Accepted Manuscript

Antioxidant and immunostimulatory effect of potential probiotic *Lactobacillus* paraplantarum SC61 isolated from Korean traditional fermented food, *jangajji*

Sung-Ho Son, Seo-Jin Yang, Hye-Lin Jeon, Hyung-Seok Yu, Na-Kyoung Lee, Young-Seo Park, Hyun-Dong Paik

PII: \$0882-4010(18)30423-6

DOI: 10.1016/j.micpath.2018.10.018

Reference: YMPAT 3212

To appear in: Microbial Pathogenesis

Received Date: 8 March 2018

Revised Date: 12 October 2018 Accepted Date: 15 October 2018

Please cite this article as: Son S-H, Yang S-J, Jeon H-L, Yu H-S, Lee N-K, Park Y-S, Paik H-D, Antioxidant and immunostimulatory effect of potential probiotic *Lactobacillus paraplantarum* SC61 isolated from Korean traditional fermented food, *jangajji*, *Microbial Pathogenesis* (2018), doi: https://doi.org/10.1016/j.micpath.2018.10.018.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

C	ORIGINAL ARTICLE
A	Antioxidant and immunostimulatory effect of potential probiotic
I	Lactobacillus paraplantarum SC61 isolated from Korean
t	raditional fermented food, <i>jangajji</i>
S	Sung-Ho Son ^a , Seo-Jin Yang ^a , Hye-Lin Jeon ^a , Hyung-Seok Yu ^a , Na-Kyoung Lee ^a ,
Y	Young-Seo Park ^b , and Hyun-Dong Paik ^{a,*}
a ·	Department of Food Science and Biotechnology of Animal Resources, Konkuk University,
1	20 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
b	Department of Food Science and Biotechnology, Gachon University, Seongnam 13120,
K	Korea
*	* Corresponding author.
E	E-mail address: hdpaik@konkuk.ac.kr (HD. Paik).

ABSTRACT

$\overline{}$	
	_

This study aimed to isolate and demonstrate their antioxidant and immunostimulatory
activities of potential probiotics. The isolated strains, S. Pum19, SC28, and SC61 showed
potential probiotic properties including stability in artificial gastric and bile conditions, non-
production of β -glucuronidase, suitable antibiotic susceptibility, and attachment to intestinal
cells. S. Pum19, SC28, and SC61 strains were identified as Leuconostoc citreum,
Pediococcus pentosaceus, and Lactobacillus paraplantarum, respectively. Of the 3 potential
probiotic LAB strains, intact cells of L. paraplantarum SC61 showed higher antioxidant
activity, including DPPH radical scavenging, β -carotene bleaching inhibition, reducing power,
superoxide anion scavenging, and ABTS radical scavenging activity. In addition, L .
paraplantarum SC61 produced the most nitric oxide production and its mRNA expression
level for iNOS, IL-1 β , IL-6, and TNF- α were superior to those of L. rhamnosus GG.
Therefore, L. paraplantarum SC61 was demonstrated to exhibit antioxidant and
immunostimulatory activity and to have potential use as a probiotic product.

40 Keywords: *Lactobacillus*; Probiotic; Safety; Antioxidant activity; Immunostimulatory activity

1. Introduction

Probiotics are live microorganisms that confer a health benefit on the host when administered in adequate amounts [1]. Probiotics must be able to survive in and colonize the gastrointestinal tract in order to improve the health of the host [2]. *Lactobacillus*, *Leuconostoc*, *Pediococcus*, and *Bifidobacterium* species are common probiotic strains and are widely used as probiotics products in industry. Several studies have indicated that probiotics have shown various functional effects, such as antioxidant, anti-inflammatory [3], anti-biofilm, and antidiabetic activities [4].

Reactive oxygen metabolites (ROMs) are created through normal biological processes and can cause damage to proteins, mutations in DNA, oxidation of membrane phospholipids, and modification in low-density lipoproteins [5]. Excessive amounts of ROMs can result in cellular damage, leading to atherosclerosis, arthritis, diabetes, neurodegenerative diseases, cardiovascular diseases, and cancer [6]. The antioxidative properties, including radical scavenging, metal ion chelation, enzyme inhibition, among others, of several *Lactobacilli* and *Bifidobacteria* strains have been reported [7,8].

Immunity describes the state of having sufficient biological defenses to avoid disease, infection, or unwanted biological invasion. Immunity is the natural resistance that provides defense through several physical, chemical, and cellular approaches. Subsequent general defenses include secretion of cytokines and antimicrobial substances, fever, and phagocytic activity related to inflammatory responses. The intestinal microbiota could play a fundamental role in maintaining immune homeostasis [9]. Some probiotics have been shown to enhance proinflammatory cytokines, and *Lactobacillus acidophilus* La205 enhanced natural killer cells [4,10].

