Théorie des langages rationnels : THLR CM 3

Uli Fahrenberg

EPITA Rennes

Septembre 2021

Aperçu

Programme du cours

- Mots, langages
- Langages rationnels, expressions rationnelles
- Automates finis
- Langages non-rationnels
- Langages reconnaissables, minimisation

Hier: Expressions rationnelles, langages rationnels

- poly chapitre 3, sections 3.1.1 et 3.1.2
- plus démonstration que L rationnel $\Rightarrow Pref(L)$ rationnel

Hier: Expressions rationnelles

Soit Σ un alphabet.

Définition

Les expressions rationnelles sur Σ :

- \bigcirc Ø et ε sont des expressions rationnelles
- ② pour tout $a \in \Sigma$, a est une expression rationnelle

Définition

Le langage dénoté par une expression rationnelle e sur Σ :

- ② $L(a) = \{a\}$ pour tout $a \in \Sigma$
- $L(e_1 + e_2) = L(e_1) \cup L(e_2), \ L(e_1 \cdot e_2) = L(e_1) \cdot L(e_2), \ L(e^*) = (L(e))^*$

Hier: Langages rationnels

Définition

Les langages rationnels sur Σ :

- **1** \emptyset et $\{\varepsilon\}$ sont des langages rationnels
- ② pour tout $a \in \Sigma$, $\{a\}$ est un langage rationnel
- **③** L_1 et L_2 langages rationnels $\Rightarrow L_1 \cup L_2$, $L_1.L_2$ et L_1^* aussi

Théorème

 $L \subseteq \Sigma^*$ est rationnel ssi il existe une expression rationnelle e telle que L = L(e).

Pour aller plus loin

Un demi-anneau est une structure algébrique $(S, \oplus, \otimes, 0, 1)$ telle que

- ullet (S, \oplus, \mathbb{O}) forme un monoïde commutatif,
- $(S, \otimes, 1)$ forme un monoïde,
- $x(y \oplus z) = zy \oplus xz$, $(x \oplus y)z = xz \oplus yz$ et x0 = 0x = 0

S est idempotent si $x \oplus x = x$.

Théorème

L'ensemble de langages finis forme le demi-anneau idempotent libre.

Une algèbre de Kleene est un demi-anneau idempotent S équipé avec tous les sommes géométriques $\bigoplus_{n\geq 0} x^n$, pour tout $x\in S$, et telle que $x(\bigoplus_{n\geq 0} y^n)z=\bigoplus_{n\geq 0} (xy^nz)$ pour tout $x,y,z\in S$.

Théorème

L'ensemble de langages rationnels forme l'algèbre de Kleene libre.

5 minutes de réflexion

Vrai ou faux?

- **①** Si L_1 et L_2 sont rationnels, alors $L_1 \cup L_2$ est rationnel
- ② Si L_1 et L_2 sont rationnels, alors $L_1 \cap L_2$ est rationnel
- \odot Chaque sous-ensemble d'un langage rationnel L est rationnel.

Pour chaque expression rationnelle suivante, trouvez deux mots qui appartiennent de leur langage et deux autres qui ne l'appartiennent pas :

- a*b*
- $a^* + b^*$
- **◎** (aaa)*
- $(a+b)^*ab(a+b)^*ba(a+b)^*$

5 minutes de réflexion

Vrai ou faux?

- **①** Si L_1 et L_2 sont rationnels, alors $L_1 \cup L_2$ est rationnel
- ② Si L_1 et L_2 sont rationnels, alors $L_1 \cap L_2$ est rationnel
- Ohaque sous-ensemble d'un langage rationnel L est rationnel.

