UNIDADES DE MEDIDA

1. OBJETIVO

Operar com unidades de medida e seus múltiplos e submúltiplos aplicando as regras das potências de dez quando se tratar de sistemas decimais.

2. SISTEMA INTERNACIONAL DE UNIDADES (SI)

É o conjunto de unidades de medida utilizado pela maioria dos países com o objetivo de facilitar e padronizar as medidas das grandezas.

Unidades Fundamentais - O SI tem sete Unidades Fundamentais, conforme indicado na figura 01-1.

Unidades Fundamentais do SI			
Nome	Símbolo	Grandeza	
metro	m	Comprimento	
quilograma	kg	Massa	
segundo	s	Tempo	
ampere	Α	Intensidade de corrente elétrica	
kelvin	к	Temperatura termodinâmica	
mol	mol	Quantidade de matéria	
candela	cd	Intensidade luminosa	
Professor Engen	heiro José Antôn	nio Unidades de medida 01 - 1	

A partir das unidades fundamentais derivadas todas as outras unidades, chamadas **Unidades Derivadas**

Em eletricidade, além do ampere que mede a intensidade da corrente e é uma unidade fundamental, utilizamos outras unidades derivadas tais como as relacionadas na figura 01 - 2.

Rev 01 – 210812 - JA_______1 de 10

Algumas unidades do SI utilizadas em Eletricidade			
Nome	Símbolo	Grandeza	
ampere	Α	Corrente	
volt	v	Tensão	
ohm	Ω	Resistência	
watt	w	Potência	
farad	F	Capacitância	
siemens	s	Condutância	
Professor Engenh	eiro José Antônio	Unidades de medida 01 - 2	

3. MÚLTIPLOS E SUBMÚLTIPLOS DAS UNIDADES DE MEDIDA

Para evitar utilizar números muito grandes ou muito pequenos para expressar medidas de grandezas físicas, utilizam-se **múltiplos e submúltiplos** das unidades de medida: Os múltiplos e submúltiplos das unidades de medida obtêm-se acrescentando um prefixo à respectiva unidade (figura 01 – 1).

MÚL	MÚLTIPLOS E SUBMÚLTIPLOS DAS UNIDADES DE MEDIDA		
Prefixo	Símbolo Potência de 10 que multiplica a unidade		
tera	Т	1012	
giga	G	10 ⁹	
mega	М	105	
quilo	k	10³	
hecto	h	102	
deca	da	101	
unidade	-	10°	
deci	d	10-1	
centi	С	10-2	
mili	m	10-3	
micro	μ	10-6	
nano	n	10 ⁻⁹	
picb	р	10-12	
Professor	Professor Engenheiro José Antônio Unidades de medida 01 - 3		

4. CONVERSÃO DE UNIDADES

4.1 SISTEMA DECIMAL

A conversão de unidades em seus múltiplos e submúltiplos e vice versa no sistema decimal reduz-se `multiplicação e divisão por potências de dez.

Por exemplo:

□□Na tabela seguinte converta a grandeza indicada na coluna um para a unidade indicada na coluna dois, mostrando o calculo na coluna três e o resultado em notação cientifica na coluna quatro.

			•
Grandeza	Unidade	Conversão	Notação científica
210 A	KA	210 · 10 ⁻³	2, 10 · 10 ⁻¹ KA
8,7 W	mW	8,7 · 10 ³	817.103 mW
0,34 mF	F	0,34. 70-3	3,4.70-4 F
57 mΩ	ΚΩ	57 · 10 ⁶	517.10-5 KD
	3		

No primeiro exemplo pretende-se converter A (ampere) em KA (kiloampere).

Consultando a tabela verificamos que 1 KA corresponde a 10³ A e como A é a unidade basta fazer uma regra de três

> 1 KA corresponde a 10³ A x KA correspondem a 210 A

donde tiramos:

$$x = \frac{1 \cdot 210}{10^3} = 210 \cdot 10^{-3}$$

Para passarmos para a notação cientifica trabalhamos apenas no coeficiente da potência de dez de modo a transformá-lo em um numero entre 1 e 10 vezes uma potência de dez;

$$210 = 2,1 \cdot 10^{2}$$

Podemos agora reescrever o numero calculado e associar as potências de dez de modo a obter a notação cientifica.

210.
$$10^{-3} = 2,1 \cdot 10^{2} \cdot 10^{-3} = 2,1 \cdot 10^{-1}$$
.

Rev 01 – 210812 - JA 3 de 10 E temos

Grandeza	Unidade	Conversão	Notação científica
210 A	KA	$210.10^{-3} \text{ KA} = 0.21 \text{ KA}$	2,1.10 ⁻¹ KA

No segundo exemplo pretende-se converter W (Watt) em mW (miliwatt).

