Artificial Intelligence Foundations and Applications Machine Learning – Part 1 Introduction

Sudeshna Sarkar

Machine Learning: Definition

Learning is the ability to evolve behaviours based on data (experience).

- Learn from data such as build a model from data
- Use the model for prediction, decision making or solving some tasks

Components of a learning problem

- Task: The behaviour or task being improved.
 - For example: classification, acting in an environment
- Data: The experiences that are being used to improve performance in the task.
- Measure of improvement :
 - For example: increasing accuracy in prediction, improved speed and efficiency

Models for Prediction

- A. Features
- Feature vector of n features

$$\bar{x} = (x_1, x_2, \dots, x_n)$$

B. Convert input to a vector of basis functions

$$\left(\phi_0(\bar{x}),\phi_1(\bar{x}),\ldots,\phi_p(\bar{x})\right)$$

Design a Learner

Input x Predictor Output y

- 1. Choose the training experience
 - Features
- 2. Choose how to represent the target function *f*
- 3. Choose a learning algorithm to infer the target function

Representation

- Features: Data specification
- Function class: Model form

Optimization

Model Training

Evaluation

Performance measure

Feature Choice

- Input Data comprise features
 - Structured features (numerical or categorical values)
 - Unstructured (text, speech, image, video, etc)
- Use only relevant features
- Too many features?
 - Select feature subset (reduction)
 - Extract features: Transform features

1. Model Representation

- The richer the representation, the more useful it is for subsequent problem solving.
- The richer the representation, the more difficult it is to learn.

$$y = f(\bar{x})$$

$$y = g(\bar{\phi}(\bar{x}))$$

2. Evaluation

- 1. Accuracy = $\frac{\text{# correctly classified}}{\text{# all test examples}}$
- 2. Logarithmic Loss:

$$L_i = -\log(P(Y = y_i|X = x_i))$$

$$L = \sum_{c=1}^{M} y_{oc} \log(p_{oc})$$

3. Mean Squared error

$$MSE = \frac{1}{m} \sum (y_{pred} - y_{true})^2$$

3. Optimization

- 1. Define loss function
- 2. Optimize loss function

- Stochastic Gradient Descent (Convex functions)
- Combinatorial optimization
 - E.g.: Greedy search
- Constrained optimization
 - E.g.: Linear programming

Broad types of machine learning

Supervised Learning

- Training Data with labels: X,y (pre-classified)
- Given an observation x, what is the best label for y?

Unsupervised learning

- Training Data without labels: X
- Given a set of x's, find hidden structure

Reinforcement Learning

- Given: observations and periodic rewards as the agent takes sequential action in an environment
- Determine optimum policy

Supervised Learning

Given data containing the inputs and outputs:

Training Data:

$$\{(\overline{x_1}, y_1), (\overline{x_2}, y_2), \dots, (\overline{x_m}, y_m)\}$$

• Learn a function f(x) to predict y given x

- Training: Learn the model from the Training Data
- Given Test instance $\overline{x'}$, predict $y' = f_{\theta}(\overline{x'})$

Supervised Learning

Classification

Y is categorical/ discrete

Regression

Example Tasks

Classification

- Object identification from images
- Defect classification
- Credit card transaction fraud or not

Regression

- House price prediction
- Remaining Useful Life Prediction
- Probability of developing cracks
- Demand forecasting

Structured Prediction

- Machine translation: English sentence → Japanese sentence
- Dialogue: conversational history → next utterance
- Image captioning: image → sentence describing image
- Image segmentation: image → segmentation

Supervised Learning

Classification Example

Training Samples

Test Instances

Train a model to minimize loss

Probabilistic Classification

X1	X2	Х3	X4	Category
				Type 1
				Type 3
				Type 1
				Type 2

Predict a probability distribution over the set of classes **Pr (Y | X)**

X1	X2	Х3	X4	Type 1	Type 2	Type 3
				0.4	0.15	0.45
				0.2	0.7	0.1
				0.1	0.2	0.7
				0.5	0.1	0.4

Evaluation for Classification problems

$$\mathbf{Accuracy} = \frac{\text{# correctly classified}}{\text{# all test examples}}$$

$$= \frac{\text{#predicted true } pos + \text{#predicted true } neg}{\text{#all test examples}}$$

Precision =
$$\frac{\text{# predicted true } pos}{\text{# predicted pos}}$$

Recall=
$$\frac{\text{# predicted true } pos}{\text{# True } pos}$$

		True C		
		Pos	Neg	
Predicte d Class	Pos	TP	FP	
	Neg	FN	TN	

Loss Function Classification problems

Loss indicates how bad the model's prediction is.

1. Fraction of Misclassifications

$$Error = \sum_{i=1}^{m} \frac{I(y_i \neq \widehat{y}_i)}{m}$$

2. Logarithmic Loss: Maximize the log likelihood. For a loss function, minimize the negative log likelihood of the correct class:

$$L_i = -\log(P(Y = y_i | X = x_i))$$

Logarithmic Loss Function

Logarithmic Loss:

$$L_i = -\log(P(Y = y_i | X = x_i))$$

- **M** number of classes
- y binary indicator (0 or 1) if class label c is the correct classification for observation o
- p predicted probability
 observation o is of class c

2. Evaluation for regression problem

Mean Squared error

Unsupervised Learning (Clustering)

Given $\{\overline{x_1}, \overline{x_2}, ... \overline{x_m}, \}$ without labels

Find hidden structure in the data

- Clustering
- Dimensionality Reduction

Clustering: Grouping similar objects

Clustering Problems

How to evaluate clustering?

- Internal Evaluation:
 - Intra-cluster distances are minimized
 - Inter-cluster distances are maximized
- External Evaluation