Pour chaque expression rationnelle suivante, trouvez deux mots qui appartiennent de leur langage et deux autres qui ne l'appartiennent pas :

- a*b*
- $a^* + b^*$
- **◎** (aaa)*
- $(a+b)^*ab(a+b)^*ba(a+b)^*$

```
L'algorithme le plus simple qui décide le langage de tous les mots qui
commencent par ab: L = \{ab, aba, abb, abaa, abab, abba, ...\}
( en Python-èsque ) :
def startsab(stream):
    state = 0
    while x = next(stream):
         if state == 0:
              if x == "a":
                  state = 1
              else: return False
         elif state == 1:
              if x == "b":
                  state = 2
              else: return False
    if state == 2: return True
    else: return False
```

```
L'algorithme le plus simple qui décide le langage de tous les mots qui
commencent par ab: L = \{ab, aba, abb, abaa, abab, abba, ...\}
( en Python-èsque ) :
def startsab(stream):
    state = 0
    while x = next(stream):
         if state == 0:
              if x == "a":
                  state = 1
              else: return False
         elif state == 1:
              if x == "b":
                  state = 2
              else: return False
    if state == 2: return True
    else: return False
```

```
L'algorithme le plus simple qui décide le langage de tous les mots qui
commencent par ab: L = \{ab, aba, abb, abaa, abab, abba, \dots\}
( en Python-èsque ) :
def startsab(stream):
    state = 0
    while x = next(stream):
         if state == 0:
              if x == "a":
                  state = 1
              else: return False
         elif state == 1:
              if x == "b":
                   state = 2
              else: return False
    if state == 2: return True
                                                a, b
    else: return False
```

```
L'algorithme le plus simple qui décide le langage de tous les mots qui
commencent par ab: L = \{ab, aba, abb, abaa, abab, abba, \dots\}
( en Python-èsque ) :
def startsab(stream):
    state = 0
    while x = next(stream):
         if state == 0:
              if x == "a":
                  state = 1
              else: return False
         elif state == 1:
              if x == "b":
                   state = 2
              else: return False
    if state == 2: return True
                                                a, b
    else: return False
```

Digicode pour matheux

Digicode pour matheux

Digicode pour matheux

Automates finis déterministes complets

Définition (4.1)

Un automate fini déterministe complet est une structure $(\Sigma, Q, q_0, F, \delta)$ où

- \bullet Σ est un ensemble fini de symboles,
- Q est un ensemble fini d'états,
- $q_0 \in Q$ est l'état initial,
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta: Q \times \Sigma \to Q$ est la fonction de transition.
- un graphe orienté avec arcs étiquetés dans Σ et certains nœuds distingués comme initial et/ou final

$$\Sigma = \{a, b\}$$
 $Q = \{s_0, s_1, s_2 \}$
 $q_0 = s_0$
 $F = \{s_2\}$

s₂ **s**₂

$$\Sigma = \{a, b\}$$
 $Q = \{s_0, s_1, s_2, s_3\}$
 $q_0 = s_0$
 $F = \{s_2\}$

Comment ça marche

Un automate fini déterministe complet : $A = (\Sigma, Q, q_0, F, \delta)$:

- Σ , Q ensembles finis, $q_0 \in Q$, $F \subseteq Q$,
- $\delta: Q \times \Sigma \to Q$: la fonction de transition

On note $q \xrightarrow{a} r$ pour $\delta(q, a) = r$.

Définition

- Un calcul dans A est une séquence $\sigma = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} q_n$.
 - donc $\delta(q_i, a_i) = q_{i+1}$ pour tout $i = 1, \dots, n-1$
- L'étiquette d'un calcul comme ci-dessus est

$$\lambda(\sigma)=\mathsf{a}_1\mathsf{a}_2\ldots\mathsf{a}_{n-1}\in\Sigma^*.$$

- Un calcul comme ci-dessus est réussi si $q_1 = q_0$ et $q_n \in F$.
- Le langage reconnu par A est $L(A) = \{\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A\}.$

calculs dans A:

$$\bullet \ \ s_0 \stackrel{a}{\longrightarrow} s_1 \stackrel{a}{\longrightarrow} s_3 \stackrel{x_1}{\longrightarrow} \cdots \stackrel{x_n}{\longrightarrow} s_3$$

