A Dynamic Model of Housing Supply, AEJ: Economic Policy, 2018

Summarized by Wenzhi Wang

M.Phil. Student at the University of Oxford

March 30, 2023

Table of Contents

1. Model

Set Up Parameterization Optimal Decisions

2. Estimation

Estimation Preliminaries
Estimation Procedures

3. Summary

Assumptions

- In each period t, parcel owner n makes two decisions.
- First, the parcel owner decides whether or not to build on her parcel, denoted by $d_{nt} \in \{0,1\}$, where d=0 when choosing to not build, d=1 when choosing to build.
- If a parcel owner decides to build, she makes a second decision about the level of housing services to construct, denoted by h_{nt} .
- Once a parcel owner decides to build in a period, that period becomes a terminal period (an optimal stopping decision).
- Two decisions: when to build and how much to build.
 Three outcomes: whether the parcel owner built or not in each period, the level of housing services chosen, and a sales price for the property.

State Variables

- Neighborhoods (census tracts) are indexed by j, where $j \in \{1, ..., J\}$, and the census tract that parcel n is located in is denoted by j(n), simplified as j.
- The state variables \mathbf{x}_{njt} include direct characteristics of the parcel n and characteristics of the neighborhood j(n). The vector \mathbf{x}_{njt} can be divided into two components: parcel-level variables, \mathbf{x}_n , and neighborhood-level variables, \mathbf{x}_{jt} .
- Price and variable cost shocks are denoted by v_{nt} and η_{nt} , respectively.
- Unobserved idiosyncratic overall profit shock are $\epsilon_{nt} = (\epsilon_{0nt}, \epsilon_{1nt})$, which determines the profit parcel owner n receives from not building or building in period t.
- Finally, the vector of observable state variables is denoted by Ω_{njt} , containing \mathbf{x}_{njt} as well as any other observable variables (such as lagged prices and lagged costs) that predict future values of \mathbf{x}_{njt} .

Primitives of the Model

- (π, q, β) .
- $\pi_d = \pi_d(h_{njt}, x_{njt}, v_{nt}, \eta_{nt}) + \epsilon_{dnt}$ is the direct per period profit function associated with choosing option d and housing services h.
- $q = q(\mathbf{\Omega}_{n,j,t+1}, \epsilon_{n,t+1} \mid \mathbf{\Omega}_{njt}, \epsilon_{nt})$ denotes the transition probabilities of the observables and unobservables, where the transition probabilities are assumed to be Markovian
- β is the discount factor.

π_1 = Prices - Costs + Profit Shock

Define the direct per period profit function as

$$\pi_1\left(h_{nt},\mathbf{x}_{njt},\nu_{nt},\eta_{nt}\right) + \epsilon_{1nt} = P\left(h_{nt},\mathbf{x}_{njt},\nu_{nt}\right) - \left(VC\left(h_{nt},\mathbf{x}_{njt},\eta_{nt}\right) + FC\left(\mathbf{x}_{njt}\right)\right) + \epsilon_{1nt} \quad (1)$$

Prices are given by:

$$P(h_{nt}, \mathbf{x}_{njt}, v_{nt}) = \rho_{jt} Q(h_{nt}, \mathbf{x}_{n}, v_{nt}), \qquad (2)$$

where

$$Q(h_{nt},\mathbf{x}_n,v_{nt})=h_{nt}^{\gamma_{1jt}}\mathbf{x}_n^{\gamma_{2jt}}e^{v_{nt}}.$$

Therefore, prices are equal to the price of a unit of housing quality ρ_{jt} , times the quantity of housing quality Q_{nt} .

π_1 : Prices = Unit Price of Quality * Quality

- The price of a unit of housing quality, ρ_{jt} , varies by neighborhood and year, incorporating the effects of x_{jt} on house price.
- Housing quality is composed of three terms:
 - the choice variable, housing services, h (house square footage);
 - the fixed parcel characteristics, $\mathbf{x_n}$ (lot size);
 - and a normally distributed error term, v_{nt} , with variance σ_v^2 . v_{nt} is assumed to be independent of Ω_{njt} .
- The vector of price parameters, which I denote by γ , varies by neighborhood j, and time t.

