02- 6-15; 3:00AM;NGB

:81355613954

57/ 86

SEQUENCE LISTING

<110> Yutaka KANDA Mitsuo SATOH Kazuyasu NAKAMURA Kazuhisa UCHIDA Toyohide SHINKAWA Naoko YAMANE Motoo YAMASAKI Nobuo HANAI

<120> ANTIBODY COMPOSITION-PRODUCING CELL

<130>

<140>

<141>

<150> JP 2000-308526 <151> 2000-10-06

<150> US 60/268, 926

<151> 2001-02-16

<160> 73

<170> PatentIn Ver. 2.1

<210> 1

<211> 2008

<212> DNA

(213) Cricetulus griseus

aacagaaact tattttcctg tgtggctaac tagaaccaga gtacaatgtt tccaattctt 60 tgagctccga gaagacagaa gggagttgaa actctgaaaa tgcgggcatg gactggttcc 120 tggcgttgga ttatgctcat tctttttgcc tgggggacct tattgtttta tataggtggt 180 catttggttc gagataatga ccaccetgac cattetagca gagaactetc caagattett 240 gcasagctgg agegettaaa acaacaaaat gaagacttga ggagaatgge tgagtetete 300 cgaataccag aaggeeetat tgateagggg acagetacag gaagagteeg tgttttagaa 360 gaacagettg ttaaggecaa agaacagatt gaaaattaca agaaacaage taggaatgat 420 ctgggaaagg atcatgaaat cttaaggagg aggattgaaa atggagctaa agagctctgg 480 ttttttctac aaagtgaatt gaagaaatta sagaaattag aaggaaacga actccaaaga 540 catgcagatg aaattctttt ggatttagga catcatgaaa ggtctatcat gacagatcta 600 tactaccica gicaaacaga iggagcaggi gagiggcggg aaaaagaagc caaagaicig 660 acagagetgg tecageggag aataacatat etgeagaate eeaaggaetg cageaaagee 720 agaaagctgg tatgtaatat caacaaaggc tgtggctatg gatgtcaact ccatcatgtg 780 gtttactgct tcatgattgc ttatggcacc cagegaacac tcatettgga atetcagaat 840 tggcgctatg clactggagg atgggagact gtgtttagac ctgtaagtga gacatgcaca 900 gacaggtctg gcctctccac tggacactgg tcaggtgaag tgaaggacaa aaatgttcaa 960 giggicgage tececatigi agacageete eatectegie etectiaeti acceiiggei 1020

gtaccagaag accitgcaga togactooig agagiccatg gigatooigc agigiggigg 1080 gtatcccagt ttgtcaaata cttgatccgt ccacaacctt ggctggaaag ggaaatagaa 1140 gasaccacca agaagetigg eticaaacat ceagitistig gagiceatgi cagaegeact 1200 gacaaagtgg gaacagaagc agcettecat cecattgagg aatacatggt acaegttgaa 1260 gaacattito agottotoga aogoagaatg aaagtggata aaaaaagagt gtatotggoo 1320 actgatgacc cttctttgtt aaaggaggca aagacaaagt actccaatta tgaatttatt 1380 agtgataact ctattictig gicagcigga ciacacaacc gatacacaga aaattcacti 1440 cggggcgtga teetggatat acaetttete teecaggetg actteetigt gtgtaetttt 1500 tcatcccagg tctgtagggt tgcttatgaa atcatgcaaa cactgcatcc tgatgcctct 1560 gcaaacttcc attetttaga tgacatctac tattttggag gccaaaatgc ccacaaccag 1620 attgcagttt atcctcacca acctcgaact aaagaggaaa tccccatgga acctggagat 1680 atcattggtg tggctggaaa ccattggaat ggttactcta aaggtgtcaa cagassacta 1740 ggaaaaacag gcctgtaccc ttcctacaaa gtccgagaga agatagaaac agtcaaatac 1800 cctacatato ctgaagctga aaaatagaga tggagtgtaa gagattaaca acagaattta 1860 gttcagacca tetcagecaa geagaagace cagactaaca tatggtteat tgacagacat 1920 gctccgcacc aagagcaagt gggaaccctc agatgctgca ctggtggaac gcctctttgt 1980 2008 gaagggctgc tgtgccctca agcccatg

<210> 2 <211> 1728 <212> DNA

<213> Mus musculus

<400> 2
atgcgggcat ggactggttc ctggcgttgg attatgctca ttctttttgc ctgggggacc 60
ttgttatttt attatggtgg tcatttggtt cgagataatg accaccctga tcactccage 120
agagaactct ccaagattct tgcaaagctt gaacgcttaa aacagcaaaa tgaagacttg 180
aggcgaatgg ctgagtctct ccgaatacca gaaggcccca ttgaccaggg gacagctaca 240
ggaagaaccag gtgttttaga agaacagctt gttaaggcca aagaacagat tgaaaattac 300
aaggaacaaag ctagaaatgg tctggggaag gatcatgaaa tcttaaggag gaggattgaa 360
aatggagcta aagagctctg gtttttcta caaagcgaac tgaagaaatt aaagcattta 420
gaaggaaatg aactccaaag acatgcagat gaaattcttt tggatttagg acaccatgaa 480
aggtctatca tgacagatct atactacctc agtcaaacag atggagcagg ggattggcgt 540
gaaaaaagagg ccaaagatct gacagagctg gtccagcga gaataacata tcccagaat 600
cctaaggact gcagcaaagc caggaagctg gtgtgtaaca tcaataaagg ctgtggctat 660
ggttgtcaac tccatcacgt ggtctactgt ttcatgattg cttatggcac ccagcgaaca 720
cctcatcttgg aatctcagaa ttggcgctat gctactggt gatgggagac tgtgtttaga 780
cctgtaagtg agacatgtac agacagatct ggcctctcca ctggacactg gtcaggtgaa 840

gtaaatgaca aaaacattca agtggtcgag ctccccattg tagacagcct ccatcctcgg 900 cotectiact taccactgge tgitecagaa gaeetigeag accgaeteet aagagiceat 960 ggtgaccetg cagtgtggtg ggtgtcccag tttgtcaaat acttgattcg tccacaacct 1020 tggctggaaa aggaaataga agaagccacc aagaagcttg gcttcaaaca tccagttatt 1080 ggagtocatg teagacgeae agacaaagtg ggaacagaag cagcetteea ecceategag 1140 gagtacatgg tacacgttgs agaacatttt cagcttctcg cacgcagaat gcaagtggat 1200 aaaaaaagag tatatetgge taetgatgat cetaetttgt taaaggagge aaagacaaag 1260 tactccaatt atgaatttat tagtgataac totatttott ggtcagctgg actacacaat 1320 eggtacaeag aaaatteact teggggtgtg atcetggata tacaetttet etcaeagget 1380 gactitciag tgtgtacitt ticatcccag gictgtcggg tigcttatga aatcatgcaa 1440 accetgeate etgatgeete tgegaactte cattettigg atgacateta etatttigga 1500 ggccamantg cccacanton gattgctgtt tatcctcaca aacctcgaac tgaagaggaa 1560 allocaatgg aacciggaga tatcatiggi giggciggaa accatiggga iggitatici 1620 aaaggtatca acagaaaact tggaaaaaca ggcttatatc cctcctacaa agtccgagag 1680 aagatagaaa cagtcaagta toccacatat cotgaagotg aaaaatag 1728

