

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01

ОТЧЕТ

по лабораторной работе № 2_

Название: <u>Три схемы включения транзистора</u> Дисциплина: <u>электроника</u>

Студент	ИУ6-42Б		Д.И.Насибуллин
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Н.В. Аксенов
		(Подпись, дата)	(И.О. Фамилия)

Цель: изучить, как влияют различные способы включения биполярного транзистора и величина сопротивления нагрузки на свойства усилительного каскада.

Ход работы.

Исходные данные приведены в таблице 1.

Таблица 1 – Исходные данные

$\mathbf{E}_{\mathbf{k}}$	В	I_s	\mathbf{R}_1	\mathbb{R}_2	R _k , R ₃	\mathbf{R}_{Γ}	Сбэ	Сбк	f_{α}	C_1, C_2	Сблок	R _H
V		A	кОм	кОм	кОм	кОм	пФ	пФ	MHz	мкФ	мкФ	кОм
12	140	Si	30	18	4	3	7.5	20	100	2	100	3

1) Схема с общим эмиттером

Составим схему для транзистора с общим эмиттером с подключенными мультиметрами для снятия показаний тока и напряжения на входе и выходе. Значения параметров для схемы проставим в соответствии с вариантом. Смотри рисунок 1.

Рисунок 1 – схема с общим эмиттером

Определим параметры Spice – модели транзистора по исходным данным из таблицы 1. Вид модели представлен на рисунке 2.

Рисунок 2 – Spice – модель транзистора

Произведем расчет входного и выходного напряжения, а так же входного и выходного тока для различных случаев нагрузочного сопротивления. Пример приведен на рисунке 4.

Рисунок 4 – Измерение тока и напряжения на входе и выходе схемы

По полученным данным произведем расчет коэффициентов передачи по току, напряжению и мощности, а так же входное и выходное

сопротивление. Для получения данных воспользуемся следующими формулами:

- Коэффициент передачи усилителя по току: $K_i = \frac{I_{\text{вых}}}{I_{\text{вх}}}$
- Коэффициент передачи усилителя по напряжению: $K_U = \frac{U_{\text{вых}}}{U_{\text{ву}}}$
- Коэффициент передачи усилителя по мощности: $K_P = K_I * K_U$

Полученные результаты приведены в таблице 2.

Таблица 2 – Параметры схемы с общим эмиттером

R _H	Івх, мкА	Івых, мкА	$\mathbf{U}_{\mathtt{BX}}$, m \mathbf{B}	$U_{вых}, B$	Kı	$\mathbf{K}_{\mathbf{U}}$	K _P
0,2 кОм	5,9	558,8	17,8	0,1	94,7	5,6	530,3
1 кОм	5,9	469,1	17,8	0,47	79,5	26,4	2098,8
3 кОм	5,9	469,1	17,8	0,47	79,5	26,4	2098,8
250 кОм	5,9	9,2	17,8	2,3	1,6	129,2	206,7

Входное сопротивление:
$$R_{\rm BX} = \frac{U_{\rm BX}}{I_{\rm BX}} = \frac{17.8*10^{-3}}{5.9*10^{-6}} = 3.2 \ {\rm кOm}$$

Для расчета выходного сопротивления запустим схему в режиме холостого хода и короткого замыкания. Смотри рисунки 5 и 6.

Рисунок 5 – режим холостого хода схемы

Рисунок 6 – режим короткого замыкания

Выходное сопротивление:
$$R_{\rm BЫX} = \frac{U_{\rm XX}}{I_{\rm K3}} = 3,9 \ {\rm кOm}$$

Произведем аналитический расчет параметров, полученных с помощью эксперимента и сравним полученные результаты.

