МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Інститут <u>комп'ютерних технологій, автоматики та метрології (ІКТА)</u> /назва навчально-наукового інституту/

Кафедра <u>електронних обчислювальних машин (EOM)</u>
/назва /

Голова науково-методичної комісії спеціальності <u>F7 "Комп'ютерна інженерія"</u>
/назва /
/ Дунець Р.Б. /
/підпис/ /ініціали та прізвище /
Протокол від «29» серпня 2025 р. №1

«ЗАТВЕРДЖУЮ»

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

СК2.12. Авто	иатизоване проектування комп'ютерних системи	
	/код і назва навчальної дисципліни/	
	бакалавр	
	/рівень вищої освіти/	
вид дисципліни	обов'язкова	
	(обов'язкова / за вибором)	
мова викладання	українська	
освітня програма	ОПП "Комп'ютерна інженерія"	
	/назва/	
галузь знань	F "Інформаційні технології"	
•	/шифр і назва/	
спеціальність	F7 "Комп'ютерна інженерія"	
	/шифр і назва /	
спеціалізація F7.01 "Ком	<u>ш'ютерні системи та мережі", F7.02 "Систкмне програмуванн</u>	я"
	/шифр і назва /	

Робоча програма з навчальної дисципліни Авт	гоматизоване проектування комп'ютерних системи ДЛЯ /назва /
здобувачів освіти за освітньою програмою _	
Розробники:	
ст. вик. каф. EOM/посада, науковий ступінь та вчене звання/	/ <u>H.Б. Козак</u> / /ініціали та прізвище/
Гарант освітньої програми/підпис/	/ <u>Б.І. Гаваньо</u> / /ініціали та прізвище/
Робоча програма розглянута та схвалена на з Протокол від «29» серпня 2025 року №1	засіданні кафедри <u>ЕОМ</u> /назва/
Завідувач кафедри <u>ЕОМ</u>	/ <u>Ю.І. Рудик</u> / ідпис/ /ініціали та прізвище /

1. Структура навчальної дисципліни

	Всього	годин
Найменування показників	Денна форма	Заочна
Hanmeny Banna nokasinkib	навчання	форма
		навчання
Кількість кредитів/год.	4/120	
Усього годин аудиторної роботи, у т.ч.:	60	
• лекційні заняття, год.	30	
• семінарські заняття, год.	-	
• практичні заняття, год.	-	
• лабораторні заняття, год.	30	
Усього годин самостійної роботи, у т.ч.:	60	
• контрольні роботи, к-сть/год.	-	
• розрахункові (розрахунково-графічні) роботи, к-сть/год.	-	
• індивідуальне науково-дослідне завдання, к-сть/год.	-	
• підготовка до навчальних занять та контрольних	60	
заходів, год.	UU	
Екзамен	+	
Залік		·

Частка аудиторного навчального часу студента у відсотковому вимірі: денної форми навчання — <u>50%</u>; заочної форми навчання — <u>—</u>

2. Мета та завдання навчальної дисципліни

2.1. Мета вивчення навчальної дисципліни та результати навчання

Метою вивчення навчальної дисципліни ε виробити у студентів чітке та систематизоване уявлення про автоматизоване проектування комп'ютерних систем. Внаслідок вивчення навчальної дисципліни студент повинен бути здатним продемонструвати такі **результати** навчання:

- 1) знання основ автоматизованого проектування;
- 2) знання методології високорівневого проектування комп'ютерних систем;
- 3) знання методології проектуванні комп'ютерних систем на рівні топології кристалу;
- 4) знання методології проектування комп'ютерних систем на рівні топології друкованої плати;
- 5) знання підходів до автоматизації проектування прикладного програмного забезпечення комп'ютерних систем.

2.2. Завдання навчальної дисципліни відповідно до освітньої програми

Завдання навчальної дисципліни передбачає отримання у здобувачів освіти здатність застосовувати знання про автоматизоване проектування комп'ютерних систем для

формування наступних (відповідно до освітньо-професійної програми "Комп'ютерна інженерія") фахових компетентностей:

- ФК5. Здатність використовувати засоби і системи автоматизації проектування до розроблення компонентів комп'ютерних систем та мереж, Інтернет додатків, кіберфізичних систем тощо.
- ФК7. Здатність використовувати та впроваджувати нові технології, включаючи технології розумних, мобільних, зелених і безпечних обчислень, брати участь в модернізації та реконструкції комп'ютерних систем та мереж, різноманітних вбудованих і розподілених додатків, зокрема з метою підвищення їх ефективності.
- ФК12. Здатність ідентифікувати, класифікувати та описувати роботу програмнотехнічних засобів, комп'ютерних та кіберфізичних систем, мереж та їхніх компонентів шляхом використання аналітичних методів і методів моделювання.
- ФК14. Здатність проектувати системи та їхні компоненти з урахуванням усіх аспектів їх життєвого циклу та поставленої задачі, включаючи створення, налаштування, експлуатацію, технічне обслуговування та утилізацію.

