Assignment #5 Solutions

due Friday, September 18th, 2020

1

Let x_{ij} = the amount of steels (tons) supplied from City i to city j every week, where i = A,B,C and j = 1,2,3,4.

Data:

Let c_{ij} = shipping cost per ton from city i to city j,where i = A,B,C and j = 1,2,3,4.

 S_j = weekly production in city i, where i = A, B, C.

 D_i = weekly demand in city j, where j = 1,2,3. Then the model is as follows:

$$\min z = \sum_{i=A}^{C} \sum_{j=1}^{4} c_{ij} x_{ij}$$

$$s.t. \quad \sum_{i=A}^{C} x_{ij} \leq S_j, \ \forall j$$

$$\sum_{j=1}^{4} x_{ij} \geq D_i, \ \forall i$$

$$x_{B3} = 0$$

$$x_{ij} \geq 0, \forall i, j \ and \ integer.$$

The minimum cost is \$8260 with optimal solution shown below.

Variables	Destinations						
Sources	1. Detroit	2. St. Louis	3. Chicago	4. Norfolk	Slack demand	Steel shipped	Supply
A. Bethlehem	0	0	0	150	0	150	150
B. Birmingham	120	0	0	90	0	210	210
C. Gary	10	70	180	0	60	320	320
Steel shipped	130	70	180	240	60		
Demand	130	70	180	240	60		
3							
9							
0		Costs	Destinations				
1		Sources	1. Detroit	2. St. Louis	3. Chicago	4. Norfolk	
2		A. Bethlehem	14	9	16	18	
3		B. Birmingham	11	8	7	16	
4		C. Gary	16	12	10	22	
5							
6							
7							
8		Total cost =	8260				

 $\mathbf{2}$

Let i = A (Charlotte), B(Memphis), C (Louisville) and j = 1 (St. Louis), 2 (Atlanta), 3 (New York). x_{ij} = number of trucks from warehouse i to terminal j every week, where i = A,B,C and j = 1,2,3.

Let p_{ij} = profit per truckload shipment from warehouse i to terminal j, where i = A,B,C and j = 1,2,3.

 C_j = additional trucks capacity at terminal j, where j = 1,2,3. Then the model is as follows:

$$\max z = \sum_{i=A}^{C} \sum_{j=1}^{3} p_{ij} x_{ij}$$

$$s.t. \quad \sum_{j=1}^{3} x_{ij} = 30, \ \forall i$$

$$\sum_{i=A}^{C} x_{ij} \le C_j, \ \forall j$$

$$x_{ij} \ge 0, \ \forall i, j \ and \ integer.$$

From the table, we can see that the maximum profit is \$159,000.

Transporting stee	l to plants								
Variables	Terminal					Profit	Terminal		
Warehouses	1. St. Louis	2. Atlanta	3. New York	Steel shipped	Trucks	Warehouses	1. St. Louis	2. Atlanta	3. New York
A. Charlotte	0	30	0	30	30	A. Charlotte	1800	2100	1600
B. Memphis	30	0	0	30	30	B. Memphis	1000	700	900
7 C. Louisville	0	0	30	30	30	C. Louisville	1400	800	2200
Steel shipped	30	30	30						
Extra truck space	40	60	50						
.0									
1 Total profit =	159000								

3 Assume i = A (Adams), B (Baxter), C (Collins), D (Davis), E (Evans), F (Forrest), G (Gomez), H (Huang), I (Inchio), J (Jones), K (King), L (Lopez), and j = 1 (8am-4pm), 2 (4pm-midnight), 3(midnight-8am).

Let

$$x_{ij} = \left\{ \begin{array}{ll} 1 & \text{if nurse i is assigned to shift j, } i=1,...,5, j=1,...,10 \\ 0 & \text{otherwise} \end{array} \right.$$

Data: Let r_{ij} = rank assigned by nurse i to shift j, where i = A,...,L and j = 1,2,3. $r_{ij} \in \{1,2,3\}$ e_i = experience (in years) of nurse i, where i = A,...,L. Then the model is as follows:

Goal is to minimize the sum of $e_i * r_{ij} * x_{i,j}$. Note that such an objective function "penalizes" more the assignment of senior nurses to low-ranked shifts (higher valued ones).

$$\min z = \sum_{i=A}^{L} \sum_{j=1}^{3} e_i r_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{3} x_{ij} = 1, \ \forall i$$

$$\sum_{i=A}^{L} x_{i1} = 5$$

$$\sum_{i=A}^{L} x_{i2} = 4$$

$$\sum_{i=A}^{L} x_{i3} = 3$$

$$0 \le x_{ij} \ge 1, \ \forall i, j \ and \ integer$$

We can solve the model using excel shown below. The schedule is as follows: Baxter, Collins, Evans, Forrest, King work on 8AM-4PM

Adams, Davis, Gomez, Jones work on 4PM-12AM Huang, Inchio, Lopez work on 12AM-8am.

1	Shifts							Shifts		
2 Variable	8am - 4pm	4pm - midnight	midnight - 8am				Preference*	8am - 4pm	4pm - midnight	midnight - 8am
3 Nurse				shifts		1 shift per pers	on Nurse			
4 A	0	1	0	1	=	1	Α	2	4	6
5 B	1	0	0	1	=	1	В	5	15	10
6 C	1	0	0	1	=	1	С	7	14	21
7 D	0	1	0	1	=	1	D	3	1	2
8 E	1	0	0	1	=	1	E	3	9	6
9 F	1	0	0	1	=	1	F	4	8	12
10 G	0	1	0	1	=	1	G	2	1	3
11 H	0	0	1	1	=	1	Н	3	2	1
12	0	0	1	1	=	1	I	2	6	4
13 J	0	1	0	1	=	1	J	6	3	9
14 K	1	0	0	1	=	1	K	5	15	10
15 L	0	0	1	1	=	1	L	4	6	2
16 People	5	4	3							
17	=	=	=							
18 Total demand	5	4	3							
19										
20 Total preference	40									