

Initiation aux réseaux informatiques

Partie 6: Introduction à la sécurité

Introduction à la sécurité

- I. Introduction
- II. Paradigmes de la sécurité des réseaux informatiques
- III. Exemples de menaces
- IV. Exemples de moyens pour garantir la sécurité

Introduction

PROBLÉMATIQUE

- Les réseaux informatiques font partie intégrante de notre quotidien
 - Des milliards d'utilisateurs
 - Des milliards d'objets connectés
 - Un trafic en Téraoctets!
- Une des problématiques majeures dans les réseaux informatiques est la **sécurité**

PROBLÉMATIQUE

- Les systèmes d'information connectés en réseau sont confrontés à des menaces qui évoluent de jour en jour
- → Il est nécessaire de mettre des formes de protection contre ces menaces
- → Sécurité des réseaux informatiques

SÉCURITÉ DES RÉSEAUX INFORMATIQUES

- La sécurité des réseaux informatiques définit l'ensemble des moyens mis en œuvre pour garantir un minimum de protection des échanges et des intervenants dans un réseau informatiques
- Elle concerne l'ensemble des paradigmes du réseau informatique

PARADIGMES DU RÉSEAUX INFORMATIQUE

- Quatre paradigmes
 - Électricité et l'électromagnétisme
 - Stations (machines)
 - Communication
 - Données

- Électricité et électromagnétisme
 - Sensibilité aux variations, instabilité magnétique, interférences, sensibilité aux rayonnements...

Stations

9

Communication

PARADIGMES DE LA SÉCURITÉ INFORMATIQUE

- o Communication: chaîne constituée de
 - L'émetteur
 - Le récepteur
 - Le message transmis
 - Le code qui sert à transmettre le message
 - Le canal de transmission
 - Le contexte

Données

- La **disponibilité** : les données doivent être accessibles et utilisables à la demande par les utilisateurs qui en auront besoin
- La confidentialité : la transmission des données échangées sur un réseau doit être privée → elles ne peuvent être accessibles que par les personnes autorisées

Données

- L'intégrité : les données ne peuvent être modifiées que par les personnes autorisées et seulement par les moyens autorisés
- L'authentification : permet d'éviter la fraude et la substitution de personnes → chacun doit connaître l'identité de son interlocuteur
 - Le service d'authentification assure que le message provient de l'endroit d'où il prétend venir

- Données
 - La **non-répudiation** : permet au récepteur / émetteur de ne pas nier la réception / émission d'un message.
 - Le récepteur peut prouver que le message a bien été envoyé par l'émetteur
 - L'émetteur peut démontrer que le message a bien été reçu par le bon récepteur

PARADIGMES DE LA SÉCURITÉ INFORMATIQUE

• Le niveau de sécurité d'un réseau informatique est celui du paradigme qui a le niveau de sécurité le plus faible

P1 P3 P2 P2

15

NOTION DE RISQUE

- Le risque zéro n'existe pas
- L'objectif n'est pas d'empêcher les attaques mais de réduire leurs effets
- → Avoir une protection acceptable avec un risque acceptable et un coût acceptable

EXEMPLES DE MENACES

SOURCES D'ATTAQUES

- Externes
 - Pirates
 - Saboteurs
 - Concurrents
 - Anciens employés
 - Organisations criminelles

•

SOURCES D'ATTAQUES

- Externes
- Internes
 - Employés mécontents
 - Fraudeurs
 - Espions
 - •

Types d'attaques

- Spoofing
 - Usurpation d'adresses IP
- Sniffing
 - Écoute d'une ligne à travers laquelle des données importantes peuvent être transmises telles que les mots de passe

Types d'attaques

- Malware (logiciel malveillant)
 - Virus ; Vers ; Chevaux de troie ; quelques logiciels P2P
- o Déni de service
- Exploits
- Ransomware

O ...

EXEMPLES DE MOYENS POUR GARANTIR LA SÉCURITÉ

CONTRÔLE D'ACCÈS

- Besoin de limiter et de contrôler les accès réseau aux systèmes et applications
 - Ne pas donner les mêmes droits à toutes les personnes connectées → plusieurs profils
 - Chaque entité qui demande un accès doit s'identifier afin d'accéder **uniquement** aux ressources qui lui sont autorisées
- Outils : mots de passe, pare-feux, logiciels antivirus,
 VPN, certificats numériques...

