$$\left(x^2-1\right)\frac{dy}{dx}=-\left(x^2+1\right)y$$

for XLI

$$(x^2-1)\frac{dy}{dx} = -(x^2+1)y$$

$$=$$
 $\frac{1}{y} \frac{dy}{dx} = -\frac{x^2+1}{x^2-1}$

$$= -\frac{x^2-1+2}{x^2-1}$$

Fire to =>
$$\int \frac{1}{y} dy = \int \left(-1 - \frac{2}{x^2 - 1}\right) dx$$

=>
$$\ln |y| = -x - \frac{1}{x} \ln |x^2 - 1| + c$$
 or at worst a hyperbolic trig.

=)
$$e^{\ln |y|} = y = e^{-x - \frac{1}{x} \ln (x^2 - 1) + c}$$

= $e^{c} e^{\ln (x^2 - 1) \cdot \frac{1}{x}} e^{-x}$

 $\operatorname{dix}\left(\frac{1}{x}\ln\left|x^{2}-1\right|\right) = \frac{1}{x}\left(\frac{2x}{x^{2}-1}\right)$ - 12 (n/x2-11 You should have used partial fractions substitution!

(x2-170 for all x>1)

50,

$$y = A(x^2-1)^{-\frac{1}{2}}e^{-x}$$
 where $A = e^{c}$

Find the general solution to the differential equation

$$(x^2-1)\frac{dy}{dx} = -(x^2+1)y,$$

given x>1.

Your last answer was interpreted as:

$$A \cdot (x^2 - 1)^{-[1/x]} \cdot e^{-x}$$

Incorrect answer.

Your solution is incorrect. Substituting your solution into the left-hand side of the differential equation gives

$$(x^{2}-1) \frac{dy}{dx} = (x^{2}-1) \cdot \left(\frac{e^{-x} \cdot \left(\frac{\ln(x^{2}-1)}{x^{2}} - \frac{2}{x^{2}-1} \right) \cdot A}{(x^{2}-1)^{[1/x]}} - \frac{e^{-x} \cdot A}{(x^{2}-1)^{[1/x]}} \right).$$

Whereas substituting your solution into the right-hand side of the differential equation gives

$$-(x^{2})+1)*y = \frac{(-(x^{2})-1)\cdot e^{-x}\cdot A}{(x^{2}-1)^{[1/x]}}.$$

Answer: A*(x^2-1)^-(1/x) * e^-x

	Working (entry)	Working (verified)	Comments	
1		For x>1, solve the differential equation		
2		$\left(x^2 - 1\right)\frac{dy}{dx} = -\left(x^2 + 1\right)y$		
			Dividing by $(x^2 - 1)$ Dividing by y	
3	$1/y \text{ diff}(y_{x,x}) = -(x^2+1)/(x^2-1)$	$\Rightarrow \frac{1}{y} \frac{dy}{dx} = -\frac{x^2 + 1}{x^2 - 1}$		
4	22	$\Rightarrow \frac{1}{y} \frac{dy}{dx} = -\frac{x^2 - 1 + 2}{x^2 - 1}$		
5		$\Rightarrow \frac{1}{y} \frac{dy}{dx} = -\frac{x^2 - 1}{x^2 - 1} - \frac{2}{x^2 - 1}$	Integrating with respect to x	
6		$\Rightarrow \int \frac{1}{y} \frac{dy}{dx} dx = \int \left(-1 - \frac{2}{x^2 - 1} \right) dx$		
7	**************************************	$\Rightarrow \int \frac{1}{y} dy = \int \left(-1 - \frac{2}{x^2 - 1} \right) dx$	Evaluating	\otimes
8	****	$\Rightarrow \ln y = -x - \frac{1}{x}\ln x^2 - 1 + c$	Taking exponentials	×
9	<u> </u>	$\Rightarrow e^{\ln y } = e^{-x-\frac{1}{x}\ln x^2-1 +\epsilon}$	Manipulating indices	
10	INC.	$\Rightarrow y = e^{\epsilon} e^{-\frac{1}{x} \ln \left x^2 - 1 \right } e^{-x}$	Manipulating logarithms	
11		$\Rightarrow y = e^{\epsilon} e^{\ln \left x^2 - 1 \right ^{\frac{1}{x}}} e^{-x}$		
12		$\Rightarrow y = e^{\epsilon} (x^2 - 1)^{-\frac{1}{z}} e^{-x}$	Substituting A=e ^c	
13		$\Rightarrow y = A(x^2 - 1)^{-\frac{1}{x}}e^{-x}$	Solution	
		Incorrect answer; error in integra Subsequent working correct up to		