•
$$s_0 \xrightarrow{a} s_1 \xrightarrow{b} s_2 \xrightarrow{x_1} \cdots \xrightarrow{x_n} s_2$$

pour touts $x_1, \ldots, x_n \in \{a, b\}$

calculs réussis :

$$\bullet \ \ s_0 \stackrel{a}{\longrightarrow} s_1 \stackrel{b}{\longrightarrow} s_2 \stackrel{x_1}{\longrightarrow} \cdots \stackrel{x_n}{\longrightarrow} s_2$$

langage reconnu par A:

•
$$L(A) = L(ab(a+b)^*)$$

5 minutes de réflexion

Vrai ou faux?

- ullet baba $\in L(A)$
- $oldsymbol{a}$ baab $\in L(A)$
- \bigcirc abaaab $\in L(A)$
- $\circ \varepsilon \in L(A)$
- $(b^*aa^*b) \subseteq L(A)$

5 minutes de réflexion

Vrai ou faux?

$$ullet$$
 baba $\in L(A)$

$$oldsymbol{a}$$
 baab $\in L(A)$

$$lacksquare$$
 abab $\in L(A)$

$$lacktriangle$$
 abaaab $\in L(A)$

$$\varepsilon \in L(A)$$

$$(b^*aa^*b) \subseteq L(A)$$

« Déterministe complet »?

Automate fini déterministe complet : $(\Sigma, Q, q_0, F, \delta)$:

- Σ , Q ensembles finis, $q_0 \in Q$, $F \subseteq Q$,
- $\delta: Q \times \Sigma \to Q$: la fonction de transition
- très utile dans la théorie

Automate fini déterministe :

- ullet δ fonction partielle
- très utile pour l'implémentation

Automate fini non-déterministe :

- \bullet δ relation
- très utile dans la théorie

Automate fini non-déterministe avec transitions spontanées :

• notion encore plus générale et utile (en théorie)

Automates finis déterministes

Définition (4.4)

Un automate fini déterministe est une structure $(\Sigma, Q, q_0, F, \delta)$ où

- ullet est un ensemble fini de symboles,
- Q est un ensemble fini d'états,
- $q_0 \in Q$ est l'état initial,
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta: Q \times \Sigma \longrightarrow Q$ est la fonction partielle de transition.
- tout automate fini déterministe peut être complété en ajoutant un état puits (voir p. 30)

Automate fini déterministe et complétion :

```
def startsab(stream):
    state = 0
    while x = next(stream):
        if state == 0:
             if x == "a":
                                       S1
                 state = 1
             else: return False
                                         b
        elif state == 1:
             if x == "b":
                                       s2
                 state = 2
             else: return False
                                       a, b
    if state == 2: return True
    else: return False
```

Automate fini déterministe et complétion :

```
def startsab(stream):
    state = 0
    while x = next(stream):
        if state == 0:
            if x == "a":
                 state = 1
            else: return False
        elif state == 1:
            if x == "b":
                 state = 2
            else: return False
    if state == 2: return True
    else: return False
```


Lemme

Pour tout automate fini déterministe A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

- On construit $A' = (\Sigma, Q', q'_0, F', \delta')$ comme suit :
- $q'_o = q_0 \text{ et } F' = F.$
- **1** La fonction $\delta: Q' \times \Sigma \to Q'$ est définie par

$$\delta'(q, a) =$$

Lemme

Pour tout automate fini déterministe A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

- Soit $A = (\Sigma, Q, q_0, F, \delta)$.
- **②** On construit $A' = (\Sigma, Q', q'_0, F', \delta')$ comme suit :
- $q'_o = q_0 \text{ et } F' = F.$
- **1** La fonction $\delta: Q' \times \Sigma \to Q'$ est définie par

$$\delta'(q, a) = \left. egin{cases} \delta(q, a) & ext{si } q \in Q ext{ et } \delta(q, a) ext{ est défini}, \end{cases}
ight.$$