π_1 : Costs = VC + FC

- Costs are comprised of two components, variable costs, $VC(h_{nt}, \mathbf{x}_{njt}, \eta_{nt})$, and fixed costs, $FC(x_{njt})$.
- Variable costs are specified as

$$VC(h_{nt}, \mathbf{x}_{njt}, \eta_{nt}) = (\alpha_{0jt} \mathbf{x}_n^{\alpha_1} e^{\eta_{nt}}) \cdot h_{nt}.$$
 (3)

It increases at a linear rate in the quantity of housing services, where the rate is determined by the parcel characteristics, neighborhood, time, and a normally distributed error term, η_{nt} , with variance σ_n^2 .

• The second component of costs $FC(x_{njt})$ captures the broader cost environment. It is specified as $FC(x_{njt}) = \delta_{ct}$, where c is the county in which parcel h is located.

π_1 : Timing of the Realization of Random Shocks v_{nt} and η_{nt}

- The parcel owner knows the current price parameters v_1 , and parcel characteristics when making her build/don't build decision, but that the price error v_{nt} , is not revealed until after construction and time of sale.
- The parcel owner observes the cost shock η_{nt} before the housing-services decision is made, but after the decision to build is made, and that it is independent of Ω_{njt} .

π_1 : Profit Shocks ϵ_{dnt}

- ϵ_{dnt} is assumed to be distributed i.i.d. Type 1 Extreme Value with scale parameter σ_{ϵ} , and mean equal to zero.
- The profit shock ϵ_{dnt} is observed by the parcel owner before they decide to build (a shock to fixed costs and could reflect factors at the parcel level or idiosyncratic parcel owner characteristics).
- Also, assume that the three errors are independent the assumption of independence between price and costs shocks would only be violated if a parcel owner could pass on a cost shock to the buyer.

Optimal Housing Services

- ullet Conditional on choosing to build, a parcel owner will choose h to maximize profits.
- As the price error v_{nt} , is unobserved at the time of that decision, the agent takes the expectation of prices with respect to v_{nt} and the first-order condition for maximization is given by

$$\gamma_{1jt}\rho_{jt}h_{nt}^{\gamma_{1jt}-1}\mathbf{x}_{n}^{\gamma_{2jt}}e^{\frac{1}{2}\sigma_{v}^{2}}-\alpha_{0jt}\mathbf{x}_{n}^{\alpha_{1}}e^{\eta_{nt}}=0.$$
 (4)

- The second-order conditions require γ_{1jt} < 1, which is always satisfied in the empirical results.
- Therefore, the optimal housing service choice is

$$h_{nt}^* = \left(\frac{\gamma_{1jt}\rho_{jt}\mathbf{x}_n^{\gamma_{2jt}}e^{0.5\sigma_v^2}}{\alpha_{0jt}\mathbf{x}_n^{\alpha_1}e^{\eta_{nt}}}\right)^{\frac{1}{1-\gamma_{1jt}}}.$$
 (5)

Optimal Discrete Choice

- Plugging Equation (5) into (1) yields the indirect flow profit function associated with building, $\pi_1(h_{nt}^*(\mathbf{x}_{njt}, \eta_{nt}), \mathbf{x}_{njt}, \nu_{nt}, \eta_{nt}) + \epsilon_{1nt}$.
- However, as the price error v_{nt} , and variable cost error η_{nt} , are observed after the decision to build is made, the relevant object for the optimal discrete choice is the expected indirect flow profit, which is denoted by $\overline{\pi}(\mathbf{x}_{njt})$.
- Notations:

$$E_{\nu_{nt},\eta_{nt}}\left[P_{nt}\left(h_{nt}^{*}\left(\mathbf{x}_{njt},\eta_{nt}\right),\mathbf{x}_{njt},\nu_{nt}\right) \mid \Omega_{njt}\right] \equiv \overline{P}\left(\mathbf{x}_{njt}\right),$$

$$E_{\eta_{nt}}\left[VC_{nt}\left(h_{nt}^{*}\left(\mathbf{x}_{njt},\eta_{nt}\right),\mathbf{x}_{njt},\eta_{nt}\right) \mid \Omega_{njt}\right] \equiv \overline{VC}\left(\mathbf{x}_{njt}\right).$$

The expected indirect flow payoff is

$$\overline{\pi}_{1}(\mathbf{x}_{njt}) = \overline{P}(\mathbf{x}_{njt}) - \left(\overline{VC}(\mathbf{x}_{njt}) + FC(\mathbf{x}_{njt})\right) + \epsilon_{1nt}.$$
(6)

