Hashgold

version 1

0xhashdev at gmx.com

2022

1 Introduction

Hashgold is a simple proof of work based ERC-20 token on Ethereum and Arbitrum blockchains. Being a proof of work token, Hashgold is not owned by anyone i.e. contracts are not owned, and contract code cannot be changed by anyone once it is deployed ¹. The idea behind Hashgold is that we wanted to create a token with the following properties:

- 1. To have provable value
- 2. To be provably scarce i.e. hard-capped
- 3. To be very cheap to transact
- 4. To inherit security from battle-tested

In the following, we explain how Hashgold achieves these features. We also provide an implementation of Hashgold and deploy contracts on Ethereum mainnet and Arbitrum One as well as Ethereum Goerli and Arbitrum Goerli testnets. Furthermore, we release a simple rust implementation of Hashmaxxing which can be used to mine HGOLD tokens ². The project's website is https://hashgold.org, and a reference implementation of the Hashmaxxing tool is available at https://github.com/0xhashdev/hashmaxxing/.

¹Smart contracts deployed on Ethereum Goerli and Arbitrum Goerli testnets allow resetting the target_hash.

²Disclaimer: The information provided in this whitepaper does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of this paper's content as such. Hashgold team does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions. By purchasing or mining Hashgold on any platform, you agree that you are not purchasing a security or investment and you agree to hold the team harmless and not liable for any losses or taxes you may incur. You also agree that the team is presenting the token "as is" and is not required to provide any support or services. You should have no expectation of any form from Hashgold and its team. We strongly recommend that citizens in areas with government bans on cryptoassets do not purchase Hashgold because the team cannot ensure compliance with your territory's regulations. Always make sure that you are in compliance with your local laws and regulations before you make any purchase.

2 Key ideas

2.1 Why POW?

The valuation of cryptoassets is an interesting question. Various factors may contribute to the market value, of cryptoassets, the most important ones are the following:

- 1. Hype. Hype is undoubtedly the biggest factor in the valuation of cryptoassets. In fact, most cryptoassets, especially shitcoins are entirely valued based on the hype around them, as they have no utility and no way to *prove* that they are hard to obtain.
- 2. Scarcity. Cryptoassets usually have a proven scarcity, as no one can modify the supply of these assets unless they hack the blockchain. However scarcity alone does not provide value, as something very rare yet totally useless (e.g. a jpeg of a monkey) is not necessarily expensive.
- 3. Utility. Some cryptoassets for example, ETH, MATIC etc. are utility tokens, i.e. users use these tokens as "gas" to pay for code execution.
- 4. Privacy. Another property contributing to the value of some cryptoassets is privacy: XMR and Secret are known as privacy coins and are preferred by some users because offer anonymous and untreaceable transactions.

We think that in order to build a token with provable value, we need to rely on scarcity as well as a mechanism to cryptographically prove that obtaining tokens is hard. Most physical assets that are expensive, are also hard to obtain: gold, silver, diamond, high-end chips, etc. A proof of work mechanism is a great way to prove that token mining is hard, hence we choose a POW method, which we call **hashmaxxing**. Unlike in the case of Bitcoin or XMR, the proof of work here does not ensure consensus or security, it is used solely to prove the hardness of token mining (the security of Hashgold is inherited from Ethereum as Hashgold is an ERC-20 token).

2.2 Hashmaxxing

Hashgold consists of two smart contracts (one for Ethereum and one for Arbitrum) which can receive a nonce from a miner, and if the nonce is correct, the smart contract sends reward tokens to a given beneficiary chosen by the sender of the nonce (see Fig. 1). The correctness of a nonce is verified by computing a specific hash (see Algorithm 1 for details). For a correct nonce, the computed hash must be larger than the target hash (hence the name "hashmaxxing").

Figure 1: Hashmaxxing: tx sender (miner a.k.a. hashmaxxer) sends the nonce along with the beneficiary address to the smart contract. The contract verifies the nonce, and if it is correct, mints a given number of tokens to beneficiary. Beneficiary can be any valid address, including the same address as tx.sender.

Algorithm 1 Simplified Hashmaxxing algorithm

2.2.1 Updating the target hash

The target hash is initially set to

which is chosen in such way, that a single Macbook Air M1 can find a correct nonce in about 10 seconds. The target hash is incremented based on the number of nonces accepted by the contract. After every 100 nonces, the target hash is incremented in the following way: most significant byte less than 255 is incremented by 8. For example the next target hash after the initial target hash will be

and the next will be

and so on, until the target hash becomes

This way we create a mechanism that ensures a hard cap on the number of tokens in existence, and also makes hashmaxxing exponentially harder over time. Target hash is updated after every 10,000 nonces and every correct nonce is worth 100 tokens, so the target hash is updated after every 1,000,000 tokens created.

2.3 Tokenomics

Hashgold is deployed on two chains: Ethereum and Arbitrum. On each of these chains there will be 915 target hash updates, and between each such hash update 1,000,000 tokens are created. This way, the absolute theoretical maximum of tokens in existence is $2 \times 915,000,000 = 1,830,000,000$. In practice however this number will never be reached, due to the exponential difficulty of mining tokens and the fact that token mining will be stopped after 5 years.

3 Benchmarks

We performed benchmarks of the Hashmaxxing algorithm using the rust hashmaxxing software on an Apple[™] Macbook Air with M1 chip and on a server with AMD EPYC[™] 7742 CPUs, for different target hashes. As expected, in all tests we find that the effort needed to find a correct nonce increases exponentially with the target hash increments, see Fig 2.

Figure 2: Benchmark results and exponential fits. (a) average number of hashes needed to find a nonce on a Macbook Air with M1 chip, (b) average time in milliseconds needed to find a nonce on a Macbook Air with M1 chip, (c) average number of hashes needed to find a nonce on an AMD EPYC[™] 7742 CPU, (d) average time in milliseconds needed to find a nonce on an AMD EPYC[™] 7742 CPU.

Tables 1-6 contain the benchmarking data we measured on the CPUs and used to create Fig. 2.

target hash	$\mathbb{E}(k)$	$\sigma(k)$	$\mathbb{E}(t)$ [ms]	$\sigma(t)$ [ms]
0x00000000000b00b1e5	0.0000	0.0000	0.0000	0.0000
0x0800000000b00b1e5	0.1000	0.3162	0.0000	0.0000
0x1000000000b00b1e5	0.0000	0.0000	0.0000	0.0000
0x1800000000b00b1e5	0.0000	0.0000	0.0000	0.0000
0x2000000000b00b1e5	0.2000	0.6325	0.0000	0.0000
0x2800000000b00b1e5	0.3000	0.4830	0.0000	0.0000
0x3000000000b00b1e5	0.0000	0.0000	0.0000	0.0000
0x3800000000b00b1e5	0.4000	0.8433	0.0000	0.0000
0x4000000000b00b1e5	0.1000	0.3162	0.0000	0.0000
0x4800000000b00b1e5	0.1000	0.3162	0.0000	0.0000
0x50000000000b00b1e5	0.3000	0.6749	0.0000	0.0000
0x5800000000b00b1e5	0.4000	0.6992	0.0000	0.0000
0x60000000000b00b1e5	0.6000	0.9661	0.0000	0.0000
0x6800000000b00b1e5	0.3000	0.4830	0.0000	0.0000
0x70000000000b00b1e5	1.3000	1.3375	0.0000	0.0000
0x7800000000b00b1e5	0.5000	0.9718	0.0000	0.0000
0x8000000000b00b1e5	1.6000	2.0656	0.0000	0.0000
0x8800000000b00b1e5	0.6000	0.6992	0.0000	0.0000
0x90000000000b00b1e5	1.7000	1.4944	0.0000	0.0000
0x9800000000b00b1e5	2.3000	2.4060	0.0000	0.0000
0xa000000000b00b1e5	1.4000	1.3499	0.0000	0.0000
0xa800000000b00b1e5	1.0000	0.9428	0.0000	0.0000
0xb0000000000b00b1e5	3.7000	2.1108	0.0000	0.0000
0xb800000000b00b1e5	1.7000	1.3375	0.0000	0.0000
0xc000000000b00b1e5	4.2000	3.7059	0.0000	0.0000
0xc800000000b00b1e5	3.4000	2.5906	0.0000	0.0000
0xd000000000b00b1e5	4.6000	5.1897	0.0000	0.0000
0xd800000000b00b1e5	4.4000	6.3805	0.0000	0.0000
0xe0000000000b00b1e5	3.8000	4.3153	0.0000	0.0000
0xe800000000b00b1e5	5.2000	4.9171	0.0000	0.0000
0xf000000000b00b1e5	17.4000	21.4900	0.0000	0.0000
0xf800000000b00b1e5	23.0000	21.0766	0.0000	0.0000
0xff00000000b00b1e5	299.1000	176.3056	0.0000	0.0000
0xff08000000b00b1e5	226.3000	228.1155	0.0000	0.0000
0xff10000000b00b1e5	275.8000	294.1118	0.0000	0.0000
0xff18000000b00b1e5	330.9000	484.6780	0.1000	0.3162
0xff20000000b00b1e5	317.8000	188.2279	0.0000	0.0000
0xff28000000b00b1e5	232.9000	205.4629	0.0000	0.0000
0xff30000000b00b1e5	419.8000	537.7715	0.1000	0.3162
0xff38000000b00b1e5	284.2000	202.0895	0.0000	0.0000
0xff40000000b00b1e5	387.7000	261.6992	0.0000	0.0000
0xff48000000b00b1e5	368.4000	249.2001	0.0000	0.0000
0xff50000000b00b1e5	299.5000	204.3702	0.0000	0.0000

