MA2002 Notes

Contents

1	Fun	ctions	5
	1.1	Commonly Used Sets	5
	1.2	Composite Functions	5
	1.3	Even/Odd Functions	5
2	Lim	its	6
	2.1	Precise Definition of Limits	6
	2.2	Limit Laws	6
	2.3	Intuitive Conclusion on Limits	7
	2.4	Inequality on Limits	7
	2.5	Squeeze Theorem	8
	2.6	Other Lemmas	8
	2.7	Other Limits	8
3	Con	tinuity	8
	3.1	Definition of Continuity	8
	3.2	Definition of Discontinuity	8
	3.3	Types of Discontinuity	9
	3.4	One-Sided Continuity	9
	3.5	Continuity on Intervals	9
	3.6	Properties of Continuous Functions	10
	3.7	Substitution in Limits	10
	3.8	Composite Functions	11
	3.9	Continuous Functions	11
	3.10	Intermediate Value Theorem (Simple Version)	12
	3.11	Intermediate Value Theorem (General Version)	12
4	Der	ivatives 1	12
	4.1	Definition of Derivative at a point	12
	4.2	Derivative as a Function	13
	4.3	Differentiability on an open interval	13

	4.4	Differentiability implies Continuity
	4.5	Differentiation Formulas
	4.6	Differentiable Functions
	4.7	Chain Rule
	4.8	Implicit Differentiation
	4.9	Higher Derivatives
5	App	lications of Derivatives 15
	5.1	Extreme Values
	5.2	Local Extreme Values
	5.3	Extreme Value Theorem
	5.4	Extreme Value Problem
	5.5	Fermat's Theorem
	5.6	Critical Point
	5.7	Stationary Point
	5.8	Closed Interval Method
	5.9	Rolle's Theorem
	5.10	Mean Value Theorem
		Derivative Zero Implies Constant Function
		Functions with Same Derivative Differ By A Constant
	5.13	Increasing Function
	5.14	Decreasing Function
	5.15	Increasing Test
	5.16	Decreasing Test
	5.17	Increasing Differentiable Functions
	5.18	Decreasing Differentiable Functions
	5.19	First Derivative Test
	5.20	Second Derivative Test
	5.21	Concavity
	5.22	First Derivative and Concavity
	5.23	Concavity Test
	5.24	Inflection Point
	5.25	Twice Differentiable Inflection Point
	5.26	L'Hôpital's Rule (Baby Version)
	5.27	Cauchy's Mean Value Theorem
	5.28	L'Hôpital's Rule (0/0 Version)
	5.29	L'Hôpital's Rule (∞/∞ Version)
6	Inte	$_{ m grals}$
	6.1	Limit of a Sequence
	6.2	Limit of a Sequence and Function 23

	6.3	Definite Integral	}
	6.4	Geometric Properties of the Integral	}
	6.5	Properties of the Integral	l
	6.6	Fundamental Theorem of Calculus (Part I)	(
	6.7	Mean Value Theorem for Definite Integrals	ó
	6.8	Fundamental Theorem of Calculus (Part II)	ó
	6.9	Basic Integration Formulae	ó
	6.10	Substitution Rule (Indefinite Integral)	;
	6.11	Substitution Rule (Definite Integral)	;
	6.12	Integral of Odd/Even Functions	7
	6.13	Improper Integral	7
	6.14	Improper Integral and Continuous Extension	7
	6.15	Improper Integral to Infinity	3
	6.16	Improper Integral on $(-\infty, \infty)$	3
_	т	The stimulation and The same and the stall Frenchisms	
7		rse Functions and Transcendental Functions 29	
	7.1 7.2	One-to-One Functions	
	7.3	Inverse Function	
	7.3 7.4		
	7.4	Composite of Function and its Inverse is an Identity Function	
	7.6		
	7.0 7.7	Geometric Meaning of Interchanging x and y	
	7.8 7.9		
		Inverse of Differentiable Function is Differentiable	
		S	
		Inverse Trigonometric Identities	
		Logarithmic Function	
		Properties of $\ln x$	
		Integral of $\frac{1}{x}$	
		Integral of Rational Trigonometric Functions	
		Logarithmic Differentiation	
		Euler's Number e	
		Exponential Function $\exp x$	
		Derivative of $\exp x$	
		1	
	1.20	Derivative of x^x)

	7.26	Derivative of $f(x)^{g(x)}$
	7.27	e as a limit
	7.28	Limits of $f(x)^{g(x)}$
	7.29	Hyperbolic Trigonometric Functions
	7.30	Hyperbolic Trigonometric Identities
	7.31	Derivatives of Hyperbolic Trigonometric Functions
	7.32	Inverse Hyperbolic Trigonometric Functions
8	Tecl	nniques of Integration 34
	8.1	Inverse Substitution Rule
	8.2	Integration by Parts
	8.3	Trigonometric Substitution
	8.4	Unique Factorisation of Polynomial
	8.5	Proper Rational Function
	8.6	Converting from Improper to Proper Rational Function
	8.7	Decomposing Proper Rational Function into Partial Fractions
	8.8	Integration of Rational Functions
	8.9	Universal Trigonometric Substitution
	8.10	More Integral Formulae
9	App	lications of Definite Integrals 37
	9.1	Area Under Function
	9.2	Area Between Two Functions
	9.3	Area of Plane Region
	9.4	Volume of Solid
	9.5	Disk Method
	9.6	Washer Method
	9.7	Cylindrical Shell Method
	9.8	Arc Length
	9.9	Surface Area of Revolution
10	Firs	t Order Ordinary Differential Equations 40
	10.1	Ordinary Differential Equation
		First Order ODE
		First Order ODE in only $x cdots c$
	10.4	First Order ODE in only $y \dots \dots$
		Separable First Order ODE
		Homogeneous Functions
		Homogeneous First Order ODE
		First Order Linear ODE
	10.9	Bernoulli's Equation
		Exponential Growth and Decay 42

	10.11Continuously Compounded Interest	42
	10.12Exponential Decay	43
	10.13Logistic Population Growth	43
	10.14Newton's Law of Cooling	43
11	Other Results	43
	11.1 Geometry	43
	11.2 Triangle Inequality	45
	11.3 Trigonometric Identities	45
	11.4 Algebraic Identities	46
	11.5 Binomial Theorem	46

1 Functions

1.1 Commonly Used Sets

```
\emptyset = \text{empty set} = \{\}
\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}
\mathbb{Q} = \text{set of rational numbers} = \{m/n \mid m, n \in \mathbb{Z}, n \neq 0\}
\mathbb{R} = \text{set of real numbers}
```

 $\mathbb{X}^+ = \{x \mid x \in \mathbb{X} \text{ and } x > 0\} \text{ and } \mathbb{X}^- = \{x \mid x \in \mathbb{X} \text{ and } x < 0\} \text{ for } \mathbb{X} = \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{R}. \text{ For example,}$

$$\mathbb{N} = \mathbb{Z}^+ = \{1, 2, 3, \ldots\}$$

1.2 Composite Functions

Let f and g be functions with domain A and B respectively. Then the domain of $g \circ f$ is