	ACCEPTED MANUSCRIPT
65	Jangajji (pickled vegetable) is a Korean side dish made from garlic, pepper leaves,
66	cucumbers, radishes, and other vegetables using doenjang, ganjang, or gochujang. A study on
67	lactic acid bacteria (LAB) isolated from jangajji reported the antimutagenicity of
68	Lactobacillus paracasei subsp. tolerans JG22 [11]. The aim of this study was to isolate and
69	identify strains which probiotic properties from various foods and to evaluate their
70	antioxidant activity, and immune-enhancing activity.
71	
72	
73	2. Materials and methods
74	
75	2.1. Bacterial strains and culture conditions
76	Leuconostoc citreum S.Pum19, Pediococcus pentosaceus SC28, and Lactobacillus
77	paraplantarum SC61 were isolated from pumpkin, octopus jeotgal, and burdock jangajji,
78	respectively and identified by 16S rRNA sequencing. Lactobacillus rhamnosus GG, a
79	reference probiotic strain, was obtained from the Korean Collection for Type Cultures (Jeolla-
80	do, Korea). All LAB strains were isolated using lactobacilli MRS agar (BD Biosciences,
81	Franklin Lakes, NJ, USA) and stored in MRS broth with 20% (v/v) glycerol (Sigma-Aldrich,
82	St. Louis, MO, USA) at -80 °C.
83	
84	2.2. Tolerance to gastric acid and bile salt
85	The gastric acid and bile salt tolerances of LAB strains were determined according to the
86	method of Jeon et al. [12]. To evaluate gastric acid tolerance, LAB strains were incubated in
87	10 mL MRS broth at 37 °C for 18 h. This cultured medium was inoculated into MRS broth
88	with 0.3% pepsin (Sigma-Aldrich), adjusted to pH 2.5 using 1 N HCl, and incubated at 37 °C

89	for 3 h. Diluted bacterial cell suspension was spread on MRS agar at 0 and 3 h, and bacterial
90	cell concentration was determined as log CFU/mL.
91	To evaluate bile salt tolerance, LAB strains were grown in 10 mL MRS broth at 37 °C
92	for 18 h. This cultured medium was inoculated into MRS broth added with 0.3% oxgall (BD),
93	and incubated at 37 °C for 24 h. Diluted bacterial cell suspension was spread on MRS agar at
94	0 and 24 h, bacterial cell concentration was determined as log CFU/mL.
95	
96	2.3. Enzyme activity and antibiotic susceptibility
97	The enzyme activity was determined using the API ZYM kit (BioMerieux, Lyons,
98	France). Cultured bacterial cells were harvested by centrifugation at $8,000 \times g$ for 10 min at
99	4 °C. Cell pellets were resuspended in phosphate-buffered saline (PBS; Invitrogen, Carlsbad,
100	CA, USA). Sixty-five microliters of cell suspension (10 ⁵ CFU/mL) were added to each
101	cupule and incubated at 37 °C for 4 h. Enzyme activity of LAB strains was recorded on a
102	scale of 0 to 5 according to color intensity.
103	One hundred microliters of LAB culture were plated on MRS agar, and commercial
104	antibiotic paper discs (ampicillin (10 μg), gentamicin (10 μg), kanamycin (30 μg),
105	streptomycin (10 μg), tetracycline (30 μg), ciprofloxacin (5 μg), chloramphenicol (30 μg),
106	and doxycycline (30 μ g)) were placed onto the MRS plates. After incubation at 37 °C for 24 h,
107	the diameter (mm) of the inhibition zone was evaluated according to the guidelines of the
108	Clinical and Laboratory Standards Institute [13].
109	
110	2.4. Adhesion ability to intestinal cells
111	HT-29 cells (Korean Cell Line Bank, Seoul, Korea) were cultured in Roswell Park
112	Memorial Institute (RPMI) 1640 medium (Hyclone, Logan, UT, USA) supplemented with 10%

113 (v/v) fetal bovine serum (FBS) (Hyclone) and 1% (v/v) penicillin/streptomycin (Hyclone). 114 Overnight cultures of LAB strains were harvested by centrifugation at 8,000 × g at 4 °C for 115 10 min and resuspended in PBS. Then, 0.1 mL of bacterial suspension was added to HT-29 cells seeded at 1×10^5 cells/mL in 24-well tissue culture plates. After incubation at 37 °C for 116 2 h under 5% CO₂, non-adhesive bacteria were removed by washing with PBS 3 times, and 117 118 adhesive bacteria were detached by 1% (v/v) Triton-X100 solution (Sigma-Aldrich). 119 Adhesive bacteria were by the plate count method using MRS agar. 120

of adhered bacterial cells (N_{2h}) divided by the initial number of bacterial cells (N_{0h}) .

121 122

Adhesion ability (%) =
$$\frac{N_{2 h}}{N_{0 h}} \times 100$$

The adhesion ability of the LAB strains to HT-29 cells was calculated as the percentage

123

125

126

127

128

129

130

124 2.5. Cell surface hydrophobicity and autoaggregation

> For cell surface hydrophobicity, overnight cultures of LAB strains were harvested by centrifugation at 8,000 × g for 10 min at 4 °C and washed twice with PBS, and resuspended in PBS adjusted to an absorbance of 0.5 ± 0.02 at 600 nm (OD_{Initial}). Then, 3 mL of bacterial suspension and 1 mL of xylene were mixed and preincubated at 37 °C for 10 min. The mixture was kept at 37 °C for 20 min to allow separation into water and xylene phases. The aqueous phase was collected and its absorbance measured at 600 nm (OD_{Time}).

131

The cell surface hydrophobicity of the LAB strains was calculated using the following formula:

133

Cell surface hydrophobicity (%) =
$$(1 - \frac{OD_{Time}}{OD_{Initial}}) \times 100$$

For autoaggregation, overnight cultures of LAB strains were harvested by centrifugation at $8,000 \times g$ for 10 min at 4 °C, washed twice with PBS, and resuspended in PBS adjusted to an absorbance of 0.3 ± 0.05 at 600 nm (OD_{Initial}). Then, 4.5 mL of bacterial suspension was vortexed and incubated at 4 °C for 4 and 24 h, respectively. One milliliter of bacterial suspension was collected and its absorbance at 600 nm measured (OD_{Time}).

