Systematic Classification Experiments

Team Oatmeal:

David Kürnsteiner, Christian Peinthor, Fabio Pöschko, Elias Ramoser, Georg Storz

Outline

- Prediction of four emotion classes, with:
 - kNN
 - Boosted Tree
 - SVM
 - NN
- Prediciton of major/minor feature

Underlying Data: Class Distribution

Unbalanced Distribution

Class 3 most dominant

Class 2 least dominant

Underlying Data: Score Mode Distribution

 Score Mode (major/minor) feature is strongly balanced

Prediction on emotion classes: general info

- Models trained on quadrant labels
- Excluded features: score / id
 This was done, because they will not be provided in the later tasks
- Preprocessing / Normalization was done
 - To have better results with distance based classifiers (kNN, SVC)
 - To have better gradient descent with the NN
- We used 10-fold Cross Validation for each classifier
 - 10 was a good balance between training time and results
- We had some overfitting ("high" hyperparameters), which was avoided with 10-fold cross validation

kNN

Dataset normalized with MinMax normalization

• 75/25 stratified train/test set split

• f1-score as metric

• Test set scored with best classifier

kNN: results

- 15 best classifiers
- Parameter p:
 - 1: manhatten distance
 - 2: euclidian distance
- Parameter weights:
 - Uniform: all points are weighted equally
 - Distance: closer points have higher influence
- Result: 75% accuracy

n	р	weights	mean_test_score
5	1	distance	0,7546
5	1	uniform	0,7490
10	1	distance	0,7449
5	2	distance	0,7403
10	2	distance	0,7367
10	1	uniform	0,7336
2	1	distance	0,7326
5	2	uniform	0,7321
10	2	uniform	0,7234
25	1	distance	0,7224
25	1	uniform	0,7137
25	2	distance	0,7122
2	1	uniform	0,7122
25	2	uniform	0,7071
50	1	distance	0,7030

Boosted Tree

- Used model class:
 - Lightgbm multiclass gradient boosted decision tree
- Dataset normalized with Zscore-normalization
- 75/25 stratified train/test set splitPermutation feature importance with accuracy as metric

Boosted Tree: results

• 15 best classifiers

• Result: 85% accuracy on test set (best model class, of the four

tested)

_	•	Number of trees		Mean test
rate	per leaf node	constructed	per tree	accuracy
0,1	10	500	32	0,800
0,05	1	500	32	0,799
0,05	10	500	32	0,799
0,2	50	500	32	0,799
0,2	50	500	128	0,799
0,05	50	500	128	0,799
0,05	50	500	32	0,799
0,025	10	500	32	0,797
0,1	1	500	32	0,797
0,2	50	500	8	0,796
0,4	1	100	32	0,796
0,1	50	500	128	0,795
0,1	10	500	128	0,795
0,1	50	500	32	0,795
0,4	10	500	8	0,794

SVM

• LinearSVC: one vs one mutliclass classifier

Dataset normalized with MinMax-normalization

 Split 80/20 into stratified train/test setPermutation feature importance with accuracy as metric

SVM: results

- 15 best classifiers
- Result 73% on test set
 - Worse than kNN (75%) and Boosted Tree (85%)

Number of	mean test
	0,740
	0,735
	0,727
	0,720
	0,698
	0,697
	0,689
100	0,686
10	0,677
1	0,604
1	0,602
1	0,599
1	0,529
10	0,529
100	0,529
	iterations 1000 100 1000 100 10 100 10 1

Neural Network

• Fully connected NN with 3 hidden layers (each 100 neurons)

Dataset normalized with MinMax-normalization

 Split 80/20 into stratified train/test setPermutation feature importance with accuracy as metric

Neural Network: results

• Best 15 classifiers

• Result: 80% on test set

Confusion Matrix more equally

distributed

Learning rate	Number of learning iterations	mean test accuracy
0,01	320	0,762
0,1	160	0,754
0,01	640	0,754
0,01	2560	0,754
0,1	640	0,754
0,1	1280	0,754
0,1	2560	0,754
0,1	320	0,753
0,01	1280	0,752
0,001	1280	0,752
0,001	2560	0,750
0,01	160	0,747
0,001	640	0,727
0,001	320	0,698
0,001	160	0,665

Feature importances

All features that had an importance of at least
 3% in any of the last three classifiers

Feature	Boosted Tree	SVM	NN
essentia_onset_rate	13,40%	14,55%	15,51%
midlevel_features_melody	2,30%	9,20%	7,66%
librosa_bpm	5,75%	0,96%	2,87%
midlevel_features_articulation	1,92%	2,68%	5,56%
midlevel_features_rhythm_complexity	3,07%	4,60%	1,92%
midlevel_features_dissonance	0,19%	1,34%	4,21%
librosa_spectral_bandwidth_mean	1,72%	3,45%	1,72%
midlevel_features_minorness	2,30%	3,26%	1,34%

Score mode predictions: Random Forest

• For all predictions: 80/20 - train / test split

- Random Forest
 - Accuracy: 53,64%
 - After dropping some unnecessary features: 55,94%
 - After GridSearchCV: 55,94%

Naive Bayes / SVM

Gaussian NB

• Result: 49,8%

• Bernoulli NB

• Result: 52,87%

• SVM

• Poly: 43,9%

• RBF: 45,6%

• Sigmoid: 45,8%

PCA / ICA

No significant separation visible

Conclusion for our mode prediction

Results are really bad

 Could be the case due to the much overlapping distribution of major and minor samples

Distribution of score mode

