Real-time 6 DOF Pose Estimation with Limited Priors

Student: Dhruv Sheth

Collaborators: Aurelio Noca, Jonathan Becktor

Co Mentor: Dr. Ersin Das

Mentor: Prof. Joel Burdick

Agenda

- Background and Motivation
- Objectives
- Methods
 - Simulation
 - Perception
- Results and Discussion
- Future Work
- Acknowledgements
- Q&A

Background

DARPA LINC Phase 1

- Precise payload placement on ships
- Respond to events not predicted at design time
- Robustness to:
 - uncertain state estimates
 - perception error in dynamic environments
- Design ML models with safety guarantees

tldr; this is a complex problem

from Burdick Lab slack

Project Objectives

- Implement a robust 6 DoF pose estimation method for objects with unknown geometry
 - Robust: Make it recover from errors in complete occlusion
 - Optimize: Make it run real time on AGX Orin with low compute
- Develop a high-fidelity simulation stack for testing control+perception
- Extend the algorithm to multiple cameras
- Create a ROS2 wrapper for plug and play support

Other Applications

Dactyl lab setup with Shadow Dexterous Hand, PhaseSpace motion tracking cameras, and Basler RGB cameras
OpenAl Dactyl Experiment, 2018

DeXtreme: Transfer of Agile In-Hand Manipulation from Simulation to Reality, 2024 OpenAl hand replication experiment

Methods

- High Fidelity environment replicating testbed
- Unity + MuJoCo integration
 - MuJoCo physics: control
 - Unity photorealism: perception

- High Fidelity environment replicating testbed
- Unity + MuJoCo integration
 - MuJoCo physics: control
 - Unity photorealism: perception
- RGBD + IMU sensor data integration for testing

- High Fidelity environment replicating testbed
- Unity + MuJoCo integration
 - MuJoCo physics: control
 - Unity photorealism: perception
- RGBD + IMU sensor data integration for testing
- NeRF training environment

- High Fidelity environment replicating testbed
- Unity + MuJoCo integration
 - MuJoCo physics: control
 - Unity photorealism: perception
- RGBD + IMU sensor data integration for testing
- NeRF training environment
- ROS2 wrapper
 - communication with sim
 - swapping with hardware

Previous Methods

- Feature Tracking approaches
 - Classical Approaches:
 - Inverse SLAM
 - LoFTR feature tracking
 - Deep Learning:
 - BundleSDF
- Transformer approaches:
 - FoundationPose
 - Not suited for longer videos

BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
NVIDIA, 2023

FoundationPose

Caltech

FoundationPose

Caltech

FoundationPose

FoundationPose

Video Object Segmentation

- Cutie: Putting the Object Back Into Video Object Segmentation
- Why segmentation?
 - 2D data is easier than 3D data
 - Current 2D models outperform 3D
 - Provides a good coarse input

Video Object Segmentation

- Cutie: Putting the Object Back Into Video Object Segmentation
- Why segmentation?
 - 2D data is easier than 3D data
 - Current 2D models outperform 3D
 - Provides a good coarse input
- Why Cutie?
 - Memory model
 - Long horizon segmentation
 - Recovers from occlusions

FoundationPose

FoundationPose Architecture

Perception Stack

FoundationPose Improvement

FoundationPose Architecture

Perception Stack

FoundationPose Improvement

FoundationPose Improvement

FoundationPose + VOS results

- High Disturbance
- Low visibility of object

FoundationPose pipeline

FoundationPose pipeline

priors

NeRF 3D reconstruction

FoundationPose Improvement

pose estimate

Caltech

Multi-Cam integration & deployment

- Under complete occlusion in one camera:
 - Switch between cameras with priority ranking
 - mTC to know when object recovered from occlusion

Multi-Cam integration & deployment

- Under complete occlusion in one camera:
 - Switch between cameras with priority ranking
 - mTC to know when object recovered from occlusion
- Implement ROS2 interface for:
 - Multicam data
 - Pose tracking
 - Simulation to perception

Multi-Cam integration & deployment

- Under complete occlusion in one camera:
 - Switch between cameras with priority ranking
 - mTC to know when object recovered from occlusion
- Implement ROS2 interface for:
 - Multicam data
 - Pose tracking
 - Simulation to perception
- TensorRT Optimization on VOS
 - 20% improvement
 - 3 modules

Safety-Critical use

Safety-Critical use

Safety-Critical use

Safety-Critical use

Safety-Critical use

Results from **CLOSURE**

complete NeRF reconstruction

partial NeRF reconstruction

Results and Conclusion

- FoundationPose + VOS pose estimation
- Multi-Cam integration to FoundationPose
- ROS2 interface for perception
- High-fidelity simulation environment for testing
- Optimization for low compute
- Uncertainty Quantification for safety

Future Work

- More Benchmarks
- Use less priors (No 3D reconstruction of object)
- Integrate a state estimator for filtering

Acknowledgements

- Prof. Joel Burdick for giving me the opportunity to SURF with the lab, resources and guidance along the way
- Dr. Ersin Das for his guidance and support and help whenever needed
- Aurelio, Jonathan and Thomas for help with code, hardware and debugging
- Dr. Jane Chen for SURF fellowship to support my research this summer

Q&A

caltech.edu

Caltech