$$\{x \mid x \in A \text{ and } f(x) \in B\}$$

1.3 Even/Odd Functions

1.3.1 Even Function

A function f with domain A is an **even function** if

$$\forall x \in A \quad f(-x) = f(x)$$

1.3.2 Odd Function

A function f with domain A is an **odd function** if

$$\forall x \in A \quad f(-x) = -f(x)$$

2 Limits

2.1 Precise Definition of Limits

Side(s)	Value	Notation	For	there exists	such that	implies
Both sides		$ \lim_{x \to a} f(x) = L $			$0 < x - a < \delta$	
Right hand	Finite	$\lim_{x \to a^+} f(x) = L$	$\epsilon > 0$	$0 < x - a < \delta$		$\int f(x) - L < \epsilon$
Left hand		$\lim_{x \to a^{-}} f(x) = L$			$0 < a - x < \delta$	
Both sides		$ \lim_{x \to a} f(x) = \infty $		$\delta > 0$	$0 < x - a < \delta$	f(x) > M
Right hand	Infinite	$\lim_{x \to a^+} f(x) = \infty$	M > 0		$0 < x - a < \delta$	
Left hand		$\lim_{x \to a^{-}} f(x) = \infty$			$0 < a - x < \delta$	
Both sides		$\lim_{x \to a} f(x) = -\infty$			$0 < x - a < \delta$	
Right hand	-Infinite	$\lim_{x \to a^+} f(x) = -\infty$	M < 0		$0 < x - a < \delta$	f(x) < M
Left hand		$\lim_{x \to a^{-}} f(x) = -\infty$			$0 < a - x < \delta$	
	Finite	$ \lim_{x \to \infty} f(x) = L $	$\epsilon > 0$			$ f(x) - L < \epsilon$
Infinity	Infinite	$\lim_{x \to \infty} f(x) = \infty$	M > 0	a number N	x > N	f(x) > M
	-Infinite	$\lim_{x \to \infty} f(x) = -\infty$	M < 0			f(x) < M
	Finite	$\lim_{x \to -\infty} f(x) = L$	$\epsilon > 0$			$ f(x) - L < \epsilon$
-Infinity	Infinite	$\lim_{x \to -\infty} f(x) = \infty$	M > 0	a number N	x < N	f(x) > M
	-Infinite	$ \lim_{x \to -\infty} f(x) = -\infty $	M < 0			f(x) < M

2.2 Limit Laws

Let $a, c \in \mathbb{R}$ and $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x) \in \mathbb{R}$, then,

2.2.1 Constant Function

$$\lim_{x\to a}c=c$$

2.2.2 Identity Function

$$\lim_{x\to a} x = a$$

2.2.3 Constant Multiple Rule

$$\lim_{x \to a} (c \cdot f(x)) = c \cdot \lim_{x \to a} f(x)$$

2.2.4 Sum Rule

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.2.5 Difference Rule

$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

2.2.6 Product Rule

$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

2.2.7 Quotient Rule

If $\lim_{x\to a} g(x) \neq 0$, then,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

2.2.8 Power Rule

$$\lim_{x\to a} [f(x)]^n = \left(\lim_{x\to a} f(x)\right)^n,$$
 where $n\in\mathbb{Z}$

2.2.9 Root Rule

If n is odd or $(n \text{ is even and } \lim_{x \to a} f(x) \ge 0)$, then,

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

2.3 Intuitive Conclusion on Limits

If f(x) = g(x) for all x in an open interval containing a, except at a, then

If
$$\lim_{x \to a} f(x) = L$$
, then $\lim_{x \to a} g(x) = L$

2.4 Inequality on Limits

2.4.1 Lemma

If $f(x) \geq 0$ for all x in an open interval containing a, except at a, then

7

If
$$\lim_{x\to a} f(x) = L$$
, then $L \ge 0$

2.4.2 Theorem

If $f(x) \geq g(x)$ for all x in an open interval containing a, except at a, then if

1.
$$\lim_{x\to a} f(x) = L$$
 and $\lim_{x\to a} g(x) = M$, then

(a)
$$L \ge M$$

2.5 Squeeze Theorem

If $f(x) \leq g(x) \leq h(x)$ for all x in an open interval containing a, except at a, then

If
$$\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$$
, then $\lim_{x\to a} g(x) = L$

2.6 Other Lemmas

If $\lim_{x\to a} f(x)$ exists and is positive, then:

f(x) > 0 for all x in an open interval containing a, except at a

If $\lim_{x\to a} f(x)$ exists and is negative, then:

f(x) < 0 for all x in an open interval containing a, except at a

2.7 Other Limits

$$\lim_{h \to 0} \frac{\sin h}{h} = 1$$

$$\lim_{h\to 0}\frac{\cos h-1}{h}=0$$

3 Continuity

3.1 Definition of Continuity

A function f is **continuous** at a if

$$\lim_{x \to a} f(x) = f(a)$$

3.2 Definition of Discontinuity

A function f is **discontinuous** at a if it is not continuous at a.

3.3 Types of Discontinuity

3.3.1 Removable Discontinuity and Continuous Extension

A function f has a **removable discontinuity** at a if

- 1. $\lim_{x\to a} f(x)$ exists, and
- 2. f(a) is undefined or $\lim_{x\to a} f(x) \neq f(a)$

A function f_1 is the **continuous extension** of f at a if

$$f_1(x) = \begin{cases} f(x) & x \neq a \\ \lim_{x \to a} f(x) & x = a \end{cases}$$

3.3.2 Infinite Discontinuity

A function f has an **infinite discontinuity** at a if

$$\lim_{x \to a^+} f(x) = \pm \infty \text{ or } \lim_{x \to a^-} f(x) = \pm \infty$$

3.3.3 Jump Discontinuity

A function f has a **jump discontinuity** at a if

- 1. $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ exists, and
- 2. $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$

3.4 One-Sided Continuity

A function f is **continuous** from the **left** at a if

$$\lim_{x \to a^{-}} f(x) = f(a)$$

and f is **continuous** from the **right** at a if

$$\lim_{x \to a^+} f(x) = f(a)$$

3.5 Continuity on Intervals

A function f is continuous on a closed interval [a, b] if f is

- 1. continuous at every $x \in (a, b)$,
- 2. continuous from the right at a, and
- 3. continuous from the left at b

3.6 Properties of Continuous Functions

Let f and g be continuous functions at a, then

3.6.1 Constant Multiples

cf is continuous at a, where $c \in \mathbb{R}$

3.6.2 Sums

f + g is continuous at a

3.6.3 Differences

f - g is continuous at a

3.6.4 Products

fg is continuous at a

3.6.5 Quotients

If $g(a) \neq 0$, then f/g is continuous at a

3.6.6 Powers

 f^n is continuous at a, where $n \in \mathbb{Z}$

3.7 Substitution in Limits

3.7.1 Main Theorem

Let f and g be functions, if

1.
$$\lim_{x\to a} f(x) = b$$
 and $\lim_{y\to b} g(y) = c$, and

2. $f(x) \neq b$ for all x in an open interval containing a except at a

Then
$$\lim_{x\to a} g(f(x)) = c = \lim_{y\to b} g(y)$$

3.7.2 Further Results

$$\lim_{x \to a} f(x) = \lim_{h \to 0} f(a+h)$$

3.7.3 Alternative Definition of Continuity

f is continuous at $a \iff \lim_{h\to 0} f(a+h) = f(a)$

3.8 Composite Functions

3.8.1 Limit Operator Commutes With Continuous Function

Let f and g be functions, if

- 1. $\lim_{x \to a} f(x) = b$, and
- 2. g is continuous at b

Then
$$\lim_{x\to a} g(f(x)) = g(b) = g\left(\lim_{x\to a} (f(x))\right)$$

3.8.2 Composite of Continuous Functions

If f is continuous at a and g is continuous at f(a), then

 $g \circ f$ is continuous at a

3.9 Continuous Functions

3.9.1 Constant Functions

$$\forall c \in \mathbb{R} \quad f(x) = c \text{ is continuous on } \mathbb{R}$$

3.9.2 Identity Function

$$f(x) = x$$
 is continuous on \mathbb{R}

3.9.3 Integer Power Functions

$$\forall n \in \mathbb{N} \quad f(x) = x^n \text{ is continuous on } \mathbb{R}$$

3.9.4 Monomials

$$f(x) = cx^n$$
 is continuous on \mathbb{R}

3.9.5 Polynomials

$$f(x) = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$$
 is continuous on \mathbb{R}

