

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CERTIFICATE

This is to certify that M	s/Mr		
Reg. No.:	Section:	Roll No.:	
has satisfactorily completed	d the laboratory exe	ercises prescribed for Communica	ation
Networks Lab [ECE-3212]] of VI Semester B.	. Tech. (E & C Engg.) Degree at 1	MIT,
Manipal, in the academic ye	ear 2016 - 2017.		
Date:			
Signature		Signature	

Faculty in Charge

Head of the Department

CONTENTS

Sl. No.	Name of Experiment	Page No.		
PART A				
1.	Point-to-Point Networks	1		
2.	Network Topologies	16		
3.	Wired and Wireless LANs	30		
4.	Wireless Sensor Networks and Wi-Max Networks	45		
PART B				
5.	ALOHA Protocol	65		
6.	A. CSMA Protocol	71		
	B. CSMA/CD Protocol	74		
	C. Token Bus	76		
	A. Token Ring	78		
7.	B. STOP & WAIT Protocol	80		
	C. STOP & WAIT with BER	82		
PART C				
8.	Bit stuffing, Checksum and Character count	83		
9.	CRC and Hamming Code	87		
10.	Routing Algorithms	93		

Total Number of Lab Classes: 10

Course Objectives

- CO1: To simulate the Wired and Wireless LANs and Wi-Max.
- CO2: To Configure and test the various Data Link Layer protocols.
- CO3: To simulate and verify the function of various Network Layer protocols.
- CO4: To Demonstrate TCP, UDP Communication Protocols.
- CO5: To Simulate the MANETs and WSNs and analyse their performance.

Course Outcomes

At the end of this course, student will be able to:

- Analyse the congestion in Point-to-Point networks and Wireless LANs.
- Configure and test the ALOHA, CSMA, CSMA/CD, and CSMA/CA protocols.
- Simulate and verify the functioning of Dijkstra's and Bellman-ford algorithms.
- Demonstrate the different applications using TCP, UDP Communication Protocols.
- Verify the performance of various Error control protocols in Data Link Layer.

Evaluation Plan

Communication Network Lab

- Internal Assessment Marks: 60 Marks
 - ✓ Continuous evaluation component (for each experiment): 10 Marks
 - ✓ Assessment is based on conduction of each experiment, exercise problems, answering the questions related to the experiment.
 - ✓ Total marks of the 10 experiments scaled to **60 Marks**
- End semester assessment: 40 Marks

Communication Network Project Lab

- Internal Assessment: 60 Marks
 - ✓ Continuous evaluation component (for each progress): 10 Marks
 - ✓ Assessment is based on satisfactory progress in execution of project.
 - ✓ Total marks of the 6 evaluations is **60 Marks**
- End semester project demonstration: 40 Marks

Note: Final Grading is based on the average of marks scored in Communication Networks Lab and Project Lab.

PART A

Experiment 1 Point-to-Point Networks

Objective:

- **A)** To simulate a three point-to-point network with duplex links between them. Set the queue size and vary the bandwidth and find the number of packets dropped.
- **B)** To simulate the transmission of ping message over a network topology consisting of 6 nodes and find the number of packets dropped due to congestion.

Procedure:

Create a folder with your registration number under "C://qualnet/7.4/scenarios/user/"

A) Go to File→new→save as→ point-to-point

Select Scenario Properties → General Settings → Give Experiment name, Simulation Time

Click Apply, Ok

Set the Terrain Properties

Step 1: Select Default icon from **Standard Toolset window**→ **Devices** and Place the three nodes on the canvas.

Step 2: Connect point-to-point link between three nodes using link from Standard Toolset window.

Step 3: Double click on the links to set duplex link and bandwidth between the nodes by configure 802.3 as MAC Protocol.

Step 4: To set queue size of each node in the scenario double click on the nodes, go to Node Configuration tab→Network Layer→Schedulers and Queues.

Step 5: Select the Applications tab of Standard Toolset window

Select **CBR** and draw the application between Node 1 and Node 2. Similarly Node 2 to Node 3 and Node 3 Node 1.

Step 6: To set CBR Application parameters, go to Table View (bottom panel of GUI)

→ Application Tab→ double click on CBR Application

Set the number of CBR packets (Items to send) as per the user requirement.

Step 7: Save the changes by clicking on the **Save** button. Click on the **Run** button. Click on the **Play** button to execute the scenario.

Step 8: On completion of the Scenario execution, check the corresponding Statistics for the desired results click on **Analyze Statistics of Current Scenario.**

Step 9: To check the no. of packets at sender, go to Application tab →CBR Client→Total Unicast Messages Sent

To check the no. of packets at receiver, go to Application tab→CBR Server →Total Unicast Messages Received

Note: The packet drop is calculated as follows:

Packet drop = Total no. of packets sent – Total no. of packets received

B) Procedure: Go to File → new → save as → congestion

Select Scenario Properties → General Settings → Give Experiment Name, Simulation Time Click Apply, Ok

Step 1: Select Default icon from **Standard Toolset window** and Place the Six nodes on the canvas.

Step 2: Connect point-to-point link between three nodes using **link** from **Standard Toolset window.**

Step 3: To set ICMP of each node in the scenario double click on the nodes, go to Node Configuration tab→Network Layer→Enable ICMP.

Step 4: Select the **Applications** tab of **Standard Toolset window** Select **CBR** and draw the application between Node 3 and Node 4.

Step 5: To set CBR Application parameters, go to Table View (bottom panel of GUI) → Application Tab→ double click on CBR Application.

Set the number of CBR packets (Items to send) as per the user requirement.

Step 6: Save the changes by clicking on the **Save** button. Click on the **Run** button. Click on the **Play** button to execute the scenario.

Step 7: On completion of the Scenario execution, check the corresponding Statistics for the desired results click on **Analyze statistics of Current Scenario.**

Step 8: To check the no. of packets at sender, go to Application tab→CBR Client →Total Unicast Messages Sent

To check the no. of packets at receiver, go to Application tab→CBR Server→Total Unicast Messages Received

Similarly, observe Average End-to-End Delay, Throughput, and Jitter.

Note: The packet drop is calculated as follows

Packet drop =Total no. of packets sent – Total no. of packets received

Exercise 1: Simulate a four node point-to-point network with the links connected as follows: n1-n3, n2-n3 and n3-n4, Apply TCP agent between n1-n4 and UDP between n2-n4. Apply relevant application over TCP and UDP agents changing the parameters and determine the number of packets sent by TCP/UDP.