

Defense Nuclear Agency Alexandria, VA 22310-3398

DNA-TR-95-18

Biometric Identification/Verification Brassboard Proof-of-Concept System Phase II

John E. Siedlarz, et al. IriScan Incorporated 133-Q Gaither Drive Mt. Laurel, NJ 08054

December 1995

DTIC QUALITY INSPECTED 2

Technical Report

CONTRACT No. DNA 001-93-0137

Approved for public release; distribution is unlimited.

19960102 021

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: CSTI, 6801 TELEGRAPH ROAD, ALEXANDRIA, VA 22310-3398, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

UT HERE AND RETURN

DISTRIBUTION LIST UPDATE

This mailer is provided to enable DNA to maintain current distribution lists for reports. (We would appreciate your providing the requested information.) NOTE: Please return the mailing label from the ☐ Add the individual listed to your distribution list. document so that any additions, changes, corrections or deletions can be made easily. ☐ Delete the cited organization/individual. For distribution cancellation or more information call DNA/IMAS (703) 325-1036. ☐ Change of address. NAME: _____ ORGANIZATION: _____ **CURRENT ADDRESS OLD ADDRESS** TELEPHONE NUMBER: (___) DNA PUBLICATION NUMBER/TITLE CHANGES/DELETIONS/ADDITIONS, etc.)
(Attach Sheet if more Space is Required) DNA OR OTHER GOVERNMENT CONTRACT NUMBER: CERTIFICATION OF NEED-TO-KNOW BY GOVERNMENT SPONSOR (if other than DNA): SPONSORING ORGANIZATION: ______ CONTRACTING OFFICER OR REPRESENTATIVE: _____

SIGNATURE: _____

DEFENSE NUCLEAR AGENCY ATTN: IMAS 6801 TELEGRAPH ROAD ALEXANDRIA, VA 22310-3398

> DEFENSE NUCLEAR AGENCY ATTN: IMAS 6801 TELEGRAPH ROAD ALEXANDRIA, VA 22310-3398

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of Information, including suggestions for reducing this burden, to Washington Headquarters Services Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.				
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE	AND DATES COVERED 0112 — 950131	
	951201	rechnical 94	U112 - 950151	
TITLE AND SUBTITLE Biometric Identification/Verificatio Phase II	n Brassboard Proof-of-Concep	-	FUNDING NUMBERS C - DNA 001-93-C-0137 PE - PR - RF	
6. AUTHOR(S)			TA - DA	
John E. Siedlarz, Cletus B. Ku James T. McHugh and Donald			WU - DH334130	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8.	PERFORMING ORGANIZATION REPORT NUMBER	
IriScan Incorporated 133-Q Gaither Drive				
Mt. Laurel, NJ 08054				
9. SPONSORING/MONITORING AGENCY N Defense Nuclear Agency	IAME(S) AND ADDRESS(ES)	10	D. SPONSORING/MONITORING AGENCY REPORT NUMBER	
6801 Telegraph Road			DNA-TR-95-18	
Alexandria, VA 22310-3398 NOSA/Gore				
11. SUPPLEMENTARY NOTES				
This work was sponsored by the 00014 2520A AE 25904D.	ne Defense Nuclear Agency	under RDT&E R	MC Code B2638D RF DA	
12a. DISTRIBUTION/AVAILABILITY STATEM	MENT		12b. DISTRIBUTION CODE	
Approved for public release; di	stribution is unlimited.			

13. ABSTRACT (Maximum 200 words)

DoD budget and personnel reductions drive requirements for an entry/access control system capable of non-intrusively identifying and verifying the identity of persons with a high degree of confidence and without a man in the decision loop. Operational Performance Requirements (OPR) were assembled from the SOW and Service requirements documents. An Iris-Based Biometric Identification/Verification Brassboard Proof-of-Concept System was designed and fabricated. The system was tested in accordance with the DNA-approved Test Plan and demonstrated at three sites. The test started with a database of 405 files and provided for enrollment of 160 added IrisCodes. Fifty verifications and 1,944 identifications averaged 2.44 seconds each, with a False Accept Rate of 0. One hundred fifty impostor irises and 662 unenrolled irises were correctly rejected; one enrolled person wearing dirty glasses was incorrectly rejected, for a False Reject Rate of .05%. (The rejected enrollee was identified on second and all subsequent attempts, both with and without glasses.) Average enrollment time was 25 seconds, plus typing time. The system made 3,100,000 file comparisons without error. The system met or exceeded all test standards and requirements.

		The second secon		The second secon
14. SUBJECT TERMS		-		15. NUMBER OF PAGES
IriScan Ir	is-Based			192
Biometric V	/erification			16. PRICE CODE
Access Control Id	dentification			TO. T RIGE GODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. L	IMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT		
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED		SAR

UNCLASSIFIE SECURITY CLASSIFICA	ED ATION OF THIS PAGE	
CLASSIFIED BY:	:	
	N/A since Unclassified.	
DECLASSIFY ON	N:	
	N/A since Unclassified.	
	Accesion For	

Accesi	on For	
DTIC	1. 14 Salt 2	
By Distrib	ution /	n en
A	vailability (Codes
Dist	Avail and Specia	
A-1		

EXECUTIVE SUMMARY

There is a need within the Department of Defense (DoD) to provide an entry/access control system capable of identifying and verifying the identity of persons with a high degree of confidence and without a man in the loop. In support of this requirement, the Defense Nuclear Agency (DNA) reached a preliminary conclusion as to the most promising technology to pursue, and initiated a study effort to confirm or refute their conclusion, and to determine the feasibility of developing the selected system. The study, published as DNA-TR-94-6, September 1994, found no system, technology, or methodology which can meet all of the objectives and requirements specified in the Statement of Work (SOW). Of the systems, technologies, and methodologies under development, only the IriScan system of positive identification / verification, using an iris recognition process, appears capable, with further development, of meeting those objectives and OPRs. DNA then issued a Contract Modification exercising Option One (Phase II) for fabrication, testing and reporting on an iris-based Brassboard Proof-Ocncept Identification/Verification System. The IriScan Brassboard Test confirmed that:

- The system started with a database of 405 IrisCodes and enrolled 160 irises.
- The system effectively and accurately performed identification and verification (1,944 identifications and 50 verifications in an average of 2.44 seconds each, without error, with a False Accept rate of 0).
- The system effectively and accurately rejected impostors and persons not enrolled (662 un-enrolled irises and 150 impostor irises were correctly rejected, while one enrolled person wearing dirty glasses was incorrectly rejected, for a False Reject rate of .05%) (rejected enrollee learned to control eyeglass reflections and was identified on second and subsequent attempts, both with and without glasses).
- All subjects were enrolled. Average time was 25 seconds, plus typing time.
- The user alignment, accept/reject light and audible signal systems worked effectively and reliably, without negative comment by users.
- Dark eyes were handled with virtually identical speed and accuracy as others.
- The system made 3,100,000 file comparisons without error. There was one human image-acquisition error (resulting in the False Reject).
- The DNA Brassboard System met or exceeded all test standards / requirements.

PREFACE

Permission was provided by the Institute of Electrical and Electronics Engineers, Inc. (IEEE), for republication of the paper, High Confidence Visual Recognition of Persons by a Test of Statistical Independence, at Appendix D.

CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement.

MULTIPLY -BY -→ TO GET TO GET ← BY + DIVIDE

angstrom	1.000 000 X E -10	meters (m)
atmosphere (normal)	1.013 25 X E +2	kilo pascal (kPa)
bar	.1.000 000 X E +2	kilo pascal (kPa)
barn	1.000 000 X E -28	meter ² (m ²)
British thermal unit (thermochemical)	1.054 350 X E +3	joule (J)
calorie (thermochemical)	4.184 000	joule (J)
cal (thermochemical/cm ²)	4.184 000 X E -2	mega joule/m ² (MJ/m ²)
curie	3.700 000 X E +1	*giga becquerel (GBq)
degree (angle)	1.745 329 X E -2	radian (rad)
.degree Fahrenheit	$t_{\nu} = (t^{O}f + 459.67)/1.8$	degree kelvin (K)
electron volt	1.602 19 X E -19	joule (J)
erg	1.000 000 X E -7	joule (J)
erg/second	1.000 000 X E -7	watt (W)
foot	3.048 000 X E -1	meter (m)
foot-pound-force	1.355 818	joule (J)
gallon (U.S. liquid)	3.785 412 X E -3	meter ³ (m ³)
inch	2.540 000 X E -2	meter (m)
jerk	1.000 000 X E +9	joule (J)
joule/kilogram (J/kg) radiation dose		
absorbed .	1.000 000	Gray (Gy)
kilotons	4.183	terajoules
kip (1000 lbf)	4.448 222 X E +3	newton (N)
kip/inch ² (ksi)	6.894 757 X E +3	kilo pascal (kPa)
ktap	1.000 000 X E +2	newton-second/m ² (N-s/m ²)
micron	1.000 000 X E -6	meter (m)
mil	2.540 000 X E -5	meter (m)
mile (international)	1.609 344 X E +3	meter (m)
ounce	2.834 952 X E -2	kilogram (kg)
pound-force (lbs avoirdupois)	4.448 222	newton (N)
pound-force inch	1.129 848 X E -1	newton-meter (N'm)
pound-force/inch	1.751 268 X E +2.	newton/meter (N/m)
pound-force/foot ²	4.788 026 X E -2	kilo pascal (kPa)
pound-force/inch ² (psi)	6.894 757	kilo pascal (kPa)
pound-mass (1bm avoirdupois)	4.535 924 X E -1	kilogram (kg)
pound-mass-foot ² (moment of inertia)	4.214 011 X E -2	kilogram-meter ² (kg [·] m ²)
pound-mass/foot ³	1.601 846 X E +1	kilogram/meter ³ (kg/m ³)
rad (radiation dose absorbed)	1.000 000 X E -2	**Gray (Gy)
roentgen	2.579 760 X E -4	coulomb/kilogram (C/kg)
shake	1.000 000 X E -8	second (s)
slug	1.459 390 X E +1	kilogram (kg)
torr (mm Hg, 0 ⁰ C)	1.333 22 X E -1	kilo pascal (kPa)

^{*}The becquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/s. **The Gray (GY) is the SI unit of absorbed radiation.

TABLE OF CONTENTS

Section		Page
EXECUTIVE SUMMARY		iii iv
CONVERSION TABLE	 	v
1 INTRODUCTION	 	1
1.1 GENERAL 1.2 BACKGROUND. 1.3 THE REPORT.	 	1 1 2
2 TEST PLAN	 	.3
2.1 THE TASK. 2.2 PERFORMANCE 2.3 THE TEST PLAN	 	3 3 3
3 TEST REPORT	 	4
3.1 THE TASK 3.2 PERFORMANCE 3.3 THE TEST REPORT	 	4 4 5
4 BRASSBOARD SYSTEM DEMONSTRATION	 	6
4.1 THE TASK		6 6
5 DOCUMENTATION	 	7
5.1 THE TASK 5.2 PERFORMANCE 5.3 IRISCAN FUNCTIONAL DESCRIPTION 5.4 BRASSBOARD OPERATIONAL PROCEDURES	 	
6 DRAWINGS	 	8
6.1 THE TASK		8 8 8

TABLE OF CONTENTS (Continued)

Section	n	Page
7	DOD SYSTEM COST ESTIMATE	9
	7.1 THE TASK 7.2 PERFORMANCE 7.3 REDESIGN. 7.4 SUPPORT SYSTEM SOFTWARE 7.5 SYSTEM INTERFACE 7.6 COST OVER TIME	9 9 10 10
8	CONCLUSIONS AND LESSONS LEARNED	12
Appei	ndix	Page
Α	TEST PLAN	A-1
В	TEST REPORT	B-1
C	IRISCAN FUNCTIONAL DESCRIPTION	C-1
D	HIGH CONFIDENCE VISUAL RECOGNITION OF PERSONS BY A TEST OF STATISTICAL INDEPENDENCE	D-1
E	BRASSBOARD OPERATIONAL PROCEDURES	E-1
F	DRAWINGS	F-1
•	DOD SYSTEM COST ESTIMATE	G-1

INTRODUCTION

1.1 GENERAL.

Efficient and effective protection of assets, information and people at low cost is becoming increasingly important as governmental and organizational budgets are cut while internal and external threats continue to increase. Additionally, the escalation of violence in the workplace and the spiral of legal actions resulting from perceived security shortfalls have raised the sensitivity of facility owners and managers to access control issues. Effective access control requires positive personal identification.

1.2 BACKGROUND.

Currently available personnel identification / verification and entry control systems, biometric and non-biometric, have not yet been able to meet all operational requirements. They are generally manpower intensive, costly to procure and maintain, frequently unreliable, and sometimes slow in identifying individuals and verifying approved access. However, significant research and development in the field of biometric identification continues.

On the basis of proposals and initial research, the Defense Nuclear Agency (DNA) contracted IriScan Inc. on July 19, 1993, to conduct a study to evaluate current and developing biometric identification technologies. This study was initiated to determine the feasibility of developing an identification / verification system capable of positively identifying and verifying individuals without physical contact and without a person in the decision loop. During the study, 17 biometric identification systems currently or previously marketed, and 18 biometric identification research and development projects currently underway were investigated. The study verified that iris-based identification /

verification technology was most likely to meet the operational requirements in the near term. Upon delivery of the study report (Phase I Final Report), DNA issued a contract modification exercising Option One (Phase II).

Phase II included three Tasks:

Task I required the development and fabrication of a brassboard proof-of-concept iris-based biometric identification / verification system. The resulting system must be documented with developmental drawings in accordance with DoD-MIL-T-31000. An updated cost estimate for a deployable system must also be provided.

Task II required the development of a plan for testing the brassboard proof-of-concept system, and DNA approval of that plan. The plan included methodologies to evaluate and verify system performance in meeting the requirements identified in the contract Statement of Work.

Task III required performance of the brassboard proof-of-concept test in accordance with the Test Plan, collection and analysis of the test data, and development of a Test Report documenting the test results. Additionally, a brassboard proof-of-concept system performance demonstration was to be conducted at a time and location designated or approved by the DNA Program Manager. (This occurred November 21-22, 1994 at DNA Headquarters.)

1.3 THE REPORT.

This report transmits the information and documents required under Option One (Phase II) of the contract.

TEST PLAN

2.1 THE TASK.

Phase II, Task II required development of a Draft Test Plan for the Brassboard Proof-of-Concept Identification / Verification System. The plan must include the methodology to evaluate and verify the performance of the identification / verification system in satisfying the requirements identified in Task I of Phase I of the contract. Upon DNA Program Manager approval of the Draft, the Test Plan becomes Final.

2.2 PERFORMANCE.

The Test Plan was developed in two stages. The Draft Generic Test Plan for the Brassboard Proof-of-Concept Identification /Verification System was published on April 26, 1994, and delivered to the DNA Program Manager on April 29, 1994. On June 1, 1994, the DNA Program Manager provided verbal concurrence with the Draft Generic Test Plan.

The Draft Test Plan for the Brassboard Proof-of-Concept Identification /Verification System was published on September 12, 1994, and provided to the DNA Program Manger. He provided informal comments on the Draft Test Plan on October 3, 1994. The comments were integrated into the draft and the Test Plan for the Brassboard Proof-of-Concept Identification /Verification System was published on October 7, 1994.

2.3 THE TEST PLAN.

A copy of the Test Plan for the Brassboard Proof-of-Concept Identification /Verification System is at Appendix A.

TEST REPORT

3.1 THE TASK.

Phase II, Task III required performance of a brassboard proof-of-concept test, collection and analysis of the test data, and development of a Test Report documenting the test results.

3.2 PERFORMANCE.

In accordance with the Test Plan, a Pre-Test was conducted to confirm that the test procedures, forms, and automated data-collection software were effective in compiling all of the data necessary to meet test requirements. The Pre-Test was initiated on October 12, 1994. It continued while necessary data-collection software modifications were installed and tested and was terminated on October 19, 1994.

The DNA Brassboard Iris-Based Biometric Identification Proof-of-Concept System Test was initiated on October 21, 1994. From that date until test termination, all system activities, including enrollments, identifications and rejections, were recorded. The Test was terminated at noon on November 16, 1994.

The majority of the test activities were conducted at the IriScan laboratory, 133-Q Gaither Drive, Mt. Laurel, New Jersey. Two days of testing were conducted at the American Correctional Association (New Jersey Chapter) Exhibits at the Hilton Hotel, Long Branch, New Jersey, for the purposes of expanding live-eye testing and increasing the size of the database. Lt. Col. Johnnie J. Gore, DNA Program Manager observed and participated in test activities on October 27, 1994. Mr. Thomas J. Whittle, PE, DNA Technical Advisor, observed and participated in test activities on November 2, 1994.

The test data were collated, analyzed and summarized and the Draft Test Report prepared. The report also includes all of the data collected during the test period. The Draft Test Report was delivered to the DNA Program Manager on December 20, 1994. Two informal comments were received on January 5, 1995, and the Final Test Report was prepared.

3.3 THE TEST REPORT.

The Brassboard Iris-Based Biometric Identification /Verification System Proof-of-Concept Test Report is at Appendix B.

Briefly synopsized, the test results were:

- The test started with a database of 405 IrisCodes. An additional 160 irises were enrolled during the test.
- The system effectively and accurately performed identification and verification (1,944 identifications and 50 verifications in an average of 2.44 seconds each, without error, with a False Accept rate of 0).
- The system effectively and accurately rejected impostors and persons not enrolled (662 un-enrolled irises and 150 impostor irises were correctly rejected, while one enrolled person wearing dirty glasses was incorrectly rejected, for a False Reject rate of .05%) (rejected enrollee learned to control eyeglass reflections and was identified on second and subsequent attempts, both with and without glasses).
- All subjects were enrolled. Average time was 25 seconds, plus typing time.
- The user alignment, accept/reject light and audible signal systems worked effectively and reliably, without negative comment by users.
- Dark eyes were handled with virtually identical speed and accuracy as others.
- The system made 3,100,000 file comparisons without error. There was one human image-acquisition error (resulting in the False Reject).
- The DNA Brassboard System met or exceeded all test standards / requirements.

BRASSBOARD SYSTEM DEMONSTRATION

4.1 THE TASK.

Phase II, Task III required that a Brassboard Proof-of-Concept System performance demonstration be conducted at a time and location designated or approved by the DNA Program Manager.

4.2 PERFORMANCE.

The Brassboard Proof-of-Concept System Demonstration was held at DNA Headquarters on November 21-22, 1994. The system was set up in the main conference room from 9:30 am until 3:00 pm on Monday and from 9:00 am until 2:00 pm on Tuesday. Program support personnel present included Mr. John E. Siedlarz, CEO, IriScan, Inc.; Mr. Cletus B. Kuhla, IriScan Technical Director; Mr. James T. McHugh, IriScan Senior Engineer; Mr. Gerald O. Williams, IriScan Senior Analyst; and Mr. Donald R. Richards, IriScan DNA Program Manager. Lt. Col. Johnnie J. Gore, DNA Brassboard Program Manager was also present for all of the demonstrations.

DNA invited representatives from various government agencies to observe / participate in the demonstrations. Fifty individuals from DNA, Central Intelligence Agency, US Army INSCOM, Office of the Secretary of Defense, Computer Sciences Corp., US Navy Director for Strategic Systems, Vitro Corp., US Air Force Security Plans & Programs, Department of State, Horizons Technology Inc., Department of Energy, and the US Army Physical Security Equipment Management Office attended and \ or participated.

The Brassboard Proof-of-Concept System performed accurately and without failure.

DNA representatives stated that they were well satisfied with the demonstration.

DOCUMENTATION

5.1 THE TASK.

Contract Statement of Work (SOW), para 4.0, Deliverables, subparagraph 6, Proof-of-Concept System Documentation, requires the submittal of unspecified documentation.

5.2 PERFORMANCE.

In addition to the requested drawings and DoD System Cost Estimate which follow, an <u>IriScan Functional Description</u> and <u>Brassboard Operational Procedures</u> have been included at Appendices C and E, respectively.

5.3 IRISCAN FUNCTIONAL DESCRIPTION.

The functional description of the IriScan Biometric Identification System includes generic cataloging of the primary hardware modules plus a narrative explanation of how the IriScan process works. The mathematical theory and calculations involved in the process are covered Dr. John Daugman's IEEE paper, "High Confidence Personal Identification By Rapid Video Analysis of Iris Texture," included as Appendix D.

5.4 BRASSBOARD OPERATIONAL PROCEDURES.

The operational procedures provided are based on those procedures developed for the Brassboard Proof-of-Concept Test, and thus contain procedures for logging and documentation of test results. While this may not be wholly relevant, little is known about the future applications envisioned for the Brassboard unit, and these procedures can be modified accordingly.

DRAWINGS

6.1 THE TASK.

Phase II, Task I required that the Brassboard Proof-of-Concept System be documented with developmental drawings in accordance with DoD-MIL-T-31000.

6.2 PERFORMANCE.

Several steps are required in order to plan, design, fabricate parts, and manufacture an electronic system. Several kinds of drawings are utilized in these steps. In the case of the DNA Brassboard Proof-of-Concept System these include:

System Block Diagram, Concept Assembly Drawing, Board Layout Drawing, Board Fabrication Drawing, Wiring Diagrams (3), and System Parts Drawings (28).

6.3 THE DRAWINGS.

The thirty-five drawings identified above are provided at Appendix F.

DOD SYSTEM COST ESTIMATE

7.1 THE TASK.

Phase II, Task I required the documentation of the results of the Prototype Development with drawings and <u>updated cost estimates</u>.

7.2 PERFORMANCE.

The cost estimates in Appendix G are based on actual quotes from parts and equipment manufacturers, some of whom provided parts, equipment, and engineering services to IriScan for fabrication of the Brassboard unit. They are based on ordering in quantities of 1000 because that was the smallest quantity at which significant cost savings could be realized. Quotes for quantities of 500 or less, would result in increased prices in the range of \$500-\$1,000, or more, per unit. Some of the factors which could affect the ultimate system cost are identified and discussed below.

7.3 REDESIGN.

The DNA Brassboard Proof-of-Concept System designed, fabricated, tested and demonstrated, met the requirements of the SOW. However, as this report is being compiled, significant redesign of the commercial version of the iris identification device is underway. Essentially, for the Access / Entry Control application, the unit will likely be split into two modules, the Computational Platform, and the Optical Platform. The computational platform will be located inside the secure area and only the optical platform will be visible outside the secure area at the controlled portal. Reducing the size of the IriScan-unique portion of the unit (the Optical Platform) and use of a

standard NEMA box to house the Computational Platform may thus have minor impact on the costs of the enclosures.

7.4 SUPPORT SYSTEM SOFTWARE.

There is no Support System (administrative) software currently available for either the commercial or the DNA Brassboard models of the iris identification / verification system. Those functions of linking multiple doors, sharing a common communications network, determining access levels for an entrant, opening doors, reporting status and events to a central monitoring agency, and providing historical reports are not now available. These must be developed, engineered, tested, and approved, at some cost. The estimated "up front" Non-Recurring Engineering (NRE) costs to develop this software are prorated across a 1,000 unit production run.

Because of the increased security of the two-module configuration of the IriScan system, this is the unit that would be recommended for DoD utilization. If application of further R & D funding (6.3) was considered, availability of Service-desired capability units (such as exterior operations) could be advanced.

7.5 SYSTEM INTERFACE.

Costs of interfacing the Brassboard unit with existing or "defined-but-not-procured" DoD systems are unknown, but could be treated in the same manner as Support System Software Development costs. Some of the issues involve the nature of the output of the iris identification device, (e.g., does the device simply provide an IriScan IrisCode number to the host and allow the host to use a look-up table to convert to the entrant's Wiegand file number, or should a look-up table be embedded in the iris unit, so as to provide a Wiegand output?). Another issue is the extent to which entrance is granted by the Support System Software of the iris identification system vs. the host system.

Finally, to what extent does the iris identification unit provide an alarm output beyond the tamper alarm resident therein?

7.6 COSTS OVER TIME.

Unlike most products and equipment, the cost of general purpose PC chips is declining. The current cost of the DX4 may decline dramatically when Intel introduces the next future-generation chip. Countering that trend is the "planned obsolescence" which, at some point in time may make procurement of a DX4 system impossible. Absent some financially rewarding incentive, producers of the DX4 will, in the future, undoubtedly cease production and provide only next-generation chips or their successor(s).

CONCLUSIONS AND LESSONS LEARNED

Phase I resulted in the evaluation of all biometric identification / verification systems in the marketplace and those that could be located in research and development programs, to determine which ones could potentially meet certain standards and requirements. The Phase I Final Report confirmed the government's selection of iris-recognition technology as the most viable candidate. Phase II covered the design, fabrication and assembly of a proof-of-concept system, and the testing and demonstration of that system.

The DNA Iris-Based Brassboard Proof-of-Concept System designed and built under this contract met or exceeded all standards and Operational Performance Requirements specified in the Test Plan and the contract Statement of Work (SOW).

Further, the DNA Iris-Based Brassboard Proof-of-Concept System (hereafter termed Brassboard) was successfully demonstrated at the Headquarters of the Defense Nuclear Agency, the US Air Force Electronic Systems Command (ESC) at Hanscom Air Force Base, and the Security Equipment Integration Working Group (SEIWG), during the November 1994 through January 1995 period.

The DNA Brassboard Test and Demonstrations have confirmed that the system is user-friendly and easy to effectively utilize. No extraordinary training was employed; in fact, nearly all users were successful after less than one minute of demonstration and explanation of the system.

The estimated costs for a DoD system are reasonable and cost-effective, especially when compared to the cost and performance of other biometric identification / verification access control systems now available in the marketplace.

The standards and requirements contained in the contract SOW were:

- System capable of operating in verification or identification mode.
- Type I (False Reject) Error < 1%.
- Type II (False Accept) Error < .1 %.
- Unique physical characteristic as identifier.
- No known counterfeiting techniques for the physical characteristic.
- System usable by maximum percentage of potential user population.
- State-of-the-art technology.
- Non-invasive sampling (no fingerprint, palmprint, retina scan, blood or other fluids).
- No person in the decision loop.
- No person-equipment contact for data collection.
- Average identification / verification in less than 5 seconds, including false reject re-reads.
- Easily understood visual and / or audible feedback for alignment.
- Visual and / or audible indication of acceptance or rejection.
- User friendly, no formal training required.
- Stand-alone system capability required.
- Local database of 40,000 enrollees desired.
- Multiple portal controllers can be connected to central database.
- Compatible with existing commercial and military access control systems.
- Enrollment in less than two minutes, excluding administrative data entry.
- System operating humidity up to 95 %. (NT = Not Tested)
- System operating temperatures from 0 to 65 degrees, centigrade. (NT)
- Initially an indoor system; but no intrinsic hindrance to outdoor operations.
- Mean Time Between Failures (MTBF) goal is 10,000 hours. (NT)
- Mean Time to Repair (MTTR) to be no more than one hour. (NT)
- Sensor assembly not to exceed 24" x 24" x 12" and thirty pounds.
- Single portal system production unit cost goal of \$5,000 or less.

The iris-based biometric access control system appears to be a viable candidate to meet the DoD field requirements of the near future. However, several steps remain before it could be deployed as part of the Services' entry control systems:

- Detailed definition of the iris-based identification system interface with the Services' entry control systems.
- Final design of the iris-based identification system compatible with the Services' entry control systems.
- Development of Operational Procedures and technical documentation in accordance with military requirements.
- Manufacturing of the specified iris-based identification system.
- Testing of the iris-based identification system as an integral part of the Services' entry control systems.
- Development of capability for exterior or mobile operations, if desired.

APPENDIX A

TEST PLAN

for

DEFENSE NUCLEAR AGENCY

BRASSBOARD IDENTIFICATION / VERIFICATION SYSTEM

1.0 INTRODUCTION.

- 1.1 <u>Background</u>. The Defense Nuclear Agency (DNA) has contracted IriScan Inc. to design and construct a brassboard proof-of-concept biometric identification / verification system. The contract also requires development of a Test Plan, which is to be approved by DNA, and the testing of the brassboard system in accordance with the Test Plan.
- 1.2 <u>Purpose</u>. The purpose of this Test Plan is to define test objectives, develop evaluation criteria, identify and define the test bed, and to provide a test POA&M.
- 1.3 Testing methodology. Some distinction should be made between items to be tested, items to be demonstrated, and items to be analyzed. Of those Phase II (Option I) outcomes agreed upon, some are appropriate only to testing, and others are appropriate only to demonstration or analysis. For example, the effectiveness of the user alignment system will be demonstrated thoroughly by virtue of the identification, verification, and rejection testing specified in the test objectives below. Demonstration of Type I and Type II error rates is possible only if DNA officials are present over an extended period. Given that this is not a practical approach, the "demonstration" of Type I and Type II error rates will be accomplished by providing the test results and analyses to DNA. Table 1 divides Phase II outcomes into what we perceive are appropriate categories at this point in Test Plan development.

TABLE 1: QUALIFICATION METHODOLOGY

PARAMETER	T	D	A	Ī	COMMENT
User Alignment		X			
Accept / Reject Lights		X			
Audible Sound		X			
Verification		X			
Identification		X			
Type I Error Rate	X				
Type II Error Rate	X				
Verification ≤ 5 seconds	X				
Identification ≤ 5 seconds	X				
Enrollment ≤ 2 minutes	X				
Four Hundred Files		X			
Enroll/Recognition of Dark Eyes		X			
40,000 File Database			X		
Central Database Interface			X		

QUALIFICATION METHODS

TEST Test is a method of verification through systematic exercising of the equipment under all applicable conditions, with instrumentation and the collection / analysis / evaluation of quantitative data.

DEMONSTRATION Demonstration is a method of verification involving the operation, movement, or adjustment of an item and the comparison of the item performance against a qualitative standard.

ANALYSIS Analysis is a method of verification involving the evaluation of theoretical or empirical data or both. Such data may be in the form of equations, charts, graphs, tables, calculations, or representative data.

INSPECTION Inspection is a method of verification involving examination of an item and the comparison of pertinent characteristics against a predetermined qualitative or quantitative standard. Inspection may require moving or partially disassembling the item to accomplish the verification.

- 2.0 PROOF OF CONCEPT TEST OBJECTIVES. The overall objective of this test is to determine whether or not iris identification technology (and the IriScan patented process, specifically) can provide a system which is capable, at least conceptually, of identifying and verifying individuals without the aid of a person in the decision loop and without requiring physical contact between the system and the individuals.
- 2.1 <u>Identification</u>. The test should confirm the ability of the system to identify individuals by comparing a presented iris with records of enrolled irises in a database.
- 2.2 <u>Verification</u>. The test should confirm the ability of the system to verify a person's identity by comparing a presented iris with a specific, designated iriscode file resident in the system's database.
- 2.3 <u>Rejection</u>. The test should confirm the ability of the system to reject users when the presented iris does not match any iriscode in the database (identification mode), or the presented iris does not match the specifically designated iriscode resident in the database (verification mode).
- 2.4 <u>User Alignment</u>. The test should demonstrate the ability of the system to provide sufficient feedback to allow a user to properly align him/herself so that useable iris images can be obtained for processing.
- 2.5 Accept/Reject Lights. The test should confirm the ability of the system to provide visual indication that a user's entry attempt has been accepted or rejected.
- 2.6 <u>Audible Signal</u>. The test should confirm the ability of the system to provide audible indication that a user's entry attempt has been accepted or rejected.

- 2.7 <u>Identification \leq 5 seconds</u>. The test should confirm the ability of the system to identify (recognize) a person (match a presented iris with the users' file in an enrolled database) in less than 5 seconds, average, given a database of 4,000 iriscodes.
- 2.8 <u>Verification ≤ 5 seconds.</u> The test should confirm the ability of the system to verify a person's identity (match a presented iris with a specifically designated file in an enrolled database) in less than 5 seconds, average.
- 2.9 Enrollment \leq 2 minutes. The test should confirm the ability of the system to enroll persons into the iriscode database in less than two minutes, on average.
- 2.10 Type I errors $\leq 1\%$. The test should confirm that the False Reject rate is equal to or less than 1% (one per hundred).
- 2.11 Type II errors \leq .1%. The test should confirm that the False Accept rate is equal to or less than .1% (one per thousand).
- 2.12 <u>Four Hundred Files</u>. The test should demonstrate the presence of at least four hundred different iriscodes in the database.
- 2.13 <u>Enrollment / Recognition of Dark Eyes</u>. The test should demonstrate the presence of dark eyes (brown) in the database and the ability of persons with dark eyes to be enrolled, identified and verified.
- 2.14 <u>40,000 File Database</u>. The test should allow evaluators to analyze the system capacity to ensure that 40,000 iriscodes could be entered into the database.
- 2.15 <u>Central Database Interface</u>. The test should allow evaluators to analyze the system to verify that there is a communication port physically and electronically capable of interfacing with a central database.

3.0 EVALUATION CRITERIA.

- 3.1 <u>Identification</u>. When an authorized user (known authentic) presents his/her iris at the iris reader, there are three possible outcomes. The system can correctly identify the individual and so indicate by audible and visual signals; the system can reject the individual and so indicate; or the system can fail. Failure can be defined as the inability of the system to identify or reject an individual in one minute. With a known authentic, a trial that results in a correct identification shall be a successful trial. A trial that results in rejection or system failure shall be a failure unless that failure can be positively attributed to excessive head rotation, power failure, or some other identifiable phenomenon. Identification will be thoroughly tested during the sequences for determining Type I and Type II errors.
- 3.2 <u>Verification</u>. When an authorized user (known authentic) enters a Personal Identification Number (PIN) by use of the system keyboard and then presents his/her iris at the iris reader, there are three possible outcomes. The system can correctly identify the individual and so indicate by audible and visual signals; the system can reject the individual and so indicate; or the system can fail. Failure can be defined as the inability of the system to identify or reject an individual in one minute. With a known authentic, a trial that results in a verification shall be a successful trial. A trial that results in rejection or system failure shall be a failure unless that failure can be positively attributed to use of an incorrect PIN, power failure, or some other identifiable phenomenon. Verification will be thoroughly tested during the sequences for determining Type I and Type II errors.
- 3.3 <u>Rejection</u>. This test can be run concurrent with Type II error (False Accept) testing in both the identification and verification mode. A successful trial is one in which a known imposter (someone who is not enrolled in the database, or someone who deliberately uses an incorrect PIN) presents his/her iris and the system rejects the individual by lighting the Reject Light and providing an appropriate audible signal. A failure is a trial that results in a rejection, but one or the other of the indicators fails to respond. If a subsequent lamp or

audio test confirms mechanical failure, the trial shall not be a failure, and shall be disregarded.

- 3.4 <u>User Alignment</u>. The demonstration of an effective user alignment system will be an inherent part of the testing scenarios which follow. Evaluation of the success of this demonstration will be based on observation by testers and evaluators of the ease with which users who have been trained and enrolled in the system can subsequently identify or verify. Although there will be no time criteria, the user should be able to place him/herself in position and initiate the identification or verification sequence promptly when instructed to do so. The system should demonstrate iris image acquisition with a subsequent identification, verification, or rejection promptly.
- 3.5 Accept/Reject Lights. This test can be conducted concurrent with other tests by noting the presence or absence of the appropriate light indications concurrent with the events which they represent. A failure shall be recorded when the appropriate condition exists and the light fails to so indicate. A trial will not be considered a failure when the failure to light is as a result of system errors, or when a subsequent lamp test reveals mechanical failure of the light. These trials shall be disregarded.
- 3.6 <u>Audible Signal</u>. This test can be conducted concurrent with other tests by noting the presence or absence of an audible signal concurrent with the events which it represents. A failure shall be recorded when the appropriate condition exists and the Audible Signal fails to so indicate. A trial will not be considered a failure when the failure is as a result of system errors, or when a subsequent audio test reveals mechanical failure. These trials shall be disregarded.
- 3.7 <u>Identification \leq 5 seconds.</u> This test can be conducted as part of the Type I False Rejection testing which uses known authentics. The average time between sequence activation and identification, shall be the criteria for satisfactory or unsatisfactory performance. Activation shall be the user starting the identification sequence by depressing

the start button on the IV unit. Identification shall be evidenced by the visual and audible indicators. A trial which results in a False Rejection shall not be considered a valid identification and shall not be considered in the computation of average time. Identification times shall be recorded, added, and divided by the number of identifications to determine the average time. Average time of greater than 5 seconds shall be unsatisfactory, and average time of 5 seconds or less shall be satisfactory.

- 3.8 <u>Verification ≤ 5 seconds.</u> This test can be conducted as part of the Type I False Rejection testing which uses known authentics. The average time between sequence activation and verification, shall be the criteria for satisfactory or unsatisfactory performance. Activation shall be the user starting the verification sequence by depressing the start button on the IV unit, after he/she has entered the appropriate PIN. Verification shall be evidenced by the visual and audible indicators. A trial which results in a False Rejection shall not be considered a valid verification and shall not be considered in the computation of average time. Verification times shall be recorded, added, and divided by the number of verifications to determine the average time. Average time of greater than 5 seconds shall be unsatisfactory, and average time of 5 seconds or less shall be satisfactory.
- 3.9 Enrollment ≤ 2 minutes. Enrollment time shall be the time between enrollment sequence activation by the system operator, and the audible and visual indication that the system has enrolled the individual and the sequence is complete. Note: In practical application, an astute system operator may evaluate the quality of the enrollment and elect to repeat such enrollment to improve the quality of the stored iriscode by reducing the Hamming Distance. Such subjective judgements, and independent operator actions shall not be considered in the testing program. The times for each enrollment will be summed and divided by the number of enrollments to determine the average. A failed enrollment attempt (more than 4:00 minutes) will be documented, and explained in the test report, but will not be computed as part of the average. Average enrollment time greater than 2 minutes shall be unsatisfactory. Average enrollment time of 2:00 minutes or less shall be satisfactory.

- 3.10 Type I errors $\leq 1 \%$. Type I error rates will be determined on the basis of a combination of identification attempts and verification attempts. Known authentics (persons known to be properly enrolled in the database, and persons known to have entered the proper PIN) will be utilized in this test. A trial will be a failure (f^a) if a known authentic is rejected three times in succession. The number of failures (F^a) will be divided by the number of trials (n) to compute an error rate (F^a/n). A computed rate greater than 1.0% will be unsatisfactory, and a computed rate of 1.0% or less will be satisfactory.
- 3.11 Type II errors $\leq 0.1\%$. Type II error rates will be computed by multiplying the number of un-enrolled Subject identification trials (n) times the size of the database (N) and the number of enrolled Subject identification trials (n) times the size of the database minus 1 (N 1), since in every identification attempt the presented iris is exhaustively compared to each iriscode in the database. Each identification trial therefore results in one opportunity for a false reject, and N or N-1 opportunities for a false accept. A trial will be a failure (f^a) if any file other than that of the person presenting their iris is accepted. The number of failures (F^a) will be divided by the number of comparisons [n(N)] or [n(N-1)] to compute an error rate $(F^a/\{[n(N)]+[n(N-1)]\}$. A computed rate greater than 0.1% will be unsatisfactory, and a computed rate of 0.1% or less will be satisfactory.
- 3.12 Four Hundred Files. The presence of at least four hundred different iriscode files will be demonstrated by querying the IriScan Brassboard System for current number of files or by dividing the number of bytes in the Master File by 512 (256 byte Iriscode and 256 bytes of administrative data).
- 3.13 Enroll / Recognition of Dark Eyes. The capability for enrollment and recognition of dark irises will be demonstrated as a normal part of Type I, Type II, identification, verification and enrollment testing. Evaluators and testers will observe / verify records of the eyes of a representative sample of the persons participating in the test.

- 3.14 40,000 File Database. The capacity of the system to enroll 40,000 irises will be evaluated by an analysis of the presence of sufficient Random Access Memory (RAM), specifically dividing the total RAM by 512. A dividend of 40,000 will constitute a successful demonstration of that capability.
- 3.15 <u>Central Database Interface</u>. This capability will be evaluated by observation of an external serial communications port and an analysis of its electronic properties.

4.0 METHODOLOGY.

- 4.1 <u>Testbed.</u> The IriScan offices, 133-Q Gaither Dr., Mt. Laurel, NJ will be the primary test bed. The testbed will be the laboratory portion of the facility wherein the system and necessary monitoring/recording equipment and devices can be positioned for optimum operation.
- 4.2 <u>Test description</u>. Tests will be conducted by knowledgeable IriScan employees in a purely laboratory environment with no attempt made to replicate or simulate operational field conditions. Each iteration (trial) will be conducted, documented, and analyzed independently. Each trial will be documented completely before proceeding on to the next. Throughput rates (system speed) will be established by averaging all individual tries without attempting to force numerous persons through the system, one after another, as rapidly as possible.
- 4.2.1 Identification and verification testing will be an inherent part of Type I and Type II Error testing. The results will be documented in writing as part of the documentation to establish the error rates, without formally structuring separate identification and verification test series.
- 4.2.2 False Acceptance testing will be conducted during and as an inherent part of Type I $\leq 1\%$, and Type II $\leq 0.1\%$ Error testing, in both identification and verification mode,

with persons not enrolled in the system, and with persons enrolled in the system, but presenting incorrect PIN's during verification testing. Incorrect PIN's will be bogus (not registered in the system) as well as erroneous (using a PIN validly enrolled in the system, but not associated with the tester). The results will be documented in writing as part of the documentation to establish the error rates, without formally structuring a separate rejection test series.

- 4.2.3 False Rejection testing will be an inherent part of Type I and Type II Error testing. The results will be documented in writing as part of the documentation to establish the error rates, without formally structuring a separate rejection test series.
- 4.2.4 The user alignment demonstrations(s) will be an inherent part of Type I and Type II Error testing. The results will be documented in writing without formally structuring a separate alignment test series.
- 4.2.5 Accept/Reject Light testing will be an inherent part of Type I and Type II Error testing. The results will be documented in writing as part of the documentation to establish the error rates, without formally structuring a separate Accept/Reject Light test series.
- 4.2.6 Audible Signal testing will be an inherent part of Type I and Type II Error testing. The results will be documented in writing as part of the documentation to establish the error rates, without formally structuring a separate Audible Signal test series.
- 4.2.7 Identification and verification ≤ 5 seconds testing will be an inherent part of Type I and Type II Error testing. The results will be documented in writing as part of the documentation to establish the error rates, without formally structuring a separate identification and verification test series solely to measure time.
- 4.2.8 Enrollment ≤ 2 minutes testing will consist of enrollments of persons not previously enrolled in the system (in live, photo, and video tape modes), and enrollments of persons

who may have been previously enrolled in the system but whose files have been expunged, carefully measuring and recording the time required. Efforts will be made to make other Subjects available, and they will be used to expand the enrollment pool; however, the test will not require that each enrollment be done by a separate person, never before enrolled in the system.

4.2.9 Type I Error ≤ 1% testing will consist of two forms of testing. The first form of testing will consist of validly enrolled persons attempting to be identified or verified. Each try will consist of an individual approaching the iris reader, positioning him/herself, focusing the iris in the viewer, and activating the device. In the verification mode, the Subject will add the step of or announcing his/her PIN to the system operator for entry before approaching the reader. The second form of testing will consist of presenting pre-recorded video images of irises to the Brassboard and activating the device. An analysis of the number of tests by eye color will be made to determine the degree to which the distribution of eye color among test Subjects mirrors the number of enrollees in that eye group in the database.

- 4.2.10 Type II Error $\leq 0.1\%$ testing will consist of three types of spoofing attempts (trials).
 - a. <u>Non-enrolled Mode</u>. In the identification mode, an individual's iris (or prerecorded iris image) not enrolled in the system will be presented to the system. The results will be noted, calculating the number of trials as n (number of individual irises presented) times N (the size of the database).
 - b. <u>Enrolled Mode</u>. In the identification mode, an individual's iris (or pre-recorded iris image) enrolled in the system will be presented to the system. The results will be noted, calculating the number of trials toward Type II testing as n (number of individual irises presented) times N-1 (the size of the database less the one authentic file for the Subject).

- c. <u>Verification Mode</u>. In the verification mode, an individual will use a bogus (non-existent) PIN, and then proceed with the verification trial. Results will be recorded. That will be followed by a trial using the valid PIN of an enrollee other than the Subject who is properly enrolled in the system. The results will be noted, calculating the number of trials as simply n, since in the verification mode, the system will only compare the presented iris with an identified file.
- 4.3 <u>Test preparation</u>. The testbed will be structured and exercised in the week before the formal testing, utilizing the proposed Data Collection Forms. Practice testing will be conducted in the week prior to the formal testing and the necessary forms and testbed configuration will be adjusted accordingly.
- 4.4 Test resources.
- 4.4.1 The Brassboard system.
- 4.4.2 Stopwatch.
- 4.4.3 Data Collection Forms.
- 4.4.4 Test Managers. (Two at all times that tests are conducted.)
- 4.4.5 Test Subjects live. As many as possible during the four-week test, especially those who have never been enrolled in the database.
- 4.4.6 Test Subjects on video. As many as 250, if possible. The video tape will be provided by Dr. Leonard Flom, IriScan Senior Scientist. The Subjects are volunteer patients from his Connecticut ophthalmology practice, and from clinics in the New York City area, including persons with diseased and/or damaged eyes. The video includes approximately 15-20 seconds of recorded images from each eye (450 600 images).

4.4.7 Test Subjects - still photograph. Five to ten, including photographs provided by DNA and at least two photos of persons who can come to the laboratory during the test period.

4.5 Test Scenarios.

- 4.5.1 Brassboard Configuration for all Trials. The system operator (Manager) will be seated at a keyboard with a CRT. The Brassboard Unit will mounted on a wall at an appropriate (recorded) height. The keyboard/CRT is connected to the Brassboard processor. The second Test Manager will observe, time and record the Trials.
- 4.5.2 Type II Error ≤ 0.1% (False Accept) Trial. This will be the initial test for every Subject who has not previously been enrolled on an IriScan system. The Subject will be positioned in front of the Brassboard Unit and the optical sensor positioned so he/she can see the eye in the feedback device. The system operator will coach movement to optimize the sharpness of the image (because this is the Subject's first contact with the system) and the Start button will be pushed (clock started). The system will search the database and activate the Reject (red) or Accept (green) light and audible signal (clock stopped). The audible signal activates twice for Reject or once for False Accept. This concludes a False Accept Trial, generating N (size of the database) comparisons. False Acceptance testing for enrolled Subjects will be conducted as an integral part of Type I (False Reject) testing, absent the coaching mentioned above.
- 4.5.2.1 Video Images. Un-enrolled Subjects on video tape will be utilized in False Accept Trials by direct link of the VCR to the Brassboard processor and the CRT. When a Subject's eye image appears on the CRT, the Start button will be pushed (clock started). The system searches the database and activates the Reject (red) or Accept (green) light (clock stopped). This concludes a False Accept Trial, generating N (size of database) comparisons.

- Photographs. Un-enrolled Subjects on still photographs will be utilized in False Accept Trials by positioning the photo in front of the optical sensor with a stationary frame. The photo will be moved forward/backward as directed by the system operator to optimize image sharpness. The Start button will be pushed (clock started). The system searches the database and activates the appropriate light and audible signal (clock stopped). This concludes a False Accept Trial, generating N (size of database) comparisons.
- 4.5.2.3 After Subjects have completed False Accept Trials, they will be enrolled in the system.
- Each test Subject will receive an orientation prior 4.5.3 Enrollment ≤ 2 minutes Trial. to being enrolled (similar to SNL's enrollment test process). This orientation may include "practice" enrollment. The Subject will stand in front of the Brassboard Unit and position the optical sensor so he/she can see the eye in the feedback device. The Subject is instructed to look into the optical sensor with the right eye and observe the (LCD feedback) image of his/her eye. If the focus is not adequate, the Subject is instructed to move forward/backward slightly to optimize the sharpness of the image. The Subject is instructed to push the Start button to initiate image collection (clock started). The system processes the images and produces an audible sound if an acceptable series of iriscodes has been produced (clock stopped). Time T-1 (initial enrollment) is recorded and the operator collects necessary administrative data (name, SS#, organization, PIN, etc.), and enters it via data form or keyboard, as appropriate. If no acceptable series of images has been acquired in four minutes, the trial is recorded as a failed enrollment attempt. The failed Subject must be enrolled at a later time. (As soon as initial enrollment is complete, the operator switches the system to the Verify Mode, enters the enrollee's PIN, and tells the enrollee to present his eye to the optical sensor and start the system. Watching the monitor, the operator directs movement until the system acquires and processes the iris image, signified by the audible tone.) System verification that the iris data acquired matches the iriscode in the database will be signified by the green light. Time V-1 will be recorded. This concludes an Enrollment Trial.

- 4.5.4 Type I Error ≤ 1.0% (False Reject) Trials. The Subject (person enrolled in the system) stands in front of the optical sensor and moves forward/back slightly until the feedback image appears to be sharp. He/she then pushes the Start button (clock started). The system processes the images and activates the Accept light and the audible signal (clock stopped). Identification Time, T-1, is recorded. Should the red (Reject) light and audible indicator signal that the Subject was not identified, the Subject will move until a sharp feedback image is seen and again start the process. If successfully identified, Identification Time T-2 is recorded. If not, the process is initiated a third time. If a successful identification takes place, Identification Time T-3 is recorded. If not, a False Rejection is recorded. This concludes a False Reject Trial, generating one False Reject comparison and N-1 False Accept comparisons. The time required for a False Rejection is not included in the calculations for identification / verification ≤ 5 seconds testing.
- 4.5.4.1 Video Images. Enrolled Subjects on video tape will be utilized in False Reject Trials by direct link of the VCR to the Brassboard processor and the CRT. When a Subject's eye image appears on the CRT, the Start button will be pushed (clock started). The system searches the database and activates the Reject (red) or Accept (green) light (clock stopped). Retries and their timing are recorded as in the previous paragraph. This concludes a False Reject Trial, generating one False Reject comparison and N-1 False Accept comparisons.
- 4.5.4.2 Photographs. Enrolled Subjects on still photographs will be utilized in False Reject Trials by positioning the photo in front of the optical sensor with a stationary frame. The photo will be moved forward/backward as directed by the system operator to optimize image sharpness. The Start button will be pushed (clock started). The system searches the database and activates the appropriate light and audible signal (clock stopped). Retries and their timing are recorded as in the previous paragraph. This concludes a False Reject Trial, generating one False Reject comparison and N-1 False Accept comparisons.

Persons whose photographs have been enrolled and who are able to visit the IriScan laboratory during the test period will tested in accordance with normal False Reject procedures in paragraph 4.5.4, above.

- 4.6 Number of trials. For the reasons outlined below, the number of trials cannot be specified absolutely before the testing has been performed. Nor is it essential to do so. As detailed in paragraph 4.6.1, below, the confidence levels based on actual numbers will not vary greatly as the sample size varies. For example, increasing the sample size by 78% only results in a 2% increase in the accuracy of the conclusions about the whole population. It is therefore appropriate to establish a target range for trials before the test and then to express the results of the tests as a confidence level based on the actual number of trials conducted. Our target range is therefore between 280 and 500 different samples (irises). This translates to a False Reject target range of 280 trials to 500 trials, and a False accept target range of 112,000 to 200,000 comparisons.
- 4.6.1 Because sampling measures only a portion of the whole (infinite) population, conclusions about that whole population drawn from the sample are only estimates, and are almost universally expressed with a certain level of confidence. Thus, after sampling 280 irises, for example, one can say with 95% certainty that the results are within 9% of the value for the whole population. If one wishes to draw conclusions with greater certainty, one can say with 99% certainty that the results are within 11% of the whole population. Increasing the sampling to 500 iris comparisons improves that confidence (certainty) only slightly (95% confidence that the results are within 7% of the true population, and 99% confidence that the results are within 9% of the whole population).
- 4.6.2 As the testing progresses, the size of the database will vary. This has no impact on False Reject testing, where the number of comparisons is equal to the number of different irises presented (trials). It has a significant impact, however, on the number of comparisons performed for False Accept testing, since that number is the product of (n) irises presented, and (N) files in the database (un-enrolled Subject) which are <u>all</u> compared to the presented

iris during an exhaustive search. Additionally, when an iris which is enrolled in the database is presented, this product becomes [n(N-1)].

- 4.6.3 Depending upon the number of test Subjects available during the test period and the realistic amount of time available to the persons conducting the tests, the number of trials will be maximized. Because of the logistics involved, all samples will not be live presentations of irises. Although live iris presentations will be maximized, a substantial portion of presentations could be iris images obtained remotely by video tape. After such irises are presented in False Accept tests, they will be enrolled in the database to be used as part of the ongoing False Reject testing. Sufficient trials will be conducted to substantiate the test results in the form of statements of confidence level as stated in paragraph 4.6.1, above.
- 4.7 <u>Documentation</u>. Insofar as possible, a standard Data Collection Form will be utilized to record the results of each of the tests. Entries will consist of check marks or time (in seconds) under titled columnar headings rather than requiring a written narrative entry. Written entries will be limited to a remarks section. An example Data Collection Form follows.

														REMARKS									
							G/R						TEST	MGRS	1								
					†	×	×	0					AUDIBLE	SIGNAL MGRS	11 11 11 11 11 11 11 11 11 11 11 11 11								
						ဗ	œ	0				ACCEPT/		LIGHT									
						1.18						11	TIME	3	======								
						1.3 S				TEST	V		TIME	2									
						1.5 S	112.8			YSTEM	N FOR		TIME	-									
						#	IF NEC		In Scan Inc	DARD S	LECTIC			N N									
					LIGHT	STD			Ξ	DNA BRASSBOARD SYSTEM TEST	DATA COLLECTION FORM		IRIS										
BLUE	BLUE-GREY	GREY	GREY-GREEN	GREEN	BLUE-GREEN	GREY-BROWN	HAZEL	BROWN		DNA			EYE	COLOR DENSITY									
					NAME	VOL 1	PHOTO 3	REAL 3					101	SUBJECT									
				FA	FR	ENROLL	IDENTIFY	VERIFY					1011	ESI									
						- 1	250 FILES					71.0	SIZE	DATABASE									
												T VIOL	DATE	NO.	Q								

APPENDIX B

DEFENSE NUCLEAR AGENCY

BIOMETRIC IDENTIFICATION VERIFICATION SYSTEM

PROOF OF CONCEPT TEST REPORT

DECEMBER 1994

CONTRACT No. DNA 001-93-C-0137

IriScan Incorporated 133-Q Gaither Drive Mt. Laurel, NJ 08054

EXECUTIVE SUMMARY

Phase II of the IriScan Incorporated contract with the Defense Nuclear Agency (DNA) included three Tasks. Task I required the development and construction of a brassboard proof-of-concept iris-based biometric identification verification system. Task II required the development of a plan for testing the brassboard proof-of-concept system, and DNA approval of that plan. Task III required performance of the brassboard proof-of-concept test in accordance with the Test Plan, collection and analysis of the test data, and development of a Test Report documenting the test results.

This Test Report describes the Proof of Concept Test and how the data was collected and includes a copy of the Test Plan and the raw data collected during the Test. Data analysis and evaluation are recounted and interpretation is discussed. Test results are detailed and Conclusions and Lessons Learned are presented.

The DNA Test of the Brassboard Proof-of-Concept Iris-based Biometric Identification Verification System started with a database of 405 IrisCodes and enrolled 160 irises:

- The system effectively and accurately performs identification and verification (1,944 identifications and 50 verifications in an average of 2.44 seconds each, without error, with a False Accept rate of 0);
- The system effectively and accurately rejects impostors and persons not enrolled (662 un-enrolled irises and 150 impostor irises were correctly rejected, while one enrolled person wearing dirty glasses was incorrectly rejected, for a False Reject rate of .05%) (rejected enrollee learned to control eyeglass reflections and was identified on second and subsequent attempts, both with and without glasses);
- All subjects were enrolled. Average time was 25 seconds, plus typing time;
- The user alignment, accept/reject light and audible signal systems worked effectively and reliably, without negative comment by users;
- Dark eyes were handled with virtually identical speed and accuracy as others;
- The system made 3,100,000 file comparisons without error. There was one human image-acquisition error (resulting in the False Reject);
- The DNA Brassboard System met or exceeded all standards and requirements.

TABLE OF CONTENTS

SECTION		Page
EXE	CUTIVE SUMMARY	i
1	INTRODUCTION	1
	1.1 BACKGROUND	1
	1.2 METHODOLOGY	
2	TEST PERFORMANCE	3
	2.1 PRE-TEST	
	2.2 TEST PERIOD	3
	2.4 TEST LOCATIONS	4
3	TEST DATA	5
	3.1 DATA COLLECTION	5
	3.2 DATA COLLECTION FORMS	
	3.4 REJECTIONS FILE	6
	3.5 ENROLLMENTS FILE	
-	3.6 IDENTIFICATIONS FILE	
4	DATA ANALYSIS AND INTERPRETATION	10
	4.1 ANALYSIS	
	4.2 INTERPRETATION	11
5	TEST RESULTS	14
	5.1 IDENTIFICATION	
	5.2 VERIFICATION	
	5.4 USER ALIGNMENT	
	5.5 ACCEPT / REJECT LIGHTS	
	5.6 AUDIBLE SIGNAL	

TABLE OF CONTENTS (Continued)

SECTION		Page
6	5.7 IDENTIFICATION ≤ 5 SEC 5.8 VERIFICATION ≤ 5 SEC 5.9 ENROLLMENT ≤ 2 MIN 5.10 TYPE I ERRORS ≤ 1% 5.11 TYPE II ERRORS ≤ .1% 5.12 FOUR HUNDRED FILES 5.13 ENROLLMENT / RECOGNITION OF DARK EYES 5.14 40,000 FILE DATABASE 5.15 CENTRAL DATABASE INTERFACE CONCLUSIONS AND LESSONS LEARNED	16 17 19 19 21 22 24
APPENDIX		Page
Α	TEST PLAN	A-1
В	DATA COLLECTION FORMS	. В-1
C	ENROLLMENT FORMS	. C-1
D	REJECTION FILES	D-1
E	ENROLLMENT FILES	. E-1
E	IDENTIFICATION FILES	F.1

SECTION 1

INTRODUCTION

1.1 BACKGROUND

Phase I of the IriScan Incorporated contract with the Defense Nuclear Agency (DNA) was initiated on July 19, 1993, and required the development of a Biometric Identification Verification Technology Status and Feasibility Study. The study was performed between July 1993 and January 1994. Upon completion and delivery of the study report (Phase I Final Report), DNA issued a Contract Modification exercising Option One (Phase II).

Phase II included three Tasks:

Task I required the development and fabrication of a brassboard proof-of-concept iris-based biometric identification verification system.

Task II required the development of a plan for testing the brassboard proof-of-concept system, and DNA approval of that plan. The plan included methodologies to evaluate and verify system performance in meeting the requirements identified in the contract Statement of Work.

Task III required performance of the brassboard proof-of-concept test in accordance with the Test Plan, collection and analysis of the test data, and development of a Test Report documenting the test results. Additionally, a brassboard proof-of-concept system performance demonstration was to be conducted at a time and location designated or approved by the DNA Program Manager. (This occurred November 21-22, 1994 at DNA Headquarters.)

1.2 METHODOLOGY

The Defense Nuclear Agency Brassboard Identification Verification System Test Plan was developed in generic and final stages, and approved by DNA at each stage. The Final Test Plan was delivered to DNA in mid-September, approved by DNA and published by IriScan on October 7, 1994. The methodology utilized during the test was generally as specified in the Test Plan. Minor deviations from the Test Plan are noted in the body of the report. A copy of the Test Plan is at Appendix A.

1.3 INITIAL SYSTEM STATUS

The DNA Brassboard System was fully operational for performance of enrollments, identifications and rejections in a manner similar to a fielded system. The System database was pre-loaded with 405 iris files which had been collected as of that date. (All IriScan personnel irises had been removed from the database, in order to maximize full participation during the Test.) The Mode switch used on the unit was three-position only, since the four-position switch on order did not arrive. (The four-position switch is used only on the DNA unit, since the commercial pre-production prototypes do not use a Verification Mode.) The Mode switch has Admin, Enroll, and Identify positions. Therefore, during the Test, the System was put in Admin Mode and a software "switch" set in order to exercise the Verify Mode and to do "spoof" testing. (The Brassboard System delivered to DNA is expected to have a four-position switch.)

SECTION 2

TEST PERFORMANCE

2.1 PRE-TEST

In accordance with the Test Plan, the DNA Brassboard Iris-Based Biometric Identification Proof-of-Concept System Test (hereafter called the Brassboard Test) was preceded by a Pre-Test. This Pre-Test was intended to prove that the test procedures, forms, and automated data-collection software were effective in compiling all of the data necessary to meet test requirements. The Pre-Test was initiated on October 12, 1994. It continued while necessary data collection software modifications were installed and tested and was terminated on October 19, 1994.

2.2 TEST PERIOD

The DNA Brassboard Test was initiated on Friday, October 21, 1994. From that time until the Test was terminated, enrollments, identifications, and rejections which occurred on the DNA Brassboard System were recorded, except where noted. The Test was terminated at noon on Wednesday, November 16, 1994.

2.3 TEST RESOURCES

Resources utilized during and after the Test for collecting and analyzing the data:

- 2.3.1 DNA Brassboard Unit (22 lbs, 18"x15"x8"), monitor, and keyboard;
- 2.3.2 Data Collection Forms and Enrollment Record Forms (see Appendices B and C);

- 2.3.3 Floppy disk drive and 3.5" floppy disks (for downloading test data from the DNA Brassboard Unit);
- 2.3.4 Forty-four live test subjects;
- 2.3.5 Seventy-three iris images on VHS video tape;
- 2.3.6 Two test subjects with facial images on still (command-type) photographs;
- 2.3.7. IriScan engineers, who entered notations in electronic files and downloaded data files, C. B. Kuhla, James T. McHugh, and James H. Lee; and
- 2.3.8 IriScan analysts and test managers, John E. Siedlarz, Gerald O. Williams, and Donald R. Richards.

2.4 TEST LOCATIONS

- 2.4.1 The DNA Brassboard System was installed in the laboratory at IriScan Headquarters, 133-Q Gaither Drive, Mt. Laurel, NJ, for all but two days of the Test Period.
- 2.4.2 The DNA Brassboard System was installed in a display in the American Correctional Association (New Jersey Chapter) Exhibits at the Hilton Hotel, Long Branch, NJ, October 24-25, 1994, for the purpose of expanding live-eye testing and the size of the database.

SECTION 3

TEST DATA

3.1 DATA COLLECTION

Data was collected both manually and automatically during the Brassboard System Test. Manual data was recorded on Data Collection Forms and Enrollment Record Forms by the Test Managers. Automatically collected data was placed in accessible files by the Brassboard System as it operated. These were the Rejection File, the Enrollment File and the Identification File.

3.2 DATA COLLECTION FORMS

Data Collection Forms were intended to provide a way to manually record system and test incidents which could not be identified and recorded automatically by the system. Incidents to be recorded were False Accepts, False Rejects, system failures, damage to the system, maintenance actions taken, dates and times.

There was only one incident reported during the Test, a False Reject on the second day. The Data Collection Form actually became a Test Log or record of the events which took place during the test period. The Brassboard System Test Data Collection Forms are at Appendix B.

3.3 ENROLLMENT RECORD FORMS

The Enrollment Record Forms were intended to provide a manual record of each enrollment and certain key data concerning the enrollment. Items to be recorded were the IrisCode number, the enrollee's ID number (often the last four digits of the Social Security number), the enrollee's name, which eye was enrolled (R or L), eye color (in

nine colors; blue, blue-grey, grey, grey-green, green, blue-green, grey-brown, hazel and brown), iris density (Lt, Std or Dark), seconds to enroll, date/time, and Hamming Distance of enrollment. The Hamming Distance of each enrollment is generated by the system and shown on the monitor momentarily during the enrollment. If it is not noted and recorded at that time, it is not possible to re-create it or pull it from a file. In twelve of the 160 enrollments, the Hamming distance was not recorded. Enrollment time was not recorded for iris images on video tape. The time required for a person to enroll was the time between pushing the Start button and accepting the captured image. The Test Enrollment Record Forms are at Appendix C.

3.4 REJECTIONS FILE

Each time that the Brassboard System, in the identification or verification mode, acquired an iris image, and compared it to a specific file (verification) or to the entire database without finding a match, it would show a "No Match on the monitor. The time required for this event averaged a little over one second. The system was set to require seven No Matches before giving the reject signal (red light and double-beep audible) and recording a Rejection in the automated file. In accordance with the procedure utilized by the Sandia National Laboratories in testing biometric identification / verification systems, three consecutive rejections were required before a False Reject was recorded on the Data Collection Form.

The following information was automatically recorded in the file each time there was a rejection: Eye Quality (quality of focus, basically a value that reflects the contrast ratio along the iris-limbus border); IPIX Average (computed average luminance of 128 pixels selected within the iris image); Pupil Diameter (in pixels); Iris Diameter (in pixels); and Time (in seconds, from Start button activation until Rejection signal). After the Rejects File was downloaded from the Brassboard System, several data items were added: Average Time computation; Number of IrisCodes in the database when the reject took place; Number of Comparisons which could have produced a False Accept (number of

IrisCodes x 7); and Cumulative Number of Comparisons (which could have produced a False Accept).

A total of 812 valid rejections and one false rejection were recorded during the Test period. The Rejects File is at Appendix D.

3.5 ENROLLMENTS FILE

Each time that an iris was enrolled in the Brassboard System during the Test period, the system automatically recorded the following data: File Number (IrisCode number); Enrollee's Name; Eye Enrolled (R or L); Enrollee's ID Number; and the Date / Time of the Enrollment. Since the ID numbers were not relevant for test purposes, they were not included in the final printout of the Enrollments File. N/A was placed in this column. The system time was not always accurately set, and since time of day was not critical to calculations, the system time of the first enrollment of the day is shown for many enrollments that day. Finally, iris images presented on video tape are not identified by name, but by Volunteer Number. The Enrollments File is at Appendix E.

3.6 IDENTIFICATIONS FILE

In the identification or verification mode, each time that the Brassboard System acquired an iris image, compared it to a specific file (verification) or to the entire database and found a match, an identification was automatically recorded. The following information is recorded for each identification: File Number (IrisCode) of the matching file; Hamming Distance of the match; Number of Bits Compared (between the code of the iris presented and the IrisCode in the database); Number of Bits Which Disagree (between the two IrisCodes); Rotation of the Iris Presented (clock-wise or counter-clock-wise, in degrees); and Time (in seconds between activation of the Start button and activation of the identification signals).

After the Identifications File was downloaded from the Brassboard System, several data items were added: Average Time computation; Number of IrisCodes in the database when the identification took place; N-1 (the number of comparisons which could have produced a False Accept); and Cumulative Number of Comparisons (which could have produced a False Accept).

A total of 1,994 Identifications / Verifications were recorded during the Test period. The Identifications File is at Appendix F.

3.7 DATA COLLECTION PROCEDURES

The potential enrollee would receive a brief orientation on the DNA Brassboard System, its components, capabilities and how it operates. A demonstration identification would also take place so the enrollee would know generally what actions to take. The enrollee would then be coached into position for the system to acquire a good iris image and the system started. (See paragraph 4.2.3, below.) Since enrollment had not taken place, the resulting "No Matches" and Rejections demonstrated that the system would not generate a False Accept. If there was time, the enrollee was asked to generate five Rejections with each eye. Next the enrollment took place. Generally, both eyes were enrolled. Finally, the system was put in Identification Mode and the enrollee was asked to identify five times with each eye.

Since the correct four-position Mode switch did not arrive in time to be installed before the Test, only Admin (download, mark files, modify software, etc.), Enroll and Identify Modes were readily available during the test. When time was available, the system would be placed in Admin Mode and a software switch made to enable Verification. Then, ID numbers would be entered via the keyboard and multiple Verifications and spoof attempts (utilizing other ID numbers and generating Rejections) would take place with all the new enrollees and other persons available.

Data was downloaded to floppy disks from the Brassboard System's hard drive at the end of a testing period (the total test was broken into eight periods of roughly equal activity rather than daily or weekly). The data was contained in three files, Identifications, Rejections and Enrollments. Those files were then imported into a Lotus spreadsheet file and additional columns added to calculate statistics germane to the test.

SECTION 4

DATA ANALYSIS AND INTERPRETATION

4.1 ANALYSIS

Upon completion of the Data Collection Phase of the DNA Brassboard Proof-of-Concept System Test (October 21 - November 16), the data was analyzed using two methodologies.

4.1.1 OUICK SUMMARIZATION ANALYSIS

Since the Brassboard System Demonstration was scheduled for November 21-22, all of the data was quickly reviewed and analyzed with the intention of developing a summary of key test items which could be verbally presented to the DNA Program Manager at the Demonstration. The key items were: number of identifications (1,994); number of valid rejections (812); number of False Rejects (1); number of False Accepts (0); and total number of file comparisons (approximately 3,100,000).

4.1.2 DETAILED ANALYSIS

Upon completion of the DNA Demonstration, all of the collected data was subjected to a detailed analysis and evaluation as this Test Report was being developed and particularly as the Test Results (Section 5) prepared. This included an item by item assessment of each data element of the Forms and Files contained in the Appendices. As occurs in all system performance tests of this kind, some significantly abnormal data points were identified. These significantly abnormal data points were subjected to special analysis, evaluation, and tracking of the circumstances surrounding their generation, and were handled as discussed below. All of the other data were used in development of the Test Results.

4.2 INTERPRETATION

The results of the Brassboard Test in Section 5 below should be interpreted and considered in light of the following issues, comments, and caveats.

- 4.2.1 The early portion of the test (days 4 and 5 specifically) was conducted in conjunction with an exhibit at the New Jersey Chapter of the American Correctional Association, in Longbranch NJ. We believed that moving the unit from the laboratory environment (a deviation from the Test Plan) was a reasonable measure in light of the opportunity to gather data which we might not otherwise obtain. We concluded that having the unit at a large gathering was an opportunity to obtain a larger number of irises than we would have been able to obtain by bringing individuals to the IriScan offices in ones and twos. Secondly, "new" irises (those never before entered in the system) gave us an opportunity to observe and document the behavior and adaptability of subjects who had never previously encountered an iris identification device. Finally, we felt that the subjects we would encounter at a public exhibition would be inclined to demonstrate characteristics more "real world" than in a laboratory environment constrained by formal indoctrination.
- 4.2.2 An analysis of identifications after the exhibition mentioned above, revealed some extremely long, and unrealistic, identification times. We realized that two common practices were responsible for this. It is important to remember that the event timer is started when the "Start" button is depressed and will continue to run (accumulate time) until either an identification or rejection decision is made. The system does not terminate the search sequence after a predetermined time. First, to demonstrate the system to interested persons, we, the system operators, would initiate the identification sequence and show the subjects how the additional aiming device (the triangle of light in the iris image) could be used to assist focus. To make this clear, operators would move into the focal field very slowly, and in fact, would sometimes turn from the device to point out (on the monitor screen) certain aspects of the iris image or the aiming clues.

Turning back to the Brassboard unit and eventually obtaining an identification resulted in some identification sequences of 60, 90, 120 seconds and longer. On more than one occasion, subjects left the exhibit area without enrolling and we failed to terminate the identification sequence for periods of up to nearly 5 minutes. As a result, four identification times in excess of 60 seconds, which could be positively linked to similar scenarios were eliminated from the data analysis.

- 4.2.3 An additional tendency contributed to excessive identification times. When subjects approached the Brassboard unit and began to make their initial attempts to acquire their iris image in the system, no illumination was available. (To preserve illuminator life, a software adjustment had been made to extinguish the illuminator after each identification. Pressing the Start button turns the illuminator on again.) Instinctively, to aid subjects in initial familiarization with the iris acquisition, the IriScan staff would press the start button to provide illumination, and all of those first-try identification times thus included familiarization time as well. Once the unit was returned to the laboratory, the procedures were rewritten such that initial familiarization was always conducted in the enroll mode wherein the illuminator remained on all the time. Only after a subject was oriented and could readily reacquire his iris image was the unit placed in the identification mode and an identification/rejection trial conducted.
- 4.2.4 Finally, the research and experimentation mind-set influenced our test data in the early stages of the Brassboard testing. As an example, it was automatic, when discussing such things as area of the search pattern, to approach the nearest unit (more often than not the DNA Brassboard unit) to experiment with proper placement of the eye in the field of view. As a result, some identification sequences were initiated and followed by placement of the iris image in the extreme margins of the field of view to test the image search pattern. These too extended many of the identification sequences until the problem was identified by the IriScan staff. Overall, the test average identification time of 2.44 seconds was well within the required 5 second criteria. In practical application, the time will probably average more on the order of 1.5 to 1.7 seconds.

4.2.5 The occurrence of only one error (Type I, False Reject) during the Brassboard Test makes broad and sweeping generalizations about confidence levels or error rates unsuitable. Certainly, insufficient errors were experienced during the Brassboard Test to define an operational Crossover Error Rate (CER). However it is reasonable to assume that it parallels the theoretical CER established in the initial iris identification research and development. That is, .005% (1/20,000) based on samples with 173 degrees of freedom and a database of 500.

SECTION 5

TEST RESULTS

5.1 IDENTIFICATION

The DNA Test demonstrated that the Brassboard Proof-of-Concept System performs accurate identification of persons enrolled in the system. This conclusion is supported by the fact that nearly 2,000 identifications were made without error.

5.2 VERIFICATION

The DNA Test demonstrated that the Brassboard System is capable of performing accurate identity verification. This conclusion is supported by the fact that approximately 50 verifications were made without error. However, it should be noted that the high speed and accuracy of the Brassboard System's identification mode call into question the utility of a verification capability. Since verification actually takes longer than identification, and the accuracy rate is essentially the same, it may be simpler to avoid the cost of extra equipment (card reader or keypad), and potential human error inherent in the verification process. (Commercial model IriScan entry control systems will only identify.)

5.3 REJECTION

The DNA Test demonstrated that the Brassboard System performs accurate rejection of impostors and persons not enrolled in the system. This conclusion is supported by the fact that 812 valid rejections were recorded when 662 attempts with irises not enrolled in the system and 150 impostor attempts (spoofing) were rejected. One False Rejection was recorded and documented. This subject enrolled without glasses and was correctly identified without glasses. However, the first time he attempted identification while wearing bifocal glasses (which had not been cleaned in some time) he was falsely

rejected. This rejection occurred because he was initially unable to position himself so the reflections on his lenses appeared to be outside his irises. Immediately, on his second attempt, he was correctly identified. And, with clean lenses, he had no further rejection problems on several subsequent attempts.

The shortest rejection time was 7.0 seconds and the longest was 124.3 seconds. This longest time was a result of the same phenomenon discussed in paragraph 4.2.2 above. The mean rejection time was 10.26 seconds and the Standard Deviation (SD) was 5.95 seconds. There were four times over one minute which we considered anomalies. However, because we could not associate them with any specific scenario, as with the identifications (see paragraph 5.7, below), we included them in the above calculations. If they had been excluded, the longest time would have been 36.3 seconds, the mean 9.91, and the SD 2.7 seconds.

5.4 USER ALIGNMENT

The DNA Test of the Brassboard System demonstrated that the user alignment / feedback system was effective and acceptable to the people who had to utilize the hardware. Though a few people had minor initial difficulty during their orientation in "locating their eye" in the image feedback window, all were able to do it readily by the time they had enrolled both eyes. None stated a concern over future ability to use the alignment / feedback system.

5.5 ACCEPT / REJECT LIGHTS

The DNA Test of the Brassboard System demonstrated that the Accept / Reject Lights were effective in signaling identification or rejection and performed reliably. The system uses Light Emitting Diodes (LED) as the means for signaling status. The green LED was activated for an identification/verification and the red LED for a rejection. These LED's remain on for five seconds before going out. If the Start button is pushed during

the five second period, the green/red LED goes out and the yellow LED comes on, indicating that the system is processing. The yellow LED goes out when the green/red LED comes on. The LED's worked on every trial and the users were able to immediately determine identification or rejection without referring to the demonstration monitor.

5.6 AUDIBLE SIGNAL

The DNA Test of the Brassboard System demonstrated that the Audible Signal was effective in signaling identification, verification or rejection and was reliable in performance. The signal "beeped" once for identification or verification and twice on a rejection. The audible signal worked on every trial without failure and the users were able to immediately determine identification, verification or rejection without referring to the demonstration monitor.

5.7 IDENTIFICATION \leq 5 SECONDS

The DNA Test of the Brassboard System demonstrated that identification takes place in less than five seconds on average. This conclusion is supported by the Identifications File (Appendix F) which shows that the time for 1,944 identifications (and aapproximately 50 verifications) averaged 2.44 seconds. The minimum time was 1.0 seconds and the maximum 37.5 seconds, with a Standard Deviation of 2.63 seconds. The data still include five points in the 20-37.5 second range which we are certain are also cases where the identification sequence was interrupted before an iris image was acquired. However, since we could not document these incidents these data were left in the file.

5.8 VERIFICATION ≤ 5 SECONDS

The Brassboard Test indicated that the image-acquisition / "system" time for verification is less than five seconds. A verification is the same as an identification except that the

presented iris is compared to only the pre-designated file, instead of the entire database. The verification of identity simply appears as another data point in the Identifications File and it is therefore impossible to separate and analyze these trials for comparison to identifications. It is known, however, that there were no cases of interrupted sequence during verification trials. There was no data to indicate that the average time of the approximately 50 verification trials deviated significantly from the 2.44 second average of the 1,944 identification trials. As with identification, the most time consuming functions during verification are image acquisition, analysis and digitization. The comparison time for two files is less than comparing one file against 500. The overall time for verification, however, is greater than that of identification because of the need to enter a Personal Identification Number (PIN).

