${f X24}-\Phi$ изика дождевых капель

Механизм образования облаков можно в общих чертах представить следующим образом. Влажный воздух поднимается вверх и охлаждается с высотой, из-за чего водяной пар становится перенасыщенным, то есть его парциальное давление становится больше давления насыщенного пара при соответствующей температуре. При этом водяной пар начинает конденсироваться и образовывать капли воды. Пока эти капли достаточно малы, они падают достаточно медленно и остаются в облаке. Если же размер капель достаточно велик, чтобы они могли долетать до Земли не испарившись, начинается дождь. В этой задаче рассматривается механизм формирования капель в перенасыщенном водяном паре и их дальнейшего роста за счет диффузии.

В задаче используются следующие обозначения и численные значения

- $\sigma = 7.5 \cdot 10^{-2} \mathrm{H/m}$ коэффициент поверхностного натяжения воды;
- T = 283K температура атмосферы;
- $p_s = 1.23$ к Π а давление насыщенного водяного пара при рассматриваемой температуре атмосферы;
 - ρ_s плотность насыщенного водяного пара при данной температуре;
 - p_v , ρ_v давление и плотность водяного пара в атмосфере;
 - $\varphi = \rho_v/\rho_s = p_v/p_s$ коэффициент перенасыщения водяного пара;
 - $\rho_L = 1.0 \cdot 10^3 \text{кг/м}^3 \text{плотность воды};$
 - $\mu = 0.018$ кг/моль молярная масса воды;
 - m масса молекул воды;
 - $k = 1.38 \cdot 10^{-23} \text{Дж/K}$ постоянная Больцмана;
 - L = 2.48 МДж/K удельная теплота парообразования воды;
 - R = 8.31 Дж/(моль · K) универсальная газовая постоянная;
 - $N_A = 6.02 \cdot 10^{23}$ моль⁻¹ постоянная Авогадро.

Водяной пар во всех частях задачи можно считать идеальным газом.

Часть А. Капли в однородной атмосфере (4 балла)

Пусть атмосфера состоит только из воздуха и водяного пара без примесей. При образовании капли нужно затратить дополнительную энергию на создание поверхности воды. Поэтому даже в случае перенасыщенного водяного пара образование капель затруднено тем, что при малом размере относительная величина поверхностной энергии велика.

Из термодинамики известно, что для процесса при постоянной энергии его возможность определяется значением свободной энергии Гиббса G. Чем больше необходимая свободная энергия, тем менее вероятен процесс. Исследуем, как зависит свободная энергия, необходимая для формирования капли, от ее радиуса r. Для этого вам потребуются следующие факты:

- Свободная энергия поверхности жидкости площади A равна $\Delta G_{surf} = \sigma A, \, \sigma$ коэффициент поверхностного натяжения.
- Свободная энергия одного моля насыщенного водяного пара равна свободной энергии моля воды (без учета поверхностной энергии) при той же температуре и давлении.
- Разность свободной энергии одного моля перенасыщенного водяного пара и насыщенного водяного пара при той же температуре равна $\Delta G_v = RT \ln \varphi$ ($\varphi = \rho_v/\rho_s > 1$ коэффициент перенасыщения пара). Свободная энергия водяного пара пропорциональна его количеству вещества.

Страница 1 из 3 ≈

A1^{1.00} Найдите изменение свободной энергии водяного пара, если из него образовать каплю радиуса r. Выразите ответ через r, σ , φ , R, T, ρ_L , μ .

A2^{0.80} Найдите критическое значение радиуса капли r_c , при котором ΔG максимально, а также соответствующее значение ΔG_c . Выразите ответ через σ , φ , R, T, ρ_L , μ . Найдите численное значение r_c при $\varphi=1.01$.

Пока капля не достигла радиуса r_c , ее рост сопровождается увеличением свободной энергии, поэтому маловероятен. Как только радиус превысит критический, дальнейший рост будет происходить без затруднений с уменьшением свободной энергии. Поэтому при исследовании количества возникающих капель можно сосредоточиться на каплях критического радиуса. Капля может сформироваться вокруг любой из молекул воды, однако вероятность такого процесса мала и определяется необходимой свободной энергией. Из статистической механики следует, что концентрация центров, вокруг которых фактически может произойти конденсация, равна

$$n_c = ne^{-\Delta G_c/kT},$$

где n - концентрация молекул воды в паре, ΔG_c было найдено в предыдущем пункте.

