Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

ОТЧЁТ по ознакомительной практике

Выполнил: Т. П. Ходосов

Студент группы 321701

Проверил: В. Н. Тищенко

СОДЕРЖАНИЕ

Bı	ведение	3
1	Постановка задачи	4
2	Формализованные фрагменты теории интеллектуальных компьютер-	
	ных систем и технологий их разработки	5
3	Формальная семантическая спецификация библиографических ис-	
	точников	9
3	аключение	C
\mathbf{C}	писок использованных источников	1

ВВЕДЕНИЕ

Цель:

Закрепить практические навыки формализации информации в интеллектуальных системах с использованием семантических сетей.

Задачи:

- Построение формализованных фрагментов теории интеллектуальных компьтерных систем и технологий их разработки.
- Построение формальной семантической спецификации библиографических источников, соответствующих указанным выше фрагментам.

1 ПОСТАНОВКА ЗАДАЧИ

Часть 1 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"

- \Rightarrow библиографическая ссылка*:
 - Sheth, A. M. Ouksel u A. Semantic Interoperability in Global Information System ⇒ URL*:

[https://www.w3.org/2001/sw/wiki/OWL/Implementations/]

- Голенков В.В..СтандОТОП-2021кн
 - [В. Голенков, Н. Гулякина и Д. Шункевич, Стандарт открытой технологии онтологического проектирования, производства и эксплуатации семантически совместимых гибридных интеллектуальных компьютерных систем]
 - $\Rightarrow URL^*$:

[https://libeldoc.bsuir.by/handle/123456789/33337]

- Golenkov V.V..Metho aTfECoC-2019art
 - \Rightarrow *URL**:

[https://libeldoc.bsuir.by/handle/123456789/33259]

- Стандарт OSTIS
- Материалы конференций OSTIS
 - $\Rightarrow URL^*$:

[http://raai.org/library/tolk/aivoc.html]

2 ФОРМАЛИЗОВАННЫЕ ФРАГМЕНТЫ ТЕОРИИ ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМ И ТЕХНОЛОГИЙ ИХ РАЗРАБОТКИ

требования, предъявляемые к интеллектуальным компьютерным системам нового поколения

[requirements for new generation intelligent computer systems] **:**= ключевое понятие*: интеллектуальная компьютерная система нового поколения { ● [next-generation intelligent computer system] свойство-предпосылка*: \Rightarrow высокий уровень самообучаемости, обеспечивающий высокий ировень автоматизации собственной эволюции и, соответственно, высокие темпы этой эволюции высокий уровень интероперабельности самообучаемая интеллектуальная компьютерная система интероперабельная интеллектуальная компьютерная система интероперабельная интеллектуальная компьютерная система [компьютерная система, способная к самостоятельному самостоятельному **:**= эффективному взаимодействию с другими системами] гибридная интеллектуальная компьютерная система } ключевой параметр*: интероперабельность интеллектиальных компьютерных систем { ● семантическая совместимость пар интеллектуальных компьютерных систем ключевое отношение*: { ● соединение интеллектуальных компьютерных систем глубокая интеграция интеллектуальных компьютерных систем ключевое знание*: \Rightarrow требования, предъявляемые к интеллектуальным компьютерным системам нового поколения принципы, лежащие в основе интеллектуальных компьютерных систем нового поколения отличие данных от знаний интероперабельность [способность к эффективному (целенаправленному) взаимодействию с другими самостоятельными субъектами] [способность к партнерскому взаимодействию в решении комплексных задач, требу-:= ющих коллективной деятельности] [способность работать в коллективе (в команде)] := [способность работать в команде] [уровень социализации] := := [interoperability]

интероперабельность кибернетической системы

- ⊃ интероперабельность
- := [способность кибернетической системы взаимодействовать с другими кибернетическими системами в целях создания коллектива кибернетических систем (многоагентных систем), уровень качества и, в частности, уровень интеллекта которого выше уровня качества каждой кибернетической системы, входящей в состав этого коллектива]
- := [interoperability of the cybernetic system]
- \Rightarrow свойство-предпосылка*:

}

=

=

- € договороспособность кибернетической системы
- \Rightarrow свойство-предпосылка*:
 - € способность кибернетической системы к пониманию принимаемых сообщений
 - способность кибернетической системы к формированию передаваемых сообщений, понятных адресатам
 - способность кибернетической системы к обеспечению семантической совместимости с партнерами
 - коммуникабельность кибернетической системы
 - способность кибернетической системы к обсуждению и согласованию целей и планов коллективной деятельности
 - способность кибернетической системы брать на себя выполнение актуальных задач в рамках согласованных планов коллективной деятельности
- социальная ответственность кибернетической системы
- социальная активность кибернетической системы

иерархический интеллектуальный коллектив интеллектуальных компьютерных систем

- [интеллектуальный коллектив интеллектуальных компьютерных систем, по крайней мере одним из членов которого является интеллектуальный коллектив интеллектуальных компьютерных систем]
- := [hierarchical intellectual collective of intelligent computer systems]

интеллектуальный коллектив интеллектуальных компьютерных систем

- [интеллектуальная многоагентная система, агенты которой являются интеллектуальными компьютерными системами]
- := [intelligent team of intelligent computer systems]
- \Rightarrow разбиение*:
 - **{ ●** интеллектуальный коллектив индивидуальных индивидуальных интеллектуальных компьютерных систем
 - иерархический интеллектуальный коллектив интеллектуальных компьютерных систем
- \Rightarrow примечание*:
 - Не каждый коллектив интеллектуальных компьютерных систем может оказаться интеллектуальным, поскольку уровень интеллекта такого коллектива определяется не только уровнем интеллекта его членов, но также и эффективностью (качеством) их взаимодействия их

