2. ZH

Határidő Nincs megadva határidőPont 60Kérdések 6Elérhető dec 14, 10:00 - dec 14, 11:45 körülbelül 2 óraIdőkorlát 100 perc

Instrukciók

A zh kitöltésére egyetlen lehetőség és 100 perc áll rendelkezésre. Minden kérdés zárolva lesz, ezért válaszadás után az előző kérdésekhez a visszalépés nem megengedett.

Ahol több érték a válasz egy kérdésre, ezeket az értékeket vesszővel elválasztva, szóközök nélkül kell megadni.

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
LEGUTOLSÓ	1. próbálkozás	91 perc	35.75 az összesen elérhető 60 pontból *

^{*} Néhány kérdés még nem lett értékelve

① A helyes válaszok elérhetőek lesznek ettől eddig: dec 14, 20:00 - dec 14, 21:00.

Ezen kvíz eredménye: 35.75 az összesen elérhető 60 pontból *

Beadva ekkor: dec 14, 11:30

Ez a próbálkozás ennyi időt vett igénybe: 91 perc

Részleges 1. kérdés 8 / 10 pont

Adott az alábbi gráf!

Futtassa le a **mélységi gráfkeresés** algoritmusát a gráfon. **FONTOS**, hogy a csúcsokat mindig **alfabetikus** sorrendben dolgozza fel!

Válaszoljon a következő kérdésekre!

a) Adja meg az alábbi csúcsok d és f értékét!

(Először a *d*, utána az *f* értéket vesszővel elválasztva, szóköz ne legyen a beírt szövegben.)

c csúcs: 11,12 **i** csúcs: 5,6

b) Adja meg a következő élek típusát egy betű beírásával!

(F - faél, E -előreél, K - keresztél, V -visszaél)
(g,c) él : F
(g,h) él: E
(h,e) él: K
c) Hány db előreél van? (Adjon meg egy számot!)
d) Hány db fából áll a mélységi erdő? (Adjon meg egy számot!)
e) DAG-e a gráf? (I -igen, N -nem)
f) Tekintsük azt a részgáfot, ami a c,g,f,h csúcsokat és a köztük lévő éleket tartalmazza! Hány féle topológikus rendezése van a részgráfnak? (Adjon meg egy számot!)
2
g) Adjuk meg ennek az f) pont beli részgráfnak egy topológikus rendezését! (A csúcsokat vesszővel elválasztva sorolja fel!)
C,F,H,G
1. válasz:
11,12

2. válasz:		
5,6		
3. válasz:		
F		
4. válasz:		
Е		
5. válasz:		
K		
6. válasz:		
2		
7. válasz:		
1		
8. válasz:		
N		
9. válasz:		
2		
10. válasz:		
C,F,H,G		

2. kérdés 10 / 10 pont

A gyakorlaton tanult módon hajtsa végre a Prim algoritmust az alábbi gráfra az F csúcsból indítva, majd válaszoljon a kérdésekre! (Ha egy ponton több csúcs is kiterjeszthető, ábécé sorrend szerint válasszon!)

- 1. Add meg a csúcsok feldolgozásának sorrendjét¹! (pl,: F,A,B,C,D,E)! F,E,D,A,C,B
- 2. Add meg a súlyokat tartalmazó tömb elmeit a D csúcs feldolgozása után^{1,2,3}!

