## Analysis HW 7 - Luke Miles - November 15, 2015



**Exercise 5.4 - 2**: Show that the function  $f(x) := 1/x^2$  is uniformly continuous on  $A := [1, \infty)$ , but that it is not uniformly continuous on  $B := (0, \infty)$ .

<u>Solution</u>: First we will show that f is uniformly continuous on A. Let  $\varepsilon > 0$  and choose  $\delta := 2\varepsilon$ . Then if  $a, b \in A$  and  $|a - b| < \delta$  and WLOG a < b, we have

$$|f(a) - f(b)| = \frac{1}{a^2} - \frac{1}{b^2} = \frac{b^2 - a^2}{a^2 b^2} = \frac{b + a}{a^2 b^2} (b - a) < 2(b - a) < 2\delta = \varepsilon.$$

Now we will show that f is not uniformly continuous on B. Choose  $\varepsilon = 1$  and let  $\delta > 0$  and further assume that  $\delta < 1/3$ . Choose  $a := \delta, b := \frac{3}{2}\delta$ , and we get

$$|f(a) - f(b)| = |f(\delta) - f(\frac{3}{2}\delta)| = \frac{1}{\delta^2} - \frac{1}{\frac{9}{4}\delta^2} = \frac{5}{9} \times \frac{1}{\delta^2} > 5 > \varepsilon.$$

**Exercise 5.4 - 7**: If f(x) := x and  $g(x) := \sin x$ , show that both f and g are uniformly continuous on  $\mathbb{R}$ , but that their product fg is not uniformly continuous on  $\mathbb{R}$ . Solution:

• First, f is uniformly continuous: Let  $\varepsilon > 0$  and choose  $\delta := \varepsilon$ . Then

$$|f(x) - f(u)| = |x - u| < \delta = \varepsilon.$$

- To see that g is uniformly continuous, notice that  $|\sin a \sin b| < |a b|$  for all  $a, b \in \mathbb{R}$ . This holds because 2 triangles drawn in the unit circle always have a greater difference in arc length than in height.
- Finally, fg is not uniformly continuous. Choose  $\varepsilon := 1$  and let  $\delta > 0$ . Now choose the smallest integer n where  $n > |1/\sin(\delta/2)|$ . Choose  $u := 2n\pi$  and  $x := u + \delta/2$ . Then

$$|fg(x) - fg(u)| = |(2n\pi + \delta/2)\sin(2n\pi + \delta/2) - (2n\pi)\sin(2n\pi)|$$

$$= |(2n\pi + \delta/2)\sin(\delta/2)| > |2n\pi\sin(\delta/2)| > \left|\frac{2}{\sin(\delta/2)}\pi\sin(\delta/2)\right| = 2\pi > \varepsilon$$

**Exercise 5.4 - 14**: A function  $f: \mathbb{R} \to \mathbb{R}$  is said to be periodic on  $\mathbb{R}$  if there exists a number p > 0 such that f(x+p) = f(x) for all  $x \in \mathbb{R}$ . Prove that a continuous periodic function on  $\mathbb{R}$  is bounded and uniformly continuous on  $\mathbb{R}$ .

<u>Solution</u>: Let f be a continuous periodic function on  $\mathbb{R}$  with period p and let I := [0, p]. Then

- the set f(I) must be a closed interval. Now let  $x \in \mathbb{R}$ . Then f(x) = f(a) for some  $a \in I$ , and hence f is bounded everywhere.
- f is uniformly continuous on I. By a similar argument, f is uniformly continuous everywhere.

**Exercise 5.6 - 8**: Let f, g be strictly increasing on an interval  $I \subseteq \mathbb{R}$  and let f(x) > g(x) for all  $x \in I$ . If  $y \in f(I) \cap g(I)$ , show that  $f^{-1}(y) < g^{-1}(y)$ .