Table 1: M1 part 1

target hash	$\mathbb{E}(k)$	$\sigma(k)$	$\mathbb{E}(t)$ [ms]	$\sigma(t)$ [ms]
0xff58000000b00b1e5	357.9000	382.9956	0.1000	0.3162
0xff60000000b00b1e5	304.3000	324.0172	0.0000	0.0000
0xff68000000b00b1e5	479.3000	398.8275	0.2000	0.4216
0xff70000000b00b1e5	547.8000	607.6296	0.2000	0.4216
0xff78000000b00b1e5	442.7000	301.2865	0.1000	0.3162
0xff80000000b00b1e5	339.8000	379.1874	0.1000	0.3162
0xff88000000b00b1e5	347.8000	393.7441	0.1000	0.3162
0xff90000000b00b1e5	404.1000	448.9354	0.1000	0.3162
0xff98000000b00b1e5	513.0000	492.2472	0.1000	0.3162
0xffa0000000b00b1e5	793.2000	847.1994	0.3000	0.6749
0xffa8000000b00b1e5	534.3000	541.6309	0.1000	0.3162
0xffb0000000b00b1e5	818.6000	1005.6472	0.4000	0.9661
0xffb8000000b00b1e5	1143.0000	1017.7993	0.7000	0.8233
0xffc0000000b00b1e5	1276.7000	1017.5443	0.8000	1.0328
0xffc8000000b00b1e5	886.1000	874.9747	0.4000	0.6992
0xffd0000000b00b1e5	2078.1000	2442.9170	1.5000	2.1731
0xffd8000000b00b1e5	1910.1000	1559.9636	1.5000	1.5092
0xffe0000000b00b1e5	2185.6000	2274.0737	1.9000	2.2336
0xffe8000000b00b1e5	3737.7000	2754.2146	3.1000	2.7264
0xfff0000000b00b1e5	2457.7000	2541.6149	1.9000	2.3310
0xfff8000000b00b1e5	8052.9000	10955.8438	7.4000	10.5641
0xffff000000b00b1e5	57233.9000	51344.0133	54.7000	49.6612
0xffff080000b00b1e5	46988.3000	32388.3959	44.9000	31.0285
0xffff100000b00b1e5	47792.4000	51234.6532	47.0000	50.5129
0xffff180000b00b1e5	30320.8000	25531.9665	28.8000	24.6928
0xffff200000b00b1e5	42274.6000	42683.0719	69.2000	65.8429
0xffff280000b00b1e5	38907.6000	45678.1507	37.6000	45.8650
0xffff300000b00b1e5	59464.6000	68559.7647	57.3000	66.9744
0xffff380000b00b1e5	42577.7000	46386.0088	40.6000	44.7988
0xffff400000b00b1e5	83155.8000	93872.7655	79.9000	90.4771
0xffff480000b00b1e5	94449.7000	68853.8725	90.7000	66.4012
0xffff500000b00b1e5	113586.4000	125259.7631	109.4000	121.1172
0xffff580000b00b1e5	56053.5000	73681.8122	53.5000	70.9260
0xffff600000b00b1e5	52288.1000	48799.0571	50.1000	47.0943
0xffff680000b00b1e5	145321.8000	97332.9590	139.7000	93.8688
0xffff700000b00b1e5	112950.3000	81856.1993	108.8000	79.7479
0xffff780000b00b1e5	180284.6000	73720.0260	173.4000	70.7565
0xffff800000b00b1e5	169771.2000	139975.8842	164.2000	136.2936
0xffff880000b00b1e5	192866.5000	182177.4010	185.7000	176.2259
0xffff900000b00b1e5	261789.4000	219321.2979	252.2000	211.9129

