UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE DESENVOLVIMENTO TECNOLÓGICO CURSO DE ENGENHARIA DE COMPUTAÇÃO DISCIPLINA DE SISTEMAS DIGITAIS AVANÇADOS

RELATÓRIO SOBRE TRABALHO FINAL

PROCESSADOR MIPS PIPELINE

ANDRÉ NACHTIGALL, HENRIQUE KESSLER E WAGNER LOCH

PELOTAS, DEZEMBRO DE 2018 André Nachtigall, Henrique Kessler e Wagner Loch

Processador MIPS Pipeline

Relatório realizado como requisito do Trabalho Final da disciplina de Sistemas Digitais Avançados.

Resumo

O objetivo do trabalho é aplicar os conhecimentos adquiridos ao longo da disciplina de Sistemas Digitais Avançados em um projeto de maior escala. Foi escolhido pelo grupo implementar o Processador MIPS Pipeline conforme aprendido na disciplina de Arquitetura e Organização de Computadores I.

Desenvolvimento

O diagrama de blocos utilizado para desenvolver o Processador MIPS Pipeline segue conforme a Figura 1.

Figura 1. Diagrama de blocos do Processador MIPS Pipeline.

O sistema foi separado em diversas entidades, sendo elas: adder4, adderAB, controle, dec_5x1, extend_16_to_32, fliflop, matrix32x32, memData, memInst, memInst2, MIPS, mux_2x1, mux_32x1, opULA, PC, RegBank, RegN, shift_left_2 e ULA. Esta fragmentação facilitou o desenvolvimento do projeto por permitir o reuso de código e por facilitar a validação, tendo em vista que cada entidade foi validada individualmente.

Resultados

A tecnologia alvo foi a família Cyclone II da Altera, os resultados obtidos da implementação proposta segue conforme a Tabela 1.

Tabela 1 – Resultados obtidos.

Categoria	Resultado
Funções Combinacionais	2593
Registradores	1227
Frequência de Operação	88,39 MHz
Bits de memória	32768
Vazão*	1

^{*}Após o preenchimento do pipeline.

A validação do sistema foi feita através da análise das formas de onda na saída do último estágio de execução conforme a Figura 2. Foi executado o seguinte código:

RESET

ADDI R1 R1 5 (R1 = R1 + 5)

ADDI R1 R1 1 (R1 = R1 + 1)

ADDI R1 R1 2 (R1 = R1 + 2)

ADDI R1 R1 3 (R1 = R1 + 3)

ADDI R1 R1 4 (R1 = R1 + 4)

WAIT

ADDI R1 R1 5 (R1 = R1 + 5)

SLL R2 R1 R1 (R2 = R1 << R1)

AND R2 R1 R1 (R2 = R1 AND R1)

SUB R2 R1 R1 (R2 = R1 - R1)

ADDI R1 R1 5 (R1 = R1 + 5)

Figura 2 - Formas de onda do código executado.

É possível verificar o funcionamento correto das operações, todavia, o sistema de controle não trata os conflitos entre operações, é possível verificar este evento nas primeiras cinco instruções, onde são feitas as somas com os valores desatualizados.