

Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU!

MMA-P1 1P-095

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ROK 2009

POZIOM PODSTAWOWY

Czas pracy 170 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 17 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie możesz nie dostać pełnej liczby punktów.
- 5. Pisz czytelnie. Używaj długopisu lub pióra tylko z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (*1 pkt*)

Wskaż nierówność, która opisuje sumę przedziałów zaznaczonych na osi liczbowej.

A.
$$|x-2| > 4$$

B.
$$|x-2| < 4$$

A.
$$|x-2| > 4$$
 B. $|x-2| < 4$ **C.** $|x-4| < 2$ **D.** $|x-4| > 2$

D.
$$|x-4| > 2$$

Zadanie 2. (1 pkt)

Na seans filmowy sprzedano 280 biletów, w tym 126 ulgowych. Jaki procent sprzedanych biletów stanowiły bilety ulgowe?

Zadanie 3. (1 pkt)

6% liczby *x* jest równe 9. Wtedy

A.
$$x = 240$$

B.
$$x = 150$$

C.
$$x = 24$$

D.
$$x = 15$$

Zadanie 4. (1 pkt)

Iloraz 32^{-3} : $\left(\frac{1}{8}\right)^4$ jest równy

A.
$$2^{-27}$$

B.
$$2^{-3}$$

C.
$$2^3$$

D.
$$2^{27}$$

Zadanie 5. (1 pkt)

O liczbie x wiadomo, że $\log_3 x = 9$. Zatem

$$\mathbf{A.} \quad x = 2$$

C.
$$x = 3^9$$

D.
$$x = 9^3$$

Zadanie 6. (1 pkt)

Wyrażenie $27x^3 + y^3$ jest równe iloczynowi

A.
$$(3x+y)(9x^2-3xy+y^2)$$

B.
$$(3x+y)(9x^2+3xy+y^2)$$

C.
$$(3x-y)(9x^2+3xy+y^2)$$

D.
$$(3x-y)(9x^2-3xy+y^2)$$

Zadanie 7.

Dane są wielomiany: $W(x) = x^3 - 3x + 1$ oraz $V(x) = 2x^3$. Wielomian $W(x) \cdot V(x)$ jest równy

A.
$$2x^5 - 6x^4 + 2x^3$$

B.
$$2x^6 - 6x^4 + 2x^3$$

C.
$$2x^5 + 3x + 1$$

A.
$$2x^5 - 6x^4 + 2x^3$$
 B. $2x^6 - 6x^4 + 2x^3$ **C.** $2x^5 + 3x + 1$ **D.** $2x^5 + 6x^4 + 2x^3$

Zadanie 8. (1 pkt)

Wierzchołek paraboli o równaniu $y = -3(x+1)^2$ ma współrzędne

A. (-1,0)

B. (0,-1)

C. (1,0)

D. (0,1)

Zadanie 9. (1 pkt)

Do wykresu funkcji $f(x) = x^2 + x - 2$ należy punkt

A. (-1,-4)

B. (-1,1) **C.** (-1,-1) **D.** (-1,-2)

Zadanie 10. (1 pkt)

Rozwiązaniem równania $\frac{x-5}{x+3} = \frac{2}{3}$ jest liczba

A. 21

B. 7

C. $\frac{17}{3}$

D. 0

Zadanie 11. (1 pkt)

Zbiór rozwiązań nierówności (x+1)(x-3) > 0 przedstawiony jest na rysunku

A. \boldsymbol{x} 3 -1

В. 1 -3

C. -1 3

D. -3 1

Zadanie 12. (1 pkt)

Dla n = 1, 2, 3, ... ciąg (a_n) jest określony wzorem: $a_n = (-1)^n \cdot (3-n)$. Wtedy

A. $a_3 < 0$

B. $a_3 = 0$

C. $a_3 = 1$ **D.** $a_3 > 1$

Zadanie 13. (*1 pkt*)

W ciągu arytmetycznym trzeci wyraz jest równy 14, a jedenasty jest równy 34. Różnica tego ciągu jest równa

A. 9

B. $\frac{5}{2}$

C. 2

D. $\frac{2}{5}$

Zadanie 14. (1 pkt)

W ciągu geometrycznym (a_n) dane są: $a_1 = 32$ i $a_4 = -4$. Iloraz tego ciągu jest równy

A. 12

C. $-\frac{1}{2}$

D. −12

Zadanie 15. (1 pkt)

Kąt α jest ostry i $\sin \alpha = \frac{8}{9}$. Wtedy $\cos \alpha$ jest równy

A.
$$\frac{1}{9}$$

B.
$$\frac{8}{9}$$

C.
$$\frac{\sqrt{17}}{9}$$

D.
$$\frac{\sqrt{65}}{9}$$

Zadanie 16. (1 pkt)

Dany jest trójkąt prostokątny (patrz rysunek). Wtedy $tg\alpha$ jest równy

A.
$$\sqrt{2}$$

B.
$$\frac{\sqrt{2}}{\sqrt{3}}$$

$$\mathbf{C.} \quad \frac{\sqrt{3}}{\sqrt{2}}$$

D.
$$\frac{1}{\sqrt{2}}$$

Zadanie 17. (1 pkt)

