STAT115: Introduction to Biostatistics

University of Otago Ōtākou Whakaihu Waka

Lecture 26: ANOVA in Action

Outline

- Fitting ANOVA model
- Understanding ANOVA table
 - ► Comparing the variance within a group, to the variance between groups
- Look at multiple comparisons
 - ► Pairwise differences

Recall: hair colour and pain threshold data

- We are looking at pain thresholds may differ with hair colour in students
 - ► Four colours: light blond, dark blond, light brunette, dark brunette
- Import the data

```
blonds = read.csv('blonds.csv')
```

Look at the data

Recall: ANOVA

- One-way ANOVA model with K groups
 - ▶ Outcome variable in group j is normally distributed with mean μ_j and variance σ^2
- We want to know how the mean outcome differs among groups
 - ▶ Potential problems with multiple comparisons
- Are there any differences in mean outcome among the groups?
- This takes the form of a hypothesis test

 - ▶ H_A : at least one mean is different

In R

- As with categorical variables with 2 levels
 - Special case of linear regression
 - Categorical variables can be included in R as factors

```
blonds$HairColour = as.factor(blonds$HairColour)
```

• We can then fit a linear regression model

```
m_blonds = lm(Pain ~ HairColour, data = blonds)
```

- This fits the ANOVA model
- Problem: output from m_blonds is not in a convenient form
 - ▶ Output is in terms of particular pairwise comparisons

In R

We use the aov function to get the results in more convenient form

```
a_blonds_lm = aov(m_blonds)
```

We can also use aov directly

```
a_blonds = aov(Pain ~ HairColour, data = blonds)
```

The output we will consider is an ANOVA table

• Take a graphical look at the ANOVA model to help explain what this tells us

Understanding ANOVA (analysis of variance)

- Left plot (blue): plot of all outcome variables (irrespective of group)
- Right three plots (black): plot of outcome variables by group
- Solid horizontal lines: means
 - Dashed blue line is the overall mean

Comparing variance

- The sample variance for each group is given on the plot above
 - ► Combined data (blue): outcomes are highly variable
 - ▶ Data from each group (black; A, B, C): outcomes have much lower variability

The group variable has explained a lot of the variability in the data

Comparing variance

- Overall variability partitioned into:
 - ▶ Variability in group means (indicated by gold lines)
 - Variability within the groups (points around their mean)
- \bullet This is the information summarized in the ANOVA table $_{\text{Lecture 26}}$

ANOVA table

The ANOVA table for the pain threshold data is

```
## Df Sum Sq Mean Sq F value Pr(>F)

## HairColour 3 1361 453.6 6.791 0.00411 **

## Residuals 15 1002 66.8

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

• To explain what this represents we will use the table:

Source	Df	Sum Sq	Mean Sq	F value
Group	K-1	GSS	$GMS = \frac{GSS}{DF}$	$F = \frac{GMS}{RMS}$
Residuals	n-K	RSS	$RMS = \frac{RSS}{DF}$	
Total	n-1	TSS		

ANOVA table: rows

Source	Df	Sum Sq	Mean Sq	F value
			$GMS = \frac{GSS}{DF}$	$F = \frac{GMS}{RMS}$
Residuals	n-K	RSS	$RMS = \frac{RSS}{DF}$	
Total	n-1	TSS		

- Group row: describes the variation between group means
 - ▶ Variation represented by gold bar in plot above
- Residuals row: describes the variation within each group
- Total row: describes the variation when we combine across groups
 - ▶ Data represented in blue in plot above
 - ▶ This row is not in R output

ANOVA table: columns

Source	Df	Sum Sq	Mean Sq	F value
Group	K-1	GSS	$GMS = \frac{GSS}{DF}$	$F = \frac{GMS}{RMS}$
			$RMS = \frac{RSS}{DF}$	
Total	n-1	TSS		

- Mean Sq[uare]
 - ► Group (GMS): related to the between-group variance
 - ► Residual (RMS): estimate of within-group variance
- F value: ratio of group mean square and residual mean square
- Df: degrees of freedom
- Sum Sq: sum of squares
 - ► Convenient when calculating by hand

ANOVA table

Source	Df	Sum Sq	Mean Sq	F value
Group	K-1	GSS	$GMS = \frac{GSS}{DF}$	$F = \frac{GMS}{RMS}$
Residuals	n-K	RSS	$RMS = \frac{RSS}{DF}$	
Total	n-1	TSS		

- If the groups explain a lot of variability (like our plots above)
 - ▶ The group mean square will be large relative to residual mean square
 - ► F-value will be relatively large
 - ANOVA table below is for data from plots above