Grandeza	Unidade	Conversão	Notação científica
8,7 W	mW		

Consultando a tabela verificamos que 1 mW corresponde a 10⁻³ W e como W é a unidade basta fazer uma regra de três

> corresponde a 10⁻³ W 1 mW

X mW correspondem a 8,7 W

daqui tiramos:

$$x = \frac{8,7 \times 1}{10^{-3}} = 8,7 \times 10^{3}$$

Este resultado já está em notação cientifica e temos:

Grandeza	Unidade	Conversão	Notação científica
8,7 W	mW	$8,7.10^3 = 8700 \text{ mW}$	8,7.10 ³ mW

No terceiro exemplo pretende-se converter mF (milifarad) em F (farad).

Grandeza	Unidade	Conversão	Notação científica
0,34 mF	F		

Consultando a tabela verificamos que 1 mF corresponde a 10⁻³ F e como F é a unidade basta fazer uma regra de três

> 1 mF corresponde a 10⁻³ F 0,34 mF correspondem a хF

Rev 01 – 210812 - JA 4 de 10 Daqui, tiramos:

$$x = \frac{0.34 \times 10^{-3}}{1} = 0.34 \times 10^{-3}$$

Para passarmos para a notação científica trabalhamos apenas no coeficiente da potência de dez de modo a transformá-lo em um numero entre 1 e 10 vezes uma potência de dez;

$$0.34 = 3.4 \cdot 10^{-1}$$

Podemos agora reescrever o numero calculado e associar as potências de dez de modo a obter a notação científica.

$$0.34.\ 10^{-3} = 3.4.\ 10^{-1}.\ 10^{-3} = 3.4.\ 10^{-4}.$$

E temos

Grandeza	Unidade	Conversão	Notação científica
0,34 mF	F	$0.34 \cdot 10^{-3} \text{F} = 0.00034 \text{F}$	3,4 .10 ⁻⁴ F

No quarto exemplo pretende-se converter $m\Omega$ (miliohmfarad) em $K\Omega$ (Kiloohm).

Grandeza	Unidade	Conversão	Notação científica
57 mΩ	ΚΩ		

Como nem m Ω nem K Ω são a unidade, temos que fazer duas regras de três (a primeira convertendo um múltiplo ou submúltiplo na unidade e depois a unidade no outro múltiplo ou submúltiplo..

Tanto faz começar por m Ω como por K Ω , vamos começar por m Ω .

Consultando a tabela verificamos que 1 m Ω corresponde a 10⁻³ Ω e podemos fazer a primeira regra de três

1 m
$$\Omega$$
 corresponde a 10⁻³ Ω
57 m Ω correspondem a x Ω

Daqui, tiramos:

$$x = \frac{57 \times 10^{-3}}{1} = 57 \times 10^{-3} \Omega$$
 Rev 01 – 210812 - JA 5 de 10

Vamos agora converter estes Ω em K Ω .

Consultando a tabela verificamos que 1 K Ω corresponde a 10³ Ω e podemos fazer a segunda regra de três

1 K
$$\Omega$$
 corresponde a 10³ Ω X K Ω correspondem a 57 x 10⁻³ Ω

Daqui, tiramos:

$$x = \frac{57 \times 10^{-3} \cdot 1}{10^3} = 57 \times 10^{-3} \times 10^{-3} = 57 \times 10^{-6} \text{ K}\Omega$$

Para passarmos para a notação cientifica trabalhamos apenas no coeficiente da potência de dez de modo a transformá-lo em um numero entre 1 e 10 vezes uma potência de dez;

$$57 = 5.7.10$$

Podemos agora reescrever o numero calculado e associar as potências de dez de modo a obter a notação cientifica.

57.
$$10^{-6}$$
 = 5,7 . 10 . 10^{-6} = 5,7 . 10^{-5} K Ω

E temos:

Grandeza	Unidade	Conversão	Notação científica
57 mΩ	ΚΩ	$57 \cdot 10^{-6} \text{K} \Omega$	5,7 . 10^{-5} K Ω

A resposta completa é:

Grandeza	Unidade	Conversão	Notação científica
210 A	KA	$210.10^{-3} \text{ KA} = 0.21 \text{ KA}$	2,1.10 ⁻¹ KA
58,7 W	mW	$8.7 \cdot 10^3 = 8700 \text{ mW}$	8,7 .10 ³ mW
0,34 mF	F	$0.34 \cdot 10^{-3} F = 0.00034 F$	3,4 .10 ⁻⁴ F
57 mΩ	ΚΩ	57. 10 ⁻⁶ K Ω	5,7. 10 ⁻⁵ K Ω

Uma outra regra prática para fazer conversão de unidades é baseada no ábaco da figura 01 – 4.

Grandeza	Unidade	Conversão	Notação científica	
210 A	KA	De A para KA estamos subindo 1 degrau logo a virgula deve deslocar-se três casas para a esquerda e temos 0,21 KA	2,1 .10 ⁻¹ KA	
58,7 W	μW	De W para µW estamos descendo 2 degraus logo a virgula deve deslocar-se seis casas para a direita e temos 8700000 µW	58,7 .10 ⁶ μW	
57 mΩ	ΚΩ	De m Ω para K Ω estamos subindo 2 degraus logo a virgula deve deslocar-se seis casas para a esquerda e temos 0,000057 K Ω	5,7. 10 ⁻⁵ KΩ	

4.2 METRO, METRO QUADRADO E METRO CUBICO

Quando se lida com unidades lineares (m), unidades quadráticas (m²) e unidades cúbicas (m³) a conversão de unidades é diferente e é comum ocorrerem erros de conversão.

Rev 01 – 210812 - JA 7 de 10 Por exemplo:

✓ Converter 1 Km (quilometro) em m (metro)

$$1 \text{ Km} = 10^3 \text{ m} = 1000 \text{ m}$$

✓ Converter 1 Km² (quilometro quadrado) em m² (metro quadrado)

$$1 \text{ Km}^2 = 10^6 \text{ m}^2 = 1 000 000 \text{ m}^2$$

Porque 1 km² = 1 km \times 1 km e como 1 km = 1000 m temos que:

$$1 \text{ km}^2 = 1 \text{ km} \times 1 \text{ km} = 1000 \text{ m} \times 1000 \text{ m} = 1000 000 \text{ m}^2$$
.

✓ Converter 1 Km³ (quilometro cúbico) em m³ (metro cúbico)

$$1 \text{ Km}^3 = 10^9 \text{ m}^3 = 1 000 000 000 \text{ m}^3$$

Porque 1 km³ = 1 km × 1 km × 1 km e como 1 km = 1000 m temos que:

 $1 \text{ km}^2 = 1 \text{ km} \times 1 \text{ km} \times 1 \text{ km} = 1000 \text{ m} \times 1000 \text{ m} \times 1000 \text{ m} = 1000 000 000 \text{ m}^3$.

Para fazer conversões, utilizando a tabela da figura 01 – 3, no caso de unidades quadráticas e cúbicas, deve-se colocar mais que um dígito por casa numérica.

Em metro linear cada casa tem um dígito.

1 dam (decametro) = 10 m (metro)

1 hm (hectometro) = 100 m (metro)

1 km (kilometro) = 1000 m (metro)

Em metro quadrado cada casa tem dois dígitos.

1 dam² (decametro quadrado) = 100 m² (metro quadrado)

1 hm² (hectometro quadrado) = 10000 m² (metro quadrado)

1 km² (kilometro quadrado) = 1000000 m² (metro quadrado)

Em metro cúbico cada casa numérica tem três dígitos.

1 dam³ (decametro cúbico) = 1000 m³ (metro cúbico)

1 hm³ (hectometro cúbico) = 1000 000 m³ (metro cúbico)

1 km³ (kilometro cúbico) = 1000 000 000 m³ (metro cúbico)

4.3 HORA MINUTO E SEGUNDO

Além das unidades cujos múltiplos e submúltiplos se relacionam através de potências de dez, o **segundo**, que é uma unidade de tempo fundamental, relaciona-se com seus múltiplos e submúltiplos através de fatores que não são potências de dez.

Rev 01 – 210812 - JA 8 de 10

A tabela a seguir mostra os fatores de conversão da unidade de tempo (**segundo**).

Principais múltiplos e submúltiplos da unidade de tempo									
Nome	ano	mês	semana	dia	hora	minuto	segundo		
Símbolo	ano	mês	semana	dia	h	min	s		
Equivalência	12 meses	30 dias	7 dias	24 h	60 min	60 s	unidade		
	360 dias				3600 s				

Exemplo:

Calcular quantos segundos correspondem a 3 dias e expressar o número em notação cientifica.

3 dias = 3 dias x 24 horas x 60 minutos x 60 segundos = 259200 segundos

 $3 \text{ dias} = 2,592 \cdot 10^5 \text{ segundos}.$

4.4 RADIANO, GRADO E GRAU

Os ângulos podem ser medidos em graus, radianos e grados.

A conversão entre estas unidades é feita através das relações:

- √ 180 graus correspondem a 200 grados
- \checkmark π radianos correspondem a 200 grados
- ✓ 180 graus correspondem a π radianos

Exemplo:

Quantos graus são 10 radianos?

 π radianos correspondem a 180 graus 10 radianos correspondem a x graus

$$x = \frac{10 \times 180}{3.1416} = 573 \ graus$$

4.5 POLEGADA E POLEGADA QUADRADA

A **polegada** (inch em inglês, símbolos: in ou dupla plica ") é uma unidade de comprimento usada no sistema imperial de medidas britânico.

Rev 01 – 210812 - JA 9 de 10 Uma polegada são 2,54 cm (centímetros) ou 25,4 mm (milímetros).

Uma polegada quadrada são 645,16 mm² (milímetros quadrados).

Exemplo

Qual a seção em mm² de uma barra retangular de cobre de 1/4 " x 1 1/4 "?

Cálculo:

Calculo alternativo

Ruestão 6

tamanho tempo

1/8 mm 1 min
$$360 = 18. \times 3600 = 200 \text{ min}$$

360 mm \times

3h&