Exp 4: Build Connected LANs on Different Subnets with Router and Test Performance using Simulator

Aim

To design and configure two LANs on different subnets, connects them via a router, and test their inter-network communication and performance using network simulator

Objective

- To build two LANs with different IPv4 subnets
- To configure router interfaces with appropriate IPs
- To assign correct IP addresses and default gateways to PCS
- To test connectivity and simulate performance between subnets

Software Required

• Cisco Packet tracer

Background theory

In real-world networks, different LANS often on separate IP subnets for performance, security or organizational reasons. Routers are used to connect these LANS and route packets between them.

A subnet is a segment of a network defined by a unique IP range. Devices on different subnets cannot communicate directly unless a router is present

In this experiment:

- Switches connect end devices in each LAN
- A router connects the switches
- Each router interface acts as the default gateway for its respective subnet.

Algorithm

- 1. Set up two LANs with switches and PCs
- 2. Connect each LAN to a router interface
- 3. Assign appropriate IP addresses to router interface and PCs
- 4. Set default gateways on PCs to the router interface
- 5. Use ping and simulation to verify performance

Step-by-Step Procedure

1. Design the Topology

Drag and Place

- 1 Router (e.g., 1941)
- 2 switches
- 2 PCs (PC1 & PC2)

Connections

- PC1 \rightarrow Switch 1 \rightarrow Gig0/0
- PC2 \longrightarrow Switch 2 \longrightarrow Gig0/1

Use copper straight through cables

2. IP Addressing Plan

Device/Interface	IP Address	Subnet Mask
PC 1	192.168.1.2	255.255.255.0
PC 2	192.168.2.2	255.255.255.0
Router Gig0/0	192.168.1.1	255.255.255.0
Router Gig0/1	192.168.2.1	255.255.255.0

3. Configure Router Interfaces

Click on the router —CLI tab

Router > enable

Router# configure terminal

Router(config)# interface gig0/0

Router(config-if)# ip address 192.168.1.1 255.255.255.0

Router(config-if)# no shutdown

Router(config-if)# exit

Router(config)# exit

Router# write memory

4. Configure PCs

PC1:

• IP Address: 192.168.1.2

Subnet Mask: 255.255.255.0Default Gateway: 192.168.1.1

PC2:

• IP Address: 192.168.2.2

Subnet Mask: 255.255.255.0Default Gateway: 192.168.2.1

5. Test Performance

On PC1 open command prompt and enter

Ping 192.168.2.2

Expected Output

Reply from 192.168.2.2 : bytes =32 times <1ms TTL=225

To simulate traffic:

- Use simulation mode in packet tracer
- Add traffic enerators or larger pins (ping -1 1000 on some systems)

Expected Output

- Successful pings between devices on different subnets
- Green status light on all connections
- Traffic simulation shows successful routing through the router

Result

Two LANs on different subnets were created and connected through a router. The communication was successfully tested and verified using ping.

Pre-Viva Questions

- 1. Why is a router necessary between different subnets?
- 2. What is the role of a default gateway?
- 3. Which OSI layer does a router operate on?

Post- Viva Questions

- 1. What is the difference between static and dynamic routing?
- 2. How can you improve performance between subnets?
- 3. Can a router be replaced with a layer 3 switch in this scenario?