

Testes de Hipóteses II

Felipe Figueiredo

uma amostra

Testes com duas

Testes de Hipóteses II

O p-valor, e testes com duas amostras

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Recapitulando

Vimos como formular hipóteses estatísticas seguindo o procedimento abaixo:

Teste de hipóteses

- Formular as hipóteses nula e alternativa
- 2 Identificar a região crítica (região de rejeição)
- 3 Calcular a estatística de teste adequada
- 4 Rejeitar ou não a hipótese nula

Testes de Hipóteses II

Felipe Figueiredo

Testes com uma amostra Recapitulando

Testes con duas

Sumário

Testes de Hipóteses II

Felipe Figueiredo

Testes com uma amostra

> duas amostras

- Testes com uma amostra
 - Recapitulando
 - O p-valor
 - Resumo
- 2 Testes com duas amostras

Testes de Hipóteses II

Felipe Figueiredo

Testes com uma amostra Recapitulando O p-valor

Testes com duas

- Este processo sistemático pode ser aplicado a diversos tipos de hipóteses em estudos com dados quantitativos.
- Atualmente tem se usado com mais frequência uma metodologia equivalente usando o p-valor (ou valor P).
- Diferença: ao invés de comparar diretamente os Z-escores (região crítica sob a curva), vamos comparar as probabilidades destes (significância)
- Envolve premissas sutis e a interpretação deve ser tomada cuidadosamente (veja artigos complementares no site).

O p-valor

Hipóteses I

Felipe

Figueiredo

Recapitulando

Definition

Assumindo que a hipótese nula seja verdadeira, o p-valor de um teste de hipóteses é a probabilidade de se obter uma estatística amostral com valores tão extremos, ou mais extremos que aquele observado.

O p-valor é:

- Uma estatística (i.e., depende da amostra dados e tamanho)
- A probabilidade (condicional) de se observar o resultado ao acaso dado que a H₀ é verdadeira.
- ullet Uma medida da força da evidência contra a H_0 .

O p-valor

Testes de Hipóteses II

Felipe Figueiredo

estes com

O p-valor

Testes com duas

Como utilizar

- Quanto menor o p-valor, mais evidências para rejeitar a hipótese nula.
- O ponto de corte mais utilizado é a significância de 5%
- Assim, qualquer p ≤ 0.05 é estatisticamente significante.

O p-valor

Como calcular

- calcular a estatística de teste apropriada para o teste (teste Z, teste t, etc.)
- encontrar a probabilidade p correspondente a esta estatística (por exemplo, na tabela apropriada, ou com uma ferramenta computacional)
- comparar o p-valor encontrado com a significância do estudo

Testes de Hipóteses II

Felipe Figueiredo

Testes com uma amostra Recapitulando O p-valor

Testes com duas amostras

O p-valor

		TABL	.E A: 51	ANDAS	D NO	MAL P	ROBAB	ILITIES		
	.00	.01	.02	.03	.04	.05	.06	.07	.08	
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.00
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.00
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.00
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.00
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	1100.	.0010	.00
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.00
-2.8	.0026	.0325	.0024	.0023	.0023	.0022	.0021	.0021	.6020	.00
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.00
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.00
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.00
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.00
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.009t	.0089	.0087	.00
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.01
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.01
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	8810.	.01
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.02
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.02
-i.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.03
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.04
-1.5	.0668	.0655	.0543	.0630	.0618	.0606	.0594	.0582	.0571	.05
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.06
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.08
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.09
-t.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.11
-i.0	.1587	.1562	.1539	1515	.1492	.1469	.1446	.1423	.1401	.13
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.16
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.18
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.21
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.24
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.27
-0.4	3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.31
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.34
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.38
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.42
-0.0	.5000	4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.46

Testes de Hipóteses II

Felipe Figueiredo

Testes com uma amost Recapitulando O p-valor

Testes com duas

Exemplo

Hipóteses I

Figueiredo

Testes de

Hipóteses I

Felipe

Figueiredo

Example

Um neurologista está testando o efeito no tempo de resposta injetando uma dose da mesma em 100 ratos, criando estímulos neurológicos e observando o tempo de resposta em cada um. O neurologista sabe que o tempo de resposta de ratos que não receberam a droga é de 1.2 segundos. O tempo de resposta médio dos ratos injetados foi de 1.05 segundos, com desvio padrão amostral de 0.5 segundos. Você acha que a droga tem efeito no tempo de resposta do estímulo?

Fonte: Khan Academy

O p-valor

- a probabilidade de que a hipótese nula seja verdadeira
- a probabilidade de que a diferença observada seja devido ao acaso

Estes são erros comuns de interpretação.

O p-valor assume que (1) a hipótese é verdadeira, e (2) que a única causa da diferença é devida ao acaso, portanto não pode ser usado para concluir suas próprias premissas.

