Normal Distribution

listenzcc

January 13, 2021

Abstract

The hand book of normal distribution. How it is formulated, what it can predict and why we use it.

Contents

1	1 Normal Distribution in Classic View		1
	1.1	Binominal Distribution]
	1.2	Poisson Distribution	4
	1.3	Normal Distribution	
2	Fan	aily members	:
3	Exa	mples	:

1 Normal Distribution in Classic View

1.1 Binominal Distribution

Perform experiment for n times, we assume the trials are independent and follow the same distribution. The output of the experiment is noted as 1 or 0, with no vague. The probability of observing the 1 output is noted as p. Then, we have

$$P(n,m) = (n,m) \cdot p^{m} \cdot (1-p)^{n-m}$$
 (1)

where m refers the fact that we observe 1 output for m times.

It is easy to see that the P(n, m) produces a distribution since

$$\sum_{i=0}^{n} P(n,i) = 1, i \in \mathcal{N}$$

Use the computation of ${\bf expectation}$ and ${\bf Variation}$ of the random variable, we have

$$\mathcal{E}(m) = n \cdot p$$
$$\mathcal{V}(m) = n \cdot p \cdot (1 - p)$$

1.2 Poisson Distribution

The poisson distribution is the infinity binominal distribution (see (1)), when p is **small** and n is **large**. It is defined as

$$P(k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}, \lambda = np$$
 (2)

Proof. Use the equation of $\lambda = np$, we can rewrite (1) as

$$P(n,k) = (n,k)\left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

Since p is small and n is large, we have k is relatively small compared to n. As a result, in infinity case,

$$\lim_{n \to \infty} \frac{(n, k)}{n^k} = \frac{1}{k!}$$
$$\lim_{n \to \infty} (1 - \frac{\lambda}{n})^{n-k} = e^{-\lambda}$$

Hence proved.

In practice, we require $\lambda < 1$ to produce a valid approximation.

To compute the expectation and variation of the poisson distribution, we use the taylor series of Exp function

$$e^{\lambda t} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}, t_0 = 0$$

it naturally guarantees the property of PDF that

$$\sum_{k=0}^{\infty} P(k) = 1$$

Use the definition of the expectation, we have

$$\mathcal{E}(k) = \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} \cdot e^{-\lambda}$$

$$\mathcal{E}(k) = \lambda$$

Use the definition of the variation, we have

$$\mathcal{E}(k^2) = \sum_{k=1}^{\infty} \frac{k\lambda^k}{(k-1)!} \cdot e^{-\lambda}$$

$$\mathcal{E}(k^2) = \lambda + \sum_{k=2}^{\infty} \frac{\lambda^k}{(k-2)!} \cdot e^{-\lambda}$$

$$\mathcal{E}(k^2) = \lambda + \lambda^2$$

where we used the idea of k = 1 + (k - 1). Thus, the variation is

$$V(k) = \lambda$$

1.3 Normal Distribution

When n is large and p is not so small, the poisson distribution fails on approximate the binominal distribution. The normal distribution is used as a more general replacement.

Basically, when n, np and nq are large, the binominal distribution is well approximated by the normal distribution

$$p(x) = (n, x)p^{x}q^{n-x} \approx \frac{1}{\sqrt{2\pi npq}}e^{-(x-np)^{2}/2npq}$$

where p + q = 1. See the website ¹ for detail.

And they are linked based on Sterling's formula,

$$n! = n^n e^{-n} \sqrt{2\pi n} [1 + \mathcal{O}(1/n)] \tag{3}$$

See the website 2 for detail.

Formally, the normal distribution is expressed as

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \tag{4}$$

where expectation $\mu = \lim_{n\to\infty} np$ and variation $\sigma^2 = \lim_{n\to\infty} npq$.

2 Family members

3 Examples

http://scipp.ucsc.edu/~haber/ph116C/NormalApprox.pdf

²https://www.researchgate.net/publication/237571154_A_Very_Short_Proof_of_Stirling's_Formula