Analiza 2a

Luka Horjak (luka.horjak@student.fmf.uni-lj.si)

18. oktober 2021

Kazalo Luka Horjak

Kazalo

Uvod		3	
1	Fun	akcije več spremenljivk	4
	1.1	Prostor \mathbb{R}^n	4
	1.2	Zaporedja v \mathbb{R}^n	5
	1.3	Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m	6
	1.4	Preslikave iz \mathbb{R}^n v \mathbb{R}^m	7
	1.5	Parcialni odvodi in diferenciabilnost	8
	1.6	Višji parcialni odvodi	11
	1.7	Diferenciabilnost preslikav iz \mathbb{R}^n v \mathbb{R}^m	12
St	varn	o kazalo	13

Uvod Luka Horjak

$\mathbf{U}\mathbf{vod}$

V tem dokumentu so zbrani moji zapiski s predavanj predmeta Analiza 2a v letu 2021/22. Predavatelj v tem letu je bil prof. dr. Miran Černe.

Zapiski niso popolni. Manjka večina zgledov, ki pomagajo pri razumevanju definicij in izrekov. Poleg tega nisem dokazoval čisto vsakega izreka, pogosto sem kakšnega označil kot očitnega ali pa le nakazal pomembnejše korake v dokazu.

Zelo verjetno se mi je pri pregledu zapiskov izmuznila kakšna napaka – popravki so vselej dobrodošli.

Funkcije več spremenljivk 1

1.1 Prostor \mathbb{R}^n

Definicija 1.1.1. Prostor \mathbb{R}^n je kartezični produkt $\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_n$. Na njem definiramo $\begin{cases} \begin{cases} \begin{cas$ seštevanje in množenje s skalarjem po komponentah. S tema operacijama je $(\mathbb{R},+,\cdot)$ vektorski prostor nad R. Posebej definiramo še skalarni produkt

$$x \cdot y = \sum_{i=1}^{n} x_i y_i,$$

ki nam da normo $||x|| = \sqrt{x \cdot x}$ in metriko d(x,y) = ||x-y||. (\mathbb{R}^n,d) je tako metrični prostor.

Definicija 1.1.2. Naj bosta $a, b \in \mathbb{R}^n$ vektorja, za katera je $a_i \leq b_i$ za vse $i \in \{1, \dots, n\}$. $Zaprt\ kvader$, ki ga določata a in b, je množica

$$[a,b] = \{x \in \mathbb{R}^n \mid \forall i \in \{1,\ldots,n\} : a_i \le x_i \le b_i\}.$$

Podobno definiramo odprt kvader kot

$$(a,b) = \{x \in \mathbb{R}^n \mid \forall i \in \{1,\ldots,n\} : a_i < x_i < b_i\}.$$

Opomba 1.1.2.1. Odprte množice v normah $||x||_{\infty}$ in $||x||_{2}$ so iste.

Izrek 1.1.3. Množica $K \subseteq \mathbb{R}^n$ je kompaktna natanko tedaj, ko je zaprta in omejena.

¹ Za dokaz glej izrek 7.5.6 v zapiskih predmeta Analiza 1 prvega letnika.

1.2 Zaporedja v \mathbb{R}^n

Trditev 1.2.1. Zaporedje $\{a_m\}$ v \mathbb{R}^n konvergira natanko tedaj, ko za vse $1 \leq j \leq n$ konvegira zaporedje koordinat $\{a_j^m\}$. Tedaj velja

$$\lim_{m \to \infty} a_m = \left(\lim_{m \to \infty} a_1^m, \dots, \lim_{m \to \infty} a_n^m\right).$$

Dokaz. Predpostavimo, da zaporedje konvergira k točki a. Za vsak $\varepsilon > 0$ tako obstaja tak $m_0 \in \mathbb{N}$, da je $d(a_m, a) < \varepsilon$ za vse $m \ge m_0$. Sledi, da je

$$\sqrt{\sum_{i=1}^{n} \left(a_i^m - a_i\right)^2} < \varepsilon,$$

zato je $\left|a_j^m - a_j\right| < \varepsilon$.

