开关稳压电源(E题)

摘要

本系统以 BUCK 斩波电路为核心,以 MSP430G2553 单片机为主控制器,以 TI 电源管理芯片 TPS5450 为核心 DC-DC 芯片,根据反馈信号对 PWM 信号做出调整,进行硬件闭环控制,单片机通过 DA 控制反馈段,从而实现可调稳压输出。系统输出直流电压 0V~20V 可调,可以通过键盘设定和步进调整,最大输出电流达到 2A 并实现 2.2A 过流保护,电压调整率和负载调整率小,DC-DC 变换器的效率达到 93.4% (10V 2A 情况下测定)。能对输出电压输出电流和输出功率进行测量和显示。

方案论证

1.1 DC-DC 主回路拓扑

方案一采用单片机产生 PWM 波控制 MOS 的开关,AD 采样进行反馈,形成软件闭环控制系统,通过调整占空比稳压和调节输出电压。

方案二 采用集成电源管理芯片,单片机控制 DA 经过电阻送至芯片反馈端,通过硬件欺骗的方法控制输出电压。

基于对电路结构和效率的考虑, 我们选择方案二。

1.2 系统总体框图

图 1-1 系统总体框图

1.3 提高效率的方法及实现方案

1)选择合适的开关电源控制芯片:集成开关电源芯片的 MOS 内阻对整机的效率有较大的影响,TI 公司的 TPS5450 内部导通电阻 110mΩ,工作频率 500KHz,有较高的转换效率,并且带有使能端,输入最大电压 36V,持续最大输出电流 5A,适合本设计要求。

- 2) BUCK 斩波电路中二极管的选取:本电路工作频率高,电压低,对二极管的开关速度要求高,对反向耐压要求不高。与快速恢复二极管相比,肖特基二极管正向压降更小、恢复时间更短;反向耐压也已经满足要求。故选择肖特基二极管。本设计要求输出电流 2A,可选用最大持续电流 3A的 1N5822 二极管。
- 3) BUCK 斩波电路中电感的选取:本设计电流较大,又由于开关频率较高,普通 绕线电感会产生较大 EMI,对输出电压有较大的影响,会产生较大的纹波,因次 选用 TDK 屏蔽式额定电流 4A 的电感,能有效减少 EMI 的产生并能满足设计的电 流需求。
- 4) 控制及保护电路: MCU 选用超低功耗单片机 MSP430G2553, 其工作电流仅 280 μA; 显示用低功耗 LCD; 控制及保护电路的供电采取了降低功耗的措施; MCU 需要的 3.3V 电压由开关电源芯片 LM2596 降至 5V, 再由 AMS-1117 降至 3.3V 以控制开关电源产生的噪声, 以免单片机工作不稳定。

2 电路设计与参数计算

- 2. 1BUCK 电路器件的选择及参数计算
- 2.1.1 肖特基二极管的选择

由于输出最大电压 2A, 最大输入电压 25V, 为留有裕量, 选用耐压 40V 平均 通过电流 3A 的 1N5822,。

2.1.2 电感的参数计算

1) 电感值的计算:根据芯片手册的设计参考,

$$\mathsf{L}_{\mathsf{MIN}} = \frac{\mathsf{V}_{\mathsf{OUT}(\mathsf{MAX})} \times \left(\mathsf{V}_{\mathsf{IN}(\mathsf{MAX})} - \mathsf{V}_{\mathsf{OUT}}\right)}{\mathsf{V}_{\mathsf{IN}(\mathsf{MAX})} \times \mathsf{K}_{\mathsf{IND}} \times \mathsf{I}_{\mathsf{OUT}} \times \mathsf{F}_{\mathsf{SW}(\mathsf{MIN})}}$$

其中 K_{IND} 是减少输出纹波而增大电感的补偿系数,推荐取 0.1 到 0.3,为了是输出纹波更小,这里去 0.1,计算得电感值 L=44uH,取 47uH。

2.1.3 电容的参数计算

根据芯片手册的

$$C_{OUT} = \frac{1}{3357 \times L_{OUT} \times f_{CO} \times V_{OUT}}$$

其中, L_{OUT} 为输出电感,取 47uF。 f_{CO} =500kHz, V_{OUT} =20V 时, C_B =316 μ F。取 C_B =330 μ F,用多只低串联等效电阻(ESR)的电解电容并联,进一步减小 ESR,以减小输出电压的纹波。再并联 CBB 电容以增加高频响应,减少毛刺。

