Eve Moth groups	Mathematics exam	Prepared by: Dr. Ali Moussawi
ExaMath groups	Section: L.S.	Edited by: H. Ahmad
No	Sample 01 - 2022	Name:
Number of questions: 3	Duration: 90 min	N^{o} :

- This exam consists of three problems. It is inscribed on three pages, numbered from 1 to 3.
- The use of a non-programmable calculator is allowed.

I - (3 points)

In the table below, only one of the answers given to each question is correct. Choose, **with justification**, the correct answer.

\mathbf{N}^o	Question	P	roposed answe	rs
11	Question	A	В	C
1.	The domain of definition of the function f defined by: $f(x) = \ln(x^2 - 4)$ is:	$]2 ; +\infty[$	$]-\infty$; 2[$]-\infty ; 2[\cup \\]2 ; +\infty[$
2.	$e^{\frac{1}{2}\ln 9} \times e^{-\ln \frac{1}{3}} =$	e^3	6	9
3.	Let A and B be two independent events such that: $p(A \cap B) = 0.32$ and $p(B) = 2p(A)$. The probability of the event B is equal to:	0.04	0.08	0.8
4.	In a sports club, 75% of members are women. One out of five women plays tennis, while seven out of ten men do. A person, chosen at random, plays Tennis. The probability that this person is a woman has the value rounded to the nearest thousandth:	0.750	0.462	0.150

II - (5 points)

Consider two urns U_1 and U_2 containing balls that are indistinguishable to the touch.

- The urn U_1 contains one white ball and three red balls.
- The urn U_2 contains two white balls and two red balls.
- 1) In this part we draw one ball from U_1 and one ball from U_2 . Consider the following events: R: "The two drawn balls are red";

C: "The two drawn balls are of different colors".

Calculate p(R) and verify that $p(C) = \frac{1}{2}$.

2) In this part, we consider a well balanced six-sided cubic die, two of which carry the number 1 and the others carry the number 2.

We proceed to the following random experiment:

We roll the die once:

- If the upper face carries the number 1, we draw at random one ball from the urn U_1 .
- If the upper face carries the number 2, we draw at random one ball from the urn U_2 .

Consider the following events:

D: "The upper face of the die carries the number 1";

B: "Draw a white ball".

- a) Show that $p(D) = \frac{1}{3}$ and calculate p(B/D) and $p(B \cap D)$.
- b) Calculate $p(B \cap \overline{D})$ and deduce that $p(B) = \frac{5}{12}$.
- c) Knowing that we have drawn a white ball, what is the probability that it comes from the urn U_2 ?

III - (12 points)

Part A:

The adjacent curve (C) is the representative curve, in an orthonormal system, of the function g defined over \mathbb{R} by: $g(x) = (ax + b) e^x + c$, where a, b and c are real numbers.

• The line of equation y = 1 is an asymptote to (C) at $-\infty$.

2) Use the curve (C) to determine the sign of g(x) according to the values of x in \mathbb{R} .

Part B:

Let f be the function defined over \mathbb{R} by $f(x) = (x-2)e^x + x$.

Designate by (C_f) the representative curve of f in an orthonormal system $(O; \vec{i}; \vec{j})$.

- 1) a) Calculate the limits of f at $+\infty$ and at $-\infty$.
 - b) Show that the line (Δ) of equation y = x is an asymptote to (C_f) at $-\infty$.
 - c) Study the relative position of (C_f) with respect to (Δ) .
- 2) Show that f'(x) = g(x) and draw the table of variations of the function f.

- 3) Show that the equation f(x) = 0 admits a unique solution α in $\mathbb R$ and verify that: $1.6 < \alpha < 1.7$.
- 4) Show that there exist a point E of the curve (C_f) where the tangent (T) to (C_f) is parallel to the line (Δ) . Calculate the coordinates of E and give an equation of the tangent (T).
- 5) Draw (Δ) , (T) and (C_f) .

QI	Answers	Note
1.	The function is f is defined if $x^2 - 4 > 0$ therefore for $x \in]-\infty$; $-2[\cup]2$; $+\infty[$;	3/4
1.	The correct answer is then C.	
2.	$e^{\frac{1}{2}\ln 9} \times e^{-\ln \frac{1}{3}} = e^{\ln 9^{\frac{1}{2}}} \times e^{\ln \left(\frac{1}{3}\right)^{-1}} = \sqrt{9} \times 3 = 9 ;$	3/4
	The correct answer is then C.	
	A and B are two independent events then $p(A \cap B) = p(A) \times p(B)$ and as	
3.	$p(A) = \frac{p(B)}{2}$ we obtain the equation $0.32 = \frac{p(B)}{2} \times p(B)$ therefore $[p(B)]^2 = 0.64$	3/4
	p(A) = 0.8 ;	
	The correct answer is then C.	
	Consider the events:	
	F: "The chosen person is a woman" and T : "The chosen person practices Tennis";	
4.	It is a question of calculating $p(F/T) = \frac{p(F \cap T)}{p(T)}$;	
	$p(T \cap F) = p(T/F) \times p(F) = \frac{1}{5} \times \frac{75}{100} = \frac{3}{20};$ $p(T \cap \overline{F}) = p(T/\overline{F}) \times p(\overline{F}) = \frac{7}{10} \times \frac{25}{100} = \frac{7}{40}$	
	$p(T \cap \overline{F}) = p(T / \overline{F}) \times p(\overline{F}) = \frac{7}{10} \times \frac{25}{100} = \frac{7}{40}$	3/4
	$p(T) = p(T \cap F) + p(T \cap \overline{F}) = \frac{3}{20} + \frac{7}{40} = \frac{13}{40}$	
	Finally $p(F/T) = \frac{P(F \cap T)}{P(T)} = \frac{3/20}{13/40} = \frac{6}{13} \approx 0.462$ rounded to the nearest	
	thousandth.	

