

Bridging the gap between enzymologists and state-of-the-art simulation

Marc W. van der Kamp, Adrian J. Mulholland - Marc.vanderKamp@bristol.ac.uk

Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantocks Close, BS8 1TS
We thank **BBSRC** for funding, **acrc.bris.ac.uk** for computational resources and co-workers for their contributions

Enzyme-ligand simulation: automated protocols

- Automate the setup and simulation of enzyme-ligand complexes: require only a PDB file with a ligand (incl. ligand net charge and hydrogens)
- Meant to compare enzyme and/or ligand variants by <u>non-experts</u> on <u>standard PCs</u>
- o Ideally free (& open source) software, and run on Mac OS, Windows, Linux

PREP for ligand parameterization, adding hydrogens & solvent, topology files

- o Ligand parameterization: antechamber (sqm, AmberTools141), am1-bcc charges
- o Protein prep (SS-bonds, alt. conformations etc.): pdb4amber (AmberTools14¹)
- Adding hydrogens, residue flips, histidine tautomers: reduce (AmberTools14¹)
- Check ASP/GLU(/LYS/TYR) protonation in presence of ligand: propka3.12
- Solvation and amber ff14SB topology files: tleap (AmberTools14¹)

STRUCT for structural effects, through brief simulated annealing MD & minimization

- o sander (now free, part of AmberTools141) or NAMD
- Solvent sphere (e.g. 20 Å radius) with outer & outside sphere fixed

DYNAM for further molecular dynamics: fluctuations (in active site)

- Either ~100ps MD with solvent sphere (on single CPU, with sander/NAMD), or
- ~1ns MD in periodic box (on GPU, with pmemd.cuda, openMM) to be implemented

QM for electronic structure of ligand in enzyme (single point QM/MM, with Gaussian or NWChem or ...)

Follow progress on: https://github.com/marcvanderkamp/enzlig_tools

Test case 1: Chorismate mutase (CM)

2CHT.pdb: select 1st trimer, keep only one TSA & change to chorismate with H's

Test case 2: Neuraminic acid lyase (NAL)

1:10:30

1ns box

Efficient QM/MM activity screening

QM/MM modelling as an assay for carbapenemase activity⁴

- o Challenge: Given a 3D structure of a class A B-lactamase, calculate the barrier for the rate-limiting step (acyl-enzyme deacylation)
- Take structure, model in carbapenem in acylenzyme form (MM or QM/MM MD)
- o Follow deacylation reaction with QM/MM umbrella sampling and extract barrier

- o Full profile:⁴ 340 windows, 20ps QM/MM MD each, using SCC-DFTB (41+3 QM atoms)
- Minimal energy path only (28 windows, 20 or 2ps MD per window): MEP-20 takes 38 hrs, MEP-2 <4 hrs (16 CPUs) or <19 hrs (1 CPU) → Barriers still predictive

enzyme	k_{cat} (s ⁻¹)	Δ G [‡] _{exp} (kcal/mol)	$\Delta G^{\dagger}_{calc}$ FULL (kcal/mol) ^{4a}	ΔG [‡] _{calc} MEP-20 (kcal/mol) ^{4b}	$\Delta G^{\dagger}_{calc}$ MEP-2 (kcal/mol) ^{4b}
BlaC	1.7 x 10 ⁻³	21.5	17.9 (0.08)	17.6 (2.3)	21.8 (1.8)
CTX-M	4.2×10^{-3}	20.8	18.9 (1.1)	17.3 (1.9)	20.3 (3.5)
SHV-1	1.3×10^{-3}	21.6	17.0 (0.43)	18.0 (0.7)	20.8 (1.0)
TEM-1	2.3×10^{-3}	22.7	17.1 (0.43)	16.4 (1.4)	20.6 (1.3)
KPC-2	3.6	16.8	10.5 (0.88)	10.5 (1.9)	11.1 (2.3)
NMC-A	12.0	16.1	7.5 (0.43)	7.5 (1.7)	10.5 (1.3)
SFC-1	6.5	16.6	10.9 (0.86)	8.7 (1.1)	11.5 (0.8)
SME-1	3.2	16.9	10.3 (2.80)	10.7 (2.9)	12.9 (0.5)

Values are averaged from 3 profiles; standard deviations in parentheses

Protocol valid for other β-lactam antibiotics also;^{4b} tested on cephalosporin

Initial ('blind') QM/MM screens for CM & NAL variants

- Use automated setup (PREP with Scwrl4 for rotamer selection, STRUCT, DYNAM)
- Define QM region & reaction coordinate; perform 2ps QM/MM MD per window (SCC-DFTB/ff14SB); select profile with lowest barrier from 25, 50, 75, 100 ps MM MD

- \circ Despite high degree of automation and inexpensive protocols, reasonable reaction profiles are obtained \rightarrow potential for high-throughput activity screening
- Useful for: reaction visualization, reaction coord. testing, hypothesis generation

Footnotes & References

- 1. See www.ambermd.org and the Amber14.pdb manual for further information & references
- See propka.ki.ku.dk; Søndergaard et al. J. Chem. Theory Comput. 7, 2284, 2011.
 Daniels AD, Campeotto I, Van der Kamp MW, Bolt AH, Trinh CH, Phillips SEV, Pearson AR, Nelson A,
- Mulholland AJ, Berry A. ACS Chem. Biol. 9, 1025, 2014.

 4. a) Chudyk EI, Limb MAL, Jones C, Spencer J, Van der Kamp MW; Mulholland AJ. Chem. Commun. 50,
- 14736, **2014**. b) New data, with thanks to Kate Hammond & Mike Limb. 5. Ishida T. *J. Am. Chem. Soc.* 132, 7104, **2010**.