2.2 控制电路的设计与参数计算

MCU 根据设定值给定 DA 值从而控制输出电压。根据硬件电路设计(图 2-1),可得: $V_{OUT} = \frac{V_{FB}}{R_4}(R_2 + R_4) + \frac{V_{FB} - V_{SET}}{R_3}R_2$, 其中 V_{FB} 为芯片内部调整的参考电

压 1.223V,最后计算可得 $V_{OUT} = \frac{21.263 - V_{SET}}{8.1731}$,经过实际电路测试后进行软件修

正,修正后得出
$$V_{OUT} = \frac{21.263 - V_{SET} - 0.01}{8.1731 + 0.01}$$
。

图 2-1

2.3 保护电路的设计与参数计算

2.3.1 过流保护

输出端串接电流采样电阻 R_{TEST2}, 材料选用温漂小的康铜丝。电压信号放大后送给单片机进行 A/D 采样。当电流大于 2.2A 时,单片机控制电源失能,蜂鸣器报警,过流故障解除后,系统将自动恢复正常供电状态。

2.5 数字设定及显示电路的设计

分别通过键盘和 LCD 实现数字设定和显示。键盘用来设定和调整输出电压;

设定电压、输出电流和输出功率的量值通过 LCD 显示。

- 2.6 效率的分析及计算 (U_{IS}=25V, 输出电压 U₀=10V, 输出电流 I₀=2A)
- BUCK 电路中电感的损耗: P_{DCR1} = I_{IN}² × DCR₁
 其中, DCR₁ 为电感的直流电阻,取为 50 mΩ,代入可得 P_{DCR1}=0.68 W
- 2) BUCK 电路中开关管的损耗
 - 1、开关损耗 Psw=0.5*U_{IN}*I_{IN}(t_r+t_f)*f

其中, t_r=190ns, t_r=110ns, f=500 kHz, 代入可得 P_{sw}=0.216 W

2、导通损耗 $P_C = D (I_{IN}^2(R_{DSON} \times 1.3 + R_{SNS}))$

其中, R_{DS (on)}=110 mΩ, 电流感应电阻 R_{SNS} 取 0.05 Ω, 代入得 P_c=0.23 W

3) 肖特基二极管的损耗

当二极管导通时流过二极管的电流等于电感电流,约为 $I_0=2A$,查伏安曲线得 $V_0=0.42$ V,占空比取 50%。

所以,二极管的损耗 $P_D = I_O V_D D = 2A*0.42V*0.50=0.42W$

4) 采样电阻上的总损耗为 0.01W, 其他部分的损耗约为 0.01W,

综上电路总损耗 P _{根柢}=0.96W, 故 DC-DC 变换器的效率 η = P₀ / (P₀+P _{根柢}) = 93% 2.7 系统特色:

- 1. 通过电阻讲 DA 值穿入反馈端,精确控制输出,并且实现了从 0V 输出的宽输出范围。
- 2. 采用多种措施降低系统的电磁干扰 (EMI), 如: 合理布局 PCB, 降低经过二极管电流的快速强烈变化对系统的干扰; 使用 TDK 屏蔽式电感, 使电感在高频工作时, 对电路有较小的电磁干扰。
 - 3. 具有多重保护措施,保证了系统的高可靠性。

3 软件设计(主要流程图如图 3-1 所示)

图 3-1

4 系统测试及结果分析

4.1 测试使用的仪器(如表 4.1 所示)

表 4.1 测试使用的仪器设备

序号	名称、型号、规格	数量	备注
1	UNI-T 万用表	2	
2	MPS-3005L 直流电源	1	
3	Tekironix 示波器	1	带宽 50MHz

4.2 测试方法 (连接如图 4-1 所示)

图 4-1 测试连接图

4.3 测试数据

4.3.1 DC-DC 转换器效率η测试(测试条件: I₀=2A, U₀=20V, U₁=25V)

 $U_{IN}=25V$, $I_{IN}=1.71A$; $U_0=20.00V$, $I_0=2.005A$.

DC-DC 转换器效率 η =U₀I₀/U_{IN}I_{IN}=93.57%。

4.4 测试结果分析

4.4.1 测试数据与设计指标的比较 (如表 4.2 所示)

表 4.2 测试数据与设计指标的比较

测试项目	基本要求	发挥要求	电路测试结果
输出电压可调范围	0V-320V		实现
最大输出电流	2 A		实现
DC-DC 变换器效率	> 70%	≥ 85%	93.97%
过流保护	动作电流	故障排除后自动恢复	动作电流 2.23A,
	2. 2 ± 0. 2A		可以自动恢复。
输出电压设定和步进调整		步进 0.1V,测量和显示电压电	实现, 步进可达 0.1V。
		流	
其他			完整可靠的保护电路

1 电路原理图:

