MATH 525 Homework 6

Cade Ballew #2120804

February 16, 2024

1 Problem 1 (Folland Problem 55)

Let \mathcal{H} be a Hilbert space.

1.1 Part a

Let $x, y \in \mathcal{H}$. Then,

$$||x + y||^2 - ||x - y||^2 = (||x||^2 + 2\operatorname{Re}\langle x, y \rangle + ||y||^2) - (||x||^2 - 2\operatorname{Re}\langle x, y \rangle + ||y||^2) = 4\operatorname{Re}\langle x, y \rangle.$$

Similarly,

$$||x + iy||^2 - ||x - iy||^2 = (||x||^2 + 2\operatorname{Re}\langle x, iy\rangle + ||iy||^2) - (||x||^2 - 2\operatorname{Re}\langle x, iy\rangle + ||iy||^2)$$

= 4 Re\langle x, iy \rangle = 4 Re\left(-i\langle x, y\rangle\right) = 4 Im\langle x, y\rangle.

Thus,

$$\frac{1}{4}\left(\|x+y\|^2-\|x-y\|^2+\mathrm{i}\|x+\mathrm{i}y\|^2-\mathrm{i}\|x-\mathrm{i}y\|^2\right)=\mathrm{Re}\langle x,y\rangle+\mathrm{i}\,\mathrm{Im}\langle x,y\rangle=\langle x,y\rangle,$$

and the polarization identity is satisfied.

1.2 Part b

Let \mathcal{H}' be another Hilbert space. If a linear map $U: \mathcal{H} \to \mathcal{H}'$ is unitary, then it is by definition invertible and therefore surjective. Since U preserves inner products, for any $x \in \mathcal{H}$,

$$||Ux||_{\mathcal{H}'} = \sqrt{\langle Ux, Ux \rangle_{\mathcal{H}'}} = \sqrt{\langle x, x \rangle_{\mathcal{H}}} ||x||_{\mathcal{H}},$$

so U must be isometric.

Conversely, if U is isometric and surjective, then for any $x, y \in \mathcal{H}$,

$$\langle Ux, Uy \rangle_{\mathcal{H}'} = \frac{1}{4} \left(\|Ux + Uy\|_{\mathcal{H}'}^2 - \|Ux - Uy\|_{\mathcal{H}'}^2 + i\|Ux + iUy\|_{\mathcal{H}'}^2 - i\|Ux - iUy\|_{\mathcal{H}'}^2 \right)$$

$$= \frac{1}{4} \left(\|U(x + y)\|_{\mathcal{H}'}^2 - \|U(x - y)\|_{\mathcal{H}'}^2 + i\|U(x + iy)\|_{\mathcal{H}'}^2 - i\|U(x - iy)\|_{\mathcal{H}'}^2 \right)$$

$$= \frac{1}{4} \left(\|x + y\|_{\mathcal{H}}^2 - \|x - y\|_{\mathcal{H}}^2 + i\|x + iy\|_{\mathcal{H}}^2 - i\|x - iy\|_{\mathcal{H}}^2 \right) = \langle x, y \rangle_{\mathcal{H}},$$

so U preserves inner products. Furthermore, U injective as for any $x, y \in \mathcal{H}$ such that Ux = Uy,

$$0 = ||Ux - Uy||_{\mathcal{H}'} = ||U(x - y)||_{\mathcal{H}'} = ||x - y|| ||Ux - Uy||_{\mathcal{H}},$$

so x-y=0 and x=y. Finally, both U and U^{-1} are bounded since $||Ux||_{\mathcal{H}'}=||x||_{\mathcal{H}}$ for all $x\in\mathcal{H}$, so $||Ux||_{\mathcal{H}'}\leq C_1||x||_{\mathcal{H}}$ and $||Ux||_{\mathcal{H}'}\geq C_2||x||_{\mathcal{H}}$ for $C_1=C_2=1$. Thus, U is invertible, so it is also a unitary map.