5.9 ENROLLMENT ≤ 2 MINUTES

5.9.1 Enrollment process. The enrollment process consists of a fixed, "system" component and several variable, enrollee- or operator-influenced components. When an operator feels that the enrollee is in proper position and the eye is in focus and centered, he activates the Start button. In 0.1 second, the system grabs 3 frames (iris images). The system processes the three images, developing an IrisCode for each image in about one second. If the geometric mean of the Hamming Distance (HD) in three pair-wise comparisons of the IrisCodes is less than .32, the system presents a screen display to the operator. In an optimal and acceptable enrollment, the process described thus far takes a total of about 1.1 seconds. In an unacceptable enrollment (where the mean Hamming Distance is greater than .32), the system briefly flashes the screen display, and immediately repeats the process until it detects an acceptable HD. This process is indeterminate in the sense that the system will repeat indefinitely until an acceptable HD is detected. Once an acceptable HD is obtained, the operator is presented with a prompt which asks "Desire to store this IrisCode and enroll a textfile?" Through experience, we have determined that the quality of identifications after enrollment is a function of, or at least partially dependent upon, the quality of the enrollment

image. Therefore, by policy, HDs greater than .15 were generally rejected by the operator, and the process was repeated by again pushing the Start button. This accounts for some of the variance in enrollment times (from 9 to 60 seconds). Once an operator elects to enroll the image, he responds "Yes" with a keystroke, and is presented with an opportunity to enter the subject's name, which eye was presented, and a 4-digit ID number which he solicits from the subject. This manual process adds another indeterminate amount of time, which we considered administrative data-entry time, not included in the computation of Enrollment ≤ 2 minutes. The system then provides the operator with an opportunity to review the data which has been entered. The prompt is, "Is this correct? (Y, N, or A (abort))". The operator strikes the "Y" key and then "enter." Instantly, the prompt appears, "Temporary database updated. Update permanent database? [Y-N] (Def Y)". When the operator strikes "Y" or "enter", the system begins a five-second process of updating the permanent database, and then automatically begins the enrollment cycle over again with the prompt, "Press Start button". Thus the "system" time for enrollment (that is, the minimum amount of time required by the system to complete all of its functions when directed) is about 6.1 seconds. The total enrollment time is indeterminant because of the variables of a) time required for the enrollee to move into sharp focus, b) operator assessment of the quality of image, and c) the operator's expertise at typing. To further speed the process and reduce data-entry time to a minimum, the system will query after the first enrollment, "Desire to enroll the other eye?" and if the answer is yes, will automatically provide all the previous information upon capture of a suitable image during the second iris enrollment.

5.9.2 Enrollment speed. Thirty-Seven enrollments were clocked from the time the Start button was pushed until the operator accepted an enrollment image. This included automatic "system-generated" retries and retries based on an operator's dissatisfaction with the mean Hamming Distance (HD). The shortest time was 9 seconds, and the longest time was 60 seconds, with an average enrollment time of 18.9 seconds. Enrollment time consists of image-acquisition time (which averaged 18.9 seconds in this Test), a fixed, system-dependent component of about 6.1 seconds, and a variable, operator-

influenced data-entry component. In this Test, with an average of only 25 seconds required for two of the three necessary components, the total time will be less than two minutes, no matter how Enrollment Time is calculated.

5.10 TYPE I ERRORS $\leq 1\%$

5.10.1 EXPERIENCED FALSE REJECT RATE

During the test, there were 1,994 successful identifications/verifications. Records were kept to document the one case of a False Reject which met the definition in the test plan (three consecutive Rejects of the same iris). [That False Accept was the result of a subject's continued identification attempts with dirty glasses. Immediately after the False Reject, the subject successfully angled his head in a manner which moved the "blooming" caused by reflected light to an area outside the iris image. By practicing this technique, the subject successfully identified (with glasses) numerous times during the remainder of the test.] With a single False Reject in 1,994 trials, the experienced False Reject rate was 0.05% (1 / 1995).

5.10.2 THEORETICAL FALSE REJECT RATE

The theoretical False Reject Rate at a Hamming Distance criterion setting of .28 as was used in this test is 1 in 9,000, or 0.01%.

5.11 TYPE II ERRORS $\leq .1\%$

5.11.1 FALSE ACCEPT TESTING

False Accept testing was conducted in two primary ways and one secondary way.

- a. Primary. Generally, before enrollment, subjects attempted to be identified five times with each eye. Each rejection was the result of seven separate iris images being compared exhaustively to the entire database. As a result, each rejection sequence provided between 2, 848 and 3,955 comparisons or opportunities for a False Accept (database size times 7, or a minimum of 405 X 7 for the first test to 565 X 7 for the last test).
- b. Primary. During the verification demonstrations, erroneous PINs were entered for enrolled subjects ("spoof" tests, if you will) to attempt identifications against another enrollee's file. (Bogus PINs, that is, PINs not assigned to an IrisCode, were automatically rejected by the system.) Each attempt to spoof the system resulted in only 7 opportunities for a false accept because there was no exhaustive database search performed.
- c. Secondary. During False Reject testing in the identification mode, each identification attempt generated one opportunity for a False Reject, but N (database size) minus 1 (N-1) opportunities for a False Accept. This is a legitimate, but not widely used practice. In previous biometric testing, so few technologies operated in the identification (exhaustive search) mode that such calculations were mentioned only in an offhanded way. As a result, it provides a serendipitous expansion of the number of file comparisons useable in error rate calculations. We followed the practice of using the word "trial" to describe one person attempting identification.

5.11.2 FALSE ACCEPT TRIALS AND COMPARISONS

There were a total of 815 primary False Accept trials (identifications and spoofs), resulting in 2,170,143 comparisons which could have resulted in a False Accept.

Additionally, there were 1994 False Reject trials resulting in 929,518 secondary False

Accept comparisons. Thus, for purposes of computing error rates, there were a total of 3,099,661 False Accept comparisons.

5.11.3 EXPERIENCED FALSE ACCEPT RATE

There were zero False Accepts experienced during the testing and thus the FA rate was 0 (0 / 3,099,661 = 0).

5.11.4 THEORETICAL FALSE ACCEPT RATE

The theoretical False Accept Rate at a Hamming Distance criterion setting of .28 as was used in this test is 1 in 120,000, or .0008%.

5.12 FOUR HUNDRED FILES

5.12.1 DATABASE SIZE At the start of testing, the database consisted of 405 IrisCode files. During the course of the test, 160 IrisCodes were added (87 live irises and 73 videotaped irises) to bring the total database size to 565. Twenty-Seven of the 565 IrisCodes were repeats (duplicates), resulting in a database of 538 unique irises.

(NOTE: It is likely that in fact, there were 565 different IrisCodes representing 538 unique irises. This is true for two reasons. 1) It is highly unlikely that any two enrollments of the same iris result in identical codes because of the variability of the process of presenting an iris. The number of disagreeing bits and the number of bits compared varies with such things as focus, ambient lighting, head angle, and rotation. Each enrollment also involves taking three images, computing a geometric mean, and choosing the IrisCode closest to that mean. Two separate presentations (for a total of six different IrisCodes) undoubtedly resulted in selecting two separate IrisCodes for enrollment which were slightly, but identifiably different. 2) except for the three operator errors mentioned below, all

of the duplicates (repeats) were cases where the initial enrollment had previously been accomplished on Bench Model 2.5, with a 7-bit frame grabber providing a range of 128 possible gray scale values per pixel, and the second or repeat enrollment was accomplished on the DNA Brassboard unit with an 8-bit frame grabber and a range of 256 possible gray scale values per pixel.

5.12.2 DATABASE CHARACTER

5.12.2.1 IrisCode size. All of the 405 IrisCodes present in the database at the start of testing were from IriScan's Bench Model 2.5 (an early, laboratory device) which used only 7 bits of the 8-bit frame grabber and could thus capture only 128 gray scale values per pixel. All 160 IrisCodes added during the test were enrolled using the DNA Brassboard unit with 8-bit frame grabber, capturing and digitizing 256 gray scale values.

5.12.2.2 Duplicates. As mentioned, 27 of the 565 IrisCodes were repeats (duplicates). This occurred, for two reasons. In three cases, operator error resulted in duplicate enrollment of one of a live subject's eyes during the course of the DNA testing. In 24 cases (16 videotaped images, and 8 images from live subjects), irises previously enrolled on the 7-bit frame grabber were re-enrolled on the 8-bit system. This was done to see which IrisCodes were likely to be matched in subsequent identifications. In only one case out of about 50 such identifications did the system identify on the 7-bit IrisCode.

5.12.2.3 Computations. Because of the minute number of duplicate comparisons made relative to the total (less than .0016%) during the test, no effort was made to adjust the formula from N-1 to N-2 during those trials.

5.13 ENROLLMENT/RECOGNITION OF DARK EYES

After eliminating all duplicate irises from the tally, an analysis was made of the distribution of darkness (density) of the irises in the database. The analysis was made using the same nine categories of iris color used when analyzing the distribution for the Phase I Final Report. As can be seen from Table 5-1, Database Distribution By Color, the greatest concentration of iris colors were in the lightest and the darkest groups. The numerical majority of irises in the database were dark, with 58% in the two darkest categories, and 35% in the two lightest categories.

During the test, there were 849 identifications of dark irises and 1,145 identifications of light irises, averaging 2.59 seconds and 2.33 seconds respectively.

Like identifications, differences in the enrollment acquisition times of the dark versus light irises were not significantly different, averaging 18.6 seconds and 18.8 seconds respectively.

TABLE 5-1

DATABASE DISTRIBUTION BY COLOR

Color	Orig. D/B	New	<u>Total</u>	<u>Duplicates</u>	Adj. Total	<u>Percentage</u>
Blue	133	38	171	(7)	164	30%
Blue/grey	20	6	26	(1)	25	5%
Grey	24	2	26	(1)	25	5%
Blue/green	5.	2	7	(0)	7	1%
Grey/green	6	0	6	(0)	6	1%
Grey/brown	0	0	0	(0)	0	0
Green	0	0	0	(0)	0	0
Hazel	33	30	63	(13)	50	9%
Brown	184	82	266	(5)	261	49%
	-					
TOTAL	405	160	565	(27)	538	100%

5.14 40,000 FILE DATABASE

The DNA Brassboard Proof-of-Concept System has been operated successfully in the current hardware configuration by electronically duplicating the 400 IrisCode database ten times. This increased system identification time by 0.6 seconds over a 400 IrisCode database. The DNA Brassboard Unit was configured with two, 210 Megabyte hard drives which, if used exclusively for IrisCode storage, would have accommodated 820,312 IrisCodes. In reality, one hard drive was configured as backup for the primary, and approximately 400 Kilobytes of the primary was used for record keeping. Thus, 409,375 IrisCodes could have been stored in the unit's test configuration.

5.15 CENTRAL DATABASE INTERFACE

The DNA Brassboard Proof-of-Concept System hardware has two serial ports and is capable of providing a communication means to a central database. Data transfer can be accomplished between the Brassboard Unit and any other computer or peripheral device (such as a hard drive, or floppy drive), through a serial port.

SECTION 6

CONCLUSIONS AND LESSONS LEARNED

The DNA Brassboard unit met or exceeded all standards and Operational Performance Requirements specified in the Test Plan and contract Statement Of Work.

Aside from the technical parameters which have been previously discussed, the unit performed well in those areas of primary concern to DNA and potential users:

The unit easily enrolled and identified / verified dark irises. Nearly 60% of the IrisCodes in the database were in the two darkest categories of eyes.

Although control of ambient lighting is still a matter of some importance in operational applications, the unit experienced no difficulty in operating in any of the lighting environments encountered during the test.

User acceptance was excellent. The 20-watt quartz-halogen light, operated at approximately 7 watts and filtered with a magenta acrylic filter provided a comfortable amount of light without harshness or irritation. Users were able to see clearly and simply the image of the eye they should expect to see when they approached the unit. The additional focusing method (the triangular reflection of light low in the iris image) provided an immediate feedback mechanism to even presbyopic individuals. Most initial orientations required less than 30 seconds to train subjects on how to acquire a proper image.

The unit enrolled every iris presented to it.

The unit was absolutely accurate in the area of False Accepts, allowing no errors in over 3 million opportunities. It was 99.95% accurate in the area of False

Rejects, with only 1 out of 1,995 opportunities. The reason for that error was identified, corrected and never repeated.

The existing protection against counterfeiting (currently available only in the Enrollment Mode), should be explored further. It seems likely that it (or some variant) would also be effective in the identification / verification mode.

Contact lenses posed no problem in either enrollment or identification / verification. Enrollment without contacts can be followed by identification / verification with the lenses, and vice versa, without impacting accuracy or speed. Similarly, the system handles imprecisely positioned lenses (not in same exact position on the eye every time) and colored contacts without difficulty.

We learned that dirty and scratched glasses cause blooming that can interfere with identification / verification if not consciously and effectively avoided by subjects. We identified techniques which can be applied by virtually anyone to easily move blooming to an area that will not affect the I/V process. However, it is important to note that the dynamic range of the system acquisition and processing capabilities should not be expected to compensate for conditions (e.g., scratched / dirty glasses) that are beyond the engineering design and ignore common sense judgement. The system should not be expected to compensate for uncooperative individuals or glasses that should be replaced.

An ancillary lesson from the foregoing is that False Rejects can be made to happen in many ways and that an operational False Reject Rate may well be a function of factors beyond the control of any biometric manufacturer. The degree to which subjects want to make the system operate can well influence Type I errors. The attentiveness of subjects, their concentration, and their preoccupation with other things in the environment and/or their lives may well induce higher Type I error rates than the system is capable of. In short, a poorly presented biometric feature, which exceeds the system design parameters has a high probability of being rejected.

ANNEX 1 APPENDIX A TEST PLAN

for

DEFENSE NUCLEAR AGENCY

BRASSBOARD IDENTIFICATION / VERIFICATION SYSTEM

(Withdrawn)

ANNEX 2 APPENDIX B InScan Inc DNA BRASSBOARD TEST

DATA-COLLECTION FORM

5.75	EXACT	FALSE		SYSTEM		MAINT	REMARKS - DETAILS - COMMENTS	REPORTED BY	TEL NO
DATE	TIME	ACCEPT		FAIL			HEMARKS - DETAILS - COMMENTS		=====
	====== 	: ====== 	: ===== 		1	 			1
	 	-	 				Initial False Accept tests.	GOW	
10/21/94							5 times R, 5 times L	GOW	1
10/21/94	1401	 			 	 	S unico II, S unico L	GOW	
	1405			İ			Enroll	gow	
	1405	 	 		†	<u> </u>	Initial False Reject tests.	GOW	
	1415		İ				5 times R, 5 times L. Identification	GOW	
							False Reject tests. 5 times R,	GOW	
	1529	1					5 times L. Verification	GOW	1
							Ran in ID mode for 2-5 min w/o	GOW	i
10/22/94	1048						timeout. ID'd to break cycle.	GOW	↓
	1100 -		1				Enrolled & tested Russ, Julie, & Kate	GOW	1
	1200						Thurston. D. & J. Richards	GOW	
			1				User acquisition & dirty/scratched	GOW	1
	1300		X				glasses. No good image. (DRR)	GOW	
10/23/94-					1		Testing at NJ chapter of ACA	GOW	
10/25/94		ļ	ļ		ļ		in Longbranch NJ.	GOW	
							Initial annullment from sides tone	GOW	
10/27/94	0800		 		-		Initial enrollment from video tape.	GOW	
	0900 -			Ī			Tecting with It Col Gore propert	GOW	
	1140				 		Testing with Lt. Col. Gore present	GOW	
	1147-						Multiple verifications & spoofing tsts	GOW	1
	1210				1		Multiple verifications a speciming total		t
10/28/94	1229						Verification testing	5 R, 5 L	gow
10/20/54	1225		 						
	1					1		5 R, 5 L	DDR
							Spoof testing (various PIN's: CBK,		
							J. Gore, J. Lee)	5 R, 5 L	DDR
			†						
	1						•	5 R, 5 L	GOW
		1					Verification testing	5 R, 5 L	CBK
							Spoof testing (GOW PIN)	5 R, 5 L	СВК
	1								
							Verification testing	5 R, 5 L	J. Lee
				}			Garage (1 Gara BIN)	5 R, 5 L	J. Lee
	_					-	Spoof testing (J. Gore PIN)	3 N, 3 L	J. Lee
		i		ļ			Verification testing	5 R, 5 L	RMS
					<u> </u>		Verification (county	011,02	
		ļ	l				Spoof testing (J. Gore PIN)	5 R, 5 L	RMS
					 				
		!]		Identifications		свк
11/01/94	1145				L		PAULA SIEDLARZ, FA TESTING	5 R, 5 L	
							ENROLL		
							PAULA SIEDLARZ, FR TESTING	5 R, 5 L	
							LORNA, FA TESTING	5 R, 5 L	
							ENDOLL		
_							ENROLL		
							LORNA, FR TESTING	5 A, 5 L	
VVVVVV	********	7777777	77777777	YYYVY	77777777		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXX
**************************************	*********	**************************************	********	*********	*********	********	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXXXXX
							XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
VVVVVV									

IriScan Inc DNA BRASSBOARD TEST DATA-COLLECTION FORM

DATE -	EXACT TIME	FALSE	FALSE REJECT	INCIDENT SYSTEM FAIL	DAMAGE	MAINT	REMARKS - DETAILS - COMMENTS	REPORTED BY	TEL NO
DATE			HEJECT					=========	
11/02/94	920						FA testing, T. Whittle, enroll FR testing. No L iriscode present.		
							Reinrolled T. Whittle		
							Herricited 1. William		
							FA testing, J. McHugh, enrolled		
							FR testing, J. McHugh		
							FA testing JES, enrolled		
							TA testing 429, division		
							FR testing, JES		
							Established		
	1430						FA testing, J. Nelson, enrolled		
							FR testing, J. Nelson		
11/03/94	1130						FA testing, Costello enrolled		
							SD testing SD St Contallo		
							FR testing, 5R, 5L Costello		-
							Video FR/FA testing		
							J. Williams, G. Wells identified on previous		
11/12/94	1250						file #'s 308,309 and 310,311 respectively		
							but are listed in master record 1 # higher.		
							Reinrolled Corrected master file numbering.		:
11/14/94							H. Fineberg had 1, not 2 eyes enrolled.		
,,-									
11/15/94	1108						Ran FA tests on 70 video inses.		
11/16/04	1334						Started enrollment of video irises.		
11/16/94	1334						Outed Gildinary of Video Hoes.		
	1703						Completed enrollment of video irises (52)		
11/16/94	0732						Started FR testing on video irises. Discovered & corrected logging error.		
					,		Ran FR tests on video inses.		
							Ran FA tests on previously		
							unenrollable irises.		
(XXXXXXX				XXXXXXXX				XXXXXXXXXXXXXX	
CXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXXX LAST ENTRY XXXXXXXXX	XXXXXXXXXXXXXX	
						ŀ			
						ļ			
								1	
						 			
						ļ			
						L_			
								↓	
		ı	1	I	I	1	j	1 1	l

14-Dec-94

APPENDIX C

IriScan Inc DNA BRASBOARD TEST ENROLLMENT RECORD

									DENSITY LIGHT - Std - Dark
		SHEET#1	E			SECONDS			
IRISCODE	ID.		Υ		IRIS	ENROLL	DATE/		REMARKS
NO.	NO.	ENROLLEE NAME	E		DENSITY		TIME	HD	
=====	=====		= ,	===== 	==== 	_====	=====	===== 	1
			+	<u> </u>			10/21/94		
400	2200	WILLIAMS, G.	A	BLUE	STD		1415	.02	
406	3322	WILLIAMS, G.	+	BLUL	0.0		10/21/94		
407	3322	WILLIAMS, G.	-li	BLUE	STD		1416	.02	
407	3322	WILLIAMS, G.	╅				10/22/94		
408	3676	THURSTON, R.	R	BLUE	LT		1114	.036	
400	00,0		+						
409	3676	THURSTON, R.	L	BLUE	LT		1116		
			\top						
410	7973	THURSTON, J.	R	BLUE	DRK		1125	.08	
-			Т					1	
411	7973	THURSTON, J.	L	BLUE	DRK		1127	.03	
412	8793	RICHARDS, J.	R	BLUE	STD		1130	.06	
413	8793	RICHARDS, J.		BLUE	STD		1132	.03	ACTIVE A VP OLD
							4440		ACTIVE 4-YR OLD TIRED AFTER 1ST ENROLLMENT
414	1111	THURSTON, K.	P	BLUE	STD		1142		HINED AFTER 131 ENROLLMENT
			_			51.050	44.45		
415	9948	RICHARDS, D.	R	BLUE	LT	51 SEC	1145		
				01115		51 SEC	1147	.09	
416	9948	RICHARDS, D.	╬	BLUE	LT	51 SEC	10/23/94	.05	
		. == .	R	HAZ	DRK		1702	.05	
417	3876	LEE, J.	- "	TIAZ	DAK		1702	00	
440	2076	LEE, J.	-li	HAZ	DRK		1702	08	
418	3676	CCE, J.	╁	1170			10/24/94		
419	8066	GREGORIO, J.	A	BL/GRY	STD		0845	.05	
419	8000	GAEGONIO, U.	+	DL/ CITY					
420	8066	GREGORIO, J.	R	BL/GRY	STD		. 0847	.05	
420									SUBJECT LEFT BEFORE
421	4055	ANSELL, S.	R	BROWN	LT		0930	.08	COMPLETING L EYE
			T						
422	5073	MACKINNON	R	BROWN	STD	16 SEC	0945	.06	
423	5073	MACKINNON	ᆙ	BROWN	STD	16 SEC	0945	.06	
							4000		
424	1406	KRAUSZ, G.	- P	BROWN	STD		1030		
405	1400	KDALISZ C	١,	BROWN	STD		1030		
425	1406	KRAUSZ, G.	-	DITOTTI	5,5		. 555		
426	5810	BROWN, K.	R	BROWN	STD		1040	.04	
420	3019				1				
427	5819	BROWN, K.	L	BROWN	STD		1041	.04	
428	7717	GREGORIO, P.	A	BROWN	STD		1100	.15	
			Т						
429	7717	GREGORIO, P.	L	BROWN	STD	14 SEC	1102	.21	
430	2314	SASALA	R	HAZEL	STD		1110	.08	
					0		4444	00	
431	2314	SAŞALA	L	HAZEL	STD		1111	.08	
				DI (02)	675		1105	.06	
432	8746	FITZ MAURICE, D.	18	BL/GRY	STD		1125	.00	
		EITZ MAUDIOE E	1.	DI ICDY	STD	12 SEC	1126	.05	
433	8746	FITZ MAURICE, D.	- -	BL/GRY	310	12 SEC	1120	.00	EXHIBIT CLOSED BEFORE
40.1	7404	DVAN BUIL	R	BLUE	LIGHT		1700	.15	COMPLETING L EYE
434	/184	RYAN, PHIL XXXXXXXXXXXXXXXXXXXXXXXXXXX	v l"	XXXXXXX	YXXXXXX	XXXXXXX			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	I YYYYYYYYYYYYY	^^^^^	ÇIÇ	******	******	YYYYYYY	XXXXXXX	XXXXXXX	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
LXXXXXXX	 XXXXXXXXXXXX	ΙΑΛΑΚΑΚΑΚΑΚΑΚΑΚΑΚΑΚΑΚΑΚΑΚΑΚΑΚΑ	^ ^	1222222	^^^^	~~~~~	AAAAAAA	IUVUVVV	1

		SHEET#2	Ε			SECONDS			DENSITY Light - Old - Dark
IRISCODE	ID		Υ	EYE	IRIS	ENROLL	DATE/		
NO.	NO.	ENROLLEE NAME	Ε	COLOR	DENSITY	TIME	TIME	HD	REMARKS
						====		=====	*****************
			\perp						
							10/25/94	l	
435	6402	COFFEY, J.	R	HAZEL	LT		0830	.11	
426	6400	COFFEY, J.	l,	HAZEL	LT		0832	.016	
436	6402	COFFET, J.	╄	HAZEL	F.1		0032	.010	
437	2277	ARETINO .	R	BLUE	DRK		0910	.08	
			T						
438	2277	ARETINO	L	BLUE	DRK		0912	.09	
			Τ						
439	7766	GRAY, D.	R	BROWN	DRK		0940	17	
				5501111	5514		0040		
440	7766	GRAY, D.	+	BROWN	DRK		0942	.17	
441	0264	HOWARD, R.	R	HAZEL	DRK		1500	0.07	
	0204	nowand, n.	۳	THEELE	Din			0.0.	
442	0264	HOWARD, R.	R	HAZEL	DRK		1501	0.06	
			П						
443	0264	HOWARD, R.	니	HAZEL	DRK		1505	0.06	
			Ш				10/27/94		FROM VIDEO TAPE
444	5421	VOLUNTEER #14	上	BROWN	DRK		0830	.09	R EYE IMAGE UNSUITABLE
445	5400	VOLUNTEED #00		BDOWN	DRY		1030	.08	FROM VIDEO TAPE
445	5422	VOLUNTEER #28	P	BROWN	DRK		1030	.06	PROMI VIDEO TAFE
446	5422	VOLUNTEER #28	l, l	BROWN	DRK		1032	.08	FROM VIDEO TAPE
440	3422	VOLUME WED	╄	DISCHIL	Drin		1002	.00	11011111020 11112
447	0031	KUHLA, B.	R	BLUE	STD		1045	.03	
			Т						
448	0031	KUHLA, B.	L	BLUE	STD		1044	.03	
			Т						
449	1045	GORE, J.	R	BROWN	DRK		1050	.07	
									DROPPED OFF SCREEN WITHOUT
450	1045	GORE, J.	上	BROWN	DRK		1052	.06	ENROLLING. RE-ENROLLED
454	2040	CHIVEED	L	DOOMA	חחיי	60.050		00	SUBJECT PUT LEFT EYE IN BY MISTAKE
451	3248	SNYDER, J.	╄	BROWN	DAK	60 SEC	1115	.08	WOULDN'T IDENTIFY. THOUGHT
452	3248	SNYDER J.	L	BROWN	DRK		1117	.16	ENROLLMENT FAILED. RE-ENROLLED.
402	3240	ON IDENTIC	+	Briowit	DIV		11111		SUBJECT PUT RIGHT EYE IN BY MISTAKE
453	3248	SNYDER J.	R	BROWN	DRK		1115	.08	(MISLABELED AS "L" IN RECOG.REC)
			Т						
454	1516	QUINN, R.	R	BROWN	DRK		1458	0.06	
								1	
455	1516	QUINN, R.	丰	BROWN	DRK		1459	0.08	
456	4044	IRROTOS A		BROWN	DRK		10/31/94 1235	0.16	4-YR OLD
456	1211	PROTOS, A.	P	BHOWN	DHK		1235	0.16	4- TA OLD
457	1211	PROTOS, A.		BROWN	DRK		1240	0.21	4-YR OLD
407	!!		Ħ	23111				5.2,	
458	5423	VOL #1	R	HAZEL	DRK		1328	0.08	FROM VIDEO TAPE
			П						
459	5423	VOL #1	L	HAZEL	DRK		1331	0.17	FROM VIDEO TAPE
									* OPERATOR MISLABELED AS "L"
460	5423	VOL #2	P	HAZEL	LT			0.06	FROM VIDEO TAPE
	***	WO. #0						0.05	F0011 U0F5
461	5423	VOL #2	붜	HAZEL.	LT			0.05	FROM VIDEO TAPE
460	5404	VOI #4		DITTE	STD			0.14	FROM VIDEO TAPE
462	5424	VOL #4	R	BLUE	310			0.14	PROM VIDEO TAPE
463	5425	VOL #4	$\ \ $	BLUE	STD		1421	0.07	FROM VIDEO TAPE
			x			XXXXXXX			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
									xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

			_	,		accoura:			DENSITY Light - Sto - Dark
IDIOCODE	10	SHEET#3	Y		IRIS	SECONDS	DATE/		•
IRISCODE NO.	ID NO.	ENROLLEE NAME	E				TIME	HD	REMARKS
======	====			=====	====	=====	=====		**********
1				1	1			1	
			Т				10/31/94		
464	5426	VOL #8	R	BLUE	LT		1432	0.08	FROM VIDEO TAPE
105	5400	1401 #0	١.	81115				0.00	FROM VIDEO TAPE
465	5426	VOL #B	╬	BLUE	LT			0.08	PHON VIDEO TAPE
466	5427	VOL #3	R	BLUE	STD		1439	0.035	FROM VIDEO TAPE
			T						
467	5427	VOL #3	L	BLUE	STD			0.06	FROM VIDEO TAPE
300	5400	WOL #45	R	BLUE	STD			0.04	FROM VIDEO TAPE
468	5426	VOL #15	+	BLUE	310			0.04	6 TRIES
469	5428	VOL #15	١L	BLUE	STD			0.03	FROM VIDEO TAPE
100	0420		╅						R TOO BLURRY TO ENROLL
470	5429	VOL #16	L	BROWN	STD			0.1	FROM VIDEO TAPE
			Т						
471	5429	VOL #17	R	BROWN	STD			0.1	FROM VIDEO TAPE
			1.						5001111050 7405
472	5430	VOL #17	ᆙ	BROWN	STD		11/01/94	0.06	FROM VIDEO TAPE
473	7198	SIEDLARZ, P.	R	HAZEL	DRK	12	1152	0.08	
475	7130	Ole Desire, 1	+	10/222	Britis		7.02		
474	7198	SIEDLARZ, P.	L	HAZEL	DRK	12	1153	0.04	
			Τ						
475	2514	LORNA	R	HAZEL	STD	13	1155	0.05	
476	2514	LORNA	I.	HAZEL	STD	18	1156	0.08	
470	2514	LOTIVA	ナ	TIMELL	010	10	11/02/94	0.00	
477	5431	VOL #29	R	HAZEL	LT	14	0925		FROM VIDEO TAPE
			Т						
478	5431	VOL #29	L	HAZEL	LT	27	0828		FROM VIDEO TAPE
479	5431	VOL #29	I, I	HAZEL	LT	13	0830		FROM VIDEO TAPE
473	3401	VOL #23	۴	TIMELL		- 10	0000		
480	0057	WHITTLE, T.	R	HAZEL	LT	14	0935	0.05	
									FILE NOT PRESENT WHEN IDENTIFYING.
481	0057	WHITTLE, T.	L	HAZEL	LT	27	0938	0.04	REENROLLED BELOW
482	0057	WHITTLE, T.	1.	HAZEL	LT	27	0938	0.05	REENROLLMENT
402	0007	101111111111111111111111111111111111111	+	TIPLELL			0300	0.00	TICETO DECINETT
483	1552	MCHUGH, J.	R	BROWN	DRK	12	0950	0.07	
			П						
484	1552	MCHUGH, J.	L	BROWN	DRK	· 17	0951	0.03	
485	9916	SIEDLARZ, J.	R	BU/GRN	STD	15		0.09	
403	3310	V1	T	20/0/114	3,5			0.00	
486	9916	SIEDLARZ, J.	L	BU/GRN	STD	11		0.04	
487	8924	NELSON, J.	R	BLUE	STD			0.07	
488	5457	DONOHUE, J.	R	BLUE	STD				
400	3437	DOMOTIOE, U.	17	DLUE	3,0				
489	5457	DONOHUE, J.	L	BLUE	STD				
			П						
490	7223	FINEBURG, H.	R	GREY	STD				
404	7000	EINEDLIDG H		GREY	STD				
491	1223	FINEBURG, H.	뮈	GRET	310		11/03/94		
492	6336	COSTELLO. R.	R	BLUE	STD	9	1125	0.09	
			\sqcap						
493	6336	COSTELLO. R.	1	BLUE	STD	9	1126	0.03	1

		SHEET#4	Ε			SECONDS			
IRISCODE NO.	NO.	ENROLLEE NAME	Y E	COLOR		ENROLL TIME	DATE/ TIME	HD	REMARKS
	====	======================================	1 1	=====	==== 	=====	=====		
494	1715	OVADENKO, D.	L	BLUE	STD	18	11/03/94 1245	0.07	
		OVADENIKO D	A	BLUE	STD	14	1248	0.04	
495	1/15	OVADENKO, D.	П	BLOL	415		11/08/94		
496	3321	CHAPEK, J.	Ŗ	BROWN	STD	14	1730	0.12	
497	3321	CHAPEK, J.	L	BROWN	STD	15	1730	0.07	
498	6064	AHRENS, J.	R	HAZ	STD	18	1735	0.04	
499	6064	AHRENS, J.	L	HAZ	STD	18	1735	0.07	
500	3138	PETERS, J.	R	BLUE	STD	14	11/09/94 1230	0.07	
501	3138	PETERS, J.	L	BLUE	STD	14	1230	0.04	
502	3959	NICKELL, D.	R	BLUE	DARK	17	1240	0.12	
				BLUE	DARK	15	1240	0.04	
503	3959	NICKELL, D.	Н	BLUE	DARK		11/10/94	0.04	
504	2583	GENGLER, A.	R	BL/GRY	LIGHT		0915	0.01	
505	2583	GENGLER, A.	L	BL/GRY	LIGHT		0915	0.029	
506		WEYERS, K.	R	BLUE	LIGHT	15	11/11/94 1630	0.07	
507		WEYERS, K.		BLUE	LIGHT	17		0.04	
	4007		,	HAZEL	STD		11/12/94 1250		CHECK #'S OF OLD FILES.
508		WILLIAMS, J.	R				1230		Official and offic
509	1307	WILLIAMS, J.	۲	HAZEL	STD			0.12	
510	1588	WELLS, G.	R	HAZEL	STD			0.07	
511	1588	WELLS, G.	L	HAZEL	STD		 	0.04	
512	2149	CALDWELL, J.	R	BROWN	STD	18		0.03	
513	2149	CALDWELL, J.	L	BROWN	STD	16		0.06	
514	5432	VOL #58	A	Brown	STD		11/15/94 1334	0.14	ENROLLED FROM VIDEO
515	5432	VOL #58	L	brown	STD			0.05	ENROLLED FROM VIDEO
516		VOL #59	R		LIGHT			0.07	ENROLLED FROM VIDEO
		VOL #59		Blue	light			0.12	ENROLLED FROM VIDEO
517 518		VOL #60	۲	BROWN	STD				ENROLLED FROM VIDEO
			R	BROWN	DARK				ENROLLED FROM VIDEO
519		VOL #61							
520	5435	VOL #61	L	BROWN	DARK				ENROLLED FROM VIDEO
521	5436	VOL #62	R	BROWN	DARK			0.09	ENROLLED FROM VIDEO
522	5436	VOL #62	L	BROWN	DARK	WWW.	VVVVVVV		ENROLLED FROM VIDEO
XXXXXXXX	XXXXXXXXXXXXX	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	X	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

IRISCODE NO.	iD NO.	SHEET#5	E Y E	COLOR	IRIS DENSITY	SECONDS ENROLL TIME	DATE/ TIME	HD	REMARKS
			L						
523	3437	VOL #63	R	BROWN	DARK			0.09	ENROLLED FROM VIDEO
524	3439	VOL #65	R	BROWN	DARK			0.12	ENROLLED FROM VIDEO
525	3439	VOL #65	L	BROWN	DARK			0.16	ENROLLED FROM VIDEO
526	3440	VOL #66	L	BROWN	DARK			0.11	ENROLLED FROM VIDEO
527	3441	VOL #67	R	BROWN	DARK			0.14	ENROLLED FROM VIDEO
528	3441	VOL #67	L	BROWN	DARK			0.16	ENROLLED FROM VIDEO
529	3442	VOL #68	R	BROWN	DARK			0.15	ENROLLED FROM VIDEO
530	3443	VOL #70	R	BROWN	DARK			0.07	ENROLLED FROM VIDEO
531	3443	VOL #70	L	BROWN	DARK			0.08	ENROLLED FROM VIDEO
532	3444	VOL #72	R	BROWN	DARK			0.1	ENROLLED FROM VIDEO
533	3444	VOL #72	L	BROWN	DARK	1.000		0.12	ENROLLED FROM VIDEO
534	3445	VOL #73	R	BROWN	DARK			0.09	ENROLLED FROM VIDEO
535	3445	VOL #73	L	BROWN	DARK			0.08	ENROLLED FROM VIDEO
536	3446	VOL #74	R	BROWN	DARK			0.13	ENROLLED FROM VIDEO
537	3447	VOL #75	R	BROWN	DARK			0.107	ENROLLED FROM VIDEO
538	3447	VOL #75	L	BROWN	DARK			0.157	ENROLLED FROM VIDEO
539	3448	VOL #76	R	BROWN	DARK			0.05	ENROLLED FROM VIDEO
540	3448	VOL #76	L	BROWN	DARK			0.16	ENROLLED FROM VIDEO
541	3449	VOL #77	FI	BROWN	DARK			0.156	ENROLLED FROM VIDEO
542	3449	VOL #77	L	BROWN	DARK			0.182	ENROLLED FROM VIDEO
543	3450	VOL #78	R	BROWN	DARK			0.156	ENROLLED FROM VIDEO
544	3451	VOL #80	R	BROWN	DARK			0.09	ENROLLED FROM VIDEO
545	3451	VOL #80	L	BROWN	DARK			0.16	ENROLLED FROM VIDEO
546	3452	VOL #81	R	BROWN	DARK			0.11	ENROLLED FROM VIDEO
547	3453	VOL #81	L	BROWN	DARK			0.09	ENROLLED FROM VIDEO
548	3453	VOL #82	R	BROWN	DARK			0.06	ENROLLED FROM VIDEO
549	3453	VOL #82	L	BROWN	DARK			0.179	ENROLLED FROM VIDEO
550	3454	VOL #83	R	BROWN	DARK			0.088	ENROLLED FROM VIDEO
551	3454	VOL #83	L	BROWN	DARK				ENROLLED FROM VIDEO
*********	***************	**************************************	x x	*********	XXXXXXXXX	XXXXXXXXX	******	XXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

IRISCODE	ID NO.	SHEET#6 ENROLLEE NAME	E Y E		IRIS DENSITY	SECONDS ENROLL TIME	DATE/ TIME	HD	REMARKS
	====	**************************************	1.1	====	=====		=====	=====	
552	3455	VOL #85	R	BROWN	DARK		11/15/94 1627	0.078	ENROLLED FROM VIDEO
553	3455	VOL #85		BROWN	DARK			0.155	ENROLLED FROM VIDEO
554		VOL #86	Я	BROWN	DARK			0.185	ENROLLED FROM VIDEO
555	3456	VOL #86	L	BROWN	DARK			0.16	ENROLLED FROM VIDEO
556	3457	VOL #87	Я	BROWN	DARK			0.07	ENROLLED FROM VIDEO
557	3457	VOL #87	L	BROWN	DARK			0.08	ENROLLED FROM VIDEO
558	3458	VOL #88	R	BROWN	DARK			0.11	ENROLLED FROM VIDEO
559	3458	VOL #88	L	BROWN	DARK			0.096	ENROLLED FROM VIDEO
560		VOL #89	R	BROWN	DARK			0.065	ENROLLED FROM VIDEO
561	3459	VOL #89	L	BROWN	DARK			0.05	ENROLLED FROM VIDEO
562	3460	VOL #90	R	BROWN	DARK			0.097	ENROLLED FROM VIDEO
563	3460	VOL #90	L	BROWN	DARK			0.108	ENROLLED FROM VIDEO
564	3461	VOL #92	R	BROWN	DARK			0.066	ENROLLED FROM VIDEO
565	3461	VOL #92	L	BROWN	DARK		1703	0.04	ENROLLED FROM VIDEO
			T						
			T						
			T						
							<u> </u>		

ANNEX 4

APPENDIX D

REJECTS FILE

19-DEC-94

OCTOBER 21...NOVEMBER 16, 1994

TRIAL #	EYE QUAL	IPIX AVG	PUPIL DIAM	IRIS DIAM	TIME	AVG TIME	NO. OF FILES	# OF COMP	CUM
======				========	=========	==========	=========	======	
1	1.493	81	72	252	9.3	9.30	407	2849	2,849
2	1.482	80	80	250	9.3	9.30	407	2849	5,698
3	1.489	79	84	250	9.3	9.30	407	2849	8,547
4	1.493	80	86	256	9.4	9.33	407	2849	11,396
5	1.503	80	76	254	9.3	9.32	407	2849	14,245
6	1.497	79	94	262	9.3	9.32	407	2849	17,094 19,943
7	1.524	78	102	260	9.4	9.33	407	2849 2849	22,792
8	1.493	79	86	252	9.3	9.33 9.33	407 407	2849	25,641
9	1.509	78	90	260	9.4 9.4	9.34	407	2849	28,490
10	1.516	77	96	260 244	12.5	9.63	409	2863	31,353
11	1.360	95	90 94	254	11.5	9.78	409	2863	34,216
12	1.442	90 90	88	248	11.3	9.90	409	2863	37,079
13 14	1.498 1.179	107	22	168	11.1	9.99	409	2863	39,942
15	1.179	70	24	188	9.2	9.93	409	2863	42,805
16	1.556	94	104	270	9.1	9.88	409	2863	45,668
17	1.768	68	56	188	9.0	9.83	409	2863	48,531
18	1.611	95	78	268	9.0	9.78	409	2863	51,394
19	1.511	96	108	276	9.0	9.74	409	2863	54,257 57,120
20	1.629	94	88	262	9.4	9.73	409 411	2863 2877	59,997
21	1.670	93	82	264	9.2 9.4	9.70 9.69	411	2877	62,874
22	1.702	91	80 84	264 264	9.4	9.69	411	2877	65,751
23	1.687	91 92	92	266	9.3	9.68	411	2877	68,628
24 25	1.658 1.588	85	108	262	21.6	10.15	411	2877	71,505
26	1.628	86	108	260	9.3	10.12	411	2877	74,382
27	1.612	87	114	260	9.4	10.09	411	2877	77,259
28	1.650	88	112	262	9.4	10.07	411	2877	80,136
29	1.581	88	106	258	9.5	10.05	411	2877	83,013
30	1.743	71	54	186	9.1	10.02	411	2877	85,890
31	1.753	69	56	186	9.2	9.99	413	2891	88,781 91,672
32	1.474	90	114	262	9.3	9.97	413	2891 2891	94,563
33	1.611	89	116	256	9.2	9.95 10.21	413 413	2891	97,454
34	1.445	88	112	260 256	19.1 9.2	10.21	413	2891	100,345
35	1.456	87 81	116 114	260	9.2	10.16	413	2891	103,236
36 37	1.499 1.455	. 85	120	262	9.2	10.13	413	2891	106,127
38	1.480	83	122	264	8.9	10.10	413	2891	109,018
39	1.471	84	122	266	9.0	10.07	413	2891	111,909
40	1.471	69	46	206	9.1	10.05	413	2891 2891	114,800 117,691
41	1.451	84	110	284	9.9	10.04 10.02	413 413	2891	120,582
42	1.445	73	40	212 202	9.1 9.2	10.02	413	2891	123,473
43	1.618	70 78	68 44	210	9.0	9.98	415	2905	126,378
44 45	1.536 1.387	85	116	272	9.2	9.96	415	2905	129,283
46	2.183	45	28	194	124.3	12.45	415	2905	132,188
47	1.485	89	102	262	10.8	12.41	415	2905	135,093
48	1.462	89	108	264	9.4	12.35	415	2905	137,998
49	1.483	89	106	266	9.4	12.29	415	2905	140,903
50	1.470	87	110	264	9.4	12.23	415	2905	143,808
51	1.462	87	114	266	9.4	12.18	415	2905	146,713
52	1.408	96	108	268	16.8	12.27	415 415	2905 2905	149,618 152,523
53	1.422	95	114	264	9.2	12.21 12.15	415	2905	155,442
54	1.657	70	44	190	9.1 9.1	12.15	417	2919	158,361
55	1.521	69	52	194	9.1 9.1	12.09	417	2919	161,280
56	1.716	67	42 44	190 180	9.1	12.04	417	2919	164,199
57	1.355	91 89	38	168	9.7	11.96	417	2919	167,118
58	1.251	0a	30		D-1				•

A-4-1 B-40

50	1.262	97	104	250	24.1	12.17	417	2919	170.037
59									
60	1.345	82	28	162	9.8	12.13	417	2919	172,956
61	1.575	67	54	200	10.4	12.10	417	2919	175,875
								2919	178,794
62	1.594	82	108	270	13.4	12.12	417		
63	1.665	81	106	256	9.3	12.08	417	2919	181,713
					9.6	12.04	417	2919	184,632
64	1.614	86	106	262					
65	1.577	86	108	264	9.2	12.00	419	2933	187,565
					9.1	11.95	419	2933	190,498
66	1.590	86	108	262					
67	1.597	87	108	262	9.0	11.91	419	2933	193,431
						12.04	419	2933	196,364
68	1.581	91	108	268	21.2				
69	1.587	90	108	266	9.3	12.00	419	2933	199,297
				188	9.4	11.97	419	2933	202,230
70	1.681	65	52						
71	1.606	86	108	264	9.3	11.93	419	2933	205,163
72	1.548	88	106	268	9.4	11.89	419	2933	208,096
73	1.339	87	28	160	15.2	11.94	419	2933	211,029
74	1.431	79	72	262	10.6	11.92	419	2933	213,962
							419	2933	216,895
75	1.422	85	68	272	16.5	11.98			
76	1.522	71	28	168	9.3	11.95	419	2933	219,828
					9.4	11.91	419	2933	222,761
77	1.603	72	94	248					
78	1.446	74	26	184	23.5	12.06	419	2933	225,694
		99	84	266	13.8	12.08	419	2933	228,627
79	1.152								
80 -	1.176	100	102	282	9.1	12.05	419	2933	231,560
	1.464	91	114	278	10.0	12.02	419	2933	234,493
81									
82	1.455	92	122	276	9.6	11.99	419	2933	237,426
83	1.603	74	28	180	13.4	12.01	419	2933	240,359
							419	2933	243,292
84	1.476	78	108	268	9.3	11.98			
85	1.992	51	30	206	9.2	11.94	419	2933	246,225
								2933	249,158
86	1.717	56	58	202	15.1	11.98	419		
87	1.186	85	22	172	18.4	12.06	419	2933	252,091
					9.3	12.02	419	2933	255,024
88	1.519	78	114	264					
89	1.804	54	50	200	9.1	11.99	419	2933	257,957
					20.1	12.08	419	2933	260,890
90	1.345	72	38	228					
91	1.407	81	80	270	9.6	12.05	421	2947	263,837
			84	284	12.1	12.05	421	2947	266,784
92	1.401	88							
93	1.352	93	22	160	10.1	12.03	421	2947	269,731
	1.178	92	42	232	17.5	12.09	423	2961	272,692
94									
95	1.444	96	102	286	14.9	12.12	423	2961	275,653
96	1.399	87	74	266	9.3	12.09	423	2961	278,614
									281,589
97	1.439	69	48	288	9.4	12.06	425	2975	
98	1.446	70	50	286	9.4	12.04	425	2975	284,564
						12.07	425	2975	287,539
99	1.477	77	28	216	14.9				
100	1.381	87	26	170	9.1	12.04	427	2989	290,528
		106	62	286	11.4	12.03	427	2989	293,517
101	1.378								
102	1.460	99	66	264	9.4	12.00	427	2989	296,506
103	1.504	74	50	170	14.8	12.03	429	3003	299,509
						12.13	429	3003	302,512
104	1.514	77	56	172	21.8				
105	1.470	101	86	300	17.5	12.18	429	3003	305,515
106	1.476	91	60	274	21.9	12.27	433	3031	308,546
107	1.491	64	36	164	11.0	12.26	433	3031	311,577
108	1.504	64	32	170	9.1	12.23	433	3031	314,608
			32	162	9.7	12.20	435	3045	317,653
109	1.423	66							
110	1.504	68	40	168	9.0	12.17	435	3045	320,698
111	1.336	93	62	286	9.5	12.15	435	3045	323,743
							437	3059	326,802
112	1.407	75	60	184	9.1	12.12			
113	1.377	64	24	172	9.2	12.10	437	3059	329,861
					9.2	12.07	437	3059	332,920
114	1.456	86	68	262					
115	1.467	86	72	266	9.2	12.05	439	3073	335,993
	1.600	82	80	272	9.4	12.02	439	3073	339,066
116									
117	1.576	82	82	272	9.3	12.00	439	3073	342,139
	1.568	81	80	272	9.3	11.98	443	3101	345,240
118									
119	1.590	82	80	270	9.3	11.96	443	3101	348,341
120	1.612	82	80	268	9.2	11.93	443	3101	351,442
121	1.551	82	78	274	9.3	11.91	443	3101	354,543
122	1.608	82	78	272	12.1	11.91	443	3101	357,644
123	1.653	79	76	270	9.5	11.89	443	3101	360,745
124	1.667	79	74	268	9.2	11.87	443	3101	363,846
					9.3	11.85	443	3101	366,947
125	1.683	79	72	266					
126	1.650	80	62	272	9.3	11.83	443	3101	370,048
					D-2				

D-2⁹ A-4-2 B-41

126										
129										
130										
132										
132										
133										
134										
136										
136										
138										
138										
139										
140										
141										
142										
143										
144 1.840 78 46 172 9.0 11.59 443 3101 425.666 146 1.210 63 50 176 10.4 11.57 444 3108 428.974 147 1.466 74 48 186 9.8 11.56 444 3108 432.082 148 1.459 76 44 186 9.1 11.52 444 3108 435.190 149 1.375 79 28 162 9.1 11.52 444 3108 444.06 150 1.514 73 42 128 10.1 11.51 444 3108 444.962 151 1.195 92 28 180 10.4 11.51 444 3108 444.602 152 1.188 87 98 194 10.8 11.59 444 3108 446.202 153 1.390 76 34 184 9.1 11.57<										
146										
146	•									
148										
148 1.459 76 44 186 9.1 11.54 444 3108 438.298 150 1.514 73 42 128 10.1 11.51 444 3108 444.514 151 1.195 92 28 180 10.4 11.51 444 3108 444.514 152 1.188 87 98 194 10.8 11.55 444 3108 450.730 153 1.390 76 34 176 25.8 11.59 444 3108 453.838 154 1.487 64 36 180 9.8 11.58 444 3108 459.946 155 1.449 60 30 180 9.8 11.55 444 3108 463.162 155 1.449 60 30 180 9.1 11.57 444 3108 463.162 155 1.241 10 12.0 446 3122 48										
149										
150										
151 1.195 92 28 180 10.4 11.51 444 3108 447.622 152 1.188 87 98 194 10.8 11.50 444 3108 450.730 153 1.390 76 34 176 25.8 11.59 444 3108 450.730 154 1.487 64 36 180 9.1 11.57 444 3108 456.946 155 1.449 60 30 180 9.1 11.57 444 3108 460.954 156 1.366 67 34 184 9.1 11.55 444 3102 466.362 157 1.215 86 22 166 84 12.04 446 3122 469.406 159 1.171 98 104 254 9.1 12.03 446 3122 475.650 160 1.274 101 114 264 9.1 12.0										
152 1 188 87 98 194 10.8 11.50 444 3108 450,730 153 1 390 76 34 176 25.8 11.59 444 3108 450,838 155 1 449 60 30 180 9.1 11.55 444 3108 460,954 155 1 449 60 30 180 9.1 11.55 444 3108 460,964 157 1 215 86 22 166 88.4 12.04 446 3122 466,284 158 1 277 79 88 214 13.0 12.05 446 3122 472,528 160 1.793 57 56 194 8.7 12.01 446 3122 475,650 161 1.274 101 114 264 9.0 11.99 446 3122 481,872 162 1.806 66 52 188 8.8 11.										
153 1,390 76 34 176 25,8 11,59 444 3108 456,946 155 1,449 60 30 180 9,8 11,58 444 3108 456,946 156 1,356 67 34 184 9,1 11,57 444 3108 463,162 157 1,215 86 22 166 88,4 12,04 446 3122 469,406 158 1,277 79 88 214 13,0 12,05 446 3122 469,406 159 1,171 98 104 254 9,1 12,03 446 3122 472,526 160 1,793 57 56 194 8.7 12,01 446 3122 478,772 160 1,806 66 52 188 8.8 11,97 446 3122 487,650 161 1,274 101 114 264 9.0 11,										
154 1,487 64 36 180 9.8 11,58 444 3108 456,946 155 1,449 60 30 180 9.1 11,57 444 3108 460,054 157 1,215 86 22 166 88.4 12,04 446 3122 466,284 159 1,171 98 104 254 9.1 12,03 446 3122 475,650 160 1,793 57 56 194 8.7 12,01 446 3122 476,650 161 1,274 101 114 264 9.0 11,99 446 3122 478,772 162 1,806 66 52 188 8.8 11,97 446 3122 481,894 163 1,674 68 60 202 8.8 11,99 446 3122 481,894 165 1,766 61 72 208 9.3 11,99										
155 1.449 60 30 180 9.1 11.57 444 3108 460,054 156 1.356 67 34 184 9.1 11.55 444 3108 463,162 157 1.215 86 22 166 88.4 12.04 446 3122 466,284 158 1.277 79 88 214 13.0 12.05 446 3122 469,406 159 1.171 98 104 254 9.1 12.03 446 3122 475,650 160 1.793 57 56 194 8.7 12.01 446 3122 475,650 161 1.274 101 114 264 9.0 11.99 446 3122 481,016 162 1.806 66 52 188 8.8 11.97 446 3122 481,016 163 1.674 68 60 202 8.8 11.9										
156 1,356 67 34 184 9,1 11,55 444 3108 463,162 157 1,215 86 22 166 88,4 12,04 446 3122 466,284 159 1,171 98 104 254 9,1 12,03 446 3122 472,528 160 1,793 57 56 194 8,7 12,01 446 3122 478,772 161 1,274 101 114 264 9,0 11,99 446 3122 478,772 162 1,806 66 52 188 8,8 11,95 446 3122 481,894 163 1,674 68 60 202 8,8 11,95 446 3122 481,260 164 1,673 70 62 202 9,1 11,93 446 3122 481,260 165 1,766 61 72 208 9,3 11,92										
157 1,215 86 22 166 88.4 12,04 446 3122 466,284 158 1,277 79 88 214 13,0 12,05 446 3122 469,406 159 1,171 98 104 254 9,1 12,03 446 3122 475,565 160 1,793 57 56 194 8,7 12,01 446 3122 478,772 162 1,806 66 52 188 8,8 11,97 446 3122 481,894 163 1,674 68 60 202 8,8 11,95 446 3122 481,894 163 1,676 61 72 208 9,3 11,92 446 3122 481,894 165 1,766 61 72 208 9,3 11,92 446 3122 491,260 166 2,80 59 62 202 8,9 11,81 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
158 1.277 79 88 214 13.0 12.05 446 3122 469.406 159 1.171 98 104 254 9.1 12.03 446 3122 477.528 160 1.793 57 56 194 8.7 12.01 446 3122 478.772 161 1.274 101 114 264 9.0 11.99 446 3122 485.916 163 1.674 68 60 202 8.8 11.97 446 3122 485.016 164 1.673 70 62 202 9.1 11.93 446 3122 485.016 164 1.673 70 62 202 9.1 11.93 446 3122 491.260 166 2.080 59 62 202 8.9 11.83 446 3122 597.504 168 1.714 89 62 220 9.0 11.86										
159 1,171 98 104 254 9.1 12.03 446 3122 472,528 160 1,793 57 56 194 8,7 12.01 446 3122 475,650 161 1,274 101 114 264 9.0 11.99 446 3122 481,894 162 1,806 66 52 188 8,8 11.97 446 3122 481,894 163 1,674 68 60 202 8,8 11.95 446 3122 485,016 164 1,673 70 62 202 9.1 11.93 446 3122 481,260 166 2,080 59 62 202 8.9 11.90 446 3122 491,260 166 2,080 59 62 202 8.9 11.88 446 3122 590,760 167 1,744 89 62 220 9.0 11.88<										
160 1.793 57 56 194 8.7 12.01 446 3122 475,650 161 1.274 101 114 264 9.0 11.99 446 3122 478,772 162 1.806 66 52 188 8.8 11.95 446 3122 485,016 163 1.674 68 60 202 8.8 11.95 446 3122 485,016 164 1.673 70 62 202 9.1 11.93 446 3122 491,260 166 2.080 59 62 202 8.9 11.90 446 3122 494,382 167 1.740 84 66 222 8.9 11.88 446 3122 497,504 168 1.744 89 62 220 8.9 11.83 446 3122 503,748 170 1.667 66 86 194 9.2 11.83 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
161 1.274 101 114 264 9.0 11.99 446 3122 478,772 162 1.806 66 52 188 8.8 11.97 446 3122 481,894 163 1.674 68 60 202 9.1 11.93 446 3122 488,138 165 1.766 61 72 208 9.3 11.92 446 3122 491,260 166 2.080 59 62 202 8.9 11.90 446 3122 491,260 167 1.740 84 66 222 8.9 11.90 446 3122 500,626 169 1.878 82 72 216 8.8 11.84 446 3122 500,626 169 1.878 82 72 216 8.8 11.84 446 3122 500,626 170 1.667 66 86 194 9.2 11.83 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
162 1.806 66 52 188 8.8 11.97 446 3122 481,894 163 1.674 68 60 202 8.8 11.95 446 3122 485,016 164 1.673 70 62 202 9.1 11.93 446 3122 481,388 165 1.766 61 72 208 9.3 11.92 446 3122 491,260 166 2.080 59 62 202 8.9 11.90 446 3122 494,382 167 1.740 84 66 222 8.9 11.88 446 3122 500,626 169 1.878 82 72 216 8.8 11.84 446 3122 503,748 170 1.667 66 86 194 9.2 11.83 446 3122 503,748 170 1.667 62 86 194 9.2 11.83 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
163 1.674 68 60 202 8.8 11.95 446 3122 485,016 164 1.673 70 62 202 9.1 11.93 446 3122 488,138 165 1.766 61 72 208 9.3 11.90 446 3122 491,260 166 2.080 59 62 202 8.9 11.90 446 3122 494,382 167 1.740 84 66 222 8.9 11.88 446 3122 500,626 168 1.871 89 62 220 9.0 11.86 446 3122 500,626 169 1.878 82 72 216 8.8 11.84 446 3122 500,748 170 1.667 66 86 194 9.2 11.83 446 3122 509,992 171 1.583 81 78 266 9.3 11.81 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
164 1.673 70 62 202 9.1 11.93 446 3122 488,138 165 1.766 61 72 208 9.3 11.92 446 3122 491,260 166 2.080 59 62 202 8.9 11.88 446 3122 494,382 167 1.740 84 66 222 8.9 11.88 446 3122 497,504 168 1.714 89 62 220 9.0 11.86 446 3122 500,626 169 1.878 82 72 216 8.8 11.84 446 3122 503,748 170 1.667 66 86 194 9.2 11.83 446 3122 509,992 172 1.609 81 78 264 9.8 11.82 446 3122 519,358 173 1.641 82 72 266 9.3 11.81 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
165 1.766 61 72 208 9.3 11.92 446 3122 491,260 166 2.080 59 62 202 8.9 11.90 446 3122 494,382 167 1.740 84 66 222 8.9 11.86 446 3122 497,504 168 1.714 89 62 220 9.0 11.86 446 3122 500,626 169 1.878 82 72 216 8.8 11.84 446 3122 503,748 170 1.667 66 86 194 9.2 11.83 446 3122 509,992 171 1.583 81 78 264 9.8 11.82 446 3122 510,878 171 1.583 81 78 264 9.8 11.82 446 3122 519,358 172 1.609 81 78 266 9.3 11.81 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
166 2.080 59 62 202 8.9 11.90 446 3122 494,382 167 1.740 84 66 222 8.9 11.88 446 3122 497,504 168 1.714 89 62 220 9.0 11.86 446 3122 500,626 169 1.878 82 72 216 8.8 11.84 446 3122 500,626 170 1.667 66 86 194 9.2 11.83 446 3122 506,870 171 1.583 81 78 264 9.8 11.82 446 3122 519,958 172 1.609 81 78 264 9.8 11.82 446 3122 516,236 174 1.433 82 84 270 9.3 11.79 446 3122 519,358 175 1.622 82 78 268 9.6 11.78 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
167 1.740 84 66 222 8.9 11.88 446 3122 497.504 168 1.714 89 62 220 9.0 11.86 446 3122 500,626 169 1.878 82 72 216 8.8 11.84 446 3122 503,748 170 1.667 66 86 194 9.2 11.83 446 3122 506,870 171 1.583 81 78 268 12.6 11.83 446 3122 509,992 172 1.609 81 78 264 9.8 11.82 446 3122 513,114 173 1.641 82 72 266 9.3 11.81 446 3122 519,358 174 1.433 82 84 270 9.3 11.79 446 3122 519,358 175 1.622 82 78 268 9.6 11.78 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
168 1.714 89 62 220 9.0 11.86 446 3122 500,626 169 1.878 82 72 216 8.8 11.84 446 3122 503,748 170 1.667 66 86 194 9.2 11.83 446 3122 509,992 171 1.583 81 78 268 12.6 11.83 446 3122 509,992 172 1.609 81 78 264 9.8 11.82 446 3122 513,114 173 1.641 82 72 266 9.3 11.81 446 3122 516,236 174 1.433 82 84 270 9.3 11.79 446 3122 519,358 175 1.622 82 78 268 9.6 11.78 446 3122 525,602 177 1.637 80 74 268 9.3 11.75 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
169 1.878 82 72 216 8.8 11.84 446 3122 503,748 170 1.667 66 86 194 9.2 11.83 446 3122 506,870 171 1.583 81 78 268 12.6 11.83 446 3122 509,992 172 1.609 81 78 264 9.8 11.82 446 3122 513,114 173 1.641 82 72 266 9.3 11.81 446 3122 516,236 174 1.433 82 84 270 9.3 11.79 446 3122 519,358 175 1.622 82 78 268 9.6 11.78 446 3122 522,480 176 1.629 81 72 272 9.4 11.77 446 3122 522,602 177 1.637 80 74 268 9.3 11.75 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
171 1.583 81 78 268 12.6 11.83 446 3122 509,992 172 1.609 81 78 264 9.8 11.82 446 3122 513,114 173 1.641 82 72 266 9.3 11.81 446 3122 516,236 174 1.433 82 84 270 9.3 11.79 446 3122 516,236 175 1.622 82 78 268 9.6 11.78 446 3122 525,602 176 1.629 81 72 272 9.4 11.77 446 3122 525,602 177 1.637 80 74 268 9.3 11.75 448 3136 528,738 178 1.623 81 80 272 9.4 11.74 448 3136 535,010 179 1.643 80 80 268 9.3 11.73 <td>169</td> <td>1.878</td> <td>82</td> <td>72</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	169	1.878	82	72						
171 1.583 81 78 268 12.6 11.83 446 3122 509,992 172 1.609 81 78 264 9.8 11.82 446 3122 513,114 173 1.641 82 72 266 9.3 11.81 446 3122 516,236 174 1.433 82 84 270 9.3 11.79 446 3122 516,236 175 1.622 82 78 268 9.6 11.78 446 3122 522,480 176 1.629 81 72 272 9.4 11.77 446 3122 525,602 177 1.637 80 74 268 9.3 11.75 448 3136 528,738 178 1.623 81 80 272 9.4 11.74 448 3136 531,010 179 1.643 80 80 268 9.3 11.71 <td>170</td> <td>1.667</td> <td>66</td> <td>86</td> <td>194</td> <td>9.2</td> <td>11.83</td> <td>446</td> <td>3122</td> <td>506,870</td>	170	1.667	66	86	194	9.2	11.83	446	3122	506,870
172 1.609 81 78 264 9.8 11.82 446 3122 513,114 173 1.641 82 72 266 9.3 11.81 446 3122 516,236 174 1.433 82 84 270 9.3 11.79 446 3122 519,358 175 1.622 82 78 268 9.6 11.78 446 3122 522,480 176 1.629 81 72 272 9.4 11.77 446 3122 525,602 177 1.637 80 74 268 9.3 11.75 448 3136 528,738 178 1.623 81 80 272 9.4 11.74 448 3136 531,874 179 1.643 80 80 268 9.3 11.73 448 3136 535,010 180 1.646 80 78 266 9.3 11.71 <td>171</td> <td>1.583</td> <td>81</td> <td>78</td> <td>268</td> <td></td> <td></td> <td>446</td> <td></td> <td></td>	171	1.583	81	78	268			446		
174 1.433 82 84 270 9.3 11.79 446 3122 519,358 175 1.622 82 78 268 9.6 11.78 446 3122 522,480 176 1.629 81 72 272 9.4 11.77 446 3122 525,602 177 1.637 80 74 268 9.3 11.75 448 3136 528,738 178 1.623 81 80 272 9.4 11.74 448 3136 538,788 179 1.643 80 80 268 9.3 11.73 448 3136 531,874 179 1.646 80 78 266 9.3 11.73 448 3136 535,010 180 1.646 80 78 266 9.3 11.71 448 3136 534,184 181 1.506 102 72 272 9.8 11.70 <td>172</td> <td>1.609</td> <td>81</td> <td>78</td> <td>264</td> <td>9.8</td> <td>11.82</td> <td>446</td> <td></td> <td></td>	172	1.609	81	78	264	9.8	11.82	446		
175 1.622 82 78 268 9.6 11.78 446 3122 522,480 176 1.629 81 72 272 9.4 11.77 446 3122 525,602 177 1.637 80 74 268 9.3 11.75 448 3136 528,738 178 1.623 81 80 272 9.4 11.74 448 3136 531,874 179 1.643 80 80 268 9.3 11.73 448 3136 535,010 180 1.646 80 78 266 9.3 11.71 448 3136 538,146 181 1.506 102 72 272 9.8 11.70 448 3136 541,282 182 1.631 72 22 170 9.7 11.69 448 3136 544,418 183 1.471 104 78 278 9.7 11.68 </td <td></td> <td></td> <td></td> <td>72</td> <td>266</td> <td></td> <td>11.81</td> <td>446</td> <td>3122</td> <td>516,236</td>				72	266		11.81	446	3122	516,236
176 1.629 81 72 272 9.4 11.77 446 3122 525,602 177 1.637 80 74 268 9.3 11.75 448 3136 528,738 178 1.623 81 80 272 9.4 11.74 448 3136 531,874 179 1.643 80 80 268 9.3 11.73 448 3136 535,010 180 1.646 80 78 266 9.3 11.71 448 3136 538,146 181 1.506 102 72 272 9.8 11.70 448 3136 541,282 182 1.631 72 22 170 9.7 11.69 448 3136 541,282 183 1.471 104 78 278 9.7 11.68 448 3136 547,554 184 1.522 67 22 172 9.3 11.67 448 3136 550,690 185 1.486 105 74 272 9.6 11.66 448 3136 553,826 186 1.510 102 74 272 13.0 11		.1.433			270		11.79	446	3122	519,358
177 1.637 80 74 268 9.3 11.75 448 3136 528,738 178 1.623 81 80 272 9.4 11.74 448 3136 531,874 179 1.643 80 80 268 9.3 11.73 448 3136 535,010 180 1.646 80 78 266 9.3 11.71 448 3136 538,146 181 1.506 102 72 272 9.8 11.70 448 3136 541,282 182 1.631 72 22 170 9.7 11.69 448 3136 544,418 183 1.471 104 78 278 9.7 11.68 448 3136 547,554 184 1.522 67 22 172 9.3 11.67 448 3136 550,690 185 1.486 105 74 272 9.3 11.67<										
178 1.623 81 80 272 9.4 11.74 448 3136 531,874 179 1.643 80 80 268 9.3 11.73 448 3136 535,010 180 1.646 80 78 266 9.3 11.71 448 3136 538,146 181 1.506 102 72 272 9.8 11.70 448 3136 541,282 182 1.631 72 22 170 9.7 11.69 448 3136 544,418 183 1.471 104 78 278 9.7 11.68 448 3136 547,554 184 1.522 67 22 172 9.3 11.67 448 3136 550,690 185 1.486 105 74 272 9.6 11.66 448 3136 553,826 186 1.510 102 74 272 13.0 11.6										
179 1.643 80 80 268 9.3 11.73 448 3136 535,010 180 1.646 80 78 266 9.3 11.71 448 3136 538,146 181 1.506 102 72 272 9.8 11.70 448 3136 541,282 182 1.631 72 22 170 9.7 11.69 448 3136 544,418 183 1.471 104 78 278 9.7 11.68 448 3136 547,554 184 1.522 67 22 172 9.3 11.67 448 3136 550,690 185 1.486 105 74 272 9.6 11.66 448 3136 553,826 186 1.510 102 74 272 13.0 11.66 448 3136 556,962 187 1.482 107 72 276 10.2 11.66 450 3150 560,112 188 1.748 71 56 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
180 1.646 80 78 266 9.3 11.71 448 3136 538,146 181 1.506 102 72 272 9.8 11.70 448 3136 541,282 182 1.631 72 22 170 9.7 11.69 448 3136 544,418 183 1.471 104 78 278 9.7 11.68 448 3136 547,554 184 1.522 67 22 172 9.3 11.67 448 3136 550,690 185 1.486 105 74 272 9.6 11.66 448 3136 553,826 186 1.510 102 74 272 13.0 11.66 448 3136 556,962 187 1.482 107 72 276 10.2 11.66 450 3150 560,112 188 1.748 71 56 170 9.1 11.64 450 3150 566,412 190 1.438 109 78 284 9.6 11.62 450 3150 572,712 192 1.492 104 72 268 10.2 <										
181 1.506 102 72 272 9.8 11.70 448 3136 541,282 182 1.631 72 22 170 9.7 11.69 448 3136 544,418 183 1.471 104 78 278 9.7 11.68 448 3136 547,554 184 1.522 67 22 172 9.3 11.67 448 3136 550,690 185 1.486 105 74 272 9.6 11.66 448 3136 553,826 186 1.510 102 74 272 13.0 11.66 448 3136 556,962 187 1.482 107 72 276 10.2 11.66 448 3136 556,962 188 1.748 71 56 170 9.1 11.64 450 3150 563,262 189 1.506 76 24 170 9.7 11.63 450 3150 566,412 190 1.438 109 78 284 9.6 11.62 450 3150 572,712 192 1.492 104 72 268 10.2 <										
182 1.631 72 22 170 9.7 11.69 448 3136 544,418 183 1.471 104 78 278 9.7 11.68 448 3136 547,554 184 1.522 67 22 172 9.3 11.67 448 3136 550,690 185 1.486 105 74 272 9.6 11.66 448 3136 553,826 186 1.510 102 74 272 13.0 11.66 448 3136 556,962 187 1.482 107 72 276 10.2 11.66 450 3150 560,112 188 1.748 71 56 170 9.1 11.64 450 3150 563,262 189 1.506 76 24 170 9.7 11.63 450 3150 566,412 190 1.438 109 78 284 9.6 11.62 450 3150 572,712 192 1.492 104 72 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
183 1.471 104 78 278 9.7 11.68 448 3136 547,554 184 1.522 67 22 172 9.3 11.67 448 3136 550,690 185 1.486 105 74 272 9.6 11.66 448 3136 553,826 186 1.510 102 74 272 13.0 11.66 448 3136 556,962 187 1.482 107 72 276 10.2 11.66 450 3150 560,112 188 1.748 71 56 170 9.1 11.64 450 3150 563,262 189 1.506 76 24 170 9.7 11.63 450 3150 566,412 190 1.438 109 78 284 9.6 11.62 450 3150 569,562 191 1.572 76 22 172 9.7 11										
184 1.522 67 22 172 9.3 11.67 448 3136 550,690 185 1.486 105 74 272 9.6 11.66 448 3136 553,826 186 1.510 102 74 272 13.0 11.66 448 3136 556,962 187 1.482 107 72 276 10.2 11.66 450 3150 560,112 188 1.748 71 56 170 9.1 11.64 450 3150 563,262 189 1.506 76 24 170 9.7 11.63 450 3150 566,412 190 1.438 109 78 284 9.6 11.62 450 3150 569,562 191 1.572 76 22 172 9.7 11.61 450 3150 572,712 192 1.492 104 72 268 10.2 1										
185 1.486 105 74 272 9.6 11.66 448 3136 553,826 186 1.510 102 74 272 13.0 11.66 448 3136 556,962 187 1.482 107 72 276 10.2 11.66 450 3150 560,112 188 1.748 71 56 170 9.1 11.64 450 3150 563,262 189 1.506 76 24 170 9.7 11.63 450 3150 566,412 190 1.438 109 78 284 9.6 11.62 450 3150 569,562 191 1.572 76 22 172 9.7 11.61 450 3150 572,712 192 1.492 104 72 268 10.2 11.60 450 3150 575,862 193 1.789 68 26 168 9.4 11.59 450 3150 579,012 194 1.459 109 76 276 9.6 11.58 450 3150 579,012										
186 1.510 102 74 272 13.0 11.66 448 3136 556,962 187 1.482 107 72 276 10.2 11.66 450 3150 560,112 188 1.748 71 56 170 9.1 11.64 450 3150 563,262 189 1.506 76 24 170 9.7 11.63 450 3150 566,412 190 1.438 109 78 284 9.6 11.62 450 3150 569,562 191 1.572 76 22 172 9.7 11.61 450 3150 572,712 192 1.492 104 72 268 10.2 11.60 450 3150 575,862 193 1.789 68 26 168 9.4 11.59 450 3150 579,012 194 1.459 109 76 276 9.6 1										
187 1.482 107 72 276 10.2 11.66 450 3150 560,112 188 1.748 71 56 170 9.1 11.64 450 3150 563,262 189 1.506 76 24 170 9.7 11.63 450 3150 566,412 190 1.438 109 78 284 9.6 11.62 450 3150 569,562 191 1.572 76 22 172 9.7 11.61 450 3150 572,712 192 1.492 104 72 268 10.2 11.60 450 3150 575,862 193 1.789 68 26 168 9.4 11.59 450 3150 579,012 194 1.459 109 76 276 9.6 11.58 450 3150 582,162										
188 1.748 71 56 170 9.1 11.64 450 3150 563,262 189 1.506 76 24 170 9.7 11.63 450 3150 566,412 190 1.438 109 78 284 9.6 11.62 450 3150 569,562 191 1.572 76 22 172 9.7 11.61 450 3150 572,712 192 1.492 104 72 268 10.2 11.60 450 3150 575,862 193 1.789 68 26 168 9.4 11.59 450 3150 579,012 194 1.459 109 76 276 9.6 11.58 450 3150 582,162										
189 1.506 76 24 170 9.7 11.63 450 3150 566,412 190 1.438 109 78 284 9.6 11.62 450 3150 569,562 191 1.572 76 22 172 9.7 11.61 450 3150 572,712 192 1.492 104 72 268 10.2 11.60 450 3150 575,862 193 1.789 68 26 168 9.4 11.59 450 3150 579,012 194 1.459 109 76 276 9.6 11.58 450 3150 582,162										
190 1.438 109 78 284 9.6 11.62 450 3150 569,562 191 1.572 76 22 172 9.7 11.61 450 3150 572,712 192 1.492 104 72 268 10.2 11.60 450 3150 575,862 193 1.789 68 26 168 9.4 11.59 450 3150 579,012 194 1.459 109 76 276 9.6 11.58 450 3150 582,162										•
191 1.572 76 22 172 9.7 11.61 450 3150 572,712 192 1.492 104 72 268 10.2 11.60 450 3150 575,862 193 1.789 68 26 168 9.4 11.59 450 3150 579,012 194 1.459 109 76 276 9.6 11.58 450 3150 582,162										
192 1.492 104 72 268 10.2 11.60 450 3150 575,862 193 1.789 68 26 168 9.4 11.59 450 3150 579,012 194 1.459 109 76 276 9.6 11.58 450 3150 582,162										
193 1.789 68 26 168 9.4 11.59 450 3150 579,012 194 1.459 109 76 276 9.6 11.58 450 3150 582.162										
194 1459 109 76 276 96 1158 450 3150 582 162										
					276	9.6				

D-3^{9.6} A-4-3 B-42

			·						
195	1.469	105	74	272	9.6	11.57	450	3150	585,312
196	1.605	72	54	268	56.0	11.80	450	3150	588,462
197	1.348	106	80	268	11.0	11.79	450	3150	591,612
198	1.362	105	84	264	12.7	11.80	450	3150	594,762
			78			11.81	450	3150	597,912
199	1.317	104		256	14.8				
200	1.290	105	76	260	20.2	11.86	450	3150	601,062
201	1.282	106	78	256	14.1	11.87	450	3150	604,212
202 -	1.523	75	22	170	13.3	11.87	450	3150	607,362
203	1.255	108	86	270	13.0	11.88	450	3150	610,512
204	1.252	106	86	270	15.7	11.90	450	3150	613,662
205	1.219	99	74	228	15.0	11.91	453	3171	616,833
206	1.527	79	26	182	17.5	11.94	453	3171	620,004
							453	3171	623,175
207	1.277	108	90	266	9.5	11.93			
208	1.261	102	82	260	10.9	11.92	453	3171	626,346
209	1.244	104	86	264	9.5	11.91	453	3171	629,517
210	1.239	108	52	160	51.0	12.10	453	3171	632,688
211	1.619	75	92	266	7.5	12.08	453	3171	635,859
212	1.572	76	94	266	7.6	12.06	453	3171	639,030
213	1.455	105	72	278	10.2	12.05	453	3171	642,201
214	1.483	103	72	282	7.8	12.03	453	3171	645,372
	1.566	85	90	266	7.6	12.01	453	3171	648,543
215				268	7.5	11.99	453	3171	651,714
216	1.453	94	100						
217	1.626	64	46	238	15.7	12.00	453	3171	654,885
218	1.581	82	76	268	9.7	11.99	453	3171	658,056
219	1.556	81	78	270	7.5	11.97	453	3171	661,227
220	1.607	76	56	172	9.5	11.96	455	3185	664,412
221	1.409	74	36	176	10.5	11.95	455	3185	667,597
222	1.450	68	32	194	16.5	11.97	455	3185	670,782
223	1.565	82	108	256	23.2	12.02	455	3185	673,967
224	1.593	64	38	186	9.4	12.01	455	3185	677,152
225	1.332	65	62	182	9.3	12.00	455	3185	680,337
			24			12.00	455	3185	683,522
226	1.462	72		190	11.5				
227	1.555	71	36	176	9.3	11.99	455	3185	686,707
228	1.606	69	46	186	9.3	11.98	455	3185	689,892
229	1.427	80	44	188	9.2	11.96	455	3185	693,077
230	1.578	70	42	184	9.3	11.95	455	3185	696,262
231	1.476	85	26	172	9.3	11.94	455	3185	699,447
232	1.536	83	92	268	7.5	11.92	455	3185	702,632
233	1.524	80	92	264	7.5	11.90	455	3185	705,817
234	1.469	86	102	278	7.6	11.88	455	3185	709,002
235	1.435	86	92	264	7.4	11.86	455	3185	712,187
									715,372
236	1.439	85	96	276	7.4	11.85	455	3185	
237	1.237	105	98	264	7.3	11.83	455	3185	718,557
238	1.548	83	26	184	7.5	11.81	455	3185	721,742
239	1.321	99	98	264	7.4	11.79	455	3185	724,927
240	1.357	103	94	262	7.4	11.77	455	3185	728,112
241	1.580	77	96	276	7.7	11.75	455	3185	731,297
242	1.553	75	98	272	7.5	11.74	455	3185	734,482
243	1.545	74	94	266	7.6	11.72	455	3185	737,667
244	1.532	74	96	266	7.6	11.70	455	3185	740,852
245	1.554	75	92	266	7.5	11.69	455	3185	744,037
246	1.568	77	104	276	7.7	11.67	455	3185	747,222
247	1.565	77	108	276	8.4	11.66	455	3185	750,407
		77	108	276	7.8	11.64	455	3185	753,592
248	1.569								
249	1.569	79	104	278	7.9	11.63	455	3185	756,777
250	1.499	76	94	280	7.8	11.61	455	3185	759,962
251	1.620	81	72	264	7.6	11.59	455	3185	763,147
252	1.605	82	70	264	7.6	11.58	455	3185	766,332
253	1.593	82	72	266	7.6	11.56	455	3185	769,517
254	1.608	81	72	264	7.5	11.55	455	3185	772,702
255	1.577	82	64	264	7.5	11.53	455	3185	775,887
256	1.609	81	62	276	7.6	11.52	455	3185	779,072
257	1.617	81	58	268	7.5	11.50	455	3185	782,257
		81	58	268	7.5 7.5	11.48	455	3185	785,442
258	1.626								
259	1.588	81	56	268	7.5	11.47	455	3185	788,627
260	1.575	82	56	276	7.5	11.45	455	3185	791,812
261	1.423	57	44	162	24.8	11.50	455	3185	794,997
262	1.441	92	100	264	$D-4^{7.8}$	11.49	455	3185	798,182
					D -4				

