Universal locally finite maximally homogeneous semigroups

Robert D. Gray¹ (joint work with I. Dolinka)

Leeds, September 2017

¹This work was supported by the EPSRC grant EP/N033353/1 'Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem', and by the LMS Research in Pairs grant 'Universal locally finite partially homogeneous semigroups and inverse semigroups' (Ref: 41530).

Hall's group

In 1959 Philip Hall constructed a countably infinite group $\mathcal U$ with the following properties:

- Universal: contains every finite group as a subgroup
- Locally finite: every finitely generated subgroup is finite
- ► Homogeneous: every isomorphism $\phi: A \to B$ between finite subgroups A, B of \mathcal{U} extends to an automorphism of \mathcal{U} . In fact, any two isomorphic subgroups of \mathcal{U} are conjugate in \mathcal{U} .

 \mathcal{U} is the unique countable group satisfying these properties.

Hall's group

In 1959 Philip Hall constructed a countably infinite group \mathcal{U} with the following properties:

- Universal: contains every finite group as a subgroup
- Locally finite: every finitely generated subgroup is finite
- ► Homogeneous: every isomorphism $\phi: A \to B$ between finite subgroups A, B of \mathcal{U} extends to an automorphism of \mathcal{U} . In fact, any two isomorphic subgroups of \mathcal{U} are conjugate in \mathcal{U} .

 $\ensuremath{\mathcal{U}}$ is the unique countable group satisfying these properties.

AAA83, Novi Sad, 2012, Manfred Droste asked:

"Is there a countable universal locally finite homogeneous semigroup?"

Constructing Hall's group

Example: Let $G = S_4$, the symmetric group, and

$$K = \{(), (12)\}, L = \{(), (12)(34)\}.$$

Then $K, L \leq G$, with $K \cong L$ but they are not conjugate in G.

Constructing Hall's group

Example: Let $G = S_4$, the symmetric group, and

$$K = \{(), (12)\}, L = \{(), (12)(34)\}.$$

Then $K, L \le G$, with $K \cong L$ but they are not conjugate in G. Now embed $\phi: S_4 = G \to S_G = S_{S_4}$ using Cayley's Theorem

$$g \mapsto \rho_g$$
, $x\rho_g = xg$ for $x \in G$.

Now $\phi(K)$ and $\phi(L)$ are conjugate in $S_G = S_{S_4}$.

Constructing Hall's group

Example: Let $G = S_4$, the symmetric group, and

$$K = \{(), (12)\}, L = \{(), (12)(34)\}.$$

Then $K, L \le G$, with $K \cong L$ but they are not conjugate in G. Now embed $\phi: S_4 = G \to S_G = S_{S_4}$ using Cayley's Theorem

$$g\mapsto \rho_g, \quad x\rho_g=xg \quad \text{for} \quad x\in G.$$

Now $\phi(K)$ and $\phi(L)$ are conjugate in $S_G = S_{S_4}$.

Construct \mathcal{U} by iterating this process

Set $G_0 = S_4$, $G_1 = S_{S_4}$, $G_2 = S_{S_{S_4}}$, ... and let $\phi : G_i \to G_{i+1}$ be given by the right regular representation $g \mapsto \rho_g$, giving

$$G_0 \xrightarrow{\phi_0} G_1 \xrightarrow{\phi_1} G_2 \xrightarrow{\phi_2} \dots$$

Then $\mathcal{U} = \bigcup_{i \geq 0} G_i$ is the direct limit of this chain of symmetric groups.

Amalgamation

Amalgamation

Amalgamation and Fraïssé's Theorem

Definition (Amalgamation property for a class C)

If $S, A, B \in \mathcal{C}$ and $f_1 : S \to A$ and $f_2 : S \to B$ are embeddings then $\exists C \in \mathcal{C}$ and embeddings $g_1 : A \to C$ and $g_2 : B \to C$ such that $f_1g_1 = f_2g_2$.

