3/25/2021

DSO 562 Project 2

Identity Fraud in the Credit Card Dataset

Team Member:

Xue Gao, Tianze Yang, Yang Jiao, Yunlong Wang, Huiyi Zhang, Xinzhu Zhang

University of Southern California MARSHALL SCHOOL OF BUSINESS

Table of Contents

Executive Summary	2
Description of Data	3
Data Cleaning	Error! Bookmark not defined.
Candidate Variables	6
Feature Selection Process	8
Model Algorithms	11
Results	17
Conclusions	20
Appendix	21

Executive Summary

As technology advances rapidly evolve around methods of payments, also presented are potential exposures to various risks. As the most common type of identity theft, Credit card fraud is widely prevalent in the U.S. According to research, of the 1.5 billion credit cards issued in the United States, millions fall victim to this unscrupulous tactic each year.

In addition to performing unauthorized transactions using stolen or lost credit cards, it has been discovered that fraudsters often apply for a credit card in someone else's name. Basic information such as legal name, date of birth, address, and social security numbers are rudimentary to this scheme; overtime, the criminals also adopted less conventional methods to extract relevant info from supporting documents to fly under the radar.

In this project, we aim to build a real-time fraud detection model to predict if a credit card applicant uses someone else's in combination with made-up information to commit fraud.

The credit card application dataset we use contains one million rows of records each with ten columns, including date, ssn, first name, last name, address, zip5, dob, homephone, and fraud label.

In order to develop this predictive model, we went through several steps. At first, we did data cleaning and sorting to adjust the data type and replace frivolous values. Then, we did feature engineering by creating combination group variables and day since, velocity, and relative velocity variables for each combination group.

After generating candidate variables, we operated feature selection to select a number of best potential variables to train the models. By having a dataset split in training, testing, and out of time validation, we trained models by applying different machine learning algorithms and compared the performance by calculating average fraud detection rate at 3% to select the best model to be our final model.

As a result, we found that the Gradient Boosting Tree with Learning_rate 0.01, n_estimator 1100, and max_depth of 5 has the highest average FDR at 3% in the test set. After that, we used that model to calculate the bins and cumulative goods, bads and built the tables in the results section.

Description of Data

Applications Data is a dataset containing records of 1,000,000 applications. It includes fields such as date of application, SSN, first and last name, address, zip code, date of birth, home phone number, and fraud label of each applicant.

File Name: applications data.csv

Data Source: An identity fraud prevention company

Time Period: Jan 1st 2016 - Dec 31st 2016

Number of Records: 1,000,000 records

Number of Fields: 9 variables in total: 7 categorical variables, 2 date variables

Field Name	Data Type	%Populated	Unique number
date	Date variable	100%	365
ssn	Categorical variable	100%	835819
firstname	Categorical variable	100%	78136
lastname	Categorical variable	100%	177001
address	Categorical variable	100%	828774
zip5	Categorical variable	100%	26370

dob	Date variable	100%	42673
homephone	Categorical variable	100%	28244
Fraud_label	Categorical variable	100%	2

date: The date when the credit card application was filled. It ranges from Jan 1^{st} 2016 – Dec 31^{st} 2016.

ssn: The SSN used for that particular credit card application.

firstname: The first name used for that credit card application.

lastname: The last name used for that credit card application.

address: The address used for that credit card application, which includes street number and street name.

zip5: The 5-digit zip code used for that credit card application.

dob: The date of birth that the applicants used for application, the format is YYYY-MM-DD.

homephone: The phone number that the applicants used for credit card application.

fraud_lable: Whether the record is considered fraud.

Data Cleaning

The original dataset has a total of 9 fields. Each of the fields is 100% populated. There are no missing values in any of the fields.

The date field was originally in the type of int64. We firstly changed the data type to a string, added dashes in between to separate the year, month and day, and finally converted it to a datetime variable using the pandas to datetime function.

The zip5 field has some values in 4 digits and others in 5 digits. To unify the number of digits in each entry, we formatted the 4-digit ones by adding a 0 in front of each entry.

The most common value in the ssn field was 999999999, which was clearly a frivolous value. To fix this problem, we replaced the frivolous value with a field that would not link -- the negative of the record number and then formatted the entries into 9 digits.

Similarly, the most common value in the homephone field was 999999999. We replaced the frivolous value with the negative of the record number and formatted it into a 10-digit number.

The address field had around a thousand frivolous values of "123 MAIN ST". We created a value by concatenating the record number with the word "RECORD" and used it to replace each frivolous value under the address field.

The most common field value in the dob field was 19070626, which was an impossible number. Again, we replaced it with the negative of the record number and formatted it into an 8-digit number.

Candidate Variables

First of all, we created a variable called "day of the week" to figure out the risk of each day in a week. From the risk table for day of week, it was obvious that Monday had the lowest fraud risk and Wednesday had the highest risk.

Then we linked the original fields and created new entities:

name = firstname + lastname
fulladdress = address + zip5
name_dob = name + dob
name_fulladdress = name + fulladdress
name_homephone = name + homephone
fulladdress_dob=fulladdress+dob
fulladdress_homephone=fulladdress+homephone
dob_homephone=dob+homephone
homephone_name_dob=homephone+name_dob

Then we linked applicants' SSN to all these entities described above. In total, we created 28 entities.

Next, we built 'velocity' variables for all these attributes, which means the number of records with the same attributes over the last 0, 1, 3, 7, 14, 30 days.

Another group 'day since' variables mean that how many days has passed since the last time the attributes appeared.

In the end, we built 'relative velocity' group variables, and they represented the proportion of the number of times we have seen that entity in the past days comes from the recent past.

Variable groups	Variable name format
Velocity	attributes _count_xx
Day since	attibutes_since
Relative velocity	attributes_count_yy_by_xx

xx: 0, 1, 3, 7, 14 days; yy: recent days

Feature Selection Process

During the feature selection stage, we calculated the Kolmogorov–Smirnov (KS) and Fraud Detection Rate (FDR) value for each variable and used backward stepwise methods to select 30 variables for our final models.

Kolmogorov–Smirnov (KS)

Kolmogorov–Smirnov is the measurement of how well two distributions are separated. The larger the KS, the more separate the two distributions. We used KS to measure the differences between fraud records and non-fraud records for each variable created. Specifically, for each variable, we gathered a list of fields corresponding to fraud records and the other list of random numbers between 0 and 1. Then we applied stats.ks.2samp function to compute KS for all variables.

• Fraud Detection Rate (FDR)

Fraud Detection Rate is the percentage of all the fraud found at a score cutoff. 3% of FDR means the calculation of how many fraud records in the top 3% of all records. Specifically, we sort the data and compute the number of bad records in the top 3% of the records, then divided by the total number of fraud data.