2 Problem 2 (Folland Problem 56)

Let E be a subset of a Hilbert space \mathcal{H} . Consider $(E^{\perp})^{\perp}$. Since all orthogonal complements are closed subspaces, this set is a closed subspace of \mathcal{H} . Let $x \in E$. Then, for any $y \in E^{\perp}$, by definition $\langle x, y \rangle = 0$, so $x \in (E^{\perp})^{\perp}$ and $E \subset (E^{\perp})^{\perp}$.

Now, as a lemma, we note that for any two subsets A, B of \mathcal{H} such that $A \subset B$, $B^{\perp} \subset A^{\perp}$. Indeed, if $x \in B^{\perp}$, then $\langle x, y \rangle = 0$ for all $y \in B$. This implies that $\langle x, y \rangle = 0$ for all $y \in A$ since $A \subset B$, so $x \in A^{\perp}$ as well

Let F be any closed subspace such that $E \subset F$. Then, by the lemma, $F^{\perp} \subset E^{\perp}$ and $(E^{\perp})^{\perp} \subset (F^{\perp})^{\perp}$. Let $x \in (F^{\perp})^{\perp}$. Because F is a closed subspace of \mathcal{H} , $\mathcal{H} = F \oplus F^{\perp}$, x can be expressed uniquely as x = y + z with $y \in F$ and $z \in F^{\perp}$. By definition, we must also have that $0 = \langle x, z \rangle$ and $0 = \langle y, z \rangle$. Thus,

$$0 = \langle y + z, z \rangle = \langle y, z \rangle + \langle z, z \rangle = ||z||^2,$$

so z=0 and $x=y\in F$. This means that $(E^{\perp})^{\perp}\subset (F^{\perp})^{\perp}\subset F$, so $(E^{\perp})^{\perp}$ is contained in any closed subspace containing E. Thus, it must be the smallest closed subspace of \mathcal{H} containing E.

3 Problem 3 (Folland Problem 7)

Let $f \in L^p \cap L^\infty$ for some $p < \infty$ such that $f \in L^q$ for all q > p. First, note that if f = 0 almost everywhere, then $\|f\|_{\infty} = \|f\|_q = 0$, so $\|f\|_{\infty} = \lim_{q \to \infty} \|f\|_q$ holds trivially. Assume that this is not the case, i.e., that $\|f\|_{\infty} > 0$. By setting $r = \infty$, Proposition 6.10 in Folland gives that $\|f\|_q \le \|f\|_p^{\frac{p}{q}} \|f\|_{\infty}^{1-\frac{p}{q}}$. Taking limits,

$$\limsup_{q\to\infty}\|f\|_q\leq \limsup_{q\to\infty}\|f\|_p^{\frac{p}{q}}\|f\|_\infty^{1-\frac{p}{q}}=\|f\|_\infty.$$

For the other direction, fix $\epsilon > 0$ such that $\epsilon < \|f\|_{\infty}$ and let $E = \{x : |f(x)| > \|f\|_{\infty} - \epsilon\}$. By construction, $(\|f\|_{\infty} - \epsilon)\mathbb{1}_{E} \le |f|$. Thus,

$$(\|f\|_{\infty} - \epsilon)^q \mu(E) \le \int_E |f|^q d\mu \le \int |f|^q d\mu = \|f\|^q < \infty,$$

so $\mu(E) < \infty$ as well. Taking the qth root and limits,

$$||f||_{\infty} - \epsilon = \liminf_{q \to \infty} (||f||_{\infty} - \epsilon) \mu(E)^{\frac{1}{q}} \le \liminf_{q \to \infty} ||f||_{q}.$$

