μ -Statistically Convergent Multiple Sequences in Probabilistic Normed Spaces

Online Seminar of Assamese Mathematician organized by Gonitsora

Presented by **Rupam Haloi**

Department of Mathematics Sipajhar College, Sipajhar, Darrang, Assam-784145, India

December 4, 2020

Outline

- Introduction to Probabilistic Normed Spaces
- Definitions and Preliminaries
- μ-Statistically Convergent Multiple Sequence
- μ -Statistical Limit Points for Multiple Sequence
- References

Outline

- Introduction to Probabilistic Normed Spaces
- Definitions and Preliminaries
- μ-Statistically Convergent Multiple Sequence
- Φ μ -Statistical Limit Points for Multiple Sequence
- Seferences

Abstract Metric Space

Definition (Fréchet, 1906)

A metric space is an ordered pair (S,d), where S is an abstract set and d a mapping of $S \times S$ into the real numbers satisfying the following conditions for all $p, q \in S$:

- $d(p,q) \ge 0$
- d(p,q) = 0 if and only if p = q
- \bullet d(p,q) = d(q,p)
- d(p,r) < d(p,q) + d(q,r).

Definition

A function $f: \mathbb{R}^+ \to [0,1]$ is called a distribution function if it is nondecreasing, left-continuous with $\inf_{t\in\mathbb{R}^+} f(t) = 0$ and $\sup_{t\in\mathbb{R}^+} f(t) = 1$. Let D denotes the set of all distribution functions.

Statistical Metric Space

4/32

Definition (Menger, 1942)

A statistical metric space is an ordered pair (S, \mathscr{F}) . We denote the distribution function $\mathscr{F}(p,q)$ by F_{pq} . The functions F_{pq} satisfy the following $\forall p,q \in S$:

- $F_{pq}(0) = 0$
- $F_{pq}(x) = 1$, for all x > 0 if and only if p = q
- $\bullet \ F_{pq} = F_{qp}$
- If $F_{pq}(x) = 1$ and $F_{qr}(y) = 1$, then $F_{pr}(x+y) = 1$.

Definition (Schweizer and Sklar, 1960)

A continuous *t*-norm is $*: [0,1] \times [0,1] \rightarrow [0,1]$ satisfies the following:

- a * 1 = a,
- a * b = b * a,
- $a*b \le c*d$, whenever $a \le c$ and $b \le d$,
- (a*b)*c = a*(b*c) for all $a,b,c,d \in [0,1]$.

Probabilistic Normed Space

5/32

Definition (Šerstnev, 1962)

A triplet (X, N, *) is called a probabilistic normed space (in short a PN-space) if X is a real vector space, N a mapping from X into D (for $x \in X$, the distribution function N(x) is denoted by N_x and $N_x(t)$ is the value of N_x at $t \in \mathbb{R}^+$) and * a t-norm satisfying the following conditions:

(PN-1)
$$N_x(0) = 0$$
,

(PN-2)
$$N_x(t) = 1$$
, for all $t > 0$ if and only if $x = 0$,

(PN-3)
$$N_{\alpha x}(t) = N_x\left(\frac{t}{|\alpha|}\right)$$
, for all $\alpha \in \mathbb{R} \setminus \{0\}$,

(PN-4)
$$N_{x+y}(s+t) \ge N_x(s) * N_y(t)$$
, for all $x, y \in X$ and $s, t \in \mathbb{R}^+$.

Example

Let (X, ||.||) be a normed linear space. Let $a*b = \min\{a, b\}$, for all $a, b \in [0, 1]$ and $N_x(t) = \frac{t}{t + ||x||}, x \in X$ and $t \ge 0$. Then (X, N, *) is a PN-space.

Outline

- Introduction to Probabilistic Normed Spaces
- Definitions and Preliminaries
- \odot μ -Statistically Convergent Multiple Sequence
- Φ μ -Statistical Limit Points for Multiple Sequence
- Seferences

Convergence vs Statistical Convergence

Convergence of a sequence

Let $x = \{x_k\}$ be a sequence of real numbers. Then we say that x is convergent to $x_0 \in \mathbb{R}$, if for every $\varepsilon > 0$, there exists $k_0 \in \mathbb{N}$ such that $|x_k - x_0| < \varepsilon$, for all $k \ge k_0$. We write it as $\lim_{k \to \infty} x_k = x_0$.