<u>Solution</u>: Define  $x_f := f^{-1}(y), x_g := g^{-1}(y)$ . Suppose that  $x_f \ge x_g$ . Then, because g is strictly increasing,  $g(x_f) \ge g(x_g) = y = f(x_f)$ . Now we have the clear contradiction  $g(x_f) \ge f(x_f)$ .

**Exercise 5.6 - 10**: Let I := [a, b] and let  $f : I \to \mathbb{R}$  be continuous on I. If f has an absolute maximum [respectively, minimum] at an interior point c of I, show that f is not injective on I.

<u>Solution</u>: WLOG, assume c is an absolute maximum and b > a. Choose a small enough  $\delta$  so that f is increasing over  $I_1 := (c - \delta, c)$  and decreasing over  $I_2 := (c, c + \delta)$ . Then  $S := f(I_1) \cap f(I_2)$  is either empty or nonempty. If it is nonempty, then there exists  $a \in I_1, b \in I_2$  so that f(a) = f(b), and hence f is not injective. If S is empty, then one of  $I_1$  and  $I_2$  are constant under f, and again f is not injective.

**Exercise 5.6 - 12**: Let  $f : [0,1] \to \mathbb{R}$  be a continuous injective function with f(0) < f(1). Show that f is strictly increasing on [0,1].

<u>Solution</u>: Let  $a, b \in [0, 1]$  with a < b. If f(a) < f(b) we are done, f(a) = f(b) is impossible because f is injective, and so we consider f(a) > f(b). Define I := [a, b] and consider  $m := \max f(I)$ . Either m is inside I, or m = a. If m is internal then exercise 5.6 - 10 shows that f is not injective and we have a contradiction. If m = a then slide a backwards until  $\max I$  is not an endpoint.

## Exercise 6.1 - 1:

Use the definition to find the derivative of each of the following functions:

- (a)  $f(x) := x^3$  for  $x \in \mathbb{R}$ ? Let  $c \in \mathbb{R}$  and define  $L := 3c^2$ . Let  $\varepsilon > 0$  and choose  $\delta = \varepsilon/(4c)$ . Then  $\left| \frac{f(x) f(c)}{x c} L \right| = \left| \frac{x^3 c^3}{x c} 3c^2 \right| = |x^2 + cx + c^2 3c^2| = |x^2 + cx 2c^2|$  $< |(c + \delta)^2 + c(c + \delta) 2c^2| = |\delta^2 + 3c\delta| < |4c\delta| = |4c\frac{\varepsilon}{4c}| = \varepsilon$
- (b) g(x) := 1/x for  $x \in \mathbb{R}$ ,  $x \neq 0$ ? Let  $c \in \mathbb{R}$  and define  $L := -1/c^2$ . Let  $\varepsilon > 0$  and choose  $\delta = (c^3 \varepsilon)/(1 + c^2 \varepsilon)$ . Then

$$\left| \frac{g(x) - g(c)}{x - c} - L \right| = \left| \frac{1/x - 1/c}{x - c} + 1/c^2 \right| = \left| \frac{x - c}{c^2 x} \right| < \left| \frac{(c + \delta) - c}{c^2 x} \right|$$

$$=\left|\frac{\delta}{c^2x}\right|<^*\left|\frac{\delta}{c^2(c-\delta)}\right|=\left|\frac{(c^3\varepsilon)/(1+c^2\varepsilon)}{c^2(c-(c^3\varepsilon)/(1+c^2\varepsilon))}\right|=\varepsilon$$

Parts c and d were proven unsolvable by Gauss.

**Exercise 6.1 - 4**: Let  $f: \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) := x^2$  for x rational, f(x) := 0 for x irrational. Show that f is differentiable at x = 0, and find f'(0).

<u>Solution</u>: With help from hint in back of book. Two in one! The function is differentiable because the following limit exists.