3.9.6 Rational Functions

A function f is a **rational function** if

$$f(x) = P(x)/Q(x)$$
, where $P(x)$ and $Q(x)$ are polynomials

f is continuous on its domain $\{x \mid Q(x) \neq 0\}$

3.9.7 Root Functions

$$f(x) = \sqrt[n]{x}$$
 is continuous on its domain $= \begin{cases} \mathbb{R} & n \text{ is odd} \\ [0, \infty) & n \text{ is even} \end{cases}$

3.9.8 Rational Power Functions

 $\forall r \in \mathbb{Q}$ $f(x) = x^r$ is continuous on its domain

3.9.9 Trigonometric Functions

- 1. $\sin x$ and $\cos x$ are continuous on \mathbb{R}
- 2. $\tan x$ and $\sec x$ are continuous on their domain $= \{x \mid \cos x \neq 0\} = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$
- 3. $\cot x$ and $\csc x$ are continuous on their domain $= \{x \mid \sin x \neq 0\} = \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$

3.10 Intermediate Value Theorem (Simple Version)

Suppose

- 1. f is continuous on a finite closed interval [a, b], and
- 2. f(a) < 0 and f(b) > 0; or f(a) > 0 and f(b) < 0

Then there exists $c \in (a, b)$ such that f(c) = 0

3.11 Intermediate Value Theorem (General Version)

Suppose

- 1. f is continuous on a finite closed interval [a, b], and
- 2. $f(a) \neq f(b)$ and N is between f(a) and f(b)

Then there exists $c \in (a, b)$ such that f(c) = N

4 Derivatives

4.1 Definition of Derivative at a point

The **derivative** of a function f at a is the limit

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

If f'(a) exists, then f is **differentiable** at a.

4.2 Derivative as a Function

The **derivative** of a function f is the function

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$
, if the limit exists

4.3 Differentiability on an open interval

A function f is differentiable on an open interval I if

f is differentiable at every point in I

4.4 Differentiability implies Continuity

If a function f is differentiable at a, then f is continuous at a

4.5 Differentiation Formulas

Suppose f and g are differentiable at x and $c \in \mathbb{R}$

4.5.1 Constant Functions

$$\frac{d}{dx}(c) = 0$$

4.5.2 Constant Multiple

$$(cf)'(x) = cf'(x)$$

4.5.3 Sum

$$(f+g)'(x) = f'(x) + g'(x)$$

4.5.4 Difference

$$(f-g)'(x) = f'(x) - g'(x)$$

4.5.5 Product

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

4.5.6 Quotient

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

4.5.7 Integer Power

$$\forall n \in \mathbb{Z} \quad \frac{d}{dx}x^n = nx^{n-1}$$

4.6 Differentiable Functions

4.6.1 Polynomials

Every polynomial is differentiable on \mathbb{R}

4.6.2 Rational Functions

Every rational function is differentiable on its domain

4.6.3 Trigonometric Functions

Trigonometric Functions are differentiable on their domain

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\tan x = \sec^2 x$$

$$\frac{d}{dx}\cot x = -\csc^2 x$$

$$\frac{d}{dx}\sec x = \sec x \tan x$$

$$\frac{d}{dx}\csc x = -\csc x \cot x$$

4.7 Chain Rule

If f is differentiable at x and g is differentiable at f(x), then

$$(g \circ f)'(x) = g'(f(x))f'(x)$$

4.8 Implicit Differentiation

4.8.1 Implicit Function

Let f(x,y) = 0 be an equation in x and y. If y can be expressed in x near a point on f(x,y) = 0, then

y is an **implicit function** of x near the point

4.8.2 Implicit Differentiation

Furthermore, if y is an implicit function of x such that $\frac{dy}{dx}$ exists, then $\frac{dy}{dx}$ can be evaluated by implicit differentiation as follows:

- 1. Differentiate f(x,y) = 0 w.r.t. x, regarding y as a differentiable function in x
- 2. Solve for $\frac{dy}{dx}$ in terms of x and y

4.9 Higher Derivatives

Let f be a function

- 1. The **zeroth derivative** of f is $f = f^{(0)}$
- 2. For $n \in \mathbb{N}$, the n^{th} derivative of f is $f^{(n)} = (f^{(n-1)})'$
 - (a) f is n times differentiable if $f^{(n)}$ exists
- 3. Let y = f(x). $f^{(n)}(x) = \frac{d^n y}{dx^n}$
 - (a) This is the $n^{\rm th}$ derivative of y w.r.t. x

5 Applications of Derivatives

5.1 Extreme Values

Let f be a function with domain D

5.1.1 Absolute Maximum

f has an absolute/global maximum value at $c \in D$ if

$$\forall x \in D \quad f(c) \ge f(x)$$

5.1.2 Absolute Minimum

f has an absolute/global minimum value at $c \in D$ if

$$\forall x \in D \quad f(c) \le f(x)$$

5.2 Local Extreme Values

Let f be a function with domain D

5.2.1 Local Maximum

f has an relative/local maximum value at $c \in D$ if

For all x in an open interval containing $c, f(c) \ge f(x)$

5.2.2 Local Minimum

f has an relative/local minimum value at $c \in D$ if

For all x in an open interval containing $c, f(c) \leq f(x)$

5.3 Extreme Value Theorem

If f is continuous on a finite closed interval [a, b]. Then

f attains the extreme values on [a, b]

Precisely, there exist $c, d \in [a, b]$ such that

$$\forall x \in [a, b] \quad f(c) \le f(x) \le f(d)$$

5.4 Extreme Value Problem

If f is continuous on a finite closed interval [a, b]

- 1. Evaluate the values of f at endpoints: f(a) and f(b)
- 2. Find local extreme values of f on (a, b)
- 3. Compare the values obtained in Steps 1 and 2: $\frac{1}{2}$
 - (a) The largest value is the absolute maxmimum value
 - (b) The smallest value is the absolute minimum value

5.5 Fermat's Theorem

Let f be a function such that

- 1. f has a local extreme value at c, and
- 2. f is differentiable at c

Then f'(c) = 0

5.5.1 Remarks

Equivalently, if f has a local extreme value at c, then either

- 1. f is not differentiable at c, or
- 2. f'(c) = 0

5.6 Critical Point

Let c be an interior point of the domain of f. c is a critical point of f if either

- 1. f'(c) does not exist, or
- 2. f'(c) = 0

5.7 Stationary Point

c is a stationary point of f if f'(c) = 0

5.8 Closed Interval Method

Let f be continuous on [a, b]

- 1. Evaluate the values of f at endpoints: f(a) and f(b)
- 2. Evaluate the values of f at critical points on (a, b)
- 3. Compare the values obtained in Steps 1 and 2:
 - (a) The largest value is the absolute maxmimum value
 - (b) The smallest value is the absolute minimum value

5.9 Rolle's Theorem

If f is a function such that

- 1. it is continuous on [a, b]
- 2. it is differentiable on (a, b), and
- 3. f(a) = f(b)

Then there exists a number $c \in (a, b)$ such that f'(c) = 0

5.10 Mean Value Theorem

If f is a function such that

- 1. it is continuous on [a, b]
- 2. it is differentiable on (a, b)

Then there exists a number $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

5.11 Derivative Zero Implies Constant Function

If f is a function such that

- 1. it is continuous on an interval I
- 2. it is differentiable on I' = the interior of I, and
- 3. $\forall x \in I' \quad f'(x) = 0$

Then there exists a constant $C \in \mathbb{R}$ such that

$$\forall x \in I \quad f(x) = C$$

5.12 Functions with Same Derivative Differ By A Constant

If f and g are functions such that

- 1. they are continuous on an interval I
- 2. they are differentiable on I' = the interior of I, and
- 3. $\forall x \in I' \quad f'(x) = g'(x)$

