

Общероссийский математический портал

Е. Р. Аваков, Г. Г. Магарил-Ильяев, Управляемость и необходимые условия оптимальности второго порядка, $Mamem.\ c6.,\ 2019,\ tom\ 210,\ homep\ 1,\ 3–26$

DOI: https://doi.org/10.4213/sm9013

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 178.186.63.117

4 июня 2022 г., 17:19:44

УДК 517.977.52

Е. Р. Аваков, Г. Г. Магарил-Ильяев

Управляемость и необходимые условия оптимальности второго порядка

Приводятся достаточные условия локальной управляемости управляемой системы обыкновенных дифференциальных уравнений, содержательные для случая, когда линейное приближение этой системы не является вполне управляемым. В качестве следствия получены необходимые условия оптимальности второго порядка для задачи оптимального управления.

Библиография: 13 названий.

Ключевые слова: управляемость, оптимальное управление, условия второго порядка.

DOI: https://doi.org/10.4213/sm9013

Введение

В работе изучается абстрактная управляемая система, и основной результат – достаточные условия ее локальной управляемости. Непосредственным следствием этого результата являются условия оптимальности второго порядка для абстрактного варианта задачи оптимального управления. Доказанные общие утверждения применяются к управляемой системе обыкновенных дифференциальных уравнений (ОДУ), что дает достаточные условия ее локальной управляемости, содержательные в ситуации, когда линейное приближение этой системы не является вполне управляемым. Из этих условий сразу следуют необходимые условия оптимальности второго порядка для сильного минимума в задаче оптимального управления с концевыми ограничениями общего вида. Рассмотрение абстрактной управляемой системы представляет, на наш взгляд, самостоятельный интерес и позволяет полностью исследовать интересующие нас вопросы, не отвлекаясь на специальные свойства управляемых систем, описываемых ОДУ.

Работа состоит из трех параграфов. В §1 рассматривается абстрактная управляемая система, доказывается основной результат об условиях ее локальной управляемости и извлекается следствие о необходимых условиях оптимальности второго порядка для абстрактной задачи оптимального управления. Следует сказать, что важным инструментом доказательства основного результата является специальная теорема об обратной функции, которая представляет и самостоятельный интерес. Приложением этих результатов к управляемой

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 17-01-00649-а).

системе ОДУ посвящен § 2, в конце которого приведены соответствующие комментарии. В § 3 дается приложение теоремы о локальной управляемости системы ОДУ к так называемым системам порядка анормальности 1; здесь же рассматриваются некоторые примеры, показывающие, в частности, что условия, гарантирующие локальную управляемость системы, существенны.

§ 1. Абстрактная управляемая система

Пусть X, Z и E – нормированные пространства, $\mathscr{U} \subset E, F : \mathbb{R}^n \times X \times \mathscr{U} \to Z,$ $f : \mathbb{R}^n \times X \to \mathbb{R}^{m_1}$ и $g : \mathbb{R}^n \times X \to \mathbb{R}^{m_2}$. Рассмотрим управляемую систему

$$F(\xi, x, u) = 0, \quad u \in \mathcal{U}, \qquad f(\xi, x) \leqslant 0, \quad g(\xi, x) = 0, \tag{1}$$

где неравенство понимается покоординатно.

Система (1) моделирует управляемую систему ОДУ, которая возникает в задачах оптимального управления; x — фазовая переменная, u — управление, а переменная ξ позволяет учитывать граничные условия достаточно общего вида.

Пусть точка $(\widehat{\xi}, \widehat{x}, \widehat{u}) \in \mathbb{R}^n \times X \times \mathcal{U}$ является допустимой для управляемой системы (1), т.е. она удовлетворяет всем соотношениям в (1).

Определение 1. Скажем, что управляемая система (1) локально управляема относительно точки $(\widehat{\xi},\widehat{x})$, если для каждой окрестности W точки $(\widehat{\xi},\widehat{x})$ существуют такие окрестности W_1 и W_2 нулей в \mathbb{R}^{m_1} и \mathbb{R}^{m_2} соответственно, что для любого $y=(y_1,y_2)\in W_1\times W_2$ найдется элемент $(\xi_y,x_y,u_y)\in W\times \mathscr{U}$, для которого $F(\xi_y,x_y,u_y)=0$, $f(\xi_y,x_y)\leqslant y_1$ и $g(\xi_y,x_y)=y_2$.

Введем некоторые обозначения. Пусть X и Y – нормированные пространства, а X^* , Y^* – их сопряженные. Если $A\colon X\to Y$ – линейный непрерывный оператор, то A^* обозначает сопряженный оператор к A. Через $\langle x^*,x\rangle$ обозначаем значение линейного функционала $x^*\in X^*$ на элементе $x\in X$. Сопряженное пространство $(\mathbb{R}^n)^*$ к \mathbb{R}^n отождествляется с вектор-строками, $(\mathbb{R}^n)^*_+$ – конус линейных функционалов, неотрицательных на неотрицательных элементах \mathbb{R}^n .

Если $B\colon X\times X\to Y$ – билинейное отображение, то действие B на элементе (x_1,x_2) записываем так: $B[x_1,x_2].$

Для производных \hat{f} в точке $(\hat{\xi}, \hat{x}, \hat{u})$ часто для краткости записи будем использовать обозначения $\hat{F}' = F'(\hat{\xi}, \hat{x}, \hat{u}), \ \hat{f}' = f'(\hat{\xi}, \hat{x}), \ \hat{g}' = g'(\hat{\xi}, \hat{x}).$ Аналогичные сокращения и для частных производных: $\hat{F}_x = F_x(\hat{\xi}, \hat{x}, \hat{u}), \ \hat{f}_{\hat{\xi}} = f_{\xi}(\hat{\xi}, \hat{x})$ и т.д.

Для вторых производных отображений $F,\ f$ и g (которые отождествляются с соответствующими непрерывными симметричными билинейными формами) также введем краткие обозначения: $\widehat{F}''=F''(\widehat{\xi},\widehat{x},\widehat{u}),\ \widehat{f}''=f''(\widehat{\xi},\widehat{x}),$ $\widehat{g}''=g''(\widehat{\xi},\widehat{x}).$

Для каждого $q=(\zeta,h,v)\in\mathbb{R}^n\times X\times E$ (в предположении, что соответствующие производные существуют) рассмотрим систему соотношений относительно

¹Всюду в настоящей работе имеются в виду производные по Фреше.

переменных $y^* \in Y^*$, $\lambda_f \in (\mathbb{R}^{m_1})_+^*$ и $\lambda_g \in (\mathbb{R}^{m_2})^*$

$$\begin{cases}
\widehat{F}_{\xi}^{*}y^{*} + \widehat{f}_{\xi}^{*}\lambda_{f} + \widehat{g}_{\xi}^{*}\lambda_{g} = 0, \\
\widehat{F}_{x}^{*}y^{*} + \widehat{f}_{x}^{*}\lambda_{f} + \widehat{g}_{x}^{*}\lambda_{g} = 0, \\
\min_{u \in \mathscr{U}} \langle y^{*}, F(\widehat{\xi}, \widehat{x}, u) \rangle = \langle y^{*}, F(\widehat{\xi}, \widehat{x}, \widehat{u}) \rangle = 0, \\
\langle \lambda_{f}, f(\widehat{\xi}, \widehat{x}) \rangle = 0, \\
\langle y^{*}, \widehat{F}''[q, q] \rangle + \langle \lambda_{f}, \widehat{f}''[(\zeta, h), (\zeta, h)] \rangle + \langle \lambda_{g}, \widehat{g}''[(\zeta, h), (\zeta, h)] \rangle \geqslant 0.
\end{cases} (2)$$

Если сопоставить системе (1) функцию Лагранжа

$$\mathcal{L}(\xi, x, u, y^*, \lambda_f, \lambda_g) = \langle y^*, F(\xi, x, u) \rangle + \langle \lambda_f, f(\xi, x) \rangle + \langle \lambda_g, g(\xi, x) \rangle,$$

где y^* , λ_f и λ_g — множители Лагранжа, то первые два соотношения в (2) — это условия стационарности данной функции по ξ и x в точке $(\widehat{\xi},\widehat{x},\widehat{u})$, третье соотношение — условие минимума по u, четвертое — условие дополняющей нежесткости и последнее — неотрицательность второй производной функции Лагранжа на соответствующих элементах.

Обозначим через $\Lambda(\widehat{\xi},\widehat{x},\widehat{u},q)$ множество множителей Лагранжа $(y^*,\lambda_f,\lambda_g)\in Y^*\times (\mathbb{R}^{m_1})_+^*\times (\mathbb{R}^{m_2})^*$, удовлетворяющих всем соотношениям в (2) при данном q и таких, что $|\lambda_f|+|\lambda_g|\neq 0$.

Система (1) представляет собой, как уже говорилось, абстрактную модель управляемой системы ОДУ в задаче оптимального управления. Предположения ниже – это абстрактные варианты предположений и свойств, которые выполняются в стандартной задаче оптимального управления (подробнее см. § 2).

Обозначим $\Sigma^k = \{\overline{\alpha} = (\alpha_1, \dots, \alpha_k)^T \in \mathbb{R}_+^k \colon \sum_{i=1}^k \alpha_k < 1\}$ и для каждого $\overline{\alpha} = (\alpha_1, \dots, \alpha_k)^T \in \Sigma^k$ положим $\alpha_0 = 1 - \sum_{i=1}^k \alpha_i$.

Основные предположения. 1) X, Z и E – банаховы пространства;

- 2) $\widehat{u} \in \text{int } \mathscr{U}$ и существует такая окрестность точки $(\widehat{\xi},\widehat{x},\widehat{u})$, в которой отображение F имеет непрерывную вторую производную, а отображения f и g имеют непрерывные вторые производные на множестве тех пар (ξ,x) , для которых (ξ,x,u) принадлежит указанной окрестности; оператор $F_x(\widehat{\xi},\widehat{x},\widehat{u})$ обратим;
- 3) для любых $\varepsilon > 0$, $k \in \mathbb{N}$, $\overline{\alpha} = (\alpha_1, \dots, \alpha_k)^T \in \Sigma^k$ и $\widetilde{u} = (u_0, u_1, \dots, u_k) \in \mathscr{U}^{k+1}$ существует такой элемент $M_{\varepsilon}(\overline{\alpha}, \widetilde{u}) \in \mathscr{U}$, что отображение $\overline{\alpha} \mapsto M_{\varepsilon}(\overline{\alpha}, \widetilde{u})$ непрерывно на Σ^k , и для любой точки $(\widehat{\xi}, \widehat{x}, \widehat{\widetilde{u}}) \in \mathbb{R}^n \times X \times \mathscr{U}^{k+1}$ найдется такая ее окрестность $\mathscr{O}(\widehat{\xi}, \widehat{x}, \widehat{\widetilde{u}})$, что при всех $(\xi, x, \widetilde{u}) \in \mathscr{O}(\widehat{\xi}, \widehat{x}, \widehat{\widetilde{u}})$ и $\overline{\alpha} \in \Sigma^k$ справедливы оценки

$$\left\| F(\xi, x, M_{\varepsilon}(\overline{\alpha}, \widetilde{u})) - \sum_{i=0}^{k} \alpha_{i} F(\xi, x, u_{i}) \right\|_{E} < \varepsilon,$$

$$\left\| F_{x}(\xi, x, M_{\varepsilon}(\overline{\alpha}, \widetilde{u})) - \sum_{i=0}^{k} \alpha_{i} F_{x}(\xi, x, u_{i}) \right\| < \varepsilon.$$

Предположение 3) означает, что для любой пары (ξ, x) выпуклые оболочки образов множества $\mathscr U$ при отображениях $u\mapsto F(\xi, x, u)$ и $u\mapsto F_x(\xi, x, u)$ принадлежат замыканиям этих образов. При этом требуется еще некоторая равномерность по параметрам $\xi, x, \widetilde u$ и $\overline \alpha$. Заметим, что отсюда следует, что сами замыкания указанных образов суть выпуклые множества.

В задачах оптимального управления, где F – интегральный оператор, соответствующий дифференциальной связи, приведенные предположения всегда выполняются. Величину $M_{\varepsilon}(\overline{\alpha}, \overline{u})$ будем называть миксом управлений u_0, u_1, \ldots, u_k . Это понятие впервые появилось в работе В. М. Тихомирова [1] (см. также [2]).

Далее мы считаем, что предположения 1)-3) выполнены.

Отображение f, которое участвует в определении системы (1), запишем в координатном виде $f=(f_1,\ldots,f_{m_1})^T$. Уберем те координаты f_i , для которых $f_i(\widehat{\xi},\widehat{x})<0$. Если таких координат меньше чем m_1 , то оставшийся укороченный вектор обозначим через f_a .

Определим множество – конус критических вариаций – следующим образом:

$$K(\widehat{\xi}, \widehat{x}, \widehat{u}) = \left\{ q = (\zeta, h, v) \in \mathbb{R}^n \times X \times E : \\ \widehat{F}'q = 0, \ \widehat{f}'_a[\zeta, h] \leqslant 0, \ \widehat{g}'[\zeta, h] = 0 \right\},$$
(3)

где выражения $\widehat{f}'_a[\zeta,h]$ и $\widehat{g}'[\zeta,h]$ обозначают действия линейных операторов \widehat{f}'_a и \widehat{g}' на элементе (ζ,h) .

Если отображение f таково, что $f(\widehat{\xi},\widehat{x})<0$, то в определении $K(\widehat{\xi},\widehat{x},\widehat{u})$ неравенство $\widehat{f}'_a[\zeta,h]\leqslant 0$ отсутствует.

Основным утверждением настоящей работы является следующая

ТЕОРЕМА 1. Пусть существует такое $q=(\zeta,h,v)\in K(\widehat{\xi},\widehat{x},\widehat{u}),$ что $\Lambda(\widehat{\xi},\widehat{x},\widehat{u},q)=\varnothing$. Тогда система (1) локально управляема относительно точки $(\widehat{\xi},\widehat{x},\widehat{u})$.

Более того, существует такая константа $\kappa_0 > 0$, что для переменных y, x_y и ξ_y из определения локальной управляемости системы (1) справедлива оценка $\|x_y - \widehat{x}\|_X + |\xi_y - \widehat{\xi}| \le \kappa_0 |y|^{1/2}$.

Доказательству теоремы предпошлем два предложения и специальную теорему об обратной функции, представляющую, на наш взгляд, самостоятельный интерес, которая гарантирует существование обратной функции при более слабых, чем в классической ситуации, предположениях. Приведем сначала несколько определений.

