Homework #5

MEMS 0051 - Introduction to Thermodynamics

Assigned June 19th, 2018 Due June 25th, 2018

Problem #1

Two rigid tanks are initially in thermodynamic equilibrium. The first tank is 0.5 [m] tall and sufficiently insulated, and contains 5 [kg] of carbon dioxide at 80 °C and a pressure of 200 [kPa]. The second tank is 0.25 [m] in diameter and not insulated, and contains 10 [kg] of argon at 25 °C and a pressure of 500 [kPa]. The two tanks are connected by a rigid piping system that contains a valve, which is then opened. After an extended period of time (assuming sufficiently long to achieve thermodynamic equilibrium internally and thermal equilibrium with the environment, which is 25°C), determine:

- A The final pressure (i.e. mechanical equilibrium pressure).
- B The heat transferred into our out of the tank system.

Problem #2

For the following scenarios, determine the amount of heat transfer.

- A Heating a 2 [kg], 0.1 [m] long copper bar from 25°C to 100°C.
- B 1,000 [kg] of asphalt cooling from 50°C to 20°C.
- C The heating of 1 [kg] of oxygen in a mass-less piston-cylinder from 300 to 1,500 K.
- D A piston-cylinder containing 0.1695 [kg] of nitrogen at 150 [kPa] and 25°C that is isothermally compressed to 1.0 [MPa], which requires 20 [kJ] of work.

Problem #3

Given the system below, where a heat pump transfers heat from a low-temperature infinite reservoir (the ocean) and transfers heat to a high-temperature infinite reservoir (say a room). The work powering the heat pump comes from a heat engine, which accepts heat from the same high-temperature reservoir. Is this configuration acceptable (i.e. does not violate the Kelvin-Planck and/or Clausius statements, nor is a perpetual motion machine of the 1st, 2nd and 3rd kind)?

Problem #4

Two heat engines that operate in series (i.e. \dot{Q}_H enters HE1 which rejects \dot{Q}_M , which is the input into HE2, which rejects \dot{Q}_L) between a high-temperature reservoir T_H and a low-temperature reservoir T_L . HE1 produces work \dot{W}_1 and HE2 produces work \dot{W}_2 . Find the efficiency of each heat engine, and the efficiency of the overall system.

Problem #5

A heat engine operates between a high-temperature reservoir T_{H1} and a low-temperature reservoir $T_{\rm ambient}$. The work produced, \dot{W}_1 , which is the difference of heat input \dot{Q}_{H1} and heat rejected \dot{Q}_{L1} , powers a heat pump. Part of the work from the heat engine enters the heat pump \dot{W}_2 , whereas the difference between \dot{W}_1 and \dot{W}_2 is designated as the net work, $\dot{W}_{\rm net}$. The heat pump accepts heat \dot{Q}_{L2} from the same low-temperature reservoir $(T_{\rm ambient})$ and rejects heat \dot{Q}_{H2} to a secondary high-temperature reservoir T_{H2} . Assuming $T_{H1} = T_{H2} > T_{\rm ambient}$, determine, based upon the following cases (a-c), if this system satisfies the First Law and/or violates the Second Law. Then, assuming $T_{H1} > T_{H2} > T_{\rm ambient}$, determine if this system satisfies the First Law and/or violates the Second Law.

	\dot{Q}_{H1}	\dot{Q}_{L1}	\dot{W}_1	\dot{Q}_{H2}	\dot{Q}_{L2}	\dot{W}_2
a	6	4	2	3	2	1
b	6	4	2	5	4	1
$^{\mathrm{c}}$	3	2	1	4	3	1