Data Mining Homework 04

Qiu Yihang

June 2023

1 Differential Privacy

Solution. Laplacian distribution with scale b is $\operatorname{Lap}(x|b) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right)$.

L1-sensitivity of 1 requires $\Delta f = \max_{x,y \in \mathcal{N}^{\mathcal{X}}, \ \|x-y\|=1} \|f(x) - f(y)\|_1 = 1.$

By Laplace Mechanism, the noise added should be $Y \sim \text{Lap}\left(y | \frac{\Delta f}{\varepsilon}\right)$. Thus,

$$b = \frac{\Delta f}{\varepsilon} = \frac{1}{\varepsilon}$$

2 Differentially Private Stochastic Gradient Descent

Solution. The algorithm is as follows.

Algorithm 1: DP-SGD

Input: Training dataset $D = \{x_1, ... x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\theta, x_i)$.

Parameters: Learning rate η , number of epochs T, batch size L, gradient norm clipping bound C, noise scale σ .

Initialize θ_0 ;

for
$$t=1 \rightarrow T$$
 do

Randomly shuffle a batch B_t with batch size L from D;

Compute gradient $\boldsymbol{g}_t(x_i) = \nabla \mathcal{L}(\theta_{t-1}, x_i);$

$$\text{Clip gradient } \boldsymbol{g}_t(x_i) \leftarrow \frac{\boldsymbol{g}_t(x_i)}{\max\left(1, \frac{\|\boldsymbol{g}_t(x_i)\|_2}{C}\right)};$$

Add noise $\hat{\boldsymbol{g}}_t \leftarrow \frac{1}{L} \left(\left(\sum_{x_j \in B_t} \boldsymbol{g}_t(x_j) \right) + \mathcal{N}(0, \sigma^2 C^2 \boldsymbol{I}) \right);$ update $\theta_{t+1} \leftarrow \theta_t - \eta \hat{\boldsymbol{g}}_t$

Output: θ_T and the overall privacy cost (ε, δ) computed by a privacy accounting method.

3 Gradient Matrix Compression

Solution. We use SVD to compress the gradient matrix G.

The modified DP-SGD algorithm is as follows.

Algorithm 2: Compressed DP-SGD

Input: Training dataset $D = \{x_1, ... x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\theta, x_i)$.

Parameters: Learning rate η , number of epochs T, batch size L, gradient norm clipping bound C, noise scale σ .

Initialize θ_0 ;

for $t=1 \rightarrow T$ do

Randomly shuffle a batch B_t with batch size L from D;

Compute gradient $\mathbf{g}_t(x_i) = \nabla \mathcal{L}(\theta_{t-1}, x_i)$ and get the gradient matrix $\mathbf{G} \in \mathbb{R}^{n \times p}$;

Perform SVD on G and get $G = U\Sigma V^T$, where $U \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{p \times p}, \Sigma \in \mathbb{R}^{n \times p}$;

Let $B = V[:,:k] \in \mathbb{R}^{p \times k}$, i.e. the first k-th columns of V. (Obvious B is orthogonal);

Let $\hat{\boldsymbol{G}} = \boldsymbol{U}[:,:k]\boldsymbol{\Sigma}[:k,:k] \in \mathbb{R}^{n \times k};$

for each row $\hat{g}_i \in \mathbb{R}^k$, i.e. the compressed gradient, in \hat{G} do

$$| \text{ clip gradient } \hat{\boldsymbol{g}}_i' \leftarrow \frac{\hat{\boldsymbol{g}}_i}{\max\left(1, \frac{\|\hat{\boldsymbol{g}}_i\|_2}{C}\right)};$$

 \mathbf{end}

Add noise $\hat{\boldsymbol{g}}_t' \leftarrow \frac{1}{L} \left(\sum_{x_j \in B_t} \hat{\boldsymbol{g}}_i'(x_j) + \mathcal{N}(0, \sigma^2 C^2 \boldsymbol{I}) \right);$

Project $\hat{\boldsymbol{g}}_t' \in \mathbb{R}^k$ to the original \mathbb{R}^p and get $\widetilde{\boldsymbol{g}}_t = \hat{\boldsymbol{g}}_t' \boldsymbol{B}^\top$;

update $\theta_{t+1} \leftarrow \theta_t - \eta \widetilde{\boldsymbol{g}}_t$

end

Output: θ_T and the overall privacy cost (ε, δ) computed by a privacy accounting method.