Métodos Numéricos para Autovalores

Principais Teoremas

Teorema dos Círculos de Gershgorin

• Autovalores estão dentro dos discos de Gershgorin:

$$D(a_{ii},R_i) \quad ext{com} \quad R_i = \sum_{j
eq i} |a_{ij}|.$$

• Maneira rápida de estimar onde os autovalores podem estar.

Significado:

O teorema diz que cada autovalor está em pelo menos um dos discos centrados em cada entrada da diagonal com raio igual à soma dos valores absolutos na mesma linha.

Relevância:

É uma maneira rápida de limitar ou adivinhar onde os autovalores podem estar, para que você não entre em uma busca desenfreada por eles.

Demonstração

Considere:

- 1. $A \in \mathbb{C}^{n \times n}$,
- 2. λ um autovalor de A,
- 3. $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ um autovetor associado, com $\mathbf{x} \neq \mathbf{0}$

Selecione um índice k tal que:

$$|x_k| = \max_{1 \leq i \leq n} |x_i|$$

Assim, temos:

$$|x_j| \leq |x_k| \quad ext{para todo } j = 1, 2, \dots, n.$$

Aplicação na Equação dos Autovalores

Pela definição de autovalor, temos $A\mathbf{x}=\lambda\mathbf{x}$.

Para a k-ésima linha, a equação se torna:

$$\lambda x_k = a_{kk} x_k + \sum_{j
eq k} a_{kj} x_j.$$

Ou de forma equivalente:

$$(\lambda - a_{kk})x_k = \sum_{j
eq k} a_{kj}x_j.$$

Dividindo ambos os lados por x_k (lembrando que $x_k \neq 0$):

$$\lambda - a_{kk} = \sum_{j
eq k} a_{kj} rac{x_j}{x_k}.$$

Aplicando a Desigualdade Triangular

Tomando o valor absoluto em ambos os lados:

$$|\lambda - a_{kk}| = \left| \sum_{j
eq k} a_{kj} rac{x_j}{x_k}
ight|$$

Usando a desigualdade triangular:

$$|\lambda - a_{kk}| \leq \sum_{j
eq k} |a_{kj}| \left| rac{x_j}{x_k}
ight|.$$

Como $|x_j/x_k| \leq 1$ para todo j:

$$|\lambda-a_{kk}|\leq \sum_{j
eq k}|a_{kj}|=R_k.$$

Decomposição de Schur

ullet Toda matriz quadrada A pode ser transformada unitariamente:

$$A = QUQ^*$$

 $\operatorname{\mathsf{com}} U$ triangular superior.

ullet Os autovalores de A estão na diagonal de U.

Significado:

Qualquer matriz pode ser "quase" diagonalizada. Em vez de diagonal, você obtém uma forma triangular superior com os mesmos autovalores na diagonal.

Relevância:

É a base de muitos algoritmos de autovalores (como o método QR) que dependem da redução de uma matriz a algo mais simples, mas preservando os autovalores.

Demonstração

1. Existência de um autovalor:

Seja $A\in\mathbb{C}^{n imes n}$. Pelo teorema da existência de autovalores, existe $\lambda\in\mathbb{C}$ e um autovetor não nulo v. Normalizando, podemos assumir que $\|v\|=1$.

2. Construção de uma base ortonormal:

Complete v para uma base ortonormal de \mathbb{C}^n . Seja Q_1 a matriz unitária formada por essa base, onde a primeira coluna é v.

3. Transformação unitária:

Considere a transformação:

$$Q_1^*AQ_1=egin{bmatrix} \lambda & w^* \ 0 & A_1 \end{bmatrix},$$

onde $w \in \mathbb{C}^{n-1}$ e $A_1 \in \mathbb{C}^{(n-1) \times (n-1)}$.

4. Aplicação de indução:

Pelo princípio da indução, existe uma matriz unitária $Q_2\in\mathbb{C}^{(n-1) imes(n-1)}$ que triangulariza A_1 , isto é,

$$Q_2^*A_1Q_2 = U_1,$$

onde U_1 é triangular superior.

5. Construção final:

Defina

$$Q = \ Q_1 egin{bmatrix} 1 & 0 \ 0 & Q_2 \end{bmatrix}, \quad ext{e} \quad U = egin{bmatrix} \lambda & * \ 0 & U_1 \end{bmatrix}.$$

Assim, Q é unitária com U triangular superior e seus elementos diagonais sendo os autovalores de A.

