1. 深度估计3D相机方案

目前市面上常有的 3D 相机方案主要有3种:

- 1. **飞行时间(Time of flight,TOF)**,代表公司微软Kinect2, PMD, SoftKinect, 联想 Phab, 在手机中一般用于3D建模、AR应用, AR测距(华为TOF镜头)
- 2. 双目视觉(Stereo Camera), 代表公司 Leap Motion, ZED, 大疆;
- 3. **结构光(Structured-light)**,代表公司有奥比中光,苹果**iPhone X**(Prime Sense),微软 Kinect1,英特尔RealSense, Mantis Vision 等,在手机(**iPhone,华为**)中3D结构光主要用于人脸解锁、支付、美颜等场景。

相机类型	TOF(飞行时间)	RGB双目(Stereo Camera)	结构光(Structured light)	
测距方式	主动式	被动式	主动式	
工作原理	根据光的飞行时间(相位差异)直接测量距离	基于视差原理,RGB图像特征点匹配,三角测量法	主动投射已知编码图案,提升特征匹配的效果,三角测量法	
分辨率	一般低于640×480, Kinect2是512 x 424	可达2K高分辨率	可达1080×720 一般在30fps	
帧率	较高, 可达上百帧	一般在30fps		

测量精度	测量精度最高可达厘米 Kinect2深度误差在1.5cm左右	近距离可达毫米精度,2m内误差千分之五 (5mm)	近距离能够达到高精度: 0.01mm-1mm	
测量范围	可以测量较远距离,100m以内	受基线限制,一般只能测量较近的距离,距离 越远误差越大,一般在2m(基线10mm)以 内	测量距离一般为10m以内	
抗干扰	受环境影响较小	黑暗或者纹理特征不明显等环境干扰	室外强光下受干扰较大	
功耗	功耗较大,需要全面照射	较大,纯算法功耗	一般,需要局部区域投射图案	
优点	检测距离远。在激光能量够的情况下可达几十米。受环境光干扰比较小。	 硬件要求低,成本也低。普通 CMOS 相机即可。但比较消耗计算资源 室内外都适用。只要光线合适,不要太昏暗。 	 方案成熟,相机基线可以做的比较小,方便小型化。 资源消耗较低,单帧 IR 图就可计算出深度图,功耗低。 主动光源,夜晚也可使用。 在一定范围内精度高,分辨率高,分辨率可达 1280x1024,帧率可达 60FPS。 	
缺点	对设备要求高,特别是时间测量模块。资源消耗大。该方案在检测相位偏移时需要多次采样积分,运算量大。边缘精度低。	 对环境光照非常敏感。光线变化导致图像偏差大,进而会导致匹配失败或精度低。 不适用单调缺乏纹理的场景。双目视觉根据视觉特征进行图像匹配,没有特征 	容易受环境光干扰,室外体验差。随检测距离增加,精度会变差。	

	• 限于资源消耗和滤波, 帧率和分辨率都没办法做到较高。目前消费类最大也就 VGA。	会导致匹配失败。 • 计算复杂度高。该方法是纯视觉的方法,对算法要求高,计算量较大。 • 基线限制了测量范围。测量范围和基线(两个摄像头间距)成正比,导致无法小型化。	
应用场景	无人驾驶车,机器人,Kinect2,在手机中,TOF由于测量距离长,一般用于3D建模、AR应用,AR测距(华为TOF镜头)	基于手机的双目应用较少,商用场景较少	机器人,Kinect1,手机(iPhone,华 为)中3D结构光主要用于人脸解锁、支 付、美颜等场景

- 从上面三种主流的 3D 相机成像方案来看,各有优劣,但是从实际应用场景来看,在**非无人驾驶领域**,结构光,特别是**散斑结构光**的 用途是最广泛。
- 因为从精度,分辨率,还有应用场景的范围来看双目和 TOF 都没有办法做到最大的平衡。
- 而且对于结构光容易受环境光干扰,特别是太阳光影响问题,鉴于此类相机都有红外激光发射模块,非常容易改造为主动双目来弥补该问题。
- 当然这三种方案在发展过程中也有一些互相融合趋势,如主动双目+结构光,取长补短,使 3D 相机能适应更多的场景。
- 也有一些同时使用,如**手机前置基本确认会采用结构光来做 Faceld(人脸认证),但是后置用来做 AR** 应用**,结构光和 TOF 都有机**会。
- 虽然项目具体使用哪种方案,要结合当前硬件资源,对性能要求等来确定,但从最广泛的使用角度来看,**散斑结构光**无疑是目前最佳的方案。

2. 深度估计技术说明

(1) 双目相机(双目立体视觉法)

包括一套经过校准的相机(至少两个),已经为其估算了一个通用的3D参考系统。深度图是基于立体三角测量的。即使有多个研究让我们在这方面取得了相当大的进步,但是多目相机估计的深度仍然是不可靠的,特别是在强度/色彩均匀的场景中;