Če konvergirajo zaporedja koordinat, pa za vsak $\varepsilon>0$ obstaja tak $m_j\in\mathbb{N}$, da je $\left|a_j^m-a_j\right|<\frac{\varepsilon}{\sqrt{n}}$ za vse $m\geq m_j$. Naj bo $m_0=\max\{m_1,\ldots,m_n\}$. Potem za vsak $m\geq m_0$ velja

$$d(a^m, a) = \sqrt{\sum_{i=1}^n (a_i^m - a_i)^2} < \sqrt{n \cdot \frac{\varepsilon^2}{n}} = \varepsilon.$$

6. oktober 202

1.3 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Definicija 1.3.1. Naj bo $D \subseteq \mathbb{R}^n$ in $f: D \to \mathbb{R}^m$ preslikava. Pravimo, da je f zvezna v točki $a \in D$, če za vsak $\varepsilon > 0$ obstaja tak $\delta > 0$, da za vsak $x \in D$, za katerega je $||x - a|| < \delta$, velja

$$||f(x) - f(a)|| < \varepsilon.$$

Pravimo, da je f zvezna na D, če je zvezna v vsaki točki $a \in D$.

Definicija 1.3.2. Preslikava f je enakomerno zvezna na D, če za vsak $\varepsilon > 0$ obstaja tak $\delta > 0$, da za vsaka $x, y \in D$, za katera je $||x - y|| < \delta$, velja

$$||f(x) - f(y)|| < \varepsilon.$$

Opomba 1.3.2.1. Če je m=1, pravimo, da je f funkcija n spremenljivk na D. Pišemo $f(x)=f(x_1,\ldots,x_n)$.

Izrek 1.3.3. Naj bo $D \subseteq \mathbb{R}^n$ in $f, g \colon D \to \mathbb{R}$ funkciji, zvezni v točki a. Tedaj so v točki a zvezne tudi funkcije f + g, f - g in λf za $\lambda \in \mathbb{R}$ in $f \cdot g$. Če je $g(x) \neq 0$ na D, je tudi $\frac{f}{g}$ zvezna v a.

Dokaz. The proof is obvious and need not be mentioned.

Opomba 1.3.3.1. Seveda so vse konstantne in koordinatne funkcije zvezne (projekcije). Sledi, da so vse racionalne funkcije zvezne, kjer so definirane.

Opomba 1.3.3.2. Kompozitum zvenih preslikav je zvezen.

Izrek 1.3.4. Naj bo $D \subseteq \mathbb{R}^n$ in $f: D \to \mathbb{R}$ funkcija, zvezna v notranji točki $a \in D$. Tedaj je v točki a funkcija f zvezna kot funkcija vsake spremenljivke posebej.²

Dokaz. The proof is obvious and need not be mentioned.

Opomba 1.3.4.1. Obratno ne velja. Protiprimer je funkcija

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x = y = 0. \end{cases}$$

² To pomeni, da je funkcija $f_i(t) = f(a_1, \dots, t, \dots, a_n)$ zvezna.

1.4 Preslikave iz \mathbb{R}^n v \mathbb{R}^m

Trditev 1.4.1. Naj bo $D\subseteq\mathbb{R}^n$ in $f\colon D\to\mathbb{R}^m.$ Označimo

$$f(x_1,\ldots,x_n) = (f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)).$$

Preslikava f je zvezna v $a \in D$ natanko tedaj, ko so vse funkcije f_1, \ldots, f_m zvezne v a.

Dokaz. Če je f zvezna v a, za vsak $\varepsilon > 0$ obstaja tak $\delta > 0$, da iz $||x - a|| < \delta$ sledi $||f(x) - f(a)|| < \varepsilon$. Sledi, da je $|f_j(x) - f_j(a)| < \varepsilon$.

Sedaj predpostavimo, da so vse koordinatne funkcije zvezne. Naj bo $\varepsilon > 0$. Za vsak j obstaja tak δ_j , da iz $||x - a|| < \delta_j$ sledi $|f_j(x) - f_j(a)| < \frac{\varepsilon}{\sqrt{m}}$. Naj bo $\delta = \min \{\delta_1, \dots, \delta_m\}$. Potem za vse $||x - a|| < \delta$ velja

$$||f(x) - f(a)|| = \sqrt{\sum_{i=1}^{n} (f_i(x) - f_i(a))^2} < \sqrt{m \cdot \frac{\varepsilon^2}{m}} = \varepsilon.$$

Posledica 1.4.1.1. Vsaka linearna preslikava je zvezna.