Wrapped Method:

Backward step-by-step selection involves starting with all candidate variables, testing the deletion of each variable using the selection model to meet the criteria and repeating this process until no further variable can be eliminated. In the wrapped method, we use FDR score

as the score in the function RFECV in order to have a better result. Below is a list of the 30 variables chosen by backward selection and are ones we used in our final models:

Variable	Description	Variable	Description
address_count _0	Number of same address seen in the past 0 days	fulladdress_count _0	Number of same address plus zip code seen in the past 0 days
address_count _0_by_3	Number of same address seen in the past 0 days divided by the same group in 3 days.	fulladdress_count _0_by_14	Number of same full address and dob seen in the past 0 days divided by the same group in 14 days.
address_count _0_by_7	Number of same address seen in the past 0 days divided by the same group in 7 days.	fulladdress_count _0_by_3	Number of same full address and dob seen in the past 0 days divided by the same group in 3 days.
address_count _1	Number of same address seen in the past 1 days	fulladdress_count _0_by_7	Number of same full address and dob seen in the past 0 days divided by the same group in 7 days.
address_count _1_by_7	Number of same address seen in the past 1 days divided by the same group in 7 days.	fulladdress_count _1	Number of same address plus zip code seen in the past 1 days

address_count _3	Number of same address seen in the past 3 days	fulladdress_count _3	Number of same address plus zip code seen in the past 3 days
address_count _30	Number of same address seen in the past 30 days	fulladdress_count _30	Number of same address plus zip code seen in the past 30 days
homephone_c ount_3	Number of same phone number seen in the past 3 days	fulladdress_home phone_count_30	Number of same address plus zip plus home phone number code seen in the past 30 days
name_dob_cou nt_0_by_14	Number of same name and dob seen in the past 0 days divided by the same group in 14 days.	fulladdress_home phone_count_7	Number of same address plus zip plus home phone number code seen in the past 7 days
name_dob_cou nt_14	Number of same address plus zip code seen in the past 30 days	ssn_count_0_by_3 0	Number of same ssn in the past 0 days divided by the same group in 30 days.
name_dob_cou nt_30	Number of same address plus zip code seen in the past 30 days	ssn_count_30	Number of same ssn code seen in the past 30 days

name_dob_cou nt_7	Number of same address plus zip code seen in the past 30 days	ssn_count_7	Number of same ssn code seen in the past 7 days
ssn_dob_count _0_by_14	Number of same ssn and dob seen in the past 0 days divided by the same group in 14 days.	ssn_dob_count_3 0	Number of same SSN and date of birth seen in the past 30 days
ssn_dob_count _0_by_30	Number of same ssn and dob seen in the past 0 days divided by the same group in 30 days.	ssn_dob_count_7	Number of same SSN and date of birth seen in the past 7 days
ssn_dob_count _14	Number of same address plus zip code seen in the past 30 days	ssn_firstname_cou nt_14	Number of same SSN and first name seen in the past 14 days

Model Algorithms

After feature selection, we applied different machine learning algorithms to train models and calculated the average FDR at 3% for the train, test, and OOT data for each model. We applied 4 machine learning algorithms as below.

Logistic Regression:

Logistic regression analysis studies the relationship between a categorical dependent variable and a set of independent variables. Logistic regression can predict the probability of an outcome that has two values (i.e., 0 and 1).

In logistic regression, we don't directly fit a straight line to our data like in linear regression. Instead, we fit a S-shaped curve, called Sigmoid, to our observations.

In the logistic regression the constant moves the curve left and right and the slope defines the steepness of the curve. By simple transformation, the logistic regression equation can be

written as:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_n X_n}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_n X_n}}$$

With the fraud label being the dependent variable and the 30 selected features being the independent variables, we trained the logistic regression model with parameter cv=10 and Cs=0.01. We then used the model to predict the probability of fraud on the train, test and oot dataset separately and get the best average FDR rate of 0.5445, 0.5364 and 0.5207 for each of the dataset.

Model	Parameter		Ave	rage FDR(%) at	3%
Logistic Regression	Total # of variables variables selected		Train	Test	ООТ
1	30	10	0.3577	0.3572	0.3206
2	30	20	0.5231	0.5213	0.5031

3	30	25	0.5436	0.5358	0.5194
4	30	30	0.5445	0.5364	0.5207

Random Forests:

Random forest is an integrated learning method based on classification and regression. It constructs a large number of decision trees during training and outputs the pattern of classes (classification) or average/average prediction of a single tree (regression). We used the randomForest package in the Python sklearn package. When we trained the random forest model, we tried generating 100, 200 and 300 decision trees with max_depth of 60, 70, 80.

Random Forests	# of Vars	N_estima tor	Max_dep th	max_featu res	Train	Test	ООТ
1	30	100	60	7	0.567	0.553	0.535
2	30	100	70	7	0.568	0.553	0.535
3	30	100	80	7	0.567	0.553	0.536
4	30	200	60	7	0.567	0.553	0.537
5	30	200	70	7	0.567	0.552	0.536
6	30	200	80	7	0.567	0.553	0.535

7	30	300	60	7	0.567	0.553	0.537
8	30	300	70	7	0.567	0.552	0.536
9	30	300	80	7	0.567	0.552	0.535

Gradient Boosting Trees:

Like other boosting methods, gradient boosting combines weak 'learners' into a single strong 'learner'. The goal of this model is to predict values by minimizing the mean squared error. The model in supervised learning usually refers to the mathematical structure by which the prediction y_i is made from the input x_i . Gradient boosting works by sequentially adding predictors to an ensemble, each one correcting its predecessor, i.e., each succeeding one attempts to fit the new predictor to the residual errors made by the previous one. In this project we use this model to be a classification model to determine whether it is fraud.

We use the GradientBoostingClassifier from the Scikit-learn package to predict the correct classification of fraud case and use the predict_proba method to rank the predictions by their likelihood of being fraud before tallying the results and compare with the true count of fraud case in the test and oot set. As mentioned previously, this will be defined as the top 3% FDR rate and effectiveness of model selection will rely heavily on this metric.

In the quest for a best fitting model in this ensemble from Sci-kit Learn, 3 hyperparameters are adjusted to find the best possible outcome, namely,

- max_depth: the maximum length from a root to a node in a decision tree.
- n estimators: the number of trees in the ensemble.
- learning_rate: a value to adjust the amount of information retained from each tree to compensate against overfitting.