}

=

создание технологии комплексного проектирования

 \Rightarrow свойство-предпосылка*:

- Унификация формализации различных моделей представления различного вида используемой информации, хранимой в памяти интеллектуальных компьютерных систем и различных моделей решения интеллектуальных задач для обеспечения семантической совместимости и простой автоматизируемой интегрируемости различных видов знаний и моделей решения задач в интеллектуальных компьютерных системах. Для этого необходимо разработать базовую универсальную абстрактную модель представления и обработки знаний, обеспечивающую реализацию всевозможных моделей решения задач.
 - Унификация структуризации баз знаний интеллектуальных компьютерных систем в виде иерархической системы онтологий разного уровня
 - Унификация системы используемых понятий, специфицируемых соответствующими онтологиями для обеспечения семантической совместимости и интероперабельности различных интеллектуальных компьютерных систем
- Унификация архитектуры интеллектуальных компьютерных систем
 ⇒ включение*:
 - семантическая совместимость между интеллектуальными компьютерными системами и их пользователями
 - семантическая совместимость между индивидуальными интеллектуальными компьютерными системами
 - семантическая совместимость между коллективными интеллектуальными компьютерными системами

}

- обеспечивающую интероперабельность сообществ
 ⇒ разбиение*:
 - **{●** индивидуальная интеллектуальная компьютерная система
 - коллективная интеллектуальная компьютерная система
 пользователь интеллектуальной компьютерной системы
- Разработка базовой модели интерпретации всевозможных формальных моделей решения задач в интеллектуальных компьютерных системах с ориентацией на максимально возможное упрощение такой интерпретации в компьютерах нового поколения, которые специально предназначены для реализации индивидуальных интеллектуальных компьютерных систем
- Разработка компьютера нового поколения, принципы функционирования которого максимально близки к базовой абстрактной модели, обеспечивающей интеграцию всевозможных моделей представления знаний и моделей решения задач. При этом базовая машина обработки информации, лежащая в основе указанных компьютеров, должна существенно отличаться от фон-Неймановской машины и должна быть близка к базовой модели решения задач в интеллектуальных компьютерных системах для того, чтобы существенно снизить

сложность интерпретации всего многообразия моделей решения задач в интеллектуальных компьютерных системах

}

3 ФОРМАЛЬНАЯ СЕМАНТИЧЕСКАЯ СПЕЦИФИКАЦИЯ БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ

Neiva F.W..TowarPItSC-2016art

- ⇒ стандартное библиографическое описание*:
 - F. W. Neiva u ∂p ., "Towards pragmatic interoperability to support collaboration: A systematic review and mapping of the literature," Information and Software Technology, m. 72, c. 137—150, 2016, ISSN: 0950-5849.
- \Rightarrow библиографическая ссылка*:
 - Глава 6.3. Программная платформа ostis-систем
 - Глава 7.1. Структура и проблемы организации и комплексной автоматизации человеческой деятельности
 - Глава 1.2. Интеллектуальные компьютерные системы нового поколения
 - § 1.2.1. Требования, предъявляемые к интеллектуальным компьютерным системам нового поколения
 - § 1.1.1. Понятие интеллектуальной кибернетической системы
 - § 1.1.2. Понятие интеллектуальной многоагентной системы

Yaghoobirafi K..aAppro fSIiADIS-2022art

- ⇒ стандартное библиографическое описание*:
 - K. Yaghoobirafi u A. Farahani, "An approach for semantic interoperability in autonomic distributed intelligent systems," Journal of Software: Evolution and Process, m. 34, февр. 2022. DOI: 10.1002/smr.2436
- ⇒ библиографическая ссылка*: библиографическая ссылка*:
 - Глава 7.1. Структура и проблемы организации и комплексной автоматизации человеческой деятельности
 - Глава 1.2. Интеллектуальные компьютерные системы нового поколения
 - § 1.2.1. Требования, предъявляемые к интеллектуальным компьютерным системам нового поколения

ЗАКЛЮЧЕНИЕ

Во время работы были закреплены практические навыки формализации информации в интеллектуальных системах с использованием семантических сетей. Дополнен раздел, касающийся интеллектуальных компьютерных систем нового поколения, новыми понятиями и библиографическими источниками. Проведены дополнительные исследования в области машинного обучения и анализа данных, что позволило расширить понимание современных тенденций и технологий, применимых в разработке интеллектуальных систем. Также была уделена особое внимание вопросам интеграции различных подходов к представлению знаний и их применению для решения сложных задач в реальных условиях. Итогом работы стало создание методических рекомендаций по использованию семантических сетей в практике разработки интеллектуальных систем, что способствует повышению эффективности и точности обработки информации.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Pohl, J. "Interoperability and the Need for Intelligent Software: A Historical Perspective," / J. Pohl. 2004.
- [2] Sheth, A. M. Ouksel и A. Semantic Interoperability in Global Information Systems / A. M. Ouksel и A. Sheth. Минск: SIGMOD, 1999. Р. 690.
- [3] V.Golenkov N.Guliakina, N.Grakova I.Davydenko V.Nikulenka A.Eremeev V.Tarassov. "From training intelligent systems to training their development tools," Otkrytye semanticheskie tehnologii proektirovanija intellektual'nyh sistem / N.Grakova I.Davydenko V.Nikulenka A.Eremeev V.Tarassov V.Golenkov, N.Guliakina. 81–98, 2018. P. 25–52.
- [4] В. Голенков, Н. Гулякина и Д. Шункевич. Стандарт открытой технологии онтологического проектирования, производства и эксплуатации семантически совместимых гибридных интеллектуальных компьютерных систем / Н. Гулякина и Д. Шункевич В. Голенков. Минск: Беспринт, 2021. Р. 690.