Для любого $k \in \mathbb{N}$ и любого набора $\overline{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ рассмотрим отображение $\mathscr{F} \colon \mathbb{R}^n \times X \times \mathbb{R}^k \times \mathcal{U} \to Y$, определенное по правилу

$$\mathscr{F}(\xi, x, \overline{\alpha}, u; \overline{u}) = F(\xi, x, u) + \sum_{i=1}^{k} \alpha_i \big(F(\xi, x, u_i) - F(\xi, x, u) \big), \tag{4}$$

где $\overline{\alpha} = (\alpha_1, \dots, \alpha_k)^T$.

Отображение $(\xi,x,\overline{\alpha},u;\overline{u})\mapsto \mathscr{F}(\xi,x,\overline{\alpha},u;\overline{u})$ дважды непрерывно дифференцируемо, $\mathscr{F}_x(\widehat{\xi},\widehat{x},0,\widehat{u};\overline{u})=\widehat{F}_x$ и \widehat{F}_x – обратимый оператор. Поэтому согласно

классической теореме о неявной функции существует дважды непрерывно дифференцируемое отображение $(\xi, \overline{\alpha}, u) \mapsto x(\xi, \overline{\alpha}, u; \overline{u})$ из некоторой окрестности точки $(\widehat{\xi}, 0, \widehat{u})$ такое, что $\mathscr{F}(\xi, x(\xi, \overline{\alpha}, u; \overline{u}), \overline{\alpha}, u; \overline{u}) = 0$ для всех троек $(\xi, \overline{\alpha}, u)$ из данной окрестности.

Далее мы предполагаем, что не все компоненты вектора $f=(f_1,\ldots,f_{m_1})^T$ таковы, что $f_i(\widehat{\xi},\widehat{x})<0$, и число оставшихся компонент равно l_1 . Укороченный вектор, напомним, обозначаем через f_a . Более простой случай, когда $f(\widehat{\xi},\widehat{x})<0$, рассмотрен непосредственно в доказательстве теоремы 1.

Таким образом, для указанных троек $(\xi, \overline{\alpha}, u)$ и любых $r \in \mathbb{R}^{l_1}$ определено дважды непрерывно дифференцируемое отображение Φ со значениями в $\mathbb{R}^{l_1+m_2}$ по формуле

$$\Phi(\xi, \overline{\alpha}, r, u; \overline{u}) = \left(f_a(\xi, x(\xi, \overline{\alpha}, u; \overline{u})) + r, \ g(\xi, x(\xi, \overline{\alpha}, u; \overline{u})) \right)^T. \tag{5}$$

Обозначим через $\Phi_{(\xi,\overline{\alpha},r)}(\widehat{\xi},0,0,\widehat{u};\overline{u})$ частную производную по $(\xi,\overline{\alpha},r)$ отображения $(\xi,\overline{\alpha},r,u)\mapsto \Phi(\xi,\overline{\alpha},r,u;\overline{u})$ в точке $(\widehat{\xi},0,0,\widehat{u})$, а через $\Phi_{ww}(\widehat{\xi},0,0,\widehat{u};\overline{u})$, где $w=(\xi,u)$, – вторую частную производную по w этого же отображения в той же точке.

Если a – элемент линейного пространства X, то через cone a обозначим луч, натянутый на a, т.е. cone $a = \{\beta a \in X : \beta \geqslant 0\}$.

Следующее предложение – это следствие условия $\Lambda(\widehat{\xi},\widehat{x},\widehat{u},q)=\varnothing$ в терминах отображения $\Phi.$

ПРЕДЛОЖЕНИЕ 1. Пусть выполнены условия теоремы 1. Тогда найдутся $k \in \mathbb{N}$ и набор $\widehat{\overline{u}} = (\widehat{u}_1, \dots, \widehat{u}_k) \in \mathscr{U}^k$ такие, что

$$0 \in \operatorname{int} \left\{ \Phi_{(\xi, \overline{\alpha}, r)}(\widehat{\xi}, 0, 0, \widehat{u}; \widehat{\overline{u}}) (\mathbb{R}^n \times \mathbb{R}^k_+ \times \mathbb{R}^{l_1}_+) + \operatorname{cone} \Phi_{ww}(\widehat{\xi}, 0, 0, \widehat{u}; \widehat{\overline{u}}) [(\zeta, v), (\zeta, v)] \right\}.$$

$$(6)$$

Доказательство. Предположим, что какое бы $k \in \mathbb{N}$ и какой бы набор $\overline{u} = (u_1, \dots, u_k) \in \mathscr{U}^k$ мы ни взяли, включение (6) не выполняется. Покажем, что в этом случае $\Lambda(\widehat{\xi}, \widehat{x}, \widehat{u}, q) \neq \varnothing$ в противоречии с условием предложения.

По теореме отделимости найдется ненулевой вектор $\lambda(\overline{u}) \in (\mathbb{R}^{l_1+m_2})^*$ такой, что

$$\left\langle \lambda(\overline{u}), \Phi_{(\xi, \overline{\alpha}, r)}(\widehat{\xi}, 0, 0, \widehat{u}; \overline{u})[\xi, \overline{\alpha}, r] + \beta \Phi_{ww}(\widehat{\xi}, 0, 0, \widehat{u}; \overline{u})[(\zeta, v), (\zeta, v)] \right\rangle \geqslant 0 \tag{7}$$

для всех $\xi \in \mathbb{R}^n$, $\overline{\alpha} \in \mathbb{R}^k_+$, $r \in \mathbb{R}^{l_1}_+$ и $\beta \geqslant 0$.

У отображения $(\xi, \overline{\alpha}, u) \mapsto x(\xi, \overline{\alpha}, u; \overline{u})$, определенного выше, частные производные $\widehat{x}_{\xi}(\overline{u})$ и $\widehat{x}_{\alpha_i}(\overline{u})$ соответственно по ξ и α_i , $1 \leqslant i \leqslant k$, в точке $(\widehat{\xi}, 0, \widehat{u})$ удовлетворяют согласно формуле для производной неявной функции соотношениям

$$\widehat{F}_x \widehat{x}_{\alpha_i}(\overline{u})\alpha_i + \alpha_i F(\widehat{\xi}, \widehat{x}, u_i) = 0, \qquad i = 1, \dots, k,$$
(8)

для всех $\alpha_i \in \mathbb{R}$ и

$$\widehat{F}_x \widehat{x}_{\xi}(\overline{u})\xi + \widehat{F}_{\xi}\xi = 0 \tag{9}$$

для всех $\xi \in \mathbb{R}^n$.

Видим, что $\widehat{x}_{\alpha_i}(\overline{u})$ зависит только от i-й компоненты вектора \overline{u} , а $\widehat{x}_{\xi}(\overline{u})$ вообще не зависит от \overline{u} , и поэтому ниже пишем $\widehat{x}_{\alpha_i}(u_i)$ и \widehat{x}_{ξ} вместо $\widehat{x}_{\alpha_i}(\overline{u})$ и $\widehat{x}_{\xi}(\overline{u})$.

Представляя вектор $\lambda(\overline{u})$ в виде $\lambda(\overline{u}) = (\lambda_1(\overline{u}), \lambda_2(\overline{u}))$, где $\lambda_i(\overline{u}) \in (\mathbb{R}^{m_i})^*$, i = 1, 2, и используя теорему о производной сложной функции, неравенство (7) запишем так (ниже \widehat{f}_{ax} и $\widehat{f}_{a\xi}$ обозначают частные производные отображения f_a соответственно по x и ξ в точке $(\widehat{\xi}, \widehat{x})$):

$$\left\langle \lambda_{1}(\overline{u}), \widehat{f}_{ax}\widehat{x}_{\xi}\xi + \widehat{f}_{a\xi}\xi + \widehat{f}_{ax}\sum_{i=1}^{k}\widehat{x}_{\alpha_{i}}(u_{i})\alpha_{i} + r \right\rangle$$

$$+ \left\langle \lambda_{2}(\overline{u}), \widehat{g}_{x}\widehat{x}_{\xi}\xi + \widehat{g}_{\xi}\xi + \widehat{g}_{x}\sum_{i=1}^{k}\widehat{x}_{\alpha_{i}}(u_{i})\alpha_{i} \right\rangle$$

$$+ \left\langle \lambda(\overline{u}), \beta\Phi_{ww}(\widehat{\xi}, 0, 0, \widehat{u}; \overline{u})[(\zeta, v), (\zeta, v)] \right\rangle \geqslant 0$$

$$(10)$$

для всех $\xi \in \mathbb{R}^n$, $\alpha_i \geqslant 0$, $i = 1, \ldots, k$, $r \in \mathbb{R}^{l_1}_+$ и $\beta \geqslant 0$.

Будем считать, что $|\lambda(\overline{u})|=1$. Обозначим множество всех таких $\lambda(\overline{u})$, удовлетворяющих (10), через $\mathscr{A}(\overline{u})$. Ясно, что $\mathscr{A}(\overline{u})$ – замкнутое подмножество единичной сферы в $(\mathbb{R}^{l_1+m_2})^*$. Таким образом, каждому $k\in\mathbb{N}$ и каждому набору $\overline{u}=(u_1,\ldots,u_k)$ можно сопоставить замкнутое подмножество указанного компакта. Покажем, что семейство \mathscr{A} всех таких подмножеств образует центрированную систему.

Пусть $\overline{u}_1,\ldots,\overline{u}_s$ — произвольное конечное семейство наборов $\overline{u}_i=(u_{i1},\ldots,u_{ik_i}),\ i=1,\ldots,s$. Проверим, что $\bigcap_{i=1}^s\mathscr{A}(\overline{u}_i)\neq\varnothing$. Действительно, пусть \overline{u} — набор, состоящий из объединения всех указанных наборов. Для \overline{u} справедливо неравенство, аналогичное (10), с $\lambda(\overline{u})$ и заменой k на число элементов в наборе \overline{u} . Пусть $1\leqslant j\leqslant s$. Положив в этом аналоге неравенства (10) $\alpha_i=0$ для тех индексов i, для которых u_i не принадлежит набору \overline{u}_j , получим, что $\lambda(\overline{u})\in\mathscr{A}(\overline{u}_j)$ и, значит, $\lambda(\overline{u})\in\bigcap_{i=1}^s\mathscr{A}(\overline{u}_j)$.

Итак, семейство множеств \mathscr{A} образует центрированную систему замкнутых подмножеств компакта, и поэтому существует вектор $\lambda=(\lambda_1,\lambda_2),\ |\lambda|=1,\ для$ которого справедливо соотношение (10) при любом наборе \overline{u} . В частности, оно справедливо для наборов, состоящих из одного элемента: $\overline{u}=u_1$. Будем писать u вместо u_1 и так как в данном случае $\overline{\alpha}=\alpha_1$, то соответственно вместо α_1 будем писать α .

Таким образом, согласно (10) для таких наборов справедливо соотношение

$$\langle \lambda_{1}, \widehat{f}_{ax}\widehat{x}_{\xi}\xi + \widehat{f}_{a\xi}\xi + \widehat{f}_{ax}\widehat{x}_{\alpha}(u)\alpha + r \rangle + \langle \lambda_{2}, \widehat{g}_{x}\widehat{x}_{\xi}\xi + \widehat{g}_{\xi}\xi + \widehat{g}_{x}\widehat{x}_{\alpha}(u)\alpha \rangle + \langle \lambda, \beta\Phi_{ww}(\widehat{\xi}, 0, 0, \widehat{u}; u)[(\zeta, v), (\zeta, v)] \rangle \geqslant 0$$

$$(11)$$

для всех $u \in \mathcal{U}, \xi \in \mathbb{R}^n, \alpha \geqslant 0, r \in \mathbb{R}^{l_1}_+$ и $\beta \geqslant 0$.

Полагая в (11) $\xi = 0$ и $\alpha = \beta = 0$, получаем, что $\langle \lambda_1, r \rangle \geqslant 0$ для всех $r \in \mathbb{R}^{l_1}_+$ и, значит, $\lambda_1 \in (\mathbb{R}^{l_1})^*_+$.

Положим $y^* = -(\widehat{F}_x^{-1})^*(\widehat{f}_{ax}^*\lambda_1 + \widehat{g}_x^*\lambda_2)$. Тогда

$$\widehat{F}_{x}^{*}y^{*} + \widehat{f}_{ax}^{*}\lambda_{1} + \widehat{g}_{x}^{*}\lambda_{2} = 0.$$
(12)

Если в (11) $\xi = 0$, $\beta = 0$ и r = 0, то

$$\langle \lambda_1, \widehat{f}_{ax}\widehat{x}_{\alpha}(u)\alpha \rangle + \langle \lambda_2, \widehat{g}_x\widehat{x}_{\alpha}(u)\alpha \rangle \geqslant 0$$
 (13)

для всех $u \in \mathcal{U}$ и $\alpha \geqslant 0$.