We have tried 60 combinations of different hyperparameters. The max depths are 1,5,6, the numbers of trees are 700,800,1100,1400 and the learning rates goes from 0.01 to 0.1. We picked 5 models from the 60 models with the top 5 testing FDR.

In the following results, we found that Gradient Boosting Tree 1 with max_depth = 5, N_estimators = 1100, and leaning_rate = 0.01 provided the most promising result where top 3%FDR equals 0.5592 and 0.5369 for the test and oot datasets, respectively.

Gradient Boosting Trees	Learning rate	n_estimato rs	max_depth	Training FDR	Testing FDR	OOT FDR
Gradient Boosting Tree 1	0.01	1100	5	0.5644	0.5592	0.5369
Gradient Boosting Tree 2	0.01	800	6	0.5647	0.559	0.536
Gradient Boosting Tree 3	0.01	800	5	0.564	0.5589	0.5369
Gradient Boosting Tree 4	0.01	700	5	0.5637	0.5586	0.5369

	0.03	1400	1	0.5551	0.5523	0.5313
Gradient						
Boosting						
Tree 5						

Neural Net:

Neural network is a machine learning algorithm that they make use of architecture that mimics how the neurons work in the brain. For example, a brain neuron receives an input and based on that input, fires off an output that is used by another neuron. The neural network simulates this behavior in learning about collecting the data and predicting outcomes.

In the above graph, we can see that a typical neural net consists of an input layer, hidden layers, and an output layer. The input layer is formed by all the independent variables. Each hidden layer is a set of nodes (neurons). Each neuron in the hidden layer receives weighted signals from all the nodes in the previous and transforms the linear combination of signals. The transform/activation function can be a logistic function(sigmoid) or something else. Finally, the output layer is the dependent variable.

We trained six neural net models with different hyperparameters as in the following table and listed all average FDRs at 3% on training, testing, and oot data. According to each model's performance, we didn't observe overfitting so we could trust the results of these models. The best model is the highlighted Neural Net 6 with average FDR of 0.5339 on oot data.

Neural Net	Nodes in layer 1	Activation function layer 1	Nodes in layer 2	Activation function layer 2	Activation function output layer	Optimizer	Epoch	Batch size	Training FDR	Testing FDR	OOT FDR
Neural net 1	10	relu	None	None	sigmoid	adam	20	10	0.556	0.5488	0.5264
Neural net 2	15	relu	None	None	sigmoid	adam	25	10	0.5449	0.5386	0.5201
Neural net 3	25	relu	None	None	sigmoid	adam	30	15	0.5433	0.5386	0.5184
Neural net 4	10	relu	10	relu	sigmoid	adam	20	15	0.5607	0.5548	0.5314
Neural net 5	15	relu	10	relu	sigmoid	adam	25	10	0.5608	0.5528	0.5331
Neural net 6	15	relu	15	relu	sigmoid	adam	30	20	0.5602	0.5519	0.5339

Results

By training several models using different machine learning algorithms and adjusting hyperparameters for each particular machine learning algorithm, we compared the model performance based on average FDR at 3% on testing data and found that the best model is the gradient boosting tree as highlighted in the following graph. Of the attempted methods, a common peak value for the FDR at 3% is reached for the OOT dataset at around 53.5%. Since out of time data is considered unknown information in reality, we have little choice but to turn to the test set results. Random forest and Gradient Boosting Tree came in neck to neck and the latter won by a slight lead of around 0.5%. It is worth mentioning that the Gradient Boosting Tree is a more cultivated model in terms of number of trees and learning rate, making this choice both more time consuming and computationally demanding. Random Forest in comparison provided similar results with much less trees but deeper depth, demonstrating a diminishing marginal return on the complexity of model structure. We ultimately opted to use test set average FDR at 3% to be the guideline for the choice of model since algorithm efficiency and time limit is outside the scope of this project.

Model		Parameters							Average FDR at 3%			3%
	# variables T					Train		Test	ООТ			
				10						0.3577	0.3572	0.3206
Logistic Regression	20							0.5231	0.5213	0.5031		
	25						0.5436	0.5358	0.5194			
				30						0.5445	0.5364	0.5207
	# variable	n_estimate	max_depth		max_	features			Train		Test	ООТ
	30	100	60			7				0.567	0.553	0.535
	30	100	70			7				0.568	0.553	0.535
	30	100	80			7				0.567	0.553	0.536
Random Forest	30	200	60			7				0.567	0.553	0.537
Nundom Forest	30	200	70			7				0.567	0.552	0.536
	30	200	80	7				0.567	0.553	0.535		
	30	300	60			7				0.567	0.553	0.537
	30	300	70			7				0.567	0.552	0.536
	30	300	80			7				0.567	0.552	0.535
			max_depth			ing rate			Train			ООТ
	30	1100	5			0.01				0.5644	0.5592	0.5369
Gradient Boosting Tree	30	800	6			0.01				0.5647	0.559	
ordanent bossting tree	30	800	5			0.01				0.564	0.5589	
	30	700	5			0.01				0.5637	0.5586	0.5369
	30	1400	1			0.03				0.5551	0.5523	0.5313
			layer 1 activa	•	,	epoch		batch size	Train		Test	ООТ
	30		relu		none		20	10		0.556	0.5488	
	30		relu		none		25	10		0.5449	0.5386	0.5201
Neural Net	30		relu		none		30	15		0.5433	0.5386	0.5184
	30		relu		relu		20	15		0.5607	0.5548	0.5314
	30	1000	relu		relu		25	10		0.5608	0.5528	0.5331
	30	15	relu	15	relu		30	20		0.5602	0.5519	0.5339

After selecting the first gradient boosting tree as our final model, we ran the model on training data again and reevaluated the model on both testing and oot data. We took a closer look at the structure of the predicted results on all three datasets by computing critical statistics by individual percentiles and then generated the tables below to examine how our final model performed on the three datasets when detecting fraudulent applications.

As a brief review, the oot data represented approximately 16.65% of the entire dataset, the remaining are split into training and testing by 75% and 25%, respectively. The underlying fraud rate is consistent for all three sets at around 1.43%, or 1 fraud case in about 70 applications.

More specifically, the first percentile of data ranked by our model of choice uniformly contained the largest percentage in true frauds identified, up to 76.7% in training, 76.56% in testing and 72.71% in OOT. This means that approximately 3 out of 4 applications that we deny arbitrarily without additional information in the first percentile is a true fraud case. This is an immediate choice for any financial institution where no other alternative is present. The gains in fraud detection percentage quickly diminishes in subsequent percentiles, however; before we penetrate through the first 4% of all applications, the true percentage of fraud in each additional percentile of data falls below 1%. As a comparison, the company now looks at a proposal much less tempting: give up 5% of all applications in the hope of catching up to

57.28% of all frauds, still good if the institution's profit margin prevails but nowhere near as good if the model's effectiveness holds through.