D-4 A-4-4 B-43

263	1.575	89	94	260	7.7	11.48	455	3185	801,367
264	1.535	89	94	256	7.5	11.46	455	3185	804,552
	1.361	66	28	190	7.4	11.45	455	3185	807,737
265			80	252	11.7	11.45	455	3185	810,922
266	1.471	93			7.7	11.43	455	3185	814,107
267	1.408	96	88	262			455	3185	817,292
268	1.417	90	88	252	7.5	11.42		3185	820,477
269	1.579	90	94	260	8.4	11.41	455		
270	1.538	91	86	264	7.7	11.39	455	3185	823,662
271	1.380	98	82	262	· 7.7	11.38	455	3185	826,847
272	1.344	94	80	262	7.7	11.37	455	3185	830,032
273	1.364	96	78	262	8.9	11.36	455	3185	833,217
274	1.532	70	26	182	7.6	11.34	455	3185	836,402
275	1.322	109	74	266	7.8	11.33	455	3185	839,587
276	1.267	111	76	268	7.7	11.32	455	3185	842,772
	1.332	105	80	262	9.1	11.31	455	3185	845,957
277			80	276	7.8	11.30	455	3185	849,142
278	1.292	111			7.7	11.28	455	3185	852,327
279	1.264	110	72	266		11.28	455	3185	855,512
280	1.774	52	46	170	8.8			3185	858,697
281	1.919	46	44	188	8.3	11.26	455		861,882
282	1.543	76	22	170	9.8	11.26	455	3185	
283	1.655	73	124	280	8.1	11.25	455	3185	865,067
284	1.579	78	42	182	9.2	11.24	455	3185	868,252
285	1.318	77	34	254	9.1	11.23	455	3185	871,437
	1.224	92	48	272	11.5	11.23	455	3185	874,622
286		87	42	200	9.0	11.23	455	3185	877,807
287	1.439				10.4	11.22	455	3185	880,992
288	1.180	106	68	210		11.22	455	3185	884,177
289	1.183	105	62	190	10.4			3185	887,362
290	1.204	101	60	186	9.6	11.22	455		
291	1.528	76	28	150	9.6	11.21	455	3185	890,547
292	1.696	70	34	148	9.6	11.20	455	3185	893,732
293	1.865	77	48	172	9.1	11.20	455	3185	896,917
294	1.869	76	38	172	9.0	11.19	455	3185	900,102
295	2.094	62	54	176	9.7	11.18	455	3185	903,287
296	2.149	62	44	178	9.7	11.18	455	3185	906,472
297	1.421	76	42	186	9.0	11.17	455	3185	909,657
298	1.491	75	38	184	9.0	11.16	455	3185	912,842
	1.817	77	50	178	9.2	11.16	472	3304	916,146
299		75	48	176	9.2	11.15	472	3304	919,450
300	1.942	88	34	216	11.1	11.15	472	3304	922,754
301	1.160				8.9	11.14	472	3304	926,058
302	1.456	63	36	178			472	3304	929,362
303	1.235	68	34	170	9.7	11.14	472	3304	932,666
304	1.276	85	102	268	18.2	11.16		3304	935,970
305	1.216	90	76	162	13.3	11.17	472		939,274
306	1.273	87	86	288	12.8	11.17	472	3304	
307	1.338	79	74	198	9.1	11.17	472	3304	942,578
308	1.826	61	54	188	9.1	11.16	472	3304	945,882
309	1.764	64	48	188	9.6	11.16	472	3304	949,186
310	1.840	60	54	190	9.0	11.15	472	3304	
311	1.632	66	50	182	11.3	11.15	472	3304	955,794
312	1.845	61	52	192	8.8	11.14	472	3304	959,098
313	1.824	61	54	188	8.8	11.13	472	3304	962,402
314	1.824	61	58	192	8.8	11.13	472	3304	965,706
315	1.737	58	26	144	9.0	11.12	472	3304	969,010
316	1.160	77	52	156	10.6	11.12	472	3304	972,314
	1.538	74	42	182	9.7	11.11	472	3304	975,618
317		76	42	182	9.1	11.11	472	3304	978,922
318	1.538		80	246	9.4	11.10	472	3304	982,226
319	1.310	96		244	9.2	11.10	472	3304	985,530
320	1.318	96	80				472	3304	988,834
321	1.318	96	80	244	9.2	11.09		3304	992,138
322	1.228	112	76	234	9.5	11.09	472		
323	1.218	113	76	236	9.3	11.08	472	3304	995,442
324	1.423	69	36	230	9.3	11.08	472	3304	998,746
325	1.607	82	68	272	9.4	11.07	472	3304	1,002,050
326	1.599	82	70	276	9.4	11.06	472	3304	1,005,354
327	1.593	58	26	168	9.9	11.06	472	3304	1,008,658
328	1.620	83	66	272	9.3	11.06	472	3304	1,011,962
329	1.613	89	72	280	10.0	11.05	472	3304	1,015,266
		90	66	278	96	11.05	472	3304	1,018,570
330	1.602	90	00	210	D-5 9.6	, 1.00			.,,

D-5 * A-4-5 B-44

	•						470	2204	4 004 074
331	1.612	88	62	278	9.6	11.04	472	3304	1,021,874
332	1.610	90	62	284	9.6	11.04	472	3304	1,025,178
333	1,615	89	60	282	9.6	11.04	472	3304	1,028,482
				282	9.5	11.03	472	3304	1,031,786
334	1.422	77	86					3304	1,035,090
335	1.746	51	26	188	9.4	11.03	472		
336	1.396	78	88	276	9.8	11.02	472	3304	1,038,394
337	1.419	75	86	278	9.2	11.02	472	3304	1,041,698
		78	86	276	9.1	11.01	472	3304	1,045,002
338	1.416						472	3304	1,048,306
339	1.307	79	50	188	23.0	11.05			
340	1.667	58	26	172	12.1	11.05	472	3304	1,051,610
341	1.495	82	88	266	9.1	11.04	472	3304	1,054,914
			24	182	9.1	11.04	472	3304	1,058,218
342	1.712	58						3304	1,061,522
343	1.469	83	80	264	8.9	11.03	472		
344	1.281	86	108	216	9.8	11.03	472	3304	1,064,826
345	1.349	97	122	276	9.0	11.02	472	3304	1,068,130
			88	252	10.3	11.02	472	3304	1,071,434
346	1.240	95						3304	1,074,738
347	1.406	86	44	198	9.1	11.01	472		
348	1.150	96	86	266	9.7	11.01	472	3304	1,078,042
349	1.256	83	34	192	9.2	11.01	472	3304	1,081,346
	1.214	102	90	206	8.7	11.00	472	3304	1,084,650
350						11.00	472	3304	1,087,954
351	1.282	86	72	226	10.2			3304	1,091,258
352	1.709	71	32	148	8.9	10.99	472		
353	1.874	76	52	172	9.0	10.99	472	3304	1,094,562
354	1.994	63	42	176	10.3	10.98	472	3304	1,097,866
		61	40	176	9.0	10.98	472	3304	1,101,170
355	2.138				9.1	10.97	472	3304	1,104,474
356	1.539	74	44	174				3304	1,107,778
357	1.546	72	38	176	9.0	10.97	472		
358	1.902	75	52	176	9.1	10.96	472	3304	1,111,082
359	1.185	92	66	200	10.8	10.96	472	3304	1,114,386
	1.468	62	34	154	8.9	10.96	472	3304	1,117,690
360					17.6	10.97	472	3304	1,120,994
361	1.178	87	26	186					
362	1.294	92	108	270	8.9	10.97	472	3304	1,124,298
363	1.323	80	72	198	8.9	10.96	472	3304	1,127,602
364	1.808	59	54	186	8.7	10.96	472	3304	1,130,906
365	1.360	83	70	218	9.0	10.95	472	3304	1,134,210
						10.95	472	3304	1,137,514
366	1.159	88	28	214	10.1				
367	1.554	76	46	182	9.1	10.94	472	3304	1,140,818
368	1.977	61	80	192	9.9	10.94	472	3304	1,144,122
369	2.092	67	74	190	9.2	10.94	472	3304	1,147,426
		69	80	192	9.2	10.93	472	3304	1,150,730
370	2.027					10.93	472	3304	1,154,034
371	1.768	68	42	196	9.1				
372	1.631	76	66	192	9.2	10.92	472	3304	1,157,338
373	1.665	71	62	194	9.2	10.92	472	3304	1,160,642
374	1.767	58	76	196	9.8	10.91	474	3318	1,163,960
		63	80	194	9.1	10.91	474		1,167,278
375	1.783						474	3318	1,170,596
376	1.931	62	82	192	9.3	10.91			
377	1.871	64	78	192	9.2	10.90	474	3318	1,173,914
378	2.082	52	34	180	9.1	10.90	474	3318	1,177,232
379	2.077	59	46	182	9.1	10.89	474	3318	1,180,550
				182	9.0	10.89	474	3318	1,183,868
380	2.012	60	48				474	3318	1,187,186
381	2.098	59	46	184	8.9	10.88			
382	1.833	, 70	90	194	8.8	10.88	474	3318	1,190,504
383	1.454	88	60	182	9.0	10.87	474	3318	1,193,822
384	1.818	70	94	198	8.8	10.87	476	3332	1,197,154
		74	52	206	9.1	10.86	476	3332	1,200,486
385	1.844							3332	1,203,818
386	1.884	74	72	194	10.4	10.86	476		
387	1.797	74	72	198	9.1	10.85	476	3332	1,207,150
388	1.811	78	80	192	9.0	10.85	476	3332	1,210,482
	1.830	79	82	192	9.1	10.85	476	3332	1,213,814
389						10.84	476	3332	1,217,146
390	2.216	61	46	198	9.2				
391	2.225	61	42	196	9.2	10.84	476	3332	1,220,478
392	2.596	57	38	192	9.1	10.83	476	3332	1,223,810
393	1.332	106	62	284	15.1	10.84	476	3332	1,227,142
		93	88	276	16.8	10.86	476	3332	1,230,474
394	1.351								
395	1.451	74	36	280	9.4	10.85	476	3332	1,233,806
396	1.394	92	86	266	9.4	10.85	476	3332	1,237,138
397	1.445	87	80	270	9.3	10.85	476	3332	1,240,470
398	1.422	72	40	284	9.4	10.84	476	3332	1,243,802
330	1.724				D-6				

D-6 A-4-6 B-45

399 1.576 64 24 176 9.4 10.84 476 3332 1.247,134 400 1.654 64 26 178 9.3 10.84 476 3332 1.255,768 401 1.419 90 90 90 276 9.3 10.83 476 3332 1.255,768 402 1.386 89 82 272 9.3 10.83 476 3332 1.255,768 403 1.389 93 90 272 9.2 10.62 476 3332 1.255,768 404 1.577 88 92 276 9.6 10.62 476 3332 1.255,768 405 1.564 89 96 276 9.4 10.82 482 3374 1.265,261 406 1.641 70 28 178 10.9 10.82 482 3374 1.267,210 407 1.441 94 76 276 10.2 10.82 482 3374 1.275,958 408 1.419 94 80 284 10.5 10.82 482 3374 1.275,958 409 1.568 86 104 288 7.4 10.81 482 3374 1.275,958 409 1.568 86 104 288 7.4 10.81 10.82 482 3374 1.275,958 4110 1.568 86 104 288 7.4 10.81 482 3374 1.280,706 4111 1.312 98 66 278 12.3 10.81 482 3374 1.280,706 4111 1.312 98 66 278 12.3 10.81 482 3374 1.280,706 413 1.322 96 64 270 10.2 10.81 482 3374 1.280,706 414 13.32 96 64 270 10.2 10.81 482 3374 1.280,406 415 1.318 96 64 270 10.2 10.81 482 3374 1.280,202 415 1.318 96 64 270 10.2 10.81 482 3374 1.280,202 416 1.318 96 64 270 10.2 10.81 482 3374 1.280,202 417 1.348 96 50 228 10.5 10.80 484 3388 1.30,978 418 1.318 96 64 270 10.2 10.81 482 3374 1.280,906 419 1.348 96 50 226 10.3 10.80 484 3388 1.30,978 419 1.357 95 64 272 10.4 10.80 484 3388 1.30,978 419 1.319 97 62 272 9.1 10.4 10.80 484 3388 1.30,978 420 1.349 97 62 272 9.1 10.4 10.80 484 3388 1.31,734 422 1.314 99 62 282 7.7 10.7 8 486 3402 1.33,198 422 1.314 99 62 282 7.7 10.7 8 486 3402 1.33,198 424 1.439 95 86 22 27 9.7 10.7 486 3402 1.33,198 425 1.397 93 86 272 19.1 10.4 10.80 484 3388 1.31,191 426 1.319 97 62 272 9.1 10.4 10.80 484 3388 1.31,191 427 1.412 99 86 64 270 9.8 10.7 486 3402 1.33,198 428 1.405 95 86 22 27 9.7 10.7 486 3402 1.33,198 429 1.397 93 86 22 27 9.7 10.7 486 3402 1.33,198 426 1.422 93 80 264 9.7 10.7 486 3402 1.33,198 427 1.412 95 86 64 270 9.8 10.7 486 3402 1.33,199 428 1.425 9.3 86 22 28 11.6 10.7 489 342 1.36,63,43 429 1.599 94 76 272 9.7 10.7 486 3402 1.33,199 428 1.426 9.3 80 264 9.7 10.7 486 3402 1.33,199 429 1.599 94 76 272 9.7 10.7 486 3402 1.33,199 429 1.599 94 76 272 9.7 10.7 486 3402 1.33,19										
401 1,419 90 90 276 93 10,83 476 3332 1,253,788 402 1386 89 82 2772 93 10,83 476 3332 1,253,788 403 13,89 93 90 2772 92 10,82 476 3332 1,260,462 404 1577 88 92 276 9,6 10,82 482 3374 1,265,210 405 1,564 89 96 276 9,4 10,82 482 3374 1,267,210 406 1,461 70 28 178 10,9 10,82 482 3374 1,273,958 405 1,564 89 96 276 10,9 10,82 482 3374 1,273,958 407 1,441 94 76 276 10,8 10,8 2 482 3374 1,273,958 408 1,419 94 80 100 284 10,5 10,8 2 482 3374 1,273,958 408 1,419 94 80 100 284 10,5 10,8 2 482 3374 1,273,958 409 1,544 80 100 284 10,5 10,8 2 482 3374 1,280,706 410 1,568 86 10,4 268 7,4 10,8 1 482 3374 1,280,706 411 1,312 98 66 278 12,3 10,8 1 482 3374 1,280,706 411 1,312 98 66 278 12,3 10,8 1 482 3374 1,280,706 413 1,322 96 64 270 10,2 10,8 1 482 3374 1,280,706 414 1,322 98 64 270 10,2 10,8 1 482 3374 1,280,202 413 1,322 98 64 270 10,2 10,8 1 482 3374 1,280,202 414 1,332 98 64 278 9,6 10,8 1 482 3374 1,29,202 415 1,319 96 64 270 10,4 10,8 0 484 3388 1,300,978 416 1,343 96 54 266 10,3 10,8 0 484 3388 1,300,978 416 1,343 96 54 266 10,3 10,8 0 484 3388 1,300,978 417 1,366 94 60 274 9,7 10,8 0 484 3388 1,300,754 418 1,225 93 48 248 10,4 10,8 0 484 3388 1,301,754 421 1,312 100 64 284 8,4 10,79 484 3388 1,301,364 422 1,314 99 62 282 77, 10,78 484 3388 1,301,304 423 1,327 96 64 276 7,8 10,78 486 3402 1,334,900 424 1,349 95 86 282 11,6 10,78 486 3402 1,334,900 425 1,349 97 62 272 91 10,8 0 484 3388 1,301,304 426 1,422 93 86 278 97, 10,77 486 3402 1,334,900 427 1,412 95 82 278 97, 10,77 486 3402 1,334,900 428 1,349 95 86 282 11,6 10,78 484 3388 1,301,304 429 1,349 97 62 272 91 10,77 486 3402 1,334,900 429 1,349 97 62 272 91 10,8 0 484 3388 1,301,304 429 1,349 97 62 272 91 10,8 0 484 3388 1,301,304 429 1,349 97 62 272 91 10,8 0 484 3388 1,301,304 429 1,349 97 62 272 91 10,7 486 3402 1,334,900 429 1,349 97 62 272 91 10,7 486 3402 1,334,900 429 1,349 97 62 272 91 10,7 486 3402 1,334,900 429 1,349 97 62 272 91 10,7 486 3402 1,334,900 429 1,349 97 62 272 91 10,7 486 3402 1,334,900 429 1,349 97 62 272 91 10,7 486 3402 1,334,900 429 1,349	399	1.578	64	24	176	9.4	10.84	476	3332	1,247,134
401 1,419 90 90 276 9.3 10,83 476 3332 1,253,783 403 13,86 89 82 2772 9.3 10,83 476 3332 1,253,783 403 13,889 93 99 2772 9.2 10,82 476 3332 1,260,462 404 1,577 88 92 276 9.6 10,82 482 3374 1,261,6462 406 1,641 70 28 178 10.9 10,82 482 3374 1,261,210 406 1,641 70 28 178 10.9 10,82 482 3374 1,273,958 406 1,441 94 76 276 10,8 10,8 10,8 12 482 3374 1,273,958 408 1,19 9 1,544 80 100 284 10,5 10,8 10,8 12 482 3374 1,273,958 408 1,19 9 1,544 80 100 284 10,5 10,8 12 482 3374 1,273,958 409 1,544 80 100 284 10,5 10,8 12 482 3374 1,287,958 411 1,312 98 66 278 12,3 10,8 1 482 3374 1,287,454 112 1,310 98 64 276 10,2 10,8 1 482 3374 1,287,454 112 1,310 98 64 276 10,2 10,8 1 482 3374 1,287,454 112 1,310 98 64 276 10,2 10,8 1 482 3374 1,287,454 114 1,322 98 64 270 10,2 10,8 1 482 3374 1,287,454 114 1,322 98 64 270 10,2 10,8 1 482 3374 1,287,452 114 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	400	1.654	64	26	178	9.3	10.84	476	3332	1,250,466
402 1386 89 82 272 93 10.83 476 3332 1,267,108 403 1389 93 90 9772 92 10.82 476 3332 1,267,108 404 1577 88 99 62 776 96 10.82 482 3374 1,268,836 405 1564 89 96 276 94 10.82 482 3374 1,270,584 406 1461 70 28 178 10.9 10.82 482 3374 1,270,584 407 1441 94 76 276 10.2 10.82 482 3374 1,270,584 408 1419 94 80 284 10.8 10.82 482 3374 1,277,382 409 1544 80 100 284 10.5 10.82 482 3374 1,277,382 409 1544 80 100 284 10.5 10.82 482 3374 1,277,382 410 1,586 86 10.4 268 7.4 10.81 482 3374 1,280,880 411 1,312 98 66 278 12.3 10.81 482 3374 1,280,882 412 1,310 98 64 276 10.2 10.81 482 3374 1,280,828 413 1,322 98 64 278 10.2 10.81 482 3374 1,280,828 414 1,332 98 64 278 96 10.81 482 3374 1,290,828 415 1,319 96 64 276 10.2 10.81 482 3374 1,290,828 416 1,343 96 54 266 10.3 10.80 484 3388 1,307,590 416 1,343 96 54 266 10.3 10.80 484 3388 1,307,590 416 1,343 96 54 266 10.3 10.80 484 3388 1,307,590 417 1,386 94 60 274 97 10.80 484 3388 1,307,366 418 1,225 93 48 248 10.4 10.80 484 3388 1,311,42 420 1,349 97 62 272 91 10.80 484 3388 1,311,42 420 1,349 97 62 272 91 10.80 484 3388 1,311,42 421 1,312 100 64 284 84 10.4 10.80 484 3388 1,311,42 422 1,314 99 62 282 7.7 10.78 486 3402 1,334,694 424 1,439 95 66 282 11.6 10.78 486 3402 1,334,694 424 1,439 95 66 282 11.6 10.78 486 3402 1,334,804 425 1,337 95 68 272 9.8 10.77 486 3402 1,334,804 426 1,422 93 80 264 9.7 10.78 486 3402 1,334,804 426 1,422 93 80 264 9.7 10.78 486 3402 1,334,804 426 1,422 93 80 264 9.7 10.78 486 3402 1,334,804 426 1,422 93 80 264 9.7 10.77 486 3402 1,335,802 426 1,422 93 80 264 9.7 10.77 486 3402 1,335,802 426 1,422 93 80 264 9.7 10.78 486 3402 1,334,804 427 1,412 95 82 272 9.8 10.77 486 3402 1,334,804 428 1,504 99 6 68 272 9.8 10.77 486 3402 1,334,804 429 1,509 91 66 70 272 9.7 10.77 486 3402 1,335,802 426 1,422 93 80 264 9.7 10.77 486 3402 1,335,802 427 1,412 95 82 262 7.7 10.78 486 3402 1,335,802 428 1,405 95 88 270 7.8 10.77 487 3409 1,365,532 434 1,504 99 6 68 272 9.7 10.77 486 3402 1,335,802 444 1,509 91 96 62 282 7.7 10.76 487 3409 1,365,532 439 1,609 91 96 92 2	401	1.419	90							
404 1577 88 92 276 9.6 10.82 476 3332 1,260,462 404 1577 88 9.9 276 9.6 10.82 482 3374 1,267,210 406 1,61 70 28 178 10.9 10.82 482 3374 1,267,210 406 1,61 70 28 178 10.9 10.82 482 3374 1,279,958 407 1,441 94 76 276 10.8 10.8 10.8 2 482 3374 1,279,958 407 1,441 94 80 10.0 284 10.8 10.8 10.8 2 482 3374 1,279,958 408 1419 94 80 284 10.8 10.8 10.8 2 482 3374 1,279,958 408 1419 94 80 10.0 284 10.5 10.8 2 482 3374 1,287,958 408 1410 1,568 86 10.4 268 7.4 10.8 1 482 3374 1,280,706 411 1,312 98 66 278 12.3 10.81 482 3374 1,280,706 411 1,312 98 66 278 12.3 10.81 482 3374 1,280,706 411 1,312 98 64 276 10.2 10.8 1 482 3374 1,280,706 411 1,312 98 64 276 10.2 10.8 1 482 3374 1,280,706 411 1,312 98 64 276 10.2 10.8 1 482 3374 1,280,706 411 1,312 98 64 276 10.2 10.8 1 482 3374 1,280,202 413 1,322 98 64 276 10.2 10.8 1 482 3374 1,280,202 413 1,322 98 64 276 10.2 10.8 1 482 3374 1,280,202 413 1,322 98 64 278 9,6 10.8 1 482 3374 1,290,202 415 1,313 1,322 98 64 278 9,6 10.8 1 482 3374 1,290,202 415 1,313 1,322 98 64 276 10.3 10.8 0 484 3388 1,300,378 416 1,334 96 54 266 10.3 10.8 0 484 3388 1,300,378 416 1,334 96 54 266 10.3 10.8 0 484 3388 1,300,378 416 1,334 96 54 272 11.0 10.8 0 484 3388 1,300,378 418 12.25 93 48 248 10.4 10.8 0 484 3388 1,301,754 418 1,225 93 48 248 10.4 10.8 0 484 3388 1,301,754 418 1,225 93 48 248 10.4 10.8 0 484 3388 1,301,754 418 1,225 93 48 248 10.4 10.8 0 484 3388 1,301,754 418 1,255 93 48 248 10.4 10.8 0 484 3388 1,301,754 418 1,255 93 88 277 10.7 10.8 0 484 3388 1,301,306 422 1,331,480 422 1,331,49 99 62 282 277 10.7 10.8 0 484 3388 1,301,306 422 1,331,480 422 1,314 99 62 282 277 10.7 10.8 0 484 3388 1,301,306 422 1,331,480 422 1,										
404										
406 1,564 89 96 276 94 10,82 482 3374 1,267,210 406 1,461 70 28 178 10,9 10,82 482 3374 1,273,958 407 1,441 94 76 276 10,8 10,8 10,8 2 482 3374 1,273,958 408 1,419 94 80 284 10,8 10,8 2 482 3374 1,273,958 408 1,419 94 80 100 284 10,5 10,8 2 482 3374 1,287,958 410 1,586 86 10,4 268 7,4 10,8 1 482 3374 1,287,06 411 1,312 98 66 278 12,3 10,8 1 482 3374 1,287,458 412 1,310 98 64 276 10,2 10,8 1 482 3374 1,287,458 413 1,322 96 64 276 10,2 10,8 1 482 3374 1,287,458 413 1,322 98 64 276 10,2 10,8 1 482 3374 1,287,458 414 1,322 98 64 270 10,2 10,8 1 482 3374 1,298,202 415 1,319 96 64 276 10,3 10,8 1 484 3388 1,300,878 416 1,343 96 54 266 10,3 10,8 0 484 3388 1,300,878 416 1,343 96 54 266 10,3 10,8 0 484 3388 1,300,878 417 1,386 94 60 274 9,7 10,8 0 484 3388 1,300,754 418 1,225 93 48 248 10,4 10,8 0 484 3388 1,307,754 419 1,367 95 54 272 11,0 10,8 0 484 3388 1,307,754 421 1,312 100 64 284 84 10,79 484 3388 1,314,530 422 1,314 99 62 272 91 10,8 0 484 3388 1,314,530 422 1,314 99 62 282 77 10,78 486 3402 1,328,06 423 1,327 96 64 276 7,8 10,78 486 3402 1,328,06 424 1,349 95 58 22 272 91 10,8 0 484 3388 1,314,530 424 1,349 95 68 272 88 1,3 10,78 486 3402 1,334,880 425 1,397 93 88 278 11,3 10,78 486 3402 1,334,880 426 1,422 93 88 278 11,3 10,78 486 3402 1,334,880 425 1,397 93 88 278 11,3 10,78 486 3402 1,334,880 426 1,425 95 88 270 9,6 10,77 486 3402 1,345,104 428 1,455 95 88 270 9,6 10,77 486 3402 1,345,104 429 1,456 95 88 270 9,6 10,77 486 3402 1,345,104 429 1,457 95 88 270 9,6 10,77 486 3402 1,345,104 429 1,458 95 88 270 9,6 10,77 486 3402 1,345,104 429 1,458 95 88 270 9,6 10,77 486 3402 1,345,104 429 1,458 95 88 270 9,6 10,77 486 3402 1,345,104 429 1,458 99 88 88 276 10,77 486 3402 1,345,104 429 1,458 99 88 88 276 10,77 486 3402 1,345,104 429 1,458 99 88 88 276 10,77 486 3402 1,345,104 429 1,459 95 88 222 77 7 10,77 486 3402 1,345,104 429 1,459 95 88 222 17,7 10,77 486 3402 1,345,104 429 1,459 95 88 222 17,7 10,77 486 3402 1,345,104 429 1,459 95 88 222 17,7 10,77 486 3402 1,345,104 420 1,469 97 80 80 80 80 80 80 10,77 40,7										
A06										
407 1441 94 80 284 10.8 10.8 2 482 3374 1273.982 408 1419 94 80 284 10.8 10.8 2 482 3374 1273.982 409 15.44 80 10.0 284 10.5 10.8 2 482 3374 1273.932 409 15.54 80 10.0 284 10.5 10.8 2 482 3374 1280.702 410 15.68 86 10.4 268 7.4 10.8 1 482 3374 1280.702 411 13.12 98 66 278 12.3 10.8 1 482 3374 1281.08 1 412 13.10 98 66 278 12.3 10.8 1 482 3374 1290.828 413 13.22 96 64 276 10.2 10.8 1 482 3374 1290.828 414 13.22 98 64 278 9.6 10.8 1 482 3374 1290.828 415 13.19 96 64 270 10.2 10.8 1 482 3374 1290.828 416 13.49 96 64 270 10.4 10.8 0 484 3388 13.00.978 416 13.49 96 64 270 10.4 10.8 0 484 3388 13.00.978 416 13.49 96 65 274 9.7 10.8 0 484 3388 13.00.978 418 1225 93 48 248 10.4 10.8 0 484 3388 13.07.754 418 1225 93 48 248 10.4 10.8 0 484 3388 13.14.530 420 13.49 97 62 272 9.1 10.8 0 484 3388 13.14.530 421 13.12 10.0 64 284 8.4 10.7 9 484 3388 13.21.306 422 13.14 99 62 282 7.7 10.7 8 486 3402 13.31.490 423 13.27 96 64 276 7.8 10.78 486 3402 13.31.490 426 14.22 93 86 282 11.6 10.7 8 486 3402 13.31.490 426 14.22 93 86 276 11.3 10.78 486 3402 13.31.490 426 14.22 93 86 276 11.3 10.78 486 3402 13.31.490 426 14.22 93 86 276 11.3 10.7 8 486 3402 13.34.900 426 14.22 93 86 276 9.7 10.7 8 486 3402 13.34.900 427 14.12 95 82 278 9.7 10.77 486 3402 13.34.500 428 14.09 95 68 270 9.6 10.77 486 3402 13.34.500 429 15.92 95 68 276 9.7 10.77 486 3402 13.35.312 434 1.594 92 68 262 7.7 10.77 486 3402 13.35.312 435 1.626 94 68 278 12.5 10.7 10.7 486 3402 13.35.312 436 1.631 93 96 72 276 9.7 10.77 486 3402 13.35.312 437 14.09 95 68 276 9.7 10.77 486 3402 13.35.312 438 1.612 87 86 260 10.3 10.75 489 3423 13.82.186 430 1.573 95 68 276 9.7 10.77 486 3402 13.35.312 434 1.594 92 95 68 276 10.7 10.7 489 3402 13.35.312 434 1.594 92 95 68 276 10.7 10.7 489 3402 13.35.312 434 1.594 92 95 68 276 10.7 10.7 489 3402 13.35.312 434 1.594 92 95 68 276 10.7 10.7 489 3402 13.35.312 434 1.594 92 95 68 276 10.7 10.7 489 3402 13.35.312 435 1.626 94 68 276 10.7 10.7 489 3402 13.35.314 436 1.631 93 92 90 97 10.7 10.7 489 3403 13.35.39.36 437 14.22 93 88 26 99 90 1							10.82			
408 1449 94 80 284 10.8 10.82 482 3374 1277.322 409 1544 80 100 284 10.5 10.82 482 3374 1280.706 410 1568 86 104 286 7.4 10.81 482 3374 1280.706 411 1312 98 66 278 12.3 10.81 482 3374 1280.706 412 1310 98 64 276 10.2 10.81 482 3374 1290.828 413 1322 98 64 276 10.2 10.81 482 3374 1290.828 414 1322 98 64 276 10.2 10.81 482 3374 1290.828 415 1319 96 64 278 96 10.81 484 3388 1.297.590 416 13.43 96 54 266 10.3 10.80 484 3388 1.307.54 417 1386 94 60 274 9.7 10.8 0 484 3388 1.307.54 418 1225 93 48 248 10.4 10.80 484 3388 1.307.54 419 13.67 95 54 266 10.3 10.80 484 3388 1.317.918 421 13.12 100 64 284 8.4 10.79 484 3388 1.317.918 421 13.12 100 64 284 8.4 10.79 484 3388 1.317.918 422 13.14 99 62 272 77 10.76 484 3388 1.317.918 423 13.37 98 64 276 7.8 10.78 486 3402 1.328.938 424 139 95 86 282 11.6 10.78 486 3402 1.328.938 425 1.397 93 86 278 11.3 10.78 486 3402 1.338.932 427 1.412 95 86 278 9.7 10.77 486 3402 1.338.932 427 1.412 95 86 279 9.7 10.77 486 3402 1.338.932 427 1.412 95 86 270 9.6 10.77 486 3402 1.331.438 428 1.597 95 68 276 9.7 10.77 486 3402 1.331.438 429 1.592 95 68 276 9.7 10.77 486 3402 1.331.591 431 1.577 96 70 276 9.7 10.77 486 3402 1.335.910 433 1.493 96 72 276 9.7 10.77 486 3402 1.335.910 431 1.577 96 70 276 9.7 10.77 486 3402 1.335.910 433 1.493 96 72 276 9.7 10.77 486 3402 1.335.910 434 1.594 92 68 262 7.7 10.76 487 3409 1.365.532 435 1.626 94 68 276 9.8 10.77 486 3402 1.335.914 434 1.594 92 68 262 7.7 10.77 487 3409 1.365.532 435 1.626 94 68 276 9.8 10.77 487 3409 1.365.532 436 1.631 93 68 272 9.8 10.77 487 3409 1.356.532 437 1.642 93 68 276 9.7 10.77 487 3409 1.365.532 438 1.621 87 88 260 9.4 10.75 489 3423 1.385.914 439 1.609 91 96 262 9.4 10.75 489 3423 1.385.914 431 1.577 96 70 276 9.7 10.77 486 3402 1.335.914 431 1.577 96 70 276 9.7 10.77 487 3409 1.365.532 435 1.626 94 68 276 9.7 10.77 487 3409 1.365.532 435 1.626 94 68 278 9.7 10.77 487 3409 1.365.532 436 1.666 87 82 268 10.0 10.74 489 3423 1.389.475 439 1.609 91 90 90 90 90 90 90 90 90 90 90 90 90 90	406	1.461	70	28	178	10.9	10.82	482	3374	1,270,584
408 1449 94 80 284 10.8 10.82 482 3374 1277.322 409 1544 80 100 284 10.5 10.82 482 3374 1280.706 410 1568 86 104 286 7.4 10.81 482 3374 1280.706 411 1312 98 66 278 12.3 10.81 482 3374 1280.706 412 1310 98 64 276 10.2 10.81 482 3374 1290.828 413 1322 98 64 276 10.2 10.81 482 3374 1290.828 414 1322 98 64 276 10.2 10.81 482 3374 1290.828 415 1319 96 64 278 96 10.81 484 3388 1.297.590 416 13.43 96 54 266 10.3 10.80 484 3388 1.307.54 417 1386 94 60 274 9.7 10.8 0 484 3388 1.307.54 418 1225 93 48 248 10.4 10.80 484 3388 1.307.54 419 13.67 95 54 266 10.3 10.80 484 3388 1.317.918 421 13.12 100 64 284 8.4 10.79 484 3388 1.317.918 421 13.12 100 64 284 8.4 10.79 484 3388 1.317.918 422 13.14 99 62 272 77 10.76 484 3388 1.317.918 423 13.37 98 64 276 7.8 10.78 486 3402 1.328.938 424 139 95 86 282 11.6 10.78 486 3402 1.328.938 425 1.397 93 86 278 11.3 10.78 486 3402 1.338.932 427 1.412 95 86 278 9.7 10.77 486 3402 1.338.932 427 1.412 95 86 279 9.7 10.77 486 3402 1.338.932 427 1.412 95 86 270 9.6 10.77 486 3402 1.331.438 428 1.597 95 68 276 9.7 10.77 486 3402 1.331.438 429 1.592 95 68 276 9.7 10.77 486 3402 1.331.591 431 1.577 96 70 276 9.7 10.77 486 3402 1.335.910 433 1.493 96 72 276 9.7 10.77 486 3402 1.335.910 431 1.577 96 70 276 9.7 10.77 486 3402 1.335.910 433 1.493 96 72 276 9.7 10.77 486 3402 1.335.910 434 1.594 92 68 262 7.7 10.76 487 3409 1.365.532 435 1.626 94 68 276 9.8 10.77 486 3402 1.335.914 434 1.594 92 68 262 7.7 10.77 487 3409 1.365.532 435 1.626 94 68 276 9.8 10.77 487 3409 1.365.532 436 1.631 93 68 272 9.8 10.77 487 3409 1.356.532 437 1.642 93 68 276 9.7 10.77 487 3409 1.365.532 438 1.621 87 88 260 9.4 10.75 489 3423 1.385.914 439 1.609 91 96 262 9.4 10.75 489 3423 1.385.914 431 1.577 96 70 276 9.7 10.77 486 3402 1.335.914 431 1.577 96 70 276 9.7 10.77 487 3409 1.365.532 435 1.626 94 68 276 9.7 10.77 487 3409 1.365.532 435 1.626 94 68 278 9.7 10.77 487 3409 1.365.532 436 1.666 87 82 268 10.0 10.74 489 3423 1.389.475 439 1.609 91 90 90 90 90 90 90 90 90 90 90 90 90 90	407	1.441	94	76	276	10.2	10.82	482	3374	1.273.958
A09										
410 15.68 86 104 268 7.4 10.81 482 3374 1284,080 411 1312 98 66 278 10.2 10.81 482 3374 1284,080 412 13.10 98 66 278 10.2 10.81 482 3374 1290,828 413 13.22 98 64 276 10.2 10.81 482 3374 1290,828 413 13.22 98 64 278 9.6 10.81 482 3374 12.90,828 414 13.32 98 64 278 9.6 10.81 484 3388 1.297,590 415 13.19 98 64 278 9.6 10.81 484 3388 1.300,978 416 13.43 98 54 266 10.3 10.80 484 3388 1.300,978 416 13.43 98 54 266 10.3 10.80 484 3388 1.301,366 417 13.86 94 60 274 9.7 10.80 484 3388 1.301,366 418 1225 93 48 248 10.4 10.80 484 3388 1.311,142 420 13.49 97 62 272 9.1 10.80 484 3388 1.311,342 420 13.49 97 62 272 9.1 10.80 484 3388 1.311,312 421 13.12 100 64 284 8.4 10.79 484 3388 1.321,306 422 13.14 99 62 282 7.7 10.78 484 3388 1.321,306 424 143 9.9 58 66 282 11.6 10.78 486 3402 1.328,086 424 1439 9.5 86 282 11.6 10.78 486 3402 1.331,489 425 1.397 93 86 278 11.3 10.78 486 3402 1.331,489 425 1.397 93 86 278 9.7 10.77 486 3402 1.334,389 425 1.397 93 86 278 9.7 10.77 486 3402 1.345,106 429 1.599 1.599 1.599 1.599 95 86 282 11.6 10.78 486 3402 1.331,489 425 1.397 93 86 278 9.7 10.77 486 3402 1.345,106 429 1.599 1.599 95 86 282 11.6 10.78 486 3402 1.331,489 425 1.397 93 86 278 9.7 10.77 486 3402 1.345,106 429 1.599 1.599 95 86 282 78 9.7 10.77 486 3402 1.345,106 429 1.599 1.599 95 86 270 9.6 10.77 486 3402 1.345,106 429 1.599 1.599 95 86 270 9.6 10.77 486 3402 1.355,312 434 1.559 95 88 272 9.8 10.77 486 3402 1.355,312 434 1.559 95 88 272 9.8 10.77 486 3402 1.355,312 434 1.559 95 88 272 9.8 10.77 486 3402 1.355,312 434 1.559 94 68 272 9.8 10.77 489 3402 1.355,312 434 1.559 93 86 672 9.7 10.77 486 3402 1.355,312 434 1.559 93 86 72 276 11.1 10.77 487 340 3.362,213 3.360,314 433 96 72 276 11.1 10.77 487 340 3.362,213 3.360,314 434 1.559 94 68 272 9.8 10.77 489 3402 1.355,312 434 344 1.559 94 68 272 9.8 10.77 489 3402 1.355,312 434 344 1.559 94 68 272 9.7 10.77 486 3402 1.355,312 434 344 1.559 94 68 272 9.7 10.77 486 3402 1.355,312 434 344 1.559 94 68 272 9.7 10.77 489 3423 1.360,344 44 1.569 98 86 68 260 9.8 10.77 49 343 343 1.469										
411 1312 98 66 278 123 10.81 482 3374 1287.452 412 1310 98 64 276 10.2 10.81 482 3374 1287.452 413 1322 96 64 270 10.2 10.81 482 3374 1294.202 414 1322 98 64 270 10.2 10.81 482 3374 1294.202 415 1319 98 64 270 10.4 10.80 484 3388 1300.976 416 13.43 96 54 266 10.3 10.80 484 3388 13.00.736 416 13.43 96 54 266 10.3 10.80 484 3388 13.00.736 418 1225 93 48 248 10.4 10.80 484 3388 13.07.754 418 1327 95 54 272 11.0 10.80 484 3388 13.11.142 420 13.49 97 62 272 9.1 10.80 484 3388 13.11.142 421 1312 100 64 284 8.4 8.4 10.79 484 3388 13.11.342 422 13.14 99 62 282 7.7 10.78 484 3388 13.21.306 422 13.14 99 66 282 7.7 10.78 486 3402 13.31.498 424 1439 95 66 228 7.7 10.78 486 3402 13.31.498 425 1397 93 86 226 11.6 10.78 486 3402 13.31.498 426 1422 93 80 264 9.7 10.78 486 3402 13.34.980 426 1422 93 80 264 9.7 10.77 486 3402 13.34.500 427 14.12 95 86 276 9.7 10.77 486 3402 13.34.500 428 1405 95 68 276 9.7 10.77 486 3402 13.34.5106 429 1592 95 68 276 9.7 10.77 486 3402 13.34.5106 429 1592 95 68 276 9.7 10.77 486 3402 13.34.5106 430 15.73 95 68 272 9.8 10.77 486 3402 13.34.5106 431 1.577 96 70 276 9.7 10.77 486 3402 13.35.312 433 1.493 96 72 276 9.7 10.77 486 3402 13.35.312 434 1.594 92 68 262 7.7 10.76 487 3409 13.65.532 435 1.626 94 68 272 9.7 10.77 486 3402 13.35.314 431 1.577 96 70 276 9.7 10.77 486 3402 13.55.312 433 1.493 96 72 276 11.1 10.77 487 3409 13.65.532 435 1.626 94 68 278 12.6 10.77 487 3409 13.65.532 436 1.626 94 68 278 12.6 10.77 487 3409 13.65.532 437 1.642 93 68 272 9.8 10.77 487 3409 13.65.532 438 1.612 87 86 262 9.4 10.75 489 3423 13.80.134 441 1.697 87 88 262 9.4 10.75 489 3423 13.80.134 442 1.696 88 96 264 9.7 10.77 489 3423 13.80.134 443 1.594 92 68 262 7.7 10.76 487 3409 13.75.759 446 1.497 92 268 94 10.75 489 3423 13.80.2591 447 1.465 83 88 96 264 9.7 10.77 487 3409 13.75.759 448 1.594 92 68 262 9.4 10.75 489 3423 13.80.2591 448 1.594 92 68 262 9.4 10.75 489 3423 13.80.2591 449 1.594 92 68 262 9.4 10.75 489 3423 13.80.2591 440 1.690 93 92 266 94 9.7 10.74 489 3423 13.80.2591 441 1.690 94 94 96 268 94 10.										
412 1.310 98 64 276 10.2 10.81 482 3374 1.290,828 413 1.322 98 64 270 10.2 10.81 482 3374 1.290,828 414 1.322 98 64 270 10.2 10.81 482 3374 1.290,828 414 1.322 98 64 270 10.4 10.80 484 3388 1.297,590 415 1.319 96 64 270 10.4 10.80 484 3388 1.300,978 416 1.343 96 54 266 10.3 10.80 484 3388 1.300,778 416 1.343 96 54 266 10.3 10.80 484 3388 1.301,758 417 1.386 94 60 274 9.7 10.80 484 3388 1.307,754 418 1.225 93 48 248 10.4 10.80 484 3388 1.311,142 419 1.387 95 54 272 11.0 10.80 484 3388 1.311,142 419 1.387 95 54 272 11.0 10.80 484 3388 1.311,142 419 1.387 95 62 272 9.1 10.80 484 3388 1.311,319 142 421 1.312 100 64 284 8.4 10.79 484 3388 1.311,319 142 421 1.312 99 62 282 7.7 10.78 484 3388 1.321,306 424 1.339 95 86 282 11.6 10.78 486 3402 1.328,986 424 1.39 95 86 282 11.6 10.78 486 3402 1.328,986 425 1.397 93 80 264 9.7 10.78 486 3402 1.334,994 426 1.422 93 80 264 9.7 10.78 486 3402 1.334,994 428 1.405 95 86 282 278 9.7 10.78 486 3402 1.334,590 428 1.341,506 428 1.599 95 68 276 12.5 10.78 486 3402 1.334,5106 428 1.599 95 68 276 12.5 10.78 486 3402 1.345,106 428 1.599 95 68 276 12.5 10.78 486 3402 1.345,106 428 1.599 95 68 276 12.5 10.78 486 3402 1.345,106 428 1.599 95 68 276 12.5 10.78 486 3402 1.345,106 428 1.599 95 68 276 12.5 10.78 486 3402 1.345,106 428 1.599 95 68 276 12.5 10.78 486 3402 1.345,106 428 1.599 95 68 276 12.5 10.78 486 3402 1.345,106 428 1.599 95 68 276 12.5 10.78 486 3402 1.345,106 428 1.599 95 68 276 12.5 10.78 486 3402 1.345,106 428 1.599 95 68 276 12.5 10.78 486 3402 1.358,131 1.577 96 6 272 9.7 10.77 486 3402 1.358,131 1.577 96 6 272 9.7 10.77 486 3402 1.358,131 1.573 95 68 276 2.5 10.78 10.75 489 3402 1.358,131 1.573 95 68 276 2.5 10.78 10.75 489 3402 1.358,131 1.578 95 68 276 2.5 10.78 10.77 486 3402 1.358,131 1.579 96 70 2.76 9.7 10.77 486 3402 1.358,131 1.359 95 68 2.76 12.5 10.78 489 3403 1.379,138 94 37 442 1.599 94 76 2.72 9.7 10.77 486 3402 1.358,131 1.359,131 1.577 98 6 8 260 9.4 10.70 4.89 3423 1.399,130 1.379,138 1.349 92 98 98 98 98 98 98 98 98 98 98 98 98 98										
414 1322 96 64 270 10.2 10.81 482 3374 1.294.202 1415 1.322 98 64 278 96 10.81 484 3388 1.307.578 1416 1.343 96 54 266 10.3 10.80 484 3388 1.300.378 1418 1.343 96 54 266 10.3 10.80 484 3388 1.307.54 1418 1.225 93 48 248 10.4 10.80 484 3388 1.307.54 1418 1.225 93 48 248 10.4 10.80 484 3388 1.307.54 1418 1.325 93 48 248 10.4 10.80 484 3388 1.307.54 1419 1.387 95 54 272 11.0 10.80 484 3388 1.311.42 142 12.1 1.312 10.0 64 284 8.4 10.7 10.80 484 3388 1.317.54 142 11.312 10.0 64 284 8.4 10.7 10.8 148 3388 1.317.54 142 11.312 10.0 64 284 8.4 10.7 10.8 148 3388 1.317.31 142 142 143 143 145 145 145 145 145 145 145 145 145 145										
414 1.322 98 64 278 96 10.81 484 3388 1.297,590 416 1.343 96 54 266 10.3 10.80 484 3388 1.300,978 417 1.386 94 60 274 9.7 10.80 484 3388 1.307,754 418 1.225 93 48 248 10.4 10.80 484 3388 1.317,318 420 1.349 97 62 272 9.1 10.80 484 3388 1.317,918 421 1.312 100 64 284 8.4 10.79 484 3388 1.317,918 422 1.314 99 62 282 7.7 10.78 486 3402 1.328,096 423 1.327 96 64 276 7.8 10.78 486 3402 1.334,908 424 1.3397 93 86 278 11.5	412	1.310	98	64	276	10.2	10.81	482	3374	1,290,828
414 1.322 98 64 278 96 10.81 484 3388 1.297,590 416 1.343 96 54 266 10.3 10.80 484 3388 1.300,978 416 1.343 96 54 266 10.3 10.80 484 3388 1.307,754 418 1.225 93 48 248 10.4 10.80 484 3388 1.311,142 419 1.349 97 62 272 11.0 10.80 484 3388 1.311,142 420 1.349 97 62 272 91 10.80 484 3388 1.317,918 421 1.312 100 64 284 84 10.79 484 3388 1.321,314 422 1.314 99 62 282 276 7.8 10.78 486 3402 1.328,096 424 1.439 95 86 278	413	1.322	96	64	270	10.2	10.81	482	3374	1,294,202
415 1.319 96 64 270 10.4 10.80 484 338.8 13.00.978 416 1.343 96 54 266 10.3 10.80 484 338.8 1.307.754 417 1.386 94 60 274 9.7 10.80 484 338.8 1.307.754 418 1.225 93 48 248 10.4 10.80 484 338.8 1.311,452 420 1.349 97 62 272 9.1 10.80 484 338.8 1.314,530 422 1.314 99 62 282 7.7 10.78 484 3388 1.321,306 422 1.314 99 64 286 276 7.8 10.78 486 3402 1.331,498 423 1.327 96 64 276 7.8 10.78 486 3402 1.331,498 425 1.339 93 86 282 <td>414</td> <td>1.322</td> <td>98</td> <td>64</td> <td>278</td> <td>9.6</td> <td>10.81</td> <td>484</td> <td>3388</td> <td></td>	414	1.322	98	64	278	9.6	10.81	484	3388	
416 1.343 96 54 266 10.3 10.80 484 3388 1,304,366 417 1.386 94 60 274 97 10.80 484 3388 1,304,366 418 1.225 93 48 248 10.4 10.80 484 3388 1,311,142 419 1.387 95 54 272 91 10.80 484 3388 1,311,142 411 1.387 95 54 272 91 10.80 484 3388 1,311,314 420 1.349 97 62 272 91 10.80 484 3388 1,317,918 421 1.312 900 64 284 8.4 10.79 484 3388 1,317,918 421 1.314 99 62 282 7.7 10.78 484 3388 1,317,918 422 1.314 99 62 282 7.7 10.78 484 3388 1,312,306 424 1.339 95 86 282 11.6 10.78 486 3402 1,328,096 424 1.339 95 86 282 11.6 10.78 486 3402 1,328,096 424 1.339 95 86 282 11.6 10.78 486 3402 1,331,498 425 1.397 93 80 264 97 10.78 486 3402 1,334,904 428 1.405 95 86 282 278 9.7 10.77 486 3402 1,341,704 428 1.405 95 86 276 9.7 10.77 486 3402 1,341,704 428 1.592 95 68 276 9.8 10.77 486 3402 1,341,704 429 1.592 95 68 276 9.8 10.77 486 3402 1,341,504 430 1.573 95 68 272 9.8 10.77 486 3402 1,341,365 343 15.77 96 70 276 9.7 10.77 486 3402 1,355,312 432 1.559 94 76 272 9.7 10.77 486 3402 1,355,312 432 1.559 94 68 262 7.7 10.76 487 3409 1,362,123 434 1.594 92 68 262 7.7 10.76 487 3409 1,362,123 434 1.594 92 68 262 7.7 10.76 487 3409 1,362,123 434 1.594 92 68 262 7.7 10.76 487 3409 1,362,123 434 1.594 92 68 262 7.7 10.76 487 3409 1,362,123 434 1.594 92 68 262 7.7 10.76 487 3409 1,375,759 438 1.626 94 68 278 12.6 10.77 480 3402 1,358,714 432 1.594 92 68 262 7.7 10.76 487 3409 1,375,759 438 1.626 94 68 278 12.6 10.77 489 3423 1,362,913 434 1.594 92 2.68 262 7.7 10.76 487 3409 1,375,759 438 1.626 94 68 278 12.6 10.77 489 3423 1,362,913 434 1.594 92 68 262 7.7 10.76 487 3409 1,375,759 438 1.626 94 68 278 12.6 10.77 489 3423 1,362,913 434 1.594 92 68 262 7.7 10.76 487 3409 1,375,759 438 1.612 93 68 270 9.8 10.75 487 3409 1,375,759 438 1.612 93 68 270 9.8 10.75 487 3409 1,375,759 438 1.612 93 68 270 9.8 10.75 487 3409 1,375,759 438 1.612 93 68 270 9.8 10.77 486 3402 1,338,314 1.404 1.667 87 78 2.2 68 10.0 10.76 487 3409 1,375,759 448 1.404 1.667 87 78 2.2 68 10.0 10.76 487 3409 1,375,759 448 1.404 1.667 87 78 2.2 68 10.0 10.76 489 3423 1,382,801										
417 1386 94 60 274 9.7 10.80 484 3388 1,307,754 418 1225 93 48 248 10.4 10.80 484 3388 1,311,450 420 1.349 97 62 272 9.1 10.80 484 3388 1,317,918 421 1.312 100 64 284 8.4 10.78 484 3388 1,317,918 422 1.314 99 62 282 7.7 10.78 486 3302 1,326,994 423 1.327 96 64 276 7.8 10.78 486 3402 1,326,994 425 1.397 93 86 278 11.3 10.78 486 3402 1,331,498 425 1.397 93 86 278 11.3 10.78 486 3402 1,338,102 426 1.422 93 80 264 9.7										
418 1,225 93 48 248 10.4 10.80 484 3398 1,311,142 420 1,349 97 62 272 9.1 10.80 484 3388 1,317,918 421 1,314 99 62 282 7.7 10.78 484 3388 1,321,306 422 1,314 99 62 282 7.7 10.78 486 3402 1,328,096 424 1,314 99 68 282 11.6 10.78 486 3402 1,332,809 425 1,397 93 86 278 11.3 10.78 486 3402 1,334,900 426 1,422 93 80 264 97 10.78 486 3402 1,334,900 427 1,412 95 86 276 10.77 486 3402 1,341,104 429 1,592 95 68 276 10.77 486										
419 1.387 95 54 272 11.0 10.80 484 3388 1.314,530 420 1.349 97 62 272 9.1 10.80 484 3388 1.321,306 421 1.312 100 64 284 8.4 10.79 484 3388 1.321,306 422 1.314 99 66 4276 7.8 10.78 486 3402 1.326,906 424 1.439 95 86 282 11.6 10.78 486 3402 1.331,490 425 1.397 93 86 278 11.3 10.78 486 3402 1.331,490 426 1.422 93 80 264 9.7 10.78 486 3402 1.341,704 427 1.412 95 82 278 9.7 10.77 486 3402 1.345,106 429 1.592 95 68 270 9.6										
420 1,349 97 62 272 9,1 10,80 484 3388 1,317,918 421 1,312 100 64 284 8,4 10,79 484 3388 1,321,306 422 1,314 99 62 282 7,7 10,78 486 3402 1,328,096 424 1,439 95 86 282 11,6 10,78 486 3402 1,334,390 426 1,422 93 86 278 11,3 10,78 486 3402 1,334,900 427 1,412 95 82 278 9,7 10,77 486 3402 1,341,104 428 1,405 95 82 278 9,7 10,77 486 3402 1,341,104 429 1,592 95 68 276 12,5 10,78 486 3402 1,341,106 430 1,573 95 68 276 12,5										
421 1.312 100 64 284 8.4 10.79 484 3388 1,321,306 422 1.314 99 62 282 7.7 10.78 484 3388 1,321,306 423 1.327 96 64 276 7.8 10.78 486 3402 1,328,096 424 1.439 95 86 282 11.6 10.78 486 3402 1,328,096 424 1.439 95 86 282 11.6 10.78 486 3402 1,331,498 425 1.397 93 86 278 11.3 10.78 486 3402 1,334,980 426 1.422 93 80 264 9.7 10.78 486 3402 1,334,900 426 1.422 93 80 264 9.7 10.78 486 3402 1,345,106 429 1.592 95 86 270 9.6 10.77 486 3402 1,345,106 429 1.592 95 68 276 9.5 10.78 486 3402 1,345,106 429 1.592 95 68 272 9.8 10.77 486 3402 1,345,106 429 1.593 95 68 272 9.8 10.77 486 3402 1,345,106 429 1.593 95 68 272 9.8 10.77 486 3402 1,345,106 429 1.593 95 68 272 9.7 10.77 486 3402 1,345,106 429 1.593 95 68 272 9.7 10.77 486 3402 1,355,104 431 1.573 95 68 272 9.7 10.77 486 3402 1,355,104 432 1.559 94 76 272 9.7 10.77 486 3402 1,355,312 434 1.594 92 68 262 7.7 10.76 487 3409 1,362,123 434 1.594 92 68 262 7.7 10.76 487 3409 1,362,123 434 1.594 92 68 278 12.6 10.77 487 3409 1,362,123 434 1.594 92 68 278 12.6 10.77 487 3409 1,362,123 434 1.594 92 68 278 12.6 10.77 487 3409 1,372,350 435 1.626 94 68 278 12.6 10.77 487 3409 1,372,350 436 1.631 93 68 272 8.0 10.76 487 3409 1,372,350 437 1.642 93 68 272 8.0 10.76 487 3409 1,372,350 439 1.609 91 96 262 9.4 10.74 489 3423 1,386,914 441 1.669 88 96 264 9.7 10.74 489 3423 1,386,914 441 1.669 88 96 66 264 9.7 10.74 489 3423 1,386,014 441 1.669 88 96 66 9.4 10.74 489 3423 1,386,283 443 1.691 80 76 224 9.8 10.70 491 3437 1,405,800 445 1.666 87 82 266 9.4 10.74 489 3423 1,386,283 440 1.641 80 76 224 9.5 10.70 491 3437 1,405,800 445 1.666 87 82 266 9.4 10.74 491 3437 1,405,800 445 1.667 87 78 252 10.7 10.74 489 3423 1,398,283 456 1.668 87 82 268 9.4 10.73 491 3437 1,405,800 457 1.509 84 70 276 9.4 10.72 491 3437 1,405,800 458 1.509 84 70 276 9.4 10.72 491 3437 1,423,765 459 1.518 84 70 276 9.4 10.72 491 3437 1,423,765 450 1.528 88 40 9.2 10.70 491 3437 1,423,765 451 1.509 84 70 276 9.4 10.70 491 3437 1,423,765 451 1.509 84 70 276 9.4 10.70 491 3437 1,423,765 451 1.456 9.9 9.0 10.70 491 34							+			
422 1 314 99 62 282 7.7 10 78 484 3388 1,324,694 423 1 327 96 64 276 7.8 10.78 486 3402 1,331,498 425 1 439 95 86 282 11.6 10.78 486 3402 1,331,498 425 1 397 93 86 278 11.3 10.78 486 3402 1,334,908 427 1 412 95 82 278 9.7 10.77 486 3402 1,338,902 427 1 412 95 82 278 9.7 10.77 486 3402 1,341,704 428 1 405 95 68 276 12.5 10.78 486 3402 1,348,508 430 1 573 95 68 276 12.5 10.78 486 3402 1,355,312 431 1 577 96 70 276 9.7	420 ·	1.349	97	62	272	9.1	10.80	484	3388	1,317,918
422 1 314 99 62 282 7.7 10 78 484 3388 1,324,694 423 1 327 96 64 276 7.8 10.78 486 3402 1,331,498 425 1 439 95 86 282 11.6 10.78 486 3402 1,331,498 425 1 397 93 86 278 11.3 10.78 486 3402 1,334,908 427 1 412 95 82 278 9.7 10.77 486 3402 1,338,902 427 1 412 95 82 278 9.7 10.77 486 3402 1,341,704 428 1 405 95 68 276 12.5 10.78 486 3402 1,348,508 430 1 573 95 68 276 12.5 10.78 486 3402 1,355,312 431 1 577 96 70 276 9.7	421	1.312	100	64	284	8.4	10.79	484	3388	1,321,306
423 1 327 96 64 276 7.8 10.78 486 3402 1,328,096 424 1 439 95 86 282 11.6 10.78 486 3402 1,331,498 426 1 422 93 80 264 9.7 10.78 486 3402 1,334,900 426 1 422 93 80 264 9.7 10.77 486 3402 1,334,500 428 1 405 95 86 270 9.6 10.77 486 3402 1,345,106 429 1.592 95 68 272 9.8 10.77 486 3402 1,355,312 431 1.577 96 70 276 9.7 10.77 486 3402 1,355,312 433 1.591 94 76 272 9.7 10.77 486 3402 1,355,312 433 1.593 92 68 262 7.7										
424 1 439 95 86 282 11.6 10.78 486 3402 1,331,490 426 1 422 93 80 264 9.7 10.78 486 3402 1,331,490 427 1 412 95 82 278 9.7 10.77 486 3402 1,345,106 428 1.405 95 86 270 9.6 10.77 486 3402 1,345,106 429 1.592 95 68 276 12.5 10.78 486 3402 1,345,106 430 1.573 95 68 276 12.5 10.78 486 3402 1,345,106 431 1.577 96 70 276 9.7 10.77 486 3402 1,355,312 432 1.559 94 76 272 9.7 10.77 486 3402 1,365,531 433 1.493 96 72 276 11.1										
425 1,397 93 86 278 11,3 10,78 486 3402 1,334,900 426 1,422 93 80 264 9,7 10,78 486 3402 1,334,300 427 1,412 95 82 278 9,7 10,77 486 3402 1,345,106 429 1,592 95 68 276 12,5 10,78 486 3402 1,345,106 430 1,577 96 70 276 9,7 10,77 486 3402 1,355,319 431 1,577 96 70 276 9,7 10,77 486 3402 1,355,319 432 1,589 94 76 72 276 11,1 10,77 486 3402 1,355,319 433 1,593 94 68 272 276 11,1 10,77 487 3409 1,362,532 435 1,626 94 68										
426 1 422 93 80 264 9.7 10.78 486 3402 1,338,302 1,338,302 1,338,302 1,338,302 1,338,302 1,338,302 1,338,302 1,338,302 1,338,302 1,338,302 1,338,302 1,345,106 429 1,592 95 68 276 12.5 10.78 486 3402 1,345,106 429 1,592 95 68 272 9.8 10.77 486 3402 1,351,910 431 1,577 96 70 276 9.7 10.77 486 3402 1,351,910 431 1,577 96 70 276 9.7 10.77 486 3402 1,355,312 433 1,493 96 72 276 11.1 10.77 486 3402 1,355,312 434 1,594 92 68 262 7.7 10.76 487 3409 1,365,532 433 1,626 94 68 278 12.6 10.77 487 3409 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
427 1.412 95 82 278 9.7 10.77 486 3402 1.345,106 428 1.405 95 68 276 12.5 10.78 486 3402 1.345,106 430 1.573 95 68 272 9.8 10.77 486 3402 1.345,1910 431 1.577 96 70 276 9.7 10.77 486 3402 1.355,319 432 1.559 94 76 272 9.7 10.77 486 3402 1.355,319 433 1.493 96 72 276 11.1 10.77 486 3402 1,358,714 433 1.493 96 72 276 11.1 10.77 486 3402 1,358,714 433 1.612 87 68 262 7.7 10.76 487 3409 1,372,350 438 1.612 87 86 260 10.3										
428 1 405 95 86 270 9.6 10,77 486 3402 1,348,508 429 1 592 95 68 276 12.5 10,78 486 3402 1,348,508 430 1,577 96 70 276 9,7 10,77 486 3402 1,355,312 432 1,559 94 76 272 9,7 10,77 486 3402 1,355,312 433 1,493 96 72 276 11,1 10,77 487 3409 1,362,123 434 1,594 92 68 262 7,7 10,76 487 3409 1,365,532 435 1,626 94 68 278 12,6 10,77 487 3409 1,372,350 437 1,642 93 68 270 7.8 10,75 487 3409 1,372,350 438 1,612 87 86 260 10.3			93			9.7	10.78	486	3402	1,338,302
429 1 592 95 68 276 12.5 10.78 486 3402 1,351,910 430 1 573 95 68 272 9.8 10.77 486 3402 1,355,919 431 1.577 96 70 276 9.7 10.77 486 3402 1,355,312 432 1.559 94 76 272 9.7 10.77 486 3402 1,355,312 433 1.493 96 72 276 11.1 10.77 487 3409 1,365,532 434 1.594 92 68 262 7.7 10.76 487 3409 1,365,532 435 1.626 94 68 278 12.6 10.77 487 3409 1,365,532 437 1.642 93 68 270 7.8 10.75 487 3409 1,375,759 438 1.610 87 86 260 10.3	427	1.412	95	82	278	9.7	10.77	486	3402	1,341,704
429 1 592 95 68 276 12.5 10.78 486 3402 1,351,910 430 1 573 95 68 272 9.8 10.77 486 3402 1,355,919 431 1.577 96 70 276 9.7 10.77 486 3402 1,355,312 432 1.559 94 76 272 9.7 10.77 486 3402 1,355,312 433 1.493 96 72 276 11.1 10.77 487 3409 1,365,532 434 1.594 92 68 262 7.7 10.76 487 3409 1,365,532 435 1.626 94 68 278 12.6 10.77 487 3409 1,365,532 437 1.642 93 68 270 7.8 10.75 487 3409 1,375,759 438 1.610 87 86 260 10.3	428	1.405	95	86	270	9.6	10.77	486	3402	1.345.106
430 1.573 95 68 272 9.8 10.77 486 3402 1,351,910 431 1.577 96 70 276 9.7 10.77 486 3402 1,355,312 432 1.559 94 76 272 9.7 10.77 487 3409 1,362,123 434 1.594 92 68 262 7.7 10.76 487 3409 1,362,123 435 1.626 94 68 278 12.6 10.77 487 3409 1,362,532 436 1.631 93 68 270 7.8 10.75 487 3409 1,375,759 437 1.642 93 68 270 7.8 10.75 487 3409 1,375,759 438 1.612 87 86 260 10.3 10.75 489 3423 1,382,561 440 1.640 93 92 264 9.6										
431 1.577 96 70 276 9.7 10.77 486 3402 1.355,312 432 1.559 94 76 272 9.7 10.77 486 3402 1.358,714 433 1.493 96 72 276 11.1 10.77 487 3409 1.365,532 434 1.594 92 68 262 7.7 10.76 487 3409 1.365,532 435 1.626 94 68 278 12.6 10.77 487 3409 1.365,532 436 1.631 93 68 270 7.8 10.75 487 3409 1.375,759 438 1.612 87 86 260 10.3 10.75 487 3409 1.375,759 439 1.609 91 96 262 9.4 10.75 489 3423 1.382,591 440 1.640 93 92 264 9.6										
432 1,559 94 76 272 9,7 10,77 486 3402 1,356,714 433 1,493 96 72 276 11,1 10,77 487 3409 1,365,532 3435 1,626 94 68 278 12,6 10,76 487 3409 1,365,532 435 1,626 94 68 278 12,6 10,76 487 3409 1,365,532 436 1,631 93 68 270 7.8 10,76 487 3409 1,375,759 438 1,612 87 86 260 10.3 10,75 487 3409 1,375,759 438 1,612 87 86 260 10.3 10,75 489 3423 1,386,014 441 1,669 91 96 262 9.4 10,75 489 3423 1,386,014 441 1,669 88 96 264 9.7 10,74 489 3423 1,386,014 442 1,625 89										
433 1.493 96 72 276 11.1 10.77 487 3409 1,362,123 434 1.594 92 68 262 7.7 10.76 487 3409 1,365,532 435 1.626 94 68 272 8.0 10.76 487 3409 1,372,350 437 1.642 93 68 270 7.8 10.75 487 3409 1,375,759 438 1.612 87 86 260 10.3 10.75 487 3409 1,379,168 439 1.609 91 96 262 9.4 10.75 489 3423 1,386,014 440 1.640 93 92 264 9.6 10.75 489 3423 1,389,437 442 1.625 89 98 266 9.4 10.74 489 3423 1,399,6283 443 1.691 80 76 244 9.5										
434 1.594 92 68 262 7.7 10.76 487 3409 1,365,532 435 1.626 94 68 278 12.6 10.77 487 3409 1,365,532 436 1.631 93 68 270 7.8 10.75 487 3409 1,372,350 437 1.642 93 68 270 7.8 10.75 487 3409 1,372,350 438 1.612 87 86 260 10.3 10.75 487 3409 1,379,168 439 1.609 91 96 262 9.4 10.75 489 3423 1,386,014 441 1.669 88 96 264 9.7 10.74 489 3423 1,386,014 441 1.669 88 96 264 9.7 10.74 489 3423 1,396,283 443 1.691 80 76 244 9.5										
435 1.626 94 68 278 12.6 10.77 487 3409 1.368,941 436 1.631 93 68 272 8.0 10.76 487 3409 1.372,350 437 1.642 93 68 270 7.8 10.75 487 3409 1.375,759 438 1.612 87 86 260 10.3 10.75 487 3409 1.379,168 439 1.609 91 96 262 9.4 10.75 489 3423 1.382,591 440 1.640 93 92 264 9.7 10.74 489 3423 1.382,691 441 1.669 88 96 264 9.7 10.74 489 3423 1.382,280 442 1.625 89 98 266 9.4 10.74 489 3423 1.392,286 443 1.660 87 82 268 10.7										
436 1.631 93 68 272 8.0 10.76 487 3409 1,372,350 437 1.642 93 68 270 7.8 10.75 487 3409 1,375,759 438 1.612 87 86 260 10.3 10.75 489 3423 1,379,168 439 1.609 91 96 262 9.4 10.75 489 3423 1,386,014 440 1.640 93 92 264 9.6 10.75 489 3423 1,386,014 441 1.669 88 96 264 9.7 10.74 489 3423 1,389,437 442 1.625 89 98 266 9.4 10.74 489 3423 1,386,283 444 1.667 87 78 252 10.7 10.74 489 3423 1,399,706 445 1.666 87 82 268 10.0			92	68	262		10.76	487	3409	1,365,532
437 1.642 93 68 270 7.8 10.75 487 3409 1,375,759 438 1.612 87 86 260 10.3 10.75 487 3409 1,379,168 439 1.609 91 96 262 9.4 10.75 489 3423 1,382,591 440 1.640 93 92 264 9.6 10.75 489 3423 1,389,437 441 1.669 88 96 264 9.7 10.74 489 3423 1,389,437 442 1.625 89 98 266 9.4 10.74 489 3423 1,399,6283 443 1.667 87 78 252 10.7 10.74 489 3423 1,399,706 445 1.666 87 82 268 10.0 10.74 491 3437 1,405,140 447 1.465 83 78 264 9.5	435	1.626	94	68	278	12.6	10.77	487	3409	1,368,941
437 1.642 93 68 270 7.8 10.75 487 3409 1,375,759 438 1.612 87 86 260 10.3 10.75 487 3409 1,379,168 439 1.609 91 96 262 9.4 10.75 489 3423 1,382,591 440 1.640 93 92 264 9.6 10.75 489 3423 1,389,437 441 1.669 88 96 264 9.7 10.74 489 3423 1,389,437 442 1.625 89 98 266 9.4 10.74 489 3423 1,399,6283 443 1.667 87 78 252 10.7 10.74 489 3423 1,399,706 445 1.666 87 82 268 10.0 10.74 491 3437 1,405,140 447 1.465 83 78 264 9.5	436	1.631	93	68	272	8.0	10.76	487	3409	1,372,350
438 1.612 87 86 260 10.3 10.75 487 3409 1,379,168 439 1.609 91 96 262 9.4 10.75 489 3423 1,382,591 440 1.640 93 92 264 9.6 10.75 489 3423 1,386,014 441 1.669 88 96 264 9.7 10.74 489 3423 1,389,437 442 1.625 89 98 266 9.4 10.74 489 3423 1,392,860 443 1.691 80 76 244 9.5 10.74 489 3423 1,396,283 444 1.666 87 82 268 10.0 10.74 489 3423 1,399,680 445 1.666 87 82 268 10.0 10.74 489 3423 1,399,680 447 1.465 83 78 264 9.5							10.75	487	3409	
439 1,609 91 96 262 9.4 10.75 489 3423 1,382,591 440 1,640 93 92 264 9.6 10.75 489 3423 1,382,591 440 1,669 88 96 264 9.7 10.74 489 3423 1,392,860 443 1,691 80 76 244 9.5 10.74 489 3423 1,392,860 443 1,691 80 76 244 9.5 10.74 489 3423 1,392,860 443 1,667 87 78 252 10.7 10.74 489 3423 1,396,283 444 1,667 87 78 252 10.7 10.74 489 3423 1,396,283 444 1,666 87 82 268 10.0 10.74 491 3437 1,406,580 447 1,465 83 78 264 9.5										
440 1.640 93 92 264 9.6 10.75 489 3423 1,386,014 441 1.669 88 96 264 9.7 10.74 489 3423 1,389,437 442 1.625 89 98 266 9.4 10.74 489 3423 1,392,860 443 1.661 80 76 244 9.5 10.74 489 3423 1,392,860 444 1.667 87 78 252 10.7 10.74 489 3423 1,396,283 444 1.666 87 82 268 10.0 10.74 491 3437 1,403,143 445 1.666 87 82 268 9.4 10.73 491 3437 1,406,580 447 1.465 83 78 264 9.5 10.73 491 3437 1,416,891 449 1.509 84 70 276 9.4										
441 1.669 88 96 264 9.7 10.74 489 3423 1,389,437 442 1.625 89 98 266 9.4 10.74 489 3423 1,392,280 443 1.691 80 76 244 9.5 10.74 489 3423 1,396,283 444 1.667 87 78 252 10.7 10.74 489 3423 1,396,283 445 1.666 87 82 268 10.0 10.74 491 3437 1,403,143 446 1.457 84 72 268 9.4 10.73 491 3437 1,410,517 447 1.465 83 78 264 9.5 10.73 491 3437 1,410,617 448 1.255 98 92 262 9.1 10.73 491 3437 1,410,617 449 1.509 84 70 276 9.4										
442 1.625 89 98 266 9.4 10.74 489 3423 1,392,860 443 1.691 80 76 244 9.5 10.74 489 3423 1,396,283 444 1.667 87 78 252 10.7 10.74 489 3423 1,399,706 445 1.666 87 82 268 10.0 10.74 491 3437 1,403,143 446 1.457 84 72 268 9.4 10.73 491 3437 1,410,017 448 1.255 98 92 262 9.1 10.73 491 3437 1,410,017 448 1.255 98 92 262 9.1 10.73 491 3437 1,410,017 449 1.509 84 70 276 9.4 10.72 491 3437 1,420,328 451 1.395 84 76 276 10.4										
443 1.691 80 76 244 9.5 10.74 489 3423 1,396,283 444 1.667 87 78 252 10.7 10.74 489 3423 1,399,706 445 1.666 87 82 268 10.0 10.74 491 3437 1,406,580 447 1.465 83 78 264 9.5 10.73 491 3437 1,410,017 448 1.255 98 92 262 9.1 10.73 491 3437 1,410,017 448 1.255 98 92 262 9.1 10.73 491 3437 1,410,017 448 1.509 84 70 276 9.4 10.72 491 3437 1,416,891 450 1.528 81 64 272 9.3 10.72 491 3437 1,420,328 451 1.395 84 76 276 10.4										
444 1.667 87 78 252 10.7 10.74 489 3423 1,399,706 445 1.666 87 82 268 10.0 10.74 491 3437 1,403,143 446 1.457 84 72 268 9.4 10.73 491 3437 1,406,580 447 1.465 83 78 264 9.5 10.73 491 3437 1,410,017 448 1.255 98 92 262 9.1 10.73 491 3437 1,410,017 449 1.509 84 70 276 9.4 10.72 491 3437 1,416,891 450 1.528 81 64 272 9.3 10.72 491 3437 1,420,328 451 1.395 84 76 276 10.4 10.72 491 3437 1,420,328 451 1.339 81 82 272 9.3										
445 1.666 87 82 268 10.0 10.74 491 3437 1,403,143 446 1.457 84 72 268 9.4 10.73 491 3437 1,406,580 447 1.465 83 78 264 9.5 10.73 491 3437 1,410,017 448 1.255 98 92 262 9.1 10.73 491 3437 1,410,017 449 1.509 84 70 276 9.4 10.72 491 3437 1,416,891 450 1.528 81 64 272 9.3 10.72 491 3437 1,420,328 451 1.395 84 76 276 9.3 10.72 491 3437 1,423,765 452 1.487 85 78 276 9.3 10.72 491 3437 1,423,765 453 1.538 81 82 272 9.3										
446 1.457 84 72 268 9.4 10.73 491 3437 1,406,580 447 1.465 83 78 264 9.5 10.73 491 3437 1,410,017 448 1.255 98 92 262 9.1 10.73 491 3437 1,413,454 449 1.509 84 70 276 9.4 10.72 491 3437 1,416,891 450 1.528 81 64 272 9.3 10.72 491 3437 1,420,328 451 1.395 84 76 276 10.4 10.72 491 3437 1,427,202 453 1.538 81 82 272 9.3 10.72 491 3437 1,423,765 453 1.538 81 82 272 9.3 10.71 491 3437 1,434,076 453 1.525 93 94 272 9.3						10.7	10.74	489	3423	1,399,706
446 1.457 84 72 268 9.4 10.73 491 3437 1,406,580 447 1.465 83 78 264 9.5 10.73 491 3437 1,410,017 448 1.255 98 92 262 9.1 10.73 491 3437 1,410,017 449 1.509 84 70 276 9.4 10.72 491 3437 1,416,891 450 1.528 81 64 272 9.3 10.72 491 3437 1,420,328 451 1.395 84 76 276 10.4 10.72 491 3437 1,427,202 453 1.538 81 82 272 9.3 10.71 491 3437 1,430,639 454 1.616 89 90 268 11.2 10.71 491 3437 1,434,076 455 1.525 93 94 272 9.3	445	1.666	87	82	268	10.0	10.74	491	3437	1,403,143
447 1.465 83 78 264 9.5 10.73 491 3437 1,410,017 448 1.255 98 92 262 9.1 10.73 491 3437 1,413,454 449 1.509 84 70 276 9.4 10.72 491 3437 1,416,891 450 1.528 81 64 272 9.3 10.72 491 3437 1,420,328 451 1.395 84 76 276 10.4 10.72 491 3437 1,427,202 452 1.487 85 78 276 9.3 10.72 491 3437 1,427,202 453 1.538 81 82 272 9.3 10.71 491 3437 1,430,639 454 1.616 89 90 268 11.2 10.71 491 3437 1,430,639 455 1.525 93 94 272 9.3 10.71 491 3437 1,430,639 450 1.525 93	446	1.457	84	72	268	9.4	10.73	491		
448 1.255 98 92 262 9.1 10.73 491 3437 1,413,454 449 1.509 84 70 276 9.4 10.72 491 3437 1,416,891 450 1.528 81 64 272 9.3 10.72 491 3437 1,420,328 451 1.395 84 76 276 10.4 10.72 491 3437 1,423,765 452 1.487 85 78 276 9.3 10.72 491 3437 1,427,202 453 1.538 81 82 272 9.3 10.71 491 3437 1,430,639 454 1.616 89 90 268 11.2 10.71 491 3437 1,437,513 455 1.525 93 94 272 9.3 10.71 491 3437 1,440,950 457 1.533 92 90 272 9.1										
449 1.509 84 70 276 9.4 10.72 491 3437 1,416,891 450 1.528 81 64 272 9.3 10.72 491 3437 1,420,328 451 1.395 84 76 276 10.4 10.72 491 3437 1,423,765 452 1.487 85 78 276 9.3 10.72 491 3437 1,427,202 453 1.538 81 82 272 9.3 10.71 491 3437 1,430,639 454 1.616 89 90 268 11.2 10.71 491 3437 1,434,076 455 1.525 93 94 272 9.3 10.71 491 3437 1,434,076 455 1.525 93 94 272 9.3 10.71 491 3437 1,440,950 457 1.533 92 98 268 9.2										
450 1.528 81 64 272 9.3 10.72 491 3437 1,420,328 451 1.395 84 76 276 10.4 10.72 491 3437 1,423,765 452 1.487 85 78 276 9.3 10.72 491 3437 1,427,202 453 1.538 81 82 272 9.3 10.71 491 3437 1,430,639 454 1.616 89 90 268 11.2 10.71 491 3437 1,434,076 455 1.525 93 94 272 9.3 10.71 491 3437 1,434,076 455 1.525 93 94 272 9.3 10.71 491 3437 1,437,513 456 1.489 92 98 268 9.2 10.71 491 3437 1,440,950 457 1.533 92 90 272 9.1										
451 1.395 84 76 276 10.4 10.72 491 3437 1,423,765 452 1.487 85 78 276 9.3 10.72 491 3437 1,427,202 453 1.538 81 82 272 9.3 10.71 491 3437 1,430,639 454 1.616 89 90 268 11.2 10.71 491 3437 1,434,076 455 1.525 93 94 272 9.3 10.71 491 3437 1,437,513 456 1.489 92 98 268 9.2 10.71 491 3437 1,440,950 457 1.533 92 90 272 9.1 10.70 491 3437 1,447,824 458 1.467 92 72 274 9.2 10.70 491 3437 1,447,824 459 1.251 114 104 270 9.2 10.70 491 3437 1,454,698 461 1.161 92										
452 1.487 85 78 276 9.3 10.72 491 3437 1,427,202 453 1.538 81 82 272 9.3 10.71 491 3437 1,430,639 454 1.616 89 90 268 11.2 10.71 491 3437 1,434,076 455 1.525 93 94 272 9.3 10.71 491 3437 1,437,513 456 1.489 92 98 268 9.2 10.71 491 3437 1,440,950 457 1.533 92 90 272 9.1 10.70 491 3437 1,444,387 458 1.467 92 72 274 9.2 10.70 491 3437 1,447,824 459 1.251 114 104 270 9.2 10.70 491 3437 1,451,261 460 1.321 97 122 276 9.2										
453 1.538 81 82 272 9.3 10.71 491 3437 1,430,639 454 1.616 89 90 268 11.2 10.71 491 3437 1,434,076 455 1.525 93 94 272 9.3 10.71 491 3437 1,437,513 456 1.489 92 98 268 9.2 10.71 491 3437 1,440,950 457 1.533 92 90 272 9.1 10.70 491 3437 1,444,387 458 1.467 92 72 274 9.2 10.70 491 3437 1,447,824 459 1.251 114 104 270 9.2 10.70 491 3437 1,451,261 460 1.321 97 122 276 9.2 10.70 491 3437 1,454,698 461 1.161 92 24 162 9.8										
454 1.616 89 90 268 11.2 10.71 491 3437 1,434,076 455 1.525 93 94 272 9.3 10.71 491 3437 1,437,513 456 1.489 92 98 268 9.2 10.71 491 3437 1,440,950 457 1.533 92 90 272 9.1 10.70 491 3437 1,444,387 458 1.467 92 72 274 9.2 10.70 491 3437 1,447,824 459 1.251 114 104 270 9.2 10.70 491 3437 1,451,261 460 1.321 97 122 276 9.2 10.70 491 3437 1,454,698 461 1.161 92 24 162 9.8 10.69 493 3451 1,458,149 462 1.423 88 42 198 9.1 10.69 493 3451 1,466,5051 463 1.188 98	452	1.487	85	78	276	9.3	10.72	491	3437	1,427,202
454 1.616 89 90 268 11.2 10.71 491 3437 1,434,076 455 1.525 93 94 272 9.3 10.71 491 3437 1,437,513 456 1.489 92 98 268 9.2 10.71 491 3437 1,440,950 457 1.533 92 90 272 9.1 10.70 491 3437 1,444,387 458 1.467 92 72 274 9.2 10.70 491 3437 1,447,824 459 1.251 114 104 270 9.2 10.70 491 3437 1,451,261 460 1.321 97 122 276 9.2 10.70 491 3437 1,454,698 461 1.161 92 24 162 9.8 10.69 493 3451 1,458,149 462 1.423 88 42 198 9.1 10.69 493 3451 1,466,5051 463 1.188 98	453	1.538	81	82	272	9.3	10.71	491	3437	1,430,639
455 1.525 93 94 272 9.3 10.71 491 3437 1,437,513 456 1.489 92 98 268 9.2 10.71 491 3437 1,440,950 457 1.533 92 90 272 9.1 10.70 491 3437 1,444,387 458 1.467 92 72 274 9.2 10.70 491 3437 1,447,824 459 1.251 114 104 270 9.2 10.70 491 3437 1,451,261 460 1.321 97 122 276 9.2 10.70 491 3437 1,454,698 461 1.161 92 24 162 9.8 10.69 493 3451 1,458,149 462 1.423 88 42 198 9.1 10.69 493 3451 1,461,600 463 1.188 98 66 200 9.9	454	1.616	89	90						
456 1.489 92 98 268 9.2 10.71 491 3437 1,440,950 457 1.533 92 90 272 9.1 10.70 491 3437 1,444,387 458 1.467 92 72 274 9.2 10.70 491 3437 1,447,824 459 1.251 114 104 270 9.2 10.70 491 3437 1,451,261 460 1.321 97 122 276 9.2 10.70 491 3437 1,454,698 461 1.161 92 24 162 9.8 10.69 493 3451 1,458,149 462 1.423 88 42 198 9.1 10.69 493 3451 1,461,600 463 1.188 98 66 200 9.9 10.69 493 3451 1,465,051 465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953 465 1.714 67										
457 1.533 92 90 272 9.1 10.70 491 3437 1,444,387 458 1.467 92 72 274 9.2 10.70 491 3437 1,447,824 459 1.251 114 104 270 9.2 10.70 491 3437 1,451,261 460 1.321 97 122 276 9.2 10.70 491 3437 1,454,698 461 1.161 92 24 162 9.8 10.69 493 3451 1,458,149 462 1.423 88 42 198 9.1 10.69 493 3451 1,461,600 463 1.188 98 66 200 9.9 10.69 493 3451 1,465,051 464 1.216 103 94 208 9.8 10.69 493 3451 1,471,953 465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953 465 1.843 75										
458 1.467 92 72 274 9.2 10.70 491 3437 1,447,824 459 1.251 114 104 270 9.2 10.70 491 3437 1,451,261 460 1.321 97 122 276 9.2 10.70 491 3437 1,454,698 461 1.161 92 24 162 9.8 10.69 493 3451 1,458,149 462 1.423 88 42 198 9.1 10.69 493 3451 1,461,600 463 1.188 98 66 200 9.9 10.69 493 3451 1,465,051 464 1.216 103 94 208 9.8 10.69 493 3451 1,466,5052 465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953 466 1.843 75 50 173 9.1										
459 1.251 114 104 270 9.2 10.70 491 3437 1,451,261 460 1.321 97 122 276 9.2 10.70 491 3437 1,454,698 461 1.161 92 24 162 9.8 10.69 493 3451 1,458,149 462 1.423 88 42 198 9.1 10.69 493 3451 1,461,600 463 1.188 98 66 200 9.9 10.69 493 3451 1,465,051 464 1.216 103 94 208 9.8 10.69 493 3451 1,468,502 465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953 466 1.843 75 50 173 9.1 10.68 493 3451 1,471,953										
460 1.321 97 122 276 9.2 10.70 491 3437 1,454,698 461 1.161 92 24 162 9.8 10.69 493 3451 1,458,149 462 1.423 88 42 198 9.1 10.69 493 3451 1,461,600 463 1.188 98 66 200 9.9 10.69 493 3451 1,465,051 464 1.216 103 94 208 9.8 10.69 493 3451 1,468,502 465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953 466 1.843 75 50 173 9.1 10.68 493 3451 1,471,953										
461 1.161 92 24 162 9.8 10.69 493 3451 1,458,149 462 1.423 88 42 198 9.1 10.69 493 3451 1,461,600 463 1.188 98 66 200 9.9 10.69 493 3451 1,465,051 464 1.216 103 94 208 9.8 10.69 493 3451 1,468,502 465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953 466 1.843 75 50 173 9.1 10.68 493 3451 1,471,953 466 1.843 75 50 173 9.1 10.68 493 3451 1,475,404										1,451,261
461 1.161 92 24 162 9.8 10.69 493 3451 1,458,149 462 1.423 88 42 198 9.1 10.69 493 3451 1,461,600 463 1.188 98 66 200 9.9 10.69 493 3451 1,465,051 464 1.216 103 94 208 9.8 10.69 493 3451 1,468,502 465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953 466 1.843 75 50 173 9.1 10.68 493 3451 1,471,953 466 1.843 75 50 173 9.1 10.68 493 3451 1,475,404			97		276	9.2		491	3437	1,454,698
462 1.423 88 42 198 9.1 10.69 493 3451 1,461,600 463 1.188 98 66 200 9.9 10.69 493 3451 1,465,051 464 1.216 103 94 208 9.8 10.69 493 3451 1,468,502 465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953 466 1.843 75 50 173 9.1 10.68 493 3451 1,471,953	461		92							
463 1.188 98 66 200 9.9 10.69 493 3451 1,465,051 464 1.216 103 94 208 9.8 10.69 493 3451 1,468,502 465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953 466 1.843 75 50 173 9.1 10.68 493 3451 1,475,404										
464 1.216 103 94 208 9.8 10.69 493 3451 1,468,502 465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953 466 1.843 75 50 173 9.1 10.68 493 3451 1,471,953										
465 1.714 67 36 148 9.7 10.68 493 3451 1,471,953										
466 1843 75 50 172 01 1069 403 2461 1475 404										
466 1.843 75 50 172 n_7 9.1 10.68 493 3451 1,475,404										
	466	1.843	75	50	172 _{- 1}	D-7 ^{9.1}	10.68	493	3451	1,475,404