Действуя нулевым функционалом в (12) на элемент $\widehat{x}_{\alpha}(u)\alpha$, получаем

$$\langle y^*, \widehat{F}_x \widehat{x}_\alpha(u)\alpha \rangle + \langle \lambda_1, \widehat{f}_{ax} \widehat{x}_\alpha(u)\alpha \rangle + \langle \lambda_2, \widehat{g}_x \widehat{x}_\alpha(u)\alpha \rangle = 0.$$

Отсюда в силу (8) (где $\alpha_i=\alpha,\,\overline{u}=u_i=u$) и (13) будем иметь для всех $u\in\mathscr{U}$ и $\alpha\geqslant 0$

$$-\langle y^*, \widehat{F}_x \widehat{x}_\alpha(u)\alpha\rangle = \langle y^*, \alpha F(\widehat{\xi}, \widehat{x}, u)\rangle \geqslant 0 = \langle y^*, F(\widehat{\xi}, \widehat{x}, \widehat{u})\rangle$$

и, значит,

$$\min_{u \in \mathcal{U}} \langle y^*, F(\widehat{\xi}, \widehat{x}, u) \rangle = \langle y^*, F(\widehat{\xi}, \widehat{x}, \widehat{u}) \rangle = 0.$$
 (14)

Теперь если $\alpha=\beta=0$ и r=0 в (11), то в силу произвольности ξ справедливо равенство

$$\langle \lambda_1, \widehat{f}_{ax}\widehat{x}_{\xi}\xi + \widehat{f}_{a\xi}\xi \rangle + \langle \lambda_2, \widehat{g}_x\widehat{x}_{\xi}\xi + \widehat{g}_{\xi}\xi \rangle = 0.$$

Отсюда в силу равенства (12), примененного к $\hat{x}_{\xi}\xi$, приходим к соотношению

$$-\langle y^*, \widehat{F}_x \widehat{x}_{\xi} \xi \rangle + \langle \lambda_1, \widehat{f}_{a\xi} \xi \rangle + \langle \lambda_2, \widehat{g}_{\xi} \xi \rangle = 0.$$

Вместе с (9) это означает, что

$$\langle y^*, \widehat{F}_{\xi} \xi \rangle + \langle \lambda_1, \widehat{f}_{a\xi} \xi \rangle + \langle \lambda_2, \widehat{g}_{\xi} \xi \rangle = 0,$$

или

$$\widehat{F}_{\varepsilon}^* y^* + \widehat{f}_{a\varepsilon}^* \lambda_1 + \widehat{g}_{\varepsilon}^* \lambda_2 = 0. \tag{15}$$

Пусть для определенности $f_a=(f_1,\ldots,f_{l_1})^T$, и пусть $\lambda_1=(\lambda_{11},\ldots,\lambda_{1l_1})$. Положим $\lambda_f=(\lambda_{11},\ldots,\lambda_{1l_1},0,\ldots,0)\in(\mathbb{R}^{m_1})^*$. Тогда если в равенствах (12) и (15) заменить f_a на f, а λ_1 на λ_f , то, очевидно, эти равенства останутся верными. Кроме того, ясно, что справедливо соотношение $\langle \lambda_f,f(\widehat{\xi},\widehat{x})\rangle=0$. Отсюда в силу (12), (15) (с f и λ_f) и (14), обозначая $\lambda_g=\lambda_2$, получаем, что тройка $(y^*,\lambda_f,\lambda_g)\in Y^*\times(\mathbb{R}^{m_1})^*_+\times(\mathbb{R}^{m_2})^*$, для которой $|\lambda_f|+|\lambda_g|\neq 0$, удовлетворяет первым четырем соотношениям в (2). Покажем, что она удовлетворяет и пятому соотношению в (2). Для этого преобразуем второе слагаемое в (11). Но сначала сделаем несколько замечаний.

Напомним, что $w=(\xi,u)$. Для частных производных F в точке $(\widehat{\xi},\widehat{x},\widehat{u})$ используем краткие обозначения: $\widehat{F}_w=F_w(\widehat{\xi},\widehat{x},\widehat{u}),\ \widehat{F}_{xx}=F_{xx}(\widehat{\xi},\widehat{x},\widehat{u}),\ \widehat{F}_{xw}=F_{xw}(\widehat{\xi},\widehat{x},\widehat{u})$ и т.д.

Частную производную по w отображения $(\xi, \overline{\alpha}, u) \mapsto x(\xi, \overline{\alpha}, u; \overline{u})$ в точке $(\widehat{\xi}, 0, \widehat{u})$ обозначим \widehat{x}_w . Согласно правилу дифференцирования неявной функции $\widehat{x}_w = -\mathscr{F}_x(\widehat{\xi}, \widehat{x}, 0, \widehat{u}; \overline{u})\mathscr{F}_w(\widehat{\xi}, \widehat{x}, 0, \widehat{u}; \overline{u}) = -\widehat{F}_x^{-1}\widehat{F}_w$.

По условию $(\zeta, h, v) \in K(\widehat{\xi}, \widehat{x}, \widehat{u})$ и поэтому $\widehat{F}_x h + \widehat{F}_w p = 0$, где $p = (\zeta, v)$. Следовательно, $h = -\widehat{F}_x^{-1} \widehat{F}_w p = \widehat{x}_w p$. Используя этот факт и известную формулу

для второй производной неявной функции (см., например, [3]), будем иметь

$$\begin{split} \widehat{x}_{ww}[p,p] &= \widehat{F}_{x}^{-1}(((\widehat{F}_{xw} + \widehat{F}_{xx}\widehat{x}_{w})p)\widehat{F}_{x}^{-1}\widehat{F}_{w}p - ((\widehat{F}_{ww} + \widehat{F}_{wx}\widehat{x}_{w})p)p) \\ &= \widehat{F}_{x}^{-1}(\widehat{F}_{xw}[p,\widehat{F}_{x}^{-1}\widehat{F}_{w}p] + \widehat{F}_{xx}[\widehat{x}_{w}p,\widehat{F}_{x}^{-1}\widehat{F}_{w}p] - \widehat{F}_{ww}[p,p] - \widehat{F}_{wx}[\widehat{x}_{w}p,p]) \\ &= -\widehat{F}_{x}^{-1}(\widehat{F}_{xx}[h,h] + 2\widehat{F}_{xw}[h,p] + \widehat{F}_{ww}[p,p]) = -\widehat{F}_{x}^{-1}\widehat{F}''[q,q]. \end{split}$$

Далее, непосредственный подсчет показывает, что

$$\begin{split} &\Phi_{ww}(\widehat{\xi},0,0,\widehat{u};\overline{u})[p,p] \\ &= (\widehat{f}_a''[(\zeta,h),(\zeta,h)] + \widehat{f}_{ax}\widehat{x}_{ww}[p,p],\widehat{g}''[(\zeta,h),(\zeta,h)] + \widehat{g}_x\widehat{x}_{ww}[p,p]). \end{split}$$

Подставляя сюда выражение для $\widehat{x}_{ww}[p,p]$, подсчитанное выше, получим из (11) при $\xi=0,~\alpha=0,~r=0$ и $\beta=1,$ что

$$\langle \lambda, \Phi_{ww}(\widehat{\xi}, 0, 0, \widehat{u}; \overline{u})[p, p] \rangle = \langle \lambda_1, \widehat{f}''_a[(\zeta, h), (\zeta, h)] \rangle + \langle \lambda_2, \widehat{g}''[(\zeta, h), (\zeta, h)] \rangle - \langle \widehat{f}^*_{ax} \lambda_1 + \widehat{g}^*_x \lambda_2, \widehat{F}^{-1}_x \widehat{F}''[q, q] \rangle \geqslant 0.$$

Отсюда и из определения функционала y^* следует, что тройка $(y^*, \lambda_1, \lambda_2)$ удовлетворяет и пятому соотношению в (2), которое с заменой f_a на f останется верным и для тройки $(y^*, \lambda_f, \lambda_g)$. Таким образом, $\Lambda(\widehat{\xi}, \widehat{x}, \widehat{u}, q) \neq \emptyset$ в противоречии с предположением.

Предложение 1 доказано.

Следующее предложение утверждает, что если $x(\xi,\overline{\alpha},u;\overline{u})$ – решение уравнения $\mathscr{F}(\xi,x,\overline{\alpha},u;\overline{u})=0$ (см. (4)), то оно может быть сколь угодно точно аппроксимировано решениями уравнения $F(\xi,x,M_{\varepsilon}(\overline{\alpha},(u,\overline{u})))=0$, где $M_{\varepsilon}(\overline{\alpha},(u,\overline{u}))$ – микс управлений (u,\overline{u}) (см. основные предположения). Точнее говоря, справедливо

ПРЕДЛОЖЕНИЕ 2. Пусть выполнены условия теоремы 1 и $\widehat{\overline{u}}=(\widehat{u}_1,\ldots,\widehat{u}_k)$ – набор из предложения 1. Существуют окрестности $\mathcal{O}_0(\widehat{\xi})$, $\mathcal{O}_0(0)$ и $\mathcal{O}_0(\widehat{u})$ соответственно точки $\widehat{\xi}$, нуля в \mathbb{R}^k и \widehat{u} , а также число $\varepsilon_0>0$ такие, что для любого $0<\varepsilon\leqslant\varepsilon_0$ найдется непрерывное отображение $(\xi,\overline{\alpha},u)\mapsto x_\varepsilon(\xi,\overline{\alpha},u)$ из $\mathscr{O}_0(\widehat{\xi})\times(\mathscr{O}_0(0)\cap\Sigma^k)\times\mathscr{O}_0(\widehat{u})$ в $\mathscr{O}(\widehat{x})$, для которого $F(\xi,x_\varepsilon(\xi,\overline{\alpha},u),M_\varepsilon(\overline{\alpha},(u,\widehat{u})))=0$ и

$$||x_{\varepsilon}(\xi, \overline{\alpha}, u) - x(\xi, \overline{\alpha}, u; \widehat{\overline{u}})||_{X} < 2||\widehat{F}_{x}^{-1}||_{\varepsilon}$$
(16)

npu $\operatorname{scex}(\xi, \overline{\alpha}, u) \in \mathscr{O}_0(\widehat{\xi}) \times (\mathscr{O}_0(0) \cap \Sigma^k) \times \mathscr{O}_0(\widehat{u}).$

Это предложение мы не доказываем, так как оно есть частный случай более общего утверждения из работы авторов [4] (см. следствие 3).

Локальная управляемость системы — это по-существу возможность разрешить определенное уравнение, естественным образом связанное с управляемой системой (1). Доказываемая ниже теорема 2 об обратной функции позволяет эту возможность реализовать. Особенность этой теоремы состоит в том, что для каждого значения правой части уравнения указывается такая окрестность исходного отображения, что уравнение разрешимо с данной правой частью для любого отображения из данной окрестности.

Перед формулировкой теоремы приведем одно определение.

Пусть V – открытое подмножество в нормированном пространстве X. Обозначим через $C(V, \mathbb{R}^m)$ пространство всех непрерывных ограниченных отображений G из V в \mathbb{R}^m с нормой $\|G\| = \sup_{w \in V} |G(w)|$.

Если \mathscr{X} — нормированное пространство, $x_0 \in \mathscr{X}$ и $\gamma > 0$, то $U_{\mathscr{X}}(x_0,\gamma)$ и $B_{\mathscr{X}}(x_0,\gamma)$ обозначают открытый и замкнутый шары соответственно в \mathscr{X} с центром в точке x_0 радиуса γ .

ТЕОРЕМА 2. Пусть X – нормированное пространство, K – выпуклый конус в X, V – окрестность точки $\widehat{w} \in K$, отображение $\widehat{G} \colon V \to \mathbb{R}^m$ непрерывно и ограничено на V, дважды дифференцируемо в точке \widehat{w} , $p \in \operatorname{Ker} \widehat{G}'(\widehat{w}) \cap K$, $\|p\| = 1$ и

 $0 \in \operatorname{int}\{\widehat{G}'(\widehat{w})(K - \widehat{w}) + \operatorname{conv}\widehat{G}''(\widehat{w})[p, p]\}. \tag{17}$

Тогда существуют окрестность V_1 точки $\widehat{G}(\widehat{w})$ и константа $\kappa > 0$ такие, что для любого $y \in V_1$ найдется окрестность V_y отображения $\widehat{G} \in C(V, \mathbb{R}^m)$, обладающая свойством, что для любого $G \in V_y$ существует точка $w_G(y) \in V \cap K$, для которой справедливы соотношения

$$G(w_G(y)) = y, \|w_G(y) - \widehat{w}\|_X \le \kappa |y - \widehat{G}(\widehat{w})|^{1/2}.$$
 (18)

Доказательство. Рассмотрим линейное отображение $\Lambda\colon X\times\mathbb{R}\to\mathbb{R}^m,$ определенное формулой

$$\Lambda(w,\beta) = \widehat{G}'(\widehat{w})w + \frac{1}{2}\beta\widehat{G}''(\widehat{w})[p,p].$$

Из условия (17) следует, что $0 \in \operatorname{int} \Lambda((K - \widehat{w}) \times \mathbb{R}_+)$. Отсюда в свою очередь вытекает, что существуют $\rho > 0$, для которого $U_{\mathbb{R}^m}(0,\rho) \subset \Lambda((K - \widehat{w}) \times \mathbb{R}_+)$, непрерывное отображение $R = (R_1, R_2) \colon U_{\mathbb{R}^m}(0,\rho) \to (K - \widehat{w}) \times \mathbb{R}_+$ и константа $\gamma > 0$ такие, что

$$\Lambda(R_1(z), R_2(z)) = z, \qquad ||R_1(z)||_X + R_2(z) \le \gamma |z|$$
 (19)

для всех $z \in U_{\mathbb{R}^m}(0,\rho)$.

Доказательство этого утверждения основано на стандартных фактах выпуклой геометрии. Действительно, так как $0\in \inf\Lambda((K-\widehat{w})\times\mathbb{R}_+)$, то существует m-мерный симплекс $S\subset\Lambda((K-\widehat{w})\times\mathbb{R}_+)$ такой, что $0\in \inf S$. Пусть e_1,\ldots,e_{m+1} – вершины S. Любая точка $z\in S$ представляется единственным образом в виде

$$z = \sum_{i=1}^{m+1} \lambda_i(z)e_i, \tag{20}$$

где $\lambda_i(z)\geqslant 0$, функции $z\mapsto \lambda_i(z),\ i=1,\dots,m+1$, непрерывны на S и $\sum_{i=1}^{m+1}\lambda_i(z)=1$.

Так как $S \subset \Lambda((K-\widehat{w}) \times \mathbb{R}_+)$, то найдутся такие элементы $(w_i, \beta_i) \in (K-\widehat{w}) \times \mathbb{R}_+$, что $\Lambda(w_i, \beta_i) = e_i, i = 1, \ldots, m+1$.

Пусть $\rho > 0$ таково, что $U_{\mathbb{R}^m}(0,\rho) \subset S$. Определим отображение $R = (R_1,R_2)$: $U_{\mathbb{R}^m}(0,\rho) \to (K-\widehat{w}) \times \mathbb{R}_+$ по следующему правилу: R(0) = 0 и если $z \neq 0$, то

$$R(z) = (R_1(z), R_2(z)) = \rho^{-1}|z| \sum_{i=1}^{m+1} \lambda_i(\rho|z|^{-1}z)(w_i, \beta_i).$$

Из выпуклости $(K - \widehat{w}) \times \mathbb{R}_+$ и того, что нуль принадлежит этому множеству, следует, что $R(z) \in (K - \widehat{w}) \times \mathbb{R}_+$.

