Bolzano-Weierstrass Theorem A set $A \subset \mathbb{R}^d$ is compact if and only if it is closed and bounded in \mathbb{R}^d .

Tychonoff theorem If A and B are compact sets, so is their Cartesian product.

Lemma A set is convex if and only if it contains all convex combinations of its points.

Convex hull Set of all convex combinations of points of a set.

Gauss-Lucas Theorem Let f(z) be an n^{th} degree real polynomial. Let z_1, z_2, \ldots, z_n be the roots of f(z). Then n-1 roots of f'(z) lies in $conv(\{z_1, z_2, \ldots, z_n\})$.

Caratheodory Theorem Let $S \subset \mathbb{R}^d$. Then any $x \in conv(S)$ can be represented as a convex combination of d+1 points of S.

Lemma If $A \subset \mathbb{R}^d$ is convex, then $A^o = int(A)$ is convex.

Lemma If $A \subset \mathbb{R}^d$ is compact, then conv(A) is compact.

Lemma Let $A \subset R^n$ and $u_0 \in int(A)$ be an interior point. Then for any $u_1 \in A$, $u_{\alpha} = (1 - \alpha)u_0 + \alpha u_1 \in int(A) \quad 0 \le \alpha < 1$.

Lemma If $\{x_1, x_2, \dots, x_{d+1}\} \subset R^d$ are affinely independent points, then the convex hull $conv(\{x_1, x_2, \dots, x_{d+1}\})$ has a non-zero interior.

Theorem Let $A \subset R^d$ be a convex set. If $int(A) = \phi$, then there exists an affine subspace $L \subset R^d$ such that $A \subset L$ and dim(L) < d.

Definition F is a face of a closed convex set if there exists a hyperplane H such that H isolates C and $F = H \cap C$. If F is a point, then F is called an exposed point. A non-empty face $F \neq C$ is called a proper face.

Lemma Let $K \subset \mathbb{R}^d$ be a convex set with non-empty interior. Let $U \in \partial K$ be a point on the boundary. Then there exists an affine hyperplane H passing through U such that H isolates K. H is called a supporting hyperplane.

Lemma Let $K \subset \mathbb{R}^d$ be a closed convex set. Let $U \in \partial K$. Then there exists a proper face F of K such that $U \in F$.

Definition Let $A \subset \mathbb{R}^d$. $x \in A$ is an extreme point of A, if $x = (a+b)/2, a \in A, b \in A$ implies x = a = b.

Lemma A compact set has at least one extreme point.

Krein-Millman Theorem Let $K \subset \mathbb{R}^d$ be a compact convex set. Then K = conv(ex(K)), where ex(K) is the set of extreme points of K.

Lemma Let $K \subset \mathbb{R}^d$ be a compact convex set. Then the linear function $f(x) = a^T x : \mathbb{R}^d \to \mathbb{R}$ attains a maximum or minimum on an extreme point of K.

Birkhoff-von Neumann Theorem The vertices of the Birkhoff polytope B_n are exactly the $n \times n$ permutation matrices. The polyhedron B_n of all $n \times n$ doubly stochastic matrices is called the Birkhoff polytope.

Convex set

$$\theta x + (1 - \theta)y \in C, \quad 0 \le \theta \le 1$$

Affine set

$$\theta x + (1 - \theta)y \in L, \quad \theta \in R$$

Cone

$$\theta_1 x + \theta_2 y \in K$$
, $\theta_1, \theta_2 \ge 0$

Proper Cone: closed, convex, solid, pointed

Dual cone

$$K^* = \{ y \mid x^T y \ge 0 \text{ for all } x \in K \}$$

Convex function

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is convex and for all x and $y \in dom f$ with $\theta \in [0,1]$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Properties of convex function

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \quad \forall x, y \in dom f$$
$$\nabla^2 f(x) \succeq 0$$

Examples of convex function

- Linear and affine
- Exponential e^{ax} $a \in R$
- Power x^a $a \ge 1$ and $a \le 0$
- Power of abs $|x|^p$ $p \ge 1$
- Negative entropy $x \log x$
- Norms
- Max function
- Quadratic-over-linear function
- Log-sum-exp

Examples of concave functions

- Logarithm $\log x$
- Geometric mean $\left(\prod_{i} x_{i}\right)^{1/n}$
- Log-determinant $\log \det X$ $X \in S_n^{++}$

