Corrigé TD 13 - Géométrie spatiale

Exercice 1:

1. On écrit que $M \in \mathcal{P}$ si et seulement si \overrightarrow{AM} , \overrightarrow{u} , \overrightarrow{v} sont coplanaires $\iff \left[\overrightarrow{AM}, \overrightarrow{u}, \overrightarrow{v}\right] = 0$. On obtient

2. On écrit $[\overrightarrow{AM}, \overrightarrow{AB}, \overrightarrow{AC}] = 0$.

$$\left| egin{array}{c|ccc} x+2 & 3 & 5 \ y-2 & -5 & 0 \ z-1 & 4 & -2 \end{array}
ight| = 0 = 10(x+2) + 26(y-2) + 25(z-1)$$

qui donne

$${\cal P}: 10x + 26y + 25z - 57 = 0$$

- 3. Si \mathcal{P} est parallèle au plan Π , alors ils ont les mêmes vecteurs normaux. Donc \mathcal{P} a une équation de la forme : 3x 2y + z + c = 0. Avec les coordonnées de A, on obtient c = 9. \mathcal{P} : 3x 2y + z + 9 = 0
- 4. On écrit que $D=B+\mathbb{R}.\overrightarrow{u}$. Alors $\mathcal P$ est le plan passant par B et dirigé par \overrightarrow{AB} et \overrightarrow{u} .

$$D: \left\{egin{array}{ll} 3x-2y+z&=&2\ x-4y-z&=&4 \end{array}
ight. \iff \left\{egin{array}{ll} 3x-2y+z&=&2\ 4x-6y&=&6 \end{array}
ight. \iff \left(egin{array}{c} x\ y\ z \end{array}
ight) = \left(egin{array}{c} rac{3}{2}\ 0\ -rac{5}{2} \end{array}
ight) + y \left(egin{array}{c} rac{3}{2}\ 1\ -rac{5}{2} \end{array}
ight)$$

D passe par $(\frac{3}{2},0,-\frac{5}{2})$ et est dirigée par (3,2,-5). Elle passe alors par B:(0,-1,0).

Alors l'équation de $\mathcal P$ est $egin{bmatrix} x & 2 & 3 \ y+1 & -3 & 2 \ z & -1 & -5 \ \end{bmatrix} = 0$ soit $egin{bmatrix} \mathcal P: 17x+7y+13z+7=0 \ \end{bmatrix}$

- 5. Si \mathcal{P} est orthogonal au vecteur \overrightarrow{w} alors \mathcal{P} a une équation de la forme 2x + 3y 2z + d = 0. Comme \mathcal{P} passe par E, on trouve 2 12 4 + d = 0 soit d = 14. $\boxed{\mathcal{P} : 2x + 3y 2z + 14 = 0}$
- 6. \mathcal{P} est dirigé par \overrightarrow{u} qui dirige D et \overrightarrow{v} qui dirige Δ . Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires, le plan \mathcal{P} n'est pas unique. De plus, \mathcal{P} passe par tout point de D.

On étudie D:

$$\left\{\begin{array}{cccc} 3x-y+z & = & 1\\ x-4y+z & = & 2 \end{array}\right. \iff \left\{\begin{array}{cccc} x-4y+z & = & 2\\ &11y-2z & = & -5 \end{array}\right. \iff \left(\begin{array}{c} x\\y\\z \end{array}\right) = \left(\begin{array}{c} \frac{2}{11}\\-\frac{5}{11}\\0 \end{array}\right) + \frac{1}{11}z\left(\begin{array}{c} -3\\2\\11 \end{array}\right)$$

D passe par $(\frac{2}{11}, -\frac{5}{11}, 0)$ et est dirigée par (-3, 2, 11).

De même pour Δ

$$\left\{egin{array}{lll} x+y+z&=&4\ 2x-y+z&=&2 \end{array}
ight. \iff \left\{egin{array}{lll} x+y+z&=&4\ -3y-z&=&-6 \end{array}
ight. \iff \left(egin{array}{lll} x\ y\ z \end{array}
ight) = \left(egin{array}{lll} 2\ 2\ 0 \end{array}
ight) +rac{1}{3}z\left(egin{array}{lll} -2\ -1\ 3 \end{array}
ight)$$

 Δ passe par (2,2,0) et est dirigée par (-2,-1,3).

Alors \mathcal{P} a pour équation

$$\begin{vmatrix} x - \frac{2}{11} & -3 & -2 \\ y + \frac{5}{11} & 2 & -1 \\ z & 11 & 3 \end{vmatrix} = 0$$

On obtient 17x - 13y + 7z + d = 0 et on calcule d = -9.

$$\mathcal{P}: 17x - 13y + 7z - 9 = 0$$

La distance de M: (-1,1,3) à \mathcal{P} se calcule à l'aide de la formule :

$$d(M,\mathcal{P}) = rac{|-17-13+21-9|}{\sqrt{17^2+13^2+7^2}} = rac{18}{\sqrt{507}} = rac{6\sqrt{3}}{13}.$$

7. L'intersection $(xOy) \cap \pi$ est une droite invariante par symétrie, alors elle est incluse dans \mathcal{P} .

On cherche un vecteur directeur de cette intersection. Or les vecteurs directeurs de π vérifient x-y+2z=0 et ceux de xOy vérifient z=0. Alors $\overrightarrow{u}=(1,1,0)$ est un vecteur directeur de cette droite et elle passe par A(3,0,0).

