Sheet 6

Due 17.30 Wednesday 28th February

Hand in solutions to questions 1b, 1c, 2b, 3b, 3c.

Please write your student ID number on your work and staple it together.

- 1. For each of the linear congruences below, decide whether it has solutions and if it does, find them all.
 - (a) $10x \equiv 14 \mod 23$.

Solution. Let n=23. Then 10 is coprime to n, so we can invert 10 modulo n. The Euclidean Algorithm spits out $1=7\times 10-3\times 23$. So we have $7\times 10\equiv 1\mod 23$ and hence $\lceil 10\rceil^{-1}=\lceil 7\rceil$. Therefore

$$[10][x] = [14] \iff [7][10][x] = [7][14] \iff [x] = [7][14].$$

We conclude $x \equiv 7 \times 14 \equiv 98 \equiv 6 \mod 23$.

**(b) $10x \equiv 14 \mod 17$. (2 marks)

Solution. Let n = 17. Then 10 is coprime to n, so we can invert 10 modulo n. The Euclidean Algorithm gives

$$17 = 10 + 7,$$

 $10 = 7 + 3,$
 $7 = 2 \times 3 + 1;$

and

$$1 = 7 - 2 \times 3 \tag{1}$$

$$= 7 - 2 \times (10 - 7) \qquad = 3 \times 7 - 2 \times 10 \tag{2}$$

$$= 3 \times (17 - 10) - 2 \times 10 \qquad = 3 \times 17 - 5 \times 10. \tag{3}$$

So we have $(-5) \times 10 \equiv 1 \mod 17$ and hence $[10]^{-1} = [-5]$. Therefore

$$[10][x] = [14] \iff [-5][10][x] = [-5][14] \iff [x] = [-5][14].$$

We conclude $x \equiv -5 \times 14 \equiv 15 \mod 17$.

Notice that we have set n = 17, so [10] means the class of residues of congruent to 10 modulo 17. In part (a) we set n = 23, so [10] meant the class of residues congruent to 10 modulo 23.

**(c) $10x \equiv 14 \mod 21$. (2 marks)

Solution. Let n=21. Then 10 is coprime to n, so we can invert 10 modulo n. We have

$$21 = 2 \times 10 + 1;$$

and so

$$1 = 21 - 2 \times 10 \tag{4}$$

and $(-2) \times 10 \equiv 1 \mod 21$. Hence $[10]^{-1} = [-2]$. Therefore

$$[10][x] = [14] \iff [-2][10][x] = [-2][14] \iff [x] = [-2][14].$$

We conclude $x \equiv -2 \times 14 \equiv 14 \mod 21$.

2. (a) Show that 71 is prime.

Solution. Detailed version: Suppose for a contradiction that 71 is composite (not prime). Then 71=nm where n and m are numbers other than 1 and 71. At least one of n and m must be less than or equal to $\sqrt{71}$, because if $n>\sqrt{71}$ then $m=71/n<\sqrt{71}$. Let's say that $n\leq \sqrt{71}$. Then n has a prime divisor p with $p\leq \sqrt{71}$. Then p divides 71. So we just need to show that 71 has no prime divisors p with $p\leq \sqrt{71}$. Since $\sqrt{71}<\sqrt{81}=9$ we only need to check primes less than 9. We see that 2, 3, 5 and 7 do not divide 71. So 71 is prime.

Short version (also valid): $p \le \sqrt{71}$. Then 71 has a prime divisor p with $p \le \sqrt{71}$. Since $\sqrt{71} < \sqrt{81} = 9$ this means p = 2, 3, 5 or 7. None of these divides 71. So 71 is prime.

**(b) Find $\phi(71)$ and calculate 5^{209} modulo 71 and 12^{142} modulo 71.

(2 marks)

Solution. The number 71 is prime, so $\phi(71) = 70$. Let n = 71. Then

$$[5]^{209} = [5]^{3 \times 70 - 1} = [5]^{-1}.$$

We invert 5 modulo 71. We have $71 = 14 \times 5 + 1$ so $(-14) \times 5 \equiv 1 \mod 71$. Therefore $[5]^{209} = [5]^{-1} = [-14]$. So $5^{209} \equiv -14 \equiv 57 \mod 71$.

Similarly

$$[12^{142}] = [12]^{2 \times 70 + 2}$$
 = $[12]^2$
= $[12^2]$ = $[144]$

so $12^{142} \equiv 144 \equiv 2 \mod 71$.

3. In the context of public key cryptography, let p and q be primes. Let the pair (pq, a) be the public key in the RSA algorithm for encryption, and let (pq, c) be the private key.

Let r be any integer with (r, pq) = 1.

(a) Show that a and c are odd.

Solution. We have $ac \equiv 1 \mod \phi(pq)$. So ac is coprime to $\phi(pq)$. Since p and q are prime we have $\phi(pq) = (p-1)(q-1)$. All primes except for 2 are odd. So one of p and q must be odd, and one of p-1 and q-1 must be even. So $\phi(pq)$ is even. Since ac is coprime to $\phi(pq)$, we must have ac odd, because otherwise 2 would divide both ac and $\phi(pq)$. Since ac is odd, a and a are odd.

All three parts of this question are about properties of the public and private key. The most important property is that $ac \equiv 1 \mod \phi(pq)$. The third part of the question gives us a way to find p and q given the public and private keys, by finding $\gcd(k+1,pq)$ and $\gcd(k-1,pq)$.

**(b) Given that a and c are odd, let $k \equiv r^{\frac{ac-1}{2}} \mod pq$. Show that $k^2 \equiv 1 \mod pq$. (2 marks)

Solution. We have

$$k^2 \equiv r^{ac-1} \mod pq.$$

We also have $ac \equiv 1 \mod \phi(pq)$. So $\phi(pq)$ divides ac - 1. So by Theorem 2.15 from the lecture notes, we have $r^{ac-1} \equiv 1 \mod pq$. So $k^2 \equiv 1 \mod pq$.

**(c) Given that $k^2 \equiv 1 \mod pq$, show that $(k+1)(k-1) \equiv 0 \mod p$. Deduce that either p divides (k+1) or p divides (k-1). (2 marks) Solution. We have

$$(k+1)(k-1) = k^2 - 1 \equiv 0 \mod pq$$

since $k^2 \equiv 1 \mod pq$. So pq divides (k+1)(k-1). In particular p divides (k+1)(k-1). By Theorem 2.8 from the lecture notes, either p divides (k+1) or p divides (k-1).

4. Let $\phi(n)$ be Euler's totient function. Prove that if m is odd, then $\phi(2m) = \phi(m)$.

Solution. Since (2, m) = 1, and the function ϕ is multiplicative, we have $\phi(2m) = \phi(m)\phi(2)$. As $\phi(2) = 1$, the claimed result follows.