Since this holds for all $\epsilon > 0$ sufficiently small, we have that

$$\limsup_{q \to \infty} \|f\|_q \le \|f\|_\infty \le \liminf_{q \to \infty} \|f\|_q,$$

so we conclude that

$$\lim_{q \to \infty} \|f\|_q = \|f\|_{\infty}$$

4 Problem 4 (Folland Problem 13)

Consider the space $L^p(\mathbb{R}^n,m)$ for $1\leq p<\infty$. By Proposition 6.7 in Folland, the set of simple functions F of the form $\sum_{j=1}^n a_j \mathbbm{1}_{E_j}$ where $m(E_j)<\infty$ for all j is dense in $L^p(\mathbb{R}^n,m)$, so to show that $L^p(\mathbb{R}^n,m)$ is separable, it suffices to show that this set is separable. Consider the set of simple functions G of the form $\sum_{j=1}^n b_j \mathbbm{1}_{F_j}$ where b_j is rational and F_j is a finite union of rectangles whose sides are intervals with rational coordinates. G is clearly countable as it is the collection of finite sums of products of countable sets. Let $f=\sum_{j=1}^n a_j \mathbbm{1}_{E_j} \in F$ be given and fix $\epsilon>0$. By the construction of simple functions, we can assume without loss of generality that $a_j, m(E_j) \neq 0$ for any j. By the density of the rationals in \mathbbm{R} , for each j, we can find some $b_j \in \mathbb{Q}$ such that $|a_j-b_j| < \frac{\epsilon}{3nm(E_j)^{1/p}}$. By Theorem 2.40c in Folland, there is some collection of disjoint rectangles whose sides are intervals E'_j such that $m(E_j \triangle E'_j) < \left(\frac{\epsilon}{3n|b_j|}\right)^p$. In the case $b_j = 0$, E'_j can

be chosen arbitrarily. Finally, the density rationals in \mathbb{R} implies that there is some finite union of rectangles whose sides are intervals with rational coordinates F_j such that $m(E'_j\triangle F_j)<\left(\frac{\epsilon}{3n|b_j|}\right)^p$, where, as before, F_j can be chosen arbitrarily if $b_j=0$. Define $g=\sum_{j=1}^n b_j \mathbb{1}_{F_j} \in G$. Then,

$$||f - g||_{p} \leq \left\| \sum_{j=1}^{n} (a_{j} - b_{j}) \mathbb{1}_{E_{j}} \right\|_{p} + \left\| \sum_{j=1}^{n} b_{j} \left(\mathbb{1}_{E_{j}} - \mathbb{1}_{E'_{j}} \right) \right\|_{p} + \left\| \sum_{j=1}^{n} b_{j} \left(\mathbb{1}_{E'_{j}} - \mathbb{1}_{F_{j}} \right) \right\|_{p}$$

$$\leq \sum_{j=1}^{n} |a_{j} - b_{j}| m(E_{j})^{1/p} + \sum_{j=1}^{n} |b_{j}| m(E_{j} \triangle E'_{j})^{1/p} + \sum_{j=1}^{n} |b_{j}| m(E'_{j} \triangle F_{j})^{1/p}$$

$$\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus, G is dense in F, so $L^p(\mathbb{R}^n, m)$ is separable.

Now, consider the space $L^{\infty}(\mathbb{R}^n, m)$ and the set F of functions of the form $f_r = \mathbb{1}_{\mathcal{B}_r(0)}$ for some r > 0. Then, for any $f_r, f_{r'} \in F$ with $r \neq s$, $||f_r - f_{r'}||_{\infty} \geq 1$ since $||f_r(x) - f_{r'}(x)||$ for any $x \in \mathcal{B}_r(0) \triangle \mathcal{B}_{r'}(0)$. This means that the set

$$\bigcup_{r>0} \mathcal{B}_{1/2}(f_r),$$

is an uncountable collection of disjoint open balls each containing at least one element of $L^{\infty}(\mathbb{R}^n, m)$. Therefore, any countable subset of $L^{\infty}(\mathbb{R}^n, m)$ cannot be dense as there must be some open ball in this collection that does not contain an element of the countable set. Thus, $L^{\infty}(\mathbb{R}^n, m)$ is not separable.