Discrete Mathematics: Lecture 22 (I)

logic equivalence, tautological implication, building arguments

Xuming He
Associate Professor

School of Information Science and Technology
ShanghaiTech University

Spring Semester, 2022

Notes by Prof. Liangfeng Zhang

Review: Types of WFFs (Proposition)

Tautology(重言式): a WFF whose truth value is T for all truth assignment

• $p \lor \neg p$ is a tautology

Contradiction(矛盾式): a WFF whose truth value is **F** for all truth assignment

• $p \land \neg p$ is a contradiction

Contingency(可能式): neither tautology nor contradiction

• $p \rightarrow \neg p$ is a contingency

Satisfiable(可满足的):a WFF is satisfiable if it is true for at least one truth assignment

<u>Rule of Substitution:</u> (代入规则) Let B be a formula obtained from a tautology

A by substituting a propositional variable in A with an arbitrary formula. Then B must be a tautology.

• $p \vee \neg p$ is a tautology: $(q \wedge r) \vee \neg (q \wedge r)$ is a tautology as well.

Review: Types of WFFs (Predicate)

DEFINITION: A WFF is **logically valid**普遍有效 if it is **T** in every interpretation

• $\forall x (P(x) \lor \neg P(x))$ is logically valid

DEFINITION: A WFF is **unsatisfiable**不可满足 if it is **F** in every interpretation

• $\exists x \ (P(x) \land \neg P(x))$ is unsatisfiable

DEFINITION: A WFF is **satisfiable**可满足 if it is **T** in some interpretation

- $\forall x (x^2 > 0)$
 - true when domain= nonzero real numbers

THEOREM: Let A be any WFF. A is logically valid iff $\neg A$ is unsatisfiable.

Rule of Substitution: Let A be a tautology in propositional logic. If we substitute any propositional variable in A with an arbitrary WFF from predicate logic, then we get a logically valid WFF.

• $p \vee \neg p$ is a tautology; hence, $P(x) \vee \neg P(x)$ is logically valid

Review: Logically Equivalent (Proposition)

DEFINITION: Let A and B be WFFs in propositional variables $p_1, ..., p_n$.

- A and B are **logically equivalent** (%) if they always have the same truth value for every truth assignment (of $p_1, ..., p_n$)
 - Notation: $A \equiv B$

THEOREM: $A \equiv B$ if and only if $A \leftrightarrow B$ is a tautology.

- \bullet $A \equiv B$
- iff for any truth assignment, A, B take the same truth values
- iff for any truth assignment, $A \leftrightarrow B$ is true
- iff $A \leftrightarrow B$ is a tautology

THEOREM: $A \equiv A$; If $A \equiv B$, then $B \equiv A$; If $A \equiv B$, $B \equiv C$, then $A \equiv C$ **QUESTION:** How to prove $A \equiv B$?

Review: Logical Equivalence (Predicate)

DEFINITION: Two WFFs A,B are **logically equivalent** $_{\oplus \text{\'e}}$ if they always have the same truth value in every interpretation.

• notation: $A \equiv B$; example: $\forall x \ P(x) \land \forall x \ Q(x) \equiv \forall x \ (P(x) \land Q(x))$

THEOREM: $A \equiv B$ iff $A \leftrightarrow B$ is logically valid.

- $A \equiv B$
- iff A, B have the same truth value in every interpretation I
- iff $A \leftrightarrow B$ is true in every interpretation I
- iff $A \leftrightarrow B$ is logically valid

THEOREM: $A \equiv B$ iff $A \rightarrow B$ and $B \rightarrow A$ are both logically valid.

• $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$

Review: Tautological Implications (Proposition)

DEFINITION: Let A and B be WFFs in propositional variables p_1, \ldots, p_n .

- A tautologically implies ($\mathbb{1}$ and $\mathbb{1}$ if every truth assignment that causes A to be true causes B to be true.
 - Notation: $A \Rightarrow B$, called a **tautological implication**
 - $A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T}); B^{-1}(\mathbf{F}) \subseteq A^{-1}(\mathbf{F})$

THEOREM: $A \Rightarrow B$ iff $A \rightarrow B$ is a tautology.