Asymptotic Density

Let $K \subseteq \mathbb{N}$, then the asymptotic density of K, denoted by $\delta(K)$, is defined as

$$\delta(K) = \lim_{n} \frac{1}{n} |\{k \le n : k \in K\}|$$

whenever the limit exists, where |A| denotes the cardinality of the set A.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Convergence vs Statistical Convergence

Statistical Convergence (Steinhaus, 1951)

A sequence $x = \{x_k\}$ of real number is said to statistically convergent to $x_0 \in \mathbb{R}$, if for every $\varepsilon > 0$ we have

$$\delta(\{k \in \mathbb{N} : |x_k - x_0| \ge \varepsilon\}) = 0.$$

We write it as $stat - \lim x = x_0$.

Multiple Sequences

A multiple sequence is a mapping from \mathbb{N}^k into the set X, where \mathbb{N}^k is the k-th power of the set of natural number \mathbb{N} . A term of a multiple sequence $f: \mathbb{N}^k \to X$ is an ordered set of k+1 elements $(n_1, n_2, \ldots, n_k, x)$, where $x = f(n_1, n_2, \ldots, n_k) \in X$ and $(n_1, n_2, \ldots, n_k) \in \mathbb{N}^k$, $n_i \in \mathbb{N}$, for $i = 1, 2, \ldots, k$. The term is also denoted by $x_{n_1 n_2, \ldots, n_k}$.

Convergence of Multiple Sequences

Convergent Multiple Sequence

A multiple sequence $x = (x_{n_1 n_2 \dots n_k})$ is said to be convergent to a number L, if for every $\varepsilon > 0$, there exists a positive integer m_0 such that $|x_{n_1 n_2 \dots n_k} - L| < \varepsilon$, for all $n_i \ge m_0$, for $i = 1, 2, \dots, k$. It is denoted by $\lim x_{n_1 n_2 \dots n_k} = L$.

Cauchy Multiple Sequence

A multiple sequence $x = (x_{n_1 n_2 \dots n_k})$ is said to be Cauchy, if for every $\varepsilon > 0$, there exists a positive integer m_0 such that $|x_{n_1 n_2 \dots n_k} - x_{l_1 l_2 \dots l_k}| < \varepsilon$, for all $n_i \ge m_0$ and $l_i \ge m_0$, for $i = 1, 2, \dots, k$.

Rupam Haloi Gonitsora Seminar December 4, 2020 10 / 32

Convergence of Multiple Sequences in PN-Spaces

Convergent Multiple Sequence (Tripathy and Goswami, 2015)

Let (X, N, *) be a PN-space. Then, a multiple sequence $x = (x_{n_1 n_2 ... n_k})$ is said to be convergent to $L \in X$ with respect to the probabilistic norm N, if for every $\varepsilon > 0$ and $\lambda \in (0, 1)$, there exists a positive integer m_0 such that $N_{x_{n_1 n_2 ... n_k} - L}(\varepsilon) > 1 - \lambda$, for all $n_i \ge m_0$, for i = 1, 2, ..., k. It is denoted by $N - \lim x_{n_1 n_2 ... n_k} = L$.

Cauchy Multiple Sequence (Tripathy and Goswami, 2015)

Let (X,N,*) be a PN-space. Then, a multiple sequence $x=(x_{n_1n_2...n_k})$ is said to be Cauchy, if for every $\varepsilon>0$ and $\lambda\in(0,1)$, there exists a positive integer m_0 such that $N_{x_{n_1n_2...n_k}-x_{l_1l_2...l_k}}(\varepsilon)>1-\lambda$, for all $n_i\geq m_0$ and $l_i\geq m_0$, for $i=1,2,\ldots,k$.

Rupam Haloi Gonitsora Seminar December 4, 2020 1

Two valued measure μ

Definition (Connor, 1990)

Let μ denotes a complete $\{0,1\}$ -valued finitely additive measure defined on a field Γ of all finite subsets of $\mathbb N$ and suppose that $\mu(A)=0$, if $|A|<\infty$; if $A\subset B$ and $\mu(B)=0$, then $\mu(A)=0$; and $\mu(\mathbb N)=1$.

Outline

- Introduction to Probabilistic Normed Spaces
- Definitions and Preliminaries
- 3μ -Statistically Convergent Multiple Sequence
- Φ μ -Statistical Limit Points for Multiple Sequence
- References

μ-Statistically Convergent Multiple Sequence

Definition

A multiple sequence $x = (x_{n_1 n_2 \dots n_k})$ in a probabilistic normed space (X, N, *) is said to be μ -statistically convergent to $L \in X$ with respect to the probabilistic norm N, if for every $\varepsilon > 0$ and $\lambda \in (0, 1)$, we have

$$\mu\left(\left\{(n_1,n_2,\ldots,n_k)\in\mathbb{N}^k:N_{x_{n_1n_2,\ldots,n_k}-L}(\varepsilon)\leq 1-\lambda\right\}\right)=0.$$

In this case, we write $\mu - stat_N - \lim_{n_1 n_2 \dots n_k} = L$.