<210> 3 <211> 9196 <212> DNA

<213> Cricetulus griseus

<400> 3

tetagaccag getggteteg sacteacaga gaaccacetg cetetgecae etgagtgetg 60 ggattaaagg tgtgcaccae cacegecegg egtaaaatca tattitigaa tattgtgata 120 atttacatta taattgtaag taaaaattit cageetatt tgttatacat tittgegtaa 180 attateett tittgaaagti tigttgteea taatagteta gggaaacata aagitataat 240 tittgetat gaattigeat ataateetat tiaaeteet aatgeegg aaataaatag 300 ggtatgtaat ageeteaaca tgtggtatga tagaattit eagigetata taagitgita 360 cageaaagtg tiattaatte ataigteeat sitteaatti tittatgaatt ataaattga 420 ateettaage tgeeagaact sgaattitat titaateagg aageeeeaaa teigiteatt 480 ettteetata atgiggaaag gtaggeetea etaaetgat etteacetgi titagaacat 540 ggiceaagaa tggagtiatg taaggggaat tacaagtgig agaaaactee tagaaaacaa 600 gatgagtett gtgsectiag titettaaa sacacaaaat teitggaatg tgititeatg 660 titeeteeag gtggatagga gtgagtitat titeagattat titatacaac tggetgitgi 720 taettgite tatgetita tagaaaaaca tattittit geeacatgea getigteett 780 atgattitat aettgggga acteeagee aetteagee aetteeatta titggettea teetecagat 900

:81355613954

60× 86

cccaccacct ccagagiggt aaacaactig aaccattaaa cagaciitag tctttattig 960 aatgatagat ggggatatce gatttatagg cacagggttt tgagaaaggg agaaggtaaa 1020 cagtagagtt taacaacaac aaaaagtata ctttgtaaac gtaaaactat ttattaaagt 1080 agtagacaag acattaaata ttccttggga ttagtgcttt ttgaattttg ctttcaaata 1140 atagtcagtg agtatacccc tcccccattc tatattttag cagaaatcag aataaatggt 1200 gtttctggta cattcttttg tagagaattt attttctttg ggtttttgtg catttaaagt 1260 caataaaaat taaggttcag taatagaaaa aaaactctga tttttggaat cccctttctt 1320 cagcttttct atttmatctc ttaatgatam tttaatttgt ggccatgtgg tcaaagtata 1380 tagcctigta tatgtaaatg tittaaccaa cctgcctita cagtaactat ataattitat 1440 tctataatat atgacttttc ttccatagct ttagagttgc ccagtcactt taagttacat 1500 tttcatatat gttctttgtg ggaggagata attttatttc taagagaatc ctaagcatac 1560 tgattgagaa atggcaaaca aaacacataa ttaaagctga taaagaacga acatttggag 1620 tttaaaatac atagccaccc taagggttta actgttgtta gccttctttt ggaattttta 1680 ttagttcata tagaaaaatg gattttatcg tgacatttcc atatatgtat ataatatatt 1740 tacatcatat ccacctgtaa tiattagtgt ttttaaatat atttgaaaaa ataatggtct 1800 Egitigatcc attigaacct titgaigtit ggigiggitg ccaatiggit gaiggitatg 1860 ataacctitg cttctctaag gttcaagtca gtttgagaat atgtcctcta aaaatgacag 1920 Ettgcaagtt aagtagtgag atgacagcga gatggagtga tgagaatttg tagaaatgaa 1980 ttcacttata ctgagaactt sttttgcttt tagataatga acatattagc ctgaagtaca 2040 tagccgaatt gattaattat tcaaagatat aatcttttaa tccctataaa agaggtatta 2100 cacaacaatt caagaaagat agaattagac ttccagtatt ggagtgaacc atttgttatc 2160 aggtagaacc ctaacgtgtg tggttgactt aaagtgttta ctttttacct gatactgggt 2220 agctaattgt ctttcagcct cctggccaaa gataccatga aagtcaactt acgttgtatt 2280 ctatatctca aacaactcag ggtgtttctt actctttcca cagcatgtag agcccaggaa 2340 gcacaggaca agaaagctgc ctccttgtat caccaggaag atctttttgt aagagtcatc 2400 acagtatacc agagagacta attitgtcig aagcatcatg tgitgaaaca acagaaacti 2460 attitcctgt giggctaact agaaccagag tacaatgitt ccaattcttt gagctccgag 2520 aagacagaag ggagttgaaa ctctgaaaat gcgggcatgg actggttcct ggcgttggat 2580 tatgctcatt ctttttgcct gggggacctt attgttttat ataggtggtc atttggttcg 2640 agataatgac cacccigacc attctagcag agaactctcc aagattcitg caaagcigga 2700 gcgcttaaaa caacaaaatg aagacttgag gagaatggct gagtctctcc ggtaggtttg 2760 aaatactcaa ggattigatg aaatactgtg citgaccttt aggtataggg tcicagtctg 2820 ctgttgaaaa atataatttc tacaaaccgt ctttgtaaaa ttttaagtat tgtagcagac 2880 tttttaaaag tcagtgatac atctatatag tcaatatagg tttacatagt tgcaatctta 2940

ttttgcatat gaatcagtat atagaagcag tggcatttat atgcttatgt tgcatttaca 3000 attatgttta gecgaacaca aactttatgt gatttggatt agtgctcatt aaatttttt 3060 attctatgga ctacaacaga gacataaatt ttgaaaggct tagttactct taaattctta 3120 tgatgaaaag caaaaattca ttgttaaata gaacagtgca tccggaatgt gggtaattat 3180 tgccatattt ctagtctact aaaaattgtg gcataactgt tcaaagtcat cagttgtttg 3240 gaaagccaaa gtctgattta aatggaaaac ataaacaatg atatctattt ctagatacct 3300 ttaacttgca gttactgagt ttacaagttg tctgacaact ttggattctc ttacttcata 3360 tctaagaatg atcatgtgta cagtgcttac tgtcacttta aaaaactgca gggctagaca 3420 tgcagatatg aagactttga cattagatgt ggtaattggc actaccagca agtggtatta 3480 agatacaget gaatatatta etttttgagg aacateette atgaatggaa agtggegeat 3540 tagagaggat gccttctggc tctcccacac cactgtttgc atccattgca tttcacactg 3600 cttttagaac tcagatgttt catatggtat attgtgtaac tcaccatcag ttttatcttt 3660 aaatgictai ggatgataai giigtaigii aacactitta caaaascaaa igaagccaia 3720 teeteggtgt gagttgtgat ggtggtaatt gteacaatag gattatteag caaggaacta 3780 agtcagggac aagaagtggg cgatactttg ttggattaaa tcattttact ggaagttcat 3840 cagggagggt tatgaaagtt gtggtctttg aactgaaatt atatgtgatt cattattctt 3900 gatttaggcc ttgctaatag taactatcat ttattgggaa tttgtcatat gtgccaattt 3960 gtcatgggcc agacagegtg tittactgaa titctagata tetitatgag attetagtae 4020 tgttttcage cattttacag atgaagaate ttaaaaaatg ttaaataatt tagtttgeee 4080 aagattatac gttaacaaat ggtagaacct tetttgaatt etggeagtat ggetacacag 4140 tecgaactet tatetteeta agetgaaaac agaaaaagea atgacceaga aaattitatt 4200 taaaagtoto aggagagact toccatootg agaagatoto tittoccitt tataatittag 4260 geteetgaat aateaetgaa titteteeat giteeateta tagtaetgit attietgitt 4320 teettitite tiaccacaaa giatetigii titgeigiai gaaagaaaai gigitatigi 4380 aatgtgaaat tetetgteee tgeagggtee cacateegee teaateecaa ataaacacae 4440 agaggctgta ttaattatga aactgttggt cagttggcta gggcttctta ttggctagct 4500 ctgtcttaat tattaaacca taactactat tgtaagtatt tccatgtggt cttatcttac 4560 caaggaaagg giccagggac cicitacicc toiggcgigi tggcagigaa gaggagaga 4620 cgatticcta titgictici citatitici gattitgica agetatgica citicci 4680 ggccaatcag ccastcagtg tittaticat tagccaataa asgaaacait tacacagaag 4740 gacttccccc atcatgitat tigiatgagt tetteagaaa atcatagtat ettttaatae 4800 taattittat aaaaaattea tigiatigaa aattaigigi ataigigici gigigicgat 4860 tigigcicat aagtagcaig gagigcagaa gagggaatca gaiciiitti taagggacaa 4920 agagtitati cagattacai titaaggiga taatgiatga tigceaggit atcaacaigg 4980 ,8135561,3954

