Programmatic Truthmaker Semantics

ADVANCES IN TRUTHMAKER SEMANTICS: II Benjamin Brast-McKie & Miguel Buitrago July 29, 2025

Broad Ambitions

Extend the standard methodology in semantics to:

- Prototype semantic theories by shifting computational load
- Develop semantic theories for languages with many operators
- Facilitate collaboration and increase accessibility

"Standard Methodology"

Difficulties

The standard methodology has the following drawbacks:

- Computationally grueling to prototype semantic theories
- Problems of accuracy, redundancy, and memory
- Limits the development of complex semantic theories
- Restricts which language fragments can be studied/combined

An Extended Methodology

Humans should not be carrying the computational load.

- SAT solvers, SMT solvers, Z3
- Examples: inequalities, bitvectors as states
- Z3 constraints as truth-conditions

Conceptual Engineering

This methodology has the following advantages:

- Efficiently prototype new semantic theories
- Modular semantics, theory of propositions, operators
- Evaluate unified languages with many operators
- Compare different theories over large data sets

Give it a try at: https://pypi.org/project/model-checker/

Computational Complexity as a Theoretical Virtue

- 1. Z3 builds models with a mix of array-like and lambda-like objects.
- 2. This means Z3 saves every value (that it is forced to for a given countermodel) for every input combination, meaning that the (worst-case) space complexity of functions is proportional to the input space.
- 3. Computational complexity: an algorithm takes O(n) runtime or space if it scales linearly with some input quantity n as n grows indefinitely large.
- 4. For our purposes, runtime complexity ≈ space complexity: larger space complexity means larger runtime complexity.
- 5. Definitions: \mathbb{L} is the set of atomic sentences, and \mathbb{B} is the set of all bitvectors.
- 6. verify: $\mathbb{L} \times \mathbb{B} \to \{0,1\}$. (Worst-case) space complexity: $O(|\mathbb{L}||\mathbb{B}|) = O(|\mathbb{L}|2^N)$, N the size of the bitvectors.
- 7. imposition: $\mathbb{B}^3 \to \{0,1\}$. (Worst-case) space complexity: $O(|\mathbb{B}|^3) = O(2^{3N})$.
- 8. Practically speaking: imposition theory approx. 10 times slower (i.e., takes 10 times as long to find countermodels or exhaust search space) than logos with N=4, getting worse as N increases.

Bilateral Propositions

Following Fine (2017a,b,c), a modalized state space is any $S^{\Diamond} = \langle S, P, \sqsubseteq \rangle$ where $\langle S, \sqsubseteq \rangle$ is a complete lattice of states, $P \subseteq S$ is a nonempty subset of possible states, and \sqsubseteq is the parthood relation satisfying the following constraints:

```
Nonempty: P \neq \emptyset.
```

POSSIBILITY: If $s \in P$ and $t \subseteq s$, then $t \in P$.

The world states may then be defined, and a further constraint imposed:

```
Compatible: s \circ t := s.t \in P.
```

World States: $W := \{w \in P \mid \forall s \circ w (s \sqsubseteq w)\}.$

WORLD SPACE: If $s \in P$, then $s \sqsubseteq w$ for some $w \in W$.

A *bilateral proposition* is any ordered tuple $\langle V, F \rangle \in \mathbb{P}$ where

Closure: $V, F \subseteq S$ are each closed under nonempty fusion.

Exclusive: The states in *V* are incompatible with the states in *F*.

Exhaustive: Every possible state in P is compatible with a state in V or F. A *model* $\mathcal{M} = \langle S, P, \sqsubseteq, |\cdot| \rangle$ of \mathcal{L} assigns each $|p_i| = \langle |p_i|^+, |p_i|^- \rangle \in \mathbb{P}$.

- $|\neg A| = \langle |A|^-, |A|^+ \rangle$.
- $|A \wedge B| = \langle |A|^+ \otimes |B|^+, |A|^- \oplus |B|^- \rangle$ where $X \otimes Y := \{s.t \mid s \in X, t \in Y\}.$
- $|A \vee B| = \langle |A|^+ \oplus |B|^+, |A|^- \otimes |B|^- \rangle$ where $X \oplus Y := X \cup Y \cup (X \otimes Y)$.

Minimal Countermodels

Fine (2012) originally introduced a primitive *imposition relation* $t \rightarrow_w u$ which indicates that "u is a possible outcome of imposing the change t on the world [state] w", and is subject to the following frame constraints on imposition:

INCLUSION: If $t \rightarrow_w u$, then $t \sqsubseteq u$.

ACTUALITY: If $t \sqsubseteq w$, then $t \rightarrow_w u$ for some $u \sqsubseteq w$.

INCORPORATION: If $t \rightarrow_w u$ and $v \sqsubseteq u$, then $t.v \rightarrow_w u$.

COMPLETENESS: If $t \rightarrow_w u$, then u is a world-state.

An abridged semantics for $\mathcal{L} = \langle \mathbb{L}, \neg, \wedge, \vee, \square \rightarrow \rangle$ may then be stated as:

- \mathcal{M} , $w \models p_i$ iff $s \in |p_i|^+$ for some $s \sqsubseteq w$.
- $\mathcal{M}, w \models A \Longrightarrow C \text{ iff } \mathcal{M}, u \models C \text{ whenever } t \in |A|^+ \text{ and } t \rightarrow_w u.$

Defining Imposition

Definition: The frame constraints admit exceptions to $\Box A := \top \Box \rightarrow A$.

State Space: $P = \{a, b, c, b.c\}$, $W = \{a, b.c\}$, $S/P = \{a.b, a.c, a.b.c\}$

Imposition: \Rightarrow = { $\langle a, a, a \rangle$, $\langle b, b.c, b.c \rangle$, $\langle c, b.c, b.c \rangle$, $\langle \Box, a, a \rangle$, $\langle \Box, b.c, b.c \rangle$, $\langle \Box, b.c, b.c \rangle$ }

Interpretation: $|A| = \langle \{a\}, \{b.c\} \rangle$

Premise: $\mathcal{M}, a \models \top \Longrightarrow A$ since the set of \top -alternatives to $a = \{a\}$.

Conclusion: \mathcal{M} , $a \not\models \Box A$ since \mathcal{M} , $b.c \not\models A$.

The definition $\Box A := \top \Box \rightarrow A$ is preserved by the following definition of \rightarrow , where ' $s \sqsubseteq_t w$ ' reads 's is a *t-compatible part* of w':

Compatible Part: $s \sqsubseteq_t w := s \sqsubseteq w \land s \circ t$.

Maximal Compatible Parts: $w_t := \{s \sqsubseteq_t w \mid \forall r \sqsubseteq_t w (s \sqsubseteq r \rightarrow r = s)\}.$

Imposition: $t \rightarrow_w u := u \in W \land \exists s \in w_t(s.t \sqsubseteq u)$.

We may then derive rather than posit the frame constraints on imposition, making the logic for \rightarrow both stronger and more computable.

Proofs