2.3. Результати навчання відповідно до освітньої програми, методи навчання і викладання, методи оцінювання досягнення результатів навчання

Результатами навчання ϵ формування у здобувачів освіти таких *практичних вмінь*:

- 1) застосовувати засоби системного проектування з використанням мов SystemC та в SystemVerilog;
- 2) застосовувати системну шину АМВА при проектуванні на системному рівні;
- 3) застосовувати IP-ядра ARM та RISC-V при проектуванні на системному рівні;
- 4) застосовувати засоби проектування комп'ютерних систем на рівні топології кристалу;
- 5) застосовувати засоби проектування комп'ютерних систем на рівні топології друкованої плати;
- 6) виконувати прикладне програмування комп'ютерних систем за допомогою високорівневих фреймворків.

Передбачено такі формальні (відповідно до освітньо-професійної програми "Комп'ютерна інженерія") програмні результати навчання:

Результати навчання	Методи навчання і викладання	Методи оцінювання рівня досягнення результатів навчання
ЗНЗ. Знати новітні технології в галузі комп'ютерної інженерії.	Лекції, лабораторні заняття - інформаційно-рецептивний метод, репродуктивний метод, евристичний метод, метод проблемного викладу, самостійна робота — репродуктивний метод, дослідницький метод.	Поточний та екзаменаційний контроль. Методи оцінювання знань: вибіркове усне опитування; тести, оцінка активності, внесених пропозицій, оригінальних рішень, уточнень і визначень тощо. Екзамен — письмове опитування, тестовий контроль.

УМ4. Вміти застосовувати знання технічних характеристик, конструктивних особливостей, призначення і правил експлуатації програмно-технічних засобів комп'ютерних систем та мереж для вирішення технічних задач спеціальності.	Лекції, лабораторні заняття - інформаційно-рецептивний метод, репродуктивний метод, евристичний метод, метод проблемного викладу, самостійна робота — репродуктивний метод, дослідницький метод.	Поточний та екзаменаційний контроль. Методи оцінювання знань: вибіркове усне опитування; тести, оцінка активності, внесених пропозицій, оригінальних рішень, уточнень і визначень тощо. Екзамен — письмове опитування, тестовий контроль.
УМ8. Вміти ідентифікувати, класифікувати та описувати роботу комп'ютерних систем та їх компонентів.	Лекції, лабораторні заняття - інформаційнорецептивний метод, репродуктивний метод, евристичний метод, метод проблемного викладу, самостійна робота — репродуктивний метод, дослідницький метод.	Поточний та екзаменаційний контроль. Методи оцінювання знань: вибіркове усне опитування; тести, оцінка активності, внесених пропозицій, оригінальних рішень, уточнень і визначень тощо. Екзамен — письмове опитування, тестовий контроль.
УМ10. Вміти виконувати експериментальні дослідження за професійною тематикою.	Лекції, лабораторні заняття - інформаційнорецептивний метод, репродуктивний метод, евристичний метод, метод проблемного викладу, самостійна робота — репродуктивний метод, дослідницький метод.	Поточний та екзаменаційний контроль. Методи оцінювання знань: вибіркове усне опитування; тести, оцінка активності, внесених пропозицій, оригінальних рішень, уточнень і визначень тощо. Екзамен — письмове опитування, тестовий контроль.

2.4. Перелік попередніх та супутніх і наступних навчальних дисциплін

№ 3/п	Попередні навчальні дисципліни	Супутні і наступні навчальні дисципліни
1.	Комп'ютерна електроніка	
2.	Комп'ютерна схемотехніка	
3.	Архітектура комп'ютера	

3. Анотація навчальної дисципліни

Дисципліна "Автоматизоване проектування" ставить на меті виробити у студентів чітке та систематизоване уявлення про засоби та підходи до автоматизації проектування, принципи використання таких систем та особливості їх застосування на практиці. В результаті освоєння навчального матеріалу дисципліни студенти повинні знати загальні принципи роботи з САПР та ефективно їх використовувати при проектування комп'ютерних систем. Для освоєння даної дисципліни необхідне знання таких дисциплін: "Комп'ютерна схемотехніка", "Моделювання комп'ютерних систем", "Архітектура комп'ютера".