А3^{0.70} Рассмотрим каплю критического радиуса r_c . Определите время τ , за которое количество молекул в ней увеличится на g. Выразите ответ через r_c , g, p_s , m, k, T, φ . Считайте, что в процессе роста радиус капли не меняется, испарением молекул из капли можно пренебречь. Известно, что на площадь dS поверхности за время dt попадает

$$dN = dtdS \frac{p_v}{\sqrt{2\pi mkT}}$$

молекул. Здесь p_v - давление пара, m - масса молекул, T - температура газа.

Будем считать время τ характерным временем роста капель из зародыша. За время τ все имеющиеся в системе зародыши превращаются в капли критического радиуса, а на их месте появляются новые зародыши в таком же количестве.

А4^{0.60} Найдите количество капель J, которые образуются в единицу времени в единице объема перенасыщенного водяного пара. Выразите ответ через σ , φ , p_s , r_c , T, g.

А5^{0.90} Из результатов предыдущего пункта следует, что скорость образования капель очень сильно зависит от коэффициента перенасыщения пара. Определите численно значение коэффициента перенасыщения пара φ , при котором при температуре $T=283 \mathrm{K}$ в $1 \mathrm{cm}^3$ воздуха рождается одна капля в секунду. Считайте, что q=100. Остальные численные данные приведены в начале задачи.

Часть В. Диффузионный рост капель (4 балла)

В этой части будем использовать следующие обозначения (в дополнение к приведенным в начале задачи):

- ρ_v плотность водяного пара на большом расстоянии от капли;
- ρ_r плотность водяного пара вблизи поверхности капли;
- ρ_s плотность насыщенного водяного пара при температуре атмосферы на большом расстоянии до капли;
 - T = 283 K температура атмосферы на большом расстоянии до капли;
 - T_r температура капли;

- $K = 2.40 \cdot 10^{-2}$ Дж/(м · c · K) коэффициент теплопроводности воздуха;
- $D = 2.36 \cdot 10^{-5} \text{м}^2/\text{c}$ коэффициент диффузии водяного пара в воздухе;
- r радиус капли;
- M масса капли.

Капля растет за счет диффузии. Скорость изменения массы капли и скорость отвода тепла задается соотношениями

$$\frac{dM}{dt} = 4\pi r D(\rho_v - \rho_r); \quad \frac{dQ}{dt} = 4\pi K r (T_r - T).$$

Будем считать, что температура капли в процессе ее роста остается постоянной, а все тепло выделяется только за счет конденсации воды.

$$\frac{\Delta p_s}{p_s} = \frac{\Delta \rho_s}{\rho_s} + \frac{\Delta T}{T}.$$

 ${f B2^{0.20}}$ Выразите dQ/dt через dM/dt и L.

B3^{0.30} Используя результат предыдущего пункта и уравнение теплопроводности, выразите разность температур капли и атмосферы, $T_r - T$, через dM/dt, а также r, L, K.

В4^{0.30} Будем считать, что вблизи поверхности капли плотность водяного пара равна плотности насыщенного пара при температуре капли. Считая разности температур и плотностей малыми и используя результаты B1, B3 выразите отношение $(\rho_r - \rho_s)/\rho_s$ (ρ_r - давление пара вблизи поверхности капли) через L, r, K, μ , R, T и dM/dt.

В5^{0.30} Используя уравнение диффузии, выразите отношение $(\rho_r - \rho_v)/\rho_s$ через $dM/dt, r, D, \rho_s$.

B6^{0.60} Исключив из ответов в двух предыдущих пунктах плотность пара вблизи поверхности капли ρ_r , получите выражение для dM/dt. Выразите ответ через φ , μ , R, T, D, ρ_s , L, K, r.

B7^{0.50} Скорость увеличения радиуса капли имеет вид

$$\frac{dr}{dt} = \frac{\xi}{r^k}.$$

Определите k и ξ , выразите ответ через φ , ρ_L , μ , R, T, D, p_s , L, K.

B8^{0.50} Найдите зависимость радиуса капли от времени. Начальный радиус капли равен r_0 . Выразите ответ через r_0 , ξ , t.

B9^{0.50} Пусть начальный радиус капли равен $r_0 = 0.7$ мкм. Найдите численное значение времени, за которое она вырастет до размера $r_1 = 10$ мкм при коэффициенте перенасыщения $\varphi = 1.1$. Остальные численные значения приведены в начале этой части.