- The class of finite groups has the amalgamation property. It is an *amalgamation class* and its Fraïssé limit is \mathcal{U} .
- Fraïssé's Theorem implies that a countable homogeneous structure is uniquely determined by its finitely generated substructures (called its age).

Conclusion: Hall's group \mathcal{U} is the unique countable homogeneous locally finite group.

Locally finite structures with maximal symmetry

Groups	Inverse semigroups	Semigroups
Permutations $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} $	Partial bijections $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & - & 2 & - \end{pmatrix}$	Transformations $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 2 \end{pmatrix}$
S_n -limit $S_{n_1} \leq S_{n_2} \leq \dots$	I_n -limit $I_{n_1} \le I_{n_2} \le \dots$	T_n -limit $T_{n_1} \le T_{n_2} \le \dots$
\mathcal{U} (Hall's group)	${\cal I}$	${\mathcal T}$

General philosophy

Even though neither \mathcal{T} nor \mathcal{I} is homogeneous, they still display a high degree of symmetry in their combinatorial and algebraic structure.

Amalgamation bases for finite semigroups

Kimura (1957): The class of finite semigroups does *not have* the amalgamation property. Therefore, there is no countable universal locally finite homogeneous semigroup.

Amalgamation bases for finite semigroups

Kimura (1957): The class of finite semigroups does *not have* the amalgamation property. Therefore, there is no countable universal locally finite homogeneous semigroup.

"How homogeneous can a countable universal locally finite semigroup be?"

Amalgamation bases for finite semigroups

Kimura (1957): The class of finite semigroups does *not have* the amalgamation property. Therefore, there is no countable universal locally finite homogeneous semigroup.

"How homogeneous can a countable universal locally finite semigroup be?"

Definition. A finite semigroup *S* is an amalgamation base for all finite semigroups if in the class of finite semigroups every

The class \mathcal{B} of all such semigroups contains all finite: groups, inverse semigroups whose principal ideals form a chain, full transformation semigroups T_n (K. Shoji (2016))

Maximal homogeneity

 $\mathcal{B} = \{S : S \text{ is an amalgamation base for all finite semigroups}\}$

T – a countable universal locally finite semigroup, S – a finite semigroup.

Definition

We say $\operatorname{Aut}(T)$ acts homogeneously on copies of S in T if for all $U_1, U_2 \leq T$ with $U_1 \cong S \cong U_2$, every isomorphism $\phi: U_1 \to U_2$ extends to an automorphism of T.

Proposition

Aut(T) acts homogeneously on copies of S in $T \implies S \in \mathcal{B}$

Definition

We say T is maximally homogeneous if, for all $S \in \mathcal{B}$, Aut(T) acts homogeneously on copies of S in T.

The maximally homogeneous semigroup ${\mathcal T}$

 T_n = the full transformation semigroup of all maps from $[n] = \{1, 2, \dots n\}$ to itself under composition.

Definition

If we have a chain

$$M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \dots$$

of embeddings of semigroups, where each $M_i \cong T_{n_i}$, then the limit $T = \bigcup_{i \ge 0} M_i$ is a full transformation limit semigroup.

Fact: Every infinite full transformation limit semigroup is universal and locally finite.

The maximally homogeneous semigroup ${\mathcal T}$

 T_n = the full transformation semigroup of all maps from $[n] = \{1, 2, \dots n\}$ to itself under composition.

Definition

If we have a chain

$$M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \dots$$

of embeddings of semigroups, where each $M_i \cong T_{n_i}$, then the limit $T = \bigcup_{i>0} M_i$ is a full transformation limit semigroup.

Fact: Every infinite full transformation limit semigroup is universal and locally finite.

Theorem (Dolinka & RDG (2017))

There is a unique maximally homogeneous full transformation limit semigroup \mathcal{T} .

Existence and uniqueness of \mathcal{T}

Theorem (Dolinka & RDG (2017))

There is a unique maximally homogeneous full transformation limit semigroup \mathcal{T} .

