1 正弦定理(計算)

- 正弦定理 -

(3) c = 10, R = 10 のとき, C を求めよ.

(4) $b = \sqrt{6}, A = 45^{\circ}, B = 60^{\circ}$ のとき, a を求めよ.

(5) $c=\sqrt{2}, B=30^\circ, C=45^\circ$ のとき, c を求めよ.

練習

 $\triangle ABC$ において、以下の問いに答えよ.

- (1) $a=5, A=45^{\circ}$ のとき、外接円の半径 R を求めよ.
- (6) $A=135^{\circ}, B=15^{\circ}, c=2$ のとき, a の値を求めよ.
- (2) $b=\sqrt{3}, B=120^\circ$ のとき、外接円の半径 R を求めよ.

2 余弦定理(計算)

-	余	弦	疋:	垱	

					_					
((3)	a = 3	, b =	2, c =	$\sqrt{7}$	のと	き,	C	を求め	よ.

$$(4)$$
 $A = \sqrt{7}, b = 1, c = 2\sqrt{3}$ のとき、 A を求めよ.

練習

 \triangle ABC において、以下の問いに答えよ.

$$(1)$$
 $b=\sqrt{3}, c=2, A=150^\circ$ のとき, a を求めよ.

(5)
$$a = 1, b = \sqrt{5}, c = \sqrt{2}$$
 のとき, B を求めよ.

$$(2)$$
 $a=3, b=5, C=120^{\circ}$ のとき, c を求めよ.

3 正弦定理・余弦定理の証明	
正弦定理 ————————————————————————————————————	

3.1 角の判定

3 辺の長さから、ある角度の鋭角・直角・鈍角を判定しよう。 余弦定理

$$a^2 = b^2 + c^2 - 2bc\cos A$$

を変形して,

$$\cos A =$$

辺の長さが正なので,

$$2bc$$
 0

よって,

$$b^2 + c^2 - a^2$$

角

の符号が, $\cos A$ が符号になる.

さて,

$$\cos A > 0$$
 のとき, A は 角

$$\cos A = 0$$
 のとき, A は

$$\cos A < 0$$
 のとき, A は 角

練習

 $\triangle ABC$ の 3 辺が以下のとき, A の角の種類を判定せよ.

(1)
$$a = 9, b = 3\sqrt{2}, c = 7$$

(2)
$$a = \sqrt{7}, b = \sqrt{6}, c = 2$$

4 正弦定理・余弦定理の活用

4.1 復習

以下のような △ABC において, 指定たものを求めよ.

(1) $a = 2\sqrt{3}, b = 7, C = 30^{\circ}$ のとき, c

(2) $a=\sqrt{10}, A=135^{\circ}, B=30^{\circ}$ のとき, b

(3) $a=2,b=2\sqrt{2},c=\sqrt{5}-1$ のとき, B および外接円の半径 R

4.2 問題

(1) $\triangle ABC$ において, $a=2, b=\sqrt{3}+1, C=60^\circ$ のとき, 残り の辺の長さと角の大きさを求めよ.

(2) \triangle ABC において, $a=\sqrt{2}, b=\sqrt{3}+1, C=45^{\circ}$ のとき, 残りの辺の長さと角の大きさを求めよ.

4.3 最大角の大きさ

Question.	三角形 ABO	\mathbb{C} の辺が $a=$	3, b = 6, c =	7のとき,	最大
角は ∠ A, ∠	∠B, ∠C のう	ちどれか.			

 \longrightarrow

つまり、最大の辺に向かい合う角が、その三角形の_____.

問題

 $\triangle ABC$ において, $\sin A:\sin B:\sin C=13:8:7$ が成立するとき, 最大角の大きさを求めよ.

練習

 $\triangle ABC$ において, $\sin A:\sin B:\sin C=3:5:7$ が成立するとき, 最大角の大きさを求めよ.