Model Performance on Training

Train	# of Records	# (Good	# of	bads	Fraud rate						
	556498	54	8443	80	54	0.014472649						
	# Records	# Goods	# Bads	% Goods	% Bads	Total # Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FDR)	KS	FPR
C	5565	1297	4268	23.30638	76.69362	5565	1297	4268	0.236488	52.992302	52.75581	0.303889
1	5565	5384	181	96.74753	3.252471	11130	6681	4449	1.218176	55.239632	54.02146	1.501686
2	5565		76	98.63432	1.365678	16695	12170	4525	2.219009	56.183263	53.96425	2.689503
3	5565		53	99.04762	0.952381	22260	17682	4578	3.224036	56.841321	53.61729	3.862385
4	5565			99.1195	0.880503	27825	23198	4627	4.229792	57.449714	53.21992	
	5565		54	99.02965	0.97035	33390	28709	4681	5.234637	58.120189	52.88555	6.133091
- 6	5565	5521	44	99.20934	0.790656	38955	34230	4725	6.241305	58.666501	52.4252	7.244444
7	5565		41	99.26325	0.736748	44520	39754	4766	7.24852	59.175565	51.92705	
8				99.19137	0.808625	50085	45274	4811	8.255006	59.734294	51.47929	
9				99.28122	0.718778	55650	50799	4851	9.262403	60.230941	50.96854	
10				99.33513	0.66487	61215	56327	4888	10.27035	60.69034	50.41999	11.52353
11	5565		40	99.28122	0.718778		61852	4928	11.27774	61.186988	49.90924	
12			41	99.26325	0.736748		67376		12.28496	61.696052	49.41109	
13				99.29919	0.700809	77910	72902	5008	13.29254	62.180283	48.88774	
14			32	99.42498	0.575022	83475	78435	5040	14.3014	62.577601	48.27621	15.5625
15			43	99.22731	0.772686	89040	83957	5083	15.30825	63.111497	47.80325	
16			37	99.33501	0.664989	94604	89484	5120	16.31601	63.570896	47.25489	
17			33	99.40701	0.592992	100169	95016	5153	17.32468	63.980631	46.65595	
18	5565	5522	43	99.22731	0.772686	105734	100538	5196	18.33153	64.514527	46.183	19.34911
19	5565	5542	23	99.5867	0.413297	111299	106080	5219	19.34203	64.800099	45.45807	20.32573

Model Performance on Testing

T4	# D-		и	I-		# II-	F D-+-					
Test	# Red			oods			Fraud Rate					
	2384	499	235	067		3432	0.014389997					
	# Records	# Goods	# Bads	% Goods	% Bads	Total # Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FDR)	KS	FPR
0	2385	559	1826	23.43816	76.56184	2385	559	1826	0.237805	53.2051282	52.96732	0.306134
1	2385	2311	74	96.89727	3.102725	4770	2870	1900	1.220929	55.3613054	54.14038	1.510526
2	2385	2357	28	98.826	1.174004	7155	5227	1928	2.223621	56.1771562	53.95353	2.7111
3	2385	2366	19	99.20335	0.796646	9540	7593	1947	3.230143	56.7307692	53.50063	3.899846
4	2385	2366	19	99.20335	0.796646	11925	9959	1966	4.236664	57.2843823	53.04772	5.065615
5	2385	2361	24	98.99371	1.006289	14310	12320	1990	5.241059	57.983683	52.74262	6.190955
6	2385	2369	16	99.32914	0.67086	16695	14689	2006	6.248857	58.4498834	52.20103	7.322532
7	2385	2358	27	98.86792	1.132075	19080	17047	2033	7.251975	59.2365967	51.98462	8.385145
8	2385	2362	23	99.03564	0.964361	21465	19409	2056	8.256795	59.9067599	51.64997	9.440175
9	2385	2364	21	99.1195	0.880503	23850	21773	2077	9.262466	60.518648	51.25618	10.48291
10	2385	2370	15	99.37107	0.628931	26235	24143	2092	10.27069	60.955711	50.68502	11.54063
11	2385	2368	17	99.28721	0.712788	28620	26511	2109	11.27806	61.451049	50.17299	12.57041
12	2385	2369	16	99.32914	0.67086	31005	28880	2125	12.28586	61.9172494	49.63139	13.59059
13	2385	2372	13	99.45493	0.545073	33390	31252	2138	13.29493	62.2960373	49.0011	14.6174
14	2385	2364	21	99.1195	0.880503	35775	33616	2159	14.3006	62.9079254	48.60732	15.57017
15	2385	2369	16	99.32914	0.67086	38160	35985	2175	15.3084	63.3741259	48.06572	16.54483
16	2385	2376	9	99.62264	0.377358	40545	38361	2184	16.31918	63.6363636	47.31719	17.56456
17	2385	2367	18	99.24528	0.754717	42930	40728	2202	17.32612	64.1608392	46.83472	18.49591
18	2385	2371	14	99.413	0.587002	45315	43099	2216	18.33477	64.5687646	46.23399	19.44901
19	2385	2367	18	99.24528	0.754717	47700	45466	2234	19.34172	65.0932401	45.75152	20.35184

Model Performance on OOT

OOT	# Re	cord	# gc	ods	1	# bads	Fraud rate					
	163	772	161	427		2345	0.01432					
	# Records	# Goods	# Bads	% Goods	% Bads	Total # Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FD	KS	FPR
0	1638	447	1191	27.28938	72.71062	1638	447	1191	0.276905	50.78891	50.51201	0.375315
1	1637	1588	49	97.00672	2.99328	3275	2035	1240	1.260632	52.87846	51.61783	1.641129
2	1638	1620	18	98.9011	1.098901	4913	3655	1258	2.264181	53.64606	51.38187	2.905405
3	1638	1624	14	99.1453	0.854701	6551	5279	1272	3.270209	54.24307	50.97286	4.150157
4	1638	1625	13	99.20635	0.793651	8189	6904	1285	4.276856	54.79744	50.52059	5.372763
5	1637	1625	12	99.26695	0.733048	9826			5.283503		50.02567	6.575944
6	1638	1615		98.59585	1.404151	11464	10144		6.283955	56.28998	50.00602	7.684848
7	1638	1618		98.779	1.221001	13102	11762	1340	7.286266	57.14286		8.777612
8	1637	1628		99.45021	0.549786	14739				57.52665		
9	1638	1629	9	99.45055	0.549451	16377	15019		9.303896	57.91045	48.60655	11.05965
10	1638	1626		99.2674	0.732601	18015	16645	1370	10.31116	58.42217	48.11101	12.14964
11	1638	1620		98.9011	1.098901	19653			11.31471	59.18977		13.15922
12	1637	1628	9	99.45021	0.549786	21290			12.32322	59.57356	47.25034	14.2398
13	1638	1627		99.32845	0.671551	22928			13.3311	60.04264		15.28409
14	1638	1626		99.2674	0.732601	24566			14.33837	60.55437		16.3
15	1638	1620	18	98.9011	1.098901	26204	24766	1438	15.34192	61.32196		17.22253
16	1637	1619			1.099572	27841	26385		16.34485	62.08955		18.12157
17	1638	1629		99.45055	0.549451	29479			17.35397	62.47335		19.12218
18	1638	1632		99.6337	0.3663	31117	29646		18.36496			20.15364
19	1637	1622	15	99.08369	0.91631	32754	31268	1486	19.36975	63.36887	43.99912	21.04172