D-7^{9.1} A-4-7 B-46

467	1.844	75	48	172	9.0	10.68	493	3451	1,478,855
468	2.052	62	50	176	9.1	10.67	493	3451	1,482,306
469	1.497	74	42	174	9.7	10.67	493	3451	1,485,757
470	1.472	72	50	176	9.1	10.67	493	3451	1,489,208
		78					493	3451	1,492,659
471	1.520		46	182	9.8	10.67			
472	1.797	77	52	176	9.3	10.66	493	3451	1,496,110
473	1.210	93	28	172	9.8	10.66	493	3451	1,499,561
474	1.194	101	60	184	18.5	10.68	493	3451	1,503,012
475	1.388	66	34	184	9.7	10.68	493	3451	1,506,463
476	1.172	96	32	198	14.6	10.68	493	3451	1,509,914
477	1.246	87	50	204	15.4	10.69	493	3451	1,513,365
478	1.388	81	38	186	9.0	10.69	493	3451	1,516,816
479	1.819	61	54	192	8.7	10.69	493	3451	1,520,267
480	1.215	90	26	206	9.1	10.68	493	3451	1,523,718
481	1.554	75	46	182	9.8	10.68	493	3451	1,527,169
482	1.549	74	40	182	9.2	10.68	493	3451	1,530,620
483	1.938	65	80	188	9.2	10.68	493	3451	1,534,071
484	1.473	83	86	148	9.1	10.67	493	3451	1,537,522
485	2.058	69	74	192	9.2	10.67	493	3451	1,540,973
									1,544,424
486	1.739	69	46	198	9.1	10.67	493	3451	
487	1.711	70	50	194	9.2	10.66	493	3451	1,547,875
488	1.641	74	66	192	9.3	10.66	493	3451	1,551,326
489	1.668	72	64	194	9.2	10.66	493	3451	1,554,777
490	1.772	57	72	194	9.2	10.65	493	3451	1,558,228
491	1.765	65	80	194	9.1	10.65	493	3451	1,561,679
492	1.920	63	80	192	9.3	10.65	493	3451	1,565,130
493	1.865	64	80	192	9.9	10.65	493	3451	1,568,581
494	2.070	53	38	184	9.1	10.64	493	3451	1,572,032
								3451	
495	2.068	59	46	182	9.2	10.64	493		1,575,483
496	2.048	61	46	182	9.2	10.64	493	3451	1,578,934
497	1.998	62	48	182	9.2	10.63	493	3451	1,582,385
498	2.236	56	36	190	9.0	10.63	493	3451	1,585,836
499	2.206	56	28	192	9.0	10.63	493	3451	1,589,287
500	2.140	63	46	192	9.1	10.63	493	3451	1,592,738
501	1.794	70	92	192	9.0	10.62	493	3451	1,596,189
502	1.320	99	68	208	9.0	10.62	493	3451	1,599,640
							493	3451	
503	1.730	73	94	192	9.1	10.62			1,603,091
504	1.751	75	96	192	9.0	10.61	493	3451	1,606,542
505	1.896	65	96	198	8.9	10.61	493	3451	1,609,993
506	1.861	66	92	198 ,	8.9	10.61	493	3451	1,613,444
507	2.046	63	62	206	9.1	10.60	493	3451	1,616,895
508	1.938	68	62	208	9.2	10.60	493	3451	1,620,346
509	1.816	75	50	208	9.2	10.60	493	3451	1.623.797
510	1.793	74	54	206	9.1	10.59	493	3451	1,627,248
511	1.892	67	60	208	9.3	10.59	495	3465	1,630,713
									1,634,178
512	1.930	67	42	208	9.2	10.59	495	3465	
513	1.608	52	26	142	9.2	10.59	495	3465	1,637,643
514	1.662	75	62	198	9.1	10.58	495	3465	1,641,108
515	1.631	73	64	198	9.2	10.58	495	3465	1,644,573
516	1.678	75	72	206	9.3	10.58	495	3465	1,648,038
517	1.643	73	74	204	9.3	10.58	495	3465	1,651,503
518	1.899	78	72	198	9.3	10.57	495	3465	1,654,968
519	1.870	75	70	198	9.3	10.57	495	3465	1,658,433
520	1.776	80	80	192	8.9	10.57	495	3465	1,661,898
		77	78	192	9.2	10.56	495	3465	1,665,363
521	1.850								
522	1.789	74	78	192	9.3	10.56	495	3465	1,668,828
523	2.189	63	44	198	9.3	10.56	495	3465	1,672,293
524	2.120	63	42	198	9.3	10.56	495	3465	1,675,758
525	1.406	94	98	278	7.3	10.55	495	3465	1,679,223
526	1.334	93	106	268	7.0	10.54	495	3465	1,682,688
527	1.621	67	34	188	7.1	10.54	495	3465	1,686,153
528	1.365	88	100	260	7.1	10.53	495	3465	1,689,618
				262					
529	1.380	88	92		7.0	10.52	495	3465	1,693,083
530	1.792	70	26	182	7.1	10.52	495	3465	1,696,548
531	1.596	77	98	266	7.3	10.51	495	3465	1,700,013
532	1.575	78	100	268	7.5	10.51	495	3465	1,703,478
533	1.546	79	106	272	7.4	10.50	495	3465	1,706,943
534	1.558	76	96	264	D-8 ^{7.3}	10.49	495	3465	1,710,408
554			-	,	ה.א-ת			J. J.	.,, , ,

D-8' A-4-8 B-47

535	1.594	76	98	262	7.3	10.49	495	3465 1,713,873
536	1.506	62	24	188	7.4	10.48	495	3465 1,717,338
								3465 1,720,803
537	1.586	78	98	266	7.4	10.48	495	
538	1.600	77	98	266	7.4	10.47	495	3465 1,724,268
539	1.537	83	74	274	7.3	10.47	495	3465 1,727,733
			60	272	7.6	10.46	495	3465 1,731,198
540	1.484	75						
541	1.328	86	56	264	7.5	10.46	495	3465 1,734,663
542 -	1.560	67	60	182	8.0	10.45	495	3465 1,738,128
							495	3465 1,741,593
543	1.517	82	68	264	9.7	10.45		· ·
544	1.497	83	70	266	7.6	10.44	495	3465 1,745,058
545	1.547	81	68	268	7.4	10.44	495	3465 1,748,523
					7.5	10.43	495	3465 1,751,988
546	1.560	83	72	272				
547	1.598	81	72	266	7.5	10.43	495	3465 1,755,453
548	1.578	82	70	266	7.5	10.42	495	3465 1,758,918
	1.394	82	70	276	7.3	10.42	495	3465 1,762,383
549								•
550	1.484	89	86	262	7.6	10.41	495	3465 1,765,848
551	1.414	76	34	218	12.7	10.42	495	3465 1,769,313
552	1.434	81	86	274	11.1	10.42	495	3465 1,772,778
553	1.374	86	76	272	10.1	10.42	495	3465 1,776,243
554	1.540	65	24	168	7.2	10.41	495	3465 1,779,708
555	1.529	68	36	174	7.2	10.40	495	3465 1,783,173
					9.8	10.40	495	3465 1,786,638
556	1.475	74	64	174				
557	1.291	93	86	272	8.5	10.40	495	3465 1,790,103
558	1.403	79	62	188	11.8	10.40	495	3465 1,793,568
			66	212	12.8	10.41	495	3465 1,797,033
559	1.553	91						•
560	1.331	96	90	238	9.3	10.41	495	3465 1,800,498
561	1.523	66	24	186	9.3	10.40	495	3465 1,803,963
562	1.580	90	92	284	10.8	10.40	495	3465 1,807,428
								· ·
563	1.561	88	100	266	9.3	10.40	495	-
564	1.756	90	100	268	9.6	10.40	495	3465 1,814,358
565	1.774	88	96	268	9.6	10.40	495	3465 1,817,823
		82	30	168	20.3	10.42	495	3465 1,821,288
566	1.540							
567	2.050	56	24	172	20.7	10.43	495	3465 1,824,753
568	1.743	91	88	260	10.8	10.44	495	3465 1,828,218
569	1.724	93	92	262	9.6	10.43	495	3465 1,831,683
570	1.734	93	98	262	9.6	10.43	495	3465 1,835,148
571	1.695	94	102	266	9.6	10.43	495	3465 1,838,613
572	1.671	57	22	162	9.2	10.43	495	3465 1,842,078
573	1.400	61	36	154	9.0	10.43	495	3465 1,845,543
574	1.643	58	22	166	16.6	10.44	495	3465 1,849,008
575	1.561	63	34	172	13.7	10.44	495	3465 1,852,473
							495	
576	1.251	101	86	264	10.6	10.44		
577	1.408	74	36	186	11.9	10.45	495	3465 1,859,403
578	1.582	61	36	164	9.1	10.44	495	3465 1,862,868
579	1.153	100	74	170	14.0	10.45	495	3465 1,866,333
580	1.232	93	106	266	18.2	10.46	495	3465 1,869,798
581	1.705	57	22	170	9.6	10.46	495	3465 1,873,263
582	1.619	59	46	176	10.4	10.46	495	3465 1,876,728
583	1.675	62	46	180	9.7	10.46	495	3465 1,880,193
584	1.668	62	42	182	9.3	10.46	495	3465 1,883,658
585	1.193	83	28	210	9.8	10.46	495	3465 1,887,123
586	1.616	76	96	276	11.0	10.46	499	3493 1,890,616
					9.7	10.46	499	3493 1,894,109
587	1.571	78	100	266				
588	1.460	79	72	262	9.4	10.45	499	3493 1,897,602
589	1.406	64	86	182	9.3	10.45	499	3493 1,901,095
590	1.631	83	72	266	9.9	10.45	503	3521 1,904,616
591	1.419	92	114	284	12.1	10.45	503	3521 1,908,137
592	1.460	90	100	272	11.5	10.46	505	3535 1,911,672
593	1.620	80	90	252	10.2	10.46	505	3535 1,915,207
							505	
594	1.625	77	102	260	10.8	10.46		3535 1,918,742
595	1.555	73	90	246	11.9	10.46	505	3535 1,922,277
596	1.637	78	100	264	12.0	10.46	505	3535 1,925,812
597	1.342	87	50	234	11.9	10.46	505	3535 1,929,347
598	1.285	82	22	178	9.4	10.46	505	3535 1,932,882
599	1.849	56	62	206	9.4	10.46	505	3535 1,936,417
600	1.559	78	108	276	9.2	10.46	505	3535 1,939,952
					10.8	10.46		
601	1.620	75	114	262			505	3535 1,943,487
602	1.577	79	114	284	$D_{-9}^{9.3}$	10.46	505	3535 1,947,022
					7			

D-9⁹ A-4-9 B-48

603	3.503	28	30	148	9.2	10.45	505	3535	1,950,557
604	1.630	76	122	274	9.4	10.45	505	3535	1,954,092
605	1.625	64	66	178	9.2	10.45	505	3535	1,957,627
606	1.559	91	92	264	13.8	10.46	505	3535	1,961,162
		91	86				505	3535	1,964,697
607	1.566			272	10.2	10.46			
608	1.429	97	90	284	9.6	10.45	505	3535	1,968,232
609	1.718	69	26	166	13.5	10.46	505	3535	1,971,767
610	1.277	109	100	202	9.2	10.46	505	3535	1,975,302
611	1.234	91	50	156	9.4	10.46	505	3535	1,978,837
612	1.208	94	64	198	9.3	10.45	505	3535	1,982,372
613	1.231	97	66	202	9.3	10.45	505	3535	1,985,907
614	1.368	100	72	220	11.0	10.45	505	3535	1,989,442
							505	3535	1,992,977
615	2.009	54	70	156	18.3	10.47			
616	1.726	53	96	160	8.8	10.46	505	3535	1,996,512
617	1.857	62	78	206	9.1	10.46	505	3535	2,000,047
618	1.923	63	80	208	9.2	10.46	505	3535	2,003,582
619	1.685	78	86	214	9.3	10.46	505	3535	2,007,117
620	1.656	76	86	212	9.4	10.46	505	3535	2,010,652
621	1.665	74	88	214	9.5	10.45	505	3535	2,014,187
		54		160		10.46	505	3535	2,017,722
622	2.188		88		11.7				
623	1.643	76	112	210	9.0	10.45	505	3535	2,021,257
624	2.175	63	76	162	9.2	10.45	505	3535	2,024,792
625	2.276	52	94	186	9.3	10.45	505	3535	2,028,327
626	2.197	53	98	184	10.1	10.45	505	3535	2,031,862
627	1.897	64	110	214	9.4	10.45	505	3535	2,035,397
628	1.843	59	108	212	9.2	10.45	505	3535	2,038,932
629	1.890	65	112	212	9.3	10.44	505	3535	2,042,467
		93	34	254	9.3	10.44	505	3535	2,046,002
630	1.442								
631	1.749	66	68	192	9.3	10.44	505	3535	2,049,537
632	1.777	65	66	192	9.3	10.44	505	3535	2,053,072
633	1.767	62	64	192	9.3	10.44	505	3535	2,056,607
634	1.709	66	72	188	9.3	10.43	505	3535	2,060,142
635	1.722	64	70	188	9.4	10.43	505	3535	2,063,677
636	1.743	63	64	192	9.3	10.43	505	3535	2,067,212
637	1.488	95	78	282	9.1	10.43	505	3535	2,070,747
638	1.778	93	88	176	8.9	10.43	505	3535	2,074,282
		90		172	9.1	10.43	505	3535	2,077,817
639	1.799		88						
640	1.785	93	88	176	9.1	10.42	505	3535	2,081,352
641	1.770	90	86	172	9.0	10.42	505	3535	2,084,887
642	1.349	91	78	202	8.9	10.42	505	3535	2,088,422
643	1.358	89	78	198	8.9	10.42	505	3535	2,091,957
644	1.406	91	78	200	9.0	10.41	505	3535	2,095,492
645	1.359	89	78	202	9.0	10.41	505	3535	2,099,027
646	1.439	81	82	200	9.0	10.41	505	3535	2,102,562
647	1.459	81	84	196	9.9	10.41	507	3549	2,106,111
648	1.436	76	78	190	9.1	10.41	507	3549	2,109,660
649	2.494	60	102	208	9.2	10.40	507	3549	2,113,209
650	2.495	58	96	208	9.3	10.40	507	3549	2,116,758
651	2.512	60	96	212	9.3	10.40	507	3549	2,120,307
652	2.318	62	94	214	9.3	10.40	507	3549	2,123,856
653	2.170	56	78	206	9.3	10.40	507	3549	2,127,405
654	1.802	78	46	198	9.3	10.40	507	3549	2,130,954
655	1.778	76	38	198	9.3	10.39	507	3549	2,134,503
656	1.816	74	46	202	9.3	10.39	507	3549	2,138,052
657	1.787	73	44	206	9.2	10.39	507	3549	2,141,601
658	1.745	72	40	202	9.3	10.39	507	3549	2,145,150
659	1.743	71	44	202	9.3	10.39	507	3549	2,148,699
660	2.010	57	40	208	9.2	10.39	507	3549	
661	2.032	54	40	208	9.3	10.38	507	3549	2,155,797
662	1.871	. 56	40	208	9.3	10.38	507	3549	2,159,346
663	1.546	61	88	156	9.2	10.38	507	3549	2,162,895
664	1.874	59	40	208	9.4	10.38	507	3549	2,166,444
665 ⁻	2.012	72	54	200	9.3	10.38	507	3549	2,169,993
666	2.029	68	48	198	9.3	10.38	507	3549	2,173,542
667	2.017	70	52	200	9.3	10.37	507		2,177,091
668	2.040	68	5 4	198	9.2	10.37	507		2,180,640
669	2.246	82	58	188	9.2	10.37	507	3549	2,184,189
		83		188	9.4	10.37			
670	2.250	63	60	100 D	-10 ^{9.3}	10.37	507	3549	2,187,738

D-10⁹ A-4-10 B-49

671	2.162	84	56	186	9.3	10.37	507	3549	2,191,287
672	2.281	74	52	188	9.3	10.37	507	3549	2,194,836
673	2.203	81	48	188	9.2	10.36	507	3549	2,198,385
674	2.271	65	56	176	9.2	10.36	507	3549	2,201,934
		64	54	172	9.1	10.36	507	3549	2,205,483
675	2.293			176	9.0	10.36	507	3549	2,209,032
676	2.174	63	50				507	3549	2,212,581
677	2.563	55	50	176	9.2	10.36			
678	2.570	57	46	176	9.2	10.35	507	3549	2,216,130
679	2.714	49	44	182	9.1	10.35	507	3549	2,219,679
680	2.573	52	44	182	8.9	10.35	507	3549	2,223,228
681	2.077	93	62	196	9.2	10.35	507	3549	2,226,777
		89	56	198	9.1	10.35	507	3549	2,230,326
682	2.131				9.1	10.35	507	3549	2,233,875
683	2.155	89	66	198			507	3549	2,237,424
684	1.796	89	62	168	8.9	10.34			
685	2.301	83	58	198	9.1	10.34	507	3549	2,240,973
686	2.241	81	58	198	9.1	10.34	507	3549	2,244,522
687	2.229	79	48	200	9.1	10.34	507	3549	2,248,071
688	2.238	57	42	188	9.3	10.34	507	3549	2,251,620
	2.138	60	42	184	9.9	10.34	507	3549	2,255,169
689			44	188	10.5	10.34	507	3549	2,258,718
690	2.141	58				10.34	507	3549	2,262,267
691	2.053	66	44	192	9.8			3549	2,265,816
692	1.863	73	42	180	9.3	10.33	507		
693	1.993	72	48	178	9.1	10.33	507	3549	2,269,365
694	1.985	75	46	178	9.7	10.33	507	3549	2,272,914
695	1.350	122	114	238	9.1	10.33	507	3549	2,276,463
		77	50	182	9.1	10.33	507	3549	2,280,012
696	2.154			182	9.2	10.33	507	3549	2,283,561
697	2.105	78	48			10.36	507	3549	2,287,110
698	2.194	67	62	200	36.3				
699	2.170	70	62	198	9.2	10.36	507	3549	2,290,659
700	2.085	72	62	200	9.1	10.36	507	3549	2,294,208
701	2.161	71	60	200	9.8	10.36	507	3549	2,297,757
702	2.246	73	64	200	9.3	10.36	507	3549	2,301,306
703	1.364	69	56	158	8.9	10.36	507	3549	2,304,855
			42	206	9.1	10.35	507	3549	2,308,404
704	1.854	58				10.35	507	3549	2,311,953
705	1.575	79	38	280	9.1				
706	2.531	67	104	214	9.3	10.35	507	3549	2,315,502
707	2.515	65	102	212	9.3	10.35	507	3549	2,319,051
708	2.135	87	90	202	9.0	10.35	507	3549	2,322,600
709	2.121	90	96	202	9.1	10.35	509	3563	2,326,163
		74	64	214	8.9	10.34	511	3577	2,329,740
710	1.645				9.1	10.34	511	3577	2,333,317
711	1.667	74	64	212			511	3577	2,336,894
712	2.233	63	54	208	9.3	10.34			
713	2.154	64	56	206	9.3	10.34	511	3577	2,340,471
714	2.044	68	62	206	9.1	10.34	511		2,344,048
715	2.559	77	84	200	9.3	10.34	511	3577	
716	2.567	78	94	200	9.3	10.33	511	3577	
717	2.290	55	50	154	9.3	10.33	511	3577	2,354,779
718	2.434	63	96	198	9.3	10.33	511	3577	2,358,356
		60	86	194	9.4	10.33	511	3577	2,361,933
719	2.488			208	9.4	10.33	511	3577	2,365,510
720	2.874	60	104			10.33	511	3577	2,369,087
721	2.790	62	108	208	9.3				2,372,664
722	2.716	66	110	208	9.2	10.33	511	3577	
723	2.432	48	96	152	9.2	10.32	511	3577	
724	2.814	53	96	208	9.4	10.32	511	3577	2,379,818
725	2.771	55	94	208	9.4	10.32	511	3577	2,383,395
726	2.917	50	88	208	9.3	10.32	511	3577	2,386,972
		71	108	246	9.2	10.32	511	3577	2,390,549
727	1.414		88	200	9.3	10.32	511	3577	2,394,126
728	2.052	70					511	3577	
729	2.172	66	78	202	9.3	10.32			
730	2.205	61	88	206	9.4	10.31	511	3577	
731	2.422	64	88	218	9.4	10.31	511	3577	2,404,857
732	2.364	63	104	214	9.1	10.31	511	3577	2,408,434
733	2.461	73	108	218	9.4	10.31	511	3577	2,412,011
		68	98	218	9.5	10.31	511	3577	
734	2.432		72	200	9.4	10.31	511	3577	
735	2.623	57					511	3577	
736	2.747	55	86	202	9.2	10.31			
737	2.777	57	96	202	9.2	10.30	511	3577	
738	2.340	65	86	200 T)-11 ^{9.2}	10.30	511	3577	2,429,896
				L	-11				

D-11 A-4-11 B-50

739	2.312	64	90	198	9.2	10.30	511	3577	2,433,473
740	2.315	73	70	198	9.1	10.30	511	3577	2,437,050
741	2.173	76	64	198	9.0	10.30	511	3577	2,440,627
742	2.264	57	62	202	9.1	10.30	511	3577	2,444,204
743	2.204	63	62	202	9.3	10.30	511	3577	2,447,781
744	2.101	64	64	206	9.3	10.29	511	3577	2,451,358
745	2.710	76	56	202	9.3	10.29	511	3577	2,454,935
746	2.415	80	56	206	9.1	10.29	511	3577	2,458,512
747	2.274	84	54	200	8.9	10.29	511	3577	2,462,089
748	2.643	71	56	198	8.9	10.29	511	3577	2,465,666
749	2.598	47	88	206	9.3	10.29	511	3577	2,469,243
750	2.610	51	94	210	9.4	10.28	511	3577	2,472,820
751	2.690	49	88	206	9.3	10.28	511	3577	2,476,397
752	2.360	56	80	202	9.4	10.28	511	3577	2,479,974
753	2.570	53	80	206	9.3	10.28	513	3591	2,483,565
754	2.494	51	78	202	9.2	10.28	513	3591	2,487,156
755	2.372	87	72	194	8.9	10.28	565	3955	2,491,111
756	2.348	86	78	194	8.8	10.28	565	3955	2,495,066
757	2.092	53	78	156	8.9	10.27	565	3955	2,499,021
758	2.873	62	102	208	9.4	10.27	565	3955	2,502,976
759	1.699	71	104	202	8.7	10.27	565	3955	2,506,931
760	2.132	66	86	202	9.6	10.27	565	3955	2,510,886
761	2.274	61	86	206	9.6	10.27	565	3955	2,514,841
762	1.266	111	98	206	10.1	10.27	565	3955	2,518,796
763	1.251	92	50	156	11.0	10.27	565	3955	2,522,751
764	1.222	98	64	198	10.4	10.27	565	3955	2,526,706
765	1.390	100	72	222	8.9	10.27	565	3955	2,530,661
766	1.445	67	90	206	16.8	10.28	565	3955	2,534,616
767	1.676	78	88	164	9.3	10.28	565	3955	2,538,571
768	2.092	53	94	182	9.7	10.27	565	3955	2,542,526
769	1.479	82	80	198	9.4	10.27	565	3955	2,546,481
770	1.473	80	80	192	9.3	10.27	565	3955	2,550,436
771	2.500	59	100	210	9.3	10.27	565	3955	2,554,391
772	2.437	59	98	208	9.6	10.27	565 565	3955	2,558,346
773	2.458	62	98	208	9.6	10.27	565	3955	2,562,301
774	2.197	64	94	214	9.6	10.27	565	3955	2,566,256
775	2.361	60	98	212	9.5	10.27	565	3955	2,570,211
776	2.014	55	40	208	9.4	10.27	565	3955	2,574,166
777	2.021	55	40	208	9.5	10.27	565	3955	2,578,121
778	2.248	76	54	188	9.4	10.26	565	3955	2,582,076
779	1.944	84	36	192	9.4	10.26	565	3955	2,586,031
780	2.284	64	54	172	9.4	10.26	565	3955	2,589,986
781	2.232	62	48	172	9.4	10.26	565	3955	2,593,941
782	2.508	56	52	180	9.4	10.26	565	3955	2,597,896
783	2.731	46	44	184	9.2	10.26	565	3955	2,601,851
784	2.453	54	42	182	9.3	10.26	565	3955	2,605,806
785	2.116	59	40	188	9.3	10.26	565	3955	2,609,761
786	2.146	58	38	186	9.4	10.25	565	3955	2,613,716
787	1.830	73	44	190	9.3	10.25	565	3955	2,617,671
788	1.351	101	78	282	8.8	10.25	565	3955	2,621,626
789	1.613	53	20	160	9.1	10.25	565	3955	2,625,581
790	1.713	60	32	206	9.3	10.25	565	3955	2,629,536
791	2.447	68	112	212	9.4	10.25	565	3955	2,633,491
792	1.626	76	38	276	9.7	10.25	565	3955	2,637,446
793	2.525	68	96	212	9.6	10.25	565	3955	2,641,401
794	1.357	111	42	132	34.1	10.28	565	3955	2,645,356
795	2.153	67	86	202	9.4	10.28	565	3955	2,649,311
796	2.111	71	98	198	9.6	10.27	565	3955	2,653,266
797	2.160	67	92	202	9.6	10.27	565	3955	2,657,221
798	2.239	62	86	206	9.4	10.27	565	3955	2,661,176
799	1.983	75	86	202	9.4	10.27	565	3955	2,665,131
800	1.959	71	72	206	9.6	10.27	565	3955	2,669,086
801	1.929	59	74	162	9.6	10.27	565	3955	2,673,041
802	2.364	69	108	218	9.6	10.27	565	3955	2,676,996
803	2.515	57	102	218	9.5	10.27	565		2,680,951
804	2.330	62	96	212	9.5	10.27	565	3955	2,684,906
805	2.391	60	102	214	9.6	10.27	565	3955	2,688,861
806	2.588	72	54	198	1289	10.26	565		2,692,816
				1)	-12				

D-12 ⁸ A-4-12 B-51

807	2.343	66	48	188	9.4	10.26	565	3955	2,696,771
808	2.313	66	50	188	9.5	10.26	565	3955	2,700,726
809	2.108	51	56	154	9.2	10.26	565	3955	2,704,681
810	1.970	50	54	148	9.3	10.26	565	3955	2,708,636
811	2.279	64	86	192	9.5	10.26	565	3955	2,712,591
812	2.501	50	96	202	9.6	10.26	565	3955	2,716,546
813	2.596	53	94	206	10.3	10.26	565	3955	2,720,501
814	2.429	52	94	204	10.3	10.26	565	3955	2,724,456
815	1.266	113	126	284	9.1	10.26	565	3955	2.728.411

ANNEX 5

ENROLLMENTS FILE

OCTOBER 21..NOVEMBER 16, 1994

			Ε		
TEST	FILE		Y		
#	#	NAME	Ε	ID#	DATE / TIME
=======			====	. =======	
1	406	Williams, G.	R	N/A	Fri Oct 21 14:03:57 1994
2	407	Williams, G.		N/A	Fri Oct 21 14:04:48 1994
3	408	Thurston, R.		N/A	Sat Oct 22 11:07:41 1994
4	409	Thurston, R.		N/A	Sat Oct 22 11:08:42 1994
5 6	410 411	Thurston, J. Thurston, J.		N/A N/A	Sat Oct 22 11:16:52 1994 Sat Oct 22 11:18:24 1994
7.	412	Richards, J.		N/A	Sat Oct 22 11:10:24 10:34 Sat Oct 22 11:25:36 1994
8	413	Richards, J.		N/A	Sat Oct 22 11:26:35 1994
9	414	Thurston K.	R	N/A	Sat Oct 22 11:32:41 1994
· 10	415	Richards, D.		N/A	Sat Oct 22 11:39:59 1994
11	416	Richards, D.		N/A	Sat Oct 22 11:41:04 1994
12	417	Lee, J.	R	N/A	Sun Oct 23 13:40:34 1994
13	418	Lee, J.	L	N/A	Sun Oct 23 13:42:04 1994 Mon Oct 24 05:14:13 1994
14 15	419 420	Gregorio, J. Gregorio, J.	R	N/A N/A	Mon Oct 24 05:14:13 1994
16	421	Ansell, S.	R	N/A	Mon Oct 24 05:39:01 1994
17	422	Mackinnon,	R	N/A	Mon Oct 24 06:08:59 1994
18	423	Mackinnon,	L	N/A	Mon Oct 24 06:09:54 1994
19	424	Krausz, G	R	N/A	Mon Oct 24 07:08:53 1994
20	425	Krausz, G.	L	N/A	Mon Oct 24 07:09:55 1994
21	426	Brown, k.	R	N/A	Mon Oct 24 07:41:50 1994
22	427	Brown, k.	L	N/A	Mon Oct 24 07:42:43 1994
23	428	Gregorio, P.		N/A	Mon Oct 24 07:42:43 1994
24	429	Gregorio, P.		N/A	Mon Oct 24 07:42:43 1994
25	430	Sasala, S.	R	N/A	Mon Oct 24 07:42:43 1994
26 27	431 432	Sasala, S. FitzMaurice,	L R	N/A N/A	Mon Oct 24 07:42:43 1994 Mon Oct 24 07:42:43 1994
28	432	FitzMaurice,		N/A	Mon Oct 24 07:42:43 1994
29	434	Ryan, P.	R	N/A	Mon Oct 24 07:42:43 1994
30	435	Coffey, J.	R	N/A	Tue Oct 25 05:00:40 1994
31	436	Coffey, J.	L	N/A	Tue Oct 25 05:00:40 1994
32	437	Aretino, J.	R	N/A	Tue Oct 25 05:00:40 1994
33	438	Aretino, J.	L	N/A	Tue Oct 25 05:00:40 1994
34 35	439 440	Gray, D. Gray, D.	R	N/A N/A	Tue Oct 25 05:00:40 1994 Tue Oct 25 05:00:40 1994
36	441	Howard, R.	Ř	N/A	Tue Oct 25 05:00:40 1994
37	442	Howard, R.	R	N/A	Tue Oct 25 05:00:40 1994
38	443	Howard, R.	L	N/A	Tue Oct 25 05:00:40 1994
39	444	Vol #14	L	N/A	Thu Oct 27 04:51:38 1994
40	445	Vol #28	R	N/A	Thu Oct 27 04:51:38 1994
41 42	446 447	Vol #28 Kuhla, B.	L R	N/A N/A	Thu Oct 27 04:51:38 1994 Thu Oct 27 04:51:38 1994
42	447	Kuhla, B.	L	N/A	Thu Oct 27 04:51:38 1994
44	449	Gore, J.	R	N/A	Thu Oct 27 04:51:38 1994
45	450	Gore, J.	L	N/A	Thu Oct 27 04:51:38 1994
46	451	Snyder, J.	R	N/A	Thu Oct 27 04:51:38 1994
47	452	Snyder, J.	L	N/A	Thu Oct 27 04:51:38 1994
48	453	Snyder, J.	R	N/A	Thu Oct 27 04:51:38 1994
49	454	Quinn, R.	R	N/A	Thu Oct 27 04:51:38 1994
50	455	Quinn, R.	L	N/A	Thu Oct 27 04:51:38 1994
51	456	Protos, A	L	N/A	Mon Oct 31 16:09:57 1994
52	457	Protos, A	R	N/A	Mon Oct 31 16:09:57 1994
53 54	458	Vol #1	R	N/A	Mon Oct 31 16:09:57 1994 Mon Oct 31 16:09:57 1994
54 55	459 460	Vol #1 Vol #2	L	N/A N/A	Mon Oct 31 16:09:57 1994 Mon Oct 31 16:09:57 1994
33	700	101 #2	_	E-1	1,0,1,00,01,10,03,07,1334
				A-5-1	
				B-53	

56	461		L	N/A	Mon Oct 31 16:09:57 1994
57	462		R	N/A	Mon Oct 31 16:09:57 1994
58	463		L	N/A	Mon Oct 31 16:09:57 1994
59	464		IR	N/A	Mon Oct 31 16:09:57 1994
60	465	Vol #8	L	N/A	Mon Oct 31 16:09:57 1994
61	466	Vol #3	R	N/A	Mon Oct 31 16:09:57 1994
62	467	Vol #3	L	N/A	Mon Oct 31 16:09:57 1994
63	468	Vol #15	R	N/A	Mon Oct 31 16:09:57 1994
64	469	Vol #15	L	N/A	Mon Oct 31 16:09:57 1994
65	470	Vol #16	L	N/A	Mon Oct 31 16:09:57 1994
66	471	Vol #17	R	N/A	Mon Oct 31 16:09:57 1994
67	472		L	N/A	Mon Oct 31 16:09:57 1994
68	473	Siedlarz P.	R	N/A	Tue Nov 01 16:01:26 1994
69	474	Siedlarz P.	L	N/A	Tue Nov 01 16:01:26 1994
70	475	Lorna	IR.	N/A	Tue Nov 01 16:01:26 1994
71	476	Lorna	L	N/A	Tue Nov 01 16:01:26 1994
72	477	Vol #29	R	N/A	Wed Nov 02 13:21:53 1994
73	478	Vol #29	L	N/A	Wed Nov 02 13:21:53 1994
74	479	Vol #29	R	N/A	Wed Nov 02 13:21:53 1994
75	480	Whittle, T.	R	N/A	Wed Nov 02 13:21:53 1994
76	481	Whittle, T.	L	N/A	Wed Nov 02 13:21:53 1994
77	482	Whittle, T.	L	N/A	Wed Nov 02 13:21:53 1994
78	483	McHugh, J.		N/A	Wed Nov 02 13:21:53 1994
79	484	McHugh, J.		N/A	Wed Nov 02 13:21:53 1994
80	485	Siedlarz, J.	R	N/A	Wed Nov 02 13:21:53 1994
81	486	Siedlarz, J.	F	N/A	Wed Nov 02 13:21:53 1994
82	487	Nelson, J.	R	N/A	Wed Nov 02 13:21:53 1994
83	488	Donohue, J		N/A	Wed Nov 02 13:21:53 1994
84	489	Donohue,J.		N/A	Wed Nov 02 13:21:53 1994
85	490	Fineburg,H.		N/A	Wed Nov 02 13:21:53 1994
86	491	Fineburg,H.		N/A	Wed Nov 02 13:21:53 1994
87	492	Costello, R.		N/A	Thu Nov 03 11:25:18 1994
88 89	493	Costello, R.		N/A	Thu Nov 03 11:25:18 1994
	494	Ovdenko, D		N/A	Thu Nov 03 11:25:18 1994
90	495	Ovdenko, D		N/A	Thu Nov 03 11:25:18 1994
91	496	Chapek, J.	R	N/A	Tue Nov 08 17:35:09 1994
92	497	Chapek, J.	L	N/A	Tue Nov 08 17:35:09 1994
93	498	Ahrens, J.	R	N/A	Tue Nov 08 17:35:09 1994
94	499	Ahrens, J.	L	N/A	Tue Nov 08 17:35:09 1994
95	500	Peters, Jim	R	N/A	Wed Nov 09 12:03:36 1994
96	501	Peters, Jim	L	N/A	Wed Nov 09 12:04:21 1994
97 98	502 503	Nickell, Dan		N/A	Wed Nov 09 12:17:40 1994 Wed Nov 09 12:18:35 1994
99	504	Nickell, Dan	L R	N/A N/A	Thu Nov 10 09:14:11 1994
100	505	Gengler, Al	Ľ	N/A	Thu Nov 10 09:14:11 1994
101	506	Weyers, K.	R	N/A	Fri Nov 11 11:31:22 1994
102	507	Weyers, K.	Ĺ	N/A	Fri Nov 11 11:31:22 1994
103	508	Williams, J.	IR	N/A	Sat Nov 12 13:25:28 1994
104	509	Williams, J.	IL	N/A	Sat Nov 12 13:25:28 1994
. 105	510	Wells, G.	R	N/A	Sat Nov 12 13:25:28 1994
106	511	Wells, G.	L	N/A	Sat Nov 12 13:25:28 1994
107	512	Caldwell. J.	R	N/A	Mon Nov 14 16:39:42 1994
108	513	Caldwell. J.	L	N/A	Mon Nov 14 16:39:42 1994
109	514	Vol #58	R	N/A	Tue Nov 15 13:34:38 1994
110	515	Vol #58	L	N/A	Tue Nov 15 13:34:38 1994
111	516	Vol #59	R	N/A	Tue Nov 15 13:34:38 1994
112	517	Vol #59	L	N/A	Tue Nov 15 13:34:38 1994
113	518	Vol #60	L	N/A	Tue Nov 15 13:40:38 1994
114	519	Vol #61	R	N/A	Tue Nov 15 13:40:38 1994
115	520	Vol #61	L	N/A	Tue Nov 15 13:40:38 1994
116	521	Vol #62	R	N/A	Tue Nov 15 13:40:38 1994
117	522	Vol #62 L	L	N/A	Tue Nov 15 13:40:38 1994
118	523	Vol #63 R	R	N/A	Tue Nov 15 13:50:38 1994
119	524	Vol #65 R	R	N/A	Tue Nov 15 13:50:38 1994
120	525	Vol #65 L	L	N/A	Tue Nov 15 13:50:38 1994

121	526	Vol #66 L	L	N/A	Tue Nov 15 13:50:38 1994
122	527	Vol #67 R	R	N/A	Tue Nov 15 13:50:38 1994
123	528	Vol #67 L	L	N/A	Tue Nov 15 13:50:38 1994
124	529	Vol #68 R	R	N/A	Tue Nov 15 14:34:38 1994
125	530	Vol #70 R	R	N/A	Tue Nov 15 14:34:38 1994
126	531	Vol #70 L	L	N/A	Tue Nov 15 14:34:38 1994
127	532	Vol #72 R	R	N/A	Tue Nov 15 14:34:38 1994
128	533	Vol #72 L	L	N/A	Tue Nov 15 14:34:38 1994
129	534	Vol #73 R	R	N/A	Tue Nov 15 14:34:38 1994
130	535	Vol #73 L	L	N/A	Tue Nov 15 14:34:38 1994
131	536	Vol #74 R	R	N/A	Tue Nov 15 14:34:38 1994
132	537	Vol #75 R	R	N/A	Tue Nov 15 15:34:38 1994
133	538	Vol #75 L	L	N/A	Tue Nov 15 15:34:38 1994
134	539	Vol #76 R	R	N/A	Tue Nov 15 15:34:38 1994
135	540	Vol #76 L	L	N/A	Tue Nov 15 15:34:38 1994
136	541	Vol #77 R	R	N/A	Tue Nov 15 15:34:38 1994
137	542	Vol #77 L	L	N/A	Tue Nov 15 15:34:38 1994
138	543	Vol #78 R	R	N/A	Tue Nov 15 15:34:38 1994
139	544	Vol #80 R	R	N/A	Tue Nov 15 15:34:38 1994
140	545	Vol #80 L	L	N/A	Tue Nov 15 15:34:38 1994
141	546	Vol #81 R	R	N/A	Tue Nov 15 15:34:38 1994
142	547	Vol #81 L	L	N/A	Tue Nov 15 15:34:38 1994
143	548	Vol #82 R	R	N/A	Tue Nov 15 15:34:38 1994
144	549	Vol #82 L	L.	N/A	Tue Nov 15 15:34:38 1994
145	550	Vol #83 R	R	N/A	Tue Nov 15 16:00:38 1994
146	551	Vol #83 L	L	N/A	Tue Nov 15 16:00:38 1994
147	552	Vol #85 R	R	N/A	Tue Nov 15 16:00:38 1994
148	553	Vol #85 L	L	N/A	Tue Nov 15 16:00:38 1994
149	554	Vol #86 R	R	N/A	Tue Nov 15 16:00:38 1994
150	555	Vol #86 L	L	N/A	Tue Nov 15 16:00:38 1994
151	556	Vol #87 R	R	N/A	Tue Nov 15 16:00:38 1994
152	557	Vol #87 L	L	N/A	Tue Nov 15 16:00:38 1994
153	558	Vol #88 R	R	N/A	Tue Nov 15 16:34:38 1994
154	559	Vol #88 L	L	N/A	Tue Nov 15 16:34:38 1994
155	560	Vol #89 R	R	N/A	Tue Nov 15 16:34:38 1994
156	561	Vol #89 L	L	N/A	Tue Nov 15 16:34:38 1994
157	562	Vol #90 R	R	N/A	Tue Nov 15 16:34:38 1994
158	563	Vol #90 L	L	N/A	Tue Nov 15 16:34:38 1994
159	564	Vol #92 R	R	N/A	Tue Nov 15 16:34:38 1994
160	565	Vol #92 L	L	N/A	Tue Nov 15 16:34:38 1994

ANNEX 6

APPENDIX F IDENTIFICATIONS FILE

19-DEC-94

OCTOBER 21...NOVEMBER 16, 1994

TRIAL #	FILE #	HD	# BITS COMP	# BITS DISAGREE	ROT	TIME	AVG TIME	NO. OF FILES	N-1	CUM COMP

1 2	406 407	0.043 0.113	1257 1244	54 141	0 0	1.3 1.2	1.30 1.25	407 407	406 406	406 812
3	406	0.099	1237	122	0	1.2	1.23	407	406	1,218
4	406	0.068	1263	86	ŏ	1.2	1.23	407	406	1,624
5	406	0.033	1273	42	0	1.2	1.22	407	406	2,030
6	406	0.062	1278	79	0	1.3	1.23	407	406	2,436
7	407	0.133	1227	163	0	1.2	1.23	407	406	2,842
8	407	0.141	1230	173	0	1.2	1.23	407	406	3,248
9 10	407 407	0.158 0.181	1230 1205	194 218	0	1.3 1.3	1.23 1.24	407 407	406 406	3,654 4,060
11	406	0.043	1205	54	1.4	6.9	1.75	407	406	4,466
12	406	0.083	1240	103	0	1.1	1.70	407	406	4,872
13	406	0.108	1235	133	1.4	1.1	1.65	407	406	5,278
14	406	0.052	1232	64	1.4	1.1	1.61	407	406	5,684
15	406	0.047	1269	60	0	1.2	1.59	407	406	6,090
16	407	0.103	1226	126	0	1.1	1.56	407	406 406	6,496 6,902
17 18	407 407	0.158 0.181	1185 1200	187 217	-1.4 -1.4	1.1 1.1	1.53 1.51	407 407	406	7,308
19	407	0.167	1189	198	-1.4	1.1	1.48	407	406	7,714
20	407	0.106	1238	131	-1.4	1.1	1.47	407	406	8,120
21	406	0.246	1193	293	0	17.7	2.24	407	406	8,526
22	406	0.239	1179	282	1.4	11.9	2.68	407	406	8,932
23	406	0.068	1229	83	2.8	2.5	2.67	407	406	9,338
24 25	250 250	0.229 0.140	998 1084	229 152	1.4 0	9.1 5.1	2.94 3.02	407 407	406 406	9,744 10,150
26	250 250	0.140	1029	170	2.8	6.6	3.16	407	406	10,156
27	250	0.157	1054	165	1.4	1.2	3.09	407	406	10,962
28	250	0.155	1043	162	1.4	1.2	3.02	407	406	11,368
29	250	0.198	1056	209	1.4	1.2	2.96	407	406	11,774
30	250	0.206	1034	213	1.4	1.2	2.90	407	406	12,180
31	249	0.179	905	162	5.6	1.9	2.87	407	406	12,586
32 33	249	0.235 0.179	889 916	209 164	4.2 2.8	2.5 2.6	2.86 2.85	407 407	406 406	12,992 13,398
34	249 249	0.179	929	175	1.4	2.4	2.84	407	406	13,804
35	249	0.186	908	169	1.4	1.2	2.79	407	406	14,210
36	406	0.157	1192	187	1.4	5.3	2.86	407	406	14,616
37	406	0.151	1178	178	2.8	6.7	2.96	407	406	15,022
38	406	0.155	1209	187	2.8	1.3	2.92	407	406	15,428
39 40	406 408	0.163 0.087	1201 1220	196 106	2.8 0	1.2 1.3	2.87 2.84	407 409	406 408	15,834 16,242
41	408	0.242	1147	278	1.4	1.3	2.80	409	408	16,650
42	408	0.189	1194	226	0	1.2	2.76	409	408	17,058
43	408	0.270	1183	319	0	1.2	2.72	409	408	17,466
44	408	0.254	1186	301	0	1.1	2.69	409	408	17,874
45 46	409 409	0.124 0.118	1242 1233	154 146	-1.4 -1.4	1.2 1.2	2.65 2.62	409 409	408 408	18,282 18,690
47	409	0.106	1256	133	-1.4	1.2	2.59	409	408	19,098
48	409	0.145	1221	177	-2.8	1.2	2.56	409	408	19,506
49	409	0.087	1246	109	-1.4	1.2	2.53	409	408	19,914
50	410	0.163	1194	195	0	1.3	2.51	411	410	20,324
51	410	0.097	1232	120	0	1.3	2.49	411	410	20,734
52	410	0.119 0.109	1223	145 133	0 -1.4	1.3 1.2	2.46 2.44	411 411	410 410	21,144 21,554
53 54	410 410	0.109	1217 1218	141	-1.4 -1.4	1.2	2.42	411	410	21,964
55	411	0.133	1205	160	-1.4	1.2	2.39	411	410	22,374
56	411	0.224	1190	266	-1.4	2.5	2.40	411	410	22,784
57	411	0.146	1222	178	-1.4	1.3	2.38	411	410	23,194
58	411	0.087	1228	107	0	2.5	2.38	411	410	23,604
59	411	0.131	1201	157	-1.4	1.3	2.36	411	410	24,014
60 61	412 412	0.226 0.259	1159 1178	262 305	-1.4 0	2.5 9.7	2.36 2.48	413 413	412 412	24,426 24,838
62	412	0.238	1178	275	-1.4	1.2	2.46	413	412	24,636 25,250
63	412	0.185	1196	221	0	1.1	2.44	413	412	25,662
64	412	0.258	1160	299	0	1.1	2.42	413	412	26,074
65	412	0.258	1181	305	0	7.6	2.50	413	412	26,486
					T 1					

F-1 A-6-1 B-56

cc	413	0.257	1200	308	-1.4	5.7	2.55	413	412	26,898
66	413	0.237	1168	323	-1.4	1.3	2.53	413	412	27,310
67	413	0.262	1200	315	0	7.7	2.61	413	412	27,722
68	413	0.262	1229	304	ő	3.8	2.62	413	412	28,134
69			1210	343	Ö	3.8	2.64	413	412	28,546
70	413	0.283	1220	115	Ö	1.3	2.62	416	415	28,961
71	415	0.094		152	Ö	1.3	2.60	416	415	29,376
72	415	0.123	1235	147	Ö	1.3	2.58	416	415	29,791
73	415	0.120	1227		0	1.3	2.57	416	415	30,206
74	415	0.118	1241	147	0	1.3	2.55	416	415	30,621
75	415	0.147	1224	180			2.57	416	415	31,036
76	416	0.276	1130	312	7	3.8		416	415	31,451
77	416	0.230	1098	252	7	7.2	2.63	416	415	31,866
78	416	0.218	1175	256	7	8.7	2.71		415	32,281
79	416	0.265	1149	305	7	1.2	2.69	416	415	32,696
80	416	0.212	1167	247	7	1.2	2.67	416		33,111
81	415	0.241	1179	284	-2.8	3.2	2.67	416	415	33,526
82	416	0.165	1162	192	5.6	1.3	2.66	416	415	
83	406	0.175	1210	212	0	1.2	2.64	416	415	33,941
84	406	0.175	1226	215	0	1.2	2.62	416	415	34,356
85	406	0.166	1219	202	0	1.2	2.61	416	415	34,771
86	406	0.241	1198	289	0	1.3	2.59	416	415	35,186
87	406	0.174	1207	210	0	1.2	2.57	416	415	35,601
88	406	0.174	1210	210	0	1.2	2.56	416	415	36,016
89	407	0.203	1180	240	-1.4	2.5 .	2.56	416	415	36,431
90	407	0.194	1195	232	-1.4	1.3	2.54	416	415	36,846
91	407	0.176	1190	210	-1.4	1.2	2.53	416	415	37,261
92	407	0.237	1207	286	-1.4	1.2	2.52	416	415	37,676
93	407	0.265	1200	318	-1.4	1.3	2.50	416	415	38,091
94	408	0.270	1071	289	-2.8	5.0	2.53	416	415	38,506
95	409	0.227	1188	270	-2.8	2.5	2.53	416	415	38,921
96	408	0.151	1169	177	-2.8	1.2	2.51	416	415	39,336
97	415	0.274	1168	320	0	1.9	2.51	416	415	39,751
98	415	0.267	1167	312	2.8	2.6	2.51	416	415	40,166
99	415	0.248	1141	283	4.2	1.3	2.50	416	415	40,581
100	415	0.225	1162	262	4.2	2.6	2.50	416	415	40,996
101	415	0.247	1170	289	2.8	1.3	2.49	416	415	41,411
102	416	0.197	1194	235	2.8	3.2	2.49	416	415	41,826
103	416	0.151	1225	185	1.4	5.1	2.52	416	415	42,241
104	416	0.114	1241	141	0	5.8	2.55	416	415	42,656
105	416	0.148	1234	183	-1.4	5.2	2.58	416	415	43,071
106	408	0.066	1258	83	-1.4	3.1	2.58	416	415	43,486
107	408	0.134	1206	162	-1.4	1.3	2.57	416	415	43,901
108	408	0.108	1215	131	-2.8	1.2	2.56	416	415	44,316
109	408	0.132	1216	161	-2.8	1.2	2.54	416	415	44,731
110	408	0.113	1230	139	-1.4	1.2	2.53	416	415	45,146
111	409	0.089	1234	110	-1.4	2.5	2.53	416	415	45,561
112	409	0.185	1221	226	-1.4	2.5	2.53	416	415	45,976
113	409	0.146	1203	176	-2.8	1.2	2.52	416	415	46,391
114	409	0.102	1212	124	-2.8	1.2	2.51	416	415	46,806
115	409	0.223	1190	265	-2.8	1.3	2.50	416	415	47,221
116	410	0.173	1208	209	-1.4	5:5	2.52	416	415	47,636
117	410	0.124	1204	149	-1.4	1.3	2.51	416	415	48,051
118	410	0.131	1218	160	-1.4	1.3	2.50	416	415	48,466
119	410	0.217	1187	257	0	2.6	2.50	416	415	48,881
120	410	0.160	1212	194	0	1.2	2.49	416	415	49,296
121	410	0.138	1218	168	-1.4	1.2	2.48	416	415	49,711
122	411	0.192	1177	226	-2.8	2.5	2.48	416	415	50,126
123	411	0.264	1181	312	-2.8	1.2	2.47	416	415	50,541
124	411	0.206	1194	246	-2.8	2.6	2.47	416	415	50,956
125	411	0.152	1207	183	-4.2	2.5	2.47	416	415	51,371
126	411	0.153	1192	182	-4.2	6.5	2.50	416	415	51,786
127	412	0.188	1165	219	0	2.5	2.50	416	415	52,201
128	412	0.202	1185	239	Ö	1.1	2.49	416	415	52,616
129	412	0.180	1176	212	Ö	1.1	2.48	416	415	53,031
130	412	0.199	1170	233	Õ	1.1	2.47	416	415	53,446
131	412	0.204	1167	238	Ö	1.1	2.46	416	415	53,861
132	413	0.184	1199	221	ŏ	2.6	2.46	416	415	54,276
	413	0.172	1189	204	ő	1.2	2.45	416	415	54,691
133	413	0.172	1149	298	1.4	1.2	2.44	416	415	55,106
134 135	413	0.235	1179	277	1.4	1.1	2.43	416	415	55,521
135	413	0.235	1168	268	1.4	1.1	2.42	416	415	55,936
	250	0.229	1072	215	0	12.7	2.50	416	415	56,351
137		0.201	1080	160	-1.4	1.2	2.49	416	415	56,766
138	250			157	-1.4 -1.4	1.2	2.48	416	415	57,181
139	250	0.146	1072	240		1.1	2.47	416	415	57,596
140	250	0.224	1071	240	⁻¹ F -2	1.4	2.71	710	713	51,000

141	250	0.209	1062	222	-2.8	1.2	2.46	416	415	58,011
142	250	0.180	1063	191	-2.8	1.2	2.45	416	415	58,426
143	249	0.185	896	166	4.2	3.9	2.46	416	415	58,841
144	249	0.221	892	197	2.8	2.5	2.46	416	415	59,256
145	249	0.180	895	161	2.8	1.2	2.45	416	415	59,671
146	249	0.202	892	180	1.4	1.2	2.45	416	415	60,086
147	249	0.183	913	167	1.4	1.2	2.44	416	415	60,501
148	406	0.215	1183	254	0	1.2	2.43	416	415	60,916
149	406	0.070	1233	86	0	1.2	2.42	416	415	61,331
150	406	0.090	1232	111	0	1.2	2.41	416	415	61,746
151	406	0.065	1234	80	0	1.3	2.40	416	415	62,161
152	406	0.081	1239	100	1.4	1.2	2.40	416	415	62,576
153	406	0.076	1217	92	1.4	1.2	2.39	416	415	62,991
154	406	0.090	1240	111	0	1.2	2.38	416	415	63,406
155	407	0.157	1225	192	-1.4	1.2	2.37	416	415	63,821
156	407	0.128	1247	159	-1.4	1.2	2.37	416	415	64,236
157	407	0.210	1202	252	-1.4	1.2	2.36	416	415	64,651
158	407	0.142	1229	174	-1.4	1.2	2.35	416	415	65,066
159	407	0.187	1195	223	-1.4	1.2	2.34	416	415	65,481
160	407	0.150	1203	181	-2.8	1.3	2.34	416	415	65,896
161	407	0.130	1201	156	-1.4	1.2	2.33	416	415	66,311
162	406	0.073	1226	89	1.4	1.2	2.32	416	415	66,726
163	406	0.069	1234	85	2.8	1.2	2.32	416	415	67,141
164	406	0.134	1196	160	1.4	1.2	2.31	416	415	67,556
165	406	0.214	1167	250	1.4	1.1	2.30	416	415	67,971
166	406	0.060	1240	75	1.4	1.2	2.30	416	415	68,386
167	406	0.066	1224	81	2.8	1.1	2.29	416	415	68,801
168	406	0.153	1199	184	1.4	1.2	2.28	416	415	69,216
169	406	0.191	1156	221	2.8	1.3	2.28	416	415	69,631
170	406	0.093	1206	112	1.4	1.2	2.27	416	415	70,046
171	406	0.035	1194	257	1.4	1.2	2.26	416	415	70,461
172	406	0.176	1190	210	1.4	31.3	2.43	416	415	70,876
173	417	0.176	1231	190	0	5.9	2.45	418	417	71,293
174	417	0.134	1199	267	ŏ	1.3	2.45	418	417	71,710
175	417	0.223	1207	190	ő	1.2	2.44	418	417	72,127
176	417	0.137	1210	171	ŏ	1.2	2.43	418	417	72,544
177	417	0.211	1148	242	ő	1.2	2.42	418	417	72,961
178	417	0.211	1166	269	ő	1.2	2.42	418	417	73,378
179	418	0.169	1140	193	2.8	1.3	2.41	418	417	73,795
180	418	0.160	1166	186	2.8	1.2	2.41	418	417	74,212
181	418	0.131	1179	154	2.8	2.5	2.41	418	417	74,629
182	418	0.166	1150	191	2.8	1.1	2.40	418	417	75,046
183	418	0.165	1136	188	2.8	1.3	2.39	418	417	75,463
184	418	0.103	1164	232	2.8	1.2	2.39	418	417	75,880
185	417	0.193	1190	241	0	13.8	2.45	418	417	76,297
186	417	0.203	1173	249	ő	7.2	2.47	418	417	76,714
187	417	0.220	1202	264	ő	5.3	2.49	418	417	77,131
188	417	0.142	1200	171	1.4	5.1	2.50	418	417	77,548
189	417	0.212	1197	254	-1.4	3.2	2.51	418	417	77,965
190	417	0.173	1194	207	1.4	3.2	2.51	418	417	78,382
191	417	0.204	1178	240	1.4	3.1	2.51	418	417	78,799
192	417	0.161	1201	193	1.4	5.2	2.53	418	417	79,216
193	415	0.257	1173	301	0	7.0	2.55	418	417	79,633
194	417	0.240	1213	291	0	5.8	2.57	418	417	80,050
195	417	0.172	1212	208	0	5.9	2.58	418	417	80,467
196	418	0.174	1162	202	1.4	7.8	2.61	418	417	80,884
197	417	0.230	1203	277	-1.4	17.1	2.68	418	417	81,301
198	417	0.280	1188	333	-1.4	4.6	2.69	418	417	81,718
199	406	0.188	1184	223	1.4	5.4	2.71	418	417	82,135
200	406	0.118	1190	141	1.4	3.9	2.71	418	417	82,552
201	406	0.273	1159	316	1.4	4.6	2.72	418	417	82,969
202	406	0.180	1142	206	1.4	7.2	2.74	418	417	83,386
203	406	0.187	1181	221	1.4	4.5	2.75	418	417	83,803
204	406	0.241	1163	280	1.4	10.5	2.79	418	417	84,220
205	406	0.212	1191	253	0	3.7	2.80	418	417	84,637
206	406	0.228	1147	262	2.8	6.7	2.81	418	417	85,054
207	406	0.172	1191	205	1.4	3.3	2.82	418	417	85,471
208	406	0.171	1192	204	1.4	1.2	2.81	418	417	85,888
209	406	0.147	1170	172	1.4	2.5	2.81	418	417	86,305
210	406	0.234	1200	281	0	2.5	2.81	418	417	86,722
211	406	0.150	1177	177	0	1.9	2.80	418	417	87,139
212	406	0.227	1180	268	0	20.4	2.88	418	417	87,556
213	415	0.237	1182	280	0	0.0	2.87	418	417	87,973
214	415	0.193	1176	227	-2.8	2.6	2.87	418	417	88,390
215	417	0.242	1178	285	1.4 F-3	3.3	2.87	418	417	88,807
					H-3					

								440	447	89,224
216	417	0.220	1210	26 6	0	2.5	2.87	418	417	
217	417	0.188	1182	222	-1.4	1.2	2.86	418	417	89,641
			1219	165	-1.4	1.3	2.86	418	417	90,058
218	417	0.135				3.2	2.86	418	417	90,475
219	417	0.177	1200	213	2.8				417	90,892
220	417	0.242	1174	284	0	5.2	2.87	418		
221	417	0.203	1198	243	0	1.2	2.86	418	417	91,309
	417	0.223	1194	266	0	1.2	2.85	418	417	91,726
222					Ö	2.5	2.85	418	417	92,143
223	417	0.229	1164	266			2.85	418	417	92,560
224	417	0.158	1163	184	0	2.6				92,977
225	418	0.177	1134	201	4.2	1.2	2.84	418	417	
			1206	154	0	1.2	2.84	418	417	93,394
226	417	0.128				4.0	2.84	418	417	93,811
227	417	0.213	1163	248	1.4				417	94,228
228	417	0.201	1132	228	1.4	5.1	2.85	418		
229	417	0.152	1201	182	0	8.5	2.88	418	417	94,645
				233	0	1.2	2.87	418	417	95,062
230	417	0.194	1201				2.87	418	417	95,479
231	417	0.164	1218	200	0	2.5			417	95,896
232	417	0.175	1203	210	0	2.6	2.87	418		•
233	417	0.207	1156	239	1.4	1.2	2.86	418	417	96,313
				236	0	3.1	2.86	418	417	96,730
234	417	0.196	1203				2.85	418	417	97,147
235	417	0.181	1201	217	0	1.2				97,564
236	406	0.215	1153	248	2.8	3.2	2.85	418	417	
	406	0.223	1125	251	1.4	2.5	2.85	418	417	97,981
237				238	1.4	1.1	2.84	418	417	98,398
238	406	0.210	1135				2.84	418	417	98,815
239	406	0.100	1222	122	0	1.2			417	99,232
240	406	0.143	1177	168	0	1.2	2.83	418		
	406	0.093	1219	113	0	1.2	2.82	418	417	99,649
241				133	1.4	1.3	2.82	418	417	100,066
242	406	0.110	1208				2.81	418	417	100,483
243	406	0.114	1220	139	0	1.2			417	100,900
244	406	0.168	1186	199	1.4	1.1	2.80	418		
245	406	0.212	1199	254	0	1.3	2.80	418	417	101,317
			1220	147	1.4	1.1	2.79	418	417	101,734
246	406	0.120				1.2	2.78	418	417	102,151
247	406	0.167	1182	197	1.4				417	102,568
248	415	0.224	1182	265	-2.8	1.2	2.78	418		
249	415	0.212	1219	259	-1.4	5.9	2.79	418	417	102,985
		0.169	1220	206	0	3.8	2.79	418	417	103,402
250	417				2.8	1.4	2.79	418	417	103,819
251	417	0.274	1094	300					417	104,236
252	417	0.223	1158	258	2.8	6.0	2.80	418		
253	417	0.184	1211	223	0	4.5	2.81	418	417	104,653
		0.213	1193	254	0	3.8	2.81	418	417	105,070
254	417				1.4	5.2	2.82	418	417	105,487
255	417	0.223	1180	263				418	417	105,904
256	415	0.225	1177	265	-2.8	7.8	2.84			
257	415	0.206	1201	247	-1.4	1.3	2.84	418	417	106,321
258	415	0.196	1195	234	-4.2	1.2	2.83	418	417	106,738
				227	-2.8	1.2	2.82	418	417	107,155
259	415	0.185	1224				2.82	418	417	107,572
260	415	0.241	1181	285	-2.8	2.5				107,989
261	415	0.219	1202	263	-2.8	1.2	2.82	418	417	
262	407	0.231	1167	270	5.6	1.2	2.81	418	417	108,406
		0.181	1190	215	5.6	1.2	2.80	418	417	108,823
263	407					1.2	2.80	418	417	109,240
264	407	0.161	1175	189	5.6			418	417	109,657
265	407	0.153	1187	182	5.6	1.1	2.79		417	110,074
266	407	0.187	1171	219	5.6	1.2	2.78	418		
267	417	0.174	1154	201	5.6	3.2	2.79	418	417	110,491
268	417	0.281	1176	331	2.8	7.1	2.80	418	417	110,908
				169	1.4	5.2	2.81	418	417	111,325
269	417	0.147	1151		0	5.3	2.82	420	419	111,744
270	419	0.186	1212	226					419	112,163
271	420	0.239	1160	277	1.4	1.9	2.82	420		
272	417	0.204	1139	232	1.4	4.6	2.82	420	419	112,582
273	415	0.193	1204	232	0	4.0	2.83	420	419	113,001
			1172	285	Ö	1.9	2.82	420	419	113,420
274	415	0.243				4.0	2.83	420	419	113,839
275	419	0.265	1198	318	-1.4					114,258
276	406	0.135	1212	164	1.4	1.2	2.82	420	419	
277	421	0.119	1168	139	1.4	1.3	2.82	421	420	114,678
			1169	220	-1.4	5.8	2.83	421	420	115,098
278	417	0.188				6.6	2.84	421	420	115,518
279	417	0.179	1210	216	-1.4				420	115,938
280	415	0.219	1208	265	1.4	6.7	2.86	421		
281	406	0.200	1197	239	0	5.2	2.86	421	420	116,358
		0.210	1132	238	1.4	1.2	2.86	421	420	116,778
282	406					1.2	2.85	421	420	117,198
283	406	0.152	1140	173	1.4					117,618
284	406	0.224	1155	259	1.4	1.2	2.85	421	420	
285	406	0.185	1164	215	1.4	1.2	2.84	421	420	118,038
			1172	316	-1.4	3.9	2.84	421	420	118,458
286	415	0.270			-1.4	4.5	2.85	421	420	118,878
287	415	0.228	1207	275					420	119,298
288	415	0.266	1180	314	-1.4	1.3	2.84	421		
289	415	0.251	1169	293	-1.4	1.2	2.84	421	420	119,718
290	415	0.276	1171	323	-1.4	1.3	2.83	421	420	120,138
200					F-4					

F-4 A-6-4 B-59

291	415	0.227	1194	271	1.4	1.2	2.83	421	420	120,558
					-1.4					120,978
292	415	0.267	1172	313	-1.4	1.3	2.82	421	420	
293	415	0.238	1185	282	-1.4	1.2	2.82	421	420	121,398
294	415	0.250	1177	294	-1.4	2.6	2.82	421	420	121,818
295	415	0.228	1196	273	-1.4	2.6	2.82	421	420	122,238
296	415	0.229	1190	272	-1.4	1.2	2.81	421	420	122,658
297	415	0.275	1160	319	-1.4	2.6	2.81	421	420	123,078
298	415	0.261	1174	307	0	1.2	2.80	421	420	123,498
299	415	0.258	1174	303	0	1.2	2.80	421	420	123,918
300	415	0.271	1184	321	-1.4	1.2	2.79	421	420	124,338
301	415	0.195	1199	234	0	2.6	2.79	421	420	124,758
302	415	0.236	1202	284	Ö	2.6	2.79	421	420	125,178
303	415	0.229	1184	271	0	1.2	2.79	421	420	125,598
304	415	0.219	1201	263	0	1.1	2.78	421	420	126,018
305	417	0.238	1196	285	-1.4	5.9	2.79	421	420	126,438
306	417	0.163	1165	190	-1.4	2.5	2.79	421	420	126,858
307	417	0.131	1195	156	-1.4	1.2	2.79	421	420	127,278
308	417	0.177	1211	214	-1.4	1.2	2.78	421	420	127,698
309	417	0.164	1216	200	-1.4	1.2	2.78	421	420	128,118
310	418	0.158	1174	185	1.4	2.5	2.77	421	420	128,538
311	418	0.129	1205	155	1.4	1.3	2.77	421	420	128,958
312	418	0.119	1189	142	1.4	1.3	2.76	421	420	129,378
313	418	0.134	1190	159	1.4	1.2	2.76	421	420	129,798
314	418	0.118	1201	142	1.4	1.3	2.76	421	420	130,218
315	406	0.178	1214	216	-1.4	8.5	2.77	421	420	130,638
316	406	0.108	1173	127	1.4	1.2	2.77	421	420	131,058
317	406	0.119	1190	142	2.8	1.2	2.76	421	420	131,478
318	406	0.187	1161	217	1.4	1.3	2.76	421	420	131,898
319	406	0.081	1201	97	1.4	1.3	2.75	421	420	132,318
320	406	0.096	1190	114	1.4	1.2	2.75	421	420	132,738
321	406	0.111	1172	130	1.4	1.2	2.74	421	420	133,158
322	422	0.147	1207	178	2.8	6.0	2.75	423	422	133,580
323	415	0.236	1176	277	0	1.3	2.75	423	422	134,002
324	423	0.190	1194	227	-1.4	5.9	2.76	423	422	134,424
325	417	0.176	1183	208	1.4	1.9	2.76	423	422	134,846
326	417	0.200	1189						422	
				238	2.8	1.2	2.75	423		135,268
327	417	0.230	1185	272	2.8	1.2	2.75	423	422	135,690
328	417	0.269	1080	290	1.4	1.3	2.74	423	422	136,112
329	417	0.250	1159	290	0	2.0	2.74	423	422	136,534
330	417	0.149	1216	181	-1.4	4.6	2.75	423	422	136,956
331	415	0.233	1204	281	0	1.2	2.74	423	422	137,378
332	406									
		0.154	1146	177	1.4	3.9	2.75	423	422	137,800
333	406	0.156	1144	178	0	1.2	2.74	423	422	138,222
334	415	0.239	1188	284	0	1.3	2.74	423	422	138,644
335	406	0.207	1167	242	1.4	6.8	2.75	423	422	139,066
336	425	0.257	1151	296	4.2	8.5	2.77	423	422	139,488
337	417	0.186	1198	223	0	5.9	2.78	423	422	139,910
338	415	0.254	1169	297		2.6		423	422	
					-1.4		2.77			140,332
339	406	0.189	1172	221	1.4	5.1	2.78	423	422	140,754
340	415	0.264	1180	312	1.4	3.2	2.78	423	422	141,176
341	415	0.227	1197	272	-1.4	4.1	2.79	423	422	141,598
342	417	0.200	1188	238	-1.4	4.6	2.79	423	422	142,020
343	415	0.207	1173	243	2.8	1.3	2.79	423	422	142,442
344	415	0.244	1210	295	0	1.3	2.78	423	422	142,864
345	426	0.143	1178	168	1.4	2.8	2.78	427	426	143,290
346	415	0.243	1196	291	0	1.9	2.78	427	426	143,716
	417	0.204								
347			1142	233	-1.4	4.8	2.79	427	426	144,142
348	406	0.182	1195	218	2.8	4.8	2.79	427	426	144,568
349	406	0.241	1181	285	1.4	4.7	2.80	427	426	144,994
350	406	0.056	1248	70	1.4	5.9	2.81	427	426	145,420
351	417	0.203	1136	231	1.4	7.4	2.82	427	426	145,846
352	417	0.160	1199	192	-4.2	5.2	2.83	427	426	146,272
353	415	0.194	1200	233	0	2.6	2.83			
								427	426	146,698
354	406	0.074	1222	91	2.8	1.3	2.82	427	426	147,124
355	422	0.150	1221	183	2.8	3.9	2.82	427	426	147,550
356	415	0.211	1206	255	-1.4	2.6	2.82	427	426	147,976
357	415	0.250	1201	300	0	1.2	2.82	427	426	148,402
358	415	0.188	1198	225	ō	2.0	2.82	427	426	148,828
359	428	0.276	1184	327	Ö	13.4	2.85	429	428	149,256
				304						
360	429	0.257	1181		-2.8	2.6	2.85	429	428	149,684
361	415	0.239	1200	287	0	4.0	2.85	429	428	150,112
362	417	0.244	1195	291	0	7.3	2.86	429	428	150,540
363	418	0.272	1156	314	0	3.2	2.86	429	428	150,968
364	418	0.163	1196	195	0	3.8	2.86	429	428	151,396
365	418	0.155	1168	181	1.4	4.6	2.87	429	428	151,824
					F-5	7.0	2.07	723	720	101,024

