

Solution algorithms to solve MDPs?

- Exhaustive enumeration
- Dynamic Programming
- Reinforcement learning
- Deep reinforcement learning

Caution: Unless otherwise specified, here on:

- π
 - is a policy (not steady state distribution like in Markov chain)
- Value function= expected total returns (user choice for discounting):
 - $v_{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s\right]; \forall s \in S$

Cancer screening guidelines

- When to start? How often to screen?
- X_t =health state at age t
- D_t =decision at age t
- $\{X_t, D_t\}_{t=a_1...a_n}$ is a MDP formulated by 4-tuple $\{\Omega, A, P_a, R_a\}$
- $\Omega = \{\text{healthy}, \text{stage 1}, \text{stage 2}, \text{stage 3}, \text{stage 4}\}$
- $A = \{yes, no\}$
- P_a = TPM for action a
- R_a = TRM for action a

Bansal et. al., 20200, Medical Decision Making https://journals.sagepub.com/doi/10.1177/0272989X20910724
Evaluated under resource constraints to inform WHO Global Action Plan for UN SDGs

Exhaustive enumeration of value function using simulation

 $v_{\pi}(s_1)$ =? for some fixed policy π Start in s_1 , apply policy π to transition

- Suppose: $S = \{s_1, s_2, s_3\}; A = \{a, b\}$
- $P_a = \begin{bmatrix} \\ \end{bmatrix}; P_b = \begin{bmatrix} \\ \end{bmatrix}$
- $R_a = \begin{bmatrix} \\ \\ \end{bmatrix}; R_b = \begin{bmatrix} \\ \\ \end{bmatrix}$
- suppose, policy= $\pi = [b, a, a]$

Episode	k→	0	1	2	3	4	T	Total reward
1.	State→	s_1	s_1	s_2	s_3	s_1		
	Action (following π) \rightarrow	b	b	а	а	b		
	Corresponding immediate reward (R)		$\gamma^0 r(s_1, b, s_1)$	$\gamma^1 r(s_1, b, s_2)$	$\gamma^2 r(s_2, a, s_3)$	$\gamma^3 r(s_3, a, s_1)$		Sum this row
2.	State→	s_1	s_2	s_3	s_3	s_1		
	Action (following π) \rightarrow	b	а	а	а	b		
	Corresponding immediate reward (R)		$\gamma^0 r(s_1, b, s_2)$	$\gamma^1 r(s_2, a, s_3)$	$\gamma^2 r(s_3, a, s_3)$	$\gamma^3 r(s_3, a, s_1)$		Sum this row
								$v_{\pi}(s_1)$ = expected value of this column

Repeat for every state, and every policy π

$$\pi^* = arg \max_{\pi} v_{\pi}(s), \forall s \in S$$

Example

$$v_{\pi=[m,m,m,r]}(G)=?$$

$P_{maintain} =$				$P_{replace} =$					r(i, a = maintain, j					
		Ε	G	F	I		Е	G	F	I		Ε	G	F
	Е	0.3	0.2	0.3	0.2	Е	1	0	0	0	Е	-100	-1000	-1500
	G	0.1	0.2	0.4	0.3	G	1	0	0	0	G	-50	-500	-550
	F	0	0.4	0.5	0.1	F	1	0	0	0	F	-200	-2000	-2500
	I	0	0	0	1	I	1	0	0	0	I	-300	-3000	-3500

r(i, a = maintain, j)						r(i, a = replace, j)						
	Е	G	F	I		E	G	F	I			
E	-100	-1000	-1500	-100K	E	-6000	-6000	-6000	-6000			
G	-50	-500	-550	-100K	G	-6000	-6000	-6000	-6000			
F	-200	-2000	-2500	-100K	F	-6000	-6000	-6000	-6000			
I	-300	-3000	-3500	-100K	I	-6000	-6000	-6000	-6000			

Episode	k→	0	1	2	3	4	T	Total reward
1.	State→	G	F					
	Action (following π) \rightarrow	m	m					
	Corresponding immediate reward (R)		-550					Sum this row
2.	State→	G						
	Action (following π) \rightarrow							
	Corresponding immediate reward (R)							Sum this row
								$v_{\pi}(s_1)$ = expected value of this column

Exhaustive enumeration is computationally inefficient

Repeat for each state

$$v_{\pi}(s_1) = ?$$

Start in s_1 , apply π to transition

$$v_{\pi}(s_2) = ?$$

Start in s_2 , apply π to transition....