Lemme

Pour tout automate fini déterministe A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

- **②** On construit $A' = (\Sigma, Q', q'_0, F', \delta')$ comme suit :
- $q'_o = q_0 \text{ et } F' = F.$
- **o** La fonction $\delta: Q' \times \Sigma \to Q'$ est définie par

$$\delta'(q, a) = \begin{cases} \delta(q, a) & \text{si } q \in Q \text{ et } \delta(q, a) \text{ est défini,} \\ q_p & \text{sinon.} \end{cases}$$

Lemme

Pour tout automate fini déterministe A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

- On construit $A' = (\Sigma, Q', q'_0, F', \delta')$ comme suit :
- $q'_{o} = q_{0}$ et F' = F.
- **1** La fonction $\delta: Q' \times \Sigma \to Q'$ est définie par

$$\delta'(q,a) = egin{cases} \delta(q,a) & ext{si } q \in Q ext{ et } \delta(q,a) ext{ est défini}, \ q_p & ext{sinon}. \end{cases}$$

1 Maintenant il faut démontrer que, en fait, L(A') = L(A).

Non-déterminisme

L'algorithme le plus simple qui décide le langage de tous les mots qui commencent par ab :

L'algorithme le plus simple qui décide le langage de tous les mots qui se terminent par *ab* :

L'algorithme le plus simple qui décide le langage de tous les mots qui commencent par ab :

L'algorithme le plus simple qui décide le langage de tous les mots qui se terminent par *ab* :

Exemple

L'algorithme le plus simple qui décide le langage de tous les mots qui commencent par ab :

L'algorithme le plus simple qui décide le langage de tous les mots qui se terminent par *ab* :

- pas un algorithme!
- abab ???

Automates finis (non-déterministes)

Définition (4.8)

Un automate fini est une structure $(\Sigma, Q, q_0, F, \delta)$ où

- ullet est un ensemble fini de symboles,
- Q est un ensemble fini d'états,
- $q_0 \in Q$ est l'état initial,
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta \subseteq Q \times \Sigma \times Q$ est la relation de transition.

Automates finis (non-déterministes)

Définition (4.8)

Un automate fini est une structure $(\Sigma, Q, Q_0, F, \delta)$ où

- \bullet Σ est un ensemble fini de symboles,
- Q est un ensemble fini d'états,
- $Q_0 \subseteq Q$ est l'ensemble des états initiaux,
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta \subset Q \times \Sigma \times Q$ est la relation de transition.
- pas trop pratique pour l'implémentation
- mais bien utile en théorie!

Comment ça marche

Un automate fini : $A = (\Sigma, Q, Q_0, F, \delta)$:

- Σ , Q ensembles finis, $Q_0, F \subseteq Q$,
- $\delta \subseteq Q \times \Sigma \times Q$: la relation de transition

On note $q \xrightarrow{a} r$ si $(q, a, r) \in \delta$.

Définition

- Un calcul dans A est une séquence $\sigma = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} q_n$.
- L'étiquette d'un calcul comme ci-dessus est $\lambda(\sigma) = a_1 a_2 \dots a_{n-1} \in \Sigma^*$.
- Un calcul comme ci-dessus est réussi si $q_1 \in Q_0$ et $q_n \in F$.
- Le langage reconnu par A est $L(A) = \{\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A\}.$

Comment ça marche

Un automate fini : $A = (\Sigma, Q, Q_0, F, \delta)$:

- Σ , Q ensembles finis, $Q_0, F \subseteq Q$,
- $\delta \subseteq Q \times \Sigma \times Q$: la relation de transition

On note $q \stackrel{a}{\longrightarrow} r$ si $(q, a, r) \in \delta$. \iff la seule chose qui a changé!