"The concept of a p value is not simple and any statements associated with it must be considered cautiously." Dorey, F. 2010 Clin Orthop Relat Res.

Exemplo

Hipóteses II

Felipe Figueiredo

Example

- Dados: $\mu = 1.2, \bar{x} = 1.05, s = 0.5, n = 100$
- H_0 : $\mu = 1.2, H_1$: $\mu < 1.2$ (teste unicaudal à esquerda)
- n é grande (n > 30), então usamos $\sigma \approx s$, e fazemos o teste Z:
- $Z = \frac{1.05 1.2}{0.5} = -3$
- Consultando a tabela Z, observamos que este Z-escore corresponde à probabilidade p = 0.0013
- Como p < 0.05, concluímos que há evidência para rejeitar H_0 .

Resumo

Testes de Hipóteses II

Felipe Figueiredo

Interpretação do p-valor

- Um valor pequeno para o p-valor (tipicamente $p \le 0.05$) representa forte evidência para rejeitar a hipótese nula, então deve-se rejeitá-la.
- Um valor alto para o p-valor (tipicamente $p \ge 0.05$) representa pouca evidência contra a hipótese nula, então não se deve rejeitá-la
- Um valor próximo do ponto de corte (0.05) é considerado marginal, portanto "qualquer decisão pode ser tomada". Sempre apresente seu p-valor para que o leitor possa tirar suas próprias conclusões.

Fonte: Rumsey, D. (Statistics for Dummies, 2nd ed.)

Testes com duas amostras

Testes de Hipóteses II

Felipe Figueiredo

Testes com duas amostras

Testes de

Hipóteses II

Felipe

Figueiredo

Testes com

duas

amostras

- Frequentemente precisamos dividir os dados em dois grupos e comparar as médias.
- Isto pode ser usado para se estudar o efeito de um tratamento em relação a um grupo controle
- ou mesmo para se comparar dois tratamentos diferentes.

Testes com duas amostras

Lembre-se que para uma amostra usamos a seguinte estatística de teste:

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Para duas amostras, é razoável usarmos as estatísticas tanto do grupo 1 quanto do grupo 2.

Testes com duas amostras

Hipóteses II

Felipe Figueiredo

Testes com duas amostras

- Para testar a hipótese de que duas médias μ_X e μ_Y são diferentes, consideramos a diferença $\mu_X - \mu_Y$
- Raciocínio: se as médias forem aproximadamente iguais, a diferença será aproximadamente zero
- Procedemos com o teste de hipótese adequado para a situação

Testes com duas amostras

Testes de Hipóteses II

Felipe Figueiredo

Testes com duas amostras

Estatística de teste:

$$z = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{\sigma_{(\bar{x_1} - \bar{x_2})}}$$

onde

$$\sigma_{(\bar{x_1}-\bar{x_2})} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Mas usaremos uma versão simplificada...

Testes com duas amostras

Testes de Hipóteses II

Felipe Figueiredo

Testes com

Testes com duas amostras

Assumindo que H_0 é verdadeira, temos que $\mu_1=\mu_2\Rightarrow \mu_1-\mu_2=0$, portanto a estatística de teste que usaremos será:

$$Z = \frac{\left(\bar{X_1} - \bar{X_2}\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Testes com duas amostras

Testes de Hipóteses II

Felipe Figueiredo

Testes com uma amostra

Testes com duas amostras

Example

Queremos avaliar a eficiência de uma nova dieta pobre em gordura no tratamento de obesidade. Selecionamos aleatoriamente 100 pessoas obesas para o grupo 1, que receberão a dieta com pouca gordura. Selecionamos outras 100 pessoas obesas para o grupo 2 que receberão a mesma quantidade de comida, com quantidade normal de gordura. Após 4 meses, a perda de peso média no grupo 1 foi de 9.31 lbs (s=4.67) e no grupo 2 foi de 7.40 lbs (s=4.04).

Fonte: Khan Academy

Testes com duas amostras

Example

• $H_0: \mu_1 = \mu_2 \Rightarrow \mu_1 - \mu_2 = 0 \Rightarrow \mu_{(x_1 - x_2)} = 0$

• $H_1: \mu_1 - \mu_2 > 0$ (teste unicaudal à direita)

 $\bar{x}_1 - \bar{x}_2 = 1.91$

Estatística de teste

$$\mathbf{z} = \frac{\bar{x_1} - \bar{x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{1.91}{0.617} \approx 3.09$$

Testes de Hipóteses II

Felipe Figueiredo

Testes com

Testes com duas amostras

Testes com duas amostras

Testes de Hipóteses II

> Felipe Figueiredo

Testes com uma amostra Testes com

duas

amostras

Example

- Encontramos a estatística de teste z = 3.09
- Consultando a tabela Z, a probabilidade correspondente é p = 0.001
- ullet Como p < 0.05, concluímos que há evidências para rejeitar H_0
- Assim, há evidências de que a nova dieta resulta em perda de peso