CSC265 Fall 2020 Homework Assignment 4

due Tuesday, October 13, 2020

Consider the probability space \mathcal{B}_n consisting of all *n*-bit vectors, each equally likely.

1. Let $a=(a_1,\ldots,a_n), b=(b_1,\ldots,b_n)\in\{0,1\}^n$ be distinct n-bit vectors. Prove that

$$\underset{X \in \mathcal{B}_n}{\text{Prob}} \ [aX = bX] = \frac{1}{2},$$

where $aX = \left(\sum_{i=1}^{n} a_i X_i\right) \mod 2$ denotes the inner product of a and $X = (X_1, \dots, X_n) \mod 2$.

2. Let C, D be distinct $n \times n$ Boolean matrices.

Prove that

$$\underset{X \in \mathcal{B}_n}{\text{Prob}} \left[CX = DX \right] \le \frac{1}{2},$$

where CX denotes the product of the matrix C and the vector $X \mod 2$.

Note that, if $Y = (Y_1, \ldots, Y_n)$ is a vector of natural numbers, then $Y \mod 2$ is the vector $(Y_1 \mod 2, \ldots, Y_n \mod 2)$.

3. Give a randomized algorithm that takes as input three $n \times n$ Boolean matrices, P, Q, and R, and, in $O(kn^2)$ time, tries to check whether PQ = R, where PQ denotes the product of the matrices P and Q mod Q.

Note that if S is a matrix of natural numbers, then $S \mod 2$ is the matrix obtained from it by taking each entry mod 2.

If PQ = R, your algorithm must answer true.

If $PQ \neq R$, your algorithm must answer false with probability at least $1 - 2^{-k}$.

Explain why your algorithm is correct and runs in time $O(kn^2)$.