3. Add meg a súlyokat tartalmazó tömb elemeit az algoritmus befejezésekor^{1,2,3}!

4. Add meg a feszítőfát tartalmazó tömb elemeit az A csúcs feldolgozása után 1,2,4!

	D,D,A,E,F,0			
	<i>∪,∪,</i> ∩,∟,ı ,∪			
5	Add meg feszítőfa	legmagasabb fokszámú csúcsát!	D	
^{1.} A	tömb elemeit vesszőve	el elválasztva adja meg!		
² . A	tömb elemei sorban az	A,B,C,D,E,F csúcsokhoz tartoznak.		
	végtelen helyett írjon i			
^{4.} A s	szülő nélküli csúcsokho	oz nullát (0) írjnon.		
	51			
1. V	álasz:			
	F,E,D,A,C,B			
2. v	álasz:			
	2,2,3,1,1,0			
3. v	álasz:			
	2,2,1,1,1,0			
4. v	álasz:			
	D,D,A,E,F,0			
5. v	álasz:			
	D			

Részleges

3. kérdés 8.75 / 10 pont

Játssza le a Dijkstra algoritmust a tanult módon az alábbi gráfon és válaszoljon a kérdésekre! Azonos d értékek esetén betűrendben dolgozza fel a csúcsokat! **Start csúcs: c**

Mennyi lett a második legnagyobb d érték? ³

Melyik csúcshoz tartozik?

Hány elem marad a prioritásos sorban a **"b"** csúcs kikerülése után?

Adja meg az "c" csúcsból a "d" csúcsba vezető legrövidebb utat és annak hosszát!

Az út (csak a csúcsokat adja meg vesszővel elválasztva, c és d is kell):

Az út hos	ssza (súlyok összeg	ge): 4	
Megváltozna a	z eredmény, ha a (l	b,d) él súlyát4-ről 2-re	változtatnánk (igen/nem)?
nem			
Adja meg az a	lábbi csúcsokhoz ta	artozó d és pi értékeket	et (vesszővel elválasztva, d van elől)!
e csúcs:	2,c		
a csúcs:	4,b		
1. válasz:			
3			
2. válasz:			
f			
3. válasz:			
4			
4. válasz:			
c,e,d			
5. válasz:			

4	
6. válasz:	
nem	
7. válasz:	
2,c	
8. válasz:	
4,b	

Részleges

4. kérdés 2 / 10 pont

A KMP algoritmussal a P = BABA BCB mintát keressük a

T = *BABAB CBABA BCBAB ABABC BABCB AB* szövegben.∑= {*A, B, C*} Adja meg a következő értékeket!

Szóközöket sem T sem P nem tartalmaz, csak az olvashatóságot segítik! (Hasonlítás alatt a T és a P megfelelő betűinek összehasonlítását értjük.)

- Adja meg a next(5)-t!
- Adja meg a next(6)-t!

Hány elemű az érvényes eltolások halmaza?
 Adja meg az érvényes eltolások halmazának két legnagyobb elemét növekvő sorrendbe! Ha nincs két érvényes eltolás, akkor 0-t írjon az üres helyekre!
S={, }
A mintaillesztés során hány hasonlítást végzett az algoritmus, amíg megtalálta a második
érvényes eltolást?
A mintaillesztés során hány hasonlítást végzett az algoritmus a második érvényes eltolás után?
A mintaillesztés során hány hasonlítást végzett az algoritmus összesen?
Döntse el az alábbi állításokról, hogy igazak-e? Ha igaz, írjon egy I betűt, ha hamis, akkor H -val jelezze!
• Igaz-e, hogy egy 20 hosszú szövegen és 7 hosszú mintán a Brute-Force algoritmust
alkalmazva előfordulhat, hogy 14 összehasonlítást végzünk ?
• Igaz-e, hogy a Brute-Force műveletideje legjobb esetben aszimptotikusan egyenlő, mint a KMP
algoritmus műveletideje legrosszabb esetben, ha m< <n?< th=""></n?<>
1. válasz:
(Ezt Ön üresen hagyta)
2. válasz:

(Ezt Ön üresen hagyta)	
3. válasz:	
(Ezt Ön üresen hagyta)	
4. válasz:	
(Ezt Ön üresen hagyta)	
5. válasz:	
(Ezt Ön üresen hagyta)	
6. válasz:	
(Ezt Ön üresen hagyta)	
7. válasz:	
(Ezt Ön üresen hagyta)	
8. válasz:	
(Ezt Ön üresen hagyta)	
9. válasz:	
i	
10. válasz:	
i	
9. válasz:	

Részleges

5. kérdés 7 / 10 pont

Negatív körök keresése élsúlyozott, hurkos fákban.

