Lista 17, Capítulo 12 - Geometria Analítica e Álgebra Linear

Profa. Roseli

Considere fixado um sistema ortogonal de coordenadas cartesianas.

1. Calcule a distância entre os pontos P e Q nos casos

(a)
$$P = (0, -1, 0)$$

$$Q = (-1, 1, 0)$$

(b)
$$P = (-1, -3, 4)$$

$$Q = (1, 2, -8)$$

 ${f 2}$. Calcule a distância do ponto P à reta ${f r}$ nos casos

(a)
$$P = (0, -1, 0)$$

r:
$$x = 2z - 1$$

 $y = z + 1$

(b)
$$P = (1, 0, 1)$$

r:
$$X = (0, 0, 0) + \lambda(1, \frac{1}{2}, \frac{1}{3})$$

(c)
$$P = (1, -1, 4)$$

r:
$$\frac{x-2}{4} = \frac{y}{-3} = \frac{z-1}{-2}$$

(d)
$$P = (-2, 0, 1)$$

$$x = 3\lambda + 1$$

$$y = 2\lambda - 2$$

3. Calcule a distância entre as retas paralelas dadas

(a) r:
$$\frac{x-1}{-2} = \frac{y}{\frac{1}{2}} = z$$

s:
$$X = (0, 0, 2) + \lambda(-2, \frac{1}{2}, 1)$$

(b) r:
$$x = \frac{y-3}{2} = z - 2$$

s:
$$x - 3 = \frac{y+1}{2} = z - 2$$

4. Calcule a distância do ponto P ao plano Π nos casos

(a)
$$P = (0, 0, -6)$$

$$\Pi$$
: x - 2y - 2z - 6 = 0

(b)
$$P = (1, 1, \frac{15}{6})$$

$$\Pi$$
: $4x - 6y + 12z + 21 = 0$

(c)
$$P = (9, 2, -2)$$

Π:
$$X = (0, -5, 0) + \lambda(0, \frac{5}{12}, 1) + \mu(1, 0, 0)$$

(d)
$$P = (0, 0, 0)$$

$$\Pi$$
: $2x - y + 2z - 3 = 0$

5. Calcule a distância entre os planos paralelos:

(a)
$$\Pi_1$$
: $2x - y + 2z + 9 = 0$

$$\Pi_2$$
: $4x - 2y + 4z - 21 = 0$

(b)
$$\Pi_1$$
: $\begin{aligned} \mathbf{x} &= 2 - \lambda - \mu \\ \mathbf{y} &= \mu \\ \mathbf{z} &= \lambda \end{aligned}$

$$\Pi_2$$
: $x + y + z = \frac{5}{2}$

(c)
$$\Pi_1$$
: $x + y + z = 0$

$$\Pi_2$$
: x + y + z + 2 = 0

6. Calcule a distância entre as retas

(a) r:
$$x = z - 1$$

 $y = 3z - 2$

s:
$$3x - 2z + 3 = 0$$

 $y - z - 2 = 0$

(b) r:
$$\frac{x+4}{3} = \frac{y}{4} = \frac{z+5}{-2}$$

$$x = 21 + 6\lambda$$
s:
$$y = -5 - 4\lambda$$

(c) r:
$$x = 2 - \lambda$$

 $y = 1 + \lambda$
 $z = -\lambda$

s:
$$x + y + z = 0$$

 $2x - y - 1 = 0$

- 7. Ache os pontos de r: $\begin{array}{l}
 x + y = 2 \\
 x = y + z
 \end{array}$ que distam 3 uc do ponto A = (0, 2, 1).
- 8. Ache os pontos de $x \cdot x 1 = 2y = z$ que equidistam dos pontos A = (1, 1, 0) e B = (0, 1, 1).
- 9. Ache os pontos de r: $\begin{array}{c}
 x+y=2\\
 x=y+z
 \end{array}$ que distam $ag{1\over \frac{14}{3}}$ de s: x=y=z+1.
- 10. Ache os pontos de r: x 1 = 2y = z que equidistam das retas s: $\begin{cases} x = 2 \\ z = 0 \end{cases}$ e t: x = y = 0.

a reta t: $X = (-1, 1, 1) + \lambda(0, -1, 2)$ e que dista 1 uc do ponto P = (1, 2, 1).

- 12. Um quadrado ABCD tem a diagonal BD contida na reta r: x=1 y=z. Sabendo que $A=(0,\,0,\,0)$, determine os vértices B, C e D.
- 13. Ache os pontos da reta r: $\begin{array}{l}
 x + y = 2 \\
 x = y + z
 \end{array}$ que distam $\sqrt{6}$ uc de Π : x 2y z = 1.

