Отчет по лабораторной работе №2

Дисциплина: Кибербезопасность предприятия

Боровиков Даниил Гисматуллин Артём Коннова Татьяна Уткина Алина

Хрусталев Влад Чесноков Артёмий Нефедова Наталья Бансимба Клодели

Содержание

1	Задание. Сценарий №5.			5
2	Последовательность действий нарушителя			
3	Выпо	лнен	ие лабораторной работы	7
	3.1 I	Переч	иень уязвимостей и последствий	7
	3	3.1.1	Слабый пароль пользователя	7
	3	3.1.2	Последствие Dev backdoor	7
	3	3.1.3	Уязвимость 2: XSS (CVE-2019-17427)	10
	3	3.1.4	Последствие: Redmine User	12
	3	3.1.5	Уязвимость 3: Blind SQL-инъекция (CVE-2019018890)	13
4	Общи	1е выі	воды	16

Список иллюстраций

3.1	Файл svchosting.exe в папке Downloads	8
3.2	Задание "Evil task" в планировщике задач	9
3.3	Настройки задания с путем к вредоносному файлу	.0
3.4	Вредоносный XSS-код на Wiki-странице	.1
3.5	Исходный код файла redcloth3.rb	1
3.6	Исправленная версия файла redcloth3.rb	2
3.7	Перезапуск службы nginx	2
3.8	Список пользователей Redmine с пользователем "hacker" 1	.3
3.9	Подтверждение удаления пользователя	.3
3.10	Логи Redmine с SQL-инъекцией	4
3.11	Исправление в файле query.rb	.4
3.12	Главная страница	.5
3.13	Карточки инцидентов и последствий	.5

Список таблиц

1 Задание. Сценарий №5.

ЗАЩИТА НАУЧНО-ТЕХНИЧЕСКОЙ ИНФОРМАЦИИ ПРЕДПРИЯТИЯ

Внешний нарушитель умеет использовать инструментарий для проведения компьютерных атак, знает техники постэксплуатации.

Средство обнаружения вторжений – программно-аппаратный комплекс для обнаружения вторжений в информационные системы ViPNet IDS NS.

Автоматическое выявление инцидентов на основе интеллектуального анализа событий информационной безопасности – программно-аппаратный комплекс ViPNet TIAS.

ViPNet EPP применяется для защиты отдельных компонентов информационной инфраструктуры организаций – персональных компьютеров пользователей и корпоративных серверов.

Специализированный контроль сетевой безопасности и предотвращение проникновения, упрощающие централизованное управление сетью – Security Onion. Security Onion связывает воедино три основные функции: - полный захват пакетов; - обнаружение сетей и конечных точек; - мощные инструменты анализа.

2 Последовательность действий нарушителя

- 1. Внутренний нарушитель подбирает пароль на файловый сервер и меняет существующий на сервере файл другим файлом с backdoor (дефектом алгоритма).
- 2. Пользователь Dev-1 загружает и запускает файл с backdoor.
- Внутренний нарушитель получает контроль над компьютером пользователя Dev-1 и загружает скрипт для похищения учетных данных из браузера.
 Запускает данный скрипт и получает логин и пароль к Redmine.
- 4. Внутренний нарушитель проводит атаку stored XSS для включения на Redmine сервере REST API. Вредоносный код записывается на Wikiстраницу проекта Dev1. Получив доступ к консоли администратора, внутренний нарушитель создает нового пользователя Redmine с правами администратора.
- 5. Внутренний нарушитель ожидает, когда администратор просмотрит страницу с внедренным вредоносным кодом.
- 6. Внутренний нарушитель проводит Blind SQL-инъекцию, получает доступ к данным конфиденциального проекта.

3 Выполнение лабораторной работы

3.1 Перечень уязвимостей и последствий

3.1.1 Слабый пароль пользователя

Обнаружение: На файловом сервере использовался слабый пароль учетной записи dev1.

