МЕТОДЫ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН

Метод обратной функции (Используется для получения и дискретных, и непрерывных СВ с заданным законом распределения). Приближенные методы:

- Универсальные методы
- Неуниверсальные методы

МЕТОД ОБРАТНОЙ ФУНКЦИИ

Если ξ — равномерно распределённая СВ на интервале (0,1), то искомая случайная величина η получается с помощью преобразования $\eta = F_{\eta}^{-1}(\xi)$, где $F_{\eta}^{-1} - \varphi$ ункция, обратная F_{η} . Если случайная величина η имеет плотность распределения $f_{\eta}(y)$, то распределение случайной величины

$$F(y) = \int_{0}^{\eta} f_{\eta}(y) dy$$

является равномерным на интервале (0,1).

Чтобы получить число, принадлежащее последовательности случайных чисел $\{y_j\}$, имеющих функцию плотности $f_{\eta}(y)$, необходимо разрешить относительно y_j уравнение

$$x_i = \int_{0}^{y_j} f_{\eta}(y) dy$$

где x_i — число, принадлежащее последовательности случайных чисел равномерно распределенных на интервале от (0,1).

Недостатки данного метода:

- для многих законов распределения, встречающихся в практических задачах моделирования, интеграл не берется, т.е. приходится прибегать к численным методам решения,
- даже для случаев, когда интеграл берется в конечном виде получаются формулы, содержащие действия логарифмирования, извлечения корня и т.д., что также резко увеличивает затраты машинного времени на получение каждого случайного числа.

ПРИБЛИЖЕННЫЕ МЕТОДЫ

На практике часто пользуются приближенными способами преобразования случайных чисел, которые классифицируют на: а) универсальные способы, с помощью которых можно получать случайные числа с законом распределения любого вида;

б) неуниверсальные способы, пригодные для получения случайных чисел с конкретным законом распределения.

МЕТОД, ОСНОВАННЫЙ НА КУСОЧНОЙ АППРОКСИМАЦИИ ФУНКЦИИ ПЛОТНОСТИ Это приближенный универсальный способ получения случайных чисел. Пусть требуется получить последовательность случайных чисел $\{yj\}$ с функцией плотности $f_n(y)$, значения которой лежат в интервале (a,b).

Разобьем интервал (a,b) на m интервалов, и будем считать $f_{\eta}(y)$ на каждом интервале постоянной. Разбивать необходимо так, чтобы вероятность попадания случайной величины в любой интервал $(a_k, a_k + 1)$ была постоянной, т.е.:

$$\int_{a_k}^{a_{k+1}} f_{\eta}(y) dy = 1/m$$

Алгоритм:

1) генерируется случайное равномерно распределённое число xi из интервала (0,1);

- 2) с помощью этого числа случайным образом выбирается интервал (a_k , a_k +1);
- 3) генерируется число x_i +1 и масштабируется с целью приведения его к интервалу (a_k , a_k +1), т.е. домножается на коэффициент (a_k +1 – a_k) x_i +1;
- 4) вычисляется случайное число $y_i = a_k + (a_k + 1 a_k)x_i + 1$ с требуемым законом распределения.

НЕУНИВЕРСАЛЬНЫЕ МЕТОДЫ

ПРИБЛИЖЕННЫЙ МЕТОД ГЕНЕРАЦИИ ПОСЛЕДОВАТЕЛЬНОСТИ ЗНАЧЕНИЙ НОРМАЛЬНО РАСПРЕДЕЛЕННОЙ СВ

Пусть требуется получить последовательность случайных чисел $\{t_j\}$, имеющих нормальное распределение с математическим ожиданием m и средним квадратическим отклонением σ :

$$p(t) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(t-m)^2}{2\sigma^2}}$$

Будем формировать случайные числа t_j в виде сумм последовательностей случайных чисел $\{x_i\}$, равномерно распределенных на интервале от $\{0,1\}$.

Воспользуемся центральной предельной теоремой:

Если X_1 , X_2 , ..., X_n — независимые одинаково распределенные случайные величины, имеющие математическое ожидание $M(X_i) = a$ и дисперсию σ^2 , то при $N \to \infty$ сумма

 $\sum_{i=1}^{N} X_{i}$

асимптотически нормальна с математическим ожиданием Na и средним квадратическим отклонением

$$\sigma\sqrt{N}$$

Как показывают расчеты, сумма $\sum_{i=1}^{N} X_i$ имеет распределение, близкое к нормальному, уже при сравнительно небольших N. Практически достаточно N=8 12, а в простейших случаях $-4 \div 5$.

Преимущество этого способа – высокое быстродействие.

Недостатком является игнорирование «хвостов» нормального распределения, которые могут уходить в обе стороны от величины m на расстояние, превышающее 6σ .

Поэтому при проведении особо точных экспериментов применяются другие — более точные (но более медленные) способы. В современных системах имитационного

моделирования обычно используются не менее двух программных датчиков случайных величин, распределенных по нормальному закону (их выбор осуществляется автоматически управляющей программой).

МЕТОД НЕЙМАНА

Единственным ограничением его применения является то, что СВ должна задаваться усеченным законом, или законом, который может быть аппроксимирован усеченным.

На рис. показана функция плотности СВ η , заданная на интервале [a,b].

Максимальное значение функции — W.

Алгоритм:

- 1. С помощью датчика случайных чисел, равномерно распределенных на интервале (0,1), выбирают пары чисел (x_1,x_2) (на рис. точка A)
- 2. Формируется преобразованная пара чисел, равномерно распределенных на интервалах соответственно (a,b) и (0,W):

$$y_1 = a + x_1(b-a)$$
 $y_2 = Wx_2$

3. Проверяется выполнение неравенства

$$y_2 \le f_\eta(y_1)$$

- 4. Если оно выполнено, то y_1 и есть искомое значение случайной величины η . (на рис. точка B_1).
- 5. В противном случае вновь генерируются случайные числа и алгоритм повторяется заново.