$\begin{array}{c} {\rm Universit\acute{e}\ Toulouse\ III-Paul\ sabatier} \\ {\rm L2\ Informatique} \end{array}$

Architecture des systèmes Informatiques — TD

Semestre 3

Table des matières

1		nérotation et codage optionnel	5
	1.1	Numérotation	5
		1.1.1 Réaliser l'opération suivante en binaire : (1101011 $-$ 10110) \times 11001	5
		1.1.2 Réaliser les opérations suivantes en hexadécimal : $(389A + 7293) - EB2$	5
		1.1.3 Effectuer les conversions ci-dessous	6
	1.2	Codage	6
		1.2.1 Codage de nombres entiers relatifs	6
		1.2.2 Convertir un nombre flottant en décimal	7
		1.2.3 Convertir un nombre décimal en flottant	8
2	Alg	èbre de Bool	9
	2.1	Table de vérité des opérateurs classiques	9
		2.1.1 Exercice 1	9
		2.1.2 Exercice 3	9
		2.1.3 4	10
		2.1.4 5	10
		2.1.5 9	10
		2.1.6 11	10
3	Fon	ctions logiques	12
	3.1	Exercice 1 : Simplifications algébriques	12
		3.1.1	12
		3.1.2	12
	3.2	Exercice 2 : Formes canoniques	13

		3.2.1		13
4	Les	circui	ts combinatoires	14
	4.1	Exerc	ice 1	14
		4.1.1	Encodeur de priorité	14
		4.1.2	Comparateur 4 bits	14
	4.2	Exerci	ice 2	1.5

Numérotation et codage TD optionnel

1.1 Numérotation

1.1.1 Réaliser l'opération suivante en binaire : $(1101011 - 10110) \times 11001$

$$(110\ 1011)_2 = (107)_{10}$$

$$(1\ 0110)_2 = (22)_{10}$$

$$(1\ 1001)_2 = (22)_{10}$$

$$\frac{1}{1} \ \frac{1}{1} \ \frac{0}{1} \ \frac{1}{1} \ \frac{1}{1} \ \frac{1}{1} \ \frac{0}{1} \ \frac{1}{1} \ \frac{1}{1} \ \frac{1}{1} \ \frac{0}{1} \ \frac{1}{1} \ \frac{1$$

1.1.2 Réaliser les opérations suivantes en hexadécimal : (389A+7293)-EB2

$$\begin{array}{r} 3 \quad 8 \quad 9 \quad A \\ + \quad 7 \quad 2 \quad 9 \quad 3 \\ \hline - \quad E \quad B \quad 2 \quad B \\ \hline - \quad E \quad B \quad 2 \quad B \\ \hline 9 \quad C \quad 7 \quad B \\ \end{array}$$

$$(389A)_{16} = (0011 \ 1000 \ 1001 \ 1010)_{2}$$

$$(7293)_{16} = (0111 \ 0010 \ 1001 \ 0011)_{2}$$

$$(AB2B)_{16} = (1010 \ 1011 \ 0010 \ 1101)_{2}$$

 $(EB2B)_{16} = (0000\ 1110\ 1011\ 0010)_2$ $(9C7B)_{16} = (1001\ 1100\ 0111\ 1011)_2$

1.1.3 Effectuer les conversions ci-dessous

1.1.3.1
$$(1447.140625)_{10} = (??)_2 = (??)_{16}$$

$$1447 \div 16 = 90 R = 7$$

$$90 \div 16 = 5 R = A$$

$$5 \div 16 = 0 R = 5$$

$$(1447)_{10} = (5A7)_{16}$$

$$0.140625 \times 16 = 2.25$$

$$0.25 \times 16 = 4.00$$

$$(0.140625)_{10} = (0.24)_{16}$$

$$(1447.140625)_{10} = (5A7.24)_{16} = (0101 \ 1010 \ 0111.0010 \ 0100)_{2}$$

1.1.3.2
$$(1111100101.01011)_2 = (??)_{10} = (??)_{16}$$

$$(11\ 1110\ 0101.0\ 1011)_2 = (3E5; 58)_{16}$$

$$3E5 = (3 \times 16^2 + 14 * 16 + 5 + 5 \times 16^{-1} + 8 \times 16^{-2}$$

$$= (997, 34375)_{10}$$

1.2 Codage

1.2.1 Codage de nombres entiers relatifs

On veut coder des entiers relatifs sur 16 chifffres binaires (deux octets).

