CSC 466 Lab 7 Report: Applications of PageRank Analysis on Various Graph Representations

Martin Solomon Hsu: mshsu@calpoly.edu
Instructor: Dr. Alexander Dekhtyar
CSC 466: Knowledge Discovery from Data, Fall 2023

Abstract

In this lab, we will investigate PageRank graph traversal, scoring, and analysis as applied to three different datasets representing graphs: dolphin social networks, character co-appearances in *Les Miserables*, and NCAA football matches. After cleaning the datasets, constructing proprietary graph representations, and using matrix algebra principles to apply PageRank, we constructed rankings of each node. With these rankings, we drew inferences on individual node popularity, importance, and team quality respectively, and then analyzed these results and inferences for both correctness using domain knowledge and research, and performance in terms of speed and efficiency.

I. Introduction

PageRank is an innovative algorithm developed by Larry Page and Sergey Brin at Google in the 1990s. This method of ranking site popularity remains a powerful method for investigating node importance in directed and undirected graphs. This lab report explores the PageRank method within the context of different datasets that are representations of directed or undirected graphs observable in different real world settings, through associative social networks or win-lose team dynamics.

II. Dataset Description

We utilized three different datasets. Each dataset is represented in tabular form, where each row is a pair of nodes connected by an edge. The edge can be directed, in which case a nonzero value will be associated with each node. The parent node, or the node from which the edge is outgoing, is the node with the lower value; and the child node. Or the node to which the edge is incoming, is the node with the higher value.

A. DOLPHINS (dolphinsDir.csv)

The Dolphins dataset represents "an undirected social network of frequent associations between 62 dolphins." which are specific to a pod in Doubtful Sound, New Zealand. The data were

¹ Sergey Brin, Lawrence Page, Reprint of: The anatomy of a large-scale hypertextual web search engine, Computer Networks, Volume 56, Issue 18, 2012, Pages 3825-3833, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2012.10.007.

collected and published in 2003 by ecologist Dr. David Lusseau.² Since this graph is undirected, each edge is only represented once, with each edge representing a symmetric association between dolphins. In this investigation, we want to utilize PageRank to understand which of the 62 dolphins is the most "popular," with "popular" being defined as "having the most associations with other individuals in the pod."

B. LES-MISERABLES (lesmisDir.csv)

The Les-Miserables file represents the undirected "weighted network of appearances of characters in Victor Hugo's novel 'Les Miserables." Each row represents an undirected edge between two nodes, where each node is a character in the novel (e.g. Jean Valjean), with an edge existing between two character nodes if they have appeared together at least once. Since this graph is undirected, each edge is only represented once, with each edge representing a co-appearance of two characters. This dataset was published in 1993 on *The Stanford GraphBase*.³ Much like the Dolphins dataset, we want to investigate character "importance" using PageRank, with the assumption that characters that co-appear with the most other characters are more important, and characters that co-appear the least with other characters are less important to the novel.

C. NCAA-FOOTBALL (NCAA football.csv)

The NCAA-Football dataset is a directed graph representing matches played between two NCAA football teams in the 2009 regular season. Each node is a single NCAA football team. As the graph is directed, the parent node is determined by the team with the lower score, and the child node is determined by the team with the higher score. In other words, each edge is a football match, with the parent node being the losing team and the child node being the winning team. The goal of applying PageRank to this dataset is to determine which team tends to win more often than the other teams, and thus rank the teams in order of "quality."

III. Methods

To apply PageRank to the data, we constructed a proprietary implementation within Python 3.10. The runtime of each step was also measured using the time tool, in addition the number of iterations it took for the PageRank algorithm to converge.

Importing and Cleaning Data

Using data management packages such as Pandas and Numpy, we imported the graph dataset and removed unnecessary columns. String and integer representations were cleaned of any unnecessary characters and converted to the proper data format. The graph was then transformed from a tabular representation of nodes to an adjacency list. This was represented by a dictionary,

² D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, "The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations", *Behavioral Ecology and Sociobiology* 54, 396-405 (2003).

