IMPLEMENTATION AND ANALYSIS OF A FIELD PROGRAMMABLE ADC DESIGN FOR THE INTERFACING OF FPGAS

Master Thesis: Harini Venkataramani

Supervisor: Dipl.-Ing. Oliver Bachmann

Start Date: 2nd May 2018 | Submission Date: 1st Nov. 2018

Fachgebiet Integrierte Elektronische Systeme

Prof. Dr.-Ing. Klaus Hofmann

Contents

1	Intr	oduction and Motivation	9
	1.1	Motivation	9
	1.2	Existing Solutions	9
	1.3	Problem Description	9
2	The	ory of ADCs	11
	2.1	Different ADC Architectures	11
	2.2	Measurement parameters	11
	2.3	Theory of Oversampling	11
3	Syst	tem Overview	13
4	ADO	C design	15
	4.1	Design Specifications	15
	4.2	State Diagrams Explained	15
		4.2.1 Counter ADC	15
		4.2.2 Tracking ADC	15
		4.2.3 SAR ADC	15
		4.2.4 Comparative Analysis of Counter, Tracking and SAR ADC	15
5	Digi	ital Post Calibration	17
	5.1	Moving Average Filter	17
		5.1.1 Analysis and Implementation of Moving Average in FPGA	17
		5.1.2 Moving Average with Floating Point Unit in FPGA	17
		5.1.3 Efficient Implementation of Moving Average in FPGA using CIC	17
		5.1.4 Moving Average with CIC performance Analysis	17
		5.1.5 Illustration of Traditional tracking ADC and Moving Average	17
6	Eval	luation and Results	19
7	Con	iclusion and Outlook	21
	7.1	Conclusion	21
	7.2	Outlook	21
8	Bibl	liography	23

Declaration of Authorship

Abstract

Zusammenfassung

Acknowledgements

1 Introduction and Motivation

1.1 Motivation		
1.2 Literature review		
1.2 Dualiam Description		

2 Theory of ADCs

2	1 I	Different	ΔDC	Archit	ectures

- 2.2 Measurement parameters
- **2.3 Theory of Oversampling**

3 System Overview

4 ADC design

4.1 De	esign Specifications
4.2 St	ate Diagrams Explained
4.2.1	Counter ADC
4.2.2	Fracking ADC
4.2.3	SAR ADC
4.2.4	Comparative Analysis of Counter, Tracking and SAR ADC

5 Digital Post Calibration

5.1 N	.1 Moving Average Filter			
5.1.1	Analysis and Implementation of Moving Average in FPGA			
5.1.2	Moving Average with Floating Point Unit in FPGA			
5.1.3	Efficient Implementation of Moving Average in FPGA using CIC			
CIC a	s Moving Average-Proof of Concept			
5.1.4	Moving Average with CIC performance Analysis			
5.1.5	Illustration of Traditional tracking ADC and Moving Average			

6 Evaluation and Results

7 Conclusion and Outlook

- 4	_			
/ 1	Co	ncli	ICIO	n
<i>/</i> . I	CU		งราบ	

7.2 Outlook

8 Bibliography