Le point O(0,0,0) est un point de xOy, on cherche son projeté H_O sur π parallèlement à Oz.

Alors
$$H_O = O + \lambda \overrightarrow{u_z}$$
 d'où $H_O = (0,0,\lambda)$ et $H_O \in \pi$ donne $\lambda = \frac{3}{2}$.

Alors le symétrique O' de O par rapport à π est tel que $\overrightarrow{OO'}=2\overrightarrow{OH_O}$ soit $O'=2H_O-O$. On trouve O'(0, 0, 3).

Par conséquent le plan \mathcal{P} est le plan passant par A et dirigé par \overrightarrow{u} et $\overrightarrow{AO'}$. Son équation est :

Exercice 2:

1. On sait que \mathcal{D} est la droite passant par A et dirigée par \overrightarrow{AB} . Soit \overrightarrow{n} un vecteur orthogonal à \overrightarrow{AB} alors le plan orthogonal à \overrightarrow{n} et passant par A contient B et \overrightarrow{AB} donc il contient \mathcal{D} .

Si l'on répète l'opération avec deux vecteurs $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ non colinéaires, on obtient deux plans dont l'intersection est la droite \mathcal{D} .

On a $\overrightarrow{AB}=(2,-2,1)$. On trouve deux vecteurs orthogonaux non colinéaires : $\overrightarrow{n_1}=(1,1,0)$ et $\overrightarrow{n_2}=(1,0,-2)$. Le plan P_1 passant par A et normal à $\overrightarrow{n_1}$ a pour équation x+y-3=0. Le plan P_2 passant par A et normal à $\overrightarrow{n_2}$ a pour équation x-2z+5=0. Alors on a des équations de \mathcal{D} : $\boxed{ \mathcal{D}: \left\{ \begin{array}{ccc} x+y-3&=&0\\ x-2z+5&=&0 \end{array} \right. }$

$$\mathcal{D}: \left\{ \begin{array}{ll} x+y-3 & = & 0 \\ x-2z+5 & = & 0 \end{array} \right.$$

Le vecteur \overrightarrow{AB} dirige \mathcal{D} . Alors la distance de M à la droite \mathcal{D} est $d(M,\mathcal{D}) = \frac{||AM \wedge AB||}{||\overrightarrow{AB}||}$. On a

$$\overrightarrow{AB}(2,-2,1) \text{ et } \overrightarrow{AM}(0,-3,3). \text{ D'où } \overrightarrow{AM} \wedge \overrightarrow{AB} = (3,6,6). \text{ Et } \boxed{d(M,\mathcal{D}) = \frac{\sqrt{81}}{\sqrt{9}} = 3.}$$

2. On a immédiatement une représentation paramétrique de \mathcal{D} par $(x, y, z) = (1, 3, -1) + \lambda(-3, 2, 1)$.

On élimine λ ce qui donne : $\begin{cases} x + 3z = -2 \\ y - 2z = 5 \\ z = -1 + \lambda \end{cases}$ Et finalement les équations de \mathcal{D} sont : $\begin{cases} x + 3z = -2 \\ y - 2z = 5 \end{cases}$

3.
$$\begin{cases} x = 1 + 2\lambda \\ y = 2 - \lambda \\ z = 2 + 2\lambda \end{cases} \text{ avec } \lambda \in \mathbb{R}. \iff \begin{cases} x + 2y = 5 \\ y = 2 - \lambda \\ 2y + z = 6 \end{cases}$$
 Et finalement les équations de \mathcal{D} sont :
$$\begin{cases} x + 2y = 5 \\ 2y + z = 6 \end{cases}$$

Exercice 3:

1. Le vecteur $\overrightarrow{n_1}$ (2, -4, 3) est normal à \mathcal{P}_1 et le vecteur $\overrightarrow{n_2}$ (1, -2, 3) est normal à \mathcal{P}_2 . Leur produit vectoriel vaut $\overrightarrow{n_1} \wedge \overrightarrow{n_2}$ (-6, -3, 0) // à $(2, 1, 0) \neq \overrightarrow{0}$ alors les vecteurs $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ ne sont pas colinéaires donc les plans \mathcal{P}_1 et \mathcal{P}_2 ne sont pas parallèles.

Leur intersection est dirigée par le vecteur $\overrightarrow{u}(2,1,0)$.

Pour trouver un point de l'intersection, il faut résoudre le système :

$$\left\{\begin{array}{cccc}2x-4y+3z+5&=&0\\x-2y+3z-2&=&0\end{array}\right.\Longleftrightarrow\left\{\begin{array}{cccc}x-2y+3z-2&=&0\\-3z+9&=&0\end{array}\right.\Longleftrightarrow\left\{\begin{array}{cccc}x&=&-7+2y\\z&=&3\end{array}\right.$$

Alors

$$\mathcal{P}_1 \cap \mathcal{P}_2 = (-7,0,3) + \mathbb{R}.(2,1,0)$$
 est la droite passant par $(-7,0,3)$ et dirigée par $(2,1,0)$.

