

Set Functions for Time Series

ICMI 2020

Max Horn, Michael Moor, Christian Bock, Bastian Rieck and Karsten Borgwardt

Machine Learning and Computational Biology Group, ETH Zurich

Challenges

Irregular sampling of data

Challenges

- Irregular sampling of data
- · High demands on interpretability

Challenges

- Irregular sampling of data
- High demands on interpretability

Challenges

- Irregular sampling of data
- High demands on interpretability

Challenges

- · Irregular sampling of data
- High demands on interpretability

Problem statement

Learning classification models on irregularly-sampled time series without prior imputation.

Challenges

- · Irregular sampling of data
- · High demands on interpretability

Problem statement

Learning classification models on irregularly-sampled time series without prior imputation.

Set Functions for Time Series

→ Time series classification as set classification

New approach for Irregularly-sampled Time Series

New approach for Irregularly-sampled Time Series

Competitive Performance with Lower Runtime

New approach for Irregularly-sampled Time Series

Competitive Performance with Lower Runtime

Per Observation Contributions

Architecture Overview

Each observation s_j is represented as a tuple (t_j, z_j, m_j)

Each observation s_j is represented as a tuple (t_j, z_j, m_j)

$$S = \{(0.5, 60, 1), (1.5, 65, 1),$$

Each observation s_j is represented as a tuple (t_j, z_j, m_j)

$$S = \{(0.5, 60, 1), (1.5, 65, 1), (0.5, 80, 2), (1.7, 85, 2), (3, 87, 2)\}$$

Deep Sets 1

$$f(S) = g\left(\frac{1}{|S|}\sum_{s_j \in S} h(s_j)\right)$$

where $h: \Omega \to \mathbb{R}^d$ and $g: \mathbb{R}^d \to \mathbb{R}^C$ are neural networks

¹Zaheer et al., NeurIPS 2017

Deep Sets 1

$$f(S) = g\left(\frac{1}{|S|}\sum_{s_j \in S} h(s_j)\right)$$

where $h \colon \Omega \to \mathbb{R}^d$ and $g \colon \mathbb{R}^d \to \mathbb{R}^C$ are neural networks

Problem

Influence of an element shrinks as |S| grows!

¹Zaheer et al., NeurIPS 2017

Keys:
$$K_{j,i} = [f(S), s_j]^T W_i$$

Keys: $K_{j,i} = [f(S), s_j]^T W_i$

Queries: $Q \in \mathbb{R}^{m \times d}$

Keys:
$$K_{j,i} = [f(S), s_j]^T W_i$$

Queries: $Q \in \mathbb{R}^{m \times d}$

Preattentions: $e_{j,i} = \frac{K_{j,i} \cdot Q_i}{\sqrt{d}}$

Keys:
$$K_{j,i} = [f(S), s_j]^T W_i$$

Queries: $Q \in \mathbb{R}^{m \times d}$

Preattentions:
$$e_{j,i} = rac{\mathsf{K}_{j,i} \cdot \mathsf{Q}_{j}}{\sqrt{d}}$$

Preattentions:
$$e_{j,i} = \frac{K_{j,i} \cdot Q_i}{\sqrt{d}}$$
Attentions: $a_{j,i} = \frac{\exp(e_{j,i})}{\sum_j \exp(e_{j,i})}$

Keys:
$$K_{j,i} = [f(S), s_j]^T W_i$$

Queries: $Q \in \mathbb{R}^{m \times d}$

Preattentions:
$$e_{j,i} = \frac{K_{j,i} \cdot Q_i}{\sqrt{d}}$$

Attentions:
$$a_{j,i} = \frac{\exp(e_{j,i})}{\sum_{j} \exp(e_{j,i})}$$

Values:
$$V_i = \sum_j a_{j,i} h_{\theta}(s_j)$$

Keys:
$$K_{j,i} = [f(\mathcal{S}), s_j]^T W_i$$
Queries: $Q \in \mathbb{R}^{m \times d}$

Preattentions: $e_{j,i} = \frac{K_{j,i} \cdot Q_i}{\sqrt{d}}$

Attentions: $a_{j,i} = \frac{\exp(e_{j,i})}{\sum_j \exp(e_{j,i})}$

Values: $V_i = \sum_j a_{j,i} h_{\theta}(s_j)$

$$\mathcal{L}(\theta, \psi) = \mathbb{E}_{(\mathcal{S}, y) \in \mathcal{D}} \left[\ell \left(y; g_{\psi} \left(\sum_{s_j \in \mathcal{S}} a(\mathcal{S}, s_j) h_{\theta}(s_j) \right) \right) \right]$$

Experimental setup

Datasets

- Two mortality prediction tasks MIMIC-III (M3-Mortality) and Physionet 2012 (P-Mortality)
- · Sepsis early recognition task Physionet 2019 Challenge

Comparison partners

- PHASED-LSTM Neil et al., NeurIPS 2017
- · Transformer Vaswani et al., NeurIPS 2017
- · GRU-SIMPLE & GRU-D Che et al., Scientific reports 2018
- IP-NETS Shukla & Marlin, ICLR 2019

Results - Performance vs. Runtime

Results - Sepsis Early Prediction

Model	B-Accuracy	AUPRC	U_{norm}	s/epoch
GRU-D	51.15	5.82	0.02121	190.41
GRU-SIMPLE	50.69	6.97	0.013 09	92.90
IP-NETS	78.02	37.60	0.513 27	232.92
PHASED-LSTM	50.09	6.40	0.00159	110.49
TRANSFORMER	77.84	55.30	0.499 74	71.70
SeFT-Attn	74.50	8.78	0.34120	62.91

Results - Sepsis Early Prediction

Model	B-Accuracy	AUPRC	U_{norm}	s/epoch
GRU-D	51.15	5.82	0.02121	190.41
GRU-SIMPLE	50.69	6.97	0.013 09	92.90
IP-NETS	78.02	37.60	0.513 27	232.92
PHASED-LSTM	50.09	6.40	0.00159	110.49
TRANSFORMER	77.84	55.30	0.499 74	71.70
SeFT-Attn	74.50	8.78	0.34120	62.91

Possible Leakage of Future Information

IP-NETS Through unmasked interpolation

TRANSFORMER Through layer normalization

Results - Interpretability

Uniquely allows a **per-observation** quantification of importance

Summary

```
 \begin{pmatrix} (t_3, z_3, m_1), \\ (t_5, z_5, m_1), \dots \\ (t_1, z_1, m_2), \\ (t_4, z_4, m_2), \dots \\ (t_2, z_2, m_3), \dots \\ (t_{11}, z_{11}, m_3) \end{pmatrix}
```

New approach for irregularly-sampled time series

Competitive performance with lower runtime

Per observation contributions

For further information please check out our paper.

