概率论与数理统计总结

刘阳

2019年6月5日

目录

1	第一	-章 概率论的基本概念	3
	1.1	随机试验	3
	1.2	样本空间、随机事件	3
		1.2.1 样本空间	3
		1.2.2 随机事件	3
		1.2.3 事件间的关系与事件的运算	3
	1.3	频率与概率	4
		1.3.1 频率	4
		1.3.2 概率	5
	1.4	等可能概型(古典概型)	5
	1.5	条件概率	6
		1.5.1 条件概率	6
		1.5.2 乘法定理	6
		1.5.3 全概率公式和贝叶斯公式	6
	1.6	独立性	6
2	第二	章 随机变量及其分布	8
	2.1	随机变量	8
	2.2	离散型随机变量及其分布率	8
	2.3	随机变量的分布函数	8
	2.4	连续型随机变量及其概率密度	8
	2.5	随机变量的函数的分布	8
	2.5	随机变量的函数的分布	

目录 2

3	第三	章 多维随机变量及其分布	8		
	3.1	二维随机变量	8		
	3.2	边缘分布	8		
	3.3	条件分布	8		
	3.4	相互独立的随机变量	8		
	3.5	两个随机变量的函数的分布	8		
4	第匹	l章 随机变量的数字特征	8		
	4.1	数学期望	8		
	4.2	方差	8		
	4.3	协方差及相关系数	8		
	4.4	矩、协方差矩阵	8		
5	第五	E章 大数定律及中心极限定理	8		
	5.1	大数定律	8		
	5.2	中心极限定理	8		
6	第六	5章 样本及抽样分布	8		
	6.1	随机样本	8		
	6.2	直方图和箱线图	8		
	6.3	抽样分布	8		
7	第七章 参数估计 8				
	7.1	点估计	8		
	7.2	基于截尾样本的最大似然估计	8		
	7.3	估计量的评选标准	8		
	7.4	区间估计	8		
	7.5	正态总体均值与方差的区间估计	8		
	7.6	(0-1) 分布参数的区间估计	8		
	7.7	单侧置信区间	8		

1 第一章 概率论的基本概念

1.1 随机试验

随机试验: 1. 可以在相同条件下重复地进行;

- 2. 每次试验的可能结果不止一个,并且能事先明确实验的所有可能结果:
- 3. 进行一次实验之前不能确定哪一个结果会出现.

1.2 样本空间、随机事件

1.2.1 样本空间

随机试验 E 的所有可能结果组成的集合称为 **随机试验**. 样本空间的元素,即 E 的每个结果称为 **样本点**.

1.2.2 随机事件

试验 E 的样本空间 S 的子集称为 随机事件, 简称 事件.

每次试验中, 当且仅当这一子集的一个样本点出现称为 事件发生.

有一个样本点组成的单点集称为 基本事件.

样本空间 S 包含所有的样本点,它是 S 自身的子集,在每次试验中它总是发生的,S 成为 **必然事件**.

空集 \emptyset 不包含任何样本点,它也作为样本空间的子集,他在每次试验中都不发生, \emptyset 称为 **不可能事件**.

1.2.3 事件间的关系与事件的运算

1. 若 $A \subset B$,则称事件 B 包含事件 A ,这指的是事件 A 发生必导致事件 B 发生.

若 $A \subset B$ 且 $B \subset A$, 即 A = B , 则称事件 A 与事件 B 相等.

2. 事件 $A \cup B = \{x | x \in A \ x \in B\}$ 称为事件 A 与事件 B 的 **和事件**. 当 且仅当 A, B 中至少一个发生时,事件 $A \cup B$ 发生.

类似地,称 $\bigcup_{k=1}^n A_k$ 为 n 个事件 A_1,A_2,\cdots,A_n 的 **和事件**;称 $\bigcup_{k=1}^\infty A_k$ 为可列个事件 A_1,A_2,\cdots 的和事件.

- 3. 事件 $A \cap B = \{x | x \in A \ x \in B\}$ 称为事件 A 与事件 B 的 **积事件**. 当且仅当 A, B 同时发生时,事件 $A \cap B$ 发生. $A \cap B$ 也记作 AB . 类似地,称 $\bigcap_{k=1}^{n} A_k$ 为 n 个事件 A_1, A_2, \dots, A_n 的 **积事件**;称 $\bigcap_{k=1}^{\infty} A_k$ 为可列个事件 A_1, A_2, \dots 的积事件.
- 4. 事件 $A B = \{x | x \in A \ x \notin B\}$ 称为事件 A 与事件 B 的 **差事件**. 当 且仅当 A 发生、B 不发生时事件 A B 发生.
- 6. 若 $A \cup B = S$ 且 $A \cap B = \emptyset$, 则称事件 A 与事件 B 互为 **逆事件**. 又称 事件 A 与事件 B 互为 **对立事件**. 这指的是对每次试验而言,事件 A, B 中必有一个发生,且仅有一个发生。A 的对立事件记为 \bar{A} . $\bar{A} = S A$

交換律: $A \cup B = B \cup A$; $A \cap B = B \cap A$.

结合律: $A \cup (B \cup C) = (A \cup B) \cup C$; $A \cap (B \cap C) = (A \cap B) \cap C$.

分配律: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$; $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

德摩根律: $A \bar{\cup} B = \bar{A} \cap \bar{B}$; $A \bar{\cap} B = \bar{A} \cup \bar{B}$.