2. Un plan perpendiculaire à \mathcal{P}_1 et \mathcal{P}_2 a pour vecteur normal \overrightarrow{u} (2,1,0). Alors \mathcal{P}_3 a une équation de la forme 2x + y + d = 0.

Comme \mathcal{P}_3 passe par A(2,-2,0), on a d=-2 et on trouve $\boxed{\mathcal{P}_3:2x+y-2=0}$

Exercice 4:

On résout le système définissant D:

$$\left\{ \begin{array}{cccc} -x+2y+z & = & -5 \\ x+y+2z & = & -4 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{cccc} 3y+3z & = & -9 \\ x+y+2z & = & -4 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{cccc} y & = & -3-z \\ x & = & -1-z \end{array} \right.$$

Ce qui donne : $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ donc D est dirigée par $\overrightarrow{u} = (1,1,-1)$ et passe par le

point de coordonnées (-1, -3, 0).

 Δ est l'intersection de deux plans P_1 et P_1' , donc Δ est dirigée par le produit vectoriel des normales de P_1 et P_1' : $(1,2,-1)\wedge(0,0,1)=(2,-1,0).$

De plus, on cherche une solution du système définissant $\Delta: z = 5$, puis y = 0 et enfin x = -1.

 Δ est dirigée par $\overrightarrow{v}=(2,-1,0)$. Alors, la perpendiculaire commune à D et Δ est dirigée par $\overrightarrow{u}\wedge\overrightarrow{v}:(1,1,-1)\wedge(2,-1,0)=(-1,-2,-3)$. On choisit $\overrightarrow{w}=(1,2,3)$

Soit Q le plan contenant Δ et \overrightarrow{w} . On sait que le point $(-1,0,5) \in \Delta$ alors Q a pour équation :

$$\left| egin{array}{cccc} x+1 & 2 & 1 \ y & -1 & 2 \ z-5 & 0 & 3 \end{array}
ight| = 0 ext{ ce qui donne } Q: -3x-6y+5z-28=0.$$

On note H_1 le point d'intersection de Q et $D:H_1=Q\cap D.$ On calcule :

$$\begin{cases}
-x + 2y + z &= -5 \\
x + y + 2z &= -4 \\
-3x - 6y + 5z &= 28
\end{cases} \iff \begin{cases}
x + y + 2z &= -4 \\
3y + 3z &= -9 \\
-3y + 11z &= 16
\end{cases} \iff \begin{cases}
x + y + 2z &= -4 \\
y + z &= -3 \\
14z &= 7
\end{cases}$$

On trouve $H_1=\left(-rac{3}{2},-rac{7}{2},rac{1}{2}
ight)$.

 $\text{Donc, la perpendiculaire commune est } H_1+\mathbb{R}.\overrightarrow{w}=\Big\{\left(-\frac{3}{2},-\frac{7}{2},\frac{1}{2}\right)+\lambda(1,2,3)\Big|\,\lambda\in\mathbb{R}\Big\}.$

Soit $\overrightarrow{n_1}=(-2,1,0)$ un vecteur orthogonal à \overrightarrow{w} . Alors Q_1 le plan normal à $\overrightarrow{n_1}$ et passant par H_1 contient la perpendiculaire commune $H_1+\mathbb{R}.\overrightarrow{w}$. Q_1 a pour équation : $-2x+y+\frac{1}{2}=0$.

Alors, La perpendiculaire commune à
$$D$$
 et Δ est $Q \cap Q_1 = \left\{ \begin{array}{ccc} -2x+y+rac{1}{2} & = & 0 \\ -3x-6y+5z-28 & = & 0 \end{array} \right.$

Soit P le plan contenant D et \overrightarrow{w} . On calcule $\overrightarrow{u} \wedge \overrightarrow{w} = (1, 1, -1) \wedge (1, 2, 3) = (5, -4, 1)$ qui est un vecteur normal de P.

On sait que le point $(-1, -3, 0) \in D$ alors P a pour équation : 5x - 4y + z - 7 = 0.

On cherche le point d'intersection H_2 de la perpendiculaire commune avec Δ . On a $H_2=P\cap D$. Donc H_2 est l'unique solution du système :

$$\left\{ egin{array}{lll} 5x-4y+z&=&7 \ -x+2y+z&=&-5 \ x+y+2z&=&-4 \end{array}
ight. . ext{ On trouve } H_2=(0,-rac{1}{2},5).$$

Alors
$$d(D,\Delta)=||\overrightarrow{H_1H_2}||$$
 avec $\overrightarrow{H_1H_2}=(rac{3}{2},3,rac{9}{2}).$

La distance entre
$$D$$
 et Δ est $3\sqrt{\frac{7}{2}}$.

