Syntax Analysis:

Context-free Grammars, Pushdown Automata and Parsing Part - 6

Y.N. Srikant

Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Outline of the Lecture

- What is syntax analysis? (covered in lecture 1)
- Specification of programming languages: context-free grammars (covered in lecture 1)
- Parsing context-free languages: push-down automata (covered in lectures 1 and 2)
- Top-down parsing: LL(1) parsing (covered in lectures 2 and 3)
- Recursive-descent parsing (covered in lecture 4)
- Bottom-up parsing: LR-parsing (continued)

Shift and Reduce Actions

- If a state contains an item of the form [A → α.] ("reduce item"), then a reduction by the production A → α is the action in that state
- If there are no "reduce items" in a state, then shift is the appropriate action
- There could be shift-reduce conflicts or reduce-reduce conflicts in a state
 - Both shift and reduce items are present in the same state (S-R conflict), or
 - More than one reduce item is present in a state (R-R conflict)
 - It is normal to have more than one shift item in a state (no shift-shift conflicts are possible)
- If there are no S-R or R-R conflicts in any state of an LR(0)
 DFA, then the grammar is LR(0), otherwise, it is not LR(0)

LR(0) Parser Table - Example 1

STATE	ACTION					(GOTC)	
	+	-	()	id	#	S	Е	Т
0			S4		S3			1	2
1	S6	S7				S5			
2	R4	R4	R4	R4	R4	R4			
3	R6	R6	R6	R6	R6	R6			
4			S4		S3			10	2
5	R1	R1	R1	R1	R1	R1			
	acc	acc	acc	acc	acc	acc			
6			S4		S3				8
7			S4		S3				9
8	R2	R2	R2	R2	R2	R2			
9	R3	R3	R3	R3	R3	R3			
10	S6	S7		S11					
11	R5	R5	R5	R5	R5	R5			

1. $S \rightarrow E\#$ 2. $E \rightarrow E+T$ 3. $E \rightarrow E-T$ 4. $E \rightarrow T$ 5. $T \rightarrow (E)$ 6. $T \rightarrow id$

Construction of an LR(0) Parser Table - Example 1

STATE		ACTION						GOTO	
	+	-	()	id	#	S	Е	т
0			S4		S3			1	2
1	S6	S7				S5			
2	R4	R4	R4	R4	R4	R4			
3	R6	R6	R6	R6	R6	R6			
4			S4		S3			10	2
5	R1 acc	R1 acc	R1 acc	R1 acc	R1 acc	R1 acc			
6			S4		S3				8
7			S4		S3				9
8	R2	R2	R2	R2	R2	R2			
9	R3	R3	R3	R3	R3	R3			
10	S6	S7		S1 1					
11	R5	R5	R5	R5	R5	R5			

- $S \rightarrow E\#$
- $E \rightarrow E+T$
- $E \rightarrow E-T$
- $E \rightarrow T$
- $T \rightarrow (E)$
- $T \rightarrow id$

State 0 S → .E#	<u>State 2</u> E → T.
$E \rightarrow .E+T$ $E \rightarrow .E-T$ $E \rightarrow .T$ $T \rightarrow .(E)$ $T \rightarrow .id$	State 3 T → id.
State 1	State 6

LR(0) Automaton - Example 2

Construction of an LR(0) Automaton - Example 2

State 0	State 3	State 7	State 10
s' → .s	$S \rightarrow c$.	A → ba.	$B \rightarrow b.A$
$S \rightarrow .aAS$			$A \rightarrow .ba$
S → .c	State 4		A → .SB
	$S \rightarrow aA.S$		S → .aAS
State 1	$S \rightarrow .aAS$		S →.c
<u>S' → S.</u>	$S \rightarrow .c$	B → .bA	
		$B \rightarrow .S$	
State 2	State 5	S → .aAS	State 11
S → a.AS	$S \rightarrow aAS$.	$S \rightarrow .c$	$B \rightarrow bA$.
A → .ba			
A → .SB	State 6	State 9	State 12
S → .aAS	$A \rightarrow b.a$	$A \rightarrow SB$.	$B \rightarrow S$.
S → .c			
0 7 .0		1. S' → S 2. S → aAS	3. S → c
indicates cl	osure items	4. A → ba 5. A → SB	