- Since \mathcal{T} is not homogeneous it cannot be constructed using Fraïssé's Theorem.
- ▶ We instead make use of a well-known generalisation, sometimes called the Hrushovski construction.
 - See D. Evans's Lecture notes from his talks at the Hausdorff Institute for Mathematics, Bonn, September 2013.
- $ightharpoonup \mathcal{T}$ is not obtainable by iterating Cayley's theorem for semigroups

$$T_n \to T_{T_n} \to T_{T_{T_n}} \to \dots$$

Structure of T_n

$$\alpha \mathcal{J}\beta \iff \alpha \& \beta \text{ generate the same ideal} \Leftrightarrow |\operatorname{im} \alpha| = |\operatorname{im} \beta|.$$

Set
$$J_r = \{ \alpha \in T_n : |\text{im } \alpha| = r \}.$$

Each idempotent ϵ in J_r is contained in a maximal subgroup H_{ϵ} of S_r .

Example

$$\epsilon = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 3 \end{pmatrix} \in T_4$$

$$H_{\epsilon} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ i & j & k & k \end{pmatrix} : \{i, j, k\} = \{1, 2, 3\} \right\}$$

lnotesf8.png

Structure of the maximally homogeneous semigroup ${\mathcal T}$

Theorem (Dolinka & RDG (2017))

- 1. \mathcal{T} is countable universal and locally finite.
- 2. \mathcal{T}/\mathcal{J} is a chain isomorphic to (\mathbb{Q}, \leq) .
- 3. Every maximal subgroup is isomorphic to Hall's group \mathcal{U} .
- 4. Aut(\mathcal{T}) acts transitively on the set of \mathcal{J} -classes of \mathcal{T} (so all principal factors \mathcal{J}^* are isomorphic to each other).

Graham-Houghton graphs – local structure

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 3 & 5 & 2 & 3 \end{pmatrix},$$

$$\ker \alpha = 1 & 4 & 2 & 3 & 6 & 5$$

$$\alpha \mathcal{R}\beta \iff \alpha \& \beta \text{ generate same right ideal}$$

$$\Leftrightarrow \ker \alpha = \ker \beta.$$

$$\alpha \mathcal{L}\beta \iff \alpha \& \beta \text{ generate same left ideal}$$

$$\Leftrightarrow \dim \alpha = \dim \beta.$$

$$\mathcal{H} = \mathcal{R} \cap \mathcal{L}$$

$$12 & 13 & 14 & 23 & 24 & 34$$

$$\begin{vmatrix} 12 & 13 & 14 & 23 & 24 & 34 \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\$$

I - *r*-element set, *P* - partition with *r* parts $H_{P,I}$ is a group $\Leftrightarrow H_{P,I}$ contains an idempotent $\Leftrightarrow I$ a transversal of *P*

Graham–Houghton graphs in \mathcal{T}

Definition (The countable random bipartite graph)

It is the unique countable universal homogeneous bipartite graph. It is characterised as the countably infinite bipartite graph satisfying:

(*) for any two finite disjoint sets U, V from one part of the bipartition, there is a vertex w in the other part with $w \sim U$ but $w \not \sim V$.

Graham–Houghton graphs in \mathcal{T}

Definition (The countable random bipartite graph)

It is the unique countable universal homogeneous bipartite graph. It is characterised as the countably infinite bipartite graph satisfying:

(*) for any two finite disjoint sets U, V from one part of the bipartition, there is a vertex w in the other part with $w \sim U$ but $w \not \sim V$.

Theorem (Dolinka & RDG (2017))

Every Graham–Houghton graph of \mathcal{T} is isomorphic to the countable random bipartite graph.

The flower lemma

Lemma. Let A_1, \ldots, A_k , B_1, \ldots, B_l be *t*-element subsets of $\{1, \ldots, m\}$. If |M| < t then there exists a partition P of [m] with t parts: $P \perp A_i$ and $P \not\perp B_i$.

