

Komplexität - Klassifikation von Problemen

Klassifikation von Problemen anhand der dazu bekannten Algorithmen

$$P \subseteq NP \subseteq EXPTime$$

- P: (höchstens) polynomialen Zeitaufwand
- EXPTime: (höchstens) exponentiellen Zeitaufwand
- NP: Nichtdeterministisch polynomialer Zeitaufwand
 - Lösung raten (exponentiell viele Alternativen)
 - Prüfen der Lösung mit polynomialem Aufwand

-

Was sind Probleme und welche sind in P??

Zusammenhang Mengen und Prädikate

- Entscheidungs-Problem: x ∈ A
- Charakteristische Funktion zu A:

$$\chi_A(x) = \int 1$$
 falls $x \in A$
0 sonst

- A entscheidbar genau dann, wenn χ_A berechenbar
- A in P genau dann, wenn χ_A in polynomialer Zeit berechenbar

Beispiele

Komplexität NP: Formale Definition

- Es genügt Teilmengen von {0,1}* bzw. |N zu betrachten
 - Betrachte x∈A für beliebige Menge A
 - x darstellbar auf Rechner als Binärstring "00010100 ...10"
 - "00010100 ...10" darstellbar als Dualzahl 100010100 ...10"
- A⊆{0,1}* ist in NP ⇔
 - Es gibt ein in polynomialer Zeit p berechenbares Prüfprogramm P mit
 - $x \in A \iff \exists z \in \{0,1\}^*$: $|z| \le p(|x|) \land P(x,z)$
 - Hinweis: |x| = Länge von x = Anzahl Bits von x
- Beispiel Erfüllbarkeitsproblem für Formeln der Aussagenlogik
 - z rät Belegung
 - P prüft ob die Formel x mit Belegung z erfüllt wird

4

Komplexität NPC: Formale Definition

- Menge B reduzierbar auf A (kurz: B ≤_p A) ⇔
 - Es gibt in polynomialer Zeit berechenbare Funktion f mit

$$\forall x: x \in B \Leftrightarrow f(x) \in A$$

d.h. der Test "x∈B" lässt sich berechnen durch "f(x)∈A"

$$\forall x$$
: $\chi_{B}(x) := \chi_{A}(f(x))$

- A⊆{0,1}* ist NP-hart ⇔
 - Jede Menge B in NP lässt sich auf A reduzieren
 - Kurz: $\forall B \in NP \ B \leq_p A$
 - Lässt sich A in polynomialer Zeit berechnen, dann auch jedes B in NP
- A⊆{0,1}* ist NP-vollständig ⇔
 - A ist in NP und
 - A ist NP-hart

Nachweis für NP-vollständig

- Nachweis für A⊆{0,1}* NP-vollständig
 - A ist in NP und
 - B ist NP-vollständig
 - B ≤ A
- Beispiele für NP-vollständige Probleme B:
 - TSP
 - Bin-Packing
 - Knappsack

Komplexität – NPC-Probleme

- KP Rucksackproblem.
 - n Gegenstände mit Gewicht $g_1 ... g_n \in N$ und deren Wert $w_1 ... w_n \in N$, Maximale Traglast des Rucksacks g ∈N, Kostengrenze K
 - Können Gegenstände unter Beachtung der Traglast in den Rucksack gepackt werden, dass deren Gesamtwert mindestens K ist?
 - Damit Optimierungsproblem berechenbar: Beladung des Rucksacks mit maximalem Wert

Verallgemeinerung Bin Packing: m Bins = Rücksäcke mit Traglastgrenze g.

- TSP Problem des Handlungsreisenden
 - n Orte, Kostengrenze K, n x n Kostenmatrix $C = (c_{ii})$ Entfernung von i nach j.
 - Gibt es eine Rundreise durch alle Orte, die Grenze K nicht übersteigt?
 - Damit Optimierungsproblem berechenbar: Billigste Rundreise durch alle n Orte

NP-Vollständigkeitsbeweise

SAT = Erfüllbarkeitsproblem NP-vollständig

Beweiskette

- SAT ≤_p 3SAT (Klauseln mit 3 Variable)
- 3SAT ≤_D HC (Hamilton-Kreis)
- HC ≤_p TSP
- TSP ≤_p TSP_{Anwendung}

Hinweis: 3SAT ≤_p HC

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/threeSAT_to_hamiltonianCycle.html

2SATinp!!

$\Sigma_{SAT}^* \rightarrow \Sigma_{3-SAT}^*$ mit Übersetzungsregeln

→ Einzelne Betrachtung jeder Klausel

#Literale	SAT	3 - SAT
1	(z_1)	$(z_1 \lor z_1 \lor z_1)$
2	$(z_1 \lor z_2)$	$(z_1 \lor z_1 \lor z_2)$
3	$(z_1 \lor z_2 \lor z_3)$	$(z_1 \lor z_2 \lor z_3)$
> 3	$(z_1 \lor z_2 \lor z_3 \dots \lor z_k)$	
z.B. 7	$(z_1 \lor z_2 \lor z_3 \lor z_4 \lor z_5 \lor z_6 \lor z_7)$	$(z_{1} \lor z_{2} \lor y_{c,1})$ $(\overline{y_{c,1}} \lor z_{3} \lor y_{c,2})$ $(\overline{y_{c,2}} \lor z_{4} \lor y_{c,3})$ $(\overline{y_{c,3}} \lor z_{5} \lor y_{c,4})$ $(\overline{y_{c,4}} \lor z_{6} \lor z_{7})$
	Genau dann erfüllbar, wenn mindestens ein $z=1$	Genau dann erfüllbar, wenn mindestens ein $z=1$

HC ≤_p TSP

Hamiltonian Circuit \leq_p Traveling Salesperson Problem

$$HC \leq_p TSP$$

Enthält ein Graph <u>einen</u> Kreis, der jeden Knoten \leq_p genau einmal berührt?

Enthält ein Graph einen durch c beschränkter Kreis, der jeden Knoten genau einmal berührt?

Idee der Reduktion

- HC-Kanten -> TSP Kanten mit Länge 1
- TSP Graph vervollständigen mit Kanten Länge 2
- HC mit n Knoten erfüllbar ⇔ TSP mit Route Länge n erfüllbar

HC ≤_p TSP

Hamiltonian Circuit \leq_p Traveling Salesperson Problem

$$HC \leq_p TSP$$

Enthält ein Graph <u>einen</u> Kreis, der jeden Knoten \leq_p genau einmal berührt?

Enthält ein Graph einen durch c beschränkter Kreis, der jeden Knoten genau einmal berührt?

TSP nicht approximierbar

- HC-Kanten -> TSP Kanten mit Länge 1
- TSP Graph vervollständigen mit Kanten Länge n²
- HC mit n Knoten erfüllbar ⇔ TSP mit Route Länge n erfüllbar