Exercice 5:

On utilise une représentation paramétrique de
$$\mathcal{D}$$
 : $\left\{ egin{array}{ll} x &=& 3+t \\ y &=& -1+2t \\ z &=& 1-t \end{array} \right.$

Soit $M(x_M, y_M, z_M)$ un point de l'espace. On appelle N le projeté de M sur \mathcal{D} parallèlement à \mathcal{P} .

On calcule une équation du plan $\mathcal Q$ parallèle à $\mathcal P$ et passant par M : elle est de la forme

$$2x - 3y + z + d = 0$$
 qui donne $Q: 2x - 3y + z - 2x_M + 3y_M - z_M = 0$

Le point recherché N est à l'intersection de $\mathcal Q$ et $\mathcal D$:

On cherche le paramètre de la représentation de $\mathcal D$ qui correspond à N :

$$2(3+t)-3(-1+2t)+(1-t)-2x_M+3y_M-z_M=0 \iff 5t=10-2x_M+3y_M-z_M \iff t=2-\frac{2}{5}x_M+\frac{3}{5}y_M-\frac{1}{5}z_M.$$

$$\iff N \left(5 - rac{2}{5}x_M + rac{3}{5}y_M - rac{1}{5}z_M, 1 - rac{4}{5}x_M + rac{6}{5}y_M - rac{2}{5}z_M, -1 + rac{2}{5}x_M - rac{3}{5}y_M + rac{1}{5}z_M
ight)$$

Pour le symétrique par rapport à ${\mathcal P}$ parallèlement à ${\mathcal D}$, on calcule d'abord le projeté correspondant H :

H est sur la droite passant par M et dirigée par \overrightarrow{u} . Elle a pour représentation paramétrique :

$$(x,y,z)=(x_M,y_M,z_M)+s(1,2,-1)$$
 avec $s\in\mathbb{R}.$

Alors
$$H$$
 est déterminé par la valeur de s telle que $2x-3y+z-1=0$ soit $2(x_M+s)-3(y_M+2s)+(z_M-s)-1=0 \iff 5s=2x_M-3y_M+z_M-1 \iff s=\frac{2}{5}x_M-\frac{3}{5}y_M+\frac{1}{5}z_M-1$

Le symétrique M' de M par rapport à ${\cal P}$ parallèlement à ${\cal D}$ vérifie $\overrightarrow{MM'}=2\overrightarrow{MH}=2s\overrightarrow{u}$

Alors M' a pour coordonnées $(x',y',z')=(x_M,y_M,z_M)+2s(1,2,-1)$

soit
$$(x', y', z') = (x_M, y_M, z_M) + 2\left(\frac{2}{5}x_M - \frac{3}{5}y_M + \frac{1}{5}z_M - 1\right)(1, 2, -1)$$

On trouve
$$M'\left(\frac{9}{5}x_M - \frac{6}{5}y_M + \frac{2}{5}z_M - 2, \frac{8}{5}x_M - \frac{7}{5}y_M + \frac{4}{5}z_M - 4, -\frac{4}{5}x_M + \frac{6}{5}y_M + \frac{3}{5}z_M + 2\right)$$

Exercice 6:

Le point B vérifie $OB = OA = \sqrt{2}\alpha$. De plus, B appartient au plan médiateur du segment [OA] car B est équidistant de A et O.

Ce plan \mathcal{P} a pour équation $\alpha x + \alpha y + d = 0$ et il passe par le milieu du segment [OA] qui est $(\frac{\alpha}{2}, \frac{\alpha}{2}, 0)$ ce qui donne $d = -\alpha^2$.

L'intersection de \mathcal{P} avec le plan y=0 donne $\alpha x=\alpha^2$. On trouve une droite passant par $(\alpha,0,0)$ et dirigée par (0,0,1).

Alors
$$B$$
 s'écrit $(\alpha,0,z)$ et on cherche z tel que $OB=\sqrt{2}\alpha \iff (\alpha)^2+(z)^2=2\alpha^2 \iff z=\pm \alpha$

On trouve deux points symétriques par rapport à z=0 qui est un plan de symétrie du problème.

On trouve pour chacun des cas, le point C sur la droite intersection des plans médiateurs de [OA] et [OB], tel que $OC = \sqrt{2}\alpha$.

Pour $B(\alpha,0,\alpha)$, le plan médiateur de [OB] est $x+z-\alpha=0$. L'intersection avec le plan $\mathcal{P}: x+y-\alpha=0$ donne une droite $M_t(t,\alpha-t,\alpha-t)$ avec $t\in\mathbb{R}$.

On cherche t tel que

$$BM_t = \sqrt{2}lpha \iff (t-lpha)^2 + (lpha - t)^2 + t^2 = 2lpha^2 \iff 3t^2 - 4lpha t = 0 \iff t = 0 ext{ ou } t = rac{4lpha}{3}.$$

On trouve donc deux points possibles $(0, \alpha, \alpha)$ ou $(\frac{4}{3}\alpha, -\frac{1}{3}\alpha, -\frac{1}{3}\alpha)$

Et par symétrie par rapport à z=0, on trouve les deux autres possibilités.