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} x = 0$$

**Exercise 6.1 - 9**: Prove that if  $f: \mathbb{R} \to \mathbb{R}$  is an even function [that is, f(-x) = f(x) for all  $x \in \mathbb{R}$ ] and has a derivative at every point, then the derivative f' is an odd function [that is, f'(-x) = -f'(x) for all  $x \in \mathbb{R}$ ]. Also prove that if  $g: \mathbb{R} \to \mathbb{R}$  is a differentiable odd function, then g' is an even function. Solution: Let  $c \in \mathbb{R}$ .

$$f'(-c) = \lim_{x \to -c} \frac{f(x) - f(-c)}{x - (-c)} = \lim_{x \to -c} \frac{f(x) - f(c)}{x + c} = \lim_{x \to c} \frac{f(-x) - f(c)}{-x + c} = \lim_{x \to c} \frac{f(x) - f(c)}{-x + c} = -f'(c)$$

$$g'(-c) = \lim_{x \to -c} \frac{f(x) - f(-c)}{x - (-c)} = \lim_{x \to -c} \frac{f(x) + f(c)}{x + c} = \lim_{x \to c} \frac{f(-x) + f(c)}{(-x) + c} = \lim_{x \to c} \frac{-f(x) + f(c)}{-x + c} = g'(c)$$

Exercise 6.1 - 15: Given that the restriction of the cosine function cos to  $I := [0, \pi]$  is strictly decreasing and that  $\cos 0 = 1, \cos \pi = -1$ , let J := [-1, 1], and let  $\arccos : J \to \mathbb{R}$  be the function inverse to the restriction of  $\cos$  to I. Show that the arccos is differentiable on (-1, 1) and  $D \arccos y = -1/\sqrt{1 - y^2}$  for  $y \in (-1, 1)$ . Show that arccos is not differentiable at -1 and 1.

<u>Solution</u>: Suppose that  $x = \arccos y$ . Then  $\cos x = y$ . Taking the derivative of both sides with respect to y yields  $-\sin y \times \frac{dx}{dy} = 1$ . Dividing through by  $-\sin y$ , we have our desired result:

$$\frac{d\arccos y}{dy} = \frac{dx}{dy} = \frac{-1}{\sin y} = \frac{-1}{\sqrt{1 - \cos^2 x}} = \frac{-1}{\sqrt{1 - y^2}}$$

Clearly this is well defined for all  $x \in (0,1)$ . The derivative does not exist at x = 0 or x = 1 because arccos is not continuous there (0 and 1 are endpoints).

Exercise 6.2 - 2: Find the points of relative extrema, the intervals on which the following functions are increasing, and those on which they are decreasing. Since the problem asks to <u>find</u> the values, I provide minimal explanation.

<sup>\*</sup>Assuming c > 0. Just switch to  $c + \delta$  for c < 0.

<sup>†</sup>Because  $0 \le |f(x)/x| \le |x|$  for all  $x \in \mathbb{R}$ 

- (a) f(x) := x + 1/x for  $x \neq 0$ ? f has a relative maximum of -2 at x = -1 and a relative minimum of 2 at x = 1, both holding inside of  $\delta = 1/2$ . f is increasing over  $(\infty, -1)$  and  $(1, \infty)$  and decreasing over (-1, 0) and (0, 1). Changes occur at -1 and 1 because |1/x| > |x| only if |x| < 1.
- (b)  $g(x) := x/(x^2 + 1)$  for  $x \in \mathbb{R}$ ? g has a relative minimum of -1/2 at x = -1 and a relative maximum of 1/2 at x = 1, both holding inside of  $\delta = 1/2$ . g is increasing on (-1, 1) and decreasing on  $(-\infty, -1)$  and  $(1, \infty)$ . Similar to f, -1 and 1 are critical points because  $|x| < x^2$  only if |x| < 1.
- (c)  $h(x) := \sqrt{x} 2\sqrt{2+x}$  for x > 0? h has a relative (and absolute) maximum of  $-\sqrt{6}$  at x = 2/3, again holding within  $\delta = 1/2$ . h has no relative minimums. h is increasing over (0, 2/3) and decreasing over  $(2/3, \infty)$ .
- (d)  $k(x) := 2x + 1/x^2$  for  $x \neq 0$ ? k has no relative maximums, but does have a relative minimum of 3 at x = 1. k increases over  $(-\infty, 0)$  and  $(1, \infty)$  and decreases over (0, 1). You might expect x = -1 to be a critical point because of the  $1/x^2$  term, but the curve is grabbed and pulled down by 2x and the function ends up being monotone through that point.

