Intro to Signal Processing – HW1

Yinon Goldshtein, Tomer Kalmanzon

1 Question 1

1.1 a

We can write the expected error in a different form:

$$\min_{\hat{f}} \varepsilon^p(f,\hat{f}) = \min_{\hat{f}} \int_0^1 |f(x) - \hat{f}(x)|^p \cdot w(x) dx = \min_{\hat{f}} \sum_{i=1}^N \int_{I_i} |f(x) - \hat{f}(x)|^p \cdot w(x) dx \underbrace{}_{w \text{ constant}} = \min_{\hat{f}} w \cdot \sum_{i=1}^N \int_{I_i} |f(x) - \hat{f}(x)|^p dx$$

For p=1 For p=1, this is the MAD error, and we'll need to find the "median" value of each interval, as this is the optimal \hat{f} value in each interval.

Denoting f_{min}^i as the minimal value of f(x) in interval I_i , and f_{max}^i as the max value of f(x) in I_i , and assuming we have a method to compute integrals, the median value θ_i for value of $I_i = [d_i, d_{i+1}]$ is:

$$\mathbb{P}(f_{min}^i \le x \le \theta_i) = \mathbb{P}(\theta_i \le x \le f_{max}^i)$$

Given that we found such θ_i for each interval I_i , the optimal value of $\hat{f}_p(x)$ is:

$$\hat{f}_p(x) = \sum_{i=1}^N \theta_i \cdot 1^{I_i}(x)$$

Where $1^{I_i}(x)$ is a function returning 1 if $x \in I_i$ and 0 otherwise.

For p=2 For p=2, this is the MSE error, and the optimal value of \hat{f}_p for each interval would be the "average" value of f(x) in it.

Therefore:

$$\hat{f}_p(x) = \sum_{i=1}^{N} \frac{1}{I_i} \int_{I_i} f(x) \cdot 1^{I_i}(x) dx$$

1.2 b

As shown in the first lecture, with the example of MSE on a discrete set and with a constant \hat{f}_p , the value of $\hat{f}_p(x)$ for each interval should be $\frac{\sum_{i=1}^N w_i x_i}{\sum_{i=1}^N w_i}$.

Therefore, the analogy for a continous function with a continous weight function on an interval I_i , would

Therefore, the analogy for a continous function with a continous weight function on an interval I_i , would be: $\int_{I_i}^{1} w(x) \int_{I_i} f(x) \cdot w(x) dx$

Hence:

$$\hat{f}_p(x) = \sum_{i=1}^{N} \frac{1}{\int_{I_i} w(x)} \int_{I_i} f(x) \cdot w(x) 1^{I_i}(x) dx$$

1.3 c

With p = 1, the error will be:

$$\varepsilon(f, \hat{f}) = \sum_{i=1}^{N} \int_{I_i} |f(x) - \hat{f}(x)| \cdot w(x) dx = \sum_{i=1}^{N} \int_{I_i} w(x) \cdot (f(x) - \hat{f}(x)) \cdot sign(f(x) - \hat{f}(x))$$

We'll differentiate to get the min point in each interval I_i :

$$\frac{\partial \varepsilon(f, \hat{f})}{\partial \hat{f}}_{I_i} = \int_{I_i} -w(x) \cdot sign(f(x) - \hat{f}) dx$$

The \hat{f} value that minimizes this expression will be the value of $\hat{f}(x)$ in interval I_i . Hence:

$$\hat{f}(x) = \sum_{i=1}^{N} \int_{I_i} -w(x) \cdot sign(f(x) - \hat{f}) dx \cdot 1^{I_i}(x)$$

Where $1^{I_i}(x)$ is a function returning 1 if $x \in I_i$ and 0 otherwise.

1.4 d

Since we use the function $1^{I_i}(x)$, which return 1 if $x \in I_i$ and 0 otherwise, for every interval I_i the optimal solution is given by $\varepsilon_i^p(f_i, \hat{f}_i)$.