MOT DE PASSE

Number of Characters	Numbers Only	Lowercase Letters	Upper and Lowercase Letters	Numbers, Upper and Lowercase Letters	Numbers, Upper and Lowercase Letters, Symbols
4	Instantly	Instantly	Instantly	Instantly	Instantly
5	Instantly	Instantly	Instantly	Instantly	Instantly
6	Instantly	Instantly	Instantly	1 sec	5 secs
7	Instantly	Instantly	25 secs	1 min	6 mins
8	Instantly	5 secs	22 mins	1 hour	8 hours
9	Instantly	2 mins	19 hours	3 days	3 weeks
10	Instantly	58 mins	1 month	7 months	5 years
11	2 secs	1 day	5 years	41 years	400 years
12	25 secs	3 weeks	300 years	2k years	34k years
13	4 mins	1 year	Tók years	100k years	2m years
14	41 mins	51 years	800k years	9m years	200m years
15	6 hours	1k years	43m years	600m years	15 bn years
16	2 days	34k years	2bn years	37bn years	Itn years
17	4 weeks	800k years	100bn years	2tn years	93tn years
18	9 months	23m years	6tn years	100 tn years	7qd years

MOT DE PASSE

• Exemple de générateur de mots de passe

https://www.motdepasse.xyz/

• Vérifier la force du mot de passe sur

https://www.security.org/how-secure-is-my-password/

PARE-FEU

- Un composant matériel et/ou logiciel qui restreint l'accès entre un réseau protégé et d'autres réseaux, y compris Internet
 - Programmé de façon à intercepter chaque paquet de messages qui passe entre les deux réseaux
 - Analyse les caractéristiques et rejette les messages ou les tentatives d'accès non autorisés

PARE-FEU

Limitation

- Ne peut protéger contre les connexions qui ne passent pas par lui
- Ne peut pas protéger le réseau contre des menaces nouvelles (non paramétrée)
- Ne peut le protéger contre les virus
- → Les 2 derniers points sont pris en charge par certains pare-feux de nouvelle génération ainsi que les UTM

VPN

• Connexion **distante sécurisée** entre deux sites d'une organisation qui permet de transmettre des données cryptées à travers un réseau non sécurisé, notamment Internet

VPN

Composantes

- Serveur VPN : serveur d'accès distant servant à chiffrer et déchiffrer les données du côté de l'organisation
- Client VPN: entité distante ayant la possibilité de chiffrer et de déchiffrer les données du côté utilisateur
- Protocoles de tunneling : utilisés par les clients VPN pour créer des connexions sécurisées sur un serveur VPN (IPSec, MPLS...)

- Moyen de chiffrement des données permettant de protéger les informations en les rendant illisibles ou incompréhensibles sauf pour le bon destinataire
- Basé sur deux éléments fondamentaux
 - Chaîne de nombres binaires appelée clé
 - Algorithme sous forme d'une fonction mathématique qui va combiner la clé et le texte à crypter pour chiffrer le texte

- On distingue deux types
 - Symétrique
 - Asymétrique

Symétrique

- Une seule clé secrète partagée entre les deux entités échangeant les informations
- Cette clé va servir en même temps au chiffrement et au déchiffrement du message
- Plusieurs algorithmes se basent sur ce principe, notamment DES, IDEA, RC2, RC4...

- Symétrique
 - Avantage: cryptage rapide
 - Limite : la non-répudiation n'est pas assurée puisqu'un utilisateur, possédant la même clé que son correspondant, peut fabriquer un message en usurpant l'identité de celui-ci

- Asymétrique
 - Appelé aussi cryptage à clé publique
 - Basé sur l'utilisation d'une paire de clés appelée biclés
 - o Une clé publique qui sert à chiffrer le message
 - o Une clé privée qui sert à déchiffrer le message
 - Les deux clés sont générées simultanément et sont liées par des algorithmes

- Asymétrique
 - Avantage : assure un grand niveau de sécurité car même si la clé publique est connue il est impossible de détecter la clé secrète
 - Limite : lenteur en comparaison avec le cryptage symétrique

CERTIFICAT NUMÉRIQUE

- Association d'une clé publique et des informations concernant l'identité du propriétaire
 - Propriétaire : une personne, un ordinateur, un organisme...
- → Il est issu de la relation entre une clé publique, son propriétaire et l'application pour laquelle il est émis
- Le certificat assure que la connexion est bien réalisée au site auquel on veut accéder

Pour aller plus loin

o MOOC Sécurité des Réseaux Informatiques sur

https://www.fun-mooc.fr/fr/

Initiation aux réseaux informatiques

Partie 6: Introduction à la sécurité