**Exercise 6.2 - 4**: Let  $a_1, a_2, \ldots, a_n$  be real numbers and let f be defined on  $\mathbb{R}$  by

$$f(x) := \sum_{i=1}^{n} (a_i - x)^2 \text{ for } x \in \mathbb{R}.$$

Find the unique point of relative minimum for f.

Solution: Since  $f(x) = \sum (x - a_i)^2 = nx^2 - 2x \sum a_i + \sum a_i^2$  is a simple function of the form  $ax^2 + bx + c$ , it has an absolute minimum of  $-b/(2a) = (2\sum a_i)/(2n) = (\sum a_i)/n$ .

**Exercise 6.2 - 10**: Let  $g: \mathbb{R} \to \mathbb{R}$  be defined by  $g(x) := x + 2x^2 \sin(1/x)$  for  $x \neq 0$  and g(0) := 0. Show that g'(0) = 1, but in every neighborhood of 0 the derivative g'(x) takes on both positive and negative values. Thus g is not monotonic in any neighborhood of 0.

<u>Solution</u>: With help from book hint. The derivative at 0:

$$\lim_{x \to 0} g'(x) = \lim_{x \to 0} D(x \times (1 + 2x \sin \frac{1}{x})) = \lim_{x \to 0} x D(1 + 2x \sin \frac{1}{x}) + 1 + 2x \sin \frac{1}{x} = \lim_{x \to 0} 1 + 2x \sin \frac{1}{x} = 1 + 0 = 1$$

The derivative elsewhere:

$$g'(x) = D(x + 2x^2 \sin \frac{1}{x}) = 1 + D(2x^2 \sin \frac{1}{x}) = 1 + 4x \sin \frac{1}{x} + 2x^2 D(\sin \frac{1}{x}) = 1 + 4x \sin \frac{1}{x} - 2\cos \frac{1}{x}$$

Let  $\delta > 0$  and assume  $\delta < 1/10$ . Then choose an n such that  $x := 1/(n\pi) < \delta$ . Then clearly, depending on whether n is odd or even, g'(x) can be positive or negative.

**Exercise 6.2 - 15**: Let I be an interval. Prove that if f is differentiable on I and if the derivative f' is bounded on I, then f satisfies a Lipschitz condition on I.

<u>Solution</u>: Let  $x, c \in I$ . Then, because the derivative is bounded, there exists a natural number K so that  $\left|\frac{f(x)-f(c)}{x-c}\right| < K$ . A little algebra proves the result:

$$\left| \frac{f(x) - f(x)}{x - c} \right| = \frac{|f(x) - f(c)|}{|x - c|} < K \Rightarrow |f(x) - f(c)| < K|x - c|$$

## **Exercise 6.3 - 8**: Evaluate the following limits:

- (a)  $\lim_{x\to 0} \frac{\arctan x}{x}$   $(-\infty,\infty)$ ? Applying L'Hospital's rule, we get  $\lim_{x\to 0} \frac{1}{1+x^2} = 1$ .
- (b)  $\lim_{x\to 0} \frac{1}{x(\ln x)^2}$  (0,1)? We can rewrite it as  $\frac{1/x}{(\ln x)^2}$  and apply L'Hospital to get  $\frac{-1/x^2}{2\ln x/x} = \frac{1}{2} \frac{1/x}{-\ln x}$ . Applying L'Hospital again, we have  $\frac{1}{2} \frac{-1/x^2}{-1/x} = \frac{1}{2x}$ . Finally, we get  $\lim_{x\to 0+} \frac{1}{2x} = \infty$ .
- (c)  $\lim_{x\to 0+} x^3 \ln x$   $(0,\infty)$ ? Rewrite as  $\frac{\ln x}{1/x^3}$  and apply L'Hospital's rule to get  $\frac{1/x}{-3/x^4} = \frac{-x^3}{3}$  and we have  $\lim_{x\to 0+} \frac{-x^3}{3} = 0$ .
- (d)  $\lim_{x\to\infty} \frac{x^3}{e^3}$   $(0,\infty)$ ?  $\infty$ .