1.3 频率与概率

1.3.1 频率

在相同条件下,进行了 n 次试验,在这 n 次试验中,事件 A 发生的次数为 n_A 称为事件 A 发生的 **频数**. 比值 $\frac{n_A}{n}$ 称为事件 A 发生的 **频率**,并记成 $f_n(A)$

性质: $1.0 \le f_n(A) \le 1$;

- 2. $f_n(S) = 1$;
- 3. 若 A_1, A_2, \dots, A_k 是两两互不相容的事件,则 $f_n(A_1 \cup A_2 \cup \dots \cup A_k) = f_n(A_1) + f_n(A_2) + \dots + f_n(A_k)$.

1.3.2 概率

设 E 是随机试验, S 是它的样本空间. 对于 E 的每一事件 A 赋予一个实数, 记为 P(A), 称为事件 A 的 概率, 如果集合函数 $P(\cdot)$ 满足以下条件:

- 1. **非负性:** 对于每一个事件 A , 有 $P(A) \ge 0$;
- 2. **规范性:** 对于必然事件 S , 有 P(S) = 1 ;
- 3. **可列可加性:** 设 A_1, A_2, \cdots 是两两互不相容的事件,即对于 $A_i A_j = \emptyset$, $i \neq i, j = 1, 2, \cdots$,有 $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$.

性质: $1. P(\emptyset) = 0.$

- 2. 若 A_1, A_2, \dots, A_n 是两两互不相容的事件,则有 $P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$.
- 3. 设 A, B 是两个事件,若 $A \subset B$,则有 P(B-A) = P(B) P(A) ; $P(B) \geq P(A)$.
- 4. 对于任一事件 A , $P(A) \leq 1$.
- 5. 对于任意两事件 A, B 有 $P(A \cup B) = P(A) + P(B) P(AB)$.

1.4 等可能概型(古典概型)

- 1. 试验的样本空间只包含有限个元素.
- 2. 试验中每个基本事件发生的可能性相同.

具有以上两个特点的试验称为 **等可能概型**. 它在概率论发展初期曾是主要的研究对象, 所以也成为 **古典概型**.

设试验的样本空间为 $S = \{e_1, e_2, \dots, e_n\}$ 若 A 包含 k 个基本事件则有:

$$P(A) = \sum_{i=1}^{k} P(\{e_{i_j}\}) = \frac{k}{n} = \frac{A$$
包含的基本事件数 S 中基本事件的总数

超几何分布的概率公式:

$$p = \frac{\binom{D}{k} \binom{N-D}{n-k}}{\binom{N}{n}}$$

1.5 条件概率

1.5.1 条件概率

设 A,B 是两个事件,且 P(A)>0 ,称 $P(B|A)=\frac{P(AB)}{P(A)}$ 为在事件 A 发生下事件 B 发生的 **条件概率**.

1.5.2 乘法定理

设 P(A) > 0 则有 P(AB) = P(B|A)P(A).

1.5.3 全概率公式和贝叶斯公式

全概率公式: 设试验 E 的样本空间为 S , A 为 E 的事件, B_1, B_2, \cdots, B_n 为 S 的一个划分,且 $P(B_i) > 0 (i = 1, 2, \cdots, n)$,则:

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \dots + P(A|B_n)P(B_n)$$

贝叶斯 (Bayes) 公式: 设试验 E 的样本空间为 S , A 为 E 的事件, B_1, B_2, \cdots, B_n 为 S 的一个划分,且 $P(A) > 0, P(B_i) > 0 (i = 1, 2, \cdots, n)$, 则:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}, \quad i = 1, 2, \dots, n$$

1.6 独立性

设 A, B 两事件如果满足等式 P(AB) = P(A)P(B) 则称事件 A, B 相**互独立**, 简称 A, B **独立**.

- 定理: 1. 设 A, B 是两事件, 且 P(A) > 0. 若 A, B 相互独立, 则 P(B|A) = P(B). 反之亦然.
 - 2. 若事件 A 与 B 相互独立,则下列各对事件也相互独立: A 与 \bar{B} , \bar{A} 与 B , \bar{A} 与 \bar{B} .

一般,设 A_1, A_2, \dots, A_n 是 $n(n \ge 2)$ 个事件,如果对于其中任意 2 个,任意 3 个, · · · ,任意 n 个事件的积事件的概率,都等于各事件概率之积,则称事件 A_1, A_2, \dots, A_n 相互独立.

推论: 1. 若事件 $A_1,A_2,\cdots,A_n (n\geq 2)$ 相互独立,则其中任意 $k(2\leq k\leq n)$ 个事件也是相互独立的.

2. 若n个事件 $A_1, A_2, \cdots, A_n (n \ge 2)$ 相互独立,则将 A_1, A_2, \cdots, A_n 中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立.

2 第二章 随机变量及其分布

- 2.1 随机变量
- 2.2 离散型随机变量及其分布率
- 2.3 随机变量的分布函数
- 2.4 连续型随机变量及其概率密度
- 2.5 随机变量的函数的分布

3 第三章 多维随机变量及其分布

- 3.1 二维随机变量
- 3.2 边缘分布
- 3.3 条件分布
- 3.4 相互独立的随机变量
- 3.5 两个随机变量的函数的分布

4 第四章 随机变量的数字特征

- 4.1 数学期望
- 4.2 方差
- 4.3 协方差及相关系数
- 4.4 矩、协方差矩阵

5 第五章 大数定律及中心极限定理

- 5.1 大数定律
- 5.2 中心极限定理

6 第六章 样本及抽样分布

- 6.1 随机样本
- 6.2 直方图和箱线图
- 6.3 抽样分布

7 第七章 参数估计