F-5 A-6-5 B-60

000	440	0.000	4464	225	1.4	5.9	2.88	429	428	152,252
366	418	0.202	1164	235						
367	418	0.203	1135	230	2.8	3.8	2.88	429	428	152,680
368	418	0.218	1104	241	4.2	1.9	2.88	429	428	153,108
								429	428	153,536
369	417	0.201	1160	233	1.4	4.6	2.88			•
370	417	0.270	1176	318	-1.4	12.6	2.91	429	428	153,964
						7.4	2.92	429	428	154,392
371	417	0.280	1161	325	-2.8					
372	415	0.180	1199	216	2.8	6.0	2.93	429	428	154,820
								429	428	155,248
373	415	0.217	1189	258	1.4	1.3	2.92			
374	415	0.209	1190	249	-1.4	5.3	2.93	429	428	155,676
						1.3	2.93	429	428	156,104
375	415	0.236	1188	280	-1.4					
376	406	0.074	1225	91	1.4	1.9	2.92	429	428	156,532
					-1.4	1.9	2.92	429	428	156,960
377	415	0.246	1202	296						
378	430	0.167	1248	209	1.4	5.2	2.93	431	430	157,390
	406	0.224	1156	259	1.4	4.7	2.93	431	430	157,820
379										
380	426	0.105	1221	128	0	5.4	2.94	431	430	158,250
381	432	0.215	1193	257	1.4	14.6	2.97	433	432	158,682
								433	432	159,114
382	406	0.089	1217	108	1.4	5.9	2.98			
383	406	0.137	1195	164	0	8.0	2.99	433	432	159,546
						7.3	3.00	433	432	159,978
384	406	0.220	1166	256	1.4					
385	406	0.139	1202	167	0	4.5	3.00	433	432	160,410
	406	0.229	1175	269	1.4	1.3	3.00	433	432	160,842
386									433	161,275
387	434	0.234	1173	275	1.4	13.4	3.03	434		
388	406	0.123	1211	149	0	1.9	3.02	434	433	161,708
								434	433	162,141
389	417	0.173	1153	199	-1.4	4.6	3.03			
390	417	0.276	1162	321	-2.8	3.9	3.03	434	433	162,574
							3.04	434	433	163,007
391	417	0.245	1133	278	1.4	7.1				
392	417	0.247	1140	282	0	2.5	3.04	434	433	163,440
					0	1.2	3.04	434	433	163,873
393	417	0.205	1126	231						
394	417	0.193	1155	223	-1.4	6.4	3.04	434	433	164,306
		0.276	1166	322	2.8	1.2	3.04	434	433	164,739
395	406									
396	406	0.263	1162	306	1.4	1.4	3.03	434	433	165,172
397	406	0.096	1223	117	0	1.2	3.03	434	433	165,605
									433	166,038
398	406	0.076	1224	93	1.4	1.2	3.03	434		
399	417	0.187	1196	224	-4.2	5.9	3.03	434	433	166,471
									433	166,904
400	406	0.274	1155	317	2.8	2.5	3.03	434		
401	406	0.098	1208	118	1.4	2.6	3.03	434	433	167,337
							3.03	434	433	167,770
402	406	0.137	1210	166	1.4	3.8				
403	406	0.156	1183	185	1.4	6.8	3.04	434	433	168,203
							3.06	436	435	168,638
404	436	0.068	1253	85	-2.8	8.7				
405	406	0.211	1179	249	2.8	1.9	3.05	436	435	169,073
					2.8	7.9	3.06	436	435	169,508
406	407	0.207	1189	246						
407	406	0.094	1215	114	1.4	3.9	3.07	436	435	169,943
	406	0.068	1230	84	1.4	9.8	3.08	436	435	170,378
408										170,813
409	406	0.198	1177	233	1.4	1.2	3.08	436	435	
410	415	0.242	1171	283	-7	1.4	3.07	436	435	171,248
							3.08	436	435	171,683
411	415	0.265	1189	315	0	6.7				
412	406	0.130	1206	157	1.4	12.7	3.11	436	435	172,118
				267	5.6	7.3	3.12	438	437	172,555
413	437	0.229	1164							
414	437	0.170	1176	200	5.6	11.8	3.14	438	437	172,992
415	438	0.166	1196	199	-1.4	7.8	3.15	438	437	173,429
								438	437	173,866
416	415	0.267	1168	312	0	1.3	3.14			
417	415	0.190	1218	232	0	1.3	3.14	438	437	174,303
	439	0.269	1168	314	-1.4	8.1	3.15	440	439	174,742
418										
419	417	0.228	1171	267	1.4	37.5	3.23	440	439	175,181
420	417	0.209	1175	246	-2.8	9.9	3.25	440	439	175,620
				273	1.4	1.3	3.25	440	439	176,059
421	415	0.231	1180							
422	415	0.256	1187	304	0	3.2	3.25	440	439	176,498
423	415	0.264	1160	306	1.4	1.2	3.24	440	439	176,937
							3.24	440	439	177,376
424	415	0.222	1180	262	1.4	1.3				
425	415	0.230	1163	268	1.4	1.3	3.23	440	439	177,815
				258	1.4	3.4	3.23	440	439	178,254
426	415	0.217	1190							
427	415	0.226	1194	270	2.8	17.3	3.26	440	439	178,693
		0.212	1190	252	2.8	1.2	3.26	440	439	179,132
428	415									
429	415	0.217	1186	257	1.4	4.0	3.26	440	439	179,571
430	415	0.197	1179	232	2.8	1.2	3.26	440	439	180,010
									439	180,449
431	415	0.219	1180	258	2.8	2.6	3.26	440		
432	415	0.210	1203	253	2.8	1.2	3.25	440	439	180,888
							3.25	440	439	181,327
433	415	0.219	1186	260	2.8	1.3				
434	415	0.216	1206	260	2.8	1.3	3.24	440	439	181,766
				311	2.8	1.2	3.24	440	439	182,205
435	415	0.263	1183							
436	415	0.180	1180	212	2.8	1.2	3.23	440	439	182,644
	415	0.219	1189	260	2.8	1.2	3.23	440	439	183,083
437										
438	415	0.260	1187	309	2.8	1.2	3.22	440	439	183,522
439	415	0.204	1184	242	2.8	1.1	3.22	440	439	183,961
								440	439	184,400
440	406	0.180	1194	215	2.8	1.2	3.21	440	439	104,400
					F-6					

F-6 A-6-6 B-61

441 442	406 406	0.065 0.071	1237 1233	81 88	1.4 1.4	1.2 1.2	3.21 3.20	440 440	439 439	184,839 185,278
443	406	0.161	1195	192	1.4	1.2	3.20	440	439	185,717
444	406	0.161	1197	193	1.4	1.2	3.20	440	439	186,156
445	406	0.131	1227	161	1.4	1.2	3.19	440	439	186,595
446	406	0.085	1229	105	1.4	1.2	3.19	440	439	187,034
447	406	0.119	1223	145	1.4	1.3	3.18	440	439	187,473
448	406	0.082	1234	101	1.4	1.2	3.18	440	439	187,912
449 450	406 406	0.228 0.086	1170 1238	267 106	1.4	1.2	3.17	440	439	188,351
	406	0.086	1174		1.4	1.2	3.17	440	439	188,790
451 452	406	0.190	1204	211 229	1.4 1.4	1.2 1.2	3.16 3.16	440 440	439 439	189,229
453	406	0.150	1194	180	1.4	2.5	3.16	440	439	189,668 190,107
454	406	0.151	1197	181	1.4	1.3	3.15	440	439	190,107
455	406	0.107	1189	127	0	1.2	3.15	440	439	190,985
456	406	0.073	1225	89	1.4	1.2	3.15	440	439	191,424
457	415	0.222	1196	265	0	1.2	3.14	440	439	191,863
458	417	0.141	1232	174	-1.4	13.8	3.17	440	439	192,302
459	417	0.229	1187	272	0	5.2	3.17	440	439	192,741
460	406	0.195	1161	226	1.4	.11.8	3.19	440	439	193,180
461	406	0.233	1172	273	0	3.8	3.19	440	439	193,619
462	406	0.183	1208	221	0	5.3	3.19	440	439	194,058
463	406	0.188	1199	226	0	3.9	3.20	440	439	194,497
464	406	0.121	1218	147	1.4	13.2	3.22	440	439	194,936
465	406	0.141	1195	169	1.4	7.3	3.23	440	439	195,375
466	406	0.097	1208	117	0	7.3	3.23	440	439	195,814
467	442	0.229	1164	266	-1.4	6.7	3.24	443	442	196,256
468	442	0.254	1162	295	-1.4	2.6	3.24	443	442	196,698
469	441	0.245	1165	285	-4.2	5.1	3.24	443	442	197,140
470	441	0.133	1208	161	-2.8	1.2	3.24	443	442	197,582
471	442	0.097	1262	123	-1.4	1.3	3.24	443	442	198,024
472	441	0.246	1195	294	-2.8	2.5	3.23	443	442	198,466
473	443	0.237	1149	272	-1.4	3.8	3.24	443	442	198,908
474 475	443 443	0.199 0.143	1164	232 168	0	1.1	3.23	443	442	199,350
476	443	0.143	1172 1137		-1.4	1.2	3.23	443	442	199,792
477	443	0.209	1167	306 206	-1.4 0	5.0 1.2	3.23	443	442	200,234
478	443	0.177	1187	206 177	-1.4	3.8	3.23 3.23	443 443	442 442	200,676
479	406	0.194	1183	229	-1.4	6.2	3.23	443	442	201,118 201,560
480	406	0.206	1191	245	-1.4	7.3	3.24	443	442	202,002
481	406	0.230	1169	269	0	5.2	3.25	443	442	202,444
482	406	0.071	1231	87	1.4	4.6	3.25	443	442	202,886
483	406	0.068	1214	82	1.4	1.3	3.25	443	442	203,328
484	417	0.187	1238	231	-1.4	1.3	3.24	443	442	203,770
485	417	0.139	1220	169	-1.4	5.2	3.25	443	442	204,212
486	417	0.183	1144	209	0	1.2	3.24	443	442	204,654
487	417	0.193	1208	233	-1.4	3.9	3.24	443	442	205,096
488	417	0.212	1164	247	-1.4	1.2	3.24	443	442	205,538
489	417	0.228	1138	260	-1.4	2.5	3.24	443	442	205,980
490	417	0.156	1189	186	-2.8	1.2	3.23	443	442	206,422
491 492	417 415	0.148 0.152	1233	182	-1.4	1.2	3.23	443	442	206,864
493	415	0.132	1230 1185	187 270	0 -4.2	1.3 1.3	3.22 3.22	443 443	442 442	207,306 207,748
494	406	0.051	1230	63	1.4	1.2	3.22	443	442	208,190
495	406	0.049	1263	62	Ö	1.3	3.21	443	442	208,632
496	415	0.259	1226	317	-1.4	2.5	3.21	443	442	209,074
497	415	0.176	1211	213	-2.8	1.2	3.21	443	442	209,516
498	417	0.186	1166	217	-2.8	2.6	3.21	443	442	209,958
499	415	0.203	1211	246	-1.4	7.4	3.21	443	442	210,400
500	417	0.255	1190	304	-1.4	3.3	3.21	443	442	210,842
501	417	0.221	1173	259	-1.4	4.0	3.22	443	442	211,284
502	444	0.212	1090	231	-1.4	5.1	3.22	444	443	211,727
503	445	0.174	1158	201	0	1.2	3.22	446	445	212,172
504	445	0.238	1138	271	0	1.2	3.21	446	445	212,617
505	446	0.095	1181	112	0	1.2	3.21	446	445	213,062
506	447	0.097	1264	123	0	1.3	3.20	448	447	213,509
507	447	0.143	1235	176	0	1.3	3.20	448	447	213,956
508 500	447	0.079	1277	101	0	1.2	3.20	448	447	214,403
509 510	447 447	0.046	1279	59	0	1.2	3.19	448	447	214,850
510 511	447	0.078 0.136	1270 1193	99 162	0 1.4	1.2	3.19	448	447	215,297
512	448	0.136	1301	60	0	1.3 1.2	3.18 3.18	448	447	215,744
513	448	0.048	1254	110	0	1.2	3.18 3.18	448 448	447 447	216,191
514	448	0.037	1300	48	0	1.2	3.10	448	447	216,638 217,085
515	448	0.042	1297	54	0	1.2	3.17	448	447	217,532
					E 7					

F-7 A-6-7 B-62

516	448	0.124	1228	152	0	1.2	3.17	448	447	217,979
				129	1.4	3.4	3.17	448	447	218,426
517	406	0.107	1209					450	449	218,875
518	449	0.197	1187	234	-1.4	3.9	3.17		449	•
519	449	0.113	1214	137	-1.4	1.3	3.16	450		219,324
520	449	0.096	1223	118	0	1.3	3.16	450	449	219,773
521	449	0.144	1213	175	0	1.3	3.16	450	449	220,222
522	449	0.125	1203	150	0	1.3	3.15	450	449	220,671
523	450	0.197	1185	233	-2.8	2.7	3.15	450	449	221,120
524	450	0.125	1219	152	0	7.3	3.16	450	449	221,569
		0.125	1235	131	ŏ	1.3	3.16	450	449	222,018
525	450						3.15	450	449	222,467
526	450	0.095	1227	116	0	1.3				
527	450	0.132	1217	161	0	1.3	3.15	450	449	222,916
528	450	0.237	1214	288	-1.4	1.3	3.15	450	449	223,365
529	452	0.251	1182	297	0	1.3	3.14	453	452	223,817
530	452	0.172	1208	208	0	2.6	3.14	453	452	224,269
531	451	0.179	1148	206	1.4	1.2	3.14	453	452	224,721
532	452	0.179	1179	211	0	1.3	3.13	453	452	225,173
					ő	1.1	3.13	453	452	225,625
533	452	0.195	1154	225						226,077
534	453	0.171	1161	199	-1.4	2.6	3.13	453	452	
535	453	0.143	1170	167	0	1.2	3.13	453	452	226,529
536	453	0.114	1192	136	0	1.3	3.12	453	452	226,981
537	453	0.139	1191	165	0	1.3	3.12	453	452	227,433
538	453	0.114	1181	135	0	1.3	3.12	453	452	227,885
539	406	0.205	1194	245	2.8	12.0	3.13	453	452	228,337
			1191	319	-1.4	1.3	3.13	453	452	228,789
540	415	0.268				2.0	3.13	453	452	229,241
541	415	0.236	1180	278	-2.8				452	229,693
542	415	0.200	1221	244	-1.4	1.2	3.12	453		
543	415	0.158	1219	192	-1.4	1.3	3.12	453	452	230,145
544	415	0.174	1237	215	-1.4	1.2	3.12	453	452	230,597
545	415	0.239	1192	285	-1.4	1.2	3.11	453	452	231,049
546	416	0.161	1216	196	-1.4	2.6	3.11	453	452	231,501
	416	0.147	1218	179	1.4	5.2	3.12	453	452	231,953
547						2.5	3.11	453	452	232,405
548	416	0.170	1202	204	2.8				452	232,857
549	416	0.240	1166	280	2.8	1.2	3.11	453		
550	416	0.169	1208	204	2.8	2.5	3.11	453	452	233,309
551	406	0.090	1227	111	1.4	8.5	3.12	453	452	233,761
552	406	0.116	1224	142	0	1.3	3.12	453	452	234,213
553	406	0.168	1180	198	1.4	1.3	3.11	453	452	234,665
554	406	0.141	1193	168	1.4	1.2	3.11	453	452	235,117
555	406	0.092	1212	112	1.4	1.1	3.11	453	452	235,569
				71	1.4	1.2	3.10	453	452	236,021
556	406	0.057	1241				3.10	453	452	236,473
557	406	0.204	1176	240	1.4	1.3				236,925
558	406	0.112	1226	137	1.4	1.2	3.10	453	452	
559	406	0.058	1238	72.	1.4	1.1	3.09	453	452	237,377
560	406	0.098	1246	122	2.8	1.3	3.09	453	452	237,829
561	406	0.218	1201	262	1.4	1.2	3.09	453	452	238,281
562	406	0.237	1175	278	1.4	4.0	3.09	453	452	238,733
563	406	0.195	1185	231	1.4	6.6	3.09	453	452	239,185
564	406	0.195	1177	230	1.4	1.2	3.09	453	452	239,637
565	406	0.129	1190	153	1.4	1.3	3.09	453	452	240,089
566	406	0.175	1192	209	1.4	1.2	3.08	453	452	240.541
567	406	0.052	1235	64	1.4	1.2	3.08	453	452	240,993
	406	0.175	1215	213	0	1.2	3.08	453	452	241,445
568				255	Ö	1.1	3.07	453	452	241,897
569	415	0.216	1182				3.07	453	452	242,349
570	416	0.193	1189	230	5.6	2.2				
571	406	0.164	1199	197	1.4	1.2	3.07	453	452	242,801
572	417	0.179	1209	216	-1.4	4.4	3.07	453	452	243,253
573	450	0.133	1211	161	-2.8	4.1	3.07	453	452	243,705
574	449	0.132	1202	159	2.8	1.1	3.07	453	452	244,157
575	447	0.090	1259	113	0	1.2	3.07	453	452	244,609
576	450	0.155	1217	189	0	5.0	3.07	453	452	245,061
577	447	0.207	1224	253	0	2.2	3.07	453	452	245,513
	447	0.084	1260	106	Õ	1.2	3.07	453	452	245,965
578									452	246,417
579	448	0.126	1236	156	0	5.9	3.07	453		
580	448	0.235	1212	285	0	1.1	3.07	453	452	246,869
581	448	0.121	1240	150	0	1.1	3.06	453	452	247,321
582	448	0.082	1261	103	0	2.3	3.06	453	452	247,773
583	447	0.199	1189	237	0	1.3	3.06	453	452	248,225
584	447	0.051	1278	65	Ö	1.3	3.06	453	452	248,677
	447	0.031	1275	60	ŏ	1.1	3.05	453	452	249,129
585								453	452	249,581
586	447	0.068	1274	86	0	1.2	3.05			
587	447	0.048	1281	61	0	1.1	3.05	453	452	250,033
588	447	0.051	1280	65	0	1.2	3.04	453	452	250,485
589	447	0.076	1250	95	0	1.2	3.04	453	452	250,937
590	447	0.122	1234	151	0	1.2	3.04	453	452	251,389
		_			F-8					

F-8 A-6-8 B-63

591	447	0.201	1236	248	-1.4	2.5	3.04	453	452	251,841
										252,293
592	447	0.078	1281	100	-1.4	1.2	3.03	453	452	
593	447	0.080	1278	102	-1.4	1.2	3.03	453	452	252,745
594	447	0.091	1277	116	-1.4	1.2	3.03	453	452	253,197
595	447	0.109	1258	137	-1.4	1.2	3.02	453	452	253,649
596	417	0.152	1206	183	-1.4	1.3	3.02	453	452	254,101
										•
597	417	0.174	1159	202	-1.4	1.2	3.02	453	452	254,553
598	417	0.233	1204	280	-1.4	9.3	3.03	453	452	255,005
599	417	0.214	1199	256	-1.4	2.6	3.03	453	452	255,457
600	417	0.213	1192	254	-1.4	5.2	3.03	453	452	255,909
						1.2	3.03	453	452	256,361
601	417	0.204	1120	228	-5.6					
602	406	0.063	1234	78	2.8	1.2	3.02	453	452	256,813
603	454	0.131	1209	158	1.4	4.0	3.03	455	454	257,267
604	454	0.159	1210	192	1.4	1.3	3.02	455	454	257,721
605	454	0.152	1220	186	1.4	1.3	3.02	455	454	258,175
606	454	0.111	1199	133	1.4	1.3	3.02	455	454	258,629
607	454	0.157	1200	188	1.4	1.3	3.02	455	454	259,083
608	455	0.171	1203	206	1.4	3.2	3.02	455	454	259,537
609	455	0.127	1216	154	1.4	1.2	3.01	455	454	259,991
610	455	0.105	1201	126	1.4	1.2	3.01	455	454	260,445
										•
611	455	0.099	1215	120	1.4	1.3	3.01	455	454	260,899
612	455	0.114	1211	138	1.4	1.3	3.00	455	454	261,353
613	453	0.245	1141	279	-1.4	6.6	3.01	455	454	261,807
614	453	0.200	1137	227	-1.4	1.3	3.01	455	454	262,261
		0.209	1146	240	0	2.6	3.01	455	454	262,715
615	453									
616	453	0.193	1119	216	0	1.2	3.00	455	454	263,169
617	453	0.183	1147	210	0	1.3	3.00	455	454	263,623
618	453	0.270	1155	312	-1.4	7.4	3.01	455	454	264,077
619	453	0.234	1134	265	-1.4	1.2	3.00	455	454	264,531
620	453	0.168	1145	192	0	5.2	3.01	455	454	264,985
621	453	0.214	1138	244	-1.4	1.2	3.01	455	454	265,439
622	453	0.197	1153	227	-1.4	11.3	3.02	455	454	265,893
623	452	0.240	1169	281	1.4	4.6	3.02	455	454	266,347
624	452	0.279	1190	332	2.8	2.6	3.02	455	454	266,801
								455	454	267,255
625	451	0.271	1143	310	2.8	3.8	3.02			
626	452	0.214	1197	256	0	12.8	3.04	455	454	267,709
627	452	0.231	1149	265	1.4	1.2	3.03	455	454	268,163
628	452	0.218	1142	249	2.8	9.2	3.04	455	454	268,617
629	451	0.214	1139	244	2.8	1.3	3.04	455	454	269,071
		0.222		257	2.8	1.3	3.04	455	454	269,525
630	452		1160							•
631	451	0.223	1100	245	4.2	1.2	3.04	455	454	269,979
632	447	0.080	1238	99	1.4	2.6	3.04	455	454	270,433
633	447	0.085	1214	103	1.4	1.2	3.03	455	454	270,887
634	447	0.071	1239	88	1.4	1.2	3.03	455	454	271,341
635	448	0.153	1225	187	1.4	1.3	3.03	455	454	271,795
636	448	0.133	1198	264		2.5	3.03	455	454	272,249
					1.4					
637	448	0.148	1234	183	1.4	1.2	3.02	455	454	272,703
638	448	0.250	1208	302	0	1.2	3.02	455	454	273,157
639	448	0.152	1240	188	0	1.1	3.02	455	454	273,611
640	448	0.175	1229	215	0	1.2	3.01	455	454	274,065
641	448	0.127	1235	157	1.4	2.6	3.01	455	454	274,519
642	448	0.182	1218	222	0	1.1	3.01	455	454	274,973
643	448	0.102	1264	129	0	1.3	3.01	455	454	275,427
644	406	0.141	1183	167	0	3.6	3.01	455	454	275,881
645	406	0.258	1201	310	0	5.3	3.01	455	454	276,335
646	406	0.242	1165	282	2.8	3.1	3.01	455	454	276,789
647	406	0.209	1182	247	0	3.3	3.01	455	454	277,243
648	406	0.131	1170	153	ŏ	1.1	3.01	455	454	277,697
649	406	0.267	1160	310	0	1.1	3.01	455	454	278,151
650	407	0.189	1202	227	-1.4	1.1	3.00	455	454	278,605
651	407	0.198	1199	237	-1.4	1.1	3.00	455	454	279,059
652	407	0.229	1201	275	-1.4	1.1	3.00	455	454	279,513
653	407	0.255	1189	303	-2.8	1.1	3.00	455	454	279,967
										•
654	407	0.261	1181	308	-2.8	1.1	2.99	455	454	280,421
655	415	0.275	1193	328	1.4	1.1	2.99	455	454	280,875
656	415	0.229	1195	274	1.4	1.1	2.99	455	454	281,329
657	415	0.248	1195	296	2.8	1.0	2.98	455	454	281,783
658	415	0.225	1211	272	2.8	1.1	2.98	455	454	282,237
659	415	0.268	1198	321	2.8	1.1	2.98	455	454	282,691
660	416	0.218	1186	259	4.2	4.3	2.98	455	454	283,145
661	416	0.269	1158	311	5.6	4.3	2.98	455	454	283,599
662	416	0.219	1175	257	5.6	1.1	2.98	455	454	284,053
	416	0.181	1123	203	7	1.1	2.98	455	454	284,507
663										
664	416	0.191	1164	222	7	1.1	2.97	455	454	284,961
665	416	0.242	1124	272	_7_	5.3	2.98	455	454	285,415
					F_0					

F-9 A-6-9 B-64

666	447	0.241	1185	286	1.4	5.3	2.98	455	454	285,869
							2.98	455	454	286,323
667	447	0.078	1244	97	0	1.2				
668	447	0.193	1216	235	0	1.2	2.98	455	454	286,777
669	447	0.110	1259	138	0	1.2	2.97	455	454	287,231
670	447	0.079	1238	98	0	1.1	2.97	455	454	287,685
671	447	0.097	1252	121	0	1.1	2.97	455	454	288,139
672	448	0.126	1216	153	Ō	1.1	2.96	455	454	288,593
									454	289,047
673	448	0.116	1241	144	0	1.1	2.96	455		
674	448	0.072	1273	92	0	1.1	2.96	455	454	289,501
675	448	0.101	1252	127	0	1.1	2.96	455	454	289,955
676	448	0.084	1279	107	Ō	1.1	2.95	455	454	290,409
				269	o		2.95	455	454	290,863
677	417	0.230	1168			1.1				
678	417	0.149	1195	178	1.4	1.1	2.95	455	454	291,317
679	417	0.141	1167	164	1.4	1.1	2.95	455	454	291,771
680	417	0.190	1199	228	1.4	1.1	2.94	455	454	292,225
681	417	0.222	1196	265	0	1.1	2.94	455	454	292,679
		0.184	1162	214	4.2	1.1	2.94	455	454	293,133
682	418									293,587
683	418	0.217.	1169	254	2.8	1.1	2.93	455	454	
684	418	0.183	1163	213	2.8	1.2	2.93	455	454	294,041
685	418	0.191	1188	227	2.8	1.1	2.93	455	454	294,495
686	418	0.156	1183	184	2.8	1.2	2.93	455	454	294,949
687	453	0.189	1172	222	-1.4	11.9	2.94	455	454	295,403
						1.1	2.94	455	454	295,857
688	453	0.231	1146	265	0					-
689	453	0.180	1169	210	-1.4	3.3	2.94	455	454	296,311
690	453	0.237	1164	276	-1.4	1.2	2.93	455	454	296,765
691	451	0.201	1142	230	5.6	8.2	2.94	455	454	297,219
692	451	0.268	1133	304	0	1.1	2.94	455	454	297,673
693	451	0.246	1145	282	ő	1.1	2.94	455	454	298,127
					ő	1.1	2.93	455	454	298,581
694	451	0.157	1181	186						
695	451	0.167	1178	197	0	1.1	2.93	455	454	299,035
696	451	0.200	1145	229	1.4	1.1	2.93	455	454	299,489
697	447	0.178	1227	218	0	7.9	2.94	455	454	299,943
698	447	0.090	1237	111	0	1.2	2.93	455	454	300,397
699	447	0.084	1249	105	Ō	1.2	2.93	455	454	300,851
				101	ő	1.3	2.93	455	454	301,305
700	447	0.080	1261							
701	447	0.101	1259	127	0	1.3	2.93	455	454	301,759
702	448	0.154	1221	188	1.4	1.2	2.92	455	454	302,213
703	448	0.146	1207	176	1.4	1.2	2.92	455	454	302,667
704	448	0.105	1261	132	0	1.3	2.92	455	454	303,121
705	448	0.102	1261	128	ō	1.2	2.92	455	454	303,575
						1.2	2.91	455	454	304,029
706	448	0.068	1251	85	0					
707	448	0.102	1229	125	0	1.1	2.91	455	454	304,483
708	448	0.078	1271	99	0	1.1	2.91	455	454	304,937
709	448	0.087	1261	110	0	1.2	2.91	455	454	305,391
710	406	0.209	1190	249	1.4	9.9	2.92	455	454	305,845
	447	0.124	1245	155	0	8.7	2.93	455	454	306,299
711										
712	447	0.084	1243	104	1.4	6.5	2.93	455	454	306,753
713	417	0.239	1204	288	-1.4	7.8	2.94	455	454	307,207
714	456	0.195	1183	231	2.8	21.3	2.96	457	456	307,663
715	472	0.099	1198	119	0	3.8	2.96	472	471	308,134
716	472	0.257	1160	298	0	1.1	2.96	472	471	308,605
717	472	0.236	1152	272	ő	2.5	2.96	472	471	309,076
								472	471	309,547
718	472	0.258	1130	292	0	4.9	2.96			
719	458	0.072	1150	83	0	1.2	2.96	472	471	310,018
720	459	0.077	1157	89	0	2.5	2.96	472	471	310,489
721	460	0.041	1216	50	0	2.4	2.96	472	471	310,960
722	462	0.084	1140	96	0	8.9	2.97	472	471	311,431
723	463	0.085	1115	95	0	1.1	2.97	472	471	311,902
724	444	0.130	1111	144	ŏ	1.2	2.96	472	471	312,373
									471	312,844
725	444	0.212	1055	224	0	6.2	2.97	472		
726	444	0.240	1071	257	-1.4	9.5	2.98	472	471	313,315
727	464	0.265	1066	282	0	1.1	2.97	472	471	313,786
728	465	0.049	1215	60	0	1.1	2.97	472	471	314,257
729	466	0.053	1196	63	0	1.1	2.97	472	471	314,728
730	467	0.090	1187	107	-1.4	4.9	2.97	472	471	315,199
	468	0.058	1182	68	0	1.1	2.97	472	471	315,670
731										
732	470	0.089	1206	107	0	2.4	2.97	472	471	316,141
733	470	0.141	1151	162	0	1.1	2.97	472	471	316,612
734	471	0.210	1147	241	1.4	2.5	2.96	472	471	317,083
735	471	0.135	1156	156	0	1.1	2.96	472	471	317,554
736	472	0.136	1166	159	ō	1.1	2.96	472	471	318,025
				106	Ö	1.2		472	471	318,496
737	472	0.090	1173				2.96			
738	473	0.088	1234	108	-1.4	4.0	2.96	474	473	318,969
739	473	0.141	1233	174	-1.4	5.8	2.96	474	473	319,442
740	473	0.042	1278	54	-1.4	1.2	2.96	474	473	319,915
					F-10					
					I -IU					

F-10 A-6-10 B-65

744	472	0.071	1251	89	-1.4	1.2	2.96	474	473	320,388
741	473			75	-1.4	1.2	2.96	474	473	320,861
742	473	0.060	1260					474	473	321,334
743	474	0.115	1220	140	0	3.2	2.96		473	321,807
744	474	0.075	1233	92	0	1.2	2.95	474		•
745	474	0.116	1215	141	0	1.3	2.95	474	473	322,280
746	474	0.116	1222	142	0	1.3	2.95	474	473	322,753
747	474	0.120	1198	144	0	1.3	2.95	474	473	323,226
748	474	0.115	1207	139	0	1.2	2.94	474	473	323,699
				230	-2.8	2.8	2.94	476	475	324,174
749	475	0.200	1149				2.94	476	475	324,649
750	475	0.216	1151	249	-2.8	2.6				325,124
751	475	0.226	1179	267	-2.8	1.2	2.94	476	475	
752	475	0.185	1165	215	-2.8	1.3	2.94	476	475	325,599
753	475	0.186	1176	219	-2.8	1.2	2.94	476	475	326,074
754	475	0.264	1166	308	-1.4	1.3	2.93	476	475	326,549
	475	0.257	1148	295	-2.8	1.2	2.93	476	475	327,024
755					1.4	1.3	2.93	476	475	327,499
756	476	0.247	1171	289				476	475	327,974
757	476	0.103	1233	127	2.8	1.2	2.93		475	328,449
758	476	0.136	1203	164	2.8	1.3	2.93	476		
759	476	0.158	1236	195	2.8	1.3	2.92	476	475	328,924
760	476	0.115	1226	141	2.8	1.3	2.92	476	475	329,399
761	476	0.150	1207	181	2.8	1.2	2.92	476	475	329,874
		0.198	1196	237	0	1.1	2.92	476	475	330,349
762	415			204	ő	1.8	2.92	476	475	330,824
763	415	0.165	1234				2.91	476	475	331,299
764	415	0.198	1199	238	0	2.5				
765	415	0.162	1220	198	1.4	1.2	2.91	476	475	331,774
766	415	0.207	1176	244	1.4	1.2	2.91	476	475	332,249
767	416	0.224	1155	259	4.2	1.1	2.91	476	475	332,724
768	416	0.236	1122	265	4.2	1.2	2.91	476	475	333,199
				221	4.2	5.2	2.91	476	475	333,674
769	416	0.196	1126			2.5	2.91	476	475	334,149
770	416	0.185	1152	213	2.8			476	475	334,624
771	416	0.167	1197	200	2.8	7.7	2.91			
772	416	0.265	1143	303	4.2	1.1	2.91	476	475	335,099
773	458	0.088	1149	101	0	1.2	2.91	476	475	335,574
774	458	0.083	1165	97	0	1.2	2.91	476	475	336,049
775	458	0.080	1148	92	-1.4	1.2	2.91	476	475	336,524
				104	O	1.1	2.90	476	475	336,999
776	458	0.089	1170			1.2	2.90	476	475	337,474
777	458	0.071	1155	82	0					
778	458	0.105	1150	121	0	1.1	2.90	476	475	337,949
779	459	0.082	1155	95	0	2.5	2.90	476	475	338,424
780	459	0.058	1193	69	0	2.5	2.90	476	475	338,899
781	459	0.095	1169	111	0	2.5	2.90	476	475	339,374
		0.033	1098	271	2.8	1.2	2.89	476	475	339,849
782	459					1.1	2.89	476	475	340,324
783	460	0.044	1233	54	0			476	475	340,799
784	460	0.066	1202	79	0	1.1	2.89			
785	460	0.027	1241	34	0	1.1	2.89	476	475	341,274
786	460	0.104	1213	126	0	1.1	2.89	476	475	341,749
787	460	0.054	1208	65	0	1.1	2.88	476	475	342,224
788	460	0.058	1221	71	0	1.1	2.88	476	475	342,699
789	460	0.042	1226	52	0	1.1	2.88	476	475	343,174
790	460	0.057	1229	70	Ö	1.1	2.88	476	475	343,649
		0.069	1219	84	ő	1.0	2.87	476	475	344,124
791	460		1214	72	ŏ	1.1	2.87	476	475	344,599
792	461	0.059			ő	2.5	2.87	476	475	345,074
793	462	0.122	1111	135			2.87	476	475	345,549
794	462	0.114	1126	128	0	1.1			475	346,024
795	463	0.084	1119	94	0	1.2	2.87	476		
796	463	0.141	1091	154	0	1.1	2.87	476	475	346,499
797	444	0.230	1134	261	0	1.1	2.86	476	475	346,974
798	464	0.097	1160	113	O	1.1	2.86	476	475	347,449
799	465	0.070	1191	83	0	1.1	2.86	476	475	347,924
800	465	0.089	1191	106	Ō	1.2	2.86	476	475	348,399
			1210	100	ŏ	1.2	2.85	476	475	348,874
801	465	0.083				1.1	2.85	476	475	349,349
802	465	0.072	1212	87	0				475	349,824
803	465	0.081	1213	98	0	1.2	2.85	476		
804	465	0.061	1224	75	0	1.2	2.85	476	475	350,299
805	466	0.028	1235	35	0	1.1	2.85	476	475	350,774
806	466	0.085	1168	99	0	1.1	2.84	476	475	351,249
807	466	0.005	1230	31	Õ	1.1	2.84	476	475	351,724
				34	ő	1.1	2.84	476	475	352,199
808	466	0.027	1252				2.84	476	475	352,674
809	467	0.102	1169	119	0	1.1				353,149
810	468	0.029	1207	35	0	1.1	2.84	476	475	
811	468	0.026	1230	32	0	1.1	2.83	476	475	353,624
812	468	0.034	1198	41	0	1.0	2.83	476	475	354,099
813	468	0.023	1216	28	0	1.1	2.83	476	475	354,574
814	468	0.131	1160	152	-1.4	1.1	2.83	476	475	355,049
815	468	0.066	1184	78	-1.4	1.2	2.82	476	475	355,524
0.10	-100	2.000	•		E 11					•

F-11 A-6-11 B-66

816	469	0.145	1196	173	0	1.1	2.82	476	475	355,999
										•
817	470	0.102	1169	119	0	8.9	2.83	476	475	356,474
818	470	0.131	1164	152	0	1.1	2.83	476	475	356,949
819	470	0.182	1137	207	0	1.2	2.83	476	475	357,424
820	470	0.152	1140	173	Ō	1.1	2.82	476	475	357,899
										358,374
821	471	0.150	1150	173	1.4	1.2	2.82	476	475	
822	471	0.127	1143	145	1.4	1.1	2.82	476	475	358,849
823	471	0.150	1161	174	1.4	1.1	2.82	476	475	359,324
824	471	0.148	1181	175	0	1.1	2.82	476	475	359,799
825	471	0.117	1195	140	0	1.1	2.81	476	475	360,274
826	472	0.079	1193	94	0	1.2	2.81	476	475	360,749
827	472	0.094	1180	111	0	1.1	2.81	476	475	361,224
828	445	0.057	1208	69	0	1.1	2.81	476	475	361,699
					-					
829	445	0.263	1122	295	-1.4	1.2	2.81	476	475	362,174
830	445	0.139	1177	164	0	1.1	2.80	476	475	362,649
831	445	0.130	1183	154	0	1.1	2.80	476	475	363,124
832	445	0.228	1153	263	0	1.1	2.80	476	475	363,599
833	445	0.210	1133	238	0	1.2	2.80	476	475	364,074
834	445	0.184	1150	212	0	1.2	2.80	476	475	364,549
835	445	0.181	1143	207	0	1.1	2.79	476	475	365,024
836	446	0.082	1173	96	0	1.2	2.79	476	475	365,499
837	446	0.074	1206	89	0	1.2	2.79	476	475	365,974
838	446	0.081	1196	97	0	1.2	2.79	476	475	366,449
839	446	0.080	1179	94	0	1.1	2.79	476	475	366,924
		0.102	1179	120	ŏ	1.2	2.78	476	475	367,399
840	446									
841	446	0.162	1140	185	-1.4	1.1	2.78	476	475	367,874
842	447	0.258	1167	301	0	3.1	2.78	476	475	368,349
843	447	0.206	1192	246	0	2.6	2.78	476	475	368,824
							2.78	476	475	369,299
844	447	0.237	1158	275	1.4	1.2				
845	447	0.204	1192	243	0	2.5	2.78	476	475	369,774
846	447	0.224	1187	266	0	1.3	2.78	476	475	370,249
847	447	0.237	1201	285	0	9.3	2.79	476	475	370,724
848	447	0.220	1205	265	0	1.2	2.78	476	475	371,199
849	447	0.221	1204	266	0	1.2	2.78	476	475	371,674
850	447	0.231	1204	278	0	1.2	2.78	476	475	372,149
851	447	0.189	1218	230	-1.4	1.2	2.78	476	475	372,624
852	447	0.206	1212	250	-1.4	1.2	2.78	476	475	373,099
853	447	0.262	1212	318	-1.4	1.2	2.77	476	475	373,574
854	447	0.225	1219	274	0	1.2	2.77	476	475	374,049
855	447	0.223	1198	267	1.4	1.2	2.77	476	475	374,524
856	447	0.196	1210	237	0	2.5	2.77	476	475	374,999
857	447	0.203	1234	250	0	11.4	2.78	476	475	375,474
858	447	0.214	1208	259	0	4.4	2.78	476	475	375,949
859	447	0.197	1228	242	0	1.2	2.78	476	475	376,424
860	447	0.270	1199	324	Ö	1.2	2.78	476	475	376,899
861	447	0.206	1213	250	0	1.2	2.78	476	475	377,374
862	447	0.174	1233	214	0	1.2	2.77	476	475	377,849
863	447	0.251	1202	302	-1.4	1.2	2.77	476	475	378,324
864	447	0.149	1203	179	0	1.2	2.77	476	475	378,799
865	447	0.172	1212	208		1.2	2.77	476	475	379,274
					-1.4	1.2				
866	447	0.214	1210	259	-1.4	1.3	2.77	476	475	379,749
867	447	0.220	1206	265	0	1.3	2.77	476	475	380,224
868	. 447	0.161	1207	194	-1.4	1.3	2.76	476	475	380,699
869	447	0.148	1229	182	-1.4	1.1	2.76	476	475	381,174
870	447	0.197	1206	237	-1.4	1.2	2.76	476	475	381,649
871	447	0.153	1232	189	0	1.2	2.76	476	475	382,124
872	447	0.208	1219	253	0	1.2	2.76	476	475	382,599
873	447	0.218	1201	262	-1.4	1.2	2.76	476	475	383,074
874	447	0.209	1213	254	-1.4	3.7	2.76	476	475	383,549
875	447	0.180	1225	221 .	0	3.8	2.76	476	475	384,024
876	447	0.150	1210	182	0	6.3	2.76	476	475	384,499
877	447	0.208	1219	253	0	1.2	2.76	476	475	384,974
878	447	0.218	1201	262	-1.4	1.2	2.76	476	475	385,449
879	447	0.209	1213	254	-1.4	3.7	2.76	476	475	385,924
880	447	0.180	1225	221	0	3.8	2.76	476	475	386,399
881	447	0.150	1210	182	0	6.3	2.76	476	475	386,874
882	447	0.172	1238	213	0	4.7	2.77	476	475	387,349
883	447	0.182	1237	225	ŏ	1.1	2.76	476	475	387,824
884	447	0.196	1221	239	0	1.3	2.76	476	475	388,299
885	447	0.186	1244	231	-1.4	1.2	2.76	476	475	388,774
886	447	0.209	1218	255	0	1.2	2.76	476	475	389,249
887	447	0.237	1197	284	Ö	8.9	2.77	476	475	
										389,724
888	447	0.161	1244	200	0	2.6	2.77	476	475	390,199
889	447	0.122	1255	153	0	1.2	2.76	476	475	390,674
890	447	0.129	1248	161	0	1.1	2.76	476	475	391,149
					F-12					.,