Коэффициенты передачи определим с помощью следующих формул:

- Входное сопротивление: $R_{\rm BX} = \frac{R_{\rm BX \, TP \, o9}*R_6}{R_{\rm BX \, TP \, o9}+R_6}$
- Сопротивление базы: $R_6 = \frac{R_1 * R_2}{R_1 + R_2}$
- Входное сопротивление транзистора: $R_{\text{вх тр 09}} = r_6 + (1+B) *$

 $r_{\scriptscriptstyle \mathrm{3M}}$, где $r_{\scriptscriptstyle \mathrm{6}} \sim 0$ Ом, $r_{\scriptscriptstyle \mathrm{3M}} = \frac{\varphi}{I_{\scriptscriptstyle \mathrm{3M}}}$; $\varphi = 0.026~\mathrm{B}$

• Коэффициент передачи усилителя по току:

$$K_I = \frac{R_6}{R_6 + R_{\text{BX TD 09}}} * B * \frac{R_{\text{K}}}{R_{\text{K}} + R_{\text{H}}}$$

• Коэффициент передачи усилителя по напряжению:

$$K_U = B * \frac{R_{\text{KH}}}{R_{\text{BX TP 09}}}; R_{\text{KH}} = \frac{R_k * R_{\text{H}}}{R_k + R_{\text{H}}}$$

• Коэффициент передачи усилителя по мощности: $K_P = K_I * K_U$

Выполним расчет и результаты занесем в таблицу 3.

Ток эмиттера рассчитаем с помощью схемы, приведенной на рисунке 7. Получаем, что $I_{\rm ЭM}=9.9*10^{-4}.$

Рисунок 7 – схема с мультиметром для расчета тока эмиттера Данные, необходимые для окончательных подсчетов:

$$r_{_{\rm 9M}} = 26,3~{\rm Om}$$

$$R_{\rm BX \, TD \, O9} = 3,71 \, к {\rm OM}$$

$$R_6 = 11,25 \text{ кОм}$$

Таблица 3 – аналитический метод, для схемы с общим эмиттером

R _H	$\mathbf{R}_{\mathbf{B}\mathbf{x}}$	R _{вых}	$\mathbf{R}_{\kappa_{\mathbf{H}}}$	Kı	$\mathbf{K}_{\mathbf{U}}$	K _P
0,2 кОм			0,19	100,3	7,2	722,2
1 кОм	5,9 кОм	3,9 кОм	0,8	84,2	30,2	2542,8
3 кОм			1,7	60,2	64,2	3864,8
250 кОм			3,9	1,7	147,2	250,2

В результате произведенных вычислений аналитическим способом (таблица 2) и данных полученных экспериментальным путем (таблица 3) получили схожие данные.

Определим граничную частоту работы транзистора с общим эмиттером. Для этого построим график анализа тока. Смотри рисунок 8.

Рисунок 8 – АС анализ схемы с общим эмиттером

Граничная частота находится на отметке при напряжении в $\sqrt{2}$ раз меньше максимального. Исходя из рисунка 8 получаем, что $f_{\rm B}=14,4$ кГц

Для определения постоянной времени цепи, найдем коэффициент G по формуле:

$$G = \frac{{R'}_{\Gamma} + r_6 + r_9}{{R'}_{\Gamma} + R_{\text{BX TD 03}}} = 0,4;$$
 где ${R'}_{\Gamma} = \frac{{R}_{\Gamma} * R_6}{{R}_{\Gamma} + R_6} = 2,4$ кОм; $r_6 = 0$

Постоянную времени цепи рассчитаем по формуле:

$$au_{\mathrm{B}} = G*(au_{B} + \mathrm{C}_{\mathrm{K9}}*R_{\mathrm{KH}}) + C_{\mathrm{H}}*R_{\mathrm{KH}}$$
, где $C_{\mathrm{H}} = 0$ Ф $au_{B} = \frac{B+1}{2\pi f_{lpha}} = 2,2\mathrm{e} - 6$ $C_{\mathrm{K9}} = \mathrm{C}_{\mathrm{6K}}(B+1) = 2,82\mathrm{e} - 9$ $au_{\mathrm{B}} = 2,8$ мкс

2) Схема с общей базой

Составим схему для транзистора с общей базой, представленной на рисунке 9.

Рисунок 9 – схема с общей базой

Произведем расчет входного и выходного напряжения, а так же входного и выходного тока для различных случаев нагрузочного сопротивления аналогично рисунку 4.