- $A \Rightarrow B \text{ iff } A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T}) \text{ iff } A \rightarrow B \text{ is a tautology}$
- **THEOREM:** $A \Rightarrow B$ iff $A \land \neg B$ is a contradiction.
 - $A \rightarrow B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$
- Proving $A \Rightarrow B$: (1) $A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T})$; (2) $B^{-1}(\mathbf{F}) \subseteq A^{-1}(\mathbf{F})$;
 - (3) $A \rightarrow B$ is a tautology; (4) $A \land \neg B$ is a contradiction

Tautological Implication (Predicate)

DEFINITION: Let A and B be WFFs in predicate logic. A tautologically implies ((\$a\$ = \$a\$)) B if every interpretation that causes A to be true causes B to be true.

• notation: $A \Rightarrow B$, called a **tautological implication**($\mathbf{1}$) $\mathbf{1}$

THEOREM: $A \Rightarrow B$ iff $A \rightarrow B$ is logically valid.

- $A \Rightarrow B$
- iff every interpretation that causes A to be true causes B to be true
- iff there is no interpretation such that $(A, B) = (\mathbf{T}, \mathbf{F})$
- Iff $A \rightarrow B$ is true in every interpretation
- iff $A \to B$ is logically valid $A \cap B = 7(7A \cup B)$

THEOREM: $A \Rightarrow B$ iff $A \land \neg B$ is unsatisfiable.

• $A \rightarrow B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$

Rule of Substitution

Name	Tautological Implication	NO.
Conjunction(合取)	$(P) \land (Q) \Rightarrow P \land Q$	1
Simplification(化简)	$P \wedge Q \Rightarrow P$	2
Addition(附加)	$P \Rightarrow P \lor Q$	3
Modus ponens(假言推理)	$P \land (P \rightarrow Q) \Rightarrow Q$	4
Modus tollens(拒取)	$\neg Q \land (P \to Q) \Rightarrow \neg P$	5
Disjunctive syllogism(析取三段论)	$\neg P \land (P \lor Q) \Rightarrow Q$	6
Hypothetical syllogism(假言三段论)	$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$	7
Resolution (归结)	$(P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R$	8

EXAMPLE: $P \land (P \rightarrow Q) \Rightarrow Q$ is a Thin propositional logic.

- $A(x) \land (A(x) \rightarrow B(y)) \Rightarrow B(y)$ must be a TI in predicate logic.
 - Rule of substitution: let $P \neq A(x)$ and Q = B(y)

tanto Logical implication

Tautological Implications

 $\forall x P(x) \lor \forall x \ Q(x) \Rightarrow \forall x \ (P(x) \lor Q(x))$ $\exists x \big(P(x) \land Q(x) \big) \Rightarrow \exists x P(x) \land \exists x Q(x)$ $\forall x \left(P(x) \to Q(x) \right) \Rightarrow \forall x P(x) \to \forall x Q(x)$ $\forall x \left(P(x) \to Q(x) \right) \Rightarrow \exists x P(x) \to \exists x Q(x)$ $\forall x (P(x) \leftrightarrow Q(x)) \Rightarrow \forall x P(x) \leftrightarrow \forall x Q(x)$ $\forall x (P(x) \leftrightarrow Q(x)) \Rightarrow \exists x P(x) \leftrightarrow \exists x Q(x)$ $\forall x (P(x) \to Q(x)) \land \forall x (Q(x) \to R(x)) \Rightarrow \forall x (P(x) \to R(x))$ $\forall x (P(x) \to Q(x)) \land P(a) \Rightarrow Q(a)$

Examples

EXAMPLE:
$$\forall x (P(x) \rightarrow Q(x)) \land P(a) \Rightarrow Q(a)$$

- Suppose that the left hand side is true in an interpretation I (domain=D)
 - $\forall x (P(x) \rightarrow Q(x))$ is **T** and P(a) is **T**
 - $P(a) \rightarrow Q(a)$ is **T** and P(a) is **T** (in ter).
 - Q(a) is **T** in I.

EXAMPLE: Tautological implication in the following proof?