Optimal Discrete Choice

- The deterministic component of the per period profits from choosing to not build (d=0) is normalized to zero, so that its indirect flow profit function is $\pi_0(x_{njt}) + \epsilon_{0nt} = \epsilon_{0nt}$.
- The value function can be written as

$$V_{t}(\Omega_{njt}, \epsilon_{nt}) = \max \left\{ \bar{\pi}_{1}(\mathbf{x}_{njt}) + \epsilon_{1nt}, E\left[\beta V_{t+1}(\Omega_{njt+1}, \epsilon_{nt+1}) \mid \Omega_{njt}, \epsilon_{nt}\right] + \epsilon_{0nt} \right\}$$
(7)

Given some technical details, the conditional value functions are

$$v_{1}(\mathbf{\Omega}_{njt}) = \overline{\pi}_{1}(\mathbf{x}_{njt}),$$

$$v_{0}(\mathbf{\Omega}_{njt}) = \beta \sigma_{\epsilon} \left(\int \log \left[\exp \left(\frac{v_{0}(\Omega_{njt+1})}{\sigma_{\epsilon}} \right) + \exp \left(\frac{\overline{\pi}_{1}(\mathbf{x}_{njt+1})}{\sigma_{\epsilon}} \right) \right] q(\Omega_{njt+1} | \Omega_{njt}) d\Omega_{njt+1} \right).$$
(8)

Estimation Preliminaries

- There are three outcomes associated with the model (and also in the data).
 - The first two are choices made by the parcel owner: the binary decision to build or not in each period, and the housing service provision decision made conditional on building.
 - The final outcome is the sales price of all properties that sell.
- Therefore, we need to form the log-likelihood for each three outcomes.

Notations

- Let θ_P denote $(\rho, \gamma_1, \gamma_2, \sigma_v)$, θ_h denote $(\alpha_0, \alpha_1, \sigma_\eta)$, and θ_d denote $(\delta, \beta, \sigma_\epsilon)$
- Given the timing of the decisions and the assumption of independence across errors, the log-likelihood function can be broken into the following three pieces:
 - $L_p(\boldsymbol{\theta}_P \mid \mathbf{P}, \boldsymbol{\Omega})$ the log-likelihood contribution of prices;
 - $L_h(\theta_P, \theta_h \mid h, \Omega)$ the log-likelihood contribution of housing services;
 - $L_d(\boldsymbol{\theta}_P, \boldsymbol{\theta}_h, \boldsymbol{\theta}_d \mid \mathbf{d}, \boldsymbol{\Omega})$ the log-likelihood contribution of the binary construction decision.
- The total log-likelihood function is the sum of the three components:

$$L(\boldsymbol{\theta}) = L_p(\boldsymbol{\theta}_P \mid \mathbf{P}, \boldsymbol{\Omega}) + L_h(\boldsymbol{\theta}_P, \boldsymbol{\theta}_h \mid \boldsymbol{h}, \boldsymbol{\Omega}) + L_d(\boldsymbol{\theta}_P, \boldsymbol{\theta}_h, \boldsymbol{\theta}_d \mid \mathbf{d}, \boldsymbol{\Omega}). \tag{9}$$

- A two step estimator similar to Arcidiacono and Miller (2011) where transition and choice probabilities are estimated in a first step and the structural parameters are estimated in the second step.
- To account for the multiple stage procedure, a bootstrap procedure is used to calculate the standard errors.

Estimation - Housing Prices

• To estimate the parameters of the price function given in Equation 2, I estimate the following equation separately for each tract * year combination:

$$\log(P_{nt}) = \log(\rho_{jt}) + \gamma_{1jt}\log(h_{nt}) + \gamma_{2jt}\log(\mathbf{x}_n) + \nu_{nt}, \tag{10}$$

where P_{nt} , h_{nt} , and \mathbf{x}_n denote observed sales price, house square footage, and lot size.

- I use a standard, Locally Weighted Regression Approach (see also McMillen and Redfearn (2010)).
- This hedonic price function, where house prices are modelled directly as a function
 of the observed characteristics of the house, allows the implicit price of square
 footage to vary both by tract and by year.