Number of evaluations:

- Number of possible policies = $|A|^{|S|}$
- For each policy
 - |S| number of simulations (each simulation initialized to corresponding state)
 - Each simulation generated for a large number of episodes

• Suppose: $S = \{s_1, s_2, s_3\}; A = \{a, b\}$

•
$$P_a = \begin{bmatrix} \\ \end{bmatrix}; P_b = \begin{bmatrix} \\ \end{bmatrix}$$

•
$$R_a = \begin{bmatrix} \\ \\ \end{bmatrix}; R_b = \begin{bmatrix} \\ \\ \end{bmatrix}$$

• And suppose, policy= $\pi = [b, a, a]$, and we the following:

Alternative (more efficient) solution methods

- Model-based:
 - Dynamic programming (iteratively solve for the value function)
- Model-free:
 - Reinforcement learning
 - Deep reinforcement learning

Discounting

Move robot on chutes and ladder: Objective is to reach 100

Policy	Value
$\pi = [U, U, \dots, U]$	$v_{\pi}(1) = ?$
$\pi(1) = \dots = \pi(9) = R;$ $\pi(10) = \dots = \pi(70) = U;$ $\pi(71) = \dots = \pi(79) = L$ $\pi(80) = \dots = \pi(100) = U$	$v_{\pi}(1)=?$
$\pi(1) = \dots = \pi(9) = R;$ $\pi(10) = \dots = \pi(90) = U;$ $\pi(91) = \dots = \pi(100) = L$	$v_{\pi}(1)=?$

$$\pi^* = arg \max_{\pi} v_{\pi}(1)$$

$$S = \{1, ..., 100\}$$

$$A = \{Left, Right, Up, Down\}$$

$$r(i, a, j) = \begin{cases} 1000 \text{ is } j = 100\\ 0 \text{ otherwise} \end{cases}$$

Move robot on chutes and ladder: Objective is to reach 100

Policy	Value
$\pi = [U, U, \dots, U]$	$v_{\pi}(1) = ?$
$\pi(1) = \dots = \pi(9) = R;$ $\pi(10) = \dots = \pi(70) = U;$ $\pi(71) = \dots = \pi(79) = L$ $\pi(80) = \dots = \pi(100) = U$	$v_{\pi}(1)=?$
$\pi(1) = \dots = \pi(9) = R;$ $\pi(10) = \dots = \pi(90) = U;$ $\pi(91) = \dots = \pi(100) = L$	$v_{\pi}(1)=?$

$$S = \{1, ..., 100\}$$

$$A = \{Left, Right, Up, Down\}$$

$$r(i, a, j) = \begin{cases} 1000 \text{ is } j = 100\\ 0 \text{ otherwise} \end{cases}$$

$$\pi^* = arg \max_{\pi} v_{\pi}(1)$$

There is a chance that there are multiple optimal policies

Move robot on chutes and ladder: Objective is to reach 100 in shortest distance?

Policy	Value
$\pi = [U, U, \dots, U]$	$v_{\pi}(1) = ?$
$\pi(1) = \dots = \pi(9) = R;$ $\pi(10) = \dots = \pi(70) = U;$ $\pi(71) = \dots = \pi(79) = L$ $\pi(80) = \dots = \pi(100) = U$	$v_{\pi}(1)=?$
$\pi(1) = \dots = \pi(9) = R;$ $\pi(10) = \dots = \pi(90) = U;$ $\pi(91) = \dots = \pi(100) = L$	$v_{\pi}(1)=?$

$$S = \{1, ..., 100\}$$

 $A = \{Left, Right, Up, Down\}$
 $r(i, a, j) = ?$
Discounting factor $\gamma = ?$

Episode length

Robot: pick cans

Actions:

- 1 [move-north]
- 2 [move-east]
- 3 [move-south]
- 4 [move-west]
- 5 [move-random]
- 6 [stay-put]
- 7 [pick-up-can]

