

Exercises

Operations in Convolutional Neural Networks

Francesca Galassi

Question 1.

Consider a Convolutional Neural Network (CNN) designed to process single-channel images with a size of 6×6 .

This CNN consists of two convolutional layers, each followed by a ReLU activation function. We use a stride of 1 and no padding. The final layer is a fully connected layer, producing a single output unit. Bias terms are omitted for simplicity

Here's a detailed breakdown of the network's architecture:

— The first convolutional layer comprises three 3×3 filters. Let's consider the following values for each filter (these weights are typically learned during the training process of the CNN):

$$W_1^{(1)} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}; \quad W_2^{(1)} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}; \quad W_3^{(1)} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

— The second convolutional layer consists of a single $3 \times 3 \times 3$ filter. The weights are as follows:

$$W^{(2)}[i,j,k] = \begin{cases} 1, & \text{if } j = k = 2\\ 0, & \text{otherwise} \end{cases} \quad \text{for } i,j,k \in \{1,2,3\}$$

— The fully connected layer (third layer) consists of 4 units. The vector of weights associated with this fully connected layer is:

$$\mathbf{w}^{(3)} = \begin{bmatrix} 6\\2\\0\\-1 \end{bmatrix}.$$

1.1 Given the input image represented by the matrix X, where

$$X = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

compute the output of the first convolutional layer (or first hidden layer) $H_i^{(1)} = \text{ReLU}(X * W_i^{(1)})$, where i = 1, 2, 3 refers to the channel index. Each channel represents a different feature map or filter applied to the input image.

- **1.2** Given the output of the first layer, $H_{1:3}^{(1)}$, i.e., a collection of three feature maps, compute the output of the second layer $H^{(2)} = \text{ReLU}(H_{1:3}^{(1)} * W^{(2)})$. The notation $H_{1:3}^{(1)}[i,j,k]$ refers to the elements of $H_{1:3}^{(1)}$, and the calculation is performed for i,j in $\{1,2,3,4\}$, and for k in $\{1,2,3\}$.
- **1.3** Given the output of the second layer, $H^{(2)}$, compute the output of the network $y = \mathbf{w}^{(3)T} \cdot h^{(2)}$, where $h^{(2)}$ is the flattened output of the second layer.

Question 2.

Let's consider a Neural Network designed for an image classification task with the following output categories: car, bicycle, motorbike, and bus. The input to the network is a grayscale image of size 20×20 pixels.

Answer the following questions:

- **2.1** If the neural network comprises a fully connected layer only, with n units, how many parameters must be optimized by the gradient descent algorithm? Compute the number of parameters without and with bias terms.
- **2.2** Consider a neural network composed of the following layers:
 - 1. Convolutional layer, with m filters of size 5×5 .
 - 2. Fully Connected layer with n units.

How many parameters does the gradient descent optimize, excluding bias terms?

- **2.3** Consider a neural network composed of the following layers:
 - 1. Convolutional layer, with m filters of size 5×5 ;
 - 2. MaxPooling layer, with a window size of 4×4 and a stride of 4;
 - 3. Fully Connected layer with n units.

How many parameters does the gradient descent optimize, excluding bias terms?

- **2.4** Consider a neural network with the following layers:
 - 1. Convolutional layer, consisting of m_1 filters of size 5×5 .
 - 2. Max Pooling layer, with window size of 2 and stride 2;
 - 3. Convolutional layer, comprising m_2 filters of size $3 \times 3 \times m_1$;
 - 4. Max Pooling layer, with window size of 2 and stride 2;
 - 5. Fully Connected layer with n_1 units;
 - 6. Fully Connected layer with n_2 units.

Taking into account the bias for the output layer only, determine the total number of parameters optimized by gradient descent.

Question 3. Repeat the exercises in Question 2 for an input RGB image.