Далее, учитывая (20) и равенство $\sum_{i=1}^{m+1} \lambda_i(z) = 1$, имеем

$$\begin{split} \Lambda R(z) &= \rho^{-1} |z| \sum_{i=1}^{m+1} \lambda_i (\rho |z|^{-1} z) \Lambda(w_i, \beta_i) \\ &= \rho^{-1} |z| \sum_{i=1}^{m+1} \lambda_i (\rho |z|^{-1} z) e_i = \rho^{-1} |z| \rho |z|^{-1} z = z, \\ \|R(z)\|_{X \times \mathbb{R}} &= \|(R_1(z)\|_X + R_2(z) \\ &\leqslant \rho^{-1} |z| \sum_{i=1}^{m+1} \lambda_i (\rho |z|^{-1} z) \Big(\max_{1 \leqslant i \leqslant m+1} \|w_i\|_X + \max_{1 \leqslant i \leqslant m+1} \beta_i \Big) \\ &= \rho^{-1} \Big(\max_{1 \leqslant i \leqslant m+1} \|w_i\|_X + \max_{1 \leqslant i \leqslant m+1} \beta_i \Big) |z| = \gamma |z|. \end{split}$$

Таким образом, справедливы соотношения (19). Непрерывность отображения R следует из его определения и второго из этих соотношений.

Так как отображение \widehat{G} дважды дифференцируемо в точке \widehat{w} , то существует такое $0 < \delta \leqslant \min((8\gamma\rho)^{1/2}, (8\gamma\|\widehat{G}''(\widehat{w})\|)^{-1}, 1)$, что $U_X(\widehat{w}, \delta) \subset V$ и для всех $w \in U_X(\widehat{w}, \delta)$ справедливо соотношение

$$\left| \widehat{G}(w) - \widehat{G}(\widehat{w}) - \widehat{G}'(\widehat{w})(w - \widehat{w}) - \frac{1}{2}\widehat{G}''(\widehat{w})[w - \widehat{w}, w - \widehat{w}] \right|$$

$$\leq \frac{1}{16\gamma} \|w - \widehat{w}\|_X^2.$$
(21)

Пусть $V_1 = U_{\mathbb{R}^m}(\widehat{G}(\widehat{w}), \delta^2/(16\gamma))$. Для каждого $y \in V_1$ положим $V_y = U_{C(V,\mathbb{R}^m)}(\widehat{G}, |y - \widehat{G}(\widehat{w})|/4)$ (считаем, что если $y = \widehat{G}(\widehat{w})$, то $V_y = \{\widehat{G}\}$; в этом случае соотношения (18) выполняются очевидным образом).

Пусть $y \in V_1$, $y \neq \widehat{G}(\widehat{w})$ и $G \in V_y$. Рассмотрим отображение $\Psi_y \colon B_{\mathbb{R}^m}(\widehat{G}(\widehat{w}), 2|y - \widehat{G}(\widehat{w})|) \to \mathbb{R}^m$, определенное формулой

$$\Psi_y(z) = y + z - G(\widehat{w} + R_1(z - \widehat{G}(\widehat{w})) + (R_2(z - \widehat{G}(\widehat{w})))^{1/2}p).$$

Определение корректно. Действительно, если $z \in B_{\mathbb{R}^m}(\widehat{G}(\widehat{w}), 2|y-\widehat{G}(\widehat{w})|),$ то

$$|z - \widehat{G}(\widehat{w})| \le 2|y - \widehat{G}(\widehat{w})| < 2\frac{\delta^2}{16\gamma} \le \rho.$$

Далее,

$$||R_1(z - \widehat{G}(\widehat{w}))||_X \leqslant \gamma |z - \widehat{G}(\widehat{w})| \leqslant 2\gamma |y - \widehat{G}(\widehat{w})| < 2\gamma \left(\frac{\delta^2}{16\gamma}\right) < \frac{\delta}{2},$$

$$||(R_2(z - \widehat{G}(\widehat{w})))^{1/2}p||_X = (R_2(z - \widehat{G}(\widehat{w})))^{1/2} \leqslant (\gamma |z - \widehat{G}(\widehat{w})|)^{1/2}$$

$$\leqslant (2\gamma |y - \widehat{G}(\widehat{w})|)^{1/2} < (2\gamma)^{1/2} \left(\frac{\delta}{4\gamma^{1/2}}\right) < \frac{\delta}{2}.$$

Следовательно,

$$\widehat{w} + R_1(z - \widehat{G}(\widehat{w})) + (R_2(z - \widehat{G}(\widehat{w})))^{1/2} p \in \widehat{w} + U_X(0, \delta) \subset V.$$

Обозначим для краткости $r(z)=R_1(z-\widehat{G}(\widehat{w})),$ $\beta(z)=R_2(z-\widehat{G}(\widehat{w}))$ и $v(z)=r(z)+(\beta(z))^{1/2}p.$

Покажем, что образ отображения Ψ_y содержится в шаре $B_{\mathbb{R}^m}(\widehat{G}(\widehat{w}), 2|y-\widehat{G}(\widehat{w})|)$. Действительно, учитывая равенство

$$\widehat{G}'(\widehat{w})v(z) + \frac{1}{2}\beta(z)\widehat{G}''(\widehat{w})[p,p] + \widehat{G}(\widehat{w}) = z,$$

которое следует из первого соотношения в (19) и из того, что $p \in \operatorname{Ker} \widehat{G}'(\widehat{w}),$ элементарно проверяемое соотношение

$$-\frac{1}{2}\widehat{G}''(\widehat{w})[v(z),v(z)] + \frac{1}{2}\beta(z)\widehat{G}''(\widehat{w})[p,p] = -\widehat{G}''(\widehat{w})\bigg[\frac{1}{2}r(z) + (\beta(z))^{1/2}p,\,r(z)\bigg],$$

неравенство (21) и то, что $G \in V_y$, будем иметь

$$\begin{split} |\Psi_y(z) - \widehat{G}(\widehat{w})| &\leqslant |y - \widehat{G}(\widehat{w})| + |G(\widehat{w} + v(z)) - \widehat{G}(\widehat{w} + v(z))| \\ &+ \left| \widehat{G}(\widehat{w} + v(z)) - \widehat{G}(\widehat{w}) - \widehat{G}'(\widehat{w})v(z) - \frac{1}{2}\widehat{G}''(\widehat{w})[v(z), v(z)] \right| \\ &+ \left| \widehat{G}''(\widehat{w}) \left[\frac{1}{2}r(z) + (\beta(z))^{1/2}p, r(z) \right] \right| \\ &\leqslant |y - \widehat{G}(\widehat{w})| + \frac{1}{4}|y - \widehat{G}(\widehat{w})| + \frac{1}{16\gamma} \|v(z)\|_X^2 \\ &+ \|\widehat{G}''(\widehat{w})\| \left\| \frac{1}{2}r(z) + (\beta(z))^{1/2}p \right\|_X \|r(z)\|_X. \end{split}$$

Так как $\delta \leqslant 1$, то из оценок выше следует, что $2\gamma |y - \widehat{G}(\widehat{w})| < 1$, и тогда имеем

$$\begin{aligned} \|v(z)\|_X^2 & \leqslant (\|r(z)\|_X + \|(\beta(z))^{1/2}p\|_X)^2 \leqslant (2\gamma|y - \widehat{G}(\widehat{w})| + (2\gamma|y - \widehat{G}(\widehat{w})|)^{1/2})^2 \\ & \leqslant (2(2\gamma|y - \widehat{G}(\widehat{w})|)^{1/2})^2 = 8\gamma|y - \widehat{G}(\widehat{w})|. \end{aligned}$$

Далее, из тех же оценок получаем

$$\left\| \frac{1}{2} r(z) + (\beta(z))^{1/2} p \right\|_{X} \leqslant \frac{1}{2} \|r(z)\|_{X} + \|(\beta(z))^{1/2} p\|_{X} < \frac{\delta}{4} + \frac{\delta}{2} < \delta.$$

Следовательно,

$$\|\widehat{G}''(\widehat{w})\| \left\| \frac{1}{2} r(z) + (\beta(z))^{1/2} p \right\|_{X} \|r(z)\|_{X} \leqslant \|\widehat{G}''(\widehat{w})\| \delta 2\gamma |y - \widehat{G}(\widehat{w})| \leqslant \frac{1}{4} |y - \widehat{G}(\widehat{w})|.$$

Объединяя все оценки, приходим к нужному утверждению:

$$\begin{split} |\Psi_y(z) - \widehat{G}(\widehat{w})| &\leqslant |y - \widehat{G}(\widehat{w})| + \frac{1}{4}|y - \widehat{G}(\widehat{w})| + \frac{1}{2}|y - \widehat{G}(\widehat{w})| + \frac{1}{4}|y - \widehat{G}(\widehat{w})| \\ &= 2|y - \widehat{G}(\widehat{w})|. \end{split}$$

Отображение Ψ_y непрерывно как суперпозиция непрерывных отображений. Поэтому по теореме Брауэра о неподвижной точке существует $\overline{z}=\overline{z}(y,G)\in B_{\mathbb{R}^m}(\widehat{G}(\widehat{w}),2|y-\widehat{G}(\widehat{w})|)$ такое, что $\Psi_y(\overline{z})=\overline{z}$, т.е. $G(\widehat{w}+v(\overline{z}))=y$. Пусть $w_G(y)=\widehat{w}+v(\overline{z})$. Тогда $G(w_G(y))=y$, $\|w_G(y)-\widehat{w}\|_X=\|v(\overline{z})\|\leqslant (8\gamma|y-\widehat{G}(\widehat{w})|)^{1/2}$. Выше показано, что $w_G(y)\in V$. Так как K – выпуклый конус, то $w_G(y)\in \widehat{w}+(K-\widehat{w})+K=K$. Полагая $\kappa=(8\gamma)^{1/2}$, получаем все утверждения теоремы 2.

Доказательство теоремы 1. Схема доказательства этой теоремы такова. Из предложения 1 следует, что гладкое отображение Φ (см. (5)), в котором $x(\xi,\overline{\alpha},u;\widehat{\overline{u}})$ — решение уравнения (4), удовлетворяет теореме об обратной функции. Из предложения 2 вытекает, что отображение Φ может быть сколь угодно точно аппроксимировано отображением Φ_{ε} , подобным Φ , но вместо $x(\xi,\overline{\alpha},u;\widehat{\overline{u}})$ стоит $x_{\varepsilon}(\xi,\overline{\alpha},u)$ — решение уравнения $F(\xi,x,M_{\varepsilon}(\overline{\alpha},(u,\widehat{\overline{u}})))=0$, где $M_{\varepsilon}(\overline{\alpha},(u,\widehat{\overline{u}}))$ — микс управлений $(u,\widehat{\overline{u}})$. По теореме об обратной функции уравнение, задаваемое отображением Φ_{ε} , разрешимо, откуда непосредственно следует локальная управляемость исходной системы.

Перейдем к точным рассуждениям. Напомним, что вектор f_a получен из вектора $f=(f_1,\ldots,f_{m_1})^T$ выбрасыванием тех компонент f_i , для которых $f_i(\widehat{\xi},\widehat{x})<0$. Предположим сначала, что таких компонент меньше чем m_1 . Число оставшихся обозначим через l_1 .

Согласно предложению 1 найдется такой набор $\widehat{\overline{u}} = (\widehat{u}_1, \dots, \widehat{u}_k) \in \mathscr{U}^k$, что выполнено включение (6).

Пусть $\mathscr{O}(\widehat{\xi})$, $\mathscr{O}(0_{\mathbb{R}^k})$, $\mathscr{O}(\widehat{u})$ и $\mathscr{O}(0_{\mathbb{R}^{l_1}}))$ – такие окрестности (соответственно точки $\widehat{\xi}$, нуля в \mathbb{R}^k , \widehat{u} и нуля в \mathbb{R}^{l_1}), что отображение Φ с набором $\overline{u}=\widehat{\overline{u}}$ ограничено на $\mathscr{O}(\widehat{\xi}) \times \mathscr{O}(0_{\mathbb{R}^k}) \times \mathscr{O}(0_{\mathbb{R}^{l_1}}) \times \mathscr{O}(\widehat{u})$.

Так как отображения f и g непрерывно дифференцируемы по (ξ,x) , а отображение $(\xi,\overline{\alpha},u)\mapsto x(\xi,\overline{\alpha},u;\widehat{u})$ непрерывно дифференцируемо по $(\xi,\overline{\alpha},u)$, то, уменьшая, если необходимо, окрестности $\mathscr{O}(\widehat{\xi})$, $\mathscr{O}(\widehat{x})$, $\mathscr{O}(0_{\mathbb{R}^k})$ и $\mathscr{O}(\widehat{u})$ (и считая их выпуклыми), получим по теореме о среднем, что для некоторой константы c>0 выполняются неравенства

$$|f(\xi, x) - f(\xi', x')| \le c(|\xi - \xi'| + ||x - x'||_X), \tag{22}$$

$$|g(\xi, x) - g(\xi', x')| \le c(|\xi - \xi'| + ||x - x'||_X) \tag{23}$$

для всех (ξ,x) и (ξ',x') из $\mathscr{O}(\widehat{\xi})\times\mathscr{O}(\widehat{x}),$ а также неравенство

$$||x(\xi, \overline{\alpha}, u; \widehat{\overline{u}}) - \widehat{x}||_X \le c(|\xi - \widehat{\xi}| + |\overline{\alpha}| + ||u - \widehat{u}||_E)$$
(24)

для всех $(\xi, \overline{\alpha}, u) \in \mathcal{O}(\widehat{\xi}) \times \mathcal{O}(0_{\mathbb{R}^k}) \times \mathcal{O}(\widehat{u}).$

Согласно предложению 2 существуют такие окрестности $\mathscr{O}_0(\widehat{\xi}) \subset \mathscr{O}(\widehat{\xi})$, $\mathscr{O}_0(0_{\mathbb{R}^k}) \subset \mathscr{O}(0_{\mathbb{R}^k})$, $\mathscr{O}_0(\widehat{u}) \subset \mathscr{O}(\widehat{u})$ и число $\varepsilon_0 > 0$, что для любого $0 < \varepsilon \leqslant \varepsilon_0$ найдется такое непрерывное отображение $(\xi, \overline{\alpha}, u) \mapsto x_{\varepsilon}(\xi, \overline{\alpha}, u)$ из $\mathscr{O}_0(\widehat{\xi}) \times (\mathscr{O}_0(0_{\mathbb{R}^k}) \cap \Sigma^k) \times \mathscr{O}_0(\widehat{u})$ в $\mathscr{O}(\widehat{x})$, что

$$F(\xi, x_{\varepsilon}(\xi, \overline{\alpha}, u), M_{\varepsilon}(\overline{\alpha}, (u, \widehat{\overline{u}}))) = 0$$
(25)

и при всех $(\xi, \overline{\alpha}, u) \in \mathscr{O}_0(\widehat{\xi}) \times (\mathscr{O}_0(0_{\mathbb{R}^k}) \cap \Sigma^k) \times \mathscr{O}_0(\widehat{u})$ справедливо неравенство (16).