Rupam Haloi Gonitsora Seminar December 4, 2020 14 / 32

μ-Statistically Cauchy Multiple Sequence

Definition

A multiple sequence $x = (x_{n_1 n_2 ... n_k})$ in a probabilistic normed space (X, N, *) is said to be μ -statistically Cauchy with respect to the probabilistic norm N, if for every $\varepsilon > 0$ and $\lambda \in (0, 1)$, there is a positive integer m_0 such that

$$\mu\left(\left\{(n_1,n_2,\ldots,n_k)\in\mathbb{N}^k:N_{x_{n_1n_2,\ldots,n_k}-x_{l_1l_2,\ldots,l_k}}(\varepsilon)\leq 1-\lambda\right\}\right)=0.$$

μ-Statistically Bounded Multiple Sequence

Definition

A multiple sequence $x = (x_{n_1 n_2 \dots n_k})$ in a probabilistic normed space (X, N, *) is said to be μ -statistically bounded with respect to the probabilistic norm N, if there exists an $\varepsilon > 0$ such that

$$\mu\left(\left\{(n_1,n_2,\ldots,n_k)\in\mathbb{N}^k:N_{x_{n_1n_2,\ldots,n_k}}(\varepsilon)\leq 1-\lambda\right\}\right)=0,$$

for every $\lambda \in (0,1)$.

Lemma

Let (X,N,*) be a PN-space. Then, for every $\varepsilon > 0$ and $\lambda \in (0,1)$, the following are equivalent:

- (i) $\mu stat_N \lim_{n_1 n_2 \dots n_k} = L$.
- (ii) $\mu\left(\left\{(n_1,n_2,\ldots,n_k)\in\mathbb{N}^k:N_{x_{n_1n_2\ldots n_k}-L}(\varepsilon)\leq 1-\lambda\right\}\right)=0.$
- (iii) $\mu\left(\left\{(n_1,n_2,\ldots,n_k)\in\mathbb{N}^k:N_{x_{n_1n_2\ldots n_k}-L}(\varepsilon)>1-\lambda\right\}\right)=1.$
- (iv) $\mu stat \lim N_{x_{n_1 n_2 \dots n_k} L}(\varepsilon) = 1.$

Theorem

Let (X,N,*) be a PN-space. If a multiple sequence $x=(x_{n_1n_2...n_k})$ in (X,N,*) is μ -statistically convergent with respect to the probabilistic norm N, then μ – $stat_N$ – $\lim x$ is unique.

Theorem

Let (X,N,*) be a PN-space. If $N-\lim x_{n_1n_2...n_k}=L$, then $\mu-\operatorname{stat}_N-\lim x_{n_1n_2...n_k}=L$.

Example

Let us consider the space $(\mathbb{R},||\cdot||)$ of real numbers with the usual norm. Let a*b=ab and $N_x(t)=\frac{t}{t+||x||}$, where $x\in X$ and $t\geq 0$. Then, we observe that $(\mathbb{R},N,*)$ is a PN-space. Let $K\subset\mathbb{N}^k$ be such that $\mu(K)=0$. We define a sequence $x=(x_{n_1n_2...n_k})$ as follows:

$$x_{n_1 n_2 \dots n_k} = \begin{cases} n_1 n_2 \dots n_k, & \text{if } (n_1, n_2, \dots, n_k) \in K \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

Example (Contd...)

Then, for every $\varepsilon > 0$ and $\lambda \in (0,1)$, let

$$A_N(\lambda,\varepsilon) = \left\{ (n_1, n_2, \dots, n_k) \in \mathbb{N}^k : N_{x_{n_1 n_2 \dots n_k}}(\varepsilon) \le 1 - \lambda \right\}.$$

Now, since

$$A_{N}(\lambda, \varepsilon) = \left\{ (n_{1}, n_{2}, \dots, n_{k}) \in \mathbb{N}^{k} : \frac{\varepsilon}{\varepsilon + ||x_{n_{1}n_{2} \dots n_{k}}||} \le 1 - \lambda \right\}$$

$$= \left\{ (n_{1}, n_{2}, \dots, n_{k}) \in \mathbb{N}^{k} : ||x_{n_{1}n_{2} \dots n_{k}}|| \ge \frac{\lambda \varepsilon}{1 - \lambda} > 0 \right\}$$

$$= \left\{ (n_{1}, n_{2}, \dots, n_{k}) \in \mathbb{N}^{k} : x_{n_{1}n_{2} \dots n_{k}} = n_{1}n_{2} \dots n_{k} \right\}$$

$$= \left\{ (n_{1}, n_{2}, \dots, n_{k}) \in K \right\}.$$

Example (Contd...)

