True wOBA:

Estimation of true talent level for batters

Scott Powers and Eli Shayer

Stanford University

2016 SABR Analytics Conference

BABIP

$$\frac{\text{H - HR}}{\text{AB - K - HR + SF}}$$

"Stabilizes" after 820 BIP

League average: .299

OBP

$$\frac{\text{H + BB + HBP}}{\text{AB + BB + HBP + SF}}$$

"Stabilizes" after 460 PA

League average: .317

BABIP

OBP

 $X_1 = \mathsf{BABIP} \ \mathsf{on} \ 1^{st} \ 150 \ \mathsf{BIP}$

 $X_2 = BABIP \text{ on } 2^{nd} 150 BIP$

 $Y_1 = \mathsf{OBP} \; \mathsf{on} \; 1^{st} \; 150 \; \mathsf{PA}$

 $Y_2 = \mathsf{OBP} \; \mathsf{on} \; 2^{nd} \; \mathsf{150} \; \mathsf{PA}$

Which is greater: $\mathbb{E}(X_1 - X_2)^2$ or $\mathbb{E}(Y_1 - Y_2)^2$?

BABIP

OBP

 $X_1 = \mathsf{BABIP} \ \mathsf{on} \ 1^{st} \ 150 \ \mathsf{BIP}$

 $X_2 = BABIP \text{ on } 2^{nd} 150 BIP$

 $Y_1 = \mathsf{OBP} \; \mathsf{on} \; 1^{st} \; 150 \; \mathsf{PA}$

 $Y_2 = \mathsf{OBP} \; \mathsf{on} \; 2^{nd} \; \mathsf{150} \; \mathsf{PA}$

Which is greater:
$$\mathbb{E}(X_1 - X_2)^2$$
 or $\mathbb{E}(Y_1 - Y_2)^2$?

$$\sqrt{\mathbb{E}(X_1 - X_2)^2} = 0.058$$

BABIP

OBP

 $X_1 = \mathsf{BABIP} \ \mathsf{on} \ 1^{st} \ 150 \ \mathsf{BIP}$

 $X_2 = BABIP \text{ on } 2^{nd} 150 BIP$

 $Y_1 = \mathsf{OBP} \ \mathsf{on} \ 1^{st} \ 150 \ \mathsf{PA}$

 $Y_2 = \mathsf{OBP} \; \mathsf{on} \; 2^{nd} \; \mathsf{150} \; \mathsf{PA}$

Which is greater:
$$\mathbb{E}(X_1 - X_2)^2$$
 or $\mathbb{E}(Y_1 - Y_2)^2$?

$$\sqrt{\mathbb{E}(X_1-X_2)^2}=0.058$$

$$\sqrt{\mathbb{E}(Y_1 - Y_2)^2} = 0.062$$

What is going on?

Suppose a statistic Z can be split into talent T and luck L:

$$Z_1 = T + L_1$$
 $Z_2 = T + L_2$,

with

$$\sigma_T^2 = \text{Var}(T)$$
 and $\sigma_L^2 = \text{Var}(L_1) = \text{Var}(L_2)$

Assuming T, L_1 and L_2 are independent,

$$Corr(Z_1, Z_2) = \frac{\sigma_T^2}{\sigma_T^2 + \sigma_L^2}$$

Outline

Introduction

 Regression to the mean

 Methods

 Regularization as regression to the mean
 True wOBA
 Regularization vs. random effect models

 Results

 Validation
 Results on 2015 MLB regular season

Discussion

$$T \sim \mathcal{N}(\mu_T, \sigma_T^2)$$
 $Z|T \sim \mathcal{N}(T, \sigma_L^2)$

$$\uparrow \\ \mu_T$$

$$T \sim \mathcal{N}(\mu_T, \sigma_T^2)$$
 $Z|T \sim \mathcal{N}(T, \sigma_L^2)$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad Z$$

Regression to the mean for each outcome probability

		(Naive)	(Regressed)
	$\hat{\sigma}_T^2$	RMSE(Z)	$RMSE(Z^*)$
G	15.85	4.80	4.42
F	20.13	4.45	4.22
K	29.10	4.19	3.89
BB	6.26	3.33	3.04
HBP	0.24	0.94	0.80
1B	7.02	3.81	3.17
2B	0.45	2.01	1.62
3B	0.13	0.74	0.67
HR	1.88	1.79	1.61

Upshot: Different population variances for different outcomes, but regression to the mean improves RMSE for all of them!

