Notes on an example due to Baker

In [1], the author defines a game played on the unit interval.

Game 1. Let G(X, J) denote a game with players \mathscr{A} and \mathscr{B} .

In round 0, \mathscr{A} chooses a number a_0 such that $0 \le a_0 \le 1$, followed by \mathscr{B} choosing a number b_0 such that $a_0 < b_0 \le 1$.

In round n+1, \mathscr{A} chooses a number a_{n+1} such that $a_n < a_{n+1} < b_n$, followed by \mathscr{B} choosing a number b_{n+1} such that $a_{n+1} < b_{n+1} < b_n$.

 \mathscr{A} wins the game if $\lim_{n\to\infty} a_n \in X$, and \mathscr{B} wins otherwise.

The game is strongly related to one formulation of the Banach-Mazur game played upon the unit interval, which has been extensively studied [2].

Game 2. Let M(X,J) denote the Banach-Mazur interval game with players \mathscr{A} and \mathscr{B} .

In round 0, \mathscr{A} chooses a closed interval $I_0 \subseteq J = [0, 1]$, followed by \mathscr{B} choosing a closed interval $J_0 \subseteq I_0$.

In round n+1, \mathscr{A} chooses a closed interval $I_{n+1} \subseteq J_n$, followed by \mathscr{B} choosing a closed interval $J_{n+1} \subseteq I_{n+1}$.

The author of [1] asks if there is a set X such that G(X, J) is indetermined: neither \mathscr{A} nor \mathscr{B} have a winning strategy.

We show that such a set would also make MB(X, J) indeteremined.

Theorem 3. $\mathscr{A} \uparrow MB(X,J) \Rightarrow \mathscr{A} \uparrow G(X,J)$ and $\mathscr{B} \uparrow MB(X,J) \Rightarrow \mathscr{B} \uparrow G(X,J)$. (Thus if MB(X,J) is determined, then G(X,J) is determined.)

Proof. First let σ witness $\mathscr{A} \uparrow MB(X,J)$. We define the strategy τ for \mathscr{A} in G(X,J) like so:

$$a_0 = \tau(\emptyset) = \inf(\sigma(\emptyset))$$

$$a_{n+1} = \tau(\langle b_0, \dots, b_n \rangle) = \inf\left(\sigma\left(\left\langle \left[\frac{2a_0 + b_0}{3}, \frac{a_0 + 2b_0}{3}\right], \dots, \left[\frac{2a_n + b_n}{3}, \frac{a_n + 2b_n}{3}\right]\right\rangle\right)\right)$$

It is easily seen that $\bigcap_{n<\omega} \left[\frac{2a_n+b_n}{3}, \frac{a_n+2b_n}{3}\right] = \{x\}$ and $x\in X$ since σ is a winning strategy. Thus $\lim_{n\to\infty} a_n = x$ and $\mathscr{A}\uparrow G(X,J)$.

If σ now witnesses $\mathscr{B} \uparrow MB(X,J)$, then a similar argument shows that

$$b_n = \tau(\langle b_0, \dots, b_n \rangle) = \inf \left(\sigma \left(\left\langle \left[\frac{2a_0 + b_0}{3}, \frac{a_0 + 2b_0}{3} \right], \dots, \left[\frac{2a_n + b_n}{3}, \frac{a_n + 2b_n}{3} \right] \right\rangle \right) \right)$$

defines a winning strategy for \mathscr{B} in G(X,J).

Corollary 4. If X is Baire, then G(X, J) is determined.

Proof. If X is a Baire subset of a Polish space, then MB(X, J) is determined.

References

- [1] Baker, M. H., *Uncountable sets and an innite real number game*. http://arxiv.org/pdf/math/0606253.pdf 2006.
- [2] Telgarksy, R., Topological games: On the 50th anniversary of the Banach-Mazur game. http://www.telgarsky.com/1987-RMJM-Telgarsky-Topological-Games.pdf 1987.