

Mark Scheme (Results)
Summer 2023

Pearson Edexcel International
Advanced Level in Physics (WPH15)
Paper 0

Unit 5: Thermodynamics, Radiation, Oscillations and Cosmology

Question Number	Answer	Mark
1	B is the correct answer A is not correct, as this would lead to a flet universe C is not correct, as density values (and not mass values) must be compared D is not correct, as density values (and not mass values) must be compared	(1)
2	C is the correct answer, as $\lambda_{\text{observed}} = \lambda + 0.025\lambda$	(1)
3	C is the correct answer, as (distance to star) = $\frac{1}{\text{(parallax angle)}}$	(1)
4	B is the correct answer, as $\Delta(PE)_{\text{grav}} = -\frac{GMm}{r_{\text{final}}} - \left(-\frac{GMm}{r_{initial}}\right)$	(1)
5	B is the correct answer, as $v = H_0 d$	(1)
6	B is the correct answer A is not correct, as this describes an elastic material C is not correct, as this describes a strong material D is not correct, as this describes a stiff material	(1)
7	C is the correct answer A is not correct, as the longer the count time the larger the count B is not correct, as background count rate varies from place to place D is not correct, as different detectors have different sensitivities	(1)
8	C is the correct answer, as $g_{\text{Mars}} = \frac{M_{\text{Mars}}}{M_{\text{moon}}} \times \frac{r_{\text{moon}}^2}{r_{\text{Mars}}^2} \times g_{\text{moon}}$	(1)
9	C is the correct answer A is not correct, as the pressure, volume and temperature of each gas is the same B is not correct, as the temperature of each gas is the same D is not correct, as the temperature and the number of molecules is the same for each gas	(1)
10	B is the correct answer, as the gradient of the velocity-time graph gives the displacement time graph	(1)

Question Number	Answer	Mark
11(a)	Top line correct (1)	
	Bottom line correct (1)	2
	Example of calculation	
	$^{187}_{75}\text{Re} \rightarrow ^{187}_{76}\text{Os} + ^{0}_{-1}\beta^{-} + ^{0}_{0}\bar{\nu}$	
11(b)	Use of 1 eV = 1.6×10^{-19} J (1)	
	Use of $E_k = \frac{1}{2}mv^2$ (1)	
	$v = 3.0 \times 10^7 \mathrm{m \ s^{-1}}$ (1)	3
	Example of calculation	
	$2.6 \times 10^3 \times 1.6 \times 10^{-19} \text{ J} = \frac{1}{2} \times 9.11 \times 10^{-31} \text{ kg} \times v^2$	
	$\therefore v = \sqrt{\frac{2 \times 4.16 \times 10^{-16} \text{J}}{9.11 \times 10^{-31} \text{kg}}} = 3.02 \times 10^7 \text{m s}^{-1}$	
	Total for question 11	5

Question Number	Answer				
12(a)	Use of $pV = NkT$ (1)			
	Conversion of temperature to kelvin	(1)			
	$N = 2.1 \times 10^{24} \text{ [min 2sf]}$	(1)	3		
	Example of derivation				
	$N = \frac{1.24 \times 10^5 \text{ Pa} \times 7.08 \times 10^{-2} \text{ m}^3}{1.38 \times 10^{-23} \text{ J K}^{-1} \times (273 + 25) \text{ K}} = 2.13 \times 10^{24}$				
12(b)	Use of $pV = NkT$	1)			
	$\Delta N = 1.5 \times 10^{24} \text{ (allow ecf from (a))} $	1)	2		
	$\frac{\text{Example of calculation}}{\frac{p_2}{p_1} = \frac{N_2}{N_1}}$				
	$N_2 = 2.13 \times 10^{24} \times \left(\frac{3.45 \times 10^4 \text{ Pa}}{1.24 \times 10^5 \text{ Pa}}\right) = 5.93 \times 10^{23}$				
	$\Delta N = 2.13 \times 10^{24} - 5.93 \times 10^{23} = 1.54 \times 10^{24}$				
	[Use of 'Show that' value from (a) gives $\Delta N = 1.44 \times 10^{24}$]				
	Total for question 12		5		

Question Number	Answer		Mark
13	The thickness of the track related to the ionising ability of the particle (not its mass)	(1)	
	Alpha is strongly ionising and beta is only moderately ionising (so alpha tracks are thick and beta tracks are thin) [Allow a comparison of ionising power of alpha with that of beta]	(1)	
	The shape of the track related to the mass of the particle (not its ionising ability)	(1)	
	Alpha particles are massive particles and beta particles are not massive particles (so alpha tracks are straight and beta tracks are twisted) [Allow a comparison of alpha mass with beta mass]	(1)	4
	Total for question 13		4

Question Number	Answer		Mark
14(a)	Determine V using given dimensions	(1)	
	Use of $\rho = \frac{m}{V}$	(1)	
	m = 0.022 (kg) [min 2sf]	(1)	3
	Example of calculation $V = (2.5 \times 10^{-2} \text{m})^2 \times 3.5 \times 10^{-2} \text{m} = 2.19 \times 10^{-5} \text{ m}^3$		
	$1.00 \times 10^3 \text{kg m}^{-3} = \frac{m}{2.19 \times 10^{-5} \text{ m}^3}$		
	$\therefore m = 0.0219 \text{ kg}$		
14(b)	Use of $\Delta E = mc\Delta\theta$	(1)	
	Use of $\Delta E = mL$	(1)	
	Use of $P = \frac{\Delta E}{\Delta t}$	(1)	
	P = 79 W so not 110 W [Use of show that value for m gives 71 W] (allow ecf from (a))		
	Or $t = 8.5$ min not 12 mins so the energy is not transferred at a rate of 110 W [Use of show that value for m gives 7.8 min (467 s)] (allow ecf from (a))		
	Or $\Delta E = 7.92 \times 10^4 \text{J}$ not $5.65 \times 10^4 \text{ J}$ so the energy is not transferred at a rate of 110 W		
	[Use of show that value for m gives 4.06×10^4 J] (allow ecf from (a))	(1)	4
	Example of calculation $\Delta E = 6 \times 0.022 \text{ kg} \times 4180 \text{ J kg}^{-1} \text{ K}^{-1} \times 22.5 \text{ K} = 1.24 \times 10^4 \text{ J}$		
	$\Delta E = 6 \times 0.022 \text{ kg} \times 3.34 \times 10^5 \text{ J kg}^{-1} = 4.41 \times 10^4 \text{ J}$		
	$P = \frac{(1.24 \times 10^4 + 4.41 \times 10^4)J}{(12 \times 60) \text{ s}} = \frac{5.65 \times 10^4}{720} = 78.5 \text{ W}$		
	Or $t = \frac{(1.24 \times 10^4 + 4.41 \times 10^4)J}{110 \text{ W}} = 514 \text{ s} = 8.5 \text{ min}$		
	Or $\Delta E = 110 \text{ W} \times (12 \times 60) \text{s} = 7.92 \times 10^4 \text{J}$		
	Total for question 14		7

Question Number	Answer					
15(a)	Conversion of beats minute ^{-1} to Hz [Accept calculation of T]	(1)				
	Use of $\omega = 2\pi f$	(1)				
	Use of $v = -A\omega \sin \omega t$ with $\sin \omega t = 1$	(1)				
	A = 1.5 (mm) [Allow max displacement = $2A$]	(1)	4			
	Example of calculation $f = \frac{142}{60 \text{ s}} = 2.37 \text{ Hz}$					
	$\omega = 2\pi \times 2.37 \text{ s}^{-1} = 14.9 \text{ rad s}^{-1}$					
	$A = \frac{22.0 \times 10^{-3} \text{ m s}^{-1}}{14.9 \text{ s}^{-1}} = 1.48 \times 10^{-3} \text{ m} = 1.48 \text{ mm}$					
15(b)	For an object to move with simple harmonic motion there must be an acceleration/(resultant) force that is proportional to the	(1)				
	displacement from the equilibrium position	(1)				
	and (always) acting towards the equilibrium position	(1)	2			
	(For equilibrium position accept: undisplaced point/position or fixed point/position or central point/position)					
	[MP2 Accept acceleration/force is in the opposite direction to the displacement] [An attempt to use the equation can only score if all terms are defined and the minus sign explained]					
	Total for question 15		6			

Question Number	Answer		Mark
16(a)	Calculation of mass difference	(1)	
	Use of 1 u = 1.66×10^{-27} kg	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	$\Delta E = 7.6 \times 10^{-13} (\text{J})$	(1)	4
	Example of calculation $\Delta m = (230.0331 - 226.0254 - 4.0026) \text{ u} = 5.1 \times 10^{-3} \text{ u}$		
	$\Delta m = 5.1 \times 10^{-3} \times 1.66 \times 10^{-27} \text{ kg} = 8.47 \times 10^{-30} \text{ kg}$		
	$\Delta E = (3.00 \times 10^8 \text{ m s}^{-1})^2 \times 8.47 \times 10^{-30} \text{ kg} = 7.62 \times 10^{-13} \text{ J}$		
16(b)	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	Use of $N = N_0 e^{-\lambda t}$	(1)	
	Use of 90% $\left[\frac{N}{N_0} = 0.1\right]$	(1)	
	$t = 2.5 \times 10^5 \text{ (years)}$	(1)	4
	Example of calculation		
	$\lambda = \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{0.693}{75400 \text{ years}} = 9.19 \times 10^{-6} \text{ year}^{-1}$		
	$0.1 = e^{-9.19 \times 10^{-6} t}$		
	$t = \frac{\ln 0.1}{-9.19 \times 10^{-6} \text{ year}^{-1}} = 2.51 \times 10^{5} \text{ years}$		
	Total for question 16		8

Question Number	Answer		Mark
17(a)	In the fusion process mass decreases	(1)	
	So energy is released according to $\Delta E = c^2 \Delta m$ Or energy is released to conserve mass-energy Or binding energy per nucleon increases	(1)	2
17(b)	Max 4		
	Very high temperature so that the nuclei have sufficient kinetic energy	(1)	
	Nuclei must overcome electrostatic repulsion/forces [Allow a reference to overcome repulsion/forces due to positively charged nuclei]	(1)	
	So that the nuclei come close enough to fuse	(1)	
	Sufficient density so that the collision rate (between nuclei) is high (enough)	(1)	4
	Sufficient collision rate to maintain the (very high) temperature	(1)	
17(c)	Values of B.E./nucleon read from graph [min 2 values]	(1)	
	Calculation of binding energies	(1)	
	Energy released = 17.4 (MeV) [Allow 17.3 MeV – 17.5 MeV]	(1)	3
	Example of calculation		
	B.E./nucleon of ² H = 1.1 MeV B.E./nucleon of ³ H = 2.8 MeV B.E./nucleon of 4He = 7.0 MeV		
	So energy released = $4 \times 7.0 \text{ MeV} - (2 \times 1.1 \text{ MeV} + 3 \times 2.8 \text{ MeV}) = 17.4 \text{ MeV}$		
	Total for question 17		9

Question Number			1	Answ	ver		Mark
*18	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning.						
	Marks are av		icative content	and t	for how the answ	er is structured and	
	The followin		how the marks	shou	uld be awarded fo	or structure and	
						warded for structure of d line of reasoning	
	structure wi	ows a coherent ith linkages ar nes of reasonited throughout	nd fully ng			2	
	Answer is p	partially struct	ured with of reasoning			1	
	Answer has no linkages between points and is unstructured 0						
		awarded is the		for i	ndicative content	and the marks for	
	IC points	IC mark	Max linkag mark	e	Max final mark		
	6	3	2 2		6	4	
	5 4	3	1		5 4	_	
	3	2	1		3	_	
	2	2	0		2	_	
	1	1	0		1	_	
	0	0	0		0	_	
	Indicative co		· ·		· ·		
	IC1 The	internal energ	•		ses during coolin creases as time pa	~	
	IC2 The internal energy of the wax is the sum of potential energy and kinetic energy of the molecules						
	IC3 As the <u>temperature</u> of the wax decreases, the (molecular) kinetic energy decreases						
	IC4 Between times X and Y the (liquid wax is solidifying and the molecular) potential energy decreases						
	IC5 Between times X and Y the <u>temperature</u> is constant and so there is no change in (molecular) kinetic energy						6
	IC6 At ti	me Y the wax	has solidified				
	Total for question 18					6	

Question Number	Answer		Mark
19(a)	Use of $T = \frac{t_{\text{mean}}}{30} [t_{\text{mean}} = 13.675 \text{ s}]$	(1)	
	Use of $T = 2\pi \sqrt{\frac{m}{k}}$ [Allow use of $\omega^2 = \frac{k}{m}$ with $T = \frac{2\pi}{\omega}$]	(1)	
	Use of factor of 2 applied to either m or k	(1) (1)	4
	$k = 20.9 \text{ (N m}^{-1})$, so label is correct.	(1)	•
	$\frac{\text{Example of calculation}}{(13.65 + 13.70)/2} = 0.456 \text{ s}$		
	$0.456 \mathrm{s} = 2\pi \sqrt{\frac{0.22 \mathrm{kg}}{k}}$		
	$\therefore k = \frac{4\pi^2 \times 0.22 \text{ kg}}{(0.456 \text{ s})^2} = 41.8 \text{ N m}^{-1}$		
	$k = \frac{41.8 \text{ N m}^{-1}}{2} = 20.9 \text{ N m}^{-1}$		
19(b)(i)	When the driving frequency is equal to the natural frequency of the mass-spring system	(1)	
	Resonance occurs	(1)	
	There is a maximum transfer of energy (to the mass-spring system and the amplitude increases)	(1)	3
	[Allow spring for mass-spring system]		
19(b)(ii)	Some of the energy from the student's hand is transferred to the oscillating mass and some of the energy is transferred to surroundings	(1)	
	When the amplitude is a maximum, minimum energy is transferred to surroundings [Accept "at the natural frequency" or "resonance" for when the amplitude is a maximum]	(1) (1)	
	(In a closed system) total energy is constant so the student is incorrect. Or She is incorrect as energy is always conserved (in a closed system)	(1)	3
	Total for question 19		10

Question Number	Answer					
20(a)	Reverse scale	(1)				
	Approximately logarithmic values [With realistic values of temperature and temperature of Sun about 6000 K]	(1)	2			
20(b)	(This star cluster is not a young star cluster because)					
	This cluster has red giant stars on the top right of the diagram	(1)				
	And white dwarf stars bottom left of diagram	(1)				
	A young cluster would only have a main sequence Or Red giant stars only occur in the later stages of a star's evolution Or White dwarf stars only occur in the later stages of a star's evolution	(1)	3			
	If no marks can be awarded, award max 1 for: The cluster has red giant stars and white dwarf stars					
	[Accept positions of red giant stars and white dwarf stars shown on the diagram]					
20(c)	The luminosity of the standard candle is known	(1)				
	Measure/determine intensity of radiation from V1 [standard candle] [do not accept 'calculate']	(1)				
	Use inverse square law to calculate distance (to cluster) Or use $I = \frac{L}{4\pi d^2}$ to determine distance, where I is intensity and L is luminosity	(1)	4			
	Distance is too large (for V1 to be in a nearby cluster) [Must have the idea of being too far away, rather than just being far away]	(1)				
	Total for question 20		9			

Question Number	Answer		Mark
21(a)(i)	$\lambda_{ m max}$ read from graph	(1)	
	Use of $T = \frac{2.898 \times 10^{-3} \text{ m K}}{\lambda_{\text{max}}}$	(1)	
	T = 3400 (K) (accept 3350K - 3450K) [min 2 sf]	(1)	3
	$\frac{\text{Example of calculation}}{\lambda_{\text{max}} = 850 \text{ nm}}$		
	$T = \frac{2.898 \times 10^{-3} \text{ m K}}{850 \times 10^{-9} \text{ m}} = 3410 \text{ K}$		
21(a)(ii)	Use of $A = 4\pi r^2$	(1)	
	Use of $L = \sigma A T^4$	(1)	
	Use of $L_{\text{Sun}} = 3.83 \times 10^{26} \text{ W}$	(1)	
	$\frac{L}{L_{\text{Sun}}} = 0.35\% \text{ (allow ecf from(a)(i))}$	(1)	
	Calculated value of ratio compared with 0.5% and conclusion made	(1)	
	Or		
	Use of $A = 4\pi r^2$	(1)	
	Use of $L = \sigma A T^4$	(1)	
	Use of $L_{\rm Sun} = 3.83 \times 10^{26} { m W}$	(1)	
	$L_{\rm Ross} = 1.34 \times 10^{24} \mathrm{W}$ and $0.5\% L_{\rm Sun} = 1.92 \times 10^{24} \mathrm{W}$	(1)	
	Calculated values of $L_{ m Ross}$ and 0.5% $L_{ m Sun}$ compared and conclusion made	(1)	5
	[Use of show that value of T gives $L_{Ross} = 8.04 \times 10^{23}$ W m ⁻² Use of show that value gives ratio = 0.0021]		
	Example of calculation $L = 4\pi (1.18 \times 10^8)^2 \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \times (3400)^4 = 1.33 \times 10^{24} \text{ W m}^{-2}$		
	$\frac{L}{L_{\text{Sun}}} = \frac{1.33 \times 10^{24} \text{W}}{3.83 \times 10^{26} \text{W}} = 0.00346$		
	$\therefore L = 0.35\%$ of L_{Sun} which is less than 0.5%, so statement is correct		

21(b)	Equate $F = \frac{GMm}{r^2}$ and $F = m\omega^2 r$	(1)	
	Use of $\omega = \frac{2\pi}{T}$	(1)	
	$T = 2.29 \times 10^6 \text{ s}$	(1)	
	OR		
	Use of $F = \frac{GMm}{r^2}$ with $F = \frac{mv^2}{r}$	(1)	
	Use of $v = \frac{2\pi r}{T}$	(1)	
	$T = 2.29 \times 10^6 \text{ s}$	(1)	3
	$\frac{\text{Example of calculation}}{\frac{GMm}{r^2}} = m\omega^2 r$		
	$ \dot{\omega} = \sqrt{\frac{GM}{r^3}} = \sqrt{\frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 3.38 \times 10^{29} \text{ kg}}{(0.096 \times 1.50 \times 10^{11} \text{ m})^3}} = 2.75 \times 10^{-6} \text{ rad s}^{-1} $		
	$T = \frac{2\pi}{\omega} = \frac{2\pi}{2.75 \times 10^{-6} \mathrm{s}^{-1}} = 2.29 \times 10^{6} \mathrm{s}$		
	Total for question 21		11