Nom:

Prénom:

Note: /10

Contrôle de connaissances 6

Électrocinétique: ressort amorti (13')

On suppose le système mécanique suivant, constitué du point M de masse m accroché à un ressort idéal mais subissant des frottements fluides. On travaille dans le référentiel $\mathcal{R}_{\mathrm{sol}}(O',x,y,t)$ supposé galiléen, avec le repère $(O',\overrightarrow{u_x},\overrightarrow{u_y})$. On repère la masse par rapport à sa position d'équilibre : $x(t) = \ell(t) - \ell_0$. On suppose le ressort initialement détendu tel que $x(0) = x_0 > 0$, lâché sans vitesse initiale.

FIGURE 6.1

Effectuer un bilan des forces puis déterminer l'équation différentielle sous forme canonique de x(t) pour $t \ge 0$. Déterminer les expressions de ω_0 et Q, résoudre l'équation différentielle pour un régime pseudo-périodique.

Exprimer la période T des oscillations amorties en fonction de la période T_0 des oscillations harmoniques, donner sans démonstration l'approximation de t_{95} et **tracer la solution**, avec $Q \approx 3$.

FIGURE 6.2 – Tracé solution $Q \approx 3$.