

A Survey of Mixed Precision Multigrid Methods

Technical University of Munich

TUM School of Computation, Information and Technology

Jinwen Pan

07.07.2023

Content

- Introduction
- IEEE 754 Floating-Point Arithmetic
- Matrix-Matrix Multiplication Experiment
- Performance Evaluation of Mixed Precision Multigrid Methods
- Error Analysis of Mixed Precision Multigrid Methods

Mixed Precision Algorithms

Motivation:

- -> exponential growth of computational amount and increasing demand for speed
- -> traditional high precision algorithms often become computationally prohibitive
- -> balance between accuracy and computational efficientcy is needed

Definition:

Mixed precision algorithms: employ two or more precisions, selected from a limited set of available precisions (half, single, double by hardware and quadruple by software).

Multiprecision or variable precision algorithms: utilize one or more arbitrary precisions, which can vary based on the specific problem and are implemented through software.

Mixed Precision Algorithms

Accuracy:

- higher precision (represented by more bits) generally leads to higher accuracy
- computations involving extremely large or minuscule values, as well as those with subtle differences, will be more accurately captured.

Runtime:

- typically consists of data communication and computation
- data communication: a hardware-independent linear correlation with length of precision
- computational overhead: largely contingent upon the specific hardware architectures

Implementation:

Substitute high precision with low precision in the parts which are performance-sensitive but not error-sensitive.

Mixed Precision Algorithms

Physical simulations:

- PDE-based models: molecular dynamics simulation, computational fluid dynamics, computational electromagnetics
- most common and computationally intensive

Climate modelling and weather forecasting:

- inclination towards utilization of low precision since 2014
- low precision is sufficient to be consistent with observations on which a model is constructed

Machine learning:

- mixed precision training optimizer, such as the NVIDIA Apex library
- hardware accelerators that support mixed precision computations, such as NVIDIA's Tensor Cores

Multigrid Methods

- solve a linear system of equations (LSE) arising from PDEs
- compute across multiple grids of different resolutions
- prolongation: interpolate coarse grid to finer grid
- restriction: reduce fine grid to coarser grid
- relaxation: arbitrary LSE iterative solver

Multigrid Methods

Geometric multigrid methods:

- operate directly on a hierarchy of grids that are nested within each other
- further categorized: V-cycle, W-cycle, or Full Multigrid (FMG).

Algebraic multigrid methods:

- operate directly on the LSE derived from the discretization of the PDE
- construct a hierarchy of approximations based on the algebraic structure of the problem
- start with an initial approximation to the solution using coarse grid corrections

Multigrid Methods

Advantages:

- Convergence: exploit the multilevel structure to capture error components at different scales, leading to faster convergence rates
- Scalability: exhibit excellent scalability with problem size
- Flexibility: can be applied to structured, unstructured, and adaptive grids

Mixed precision algorithms:

- employ pure low precision multigrid methods as preconditioners for high precision solvers
- utilize different precisions at each level of the multigrid hierarchy

IEEE 754 Floating-Point Number Systems

Definition:

$$e \in \{e_{min}, ..., e_{max}\}$$

$$d_0, ..., d_{p-1} \in \{0, ..., b-1\}$$

$$x = \pm b^e \times \left(d_0 + \frac{d_1}{b} + \frac{d_2}{b^2} + \dots + \frac{d_{p-1}}{b^{p-1}} \right)$$

Alternatively:

$$m \in \{0, b, ..., b^p - 1\}$$

$$x = \pm m \times b^{e-p+1}$$

Normalization:

$$d_0 \in \{1, ..., b-1\}$$

 $m \in \{b^{p-1}, b^{p-1} + b, ..., b^p - 1\}$

Range:

$$b^{e_{min}} \le |x| \le b^{e_{max}} \times (b - b^{1-p})$$

IEEE 754 Floating-Point Number Systems

Format	Sign	Exponent	Significand	e _{min}	e _{max}	Machine Epsilon	$\mathbf{x}_{\mathbf{min}}$	X _{max}
FP16	1 bit	5 bits	10 bits	-14	+15	9.76×10^{-4}	6.10×10^{-5}	6.55×10^{4}
FP32	1 bit	8 bits	23 bits	-126	+127	1.19×10^{-7}	1.18×10^{-38}	3.40×10^{38}
FP64	1 bit	11 bits	52 bits	-1022	+1023	2.22×10^{-16}	2.22×10^{-308}	1.80×10^{308}
FP128	1 bit	15 bits	112 bits	-16382	+16383	1.93×10^{-34}	3.36×10^{-4932}	1.19×10^{4932}