cagaaatgtg aagaagctgg tcacattaca tccagagtca agagtagaga gcaatgaatt 5040 02- 6-16: 3:00 AM; NGB Batecateca treetgiget cageteactt treetgeage teageteatt graageeate 5100 tgatgtcttt gctgggaact aactcaaagg camgttcaaa acctgttctt aagtataagc 5160 catcteteca geoceteata tegetetetta agacactete tetatatet teracataga 5220 aattgaatte ctaacaactg cattcaaatt acaaaatagt rittaaaage tgatataata 5280 aatgtaaata caatctagaa cattiitata aataagcata tiaactcagt aaaaataaat 5340 gcatggttat tttccttcat tagggaagta tgtctcccca ggctgttctc tagattctac 5400 tagtaatgct gtitgtacac catccacags ggttttattt taaagctaag acatgaatga 5460 tegacatect tettagcatt tagactttit tecttactat aattgageta gtatttitet 5520 Betcagttis atateighta atteagataa atgiaatagi aggiaatite thigheataa 5580 aggcatataa attgaagttg gaaaacaaaa gcctgaaatg acagtttta agattcagaa 5640 caataattti caaaagcagt tacccaactt tccaaataca atcrgcagtt ttcttgatat 5700 gtgataaatt tagacaaaga aatagcacat titaaaaatag ctatttactc tigattitt 5760 tticaaatti aggctagtic actagtigts tgtaaggtia tggctgcaaa catcittgac 5820 tcttggttag ggaatccagg atgatttacg tgtttggcca gaatcttgtt ccattctggg 5880 ttictictct atctaggtag ctagcacaag ttagagggtgt ggtagtattg gaaggctctc 5940 aggitatatat ttotatatic testatititi tcctctesca tatatitect ttctestita 6000 ttgatticia cigitagiti gatacitaci ticttacaci tictitggga titaititgc 6060 tgttctaaga ittcttagca agitcatatc actgatttta acagitgctt cttttgtaat 6120 atagactgaa teccccitat tteaaatect teegatcaga aactcagatt teacccitat tteaaatect ttttttaata tttccatcaa gtttaccagc tgaatgtcct gatccaagaa tatgaaatct 6240 gaaatgcttt gaaatctgaa acttttagag tgatsaagct tccctttaaa ttaatttgtg 6300 tictatatti titgacaatg tcaaccittic attgitatcc aatgagigaa catatittca 6360 attititigi tigatcigit atatitigal cigaccatai tiataaaaati ttatitaati 6420 tgaatgtigt gctgttactt atctttatta ttatttttgc ttattttcta gccaaatgaa 6480 attatattct gtattatttt agittgaatt tiacittgtg gcttagiaac tgccttttgt 6540 testeaatec ttaasaaaaa ceteteeta acteatatte ettctaatct tatatagcat 6600 Btigtitett aggtagtiga ttatgciegt cagatigtci tgagtitatg caaatgtaga 6660 atattlagat gcltgtills tigiclaaga acaasgtatg cttgctgtct cctatcggtt 6720 ctegtittic cattcatctc ticaegctgt titgtgtgtt gaatactaac tccgtactat 6780 cttgttttct gtgaattaac cccttttcaa aggtttcttt tcttttttt tttaagggac 6840 aacaagttta ticagattac attitaggci gataatgtat gattgcaagg tiatcaacat 6900 gecogasate teasgasect agecacatta catccacate gagtcaagas cagagagcas 6960 tgaattaate catecatice tetestcase teactitice tattettaga tagtetagga 7020

:81355613954

tcataaacct ggggaatagt gctaccacaa tgggcatatc cacttacttc agttcatgca 7080 atcaaccoog gcacatccac aggaaaaact gatttagaca acctetcatt gagactette 7140 ccagatgatt agactgtgtc aagttgacaa ttaaaactat cacacctgaa gccatcacta 7200 grazatatas tgaaaatgtt gattatcacc ataattcatc tgtatccctt tgttattgta 7260 gattttgtga agttcctatt caagtccctg ttccttcctt aaaaacctgt tttttagtta 7320 aataggtitt ttagtgttcc tgtctgtaaa tactitttta aagttagata ttattttcaa 7380 gtatgttctc ccagtctttg gcttgtattt tcatcccttc aatacatata tttttgtaat 7440 ttattttttt tatttaaatt agaaacaaag ctgcttttac atgtcagtct cagttccctc 7500 teceteceet ceteceetge tececaceta agececaatt ceaacteett tettetecee 7560 aggaagggtg aggccctcca tgggggaaat cttcaatgtc tgtcatatca tttggagcag 7620 ggcctagacc ctccccagtg tgtctaggct gagagagtat ccctctatgt ggagagggct 7680 cccaaagttc attigtgtac taggggtaam tactgatcca ctatcagtgg ccccatagat 7740 tgtccggacc tccaaactga cttcctcctt cagggagtct ggaacagttc tatgctggtt 7800 teccagatat cagtetgggg tecatgagea acceetigtt caggteagtt gtttetgtag 7860 gtttccccag cccggtcttg accepttige teatcaette tecetetetg casetggatt 7920 ccagagttca gctcagtgtt tagctgtggg tgtctgcatc tgcttccatc agctactgga 7980 tgagggctct aggatggcat ataaggtagt catcagtctc attatcagag aagggctttt 8040 aaggtagcct cttgattatt gcttagattg ttagttgggg tcaaccttgt aggtctctgg 8100 acagigacag aattetetti aaacetataa iggeteette igiggiggia teeettitet 8160 tgctctcatc cgttcctccc ctgactagat cttcctgctc cctcatgtcc tcctctcccc 8220 teccettete cecttetet tettetaset ecetetece tecacecaeg atecceatta 8280 gcttatgsga tcttgtcctt sttttagcaa sacctttttg gctataaaat taattaattt 8340 aatatgctta tatcaggttt attttggcta gtatttgtat gtgtttggtt agtgtttta 8400 accttaattg acatgtatcc ttatatttag acacagattt aaatatttga agttttttt 8460 ttittitit ttaaaagatti attistitti tatgictici gcctgcatgc cagaagaggg 8520 caccagatet cattcaaggt ggttgtgage caccatgtgg ttgctgggaa ttgaactcag 8580 gacctctgga agaacagtca gtgctcttaa ccgctgagcc atctctccag cccctgaagt 8640 gittettita aagaggatag cagigcatca titticeett igaccaatga etectaeett 8700 actgaattgt titagccatt tatatgtaat gctgttacca ggtttacatt ttcttttatc 8760 ttgctaaatt tcttccctgt ttgtctcatc tcttattttt gtctgttgga ttatataggc 8820 ttttatttt ctgttttac agtaagttat atcaaattea aattattta tggaatgggt 8880 gtgttgacta catgtatgtc tgtgcaccat gtgctgacct ggtcttggcc agaagaaggt 8940 gtcatattct ctgaaactgg tattgtggat gttacgaact gccatagggt gctaggaatc 9000 aaaccccage teetetggaa aagcagceae tgetetgage caetgagtee tetetteaag 9060

64/ 86

02- 6-15; 3:00AM; NGB

caggigatge caactitiaa tggttaccag tggataagag tgcttgtate tetageacce 9120 atgaaaattt atgcattgct atatgggctt gtcacttcag cattgtgtga cagagacagg 9180 9196 aggateceaa gagete

NIXON

<210> 4 ⟨211⟩ 25

<212> DNA (213) Artificial Sequence

<223> Description of Artificial Sequense: Synthetic DNA

<400> 4

actcatcttg gaatctcaga attgg

25

<210> 5 <211> 24

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequense: Synthetic DNA

cttgaccgtt tctatcttct ctcg

24

<210> 6 <211> 979

(212) DNA

<213> Cricetulus griseus

(400) 6 acteatette gaateteaga attegegeta teetaetega egategegaga etetettag 60 acctgtaagt gagacatgca cagacaggtc tggcctctcc actggacact ggtcaggtga 120 agtgaaggac aaaaatgttc aagtggtcga gctccccatt gtagacagcc tccatcctcg 180 tectecttae ttaccettgg etgtaccaga agacettgea gategactee tgagagteea 240 tggtgatcct gcagtgtggt gggtatccca gtttgtcaaa tacttgatcc gtccacaacc 300 ttggctggaa agggaaatag aagaaaccac caagaagctt ggcttcaaac atccagttat 360 tggagtccat gtcagacgca ctgacaaagt gggaacagaa gcagccttcc atcccattga 420 ggaatacatg gtacacgtig sagaacatti tcagcticic gaacgcagaa tgsaagtgga 480 taaaaaaaga gtgtatctgg ccactgatga cccttctttg ttaaaggagg caaagacaaa 540 gtactccast tatgaattta ttagtgatas ctctatttct tggtcagctg gactacacaa 600 ccgatacaca gaaaattcac ttcggggcgt gatcctggat atacactttc tctcccaggc 660 tgactteett gtgtgtaett itteateeca ggtetgtagg gttgettatg saateatgea 720 aacactgcat cctgatgcct ctgcaeactt ccattcttta gatgacatct actatttigg 780 aggecaaaat geceaease agattgeagt ttateeteac caacetegas etaaagagga 840 aatccccatg gaacctggag atatcattgg tgtggctgga aaccattgga atggttactc 900

taaaggtgtc aacagaaaac taggaaaaac aggcctgtac ccttcctaca aagtccgaga 960

gaagatagaa acggtcaag

979

<210> 7 <211> 979 <212> DNA

<213> Rattus norvegicus

acteatettg gaateteaga attggegeta tgetaetggt ggatgggaga etgtgtttag 60 acctgtaagt gagacatgca cagacagate tggcetetee actggacaet ggteaggtga 120 agtgaatgac aaaaatattc aagtggtgga gctccccatt gtagacagcc ttcatcctcg 180 gcctccttac ttaccactgg ctgttccaga agaccttgca gatcgactcg taagagtcca 240 tggtgatcct gcagtgtggt gggtgtccca gttcgtcaaa tatttgattc gtccacaacc 300 tiggctagaa aaggaaatag aagaagccac caagaagcii ggciicaaac atccagicat 360 tggagtccat gtcagacgca cagacaaagt gggaacagag gcagccttcc atcccatcga 420 agagtacatg gtacatgttg aagaacattt teagettete geaegeagaa tgeaagtgga 480 taaaaaaaaga gtatatctgg ctaccgatga ccctgctttg ttaaaggagg caaagacaaa 540 gtactccaat tatgaattta ttagtgataa ctctatttct tggtcagctg gactacacaa 600 teggtacaca gaaaatteac tteggggegt gateetggat atacaettte teteteagge 660 tgacticcta gigigiacit titicatecca ggietgiegg gitgettatg aaateatgea 720 ascectgeat cetgatgeet etgeaaactt ceactettta gatgacatet actatttigg 780 aggecasaat geceseaace agattgeegt ttateeteac aaacetegaa etgatgagga 840 aattccaatg gaacciggag ataicattgg tgiggcigga aaccattggg atggitattc 900 taaaggtgtc aacagaaaac ttggaaaasc aggcttatat ccctcctaca aagtccgaga 960 gaagatagaa acggtcaag 979

<210> 8 <211> 40 <212> DNA

<213> Artificial Sequence

〈220〉

<223> Description of Artificial Sequense: Synthetic DNA

<400> 8

aagtataagc ttacatggat gacgatatcg ctgcgctcgt

40

<210> 9 <211> 40 <212> DNA

<213> Artificial Sequence

(220)

<223> Description of Artificial Sequense: Synthetic DNA

<400> 9

atttaactgc aggaagcatt tgcggtggac gatggagggg

40

66/86

<210> 10 <211> 40 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequense: Synthetic DNA	
<400> 10 atttaaggta ccgaagcatt tgcggtgcac gatggagggg	40
<210> 11 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequense: Synthetic DNA	
<400> 11 ctccmettat gaatttatta gtg	23
<210> 12 <211> 25 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequense: Synthetic DNA</pre>	
<pre><400> 12 ggatgtttga agccaagctt cttgg</pre>	25
<pre><210> 13 <211> 24 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Description of Artificial Sequense: Synthetic DNA	
<400> 13 gtccatggtg atcctgcagt gtgg	24
<210> 14 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequense: Synthetic DNA	
<400> 14 caccaatgat atctccaggt tcc	23
<210> 15 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequense: Synthetic DNA	

	400> 15 atatogotg ogotogitgi ogac	24
〈	210> 16 211> 24 212> DNA 213> Artificial Sequence	
	220> 223> Description of Artificial Sequense: Synthetic DNA	
	400> 16 aggaaggaa ggctggaaaa gagc	24
〈	210> 17 211> 24 212> DNA 213> Artificial Sequence	
	220> 223> Description of Artificial Sequense: Synthetic DNA	
	400> 17 atategetg egetegtegt egac	24
<	210> 18 211> 24 212> DNA 213> Artificial Sequence	
	220> 223> Description of Artificial Sequense: Synthetic DNA	
	400> 18 aggaaggaa ggctggaaga gagc	24
<	210> 19 211> 24 212> DNA 213> Artificial Sequence	
	220> 223> Description of Artificial Sequense: Synthetic DNA	
	400> 19 tgcgggcat ggactggttc ctgg	24
<: <:	210> 20 211> 27 212> DNA 213> Artificial Sequence	
	220> 223> Description of Artificial Sequense: Synthetic DNA	
<-	400> 20 tatttttca gcttcaggat atgtggg	27
<:	210> 21 211> 24 212> DNA	

```
<213> Artificial Sequence
```

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 21

gtctgaagca ttatgtgttg aagc

24

(210) 22

(211) 23

(212) DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 22

gtgagtacat tcattgtact gtg

23

<210> 23

<211> 575 <212> PRT

(213) Cricetulus griseus

<400> 23

Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe 1 5 10

Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp 20 25 30

Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala 35 40 45

Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala 50 60

Glu Ser Leu Arg Ilc Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr 65 75 80

Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln 95

Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Asp Leu Gly Lys Asp His

Glu Ile Leu Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe 115 120 125

Phe Leu Gln Ser Glv Leu Lys Lys Leu Lys Lys Leu Glv Glv Asn Glu 130 135 140

Leu Gln Arg His Ala Asp Glu Ile Leu Leu Asp Leu Gly His His Glu 145 150 150 160

Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala 165 175

Gly Glu Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln 180 185 190

Arg Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Arg 195 200 205

Lys Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu 210 215 220

His His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr 225 235 240 Leu Ile Leu Glu Ser Gln Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu 245 250 255 Thr Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Leu 260 265 270 Ser Thr Gly His Trp Ser Gly Glu Val Lys Asp Lys Asn Val Gln Val 275 280 285 Val Glu Leu Pro Ile Val Asp Ser Leu His Pro Arg Pro Pro Tyr Leu 290 295 300 Pro Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Leu Arg Val His 305 310 315 320 Gly Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile 325 330 335 Arg Pro Gln Pro Trp Leu Glu Arg Glu Ile Glu Glu Thr Thr Lys Lys 340 345 350 Leu Gly Phe Lys His Pro Val Ile Gly Val His Val Arg Arg Thr Asp 365 365 Lys Val Gly Thr Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Met Val 370 380His Val Glu Glu His Phe Gln Leu Leu Glu Arg Arg Met Lys Val Asp 395 400 Lys Lys Arg Val Tyr Leu Ala Thr Asp Asp Pro Ser Leu Lys Glu 405 410 415 Ser Trp Ser Ala Gly Leu His Asn Arg Tyr Thr Glu Ash Ser Leu Arg 435 440 445Gly Val Ile Leu Asp Ile His Phe Leu Ser Gln Ala Asp Phe Leu Val 450 460 Cys Thr Phe Ser Ser Gln Val Cys Arg Val Ala Tyr Glu Ile Met Gln 480 Thr Leu His Pro Asp Ala Ser Ala Asn Phe His Ser Leu Asp Asp Ile 485 490 495 Tyr Tyr Phe Gly Gly Gln Asn Ala His Asn Gln Ile Ala Val Tyr Pro 500 505 510 His Gln Pro Arg Thr Lys Glu Glu Ile Pro Met Glu Pro Gly Asp Ile 515 Ile Gly Val Ala Gly Asn His Trp Asn Gly Tyr Ser Lys Gly Val Asn
530
535 Arg Lys Leu Gly Lys Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu 545 Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys 565 570 575

