Laboratorio Sesión 09: Coma flotante, precisión y rendimiento

Objetivo

El objetivo de esta sesión es introducir el uso y los problemas de precisión de los cálculos en coma flotante además de realizar medidas de rendimiento. Para recordar cómo se tratan en un procesador actual las operaciones en coma flotante podéis repasar la Sección 3.5 del libro Çomputer organization and design: the hardware/software interface" de David A. Patterson y John L. Hennessy.

Conocimientos Previos

MIPS vs. MFLOPS

Ya en la práctica 1 vimos los MIPS como forma de medir el rendimiento de un procesador. Sin embargo los MIPS son una unidad de medida que es extremadamente variable ya que el mismo código fuente se puede implementar con más o menos instrucciones: dependiendo del ISA del procesador, del compilador y de las optimizaciones un mismo programa que se ejecuta en el mismo tiempo puede dar lugar a medidas de más o menos MIPS. Para intentar paliar este tipo de problemas, al menos en los programas científicos, se utilizan como unidad de medida de la velocidad de un procesador los MFLOPS (Millones de Operaciones de Coma Flotante por Segundo). Las diferencias con los MIPS son principalmente dos:

- Mide las operaciones y no las instrucciones, es decir, una multiplicación siempre es una operación, independientemente de la cantidad de instrucciones que hagan falta para implementarla. Así pues esta medida es más independiente del código máquina que los MIPS.
- Las operaciones son de Coma Flotante y no enteras. Esto hace que los MFLOPS sean adecuados para medir el rendimiento de programas de cálculo numérico (que usan este tipo de operaciones), pero no para programas que no usan la coma flotante. Es más, un procesador enfocado a la ejecución de códigos enteros (y por tanto sin unidad hardware específica de coma flotante) puede ser muy rápido y tener una velocidad en MFLOPS muy lenta.

Además, como pasa con los MIPS, hay una gran diferencia entre la velocidad máxima teórica (o de pico) y la velocidad real a la que se pueden ejecutar las instrucciones (debido a la influencia de la memoria, etc.). Para hacer comparaciones entre computadores se suelen ejecutar un conjunto concreto de códigos como por ejemplo el benchmark LINPACK (usado en el TOP500).

Estudio Previo

- 1. Dado el número 35,125 exprésalo en el formato IEEE de simple precisión. A continuación transfórmalo al formato IEEE de doble precisión.
- 2. Dado el número -262144,7 averiguad si se puede codificar de forma exacta en el formato IEEE de simple precisión. Si no se puede, calculad el error que se introducirá al expresarlo en dicho formato. Finalmente explica si el formato IEEE de doble precisión permitiría codificar dicho número de forma exacta o no.
- 3. Buscad en el manual de ensamblador del x86 qué hacen las siguientes instrucciones ensamblador: flds, fmuls, fadds y fstps.
- 4. Dado el siguiente código en alto nivel y dos posibles códigos equivalentes en ensamblador, así como los tiempos que tardan en ejecutarse en el mismo procesador, calculad los MIPS y MFLOPS de cada código así como el Speedup del segundo código respecto al primero.

Código C

```
for (i=0; i<256; i++)
C[i] = C[i] + A[i] * B[i];
```

```
Código ASM 2 (1,1 \mus)
Código ASM 1 (1,3 \mus)
                                  80484ab: mov
80484a3: movl $0x0,0x34(%esp)4
                                                 $0x0, %eax
                                  80484b0: mov
·80484ab: jmp
              80484e2 4
                                                 $0x804a840,%edx
                                  80484b5: mov $0x804a040, %ecx
80484ad: mov
              0x34(%esp), %eax
                                  80484ba: flds (%ecx, %eax, 4)
80484b1: mov
              0x34(%esp),%edx
                                  80484bd: fmuls 0x804a440(,%eax,4)
80484b5: flds 0x804a840(,%edx,4)
80484bc: mov
               0x34(%esp),%edx
                                  80484c4: fadds (%edx, %eax, 4)
80484c0: flds 0x804a040(,%edx,4)
                                  80484c7: fstps (%edx, %eax, 4)
                                  80484ca: add $0x1, %eax
80484c7: mov 0x34(%esp),%edx
80484cb: flds 0x804a440(,%edx,4)
                                  80484cd: cmp
                                                 $0x100, %eax
                                  -80484d2: jne
                                                 80484ba 256+1
80484d2: fmulp %st, %st(1)
80484d4: faddp %st, %st(1)
80484d6: fstps 0x804a840(,%eax,4)
                                           1796 inst. dinámicas
80484dd: addl $0x1,0x34(%esp)
80484ea: jle
               80484ad 25611
```

3332 inst. dimannicas

Trabajo a realizar durante la Práctica

 Para empezar esta práctica vamos a ver algunos de los problemas que nos puede dar el hecho de usar números en formato IEEE debido a los errores de precisión. Dada la siguiente operación:

$$z = x^4 - 4y^4 - 4y^2$$

Haced un programa que calcule el resultado para z de la anterior operación para los valores iniciales x=665857 y y=470832 en doble precisión.