Machine epsilon:

$$\epsilon = b^{1-p}$$

Unit roundoff:

$$u = \frac{1}{2}b^{1-p}$$

Subnormal numbers:

$$e = e^{e_{min}}$$

 $d_0 = 0$
 $m \in \{0, b, ..., b^{p-1} - 1\}$

Rounding Error Analysis Model

Floating-point estimates:

$$fl(x) = x(1+\delta), |\delta| < u$$

$$fl(x \star y) = (x \star y)(1 + \delta), \ |\delta| \le u$$

Linear transformation:

$$fl(Ax) = Ax + \delta, \ |\delta| \le \frac{nu}{1 - nu} |A| \cdot |x|$$

Residual calculation:

$$fl(Ax - b) = Ax - b + \delta, \ |\delta| \le \frac{(n+1)u}{1 - (n+1)u}(|b| + |A| \cdot |x|)$$

$$\mathrm{fl}(Ax - b) = Ax - b + \delta, \quad |\delta| \le \varepsilon |Ax - b| + (1 + \varepsilon) \frac{(n+1)\overline{\varepsilon}}{1 - (n+1)\overline{\varepsilon}} (|b| + |A| \cdot |x|)$$

SuperMUC-NG

- Peak performance: 26.8 Peta FLOPS
- 9 islands, 6480 nodes
- 2 sockets per node
- 24 cores per socket (48 threads including hyperthreads per socket)
- Skylake EP: Intel Xeon 8174
- Frequencies:
 - Standard 2.7 GHz
 - Nominal 3.1 GHz
 - Peak 3.9 GHz
 - AVX 2.3 GHz
- Memory:
 - L1 instruction: 32KB
 - L1 data: 32KB
 - L2: 1MB
 - L3: 1.3MB / core, non-inclusive victim cache
 - DRAM: 96GB per node, aggregated bandwidth 128 GB / s

Matrix-Matrix Multiplication - Cache Optimization

```
for (int i = 0; i < n; i++) {
    for (int k = 0; k < n; k++) {
        for (int j = 0; j < n; j++) {
            C[i * n + j] += A[i * n + k] * B
            [k * n + j];
        }
}</pre>
```


orange: runtime blue: L2 miss rate green: L3 miss rate empty symbols: original filled symbols: optimized single precision and -O1

Matrix-Matrix Multiplication - Compiler Optimization

- -O1, -O2, and -O3: progressively enhanced optimization levels. The latter two enables SIMD vectorization. -O2 is used when no one is specified.
- -ipo: interprocedural optimization: perform optimization across different functions
- -fno-alias: assume there is not memory aliasing and optimize further
- -xCORE-AVX512: utilizes broader vector registers and supplementary SIMD operations provided by the AVX-512 instruction set supported on SuperMUC-NG

single precision and optimized kernel

Matrix-Matrix Multiplication - Precision Optimization

optimized kernel and -O2

Performance Evaluation - CFD Simulation on CPU

Double precision conjugate gradient algorithm preconditioned by **single** precision multigrid methods

empty symbols: 8-bit; filled symbols: 4-bit; different markers mean different multigrid methods

Performance Evaluation - 2D Poisson's Equation

Performance Evaluation - 3D Poisson's Equation

Algorithm 3.1 Iterative Refinement (IR)

```
Input: A, b, x initial guess, tol > 0 convergence tolerance.
```

1: $r \leftarrow Ax - b$

▷ Compute IR Residual and Round

- 2: if ||r|| < tol then
- 3: return x

 \triangleright Return Solution of Ax = b

- 4: end if
- 5: $y \leftarrow \text{InnerSolve}(A, r)$
- \triangleright Compute Approximate Solution of Ay = r

6: $x \leftarrow x - y$

 \triangleright Update Approximate Solution of Ax = b

7: **goto** 1

Discrete energy norm:

$$||x||_A = ||A^{\frac{1}{2}}x||, x \in \mathbb{R}^n$$

Condition numbers:

$$\kappa(A) = ||A|| \cdot ||A^{-1}||$$

$$\kappa(A) = \psi \|A^{-1}\|$$

$$\psi(A) = ||A||$$

Sparsity factor:

$$\bar{m}_A^+ = \frac{m_A + 1}{1 - (m_A + 1)\bar{\varepsilon}}$$

Bound-related parameters:

$$\dot{\tau} = \kappa^{\frac{1}{2}} \dot{\boldsymbol{\varepsilon}}$$

$$\tau = \kappa^{\frac{1}{2}} \varepsilon$$

$$\bar{\tau} = \kappa \bar{\varepsilon}$$

$$\gamma = \frac{\kappa^{\frac{1}{2}} + \underline{\kappa}}{\kappa}$$

$$ar{arepsilon} \leq arepsilon \leq \dot{oldsymbol{arepsilon}}$$

Error bound of inner solver:

$$||y - A^{-1}r||_A \le \rho ||A^{-1}r||_A$$

Relative error bound:

$$\frac{\|x^{(i+1)} - A^{-1}b\|_A}{\|A^{-1}b\|_A} \le \rho_{ir} \frac{\|x^{(i)} - A^{-1}b\|_A}{\|A^{-1}b\|_A} + \chi$$