Таким образом, для всех $0 < \varepsilon \leqslant \varepsilon_0$ на $\mathscr{O}_0(\widehat{\xi}) \times (\mathscr{O}_0(0_{\mathbb{R}^k}) \cap \Sigma^k) \times \mathbb{R}^{l_1} \times \mathscr{O}_0(\widehat{u})$ определено непрерывное отображение Φ_{ε} , сопоставляющее четверке $(\xi, \overline{\alpha}, r, u)$ вектор из $\mathbb{R}^{l_1+m_2}$ по правилу

$$\Phi_{\varepsilon}(\xi, \overline{\alpha}, r, u) = (f_a(\xi, x_{\varepsilon}(\xi, \overline{\alpha}, u)) + r, g(\xi, x_{\varepsilon}(\xi, \overline{\alpha}, u)))^T.$$
(26)

Воспользуемся теоремой 2 для $X=\mathbb{R}^n\times\mathbb{R}^k\times\mathbb{R}^{l_1}\times E,\, K=\mathbb{R}^n\times\mathbb{R}^k_+\times\mathbb{R}^{l_1}_+\times E,\, \widehat{w}=(\widehat{\xi},0_{\mathbb{R}^k},0_{\mathbb{R}^{l_1}},\widehat{u}),\, V=\mathscr{O}_0(\widehat{\xi})\times\mathscr{O}_0(0)\times\mathbb{R}^{l_1}\times\mathscr{O}_0(\widehat{u}),\, \widehat{G}(w)=\widehat{G}(\xi,\overline{\alpha},r,u)=\Phi(\xi,\overline{\alpha},r,u;\widehat{\overline{u}})$ и $p=a(\zeta,0,-\widehat{f}'_a[\zeta,h],v),$ где a>0 таково, что $\|p\|=1$.

Ясно, что $p \in K$. Проверим, что $p \in \operatorname{Ker} \widehat{G}'(\widehat{w})$. Действительно,

$$\widehat{G}'(\widehat{w})[p] = (\widehat{f}_{a\xi}\zeta + \widehat{f}_{ax}\widehat{x}_{\xi}\zeta + \widehat{f}_{ax}\widehat{x}_{\overline{\alpha}}0 + \widehat{f}_{ax}\widehat{x}_{u}v - \widehat{f}'_{a}[\zeta, h],$$
$$\widehat{g}_{\xi}\zeta + \widehat{g}_{x}\widehat{x}_{\xi}\zeta + \widehat{g}_{x}\widehat{x}_{\overline{\alpha}}0 + \widehat{g}_{x}\widehat{x}_{u}v).$$

Так как $(\zeta,h,v)\in K(\widehat{\xi},\widehat{x},\widehat{u})$, то $h=-\widehat{F}_x^{-1}\widehat{F}_\xi\zeta-\widehat{F}_x^{-1}\widehat{F}_uv=\widehat{x}_\xi\zeta+\widehat{x}_uv$, и поэтому первый член в скобках в выражении для $\widehat{G}'(\widehat{w})[p]$ равен $\widehat{f}_{a\xi}\zeta+\widehat{f}_{ax}h-\widehat{f}_a'[\zeta,h]=\widehat{f}_a'[\zeta,h]-\widehat{f}_a'[\zeta,h]=0$ и, аналогично, второй член равен $\widehat{g}'[\zeta,h]=0$. Таким образом, $p\in \operatorname{Ker}\widehat{G}'(\widehat{w})$.

Из включения (6) следует включение (17) (для нашего случая), поскольку в последнем множество в фигурных скобках шире, чем соответствующее множество в (6).

Все предположения теоремы 2 выполнены. Ясно, что $\widehat{G}(\widehat{w})=0$. Пусть V_1 – окрестность нуля в $\mathbb{R}^{l_1}\times\mathbb{R}^{m_2}$ и $\kappa>0$ – константа из этой теоремы.

Пусть для определенности $f_a = (f_1, \ldots, f_{l_1})^T$. Ясно, что существует такое $\delta > 0$, что $f_i(\widehat{\xi}, \widehat{x}) < -\delta$, $i = l_1 + 1, \ldots, m_1$. Из дифференцируемости функций f_i в точке $(\widehat{\xi}, \widehat{x})$ следует, что найдется $\rho > 0$ такое, что $f_i(\xi, x) < -\delta/2$, $i = l_1 + 1, \ldots, m_1$, если $|\xi - \widehat{\xi}| + ||x - \widehat{x}||_X < \rho$.

Пусть W – произвольная окрестность точки $(\widehat{\xi},\widehat{x})$ и $0<\rho_0\leqslant\rho$ такое, что $U_{\mathbb{R}^n\times X}((\widehat{\xi},\widehat{x}),\rho_0)\subset W$. Обозначим $\kappa_0=1+(c+1)\kappa$ (c – константа в неравенствах (22)–(24)), и пусть $0< r\leqslant \min(\rho_0^2/(\kappa_0^2\sqrt{2}),\delta/2)$ таково, что $U_{\mathbb{R}^{l_1}}(0,r)\times U_{\mathbb{R}^{m_2}}(0,r)\subset V_1$.

Положим $W_1=U_{\mathbb{R}^{l_1}}(0,r)\times U_{\mathbb{R}^{m_1-l_1}}(0,r)$ и $W_2=U_{\mathbb{R}^{m_2}}(0,r)$. Пусть $y=(y_1,y_2)\in W_1\times W_2$. Запишем $y_1=(y_1',y_1'')$, где $y_1'\in U_{\mathbb{R}^{l_1}}(0,r),\,y_1''\in U_{\mathbb{R}^{m_1-l_1}}(0,r),$ и обозначим $y'=(y_1',y_2)$.

Пусть $V_{y'}$ – соответствующая окрестность из теоремы 2. Из (22), (23) и (16) следует существование такого $\varepsilon = \varepsilon(y') \leqslant |y'|^{1/2}/(2\|\widehat{F}_x^{-1}\|)$, что $\Phi_\varepsilon \in V_{y'}$. Тогда согласно этой теореме найдется точка $(\xi_{y'}, \overline{\alpha}_{y'}, r_{y'}, u_{y'}) \in V \cap K$, для которой справедливы соотношения

$$f_a(\xi_{y'}, x_{\varepsilon}(\xi_{y'}, \overline{\alpha}_{y'}, u_{y'})) + r_{y'} = y'_1, \qquad g(\xi_{y'}, x_{\varepsilon}(\xi_{y'}, \overline{\alpha}_{y'}, u_{y'})) = y_2, \tag{27}$$

$$|\xi_{y'} - \widehat{\xi}| + |\overline{\alpha}_{y'}| + |r_{y'}| + ||u_{y'} - \widehat{u}||_E \leqslant \kappa |y'|^{1/2}.$$
 (28)

В силу (16), (24), (28) и выбора ε имеем

$$\|x_{\varepsilon}(\xi_{y'}, \overline{\alpha}_{y'}, u_{y'}) - \widehat{x}\|_{X} + |\xi_{y'} - \widehat{\xi}|$$

$$\leq \|x_{\varepsilon}(\xi_{y'}, \overline{\alpha}_{y'}, u_{y'}) - x(\xi_{y'}, \overline{\alpha}_{y'}, u_{y'}; \widehat{u})\|_{X}$$

$$+ \|x(\xi_{y'}, \overline{\alpha}_{y'}, u_{y'}; \widehat{u}) - \widehat{x}\|_{X} + |\xi_{y'} - \widehat{\xi}|$$

$$< |y'|^{1/2} + c\kappa|y'|^{1/2} + \kappa|y'|^{1/2} = \kappa_{0}|y'|^{1/2}.$$
(29)

Далее, по предположению $y_1''=(y_{1(l_1+1)}'',\ldots,y_{1m_1}'')^T\in U_{\mathbb{R}^{m_1-l_1}}(0,r)$ и поэтому $y_{1i}''>-r,\,i=l_1+1,\ldots,m_1.$ Из оценки (29), учитывая, что $\kappa_0|y'|^{1/2}<\rho_0\leqslant\rho,$ получаем соотношения $f_i(\xi_{y'},x_{\varepsilon}(\xi_{y'},\overline{\alpha}_{y'},u_{y'}))<-\delta/2<-r< y_{1i}'',\,i=l_1+1,\ldots,m_1.$

Обозначим $\xi_y = \xi_{y'}$, $x_y = x_{\varepsilon}(\xi_{y'}, \overline{\alpha}_{y'}, u_{y'})$ и $u_y = M_{\varepsilon}(\overline{\alpha}_{y'}, (u_{y'}, \widehat{\overline{u}}))$. Тогда $F(\xi_y, x_y, u_y) = 0$ в силу (25). Из (27), поскольку $r_{y'} \geqslant 0$, следует $f_a(\xi_y, x_y) \leqslant y'_1$. Отсюда и из только что доказанного вытекает неравенство $f(\xi_y, x_y) \leqslant y_1$. Из (27) также следует, что $g(\xi_y, x_y) = y_2$. Из (29) получаем, что $||x_y - \widehat{x}||_X + |\xi_y - \widehat{\xi}| \leqslant \kappa_0 |y'|^{1/2} < \rho_0$ и, значит, $(x_y, \xi_y) \in W$.

Для завершения доказательства теоремы 1 в рассматриваемом случае осталось заметить, что $||x_y - \widehat{x}||_X + |\xi_y - \widehat{\xi}| \le \kappa_0 |y'|^{1/2} \le \kappa_0 |y|^{1/2}$.

Доказательство теоремы 1 в ситуации, когда $f(\widehat{\xi},\widehat{x})<0$, совершенно аналогично. Здесь мы полагаем $\Phi(\xi,\overline{\alpha},u;\overline{u})=g(\xi,x(\xi,\overline{\alpha},u;\overline{u}))$, и дальнейшие рассуждения те же, что и раньше, но проще, поскольку более просто устроено отображение Φ . Заметим только, что в данном случае $y_1=y_1''$.

Теорема 1 доказана.

Теперь в качестве непосредственного следствия теоремы 1 получим необходимые условия сильного минимума второго порядка в следующей абстрактной задаче оптимального управления:

$$f_0(\xi, x) \to \min,$$

$$F(\xi, x, u) = 0, \quad u \in \mathcal{U}, \qquad f(\xi, x) \le 0, \qquad g(\xi, x) = 0,$$
(30)

где \mathscr{U} и отображения F, f и g те же, что и в определении управляемой системы (1), и задана еще функция $f_0 \colon \mathbb{R}^n \times X \to \mathbb{R}$.

Допустимая в этой задаче точка $(\widehat{\xi},\widehat{x},\widehat{u})$ называется сильным минимумом, если найдется такая окрестность W точки $(\widehat{\xi},\widehat{x})$, что $f_0(\xi,x)\geqslant f_0(\widehat{\xi},\widehat{x})$ для всех допустимых точек $(\xi,x,u)\in W\times\mathscr{U}$.

Считаем, что функция f_0 обладает теми же свойствами, что и отображения f и g (см. основные предположения).

Сопоставим задаче (30) следующую функцию Лагранжа:

$$\mathscr{L}(\xi, x, u, \overline{\lambda}) = \lambda_0 f_0(\xi, x) + \langle y^*, F(\xi, x, u) \rangle + \langle \lambda_f, f(\xi, x) \rangle + \langle \lambda_g, g(\xi, x) \rangle,$$

где $\overline{\lambda} = (\lambda_0, y^*, \lambda_f, \lambda_g) \in \mathbb{R} \times Y^* \times (\mathbb{R}^{m_1})^* \times (\mathbb{R}^{m_2})^*.$

Определим конус критических вариаций как

$$K_0(\widehat{\xi}, \widehat{x}, \widehat{u}) = \{ q = (\zeta, h, v) \in \mathbb{R}^n \times X \times Z :$$

$$\widehat{F}'q = 0, \ \widehat{f}'_0[\zeta, h] \leqslant 0, \ \widehat{f}'_a[\zeta, h] \leqslant 0, \ \widehat{g}'[\zeta, h] = 0 \},$$

где f_a имеет тот же смысл, что и раньше, и если $f(\widehat{\xi},\widehat{x})<0$, то неравенство $\widehat{f}'_a[\zeta,h]\leqslant 0$ отсутствует в определении этого множества.

Следствие 1 (условия минимума второго порядка для задачи (30)). Пусть точка $(\hat{\xi}, \hat{x}, \hat{u})$ доставляет сильный минимум в задаче (30). Тогда для любого $q = (\zeta, h, v) \in K_0(\hat{\xi}, \hat{x}, \hat{u})$ найдутся ненулевой набор $\lambda = \lambda(q) = (\lambda_0, \lambda_f, \lambda_g) \in \mathbb{R}_+ \times (\mathbb{R}^{m_1})_+^* \times (\mathbb{R}^{m_2})^*$ и функционал $y^* = y^*(q) \in Y^*$ такие, что

$$\begin{split} \mathscr{L}_{\xi}(\widehat{\xi},\widehat{x},\widehat{u},\overline{\lambda}) &= 0 &\iff \lambda_0 \widehat{f}_{0\xi} + \widehat{F}_{\xi}^* y^* + \widehat{f}_{\xi}^* \lambda_f + \widehat{g}_{\xi}^* \lambda_g = 0, \\ \mathscr{L}_{x}(\widehat{\xi},\widehat{x},\widehat{u},\overline{\lambda}) &= 0 &\iff \lambda_0 \widehat{f}_{0x} + \widehat{F}_{x}^* y^* + \widehat{f}_{x}^* \lambda_f + \widehat{g}_{x}^* \lambda_g = 0, \\ \langle \lambda_f, f(\widehat{\xi},\widehat{x}) \rangle &= 0, \\ \min_{u \in \mathscr{U}} \mathscr{L}(\widehat{\xi},\widehat{x},u,\overline{\lambda}) &= \mathscr{L}(\widehat{\xi},\widehat{x},\widehat{u},\overline{\lambda}) \\ &\iff \min_{u \in \mathscr{U}} \langle y^*, F(\widehat{\xi},\widehat{x},u) \rangle = \langle y^*, F(\widehat{\xi},\widehat{x},\widehat{u}) \rangle = 0, \\ \mathscr{L}_{(\xi,x,u)(\xi,x,u)}(\widehat{\xi},\widehat{x},\widehat{u},\overline{\lambda})[q,q] &\geqslant 0 &\iff \lambda_0 \widehat{f}_0''[(\zeta,h),(\zeta,h)] + \langle y^*,\widehat{F}''[q,q] \rangle \\ &+ \langle \lambda_f,\widehat{f}''[(\zeta,h),(\zeta,h)] \rangle + \langle \lambda_g,\widehat{g}''[(\zeta,h),(\zeta,h)] \rangle \geqslant 0. \end{split}$$

Если для управляемой системы, задающей ограничения в задаче (30), справедливо условие $\Lambda(\widehat{\xi},\widehat{x},\widehat{u},q)=\varnothing$ для некоторого $q\in K_0(\widehat{\xi},\widehat{x},\widehat{u})$, то $\lambda_0\neq 0$.