Trditev 1.4.2. Naj bo $A\colon\mathbb{R}^n\to\mathbb{R}^m$ linearna preslikava. Potem obstaja tak $M\in\mathbb{R},$ da je

$$\frac{\|Ax\|}{\|x\|} \le M$$

za vse $x \in \mathbb{R}^n$ in obstaja supremum

$$\sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sup_{\|x\|=1} \|Ax\| = \|A\|.$$

Dokaz. Naj bo $A=[a_{i,j}]$ in $C=\max_{i,j}|a_{i,j}|.$ Za vsako komponentno funkcijo A_i je po Cauchyjevi neenakosti

$$|A_i(x)| \le C \cdot \sum_{i=1}^n |x_i| \le C\sqrt{n} \cdot ||x||.$$

Sledi, da je

$$||Ax|| = \sqrt{\sum_{i=1}^{m} L_i(x)^2} \le C\sqrt{nm} \cdot ||x||.$$

1.5 Parcialni odvodi in diferenciabilnost

Definicija 1.5.1. Naj boanotranja točka množice $D\subseteq\mathbb{R}^n$ in $f\colon D\to\mathbb{R}$ funkcija. Če obstaja limita

$$\lim_{h \to 0} \frac{f(a_1, \dots, a_{i-1}, a_i + h, \dots) - f(a)}{h},$$

to limito imenujemo $parcialni\ odvod$ funkcije fpo spremenljivki x_i v točkia in ga označimo z

$$\frac{\partial f}{\partial x_i}(a) = f_{x_i}(a) = (D_i f)(a).$$

Definicija 1.5.2. Naj bo $D \subseteq \mathbb{R}^n$ in $f : D \to \mathbb{R}$ preslikava, a pa notranja točka množice D. Pravimo, da je f diferenciabilna v točki a, če obstaja taka linearna preslikava $L : \mathbb{R}^n \to \mathbb{R}$, da je

$$f(a+h) = f(a) + L(h) + o(h),$$

kjer je

$$\lim_{h \to 0} \frac{|o(h)|}{\|h\|} = 0.$$

Opomba 1.5.2.1. Pri n=1 je ta definicija ekvivalentna odvedljivosti f v točki a.

Trditev 1.5.3. Če tak L obstaja, je enolično določen.

Dokaz. Predpostavimo, da sta L_1 in L_2 linearni funkciji, za kateri je

$$f(a+h) = f(a) + L_1(h) + o_1(h) = f(a) + L_2(h) + o_2(h),$$

pri čemer velja

$$\lim_{h \to 0} \frac{|o_1(h)|}{\|h\|} = \lim_{h \to 0} \frac{|o_2(h)|}{\|h\|} = 0.$$

Potem velja

$$(L_1 - L_2)(h) = (o_2(h) - o_1(h)) = o(h),$$

kjer je

$$\lim_{h \to 0} \frac{|o(h)|}{\|h\|} = 0.$$

Sledi, da je

$$\lim_{h \to 0} \frac{(L_1 - L_2)(h)}{\|h\|} = 0.$$

Ker pa je

$$\frac{(L_1-L_2)(0,\ldots,h,\ldots)}{|h|}=\ell_i,$$

kjer je ℓ_i koeficient pred *i*-to spremenljivko v L_1-L_2 , sledi, da je $L_1-L_2=0$.

Opomba 1.5.3.1. Preslikavi L pravimo diferencial funkcije f v točki a in ga označimo z $L = d_a f$. Funkcija $h \mapsto f(a) + d_a f(h)$ je najboljša afina aproksimacija funkcije $h \mapsto f(a+h)$ v okolici točke a.

Izrek 1.5.4. Če je f v notranji točki $a \in D$ diferenciabilna, je v a zvezna in parcialno odvedljiva glede na vse spremenljivke, diferencial f v točki a pa je enak

$$(d_a f)(h) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) h_i.$$

Dokaz. Naj bo L diferencial f v točki a. Sledi, da je

$$f(a+h) = f(a) + L(h) + o(h)$$
 in $\lim_{h \to 0} \frac{|o(h)|}{\|h\|} = 0$.

