Дискретные структуры

осень 2013

Александр Дайняк

www.dainiak.com

Группы

Группа — это множество С с заданной на нём бинарной ассоциативной операцией ∘, такой, что

- $\exists e \in \mathbb{G}$: $\forall a \in \mathbb{G}$ $a \circ e = e \circ a = a$
- $\forall a \in \mathbb{G} \ \exists b \in \mathbb{G}$: $a \circ b = b \circ a = e$

Группа — это множество С с заданной на нём бинарной ассоциативной операцией ∘, такой, что

- $\forall a,b \in \mathbb{G} \ \exists x$ такой, что $a \circ x = b$
- $\forall a,b \in \mathbb{G} \ \exists x$ такой, что $x \circ a = b$

Смежные классы

Пусть $H \leq \mathbb{G}$. Для любого $a \in \mathbb{G}$ множество $a \circ \mathbb{H} \coloneqq \{a \circ b \mid b \in \mathbb{H}\}$

называется левым смежным классом элемента α по подгруппе \mathbb{H} .

Аналогично, множество

$$\mathbb{H} \circ a \coloneqq \{b \circ a \mid b \in \mathbb{H}\}$$

называется правым смежным классом.

(Для абелевых групп соответствующие левые и правые смежные классы совпадают.)

Задача подсчёта числа раскрасок: пример

Сколькими способами можно раскрасить клетки доски 2×2 в красный и синий цвета? Раскраски считаются различными, если одну из другой нельзя получить поворотами доски:

Задача подсчёта числа раскрасок: пример

Сколькими способами можно раскрасить клетчатую доску 2×2 в красный и синий цвета? — Шестью:

Задача подсчёта числа раскрасок: пример

Т.е. множество всех раскрасок разбивается на классы эквивалентности, и нам нужно найти число этих классов.

Задача подсчёта числа раскрасок: общая постановка

- Дана конфигурация (клетчатая доска, таблица, многоугольник и т.д.), состоящая из отдельных частей (клеток, вершин/рёбер и т.д.)
- Задано множество *цветов*, которые мы можем присваивать частям нашей конфигурации. *Раскраска* конфигурации это присвоение одного из цветов каждому её элементу.
- Задана *группа перестановок* частей конфигурации. Две раскраски для нас *эквивалентны*, если они совпадают при какой-либо перестановке, принадлежащей группе.
- Нужно найти число классов эквивалентности.

Группа перестановок частей конфигурации из примера

Обозначения и термины

- 🖫 группа перестановок частей конфигурации
- Col множество всевозможных раскрасок конфигурации $(|Col| = \# \mu e^{\# \mu actem})$
- Раскраска, переходящая сама в себя при перестановке π , называется неподвижной относительно π
- Класс эквивалентности, в который входит раскраска, называется орбитой этой раскраски

Лемма Бёрнсайда

Обозначим через $n_{\mathrm{stable}}(\pi)$ число раскрасок, неподвижных относительно $\pi.$

Лемма (Коши—Фробениуса—)Бёрнсайда.

Число различных орбит равняется

$$\frac{1}{|G|} \cdot \sum_{\pi \in G} n_{\text{stable}}(\pi)$$

Доказательство леммы Бёрнсайда: двойной подсчёт

Для раскраски c и перестановки $\pi \in \mathbb{G}$ положим

$$\mathbb{1}_{\pi,c}\coloneqq egin{cases} 1$$
, если c неподвижна относительно π 0, иначе

Имеем

$$\sum_{\pi \in \mathbb{G}} \mathbb{1}_{\pi,c} = \sum_{\pi \in \mathbb{G}} \sum_{c \in \text{Col}} \mathbb{1}_{\pi,c} = \sum_{\pi \in \mathbb{G}} n_{\text{stable}}(\pi)$$