Regressed wOBA vs. naive wOBA

Projected change in wOBA vs. BABIP

Methods

A simple linear model

Data:

For plate appearance $i \in \{1,...,n\}$,

$$K_i = \left\{ egin{array}{l} 1 ext{ if } i^{th} ext{ PA results in strikeout} \\ 0 ext{ otherwise} \end{array}
ight.$$

 $B_i = identity of batter in ith PA (e.g. Paul Goldschmidt)$

Model:

$$K_i = \alpha + \beta_{B_i} + \epsilon_i$$
, where $\epsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$

Estimator:

$$(\hat{\alpha},\hat{\beta}) = \arg\min \sum_{i=1}^n (K_i - \alpha - \beta_{B_i})^2 \quad \Rightarrow \quad \hat{\alpha} + \hat{\beta}_B = \frac{\sum_{i:B_i = B} K_i}{\sum_{i:B_i = B} 1}$$

Ridge regression

Instead of solving

$$(\hat{\alpha}, \hat{\beta}) = \arg\min \sum_{i=1}^{n} (K_i - \alpha - \beta_{B_i})^2,$$

let's try solving

$$(\alpha^*, \beta^*) = \arg\min \sum_{i=1}^n (K_i - \alpha - \beta_{B_i})^2 + \lambda \sum_B \beta_B^2, \quad \lambda > 0.$$

The result is

$$eta_B^* = rac{\lambda \cdot 0 + n_B \hat{eta}_B}{\lambda + n_B}, \quad ext{where} \quad n_B = \sum_{i: B_i = B} 1$$

For $\lambda = \sigma_L^2/\sigma_T^2$, this is regression to the mean!

Logistic regression

A better model:

$$\eta_i = \alpha + \beta_{B_i}, \quad ext{and} \quad \mathbb{P}(K_i = 1 | \eta_i) = e^{\eta_i}/(1 + e^{\eta_i})$$

Estimator (Ridge):

$$(\alpha^*, \beta^*) = \arg\min - \sum_{i=1}^n \log \mathbb{P}(K_i | \eta_i) + \lambda \sum_B \beta_B^2$$

Ridge estimator vs. Naive estimator for 1B rate

Ridge estimator vs. Regressed estimator for 1B rate

Test RMSE: regularization vs. regression to the mean

	Naive	Regressed	Ridge
G	4.41	3.98	3.97
F	4.45	3.97	3.99
K	4.25	3.89	3.90
BB	2.60	2.38	2.39
HBP	1.04	0.89	0.88
1B	3.66	3.09	3.08
2B	2.21	1.68	1.67
3B	0.82	0.63	0.64
HR	1.71	1.52	1.51

Upshot: Ridge regression is essentially regression to the mean, but it allows extensions, which we will see next!

True wOBA

Data:

 $Y_i \in \mathcal{Y} = \{G, F, K, BB, HBP, 1B, 2B, 3B, HR\}$ $B_i = \text{identity of } \mathbf{B} \text{atter in } i^{th} \text{ PA (e.g. Paul Goldschmidt)}$ $P_i = \text{identity of } \mathbf{P} \text{itcher in } i^{th} \text{ PA (e.g. Zach Greinke)}$ $S_i = \text{identity of } \mathbf{S} \text{tadium in } i^{th} \text{ PA (e.g. Chase Field)}$ $H_i = 1 \text{ if } B_i \text{ is on } \mathbf{H} \text{ome team, 0 otherwise}$ $O_i = 1 \text{ if } B_i \text{ and } P_i \text{ have } \mathbf{O} \text{pposite handedness, 0 otherwise}$

Model (multinomial logistic regression):

$$\eta_{ik} = \alpha_k + \beta_{B_ik} + \gamma_{P_ik} + \delta_{S_ik} + \zeta_k H_i + \theta_k O_i$$
$$\mathbb{P}(Y_i = k | \eta_i) = \frac{e^{\eta_{ik}}}{\sum_{\ell \in \mathcal{Y}} e^{\eta_{i\ell}}}$$

True wOBA

Estimation:

$$\min \left\{ -\sum_{i=1}^{n} \mathbb{P}(Y_i | \eta_i) + \sum_{k \in \mathcal{Y}} \lambda_k \left(\sum_{B} \beta_{Bk}^2 + \sum_{P} \gamma_{Pk}^2 + \sum_{S} \delta_{Sk}^2 + \zeta_k^2 + \theta_k^2 \right) \right\}$$

