PASISEP segue este caminho FORMULÁRIO MATEMÁTICA

isep

Se a função integranda envolve $\sqrt{a^2-u^2}$ então u=a sent, $t\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

SUBSTITUIÇÕES TRIGONOMÉTRICAS PARA INTEGRAIS

Se a função integranda envolve $\overline{\sqrt{a^2+u^2}}$ então $u=\mathsf{a}$ tg $t,\,t\!\in\!\left]-\frac{\pi}{2},\,\frac{\pi}{2}\right]$

Se a função integranda envolve $\overline{\sqrt{u^2-a^2}}$ então u=a sect, $t\in\left[0,\frac{\pi}{2}\left[0\right]\frac{\pi}{2},\pi\right]$

am a, c $\in \mathbb{K}$,b $\in \mathbb{K}$ *\ $\{1\}$ e $u=u($	am a, $c \in \mathbb{R}$, $b \in \mathbb{R}$ +\{1} e $u = u(x)$, $v = v(x)$ funções deriváveis e integráveis no seu domínio	FÓRMULAS TRIGONOMÉTRICAS	
ERIVADAS	INTEGRAIS	Fórmulas fundamentais	
0 = ,		$sen^2 u + cos^2 u = 1 $ 1 + $tg^2 u$	$= n_z \mathbf{g}$:
au)' = au'	$\int au' dx = au + c$	Fórmulas de bissecção	
(nv)' = u'v + uv'	$\int u'v dx = uv - \int uv' dx$	$sen^2 u = \frac{1 - cos(2u)}{2}$	
$\left \frac{u}{v}\right = \frac{u'v - uv'}{v'^2}, \ v \neq 0$		Fórmulas de duplicação $con(2u) = 2 con(2u)$	
u^{a})' = a $u^{a-1}u'$	$\int_{\Omega^0 U'} dx = \frac{u^{\beta+1}}{z+1} + c, \ a \neq -1$	Fórmulas de transformação	
b^{u})' = $u'b^{u}$ In b	$\int u'b^u dx = \frac{b^v}{4r} + c$	$\operatorname{sen} u \operatorname{sen} v = \frac{1}{2} \left[\cos(u - v) - \cos(u + v) \right]$	Fv)]
e^{u})' = $u'e^{u}$	$\int u'e^u dx = e^u + c$	$\operatorname{sen} u \cos v = \frac{1}{2} \left[\operatorname{sen}(u+v) + \operatorname{sen}(u-v) \right]$	u-v)]
$u^{\nu})' = \nu u^{\nu-1} u' + \nu' u^{\nu} \ln u$		ALGUMAS FUNÇÕES HIPERBÓLICAS	
$\ln u)' = \frac{u'}{u}$	$\int \frac{u'}{u} dx = \ln u + c$	senh $u = \frac{e^{-2}e^{-3}}{2}$	
$\log_b u$)' = $\frac{u'}{u \ln b}$		COGARITMOS Caism a - n(v) funcões positivas	sey(i+i50
$sen \ u)' = u'cos \ u$	$\int u \cos u dx = \sin u + c$	$\log_b p = a \Leftrightarrow p = b^a$	Ositivas
$\cos u$)' = - u 'sen u	$\int u' \sin u dx = -\cos u + c$	b° gol + d° gol = $(bd)^{\circ}$ gol	
$tg\ u)' = u'sec^2u$	$\int u' \sec^2 u dx = tg u + c$		
$\cot g \ u)' = -u' \csc^2 u$	$\int u'\cos ec^2 u dx = -\cot g u + c$	Segam $\mathbf{S} \subseteq \mathbb{C}$, $\mathbf{f}(t)$ uma funçao derivavel e integrada e unidirecional $L\{f(t)\} = F(s) = \int_0^+ f(t)$	e integ † =
$\sec u$)' = u 'sec u tg u	$\int u' \sec u \mathrm{tg} u \mathrm{dx} = \sec u + \mathrm{c}$	função delta de Dirac	50
	$\int u' \sec u dx = \ln \sec u + tg u + c$	TRANSFORMADAS DE LAPLACE $L{\delta(t)} = 1$, $Re(s) > 0$	PRO L{af
cosec u)' = -u'cosec u cotg u	$\int u'\cos c u \cot g u dx = -\cos c u + c$	$L\{u(t)\} = L\{1\} = \frac{1}{S}$, Re(s)>0)
	$\int u'\cos c u dx = \ln \csc u - \cot g u \mid + c$	$L\{u(t-a)\} = \frac{e^{-as}}{s}, Re(s) > 0$	L{e
$arcsen \ u)' = \frac{u'}{\sqrt{1 - u^2}}$	$\int \frac{u'}{\sqrt{1-u^2}} dx = \arcsin u + c$	$L\{t^n\} = \frac{n!}{S^{n+1}}, Re(s) > 0, n \in \mathbb{N}$	L{ <i>u</i> (
arccos u)' = $-\frac{u'}{\sqrt{1-u^2}}$		1	L{f
$arctg \ u)' = \frac{u'}{1 + u^2}$	$\int \frac{u'}{1+u^2} \mathrm{d} x = \operatorname{arctg} u + c$	$L\{e^{at}\} = \frac{s-a}{s-a}$, $Re(s) > a$	Cont se f(
$arccotg \ u)' = -\frac{u'}{1+u^2}$		L{sen(at)} = $\frac{a}{s^2 + a^2}$, Re(s)>0	L{ <i>t</i> "

