tester package

Craig Parman 3/16/2015

Introduction

The tester package provise a set of east to read tests that return logical vector. The test can be used in conjunction with other testing packages to develop very powerful, yet easy to read tests. For example to test if a function return a floting point number less than zero one woulf need an expression like

```
number = -0.56
(number < 0 && is.numeric(number) )</pre>
```

```
## [1] TRUE
```

With tester the test is much more readable and friendly code.

```
library(tester)
number = -0.56
is_negative_decimal(number)
```

```
## [1] TRUE
```

The package also allows you to easily write tests that look for a single condition across a group of items. For example if I hve a vector of numerics and I want check is any are infinite values. rather than teste each element individually and checking to see if any test have failed, I can do one test and get a single logical result.

```
library(tester)
n<-c(rnorm(10),1/0)
n

## [1] 0.83048169 -0.08585711 0.88551183 0.32392977 -2.10751973
## [6] -0.66239998 -1.13859913 -0.59092037 0.32985184 0.49708113
## [11] Inf
has_infinite(n)</pre>
```

```
## [1] TRUE
```

You can also test for attributes of an object such as dimensions, dimnames, and missing values. For example if you needed to test whether an object was a numeric matrix with dimension names you could construct the following test.

```
m<-matrix(1:16,nrow=4,ncol=4)
dimnames(m)<-list(rep("row",4),rep("col",4))
is_numeric_matrix(m) & has_dimnames(m)</pre>
```

[1] TRUE

Catalog of Tests

As of version 0.1.7 the tester package has over 100 tests. The tests all have the form 'type of comparision'_comparision' such as in the example above, is_numeric().

There are 5 different comparision types and many diffrent comparisions and combinations of comparisions.

Comparision Types

is has different lacks same

These are the 'is' tyep test with numeric comparisions.

test	Description
is_even	Is even
is_not_even	Is not even
is_odd	Is odd
is_not_odd	Is not odd
is_positive	Is positive
$is_not_positive$	Is not positive
is_negative	Is negative
is_not_negative	Is not negative
$is_decimal$	Is decimal
$is_not_decimal$	Is not decimal
is_integer	Is integer
$is_not_integer$	Is not integer
is_natural	Is natural
$is_not_natural$	Is not natural
$is_positive_decimal$	Is positive decimal
$is_negative_decimal$	Is negative decimal
$is_positive_integer$	Is positive integer
$is_negative_integer$	Is negative integer
$is_positive_scalar$	Is postive scalar
$is_negative_scalar$	Is negatice scalar
is_multiple	Is x a multiple of y

These tests are for object class and dimensions.

test	Description
is_class	x is of class y
$is_dataframe$	Is a data.frame

test	Description
is_not_dataframe	Is not data.frame
is_factor_dataframe	Is a data.frame of factors
is_string	Is string
is_not_string	Is not string
is_string_tabular	Is string tabular
is_string_vector	Is string vector
$is_string_dataframe$	Is string data.frame
is_tabular	Is tabular
$is_not_tabular$	Is not tabular
$is_numeric_dataframe$	Is numeric data.frame
$is_numeric_tabular$	Is numeric tabular
$is_numeric_vector$	Is numeric vector
is_vector	Is vector
is_not_vector	Is not vector
is_scalar	Is scalar
is_not_scalar	Is not scalar
is_one_dim	Test if an object has one-dimension

These are all of the tests related to matrix objects.

test	Description
is_matrix	Is matrix
is_not_matrix	Is not matrix
is_numeric_matrix	Is numeric matrix
is_string_matrix	Is string matrix
is_square_matrix	Is square matrix
is_not_square_matrix	Is not square matrix
is_square_numeric_matrix	Is square numeric matrix
is_not_square_numeric_matrix	Is not square numeric matrix
is_diagonal	Is diagonal matrix
is_not_diagonal	Is not diagonal matrix
is_triangular_matrix	Is triangular matrix
is_lower_triangular	Is triangular matrix
is_upper_triangular	Is triangular matrix

These are the logical tests.

test	Description
is TRUE	Is TRUE
is_true	Is TRUE
is_FALSE	Is FALSE
is_false	Is FALSE
$is_logical_matrix$	Is matrix of logicals
$is_logical_vector$	Is vector of logicals
$true_or_false$	whether TRUE or FALSE, False for non logicals

These is a series of tests rthat test the the object has a single value ao different types and attributes.

test	Description
is_single	Is single
is_single_decimal	Is single decimal
is_single_even	Is single even
is_single_false	Is single false
is_single_logical	Is single logical
is_single_negative	Is single negative number
$is_single_negative_decimal$	Is single negative decimal
is_single_negative_integer	Is single negative integer
is_single_number	Is single number
is_single_odd	Is single odd
is_single_positive	Is single positive number
is_single_positive_decimal	Is single positive decimal
is_single_positive_integer	Is single positive integer
is_single_string	Is single string
is_single_true	Is single true

The 'has' test test for various object attributes and missing or non-numeric values.

test	Description
has_colnames	Has column names
has_rownames	Has row names
has_dim	Has dimension
has_dimension	Has dimension
has_dimnames	Has dimesion names
has_factors	Has factors
has_Inf	Has Inf or -Inf values
has_infinite	Has Inf or -Inf values
has_missing	Has NA values
has_NA	Has NA values
has_names	Has names
has_NaN	Has NaN values
has_not_a_number	Has NaN values
has_nas	Has any NA, NaN, Inf values

The following test compare objects. These are of the form $\operatorname{test}(x,y)$

different_length(rep(1,4),rep(1,3))

[1] TRUE

test	Description
	Bescription
$same_class$	Same Class
$different_class$	Different Class
$same_dim$	Same Dimension
$\operatorname{different_dim}$	Different Dimension
$same_length$	Same Length
$different_length$	Different Length
$same_mode$	Same Mode

test	Description
different_mode	Different Mode
$same_ncol$	Same Number of Columns
$different_ncol$	Different Number of Columns
same_nrow	Same Number of Rows
$different_nrow$	Different Number of Rows
same_type	Same Type
$different_type$	Different Type