DNA methylation

Epigenetics

Epigenetics

DNA Methylation

T T Me —C G A T T A C G A

A A G C — Me T A A T G C

Т		Α		Т	Α	
Т		Α		Т	Α	
Me – C		G		С	G	
G		С		G	_	Me
Α		T		A	т —	IVIC
Т		Α		T	A	
T		Α		T	A	
Α		T		A	T	
С		G		C	G	
G		С		G	C	
Α		Т		A	T	
				^	'	

Т	Α
Т	Α
T C G A	G C – Me
G	C _ Me
А	T
Т	Α
Т	Α
А	T
С	G C
A C G A	С
А	Т

G Α Liver Т Α C G G Α Α G G Brain Α Т Α C G G Т Α

GC counts on the genome

These are counts in 16 basepair bins

CpG are depleted

- These are counts in 16 basepair bins
- •We see rate of about 1 in 100

CpG Islands

CG counts in non-overlapping16 basepair window

•But CpGs cluster into islands enriched near promoter

Irizarry et al. (2009) Mammalian Genome Wu et al (2010) Biostatistics, New illumina CpG array will use our CGI

Gardiner-Garden and Frommer CpG Island definition

- N > 200
- GC-content > 50%
- obs/exp > 0.6
- Lists contain 20,000 CGI

HMM based definition

- Problems:
 - leaves out many clusters
 - Not applicable to other species

Whole genome view...

Why observed/expected and not counts?

GC content varies

Hidden Markov Model Approach

- Assume that GC content is smooth.
- Estimate and assume known: p_c(t) and p_g(t)
- Assume probability of CpG is α_i p_C(t)p_G(t) for two states i = 0, 1.
- To avoid correlation problem, assume counts in bins of size L is Poisson with rate is α_i p_C(t)p_G(t) L
- We use L=16
- Use EM to estimate α₀ and α₁ from data and fit HMM

Irizarry et al. (2009) Mammalian Genome, Wu et al (2010) Biostatistics, New illumina CpG array will use our CGI

Conventional wisdom in 2004

 Hypermethylated CpG islands silence tumor suppressor genes

Cancer cells are globally hypomethyated

High throughput measurement permitted us to observe the entire genome:

Irizarry et al. (2008) Genome Research Aryee el al. (2010) Biostatistics

Finding differentially methyalted regions (DMRs)

Irizarry et al. (2008) Genome Research

Aryee el al. (2010) Biostatistics Jaffe et al (2012) IJE

Genomic traceplot

Microarray data after much preprocessing

General Model

Do we trust single measurements?

Do we trust single measurements? Note X is 1 (cancer) or 0 (normal)

CpG #1

CpG #2

Current general approach

Beware of batch effects

OPINION

Tackling the widespread and critical impact of batch effects in high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly and Rafael A. Irizarry

There is hope

NATURE REVIEWS | GENETICS

OPINION

Tackling the widespread and critical impact of batch effects in high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly and Rafael A. Irizarry

Next generation sequencing

Hansen et al. (2011) Nature Genetics

Bisulfite Treatment

Whole Genome Bisulfite Sequencing

Whole Genome Bisulfilte Sequencing

```
CTTGCTGCTTCGCGCTCGCTATGCAACGATGAT
CTGCTTCTGCGCTCGCTATGCAACGATGATCCGGCT
TTGCTGCTTCTGCGCTCGCTATGCAACGATGATCCGGCTGC
ACTTGCTGCTTCTGCGCTCGCTATGCAACGATGA
TTGCTGCTTCTGCGCTCGCTATGCAACGATGATCC
CTGCTTCTGCGCTCGCTATGCAACGATGATCC
TGCTGCTTCTGCGCTCGCTATGCAACGATGATC
TTGCTGCTTCTGCGCTCGCTATGCAACGATGATCC
TTGCTGCTTCTGCGCTCGCTATGCAACGATGATCC
TTGCTGCTTCTGCGCTTGCTATGCAACGATGATC
```

CTGCACTTGCTGCTTCTGCGCTCTCGCTATGCAACGATGATCCGG

Count Cs and Ts at CpG location

CTTGCTGCTTCTGCGCTCGCTATGCAACGATGAT
CTGCTTCTGCGCTCGCTATGCAACGATGATCCGGCT
TTGCTGCTTCTGCGCTCGCTATGCAACGATGATCCGGCTGC
ACTTGCTGCTTCTGCGCTCGCTATGCAACGATGA
TTGCTGCTTCTGCGCTCGCTATGCAACGATGATCC
CTGCTTCTGCGCTCGCTATGCAACGATGATCCG
TGCTGCTTCTGCGCTCGCTATGCAACGATGATC
CTGCTTCTGCGCTCGCTATGCAACGATGATC
TTGCTGCTTCTGCGCTCGCTATGCAACGATGATCCG
TGCTGCTTCTGCGCTCGCTATGCAACGATGATC

CTGCACTTGCTGCTCTCTGCGCTATGCAACGATGATCCGG

Quantitative Measurement: 80%

```
C C C C C T C T
```

The cost of 30x

We need biological replicates

3 x 10⁹ x bases x (\$ per base) x # samples =
 more \$ than collaborator has

Can we smooth to save \$?

M-bias plots for sequencing

The Data

Smoothing on 4x vs 30x

Smoothing on 4x vs capture data

Two levels

Differentially methylated region

Hypomethylated blocks

End