

The 9th Homework

Gamma correction & Dithering

Lecturer: 周韋棋

- 作業內容說明
- 作業驗證說明
- 作業繳交注意事項

- 作業內容說明
- 作業驗證說明
- 作業繳交注意事項

Introduction(Gamma correction)

- 人眼對光的敏感度在亮部不如在暗部敏感,眼睛對「亮度變化」 的感知是對數型,不是線性。
- 多數顯示設備對輸入信號的亮度輸出呈現類似指數關係
- 我們要輸出一個線性曲線的話,那勢必要在原本的圖中做一些處理

Gamma correction

• Gamma校正的運算較複雜,因此常用的方法是在軟體端運算完成後建立一個LUT,硬體實際運作時可以透過查表的方式得到正確的值

$$Gamma\ correction = 255 \times 4 \times \left(\frac{original\ pixel\ value}{255}\right)^{Gamma\ value}$$

• Gamma correction的LUT是一個256 * 10 bits的記憶體,使用時利用當前的pixel value當作address去找到對應的校正值。

Gamma correction block diagram

Gamma correction I/O port

訊號名稱	I/O port	訊號說明
clk	Input	系統時脈訊號
rst_n	Input	Reset 訊號(active low)
pass	Input	決定要不要做gamma correction 0: Yes 1: No
gamma_en	Input	為high時將gamma值存到SRAM裡
gamma_data[9:0]	Input	gamma correction所對應的值
gamma_addr[7:0]	Input	存到SRAM的位址
DPi[26:0]	Input	input source,共27位元 [26] 代表垂直(畫框)同步訊號 (Vsync) [25] 代表水平(線)同步訊號 (Hsync) [24] 代表有效資料區間 (Den) [23:0]資料,Green Blue Red 各8位元
DPo[32:0]	Output	Data Port output,共33位元 [32] 代表垂直(畫框)同步訊號 (Vsync) [31] 代表水平(線)同步訊號 (Hsync) [30] 代表有效資料區間 (Den) [29:0]資料, Green Blue Red 各10位元

Introduction(Dithering)

- •原始輸入影像資料的各色階為8-bit,經過gamma correction升階成10 bits,但因為輸出至顯示器需為8-bit,所以必需降階。
- 色階降低會造成影像失真現象,即出現輪廓線(contour)或色塊產生。
- 顫動法(dither),可以解決這個問題,使色塊與輪廓線不會那麼明顯。
- Dithering的原理是利用電腦圖學上的一種技術。用一個有限色彩的系統中,經由擴散(diffusion)來近似其他不同的顏色。

Dithering

- 一般的dithering又以貝爾型矩陣(Bayer Matrix)最廣為流傳,所以本次作業是使用2階的Bayer Matrix來做dithering。
- 將10bits要降階成8bits中要刪去的LSB 2bits跟Bayer Matrix來做 比較(奇數行的奇數跟偶數的pixel分別跟0還有2比,偶數行的 奇數跟偶數的pixel分別跟3還有1比)
- 如果pixel LSB 2 bits大於Bayer Matrix的threshold value則要將原色調加一階,否則則是保留原色調。

$$BM_2 = \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}$$

Dithering block diagram

Dithering I/O port

訊號名稱	I/O port	訊號說明
clk	Input	系統時脈訊號 (負緣)
rst_n	Input	Reset 訊號(active low)
pass	Input	決定要不要做Dithering 0 : Yes 1 : No
DPi[32:0]	Input	Input source,共33位元 [32] 代表垂直(畫框)同步訊號 (Vsync) [31] 代表水平(線)同步訊號 (Hsync) [30] 代表有效資料區間 (Den) [29:0]資料,Green Blue Red 各10位元
DPo[26:0]	Output	Output data,共27位元 [26] 代表垂直(畫框)同步訊號 (Vsync) [25] 代表水平(線)同步訊號 (Hsync) [24] 代表有效資料區間 (Den) [23:0]資料,Green Blue Red 各8位元

- 作業內容說明
- 作業驗證說明
- 作業繳交注意事項

作業驗證說明

•本次Lab需要完成Gamma=0.5, 1.5, 2.2三種情況的校正,輸出結果可與golden內的bmp檔比對

• 需要完成pass的功能(影像資料略過GA、DI輸出原圖)

Original

Gamma = 0.5

Gamma = 1.5

Gamma = 2.2

Makefile Commends

Behavior	Commend
RTL simulation with different gamma value	make vcs GAMMA=X (X=0, 1, 2) PASS=0
RTL simulation with pass function	make vcs GAMMA=X (X=0, 1, 2) PASS=1
Dump waveform	make vcs GAMMA=A PASS=B WV=X(X=1, 2)
Launch nWave	make wave
Delete waveform files and output image	make clean
Compress homework to tar format	make tar

- 作業內容說明
- 作業驗證說明
- 作業繳交注意事項

作業繳交形式

EEIC LAB

作業繳交期限

- 2025/05/27(二) 14:00前繳交
 - 遲交作業者,可以接受補交,作業成績8折
 - 請依照繳交格式上傳至Moodle

