BEST AVAILABLE COPY

PCT/JP 2005/004350

日本国特許庁 JAPAN PATENT OFFICE

14. 3. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 6月23日

出 願 番 号 Application Number:

特願2004-185613

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

哲号
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

J P 2 0 0 4 - 1 8 5 6 1 3

出 願 人 Applicant(s): 日立化成デュポンマイクロシステムズ株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 4月21日

【書類名】 特許願

【整理番号】 PHKA-16335

【提出日】平成16年 6月23日【あて先】特許庁長官殿【国際特許分類】C08G 73/22

G03F 7/038 H01L 21/00

【発明者】

【住所又は居所】 茨城県日立市東町四丁目13番1号 日立化成工業株式会社 総

合研究所内

【氏名】 服部 孝司

【発明者】

【住所又は居所】 茨城県日立市東町四丁目13番1号 日立化成工業株式会社 総

合研究所内

【氏名】 村上 泰治

【発明者】

【住所又は居所】 茨城県日立市東町四丁目13番1号 日立化成工業株式会社 総

合研究所内

【氏名】 松谷 寛

【発明者】

【住所又は居所】 茨城県日立市東町四丁目13番1号 日立化成デュポンマイクロ

システムズ株式会社 山崎開発センタ内

【氏名】 大江 匡之

【発明者】

【住所又は居所】 茨城県日立市東町四丁目13番1号 日立化成デュポンマイクロ

システムズ株式会社 山崎開発センタ内

【氏名】 中野 一

【特許出願人】

【識別番号】 398008295

【氏名又は名称】 日立化成デュポンマイクロシステムズ株式会社

【代理人】

【識別番号】 100089118

【弁理士】

【氏名又は名称】 酒井 宏明

【先の出願に基づく優先権主張】

【出願番号】 特願2004-139149 【出願日】 平成16年 5月 7日

【手数料の表示】

【予納台帳番号】 036711 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

(a) ポリオキサゾール前駆体の構造を有するアルカリ水溶液可溶性のポリアミドと、 (b) o-キノンジアジド化合物と、(c)加熱により酸を発生する熱潜在酸発生剤とを 含むポジ型感光性樹脂組成物。

【請求項2】

前記 (a) 成分が、下記一般式 (I)

【化1】

(式中、Uは4価の有機基を示し、Vは2価の有機基を示す)で表される繰り返し単位を 有するアルカリ水溶液可溶性のポリアミドである請求項1に記載のポジ型感光性樹脂組成 物。

【請求項3】

前記(c)成分が、強酸と塩基から形成された塩である請求項1または2に記載のポジ 型感光性樹脂組成物。

【請求項4】

前記(c)成分の分解開始温度が、150℃以上250℃以下である請求項1~3のい ずれか1項に記載のポジ型感光性樹脂組成物。

【請求項5】

前記(c)成分が、トルエンスルホン酸塩であることを特徴とする請求項1~4のいず れか1項に記載のポジ型感光性樹脂組成物。

【請求項6】

前記(c)成分が、ヨードニウム塩であることを特徴とする請求項1~5のいずれか1 項に記載のポジ型感光性樹脂組成物。

【請求項7】

さらに、(d)フェノール性水酸基を有する化合物を含むことを特徴とする請求項1~ 6 のいずれか1項に記載のポジ型感光性樹脂組成物。

【譜求項8】

前記(d)成分が、下記一般式(II)

【化2】

$$(R^{5}OCH_{2})_{m}$$
 $(R^{3})_{p}$
 $(R^{4})_{q}$
 $(R^{4})_{q}$
 $(R^{5}OCH_{2})_{m}$
 $(R^{5}OCH_{2})_{m}$

(式中、Xは単結合Yは2価の有機基を示し、 $R^3 \sim R^6$ は各々独立に水素原子または一価 の有機基を示し、m及びnは各々独立に1~3の整数であり、p及びqは各々独立に0~ 4 の整数である) で表される化合物であることを特徴とする請求項7に記載のポジ型感光 性樹脂組成物。

【請求項9】

上記一般式 (II) 中、Xで表される基が、下記一般式 (III) 【化3】

(式中、2つのAは各々独立に水素原子又は炭素原子数1~10のアルキル基を示し、酸素原子、フッ素原子を含んでいても良い)で表される基であることを特徴とする請求項8に記載のポジ型感光性樹脂組成物。

【請求項10】

前記(a)成分、(b)成分、および(c)成分間の配合割合が、前記(a)成分100重量部に対して、前記(b)成分5~100重量部、前記(c)成分0.1~30重量部であることを特徴とする請求項1~9のいずれか1項に記載のポジ型感光性樹脂組成物

【請求項11】

前記(a)成分、(b)成分、(c)成分、および(d)成分間の配合割合が、前記(a)成分100重量部に対して、前記(b)成分 $5\sim100$ 重量部、前記(c)成分 $0.1\sim30$ 重量部、前記(d)成分 $1\sim30$ 重量部配合であることを特徴とする請求項1000いずれか1項に記載のポジ型感光性樹脂組成物。

【請求項12】

請求項1~11のいずれか1項に記載のポジ型感光性樹脂組成物を支持基板上に塗布し 乾燥する工程と、前記乾燥により得られた感光性樹脂膜を所定のパターンに露光する工程 と、前記露光後の感光性樹脂膜を加熱する工程と、前記加熱後の感光性樹脂膜をアルカリ 水溶液を用いて現像する工程と、前記現像後の感光性樹脂膜を加熱処理する工程とを含む パターンの製造方法。

【請求項13】

前記現像後の感光性樹脂膜を加熱処理する工程において、その加熱処理温度が280℃ 以下であることを特徴とする請求項12に記載のパターン製造方法。

【請求項14】

請求項12または13に記載の製造方法により得られるパターンの層を有してなる電子 デバイスを有する電子部品であって、前記電子デバイス中に前記パターンの層が層間絶縁 膜層及び/または表面保護膜層として設けられていることを特徴とする電子部品。

【請求項15】

MRAMである請求項14に記載の電子部品。

【魯類名】明細魯

【発明の名称】ポジ型感光性樹脂組成物、パターンの製造方法及び電子部品 【技術分野】

. [0001]

本発明は感光性を有するポリオキサゾール前駆体を含有する耐熱性ポジ型感光性樹脂組 成物、該組成物を用いたパターンの製造方法及び電子部品に関するものである。

【背景技術】

[0002]

従来、半導体素子の表面保護膜、層間絶縁膜には優れた耐熱性と電気特性、機械特性等 を併せ持つポリイミド樹脂が用いられている。しかし近年半導体素子の髙集積化、大型化 が進む中、封止樹脂パッケージの薄型化小型化の要求がありLOC(リード・オン・チッ プ) や半田リフローによる表面実装などの方式が取られてきており、これまで以上に機械 特性、耐熱性等に優れたポリイミド樹脂が必要とされるようになってきた。

[0003]

一方、ポリイミド樹脂自身に感光特性を付与した感光性ポリイミドが用いられてきてい るが、これを用いるとパターン作成工程が簡略化でき、煩雑な製造工程の短縮が行えると いう特徴を有する。従来の感光性ポリイミドまたはその前駆体を用いてなる耐熱性フォト レジストや、その用途については良く知られている。ネガ型では、ポリイミド前駆体にエ ステル結合またはイオン結合を介してメタクリロイル基を導入する方法(例えば、特許文 献1~4参照)、光重合性オレフィンを有する可溶性ポリイミド(例えば、特許文献 5~ 10参照)、ベンゾフェノン骨格を有し、かつ窒素原子が結合する芳香環のオルソ位にア ルキル基を有する自己増感型ポリイミド(例えば、特許文献11、12参照)などがある

[0004]

上記のネガ型では、現像の際にNーメチルピロリドン等の有機溶剤を必要とするため、 最近では、アルカリ水溶液で現像ができるポジ型の感光性樹脂の提案がなされている。ポ ジ型ではポリイミド前駆体にエステル結合を介してοーニトロベンジル基を導入する方法 (例えば、非特許文献1参照)、可溶性ヒドロキシルイミドまたはポリオキサゾール前駆 体にナフトキノンジアジド化合物を混合する方法(例えば、特許文献13、14参照)、 可溶性ポリイミドにエステル結合を介してナフトキノンジアジドを導入する方法(例えば 、非特許文献2参照)、ポリイミド前駆体にナフトキノンジアジドを混合するもの(例え ば、特許文献15参照)などがある。

[0005]