³ D. E. Knuth, *The Stanford GraphBase: A Platform for Combinatorial Computing*, Addison-Wesley, Reading, MA (1993).

where each key was a hub node. We defined a hub node as any node with outgoing edges, also known as a parent node. In an undirected graph, any node connected to an edge is a hub node. Each key contained a list of the hub node's children.

PageRank Implementation

We used the following recursive matrix definition of PageRank as our final implementation:

$$Ap + (1 - d) / n = p$$

The constant d represents the probability of traversing any given adjacent edge from a node in a PageRank traversal, versus jumping spontaneously to another node (represented by the probability 1-d). The variable n represents the number of nodes in the graph.

A is a modified $n \times n$ square adjacency/transition matrix, with each row representing a node as a potential child, and each column representing a node as a potential hub or parent. The value of each entry, a_{ij} , was the probability of traveling along the edge from the parent node i to the child node j, calculated by dividing d by the outdegree of the parent node, d_i :

$$a_{ij} = d / d_i$$
 if node j is a child of node i,
= 0 otherwise

This matrix was populated by iterating over each child of each "hub" or parent in the adjacency list.

The vector **p** represents the vector of PageRank scores/probabilities, which we sorted in descending order to obtain our final rankings.

After constructing **A**, we initialized the vector **p** to a vector of 1/n, and iteratively applied the operation $\mathbf{Ap} + (1-d)/n$ to the vector until the vector **p** converged upon a relatively unchanging solution, within a margin of error of 1.0e-08. The constant d was arbitrarily assigned four different values in four trials; 0.25, 0.5, 0.75, and 1.00; to test the robustness of the rankings against a changing probability of edge traversal. Output for d = 0.75 is found in the appendix.

IV. Results

A. DOLPHINS

As seen in Table 4.1, we can observe that the rankings stay relatively stable as d, the probability of traversing an edge rather than jumping to a random node, increases. The dolphins that are consistently ranked highest by number of associations include Trigger, Jet, Web, Grin, and Scabs. From these PageRank results, we can infer that many dolphins associate with these few compared to other dolphins.

Table 4.1: DOLPHINS Graph PageRank Results

d	Data Read Runtime (ms)	PageRank Runtime (ms)	Iterations	Rank 1	Rank 2	Rank 3	Rank 4
0.25	151.618	24.798	8	Trigger (0.0247)	Jet (0.0236)	Web (0.0219)	Scabs (0.0206)
0.50	132.779	23.139	12	Trigger (0.0296)	Jet (0.0287)	Web (0.0261)	Grin (0.0246)
0.75	157.371	44.193	21	Jet (0.0315)	Trigger (0.0314)	Grin (0.0297)	Web (0.0292)
1.00	193.356	91.075	162	Grin	SN4, Topless	Scabs, Trigger	Web, Jet, Kringel
				(0.0377)	(0.0346)	(0.0314)	(0.0283)

Interestingly, more ties between dolphin nodes appear in the ranking as d increases, particularly when d = 1.

B. LES-MISERABLES

We can observe a similar phenomenon to the Dolphins graph in the Les-Miserables graph, as seen in Table 4.2. Valjean consistently appears as the top character in terms of co-appearances according to the PageRank algorithm, followed by some combination of Myriel, Gavroche, Javert, and Marius. Similarly to the Dolphins dataset, the number of iterations needed for PageRank to converge increases at a growing rate as *d* increases.

Table 4.2: LES-MISERABLES Graph PageRank Results

d	Data Read Runtime (ms)	PageRank Runtime (ms)	Iterations	Rank 1	Rank 2	Rank 3	Rank 4
0.25	220.894	40.100	10	Valjean (0.0402)	Myriel (0.0304)	Gavroche (0.0197)	Javert (0.0182)
0.50	229.809	58.626	16	Valjean (0.0601)	Myriel (0.0410)	Gavroche (0.0267)	Javert (0.0232)
0.75	247.714	60.983	30	Valjean (0.0729)	Myriel (0.0449)	Gavroche (0.0330)	Marius (0.0284)
1.00	240.632	136.651	104	Valjean (0.0709)	Gavroche (0.0433)	Marius (0.0374)	Javert (0.0335)

Intuitively, it makes sense that Jean Valjean overwhelmingly captures the first rank position in PageRank, as he is the primary protagonist of *Les Miserables*. Marius and Javert, as secondary protagonist and antagonist respectively, also make sense as topping the rankings. Gavroche, as a supporting character who commonly appears accompanying the French revolutionary characters in the plot, also may make sense as being a character with a high number of co-appearances, even though he may not necessarily be as influential to the plot as other characters topping the rankings.