4. Опис навчальної дисципліни

4.1. Лекційні заняття

No	И	Кількіс	ть годин
3/п	Назви тем		ЗФН
1.	Вступ до дисципліни.	1	
	Компоненти сучасних комп'ютерних систем та підходи при їх		
	проектуванні. Рівні проектування комп'ютерних систем.	3	
2.	Основи систем автоматизованого проектування. Основні поняття процесу проектування. Визначення САД, САМ і САЕ. Структура і способи використання САПР. Структура САПР. Класифікація САПР. Способи представлення графічної інформації при	3	
	використанні САПР. Машинна графіка. Представлення графічної інформації для САПР. Робота з САПР. Підходи і методи проектування за допомогою САПР. Завдання синтезу і аналізу.		
3.	Високорівневе проєктування комп'ютерних систем та автоматичний синтез до нищих рівнів. Системний рівень проєктування(ESL) та моделювання рівня транзакцій(TLM). Високорівневий синтез(HLS). Сумісне проєктування апаратури і програм (hardware/software co-design). Засоби автоматизації системного проєктування з використанням SystemC та SystemVerilog. Застосування МАТLAB для системного проєктування. Системна шина АМВА для автоматизації системного проєктування. Системне проєктування на основі RISC-V. Системне проєктування на основі ARM.	8	

4	T	10	I
4.	Проектування комп'ютерних систем на рівні топології	10	
	кристалу.		
	Основні аспекти проектування та формати представлення результатів моделювання та проектування.		
	Потік проектування VLSI рівня топології кристалу. Стилі дизайну VLSI рівня топології		
	кристалу. Формування списку з'єднань(NetList) на основі RTL-моделі. Планування частин		
	кристалу(Floorplanning). Розміщення компонентів(Placement). Трасування з'єднань(Routing). Формування масок(Layout Generation). Масштабування елементів топології та характеристик		
	режиму функціонування кристалу. Netlist-, EDIF-, DEF-, LIB-, DB-, LEF-, TF-, TLU-, IO-, SDC-,		
	SDF-, VCD-, SPEF-, SPF-, GDS-, GDSII- та OASIS-формати даних процесу проектування. Використання мов TLC, Perl та Python для формування сценаріїв автоматизації процесу		
	проектування. Використання SPICE/PSPICE для моделювання.		
	Базові засоби автоматизованого проектування на рівні топології		
	кристалу.		
	Застосування засобу Genus Synthesis Solution(Cadence) та засобу Design Compiler(Synopsys) для синтезу на основі RTL-опису проекту. Застосування засобу Virtuoso Schematic Editor(Cadence)		
	для внесення змін у проект. Застосування засобу Іппоvus Implementation System(Cadence) та IC		
	Compiler II(Synopsys) для розміщення компонентів кристалу та трасування. Застосування засобу		
	Virtuoso Layout Suite(Cadence) для роботи з макетом кристалу. Інші засоби. Верифікація проєкту(англ. Signoff).		
	Функціональна верифікація проекту. Задача функціональної верифікації. Застосування засобів		
	Incisive Enterprise Verifier(Cadence) та Xcelium Logic Simulator(Cadence). Застосування засобу		
	SpyGlass(Synopsys). Інші засоби. Верифікація аналогової частини проекту. Застосування засобів Virtuoso ADE Product		
	Suite(Cadence) та Spectre Simulation Platform(Cadence) для верифікації аналогової частини		
	проекту. Модифікація проекту для тестоздатності(DFT Insertion). Концепція DFT(англ. Design For		
	Testability). Концепція ATPG(англ. Automatic Test Pattern Generation). Засоби		
	TetraMax/TestMax(Cadence). Універсальна методика верифікації(англ. Universal Verification		
	Methodology, UVM). Формальна верифікація. Задача формальної верифікації. Засіб Conformal Equivalence		
	Checker(Cadence). Інші засоби.		
	Статичний часовий аналіз. Форми статичного часового аналізу. Засіб Tempus Timing Signoff Solution(Cadence). Засіб Primetime-SI(Synopsys) для відстеження цілісності сигналів(англ. Signal		
	Integrity).		
	Верифікація живлення. Аналіз спаду напруги(англ. IR-Drop) на ланках проекту. Засіб Voltus IC		
	Power Integrity Solution(Cadence). Засіб PrimePower(Synopsys). Фізична верифікація. Огляд концепцій фізичної верифікації. Перевірка правил		
	проектування (англ. Design Rule Checking) та засіб Calibre nmDRC (Siemens, Mentor Graphics).		
	Відповідність макету схемі (англ. Layout Versus Schematic) та засіб Calibre nmLVS (Siemens, Mentor Graphics).		
	Екстракція негативних побічних ефектів (англ. Parasitic Extraction) та їх		
	усунення.		
	Екстракція негативних побічні ефектів та їх усунення. Формування схеми(англ. Circuit		
	Extraction) з топологічної моделі. Екстракція негативних побічних ефектів(англ. Parasitic Extraction). Усунення негативних побічних ефектів.		
	Засоби екстракції негативних побічних ефектів. Засіб Quantus Extraction Solution(Cadence).		
	Інші засоби екстракції негативних побічних ефектів. Проектування для процесу виробництва (англ. Design for Manufacturing).		
	Процес виробництва та виробничо залежні ефекти. Огляд процесу виробництва. Вплив		
	ефектів процесу травлення(англ. Effects of Etching Process). Хіміко-механічна планерезація(англ.		
	Chemical Mechanical Planarization). Особливості процесу літографії (англ. Lithography). Вплив варіації ширини металу (англ. Metal Width Variation) та варіації товщини металу (англ. Metal		
	Thickness Variation). Огляд інших виробничо залежних ефектів.		
	Засоби усунення виробничозалежних ефектів. Засіб Calibre YieldEnhancer(Siemens, Mentor Graphics). Засіб Calibre YieldAnalyzer(Siemens, Mentor Graphics). Засіб Calibre CMPAnalyzer		
	(Siemens, Mentor Graphics). 3aci6 Calibre LFD(Siemens, Mentor Graphics).		
	Проектування комп'ютерних систем на рівні топології	2	
	друкованої плати.		
	Етапи проектування друкованої плати. Формування бібліотеки		
	елементної бази. Розміщення компонентів на друкованій платі.		
	Автоматизоване та ручне трасування друкованої плати.		
	Застосування САПР Altium Designer для проектування		
	друкованої плати.		
	друкованог плати.		L