Доказательство. Рассуждаем от противного. Пусть существует такое $q=(\zeta,h,v)\in K_0(\widehat{\xi},\widehat{x},\widehat{u}),$ что только наборы $\overline{\lambda}=(\lambda_0,y^*,\lambda_f,\lambda_g),$ где $(\lambda_0,\lambda_f,\lambda_g)=0,$ удовлетворяют всем соотношениям в утверждении теоремы. Покажем, что в этом случае $(\widehat{\xi},\widehat{x},\widehat{u})$ не является сильным минимумом.

Сделанное предположение означает, что если для управляемой системы

$$F(\xi, x, u) = 0, \quad u \in \mathcal{U}, \qquad f_0(\xi, x) - f_0(\widehat{\xi}, \widehat{x}) \leq 0,$$

$$f(\xi, x) \leq 0, \qquad g(\xi, x) = 0$$

обозначить, скажем, через $\Lambda_1(\widehat{\xi},\widehat{x},\widehat{u},q)$ аналог множества $\Lambda(\widehat{\xi},\widehat{x},\widehat{u},q)$, то $\Lambda_1(\widehat{\xi},\widehat{x},\widehat{u},q)=\varnothing$. Тогда в силу теоремы 1 эта система локально управляема относительно точки $(\widehat{\xi},\widehat{x},\widehat{u})$.

Пусть W – произвольная окрестность точки $(\widehat{\xi},\widehat{x})$ и W_1,W_2 – соответствующие окрестности нулей в \mathbb{R}^{m_1+1} и \mathbb{R}^{m_2} соответственно из определения локальной управляемости. Ясно, что $y(\varepsilon)=((-\varepsilon,0),0)\in W_1\times W_2$ для достаточно малых $\varepsilon>0$. Поэтому в силу локальной управляемости для каждого такого ε найдется элемент $(\xi_{y(\varepsilon)},x_{y(\varepsilon)},u_{y(\varepsilon)})\in W\times \mathscr{U}$, для которого

$$F(\xi_{y(\varepsilon)}, x_{y(\varepsilon)}, u_{y(\varepsilon)}) = 0,$$

$$f_0(\xi_{y(\varepsilon)}, x_{y(\varepsilon)}) \leqslant f_0(\widehat{\xi}, \widehat{x}) - \varepsilon, \qquad f(\xi_{y(\varepsilon)}, x_{y(\varepsilon)}) \leqslant 0,$$

$$g(\xi_{y(\varepsilon)}, x_{y(\varepsilon)}) = 0, \qquad (\xi_{y(\varepsilon)}, x_{y(\varepsilon)}) \in W$$

в противоречии с тем, что $(\widehat{\xi},\widehat{x},\widehat{u})$ – сильный минимум в задаче (30). Следствие доказано.

§ 2. Приложение к управляемой системе ОДУ

Пусть $[t_0, t_1]$ – отрезок прямой, U – открытое подмножество \mathbb{R}^r , $\varphi \colon \mathbb{R} \times \mathbb{R}^n \times U \to \mathbb{R}^n$ – отображение переменных $t \in \mathbb{R}$, $x \in \mathbb{R}^n$ и $u \in U$, а $f \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^{m_1}$ и $g \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^{m_2}$ – отображения переменных $\zeta_i \in \mathbb{R}^n$, i = 1, 2.

Рассмотрим управляемую систему ОДУ

$$\dot{x} = \varphi(t, x, u), \qquad u(t) \in U \quad$$
 для почти всех $t \in [t_0, t_1],$
$$f(x(t_0), x(t_1)) \leqslant 0, \qquad g(x(t_0), x(t_1)) = 0,$$
 (31)

где $x(\cdot) \in AC([t_0,t_1],\mathbb{R}^n)$ (абсолютно непрерывные вектор-функции на $[t_0,t_1]$) и $u(\cdot) \in L_{\infty}([t_0,t_1],\mathbb{R}^r)$.

Всюду далее мы предполагаем, что отображение φ непрерывно вместе со своей второй производной по (x,u) на $\mathbb{R} \times \mathbb{R}^n \times U$, а отображения f и g имеют непрерывные вторые производные на $\mathbb{R}^n \times \mathbb{R}^n$.

Пару $(\widehat{x}(\cdot), \widehat{u}(\cdot))$ будем называть допустимым процессом для этой системы, если она удовлетворяет всем ограничениям в (31).

Определение 2. Скажем, что система (31) локально управляема относительно допустимого процесса $(\widehat{x}(\cdot),\widehat{u}(\cdot))$, если для каждой окрестности W точки $\widehat{x}(\cdot)$ существуют такие окрестности W_1 и W_2 нулей в \mathbb{R}^{m_1} и \mathbb{R}^{m_2} соответственно, что для любого $y=(y_1,y_2)\in W_1\times W_2$ найдется пара $(x_y(\cdot),u_y(\cdot))\in \mathrm{AC}([t_0,t_1],\mathbb{R}^n)\times L_{\infty}([t_0,t_1],\mathbb{R}^r)$, удовлетворяющая условиям

$$\dot{x}_y(t)=arphi(t,x_y(t),u_y(t)), \qquad u_y(t)\in U$$
 для почти всех $\ t\in [t_0,t_1]$

и такая, что
$$x_y(\cdot) \in W, \ f(x_y(t_0), x_y(t_1)) \leqslant y_1$$
 и $g(x_y(t_0), x_y(t_1)) = y_2$.

Если фиксирован допустимый процесс $(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,))$ для системы (31), то для сокращения записи производные отображений f и g в точке $(\widehat{x}(t_0),\widehat{x}(t_1))$ обозначаем \widehat{f}' и \widehat{g}' , а их частные производные по ζ_1 и ζ_2 в той же точке записываем так: \widehat{f}_{ζ_i} и \widehat{g}_{ζ_i} , i=1,2. Сопряженные операторы к ним обозначаем соответственно $\widehat{f}_{\zeta_i}^*$ и $\widehat{g}_{\zeta_i}^*$. Пишем также $\widehat{\varphi}(t)=\varphi(t,\widehat{x}(t),\widehat{u}(t))$ и аналогично для производных: $\widehat{\varphi}_x(t)=\varphi_x(t,\widehat{x}(t),\widehat{u}(t))$ и $\widehat{\varphi}_u(t)=\varphi_u(t,\widehat{x}(t),\widehat{u}(t))$.

Обозначим через $H(t,x,u,p(\,\cdot\,)) = \langle p(t),\varphi(t,x,u)\rangle$ функцию Понтрягина, где $p(\,\cdot\,) \colon [t_0,t_1] \to (\mathbb{R}^n)^*$. Если фиксирована функция $p\colon [t_0,t_1] \to (\mathbb{R}^n)^*$, то пишем $\widehat{H}(t) = H(t,\widehat{x}(t),\widehat{u}(t),p(t))$ и аналогично для частных производных по x и u.

Пусть $(\widehat{x}(\cdot), \widehat{u}(\cdot))$ – допустимый процесс для системы (31). Для каждой пары $q(\cdot) = (h(\cdot), v(\cdot)) \in C([t_0, t_1], \mathbb{R}^n) \times L_{\infty}([t_0, t_1], \mathbb{R}^r)$ рассмотрим следующую систему соотношений относительно переменных $p(\cdot) \in AC([t_0, t_1], (\mathbb{R}^n)^*)$, $\lambda_f \in (\mathbb{R}^{m_1})_+^*$ и $\lambda_g \in (\mathbb{R}^{m_2})^*$:

$$\begin{cases} -\dot{p} = p\widehat{\varphi}_{x}(t), \quad p(t_{0}) = \widehat{f}_{\zeta_{1}}^{*}\lambda_{f} + \widehat{g}_{\zeta_{1}}^{*}\lambda_{g}, \quad p(t_{1}) = -\widehat{f}_{\zeta_{2}}^{*}\lambda_{f} - \widehat{g}_{\zeta_{2}}^{*}\lambda_{g}, \\ \max_{u \in U} H(t, \widehat{x}(t), u, p(t)) = H(t, \widehat{x}(t), \widehat{u}(t), p(t)) \quad \text{для почти всех} \quad t \in [t_{0}, t_{1}], \\ \langle \lambda_{f}, f(\widehat{x}(t_{0}), \widehat{x}(t_{1})) \rangle = 0, \\ -\int_{t_{0}}^{t_{1}} \left(\widehat{H}_{xx}(t)[h(t), h(t)] + 2\widehat{H}_{xu}(t)[h(t), v(t)] + \widehat{H}_{uu}(t)[v(t), v(t)]\right) dt \\ + \langle \lambda_{f}, \widehat{f}''[\eta, \eta] \rangle + \langle \lambda_{g}, \widehat{g}''[\eta, \eta] \rangle \geqslant 0, \end{cases}$$

$$(32)$$

где $\eta = (h(t_0), h(t_1)).$

Будем обозначать через $\Lambda(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,),q(\,\cdot\,))$ множество таких троек $(p(\,\cdot\,),\lambda_f,\lambda_g)\in \mathrm{AC}([t_0,t_1],(\mathbb{R}^n)^*)\times (\mathbb{R}^{m_1})_+^*\times (\mathbb{R}^{m_2})^*$, которые удовлетворяют всем соотношениям в (32) при данном $q(\,\cdot\,)$ и при этом $|\lambda_f|+|\lambda_g|\neq 0$.

Пусть $(\widehat{x}(\cdot),\widehat{u}(\cdot))$ – допустимый процесс для системы (31). Введем следующий конус критических вариаций:

$$K(\widehat{x}(\cdot),\widehat{u}(\cdot)) = \left\{ q(\cdot) = (h(\cdot),v(\cdot)) \in AC([t_0,t_1],\mathbb{R}^n) \times L_{\infty}([t_0,t_1],\mathbb{R}^r) : \dot{h}(t) = \widehat{\varphi}_x(t)h(t) + \widehat{\varphi}_u(t)v(t), \ \widehat{f}'_a[h(t_0),h(t_1)] \leqslant 0, \ \widehat{g}'[h(t_0),h(t_1)] = 0 \right\},$$

где, как и раньше, f_a – вектор, который получается из f удалением тех координат f_i , для которых $f_i(\widehat{x}(t_0),\widehat{x}(t_1)) < 0$. Если $f(\widehat{x}(t_0),\widehat{x}(t_1)) < 0$, то неравенство $f_a'[h(t_0),h(t_1)] \leqslant 0$ в определении $K(\widehat{x}(\cdot),\widehat{u}(\cdot))$ отсутствует.

Основное утверждение работы – теорема 1 – для системы (31) звучит так.

ТЕОРЕМА 3. Пусть $(\widehat{x}(\cdot),\widehat{u}(\cdot))$ – допустимый процесс для системы (31), причем $\widehat{u}(t)$ для почти всех $t \in [t_0,t_1]$ принадлежит некоторому компакту в U, и существует такое $q(\cdot) = (h(\cdot),v(\cdot)) \in K(\widehat{x}(\cdot),\widehat{u}(\cdot))$, что $\Lambda(\widehat{x}(\cdot),\widehat{u}(\cdot),q(\cdot)) = \varnothing$. Тогда система (31) локально управляема относительно процесса $(\widehat{x}(\cdot),\widehat{u}(\cdot))$.

Более того, существует такая константа $c_0 > 0$, что для переменных у и $x_y(\cdot)$ из определения локальной управляемости системы (31) справедлива оценка $\|x_y(\cdot) - \widehat{x}(\cdot)\|_{C([t_0,t_1],\mathbb{R}^n)} \leqslant c_0|y|^{1/2}$.

Доказательство. Сопоставим управляемой системе (31) управляемую систему вида (1). Пусть $X=Z=C([t_0,t_1],\mathbb{R}^n),\ E=L_\infty([t_0,t_1],\mathbb{R}^r)$ и $\mathscr{U}=\{u(\cdot)\in L_\infty([t_0,t_1],\mathbb{R}^r)\colon u(t)\in U$ для почти всех $t\in[t_0,t_1]\}$. Отображение $F\colon \mathbb{R}^n\times X\times \mathscr{U}\to Z$ определим формулой

$$F(\xi, x(\cdot), u(\cdot))(t) = -\xi + x(t) - \int_{t_0}^t \varphi(\tau, x(\tau), u(\tau)) d\tau \quad \forall t \in [t_0, t_1].$$

Отображения f и g в (31) рассматриваем как отображения $f: \mathbb{R}^n \times X \to \mathbb{R}^{m_1}$ и $g: \mathbb{R}^n \times X \to \mathbb{R}^{m_2}$, сопоставляющие паре $(\xi, x(\cdot))$ соответственно векторы $f(\xi, x(t_1))$ и $g(\xi, x(t_1))$.

Рассмотрим управляемую систему

$$F(\xi, x(\cdot), u(\cdot))(\cdot) = 0, \qquad u(\cdot) \in \mathcal{U},$$

$$f(\xi, x(\cdot)) \leq 0, \qquad g(\xi, x(\cdot)) = 0,$$
(33)

которая имеет вид системы (1).

Если $(\widehat{x}(\cdot), \widehat{u}(\cdot))$ – допустимый процесс для системы (31), то, очевидно, точка $(\widehat{x}(t_0), \widehat{x}(\cdot), \widehat{u}(\cdot))$ допустима для управляемой системы (33).

Нетрудно проверить, что если $\widehat{u}(t)$ для почти всех $t \in [t_0, t_1]$ принадлежит некоторому компакту, содержащемуся в U, то $\widehat{u}(\cdot) \in \operatorname{int} \mathscr{U}$.

Для системы (33) выполнены основные предположения. Действительно, справедливость предположения 1) очевидна. Далее, стандартные рассуждения показывают, что предположения относительно отображений в системе (31) гарантируют выполнение предположения 2), и, кроме того, как хорошо известно, оператор $F_{x(\cdot)}(\widehat{\xi},\widehat{x}(\cdot),\widehat{u}(\cdot))$ обратим. Справедливость предположения 3) доказана в [4] (и при более слабых предположениях).

