PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS SEGUNDO SEMESTRE DE 2014

MAT1620 * Cálculo 2 Examen

1. (a) La siguiente figura es una artesa de base rectangular, dos tapas en forma de trapecio y dos laterales rectángulares:

Si la artesa es llenada con agua hasta $25\,cm$ de profundidad. Calcule el trabajo necesario para sacar el agua fuera del recipiente.

(b) Decida, justificadamente, si la siguiente integral converge o diverge

$$\int_{2}^{\infty} \frac{\ln(x-1)}{x^2 + x} \, dx$$

Solución.

(a) Considerando el sistema coordenado

Si x_k es una partición del intervalo [5,30] entonces el volumen de las secciones transversales en el intervalo $[x_k, x_{k+1}]$ es aproximadamente $V_k = 80 \cdot (15 - x_k/6)(x_{k+1} - x_k)$. Por lo tanto el trabajo W se aproxima por la siguiente suma

$$W \approx \sum_{k=0}^{n-1} \rho V_k \cdot g \cdot x_k = 80\rho \cdot g \sum_{k=0}^{n-1} (15 - x_k/6) x_k (x_{k+1} - x_k)$$

siendo ρ la densidad del agua y g la constante de gravedad. Por lo tanto,

$$W = 80\rho \cdot g \int_{5}^{30} x(15 - x/6) \, dx$$

Evaluación. (1 pto) por determinar el volumen, (1 pto) por escribir la suma que aproxima el trabajo y (1 pto) por identificar la integral que se debe calcular.

(b) Alternativa 1. Sabemos que

$$ln(x) \le x + 1$$
, para $todox \ge 0$ (1 **pto**)

luego

$$\frac{\ln(x-1)}{x^2+x} = \frac{\ln\left(\sqrt{x-1}\right)}{2(x^2+x)} \le \frac{\sqrt{x-1}+1}{2(x^2+x)} \le \frac{1}{\sqrt{x}(x+1)} \tag{1 pto}$$

que es integrable en $[0, \infty)$. (1 pto)

Alternativa 2. Ocupando el croterio de comparación con la integral tenemos

$$\int_{2}^{\infty} \frac{\ln(x-1)}{x^{2}+x} dx \quad \Leftrightarrow \quad \sum_{n=2}^{\infty} \frac{\ln(n-1)}{n^{2}+n} \quad (1 \text{ pto})$$

ya que $f(x) = \frac{\ln(x-1)}{x^2 + x}$ es decreciente para x grande. Pero

$$\lim_{n \to \infty} \frac{\frac{\ln(n-1)}{n^2 + n}}{\frac{1}{n^{3/2}}} = 0 \qquad (1 \text{ pto})$$

Luego la serie $\sum_{n=2}^{\infty} \frac{\ln(n-1)}{n^2+n}$ converge y por tanto la integral. (1 pto)

2. (a) Estudie la convergencia de la serie

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n - \ln(n)}$$

En caso que sea convergente, indique si se trata de convergencia absoluta o condicional.

(b) Determine el intervalo de convergencia de la serie

$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(-3)^n}$$

Solución.

(a) La función $f(x) = x - \ln(x)$, $x \ge 1$, es creciente ya que $f'(x) = 1 - \frac{1}{x} \ge 0$ (1 **pto**). Luego, por el criterio de la serie alternante, se deduce que $\sum_{n=1}^{\infty} \frac{(-1)^n}{n - \ln(n)}$ converge. (1 **pto**) La convergencia es condicional ya que

$$\frac{1}{n} \le \frac{1}{n - \ln(n)} \qquad \Rightarrow \qquad \sum_{n=1}^{\infty} \frac{1}{n} \le \sum_{n=1}^{\infty} \frac{1}{n - \ln(n)} \quad (1 \text{ pto})$$

(b) Si
$$a_n = \frac{x^{2n}}{(-3)^n}$$
 entonces

$$\lim_{n \to \infty} \frac{\left| \frac{x^{2(n+1)}}{(-3)^{n+1}} \right|}{\left| \frac{x^{2n}}{(-3)^n} \right|} = \frac{|x|^2}{3}$$

luego la serie converge absolutamente si $x \in (-\sqrt{3}, \sqrt{3})$. (1 pto)

Si $x = \pm \sqrt{3}$ entonces

$$\sum_{n=0}^{\infty} \frac{(\pm\sqrt{3})^{2n}}{(-3)^n} = \sum_{n=0}^{\infty} (-1)^n$$

no converge. (1 pto)

Por lo tanto el intervalo de convergencia es $(-\sqrt{3}, \sqrt{3})$. (1 pto)

- 3. (a) Determine las ecuaciones del plano normal y del plano osculador de la curva (t, t^2, t^3) , en el punto (1, 1, 1).
 - (b) Dada la curva C, parametrizada respecto a la longitud de arco,

$$\vec{r}(s) = \left(1 + \frac{s}{\sqrt{2}}\right) \left(\cos\left(\ln\left(1 + \frac{s}{\sqrt{2}}\right)\right), \sin\left(\ln\left(1 + \frac{s}{\sqrt{2}}\right)\right), 1\right)$$

Determine la curvatura de C en el punto (1,0,1).

