Backpropagation and Neural Nets

EECS 442 – Jeong Joon Park Winter 2024, University of Michigan

So Far: Linear Models

$$L(\mathbf{w}) = \lambda ||\mathbf{w}||_2^2 + \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i))^2$$

- Example: find w minimizing squared error over data
 - Each datapoint represented by some vector x
 - Can find optimal w with ~10 line derivation

Last Class

$$L(\mathbf{w}) = \lambda ||\mathbf{w}||_2^2 + \sum_{i=1}^n L(y_i, f(\mathbf{x}; \mathbf{x}))$$

- What about an arbitrary loss function L?
- What about an arbitrary parametric function f?
- Solution: take the gradient, do gradient descent

$$\boldsymbol{w}_{i+1} = \boldsymbol{w}_i - \alpha \nabla_w L(f(\boldsymbol{w}_i))$$

What if L(f(w)) is complicated? **Today!**

Taking the Gradient – Review

$$f(x) = (-x + 3)^2$$

$$f = q^2 \qquad q = r + 3 \qquad r = -x$$

$$\frac{\partial f}{\partial q} = 2q \qquad \frac{\partial q}{\partial r} = 1 \qquad \frac{\partial r}{\partial x} = -1$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial r} \frac{\partial r}{\partial x} = 2q * 1 * -1$$

Chain rule = -2(-x + 3)

$$= 2x - 6$$

Supplemental Reading

- Lectures can only introduce you to a topic
- You will solidify your knowledge by doing
- I highly recommend working through everything in the Stanford CS213N resources
 - http://cs231n.github.io/optimization-2/
- These slides follow the general examples with a few modifications. The primary difference is that I define local variables n, m per-block.

Suppose we have a box representing a function f.

This box does two things:

Forward: Given forward input n, compute f(n)

Backwards: Given backwards input g, return g*df/dn

$$g * \frac{\partial f(n)}{\partial n} = \int_{-\partial n}^{-\partial n} f(n)$$

$$f(x) = (-x+3)^2$$

$$f(x) = (-x+3)^2$$

$$f(x) = (-x+3)^2$$

$$f(x) = (-x+3)^2$$

Two Inputs

Given two inputs, just have two input/output wires

Forward: the same

Backward: the same – send gradients with respect to each variable

g*df/dn

Example Credit: Karpathy and Fei-Fei

g*df/dn

$$\frac{\partial(x+y)z}{\partial x} = z \quad \frac{\partial(x+y)z}{\partial y} = z \quad \frac{\partial(x+y)z}{\partial z} = (x+y)$$

Once More, With Numbers!

Think You've Got It?

$$L(x) = (w - 6)^2$$

- We want to fit a model w that just will equal 6.
- World's most basic linear model / neural net: no inputs, just constant output.

I'll Need a Few Volunteers

$$L(x) = (w - 6)^2$$

$$\begin{array}{c} n \\ g \end{array}$$

Job #1 (n-6):

Forward:

Compute n-6

Backwards:

Multiply by 1

Job #2 (n^2) :

Forward:

Compute n²

Backwards:

Multiply by 2n

Job #3:

Backwards:

Give me a 1

w0:
$$0$$
 $\frac{0}{-12}$ $n-6$ $\frac{-6}{-12}$ $\frac{-6}{-12}$ n^2 $\frac{36}{90}$ $\frac{6}{90}$ $\frac{1}{10}$

Gradient step: w1 = w0 - (1/4) - 12 = 3

1055

w1:
$$\frac{3}{-6}$$
 $\frac{-3}{-6}$ $\frac{-3}{-6}$ $\frac{-3}{-6}$ $\frac{9}{-6}$

Gradient step: w2 = w1 - (1/4) - 6 = 4.5

w2:
$$\frac{4.5}{-3}$$
 $\begin{array}{c} -1.5 \\ -3 \end{array}$ $\begin{array}{c} -1.5 \\ -3 \end{array}$ $\begin{array}{c} -1.5 \\ -3 \end{array}$ $\begin{array}{c} 2.25 \\ -3 \end{array}$

Gradient step: w3 = w2 - (1/4) - 3 = 5.25

Preemptively

 The diagrams look complex but that's since we're covering the details together

Something More Complex

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Example Credit: Karpathy and Fei-Fei

Example Credit: Karpathy and Fei-Fei

Example Credit: Karpathy and Fei-Fei

$$f(w,x) = \frac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}} \qquad 0 \quad \frac{\partial}{\partial n}m + n = 1 \qquad \frac{\partial}{\partial n}mn = m$$

$$W_0 \qquad 2 \qquad \qquad 2 \qquad \qquad 2 \qquad \frac{\partial}{\partial n}e^n = e^n \qquad 3 \quad \frac{\partial}{\partial n}n^{-1} = -n^{-2}$$

$$X_0 \qquad -1 \qquad \qquad 4 \qquad \frac{\partial}{\partial n}an = a \qquad 5 \quad \frac{\partial}{\partial n}c + n = 1$$

$$W_1 \qquad -3 \qquad \qquad 4 \qquad$$

Example Credit: Karpathy and Fei-Fei

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \qquad 0 \quad \frac{\partial}{\partial n}m + n = 1 \quad \frac{\partial}{\partial n}mn = m$$

