

Trabalho de redes

Trabalho realizado por:

Artur Pinto nº8230138

Willkie Filho nº8230127

Índice

Índice de Figuras	3
Índice de Tabelas	4
Lista de Siglas e Acrónimos	5
Introdução	6
Plano de endereçamento	7
Decisões tomadas no desenvolvimento do trabalho	10
Configuração dos equipamentos	10
Switches	10
Configuração das VLANS	10
Associação de vlans a cada Porta	12
Trunk de vlans	15
Routers	15
Criação da sub interfaces	15
Configuração das portas Serial	17
Configuração do RIP	20
Desenho da rede no Cisco	23
Demonstração de funcionamento da rede	24
Teste de comunicação entre dois PCs da mesma VLAN	24
Teste de comunicação com o servidor com PC da LAN1	25
Teste de comunicação com o servidor com PC da LAN2	25
Teste de comunicação com o servidor com PC da LAN3	26
Referências	27

Índice de Figuras

Figura 1 - Identificação da rede
Figura 2 - Resultado da calculadora ip
Figura 3 - Calculo de crescimento futuro
Figura 4 - Divisão dos equipamentos 8
Figura 5 - Planemanto da rede
Figura 6 - Desenho da rede no Cisco
Figura 7 – PCs utilizados no teste de comunicação entre dois PCs da mesma VLAN
24
Figura 8 - Resultado teste de comunicação entre dois PCs da mesma VLAN 24
Figura 9 - PC utilizado para o teste comunicação com o servidor com PC da LAN1
Figura 10 - Resultado obtido teste de comunicação com o servidor com PC da
LAN1
Figura 11 - PC utilizado para o teste comunicação com o servidor com PC da LAN2
25
Figura 12- Resultado obtido teste de comunicação com o servidor com PC da
LAN2
Figura 13 - PC utilizado para o teste comunicação com o servidor com PC da LAN3
Figura 14 - Resultado obtido teste de comunicação com o servidor com PC da
LAN3

Índice de Tabelas

abela 1	I - Siglas e Acrónimos	5
---------	------------------------	---

Lista de Siglas e Acrónimos

Sigla	Descrição
IP	Internet Protocol
VLAN	Virtual Local Area Network
VTP	Virtual Trunking Protocol
LAN	Local Area Network
RIC	Routing Information Protocol
PC	Personal Computer

Tabela 1 - Siglas e Acrónimos

Introdução

Este relatório visa a implementação de uma rede para uma empresa fictícia, utilizando o simulador Cisco Packet Tracer. O principal objetivo é desenvolver uma solução de rede abrangente e escalável que atenda às necessidades atuais e futuras da empresa em suas três localizações.

Plano de endereçamento

Antes de olhar para o ip que nos foi atribuído começamos por fazer a identificação da rede, onde obtivemos o resultado apresentado na imagem abaixo.

Figura 1 - Identificação da rede

Após isso pegamos no ip que nos foi atribuído: "10.87.27.192/16" e para determinar de maneira rápida o numero de host da rede, o ip do host mínimo e do host máximo e a network. Introduzimos o ip numa calculadora ip online, onde a link estará nas referencia.

Figura 2 - Resultado da calculadora ip

Dos resultados da calculadora o que nos é importante, para nos ajudar no planeamento ip é:

Network: 10.87.0.0/16

• HostMin: 10.87.255.255

Host Max: 10.87.255.254

Hosts/Net: 65534

Com essa informação e a dada no enunciado começamos por fazer o calculo de crescimento futuro da rede, onde obtivemos o seguinte resultante para o numero de hosts para um crescimento de 15%

• LAN3 → 81 hosts

• LAN 2 → 52 hosts

• LAN1 → 41 hosts

	Espaço	de Crescimento		
Redes	Nº Equipamento Atual	15% Crescimento	Nº Equipamentos Final	Arredonado
LAN3	70	10,5	80,50	81
LAN2	45	6,75	51,75	52
LAN1	35	5,25	40,25	41

Figura 3 - Calculo de crescimento futuro

Após obter essa informação dividimos o número de hosts pela numero de departamentos dessa LAN, o que nos dirá quantos equipamentos cada rede possuirá.