The autoaggregation of the LAB strains was calculated using the following formula:

Autoaggregation (%) =
$$(1 - \frac{OD_{Time}}{OD_{Initial}}) \times 100$$

- 143 2.6. Antioxidant activity
- 144 2.6.1. Preparation of intact cells

Overnight LAB cultures were centrifuged at $8,000 \times g$ for 10 min at 4 °C, and the resulting bacterial cell pellets were washed three times with PBS, and resuspended in PBS at a final concentration of 1×10^8 CFU/mL for antioxidant activity.

2.6.2. 1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity

The DPPH radical scavenging activity of the LAB strains was determined according to a previously described method [14]. Two milliliters of intact cells and 2 mL of 0.4 mM DPPH solution in methanol were mixed and incubated at 37 °C for 30 min in the dark. After incubation, the reaction mixture was centrifuged at $8,000 \times g$ for 10 min at 4 °C, and the absorbance of the supernatant at 517 nm was measured. The DPPH radical scavenging activity of the LAB strains was calculated using the following formula:

DPPH radical scavenging activity (%) = $(1 - \frac{OD_{Sample}}{OD_{Control}}) \times 100$

Where OD_{Sample} and OD_{Control} are absorbance of samples and of distilled water, respectively, mixed with DPPH solution.

2.6.3. β-Carotene bleaching inhibitory activity

The β -carotene bleaching inhibitory activity of LAB strains was determined according to the method of Kachouri *et al.* [15]. A β -carotene-linoleic acid mixture was prepared as follows: 66 μ L of linoleic acid, 3 mg of β -carotene, 300 μ L of Tween 80, and 10 mL of chloroform were mixed and evaporated using a vacuum evaporator. The mixture was then diluted with 75 mL of distilled water. Two hundred microliters of intact cells and 4 mL of β -carotene-linoleic acid mixture were mixed and incubated at 37 °C for 2 h in the dark. The absorbance of the samples at 470 nm was measured, and the β -carotene bleaching inhibitory activity was calculated according to the following formula:

$$\beta \text{-Carotene bleaching inhibitory activity (\%)} = (\frac{OD_{Sample,2\;h} - OD_{Control,2\;h}}{OD_{Control,0\;h} - OD_{Control,2\;h}}) \times 100$$

Where OD_{Sample} and $OD_{Control}$ are the absorbance of samples and of distilled water, respectively, mixed with β -carotene-linoleic acid solution.

2.6.4. Reducing power activity

The reducing power activity of LAB strains was determined according to the method of Das and Goyal [16]. Two hundred microliters of intact cells were mixed with 0.2 mL of 0.2

M sodium phosphate buffer (pH 6.6) and 0.2 mL of 1% potassium ferricyanide, and the
reaction mixture was incubated at 50°C for 20 min. After incubation, 0.2 mL of 10%
trichloroacetic acid was added and centrifuged at $8,000 \times g$ for 10 min at 4 °C. Five hundred
microliters of the supernatant were mixed with 0.1 mL of 0.1% ferric chloride (Sigma-
Aldrich) and 0.4 mL of distilled water and reacted for 10 min. The absorbance of the samples
at 700 nm was measured, and L-cysteine (Sigma-Aldrich) was used as a standard.

2.6.5. Superoxide anion scavenging activity

The superoxide anion scavenging activity of LAB strains was determined according to the method of Das and Goyal [16]. The reaction mixture was prepared as follows: 0.2 M sodium phosphate buffer, 50 μ M nitrobluetetrazolium (NBT), 75 μ M nicotinamide adenine dinucleotide (NADH), and 15 μ M phenazine methosulfate (PMS) were mixed. Fifty microliters of intact cells were added to 1 mL of reaction mixture and incubated at 37 °C for 10 min. The absorbance of the samples at 560 nm was measured, and the superoxide anion scavenging activity was measured according to the following formula:

Superoxide anion scavenging activity (%) =
$$(\frac{OD_{Control} - OD_{Sample}}{OD_{Control}}) \times 100$$

Where OD_{Sample} and $OD_{Control}$ are the absorbance of samples and of distilled water, respectively, mixed with reaction mixture.

- 2.6.7. 2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical
 scavenging activity
- The ABTS radical scavenging activity of LAB strains was determined according to the

method of Ji *et al.* [18]. The ABTS radical cation (ABTS⁺) was produced by allowing an ABTS (Sigma-Aldrich) stock solution with 5.5 mM potassium persulfate (Sigma-Aldrich) to stand in the dark for at least 6 h before use. Before use, the ABTS⁺ solution was diluted with distilled water to an adjusted absorbance of 0.7 at 734 nm. One hundred fifty microliters of intact cells were mixed with 1.35 mL of ABTS⁺ solution, incubated at 37 °C for 10 min, and centrifuged at $8,000 \times g$ for 10 min at 4 °C. The absorbance of the samples at 734 nm was measured, and the ABTS radical scavenging activity was calculated according to the following formula:

ABTS radical scavenging activity (%) =
$$(1 - \frac{OD_{Sample}}{OD_{Control}}) \times 100$$

Where OD_{Sample} and $OD_{Control}$ are the absorbance of the samples and of distilled water, respectively, mixed with $ABTS^+$ solution.