Table 2: M1 part 2

target hash	$\mathbb{E}(k)$	$\sigma(k)$	$\mathbb{E}(t)$ [ms]	$\sigma(t)$ [ms]
0xffff980000b00b1e5	141419.3000	162581.8159	135.9000	156.6209
0xffffa00000b00b1e5	343411.8000	468316.3227	332.6000	451.6326
0xffffa80000b00b1e5	272762.0000	297238.0381	262.8000	286.4661
0xffffb00000b00b1e5	252887.9000	107113.8918	243.3000	103.1838
0xffffb80000b00b1e5	416602.3000	470681.4057	401.4000	453.9193
0xffffc00000b00b1e5	161727.9000	177162.2591	155.5000	170.8178
0xffffc80000b00b1e5	350480.7000	290516.0550	337.9000	280.7096
0xffffd00000b00b1e5	313978.6000	196239.6396	302.0000	189.1543
0xffffd80000b00b1e5	354235.9000	369426.2711	341.1000	356.1930
0xffffe00000b00b1e5	566150.9000	417088.3179	545.2000	401.9618
0xffffe80000b00b1e5	469943.6000	391102.5292	460.9000	379.5613
0xfffff00000b00b1e5	1937844.7000	1835596.3125	1869.8000	1774.1910
0xfffff80000b00b1e5	1897883.3000	1283729.2209	1833.7000	1236.1626
0xffffff0000b00b1e5	13318781.8000	8605073.8175	12872.4000	8308.2591
0xffffff0800b00b1e5	14110975.7000	13143622.0721	13633.4000	12705.6558
0xffffff1000b00b1e5	16461097.3000	17667646.7655	15929.6000	17120.0902
0xffffff1800b00b1e5	17127336.7000	18367801.2597	16599.5000	17797.9577
0xffffff2000b00b1e5	20956241.6000	9600384.9595	20316.3000	9310.1935
0xffffff2800b00b1e5	11730598.3000	8183260.3529	11406.4000	7969.4622
0xffffff3000b00b1e5	23877718.1000	19702863.7984	23192.4000	19127.9219
0xffffff3800b00b1e5	16142472.2000	18647230.3415	15690.5000	18129.6404
0xffffff4000b00b1e5	19943237.6000	20487399.8308	19400.5000	19933.7991
0xffffff4800b00b1e5	31574051.1000	22763341.6808	30695.3000	22131.2361
0xfffff5000b00b1e5	17560495.2000	19104704.7562	17075.9000	18554.7347
0xffffff5800b00b1e5	23173131.9000	26412213.5635	22564.1000	25737.0254
0xffffff6000b00b1e5	21337645.6000	14264328.0630	20737.7000	13870.6749
0xffffff6800b00b1e5	46607821.0000	33683525.4612	45317.2000	32713.3751
0xffffff7000b00b1e5	25358568.8000	24168956.1925	24645.3000	23505.4801

