Introduction to Machine Learning

ML-Basics Learner

Learning goals

- Know formal definition of learner
- Understand that a learner receives training data and outputs the best model from H.

SUPERVISED LEARNING EXAMPLE

- Imagine we want to investigate how working conditions affect productivity of employees
- It is a **regression** task since the target *productivity* is continuous
- We collect data about worked minutes per week (productivity), how many people work in the same office as the employee in question, and the employee's salary

	Features x		Target y	
	People in Office (Feature 1) x_1	Salary (Feature 2) x_2	Worked Minutes Week (Target Variable)	
(4	4300 € 🗼	2220	
$n=3$ $\Big<$	y 12	2700 €	1800	
	5	3100 €	1920	
$x_1^{(2)}$	p=2		$oxed{x_2^{(1)}}$	

SUPERVISED LEARNING EXAMPLE

How could we construct a model from these data?

We could investigate the data manually and come up with a simple, hand-crafted rule such as:

- The baseline productivity of an employee with salary 3000 and 7 people in the office is 1850 minutes
- A decrease of 1 person in the office increases productivity by 30
- An increase of the salary by 100 increases productivity by 10

⇒ Obviously, this is neither feasible nor leads to a good model.

IDEA OF SUPERVISED LEARNING

- Goal: Identify the functional relationship that maps features to target
- Supervised learning means we use *labeled* data to learn model *f*
- Later, we use model f to predict y for new unlabeled data

LEARNER DEFINITION

- Algorithm for finding f is called learner / learning algorithm / inducer
- ullet The learner is our means of picking the best element from the hypothesis space ${\cal H}$ for given training data
- Formally it maps training data $\mathcal{D} \in \mathbb{D}$ (plus a vector of **hyperparameter** control settings $\lambda \in \Lambda$) to a model:

 \bullet Practically, we often construct a mapping $\mathcal{I}:\mathbb{D}\times\Lambda\to\Theta$

LEARNER DEFINITION

In pseudo-code:

- ullet Learner gets a hypothesis space of parametrized functions ${\cal H}$
- ullet User passes data set $\mathcal{D}_{\mathsf{train}}$ and control settings $oldsymbol{\lambda}$
- Learner sets parameters such that model fits data best
- ullet Optimal parameters $\hat{ heta}$ or function \hat{t} is returned for later usage

Train Set

y	x_1	x_2
2200	4	4300
1800	12	2700
1920	15	3100