Proposition. Let 1 < r < n. Then $\exists \phi : T_n \to T_m$ such that $\forall a_1, \dots, a_k, b_1, \dots, b_l \in J_r \subseteq T_n$ from distinct \mathscr{L} -classes $\exists c \in T_m$ such that in T_m

- $R_c \cap L_{a_i\phi}$ are groups
- ▶ $R_c \cap L_{b_i\phi}$ are not groups

Locally finite structures with maximal symmetry

Groups	Inverse semigroups	Semigroups
Permutations $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} $	Partial bijections $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & - & 2 & - \end{pmatrix}$	Transformations $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 2 \end{pmatrix} $
\mathcal{S}_n -limit $\mathcal{S}_{n_1} \leq \mathcal{S}_{n_2} \leq \dots$	\mathcal{I}_n -limit $\mathcal{I}_{n_1} \leq \mathcal{I}_{n_2} \leq \dots$	\mathcal{T}_n -limit $\mathcal{T}_{n_1} \leq \mathcal{T}_{n_2} \leq \dots$
\mathcal{U} (Hall's group)	${\cal I}$	${\mathcal T}$

General philosophy

Even though neither \mathcal{T} nor \mathcal{I} is homogeneous, they still display a high degree of symmetry in their combinatorial and algebraic structure.

The symmetric inverse semigroup

 I_X = the semigroup of all partial bijections $X \to X$

Examples: In I_3

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & - \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & - & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ - & 1 & - \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & - \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ - & 1 & 2 \end{pmatrix}$$

Each element α has a unique inverse α^{-1} . Note that

$$\alpha \alpha^{-1} = id_{dom\alpha}, \qquad \alpha \alpha^{-1} \alpha = \alpha \text{ and } \alpha^{-1} \alpha \alpha^{-1} = \alpha^{-1}$$

Inverse semigroups

Definition

An inverse semigroup is a semigroup S such that

$$(\forall x \in S)(\exists \text{ unique } x^{-1} \in S): xx^{-1}x = x \text{ and } x^{-1}xx^{-1} = x^{-1}.$$

Vagner-Preston Theorem

Every inverse semigroup is isomorphic to an inverse subsemigroup of some symmetric inverse semigroup.

For
$$t \in S$$
 let $\alpha_t : St^{-1} \to St$, $x \mapsto xt$.

Then $t \mapsto \alpha_t$ defines an embedding $S \to I_S$.

Semilattices

Order-theoretic definition

A poset (P, \leq) such that any pair of elements $x, y \in P$ has a greatest lower bound $x \wedge y$.

Algebraic definition

A commutative semigroup (S, \land) of idempotents

$$x \wedge y = y \wedge x$$
 and
 $x \wedge x = x$ for all $x, y \in S$.

- ► Every semilattice (E, \land) is an inverse semigroup were $e^{-1} = e$.
- ► $E(S) = \{e \in S : e^2 = e\} \le S$ and is a subsemilattice for any inverse semigroup S.

Roughly speaking: Inverse semigroups = semilattices + groups

 This can be formalised via the notion of inductive groupoid and the Ehresmann-Schein-Nambooripad Theorem.

Amalgamation bases and maximal homogeneity

T. E. Hall, C. J. Ash (1975): The class of finite inverse semigroups does *not have* the amalgamation property.

Theorem (T. E. Hall (1975))

Amalgamation bases for finite inverse semigroups are exactly those whose principal ideals form a chain under inclusion. These are called <code>#-linear</code> inverse semigroups.

T – a countable universal locally finite inverse semigroup,

S – a finite inverse semigroup.

Proposition

 $\operatorname{Aut}(T)$ acts homogeneously on copies of S in $T \Longrightarrow S$ is \mathscr{J} -linear

Definition

We say T is maximally homogeneous if Aut(T) acts homogeneously on all of its \mathcal{J} -linear inverse subsemigroups.

J-linear inverse semigroups

The maximally homogeneous semigroup ${\mathcal I}$

 \mathcal{I}_n = the symmetric inverse semigroup on [n] = $\{1, 2, \dots n\}$

Definition

If we have a chain

$$M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \dots$$

of embeddings of inverse semigroups, where each $M_i \cong I_{n_i}$, then the limit $I = \bigcup_{i \geq 0} M_i$ is a symmetric inverse limit semigroup.