F-12 A-6-12 B-67

881 447 0.085 1255 107 0 1.12 2.76 476 475 392,098 883 447 0.199 1230 234 0 1.12 2.76 476 475 392,098 883 447 0.199 1230 234 0 1.12 2.76 476 475 392,098 883 447 0.129 1209 156 1.4 2.5 2.76 476 476 393,097 885 447 0.221 1228 271 0 1 1.2 2.76 476 475 393,098 886 447 0.221 1228 271 0 1 1.2 2.76 476 475 393,998 886 447 0.221 1228 127 228 0 0 1.2 2.76 476 475 393,998 886 473 0.074 124 125 191 0 0 1.2 2.75 479 478 393,999 890 478 0.091 1225 1101 0 0 1.2 2.75 479 478 395,499 900 478 0.092 1229 1101 0 0 1.2 2.75 479 478 395,499 900 478 0.092 1229 1101 0 0 1.2 2.75 479 478 395,499 900 478 0.094 1225 106 0 0 1.1 2.75 479 478 395,499 900 478 0.094 1227 1219 131 0 0 1.12 2.75 479 478 395,499 900 478 0.094 1227 1418 0 0 1.12 2.75 479 478 395,499 900 478 0.094 1227 1418 0 0 1.12 2.75 479 478 395,499 900 478 0.096 1229 1011 0 0 1.2 2.75 479 478 395,499 900 478 0.096 1229 1011 0 0 1.2 2.75 479 478 395,499 900 478 0.096 1229 1011 0 0 1.12 2.75 479 478 395,499 900 478 0.096 1229 1013 0 0 1.12 2.74 479 478 395,499 900 478 0.109 1129 131 0 0 1.12 2.74 479 478 395,390 900 478 0.109 1129 131 0 0 1.12 2.74 479 478 395,390 900 478 0.109 1129 131 0 0 1.12 2.74 479 478 395,390 900 479 0.166 1200 199 0 0 1.2 2.74 479 478 398,760 900 490 0.166 1200 199 0 0 1.3 2.74 479 478 398,760 900 490 0.166 1303 131 127 129 130 0 4.7 2.74 479 478 398,760 900 490 0.166 1303 131 127 129 130 0 4.7 2.74 479 478 398,760 900 490 0.166 1303 131 127 129 130 0 4.7 2.74 479 478 398,760 900 490 0.166 1303 131 127 129 130 0 1.12 2.74 479 478 398,760 900 490 0.166 1303 131 127 129 130 0 1.12 2.74 479 478 398,760 900 490 0.166 1303 131 127 129 130 0 1.12 2.73 482 481 400,167 90 900 490 0.166 1303 131 127 129 130 0 1.12 2.73 482 481 400,167 90 900 490 0.166 1303 132 120 120 130 120 120 120 120 120 120 120 120 120 12									470	475	391,624
888 447 0.192 1299 156 148 202 1.1 4 2.5 2.76 476 476 392.574 8895 447 0.221 1229 156 1.4 3.8 2.76 476 476 393.524 8896 447 0.192 1237 238 0 1.2 2.76 476 476 393.524 8897 447 0.131 1249 164 0 1.2 2.75 478 478 393.524 8898 478 0.091 1235 191 0 1.2 2.75 479 478 393.524 8899 478 0.091 1224 111 0 1.1 2.2 2.75 479 478 395.638 899 478 0.092 1235 191 0 1.1 2.2 2.75 479 478 395.638 890 478 0.082 1255 506 0 1 0 1 1.2 2.75 479 478 395.638 890 478 0.082 1212 184 0 1.1 2.2 2.75 479 478 395.838 890 478 0.082 1212 184 0 1.2 2.75 479 478 395.838 890 478 0.082 1212 184 0 1.2 2.75 479 478 395.838 890 478 0.082 1212 184 0 1.2 2.75 479 478 395.838 890 478 0.081 1244 101 0 1.2 2.75 479 478 395.838 890 478 0.181 1189 215 0 1.2 2.74 479 478 397.820 904 479 0.081 1244 101 0 1.2 2.74 479 478 397.820 905 479 0.181 1189 215 0 1.2 2.74 479 478 397.820 906 479 0.181 1189 215 0 1.2 2.74 479 478 397.820 907 479 0.166 1200 199 0 1.2 2.74 479 478 398.936 908 480 0.155 1249 183 0 0 4.1 3 2.75 479 478 398.936 909 480 0.151 1244 215 0 0 1.2 2.74 482 481 400.667 910 480 0.111 1248 215 0 1.2 2.74 482 481 400.667 911 480 0.111 1248 215 0 1.2 2.73 482 481 400.667 913 480 0.106 1255 133 1.4 2.5 2.73 482 481 401.78 913 480 0.106 1255 133 1.4 2.5 2.73 482 481 401.83 914 480 0.107 1248 214 0 1.2 2.73 482 481 401.83 915 480 0.106 1255 133 1.4 2.5 2.73 482 481 401.83 916 482 0.077 1184 328 0 0 1.2 2.73 482 481 401.83 917 482 0.078 1248 97 10 122 214 480 481 401.83 918 480 0.106 1255 133 1.4 2.5 2.73 482 481 401.83 919 480 0.106 1255 133 1.4 2.5 2.73 482 481 401.83 910 480 0.107 1248 214 0 1.2 2.73 482 481 401.83 910 480 0.106 1255 133 1.4 2.5 2.73 482 481 401.83 913 480 0.006 1255 133 1.4 2.5 2.73 482 481 401.83 914 482 0.095 1227 1184 0 1.2 2.73 482 481 401.83 915 482 0.095 1227 1184 0 1.2 2.73 482 481 401.83 916 482 0.095 1227 1184 0 1.2 2.73 482 481 401.83 917 480 0.006 1255 133 1.4 2.5 2.73 482 481 401.83 918 480 0.006 1255 133 1.4 2.5 2.73 482 481 401.83 919 480 0.006 1255 133 1.4 2.5 2.73 482 481 401.83 919 480 0.006 1250 1250 1250 1250 1250 1250 12	891	447	0.085								•
1985 447	892	447	0.190	1230	234						
884 447 0.221 1.228 1.271 1.282 1.271 1.282 1.271 1.282 1.271 1.282 1.28	893	447	0.195								
885 447 0.452 1.227 2.288 0 0 1.2 2.76 476 475 393,989 447 0.131 1249 164 0 1.2 2.75 476 476 393,989 488 478 0.074 1235 91 0 0 1.3 2.75 479 478 394,992 878 478 0.084 1224 1111 0 1.2 2.75 479 478 394,992 879 0.084 1225 106 0 1.1 2.2 2.75 479 478 395,908 870 478 0.082 1229 101 0 1.2 2.75 479 478 395,908 870 478 0.082 1229 101 0 1.2 2.75 479 478 395,908 870 478 0.081 1244 101 0 1.2 2.75 479 478 395,908 870 478 0.081 1244 101 0 1.3 2.75 479 478 395,908 870 478 0.081 1244 101 0 1.2 2.75 479 478 395,908 870 478 0.081 1244 101 0 1.2 2.74 479 478 395,908 870 479 0.081 1244 101 0 1.2 2.74 479 478 395,908 870 479 0.081 1244 101 0 1.2 2.74 479 478 395,908 870 479 0.081 1244 101 0 1.2 2.74 479 478 395,908 870 479 0.181 189 215 0 1.2 2.74 479 478 399,254 870 479 0.181 189 215 0 1.2 2.74 479 478 399,254 870 479 0.181 189 215 0 1.2 2.74 479 478 399,254 870 479 0.181 189 215 0 1.2 2.74 489 481 399,254 870 479 0.181 189 215 0 1.2 2.74 489 481 499,254 870 479 0.181 1244 215 0 1.2 2.74 482 481 490,216 971 479 0.181 1244 215 0 1.2 2.74 482 481 400,216 971 479 0.171 1248 214 0 1.2 2.73 482 481 400,216 971 479 0.071 1248 214 0 1.2 2.73 482 481 400,216 971 480 0.171 1248 214 0 1.2 2.73 482 481 400,216 971 480 0.171 1248 214 0 1.2 2.73 482 481 400,216 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1223 126 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 971 482 0.167 1222 204 0 1.3 2.73 482 481 400,140 972 483 484 484 484 484 484 484 484 484 484	894	447									
889 447 0.131 1.249 644 0 0 1.2 2.75 476 475 394,474 888 476 0.092 1.255 91 0 1.3 2.75 479 478 394,474 889 478 0.094 1.225 101 0 1.2 2.75 479 478 395,430 901 478 0.084 1.255 106 0 1.1 2.75 479 478 395,430 901 478 0.084 1.255 106 0 1.1 2.75 479 478 395,836 902 478 0.094 1.229 101 0 0 1.2 2.75 479 478 395,836 903 479 0.152 1.219 131 0 1.3 2.75 479 478 395,836 903 479 0.152 1.219 131 0 1.3 2.75 479 478 395,836 903 479 0.152 1.219 131 0 0 1.3 2.75 479 478 395,836 903 479 0.152 1.212 184 0 1.2 2.74 479 478 395,785 905 479 0.081 1.244 101 0 0 1.2 2.74 479 478 395,785 905 479 0.131 1.217 189 190 1.2 2.74 479 478 395,785 905 479 0.181 1800 1800 190 0 1.2 2.74 479 478 395,785 907 479 0.166 1200 190 190 1.2 2.74 479 478 395,785 907 479 0.166 1200 190 190 0 1.2 2.74 479 478 395,785 907 479 0.166 1200 190 190 100 1.2 2.74 479 478 395,785 907 479 0.166 1200 190 190 190 1.2 2.74 480 481 399,735 909 809 800 0.116 1319 132 0 0 1.2 2.74 482 481 400,687 911 480 0.171 1.264 2.16 0 0 1.2 2.74 482 481 400,687 911 480 0.171 1.264 2.16 0 1.2 2.74 482 481 400,687 911 480 0.173 1.241 2.15 0 1.2 2.74 482 481 400,687 911 480 0.173 1.241 2.15 0 1.2 2.74 482 481 400,687 911 480 0.173 1.241 2.15 0 1.2 2.73 482 481 400,687 911 480 0.173 1.241 2.15 0 1.2 2.73 482 481 401,659 913 480 0.173 1.241 2.15 0 1.2 2.73 482 481 400,687 913 480 0.173 1.241 2.15 0 1.2 2.73 482 481 401,659 913 480 0.173 1.241 2.15 0 1.2 2.73 482 481 401,659 915 482 0.167 1.222 2.04 0 1.3 2.73 482 481 401,659 915 482 0.072 1.222 2.04 0 1.3 2.73 482 481 401,659 915 482 0.072 1.222 2.04 0 1.3 2.73 482 481 401,659 915 482 0.072 1.222 2.04 0 1.3 2.73 482 481 401,659 915 482 0.072 1.222 2.04 0 0 1.13 2.73 482 481 401,659 915 482 0.072 1.222 2.04 0 0 1.13 2.77 482 481 401,659 915 482 0.072 1.222 2.04 0 0 1.13 2.77 482 481 401,659 915 482 0.072 1.222 2.04 0 0 1.13 2.77 482 481 401,659 915 482 0.072 1.222 2.04 0 0 1.13 2.77 482 481 401,659 915 482 0.072 1.222 2.04 0 0 1.13 2.77 482 481 401,659 915 482 0.072 1.222 1.244 481 400,670 915 481 481 481 481 481 481 481 481 481 481	895	447	0.221								
989 478 0.074 1235 98 0 1 13 275 479 478 394,952 988 989 478 0.094 1224 111 0 1.2 2.75 479 478 394,952 989 478 0.0984 1224 111 0 1.2 2.75 479 478 395,698 970 478 0.082 1229 101 0 0 1.2 2.75 479 478 395,698 970 478 0.082 1229 101 0 0 1.2 2.75 479 478 395,698 970 478 0.084 1255 106 0 1.1 2.75 479 478 395,698 970 478 0.084 122 121 184 0 1.3 2.75 479 478 395,898 970 478 0.084 1212 121 184 0 1.2 2.74 479 478 395,898 970 479 0.081 1244 101 0 1.2 2.74 479 478 395,898 970 970 970 1.12 121 184 0 1.2 2.74 479 478 395,898 970 970 970 1.13 1217 159 0 1.2 2.74 479 478 397,898 970 970 1.13 1217 159 0 1.2 2.74 479 478 397,898 970 1.15 1217 159 0 1.2 2.74 479 478 397,898 970 479 0.181 1189 215 0 1.2 2.74 479 478 397,898 970 479 0.181 1189 215 0 1.2 2.74 479 478 397,898 970 479 0.181 1189 215 0 1.2 2.74 479 478 397,898 970 479 0.186 1200 1999 0 1.12 2.74 479 478 397,898 970 479 0.181 1189 215 0 1.2 2.74 482 481 400,216 970 488 970 1181 181 181 181 181 181 181 181 181 1	896	447	0.192								
1888 178	897	447	0.131								
989 476 0.082 1.229 101 0 1.12 2.75 479 478 395.908 97 479 0.081 1255 106 0 1.1 2.75 479 478 396.386 396 396 397 397 397 397 397 397 397 397 397 397	898	478	0.074	1235	91						
9.00	899	478	0.091	1224	111						
901 478 0.084 1255 106 0 1.1.1 2.75 479 478 388.869 5902 478 0.107 1219 131 0 1.3 2.75 479 478 388.869 5902 478 0.107 1219 131 0 1.3 2.75 479 478 388.869 5904 479 0.152 1212 1844 101 0 1.2 2.74 479 478 388.869 5904 479 0.081 1244 101 0 1.2 2.74 479 478 389.869 590 479 0.131 1247 159 0 1.2 2.74 479 478 389.269 590 479 0.181 1199 215 0 1.2 2.74 479 478 389.259 590 479 0.181 1199 215 0 1.2 2.74 479 478 389.259 590 479 0.186 1200 199 0 1.2 2.74 479 478 389.259 590 480 0.155 1249 192 0 1.2 2.74 449 478 389.259 590 480 0.155 1249 192 0 1.3 2.74 482 481 400.216 191 480 0.173 1241 275 0 1.2 2.74 482 481 400.216 191 480 0.173 1241 275 0 1.2 2.74 482 481 400.216 191 480 0.173 1244 275 0 1.2 2.74 482 481 400.216 191 480 0.173 1244 275 0 1.2 2.74 482 481 400.216 191 480 0.173 1244 275 0 1.2 2.74 482 481 400.216 191 480 0.173 1244 275 0 1.2 2.74 482 481 400.216 191 480 0.173 1244 275 0 1.2 2.74 482 481 400.216 191 480 0.173 1244 275 0 1.2 2.74 482 481 400.216 191 480 0.173 1244 275 0 1.2 2.73 482 481 40.1178 191 480 0.173 1244 275 0 1.2 2.73 482 481 40.1178 191 480 0.173 1244 275 0 1.2 2.73 482 481 40.1178 191 482 0.2 0.167 1222 004 0 1.3 2.73 482 481 40.2140 191 482 0.2 0.167 1222 004 0 1.3 2.73 482 481 40.2140 191 482 0.2 0.167 1222 004 0 1.3 2.73 482 481 40.2140 191 482 0.2 0.167 1222 004 0 1.3 2.73 482 481 40.3102 191 482 0.2 0.167 1222 004 0 1.3 2.73 482 481 40.4064 191 482 0.2 0.008 1248 97 0 1.2 2.73 482 481 40.4064 191 482 0.2 0.008 1248 97 0 1.2 2.73 482 481 40.4064 191 482 0.008 1248 97 0 1.2 2.73 482 481 40.4064 191 491 491 491 491 491 491 491 491 49	900	478	0.082	1229	101	0					
902 478 0107 1219 131 0 1.3 2.75 479 478 395.695 903 479 0.152 1212 184 0 1.2 2.74 479 478 397.502 904 479 0.081 1224 101 0 1.2 2.74 479 478 397.502 905 479 0.131 1217 159 0 1.2 2.74 479 478 397.502 905 479 0.131 1217 159 0 1.2 2.74 479 478 397.502 906 479 0.181 1199 215 0 1.2 2.74 479 478 398.269 906 479 0.181 1199 215 0 1.2 2.74 479 478 398.269 906 479 0.186 1200 199 0 1.3 2.74 479 478 398.269 908 480 0.155 1249 193 0 4.7 2.74 482 481 400.267 909 480 0.116 1313 152 0 1.3 2.74 482 481 400.507 911 480 0.171 1264 216 0 1.2 2.74 482 481 400.507 911 480 0.171 1264 216 0 1.2 2.74 482 481 400.507 911 480 0.171 1264 216 0 1.2 2.74 482 481 400.507 911 480 0.171 1244 215 0 1.2 2.74 482 481 401.659 913 480 0.166 1232 204 0 1.3 2.73 482 481 402.610 913 480 0.106 124 214 215 0 1.2 2.73 482 481 402.610 913 480 0.106 124 204 10.3 204 10.3 2.73 482 481 402.610 913 480 0.106 122 2.73 482 481 402.610 913 480 0.106 122 2.73 482 481 402.610 913 480 0.106 122 2.73 482 481 402.610 913 480 0.106 122 2.73 482 481 402.610 913 482 0.037 1222 204 0 1.3 2.73 482 481 403.603 918 482 0.037 1222 204 0 1.3 2.73 482 481 403.603 918 482 0.037 1222 204 0 1.3 2.73 482 481 403.603 918 482 0.037 1222 204 0 1.3 2.73 482 481 403.603 918 482 0.037 1222 204 0 1.3 2.73 482 481 403.603 918 482 0.038 1234 144 0.2 620 133 1244 148 0 1.2 2.73 482 481 403.603 918 482 0.038 1248 144 405.607 918 482 0.039 1248 148 0.0 12 2.73 482 481 403.603 918 482 0.039 1248 148 0.0 1.2 2.73 482 481 403.603 918 482 0.039 1248 148 0.0 1.2 2.73 482 481 403.603 918 482 0.039 1248 148 0.0 1.2 2.73 482 481 403.603 918 482 0.0 1.0 1.2 2.73 482 481 403.603 918 482 0.0 1.0 1.2 2.73 482 481 403.603 918 482 0.0 1.0 1.2 2.73 482 481 403.603 918 482 0.0 1.0 1.2 2.73 482 481 403.603 918 482 0.0 1.0 1.2 2.73 482 481 403.603 918 482 0.0 1.0 1.2 2.73 482 481 403.603 918 482 0.0 1.0 1.2 2.73 482 481 403.603 918 918 482 0.0 1.0 1.2 2.73 482 481 403.603 918 918 482 0.0 1.0 1.2 2.73 482 481 403.603 918 918 482 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		478	0.084	1255	106	0					•
903 479 0.152 1212 184 0 1.2 2.74 479 478 397.820 905 479 0.081 1244 1010 0 1.2 2.74 479 478 397.820 905 479 0.131 1217 159 0 1.2 2.74 479 478 398.298 906 479 0.181 1189 215 0 1.2 2.74 479 478 398.298 906 479 0.181 1189 215 0 1.2 2.74 479 478 398.298 907 479 0.186 1200 199 0 1.3 2.74 479 478 398.298 908 480 0.155 1249 193 0 4.7 2.74 482 481 490.297 910 480 0.151 1249 1264 216 0 1.2 2.74 482 481 490.297 910 480 0.171 1264 216 0 1.2 2.74 482 481 490.297 911 480 0.171 1264 216 0 1.2 2.74 482 481 490.598 912 480 0.171 1264 216 0 1.2 2.74 482 481 490.598 912 480 0.171 1246 214 0 1.2 2.73 482 481 490.699 913 480 0.171 1246 214 0 1.2 2.73 482 481 490.699 914 482 0.277 1184 328 0 2.0 2.7 2.73 482 481 490.699 914 482 0.277 1184 328 0 2.0 2.7 3 482 481 490.699 916 482 0.173 1234 164 0 1.2 2.73 482 481 490.899 917 482 0.078 1234 164 0 1.2 2.73 482 481 490.899 918 482 0.133 1234 164 0 1.2 2.73 482 481 490.899 918 482 0.133 1234 164 0 1.2 2.73 482 481 490.899 918 482 0.133 1234 164 0 1.2 2.73 482 481 490.899 918 482 0.133 1234 164 0 1.2 2.73 482 481 490.899 918 482 0.199 12480 97 0 1.2 2.73 482 481 490.699 918 482 0.199 12480 97 0 1.2 2.73 482 481 490.699 918 482 0.199 12480 97 0 1.2 2.73 482 481 490.699 918 482 0.199 12480 97 0 1.2 2.73 482 481 490.699 918 482 0.199 1246 97 0 1.2 2.73 482 481 490.699 918 482 0.199 1246 97 0 1.2 2.73 482 481 490.699 918 482 0.199 1246 97 0 1.2 2.73 482 481 490.699 918 482 0.199 1246 97 0 1.2 2.73 482 481 490.699 918 482 0.199 1246 97 0 1.2 2.73 482 481 490.699 918 482 0.199 1246 91 0 1.2 2.73 482 481 490.699 918 482 0.199 1246 91 0 1.2 2.73 482 481 490.699 918 482 0.199 1246 91 0 1.2 2.73 482 481 490.699 918 482 0.199 1246 91 0 1.2 2.7 3 482 481 490.699 918 482 0.199 1246 91 0 1.2 2.7 3 482 481 490.699 918 482 0.199 1246 91 0 1.2 2.7 3 482 481 490.699 918 482 0.199 1246 91 0 1.2 2.7 3 482 481 490.699 918 482 0.199 1246 91 0 1.2 2.7 3 482 481 490.699 918 482 0.199 1246 91 0 1.2 2.7 3 482 481 490.699 918 480 0.190 1246 91 0 1.2 2.7 3 482 481 490.699 918 918 918 918 918 918 918 918 918 9			0.107	1219	131	0					
906 479 0.081 1244 101 0 1.2 2.74 479 478 397,820 905 479 0.131 1217 159 0 1.2 2.74 479 478 398,278 906 479 0.181 1189 215 0 1.2 2.74 479 478 398,278 907 479 0.186 1200 199 0 1.3 2.74 479 478 398,278 908 480 0.155 1249 193 0 4.7 2.74 482 481 399,254 909 480 0.116 1313 152 0 1.3 2.74 482 481 400,216 911 480 0.171 1264 216 0 1.2 2.74 482 481 400,216 911 480 0.171 1264 216 0 1.2 2.74 482 481 400,216 911 480 0.171 1248 214 10 1.2 2.73 482 481 400,216 911 480 0.171 1248 214 0 1.2 2.73 482 481 401,659 913 480 0.106 1255 133 1.4 2.5 2.73 482 481 401,659 913 480 0.106 1255 133 1.4 2.5 2.73 482 481 402,140 914 482 0.277 1184 328 0 20 20 2.73 482 481 402,140 915 481 915 915 482 0.187 122 204 0 1.3 2.73 482 481 402,140 915 481 915 915 482 0.187 122 204 0 1.3 2.73 482 481 403,102 916 482 0.133 1234 164 0 1.2 2.73 482 481 403,102 916 482 0.133 1234 164 0 1.2 2.73 482 481 403,102 916 482 0.187 122 204 0 1.3 2.73 482 481 403,503 917 482 0.078 1248 97 0 1.2 2.73 482 481 403,503 917 482 0.078 1248 97 0 1.2 2.73 482 481 403,503 918 482 0.092 1237 114 0 1.3 2.73 482 481 403,603 919 482 0.092 1237 114 0 1.3 2.73 482 481 403,603 919 482 0.095 1259 120 0 1.1 2.2 2.73 482 481 403,603 919 482 0.095 1259 120 0 1.1 2.2 2.73 482 481 403,603 92 482 0.095 1259 120 0 1.1 2.2 2.73 482 481 403,603 92 482 480 0.164 1233 202 0 1.3 2.72 482 481 403,603 92 482 480 0.164 1233 202 0 1.3 2.72 482 481 403,603 92 482 480 0.164 1202 127 1186 48 2.2 2.72 482 481 403,603 92 482 482 483 92 48			0.152	1212	184	0					
905 479 0.131 1217 159 0 1.2 2.74 479 478 398.795 906 479 0.181 1189 215 0 1.2 2.74 479 478 398.795 907 479 0.166 1200 199 0 1.3 2.74 479 478 398.795 908 480 0.155 1249 193 0 4.7 2.74 482 481 399.735 909 480 0.175 1249 193 0 1.3 2.74 482 481 400.897 910 480 0.171 1264 216 0 1.2 2.74 482 481 400.897 911 480 0.173 1241 215 0 1.2 2.74 482 481 400.897 911 480 0.173 1241 215 0 1.2 2.74 482 481 401.897 913 480 0.106 1255 133 1.4 2.5 2.73 482 481 401.899 914 482 0.277 1184 328 0 2.0 2.73 482 481 402.149 915 482 0.277 1184 328 0 2.0 2.73 482 481 402.149 915 482 0.077 1184 328 0 2.0 2.73 482 481 402.149 916 482 0.078 1234 164 0 1.2 2.73 482 481 402.149 917 482 0.078 1234 164 0 1.2 2.73 482 481 404.664 918 482 0.078 1234 164 0 1.2 2.73 482 481 404.664 918 482 0.078 1234 164 0 1.2 2.73 482 481 404.664 918 482 0.078 1234 164 0 1.2 2.73 482 481 404.664 918 482 0.078 1234 164 0 1.2 2.73 482 481 404.664 918 482 0.078 1234 164 0 1.2 2.73 482 481 404.664 918 482 0.078 1234 164 0 1.2 2.73 482 481 404.664 918 482 0.078 1234 164 0 1.2 2.73 482 481 404.665 918 482 0.095 1234 1234 164 0 1.2 2.73 482 481 404.665 918 482 0.095 1234 1234 164 0 1.2 2.73 482 481 405.005 918 482 0.095 1234 1234 123 123 123 123 124 124 124 124 124 124 124 124 124 124				1244	101	0					
906 479 0.168 1 1189 215 0 1.2 2.74 479 478 399,264 908 480 0.155 1249 193 0 4.7 2.74 482 481 399,264 908 480 0.116 1313 152 0 1.3 2.74 482 481 490,785 910 480 0.1171 1264 216 0 1.2 2.74 482 481 490,873 9111 480 0.171 1264 215 0 1.2 2.74 482 481 490,873 912 480 0.171 1248 214 0 1.2 2.73 482 481 491,178 912 480 0.171 1248 214 0 1.2 2.73 482 481 491,879 913 480 0.106 1255 133 1.4 2.5 2.73 482 481 492,891 914 482 0.277 1184 328 0 2.0 2.73 482 481 402,679 915 482 0.167 1222 204 0 1.3 2.73 482 481 402,679 916 482 0.167 1222 204 0 1.3 2.73 482 481 403,109 917 482 0.078 1248 97 0 1.2 2.73 482 481 403,893 918 482 0.119 1242 148 0 1.2 2.73 482 481 404,893 919 482 0.092 1237 114 0 1.3 2.72 482 481 404,893 920 482 0.095 1259 120 0 1.1 2.73 482 481 405,657 921 482 0.123 1186 146 4.2 1.2 2.72 482 481 405,657 922 482 0.123 1186 146 4.2 1.2 2.72 482 481 405,657 924 480 0.132 1201 158 28 1.2 2.72 482 481 405,657 924 480 0.164 1233 202 0 0 1.3 2.72 482 481 405,657 924 480 0.164 1233 202 0 0 1.3 2.72 482 481 405,657 925 480 0.162 1231 129 0 2.3 2.71 482 481 405,893 926 482 0.103 128 1201 158 28 1.2 2.72 482 481 405,893 927 406 0.117 132 1201 158 28 1.2 2.72 482 481 405,893 928 484 0.016 1231 129 0 2.3 2.71 482 481 405,893 929 484 0.016 1231 129 0 2.3 2.71 482 481 407,431 929 484 0.016 1202 175 1.4 1.2 2.72 482 481 406,849 929 484 0.016 1202 175 1.4 1.2 2.72 482 481 406,849 920 485 0.009 1.2 1201 158 2.8 1.2 2.71 482 481 407,431 920 486 0.117 139 140 2.8 5.5 2.70 484 483 410,293 920 484 0.006 1.11 129 140 2.8 5.5 2.72 482 481 407,813 920 485 0.009 1.2 2.101 158 2.8 1.1 2.71 482 481 407,813 920 486 0.101 120 121 231 230 0 0 1.3 2.71 484 483 410,293 920 486 0.009 1266 1170 307 0 1.1 2.71 482 481 407,813 920 487 0.009 1289 1290 0 1.3 2.71 484 483 410,893 921 489 0.009 1289 1290 0 1.3 2.71 484 483 410,893 922 480 0.009 1289 1290 0 1.3 2.71 484 483 410,893 923 480 0.164 1202 175 189 140 2.8 5.5 2.79 486 485 485 485 485 485 485 485 485 485 485					159	0	1.2				•
907 479 0166 1200 199 0 1.3 2.74 479 478 399,278 909 8480 0155 1249 193 0 4.7 2.74 482 481 400,216 910 480 0171 1264 216 0 1.2 2.74 482 481 400,697 911 480 0171 1264 216 0 1.2 2.74 482 481 400,697 911 480 0171 1264 216 0 1.2 2.74 482 481 401,698 913 480 0171 1248 214 0 1.2 2.73 482 481 401,698 913 480 0106 1255 133 1.4 2.5 2.73 482 481 402,140 191 491 491 491 491 491 491 491 491 491					215	0	1.2	2.74			-
909 480 01155 1249 193 0 4.7 2.74 482 481 490,216 909 480 0116 1313 152 0 1.3 2.74 482 481 400,216 910 480 0171 1264 216 0 1.2 2.74 482 481 400,178 911 480 0171 1248 214 0 1.2 2.74 482 481 400,178 912 480 0171 1248 214 0 1.2 2.73 482 481 401,679 913 480 0106 1255 133 1.4 2.5 2.73 482 481 402,140 914 482 0.277 1184 328 0 2.0 2.73 482 481 402,140 915 482 0.167 1222 204 0 1.3 2.73 482 481 402,140 916 482 0.167 1222 204 0 1.3 2.73 482 481 402,140 917 482 0.167 1222 204 0 1.3 2.73 482 481 402,140 918 482 0.167 1222 204 0 1.3 2.73 482 481 403,102 919 482 0.078 1248 97 0 1.2 2.73 482 481 403,160 919 482 0.078 1248 97 0 1.2 2.73 482 481 404,664 919 482 0.092 1237 114 0 1.3 2.72 482 481 405,502 920 482 0.095 1259 120 0 1.1 2.72 482 481 405,502 921 482 0.095 1259 120 0 1.1 2.72 482 481 405,502 921 482 0.016 1232 1201 158 2.8 1.2 2.72 482 481 405,502 922 480 0.164 1223 200 0 1.3 2.72 482 481 405,508 923 480 0.164 1223 200 0 1.3 2.72 482 481 406,598 924 480 0.164 1203 175 1.4 1.2 2.72 482 481 406,890 925 480 0.164 1203 175 1.4 1.2 2.72 482 481 406,890 926 482 0.005 1251 1251 1253 0 1.3 2.71 482 481 407,912 926 482 0.005 1231 120 123 123 123 123 124 124 124 124 124 124 124 124 124 124						0	1.3	2.74			
909 480 0 116 1313 152 0 1.3 2.74 482 481 400.987 910 480 0 171 1264 216 0 1.2 2.74 482 481 400.897 911 480 0 173 1241 215 0 1.2 2.74 482 481 401.789 913 480 0 171 1248 214 0 1.2 2.73 482 481 401.659 913 480 0 106 1255 133 -1.4 2.5 2.73 482 481 402.612 915 482 0 0.77 1184 328 0 2.0 2.73 482 481 402.612 915 482 0 0.77 1184 328 0 2.0 2.73 482 481 402.612 915 482 0 0.77 1184 328 0 2.0 2.73 482 481 403.602 916 482 0 0.0 1.2 2.73 482 481 402.612 915 482 0 0.0 1.2 2.73 482 481 403.602 916 482 0 0.0 1.2 2.73 482 481 403.602 916 482 0 0.0 1.2 2.73 482 481 403.603 917 482 0 0.0 1.2 2.73 482 481 404.664 918 482 0 0.0 1.2 2.73 482 481 404.664 918 482 0 0.0 1.2 2.73 482 481 404.664 918 482 0 0.0 1.2 2.73 482 481 404.664 918 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 921 482 0 0.0 1.2 2.73 482 481 405.507 922 482 0 0.0 1.2 2.73 482 481 405.507 922 482 0 0.0 1.2 2.73 482 481 405.507 922 482 0 0.0 1.2 2.73 482 481 405.507 922 482 0 0.0 1.2 2.73 482 481 405.507 922 482 0 0.0 1.2 2.73 482 481 405.507 922 482 0 0.0 1.2 2.73 482 481 405.507 922 482 0 0.0 1.2 2.73 482 481 405.507 922 482 0 0.0 1.2 2.73 482 481 405.507 922 482 0 0.0 1.2 2.73 482 481 405.609 923 480 0 0.146 1233 202 0 1.1 2.77 482 481 405.609 923 480 0 0.146 1232 1201 158 2.8 1.2 2.72 482 481 406.609 923 480 0 0.146 1202 1.75 1.4 1.2 2.72 482 481 406.609 923 480 0 0.146 1202 1.75 1.4 1.2 2.72 482 481 406.609 923 480 0 0.0 1.4 1.2 2.72 482 481 406.609 923 480 0 0.0 1.4 1.2 2.72 482 481 406.609 923 480 0 0.0 1.4 1.2 2.72 482 481 406.609 923 480 0 0.0 1.4 1.2 2.72 482 481 406.609 923 480 0 0.0 1.4 1.2 2.72 482 481 406.609 923 480 0.0 1.4 1.2 2.72 482 481 406.609 923 480 0.0 1.4 1.2 2.72 482 481					193	0	4.7	2.74			
911 480 0.171 1264 216 0 1.2 2.74 482 481 400,697 971 971 480 0.173 1241 215 0 1.2 2.74 482 481 401,178 972 480 0.171 1248 214 0 1.2 2.73 482 481 401,659 973 480 0.106 1255 1.33 -1.4 2.5 2.73 482 481 402,140 973 480 0.106 1255 1.33 -1.4 2.5 2.73 482 481 402,140 973 482 0.167 1222 204 0 1.3 2.73 482 481 402,140 973 482 0.167 1222 204 0 1.3 2.73 482 481 403,659 973 482 0.167 1222 204 0 1.3 2.73 482 481 403,659 973 482 0.167 1222 204 0 1.3 2.73 482 481 403,659 973 482 0.167 1222 204 0 1.3 2.73 482 481 404,664 973 482 0.167 1222 2.73 482 481 404,664 973 482 0.167 1222 2.73 482 481 404,665 973 482 0.078 1248 977 0 1.2 2.73 482 481 404,645 973 482 0.078 1248 973 114 0 1.3 2.72 482 481 405,507 973 482 0.005 1259 120 0 1.1 2.772 482 481 405,507 972 482 0.028 1259 120 0 1.1 2.772 482 481 405,507 972 482 0.123 1186 146 42 12 2.772 482 481 405,507 972 482 0.123 1201 158 2.8 12 2.772 482 481 405,507 972 482 0.123 1201 158 2.8 12 2.772 482 481 406,669 972 480 0.146 1202 175 1.4 12 2.772 482 481 406,669 972 480 0.146 1202 175 1.4 12 2.772 482 481 406,689 972 480 0.146 1202 175 1.4 12 2.772 482 481 406,689 972 480 0.146 1202 175 1.4 12 2.772 482 481 406,689 972 480 0.146 1202 175 1.4 12 2.772 482 481 406,893 972 406 0.117 1199 140 2.8 5.5 2.772 482 481 406,893 972 406 0.117 1199 140 2.8 5.5 2.772 482 481 406,893 972 406 0.117 1199 140 2.8 5.5 2.772 482 481 406,893 972 406 0.117 1199 140 2.8 5.5 2.772 482 481 408,935 972 484 0.024 1160 272 1.4 12 2.772 482 481 406,893 972 406 0.117 1199 140 2.8 5.5 2.772 482 481 408,935 972 484 0.024 1160 272 1.4 12 2.774 482 481 408,935 972 484 0.024 1160 272 1.4 12 2.774 482 481 408,935 972 484 0.024 1160 272 1.4 12 2.774 482 481 408,935 973 483 0.174 1158 2.774 484 483 411,877 973 483 0.174 1158 2.774 484 483 411,877 973 483 0.174 1158 2.774 484 483 411,877 973 484 0.075 1251 94 1.4 1.3 2.771 484 483 410,871 973 483 0.774 486 487 973 973 973 973 973 973 973 973 973 97								2.74	482		
911 480 0 173 1241 215 0 12 2 74 482 481 401,789 912 480 0 1717 1248 214 0 12 2 773 482 481 401,689 913 480 0 1717 1248 214 0 12 2 773 482 481 402,140 914 482 0 127 1184 328 0 20 20 273 482 481 402,140 915 482 0 1167 1222 204 0 13 273 482 481 402,160 916 482 0 1167 1222 204 0 13 273 482 481 402,162 917 482 0 1078 1248 197 0 12 273 482 481 403,102 918 482 0 119 1242 148 0 12 273 482 481 403,162 919 482 0 109 1237 114 0 13 277 482 481 404,684 919 482 0 109 1237 114 0 13 277 482 481 405,026 920 482 0 109 1237 114 0 13 277 482 481 405,026 920 482 0 103 1186 146 42 12 2 772 482 481 405,026 921 482 0 132 1201 158 28 12 2 772 482 481 405,588 922 482 0 113 1234 200 1 15 1 2 2 73 482 481 405,888 923 480 0 164 1233 202 0 1 13 2 277 482 481 406,680 924 480 0 146 1202 175 1.4 12 2 772 482 481 406,695 926 482 0 105 1231 129 0 23 271 482 481 407,511 925 480 0 .262 1170 307 0 1.1 2.71 482 481 407,512 926 482 0 105 1231 129 0 2 3 271 482 481 407,512 927 406 0 117 1199 140 28 55 5 277 482 481 407,512 928 415 0 191 1211 231 28 1.1 271 482 481 407,831 929 484 0 0.364 1160 272 1.4 10 2 2 71 484 483 410,321 929 484 0 0.364 1160 272 1.4 20 2.71 484 483 410,321 930 484 0 0.126 1212 153 0 1.3 2.71 484 483 410,321 931 484 0 0.099 1246 111 0 1.3 2.71 484 483 410,321 932 484 0 0.099 1246 111 0 1.3 2.71 484 483 410,321 933 484 0 0.099 1246 111 0 1.3 2.71 484 483 410,321 934 485 0 0.099 1246 111 0 1.3 2.71 484 483 410,321 935 483 0 174 1158 202 175 1.4 12 2.70 484 483 410,321 936 483 0 112 1156 129 143 0 6 6.5 2.70 484 483 411,787 937 483 0 112 1156 129 143 0 6 6.5 2.70 484 483 411,787 938 483 0 120 112 155 1.4 1.2 2.70 484 483 411,787 938 483 0 120 1172 155 1.4 12 2 270 484 483 411,787 939 484 0 0.099 1246 111 0 0 1.3 2.71 484 483 411,787 939 484 0 0.099 1246 111 0 0 1.3 2.71 484 483 411,787 939 484 0 0.099 1246 111 0 0 1.3 2.71 484 483 411,787 939 484 0 0.099 1246 111 0 0 1.3 2.71 484 483 410,321 939 484 0 0.099 1246 111 0 0 1.3 2.71 484 483 410,321 939 484 0 0.099 1246 111 0 0 1.3 2.71 484 483 410,321 949 485 0 0.009 1246 111 120 122 2.								2.74	482	481	
912 480 0.171 1248 214 0 1.2 2.73 482 481 402,140 913 480 0.106 1255 133 -1.4 2.5 2.73 482 481 402,140 915 482 0.161 1255 133 -1.4 2.5 2.73 482 481 402,140 915 482 0.161 1252 204 0 1.3 2.73 482 481 402,140 916 482 0.163 1222 204 0 1.3 2.73 482 481 403,102 916 482 0.163 1234 97 0 1.2 2.73 482 481 403,893 917 482 0.163 1248 97 0 1.2 2.73 482 481 404,694 918 482 0.119 1242 148 97 0 1.2 2.73 482 481 404,694 918 482 0.119 1242 148 0 1.2 2.73 482 481 404,595 919 482 0.092 1237 114 0 1.3 2.72 482 481 405,507 920 482 0.092 1237 114 0 1.3 2.72 482 481 405,507 921 482 0.095 1259 120 0 1.1 2.77 482 481 405,507 921 482 0.095 1259 120 0 1.1 2.77 482 481 405,507 921 482 0.132 1186 146 4.2 1.2 2.77 482 481 405,507 923 480 0.164 1233 202 0 1.3 2.77 482 481 406,649 923 480 0.164 1233 202 0 1.3 2.77 482 481 406,649 923 480 0.164 1233 202 0 1.3 2.77 482 481 406,895 924 480 0.164 1233 102 103 1175 1.4 1.2 2.77 482 481 406,895 925 480 0.262 1170 307 0 1.1 2.71 482 481 406,895 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,893 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,893 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,893 929 484 0.234 1160 272 1.4 20 2.71 484 483 409,855 929 484 0.234 1160 272 1.4 20 2.71 484 483 409,855 929 484 0.234 1160 272 1.4 20 2.71 484 483 409,855 929 484 0.234 1160 272 1.4 20 2.71 484 483 410,874 933 483 0.234 1160 272 1.4 2.8 1.1 2.71 484 483 410,874 933 483 0.774 1158 202 1.4 1.3 2.71 484 483 411,870 934 483 0.724 1156 1231 125 0.0 1.3 2.71 484 483 410,874 933 483 0.774 1158 202 1.4 1.3 2.70 484 483 411,870 935 483 0.714 1156 123 1.7 155 1.4 1.2 2.70 484 483 411,870 935 483 0.112 1156 129 1.4 1.3 2.70 486 485 485 411,800 485 939 484 0.126 1191 1156 129 1.4 1.3 2.70 486 485 485 411,800 94 94 94 94 94 94 94 94 94 94 94 94 94								2.74	482	481	
913 480 0.106 1255 133 -1.4 2.5 2.73 482 481 402,140 914 482 0.277 1184 328 0 2.0 2.73 482 481 402,627 181 482 0.277 1184 328 0 2.0 2.73 482 481 402,627 181 482 0.133 1234 164 0 1.2 2.73 482 481 403,162 181 482 0.183 1234 164 0 1.2 2.73 482 481 403,162 181 482 0.183 1234 164 0 1.2 2.73 482 481 403,162 181 482 0.183 1234 184 97 0 1.2 2.73 482 481 404,664 181 482 0.183 1234 184 184 184 184,664 181 482 0.183 1234 184 184 184,664 184 184 184 184 184 184 184 184 184 18						_	1.2	2.73	482	481	401,659
914 482 0.277 1184 328 0 2.0 2.73 482 481 403,582 915 482 0.167 1222 204 0 1.3 2.73 482 481 403,583 917 482 0.167 1222 204 0 1.3 2.73 482 481 403,583 917 482 0.163 1234 164 0 1.2 2.73 482 481 404,664 918 482 0.119 1242 148 0 1.2 2.73 482 481 404,664 918 482 0.119 1242 148 0 1.2 2.73 482 481 404,664 918 482 0.119 1242 148 0 1.2 2.73 482 481 404,664 918 482 0.119 1242 148 0 1.2 2.73 482 481 404,664 918 482 0.119 1242 148 0 1.2 2.73 482 481 405,585 918 482 0.085 1259 120 0 1.1 2.72 482 481 405,505 921 482 0.085 1259 120 0 1.1 2.72 482 481 405,505 921 482 0.133 1186 146 4.2 1.2 2.72 482 481 405,505 923 480 0.164 1223 1201 158 2.8 1.2 2.72 482 481 406,669 923 480 0.164 1223 1201 158 2.8 1.2 2.72 482 481 406,669 923 480 0.164 1223 1201 138 120 0 1.3 2.72 482 481 407,431 925 480 0.146 1202 175 1.4 1.2 2.72 482 481 407,431 925 480 0.146 1202 175 1.4 1.2 2.72 482 481 407,431 925 480 0.146 1202 175 1.4 1.2 2.72 482 481 407,931 925 480 0.262 1170 307 0 1.1 2.71 482 481 408,873 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,873 929 484 0.234 1160 272 1.4 2.0 2.3 2.71 482 481 408,873 929 484 0.234 1160 272 1.4 2.0 2.71 484 483 409,835 929 484 0.234 1160 272 1.4 2.0 2.71 484 483 410,321 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 410,321 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 410,321 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 410,321 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 411,326 934 483 0.12 1172 155 1.4 1.3 2.70 484 483 411,326 936 483 0.174 1156 123 1.4 1.2 2.70 484 483 411,326 936 483 0.174 1156 129 144 1.4 1.3 2.70 484 483 411,326 936 483 0.114 1156 123 1.4 1.2 2.70 484 483 411,326 936 483 0.114 1156 123 1.4 1.2 2.70 484 483 411,326 936 483 0.114 1156 123 1.4 1.4 1.3 2.70 486 485 415,636 945 485 945 945 945 946 946 946 946 946 946 946 946 946 946						-		2.73	482	481	
915 482 0.167 1222 204 0 1.3 2.73 482 481 403,102 915 482 0.133 1234 164 0 1.2 2.73 482 481 403,683 918 482 0.179 1248 187 0 1.2 2.73 482 481 403,683 918 482 0.179 1242 148 0 1.2 2.73 482 481 405,685 918 482 0.095 1237 114 0 1.3 2.72 482 481 405,685 920 482 0.095 1259 120 0 1.1 2.72 482 481 405,695 920 482 0.123 1186 146 4.2 1.2 2.72 482 481 405,587 922 482 0.132 1201 158 2.8 1.2 2.72 482 481 405,985 922 482 0.132 1201 158 2.8 1.2 2.72 482 481 405,985 922 482 0.132 1201 158 2.8 1.2 2.72 482 481 405,985 924 480 0.164 1233 202 0 1.3 2.72 482 481 405,985 924 480 0.164 1233 202 0 1.3 2.72 482 481 407,911 925 480 0.262 1170 307 0 1.1 2.71 482 481 407,911 925 480 0.262 1170 307 0 1.1 2.71 482 481 407,911 925 482 0.181 180 925 927 406 0.105 1231 129 0 2.3 2.71 482 481 409,912 926 482 0.191 1211 231 2.8 1.1 2.71 482 481 409,912 928 484 0.294 1180 272 1.4 2.8 2.72 482 481 409,913 927 406 0.116 1212 131 2.8 1.1 2.71 482 481 409,913 927 406 0.105 1231 129 0 2.3 2.71 484 483 409,955 929 484 0.294 1180 272 1.4 2.0 2.71 484 483 409,955 929 484 0.294 1180 272 1.4 2.0 2.71 484 483 409,853 929 484 0.294 1180 272 1.4 2.0 2.71 484 483 409,858 929 484 0.294 1180 272 1.4 2.0 2.71 484 483 410,804 939 923 484 0.089 1226 1110 927 1.4 2.2 2.72 482 481 409,955 929 484 0.095 1227 116 1.4 1.3 2.71 484 483 410,804 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 410,804 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 410,804 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 410,804 935 938 483 0.120 1192 1215 130 0 1.3 2.71 484 483 411,709 934 483 0.229 1089 249 2.8 1.2 2.71 484 483 411,709 934 483 0.229 1089 1246 111 0 1.3 2.71 484 483 411,709 934 483 0.229 1089 1246 111 0 1.3 2.71 484 483 411,709 934 483 0.120 1192 1155 1.4 1.3 2.70 484 483 411,709 934 483 0.120 1192 1155 1.4 1.3 2.70 484 483 411,709 934 483 0.120 1192 1155 1.4 1.3 2.70 484 483 411,709 934 483 0.120 1192 125 125 0 0 1.1 2.70 484 483 411,709 934 485 0.126 1188 129 144 1.4 1.3 2.70 486 485 411,806 948 948 948 948 948 948 948 948 948 948								2.73	482	481	402,621
916 402 0.133 1234 164 0 12 2.73 482 481 400,684 917 482 0.078 1248 97 0 12 2.73 482 481 404,684 918 482 0.119 1242 148 0 1.2 2.73 482 481 404,684 918 482 0.119 1242 148 0 1.2 2.73 482 481 405,585 919 482 0.092 1237 114 0 1.3 2.72 482 481 405,597 921 482 0.095 1259 120 0 1.11 2.72 482 481 405,597 921 482 0.123 1186 146 42 1.2 2.72 482 481 405,597 921 482 0.133 1201 158 2.8 1.2 2.72 482 481 405,597 921 482 0.133 1201 158 2.8 1.2 2.72 482 481 405,695 923 480 0.164 1202 175 1.4 1.2 2.72 482 481 406,895 923 480 0.164 1202 175 1.4 1.2 2.72 482 481 407,913 925 480 0.262 1170 307 0 1.1 2.71 482 481 407,931 925 480 0.262 1170 307 0 1.1 2.71 482 481 407,931 925 480 0.262 1170 307 0 1.1 2.71 482 481 409,939 928 482 0.105 1231 129 0 2.3 2.71 482 481 408,955 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 408,935 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 408,935 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 408,935 929 484 0.234 1160 2.72 1.4 2.0 2.71 484 483 409,838 930 484 0.126 1212 153 0 1.3 2.71 484 483 410,321 933 484 0.099 1246 111 0 1.3 2.71 484 483 410,807 933 484 0.099 1246 111 0 1.3 2.71 484 483 410,807 933 484 0.099 1246 111 0 1.3 2.71 484 483 411,807 933 484 0.099 1246 111 0 1.3 2.71 484 483 411,807 933 483 0.124 1156 129 1.4 1.1 2.2 2.0 2.0 484 483 411,770 934 483 0.229 1099 249 -2.8 1.2 2.71 484 483 411,770 934 483 0.229 1099 249 -2.8 1.2 2.70 484 483 411,273 937 483 0.112 1156 153 1.4 1.2 2.70 484 483 411,273 937 483 0.112 1156 153 1.4 1.2 2.70 484 483 411,273 937 483 0.112 1156 153 1.4 1.2 2.70 484 483 411,273 938 483 0.141 1156 153 1.4 1.2 2.70 484 483 411,273 938 483 0.141 1156 153 1.4 1.2 2.70 484 483 411,273 937 483 0.112 1156 153 1.4 1.2 2.70 484 483 411,273 937 483 0.112 1156 153 1.4 1.2 2.70 484 483 411,273 937 483 0.112 1156 153 1.4 1.2 2.70 486 485 411,185 939 484 0.013 1192 143 0.6 6.5 2.70 484 483 411,273 937 483 0.112 1156 153 1.4 1.2 2.70 486 485 411,186 938 485 0.161 1182 1191 1291 123 124 124 125 2.70 486 485 485 420,486 945 949 948 885 0.161 1182 1199 1225 0 1.1 1.2 2.70 486 485 485 420,486 945									482	481	403,102
917 482 0.078 1248 97 0 1.2 2.73 482 481 404,064 918 482 0.019 1242 148 0 1.2 2.73 482 481 405,045 919 482 0.095 1259 120 0 1.1 2.72 482 481 405,050 920 482 0.095 1259 120 0 1.1 2.72 482 481 405,050 920 482 0.132 1186 146 4.2 1.2 2.72 482 481 405,686 922 482 0.132 1201 158 28 1.2 2.72 482 481 405,688 922 482 0.132 1201 158 28 1.2 2.72 482 481 405,686 923 480 0.164 1233 202 0 1.3 2.72 482 481 406,459 924 480 0.146 1203 1202 175 1.4 1.2 2.72 482 481 407,431 925 480 0.262 1170 307 0 1.1 2.71 482 481 407,912 926 482 0.105 1231 129 0 2.3 2.71 482 481 409,912 926 482 0.105 1231 129 0 2.3 2.71 482 481 409,912 926 482 0.105 1231 129 0 2.3 2.71 482 481 409,912 926 482 0.105 1231 129 140 2.8 5.5 2.72 482 481 409,935 929 484 0.24 1160 2.72 1.4 2.0 2.71 482 481 409,935 929 484 0.24 1160 2.72 1.4 2.0 2.71 484 483 409,935 929 484 0.284 1160 2.72 1.4 2.0 2.71 484 483 409,935 929 484 0.126 1212 153 0 1.3 2.71 484 483 410.321 931 484 0.095 1227 116 1.4 1.3 2.71 484 483 410.321 931 484 0.095 1227 116 1.4 1.3 2.71 484 483 410.321 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 410.321 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 410.321 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 410.321 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 410.321 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 411.287 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 411.287 933 484 0.095 1227 116 1.4 1.3 2.71 484 483 411.287 933 484 0.095 1246 111 0 1.3 2.71 484 483 411.287 935 483 0.174 1158 202 1.4 1.2 2.70 484 483 411.287 935 483 0.174 1158 202 1.4 1.2 2.70 484 483 411.287 936 483 0.132 1172 155 1.4 1.3 2.70 484 483 411.287 936 483 0.132 1172 155 1.4 1.3 2.70 484 483 411.287 936 483 0.132 1172 155 1.4 1.3 2.70 484 483 411.287 936 483 0.132 1172 155 1.4 1.3 2.70 486 485 415.516 944 485 0.101 11235 125 0.0 1.1 2.70 484 483 411.786 939 484 0.189 1119 1.25 0.0 1.1 1.2 2.70 484 483 411.786 939 484 0.189 1119 1.25 0.0 1.1 1.2 2.70 486 485 415.516 944 485 0.101 11235 125 0.0 1.1 1.2 2.70 486 485 415.516 944 485 0.101 1129 144 1.4 1.3 2.70 486 485 415.516 944 485 0.101 112									482	481	403,583
9116 482 0.119 1242 148 0 1.2 273 482 481 404,545 919 482 0.095 1259 120 0 1.3 2.72 482 481 405,507 921 482 0.095 1259 120 0 1.1 2.72 482 481 405,507 921 482 0.095 1259 120 0 1.1 2.72 482 481 405,507 921 482 0.123 1186 146 4.2 1.2 2.72 482 481 406,588 922 482 0.132 1201 158 2.8 1.2 2.72 482 481 406,988 923 480 0.164 1202 175 1.4 1.2 2.72 482 481 406,989 923 480 0.164 1202 175 1.4 1.2 2.72 482 481 406,989 923 480 0.164 1202 175 1.4 1.2 2.72 482 481 406,950 925 480 0.262 1170 307 0 1.1 2.71 482 481 407,912 926 482 0.105 1231 129 0 2.3 2.71 482 481 400,935 926 482 0.105 1231 129 0 2.3 2.71 482 481 409,393 926 482 0.105 1231 129 0 2.3 2.71 482 481 408,393 930 484 0.262 1212 153 0 1.3 2.71 482 481 408,393 930 484 0.126 1212 153 0 1.3 2.71 484 483 410,321 931 484 0.089 1227 116 -1.4 1.3 2.71 484 483 410,321 933 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 933 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 933 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 933 484 0.095 1227 116 -1.4 1.3 2.71 484 483 411,777 934 483 0.229 1089 249 2.8 1.2 2.71 484 483 411,777 934 483 0.112 1172 155 -1.4 1.3 2.70 484 483 411,773 934 483 0.112 1176 1156 129 -1.4 1.3 2.70 484 483 411,773 938 483 0.112 1156 163 -1.4 1.3 2.70 484 483 413,709 938 483 0.112 1156 163 -1.4 1.3 2.70 484 483 413,709 938 483 0.112 1156 163 -1.4 1.3 2.70 484 483 413,709 938 483 0.112 1156 163 -1.4 1.3 2.70 484 483 413,709 938 483 0.112 1156 163 -1.4 1.3 2.70 486 485 415,636 938 485 0.166 1182 190 1.4 1.3 2.70 486 485 415,636 938 486 0.101 1235 125 0 3.3 2.70 484 483 413,709 938 483 0.112 1156 163 -1.4 1.2 2.70 486 485 415,636 938 486 0.101 1235 125 0 3.3 2.70 486 485 415,636 938 486 0.101 1235 125 0 3.3 2.70 486 485 415,615 938 486 0.101 1235 125 0 3.3 2.70 486 485 415,615 938 486 0.101 1235 125 0 3.3 2.70 486 485 415,615 938 486 0.101 1235 125 0 3.3 2.70 486 485 415,615 938 486 0.101 1235 125 0 3.3 2.70 486 485 42,686 485 42,686 938 486 0.101 1204 140 0 0 2.9 2.69 486 485 42,686 955 42,686 955 486 0.001 1235 126 140 0 0 1.2 2.69 486 485 42,866 955 42,866									482	481	404,064
919 482 0.092 1227 114 0 1.3 2.72 482 481 405,026 920 482 0.192 1259 120 0 1.1 2.72 482 481 405,507 920 482 0.123 1186 146 4.2 1.2 2.72 482 481 405,507 922 482 0.123 1201 158 2.8 1.2 2.72 482 481 405,507 923 480 0.164 1233 202 0 1.3 2.72 482 481 406,950 924 480 0.166 1233 202 0 1.3 2.72 482 481 406,950 924 480 0.166 1233 120 175 1.4 1.2 2.72 482 481 406,950 925 480 0.262 1170 307 0 1.1 2.71 482 481 407,912 926 482 0.105 1231 129 0 2.3 2.71 482 481 406,950 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,874 928 415 0.191 1211 231 2.8 1.1 2.71 484 483 410,321 931 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,321 931 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,321 932 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,321 932 484 0.0095 1227 116 -1.4 1.3 2.71 484 483 411,287 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,287 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,287 933 483 0.132 1172 155 -1.4 1.3 2.71 484 483 412,253 936 483 0.174 1158 202 -1.4 1.2 2.70 484 483 412,253 936 483 0.174 1158 202 -1.4 1.2 2.70 484 483 413,702 938 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,702 938 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,668 940 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,668 940 483 0.132 1172 1156 163 -1.4 1.2 2.70 484 483 413,668 940 483 0.132 1172 1156 163 -1.4 1.2 2.70 484 483 413,668 940 483 0.132 1172 1156 163 -1.4 1.2 2.70 486 485 416,121 939 486 0.161 1182 90 1.4 1.3 2.70 486 485 416,121 939 486 0.161 1182 90 0.1 1.2 2.69 486 485 416,121 939 486 0.161 1182 90 0.1 1.2 2.69 486 485 42,946 950 948 486 0.161 1182 90 0.1 1.2 2.69 486 485 42,946 950 948 486 0.161 1182 91 91 91 91 91 91 91 91 91 9									482	481	404,545
920 482 0.095 1259 120 0 1.1 272 482 481 405.507 921 482 0.132 1186 146 4.2 1.2 2.72 482 481 405.507 921 482 0.132 1201 158 2.8 1.2 2.72 482 481 406.9598 923 480 0.164 1233 202 0 1.3 2.72 482 481 406.959 923 480 0.164 1202 175 1.4 1.2 2.72 482 481 406.959 924 480 0.164 1202 175 1.4 1.2 2.72 482 481 406.959 925 480 0.262 1170 307 0 1.1 2.71 482 481 407.912 926 482 0.105 1231 129 0 2.3 2.71 482 481 407.912 926 482 0.105 1231 129 0 2.3 2.71 482 481 409.939 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 409.874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409.873 929 484 0.234 1160 272 1.4 2.0 2.71 482 481 409.893 930 484 0.126 1212 153 0 1.3 2.71 484 483 409.893 930 484 0.086 1227 116 -1.4 1.3 2.71 484 483 409.893 930 484 0.089 1226 111 0 1.3 2.71 484 483 410.804 933 484 0.075 1227 116 -1.4 1.3 2.71 484 483 410.804 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411.807 933 483 0.229 1089 249 -2.8 1.2 2.71 484 483 411.87 933 483 0.229 1089 249 -2.8 1.2 2.71 484 483 411.87 933 483 0.229 1089 249 -2.8 1.2 2.71 484 483 411.253 936 483 0.132 1172 155 -1.4 1.2 2.70 484 483 412.253 935 483 0.112 1156 129 -1.4 1.3 2.70 484 483 412.253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412.253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412.253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412.253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412.253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412.599 939 484 0.189 1191 225 0 1.1 2.70 484 483 412.599 939 484 0.189 1191 225 0 1.1 2.70 484 483 415.616 944 485 0.101 1235 125 0 0 1.1 2.70 484 483 415.616 944 485 0.101 1235 125 0 0 1.1 2.70 484 483 415.636 944 485 0.101 1235 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									482	481	405,026
921 482 0.123 1186 146 4.2 1.2 2.72 482 481 405,988 922 482 0.132 1201 158 2.8 1.2 2.72 482 481 406,869 923 480 0.164 1233 202 0 1.3 2.72 482 481 406,869 924 480 0.166 1202 175 1.4 1.2 2.72 482 481 407,431 925 480 0.262 1170 307 0 1.1 2.71 482 481 407,912 926 482 0.105 1231 129 0 2.3 2.71 482 481 407,912 926 482 0.105 1231 129 0 2.3 2.71 482 481 408,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,355 929 484 0.234 11160 272 1.4 2.0 2.71 484 483 409,839 929 484 0.026 1212 153 0 1.3 2.71 484 483 409,838 929 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 933 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 932 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 932 483 483 0.229 1089 249 -2.8 1.2 2.71 484 483 410,804 933 483 0.329 1089 249 -2.8 1.2 2.71 484 483 411,287 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,287 935 483 0.174 1158 202 -1.4 1.2 2.70 484 483 412,253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412,253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412,253 936 483 0.141 1156 163 -1.4 1.2 2.70 484 483 413,219 939 484 0.189 1191 225 0 1.1 2.70 484 483 413,702 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 413,604 483 0.140 1156 163 -1.4 1.2 2.70 484 483 413,668 944 485 0.100 123 125 125 0 1.1 2.70 484 483 413,668 944 485 0.100 1235 125 0 1.1 2.70 484 483 415,635 944 485 0.100 1235 125 0 0 1.1 2.70 484 483 415,635 944 485 0.100 1235 125 0 0 1.1 2.70 486 485 415,636 942 485 0.100 1235 125 0 0 1.1 2.70 486 485 415,636 942 486 0.101 1235 125 0 0 1.1 2.70 486 485 415,636 942 486 0.101 1235 125 0 0 1.1 2.70 486 485 415,636 942 486 0.101 1235 125 0 0 1.1 2.70 486 485 415,636 942 486 0.101 1235 125 0 0 1.1 2.70 486 485 415,636 942 486 0.101 1235 125 0 0 1.1 2.70 486 485 415,636 942 486 0.101 1235 125 0 0 1.1 2.70 486 485 415,636 942 486 0.101 1235 125 0 0 0 0 1.2 2.50 486 485 415,636 945 486 0.101 1235 125 0 0 0 0 1.2 2.50 486 485 415,636 945 486 0.101 1235 126 136 14 14 14 13 2.70 486 485 415,636 945 485 945 945 945 945 945 945 945 945 945 94									482	481	405,507
922 482 0.132 1201 158 2.8 1.2 2.72 482 481 406,969 923 480 0.164 1203 202 0 1.3 2.72 482 481 406,969 924 480 0.146 1202 175 1.4 1.2 2.72 482 481 407,431 925 480 0.262 1170 307 0 1.1 2.71 482 481 408,939 926 482 0.105 1231 129 0 2.3 2.71 482 481 408,393 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,393 928 484 0.234 1160 272 1.4 2.0 2.71 482 481 409,838 930 484 0.234 1160 272 1.4 2.0 2.71 482 481 409,838 930 484 0.026 1212 153 0 1.3 2.71 484 483 409,838 930 484 0.026 1212 153 0 1.3 2.71 484 483 410,804 932 484 0.089 1246 111 0 1.3 2.71 484 483 410,804 933 484 0.075 1227 116 -1.4 1.3 2.71 484 483 411,287 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,7267 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,7267 936 483 0.122 1172 155 -1.4 1.2 2.70 484 483 412,253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412,263 937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 412,263 938 483 0.120 11156 129 -1.4 1.3 2.70 484 483 413,209 937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 413,209 938 483 0.120 1192 143 0 6.5 2.70 484 483 413,702 938 483 0.120 1192 143 0 6.5 2.70 484 483 414,668 940 483 0.120 1192 143 0 6.5 2.70 484 483 414,668 940 483 0.120 1192 143 0 6.5 2.70 484 483 414,668 940 483 0.120 1192 144 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1192 143 0 6.5 2.70 486 485 416,606 944 485 0.161 1192 144 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1192 144 1.4 1.3 2.70 486 485 416,606 945 486 0.101 1235 125 0 1.1 1.2 2.70 486 485 416,606 946 485 0.161 1198 129 144 1.4 1.3 2.70 486 485 416,606 947 486 0.123 1204 148 0 1.3 2.69 486 485 419,516 948 680 0.101 1235 125 0 1.1 1.2 2.70 486 485 416,606 948 680 0.101 1235 125 0 0 1.1 2.59 486 485 419,516 949 486 0.101 1235 125 0 0 1.1 2.59 486 485 419,516 940 483 0.126 1198 221 100 1.4 1.3 2.70 486 485 419,516 941 485 0.101 1235 125 0 0 1.1 2.59 486 485 419,516 942 485 0.101 1235 125 0 0 1.1 2.59 486 485 420,001 944 485 0.101 1235 125 0 0 1.3 2.69 486 485 420,001 945 486 0.101 1235 125 0 0 1.2 2.69 486 485 420,001 946 486 0.101 1253 126 144 1.3 2.69 486 485 420,001 947 486 0.101 1253 12									482	481	405,988
923 480 0.164 1233 202 0 1.3 2.72 482 481 406,950 924 480 0.146 1202 175 1.4 1.2 2.72 482 481 407,431 925 480 0.262 1170 307 0 1.1 2.71 482 481 407,912 926 482 0.105 1231 129 0 2.3 2.71 482 481 408,874 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 408,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 408,874 930 484 0.126 1212 153 0 1.3 2.71 484 483 410,321 931 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,321 932 484 0.089 1246 111 0 1.3 2.71 484 483 410,804 932 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 932 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,287 934 483 0.120 1192 1172 155 -1.4 1.2 2.70 484 483 412,253 936 483 0.174 1156 202 -1.4 1.2 2.70 484 483 412,253 937 483 0.112 1156 163 -1.4 1.3 2.70 484 483 413,219 938 483 0.112 1156 163 -1.4 1.3 2.70 484 483 413,219 938 483 0.112 1156 163 -1.4 1.3 2.70 484 483 413,219 939 484 0.189 1191 225 0 1.1 2.70 484 483 413,219 930 483 0.120 1192 143 0 6.5 2.70 484 483 413,219 934 485 0.189 1191 225 0 1.1 2.70 484 483 413,619 940 483 0.120 1192 143 0 6.5 2.70 484 483 414,665 941 485 0.101 1235 125 0 3.3 2.70 486 485 416,621 943 485 0.102 1192 143 0 6.5 2.70 484 483 415,151 941 485 0.010 1235 125 0 3.3 2.70 486 485 416,121 943 485 0.126 1168 147 1.4 1.3 2.70 484 483 415,151 944 485 0.010 1235 125 0 3.3 2.70 486 485 416,121 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,121 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,121 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 416,121 945 486 0.123 1204 148 0 1.3 2.69 486 485 419,516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,901 951 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,901 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,901 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,901 954 486 0.117 1219 235 26 2.6 2.69 486 485 420,901 955 486 0.116 1204 140 0 2.9 2.69 486 485 420,901 954 486 0.101 1253 126 1.4 1.3 2.69 486 485 420,946 959 486 0.116 1204 140 0 2.9 2.69 486 485 420,941 955 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,945 956 486 0.101 1253 126 1.4 2.6 2.69 486 4										481	406,469
924 480 0.146 1202 175 1.4 1.2 2.72 482 481 407,912 925 480 0.262 1170 307 0 1.1.1 2.71 482 481 407,912 926 482 0.105 1231 129 0 2.3 2.71 482 481 408,393 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,393 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,355 929 484 0.234 1160 272 1.4 2.0 2.71 484 483 410,804 933 930 484 0.126 1212 153 0 1.3 2.71 484 483 410,804 932 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 932 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 932 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 932 484 0.095 1227 116 -1.4 1.3 2.71 484 483 411,804 483 412,873 6 483 0.122 1172 155 94 -1.4 1.3 2.71 484 483 411,780 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,780 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 412,736 936 483 0.122 1172 155 -1.4 1.2 2.70 484 483 412,736 936 483 0.132 1172 155 -1.4 1.2 2.70 484 483 412,736 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,219 937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 413,702 483 483 0.141 1156 163 -1.4 1.2 2.70 484 483 413,615 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,185 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,1668 940 483 0.120 1192 143 0 6.5 2.70 484 483 415,151 944 485 0.161 1235 125 0 3.3 2.70 486 485 416,636 944 485 0.161 1182 199 144 1.4 1.3 2.70 486 485 416,636 944 485 0.161 1182 199 1.4 1.4 1.3 2.70 486 485 416,636 944 485 0.161 1182 199 1.4 1.4 1.3 2.70 486 485 416,636 944 485 0.161 1182 199 1.4 1.4 1.3 2.70 486 485 416,036 944 485 0.161 1182 199 1.4 1.4 1.3 2.70 486 485 415,036 944 485 0.161 1182 199 1.4 1.4 1.3 2.70 486 485 415,036 944 486 0.161 1182 199 1.4 1.4 1.3 2.70 486 485 415,036 944 485 0.161 1182 199 1.4 1.4 1.3 2.70 486 485 415,036 949 486 0.161 1182 199 1.4 1.4 1.3 2.70 486 485 415,036 949 486 0.161 1182 190 1.4 1.3 2.70 486 485 416,036 949 486 0.161 1182 190 1.4 1.3 2.70 486 485 416,036 949 486 0.161 1182 190 1.4 1.4 2.2 2.70 486 485 42,046 948 486 0.161 1182 190 1.4 1.3 2.69 486 485 42,046 948 948 486 0.161 1182 190 1.4 1.4 2.6 2.6 9 486 485 42,046 948 948										481	406,950
925 480 0.262 1170 307 0 1.1 2.71 482 481 407,912 926 482 0.105 1231 129 0 2.3 2.71 482 481 408,393 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,355 929 484 0.234 1160 272 1.4 2.0 2.71 484 483 409,355 929 484 0.126 1212 153 0 1.3 2.71 484 483 410,321 931 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,321 932 484 0.089 1246 111 0 1.3 2.71 484 483 411,287 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,287 934 483 0.229 1099 249 -2.8 1.2 2.71 484 483 411,276 935 483 0.174 1158 202 -1.4 1.2 2.70 484 483 412,253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,219 937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 413,219 938 483 0.141 1156 163 -1.4 1.3 2.70 484 483 413,702 938 483 0.189 1191 225 0 0 1.2 2.70 484 483 413,1668 939 484 0.189 1191 225 0 0 6.5 2.70 484 483 414,165 940 483 0.120 1192 143 0 6.5 2.70 484 483 414,165 941 485 0.101 1235 125 0 0 6.5 2.70 484 483 415,151 941 485 0.101 1235 125 0 0 6.5 2.70 486 485 415,636 944 485 0.161 1182 119 144 1.4 1.3 2.70 486 485 415,636 944 485 0.161 1182 119 144 1.4 1.3 2.70 486 485 415,636 946 485 0.161 1182 119 144 1.4 1.3 2.70 486 485 416,606 946 485 0.161 1182 119 144 1.4 1.3 2.70 486 485 416,606 946 485 0.161 1182 119 144 1.4 1.3 2.70 486 485 417,091 956 486 0.123 1204 148 0 1.3 2.69 486 485 417,091 957 486 0.123 1204 148 0 1.3 2.69 486 485 417,091 958 486 0.101 1253 126 -1.4 1.2 2.70 486 485 417,091 958 486 0.161 1182 190 1.4 1.3 2.70 486 485 417,091 958 486 0.161 1182 219 144 1.4 1.3 2.70 486 485 417,091 958 486 0.161 1182 219 144 1.4 1.3 2.70 486 485 417,091 958 486 0.161 1182 219 144 1.4 1.3 2.70 486 485 417,091 958 486 0.161 1182 219 144 1.4 1.3 2.70 486 485 417,091 959 486 485 0.161 1182 190 1.4 1.3 2.69 486 485 417,091 950 486 0.115 1219 144 1.4 1.3 2.69 486 485 417,091 951 486 0.123 1204 148 0 0 1.8 2.69 486 485 419,031 951 486 0.161 1198 223 126 1.4 1.2 2.69 486 485 422,011 953 486 0.161 1204 140 0 0 2.9 2.69 486 485 422,011 954 486 0.161 1204 140 0 0 2.9 2.69 486 485 422,011 956 486 0.072 1251 90 0 0 1.2 2.											407,431
926 482 0.105 1231 129 0 2.3 2.71 482 481 408,393 927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,874											
927 406 0.117 1199 140 2.8 5.5 2.72 482 481 408,874 928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,355 939 484 0.234 1160 272 1.4 2.0 2.71 484 483 409,355 930 484 0.126 1212 153 0 1.3 2.71 484 483 410,821 931 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 932 484 0.095 1227 116 -1.4 1.3 2.71 484 483 411,287 932 484 0.089 1246 111 0 1.3 2.71 484 483 411,287 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,287 934 483 0.229 1089 249 -2.8 1.2 2.71 484 483 412,253 936 483 0.174 1158 202 -1.4 1.2 2.70 484 483 412,736 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,219 937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 413,219 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 413,698 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,685 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,685 939 484 0.189 1191 225 0 1.1 2.70 484 483 415,151 941 485 0.101 1235 125 0 3.3 2.70 486 485 415,656 942 485 0.086 1232 104 4 1.4 1.3 2.70 486 485 415,656 942 485 0.086 1232 105 14 1.4 1.3 2.70 486 485 416,606 944 485 0.168 1219 144 1.4 1.3 2.70 486 485 416,606 944 485 0.168 1219 144 1.4 1.3 2.70 486 485 416,606 944 485 0.168 1219 144 1.4 1.3 2.70 486 485 416,606 944 485 0.168 1219 144 1.4 1.3 2.70 486 485 416,606 944 485 0.168 1219 144 1.4 1.3 2.70 486 485 416,606 944 485 0.168 1219 144 1.4 1.3 2.70 486 485 417,091 945 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,091 945 948 486 0.123 1204 148 0 0 1.8 2.69 486 485 417,091 945 948 486 0.123 1204 148 0 0 1.8 2.69 486 485 417,091 945 948 486 0.123 1204 148 0 0 1.8 2.69 486 485 419,031 949 486 0.123 1204 148 0 0 2.9 2.69 486 485 419,031 949 486 0.123 1204 148 0 0 2.9 2.69 486 485 419,031 949 486 0.123 1204 148 0 0 1.8 2.69 486 485 419,031 949 486 0.123 1204 148 0 0 1.8 2.69 486 485 419,031 949 486 0.123 1204 140 0 2.9 2.69 486 485 42,040 955 486 0.125 1236 155 1.4 1.2 2.69 486 485 42,040 955 486 0.125 1236 155 1.4 1.3 2.69 486 485 42,040 955 486 0.024 1216 272 0 2.69 486 485 42,040 956 447 0.160 1219 195 2.8 2.6 2.69 486 485 42,336 960 447 0.160 1219 195 2.8 2.6 2.69 486 485 42,336 960 447 0.160 12											
928 415 0.191 1211 231 2.8 1.1 2.71 482 481 409,355 929 484 0.234 1160 272 1.4 2.0 2.71 484 483 409,838 930 484 0.126 1212 153 0 1.3 2.71 484 483 410,821 484 0.089 1246 111 0 1.3 2.71 484 483 410,821 484 0.089 1246 111 0 1.3 2.71 484 483 410,821 484 0.089 1246 111 0 1.3 2.71 484 483 410,824 483 410,824 483 40,838 932 484 0.089 1246 111 0 1.3 2.71 484 483 411,877 934 483 0.229 1089 249 -2.8 1.2 2.71 484 483 411,770 934 483 0.229 1089 249 -2.8 1.2 2.71 484 483 412,736 935 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412,736 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412,736 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 413,702 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 414,685 940 483 0.189 1191 225 0 1.1 2.70 484 483 414,685 940 485 0.101 1235 125 0 3.3 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 1.2 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 1.3 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 1.3 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 1.3 2.70 486 485 416,636 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,636 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,636 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,091 945 485 0.031 1192 163 1.4 1.2 2.70 486 485 417,091 945 485 0.0161 1182 190 1.4 1.3 2.70 486 485 417,091 945 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,091 945 485 0.0161 1182 190 1.4 1.3 2.70 486 485 417,091 945 486 0.123 1204 148 0 1.3 2.69 486 485 419,031 949 486 0.123 1204 148 0 1.3 2.69 486 485 419,031 949 486 0.123 1204 148 0 1.3 2.69 486 485 419,031 949 486 0.101 1253 126 1.4 1.2 2.69 486 485 419,031 949 486 0.125 1236 155 1.4 1.3 2.69 486 485 419,031 949 486 0.161 1182 190 1.4 1.3 2.69 486 485 419,031 949 486 0.161 1182 190 1.4 1.3 2.69 486 485 419,031 949 486 0.161 1182 190 1.4 1.3 2.69 486 485 420,496 952 486 0.125 1236 155 1.4 2.6 2.69 486 485 420,496 952 486 0.157 1198 235 126 1.4 1.2 2.69 486 485 422,911 955 486 0.165 1198 230 0 0 1.2 2.69 486 485 422,911 955 486 0.165 1198 230 0 0 1.2 2.69 486 485 422,911											
929 484 0.234 1160 272 1.4 2.0 2.71 484 483 409.838 930 484 0.126 1212 153 0 1.3 2.71 484 483 410.321 931 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410.804 932 484 0.089 1246 1111 0 1.3 2.71 484 483 411.287 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411.287 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411.287 934 483 0.229 1089 249 -2.8 1.2 2.71 484 483 412.253 935 483 0.174 1158 202 -1.4 1.2 2.70 484 483 412.253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412.253 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413.702 938 483 0.141 1156 129 -1.4 1.3 2.70 484 483 413.702 938 483 0.141 1156 129 -1.4 1.3 2.70 484 483 414.185 939 484 0.189 1191 225 0 1.1 2.70 484 483 414.689 939 484 0.189 1191 225 0 1.1 2.70 484 483 414.689 939 484 0.189 1191 225 0 1.1 2.70 484 483 414.669 944 485 0.066 1232 1066 1.4 1.4 2.7 486 485 415.636 942 485 0.066 1232 106 1.4 1.4 2.70 486 485 415.636 942 485 0.106 1168 147 1.4 1.3 2.70 486 485 415.636 942 485 0.106 1168 147 1.4 1.3 2.70 486 485 415.636 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 415.636 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 415.636 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 415.636 944 485 0.137 1192 163 1.4 1.2 2.70 486 485 417.576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417.576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417.576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417.576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417.576 946 485 0.161 1182 190 1.4 1.3 2.99 486 485 419.031 949 486 0.121 1198 241 0 1.8 2.69 486 485 419.031 949 486 0.121 1198 241 0 1.8 2.69 486 485 419.031 949 486 0.121 1198 241 0 1.8 2.69 486 485 419.031 949 486 0.121 1198 241 0 1.8 2.69 486 485 419.031 949 486 0.121 1198 241 0 1.8 2.69 486 485 419.031 949 486 0.121 1198 241 0 1.8 2.69 486 485 419.031 949 486 0.121 1198 241 0 1.8 2.69 486 485 420.001 951 486 0.161 1182 190 1.4 1.3 2.69 486 485 420.001 951 486 0.161 1102 134 1.4 2.6 2.69 486 485 420.406 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420.406 952 486 485 420.406 952 486 0.125 1236 155 1.4 1.2 2.69 486 485 420.406 952 486 485 42											
930 484 0.126 1212 153 0 1.3 2.71 484 483 410,321 931 484 0.095 1227 116 -1.4 1.3 2.71 484 483 410,804 932 484 0.089 1246 111 0 1.3 2.71 484 483 411,287 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,270 934 483 0.229 1089 249 -2.8 1.2 2.71 484 483 412,253 935 483 0.174 1158 202 -1.4 1.2 2.70 484 483 412,253 935 483 0.132 1172 155 -1.4 1.3 2.70 484 483 412,736 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,219 937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 413,702 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 413,702 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 414,185 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,185 939 484 0.189 1191 225 0 1.1 2.70 484 483 415,151 942 485 0.101 1235 125 0 3.3 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 1.4 2.70 486 485 415,636 942 485 0.166 1168 147 1.4 1.3 2.70 486 485 416,606 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,606 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 418,061 949 486 0.123 1204 148 0 1.3 2.69 486 485 418,061 949 486 0.123 1204 148 0 1.3 2.69 486 485 419,516 950 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 419,516 950 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,911 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,911 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,911 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,911 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,911 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,911 955 486 0.101 1253 126 1.4 1.3 2.69 486 485 420,911 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,911 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 422,911 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 422,911 955 486 0.10											
930 464 0.180 1227 116 -1.4 1.3 2.71 484 483 410,804 932 484 0.089 1246 111 0 1.3 2.71 484 483 411,287 933 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411,786 934 483 0.229 1089 249 -2.8 1.2 2.71 484 483 412,736 935 483 0.174 1158 202 -1.4 1.2 2.70 484 483 412,736 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,219 937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 413,219 937 483 0.112 1156 163 -1.4 1.3 2.70 484 483 413,685 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,665 940 483 0.120 1192 143 0 6.5 2.70 484 483 414,665 940 483 0.120 1192 143 0 6.5 2.70 484 483 415,615 941 485 0.101 1235 125 0 3.3 2.70 486 485 415,636 941 485 0.106 1232 106 1.4 1.4 2.70 486 485 416,121 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,121 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,121 943 485 0.137 1192 163 1.4 1.2 2.70 486 485 416,121 943 485 0.137 1192 163 1.4 1.2 2.70 486 485 416,121 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,066 944 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,066 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,066 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 416,061 945 485 0.137 1192 163 1.4 1.2 2.70 486 485 416,066 947 486 0.123 1204 148 0 1.3 2.69 486 485 418,061 948 486 0.123 1204 148 0 1.3 2.69 486 485 418,061 948 486 0.123 1204 148 0 0 1.3 2.69 486 485 419,516 950 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 419,516 950 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,001 951 486 0.161 1204 140 0 0 2.9 2.69 486 485 420,001 951 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,901 955 486 0.161 1204 140 0 0 2.9 2.69 486 485 420,901 955 486 0.161 1204 140 0 0 2.9 2.69 486 485 420,901 955 486 0.161 1204 140 0 0 2.9 2.69 486 485 420,901 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,901 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,901 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,901 955 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,901 956 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,901 956 486 0.101 1253 126 1.4 1.2 2.69 486 485 422,901 956 486 0.101 1253	929										
931 484 0.089 1246 1111 0 1.3 2.71 484 483 411.287 932 484 0.075 1251 94 -1.4 1.3 2.71 484 483 411.273 934 483 0.229 1089 249 -2.8 1.2 2.71 484 483 412.253 935 483 0.174 1158 202 -1.4 1.2 2.70 484 483 412.273 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413.219 937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 413.219 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 413.702 938 484 0.189 1191 225 0 1.1 2.70 484 483 414.685 939 484 0.189 1191 225 0 1.1 2.70 484 483 415.636 940 483 0.120 1192 143 0 6.5 2.70 484 483 415.636 942 485 0.006 1232 106 1.4 1.4 2.70 486 485 415.636 942 485 0.086 1232 106 1.4 1.4 2.70 486 485 416.621 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416.626 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 416.626 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 417.576 946 485 0.137 1192 163 1.4 1.2 2.70 486 485 417.576 946 485 0.137 1192 163 1.4 1.2 2.70 486 485 417.576 946 485 0.101 1182 190 1.4 1.3 2.70 486 485 417.576 947 486 0.123 1204 148 0 1.3 2.69 486 485 417.576 948 486 0.123 1204 148 0 1.3 2.69 486 485 419.516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 419.516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 419.516 951 486 0.125 1236 155 1.4 1.3 2.69 486 485 420.001 951 486 0.125 1236 155 1.4 1.3 2.69 486 485 420.001 953 486 0.116 1204 140 0 2.9 2.69 486 485 420.001 953 486 0.116 1204 140 0 2.9 2.69 486 485 420.001 953 486 0.116 1204 140 0 2.9 2.69 486 485 420.001 954 486 0.008 1223 108 0 1.1 2.69 486 485 421.941 955 486 0.088 1223 108 0 1.1 2.69 486 485 421.456 956 486 0.072 1251 90 0 0 1.2 2.69 486 485 421.456 956 486 0.008 1223 108 0 0 1.2 2.69 486 485 421.456 956 486 0.072 1251 90 0 0 1.2 2.69 486 485 422.919 957 486 0.167 1159 182 1.4 3.3 2.69 486 485 422.919 957 486 0.167 1159 182 1.4 3.3 2.69 486 485 422.919 958 447 0.192 1198 230 0 0 1.2 2.69 486 485 422.919 957 486 0.001 1253 126 1.4 1.2 2.69 486 485 422.919 958 447 0.192 1198 230 0 0 1.2 2.69 486 485 422.919 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 422.919 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 422.919 950 448 0.244 1216 272 0 2.66 2.69 4											
933 484 0.065 1245 111	931										
9334 483 0.0729 1089 249 -2.8 1.2 2.71 484 483 412,253 935 483 0.174 1158 202 -1.4 1.2 2.70 484 483 412,736 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,702 938 483 0.131 1156 129 -1.4 1.3 2.70 484 483 413,702 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 413,702 938 484 0.169 1191 225 0 1.1 2.70 484 483 414,165 939 484 0.169 1191 225 0 1.1 2.70 484 483 414,165 939 484 0.169 1191 225 0 1.1 2.70 484 483 414,165 939 484 0.169 1191 225 0 1.1 2.70 484 483 415,151 941 485 0.101 1235 125 0 3.3 2.70 486 485 415,151 941 485 0.101 1235 125 0 3.3 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 2.70 486 485 416,606 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 416,606 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 417,576 945 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,576 948 486 0.123 1204 148 0 1.3 2.69 486 485 418,061 948 486 0.201 1198 241 0 1.8 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,031 949 486 0.115 1192 134 1.4 2.6 2.69 486 485 419,031 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 419,031 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,496 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,496 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,496 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.115 1253 126 1.4 1.3 2.69 486 485 420,971 953 486 0.115 1253 126 1.4 1.3 2.69 486 485 420,971 953 486 0.115 1253 126 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 9	932										
935 483 0.174 1158 202 -1.4 1.2 2.70 484 483 412,736 936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,702 937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 413,702 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 414,185 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,685 940 483 0.120 1192 143 0 6.5 2.70 484 483 415,151 941 485 0.101 1235 125 0 3.3 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 2.70 486 485 416,121 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,121 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,121 943 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,091 945 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,091 945 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,091 945 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.69 486 485 419,031 949 486 0.123 1204 148 0 1.3 2.69 486 485 419,031 949 486 0.123 1204 148 0 1.3 2.69 486 485 419,031 949 486 0.101 1210 134 1.4 2.8 2.6 2.69 486 485 419,031 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,466 952 486 0.072 1251 90 0 1.2 2.69 486 485 422,911 955 486 0.0072 1251 90 0 1.2 2.69 486 485 422,911 955 486 0.0072 1251 90 0 1.2 2.69 486 485 422,911 955 486 0.0072 1251 90 0 1.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 422,911 955 486 0.0072 1251 90 0 1.2 2.69 486 485 422,911 957 485 0.008 1223 108 0 1.1 2.69 486 485 422,911 955 486 0.0072 1251 90 0 1.2 2.69 486 485 422,911 957 485 0.008 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.0072 1251 90 0 1.2 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423	933										
936 483 0.132 1172 155 -1.4 1.3 2.70 484 483 413,219 937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 413,702 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 414,185 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,185 940 483 0.120 1192 143 0 6.5 2.70 484 483 414,668 940 483 0.120 1192 143 0 6.5 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.2 2.70 486 485 416,121 943 485 0.101 1235 125 0 3.3 2.70 486 485 416,121 944 485 0.189 1191 227 106 1.4 1.3 2.70 486 485 416,121 945 485 0.18 1219 144 1.4 1.3 2.70 486 485 417,576 946 485 0.118 1219 144 1.4 1.3 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,576 947 486 0.123 1204 148 0 1.3 2.70 486 485 418,561 948 486 0.123 1204 148 0 1.3 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,511 950 486 0.115 1196 174 2.8 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,486 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,486 952 486 0.125 1236 155 1.4 1.2 2.69 486 485 420,486 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,486 954 486 0.001 1253 126 -1.4 1.2 2.69 486 485 420,486 955 486 0.015 1236 155 1.4 1.2 2.69 486 485 420,486 955 486 0.015 1236 155 1.4 1.2 2.69 486 485 420,486 954 486 0.101 1253 126 -1.4 1.2 2.69 486 485 420,486 955 486 0.015 1236 155 1.4 1.2 2.69 486 485 420,486 955 486 0.016 129 1198 230 0 1.1 2.69 486 485 422,416 956 486 0.007 1251 190 0 0 1.2 2.69 486 485 422,416 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 422,416 958 447 0.192 1198 230 0 1.3 2.69 486 485 422,426 958 447 0.192 1198 230 0 1.3 2.69 486 485 422,426 958 448 0.137 1223 167 1.4 2.7 2.69 486 485 422,426 958 447 0.192 1198 230 0 1.3 2.69 486 485 422,426 958 447 0.192 1198 230 0 1.3 2.69 486 485 422,426 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,386 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,386 960 448 0.224 1216 272 0 2.6 2.69 486 485 423,386 960 447 0.175 1219 195 2.8 2.6 2.69 486 485 424,851	934	483	0.229								
937 483 0.112 1156 129 -1.4 1.3 2.70 484 483 413,702 938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 414,685 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,685 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,685 939 484 0.189 1191 225 0 0 1.1 2.70 484 483 415,151 941 485 0.101 1235 125 0 3.3 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 2.70 486 485 416,626 942 485 0.186 1232 106 1.4 1.4 2.70 486 485 416,626 944 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,606 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 417,576 946 485 0.118 1219 144 1.4 1.3 2.70 486 485 417,576 946 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,576 947 486 0.123 1204 148 0 1.3 2.69 486 485 418,061 947 486 0.123 1204 148 0 1.3 2.69 486 485 418,061 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,516 950 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 419,516 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 951 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,001 951 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,466 952 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,971 953 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,946 954 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,946 954 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,946 954 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,946 955 486 0.072 1251 90 0 1.2 2.69 486 485 420,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 420,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 420,941 955 486 0.072 1251 90 0 0 1.2 2.69 486 485 422,941 956 486 0.072 1251 90 0 0 1.2 2.69 486 485 422,941 955 486 0.072 1251 198 230 0 1.3 2.69 486 485 422,941 955 486 0.072 1251 198 230 0 1.3 2.69 486 485 422,941 955 486 0.072 1251 190 0 0 1.2 2.69 486 485 422,941 955 486 0.072 1251 190 0 0 1.2 2.69 486 485 422,941 955 486 0.072 1251 190 0 0 1.2 2.69 486 485 422,941 956 448 0.072 1251 190 0 0 1.2 2.69 486 485 422,941 956 448 0.072 1251 190 0 0 1.2 2.69 486 485 422,941 956 448 0.072 1251 190 0 0 1.3 2.	935	483									
938 483 0.141 1156 163 -1.4 1.2 2.70 484 483 414,185 939 484 0.189 1191 225 0 1.1 2.70 484 483 414,685 939 484 0.189 1191 225 0 3.3 2.70 486 485 415,151 941 485 0.101 1235 125 0 3.3 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 2.70 486 485 415,636 944 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,621 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,626 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 417,091 945 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,091 945 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,576 946 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,576 946 485 0.137 1192 163 1.4 1.2 2.70 486 485 418,061 947 486 0.123 1204 148 0 1.3 2.70 486 485 418,061 947 486 0.123 1204 148 0 1.3 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 953 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 953 486 0.161 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.101 1253 126 -1.4 1.2 2.69 486 485 420,971 953 486 0.088 1223 108 0 1.1 2.69 486 485 422,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,941 955 486 0.088 1223 108 0 1.2 2.69 486 485 422,941 955 486 0.088 1223 108 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 0 1.2 2.69 486 485 422,426 956 486 485 422,426 956 486 485 422,426 956 486 485 422,426 956 486 485 422,426 956 486 485 422,426 956 48	936	483									
939 484 0 189 1191 225 0 1.1 2.70 484 483 414,668 940 483 0.120 1192 143 0 6.5 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 2.70 486 485 416,621 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,621 943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,626 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 416,606 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 417,991 945 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,991 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 418,061 947 486 0.123 1204 148 0 1.3 2.70 486 485 418,061 948 486 0.201 1198 241 0 1.8 2.69 486 485 418,061 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 951 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,001 952 486 0.101 1253 126 1.4 1.3 2.69 486 485 420,971 953 486 0.101 1253 126 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.101 1253 126 1.4 1.2 2.6 2.69 486 485 420,971 953 486 0.101 1253 126 1.4 1.2 2.6 2.69 486 485 420,971 953 486 0.101 1253 126 1.4 1.2 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,941 957 485 0.157 1159 182 1.4 2.7 2.69 486 485 422,941 957 485 0.157 1159 182 1.4 2.7 2.69 486 485 422,941 957 485 0.157 1159 182 1.4 2.7 2.69 486 485 422,941 957 485 0.157 1159 182 1.4 2.7 2.69 486 485 422,941 957 485 0.157 1159 182 1.4 2.7 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.5 2.69 486 485 423,881 959 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,306 960 447 0.160 1219 195 2.8	937	483	0.112	1156							
940	938	483									
941 485 0.101 1235 125 0 3.3 2.70 486 485 415,636 942 485 0.086 1232 106 1.4 1.4 2.70 486 485 416,606 944 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,606 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 417,911 945 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 418,061 947 486 0.123 1204 148 0 1.3 2.69 486 485 418,546 948 486 0.201 1198 241 0 1.8 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 951 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,971 953 486 0.088 1223 108 0 1.1 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,386 959 448 0.224 1216 272 0 2.6 2.69 486 485 423,386 959 448 0.224 1216 272 0 2.6 2.6 2.6 2.6 2.6 486 485 423,386 960 448 0.224 1216 272 0 2.6 2.6 2.6 2.6 486 485 423,386 960 448 0.224 1216 272 0 2.6 2.6 2.6 2.6 486 485 423,386 960 448 0.224 1216 272 0 2.6 2.6 2.6 486 485 423,386 960 448 0.224 1216 272 0 2.6 2.6 2.6 486 485 425,336 960 448 0.224 1216 272 0 2.6 2.6 2.6 486 485 425,336 960 447 0.160 1219 195 2.8 2.6 2.6 2.6 9 486 485 425,336 960 447 0.160 1219 195 2.8 2.6 2.6 2.6 9 486 485 425,336 960 447 0.142 1222 174 1.4 2.5 2.6 9 486 485 425,336 960 447 0.142 1222 174 1.4 2.5 2.6 2.6 9 486 485 425,336 960 447 0.142 1222 174 1.4 2.5 2.6 9 486 485 426,306 960 447 0.175 1219 213 0 1.3 2.6 8 486 485 426,306 960 447 0.175 1219 213 0 1.3 2.6 8 486 485 426,306 960 447 0.175 1219 213 0 1.3 2.6 8 486 485 426,306 960 447 0.175 1	939	484	0.189								
942 485 0.086 1232 106 1.4 1.4 2.70 486 485 416,606 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 417,091 945 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,091 945 485 0.161 1182 190 1.4 1.3 2.70 486 485 418,061 947 486 0.123 1204 148 0 1.3 2.70 486 485 418,546 948 486 0.201 1198 241 0 1.8 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,001 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,001 953 486 0.116 1204 140 0 2.9 2.69 486 485 420,001 954 486 0.101 1253 126 1.4 1.3 2.69 486 485 420,001 954 486 0.101 1253 126 1.4 1.3 2.69 486 485 420,001 954 486 0.101 1253 126 1.4 1.2 2.69 486 485 420,001 955 486 0.088 1223 108 0 1.1 2.69 486 485 421,456 956 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 959 448 0.224 1216 272 0 2.6 2.69 486 485 423,396 959 448 0.224 1216 272 0 2.6 2.69 486 485 423,396 960 448 0.224 1216 272 0 2.6 2.69 486 485 423,396 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,331 960 447 0.175 1219 213 0 1.3 2.68 486 485 426,791	940	483									
943 485 0.126 1168 147 1.4 1.3 2.70 486 485 416,606 944 485 0.118 1219 144 1.4 1.3 2.70 486 485 417,091 945 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 418,061 947 486 0.123 1204 148 0 1.3 2.69 486 485 418,546 948 486 0.201 1198 241 0 1.8 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,486 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 421,456 954 486 0.101 1253 126 -1.4 1.2 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 422,911 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 960 448 0.224 1216 272 0 2.6 2.69 486 485 423,396 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 423,396 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 425,336 964 447 0.175 1219 213 0 1.3 2.68 486 485 425,821	941	485									415,636
944 485 0.118 1219 144 1.4 1.3 2.70 486 485 417,091 945 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 418,061 947 486 0.123 1204 148 0 1.3 2.69 486 485 418,546 948 486 0.201 1198 241 0 1.8 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 421,456 954 486 0.101 1253 126 1.4 1.2 2.69 486 485 421,456 954 486 0.008 1223 108 0 1.1 2.69 486 485 421,456 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,911 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 422,911 958 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 960 448 0.224 1216 272 0 2.6 2.69 486 485 423,396 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 425,336 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 425,336 964 447 0.175 1219 213 0 1.3 2.68 486 485 425,306											
945 485 0.137 1192 163 1.4 1.2 2.70 486 485 417,576 946 485 0.161 1182 190 1.4 1.3 2.70 486 485 418,061 947 486 0.123 1204 148 0 1.3 2.69 486 485 418,061 948 486 0.201 1198 241 0 1.8 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,001 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 421,945 954 486 0.101 1253 126 -1.4 1.2 2.69 486 485 421,945 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 422,911 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 425,821 963 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
946 485 0.161 1182 190 1.4 1.3 2.70 486 485 418,061 947 486 0.123 1204 148 0 1.3 2.69 486 485 419,031 948 486 0.201 1198 241 0 1.8 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,486 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,486 952 486 0.116 1204 140 0 2.9 2.69 486 485 420,4971 953 486 0.116 1204 140 0 2.9 2.69 486 485 421,456 954 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 958 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 958 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 958 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 958 486 0.072 1251 90 0 1.2 2.69 486 485 423,386 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,386 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,306											
947 486 0.123 1204 148 0 1.3 2.69 486 485 419,031 949 486 0.201 1198 241 0 1.8 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 419,516 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,971 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 421,456 954 486 0.101 1253 126 -1.4 1.2 2.69 486 485 421,456 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 958 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,398 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,396 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 424,351 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 964 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,791											
948 486 0.201 1198 241 0 1.8 2.69 486 485 419,031 949 486 0.197 1192 235 2.8 2.0 2.69 486 485 420,001 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,486 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 421,456 954 486 0.101 1253 126 -1.4 1.2 2.69 486 485 421,456 955 486 0.088 1223 108 0 1.1 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.224 1216 272 0 2.6 2.69 486 485 423,881 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,306											
949 486 0.197 1192 235 2.8 2.0 2.69 486 485 420,001 950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,486 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 421,456 954 486 0.101 1253 126 -1.4 1.2 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,881 959 448 0.224 1216 272 0 2.6 2.69 486 485 423,881 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 424,851 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 425,336											
950 486 0.111 1210 134 1.4 2.6 2.69 486 485 420,001 951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,486 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 421,456 954 486 0.101 1253 126 -1.4 1.2 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.224 1216 272 0 2.6 2.69 486 485 424,861 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
951 486 0.145 1196 174 2.8 2.6 2.69 486 485 420,486 952 486 0.125 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 421,456 954 486 0.101 1253 126 -1.4 1.2 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,410 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 424,851 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
951 486 0.145 1236 155 1.4 1.3 2.69 486 485 420,971 953 486 0.116 1204 140 0 2.9 2.69 486 485 421,456 954 486 0.101 1253 126 -1.4 1.2 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,996 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 423,881 959 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 424,851 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306											
952 486 0.125 1250 140 0 2.9 2.69 486 485 421,456 954 486 0.101 1253 126 -1.4 1.2 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,351 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 424,851 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
953 486 0.101 1253 126 -1.4 1.2 2.69 486 485 421,941 955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,396 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 424,366 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
955 486 0.088 1223 108 0 1.1 2.69 486 485 422,426 956 486 0.072 1251 90 0 1.2 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 424,851 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,336 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
956 486 0.072 1251 90 0 1.2 2.69 486 485 422,911 957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
957 485 0.157 1159 182 1.4 3.3 2.69 486 485 423,396 958 447 0.192 1198 230 0 1.3 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
958 447 0.192 1198 230 0 1.3 2.69 486 485 423,881 959 448 0.137 1223 167 1.4 2.7 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791							1.∠				
959 448 0.137 1223 167 1.4 2.7 2.69 486 485 424,366 960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
960 448 0.224 1216 272 0 2.6 2.69 486 485 424,851 961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
961 447 0.200 1200 240 1.4 2.6 2.69 486 485 425,336 962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
962 447 0.160 1219 195 2.8 2.6 2.69 486 485 425,821 963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
963 447 0.142 1222 174 1.4 2.5 2.69 486 485 426,306 964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
964 447 0.175 1219 213 0 1.3 2.68 486 485 426,791											
904 447 0.173 1210 210											
965 448 0.178 1250 223 0 1.2 2.68 486 485 427,276											
	965	448	0.178	1250	223	F-13	1.2	2.00	400	400	721,210

F-13 A-6-13 B-68

966	415	0.279	1200	335	0	1.3	2.68	486	485	427,761
967	415	0.254	1187	301	-2.8	3.9	2.68	486	485	428,246
									485	428,731
968	406	0.203	1175	238	1.4	4.0	2.68	486		
969	406	0.250	1179	295	2.8	1.2	2.68	486	485	429,216
970	406	0.205	1173	241	1.4	1.2	2.68	486	485	429,701
971	415	0.243	1196	291	-2.8	1.9	2.68	486	485	430,186
972	416	0.202	1162	235	8.4	1.2	2.68	486	485	430,671
973	484	0.215	1181	254	0	2.0	2.68	486	485	431,156
974	483	0.133	1157	154	-1.4	4.0	2.68	486	485	431,641
975	415	0.272	1110	302	4.2	6.8	2.68	486	485	432,126
976	416	0.188	1157	217	7	2.6	2.68	486	485	432,611
977	111	0.249	1183	294	0	6.7	2.69	486	485	433,096
978	111	0.268	1157	310	1.4	1.3	2.69	486	485	433,581
		0.271	1157	313	2.8	3.8	2.69	486	485	434,066
979	111									
980	111	0.214	1153	247	1.4	1.3	2.69	486	485	434,551
981	111	0.263	1153	303	1.4	1.3	2.68	486	485	435,036
982	111	0.280	1164	326	2.8	6.6	2.69	486	485	435,521
983	111	0.235	1164	274	2.8	3.9	2.69	486	485	436,006
984	111	0.220	1161	256	1.4	1.1	2.69	486	485	436,491
				314	1.4	5.2	2.69	486	485	436,976
985	111	0.273	1151							
986	111	0.224	1149	257	1.4	1.9	2.69	486	485	437,461
987	111	0.247	1158	286	1.4	1.3	2.69	486	485	437,946
988	487	0.170	1190	202	0	2.5	2.69	487	486	438,432
989	487	0.095	1195	113	0	1.2	2.69	487	486	438,918
990	487	0.131	1212	159	0	1.2	2.68	487	486	439,404
991	487	0.101	1203	122	-1.4	1.1	2.68	487	486	439,890
							2.68	487	486	440,376
992	487	0.119	1175	140	-1.4	1.1				
993	487	0.154	1205	186	0	1.1	2.68	487	486	440,862
994	486	0.092	1243	114	-1.4	1.2	2.68	487	486	441,348
995	486	0.088	1266	111	0	1.2	2.68	487	486	441,834
996	486	0.116	1238	144	0	1.2	2.68	487	486	442,320
997	486	0.115	1247	144	0	1.2	2.67	487	486	442,806
998	485	0.181	1185	215	-1.4	3.8	2.68	487	486	443,292
999	9	0.229	1139	261	4.2	5.1	2.68	487	486	443,778
1000	9	0.264	1180	312	2.8	3.8	2.68	487	486	444,264
1001	10	0.255	1165	297	-4.2	5.4	2.68	487	486	444,750
1002	177	0.265	1184	314	-1.4	9.2	2.69	487	486	445,236
1003	176	0.271	1166	316	-1.4	11.0	2.70	487	486	445,722
1004	491	0.216	1189	257	0	5.1	2.70	491	490	446,212
				105			2.70	491	490	446,702
1005	489	0.085	1236		0	2.6				-
1006	447	0.197	1205	237	0	1.3	2.70	491	490	447,192
1007	447	0.144	1229	177	0	1.3	2.70	491	490	447,682
1008	447	0.141	1244	176	0	1.2	2.69	491	490	448,172
1009	484	0.077	1213	93	0	14.4	2.71	491	490	448,662
1010	415	0.281	1173	330	1.4	4.1	2.71	491	490	449,152
1011	415	0.215	1220	262	-1.4	1.2	2.71	491	490	449,642
1012	416	0.166	1187	197	2.8	1.2	2.70	491	490	450,132
1013	453	0.228	1160	264	-2.8	4.6	2.71	491	490	450,622
1014	452	0.215	1203	259	. 0	3.1	2.71	491	490	451,112
1015	451	0.211	1143	241	1.4	2.6	2.71	491	490	451,602
1016	452	0.216	1197	259	0	5.8	2.71	491	490	452,092
1017	95	0.227	1165	265	-4.2	8.5	2.72	491	490	452,582
1018	95	0.268	1155	310	-2.8	3.3	2.72	491	490	453,072
1019	95	0.236	1142	269	-5.6	5.2	2.72	491	490	453,562
1020	484	0.126	1189	150	1.4	1.2	2.72	491	490	454,052
1021	484	0.149	1182	176	0	1.3	2.72	491	490	454,542
1022	484	0.112	1251	140	0	1.2	2.71	491	490	455,032
1023	484	0.213	1186	253	0	2.5	2.71	491	490	455,522
1024	484	0.152	1222	186	0	1.2	2.71	491	490	456,012
1025	415	0.177	1234	219	ő	4.6	2.71	491	490	456,502
			1162	203	4.2	2.5	2.71	491	490	456,992
1026	416	0.175								
1027	415	0.269	1189	320	0	2.4	2.71	491	490	457,482
1028	415	0.253	1211	306	1.4	1.1	2.71	491	490	457,972
1029	415	. 0.240	1198	287	1.4	1.2	2.71	491	490	458,462
1030	415	0.229	1206	276	2.8	1.2	2.71	491	490	458,952
1031	415	0.215	1202	258	2.8	1.1	2.71	491	490	459,442
							2.71	491	490	459,932
1032	416	0.263	1131	298	7	1.2				
1033	416	0.221	1123	248	7	2.5	2.71	491	490	460,422
1034	416	0.244	1117	272	8.4	2.5	2.71	491	490	460,912
1035	416	0.193	1137	219	8.4	1.2	2.70	491	490	461,402
1036	416	0.247	1138	281	8.4	1.1	2.70	491	490	461,892
1037	415	0.199	1204	239	-1.4	1.2	2.70	491	490	462,382
									490	
1038	415	0.279	1217	340	-1.4	1.2	2.70	491		462,872
1039	415	0.211	1245	263	0	1.2	2.70	491	490	463,362
1040	415	0.247	1225	302	_0	1.1	2.70	491	490	463,852
					F-14					

F-14 A-6-14 B-69

					4.4	4.4	0.70	404	490	464,342
1041	415	0.252	1203	303	1.4	1.1	2.70	491		
1042	415	0.267	1214	324	0	1.2	2.69	491	490	464,832
1043	415	0.213	1216	259	1.4	1.2	2.69	491	490	465,322
1044	415	0.251	1165	292	1.4	2.5	2.69	491	490	465,812
				281	1.4	1.2	2.69	491	490	466,302
1045	415	0.237	1187					491	490	466,792
1046	415	0.160	1209	193	1.4	1.2	2.69			
1047	415	0.266	1161	309	1.4	1.2	2.69	491	490	467,282
1048	416	0.265	1141	302	8.4	1.2	2.69	491	490	467,772
			1147	271	8.4	6.6	2.69	491	490	468,262
1049	416	0.236					2.69	491	490	468,752
1050	416	0.275	1151	316	8.4	1.2				
1051	416	0.258	1141	294	8.4	2.5	2.69	491	490	469,242
1052	416	0.243	1138	276	8.4	3.8	2.69	491	490	469,732
	416	0.246	1140	281	8.4	2.5	2.69	491	490	470,222
1053					8.4	2.5	2.69	491	490	470,712
1054	416	0.239	1148	274					490	471,202
1055	416	0.255	1155	294	8.4	1.2	2.69	491		
1056	416	0.269	1128	303	9.8	1.4	2.69	491	490	471,692
1057	416	0.207	1157	240	8.4	2.5	2.69	491	490	472,182
		0.248	1184	294	0	3.1	2.69	491	490	472,672
1058	415					3.1	2.69	491	490	473,162
1059	484	0.129	1173	151	2.8					473,652
1060	484	0.113	1151	130	1.4	1.3	2.69	491	490	
1061	484	0.163	1141	186	2.8	1.3	2.68	491	490	474,142
1062	484	0.200	1139	228	1.4	3.8	2.69	491	490	474,632
				181	2.8	1.3	2.68	491	490	475,122
1063	484	0.153	1184				2.68	491	490	475,612
1064	486	0.159	1169	186	-2.8	3.2				
1065	492	0.201	1218	245	-1.4	5.4	2.69	493	492	476,104
1066	492	0.215	1230	264	-1.4	2.5	2.69	493	492	476,596
1067	492	0.260	1195	311	-1.4	1.2	2.69	493	492	477,088
				257	-2.8	1.2	2.68	493	492	477,580
1068	492	0.213	1204			1.2	2.68	493	492	478,072
1069	492	0.098	1240	121	-2.8					•
1070	492	0.064	1266	81	-2.8	1.2	2.68	493	492	478,564
1071	493	0.105	1223	128	0	5.1	2.68	493	492	479,056
1072	493	0.252	1188	299	0	1.2	2.68	493	492	479,548
			1181	248	Ö	1.1	2.68	493	492	480,040
1073	493	0.210						493	492	480,532
1074	493	0.114	1207	137	0	1.2	2.68			•
1075	493	0.170	1203	205	0	1.2	2.68	493	492	481,024
1076	493	0.252	1176	296	0	3.8	2.68	493	492	481,516
	415	0.194	1192	231	1.4	1.2	2.68	493	492	482,008
1077				218	1.4	1.2	2.68	493	492	482,500
1078	415	0.183	1190					493	492	482,992
1079	415	0.219	1181	259	1.4	1.2	2.68			
1080	415	0.158	1196	189	1.4	1.1	2.67	493	492	483,484
1081	415	0.192	1207	232	2.8	1.1	2.67	493	492	483,976
	416	0.252	1114	281	5.6	8.1	2.68	493	492	484,468
1082						1.2	2.68	493	492	484,960
1083	416	0.217	1099	238	5.6					
1084	416	0.276	1108	306	5.6	4.0	2.68	493	492	485,452
1085	416	0.263	1112	292	5.6	3.7	2.68	493	492	485,944
1086	416	0.263	1141	300	4.2	3.8	2.68	493	492	486,436
		0.251	1188	298	1.4	3.1	2.68	493	492	486,928
1087	447					2.4	2.68	493	492	487,420
1088	447	0.195	1165	227	1.4					487,912
1089	447	0.242	1190	288	1.4	2.5	2.68	493	492	
1090	458	0.065	1182	77	0	1.2	2.68	493	492	488,404
1091	458	0.112	1147	129	0	1.1	2.68	493	492	488,896
1092	458	0.103	1160	120	0	1.2	2.67	493	492	489,388
	459	0.059	1205	71	Ö	1.1	2.67	493	492	489,880
1093						1.1	2.67	493	492	490,372
1094	461	0.055	1245	69	0				492	490,864
1095	462	0.182	1099	200	0	2.5	2.67	493		
1096	463	0.101	1107	112	0	1.2	2.67	493	492	491,356
1097	463	0.182	1094	199	0	1.1	2.67	493	492	491,848
		0.227	1055	240	-1.4	1.1	2.67	493	492	492,340
1098	463					1.1	2.67	493	492	492,832
1099	463	0.143	1120	160	0					
1100	444	0.189	1071	202	-1.4	7.5	2.67	493	492	493,324
1101	444	0.105	1138	119	0	1.1	2.67	493	492	493,816
1102	464	0.053	1179	62	0	1.1	2.67	493	492	494,308
				41	ő	1.1	2.67	493	492	494,800
1103	464	0.034	1209					493	492	495,292
1104	465	0.059	1216	72	0	1.2	2.66			
1105	465	0.045	1217	55	0	1.2	2.66	493	492	495,784
1106	465	0.046	1221	56	0	1.1	2.66	493	492	496,276
	465	0.118	1173	138	Ö	1.2	2.66	493	492	496,768
1107						1.1	2.66	493	492	497,260
1108	465	0.078	1214	95	0					497,752
1109	466	0.040	1236	50	0	1.1	2.66	493	492	
1110	466	0.040	1210	48	0	1.1	2.66	493	492	498,244
1111	466	0.047	1204	57 ^	0	1.1	2.66	493	492	498,736
	466	0.041	1216	50	Ö	1.1	2.65	493	492	499,228
1112					ő	5.0	2.66	493	492	499,720
1113	467	0.084	1196	101						500,212
1114	467	0.103	1165	120	0	1.1	2.65	493	492	
1115	467	0.070	1214	85	F-15	1.0	2.65	493	492	500,704
					r-10					