 $Sublevel\ sets$

$$S_{\alpha} = \{ x \in dom f | f(x) \le \alpha \}$$

Epigraph

$$epif = \{(x,t)|x \in dom f, t \ge f(x)\}$$

$$g(x) = \sup_{y \in C} f(x, y) \implies epig = \bigcap_{y \in C} epif(\cdot, y)$$

Operations that preserve convexity

- 1. Non-negative weighted sum
- 2. Composition with an affine mapping g(x) = f(Ax + b)
- 3. Pointwise maximum and supremum $\max\{f(x_1),\ldots,f(x_m)\}$
- 4. Composition h(g(x))

$$f''(x) = h''(g(x))g'(x)^{2} + h'(g(x))g''(x)$$

f is convex when g is convex, and h is convex and non-decreasing f is convex when g is concave, and h is convex and non-increasing

- 5. Minimum over a non-empty convex set $g(x) = \inf_{y \in C} f(x, y)$
- 6. Perspective g(x,t) = tf(x/t)

Conjugate function

$$f^*(y) = \sup_{x \in domf} (y^T x - f(x))$$
 e.g. $f(x) = ||x||, \quad f^*(y) = 0, \quad \text{if } ||y||_* \le 1, \quad \text{else } \infty$ Conjugate of conjugate $f^{**} = f$ if $epif$ is closed (or) f is convex and closed.

Fenchel's/Young's inequality

$$f(x) + f^*(y) \ge x^T y$$

Optimization Problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, 2, \dots, m$
 $h_i(x) = 0, \quad i = 1, 2, \dots, p$
Domain $D = \bigcap_{i=0}^m dom f_i \cap \bigcap_{i=0}^p dom h_i$
Optimal value $p^* = \inf\{f_0(x)|f_i(x) \leq 0, h_i(x) = 0\}$
Optimal set $x = \{x|f_0(x) = p^*, f_i(x) \leq 0, h_i(x) = 0\}$
 $\epsilon - \text{suboptimal}$ $f_0(x) \leq p^* + \epsilon, \quad \epsilon > 0$

Feasibility Problem

find
$$x$$

subject to $f_i(x) \le 0$, $i = 1, 2, ..., m$
 $h_i(x) = 0$, $i = 1, 2, ..., p$

Epigraph Problem

minimize
$$t$$

subject to $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1, 2, \dots, m$
 $h_i(x) = 0, \quad i = 1, 2, \dots, p$

$Convex\ optimization$

- Objective function and inequality constraints are convex
- Equality constraints are affine $h_i(x) = a_i^T x b_i$

Optimality criterion

If x is optimal, then,

$$\nabla f_0(x)^T(y-x) \ge 0$$
 for all $y \in X$ (feasible set)
 $\nabla f_0(x) = 0$ for unconstrained problem

For any COP, any local optimal point is globally optimum.

Linear Program (LP)

minimize
$$c^T x + d$$
 (General form)
subject to $Gx \leq h$
 $Ax = b$

minimize
$$c^T x$$
 (Standard form)
subject to $Ax = b$
 $x \succeq 0$

minimize
$$c^T x$$
 (Inequality form)
subject to $Ax \leq b$

Quadratic Program (QP)

minimize
$$\frac{1}{2}x^T P x + q^T x + r$$
subject to
$$Gx \leq h$$

$$Ax = b$$

Quadratic Constrained Quadratic Program (QCQP)

minimize
$$\frac{1}{2}x^T P_0 x + q_0^T x + r_0$$
subject to
$$\frac{1}{2}x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, 2, \dots, m$$
$$Ax = b, \quad P_i \in S^n_+, \quad i = 0, 1, \dots, m$$
$$QCQP \to (P_i = 0) \to QP \to (P_0 = 0) \to LP$$

Second Order Cone Problem (SOCP)

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T + d, \quad i = 1, 2, \dots, m$
 $F x = q$

SOCP
$$\rightarrow$$
 $(A_i = 0) \rightarrow \text{LP}$
SOCP \rightarrow $(c_i = 0) \rightarrow \text{QCQP}$ (similar to)

Geometric Program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 1, \quad i = 1, 2, \dots, m$
 $h_i(x) = 1, \quad i = 1, 2, \dots, p$
 f_0, f_1, \dots, f_m are posynomials
 h_1, h_2, \dots, h_p are monomials