Conclusions

The plethora of methods through which frauds are committed are unfathomable to recount; however, there are traces that remain to be picked up by the vigilant and learned. In this project, we attempted to predict the underlying fraudulent activity by observing none other than the information filled out on the applications. Via well-traversed methodologies developed by our seniors and predecessors, we were able to peek at the subtleties involuntarily revealed by the schemers, magnify their actions with tools based in both statistics and machine learning methods, and acutely label the potentially guilty. While the end result proves to be slightly better than a random toss of coin beyond a certain cutoff, these methods semented a handle on a problem otherwise extremely difficult to tackle. Moreover, we duly believe that with more experience on the subject matter and techniques, we could significantly improve the end results by creating better expert variables and implementing more appropriate data cleaning techniques and machine learning algorithms in a more polished manner. Also observed was that machine learning algorithms tend to perform better with datasets large in both volume and diversity and with models that churn through the numbers laboriously. These are invaluable experiences that we will be utilizing faithfully in the upcoming projects in the hope of a more streamlined process and more indicative results.

Appendix

Data Quality Report

File Description:

Applications Data is a dataset containing records of 1,000,000 applications. It includes fields such as date of application, SSN, first and last name, address, zip code, date of birth, home phone number, and fraud label of each applicant.

File Name: applications data.csv

Number of Records: 1,000,000 records

Number of Fields: 9 variables in total: 7 categorical variables, 2 date variables

Field Name	Data Type	% Populated	Unique number
date	Date variable	100%	365
ssn	Categorical variable	100%	835819
firstname	Categorical variable	100%	78136
lastname	Categorical variable	100%	177001
address	Categorical variable	100%	828774
zip5	Categorical variable	100%	26370

dob	Date variable	100%	42673
homephone	Categorical variable	100%	28244
fraud_label	Categorical variable	100%	2

Time of Records: Jan 1st 2016 – Dec 31st 2016

Field 1

Field Name: date

Description: "date" is a date variable, including the application dates.

	month	count	percentage
0	01	85199	0.085199
11	02	76792	0.076792
4	03	84871	0.084871
7	04	82515	0.082515
1	05	85083	0.085083
9	06	82035	0.082035
2	07	84943	0.084943
6	80	84830	0.084830
8	09	82374	0.082374
5	10	84865	0.084865
10	11	81602	0.081602
3	12	84891	0.084891

Plot the distribution of the months and dates as below, the overall frequency is consistent.

Field 2

Field Name: ssn

Description: "ssn" is a categorical variable, indicating the applicant's ssn number.

	ssn	count	percentage
0	999999999	16935	0.016935
1	938972725	114	0.000114
2	810776805	81	0.000081
3	829352390	74	0.000074
4	473311863	44	0.000044
5	165764866	34	0.000034
6	189622157	30	0.000030
7	295308935	30	0.000030
8	588726212	29	0.000029
9	163830210	29	0.000029
10	687424410	28	0.000028

Top 15 ssn records

Since the number of 99999999 takes most of the count and it means the record is frivolous, we plot the graph which exclude the record of 99999999.

The distribution of the top 10 records (excluding the most frequent record "99999999"):

Field 3

Field Name: firstname

Description:

"firstname" is a categorical variable, indicating the applicant's first name.

	firstname	count	percentage
0	EAMSTRMT	12658	0.012658
1	TXEMXZZM	10297	0.010297
2	UXXJJZTUZ	10235	0.010235
3	UJSRSMUEZ	9994	0.009994
4	SREZUJMJU	9688	0.009688
5	EASEXMJAT	7576	0.007576
6	SSSXUEJMS	6923	0.006923
7	SZUASTTA	6878	0.006878
8	EREMTZXXA	6717	0.006717
9	EAXRRUMUX	5686	0.005686

Field 4

Field Name: lastname

Description: "lastname" is a categorical variable, indicating the applicant's last name.

	lastname	count	percentage
0	ERJSAXA	8580	0.008580
1	UMXUUUSE	7156	0.007156
2	UMARRMA	6832	0.006832
3	MEAXJUX	5492	0.005492
4	XMERRR	5451	0.005451
5	SXZXJRJT	4340	0.004340
6	EUSEZRAE	4173	0.004173
7	USMATTUR	4036	0.004036
8	ETERUXME	3762	0.003762
9	RJURSTXJ	3575	0.003575

Field 5

Field Name: address

Description: "address" is a categorical variable that contains inputs from applicants of their address.

	address	count	percentage
0	123 MAIN ST	1079	0.001079
1	1775 XJXE LN	97	0.000097
2	7433 RAEZA ST	80	0.000080
3	8911 MZSU DR	74	0.000074
4	4907 RRAAU DR	73	0.000073
5	426 XUAXZ BLVD	57	0.000057
6	606 EZZAU WY	44	0.000044
7	3545 ARMA ST	44	0.000044
8	4530 ETSMX WY	42	0.000042
9	4292 RUSMM LN	41	0.000041
10	9693 ERJZA LN	40	0.000040

The distribution of the top 10 records (excluding the most frequent record "123 MAIN ST"):

Frequency distibution of address w/o 123 Main ST (top 10)

Field 6

Field Name: zip5

Description: "zip5" is a categorical variable that contains inputs from applicants of their zip codes.

	zip5	count	percentage
0	68138	823	0.00823
1	90042	514	0.00514
2	89835	489	0.00489
3	35227	478	0.00478
4	14931	459	0.00459
5	86500	438	0.00438
6	12700	436	0.00436
7	1362	434	0.00434
8	59695	432	0.00432
9	52317	432	0.00432

The distribution of the top 10 records:

Field 7

Field Name: dob

Description:

"dob" is a date variable that contains inputs from applicants of their date of birth.

	dob	count	percentage
0	19070626	126568	0.126568
1	19640318	4818	0.004818
2	19760625	3723	0.003723
3	19880628	1404	0.001404
4	19740216	980	0.000980
5	20090127	280	0.000280
6	19460901	135	0.000135
7	19591208	126	0.000126
8	19280611	120	0.000120
9	19670215	102	0.000102
10	19360908	81	0.000081

The distribution of the top 10 records (excluding the most frequent record "19070626"):

Also, the distribution of different DOB years is plotted below.

