

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ: 09.03.01 Информатика и Вычислительная техника

Отчет

По лабораторной работе 3

Дисциплина: электротехника

	Вариант №6	
Студент гр. ИУ6-33Б		В.К. Залыгин
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		Н.В. Аксенов
	(Подпись, дата)	(И.О. Фамилия)

Цель работы

- 1. Научиться рассчитывать АЧХ интегрирующей RC-цепи
- 2. Научиться рассчитывать частоты, резонансные частоты и частоты среды, интегрирующей RC-цепи
- 3. Научиться рассчитывать декремент колебаний

Основная часть

Задание 1

Для цепи R_1C_1 рассчитать АЧХ RC-цепи интегрирующей (ФНЧ). Найти частоту среза $f_{\rm cp}$. Рассчитать постоянную времени RC-цепи. Сравнить обратную величину постоянной времени τ с величиной угловой частоты среза $\omega_{\rm cp}$.

Выполнение

Произведена сборка экспериментальной установки из генератора, платы и осциллографа.

Рисунок 1 - собранная цепь

Рисунок 2 - осциллограф и генератор

Произведен расчет амплитудно-частотной характеристики собранной установки для частот 50, 100, 150...500 (таблица 1)

Таблица 1 - АЧХ RC-цепи

f, hz	U, B
50	1,04
100	1,02
150	0,96
200	0,90
250	0,82
300	0,76
350	0,70
400	0,64
450	0,58
500	0,54

На основе полученных данных выполнен расчет амплитуды для частоты среза (граничной частоты) для максимального U=1.04

$$Ucp = \frac{U}{\sqrt{2}} = \frac{1.04}{\sqrt{2}} \approx 0.73528$$

В таком случае граничная частота (частота среза) $f_{\rm cp} = 312$

Выполнен расчет постоянной времени τ_{RC} =RC=0.00051 (R = 10000, C = 5.1 * 10^{-9})

Выполнен расчет угловой частоты $\omega_{\rm cp}$

$$\omega_{cp} = \frac{1}{\tau_{RC}} = \frac{1}{0.00051} = 1960.78$$

Выполним проверку рассчитанной угловой частоты

$$\frac{\omega_{\rm cp}}{2\pi} = \frac{1960.78}{2*3.14} \approx 312.2$$

Рассчитанная величина примерно равна граничной частоте, следовательно, расчеты выполнены верно.

Рисунок 3 - анализ режима работы цепи и снятие данных

Задание 2

Для цепи R5L3C3 найти резонансную частоту f рез и две частоты среза f ср, рассчитать добротность системы Q.

Выполнение

Рисунок 4 - собранная цепь

Резонансная частота $f = 76000\Gamma$ ц, напряжение U = 0.56 На основе данных выполнен расчет амлитуды для частоты среза (граничную частоту)

$$U_{cp} = \frac{U}{\sqrt{2}} = \frac{0.56}{\sqrt{2}} \approx 0.396$$

Экспериментальным путем найдены 2 частоты среза

$$f_{cp1} = 59026$$

$$f_{cp2} = 94020$$

Рассчитана разность частот

$$\Delta f = f_{\rm cp2} - f_{\rm cp1} = 34994$$

Тогда добротность системы будет

$$Q = \frac{f_{pe3}}{\triangle f_{cp}} = \frac{76000}{34994} \approx 2.17$$

Задание 3

Подать прямоугольный сигнал уровня 1 вольт. Высчитать отношение соседних амплитуд на резисторе (большей к меньшей) — декремент колебаний Δ . Найти логарифмический декремент колебаний θ . Найти добротность системы Q.

Выполнение

$$C = 5.1 * 10^{-9}$$

$$R = 10000$$

$$\tau_{RC} = C * R = 0.00051$$

$$\omega_{\rm cp} = 1960,78$$

$$f_{cp} = 312$$

Экспериментальным путем были найдены значения двух соседних амплитуд $U_1 = 0.372 \ \text{и} \ U_2 = 0.096$

Рассчитан декремент колебаний

$$\Delta = \frac{U_1}{U_2} = \frac{0.372}{0.096} = 3.875$$

Рассчитан логарифмический декремент колебаний

$$\theta = \ln \Delta = 1.355$$

Рассчитана добротность системы

$$Q = \frac{\pi}{\theta} = \frac{3.14}{1.355} = 2.32$$

Добротность приблизительна равна добротности, рассчитанной во втором задании.

Рисунок 5 - снятие данных с осциллографа в процессе выполнения лабораторной работы

Вывод

Научились экспериментальным путем устанавливать амплитудно-частотные характеристики RC-цепи. Научились рассчитывать граничную и угловую частоту RC-цепи. Научились рассчитывать добротность колебаний для RLC-

цепи с помощью частот и с помощью логарифмического декремента затухания. Научились составлять простейшие цепи и работать с таким оборудованием, как генератор и осциллограф.