UNIVERSITY OF TORONTO

Faculty of Applied Science and Engineering

Term Test III

First Year — Program 5

MAT1854115 — Linear Algebra

Examiners: J W Lorimer & G M T D'Eleuterio
29 March 2012

Student Name:			
	Last Name	First Names	
Student Number:		Tutorial Section:	TUT

Instructions:

- 1. Attempt all questions.
- 2. The value of each question is indicated at the end of the space provided for its solution; a summary is given in the table opposite.
- **3.** Write the final answers *only* in the boxed space provided for each question.
- 4. No aid is permitted.
- **5.** The duration of this test is 90 minutes.
- **6.** There are 9 pages and 5 questions in this test paper.

For Markers Only		
Question	Value	Mark
	Α	
1	10	
	В	
2	10	
С		
3	10	
4	10	
5	10	
Total	50	

A. Definitions and Statements

Fill in the blanks.

1 (a).	The $rank$ of $\mathbf{A} \in {}^m\mathbb{R}^n$ is	
		/2
1(b).	State the dimension formula.	
		/2
1(c).	What is a transformation matrix?	
		/2
1(d).	State the <i>Laplace expansion</i> for determinants.	
		/2
1(e).	State the <i>transpose theorem</i> for determinants.	
		/2

B. True or False

Determine if the following statements are true or false and indicate by "T" (for true) and "F" (for false) in the box beside the question. The value of each question is 2 marks.

2(a).	If S is subspace of \mathbb{R}^6 with $\dim S = 5$ then every basis for \mathbb{R}^6 can be reduced	
	to a basis for S by removing one vector.	

2(b). If
$$\mathbf{A} \in {}^{6}\mathbb{R}^{8}$$
 then the columns of \mathbf{A} are linearly dependent.

2(c). If the columns of
$$\mathbf{A} \in {}^{m}\mathbb{R}^{n}$$
 are linearly independent then $\mathbf{A}\mathbf{x} = \mathbf{b}$ has at least one solution for every $\mathbf{b} \in {}^{m}\mathbb{R}$.

$$\mathbf{P} = \begin{bmatrix} 1 & 3 \\ -2 & -6 \end{bmatrix}$$

is a transformation matrix between two bases for ${}^2\mathbb{R}$.

2(e). If
$$\mathbf{A}(\mathbf{B} + \mathbf{C}) \in {}^{n}\mathbb{R}^{n}$$
 and det $\mathbf{A}(\mathbf{B} + \mathbf{C}) \neq 0$ then \mathbf{A} is invertible.

C. Problems

3. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 2 \end{bmatrix} \text{ and } \mathbf{U} = \mathbf{E}(-1; 3, 1)\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

- (a) Find bases for $C(\mathbf{A})$ (i.e., col \mathbf{A}) and $C(\mathbf{U})$ (col \mathbf{U}).
- (b) Find bases for $\mathcal{R}(\mathbf{A})$ (i.e., row \mathbf{A}) and $\mathcal{R}(\mathbf{U})$ (row \mathbf{U}).
- (c) Find bases for \mathcal{S}_A (i.e., null A) and \mathcal{S}_U (null U).

3(a). Find bases for C(A) (*i.e.*, col A) and C(U) (col U).

/3

3(b). Find bases for $\mathcal{R}(A)$ (i.e., row A) and $\mathcal{R}(U)$ (row U).

/3

3(c). Find bases for $\mathcal{S}_{\mathbf{A}}$ (<i>i.e.</i> , null \mathbf{A}) and $\mathcal{S}_{\mathbf{U}}$ (null \mathbf{U}).	
/4	f

- **4.** Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n-1}$ with rank $\mathbf{A} = n-1$ and $\mathbf{b} \in {}^{n}\mathbb{R}$. Note that the augmented matrix is $[\mathbf{A} \mid \mathbf{b}] \in {}^{n}\mathbb{R}^{n}$.
 - (a) Prove that $\mathbf{A}\mathbf{x} = \mathbf{b}$ has no solution if and only if $\det [\mathbf{A} \mid \mathbf{b}] \neq 0$.
 - (b) Prove that $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution if and only if $\det [\mathbf{A} \mid \mathbf{b}] = 0$.

4(a). Prove that $\mathbf{A}\mathbf{x} = \mathbf{b}$ has no solution if and only if $\det[\mathbf{A} \mid \mathbf{b}] \neq 0$.	
	+11

4(a)cont'd	
	/6
4(b). Prove that $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution if and only if $\det[\mathbf{A} \mid \mathbf{b}] = 0$.	

/4

unique solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.		
5(a).	Prove the Maclaurin-Cramer rule.	
]		ر (

(b) Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ be invertible wherein the last column is $\mathbf{b} \in {}^{n}\mathbb{R}$. Find the

5. (a) Prove the Maclaurin-Cramer rule.

5(b). Let $\mathbf{A} \in {}^n\mathbb{R}^n$ be invertible wherein the last column is $\mathbf{b} \in {}^n\mathbb{R}$. Find the u solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.	nique
	/5