RGB双目相机因为非常**依赖纯图像特征匹配**,所以在光照较暗或者过度曝光的情况下效果都非常差,另外如果**被测场景**本身**缺乏纹理**,也**很难**进行**特征提取和匹配**。

产品:

1. 视迅动作捕捉_全球领先的动作捕捉技术公司

(2) 结构光3D

扫描仪将红外结构光图案投射到现场。当将图案投影到三维形状的表面上时,观察到的图案几何扭曲[79]。通过比较预期的投影模式(如果场景中没有物体)和变形的观察模式,可以恢复表面形状的精确几何重建。可以将各种图案投射到场景上,例如光条纹或任意的条纹。深度估计可能是不可靠的,特别是在反射或透明表面的情况下。**Kinect传感器(版本1)属于这种类型的相机**。

- 苹果公司: SMI 眼球追踪技术; PRIMESense 3D结构光技术包括器件和实现方案; FACESHIFT 面部捕捉技术, 先行垄断了3D人脸核心技术。
- OPPO FINDX: 3D结构光采用奥比中光,体验和算法采用 FACE++ 旷视。成为安卓阵营首个3D结构光技术接近苹果XS的终端。
- 华为 MATE20 PRO: 自主研发, 误识别率不高于百万分之一,军用级别安全可靠, 更配合多维度用户使用场景, 3D建模等。

相关参考:

- 【深度相机系列四】深度相机原理揭秘--结构光(iPhone X 齐刘海原理)_计算机视觉life-CSDN博客_结构光相机原理
- 华为, 苹果, OPPO: 揭开3D结构光的神秘面纱 知乎
- 奥比中光: 奥比中光 | 3D传感 3D人脸识别 3D感知 人工智能视觉
- 红外投影结构光人脸三维重建: 红外投影结构光人脸三维重建 clipp Huang的博客-CSDN博客 红外结构光

(3) 飞行时间(ToF)

顾名思义是测量光飞行时间来取得距离,具体而言就是通过给目标连续发射激光脉冲,然后用传感器接收从反射光线,通过探测光脉冲的飞行往返时间来得到确切的目标物距离。

因为光速激光,通过直接测光飞行时间实际不可行,一般通过检测通过一定手段调制后的光波的相位偏移来实现。

TOF 法根据调制方法的不同,一般可以分为两种:脉冲调制(Pulsed Modulation)和连续波调制(Continuous Wave Modulation)。

脉冲调制需要非常高精度时钟进行测量,且需要发出高频高强度激光,目前大多采用检测相位偏移办法来实现 TOF 功能。

飞行时间法深度测量基本原理示意图 g.csdn.net/guyuealian

基本原理:

- 1. 深度相机(二)——飞行时间(TOF)_马大哈先生的博客-CSDN博客_飞行时间
- 2. 【深度相机系列二】深度相机原理揭秘--飞行时间(TOF)_计算机视觉life-CSDN博客_深度相机原理
- 3. TOF、RGB双目、结构光优劣分析: 深度相机(一)——分类: TOF、RGB双目、结构光优劣分析_马大哈先生的博客-CSDN博客_tof相机与双目相机的优劣

相关产品:

- 1. SHARP2Y0A02 红外测距对管测试
- 2. Arduino红外传感器-Sharp GP2Y0A02YK 红外测距传感器 (20~150cm)
- 3. Acconeer-红外测距传感器: 7米量程, 精度1毫米, 汽车中使用较多

产品图片			مناه	0.500	.	Z,
产品型号		TOFSense	TOFSense-UART	TOFSense P	TOFSense P-UART	TOFSense PS
产品尺寸:mm		35.6*13*8				
产品重量:g		2.7				
	长距模式	0.01	5~5.00		0.03~8.00	
测量距离:m	中距模式	0.015~3.60 0.03~6.50				
	短距模式	0.01	5~2.10	0.03~1.00		
视场角:"		15~27				
供电电压:v		[3.7 , 5.2]				
波长:nm		940				
功耗:w		0.29				
刷新频率:Hz		10 30				
输出方式		CAN+UART+I/O	UART+I/O	CAN+UART+I/O	UART+I/O	CAN+UART
是否支持级联		支持				
	长距模式	[0.029m~0.1m]±1.4cm ±1.5cm [0.1m~2.5m]±2% [2.5m~8.0m]±4%				
精度	中距模式	±1	.0cm	[0.029m~0.1m]±1.4cm [0.1m~2.5m]±2% [2.5m~6.5m]±4%		
	短距模式	±1	.0cm	[0.029m~0.1m]±0.7cm [0.1m~1.0m]±2%		
工作温度:℃ 防水等级		[-20,85] https://blog.csdn.net/guyuealian				