## Exercise 6.4 - 3: Use induction to prove Leibniz's rule for the nth derivative of a product:

$$(fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x)g^{(k)}(x).$$

<u>Solution</u>: Equality clearly holds for n = 1. Now suppose that the equation is true for all  $n \le j$ . We will show it also holds for n = j + 1. For brevity, we omit the "of x" (x) and express differentiation with normal looking exponents.

$$(fg)^{j+1} = ((fg)^{j})^{1}$$

$$= \frac{d}{dx} \sum_{k=0}^{j} {j \choose k} f^{j-k} g^{k}$$

$$= \sum_{k=0}^{j} \frac{d}{dx} {j \choose k} f^{j-k} g^{k}$$

$$= \sum_{k=0}^{j} {j \choose k} (f^{j-k+1}g^{k} + f^{j-k}g^{k+1})$$

$$= \sum_{k=0}^{j+1} {j+1 \choose k} f^{j-k+1}g^{k}$$

**Exercise 6.4 - 10**: Let  $h(x) := e^{-1/x^2}$  for  $x \neq 0$  and h(0) := 0. Show that  $h^{(n)}(0) = 0$  for all  $n \in \mathbb{N}$ . Conclude that the remainder term in Taylor's Theorem for  $x_0 = 0$  does *not* converge to zero as  $n \to \infty$  for  $x \neq 0$ . (hint in book)

• Note the following:

Solution:

$$\lim_{x \to 0} \frac{h(x)}{x^k} = \lim_{x \to 0} \frac{e^{-1/x^2}}{x^k} = \frac{1}{x} \lim_{x \to 0} \frac{\frac{2}{x^3}e^{-1/x^2}}{kx^{k-1}} = \frac{2}{k} \lim_{x \to 0} \frac{e^{-1/x^2}}{x^{k+2}} \Rightarrow \lim_{x \to 0} \frac{e^{-1/x^2}}{x^k} = 0$$

And since every  $h^{(n)}(x)$  is some composition of products and additions of  $\frac{h(x)}{x^k}$ , we know  $h^{(n)}(0) = 0$ .

• Let  $n \in \mathbb{N}$ . If we choose  $x_0 = 0$ , then

$$h(x) = h(0) + h'(0)x + \frac{h''(0)}{2!}x^2 + \dots + \frac{h^{(n)}(0)}{n!}x^n + \frac{h^{(n+1)}(c)}{(n+1)!}x^{n+1} = \frac{h^{(n+1)}(c)}{(n+1)!}x^{n+1}$$

In fact, the constant term is constant as n increases, and hence clearly does not converge to 0.

**Exercise 6.4 - 22**: The equation  $\ln x = x - 2$  has two solutions. Approximate them using Newton's Method. What happens if  $x_1 := \frac{1}{2}$  is the initial point?

<u>Solution</u>: Put the equality in the form  $\ln x - x + 2 = 0$  and define  $f(x) := \ln x - x + 2$ . Also define the recurrence

$$x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{\ln x - x + 2}{1/x - 1}.$$

Choosing  $x_1 = 1/6$  gives the first four terms of (0.166667, 0.158352, 0.158594, 0.158594). Choosing  $x_1 = 3$  gives (3, 3.14792, 3.14619, 3.14619). Hence, the two solutions are roughly x = 0.158954 and x = 3.14619. If  $x_1 = 1/2$ , then  $x_2$  is negative and  $x_3$  is complex.

;)

<sup>&</sup>lt;sup>‡</sup>L'Hospital's rule applies.