

#### Цель работы:

1) регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов; 2) определение коэффициента диффузии по результатам измерений.

### В работе используются:

измерительная установка; форвакуумный насос; баллон с газом (гелий); манометр; источник питания; магазин сопротивлений; гальванометр; секундомер.

## Описание работы

Рассмотрим процесс выравнивания концентрации. Закон Фика:

$$j = -D\frac{\partial n}{\partial x}$$

В нашем случае ввиду того что, а) объем соединительной трубки мал по сравнению с объемами сосудов, б) концентрацию газов внутри каждого сосуда можно считать постоянной по всему объему.

$$J = -DS \frac{n_1 - n_2}{l}$$

Изменение компонента в сосудах:  $V_1 \Delta n_1 = -V_2 \Delta n_2$ 

С другой стороны  $V_1\Delta n_1=J\Delta t$  и  $V_1\frac{dn_1}{dt}=-DS\frac{n_1-n_2}{l}$ ; Аналогично  $V_2\frac{dn_2}{dt}=DS\frac{n_1-n_2}{l}$ 

Тогда

$$\frac{d(n_1 - n_2)}{dt} = -\frac{n_1 - n_2}{l} \frac{V_1 + V_2}{V_1 V_2}$$

Проинтегрируем и получим, что

$$n_1 - n_2 = (n_1 - n_2)_0 e^{-t/\tau}, \tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD} = /V_1 = V_2 = V/ = \frac{Vl}{2SD}$$

При заполнении сосудов смесями различного состава возникает «разбаланс» моста. При незначительном различии в составах смесей показания гальванометра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси. В процессе диффузии разность концентраций убывает по экспоненте, и значит по тому же закону изменяются во времени показания гальванометра

$$U = U_0 \exp(-t/\tau)$$

# Оборудование



# Ход работы

Перепишем параметры установки:

 $V = (1200 \pm 30) \text{ cm}^3; l/s = (5, 5 \pm 0, 5) \text{ cm}^{-1};$ 

Тогда постоянная установки  $M = (3300 \pm 300) \; \mathrm{cm}^2$ 

Рабочие давления:  $P_{He} = 0, 2P_{rab}; \quad P_{Air} = 1,75P_{rab}$ 

### Таблицы значений:

| t, c   | U, y.e | In(U/U₀) |
|--------|--------|----------|--------|--------|----------|--------|--------|----------|--------|--------|----------|
| 0,00   | 255,0  | 0,000    | 0,00   | 253,0  | 0,000    | 0,00   | 255,0  | 0,000    | 0,00   | 255,0  | 0,000    |
| 15,61  | 245,4  | 0,038    | 27,26  | 251,0  | 0,008    | 24,78  | 249,0  | 0,024    | 34,48  | 249,0  | 0,024    |
| 31,22  | 236,8  | 0,074    | 54,52  | 247,0  | 0,024    | 49,57  | 241,4  | 0,055    | 68,96  | 241,0  | 0,056    |
| 46,83  | 228,2  | 0,111    | 81,78  | 243,0  | 0,040    | 74,35  | 234,7  | 0,083    | 103,43 | 238,0  | 0,069    |
| 62,43  | 218,1  | 0,156    | 109,04 | 254,0  | -0,004   | 99,13  | 227,0  | 0,116    | 137,90 | 233,0  | 0,090    |
| 78,04  | 212,0  | 0,185    | 136,30 | 251,0  | 0,008    | 123,91 | 220,0  | 0,148    | 172,39 | 224,0  | 0,130    |
| 93,65  | 205,3  | 0,217    | 163,57 | 247,0  | 0,024    | 148,70 | 214,0  | 0,175    | 206,87 | 223,0  | 0,134    |
| 109,26 | 198,0  | 0,253    | 190,83 | 244,0  | 0,036    | 173,48 | 207,0  | 0,209    | 241,35 | 219,0  | 0,152    |
| 124,87 | 192,0  | 0,284    | 218,09 | 240,0  | 0,053    | 198,26 | 199,7  | 0,244    | 275,83 | 214,0  | 0,175    |
| 140,48 | 186,0  | 0,316    | 245,35 | 235,0  | 0,074    | 223,04 | 194,0  | 0,273    | 310,30 | 209,7  | 0,196    |
| 156,09 | 180,0  | 0,348    | 272,61 | 232,0  | 0,087    | 247,83 | 188,2  | 0,304    | 344,78 | 205,0  | 0,218    |
| 171,70 | 174,3  | 0,380    | 299,87 | 230,0  | 0,095    | 272,61 | 183,0  | 0,332    | 379,26 | 201,0  | 0,238    |
| 187,30 | 168,7  | 0,413    | 327,13 | 227,0  | 0,108    | 297,39 | 176,0  | 0,371    | 413,74 | 193,0  | 0,279    |
| 202,91 | 161,0  | 0,460    | 354,39 | 220,0  | 0,140    | 322,17 | 171,0  | 0,400    | 448,22 | 189,0  | 0,300    |
| 218,52 | 156,0  | 0,491    | 381,65 | 218,0  | 0,149    | 346,96 | 165,0  | 0,435    | 482,70 | 185,0  | 0,321    |
| 234,13 | 151,0  | 0,524    | 408,91 | 216,0  | 0,158    | 371,74 | 160,0  | 0,466    | 517,17 | 178,0  | 0,359    |
| 249,74 | 146,0  | 0,558    | 436,17 | 214,0  | 0,167    | 396,52 | 154,0  | 0,504    | 551,65 | 176,0  | 0,371    |
| 265,35 | 141,0  | 0,593    | 463,43 | 211,0  | 0,182    | 421,30 | 152,0  | 0,517    | 586,13 | 173,0  | 0,388    |
| 280,96 | 137,0  | 0,621    | 490,70 | 207,0  | 0,201    | 446,09 | 148,0  | 0,544    | 620,61 | 170,0  | 0,405    |
| 296,57 | 133,0  | 0,651    | 517,96 | 205,0  | 0,210    | 470,87 | 144,0  | 0,571    | 655,09 | 165,0  | 0,435    |
| 312,17 | 128,0  | 0,689    | 545,22 | 202,0  | 0,225    | 495,65 | 137,7  | 0,616    | 689,57 | 164,0  | 0,441    |
| 327,78 | 124,0  | 0,721    | 572,48 | 200,0  | 0,235    | 520,43 | 134,0  | 0,643    | 724,04 | 161,0  | 0,460    |
| 343,39 | 120,0  | 0,754    |        |        | 0,250    | 545,22 | 132,0  | 0,658    | 758,52 | 158,0  | 0,479    |
| 359,00 | 116,0  | 0,788    | 627,00 | 194,0  | 0,266    | 570,00 | 129,0  | 0,681    | 793,01 | 150,0  | 0,531    |

## Графики:









Получаем, что

| Р рабочее, торр | $D, cm^2/c$     |
|-----------------|-----------------|
| 40              | $7,2 \pm 0,6$   |
| 75              | $4,1 \pm 0,4$   |
| 140             | $2, 1 \pm 0, 2$ |
| 180             | $1,72 \pm 0,2$  |

Теперь построим график D(1/P)



Тогда, проэкстраполировав к P=757 торр, получим, что  $D=(0,46\pm0,07)~{\rm cm^2/c}$   $D=\frac{1}{3}\lambda< v>,< v>=\sqrt{\frac{8RT}{\pi M}}$  Тогда  $\lambda\approx 10^{-7}$  м;  $\sigma\approx 4*10^{-19}$  м²

### Литература

Лабораторный практикум по общей физике. Термодинамика/А.Д. Гладун - М, 2004 г