F-15 A-6-15 B-70

1116	468	0.034	1190	41	0	2.4	2.65	493	492	501,196
	468	0.054	1212	66	-1.4	1.1	2.65	493	492	501,688
1117			1165	157	-1.4	1.2	2.65	493	492	502,180
1118	468	0.135					2.65	493	492	502,672
1119	468	0.050	1235	62	-1.4	1.1			492	503,164
1120	470	0.127	1159	147	0	1.1	2.65	493		
1121	470	0.165	1144	189	0	1.1	2.65	493	492	503,656
1122	470	0.125	1145	143	0	1.2	2.64	493	492	504,148
1123	470	0.147	1148	169	0	1.2	2.64	493	492	504,640
1124	471	0.164	1157	190	1.4	8.4	2.65	493	492	505,132
	471	0.140	1149	161	1.4	1.2	2.65	493	492	505,624
1125			1171	202	1.4	1.1	2.65	493	492	506,116
1126	471	0.173				1.2	2.64	493	492	506,608
1127	471	0.141	1167	164	0				492	507,100
1128	472	0.066	1183	78	0	1.2	2.64	493		•
1129	472	0.067	1189	80	0	1.2	2.64	493	492	507,592
1130	472	0.079	1202	95	0	1.2	2.64	493	492	508,084
1131	472	0.076	1204	92	0	1.2	2.64	493	492	508,576
1132	445	0.202	1152	233	0	1.2	2.64	493	492	509,068
1133	445	0.153	1129	173	0	1.1	2.64	493	492	509,560
			1155	196	ő	1.2	2.64	493	492	510,052
1134	446	0.170				1.1	2.63	493	492	510,544
1135	446	0.075	1185	89	0					511,036
1136	446	0.079	1183	94	0	1.2	2.63	493	492	•
1137	446	0.126	1167	147	0	1.2	2.63	493	492	511,528
1138	477	0.083	1182	98	0	1.1	2.63	493	492	512,020
1139	478	0.233	1225	285	0	1.1	2.63	493	492	512,512
1140	478	0.077	1240	96	0	1.1	2.63	493	492	513,004
1141	478	0.126	1237	156	0	1.2	2.63	493	492	513,496
	479	0.120	1217	227	ŏ	1.1	2.63	493	492	513,988
1142				162	Ö	1.2	2.62	493	492	514,480
1143	479	0.134	1211		Ö	1.2	2.62	493	492	514,972
1144	479	0.102	1236	126					492	515,464
1145	415	0.192	1221	234	-1.4	1.3	2.62	493		
1146	415	0.144	1215	175	0	2.6	2.62	493	492	515,956
1147	415	0.187	1204	225	0	2.5	2.62	493	492	516,448
1148	415	0.141	1236	174	0	1.1	2.62	493	492	516,940
1149	415	0.188	1221	229	1.4	1.2	2.62	493	492	517,432
1150	415	0.266	1194	318	-1.4	5.0	2.62	493	492	517,924
1151	416	0.264	1200	317	-1.4	1.1	2.62	493	492	518,416
1152	406	0.160	1224	196	Ö	2.3	2.62	493	492	518,908
			1182	281	ő	1.1	2.62	493	492	519,400
1153	407	0.238					2.62	493	492	519,892
1154	407	0.145	1197	173	1.4	1.0				
1155	406	0.102	1209	123	1.4	1.1	2.62	493	492	520,384
1156	447	0.133	1255	167	0	1.1	2.61	493	492	520,876
1157	448	0.106	1248	132	0	2.2	2.61	493	492	521,368
1158	448	0.183	1201	220	-1.4	4.3	2.62	493	492	521,860
- 1159	417	0.235	1156	272	-2.8	3.7	2.62	493	492	522,352
1160	417	0.181	1120	203	-2.8	8.7	2.62	493	492	522,844
1161	417	0.211	1036	219	-19.7	7.8	2.63	493	492	523,336
1162	495	0.100	1209	121	1.4	13.4	2.63	495	494	523,830
				293	0	3.8	2.64	495	494	524,324
1163	494	0.241	1216		-			405	494	524,818
1164	494	0.275	1215	334	0	1.1	2.63	495 495	494	525,312
1165	495	0.206	1162	239	7	1.2	2.63			525,312
1166	495	0.278	1185	329	1.4	4.4	2.63	495	494	
1167	494	0.271	1190	322	-4.2	3.1	2.64	495	494	526,300
1168	494	0.245	1262	309	-1.4	3.1	2.64	495	494	526,794
1169	406	0.037	1255	46	0	3.2	2.64	495	494	527,288
1170	407	0.139	1194	166	1.4	5.8	2.64	495	494	527,782
1171	415	0.209	1208	253	-1.4	6.7	2.64	495	494	528,276
1172	415	0.165	1191	196	1.4	3.2	2.64	495	494	528,770
1173	484	0.167	1163	194	0	4.4	2.64	495	494	529,264
			1228	147	1.4	5.0	2.65	495	494	529,758
1174	447	0.120		290	1.4	4.6	2.65	495	494	530,252
1175	448	0.243	1195						494	530,746
1176	448	0.221	1197	265	0	3.8	2.65	495		
1177	448	0.261	1169	305	1.4	5.0	2.65	495	494	531,240
1178	448	0.081	1248	101	1.4	3.7	2.65	495	494	531,734
1179	484	0.200	1170	234	1.4	3.1	2.65	495	494	532,228
1180	484	0.114	1240	141	0	5.1	2.65	495	494	532,722
1181	406	0.125	1213	152	0	6.9	2.66	495	494	533,216
1182	407	0.210	1164	244	1.4	9.2	2.66	495	494	533,710
				172	0	3.4	2.66	495	494	534,204
1183	447	0.140	1229					495 495	494	534,204
1184	447	0.144	1233	178	-1.4	6.2	2.67			•
1185	447	0.256	1202	308	0	4.1	2.67	495	494	535,192
1186	447	0.161	1277	205	0	5.1	2.67	495	494	535,686
1187	447	0.192	1234	237	0	4.1	2.67	495	494	536,180
1188	447	0.195	1209	236	1.4	2.9	2.67	495	494	536,674
1189	484	0.168	1176	198	1.4	5.2	2.67	495	494	537,168
1190	484	0.122	1218	149	1.4	1.9	2.67	495	494	537,662
. ,		J			F-16					•

F-16 A-6-16 B-71

								405	494	538,156
1191	484	0.117	1202	141	2.8	5.3	2.68	495 495	494	538,650
1192	484	0.223	1112	248	5.6	3.1	2.68	495	494	539,144
1193	484	0.214	1148	246	5.6	1.2	2.67	495 495	494	539,638
1194	484	0.182	1176	214	5.6	1.3	2.67 2.67	495	494	540,132
1195	484	0.253	1156	292	2.8	1.2	2.67	495	494	540,626
1196	484	0.133	1197	159	2.8	1.2		495	494	541,120
1197	484	0.117	1201	141	1.4	1.3	2.67	495	494	541,614
1198	484	0.127	1209	154	1.4	1.2	2.67	495	494	542,108
1199	447	0.107	1229	132	1.4	3.7	2.67	495	494	542,602
1200	447	0.158	1229	194	0	1.2	2.67	495	494	543,096
1201	447	0.151	1241	187	0	1.2	2.67	495	494	543,590
1202	.447	0.135	1238	167	0	1.2	2.67 2.66	495	494	544,084
1203	447	0.205	1220	250	0	1.2	2.66	495	494	544,578
1204	447	0.235	1212	285	0	1.2	2.66	495	494	545,072
1205	447	0.099	1244	123	0	1.3		495	494	545,566
1206	447	0.144	1224	176	0	1.2	2.66	495	494	546,060
1207	447	0.161	1229	198	0	1.2	2.66	495	494	546,554
1208	447	0.151	1243	188	0	1.2	2.66		494	547,048
1209	447	0.216	1219	263	0	1.2	2.66	495	494	547,542
1210	447	0.203	1225	249	-1.4	1.3	2.66	495		
1211	447	0.152	1215	185	-1.4	1.2	2.65	495	494	548,036 548,530
1212	447	0.177	1225	217	-1.4	1.2	2.65	495	494	
1213	447	0.168	1210	203	-1.4	1.2	2.65	495	494	549,024
1214	447	0.141	1230	174	-1.4	1.1	2.65	495	494	549,518
1215	447	0.163	1230	201	-1.4	1.2	2.65	495	494	550,012
1216	447	0.158	1216	192	-1.4	1.1	2.65	495	494	550,506
1217	447	0.212	1216	258	-1.4	1.2	2.65	495	494	551,000
1218	447	0.148	1227	182	0	1.1	2.65	495	494	551,494
1219	447	0.188	1226	230	0	1.2	2.65	495	494	551,988
1220	447	0.088	1257	110	0	1.2	2.64	495	494	552,482
1221	417	0.277	1168	324	-5.6	7.5	2.65	495	494	552,976
1222	417	0.216	1175	254	2.8	13.4	2.66	495	494	553,470
1223	417	0.266	1182	315	1.4	5.9	2.66	495	494	553,964
1224	484	0.174	1153	201	0	2.5	2.66	495	494	554,458
1225	484	0.160	1153	184	2.8	4.4	2.66	495	494	554,952
1226	484	0.176	1147	202	0	2.6	2.66	495	494	555,446
1227	484	0.219	1159	254	0	1.3	2.66	495	494	555,940
1228	484	0.137	1207	165	0	1.2	2.66	495	494	556,434
1229	484	0.141	1195	169	0	1.2	2.66	495	494	556,928
1230	484	0.207	1176	244	0	1.3	2.66	495	494	557,422
1231	484	0.232	1137	264	4.2	2.5	2.66	495	494	557,916
1232	484	0.232	1173	272	2.8	1.1	2.65	495	494	558,410
1233	484	0.184	1186	218	4.2	. 1.3	2.65	495	494	558,904
1234	484	0.241	1138	274	5.6	1.3	2.65	495	494	559,398
1235	484	0.169	1128	191	-5.6	1.3	2.65	495	494	559,892
1236	484	0.265	1164	308	1.4	1.4	2.65	495	494	560,386
1237	484	0.206	1171	241	0	8.0	2.65	495	494	560,880
1238	484	0.104	1178	122	0	1.2	2.65	495	494	561,374
1239	484	0.093	1175	109	1.4	1.3	2.65	495	494	561,868
1240	484	0.098	1241	121	0	1.3	2.65	495	494	562,362
1241	484	0.131	1245	163	0	1.2	2.65	495	494	562,856
1242	484	0.259	1158	300	1.4	8.0	2.65	495	494	563,350
1243	-484	0.146	1173	171	1.4	1.3	2.65	495	494	563,844
1244	484	0.221	1157	256	1.4	1.2	2.65	495	494 494	564,338 564,832
1245	484	0.128	1191	152	1.4	1.2	2.65	495	494	565,326
1246	484	0.121	1202	145	2.8	3.8	2.65 2.65	495 495	494	565,820
1247	484	0.149	1183	176	2.8	1.3	2.65	495	494	566,314
1248	484	0.134	1203	161	2.8	1.2	2.65	495	494	566,808
1249	484	0.252	1153	291 164	2.8 2.8	1.2 2.6	2.65	495	494	567,302
1250	484	0.137	1197	304	2.8	1.3	2.65	495	494	567,796
1251	484	0.262	1160			1.2	2.65	495	494	568,290
1252	484	0.212	1153	244	2.8				494	568,784
1253	447	0.165	1195	197	1.4	2.0	2.65	495		•
1254	447	0.140	1228	172	1.4	1.2	2.64	495	494 494	569,278 569,772
1255	447	0.135	1227	166	1.4	1.3	2.64	495	494	570,266
1256	447	0.173	1222	212	1.4	1.2	2.64	495 405		
1257	447	0.165	1231	203	0	1.2	2.64	495	494	570,760 571,254
1258	447	0.091	1247	114	0	1.3	2.64	495 405	494	571,254 571,748
1259	447	0.063	1273	80	0	1.2	2.64	495 405	494	571,748 572,242
1260	447	0.061	1260	77	0	1.1	2.64	495 405	494	572,242 572,736
1261	447	0.142	1229	174	1.4	1.2	2.64	495 405	494	572,736 573,230
1262	447	0.205	1225	251	0	1.2	2.64	495	494	573,230 573,734
1263	447	0.192	1220	234	0	1.2	2.63	495	494	573,724 574,218
1264	447	0.152	1236	188	0	1.2	2.63	495	494	
1265	447	0.139	1247	173	E 17	2.5	2.63	495	494	574,712

F-17 A-6-17 B-72

								405	40.4	F7F 00C
1266	447	0.254	1205	306	0	2.6	2.63	495	494	575,206
1267	447	0.193	1210	234	0	1.2	2.63	495	494	575,700
1268	447	0.239	1207	288	0	2.6	2.63	495	494	576,194
1269	447	0.214	1212	259	0	1.2	2.63	495	494	576,688
			1178	307	1.4	6.6	2.63	495	494	577,182
1270	447	0.261				1.1	2.63	495	494	577,676
1271	447	0.187	1241	232	0			495	494	578,170
1272	417	0.162	1172	190	1.4	2.5	2.63			
1273	417	0.203	1195	243	0	3.1	2.63	495	494	578,664
1274	417	0.261	1182	309	-1.4	4.6	2.63	495	494	579,158
1275	406	0.266	1152	307	1.4	2.6	2.63	495	494	579,652
1276	484	0.212	1132	240	1.4	2.6	2.63	495	494	580,146
		0.234	1161	272	0	1.2	2.63	495	494	580,640
1277	484				4.2	6.5	2.64	495	494	581,134
1278	447	0.175	1150	201				495	494	581,628
1279	447	0.179	1151	206	2.8	5.7	2.64			
1280	447	0.133	1185	158	2.8	2.5	2.64	495	494	582,122
1281	447	0.186	1181	220	2.8	1.1	2.64	495	494	582,616
1282	447	0.182	1185	216	1.4	1.1	2.64	495	494	583,110
1283	447	0.215	1163	250	2.8	1.2	2.64	495	494	583,604
				242	1.4	1.2	2.63	495	494	584,098
1284	447	0.210	1151				2.63	495	494	584,592
1285	447	0.158	1218	193	1.4	1.2				585,086
1286	447	0.211	1194	252	1.4	1.2	2.63	495	494	
1287	447	0.130	1248	162	1.4	1.2	2.63	495	494	585,580
1288	447	0.120	1210	145	1.4	1.2	2.63	495	494	586,074
1289	407	0.247	1160	287	4.2	5.9	2.63	495	494	586,568
1290	407	0.249	1160	289	5.6	2.6	2.63	495	494	587,062
			1213	197	1.4	1.1	2.63	495	494	587,556
1291	447	0.162				1.2	2.63	495	494	588,050
1292	447	0.172	1237	213	1.4			495	494	588,544
1293	448	0.168	1226	206	2.8	1.2	2.63			589,038
1294	448	0.211	1198	253	1.4	1.2	2.63	495	494	•
1295	448	0.094	1260	119	1.4	1.2	2.63	495	494	589,532
1296	448	0.115	1233	142	1.4	1.1	2.63	495	494	590,026
1297	448	0.137	1218	167	1.4	1.1	2.62	495	494	590,520
1298	448	0.068	1266	86	1.4	1.2	2.62	495	494	591,014
			1246	82	1.4	1.3	2.62	495	494	591,508
1299	448	0.066				1.2	2.62	495	494	592,002
1300	448	0.068	1260	86	1.4				494	592,496
1301	448	0.077	1253 .	97	1.4	1.1	2.62	495		
1302	448	0.116	1238	144	1.4	1.1	2.62	495	494	592,990
1303	448	0.241	1197	288	1.4	2.5	2.62	495	494	593,484
1304	448	0.263	1192	314	1.4	1.2	2.62	495	494	593,978
1305	448	0.190	1213	231	0	1.2	2.62	495	494	594,472
1306	448	0.254	1215	309	0	1.2	2.62	495	494	594,966
1307	448	0.183	1244	228	Ö	1.2	2.61	495	494	595,460
			1231	254	ő	1.2	2.61	495	494	595,954
1308	448	0.206			Ö		2.61	495	494	596,448
1309	448	0.088	1276	112		1.1			494	596,942
1310	448	0.278	1206	335	0	1.2	2.61	495		
1311	448	0.168	1192	200	-1.4	7.6	2.61	495	494	597,436
1312	448	0.218	1177	256	-1.4	1.1	2.61	495	494	597,930
1313	448	0.258	1146	296	1.4	1.3	2.61	495	494	598,424
1314	448	0.143	1161	166	1.4	2.5	2.61	495	494	598,918
1315	448	0.148	1177	174	1.4	1.2	2.61	495	494	599,412
1316	448	0.214	1182	253	1.4	1.2	2.61	495	494	599,906
1317	484	0.217	1139	247	0	5.2	2.61	495	494	600,400
		0.133	1193	159	ő	1.2	2.61	495	494	600,894
1318	484		1215	146	Ö	1.3	2.61	495	494	601,388
1319	484	0.120				1.2	2.61	495	494	601,882
1320	484	0.079	1221	96	0		2.61	495	494	602,376
1321	484	0.074	1264	94	0	1.2				602,870
1322	484	0.094	1257	118	0	1.2	2.61	495	494	
1323	417	0.222	1174	261	0	3.1	2.61	495	494	603,364
1324	417	0.252	1193	301	-4.2	4.0	2.61	495	494	603,858
1325	417	0.280	1198	336	-4.2	1.3	2.61	495	494	604,352
1326	417	0.231	1171	270	-1.4	1.2	2.61	495	494	604,846
1327	417	0.226	1149	260	-1.4	2.6	2.61	495	494	605,340
1328	418	0.256	1149	294	1.4	1.2	2.61	495	494	605.834
	418	0.230	1183	221	1.4	3.2	2.61	495	494	606,328
1329								495	494	606,822
1330	418	0.170	1202	204	0	3.2	2.61			
1331	418	0.196	1176	231	1.4	4.5	2.61	495	494	607,316
1332	417	0.210	1191	250	1.4	4.3	2.61	495	494	607,810
1333	448	0.167	1214	203	1.4	1.9	2.61	495	494	608,304
1334	448	0.208	1205	251	1.4	1.1	2.61	495	494	608,798
1335	448	0.249	1185	295	1.4	2.5	2.61	495	494	609,292
			1205	334	1.4	1.3	2.61	495	494	609,786
1336	448	0.277							494	610,280
1337	448	0.229	1212	277	1.4	1.1	2.61	495		
1338	447	0.205	1217	249	0	1.3	2.60	495	494	610,774
1339	447	0.140	1227	172	1.4	1.2	2.60	495	494	611,268
1340	447	0.141	1239	175	F-18	1.2	2.60	495	494	611,762
					F-18					

F-18 A-6-18 B-73

1341	447	0.249	1218	303	0	2.5	2.60	495	494	612,256
		0.175	1242	217			2.60	495	494	612,750
1342	447				0	1.2				
1343	447	0.195	1213	236	1.4	1.2	2.60	495	494	613,244
1344	447	0.219	1212	26 6	0	1.3	2.60	495	494	613,738
1345	417	0.238	1174	279	-2.8	6.4	2.60	495	494	614,232
1346	417	0.246	1199	295	0	5.9	2.60	495	494	614,726
1347	452	0.280	1170	328	1.4	8.7	2.61	495	494	615,220
1348	376	0.226	1097	248	-2.8	1.2	2.61	495	494	615,714
	376	0.253	1095	277	-2.8	1.2	2.61	495	494	616,208
1349										
1350	377	0.236	1104	261	0	1.2	2.61	495	494	616,702
1351	377	0.258	1083	279	0	7.8	2.61	495	494	617,196
1352	377	0.264	1099	290	0	2.5	2.61	495	494	617,690
1353	496	0.111	1193	133	1.4	1.3	2.61	497	496	618,186
1354	496	0.179	1203	215	1.4	1.2	2.61	497	496	618,682
		0.175	1213	153	1.4	1.2	2.61	497	496	619,178
1355	496									
1356	496	0.076	1216	93	1.4	1.2	2.61	497	496	619,674
1357	496	0.105	1205	127	1.4	1.2	2.60	497	496	620,170
1358	497	0.215	1216	262	0	6.3	2.61	497	496	620,666
1359	497	0.170	1221	207	0	1.1	2.61	497	496	621,162
1360	497	0.251	1211	304	Ö	1.2	2.60	497	496	621,658
1361	497	0.167	1225	205	ő	1.2	2.60	497	496	622,154
1362	497	0.115	1245	143 .	0	1.2	2.60	497	496	622,650
1363	498	0.129	1197	155	0	2.7	2.60	499	498	623,148
1364	498	0.134	1198	161	0	1.3	2.60	499	498	623,646
1365	498	0.108	1201	130	0	1.3	2.60	499	498	624,144
1366	498	0.171	1206	206	0	1.3	2.60	499	498	624,642
1367	498	0.116	1229	143	Ō	1.2	2.60	499	498	625,140
1368	499	0.254	1180	300	1.4	2.5	2.60	499	498	625,638
						1.2	2.60	499	498	626,136
1369	499	0.186	1178	219	1.4					
1370	499	0.195	1192	233	1.4	1.2	2.60	499	498	626,634
1371	499	0.258	1205	311	0	2.5	2.60	499	498	627,132
1372	499	0.201	1170	235	1.4	1.2	2.60	499	498	627,630
1373	484	0.222	1182	262	2.8	8.5	2.60	499	498	628,128
1374	486	0.117	1213	142	-2.8	2.7	2.60	499	498	628,626
1375	485	0.225	1183	266	0	1.9	2.60	499	498	629,124
							2.60	499	498	629,622
1376	496	0.179	1182	211	1.4	1.8				
1377	498	0.181	1190	215	0	1.2	2.60	499	498	630,120
1378	406	0.132	1210	160	2.8	1.2	2.60	499	498	630,618
1379	406	0.056	1223	68	1.4	1.3	2.60	499	498	631,116
1380	406	0.071	1224	87	2.8	2.5	2.60	499	498	631,614
1381	406	0.201	1139	229	1.4	1.2	2.59	499	498	632,112
1382	406	0.273	1187	324	0	1.3	2.59	499	498	632,610
1383	447	0.113	1239	140	1.4	2.6	2.59	499	498	633,108
1384	447	0.119	1261	150	1.4	1.2	2.59	499	498	633,606
		0.115					2.59		498	634,104
1385	486		1220	153	0	2.6		499		•
1386	448	0.129	1236	159	1.4	2.5	2.59	499	498	634,602
1387	448	0.099	1253	124	1.4	2.5	2.59	499	498	635,100
1388	484	0.147	1133	167	0	3.8	2.59	499	498	635,598
1389	484	0.098	1169	115	1.4	3.3	2.59	499	498	636,096
1390	484	0.199	1170	233	0	5.3	2.60	499	498	636,594
1391	484	0.114	1186	135	0	1.1	2.60	499	498	637,092
1392	484	0.141	1169	165	2.8	4.5	2.60	499	498	637,590
1393	484	0.122	1209	148	-1.4	6.4	2.60	499	498	638,088
1394	484	0.175	1163	204	1.4	1.6	2.60	499	498	638,586
			1103							•
1395	484	0.069	1253	87	0	12.7	2.61	499	498	639,084
1396	484	0.126	1234	156	0	12.4	2.61	499	498	639,582
1397	484	0.063	1225	77	0	3.2	2.61	499	498	640,080
1398	484	0.131	1192	156	0	3.7	2.61	499	498	640,578
1399	484	0.259	1146	297	1.4	2.6	2.61	499	498	641,076
1400	484	0.202	1179	238	-1.4	3.3	2.61	499	498	641,574
1401	484	0.193	1191	230	0	3.3	2.61	499	498	642,072
1402	484	0.191	1183	226	0	1.6	2.61	499	498	642,570
1403	484	0.136	1184	161	0	1.5	2.61	499	498	643,068
1404	484	0.215	1189	256	0	1.6	2.61	499	498	643,566
1405	484	0.098	1210	119	0	1.6	2.61	499	498	644,064
1406	484	0.090	1229	111	0	1.5	2.61	499	498	644,562
1407	484	0.111	1190	132	ŏ	1.6	2.61	499	498	645,060
1408	484	0.221	1114	246	1.4	1.8	2.61	499	498	645,558
1409	484	0.250	1137	284	1.4	1.8	2.61	499	498	646,056
1410	484	0.133	1169	155	1.4	11.1	2.62	499	498	646,554
1411	484	0.198	1203	238	0	1.8	2.61	499	498	647,052
1412	484	0.138	1204	166	-1.4	5.1	2.62	499	498	647,550
1413	484	0.214	1183	253	0	2.5	2.62	499	498	648,048
1414	484	0.243	1193	290	ō	1.3	2.62	499	498	648,546
1415	484	0.281	1180	331		1.3	2.61	499	498	649,044
, 415	707	0.201	1100	001	F-19		2.01	100	-30	370,077

F-19 A-6-19 B-74

1416	484	0.156	1235	193	0	1.3	2.61	499	498	649,542
										•
1417	484	0.111	1255	139	0	1.3	2.61	499	498	650,040
1418	484	0.100	1205	120	0	1.3	2.61	499	498	650,538
1419	406	0.143	1176	168	1.4	4.0	2.61	499	498	651,036
		0.238					2.61	499	498	651,534
1420	406		1167	278	1.4	1.2				
1421	406	0.240	1197	287	-1.4	2.6	2.61	499	498	652,032
1422	406	0.247	1194	295	0	3.9	2.61	499	498	652,530
								499	498	653,028
1423	406	0.066	1238	82	1.4	1.2	2.61			
1424	406	0.074	1222	91	1.4	1.1	2.61	499	498	653,526
1425	406	0.103	1194	123	2.8	9.8	2.62	499	498	654,024
1426	406	0.165	1191	196	2.8	1.2	2.61	499	498	654,522
1427	406	0.115	1218	140	1.4	1.2	2.61	499	498	655,020
1428	484	0.182	1200	218	0	5.8	2.62	499	498	655,518
1429	447	0.124	1191	148	1.4	2.6	2.62	499	498	656,016
1430	447	0.214	1204	258	1.4	1.3	2.61	499	498	656,514
1431	447	0.153	1227	188	1.4	1.2	2.61	499	498	657,012
1432	447	0.157	1209	190	1.4	1.2	2.61	499	498	657,510
1433	447	0.210	1198	251	0	2.5	2.61	499	498	658,008
1434	447	0.196	1232	242	0	1.1	2.61	499	498	658,506
										-
1435	447	0.145	1268	184	0	1.2	2.61	499	498	659,004
1436	447	0.148	1249	185	0	1.2	2.61	499	498	659,502
1437	447	0.168	1247	209	0	1.2	2.61	499	498	660,000
1438	447	0.181	1221	221	0	1.2	2.61	499	498	660,498
1439	447	0.211	1191	251	0	1.3	2.61	499	498	660,996
1440	447	0.118	1240	146	0	1.3	2.61	499	498	661,494
1441	447	0.126	1252	158	0	1.2	2.61	499	498	661,992
1442	447	0.187	1235	231	0	2.5	2.61	499	498	662,490
1443	447	0.216	1211	262	0	1.2	2.60	499	498	662,988
1444	447	0.139	1253	174	0	2.6	2.60	499	498	663,486
1445	447	0.173	1227	212	0	2.5	2.60	499	498	663,984
1446	447	0.163	1259	205	0	1.2	2.60	499	498	664,482
1447	447	0.172	1237	213	0	1.2	2.60	499	498	664,980
1448	447	0.150	1256	188	0	1.1	2.60	499	498	665,478
1449	447	0.181	1237	224	Ō	4.0	2.60	499	498	665,976
1450	447	0.170	1242	211	0	1.1	2.60	499	498	666,474
1451	447	0.251	1203	302	-1.4	1.3	2.60	499	498	666,972
1452	447	0.172	1215	209	0	1.2	2.60	499	498	667,470
1453	447	0.174	1250	217	0	1.1	2.60	499	498	667,968
1454	447	0.267	1219	325	0	1.2	2.60	499	498	668,466
1455	447	0.167	1253	209	Ō	1.2	2.60	499	498	668,964
										•
1456	483	0.170	1150	196	0	9.7	2.60	499	498	669,462
1457	483	0.227	1122	255	-1.4	2.5	2.60	499	498	669,960
1458	483	0.238	1098	261	-2.8	2.5	2.60	499	498	670,458
										•
1459	448	0.163	1185	193	1.4	2.5	2.60	499	498	670,956
1460	448	0.190	1207	229	1.4	1.2	2.60	499	498	671,454
1461	448	0.253	1200	304	1.4	1.3	2.60	499	498	671,952
1462	448	0.148	1200	178	1.4	3.1	2.60	499	498	672,450
1463	447	0.097	1248	121	1.4	2.5	2.60	499	498	672,948
1464	447	0.158	1212	191	1.4	2.0	2.60	499	498	673,446
										673,944
1465	447	0.159	1207	192	1.4	1.2	2.60	499	498	
1466	447	0.169	1229	208	1.4	1.1	2.60	499	498	674,442
1467	447	0.179	1228	220	1.4	2.5	2.60	499	498	674,940
1468	447	0.158	1209	191	1.4	1.1	2.60	499	498	675,438
1469	447	0.142	1245	177	0	2.6	2.60	499	498	675,936
1470	447	0.108	1237	134	1.4	1.2	2.59	499	498	676,434
1471	447	0.140	1257	176	0	1.2	2.59	499	498	676,932
		0.189								
1472	447		1246	235	0	1.2	2.59	499	498	677,430
1473	447	0.149	1226	183	1.4	1.2	2.59	499	498	677,928
1474	447	0.227	1205	274	1.4	1.2	2.59	499	498	678,426
1475		0.203		249	0	2.4	2.59	499	498	
	447		1226							678,924
1476	447	0.153	1267	194	0	1.2	2.59	499	498	679,422
1477	447	0.157	1258	198	0	1.2	2.59	499	498	679,920
		0.154	1222	188			2.59	499		
1478	448				1.4	2.6			498	680,418
1479	448	0.216	1212	262	1.4	1.1	2.59	499	498	680,916
1480	448	0.225	1201	270	1.4	1.2	2.59	499	498	681,414
			1207	237						
1481	500	0.196			-1.4	5.1	2.59	501	500	681,914
1482	501	0.263	1190	313	-1.4	5.0	2.59	501	500	682,414
1483	501	0.179	1194	214	1.4	1.2	2.59	501	500	682,914
1484	501	0.111	1240	138	1.4	1.2	2.59	501	500	683,414
1485	501	0.113	1232	139	1.4	1.3	2.59	501	500	683,914
1486	501	0.111	1230	137	1.4	1.2	2.59	501	500	684,414
1487	501	0.139	1207	168	1.4	1.3	2.59	501	500	684,914
1488	503	0.158	1214	192	0	2.6	2.59	503	502	685,416
1489	502	0.137	1216	167	1.4	4.0	2.59	503	502	685,918
1490	502	0.179	1219	218	\mathbf{F}_{20}^{0}	1.2	2.59	503	502	686,420
					r-20					

F-20 A-6-20 B-75

1491	502	0.112	1210	135	1.4	1.3	2.59	503	502	686,922
1492	502	0.088	1229	108	1.4	1.3	2.58	503	502	687,424
1493	502	0.078	1253	98	o	1.2	2.58	503	502	687,926
1494	502	0.234	1117	261	2.8	1.8	2.58	503	502	688,428
								503	502	688,930
1495	503	0.106	1237	131	-1.4	3.6	2.58			
1496	503	0.109	1237	135	0	6.4	2.59	503	502	689,432
1497	447	0.132	1215	160	1.4	3.1	2.59	503	502	689,934
1498	447	0.162	1232	199	0	3.8	2.59	503	502	690,436
1499	447	0.146	1225	179	1.4	2.5	2.59	503	502	690,938
1500	447	0.166	1226	204	1.4	1.2	2.59	503	502	691,440
1501	447	0.213	1212	258	0	3.1	2.59	503	502	691,942
1502	406	0.188	1167	219	1.4	5.3	2.59	503	502	692,444
					0	1.2	2.59	503	502	692,946
1503	406	0.202	1136	229						
1504	406	0.271	1186	321	0	2.6	2.59	503	502	693,448
1505	484	0.228	1120	255	1.4	4.2	2.59	503	502	693,950
1506	504	0.112	1230	138	0	3.7	2.59	505	504	694,454
1507	505	0.075	1225	92	-5.6	4.4	2.59	505	504	694,958
1508	504	0.046	1270	59	-2.8	1.2	2.59	505	504	695,462
1509	504	0.044	1288	57	-2.8	1.2	2.59	505	504	695,966
1510	504	0.061	1284	78	-2.8	1.2	2.59	505	504	696,470
1511	504	0.071	1243	88	-4.2	1.2	2.59	505	504	696,974
1512	504	0.071	1248	88	-2.8	1.2	2.59	505	504	697,478
				76		1.1	2.58	505	504	697,982
1513	504	0.060	1270		-2.8					
1514	505	0.039	1294	50	-1.4	1.2	2.58	505	504	698,486
1515	505	0.074	1244	92	-2.8	1.2	2.58	505	504	698,990
1516	505	0.052	1264	66	-2.8	1.2	2.58	505	504	699,494
1517	505	0.042	1266	53	-2.8	1.3	2.58	505	504	699,998
1518	505	0.037	1286	48	-2.8	1.1	2.58	505	504	700,502
1519	505	0.041	1279	53	-2.8	1.2	2.58	505	504	701,006
1520	505	0.031	1278	39	-2.8	1.2	2.58	505	504	701,510
1521	13	0.246	1183	291	-1.4	10.2	2.58	505	504	702,014
				277	7	9.4	2.59	505	504	702,514
1522	14	0.240	1155						504	702,516
1523	486	0.113	1232	139	-1.4	1.2	2.59	505		
1524	486	0.171	1207	207	0	1.3	2.59	505	504	703,526
1525	486	0.144	1198	173	-1.4	1.3	2.59	505	504	704,030
1526	486	0.217	1198	260	-1.4	1.2	2.58	505	504	704,534
1527	14	0.238	1145	272	5.6	4.4	2.59	505	504	705,038
1528	14	0.220	1175	258	2.8	2.6	2.59	505	504	705,542
1529	14	0.234	1176	275	0	1.3	2.58	505	504	706,046
1530	13	0.268	1166	313	-4.2	6	2.59	505	504	706,550
1531	495	0.131	1203	158	2.8	3.2	2.59	505	504	707,054
1532	495	0.111	1194	133	4.2	1.2	2.59	505	504	707,558
1533	495	0.136	1202	164	2.8	3.8	2.59	505	504	708,062
1534	495	0.237	1167	276	4.2	1.2	2.59	505	504	708,566
1535	495	0.179	1175	210	4.2	3.8	2.59	505	504	709,070
								505	504	709,574
1536	495	0.166	1190	197	4.2	1.2	2.59			•
1537	495	0.190	1198	228	2.8	1.3	2.59	505	504	710,078
1538	495	0.244	1161	283	4.2	1.3	2.58	505	504	710,582
1539	495	0.253	1170	296	2.8	5.2	2.59	505	504	711,086
1540	495	0.114	1219	139	2.8	6.6	2.59	505	504	711,590
1541	495	0.178	1215	216	2.8	1.2	2.59	505	504	712,094
1542	495	0.139	1169	163	4.2	1.2	2.59	505	504	712,598
1543	495	0.184	1145	211	1.4	.6.9	2.59	505	504	713,102
1544	495	0.151	1180	178	2.8	16.8	2.60	505	504	713,606
1545	484	0.261	1123	293	5.6	5.4	2.60	505	504	714,110
1546	484	0.158	1173	185	2.8	12.6	2.61	505	504	714,614
1547	406	0.208	1188	247	1.4	2.7	2.61	505	504	715,118
1548	406	0.195	1158	226	1.4	1.2	2.61	505	504	715,622
1549	406	0.109	1174	128	1.4	1.2	2.61	505	504	716,126
1550	406	0.182	1146	208	1.4	1.2	2.60	505	504	716,630
1551	406	0.048	1243	60	1.4	1.2	2.60	505	504	717,134
		0.084		103	1.4	1.2	2.60	505	504	717,638
1552	406		1233			1.2				
1553	406	0.048	1258	61	1.4	1.2	2.60	505	504	718,142
1554	406	0.058	1247	72	1.4	1.2	2.60	505	504	718,646
1555	484	0.233	1104	257	2.8	3.2	2.60	505	504	719,150
1556	484	0.203	1140	231	2.8	1.2	2.60	505	504	719,654
1557	484	0.129	1223	158	1.4	1.3	2.60	505	504	720,158
1558	484	0.124	1212	150	1.4	1.2	2.60	505	504	720,662
1559	484	0.228	1164	265	1.4	1.3	2.60	505	504	721,166
1560	484	0.202	1162	235	0	2.5	2.60	505	504	721,670
1561	506	0.262	1197	314	-1.4	3.2	2.60	507	506	722,176
						8.2	2.60	507		
1562	506	0.153	1231	188	0				506	722,682
1563	506	0.145	1258	182	0	4.4	2.60	507	506	723,188
1564	506	0.205	1174	241	-5.6	5.8	2.61	507	506	723,694
1 56 5	506	0.138	1226	169	₹ -21	1.2	2.60	507	506	724,200

F-21 A-6-21 B-76

1566	406	0.172	1189	205	1.4	1.2	2.60	507	506	724,706
1567	406	0.250	1169	292	1.4	1.3	2.60	507	506	725,212
							2.60	507	506	725,718
1568	406	0.054	1250	67	1.4	1.2			506	726,224
1569	486	0.192	1205	231	0	2.6	2.60	507		
1570	487	0.152	1174	179	-2.8	1.1	2.60	507	506	726,730
1571	406	0.214	1184	253	1.4	2.5	2.60	507	506	727,236
1572	406	0.115	1196	138	1.4	8.4	2.60	507	506	727,742
1573	406	0.068	1233	84	0	2.6	2.60	507	506	728,248
1574	406	0.059	1230	73	0	1.2	2.60	507	506	728,754
1575	406	0.172	1200	206	o	1.2	2.60	507	506	729,260
1576	406	0.088	1217	107	ŏ	1.2	2.60	507	506	729,766
			1226	88	ő	1.2	2.60	507	506	730,272
1577	406	0.072						507	506	730,778
1578	406	0.144	1200	173	0	1.3	2.60			
1579	407	0.207	1176	244	1.4	1.2	2.60	507	506	731,284
1580	407	0.210	1185	249	0	1.2	2.60	507	506	731,790
1581	406	0.234	1133	265	1.4	1.8	2.60	507	506	732,296
1582	406	0.260	1116	290	1.4	1.2	2.60	507	506	732,802
1583	308	0.277	1116	309	1.4	15.1	2.60	507	506	733,308
1584	309	0.267	1071	286	2.8	1.1	2.60	507	506	733,814
1585	310	0.270	1087	294	4.2	7.9	2.61	507	506	734,320
1586	311	0.221	1129	250	2.8	5.3	2.61	507	506	734,826
				133		1.3	2.61	507	506	735,332
1587	406	0.108	1231		0					735,838
1588	406	0.172	1163	200	1.4	1.8	2.61	507	506	
1589	406	0.079	1227	97	0	1.2	2.61	507	506	736,344
1590	406	0.097	1218	118	1.4	1.2	2.61	507	506	736,850
1591	406	0.057	1243	71	0	1.2	2.60	507	506	737,356
1592	406	0.063	1263	80	0	1.2	2.60	507	506	737,862
1593	406	0.062	1247	77	0	1.2	2.60	507	506	738,368
1594	308	0.171	1113	190	2.8	5.9	2.61	507	506	738,874
1595	508	0.162	1203	195	-1.4	1.3	2.60	509	508	739,382
				166		12.2	2.61	509	508	739,890
1596	509	0.130	1278		-1.4					•
1597	510	0.235	1174	276	4.2	2.6	2.61	511	510	740,400
1598	510	0.155	1172	182	5.6	5.8	2.61	511	510	740,910
1599	510	0.169	1210	204	5.6	1.3	2.61	511	510	741,420
1600	510	0.172	1175	202	5.6	1.2	2.61	511	510	741,930
1601	510	0.206	1199	247	5.6	1.2	2.61	511	510	742,440
1602	510	0.141	1209	171	5.6	1.2	2.61	511	510	742,950
1603	511	0.209	1227	257	-1.4	2.5	2.61	511	510	743,460
									510	743,970
1604	511	0.185	1231	228	-1.4	1.2	2.61	511		•
1605	511	0.148	1242	184	-1.4	1.2	2.61	511	510	744,480
1606	511	0.140	1261	176	-1.4	1.2	2.61	511	510	744,990
1607	511	0.169	1244	210	-1.4	1.2	2.61	511	510	745,500
1608	484	0.148	1158	171	1.4	25.4	2.62	511	510	746,010
1609	484	0.127	1195	152	-1.4	1.3	2.62	511	510	746,520
1610	447	0.187	1213	227	1.4	1.2	2.62	511	510	747,030
1611	447	0.169	1222	206	1.4	1.2	2.62	511	510	747,540
			1197	303		1.3	2.62	511	510	748,050
1612	448	0.253			1.4					748,560
1613	448	0.276	1194	330	1.4	1.3	2.62	511	510	
1614	448	0.185	1214	225	1.4	3.3	2.62	511	510	749,070
1615	448	0.222	1216	270	0	2.5	2.62	511	510	749,580
1616	448	0.254	1185	301	1.4	1.2	2.61	511	510	750,090
1617	448	0.147	1246	183	0	1.1	2.61	511	510	750,600
1618	- 448	0.159	1249	199	0	1.3	2.61	511	510	751,110
1619	447	0.212	1190	252	2.8	1.2	2.61	511	510	751,620
1620	447	0.217	1201	261	0 .	1.2	2.61	511	510	752,130
1621	447	0.176	1241	219	0	1.1	2.61	511	510	752,640
1622	447	0.158	1239	196	Ō	1.1	2.61	511	510	753,150
1623	447	0.279	1186	331	ŏ	1.2	2.61	511	510	753,660
	447	0.166	1226	203	1.4	1.2	2.61	511	510	754,170
1624										
1625	447	0.192	1231	236	1.4	1.2	2.61	511	510	754,680
1626	447	0.207	1198	248	1.4	1.1	2.61	511	510	755,190
1627	447	0.180	1199	216	1.4	1.2	2.60	511	510	755,700
1628	447	0.186	1209	225	1.4	1.2	2.60	511	510	756,210
1629	447	0.145	1217	176	1.4	1.1	2.60	511	510	756,720
1630	448	0.238	1201	286	1.4	1.2	2.60	511	510	757,230
1631	448	0.155	1222	189	1.4	1.2	2.60	511	510	757,740
1632	448	0.133	1212	257	0	1.1	2.60	511	510	758,250
				102	0	1.1	2.60	511	510	758,760
1633	448	0.082	1241							
1634	448	0.247	1188	293	1.4	1.1	2.60	511	510	759,270
1635	448	0.233	1211	282	1.4	1.2	2.60	511	510	759,780
1636	448	0.162	1252	203	1.4	2.6	2.60	511	510	760,290
1637	448	0.243	1195	290	1.4	2.5	2.60	511	510	760,800
1638	448	0.269	1177	317	1.4	4	2.60	511	510	761,310
1639	448	0.223	1214	271	1.4	2.5	2.60	511	510	761,820
1640	448	0.186	1231	229		1.2	2.60	511	510	762,330
					F-22				_	

F-22 A-6-22 B-77

1641	448	0.246	1181	291	1.4	1.1	2.60	511	510	762,840
1642	448	0.161	1220	197	1.4	2.5	2.60	511	510	763,350
1643	448	0.175	1222	214	1.4	1.1	2.60	511	510	763,860
						1.2	2.60	511	510	764,370
1644	448	0.173	1215	210	1.4					
1645	448	0.172	1201	207	1.4	2.5	2.59	511	510	764,880
1646	448	0.148	1200	178	1.4	1.2	2.59	511	510	765,390
1647	448	0.187	1215	227	1.4	1.1	2.59	511	510	765,900
1648	448	0.241	1218	293	0	1.3	2.59	511	510	766,410
1649	448	0.246	1193	293	1.4	2.5	2.59	511	510	766,920
1650	448	0.234	1175	275	1.4	1.2	2.59	511	510	767,430
1651	448	0.119	1236	147	1.4	2.5	2.59	511	510	767,940
1652	448	0.143	1242	178	0	1.2	2.59	511	510	768,450
1653	448	0.206	1203	248	1.4	1.2	2.59	511	510	768,960
1654	448	0.265	1175	311	1.4	1.2	2.59	511	510	769,470
										•
1655	448	0.214	1196	256	1.4	3.8	2.59	511	510	769,980
1656	448	0.225	1214	273	1.4	1.2	2.59	511	510	770,490
1657	448	0.156	1247	194	0	2.4	2.59	511	510	771,000
1658	448	0.195	1199	234	1.4	2.5	2.59	511	510	771,510
1659	448	0.199	1223	243	1.4	1.1	2.59	511	510	772,020
							2.59		510	772,530
1660	448	0.164	1191	195	1.4	1.3		511		
1661	448	0.264	1180	312	1.4	5	2.59	511	510	773,040
1662	448	0.253	1218	308	1.4	1.2	2.59	511	510	773,550
1663	448	0.254	1189	302	1.4	1.2	2.59	511	510	774.060
1664	447	0.183	1240	227	0	2.6	2.59	511	510	774,570
		•								
1665	447	0.174	1197	208	1.4	1.2	2.59	511	510	775,080
1666	447	0.174	1240	216	0	1.1	2.59	511	510	775,590
1667	447	0.179	1232	220	0	2.5	2.59	511	510	776,100
1668	447	0.124	1239	154	0	1.3	2.58	511	510	776,610
1669	447	0.248	1209	300	ő	1.2	2.58	511	510	777,120
1670	447	0.224	1213	272	0	1.2	2.58	511	510	777,630
1671	447	0.208	1234	257	0	2.5	2.58	511	510	778,140
1672	447	0.176	1224	215	0	1.2	2.58	511	510	778,650
1673	447	0.188	1194	224	1.4	1.3	2.58	511	510	779,160
1674	447	0.120	1250	150	Ö	1.2	2.58	511	510	779,670
										•
1675	447	0.133	1260	168	0	1.2	2.58	511	510	780,180
1676	447	0.144	1241	179	0	1.2	2.58	511	510	780,690
1677	447	0.135	1244	168	0	1.1	2.58	511	510	781,200
1678	447	0.172	1247	215	0	1.2	2.58	511	510	781,710
1679	447	0.131	1256	165	0	1.2	2.58	511	510	782,220
1680	447	0.084	1246	105	ő	1.3	2.58	511	510	782,730
1681	447	0.144	1240	179	0	2.6	2.58	511	510	783,240
1682	447	0.123	1254	154	0	1.2	2.57	511	510	783,750
1683	447	0.116	1255	146	0	1.2	2.57	511	510	784,260
1684	447	0.161	1245	201	0	1.2	2.57	511	510	784,770
1685	447	0.132	1246	164	0	1.1	2.57	511	510	785,280
1686	447	0.192	1204	231	1.4	1.1	2.57	511	510	785,790
										•
1687	447	0.115	1236	142	1.4	1.2	2.57	511	510	786,300
1688	447	0.082	1228	101	1.4	1.2	2.57	511	510	786,810
1689	447	0.118	1251	148	0	1.3	2.57	511	510	787,320
1690	484	0.211	1178	248	1.4	2.6	2.57	511	510	787,830
1691	484	0.232	1145	266	0	3.9	2.57	511	510	788,340
1692	447	0.152	1213	184	1.4	2.5	2.57	511	510	788,850
1693	486	0.211	1178	248	-2.8	1.2	2.57	511	510	789,360
1694	512	0.129	1227	158	-4.2	2.7	2.57	513	512	789,872
1695	513	0.209	1167	244	0	2.6	2.57	513	512	790,384
1696	452	0.219	1191	261	0	7.2	2.57	513	512	790,896
1697	453	0.270	1124	303	-2.8	2.5	2.57	513	512	791,408
1698	453	0.247	1155	285	0	3.2	2.57	513	512	791,920
1699	452	0.262	1142	299	1.4	8	2.57	513	512	792,432
1700	447	0.277	1151	319	O	7	2.58	513	512	792,944
						4 2				
1701	447	0.211	1051	222	1.4	1.2	2.58	513	512	793,456
1702	447	0.174	1198	209	2.8	4	2.58	513	512	793,968
1703	447	0.183	1206	221	2.8	1.2	2.58	513	512	794,480
1704	448	0.187	1190	222	1.4	2.6	2.58	513	512	794,992
1705	448	0.233	1185	276	2.8	1.2	2.58	513	512	795,504
1706	406	0.118	1222	144	0	2.6	2.58	513	512	796,016
1707	514	0.213	1036	221	-1.4	1.2	2.58	513	512	796,528
1708	540	0.248	1044	259	1.4	2.5	2.58	513	512	797,040
1709	541	0.259	1141	296	0	1.1	2.57	513	512	797,552
1710	541	0.139	1184	164	0	1.1	2.57	513	512	798,064
	541	0.167	1181	197	Ö	1.2	2.57	513	512	798,576
1711										
1712	541	0.125	1185	148	0	1.2	2.57	513	512	799,088
1713	541	0.160	1143	183	0	1.2	2.57	513	512	799,600
1714	542	0.223	1185	264	0	3.8	2.57	513	512	800,112
1715	542	0.210	1227	258		1.3	2.57	513	512	800,624
	O 72	0.210		200	F_{-23}		2.01	0.0	012	300,027

A-6-23 B-78

1716	542	0.202	1194	241	0	1.2	2.57	513	512	801,136
				277	Ö	1.2	2.57	513	512	801,648
1717	542	0.235	1177		Ö	1.2	2.57	513	512	802,160
1718	542	0.215	1173	252			2.57	513	512	802,672
1719	542	0.144	1225	176	0	1.2			512	803,184
1720	542	0.190	1203	229	0	1.2	2.57	513		
1721	544	0.129	1161	150	0	1.2	2.57	513	512	803,696
1722	514	0.228	1044	238	-1.4	9.1	2.57	565	564	804,260
			1041	255	0	1.1	2.57	565	564	804,824
1723	514	0.245			o .	1.1	2.57	565	564	805,388
1724	515	0.150	1125	169				565	564	805,952
1725	515	0.151	1132	171	0	1.2	2.57			806,516
1726	515	0.162	1103	179	0	1.1	2.57	565	564	
1727	516	0.179	1161	208	-1.4	1.3	2.57	565	564	807,080
1728	516	0.105	1216	128	1.4	2.5	2.57	565	564	807,644
		0.161	1208	194	0	1.2	2.57	565	564	808,208
1729	516				ŏ	1.3	2.56	565	564	808,772
1730	516	0.132	1216	160		1.2	2.56	565	564	809,336
1731	516	0.153	1201	184	0				564	809,900
1732	516	0.155	1185	184	0	1.3	2.56	565		
1733	516	0.219	1178	258	-1.4	1.3	2.56	565	564	810,464
1734	517	0.269	1155	311	1.4	1.2	2.56	565	564	811,028
		0.032	1300	41	0	2.5	2.56	565	564	811,592
1735	517			47	ŏ	1.1	2.56	565	564	812,156
1736	517	0.037	1283			2.4	2.56	565	564	812,720
1737	517	0.118	1222	144	0			565	564	813,284
1738	517	0.130	1221	159	0	5.2	2.56		564	813,848
1739	517	0.191	1165	222	0	6.5	2.56	565		
1740	518	0.280	1152	323	1.4	8.9	2.57	565	564	814,412
1741	518	0.251	1166	293	0	1.2	2.57	565	564	814,976
1742	518	0.239	1160	277	0	1.1	2.57	565	564	815,540
		0.187	1171	219	0	1.2	2.57	565	564	816,104
1743	518		1166	197	ő	1.2	2.56	565	564	816,668
1744	518	0.169			1.4	1.2	2.56	565	564	817,232
1745	518	0.238	1144	272			2.56	565	564	817,796
1746	518	0.230	1162	267	1.4	1.2				818,360
1747	518	0.140	1176	165	0	1.2	2.56	565	564	
1748	519	0.176	1135	200	0	2.5	2.56	565	564	818,924
1749	519	0.138	1127	156	0	1.2	2.56	565	564	819,488
	519	0.154	1091	168	-1.4	1.2	2.56	565	564	820,052
1750				209	0	1.1	2.56	565	564	820,616
1751	519	0.185	1128		Ö	2.5	2.56	565	564	821,180
1752	519	0.156	1139	178				565	564	821,744
1753	519	0.130	1153	150	0	- 1.1	2.56		564	822,308
1754	519	0.131	1151	151	0	1.2	2.56	565		
1755	519	0.139	1137	158	-1.4	1.1	2.56	565	564	822,872
1756	519	0.138	1141	157	0	1.2	2.56	565	564	823,436
	520	0.199	1139	227	0	1.2	2.56	565	564	824,000
1757				179	ŏ	1.1	2.55	565	564	824,564
1758	520	0.161	1113		ő	1.2	2.55	565	564	825,128
1759	520	0.145	1149	167				565	564	825,692
1760	520	0.185	1125	208	0	2.6	2.55			826,256
1761	520	0.145	1144	166	0	1.1	2.55	565	564	
1762	520	0.194	1104	214	1.4	1.2	2.55	565	564	826,820
1763	521	0.137	1134	155	0	1.2	2.55	56 5	564	827,384
1764	521	0.189	1114	211	0	1.1	2.55	565	564	827,948
1765	521	0.113	1137	129	0	1.1	2.55	565	564	828,512
		0.113	1109	148	ŏ	1.2	2.55	565	564	829,076
1766	521			161	ŏ	1.1	2.55	565	564	829,640
1767	521	0.144	1119			1.1	2.55	565	564	830,204
1768	520	0.197	1110	219	1.4			565	564	830,768
1769	521	0.138	1127	155	0	1.2	2.55		564	831,332
1770	521	0.102	1113	114	0	1.2	2.55	565		
1771	521	0.117	1113	130	0	1.2	2.55	565	564	831,896
1772	521	0.163	1083	177	0	1.1	2.54	565	564	832,460
1773	521	0.134	1120	150	0	2.5	2.54	565	564	833,024
1774	521	0.130	1105	144	0	1.1	2.54	565	564	833,588
			1063	205	ō	1.1	2.54	565	564	834,152
1775	522	0.193		129	Ŏ	1.2	2.54	565	564	834,716
1776	522	0.113	1143		0	1.1	2.54	565	564	835,280
1777	522	0.133	1117	149	0				564	835,844
1778	522	0.174	1077	187	1.4	9.1	2.55	565		
1779	522	0.183	1095	200	0	1.1	2.54	565	564	836,408
1780	523	0.184	1181	217	1.4	2.4	2.54	565	564	836,972
1781	523	0.216	1147	248	-1.4	1.1	2.54	56 5	564	837,536
	523	0.036	1267	46	0	1.2	2.54	565	564	838,100
1782				49	ŏ	1.1	2.54	565	564	838,664
1783	523	0.039	1260			1.1	2.54	565	564	839,228
1784	523	0.203	1229	250	0			565	564	839,792
1785	524	0.096	1141	110	0	1.1	2.54			840,356
1786	524	0.118	1154	136	0	1.2	2.54	565	564	
1787	524	0.175	1141	200	-1.4	2.6	2.54	565	564	840,920
1788	524	0.146	1132	165	-1.4	1.2	2.54	565	564	841,484
1789	524	0.170	1153	196	0	1.2	2.54	565	564	842,048
	524	0.170	1134	241		1.2	2.54	565	564	842,612
1790	324	0.213	1104	271	F-24					•

F-24 A-6-24 B-79

					_		0.54	505	564	843,176
1791	525	0.153	1136	174	0	3.1	2.54	565		•
1792	525	0.178	1134	202	0	1.2	2.54	565	564	843,740
1793	525	0.158	1163	184	0	1.1	2.54	565	564	844,304
1794	525	0.132	1144	151	0	1.2	2.54	565	564	844,868
1795	525	0.259	1100	285	1.4	3.8	2.54	565	564	845,432
		0.200	1131	226	0	3.9	2.54	565	564	845,996
1796	526					1.2	2.54	565	564	846,560
1797	526	0.216	1095	237	0			565	564	847,124
1798	526	0.175	1107	194	0	6.5	2.54			
1799	526	0.169	1089	184	0	1.1	2.54	565	564	847,688
1800	526	0.145	1173	170	0	1.2	2.54	565	564	848,252
1801	527	0.158	1105	175	0	1.2	2.54	565	564	848,816
1802	527	0.238	1098	261	0	1.2	2.54	565	564	849,380
	527	0.157	1099	173	Ō	1.2	2.53	565	564	849,944
1803				166	ŏ	1.2	2.53	565	564	850,508
1804	527	0.150	1103			1.2	2.53	565	564	851,072
1805	527	0.222	1077	239	0		2.53	565	564	851,636
1806	527	0.139	1098	153	0	1.2				852,200
1807	528	0.191	1112	212	0	2.5	2.53	565	564	
1808	529	0.124	1157	143	0	1.2	2.53	565	564	852,764
1809	527	0.185	1097	203	0	1.2	2.53	565	564	853,328
1810	527	0.157	1124	177	0	1.2	2.53	565	564	853,892
	527	0.177	1116	197	0	1.1	2.53	565	564	854,456
1811			1131	142	ŏ	1.2	2.53	565	564	855,020
1812	527	0.126				1.1	2.53	565	564	855,584
1813	528	0.216	1100	238	0			565	564	856,148
1814	528	0.189	1104	209	0	1.2	2.53			
1815	528	0.144	1112	160	0	1.2	2.53	565	564	856,712
1816	528	0.237	1101	261	0	1.2	2.53	565	564	857,276
1817	529	0.219	1050	230	1.4	1.2	2.52	565	564	857,840
1818	529	0.202	1112	225	-1.4	1.1	2.52	565	564	858,404
	529	0.202	1116	229	1.4	1.2	2.52	565	564	858,968
1819				246	0	1.2	2.52	565	564	859,532
1820	529	0.216	1141				2.52	565	564	860,096
1821	529	0.131	1136	149	1.4	1.1				860,660
1822	530	0.157	1092	171	0	1.1	2.52	565	564	
1823	530	0.067	1141	77	0	1.1	2.52	565	564	861,224
1824	530	0.089	1122	100	0	1.2	2.52	565	564	861,788
1825	530	0.122	1086	132	0	1.1	2.52	565	564	862,352
1826	530	0.168	1097	184	0	1.2	2.52	565	564	862,916
	531	0.090	1114	100	ō	2.5	2.52	565	564	863,480
1827			1100	94	ő	1.2	2.52	565	564	864,044
1828	531	0.085				1.2	2.52	565	564	864,608
1829	531	0.151	1099	166	0			565	564	865,172
1830	531	0.137	1115	153	0	1.2	2.52			
1831	531	0.202	1101	222	-1.4	1.2	2.52	565	564	865,736
1832	532	0.153	1167	179	0	7.8	2.52	565	564	866,300
1833	532	0.223	1141	254	-1.4	1.2	2.52	565	564	866,864
1834	532	0.158	1162	184	-1.4	1.1	2.52	565	564	867,428
1835	532	0.157	1165	183	0	1.1	2.52	565	564	867,992
1836	532	0.149	1171	175	-1.4	1.2	2.52	565	564	868,556
1837	532	0.089	1174	104	0	6.3	2.52	565	564	869,120
			1193	144	ō	3.7	2.52	565	564	869,684
1838	533	0.121			ŏ	1.2	2.52	565	564	870,248
1839	533	0.132	1156	153		1.2	2.52	565	564	870,812
1840	533	0.123	1139	140	1.4			565	564	871,376
1841	533	0.126	1187	150	0	1.2	2.52			
1842	533	0.118	1185	140	0	1.2	2.51	565	564	871,940
1843	534	0.097	1156	112	0	1.1	2.51	565	564	872,504
1844	534	0.233	1091	254	0	1.1	2.51	565	564	873,068
1845	534	0.127	1154	147	0	1.1	2.51	565	564	873,632
1846	534	0.166	1101	183	0	1.2	2.51	565	564	874,196
1847	534	0.175	1122	196	0	1.1	2.51	565	564	874,760
1848	535	0.191	1076	205	1.4	1.1	2.51	565	564	875,324
1849	535	0.215	1109	238	1.4	1.2	2.51	565	564	875,888
1850	535	0.196	1141	224	o	1.2	2.51	565	564	876,452
		0.169	1101	186	1.4	1.2	2.51	565	564	877,016
1851	535			195	0	1.2	2.51	565	564	877,580
1852	535	0.177	1099					565	564	878,144
1853	535	0.129	1123	145	0	1.2	2.51	565	564	878,708
1854	537	0.223	1147	256	0	3.9	2.51		564	879,272
1855	537	0.139	1188	165	0	1.1	2.51	565		
1856	537	0.091	1223	111	0	1.2	2.51	565	564	879,836
1857	537	0.160	1163	186	0	1.2	2.51	565	564	880,400
1858	537	0.142	1159	165	0	1.1	2.50	565	564	880,964
1859	537	0.117	1168	137	0	1.1	2.50	565	564	881,528
1860	538	0.167	1158	193	Ö	1.1	2.50	565	564	882,092
			1188	166	ŏ	1.2	2.50	565	564	882,656
1861	538	0.140			0	1.1	2.50	565	564	883,220
1862	538	0.192	1141	219				565	564	883,784
1863	538	0.152	1177	179	0	1.2	2.50			
1864	538	0.135	1163	157	0	1.2	2.50	565	564	884,348
1865	539	0.150	1059	159	F-25	2.4	2.50	565	564	884,912
					r-40					

A-6-25 B-80

								ror	EGA	885,476
1866	539	0.137	1109	152	0	1.1	2.50	565	564 564	886,040
1867	539	0.035	1156	40	0	1.1	2.50	565 565	564	886,604
1868	539	0.118	1126	133	0	1.1	2.50	565	564	887,168
1869	539	0.090	1140	103	0	1.1	2.50	565	564	887,732
1870	539	0.157	1100	173	0	1.1	2.50 2.50	565	564	888,296
1871	539	0.136	1083	147	0	1.2		565	564	888,860
1872	540	0.257	1058	272	0	1.2	2.50	565	564	889,424
1873	540	0.269	1060	285	0	1.2	2.49	565	564	889,988
1874	540	0.211	1081	228	0	1.2	2.49	565	564	890,552
1875	540	0.142	1102	157	0	1.2	2.49	565	564	891,116
1876	540	0.205	1105	227	0	1.1	2.49	565	564	891,680
1877	540	0.196	1078	211	0	2.5	2.49 2.49	565	564	892,244
1878	541	0.248	1125	279	1.4	1.2		565	564	892,808
1879	541	0.189	1150	217	0	1.2	2.49	565	564	893,372
1880	541	0.235	1136	267	0	2.5	2.49 2.49	565	564	893,936
1881	541	0.239	1162	278	0	1.2	2.49	565	564	894,500
1882	541	0.123	1180	145	0	1.2 1.2	2.49	565	564	895,064
1883	541	0.143	1185	169	0	1.2	2.49	565	564	895,628
1884	543	0.214	1149	246	-1.4	1.2	2.49	565	564	896,192
1885	543	0.140	1140	160	0	1.2	2.49	565	564	896,756
1886	544	0.166	1162	193	0	1.1	2.49	565	564	897,320
1887	544	0.071	1202	85	0	1.2	2.49	565	564	897,884
1888	544	0.119	1165	139 309	1.4	8	2.49	565	564	898,448
1889	544	0.276	1119	199	0	1.2	2.49	565	564	899,012
1890	545	0.167	1195		Ö	1.1	2.49	565	564	899,576
1891	545	0.114	1222	139 219	ő	1.2	2.49	565	564	900,140
1892	545	0.184	1187 1182	241	1.4	1.2	2.49	565	564	900,704
1893	545	0.204	1187	212	0	1.2	2.48	565	564	901,268
1894	545	0.179 0.104	1217	127	ŏ	1.2	2.48	565	564	901,832
1895	545	0.104	1137	248	Ö	1.1	2.48	565	564	902,396
1896	546	0.216	1117	218	ő	1.1	2.48	565	564	902,960
1897	546	0.195	1111	196	ŏ	1.2	2.48	565	564	903,524
1898	546 546	0.176	1110	182	Ö	1.2	2.48	565	564	904,088
1899	546	0.104	1072	231	0	1.2	2.48	565	564	904,652
1900 1901	546	0.182	1114	203	0	1.2	2.48	565	564	905,216
1901	546	0.102	1155	131	Ō	2.5	2.48	565	564	905,780
1902	547	0.193	1215	234	0	1.1	2.48	565	564	906,344
1904	547	0.156	1180	184	0	1.1	2.48	565	564	906,908
1905	547	0.175	1165	204	0	1.2	2.48	565	564	907,472
1906	547	0.154	1220	188	0	1.1	2.48	565	564	908,036
1907	547	0.153	1204	184	0	1.1	2.48	565	564	908,600
1908	549	0.206	1098	226	0	1.1	2.48	565	564	909,164
1909	549	0.169	1106	187	0	2.6	2.48	565	564	909,728
1910	549	0.223	1114	248	0	1.1	2.48	565	564	910,292
1911	549	0.253	1088	275	0	1.1	2.47	565	564	910,856 911,420
1912	549	0.268	1077	289	-1.4	2.6	2.47	565	564 564	911,420
1913	549	0.245	1068	262	-1.4	1.2	2.47	565 565	564	912,548
1914	549	0.249	1058	263	-1.4	4	2.47 2.47	565	564	913,112
1915	550	0.250	961	240	0 0	1.1 1.2	2.47	565	564	913,676
1916	550	0.202	1005	203	0	3.8	2.47	565	564	914,240
1917	550	0.253	914 976	231 215	0	1.1	2.47	565	564	914,804
1918	550	0.220	918	160	1.4	7.8	2.48	565	564	915,368
1919	551	0.174 0.182	1014	185	O	7.7	2.48	565	564	915,932
1920	551	0.162	996	220	ŏ	1.2	2.48	565	564	916,496
1921	551	0.221	1029	78	ō	1.2	2.48	565	564	917,060
1922 1923	551 551	0.247	983	243	0	2.5	2.48	565	564	917,624
1923	552	0.103	1119	115	0	3.8	2.48	565	564	918,188
1925	552	0.197	1101	217	0	2.4	2.48	565	564	918,752
1925	552	0.054	1157	63	0	1.1	2.48	565	564	919,316
1927	552	0.064	1163	74	0	1.2	2.48	565	564	919,880
1928	552	0.078	1134	89	0	1.1	2.48	565	564	920,444
1929	552	0.207	1077	223	0	1.1	2.48	565	564	921,008
1930	553	0.197	1089	214	0	1.2	2.47	565	564	921,572
1931	553	0.250	1070	268	-1.4	1.1	2.47	565	564	922,136
1932	553	0.183	1113	204	0	1.2	2.47	565	564	922,700
1933	553	0.201	1137	229	0	1.3	2.47	565	564	923,264
1934	553	0.118	1137	134	0	1.2	2.47	565	564	923,828
1935	554	0.236	1073	253	1.4	1.2	2.47	565	564	924,392
1936	554	0.216	1081	233	0	3.3	2.47	565	564	924,956
1937	554	0.233	1063	248	0	2.5	2.47	565	564	925,520
1938	554	0.213	1082	231	0	1.2	2.47	565	564	926,084
1939	554	0.228	1053	240	0	1.2	2.47	565	564	926,648
1940	554	0.250	1071	268	F-26	1.2	2.47	565	564	927,212

F-26 A-6-26 B-81

1941	555	0.204	1109	226	-1.4	1.1	2.47	565	564	927,776
1942	555	0.237	1093	259	-1.4	1.2	2.47	565	564	928,340
1943	555	0.239	1096	262	0	1.2	2.47	565	564	928,904
1944	555	0.152	1095	166	0	1.1	2.47	565	564	929,468
1945	556	0.151	1241	188	0	1	2.47	565	564	930,032
1946	554	0.274	1082	296	Ō	1.4	2.47	565	564	930,596
1947	553	0.261	1122	293	o	1.1	2.46	565	564	931,160
1947	554	0.202	1106	223	Ö	2.5	2.46	565	564	931,724
		0.232	1071	248	ő	2.5	2.47	565	564	932,288
1949	554		1115	251	ŏ	1.1	2.46	565	564	932,852
1950	555	0.225		191	ő	1.1	2.46	565	564	933,416
1951	556	0.156	1221	344	0	1.1	2.46	565	564	933,980
1952	556	0.280	1229		0	1.1	2.46	565	564	934,544
1953	556	0.193	1261	244		3.8	2.46	565	564	935,108
1954	556	0.091	1217	111	0		2.46	565	564	935,672
1955	556	0.197	1216	239	0	1.1	2.46	565	564	936,236
1956	556	0.240	1221	293	0	1.1	2.46	565	564	936,800
1957	557	0.111	1136	126	0	1.2		565	564	937,364
1958	558	0.243	1155	281	-1.4	1.1	2.46	565	564	937,928
1959	558	0.241	1160	280	-1.4	1.2	2.46	565	564	938,492
1960	558	0.238	1152	274	-1.4	1.1	2.46	565	564	939,056
1961	558	0.140	1161	162	0	1.2	2.46		564	939,620
1962	559	0.186	1165	217	0	1.1	2.46	565 565	564	940,184
1963	559	0.086	1204	104	0	2.5	2.46		564	940,748
1964	560	0.171	1031	176	0	6.4	2.46	565	564	941,312
1965	560	0.168	1008	169	0	1.1	2.46	565	564	941,876
1966	560	0.102	982	100	0	1.1	2.46	565		•
1967	560	0.102	1071	109	0	1.1	2.46	565	564	942,440 943,004
1968	560	0.076	1084	82	0	1.1	2.46	565	564	943,568
1969	560	0.145	1053	153	0	2.4	2.46	565	564	•
1970	561	0.175	1038	182	0	1	2.46	565	564	944,132
1971	562	0.245	1079	264	-1.4	2.6	2.46	565	564	944,696
1972	562	0.266	1083	288	1.4	1.3	2.46	565	564	945,260
1973	562	0.217	1106	.240	0	1.2	2.45	565	564	945,824
1974	562	0.253	1073	271	0	1.1	2.45	565	564	946,388 946,952
1975	562	0.257	1087	279	1.4	1.1	2.45	565	564	•
1976	562	0.243	1089	265	0	1.2	2.45	565	564	947,516
1977	563	0.273	1119	306	-1.4	1.3	2.45	565	564	948,080 948,644
1978	563	0.258	1126	290	-1.4	1.2	2.45	565	564	•
1979	563	0.250	1083	271	-1.4	1.1	2.45	565	564	949,208
1980	563	0.225	1118	252	-1.4	3.8	2.45	565	564	949,772
1981	563	0.093	1160	108	0	1.1	2.45	565	564	950,336
1982	563	0.159	1149	183	1.4	1.2	2.45	565	564	950,900
1983	563	0.154	1143	176	0	2.5	2.45	565	564	951,464
1984	564	0.064	1192	76	0	1.1	2.45	565	564	952,028
1985	564	0.040	1220	49	0	1.1	2.45	565	564	952,592
1986	564	0.054	1234	67	0	1.1	2.45	565	564	953,156
1987	564	0.070	1205	84	0	1.1	2.45	565	564	953,720
1988	564	0.065	1177	77	0	1.1	2.45	565	564	954,284
1989	564	0.237	1112	264	0	1.1	2.45	565	564	954,848
1990	564	0.148	1154	171	1.4	2.4	2.45	565	564	955,412
1991	565	0.063	1181	74	0	1.1	2.45	565	564	955,976
1992	565	0.050	1159	58	0	1.2	2.44	565	564	956,540
1993	. 565	0.076	1159	88	0	1.1	2.44	565	564	957,104
1994	565	0.263	1082	285	-1.4	1.2	2.44	565	564	957,668

APPENDIX C

IRISCAN FUNCTIONAL DESCRIPTION

C.1 TECHNOLOGY FUNDAMENTALS

IriScan biometric identification technology is based two fundamental facts. First, the iris is a measurably unique organ, and second, the iris is a stable, unchanging organ.

The iris is the colored portion of the eye on the visible surface of the eye surrounding the pupil, and surrounded by the white portion (sclera) of the eye. The iris is protected by the clear cornea and aqueous humor. The iris is rich in features which can be used to quantitatively and positively distinguish one iris from another. These include collagenous fibers and filaments, crypts, contraction furrows, corona, freckles, pits, rings, striations, and serpentine vasculature. (Color is an additional feature which IriScan does not use.)

The random pattern of these features results from chaotic morphogenesis at the time of conception. The uniqueness of these random patterns has long been recognized by experts in the field. Measuring the iris features for length, width, angle of deflection and location enables a statistical analysis with over 400 degrees of freedom. Since this is about six times the number available in conventional fingerprint analysis, the capability of much greater IriScan accuracy is obvious.

Eye experts also verify that the iris stabilizes by age one year, and absent injury, disease, or operation, remains constant and unchanged throughout life.

The uniqueness, stability, and easy visibility of the iris make it the ideal basis for the ultimate biometric identification technology.

C.2 THE BRASSBOARD SYSTEM

The DNA Brassboard Iris-based Proof-of-Concept System is fabricated from standard, off-the-shelf modules. The system utilizes the Intel 486DX4 microprocessor chip with 256 KB cache, 8 MB DRAM memory and 4 MB FLASH EPROM. Image acquisition is by a 1/3" monochrome CCD camera with a 50mm lens, working through a beam splitter. A liquid crystal display (LCD) is used to feed back an image of the eye to the user. A 20 watt quartz-halogen luminaire powered at 7 watts provides illumination through a magenta filter. The proprietary, patented software and memory for up to 4,000 IrisCode files are stored in FLASH memory.

Enrollment requires serial port connection to a standard VGA or SVGA monitor and keyboard.

C.3 THE PROCESS

The system acquires images at 30 frames per second. Each digitized frame is analyzed for focus and clarity. When an acceptable image is selected, the system locates the pupil center, the pupil boundary and the limbus (the boundary between the iris and the sclera). This defines the iris.

Zones of analysis are next superimposed on the iris. These are eight concentric circles, which are then truncated (cut off) at the top between the 10 o'clock and 2 o'clock positions and on the bottom between the 4 o'clock and 8 o'clock positions. This is done to avoid eyelid occlusion and also reflections which frequently occur in the area of the 6 o'clock and 12 o'clock positions. The previously identified features of the iris are located within the zones of analysis, using a polar coordinate system. The proprietary software creates a 256 byte IrisCode, which is stored as the template file for the presented eye.

C.4 THE COMPARISON

When an applicant presents an iris to the system, an IrisCode is created, as described above. The system then compares the new IrisCode to all of the IrisCode files in the database. Hamming Distance (HD) is used as a quantitative measure of how different the presented IrisCode is from the stored template IrisCodes. An HD value is calculated by comparison of each of the 2,048 bits in the new IrisCode to its counterpart in a database IrisCode. If the two bits are alike (both "1" or both "0"), a value of zero is assigned to that comparison. If the two bits are different, a value of one is assigned to that pair comparison. After all pairs are compared, the assigned values are summed, and divided by the total number of pair comparisons, resulting in a two-digit fractional number which is a quantitative expression of how different the two IrisCodes are. (Sometimes the full 2,048 pairs are not compared because the system detects and excludes spectral reflections which were not present during enrollment.)

The system selects the stored template file with the smallest HD as the potential identification match. If that HD is less than the pre-selected HD criterion, the identification is made. If no comparison results in an HD which meets the criterion, the applicant is rejected as not being an enrolled person.

(The mathematical theory behind IriScan's patented process is further described in Appendix D, Dr. John Daugman's paper entitled, "High Confidence Visual Recognition of Persons by a Test of Statistical Independence.")

APPENDIX D

High Confidence Visual Recognition of Persons by a Test of Statistical Independence

John G. Daugman

Reprinted from
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Vol. 15, No. 11, November 1993

High Confidence Visual Recognition of Persons by a Test of Statistical Independence

John G. Daugman

Abstract-A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person's face is the detailed texture of each eye's iris: An estimate of its statistical complexity in a sample of the human population reveals variation corresponding to several hundred independent degrees-of-freedom. Morphogenetic randomness in the texture expressed phenotypically in the iris trabecular meshwork ensures that a test of statistical independence on two coded patterns originating from different eyes is passed almost certainly, whereas the same test is failed almost certainly when the compared codes originate from the same eye. The visible texture of a person's iris in a real-time video image is encoded into a compact sequence of multi-scale quadrature 2-D Gabor wavelet coefficients, whose most-significant bits comprise a 256-byte "iris code." Statistical decision theory generates identification decisions from Exclusive-OR comparisons of complete iris codes at the rate of 4000 per second, including calculation of decision confidence levels. The distributions observed empirically in such comparisons imply a theoretical "cross-over" error rate of one in 131 000 when a decision criterion is adopted that would equalize the false accept and false reject error rates. In the typical recognition case, given the mean observed degree of iris code agreement, the decision confidence levels correspond formally to a conditional false accept probability of one in about 1031.

