PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-313278

(43)Date of publication of application: 05.11.1992

(51)Int.Cl.

H01L 31/16

(21)Application number: 03-079303

(71)Applicant: HAMAMATSU PHOTONICS KK

11.04.1991 (22)Date of filing:

(72)Inventor: SAKAKIBARA MASAYUKI

TOMITA TOSHIHIKO

(54) TWO-DIMENSIONAL LIGHT INCIDENCE POSITION DETECTION ELEMENT

(57)Abstract:

PURPOSE: To obtain a low-cost tow-dimensional light incidence position detection element in a simple structure by connecting a semiconductor layer to a semiconductor resistance layer and by increasing or decreasing an area of the semiconductor layer toward the extension detection uniformly.

CONSTITUTION: A p-type resistance layer 21 and a ptype resistance layer 22 of a semiconductor light incidence position detection element are placed in parallel each other on an ntype semiconductor substrate 10 and each pair of signal take-out electrodes 31-34 are connected to these both terminals. A plurality of n+type semiconductor layers 41 and p+-type semiconductor layers 42 are formed an n-type semiconductor substrate 10 between the p-type semiconductor layer 21 and the n-type resistance layer 22 and they are connected to the p-type resistance layer 21 and the p-type resistance layer 22 by a p-type semiconductor layer 5, thus enabling the p-type

resistance layers 21 and 22 to perform resistance division of photo-generation carriers which are collected by the p+-type semiconductor layers 41 and 42. On the other hand, a photo diode constitutes the p+-type semiconductor layers 41 and 42 as an anode and an anode area of each photo diode tends to increase or decrease uniformly in Y direction, thus enabling Ydirection incidence position of light spot to be detected.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平4-313278

(43)公開日 平成4年(1992)11月5日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 31/16

B 7210-4M

審査請求 未請求 請求項の数4(全 5 頁)

(21)出願番号

特願平3-79303

(22)出願日

平成3年(1991)4月11日

709. 9. 29

(71)出願人 000236436

浜松ホトニクス株式会社

静岡県浜松市市野町1126番地の1

(72)発明者 榊原 正之

静岡県浜松市市野町1126番地の1 浜松ホ

トニクス株式会社内

(72)発明者 富田 俊彦

静岡県浜松市市野町1126番地の1 浜松ホ

トニクス株式会社内

(74)代理人 弁理士 長谷川 芳樹 (外3名)

(54) 【発明の名称】 二次元光入射位置検出素子

(57)【要約】

【目的】 構造が簡単で低コストな二次元光入射位置検 出素子を提供する。

【構成】 単一の半導体基板に半導体光入射位置検出素子 (PSD) とホトダイオードが形成され、(PSD) は、半導体基板に形成された線状の半導体抵抗層と、この両端に接続された一対の位置信号電極を含んで構成され、ホトダイオードは、半導体抵抗層と同一導電型の複数の半導体層をアノードもしくはカソードとして構成される。そして、複数の半導体層がPSD用の半導体抵抗層に接続されることにより、PSDのキャリア収集部として働く。また、一定方向に面積が一様に増加または減少して形成されることで、光入射位置に応じて出力光電流が異なるホトダイオードのアノードまたはカソードとして動く。

【特許請求の範囲】

【請求項1】半導体基板に半導体光入射位置検出素子と ホトダイオードが形成され、前記半導体光入射位置検出 素子は、前記半導体基板に形成された線状の半導体抵抗 層と、この半導体抵抗層の両端に接続された一対の位置 信号電極を含んで構成され、前記ホトダイオードは、前 記半導体抵抗層と同一導電型の複数の半導体層をアノー ドもしくはカソードとして構成され、前記半導体層は、 前記半導体抵抗層に所定間隔で接続されて、当該半導体 抵抗層の長手方向と実効的に直交する方向に延設され、 かつ前記半導体層の面積がその延設方向に向って一様に 増加または減少していることを特徴とする二次元光入射 位置検出素子。

【請求項2】 前記ホトダイオードは第1および第2の ホトダイオードからなる2分割ホトダイオードであっ て、第1のホトダイオードは前記複数の半導体層であ り、第2のホトダイオードは前記複数の半導体層の間に それぞれ形成された別の複数の半導体層をアノードもし くはカソードとして構成され、かつその面積が前記延設 方向に向って一様に減少または増加している請求項1記 20 載の二次元光入射位置検出素子。

