Model Final Exam Paper

- 1. Given $f(x) = 3x^2 + 12x + 5$,
 - a) Write the function in vertex form.
 - b) Identify the vertex (h, k).
 - c) Find any *x*-intercepts.
 - d) Find the y-intercepts.
 - e) Sketch the graph.
 - f) Determine the axis of symmetry.
 - g) Determine the maximum or minimum value of f.
 - h) Write the domain and range in interval notation.
- 2. Give $f(x) = x^3 9x$,
 - a) Determine the end behavior of the graph of the function.
 - b) Find the x- and y-intercepts of the graph of the function.
 - c) Determine the zeros of the function and their multiplicity. Use this information to determine whether the graph crosses or touches the *x*-axis at each *x*-intercept.
 - d) Use the information in a) through c) to draw a complete graph of the function.
- 3. Use long division to divide. $\left(-5+x+4x^2+2x^3+3x^4\right) \div \left(x^2+2\right)$
- 4. Use synthetic division to divide. $\left(-2x+4x^3+18+x^4\right) \div \left(x+2\right)$
- 5. Use the remainder theorem to determine if the given number c is a zero of polynomial,

(a)
$$f(x) = 2x^3 - 4x^2 - 13x - 9$$
; $c = 4$

(b)
$$f(x) = x^3 + x^2 - 3x - 3$$
; $c = \sqrt{3}$

6. Use the factor theorem to determine if the given polynomials are factors of $f(x) = x^4 - x^3 - 11x^2 + 11x + 12.$

(a)
$$x-3$$
 (b) $x+2$

- 7. Factor $f(x) = 3x^3 + 25x^2 + 42x 40$, given that -5 is a zero of f(x).
- 8. Write a polynomial f(x) of degree 3 that has the zeros, $\frac{1}{2}$, $\sqrt{6}$ and $-\sqrt{6}$.
- 9. Find the zeros and their multiplicities. $f(x) = 2x^4 + 5x^3 2x^2 11x 6$
- 10. Given $f(x) = x^4 6x^3 + 28x^2 18x + 75$, and that 3 4i is a zero of f(x),
 - a) Find the remaining zeros.
 - b) Factor f(x) as a product of linear factors.
 - c) Solve the equation. $x^4 6x^3 + 28x^2 18x + 75 = 0$.
- 11. Given $f(x) = \frac{4x}{x^2 4}$,
 - a) Find the domain of the rational function.
 - b) Find the y-intercept by evaluating f(0).
 - c) Find the *x*-intercepts by solving the zeros of the numerator of *R* that are in the domain of *R*. Determine the behavior of the graph of *R* near each *x*-intercept.
 - d) Determine the vertical asymptotes. Graph each vertical asymptote using a dashed line.
 - e) Determine the horizontal or slant asymptote, if one exists. Graph the asymptote using a dashed line.
 - f) Plot at least one point on the intervals defined by the *x*-intercepts, vertical asymptotes, and points at which the graph of *R* intersects the asymptote.
 - g) Sketch the graph.

12. Find the inverse of the function for the one-to-one function defined by

$$f(x) = 3x-1$$
.

13. Graph the function.

a)
$$f(x) = 2^x$$

b)
$$g(x) = \left(\frac{1}{2}\right)^x$$

14. Write each equation in exponential form.

a)
$$\log_2 16 = 4$$

a)
$$\log_2 16 = 4$$
 b) $\log_{10} \left(\frac{1}{100} \right) = -2$ c) $\log_7 1 = 0$

$$c) \log_7 1 = 0$$

15. Write each equation in logarithmic form.

a)
$$3^4 = 81$$

b)
$$10^6 = 1000000$$

a)
$$3^4 = 81$$
 b) $10^6 = 1000000$ c) $\left(\frac{1}{5}\right)^{-1} = 5$

16. Graph the functions.

a)
$$y = \log_2 x$$
 b) $\log_{\frac{1}{4}} x$

b)
$$\log_{\frac{1}{4}}x$$

17. Write the expression as the sum or difference of logarithms.

a)
$$\log_2\left(\frac{z^3}{xy^5}\right)$$

a)
$$\log_2 \left(\frac{z^3}{xy^5} \right)$$
 b) $\log_2 \sqrt[3]{\frac{(x+y)^2}{10}}$