Index Terms—Image analysis, statistical pattern recognition, biometric identification, statistical decision theory, 2-D Gabor filters, wavelets, texture analysis, morphogenesis.

I. INTRODUCTION

FFORTS to devise reliable mechanical means for biometric personal identification have a long and colorful history. In the Victorian era for example, inspired by the birth of criminology and a desire to identify prisoners and malefactors, Sir Francis Galton F.R.S. [13] proposed various biometric indices for facial profiles which he represented numerically. Seeking to improve on the system of French physician Alphonse Bertillon for classifying convicts into one of 81 categories, Galton devised a series of springloaded "mechanical selectors" for facial measurements and established an Anthropometric Laboratory at South Kensington [13]. Other biometric identifiers that have been adopted historically, ranging from cranial dimensions to digit length, as

Manuscript received August 31, 1992; revised December 16, 1992. This work was supported in part by U.S. National Science Foundation Presidential Young Investigator Award No. IRI-8858819 and by research grants from the Kodak Corporation. Recommended for acceptance by Editor-in-Chief A. K. Jain.

The author is with Faculty of Biology, Cambridge University, Downing St., Cambridge CB2 3EJ, England.

IEEE Log Number 9212305.

well as some of the numerous geometric facial measurements currently being tried, are described in [17], [25].

Today there is renewed interest in reliable, rapid, and unintrusive means for automatically recognizing the identity of persons. Security breaches in access to restricted areas at airports are known to have contributed to terrorism; and credit card fraud now costs six billion dollars annually [3]. Other applications for high confidence personal identification include passport control, bank automatic teller machines, protected access to premises or assets, law enforcement, government intelligence, entitlement verification, birth certificates, licenses, and any existing use of keys or cards. Some of the identifying biometric features now under investigation for potential use include hand geometry, blood vessel patterns in the retina or hand, fingerprints, voice-prints, and handwritten signature dynamics. The critical attributes for any such measure are: the number of degrees-of-freedom of variation in the chosen index across the human population, since this determines uniqueness; its immutability over time and its immunity to intervention; and the computational prospects for efficiently encoding and reliably recognizing the identifying pattern.

The possibility that the iris of the eye might be used as a kind of optical fingerprint for personal identification was suggested originally by ophthalmologists [1], [12], [24], who noted from clinical experience that every iris had a highly detailed and unique texture, which remained unchanged in clinical photographs spanning decades (contrary to the occult diagnostic claims of "iridology"). Among the visible features in an iris, some of which may be seen in the close-up image of Fig. 1, are the trabecular meshwork of connective tissue (pectinate ligament), collagenous stromal fibres, ciliary processes, contraction furrows, crypts, a serpentine vasculature, rings, corona, coloration, and freckles [1], [11], [12], [24]. The striated trabecular meshwork of chromatophore and fibroblast cells creates the predominant texture under visible light [24], but all of these sources of radial and angular variation taken together constitute a distinctive "fingerprint" that can be imaged at some distance from the person. Further properties of the iris that enhance its suitability for use in automatic identification include 1) its inherent isolation and protection from the external environment, being an internal organ of the eye, behind the cornea and the aqueous humor; 2) the impossibility of surgically modifying it without unacceptable risk to vision; and 3) its physiological response to light, which provides a natural test against artifice.

A property the iris shares with fingerprints is the random morphogenesis of its minutiae. Because there is no genetic

Fig. 1. Close-up image illustrating the trabecular meshwork and other fea-

penetrance in the expression of this organ beyond its anatomical form, physiology, color and general appearance, the iris texture itself is stochastic or possibly chaotic. Since its detailed morphogenesis depends on initial conditions in the embryonic mesoderm from which it develops [11], the phenotypic expression even of two irises with the same genetic genotype (as in identical twins, or the pair possessed by one individual) have uncorrelated minutiae. In these respects the uniqueness of every iris parallels the uniqueness of every fingerprint, common genotype or not. But the iris enjoys further practical advantages over fingerprints and other biometrics for purposes of automatic recognition, including 4) the ease of registering its image at some distance from the Subject without physical contact, unintrusively and perhaps inconspicuously; and 5) its intrinsic polar geometry, which imparts a natural coordinate system and an origin of coordinates.

Unknown until the present work was whether mathematically there were sufficient degrees-of-freedom, or forms of variation in the iris among individuals, to impart to it the same singularity as a conventional fingerprint. Also uncertain was whether efficient algorithms could be developed to extract a detailed iris description reliably from a live video image, generate a compact code for the iris (of minuscule length compared with image data size), and render a decision about individual identity with high statistical confidence, all within less than one second of computation time on a general-purpose microprocessor. The present report resolves all of these questions affirmatively and describes a working system.

II. IMAGE ANALYSIS

A. Operators for Locating an Iris

Iris analysis begins with reliable means for establishing whether an iris is visible in the video image, and then precisely

locating its inner and outer boundaries (pupil and limbus). Because of the felicitous circular geometry of the iris, these tasks can be accomplished for a raw input image I(x,y) by integrodifferential operators that search over the image domain (x,y) for the maximum in the blurred partial derivative, with respect to increasing radius r, of the normalized contour integral of I(x,y) along a circular arc ds of radius r and center coordinates (x_0,y_0) :

$$\max_{(r,x_0,y_0)} \left| G_{\sigma}(r) * \frac{\partial}{\partial r} \oint_{r,x_0,y_0} \frac{I(x,y)}{2\pi r} ds \right|, \qquad (1)$$

where * denotes convolution and $G_{\sigma}(r)$ is a smoothing function such as a Gaussian of scale σ . The complete operator behaves in effect as a circular edge detector, blurred at a scale set by σ , that searches iteratively for a maximum contour integral derivative with increasing radius at successively finer scales of analysis through the three parameter space of center coordinates and radius (x_0, y_0, r) defining the path of contour integration.

At first the blurring factor σ is set for a coarse scale of analysis so that only the very pronounced circular transition from iris to (white) sclera is detected. Then after this strong circular boundary is more precisely estimated, a second search begins within the confined central interior of the located iris for the fainter pupillary boundary, using a finer convolution scale σ and a smaller search range defining the paths (x_0,y_0,r) of contour integration. In the initial search for the outer bounds of the iris, the angular arc of contour integration ds is restricted in range to two opposing 90° cones centered on the horizontal meridian, since eyelids generally obscure the upper and lower limbus of the iris. Then in the subsequent interior search for the pupillary boundary, the arc of contour integration ds in operator (1) is restricted to the upper 270° in order to avoid the corneal specular reflection that is usually superimposed in the lower 90° cone of the iris from the illuminator located below the video camera. Taking the absolute value in (1) is not required when the operator is used first to locate the outer boundary of the iris, since the sclera is always lighter than the iris and so the smoothed partial derivative with increasing radius near the limbus is always positive. However, the pupil is not always darker than the iris, as in persons with normal early cataract or significant back-scattered light from the lens and vitreous humor; applying the absolute value in (1) makes the operator a good circular edge-finder regardless of such polarity-reversing conditions. With σ automatically tailored to the stage of search for both the pupil and limbus, and by making it correspondingly finer in successive iterations, the operator defined in (1) has proven to be virtually infallible in locating the visible inner and outer annular boundaries of

For rapid discrete implementation of the integrodifferential operator in (1), it is more efficient to interchange the order of convolution and differentiation and to concatenate them, before computing the discrete convolution of the resulting operator with the discrete series of undersampled sums of pixels along circular contours of increasing radius. Using the finite difference approximation to the derivative for a discrete

series in n.

$$\frac{\partial G_{\sigma}(r)}{\partial r} \approx G_{\sigma}^{(1)}(n) = \frac{1}{\Delta r} G_{\sigma}(n\Delta r) - \frac{1}{\Delta r} G_{\sigma}((n-1)\Delta r), \tag{2}$$

where Δr is a small increment in radius, and replacing the convolution and contour integrals with sums, we can derive through these manipulations an efficient discrete operator (see (3) at the bottom of the page) for finding the inner and outer boundaries of an iris where $\Delta \theta$ is the angular sampling interval along the circular arcs, over which the summed I(x,y) pixel intensities represent the contour integrals expressed in (1).

A nonlinear enhancement of this operator makes it more robust for detecting the inner boundary of the iris. Because the circular edge that defines the pupillary boundary is often very faint, especially in dark-eved persons, it is advantageous to divide each term in the convolution summation over kin (3) by a further contour integral around a smaller radius $(k-2)\Delta r$. This divisor becomes very small and stable as the parameters $(n\Delta r, x_0, y_0)$ of contour integration become wellmatched to the true location and size of the pupil, and this helps the resulting sum of ratio terms (see (4) at the bottom of the page) to achieve a distinctive maximum that reliably locates the pupillary boundary. In essence, dividing by the second contour integral exploits the fact that the interior of the pupil is generally both homogeneous and dark. This creates a suddenly very small divisor when the parameters $(n\Delta r, x_0, y_0)$ are optimal for the true pupil, thus producing a sharp maximum in the overall search operator (4).

Using multigrid search with gradient ascent over the image domain (x,y) for the center coordinates and initial radius of each series of contour integrals, and decimating both the incremental radius interval Δr and the angular sampling interval $\Delta \theta$ in successively finer scales of search spanning four octaves, these iris locating operations become very efficient without loss of reliability. The total processing time on a RISC-based CPU for iris detection and localization to single-pixel precision using such operators, starting from a 640 x 480 image, is about one-quarter of a second (250 msec) with optimized integer code.

B. Assessing Image Quality, Eyelid Occlusion, and Possibility of Artifice

The operators previously described for finding an iris also provide a good assessment of "eyeness," and of the autofocus performance of the video camera. The normally sharp boundary at the limbus between the iris and the (white) sclera generates a large positive circular edge; if a derivative larger than a certain criterion is not detected by the searching operator using the contour integral defined in (3), then this suggests either that no eye is present, or that it is largely obscured by eyelids, or that it is in poor focus or beyond resolution. In practice the automatic identifying system that has been built continues to grab image frames in rapid succession until several frames in sequence confirm that an eye is present and in focus, through large values being found by operator (3), and through large ratios of circular contour integrals being found on either side of the putative limbus boundary. Excessive eyelid occlusion is alleviated in cooperating Subjects by providing live video feedback through the lens of the video camera into which the Subject's gaze is directed, by means of a miniature liquid-crystal TV monitor displaying the magnified image through a beamsplitter in the optical axis.

A further test for evidence that a living eye is present exploits the fact that pupillary diameter relative to iris diameter in a normal eye is constantly changing, even under steady illumination [1], [11]. Continuous involuntary oscillations in pupil size, termed hippus or pupillary unrest, arise from normal fluctuations in the activities of both the sympathetic and parasympathetic innervation of the iris sphincter muscle [1]. These changes in pupil diameter relative to iris diameter over a sequence of frames are detected by the discrete operators (4) and (3), respectively, in order to compute a "hippus measure" defined as the coefficient of variation (standard deviation divided by mean) for the fluctuating time series of these diameter ratios. Together with the accompanying elastic deformations in the iris texture itself arising either from normal hippus or from a light-driven pupillomotor response, these fluctuations could provide a test against artifice (such as a fake iris painted onto a contact lens) if necessary in highly secure implementations of this system.

$$\max_{(n\Delta r, x_0, y_0)} \left| \frac{1}{\Delta r} \sum_{k} \left\{ \left(G_{\sigma}((n-k)\Delta r) - G_{\sigma}((n-k-1)\Delta r) \right) \sum_{m} I[(k\Delta r \cos(m\Delta\theta) + x_0), (k\Delta r \sin(m\Delta\theta) + y_0)] \right\} \right|, \tag{3}$$

$$\max_{(n\Delta r, x_0, y_0)} \left| \sum_{k} \left\{ \frac{\left(G_{\sigma}((n-k)\Delta r) - G_{\sigma}((n-k-1)\Delta r) \right) \sum_{m} I[(k\Delta r \cos(m\Delta\theta) + x_0), (k\Delta r \sin(m\Delta\theta) + y_0)]}{\Delta r \sum_{m} I[((k-2)\Delta r \cos(m\Delta\theta) + x_0), ((k-2)\Delta r \sin(m\Delta\theta) + y_0)]} \right\} \right|. \tag{4}$$

C. Two-Dimensional Gabor Filters

An effective strategy for extracting both coherent and incoherent textural information from images, such as the detailed texture of an iris, is the computation of 2-D Gabor phasor coefficients. This family of 2-D filters were originally proposed in 1980 by Daugman [8] as a framework for understanding the orientation-selective and spatial-frequency-selective receptive field properties of neurons in the brain's visual cortex, and as useful operators for practical image analysis problems. Their mathematical properties were further elaborated by the author in 1985 [9], who pointed out that such 2-D quadrature phasor filters were conjointly optimal in providing the maximum possible resolution both for information about the orientation and spatial frequency content of local image structure ("what"), simultaneously with information about 2-D position ("where"). The complex-valued family of 2-D Gabor filters uniquely achieves the theoretical lower bound for conjoint uncertainty over these four variables, as dictated by an inescapable uncertainty principle [9].

These properties are particularly useful for texture analysis [2], [4]-[7], [10], [14]-[16], [18], [23], [29]-[31] because of the 2-D spectral specificity of texture as well as its variation with 2-D spatial position. A rapid method for obtaining the required coefficients on these elementary functions for the purpose of representing any image completely by its 2-D Gabor Transform, despite the non-orthogonality of the expansion basis, was given in [10] through the use of a relaxation network. A large and growing literature now exists on the efficient use of this nonorthogonal expansion basis and its applications (e.g., [2], [14], [23], [28]).

Two-dimensional Gabor filters over the image domain (x, y) have the functional form

$$G(x,y) = e^{-\pi \left[(x-x_0)^2/\alpha^2 + (y-y_0)^2/\beta^2 \right]} e^{-2\pi i \left[u_0(x-x_0) + v_0(y-y_0) \right]},$$
 (5)

where (x_0, y_0) specify position in the image, (α, β) specify effective width and length, and (u_0, v_0) specify modulation, which has spatial frequency $\omega_0 = \sqrt{u_0^2 + v_0^2}$ and direction $\theta_0 = \arctan(v_0/u_0)$. (A further degree-of-freedom included below but not captured above in (5) is the relative orientation of the elliptic Gaussian envelope, which creates cross-terms in xy.) The 2-D Fourier transform F(u,v) of a 2-D Gabor filter has exactly the same functional form, with parameters just interchanged or inverted [9]:

$$F(u,v) = e^{-\pi \left[(u-u_0)^2 \alpha^2 + (v-v_0)^2 \beta^2 \right]} e^{-2\pi i \left[x_0 (u-u_0) + y_0 (v-v_0) \right]}.$$
(6)

The real part of one member of the 2-D Gabor filter family, centered at the origin $(x_0, y_0) = (0, 0)$ and with aspect ratio $\beta/\alpha = 1$ is shown in Fig. 2, together with its 2-D Fourier transform F(u, v).

2-D Gabor functions can form a complete self-similar wavelet expansion basis [10], with the requirements of orthogonality and strictly compact support [20]-[21] relaxed, by appropriate parameterization for dilation, rotation, and translation. If we take $\Psi(x,y)$ to be a chosen generic 2-D Gabor wavelet, then we can generate from this member

SPATIAL FILTER PROFILE

FREQUENCY RESPONSE

Fig. 2. The real part of a 2-D Gabor wavelet, and its 2-D Fourier transform (from Daugman (1980) [8]).

a complete self-similar family of 2-D wavelets through the generating function

$$\Psi_{mn\theta}(x,y) = 2^{-2m} \Psi(x',y'), \tag{7}$$

where the substituted variables (x', y') incorporate dilations of the wavelet in size by 2^{-m} , translations in position (p, q), and rotations through angle θ :

$$x' = 2^{-m} [x\cos(\theta) + y\sin(\theta)] - p \tag{8}$$

$$y' = 2^{-m} [-x \sin(\theta) + y \cos(\theta)] - q.$$
 (9)

It is noteworthy [9] that as consequences of the similarity theorem, shift theorem, and modulation theorem of Fourier analysis, together with the rotation isomorphism of the Fourier transform, all of these effects of the generating function (7) applied to a 2-D Gabor mother wavelet $\Psi(x,y) = G(x,y)$ in order to generate a 2-D Gabor daughter wavelet $\Psi_{mpq\theta}(x,y)$ have corresponding or reciprocal effects on its Fourier transform F(u,v) without any change in functional form. This family of wavelet filters and their Fourier transforms is closed

under the transformation group of dilations, translations, rotations, and convolutions [9]. We will exploit these selfsimilarity properties of 2-D Gabor filters in analyzing iris textures across multiple scales to construct identifying codes.

D. Doubly Dimensionless Projected Polar Coordinate System

Zones of analysis are established on the iris in a doubly dimensionless projected polar coordinate system. Its purpose is to maintain reference to the same regions of iris tissue regardless both of pupillary constriction and overall iris image size, and hence regardless of distance to the eye and video zoom factor. This pseudo polar coordinate system is not necessarily concentric, since for most eyes the pupil is not central in the iris. (Typically the pupil is both nasal to, and inferior to, the center of the iris [1], and it is not unusual for its displacement to be as great as 15%.) The stretching of the elastic trabecular meshwork of the iris from constriction of the pupil is intrinsically modelled by the doubly dimensionless projected coordinate system as the stretching of a homogeneous rubber sheet, having the topology of an annulus anchored along its outer perimeter, with tension controlled by an off-centered interior ring of variable radius.

The homogeneous rubber sheet model assigns to each point in the iris, regardless of size and pupillary dilation, a pair of dimensionless real coordinates (r,θ) where r lies on the unit interval [0,1] and θ is the usual angular quantity that is cyclic over $[0,2\pi]$. The remapping of the iris image I(x,y) from raw coordinates (x,y) to the doubly dimensionless nonconcentric polar coordinate system (r,θ) can be represented as

$$I(x(r,\theta), y(r,\theta)) \to I(r,\theta)$$
 (10)

where $x(r,\theta)$ and $y(r,\theta)$ are defined as linear combinations of both the set of pupillary boundary points $(x_p(\theta),y_p(\theta))$ around the circle that was found to maximize operator (4), and the set of limbus boundary points along the outer perimeter of the iris $(x_s(\theta),y_s(\theta))$ bordering the sclera, that was found to maximize operator (3):

$$x(r,\theta) = (1-r)x_p(\theta) + rx_s(\theta) \tag{11}$$

$$y(r,\theta) = (1-r)y_p(\theta) + ry_s(\theta). \tag{12}$$

Demarcations of the zones of analysis specified in this projected doubly dimensionless coordinate system, for two sample close-up iris images, are illustrated in Figs. 3 and 4. These zones of analysis are assigned in the same format for all eyes and are based on a fixed partitioning of the dimensionless polar coordinate system, but of course for any given eye their affine radial scaling depends on the actual pupillary diameter (and possible offset) relative to the limbus boundary as determined by operators (3) and (4). The zones of analysis always exclude a region at the top of the iris where partial occlusion by the upper eyelid is common, and a 45° notch at the bottom where there is a corneal specular reflection from the filtered light source that illuminates the eye from below.

Fig. 3. Demarcated zones of analysis and illustration of a computed iris code.

Fig. 4. Demarcated zones of analysis and illustration of a computed iris code

(Illumination at an angle is desirable to deflect its specular reflection from eye-glasses, which persons are not asked to remove. The much greater curvature of the cornea compared with that of spectacle lenses, however, prevents elimination of the illuminator's first Purkinje reflection from the moist lower front surface of the cornea or of contact lenses; this necessitates the exclusion notch in the zones of analysis near the 6-o'clock position.)

Rotation invariance to correct for head tilt and cyclovergence of the eye within its orbit is achieved in a subsequent stage of analysis of the iris code itself. The overall recognition scheme is thus invariant under the Poincaré group of transformations of the iris image: planar translation, rotation (due to cyclovergence and tilt of the head), and dilation (due both to imaging distance and video zoom factor). Through the doubly dimensionless coordinate system, the constructed iris code is also invariant under the nonaffine elastic distortion (or projected conic transformation) that arises from variable pupil constriction.

III. CODE CONSTRUCTION AND ENTROPY MEASURES

An uncompressed code length of 256 bytes was chosen because this is roughly the capacity of the three-channel magnetic stripe affixed to the reverse side of the standard IS-7811 credit/debit card [3]. But this absolute code length only establishes an upper bound on the information capacity of an iris code, and it is important to know its actual inherent capacity. This capacity is reduced by intrinsic correlations, if any, among the coding primitives themselves. It is then also important to know the "source entropy" associated with the typical human iris signal, which will be much less than the upper bound determined by the resolution of imaging, because of inherent correlations (especially radial) within the iris. These reduced entropies directly influence the confidence levels associated with any decision strategy. In the methods to be described here, irises are efficiently recognized by executing a statistical test of independence on their codes. In effect, this examines whether the degree to which one iris code predicts another iris code, is compatible with the hypothesis that they arise from independent random processes. Such a test of statistical independence is passed almost certainly for two iris codes from different eyes, but the same test is failed almost certainly when the compared signatures originate from the same eye.

A. The 256-Byte Iris Code

The 2-D Gabor filters used for iris recognition are defined in the doubly dimensionless polar coordinate system (r, θ) as follows:

$$G(r,\theta) = e^{-i\omega(\theta - \theta_0)} e^{-(r - r_0)^2/\alpha^2} e^{-(\theta - \theta_0)^2/\beta^2}.$$
 (13)

Both the real and imaginary members of such quadrature filters are employed, so the resulting image projections are complex. The real parts of the 2-D Gabor filters are slightly adjusted through truncation to give them zero volume, and hence no dc response, so that computed iris code bits do not depend upon strength of illumination. (The imaginary parts of the filters inherently have no dc response because of odd symmetry.) The parameters α and β co-vary in inverse proportion to ω to generate a self-similar, multi-scale wavelet family of 2-D frequency-selective quadrature filters with constant logarithmic bandwidth, whose locations, specified by θ_0 and r_0 , range across the zones of analysis of the iris.

Each bit h in an iris code can be regarded as a coordinate of one of the four vertices of a logical unit square in the complex plane. It is computed by evaluating, at one scale of analysis, the sign of both the real and imaginary parts of the quadrature image projections from a local region of the iris image $I(\rho, \phi)$ onto a particular complex 2-D Gabor filter:

$$h_{\text{Re}} = 1 \text{ if Re} \int_{\rho} \int_{\phi} e^{-i\omega(\theta_0 - \phi)} e^{-(r_0 - \rho)^2/\alpha^2} e^{-(\theta_0 - \phi)^2/\beta^2} I(\rho, \phi) \rho d\rho d\phi \ge 0, \quad (14)$$

$$h_{\rm Re} = 0 \text{ if Re} \int_{\rho} \int_{\phi} e^{-i\omega(\theta_0 - \phi)} e^{-(r_0 - \rho)^2/\alpha^2}$$

$$\cdot e^{-(\theta_0 - \phi)^2/\beta^2} I(\rho, \phi) \rho d\rho d\phi < 0, \qquad (15)$$

$$h_{\text{Im}} = 1 \text{ if Im} \int_{\rho} \int_{\phi} e^{-i\omega(\theta_0 - \phi)} e^{-(r_0 - \rho)^2/\alpha^2} \cdot e^{-(\theta_0 - \phi)^2/\beta^2} I(\rho, \phi) \rho d\rho d\phi \ge 0, \tag{16}$$

$$h_{\rm Im} = 0 \text{ if Im } \int_{\rho} \int_{\phi} e^{-i\omega(\theta_0 - \phi)} e^{-(r_0 - \rho)^2/\alpha^2} \cdot e^{-(\theta_0 - \phi)^2/\beta^2} I(\rho, \phi) \rho d\rho d\phi < 0.$$
 (17)

Thus, a single complex 2-D Gabor filter (13), having a particular set of size and position parameters $(r_0, \theta_0; \alpha, \beta, \omega)$ in the dimensionless iris domain (r, θ) , performs a coarse phase quantization of the local texture signal by approximating it as one vertex $(h_{\rm Re}, h_{\rm Im})$ of the logical unit square associated with this filter through conditionals (14)–(17). The time required for computing a complete iris code of 2048 such paired bits (256 bytes) on a RISC-based CPU, once an iris has been located within the image, is about one-tenth of a second (100 msec) with optimized integer code.

B. Commensurability of Iris Codes

A critical feature of this coding approach is the achievement of commensurability among iris codes, by mapping all irises into a representation having universal format and constant length, regardless of the apparent amount of iris detail. In the absence of commensurability among the codes, one would be faced with the inevitable problem of comparing long codes with short codes, showing partial agreement and partial disagreement in their lists of features. It is not obvious mathematically how one would make objective decisions and compute confidence levels on a rigorous basis in such a situation. This difficulty has hampered efforts to automate reliably the recognition of fingerprints. Commensurability facilitates and objectifies the code comparison process, as well as the computation of confidence levels for each decision. It thereby greatly increases both the speed and the reliability of iris recognition decisions.

C. Bitwise Entropy and Iris Variation

A primary question is whether there is independent variation in iris detail, both within a given iris and across the human population. Any systematic correlations in iris detail across the population would undermine the uniqueness of an iris code. Similarly, any systematic correlations within an iris would reduce its statistical complexity, or dimensionality, and thus also undermine its uniqueness.

A code of any length has maximum information capacity if all its possible states are equiprobable [26]. This reflects the fact that the Shannon entropy measure

$$S = -\sum_{j=1}^{n} P_{j} \log_{2} P_{j}, \tag{18}$$

for P_i the probability of each of the n states and with

$$\sum_{j=1}^{n} P_j = 1 (19)$$

is maximum when for all j,

$$P_i = 1/n. (20)$$

By construction, the 2-D Gabor filters (13) have no DC response in either their real or imaginary parts, as noted earlier. This eliminates possible dependency of the computed code bit conditionals (14)–(17) on mean illumination of the iris and on its contrast gain, and it also renders equiprobable the four vertices of the logical unit square $(h_{\rm Re}, h_{\rm Im})$ associated with each 2-D Gabor filter. As a consequence of analyzing the iris texture with filters lacking any dc response, the iris code has the property of encoding zero-crossings, which are known [19] to be exceedingly rich in information for band-limited signals.

The variation among iris code bits as defined above in (14)–(17) was tracked both across bit location within the code and across a population of 592 different iris codes. The ethnic groups and nationalities included in this sample are listed in Section V-A, together with further database details. For each of 128 code bit locations, drawn from all parts of the iris code, Fig. 5 plots the probability of a set bit. The graph shows that this is fairly equiprobable across all code bit locations, and that it remains close to one-half. (Mean of the means is $0.4984 \pm$ 0.0244). The flatness of the graph reflects the existence of independent variation in the detailed iris texture, both across an iris and across the human population studied. The amount of independent variation that is typical in a given iris will be quantified in the following section, which estimates the underlying number of independent degrees-of-freedom in an iris code after its intrinsic correlations have been factored out. Across the population, the constant independent probability of any given code bit being set (i.e., the full equivocation entropy between iris codes) presumably reflects the absence of genetic penetrance in the detailed morphogenesis of this tissue, in favor of stochastic or chaotic processes. Any systematic feature, say at the 12-o'clock position in the iris, would have caused systematic deviation in Fig. 5 for the bit probabilities derived from that region. Second, this graph's proximity to a probability of one-half establishes that, since very nearly p = 1 - p, the iris code is bitwise a maximum entropy code.

D. Number of Independent Degrees-of-Freedom in an Iris Code

Although there are 256 bytes or 2048 bits in any given iris code, such a code possesses far fewer than 2048 independent binary degrees-of-freedom. One reason is that there are substantial radial correlations within an iris. For example, a given furrow or ciliary process tends to propagate across a significant radial distance in the iris, exerting its influence on several remote parts of the code, thus reducing their independence. Similarly, a feature such as a furrow influences different parts of the code associated with several different scales of analysis, since the Fourier spectrum of such a punctate feature can span several octaves. Finally, inherent correlations are introduced by the bandpass property of the 2-D Gabor filters, specifically

Bit Probabilities

Fig. 5. Equiprobable variation of iris code bits, for each of 128-code bit locations, across a population of 592 different iris codes.

by the finite bandwidth determined by parameters α , β , and ω in (13).

As pointed out by Wiener [32], any signal convolved with a linear filter acquires a correlation distance that is greater than or equal to the reciprocal of the bandwidth of the filter. This property is well-known for low-pass filters but is perhaps less widely recognized for bandpass filters. Even though the peak response of the bandpass filter might be at a very high frequency, its passband introduces phase coherence that lingers for a greater number of cycles, the narrower its bandwidth. (This is easily grasped by considering the limiting case of the coherent response generated by a notch-pass filter.) In the present case, the correlations introduced inherently by the band-limited 2-D Gabor filters alone reduce the information capacity of the iris code by a factor of 4.05, from 2.048 bits to about 506 bits, given the values of α , β , ω and the sampling densities employed at the different scales of analysis.

The number of independent degrees-of-freedom typically remaining in an iris code after both of these sources of correlation have been factored in (those arising from the 2-D Gabor filters and those inherent within an iris), can be estimated by examining the distribution of Hamming distances computed across a population of unrelated iris codes. Comparing each pair of iris codes A and B bit-by-bit, their normalized Hamming distance HD is defined here as the fraction of disagreeing bits between them:

$$HD = \frac{1}{2,048} \sum_{j=1}^{2,048} A_j(XOR)B_j$$
 (21)

where the Boolean operator (XOR) equals 1, if and only if the two bits A_i and B_j are different.

Since each bit of any iris code has equal a priori odds of being a 1 or a 0, there is probability p = 0.5 that any pair

Hamming Distances for Imposters

Fig. 6. Distribution of Hamming distances between unrelated iris codes. Solid curve is (22).

of bits from different iris codes disagree. (Each of the four states 00, 01, 10, 11 has probability 0.25; the bits agree in two cases and disagree in the other two.) If each of the 2,048 bits in a given iris code were fully independent of every other bit, then the expected distribution of observed Hamming distances between two independent such iris codes would be a binomial distribution with p=0.5 and N=2048 (in other words, equivalent to tossing a fair coin 2048 times, and counting the fraction of heads in each round of 2048 tosses). Once the intrinsic code correlations introduced by the 2-D Gabor filters were factored in, the distribution should be a binomial with p=0.5 and N=506 if the iris itself had no inherent correlations.

The actual distribution of observed Hamming distances between codes for different irises is shown in Fig. 6, which is generated from 2 064 complete comparisons between unrelated pairs of iris codes. This empirical distribution has a standard deviation of $\sigma=0.038$, with a mean of $\mu=0.497$. Since the standard deviation of a binomial distribution is given by $\sigma=\sqrt{pq/N}$ (where q=1-p), this distribution of Hamming distances would correspond to a binomial process with N=173 Bernoulli trials per run. Given the estimate of roughly a four-sample correlation distance introduced by the 2-D Gabor encoders, we can now estimate that a bound on the "source entropy," reflecting the number of degrees-of-freedom of variation typical of iris texture resolved to 2048 samples, would be something like 690 bits.

The binomial distribution for N Bernoulli trials with outcome probabilities p and q predicts that the likelihood of observing a fraction x = m/N events among the N trials is:

$$f(x) = \frac{N!}{m!(N-m)!} p^m q^{(N-m)}.$$
 (22)

A theoretical plot of the probability density function associated with such a binomial process having N=173 and p=0.5 is also shown in Fig. 6 as a smooth curve, and it offers a good fit to the data. In summary it appears that there exist the equivalent of about 173 independent binary degrees-offreedom typically remaining in a 2048-bit iris code, once both the correlations introduced by the 2-D Gabor filters and those inherent in the iris have been factored in. The likelihood of two iris codes from different irises agreeing completely by chance is thus roughly one in 2^{173} , or approximately 10^{-52} .

IV. STATISTICAL DECISION THEORY

The problem of recognizing the signature of a given iris as belonging to a particular individual, either after exhaustive search through a large database or just by comparison with a single authentication template, can be formulated within the framework of statistical decision theory [22], [27]. This framework also resolves the critical problem of assigning a confidence level to any such recognition decision. By this approach we can convert the problem of pattern recognition into a much more expedient task, which is the execution of a simple test of statistical independence.

A. Neyman-Pearson Formalism

Yes/No recognition decisions have four possible outcomes: either a given pattern is, or is not, a true instance of the category in question; and in either case, the decision made by the algorithm may be either the correct one or the incorrect one. In the present application the four possible outcomes are termed Acceptance of Authentic (AA), Acceptance of Imposter (IA), Rejection of Authentic (AR), and Rejection of Imposter (IR). Obviously the first and fourth outcomes are desired, and the second and third outcomes are errors. The goal of the decision-making algorithm is to maximize the conditional probabilities of AA and IR, while minimizing the likelihoods of IA and AR. The pairwise trade-offs among the probabilities of these four outcomes can be manipulated in a way that reflects their associated costs and benefits in a particular application.

The Neyman-Pearson formalism for decision problems in which the prior probabilities are not known and the error costs are not fixed, but the posterior distributions are known, is summarized in Fig. 7. A given measurement of the Hamming distance between two iris codes constitutes a point on the abscissa. This measurement is regarded as being a sample from one of two random processes ("Authentics" or "Imposters"), whose probability distributions have been arbitrarily shown here as Gaussians with large overlap for purposes of illustration. The two distributions, $P_{Au}(x)$ and $P_{Im}(x)$, specify respectively the probability density of a particular measured Hamming distance, x, arising from two comparisons of the same iris, or from two comparisons of different irises. Any measured Hamming distance smaller than a chosen decision criterion, as indicated by the dotted line in Fig. 7, is judged to belong to the Authentics distribution, while any Hamming distance greater than this criterion is judged to belong to the Imposters distribution. The probabilities of the four possible

Fig. 7. Statistical decision theory: Formalism for decisions under uncertainty.

outcomes AA, IA, AR, and IR are equal to the areas under the two probability density functions, $P_{\rm Au}(x)$ and $P_{\rm Im}(x)$, on either side of the chosen decision criterion C:

$$P(AA) = \int_0^C P_{Au}(x)dx,$$
 (23)

$$P(AR) = \int_{C}^{1} P_{Au}(x)dx,$$
 (24)

$$P(IA) = \int_0^C P_{\rm Im}(x) dx, \tag{25}$$

$$P(IR) = \int_{C}^{1} P_{Im}(x) dx. \tag{26}$$

These four probabilities are represented by the four shaded areas in Fig. 7.

B. Strategies and Decidability

It is clear that the four probabilities separate into two pairs that must sum to unity, and two pairs are governed by inequalities:

$$P(AA) + P(AR) = 1, (27)$$

$$P(IA) + P(IR) = 1, (28)$$

$$P(AA) > P(IA), \tag{29}$$

$$P(IR) > P(AR). \tag{30}$$

It is also clear that the error rates, P(AR) and P(IA), could be minimized if the two Hamming distance distributions, $P_{Au}(x)$ and $P_{Im}(x)$, had minimal overlap. Their overlap

Fig. 8. The Neyman-Pearson decision strategy curve.

would be reduced if their two means were farther apart, or if their variances were smaller, of both. Of course, the two distributions in general will not be matched in form and variance, as was implied in Figure 7 for simplicity.

Manipulation of the decision criterion C in (23)–(26), in order to implement different decision strategies appropriate for the costs of either type of error in a given application, is illustrated schematically in Fig. 8. Such a decision strategy diagram, sometimes called a receiver operating characteristic or Neyman–Pearson curve, plots P(AA) from (23) against P(IA) from (25) as a locus of points. Each point in such a plot represents a decision strategy as specified by a different choice for the criterion C, as was indicated schematically in Fig. 7.

Inequality (29) states that the Neyman-Pearson strategy curve shown in Fig. 8 will always lie above the diagonal line. Clearly, strategies that were excessively conservative or excessively liberal would correspond to sliding along the curve towards the two diagonal extremes. Independent of where the decision criterion is placed along this continuum, the overall power of a pattern recognition method may be gauged by the length of the line segment in Fig. 8 joining the diagonal line and the bend in the strategy curve. This distance is monotonically related to the quantity d', for "detectability" or "decidability," defined as the difference between the means of the two distributions that were shown schematically in Fig. 7 divided by a conjoint measure of their standard deviations. This standard measure of statistical decidability has a value of about d' = 8.4 in the present work.

V. PERFORMANCE

With this biometric recognition problem now formulated within the frameworks of signal processing and statistical decision theory, we can evaluate the identifiability of persons by their irises.

A. Database

The performance results reported here are based partly on a photographic database of eye images generously made available in 1989 by Ophthalmology Associates of Connecticut, which were digitized and then combined with further databases of images subsequently acquired directly with video cameras in Massachusetts and in Cambridgeshire, England. The total number of different eyes represented in the combined database was 592, in images acquired over a three year period from 323 persons. Multiple images were always acquired from each person, ranging from 2 to 10 images of each eye over the time period (average 3.04 images per eye). Some images were rejected manually because of excessive eyelid closure or poor focus, before the automatic operators to perform these tasks as described in Section 2.2 were developed. Images in RS-170, VHS (NTSC), and S-VHS (NTSC) formats were digitized by 480 x 640 monochrome 8-bit/pixel framegrabber boards in either Macintosh or (by SCSI interface) SUN sparcstation hosts. Image resolution and iris size within the images varied due to both distance and video zoom factor, but the outer diameter of the iris was always greater than 60 pixels and was usually in the range of 100 pixels to 200 pixels. Imaging distances ranged from 46 cm to 15 cm, normally through a 330-mm positive meniscus lens. Ethnic groups and nationalities represented in the combined databases included persons of Northern European, Mediterranean, Eastern European, Indian, Semitic, Afro-American, Hispanic-American, Japanese, and Chinese origin.

B. Imposters' Hamming Distances

The distribution of Hamming distances generated by 2064 direct comparisons between pairwise unrelated iris codes was seen previously in Fig. 6. The average Hamming distance was very close to 0.5 since any pair of corresponding bits in the codes for two different irises have equal probability of agreeing or disagreeing. The raw distribution was well described by a suitably fitted binomial model, whose effective number of implicit Bernoulli trials was appropriately reduced to factor out the residual correlations that exist among the bits within a given iris code.

Because of possible cyclovergence of the eye in its orbit as well as tilting of the head, all iris code comparisons must be performed over a range of relative orientations. The comparison process then becomes a "best of n" test of agreement, and this must be factored into the statistical decision theory that underlies this method of personal identification. Let $f_0(x)$ be the raw density distribution obtained for the Hamming distances between imposters after testing only at a single relative orientation; for example, $f_0(x)$ might be the binomial defined in (22). Then $F_0(x)$, the cumulative of $f_0(x)$ from 0 to x, becomes the probability of making a False Accept in such a test when using Hamming distance criterion x:

$$F_0(x) = \int_0^x f_0(x) dx$$
 (31)

Fig. 9. Hamming distances between unrelated iris codes, allowing for n = 7 different degrees of eye or head tilt. Solid curve is (34).

or, equivalently,

$$f_0(x) = \frac{d}{dx} F_0(x).$$
 (32)

Clearly, then, the probability of *not* making a false accept when using criterion x is $1 - F_0(x)$ after a single test, and it is $[1 - F_0(x)]^n$ after carrying out n such tests independently at n different relative orientations. It follows that the probability of a False Accept after a "best of n" test of agreement, when using criterion x, is

$$F_n(x) = 1 - [1 - F_0(x)]^n$$
 (33)

and the expected density $f_n(x)$ associated with this cumulative is

$$f_n(x) = \frac{d}{dx} F_n(x)$$

= $n f_0(x) [1 - F_0(x)]^{n-1}$.(34)

Fig. 9 shows the distribution of Hamming distances obtained from 2064 pairwise comparisons among the same set of unrelated iris codes as was used in Fig. 6, but allowing for n=7 different relative orientations of the eye. The distribution is biased toward a lower mean Hamming distance of $\mu=0.450$, since only the best level of agreement after all seven rotations (i.e., the smallest Hamming distance) is kept and registered as the degree of match. The solid curve in Fig. 9 is a plot of (34), using as its $f_0(x)$ term the binomial density distribution specified earlier in (22) and plotted in Figure 6, and using the cumulative of this as its $F_0(x)$ term.

C. Authentics' Hamming Distances

Fig. 10 shows the distribution of Hamming distances computed between 1,208 pairs of different images of given irises ("authentics"). Different images of the same iris never yield a Hamming distance of zero, because of variations in the Subject's angle of gaze, degree of eyelid occlusion, specular

Fig. 10. Hamming distances between pairs of different iris codes for each given iris, allowing for n = 7 different degrees of eye or head tilt.

reflections from the cornea or corrective lenses, random silhouettes of the evelashes upon the iris, and light-driven as well as uncontrolled oscillations in pupillary dilation ("hippus") which cause some folding and unfolding of iris tissue that would not be captured by the homogeneous rubber sheet model. Nonetheless, these Hamming distances (again with 7 possible relative orientations of the eye) are clearly substantially smaller than those seen in Fig. 9 for imposters. This distribution has a mean of $\mu = 0.084$ and standard deviation $\sigma = 0.0435$. The solid curve plots a binomial as defined previously in (22) but with p = 0.084, and N = 41 chosen in order to match the observed σ since the standard deviation of a binomial distribution is $\sigma = \sqrt{pq/N}$ where q = 1 - p. Continuous interpolation of these binomial distributions, as well as estimation of their factorial terms, was done by Stirling's approximation which errs by less than 1% for $n \geq 9$:

$$n! \approx e^{n \ln(n) - n + \frac{1}{2} \ln(2\pi n)}$$
 (35)

D. Equivalent Bernoulli Trials

The distributions of Hamming distances for 2,064 pairwise comparisons of "imposters" (summed across pairwise unrelated iris codes), and for 1208 pairwise comparisons of "authentics" accumulated separately, are shown together for comparison in Fig. 11. They are clearly well separated, with no empirical overlap and with no observations whatever falling in the region of 0.25 to 0.35 Hamming distance. These superimposed density distributions should be compared with Fig. 7, which represented the classic two-choice decision problem from statistical decision theory.

Each bit in an iris code is a random variable, and thus comparisons between iris codes are comparisons between ensembles of random variables. We have seen that on average, when comparing two iris codes obtained at different times from the same ("authentic") iris and making provision for possible head/eye tilt, any pair of corresponding bits have a probability of 0.084 of not matching. Similarly, we have seen that with

Fig. 11. Hamming distances for authentics and imposters, combined from Figs. 9 and 10.

the same provision any pair of corresponding bits in two iris codes computed from different irises ("imposters"), have a probability of 0.450 of not matching.

Asking whether a given pair of iris codes were generated by the same iris, or by different irises, is then formally equivalent to the task of discovering to which of two possible classes a given coin belongs. For one type of coin the probability of heads is p=0.084, and for the other type it is p=0.450; and the method for finding out which one it is, is to toss the coin many times. Needless to say, sufficiently many tosses could resolve the question about which type of coin it was with enormously high confidence. The shapes of the two distributions shown in Figure 11 would have been expected using about 480 tosses of the p=0.450 coin, and using about 40 tosses of the p=0.084 coin, respectively, in each run of trials.

E. Decision Confidence Levels

The Bernoulli representation noted above for this pattern recognition task clarifies the calculation of confidence levels associated with any decision, including extrapolation of confidence levels into the region between the two distributions where no Hamming distances were observed empirically. As specified in (23)–(26), the conditional probabilities of personal identity or nonidentity given a particular observation can be calculated as the cumulative integrals under the two density distributions, taken from opposite directions up to whatever Hamming distance was observed. More generally, for any given operating choice of Hamming distance criterion, the latent probabilities of the two types of errors can be calculated by evaluating these cumulative integrals up to the chosen operating criterion.

Empirically, comparisons of iris codes computed from the available database of eye images produced no Hamming distances in the range of 0.25 to 0.35, so the use of any criterion in this range would produce 100% correct performance. However, the natures of the two distributions seen in

TABLE I
PERFORMANCE TABULATED AS ERROR PROBABILITIES
FOR SEVERAL DECISION CRITERIA

Performance								
HD Criterion	Odds of False Accept	Odds of False Reject						
0.25	1 in 13.5 billion	1 in 1490						
0.26	1 in 2.04 billion	1 in 2660						
0.27	1 in 339 million	1 in 4850						
0.28	1 in 60 million	1 in 9000						
0.29	1 in 12 million	1 in 17100						
0.30	1 in 2.4 million	1 in 32800						
0.31	1 in 603 000	1 in 64 200						
0.32	1in151 000	1in128 000						
0.33	1 in 39 800	1 in 260 000						
0.34	1 in 11500	1 in 536 000						
0.35	1 in 3 630	1 in 1.12 million						

Figure 11 and described by (22) and (34), allow us to calculate theoretical probabilities for False Accept and False Reject over this range. These probabilities are tabulated in Table 1. As the operating criterion is increased, the theoretical probability of a False Accept of course increases, while that of a False Reject decreases. The cross-over error rate occurs at a Hamming distance criterion of about 0.321, at which point both the False Accept error rate and the False Reject error rate are, theoretically, one in 131 000. This cross-over error rate suggests adopting a Hamming distance close to 0.32 as a balanced operating criterion, although of course more conservative or more liberal decision criteria may be more suitable for different applications. Any such criterion is easily implemented, with performance consequences as listed in Table I.

Finally, it is interesting to examine the posterior confidence levels associated with "typical" decisions for accepting an authentic, and for rejecting an imposter. The means of the two distributions in Fig. 11 indicate typicality. In the typical imposter comparison, which generates a Hamming distance of 0.45 after the "best of n" provision for eye rotation or head tilt, the confidence with which the subject is rejected (given this observation) corresponds to a conditional false reject probability one in $10^{9.6}$, or one in 4 billion. In the typical authentic comparison, which generates a Hamming distance of only 0.084, the confidence with which the Subject is accepted (given this observation) corresponds to a conditional false accept probability of one in 10^{31} .

F. Ergonomics, Robustness to Noise, and Imaging Factors

In many respects, the iris of the eye is inherently difficult to image at a comfortable "social" distance (e.g., several feet from a mounted video camera). It is a small tissue only 11 mm in diameter, and hence optical zoom is required, which creates problems of target motion amplification and limited depth of field for focus. More critical even than these limitations of spatial resolution is the limitation of grey-scale resolution, since without appropriate gain control of the video signal, many very darkly pigmented irises tend to be digitized flatly into only the lowest few states of an 8-bit A-to-D converter and thus reveal little structure. A further

reason that spatial resolution is less of a challenge than grey-scale resolution is because the upper roll-off frequency of the multi-scale bandpass 2-D Gabor encoders can be equated to a "blur circle" always larger than three pixels in diameter, which effectively makes any spatial resolution sharper than this irrelevant. Significant parts of the multiscale iris code are based on analysis of the coarser modulations of this mottled tissue; indeed, some of the 2-D Gabor encoders that are deployed subtend as much as a 70° angle around the pupil. In addition to these issues of resolution, a further challenge arises from the fact that unpredictable amounts of the iris may be occluded by eyelids or corrupted by random silhouettes of the eyelashes.

All of these factors contribute to the observation that different images of the same eye at different times may generate iris codes that disagree in as many as 25% of their bits (the highest observed Hamming distance in Fig. 10, for "authentics"). This percentage would be the net result, for example, if only half of the bits were deterministic and matched perfectly, while the entire other half were completely random and hence agreed just by chance half the time, yielding an overall agreement of 75% and thus a 0.25 normalized Hamming distance. The robustness of the present recognition method under such high levels of pattern degradation, noise, and inherent imaging limitations, is only possible because of the high statistical complexity associated with the myriad degrees-of-freedom in the iris signal. It is the consequent narrowness of the distribution of Hamming distances for unrelated eyes (the "Imposters" black distribution shown in Figure 11) that makes any Hamming distance significantly lower than 0.35 virtually impossible to achieve from independent random processes, i.e., unrelated eye images. Thus, the hypothesis of independence can be strongly rejected over all but a narrow range of possible Hamming distances.

It is perhaps illuminating that at the "cross-over" Hamming distance of 0.321, at which point confidence against both types of errors is better than 1 in 10⁵, the level of image degradation or mismatch that is tolerated would be equivalent to obscuring fully two-thirds of the iris (producing just chance 50% agreement among those bits) while finding complete agreement among the remaining one-third of the bits. This extreme example illustrates the robustness against occlusion and noise that can be achieved by converting a pattern recognition problem into a test of statistical independence with a sufficiently large number of degrees-of-freedom.

G. Speed of Decision Making

The Bernoulli trial XOR formulation of the decision problem allows us to exploit the 32-bit architecture of a CPU for 16-fold parallelization. Since iris code comparisons are fully vectorizable bitwise, they can be implemented in parallel in single-cycle logic at the register level using 16-bit integer XOR. As a result, on a RISC general-purpose CPU any "presenting" iris code can be compared exhaustively against a large database of stored codes in search of a match at the rate of about 4 000 per second. (This clocked rate includes significant overhead due to complete iris code transfers, as well as table look-up to convert 16-bit integer XOR outcomes into running

sums of Hamming distance.) With dedicated hardware, fuller vectorization can be achieved and a further 40 000-fold speedup in recognition is now possible. Since the decision process, including the calculation of confidence levels, relies only on computing the logical XOR vector between two iris codes comprising 2 048 bits, conventional SSI devices that have been available for decades at negligible cost offer the basis for immediate parallel implementation. For example, the simple 74F86 integrated circuit contains four independent XOR gates that can be clocked at 80 megahertz. Thus, a 32 x 32 array of 74F86 ICs (or a single equivalent dedicated gate array) could in principle execute comparisons and decisions at the rate of 160 million complete iris codes per second, if exhaustive database searches were required and if such databases existed.

Because of the speed of decision-making made possible by the commensurability of iris codes, it is not even necessary in this method for a Subject to make any claims about his identity (e.g., by entering a password, PIN, or swiping a card) that the biometric comparison then merely confirms or disconfirms. Rather, here he only needs to present his eye to the camera, and his identity is rapidly and automatically determined without any further interaction, by exhaustive search through a database that might be extremely large. As Shakespeare conveyed it much less mechanically in The Merchant of Venice (Act I, Scene 1), in the tradition of conceiving the eyes as windows to the soul, "Sometimes from her eyes I did receive fair speechless messages."

VI. CONCLUSION

Aristotelian philosophy held that the $\epsilon\iota\delta o\varsigma$ (ādos, distinguishing essence) of something resided in that quality which made it different from everything else. When we need to know with certainty who an individual is, or whether he is who he claims to be, we normally rely either upon something that he uniquely possesses (such as a key or a card), something that he uniquely knows (such as a password or PIN), or a unique biological characteristic (such as his appearance). Technologically the first two of these criteria have been the easiest to confirm automatically, but they are also the least reliable, since (in Aristotelian terms) they do not necessarily make this individual different from all others. Today, we hold that the uniqueness of a person arises from the trio of his genetic genotype, its expression as phenotype, and the sum of his experiences. For purposes of rapid and reliable personal identification, the first and third of these cannot readily be exploited: DNA testing is neither real-time nor unintrusive; and experiences are only as secure as testimony. The remaining unique identifiers are phenotypic characteristics. It is hard to imagine one better suited than a protected, immutable, internal organ of the eye, that is readily visible externally and that reveals random morphogenesis of high statistical complexity.

ACKNOWLEDGMENT

The author is grateful to Dr. C. Downing for invaluable assistance; to Dr. L.O. Harvey, Jr., and D.A. Pollen, M.D., for useful criticism; and to Le. Flom M.D. and A. Safir M.D. for providing the large photographic database of eye images on which this analysis was partially based.

REFERENCES

- [1] F.H. Adler, Physiology of the Eye: Clinical Application, fourth ed. London: The C.V. Mosby Company, 1965.
- [2] A. C. Bovik, M. Clark, and W. S. Geisler, "Multichannel texture analysis using localized spatial filters," IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 55-73, 1990.
- [3] R. Bright, Smartcards: Principles, Practice, Applications. New York: Ellis Horwood, Ltd., 1988.
- [4] T. Caelli, "On discriminating visual textures and images," Perception & Psychophysics, vol. 31, pp. 149-159, 1982.
- ., "Energy processing and coding factors in texture discrimination and image processing," Perception & Psychophysics, vol. 34, pp. 349-355, 1983
- M. Clark and A. C. Bovik, "Experiments in segmenting text on patterns using localized spatial filters," Pattern Recognit., vol. 22, pp. 707-717.
- [7] J. M. Coggins and A. K. Jain, "A spatial filtering approach to texture analysis," Pattern Recognit. Lett., vol. 3, pp. 195-203, 1985.
- J. G. Daugman, "Two-dimensional spectral analysis of cortical receptive field profiles," Vision Res. vol. 20, pp. 847-856, 1980.
- , "Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters," J.
- Opt. Soc. Amer. A, vol. 2, pp. 1160-1169, 1985.
 ______, "Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression," IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 1169-1179, 1988.
- [11] H. Davson, Davson's Physiology of the Eye, 5th ed. London: Macmillan, 1990.
- [12] L. Flom and A. Safir, U.S. Patent No. 4641349, U.S. Government Printing Office, Washington, DC, 1987.
- [13] F. Galton, "Personal identification and description," Nature pp. 173-177, June 21, 1888.
- [14] J. Ghosh, N. Gopal, and A. C. Bovik, "Textured image segmentation using localized receptive fields," in Proc. Int. Joint Conf. Neural Networks, vol. 2, 1990, pp. 283-286.
- [15] R. M. Haralick, "Statistical and structural approaches to texture," Proc. IEEE, vol. 67, pp. 786-804, 1979.
- R. M. Haralick, K. Shanmugan, and I. Dinstein, "Textural features for image classification," IEEE Trans. Syst., Man, Cybern., vol. 3, pp. 610-621, 1973.
- [17] L.D. Harmon, M.K. Khan, R. Lasch, and P.F. Ramig, "Machine identification of human faces," Pattern Recognit., vol. 13, pp. 97-110,
- [18] A. K. Jain and F. Farrokhnia, "Unsupervised texture segmentation using
- Gabor filters," Pattern Recognit., vol. 24, pp. 1167-1186, 1991.

 [19] B. F. Logan, "Information in the zero-crossings of bandpass signals," Bell Syst. Tech. J., vol. 56, pp. 487-510, 1977.
- [20] S.G. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 674-693, 1989
- [21] Y. Meyer, "Principe d'incertitude, bases Hilbertiennes et algébres d'opérateurs," Séminaire Bourbaki, vol. 662, pp. 209-223, 1986.
 [22] W. W. Peterson, T. G. Birdsall, and W. C. Fox, "The theory of signal
- detectability," Trans. IRE PGIT-4, pp. 171-212, 1954.
- [23] M. Porat and Y. Y. Zeevi, "Localized texture processing in vision: Analysis and synthesis in the Gaborian space," IEEE Trans. Biomed. Eng., vol. 36, pp. 115-129, 1989.
- [24] J. Rohen, "Morphology and pathology of the trabecular meshwork," in The Structure of the Eye, Smelser, Ed. New York: Academic Press, 1961, pp. 335-341.
- [25] A. Samal and P.A. Iyengar, "Automatic recognition and analysis of human faces and facial expressions: A survey," Pattern Recognit., vol. 25, pp. 65-77, 1992.
- [26] C. Shannon and W. Weaver, Mathematical Theory of Communication. Urbana, IL: Univ. of Illinois Press, 1949.
- [27] W.P. Tanner and J.A. Swets, "A decision-making theory of visual detection," Psychol. Rev. vol. 61, pp. 401-409, 1954.
- [28] A. Teuner and B. J. Hosticka, "Adaptive Gabor transformation for image processing," IEEE Trans. Signal Processing, in press, 1993.
- [29] M. R. Turner, "Texture discrimination by Gabor functions," Bio. Cybern., vol. 55, pp. 71-82, 1986.
- L. Van Gool, P. Dewaele, and A. Oosterlinck, "Texture analysis anno 1983," Comput. Vision, Graphics, and Image Processing, vol. 29, pp. 336-357, 1985.

- [31] H. Wechsler, "Texture analysis-A survey," Signal Processing, vol. 2, pp. 271–282, 1982.
 [32] N. Wiener, *Times Series*. Cambridge, MA: M.I.T. Press, 1949.

John G. Daugman received both the B.A. and Ph.D. degrees at Harvard University.

He subsequently joined the Faculty as Assistant Professor, teaching graduate and undergraduate courses in Electrical Engineering, Psychology, and Computer Science. His main research interests include multidimensional signal processing, computational neuroscience, pattern recognizing neural networks, and visual neurophysiology and percep-

Dr. Daugman is the author of about 40 publications in these fields, and he serves as Associate Editor of the journals IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE; IEEE TRANSACTIONS ON NEURAL NETWORKS; Brain Research: Cognitive Brain Research; and he is a member of the Executive Board of Network: Computation in Neural Systems. In 1988, he was awarded the Presidential Young Investigator Award by the U.S. National Science Foundation. In 1989, he became the inaugural holder of the Toshiba Endowed Chair in Computer Science at the Tokyo Institute of Technology, and in 1991, he was elected a Senior Research Fellow of the Faculty of Biology at Cambridge University, where he is a member of King's College and where he now directs research in computational neuroscience.

APPENDIX E

DEFENSE NUCLEAR AGENCY

OPERATIONAL PROCEDURES

FOR BRASSBOARD IV UNIT

DNA BRASSBOARD IV SYSTEM OPERATION:

General: Set up and operation of the Brassboard Proof-of-Concept Identification /Verification (IV) System should be performed by individuals who are familiar with the technical performance of the unit and have received instruction on how to perform the basic procedures for system operation. Personnel operating the system should be familiar with the procedures for configuring the system to perform enrollment, identification, and verification. In the event of any questions or problems, contact IriScan, Inc. at (609) 234-7977, or (800) 333-6777).

1. INITIALIZATION:

- A. If unit is not running, connect the power cord. System will automatically boot.
- B. After boot-up, turn selector key to ADMIN (fully counterclockwise).
- C. Type "Date". Hit "Enter". Enter appropriate date. Hit "Enter".

D. Type "Time". Hit "Enter". Enter appropriate time. Hit "Enter".

NOTE: Updating/checking the system Date and Time may be accomplished any time. It is particularly appropriate if a power failure or fluctuation is suspected.

- E. Turn selector key to appropriate operating position.
- F. Type "sensekey". Hit "Enter".
- G. Make log entry.

2. EVENT RECORDING:

It is suggested that a log be kept describing operation of the system and what actions were taken relative to operation and/or maintenance. It is especially important to keep track of enrollments to maintain continuity of files and to ensure that identifications / verifications continue to be accurate.

Entries should be made to document events out of the norm or when a "Performance Failure" occurs. For example, a log entry should be made if an individual successfully "spoofs" the system by being mistakenly identified as another individual during "IDENTIFY" mode operation, or is mistakenly identified when he / she is not enrolled in the database. Similarly, if an authorized individual (someone who is legitimately enrolled in the system) is "rejected" (i.e. receives a reject signal on three (3) successive attempts), this fact should be entered in the Data Collection Form with possible explanation as to what may have caused the failure (e.g. individual wore glasses and had difficult time focusing or removing "light reflection" from their glasses. This is particularly true if the glasses are overly scratched or dirty.

In contrast to the "by exception" method for the Data-collection Form, enrollments should be logged on the Enrollment Record Form in detail each time an iris is enrolled (normally two for each individual, right eye first, followed by the left eye.)

3. <u>ENROLLMENT PROCEDURES</u>:

CAUTION: BEFORE ATTEMPTING TO ENROLL INDIVIDUALS INTO THE SYSTEM, CHECK THE ENROLLMENT FORM TO DETERMINE IF THE INDIVIDUAL IS ALREADY ENROLLED. IF THE INDIVIDUAL IS ENROLLED IN THE DATA BASE, DO NOT RE-ENROLL THEM.

NOTE: ENROLLMENT ON THE BRASSBOARD UNIT CAN ONLY BE ACCOMPLISHED WITH A KEYBOARD, MONITOR, AND REMOTE CONTROL BOX PROPERLY CONNECTED AS PERIPHERALS TO THE UNIT.

Persons being enrolled on the brassboard system should receive verbal instructions and a demonstration of the enrollment process prior to being enrolled into the master database. Enroll without glasses if at all possible. Subsequent identifications / verifications may be with or without glasses at the subject's preference. Each test subject should demonstrate familiarity with the equipment and enrollment process before being enrolled. The familiarity demonstration should include a requirement for the individual to demonstrate his / her ability to locate (i.e. "find") their eye(s) in the center of the imaging aperture, acquire and maintain satisfactory image focus by use of the eye image feedback feature, and maintain a stable position for sufficient time to acquire the minimum number of images required for enrollment. This process should be repeated for each eye, starting with the individual's "strong" or preferred eye. In the event both eyes are not capable of being

enrolled (e.g. person has only one eye or is unable to see in one eye), the test log should note the reason for not enrolling both eyes.

The procedures for enrollment are as follows:

- A. Provide verbal description of the enrollment process.
- B. Demonstrate the enrollment process. (Note: It is not necessary for the operator to actually perform an enrollment in order to demonstrate the process.)
- C. Place the system in the Enroll Mode by placing the key switch in the "ENROLL" position.

NOTE: THIS ACTION WILL AUTOMATICALLY TURN ON THE LIGHT SO THE INDIVIDUAL CAN SEE THE IMAGE OF THE EYE IN THE VIEWING APERTURE WHEN PROPERLY ALIGNED.

CAUTION: DO NOT DEPRESS THE REMOTE SWITCH OR LET
THE INDIVIDUAL DEPRESS THE START PUSHBUTTON, AS THIS
ACTION WILL START THE ENROLLMENT PROCESS PRIOR TO
THE INDIVIDUAL BEING PROPERLY TRAINED.

D. Have the individual attempt to locate his eye in the viewing aperture, achieve adequate image focus, and generally, become comfortable with interfacing with the system before starting the next step. Observe the image on the monitor and provide verbal instructions to the individual to assist in achieving acceptable interface with the unit. Inform the subject that movement along the "Z" axis (toward / away from the optical platform) should be performed slowly or in small increments. Point out

the method of using the triangular-shaped light reflection appearing in the pupil to achieve good focus by movement in the "Z" axis to make the reflection as small as possible.

Initial False Accept testing (if desired). With the system operating in the E. identification mode (i.e., key switch in IDENTIFY position), initiate the identification process by depressing the START button. The individual should locate his eye in the center of the imaging aperture and acquire and maintain a sharply-focused image of the presented eye. This process should result in a "REJECT" decision. Have the individual repeat the demonstration with the opposite eye, including the attempt at identification, if not physically prohibited from doing so. Since the individual is not yet enrolled in the Master Database, an attempt to have him identified counts as a valid attempt to cause a Type II error. Results of identification and verification attempts are being recorded on the hard drive; however, the system has no method for differentiating between a valid identification, and a false identification. Therefore, all successful "Spoofing" attempts (those resulting in a False Accept) must be recorded in the test log.

NOTE: Approximately 10 seconds after an identification, the system will automatically return to the standby mode, and the information on the monitor will be lost. To retain that information until the appropriate log entries can be made, depress the "Pause" button on the keyboard.

F. After completing the process of attempting to spoof the system, place the key switch in the ENROLL position and allow time for the system to load the enroll software. When the screen indicates the presence of video, the unit is ready for enrollment. Have the individual acquire and

maintain a well-focused image of the eye. Observe the monitor for a well-focused image and initiate the enrollment sequence by depressing the pushbutton located on the Remote-Control box. After the unit has acquired the selected number of images (normally three), determine if the Hamming Distance (HD) of the "selected" image is indicative of a high-quality enrollment. Even though the unit has a preset HD to determine acceptable code for enrollment, the final decision to accept the image remains with the operator. The operator should strive to achieve the best enrollment possible as indicated by a low HD (less than 0.15, if possible). If, however, a subject has difficulty maintaining good focus or image location, a higher HD (as automatically determined by the software) is acceptable. In practice and under normal operating environments, a highly-experienced operator may evaluate the quality of the enrollment and elect to repeat such enrollment to improve the quality of the stored file by reducing the HD. It is important that the Data Collection Form include any situation where difficulty is experienced during the enrollment process, including the operator's assessment of the possible cause of the difficulty. After the operator determines that the IrisCode is acceptable for enrollment, the operator should complete the enrollment process by following the screen prompts. Just hit "enter" for the prompts which ask for Privilege code.

CAUTION: After entering the administrative data and accepting the information (triggering an automatic update of the temporary database file), you should receive the following screen prompt: "Temporary database updated, update permanent database?" At this prompt, type "Y" if the permanent (Flash Memory) database is to be updated or "N" if not. DO NOT HIT "ENTER" AFTER TYPING YOUR CHOICE. Depressing the "ENTER" key will cause

the system to skip and return to the configuration of ready for enrolling another eye. JUST SELECT "Y" OR "N".

G. After completing enrollment of the individual's first eye, repeat the process for the remaining eye.

NOTE: In the event more than one individual is being enrolled during the same period, the procedures should be repeated for each individual. It is important that each person is provided an opportunity the become familiar with the process and is allowed to acquire and maintain a well-focused image of his eye before performing the enrollment process for test purposes.

H. After completing the enrollment process (for either one or multiple individuals), place the system in the IDENTIFY or VERIFY operating mode. Have the individual(s) who successfully completed the enrollment process attempt to be identified by the system a minimum of FIVE (5) times for each enrolled eye.

4. <u>IDENTIFICATION PROCEDURES</u>:

- A. Approach the brassboard unit and adjust the sensor for height.
- B. Depress the START button on the front panel.
- C. Maintain the image of the presented iris in focus and steady until receiving a visual and audible signal.
- D. If rejected (red Reject light and two beeps), repeat the procedure.

- E. If rejected a second time, repeat the procedure.
- F. Note the results of the identification attempt on the Data Collection Form if any Rejects occur. Write "FALSE REJECT" on the Data Collection Form if three consecutive Rejects occur.

5. VERIFICATION PROCEDURES:

- A. Approach the brassboard unit and adjust the sensor for height.
- B. On the keyboard, enter the four-digit Personal Identification Number (PIN) of the subject who wishes to be verified.
- C. Maintain the image of the presented iris in focus and steady until receiving a visual and audible signal.
- D. If rejected (red Reject light and two beeps), repeat the procedure.
- E. If rejected a second time, repeat the procedure.
- F. Note the results of the procedure on the Data Collection Form if any Rejects occur. Write "FALSE REJECT" on the Data Collection Form if three consecutive Rejects occur.

APPENDIX F
DRAWINGS

Concept Assembly

F-5

FAB DRAWING

IriScan Incorporated / Iris Scanner Part List

IMPACT DESIGN: PROJECT #940130 / PROTOTYPE RELEASE

DWG#	PART NAME	REVISION	DWG SIZE
010	MOUNTING PLATE, OPTICS	04	D
020	BEAM SPLITTER BRACKET, OPTICS	01	С
030	CAMERA MOUNTING BRACKET, OPTICS	01	С
040	LCD MOUNTING BRACKET, OPTICS	01	С
050	CHASSIS, OPTICS	02	E
060	COVER PLATE, OPTICS	03	D
070	MID-PLANE, SCANNER	02	D
080	OUTER SHELL, SCANNER	01	D
090	SHROUD FRAME, SCANNER	05	D
100	BACK PLANE, SCANNER	01	D
110	CPU DOOR, SCANNER	02	D
120	LARGE HANGER BRACKET	01	В
130	SMALL HANGER BRACKET	01	В
140	I.O. BRACKET, SCANNER	01	В
150	LIGHT PIPE, OPTICS	01	В
160	LIGHT PIPE BRACKET, OPTICS	02	В
170	ANGLE BRACKET, SCANNER	02	В
180	LEFT MOUNTING BLOCK, OPTICS	01	В
190	RIGHT MOUNTING BLOCK, OPTICS	02	В
200	SHROUD, SCANNER	02	Е
210	SHROUD, OPTICS	01	С
220	HANDLE, OPTICS	01	В

230	CAM, OPTICS	02	В
*240	KEEPER, SCANNER	91	В
250	SHROUD HINGE, SCANNER	01	С
260	FOLLOWER ARM	02	A
270	TRIPOD MOUNT PLATE, OPTICS	01	В
280	FOLLOWER BEARING, CHASSIS	01	A
290	AXIS, OPTICS	01	A

^{*}THIS PART HAS BEEN ELIMINATED.

F-29

ŧ

RÉV	DESCRIPTION	DATE	BY	APP'D
01	PROTOTYPE RELEASE CHANGE PIVOT HOLE DIA. 0.250	08/01/94 08/15/94	LAM LAM	
02	CHANGE TIVET TIBLE DITTO			

IMPACT DESIGN INDUSTRIAL DESIGN CONSULTANTS CLINTON NJ 908/730-9669	MATERIAL: 0.080° CRCQ S	STEEL	custor [R]		INCOF	RPORAT	ΓED
	DRAWN BY: LAM CHECKED BY:	DATE 08/01/94	TITLE		LOWER	ARM	
±1/64 .XX±.01 ±0.5° .XXX±.005 .XXXX±.001 INFORMATION SHOWN ON THIS DOCUMENT 15 PROPRIETARY AND 15 NOT	ISSUED BY:	60 83/16	SIZE: A SCALE:	DRAWING NO:	130020 SHEET	60.DWG	REV: 02
TO BE REPRODUCED VITHOUT THE EXPRESS PERMISSION OF IMPACT DESIGN	FILE NO: 0026	SO.DWG	F-34	-			

REV	DESCRIPTION	DATE	BY	APP'D
01	PROTOTYPE RELEASE	08/15/94	LAM	

IMPACT DESIGN INDUSTRIAL DESIGN CONSULTANTS CLINTON NJ 908/730-9449	MATERIAL: DELRIN		IR]		INCORPORA	TED
	DRAWN BY: LAM CHECKED BY:	DATE 08/15/94	TITLE		IWER BEARING, CHASSIS	
±1/64 .XX±.01 ±0.5° .XXX±.005 .XXXX±.001	ISSUED BY:		SIZE:	DRAWING NO:	1300280	REV: 01
INFORMATION SHOWN ON THIS DOCUMENT IS PROPRIETARY AND IS NOT TO BE REPRODUCED WITHOUT THE EXPRESS PERMISSION OF IMPACT DESIGN	FILE NO.: 00280	.DWG F	SCALE: -36	2 = 1	SHEET: 1 E	IF 1

REV	DESCRIPTION	DATE	BY	APP'D
01	PROTOTYPE RELEASE	08/29/94	LAM	

1								
	IMPACT DESIGN INDUSTRIAL DESIGN CONSULTANTS CLINTON NJ 908/730-9669	MATERIAL: DELRIN		custor [R]	_	INCOR	PORAT	ED
	1013 DECTINES ANGLES	CUECUED DV	DATE 8/29/94	TITLE		AXIS, OPTICS		
-	±1/64 .XX±.01 ±0.5° .XXX±.005 .XXXX±.001	ISSUED BY:		SIZE:	DRAWING NO:	13002	290	REV: 01
	INFORMATION SHOWN ON THIS DOCUMENT 12 PROPRIETARY AND 15 NOT 10 BE REPRODUCED WITHOUT THE EXPRESS PERMISSION OF IMPACT DESIGN	FILE NO.: 00290	.DWG	SCALE: F-37	1 = 1	SHEET:	1 OF	1

APPENDIX G

ESTIMATED Dod IRIS RECOGNITION SYSTEM CORE SYSTEM COSTS (PER PORTAL)

ESTIMATED COST PRODUCTION QTY OF 1000 UNITS

IRIS IDENTIFICATION VERIFICATION SYSTEM		PRODUCTOF 1000 L	
1, COMPUTATIONAL PLATFORM		\$2,100	
 486DX4 MICROPROCESSOR with 128 KByte CACH 640 X 480 X 8-bit MONOCHROME A to D IMAGE DIG 8 M Byte DRAM MEMORY 4 M Byte FLASH EPROM TWO SERIAL PORTS/ COMM DRIVERS SVGA /VIDEO OUTPUT ON BOARD 	E GITIZER Sub-total		\$2,100
2. IMAGE ACQUISITION MODULE			
 1/3 " FORMAT MONOCHROME CCD BOARD CAM LIQUID CRYSTAL DISPLAY (LCD) MONITOR BEAM SPLITTER LUMINAIRE OPTICAL/ ILLUMINATION WINDOWS 	ERA with 50mm LENS Sub-total	\$396 \$400 \$24 \$30 \$20	\$870
	Sub-total		40,0
3. ENCLOSURE - PLASTIC SHROUD/ OPTICAL FACEPLATE - METAL ENCLOSURE	Sub-total	\$120 \$500	\$ 620
4, SOFTWARE LICENSE FEE (Paid to IriScan, Inc Cost per Portal/unit	7)		\$200
5. CENTRAL HOST COMPUTER ALLOCATION (Allocation based on total of 10 portals)			\$190
	TOTAL PER PORTAL E	STIMATE	\$3.980.00
CENTRAL HOST COMPUTER (OPTIONAL)	,		\$1,050
32 bit Microprocessor, 486/DX40 MHz 4 M byte non-volatile memory 1.44 M byte Floppy Drive/ 340 M byte Hard Drive 14 " SVGA color monitor Verticle case and 230 watt power supply 101 enhanced keyboard			
PRINTER (ONE OF SEVERAL AVAILABLE LASER PRIN SOFTWARE LICENSE (TYPICAL DISTRIBUTED SYSTEM	ITERS) M FOR ENTRY/ACCESS CO TOTAL	ONTROL)	\$550 \$300 \$1,900

NOTE: The CENTRAL HOST COMPUTER is considered optional since the SOW required an estimate of the portal IV unit only. The Central Host Computer would be used when the system configuration required that the portal units be integrated with a central monitoring unit . If a Central Computer is required, the estimated cost would be prorated over the total number of portal units.

DISTRIBUTION LIST

DNA-TR-95-18

DEPARTMENT OF DEFENSE

DEFENSE INTELLIGENCE AGENCY

ATTN: DIW-4

DEFENSE NUCLEAR AGENCY

3 CY ATTN: NOSA

ATTN: OPNA

ATTN: OPNO

2 CY ATTN: SSTL

DEFENSE TECHNICAL INFORMATION CENTER

2 CY ATTN: DTIC/OCP

OASD (C3I)

ATTN: ODASD I&S CI & SP

OFFICE OF THE SECRETARY OF DEFENSE

ATTN: DNA OATSD AE

U.S. CENTRAL COMMAND

ATTN: CCJ3

ATTN: CCPM

U S EUROPEAN COMMAND

ATTN: ECJ5N

UNDER SECRETARY OF DEFENSE (ACQ)

ATTN: ODDR&E/TS/LS

US NUCLEAR COMMAND & CONTROL

ATTN: LT COL AL RIGGLE

DEPARTMENT OF THE ARMY

ADVANCED RESEARCH PROJECT AGENCY

ATTN: EAO

ATTN: STO S FLANK

ARMY RESEARCH INSTITUTE

ATTN: PERI-ZT

DEPARTMENT OF THE ARMY

2 CY ATTN: DAMO-ODL-S

OFFICE OF THE CHIEF OF ENGINEER

ATTN: CEMP-ET

U.S. ARMY BELVOIR RD&E CTR

ATTN: AMSAT-I-WTP

ATTN: SATBE-JIS

ATTN: STRBE-N

ATTN: STRBE-X

U.S. ARMY ELECTRONIC WARFARE LAB

ATTN: DELEW-I-S

U S ARMY MILITARY POLICE SCHOOL

ATTN: ATZN-MP-CD

ATTN: ATZN-MP-DE

ATTN: ATZN-MP-TB

ATTN: ATZN-MP-TS

U S ARMY NUCLEAR & CHEMICAL AGENCY

ATTN: MONA-SU

U.S. ARMY RESEARCH LABORATORY

ATTN: AMSRL-HR

ATTN: DR D HODGE

ATTN: SLCHE-CC-LHD HARRAH

U S ARMY TRAINING AND DOCTRINE COMD

ATTN: ATCD-N

USAS4A

ATTN: AMXSY-CA

DEPARTMENT OF THE NAVY

CNO (NO9N3)

ATTN: CODE 24B

DAVID TAYLOR RESEARCH CENTER

ATTN: CODE 1203

NAVAL FACIITIES ENG SERV CTR

ATTN: ESC66

NSWC

ATTN: CODE 2064 L D HEMBREE

OFFICE OF CHIEF NAVAL OPERATIONS

ATTN: NO9N

SPACE & NAVAL WARFARE SYSTEMS CMD

ATTN: PME-121-3

US ATLANTIC COMMAND

ATTN: J324

US MARINE CORPS

ATTN: POS-20

ATTN: POS-30

DEPARTMENT OF THE AIR FORCE

AIR FORCE MATERIEL COMMAND

ATTN: AFMC/SP

DEPARTMENT OF THE AIR FORCE

ATTN: AF/RDST

ELECTRONIC SYSTEMS DIV

ATTN: AVJR

HQ ACC/SP

ATTN: HQ ACC/SP

MILITARY AIRLIFT COMMAND AMC/SP

ATTN: SP

PACAF/LGWSN

ATTN: SP

TECHNICAL DIRECTOR (NWI)

ATTN: NTSMS

USAF/SP

ATTN: USAF/SPO

ATTN: USAF/SPP

DNA-TR-95-18 (DL CONTINUED)

USAFE/SP

ATTN: USAFE/SPO ATTN: USAFE/SPP

DEPARTMENT OF ENERGY

ASSOCIATED UNIVERSITIES, INC
ATTN: DOCUMENT CUSTODIAN

DEPARTMENT OF ENERGY

ATTN: DASMA DP-20

ATTN: NN-513.4

SANDIA NATIONAL LABORATORIES

ATTN: DIV 5838

ATTN: ORG 5806 J W KANE

ATTN: ORG 5831 ATTN: ORG 5861

OTHER GOVERNMENT

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

ATTN: L ELAISON

U S SECRET SERVICE ATTN: LIBRARY

DEPARTMENT OF DEFENSE CONTRACTORS

COMPUTER SCIENCE CORPORATION

ATTN: R A SWANSON

IRISCAN INC

ATTN: C B KUHLA ATTN: D R RICHARDS ATTN: G O WILLIAMS ATTN: J E SIEDLARZ ATTN: J H LEE

ATTN: J T MCHUGH JAYCOR

ATTN: CYRUS P KNOWLES

KAMAN SCIENCES CORP

ATTN: DASIAC

KAMAN SCIENCES CORPORATION

ATTN: DASIAC

VITRO CORPORATION ATTN: T J WHITTLE