Exercice 1. Soit n > 0 un entier et L une application linéaire de \mathbb{R}^n dans \mathbb{R}^n . On note $\mathrm{Im}(L)$ son image et $\mathrm{Ker}(L)$ son noyau. Pour tout $i \ge 1$, on note $L^i = \underbrace{L \circ L \circ \cdots \circ L}_{i \text{ fois}}$ la composée i fois de L.

Première partie

- **1.** Soit $j \ge 1$ un entier, montrez que $\operatorname{Ker}(L^j) \subset \operatorname{Ker}(L^{j+1})$ et $\operatorname{Im}(L^{j+1}) \subset \operatorname{Im}(L^j)$. En déduire que $\dim(\operatorname{Ker}(L^j)) \le \dim(\operatorname{Ker}(L^{j+1}))$.
- **2.** Montrez qu'il existe i un entier positif tel que $Ker(L^i) = Ker(L^{i+1})$.
- **3.** Soit donc i un entier positif tel que $Ker(L^i) = Ker(L^{i+1})$.
 - a) Montrez que $\operatorname{Im}(L^i) = \operatorname{Im}(L^{i+1})$.
 - **b)** Montrez que pour tout $j \ge i$, $\operatorname{Ker}(L^i) = \operatorname{Ker}(L^j)$ et $\operatorname{Im}(L^i) = \operatorname{Im}(L^j)$.

Deuxième partie

On dit que L est nilpotente s'il existe un entier positif p tel que $L^p = 0$ et on appelle *indice de nilpotence* le plus petit de ces entiers p.

4. a) Pour n=2, montrez que l'application A définie par

$$A: \begin{cases} \mathbb{R}^2 & \to \mathbb{R}^2 \\ \begin{pmatrix} x \\ y \end{pmatrix} & \mapsto \begin{pmatrix} y \\ 0 \end{pmatrix} \end{cases}$$

est nilpotente et donnez son indice.

b) Montrez que l'application B définie par :

$$B: \begin{cases} \mathbb{R}^2 & \to \mathbb{R}^2 \\ \begin{pmatrix} x \\ y \end{pmatrix} & \mapsto \begin{pmatrix} 0 \\ y \end{pmatrix} \end{cases}$$

n'est pas nilpotente.

Soit L une matrice nilpotente d'indice p.

- **5.** Montrez que pour tout entier positif k < p, $\dim(\operatorname{Ker}(L^k)) < \dim(\operatorname{Ker}(L^{k+1}))$ et que pour tout $k \ge p$, $\dim(\operatorname{Ker}(L^k)) = n$.
- **6. a)** Montrez que la seule valeur propre d'une application linéaire nilpotente est 0.
- **b)** On suppose que L est une application linéaire dont la matrice dans la base usuelle de \mathbb{R}^n est triangulaire et dont la seule valeur propre est 0. Montrez que L est nilpotente.
- c) Donnez dans le cas n=3, un exemple d'application linéaire qui ne possède que 0 comme valeur propre réelle et qui n'est pas nilpotente.
- **7. a)** Soient A et B deux applications linéaires nilpotentes qui commutent, c'est-à-dire telles que $A \circ B = B \circ A$. Montrez que A + B est nilpotente.
- **b)** Proposez deux applications linéaires nilpotentes dont la somme n'est pas nilpotente. On pourra se placer dans le cas n = 2.