Figure 4.2: PageRank Score of Valjean Compared to 2nd Rank Character, as a Factor of d

Interestingly, as d increases, two phenomena occur. Firstly, the disparity between primary protagonist Valjean's PageRank score and the other PageRank scores tends to increase, as seen in Figure 4.2. Secondly, between d = 0.75 and d = 1.00, Bishop Myriel's ranking drops from second to 18th. This may also make sense intuitively, as Myriel plays an influential role in the book on Jean Valjean's life, but when evaluated on pure co-appearances by setting d = 1.00, he is not as prevalent of a character.

C. NCAA-FOOTBALL

The PageRank analysis for the NCAA-Football graphs demonstrates significant volatility, with Mississippi, Florida, and Oklahoma consistently entering the top four rank positions. Additionally, as *d* increases, the PageRank score appears to approach 0.

Table 4.3: NCAA-FOOTBALL Graph PageRank Results

d	Data Read Runtime (ms)	PageRank Runtime (ms)	Iterations	Rank 1	Rank 2	Rank 3	Rank 4
0.25	868.828	146.919	9	Montana	Weber State	Florida	Richmond
				(0.0054)	(0.0051)	(0.0051)	(0.0051)
0.50	777.636	116.965	15	Mississippi	Florida	Oklahoma	Richmond
				(0.0098)	(0.0090)	(0.0083)	(0.0083)
0.75	1025.374	167.216	31	Mississippi	Florida	Oklahoma	Utah
				(0.0021)	(0.0017)	(0.0013)	(0.0013)
1.00	1061.579	300.504	382	Mississippi	Florida	Wake Forest	Alabama
				(2.90e-7)	(2.26e-7)	(1.54e-7)	(1.34e-7)

This ranking is interesting, but does not make much sense in terms of traditional preseason NCAA evaluations⁴. While some teams, such as Florida and Utah, make sense when they appear at the top of the rankings in this context, some universities, such as Montana, Weber State, Richmond, and Wake Forest, do not appear at all in traditional 2009 rankings. Additionally, Mississippi is not usually polled consistently as the number one ranking team, though it certainly ranks high in general in the preseason.

An explanation for this ranking may come from the ratio of outgoing versus incoming edges. It could be that though the top rankings in these schools are not as athletically rigorous compared to schools topping traditional rankings, they win much more games than they lose due to the nature of their regional division. Schools such as Montana, Richmond, and Utah have a particularly high count of wins compared to their losses. This underscores the importance of an approach that takes into account more than simply the number of wins or losses in determining college football rankings.

V. Conclusions

Overall, PageRank produced acceptable rankings for the three datasets. PageRank worked especially well when utilized for the context of popularity or importance for undirected graphs of social networks and associations between individuals, as observed in the Dolphins and

⁴ https://web.archive.org/web/20090919022544/http://www.appollarchive.com/football/ap/seasons.cfm?seasonid=2009

Les-Miserables analyses. In directed graphs, especially the NCAA-Football dataset, where performance-based rankings can depend on more free parameters than simply the wins and losses used to determine direction in the graph, PageRank did not perform as well as widely accepted rankings. A more effective approach may involve weighting the probability of traversing one of the outgoing edges by a value factor, such as the number of co-appearances in the Les-Miserables graph or the winning score in the NCAA graph.

VI. Performance

When examining the effect of a changing d on the number of iterations and the runtime, we can see that overall, the algorithm runs relatively quickly and converges in a few iterations. However, as d increases, the number of iterations needed for the algorithm to converge on a solution appears to tend to increase at an increasing rate, as seen in Figure 5.1.