Sejam $\mathbf{s} \in \mathbb{C}$, $\mathbf{f}(t)$ uma função derivável e integrável no seu domínio e com transformada de la anace unidiracional 1 $\mathbf{f}(t)$ 3 = $\mathbf{f}(t)$ 3 anace unidiracional 1 $\mathbf{f}(t)$ 3 = $\mathbf{f}(t)$ 3 anace unidiracional 1 $\mathbf{f}(t)$ 3 = $\mathbf{f}(t)$ 3 anace unidiracional 1 $\mathbf{f}(t)$ 4 anace unidiracional 1 $\mathbf{f}(t)$ 4 anace unidiracional 1 $\mathbf{f}(t)$ 5 anace unidiracional	função delta de Dirac
---	-----------------------

 $b^{\mathsf{q}}\mathsf{Bol} - d^{\mathsf{q}}\mathsf{Bol} = \left(\frac{d}{d}\right)^{\mathsf{q}}\mathsf{Bol}$

 d^{α} bol $n = {}_{n}d^{\alpha}$ bol

 $\mathbf{p} = \mathbf{p}(\mathbf{x}), \ q = \mathbf{q}(\mathbf{x})$ funções positivas no seu domínio

TRANSFORMADAS DE LAPLACE	PROPRIEDADES DAS TRANSFORMADAS DE LAPLACE
$L\{\delta(t)\} = 1$, $Re(s) > 0$	$L\{af_1(t) + bf_2(t)\} = aF_1(s) + bF_2(s)$
$L\{u(t)\} = L\{1\} = \frac{1}{s}$, Re(s)>0	$L\{f(at)\} = \frac{1}{S} F\left(\frac{S}{a}\right)$
$L\{u(t-a)\} = \frac{e^{-3s}}{s}, Re(s) > 0$	$L\{e^{at}f(t)\} = F(s-a)$
$L\{t^n\} = \frac{n!}{S^{n+1}}, Re(s) > 0, n \in \mathbb{N}$	$L\{u(t-a)f(t-a)\} = e^{-as}F(s)$
$L\{e^{at}\} = \frac{1}{s-a}$, $Re(s) > a$	$ L\{f^{(n)}(t)\} = S^nF(s) - S^{n-1}f(0) - S^{n-2}f'(0) - \dots - f^{(n-1)}(0) $ Contudo, $L\{f'(t)\} = SF(s) - f(0) - e^{-sv}[f'(a^+) - f(a^-)] $ se $f(t)$ é descontinua em $t = a$
L{sen(at)} = $\frac{a}{s^2 + a^2}$, Re(s)>0	$L\{t^{\eta}f(t)\}=(-1)^{\eta}F^{(\eta)}(s)$
$L\{\cos(at)\} = \frac{s}{s^2 + a^2}$, $Re(s) > 0$	$L\left\{\int_{0}^{t} f(u) du\right\} = \frac{F(s)}{s}$
L{senh(at)} = $\frac{a}{s^2 - a^2}$, Re(t)> a	$L\left\{\int_{0}^{t} f(u) \ g(t-u) \ du\right\} = F(s) \ G(s)$
$L\{\cos(at)\} = \frac{s}{c^2-3^2}$, $Re(s) > a $ $L\{\frac{1}{2}f(t)\} = \int_0^{+\infty} F(u) du$	$L\left\{\frac{1}{t}f(t)\right\} = \stackrel{+\infty}{\int} F(u) du$

ADITÀMETAM OIAÀJUMAOF

 $\cos u \cos v = \frac{1}{2} [\cos(u+v) + \cos(u-v)]$

 $\cosh u = \frac{e^u + e^{-u}}{2}$

 $\cos(2u) = \cos^2 u - \sin^2 u$

 $\cos^2 u = \frac{1 + \cos(2u)}{1 + \cos(2u)}$

 $1 + \cot g^2 u = \csc^2 u$

 $1 + tg^2 u = \sec^2 u$