Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Informatyka, rok II Zespół numer 3 Piotr Kucharski Dominik Zabłotny

Sprawozdanie z ćwiczenia nr 35

Elektroliza

1 Wstęp

1.1 Cel ćwiczenia

Wyznaczenie stałej Faradaya oraz równoważnika elektrochemicznego miedzi metodą elektrolizy.

1.2 Wprowadzenie teoretyczne

1.2.1 Dysocjacja elektrolityczna

Proces rozpadu cząstek związków chemicznych na jony pod wpływem rozpuszczalnika nazywamy dysocjacją elektrolityczną. Zjawisku temu podlegają związki z wiązaniami jonowymi oraz bardzo silnie spolaryzowane kowalencyjnie. Jest to proces odwracalny, wiele związków ulega autodysocjacji w stanie ciekłym i gazowym (np. woda).

1.2.2 Elektroliza

Proces zmiany struktury chemicznej substancji - a dokładniej procesy rozkładu, zwykle zachodzące pod wpływem przyłożonego napięcia elektrycznego. Do pojęcia elektrolizy zalicza wiele zjawisk, takich jak dysocjacja elektrolityczna, transport jonów do elektrod, wtórne przemiany jonów na elektrodach i inne. Po przyłożeniu odpowiedniego dla danej substancji napięcia prądu dochodzi do wymuszonej wędrówki jonów do elektrod zanurzonych w substancji - odpowiednio do katody dążą kationy a do anody dążą aniony. Wynikiem elektrolizy jest zamiana w obojętne elektrycznie związki chemiczne lub pierwiastki. Masa substancji wydzielonej na elektrodzie w wuniku elektrolizy jest wprost proporcjonalna do ładunku przepływającego przez elektrolit (I. prawo Faradaya)

$$m = Itk (1)$$

gdzie I to natężenie prądu, t to czas a k to równoważnik eletrochemiczny.

1.2.3 Masa molowa

Masa jednego mola substancji chemicznej wyrażana jednostką $\frac{kg}{mol}$

1.2.4 Wartościowość

Cecha pierwiastków chemicznych mówiąca o liczbie wiązań chemicznych, którymi pierwiastek lub jon może łączyć się z innymi. Dany pierwiastek może posiadać wiele wartościowości zależnych od stopnia utlenienia.

1.2.5 Jony

Jony to atomy lub grupy atomów połączonych wiązaniami chemicznymi, która ma niedomiar protonów (wówczas nazywamy je anionami) lub nadmiar protonów w stosunku do elektronów (wówczas nazywamy je kationami).

1.2.6 Katoda

Elektroda, przez którą z urządzenia wypływa prąd elektryczny. W urządzeniach elektrycznych katoda jest elektordą ujemną, w źródłach prądu jest elektrodą dodatnią.

1.2.7 Anoda

Elektroda przeciwna do katody, przez nią prąd "wpływa"do urządzenia. W odbiornikach jest to elektroda dodatnia a w źródłach prądu ujemna.

1.2.8 I. prawo elektrolizy Faradaya (1834r.)

Masa substancji wydzielonej podczas elektrolizy jest proporcjonalna do ładunku, który przepłynął przez elektrolit.

$$m = qk = Itk (2)$$

gdzie k to równoważnik elektrochemiczny, q to ładunek elektryczny, I to natężenie prądu elektrycznego oraz t to czas elektrolizy.

1.2.9 II. prawo elektrolizy Faradaya (1834r.)

Ładunek q potrzebny do wydzielenia lub wchłonięcia masy m jest dany zależnością:

$$q = \frac{Fmz}{M} \tag{3}$$

gdzie F to stała Faradaya wrażana jednostką $\frac{\mathbf{C}}{\mathsf{mol}}$, z to ładunek jonu bez jednostki oraz M to masa molowa jonu wyrażona jednostką $\frac{\mathsf{g}}{\mathsf{mol}}$

1.2.10 Stała Faradaya

Stała Faradaya wyraża ładunek elektryuczny przypadający na jeden mol eletronów oraz określa się ją wzorem

$$F = N_A e (4)$$

gdzie N_A to stała Avogadra ($N_A\approx 6.022\cdot 10^{23}~{
m mol}^{-1}$) oraz e to ładunek elektronu ($e\approx 1.602\cdot 10^{-19}~{
m C}$)

2 Wykonanie ćwiczenia

3 Opracowanie danych pomiarowych

3.1 Analiza niepewności

4 Podsumowanie

5 Wnioski