

AOTF296L

100V N-Channel MOSFET

General Description

Trench Power MV MOSFET technology

- Low R_{DS(ON)}
- Low Gate Charge
- Optimized for fast-switching applications

Product Summary

100% UIS Tested 100% Rg Tested

 $\begin{array}{ll} V_{DS} & 100V \\ I_{D} \; (at \, V_{GS} \! = \! 10V) & 41A \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 10V) & < 10 m\Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 6V) & < 12.5 m\Omega \end{array}$

Applications

- Synchronous Rectification in DC/DC and AC/DC Converters
- Industrial and Motor Drive applications

Orderable Part Number Package Type		Form	Minimum Order Quantity
AOTF296L	TO-220F	Tube	1000

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain	T _C =25°C	I_	41		
Current	T _C =100°C	ID	29	Α	
Pulsed Drain Current C		I _{DM}	160		
Continuous Drain	T _A =25°C		10	A	
Current	T _A =70°C	IDSM	8		
Avalanche Current ^C	•	I _{AS}	40	A	
Avalanche energy	L=0.1mH	E _{AS}	80	mJ	
V _{DS} Spike	10µs	V _{SPIKE}	120	V	
	T _C =25°C	P _D	36.5	w	
Power Dissipation B	T _C =100°C	P _D	18	VV	
	T _A =25°C	D	2.2	10/	
Power Dissipation A	T _A =70°C	P _{DSM}	1.4	W	
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to 175	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	В	10	15	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	45	55	°C/W	
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	3.4	4.1	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC I	PARAMETERS	•			•	•	
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		100			V
I _{DSS} Zero Gate Voltage Drain Curre	Zero Cate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V				1	μA
	Zero Gate Voltage Drain Current		T _J =55°C			5	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS, I_D}=250\mu A$		2.3	2.9	3.4	V
	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =20A	V _{GS} =10V, I _D =20A		8.2	10	mΩ
$R_{DS(ON)}$			T _J =125°C		14.2	17.2	11177
		V_{GS} =6V, I_D =20A			9.7	12.5	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =20A			62		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V
Is	Maximum Body-Diode Continuous Current					41	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =50V, f=1MHz			2785		pF
Coss	Output Capacitance				238		pF
C _{rss}	Reverse Transfer Capacitance				12		pF
R_g	Gate resistance	f=1MHz		0.25	0.55	0.85	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =50V, I _D =20A			37	52	nC
Q_{gs}	Gate Source Charge				11.5		nC
Q_{gd}	Gate Drain Charge				5		nC
$t_{D(on)}$	Turn-On DelayTime				13		ns
t_r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =2 Ω , R_{GEN} =3 Ω			8.5		ns
$t_{D(off)}$	Turn-Off DelayTime				29		ns
t_f	Turn-Off Fall Time				4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs			35		ns
Q_{rr}	Body Diode Reverse Recovery Charge	Charge I _F =20A, dI/dt=500A/μs			210		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{0JA} t≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175 $^{\circ}$ C may be used if the PCB allows it.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev.1.0: March 2015 www.aosmd.com Page 2 of 6

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used

C. Single pulse width limited by junction temperature $T_{J(\text{MAX})}\text{=}175^{\circ}\,$ C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175° C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

6

4 L

5

10

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 $\label{eq:local_problem} \textbf{I}_{\text{D}}\left(\textbf{A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

20

15

25

30

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Rev.1.0: March 2015 Page 4 of 6 www.aosmd.com

0.001

0.001

0.01

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

10

100

1000

0.1

Rev.1.0: March 2015 **www.aosmd.com** Page 5 of 6

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Rev.1.0: March 2015 www.aosmd.com Page 6 of 6