Solución.

(a) Si
$$\vec{r}(t) = (t, t^2, t^3)$$
 entonces $\vec{r}(1) = (1, 1, 1)$ (1 **pto**) y
$$\dot{\vec{r}}(t) = (1, 2t, 3t^2) \Rightarrow \dot{\vec{r}}(1) = (1, 2, 3)$$

$$\ddot{\vec{r}}(t) = (0, 2, 6t) \Rightarrow \ddot{\vec{r}}(1) = (0, 2, 6)$$

Luego, el plano normal es

$$((x, y, z) - (1, 1, 1)) \cdot (1, 2, 3) = 0$$
 (1 pto)

mientras que el plano osculador es

$$((x, y, z) - (1, 1, 1)) \cdot \vec{n} = 0$$

siendo

$$\vec{n} = (1, 2, 3) \times (0, 2, 6) = (6, 6, 2)$$

De este modo, el plano osculador es

$$((x, y, z) - (1, 1, 1)) \cdot (3, 3, 1) = 0$$
 (1 pto)

(b) El punto (1,0,1) corresponde a s=0 (1 **pto**), luego la curvatura en dicho punto está dada por

$$\kappa = \left\| \dot{\hat{t}}(0) \right\|$$

ya que la curva \mathcal{C} está parametrizada respecto a longitud de arco. Luego

$$\hat{t}(s) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) + \cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right), \\ 1 \right) = \frac{1}{\sqrt{2}} \left(\cos \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right) - \sin \left(\ln \left(1 + \frac{s}{\sqrt{2}} \right) \right),$$

у

$$\dot{\hat{t}}(s) = \frac{1}{2\left(1 + \frac{s}{\sqrt{2}}\right)} \left(-\operatorname{sen}\left(\ln\left(1 + \frac{s}{\sqrt{2}}\right)\right) - \cos\left(\ln\left(1 + \frac{s}{\sqrt{2}}\right)\right), \cos\left(\ln\left(1 + \frac{s}{\sqrt{2}}\right)\right) - \sin\left(\ln\left(1 + \frac{s}{\sqrt{2}}\right)\right), 0\right)$$

(1 pto) por calcular la derivada del tangente

De este modo,

$$\dot{\hat{t}}(0) = \frac{1}{2}(-1, 1, 0)$$

y, por lo tanto,

$$\kappa = \frac{\sqrt{2}}{2}$$
 (1 pto)

4. (a) Demostrar que todos los planos normales a la curva

$$\vec{r}(t) = (a \operatorname{sen}^2(t), a \operatorname{sen}(t) \cos(t), a \cos(t))$$

pasan por el origen.

(b) Una curva se define mediante las ecuaciones paramétricas

$$x = \int_{1}^{t} \frac{\cos u}{u} du, \quad y = \int_{1}^{t} \frac{\sin u}{u} du$$

Encuentre la longitud del arco de la curva desde el origen hasta el punto más próximo donde la recta tangente es una recta vertical.

Solución.

(a) La ecuación del plano normal, en el punto $\vec{r}(t)$, está dado por

$$(\vec{x} - \vec{r}(t)) \cdot \dot{\vec{r}}(t) = 0$$
 (1 pto)

vale decir

$$((x,y,z)-(a\operatorname{sen}^2(t),a\operatorname{sen}(t)\cos(t),a\cos(t)))\cdot(a\operatorname{sen}(2t),a\cos(2t),-a\operatorname{sen}(t))=0$$

Luego, el (0,0,0) está en el plano normal si y sólo si $\vec{r}(t) \cdot \dot{\vec{r}}(t) = 0$ (1 **pto**). Pero

$$(a \sec^{2}(t), a \sec(t) \cos(t), a \cos(t)) \cdot (a \sec(2t), a \cos(2t), -a \sec(t))$$

$$= a^{2} \sec(t) (\sec(t) \sec(2t) + \cos(t) \cos(2t) - \cos(t))$$

$$= a^{2} \sec(t) (2 \sec^{2}(t) \cos(t) + \cos(t) (1 - 2 \sec^{2}(t)) - \cos(t))$$

$$= 0 \quad (1 \text{ pto})$$

Por lo tanto, el punto (0,0,0) está en el plano.

(b) Para determinar el punto donde la recta tangente es una recta vertical debemos resolver la ecuación

$$y'(t) = 0$$
 \Leftrightarrow $\frac{\operatorname{sen}(t)}{t} = 0$

entonces $t = \pi$. (1 pto) Luego,

$$L = \int_{1}^{\pi} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

$$= \int_{1}^{\pi} \sqrt{\left(\frac{\operatorname{sen}(t)}{t}\right)^{2} + \left(\frac{\operatorname{cos}(t)}{t}\right)^{2}} dt \quad (1 \text{ pto})$$

$$= \int_{1}^{\pi} \frac{1}{t} dt = \ln(\pi) \quad (1 \text{ pto})$$

Tiempo: 140 minutos

SIN CONSULTAS
SIN CALCULADORA

Prohibido tener celular sobre la mesa