

United International University (UIU)

Department of Computer Science and Engineering CSE 1325: DIGITAL LOGIC DESIGN, Final Fall 2021

Total Marks: **40** Duration: 2 hour + 15 min (for uploading)

Section A: Answer<u>any 3 (three)</u> of the Questions from 1 to 4.

1.					[2]	
	including overlap such that for input $x = 01010100011010010100$ the corresponding output $Z = 000010100000100001$. Design the circuit using D Flip-Flops.					[2]
	You have to show the following:					[2]
	i.	The state diagr	am			F-3
	ii.	The flip-flop in	put table			[2]
	iii.	The simplified	equation(s) for the	e flip-flop input(s)	and the output(s)	
	iv.	The final circui	t diagram			
2.	Design a D Flip-Flop using a JK Flip-Flop and basic gates .				[4]	
	You have to show the following					
	i. The conversion table				[2]	
	ii. The simplified equation(s) for the flip-flop input(s)				[2]	
	iii. The final circuit diagram					[-]
3.					[8]	
	with positive edge-triggered T Flip-Flops and basic gates . Include an asynchronous					
	RESET signal to reset the circuit to state 0000 (when $RESET = 1$).					
4.					[8]	
	selection (control) inputs S_1 and S_0 can do the following operations. You are free to use					
	any kind of flip-flop and other necessary gates you prefer.					
	Mode Control Register					
	S_{\square} S_{\square} Operation					
		0	0	Parallel Load		
		0	1	Shift Left		
	1 0 Shift Right					
		1	1	No Change		

Section B: Answer any 2 (two) of the Questions from 5 to 7.

5.	A) Design the following Boolean function using a 3-to-8 line decoder and an OR gate.			
	$F(A,B,C) = A\bar{B} + B\bar{C}$			
	B) Design a Full Adder circuit of two binary numbers with two bits denoted as A_1A_0 and B_1B_0 and an input carry C_i using two 1-bit full adder circuits block diagram and external basic gates. Here output will be sum = s_1s_0 and output carry C_0 .	[4]		
6.	A) Implement the following Boolean function with an 8–to–1-line multiplexer and external basic gates.			
	$F(W, X, Y, Z) = \Pi_M(0, 2, 5, 6, 7, 8, 9, 10)$			
	B) Design an 8-to-1 -line multiplexer using 2-to-1 line multiplexers only. You need to use the	[4]		

	block diagram of the 2 to 1 line multiplexer.	
7.	A) Design a 4-input Priority Encoder with inputs $D_3D_2D_1D_0$. Derive the truth table of the priority encoder where priority is set according to the following sequence of priority from the highest to the lowest $D_1 > D_2 > D_0 > D_3$. Derive the Boolean expressions for outputs and draw the circuit diagram.	[4]
	B) Find the Boolean expressions of the outputs of a Hexadecimal to Binary encoder where inputs are $H_0, H_1, H_2,, H_{15}$ and outputs are A, B, C, D .	[4]

Excitation Tables for different Flip-Flops

Q(†)	Q(†+1)	D	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

Q(t)	Q(t+1)	J	K	Operation
0	0	0	×	No change/reset
0	1	1	×	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

Q(†)	Q(†+1)	Т	Operation
0	0	0	No change
0	1	1	Complement
1	0	1	Complement
1	1	0	No change