1/22/2014 Quiz | Coursera

Structured CPDs + Week 1 Review

Help

Warning: The hard deadline has passed. You can attempt it, but **you will not get credit for** it. You are welcome to try it as a learning exercise.

☐ In accordance with the Coursera Honor Code, I (Mike Ryan) certify that the answers here are my own work.

Question 1

I-maps. Suppose $(A \perp B) \in \mathcal{I}(P)$, and G is an I-map of P. Is it necessarily true that $(A \perp B) \in \mathcal{I}(G)$?

- O No
- Yes

Question 2

Template Models. Consider the plate model shown below. Assume we are given K Markets, L Products, M Consumers and N Locations. What is the total number of instances of the variable P in the grounded BN?

 $\bigcirc (L \cdot M)^K$

- $\bigcirc K \cdot (N + (L \cdot M))$
- $\bigcirc K \cdot L \cdot M \cdot N$
- $\bigcirc K \cdot L \cdot M$

Question 3

Template Models. Consider the plate model from the previous question. What might P represent?

- Whether a specific product PROD was consumed by consumer C in market M
- Whether a specific product of brand q was consumed by a consumer with age t in a market of type m that is in location a
- Whether a specific product PROD was consumed by consumer C in market M that is supervised by supervisor S (assuming that there is exactly 1 unique supervisor per market) and has target audience T (assuming that there is exactly 1 unique target audience per market)
- Whether a specific product of brand q was consumed by a consumer with age t in a market of type m

Question 4

Time-Series Graphs. Which of the time-series graphs satisfies the Markov assumption? You may select 1 or more options (or none of them, if you think none apply).

- (b)
- (a)

(c)

Question 5

*Unrolling DBNs. Below are 2-TBNs that could be unrolled into DBNs. Consider these unrolled DBNs (note that there are no edges within the first time-point). In which of them will $(X^{(t)} \perp Z^{(t)} \mid Y^{(t)})$ hold for all t, assuming $Obs^{(t)}$ is observed for all t and $X^{(t)}$ and $Z^{(t)}$ are never observed? You may select 1 or more options (or none of them, if you think none apply).

Hint: Unroll these 2-TBNs into DBNs that are at least 3 time steps long (i.e., involving variables from t-1, t, t+1).

- (b)
- (a)
- (c)

Question 6

Causal Influence. Consider the CPD below. What is the probability that $E=e_1$ in the following graph, given an observation $A=a_0, B=b_0, C=c_1, D=d_1$? Note that for the pairs of probabilities that make up the leaves, the probability on the left is the probability of e_0 , and the

1/22/2014 Quiz | Coursera

Question 7

Independencies with Deterministic Functions. In the following Bayesian network, the node B is a deterministic function of its parent A. Which of the following is an independence statement that holds in the network? You may select 1 or more options (or none of them, if you think none apply).

- \Box $(A \perp D \mid C)$
- \Box $(C \perp D \mid B)$

Question 8

Independencies in Bayesian Networks. For the network in the previous question, let B no longer be a deterministic function of its parent A. Which of the following is an independence statement that holds in the modified Bayesian network? You may select 1 or more options (or none of them, if you think none apply).

- \Box $(A \perp D \mid C)$
- \square $(A \perp D \mid B)$
- \Box $(A \perp B \mid C, D)$
- \Box $(C \perp D \mid A)$

Question 9

Context-Specific Independencies in Bayesian Networks. Which of the following are context-specific independences that **do** exist in the tree CPD below? (Note: Only consider independencies in this CPD, ignoring other possible paths in the network that are not shown here. You may select 1 or more options (or none of them, if you think none apply).

1/22/2014 Quiz | Coursera

☐ In accordance with the Coursera Honor Code, I (Mike Ryan) certify that the answers here are my own work.

Submit Answers

Save Answers

You cannot submit your work until you agree to the Honor Code. Thanks!