Machine learning principles and communications for material scientists

Lecture 2: Unsupervised learning

September 12th, 2022

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Machine learning paradigms

Qian, B. et al. "Orchestrating the Development Lifecycle of Machine Learning-Based IoT Applications: A Taxonomy and Survey"

Identify robust patterns that can be generalized to new data

Two primary branches of unsupervised learning

Dimensionality reduction

- Understand data distribution & gauge the difficulty of supervised learning
- Visualize on high-dimensional data on 2D-3D

Clustering

- Identify data subgroups
 - Predict shared characteristics
 - Generate hypothesis

Dimensionality reduction

Manifold hypothesis

"Real-world, high-dimensional data lie on some low-dimensional manifolds"

Nordin, P. et al. Global Health Action 7:25351 (2014)

An example: Digit datasets

A powerful 2D visualization

https://twitter.com/lkmklsmn/status/1436357177887895555

Both data source and digit identity can be distinguished

Another example: Fashion MNIST

https://github.com/zalandoresearch/fashion-mnist

https://pair-code.github.io/understanding-umap/

2D visualization for cell images

Principal component analysis (PCA)

Variance is information

https://shapeofdata.wordpress.com/2013/04/16/visualization-and-projection/

 High variances = more power to distinguish groups of data points

https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d

PCA identifies directions with high variances

Source: the paleontological association

Interpretations of PCA algorithm

- Fitting the data with an *n*-dimensional ellipsoid
 - Axes = principal component (PC) direction
 - Axis lengths = magnitude of variances captured
- Orthogonal linear transformation
 - New axes are rotations of the original axes
 - $PC1 = w_1x_1 + w_2x_2 + \cdots + w_nx_n$
 - $PC2 = v_1x_1 + v_2x_2 + \dots + v_nx_n$
 - w_i 's and v_i 's are called loadings

Interpretation of PCA result

https://twitter.com/lkmklsmn/status/1436357177887895555

- PC1 captures the variance between data sources
- PC2 somewhat captures the variance between digit identity

Interpreting loadings on individual PC

Exploring PCA results

- Color by feature values to understand how PCA group data points
- Color by potential confounding factors

Be careful of correlated features

PCA for dimensionality reduction

- By default, PCA retains the number of dimensions
- We can select only the first *k* PC for downstream analyses

Pros and cons of PCA

- Each PC can be interpreted from the loadings
- Highly correlated features tend to be grouped into the same PC
- PCA is a good initial dimensionality reduction step
- PCA strictly preserves Euclidean distance
 - But some datasets require different distance metric!

https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

Multidimensional Scaling (MDS)

Distances

https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

Pairwise distance matrix

- D(i, j) = distance between sample i
 and sample j
- D(i, i) = 0
- -D(i,j)=D(j,i)
- User-defineddistance metric

de Nobel, J. et al. "Explorative Data Analysis of Time Series based Algorithm Features of CMA-ES Variants" April 2021

Principal Coordinate Analysis (PCoA)

PCoA algorithm sketch

- Calculate pairwise distance matrix D for the original data
- For a 2D projection of the data: sample i projected onto (x_i, y_i)
 - Calculate pairwise distance matrix *D'* for the projection
 - Each element of D' is a function of (x_i, y_i) 's
- Calculate a similarity score between D and D'
 - Such as Person's correlation
 - This similarity score is a function of (x_i, y_i) 's
- Find (x_i, y_i)'s that maximize this score!

How to optimize a function?

- Find $(x_1, x_2, ..., x_n)$ that minimize $f(x_1, x_2, ..., x_n)$
- At minimum, the slope is zero in all directions
- Take derivative of each variable and set to zero

$$- \frac{\delta f}{\delta x_1} = 0$$

$$- \frac{\delta f}{\delta x_2} = 0$$

- *n* equations with *n* variables

https://es.mathworks.com/help/optim/ug/optimization-toolbox-tutorial.html

Gradient descent

- Slope tells us if the function is increasing or decreasing if we increase x_i
 - So, we can update x_i accordingly

Generalized MDS

Limitation of PCA and MDS

- A single definition of distance metric is used throughout the data space
- What if some data groups are noisier than the others?
 - Difference in data density

t-distributed stochastic neighbor embedding (*t*-SNE)

Measuring data density

- Distance to the k-th nearest neighbor reflects data density
 - Small distance in dense area
 - Large distance in sparse area

Probability of being a neighbor

score(o | o) = probability that o would pick o as neighbor under a **normal distribution** center at o

o = other data points

Same distance d normalized against density σ and distances to other nearby data points o

Finding the optimal projection for t-SNE

Probability of being a neighbor (Normal) (σ depend on density)

Probability of being a neighbor (t-distribution) $(\sigma = 1)$

A similarity score for probability distribution

- Kullback-Leibler (KL) divergence
- Measure how distribution P differs from another distribution Q

-
$$D_{KL}(P || Q) = -\sum_{i} \sum_{j} p_{j|i} \log_2 \frac{p_{j|i}}{q_{j|i}}$$

- P = Probability of neighbor from the original data
- Q = Probability of neighbor from the projection
- Solve for the best $q_{i|i}$'s using gradient descent

Why *t*-distribution for the projection?