indicates kernel items

 $6. B \rightarrow bA \quad 7. B \rightarrow S$

LR(0) Parser Table - Example 2

CTATE ACTION COTO							
STATE		ACTION				GOTO	
	а	b	С	\$	S	Α	В
0	S2		S3		1		
1				R1			
				acc			
2	S2	S6	S3		8	4	
3	R3	R3	R3	R3			
4	S2		S3		5		
5	R2	R2	R2	R2			
6	S7						
7	R4	R4	R4	R4			
8	S2	S10	S3		12		9
9	R5	R5	R5	R5			
10	S2	S6	S3		8	11	
11	R6	R6	R6	R6			
12	R7	R7	R7	R7			

1. $S' \rightarrow S$ 2. $S \rightarrow aAS$ 3. $S \rightarrow c$ 4. $A \rightarrow ba$ 5. $A \rightarrow SB$ 6. $B \rightarrow bA$ 7. $B \rightarrow S$

Construction of an LR(0) Parser Table - Example 2

A Grammar that is not LR(0) - Example 1

State 0 S → .E E → .E+T	<u>State 2</u> E → T.	<u>State 5</u> E → E+.T T → .(E)	<u>State 8</u> E → E-T.
$E \rightarrow .E-T$ $E \rightarrow .T$ $T \rightarrow .(E)$ $T \rightarrow .id$	<u>State 3</u> T → id.	T → .id <u>State 6</u> E → ET T → .(E)	<u>State 9</u> T → (E.) E → E.+T E → ET
State 1	State 4	T → .id	
S → E. E → E.+T E → ET	T → (.E) E → .E+T E → .E-T	<u>State 7</u> E → E+T.	<u>State 10</u> T → (E).
shift-reduce conflicts in state 1	$E \rightarrow .T$ $T \rightarrow .(E)$ $T \rightarrow .id$	indicates closureindicates kernel i	

follow(S) = {\$}, where \$ is EOF Reduction on \$, and shifts on + and - , will resolve the conflicts This is similar to having an end marker such as # Grammar is not LR(0), but is SLR(1)

SLR(1) Parsers

- If the grammar is not LR(0), we try to resolve conflicts in the states using one look-ahead symbol
- Example: The expression grammar that is not LR(0) The state containing the items $[T \to F.]$ and $[T \to F.*T]$ has S-R conflicts
 - Consider the reduce item $[T \to F]$ and the symbols in FOLLOW(T)
 - FOLLOW(T) = {+,),\$}, and reduction by T → F can be performed on seeing one of these symbols in the input (look-ahead), since shift requires seeing * in the input
 - Recall from the definition of FOLLOW(T) that symbols in FOLLOW(T) are the only symbols that can legally follow T in any sentential form, and hence reduction by T → F when one of these symbols is seen, is correct
 - If the S-R conflicts can be resolved using the FOLLOW set, the grammar is said to be SLR(1)

A Grammar that is not LR(0) - Example 2

State 0	State 2	State 5	04-4-0
S → .E	$E \rightarrow T$.	$F \rightarrow id$.	State 8
E → .E+T			F → (E.)
E → .T	State 3	State 6	$E \rightarrow E.+T$
$T \rightarrow .F*T$	$T \rightarrow F.*T$	$E \rightarrow E+.T$	
T → .F	$T \rightarrow F$.	T → .F*T	
F → .(E)	Shift-reduce	T → .F	State 9
$F \rightarrow .id$	conflict	F → .(E)	$E \rightarrow E+T$.
		F → .id	
State 1	State 4		
S → E.	F → (.E)	State 7	State 10
E → E.+T	E → .E+T	$T \rightarrow F^*.T$	$E \rightarrow F^*T$.
Shift-reduce	E → .T	$T \rightarrow .F*T$	
conflict	$T \rightarrow .F*T$	T → .F	State 11
	T → .F	F → .(E)	F → (E).
	F → .(E)	F → .id	· → (⊑).
	F → .id		