Monomial:

$$f: R_{++}^n \to R, \quad f(x) = c x_1^{\alpha_1} x_1^{\alpha_2} \dots x_1^{\alpha_n}, \quad c > 0, \quad \alpha_i \in R$$

Posynomial: (sum of monomials)

$$f(x) = \sum_{k=1}^{M} c_k x_1^{\alpha_{k1}} x_1^{\alpha_{k2}} \dots x_1^{\alpha_{kn}}, \quad c_k \ge 0, \quad \alpha_{ki} \in R$$

Conic form Problem

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$, K is a proper cone $Ax = b$

Semi-definite Program (SDP)

minimize
$$c^T x$$

subject to $x_1 F_1 + x_2 F_2 + \dots + x_n F_n + G \leq 0$
 $Ax = b,$
 $G, F_1, F_2, \dots, F_n \in S, A \in \mathbb{R}^{p \times n}$

Lagrangian

min.
$$f_0(x)$$

s.t. $f_i(x) \le 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., p$
 $x \in \mathbb{R}^n$ Domain $D = \bigcap_{i=0}^m dom f_i \cap \bigcap_{i=0}^p dom h_i$

This problem need not be convex. Optimal value is p^*

Lagrangian
$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=0}^m \lambda_i f_i(x) + \sum_{i=0}^p \nu_i h_i(x)$$

 $L: R^n \times R^m \times R^p \to R \quad dom L = D \times R^m \times R^p$

Dual variables (or) Lagrange multiplier vectors λ_i, ν_i

Lagrange dual function

$$g: R^m \times R^p \to R$$

$$g(\lambda.\nu) = \inf_{x \in D} L(x, \lambda, \nu) = \inf_{x \in D} \left(f_0(x) + \sum_{i=0}^m \lambda_i f_i(x) + \sum_{i=0}^p \nu_i h_i(x) \right)$$

The dual function is the pointwise infimum of a family of affine functions of (λ, ν) , it is **concave**, even when the original problem is not convex

For any
$$\lambda \succeq 0$$
, and ν , $g(\lambda, \nu) \leq p^*$

Lagrange dual function and conjugate function

Conjugate
$$f^*(y) = \sup_{x \in dom f} (y^T x - f(x))$$

Now consider

$$min. \quad f_0(x)$$

$$s.t. \quad Ax \leq b$$

$$Cx = d$$

$$g(\lambda, \nu) = -b^T \lambda - d^T \nu - f_0^* (-A^T \lambda - C^T \nu)$$

$$domg = \{(\lambda, \nu) | -A^T \lambda - C^T \nu \in dom f_0^* \}$$

Lagrange dual problem

$$max. \quad g(\lambda, \nu)$$
$$s.t. \quad \lambda \succeq 0$$

 (λ^*, ν^*) is called dual optimal or optimal Lagrange multipliers. Dual problem is always convex, since a concave function is maximized, and the constraint is convex.

Weak and Strong duality

Weak duality
$$d^* \leq p^*$$

Strong duality $d^* = p^*$

Strong duality holds when both the following conditions hold

- 1. primal problem is convex
- 2. Slater's condition holds

Primal convex problem

min.
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$
with $f_0, f_1, ..., f_m$ convex

Slater's condition There exists an $x \in relintD$ such that

$$f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

Refined Slater's condition There exists an $x \in relintD$ such that

$$f_i(x) \le 0$$
, $i = 1, ..., k$, $f_i(x) < 0$, $i = k + 1, ..., m$, $Ax = b$

Complementary slackness

$$f_0(x^*) = g(\lambda^*, \nu^*) \text{ when strong duality holds}$$

$$= \inf_{x \in D} \left(f_0(x) + \sum_{i=0}^m \lambda_i^* f_i(x) + \sum_{i=0}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=0}^m \lambda_i^* f_i(x^*) + \sum_{i=0}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

Hence the inequality must be a strict equality. Therefore x^* minimizes $L(x, \lambda^*, \nu^*)$. Also,

$$\sum_{i=0}^{m} \lambda_i^* f_i(x^*) = 0$$

which implies

Complementary slackness $\lambda_i^* f_i(x^*) = 0$ i = 1, ..., m

Karush-Kuhn-Tucker (What names!) conditions (KKT)

$$f_{i}(x^{*}) \leq 0 \quad i = 1, \dots, m$$

$$h_{i}(x^{*}) = 0 \quad i = 1, \dots, p$$

$$\lambda_{i}^{*} \geq 0 \quad i = 1, \dots, m$$

$$\lambda_{i}^{*} f_{i}(x^{*}) = 0 \quad i = 1, \dots, m$$

$$\nabla f_{0}(x^{*}) + \sum_{i=0}^{m} \lambda_{i}^{*} \nabla f_{i}(x^{*}) + \sum_{i=0}^{p} \nu_{i}^{*} \nabla h_{i}(x^{*}) = 0$$

