Foundations of Computing Lecture 4

Arkady Yerukhimovich

January 26, 2023

Outline

- 1 Lecture 3 Review
- 2 Example NFAs
- 3 Equivalence of NFAs and DFAs
- Properties of Regular Languages Using NFAs
- 6 Regular Expressions

Lecture 3 Review

- Regular Languages
- Nondeterministic Finite Automata
- Understanding Nondeterminism

Outline

- 1 Lecture 3 Review
- 2 Example NFAs
- 3 Equivalence of NFAs and DFAs
- Properties of Regular Languages Using NFAs
- Regular Expressions

Question: What is L(M)?

Question: What is L(M)?

Answer: Strings in $\{0,1\}^*$ with a 1 as third from the end

ullet M waits in q_1 until it "guesses" that it is 3 symbols from the end

Question: What is L(M)?

Answer: Strings in $\{0,1\}^*$ with a 1 as third from the end

How does it work?

- M waits in q_1 until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end

Question: What is L(M)?

Answer: Strings in $\{0,1\}^*$ with a 1 as third from the end

How does it work?

- ullet M waits in q_1 until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end
- DFA doing the same thing would have to track the last three bits seen – requires 8 states

```
L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains } \}
```

- 10 the substring 101, or
- ② the substring 010}

 $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains } \}$

- the substring 101, or
- the substring 010}

 $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains } \}$

- the substring 101, or
- ② the substring 010}

DFA for prop. (1)

DFA for prop. (2)

 $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains } \}$

• the substring 101, or

② the substring 010}

NFA Summary

- NFAs are much simpler to design
- Only need to verify that inputs have correct form
- Ability to "guess" when some checkable property occurs is very useful

NFA Summary

- NFAs are much simpler to design
- Only need to verify that inputs have correct form
- Ability to "guess" when some checkable property occurs is very useful

Question

Are NFAs more powerful than DFAs?

Quiz

Quiz

- **1** Does *N* accept $w = \epsilon$?
- ② Does N accept w = aaa?
- **3** Does N accept w = babba?
- **4** Does N accept w = abaaba?

Outline

- Lecture 3 Review
- 2 Example NFAs
- 3 Equivalence of NFAs and DFAs
- Properties of Regular Languages Using NFAs
- Regular Expressions

Theorem

For every NFA $\it N$ there exists an equivalent DFA $\it M$

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

Recall how we simulated NFA N by highlighting a set of nodes

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

• Let node of DFA *M* represent set of "highlighted" nodes

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA *M* represent set of "highlighted" nodes
- ullet Define δ to move to new set of highlighted nodes

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA *M* represent set of "highlighted" nodes
- ullet Define δ to move to new set of highlighted nodes
- Accept states are ones in which at least one node is an accept node

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA *M* represent set of "highlighted" nodes
- ullet Define δ to move to new set of highlighted nodes
- Accept states are ones in which at least one node is an accept node
- ullet Can deal with ϵ edges by "placing more fingers" on resulting nodes

Let N be an NFA recognizing L. Contruct DFA M recognizing L

Let N be an NFA recognizing L. Contruct DFA M recognizing L

•
$$Q' = P(Q)$$
 - power set of Q - set of all subsets of Q

Let N be an NFA recognizing L. Contruct DFA M recognizing L

- ② For $R \in Q'$ and $a \in \Sigma$, let

$$\delta'(R,a) = \cup_{r \in R} \delta(r,a)$$

Look at transitions from all states in set R and map to set that gives results of all these transitions

Let N be an NFA recognizing L. Contruct DFA M recognizing L

- ② For $R \in Q'$ and $a \in \Sigma$, let

$$\delta'(R,a) = \cup_{r \in R} \delta(r,a)$$

Look at transitions from all states in set R and map to set that gives results of all these transitions

 $q_0' = \{q_0\}$

Let N be an NFA recognizing L. Contruct DFA M recognizing L

- ② For $R \in Q'$ and $a \in \Sigma$, let

$$\delta'(R,a) = \cup_{r \in R} \delta(r,a)$$

Look at transitions from all states in set R and map to set that gives results of all these transitions

- $q_0' = \{q_0\}$
- $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$ Accept if any state in R is an accept state

Problem: We need to also get rid of any ϵ edges

Problem: We need to also get rid of any ϵ edges

Intuition: For every ϵ edge, just place a new "finger" on the graph

Problem: We need to also get rid of any ϵ edges

Intuition: For every ϵ edge, just place a new "finger" on the graph Formally:

1 Let $E(R) = \{q | q \text{ can be reached from } R \text{ along } \epsilon \text{ arrows}\}$

Problem: We need to also get rid of any ϵ edges

Intuition: For every ϵ edge, just place a new "finger" on the graph Formally:

- **1** Let $E(R) = \{q | q \text{ can be reached from } R \text{ along } \epsilon \text{ arrows}\}$
- 2 Define extended transition function

$$\delta'(R,a) = \cup_{r \in R} E(\delta(r,a))$$

Map to set of states that can be reached on input a or $a\epsilon$

An Example: NFA \rightarrow DFA

• states:
$$Q' = \emptyset$$
, $\Sigma(3, \Sigma 2)$, $\Sigma(3)$

- ② start state: $q' = E(\iota) : \{\iota, J\}$

- states: $Q' = P(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- ② start state: $q' = E(1) = \{1, 3\}$
- accept states: $F = \{i\}, \{i,i\}, \{i,j\}, \{i,i,j\}$

