Práctico 0 Matemática Discreta I – Año 2024/1 **FAMAF**

(1) Dado el conjunto $A = \{1, 2, 3\}$, determinar cuáles de las siguientes afirmaciones son verdaderas:

i) 1 \in A

ii) $\{1\} \subset A$

 $(iii)\{2,1\} \subseteq A$ $(iv)\{1,3\} \in A$ $(v)\{2\} \in A$.

(2) Dado el conjunto $A = \{1, 2, \{3\}, \{1, 2\}\}$, determinar cuáles de las siguientes afirmaciones son verdaderas:

i) 3 \in A

(iv) {{3}}} $\subseteq A$

 $vii) \{\{1,2\}\} \subseteq A$ $viii)\{\{1,2\},\bar{3}\}\subseteq A$ $x)\emptyset\subseteq A$ xi) $A \in A$

(ii) {3} $\subseteq A$ *iii*) {3} ∈ *A* (v) {1, 2} $\in A$ vi) $\{1,2\} \subseteq A$

 $ix)\emptyset \in A$

xii) $A \subseteq A$.

Cuál es el cardinal de *A*?

(3) Determinar si $A \subseteq B$ en cada uno de los siguientes casos:

i) $A = \{1, 2, 3\}, B = \{5, 4, 3, 2, 1\}$

ii) $A = \{1, 2, 3\}, B = \{1, 2, \{3\}, -3\}$

iii) $A = \{x \in \mathbb{R} : 2 < x < 3\}, B = \{x \in \mathbb{R} : x^2 < 3\}$

iv) $A = \{\emptyset\}, B = \emptyset.$

- (4) Dados $A = \{1, 3, 5, 7, 8, 11\}$ y $B = \{-1, 3, -5, 7, -8, 11\}$, hallar $A \cap B$, $A \cup B$, B-A.
- (5) Dados los subconjuntos $A = \{1, -2, 7, 3\}, B = \{1, \{3\}, 10\} \ y C = \{1, \{3\}, \{3\}, \{10$ $\{-2, \{1, 2, 3\}, 3\}$ del conjunto referencial $V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\}$ hallar

i) $A \cap (B - C)$

 $(A \cap B) - (A \cap C)$

 $iii) A^c \cap B^c \cap C^c$.

(6) Dados subconjuntos A,B,C de un conjunto referencial V, describir $(A \cup B \cup C)^c$ en términos de intersecciones y complementos, y $(A \cap B \cap C)^c$ en términos de uniones y complementos.

1

(7) Hallar el conjunto $\mathcal{P}(A)$ de partes de A en los casos

i) $A = \{1\}$

 $iii) A = \{1, \{1, 2\}\}$

 $v) A = \{1, a, \{-1\}\}\$ $vi) A = \emptyset$

 $(ii) A = \{a, b\}$

 $(iv) A = \{a, b, c\}$

(8) Sean A
ot B conjuntos. Probar que $\mathcal{P}(A) \subseteq \mathcal{P}(B) \Leftrightarrow A \subseteq B$.

(9) Sean p, q proposiciones Verdaderas o Falsas. Comparar las tablas de verdad de

$$p \Rightarrow q$$
, $\sim q \Rightarrow \sim p$, $\sim p \vee q$, $\sim (p \wedge \sim q)$

(Cuando para probar $p \Rightarrow q$ se prueba en su lugar $\sim q \Rightarrow \sim p$ se dice que es una demostración por contrarrecíproco, mientras que cuando se prueba en su lugar que $p \land \sim q$ es falso, lleva a una contradicción, se dice que es una demostración por el absurdo).

- (10) Supongamos que las siguientes dos afirmaciones son verdaderas:
 - No todos los estudiantes de matemática de la facultad son argentinos.
 - Todos los que toman mate que no son argentinos, no son estudiantes de matemática de la facultad.

Decidir si esto implica:

- No todos los estudiantes de matemática de la facultad toman mate.
- (11) Decidir si son verdaderas o falsas las siguientes proposiciones:

i) $(a) \, \forall \, n \in \mathbb{N}, \, n \geq 5 \qquad \qquad (d) \, \exists \, n \in \mathbb{N}, \, n \geq 5 \wedge n \leq 8$ $(b) \, \exists \, n \in \mathbb{N}, \, n \geq 5 \qquad \qquad (e) \, \forall \, n \in \mathbb{N}, \, \exists \, m \in \mathbb{N}, \, m > n$ $(c) \, \forall \, n \in \mathbb{N}, \, n \geq 5 \vee n \leq 8 \quad (f) \, \exists \, n \in \mathbb{N}, \, \forall \, m \in \mathbb{N}, \, m > n$

- ii) Negar las proposiciones anteriores, y en cada caso verficar que la proposición negada tiene el valor de verdad opuesto al de la original.
- iii) En cada uno de los casos siguientes, decidir si las dos proposiciones tienen el mismo valor de verdad. Dar un contraejemplo cuando no es el caso.

$$\begin{array}{lll} (a) \, \exists \, x \exists \, y, \, p(x,y) \, \, y \, \exists \, y \exists \, x, \, p(x,y) \\ (b) \, \forall \, x \forall \, y, \, p(x,y) \, \, y \, \forall \, y \forall \, x, \, p(x,y) \end{array} \qquad \qquad \begin{array}{ll} (c) \, \exists \, x \forall \, y, \, p(x,y) \, \, y \, \forall \, y \exists \, x, \, p(x,y) \\ (d) \, \forall \, x, \, p(x) \, \, y \, \sim \, \exists \, x, \, \sim \, p(x) \end{array}$$

- (12) Sean $A = \{1, 2, 3\}, B = \{1, 3, 5, 7\}$. Hallar $A \times A$, $A \times B$, $(A \cap B) \times (A \cup B)$.
- (13) Sean A, B y C conjuntos. Demostrar que:

$$i) (A \cup B) \times C = (A \times C) \cup (B \times C)$$

$$ii) (A \cap B) \times C = (A \times C) \cap (B \times C)$$

$$iii) (A \cap B) \times C = (A \times C) \cap (B \times C)$$