18. Write the expression as a single logarithm and simplify the result if possible.

$$\log_2 560 - \log_2 7 - \log_2 5$$

19. Solve.

a)
$$3^{2x-6} = 82$$

a)
$$3^{2x-6} = 81$$
 b) $25^{4-t} = \left(\frac{1}{5}\right)^{3t+1}$

c)
$$8^{x+2} = 16^{x+1}$$

d)
$$4^{2x-7} = 5^{3x+1}$$
 e) $7^x = 60$

e)
$$7^x = 60$$

20. Solve.

a)
$$\log_2(3x-4) = \log_2(x+2)$$

a)
$$\log_2(3x-4) = \log_2(x+2)$$
 b) $\ln(x-4) = \ln(x+6) - \ln x$ c) $4\log_2(2t-7) = 8$ d) $\log(w+47) = 2.6$ e) $\log_2 x = 3 - \log_2(x-2)$

c)
$$4\log_2(2t-7) = 8$$

d)
$$\log(w+47) = 2.6$$

e)
$$\log_2 x = 3 - \log_2 (x - 2)$$

- 21. Let (-2, -5) be a point on the terminal side of angle θ drawn in standard position. Find the exact value of each of the six trigonometric functions of θ .
- 22. Find the reference angle θ' .

a)
$$\theta = 315^{\circ}$$

a)
$$\theta = 315^{\circ}$$
 b) $\theta = -\frac{13\pi}{12}$ c) $\theta = 3.5$ d) $\theta = \frac{25\pi}{4}$

c)
$$\theta = 3.5$$

$$d\theta = \frac{25\pi}{4}$$

23. Evaluate the functions.

a)
$$\sin \frac{4\pi}{3}$$

a)
$$\sin \frac{4\pi}{3}$$
 b) $\tan(-225^{\circ})$ c) $\sec \frac{11\pi}{6}$ d) $\sec \frac{9\pi}{2}$ e) $\sin(-510^{\circ})$

c)
$$\sec \frac{11\pi}{6}$$

d)
$$\sec \frac{9\pi}{2}$$

- 24. Given that $\sin \theta = -\frac{4}{7}$ and $\cos \theta > 0$, find $\cos \theta$ and $\tan \theta$.
- 25. Given that $\cos \theta = -\frac{4}{7}$ for θ in Quadrant II, find $\sin \theta$ and $\tan \theta$.
- 26. Given $f(x) = 4 \sin 3x$,
 - Identify the amplitude and period.
 - Graph the function and identify the key points on one full period.
- 30. Given $y = \cos\left(2x + \frac{\pi}{2}\right)$,
 - a) Identify the amplitude and period.
 - Graph the function and identify the key points on one full period.
- 27. Find the exact values or state that the expression is undefined.

a)
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
 b) $\arcsin\frac{1}{2}$ c) $\sin^{-1}2$
d) $\cos^{-1}\left(-\frac{1}{2}\right)$ e) $\tan^{-1}\sqrt{3}$ f) $\arctan(-1)$

b)
$$\arcsin \frac{1}{2}$$

c)
$$\sin^{-1} 2$$

d)
$$\cos^{-1}\left(-\frac{1}{2}\right)$$

e)
$$\tan^{-1} \sqrt{3}$$

$$f$$
) $arctan(-1)$

28. Verify that the equation is an identity.

$$\frac{\cos(-x)\tan(-x)}{\sin x} = -1$$

29. Verify that the equation is an identity.

$$\frac{1}{1-\cos x} - \frac{1}{1+\cos x} = 2\cot x \csc x$$

30. Find the exact values.

a)
$$\cos 15^{\circ}$$
 b) $\sin \frac{11\pi}{12}$

- 31. Find the exact values of $\cos(\alpha \beta)$ given that $\sin \alpha = -\frac{4}{5}$ and $\cos \beta = -\frac{5}{8}$ for α in Quadrant III and β in Quadrant II.
- 32. Find the exact values of tan 255°.
- 33. Write $5\sin x 12\cos x$ in the form $k\sin(x+\alpha)$.
- 34. Given that $\sin \theta = \frac{2}{3}$ for θ in Quadrant II, find the exact function values.
 - a) $\sin 2\theta$
- b) $\cos 2\theta$
- c) $\tan 2\theta$
- 35. Write $\sin^4 x + \cos^2 x$ in terms of first power of cosine.

- 36. If $\sin \alpha = -\frac{4}{5}$ and $\pi < \alpha < \frac{3\pi}{2}$, find the exact values of each expression.
- a) $\sin \frac{\alpha}{2}$ b) $\cos \frac{\alpha}{2}$ c) $\tan \frac{\alpha}{2}$
- 37. Solve $2 \tan x = \sqrt{3} \tan x$ over $[0, 2\pi)$.
- 38. Given $2\sin 2x \sqrt{3} = 0$,
 - a) Write the solution set for the general solution.
 - b) Write the solution set on the interval $[0, 2\pi)$.
- 39. Given $-1 + \sin \frac{x}{2} = 0$,
 - a) Write the solution set for the general solution.
 - b) Write the solution set on the interval $[0, 2\pi)$.