- 14. Ache os pontos da reta x 1 = 2y = z que equidistam dos planos Π_1 : 2x 3y 4z 3 = 0 e Π_2 : 4x 3y 2z + 3 = 0.
- **15.** Dê uma equação geral do plano Π que contém a reta $r: X = (1, 0, 1) + \lambda(1, 1, -1)$ e dista $\sqrt{2}$ uc do ponto P = (1, 1, -1).
- **16.** Dê uma equação geral do plano Π que passa pelos pontos $P=(1,\,1,\,-1)$ e $Q=(2,\,1,\,1)$ e que dista 1 uc da reta r: $X=(1,\,0,\,2)+\lambda(1,\,0,\,2)$.
- 17. Dê uma equação geral do plano Π que passa pelos pontos $A=(1,\,1,\,1)$ e $B=(0,\,2,\,1)$ e equidista dos pontos $C=(2,\,3,\,0)$ e $D=(0,\,1,\,2)$.

RESPOSTAS

1. (a)
$$\sqrt{5}$$
 u.c.

1. (a)
$$\sqrt{5}$$
 u.c. (b) $\sqrt{173}$ u.c.

2. (a)
$$\sqrt{5}$$
 u.c

(b)
$$\frac{\sqrt{34}}{7}$$
 u.c.

(c)
$$\frac{q}{\frac{270}{20}}$$
 u.c

2. (a)
$$\sqrt{5}$$
 u.c. (b) $\frac{\sqrt{34}}{7}$ u.c. (c) $\frac{q}{\frac{270}{29}}$ u.c. (d) $\frac{q}{\frac{90}{7}}$ u.c.

3. (a)
$$\frac{q}{\frac{41}{21}}$$
 u.c. (b) $5 \frac{q}{\frac{5}{6}}$ u.c.

(b)
$$5^{\frac{q}{5}}$$
 u.c.

4. (a) 2 u.c. (b)
$$\frac{51}{14}$$
 u.c. (c) $\frac{94}{13}$ u.c. (d) 1 u.c.

(b)
$$\frac{51}{14}$$
 u.c

(c)
$$\frac{94}{13}$$
 u.c.

5.
$$\frac{1}{2}$$
 u.c.

(b)
$$\frac{\sqrt{3}}{6}$$
 u.c.

5.
$$\frac{1}{2}$$
 u.c. (b) $\frac{\sqrt{3}}{6}$ u.c. (c) $\frac{2\sqrt{3}}{3}$ u.c.

6. (a)
$$\frac{2\sqrt{46}}{23}$$
 u.c. (b) 13 u.c. (c) $\frac{7\sqrt{26}}{26}$ u.c.

(c)
$$\frac{7\sqrt{26}}{26}$$
 u.c

7.
$$P = (2, 0, 2)$$

7.
$$P = (2, 0, 2)$$
 ou $Q = (0, 2, -2)$

8.
$$P = (-1, -1, -1)$$

9.
$$P = (2, 0, 2)$$
 ou $Q = (0, 2, -2)$

$$Q = (0, 2, -2)$$

10.
$$P = (1, 0, 0)$$

10.
$$P = (1, 0, 0)$$
 ou $Q = (\frac{19}{3}, \frac{8}{3}, \frac{16}{3})$

11. r : X = (-1, 3, -3) +
$$\lambda$$
(1, 0, 2), $\lambda \in$

11. r : X = (-1, 3, -3) +
$$\lambda$$
(1, 0, 2), λ \in \mathbb{R} ou r : X = (-1, $\frac{17}{9}$, $-\frac{7}{9}$) + λ (1, 0, 2) λ \in \mathbb{R}

12.
$$(1, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}), (1, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}), (2, 0, 0)$$

13.
$$P = (-3, 5, -8)$$
 e $Q = (9, -7, 16)$

$$Q = (9, -7, 16)$$

14.
$$P = (3, 1, 2)$$

14.
$$P = (3, 1, 2)$$
 ou $Q = (-1, -1, -2)$

15.
$$\Pi : x + z - 2 = 0$$

16.
$$\Pi : y - 1 = 0$$

16.
$$\Pi : y - 1 = 0$$
 ou $\Pi : 6x - 2y - 3z - 7 = 0$

17.
$$\Pi : z - 1 = 0$$

17.
$$\Pi : z - 1 = 0$$
 ou $\Pi : x + y + 2z - 4 = 0$