

Sistemas Operativos

Introducción, Historia y Tópicos Avanzados

Viktor Andrés Tapia Vásquez Segundo Semestre 2021

Departamento de Informática, Campus SSJJ.

Índice de Contenidos

- 1. ¿Qué es un Sistema Operativo?
- 2. Un poco de historia
- 3. SO's Modernos

¿Qué es un Sistema Operativo?

Un sistema operativo es software, ¡claro está!

Figure 1: Sistema Computacional

- ¿Qué tiene que hacer? **Depende del punto de vista**:
 - ✓ Usuario convencional busca facilidad de uso y performance.
 - √ Sistemas compartidos deben satisfacer a todos sus usuarios.
 - \checkmark Sistemas móviles ajustados para usabilidad y conservar bateria.

El sistema operativo cumple dos roles fundamentales:

Árbitro

- ✓ Asigna equitativamente los recursos entre distintos programas.
- ✓ Aisla los usuarios y los programas entre si.

Ilusionista

- ✓ Cada programa tiene todos los recursos del computador para él.
- ✓ Infinitos recursos. Ej: CPU, Memoria principal, etc.

Objetivo Principal

Proveer un **entorno de ejecución** de programas de usuario utilizando de una forma conveniente y asignando de forma justa el hardware del computador.

Se deben prevenir errores y gestionar las operaciones E/S.

Definición - **Desafíos**

Desde el punto de vista del usuario el SO debe ser:

- Confiable.
- Seguro.
- Portable.
- Eficiente.

Estos criterios impactan directamente en el diseño de los SO's modernos.

Definición - Desafíos

Confiabilidad

- ✓ ¿El sistema hace lo que debe hacer?.
- ✓ Este aspecto refleja el cumplimiento.

Seguridad

- ✓ ¿Puede el sistema verse comprometido?.
- ✓ Privacidad: Distintos perfiles de autorización para el acceso a datos.

Portabilidad

- ✓ Programas: No importa el SO ni el hardware. ¡Me debo ejecutar!.
- ✓ SO: No importa el hardware. ¡Me debo instalar y funcionar!

Definición - **Desafíos**

Eficiencia

¿Cómo medimos si el sistema es eficiente?

- ✓ Latencia: ¿Cuánto demora una tarea en completarse?
- ✓ Throughtput: ¿Cuántas operaciones por unidad de tiempo?
- ✓ Overhead: ¿Cuánto trabajo extra se realiza?
- ✓ Justicia: ¿Para todos los usuarios el sistema es eficiente?
- ✓ Predictibilidad: ¿La eficiencia se mantiene en el tiempo?

- Los sistemas operativos han evolucionado a través de la historia.
- La evolución fue/es impulsada por:
 - √ Evolución tecnológica de los computadores.
 - √ Negocio.
- En la década de los 50's aparecen las primeras ideas.
- El objetivo era facilitar la interacción entre persona y computador.

La década de 1950 (Sistema Batch)

- La ejecución de programas no requiere interacción con el usuario.
- Define dos conceptos principales:
 - √ Monitor Residente: Pieza de software. Su objetivo era cargar, de forma rápida, los programas a memoria.
 - ✓ Almacenamiento Temporal: Disminuir el tiempo de carga. Utiliza las técnicas de buffering y spooling.
- La CPU siempre estaba ocupada.
- Solo una aplicación por vez.

La década de 1960

- La aparición del circuito integrado incrementa potencialmente la evolución de los computadores.
- Cambio de foco: Múltiples usuarios al mismo tiempo.
 - ✓ Multiprogramación: Ejecutar muchos programas a la vez.
 - √ Tiempo de respuesta.
- Baja el costo del HW.
- Es más importante optimizar el tiempo del usuario.

Multiprogramación

- Incrementa el uso de CPU organizando los trabajo de forma que siempre exista uno para ejecutar.
- Dos o más procesos pueden ocupar la misma CPU al mismo tiempo.
- Solo puede haber un proceso en ejecución en cada instante.
- Debe existir un grupo de procesos en memoria principal.
- Son seleccionados por la itineración de procesos.

Multiprogramación Los procesos P0 y P1 ocupan la misma CPU y controladores E/S. Si cada uno de los procesos se ejecuta por separado en un SO de tipo batch utilizando multiprogramación, se pide:

- Dibujar el diagrama de tiempos para la ejecución de los procesos.
- Determine el % de mejora.

La década de 1970

- Sistemas grandes, complejos y costosos.
- Usaban demasiada memoria principal.
- Nace UNIX.

La década de 1980

- Creación de circuitos LSI impulsa auge de computadores personales.
- Cambia el foco de diseño del SO.
- SO's funcionales, prácticos y simples (amigables).
- SunOS, MS-DOS, MacOS.

Figure 2: Evolución SO's

	1981	1997	2014	Factor (2014/1981
Uniprocessor speed (MIPS)	1	200	2500	2.5K
CPUs per computer	1	1	10+	10+
Processor MIPS/\$	\$100K	\$25	\$0.20	500K
DRAM Capacity (MiB)/\$	0.002	2	1K	500K
Disk Capacity (GiB)/\$	0.003	7	25K	10M
Home Internet	300 bps	256 Kbps	20 Mbps	100K
Machine room network	10 Mbps (shared)	100 Mbps (switched)	10 Gbps (switched)	1000
Ratio of users to computers	100:1	1:1	1:several	100+

Figure 3: Evolución HW

- Con foco en el usuario y en el smartphone.
- Tablets, Laptos, etc. Dispositivos portatiles.
- Máquinas Virtuales y Servidores.
- Data center de gran escala.
- Más capacidad de HW (CPU, RAM, etc).
- Almacenamiento a gran escala.

- Sistemas Distribuidos y Peer to Peer.
- Cloud Computing.
- SO's de código libre.
- Técnología de Hardware.
 - ✓ Procesadores i3, i5 e i7.
 - √ Turbo Boost.
 - √ Hyper Threading
 - √ Memoria Caché.

Figure 4: Procesador Intel i7

Sistemas Operativos

Introducción, Historia y Tópicos Avanzados

Viktor Andrés Tapia Vásquez Segundo Semestre 2021

Departamento de Informática, Campus SSJJ.