The distribution of different DOB years and months is plotted below

Field 8

Field Name: homephone

Description: "homephone" is a categorical variable that contains home phone number of each applicant.

The top 10 most frequent records are listed below:

	phone	count	percentage
0	9999999999	78512	0.078512
1	6384782007	466	0.000466
2	6035129044	360	0.000360
3	2113738531	331	0.000331
4	4024680535	198	0.000198
5	2669445638	172	0.000172
6	6637507363	169	0.000169
7	8629049955	139	0.000139
8	3364980740	110	0.000110
9	1324008228	108	0.000108
10	6845279110	108	0.000108

The distribution of the top 10 records (excluding the most frequent record "9999999999"):

Field 9

Field Name: Fraud Label

Description: "fraud_label" is a categorical variable whether the applicant is fraud.

	fraud	count	percentage
0	0	985607	0.985607
1	1	14393	0.014393

Candidate Variables

		Velocity Candidat	e Variables
1	ssn_count_0	85	ssn_lastname_count_0
2	ssn_count_1	86	ssn_lastname_count_1
3	ssn_count_3	87	ssn_lastname_count_3
4	ssn_count_7	88	ssn_lastname_count_7
5	ssn_count_14	89	ssn_lastname_count_14
6	ssn_count_30	90	ssn_lastname_count_30
7	address_count_0	91	ssn_address_count_0
8	address_count_1	92	ssn_address_count_1
9	address_count_3	93	ssn_address_count_3
10	address_count_7	94	ssn_address_count_7
11	address_count_14	95	ssn_address_count_14
12	address_count_30	96	ssn_address_count_30
13	dob_count_0	97	ssn_zip5_count_0
14	dob_count_1	98	ssn_zip5_count_1
15	dob_count_3	99	ssn_zip5_count_3
16	dob_count_7	100	ssn_zip5_count_7
17	dob_count_14	101	ssn_zip5_count_14
18	dob_count_30	102	ssn_zip5_count_30
19	homephone_count_0	103	ssn_dob_count_0
20	homephone_count_1	104	ssn_dob_count_1
21	homephone_count_3	105	ssn_dob_count_3
22	homephone_count_7	106	ssn_dob_count_7
23	homephone_count_14	107	ssn_dob_count_14
24	homephone_count_30	108	ssn_dob_count_30
25	name_count_0	109	ssn_homephone_count_0
26	name_count_1	110	ssn_homephone_count_1
27	name_count_3	111	ssn_homephone_count_3
28	name_count_7	112	ssn_homephone_count_7
29	name_count_14	113	ssn_homephone_count_14
30	name_count_30	114	ssn_homephone_count_30
31	fulladdress_count_0	115	ssn_name_count_0
32	fulladdress_count_1	116	ssn_name_count_1
33	fulladdress_count_3	117	ssn_name_count_3
34	fulladdress_count_7	118	ssn_name_count_7
35	fulladdress_count_14	119	ssn_name_count_14

```
36
     fulladdress count 30
                                           120
                                                 ssn name count 30
37
     name dob count 0
                                           121
                                                 ssn fulladdress count 0
38
                                           122
     name dob count 1
                                                 ssn fulladdress count 1
39
     name dob count 3
                                                 ssn fulladdress count 3
                                           123
40
     name dob count 7
                                           124
                                                 ssn fulladdress count 7
41
     name dob count 14
                                           125
                                                 ssn fulladdress count 14
42
     name dob count 30
                                           126
                                                 ssn fulladdress count 30
43
     name fulladdress count 0
                                           127
                                                 ssn_name_dob_count_0
44
     name fulladdress count 1
                                           128
                                                 ssn name dob count 1
45
     name fulladdress count 3
                                           129
                                                 ssn name dob count 3
46
     name fulladdress count 7
                                           130
                                                 ssn name dob count 7
                                                 ssn_name dob count 14
47
     name fulladdress count 14
                                           131
48
     name fulladdress count 30
                                           132
                                                 ssn name dob count 30
49
     name homephone count 0
                                                 ssn name fulladdress count 0
                                           133
50
     name homephone count 1
                                           134
                                                 ssn name fulladdress count 1
51
     name homephone count 3
                                           135
                                                 ssn name fulladdress count 3
52
     name homephone count 7
                                                 ssn name fulladdress count 7
                                           136
53
     name homephone count 14
                                           137
                                                 ssn name fulladdress count 14
54
     name homephone count 30
                                                 ssn name fulladdress count 30
                                           138
55
     fulladdress dob count 0
                                           139
                                                 ssn name homephone count 0
56
     fulladdress dob count 1
                                                 ssn name homephone count 1
                                           140
57
     fulladdress dob count 3
                                           141
                                                 ssn name homephone count 3
58
     fulladdress dob count 7
                                           142
                                                 ssn name homephone count 7
     fulladdress dob count 14
59
                                                 ssn name homephone count 14
                                           143
60
     fulladdress dob count 30
                                           144
                                                 ssn name homephone count 30
61
     fulladdress homephone count 0
                                                 ssn fulladdress dob count 0
                                           145
62
     fulladdress homephone count 1
                                           146
                                                 ssn fulladdress dob count 1
63
     fulladdress homephone count 3
                                           147
                                                 ssn fulladdress dob count 3
64
     fulladdress homephone count 7
                                           148
                                                 ssn fulladdress dob count 7
65
     fulladdress homephone count 14
                                           149
                                                 ssn fulladdress dob count 14
66
     fulladdress homephone count 30
                                           150
                                                 ssn fulladdress dob count 30
67
     dob homephone count 0
                                                 ssn fulladdress homephone count 0
                                           151
68
     dob homephone count 1
                                           152
                                                 ssn fulladdress homephone count 1
69
     dob homephone count 3
                                                 ssn fulladdress homephone count 3
                                           153
70
     dob homephone count 7
                                           154
                                                 ssn fulladdress homephone count 7
71
     dob homephone count 14
                                                 ssn fulladdress homephone count 14
                                           155
72
     dob homephone count 30
                                           156
                                                 ssn fulladdress homephone count 30
73
     homephone name dob count 0
                                           157
                                                 ssn dob homephone count 0
```

```
74
     homephone name dob count 1
                                          158
                                                ssn dob homephone count 1
75
     homephone name dob count 3
                                          159
                                                ssn dob homephone count 3
76
     homephone name dob count 7
                                          160
                                                ssn dob homephone count 7
77
     homephone name dob count 14
                                                ssn dob homephone count 14
                                          161
78
                                          162
     homephone name dob count 30
                                                ssn dob homephone count 30
79
     ssn firstname count 0
                                          163
                                                ssn homephone name dob count 0
80
     ssn firstname count 1
                                          164
                                                ssn homephone name dob count 1
81
     ssn firstname count 3
                                          165
                                                ssn homephone name dob count 3
82
     ssn firstname count 7
                                          166
                                                ssn homephone name dob count 7
83
     ssn firstname count 14
                                          167
                                                ssn homephone name dob count 14
84
     ssn firstname count 30
                                          168