Exercice 7:

1. Si \vec{u} et \vec{w} sont colinéaires, alors $(\vec{v} \wedge \vec{w}) \wedge \vec{w} = \vec{0}$ et par ailleurs si \vec{w} n'est pas nul, on peut écrire $\vec{v} = \frac{||\vec{v}||}{||\vec{w}||} \vec{w}$. On en déduit que $(\vec{v}.\vec{w})\vec{w} = (\vec{w}.\vec{w})\frac{||\vec{v}||}{||\vec{w}||} \vec{w} = (\vec{w}.\vec{w})\vec{v}$. On a donc bien $(\vec{v} \wedge \vec{w}) \wedge \vec{w} = (v.w)\vec{w} - ||\vec{w}||^2 \vec{v}$. Si $\vec{w} = \vec{0}$, la formule est évidente.

Si \vec{u} et \vec{w} ne sont pas colinéaires, on note $\vec{k} = \frac{1}{||\vec{v} \wedge \vec{w}||} \vec{v} \wedge \vec{w}$. \vec{k} est unitaire.

Alors $\vec{v} \wedge \vec{w} = ||\vec{v}||||\vec{w}||\sin\theta\vec{k}$ et $(\vec{v} \wedge \vec{w}) \wedge \vec{w} = -||\vec{v}||||\vec{w}||\sin\theta||\vec{w}||\vec{j}$ où \vec{j} est un vecteur unitaire tel que $(\vec{w}, \vec{k}, \vec{j})$ soit un trièdre orthogonal direct.

Le vecteur \vec{v} se projète sur \vec{w} et \vec{j} de la manière suivante : $\vec{v} = ||\vec{v}|| \cos \theta \frac{1}{||\vec{w}||} \vec{w} + ||\vec{v}|| \sin \theta \vec{j}$ où θ est l'angle $(\widehat{\vec{v}}, \widehat{\vec{w}})$ (orienté par la normale \vec{k} au plan $\text{Vect}(\vec{v}, \vec{w})$).

On obtient alors $\sin heta ec{j} = rac{1}{||ec{v}||} ec{v} - \cos heta rac{1}{||ec{w}||} ec{w}$, ce qui donne

$$(ec{v} \wedge ec{w}) \wedge ec{w} = -||ec{v}|||ec{w}||^2 (rac{1}{||ec{v}||} ec{v} - \cos heta rac{1}{||ec{w}||} ec{w}).$$

On réécrit cela en faisant apparaître le produit scalaire $\vec{v}.\vec{w} = ||\vec{v}||.||\vec{w}||.\cos\theta$:

$$(ec{v}\wedgeec{w})\wedgeec{w}=-||ec{w}||^2ec{v}+||ec{v}||.||ec{w}||\cos hetaec{w}$$

On obtient donc $(ec{v}\wedgeec{w})\wedgeec{w}=-(ec{w}.ec{w})ec{v}+(ec{v}.ec{w})ec{w}$

2. Si \vec{u} et \vec{w} sont deux vecteurs orthogonaux non nuls, on pose $\vec{u}_0 = -\frac{1}{||\vec{w}||^2} (\vec{v} \wedge \vec{w})$. Les vecteurs \vec{v} et \vec{w} ne sont pas colinéaires ni nuls, donc le vecteur \vec{u}_0 est non nul. Par sa définition comme produit vectoriel, on a nécessairement $\vec{u}_0 \perp \vec{w}$ et $\vec{u}_0 \wedge \vec{w} = -\frac{1}{||\vec{w}||^2} ((\vec{v}.\vec{w})\vec{w} - (\vec{w}.\vec{w})\vec{v})$, d'après la formule de la question précédente.

On en déduit : $ec{u}_0 \wedge ec{w} = rac{1}{||ec{w}||^2} (ec{w}.ec{w}) ec{v}) = ec{v}.$

Alors l'existence du vecteur \vec{u}_0 est acquise.

Si il existe un vecteur \vec{u}_1 qui vérifie les mêmes conditions, alors par linéarité, on a $(\vec{u}_1 - \vec{u}_0) \wedge w = \vec{0}$ et $(\vec{u}_1 - \vec{u}_0) \perp \vec{w}$. De la première égalité, on tire que $\vec{u}_1 - \vec{u}_0$ est colinéaire à \vec{w} et de la deuxième que $\vec{u}_1 - \vec{u}_0$ est orthogonal à \vec{w} . Comme $\vec{w} \neq \vec{0}$, on en déduit que $\vec{u}_1 - \vec{u}_0 = \vec{0}$. C'est à dire $\vec{u}_1 = \vec{u}_0$. Donc \vec{u}_0 est unique.

On en conclut qu' il existe un unique vecteur $ec{u}_0$, orthogonal à $ec{w}$ et tel que $ec{u}_0 \wedge ec{w} = ec{v}$.

Exercice 8:

On note H_i la projection orthogonale du point $M(1, 1, \lambda)$ sur le plan \mathcal{P}_i .

Le plan \mathcal{P}_1 admet (1, 1, 0) pour vecteur normal.

Alors on sait que $H_1=M+a_1(1,1,0)=(1+a_1,1+a_1,\lambda)$ où a_1 est un réel à déterminer.