<210> 24 <211> 575 <212> PRT

(213) Mus musculus

<400> 24 Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp 20 25 30Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala 35 40 45 Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala 50 60 Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr 70 75 80Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln
85 90 95 Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Gly Leu Gly Lys Asp His 100 105 110Glu Ile Leu Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe 115 120 125 Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys His Leu Glu Gly Asn Glu 130 135 140 Leu Gln Arg His Ala Asp Glu Ile Leu Leu Asp Leu Gly His His Glu 145 150 160 Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala 165 170 175 Gly Asp Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln 180 185 190 Arg Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Arg 195 200 205 Lys Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu 210 215 220 His His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr 225 230 235 240 Leu Ile Leu Glu Ser Gln Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu 245 250 255 Thr Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Leu 260 265 270 Ser Thr Gly His Trp Ser Gly Glu Val Asn Asp Lys Asn Ile Gln Val 275 280 285 Val Glu Leu Pro Ile Val Asp Ser Leu His Pro Arg Pro Pro Tyr Leu 290 295 300 Pro Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Leu Arg Val His 305 310 315 Gly Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile 325 330 335

;8135<u>56</u>13954

Arg Pro Gln Pro Trp Leu Glu Lys Glu Ile Glu Glu Ala Thr Lys Lys $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$ Leu Gly Phe Lys His Pro Val Ile Gly Val His Val Arg Arg Thr Asp 355 360 365Lys Val Gly Thr Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Met Val 370 380 His Val Glu Glu His Phe Gln Leu Leu Ala Arg Arg Met Gln Val Asp 385 390 395 400 Lys Lys Arg Val Tyr Leu Ala Thr Asp Asp Pro Thr Leu Leu Lys Glu
405 410 415 Ala Lys Thr Lys Tyr Ser Asn Tyr Glu Phe Ile Ser Asp Asn Ser Ile 420 425 430Ser Trp Ser Ala Gly Leu His Asn Arg Tyr Thr Glu Asn Ser Leu Arg 435 440 445 Gly Val Ile Leu Asp Ile His Phe Leu Ser Gln Ala Asp Phe Leu Val 450 Cys Thr Phe Ser Ser Gln Val Cys Arg Val Ala Tyr Glu Ile Met Gln 470 475 480Thr Leu His Pro Asp Ala Ser Ala Asn Phe His Ser Leu Asp Asp Ile 485 490 495 Tyr Tyr Phe Gly Gly Gln Asn Ala His Asn Gln Ile Ala Val Tyr Pro 500 505 His Lys Pro Arg Thr Glu Glu Glu Ile Pro Met Glu Pro Gly Asp Ile 515 Ile Gly Val Ala Gly Asn His Trp Asp Gly Tyr Ser Lys Gly Ile Asn 530 535 Arg Lys Leu Gly Lys Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu 545 Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys 565 570 575

<210> 25 <211> 18 <212> PRT <213> Homo sapiens

<400> 25

Asp Glu Ser Ile Tyr Ser Asn Tyr Tyr Leu Tyr Glu Ser Ile Pro Lys
1 10 15

Pro Cys

<210> 26

(211) 25 <212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequense: Synthetic DNA

<400> 26

<u>:81</u>355613954

cttgtgtgae tettaagtet eagag	26
cttgtgtgac tcttaactct cagag	25
<210> 27 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequense: Synthetic DNA	
<400> 27 ccctcgagat aacttcgtat agc	23
<210> 28 <211> 18 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequense: Synthetic DNA</pre>	
<pre><400> 28 ggtaggcctc actaactg</pre>	18
<pre><210> 29 <211> 25 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Description of Artificial Sequense: Synthetic DNA	
<pre><400> 29 catagaaaca agtaacaaca gccag</pre>	25
<pre>(210> 30 <211> 28 <212> DNA <213> Artificial Sequence</pre>	
<pre><220> <223> Description of Artificial Sequense: Synthetic DNA</pre>	
<pre><400> 30 gagacttcag cccacttcaa ttattggc</pre>	28
<pre><210> 31 <211> 25 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Description of Artificial Sequense: Synthetic DNA	
<400> 31 gaggccactt gtgtagcgcc aagtg	25
<210> 32 <211> 24 <212> DNA <213> Artificial Sequence	

•	<220> <223> Description of Artificial Sequence: Synthetic DNA	
	<400> 32 aggaaggtgg cgctcatcac gggc	24
	<210> 33 <211> 26 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Synthetic DNA	
	<pre><400> 33 taaggccaca agtcttaatt gcatcc</pre>	26
	<210> 34 <211> 27 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Synthetic DNA	
	<pre><400> 34 caggggtgtt cccttgagga ggtggaa</pre>	27
	<210> 35 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Synthetic DNA	
	<pre><400> 35 cccctcacgc atgaagcctg gag</pre>	23
	<pre><210> 36 <211> 28 <212> DNA <213> Artificial Sequence</pre>	
	<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>	
	<400> 36 ggcaggagac caccttgcga gtgcccac	28
	<210> 37 <211> 28 <212> DNA <213> Artificial Sequence	
	<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>	
	<400> 37 ggcgctggct tacccggaga ggaatggg	28
	(210) 38	

: <u>81</u> 3	5561	3954	

<211><212><213>	28 DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Synthetic DNA	
<400> aaaagg		28
<210><211><211><212><213>	29	
<220> <223>	Description of Artificial Sequence: Synthetic DNA	
<400> cgcgga	39 stoot caagegitgg ggiiggico	29
<210> <211> <212> <213>	45	
<220> <223>	Description of Artificial Sequence: Synthetic DNA	
<400> cccase	40 gettg ccaccatgge teacgeteee getagetgee egage	45
<210><211><211><212><213>	31	
<220> <223>	Description of Artificial Sequence: Synthetic DNA	
<400> ccggaa	41 attet gecaagtatg agecateetg g	31
<210> <211> <212> <213>	17	
<220> <223>	Description of Artificial Sequence: Synthetic DNA	
<400> gccate	42 ccaga aggtggt	17
(210) (211) (212) (213)	17	
<220> <223>	Description of Artificial Sequence: Synthetic DNA	
(400)	43	

<u>:81</u> 355613954	#	75/	8
	•		

gtcttgtcag ggaagat	17
<pre><210> 44 <211> 28 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 44 ggcaggagac caccitgcga gtgcccac	28
<pre><210> 45 <211> 28 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 45 gggtgggctg taccttctgg aacagggc	28
<210> 46 <211> 28 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>	
<400> 46 ggcgctggct tacccggaga ggaatggg	28
<210> 47 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 47 ggaatgggtg titgtctcctc caaagatgc	28
<210> 48 <211> 1316 <212> DNA <213> Cricetulus griseus	
<400> 48 gccccgccc ctccacctgg accgagagta gctggagaat tgtgcaccgg aagtagctct	60
tggactggtg gmaccctgcg caggtgcagc aacaatgggt gagccccagg gatccaggag	
gatectagtg acaggggget etggaetggt gggeagaget atecagaagg tggtegeaga	180
tggcgctggc ttacccggag aggaatgggt gtttgtctcc tccaaagatg cagatctgac	: 240
ggatgcagca caaacccaag ccctgttcca gaaggtacag cccacccatg tcatccatct	300
tgctgcaatg gtaggaggcc ttttccggaa tatcaaatac aacttggatt tctggaggaa	360