- 214 2.7. Immunostimulatory activity
- 215 2.7.1. Nitric oxide (NO) production activity
- Raw 264.7 cells were obtained from the Korean Cell Line Bank. Raw 264.7 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Hyclone) supplemented with 10% (v/v) fetal bovine serum (FBS) (Hyclone), and 1% (v/v) penicillin/streptomycin (Hyclone).

The NO production activity of LAB strains was determined according to a previously reported method with minor modifications [7]. A suspension of 2 \times 10⁵ cells/well in a final volume of 1 mL was added to 96-well tissue culture plate. Raw 264.7 cells were maintained under 5% CO₂ at 37 °C for 2 h to allow adhesion of peritoneal macrophages in the plate. Raw 264.7 cells were stimulated with 1 μ g/mL lipopolysaccharide (LPS; Sigma-Aldrich) or LAB

224	strains (1 \times 10 ⁶ CFU/mL) under 5% CO ₂ at 37 °C for 24 h. One hundred microliters of cell
225	culture supernatant and 100 μL of Griess reagent were mixed and incubated for 10 min at
226	room temperature. The absorbance of the sample at 540 nm was measured. The NO
227	concentration was obtained by measuring the nitrite concentration in the cell culture
228	supernatant using the Griess reagent system.
229	
230	2.7.2. Reverse transcription-polymerase chain reaction (PCR) analysis
231	Raw 264.7 cells were seeded at 5×10^5 cells/mL into a 6-well tissue culture plate with
232	treated LPS (1 $\mu g/mL$) or LAB strains (1 \times 10 ⁶ CFU/mL) under 5% CO ₂ at 37 °C for 20 h.
233	Total RNA was extracted using the RNeasy Mini total RNA isolation Kit (Qiagen Korea,
234	Seoul, Korea). Reverse transcription-polymerase chain reaction (RT-PCR) was performed
235	using a reverse transcription master mix (5 ×) (Lamda Biotech, Ballwin, MO, USA). The
236	following primers were used: β -actin sense, 5'-GTCGGCCGCCCTAGGCACCAG-3'; β -
237	actin antisense, 5'-GGAGGAAGAGGATGCGGCAGT-3'; iNOS sense, 5'-CCCTTCCGAA-
238	GTTTCTGGCAGCAG C-3'; iNOS antisense 5'-GGCTGTCAGAGTCTCGTGGCTTTGG-
239	3'; TNF-α sense, 5'-GCAGAAGAGGCACTCCCCCA-3'; TNF-α antisense, 5'-GATCCAT-
240	GCCGTTGGCCAGG-3'; IL-1β sense, 5'-CAGGATGAGGACATGAGCACC-3'; IL-1β
241	antisense, 5'-CTCTGCAGACTCAAACTCCAC-3'; IL-6 sense, 5'-AGTTGCCTTCTTG-
242	GGACT GA-3'; and IL-6 antisense, 5'-TTCTGCAAGTGCATCATCGT-3'. The PCR
243	products were separated using a 1.5% agarose gel.
244	
245	2.7.3. Semi-quantitative real time PCR analysis
246	Semi-quantitative real-time PCR was performed using the SYBR Green PCR Master
247	Mix in a real-time PCR (Thermo Fisher Scientific, Waltham, MA, USA). The reaction
248	mixture comprised SYBR Green master mix (2 ×), primer, cDNA, and RNase free water.

	ACCEPTED MANUSCRIPT
249	Twenty microliters of mixture were amplified as follows: 95 °C for 2 min, followed by 40
250	cycles of 95 °C for 5 sec, 60 °C for 30 sec, and 60 °C for 30 sec. The reaction was followed
251	by a melt curve analysis to determine its reaction specificity.
252	
253	2.8. Statistical analysis
254	All experiments were repeated three times with duplicate samples, and data are presented
255	as means \pm standard deviations. SPSS 18.0 was used for all statistical analysis. Significant
256	differences among the means were determined by one-way analysis of variance (ANOVA).
257	Values were considered statistically significant at p < 0.05.
258	
259	
260	3. Results and discussion
261	
262	3.1. Gastric acid and bile salt tolerance of LAB strains
263	When passing through the gastrointestinal tract, LAB strains encounter the low pH (2.5-
264	3.5) environment of the stomach and 0.3% bile salt concentrations in the intestinal tract [3,7].
265	The tolerance of LAB strains to gastric acid and bile salt is presented in Table 1. The bacterial
266	cell counts of L. citreum S.Pum 19 and P. pentosaceus SC28 decreased after 3 h of incubation
267	in gastric acid conditions (0.3% pepsin at pH 2.5), but the bacterial cell counts of L .
268	rhamnosus GG and L. paraplantarum SC61 did not decrease after 3 h of incubation. The
269	bacterial cell counts of isolated three strains slightly decreased after 24 h of incubation in bile
270	salt conditions (0.3% oxgall), while the L. rhamnosus GG cell count did not. Our findings

agreed with those in a report on L. plantarum EM and its high survival rate in acidic (pH 2.5,

1 h) and bile salt conditions (0.3% oxgall, 3 h) [19]. Decrease of cell viability in gastric

