Mol2vec & RNN Models

Contents

- SMILES string
- Embedding
- Feature selection
 - Use all features
 - Use specific features
 - PCA

- RNN models
 - Simple RNN
 - Bidirectional LSTM
 - Self attention BiLSTM
- Unbalanced data
- Appendix

SMILES string

- SMILES: Simplified Molecular Input Line Entry Specification
 - Example: CCOC(=Oc1c(C)cc(O)c(C=O)c1O, CI.N=C(N)n1cccn1, ...
 - Atoms: 'C', '[Au]'
 - Chemical bond: '=', '#'
 - Ring: 'C1CCCC1'
- Proceccing SMILS string: rdkit.Chem.MolFromSmiles

Embedding

- Mol2vec: https://github.com/samoturk/mol2vec
- Workflow of embedding SMILES string in vectors:
 - Convert tokens in SMILES string to words
 - Embed words in vectors
 - Sum up

Embedding

- Workflow of training mol2vec models and application of mol2vec in property prediction tasks:
 - https://pubs.acs.org/doi/10.1021/acs.jcim.7b00616
- Pretrained mol2vec model: model_300dim.pkl

Feature selection

- Pretrained mol2vec model generates a 300 dimension vector for a single molecule
 - Use all features to predict property
 - Use specified features to predict property
 - Apply PCA to embeddings and choose some major features

RNN models

Feed selected features to simple RNN model

- Poor performance
- Fall into local optimal solution

RNN models

Feed selected features to Bidirectional LSTM model

- Also poor performance and fall into local optimal solution
- Various structure of molecules neglected by both RNN models

RNN models

- Instead of embedding SMILES strings in vectors, embed them in tensors:
 - Convert tokens in SMILES string to words
 - Embed words in vectors
 - Feature selection
 - Stack up
- Construct a model which can utilize the structural information

RNN models

- Consider introducing self attention mechanism into RNN models: https://pubs.acs.org/doi/10.1021/acs
 .jcim.8b00803
- Adapt to tensor inputs in order to apply mol2vec and utilize structural information

RNN models

Feed selected features to Self attention BiLSTM model

Get improvement in model performance

RNN models

20 tests with 501 molecules:

ROC-AUC	PRC-AUC
0.9618 ± 0.0129	0.6258 ± 0.0907

• 10 fold cross validation:

	ACC	ROC-AUC	PRC-AUC		ACC	ROC-AUC	PRC-AUC
0	0.9104	0.4959	0.1275	5	0.8756	0.8586	0.3811
1	0.8168	0.6391	0.4530	6	0.9748	0.5849	0.0680
2	0.8706	0.7563	0.5150	7	0.8558	0.4010	0.0040
3	0.8119	0.3750	0.0146	8	0.8507	0.9670	0.2156
4	0.7214	0.8915	0.3878	9	0.7624	0.9062	0.4017

RNN models

ROC

PRC

Unbalanced data

- Ecoli.csv: 120 valid molecules, 2215 invalid molecules
 - Replicate valid molecules and add to dataset
 - Fastest training: train SABiLSTM model with a half valid and half invalid dataset
 - Other ratio: SABiLSTM model will always converge, but slower
 - Use balanced dataset at the beginning of training, then lower the ratio

Appendix

- RDKit: https://github.com/rdkit/rdkit/
- Mol2vec: https://github.com/samoturk/mol2vec
- Mol2vec workflow introduction: <u>https://pubs.acs.org/doi/10.1021/acs.jcim.7b00616</u>
- Self attention BiLSTM model: https://pubs.acs.org/doi/10.1021/acs.jcim.8b00803