Figure 5.1: PageRank Iterations before Convergence, as a Factor of d

This makes sense intuitively; when d = 0, the solution should instantly converge mathematically on a **p** vector where each element is equal to 1/n. As d increases, the 1/n component decreases in influence, resulting in a solution that takes longer to converge upon. This phenomenon is reflected in the runtime, as a similar pattern can generally be found when examining runtime as a factor of d. As expected, overall average runtime also consistently increases relative to the size of the dataset.

Figure 5.2: PageRank Runtime, as a Factor of d

From this pattern we can make two inferences; firstly, that as d increases, PageRank's runtime and number of iterations also increase. Secondly, the runtime consistently increases as graph size increases as well, though the number of iterations does not consistently follow this pattern, especially with a lower d value. As a result, we may expect that as the number of nodes or edges increases in the graph, the runtime and number of iterations can be expected to increase. However, as demonstrated by implementations such as Google, the algorithm has a proven scalability across millions of nodes.

VII. Appendix

Please see README file for Python PageRank implementation details. Output for d = 0.75 PageRank implementation is shown below and is considered to be the best or most balanced PageRank implementation out of the four tested (d = 0.25, 0.50, 0.75, 1.00).

A. DOLPHINS PageRank Output, d = 0.75

See dolphins results 0.75.txt for full output.

Page Rank, d=0.75			28	MN83	0.016319
			29	Shmuddel	0.016156
File: dolphinsDir.csv			30	Hook	0.015926
Read 7		57.371ms	31	SN90	0.015635
	ssing Time: 4		32	DN63	0.015503
N Ite	rations: 2	1	33	PL	0.015298
	_		34	Fish	0.015149
Rank	Node	PageRank	35	Zap	0.014753
1	Jet	0.031487	36	DN16	0.014682
2	Trigger	0.031429	37	Oscar	0.014676
3	Grin	0.029726	38	Ripplefluke	0.014537
4	Web	0.029234	39	Bumper	0.013965
5	SN4	0.027749	40	Thumper	0.013222
6	Topless	0.027420	41	Knit	0.013065
7	Scabs	0.027207	42	Mus	0.012206
8	Patchback	0.025824	43	TSN103	0.012197
9	Gallatin	0.024888	44	Zipfel	0.012049
10	SN63	0.023611	45	Notch	0.011874
11	Beescratch	0.023555	46	MN60	0.010408
12	Kringel	0.023209	47	TR88	0.010277
13	Feather	0.022597	48	TR120	0.010192
14	Stripes	0.021516	49	CCL	0.010189
15	SN9	0.020710	50	TSN83	0.009350
16	Upbang	0.020569	51	Wave	0.009224
17	SN100	0.020054	52	SN89	0.008617
18	DN21	0.019510	53	Vau	0.008458
19	Haecksel	0.019307	54	Zig	0.007666
20	Jonah	0.018494	55	Quasi	0.006656
21	TR99	0.018251	56	MN23	0.006656
22	SN96	0.017351	57	TR82	0.006468
23	Number1	0.017210	58	Cross	0.006389
24	TR77	0.016961	59	Five	0.006389
25	Double	0.016689	60	Whitetip	0.006246
26	Beak	0.016462	61	SMN5	0.006184
27	MN105	0.016325	62	Fork	0.006073

B. LES-MISERABLES PageRank Output, d = 0.75

See lesmis_results_0.75.txt for full output.