Пусть $\operatorname{Col}_1, \dots, \operatorname{Col}_m$ — различные орбиты. Тогда

$$\sum_{\pi \in \mathbb{G}} \mathbb{1}_{\pi,c} = \sum_{c \in \text{Col}} \sum_{\pi \in \mathbb{G}} \mathbb{1}_{\pi,c} = \sum_{i=1}^{m} \sum_{c \in \text{Col}_i} \sum_{\pi \in \mathbb{G}} \mathbb{1}_{\pi,c}$$

Доказательство леммы Бёрнсайда: двойной подсчёт

Пусть $\operatorname{Col}_1, \ldots, \operatorname{Col}_m$ — различные орбиты.

Мы вывели:

$$\sum_{\pi \in \mathbb{G}} n_{\text{stable}}(\pi) = \sum_{i=1}^{m} \sum_{c \in \text{Col}_i} \sum_{\pi \in \mathbb{G}} \mathbb{1}_{\pi,c}$$

Достаточно доказать, что для каждого $i \in \{1, ..., m\}$

$$\sum_{c \in \operatorname{Col}_i} \sum_{\pi \in \mathbb{G}} \mathbb{1}_{\pi,c} = |\mathbb{G}|$$

Тогда получится

$$\sum_{\pi \in \mathbb{G}} n_{\text{stable}}(\pi) = m \cdot |\mathbb{G}| \quad \Rightarrow \quad m = \frac{1}{|\mathbb{G}|} \cdot \sum_{\pi \in \mathbb{G}} n_{\text{stable}}(\pi)$$

Доказательство леммы Бёрнсайда: подгруппы-стабилизаторы

Пусть Col_i — произвольная орбита.

Пусть $Col_i = \{c_1, ..., c_r\}.$

Положим

$$G_{c_1} \coloneqq \{\pi \in \mathbb{G} \mid \pi \text{ переводит } c_1 \text{ саму в себя}\}$$

Можно проверить, что \mathbb{G}_{c_1} — подгруппа в \mathbb{G} . Она называется стабилизатором раскраски c_1 .

Докажем, что смежные классы по G_{c_1} имеют вид $\{\sigma \in G \mid \sigma \text{ переводит } c_1 \text{ в } c_j\}$

Доказательство леммы Бёрнсайда: смежные классы стабилизаторов

$$\operatorname{Col}_i = \{c_1, \dots, c_r\}$$

$$\mathbb{G}_{c_1} \coloneqq \{\pi \in \mathbb{G} \mid \pi \text{ переводит } c_1 \text{ саму в себя}\}$$

Пусть $\pi' \in \mathbb{G}$ — произвольная перестановка, переводящая c_1 в c_j . Докажем, что

$$\mathbb{G}_{c_1}\pi'=\left\{\sigma\in\mathbb{G}\mid\sigma$$
 переводит c_1 в $c_j\right\}$

Сначала докажем включение ⊆.

Пусть $\pi \in \mathbb{G}_{c_1}$. Тогда перестановка $\pi\pi'$ сначала действует как π (т.е. оставляет c_1 неподвижной), а затем как π' , переводит в c_i .

Доказательство леммы Бёрнсайда: смежные классы стабилизаторов

$$\operatorname{Col}_i = \{c_1, \dots, c_r\}$$

$$\mathbb{G}_{c_1} \coloneqq \{\pi \in \mathbb{G} \mid \pi \text{ переводит } c_1 \text{ саму в себя}\}$$

Пусть $\pi' \in \mathbb{G}$ — произвольная перестановка, переводящая c_1 в c_j . Доказываем, что

$$\mathbb{G}_{c_1}\pi'=\left\{\sigma\in\mathbb{G}\mid\sigma$$
 переводит c_1 в $c_j\right\}$

Теперь докажем включение в обратную сторону.

Пусть $\sigma \in \mathbb{G}$ и σ переводит c_1 в c_j .