:81355613954

```
gaatgtgcac atcaatgaca acgtcctgca ctcagctttc gaggtgggca ctcgcaaggt 420
ggtctcctgc ctgtccacct gtatcttccc tgacaagacc acctatccta ttgatgaaac 480
aatgatccac aatggtccac cccacagcag caattttggg tactcgtatg ccaagaggat 540
gattgacgtg cagaacaggg cctacttcca gcagcatggc tgcaccttca ctgctgtcat 600
ccctaccaat gtctttggac ctcatgacaa cttcaacatt gaagatggcc atgtgctgcc 660
tggcctcatc cataaggtgc atctggccaa gagtaatggt tcagccttga ctgtttgggg 720
tacagggaaa ccacggaggc agttcatcta ctcactggac ctagcccggc tcttcatctg 780
ggtcctgcgg gagtacaatg aagttgagcc catcatcctc tcagtgggcg aggaagatga 840
agtotocatt aaggaggcag ctgaggctgt agtggaggcc atggacttct gtggggaagt 900
cactitigat icaacaaagt cagatgggca giataagaag acagccagca atggcaagct 960
togggoctac ttgcctgatt tocgtttcac accettcmag caggotgtga aggagacetg 1020
tgcctggttc accgacaact atgagcaggc ccggaagtga agcatgggac aagcgggtgc 1080
tcagctggca atgcccagtc agtaggctgc agtctcatca tttgcttgtc aagaactgag 1140
gacagtatec ageaacetga gecacatget ggteretetg ceaggggget teatgeagee 1200
atccagtagg gcccatgttr gtccatcctc gggggaaggc cagaccaaca ccttgtttgt 1260
ctgcttctgc cccaacctca gtgcatccat gctggtcctg ctgtcccttg tctaga
                                                                  1316
```

<210> 49 <211> 23 <212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic DNA

<400> 49

gatectgetg ggaccaaaat tgg

23

(210) 50

<211> 22 <212> DNA

<213> Artificial Sequence

(223) Description of Artificial Sequence: Synthetic DNA

<400> 50

cttaacatcc caagggatgc tg

22

(210) 51

<211> 1965 <212> DNA

(213) Cricetulus griseus

<400> 51

acggggggct cccggaagcg gggaccatgg cgtctctgcg cgaagcgagc ctgcggaagc 60 tgcggcgctt ttccgagatg agaggcaaac ctgtggcaac tgggaaattc tgggatgtag 120

: 81355613954

ttgtaataac agcagctgac gaaaagcagg agcttgctta caagcaacag ttgtcggaga 180 agetgaagag aaaggaattg eccettggag ttaactacca tgtttteact gateeteetg 240 gaaccaaaat tggaaatgga ggatcaacac titgitctct tcagtgcctg gaaagcctct 300 atggagacaa gtggaattcc ttcacagtcc tgttaattca ctctggtggc tacagtcaac 360 gactteceas tgcaageget ttaggaaaas tetteaegge tttaceaett ggtgagecea 420 tttatcagat gttggactta aaactagcca tgtacatgga tttcccctca cgcatgaagc 480 ctggagtttt ggtcacctgt gcagatgata ttgaactata cagcattggg gactctgagt 540 ccattgcatt tgagcagcct ggctttactg ccctagccca tccatctagt ctggctgtag 600 gcaccacaca tggagtattt gtattggact ctgccggttc tttgcaacat ggtgacctag 660 agtacaggea atgccaccgt ttcctccata agcccagcat tgaaaacatg caccacttta 720 atgccgtgca tagactagga agctttggtc aacaggactt gagtgggggt gacaccacct 780 gtcatccatt gcactctgag tatgtctaca cagatagcct attttacatg gatcataaat 840 cagccaaaaa gctactigat tictatgaaa gigtaggccc actgaactgi gaaatagaig 900 cctatggtga ctttctgcag gcactgggac ctggagcaac tgcagagtac accaagaaca 960 cctcacacgt cactaaagag gaatcacact tgttggacat gaggcagaaa atattccacc 1020 tecteaaggg ascaeceetg aatgitgitg teettaataa eteeaggitt tateacattg 1080 gaacaacgga ggagtatctg ctacatttca cttccaatgg ttcgttacag gcagagctgg 1140 gcttgcaatc catagctttc agtgtctttc caaatgtgcc tgaagactcc catgagaaac 1200 cctgtgtcat tcacagcatc ctgaattcag gatgctgtgt ggccctggc tcagtggtag 1260 aatattccag attaggacct gaggtgtcca tctcggaaaa ctgcattatc agcggttctg 1320 tcatagaaaa agctgttctg cccccatgtt ctttcgtgtg ctctttaagt gtggagataa 1380 atggacactt agaatattca actatggtgt ttggcatgga agacaacttg aagaacagtg 1440 ttaaaaccat atcagatata aagatgette agttetttgg agtetgttte etgacttgtt 1500 tagatatttg gaaccttaaa gctatggaag aactattttc aggaagtaag acgcagctga 1560 gcctgtggac tgctcgaatt ttccctgtct gttcttctct gagtgagtcg gttgcagcat 1620 cccttgggat gttaaatgcc attcgasacc attcgccatt cagcctgagc aacttcaagc 1680 tgctgtccat ccaggaaatg cttctctgca aagatgtagg agacatgctt gcttacaggg 1740 agcaactett tetagaaate agtteaaaga gassacagte tgatteggag asatettaaa 1800 tacaatggat tttgcctgga aacaggattg caaatgcagg catattctat agatctctgg 1860 gitcitciti cittciccc icicicciti ccittcccii tgatgiaatg acaaaggtaa 1920 aaatggccac ttctgatggs aaaaaaaaas aaaaaa aaaaa 1965

⟨210⟩ 52

(211) 27

<212> DNA

<213> Artificial Sequence

:8135561	3954

<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 52 caggggggtgtt cccttgagga ggtggaa	27
<210> 53 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 53 cactgagcca ggggccacac agcatcc	27
<210> 54 <211> 23 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>	
<400> 54 cccctcacgc atgaagcctg gag	23
<210> 55 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 55 tgccaccgtt tcctccataa gcccagc	27
<210> 56 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<pre><400> 56 atggctceag ctcccgctaa gtgcccga</pre>	28
<210> 57 <211> 27 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>	
<400> 57 tcaagcgttt gggttggtcc tcatgag	27
(210) 58	