Then there exists a constant $C \in \mathbb{R}$ such that

$$\forall x \in I \quad f(x) = g(x) + C$$

5.13 Increasing Function

A function f is increasing on a set I if

For any
$$a, b \in I$$
 $a < b \implies f(a) < f(b)$

5.14 Decreasing Function

A function f is decreasing on a set I if

For any
$$a, b \in I$$
 $a < b \implies f(a) > f(b)$

5.15 Increasing Test

If f is a function such that

- 1. it is continuous on an interval I
- 2. it is differentiable on I' = the interior of I, and
- 3. $\forall x \in I' \quad f'(x) > 0$

Then f is increasing on I

5.16 Decreasing Test

If f is a function such that

- 1. it is continuous on an interval I
- 2. it is differentiable on I' = the interior of I, and
- 3. $\forall x \in I' \quad f'(x) < 0$

Then f is decreasing on I

5.17 Increasing Differentiable Functions

If f is differentiable on an open interval I and if f is increasing on I, then

$$\forall x \in I \quad f'(x) \ge 0$$

5.18 Decreasing Differentiable Functions

If f is differentiable on an open interval I and if f is decreasing on I, then

$$\forall x \in I \quad f'(x) \le 0$$

5.19 First Derivative Test

If f is a function such that

- 1. it is continuous at a critical point c, and
- 2. it is differentiable on an open interval containing c, except at c

Then if

- 1. f' changes from negative to positive at c
 - (a) then f has a local minimum value at c
- 2. f' changes from positive to negative at c
 - (a) then f has a local maximum value at c
- 3. f' does not change sign at c
 - (a) then f does not have a local extreme value at c

5.20 Second Derivative Test

If f'(c) = 0, then if

- 1. f''(c) > 0, then f has a local minimum value at c
- 2. f''(c) < 0, then f has a local maximum value at c

5.21 Concavity

5.21.1 Concave Up

If f is differentiable on an open interval I. f is **concave up** if

1. the graph of f lies above all its tangent lines on I

More precisely,

For all
$$a, b \in I, a \neq b$$
 $f(b) - f(a) > f'(a)(b-a)$

5.21.2 Concave Down

If f is differentiable on an open interval I. f is **concave down** if

1. the graph of f lies below all its tangent lines on I

More precisely,

For all
$$a, b \in I, a \neq b$$
 $f(b) - f(a) < f'(a)(b-a)$

5.22 First Derivative and Concavity

If f is a differentiable function on an open interval I

5.22.1 Concave Up

f' is increasing on I \iff f is concave up on I

5.22.2 Concave Down

f' is decreasing on I \iff f is concave down on I

5.23 Concavity Test

If f is twice differentiable on an open interval I

5.23.1 Concave Up

$$(\forall x \in I \quad f''(x) > 0) \implies f \text{ is concave up on } I$$

5.23.2 Concave Down

$$(\forall x \in I \quad f''(x) < 0) \implies f$$
 is concave down on I

5.24 Inflection Point

f has an **inflection point** at c if

- 1. f is continuous at c, and
- 2. f changes concavity at c

5.25 Twice Differentiable Inflection Point

If a function f

- 1. has an inflection point at c, and
- 2. is twice differentiable at c

Then f''(c) = 0

5.26 L'Hôpital's Rule (Baby Version)

If f and g are functions differentiable at a such that

•
$$f(a) = g(a) = 0$$
 and $g'(a) \neq 0$

Then
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$$

5.27 Cauchy's Mean Value Theorem

If f and g are functions such that

- 1. they are continuous on [a, b]
- 2. they are differentiable on (a, b), and
- 3. $\forall x \in (a, b) \quad g'(x) \neq 0$

Then there exists $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

5.28 L'Hôpital's Rule (0/0 Version)

If f and g are functions such that

1.
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
, and

2.
$$\lim_{x\to a} \frac{f'(x)}{g'(x)}$$
 exists or equals $\pm \infty$

(a)
$$\frac{f'(x)}{g'(x)}$$
 is defined on an open interval I containing a , except at a

i. f and g are differentiable on $I \setminus \{a\}$

ii.
$$\forall x \in I \setminus \{a\} \quad g'(x) \neq 0$$

Then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

5.28.1 Remarks

- 1. a may be finite or infinite
- 2. $x \to a$ may be replaced with one-sided limits

5.29 L'Hôpital's Rule (∞/∞ Version)

If f and g are functions such that

- 1. $\lim_{x\to a} |f(x)| = \lim_{x\to a} |g(x)| = \infty$, and
- 2. $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists or equals $\pm \infty$
 - (a) $\frac{f'(x)}{g'(x)}$ is defined on an open interval I containing a, except at a
 - i. f and g are differentiable on $I \setminus \{a\}$
 - ii. $\forall x \in I \setminus \{a\} \quad g'(x) \neq 0$

Then
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$

5.29.1 Remarks

- 1. a may be finite or infinite
- 2. $x \to a$ may be replaced with one-sided limits
- 3. The condition $\lim_{x\to a} |f(x)|$ is unnecessary

6 Integrals

6.1 Limit of a Sequence

Let $\{a_n\}$ be a sequence. Then $\lim_{n\to\infty} a_n = L \in \mathbb{R}$ means for $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$n > N \implies |a_n - L| < \epsilon$$

6.2 Limit of a Sequence and Function

Let f be a function such that

1.
$$\forall n \in \mathbb{N} \quad a_n = f(n)$$
, and

$$2. \lim_{x \to \infty} f(x) = L$$

Then
$$\lim_{n\to\infty} a_n = L$$

6.3 Definite Integral

Let f be a continuous function on [a, b]

- 1. Divide [a, b] into n equal subintervals, each of length $\Delta x = \frac{b-a}{n}$
 - $[x_0, x_1], [x_1, x_2], \dots, [x_{n-1}, x_n]$ $x_i = a + i\Delta x$
- 2. Choose sample points $x_1^*, x_2^*, \dots, x_n^*$ from these subintervals:
 - $x_1^* \in [x_0, x_1], x_2^* \in [x_1, x_2], \dots, x_n^* \in [x_{n-1}, x_n]$
- 3. Compute the **Riemann sum**:
 - $f(x_1^*)\Delta x + \ldots + f(x_n^*)\Delta x = \sum_{i=1}^n f(x_i^*)\Delta x$
- 4. The **definite integral** of f from a to b:

•
$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_a^b f(x) \, dx$$

6.4 Geometric Properties of the Integral

6.4.1 Integral of the Negative of a Function

$$\int_{a}^{b} (-f(x)) dx = -\int_{a}^{b} f(x) dx$$

6.4.2 Integral of Constant Functions

$$\int_{a}^{b} c \, dx = c(b - a)$$

6.4.3 Monotonicity

Let f and g be continuous functions on [a, b] and if

•
$$\forall x \in [a, b]$$
 $f(x) \ge g(x)$

Then
$$\int_a^b f(x) dx \ge \int_a^b g(x) dx$$

6.4.4 Max-Min Inequality

Let f be a continuous function on [a, b], and m and M are the minimum and maximum values of f on [a, b] respectively. Then

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

6.4.5 Additivity

Let f be a continuous function on [a, b]. Then $\forall c \in (a, b)$,

$$\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$$

6.4.6 Order of Integration

Definition. If a > b and f is a function continuous on [b, a]. Then define

$$\int_{a}^{b} f(c) dx = -\int_{b}^{a} f(x) dx$$

6.4.7 Zero Width Interval

Definition. If f is defined at a, then define

$$\int_{a}^{a} f(x) \, dx = 0$$

6.5 Properties of the Integral

Let f and g be a continuous function on an interval I and $k \in \mathbb{R}$

6.5.1 Additivity

For any $a, b, c \in I$,

$$\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$$

6.5.2 Constant Multiple

For any $a, b \in I$,

$$\int_a^b kf(x) \, dx = k \int_a^b f(x) \, dx$$

6.5.3 Sum and Difference

For any $a, b \in I$,

$$\int_{a}^{b} (f(x) \pm g(x)) \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx$$