                                                ssn homephone name dob count 30
                           Relative Velocity Candidate Variables
169
     ssn count 0 by 3
                                                ssn firstname count 0 by 30
                                          276
170
                                          277
                                                ssn firstname count 1 by 3
    ssn count 0 by 7
171 ssn count 0 by 14
                                          278
                                                ssn firstname count 1 by 7
                                          279
                                                ssn firstname count 1 by 14
172 ssn count 0 by 30
173 ssn count 1 by 3
                                          280
                                                ssn firstname count 1 by 30
174
                                          281
    ssn count 1 by 7
                                                ssn lastname count 0 by 3
175 ssn_count_1_by_14
                                          282
                                                ssn lastname count 0 by 7
176 ssn count 1 by 30
                                          283
                                                ssn lastname count 0 by 14
177 address count 0 by 3
                                          284
                                                ssn lastname count 0 by 30
178 address count 0 by 7
                                          285
                                                ssn lastname count 1 by 3
179
    address count 0 by 14
                                          286
                                                ssn lastname count 1 by 7
180
    address count 0 by 30
                                          287
                                                ssn lastname count 1 by 14
181 address count 1 by 3
                                          288
                                                ssn lastname_count_1_by_30
                                                ssn address_count_0_by_3
182
    address count 1 by 7
                                          289
183
    address count 1 by 14
                                          290
                                                ssn address count 0 by 7
184
    address count 1 by 30
                                          291
                                                ssn address count 0 by 14
185
     dob count 0 by 3
                                          292
                                                ssn address count 0 by 30
186 dob count 0 by 7
                                          293
                                                ssn address count 1 by 3
187
    dob count 0 by 14
                                          294
                                                ssn address count 1 by 7
188
    dob count 0 by 30
                                          295
                                                ssn address count 1 by 14
189
    dob count 1 by 3
                                          296
                                               ssn address count 1 by 30
                                                ssn_zip5_count_0_by_3
190
    dob_count_1_by_7
                                          297
191
    dob count 1 by 14
                                          298
                                               ssn zip5 count 0 by 7
192
    dob count 1 by 30
                                          299
                                                ssn zip5 count 0 by 14
193
     homephone count 0 by 3
                                          300
                                                ssn zip5 count 0 by 30
194
     homephone_count_0_by_7
                                          301
                                                ssn_zip5_count_1_by_3
```

```
195
     homephone count 0 by 14
                                          302
                                               ssn zip5 count 1 by 7
                                               ssn zip5 count 1 by 14
196
     homephone count 0 by 30
                                          303
197
                                          304
     homephone count 1 by 3
                                               ssn zip5 count 1 by 30
198
    homephone count 1 by 7
                                          305
                                               ssn dob count 0 by 3
199
     homephone count 1 by 14
                                          306
                                               ssn dob count 0 by 7
    homephone_count_1_by_30
                                               ssn dob_count_0_by_14
200
                                          307
201
    name count 0 by 3
                                          308
                                               ssn dob count 0 by 30
202
                                          309
     name_count_0_by_7
                                               ssn_dob_count_1_by_3
203
    name count 0 by 14
                                          310
                                               ssn dob count 1 by 7
204
                                          311
                                               ssn dob count 1 by 14
    name count 0 by 30
205
                                          312
                                               ssn dob count 1 by 30
     name count 1 by 3
    name count 1_by_7
                                               ssn homephone count_0_by_3
206
                                          313
207
     name count 1 by 14
                                          314
                                               ssn homephone count 0 by 7
208
    name count 1 by 30
                                          315
                                               ssn homephone count 0 by 14
209
    fulladdress count 0 by 3
                                          316
                                               ssn homephone count 0 by 30
210 fulladdress count 0 by 7
                                          317
                                               ssn homephone count 1 by 3
211 fulladdress count 0 by 14
                                               ssn homephone count 1 by 7
                                          318
212 fulladdress count 0 by 30
                                          319
                                               ssn homephone count 1 by 14
213
    fulladdress count 1 by 3
                                          320
                                               ssn_homephone_count_1_by_30
214 fulladdress count 1 by 7
                                          321
                                               ssn name count 0 by 3
215 fulladdress count 1 by 14
                                          322
                                               ssn name count 0 by 7
                                               ssn name count 0 by 14
216 fulladdress count 1 by 30
                                          323
217
    name dob count 0 by 3
                                          324
                                               ssn name count 0 by 30
218
    name dob count 0 by 7
                                          325
                                               ssn name count 1 by 3
219
    name dob count 0 by 14
                                          326
                                               ssn name count 1 by 7
220
    name dob count 0 by 30
                                          327
                                               ssn name count 1 by 14
221
    name dob count 1 by 3
                                          328
                                               ssn name count 1 by 30
222
    name dob count 1 by 7
                                          329
                                               ssn fulladdress count 0 by 3
223
     name dob count 1 by 14
                                          330
                                               ssn fulladdress count 0 by 7
224
    name dob count 1 by 30
                                          331
                                               ssn fulladdress count 0 by 14
                                               ssn fulladdress count_0_by_30
225
    name fulladdress count 0 by 3
                                          332
226
    name fulladdress count 0 by 7
                                               ssn fulladdress count 1 by 3
                                          333
    name fulladdress count_0_by_14
227
                                          334
                                               ssn fulladdress count 1 by 7
228
     name fulladdress count 0 by 30
                                          335
                                               ssn fulladdress count 1 by 14
229
     name fulladdress count 1 by 3
                                          336
                                               ssn fulladdress count 1 by 30
230
     name fulladdress count 1 by 7
                                          337
                                               ssn name dob count 0 by 3
231
     name fulladdress count 1 by 14
                                          338
                                               ssn name dob count 0 by 7
232
     name fulladdress count 1 by 30
                                          339
                                               ssn_name_dob_count_0_by_14
```

```
233
     name homephone count 0 by 3
                                          340
                                               ssn name dob count 0 by 30
234
     name homephone count 0 by 7
                                               ssn name dob count 1 by 3