По формулам из пункта 1 рассчитаем коэффициенты передачи по току, напряжению и мощности. Результаты приведены в таблице 4.

Ta	Таблица 4 – Параметры схемы с общей базой							
	T A	T A	II R	II R				

R _H	I_{BX} , A	$I_{вых}, A$	$\mathbf{U}_{\mathtt{BX}},\mathbf{B}$	$\mathbf{U}_{\mathtt{вых}},\mathbf{B}$	K_{I}	$\mathbf{K}_{\mathbf{U}}$	$\mathbf{K}_{\mathbf{P}}$
0,2 кОм		10,9e-6		2,2e-3	0,94	4	3,76
1 кОм	11,6e-6	9,1e-6	5,5e-4	9,1e-3	0,78	16,5	12,87
3 кОм	11,000	6,5e-6	3,30 1	19,6e-3	0,56	35,6	19,94
250 кОм		1,8e-7		44,9e-3	0,02	81,6	1,63

Входное сопротивление:
$$R_{\rm BX} = \frac{U_{\rm BX}}{I_{\rm BX}} = \frac{5,5*10^{-4}}{11,6*10^{-6}} = 47,4$$
 Ом

Для расчета выходного сопротивления запустим схему в режиме холостого хода и короткого замыкания как в пункте 1.

Выходное сопротивление:
$$R_{\text{вых}} = \frac{U_{\text{хх}}}{I_{\text{KS}}} = 4 \text{ кОм}$$

Произведем аналитический расчет параметров, полученных с помощью эксперимента, и сравним полученные результаты.

Коэффициенты передачи определим с помощью следующих формул:

• Входное сопротивление:
$$R_{\rm BX} = \frac{\frac{R_{\rm BX\,TP\,06}}{B+1}*R_{\it 3}}{\frac{R_{\rm BX\,TP\,06}}{B+1}+R_{\it 3}}$$

- Сопротивление базы: $R_6 = \frac{R_1 * R_2}{R_1 + R_2}$
- Входное сопротивление транзистора: $R_{\rm BX\,TD\,06} = r_6 + (1+B) *$

$$r_{\scriptscriptstyle {
m 3M}},$$
 где $r_{\scriptscriptstyle 6}{\sim}~0~{
m Om},$ $r_{\scriptscriptstyle {
m 3M}}=rac{arphi}{I_{\scriptscriptstyle {
m 3M}}};$ $arphi=0.026~{
m B}$

• Коэффициент передачи усилителя по току:

$$K_{I} = \frac{R_{9}\alpha R_{K}}{\left(R_{9} + \frac{R_{BX \text{ TP OG}}}{B+1}\right) * (R_{K} + R_{H})}, \alpha = \frac{B}{B+1}$$

• Коэффициент передачи усилителя по напряжению:

$$K_U = B * \frac{R_{\text{KH}}}{R_{\text{BX TD 06}}}; R_{\text{KH}} = \frac{R_k * R_{\text{H}}}{R_k + R_{\text{H}}}$$

• Коэффициент передачи усилителя по мощности: $K_P = K_I * K_U$ Выполним расчет и результаты занесем в таблицу 5.

Ток эмиттера рассчитаем с помощью схемы, приведенной на рисунке 10. Получаем, что $I_{\rm ЭM}=0.99*10^{-3}$

Данные, необходимые для расчета по вышеприведенным формулам:

$$r_{\rm 9M} = 26,3~{\rm OM}$$

$$R_{\rm BX \, TP \, OG} = 3708 \, {\rm OM}$$

$$R_{\rm 6}=11,\!25~{\rm к}{\rm O}{\rm M}$$

Рисунок 10 – Схема с общей базой для расчета тока эмиттера

R _H	$\mathbf{R}_{\mathtt{Bx}}$	R _{вых}	$\mathbf{R}_{\kappa H}$	Kı	Ku	K _P
0,2 кОм			0,19	0,94	7,2	6,8
1 кОм	26,1 Ом	4 кОм	0,8	0,79	30,2	23,9
3 кОм	20,1 014	I KOM	1,7	0,56	64,8	36,5
250 кОм			3,9	0,02	148,8	2,3

Таблица 5 – аналитический метод для схемы с общей базой

В результате произведенных вычислений аналитическим способом (таблица 5) и данных полученных экспериментальным путем (таблица 4) получили схожие данные. Расчеты выполнены верно.