271

_	ACCEPTED MANUSCRIPT
273	conditions originated from low pH, bactericidal component of pepsin and bile, and these
274	circumstance influenced disruption the cell membrane [9].
275	
276	3.2. Enzyme production and antibiotic susceptibility of LAB strains
277	β-Glucuronidase can induced negative effects by affecting carcinogenic enzyme a in the
278	intestinal tract [20]. β-Glucuronidase activity was not detected in any of the tested LAB
279	strains; various enzymes, such as leucine arylamidase, valine arylamidase, acid phosphatase,
280	and naphthol-AS-BI-phosphohydrolase, were detected (data not shown).
281	Antibiotic susceptibility of LAB strains is considered when assessing the safety of
282	probiotics, because resistance genes of probiotic strains can be transferred to pathogenic
283	strains in the intestinal tract [21]. All the LAB strains were sensitive to ampicillin,
284	tetracycline, chloramphenicol, and doxycycline, while they were all resistance to kanamycin,
285	streptomycin, and ciprofloxacin (data not shown). CLSI guidelines suggested the bacterial
286	susceptibility in a view of the possibility of transfer of antibiotic resistance gene to
287	pathogenic bacteria related to drug-resistant strains [13]. In addition, some bacteria was
288	known as intrinsic resistance. The resistance of these results suggested that the tested LAB
289	strains are safe according to the CLSI guidelines [13].
290	
291	3.3. Adhesion ability of LAB strains to intestinal cells
292	Adhesion ability of LAB strains relates to the colonization of probiotic strains in the
293	intestinal tract, which provides beneficial effects, such as exclusion of pathogenic strains and
294	host immunomodulation [7,10]. The adhesion ability of the LAB strains is presented in Fig. 1
295	L. paraplantarum SC61 and P. pentosaceus SC28 showed high adhesion abilities of 6.26%
296	and 4.03%, respectively; these adhesion abilities were superior to that of L. rhamnosus GG

(2.74%) (Fig. 1). In another study, L. fermentum LP2 (14.4%) showed a higher adhesion

298	ability to	Caco-2	cells th	han did	L. rh	amnosus	GG ((7%)	[22]	1

Cell surface hydrophobicity and autoaggregation of LAB strains are connected to adhesion ability and aid colonization of the intestinal tract. An upper limit of 40% cell surface hydrophobicity is a prerequisite for probiotic strains [23]. The cell surface hydrophobicity and autoaggregation of the tested LAB strains are presented in Table 2. *L. paraplantarum* SC61 (56.16%) showed the highest cell surface hydrophobicity in xylene, and its value was superior to that of *L. rhamnosus* GG (42.28%). All LAB strains exhibited a high percentage of autoaggregation ranging from 64% to 70% after incubation at 37 °C for 24 h. *L. plantarum* KJ722784 was reported to have a high hydrophobicity in n-hexadecane [24]. *L. acidophilus* DSM9126 was the highest autoaggregation (69%) after 24 h [25].

3.4. Antioxidant activity of LAB strains

Antioxidants are chemical compounds that play roles in prevention or reduction of oxidative damage by free radicals [26]. Various components, such as NADH, proteins, and antioxidant enzymes produced by LAB strains are related to antioxidant activity [8]. The DPPH radical scavenging activity of LAB strains is presented in Fig. 2A. *L. paraplantarum* SC61 (51.06%) exhibited a DPPH radical scavenging activity higher than that of the other tested LAB strains and of *L. rhamnosus* GG (39.31%); *L. citreum* S.Pum19 (32.73%) exhibited the next highest activity, followed by *P. pentosaceus* SC28 (32.60%) (Fig. 2A). In a previous study, *L. paracasei* FM-LP-4 showed higher DPPH radical scavenging activity than did *L. rhamnosus* GG [14].

The β -carotene bleaching inhibition activity of LAB strains is presented in Fig. 2B. The β -carotene bleaching inhibition activity of *L. paraplantarum* SC61 (35.64%) was similar to that of *L. rhamnosus* GG (35.06%); *L. citreum* S.Pum19 (30.25%) had the next highest activity, followed by *P. pentosaceus* SC28 (29.42%) (Fig. 2B). Another study observed that

323	intact L. lactis KC24 cells showed 58.73% inhibition of β-carotene bleaching activity [7].
324	The reducing power activity of LAB strains is presented in Fig. 2C. The reducing power
325	of L. paraplantarum SC61 (101.41 μM) was similar to that of L. rhamnosus GG (105.48 μM)
326	followed by L. citreum S.Pum19 (72.52 μ M) and P. pentosaceus SC28 (72.43 μ M) (Fig. 2C)
327	In a previous study, a 10^{10} CFU/mL bacterial cells of L. plantarum DM5 (140 μ M) exhibited
328	high reducing power activity [16]. In addition, L. paracasei FM-LP-4 showed higher
329	reducing power activity than did L. rhamnosus GG [14].
330	The superoxide anion scavenging activity of LAB strains is presented in Fig. 2D. The
331	superoxide anion scavenging activity of L. paraplantarum SC61 (30.22%) was similar to that
332	of L. rhamnosus GG (27.66%); followed by P. pentosaceus SC28 (23.32%) and L. citreum
333	S.Pum19 (18.26%) (Fig. 2D). L. plantarum DM5 showed 48% superoxide anion scavenging
334	activity at 1×10^{10} CFU/mL of bacterial cells [16]. Ren <i>et al.</i> [17] observed that several LAB
335	strains had superoxide anion scavenging activity ranging from 40-74%.
336	The ABTS radical scavenging activity of LAB strains is presented in Fig. 2E. The ABTS
337	2radical scavenging activity of L . paraplantarum SC61 (17.32%) was similar to that of L
338	rhamnosus GG (19.38%); followed by L. citreum S.Pum19 (3.35%) and P. pentosaceus SC28
339	(3.34%) (Fig. 2E). In a previous study, the intracellular extract of Enterococcus durans
340	LAB18s (9.4%) was shown to have high ABTS radical scavenging activity [27]. Additionally
341	Han et al. [28] recently showed that intact P. pentosaceus R1 cells exhibited the highest
342	ABTS radical scavenging activity (42.4%).
343	
344	3.5. Immunostimulatory activity of LAB strains
345	LAB strains can promote the growth of macrophages, which selectively aid in the
346	removal of harmful microorganisms and exterior material, and immunostimulatory activity
347	via production proteins and enzymes related to immune activity [10]. The NO producing

