0)

N3 G3 0

N4 G4 0

Interior-Gateway-Routing

R1 (t = 1) N1 G1 0

R2 (t = 1)				
N2	G2	0		
N3	L2	1		
N4	L5	1		

R3 (t = 1)

N2 L2 1

N3 G3 0

R1 (t = 2)			
N1	G1	0	
N2	L1	2	
N4	L4	2	

R2 (t = 2)			
N1	L1	2	
N2	G2	0	
N3	L2	1	
N4	L5	1	

R3 (t = 2)			
N2	L2	1	
N3	G3	0	
N4	L2 L3	2	

R1 (t = 3)			
N1	G1	0	
N2	L1	2	
N3	L1	3	
N4	L4	2	

R2 (t = 3)			
N1	L1	2	
N2	G2	0	
N3	L2	1	
N4	L5	1	

R3 (t = 3)		
N1	L2	3
N2	L2	1
N3	G3	0
N4	L2 L3	2

R4 (t = 3)		
N1	L4	2
N2	L5	1
N3	L3 L5	2
N4	G4	0

- Wie viel Zeit vergeht bis zur Konvergenz? Wie sieht das allgemeine Worst-Case-Szenario aus?
- Erläutern Sie das Count-to-Infinity-Problem, das im Zusammenhang mit dem RIP auftritt. Welche Gegenmaßnahmen können ergriffen werden? Wie wirkungsvoll sind sie?

