AP Calculus AB - Semester I Review Practice Packet #2

Calculators should only be used when you see a "C" next to the problem number.

1)
$$\lim_{x \to 5} \frac{2x+10}{x^2+2x-15}$$
 is

- a) 0
- b) $\frac{-1}{8}$
- c) $\frac{-1}{4}$
- ∞ (b
- e) none of these

2)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$$
 is

- b) $\frac{1}{2}$
- c) 0
- $d) \infty$
- e) DNE

3)
$$\lim_{x \to 4} \frac{-3x+1}{(x-4)^2}$$
 is

- a) -11
- b) -13
- c) ∞
- d) -∞
- e) DNE

4) Let
$$f(x) = \begin{cases} \frac{4-x^2}{x-2} & \text{if } x \neq 2 \\ 4 & \text{if } x = 2 \end{cases}$$
 Which of the following statements I,II, and III are true?

- I. $\lim_{x \to 2} f(x)$ exists II. f(2) exists
- III. f is continuous at x = 2

- a) only I b) only II
- c) I and II
- d) none of them
- e) all of them

5) If
$$\begin{cases} f(x) = \frac{x^2 - 6x}{x} & \text{for } x \neq 0 \\ f(0) = 2k - 1 \end{cases}$$

and if f is continuous at x = 0, then k =

- a) -6
- b) $\frac{-5}{2}$
- c) 0
- e) 6

- If $f(x) = x^2 1$ and $g(x) = \frac{1}{x}$, which of the following statements is FALSE?
 - a) f(x) is continuous everywhere
 - b) g(x) is continuous except at x = 0
 - c) f(g(x)) is continuous except at x = 0
 - d) g(f(x)) is continuous except at x = 1
 - e) All are true
- The normal (perpendicular) line to the curve $y = \sqrt{8 x^2}$ at (-2, 2) has slope
 - a) -2
- b) $\frac{1}{2}$ c) $-\frac{1}{2}$
- d) 1
- e) -1

- If $f(x) = \frac{256}{\sqrt{x}} + 64\sqrt{x} + 3\sqrt[3]{x^2}$, then f'(64) =
 - a) 4.25
- b) 8.75
- c) 0.75
- d) 10.25
- e) 5.78
- If the graph of the second derivative of some function f is a line of slope -6, then f could be which type of 9) function?
 - a) constant
- b) linear
- c) quadratic
- d) cubic
- e) quartic

- 10) If $f(x) = \sin^2(3-x)$ then f'(0) =
 - a) -2 cos 3
- b) -2 sin 3 cos 3
- c) 6 cos 3
- d) 2 sin 3 cos 3
- e) 6 sin 3 cos 3

- 11) If f(5) = 3 and f'(5) = -2, find the derivative of $x^2 f(x)$ at x = 5.
 - a) 0
- b) -18
- c) -12
- d) -20
- e) -80

- 12) $y = -\frac{1}{\sqrt{x^2 + 1}}$, then $\frac{dy}{dx} = -\frac{1}{\sqrt{x^2 + 1}}$
 - a) $\frac{x}{(x^2+1)^{1/2}}$

b) $\frac{x}{(x^2+1)^{3/2}}$

c) $\frac{-x}{(x^2+1)^{1/2}}$

d) $\frac{-x}{(x^2+1)^{3/2}}$

e) $\frac{x}{x^2+1}$

- If $y = \frac{3}{\sin x + \cos x}$, find $\frac{dy}{dx} =$ 13)
 - a) $3\sin x 3\cos x$

b) $\frac{3}{(\sin x + \cos x)^2}$

c) $\frac{-3}{\left(\sin x + \cos x\right)^2}$

d) $\frac{3(\cos x - \sin x)}{(\sin x + \cos x)^2}$

e) $\frac{3(\sin x - \cos x)}{1 + 2\sin x \cos x}$

- 14) If $x^2 + xy y = 2$, find $\frac{dy}{dx}$

- a) $\frac{2x+y}{1-x}$ b) $\frac{2x}{1-x}$ c) $\frac{2x-2}{1-x}$ d) $\frac{2-2x}{x}$
- e) DNE

- 15) If $\sin y = \cos x$, then find $\frac{dy}{dx}$ at the point $\left(\frac{\pi}{2}, \pi\right)$
 - a) -1
- b) 0

- d) $\frac{\pi}{2}$
- e) None of these

- If $f(x) = x^3 x$, then 16)
 - a) $x = \frac{\sqrt{3}}{3}$ locates a relative maximum of f
 - b) $x = \frac{\sqrt{3}}{3}$ locates a relative minimum of f
 - c) $x = \sqrt{3}$ locates a relative maximum of f
 - d) $x = \sqrt{3}$ locates a relative minimum of f
 - e) $x = -\sqrt{3}$ locates a relative minimum of f
- $f(x) = x^n$, where n is a positive integer ≥ 2 . The graph of f(x) will have an inflection point when n is 17)
 - a) even
- b) odd
- c) divisible by 3
- d) for all values
- e) for no values
- A particle is subjected to gravity according to the following graph of the particle's velocity. 18)

At what time is the particle at its highest point?