- 2. A continuación calculad la misma operación en simple precisión.
- 3. Finalmente computad el resultado usando variables enteras largas (long long).
- 4. Explicad las diferencias observadas y razonad cuál es la solución correcta y por qué¹. Para comprobar el resultado podéis utilizar una calculadora, un móvil, el programa bc o incluso la calculadora de Google. Ojo, sólo os aseguramos que bc da el resultado correcto.
- 5. A continuación vamos a ver la importancia de los MFLOPS como elemento de medida de la velocidad. Partiendo del programa SumMulMat.c que tenéis en el paquete de programas de la práctica, ejecutadlo en vuestro ordenador y calculad a cuantos MIPS y a cuantos MFLOPS se ejecuta. Para calcular las operaciones de coma flotante y el tiempo tened en cuenta la parte del programa que se indica en el código del mismo. Para calcular las instrucciones, aunque es una aproximación, podéis usar por las instrucciones totales del programa tal y como las indica la herramienta valgrind. Recordad no medir a la vez tiempo e instrucciones.
- 6. A continuación compilad optimizando el código, es decir, con la opción −02. Calculad de nuevo a cuantos MIPS y MFLOPS se ejecuta en este caso. Calculad el Speedup que se ha obtenido en este caso.

¹Para saber más del tema podéis consultar: David Goldberg. 1991. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23, 1 (March 1991), 5-48.

Nombre: Tomvir Hossqin	Grupo:	<i>23</i>	
Nombre: Edgas Pétez Blanco	_		
Hoja de respuesta al Estudio Previo			
1. El número 35,125 en formato IEEE se expresa:			
En simple precisión: 0x 420c 8000			
En doble precisión: 0x4044 9 000 0000 0000			
2. Dado el número -262144,7:			
Se codifica exacto en simple precisión (S/N	(): N	- 262144	dase
Error en simple precisión: 0'0125		-262144'6875)	0'0175
Se codifica exacto en doble precisión (S/N)): N		
3. Las instrucciones ensamblador: flds, fmuls, fadds y fs	tps sirven para:		
Flds: push en FPU stack um float simple			
	pecoion		
frmuls: multiplication floats simple precision			
tadds: suma floats simple precisión			
fstps: mueux el float de la FPU stack a uma	posicion y b p	popla.	
4. El primer código en ensamblador se ejecuta:	1.0.164		
MIPS: 2563'08 MFLOPS:	1181'54		
El segundo código en ensamblador se ejecuta:			
MIPS: 1632 ' 72 MFLOPS:	930 91		
Speedup con respecto al primer código:	1, 1818		
Comenta de forma crítica los resultados anteriores:			
Opociones de comos flotante son mus	d	Loca	
Una redución de los MFLOPS comile		•	
proporcionalmente mucho mayor que una r	redución en	los Mips.	
MiPS mejoran 57% 7 mejora himal ≈	+18%		
MFLOPS mejoron 27%			

Nombre:	Grupo:
Nombre:	
Hoja de respuestas de la práctica	
1. El resultado de la operación $z = x^4 - 4y^4 - 4y$ precisión es:	$x^2 \text{con} x = 665857 \text{y} y = 470832 \text{en doble}$
2. El resultado de la operación $z = x^4 - 4y^4 - 4y^4$ precisión es:	2 con $x = 665857$ y $y = 470832$ en simple
3. El resultado de la operación $z = x^4 - 4y^4 - 4y^2$ es:	$\operatorname{con} x = 665857 \text{ y } y = 470832 \text{ en enteros}$
4. Calculado con medios (bc, Google, Calculador	a, etc.) externos es:
bc:	
Nombre Medio 2:	
Resultado Medio 2:	
5. El programa en C de la práctica ejecuta:	
Instrucciones:	Segundos:
Operaciones de Coma Flot	
MIPS:	MFLOPS:
6. Optimizado el programa ejecuta:	
Instrucciones:	Segundos:
Operaciones de Coma Flot	ante:
MIPS:	MFLOPS:
Speedup:	