Any optimization problem: Strong duality \implies KKT satisfied Convex optimization problem: KKT satisfied \implies Strong duality

Solving primal via dual

Assume strong duality; dual optimal (λ^*, ν^*) is known; then primal optimal is

$$min \quad f_0(x^*) + \sum_{i=0}^m \lambda_i^* f_i(x^*) + \sum_{i=0}^p \nu_i^* h_i(x^*)$$

if it is primal feasible.

Perturbed problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le u_i$, $i = 1, 2, ..., m$
 $h_i(x) = \delta_i$, $i = 1, 2, ..., p$

Assume strong duality and dual optimal is attained.

$$p^*(u, \delta) \ge p^*(0, 0) - \lambda^{*T} u - \nu^{*T} \delta$$

If $p^*(u, \delta)$ is differentiable at $u = 0, \delta = 0$, then

$$\lambda_i^* = -\frac{\partial p^*(u, \delta)}{\partial u_i} \bigg|_{u=0, \delta=0}$$

$$\nu_i^* = -\frac{\partial p^*(u, \delta)}{\partial \delta_i} \bigg|_{u=0, \delta=0}$$

Weak Alternatives

At most one of the inequality systems is feasible.

$$f_i(x) < 0$$
 $i = 1, ..., m$ $\lambda \succeq 0$ $\lambda \neq 0$ $h_i(x) = 0$ $i = 1, ..., p$ $g(\lambda, \nu) \geq 0$

$$f_i(x) \le 0$$
 $i = 1, ..., m$ $\lambda \succeq 0$
 $h_i(x) = 0$ $i = 1, ..., p$ $g(\lambda, \nu) > 0$

Strong Alternatives

These are weak alternatives with original inequality system being convex, i.e., f_i are convex and h_i are affine. Each of the inequality systems is feasible *if and only if* the other is infeasible.

$$f_i(x) < 0$$
 $i = 1, ..., m$ $\lambda \succeq 0$ $\lambda \neq 0$ $g(\lambda, \nu) \geq 0$

$$f_i(x) \le 0$$
 $i = 1, ..., m$ $\lambda \succeq 0$
 $Ax = b$ $x \in relint D$ $g(\lambda, \nu) > 0$

Farkas' lemma

A pair of strong alternatives

$$c^T x < 0$$
$$Ax \le 0$$

$$\lambda \succeq 0$$
$$c + A^T \lambda = 0$$

Misc

$$\begin{split} \log \det &X = tr(\log X) \\ &- \log \det X^{-1} = \log \det X \\ \text{Schur complement } S = C - B^T A^{-1} B \quad \text{for } X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \\ &X \succ 0 \text{ iff } A \succ 0 \text{ and } S \succ 0 \\ &A \succ 0 \implies X \succeq 0 \text{ iff } S \succeq 0 \end{split}$$

$\partial/\partial Xoperations$	
$a^T X b$	ab^T
$a^T X^T b$	ba^T
$b^T X^T X c$	$X(bc^T+cb^T)$
det(X)	$det(X)(X^{-1})^T$
det(AXB)	$det(AXB)(X^{-1})^T$
tr(X)	$\mid I \mid$
tr(XA)	A^T
tr(AXB)	A^TB^T
$tr(AX^TB)$	BA
$tr(X^TA)$	A
$tr(A^TX)$	A
$tr(X^2)$	$2X^T$
$tr(X^TX)$	2X
$\ln det(X)$	X^{-1}
$\prod eig(X)$	$\det(X)(X^{-1})^T$
$\sum eig(X)$	$\mid I \mid$
$tr(X^{-1}A)$	$-X^{-1}A^TX^{-1}$

$$||z||_a = \sup\{u^T z | ||u||_{a*} = 1\}$$

$$||X||_{a,b} = \sup_{v \neq 0} \frac{||Xv||_a}{||v||_b}$$

$$= \sup\{||Xv||_a| ||v||_b = 1\}$$

$$= \sup\{u^T X v | ||u||_{a*} = 1, ||v||_b = 1\}$$