しかしながら、上記のネガ型ではその機能上、解像度に問題があったり、用途によって は製造時の歩留まり低下を招いたりするなどの問題がある。また、上記のものでは用いる ポリマーの構造が限定されるために、最終的に得られる被膜の物性が限定されてしまい多 目的用途には不向きなものである。一方、ポジ型においても上記のように感光剤の吸収波 長に伴う問題から感度や解像度が低かったり、構造が限定されたりして、同様の問題を有 する。

[0006]

また、ポリベンゾオキサゾール前駆体にジアゾナフトキノン化合物を混合したもの(例 えば、特許文献16参照)や、ポリアミド酸にエステル結合を介してフェノール部位を導 入したもの(例えば、特許文献17参照)などカルボン酸の代わりにフェノール性水酸基 を導入したものがあるが、これらのものは現像性が不十分であり未露光部の膜減りや樹脂 の基材からの剥離が起こる。

[0007]

また、こうした現像性や接着の改良を目的に、シロキサン部位をポリマー骨格中に有す るポリアミド酸を混合したもの(例えば、特許文献18、19参照)が提案されているが 、前述のごとくポリアミド酸を用いるため保存安定性が悪化する。加えて保存安定性や接 着の改良を目的に、アミン末端基を重合性基で封止したもの(例えば、特許文献20~2

2 参照) も提案されているが、これらのものは、酸発生剤として芳香環を多数含むジアゾ キノン化合物を用いるため、感度が低く、ジアゾキノン化合物の添加量を増やす必要から 、熱硬化後の機械物性を著しく低下させると言う問題があり、実用レベルの材料とは言い 難いものである。

[0008]

前記ジアゾキノン化合物の問題点の改良を目的に種々の化学増幅システムを適用したも・ のも提案されている。化学増幅型のポリイミド(例えば、特許文献 2 3 参照)、化学増幅 型のポリイミドあるいはポリベンゾオキサゾール前駆体(例えば、特許文献24~30参 照) が挙げられるが、これらは髙感度のものは低分子量が招く膜特性の低下が、膜特性に 優れるものは高分子量が招く溶解性不十分による感度の低下が見られ、いずれも実用レベ ルの材料とは言い難いものである。従って、いずれも未だ実用化レベルで充分なものはな いのが実状である。

[0009]

【特許文献1】特開昭49-11541号公報 【特許文献2】特開昭50-40922号公報 【特許文献3】特開昭54-145794号公報 【特許文献4】特開昭56-38038号公報等 【特許文献5】特開昭59-108031号公報 【特許文献6】特開昭59-220730号公報 【特許文献7】特開昭59-232122号公報 【特許文献8】特開昭60-6729号公報 【特許文献9】特開昭60-72925号公報 【特許文献10】特開昭61-57620号公報等 【特許文献11】特開昭59-219330号公報 【特許文献12】特開昭231533号公報 【特許文献13】特公昭64-60630号公報 【特許文献14】米国特許4395482号明細書 【特許文献15】特開昭52-13315号公報 【特許文献16】特開平1-46862号公報 【特許文献17】特開平10-307393号公報 【特許文献18】特開平4-31861号公報 【特許文献19】特開平4-46345号公報 【特許文献20】特開平5-197153号公報 【特許文献21】特開平9-183846号公報 【特許文献22】特開2001-183835号公報 【特許文献23】特開平3-763号公報 【特許文献24】特開平7-219228号公報 【特許文献25】特開平10-186664号公報 【特許文献26】特開平11-202489号公報 【特許文献27】特開2000-56559号公報 【特許文献28】特開2001-194791号公報 【特許文献29】特表2002-526793号公報 【特許文献30】米国特許6143467号明細書 【非特許文献1】 J. Macromol. Sci. Chem., A24, 10, 1407, 1987 【非特許文献 2】 Macromolecules, 23, 1990

【発明の開示】

【発明が解決しようとする課題】

[0010]

感光性ポリイミドあるいは感光性ポリベンゾオキサゾールは、パターン形成後に、通常 出証特2005-3036648

、350℃前後の高温で硬化を行う。これに対して、最近、登場してきた次世代メモリー として有望なMRAM(Magnet Resistive RAM:不揮発性磁気抵抗メモリ)は高温プロセ スに弱く、低温プロセスが望まれている。したがって、バッファーコート (表面保護膜) 材でも、従来の350℃前後というような高温でなく、約280℃の以下の低温で硬化が でき、さらには硬化後の膜の物性が、髙温で硬化したものと遜色ない性能が得られるバッ ファーコート材が不可欠となってきた。

[0011]

そこで、本発明はアルカリ現像可能な感光性ポリベンゾオキサゾール前駆体に関して、 特定の添加剤を用いることにより、低温での硬化プロセスによっても高温での硬化膜の物 性と差がないような耐熱性に富んだポジ型の感光性樹脂組成物を提供するものである。ま た本発明は、前記組成物の使用により、アルカリ水溶液で現像可能であり、感度、解像度 に優れ、280℃以下の低温硬化プロセスによって耐熱性に優れた、良好な形状のパター ンが得られるパターンの製造方法を提供するものである。

[0012]

また、本発明は、良好な形状と特性のパターンを有し、さらには低温プロセスで硬化で きることにより、デバイスへのダメージが避けられ、信頼性の高い電子部品を歩留まり良 く提供するものである。

【課題を解決するための手段】

[0013]

本発明は、次のものに関する。

(a) ポリオキサゾール前駆体の構造を有するアルカリ水溶液可溶性のポリアミ [1]ドと、(b) o-キノンジアジド化合物と、(c)加熱により酸を発生する熱潜在酸発生 剤とを含むポジ型感光性樹脂組成物。

[2] 前記(a)成分が、下記一般式(I)

[0014]【化1】

[0015]

(式中、Uは4価の有機基を示し、Vは2価の有機基を示す)で表される繰り返し単位を 有するアルカリ水溶液可溶性のポリアミドである上記 [1] に記載のポジ型感光性樹脂組 成物。

前記 (c) 成分が、強酸と塩基から形成された塩である上記 [1] または [2] [3] に記載のポジ型感光性樹脂組成物。

前記(c)成分の分解開始温度が、150℃以上250℃以下である上記[1] ~ [3] のいずれか1つに記載のポジ型感光性樹脂組成物。

[5] 前記 (c) 成分が、トルエンスルホン酸塩であることを特徴とする上記 [1] ~ [4] のいずれか1つに記載のポジ型感光性樹脂組成物。

[6] 前記 (c) 成分が、ヨードニウム塩であることを特徴とする上記 [1] ~ [5] のいずれか1つに記載のポジ型感光性樹脂組成物。

[7] さらに、(d) フェノール性水酸基を有する化合物を含むことを特徴とする上記[1]~[6]のいずれか1つに記載のポジ型感光性樹脂組成物。

[8] 前記 (d) 成分が、下記一般式 (II)

[0016]

[11:2]

$$(R^{5}OCH_{2})_{m}$$
 $(R^{3})_{p}$
 $(R^{4})_{q}$
 (II)

[0017]

(式中、Xは単結合又は2価の有機基を示し、R³~R6は各々独立に水素原子または一価 の有機基を示し、m及びnは各々独立に1~3の整数であり、p及びqは各々独立に0~ 4の整数である)で表される化合物であることを特徴とする上記 [7] に記載のポジ型感 光性樹脂組成物。

[9] 上記一般式 (II) 中、Xで表される基が、下記一般式 (III)

[0018] 【化3】

[0019]

(式中、2つのAは各々独立に水素原子又は炭素原子数1~10のアルキル基を示し、酸 素原子、フッ素原子を含んでいても良い)で表される基であることを特徴とする上記 [8 〕に記載のポジ型感光性樹脂組成物。

[10] 前記 (a)成分、(b)成分、および(c)成分間の配合割合が、前記(a)成 分100重量部に対して、前記 (b) 成分5~100重量部、前記 (c) 成分0.1~3 0 重量部であることを特徴とする上記 [1] ~ [9] のいずれか1つに記載のポジ型感光 性樹脂組成物。

[11] 前記 (a)成分、(b)成分、(c)成分、および(d)成分間の配合割合が、 前記(a)成分100重量部に対して、前記(b)成分5~100重量部、前記(c)成 分0.1~30重量部、前記(d)成分1~30重量部配合であることを特徴とする上記 [7] ~ [10] のいずれか1つに記載のポジ型感光性樹脂組成物。

