# SOLAR PANEL STUDY

JEONG HUH JUNE 2020

#### INTRODUCTION

- My house is located in Austin, Texas
- Texas has a lot of sunlight available during the year
- Installed solar panels on roof during Thanksgiving of 2019 to help the environment
- The panel control unit is equipped with data collection capability
  - Energy production data from solar panels
  - Energy consumption data from daily household electronics and appliances
- Weather data was scraped from internet to correlate with energy production data
- Exploratory Data Analysis performed on energy production and consumption
- Model built to see the correlation between various weather parameters and energy production and consumption
- Made predictions based on previous years average weather data

### SOLAR PANELS LAYOUT

- 330 W  $\times$  32 panels total 10.5 kW
  - 12 facing south
  - 14 facing west
  - 6 facing east
- Microinverters used to optimize individual solar panel power generation



#### **SOLAR DATA FEATURES**

- Solar energy production from solar panels collected from December 2019 to May 2020
- · Household energy consumption collected during the same time period
  - Gas consumption during winter was not accounted for
- Weather data scraped from <a href="https://openweathermap.org">https://openweathermap.org</a> using API key
- Sun location (elevation & azimuth) data scraped from <a href="https://sunearthtools.com">https://sunearthtools.com</a>
  - Elevation: height of sun in degrees
  - azimuth: direction of sun in degrees
- Key weather data
  - Temperature, temperature index, cloud coverage, humidity, precipitation, pressure, wind



#### DAILY ENERGY PRODUCTION & CONSUMPTION

- Total energy production sum surpasses consumption by 65%
- Energy production trends down and consumption increase as summer months near





#### PANEL EFFICIENCY AND TEMPERATURE



source: pveducation.org

- As temperature of solar panel increases the output current slightly increases
- However, the voltage decreases more than the current increase
- Therefore, the overall power (V x I)
   decreases as the temperature rise above
   77 F

 This explains the overall decrease in energy production during summer

#### **ENERGY PRODUCTION VS PANEL DIRECTION**

Panels facing south performs best year round

· Panels facing east performs worst

• Panels facing east & west are catching up with south as daylight increases during summer





#### **ENERGY PRODUCTION PARAMETERS**

|                 | Positive Parameters | Negative Parameters |
|-----------------|---------------------|---------------------|
| st              | Sun elevation       | Could coverage      |
| 2 <sup>nd</sup> | Sun azimuth         | Humidity            |
| 3 <sup>rd</sup> | Temperature         | Rain                |

- Energy production has a positive correlation with sun elevation due to increasing daylight during spring months
- It has a strong negative correlation with cloud coverage, humidity & rain

#### **ENERGY PRODUCTION - DAILY**



- Hourly energy production has a positive correlation with sun elevation due to increasing daylight and having east and west facing solar panels getting more sun exposure
- It has a negative correlation with cloud coverage since it blocks sun light

#### **ENERGY CONSUMPTION PARAMETERS**

|                 | Parameters Increasing Consumption | Parameters Decreasing Consumption |
|-----------------|-----------------------------------|-----------------------------------|
| st              | Sun Azimuth                       | Pressure                          |
| 2 <sup>nd</sup> | Sun elevation                     | Humidity                          |
| 3 <sup>rd</sup> | Temperature                       | Wind                              |

- Energy consumption also has a positive correlation with sun with longer daytime and increasing temperature
  - Air conditioning draws highest electricity usage
- It has a negative correlation with atmospheric pressure, humidity and wind
  - Possibly due to relationship with cloudier days and lower temperature

#### **ENERGY CONSUMPTION - DAILY**



- Energy consumption increases with temperature above 70F mainly driven by air conditioning
- It also increases with sun elevation positive correlation between sun elevation and temperature

## BUILDING A MODEL AND PREDICTING FUTURE

#### **MODEL AND PREDICTION**

- Started with simple regression model
- Daily energy production and consumption model had a low score (< 0.5) due to insufficient data
  - 170 rows of daily weather and production data
- Hourly production model had a better score (> 0.7) having more data
- Used previous years of weather data to make prediction
  - Assuming weather pattern on average will be similar year-to-year

#### **ENERGY PRODUCTION PREDICTION**





- Energy production prediction for rest of 2020 was made by using previous year's weather data
- Predicts peak in production in fall of 2020

#### **ENERGY CONSUMPTION PREDICTION**





- Energy consumption prediction for rest of 2020 was made by using previous year's weather data
- Predicts increase during summer time and decrease for fall season

#### **SUMMARY**

- Solar panel energy production data and household energy consumption data was collected for first part of 2020
- Energy production and consumption is closely related to sun elevation, temperature and cloud coverage
- The production dip during winter is due to lack of sunlight
- The production dip during summer is due to solar panel efficiency drop at high temperature
- Successfully modeled energy production and consumption using Data Science
- Predicted energy production and consumption using previous years weather data average