                                          341
235
     name homephone count 0 by 14
                                          342
                                               ssn name dob count 1 by 7
     name homephone count 0 by 30
236
                                          343
                                               ssn name dob count 1 by 14
237
     name homephone count 1 by 3
                                          344
                                               ssn name dob count 1 by 30
238
     name homephone count 1 by 7
                                          345
                                               ssn name fulladdress count 0 by 3
239
     name homephone count 1 by 14
                                          346
                                               ssn name fulladdress count 0 by 7
240
     name homephone count 1 by 30
                                          347
                                               ssn name fulladdress count 0 by 14
241
     fulladdress dob count 0 by 3
                                          348
                                               ssn name fulladdress count 0 by 30
242
    fulladdress dob count 0 by 7
                                          349
                                               ssn name fulladdress count 1 by 3
243
    fulladdress dob count 0 by 14
                                          350
                                               ssn name fulladdress count 1 by 7
244
    fulladdress dob count 0 by 30
                                               ssn name fulladdress count 1 by 14
                                          351
245
     fulladdress dob count 1 by 3
                                          352
                                               ssn name fulladdress count 1 by 30
    fulladdress dob count 1 by 7
246
                                          353
                                               ssn name homephone count 0 by 3
247
    fulladdress dob count 1 by 14
                                          354
                                               ssn name homephone count 0 by 7
248
     fulladdress dob count 1 by 30
                                          355
                                               ssn name homephone count 0 by 14
249
    fulladdress homephone count 0 by 3
                                               ssn name homephone count 0 by 30
                                          356
250
    fulladdress homephone count 0 by 7
                                          357
                                               ssn name homephone count 1 by 3
251
    fulladdress homephone count 0 by 14
                                               ssn name homephone count 1 by 7
                                          358
252
    fulladdress homephone count 0 by 30
                                          359
                                               ssn name homephone count 1 by 14
253
     fulladdress homephone count 1 by 3
                                          360
                                               ssn name homephone count 1 by 30
                                               ssn fulladdress dob count 0 by 3
254
    fulladdress homephone count 1 by 7
                                          361
255
    fulladdress homephone count 1 by 14
                                          362
                                               ssn fulladdress dob count 0 by 7
256
    fulladdress homephone count 1 by 30
                                               ssn fulladdress dob count 0 by 14
                                          363
257
     dob homephone count 0 by 3
                                          364
                                               ssn fulladdress dob count 0 by 30
258
     dob homephone count 0 by 7
                                               ssn fulladdress dob count 1 by 3
                                          365
259
     dob homephone count_0_by_14
                                          366
                                               ssn fulladdress dob count 1 by 7
260
     dob homephone count 0 by 30
                                          367
                                               ssn fulladdress dob count 1 by 14
261
     dob homephone count 1 by 3
                                          368
                                               ssn fulladdress dob count 1 by 30
262
     dob homephone count 1 by 7
                                               ssn fulladdress homephone count 0 by 3
                                          369
     dob homephone count_1_by_14
263
                                          370
                                               ssn fulladdress homephone count 0 by 7
264
     dob homephone count 1 by 30
                                               ssn fulladdress homephone count 0 by 14
                                          371
265
     homephone name dob count 0 by 3
                                          372
                                               ssn fulladdress homephone count 0 by 30
266
     homephone name dob count 0 by 7
                                               ssn fulladdress homephone count 1 by 3
                                          373
267
     homephone name dob count 0 by 14
                                          374
                                               ssn fulladdress homephone count 1 by 7
     homephone name dob count 0 by 30
268
                                          375
                                               ssn fulladdress homephone count 1 by 14
269
     homephone name dob count 1 by 3
                                          376
                                               ssn fulladdress homephone count 1 by 30
270
     homephone name dob count 1 by 7
                                          377
                                               ssn dob homephone count 0 by 3
```

```
271 homephone name dob count 1 by 14
                                          378
                                                ssn dob homephone count 0 by 7
272
    homephone name dob count 1 by 30
                                                ssn dob homephone count 0 by 14
                                          379
273
    ssn firstname count 0 by 3
                                          380
                                                ssn dob homephone count 0 by 30
                                                ssn dob homephone_count_1_by_3
    ssn firstname count 0 by 7
274
                                          381
275
    ssn_firstname_count_0_by_14
                                          382
                                                ssn dob homephone count 1 by 7
                              Day Since Candidate Variables
383
    ssn day since
                                          397
                                                ssn lastname day since
384
     address day since
                                          398
                                                ssn_address_day_since
385
    dob day since
                                          399
                                                ssn zip5 day since
386
    homephone day since
                                          400
                                                ssn dob day since
387
    name day since
                                          401
                                                ssn homephone day since
388 fulladdress day since
                                          402
                                                ssn name day since
389
    name dob day since
                                          403
                                                ssn fulladdress day since
    name fulladdress_day_since
390
                                          404
                                                ssn name dob day since
391 name homephone day since
                                          405
                                                ssn name fulladdress day since
392 fulladdress dob day since
                                          406
                                                ssn name homephone day since
393 fulladdress homephone day since
                                                ssn fulladdress dob day since
                                          407
394
    dob homephone day since
                                          408
                                                ssn fulladdress homephone day since
395
     homephone name dob day since
                                                ssn dob homephone day since
                                          409
396
    ssn firstname day since
                                          410
                                                ssn homephone name dob day since
```

Reference:

Team, V. (2021, February 25). Machine learning algorithms: What is a neural network? Retrieved March 25, 2021, from https://www.verypossible.com/insights/machine-learning-algorithms-what-is-a-neural-network

Ho, Tin Kam (1995). Random Decision Forests (PDF). Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, 14–16 August 1995. pp. 278–282. Archived from the original (PDF) on 17 April 2016. Retrieved 5 June 2016. https://ect.bell-labs.com/who/tkh/publications/papers/odt.pdf

Brownlee, J. (2020, August 14). A gentle introduction to the gradient boosting algorithm for machine learning. Retrieved March 25, 2021, from https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/

Z_ai (2020, February 8). Logistic Regression Explained. Retrieved March 23, 2021 from https://towardsdatascience.com/logistic-regression-explained-9ee73cede081