Définition

- Un calcul dans A est une séquence $\sigma = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} q_n$.
- L'étiquette d'un calcul comme ci-dessus est

$$\lambda(\sigma)=a_1a_2\ldots a_{n-1}\in\Sigma^*.$$

- Un calcul comme ci-dessus est réussi si $q_1 \in Q_0$ et $q_n \in F$.
- Le langage reconnu par A est $L(A) = \{\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A\}.$

Langages reconnaissables

Théorème

Pour tout automate fini A il existe un automate fini déterministe A' tel que L(A') = L(A).

- pour la démonstration faut attendre demain
- en fait, tout les automates qu'on a vu sont équivalent :

Langages reconnaissables

Définition

Un langage $L \subseteq \Sigma^*$ est reconnaissable si il existe un automate fini A tel que L = L(A).

Théorème

Un langage $L \subseteq \Sigma^*$ est reconnaissable ssi il existe un automate fini

- déterministe,
- o déterministe complet, ou
- (non-déterministe) à transitions spontanées

A tel que L = L(A).

démonstration demain

Aperçu 0000000

5 minutes de réflexion

Vrai ou faux?

- ullet baba $\in L(A)$
- \bigcirc abab $\in L(A)$
- \bigcirc aaaa $\in L(A)$
- $\circ \varepsilon \in L(A)$
- $oldsymbol{1}$ $L(a^*ab^*b) \subseteq L(A)$

5 minutes de réflexion

Vrai ou faux?

$$lacktriangle$$
 baba $\in L(A)$

$$\bigcirc$$
 abab $\in L(A)$

$$lacksquare$$
 aaab $\in L(A)$

$$oldsymbol{a}$$
 $aaaa \in L(A)$

$$\circ \varepsilon \in L(A)$$

$$oldsymbol{1}$$
 $L(a^*ab^*b) \subseteq L(A)$

Des expressions rationnelles aux automates

Automates finis aux transitions spontanées

Définition (4.11)

Un automate fini à transitions spontanées est une structure $(\Sigma, Q, Q_0, F, \delta)$ où

- \bullet Σ est un ensemble fini de symboles,
- Q est un ensemble fini d'états,
- $Q_0 \subseteq Q$ est l'ensemble des états initiaux,
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$ est la relation de transition.
- peut changer de l'état spontanément sans lire un symbole

Comment ça marche

Un automate fini à transitions spontanées : $A = (\Sigma, Q, Q_0, F, \delta)$:

- Σ , Q ensembles finis, $Q_0, F \subseteq Q$,
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$: la relation de transition

On note $q \stackrel{a}{\longrightarrow} r$ si $(q, a, r) \in \delta$. \iff donc a peut être ε

Définition

- Un calcul dans A est une séquence $\sigma = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} q_n$.
- L'étiquette d'un calcul comme ci-dessus est

$$\lambda(\sigma)=a_1a_2\ldots a_{n-1}\in\Sigma^*.$$

- Un calcul comme ci-dessus est réussi si $q_1 \in Q_0$ et $q_n \in F$.
- Le langage reconnu par A est $L(A) = \{\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A\}.$
- note $a \varepsilon b \varepsilon a \varepsilon b = abab$, par exemple

Théorème de Kleene

Théorème (Kleene)

Un langage $L \subseteq \Sigma^*$ est rationnel ssi il est reconnaissable.

syntaxe sémantique aut. finis dét. complets langages reconnaissables aut, finis déterministes langages reconnaissables langages reconnaissables automates finis $1 \cap$ aut. finis à trans. spontanées langages reconnaissables expressions rationelles langages rationnelles

Fin à la spontanéité

Lemme

Pour tout automate fini à transitions spontanées A il existe un automate fini A' tel que L(A') = L(A).

• on note $q \xrightarrow{\varepsilon} r$ si il existe une suite $q \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} r$ de transitions spontanées

- Soit $A = (\Sigma, Q, Q_0, F, \delta)$.
- ② On construit $A' = (\Sigma, Q', Q'_0, F', \delta')$ comme suit :
- $Q' = Q, Q'_0 = Q_0,$

- **1** Maintenant il faut démontrer que, en fait, L(A') = L(A).