```
## Df Sum Sq Mean Sq F value Pr(>F)

## group 2 966.2 483.1 472.5 <2e-16 ***

## Residuals 87 88.9 1.0

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Example II: group does not explain much variation

- The group mean square will not be large relative to residual mean square
- The F-value is not large

```
## group 2 2.27 1.1354 1.41 0.25
## Residuals 87 70.08 0.8055
```

ANOVA table: F column

- The F-value is comparing the variance among groups (the variability in the group means) to the variance within the groups
 - ▶ It is a measure of how much variation in the data is explained by the groups compared to unexplained variation
- If the null hypothesis is true
 - lacktriangle Data come from the ANOVA model with all means equal $(\mu_1=\mu_2=\ldots=\mu_k)$
 - The data are normally distributed with the same mean and variance
 - ▶ F-statistic will have an F-distribution with Df (group), Df (residual) degrees of freedom
- We can use this to find a p-value
 - Quantify the incompatibility between the data and null hypothesis
 - ▶ Are the data unusual given that the null hypothesis is true (group means are the same)

• If null hypothesis is true, we expect an F-value of around 1

Detour: F-distribution

• The F-distribution is a distribution for positive random variables

- ► It is asymmetric (positively skewed)
- ▶ It has two parameters:
 - Degrees of freedom for the numerator (df1)
 - Degrees of freedom for the denominator (df2)

Finding a p-value

- An extreme F-value is as large, or larger, than that observed
 - ▶ Indicative of groups explaining as much, or more, variation in the data

- The blue area is given by 1-pf(F, df1, df2)
 - \blacktriangleright pf (F, df1, df2) gives probability of a value less than F

Example II

The ANOVA table for example II is

```
## Besiduals 87 70.08 0.8055 F value Pr(>F)

## group 2 2.27 1.1354 1.41 0.25
```

- The observed F-statistic is 1.41
 - ▶ df1 is degrees of freedom for group: 2
 - ▶ df2 is degrees of freedom for residuals: 87
- The p-value is

```
1-pf(1.41, 2, 87)
## [1] 0.25
```