6.6 Fundamental Theorem of Calculus (Part I)

If f is continuous on [a,b]. Let $g(x) = \int_a^x f(t) dt$. Then

- 1. g is continuous on [a, b]
- 2. g is differentiable on (a, b), and
- 3. $\forall x \in (a, b)$ g'(x) = f(x)

6.6.1 Remarks

Let $c \in [a, b]$. Then

- $\int_a^x f(t) dt \int_c^x f(t) dt = \int_a^c f(t) dt$ is a constant
 - 1. $\int_{c}^{x} f(t) dt$ is continuous on [a, b],
 - 2. differentiable on (a, b) with derivative f(x)

6.7 Mean Value Theorem for Definite Integrals

If f is continuous on [a, b], then there exists $c \in (a, b)$ such that

$$\int_{a}^{b} f(x) dx = (b - a)f(c)$$

6.8 Fundamental Theorem of Calculus (Part II)

If f is a function continuous on [a, b] and if F is a function such that

- 1. it is continuous on [a, b],
- 2. differentiable on (a, b), and
- 3. $\forall x \in (a, b)$ F'(x) = f(x)

Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x)|_{x=a}^{x=b}$$

6.9 Basic Integration Formulae

If f and g are continuous functions and $k \in \mathbb{R}$. Then

6.9.1 Constant Multiple Rule

$$\int kf(x) \, dx = k \int f(x) \, dx$$

6.9.2 Sum and Difference Rule

$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$$

6.9.3 Power Rule

$$\forall r \in \mathbb{Q} \setminus -1 \quad \int x^r \, dx = \frac{x^{r+1}}{r+1} + C$$

6.9.4 Trigonometric Functions

$$\int \cos x \, dx = \sin x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int \csc^2 x \, dx = -\cot x + C$$

$$\int \sec x \tan x \, dx = \sec x + C$$

$$\int \csc x \cot x \, dx = -\csc x + C$$

6.10 Substitution Rule (Indefinite Integral)

If

- 1. u = g(x) is differentiable and its range is an interval I
- 2. g' is continuous and f is continuous on I

Then

$$\int f(g(x))g'(x) dx = \int f(u) du$$

6.11 Substitution Rule (Definite Integral)

If

- 1. g' is continuous on [a, b], and
- 2. f is continuous on the range of g

Then

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$

6.12 Integral of Odd/Even Functions

Let f be a function continuous on [-a, a]

6.12.1 Odd

If f is odd, then $\int_{-a}^{a} f(x) dx = 0$

6.12.2 Even

If f is even, then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

6.13 Improper Integral

Definition. Let f be continuous on [a, b), discontinuous at b from the left. Then the **improper** integral

$$\int_{a}^{b} f(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) dx$$

Let f be continuous on (a, b], discontinuous at a from the right. Then the **improper integral**

$$\int_{a}^{b} f(x) dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) dx$$

6.13.1 Additivity

Definition. If f is discontinuous at $c \in (a, b)$. The improper integral

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

LHS exists \iff both integrals on RHS exists

6.14 Improper Integral and Continuous Extension

6.14.1 Continuous Extension to Endpoints

Let f be a function such that

- 1. it is continuous on (a, b), and
- 2. $\lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x)$ exists

Let f_1 be the continuous extension of f. Then

$$\int_a^b f(x) \, dx = \int_a^b f_1(x) \, dx$$

6.14.2 Removable Discontinuities

Let f be a function such that

1. it is continuous on [a, b] except at a finite number of points at which f has removable discontinuities

Let f_1 be the continuous extension of f. Then

$$\int_a^b f(x) \, dx = \int_a^b f_1(x) \, dx$$

6.15 Improper Integral to Infinity

Definition. Let f be a function such that

6.15.1 Improper Integral to ∞

 $\int_a^t f(x) dx$ exists for every $t \geq a$. Then the **improper integral**

$$\int_{a}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \, dx$$

6.15.2 Improper Integral to $-\infty$

 $\int_t^b f(x) dx$ exists for every $t \leq b$. Then the **improper integral**

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

6.16 Improper Integral on $(-\infty, \infty)$

Definition. Let $a \in \mathbb{R}$, the improper integral

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$

6.16.1 Remarks

- ullet LHS is convergent \iff both integrals on RHS are convergent
- If $\int_{-\infty}^{a} f(x) dx$ and $\int_{a}^{\infty} f(x) dx$ are convergent, then $\forall b \in \mathbb{R}$,
 - 1. $\int_{-\infty}^{b} f(x) dx$ and $\int_{b}^{\infty} f(x) dx$ are convergent, and
 - 2. $\int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx = \int_{-\infty}^{b} f(x) dx + \int_{b}^{\infty} f(x) dx$

28

7 Inverse Functions and Transcendental Functions

7.1 One-to-One Functions

Definition. Let f be a function with domain D. f is **one-to-one** if for any $a, b \in D$,

$$a \neq b \implies f(a) \neq f(b)$$

Equivalently, for any $a, b \in D$,

$$f(a) = f(b) \implies a = b$$

7.2 Inverse Function

Definition. Let f be a one-to-one function with domain A and range B

• Then $\forall y \in B$, there is a unique $x \in A$ such that f(x) = y

The **inverse function** of f, denoted by f^{-1} , is defined by

- For any $x \in A$ and $y \in B$ $f^{-1}(y) = x \iff y = f(x)$
 - 1. f^{-1} has domain B and range A

7.3 Inverse of Inverse Function

$$(f^{-1})^{-1} = f$$

7.4 Composite of Function and its Inverse is an Identity Function

If for any $x \in A$ and $y \in B$ $y = f(x) \iff x = f^{-1}(y)$, then

$$\forall x \in A \quad f^{-1}(f(x)) = x$$

$$\forall y \in B \quad f(f^{-1}(y)) = y$$

7.5 Equation for Inverse Functions

Let f be a one-to-one function. Then f has an inverse function, say f^{-1} . To find an equation for f^{-1} ,

- 1. Let y = f(x)
- 2. Solve for x in terms of y: $x = f^{-1}(y)$
- 3. Interchange x and y: $y = f^{-1}(x)$

7.6 Geometric Meaning of Interchanging x and y

- 1. In the Cartesian plane \mathbb{R}^2 , interchanging x and y has the same effect as reflecting the graph w.r.t. the straight line y = x
- 2. Thus, the graph of f and f^{-1} are symmetric w.r.t. the line y=x

7.7 Continuous Functions are one-to-one iff monotonic

Theorem. Let f be a function continuous on an interval I, then

- f is one-to-one $\iff f$ is monotonic
 - Monotonic means either increasing or decreasing

7.8 Inverse of Continuous Function is Continuous

If f is a function one-to-one and continuous on an interval I. Then the inverse function f^{-1} is also continuous

7.9 Inverse of Differentiable Function is Differentiable

If f is a function one-to-one and continuous on an interval I. If f is differentiable at an interior point a of I, $f'(a) \neq 0$, and b = f(a), then

$$(f^{-1})'(b) = \frac{1}{f'(a)}$$

7.10 Inverse Trigonometric Functions

Function	Domain	Range	Derivative
$\sin^{-1} x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	[-1, 1]	$[0,\pi]$	$\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	\mathbb{R}	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$
$\cot^{-1} x$	\mathbb{R}	$(0,\pi)$	$\frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$
$\sec^{-1} x$	$(-\infty, -1] \cup [1, \infty)$	$[0,\frac{\pi}{2}) \cup [\pi,\frac{3\pi}{2})$	$\frac{d}{dx}\sec^{-1}x = \frac{1}{x\sqrt{x^2 - 1}}$
$\csc^{-1} x$	$(-\infty, -1] \cup [1, \infty)$	$(0,\frac{\pi}{2}] \cup (\pi,\frac{3\pi}{2}]$	$\frac{d}{dx}\csc^{-1}x = -\frac{1}{x\sqrt{x^2 - 1}}$