- states: $Q' = P(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- ② start state: $q' = E(1) = \{1, 3\}$

1 Transition function δ' :

$$\delta'(\emptyset, a) = \emptyset$$

$$\delta'(\{1\}, a) = \emptyset$$

$$\delta'(\{2\}, a) = \{1, 1\}$$

$$\delta'(\{1, 2\}, a) = \{2, 1\}$$

$$\delta'(\{3\}, a) = \{1, 1\}$$

$$\delta'(\{1, 3\}, a) = \{1, 1\}$$

$$\delta'(\{2, 3\}, a) = \{1, 1\}$$

$$\delta'(\{1, 2, 3\}, a) = \{1, 1\}$$

$$\delta'(\emptyset, b) = \emptyset$$

$$\delta'(\{1\}, b) = \{2, 3\}$$

$$\delta'(\{2\}, b) = \{1\}$$

$$\delta'(\{1, 2\}, b) = \{2, 3\}$$

$$\delta'(\{3\}, b) = \emptyset$$

$$\delta'(\{1, 3\}, b) = \{2, 3\}$$

$$\delta'(\{2, 3\}, b) = \{1, 3\}$$

$$\delta'(\{1, 2, 3\}, b) = \{1, 3\}$$

1 Transition function
$$\delta'$$
:

$$\delta'(\emptyset, a) = \emptyset$$

$$\delta'(\{1\}, a) = \emptyset$$

$$\delta'(\{2\}, a) = \{2, 3\}$$

$$\delta'(\{1, 2\}, a) = \{2, 3\}$$

$$\delta'(\{3\}, a) = \{1, 3\}$$

$$\delta'(\{1,3\},a) = \{1,3\}$$

$$\delta'(\{2,3\},a) = \{1,2,3\}$$

$$\delta'(\{1,2,3\},a) = \{1,2,3\}$$

$$\delta'(\emptyset, b) = \emptyset$$

$$\delta'(\{1\},b) = \{2\}$$

$$\delta'(\{2\},b) = \{3\}$$

$$\delta'(\{1,2\},b) = \{2,3\}$$

$$\delta'(\{3\},b)=\emptyset$$

$$\delta'(\{1,3\},b) = \{2\}$$

$$\delta'(\{2,3\},b) = \{3\}$$

Outline

- Lecture 3 Review
- 2 Example NFAs
- 3 Equivalence of NFAs and DFAs
- Properties of Regular Languages Using NFAs
- 6 Regular Expressions

A Useful Corollary

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it

A Useful Corollary

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it

Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

A Useful Corollary

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it

Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

We can now use NFAs to argue the properties of regular languages

Closure Under Union

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

 $L_1 \cup L_2$ is the language consisting of all strings either in L_1 or L_2

Closure Under Concatenation

Closure Under Concatenation

If L_1 and L_2 are both regular languages then $L_1 \circ L_2$ is also regular

$$L_1 \circ L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$$

Proof:

Closure Under the Star Operation

Closure Under Star Operation

If L is a regular languages then L^* is also regular

 $L^* = \{0 \text{ or more strings from } L\}$

Proof:

Outline

- Lecture 3 Review
- 2 Example NFAs
- 3 Equivalence of NFAs and DFAs
- Properties of Regular Languages Using NFAs
- Regular Expressions

• Strings that describe a language

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - ∪ representing union
 - ullet * representing repetition 0 or more times

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - ∪ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0*10* = \{w|w \text{ has exactly one } 1\}$

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - ∪ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0*10* = \{w|w \text{ has exactly one } 1\}$
 - $01 \cup 10 = \{01, 10\}$

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - ∪ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0*10* = \{w|w \text{ has exactly one } 1\}$
 - $01 \cup 10 = \{01, 10\}$
 - $\Sigma^* 1 \Sigma^* = \{ w | w \text{ has at least one } 1 \}$

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - ∪ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0*10* = \{w | w \text{ has exactly one } 1\}$
 - $01 \cup 10 = \{01, 10\}$
 - $\Sigma^* 1 \Sigma^* = \{ w | w \text{ has at least one } 1 \}$

You've seen this before

Regular expressions very useful in compilers, and string search (e.g., grep)

R is a regular expression if R is

1 a for some a in the alphabet Σ (or Σ)

- **1** a for some a in the alphabet Σ (or Σ)
- \bullet the empty string

- **1** a for some a in the alphabet Σ (or Σ)
- \bullet the empty string
- ∅ the empty set

- **1** a for some a in the alphabet Σ (or Σ)
- \bullet the empty string
- **1** $(R_1 \cup R_2) R_1$ or R_2 where R_1 and R_2 are regular expressions

- **1** a for some a in the alphabet Σ (or Σ)

- **1** $(R_1 \cup R_2) R_1$ or R_2 where R_1 and R_2 are regular expressions
- **1** $(R_1 \circ R_2) R_1$ concatenated with R_2 where R_1 and R_2 are regular expressions

- **1** a for some a in the alphabet Σ (or Σ)

- $(R_1 \cup R_2) R_1$ or R_2 where R_1 and R_2 are regular expressions
- **⑤** $(R_1 \circ R_2) R_1$ concatenated with R_2 where R_1 and R_2 are regular expressions
- **6** (R_1^*) 0 or more repetitions of R_1 where R_1 is a regular expression