Тогда $\sigma(\pi')^{-1}$ переводит c_1 саму в себя, то есть $\sigma(\pi')^{-1} \in \mathbb{G}_{c_1}$. Отсюда $\sigma \in \mathbb{G}_{c_1} \pi'$.

Доказательство леммы Бёрнсайда: смежные классы стабилизаторов

$$\operatorname{Col}_i = \{c_1, \dots, c_r\}$$

$$G_{c_1} \coloneqq \{\pi \in \mathbb{G} \mid \pi \text{ переводит } c_1 \text{ саму в себя}\}$$

Мы доказали, что множества

$$\{\sigma \in \mathbb{G} \mid \sigma$$
 переводит c_1 в $c_j\}$

суть смежные классы \mathbb{G}_{c_1} .

Отсюда получаем

$$\#\{\sigma\in\mathbb{G}\mid\sigma$$
 переводит c_1 в $c_j\}=\left|\mathbb{G}_{c_1}\right|$ для каждого $j\in\{1,\ldots,r\}.$

Отсюда следует, что $|\operatorname{Col}_i| \cdot |\mathbb{G}_{c_1}| = |\mathbb{G}|$.

Доказательство леммы Бёрнсайда: завершение

Из доказанного следует, что для любой орбиты Col_i и любой раскраски $c \in \operatorname{Col}_i$ выполнено

#
$$\{\pi \in \mathbb{G} \mid \pi$$
 переводит c саму в себя $\} = \frac{|\mathbb{G}|}{|\mathrm{Col}_i|}$

Отсюда

$$\sum_{c \in \operatorname{Col}_{i}} \sum_{\pi \in \mathbb{G}} \mathbb{1}_{\pi,c} = \sum_{c \in \operatorname{Col}_{i}} \frac{|\mathbb{G}|}{|\operatorname{Col}_{i}|} = |\mathbb{G}|$$

что и требовалось.

Лемма Бёрнсайда доказана.

Циклы в перестановках: примеры

Циклы в перестановках: примеры

Циклы в перестановках: примеры

Связь циклов в перестановках с числом неподвижных раскрасок

Утверждение.

Количество раскрасок, неподвижных относительно перестановки π , и использующих не более l цветов, равно $l^{\#\, \text{циклов в}\, \pi}$.

Доказательство:

Раскраска неподвижна относительно перестановки т.и т.т., когда части конфигурации, входящие в один и тот же цикл перестановки, окрашены одинаково.

Теорема Редфилда—Пойи (J.H. Redfield, G. Pólya)

Теорема Редфилда—Пойи. Число различных орбит раскрасок конфигурации в (не более чем) l цветов равно

$$rac{1}{|\mathbb{G}|} \cdot \sum_{\pi \in \mathbb{G}} l^{\#$$
циклов в π

(Доказательство: достаточно применить лемму Бёрнсайда и предыдущее утверждение.)

Следствие.

Если в конфигурации n частей, то количество орбит раскрасок в не более чем l цветов при $l \to \infty$ асимптотически равно

$$\frac{l^n}{|\mathbb{G}|}$$

Пример применения теоремы Редфилда—Пойи

Сколькими способами можно раскрасить доску 2×2 в цвета из множества $\{1, ..., l\}$, если раскраски, переходящие друг в друга при вращении квадрата, считаются одинаковыми?

Пример применения теоремы Редфилда—Пойи

Пример применения теоремы Редфилда—Пойи

Теорема Редфилда—Пойи. Число различных орбит раскрасок конфигурации в (не более чем) l цветов равно

$$rac{1}{|\mathbb{G}|} \cdot \sum_{\pi \in \mathbb{G}} l^{\#}$$
циклов в π

У нас 1 перестановка с четырьмя циклами, 2 перестановки с одним циклом и 1 перестановка с двумя циклами. Применив теорему Редфилда—Пойи, получаем

#раскрасок =
$$\frac{l^4 + l^2 + 2l}{4} \sim \frac{l^4}{4}$$