The maximally homogeneous semigroup ${\mathcal I}$

 \mathcal{I}_n = the symmetric inverse semigroup on [n] = $\{1, 2, \dots n\}$

Definition

If we have a chain

$$M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \dots$$

of embeddings of inverse semigroups, where each $M_i \cong I_{n_i}$, then the limit $I = \bigcup_{i>0} M_i$ is a symmetric inverse limit semigroup.

Theorem (Dolinka & RDG (2017))

There is a unique maximally homogeneous symmetric inverse limit semigroup \mathcal{I} .

- 1. \mathcal{I} is locally finite and universal for finite inverse semigroups.
- 2. \mathcal{I}/\mathcal{J} is a chain isomorphic to (\mathbb{Q}, \leq) .
- 3. Every maximal subgroup if isomorphic to Hall's group \mathcal{U} .
- 4. The semilattice of idempotents $E(\mathcal{I})$ is isomorphic to the universal countable homogeneous semilattice.

The universal countable homogeneous semilattice

Theorem (Albert and Burris (1986), Droste (1992))

A countable semilattice (Ω, \wedge) is the universal homogeneous semilattice if and only if the following conditions hold:

- (i) no element is maximal or minimal;
- (ii) any pair of elements has an upper bound;
- (iii) Ω satisfies axiom (*) illustrated above.

The universal countable homogeneous semilattice

(*) for any $\alpha, \gamma, \delta, \varepsilon \in \Omega$ such that $\delta, \varepsilon \leq \alpha, \gamma \nleq \delta, \gamma \nleq \varepsilon, \alpha \nleq \gamma$, and either $\delta = \varepsilon$, or $\delta \parallel \varepsilon$ and $\gamma \land \varepsilon \leq \gamma \land \delta$, there exists $\beta \in \Omega$ such that $\delta, \varepsilon \leq \beta \leq \alpha$ and $\beta \land \gamma = \delta \land \gamma$ (in particular, $\beta \parallel \gamma$)

$E(\mathcal{I}) \cong$ countable universal homogeneous semilattice

Extension property: Since $\operatorname{Aut}(\mathcal{I})$ acts homogeneously on the finite \mathscr{J} -linear substructures of \mathcal{I} any embedding $\phi: I_n \to \mathcal{I}$ extends to an embedding $\hat{\phi}: I_{I_n} \to \mathcal{I}$, where $I_n \leq I_{I_n}$ via Vagner–Preston.

Locally finite structures with maximal symmetry

Groups	Inverse semigroups	Semigroups
Permutations $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} $	Partial bijections $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & - & 2 & - \end{pmatrix}$	Transformations $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 2 \end{pmatrix}$
S_n -limit $S_{n_1} \leq S_{n_2} \leq \dots$	I_n -limit $I_{n_1} \le I_{n_2} \le \dots$	T_n -limit $T_{n_1} \le T_{n_2} \le \dots$
\mathcal{U} (Hall's group)	${\cal I}$	${\mathcal T}$

General philosophy

Even though neither \mathcal{T} nor \mathcal{I} is homogeneous, they still display a high degree of symmetry in their combinatorial and algebraic structure.

Open problems about $\mathcal T$ and $\mathcal I$

We know \mathcal{T} is not obtainable by iterating Cayley's theorem for semigroups

$$T_n \to T_{T_n} \to T_{T_{T_n}} \to \dots$$

Problem 1: Find a 'nice' description of \mathcal{T} as a T_n -limit semigroup.

We know that \mathcal{T} embeds every finite semigroup, but

Problem 2: Does every countable locally finite semigroup embed into \mathcal{T} ?

Does there exist a countable locally finite semigroup which embeds every countable locally finite semigroup?

• We ask the analogous questions for the inverse semigroup \mathcal{I} .