AMENDMENTS TO THE CLAIMS

1	1. (Original) A method, comprising:
2	a) providing an apparatus, comprising an optical fiber having an axis, the optical fiber
3	comprising a solid outer cladding region and a core region, the cladding region
4	surrounding the core region, wherein the core region contains a plurality of holes
5	elongated in the direction of the axis; then
6	b) introducing an optically active material into at least one hole, wherein the optically active
7	material is adsorbed on an interior surface of the hole; then
8	c) propagating a laser beam into the optical fiber; then
9	d) detecting the interaction of the laser beam with the material adsorbed on the interior surface of
10	the hole.
1	2. (Original) The method apparatus of claim 1, wherein the optically active material is a Raman
2	active material.
1	3. (Original) The <u>method</u> apparatus of claim 1, wherein the optically active material is a
2	infrared active material.
1	4. (Original) The method apparatus of claim 1, wherein the optically active material is a
2	biothreat material
1	5. (Original) The method apparatus of claim 4, wherein the optically active material is a
2	bacterium.
1	6.(Original) The method apparatus of claim 4, wherein the optically active material is a nerve

2	gas molecule.
1	7. (Original) The method apparatus of claim 1, v
2	pollutant material.

- wherein the optically active material is a
- 8. (Original) The apparatus of claim 7, wherein the optically active material is carbon 1 2 monoxide.
- 9. (Original) The method apparatus of claim 7, wherein the optically active material is a 1 2 nitrogen oxide.
- 1 10. (Original) An apparatus, comprising;
- 2 an optical fiber having an axis, the optical fiber comprising a solid outer cladding region and a 3 core region, the cladding region surrounding the core region, wherein the core region 4 contains a plurality of holes elongated in the direction of the axis, and wherein at least 5 one hole contains optically active material adsorbed on the interior surface of the hole.
- 1 11. 12. (Original) The apparatus of claim 10, wherein the optically active material is a Raman 2 active material.
- 12.13. (Original) The apparatus of claim 10, wherein the optically active material is a infrared 1 2 active material.
- 1 13.14: (Original) The apparatus of claim 10, wherein the optically active material is a biothreat 2 material.
- 1 14. 15. (Original) The apparatus of claim 13.14., wherein the optically active material is a 2 bacterium.

- 1 15.16. (Original) The apparatus of claim 13 14, wherein the optically active material is a nerve 2 gas molecule. 16.17. (Original) The apparatus of claim 10, wherein the optically active material is a pollutant 1 2 material. 1 17. $\frac{18}{10}$ (Original) The apparatus of claim $\frac{16}{10}$, wherein the optically active material is carbon 2 monoxide. 1 18. 19. (Original) The apparatus of claim 16 17, wherein the optically active material is a 2 nitrogen oxide. 1 19. 20. (Original) A system, comprising; 2 an optical fiber having an axis, the optical fiber comprising a solid outer cladding region and a 3 core region, the cladding region surrounding the core region, wherein the core region contains a plurality of holes elongated in the direction of the axis, and wherein at least 4 5 one hole contains optically active material adsorbed on the interior surface of the hole; 6 a laser apparatus for introducing laser pump light into the fiber;
- 8 control means for controlling the laser apparatus.

optical apparatus for removing light from the fiber; and

7