Lab 5: Reaction Types — Evidence, Balancing, Classification

Name:	l	Partner(s):	 	
Date:	Period:			

Purpose:

Perform multiple reactions, record evidence of change, write balanced equations, and classify each reaction type.

Standards: HS-PS1-2, HS-PS1-3

Materials & Equipment:

- Test tubes (6) & rack; well plate; droppers; pH paper
- 0.1 M ${\rm CuSO}_4$, 0.1 M ${\rm AgNO}_3$, 0.1 M NaOH, 0.1 M HCl; Mg ribbon; NaHCO $_3$
- Bunsen burner or hot plate (combustion teacher-led); waste beaker; safety gear

Procedure:

- 1. Label test tubes #1-#5 in a rack.
- 2. Reaction 1 Synthesis (teacher demo): ignite Mg ribbon; observe bright light and MgO formation.
- 3. Reaction 2 Decomposition: heat ~1 g NaHCO₃; observe gas/residue.
- 4. Reaction 3 Single Replacement: add Mg to 2 mL 0.1 M CuSO₄; observe color change/solid.
- 5. Reaction 4 Double Replacement: mix 2 mL 0.1 M NaOH with 2 mL 0.1 M AgNO₃; observe precipitate.
- 6. Reaction 5 Neutralization: 2 mL 0.1 M HCl + 2 mL 0.1 M NaOH; test pH before/after.
- 7. For each reaction, write the balanced equation and classify the type.
- 8. Dispose of waste as directed; clean and return equipment.

Data & Observations:

Note gas, precipitate, temperature, color change and odor if present.

Reaction #	Evidence of Change	Balanced Equation	Classification
1 (Synthesis)			
2 (Decomposition)			
3 (Single Replacement)			
4 (Double Replacement)			
5 (Neutralization)			

Analysis Questions:

- 1. Choose one ambiguous reaction and defend your classification using evidence and the balanced equation.
- 2. Explain how your balanced equations reflect the law of conservation of mass for one reaction you performed.
- 3. Predict products and classification for $\text{AgNO}_3(\text{aq}) + \text{NaCl}(\text{aq}) \rightarrow ?.$ Justify.

Conclusion (CER):

- 1. Claim: State which reaction types you confirmed and identify the type for each reaction performed.
- 2. **Evidence**: Cite specific observations (e.g., precipitate formed, gas evolved) and your balanced equations.
- 3. **Reasoning**: Explain why those evidences align with each classification using reaction patterns and particle models.
- 4. **Error/Improvement**: Identify a limitation (e.g., ambiguous evidence) and propose a follow-up test to disambiguate.

Lab 5: Reaction Types — Evidence, Balancing, Classification — Rubric

Weights: Only **Analysis & Explanations** (×2) and **Conclusion** (×2) are doubled.

Criterion	1	2	3	4	5
Preparation & Safety	Unprepared; reminders; unsafe behaviors observed.	Partially prepared; inconsistent safety; multiple reminders.	Prepared; follows safety; few reminders.	Models safe practice; assists peers; anticipates risks.	Exemplary; proactive safety leadership; mitigates hazards.
Data & Observations	Sparse/incorrect; missing key evidence.	Basic evidence only; limited specificity.	Complete observations; sufficient evidence recorded.	Detailed comparisons across reactions; anomalies flagged.	Exceptional precision; evidence directly supports classifications.
Analysis & Explanations (×2)	Incorrect/irrelevant; lacks connection to equations.	Partial reasoning; weak links to equations or evidence.	Correct reasoning with appropriate support.	Strong reasoning; addresses anomalies and limitations.	Insightful analysis; integrates evidence and equations convincingly.
Conclusion (×2)	No/weak claim; unsupported.	Vague claim; minimal evidence.	Clear claim with some support.	Well-supported claim; multiple data points cited.	Compelling claim; precise evidence & reasoning; generalizes appropriately.
Clarity & Mechanics	Disorganized; frequent grammar/format issues impede understanding.	Partly organized; several errors; hard to follow at times.	Generally clear; minor errors; readable structure.	Well organized; concise; almost no errors; visuals/tables support text.	Polished, professional scientific writing; precise vocabulary; flawless formatting.