<211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 58 tccggggatg gcgagatggg caagc	25
<pre><210> 59 <211> 24 <212> DNA <213> Artificial Sequence</pre>	
<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>	
<400> 59 cttgacatgg ctctgggctc caag	24
<210> 60 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 60 ccacttcagt cggtcggtag tattt	25
<210> 61 <211> 24 <212> DNA <213> Artificial Sequence	
(220) (223) Description of Artificial Sequence: Synthetic DNA	
<400> 61 cgctcacccg cctgaggcga catg	24
<210> 62 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 62 ggcaggtgct gtcggtgagg tcaccatagt gc	32
<210> 63 <211> 24 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>	
<400> 63	

ggggccatgc caaggactat gtcg	24
<210> 64 <211> 25 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>	
<400> 64 atgtggctga tgttacaaaa tgatg	25
<210> 65 <211> 1504 <212> DNA <213> Cricetulus griseus	
<220> <221> CDS <222> (1) (1119)	•
<pre><400> 65 atg gct cac gct ccc gct agc tgc ccg agc tcc agg sac tct ggg gac Met Ala His Ala Pro Ala Ser Cys Pro Ser Ser Arg Asn Ser Gly Asp 1 5 10 15</pre>	48
ggc gat aag ggc aag ccc agg aag gtg gcg ctc atc acg ggc atc acc Gly Asp Lys Gly Lys Pro Arg Lys Val Ala Leu Ile Thr Gly Ile Thr 20 25 30	96
ggc cag gat ggc tca tac ttg gca gaa ttc ctg ctg gag aaa gga tac Gly Gln Asp Gly Ser Tyr Leu Ala Glu Phe Leu Leu Glu Lys Gly Tyr 35 40 45	144
gag gtt cat gga att gta cgg cga tcc agt tca ttt aat aca ggt cga Glu Val His Gly Ile Val Arg Arg Ser Ser Ser Phe Asn Thr Gly Arg 50 55 60	192
att gaa cat tta tat amg amt cca cag gct cat att gam gga amc atg Ile Glu His Leu Tyr Lys Asn Pro Gln Ala His Ile Glu Gly Asn Met 65 70 75 80	240
aag ttg cac tat ggt gac ctc acc gac agc acc tgc cta gta aaa atc Lys Leu His Tyr Gly Asp Leu Thr Asp Ser Thr Cys Leu Val Lys Ile 85 90 95 100	288
atc aat gaa gtc aaa cct aca gag atc tac aat ctt ggt gcc cag agc Ile Asn Glu Val Lys Pro Thr Glu Ile Tyr Asn Leu Gly Ala Gln Ser 105 110 115	336
cat gtc aag att tcc ttt gac tta gca gag tac act gca gat gtt gat His Val Lys Ile Ser Phe Asp Leu Ala Glu Tyr Thr Ala Asp Val Asp 120 125 130	384
gga gtt ggc acc ttg cgg ctt ctg gat gca att aag act tgt ggc ctt Gly Val Gly Thr Leu Arg Leu Leu Asp Ala Ile Lys Thr Cys Gly Leu 135 140 145	432
ata aat tot gtg aag tto tac cag gcc toa act agt gam otg tat ggm Ile Asn Ser Val Lys Phe Tyr Gln Alm Ser Thr Ser Glu Leu Tyr Gly 150 155 160	480
aga gtg caa gga ata ccc cag aga gag acc acc cct ttc tat cca agg Lys Val Gln Glu Ile Pro Gln Lys Glu Thr Thr Pro Phe Tyr Pro Arg 165 170 175 180	528

tcg Ser	ccc Pro	tat Tyr	gga Gly	gca Ala 185	gcc Ala	ваа Lys	ctt Leu	tat Tyr	gcc Ala 190	tat Tyr	tgg Trp	att Ile	gta Val	gtg Val 195		576
ttt Phe	cga Arg	gag Glu	gct Ala 200	tat Tyr	aat Asn	ctc Leu	ttt Phe	gcg Ala 205	gtg Val	aac Asn	ggc Gly	att Ile	ctc Leu 210	ttc Phe		624
cat His	gag Glu	agt Ser 215	cct Pro	aga Arg	aga Arg	Gly Gly	gct Ala 220	aat Asn	ttt Phe	gtt Val	act Thr	cga Arg 225	aaa Lys	att Ile		672
cgg Arg	tca Ser 230	gta Val	gct Ala	aag Lys	att Ile	tac Tyr 235	ctt Leu	gga Gly	caa Gln	ctg Leu	gaa Glu 240	tgt Cys	ttc Phe	agt Ser	ttg Leu	720
gga Gly 245	aat Asn	ctg Leu	gac Asp	gcc Ala	aaa Lys 250	cga Arg	gac Asp	tgg Trp	ggc Gly	cat His 255	gcc Ala	aag Lys	gac Asp	tat Tyr	gtc Val 260	768
gag Glu	gct Ala	atg Mct	tgg Trp	ctg Leu 265	atg Met	tta Leu	caa Gln	aat Asn	gat Asp 270	Glu	cca Pro	gag Glu	gac Asp	ttt Phe 275	gtc Val	816
ata Ile	gct Ala	act Thr	ggg Gly 280	gaa Glu	gtt Val	cat His	agt Ser	gtc Val 285	cgt Arg	gaa Glu	ttt Phe	gtt Val	gag Glu 290	aaa Lys	tca Ser	864
ttc Phe	atg Met	cac His 295	Ile	gga Gly	aag Lys	acc Thr	att Ile 300	gtg Val	tgg Trp	gaa Glu	gga Gly	aag Lys 305	aat Asn	gaa Glu	aat Asn	912
gaa Glu	gtg Val 310	Gly	aga Arg	tgt Cys	aaa Lys	gag Glu 315	acc Thr	ggc Gly	aaa Lys	att Ile	cat His 320	gtg Val	act Thr	gtg Val	gat Asp	960
ctg Leu 325	Lys	tac Tyr	tac Tyr	cga Arg	cca Pro 330	Thr	gaa Glu	gtg Val	gac Asp	ttc Phe 335	Leu	cag Gln	gga Gly	gac Asp	tgc Cys 340	1008
tcc Ser	aag Lys	gcg Ala	cag Gln	cag Gln 345	Lys	ctg Leu	aac Asn	tgg Trp	aag Lys 350	Pro	cgc Arg	gtt Val	gcc Ala	ttt Phe 355	Asp	1056
gag Glu	ctg Leu	gtg Val	agg Arg 360	Glu	atg Met	gtg Val	caa Gln	gcc Ala 365	Asp	gtg Val	Glu	ctc Leu	atg Met 370	Arg	acc Thr	1104
aac Asn	ccc Pro	aac Asn 375	Ala	tga	gca	cctc	tac	aaaa	aaat	tc g	cgag	acat	g ga	ctat	ggtg	1159
cct act caa ttt	gtgt ccag gaag tgag	cgt agc ttt tct	cccc taag aaaa tgag	acag gcca tcac attg	ct a ct t at a tt t	agag cgct ctca ttct	ctgg tttg tttt	g cc t ca a ct t ct	acag aagg tgaa tatt	gttt ctcc atta aast	gtg tct tgt gat	ggca caat cact cttt	cca gat aga	ggac tttg caac	cgactg ggggac ggaaat ttaaat ccagca	1279 1339 1399
(21	۸۱ ه															

<210> 66 <211> 25 <212> DNA <213> Artificial Sequence

 $\ensuremath{\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath}\ens$

:

:81355613954	

atgaagttgc actatggtga cctca	25											
<210> 67 <211> 59 <212> DNA <213> Cricetulus griseus												
<400> 67 ccgacagcac ctgcctagta assatcatca atgsagtcaa acctscagag atctacaat	59											
<pre><210> 68 <211> 25 <212> DNA <213> Artificial Sequence</pre>												
<220> <223> Description of Artificial Sequence: Synthetic DNA												
<400> 68 gacttagcag agtacactgc agatg												
<210> 69 <211> 25 <212> DNA <213> Artificial Sequence												
<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>												
<400> 69 accttggata gamaggggtg gtctc												
<210> 70 <211> 125 <212> DNA <213> Cricetulus griseus												
<pre><400> 70 ttgatggagt tggcaccttg cggcttctgg atgcaattaa gacttgtggc cttataaatt ctgtgaagtt ctaccaggcc tcaactagtg aactgtatgg aaaagtgcaa gaaatacccc agaaa</pre>	60 120 125											
<pre><210> 71 <211> 376 <212> PRT <213> Cricetulus griseus</pre>												
<pre><400> 71 Met Ala His Ala Pro Ala Ser Cys Pro Ser Ser Arg Asn Ser Gly Asp 1</pre>												
Gly Asp Lys Gly Lys Pro Arg Lys Val Ala Leu Ile Thr Gly Ile Thr 20 25 30												
Gly Gln Asp Gly Ser Tyr Leu Ala Glu Phe Leu Leu Glu Lys Gly Tyr 35 40 45												
Glu Val His Gly Ile Val Arg Arg Ser Ser Ser Phe Asn Thr Gly Arg												
Ile Glu His Leu Tyr Lys Asn Pro Gln Ala His Ile Glu Gly Asn Met												

