Welcome to FYS3150/4150 - Comp. Phys.

- · Welcome back to the University!
- · About me:
 - · Anders Kuellestad
 - · Postdoc in the theoretical physics group
 - · Background: Barger -> Osb -> Stockholm -> Oslo -> London -> Oslo
 - o Work on exploring new theories in particle physics

 Keywords: LHC, supersymmetry, Higgs, dark matter,

 statistics, cooling (c++, Python, some Fortran),

 supercomputers, causing and fixing bugs...
 - · The Teaching Team:
 - » Me

- · Maria Linea Horgen
- · Even Marius Storhagen
- · Mikkel Metzsch Jensen
- o (Caspara 6åsvær
- · René Alexander Ask

- · Who are you?
 - · Study programmes?
 - Cading experience? (minimal, one language, more)

· C++?
· Terminal?

· Windows

Mac (Linux ?

- · Main motivation for taking the course?
 - Solve those pesky equations!
 - Learn C++ and other tools?
 - I don't know, I just like computers!
 - [insert option]

About the course

- · Two webpages: UiO page and Githus page
- · Teaching language: English
- · Programming language: (++ , plus some Python scripts
 - O You can use only Python, but we recommend learning C++, and lectures and examples will be based on this.
- Have been tought by Comp. Phys. gurn Morten Hjorth-Jensen for many years!
 - · First time I'm in charge
 - · Follows Morten's old course closely, with some personal tweaks from my side
 - Philosophy: Pragmatic , learning by doing & failing
 - · Will focus on concrete examples
 - · Comp. Phys. is a huge field —this course is a just a first intro.
 - Lectures: Thursday 8.15-10.00
 Friday 8.15-10.00
- Lab groups: Also Thursdays and Fridays, two-hour time slots.
- Try to join a physical lab if possible!
- · Try not all to join the same

· Requirements:

- · Two problem sets . Must be passed
- o Three projects. Each count 1/3 of grade (No final exam.)
- o we'll refer to everything as "projects".

Deadlines (subject to change!)

- · Project 1: Sep. 13
- · Project 2: Sep. 27
- · Project 3: Oct. 25
- · Project 4: Nov. 22 · Project 5: Dec. 13

- · Collaboration is encouraged!
 - o we strongly encourage you to collaborate in small groups (3 people is ideal)
 - · A group hands in a joint assignment/report
 - o You will learn more, and we get nove time per report -> better feedback!

Create group on

- · Plagiarism is very serious
 - o Have seen some (few!) cases in the past
 - · Can have very serious consequences (e.g. loosing study rights)
 - · You must:
 - Urite your own text (don't copy!)
 - Write your own code, unless it's code we've provided to help
 - Always clearly acknowledge help/contributions from others
 - Properly cite articles, books, webpages, ...
- · Asking questions
 - · Please ask questions!
 - · Any time during lectures just cut in and ask!
 - · More detailed / specific help with physics / coding
 - Prinary forum: Lab sessions
 - Secondary forum : Course Githus page
 - o Personal or procedural issues: email (an also set up meetings.)

· Broad topics

- e Learn basic C++, with focus on numerics
- · Matrix operations, eigenvalue problems
- · Solve ordinary and partial diff. eq.
- · Numerical jutegration
- · Morte Carlo methods, simulation of stochastic syst.
- · Debugging ·
- · Proper presentation of results

The most useful advice you'll get all year

- · Something you don't understand?
 - Read and think
 - Discuss with your fellow students
 - Ask us 1
- · Code isn't working?
 - Don't just try stuff at random!

 Rarely works, you don't learn much and difficult to trust results
 - Read documentation for the command
 - Google error message (minus project-specific content)
 Read explanations you find, don't just copy code.
 - More on debugging later...
 - · How you present your results matter!
 - o Language
 - · Quality of figures
 - · Layout
 - · Report structure
 - · Referencing

- · Spend some time with pen and paper before you stort coding!
 - o Rough sketch of program parts and flow
 - · Sketch discretizations (avoid index enistakes!)

- · Boundary cond. at Xo and X5
- · G elements in x array
- · X range split in 5 steps
- Make sure you understand the quantities you present in plots and tables
 much easier to spot mistakes!