Convergence factor:

$$\rho_{ir} = \rho + \delta_{\rho_{ir}}, \quad \delta_{\rho_{ir}} = \frac{(1+2\rho)\tau + \gamma(1+\rho)(1+\varepsilon)\bar{m}_A^+\bar{\tau}}{1-\tau}$$

Limiting accuracy:

$$\chi = \frac{\tau + \gamma(1+\rho)(1+\varepsilon)\bar{m}_A^+\bar{\tau}}{1-\tau}$$

Proof:

$$\begin{split} r &= \underbrace{Ax^{(i)} - b}_{\text{exact residual}} + \underbrace{\delta_{1}}_{\varepsilon \text{-}\overline{\varepsilon} \text{ error}}, \quad |\delta_{1}| \leq \varepsilon |Ax^{(i)} - b| + (1 + \varepsilon) \bar{m}_{A}^{+} \overline{\varepsilon} \left(|b| + |A| \cdot |x^{(i)}| \right) \\ \left\| A^{-\frac{1}{2}} \left(|b| + |A| \cdot |x^{(i)}| \right) \right\| \leq \|A^{-\frac{1}{2}}\| \left(\|AA^{-1}b\| + \psi \|x^{(i)}\| \right) \\ &\leq \|A^{-\frac{1}{2}}\| \cdot \|A^{\frac{1}{2}}\| \cdot \|A^{-1}b\|_{A} + \psi \|A^{-1}\| \cdot \|x^{(i)}\|_{A} \\ &= \kappa^{\frac{1}{2}} \|A^{-1}b\|_{A} + \underline{\kappa} \|x^{(i)}\|_{A} \\ &\leq (\kappa^{\frac{1}{2}} + \kappa) \|A^{-1}b\|_{A} + \kappa \|x^{(i)} - A^{-1}b\|_{A}. \end{split}$$

$$||A^{-1}\delta_{1}||_{A} = ||A^{-\frac{1}{2}}\delta_{1}||$$

$$\leq \varepsilon ||A^{-\frac{1}{2}}|| \cdot ||Ax^{(i)} - b|| + (1 + \varepsilon)\bar{m}_{A}^{+}\bar{\varepsilon} ||A^{-\frac{1}{2}}(|b| + |A| \cdot |x^{(i)}|)||$$

$$\leq \varepsilon \kappa^{\frac{1}{2}} ||x^{(i)} - A^{-1}b||_{A}$$

$$+ (1 + \varepsilon)\bar{m}_{A}^{+}\bar{\varepsilon} \left((\kappa^{\frac{1}{2}} + \underline{\kappa}) ||A^{-1}b||_{A} + \underline{\kappa} ||x^{(i)} - A^{-1}b||_{A} \right).$$