	Divisao Equipamentos							
	Redes	Nº Equipamentos	Nº Localizações	Total de Equipamentos	Produção	Gestão	Vendas	Informatica
	LAN3	81	2	40,5	0	0	40	41
	LAN2	52	2	26	26	0	0	26
I	LAN1	41	4	10,25	10	10	10	11

Figura 4 - Divisão dos equipamentos

Por fim após estes passos realizamos o plano de endereço ip da rede da empresa, onde indicamos para cada rede, o seu numero de host, o seu bloco mínimo, a sua mascara de rede, o seu ip de rede, o ip de Broadcast e o seu 1º ip útil e o seu último ip útil.

				Endereços							
Redes	Necessidade	Bloco Min	Mascara Rede	Red	е	1º	Ip Útil	Último I	IP útil	Endereço	Broadcast
LAN 3 Inf.	41	64	/26	10.85.0.	0	10.85.0.	1	10.85.0.	62	10.85.0.	63
LAN 3 Vendas	40	64	/26	10.85.0.	64	10.85.0.	65	10.85.0.	126	10.85.0.	127
LAN 2 Prod.	26	32	/27	10.85.0.	128	10.85.0.	129	10.85.0.	158	10.85.0.	159
LAN 2 Inf.	26	32	/27	10.85.0.	160	10.85.0.	161	10.85.0.	190	10.85.0.	191
LAN 1 Inf.	11	16	/28	10.85.0.	192	10.85.0.	193	10.85.0.	206	10.85.0.	207
LAN 1 Prod.	10	16	/28	10.85.0.	208	10.85.0.	209	10.85.0.	222	10.85.0.	223
LAN 1 Gestão	10	16	/28	10.85.0.	224	10.85.0.	225	10.85.0.	238	10.85.0.	239
LAN 1 Vendas.	10	16	/28	10.85.0.	240	10.85.0.	241	10.85.0.	254	10.85.0.	255
R1R4	4	4	/30	10.85.1.	0	10.85.1.	1	10.85.1.	2	10.85.1.	3
R4R2	4	4	/30	10.85.1.	4	10.85.1.	5	10.85.1.	6	10.85.1.	7
R1R5	4	4	/30	10.85.1.	8	10.85.1.	9	10.85.1.	10	10.85.1.	11
R5R3	4	4	/30	10.85.1.	12	10.85.1.	13	10.85.1.	14	10.85.1.	15

Figura 5 - Planemanto da rede

Decisões tomadas no desenvolvimento do trabalho

Algumas decisões tomadas relevantes para o desenvolvimento do trabalho, foram:

- No planeamento como nas LAN3 e LAN1 ao dividir o seu numero de hosts, já a contar com o crescimento, não deu um número inteiro optamos por meter a informática com mais um host comparado aos restantes departamentos;
- Como demos mais um host há informática que aos departamentos optamos por na LAN 1 atribuir ao servidor um ip da rede de informática para que depois o numero de hosts para pc fosse o mesmo para cada departamento;
- Como consequência da decisão comentada acima tivemos de atribuir ao servidor a LAN1;
- Por fim por uma questão de organização decidimos que o endereçamento de cada host da rede iria começar do 1º ip útil até ao último, deixando sempre o último ip para a subInterface do router de cada LAN.

Configuração dos equipamentos

Switches

Configuração das VLANS

LAN1

Criação das VLANS

Switch>en

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#vtp mode transparent

Setting device to VTP TRANSPARENT mode.