Page I	Rank, d=0.75		35	Brevet	0.012344
			36 37	Cochepaille	0.012344
File: lesmisDir.csv				Chenildieu	0.012344
Read !		_	38	Judge	0.012344
	ssing Time: 60.983	ms	39	Champmathieu	0.012344
N Ite:	rations: 30		40	Prouvaire	0.012261
			41	Brujon	0.011390
Rank	Node	PageRank	42	MmeMagloire	0.010846
1	Valjean	0.072890	43	MlleBaptistine	0.010846
2	Myriel	0.044922	44	MmeHucheloup	0.010276
3	Gavroche	0.033045	45	Simplice	0.009669
4	Marius	0.028404	46	MmeBurgon	0.009472
5	Javert	0.028231	47	LtGillenormand	0.009190
6	Thenardier	0.026299	48	Pontmercy	0.008281
7	Fantine	0.025619	49	Toussaint	0.007358
8	Cosette	0.019753	50	Woman2	0.007358
9	Enjolras	0.019586	51	MotherInnocent	0.007197
10	MmeThenardier	0.018498	52	MmePontmercy	0.007148
11	Bossuet	0.017178	53	Child1	0.006997
12	MlleGillenormand	0.017090	54	Child2	0.006997
13	Courfeyrac	0.016810	55	Anzelma	0.006870
14	Mabeuf	0.016803	56	Jondrette	0.006799
15	Eponine	0.016570	57	Count	0.006616
16	Bahorel	0.015671	58	CountessDeLo	0.006616
17	Joly	0.015671	59	OldMan	0.006616
18	Babet	0.015475	60	Geborand	0.006616
19	Gueulemer	0.015475	61	Cravatte	0.006616
20	Gillenormand	0.015350	62	Napoleon	0.006616
21	Claquesous	0.015338	63	Champtercier	0.006616
22	Bamatabois	0.015007	64	Perpetue	0.006341
23	Tholomyes	0.014995	65	Magnon	0.006153
24	Feuilly	0.014557	66	Marguerite	0.006046
25	Combeferre	0.014557	67	BaronessT	0.006013
26	Montparnasse	0.014192	68	Woman1	0.006011
27	Grantaire	0.013380	69	Gribier	0.005678
28	Fauchelevent	0.012968	70	MlleVaubois	0.005078
29	Dahlia	0.012443	71	MmeDeR	0.004765
30	Favourite	0.012443	72	Scaufflaire	0.004765
31	Listolier	0.012113	73	Gervais	0.001765
32	Fameuil	0.012443	74	Labarre	0.004765
33	Blacheville	0.012443	75	Isabeau	0.004765
34	Zephine	0.012443	76	Boulatruelle	0.004783
54	Zeburne	0.012443		MotherPlutarch	
			77	Morner Finraich	0.004392

C. NCAA-FOOTBALL PageRank Output, d = 0.75, top 100 only

 $See\ NCAA_football_results_0.75.txt\ for\ full\ output.$

Page Rank, d	=0.75		48	California	0.004800
-			49	Northwestern	0.004680
File: NCAA f	ootball.csv		50	Rutgers	0.004618
Read Time:	1025.374ms		51	Grambling State	0.004466
Processing T	ime: 167.216ms		52	Missouri	0.004447
N Iterations	: 31		53	Connecticut	0.004420
			54	Houston	0.004326
Rank	Node	PageRank	55	Albany	0.004302
1	Mississippi	0.021463	56	Ohio State	0.004282
2	Florida	0.017664	57	South Carolina State	0.004277
3	Oklahoma	0.013269	58	Michigan State	0.004245
4	Utah	0.013219	59	Dayton	0.004178
5	Texas Tech	0.013076	60	Southern Illinois	0.004119
6	Richmond	0.011188	61	Navy	0.004055
7	Texas	0.011103	62	Harvard	0.003973
8	Oregon State	0.010744	63	South Florida	0.003929
9	Montana	0.010439	64	Liberty	0.003896
10	James Madison	0.010303	65	Arkansas	0.003782
11	Wake Forest	0.010282	66	Massachusetts	0.003764
12	Alabama	0.010068	67	Nevada	0.003722
13	Virginia Tech	0.010029	68	Brigham Young	0.003655
14	USC	0.008870	69	Colgate	0.003652
15	Vanderbilt	0.008530	70	Nebraska	0.003644
16	Georgia Tech	0.008290	71	Holy Cross	0.003626
17	Virginia	0.008182	72	Stanford	0.003604
18	Boston College	0.008094	73	Maine	0.003601
19	Weber State	0.008032	7.4	Nicholls State	0.003597
20	Villanova	0.007734	75	McNeese State	0.003563
21	South Carolina	0.007616	76	Wofford	0.003544
22	North Carolina	0.007364	77	Texas State	0.003534
23	TCU	0.007291	78	Oklahoma State	0.003522
24	Duke	0.007186	79	San Diego	0.003516
25	Florida State	0.006890	80	Lafayette	0.003491
26	Maryland	0.006652	81	Eastern Washington	0.003429
27	West Virginia	0.006561	82	Kansas	0.003412
28	Miami (FL)	0.006503	83	Ball State	0.003395
29	North Carolina State	0.006456	84	North Dakota	0.003308
30	Clemson	0.006379	85	Hawaii	0.003291
31	East Carolina	0.006373	86	Presbyterian	0.003274
32	Penn State	0.006286	87	Furman	0.003269
33	Georgia	0.006247	88	Florida A&M	0.003255
34	Cincinnati	0.006167	89	Monmouth	0.003246
35	Appalachian State		90		0.003220
36	Pittsburgh		91		0.003215
37	Iowa	0.005866	92	Arizona	
38	Tulsa	0.005797	93	Rice	
39	LSU	0.005766	94	William & Mary	
40	Northern Iowa	0.005254	95	——————————————————————————————————————	0.003171
41	New Hampshire	0.005201	96	Eastern Kentucky	
42	Northwestern State	0.005201	97		0.003140
43	Brown	0.005075	98	Colorado	
44	Jacksonville	0.005073	99	Tennessee State	
45	Oregon	0.005022	100	Sacred Heart	
46	Central Arkansas	0.003022			
47	Boise State	0.004900	• • •	•••	• • •
7 /	DOISE State	0.004000			

