- Common Probability Distribution
 - 1. Uniform and Binomial Distribution
 - 2. Normal Distribution
 - 3. Log-normal, T, Chi-Square, F-distribution

Common Probability Distribution

Key Words: uniform distribution, binominal distribution, cdf, normal distribution, confidence interval, z-values, safety-first ratio, log-normal distribution, T-distribution, chi-square distribution, F-Distribution, Monte Carlo simulation

1. Uniform and Binomial Distribution

- Probability Distribution
 - discrete random variable→discrete probability distribution
 - probability function P(x) = P(X = x)
 - continuous random variable—continuous probability distribution
 - Difference between discrete dis(A) and continuous dis(B):
 - 1. P(x) = 0:
 - A the event not occur
 - B the event x can occur, since x is a **single point** in a range
 - 2. P(x):
 - A: the probability that random variable X = x
 - B: we only consider $P(x_1 \le X \le x_2)$, which = $P(x_1 < X < x_2)$, since $P(x_1) = P(x_2) = 0$
- Cumulative Distribution Function(cdf)
 - $\circ F(x) = P(X \le x)$
 - o intuition: takes on a value equal to or less than a specific value
- Discrete Uniform Random Distribution
 - o probabilities for all possible outcomes for a discrete r.v. are equal.
 - Cumulative distribution function: $F(x_n) = np(x)$.

- the probability of a range of outcomes is P(x)k, where k is the number of possible outcomes in this range.
- Properties of Continuous Uniform Distribution
 - $a \le x_1 \le x_2 \le b$, where a and b are boundaries
 - $P(X \le a \text{ or } X \ge b)=0$, when X is outside the value
 - $P(x_1 \le X \le x_2) = \frac{x_2 x_1}{b a}$, the probability that outcomes locating in the range of $[x_1, x_2]$
 - Graphically, cdf of continuous uniform dist is linear, sum up to 1.
- Bernoulli Random Variable, Binomial random variable, Binomial Distribution
 - Binomial random variable: define the number of "success" in a given number of experiments(*n*), which the outcomes can be "success" or "failure".
 - p: the possibility of success
 - Bernoulli Random Variable: when n = 1, the special case of binominal random variable.
 - Binominal Distribution:
 - Define the probability of x success in n trials.

■ Function:
$$p(x) = \frac{n!}{(n-x)!x!} p^x (1-p)^{n-x} = {n \choose x} p^x (1-p)^{n-x}$$

- $\binom{n}{x}$:number of ways to choose x from n.
- Expected Value and Variance:
 - the expected number of success with n trials:E(X) = np
 - Var(X) = np(1-p)

2. Normal Distribution

- Properties:
 - $\circ XN(\mu,\sigma^2)$
 - Skewness = 0, mean=median=mode, symmetric about mean
 - \circ *Kurtosis* = 3
 - Linear combination of normally distributed variables is also normally distributed.
 - Eg: if the <u>return of each stock</u> in a portfolio is normally distributed, the return on the <u>portfolio</u> will also follow normal distribution.

- Multivariate VS Univariate Distribution
 - Univariate Distribution:
 - the distribution of single random variable
 - Multivariate Distribution:
 - associated with multiple random variables regardless discrete or continuous variables
 - Between <u>2 discrete variables</u> can be described using **joint probability** tables
 - The Role of *Correlation* in Multivariate Normal Distribution
 - one important feature distinguish multivariate dist from univariate dist
 - the strength of linear relationship between a pair of r.v.
 - parameterized with n assets:
 - *n* means: $(\mu_1, \mu_2, ..., \mu_n)$
 - *n* variance: $(\sigma_1^2, \sigma_2^2, ..., \sigma_n^2)$
 - pair-wised correlation: 0.5n(n-1)
 - the lower the better, because of lower portfolio variance.
- Confidence Interval(CI)
 - Definition: <u>a range of values</u> around the <u>expected outcome</u> within which we expected the actual outcome to be <u>specified percentage</u> of a time.
 - For *normal distribution*, CI width depends on **expected value** and **std**. $E(X) \pm k\sigma$
 - $E(X) \pm \sigma$:68%
 - $E(X) \pm 2\sigma$:95%
 - Sometimes we need to use sample mean and sample std to estimate population situation:
 - 90% CI for X: $[\bar{x} 1.65 * s, \bar{x} + 1.65 * s]$
 - 95% CI for X: $[\bar{x} 1.96 * s, \bar{x} + 1.96 * s]$
 - 99% CI for X: $[\bar{x} 2.58 * s, \bar{x} + 2.58 * s]$
- Standard Normal Distribution
 - $\circ \ z = \frac{x \mu}{\sigma} \sim N(0, 1)$
 - Standardization: observed value-> z-score.
 - Z-score means how many standard deviation above/below the mean
 - CDF of standard normal distribution
 - F(Z) = P(Z < z)