On écrit que $H_1 \in \mathcal{P}_1: (1+a_1)+(1+a_1)-1=0 \Longleftrightarrow a_1=-rac{1}{2}.$

Le plan \mathcal{P}_2 admet (0,1,1) pour vecteur normal. Alors on sait que $H_2=M+a_2(0,1,1)=(1,1+a_2,\lambda+a_2)$ avec $a_2\in\mathbb{R}$. On écrit que $H_2\in\mathcal{P}_2:(1+a_2)+(\lambda+a_2)-1=0\Longleftrightarrow a_2=-\frac{\lambda}{2}$.

Le plan \mathcal{P}_3 admet (1,0,1) pour vecteur normal. Alors on sait que $H_3=M+a_3(1,0,1)=(1+a_3,1,\lambda+a_3)$ avec $a_3\in\mathbb{R}$. On écrit que $H_3\in\mathcal{P}_3:(1+a_3)+(\lambda+a_3)-1=0\Longleftrightarrow a_3=-\frac{\lambda}{2}$.

Le plan \mathcal{P}_4 admet (1,2,1) pour vecteur normal. Alors on sait que $H_4=M+a_4(1,2,1)=(1+a_4,1+2a_4,\lambda+a_4)$ avec $a_4\in\mathbb{R}$. On écrit que $H_4\in\mathcal{P}_4:(1+a_4)+2(1+2a_4)+(\lambda+a_4)=0\Longleftrightarrow a_4=-\frac{1}{2}-\frac{\lambda}{6}$.

Alors les projections orthogonales de M sont

$$H_1 = \left(rac{1}{2},rac{1}{2},\lambda
ight), \ H_2 = \left(1,1-rac{\lambda}{2},rac{\lambda}{2}
ight), \ H_3 = \left(1-rac{\lambda}{2},1,rac{\lambda}{2}
ight) ext{ et } H_4 = \left(rac{1}{2}-rac{\lambda}{6},-rac{\lambda}{3},-rac{1}{2}+rac{5\lambda}{6}
ight).$$

Les vecteurs reliant ces points sont :

$$\overrightarrow{H_1H_2} = \left(rac{1}{2},rac{1}{2}-rac{\lambda}{2},-rac{\lambda}{2}
ight), \ \overrightarrow{H_1H_3} = \left(rac{1}{2}-rac{\lambda}{2},rac{1}{2},-rac{\lambda}{2}
ight), \ \overrightarrow{H_1H_4} = \left(-rac{\lambda}{6},-rac{1}{2}-rac{\lambda}{3},-rac{1}{2}-rac{\lambda}{6}
ight)$$

Les quatre points sont coplanaires si et seulement si $\left|\overrightarrow{H_1H_2},\overrightarrow{H_1H_2},\overrightarrow{H_1H_4}\right|=0$

$$\iff \begin{vmatrix} \frac{1}{2} & \frac{1}{2} - \frac{\lambda}{2} & -\frac{\lambda}{6} \\ \frac{1}{2} - \frac{\lambda}{2} & \frac{1}{2} & -\frac{1}{2} - \frac{\lambda}{3} \\ -\frac{\lambda}{2} & -\frac{\lambda}{2} & -\frac{1}{2} - \frac{\lambda}{6} \end{vmatrix} = 0 \iff \begin{vmatrix} \frac{\lambda}{2} & \frac{1}{2} - \frac{\lambda}{2} & -\frac{\lambda}{6} \\ -\frac{\lambda}{2} & \frac{1}{2} & -\frac{1}{2} - \frac{\lambda}{3} \\ 0 & -\frac{\lambda}{2} & -\frac{1}{2} - \frac{\lambda}{6} \end{vmatrix} = 0$$

$$\iff \begin{vmatrix} \frac{\lambda}{2} & \frac{1}{2} - \frac{\lambda}{2} & -\frac{\lambda}{6} \\ 0 & 1 - \frac{\lambda}{2} & -\frac{1}{2} - \frac{\lambda}{2} \\ 0 & -\frac{\lambda}{2} & -\frac{1}{2} - \frac{\lambda}{6} \end{vmatrix} = 0$$

$$\iff \frac{\lambda}{2}\left((1-\frac{\lambda}{2})(-\frac{1}{2}-\frac{\lambda}{6})-(-\frac{1}{2}-\frac{\lambda}{2})(-\frac{\lambda}{2})\right)=0 \iff \frac{\lambda}{2}\left(-\frac{\lambda^2}{6}-\frac{1}{6}\lambda-\frac{1}{2}\right)=0$$

L'équation $x^2+x+3=0$ n'a pas de racines réelles. Alors la seule possibilité est $\lambda=0$.

Les projections orthogonales de M sur les plans \mathcal{P}_1 , \mathcal{P}_2 , \mathcal{P}_3 et \mathcal{P}_4 sont coplanaires si et seulement si $\lambda = 0$.