Table 3: M1 part 3

target hash	$\mathbb{E}(k)$	$\sigma(k)$	$\mathbb{E}(t)$ [ms]	$\sigma(t)$ [ms]
0x0000000000b00b1e5	0.0000	0.0000	0.0000	0.0000
0x080000000b00b1e5	0.0000	0.0000	0.0000	0.0000
0x100000000b00b1e5	0.1000	0.3162	0.0000	0.0000
0x180000000b00b1e5	0.3000	0.6749	0.0000	0.0000
0x200000000b00b1e5	0.1000	0.3162	0.0000	0.0000
0x280000000b00b1e5	0.4000	0.5164	0.0000	0.0000
0x300000000b00b1e5	0.1000	0.3162	0.0000	0.0000
0x380000000b00b1e5	0.5000	0.7071	0.0000	0.0000
0x400000000b00b1e5	0.2000	0.4216	0.0000	0.0000
0x480000000b00b1e5	0.7000	0.6749	0.0000	0.0000
0x5000000000b00b1e5	0.4000	0.6992	0.0000	0.0000
0x580000000b00b1e5	0.6000	0.8433	0.0000	0.0000
0x6000000000b00b1e5	0.4000	0.6992	0.0000	0.0000
0x680000000b00b1e5	0.8000	1.0328	0.0000	0.0000
0x7000000000b00b1e5	0.3000	0.6749	0.0000	0.0000
0x780000000b00b1e5	0.9000	0.9944	0.0000	0.0000
0x800000000b00b1e5	0.7000	1.1595	0.0000	0.0000
0x880000000b00b1e5	2.6000	4.0607	0.0000	0.0000
0x900000000b00b1e5	1.2000	0.7888	0.0000	0.0000
0x980000000b00b1e5	1.6000	1.5776	0.0000	0.0000
0xa000000000b00b1e5	2.8000	3.7947	0.0000	0.0000
0xa80000000b00b1e5	1.8000	2.1499	0.0000	0.0000
0xb000000000b00b1e5	2.3000	1.9465	0.0000	0.0000
0xb80000000b00b1e5	3.1000	2.9231	0.0000	0.0000
0xc00000000b00b1e5	1.8000	1.2293	0.0000	0.0000
0xc80000000b00b1e5	3.6000	3.0623	0.0000	0.0000
0xd00000000b00b1e5	5.0000	4.5216	0.0000	0.0000
0xd80000000b00b1e5	2.7000	3.3350	0.0000	0.0000
0xe000000000b00b1e5	7.8000	4.5412	0.0000	0.0000
0xe80000000b00b1e5	10.6000	6.8346	0.0000	0.0000
0xf00000000b00b1e5	9.0000	7.5130	0.0000	0.0000
0xf80000000b00b1e5	28.3000	28.5542	0.0000	0.0000
0xff0000000b00b1e5	215.2000	213.9869	0.1000	0.3162
0xff0800000b00b1e5	309.1000	278.8219	0.2000	0.4216
0xff1000000b00b1e5	354.7000	320.8994	0.3000	0.4830
0xff1800000b00b1e5	195.3000	181.6713	0.1000	0.3162
0xff2000000b00b1e5	477.2000	470.2559	0.4000	0.8433
0xff2800000b00b1e5	394.4000	350.5260	0.3000	0.4830
0xff3000000b00b1e5	224.0000	199.2374	0.1000	0.3162
0xff3800000b00b1e5	338.4000	283.2510	0.2000	0.4216
0xff4000000b00b1e5	396.0000	354.3507	0.4000	0.5164
0xff4800000b00b1e5	315.1000	218.0802	0.1000	0.3162
0xff5000000b00b1e5	432.7000	585.3649	0.6000	0.9661