【請求項3】 前記半導体基板は単一の基板からなり、 前記ホトダイオードは、前記半導体抵抗層と同一導電型 であって前記半導体基板に形成された複数の半導体層を アノードもしくはカソードとして構成されている請求項 1 記載の二次元光入射位置検出素子。

【請求項4】 前記ホトダイオードは第1および第2の ホトダイオードからなる2分割ホトダイオードであっ て、前記第1のホトダイオードは前記複数の半導体層を 含み、前記第2のホトダイオードは前記複数の半導体層 30 の間にそれぞれ形成された別の複数の半導体層をアノー ドもしくはカソードとして構成され、かつ前記別の複数 の半導体層の面積が前記延設方向に向って一様に減少ま たは増加している請求項1記載の二次元光入射位置検出 素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は二次元光入射位置検出素 子に関する。

[0002]

【従来の技術】従来、二次元光入射位置検出素子として 二次元半導体光入射位置検出素子(二次元PSD)や、 4分割ホトダイオードなどが知られている。二次元PS Dには表面(片面)分割型と両面分割型があり、前者で はシリコン基板の表面に、イオン注入で面状の高抵抗層 が形成される。また、後者ではシリコン基板の両面に、 線状の抵抗層が形成される。一方、4分割ホトダイオー ドでは中心に対して点対称に、4つの受光面が形成され る。

[0003]

【発明が解決しようとする課題】上記の表面分割型PS Dでは、抵抗層を高抵抗すなわち低濃度イオン注入にし なければならないので、特性良品率を上げるのが難し い。両面分割型PSDでは、基板の両面に対する加工が

2

必要となるため高価になる。一方、4分割ホトダイオー ドでは光スポットが中心から外れると、その入射位置を 検出できない。

【0004】そこで本発明は、光スポットの入射位置を 広い範囲で二次元的に検出することができ、しかも構造 が簡単で低コストな二次元光入射位置検出素子を提供す

[0005]

ることを目的とする。

【課題を解決するための手段】本発明に係る二次元光入 射位置検出素子は、半導体基板に半導体入射位置検出素 子とホトダイオードが形成され、半導体光入射位置検出 素子は、半導体基板に形成された線状の半導体抵抗層 と、この半導体抵抗層の両端に接続された一対の位置信 号電極を含んで構成され、ホトダイオードは、上記半導 体抵抗層と同一導電型の複数の半導体層をアノードもし くはカソードとして構成され、上記半導体層は、上記半 導体抵抗層に所定間隔で接続されて、この半導体抵抗層 の長手方向と実効的に直交する方向に延設され、かつ半 導体層の面積がその延設方向に向って一様に増加または 減少していることを特徴とする。

[0006]

【作用】本発明によれば、複数の半導体層が半導体光入 射位置検出素子(PSD)用の半導体抵抗層に接続され ることにより、PSDのキャリア収集部として働く。ま た、一定方向に面積が一様に増加または減少して形成さ れることで、上記の半導体層は光入射位置に応じて出力 光電流が異なるホトダイオードのアノードまたはカソー ドとして動く。

[0007]

【実施例】以下、添付図面を参照して本発明の実施例を 説明する。

【0008】図1は実施例に係る二次元光入射位置検出 素子の平面図、図2 (a), (b) はそれぞれ図1のA 1 -A2 線、A3 -A4 線断面図である。n型半導体基 板10の裏面の全面にはn+型裏面層11が形成され 40 る。PSDは互いに平行に配設された低不純物濃度の第 1のp型抵抗層21と第2のp型抵抗層22を含み、こ れらの両端に各一対の信号取出電極31~34が接続さ れる。第1のp型抵抗層21と第2のp型抵抗層22の 間の n 型半導体基板 10 には、それぞれクサビ型をなし て互いに入り込む高不純物濃度の第1のp*型半導体層 41と第2のp⁺型半導体層42が複数ずつ形成され、 これらは低ドープのp型半導体層5によって、それぞれ 所定間隔で第1のp型抵抗層21と第2のp型抵抗層2 2に接続されている。なお、第1のp⁺型半導体層41 50 と第2のp* 型半導体層42の間には、アイソレーショ

