Number Theory Summary

Mathematical Notes

October 27, 2025

Contents

1	Divisibility and Primes					
	1.1 Basic	Definitions	3			
	1.2 Divis	ion Algorithm	S			
	1.3 Grea	test Common Divisor	3			
	1.4 Exter	nded Euclidean Algorithm	3			
	1.5 Least	Common Multiple	٠			
2	Fundamental Theorem of Arithmetic					
	2.1 Prim	e Factorization	4			
	2.2 Prim	e Counting Function	4			
	2.3 Sieve	of Eratosthenes	4			
3	Congruences					
	3.1 Basic	Properties	4			
	3.2 Linea	ur Congruences				
	3.3 Chine	ese Remainder Theorem				
4	Fermat's Little Theorem and Euler's Theorem					
	4.1 Ferm	at's Little Theorem	-			
	4.2 Euler	's Totient Function	-			
	4.3 Euler	's Theorem				
5	Quadratic Residues					
	5.1 Defin	ition and Basic Properties	6			
	5.2 Quad	ratic Reciprocity	(
6	Diophantine Equations					
	6.1 Linea	r Diophantine Equations	(
	6.2 Pyth	agorean Triples	(
	6.3 Ferm	at's Last Theorem	(
7	Continue	d Fractions	7			
	7.1 Defin	ition	7			
	7.2 Conv	ergents	7			

8	Arithmetic Functions 7					
	8.1	Multiplicative Functions	7			
	8.2	Important Arithmetic Functions	7			
	8.3	Möbius Inversion Formula	7			
9	Prir	mitive Roots	8			
	9.1	Definition	8			
	9.2	Discrete Logarithm	8			
10			8			
			8			
			8			
	10.3	Computer Science	8			
11			8			
	11.1	Riemann Zeta Function	8			
	11.2	Riemann Hypothesis	9			
12	Alge	ebraic Number Theory	9			
	12.1	Algebraic Integers	9			
	12.2	Quadratic Fields	9			
	12.3	Ideal Theory	9			
13	Imp	ortant Algorithms	9			
	13.1	Fast Exponentiation	9			
		$\boldsymbol{\omega}$	9			
	13.3	Pollard's Rho Algorithm	9			
14	·		9			
			9			
			0			
	14.3	Thue's Theorem	0			
15	Ope	en Problems 1	0			
		- · · · · · · · · · · · · · · · · · · ·	0			
		o	0			
	15.3	Perfect Numbers	0			
16	Imp	ortant Constants 1	0			

1 Divisibility and Primes

1.1 Basic Definitions

Definition 1.1. For integers a and b with $b \neq 0$, we say b divides a (written $b \mid a$) if there exists an integer c such that a = bc.

Definition 1.2. A **prime number** is a positive integer p > 1 whose only positive divisors are 1 and p.

Definition 1.3. A composite number is a positive integer n > 1 that is not prime.

1.2 Division Algorithm

Theorem 1.1 (Division Algorithm). For any integers a and b with b > 0, there exist unique integers q and r such that:

$$a = bq + r$$
 where $0 \le r < b$

1.3 Greatest Common Divisor

Definition 1.4. The **greatest common divisor** of integers a and b (not both zero) is the largest positive integer d such that $d \mid a$ and $d \mid b$. We write gcd(a, b) = d.

Theorem 1.2 (Euclidean Algorithm). To find gcd(a, b) where a > b > 0:

- 1. Apply the division algorithm: $a = bq_1 + r_1$ where $0 \le r_1 < b$
- 2. If $r_1 = 0$, then gcd(a, b) = b
- 3. Otherwise, apply the division algorithm to b and r_1 : $b = r_1q_2 + r_2$
- 4. Continue until $r_n = 0$. Then $gcd(a, b) = r_{n-1}$

1.4 Extended Euclidean Algorithm

Theorem 1.3 (Bézout's Identity). For any integers a and b (not both zero), there exist integers x and y such that:

$$\gcd(a,b) = ax + by$$

1.5 Least Common Multiple

Definition 1.5. The **least common multiple** of positive integers a and b is the smallest positive integer m such that $a \mid m$ and $b \mid m$. We write lcm(a, b) = m.

Theorem 1.4. For positive integers a and b:

$$gcd(a, b) \cdot lcm(a, b) = ab$$

2 Fundamental Theorem of Arithmetic

2.1 Prime Factorization

Theorem 2.1 (Fundamental Theorem of Arithmetic). Every positive integer n > 1 can be written uniquely as a product of primes:

$$n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$$

where $p_1 < p_2 < \cdots < p_k$ are primes and a_1, a_2, \ldots, a_k are positive integers.

2.2 Prime Counting Function

Definition 2.1. The **prime counting function** $\pi(x)$ counts the number of primes less than or equal to x.

Theorem 2.2 (Prime Number Theorem).