Estimation - Variable Costs

 Given estimates of the pricing parameters, I can rearrange the equation for optimal housing services Equation ?? to get the following housing service regression equation:

$$(\gamma_{1jt} - 1)\log(h_{nt}) + \log(\gamma_{1jt}) + \log(\rho_{jt}) + \gamma_{2jt}\log(\mathbf{x}_n) + 0.5\sigma_v^2 = \log(\alpha_{0jt}) + \boldsymbol{\alpha}_1\log(\mathbf{x}_n) + \eta_{nt}$$

$$(11)$$

I parametrize $\log(lpha_{0jt})$ as

$$\log(\alpha_{0jt}) = \log(\alpha_0) + \log(\alpha_j) + \log(\alpha_t)$$
(12)

Estimating Equation 11 by least squares yields estimates of $\log(\alpha_0)$, $\log(\alpha_j)$, $\log(\alpha_t)$, α_1 and the variance of η_{nt} .

• About the concern that the variable costs may e nonlinear and presumably convex: robustness checks in Appendix.

Estimation - Dynamic Discrete Choice 1

- Given results of the first two stages, the remaining structural parameters are $\theta_d = (\delta, \beta, \sigma_{\epsilon})$.
- I use the insight from Hotz and Miller (1993) and Arcidiacono and Miller (2011) to take advantage of the terminal state nature of the dynamic discrete choice problem and rewrite $\nu_0(\Omega_{njt})$ as the expected future per period profit of choosing to not build and a function of the next period probability of choosing to build:

$$\nu_{0}(\mathbf{\Omega}_{njt}) = \beta \left(\int \left(\bar{\pi}_{1}(\mathbf{x}_{njt+1}) - \sigma_{\varepsilon} \log \left[P_{1}(\mathbf{\Omega}_{njt+1}) \right] \right) q(\mathbf{\Omega}_{njt+1} | \mathbf{\Omega}_{njt}) d\mathbf{\Omega}_{njt+1} \right)$$
(13)

where $P_1\left(\mathbf{\Omega}_{njt+1}\right)$ is the conditional choice probability of choosing to build and is given by

$$P_1\left(\mathbf{\Omega}_{njt}\right) \equiv \Pr\left(d_{nt} = 1 \mid \mathbf{\Omega}_{njt}\right) = \frac{1}{1 + e^{\nu_0\left(\mathbf{\Omega}_{njt}\right)/\sigma_c - \overline{\pi}_1\left(\mathbf{x}_{njt}\right)/\sigma_c}}.$$
 (14)

Estimation - Dynamic Discrete Choice 2

• Using the definition of expected indirect flow profits, $\overline{\pi}_1(\mathbf{x}_{njt})$, the difference in value functions is given by

$$\nu_{1}\left(\mathbf{\Omega}_{njt}\right) - \nu_{0}\left(\mathbf{\Omega}_{njt}\right) = \left(\bar{P}_{nt} - \overline{VC}_{nt}\right) + \left(\beta E_{t}\delta_{ct+1} - \delta_{ct}\right) - \beta \left(\int \left(\bar{P}_{nt+1} - \overline{VC}_{nt+1} - \sigma_{\epsilon} \log\left[P_{1}\left(\mathbf{\Omega}_{njt+1}\right)\right]\right) q\left(\mathbf{\Omega}_{njt+1} \mid \mathbf{\Omega}_{njt}\right) d\Omega_{njt+1}\right).$$
(15)

- Equation 15 forms the basis of a straightforward two-step estimator.
 - The first step involves estimating both the transition probabilities, $q(\Omega_{njt+1} | \Omega_{njt})$, and the conditional choice probability, $P_1(\Omega_{nit+1})$.
 - The second step takes estimates of \overline{P}_{nt} , \overline{VC}_{nt} , \overline{P}_{nt+1} , \overline{VC}_{nt+1} , $\int \log \left[P_1(\mathbf{\Omega}_{njt+1}) \right]$, and $q\left(\mathbf{\Omega}_{njt+1} \mid \mathbf{\Omega}_{njt}\right)$ as data and estimates the remaining structural parameters, $\boldsymbol{\theta}_d = (\boldsymbol{\delta}, \boldsymbol{\beta}, \sigma_{\epsilon})$, via maximum likelihood, where the coefficients on a set of county * year dummies will be estimates of $(\boldsymbol{\beta}E_t\boldsymbol{\delta}_{ct+1} \boldsymbol{\delta}_{ct})$.

Takeaway

- We can use the hedonic regression models to build up our original "payoff functions".
- Once we do that, we can directly get the parameters from our linear regressions.
- Appropriately use the existence of a terminal decision in the choice set and do a two-step estimation.
- Notations matter!