[12] 上記[1]~[11]のいずれか1つに記載のポジ型感光性樹脂組成物を支持 基板上に塗布し乾燥する工程と、前記乾燥により得られた感光性樹脂膜を所定のパターン に露光する工程と、前記露光後の感光性樹脂膜を加熱する工程と、前記加熱後の感光性樹 脂膜をアルカリ水溶液を用いて現像する工程と、前記現像後の感光性樹脂膜を加熱処理す る工程とを含むパターンの製造方法。

[13] 前記現像後の感光性樹脂膜を加熱処理する工程において、その加熱処理温度が 280℃以下であることを特徴とする上記 [12] に記載のパターン製造方法。

[14] 上記 [12] または [13] に記載の製造方法により得られるパターンの層を有 してなる電子デバイスを有する電子部品であって、前記電子デバイス中に前記パターンの 層が層間絶縁膜層及び/または表面保護膜層として設けられていることを特徴とする電子 部品。

MRAMである[14]に記載の電子部品。 [15]

【発明の効果】

[0020]

本発明のポジ型感光性樹脂組成物は、感光性樹脂膜を露光、現像後に加熱処理する工程において、熱潜在酸発生剤から発生した酸が、ポリベンゾオキサゾール前駆体のフェノール性水酸基含有ポリアミド構造が脱水反応を起こして環化する際の触媒として、働く。したがって、より低温で効率的に環化反応や硬化反応が起きる。用いる熱潜在酸発生剤として、適当なものを選ぶことにより、露光部と未露光部の現像液に対する溶解速度差(溶解コントラスト)には悪影響を及ぼさず、感度、解像度に優れる。また本発明のパターンの製造方法によれば、前記組成物の使用により、感度、解像度、接着性に優れ、さらに低温硬化プロセスでも耐熱性に優れ、吸水率の低い、良好な形状のパターンが得られる。

[0021]

また、本発明の電子部品は、良好な形状と接着性、耐熱性に優れたパターンを有し、さらには低温プロセスで硬化できることにより、デバイスへのダメージが避けられ、信頼性の高いものである。またデバイスへのダメージが少ないことから、歩留まりも高い。

【発明を実施するための最良の形態】

[0022]

以下に、本発明の実施形態について説明する。

本発明においては、(a)成分として、ポリオキサゾール前駆体の構造を有するアルカリ水溶液可溶性のポリアミドを使用する。ポリオキサゾール前駆体の構造をもち、アルカリ水溶液可溶性であれば特に制限はなく、例えば、ポリオキサゾール前駆体ではないポリアミドの構造、ポリベンゾオキサゾールの構造、ポリイミドやポリイミド前駆体(ポリアミド酸やポリアミド酸エステル)の構造を、ポリオキサゾール前駆体の構造と共に有していても良い。

[0023]

このようなポリアミドとしては、前記一般式(I)で表される繰り返し単位を有するアルカリ水溶液可溶性のフェノール性水酸基含有ポリアミドが好ましいものとして挙げられ、これは一般にポリオキサゾール、好ましくはポリベンゾオキサゾールの前駆体として機能する。なお、アルカリ水溶液とは、テトラメチルアンモニウムヒドロキシド水溶液、金属水酸化物水溶液、有機アミン水溶液等のアルカリ性の溶液である。ポリオキサゾール前駆体の構造、例えば、一般式(I)で表されるヒドロキシ基を含有するアミドユニットは、最終的には硬化時の脱水閉環により、耐熱性、機械特性、電気特性に優れるオキサゾール体に変換される。

[0024]

本発明で用いるポリアミドは、前記一般式(I)で表される繰り返し単位を有するものが好ましいが、そのポリアミドのアルカリ水溶液に対する可溶性は、Uに結合するOH基(一般にはフェノール性水酸基)に由来するため、前記OH基を含有するアミドユニットが、ある割合以上含まれていることが好ましい。

[0025]

即ち、下記一般式 (IV)

[0026]

【化4】

$$+NH-U-NH-C-V-C+ +NH-W-NH-C-V-C+ +NH-W-NH-C-V-C- +NH-W-NH-C-V-C- +NH-W-NH-C-V-C- +NH-W-NH-C-V-C- +NH-W-NH-C-V-C- +NH-W-NH-C-V-C- +NH-W-NH-C-V-C- +NH-W-NH-C-V-C- +NH-W-NH-C-V-C- +NH-W-NH-C-V$$

(IV)

(式中、Uは4価の有機基を示し、VとWは2価の有機基を示す。 j と k は、モル分率を 示し、jとkの和は100モル%であり、jが60~100モル%、kが40~0モル% である)で表されるポリアミドであることが好ましい。ここで、式中のjとkのモル分率 は、j=80~100モル%、k=20~0モル%であることがより好ましい。

[0028]

(a) 成分の分子量は、重量平均分子量で3,000~200,000が好ましく、5 000~100,000がより好ましい。ここで、分子量は、ゲルパーミエーションク ロマトグラフィー法により測定し、標準ポリスチレン検量線より換算して得た値である。

[0029]

本発明におけるポリアミドの製造方法に特に制限はなく、例えば前記一般式(I)で表 される繰り返し単位を有するポリアミドは、一般的にジカルボン酸誘導体とヒドロキシ基 含有ジアミン類とから合成できる。具体的には、ジカルボン酸誘導体をジハライド誘導体 に変換後、前記ジアミン類との反応を行うことにより合成できる。ジハライド誘導体とし ては、ジクロリド誘導体が好ましい。

[0030]

ジクロリド誘導体は、ジカルボン酸誘導体にハロゲン化剤を作用させて合成することが できる。ハロゲン化剤としては通常のカルボン酸の酸クロ化反応に使用される、塩化チオ ニル、塩化ホスホリル、オキシ塩化リン、五塩化リン等が使用できる。

[0031]

ジクロリド誘導体を合成する方法としては、ジカルボン酸誘導体と上記ハロゲン化剤を 溶媒中で反応させるか、過剰のハロゲン化剤中で反応を行った後、過剰分を留去する方法 で合成できる。反応溶媒としは、Nーメチルー2-ピロリドン、Nーメチルー2-ピリド ン、N, N-ジメチルアセトアミド、N, N-ジメチルホルムアミド、トルエン、ベンゼ ン等が使用できる。

[0032]

これらのハロゲン化剤の使用量は、溶媒中で反応させる場合は、ジカルボン酸誘導体に 対して、 $1.5 \sim 3.0$ モルが好ましく、 $1.7 \sim 2.5$ モルがより好ましく、ハロゲン 化剤中で反応させる場合は、4.0~50モルが好ましく、5.0~20モルがより好ま しい。反応温度は、−10~70℃が好ましく、0~20℃がより好ましい。

[0033]

ジクロリド誘導体とジアミン類との反応は、脱ハロゲン化水素剤の存在下に、有機溶媒 中で行うことが好ましい。脱ハロゲン化水素剤としては、通常、ピリジン、トリエチルア ミン等の有機塩基が使用される。また、有機溶媒としは、N-メチルー2-ピロリドン、 N-メチル-2-ピリドン、N, N-ジメチルアセトアミド、N, N-ジメチルホルムア ミド等が使用できる。反応温度は、−10~30℃が好ましく、0~20℃がより好まし

[0034]

ここで、一般式(I)において、Uで表される4価の有機基とは、一般に、ジカルボン 酸と反応してポリアミド構造を形成するジヒドロキシジアミン由来の残基であり、4価の 芳香族基が好ましく、炭素原子数としては6~40のものが好ましく、炭素原子数6~4 0の4価の芳香族基がより好ましい。4価の芳香族基としては、4個の結合部位がいずれ も芳香環上に存在し、2個のヒドロキシ基がそれぞれアミンのオルト位に位置した構造を 有するジアミンの残基が好ましい。

[0035]

このようなジアミン類としては、3,3'ージアミノー4,4'ージヒドロキシピフェニ ル、4,4'ージアミノー3,3'ージヒドロキシビフェニル、ビス(3ーアミノー4ーヒ ドロキシフェニル) プロパン、ビス (4-アミノー3-ヒドロキシフェニル) プロパン、 ビス (3-アミノー4-ヒドロキシフェニル) スルホン、ビス (4-アミノー3-ヒドロ キシフェニル)スルホン、2,2ービス(3-アミノー4-ヒドロキシフェニル)-1, 1, 1, 3, 3, 3ーヘキサフルオロプロパン、2, 2ービス(4ーアミノー3ーヒドロ

[0036]

また、前記ポリアミドの式において、Wで表される2価の有機基とは、一般に、ジカルボン酸と反応してポリアミド構造を形成する、ジアミン由来(但し前記Uを形成するジヒドロキシジアミン以外)の残基であり、2価の芳香族基又は脂肪族基が好ましく、炭素原子数としては4~40のものが好ましく、炭素原子数4~40の2価の芳香族基がより好ましい。