348	activity of L. paraplantarum SC61 (14.77 µM) is highest among the other tested strains and
349	superior to that of <i>L. rhamnosus</i> GG (1.61 μM), followed by <i>L. citreum</i> S.Pum19 (0.64 μM)
350	and P. pentosaceus SC28 (0.53 µM) (data not shown). In a previous study, Leuconostoc
351	mesenteroides DH34 (7.90 μM) and Leuconostoc kimchii WK18 (4.69 μM) exhibited higher
352	NO production activity than did <i>L. rhamnosus</i> GG (2.47 μM) [29].
353	When foreign substances enter the body, macrophages modulates the immune system
354	through production of cytokines including interleukin (IL)-1, IL-6, and tumor necrosis factor
355	(TNF)-α [10]. The immunostimulatory activity of LAB strains as measured by reverse-
356	transcription PCR is presented in Fig. 3. All samples manifested the reference gene, β -actin,
357	but L. paraplantarum SC61 manifested immunostimulatory activity related to mRNA
358	expression of iNOS, IL-1β, IL-6, and TNF-α, equal to that of L. rhamnosus GG (Fig. 3). L.
359	paraplantarum SC61 manifested higher mRNA expression levels (iNOS (69.62-fold), IL-1β
360	(541.05-fold), IL-6 (3743.05-fold), TNF- α (5.01-fold)) than did L . rhamnosus GG (iNOS
361	(26.55-fold) , 1L-1 β (125.77-fold) , IL-6 (525.58-fold) , and TNF- α (3.30-fold) (Fig. 4). In a
362	previous study, L. kimchii WK18, L. mesenteroides DH34, and L. mesenteroides GY17
363	increased production of IL-1β (7.6 fold, 3.46 fold, and 2.26 fold) [29]. In addition, kimchi
364	LAB (Lactobacillus sp., Leuconostoc sp., and Bifidobacterium sp.) increase IL-1β, IL-6, and
365	TNF-α [30]. These result suggested that probiotic strain could stimulate to macrophage.
366	

4. Conclusions

L. citreum S.Pum 19, P. pentosaceus SC28, and L. paraplantarum SC61 met the criteria for probiotics including gastric acid and bile salt tolerance, enzyme activity, intestinal cell

	ACCEPTED MANUSCRIPT
372	adhesion, and antibiotic susceptibility. Among these LAB strains, L. paraplantarum SC61
373	isolated from jangajji, showed the highest autoaggregation and cell surface hydrophobicity,
374	and was superior to L. rhamnosus GG. Intact L. paraplantarum SC61 cells exhibited the best
375	antioxidant as measured by DPPH radical scavenging, β-carotene bleaching inhibition,
376	reducing power, superoxide anion scavenging, and ABTS radical scavenging activity. In
377	addition, L. paraplantarum SC61 showed higher NO production and higher expression of
378	iNOS, IL-1 β , IL-6, and TNF- α genes than did <i>L. rhamnosus</i> GG. Therefore, <i>L.</i>
379	paraplantarum SC61 showed potential for probiotics use through antioxidant and
380	immunostimulatory activity; this strain could be used in functional foods and pharmaceutical
381	products.
382	
383	

Acknowledgements

This research was supported by the High Value-added Food Technology Development Program (#314073-03) and Agri-Bio industry Technology Development Program (#117001-2) of the Ministry of Agriculture, Food, and Rural Affairs

References

- [1] FAO/WHO. Probiotics in Food: Health and nutritional properties and guidelines for evaluation. FAO food nutrition paper, 85. Rome: World Health Organization and Food and Agriculture Organization of the United Nations, 2006.
- [2] R.C. Franca, F.R. Conceicao, M. Mendonca, L. Haulbert, G. Sabadin, P.D. Oliveira, M.G. Amaral, W.P. Silva, A.M. Moreira, Pichia pastoris X-33 has probiotic