 $follow(S) = \{\$\}$, Reduction on \$ and shift on +, eliminates conflicts $follow(T) = \{\$, \}$, +}, where \$ is EOF Reduction on \$, \, and +, and shift on *, eliminates conflicts

Grammar is not LR(0), but is SLR(1)

Construction of an SLR(1) Parsing Table

Let $C=\{I_0,I_1,...,I_i,...,I_n\}$ be the canonical LR(0) collection of items, with the corresponding states of the parser being 0, 1, ..., i, ..., n Without loss of generality, let 0 be the initial state of the parser (containing the item $[S' \to .S]$)

Parsing actions for state *i* are determined as follows

1. If
$$([A \to \alpha.a\beta] \in I_i)$$
 && $([A \to \alpha a.\beta] \in I_j)$ set ACTION[i, a] = shift j /* a is a terminal symbol */

2. If
$$([A \rightarrow \alpha.] \in I_i)$$

set ACTION[i, a] = reduce $A \rightarrow \alpha$, for all $a \in follow(A)$

3. If
$$([S' \rightarrow S.] \in I_i)$$
 set ACTION[i, \$] = accept

S-R or R-R conflicts in the table imply grammar is not SLR(1)

4. If
$$([A \rightarrow \alpha.A\beta] \in I_j)$$
 && $([A \rightarrow \alpha A.\beta] \in I_j)$ set GOTO[i, A] = j /* A is a nonterminal symbol */

All other entries not defined by the rules above are made error

A Grammar that is not LR(0) - Example 3

1	Gramma	ar	
1	$S' \rightarrow S$	$S \rightarrow aSb$,	$S \rightarrow \epsilon$

$$follow(S) = \{\$, b\}$$

State 0	State 3
s' → .s	$S \rightarrow aS.b$
S → .aSb	

s →.

State 1	State 4
s' → s.	$S \rightarrow aSb$

	а	b	\$	S
0	S2	reduce S → ε	reduce S → ε	1
1			accept	
2	S2	reduce S → ε	reduce $S \rightarrow \epsilon$	3
3		S4		
4		reduce S → aSb	reduce S → aSb	

State 2

 $s \rightarrow .$

 $S \rightarrow a.Sb$ $S \rightarrow .aSb$ shift-reduce conflict in states 0, 2

- indicates closure items
- indicates kernel items

A Grammar that is not SLR(1) - Example 1

Grammar: S' \rightarrow S, S \rightarrow aSb, S \rightarrow ab, S \rightarrow ϵ $follow(S) = \{\$, b\}$

State 0: Reduction on \$ and b, by S $\rightarrow \epsilon$, and shift on a resolves conflicts

State 2: S-R conflict on b still remains

<u>State 0</u> S' → .S $\frac{\text{State 3}}{\text{S} \rightarrow \text{aS.b}}$

S → .aSb

State 4 S → aSb.

 $S \rightarrow .ab$ $S \rightarrow .$

State 5 \rightarrow ab.

State 1 S' → S.

> shift-reduce conflict in states 0, 2

<u>State 2</u> S → a.Sb

 $S \rightarrow a.S$ $S \rightarrow a.b$

S → .aSb S → .ab

 $s \rightarrow .$

Grammar is neither LR(0) nor SLR(1)

	а	b	\$	S
0	S2	R: S → ε	R: S $\rightarrow \epsilon$	1
1			accept	
2	S2	S5, R: S $\rightarrow \epsilon$	R: S → ε	3
3		S4		
4		R: S → aSb	R: S → aSb	
5		R: S → ab	R: S → ab	