D. Other PageRank Output

See README for full descriptions.

- 1. dolphins results 0.25.txt
- 2. dolphins results 0.5.txt
- 3. dolphins results 0.75.txt
- 4. dolphins_results_1.txt
- 5. lesmis_results_0.25.txt
- 6. lesmis_results_0.5.txt
- 7. lesmis_results_0.75.txt
- 8. lesmis results 1.txt
- 9. NCAA football results 0.25.txt
- 10. NCAA football results 0.5.txt
- 11. NCAA_football_results_0.75.txt
- 12. NCAA_football_results_1.txt

E. README

See README for a TXT copy.

```
# Martin Hsu
# mshsu@calpoly.edu
# CSC 466 Fall 2023
# SUBMISSION DESCRIPTION
Python Scripts
# RUN INSTRUCTIONS
Must have the following packages:
- pandas, numpy, sys, time, typing
Structure:
- pageRank.py - Implements PageRank algorithm and produces printed report
How to run
1. Setup
    a. Load the files into your environment of choice. Make sure that all
python
        scripts are together in the same folder!!!! That way the dependent
        scripts can import and run functions from other scripts.
2. How to run pageRank.py
    a. In the command line, navigate to the directory where the scripts are.
    b. In the command line, use the following syntax:
       $ python3 pageRank.py <nodeFile.csv> <d> [--dir]
        - <nodeFile> is the appropriately formatted graph representation file
            of edges as node pairs and their values
        - <d> is the d parameter in PageRank, representing the probability
            of traversing an edge (versus 1-d being the probability of
            spontaneously jumping to another node). Must be between 0 and 1,
            inclusive
        - --dir is an optional parameter to indicate if the nodeFile represents
            a directed graph. By default, an undirected graph is assumed.
    c. The following expected output should be printed to the terminal:
        - The value of d
        - The graph node/edge pair filename
        - The data read and PageRank processing time
        - The number of iterations for PageRank to converge
        - The ranking, name and PageRank score of all nodes in the graph
# PROGRAMS/FILES
Python scripts:
- pageRank.py
Output files:
- dolphins results 0.25.txt, dolphins results 0.5.txt,
    dolphins results 0.75.txt, dolphins results 1.txt - PageRank results for
```

d = 0.25, 0.5, 0.75, 1 for dolphinsDir.csv

- lesmis_results_0.25.txt, lesmis_results_0.5.txt, lesmis_results_0.75.txt,
 lesmis_results_1.txt PageRank results for d = 0.25, 0.5, 0.75, 1 for
 lesmisDir.csv

Other:

- README
- Lab07-report.pdf

EXPECTED ERRORS:

- The python scripts MUST ALL BE IN THE SAME FOLDER, or there will be errors.
- Please enter appropriate datatypes and filetypes in the terminal, or there will be errors.
- Please ensure all filetypes are appropriately formatted.