Exercice 9:

1. On écrit l'équation sous forme canonique :

$$x^2 + y^2 + z^2 - 4x - 2y + 6z + 5 = (x - 2)^2 + (y - 1)^2 + (z + 3)^2 - 4 - 1 - 9 + 5 = 0.$$

On en déduit l'équation équivalente suivante : $(x-2)^2 + (y-1)^2 + (z+3)^2 = 3^2$ soit en notant M = (x, y, z) et $\Omega = (2, 1, -3), ||\overrightarrow{\Omega M}|| = 3.$

L'équation proposée est donc l'équation de la sphère de centre $\Omega=(2,1,-3)$ et de rayon 3.

2. Le plan tangent à la sphère en B est orthogonal au rayon, donc $\overline{\Omega B}$ est un vecteur normal de ce plan.

On a $\overrightarrow{\Omega B}(-3,0,0)$ donc ce plan a pour équation x+d=0 et comme il passe par B, on trouve d=1.

Le plan tangent à la sphère $x^2 + y^2 + z^2 - 4x - 2y + 6z + 5 = 0$ en B(-1, 1, -3) a pour équation x = -1.

3. On détermine la distance de Ω au plan $\mathcal{P}:d(\Omega,\mathcal{P})=\dfrac{|2.2-1.1+3.(-3)-2|}{\sqrt{2^2+1^2+3^2}}=\dfrac{8}{\sqrt{14}}.$

On compare avec le rayon 3 au carré : 64 < 14.9 donc le plan rencontre la sphère \mathcal{S} .

On cherche l'intersection qui est un cercle de centre H le projeté orthogonal de Ω sur \mathcal{P} .

Soit $\vec{n}=(2,-1,3)$ un vecteur normal de \mathcal{P} , ona $\overrightarrow{\Omega H}=\lambda\vec{n}$ et $H\in\mathcal{P}$ ce qui donne les équation suivantes $H=(2+2\lambda,1-\lambda,-3+3\lambda)$ et $2(2+2\lambda)-(1-\lambda)+3(-3+3\lambda)-2=0$ ce qui donne $14\lambda=8$.

Alors H est le point $\left(\frac{44}{14},\frac{6}{14},\frac{-18}{14}\right)$. Et le rayon du cercle R' est donné par $R'^2=R^2-\Omega H^2$ où R=3 est le rayon de la sphère. On en déduit que $R'=\sqrt{9-\frac{64}{14}}=\sqrt{\frac{62}{14}}$.

L'intersection du plan et de la sphère est un cercle de centre $\left(\frac{22}{7}, \frac{3}{7}, \frac{-9}{7}\right)$ et de rayon $\sqrt{\frac{31}{7}}$.

Exercice 10:

On note \mathcal{P} le plan orthogonal à D passant par A. La droite D est dirigée par $(1,1,-2) \land (2,-1,-3) = (-5,-1,-3)$. Alors \mathcal{P} a pour équation -5x-y-3z+c=0 et on trouve en utilisant les coordonnées de A, c=10. $\mathcal{P}:-5x-y-3z+10=0$.

On note \mathcal{P}' le plan orthogonal à D' passant par A'. La droite D' est dirigée par $(2,1,2) \land (1,-1,-1) = (1,4,-3)$. Alors \mathcal{P}' a pour équation x+4y-3z+c'=0 et on trouve en utilisant les coordonnées de A', c'=-3. $\mathcal{P}: x+4y-3z-3=0$.

On note \mathcal{K} le plan médiateur de [AA']: c'est l'ensemble des points qui sont à la même distance de A et de A'. \mathcal{K} admet $\overrightarrow{AA'}$ pour vecteur normal et passe par I le milieu de [AA']. On a $\overrightarrow{AA'}=(0,-3,-3)$ alors \mathcal{K} a une équation de la forme -y-z+d=0. Le point I a pour coodonnées $(1,\frac{1}{2},-\frac{1}{2})$. On en déduit que d=0 et $\mathcal{K}: -y-z=0$.

Le centre Ω de la sphère tangente à D en A se trouve sur le plan \mathcal{P} . De même, Ω appartient au plan \mathcal{P}' . De plus comme A et A' sont sur la sphère, le centre est à égale distance de A et A' donc il est sur \mathcal{K} . Finalement, Ω est à l'intersection des trois plans $\mathcal{P} \cap \mathcal{P}' \cap \mathcal{K}$.

$$\begin{cases}
-5x - y - 3z + 10 &= 0 \\
x + 4y - 3z - 3 &= 0 \\
-y - z &= 0
\end{cases} \iff \begin{cases}
x + 4y - 3z &= 3 \\
19y - 18z &= 5 \\
y + z &= 0
\end{cases} \iff \begin{cases}
-x + 3y - 3z &= 2 \\
y + z &= 0 \\
-37z &= 5
\end{cases}$$

On en tire $z=-\frac{5}{37}$, puis $y=\frac{5}{37}$ et enfin $x=\frac{76}{37}$.

D'où
$$\Omega:\left(\frac{76}{37},\frac{5}{37},-\frac{5}{37}\right)$$
. Alors $\overrightarrow{\Omega A}:\left(\frac{39}{37},-\frac{69}{37},-\frac{42}{37}\right)$.