Определим граничную частоту работы транзистора с общим эмиттером. Для этого построим график анализа тока. Смотри рисунок 11.

Рисунок 11 – АС анализ схемы с общей базой

Граничная частота находится на отметке при напряжении в $\sqrt{2}$ раз меньше максимального. Исходя из рисунка 8, получаем, что $f_{\rm B}=1~{\rm M}\Gamma$ ц

Для определения постоянной времени цепи, найдем коэффициент G по формуле:

$$G = \frac{{R'}_{_{\Gamma}} + r_{6} + r_{9}}{{R'}_{_{\Gamma}}(B+1) + R_{_{\mathrm{BX\,TP\,06}}}} = 0,007;$$
 где ${R'}_{_{\Gamma}} = \frac{R_{_{\Gamma}} * R_{6}}{R_{_{\Gamma}} + R_{6}} = 2,4$ кОм; $r_{6} = 0$

Постоянную времени цепи рассчитаем по формуле:

$$au_{\mathrm{B}} = G*(au_{B} + \mathrm{C}_{\mathrm{K9}}*R_{\mathrm{KH}}) + C_{\mathrm{H}}*R_{\mathrm{KH}}, \qquad$$
где $C_{\mathrm{H}} = 0$ Ф $au_{B} = rac{B+1}{2\pi f_{lpha}} = 2,2\mathrm{e} - 6$ $C_{\mathrm{K9}} = \mathrm{C}_{\mathrm{6K}}(B+1) = 2,82\mathrm{e} - 9$ $au_{\mathrm{B}} = 4,8$ мкс

3) Схема с общим коллектором

Составим схему для транзистора с общей базой, представленной на рисунке 12.

Рисунок 12 – схема с общим коллектором

Произведем расчет входного и выходного напряжения, а так же входного и выходного тока для различных случаев нагрузочного сопротивления аналогично рисунку 4.

По формулам из пункта 1 рассчитаем коэффициенты передачи по току, напряжению и мощности. Результаты приведены в таблице 6.

 $R_{\text{вх}}$ кOм $I_{\text{вх}}$, мкAR_н кОм Івых, мкА U_{BX} , MB $U_{\text{вых}}$, мB $\mathbf{K}_{\mathbf{I}}$ $\mathbf{K}_{\mathbf{U}}$ $\mathbf{K}_{\mathbf{P}}$ 7,2 0,2 3,1 111,4 25,8 22,3 35,94 0.86 30,87 10,4 1 2,6 26,2 27,1 26,2 10,08 0,97 9,78 10,9 3 2.5 8,98 27,3 26,9 3,59 0,98 3,52 27,3 0,0396 11 250 2,5 0,11 27,5 0,04 0,99

Таблица 6 – Параметры схемы с общим коллектором

Для расчета выходного сопротивления запустим схему в режиме холостого хода и короткого замыкания как в пункте 1.

Выходное сопротивление:
$$R_{\text{вых}} = \frac{U_{\text{хх}}}{I_{\text{K3}}} = 57 \text{ Ом}$$

Произведем аналитический расчет параметров, полученных с помощью эксперимента, и сравним полученные результаты.