QII	Answers	Note
	$p(R) = \frac{C_3^1 \times C_2^1}{C_4^1 \times C_4^1} = \frac{3}{8} ;$ $p(C) = \frac{C_1^1 \times C_2^1 + C_3^1 \times C_2^1}{C_4^1 \times C_4^1} = \frac{1}{2} .$	1½
2.a.	$p(D) = \frac{2}{6} = \frac{1}{3};$ $p(B/D) = \frac{1}{4};$ $p(B \cap D) = p(B/D) \times p(D) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$	1½
2.b	$p(B \cap \overline{D}) = p(B/\overline{D}) \times P(\overline{D}) = \frac{2}{4} \times \frac{4}{6} = \frac{1}{3};$ Using on the total probability formula: $p(B) = p(B \cap D) + p(B \cap \overline{D}) = \frac{1}{12} + \frac{1}{3} = \frac{5}{12}$	1
2.c.	$p(\overline{D}/B) = \frac{p(\overline{D} \cap B)}{p(B)} = \frac{1/3}{5/12} = \frac{4}{5}.$	1

QIII	Answers	Note
	• $\lim_{x \to -\infty} g(x) = 1$; $\lim_{x \to \infty} (ae^x + be^x + c) = 1$; $0 + 0 + c = 1$; $c = 1$;	
A.1.	• $g(0)=0$; $b+c=0$; $b=-c=-1$;	11/2
	• $g'(0)=0$; $g'(x)=(ax+a+b)e^x$; $a+b=0$; $a=-b=1$;	
A.2.	Using the curve (C):	
	• $g(x) = 0$ when $x = 0$;	
	• $g(x) > 0$ when $x \in]-\infty$; $0[\cup]0$; $+\infty[$	
B.1.a.	$\lim_{x \to +\infty} f(x) = +\infty \times (+\infty) + \infty = +\infty ;$	
	$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (xe^x - 2e^x + x) = 0 - 0 - \infty = -\infty.$	
B.1.b.	$\lim_{x \to -\infty} \left[f(x) - x \right] = \lim_{x \to -\infty} \left(xe^x - 2e^x \right) = 0 - 0 = 0; \text{ the line } (\Delta) \text{ of equation } y = x \text{ is}$	
	an oblique asymptote to (C_f) at $-\infty$.	1
	$f(x)-x=(x-2)e^x$ has the same sign as $x-2$ since $e^x>0$ for every $x\in\mathbb{R}$;	
D 1 a	• $f(x)-x>0$ if $x>2$; (C_f) is above (Δ) if $x \in]2$; $+\infty[$;	
B.1.c.	• $f(x)-x>0$ if $x<2$; (C_f) is below (Δ) if $x \in]-\infty$; $2[$;	1
	• $f(x)-x=0$ if $x=2$; (C_f) cut (Δ) at the point of coordinates $(2;2)$.	
	$f'(x) = e^x + (x-2)e^x + 1 = (x-1)e^x + 1 = g(x)$; $f'(x)$ and $g(x)$ have the same	
	sign over \mathbb{R} ; using part A.2. we obtain the following table of variation of f : $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
B.2.	$\frac{x}{f'(x)}$ + 0 + ∞	2
	+∞	
	$f(x)$ $-\infty$ -2	
	The function f is continuous and strictly increasing over $]0$; $+\infty[$ and changes	
B.3.	the sign from negative $(-\infty)$ to positive $(+\infty)$, then the equation $f(x) = 0$	
В.З.	admits on $]0$; $+\infty[$ a unique solution α ;	
	In addition, $f(1.6) \approx -0.38 < 0$ and $f(1.7) \approx 0.06 > 0$ therefore $1.6 < \alpha < 1.7$.	
	(T) is parallel to (Δ) then f'(x_E)=1; (x_E -1) e^{x_E} +1=1; (x_E -1) e^{x_E} =0;	
B.4.	So $x_E = 1$; $y_E = f(1) = -e+1$; so the coordinates of E are $E(1; -e+1)$;	
	An equation of (T) : $y = f'(1)(x-1)+f(1)$; (T) : $y = x - e$.	

