Introduction to Networks & the Internet

- Our aim in this lecture is to
 - see the "big picture" view of networking, we will be going into each of the areas in detail in later lectures.
 - learn some of the terminology used in networking, which we will see throughout the course.
- We will be looking at
 - network components and their roles
 - protocols
 - how data travels through a network
 - the structure of the Internet
 - layered protocol architecture of the Internet
 - a brief history of the Internet

Reading:

Kurose & Ross: Ch 1 extra info on website

Network nuts & bolts

- The purpose of networking is to communicate information
- Networks consist of:
 - hardware infrastructure
 - hosts (end-systems)
 - routers (switches)
 - links (capacity "bandwidth" b/s)

Switch

Router

Links have ...

capacity "bandwidth"

Protocols

- Rules for exchanging messages
- Define format of messages and action(s) taken when a message is received.
- TCP/IP for the Internet
- HTTP for the Web

A lot of our course will be focused on protocols.

WANs, LANs & Internets

- A Local Area Network is a network of geographically close computers.
 - Ethernet
 - High bandwidth (1 Mbps -> 1 Gbps)
 - Low latency (mSec)
 - Low error rate (< 1 in 10^14)
 - Short geographical reach (<5km, usually less)
 - Sometimes broadcast

- A Wide Area Network is a network connecting geographically distant computers.
 - High latency (100 mSec >)
 - Higher error rates (1 in 10⁴)
 - Span more than one organisation
 - AARNET, the Internet
- Note: in communication
 K=10^3 M = 10^6 G=10^9
- If we connect networks together, we get an internet.
 - The glue that holds them together are routers and common network protocols
 - intranets are internets within an organisation.

How data travels

- Hosts connected to network router by
 - ADSL
 - Cable modem
 - Wireless
 - Ethernet
 - Cellular
- Network applications send data.
- Protocols attach information in headers and help devices talk to each other.
 - Where to send data.
 - How to send data (reliable delivery, best effort).

© Kurose & Ross 2013

How data travels – two models

routing

- circuit switching
 - resources (bandwidth, switch)
 reserved. Idle when not in use.
 - Known, guaranteed performance.
 - Must set up circuit.
- packet switching
 - · Resources used as needed.
 - Good for bursty traffic
 - Contention may occur.
 - Data may have to be dropped (need to deal with this!).
 - No guarantees on delays, bandwidth.

© Kurose & Ross 2001

Protocol Layers

- There is a lot going on! Can we organise it in some way?
- The layer model breaks up the various tasks into services provided by different service layers.

Measuring Performance

- Propagation delay
- Transmission delay
- Queuing delay
- Processing delay

Measuring Performance

- Latency and Bandwidth
 - Which offers faster data transfer a pigeon or a network?
 - http://news.bbc.co.uk/2/hi/africa/8248056.stm
 - https://www.youtube.com/watch?v=6EIKwz74Ta4

- Propagation delay
- Transmission delay
- Queuing delay
- Processing delay

 The National broadband network has potential speeds of 100 Mbps download and 40 Mbps upload. What is the smallest size USB a pigeon would need to carry on this route to match the NBN data rate in a file transfer

A brief history of the Internet

1962 Paul Baran proposes packet switching 1974 Cerf & Kahn define TCP/IP 1984
Domain
name
system
introduced

1990 Australian Academic Research Network (AAARNet) formed

1969 DARPA funds ARPANET 1982 TCP/IP adopted on ARPANET (Internet is born) 1985
Australian
Comp Sci
Network
links to
Internet

1995
General
public
'discovers'
the Internet