	Valeur abso	lue	Valeur relative		
Base 10	Base 10 Base 2		Valeur absolue +	Complément à 2	
			signe		
35671	10000 010 0101 0111	75B8	Hors intervalle	Hors intervalle	
-32768	1000 0000 0000 0000	8000	Hors intervalle	1000 0000 0000	
46443	1011 0101 0110 1011	B56B	Hors intervalle	Hors intervalle	
-19536	0100 1100 0110 0100	4C64	1100 1100 0110 0100	1011 0011 1001 1100	
-19040	0100 1010 0110 0000	4A60	1100 1010 0110 0000	1011 0101 1010 0000	

1.2.1.1 Calcul de la valeur absolue en base 2

$$3567 \div 16 = 229 \text{ et reste } 7$$

 $2229 \div 16 = 139 \text{ et reste } 5$
 $139 \div 16 = 8 \text{ et reste } 8$
 $8 \div 16 = 0 \text{ et reste } 8$

$$\Rightarrow$$
 (35671)₁₀ = (8B57)₁₆ = (1000 1010 0101 0111)₂

Afin de pouvoir représenter un nombre celui-ci ne doit pas dépasser un certain intervalle :

Entier naturel $[0; 2^{16-1}] = [0; 65535]$

Valeur absolue + signe $[-2^{15-1}; 2^{15-1}] = [-16384; 16384]$

Complément à deux $[-2^{15}; 2^{15}] = [-32768; 32768]$

1.2.2 Convertir un nombre flottant en décimal

$$C = E + biais$$

En simple précision biais = 127.

$$S = 0 \rightarrow \text{ positif}$$
 $C = 129$
 $E = C - 127 = 2$
 $1.M = 1.111 \Rightarrow 1.111 \times 2^2 = 111.1 \times 2^0 = (7.5)_{10}$

1.2.3 Convertir un nombre décimal en flottant

```
(35.5)_{10} = ?
100011.1 = 10000111 \times 2^{5}

Nombre positif donc S = 0
E = 5
C = E + 127 = 132 = 128 + 4 = (10000100)_{2}
1.M = 1.00011
M = 0011
```

Algèbre de Bool

2.1 Table de vérité des opérateurs classiques

2.1.1 Exercice 1

2.1.1.1 A – Démontrer que les opérateurs NAND et NOR sont des opérateurs complets

$$\overline{A} = A|A$$

$$A.B = \overline{\overline{A.B}} = \overline{\overline{A} + \overline{B}} = \overline{A/B} = (A|B)|(A|B)$$

$$A + B = \overline{\overline{A} + \overline{B}} = \overline{\overline{A} + \overline{B}} = (A|B)|(B|B)$$

$$\overline{\overline{A}} = \overline{\overline{A} + \overline{A}} = A \downarrow A$$

$$A.B = \overline{\overline{A.B}} = \overline{\overline{A} + \overline{B}} = A \downarrow B \downarrow (\downarrow B \downarrow B)$$

2.1.1.2 B-

1.
$$f(A, B, C, D) = \overline{A}B\overline{D} + B\overline{C} + A\overline{C}D = \overline{\overline{A}B\overline{D} + B\overline{C} + A\overline{C}D} = \overline{(\overline{BD}).(\overline{A}\overline{C}D)} = \overline{((A|A)|B((D|D)))|(B|(C|C))|(A|(C|C)|D)} = \overline{(A|A)|B((D|D))|(B|(C|C))|(A|(C|C)|D)}$$

2.
$$f(A,B,C,D) = (A+B)(\overline{C}+\overline{D})(\overline{A}+\overline{B}+\overline{C}) = \overline{(A+B)(\overline{C}+\overline{B})(\overline{A}+\overline{B}+\overline{C})} = \overline{(AB)+CD+ABC} = \overline{AB}.\overline{CD}.\overline{ABC} = ((A|A)(B|B)|(C|D)|(A|B|C))|((A|A)(B|B)|(C|D)|(A|B|C)) = ((A\downarrow B)\downarrow (C\downarrow C)\downarrow (D\downarrow D)\downarrow (A\downarrow A)\downarrow (B\downarrow B)\downarrow (C\downarrow C))$$

2.1.2 Exercice 3

2.1.2.1 1

2.1.2.2 2

 $f(w,x,y,z) = \sum_{z=0}^{\infty} m(0,1,3,6,9,13,15) = \overline{wxy} + \overline{wx}z + wxz + w\overline{y}z + w\overline{x}y\overline{z}$

	00	01	11	10
00	1	1	1	
01				1
11		1	1	
10		1		

2.1.2.3 3

 $f(w, x, y, z) = \sum m(0, 1, 5, 7, 8, 10, 14, 15) = \overline{wxy} + \overline{w}xz + wxy + w\overline{x}\overline{z}$

	00	01	11	10
00	1	1		
01		1	1	
11			1	1
10	1			1

2.1.3 4

2.1.4 5

2.1.5 9

$$f(w, x, y, z) = \Pi M(1, 3, 4, 9, 11, 14) CI(w, x, y, z) = (x + \overline{z})(\overline{x} + z)$$