$$\begin{split} \|y - A^{-1}r\|_{A} &\leq \rho \|A^{-1}r\|_{A} \\ &= \rho \|A^{-1}\left(Ax^{(i)} - b + \delta_{1}\right)\|_{A} \\ &\leq \rho \left[\|x^{(i)} - A^{-1}b\|_{A} + \|A^{-1}\delta_{1}\|_{A}\right] \\ &\leq \rho \left[\|x^{(i)} - A^{-1}b\|_{A} + \|A^{-1}b\|_{A} \\ &\quad + (1 + \varepsilon)\bar{m}_{A}^{+}\bar{\varepsilon}\left((\kappa^{\frac{1}{2}} + \underline{\kappa})\|A^{-1}b\|_{A} + \underline{\kappa}\|x^{(i)} - A^{-1}b\|_{A}\right)\right] \\ x^{(i+1)} &= \underbrace{x^{(i)} - y}_{\text{exact update}} + \underbrace{\delta_{2}}_{\text{e error}}, \quad |\delta_{2}| \leq \varepsilon |x^{(i+1)}| \\ \|x^{(i+1)} - A^{-1}b\|_{A} &= \|x^{(i)} - A^{-1}b - A^{-1}r - (y - A^{-1}r) + \delta_{2}\|_{A} \\ &\leq \|A^{-1}\delta_{1} + (y - A^{-1}r)\|_{A} + \|\delta_{2}\|_{A} \\ &\leq \|A^{-1}\delta_{1}\|_{A} + \|y - A^{-1}r\|_{A} + \varepsilon \|A^{\frac{1}{2}}\| \cdot \|x^{(i+1)}\| \\ &\leq \left(\rho + (1 + \rho)\varepsilon\kappa^{\frac{1}{2}}\right) \left\|x^{(i)} - A^{-1}b\|_{A} \\ &+ (1 + \rho)(1 + \varepsilon)\bar{m}_{A}^{+}\bar{\varepsilon}\left((\kappa^{\frac{1}{2}} + \underline{\kappa})\|A^{-1}b\|_{A} + \underline{\kappa}\|x^{(i)} - A^{-1}b\|_{A}\right) \\ &+ \varepsilon\kappa^{\frac{1}{2}}(\|x^{(i+1)} - A^{-1}b\|_{A} + \|A^{-1}b\|_{A}) \\ &= \varepsilon\kappa^{\frac{1}{2}}\|x^{(i+1)} - A^{-1}b\|_{A} + (\rho + \delta_{3})\|x^{(i)} - A^{-1}b\|_{A} \\ &+ \left(\varepsilon\kappa^{\frac{1}{2}} + (1 + \rho)(1 + \varepsilon)\bar{m}_{A}^{+}\bar{\varepsilon}(\kappa^{\frac{1}{2}} + \underline{\kappa})\right) \|A^{-1}b\|_{A}, \end{split}$$

$$\delta_{3} = (1 + \rho) \left(\varepsilon \kappa^{\frac{1}{2}} + (1 + \varepsilon) \bar{m}_{A}^{+} \bar{\varepsilon} \underline{\kappa} \right)$$
$$\frac{\rho + \delta_{3}}{1 - \varepsilon \kappa^{\frac{1}{2}}} = \rho + \frac{\delta_{3} + \rho \varepsilon \kappa^{\frac{1}{2}}}{1 - \varepsilon \kappa^{\frac{1}{2}}} = \rho + \delta_{\rho_{ir}}$$

$$\sum_{i=0}^{N-1} (\rho + \delta_{\rho_{ir}})^i \le \frac{1}{1 - (\rho + \delta_{\rho_{ir}})}$$

Rounding Error Analysis - Two Grid

Algorithm 5.1 Two-Grid (\mathcal{TG}) Correction Scheme Input: A, r, P, M. 1: $r \leftarrow r$ \triangleright Round RHS and Initialize \mathcal{TG} 2: $y \leftarrow Mr$ \triangleright Relax on Current Approximation (y=0)3: $r_{\text{tg}} \leftarrow Ay - r$ \triangleright Evaluate \mathcal{TG} Residual 4: $b_c \leftarrow P^t r_{tg}$ ▶ Restrict TG Residual to Coarse-Level

5: $d_c \leftarrow B_c(\tilde{P}^t A P)^{-1} b_c$ Solve Coarse-Level Equation
 Solve Coarse-Level Eq 6: $d \leftarrow Pd_c$

▶ Interpolate Correction to Fine Level 7: $y \leftarrow y - d$

 \triangleright Update Approximate Solution of Ay = r

 \triangleright Return Approximate Solution of Ay = r

Convergence established:

8: return y

$$||y - A^{-1}r||_A \le \rho_{tg} ||A^{-1}r||_A, \quad \rho_{tg} = \rho_{tg}^* + \delta_{\rho_{tg}}$$

$$\delta_{\rho_{tg}} = \delta_{\rho_{tg}}(\dot{\tau}) = a_1 \dot{\tau} + a_2 \dot{\tau}^2 + a_3 \dot{\tau}^3$$

Rounding Error Analysis - V(1,0)-Cycle

Algorithm 6.1 V(1,0)-Cycle (V) Correction Scheme

```
Input: A, r, P, \ell \geq 1 \mathcal{V} levels.
                                                                      ▶ Round RHS and Initialize V
 1: r \leftarrow r
 2: y \leftarrow Mr
                                                                      \triangleright Relax on Current Approximation (y = 0)
                                                                      ▷ Check for Coarser Level
 3: if \ell > 1 then
       r_{\rm v} \leftarrow Ay - r
                                                                      ▶ Evaluate V Residual
     r_{\ell-1} \leftarrow P^t r_{\rm v}
                                                                      ▶ Restrict V Residual to Coarse-Level
    d_{\ell-1} \leftarrow \mathcal{V}(A_{\ell-1}, r_{\ell-1}, P_{\ell-1}, \ell-1)
                                                                      ▶ Compute Correction from Coarser Levels
    d \leftarrow Pd_{\ell-1}
                                                                      ▶ Interpolate Correction to Fine Level
     y \leftarrow y - d
                                                                      \triangleright Update Approximate Solution of Ay = r
 9: end if
                                                                      \triangleright Return Approximate Solution of Ay = r
10: return y
```