From the additive property of this optimization problem, we get the optimal solution $\varepsilon^p(f,\hat{f})$ by solving the same problem for each interval I_i .

$$\varepsilon^p(f,\hat{f}) = \sum_{i=1}^N \varepsilon_i^p(f_i,\hat{f}_i)$$

1.5 e

i We can divide the equation by $(f_i(x) - \hat{f}_i(x))^2$, as $f_i(x) \neq \hat{f}_i(x)$, to get:

$$w_{f_i,\hat{f}_i} = |f_i(x) - \hat{f}_i(x)|^{p-2}$$

ii Using the expression we found in section i, $w'(f, \hat{f})$ we can plug it in the main problem:

$$\min_{\hat{f}} \varepsilon^{p}(f, \hat{f}) = \min_{\hat{f}} \int_{0}^{1} |f(x) - \hat{f}(x)|^{p} \cdot w(x) dx = \min_{\hat{f}} \int_{0}^{1} |f(x) - \hat{f}(x)|^{2} \cdot w'_{f, \hat{f}}(x) \cdot w(x) dx$$

iii It would be much simpler if the weight function was independent of \hat{f}_i , as the optimization problem would become a simple L^2 optimization problem.

If the weight function is dependent on \hat{f}_i , when we would differentiate the loss by \hat{f}_i , we'd get an optimization problem with chain rule derivatives, as \hat{f}_i is a function of x, complicating the optimization process.

iv We prefer to have a maximal value of $\frac{1}{\epsilon}$ for our effective weight function for 2 main reasons:

- 1. In case of an interval I_i where we have $|f(x) \hat{f}_i(x)| > 1$ and $p \gg 1$, this expression will "explode" to a large number, effectively dismissing the other interval losses we have.
- 2. In case of high variance in the loss in different intervals (for example f is constant in one interval and in another interval $|f(x) \hat{f}(x)| \gg 1$), we would like to have a ceiling for possible losses, so one major loss from one interval would not dismiss the effect of other intervals on the optimization scheme.
- **v** We assume we have a function $w(f_i(x), \hat{f}_i(x))$, that its output is the function $w'_i = w_{f_i, \hat{f}_i}(x)$.

Algorithm 1 Pseudo-code for \hat{f}_i^{next} approximation

Input: f_i , initial approximation \hat{f}_i

Output: \hat{f}_i approximation for f_i Initialization: $w'_i \leftarrow w(f_i(x), \hat{f}_i(x))$

Iterate as much times as needed:

- 1. $\hat{f}_i^{next} \leftarrow \arg\min_{\hat{f}_i} \int_{I_i} \left(f_i(x) \hat{f}_i(x) \right)^2 w_i'(x) dx$, notice that w_i' is independent of \hat{f}_i
- 2. $\hat{f}_i \leftarrow \hat{f}_i^{next}$
- 3. $w_i' \leftarrow w_i'(f_i, \hat{f}_i)$

return \hat{f}_i

Algorithm 2 Solving weighted L^p using only L^2

Inputs

f(x): original function

w(x): weight function

 $\{\Delta_i\}_{i=1}^N$: convergence factor $(\Delta_i$ is convergence factor for interval $I_i)$

Output:

 \hat{f} : f(x) approximation

Iterate: For each interval I_i :

- 1. $\hat{f}_i(x) \leftarrow 0$
- 2. $w_i' \leftarrow \min\left\{\frac{1}{6}, |f_i(x) \hat{f}_i(x)|^{p-2} \cdot w(x)\right\}$
- 3. While $\min_{\hat{f}} \int_0^1 |f(x) \hat{f}(x)|^2 \cdot w_i'(x) \cdot w(x) dx \ge \Delta_i$:
 - (a) $\delta_i \leftarrow \frac{\int_{I_I} f(x) w_i'(x) dx}{\int_{I_i} w_i'(x) dx}$
 - (b) $\hat{f}_i \leftarrow \delta_i \cdot 1^{I_i}(x)$
 - (c) $w_i' \leftarrow \min \left\{ \frac{1}{\epsilon}, |f_i(x) \hat{f}_i(x)|^{p-2} \cdot w(x) \right\}$

return \hat{f}

1.6 f

We assume we have a partition $\{I_i\}_{i=1}^N$ of [0,1] we want to solve the L^p problem for, and where $\epsilon > 0$ is a small fixed number

1.7 g

The name of the algorithm is "Iteratively reweighted least squares"

Question 2 1

1.1 a

We can write the expected error in a different form:

$$\min_{\hat{f}} \varepsilon^p(f,\hat{f}) = \min_{\hat{f}} \int_0^1 |f(x) - \hat{f}(x)|^p \cdot w(x) dx = \min_{\hat{f}} \sum_{i=1}^N \int_{I_i} |f(x) - \hat{f}(x)|^p \cdot w(x) dx \underbrace{}_{w \text{ constant}} \min_{\hat{f}} w \cdot \sum_{i=1}^N \int_{I_i} |f(x) - \hat{f}(x)|^p dx$$

For p = 1 For p = 1, this is the MAD error, and we'll need to find the "median" value of each interval, as this is the optimal \hat{f} value in each interval.

Denoting f_{min}^i as the minimal value of f(x) in interval I_i , and f_{max}^i as the max value of f(x) in I_i , and assuming we have a method to compute integrals, the median value θ_i for value of $I_i = [d_i, d_{i+1}]$ is:

$$\mathbb{P}(f_{min}^i \le x \le \theta_i) = \mathbb{P}(\theta_i \le x \le f_{max}^i)$$

Given that we found such θ_i for each interval I_i , the optimal value of $\hat{f}_{\nu}(x)$ is:

$$\hat{f}_p(x) = \sum_{i=1}^N \theta_i \cdot 1^{I_i}(x)$$

Where $1^{I_i}(x)$ is a function returning 1 if $x \in I_i$ and 0 otherwise.

For p=2 For p=2, this is the MSE error, and the optimal value of \hat{f}_p for each interval would be the "average" value of f(x) in it.

Therefore:

$$\hat{f}_p(x) = \sum_{i=1}^{N} \frac{1}{I_i} \int_{I_i} f(x) \cdot 1^{I_i}(x) dx$$

1.2 b

As shown in the first lecture, with the example of MSE on a discrete set and with a constant \hat{f}_p , the value of

 $\hat{f}_p(x)$ for each interval should be $\frac{\sum_{i=1}^N w_i x_i}{\sum_{i=1}^N w_i}$.

Therefore, the analogy for a continous function with a continous weight function on an interval I_i , would be: $\frac{1}{\int_{I_i} w(x)} \int_{I_i} f(x) \cdot w(x) dx$

$$\hat{f}_p(x) = \sum_{i}^{N} \frac{1}{\int_{I_i} w(x)} \int_{I_i} f(x) \cdot w(x) 1^{I_i}(x) dx$$

1.3 \mathbf{c}

With p = 1, the error will be:

$$\varepsilon(f, \hat{f}) = \sum_{i=1}^{N} \int_{I_i} |f(x) - \hat{f}(x)| \cdot w(x) dx = \sum_{i=1}^{N} \int_{I_i} w(x) \cdot (f(x) - \hat{f}(x)) \cdot sign(f(x) - \hat{f}(x))$$

We'll differentiate to get the min point in each interval I_i :

$$\frac{\partial \varepsilon(f,\hat{f})}{\partial \hat{f}}_{I_i} = \int_{I_i} -w(x) \cdot sign(f(x) - \hat{f}) dx$$

The \hat{f} value that minimizes this expression will be the value of $\hat{f}(x)$ in interval I_i . Hence:

$$\hat{f}(x) = \sum_{i=1}^{N} \int_{I_i} -w(x) \cdot sign(f(x) - \hat{f}) dx \cdot 1^{I_i}(x)$$

Where $1^{I_i}(x)$ is a function returning 1 if $x \in I_i$ and 0 otherwise.

d

Since we use the function $1^{I_i}(x)$, which return 1 if $x \in I_i$ and 0 otherwise, for every interval I_i the optimal solution is given by $\varepsilon_i^p(f_i, \hat{f}_i)$.

From the additive property of this optimization problem, we get the optimal solution $\varepsilon^p(f,\hat{f})$ by solving the same problem for each interval I_i .

$$\varepsilon^p(f,\hat{f}) = \sum_{i=1}^N \varepsilon_i^p(f_i,\hat{f}_i)$$

1.4 e

i We can divide the equation by $(f_i(x) - \hat{f}_i(x))^2$, as $f_i(x) \neq \hat{f}_i(x)$, to get:

$$w_{f_i = \hat{f}_i} = |f_i(x) - \hat{f}_i(x)|^{p-2}$$

ii Using the expression we found in section i, $w'(f, \hat{f})$ we can plug it in the main problem:

$$\min_{\hat{f}} \varepsilon^{p}(f, \hat{f}) = \min_{\hat{f}} \int_{0}^{1} |f(x) - \hat{f}(x)|^{p} \cdot w(x) dx = \min_{\hat{f}} \int_{0}^{1} |f(x) - \hat{f}(x)|^{2} \cdot w'_{f, \hat{f}}(x) \cdot w(x) dx$$

iii It would be much simpler if the weight function was independent of \hat{f}_i , as the optimization problem would become a simple L^2 optimization problem.

If the weight function is dependent on \hat{f}_i , when we would differentiate the loss by \hat{f}_i , we'd get an optimization problem with chain rule derivatives, as \hat{f}_i is a function of x, complicating the optimization process.

- iv We prefer to have a maximal value of $\frac{1}{\epsilon}$ for our effective weight function for 2 main reasons:
 - 1. In case of an interval I_i where we have $|f(x) \hat{f}_i(x)| > 1$ and $p \gg 1$, this expression will "explode" to a large number, effectively dismissing the other interval losses we have.
 - 2. In case of high variance in the loss in different intervals (for example f is constant in one interval and in another interval $|f(x) \hat{f}(x)| \gg 1$), we would like to have a ceiling for possible losses, so one major loss from one interval would not dismiss the effect of other intervals on the optimization scheme.

V

2 Question 2

2.1 let us define $\Delta_i = [\frac{i-1}{N}, \frac{i}{N}), i \in [N]$ such that $\phi(t)_i = a_i(\hat{t} - t_i) + c_i$ as $t \in \Delta_i$ and that $a_i, c_i \in \mathbb{R}$. moreover it is defined that t_i is the mid point of Δ_i hence $t_i = \frac{2i-1}{2N}$:

$$\begin{split} \int_{t \in \Delta_i} (t - t_i)^k dt &= \frac{(t - t_i)^{k+1}}{k+1} \big|_{\frac{i_N}{N}}^{\frac{i}{N}} = \frac{(\frac{i}{N} - \frac{2i-1}{2N})^{k+1} - (\frac{i-1}{N} - \frac{2i-1}{2N})^{k+1}}{k+1} = \frac{(\frac{2i-2i+1}{2N})^{k+1} - (\frac{2i-2-2i+1}{2N})^{k+1}}{k+1} &= \frac{|\Delta_i|^{k+1} [(1)^{k+1} - (-1)^{k+1}]}{2^{k+1}(k+1)} = \\ &= \begin{cases} 0 & k(mod2) = 1 \\ \frac{|\Delta_i|^{k+1}}{2^k(k+1)} & k(mod2) = 0 \end{cases} \end{split}$$

2.2 b

since $\hat{\phi}_i$ is defined upon each interval Δ_i then we can define that $\hat{\phi}(t) = \sum_{i=1}^n \phi(t)$, hence the MSE of $\hat{\phi}(t)$ is given by:

$$\begin{split} \Psi(\phi) &= \int_0^1 (\phi(t) - \hat{\ }(t))^2 dt = \hat{\int}_0^1 (\phi(t) - \sum_{i=1}^n \phi(t)_i 1_{\Delta_i}(t)) dt = \int_0^1 (\phi(t) - \sum_{i=1}^n (a_i(t-t_i) + c_i) 1_{\Delta_i}(t))^2 dt \\ &= \sum_{i=1}^n \int_0^1 (\phi(t) - (a_i(t-t_i) + c_i) 1_{\Delta_i}(t))^2 dt = \sum_{i=1}^n \int_{\Delta_i} (\phi(t) - \hat{\phi}_i(t))^2 dt \end{split}$$

as a cosequence of $\Psi(\phi(t)) = \sum_{i=1}^n \int_{\Delta_i} (\phi(t) - \hat{\phi}_i(t))^2 dt$ in order to calculate the minimum value of the MSE we must clculate the minimum value of $\Psi(\phi_i(t))$ for every interval $i \in [N]$. so in order to defrentiate $\Psi(\phi(t))$ and equate to zero we must show that $\Psi(\phi(t))$ is convex.