- Choose λ_k via cross validation
- For batter B, estimated K rate in average situation is

$$\mathbb{P}_{B}(K) = \frac{e^{\alpha_{K}^{*} + \beta_{BK}^{*} + \frac{1}{2}\zeta_{K}^{*} + \frac{1}{2}\theta_{K}^{*}}}{\sum_{\ell \in \mathcal{V}} e^{\alpha_{\ell}^{*} + \beta_{B\ell}^{*} + \frac{1}{2}\zeta_{\ell}^{*} + \frac{1}{2}\theta_{\ell}^{*}}}$$

Combine rates of outcomes into True wOBA estimate

Random effect model

Model:

$$\eta_i = \alpha + \beta_{B_i}$$
, where $\beta_B \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_\beta^2)$
 $\mathbb{P}(K_i = 1 | \eta_i) = \Phi(\eta_i) \leftarrow \text{Normal CDF}$

Estimator (Random):

$$(\alpha^*, \beta^*, \sigma_{\beta}^{2*}) = \arg\max L(\alpha, \beta, \sigma_{\beta}^2 | B_i, K_i)$$

Test RMSE: regularization vs. random effect model

	Regressed	Random
G	3.38	3.38
F	3.48	3.49
K	3.30	3.35
BB	2.06	2.06
HBP	0.78	0.77
1B	2.63	2.64
2B	1.45	1.44
3B	0.55	0.56
HR	1.36	1.35

Upshot: Regularization is very similar to random effect modelling, with two differences:

- How population variance is estimated
- Regularization can be applied to multinomial regression

Results

Validation

- Evaluate results on 2015 MLB regular season PAs
 - Discard intentional walks, catcher interferences
 - Discard PAs in which pitcher is batting
- Fit each method on training set to predict wOBA in test set
 - $\{O_i = 0\} \Rightarrow$ training set with prob. 90%
 - ${O_i = 1} \Rightarrow \text{test set with prob. } 90\%$
- Training set: 93,868 PAs
- Test set: 82,692 PAs

Estimator	Naive	Regressed	True	Mixed
Estimated MSE	0.00456	0.00220	0.00173	0.00180
Stadard error	±0.00044	± 0.00018	± 0.00014	± 0.00015

True wOBA vs. naive wOBA

True wOBA against vs. naive wOBA against

Top 5 and bottom 5 batters by True wOBA

BA

Top 5 and bottom 5 pitchers by True wOBA against

	Pitcher	Team	True wOBA against
	Jake Arrieta	CHC	.255
Тор	Clayton Kershaw	LAD	.256
5	Zack Greinke	LAD	.261
	Wade Davis	KCR	.267
	Dallas Keuchel	HOU	.267
	Jeremy Guthrie	KCR	.346
Bottom	Matt Boyd	DET	.346
5	David Holmberg	CIN	.349
	Dustin McGowan	PHI	.354
	Allen Webster	ARI	.356

Top differences between naive and True wOBA

	Batter	Team	Δ wOBA
	Wilson Ramos	WSN	+.022
Top	Michael Taylor	WSN	+.021
5	Albert Pujols	LAA	+.017
	Alcides Escobar	KCR	+.016
	Chris Owings	ARI	+.014
	Anthony Rizzo	CHC	035
Bottom	Nolan Arenado	COL	037
5	Charlie Blackmon	COL	039
	Bryce Harper	WSN	045
	David Peralta	ARI	046

Top differences between naive and True wOBA against

	Pitcher	Team	Δ wOBA against
	Chris Rusin	COL	068
Top	Kyle Kendrick	COL	062
5	Jerome Williams	PHI	047
	Matt Garza	MIL	045
	Kyle Lohse	MIL	041
	Jacob deGrom	NYM	+.016
Bottom	Sonny Gray	OAK	+.016
5	Clayton Kershaw	LAD	+.019
	Jake Arrieta	CHC	+.021
	Zack Greinke	LAD	+.023

Discussion

Three contributions:

- We advocate use of regression to the mean instead of stabilization rates
- We explain relationship between regularized linear models and regression to the mean
- We compare regularized linear models with linear mixed effects models

Thank you!

Questions?

Scott Powers sspowers@stanford.edu

Eli Shayer eshayer@stanford.edu elishayer.com

github.com/sspowers/true-woba

stanfordsportsanalytics.com

