4.3 Absolute value and exponentiation

Exercise 4.3.3

Let x, y be rational numbers and let n, m be natural numbers.

b. Suppose n > 0. Then we have $x^n = 0$ if and only if x = 0.

Proof. We prove by induction.

Suppose n=1 as a base case. Since $x=x^1$, $x=0 \iff x^n=0$.

Now suppose $x = 0 \iff x^n = 0$. We have $x^{n+1} = x^n * x$. Now x = 0 or $x \neq 0$.

If x = 0, $x^n = 0$ by inductive assumption. Then $x^{n+1} = 0 * 0 = 0$, so $x = 0 \implies x^{n+1} = 0$.

If instead $x \neq 0$, $x^n \neq 0$ we have $x^{n+1} \neq 0$, since the product of two nonzero rationals is a nonzero rational. (Extension of 4.1.8 that I haven't proved)

Thus we have $x^{n+1} = 0 \iff x = 0$, closing the induction, and so for all x, for all n > 0, we have $x^n = 0$ if and only if x = 0.