The Curry–Howard Correspondence between Temporal Logic and Functional Reactive Programming

Wolfgang Jeltsch

Brandenburgische Technische Universität Cottbus Cottbus, Germany

> Teooriapäevad Nelijärvel Nelijärve, Estonia February 4–6, 2011

Correspondence to Temporal Logic

Correspondence to Temporal Logic

FRP Basics

- functional programming with support for describing temporal phenomena
- two new concepts:

behavior a time-varying value

$$\mathcal{B}\alpha \approx \mathsf{Time} \to \alpha$$

event a time with an associated value

$$\mathcal{E}\alpha \approx \mathsf{Time} \times \alpha$$

event streams derivable via coinduction:

$$S\alpha = \mathcal{E}(\alpha \times S\alpha)$$

Some operations on behaviors and events

transformation of embedded values:

$$\mathcal{B}f: \mathcal{B}\alpha \to \mathcal{B}\beta$$
 for every $f: \alpha \to \beta$
 $\mathcal{E}f: \mathcal{E}\alpha \to \mathcal{E}\beta$ for every $f: \alpha \to \beta$

Correspondence to Temporal Logic

further operations:

const :
$$\alpha \to \mathcal{B}\alpha$$

zip : $\mathcal{B}\alpha \times \mathcal{B}\beta \to \mathcal{B}(\alpha \times \beta)$
sample : $\mathcal{B}\alpha \times \mathcal{E}\beta \to \mathcal{E}(\alpha \times \beta)$
switch : $\mathcal{B}\alpha \times \mathcal{E}(\mathcal{B}\alpha) \to \mathcal{B}\alpha$

Some derived operations on event streams

Remember

$$S\alpha = \mathcal{E}(\alpha \times S\alpha)$$

transformation of embedded values:

$$\mathcal{S}f: \mathcal{S}\alpha \to \mathcal{S}\beta$$

 $\mathcal{S}f = \mathcal{E}(\lambda(x,s) \cdot (f(x), \mathcal{S}f(s)))$

Remember

switch :
$$\mathcal{B}\alpha \times \mathcal{E}(\mathcal{B}\alpha) \to \mathcal{B}\alpha$$

multiple switching:

Example: Controlling a light bulb

- three devices:
 - two buttons send event streams s_1 and s_2 of type S1 one bulb receives a behavior b of type $\mathcal{B}Bool$
- bulb switched on/off whenever one of the buttons is pressed

Remember

$$S\alpha = \mathcal{E}(\alpha \times S\alpha)$$

bulb control for a single button with a given initial state:

control : Bool ×
$$S1 \rightarrow \mathcal{B}$$
Bool control(i, s) = $switch(const(i), \mathcal{E}(\lambda(_, s') \cdot control(\neg i, s'))(s))$

combined bulb control for both buttons:

$$b = \mathcal{B}xor(zip(control(s_1, \bot), control(s_2, \bot)))$$

Correspondence to Temporal Logic

Curry-Howard Correspondence

correspondence between logic and type system:

- some correspondences:
 - intuitionistic propositional logic ←→ simple types:

$$\begin{split} \langle \varphi \lor \psi \rangle &= \langle \varphi \rangle + \langle \psi \rangle \\ \langle \varphi \land \psi \rangle &= \langle \varphi \rangle \times \langle \psi \rangle \\ \langle \varphi \to \psi \rangle &= \langle \varphi \rangle \to \langle \psi \rangle \end{split}$$

intuitionistic predicate logic ←→ dependent types:

$$\langle \forall x . P[x] \rangle = \Pi x . \langle P[x] \rangle$$

 $\langle \exists x . P[x] \rangle = \Sigma x . \langle P[x] \rangle$

Linear Temporal Logic

- trueness of a proposition depends on time
- times are natural numbers
- propositional logic extended with four new constructs:
 - $\bigcirc \varphi \varphi$ will hold at the next time
 - $\Box \varphi \varphi$ will always hold
 - $\diamond \varphi \varphi$ will eventually hold
 - $\varphi \triangleright \psi \varphi$ will hold for some time, and then ψ will hold
- in this talk only □ and ♦ (continuous time also possible)

A semantics for □-\$-LTL

- meaning of a temporal formula is a formula of predicate logic with a free variable t that denotes the current time
- atomic propositions p correspond to predicates p̂ that take a time argument
- semantics for propositional logic fragment:

semantics for □ and ♦:

$$[\![\Box\varphi]\!] = \forall t' \in [t, \infty) . [\![\varphi]\!][t'/t]$$
$$[\![\Diamond\varphi]\!] = \exists t' \in [t, \infty) . [\![\varphi]\!][t'/t]$$

