```
In [2]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Подготовка данных

```
In [4]:
```

```
ind_data = pd.read_csv('india.csv', delimiter=',')
```

In [5]:

```
ind_data.head()
```

Out[5]:

	stn_code	sampling_date	state	location	agency	type	so2	no2	rspm	spm	location_monitoring_station	pm2_5	dat
0	150	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	NaN	NaN	NaN	NaN	1990 02-0
1	151	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0	NaN	NaN	NaN	NaN	1990 02-0
2	152	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	NaN	NaN	NaN	NaN	1990 02-0
3	150	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	NaN	NaN	NaN	NaN	199(03-C
4	151	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5	NaN	NaN	NaN	NaN	1990 03-0
4													Þ

In [9]:

```
ind_data.type.unique()
```

Out[9]:

Описательная статистика + гипотезы

1. Попробуем отобразить среднее количество углекислого газа, зафиксированного в конкретных районах

In [17]:

```
ind_data.hist('so2', bins=50, by = ['type'], figsize = [20, 15], facecolor='purple', edgecolor = 'y
ellow');
```


1. Попробуем сделать то же самое для оксида азота

In [6]:

1. Попробуем отобразить все записи о газах в индустриальных районах, чтобы увидеть примерное распределение этих газов

```
so2 = ind_data.loc[ind_data.type == 'Industrial Area', 'so2']
no2 = ind_data.loc[ind_data.type == 'Industrial Area', 'no2']
kwargs = dict(alpha=0.5, bins=500)

plt.hist(so2,**kwargs, color='g', label='so2')
plt.hist(no2,**kwargs, color='b', label='no2')
plt.xlim(0, 160)
Out[33]:
(0, 160)
```

12000 - 10000 - 8000 - 4000 - 2000 - 2000 - 40 60 80 100 120 140 160