本节内容

冬

基本操作

知识总览

图的基本操作:

- Adjacent(G,x,y): 判断图*G*是否存在边<*x*, *y*>或(*x*, *y*)。
- Neighbors(G,x):列出图G中与结点x邻接的边。
- InsertVertex(G,x): 在图G中插入顶点x。
- DeleteVertex(G,x): 从图G中删除顶点x。
- AddEdge(G,x,y): 若无向边(x, y)或有向边<x, y>不存在,则向图G中添加该边。
- RemoveEdge(G,x,y): 若无向边(x, y)或有向边<x, y>存在,则从图G中删除该边。
- FirstNeighbor(G,x): 求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点或图中不存在x,则返回-1。
- NextNeighbor(G,x,y):假设图G中顶点y是顶点x的一个邻接点,返回除y之外顶点x的下一个邻接点的顶点号,若y是x的最后一个邻接点,则返回-1。
- Get_edge_value(G,x,y): 获取图*G*中边(x, y)或<x, y>对应的权值。
- Set_edge_value(G,x,y,v): 设置图*G*中边(*x*, *y*)或<*x*, *y*>对应的权值为*v*。

Adjacent(G,x,y): 判断图G是否存在边<x, y>或(x, y)。

data

Α

D

0

2

3

5

邻接矩阵

O(1)

• Adjacent(G,x,y): 判断图*G*是否存在边<*x*, *y*>或(*x*, *y*)。

O(|V|)

Neighbors(G,x):列出图G中与结点x邻接的边。

data

Α

D

0 Α В D Ε

邻接矩阵

0 0 0 0 0

Neighbors(G,x):列出图G中与结点x邻接的边。

邻接矩阵

O(|V|)

万一是个稀疏 图呢?

邻接表

出边: O(1)~O(|V|)

入边: O(|E|)

	data
0	Α
1	В
2	С
3	D
4	Е
5	F

	Α	В	С	D	Ε	F
Α	0	1	0	0	0	0
В	0	0	0	0	0	0
С	1	0	0	0	0	0
D	1	0	0	0	0	0
Ε	0	1	1	0	0	0
F	0	1	0	1	0	0

• InsertVertex(G,x): 在图*G*中插入顶点*x*。

• DeleteVertex(G,x): 从图*G*中删除顶点*x*。

• DeleteVertex(G,x):从图*G*中删除顶点*x*。

• DeleteVertex(G,x):从图*G*中删除顶点*x*。

0

2

3

4

5

邻接矩阵 **O(|V|)**

	Α	В	С	D	Ε	F
Α	0	1	0	0	0	0
В	0	0	0	0	0	0
С	1	0	0	0	0	0
D	1	0	0	0	0	0
Ε	0	1	1	0	0	0
F	0	1	0	1	0	0
	B C D	A 0 B 0 C 1 D 1 E 0	A 0 1 B 0 0 C 1 0 D 1 0 E 0 1	A 0 1 0 B 0 0 0 C 1 0 0 D 1 0 0 E 0 1 1	A 0 1 0 0 B 0 0 0 0 C 1 0 0 0 D 1 0 0 0 E 0 1 1 0	A 0 1 0 0 0 B 0 0 0 0 0 C 1 0 0 0 0 D 1 0 0 0 0 E 0 1 1 0 0

删出边: O(1)~O(|V|)

删入边: O(|E|)

邻接表

	data	*first	
0	Α	_	1 ^
1	В	٨	
2	С	_	0 ^
3	D	_	0 ^
4	Е	_	1 2 ^
5	F	_	1 3 ^

· AddEdge(G,x,y): 若无向边(x, y)或有向边<x, y>不存在,则向图G中添加该边。

PREMOVEEdge(G,x,y): 若无向边(x, y)或有向边<x, y>存在,则从图G中删除该边。

• FirstNeighbor(G,x):求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点或图中不存在x,则返回-1。

FirstNeighbor(G,x):求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点 或图中不存在x,则返回-1。

邻接矩阵 O(1)~O(|V|) 邻接表 <mark>找入边邻接点:</mark> O(1)~O(|E|)

data

Α

C

D

Ε

F

2

3

4

5

-						
	Α	В	С	D	Ε	F
Α	0	1	0	0	0	0
В	0	0	0	0	0	0
C	1	0	0	0	0	0
D	1	0	0	0	0	0
Ε	0	1	1	0	0	0
F	0	1	0	1	0	0
				•		

找出边邻接点: O(1)

• NextNeighbor(G,x,y): 假设图G中顶点y是顶点x的一个邻接点,返回除y之外顶点x的下一个邻接点的顶点号,若y是x的最后一个邻接点,则返回-1。

- Get_edge_value(G,x,y): 获取图*G*中边(x, y)或<x, y>对应的权值。
- Set_edge_value(G,x,y,v): 设置图*G*中边(x, y)或<x, y>对应的权值为v。
- Adjacent(G,x,y): 判断图*G*是否存在边<*x*, *y*>或(*x*, *y*)。

雷同,核心在于找到边

data

Α

В

C

D

Ε

F

0

3

5

邻接矩阵

O(1)

	Α	В	С	D	Ε	F
Α	0	1	1	1	0	0
В	1	0	0	0	1	1
С	1	0	0	0	1	0
D	1	0	0	0	0	1
Ε	0	1	1	0	0	0
F	0	1	0	1	0	0

知识回顾与重要考点

- Adjacent(G,x,y): 判断图*G*是否存在边<*x*, *y*>或(*x*, *y*)。
- Neighbors(G,x):列出图G中与结点x邻接的边。
- InsertVertex(G,x): 在图*G*中插入顶点*x*。
- DeleteVertex(G,x): 从图*G*中删除顶点*x*。
- AddEdge(G,x,y): 若无向边(x, y)或有向边<x, y>不存在,则向图G中添加该边。
- RemoveEdge(G,x,y): 若无向边(x, y)或有向边<x, y>存在,则从图*G*中删除该边。
- FirstNeighbor(G,x): 求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点或图中不存在x,则返回-1。
- NextNeighbor(G,x,y): 假设图G中顶点y是顶点x的一个邻接点,返回除y之外顶点x的下一个邻接点的顶点号,若y是x的最后一个邻接点,则返回-1。
- Get_edge_value(G,x,y): 获取图*G*中边(x, y)或<x, y>对应的权值。
- Set_edge_value(G,x,y,v): 设置图*G*中边(*x*, *y*)或<*x*, *y*>对应的权值为*v*。

此外,还有图的遍历算法,包括深度优先遍历和广度优先遍历。

欢迎大家对本节视频进行评价~

学员评分: 6.2.5 图的基本操作

- 腾讯文档 -可多人实时在线编辑, 权限安全可控

△ 公众号:王道在线

🛅 b站: 王道计算机教育

♂ 抖音:王道计算机考研