A Grammar that is not SLR(1) - Example 2

<u>Grammar</u> S' → S	<u>State 0</u> S' → .S	<u>State 2</u> S → L .=R	<u>State 6</u> S → L=.R
S → L=R	S → .L=R	R → L.	R → .L
$S \rightarrow R$	$s \rightarrow .R$	shift-reduce	L → .*R
L → *R	L → .*R	conflict	$L \rightarrow .id$
$L \rightarrow id$	$L \rightarrow .id$		
R → L	R → .L	<u>State 4</u> L → *.R	<u>State 7</u> L → *R.
Grammar is	State 1 S' → S.	R → .L L → .*R	
neither LR(0) nor SLR(1)	04-4- 0	L → .id	<u>State 8</u> R → L .
	<u>State 3</u> S → R.	<u>State 5</u> L → id.	<u>State 9</u> S → L=R.

Follow(R) = {\$,=} does not resolve S-R conflict

The Problem with SLR(1) Parsers

- SLR(1) parser construction process does not remember enough left context to resolve conflicts
 - In the "L = R" grammar (previous slide), the symbol '=' got into follow(R) because of the following derivation:

$$S' \Rightarrow S \Rightarrow L = R \Rightarrow L = L \Rightarrow L = id \Rightarrow *\underline{R} = id \Rightarrow ...$$

- The production used is L → *R
- The following rightmost derivation in *reverse* does not exist (and hence reduction by R → L on '=' in state 2 is illegal) id = id ← L = id ← R = id...
- Generalization of the above example
 - In some situations, when a state i appears on top of the stack, a viable prefix $\beta\alpha$ may be on the stack such that βA cannot be followed by 'a' in any right sentential form
 - Thus, the reduction by $A \rightarrow \alpha$ would be invalid on 'a'
 - In the above example, β = ε, α = L, and A = R; L cannot be reduced to R on '=', since it would lead to the above illegal derivation sequence

LR(1) Parsers

- LR(1) items are of the form $[A \to \alpha.\beta, a]$, a being the "lookahead" symbol
- Lookahead symbols have no part to play in shift items, but in reduce items of the form [A → α., a], reduction by A → α is valid only if the next input symbol is 'a'
- An LR(1) item $[A \to \alpha.\beta, \ a]$ is *valid* for a viable prefix γ , if there is a derivation $S \Rightarrow_{rm}^* \delta Aw \Rightarrow_{rm} \delta \alpha \beta w$, where, $\gamma = \delta \alpha$, a = first(w) or $w = \epsilon$ and a = \$
- ullet Consider the grammar: $S' o S, \ S o aSb \mid \epsilon$
 - [$S \rightarrow a.Sb$, \$] is valid for the VP a, $S' \Rightarrow S \Rightarrow aSb$
 - $[S \rightarrow a.Sb, b]$ is valid for the VP aa, $S' \Rightarrow S \Rightarrow aSb \Rightarrow aaSbb$
 - [$S \rightarrow ., \$$] is valid for the VP $\epsilon, S' \Rightarrow S \Rightarrow \epsilon$
 - $[S \rightarrow aSb., b]$ is valid for the VP aaSb, $S' \Rightarrow S \Rightarrow aSb \Rightarrow aaSbb$

LR(1) Grammar - Example 1

Grammar $S' \rightarrow S$, $S \rightarrow aSb$, $S \rightarrow \epsilon$			
State 0 $S' \rightarrow .S$, \$ $S \rightarrow .aSb$, \$ $S \rightarrow .,$ \$	State 4 $S \rightarrow a.Sb$, b $S \rightarrow .aSb$, b $S \rightarrow .b$		
$\frac{\text{State 1}}{\text{S'} \rightarrow \text{S.}}, $$	$\frac{\text{State 5}}{\text{S} \rightarrow \text{aSb.}, \$}$		
State 2	State 6		

	а	b	\$	S
0	S2		R: S → ε	1
1			accept	
2	S4	R: S $\rightarrow \epsilon$		3
3		S5		
4	S4	R: $S \rightarrow \epsilon$		6
5			R: S → aSb	
6		S7		
7		R: S → aSb		