Def.: Hurkos fa alatt olyan irányított gráfot értünk, amelynek van egy *r* gyökércsúcsa (amelyből a gráf mindegyik csúcsa elérhető), és az *r*-ből indított DFS <u>egyetlen</u> mélységi vizitből áll, miközben csak fa-éleket és vissza-éleket talál.

A G élsúlyozott, hurkos fát szomszédossági listákkal ábrázoltuk, a G/1:Edge*[n] tömb segítségével. Mivel a gráf csúcsait az 1..n pozitív egész számokkal azonosítottuk, minden (u,v) élt egyértelműen azonosít az $id(n,u,v) = n^*(u-1) + (v-1)$ függvény értéke.

Írja meg a **negCycleSearch(G,r,pi,d,s)** eljárást, ami kiszámolja a gráf *r* gyökerű mélységi fáját a π tömbben, és minden csúcsnak a mélységi fában *r*-től vett távolságát a *d* tömbben! Közben a G-ben *negatív kört bezáró vissza-élek* id() értékeit az *s* verembe gyűjti, valamint input-ellenőrzést is végez. Ha ugyanis előre- vagy kereszt-éleket talál, akkor hibaüzenetként ezek id() értékének (-1)-szeresét teszi a verembe.

mT(n,m), $MT(n,m) \in \Theta(n+m)$, ahol m az élek száma G-ben

Az alábbi struktogramokban a gráf csúcsait 1-től *n*-ig sorszámoztuk, ahol *n* értéke adott. A *G* tömb elemei egyszerű éllistákat (szomszédossági listákat) azonosítanak.

A színek: 0 - fehér, 1 - szürke, 2 - fekete.

DFvisit(G/1:Edge*[n]; u:1..n; color/1:0..2[n]; π/1:N[n]; d/1:R[n]; s:Stack)

Válassza ki a fenti struktogramok hiányzó utasításait a lenyíló listákból!

A: [Kiválaszt] v

B: p:=G[u]

C: [Kiválaszt]

Nincs megválaszolva ;rdés Még nincs értékelve / 10 pont

A *T/1 : bit[m,n]* mátrix egy téglalap alakú teret reprezentál, ahol *0* jelöli az éjszaka kivilágított, *1* pedig a sötét helyeket. A világos területek éjszaka is biztonságosak, a sötéteken azonban tanácsosabb nem járni. Írjon fejléces, megfelelően paraméterezett struktogramot, amely megadja, hogy legalább hány sötét ponton, azaz *1* értékű mátrix elemen kell átmennünk a tér bal felső sarkából a jobb alsó sarkába úgy, hogy minden pozícióról a 4 oldalszomszédjára léphetünk, átlósan pedig nem léphetünk! (Érdemes deklarálni a *D : int[m,n]* tömböt, aminek *(i,j)* koordinátái egy irányított gráf csúcsai, *D[i,j]* elemei a csúcsok d-értékei, a (0;1), (0;-1), (-1;0), (1;0) lépésirányok pedig a gráf élei, feltéve, hogy nem lépünk ki a mátrixból. A gráf élsúlyozott, ui. minden olyan éle, amelyik sötét pontba visz, 1 súlyú, minden olyan éle pedig, amelyik világos helyre visz, 0 súlyú. Így az algoritmusunk legrövidebb út keresése lesz egy élsúlyozott gráfon.) Műveletigény: O((m*n)^2).

A megoldást kézírással kell elkészíteni, lehetőleg sima (nem vonalas vagy kockás) lapra, legyen rajta olvasható aláírás. A feladathoz a megoldásról készült fotót kell feltölteni pdf formátumban.

Kvízeredmény: **35.75** az összesen elérhető 60 pontból