

Question Answering on SQuAD Dataset

Ожерельева София, Поконечный Эдуард sofya.ozherelieva@yandex.ru, pokonechnyy.ep@phystech.edu

Moscow Institute of Physics and Technology

Поставленная задача

Задача Question answering заключается в поиске релевантной вопросу информации в документе (ответ на каждый вопрос представляет собой фрагмент текста или промежуток из соответствующего отрывка «контекста» или может не существовать в принципе).

Бейзлайновая модель

Начальная архитектура состояла из следующих слоёв:Word Embedding, Contextual Embedding, BiDAF, Self-Attention, Modeling Layer и Output Layer.

Улучшения

Рассматривалось влияние на качество следующих компонент:

- Char based embedding
- Свертки в качестве Contextual Embedding Layer (вместо LSTM). А также их комбинация
- Double Cross Attention вместо BiDirectional Attention Flow
- Self-attention после BiDirectional Attention Flow
- Размеры слоев, тюнинг гиперпараметров
- Подбор Ir scheduler

Метрики

Для оценки качества использовались метрики: Exact Match (строгая бинарнаяметрика true/false), F1 (более мягкая метрика, комбинация precision и recall).

Набор данных

Данные разделены на три группы: train (129,941 примеров), dev (6078 примеров), test (5915 примеров). Данные состоят из контекста, вопроса и ответа (таргет), представляющего из себя диапазон контекста, в котором лежит ответ на вопрос, или NA, если ответа в контексте не содержится.

Таблица 1: Experiments results on the SQuAD 2.0 dataset

	Dev set		Test set	
Single model	F1	EM	F1	EM
Baseline + Char Emb Baseline + Char Emb v.2 + fine tuning Baseline + DCA Baseline + SA + Char Emb (monster) Baseline + LSTM & Transformer combo + SA + CE	60.93 60.72 62.10 60.19 59.20 > 64.70	57.39 57.33 59.30 57.20 57.02 > 61.82		

Таблица 2: Results on the SQuAD 2.0 dataset

	Dev Set	Test Set
Single model	F1/EM	$\mathrm{F1/EM}$
Logistic Regression Baseline BiDAF QANet(https://github.com/BangLiu/QANet-PyTorch) BiDAF++ Our Best Model	51.0/40.0 ?/? 80.49/71.24 ?/? 64.70/61.82	51.0/40.4 $59.33/62.3$?/? $65.65/68.87$?/?
Ensemble	$\mathrm{F1/EM}$	F1/EM
SQuAD competition best (BERT + DAE + AoA)	?	87.15/89.47

Список литературы

- 1. QANet: Combining Local Convolution with Global Self-Attention for ReadingComprehension. 2018.
- 2. Convolutional Neural Networks for Sentence Classification. 2014.

Полученные результаты

В рамках данного проекта нам удалось:

- Разобраться в имеющихся на данный момент базовых подходах к решению question answering
- Имплементировать базовые подходы, понять основные особенности их работы, а также степень их влияния на качество решения задачи

Дальнейшие исследования

Появилась почва для создания конкурирующих с SotAрешений

- Попробовать новые архитектуры (комбинации слоев, ансамбли и прочее)
- Изучить взаимодействие с BERT
- Рассмотреть конкурирующие лучшие модели, изучить их внутреннее устройство, недостатки, подумать над способами их устранения
- Рассматривать влияние ответов без вопросов, научить модель работать с такими данными