



# Machine Learning for Engineers







THE FIRST COMPUTER PROGRAM TO EVER BEAT A PROFESSIONAL PLAYER AT THE GAME OF GO.







10. Juli 2015











18. Juni 2014 v







17. Juni 2014

16. Juni 2014





# JassChallenge





Computer vs. Monika Fasnacht

Machine Learning for Engineers I





#### Florian Lüscher

- bei Zühlke seit 2013
- Software Architektur
- Continuous Delivery
- Machine Learning
- Robo-Challenge



#### Roman Bertolami

- bei Zühlke seit 2008
- Software Architektur
- Cloud Computing
- Pattern Recognition







# Challenge - notMNIST



# Machine Learning Overview

## Machine Learning Definition

#### Wikipedia:

Machine learning gives computers the ability to learn without being explicitly programmed.



### Overview

### **Learning Methods**



Supervised



Unsupervised

# Supervised Learning

Infer a function from labeled training data



- Optical Character recognition
- Handwriting recognition
- Speech recognition
- Object recognition
- ...



#### **Algorithms:**

- Naïve Bayes
- Support Vector Machine
- Nearest Neighbor Classifier
- Hidden Markov Model
- Conditional Random Fields
- Neural Networks
- Logistic Regression

- ...

# **Unsupervised Learning**

Describe hidden structure from "unlabeled" data



#### **Typical problems:**

- Clustering
- Product recommendation
- Outlier detection

- ...

#### **Algorithms:**

- K-Means Clustering
- DBSCAN
- Neural Networks

- ...

### Overview



Regression



Classification

# Regression

Regression analysis is a statistical process for estimating the relationships among variables.

#### **Typical problems:**

- Housing prices
- Prediction and forecasting
- Trend estimation

- ...

#### **Algorithms:**

- Linear Regression
- Non-linear Regression
- Neural Networks

- ...

#### **Important Note:**

Correlation does not imply causation.



### Classification

Classification is the problem of identifying to which of a set of categories a new observation belongs



#### **Typical problems:**

- Digit classification
- Fraud detection
- Fingerprint classification
- ...

#### **Algorithms:**

- Naïve Bayes
- Support Vector Machine
- Nearest Neighbor Classifier
- Decision Tree
- Random Forest
- Neural Networks

- ...



# TensorFlow

### Tensorflow

#### **TensorFlow**

TensorFlow is an open source software library for numerical computation using data flow graphs.

https://www.tensorflow.org/



### Terminology



#### **Definition**



```
import numpy as np
import tensorflow as tf

A = tf.constant(5)
B = tf.constant(2)
C = tf.constant(3)
I = tf.add(A, B)
R = tf.multiply(I, C)

print (R)
```

#### **Output:**

Tensor("Mul 2:0", shape=(), dtype=int32)

#### Execution

```
import numpy as np
import tensorflow as tf
A = tf.constant(5)
B = tf.constant(2)
C = tf.constant(3)
I = tf.add(A, B)
R = tf.multiply(I, C)
with tf.Session() as session:
    tf.global variables initializer().run()
    res = session.run([R])
    print(res)
```

**Output:** [21]

### **Training**



#### How can Tensorflow train a model?

Tensorflow analyzes the Graph. If an Optimizer like

tf.train.GradientDescentOptimizer

is used, Tensorflow starts to change the *Variable* values while leaving *Constant* unchanged.

### Tensorflow

















# Hands-On 1: Intro into TensorFlow

### Hands-On 1: Setup Docker (preferred)

Start Notebooks using Docker

#### Step 1

Clone Github Repo:

https://github.com/fluescher/deep-learning-presentation



Navigate to directory and start

./run-docker.sh





### Hands-On 1: Setup

Start Notebooks using Azure Notepad

#### Step 1

If you don't have docker running goto:

https://notebooks.azure.com/anon-xc1gwa/libraries/machine-learning

#### Step 2

Clone the notebook and execute exercise 1





# Fitting a linear model

### **Logistic classifier**

Simple model, easy to train:

$$Y = Wx+b$$

Tries to linearly separate the training data.







#### Softmax



#### **Cross-Entropy**



$$D(S,L) = -\sum_{i} L_{i} \log(S_{i})$$



Learning

Our Learning Problem now is an optimization problem

#### **Loss Function**

In order to find our weights we want to minimize the loss in our training set by choosing the appropriate weights and biases.

#### **Gradient Descent**

Optimization algorithm: Take derivative and "walk" towards optimum





# Hands-On 2: Our First Classifier



# First Neural Network

# Handling Non-Linear Problems







### Handling Non-Linear Problems



### **Activation Functions**





Tanh

**RELU** 



# Hands-On 3: Our First Neural Network

### Outlook

#### **Deep Networks:**

- Deep Feedforward Networks
- Convolutional Neural Networks
- Recurrent Neural Networks
- Long-Short Term Memory Nets

Representation Learning Autoencoders

### Outlook

Real World Models

#### **GoogLeNet**

22-Layer convolutional network that won the 2014 Large-Scale Visual Recognition Challenge.



#### **Model Combination**

2015 MSCOCO Image Captioning Challenge



### Outlook - Tools

### **TensorFlow Serving**

Run your models in production:

https://tensorflow.github.io/serving/

#### **TensorBoard**

Visualize Learning:

https://www.tensorflow.org/get\_started/summaries\_and\_tensorboard



### Outlook - Tools

### **TensorFlow on Google Cloud Platform**

https://cloud.google.com/tpu/



#### **TensorFlow Mobile**

Run your models on Mobile Devices:

https://www.tensorflow.org/mobile/



## Try It!

#### **TensorFlow**

https://www.tensorflow.org/

http://playground.tensorflow.org/



### **Examples & Presentation**

https://github.com/fluescher/deep-learning-presentation