D'où le rayon du cercle $R=||\overrightarrow{\Omega A}||=rac{\sqrt{8046}}{37}=rac{3}{37}\sqrt{894}.$

La sphère a pour équation
$$x^2 + y^2 + z^2 - \frac{152}{37}x - \frac{10}{37}y + \frac{10}{37}z - \frac{60}{37} = 0$$
.

Exercice 11 : $\mathcal C$ est le cercle d'équations $\left\{ \begin{array}{rcl} x+y+z&=&3\\ x^2+y^2+z^2&=&5 \end{array} \right.$

1. L'équation x+y+z=3 définit le plan \mathcal{P} et l'équation $x^2+y^2+z^2=5$ définit la sphère \mathcal{S} de centre \mathcal{O} et de rayon $R=\sqrt{5}$.

Calculons la distance du centre de $\mathcal S$ au plan $\mathcal P$ $d(O,\mathcal P)=\dfrac{|0+0+0-3|}{\sqrt{1+1+1}}=\sqrt{3}.$

On a $d(O, \mathcal{P}) \leq R$, alors l'intersection du plan \mathcal{P} et de la sphère \mathcal{S} est un cercle \mathcal{C} dans le plan \mathcal{P} . Le centre Ω est le projeté orthogonal de O sur $\mathcal{P}: \Omega = O + k. \overrightarrow{n}$ avec \overrightarrow{n} (1, 1, 1) vecteur normal au plan \mathcal{P} .

On trouve avec $\Omega \in \mathcal{P}$: k = 1 et $\Omega(1, 1, 1)$.

Pour le rayon r du cercle \mathcal{C} , on a $r=\sqrt{R^2-O\Omega^2}=\sqrt{5-3}=\sqrt{2}$.

 ${\cal C}$ est le cercle de centre (1,1,1), de rayon $\sqrt{2}$ dans le plan x+y+z=3.

2. Pour $\mathcal{C} \cap xOy$, on résout

$$\begin{cases} x+y+z &= 3 \\ x^2+y^2+z^2 &= 5 \\ z &= 0 \end{cases} \iff \begin{cases} x+y &= 3 \\ x^2+y^2 &= 5 \text{ On obtient } (3-y)^2+y^2 = 5 \iff 2y^2-6y+4=0 \\ z &= 0 \end{cases}$$

$$\iff y=2 \text{ ou } y=1. \qquad \text{Ce qui donne les deux points } (2,1,0) \text{ et } (1,2,0)$$

Pour des raisons de symétrie, en échangeant les rôles de x, y et z, on obtient les 4 autres points d'intersections avec les plans de coordonnées :

$$(2,1,0)$$
 et $(1,2,0)$ $(0,2,1)$ et $(0,1,2)$ $(1,0,2)$ et $(2,0,1)$

3. Les tangentes au cercle $\mathcal C$ sont dans le plan $\mathcal P$ du cercle. Si une tangente au cercle rencontre l'axe Oz elle ne peut le faire qu'au point d'intersection du plan $\mathcal P$ avec Oz qui est le point Q (0,0,3). On a $\Omega Q = \sqrt{1+1+4} = \sqrt{6} > \sqrt{2} = r$ donc le point Q est à l'extérieur du cercle $\mathcal C$ dans le plan $\mathcal P$.

On en déduit qu'il existe deux tangentes à C qui passe par Q.

On cherche les points de contact K_1 et K_2 de ces tangentes avec le cercle.

On écrit $\overrightarrow{\Omega K_1} \bot \overrightarrow{QK_1} \Longleftrightarrow \Omega K_1.QK_1 = 0$ ce qui donne une sphère

$$\begin{pmatrix} x-1 \\ y-1 \\ z-1 \end{pmatrix} \cdot \begin{pmatrix} x-0 \\ y-0 \\ z-3 \end{pmatrix} = 0 \iff x^2+y^2+z^2-x-y-4z+3=0$$

On cherche l'intersection de cette sphère avec le cercle

$$\begin{cases} x + y + z &= 3 \\ x^2 + y^2 + z^2 + z^2 &= 5 \\ x^2 + y^2 + z^2 - x - y - 4z + 3 &= 0 \end{cases} \iff \begin{cases} x + y + z &= 3 \\ x + y + 4z &= 8 \\ x^2 + y^2 + z^2 &= 5 \end{cases}$$
$$\iff \begin{cases} x + y &= \frac{4}{3} \\ x &= \frac{5}{3} \end{cases} \iff z = \frac{5}{3} \text{ et } x = \frac{2}{3} \pm \frac{\sqrt{6}}{3} \text{ et } y = \frac{2}{3} \mp \frac{\sqrt{6}}{3} \end{cases}$$

Les tangentes à \mathcal{C} qui rencontrent l'axe Oz sont donc les droites passant par (0,0,3) et par chacun des points $\left(\frac{2}{3} + \frac{\sqrt{6}}{3}, \frac{2}{3} - \frac{\sqrt{6}}{3}, \frac{5}{3}\right)$ et $\left(\frac{2}{3} - \frac{\sqrt{6}}{3}, \frac{2}{3} + \frac{\sqrt{6}}{3}, \frac{5}{3}\right)$