Switch(config)#vlan 10

Switch(config-vlan)#name Producao Switch(config-vlan)#vlan 20 Switch(config-vlan)#name Gestao Switch(config-vlan)#vlan 30 Switch(config-vlan)#name Vendas Switch(config-vlan)#vlan 40 Switch(config-vlan)#name Informatica LAN2 Switch>enable Switch#configure terminal Switch(config)#vtp mode transparent Switch(config)#vlan 10 Switch(config-vlan)#name Producao Switch(config-vlan)#vlan 40 Switch(config-vlan)#name Informatica LAN3 Switch>en Switch#conf t Switch(config)#vtp mode transparent Switch(config)#vlan 30 Switch(config-vlan)#name Vendas Switch(config-vlan)#vlan 40 Switch(config-vlan)#name Informatica

Associação de vlans a cada Porta

LAN1

Switch(config-vlan)#interface fa0/24

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 40

Switch(config-if)#exit

Switch(config)#interface fa0/1

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 40

Switch(config-if)#exit

Switch(config)#interface fa0/2

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 40

Switch(config-if)#exit

Switch(config)#interface fa0/3

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 10

Switch(config-if)#exit

Switch(config)#interface fa0/4

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 20

Switch(config-if)#exit

Switch(config)#interface fa0/5

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 30

Switch(config)#interface gig0/1

Switch(config-if)#switchport mode trunk

LAN2

Switch(config-vlan)#interface fa0/1

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 40

Switch(config-if)#exit

Switch(config)#interface fa0/2

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 40

Switch(config-if)#exit

Switch(config)#interface fa0/3

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 10

Switch(config-if)#exit

Switch(config)#interface fa0/4

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 10

Switch(config-if)#exit

Switch(config)#interface fa0/5

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 10

Switch(config-if)#exit

Switch(config)#interface gig0/1

Switch(config-if)#switchport mode trunk

Switch(config-if)#exit

LAN3

Switch(config-vlan)#int fa0/1

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 40

Switch(config-if)#exit

Switch(config)#int fa0/2

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 40

Switch(config-if)#exit

Switch(config)#int fa0/3

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 30

Switch(config-if)#exit

Switch(config)#int fa0/4

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 30

Switch(config-if)#exit

Switch(config)#int fa0/5

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 30

Switch(config-if)#exit

Switch(config)#int gig0/1

Switch(config-if)#switchport mode trunk

Switch(config-if)#exit

Trunk de vlans

Do código apresentado anteriormente metemos acesso as VLANS aos PCs. Mas para os routers tivemos de ativar o modo trunk, onde para isso tivemos de em ambas as LANs executar o seguinte código:

Switch(config)#interface gig0/1

Switch(config-if)#switchport mode trunk

Routers

Criação da sub interfaces

R1

Router>en

Router#conf t

Router(config)#int gig0/0.10

Router(config-subif)#encapsulation dot1Q 10

Router(config-subif)#ip add 10.85.0.222 255.255.25e5.240

Router(config-subif)#exit

Router(config)#int gig0/0.20

Router(config-subif)#encapsulation dot1Q 20

Router(config-subif)#ip add 10.85.0.238 255.255.255.240

Router(config-subif)#exit

Router(config)#int gig0/0.30 Router(config-subif)#encapsulation dot1Q 30 Router(config-subif)#ip add 10.85.0.254 255.255.255.240 Router(config-subif)#exit Router(config)#int gig0/0.40 Router(config-subif)#encapsulation dot1Q 40 Router(config-subif)#ip add 10.85.0.206 255.255.255.240 Router(config-subif)#exit Router(config)#int gig0/0 Router(config-if)#no shut *R2* Router>en Router#conf t Enter configuration commands, one per line. End with CNTL/Z. Router(config)#int gig0/0.10 Router(config-subif)#encapsulation dot1Q 10 Router(config-subif)#ip add 10.85.0.158 255.255.255.224 Router(config-subif)#exit Router(config)#int gig0/0.40 Router(config-subif)#encapsulation dot1Q 40 Router(config-subif)#ip add 10.85.0.190 255.255.255.224 Router(config-subif)#exit Router(config)#int gig 0/0 Router(config-if)#no shut