	00	01	11	10
00		0	0	
01	0			*
11	*	*		0
10		0	0	

2.1.6 11

$$\begin{array}{l} f(w,x,y,z) = \sum m(0,1,3,5,6,7,11,13,14,15)CI(w,x,y,z) = 4 \\ f(w,x,y,z) = \overline{yw} + yz + xy + xz \end{array}$$

	00	01	11	10
00	1	1	1	
01	*	1	1	1
11		1	1	1
10			1	

Fonctions logiques

3.1 Exercice 1 : Simplifications algébriques

3.1.1

$$F_{1} = (x+y+z).(\overline{x}+\overline{y}+z+xy+\overline{x}\overline{y})$$

$$= (x+y+z).(\overline{x}+\overline{y}+z+xy+\overline{x}\overline{y})$$

$$= (x+y+z)(\overline{x}+\overline{y}(1+\overline{x})+z+xy)$$

$$= (x+y+z)(\overline{x}+\overline{y}+z+xy)$$

$$= (x+y+z)(\overline{x}\overline{y}+xy+z)$$

$$= (x+y+z)(1+z)$$

$$F_{1} = x+y+z$$

3.1.2

$$F_{2} = \sum m(0, 4, 6, 7, 14, 15)$$

$$= \overline{xyzw} + \overline{x}y\overline{zw} + \overline{x}yz\overline{w} + \overline{x}yzw + xyz\overline{w} + xyzw$$

$$= \overline{xzw}(y + \overline{y}) + \overline{x}yz(w + \overline{w}) + xyz(w + \overline{w})$$

$$= \overline{xzw} + \overline{x}yz + xyz$$

$$= \overline{xzw} + xy(x + \overline{x})$$

$$F_{2} = \overline{xzw} + xy$$

3.2 Exercice 2 : Formes canoniques

3.2.1

$$G_1 = I_1 + I_2$$
 avec $I_1 = \sum m(0,4,6)$ et $I_2 = \prod M(1,4,5)$
$$G_1 = \sum m(0,4,6) + \prod M(1,4,5)$$
$$= \sum m(0,4,6) + \sum m(0,2,3,6,7)$$
$$G_1 = \sum m(0,2,3,4,6,7) \Rightarrow \text{ Forme canonique Disjonctive }$$
$$G_1 = \prod M(1,5) \Rightarrow \text{ Forme Canonique Conjonctive }$$

Les circuits combinatoires

4.1 Exercice 1

4.1.1 Encodeur de priorité

E_3	E_2	E_1		S_1	
0	0	0	1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	0
0	0	1	*	0	1
0	1	*	1 * *	0	1
1	*	*	*	1	1

$$S_1 = E_3E_2 + E_3 = E_3 + E_2$$

 $S_0 = E_3E_2E_1 + E_3 = E_3 + \overline{E_2}E_1$

R Théorème d'absorption

4.1.2 Comparateur 4 bits

4.1.2.1 Comparateur 1 bit

$$\begin{array}{rcl} S & = & a \overline{b} \\ I & = & \overline{a} b \\ E & = & \overline{a} \overline{b} + a b = a \odot b \end{array}$$

R

4.1.2.2 Comparateur 2 bits

$$\underbrace{a_1 a_0}_{A} + \underbrace{b_1 b_0}_{B}$$

$$E = (a_1 \odot b_1)(a_0 \odot b_0)$$

$$S = a_1 \overline{b_1} + a_0 \overline{b_0}(a_1 \odot b_1)$$

$$I = \overline{a_1} b_1 + \overline{a_0} b_0(a_1 \odot b_1)$$

4.1.2.3 Comparateur 4 bits – Généralisation

$$E = (a_3 \odot b_3)(a_2 \odot b_2)(a_1 \odot b_1)(a_0 \odot b_0)$$

$$S = a_3\overline{b_3} + a_2\overline{b_2}(a_3 \odot b_3) + a_1\overline{b_1}(a_3 \odot b_3)(a_2 \odot b_2) + a_0\overline{b_0}(a_3 \odot b_3)(a_2 \odot b_2)(a_1 \odot b_1)$$

$$I = \overline{a_3}b_3 + \overline{a_2}b_2(a_3 \odot b_3) + \overline{a_1}b_1(a_3 \odot b_3)(a_2 \odot b_3) + \overline{a_1}b_1(a_3 \odot b_3)(a_2 \odot b_2) + \overline{a_0}b_0(a_3 \odot b_3)(a_2 \odot b_2)(a_1 \odot b_1)$$

4.2 Exercice 2