we know that a function is convex iff $\frac{\partial^2 \Psi}{\partial a_i} > 0$:

$$\frac{\partial^{2}(\int_{\Delta_{i}}(\phi(t) - \hat{\phi}_{i}(t))^{2}dt)}{\partial a_{i}} = \frac{\partial^{2}(\int_{\Delta_{i}}\phi^{2}(t) + a_{i}^{2}(t - t_{i})^{2} + c_{i}^{2} - 2\phi(t)a_{i}(t - t_{i}) - 2\phi(t)c_{i} - 2a_{i}(t - t_{i})c_{i}dt)}{\partial a_{i}} = \int_{\Delta_{i}} 2(t - t_{i})^{2}dt = \frac{|\Delta_{i}|^{3}}{2 * 3} > 0$$

hence:

$$0 = \frac{\partial (\int_{\Delta_i} (\phi(t) - \hat{\phi}_i(t))^2 dt)}{\partial a_i} = \frac{\partial (\int_{\Delta_i} \phi^2(t) + a_i^2 (t - t_i)^2 + c_i^2 - 2\phi(t) a_i (t - t_i) - 2\phi(t) c_i - 2a_i (t - t_i) c_i dt)}{\partial a_i}$$

$$0 = \int_{\Delta_i} 2a(t - t_i)^2 - \phi(t)(t - t_i) - (t - t_i)c_i dt \iff a^* = \frac{12 \int \phi(t)(t - t_i) dt}{|\Delta_i|^3}$$

as of c_i :

$$\frac{\partial^2 (\int_{\Delta_i} (\phi(t) - \hat{\phi_i}(t))^2 dt)}{\partial c_i} = \int_{\Delta_i} 2 dt = \frac{2}{N} > 0$$

hence:

$$0 = \frac{\partial (\int_{\Delta_i} (\phi(t) - \hat{\phi}_i(t))^2 dt)}{\partial c_i} = \int_{\Delta_i} 2c_i - 2\phi(t) - 2a_i(t - t_i) dt \Rightarrow \int_{i\Delta_i} c_i - \phi(t) dt = a_i \int_{\Delta_i} t - t_i dt$$

$$\iff \int_{i\Delta_i} c_i^* dt = \int_{i\Delta_i} \phi(t) dt \Rightarrow c_i^* = \frac{\int_{i\Delta_i} \phi(t) dt}{|\Delta_i|}$$

2.3

As a result of the last section we can represent $\Psi_{MSE}(\hat{\phi}) = \sum_{i=1}^{n} \int_{\Delta_i} (\phi(t) - \hat{\phi_i}(t))^2 dt = \sum_{i=1}^{n} \int_0^1 (\phi(t) - (a_i(t - t_i) + c_i)1_{\Delta_i}(t))^2 dt$ in the following way:

$$\Psi_{MSE}(\hat{\phi}) = \sum_{i=1}^{n} \int_{\Delta_i} (\phi(t) - a_i^*(t - t_i) - c_i^*)^2 dt = \sum_{i=1}^{n} \int_{\Delta_i} (\phi(t) - \frac{12 \int \phi(t)(t - t_i)^2}{|\Delta_i^3|} - \frac{\int_{i\Delta_i} \phi(t)}{|\Delta_i|})^2 dt$$

2.4 d

As we have seen in class the MSE for Piecewise-constant approximation is given by:

$$\Psi_{MSE}(\phi) = \sum_{i=1}^{N} \int_{\Delta_i} (\phi(t) - \gamma_i^* 1_{\Delta_i}(x))^2 dt, s.t : \gamma_i^* = \frac{\int_{\Delta_i} \phi(t) dt}{|\Delta_i|}$$

$$\Psi_{MSE}(\phi) = \sum_{i=1}^{N} \int_{\Delta_i} (\phi(t) - \frac{\int_{\Delta_i} \phi(t) dt}{|\Delta_i|})^2 dt$$

based on the work we have done in the last section we can conclude that the MSE for Piecewise-constant approximation is a private case of a linear approximation where $\forall i \in [N]: a_i = 0$, and since $\Psi_{MSE}(\hat{\phi})$ was shown to be convex w.r.t $\hat{\phi}$ we can conclude that the coeficiants a_i^*, c_i^* that were calculated earlier are indeed the optimal coeficiants of te solution of the linear approximation we were given, and as a consequence we can conclude that $\forall a_i, c_i \in \mathbb{R}: \Psi_{MSE}(\phi^*) \leq \Psi_{MSE}(\phi^{PC})$

Part II

Implementation

All the code implemented is in the file sol1.ipynb

1 Q1 - Quantization

1.1 Picking an image

Our image is:

A 2048 \times 2048 picture in grayscale of a kitten Its histogram is:

Where 256 is a white and 0 is a black The histogram is far enough from a uniform distribution

1.2 Uniform quantization

a The MSE as a function of b:

We can clearly see that the MSE error decreases as the bit budget grows, as expected.