R3 Router>en Router#conf t Enter configuration commands, one per line. End with CNTL/Z. Router(config)#int gig0/0.30 Router(config-subif)#encapsulation dot1Q 30 Router(config-subif)#ip add 10.85.0.126 255.255.255.192 Router(config-subif)#exit Router(config)#int gig0/0.40 Router(config-subif)#encapsulation dot1Q 40 Router(config-subif)#ip add 10.85.0.62 255.255.255.192 Router(config-subif)#exit Router(config)#int gig0/0 Router(config-if)#no shut R4 e R5 Estes dois routers não precisam de subinterfaces uma vez que nenhuma das suas portas gigaBitEthernet não estarem a serem utilizadas por nenhum switches Configuração das portas Serial R1-R4 R1 Router>EN Router#conf t Router(config)#int se 0/3/0 Router(config-if)#ip add 10.85.1.1 255.255.255.252

Router(config-if)#no shut	
R4	
Router>EN	
Router#conf t	
Enter configuration commands, one per line. End with CNTL/Z.	
Router(config)#int se0/3/0	
Router(config-if)#ip add 10.85.1.2 255.255.255.252	
Router(config-if)#no shut	
R1-R5	
R1	
Router>EN	
Router#conf t	
Router(config)#int se 0/3/1	
Router(config-if)#ip add 10.85.1.9 255.255.255.252	
Router(config-if)#no shut	
R5	
Router>en	
Router#conf t	
Router(config)#int se0/3/1	
Router(config-if)#ip add 10.85.1.10 255.255.255.252	
Router(config-if)#no shut	
R4-R2	
R4	
Router>en	

Router#conf t
Router(config)#int se0/3/1
Router(config-if)#ip add 10.85.1.6 255.255.255.252
Router(config-if)#no shut
R2
Router>EN
Router#conf t
Router(config)#int se0/3/1
Router(config-if)#ip add 10.85.1.5 255.255.255.252
Router(config-if)#no shut
R5-R3
R5
Router>EN
Router#conf t
Router(config)#int se0/3/0
Router(config-if)#ip add 10.85.1.14 255.255.255.252
Router(config-if)#no shut
R3
Router>en
Router#conf t
Router(config)#int se0/3/0
Router(config-if)#ip add 10.85.1.13 255.255.255.252
Router(config-if)#no shut

Configuração do RIP

R1

Router(config)#router rip

Router(config-router)#version 2

Router(config-router)#redistribute connected

Router(config-router)#network 10.85.0.192

Router(config-router)#network 10.85.0.208

Router(config-router)#network 10.85.0.224

Router(config-router)#network 10.85.0.240

Router(config-router)#network 10.85.1.0

Router(config-router)#network 10.85.1.8

Router(config-router)#no auto-summary

Router(config-router)#passive-interface gigabitEthernet 0/0.10

Router(config-router)#passive-interface gigabitEthernet 0/0.20

Router(config-router)#passive-interface gigabitEthernet 0/0.30

Router(config-router)#passive-interface gigabitEthernet 0/0.40

Router(config-router)#end

R2

Router(config)#router rip

Router(config-router)#version 2

Router(config-router)#redistribute connected

Router(config-router)#network 10.85.0.128

Router(config-router)#network 10.85.0.160

Router(config-router)#network 10.85.0.4

Router(config-router)#network 10.85.1.4 Router(config-router)#no auto-summary Router(config-router)#passive-interface gigabitEthernet 0/0.10 Router(config-router)#passive-interface gigabitEthernet 0/0.40 Router(config-router)#end R3 Router(config)#router rip Router(config-router)#version 2 Router(config-router)#redistribute connected Router(config-router)#network 10.85.0.0 Router(config-router)#network 10.85.0.64 Router(config-router)#network 10.85.1.12 Router(config-router)#no auto-summary Router(config-router)#passive-interface gigabitEthernet 0/0.30 Router(config-router)#passive-interface gigabitEthernet 0/0.40 Router(config-router)#end R4 Router(config)#router rip Router(config-router)#version 2 Router(config-router)#redistribute connected Router(config-router)#network 10.85.1.0 Router(config-router)#network 10.85.1.4 Router(config-router)#no auto-summary