Коэффициенты передачи определим с помощью следующих формул:

• Входное сопротивление:
$$R_{\text{BX}} = \frac{(R_{\text{BX Tp}} + (B+1) * R_{\text{9H}}) * R_{\text{6}}}{(R_{\text{BX Tp}} + (B+1) * R_{\text{9H}}) + R_{\text{6}}}$$

• Сопротивление базы:
$$R_6 = \frac{R_1 * R_2}{R_1 + R_2}$$

• Входное сопротивление транзистора: $R_{\text{вх тр ок}} = r_6 + (1 + B) *$

$$r_{\scriptscriptstyle \mathrm{3M}}$$
, где $r_{\scriptscriptstyle \mathrm{6}}{\sim}~0~\mathrm{O}$ м, $r_{\scriptscriptstyle \mathrm{3M}}=rac{arphi}{I_{\scriptscriptstyle \mathrm{3M}}}$; $arphi=0.026~\mathrm{B}$

• Коэффициент передачи усилителя по току:

$$K_I = \frac{R_6(B+1)R_9}{(R_6+R_{\text{BX TP}}+(B+1)*R_9)*(R_9+R_{\text{H}})}$$

• Коэффициент передачи усилителя по напряжению:

$$K_U = (B+1) * \frac{R_{\text{3H}}}{R_{\text{BX TD OK}} + (B+1) * R_{\text{3}}}; R_{\text{3H}} = \frac{R_{\text{3}} * R_{\text{H}}}{R_{\text{3}} + R_{\text{H}}}$$

• Коэффициент передачи усилителя по мощности: $K_P = K_I * K_U$

• Выходное сопротивление:
$$R_{\rm BHX} = \frac{R_9*(r_9 + \frac{R'_{\Gamma} + r_6}{B+1})}{R_9 + (r_9 + \frac{R'_{\Gamma} + r_6}{B+1})}$$

Выполним расчет и результаты занесем в таблицу 7.

Ток эмиттера рассчитаем с помощью схемы, приведенной на рисунке 13. Получаем, что $I_{\rm ЭM}=0.986*10^{-3}$

Данные, необходимые для расчета по вышеприведенным формулам:

$$r_{\text{\tiny 3M}} = 26,37~\text{OM}$$

$$R_{\rm BX \, TD \, OK} = 3718 \, {\rm OM}$$

$$R_6 = 11,25 \text{ кОм}$$

Рисунок 13 - Схема с общим коллектором для расчета тока эмиттера Таблица 7 — Параметры схемы с общим коллектором

R _H , O _M	Р эн , Ом	R _{BX} , O _M	Kı	Ku	KP
200	190,4	8222,9	36,1	0,88	31,75
1000	800	10259,3	9,9	0,97	9,62
3000	1714,3	10756,9	3,5	0,98	3,48
250000	3937	11027,9	0,04	0,99	0,0435

В результате произведенных вычислений аналитическим способом (таблица 7) и данных полученных экспериментальным путем (таблица 6) получили схожие данные. Расчеты выполнены верно.

Определим граничную частоту работы транзистора с общим эмиттером. Для этого построим график анализа тока. Смотри рисунок 14.

Рисунок 14 – АС анализ схемы с общим коллектором

Граничная частота находится на отметке при напряжении в $\sqrt{2}$ раз меньше максимального. Исходя из рисунка 8, получаем, что $f_{\rm B}=519$,7 кГц

Для определения постоянной времени цепи, найдем коэффициент G по формуле:

$$G = \frac{R'_{\Gamma} + r_6 + r_9 + R_{9H}}{R'_{\Gamma} + R_{9H} * (B+1) + R_{BX TP 06}} = 0,017;$$

где
$$R'_{\Gamma} = \frac{R_{\Gamma} * R_{6}}{R_{\Gamma} + R_{6}} = 2,4$$
 кОм; $r_{6} = 0$

Постоянную времени цепи рассчитаем по формуле:

$$au_{
m B} = G*(au_B + {
m C}_{
m K9}*R_{
m KH}) + C_{
m H}*R_{
m KH}, \qquad$$
где $C_{
m H} = 0$ Ф $au_B = rac{B+1}{2\pi f_{lpha}} = 2,2{
m e} - 6$ $C_{
m K9} = {
m C}_{
m 6K}(B+1) = 2,82{
m e} - 9$ $au_{
m B} = 0,12$ мкс

Вывод: изучили, как влияют различные способы включения биполярного транзистора и величина сопротивления нагрузки на свойства усилительного каскада.