

Agromet Data Analysis using Python

B Sudarsan Patro Scientist –D

INSAT AWS & RADIATION LAB SID CRS IMD Pune

- 1. Is data processing necessary?
- 2. Geopandas and Catropy difference?

Outline

- 1. AIML in Weather using Python
- 2. Data Preprocessing & importance
- 3. Anantapur data
- 4. File processing using python
- 5. Case study
- i. Anatapur data
- ii. Soil Moisture sensor testing using ML/Python iii. Pune Tmax using Geopandas

Introduction

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Introduction.....

Artificial Intelligence Machine Learning Deep Learning Data Pre-processing **Python**

Statistics, Probability, Calculus, Linear algebra Probability Theory

Data Preprocessing techniques:

- 1. Handling Missing Values
- 2. Outlier Detection and Handling
- 3. Encoding Categorical Data
- 5. Feature Engineering
- 6. Dimensionality Reduction
- 7. Data Splitting (Training, Testing, Validation)
- 8. Data Normalization
- 9. Feature Scaling for Specific Algorithms

Documentation

https://pandas.pydata.org/docs

Installation

pip install pandas

Basic Pandas Operations

Importing Pandas import pandas as pd

Creating a DataFrame
data = {'Column1': [value1, value2, ...], 'Column2': [value1, value2, ...]}
df = pd.DataFrame(data)

Reading Data from a File df = pd.read_csv('data.csv')

Basic Pandas Operations....

Displaying DataFrame Information
print(df.head()) # Displays the first few rows
print(df.info()) # Displays information about the DataFrame

Selecting Columns column = df['Column1']

Filtering Data filtered_df = df[df['Column1'] > 35]

Basic Pandas Operations....


```
Grouping and Aggregation
grouped = df.groupby('Category')['Value'].mean()
```

Handling Missing Data

df.dropna() # Drop rows with missing values df.fillna(value) # Fill missing values with a specific value

Data Visualization

```
import matplotlib.pyplot as plt
df.plot(kind='scatter', x='X', y='Y')
plt.show()
```

Basic Pandas Operations....


```
Grouping and Aggregation
grouped = df.groupby('Category')['Value'].mean()
```

Handling Missing Data

df.dropna() # Drop rows with missing values df.fillna(value) # Fill missing values with a specific value

Data Visualization

```
import matplotlib.pyplot as plt
df.plot(kind='scatter', x='X', y='Y')
plt.show()
```

Operations....

- -Time Series Analysis
- Merging and Joining DataFrames
- Reshaping Data
- Working with Multi-Index DataFrames
- Custom Functions

.....>

Python Libraries

Additional Libraries & Pandas works well with other libraries like

NumPy: NumPy is a Python library for numerical computations, particularly for handling arrays and matrices efficiently. It provides a wide range of mathematical functions and operations.

Matplotlib: Matplotlib is a Python library for creating static, animated, and interactive visualizations in a wide range of formats, including 2D and 3D plots, charts, and graphs. It is often used in scientific and data analysis applications to visualize data and results.

Seaborn: Seaborn is a Python data visualization library that is built on top of Matplotlib. It provides a high-level interface for creating informative and attractive statistical graphics. Seaborn is particularly useful for visualizing complex datasets and statistical relationships in a simple and aesthetically pleasing manner. It offers built-in themes and color palettes to enhance the visual appeal of plots.

and

Scikit-Learn often referred to as sklearn, is a popular machine learning library in Python. It provides a wide range of tools and algorithms for machine learning tasks such as classification, regression, clustering, dimensionality reduction, and more. Scikit-Learn is widely used in both academia and industry for building and evaluating machine learning models, as it offers a consistent and user-friendly API that makes it easier to work with various machine learning algorithms and datasets.

GeoPandas

1. GeoPandas:

Purpose: GeoPandas is primarily used for working with geospatial vector data, such as shapefiles, GeoJSON, and other vector formats.

Functionality: It provides a convenient and efficient way to read, manipulate, analyze, and visualize geospatial data. You can perform operations like spatial joins, attribute queries, and geometry transformations on vector data.

Integration with Pandas: GeoPandas is built on top of the Pandas library, allowing users to leverage Pandas DataFrame functionality for geospatial data.

Data Structures: GeoPandas mainly deals with two primary data structures: GeoDataFrame (for vector data) and GeoSeries (for individual geometries).

Visualization: It provides basic plotting and visualization capabilities for geospatial data but may not be as extensive as dedicated mapping libraries like Cartopy.

Cartopy

2. Cartopy:

Purpose: Cartopy is focused on cartographic projections and mapping. It is used for creating maps and visualizations of geospatial data on different map projections.

Functionality: It offers tools for defining and customizing map projections, adding geospatial data (such as points, lines, or polygons) to maps, and creating map layouts.

Map Projections: Cartopy provides a wide range of map projections for various regions of the Earth.

Integration with Matplotlib: It seamlessly integrates with Matplotlib, allowing you to create complex and customized map visualizations.

Data Structures: Cartopy doesn't have its own data structures for geospatial data; instead, it relies on other libraries like Matplotlib or GeoPandas to handle the data.

Agromet Data Analysis: Anantapur 43238(1983-2020)

- ❖ index: This column might represent an index or identifier for each row in the dataset.
- year: The year when the data was recorded.
- * week: The week number within the year when the data was recorded.
- date: The specific date when the data was recorded.
- * month: The month when the data was recorded.
- db1, wb1, db2, wb2: These columns may represent different temperature measurements (e.g., dry bulb and wet bulb temperatures) at two different locations or conditions (1 and 2).
- * max: Maximum temperature recorded.
- min: Minimum temperature recorded.
- gmt: Some kind of time-related measurement, possibly Greenwich Mean Time (GMT).
- * st5hr1, st10hr1, st20hr1, st5hr2, st10hr2, st20hr2: These columns could represent various soil temperature measurements at different depths (e.g., 5 cm, 10 cm, 20 cm) and possibly at two different locations or conditions.
- * vp1, vp2: These columns might represent vapor pressure measurements at two different locations or conditions.
- * rh1, rh2: Relative humidity measurements at two different locations or conditions.
- * ws: Wind speed.
- * wdhr1, wdhr2: Wind direction at two different hours or conditions.
- **bss**: Possibly a measurement related to sunshine duration.
- * rain: Amount of rainfall.
- pievp: Possibly another measurement related to evaporation or vapor pressure.
- **panevp**: Another measurement related to evaporation or vapor pressure.