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

- Soit e une expression rationnelle.
- ② On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- **③** Si $e = \emptyset$, alors soit $A(e) = → \bigcirc$ (sans transitions).

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

- Soit e une expression rationnelle.
- ② On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- lacktriangledown Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ (sans transitions).
- Si $e = \varepsilon$, alors soit A(e) =

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

- Soit e une expression rationnelle.
- ② On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- \bigcirc Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ \bigcirc (sans transitions).

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

- Soit e une expression rationnelle.
- On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- \bigcirc Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ (sans transitions).
- Si $e = a \in \Sigma$, alors soit A(e) =

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

- Soit e une expression rationnelle.
- On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- \bigcirc Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ (sans transitions).
- Si $e = a \in \Sigma$, alors soit $A(e) = \longrightarrow \bigcirc \xrightarrow{a} \bigcirc \longrightarrow$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

Si $e = e_1 e_2$, alors prenons $A(e_1) = \longrightarrow i_1 \longrightarrow Q_1 \longrightarrow f_1 \longrightarrow$ et $A(e_2) = \longrightarrow i_2 \longrightarrow Q_2 \longrightarrow f_2 \longrightarrow$ et construisons

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

 $\text{ Si } e = e_1 + e_2, \text{ alors prenons } A(e_1) = \longrightarrow \overbrace{i_1} \longrightarrow \boxed{Q_1} \longrightarrow \overbrace{f_1} \longrightarrow \\ \text{ et } A(e_2) = \longrightarrow \overbrace{i_2} \longrightarrow \boxed{Q_2} \longrightarrow \overbrace{f_2} \longrightarrow \\ \text{ et construisons }$

$$A(e) =$$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

 $\text{ Si } e = e_1 + e_2, \text{ alors prenons } A(e_1) = \longrightarrow \overbrace{i_1} \longrightarrow \boxed{Q_1} \longrightarrow \overbrace{f_1} \longrightarrow \\ \text{ et } A(e_2) = \longrightarrow \overbrace{i_2} \longrightarrow \boxed{Q_2} \longrightarrow \overbrace{f_2} \longrightarrow \\ \text{ et construisons }$

$$A(e) = \longrightarrow_{i} \qquad \qquad \downarrow_{i_{2}} \qquad \downarrow_{Q_{2}} \qquad \downarrow_{f_{2}} \qquad \downarrow_{\varepsilon} \qquad \downarrow_{\varepsilon}$$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

 \bigcirc Si $e=e_1^*$, alors prenons $A(e_1)=\longrightarrow \overbrace{i_1}\longrightarrow \overbrace{Q_1}\longrightarrow \overbrace{f_1}\longrightarrow \overbrace{f_1}\bigcirc \overbrace{f_1}\longrightarrow \overbrace{f_1}\bigcirc \overbrace{f_1}$

$$A(e) =$$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

 \bigcirc Si $e=e_1^*$, alors prenons $A(e_1)=\longrightarrow \overbrace{i_1}\longrightarrow \overbrace{Q_1}\longrightarrow \overbrace{f_1}\longrightarrow \overbrace{f_1}\bigcirc \overbrace{f_1}\longrightarrow \overbrace{f_1}\bigcirc \overbrace{f_1}$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

ullet Si $e=e_1^*$, alors prenons $A(e_1)=$ \longrightarrow $egin{array}{c} i_1 \\ \longrightarrow & Q_1 \\ \longrightarrow$

$$A(e) = \longrightarrow_{i} \xrightarrow{\varepsilon} \stackrel{i_1}{\xrightarrow{\varepsilon}} \xrightarrow{f_1} \xrightarrow{\varepsilon} f$$

• Maintenant il faut démontrer que L(A(e)) = L(e) en chaque cas.