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1$$

2.3 Sieve of Eratosthenes

Definition 2.2. The **Sieve of Eratosthenes** is an algorithm to find all primes up to a given limit n:

- 1. List all integers from 2 to n
- 2. Start with the first number p=2
- 3. Cross out all multiples of p greater than p
- 4. Find the next uncrossed number and repeat
- 5. Continue until $p^2 > n$

3 Congruences

3.1 Basic Properties

Definition 3.1. For integers a, b, and positive integer m, we say a is **congruent** to b modulo m (written $a \equiv b \pmod{m}$) if $m \mid (a - b)$.

Theorem 3.1 (Properties of Congruences). For integers a, b, c, d and positive integer m:

- 1. $a \equiv a \pmod{m}$ (reflexive)
- 2. If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$ (symmetric)
- 3. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$ (transitive)
- 4. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- 5. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

3.2 Linear Congruences

Theorem 3.2. The linear congruence $ax \equiv b \pmod{m}$ has a solution if and only if $gcd(a, m) \mid b$. If gcd(a, m) = d and $d \mid b$, then there are exactly d solutions modulo m.

3.3 Chinese Remainder Theorem

Theorem 3.3 (Chinese Remainder Theorem). Let m_1, m_2, \ldots, m_k be pairwise relatively prime positive integers, and let a_1, a_2, \ldots, a_k be integers. Then the system of congruences:

$$x \equiv a_1 \pmod{m_1} \tag{1}$$

$$x \equiv a_2 \pmod{m_2} \tag{2}$$

$$\vdots (3)$$

$$x \equiv a_k \pmod{m_k} \tag{4}$$

has a unique solution modulo $m_1m_2\cdots m_k$.

4 Fermat's Little Theorem and Euler's Theorem

4.1 Fermat's Little Theorem

Theorem 4.1 (Fermat's Little Theorem). If p is prime and gcd(a, p) = 1, then:

$$a^{p-1} \equiv 1 \pmod{p}$$

4.2 Euler's Totient Function

Definition 4.1. Euler's **totient function** $\phi(n)$ counts the number of positive integers less than or equal to n that are relatively prime to n.

Theorem 4.2. For a prime p and positive integer k:

$$\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$$

Theorem 4.3. For relatively prime positive integers m and n:

$$\phi(mn) = \phi(m)\phi(n)$$

Theorem 4.4. For $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$:

$$\phi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right)$$

4.3 Euler's Theorem

Theorem 4.5 (Euler's Theorem). If gcd(a, n) = 1, then:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

5 Quadratic Residues

5.1 Definition and Basic Properties

Definition 5.1. An integer a is a quadratic residue modulo m if there exists an integer x such that $x^2 \equiv a \pmod{m}$.

Definition 5.2. The **Legendre symbol** $\left(\frac{a}{p}\right)$ for odd prime p and integer a is defined as:

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0 & \text{if } p \mid a \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p \end{cases}$$

5.2 Quadratic Reciprocity

Theorem 5.1 (Law of Quadratic Reciprocity). For distinct odd primes p and q:

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$$

Theorem 5.2 (Supplemental Laws). For odd prime p:

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$

6 Diophantine Equations

6.1 Linear Diophantine Equations

Definition 6.1. A linear Diophantine equation in two variables is an equation of the form ax + by = c where a, b, and c are integers.

Theorem 6.1. The equation ax + by = c has integer solutions if and only if $gcd(a, b) \mid c$.

6.2 Pythagorean Triples

Definition 6.2. A **Pythagorean triple** is a set of three positive integers (a, b, c) such that $a^2+b^2=c^2$.

Theorem 6.2. All primitive Pythagorean triples (a, b, c) with a odd are given by:

$$a = m^2 - n^2$$
, $b = 2mn$, $c = m^2 + n^2$

where m > n > 0 are relatively prime integers of opposite parity.

6.3 Fermat's Last Theorem

Theorem 6.3 (Fermat's Last Theorem). For n > 2, the equation $x^n + y^n = z^n$ has no positive integer solutions.

7 Continued Fractions

7.1 Definition

Definition 7.1. A **continued fraction** is an expression of the form:

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

where a_0 is an integer and a_1, a_2, a_3, \ldots are positive integers.

7.2 Convergents

Definition 7.2. The n-th **convergent** of a continued fraction is the rational number obtained by truncating the continued fraction after n terms.

Theorem 7.1. The convergents of a continued fraction provide the best rational approximations to the value of the continued fraction.

8 Arithmetic Functions

8.1 Multiplicative Functions

Definition 8.1. An arithmetic function f is **multiplicative** if f(mn) = f(m)f(n) whenever gcd(m, n) = 1.

Definition 8.2. An arithmetic function f is **completely multiplicative** if f(mn) = f(m)f(n) for all positive integers m and n.

