SAUF	ABH KUMAR C22B146 Page No.:
	Tutorial on Laplace Transforms
1	Find the inverse laplace bransform (ILT) of xxs), if xxt) is
	causal signal.
	X(S) = 23 + 93 - 47
	(s+1)(s ² +6s+25)
soln:	$X(s) = 2s^2 + 9s - 47$
	$(s+1)(s^2+6s+25)$
	$=\frac{47}{10}S+\frac{41}{2}+\frac{-27}{10}$
	$(s^2+6s+25)$ $10(s+1)$
	$= \frac{47}{10} \text{ St } 41/2 \qquad 27/10$
	(S+3) ² +16 S+1
	$= \frac{47/10 (st3)}{+ 41/2 - 47/10 \times 3} + \frac{27/10}{}$
1,	(St3)2+1842 (St3)2+42
	$= 47/10 (St3)' + 47/5 (4) \times \frac{1}{4} = 27/10$
	$(s+3)^2+4^2$, $(s+3)^2+4^2$, $s+1$.
ILI	\Rightarrow x(t) = $(47/10 e^{-3t} \cos 4t^{2} + 47/20 e^{-3t} \sin 4t^{2} - 27/10 e^{-t}]ut$
•	CIFIT AL MARIE ALLA
②	$\frac{\text{find ILT of X(S):}}{\text{(S+4)(S-1)}}$
	if the region of convergences (ROCs) are
	(D) -4 < Re {5}<1
	B Re {s} >1
som:	V(a) 2 A R > A-2/-5 =-2/5
<u> </u>	$O(Re\{s\} < -4.$ $X(s) = \frac{2}{(s+4)(s-1)} = \frac{A}{5+4} + \frac{B}{5-1} \Rightarrow A = \frac{2}{1-5} = -\frac{2}{1-5}$ $B = \frac{2}{15}$
_	
	$= \frac{-2/5}{5+4} + \frac{2/5}{5-1}$
	@ ILT ⇒ x(t) = [-2/5 e-4t)-2/5 etu(-t)]
	Cy 121
	(B) ILT ⇒ XHI = [-2/5-e-4+ +2/5 et Jult)
	@ [LT => x1t1 = - [-2/5e-4t + 2/5-et] u(-t)

find the Roc. $x(t) = e^{-2t} \cdot y(t+t)$ $x(s) = \int_{-\infty}^{\infty} e^{-2t} u(t+t) e^{-2t} dt$

 $= \int_{-1}^{0} e^{-2t} e^{-3t} dt = \left[\frac{e^{-(2+5)t}}{-a(5+2)} \right]_{-1}^{\infty} = 0 - e^{(2+5)} = 0 - e^{(2+5)}$

L > ROC: Rasft 2 > 0

where * denotes convolution operation, x,(t) = c-21 ulty

$$y(t) = e^{-x} \chi_{2}(-t+3)$$

$$= \left[e^{-2(t-2)} u(t-2)\right] * \left[e^{-3(-t+3)} u(-t+3)\right]$$

$$= e^{4} \int_{e^{-(z+s)t}}^{\infty} dt + e^{-9} \int_{-\infty}^{3} e^{(3-s)t} dt$$

$$= e^{4} \begin{bmatrix} e^{-(2+s)t} \end{bmatrix} \infty + e^{-9} \begin{bmatrix} e^{(3-s)t} \end{bmatrix}$$

$$= e^{4} \begin{bmatrix} e^{-(2+s)t} \end{bmatrix} \times e^{-9} \begin{bmatrix} e^{(3-s)t} \end{bmatrix} \times e^{-3}$$

$$= e^{4} \underbrace{e^{-2(2+s)}}_{(s+2)} + e^{-9} \underbrace{e^{-3}(s-3)}_{(s-3)}$$

$$= e^{4} \underbrace{e^{-2(2+s)}}_{(s+2)} + e^{-9} \underbrace{e^{-3}(s-3)}_{(s-3)}$$

$$= e^{4} \underbrace{e^{-2(2+5)}}_{(5+2)} + e^{-9} \underbrace{e^{-3}(3-3)}_{(5-3)}$$

$$=\frac{\bar{e}^{2}s}{s+2}+\frac{e^{-3}s}{s-3}$$

(a)
$$\chi(s) = \frac{S+5}{5^2 + 3S+2}$$

$$= \lim_{s \to \infty} s(s+5)$$

$$s \to \infty \qquad s^2 + 3s + 2$$

$$= \lim_{s \to \infty} \frac{1 + \frac{5}{s}}{1 + \frac{3}{s} + \frac{2}{62}} = 1$$

$$\chi(0) = \lim_{s \to 0} S\chi(s) = \lim_{s \to 0} S(s+s) = 0.$$

(b)
$$X(s) = s^2 + 5s + 7$$

 $s^2 + 3s + 2$

Sofn:
$$\chi(0^{\dagger}) = \lim_{S \to \infty} S\chi(S)$$

$$=\lim_{s \to \infty} s(s^2 + 5s + 7)$$

$$= \lim_{S \to \infty} \frac{1 + \frac{5}{5} + \frac{7}{5^2}}{1/s + \frac{3}{5^2} + \frac{2}{5^3}} = \infty$$

(8) (860
$$\times$$
 (100) = $\lim_{S\to 0} S \times (S) = 0$.

signal y(t).

Signal y(t).

$$y(t) = \chi(t) * h(t)$$

$$y(s) = \chi(s) \cdot H(s)$$

$$\chi(t) = e^{-t} u(t) \iff \chi(s) = 1$$

$$h(t) = e^{-2t} u(t) \iff X(s) = 1$$

$$\frac{A}{(5+1)} = \frac{1}{(5+2)} = \frac{A}{(5+2)} = \frac{A}{(5+2)} = \frac{1}{(5+2)}$$

$$(S+1) (S+2) (S+1) (S+2) (S+1) (S+2) (S+1) (S+2) (S+2$$

(1) An LTI system is defined as:
$$\frac{d^3y(t)}{dt^3} + 6 \frac{g}{d^2y(t)} + 11 \frac{dy(t)}{dt} + 6y(t) = x(t),$$