Velja

$$L(h) = \sum_{i=1}^{n} \ell_i h_i,$$

zato je L zvezna v 0. Tako je

$$\lim_{h \to 0} f(a+h) = f(a) + \lim_{h \to 0} L(h) + \lim_{h \to 0} o(h) = f(a).$$

Naj bo sedaj $h=(0,\ldots,h_i,\ldots,0)$. Velja $||h||=|h_i|$, zato je

$$\frac{f(a+h) - f(a)}{h_i} = \frac{L(h)}{h_i} + \frac{o(h)}{h_i} = \ell_i + \frac{o(h)}{h_i}.$$

V limiti je to enako ℓ_i , zato ima f parcialni odvod. Očitno velja tudi navedena enakost. \square

Opomba 1.5.4.1. Obratno ne velja. Protiprimer je funkcija

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & x^2+y^2 \neq 0\\ 0, & x=y=0. \end{cases}$$

Opomba 1.5.4.2. Diferencial $d_a f$ lahko identificiramo z vektorjem

$$\left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right),$$

ki ga imenujemo gradient in označimo z grad f. Velja $(d_a f)(h) = (\operatorname{grad} f)(a) \cdot h$.

Izrek 1.5.5. Naj bo f v okolici a parcialno odvedljiva glede na vse spremenljivke in naj bodo parcialni odvodi zvezni v a. Potem je f v a diferenciabilna.

Dokaz. Naj bo $h \in \mathbb{R}^n$ vektor z dovolj majhno normo, da je točka a + h v konveksni³ okolici točke a, kjer veljajo zgornje predpostavke.⁴ Po Lagrangevem izreku je

$$I = f(a+h) - f(a)$$

$$= \sum_{i=1}^{n} (f(a_1, \dots, a_i + h_i, \dots, a_n + h_n) - f(a_1, \dots, a_i, a_{i+1} + h_{i+1}, \dots, a_n + h_n))$$

$$= \sum_{i=1}^{n} f_{x_i}(a_1, \dots, a'_i, a_{i+1} + h_{i+1}, \dots, a_n + h_n) \cdot h_i,$$

³ Če okolica ni konveksna, lahko pri uporabi Lagrangevega izreka »pademo ven« iz nje.

⁴ Na predavanjih je bil predstavljen dokaz za n=2, to pa je njegova splošna oblika.

kjer je a_i' med a_i in a_i+h_i za vse i. Ker so parcialni odvodi zvezni, za

$$\eta_i(h) = f_{x_i}(a_1, \dots, a'_i, a_{i+1} + h_{i+1}, \dots, a_n + h_n) - f_{x_i}(a)$$

velja

$$\lim_{h\to 0} \eta_i(h) = 0.$$

Naj bo

$$o(h) = \sum_{i=1}^{n} \eta_i(h) \cdot h_i.$$

Dobimo

$$f(a+h) = f(a) + \sum_{i=1}^{n} f_{x_i}(a) \cdot h_i + o(h).$$

Za dokaz obstoja diferenciala je tako dovolj dokazati, da je

$$\lim_{h \to 0} \frac{|o(h)|}{\|h\|} = 0.$$

Velja pa

$$\frac{|o(h)|}{\|h\|} \le \sum_{i=1}^{n} \frac{|h_i|}{\|h\|} \cdot |\eta_i(h)| \le \sum_{i=1}^{n} |\eta_i(h)|,$$

kar je v limiti enako 0.

Posledica 1.5.5.1. Vse elementarne funkcije so diferenciabilne, kjer so definirane.

1.6 Višji parcialni odvodi

Izrek 1.6.1. Naj bosta parcialna odvoda $\frac{\partial f}{\partial x_i}$ in $\frac{\partial f}{\partial x_j}$ v okolici a zvezna in naj na tej okolici obstajata

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right)$$
 ter $\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$,

ki sta zvezna v a. Tedaj velja

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (a) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (a).$$

