

Modelado de Bases de Datos

(Como introducción a las bases de datos relacionales y a MySQL)

Upgrade-hub
Full stack Developer
BootCamp

¿Qué es una base de datos?

Una base de datos es un conjunto de información organizada de manera que pueda ser utilizada eficientemente.

Ejemplos

Un directorio telefónico, un diccionario, un calendario un libro de recetas

¿Qué es una base de datos relacional?

Una base de datos relacional es una recopilación de elementos, de **DATOS**, con **RELACIONES** predefinidas entre ellos.

- Estos elementos se organizan como un conjunto de **tablas** con **columnas y filas**.
- Las **tablas** se utilizan para guardar información sobre los objetos que se van a representar en la base de datos.
- Cada **columna** de una tabla guarda un determinado tipo de datos y un campo almacena el valor real de un atributo.
- Las **filas** de la tabla representan una recopilación de valores relacionados de un objeto o entidad.

Conceptos fundamentales de bbdd

Tabla Claves

Fila o registro

Dominio

Columna, campo o atributo

indices

Restricciones

Relaciones entre tablas

Principios de diseño

- 1.- Los datos redundantes son perjudiciales.
- 2.- La corrección y la integridad de información es importante

Un buen diseño

- 1.- Divide la información en tablas basadas en temas para reducir los datos redundantes.
- 2.- Proporciona la información necesaria para unir la información en las tablas según sea necesario.
- 3.- Ayuda a respaldar y garantizar la precisión y la integridad de la información.
- 4.- Se ajusta a sus necesidades de informes y procesamiento de datos.

Modelo Entidad Relación

Es un diagrama que permite representar las entidades relevantes de un sistema de información así como sus interrelaciones y propiedades

Los diagramas ER son un lenguaje gráfico para describir concepto

Modelo Entidad Relación - elementos-

Entidades: Son objetos <u>distinguibles del resto</u>. Éstas pueden ser entes concretos, como una persona o un avión, o abstractas, como un préstamo o una reserva. Se representan por medio de un <u>rectángulo</u>

Atributos: Son propiedades de las entidades. Se representan mediante un <u>círculo o elipse</u>, cuando un atributo es identificativo de la entidad se subraya

Relación: Describe la dependencia entre entidades o permite la asociación de las mismas; Se representan por medio de un verbo de acción dentro de un <u>rombo</u> que une entidades

Modelo Entidad Relación

Ejemplo 1

Modelo Entidad Relación

Ejemplo 2

ER - Correspondencia de cardinalidades

Dado un conjunto de relaciones en el que participan dos o más entidades, la correspondencia de cardinalidad indica el número de entidades con las que puede estar relacionada una entidad dada.

 Dado un conjunto de relaciones binarias y los conjuntos de entidades A y B, la correspondencia de cardinalidades puede ser:

ER - Correspondencia de cardinalidades

Uno a Uno: (1:1) Un registro de una entidad A se relaciona con solo un registro en una entidad B.

(ejemplo dos entidades, profesor y departamento, con claves primarias, código_profesor y jefe_depto respectivamente: un profesor solo puede ser jefe de un departamento y un departamento solo puede tener un jefe).

ER - Correspondencia de cardinalidades

Uno a Varios: (1:N) Un registro en una entidad en A se relaciona con cero o muchos registros en una entidad B. Pero los registros de B solamente se relacionan con un registro en A.

(ejemplo: dos entidades, vendedor y ventas, con claves primarias: cod_vendedor y cod_venta, respectivamente, un vendedor puede tener muchas ventas pero una venta solo puede tener un vendedor).

ER - Correspondencia de cardinalidades

Varios a Uno: (N:1) Una entidad en A se relaciona exclusivamente con una entidad en B. Pero una entidad en B se puede relacionar con 0 o muchas entidades en A

(ejemplo empleado-centro de trabajo. Un empleado, está asignado a un solo centro de trabajo, pero un mismo centro de trabajo pueden estar varios empleados).

ER - Correspondencia de cardinalidades

Varios a Varios: (N:M) Una entidad en A se puede relacionar con 0 o con muchas entidades en B y viceversa

(ejemplo asociaciones-ciudadanos, donde muchos ciudadanos pueden pertenecer a una misma asociación, y cada ciudadano puede pertenecer a muchas asociaciones distintas).

