XUVI

End Term Project Report

MENTORS:

Nikita Singh | Adit Jain | Rajarshi Dutta

Timeline

Panda, Numpy, Scipy, Astropy & Matplotlib

Detection Techniques & Analysis

Contribution to Pypi

Our Approach

Learning Through Examples & Implementing via Applications.

All the Data used in XUVI are picked Directly from Open Source Datasets provided by International Missions.

O PYTHON

The Major Tool for Astronomical Data Analysis

Python Libraries

NumPy

- Arrays
- Fourier Transform
- Convolution

Matplotlib

- Plotting
- Gives qualitative idea

Pandas

- Data Reading & Analysis
- Converts files like csv, excel sheets to data frame.

Scipy

- Curve fitting
- Interpolation

Astropy

- FITS File Handling
- Linear Regression

12 SPECTROSCOPY

It turns out that just by looking at the star we can determine its mass, radius & its constituent elements.

Spectroscopy

What is Spectroscopy?

Light emitted by objects is examined to determine the object's composition, temperature, motion & density.

Astronomical Spectroscopy

Astronomical spectroscopy is used to measure three major bands of radiation in the electromagnetic spectrum- Radio waves,X-rays, and visible light.

Our Handcrafted Spectroscope

Assembling The Material

CD, Cardboard box, Cardboard Tube

Get To Work

for geometrical construction.

Observations

Detecting the spectrum through the eyepiece

Analysis

Taking Readings & Inferring The Spectrum

Light Curves

Because light can be curvy.

Light Curves

Supernova Explosion

Binary Eclipsing Star

03 Exoplanets

Each Planet is Unique, Every 100 Billion + of them

Exoplanets Who?

Any planet outside the Solar System is an exoplanet. Aided with computational methods, Astronomers have numerous techniques to determine their measurable properties

Detection Techniques

Direct Imaging

Not With Just Visible Light

Radial Velocity

Star & Planet Revolving Around Each Other.

Astrometry

Planets Wobbling
The Star Motion

Periodic Rise & Fall in Star's Brightness

1. DIRECT IMAGING

Best for

- Finding exoplanets with large orbits
- 2. Finding exoplanets that do not transit stars

Not ideal for

- 1. Finding many exoplanets at once
 - 2. Finding exoplanets around bright stars

Beta Pictoris b

The series of images, with the bright glow of the star Beta Pictoris blocked out, have been compiled to create a unique time-lapse of the long-period orbit of Beta Pictoris b.

(Even the name suggests that this planet was meant to be photographed)

Credits: ESO

2. RADIAL VELOCITY

Planets revolve around the Center of Mass of the star-planet system. We can perceive the star's back & forth movement via doppler shift.

Data Filtering & Analysis

Phase 1

Observations

Telescopes & Spectroscopes help in taking observations.

Phase 2

Noise Filtering
Raw data is filtered using certain noise reduction techniques such as interpolation

Phase 3

Inferring

Using Newtonian Gravitational equations to solve for mass & radius

3. ASTROMETRY

A Star's revolution around the Galactic centre is affected by motion of exoplanets around it, with unique signature frequency, depending on mass and radius of them individually.

GENERAL ASTROMETRY ALGORITHM

A. Observations

Raw Data is taken

B. Noise Reduction

By Reducing Noise Peaks in Fast Fourier Transform

C. Signature Frequency

Detecting Individual Frequencies

D. Analysis

Calculation of Mass & Radius of Exoplanets

ASTROMETRY DEPICTION

Noise Reduction

Individual Sine Curves

4. TRANSIT PHOTOMETRY

Planet too small to observe directly creates a Dip in Luminosity of Star as it passes by

Analyzing The Dip

The dip in the graph is a function of ratio of radius of planet to the ratio of radius of star since luminosity is a function of area.

Depth =
$$\left(\frac{R_p}{R_{\star}}\right)^2$$

1 Solar Flares

Sun Ejects Shower of Charged Particles in its 11 Year Cycle

Why Bother Studying Flares?

01%

Mars has only 1% of Earth's Atmosphere in volume

4000%

Cosmic Radiations on Mars is 40 times higher than Earth

Solar Flares Turned Mars Into An Inhabitable Barren Desert

Solar Flare Analysis

Data Capturing

Solar brightness can be measured as a function of number of photos striking the observational area per unit time

Solar Flare X-Ray Monitor

The Flare Theory

Isolating Flares

Curve Fitting

JUX Package for Pypi

So What's JUX Again?

With all the Algorithms & Codes used in XUVI, we present to you a new version of JUX.

JUX is a ready-to-use package & it is now Freely Available on Open Source Pypi Python Package Manager.

CONCLUSION

For this Project, we Observed and Analyzed Data About

- Spectroscopes
- Exoplanets
- Solar Flares

We developed Python Codes for Standard & Contrived Algorithms, made our own Spectroscope & Published JUX.

MENTEES: Nandan Madhuj, Ritik B Kumar, Shreya Rajak, K Arnav, Jaya Santhi, Priyanshu Bhatia

WHAT'S NEXT?

XUVI has given us Insights on How to Work with both Computational & Theoretical Data & also Analyse them.

We are glad mention that we further use this Exposure to participate in LUNAROTHON!

Thank You

"COSMOS IS WITHIN US"