Table 4: AMD part 1

target hash	$\mathbb{E}(k)$	$\sigma(k)$	$\mathbb{E}(t)$ [ms]	$\sigma(t)$ [ms]
0xff5800000b00b1e5	540.5000	444.6877	0.5000	0.7071
0xff6000000b00b1e5	253.0000	246.1991	0.1000	0.3162
0xff6800000b00b1e5	313.9000	353.9763	0.3000	0.4830
0xff7000000b00b1e5	350.9000	285.8517	0.3000	0.4830
0xff7800000b00b1e5	789.7000	861.1474	0.9000	1.6633
0xff8000000b00b1e5	566.7000	560.2654	0.6000	1.0750
0xff8800000b00b1e5	618.1000	530.9956	0.7000	0.9487
0xff9000000b00b1e5	472.7000	307.0472	0.3000	0.4830
0xff9800000b00b1e5	584.7000	334.1168	0.7000	0.6749
0xffa000000b00b1e5	1167.7000	1122.5245	1.8000	2.0976
0xffa800000b00b1e5	764.5000	363.9064	1.0000	0.8165
0xffb000000b00b1e5	1206.2000	996.9248	1.7000	1.8288
0xffb800000b00b1e5	970.7000	847.2341	1.3000	1.3375
0xffc000000b00b1e5	560.2000	398.8993	0.6000	0.6992
0xffc800000b00b1e5	861.1000	685.1004	1.1000	1.2867
0xffd000000b00b1e5	1305.9000	938.9964	1.9000	1.7920
0xffd800000b00b1e5	2049.3000	2253.5551	3.3000	3.9735
0xffe000000b00b1e5	1740.1000	2340.3176	2.7000	4.2960
0xffe800000b00b1e5	2319.5000	2199.6745	3.7000	3.7727
0xfff000000b00b1e5	8346.5000	8335.5767	14.4000	14.9012
0xfff800000b00b1e5	5093.6000	4589.7728	8.7000	8.2603
0xffff00000b00b1e5	44846.2000	36883.5249	80.5000	66.6804
0xffff08000b00b1e5	75100.6000	40710.0714	134.7000	73.2637
0xffff10000b00b1e5	40896.4000	28169.6211	73.2000	50.6750
0xffff18000b00b1e5	54393.8000	52335.8164	97.6000	94.2399
0xffff20000b00b1e5	68093.0000	48667.1164	122.1000	87.5715
0xffff28000b00b1e5	80573.4000	73653.3179	144.5000	132.5940
0xffff30000b00b1e5	63945.0000	57096.7891	114.7000	103.4817
0xffff38000b00b1e5	57998.5000	81449.1599	104.1000	146.5874
0xffff40000b00b1e5	59092.4000	55654.9843	105.9000	100.2103
0xffff48000b00b1e5	62604.8000	57813.7979	112.4000	104.1881
0xffff50000b00b1e5	64963.8000	53997.0472	116.5000	97.1302
0xffff58000b00b1e5	88192.7000	77423.3106	158.5000	139.2035
0xffff60000b00b1e5	108642.4000	79414.4133	195.5000	143.2940
0xffff68000b00b1e5	119904.4000	118635.3072	215.4000	213.8365
0xffff70000b00b1e5	116141.6000	144913.2697	208.6000	260.9143
0xffff78000b00b1e5	148085.8000	146302.9797	266.1000	263.1394
0xffff80000b00b1e5	103791.3000	87025.9021	186.3000	156.7468
0xffff88000b00b1e5	194147.2000	88481.6693	349.0000	159.3410
0xffff90000b00b1e5	89276.2000	108880.3010	160.3000	196.1032
0xffff98000b00b1e5	182965.8000	234044.4978	329.0000	421.1666
0xffffa0000b00b1e5	156213.0000	139686.0204	280.9000	251.8864
0xffffa8000b00b1e5	187430.3000	252817.8469	336.7000	455.1249
0xffffb0000b00b1e5	139696.7000	145773.6257	251.1000	262.2939