Modelo Entidad Relación

Ejemplo 3

Ejercicio

Vamos a modelar POR PAREJAS (creación de un DER) la Base de datos de un hospital → Simple :)

- Identificamos Entidades (5 ó 6 máximo)
- Razonamos atributos/campos (2 ó 3 máximo)
- Creamos relaciones
- Discutimos cardinalidades

Determinar el propósito de la base de datos

Buscar y organizar la información necesaria

Dividir la información en tablas

Convertir los elementos de información en columnas

Especificar las claves principales

Establecer las relaciones de tablas

Perfeccionar el diseño

Pasos a seguir para un buen diseño

Determinar el propósito de la base de datos

- ¿Qué propósito general tiene la Base de Datos?
- ¿Cómo se espera usar?
- ¿Quién la usará?

Buscar y organizar la información necesaria

- Recopilar todos los tipos de información que podría querer registrar en la base de datos.
- Tener en cuenta los tipos de informes o correspondencia que podría querer crear a partir de la base de datos.

Pasos a seguir para un buen diseño

Dividir la información en tablas

- Divida los elementos de información en entidades principales o temas, como Usuarios, Contratos, Informes, ...
- Cada tema → una tabla
- Los sustantivos

Convertir los elementos de información en columnas

- ¿Qué información se quiere almacenar en cada tabla?
- 1 elemento de información → 1 campo → una columna en la tabla.

Especificar las claves principales

- La clave principal es una columna que se usa para identificar cada fila.
- Preguntar cómo identificar cada registro según el modelo de negocio

Establecer las relaciones de tablas

 Decidir cómo se relacionan los datos entre tablas. Agregaremos campos a las tablas o crearemos tablas nuevas para aclarar las relaciones, según sea necesario.

Verbos

Perfeccionar el diseño

Software propuesto (válido cualquier otro) para generar gráficos del modelo Entidad-Relación:

- SmartDraw:
 - <u>www.smartdraw.com/entity-relationship-diagram/diagramas-de-entidad-relacion.htm</u>
- LucidChart: <u>www.lucidchart.com/pages/es/herramienta-ERD</u>
- Cacoo: https://cacoo.com/es/templates/database-erd-software
- Gliffy: <u>www.gliffy.com/diagram-software</u>
- Draw.io: https://www.draw.io/

Ejemplos de BBDD, entidades y relaciones

Empresas del grupo, Empleados, Clientes, proveedores, hojas de pedido, albaranes, facturas, ...

Vendedores, proveedores, clientes, artículos, familias, colecciones, ...

Películas, series, capítulos, usuarios, valoraciones, ...

Platos, ingredientes, pedidos/comandas, clientes, camareros, mesas, ...

Trenes, rutas, horarios, usuarios, estaciones, destinos, orígenes,...

Avión, pasajero, reserva, aeropuerto, equipaje, ...

Ejercicio

- Dividir la clase en grupo de dos o tres miembros, y hacer que cada grupo sea el cliente de otro grupo.
 - Decidir en cada grupo QUÉ empresa seremos como cliente, y que necesitaremos pedir para nuestro proyecto.
 - Tener la primera reunión de toma de requisitos para nuestra Base de Datos.
 - Diseño de la misma, atendiendo a las buenas prácticas y los principios explicados.
 - Una reunión más con el cliente, para perfilar.

Ejercicios

Diseñar Modelos Entidad-Relación, haciendo hincapié en:

- Elección de entidades
- Elección de atributos
- Selección y defensa de claves
- Determinación de relaciones
- Necesidad de índices
- ...

De DER a Tablas...

- Toda entidad se transforma en una tabla
- Todo atributo se transforma en una columna dentro de su tabla.
- El identificador de la entidad se convierte en la clave primaria de la tabla
- Si la relación es 1:1 se pasa la clave de una de las entidades a la otra tabla.
- Toda relación N:M se convierte en una tabla que tendrá como clave primaria las dos claves primarias de las entidades que se asocian.
- En las relaciones 1:N la clave primaria de la entidad con cardinalidad 1 pasa a la tabla de la entidad cuya cardinalidad es N

De E-R a Tablas...

De E-R a Tablas...

Nº clase (clave primaria)	Marshardan
ciase (ciare printialia)	Nombre clase
DAU / slave for for a	NO class (slave forés se)
	Nº clase (clave foránea)
	DNI (clave foránea) Clav