396		properties with remarkable antibacterial activity against Salmonella Typhimurium
397		Appl. Microbiol. Biotechnol. 99 (2015) 7953–7961.
398	[3]	N.K. Lee, S.H. Son, E.B. Jeon, G.H. Jung, J.Y. Lee, H.D. Paik, The prophylactic
399		effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. J. Funct.
400		Foods 14 (2015) 513–518.
401	[4]	S. Cheon, K.W. Lee, K.E. Kim, J.K. Park, S. Park, C.H. Kim, D. Kim, H.J. Lee, D.
402		Cho, Heat-killed Lactobacillus acidophilus La205 enhances NK cell cytotoxicity
403		through increased granule exocytosis. Immunol. Lett. 136 (2011) 171–176.
404	[5]	A. Amaretti, M. Di Nunzio, A. Pompei, S. Raimondi, M. Rossi, A. Bordoni,
405		Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities.
406		Appl. Microbiol. Biotechnol. 97 (2013) 809-817.
407	[6]	O. Firuzi, R. Miri, M. Tavakkoli, L. Saso, Antioxidant therapy: current status and
408		future prospects. Curr. Med. Chem. 18 (2011) 3871–3888.
409	[7]	N.K. Lee, K.J. Han, S.H. Son, S.J. Eom, S.K. Lee, H.D. Paik, Multifunctional effect
410		of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT-Food Sci. Technol.
411		64 (2015) 1036–1041.
412	[8]	M.Y. Lin, F.J. Chang, Antioxidative effect of intestinal bacteria Bifidobacterium
413		longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sci. 45
414		(2000) 1617–1622.
415	[9]	N.K. Lee, S.Y. Kim, K.J. Han, S.J. Eom, H.D. Paik, Probiotic potential of
416		Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters. LWT-
417		Food Sci. Technol. 58 (2014) 130–134.
418	[10]	H.J. Choi, N.K. Lee, H.D. Paik, Health benefits of lactic acid bacteria isolated from
419		kimchi, with respect to immunomodulatory effects. Food Sci. Biotechnol. 24 (2015)

420

783–789.

421	[11]	S.M. Lim, Antimutagenicity activity of the putative probiotic strain <i>Lactobacillus</i>
422		paracasei subsp. tolerans JG22 isolated from pepper leaves Jangajji. Food Sci.
423		Biotechnol. 23 (2014) 141–150.
424	[12]	E.B. Jeon, S.H. Son, R.K.C. Jeewanthi, N.K. Lee, H.D. Paik, Characterization of
425		Lactobacillus plantarum Lb41, an isolate from kimchi and its application as a
426		probiotic in cottage cheese. Food Sci. Biotechnol. 25 (2016) 1129–1133.
427	[13]	CLSI, Performance standards for antimicrobial susceptibility testing; twenty-second
428		informational supplement. Clinical and Laboratory Standards Institute, 32 (2012) 1-
429		184.
430	[14]	Y. Wang, J. Zhou, X. Xia, Y. Zhao, W. Shao, Probiotic potential of Lactobacillus
431		paracasei FM-LP-4 isolated from Xinjiang camel milk yoghurt. Int. Dairy J. 62
432		(2016) 28–34.
433	[15]	F. Kachouri, H. Ksontini, M. Kraiem, K. Setti, M. Mechmeche, M. Hamdi
434		Involvement of antioxidant activity of Lactobacillus plantarum on functional
435		properties of olive phenolic compounds. J. Food Sci. Technol. 52 (2015) 7924–9733.
436	[16]	D. Das, A. Goyal Antioxidant activity and γ-aminobutyric acid (GABA) producing
437		ability of probiotic Lactobacillus plantarum DM15 isolated from Marcha of Sikkim.
438		LWT-Food Sci. Technol. 61 (2015) 263–268.
439	[17]	D. Ren, C. Li, Y. Qin, R. Yin, S. Du, F. Ye, C. Liu, H. Liu, M. Wang, Y. Li, Y. Sun, X
440		Li, M. Tian, N. Jin, In vitro evaluation of the probiotic and functional potential of
441		Lactobacillus strains isolated from fermented food and human intestine. Anaerobe 30
442		(2014) 1–10.
443	[18]	K. Ji, N.Y. Jang, Y.T. Kim, Isolation of lactic acid bacteria showing antioxidative and
444		probiotic activities from kimchi and infant feces. J Microbiol. Biotechnol. 25 (2015)
445		1568–1577.

446	[19]	E.A. Choi, H.C. Chang, Cholesterol-lowering effects of a putative probiotic strain
447		Lactobacillus plantarum EM isolated from kimchi. LWT-Food Sci. Technol. 62
448		(2015) 210–217.
449	[20]	H.J. Shin, H.J. Choi, D.W. Kim, C.H. Ahn, Y.G. Lee, Y.K. Jeong, W.H. Joo, Probiotic
450		potential of <i>Pediococcus pentosaceus</i> BCNU 9070. J. Life Sci. 22 (2012) 1194–1200.
451	[21]	S. Mathur, M. Singh, Antibiotic resistance in food lactic acid bacteria-a review. Int. J.
452		Food Microbiol. 105 (2005) 281–295.
453	[22]	S. Tulumoglu, H. I. Kaya, O. Simsek, Probiotic characteristics of Lactobacillus
454		fermentum strains isolated from tulum cheese. Anaerobe 30 (2014) 120–125.
455	[23]	B. Del-Re, B. Sgorbati, M. Miglioli, D. Palenzona, Adhesion, autoaggregation and
456		hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 31
457		(2000) 438–442.
458	[24]	K. Angmo, A. Kumari, Savitri, T.C. Bhalla, Probiotic characterization of lactic acid
459		bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Sci.
460		Technol. 66 (2016) 428–435
461	[25]	R. Tareb, M. Bernardeau, M. Gueguen, J.P. Vernoux, In vitro characterization of
462		aggregation and adhesion properties of viable and heat-killed forms of two probiotic
463		Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially
464		Campylobacter jejuni. J. Med. Microbiol. 62 (2013) 637-649.
465	[26]	C. Aarti, A. Khusro, R. Varghese, M.V. Arasu, P. Agastian, N.A. Al-Dhabi, S. Ilavenil,
466		K.C. Choi, In vitro studies on probiotic and antioxidant properties of Lactobacillus
467		brevis strain LAP2 isolated from Hentak, a fermented fish product of Nor-East India.
468		LWT-Food Sci. Technol. 86 (2017) 438–446.
469	[27]	S. Pieniz, R. Andreazza, T. Anghinoni, F. Camargo, A. Brandelli, Probiotic potential,

