Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.)

Teoria dei Sistemi (Mod. A)

Lezione 6: esercizi

Esercizio 1. Si consideri il sistema autonomo a tempo continuo $\dot{x}(t) = Fx(t)$, dove

$$F = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ 2 & 4 & 0 \end{bmatrix}.$$

Si determinino i modi elementari del sistema e il loro carattere (limitato/convergente/divergente). Inoltre, si calcoli l'evoluzione del sistema a partire dalle condizioni iniziali

$$x'(0) = \begin{bmatrix} -2\\1\\2 \end{bmatrix}, \quad x''(0) = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad x'''(0) = \begin{bmatrix} 1\\0\\0 \end{bmatrix}.$$

Esercizio 2. Si consideri il seguente sistema a tempo continuo

$$\dot{x}(t) = \begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$

Si determini la funzione di trasferimento del sistema e l'evoluzione forzata del sistema in corrispondenza degli ingressi

$$u'(t) = e^{-t}, t \ge 0, \quad e \quad u''(t) = t + e^{-t}, \ t \ge 0.$$

Esercizio 3. Sia

$$F = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & -1 \end{bmatrix}.$$

Si calcoli e^{Ft} , $t \ge 0$, usando Laplace.

Soluzioni

Esercizio 1. Modi:
$$e^{3t}$$
 (divergente), e^{-2t} (convergente), $e^{0t}=1$ (limitato).
Evoluzione libera: $x'(t)=\begin{bmatrix} -2\\1\\2 \end{bmatrix}$, $x''(t)=\begin{bmatrix} \frac{13}{15}e^{3t}-\frac{1}{5}e^{-2t}+\frac{1}{3}\\ \frac{15}{15}e^{-2t}+\frac{13}{15}e^{3t}-\frac{1}{6}\\ \frac{26}{15}e^{3t}-\frac{2}{5}e^{-2t}-\frac{1}{3} \end{bmatrix}$, $x'''(t)=\begin{bmatrix} \frac{1}{3}e^{3t}+\frac{2}{3}\\ \frac{1}{3}e^{3t}-\frac{1}{3}\\ \frac{2}{3}e^{3t}-\frac{2}{3} \end{bmatrix}$, $t\geq 0$.

Esercizio 2. F.d.T. $W(s) = \frac{s-1}{(s+1)^2}$. Evoluzione forzata: $y'(t) = te^{-t} - t^2e^{-t}$, $y''(t) = 3 - t - (3 + t + t^2)e^{-t}$, $t \ge 0$.

Esercizio 3.
$$e^{Ft} = \begin{bmatrix} e^{-t} & 0 & 0 \\ 0 & 1 & 0 \\ 2te^{-t} & 0 & e^{-t} \end{bmatrix}$$
.