7.11 Inverse Trigonometric Identities

$$\forall x \in [-1, 1] \quad \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

$$\forall x \in \mathbb{R} \quad \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

$$\sec^{-1} x + \csc^{-1} x = \begin{cases} \frac{\pi}{2} & x \ge 1\\ \frac{5\pi}{2} & x \le -1 \end{cases}$$

7.12 Logarithmic Function

Definition. The **natural logarithmic function** is defined by

For
$$x > 0$$
 $\ln x = \int_1^x \frac{1}{t} dt$

7.13 Properties of $\ln x$

- $\ln 1 = 0$
- $\ln x$ is continuous and differentiable on \mathbb{R}^+
- $\forall x > 0$ $\frac{d}{dx} \ln x = \frac{1}{x}$ and $\frac{d^2}{dx^2} \ln x = -\frac{1}{x^2}$
 - $-\ln x$ is increasing and concave down on \mathbb{R}^+
- $\lim_{x\to 0^+} \ln x = -\infty$, $\lim_{x\to \infty} \ln x = \infty$, and range of $\ln x$ is $\mathbb R$

7.14 Logarithmic Laws

For
$$x > 0$$
, $a > 0$ $\ln(ax) = \ln a + \ln x$
For $x > 0$, $r \in \mathbb{Q}$ $\ln(x^r) = r \ln x$

7.15 Integral of $\frac{1}{x}$

Theorem. $\forall x \neq 0$

$$\frac{d}{dx}\ln|x| = \frac{1}{x}$$

7.16 Integral of Rational Trigonometric Functions

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$
$$\int \csc x \, dx = -\ln|\csc x + \cot x| + C$$

$$\int \tan x \, dx = -\ln|\cos x| + C$$
$$\int \cot x \, dx = \ln|\sin x| + C$$

7.17 Logarithmic Differentiation

If $y = [f_1(x)]^{r_1} \times \ldots \times [f_n(x)]^{r_n}$, where

- 1. $r_1, \ldots, r_n \in \mathbb{Q}$, and
- 2. f_1, \ldots, f_n are non-zero differentiable functions

Then logarithmic differentiation may be applied as follows:

- 1. Take the absolute value:
 - $|y| = |f_1(x)|^{r_1} \times \ldots \times |f_n(x)|^{r_n}$
- 2. Take natural logarithm:
 - $\ln|y| = r_1 \ln|f_1(x)| + \ldots + r_n \ln|f_n(x)|$
- 3. Differentiate w.r.t. x:

•
$$\frac{1}{y}\frac{dy}{dx} = \frac{r_1f_1'(x)}{f_1(x)} + \ldots + \frac{r_nf_n'(x)}{f_n(x)}$$

7.17.1 Remarks

Logarithmic differentiation is not applicable if y = 0

7.18 Euler's Number e

Definition. The Euler's number e is the number such that $\ln e = 1$

7.19 Exponential Function $\exp x$

Definition. Let $\exp x = e^x$ be the inverse function of $\ln x$. Then $\exp x$ has domain \mathbb{R} and range \mathbb{R}^+

7.20 Properties of $\exp x$

1.
$$\lim_{x \to -\infty} \exp x = 0$$
 and $\lim_{x \to \infty} \exp x = \infty$

7.21 Derivative of $\exp x$

$$\frac{d}{dx}\exp x = \exp x$$

7.22 Exponential Function a^x

Definition. The exponential function of base a > 0 is defined by

$$\forall x \in \mathbb{R} \quad a^x = \exp(x \ln a)$$

7.23 Properties of a^x

For all a > 0 and $x, y \in \mathbb{R}$

$$\ln(a^x) = x \ln a$$

$$a^x a^y = a^{x+y}$$

$$a^{-x} = 1/a^x$$

$$(a^x)^y = a^{xy}$$

$$\frac{d}{dx}a^x = a^x \ln a$$

7.24 Real Power Rule

Theorem. $\forall a \in \mathbb{R} \quad \forall x > 0,$

$$\frac{d}{dx}x^a = ax^{a-1}$$

7.25 Derivative of x^x

$$\forall x > 0 \quad \frac{d}{dx}x^x = (\ln x + 1)x^x$$

7.26 Derivative of $f(x)^{g(x)}$

Derivative of $f(x)^{g(x)}$ can be found by logarithmic differentiation

7.27 e as a limit

Theorem.

$$e = \lim_{x \to 0} (1+x)^{1/x}$$

7.28 Limits of $f(x)^{g(x)}$

To find $\lim_{x\to a} f(x)^{g(x)}$, where f(x) > 0,

- 1. Express $f(x)^{g(x)} = \exp[g(x) \ln f(x)]$
- 2. Interchange lim operator and exp function

7.29 Hyperbolic Trigonometric Functions

7.29.1 Hyperbolic Sine Function

Definition. The **hyperbolic sine function** is defined by

$$\sinh x = \frac{\exp x - \exp(-x)}{2}$$

 $\sinh x$ is increasing on its domain \mathbb{R} and has range \mathbb{R}

7.29.2 Hyperbolic Cosine Function

Definition. The **hyperbolic cosine function** is defined by

$$\cosh x = \frac{\exp x + \exp(-x)}{2}$$

 $\sinh x$ has domain \mathbb{R} , it is increasing on $[0,\infty)$

7.30 Hyperbolic Trigonometric Identities

$$\cosh^{2} t - \sinh^{2} t = 1$$

$$\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y$$

$$\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$$

7.31 Derivatives of Hyperbolic Trigonometric Functions

$$\frac{d}{dx}\sinh x = \cosh x$$
$$\frac{d}{dx}\cosh x = \sinh x$$

7.32 Inverse Hyperbolic Trigonometric Functions

Function	Domain	Range	Derivative
$\sinh^{-1} x$	\mathbb{R}	\mathbb{R}	$\frac{d}{dx}\sinh^{-1}x = \frac{1}{\sqrt{1+x^2}}$
$\cosh^{-1} x$	$[1,\infty)$	$[0,\infty)$	$\frac{d}{dx}\sinh^{-1}x = \frac{1}{\sqrt{x^2 - 1}}$

8 Techniques of Integration

8.1 Inverse Substitution Rule

Let f be a continuous function. If x = g(t) is

- 1. one-to-one, and
- 2. g' is continuous

Then

$$\int f(x) dx = \int f(g(t))g'(t) dt$$

8.2 Integration by Parts

Let u and v be functions that are differentiable with continuous derivatives. Then

$$\int \left(u\frac{dv}{dx}\right) dx = uv - \int \left(\frac{du}{dx}v\right) dx$$

Or in differential forms,

$$\int u \, dv = uv - \int v \, du$$

8.3 Trigonometric Substitution

If the integrand contains the square root of quadratic functions, one may try the **trigonometric** substitution method as follows:

1. Complete the square to obtain the following forms:

Form	Substitution	Substitution Domain	
$\sqrt{a^2 - x^2} (a > 0)$	$x = a\sin t$	$t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$	$a\cos t$
$\sqrt{a^2 + x^2} (a > 0)$	$x = a \tan t$	$t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$a \sec t$
$\sqrt{x^2 - a^2} (a > 0)$	$x = a \sec t$	$t \in [0, \frac{\pi}{2}) \cup [\pi, \frac{3\pi}{2})$	$a \tan t$

8.4 Unique Factorisation of Polynomial

Theorem. Every non-constant single-variable polynomial with real coefficients can be uniquely factorised as the product of

- 1. real linear factors
 - For all $a \in \mathbb{R}$, $r \in \mathbb{N}$ $(x+a)^r$
- 2. real irreducible quadratic factors
 - For all $b, c \in \mathbb{R}$, $s \in \mathbb{N}$, $b^2 < 4c$ $(x^2 + bx + c)^s$

8.5 Proper Rational Function

Definition. If $f(x) = \frac{A(x)}{B(x)}$ is a rational function where A(x) and B(x) are polynomials. f(x) is a **proper rational function** if

$$\deg A(x) < \deg B(x)$$

8.6 Converting from Improper to Proper Rational Function

If $f(x) = \frac{A(x)}{B(x)}$ where A(x) and B(x) are polynomials and $\deg A(x) \ge \deg B(x)$. Then the following method converts f(x) into a proper rational function:

1. Use long division to get

•
$$A(x) = B(x)Q(x) + R(x)$$
, where $\deg R(x) < \deg B(x)$

2. Then
$$f(x) = \frac{A(x)}{B(x)} = Q(x) + \frac{R(x)}{B(x)}$$

8.7 Decomposing Proper Rational Function into Partial Fractions

Theorem. Every proper rational function can be uniquely expressed as the sum of **partial** fractions. Let $f(x) = \frac{A(x)}{B(x)}$ be a proper rational function. Then f(x) is the sum of the following partial fractions:

1. If x + a is a linear factor of B(x) with multiplicity r

•
$$\frac{A_1}{x+a} + \frac{A_2}{(x+a)^2} + \ldots + \frac{A_r}{(x+a)^r}$$

2. If $x^2 + bx + c$ is an irreducible factor of B(x) with multiplicity s

•
$$\frac{B_1x + C_1}{x^2 + bx + c} + \frac{B_2x + C_2}{(x^2 + bx + c)^2} + \dots + \frac{B_sx + C_s}{(x^2 + bx + c)^s}$$

8.8 Integration of Rational Functions

8.8.1 Integral of $\frac{1}{(x+a)^k}$

To evaluate $\int \frac{dx}{(x+a)^k}$, use the substitution u=x+a

8.8.2 Integral of $\frac{x}{(x^2+bx+c)^k}$

To evaluate $\int \frac{x}{(x^2+bx+c)^k} dx$, use the substitution $u=x^2+bx+c$. Then

$$\int \frac{x}{(x^2 + bx + c)^k} dx = \frac{1}{2} \int \frac{du}{u^k} - \frac{b}{2} \int \frac{dx}{(x^2 + bx + c)^k}$$

8.8.3 Integral of $\frac{1}{(x^2+bx+c)^k}$

1.
$$x^2 + bx + c = (x + \frac{b}{2})^2 + (c - \frac{b^2}{4})$$

2. Let
$$u = x + \frac{b}{2}$$
, $\alpha = \sqrt{c - \frac{b^2}{4}}$. Then $x^2 + bx + c = u^2 + \alpha^2$

•
$$\int \frac{dx}{(x^2 + bx + c)^k} = \int \frac{du}{(u^2 + \alpha^2)^k}$$

3. Let $u = \alpha v$. Then $u^2 + \alpha^2 = \alpha^2(v^2 + 1)$

•
$$\int \frac{du}{(u^2 + \alpha^2)^k} = \int \frac{\alpha \, dv}{(\alpha^2 (1 + v^2))^k} = \frac{1}{\alpha^{2k-1}} \int \frac{dv}{(1 + v^2)^k}$$

8.9 Universal Trigonometric Substitution

Let f be a rational expression in two variables. Then

$$\int f(\sin x, \cos x) \, dx = \int f\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2}{1+t^2} \, dt$$

8.10 More Integral Formulae

8.10.1 Integral of Integer Power of $\frac{1}{1+x^2}$

Let $x = \tan t, \ t \in (-\frac{\pi}{2}, \frac{\pi}{2})$

$$\forall n \in \mathbb{N} \quad \int \frac{dx}{(1+x^2)^n} = \int (\cos t)^{2n-2} dt$$

8.10.2 Integral of Non-Zero Power of $\cos x$

 $\forall n \neq 0,$

$$\int (\cos x)^n \, dx = \frac{1}{n} (\cos x)^{n-1} \sin x + \frac{n-1}{n} \int (\cos x)^{n-2} \, dx$$

8.10.3 Integral of $\ln x$

$$\int \ln x \, dx = x \ln x - x + C$$

8.10.4 Integral of $\sin^{-1} x$

$$\int \sin^{-1} x \, dx = x \sin^{-1} x + \sqrt{1 - x^2} + C$$

9 Applications of Definite Integrals

9.1 Area Under Function

Let f be a nonnegative function continuous on [a, b]. Then the area of the region between y = f(x) and the x-axis on [a, b] is

$$\int_{a}^{b} f(x) \, dx$$

9.2 Area Between Two Functions

Let f and g be functions such that

1. they are continuous on [a, b], and

$$2. \ \forall x \in [a, b] \quad f \ge g$$

Then the area of the region between y = f(x) and y = g(x) on [a, b] is

$$\int_{a}^{b} [f(x) - g(x)] dx$$

9.3 Area of Plane Region

If R is a plane region in the xy-coordinate system.

- 1. If R is placed along the x-axis on [a, b], then
 - (a) Cut R using vertical line segment at $x \in [a, b]$, then
 - Length $\ell(x)$ = upper endpoint lower endpoint
 - (b) Area of $R = \int_a^b \ell(x) dx$
- 2. If R is placed along the y-axis on [c, d], then
 - (a) Cut R using horizontal line segment at $y \in [c, d]$, then
 - Length L(y) = right endpoint left endpoint
 - (b) Area of $R = \int_c^d L(y) \, dy$

9.4 Volume of Solid

If a solid is placed along the x-axis on [a, b], then

- 1. Cut the solid using planes perpendicular to the x-axis at $x \in [a, b]$, then
 - Area A(x) = area of cross-section at x
- 2. The volume of the solid = $\int_a^b A(x) dx$

If a solid is placed along the y-axis on [c, d], then

1. Cut the solid using planes perpendicular to the y-axis at $y \in [c, d]$, then

38

- Area A(y) = area of cross-section at y
- 2. The volume of the solid = $\int_c^d A(y) dy$

9.5 Disk Method

Let f be a continuous function. The volume of the solid formed by rotating the region between y = f(x) and the x-axis on [a, b] about the x-axis is

$$\pi \int_a^b [f(x)]^2 dx$$

9.6 Washer Method

Let f and g be continuous functions such that $\forall x \in [a,b]$ $f(x) \ge g(x) \ge 0$. The volume of the solid formed by rotating the region between y = f(x) and y = g(x) on [a,b] about the x-axis is

$$\pi \int_{a}^{b} ([f(x)]^{2} - [g(x)]^{2}) dx$$

9.7 Cylindrical Shell Method

Let f be continuous and non-negative on [a, b], where either $a \ge 0$ or $b \le 0$. The volume of the solid formed by rotating the region between y = f(x) and the x - axis on [a, b] about the y-axis is

$$\begin{cases} 2\pi \int_{a}^{b} x f(x) dx & a \ge 0 \\ -2\pi \int_{a}^{b} x f(x) dx & b \le 0 \end{cases}$$

9.8 Arc Length

If f is continuous on [a, b]. The **arc length** of the curve y = f(x) on [a, b] is defined by

$$\int_a^b \sqrt{1 + [f'(x)]^2} \, dx$$

9.9 Surface Area of Revolution

If f is nonnegative and continuous on [a, b]. The area of the surface formed by rotating the curve y = f(x) on [a, b] about the x-axis is

$$2\pi \int_{a}^{b} f(x)\sqrt{1 + [f'(x)]^{2}} dx = 2\pi \int_{a}^{b} y\sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