Dokaz. Dovolj je dokazati izrek za n=2, saj so preostale spremenljivke pri parcialnem odvajanju konstantne. Naj na f, definirani v okolici (a,b), obstajata odvoda f_x, f_y , ki sta na tej okolici zvezna, in parcialna odvoda $(f_x)_y$ ter $(f_y)_x$, ki sta zvezna v (a,b). Naj bo (h,k) po normi dovolj majhen. Označimo

$$\varphi(x) = f(x, b + k) - f(x, b).$$

Potem je

$$J = f(a+h, b+k) - f(a, b+k) - f(a+h, b) + f(a, b) = \varphi(a+h) - \varphi(a),$$

kar je po Lagrangeu enako

$$\varphi'(a') \cdot h = (f_x(a', b+h) - f_x(a', b)) \cdot h$$

za nek a' med a in h. S ponovno uporabo Lagrangevega izreka dobimo, da je

$$J = (f_x)_y(a', b') \cdot hk$$

za nek b' med b in b+h. Simetrično dobimo, da je

$$J = (f_y)_x(a'', b'') \cdot hk$$

za $a'' \mod a$ in a+h ter $b'' \mod b$ in b+k. Sledi, da je

$$(f_x)_y(a',b') = (f_y)_x(a'',b'').$$

Sedaj preprosto vzamemo limito (h,k) to(0,0) in upoštevamo zveznost.

Opomba 1.6.1.1. Pravimo, da parcialni odvodi komutirajo in pišemo $\frac{\partial^2 f}{\partial x_i \partial x_i}$.

Definicija 1.6.2. Naj bo D odprta podmnožica \mathbb{R}^n . Vektorski prostor vseh k-krat zvezno parcialno odvedljivih funkcij na D označimo s $\mathcal{C}^k(D)$. Prostor gladkih funkcij na D je

$$\mathcal{C}^{\infty}(D) = \bigcap_{k=1}^{\infty} \mathcal{C}^k(D).$$

1.7 Diferenciabilnost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Definicija 1.7.1. Naj bo $D \subseteq \mathbb{R}^n$ z notranjo točko a in $F: D \to \mathbb{R}^m$ preslikava, definirana v okolici točke a. Pravimo, da je F diferenciabilna v točki a, če obstaja taka linearna preslikava $A: \mathbb{R}^n \to \mathbb{R}^m$, da je

$$F(a+h) = F(a) + A(h) + o(h),$$

kjer je

$$\lim_{h \to 0} \frac{\|o(h)\|}{\|h\|} = 0.$$

Opomba 1.7.1.1. Podobno kot pri funkcijah je tak A, če obstaja, enolično določen in mu pravimo diferencial F v točki a, kar označimo z d_aF ali (DF)(a).

Izrek 1.7.2. Preslikava F je diferenciabilna v a natanko tedaj, ko so njene koordinatne funkcije diferenciabilne v a. Tedaj velja

$$(DF)(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Dokaz. Naj bo F diferenciabilna v a. Obstaja matrika A, za katero je

$$F(a+h) = F(a) + A(h) + o(h)$$
 in $\lim_{h \to 0} \frac{\|o(h)\|}{\|h\|} = 0$.

Sledi

$$f_j(a+h) = f_j(a) + \left(\sum_{i=1}^n A_{j,i}h_i\right) + o_j(h).$$

Ker je drugi člen na desni strani linearna funkcija v h in

$$\lim_{h \to 0} \frac{|o_j(h)|}{\|h\|} = 0,$$

je f_j diferenciabilna v a.

Predpostavimo sedaj, da so f_1, \ldots, f_m diferenciabilne. Sledi, da obstajajo taki $A_{i,j}$, da je

$$f_j(a+h) = f_j(a) + \left(\sum_{i=1}^n A_{j,i}h_i\right) + o_j(h),$$

kjer je

$$\lim_{h \to 0} \frac{|o_j(h)|}{\|h\|} = 0.$$

Sedaj ni težko videti, da za $A = [A_{j,i}]$ in $o = (o_1, \dots, o_m)$ velja

$$F(a+h) = F(a) + A(h) + o(h)$$
 in $\lim_{h \to 0} \frac{\|o(h)\|}{\|h\|} = 0$.

Sledi, da je F res diferenciabilna v a, parcialni odvodi pa so elementi matrike A.

Posledica 1.7.2.1. Če so vsi parcialni odvodi funkcij f_1, \ldots, f_m zvezni v a, je F diferenciabilna v a.

Stvarno kazalo

K Kvader, 4 P Preslikava Diferenciabilna, 8, 12 Enakomerno zvezna, 6 Funkcija več spremenljivk, 6 Gladka, 11 Gradient, 9 Parcialni odvod, 8 Zvezna, 6