- All rational numbers are real numbers $\forall x (P(x) \rightarrow Q(x))$
- 1/3 is a rational number P(1/3)
- 1/3 is a real number Q(1/3)
 - P(x) = "x is a rational number"
 - Q(x) = "x is a real number"
 - rule of inference: $\forall x (P(x) \rightarrow Q(x)) \land P(1/3) \Rightarrow Q(1/3)$

Examples

EXAMPLE:
$$\forall x (P(x) \rightarrow Q(x)) \land \forall x (Q(x) \rightarrow R(x)) \Rightarrow \forall x (P(x) \rightarrow R(x))$$

- Suppose that the left hand side is T in an interpretation I (domain=D)
 - $(\forall x) (P(x) \to Q(x))$ is **T** and $\forall x (Q(x) \to R(x))$ is **T**
 - $P(x) \to Q(x)$ is **T** for all $x \in D$ and $Q(x) \to R(x)$ is **T** for all $x \in D$ $P(x) \to R(x)$ is **T** for all $x \in D$ $\forall x (P(x) \to R(x))$ is **T** in I.

EXAMPLE: Tautological implication in the following proof?

- All integers are rational numbers. $|\forall x (P(x) \rightarrow Q(x))|$
- All rational numbers are real numbers. $\forall x(Q(x) \rightarrow R(x))$
- All integers are real numbers. $\forall x (P(x) \rightarrow R(x))$
 - P(x) = "x is an integer"
 - Q(x) = "x is a rational number"
 - R(x) = "x is a real number"
 - rule of inference: $\forall x (P(x) \to Q(x)) \land \forall x (Q(x) \to R(x)) \Rightarrow \forall x (P(x) \to R(x))$

Building Arguments

QUESTION: Given the premises $P_1, ..., P_n$, show a conclusion Q, that is, show that $P_1 \land \cdots \land P_n \Rightarrow Q$.

Name	Operations
Premise	Introduce the given formulas P_1, \dots, P_n in the
	process of constructing proofs.
Conclusion	Quote the intermediate formula that have
	been deducted.
Rule of replacement	Replace a formula with a <u>logically</u>
	<u>equivalent</u> formula.
Rules of Inference	Deduct a new formula with a <u>tautological</u>
	<u>implication</u> .
Rule of substitution	Deduct a formula from a <u>tautology</u> .

Rules of Inference for ∀,∃

Name	Rules of Inference	NO.
Universal Instantiation 全称量词消去	$\forall x P(x) \Rightarrow P(a)$	1
	a <u>is any</u> individual in the domain of x	
Universal Generalization	$P(a) \Rightarrow \forall x \ P(x) \qquad \forall a \in D$	2
全称量词引入	a takes any individual in the domain of x	
Existential Instantiation 存在量词消去	$\exists x P(x) \Rightarrow P(a)$	3
	a is a <u>specific</u> individual in the domain of x	
Existential Generalization 存在量词引入	$P(a) \Rightarrow \exists x \ P(x)$	4
	a is a <u>specific</u> individual in the domain of x	

Building Arguments

EXAMPLE: Show that the following premises 1, 2 lead to conclusion 3.

- 1. "A student in this class has not read the book," $\exists x (C(x) \land \neg B(x))$
- 2. "Everyone in this class passed the exam," $\forall x (C(x) \rightarrow P(x))$
- 3. "Someone who passed the exam has not read the book." $\exists x (P(x) \land \neg B(x))$
- Translate the premises and the conclusion into formulas.
 - C(x): "x is in the class"; B(x): "x has read the book"; P(x): "x passed the exam"
- $?\exists x (C(x) \land \neg B(x)) \land \forall x (C(x) \rightarrow P(x)) \Rightarrow \exists x (P(x) \land \neg B(x))$
 - (1) $\exists x (C(x) \land \neg B(x))$ interpretation Premise
 - (2) $C(a) \land \neg B(a)$
 - (3) (C(a)) \nearrow C
 - $(4) \quad \forall x (C(x) \to P(x))$
 - (5) $C(a) \rightarrow P(a)$
 - (6) P(a)
 - (7) $\neg B(a)$
 - (8) $P(a) \wedge \neg B(a)$
 - $(9) \quad \exists x (P(x) \land \neg B(x))$

Existential instantiation from (1)

Simplification from (2)

Premise

Universal instantiation from (4)

Modus ponens from (3) and (5)

Simplification from (2)

Conjunction from (6) and (7)

Existential generalization from (8)