Teorema Espectral

ullet Toda matriz A real e simétrica (ou Hermitiana) pode ser fatorada em

$$A=Q\Lambda Q^t,$$

- Λ é diagonal e formada pelos autovetores de A.
- Q é ortogonal, ou seja, $QQ^t=I$.

Relevância:

Matrizes reais simétricas aparecem frequentemente (como matrizes de covariância em PCA). Saber que os autovalores são todos reais e os autovetores são ortonormais torna as coisas mais estáveis e fáceis de calcular.

Demonstração

- O Teorema Espectral é um corolário da decomposição de Schur, pois A simétrica implica $A=QUQ^*=QU^*Q^*=A^*$. Portanto, U é triangular superior e Hermitiana, ou seja, U é real a diagonal (Λ).
- Mais ainda, se $v\in\mathbb{C}^n$ e $\lambda\in\mathbb{R}$ formam um autopar de A (real e simétrica), então $\lambda\overline{v}=\overline{\lambda v}=\overline{Av}=\overline{Av}=A\overline{v}$. Portanto, \overline{v} e $u=v+\overline{v}\in\mathbb{R}^n$ serão um autovetores de A. Logo, a partir da matriz unitária Q, podemos formar uma matriz real ortogonal de autovetores de A.

Principais Algoritmos

Método da Potência

O Básico

- Processo: Repetidamente faça $v_{k+1} = Av_k/\|Av_k\|$.
- Resultado: Converge para o autovetor com o maior autovalor em magnitude.
- Advertência: Não funciona se seu vetor inicial for ortogonal ao autovetor principal, mas isto é improvável.

Quando Usar

- Matrizes enormes e esparsas.
- Precisa apenas do autovalor dominante.

Justificativa:

Seja $v_0=\sum_{j=1}^n c_j v_j$, onde v_j são os autovetores de A com $|\lambda_1|>|\lambda_2|\geq\cdots\geq |\lambda_n|$. Então:

$$A^k v_0 = \lambda_1^k \left(c_1 v_1 + \sum_{j=2}^n c_j \left(rac{\lambda_j}{\lambda_1}
ight)^k v_j
ight).$$

Para $k o\infty$, os termos com $j\ge 2$ decaem, de modo que a normalização de A^kv_0 aproxima $v_1.$

Autovalores de A^{-1}

Se A é uma matriz invertível e v é um autovetor com autovalor λ , então

$$Av = \lambda v$$
.

Multiplicando ambos os lados por A^{-1} , temos

$$v = \lambda A^{-1} v \quad \Longrightarrow \quad A^{-1} v = rac{1}{\lambda} v.$$

Ou seja, os autovalores de ${\cal A}^{-1}$ são os inversos dos autovalores de ${\cal A}$.

Deflação

Podemos remover a influência de um autopar já calculado da matriz para encontrar os autovalores subsequentes.

Para matrizes simétricas:

Dado um autopar (λ_1, v_1) com $\|v_1\| = 1$, defina a matriz deflacionada

$$A_1 = A - \lambda_1 v_1 v_1^T.$$

- 1. O autovalor λ_1 é eliminado (ou reduzido a zero) em A_1 .
- 2. Ao aplicarmos o Método da Potência a A_1 , obtemos o próximo autovalor dominante da matriz original.
- 3. Repita o processo para calcular mais autopares:

$$A_2 = A_1 - \lambda_2 v_2 v_2^T = A - \lambda_1 v_1 v_1^T - \lambda_2 v_2 v_2^T.$$

Deslocamento (Shift)

Podemos calcular um autovalor de A que não seja o dominante, modificando o espectro (distribuição dos autovalores).

Justificativa

Ideia: Para um dado deslocamento escalar σ , forme a matriz deslocada

$$B = A - \sigma I$$
.

Resolva

$$(A-\sigma I)^{-1}x_{k+1}=x_k,$$

O autovalor mais próximo de σ será o autovalor dominante de $(A-\sigma I)^{-1}$.

Após a convergência, recupere o autovalor de ${\cal A}$ através de

$$\lambdapprox\sigma+rac{1}{\mu},$$

onde μ é o autovalor dominante de $(A-\sigma I)^{-1}.$

Algoritmo QR

A Ideia

- 1. Fatore $A_k = Q_k R_k$.
- 2. Forme $A_{k+1} = R_k Q_k$.
- 3. Repita até que A_k seja triangular superior (autovalores na diagonal).