• In practice: refer to the Pr(>F) column in the output

In R: Pain Sensitivity Data

The ANOVA table for the pain sensitivty and hair colour data is

```
## Df Sum Sq Mean Sq F value Pr(>F)

## HairColour 3 1361 454 6.79 0.0041 **

## Residuals 15 1002 67

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- The F-value is large, p-value is small
 - ightharpoonup p-value $< \alpha$: evidence of incompatibility between data and null hypothesis
 - ▶ Data are (highly) unusual if all the means were truly the same
 - Providing evidence that at least one of the means differ
- Which groups have means that appear to differ?

Pairwise comparisons of group means

- To compare each group, there are (potentially) many comparisons
 - ▶ If we have K = 3 groups: 3 comparisons
 - ▶ If we have K = 5 groups: 10 comparisons
 - ▶ If we have K = 10 groups: 45 comparisons
- E.g. for K=3: conduct hypothesis tests or find confidence intervals:
 - ▶ CI for $\mu_1 \mu_2$; hypothesis test with $H_0: \mu_1 \mu_2 = 0$
 - ▶ CI for $\mu_1 \mu_3$; hypothesis test with $H_0: \mu_1 \mu_3 = 0$
 - ▶ CI for $\mu_2 \mu_3$; hypothesis test with $H_0: \mu_2 \mu_3 = 0$

Multiple comparisons

- The problem with multiple tests (or multiple confidence intervals) is that properties no longer hold. For hypothesis testing:
 - lacktriangleright α gives the type I error rate for a single test
 - Probability of α of a 'false positive' given that the null hypothesis is true
 - ▶ In each test, there is a chance of a false positive (type I error)
 - ▶ With multiple tests, the overall chance of a type I error increases
 - Overall type I error rate: referred to as the family-wise error rate
 - Probability of making at least one type I error when performing multiple tests
 - Multiple comparisons increase the family wise error rate
 - e.g. if we perform 10 independent tests with $\alpha = 0.05$, then the probability of at least one type I error is $1 0.95^{10} = 0.4$, if the null hypothesis is true in each instance

- Probability found using complements

Tukey HSD

- Tukey's honest significant difference (HSD) is a multiple comparison approach designed for ANOVA models
- If the sample sizes are the same in each group
 - ightharpoonup Family-wise error rate is exactly lpha
- If the sample sizes are different among groups
 - It is conservative (family-wise error rate is less than α)
- The Tukey approach finds corrected confidence intervals and p-values
- It is easily implemented in R: TukeyHSD

In R: Pain Sensitity Data

```
TukeyHSD(a_blonds)
 ##
      Tukey multiple comparisons of means
        95% family-wise confidence level
 ##
 ##
 ## Fit: aov(formula = Pain ~ HairColour, data = blonds)
 ##
 ## $HairColour
 ##
                                diff
                                       lwr upr p adj
   DarkBrunette-DarkBlond
                               -13.8 -28.7 1.1 0.074
 ## LightBlond-DarkBlond
                                 8.0 -6.9 22.9 0.436
 ## LightBrunette-DarkBlond
                                -8.7 -24.5 7.1 0.415
 ## LightBlond-DarkBrunette
                                21.8 6.9 36.7 0.004
 ## LightBrunette-DarkBrunette 5.1 -10.7 20.9 0.789
 ## LightBrunette-LightBlond
                               -16.7 - 32.5 - 0.9.0.037
Lecture 26
                                                                                   Slide 23
```

Interpretation: Pain Sensitivity Data

- Intepret the adjusted confidence intervals, e.g.
 - ▶ We are 95% confident that the difference in mean pain threshold between light blonds and dark brunettes is between 6.9 and 36.7
- Interpret the adjusted *p*-values, e.g.
 - ► The *p*-value for the difference between dark brunette and dark blond mean pain thresholds is 0.074.
 - As p-value $> \alpha$ there is no evidence that the observed difference is unusual given the null hypothesis that the two means are the same

▶ Note: the uncorrected *p*-value is 0.017

ANOVA: big picture

- We have looked at fitting one-way a ANOVA model
 - ► One-way refers to one categorical predictors: HairColour (for pain sensitivity example)
 - ► Two-way ANOVA: have two categorical predictors
- There might be many other potential predictors (categorical or continuous)
 - e.g. age, ethnicity, sex, etc.
- Recall: ANOVA is a special case of linear regression
 - ▶ We can use multiple linear regression to include these other variables
- There are lots of possible extensions
- There are also lots of ways to get ourselves into trouble
- These more complex models are explored in STAT 210

Summary

- Looked at the ANOVA summary table
 - ▶ Group: the variation between group means
 - Residuals: the variation within a group
 - ▶ F-value: comparing the variance within a group, to the variance between groups
- F-distribution to find p-value
- Look at multiple comparisons for pairwise differences
 - ► Tukey's honest significant difference
 - ▶ See multiple comparisons in general context later in the course