□-<-LTL as a type system

- type inhabitation depends on time
- simple type system extended with two new type constructors
 and ◆
- meaning of a temporal type is a dependent type with a free variable t that denotes the current time
- semantics for and ◆:

$$\llbracket \bullet \alpha \rrbracket = \Pi t' \in [t, \infty) \cdot \llbracket \alpha \rrbracket [t'/t]$$
$$\llbracket \bullet \alpha \rrbracket = \Sigma t' \in [t, \infty) \cdot \llbracket \alpha \rrbracket [t'/t]$$

• compare this to the intuition behind \mathcal{B} and \mathcal{E} :

$$\mathcal{B}\alpha \approx \mathsf{Time} \to \alpha$$

 $\mathcal{E}\alpha \approx \mathsf{Time} \times \alpha$

• □-\$\rightarrow\$-LTL corresponds to a strongly typed form of FRP where $\mathcal{B} = \blacksquare$ and $\mathcal{E} = \spadesuit$

2 Correspondence to Temporal Logic

Start time consistency

Remember

$$[\![\mathcal{B}\alpha]\!] = \Pi t' \in [t, \infty) . [\![\alpha]\!][t'/t]$$
$$[\![\mathcal{E}\alpha]\!] = \Sigma t' \in [t, \infty) . [\![\alpha]\!][t'/t]$$

- each behavior and each event has a dedicated start time t:
 - behavior only has a value at its start time and afterwards event can only fire at its start time or afterwards
- type system ensures start time consistency:
 - an inhabitant of some type α at some time t deals only with behaviors and events that start at t
 - values within behaviors and events use their occurrence times as start times

Start time consistency and zipping

Remember

$$zip: \mathcal{B}\alpha \times \mathcal{B}\beta \to \mathcal{B}(\alpha \times \beta)$$

meaning of zip's type:

$$(\Pi t' \in [t, \infty) . [\alpha][t'/t]) \times (\Pi t' \in [t, \infty) . [\beta][t'/t])$$

$$\downarrow$$

$$\Pi t' \in [t, \infty) . [\alpha][t'/t] \times [\beta][t'/t]$$

• type system ensures reasonable conditions:

pre argument behaviors have to start at the same time post result behavior starts at the same time as the argument behaviors

Start time consistency and switching

Remember

switch :
$$\mathcal{B}\alpha \times \mathcal{E}(\mathcal{B}\alpha) \to \mathcal{B}\alpha$$

• meaning of $\mathcal{E}(\mathcal{B}\alpha)$:

$$\Sigma t' \in [t, \infty)$$
. $\Pi t'' \in [t', \infty)$. $[\alpha][t''/t]$

- behavior has to start at the time of switching
- avoids problems with accumulating behaviors
- take again the light bulb example:
 - bulb control b starts when button inputs s_1 and s_2 start
 - switching to *b* later typically causes problems:

semantics b always begins with \bot at switching time efficiency b's value is (re)computed at switching time

Distributivity of ♦ over finite disjunctions

in classical modal and temporal logics,
 \(\distributes \) distributes over finite disjunctions:

$$\Diamond(\varphi \lor \psi) \to \Diamond\varphi \lor \Diamond\psi$$
$$\Diamond\bot \to \bot$$

- different approaches for intuitionistic logics:
 - keep both laws
 - keep only $\diamondsuit \bot \to \bot$
 - drop both

FRP suggests temporal constructivity

distributivity laws correspond to these FRP types:

$$\mathcal{E}(\alpha + \beta) \to \mathcal{E}\alpha + \mathcal{E}\beta$$
$$\mathcal{E}0 \to 0$$

- no combinators of these types, since these would be non-causal
- makes it plausible to drop both distributivity laws from intuitionistic temporal logic
- logic is now constructive with respect to time:
 - no access to the whole time scale
 - time-dependent knowledge can be expressed

Conclusions and Outlook

- Curry–Howard Correspondence between □–◊–LTL and FRP
- development of a precise correspondence leads to interesting concepts, e.g.:
 - a type system that ensures start time consistency
 - a form of constructivity that allows us to express time-dependent knowledge
- further interesting things:
 - FRP analogs to and ▷
 - common categorical semantics for LTL and FRP
 - induction and coinduction in LTL and FRP
- see also my seminar talk in Tallinn next Thursday