По условию $q(\cdot)=(h(\cdot),v(\cdot))\in K(\widehat{x}(\cdot),\widehat{u}(\cdot))$. Отсюда следует, что тройка $q_1(\cdot)=(h(t_0),h(\cdot),v(\cdot))$ принадлежит конусу (3), выписанному для системы (33).

Обозначим через $\Lambda(\widehat{\xi},\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,),q_1(\,\cdot\,))$ множество троек

$$(y^*, \lambda_f, \lambda_g) \in Y^* \times (\mathbb{R}^{m_1})_+^* \times (\mathbb{R}^{m_2})^*, \qquad |\lambda_f| + |\lambda_g| \neq 0,$$

которые удовлетворяют соотношениям в (2), выписанным для системы (33). Покажем, что в предположениях теоремы $\Lambda(\widehat{\xi},\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,),q_1(\,\cdot\,))=\varnothing$.

Действительно, в работе [4] доказано, что если набор $(y^*, \lambda_f, \lambda_g) \in Y^* \times (\mathbb{R}^{m_1})_+^* \times (\mathbb{R}^{m_2})^*$, где $|\lambda_f| + |\lambda_g| \neq 0$, удовлетворяет равенствам в (2), то существует такое $p(\cdot) \in AC([t_0, t_1], (\mathbb{R}^n)^*)$, что набор $(p(\cdot), \lambda_f, \lambda_g)$, удовлетворяет равенствам в (32).

Проверим теперь, что если $(y^*,\lambda_f,\lambda_g)$ удовлетворяет и неравенству в (2), то $(p(\cdot),\lambda_f,\lambda_g)$ удовлетворяет неравенству в (32). В [4] показано, что функционал y^* как линейный непрерывный функционал на $C([t_0,t_1],\mathbb{R}^n)$ задается функцией ограниченной вариации $\mu(\cdot)$, которая связана с функцией $p(\cdot)$ условиями: $p(t)=\mu(t_1)-\mu(t)$, если $t\in[t_0,t_1)$, и $p(t_1)=-\widehat{f}^*_{\zeta_2}\lambda_f-\widehat{g}^*_{\zeta_2}\lambda_g$. Тогда если $q(\cdot)=(h(\cdot),v(\cdot))$, после перемены порядка интегрирования будем иметь

$$\langle y^*, \widehat{F}''[q_1(\cdot), q_1(\cdot)] \rangle$$

$$= \int_{t_0}^{t_1} \left(-\int_{t_0}^t (\widehat{\varphi}_{xx}(\tau)[h(\tau), h(\tau)] + 2\widehat{\varphi}_{xu}(\tau)[h(\tau), v(\tau)] \right) d\mu(t)$$

$$+ \widehat{\varphi}_{uu}(\tau)[v(\tau), v(\tau)] d\tau d\mu(t)$$

$$= -\int_{t_0}^{t_1} \langle p(t), \widehat{\varphi}_{xx}(\tau)[h(\tau), h(\tau)] + 2\widehat{\varphi}_{xu}(\tau)[h(\tau), v(\tau)] + \widehat{\varphi}_{uu}(\tau)[v(\tau), v(\tau)] \rangle dt.$$

Ясно, что если $\eta = (h(t_0), h(t_1))$, то второе и третье слагаемые слева в неравенстве в соотношениях (2) имеют вид $\langle \lambda_f, \widehat{f}''[\eta, \eta] \rangle$ и $\langle \lambda_g, \widehat{g}''[\eta, \eta] \rangle$, т.е. $(p(\cdot), \lambda_f, \lambda_g)$ удовлетворяет неравенству в (32), и, тем самым, справедливо включение $(p(\cdot), \lambda_f, \lambda_g) \in \Lambda(\widehat{x}(\cdot), \widehat{u}(\cdot), q(\cdot))$.

Итак, если $\Lambda(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,),q(\,\cdot\,))=\varnothing$, то $\Lambda(\widehat{\xi},\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,),q_1(\,\cdot\,))=\varnothing$. Тогда по теореме 1 получаем, что система (33) локально управляема относительно точки $(\widehat{x}(t_0),\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,))$, откуда сразу следует локальная управляемость системы (31) относительно процесса $(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,))$.

Теорема 3 доказана.

Из теоремы 3, как и в случае абстрактной ситуации, сразу следуют необходимые условия второго порядка для следующей задачи оптимального управления:

$$f_0(x(t_0), x(t_1)) \to \min,$$

$$\dot{x} = \varphi(t, x, u), \quad u(t) \in U, \qquad f(x(t_0), x(t_1)) \leq 0, \qquad g(x(t_0), x(t_1)) = 0,$$
(34)

где множество U и отображения φ , f и g те же, что и в системе (31), функция f_0 определена на $\mathbb{R}^n \times \mathbb{R}^n$ и обладает теми же свойствами, что f и g.

Допустимая в этой задаче точка $(\widehat{x}(\cdot),\widehat{u}(\cdot))$ называется сильным минимумом, если найдется такая окрестность функции $\widehat{x}(\cdot)$ в $C([t_0,t_1],\mathbb{R}^n)$, что для всех допустимых точек $(x(\cdot),u(\cdot))$, для которых $x(\cdot)$ – функция из этой окрестности, справедливо неравенство $f_0(x(t_0),x(t_1)) \geqslant f_0(\widehat{x}(t_0),\widehat{x}(t_1))$.

Определим следующий конус критических вариаций:

$$K_{0}(\widehat{x}(\cdot),\widehat{u}(\cdot)) = \{q(\cdot) = (h(\cdot),v(\cdot)) \in AC([t_{0},t_{1}],\mathbb{R}^{n}) \times L_{\infty}([t_{0},t_{1}],\mathbb{R}^{r}) : h(t) = \widehat{\varphi}_{x}(t)h(t) + \widehat{\varphi}_{u}(t)v(t), \ \widehat{f}'_{0}[h(t_{0}),h(t_{1})] \leq 0,$$
$$\widehat{f}'_{a}[h(t_{0}),h(t_{1})] \leq 0, \ \widehat{g}'[h(t_{0}),h(t_{1})] = 0\}.$$

Следствие 2 (условия минимума второго порядка для задачи (34)). Если $(\widehat{x}(\cdot),\widehat{u}(\cdot))$ – сильный минимум в задаче (34) и $\widehat{u}(t)$ для почти всех $t\in[t_0,t_1]$ принадлежит некоторому компакту в U, то для любого $q(\cdot)\in K_0(\widehat{x}(\cdot),\widehat{u}(\cdot))$ найдутся ненулевой набор $(\lambda_0,\lambda_f,\lambda_g)\in\mathbb{R}_+\times(\mathbb{R}^{m_1})_+^*\times(\mathbb{R}^{m_2})^*$ и функция $p(\cdot)\in\mathrm{AC}([t_0,t_1],(\mathbb{R}^n)^*)$ такие, что

$$\begin{cases} -\dot{p} = p\widehat{\varphi}_x(t), & p(t_0) = \lambda_0 \widehat{f}_{0\zeta_1} + \widehat{f}^*_{\zeta_1} \lambda_f + \widehat{g}^*_{\zeta_1} \lambda_g, \\ p(t_1) = -\lambda_0 \widehat{f}_{0\zeta_2} - \widehat{f}^*_{\zeta_2} \lambda_f - \widehat{g}^*_{\zeta_2} \lambda_g, \\ \max_{u \in U} H(t, \widehat{x}(t), u, p(t)) = H(t, \widehat{x}(t), \widehat{u}(t), p(t)) & \text{dis normu occx } t \in [t_0, t_1], \\ \langle \lambda_f, f(\widehat{x}(t_0), \widehat{x}(t_1)) \rangle = 0, \\ \lambda_0 \widehat{f}''_0[\eta, \eta] - \int_{t_0}^{t_1} (\widehat{H}_{xx}(t)[h(t), h(t)] + 2\widehat{H}_{xu}(t)[h(t), v(t)] \\ + \widehat{H}_{uu}(t)[v(t), v(t)]) dt + \langle \lambda_f, \widehat{f}''[\eta, \eta] \rangle + \langle \lambda_g, \widehat{g}''[\eta, \eta] \rangle \geqslant 0. \end{cases}$$

Если для системы, задающей ограничения в задаче (34), справедливо равенство $\Lambda(\widehat{x}(\cdot),\widehat{u}(\cdot)q(\cdot)) = \emptyset$ для некоторого $q(\cdot) \in K_0(\widehat{x}(\cdot),\widehat{u}(\cdot))$, то $\lambda_0 \neq 0$.

Доказательство этого следствия точно такое же, как доказательство следствия 1.

Приведем теперь некоторые комментарии к полученным в этом параграфе результатам. Рассмотрим наряду с соотношениями (32) еще соотношение

$$H_u(t,\widehat{x}(t),\widehat{u}(t),p(t))=0$$
 для почти всех $t\in[t_0,t_1].$ (35)

Обозначим через $\Lambda_{\max}(\widehat{x}(\cdot),\widehat{u}(\cdot))$ множество троек $(p(\cdot),\lambda_f,\lambda_g) \in AC([t_0,t_1],(\mathbb{R}^n)^*) \times (\mathbb{R}^{m_1})_+^* \times (\mathbb{R}^{m_2})^*, |\lambda_f| + |\lambda_g| \neq 0$, удовлетворяющих соотношениям в (32), кроме последнего неравенства, а через $\Lambda(\widehat{x}(\cdot),\widehat{u}(\cdot))$ – множество подобных троек, но с заменой условия максимума на условие (35).

Локальная управляемость системы (31) относительно допустимого процесса $(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,))$ в случае открытого множества U следует, как хорошо известно, из вполне управляемости линейного приближения этой системы в окрестности данной точки. По-видимому, впервые это было установлено Р. Калманом в [5] (см. также [6]). В наших терминах это равносильно тому, что

$$\Lambda(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,)) = \varnothing. \tag{36}$$

В работе [4] показано, в частности, что локальная управляемость имеет место и при более слабых предположениях, а именно когда

$$\Lambda_{\max}(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,)) = \varnothing,\tag{37}$$

причем U — произвольное множество, а $\widehat{u}(\cdot)$ не обязательно для почти всех $t\in[t_0,t_1]$ принадлежит некоторому компакту в U (но если принадлежит и U открыто, то это сразу следует из теоремы 3 при $q(\cdot)=0$). Аналогичный результат можно извлечь из принципа максимума для геометрической задачи оптимального управления, полученного в [7]. В работе [8] приведены условия локальной управляемости для динамической системы с закрепленными концами, которые можно рассматривать как достаточные условия того, что выполняется (37) для случая $\widehat{x}(\cdot)=0$, $\widehat{u}(\cdot)=0$.

Теорема 3 дает достаточные условия локальной управляемости в ситуации, когда соотношения (36) и/или (37) могут не выполняться. В литературе весьма широко представлены задачи локальной управляемости в подобной ситуации для динамических систем, линейных по управлению. В этом случае, если множество U открыто, условия (36) и (37), очевидно, эквивалентны. Необходимые и достаточные условия локальной управляемости для таких задач наиболее полно представлены в [9] (см. также библиографию в [7]). Характер этих условий отличен от тех, которые дает теорема 3. Отметим еще работу [10], в которой получены необходимые и достаточные условия локальной управляемости в предположении введенного там условия 2-нормальности динамической системы. Эти условия содержательны для задач, когда условие (36) не выполняется.

Полученные в качестве непосредственного следствия теоремы 3 необходимые условия оптимальности второго порядка для задачи оптимального управления (30) подобны тем, которые анонсированы Н. П. Осмоловским в [11; п. Д.2] и доказаны в [12].

§ 3. Управляемые системы ОДУ порядка анормальности 1. Примеры

Пусть $(\widehat{x}(\cdot),\widehat{u}(\cdot))$ – допустимый процесс для системы (31). Нетрудно проверить, что множество $\Lambda_{\max}(\widehat{x}(\cdot),\widehat{u}(\cdot)) \cup \{0\}$ есть выпуклый конус в конечномерном пространстве.

Будем говорить, что система (31) относительно процесса $(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,))$ имеет порядок анормальности $k\in\mathbb{N}$, если размерность линейной оболочки $\Lambda_{\max}(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,))\cup\{0\}$ равна k.

Данное определение можно рассматривать как развитие определения понятия порядка анормальности, введенное Дж. Блиссом (см. [13]).

Напомним, что конус в линейном пространстве, содержащий нуль, называется *острым*, если он не содержит нетривиального подпространства.

Назовем допустимый процесс $(\widehat{x}(\cdot),\widehat{u}(\cdot))$ особым, если конус $\Lambda_{\max}(\widehat{x}(\cdot),\widehat{u}(\cdot))\cup\{0\}$ не является острым.

Нетрудно проверить, что равносильное определение состоит в том, что найдется ненулевая тройка $(p(\,\cdot\,),0,\lambda_g)\in\Lambda_{\max}(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,))$ такая, что отображение $u\mapsto H(t,\widehat{x}(t),u,p(t))$ постоянно для почти всех $t\in[t_0,t_1]$.

Для случая, когда порядок анормальности равен единице, приведем одно следствие из теоремы 3, которое удобно для приложений.

Обозначим через $Q(p(\cdot), \lambda_f, \lambda_g)[q(\cdot), q(\cdot)]$ выражение слева в последнем неравенстве в (32).

Следствие 3. Пусть система (31) относительно неособого допустимого процесса $(\widehat{x}(\cdot),\widehat{u}(\cdot))$ имеет порядок анормальности 1 и $(p(\cdot),\lambda_f,\lambda_g) \in \Lambda_{\max}(\widehat{x}(\cdot),\widehat{u}(\cdot))$. Тогда если найдется элемент $q(\cdot) \in K(\widehat{x}(\cdot),\widehat{u}(\cdot))$ такой, что $Q(p(\cdot),\lambda_f,\lambda_g)[q(\cdot),q(\cdot)] < 0$, то система (31) локально управляема относительно процесса $(\widehat{x}(\cdot),\widehat{u}(\cdot))$.