[0037]

このようなジアミン類としては、4, 4'ージアミノジフェニルエーテル、4, 4'ージアミノジフェニルメタン、4, 4'ージアミノジフェニルスルホン、4, 4'ージアミノジフェニルスルフィド、ベンジシン、mーフェニレンジアミン、pーフェニレンジアミン、1, 5ーナフタレンジアミン、2, 6ーナフタレンジアミン、ビス (4-アミノフェノキシフェニル)スルホン、ビス (3-アミノフェノキシフェニル)スルホン、ビス (4-アミノフェノキシ)ブェニル、ビス [4-(4-アミノフェノキシ)フェニル]エーテル、1, 4-ビス (4-アミノフェノキシ)ベンゼン等の芳香族ジアミン化合物、この他にもシリコーン基の入ったジアミンとして、LP-7100、X-22-161AS、X-22-161AS、X-22-161AS、X-22-161AS、X-22-161AS、X-22-161AS、X-22-161AS、X-22-161AS、X-22-161AS、X-22-161AS、X-22-161AS、X-22-161AS、X-22-161AS X-22-161AS X-22-2161AS X-22-22-22-230AS X-230AS X-240AS X-240AS X-240AS X-240AS X-240AS X-240AS

[0038]

また、一般式(I)において、Vで表される2価の有機基とは、ジアミンと反応してポリアミド構造を形成する、ジカルボン酸由来の残基であり、2価の芳香族基が好ましく、炭素原子数としては6~40のものが好ましく、炭素原子数6~40の2価の芳香族基がより好ましい。2価の芳香族基としては、2個の結合部位がいずれも芳香環上に存在するものが好ましい。

[0039]

このようなジカルボン酸としては、イソフタル酸、テレフタル酸、2, 2-ビス(4-カルボキシフェニル)-1, 1, 3, 3, 3-ヘキサフルオロプロパン、4, 4'-ジカルボキシビフェニル、4, 4'-ジカルボキシア・ラフェニルシラン、ビス(4-カルボキシフェニル)、2, 2-ビス(p-カルボキシフェニル)プロパン、5-tert-ブチルイソフタル酸、5-ブロモイソフタル酸、5-フルオロイソフタル酸、5-クロロイソフタル酸、2, 6-ナフタレンジカルボン酸等の芳香族系ジカルボン酸、1, 2-シクロブタンジカルボン酸、1, 4-シクロヘキサンジカルボン酸、1, 3-シクロペンタンジカルボン酸、シュウ酸、マロン酸、コハク酸等の脂肪族系ジカルボン酸などが挙げられるがこれらに限定されるものではない。これらの化合物を、単独で又は2種以上を組み合わせて使用することができる。

[0040]

[0041]

前記ヒドロキシ化合物としては、例えば、ヒドロキノン、レゾルシノール、ピロガロール、ビスフェノールA、ビス (4-ヒドロキシフェニル) メタン、2, 2-ビス (4-ヒ

ドロキシフェニル) ヘキサフルオロプロパン、2,3,4-トリヒドロキシベンゾフェノ ン、2,3,4,4'ーテトラヒドロキシベンゾフェノン、2,2',4,4'ーテトラヒ ドロキシベンゾフェノン、2,3,4,2',3'ーペンタヒドロキシベンゾフェノン,2 , 3, 4, 3', 4', 5'ーヘキサヒドロキシベンゾフェノン、ビス(2, 3, 4ートリ ヒドロキシフェニル) メタン、ビス(2,3,4-トリヒドロキシフェニル) プロパン、 4 b, 5, 9 b, 1 0 - テトラヒドロー1, 3, 6, 8 - テトラヒドロキシー5, 1 0 -ジメチルインデノ [2, 1-a] インデン、トリス (4-ヒドロキシフェニル) メタン、 トリス (4-ヒドロキシフェニル) エタンなどが使用できる。

[0042]

アミノ化合物としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、 4, 4'-ジアミノジフェニルエーテル、4, 4'-ジアミノジフェニルメタン、4, 4' ージアミノジフェニルスルホン、4,4'ージアミノジフェニルスルフィド、oーアミノ フェノール、m-アミノフェノール、p-アミノフェノール、3, 3'ージアミノー4, 4'-ジヒドロキシビフェニル、4,4'-ジアミノ-3,3'-ジヒドロキシビフェニル 、ビス(3-アミノー4-ヒドロキシフェニル)プロパン、ビス(4-アミノー3-ヒド ロキシフェニル)プロパン、ビス(3-アミノー4-ヒドロキシフェニル)スルホン、ビ ス (4-アミノー3-ヒドロキシフェニル) スルホン、ビス (3-アミノー4-ヒドロキ シフェニル) ヘキサフルオロプロパン、ビス(4-アミノ-3-ヒドロキシフェニル)へ キサフルオロプロパンなどが使用できる。

[0043]

o-キノンジアジドスルホニルクロリドとヒドロキシ化合物及び/又はアミノ化合物と は、o-キノンジアジドスルホニルクロリド1モルに対して、ヒドロキシ基とアミノ基の 合計が 0.5~1 当量になるように配合されることが好ましい。脱塩酸剤と o ーキノンジ アジドスルホニルクロリドの好ましい割合は、0.95/1~1/0.95の範囲である 。好ましい反応温度は0~40℃、好ましい反応時間は1~10時間とされる。

[0044]

反応溶媒としては、ジオキサン、アセトン、メチルエチルケトン、テトラヒドロフラン ジエチルエーテル,Nーメチルピロリドン等の溶媒が用いられる。脱塩酸剤としては, 炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水酸化カリウ ム,トリメチルアミン,トリエチルアミン,ピリジンなどがあげられる。

[0045]

本発明のポジ型感光性樹脂組成物において、(b)成分の配合量は、露光部と未露光部 の溶解速度差と、感度の許容幅の点から、(a)成分100重量部に対して5~100重 量部が好ましく、8~40重量部がより好ましい。

[0046]

本発明において、使用される(c)成分は、加熱により酸を発生する熱潜在酸発生剤で ある。本発明の熱潜在酸発生剤は、熱分解開始温度が50℃~270℃であるものが望ま しい。具体的には、熱重量分析(TG)で測定される1%重量減少温度が50℃~270 ℃、あるいは5%重量減少温度が60℃~300℃であるものが望ましい。さらには、熱 分解開始温度が140℃~250℃であるものがプリベーク時の際に酸が発生せず、感光 特性等に悪影響を与える可能性がないのでより好ましい。具体的には、熱重量分析(TG)で測定される1%重量減少温度が140℃~250℃、あるいは5%重量減少温度が1 70℃~265℃であるものが望ましい。

[0047]

前記熱潜在酸発生剤から発生する酸としては、強酸が好ましく、具体的には、pートル エンスルホン酸、ベンゼンスルホン酸のようなアリールスルホン酸、カンファースルホン 酸、トリフルオロメタンスルホン酸、ノナフルオロプタンスルホン酸のようなパーフルオ ロアルキルスルホン酸、メタンスルホン酸、エタンスルホン酸、ブタンスルホン酸のよう なアルキルスルホン酸が望ましい。これらの酸は、ポリベンゾオキサゾール前駆体のフェ ノール性水酸基含有ポリアミド構造が脱水反応を起こして環化する際の触媒として効率的 に働く。これに対して、塩酸、臭素酸、ヨウ素酸や硝酸が出るような酸発生剤では、発生 した酸の酸性度が弱く、さらに加熱で揮発し易いこともあって、ポリベンゾオキサゾール 前駆体の環化脱水反応には殆ど関与しないと考えられ、本発明の十分な効果が得られにく

[0048]

これらの酸は熱潜在酸発生剤として、オニウム塩として塩の形やイミドスルホナートの ような共有結合の形で本発明のポジ型感光性樹脂組成物に添加される。

[0049]

具体的には、オニウム塩としては、ジフェニルヨードニウム塩のようなジアリールヨー ドニウム塩、ジ (t-ブチルフェニル) ヨードニウム塩のようなジ (アルキルアリール) ヨードニウム塩、トリメチルスルホニウム塩のようなトリアルキルスルホニウム塩、ジメ チルフェニルスルホニウム塩のようなジアルキルモノアリールスルホニウム塩、ジフェニ ルメチルスルホニウム塩のようなジアリールモノアルキルヨードニウム塩が望ましい。こ れらは、分解開始温度が150℃~250℃の範囲にあり、280℃以下でのポリベンゾ オキサゾール前駆体の環化脱水反応に際して効率的に分解する。これに対してトリフェニ ルスルホニウム塩は、本発明の熱潜在酸発生剤としては望ましくない。トリフェニルスル ホニウム塩は熱安定性が高く、一般に分解温度が300℃を超えている。したがって、2 80℃以下でのポリベンゾオキサゾール前駆体の環化脱水反応に際しては分解が起きない ので、環化脱水の触媒としては十分に働かないと考えられる。