State: the can-status in 4 adjacent grids and current grid

Reward:

Wall penalty: if hits wall

can_reward: if can in current grid and action = 7

Can penalty: if no can in current grid and action=7

Robot: pick cans

Actions:

- 1 [move-north]
- 2 [move-east]
- 3 [move-south]
- 4 [move-west]
- 5 [move-random]
- 6 [stay-put]
- 7 [pick-up-can]

State: the can-status in 4 adjacent grids and current grid

Reward:

Wall penalty: if hits wall

can_reward: if can in current grid and action = 7

Can penalty: if no can in current grid and action=7

Episode ends when cans have been picked up

Episode length in continuous systems

$$v_{\pi}(s_1) = ?$$

Start in s_1 , apply π to transition

• Suppose:
$$S = \{s_1, s_2, s_3\}; A = \{a, b\}$$

•
$$P_a = \begin{bmatrix} \\ \\ \end{bmatrix}; P_b = \begin{bmatrix} \\ \\ \end{bmatrix}$$

•
$$R_a = \begin{bmatrix} \\ \\ \end{bmatrix}; R_b = \begin{bmatrix} \\ \\ \end{bmatrix}$$

• And suppose, policy= $\pi = [b, a, a]$

Episode	k→	0	1	2	3	4	T	Total reward
1.	State→	S_1	S_1	s_2	s_3	s_1		
	Action (following π) \rightarrow	b	b	а	a	b		
	Corresponding immediate reward (R)		$\gamma^0 r(s_1, b, s_1)$	$\gamma^1 r(s_1, b, s_2)$	$\gamma^2 r(s_2, a, s_3)$	$\gamma^3 r(s_3, a, s_1)$		Sum this row
2.	State→	s_1	s_2	s_3	s_3	s_1		
	Action (following π) \rightarrow	b	а	а	а	b		
	Corresponding immediate reward (R)		$\gamma^0 r(s_1, b, s_2)$	$\gamma^1 r(s_2, a, s_3)$	$\gamma^2 r(s_3, a, s_3)$	$\gamma^3 r(s_3, a, s_1)$		Sum this row
								$v_{\pi}(s_1)$ = expected value of this column

If system is a continuous system (no terminating state), set episode length as T, and when k=T, reset k=0, reset system to start in s and continue.

Episodic length in terminating systems

$$v_{\pi}(s_1) = ?$$

Start in s_1 , apply π to transition

- Suppose: $S = \{s_1, s_2, s_3\}; A = \{a, b\}$
- $P_a = \begin{bmatrix} \\ \\ \end{bmatrix}; P_b = \begin{bmatrix} \\ \\ \end{bmatrix}$
- $R_a = \begin{bmatrix} \\ \\ \end{bmatrix}; R_b = \begin{bmatrix} \\ \\ \end{bmatrix}$
- And suppose, policy= $\pi = [b, a, a]$, and we the following:

Episode	k- >	0	1	2	3	4	Terminat ing state	Total reward
1.	State→	s_1	s_1	s_2	s_3	s_1		
	Action (following π) \rightarrow	b	b	a	a	b		
	Corresponding immediate reward (R)		$\gamma^0 r(s_1, b, s_1)$	$\gamma^1 r(s_1, b, s_2)$	$\gamma^2 r(s_2, a, s_3)$	$\gamma^3 r(s_3, a, s_1)$		Sum this row
2.	State→	s_1	s_2	s_3	s_3	s_1		
	Action (following π) \rightarrow	b	а	а	а	b		
	Corresponding immediate reward (R)		$\gamma^0 r(s_1, b, s_2)$	$\gamma^1 r(s_2,a,s_3)$	$\gamma^2 r(s_3, a, s_3)$	$\gamma^3 r(s_3, a, s_1)$		Sum this row
10	com is onigodia (has to	. ,.		1 1	1 ,	1		$v_{\pi}(s_1)$ = expected value of this column

If system is episodic (has terminating state), episode ends when system reaches termination state (so T is not fixed); When terminating state is reached, reset k=0, reset system to start in s and continue.

UMassAmherst

The Commonwealth's Flagship Campus