6. Прикладне програмування комп`ютерних систем за допомогою високорівневих фреймворків.	6	
Автоматизація проектування прикладного програмного		
забезпечення. Підходи до автоматизації проектування		
прикладного програмного забезпечення комп'ютерних систем.		
Застосування патерну MVC.		
Застосування набору фреймворків Spring. Введення до Spring		
та його відмінність від Java EE. Впровадження залежностей та		
IoC контейнер. Spring Boot. Spring MVC. Spring Data. AOP та		
RESTful web-сервіси. Spring Security.		
Усього годин	30	

4.2. Практичні (семінарські, <u>лабораторні</u>) заняття

№	Назви тем	Кількість годин	
3/П	пазви тем		3ФН
1	Лабораторна робота №1.	6	
	Логічне проектування за допомогою UML		
2.	Лабораторна робота №2.	6	
	Проектування на основі програмованих логічних інтегральних		
	схем фірми Altera.		
3.	Лабораторна робота №3.	6	
	Створення бібліотечного компоненту в САПР Altium Designer.		
4.	Лабораторна робота №4.	6	
	Створення електричних принципових схем в САПР Altium		
	Designer.		
5.	Лабораторна робота № 5.	6	
	Створення друкованої плати в редакторі САПР Altium Designer.		
	Усього годин	30	

4.3. Самостійна робота

No	№ 3/п Найменування робіт		Кількість годин	
3/П			ЗФН	
1.	Підготовка до лабораторних занять.	10		
2.	2. Підготовка до навчальних занять та контрольних заходів			
3.	3. Самостійне опрацювання теоретичного матеріалу			
	Усього годин			

5. Опис методів оцінювання рівня досягнення результатів навчання

Оцінювання знань студентів з дисципліни "Автоматизоване проектування комп'ютерних систем" проводиться відповідно до робочого навчального плану у вигляді **семестрового контролю**, який проводиться в кінці семестру і включає в себе результати **поточного контролю** знань студентів, який оцінюється за виконання лабораторних робіт, та **контрольного заходу** — відповідь на відповідний білет на іспиті. Контрольний захід є обов'язковим видом контролю і проводиться в письмово-усній формі в кінці семестру.

