Mostrando análisis de datos

Panorama General de los Datos

```
Cantidad de observaciones: 16714
Cantidad de columnas: 9
Tipos de datos:
uso de credito
                        float64
edad
                        float64
radio deuda
                        float64
ingreso mensual
                        float64
cuentas abiertas
                        float64
                        float64
num otros prestamos
num dependientes
                        float64
dlq 2yrs
                         int32
nivel riesgo
                           int8
dtype: object
Cantidad de nulos por columna:
```

Cantidad de nulos por columna uso_de_credito 0 edad 0 radio_deuda ingreso_mensual 0 cuentas_abiertas 0 num_otros_prestamos 0 num_dependientes 0 dlq_2yrs 0 nivel_riesgo 0 dtype: int64

Cantidad de duplicados: 2

Cantidad de valores únicos por columna:

Estadísticas Básicas

	uso de credito	edad	radio deuda	 num dependientes	dlq 2yrs	nivel riesgo
count	$1\overline{6}71\overline{4}.000000$	16714.000000	$16714.\overline{0}00000$	 $\overline{}16714.000000$	$16714.0\overline{0}0000$	16714.000000
mean	4.799862	48.798672	30.980298	 0.944358	0.500000	2.044334
std	204.062345	13.906078	719.694859	 1.198791	0.500015	1.216329
min	0.000000	21.000000	0.000000	 0.000000	0.000000	0.000000
25%	0.082397	38.000000	0.155971	 0.000000	0.000000	1.000000
50%	0.443080	48.000000	0.322299	 0.000000	0.500000	3.000000
75%	0.926637	58.000000	0.533426	 2.000000	1.000000	3.000000
max	22000.000000	101.000000	61106.500000	 8.00000	1.000000	3.000000

[8 rows x 9 columns]

Histograma de edad (rango: 21.00 a 101.00) 1000 -Frecuencia 800 -edad

Boxplot de edad

Heatmap de correlación entre variables numéricas 1.0 0.01 uso de credito-1.00 -0.01 0.01 -0.01 -0.01 -0.00 -0.00 0.01 - 0.8 edad --0.01 1.00 0.11 0.23 0.12 -0.21 0.02 0.15 - 0.6 radio_deuda --0.00 1.00 -0.04 0.01 0.01 -0.00 -0.01 0.00 0.02 -0.08 ingreso mensual --0.00 0.11 -0.04 1.00 0.23 0.29 0.10 0.08 - 0.4 -0.01 0.01 0.23 1.00 0.47 0.01 cuentas_abiertas -0.23 -0.05 0.14 - 0.2 ım otros prestamos -0.01 0.12 0.01 0.29 0.47 1.00 0.08 -0.00 0.09 - 0.0 num_dependientes -0.01 -0.18 -0.00 0.10 0.01 0.08 1.00 0.09 -0.08 -0.2dlq_2yrs --0.01 -0.21 -0.01 1.00 -0.48 -0.08 -0.05 -0.00 0.09 nivel_riesgo -0.01 0.15 0.00 0.08 0.14 0.09 -0.08 -0.48 1.00 - -0.4 nivel_riesgo – edad dlq_2yrs radio_deuda ros_prestamos uso_de_credito entas_abiertas _dependientes greso_mensual

Manejo de modelos

Interpretación del método del codo: El punto donde la curva deja de bajar abruptamente sugiere el número óptimo de clusters.

Interpretación de PCA:

Observa si los grupos de riesgo se separan visualmente en el espacio reducido.

Reducción de dimensionalidad con t-SNE

Interpretación de t-SNE:
Permite visualizar agrupamientos no lineales. Compara con PCA.

Regresión Lineal Simple (edad -> ingreso_mensual): R2 = 0.013 Regresión Lineal Múltiple (todas -> ingreso_mensual): R2 = 0.116

Regresión Logística: No aplica LDA: 0.612

4. 0.012

KNN: 0.694

KMeans Silhouette: 0.214 K-Medoids Silhouette: 0.190

DBSCAN Silhouette: -0.01196582470200573

GMM Silhouette: 0.215

Mejor modelo según silhouette: GMM (score: 0.215)

Interpretación de Regresión Lineal Simple:

ca (ej. ingreso mensual) usando solo una variable (ej. edad). El R2 indica qué tan bien la variabl

Interpretación de Regresión Lineal Múltiple: érica usando varias variables al mismo tiempo. El R2 muestra la proporción de la variabilidad ex Interpretación de Regresión Logística: ntre dos categorías (por ejemplo, riesgo alto/bajo). El score indica la proporción de aciertos en l

Interpretación de LDA (Análisis Discriminante Lineal):

clases (niveles de riesgo) encontrando combinaciones lineales de variables. El score es la preci

Interpretación de K-Vecinos más Cercanos (KNN):

registro según los 'vecinos' más cercanos en el espacio de variables. El score es la precisión de

Interpretación de K-Means:

clusters según similitud. El silhouette score mide gué tan bien están separados los grupos (más

Interpretación de K-Medoids:

nilar a K-Means pero más robusto a valores atípicos. El silhouette score tiene la misma interpret

Interpretación de DBSCAN:

densidad, detectando grupos de cualquier forma y valores atípicos. El silhouette score mide la

Interpretación de GMM (Gaussian Mixture Model):

asumiendo que cada grupo sigue una distribución normal. El silhouette score mide la separació

Conclusiones:

El modelo con mejor desempeño de acuerdo al silhouette score fue: GMM (score: 0.215).

Además, los resultados muestran el desempeño de todos los modelos supervisados y no supervisados aplicados al dataset.

Se recomienda analizar más a fondo las variables que más influyen en la segmentación

y considerar la recolección de más datos si es posible. para mejorar la prediccion