An Algebraic Introduction to Mathematical Logic Chapter 1 Universal Algebra Section 1 Introduction

David L. Meretzky

Exercises

February 1st, 2018

Preliminary Definition of Operation: An *n*-ary operation on the set *A* is a function $t: A^n \to A$. The number *n* is called the arity of *t*.

Ex. 1.3 A 0-ary operation on a set A is a function from the set A^0 (whose only element is \emptyset)

Definition 1.4 A type \mathscr{T} is a set T together with a function $ar: T \to \mathbb{N}$. We shall write, $\mathscr{T} = (T, ar)$, or, more simply, abuse notation and denote the type by T. It is also convenient to denote by T_n the set $\{t \in T | ar(t) = n\}$.

Definition 1.5 An algebra of type T, or a T-algebra, is a set A together with, for each $t \in T$, a function $t_A : A^{ar(t)} \to A$. The elements $t \in T_n$ are called n-ary T-algebra operations.

Definition 1.11 If A is a T-algebra, then a subset $B \subset A$ is called a T-subalgebra of A if it forms a T-algebra with operations the restrictions to B of those on A. That is to say, for each n-ary operation $t \in T_n$ on A, restricting the domain of t to just the set B, we have that $t|_B$ is an n-ary operation on B. For all $b_1, ... b_n \in B$, we have $t(b_1, ... b_n)|_B = t(b_1, ... b_n) \in B$

Problem 1 (1.12 a). A is a T-algebra. Show that \emptyset is a subalgebra if and only if $T_0 = \emptyset$.

Proof. The empty set is clearly contained in A. For any n > 0, $t_n : A^n \to A$ Since no element of A^n could possibly be contained in the empty set, the image of \emptyset under T_n , for all operations of arity n > 0, must be the empty set. Thus we have shown for all $T_n|_{\emptyset}(\emptyset) = \emptyset$ where n > 0. It remains to show what happens in the case T_0 .

If T_0 sends \emptyset to \emptyset , then under all operations, T_n , the image of \emptyset is itself. Thus if $T_0 = \emptyset$ then \emptyset is a subalgebra.

Suppose \emptyset constitutes a T-subalgebra for the T-algebra A. Then all operations of A send \emptyset to itself. And therefore, the arity 0 operation T_0 sends \emptyset to itself.

Proposition: Any intersection of subalgebras is a subalgebra. Given any subset $X \subset A$, there is a unique smallest subalgebra containing X-namely, the subalgebra $\bigcap \{U \mid U \text{ subalgebra of } A \text{ and } X \subseteq U\}$. we call this the subalgebra generated by X and denote it $< X >_T$, or if there is no risk of confusion < X >.

Problem 2 (1.12 b). Show that for all T, every T-algebra has a unique smallest subalgebra.

Solution (1.12 b). I claim that the unique smallest subalgebra of any T-algebra A is the subalgebra generated by \emptyset , $\langle \emptyset \rangle_T$. Let U be any subalgebra of A, $\emptyset \in U$. Therefore,

 $<\emptyset>_T=$

 $\bigcap \{U \mid U \text{ is a subalgebra of } A \text{ and } \emptyset \subseteq U\} = \bigcap \{U \mid U \text{ is a subalgebra of } A\}$

All subalgebras U of A, appear in this intersection, therefore $<\emptyset>_T\subseteq U$ for all U. Uniqueness follows because $<\emptyset>_T$ is a subalgebra of A, and therefore if V is any other subalgebra with the property of being the smallest, it would have to be contained in $<\emptyset>_T$. So $V\subseteq<\emptyset>_T$ and $<\emptyset>_T\subseteq V$, so $V=<\emptyset>_T$ \square

Problem 3 (1.13 a). Groups may be regarded as the special case of T-algebras where $T = (\{*\}, ar)$ with ar(*) = 2, or of T'-algebras where $T' = (\{e, i, *\}, ar)$, ar(e) = 0, ar(i) = 1, and ar(*) = 2.

Show that every T'-subalgebra of a group is a subgroup but not every non-empty T-subalgebra need be a group.

1.13 a. Let G be a T'-algebra and let H be any subalgebra. Then since H contains the empty set, $T'_n(\emptyset) = T'_n|_H(\emptyset) = e \in H$. So H has an identity. The fact that it is a subalgebra also means that it is closed under i and *.

Let g be an element of a group G such that g has infinite order. Letting H be the set of all products of g we see that g is a subalgebra. For any $m,n \geq 1$, we obtain $g^n * g^m = g^{m+n} \in H$. H is easily seen to not include the identity because otherwise $\exists k \text{ s.t. } g^k = e$. Therefore, H is not a subgroup.

Problem 4 (1.13 b). Show that if G is a finite group, then every non-empty T-subalgebra of G is itself a group.

1.13 b. This is a consequence of Lagrange's Theorem. \Box