Thus, we have $\mu(A_N(\lambda, \varepsilon)) = 0$, and consequently $x = (x_{n_1 n_2 \dots n_k})$ is μ statistically convergent with respect to the probabilistic norm N. However, the sequence $x = (x_{n_1 n_2 \dots n_k})$ defined by (1) is not convergent in the space $(\mathbb{R}, ||\cdot||)$, thus we conclude that x is also not convergent with respect to the probabilistic norm N.

Theorem

Let (X,N,*) be a PN-space and $x=(x_{n_1n_2...n_k})$ be a multiple sequence. Then $\mu - stat_N - \lim_{n_1, n_2, \dots, n_k} = L$ if and only if there is an index subset A = $\{(m_{n_1}, m_{n_2}, \dots, m_{n_k}) : m_{n_i} \in \mathbb{N}\}\ of\ \mathbb{N}^k\ such\ that\ \mu(A) = 1\ and$

$$N - \lim_{(n_1, n_2, \dots, n_k) \in A} x_{n_1 n_2 \dots n_k} = L.$$

Theorem

Let (X,N,*) be a PN-space and $x=(x_{n_1n_2...n_k})$ be a multiple sequence, whose terms are in the vector space X. Then the following statements are equivalent:

- x is a μ -statistically Cauchy sequence with respect to the probabilistic norm N.
- (b) There is an index subset $A = \{(m_{n_1}, m_{n_2}, \dots, m_{n_k}) \in \mathbb{N}^k : m_{n_i} \in \mathbb{N}\} \subset \mathbb{N}^k$ such that $\mu(A) = 1$ and the subsequence $\{x_{m_{n_1}m_{n_2}\dots m_{n_k}}\}_{(m_{n_1}, m_{n_2}, \dots, m_{n_k}) \in A}$ is a Cauchy sequence with respect to the probabilistic norm N.

Theorem

Let (X, N, *) be a PN-space. Then

- (i) If $\mu stat_N \lim_{n_1 n_2 \dots n_k} = \alpha$ and $\mu stat_N \lim_{n_1 n_2 \dots n_k} = \beta$, then $\mu stat_N \lim_{n_1 n_2 \dots n_k} + y_{n_1 n_2 \dots n_k} = \alpha + \beta$.
- (ii) If $\mu stat_N \lim_{n_1 n_2 \dots n_k} = \alpha$ and $a \in \mathbb{R}$, then $\mu stat_N \lim_{n_1 n_2 \dots n_k} = a\alpha$.
- (iii) If $\mu stat_N \lim_{n_1 n_2 \dots n_k} = \alpha$ and $\mu stat_N \lim_{n_1 n_2 \dots n_k} = \beta$, then $\mu stat_N \lim_{n_1 n_2 \dots n_k} y_{n_1 n_2 \dots n_k} = \alpha \beta$.

Outline

- Introduction to Probabilistic Normed Spaces
- 2 Definitions and Preliminaries
- μ-Statistically Convergent Multiple Sequence
- Φ μ -Statistical Limit Points for Multiple Sequence
- References

μ-statistical limit points for multiple sequences in PN-spaces

24 / 32

Limit Point of a Multiple Sequence (Tripathy and Goswami, 2015)

Let (X, N, *) be a PN-space and let $x = (x_{n_1 n_2 \dots n_k})$ be a multiple sequence. We say that $L \in X$ is a limit point of x with respect to the probabilistic norm N, if there exists a subsequence of x that converge to L with respect to the probabilistic norm N.

Let $L_N(x)$ denotes the set of all limit points of the multiple sequence x = $(x_{n_1n_2...n_k}).$

μ -Statistical Limit Point of a Multiple Sequence

Definition

Let (X,N,*) be a PN-space and let $x=(x_{n_1n_2...n_k})$ be a multiple sequence. We say that $\xi \in X$ is a μ -statistical limit point of the multiple sequence x with respect to the probabilistic norm N, if there is a set

$$M = \{ (n_1(j), n_2(j), \dots, n_k(j)) : n_i(1) < n_i(2) < n_i(3) < \dots, \text{ for } i = 1, 2, \dots, k \}$$

$$\subset \mathbb{N}^k$$

such that $\mu(M) \neq 0$ and $N - \lim_{n_1(j)n_2(j)...n_k(j)} = \xi$.