- a) 0
- b) 2
- c) 3
- d) 5
- e) 6

In questions 19-20, a particle moves along a horizontal line according to the formula

$$s = 2t^4 - 4t^3 + 2t^2 - 1$$

- 19) The particle is moving right when

- a) $0 < t < \frac{1}{2}$ b) t > 0 c) t > 1 d) $0 < t < \frac{1}{2}, t > 1$ e) never

- The acceleration, a is increasing when 20)
 - a) t > 1
- b) t > 0.5
- c) t < 0.211 or t > 0.789 d) 0 < t < 0.5 e) 0 < t < 1

- The circumference of a circle is increasing at a rate of $\frac{2\pi}{5}$ inches per minute. When the radius is 5 inches, 21) how fast is the area of the circle increasing in square inches per minute?
 - a) $\frac{1}{5}$
- b) $\frac{\pi}{5}$
- c) 2
- d) 2π
- $e) 25\pi$

- A conical tank has a height that is always 3 times its radius. If water is leaving the tank at the rate of 50 C 22) cubic feet per minute, how fast is the water level falling in feet per minute when the water is 3 feet high? Volume of a cone is $V = \frac{1}{3}\pi r^2 h$.
 - a) 1.000
- b) 5.305
- c) 15.915
- d) 0.589
- e) 1.768

- A function f(x) is continuous for all x and has a local minimum at (1, 8). Which must be true? 23)

- a) f'(2) = 0 b) f' exists at x = 2 c) the graph is concave down at x = 1 d) f'(x) < 0 if x < 1, f'(x) > 0 if x > 1 e) f'(x) > 0 if x < 1, f'(x) < 0 if x > 1
- At what point on the graph y = f(x) below are both $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ both less than zero? 24)
 - a) P
- b) Q

- e) T

If $\lim_{x \to \infty} \frac{6x^2}{200 - 4x - kx^2} = \frac{1}{2}$, then k =

- a) 3
- b) -3
- c. 12
- d. -12
- e. -3

For the following piecewise function, determine the answer that best describes it: 26)

$$f(x) = \begin{cases} x - \cos(x), x \ge 0 \\ x^2 + x - 1, x < 0 \end{cases}$$

- a) both continuous and differentiable
- b) neither continuous nor differentiable c) continuous only

d) differentiable only

e) has a cusp point at x = 0

Let f(x) be a polynomial function such that f(3) = 3, f'(3) = 0, and f''(3) = -3. What is the point (3,3) on the graph y = f(x)?

a) relative maximum

b) relative minimum

c) intercept

d) inflection point

e) none of these

Given that $f(x) = 4 + \frac{3}{x}$ find all values of c in the interval (1,3) that satisfy the mean value theorem. 28)

- a) 2
- b) $\sqrt{2}$
- c) $\sqrt{3}$
- d) $\pm \sqrt{3}$

e) MVT doesn't apply

 $\int (x^2 - 4\sec x \tan x) dx =$ 29)

a) $2x - 4\tan x + C$

b) $\frac{x^2}{3} - 4 \tan x + C$

c) $\frac{x^2}{3} - 4\sec^2 x + C$

d) $\frac{x^2}{3} - 4\sec x + C$

e) none of these

- An equation of the line tangent to $y = \sin x + 2\cos x$ at $\left(\frac{\pi}{2}, 1\right)$ is 30)
 - a) $2x y = \pi 1$ d) $4x + 2y = 2 - \pi$