[0050]

以上のことから、オニウム塩としての熱潜在酸発生剤としては、アリールスルホン酸、 カンファースルホン酸、パーフルオロアルキルスルホン酸またはアルキルスルホン酸の、 ジアリールヨードニウム塩、ジ(アルキルアリール)ヨードニウム塩、トリアルキルスル ホニウム塩、ジアルキルモノアリールスルホニウム塩またはジアリールモノアルキルヨー ドニウム塩であることが好ましく、より具体的には、パラトルエンスルホン酸のジ(t-ブチルフェニル)ヨードニウム塩(1%重量減少温度180℃、5%重量減少温度185 で)、トリフルオロメタンスルホン酸のジ(t -ブチルフェニル)ヨードニウム塩(1% 重量減少温度151℃、5%重量減少温度173℃)、トリフルオロメタンスルホン酸の トリメチルスルホニウム塩(1%重量減少温度255℃、5%重量減少温度278℃)、 トリフルオロメタンスルホン酸のジメチルフェニルスルホニウム塩 (1%重量減少温度1 86℃、5%重量減少温度214℃)、トリフルオロメタンスルホン酸のジフェニルメチ ルスルホニウム塩(1%重量減少温度154℃、5%重量減少温度179℃)、ノナフル オロブタンスルホン酸のジ(tーブチルフェニル)ヨードニウム塩、カンファースルホン 酸のジフェニルヨードニウム塩、エタンスルホン酸のジフェニルヨードニウム塩、ベンゼ ンスルホン酸のジメチルフェニルスルホニウム塩、トルエンスルホン酸のジフェニルメチ ルスルホニウム塩等を好ましいものとして挙げることができる。

[0051]

また、イミドスルホナートとしては、ナフトイルイミドスルホナートが望ましい。これ に対して、フタルイミドスルホナートでは、熱安定性が悪いために、硬化反応よりも前に 酸が出て、保存安定性等を劣化させるので望ましくない。ナフトイルイミドスルホナート の具体例としては1,8ーナフトイルイミドトリフルオロメチルスルホナート(1%重量 減少温度189℃、5%重量減少温度227℃)、2,3-ナフトイルイミドトリフルオ ロメチルスルホナート(1%重量減少温度185℃、5%重量減少温度216℃)などを 好ましいものとして挙げることができる。

[0052]

また、前記(c)成分として、下記、化学式に示すように、 $R^1R^2C=N-O-SO_2$ -Rの構造を持つ化合物(1%重量減少温度204℃、5%重量減少温度235℃)を用 いることもできる。ここで、Rとしては、pーメチルフェニル基、フェニル基等のアリー ル基、メチル基、エチル基、イソプロピル基等のアルキル基、トリフルオロメチル基、ノ ナフルオロプチル基等のパーフルオロアルキル基などが挙げられる。また、 R^1 としては

、シアノ基、R²としては、メトキシフェニル基、フェニル基等が挙げられる。 [0053] 【化5】

$$H_3C-O$$
 $N-O-S$
 $C=N$
 $C=N$
 $C=N$

[0054]

また、前記(c)成分として、下記、化学式に示すように、アミド構造-HN-SO2 -Rをもつ化合物(1%重量減少温度104℃、5%重量減少温度270℃)を用いるこ ともできる。ここでRとしては、メチル基、エチル基、プロピル基等のアルキル基、メチ ルフェニル基、フェニル基等のアリール基、トリフルオロメチル基、ノナフルオロブチル 等のパーフルオロアルキル基などが挙げられる。また、-HN-SO2-Rの結合する基 としては、2,2'ービス(4ーヒドロキシフェニル)ヘキサフルオロプロパンや2,2' - ビス(4-ヒドロキシフェニル)プロパン、ジ(4-ヒドロキシフェニル) エーテル等が 挙げられる。

[0055] [126]

[0056]

また、本発明で用いる(c)成分としては、オニウム塩以外の強酸と塩基から形成され た塩を用いることもできる。前記、強酸としては、pートルエンスルホン酸、ベンゼンス ルホン酸のようなアリールスルホン酸、カンファースルホン酸、トリフルオロメタンスル ホン酸、ノナフルオロブタンスルホン酸のようなパーフルオロアルキルスルホン酸、メタ ンスルホン酸、エタンスルホン酸、ブタンスルホン酸のようなアルキルスルホン酸が望ま しい。塩基としては、ピリジン、2,4,6-トリメチルピリジンのようなアルキルピリ ジン、2-クロロ-N-メチルピリジンのようなN-アルキルピリジン、ハロゲン化-N ーアルキルピリジン等が望ましい。具体的には、pートルエンスルホン酸のピリジン塩(1%重量減少温度147℃、5%重量減少温度190℃)、p-トルエンスルホン酸のL ーアスパラギン酸ジベンジルエステル塩(1%重量減少温度202℃、5%重量減少温度 218℃) や、p-トルエンスルホン酸の2, 4, 6-トリメチルピリジン塩、p-トル エンスルホン酸の1,4-ジメチルピリジン塩などが好ましいものとして挙げられる。こ れらも280℃以下でのポリペンゾオキサゾール前駆体の環化脱水反応に際して分解し、 触媒として働く。

[0057]

(c) 成分の配合量は、(a) 成分100重量部に対して0.1~30重量部が好まし く、0.2~20重量部がより好ましく、0.5~10重量部がさらに好ましい。

[0058]

本発明に使用される(d)成分であるフェノール性水酸基を有する化合物は、これを加 えることで、アルカリ水溶液で現像する際に露光部の溶解速度が増加し感度が上がり、ま た、パターン形成後の膜の硬化時に、膜の溶融を防ぐことができる。本発明に使用するこ とのできるフェノール性水酸基を有する化合物に特に制限はないが、分子量が大きくなる と露光部の溶解促進効果が小さくなるので、一般に分子量が1,500以下の化合物が好 ましい。中でも下記一般式(II)に挙げられるものが、露光部の溶解促進効果と膜の硬 化時の溶融を防止する効果のバランスに優れ特に好ましい。

[0059] 【化7】

$$(R^5OCH_2)_m$$
 $(R^3)_p$
 $(R^4)_q$
 (II)

(式中、Xは単結合Yは2価の有機基を示し、 $R^3 \sim R^6$ は各々独立に水素原子または一価 の有機基を示し、m及び n は各々独立に $1 \sim 3$ の整数であり、 p 及び q は各々独立に $0 \sim$ 4の整数である)

[0060]

上記一般式(II)において、Xで示される2価の基としては、メチレン基、エチレン 基、プロピレン基等の炭素数が1~10のアルキレン基、エチリデン基等の炭素数が2~ 10のアルキリデン基、フェニレン基等の炭素数が6~30のアリーレン基、これら炭化 水素基の水素原子の一部又は全部をフッ素原子等のハロゲン原子で置換した基、スルホン 基、カルボニル基、エーテル結合、チオエーテル結合、アミド結合等が挙げられ、また下 記一般式(V)

[0061] 【化8】

[0062]

(式中、個々のX'は、各々独立に、単結合、アルキレン基(例えば炭素原子数が1~1 0のもの)、アルキリデン基(例えば炭素数が2~10のもの)、それらの水素原子の一 部又は全部をハロゲン原子で置換した基、スルホン基、カルボニル基、エーテル結合、チ オエーテル結合、アミド結合等から選択されるものであり、R⁹は水素原子、ヒドロキシ 基、アルキル基又はハロアルキル基であり、複数存在する場合は互いに同一でも異なって いてもよく、mは1~10である)で示される2価の有機基が好ましいものとして挙げら れる。

[0063]

上記一般式(II)の中で、Xで表される基が、下記一般式(III) [0064]

【化9】

[0065]

(式中、2つのAは各々独立に水素原子又は炭素原子数1~10のアルキル基を示し、酸 素原子、フッ素原子を含んでいても良い)であるものはその効果が高くさらに好ましいも のとして挙げられる。

[0066]

本発明のポジ型感光性樹脂組成物において、(d)成分の配合量は、現像時間と、未露 光部残膜率の許容幅の点から、 (a) 成分100重量部に対して1~30重量部が好まし く、3~25重量部がより好ましい。

