What would	Bayesian	updating	look lik	e if a_i	were a v	ector ra	ther than a	a scalar?	

• Let A_i denote the vector, and suppose its population covariance is Δ

- Let A_i denote the vector, and suppose its population covariance is Δ
- $S_{it} = A_i + \varepsilon_{it}$ is a vector-valued signal

- Let A_i denote the vector, and suppose its population covariance is Δ
- $\mathbf{S}_{it} = A_i + \varepsilon_{it}$ is a vector-valued signal

$$\mathbb{E}_{t+1}[A_i] = (\mathbb{V}_t^{-1}[A_i] + \Omega_{it})^{-1} (\mathbb{V}_t^{-1}[A_i] \mathbb{E}_t[A_i] + \Omega_{it} \mathbf{S}_{it})$$

$$\mathbb{E}_{t+1}[A_i] = (\mathbb{V}_t^{-1}[A_i] + \Omega_{it})^{-1} (\mathbb{V}_t^{-1}[A_i] \mathbb{E}_t[A_i] + \Omega_{it} \mathsf{S}_{it})$$

 $\mathbb{V}_{t+1}[A_i] = (\mathbb{V}_t^{-1}[A_i] + \Omega_{it})^{-1}$

- Let A_i denote the vector, and suppose its population covariance is Δ
- $\mathbf{S}_{it} = A_i + \varepsilon_{it}$ is a vector-valued signal

$$egin{align} \mathbb{E}_{t+1}[A_i] &= (\mathbb{V}_t^{-1}[A_i] + \Omega_{it})^{-1} (\mathbb{V}_t^{-1}[A_i] \mathbb{E}_t[A_i] + \Omega_{it} \mathbf{S}_{it}) \ \mathbb{V}_{t+1}[A_i] &= (\mathbb{V}_t^{-1}[A_i] + \Omega_{it})^{-1} \ \end{aligned}$$

• Ω_{it} is a diagonal matrix with $\frac{1}{\sigma_{\varepsilon_i}^2}$ in the (j,j) element

- Let A_i denote the vector, and suppose its population covariance is Δ
- $S_{it} = A_i + \varepsilon_{it}$ is a vector-valued signal

$$\mathbb{E}_{t+1}[A_i] = (\mathbb{V}_t^{-1}[A_i] + \Omega_{it})^{-1} (\mathbb{V}_t^{-1}[A_i] \mathbb{E}_t[A_i] + \Omega_{it} \mathbf{S}_{it})$$

$$\mathbb{V}_{t+1}[A_i] = (\mathbb{V}_t^{-1}[A_i] + \Omega_{it})^{-1}$$

- Ω_{it} is a diagonal matrix with $\frac{1}{\sigma_{e}^2}$ in the (j,j) element
- Elements of Ω and **S** are set to 0 for signals that aren't received

- Let A_i denote the vector, and suppose its population covariance is Δ
- $S_{it} = A_i + \varepsilon_{it}$ is a vector-valued signal

$$\mathbb{E}_{t+1}[A_i] = (\mathbb{V}_t^{-1}[A_i] + \Omega_{it})^{-1} (\mathbb{V}_t^{-1}[A_i] \mathbb{E}_t[A_i] + \Omega_{it} \mathbf{S}_{it})$$

$$\mathbb{V}_{t+1}[A_i] = (\mathbb{V}_t^{-1}[A_i] + \Omega_{it})^{-1}$$

- Ω_{it} is a diagonal matrix with $\frac{1}{\sigma_{\varepsilon}^2}$ in the (j,j) element
- Elements of Ω and **S** are set to 0 for signals that aren't received
 - (i.e., not all signals need to be received in every period)

• In period 1, the individual begins with prior beliefs $(\mathbb{E}_1[a_i], \mathbb{V}_1[a_i])$

- In period 1, the individual begins with prior beliefs $(\mathbb{E}_1[a_i], \mathbb{V}_1[a_i])$
- Usually, set these to the population values $(0, \sigma_a^2)$ for all individuals

- In period 1, the individual begins with prior beliefs $(\mathbb{E}_1[a_i], \mathbb{V}_1[a_i])$
- Usually, set these to the population values $(0, \sigma_a^2)$ for all individuals
- Then, a signal S_{i1} is received and beliefs are updated according to the formulas:

- In period 1, the individual begins with prior beliefs $(\mathbb{E}_1[a_i], \mathbb{V}_1[a_i])$
- Usually, set these to the population values $(0, \sigma_a^2)$ for all individuals
- Then, a signal S_{i1} is received and beliefs are updated according to the formulas:

$$\mathbb{E}_{2}[a_{i}] = \underbrace{\mathbb{E}_{1}[a_{i}]}_{0} \frac{\sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2} + \underbrace{\mathbb{V}_{1}[a_{i}]}_{\sigma_{a}^{2}}} + S_{i1} \underbrace{\frac{\sigma_{a}^{2}}{\mathbb{V}_{1}[a_{i}]}}_{\mathbb{V}_{1}[a_{i}]}$$
$$= \frac{S_{i1}\sigma_{a}^{2}}{\sigma_{\varepsilon}^{2} + \sigma_{a}^{2}}$$

١	When S_{i1} is receiv	ved, i updates the	e variance as foll	ows:	

When S_{i1} is received, i updates the variance as follows:

$$\mathbb{V}_2[a_i] = \underbrace{\mathbb{V}_1[a_i]}_{\sigma_a^2} \frac{\sigma_arepsilon^2}{\sigma_arepsilon^2 + \underbrace{\mathbb{V}_1[a_i]}_{\sigma_a^2}}$$

When S_{i1} is received, i updates the variance as follows:

$$\mathbb{V}_{2}[a_{i}] = \underbrace{\mathbb{V}_{1}[a_{i}]}_{\sigma_{a}^{2}} \frac{\sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2} + \underbrace{\mathbb{V}_{1}[a_{i}]}_{\sigma_{a}^{2}}}$$

$$= \frac{\sigma_{a}^{2}\sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2} + \sigma_{a}^{2}}$$

It is straightforward to show that $\mathbb{V}_2[a_i] < \mathbb{V}_1[a_i]$ when $\sigma_a^2 > 0$

Back to the vector example:
Division in scalar form is replaced with matrix inversion

Back to the vector example:	
Division in scalar form is replaced with matrix inversion	

• Multiplication is replaced with matrix multiplication

Back	to	the	vector	exampl	e:
------	----	-----	--------	--------	----

- Division in scalar form is replaced with matrix inversion
- Multiplication is replaced with matrix multiplication
- Other matrices (e.g. Ω) defined for conformability