Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux 1998 Mini-test 1

Mercredi le 17 septembre 1998; Durée: 14h40 à 15h20 Aucune documentation permise; aucune calculatrice permise.

Problème 1 (1 point sur 5)

Quels sont les coefficients complexes de Fourier pour l'équation suivante?

$$3+4\sin(2\pi t)-2\cos(6\pi t)-4\sin(6\pi t)$$

1.
$$F(0) = 3$$
 $F(6) = j-2$ $F(-6) = -j-2$ $F(2) = -j$ $F(-2) = j$

2.
$$F(0) = 3$$
 $F(3) = 2j-1$ $F(-3) = -2j-1$ $F(1) = -2j$ $F(-1) = -2j$

3.
$$F(0) = 3$$
 $F(3) = -2j-1$ $F(-3) = 2j-1$ $F(2) = -j$ $F(-2) = j$

4.
$$F(0) = 3$$
 $F(6) = 2j-1$ $F(-6) = -2j-1$ $F(2) = -2j$ $F(-1) = 2j$

5.
$$F(0) = 3$$
 $F(6) = 2j$ $F(-6) = -2$ $F(2) = -2j-1$ $F(-2) = 2+j$

Nom: Matricule: .

Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux 1998 Mini-test 1

Problème 2 (1 point sur 5)

Pour chacun des quatre énoncés suivants encadrez la bonne réponse (vrai ou faux).

La fonction $f_p(t)$ admet un développement en série de Fourier $F[n] = A[n] + jB[n] = F[n]e^{j\operatorname{Arg} F[n]}$.

$$f_p(t) = \begin{cases} 2+t & -2 < t < -1 \\ -t & -1 < t < 1 \\ -2+t & 1 < t < 2 \end{cases}, \quad f_p(t+4) = f_p(t)$$

Aucun crédit partiel.

1.
$$F^*(n) = F(-n)$$
 VRAI FAUX

2.
$$Arg F(n)$$
 est imaginaire VRAI FAUX

3.
$$|F(n)|$$
 est impaire VRAI FAUX

4.
$$A(n) = 0 \quad \forall n$$
 VRAI FAUX

Nom: Matricule: .

Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux 1998 Mini-test 1

Problème 3 (3 points sur 5)

Expression analytique: $f_p(t) = \begin{cases} 1 & 0 < t < 1 \\ 0 & 1 < t < 2 \end{cases}$, $f_p(t+2) = f_p(t)$

a) 2 points

Quels sont les coefficients complexes de Fourier pour cette fonction périodique?

b) **1 point**

Quelle est la puissance de $f_p(t)$ pour $-3 \le n \le 3$? Quelle est la puissance totale?

Nom: Matricule: .