Problem 1. Prove the following proposition by induction. $\forall n \in \mathbb{Z}^+: \sum_{i=1}^n 2i - 1 = n^2$

Problem 2. Find a formula for the following sum and prove its correctness for all $n \in \mathbb{Z}^+$ by induction. $\sum_{i=1}^n \frac{1}{i(i+1)}$

Problem 3. Prove the following proposition by contradiction (clearly state the initial assumption that leads to a contradiction). $\forall n \in \mathbb{Z} : n^2$ is even $\implies n$ is even

Problem 4. Point out the flaw in the following "proof" that 2=1.

$$a = b \tag{1}$$

$$a^2 = ab (2)$$

$$a^2 - b^2 = ab - b^2 (3)$$

$$(a-b)(a+b) = b(a-b) \tag{4}$$

$$a + b = b \tag{5}$$

$$2b = b \tag{6}$$

$$2 = 1 \tag{7}$$

Problem 5. (CLRS, Exercise 3.1-1) Let f(n) and g(n) be asymptotically nonnegative functions. Prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.

Problem 6. Explain why $\Theta(\log_{b_1} n) = \Theta(\log_{b_2} n)$ for any pair of bases $b_1, b_2 > 1$. The same is true for O and O. In other words, explain why the base of the logarithm does not matter for asymptotic notation.

Problem 7. Consider the following function $f(n) = n(-1)^n$. Is $f(n) \in O(n)$, $f(n) \in \Omega(n)$, $f(n) \in \Theta(n)$? For each bound, prove why it does or does not hold.