

TEORÍA DE LA INFORMACIÓN Fuentes de Información (2)

Emisión de símbolos de la Fuente por muestreo computacional

¿Cómo simular la emisión aleatoria de un símbolo de la fuente?

Generar cada símbolo según su probabilidad de ocurrencia:

```
Emitir_Simbolo ()
{ r=rand ()
  for (i= 0 to #simbolos)
    if (r < V<sub>acum</sub> [i])
    return i
}
```

$$V = \begin{bmatrix} 0.3 \\ 0.5 \\ 0.2 \end{bmatrix} \quad V_{acum} = \begin{bmatrix} 0.3 \\ 0.8 \\ 1 \end{bmatrix}$$

Emisión de símbolos de la Fuente

por muestreo computacional

¿Cómo simular la emisión aleatoria de un símbolo de la fuente?


```
Primer_Simbolo ()
{ r=rand ()
  for (i= 0 to #simbolos)
    if (r < V0<sub>acum</sub> [i])
    return i
}
```

condición inicial:

$$V_0 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$V_{0acum} = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 2 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{3}{4} & \frac{3}{4} & \frac{1}{2} \\ 2 & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{bmatrix}$$

Vectores de Estadopor muestreo computacional

En **fuentes markovianas** ¿cómo obtener V_t por simulación computacional?

- Generar secuencias (mensajes) de **t** símbolos emitidos por la fuente según sus probabilidades
- Contar la cantidad de veces que cada símbolo s; se emite en t (en un vector de tamaño #simbolos)
- ¿Cuántos mensajes deben generarse? → los suficientes para asegurar la convergencia

En cada elemento del vector:

$$P(S_t = s_i) \approx \frac{\#s_i \text{ en } t}{\#\text{mensajes}}$$

Vectores de Estado por muestreo computacional

Ejemplo

Generación del 1º símbolo (según condición de inicio)

$$V_0$$
 $cum =$
 $\begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix}$

Generación del próximo símbolo (a partir del símbolo anterior)

$$M_{acum} = egin{bmatrix} 0 & 2/3 & 1/4 \ 1/2 & 1 & 1/2 \ 1 & 1 & 1 \end{bmatrix}$$

¿Cómo obtener V3 por simulación computacional?

#mensajes	$s(t_0)$	$s(t_1)$	$s(t_2)$	s(t ₃)	$\mathbf{\#s_i}$ en $\mathbf{t_3}$	$P(S_t = s_i)$	
	(salida	de genera	<u>ición aleato</u>	ria)			
0					[0,0,0]	[0,0,0]	
1	1	0	1	1	[0, 1 ,0]	[0,1/1,0]	
2	1	1	0	1	[0, 2 ,0]	$[0,2/2,0] \rightarrow$	convergencia temprana!? (controlar)
3	1	0	2	2	[0,2, 1]	[0 , 2/3 , 1/3]	
4	1	1	0	2	[0,2, 2]	[0 , 2/4 , 2/4]	
5	1	0	2	0	[1 ,2,2]	[1/5 , 2/5 , 2/5]	
							ontinuar iterando hasta convergencia de das las probabilidades (vector de estado)

Vectores de Estadopor muestreo computacional

```
Calcular_Vector_Estado (int t)
 emisiones = [0, 0, 0] // cantidad de emisiones de cada s
 Vt = [0, 0, 0] // Vector de estado actual
 Vt_ant= [-1, 0, 0] // Vector de estado anterior
 mensajes = 0 //cantidad de mensajes emitidos
 while not converge (Vt, Vt_ant) or (mensajes< T_MIN)
{ s= Primer_Simb();
   for (i= 0 to t)
      s= Sig_dado_Ant (s)
    emisiones[s]++
    mensajes++
    Vt ant ← Vt
    Vt ← emisiones/mensajes
 return Vt
```

```
converge (A[], B[])
{ for (i=0 to #simbolos)
    { if (abs(A[i] - B[i]) > ξ)
        return FALSE }
    return TRUE }
```

```
Primer_Simbolo ()
{ r=rand ()
  for (i= 0 to #simbolos)
    if (r < V0<sub>acum</sub> [i])
    return i
}
```

```
Sig_dado_Ant (s_ant)
{ r=rand ()
  for(i=0 to #simbolos)
  if ( r < Macum[i, s_ant] )
    return i
}</pre>
```

Vector Estacionariopor muestreo computacional

En fuentes markovianas ¿cómo obtener V* por simulación computacional?

- Generar una secuencia (mensaje) de símbolos emitidos por la fuente según sus probabilidades
- Contar el número de veces que se emite cada símbolo s; en el mensaje
- ¿Cuántos símbolos del mensaje deben generarse? → suficientes para asegurar la convergencia

En cada elemento del vector:

$$P(S^* = s_i) \approx \frac{\#s_i}{\text{long. mensaje}}$$

Vector Estacionariopor muestreo computacional

Ejemplo

$$M = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{2} \\ 0 & 2/3 & 1/4 \\ 1/2 & 1/3 & 1/4 \\ \mathbf{2} \begin{bmatrix} 1/2 & 0 & 1/2 \end{bmatrix}$$

Generación del 1° símbolo (según condición de inicio)

$$V_{0acum} = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix}$$

Generación del próximo símbolo (según símbolo anterior)

$$M_{acum} = egin{bmatrix} 0 & 2/3 & 1/4 \ 1/2 & 1 & 1/2 \ 1 & 1 & 1 \end{bmatrix}$$

¿Cómo obtener V* por simulación computacional?

cant.simbolos	símbolos generados aleatoriamente	emisiones #s _i	P(S*)= s _i
0		[0,0,0]	[0,0,0]
1	1	[0,1,0]	[0,1/1,0]
2	0	[1,1,0]	[1/2, 1/2, 0]
3	1	[1,2,0]	[1/3, 2/3, 0]
4	0	[2,2,0]	[2/4, 2/4, 0]
5	2	[2,2,1]	[2/5, 2/5, 1/5]

→ continuar iterando hasta convergencia de todas las probabilidades (vector estacionario)

Vectores Estacionario por muestreo computacional

```
Calcular_Vector_Estacionario ()
 emisiones = [0,..., 0] // cantidad de emisiones de cada s.
 V^* = [0, ..., 0] // Vector estacionario actual
 V*_ant= [-1,..., 0] // Vector estacionario anterior
 cant_simb= 0 //cantidad de símbolos generados
 s=Primer_Simb();
 while not converge (V*, V*_ant) or (cant_simb < S_MIN)
    s= Sig_dado_Ant (s)
    V^* ant \leftarrow V^*
    V* ← ...
 return V*
```

```
Primer_Simbolo ()
{ r=rand ()
  for (i= 0 to #simbolos)
    if (r < V0<sub>acum</sub> [i])
    return i
}
```

```
Sig_dado_Ant (s_ant)
{    r=rand ()
    for(i=0 to #simbolos)
    if ( r < Macum[i, s_ant] )
        return i
}</pre>
```

```
converge (A[], B[])
{ for (i=0 to #simbolos)
    { if (abs(A[i] - B[i]) > ξ)
        return FALSE }
    return TRUE }
```

Practicar ejercicios

Interpretar resultados

Calcular@robabilidadSumaDados(int suma) Plantear pseudocódigos

robleterior = -11

while (Ithis.Converge(prob, problementor)) int dadol = this.ArrojarDado(): int dado2 * this.ArrojarDado()) if (dado) . dado2 ... suma) (

Implementar algoritmos

Consultar dudas!

Evaluar convergencia