

Course:

Probability and Probability Distribution

Submitted By:

Md. Tarekujjaman Riad

ID: 20228044

Session: Summer - 2022

Applied Statistics and Data Science

Jahangirnagar University

Submitted To:

Dr. Tapati Basak

Associate Professor

Jahangirnagar University

Date: 02/11/2022

Problem - 1:

Given Table:

Number of Substances Used	Frequency		
0	144		
1	342		
2	142		
3	72		
4	39		
5	20		
6	6		
7	9		
8	2		
9	1		
Total	777		

I) Construct a table of the relative frequency and the cumulative frequency for this distribution.

Ans:

R Programming Code:

```
x<-0:9
freq <- c(144,342,142,72,39,20,6,9,2,1)
rel_freq <- freq/sum(freq)
cum_rel_freq <- cumsum(rel_freq)
cum_freq <- cumsum(freq)
rel_freq
cum_rel_freq
cum_rel_freq
df <- data.frame(x,freq,rel_freq,cum_rel_freq,cum_freq)
df</pre>
```

Interpretation:

Num of	Frequency (f)	Relative	Cumulative	Cumulative
Substances Used		Frequency	Relative	Relative
(x)			Frequency	Frequency
0	144	0.185328185	0.1853282	144
1	342	0.440154440	0.6254826	486
2	142	0.182754183	0.8082368	628
3	72	0.092664093	0.9009009	700
4	39	0.050193050	0.9510940	739
5	20	0.025740026	0.9768340	759
6	6	0.007722008	0.9845560	765
7	9	0.011583012	0.9961390	774
8	2	0.002574003	0.9987130	776
9	1	0.001287001	1.0000000	777
Total	777	1		

II) Construct a graph of the probability distribution and a graph representing the cumulative probability distribution for these data.

Ans:

R Programming Code:

```
#(Graph of the probability distribution)

x<-0:9

freq <- c(144,342,142,72,39,20,6,9,2,1)

rel_freq <- freq/sum(freq)

png(file = "probbar.png")

rel_feq

barplot(rel_feq,main = "Probability Distribution Chart",

ylab="(Density)",xlab="(Number of Substances)",

names.arg = c("0", "1", "2", "3", "4", "5", "6","7","8","9"),

col = "darkred", border="yellow")

dev.off()
```

Interpretation:

Figure – 1: Bar Chart of Probability Distribution

R Programming Code:

#(Graph representing the cumulative probability distribution)

```
r<-0:9
freq <- c(144,342,142,72,39,20,6,9,2,1)
rel_freq <- freq/sum(freq)
cum_rel_freq <- cumsum(rel_freq)
png(file = "cum.png")
plot(x,cum_rel_freq, xlab="Number of Substances",ylab="Probability",
main="Cumulative Probability Distribution",
type="o",pch=20,lwd=2, col="darkred")
dev.off()</pre>
```

Interpretation:

Figure 2: Plot Graph of Cumulative Probability Distribution

Number of Substances

4

6

III) What is the probability that an individual selected at random used more than six addictive substances?

Ans:

R Programming Code:

```
x<-0:9
freq <- c(144,342,142,72,39,20,6,9,2,1)
rel_freq <- freq/sum(freq)
desired_freq <- freq[x>6]
desired_freq
prob <- sum(desired_freq/sum(freq))
prob</pre>
```

2

Output: 0.01544402

Problem - 2:

For a study, acetone levels of a 29-year-old male were normally distributed with a mean of 870 and a standard deviation of 211 ppb. Find the probability that on a given day the subject's acetone level is:

- i) Between 600 and 1000 ppb;
- ii) Over 900 ppb;
- iii) Under 500 ppb
- iv) Between 900 and 1100 ppb
- I) Ans: (Between 600 and 1000 ppb)

R Programming Code:

```
x <- 600:1000

x

x1 <- pnorm(600, mean=870, sd=211)

x1

x2<- pnorm(1000, mean=870, sd=211)

x2

y <- x2-x1

y
```

Output: 0.630751

Interpretation:

Here,
$$Mean, \mu = 870,$$

 $Standard\ Variance, \sigma = 211$
 $P(600 < X < 1000) = P\left(\frac{600 - 870}{211} < Z < \frac{(1000 - 870)}{211}\right)$
 $= P(-1.28 < Z < 0.62)$
 $= P(Z < 0.62) - P(Z < -1.28)$
 $= 0.73237 - 0.10027$
 $= 0.630751$

II) Ans: (Over 900 ppb)

R Programming Code:

Output: 0.4434689

Interpretation:

Here,
$$P(X > 900) = P(Z > \frac{(900-870)}{211})$$

= $P(Z > 0.14)$
= $1 - 0.55567$
= 0.44

III) Ans: (Under 500 ppb)

R Programming Code:

Output: 0.03975344

Interpretation:

Here,
$$P(X < 500) = P(Z < \frac{(500-870)}{211})$$

= $P(Z < -1.75)$
= 0.04

IV) Ans: (Between 900 and 1100 ppb)

R Programming Code:

```
x <- 900:1100
x1 <- pnorm(900, mean=870, sd=211)
x2<- pnorm(1100, mean=870, sd=211)
y<- x2-x1
y
```

Output: 0.3056227

Interpretation:

```
P(900 < X < 1100) = P((900 - 870)/211 < Z < (1100 - 870)/211)
= P(0.14 < Z < 1.09)
= P(Z < 1.09) - P(Z < 0.14)
= 0.86214 - 0.55567
= 0.30647
```