ДОКАЗАТЕЛЬСТВО. Пусть система (31) не является локально управляемой относительно процесса $(\widehat{x}(\cdot),\widehat{u}(\cdot))$. Тогда $\Lambda(\widehat{x}(\cdot),\widehat{u}(\cdot),q'(\cdot)) \neq \varnothing$ для любого $q'(\cdot) \in K(\widehat{x}(\cdot),\widehat{u}(\cdot))$. Пусть $(p'(\cdot),\lambda'_f,\lambda'_g) \in \Lambda(\widehat{x}(\cdot),\widehat{u}(\cdot),q'(\cdot))$. Поскольку порядок анормальности равен 1 и пара $(\widehat{x}(\cdot),\widehat{u}(\cdot))$ неособая, то $(p(\cdot),\lambda_f,\lambda_g) = \alpha(p'(\cdot),\lambda'_f,\lambda'_g)$ для некоторого $\alpha>0$. Но тогда

$$Q(p(\cdot), \lambda_f, \lambda_g)[q'(\cdot), q'(\cdot)] = \alpha Q(p'(\cdot), \lambda_f, \lambda_g)[q'(\cdot), q'(\cdot)] \geqslant 0$$

в противоречии с предположением.

Приведем теперь три примера. Примеры 1 и 3 иллюстрируют следствие 3. Пример 2 показывает, что предположения теоремы 3 существенны.

ПРИМЕР 1. Рассмотрим управляемую систему

$$\dot{x}_1=u,\quad \dot{x}_2=u^2-x_1^2,\qquad u(t)\in\mathbb{R}$$
 для почти всех $t\in[0,T],$
$$x_1(0)=x_2(0)=x_1(T)=x_2(T)=0, \tag{38}$$

где T > 0.

Процесс $(\widehat{x}(\cdot),\widehat{u}(\cdot))=(0,0)$, где $\widehat{x}(\cdot)=(\widehat{x}_1(\cdot),\widehat{x}_2(\cdot))$, допустим для данной системы. В соответствии с общей постановкой здесь f=0, и считаем, что $g=(x_1(0),x_2(0),x_1(T),x_2(T))^T$. Несложный подсчет показывает, что пары $(p(\cdot),\lambda_g)=((0,\alpha),(0,\alpha,0,\alpha))$, где $\alpha\leqslant 0$, и только они удовлетворяют первым четырем соотношениям в (32) и, тем самым,

$$\Lambda_{\max}(0,0) = \{ (p(\,\cdot\,), \lambda_g) = ((0,\alpha), (0,\alpha,0,\alpha)), \ \alpha < 0 \}.$$

Очевидно, что $\Lambda_{\max}(0,0) \cup \{0\}$ – острый конус (луч), и поэтому процесс (0,0) неособый, а порядок анормальности системы (41) относительно этого процесса равен 1. Воспользуемся следствием 3.

В нашем случае, как нетрудно проверить,

$$K(0,0) = \{ q(\cdot) = (h(\cdot), v(\cdot)) \in AC([0,T], \mathbb{R}^2) \times L_{\infty}([0,T]) : \dot{h}_1(\cdot) = v(\cdot), \ h_2(\cdot) = 0, \ h_1(0) = h_1(T) = 0 \}.$$

Пусть $(p(\cdot), \lambda_g) \in \Lambda_{\max}(0,0)$. Непосредственные вычисления показывают, что для любого $q(\cdot) \in K(0,0)$

$$Q(p(\cdot), \lambda_2)[q(\cdot), q(\cdot)] = -2\alpha \int_0^T (v^2(t) - h_1^2(t)) dt$$
$$= -2\alpha \int_0^T (\dot{h}_1^2(t) - h_1^2(t)) dt.$$

Хорошо известно (и легко проверяется), что интеграл неотрицателен на [0,T], если $T\leqslant\pi$, и принимает отрицательные значения на [0,T], если $T>\pi$. Но тогда величина $Q(p(\,\cdot\,),\lambda_g)[q(\,\cdot\,),q(\,\cdot\,)]$ при $T>\pi$ принимает отрицательные значения, и, значит, согласно следствию 3 рассматриваемая система локально управляема относительно процесса (0,0).

ПРИМЕР 2. Рассмотрим такую управляемую систему:

$$\dot{x}_1=u,\quad \dot{x}_2=u^3,\qquad u(t)\in (-2,+\infty)$$
 для почти всех $t\in [0,1],$ $x_1(0)=x_2(0)=0,\qquad x_1(1)=x_2(1)=1.$

Процесс $(\widehat{x}(\cdot), \widehat{u}(\cdot))$, где $\widehat{x}_1(t) = \widehat{x}_2(t) = t$, $\widehat{u}(t) = 1$, $t \in [0, 1]$, допустим для системы (39). Непосредственный анализ первых четырех соотношений в (32) показывает, что если пара $(p(\cdot), \lambda_g)$ им удовлетворяет, то необходимо $p(\cdot) = (\alpha, -\alpha/3), \lambda_g = (\alpha, -\alpha/3, \alpha, -\alpha/3)$,

$$\alpha \left(u - \frac{u^3}{3} \right) \leqslant \alpha \frac{2}{3} \quad \forall u \in (-2, +\infty)$$
 (40)

для некоторого $\alpha \in \mathbb{R}$.

Покажем, что $\Lambda(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,),q(\,\cdot\,)) \neq \varnothing$ для любого $q(\,\cdot\,) \in K(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,)),$ где

$$\begin{split} K(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,)) &= \{q(\,\cdot\,) = (h(\,\cdot\,),v(\,\cdot\,)) \in \mathrm{AC}([0,1],\mathbb{R}^2) \times L_{\infty}([0,1]) \colon \\ & \dot{h}_1(\,\cdot\,) = v(\,\cdot\,), \ \dot{h}_2(\,\cdot\,) = 3v(\,\cdot\,), \ h_i(0) = h_i(1) = 0, \ i = 1,2\}, \end{split}$$

и в то же время система (39) не является локально управляемой относительно процесса $(\widehat{x}(\cdot),\widehat{u}(\cdot))$ (т.е. условие $\Lambda(\widehat{x}(\cdot),\widehat{u}(\cdot),q(\cdot))=\varnothing$ существенно для локальной управляемости).

Действительно, условие (40) справедливо для любого $\alpha>0$ и обращается в равенство в точке u=1. Пусть $(p(\,\cdot\,),\lambda_g)\in\Lambda_{\max}(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,))$. Нетрудно проверить, что

$$Q(p(\,\cdot\,),\lambda_g)[q(\,\cdot\,),q(\,\cdot\,)] = 2\alpha \int_0^1 v^2(t)\,dt$$

для любого $q(\,\cdot\,)=(h(\,\cdot\,),v(\,\cdot\,))\in K(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,))$ и, таким образом, $\Lambda(\widehat{x}(\,\cdot\,),\widehat{u}(\,\cdot\,),q(\,\cdot\,))\neq\varnothing$.

Для доказательства неуправляемости системы относительно процесса $(\widehat{x}(\cdot), \widehat{u}(\cdot))$ достаточно показать, что для любого процесса $(x(\cdot), u(\cdot))$ $(x(\cdot) = (x_1(\cdot), x_2(\cdot)))$, который удовлетворяет дифференциальному уравнению в (39), $u(t) \in (-2, +\infty)$ для почти всех $t \in [0, 1]$, $x_1(1) = 1$ и $x_1(0) = x_2(0) = 0$, справедливо неравенство $x_2(1) \geqslant 1$.

В самом деле, обозначая $\eta(\,\cdot\,)=u(\,\cdot\,)-1$ и учитывая, что $\eta(t)>-3$ для почти всех $t\in[0,1]$ и $\int_0^1\eta(t)\,dt=0$, будем иметь

$$x_2(1) = \int_0^1 u^3(t) dt = \int_0^1 (1 + \eta(t))^3 dt$$
$$= 3 \int_0^1 \eta(t) dt + \int_0^1 \eta^2(t)(3 + \eta(t)) dt + 1 \ge 1.$$

Таким образом, система (39) не является локально управляемой относительно процесса $(\widehat{x}(\cdot), \widehat{u}(\cdot))$.

ПРИМЕР 3. Рассмотрим управляемую систему

$$\dot{x}_1 = \langle a, u \rangle + \langle x^T, Au \rangle, \qquad \dot{x}_2 = \langle x^T, Bu \rangle + u_1^2 - u_2^2, \qquad \dot{x}_3 = (u_1 - u_2)^2,
u(t) = (u_1(t), u_2(t) \in \mathbb{R}^2 \quad \text{для почти всех} \quad t \in [0, T],
x_1(0) = x_2(0) = 0, \qquad x_3(0) = -x_1^2(1), \qquad x_3(1) = 0,$$
(41)

где $a = (a_1, a_2), a_1 + a_2 \neq 0, A$ и B – произвольные (2×2) -матрицы.

Процесс $(\widehat{x}(\cdot), \widehat{u}(\cdot)) = (0,0)$, где $\widehat{x}(\cdot) = (\widehat{x}_1(\cdot), \widehat{x}_2(\cdot), \widehat{x}_3(\cdot))$ и $\widehat{u}(\cdot) = (\widehat{u}_1(\cdot), \widehat{u}_2(\cdot))$, допустим для данной системы. Непосредственный подсчет показывает, что пары $(p(\cdot), \lambda_g) = ((0,0,\alpha), (0,0,\alpha,0,0,-\alpha))$, где $\alpha \leqslant 0$, и только они удовлетворяют первым четырем соотношениям в (32) и, тем самым,

$$\Lambda_{\max}(0,0) = \{ (p(\cdot), \lambda_q) = ((0,0,\alpha), (0,0,\alpha,0,0,-\alpha)), \ \alpha < 0 \}.$$

Очевидно, что $\Lambda_{\max}(0,0) \cup \{0\}$ – острый конус, и поэтому процесс (0,0) неособый, а порядок анормальности системы (41) относительно этого процесса равен 1. Конус критических вариаций, как нетрудно убедиться, имеет вид

$$K(0,0) = \{ (h(\cdot), v(\cdot)) \in AC([0,1], \mathbb{R}^3) \times L_{\infty}([0,1], \mathbb{R}^2) : \dot{h}_1(\cdot) = a_1 v_1(\cdot) + a_2 v_2(\cdot), \ h_2(\cdot) = h_3(\cdot) = 0, \ h_1(0) = 0 \}.$$

Для любого $q(\cdot) = (h(\cdot), v(\cdot)) \in K(0, 0)$ имеем

$$Q(p(\cdot), \lambda_g)[q(\cdot), q(\cdot)] = -2h_1^2(1) - 2\alpha \int_0^1 (v_1(t) - v_2(t))^2 dt.$$

Пусть $q(\cdot)$ такое, что $v_1(\cdot)=v_2(\cdot)=v(\cdot)$ и $\int_0^1 v(t)\,dt\neq 0$. Тогда $h_1(1)\neq 0$ и, значит, $Q(p(\cdot),\lambda_g)[q(\cdot),q(\cdot)]<0$. Согласно следствию 3 рассматриваемая система локально управляема относительно процесса (0,0).

Список литературы

- [1] В. М. Тихомиров, Принцип Лагранжа и задачи оптимального управления, МГУ, М., 1982.
- [2] Е. Р. Аваков, Г. Г. Магарил-Ильяев, В. М. Тихомиров, "О принципе Лагранжа в задачах на экстремум при наличии ограничений", УМН, **68**:3(411) (2013), 5–38; англ. пер.: Е. R. Avakov, G. G. Magaril-Il'yaev, V. M. Tikhomirov, "Lagrange's principle in extremum problems with constraints", Russian Math. Surveys, **68**:3 (2013), 401–433.
- [3] В.А. Зорич, *Математический анализ*, т. II, Наука, М., 1984, 640 с.; англ. пер. 4-го и 6-го изд.: V. A. Zorich, *Mathematical analysis*, v. II, 2nd ed., Universitext, Springer-Verlag, Berlin, 2004, xvi+681 pp.
- [4] Е. Р. Аваков, Г. Г. Магарил-Ильяев, "Релаксация и управляемость в задачах оптимального управления", *Mamem. c6.*, **208**:5 (2017), 3–37; англ. пер.: Е. R. Avakov, G. G. Magaril-Il'yaev, "Relaxation and controllability in optimal control problems", *Sb. Math.*, **208**:5 (2017), 585–619.

- [5] R. E. Kalman, "Discussion: "On the existence of optimal controls", ASME J. Basic. Eng., 84:1 (1962), 21–22.
- [6] Э. Б. Ли, Л. Маркус, Основы теории оптимального управления, Наука, М., 1972, 574 с.; пер. с англ.: E. B. Lee, L. Markus, Foundations of optimal control theory, John Wiley & Sons, Inc., New York-London-Sydney, 1967, x+576 pp.
- [7] А. А. Аграчев, Ю. Л. Сачков, Геометрическая теория управления, Физматлит, М., 2005, 392 с.; пер. с англ.: А. А. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp.
- [8] Н. Н. Петров, "Об управляемости автономных систем", Дифференц. уравнения, 4:4 (1968), 606–617.
- [9] H. J. Sussmann, "A general theorem on local controllability", SIAM J. Control Optim., 25:1 (1987), 158–194.
- [10] А.В. Арутюнов, В. Ячимович, "2-нормальные процессы управляемых динамических систем", Дифференц. уравнения, 38:8 (2002), 1017–1029; англ. пер.: А. V. Arutyunov, V. Jacimovic, "2-normal processes in controlled dynamical systems", Differ. Equ., 38:8 (2002), 1081–1094.
- [11] Е.С. Левитин, А.А. Милютин, Н.П. Осмоловский, "Условия высших порядков локального минимума в задачах с ограничениями", УМН, **33**:6(204) (1978), 85–148; англ. пер.: E.S. Levitin, A.A. Milyutin, N.P. Osmolovskii, "Conditions of high order for a local minimum in problems with constraints", Russian Math. Surveys, **33**:6 (1978), 97–168.
- [12] N. P. Osmolovskii, "Necessary quadratic conditions of extremum for discontinuous controls in optimal control problems with mixed constraints", J. Math. Sci. (N. Y.), 183:4 (2012), 435–576.
- [13] Г. А. Блисс, Лекции по вариационному исчислению, ИЛ, М., 1950, 349 с.; пер. с англ.: G. A. Bliss, Lectures on the calculus of variations, Univ. of Chicago Press, Chicago, Ill., 1946, ix+296 pp.

Евгений Рачиевич Аваков (Evgenii R. Avakov)

Институт проблем управления им. В. А. Трапезникова Российской академии наук, г. Москва; Механико-математический факультет, Московский государственный университет имени М. В. Ломоносова

E-mail: eramag@mail.ru

Георгий Георгиевич Магарил-Ильяев (Georgii G. Magaril-Il'yaev)

Механико-математический факультет, Московский государственный университет имени М. В. Ломоносова; Институт проблем передачи информации им. А. А. Харкевича Российской академии наук, г. Москва

E-mail: magaril@mech.math.msu.su

Поступила в редакцию 22.09.2017 и 18.09.2018