[0067]

本発明において、通常使用される溶剤としては、γープチロラクトン、乳酸エチル、プ ロピレングリコールモノメチルエーテルアセテート、酢酸ベンジル、n-ブチルアセテー ト、エトキシエチルプロピオネート、3-メチルメトキシプロピオネート、N-メチルー 2-ピロリドン、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、ジメ チルスルホキシド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、ジエチル ケトン、ジイソブチルケトン、メチルアミルケトン等が挙げられる。

[0068]

これらの溶剤は単独で又は2種以上併用して用いることができる。また、使用する溶剤 の量は特に制限はないが、一般に組成物中溶剤の割合が20~90重量%となるように調 整される。

[0069]

本発明においては、さらに(a)成分のアルカリ水溶液に対する溶解性を阻害する化合 物を含有させることができる。具体的には、ジフェニルヨードニウムニトラート、ビス(p-tert-ブチルフェニル) ヨードニウムニトラート、ジフェニルヨードニウムブロ マイド、ジフェニルヨードニウムクロリド、ジフェニルヨードニウムヨーダイト等である

[0070]

これらは、発生する酸が揮発し易いこともあり、ポリベンゾオキサゾール前駆体の環化 脱水反応には関与しない。しかし、効果的に溶解阻害を起こし、残膜厚や現像時間をコン トロールするのに役立つ。上記成分の配合量は、感度と現像時間の許容幅の点から、(a)成分100重量部に対して0.01~15重量部が好ましく、0.01~10重量部が より好ましく、0.05~3重量部がさらに好ましい。

[0071]

本発明のポジ型感光性樹脂組成物は、硬化膜の基板との接着性を高めるために、有機シ ラン化合物、アルミキレート化合物等を含むことができる。有機シラン化合物としては、 例えば、ビニルトリエトキシシラン、γーグリシドキシプロピルトリエトキシシラン、γ ーメタクリロキシプロピルトリメトキシシラン、尿素プロピルトリエトキシシラン、メチ **ルフェニルシランジオール、エチルフェニルシランジオール、n-プロピルフェニルシラ** ンジオール、イソプロピルフェニルシランジオール、n-ブチルシフェニルシランジオー ル、イソプチルフェニルシランジオール、tert-プチルフェニルシランジオール、ジ フェニルシランジオール、エチルメチルフェニルシラノール、n-プロピルメチルフェニ ルシラノール、イソプロピルメチルフェニルシラノール、nーブチルメチルフェニルシラ ノール、イソブチルメチルフェニルシラノール、tertープチルメチルフェニルシラノ ール、エチルn-プロピルフェニルシラノール、エチルイソプロピルフェニルシラノール 、n-ブチルエチルフェニルシラノール、イソプチルエチルフェニルシラノール、ter tーブチルエチルフェニルシラノール、メチルジフェニルシラノール、エチルジフェニル シラノール、n-プロピルジフェニルシラノール、イソプロピルジフェニルシラノール、 nーブチルジフェニルシラノール、イソブチルジフェニルシラノール、tertープチル ジフェニルシラノール、フェニルシラントリオール、1, 4 - ビス(トリヒドロキシシリ ル) ベンゼン、1, 4ービス (メチルジヒドロキシシリル) ベンゼン、1, 4ービス (エ チルジヒドロキシシリル) ベンゼン、1, 4 – ビス (プロピルジヒドロキシシリル) ベン ゼン、1, 4-ビス (ブチルジヒドロキシシリル) ベンゼン、1, 4-ビス (ジメチルヒ ドロキシシリル) ベンゼン、1, 4-ビス (ジエチルヒドロキシシリル) ペンゼン、1, 4-ビス(ジプロピルドロキシシリル)ベンゼン、1 , 4-ビス(ジブチルヒドロキシシ リル)ベンゼン等が挙げられる。アルミキレート化合物としては、例えば、トリス(アセ チルアセトネート) アルミニウム、アセチルアセテートアルミニウムジイソプロピレート 等が挙げられる。これらの密着性付与剤を用いる場合は、(a)成分100重量部に対し て、 $0.1 \sim 20$ 重量部が好ましく、 $0.5 \sim 10$ 重量部がより好ましい。

[0072]

また、本発明のポジ型感光性樹脂組成物は、塗布性、例えばストリエーション(膜厚の ムラ)を防いだり、現像性を向上させたりするために、適当な界面活性剤あるいはレベリ ング剤を添加することができる。このような界面活性剤あるいはレベリング剤としては、 例えば、ポリオキシエチレンウラリルエーテル、ポリオキシエチレンステアリルエーテル 、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェノールエーテ ル等があり、市販品としては、メガファックスF171、F173、R-08(大日本イ ンキ化学工業株式会社製商品名)、フロラードFC430、FC431(住友スリーエム 株式会社商品名)、オルガノシロキサンポリマーKP341、KBM303、KBM40 3、КВМ803 (信越化学工業株式会社製商品名) 等が挙げられる。

[0073]

本発明のポジ型感光性樹脂組成物は、支持基板上に塗布し乾燥する工程、所定のパター ンに露光する工程、現像する工程及び加熱処理する工程を経て、ポリオキサゾールのパタ ーンとすることができる。支持基板上に塗布し乾燥する工程では、ガラス基板、半導体、 金属酸化物絶縁体(例えばTiO2、SiO2等)、窒化ケイ素などの支持基板上に、この 感光性樹脂組成物をスピンナーなどを用いて回転塗布後、ホットプレート、オーブンなど を用いて乾燥する。

[0074]

次いで、露光工程では、支持基板上で被膜となった感光性樹脂組成物に、マスクを介し て紫外線、可視光線、放射線などの活性光線を照射する。現像工程では、露光部を現像液 で除去することによりパターンが得られる。現像液としては、例えば、水酸化ナトリウム ,水酸化カリウム,ケイ酸ナトリウム,アンモニア,エチルアミン,ジエチルアミン,ト リエチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシドなどの アルカリ水溶液が好ましいものとして挙げられる。これらの水溶液の塩基濃度は、0.1 ~10重量%とされることが好ましい。さらに上記現像液にアルコール類や界面活性剤を 添加して使用することもできる。これらはそれぞれ、現像液100重量部に対して、好ま しくは0.01~10重量部、より好ましくは0.1~5重量部の範囲で配合することが できる。

[0075]

次いで、加熱処理工程では、得られたパターンに好ましくは150~280℃の加熱処 理をすることにより、オキサゾール環や他の官能基を有する耐熱性のポリオキサゾールの パターンになる。加熱処理工程はより望ましくは、220~260℃である。また加熱処 理は、窒素下で行う方が感光性樹脂組成物膜の酸化を防ぐことができるので望ましい。こ

の温度範囲では、環化脱水反応が効率的に起き、さらには基板やデバイスへのダメージが 小さい。したがって、本発明のパターン形成方法を用いることによって、デバイスが歩留 り良くできる。またプロセスの省エネルギー化につながる。

[0076]

また、本発明の加熱処理としては、通常の窒素置換されたオーブンを用いる以外に、マ イクロ波硬化装置や周波数可変マイクロ波硬化装置を用いることもできる。これらをもち いることにより、基板やデバイスの温度は例えば250℃以下に保ったままで、感光性樹 脂組成物膜のみを効果的に加熱することが可能である。

[0077]

本発明のポジ型感光性樹脂組成物は、半導体装置や多層配線板等の電子部品に使用する ことができ、具体的には、半導体装置の表面保護膜や層間絶縁膜、多層配線板の層間絶縁 膜等の形成に使用することができる。本発明の半導体装置は、前記組成物を用いて形成さ れる表面保護膜や層間絶縁膜を有すること以外は特に制限されず、様々な構造をとること ができる。

[0078]

本発明の半導体装置の製造工程の一例を以下に説明する。図1は多層配線構造の半導体 装置の製造工程図である。上から下に向かって、第1の工程から第5の工程へと一連の工 程を表している。図1において、回路素子を有するSi基板等の半導体基板は、回路素子 の所定部分を除いてシリコン酸化膜等の保護膜2で被覆され、露出した回路素子上に第1 導体層が形成されている。前記半導体基板上にスピンコート法等で層間絶縁膜としてのポ リイミド樹脂等の膜4が形成される(第1の工程)。

[0079]