65 70 75 80 Lys Leu His Tyr Gly Asp Leu Thr Asp Ser Thr Cys Leu Val Lys Ile 85 90 95 100 Ile Asn Glu Val Lys Pro Thr Glu Ile Tyr Asn Leu Gly Ala Gln Ser 105 110 115 His Val Lys Ile Ser Phe Asp Leu Ala Glu Tyr Thr Ala Asp Val Asp 120 125 130 Gly Val Gly Thr Leu Arg Leu Leu Asp Ala Ile Lys Thr Cys Gly Leu 135 140 145 Ile Asn Ser Val Lys Phe Tyr Gln Ala Ser Thr Ser Glu Leu Tyr Gly $150\,$ Lys Val Gln Glu Ile Pro Gln Lys Glu Thr Thr Pro Phe Tyr Pro Arg 180 Ser Pro Tyr Gly Ala Ala Lys Leu Tyr Ala Tyr Trp Ile Val Val Asn 185 190 195 Phe Arg Glu Ala Tyr Asn Leu Phe Ala Val Asn Gly Ile Leu Phe Asn 200 205 210 His Glu Ser Pro Arg Arg Gly Ala Asn Phe Val Thr Arg Lys Ile Ser 215 220 225 Arg Sex Val Ala Lys Ile Tyr Leu Gly Gln Leu Glu Cys Phe Ser Leu 230 235 240 Gly Asn Leu Asp Ala Lys Arg Asp Trp Gly His Ala Lys Asp Tyr Val 245 250 255 260 Glu Ala Met Trp Leu Met Leu Gln Asn Asp Glu Pro Glu Asp Phe Val 265 270 275 Ile Ala Thr Gly Glu Val His Ser Val Arg Glu Phe Val Glu Lys Ser 280 285 290 Phe Met His Ile Gly Lys Thr Ile Val Trp Glu Gly Lys Asn Glu Asn 295 300 305 Glu Val Gly Arg Cys Lys Glu Thr Gly Lys Ile His Val Thr Val Asp 310 320Leu Lys Tyr Tyr Arg Pro Thr Glu Val Asp Phe Leu Gln Gly Asp Cys 325 330 335 Ser Lys Ala Gln Gln Lys Leu Asn Trp Lys Pro Arg Val Ala Phe Asp 345 350 350 Glu Leu Val Arg Glu Met Val Gln Ala Asp Val Glu Leu Met Arg Thr 360 365 370Asn Pro Asn Ala 375

<210> 72 <211> 321

<2117 321</p>
<212> PRT

<213> Cricetulus griseus

 J

:81355613954 # 84/86 •

Gly Leu Val Gly Arg Ala Ile Gln Lys Val Val Ala Asp Gly Ala Gly 20 25 30 Leu Pro Gly Glu Glu Trp Val Phe Val Ser Ser Lys Asp Ala Asp Leu 35 40 45 Thr Asp Ala Ala Gln Thr Gln Ala Leu Phe Gln Lys Val Gln Pro Thr 50 60 His Val Ile His Leu Ala Ala Met Val Gly Gly Leu Phe Arg Asm Ile 65 70 75 80 Lys Tyr Asn Leu Asp Phe Trp Arg Lys Asn Val His Ile Asn Asp Asn 85 90 95 Val Leu His Ser Ala Phe Glu Val Gly Thr Arg Lys Val Val Ser Cys 100 105 110 Leu Ser Thr Cys Ile Phe Pro Asp Lys Thr Thr Tyr Pro Ile Asp Glu 115 120 125 Thr Met Ile His Asn Gly Pro Pro His Ser Ser Asn Phe Gly Tyr Ser 130 135 140 Tyr Ala Lys Arg Met Ile Asp Val Gln Asn Arg Ala Tyr Phe Gln Gln 145 150 155 His Gly Cys Thr Phe Thr Ala Val Ile Pro Thr Asn Val Phe Gly Pro 165 170 175 His Asp Asn Phe Asn Ile Glu Asp Gly His Val Leu Pro Gly Leu Ile 180 185 190 His Lys Val His Leu Ala Lys Ser Asn Gly Ser Ala Leu Thr Val Trp 195 200 205 Gly Thr Gly Lys Pro Arg Arg Gln Phe Ile Tyr Ser Leu Asp Leu Ala 210 215 220Arg Leu Phe Ile Trp Val Leu Arg Glu Tyr Asn Glu Val Glu Pro Ile 225 230 235 240 Ile Leu Ser Val Gly Glu Glu Asp Glu Val Ser Ile Lys Glu Ala Ala 245 250 255 Glu Ala Val Glu Ala Met Asp Phe Cys Gly Glu Val Thr Phe Asp 260 265 270 Ser Thr Lys Ser Asp Gly Gln Tyr Lys Lys Thr Ala Ser Asn Gly Lys 275 280 285 Leu Arg Ala Tyr Leu Pro Asp Phe Arg Phe Thr Pro Phe Lys Gln Ala 290 295 300 Val Lys Glu Thr Cys Ala Trp Phe Thr Asp Asn Tyr Glu Gln Ala Arg 305 310 315 320 Lys

<210> 73

<211> 590

<212> PRT

<213> Cricetulus griseus

<400> 73

Met Ala Ser Leu Arg Glu Ala Ser Leu Arg Lys Leu Arg Arg Phe Ser

86/ 86

3

Ala Glu Leu Gly Leu Gln Ser Ile Ala Phe Ser Val Phe Pro Asn Val 370 380 Pro Glu Asp Ser His Glu Lys Pro Cys Val Ile His Ser Ile Leu Asn 385 390 395 400 Ser Gly Cys Cys Val Ala Pro Gly Ser Val Val Glu Tyr Ser Arg Leu 405 410 415 Gly Pro Glu Val Ser Ile Ser Glu Asn Cys Ile Ile Ser Gly Ser Val 420 425 430 Ile Glu Lys Ala Val Leu Pro Pro Cys Ser Phe Val Cys Ser Leu Ser 435 440 445 Val Glu Ile Asn Gly His Leu Glu Tyr Ser Thr Met Val Phe Gly Met 450 455 460Glu Asp Asn Leu Lys Asn Ser Val Lys Thr Ile Ser Asp Ile Lys Met 465 470 475 Ref Lys Met Leu Gln Phe Phe Gly Val Cys Phe Leu Thr Cys Leu Asp Ile Trp Asn 485 490 495 Leu Lys Ala Met Glu Glu Leu Phe Ser Gly Ser Lys Thr Gln Leu Ser 500 510 Leu Trp Thr Ala Arg Ile Phe Pro Val Cys Ser Ser Leu Ser Glu Ser 515 520 525 Val Ala Ala Ser Leu Gly Met Leu Asn Ala Ile Arg Asn His Ser Pro 530 540 Phe Ser Leu Ser Asn Phe Lys Leu Leu Ser Ile Gl
n Glu Met Leu Leu 545 550 Cys Lys Asp Val Gly Asp Met Leu Ala Tyr Arg Glu Gln Leu Phe Leu 565 570 575 Glu Ile Ser Ser Lys Arg Lys Gln Ser Asp Ser Glu Lys Ser 580 590

Creation date: 09-26-2003

Indexing Officer: OADAN - ORLANDO ADAN

Team: OIPEBackFileIndexing

Dossier: 09971773

Legal Date: 06-17-2003

No.	Doccode	Number of pages
1	LET.	3
2	DRW	55

Total number of pages: 58	
Remarks:	
Order of re-scan issued on	