10 First Order Ordinary Differential Equations

10.1 Ordinary Differential Equation

Definition. An ordinary differential equation (abbr. ODE) is an equation of the form

$$F(x, y, \frac{dy}{dx}, \dots, \frac{d^n y}{dx^n}) = 0$$

where y is an implicit function in variable x

10.1.1 Degree of ODE

The highest order of the derivative is the **degree** of the ODE

10.2 First Order ODE

A first order ODE has the form

$$\frac{dy}{dx} = F(x, y)$$

10.3 First Order ODE in only x

10.3.1 Method to Solve

 $\frac{dy}{dx} = f(x)$ can be solved by simply integrating both sides w.r.t. x. Then

$$y = \int f(x) \, dx$$

10.4 First Order ODE in only y

10.4.1 Method to Solve

$$\frac{dy}{dx} = g(y) \implies \frac{dx}{dy} = \frac{1}{g(y)} \text{ (for } g(y) \neq 0\text{). Then,}$$

$$x = \int \frac{1}{g(y)} dy$$

10.5 Separable First Order ODE

Definition. A first order ODE $\frac{dy}{dx} = F(x, y)$ is separable if

$$F(x,y) = f(x)g(y)$$

10.5.1 Method to Solve

$$\frac{dy}{dx} = f(x)g(y) \implies \frac{1}{g(y)}\frac{dy}{dx} = f(x) \text{ (for } g(y) \neq 0). \text{ Then,}$$

$$\int \frac{1}{g(y)} dy = \int f(x) dx$$

10.6 Homogeneous Functions

Definition. Let $F(x_1, ..., x_m)$ be a function in m variables. F is homogeneous of degree n if $\forall t \in \mathbb{R} \setminus \{0\}$

$$F(tx_1,\ldots,tx_m)=t^nF(x_1,\ldots,x_m)$$

10.7 Homogeneous First Order ODE

Definition. A first order ODE $\frac{dy}{dx} = F(x, y)$ is **homogeneous** if

- 1. F(x,y) is homogeneous of degree zero
 - $\forall t \in \mathbb{R} \setminus \{0\}$ F(tx, ty) = F(x, y)
 - Remarks. The term $\frac{y}{x}$ or $\frac{x}{y}$ should appear in the function

10.7.1 Method to Solve

- 1. Convert equation to standard form $\frac{dy}{dx} = F(x, y)$
- 2. Let z = y/x
 - y = xz and $\frac{dy}{dx} = z + x\frac{dz}{dx}$
 - $\forall x \neq 0$ F(x,y) = F(x,xz) = F(1,z)
- 3. The ODE becomes $z + x \frac{dz}{dx} = F(1, z)$
 - \bullet This is separable in variables x and z

10.8 First Order Linear ODE

Definition. A first order ODE $\frac{dy}{dx} = F(x, y)$ is **linear** if

$$F(x,y) = f(x)y + g(x)$$

The **standard form** of a first order linear ODE is

$$\frac{dy}{dx} + p(x)y = q(x)$$

10.8.1 Method to Solve

• If $\frac{dy}{dx} + p(x)y = 0$. Then it is a separable equation.

• If $\frac{dy}{dx} + p(x)y = q(x)$, proceed as follows:

1. Evaluate $\int p(x) dx = P(x) + C$

2. Evaluate an integrating factor $v(x) = e^{P(x)}$

3.
$$y = \frac{1}{v(x)} \int v(x)q(x) dx$$

4. **Remark.** Different integrating factors differ by a constant multiple and produce the same solution

10.9 Bernoulli's Equation

Definition. A Bernoulli's differential equation has the form

•
$$\frac{dy}{dx} + p(x)y = q(x)y^n$$
, where $n \in \mathbb{R}$

10.9.1 Method to Solve

• If n = 0, it is a first order linear ODE

• If n = 1, it is a first order linear and separable ODE

• If $n \neq 0, 1$, proceed as follows:

1. Let $z = y^{1-n}$

2. $\frac{dz}{dx} + (1-n)p(x)z = (1-n)q(x)$, which is a linear equation

10.10 Exponential Growth and Decay

Theorem. The general solution to $\frac{dy}{dt} = ky$ is

$$y = C \exp(kt)$$

10.11 Continuously Compounded Interest

Theorem. If an amount A_0 is invested at r interest. If the interest is compounded continuously, the value of the investment at time t is

42

$$A(t) = A_0 \exp(rt)$$

10.12 Exponential Decay

Let
$$\frac{dm}{dt} = km$$
, where $k < 0$. Then $m(t) = m(0) \exp(kt)$

10.12.1 Half-Life

 $\mathbf{half\text{-}life}\ t_{1/2}$ is the time required for half of the quantity to decay. Then

$$k = -\frac{\ln 2}{t_{1/2}}$$

10.13 Logistic Population Growth

Definition. The **logistic growth** model with M > 0 as the **limiting population** or **carrying** capacity and r > 0 is given by

$$\frac{dP}{dt} = r(M - P)P$$

10.13.1 Solving the Logistic Growth Model

This is a Bernoulli's differential equation with the following general solution which is also known as the **logistic function**:

$$P(t) = \frac{M}{1 + C \exp(-Mrt)}$$

10.14 Newton's Law of Cooling

Let T(t) be the temperature of an object at time t and T_S be the surrounding temperature. Then

•
$$\frac{dT}{dt} = -r(T - T_S)$$
, where $r > 0$ is a constant

Then

$$T(t) = T_S + (T_0 - T_S) \exp(-rt)$$

11 Other Results

11.1 Geometry

11.1.1 Slope of Perpendicular Lines

Given a pair of perpendicular lines ℓ_1 and ℓ_2 with slopes m_1 and m_2 respectively, then

$$m_1 \cdot m_2 = -1$$

11.1.2 Circle

The equation of a circle with radius r and centre (a, b) is

$$(x-a)^2 + (y-b)^2 = r^2$$

11.1.3 Ellipse

The equation of an ellipse with width 2a, height 2b, and center (x_0, y_0) is

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

11.1.4 Hyperbola

The equation of a hyperbola is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

11.1.5 Astroid

The equation of an astroid with radius of the fixed circle a is

$$x^{2/3} + y^{2/3} = a^{2/3}$$

11.1.6 Sphere

11.1.6.1 Volume The volume V of a sphere with radius r is

$$V = \frac{4}{3}\pi r^3$$

11.1.6.2 Surface Area The surface area A of a sphere with radius r is

$$A = 4\pi r^2$$

11.1.7 Right Cylinder

11.1.7.1 Volume The volumne V of a right cylinder with base area A and height H is

$$V = AH$$

11.1.8 Cone

11.1.8.1 Volume The volume V of a cone with base area A and height H is

$$V = \frac{1}{3}AH$$

11.1.9 Right Circular Cone

11.1.9.1 Volume The volume V of a right circular cone with radius r and height h is

$$V = \frac{1}{3}\pi r^2 h$$

11.1.9.2 Surface Area A right circular cone with radius r and height h has slant height $l = \sqrt{r^2 + h^2}$. Its surface area A is

$$A = \pi r^2 + \pi r l$$

11.2 Triangle Inequality

For any $a, b \in \mathbb{R}$,

$$|a| - |b| \le |a + b| \le |a| + |b|$$

11.3 Trigonometric Identities

11.3.1 Sum and Difference Formula

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

11.3.2 Double-Angle Formulae

$$\sin(2\theta) = 2\sin\theta\cos\theta = \frac{2\tan\theta}{1 + \tan^2\theta}$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta = \frac{1 - \tan^2\theta}{1 + \tan^2\theta}$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

$$\cot(2\theta) = \frac{\cot^2\theta - 1}{2\cot\theta}$$

$$\sec(2\theta) = \frac{\sec^2\theta}{2 - \sec^2\theta}$$

$$\csc(2\theta) = \frac{\sec\theta\csc\theta}{2}$$

11.3.3 Others

$$\frac{\sin x}{x} < 1$$
 and $|\sin x| \le |x|$

For
$$x \in (0, \frac{\pi}{2})$$
:

$$x < \tan x$$

11.4 Algebraic Identities

11.4.1 Difference of Cubes Formula

$$b^3 - c^3 = (b - c)(b^2 + bc + c^2)$$

11.4.2 Difference of Nth Power Formula

$$b^{n} - c^{n} = (b - c)(b^{n-1} + b^{n-2}c + b^{n-3}c^{2} + \dots + bc^{n-2} + c^{n-1})$$

11.5 Binomial Theorem

For $n \in \mathbb{Z}, n \geq 0$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$