80818 Intuitionistic Logic - Exercise Sheet 8

October 28, 2021

- 1. We write $t \to_n r$ to mean t reduces to r at stage n, as in definition 11.17 of the notes. Verify the following.
 - (a) $\mathbf{k}(\mathbf{k}\mathbf{s})\mathbf{s}\mathbf{s} \to_0 \mathbf{s}$
 - (b) $\mathbf{s}(\mathbf{s}\mathbf{s})\mathbf{k}\mathbf{s} \to_2 \mathbf{s}(\mathbf{k}\mathbf{s})(\mathbf{s}(\mathbf{k}\mathbf{s}))$
 - (c) $\mathbf{kk}(\mathbf{skks}) \rightarrow_1 \mathbf{k}$
 - (d) It is false that $\mathbf{kk}(\mathbf{skks}) \rightarrow_0 \mathbf{k}$?
- 2. Define $\top := \lambda x.\lambda y.x$ and $\bot := \lambda x.\lambda y.y.$
 - (a) Let (A, \cdot) be a pca. Let d be any element of A with the following properties:
 - i. For all $a \in \mathcal{A}$, $da \downarrow$ and either $da = \bot$ or $da = \top$.
 - ii. If $a, a' \in \mathcal{A}$ are such that for all $b \in \mathcal{A}$, $ab \simeq a'b$, then da = da'. Show that d is constant, i.e. da = da' for all $a, a' \in \mathcal{A}$. (Hint: You might find it useful to consider the term $\mathbf{y}(\lambda x.dxa'a)$ when $a = \top$ and $a' = \bot$.)
 - (b) Suppose there is a term d such that $dab = \top$ if $ab \downarrow$ and $dab = \bot$ if $ab \uparrow$. Show, by part (a) or otherwise that $ab \downarrow$ for all $a, b \in \mathcal{A}$ (we say \mathcal{A} is a *total pca* or just ca).
 - (c) Let \mathcal{A} be a pca with decidable equality. That is, there is $e \in \mathcal{A}$ such that for all $a, b \in \mathcal{A}$, $eab \downarrow$ and $eab = \top$ when a = b and $eab = \bot$ when $a \neq b$. Define $c := \lambda x.e\mathbf{k}(xx)\mathbf{s}\mathbf{k}$. Show that cc is not defined.
 - (d) An ω -pca is a pca⁺ \mathcal{A} such that for all $a \in \mathcal{A}$ there exists $n \in \mathbb{N}$ such that $a = \underline{n}$. Show there is no total ω -pca.

Remark: The argument in part (a) is known in computability theory as Rice's theorem.

3. Suppose we are given two extended peas with the same underlying partial applicative structure, say (\mathcal{A},\cdot) . Write the respective pea⁺ structures as $\mathbf{s}, \mathbf{k}, \mathbf{p}, \mathbf{p}_0, \mathbf{p}_1, 0, S, \mathbf{d}$ and $\mathbf{s}', \mathbf{k}', \mathbf{p}', \mathbf{p}'_0, \mathbf{p}'_1, 0', S', \mathbf{d}'$. Write N for the smallest subset of \mathcal{A} such that $0 \in N$ and $Sx \in N$ whenever $x \in N$ and N' for the smallest subset of \mathcal{A} such that $0' \in N'$ and $S'x \in N'$ whenever $x \in N'$.

- (a) Show there is a representable bijection between N and N'. That is, $a, b \in \mathcal{A}$ such that $ac \in N'$, for all $c \in N$, $bc' \in N$ for all $c' \in N'$, and a(bc') = c' and b(ac) = c for all such c, c'.
- (b) Suppose we are given two extended pcas \mathcal{A} and \mathcal{A}' with the same underlying partial applicative structure. Show a partial function $f: \mathbb{N} \to \mathbb{N}$ is \mathcal{A} -computable if and only if it is \mathcal{A}' -computable.