次に、塩化ゴム系、フェノールノボラック系等の感光性樹脂層 5 が前記層間絶縁膜 4 上 にスピンコート法で形成され、公知の写真食刻技術によって所定部分の層間絶縁膜4が露 出するように窓6Aが設けられている(第2の工程)。前記窓6Aの層間絶縁膜4は、酸 素、四フッ化炭素等のガスを用いるドライエッチング手段によって選択的にエッチングさ れ、窓6日があけられている。ついで窓6日から露出した第1導体層3を腐食することな く、感光樹脂層5のみを腐食するようなエッチング溶液を用いて感光樹脂層5が完全に除 去される(第3の工程)。

[0080]

さらに、公知の写真食刻技術を用いて、第2導体層7を形成させ、第1導体層3との電 気的接続が完全に行われる(第4の工程)。3層以上の多層配線構造を形成する場合は、 上記の工程を繰り返して行い各層を形成することができる。

[0081]

次に、表面保護膜8が形成される。この図1の例では、この表面保護膜を前記感光性樹 脂組成物をスピンコート法にて塗布、乾燥し、所定部分に窓6Cを形成するパターンを描 いたマスク上から光を照射した後アルカリ水溶液にて現像してパターンを形成する。そし て、その後、加熱して表面保護膜層(ポリベンゾオキサゾール膜)8とする(第5の工程)。この表面保護膜層(ポリベンゾオキサゾール膜) 8 は、導体層を外部からの応力、α 線などから保護するものであり、得られる半導体装置は信頼性に優れる。

[0082]

本発明では、従来は300℃以上を必要としていた上記ポリオキサゾール膜にする加熱 工程において、280℃以下の低温の加熱を用いて硬化が可能である。280℃以下の硬 化においても、本発明の感光性樹脂組成物は環化脱水反応が十分に起きることから、その 膜物性(伸び、吸水率、重量減少温度、アウトガス等)が300℃以上で硬化したときに 比べて遜色ないものとなる。したがって、プロセスが低温化できることから、デバイスの 熱による欠陥を低減でき、信頼性に優れた半導体装置を高収率で得ることができる。

[0083]

なお、上記例において、層間絶縁膜を本発明の感光性樹脂組成物を用いて形成すること も可能である。

[0084]

本発明の感光性樹脂組成物を使用して得られる表面保護膜や層間絶縁膜等を有する電子 デバイスを有する電子部品としては、例えば、耐熱性の低いMRAMが好ましいものとし て挙げられる。従って、本発明の感光性樹脂組成物は、MRAMの表面保護膜用として好 適である。

【実施例】

[0085]

以下、実施例に基づき、本発明についてさらに詳細に説明する。なお、本発明は下記実 施例に限定されるものではない。

[0086]

実施例1~14

合成例 1 ポリベンゾオキサゾール前駆体の合成

攪拌機、温度計を備えた0.5リットルのフラスコ中に、4,4'ージフェニルエーテ ルジカルボン酸15.48g、N-メチルピロリドン90gを仕込み、フラスコを5℃に 冷却した後、塩化チオニル12.64gを滴下し、30分間反応させて、4,4'ージフ ェニルエーテルテトラカルボン酸クロリドの溶液を得た。次いで、攪拌機、温度計を備え た0. 5リットルのフラスコ中に、N-メチルピロリドン87. 5gを仕込み、ビス (3 -アミノ-4-ヒドロキシフェニル) ヘキサフルオロプロパン18.30gを添加し、攪 拌溶解した後、ピリジン8.53gを添加し、温度を0~5℃に保ちながら、4,4'-ジフェニルエーテルジカルボン酸クロリドの溶液を30分間で滴下した後、30分間攪拌 を続けた。溶液を3リットルの水に投入し、析出物を回収、純水で3回洗浄した後、減圧 乾燥してポリヒドロキシアミド(ポリベンゾオキサゾール前駆体)を得た(以下、ポリマ - I とする)。ポリマー I の G P C 法標準ポリスチレン換算により求めた重量平均分子量 は14580、分散度は1.6であった。

[0087]

合成例2

合成例1で使用した4,4'ージフェニルエーテルジカルボン酸の20mo1%をシク ロヘキサン-1, 4-ジカルボン酸に置き換えた以外は合成例1と同様の条件にて合成を 行った。得られたポリヒドロキシアミド(以下、ポリマーIIとする)の標準ポリスチレ ン換算により求めた重量平均分子量は18580、分散度は1.5であった。

[0088]

感光特性評価

前記ポリベンゾオキサゾール前駆体100重量部 [(a) 成分] に対し、感光剤である 成分(b)、加熱により酸を発生する熱潜在酸発生剤(c)、フェノール性水酸基を有す る化合物(d)、溶剤(e)を表1に示した所定量にて配合し、さらに接着助剤として尿 素プロピルトリエトキシシランの50%メタノール溶液10重量部を配合した。この溶液 を 3 μ m孔のテフロン(登録商標)フィルタを用いて加圧ろ過して、感光性樹脂組成物の 溶液を得た。

[0089]

【表1】

表 1		1 > -> />	(4) 母公	(d) 成分	(e) 成分
	(a) 成分	(b) 成分	(c) 成分	D1(10)	E1(160)
実施例1	ポリマーI	B1(10)	C1(2.5)		E1(160)
実施例2	ポリマーII	B1(11)	C2(2)	D1(10)	E1(160)
実施例3	ポリマーII	B1(10)	C3(3)	D1(10)	
実施例4	ポリマーII	B2(10)	C4(2.5)	D2(10)	E1(160)
<u> </u>	ポリマーI	B2(10)	C5(1.5)	D2(10)	E1(160)
	ポリマーI	B2(10)	C6(1.5)	D2(10)	E1(160)
実施例6	ポリマーI	B3(12)	C7(4)	D1(8)	E1(160)
実施例7		B3(11)	C8(2)	D1(8)	E1(160)
実施例8	ポリマーI	B3(10)	C9(3)	D1(8)	E1(160)
実施例9	ポリマーI		C10(2.5)	D2(10)	E1(160)
実施例 10		B1(11)		D2(10)	E1(160)
実施例 11	ポリマーI	B1(11)	C11(2.5)	D2(10)	E2(160)
実施例 12	ポリマーI	B1(11)	C12(2)		E2(160)
実施例 13	ポリマーI	B3(12)	C13(1.5)	D1(10)	
実施例 14	₁ ポリマー I	B3(12)	C14(8)	D1(10)	E2(160)

表中、() 内はポリマー100重量部に対する添加量を重量部で示した。

[0090]

上記、表1中に示される(b)成分、(c)成分の化学式を下記に示す。

[0091]

【化10】

[0092]

[(1£ 1 1]

$$CH_3$$
 CH_3
 $CH_$

[0093]

また、上記(e)成分であるE 1 とは、 γ ープチロラクトン/プロピレングリコールモ ノメチルエーテルアセテート=90/10 (重量部) であり、E2とは、γーブチロラク トン/N-メチル-2ーピロリドン=50/50(重量部)である。

[0094]

前記溶液をシリコンウエハ上にスピンコートして、120℃で3分間加熱し、膜厚11 ~13μmの塗膜を形成した。その後、 i 線ステッパー(キャノン製FPA-3000 i W) を用いてマスクを介して i 線 (3 6 5 n m) での縮小投影露光を行った。露光後、テ トラメチルアンモニウムヒドロキシドの2.38%水溶液にて現像を行い、残膜厚が初期 膜厚の70~90%程度となるように現像を行った。その後、水でリンスしパターン形成

ページ: 18/

に必要な最小露光量と解像度を求めた。結果を表 2 に記す。

[0095] 【表2】

表 2

3X Z		The military (O/)	AT (A) SHE (SHE)
	感度 (m J/c m²)	残膜率(%)	解像度(μm)
実施例1	2 1 0	7 6	2
実施例2	250	7 7	2
実施例3	280	8 2	3
実施例4	260	8 0	3
実施例 5	300	7 6	3
実施例6	200	7 8	2
実施例7	280	8 0	2
実施例8	290	8 1	2
実施例9	350	8 2	2
実施例10	210	7 6	2
実施例11	230	7 9	2
実施例12	280	8 0	3
実施例13	400	7 8	3
実施例14	290	7 6	3

[0096]

さらに、前記溶液をシリコンウエハ上にスピンコートして、120℃で3分間加熱し、 膜厚 15μ mの塗膜を形成した。その後、前記塗膜をイナートガスオーブン中、窒素雰囲 気下、150℃で30分加熱した後、さらに300℃で1時間あるいは250℃で1時間 加熱して硬化膜を得た。次にフッ酸水溶液を用いて、この硬化膜を剥離し、水洗、乾燥し てた後、ガラス転移点(Tg)、吸水率、伸び(引っ張り試験機で測定)、5%重量減少 温度といった膜物性を調べた。これらの結果を表3に示す。