Router(config-router)#end

R5

Router(config)#router rip

Router(config-router)#version 2

Router(config-router)#redistribute connected

Router(config-router)#network 10.85.1.12

Router(config-router)#network 10.85.1.8

Router(config-router)#no auto-summary

Router(config-router)#exit

Desenho da rede no Cisco

Figura 6 - Desenho da rede no Cisco

Demonstração de funcionamento da rede

Neste tópicos iremos mostrar apenas as imagens dos pc onde realizamos os testes e o resultado obtido, provando assim o funcionamento da rede

Teste de comunicação entre dois PCs da mesma VLAN

Pcs e LAN do teste:

Figura 7 – PCs utilizados no teste de comunicação entre dois PCs da mesma VLAN

Resultado:

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0
C:\>ping 10.85.0.195

Pinging 10.85.0.195 with 32 bytes of data:

Reply from 10.85.0.195: bytes=32 time<1ms TTL=128
Reply from 10.85.0.195: bytes=32 time=21ms TTL=128
Reply from 10.85.0.195: bytes=32 time<1ms TTL=128
Reply from 10.85.0.195: bytes=32 time<1ms TTL=128
Reply from 10.85.0.195: bytes=32 time<1ms TTL=128

Ping statistics for 10.85.0.195:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 21ms, Average = 5ms

C:\>
```

Figura 8 - Resultado teste de comunicação entre dois PCs da mesma VLAN

Teste de comunicação com o servidor com PC da LAN1

Pc de Teste:

Figura 9 - PC utilizado para o teste comunicação com o servidor com PC da LAN1

Resultado obtido:

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0
C:\>ping 10.85.0.193

Pinging 10.85.0.193 with 32 bytes of data:

Request timed out.
Reply from 10.85.0.193: bytes=32 time=17ms TTL=127
Reply from 10.85.0.193: bytes=32 time<1ms TTL=127
Reply from 10.85.0.193: bytes=32 time<1ms TTL=127

Ping statistics for 10.85.0.193:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 17ms, Average = 5ms

C:\>
```

Figura 10 - Resultado obtido teste de comunicação com o servidor com PC da LAN1

Teste de comunicação com o servidor com PC da LAN2

PC utilizado:

Figura 11 - PC utilizado para o teste comunicação com o servidor com PC da LAN2

Resultado obtido:

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0
C:\>ping 10.85.0.193

Pinging 10.85.0.193 with 32 bytes of data:

Reply from 10.85.0.193: bytes=32 time=2ms TTL=125
Reply from 10.85.0.193: bytes=32 time=3lms TTL=125
Reply from 10.85.0.193: bytes=32 time=14ms TTL=125
Reply from 10.85.0.193: bytes=32 time=2ms TTL=125
Reply from 10.85.0.193: bytes=32 time=2ms TTL=125

Ping statistics for 10.85.0.193:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 2ms, Maximum = 31ms, Average = 12ms

C:\>
```

Figura 12- Resultado obtido teste de comunicação com o servidor com PC da LAN2

Teste de comunicação com o servidor com PC da LAN3

Pc utilizado:

Figura 13 - PC utilizado para o teste comunicação com o servidor com PC da LAN3

Figura 14 - Resultado obtido teste de comunicação com o servidor com PC da LAN3

Referências

https://jodies.de/ipcalc (calculadora lp)