Plan du cours

I.	Cos	sinus d'un angle	
	1.	Vocabulaire	
	2.	Cosinus d'un angle	
II.	Applications du cosinus d'un angle		
	1.	Calcul la longueur du côté adjacent	
	2.	Calcul de l'hypoténuse	
	3	Calcul de la mesure d'un angle	

I. Cosinus d'un angle

1. Vocabulaire

Définition

Soit ABC un triangle rectangle en A.

L'angle \widehat{ACB} est formé par le segment [BC] et par le segment [AC].

On dit que [BC] est l'hypoténuse du triangle et que [AC] est le côté adjacent à l'angle \widehat{ACB} .

De même, le segment [AB] est le côté adjacent à l'angle \widehat{ABC} .

2. Cosinus d'un angle

Définition

Soit ABC un triangle rectangle en A.

Le cosinus de l'angle \widehat{ACB} est égal au rapport entre la longueur de côté adjacent à l'angle \widehat{ACB} et la longueur de l'hypoténuse du triangle ABC.

Définition

On notera plus simplement,

$$cos\widehat{ACB} = \frac{coteadjacent}{hypotenuse} = \frac{AC}{BC}$$

Remarque:

- Le cosinus d'un angle aigu est un rapport de deux nombres. C'est donc un nombre sans unité.
- Dans un triangle rectangle, le cosinus d'un angle aigu est un nombre toujours inférieur à 1!

Exercices 1, 3, 4, 7, 9 et 12 page 222

II. Applications du cosinus d'un angle

1. Calcul la longueur du côté adjacent

Soit EFG un triangle rectangle en E tel que \widehat{EGF} = 35° et FG = 5 cm. Calculer EG.

Résolution:

On sait que le triangle EFG est rectangle en E.

On obtient ainsi la formule suivante : $cos\widehat{EGF} = \frac{EG}{FG}$

On remplace par les valeurs : $cos35 = \frac{EG}{5}$

Donc, $EG = 5 \times cos35$ (d'après le produit en croix) Ainsi $EG \approx 4.1$ cm.

2. Calcul de l'hypoténuse

Soit STU un triangle rectangle en S tel que \widehat{TUS} = 65° et US = 3 cm. Calculer TU.

Résolution:

On sait que le triangle STU est rectangle en S.

On obtient ainsi la formule suivante : $cos\widehat{TUS} = \frac{US}{TU}$

On remplace par les valeurs : $cos65 = \frac{3}{TU}$

Donc, $TU = \frac{3}{\cos 65}$ (d'après le produit en croix) Ainsi TU ≈ 7.1 cm.

3. Calcul de la mesure d'un angle

Soit XYZ un triangle rectangle en X tel que XZ = 4 cm et YZ = 6 cm. Calculer \widehat{XZY} .

Résolution:

On sait que le triangle XYZ est rectangle en X.

On obtient ainsi la formule suivante : $cos\widehat{XZY} = \frac{XZ}{YZ}$

On remplace par les valeurs : $cos\widehat{XZY} = \frac{4}{6} = \frac{2}{3}$

Donc, $\widehat{XZY} = \cos^{-1}(\frac{2}{3})$

A l'aide de la calculatrice on trouve $\widehat{XZY} \approx 48^{\circ}$.