Table 5: AMD part 2

target hash	$\mathbb{E}(k)$	$\sigma(k)$	$\mathbb{E}(t)$ [ms]	$\sigma(t)$ [ms]
0xffffb8000b00b1e5	188487.2000	205919.2111	339.0000	370.7272
0xffffc0000b00b1e5	147754.0000	148595.9419	265.3000	267.3579
0xffffc8000b00b1e5	217976.5000	246670.0897	392.0000	444.1116
0xffffd0000b00b1e5	421568.7000	358833.6118	758.1000	645.6281
0xffffd8000b00b1e5	179499.9000	132069.9668	322.7000	237.6884
0xffffe0000b00b1e5	566541.2000	512566.7710	1019.3000	922.3528
0xffffe8000b00b1e5	477459.4000	419580.0773	858.9000	755.2319
0xfffff0000b00b1e5	1912030.7000	2184809.2852	3440.9000	3931.7243
0xfffff8000b00b1e5	2376509.8000	2481948.4281	4279.5000	4467.4432
0xffffff000b00b1e5	21486445.5000	9491597.3216	38678.1000	17089.1058
0xffffff080b00b1e5	10593226.2000	6210012.3285	19071.3000	11179.5759
0xffffff100b00b1e5	15079070.3000	13058176.6272	27142.7000	23507.4024
0xffffff180b00b1e5	16312876.2000	18387866.7940	29371.0000	33099.7172
0xffffff200b00b1e5	9913930.5000	8789908.4892	17841.2000	15822.5846
0xffffff280b00b1e5	16220390.8000	21635050.1824	29192.6000	38922.9919
0xffffff300b00b1e5	11771356.4000	11737164.7967	21176.4000	21113.5629
0xffffff380b00b1e5	17223865.9000	21501572.7888	31010.9000	38694.6999
0xffffff400b00b1e5	19365033.6000	23997971.2424	34858.0000	43194.0122
0xffffff480b00b1e5	25024493.9000	29961724.5655	45054.6000	53926.4718
0xffffff500b00b1e5	16430705.1000	12811609.0536	29578.0000	23062.3093
0xffffff580b00b1e5	25949395.8000	34260902.4714	46713.1000	61667.1997
0xffffff600b00b1e5	14741662.4000	13302872.9177	26531.1000	23943.2628
0xffffff680b00b1e5	43721412.5000	51112239.7266	78688.2000	91978.1163
0xffffff700b00b1e5	18056553.7000	10164951.5784	32504.9000	18300.3520
0xffffff780b00b1e5	44510497.7000	44223567.8203	80149.4000	79607.0098
0xffffff800b00b1e5	45697626.9000	35777392.1517	82253.4000	64401.2592
0xffffff880b00b1e5	51111026.3000	75141671.6992	92015.3000	135305.4488
0xffffff900b00b1e5	25258048.9000	23435909.7131	45534.1000	42172.5247
0xffffff980b00b1e5	53100895.7000	30730131.1177	95619.4000	55360.3205
0xffffffa00b00b1e5	24290830.0000	22851043.9569	43741.2000	41143.1731
0xffffffa80b00b1e5	56925460.1000	50747390.2781	102568.0000	91428.4544
0xfffffb00b00b1e5	47486028.8000	57185053.1094	85482.9000	102961.8334
0xffffffb80b00b1e5	64586214.3000	48833072.0631	116266.1000	87900.4087
0xfffffc00b00b1e5	114668240.6000	98772976.6111	206429.9000	177818.4960
0xffffffc80b00b1e5	69884977.1000	63711701.8537	125883.1000	114767.9633
0xfffffd00b00b1e5	109130350.2000	88302151.3254	197042.1000	159167.7096
0xfffffd80b00b1e5	167418702.6000	185092851.5179	308348.0000	341336.9993
0xfffffe00b00b1e5	206806907.3000	228491083.6649	381045.6000	421629.7122
0xffffffe80b00b1e5	196709377.0000	192985177.4848	361236.0000	354834.3142
0xffffff00b00b1e5	184554527.4000	216867907.8177	338558.6000	397074.4479
0xfffffff80b00b1e5	636269011.1000	786413959.7945	1170823.1000	1452144.1791

Table 6: AMD part 3