${f b}$ The decision and representation levels:

1.3 Max-Lloyd algorithm

Pseudo-code and implementation is in sol1.ipynb

1.4 Applying the Max-Lloyd quantizer

a MSE as a function of the bit budget for $b \in \{1, ..., 8\}$:

 ${f b}$ Decision and representation levels for b values:

 ${f c}$ As we can see from the plots, the Max-Lloyd quantizer is better than a uniform quantizer, especially at lower b values.

That is expected – as Max-Lloyd takes the actual distribution into account when choosing levels. As b get bigger, the difference is getting smaller until it's undistinguishable at high values of b.

2 Subsampling and Reconstruction

2.1 Sampling errors

We use $D = 2^b$, where b is the bit budget $b \in \{1, \dots 8\}$

a The sampling error in the MSE sense as a function of D:

b The sampling error in the MAD sense as a function of D:

2.2 Reconstruction of the photo for MAD and MSE

The recontructed photos:

2.3 Discussion

As we can see, low sampling factor means that we cannot understand what the subject of the image is.

As D is getting bigger, and more pixels appear in the photo we can see it more clearly.

In a photographer point of view - using MSE gives us a "blur" of the original image, whilst using MAD gives us a "high contrast" version of the image.

Solving L^p using L^2 solution 3

Pseudo code for L^p solver using L^2 solutions

We mark Δ_i as the rectangle $[i', i'+1] \times [j', j'+1]$ – one from the $D \times D$ domains.

Algorithm 1 L^p solver using L^2

Inputs

f(x,y) – function to approximate

 δ – convergence constant

Initialization

For each Δ_i we have:

$$\hat{f}_i(x,y) \leftarrow 128 \cdot 1_{\Delta_i}(x,y)$$

 $w_i'(x,y) \leftarrow \min\left\{\frac{1}{\epsilon}, |f_i(x,y) - \hat{f_i}(x,y)|^{p-2}w(x,y)\right\}, \text{ where } \epsilon > 0 \text{ is a small number }$ **Iterate** (until the error L^p changes by less than constant δ)

1.
$$\delta_i \leftarrow \frac{\int_{\Delta_i} f(x,y) w_i'(x,y) dx dy}{\int_{\Delta_i} w_i'(x,y) dx dy}$$

2.
$$\hat{f}_i \leftarrow \delta_i \cdot 1^{\Delta_i}(x, y)$$

3.
$$w_i'(x,y) \leftarrow \min\left\{\frac{1}{\epsilon}, |f_i(x,y) - \hat{f}_i(x,y)|^{p-2}w(x,y)\right\}$$

Implementation of L^p solver 3.2

Implementation in sol1.ipynb

Empirical L^1 solver 3.3

Implementation in sol1.ipynb

3.4 Comparison between the results

D	Exact L^1 error	ϵ	L^p error for $p=1$
4	43.01	1	47.89
		0.1	47.90
		0.01	48.01
		0.001	47.60
		0.0001	48.05
		0.00001	47.90
16	31.01	1	32.88
		0.1	32.95
		0.01	33.58
		0.001	33.72
		0.0001	33.21
		0.00001	33.25
64	17.57	1	18.26
		0.1	18.87
		0.01	18.69
		0.001	18.76
		0.0001	18.86
		0.00001	18.87

As expected, we can see that the approximation for L^1 wasn't as accurate as the exact L^1 calculation.

Higher subsampling factors got us better results, and we can see a small trend where smaller ϵ got us a higher iterative L^p error.

This can happen from the algorithm's tendency to pick more of the gray values used in each subsample we look at, rather than defaulting to a fixed small number, causing higher error to be generated.

3.5 Running L^4 and $L^{\frac{3}{2}}$

We used the same L^p solver we wrote, only using $p = 4, \frac{3}{2}$. The L^4 error we got, with respect to sampling factor D:

The $L^{\frac{3}{2}}$ error we got, with respect to sampling factor D:

As we can see from the results, the L^4 error's graph shows a much steeper decrease in error with small

changes of sampling factor – and a plateau for high D values. We can infer from this, and the resemblence to the L^2 and L^1 plots – that other values of p can also be used as a reconstruction technique.