Let $\Lambda_N^{\mu}(x)$ denotes the set of all $\mu - stat_N - limit$ points of the multiple sequence $x = (x_{n_1 n_2 ... n_k})$.

Rupam Haloi Gonitsora Seminar December 4, 2020 25 / 32

Theorem

Let (X,N,*) be a PN-space and $x=(x_{n_1n_2...n_k})$ be a multiple sequence. If $\mu-stat_N-\lim x=M$, then $\Lambda_N^{\mu}(x)=\{M\}$.

Outline

- Introduction to Probabilistic Normed Spaces
- Definitions and Preliminaries
- 3μ -Statistically Convergent Multiple Sequence
- Φ μ -Statistical Limit Points for Multiple Sequence
- Seferences

References I

- [1] C. Alsina, B. Schweizer and A. Sklar: *On the definition of a probabilistic normed space*, Aequationes Math., 46 (1993), 91–98.
- [2] J. Connor: *Two valued measure and summability*, Analysis, 10 (1990), 373–385.
- [3] O. Duman and C. A. Orhan: μ -statistically convergent function sequences, Czechoslovak Mathematical Journal, 54 (129), (2004), 413–422.
- [4] M. Et and R. Çolak,: *On some generalized difference sequence spaces*, Soochow Journal of Mathematics, 21(4) (1995), 377-386.
- [5] M. Fréchet: *Sur quelques points du calcul functionnel*, Rendiconti de Circolo Matematico di Palermo, 22 (1906), 1–74.
- [6] A. R. Freedman, J. J. Sember and M. Raphael: *Some Cesàro type summability spaces*, Proc. London Math. Soc., 37 (1978), 508-520.

Rupam Haloi Gonitsora Seminar December 4, 2020 28 / 32

References II

- [7] J. A. Fridy and C. Orhan: *Lacunary statistical convergence*, Pacific J. Math., 160 (1993), 43–51.
- [8] J. A. Fridy and C. Orhan: *Statistical limit superior and inferior*, Proc. Amer. Math. Soc., 125 (1997), 3625–3631.
- [9] S. Karakus: *Statistical convergence on PN-spaces*, Mathematical Communications, 12 (2007), 11–23.
- [10] K. Menger: *Statistical metrics*, Proc. Nat. Acad. Sci. USA, 28 (1942), 535–537.
- [11] M. Mursaleen, and Q. M. D. Lohani: *Statistical limit superior and limit inferior in probabilistic normed spaces*, Filomat, 25(3) (2011), 55–67.
- [12] B. Schweizer and A. Sklar: *Statistical metric spaces*, Pacific J. Math., 10 (1960), 313–334.

References III

- [13] M. Sen and M. Et: Lacunary statistical and lacunary strongly convergence of generalized difference sequences in intuitionistic fuzzy normed linear spaces, Bol. Soc. Paran. Mat., 38 (1) (2020), 117-129.
- [14] M. Sen and S. Roy: Some I-convergent double classes of sequences of fuzzy numbers defined by Orlicz functions, Thai J. Math., 11(1) (2013) 111–120.
- [15] A. N. Šerstnev: Random normed spaces, questions of completeness, Kazan Gos. Univ. Uchen. Zap, 122(4) (1962), 3–20.
- [16] H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74.
- [17] B. C. Tripathy and R. Goswami: *Multiple sequences in probabilistic normed spaces*, Afrika Matematika, 26(5-6) (2015), 753–760.

Rupam Haloi Gonitsora Seminar December 4, 2020 30 / 32

References IV

- [18] B. C. Tripathy and R. Goswami: *Statistically Convergent Multiple Sequences in Probabilistic Normed Spaces*, U.P.B. Sci. Bull., Series A, 78 (4), 83–94 (2016).
- [19] B. C. Tripathy and S. Mahanta: On a class of generalized lacunary difference sequence spaces defined by Orlicz function, Acta Math. Appl. Sinica, 20(2) (2004), 231-238.
- [20] B. C. Tripathy, M. Sen and S. Nath: *I-convergence in probabilistic n-normed space*, Soft Comput., 16 (2012), 1021–1027, doi:10.1007/s00500-011-0799-8.
- [21] W. Wilczyński: *Statistical convergence of sequences of functions*, Real Anal. Exchange, 25 (2000), 49–50.

Thank, you!