Impact of *t*-distribution

Maaten, L. and Hinton, G. J of Machine Learning Research 9:2579-2605 (2008)

Perplexity

- How many nearest neighbors to consider to normalize data density?
 - Perplexity parameters

Impact of perplexity

- Too small perplexity = a lot of scatted data groups
- Try varying the perplexity and identify patterns that consistently appear

Source: blog.paperspace.com/dimension-reduction-with-t-sne/

Pros and cons of *t*-SNE

- Capture qualitative neighbor relationship
- Normalize data density
- Recompute every time new data is added
- Lose long-range relationship
- Axes of the resulting projection have no meaning
 - Don't use t-SNE coordinates for clustering or interpretation

Maaten, L. and Hinton, G. J of Machine Learning Research 9:2579-2605 (2008)

Uniform manifold approximation and projection (UMAP)

Two key assumptions

Chung, S. et al. "Classification and Geometry of General Perceptual Manifolds"

Ali, A. et al. IEEE Access PP(99):1 (2021)

- Data came from multiple manifolds
- Data points were sampled uniformly

Uniform sampling = similar distance to k-th neighbor

Adding uncertainty between distant data points

Network representation of neighbor relationship

Projecting network representation

Sainburg, T. et al., Neural Comput 33(11):2881-2907 (2021)

Preserve scores on edges: probability of being neighbors

Another similarity score for probability distribution

Cross-entropy

-
$$CE(P \parallel Q) = \sum_{i} \sum_{j} p_{i,j} \log_2 \frac{p_{i,j}}{q_{i,j}} + \sum_{i} \sum_{j} (1 - p_{i,j}) \log_2 \frac{(1 - p_{i,j})}{(1 - q_{i,j})}$$

- KL divergence only has the first term
- Cross-entropy considers both when $p_{i,j}$ is high (similar data points) and when $p_{i,j}$ is low (distant data points)

Power of UMAP

McInnes, L., Healy, J. and Melville, J. "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction"

UMAP can transform new data points

UMAP presentation by Dr. McInnes

Pros and cons of UMAP

- Can capture long-range relationship
- Can be applied to new data points without recomputing
- Require a strong assumption of uniform sampling

t-SNE vs UMAP on biological data

Becht, E. et al. Nature Biotechnology 37:38-44 (2019)

t-SNE vs UMAP on biological data

Becht, E. et al. Nature Biotechnology 37:38-44 (2019)

- Both are equally good at detecting individual data groups
- But UMAP is better at capturing transitions across data groups

Customizing UMAP outputs

- Number of neighbors(n_neighbors) is perplexity
- Minimum distant for placing similar data point (min_dist) is for adjusting the scale of visualization

Source: https://pair-code.github.io/understanding-umap/

Clustering

The heart of clustering

- Goal: Group similar data point together
- How to define similarity?
 - Distance: Between two data points
 - Linkage: Between groups of data points
- How many clusters is appropriate?
 - Within-cluster (small) versus between-cluster (large) distance

An example: k-mean clustering

Limitation of k-mean

- Assume Euclidean distance
- Assume that clusters are of equal radius
- The initial guess of the locations of *k* means can affect the final clusters
 - Repeat multiple times

Agglomerative / Hierarchical clustering

Source: www.slideshare.net/ElenaSgis/data-preprocessing-and-unsupervised-learning-methods-in-bioinformatics

Linkage = distance metric for groups of data points

https://www.analyticsvidhya.com/blog/2021/06/single-link-hierarchical-clustering-clearly-explained/

DBSCAN: A density-based technique

Difrancesco, P.-M. Remote Sensing 12:1885 (2020)

DBSCAN can handle complex cluster shape

https://www.analyticsvidhya.com/blog/2020/09/how-dbscan-clustering-works/

Distance-based techniques assume that data are spread in all directions

Tuning DBSCAN

https://towardsdatascience.com/

An example: DBSCAN on UK Biobank data

Silhouette score

 Compare distances from X to other members of cluster A versus distances from X to members of cluster B (the closest cluster from A)

Spectral clustering and network clustering

Sainburg, T. et al., Neural Comput 33(11):2881-2907 (2021)

https://github.com/topics/graph-clustering

- View distance matrix as network
- Apply some threshold on the distance to create sparse network
- Split network into modules with dense edges

No one-size fits all

https://scikit-learn.org/0.23/auto_examples/cluster/plot_cluster_comparison.html

Summary

- High-dimensional data can often be simplified onto a 2D/3D visualization
- Explore distribution of feature values on the 2D/3D plot
- Picking appropriate distance metric is the key!
 - Using all features vs informative features
 - Euclidean $(x, y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2 + \dots + (x_n y_n)^2}$
- Unsupervised learning needs domain knowledge for soft validation

Any question?

- See you next week on Sep 19th 9-10:30am