Airbnb New User Bookings

Derek Halliwell

Question

- Background:
 - Airbnb gives users the ability to rent temporary lodging from other users
 - Rentals can vary from space on a couch to a very large house
 - Airbnb has over 2 million listings in over 35,000 cities and 190 countries
- Where will a new Airbnb user book their first travel experience?

Data

- User Data: user demographics and marketing characteristics
- Session data: Detailed log of web session data (Includes data on clicks, different search results, etc.).
- All Users in dataset live in the U.
 S.
- A vast majority of this data is categorical

Sessions
user_id
action
action_type
action_detail
device_type
secs_elapsed

User Data
affiliate_channel
affiliate_provider
age
date_account_created
first_affiliate_tracked
first_browser
first_device_type
gender
id
language
signup_app
signup_flow
signup_method
timestamp_first_active

Summary

Preprocessing

- User Data:
- gender: assigned NaN and 'Other' gender values as 'Unknown'
- language: replaced with most common language value
- first_affiliate_tracked, first_browser: assigned as 'Unknown'
- age: outliers/null values were replaced by average age by browser
- convert timestamp first active to DateTime64
- Sessions Data: dropped all NaN and 'Unknown' values.
- Feature Creation:
- Pivoted Sessions data to get count and total time spent for each action_detail and action_type
- E.g. how much time a user spent looking at search results, and number of clicks during that search

Visualizations

Hypothesis: Prediction accuracy will largely depend on how I extract features from the web session data.

Model

- Extreme Gradient Boosted Classifier (XGBClassifier)
 - Pros: Speed, protection against overfitting compared to sklearn's Gradient Boosted Classifier
 - Cons: "Black Box" algorithm, not very intuitive
- Methodology:
 - Cross validated model on training data to tune parameters
 - Tested final score by submitting to Kaggle

Results

- Kaggle's scoring: Normalized discounted cumulative gain (NDCG)
 - Score is calculated on 5 predicted countries per user, sorted by likelihood
 - Varies from 0.0 to 1.0
- My most accurate XGBoost model scored 0.87605

Next Steps

- Improved feature extraction
- Fine tune model based on Kaggle's scoring metric, not just cross validation score
- More submissions!