GENERAL TOPOLOGY, SPRING 2025

PROBLEM SHEET 1

Due date: Not for submission.

1. List of problems

(1) Let X be a nonempty set and A is a collection of subsets of X. Let A' :=The collection of all intersections of finitely many members of $A \cup \{\emptyset\} \cup \{X\}$. Prove that the following collection \mathcal{B} forms a topology on X.

 $\mathcal{B} :=$ The set of all unions of members of \mathcal{A}' .

- (2) For each of the following collection \mathcal{A} , describe \mathcal{A}' as denoted above.
 - (A) $X = \mathbb{R}, \mathcal{A} = \{[0, 1]\};$
 - (B) $X = \mathbb{R}, \mathcal{A} = \{[0,1], [3,4], [5,6)\};$

 - (C) $X = \mathbb{R}^2, \mathcal{A} = \{B((0,0),1/n) : n \geq 1\};$ (D) $X = \mathbb{R}^2, \mathcal{A} = \{\text{The set of all finite subsets of } \mathbb{R}^2\};$
 - (E) $X = \mathbb{R}^2$, $\mathcal{A} = \{\text{The set of all infinite subsets of } \mathbb{R}^2\};$
 - (F) $X = \mathbb{R}^2$, $\mathcal{A} = \{A \subset \mathbb{R}^2 : |\mathbb{R}^2 \setminus A| \le 10\};$ (G) $X = \mathbb{R}^2$, $\mathcal{A} = \{A \subset \mathbb{R}^2 : |\mathbb{R}^2 \setminus A| < \infty\};$

 - (H) $X = \mathbb{R}^2$, $A = \{A \subset \mathbb{R}^2 : \mathbb{R}^2 \setminus A \text{ is countable}\};$
- (3) Recall the definition of an open set in \mathbb{R}^3 from calculus. Show that the collection of open sets indeed forms a topology on \mathbb{R}^3 .
- (4) Repeat the above problem for a general metric space. Does the triangle inequality play a part in the proof? If so, where?

Date: January 9, 2025.