ン用のn⁺型層13が形成されている。

【0009】上記の構造によれば、第1のp型抵抗層2 1は第1のp⁺型半導体層41によって収集された光生 成キャリアを抵抗分割する役割を有し、第2のp型抵抗*

$${ (I_1 + I_3) - (I_2 + I_4) } / (I_1 + I_2 + I_3 + I_4)$$

に従って行なえばよい。

【0010】一方、上記の構造によれば、第1のホトダ イオードが第1のp⁺ 型半導体層41をアノードとして 構成され、第2のホトダイオードが第2のp⁺ 型半導体 層42をアノードとして構成され、かつ各々のホトダイ※10 式

$$\{(I_1 + I_2) - (I_3 + I_4)\} / (I_1 + I_2 + I_3 + I_4)$$

に従って行なえばよい。

【0011】 ここで、第1のp型抵抗層21および第2 のp型抵抗層22の長さをLとし、座標の原点を受光面 の中心にとった場合には、X方向については、既知の一 次元PSDの動作原理より上記関係式の演算は、スポッ ト光入射位置をxとしたとき、2x/Lとなり、Y方向 については、スポット光入射位置をyとしたとき、2 y /Lとなる。

ては、図3~図5に示すように、種々の変形が可能であ

【0013】図3はPSDを1本のp型抵抗層21のみ で構成し、p型層22はPSDとして用いないようにし た二次元光入射位置検出素子の平面図である。それ以外 の構成については、図1と基本的に同一である。この場 合には、電極35の光電流をIs とし、信号取出電極3 1, 32の光電流を I1, I2 としたときには、X方向 の位置演算の式は

 $(I_1 - I_2) / (I_1 + I_2)$

となり、Y方向の位置演算の式は

 $\{(I_1 + I_2) - I_5\} / (I_1 + I_2 + I_5)$ となる。

【0014】図4は第1のp⁺ 型半導体層41と第2の p+型半導体層42を個々にクサビ型とすることなく、 その長さを調整することにより、第1のp⁺型半導体層 41と第2のp* 型半導体層42の全体の面積を、Y方 向に第1のp型抵抗層21および第2のp型抵抗層22 から離れるにつれて、実質的に減少させた変形例であ

【0015】図5(a), (b) についても、2分割ホ トダイオードをなす第1のp*型半導体層41と第2の p+ 型半導体層 42のそれぞれの全体の面積は、個々の 第1のp+ 型半導体層41と第2のp+ 型半導体層42 をクサビ型にしたのと同様に、中心に向って一様に減少 している。このため、Y方向の位置検出が2分割ホトダ イオードの機能として実現できる。また、第1のp*型 半導体層41および第2のp*型半導体層42は第1の p型抵抗層21および第2のp型抵抗層22に対して完 *層22は第2のp*型半導体層42によって収集された 光生成キャリアを抵抗分割することになる。これによ り、X方向の入射位置演算は

※オードのアノードの面積はY方向に一様に増加または減 少傾向となっているので、この2分割ホトダイオードの 光電流出力比により、光スポットのY方向入射位置が検 出できる。すなわち、Y方向の入射位置演算を、下記の

全には直交していないが、実効的には直交する関係にあ り、従って第1のp型抵抗層21および第2のp型抵抗 層22で抵抗分割されるキャリアを収集する役割を果す ことになる。

【0016】なお、ホトダイオードは2分割型である必 要はなく、例えば図3の例で第2のp⁺ 型半導体層42 を省略し、第1のp⁺型半導体層41のみをアノードと するホトダイオードとしてもよい。但し、この場合に光 【0012】本発明の二次元光入射位置検出素子につい 20 スポットのY方向入射位置を検出するためには、光スポ ットの光量が一定であることが条件となる。

[0017]

【発明の効果】以上、詳細に説明した通り本発明では、 複数の半導体層がPSD用の半導体抵抗層に接続される ことにより、PSDのキャリア収集部として働く。ま た、一定方向に面積が一様に増加または減少して形成さ れることで、光入射位置に応じて出力光電流が異なるホ トダイオードのアノードまたはカソードとして動く。こ のため、光スポットの入射位置を広い範囲で二次元的に 30 検出することができ、しかも構造が簡単で低コストな二 次元光入射位置検出素子を提供できる。

【図面の簡単な説明】

【図1】本発明の実施例に係る二次元光入射位置検出素 子の平面図である。

【図2】図1に示す二次元光入射位置検出素子の断面図 である。

【図3】変形例に係る二次元光入射位置検出素子の平面 図である。

【図4】別の変形例に係る二次元光入射位置検出素子の 40 平面図である。

【図5】さらに別の変形例に係る二次元光入射位置検出 素子の平面図である。

【符号の説明】

10mn型半導体基板

21…第1のp型抵抗層

22…第2のp型抵抗層

31~34…信号取出電極

41…第1のp⁺ 型半導体層

42…第2のp* 型半導体層

【図1】

[図2]

【図3】

【図4】

【図5】