4/0		antimicrobial and antioxidant activities of <i>Enterococcus durans</i> strain LAB18s. Food
471		Control 37 (2014) 251–256.
472	[28]	Q. Han, B. Kong, Q. Chen, F. Sun, H. Zhang. In vitro comparison of probiotic
473		properties of lactic acid bacteria isolated from Harbin dry sausages and selected
474		probiotics. J. Funct. Foods 37 (2017) 391–400.
475	[29]	S.B. Ahn, S.M. Lee, M.Y. Shon, S.Y. Kim, M.S. Shin, W.K. Lee, Immune-enhancing
476		effects of Leuconostoc strains isolated from kimchi. J. Biomed. Res. 13 (2012) 353-
477		356.
478	[30]	$H.J.\ Hur,\ K.W.\ Lee,\ H.J.\ Lee,\ Production\ of\ nitric\ oxide,\ tumor\ necrosis\ factor-$lpha$$ and
479		interleukin-6 by raw cell 264.7 macrophage cells treated with lactic acid bacteria
480		isolated from kimchi. BioFactors 21 (2004) 123–125.
481		

Table 1.483 Gastric acid and bile salt tolerance of LAB strains isolated from Korean fermented foods.

	Gastric acid to	olerance with	Bile salt tolera	ance with
LAB strains	pH 2.5 with	0.3% pepsin	0.3% oxgall	
LAD strains	(log CFU/mL)		(Log CFU/mI	۷)
	0 h	3 h	0 h	24 h
Lactobacillus rhamnosus GG	8.56 ± 0.02^{a}	8.51 ± 0.05^{a}	8.56 ± 0.02^{a}	8.58 ± 0.03^{a}
Leuconostoc citreum S. Pum19	7.94 ± 0.11^{c}	7.35 ± 0.07^{b}	7.94 ± 0.11°	7.39 ± 0.04^{d}
Pediococcus pentosaceus SC28	8.18 ± 0.03^{b}	7.52 ± 0.68^{b}	8.18 ± 0.03^{b}	7.44 ± 0.01^{c}
Lactobacillus paraplantarum SC61	8.17 ± 0.07^{b}	8.33 ± 0.07^{a}	8.17 ± 0.07^{b}	7.55 ± 0.03^{b}

484 All values are mean \pm standard deviation.

^{a-c}Values with different superscript letters in the same column are significantly different (p < 0.05).

Table 2.Cell surface hydrophobicity and autoaggregation of LAB strains.

LAB strains	Cell surface	Autoaggregation	Autoaggregation (%)	
LAD strains	hydrophobicity (%)	4 h	24 h	
Lactobacillus rhamnosus GG	42.28±0.76 ^b	22.39±2.15 ^a	64.21±3.17 ^a	
Leuconostoc citreum S.Pum19	11.60±2.81°	16.00±1.28 ^b	66.94±6.57 ^a	
Pediococcus pentosaceus SC28	10.28±2.91°	15.83±0.75 ^b	69.17±5.95 ^a	
Lactobacillus paraplantarum SC61	56.16±1.01 ^a	22.09±1.96 ^a	70.06±3.35 ^a	

491 All values are mean \pm standard deviation.

492 $\,^{\text{a-c}}\text{Values}$ with different superscript letters in the same column are significantly different (p <

493 0.05).

495	Figure legends
496	
497	Figure 1 Adhesion ability of LAB strains to human intestinal HT-29 cells. The letters at the
498	bases of the bars denote statistical significance (p < 0.05) as determined by Duncan's multiple
499	range test. Error bars indicate the standard deviation from three independent experiments.
500	
501	Figure 2 Antioxidant activity of LAB strains as measured by (A) DPPH radical scavenging
502	activity, (B) β -carotene bleaching activity, (C) reducing power activity, (D) superoxide anion
503	scavenging activity, and (E) ABTS radical scavenging activity. The letters at the bases of the
504	bars denote statistical significance (p < 0.05) as determined by Duncan's multiple range test.
505	Error bars indicate standard deviation from three independent experiments.
506	
507	Figure 3 Immunostimulatory activity of L. paraplantarum SC61 on gene expression using
508	reverse transcription PCR. C, untreated; CL, lipopolysaccharide-treated; GG, L. rhamnosus
509	GG-treated; SC61, L. paraplantarum SC61-treated.
510	
511	Figure 4 Immunostimulatory activity of L. paraplantarum SC61 on gene expression using
512	real time PCR. (A) iNOS, (B) IL-1 β , (C) IL-6, (D) TNF- α . The quantification results are
513	expressed relative to the control (untreated) after being normalized to β -actin levels. The
514	letters at the bases of the bars denote statistical significance (p < 0.05) as determined by
515	Duncan's multiple range test. Error bars indicate standard deviation from three independent
516	experiments.
517	

531

L. rhamnosus GG L. paraplantarum SC61

Highlights

- Lactobacillus paraplantarum SC61 was isolated from jangajji under harsh conditions.
- L. paraplantarum SC61 showed high efficacy, safety, and stability.
- L. paraplantarum SC61 showed high antioxidant and immune-enhancing activity.
- *L. paraplantarum* SC61 could be used as a probiotic.