

Energy Flexibility-Environment Tradeoff Toolset

Brenda Pracheil, Ph.D. Fisheries Biologist Pacific Northwest National Laboratory

ENERGY

Acknowledgements

- PNNL
 - Vishvas Chalishazar
 - Hongfei Hou
- ORNL
 - Paul Matson
 - Bryan Bozeman
- Argonne
 - Tom Veselka
 - Quentin Ploussard

- NREL
 - Thushara De Silva
- INL
 - Mucun Sun
 - Mohammad Roni

- RTI
 - Shaun Carney

DOE WPTO

Energy Efficiency & Renewable Energy

Sam Bockenhauer

Dana McCoskey

WATER POWER
TECHNOLOGIES OFFICE

Eri Sharifi

Hydropower impacts and mitigations

- Minimizing and mitigating environmental impacts of hydropower key challenge
 - Impacts and mitigations highly influenced by operational mode (e.g., load-following vs. peaking vs. run-of-river)
- Mitigations can come in different forms
 - Built structures such as fish passage, fish safer turbines, boat ramps, trails
 - Flow mitigations such as minimum flows, ramp rate restrictions
 - Operational flows can be designed to minimize impacts

Designing environmental flows to enable solar and wind integration

- Solar and wind generation require quick generation ramp up/down
- Environmental flows restricting hydropower response speed are common
- Environmental flows most common during times with most grid stress
 - No requirement to consider grid reliability
 - Potential pinch points for grid reliability and biota as more wind and solar integrated
- Different tools may be needed to understanding sub-hourly impacts

What are we trading off?

Grid Services	Grid Service Temporal Scale	Minimum Flow	Prescribed Flow	Ramp Rate Restriction
Load-following	Hourly plan, 5-10 minutes		ê	9
Volt/Var support	Continuous, <1 minute	Q	Q	<u></u>
Frequency regulation	Seconds to minutes	Q	Ŷ	Ŷ
Spinning reserve	<10 minutes	Q	Q	Ŷ
Non-spinning reserve	<10 minutes	Q	Ŷ	Ŷ
Replacement reserves	60 minutes to 2 hours	Q	Q	Q
System black start	As required	Q	Q	Ŷ
Firm capacity	As required	Q	Ŷ	Q

Prescribed flow is a set amount of flow for a set time period (e.g., 800 cfs from 8:00-15:00)

Optimize and evaluate energy and environment outcomes

Quantify fish habitat and connectivity metrics

Input proposed flows or use tool-optimized flows

Assess habitat and generation tradeoffs

Optimize and evaluate energy and environment outcomes

Web-based tool will allow users to evaluate and compare flows based on environmental characteristics

Tabs allow users to input characteristics of their system of interest **AND**

quantify environmental outcomes of flows **AND**

quantitatively and qualitatively compare evaluated flows from environment and energy perspectives

Input 1-D unsteady flow model of river

- HEC-RAS is a free tool developed by USACE that can model flow velocities, depth, and some other environmental variables given bathymetric measurements
- Simulates short time-scale flow fluctuations that can simulate load-following from hydropower plant (15-min resolution)

Flow depth and velocities filtered and area quantified

- Tool interfaces with QGIS to filter and quantify connectivity (spatial and temporal) of habitat types
- Use Fish Traits Database (Frimpong and Angermeier 2007) to define flow preferences for fish species
 - Fast, moderate, and slow velocities

Colorado River below Glen Canyon Dam

0 0.01250.025

0.05

0.075

User can input proposed flow targets or define conditions that constrain an optimization model → solve to maximize generation and fish habitat

Flow regime evaluation tool

- How do flows compare to historic or other reference flows?
 - Quantitative measures of sub-daily flow variability between
 - ✓ Different flow patterns
 - ✓ Test and reference gages
 - Connects to <u>USGS CAMELS dataset</u> (Newman et al. 2014)

Flow regime evaluation tool

Flow regime evaluation tool

Energy-Environment Tradeoffs

- This tool is designed with FERC hydropower licensing in mind although other applications are possible
- Initial software testing in FY24
- We are looking for feedback!
 - Does this seem useful?
 - Are endpoints appropriate?
 - Are you interested in helping us test and demo this product?

Contact

Brenda Pracheil brenda.pracheil@pnnl.gov 509-372-4983