Sequence Models

Jordan Boyd-Graber

University of Maryland

Backpack Models (Attention)

Slides adapted from Joshua Wagner, Matthias Assenmacher, Jay Alammar

Plan for Today

- Transition from linear NLM structures
- What made Transformer Language Models "a thing"
 - Attention
 - Multi-layer, multi-head
 - Transformers
- Hint at why they generalize so well (representations)

History of attention

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

How to represent final state given previous words:

$$c = q(\lbrace h_1, \dots, h_T \rbrace) \tag{1}$$

New context vector is weighted sum of the hidden states:

$$c_t = \sum_{i=1}^{T_x} \alpha_{t,i} h_i. \tag{2}$$

Where the coefficients are

$$\alpha_{t,i} = \operatorname{align}(y_t, x_i) = \frac{\exp(\operatorname{score}(s_{t-1}, h_i))}{\sum_{i'=1}^{n} \exp(\operatorname{score}(s_{t-1}, h_{i'}))}$$
(3)

History of attention

(1)

(2)

(3)

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡
illia.polosukhin@gmail.com

Attention(Q, K, V) = softmax
$$\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$$
 (4)

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V \tag{4}$$

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax} \bigg(\frac{QK^\top}{\sqrt{d_k}} \bigg) V \tag{4}$$

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V \tag{4}$$

Sentence: "That trick was sick"

that	trick	was	sick
$C(that)_0$	$C(trick)_0$	$C(was)_0$	$C(sick)_0$
$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 1 & 0 \end{pmatrix}$
$C(that)_1$	$C(trick)_1$	$C(was)_1$	$C(sick)_1$
$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 1 \end{pmatrix}$

- Each word has two sense vectors: $C(x_i)_1$ and $C(x_i)_2$.
- "that" and "was" have zero vectors for both senses.
- "trick" has a non-zero vector for C(trick)₁ at the third position (evokes scateboarding), while the second vector is zero.
- "sick" has two non-zero vectors: $C(\text{sick})_1$ and $C(\text{sick})_2$: positive for skateboard, negative for health.

Sentence: "That trick was sick"

that	trick	was	sick
$C(that)_0$	$C(trick)_0$	$C(was)_0$	$C(sick)_0$
$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 1 & 0 \end{pmatrix}$
$C(that)_1$	$C(trick)_1$	$C(was)_1$	$C(sick)_1$
$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 1 \end{pmatrix}$

- Each word has two sense vectors: $C(x_i)_1$ and $C(x_i)_2$.
- "that" and "was" have zero vectors for both senses.
- "trick" has a non-zero vector for C(trick)₁ at the third position (evokes scateboarding), while the second vector is zero.
- "sick" has two non-zero vectors: C(sick)₁ and C(sick)₂: positive for skateboard, negative for health.

Sentence: "That trick was sick"

that	trick	was	sick
$C(that)_0$	$C(trick)_0$	$C(was)_0$	$C(sick)_0$
$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	(1 0 1 0)
$C(that)_1$	$C(trick)_1$	$C(was)_1$	$C(\operatorname{sick})_1$
$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 1 \end{pmatrix}$

- Each word has two sense vectors: $C(x_i)_1$ and $C(x_i)_2$.
- "that" and "was" have zero vectors for both senses.
- "trick" has a non-zero vector for $C(\text{trick})_1$ at the third position (evokes scateboarding), while the second vector is zero.
- "sick" has two non-zero vectors: C(sick)₁ and C(sick)₂: positive for skateboard, negative for health.

Sentence: "That trick was sick"

that	trick	was	sick
$C(that)_0$	$C(trick)_0$	$C(was)_0$	$C(sick)_0$
$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 1 & 0 \end{pmatrix}$
$C(that)_1$	$C(trick)_1$	$C(was)_1$	$C(sick)_1$
$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 1 \end{pmatrix}$

- Each word has two sense vectors: $C(x_i)_1$ and $C(x_i)_2$.
- "that" and "was" have zero vectors for both senses.
- "trick" has a non-zero vector for C(trick)₁ at the third position (evokes scateboarding), while the second vector is zero.
- "sick" has two non-zero vectors: C(sick)₁ and C(sick)₂: positive for skateboard, negative for health.

Sentence: "That trick was sick"

that	trick	was	sick
$C(that)_0$	$C(trick)_0$	$C(was)_0$	$C(sick)_0$
$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 1 & 0 \end{pmatrix}$
$C(that)_1$	$C(trick)_1$	$C(was)_1$	$C(sick)_1$
$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 1 \end{pmatrix}$

- Each word has two sense vectors: $C(x_i)_1$ and $C(x_i)_2$.
- "that" and "was" have zero vectors for both senses.
- "trick" has a non-zero vector for C(trick)₁ at the third position (evokes scateboarding), while the second vector is zero.
- "sick" has two non-zero vectors: C(sick)₁ and C(sick)₂: positive for skateboard, negative for health.

Selecting the sense

Recap: Definition of $\alpha_{\ell,i,j}$:

$$\alpha_{\ell,i,j} = \begin{cases} 0 & \text{if } j \neq i \\ \sum_{r \neq i} \frac{C(\mathbf{x}_r)_{\ell+2}}{C(\mathbf{x}_r)_2 + C(\mathbf{x}_r)_3} & \text{if } j = i \end{cases}$$
 (5)

Selecting the sense

Recap: Definition of $\alpha_{\ell,i,j}$:

$$\alpha_{\ell,i,j} = \begin{cases} 0 & \text{if } j \neq i \\ \sum_{r \neq i} \frac{C(\mathbf{x}_r)_{\ell+2}}{C(\mathbf{x}_r)_2 + C(\mathbf{x}_r)_3} & \text{if } j = i \end{cases}$$
 (5)

How can you make this happen with attention?

Doing this with attention

What are the values?

What are the keys?

Doing this with attention

What are the values?

What are the keys?

Doing this with attention

What are the values?

What are the keys?

But what are the queries?

But what are the queries?

$$\alpha_{\ell,i,j} = \begin{cases} 0 & \text{if } j \neq i \\ \sum_{r \neq i} \frac{C(\mathbf{x}_r)_{\ell+2}}{C(\mathbf{x}_r)_2 + C(\mathbf{x}_r)_3} & \text{if } j = i \end{cases}$$
 (6)

But what are the queries?

$$\alpha_{\ell,i,j} = \begin{cases} 0 & \text{if } j \neq i \\ \sum_{r \neq i} \frac{C(\mathbf{x}_r)_{\ell+2}}{C(\mathbf{x}_r)_2 + C(\mathbf{x}_r)_3} & \text{if } j = i \end{cases}$$

$$Q = \begin{pmatrix} 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$(6)$$

Putting it all together

Putting it all together

So summing over all senses, we get the sentiment 1000 (Only contributing from skateboard sense of "sick".