[0097]

【表3】

表3

表 3 -	硬化温度	Tg	伸び	吸水率	5%重量減少
	(°C)	(°C)	(%)	(%)	温度(℃)
実施例1	250	285	4 4	0.63	461
关心的1	300	299	4 6	0.60	483
実施例2	250	275	4 3	0. 91	4 5 4
天旭列2	300	283	4 5	0.88	460
実施例3	250	277	4 2	0.62	453
光 胞切り	300	285	4 4	0.59	459
実施例4	250	274	3 9	0.63	451
大顺	300	283	4 6	0.58	458
実施例 5	250	282	4 6	1. 02	451
Sene Di O	300	298	4 8	0.97	471
実施例6	250	284	2 0	1.10	450
<i>y n n n n n n n n n n</i>	300	297	2 5	1.05	472
実施例7	250	285	2 4	1.03	454
X11201 ·	300	296	2 6	0.99	473
実施例8	250	284	2 3	0.98	4 5 2
)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	300	298	2 2	0.89	477
実施例9	250	286	18	0.89	453
)(227.5	300	297	2 3	0.88	477
実施例 10	250	286	2 3	0.81	460
, , , ,	300	298	2 3	0.77	485
実施例 11	250	284	4 3	0.78	460
	300	297	4 6	0.75	484
実施例 12	250	283	2 0	1. 01	457
7,60,114	300	296	2 3	0.98	473
実施例 13	250	286	2 4	0.84	456
	300	295	2 6	0.78	480
実施例 14	250	284	2 5	1. 05	458
1	300	298	2 5	1.03	475

[0098]

以上のように、本発明の感光性樹脂組成物は高感度であり、高解像度でパターン形成が 可能であった。また伸び、吸水率、表3に示したように250℃硬化においても、300 ℃で硬化時と遜色ない膜物性が得られた。5%重量減少温度に関しては、250℃で硬化 したときの方が、若干低い値となったが、いずれもほぼ450℃以上で実用上問題ない値 であった。さらに実施例10に関して、300℃1時間でホールドしたときのアウトガス を調べたところ、250℃硬化では1.3%であり、300℃硬化の際の0.95%に比 べて、遜色ない値であった。

[0099]

比較例1~6

実施例1と同様に合成例で合成したポリベンゾオキサゾール前駆体100重量部 [(a)成分] に対し、感光剤である成分(b)、成分(c)、フェノール性水酸基を有する化 合物(d)、溶剤(e)を表4に示した所定量にて配合し、さらに接着助剤として尿素プ ロピルトリエトキシシランの50%メタノール溶液10重量部を配合した。なおここでは 、成分(c)に関しては添加しないか、あるいは以下に示すC15~C19を用いた。上 記溶液を3μm孔のテフロン(登録商標)フィルタを用いて加圧ろ過して、感光性樹脂組 成物の溶液を得た。

[0100]

【表4】

表 4

表 4					<u> </u>
	(a)成分	(b) 成分	(c)成分	(d) 成分	(e)成分
比較例1	ポリマーI	B1(10)	なし	D2(10)	E1(160)
比較例2	ポリマーI	B1(10)	C14(2.5)	D2(10)	E1(160)
	ポリマーI	B1(10)	C15(3)	D2(10)	E1(160)
比較例3		ļ-, 	C16(3)	D1(10)	E1(160)
比較例4	ポリマー I	B2(10)		D1(10)	E1(160)
比較例 5	ポリマーI	B2(10)	C17(3)		E1(160)
比較例6	ポリマー I	B2(10)	C18(2)	D1(10)	B1(100)

表中、() 内はポリマー100重量部に対する添加量を重量部で示した。

[0101]

上記、表4中に示される(c)成分の化学式を下記に示す。

[0102]

【化12】

$$C15 \qquad C16$$

$$C15 \qquad C16$$

$$C16 \qquad C16$$

$$C16 \qquad C16$$

$$C13 \qquad C16$$

$$C13 \qquad C17 \qquad CC13 \qquad C18$$

$$C17 \qquad CC13 \qquad C18$$

$$C18 \qquad C18$$

$$C18 \qquad C19$$

[0103]

前記溶液をシリコンウエハ上にスピンコートして、120℃で3分間加熱し、膜厚11 ~13µmの塗膜を形成した。その後、 i 線ステッパー(キャノン製FPA-3000 i W)を用いてマスクを介してi線(365nm)での縮小投影露光を行った。露光後、テ トラメチルアンモニウムヒドロキシドの2.38%水溶液にて現像を行い、残膜厚が初期 膜厚の70~90%程度となるように現像を行った。その後、水でリンスしパターン形成 に必要な最小露光量と解像度を求めた。結果を表5に記す。

[0104]

【表5】

【表 5】

表 5

	感度 (m J / c m²)	残膜率 (%)	解像度/µm
 比較例1	200	7 9	2
比較例2	2 5 0	8 0	2
比較例3	2 1 0	7 7	2
比較例4	280	7 3	3
比較例5	290	7 2	3
比較例 6	290	7 2	3

[0105]

さらに、前記溶液をシリコンウエハ上にスピンコートして、120℃で3分間加熱し、 膜厚 15μ mの塗膜を形成した。その後、前記塗膜をイナートガスオーブン中、窒素雰囲 気下、150℃で30分加熱した後、さらに300℃で1時間あるいは250℃で1時間 加熱して硬化膜を得た。次にフッ酸水溶液を用いて、この硬化膜を剥離し、水洗、乾燥し てた後、ガラス転移点(Tg)、吸水率、伸び、5%重量減少温度といった膜物性を調べ た。これらの結果を表6に示す。

[0106]

【表 6】

表 6 		Tg	伸び	吸水率	5%重量減少温度
	硬化温度(℃)	(°C)	(%)	(%)	(℃)
a a dada Aral m	250	277	40	1.56	439
比較例1	300	299	4 2	1. 10	480
比較例2	250	275	18	1.66	435
比較りる	300	298	20	1. 24	475
比較例3	250	278	3 9	1. 57	440
	300	299	4 2	1. 12	479
比較例4	250	276	1 7	1. 58	4 3 6
	300	298	1 9	1. 34	478
比較例5	250	275	2 0	1. 56	4 3 7
	300	299	2 2	1. 14	479
比較例6	250	273	1 6	1. 87	4 3 5
	300	293	18	1. 55	475

[0107]

表6の膜物性が示すように、比較例の250℃の硬化では、環化脱水反応が完全に進行 しないため、300℃硬化に比べて吸水率が大きく、その値も1.5%程度と高かった。 また、5%重量減少温度も250℃での硬化の際に、450℃より低い値となった。

【産業上の利用可能性】

[0108]

以上のように、本発明のポジ型感光性樹脂組成物は、感度、解像度、接着性に優れ、さ 出証特2005-3036648 らに低温硬化プロセスで用いても耐熱性に優れ、吸水率の低い、良好な形状のパターンが 得られるため、電子部品、特に低温硬化が要求されるMRAMなどの製造に適している。

【図面の簡単な説明】

[0109]

【図1】多層配線構造の半導体装置の製造工程図である。

【符号の説明】

[0110]

- 1 半導体基板
- 2 保護膜
- 3 第1導体層
- 4 層間絶縁膜層
- 5 感光樹脂層
- 6A、6B、6C 窓
- 7 第2導体層
- 8 表面保護膜層

【書類名】要約書

【要約】

【課題】感度、解像度、接着性に優れ、さらに280℃以下で行なわれる低温硬化プロセ スで用いても耐熱性に優れ、吸水率の低い、良好な形状のパターンが得られるポジ型感光 性樹脂組成物を提供する。

【解決手段】ポジ型感光性樹脂組成物を、(a)ポリオキサゾール前駆体の構造を有する アルカリ水溶液可溶性のポリアミドと、(b)oーキノンジアジド化合物と、(c)加熱 により酸を発生する熱潜在酸発生剤とを含んで構成する。さらに、(d)フェノール性水 酸基を有する化合物や(e)溶剤を含んで構成してもよい。

なし 【選択図】

特願2004-185613

出願人履歴情報

識別番号

[398008295]

1. 変更年月日

2003年 7月31日

[変更理由]

住所変更

住 所

東京都文京区小石川一丁目4番1号

日立化成デュポンマイクロシステムズ株式会社 氏 名

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/004350

International filing date: 11 March 2005 (11.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-185613

Filing date: 23 June 2004 (23.06.2004)

Date of receipt at the International Bureau: 12 May 2005 (12.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	☐ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	Z LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
ė	OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.