- b) $2x + y = \pi + 1$
- e) none of these

c) $2x - 2y = 2 - \pi$

- $\int \sqrt{x} \left(\sqrt{x} + 1 \right) dx$ 31)
 - a) $2(x^{\frac{3}{2}} + x) + C$

b) $\frac{x^2}{2} + x + C$

c) $\frac{1}{2}(\sqrt{x}+1)^2 + C$

d) $\frac{x^2}{2} + \frac{2x^{\frac{3}{2}}}{3} + C$

- e) $x + 2\sqrt{x} + C$
- For $f(x) = x^{\frac{2}{3}}(x^2 4)$ on [-2 2] the "c" value that satisfies Rolle's Theorem is 32)
 - a) 0
- b) 2
- $c) \pm 2$
- d) There is no value for c because f(0) does not exist
- e) There is no value for c because f(x) is not differentiable on (-2,2)

- If f(x) is a continuous function with $f''(x) = -5x^2(2x-1)^2(3x+1)^3$, find the set of values of x for 33) which f(x) has an inflection point.
 - a) $\left\{0, -\frac{1}{3}, \frac{1}{2}\right\}$ b) $\left\{-\frac{1}{3}, \frac{1}{2}\right\}$ c) $\left\{-\frac{1}{3}\right\}$ d) $\left\{\frac{1}{2}\right\}$

- e) no inflection points

- 34) The smallest slope of $f(x) = 6x^2 x^3$ for $0 \le x \le 6$ occurs at x = 6
 - a) 0
- b) 2
- c) 3
- d) 4
- e) 6

- 35) Find the equation of the line tangent to $y = \tan 2x$ at $x = \frac{\pi}{8}$.
 - a) $y 1 = \sqrt{2} \left(x \frac{\pi}{8} \right)$

b) $y - 1 = \frac{1}{2} \left(x - \frac{\pi}{8} \right)$

c) $y-1=\frac{1}{4}\left(x-\frac{\pi}{8}\right)$

 $d) y-1=2\left(x-\frac{\pi}{8}\right)$

- $e. y 1 = 4\left(x \frac{\pi}{8}\right)$
- 36) Given $f(x) = x^4(2x^2 15)$. On what interval(s) is the graph of f concave upwards?
 - a) $\left(0,\sqrt{3}\right)$

b) $\left(-\sqrt{3},0\right)$

c) $\left(-\sqrt{3},0\right) \cup \left(0,\sqrt{3}\right)$

d) $\left(-\sqrt{3}, \sqrt{3}\right)$

- e) $\left(-\infty, -\sqrt{3}\right) \cup \left(\sqrt{3}, \infty\right)$
- **C** 37) The graph of the function $y = x^5 x^2 + \sin x$ has a point of inflection at $x = x^5 x^2 + \sin x$
 - a) 0.324
- b) 0.499
- c) 0.506
- d) 0.611
- e) 0.704

- **C** 38) If $f'(x) = 2(3x+5)^4$, then the fifth derivative of f(x) at $x = \frac{-5}{3}$ is
 - a) 0
- b) 144
- c) 1,296
- d) 3,888
- e) 7,776

Problems 39 and 40 refer to the graph below.

- The figure shows the graph of f'(x), the derivative of the function f. The domain of f is $0 \le x \le 8$. 39) For what value(s) of x does the function have a relative minimum?
 - a) 2
- b) 4
- c) 6
- d) 2 and 6
- e) 3 and 5

- 40) In what interval(s) is the graph of f concave up?
 - a) (3, 5)
- b) (2, 6)
- c) $[0,3) \cup (4,5)$ d) always
- e) never

- 41) If $f'(x) = \sin x$ and $f(\pi) = 3$, then f(x) =
 - a) $\cos x + 4$
- b) $\cos x + 3$ c) $-\cos x + 2$ d) $-\cos x 2$ e) $-\cos x + 4$
- Let f be a function such that $\lim_{h\to 0} \frac{f(5+h)-f(5)}{h} = 4$. Which of the following must be true? 42)
 - f(5) = 4
 - f'(5) = 4II.
 - f is continuous at x = 5III.
 - a) I only
- b) II only
- c) III only
- d) I and II only
- e) II and III only

C

43) If y = 3x - 7, x > 0, what is the minimum product of x^2y ?

- a) -5.646
- b) 0
- c) 1.556
- d) 2.813
- e) 4.841

Let f, g and their derivatives be defined by the table below. What is the derivative of f(g(x)) at x = 2?

X	1	2	3	4
f(x)	3	0	1	2
g(x)	2	3	4	1
f'(x)	1	2	3	1
g'(x)	2	2	1	1

- a) 6
- b) 2
- c) 8
- d) 4
- e) 0

For how many values of x will the tangent lines to $y = 4 \sin x$ and $y = \frac{x^2}{2}$ be parallel?

- a) 0
- b) 1
- c) 3
- d) 4
- e) infinite