Rounding Error Analysis - V(1,0)-Cycle

Precision coarsening factor:

$$\dot{\zeta}_j = \frac{\dot{\boldsymbol{\varepsilon}}_{j-1}}{\dot{\boldsymbol{\varepsilon}}_j}, \ 2 \le j \le \ell$$

Pseudo mesh-refinement factor:

$$\theta_j = \frac{h_{j-1}}{h_i}, \quad 2 \le j \le \ell$$

Convergence established:

$$\|y-A^{-1}r\|_A \leq \rho_v \|A^{-1}r\|_A, \ \rho_v = \rho_v^* + \delta_{\rho_v}, \ \delta_{\rho_v} = \delta_{\rho_v}(\dot{\tau}_\ell) = \frac{\vartheta^m}{\vartheta^m-1}\delta_{\rho_{tg}}(\dot{\tau}_\ell) \ ,$$
 where $\vartheta = \min_{1 \leq j \leq \ell} \{\theta_j \dot{\zeta}_j^{-\frac{1}{m}}\}$

Rounding Error Analysis - Full Multigrid

Algorithm 9.1 FMG(1,0)-Cycle (\mathcal{FMG})

```
Input: A, b, P, N \ge 1 \mathcal{IR} cycles (using one V(1,0) each), \ell \ge 1 \mathcal{FMG} levels.
 1: x \leftarrow 0
                                                                       \triangleright Initialize \mathcal{FMG}
 2: if \ell > 1 then
                                                                       ▷ Check for Coarser Level
         x_{\ell-1} \leftarrow \mathcal{FMG}(A_{\ell-1}, b_{\ell-1}, P_{\ell-1}, \ell-1, N)
                                                                       ▶ Compute Coarse-Level Approximation
         x \leftarrow Px_{\ell-1}
                                                                       ▶ Interpolate Approximation to Fine Level
 5: end if
 6: i \leftarrow 0
                                                                       \triangleright Initialize \mathcal{IR}
 7: while i < N do
         r \leftarrow Ax - b
                                                                       ▶ Update IR Residual and Round
                                                                       ▶ Compute Correction by V
         y \leftarrow \mathcal{V}(A, r, P, \ell)
10:
         i \leftarrow i + 1
                                                                       \triangleright Increment \mathcal{IR} Cycle Counter
11:
         x \leftarrow x - y
                                                                       \triangleright Update Approximate Solution of Ax = b
12: end while
13: return x
                                                                       \triangleright Return Approximate Solution of Ax = b
```


Rounding Error Analysis - Full Multigrid

Assume:

$$\rho_v + \delta_{\rho_{ir}} < 1$$

 χ is small enough

N is large enough

Then:

$$(\rho_v + \delta_{\rho_{ir}})^N \left((\sqrt{2} + \mu \tau) \theta^q C h^q + \mu \tau \right) + \frac{\chi}{1 - (\rho_v + \delta_{\rho_{ir}})} \leq C h^q \ \text{ holds on all levels j.}$$

Here $\mu=\mu_j=\kappa^{\frac{1}{2}}(P_j^tP_j)m_P^+$, h is pseudo mesh size, C and q are positive constants.

References

Main references for the presentation:

- A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, M. Gates, N. J. Higham, X. S. Li, J. Loe, P. Luszczek, S. Pranesh, S. Rajamanickam, T. Ribizel, B. F. Smith, K. Swirydowicz, S. Thomas, S. Tomov, Y. M. Tsai, and U. M. Yang, "A survey of numerical linear algebra methods utilizing mixed-precision arithmetic," The International Journal of High Performance Computing Applications, vol. 35, pp. 344–369, July 2021.
- M. Kronbichler and K. Ljungkvist, "Multigrid for Matrix-Free High-Order Finite Element Computations on Graphics Processors," ACM Transactions on Parallel Computing, vol. 6, pp. 2:1–2:32, May 2019.
- S. F. McCormick, J. Benzaken, and R. Tamstorf, "Algebraic Error Analysis for Mixe Precision Multigrid Solvers," SIAM Journal on Scientific Computing, vol. 43, pp. S392–S419, Jan. 2021.

The full list is presented in my paper.

THANKS