소아 장 병리영상 (Whole Slide Imaging)을 이용한 장 신경절 영역 정량화

KUBIG MEDICAL AI팀 13기 박재찬, 최해윤 14기 김혜림, 김소형, 최대원, 이연정

프로젝트 소개

서류 심사 (37팀) → 예선 (20팀) → 본선 (10팀) → 수상 (5팀)

예선 10/18~11/12 본선 11/16~11/23

결과 서류 통과 → 예선 (4위 / 20팀) → 본선 (7위 /10팀)

프로젝트 소개

Task 소개

• 병리 영상 sematic segmentation 후 면적 계산

Layer 3: 회색 (근육층) Layer 5: 흰색 (신경절)

Hirchsprung's disease 처럼 장 신 경절 발달 이상에 있는 질병을 진단 할때 활용

Overview

inference

Pipeline

2000

1000 2000 3000

1000 2000 3000

Pipeline

2000

1000 2000 3000

1000 2000 3000

Preprocessing

병리 영상 (Whole Slide Imaging)의 format

디지털 병리 영상은 정밀한 판독을 해야하기 때문에 해상도가 매우 높고 용량도 매우 큼.

Zoom in/out을 원활하게 하기 위해 다양한 해상도의 level들이 동시에 저장되어 있음.

mpp (micrometers/pixel) : 0.5 (x20) , 0.25 (x40)

Level 0 : 가장 큰 해상도의 이미지 Level 1 : 가로, 세로 4분의 1크기

Level 2 : 16분의 1 크기

Level이 낮을수록 고 해상도이지만, 동시에 계산량이 많아짐. 우리의 task에 맞는 level은 무엇일까? → 결국 GPU, 시간상의 한계 때문에 level2만 활용해봄 ㅠㅠ

Preprocessing

-patch extraction 256x256 크기로 patch를 뜯음

-stain normalization

병리 AI의 가장 큰 장벽 병원마다, 랩실마다 H&E staining 농도가 다름. 사람이 판독할때는 상관없지만, AI는 이에 큰 영향을 받아서 반드시 normalize해줘야함.

Preprocessing

+ details… Data normalization Outlier 제거 Unbalanced 데이터 분포 보정하기 위해 sorting Overlapping patch

Pipeline

1000 2000 3000

1000 2000 3000

Attention UNET: 기존 unet에서 attention 메커니즘 추가

Pretrained: EfficientNet B6

이외에도 Unet++,Unet3+,TransUnet 사용해보았으나 GPU, 시간적인 요인을 고려해 Attention Unet 사용함.

Loss function

선행 연구 조사를 통해, 최종적으로 BCE+ Dice loss를 loss function으로 사용.

BCE

일반적인 binary cross entropy loss

Semantic segmentation에 사용시, 작은 물체에 대해서 <u>false</u> positive나 false negative를 반영하지 못하는 문제가 생길 수 있음.

Loss function

Dice loss

semantic segmentation의 평가지표 중 하나인 dice coefficient를 loss로 활용할 수 있게, 미분이 가능하도록 만들어진 함수

$$Dice = \frac{2 \times TP}{(TP + FP) + (TP + FN)}$$

Loss function

선행 연구 조사를 통해, 최종적으로 BCE+ Dice loss를 loss function으로 사용.

BCE loss와 dice loss 합한 loss를 사용하였을때, iou와 함께 대회에서 요구하는 면적까지 잘 예측함.

Loss function

이외에도 아이디어를 내어 여러가지 loss를 시도해봄.

Focal loss: 잘 못맟추는 pixel에 가중치를 두어 학습, iou는 높은데 **면적을 잘 못 맞춤**

Focal loss + area loss : 면적까지 잘 맞춤 - 예선 4위

BCE+ Dice loss (by channel): layer5에서 더 빠른 학습 속도를 보임.

Results


```
total_iou=result_iou.mean(0)
print('total iou')
print('loU of layer3: {}'.format(total_iou[0]))
print('loU of layer5: {}'.format(total_iou[1]))

total iou
loU of layer3: 0.8840787792205811
loU of layer5: 0.7113830045859019

total_ratio=result_ratio.mean(0)
print('total ratio')
print('ratio of layer3: {}'.format(total_ratio[0]))
print('ratio of layer5: {}'.format(total_ratio[1]))
```

total ratio

ratio of layer3: 1.2158388349474825 ratio of layer5: 1.85108368514118

Discussion

1. Pretrained backbone의 중요성을 늦게 깨달음

많지 않은 데이터로 학습을 하려다 보니, 'imagenet'으로 pretrained된 backbone이 성능이 중요하기 때문에 다양한 backbone을 시도해봤어야 하나 이를 너무 늦게 시도함.

Disussion

2. Preprocessing에서 image augmentation, stain normalization 등을 했을때 훈련이 잘 안되고 성능이 오히려 떨어짐.

병리 영상 판독 시 필요한 feature를 손실시키지 않는 수준에서 preprocessing을 시도해야하나, 문제가 생긴 듯함.

이러한 문제 때문에 image augmentation을 포기하였으나, 가능한 선에서 최대한 시도를 더 해보면 좋지 않았을까..

Discussion

3. 해상도/크기의 문제?

Level2밖에 시도해보지 못했으나, 그 해상도 자체가 layer 5를 판단하는데 충분하지 못할 가능성이 있다.

또한, 256x256보다는 더 큰 크기의 이미지를 사용했을 때 더 넓은 범위를 input으로 받아들여 더 좋은 성능을 낼 가능성도 있음.

Thank You!