Relevância

- Padrão ouro para matrizes densas.
- Detalhe de implementação: "Shifts" aceleram a convergência.

Justificativa

A cada iteração, temos

$$A_{k+1}=R_kQ_k=Q_k^*A_kQ_k,$$

o que indica uma similaridade:

$$A_{k+1} \sim A_k$$

Se A for diagonalizável, o processo converge para uma matriz triangular U com os autovalores de A na diagonal.

Caso: 2 imes 2

Suponha

$$A = egin{pmatrix} \lambda_1 & \epsilon \ \delta & \lambda_2 \end{pmatrix},$$

com $|\lambda_1|>|\lambda_2|$ e ϵ,δ pequenos. Desejamos rastrear a entrada subdiagonal δ .

Passo 1. Fatoração QR via uma Rotação de Givens:

Defina
$$r=\sqrt{\lambda_1^2+\delta^2},\quad\cos\theta=rac{\lambda_1}{r},\quad\sin\theta=rac{\delta}{r},$$
 e faça $Q=egin{pmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{pmatrix}.$

Então, a fatoração é

$$A = QR \quad \text{com} \quad R = Q^T A.$$

Um breve cálculo resulta em:

- $r_{11} = \cos\theta \, \lambda_1 + \sin\theta \, \delta = r$,
- $r_{21} = -\sin heta\,\lambda_1 + \cos heta\,\delta = 0$ (por construção),
- $r_{22} = -\sin\theta \,\epsilon + \cos\theta \,\lambda_2$.

Passo 2. Forme a Próxima Iteração:

A próxima iteração é definida como $A^\prime=R\,Q.$

Multiplicando, a entrada (2,1) de A' é $\delta'=r_{22}\sin heta.$

Passo 3. Aproximação:

Assumindo que ϵ é pequeno, aproxime

$$r_{22}pprox cos heta\,\lambda_2.$$

Assim,

$$\delta' pprox \cos \theta \, \lambda_2 \sin \theta.$$

Usando

$$\sin heta = rac{\delta}{r} \quad ext{e} \quad \cos heta = rac{\lambda_1}{r},$$

e notando que para δ pequeno, $rpprox \lambda_1$, obtemos $\delta'pprox \lambda_2\,rac{\delta}{\lambda_1}.$

Tomando valores absolutos, concluímos que

$$|c'| = |\delta'| pprox |c| \left| rac{\lambda_2}{\lambda_1}
ight|.$$

Como $|\lambda_1|>|\lambda_2|$, temos uma contração do termo $c=A_{2,1}$ localizado abaixo da diagonal.

Método de Jacobi (para simétricas)

Esboço

- Rotacione pares de eixos para zerar as entradas fora da diagonal.
- Converge para uma matriz diagonal com autovalores na diagonal.
- Redução da "energia" off-diagonal.

Considerações

- Fácil de entender para ensino.
- Lento em problemas de grande escala, mas conceitualmente simples.

Justificativa

• Transformação de Similaridade:

 \circ Cada rotação G(i,j, heta) satisfaz

$$A' = G(i, j, \theta)^T A G(i, j, \theta)$$

Autovalores permanecem inalterados.

Redução Off-diagonal:

- \circ A rotação elimina (ou diminui) o elemento a_{ij} .
- Iterações sucessivas convergem para uma matriz quase diagonal.

Matrizes de Rotação G(i,j, heta)

Construção:

Uma forma concisa de escrever a matriz de rotação G(i,j, heta) é

$$G(i,j, heta) = I_n + (\cos heta - 1)(e_i e_i^T + e_j e_j^T) - \sin heta \, (e_i e_j^T - e_j e_i^T),$$

onde I_n é a matriz identidade e e_i (ou e_j) é o i-ésimo vetor canônico.

Essa notação garante que:

- ullet Para k
 eq i,j, a entrada $G_{kk}=1$;
- $G_{ii} = G_{jj} = 1 + (\cos \theta 1) = \cos \theta$;
- $G_{ij} = -\sin \theta$ e $G_{ji} = \sin \theta$.

G realiza uma rotação no plano das direções e_i e e_j e anula o elemento a_{ij} de A por meio de transformações de similaridade.