- the usage of z-table, only contains positive z-values
- Transform of negative z-values: F(-Z) = 1 F(Z)
- Shortfall Risk, Safety-first Ratio, Optimal Portfolio Identification
 - Shortfall Risk: $P(R_p \le R_L)$
 - Roy's safety-first criterion, for optimal portfolio
 - Function: $minP(R_p \le R_L)$
 - R_L : threshold acceptable level return
 - If the portfolio is **normally distributed**, Roy's safety-first criterion
 - Function: $max\ SFRatio$, where $SFRatio = \frac{E(R_p) R_L}{\sigma_p}$
 - SFRatio: the number of std **below** the mean, when calculate the probability, it is the **left-tail** of standard normal distribution in graph. $F(-SFRatio_{max})$
 - SFRatio↑, portfolio return
 threshold return↓

3. Log-normal, T, Chi-Square, F-distribution

- Log-normal Distribution
 - \circ Function: e^x , where x is normally distributed.
 - skewed to the right
 - \circ range: $[0, \infty]$, which is used for asset pricing
 - price relative: S1/S0 = 1 + HPR
 - S_1 :end-of-period price
 - S_2 :beginning price
 - *HPR*: holding period return
 - treated as up or down-move(multiplier) terms
 - Calculating Continuously Compounded Returns
 - When the compounding periods become shorter and shorter, we use continuously compounding technique
 - Function: $EAR = e^{R_{CC}} 1$, where R_{CC} is stated annual rate.
 - Financial Calculator: [value of Rcc] [ln] [CPT]
 - $Rcc = ln(1 + HPR) = ln(\frac{S_1}{S_0})$
 - Additive for multiple periods: $HPR_T = e^{Rcc*T} 1$

Student T-Distribution

- bell shape, centered about 0
- used for <u>small samples(n<30)</u> with approximately normal distribution or <u>large</u> <u>sample(CLT)</u> from populations with unknown variance.
- Degree of freedom(df): n-1, based on the test of sample means
- Fatter tails than normal distribution, more area under tails
- Cl for t-dist more wider than that of normal dist
- When n(or df) larger, t-dist more close to standard normal distribution, t-dist become more thinner tails and spiked.
- more difficult to reject H0 than using normal dist
- $\circ \ \alpha_{twoTails} = 2 * \alpha_{oneTail}$
- o critical value increase with df decrease.

• Chi-Square(χ^2)

- \circ df: k = n 1
- Asymmetric
- when df increases, its distribution symmetric increase, approaching normal distribution gradually
- used for tests whether the values of variance are equal of normally distributed population
- \circ range:[- ∞ ,0]

F-Distribution

- \circ including two approximately scaled independent chi-square variables, with df m and n
- $\circ F = \frac{\chi^2/m}{\chi^2/n}$
- Asymmetric
- when m and n get larger, the F-distribution become more symmetric and more similar to normal dist.
- o cannot take on negative values
- usage of F-distribution table

Monte Carlo Simulation

 repeated generation of >=1 risk factors with specified parameters(mean, variance, skewness...) to generate a distribution of security values, calculate the mean value as the estimation results.