$$W_0 \qquad 2 \qquad 2 \qquad 2 \qquad \frac{\partial}{\partial n}e^n = e^n \qquad 3 \quad \frac{\partial}{\partial n}n^{-1} = -n^{-2}$$

$$X_0 \qquad -1 \qquad 4 \quad \frac{\partial}{\partial n}an = a \qquad 5 \quad \frac{\partial}{\partial n}c + n = 1$$

$$W_1 \qquad -3 \qquad 4 \qquad \frac{\partial}{\partial n}an = a \qquad 5 \quad \frac{\partial}{\partial n}c + n = 1$$

$$W_1 \qquad -3 \qquad 4 \qquad \frac{\partial}{\partial n}an = a \qquad 5 \quad \frac{\partial}{\partial n}c + n = 1$$

$$W_1 \qquad -3 \qquad 4 \qquad -1 \qquad e^n \qquad +1 \qquad n^{-1} \qquad n$$

Example Credit: Karpathy and Fei-Fei

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \qquad 0 \quad \frac{\partial}{\partial n}m + n = 1 \quad \frac{1}{\partial n}mn = m$$

$$W_0 \quad 0.2 \quad \star \quad -2 \quad \frac{\partial}{\partial n}e^n = e^n \quad 3 \quad \frac{\partial}{\partial n}n^{-1} = -n^{-2}$$

$$X_0 \quad 0.4 \quad 0.2 \quad \star \quad \frac{\partial}{\partial n}an = a \quad 5 \quad \frac{\partial}{\partial n}c + n = 1$$

$$W_1 \quad -3 \quad \star \quad 0.2 \quad + \quad 0.2 \quad -0.2 \quad -0.53 \quad -0.53 \quad 1$$

$$W_2 \quad -3 \quad 0.2 \quad -0.6 \quad -0.6$$

Example Credit: Karpathy and Fei-Fei

Example Credit: Karpathy and Fei-Fei

Example Credit: Karpathy and Fei-Fei

Summary

Each block computes backwards (g) * local gradient (df/dx_i) at the evaluation point

Multiple Outputs Flowing Back

Gradients from different backwards sum up

$$\sum_{j=1}^{K} g_j \left(\partial f_j / \partial x_i \right)$$

Multiple Outputs Flowing Back

$$f(x) = (-x+3)^2$$

Multiple Outputs Flowing Back

$$f(x) = (-x+3)^2$$

$$\frac{\partial f}{\partial x} = (x - 3) + (x - 3)$$
$$= 2x - 6$$

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\sigma(n) = \frac{1}{1 + e^{-n}}$$

$$\frac{\partial}{\partial n} \sigma(n) = \frac{e^{-n}}{(1 + e^{-n})^2} = \left(\frac{1 + e^{-n} - 1}{1 + e^{-n}}\right) \left(\frac{1}{1 + e^{-n}}\right)$$

$$\frac{1 + e^{-n}}{1 + e^{-n}} - \frac{1}{1 + e^{-n}} = 1 - \sigma(n) \quad \sigma(n)$$

$$= (1 - \sigma(n))\sigma(n)$$

For the curious

Line 1 to 2:
$$\frac{\partial}{\partial n} \sigma(n) = \left(\frac{-1}{(1+e^{-n})^2}\right) * 1 * e^{-n} * -1$$

Chain rule: d/dx (1/x)*d/dx (1+x)*d/dx (e*x)*d/dx (-x)

$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

- Can pre-compute/hardcode the backward function.
- Reduce multiple blocks to one.
- Pick your functions carefully: existing code (e.g., Pytorch) is usually structured into sensible blocks

Neural Networks

Building Blocks

Artificial Neuron

Artificial Neuron

Can differentiate whole thing e.g., dNeuron/dx₁. What can we now do?

Artificial Neuron

Each artificial neuron is a linear model + an **activation function** f Can find **w**, b that minimizes a loss function with gradient descent

Artificial Neurons

What's The Activation Function

₩ Sigmoid

$$s(x) = \frac{1}{1 + e^{-x}}$$

- Squashes things to (0,1)
- Nice interpretation
 - Gradients are near zero if neuron is high/low trainning. And this not Changing the variable during the

when the input is high or low, the gradients of this value is almost zero, so you

What's The Activation Function

ReLU
(Rectifying Linear Unit) max(0, x)

- Constant gradient
- Converges ~6x faster
- If neuron negative, zero gradient. Be careful!

What's The Activation Function

Leaky ReLU (Rectifying Linear Unit)

 $x: x \ge 0$

0.01x : x < 0

 ReLU, but allows some small gradient for negative vales

Setting Up A Neural Net

Setting Up A Neural Net

Input Hidden 1 Hidden 2 Output

Each neuron connects to each neuron in the previous layer

$$h_i = f(\boldsymbol{w_i^T}\boldsymbol{a} + b_i)$$

How do we do all the neurons all at once?

Define New Block: "Linear Layer" (Ok technically it's Affine)

Can get gradient with respect to all the inputs (do on your own; have to be able to do matrix multiply)

It collapses into one linear layer!

Neural Network

$$L(n) = Wn + b$$

Something we understand very well.

$$L(n) = ReLU(Wn + b)$$

Mysterious. Potentially conscious

Video Credit: Sora

Next Class: Convolutional Neural Networks