Coursera Notes

Improving Deep neural Networks: Hyperparameter Tuning, Regularization and Optimization Methods

Setting up an ML application:

W1L1: train/dev/test sets

- Smaller datasets: 60/20/20 or 70/15/15
- Big datasets: 98/1/1
- Make sure that your dev and test sets come from the same data distributions or source of inputs

W1L2: bias/variance

W1L3:

Basic recipe for machine learning

Andrew Ng

The vector norm $|\mathbf{x}|_p$ for p=1, 2, ... is defined as

$$|\mathbf{x}|_p \equiv \left(\sum_i |x_i|^p\right)^{1/p}.$$

W1L4: Regularization:

- To prevent high variance problem & overfitting: use regularization
- L2 generally used also called as weight decay
- L1 weights will be sparse

Neural network

$$J(\omega^{r0}, b^{co}, ..., \omega^{rco}, b^{coo}) = \frac{1}{m} \sum_{i=1}^{m} A(y^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{i=1}^{m} \|\omega^{rio}\|_{F}^{2}$$

$$\|\omega^{rio}\|_{F}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{m} (\omega^{rio})^{2} \qquad \omega: (n^{rio} n^{rio}).$$
"Frobenius norm"

$$\|\cdot\|_{2}^{2} \qquad \|\cdot\|_{F}^{2} \qquad \|\cdot\|_{F}^{2}$$

$$\lambda \omega^{rio} := \omega^{rio} - \lambda d\omega^{rio}$$

$$\lambda \omega^{rio} := \omega^{rio} - \lambda d\omega^{rio}$$
"Works decay"

$$\omega^{rio} := \omega^{rio} - \lambda d\omega^{rio}$$
"Works decay"

$$\omega^{rio} := \omega^{rio} - \lambda d\omega^{rio}$$

W1L5: Why regularization reduces overfitting?

Regularization in machine learning is the process of regularizing the parameters that constrain, regularizes, or shrinks the coefficient estimates towards zero. In other words, this technique discourages learning a more complex or flexible model, avoiding the risk of Overfitting.

W1L6/7: Dropout regularization

- It helps prevent overfitting as the weights have to shrink when some features are dropped.
- In computer vision applications: dropout is used most often
- Downside: cost function J is not well defined, harder to double-check the performance of the gradient descent model.
- To avoid this: Ng runs the code with dropouts off, keep prob = 1, and then turns the dropout on to avoid introducing bugs.

W1L8: few more regularization techniques:

- Data Augmentation:
- Early stopping:

W1L9: Normalizing the inputs

W1L10: vanishing/exploding gradients:

for a deep neural network with L layers (L is large integer):

- If W < Identity matrix : vanishing gradients
- If W > identity matrix : exploding gradients as W raised to L-1 gives the hypothesis

W1L11: Weight Initialization: To avoid vanishing and exploding gradients

- Relu: W = np.random.rand(shape) * np.sqrt($1/(n^{(L-1)})$) where n: number of hidden units
- Tanh: Xavier Initialiation

W2L1/2: Mini Batch Gradient Descent

- Mini batch is faster than batch GD.
- Dividing the whole dataset into small batches and update weights for every batch.
- Choosing the size of mini-batch:

Choosing your mini-batch size

W2L4: RMSprop

W2L5: Adam

Combination of exponential weighted avg and RMSprop

Adam optimization algorithm

Andrew Ng

W2L6: learning rate decay

method1:

Other learning rate decay methods

W3L1: tuning process

- Order of importance of tuning the hyperparameters: learning rate momentum # hidden units mini-batch size #layers learning rate decay adam optimizer parameters: beta1, beta2, epsilon
- Do not use a grid, try random samples

W3L2: picking the right scale for tuning: use logarithmic scale

Learning rate:

Appropriate scale for hyperparameters

Beta for exponentially weighted averages

Hyperparameters for exponentially weighted averages

$$\beta = 0.9 \quad ... \quad 0.999$$

$$10 \quad (000)$$

$$1-\beta = 6.1 \quad ... \quad 0.001$$

$$10^{-1} \quad 0.999$$

$$10^{-2} \quad 10^{-3}$$

$$1 \cdot 0.999 \Rightarrow 0.9995$$

$$1 \cdot \beta = 1-10^{-1}$$
Ar

W3L3: tuning in practice: Application dependent

Babysitting one model

Training many models in parallel

W3L4: Batch Normalization

Normalizing the values of the parameters before applying the activation function.

Implementing Batch Norm:

Andrew Ng

Working with mini-batches

Implementing gradient descent

for t=1 num Mini Bortches
Compute formal pup on X 8+3. The each hidden lay, use BN to repare 2 Test with 2 Test.

Update parter with: = Win-adwind }

Compare with: = Brish advisor }

Compare with: = Brish advisor }

Compare with: = Brish advisor } Works w/ mounty, RMSpup, Adm

Batch Norm at test time

$$\mu = \frac{1}{m} \sum_{i} z^{(i)}$$

$$\Rightarrow \frac{1}{m} \sum_{i} z^{(i)}$$

$$\Rightarrow \frac{1}{m} \sum_{i} (z^{(i)} - \mu)^{2}$$

$$\Rightarrow z^{(i)}_{norm} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^{2} + \varepsilon}}$$

$$\Rightarrow \tilde{z}^{(i)} = \gamma z^{(i)}_{norm} + \beta$$

$$\sum_{i} z^{(i)}_{norm} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^{2} + \varepsilon}}$$

$$\Rightarrow \tilde{z}^{(i)}_{norm} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^{2} + \varepsilon}}$$

$$\Rightarrow \tilde{z}^{(i$$

W3L6: Multiclass classification:

- Softmax Layer: takes a vector as an input and outputs a vector with the same dimensions. It computes the chance of occuring a particular class in the multiclass classification.
- In the example below: there is 84% chance of the predicted class to be class 0.

W3L7: training a softmax classifier