Closure of a Set of LR(1) Items

```
Itemset closure(I){ /* I is a set of LR(1) items */ while (more items can be added to I) { for each item [A \to \alpha.B\beta,\ a] \in I { for each production B \to \gamma \in G for each symbol b \in \mathit{first}(\beta a) if (item [B \to .\gamma,\ b] \notin I) add item [B \to .\gamma,\ b] to I } return I
```

```
Grammar S' \rightarrow S S \rightarrow aSb \mid \epsilon State 0 S' \rightarrow S, S \rightarrow aSb, S
```

GOTO set computation

```
Itemset GOTO(I, X){ /* I is a set of LR(1) items X is a grammar symbol, a terminal or a nonterminal */ Let I' = \{[A \to \alpha X.\beta, \ a] \mid [A \to \alpha.X\beta, \ a] \in I\}; return (closure(I'))
```

```
 \begin{array}{|c|c|c|c|c|c|}\hline Grammar & State 0 & State 1 & State 2 & State 4 \\ S' \rightarrow S & S \rightarrow aSb, $ & S \rightarrow
```

GOTO(0, S) = 1, GOTO(0,a) = 2, GOTO(2,a) = 4

Construction of Sets of Canonical of LR(1) Items

```
 \begin{array}{l} \textit{void Set\_of\_item\_sets}(G') \{ \ /^* \ G' \ \text{is the augmented grammar */} \\ C = \{ \textit{closure}( \{ S' \rightarrow .S, \ \$ \}) \}; /^* \ C \ \text{is a set of LR}(1) \ \text{item sets */} \\ \text{while (more item sets can be added to $C$)} \ \{ \\ \text{for each item set $I \in C$ and each grammar symbol $X$} \\ /^* \ X \ \text{is a grammar symbol, a terminal or a nonterminal */} \\ \text{if } ((GOTO(I, X) \neq \emptyset) \ \&\& \ (GOTO(I, X) \notin C)) \\ C = C \cup GOTO(I, X) \\ \} \\ \} \end{array}
```

- Each set in C (above) corresponds to a state of a DFA (LR(1) DFA)
- This is the DFA that recognizes viable prefixes

LR(1) DFA Construction - Example 1

Grammar $S' \rightarrow S$, $S \rightarrow aSb$, $S \rightarrow \epsilon$			
State 0 $S' \rightarrow .S$, \$ $S \rightarrow .aSb$, \$ $S \rightarrow .,$ \$	State 4 S → a.Sb, b S → .aSb, b S → ., b		
$\frac{\text{State 1}}{\text{S'} \rightarrow \text{S.}}, $$	State 5 S → aSb.,\$		
State 2	State 6		

	а	b	\$	S
0	S2		R: S → ε	1
1			accept	
2	S4	R: S → ε		3
3		S5		
4	S4	R: S → ε		6
5			R: S → aSb	
6		S7		
7		R: S → aSb		

Construction of an LR(1) Parsing Table

Let $C=\{I_0,I_1,...,I_i,...,I_n\}$ be the canonical LR(1) collection of items, with the corresponding states of the parser being 0, 1, ..., i, ..., n Without loss of generality, let 0 be the initial state of the parser (containing the item $[S' \to .S, \ \$]$)

Parsing actions for state *i* are determined as follows

1. If
$$([A \to \alpha.a\beta,\ b] \in I_i)$$
 && $([A \to \alpha a.\beta,\ b] \in I_j)$ set ACTION[i, a] = shift j /* a is a terminal symbol */

2. If
$$([A \rightarrow \alpha., a] \in I_i)$$

set ACTION[i, a] = reduce $A \rightarrow \alpha$

3. If
$$([S' \rightarrow S., \$] \in I_i)$$
 set ACTION[i, $\$] = accept$

S-R or R-R conflicts in the table imply grammar is not LR(1)

4. If
$$([A \to \alpha.A\beta, \ a] \in I_i)$$
 && $([A \to \alpha A.\beta, \ a] \in I_j)$ set GOTO[i, A] = j /* A is a nonterminal symbol */

All other entries not defined by the rules above are made error