W trójkącie równoramiennym ABC dane są |AC| = |BC| = 7 oraz |AB| = 12. Wysokość opuszczona z wierzchołka C jest równa

A.
$$\sqrt{13}$$

B.
$$\sqrt{5}$$

Zadanie 18. (1 pkt)

Oblicz długość odcinka AE wiedząc, że $AB \parallel CD$ i |AB| = 6, |AC| = 4, |CD| = 8.

$$\mathbf{A.} \quad |AE| = 2$$

B.
$$|AE| = 4$$

C.
$$|AE| = 6$$

D.
$$|AE| = 12$$

Zadanie 19. (1 pkt)

Dane są punkty A = (-2,3) oraz B = (4,6). Długość odcinka AB jest równa

A.
$$\sqrt{208}$$

B.
$$\sqrt{52}$$

C.
$$\sqrt{45}$$

D.
$$\sqrt{40}$$

Zadanie 20. (1 pkt)

Promień okręgu o równaniu $(x-1)^2 + y^2 = 16$ jest równy

$$\mathbf{C}_{\bullet}$$

Zadanie 21. (1 pkt)

Wykres funkcji liniowej określonej wzorem f(x) = 3x + 2 jest prostą prostopadłą do prostej o równaniu:

A.
$$y = -\frac{1}{3}x - 1$$
 B. $y = \frac{1}{3}x + 1$ **C.** $y = 3x + 1$ **D.** $y = 3x - 1$

B.
$$y = \frac{1}{3}x + \frac{1}{3}$$

C.
$$y = 3x +$$

D.
$$y = 3x - 1$$

Zadanie 22. (1 pkt)

Prosta o równaniu y = -4x + (2m - 7) przechodzi przez punkt A = (2, -1). Wtedy

A.
$$m = 7$$

B.
$$m = 2\frac{1}{2}$$

B.
$$m = 2\frac{1}{2}$$
 C. $m = -\frac{1}{2}$ **D.** $m = -17$

D.
$$m = -17$$

Zadanie 23. (*1 pkt*)

Pole powierzchni całkowitej sześcianu jest równe 150 cm². Długość krawędzi tego sześcianu jest równa

Zadanie 24. (1 pkt)

Średnia arytmetyczna pięciu liczb: 5, x, 1, 3, 1 jest równa 3. Wtedy

A.
$$x = 2$$

B.
$$x = 3$$

B.
$$x = 3$$
 C. $x = 4$

D.
$$x = 5$$

Zadanie 25. (1 pkt)

Wybieramy liczbę a ze zbioru $A = \{2, 3, 4, 5\}$ oraz liczbę b ze zbioru $B = \{1, 4\}$. Ile jest takich par (a, b), że iloczyn $a \cdot b$ jest liczbą nieparzystą?

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 pkt)

Rozwiąż nierówność $x^2 - 3x + 2 \le 0$.

Odpowiedź:

Zadanie 27. (2 pkt)

Rozwiąż równanie $x^3 - 7x^2 + 2x - 14 = 0$.

Odpowiedź:

Zadanie 28. (2 pkt)

W układzie współrzędnych na płaszczyźnie punkty A = (2,5) i C = (6,7)są przeciwległymi wierzchołkami kwadratu ABCD. Wyznacz równanie prostej BD.

Odpowiedź:

Zadanie 29. (2 pkt)

Kat α jest ostry i $\operatorname{tg} \alpha = \frac{4}{3}$. Oblicz $\sin \alpha + \cos \alpha$.

Odpowiedź:

Zadanie 30. (2 pkt)

Wykaż, że dla każdego m ciąg $\left(\frac{m+1}{4}, \frac{m+3}{6}, \frac{m+9}{12}\right)$ jest arytmetyczny.

Zadanie 31. (2 pkt)

Trójkąty ABC i \widehat{CDE} są równoboczne. Punkty A, C i E leżą na jednej prostej. Punkty K, L i M są środkami odcinków AC, CE i BD (zobacz rysunek). Wykaż, że punkty K, L i M są wierzchołkami trójkąta równobocznego.

Zadanie 32. (5 pkt)

Uczeń przeczytał książkę liczącą 480 stron, przy czym każdego dnia czytał jednakową liczbę stron. Gdyby czytał każdego dnia o 8 stron więcej, to przeczytałby tę książkę o 3 dni wcześniej. Oblicz, ile dni uczeń czytał tę książkę.

Odpowiedź:

Zadanie 33. (*4 pkt*)

Punkty A=(2,0) i B=(12,0) są wierzchołkami trójkąta prostokątnego ABC o przeciwprostokątnej AB. Wierzchołek C leży na prostej o równaniu y=x. Oblicz współrzędne punktu C.

Odpowiedź:

Zadanie 34. (*4 pkt*)

Pole trójkąta prostokątnego jest równe 60 cm². Jedna przyprostokątna jest o 7 cm dłuższa od drugiej. Oblicz długość przeciwprostokątnej tego trójkąta.

Odpowiedź:

