A Markov Model For The Spread Of Hepatitis C Virus

L. Coutin, L. Decreusefond, and J.S. Dhersin

A Maxime Tchibozo poster

OBJECTIVES

We provide a Markov model for the propagation of the Hepatitis C virus in an endogenous population made up of susceptible and infected drug injecting users.

- Our model can be interpreted via a deterministic differential system. We show this system has a unique solution and simulate it.
- We prove that the asymptotic behaviour of the Markov process is close to the solution of the deterministic differential system.
- We apply a functional Law of Large
 Numbers to estimate the stationary
 distribution of the random process.
- We plot the **asymptotic prevalence** of the Hepatitis C Virus as a function of a specific parameter

Markov Model

We model the population with a random process $X(t) = (X_1(t), X_2(t))$. $X_1(t)$ represents the number of infected individuals at time t and $X_2(t)$ represents the susceptible individuals at time t. After each change of state (i.e every time X changes), the individuals stay in their current state during a time determined by an exponential distribution of parameter q_i determined by the graph below.

Figure 1: Transition Graph of the Markov Model

Transition Rates

Parameters described in Figure 1:

- λ, r : Arrival rate of susceptible $(\mathcal{P}(\lambda))$ and infected $(\mathcal{P}(r))$ individuals
- p_I : Probability of a susceptible \rightarrow infected transition
- p: Probability of a susceptible \rightarrow infected transition caused by injection using contaminated material
- $\bullet \alpha$: Injection rate
- μ_1, μ_2 : Rates of exit from the environment (individual stopped injecting drugs)

Deterministic Model

The Mean Field Approximation applied to our Markov Model leads to a differential system:

$$(S_{r}(x^{0})) \Leftrightarrow \\ \left[\psi'_{1}(t) = r + \lambda p_{I} \frac{\psi_{1}(t)}{\psi_{1}(t) + \psi_{2}(t)} - \mu_{1}\psi_{1}(t) + \alpha p \frac{\psi_{1}(t)\psi_{2}(t)}{\psi_{1}(t) + \psi_{2}(t)}, \right. \\ \left. \psi'_{1}(0) = x_{1}^{0}, \right. \\ \left[\psi'_{2}(t) = \lambda (1 - p_{I} \frac{\psi_{1}(t)}{\psi_{1}(t) + \psi_{2}(t)} - \mu_{2}\psi_{2}(t) - \alpha p \frac{\psi_{1}(t)\psi_{2}(t)}{\psi_{1}(t) + \psi_{2}(t)}), \right. \\ \left. \psi_{2}(0) = x_{2}^{0}. \\ \text{with } x_{0} = (x_{1}^{0}, x_{2}^{0}) \in (\mathbb{R}_{+} \times \mathbb{R}_{+}) \ (0, 0) \right.$$

 $(S_r(x^0))$ has a unique solution $\Psi(t) = (\Psi_1(t), \Psi_2(t))$. Furthermore, this solution converges towards a fixed point ξ .

$$\Psi(t) \longrightarrow (\xi_1, \xi_2)$$

MEAN FIELD APPROXIMATION

We will now consider the sequence $(X^N(t)) = (X^N(t), X^N(t))$ of Markov Processes with the same transitions as in Figure 1, but with rates r_N and λ_N such that:

$$\frac{1}{N}r_N \xrightarrow{N \to +\infty} r, \frac{1}{N}\lambda_N \xrightarrow{N \to +\infty} \lambda$$

MEAN FIELD APPROXIMATION

IMPORTANT RESULT

Let $\psi(x^0, .) = (\psi_1(x^0, .), \psi_2(x^0, .))$ be the solution of the differential system $(S_r(x^0).$

Assume that
$$\mathbb{E}\left[\left\|\frac{1}{N}X^N(0) - x^0\right\|^2\right] \xrightarrow{N \to +\infty} 0.$$

Then for any T > 0,

$$\mathbb{E}\left[\left\|\frac{1}{N}X^{N}(t) - \psi(x^{0}, t)\right\|^{2}\right] \xrightarrow{N \to +\infty} 0$$

For a large population, the X process is close to the solution ψ of the deterministic differential system.

RESULTS

Figure 2: Superposition of the Markov process and numerical solution over time. p = 0.1 Initial (n1, n2) = (100, 100)

STATIONARY REGIME

$$Y^N = \frac{1}{N} X^N \text{ verifies} : P_{Y^N(\infty)} \xrightarrow{N \to +\infty} \delta_{\xi}$$

For large populations, the stationary distribution of the process **converges towards a dirac distribution on point** ξ , with ξ the fixed point of the deterministic model

Asymptotic Prevalence

Figure 3: Evolution of the prevalence of the virus as a function of p, (n1, n2) = (100, 100), N=100

REFERENCES

This poster was made for the Telecom Paris MACS207b course on stochastic calculus (Jun. 2019).

[1] Decreusefond L. Coutin, L. and J.S. Dhersin. A Markov Model For The Spread Of Hepatitis C Virus. September 2008.

CONTACT INFORMATION

- Web: http://github.com/mtchibozo
- Email: maxime.tchibozo@telecom-paristech.fr