Устранение: Пароль изменен на сложный через Active Directory Users and Computers.

3.1.2 Последствие Dev backdoor

Обнаружение:

- В папке Downloads пользователя dev1 обнаружен файл svchosting.exe
- В планировщике задач создано задание Evil task с автозапуском при входе пользователя
- Задание настроено на выполнение каждые 5 минут

Устранение:

- Удалено задание Evil task из планировщика задач
- Удален файл svchosting.exe из папки Downloads (рис. 3.1 рис. 3.3)

Рис. 3.1: Файл svchosting.exe в папке Downloads

Рис. 3.2: Задание "Evil task" в планировщике задач

Рис. 3.3: Настройки задания с путем к вредоносному файлу

3.1.3 Уязвимость 2: XSS (CVE-2019-17427)

Обнаружение: На Wiki-странице проекта DEV1 обнаружен сложный XSS-код, который:

- Создает пользователя "hacker" с правами администратора
- Включает REST API в настройках Redmine
- Использует событие onfocusin для автоматического выполнения

Устранение:

- В файле redcloth3.rb исправлена обработка HTML-тегов
- Удален тег pre из списка разрешенных тегов (ALLOWED_TAGS)

• Перезапущена служба nginx: sudo systemctl restart nginx.service (рис. 3.4 - рис. 3.7)

Рис. 3.4: Вредоносный XSS-код на Wiki-странице

Рис. 3.5: Исходный код файла redcloth3.rb

```
### Seregredmine/Mar/www/redmine/filb

### SERIES | Serie
```

Рис. 3.6: Исправленная версия файла redcloth3.rb

```
juser@redmine:/var/www/redmine/lib$ sudo systemctl restart nginx.service
guser@redmine:/var/www/redmine/lib$
```

Рис. 3.7: Перезапуск службы nginx

3.1.4 Последствие: Redmine User

Обнаружение: В Redmine создан пользователь "hacker" c email hacker@hacker.ru (рис. 3.8)

Устранение: Пользователь "hacker" удален через веб-интерфейс Redmine (рис. 3.9)

Рис. 3.8: Список пользователей Redmine с пользователем "hacker"

Рис. 3.9: Подтверждение удаления пользователя

3.1.5 Уязвимость 3: Blind SQL-инъекция (CVE-2019018890)

Обнаружение:

- В логах Redmine зафиксированы запросы с SLEEP(3) в параметре subproject_id
- Время выполнения запросов увеличилось до 6074 мс (вместо обычных ~30 мс) (рис. 3.10)

Устранение:

• В файле query.rb закомментирован уязвимый код обработки subproject_id

• Добавлена фильтрация входных параметров (рис. 3.11)

Рис. 3.10: Логи Redmine c SQL-инъекцией

Рис. 3.11: Исправление в файле query.rb

Общий результат выполненной работы: (рис. 3.12 - рис. 3.13)

Рис. 3.12: Главная страница

Рис. 3.13: Карточки инцидентов и последствий

4 Общие выводы

В рамках учебно-практического занятия на базе программного комплекса обучения методам обнаружения, анализа и устранения последствий компьютерных атак «Атріге» мы выполнили сценарий №5 «Защита научно-технической информации предприятия». Внутренний нарушитель, используя слабые пароли и уязвимости в веб-приложении Redmine, осуществил комплексную атаку с целью получения доступа к конфиденциальной информации. Нарушитель применил техники внедрения backdoor, эксплуатации XSS-уязвимости и слепой SQL-инъекции для создания привилегированного пользователя и несанкционированного доступа к данным. Уровень сложности сценария — 8 (из 10). Мы успешно выявили уязвимости, проанализировали последствия атаки, устранили их и отработали методы детектирования с использованием инструментов ViPNet IDS NS, ViPNet TIAS и Security Onion, а также освоили методики исправления исходного кода приложений для устранения уязвимостей.