Diferenças Entre A e A^\prime

• (Alterados) Bloco formado por linhas/colunas i e j:

$$egin{aligned} &\circ A'_{ii} = c^2\,A_{ii} - 2sc\,A_{ij} + s^2\,A_{jj} \ &\circ A'_{jj} = s^2\,A_{ii} + 2sc\,A_{ij} + c^2\,A_{jj} \ &\circ A'_{ij} = A'_{ii} = (c^2 - s^2)A_{ij} + sc\,(A_{ii} - A_{jj}) \end{aligned}$$
 (será anulado)

- Inalterados: Elementos com índices fora do conjunto $\{i,j\}$.
- Nas linhas/colunas i e j com outros índices k:

$$\circ \ A'_{ik} = c\,A_{ik} - s\,A_{jk}$$

$$\circ \ A'_{jk} = s\,A_{ik} + c\,A_{jk}$$

$$\circ$$
 Portanto, $(A'_{ik})^2+(A'_{jk})^2=A^2_{ik}+A^2_{jk}$ ("energia" preservada)

Preenchimento (Fill-in)

• O que ocorre:

- \circ Elementos inicialmente nulos em linhas/colunas i ou j podem se tornar não-nulos.
- Isso ocorre devido às combinações lineares durante a rotação.

• Impacto:

- O "fill-in" local não impede a convergência, pois a norma off-diagonal é reduzida.
- No entanto, é inviável aplicá-lo em matrizes esparsar de grande escala.

Garantia de Convergência

• Mesmo com preenchimento:

- $\circ~$ Cada rotação anula ou diminui significativamente o elemento $A_{ij}.$
- A soma dos quadrados dos elementos fora da diagonal (norma offdiagonal) decai a cada iteração.

• Resultado:

 \circ A matriz converge para uma forma diagonal cujos elementos diagonais são os autovalores de A.

Iteração do Quociente de Rayleigh

 Combina a iteração inversa com shift basedo no Quociente de Rayleigh

$$ho(x) = rac{x^T A x}{x^T x}$$

- O autopar é atualizado por iteração
- Convergência cúbica

```
def rqi(A, x0, iterations=10):
    x = x0
    I = np.eye(A.shape[0]
    row = 0
    for _ in range(iterations):
        row_old = row
        rho = x.T @ A @ x / (x.T @ x)
        if np.abs(row - row_old) < epsilon:
            break
        x = solve(A - rho * I, x)
        x = x / norm(x)

return row, x</pre>
```

Justificativa

Em cada iteração, o RQI calcula o Quociente de Rayleigh

$$ho(x) = rac{x^T A x}{x^T x}$$

usando o vetor x da iteração anterior.

O valor $\rho(x)$ serve como um **shift** dinâmico, ajustado a cada passo para se aproximar do autovalor desejado.

O RQI utiliza a **iteração inversa** com este shift dinâmico para encontrar o próximo vetor x_{k+1} resolvendo

$$(A-
ho(x_k)I)x_{k+1}=x_k.$$

A iteração inversa é equivalente ao método da potência aplicado à matriz **inversa** deslocada $(A-\rho(x_k)I)^{-1}$.

Se λ_i são os autovalores de A, então os autovalores de $(Aho(x_k)I)^{-1}$ são

$$\mu_i = rac{1}{\lambda_i -
ho(x_k)}$$

Finalmente, quando $\rho(x_k)$ se aproxima de um autovalor λ_j de A, o autovalor μ_j de $(A-\rho(x_k)I)^{-1}$ torna-se **dominante em magnitude**, pois o denominador $|\lambda_j-\rho(x_k)|$ fica cada vez menor.

Resumindo, o RQI acelera drasticamente a convergência ao refinar o shift dinâmico na iteração inversa.

Método de Lanczos (para simétricas grandes)

Destaques

- Constrói um subespaço de Krylov: $\mathcal{K}_m(A,v)=\{v,Av,A^2v,\ldots,A^{m-1}v\}$.
- ullet Produz uma matriz tridiagonal cujos autovalores se aproximam dos de A.

Caso de uso

- Eficiente para matrizes esparsas e grandes.
- ullet Geralmente usado para obter apenas os k autovalores principais.

Método de Arnoldi (não simétricas)

O que é?

- Generaliza Lanczos para matrizes não simétricas (ou não Hermitianas).
- Constrói uma matriz de Hessenberg superior que se aproxima dos autovalores (valores de Ritz).

Caso de uso

 Problemas grandes, esparsos e não simétricos (como matrizes de adjacência de grafos direcionados).