8.2 Important Arithmetic Functions

- Divisor function: $\tau(n) = \sum_{d|n} 1$ (number of divisors)
- Sum of divisors: $\sigma(n) = \sum_{d|n} d$
- Möbius function: $\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ (-1)^k & \text{if } n \text{ is square-free with } k \text{ prime factors} \\ 0 & \text{if } n \text{ has a squared prime factor} \end{cases}$
- Euler's totient function: $\phi(n)$

8.3 Möbius Inversion Formula

Theorem 8.1 (Möbius Inversion Formula). If f and g are arithmetic functions such that:

$$g(n) = \sum_{d|n} f(d)$$

then:

$$f(n) = \sum_{d|n} \mu(d)g\left(\frac{n}{d}\right)$$

7

9 Primitive Roots

9.1 Definition

Definition 9.1. A **primitive root** modulo n is an integer g such that the powers of g generate all integers relatively prime to n modulo n.

Theorem 9.1. A positive integer n has a primitive root if and only if n = 2, n = 4, $n = p^k$, or $n = 2p^k$ where p is an odd prime and k is a positive integer.

9.2 Discrete Logarithm

Definition 9.2. If g is a primitive root modulo n and gcd(a, n) = 1, then the **discrete logarithm** of a to the base g modulo n is the smallest positive integer k such that $g^k \equiv a \pmod{n}$.

10 Applications

10.1 Cryptography

- RSA encryption: Based on the difficulty of factoring large integers
- Diffie-Hellman key exchange: Uses discrete logarithms
- Elliptic curve cryptography: Uses elliptic curves over finite fields

10.2 Error Detection and Correction

- Check digits: Using modular arithmetic for error detection
- ISBN codes: Weighted checksums modulo 11
- Credit card numbers: Luhn algorithm

10.3 Computer Science

- Hashing: Using modular arithmetic for hash functions
- Random number generation: Linear congruential generators
- Fast exponentiation: Modular exponentiation algorithms

11 Analytic Number Theory

11.1 Riemann Zeta Function

Definition 11.1. The **Riemann zeta function** is defined as:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

for Re(s) > 1.

Theorem 11.1 (Euler Product). For Re(s) > 1:

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}$$

8

11.2 Riemann Hypothesis

Conjecture 11.1 (Riemann Hypothesis). All non-trivial zeros of the Riemann zeta function have real part equal to $\frac{1}{2}$.

12 Algebraic Number Theory

12.1 Algebraic Integers

Definition 12.1. An **algebraic integer** is a complex number that is a root of a monic polynomial with integer coefficients.

12.2 Quadratic Fields

Definition 12.2. A quadratic field is $\mathbb{Q}(\sqrt{d})$ where d is a square-free integer.

12.3 Ideal Theory

Definition 12.3. An **ideal** in a ring R is a subset I such that:

- 1. $0 \in I$
- 2. If $a, b \in I$, then $a + b \in I$
- 3. If $a \in I$ and $r \in R$, then $ra \in I$

13 Important Algorithms

13.1 Fast Exponentiation

Theorem 13.1 (Binary Exponentiation). To compute $a^n \mod m$:

- 1. Write n in binary: $n = \sum_{i=0}^{k} b_i 2^i$
- 2. Compute $a^{2^i} \mod m$ for $i = 0, 1, \dots, k$
- 3. Multiply the appropriate powers: $a^n \equiv \prod_{i=0}^k a^{b_i 2^i} \pmod{m}$

13.2 Miller-Rabin Primality Test

Theorem 13.2. The Miller-Rabin test is a probabilistic algorithm to test if a number is prime.

13.3 Pollard's Rho Algorithm

Theorem 13.3. Pollard's rho algorithm is used to find non-trivial factors of composite numbers.

14 Key Theorems

14.1 Wilson's Theorem

Theorem 14.1 (Wilson's Theorem). A positive integer p > 1 is prime if and only if:

$$(p-1)! \equiv -1 \pmod{p}$$

14.2 Lucas's Theorem

Theorem 14.2 (Lucas's Theorem). For prime p and integers m and n:

$$\binom{m}{n} \equiv \prod_{i=0}^{k} \binom{m_i}{n_i} \pmod{p}$$

where m_i and n_i are the digits of m and n in base p.

14.3 Thue's Theorem

Theorem 14.3 (Thue's Theorem). For any integer a > 1 and any positive integer n, there exist integers x and y such that $0 < |x|, |y| \le \sqrt{n}$ and $ax \equiv y \pmod{n}$.

15 Open Problems

15.1 Goldbach's Conjecture

Conjecture 15.1 (Goldbach's Conjecture). Every even integer greater than 2 can be expressed as the sum of two primes.

15.2 Twin Prime Conjecture

Conjecture 15.2 (Twin Prime Conjecture). There are infinitely many pairs of primes that differ by 2.

15.3 Perfect Numbers

Conjecture 15.3. All even perfect numbers are of the form $2^{p-1}(2^p-1)$ where 2^p-1 is prime (Mersenne prime).

16 Important Constants

- Euler's constant: $\gamma \approx 0.5772$
- Golden ratio: $\phi = \frac{1+\sqrt{5}}{2} \approx 1.6180$
- Natural logarithm base: $e \approx 2.7183$
- **Pi**: $\pi \approx 3.1416$
- Square root of 2: $\sqrt{2} \approx 1.4142$