Поточний контроль на лекційних заняттях проводиться з метою виявлення готовності студента до занять у таких формах:

- вибіркове усне опитування перед початком занять;

- оцінка активності студента у процесі занять, внесених пропозицій, оригінальних рішень, уточнень і визначень, доповнень попередніх відповідей і т. ін.

Контрольні запитання поділяються на:

- а) тестові завдання вибрати вірні відповіді;
- б) проблемні створення ситуацій проблемного характеру;
- в) питання-репліки виявити причинно-наслідкові зв'язки;
- г) ситуаційні завдання визначити відповідь згідно певної ситуації;
- д) питання репродуктивного характеру визначення практичного значення.

6. Критерії оцінювання результатів навчання здобувачів освіти

Максимальна оцінка в балах					
Поточний контроль (I	ПК)	Екзаменаційн	ий контроль	Разом за дисципліну	
Лаб. роботи	Разом за ПК	письмова компонента	усна компонента		
30	30	60	10	100	

Порядок та критерії виставляння балів та оцінок:

- 1. Розподіл балів при умові виконання навчального плану, виконання усіх контрольних робіт і календарного плану виконання лабораторних робіт, інакше за результатами проведення семестрового контролю студент вважається не атестованим.
- 2. Максимальна кількість балів для оцінки поточного контролю (ПК) знань за семестр 40 балів.
 - 3. Екзаменаційний контроль проводиться в письмово-усній формі.
 - 4. Максимальна кількість балів для оцінки екзаменаційного контролю 70 балів.
- 5. Іспит перед комісією студент складає також в письмово-усній формі з фіксацією запитань та оцінок відповідей на екзаменаційному листі.
- 6. До іспиту студенти допускаються при умові виконання навчального плану (в тому числі усіх лабораторних робіт).

7. Навчально-методичне забезпечення

- 1. Конспект лекцій з дисципліни "Автоматизоване проектування комп'ютерних систем" для студентів першого (бакалаврського) рівня вищої освіти, спеціальності 123 «Комп'ютерна інженерія» / ЕМНК: https://vns.lpnu.ua/mod/resource/view.php?id=716337
- 2. Методичні вказівки до лабораторних робіт з дисципліни "Автоматизоване проектування комп'ютерних систем" для студентів першого (бакалаврського) рівня вищої освіти, спеціальності 123 «Комп'ютерна інженерія» / EMHK: https://vns.lpnu.ua/mod/resource/view.php?id=716338

8. Рекомендована література

Базова

- 1. Сніжко Євген Матвійович. Моделювання та синтез дискретних систем мовою VHDL / Дніпропетровський держ. ун-т. Д. : PBB ДДУ, 2000. 92 с.
- 2. "Digital Design and Computer Architecture" by David Money Harris and Sarah L. Harris
- 3. "Computer Organization and Design" by David A. Patterson and John L. Hennessy
- 4. "Logic and Computer Design Fundamentals" by M. Morris Mano and Charles Kime
- 5. "Verilog HDL: A Guide to Digital Design and Synthesis" by Samir Palnitkar

Допоміжна

- 1. "SystemVerilog for Verification: A Guide to Learning the Testbench Language Features" by Chris Spear
- 2. "ASIC Design in the Silicon Sandbox: A Complete Guide to Building Mixed-Signal Integrated Circuits" by Keith Barr
- 3. "High-Speed Digital Design: A Handbook of Black Magic" by Howard W. Johnson and Martin Graham
- 4. "EDA for IC System Design, Verification, and Testing" by Louis Scheffer and Luciano Lavagno
- 5. "FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version" by Pong P. Chu
- 6. "Designing Embedded Systems with PIC Microcontrollers" by Tim Wilmshurst.
- 7. http://www.altera.com. Altera Devices. 1999.

9. Інформаційні ресурси

- 1. Simens EDA, https://eda.sw.siemens.com/en-US/
- 2. Xilinx, Inc., https://www.xilinx.com/
- 3. Altera Devices: http://www.altera.com/

10. Політика щодо академічної доброчесності

Політика щодо академічної доброчесності учасників освітнього процесу формується на основі дотримання принципів академічної доброчесності з урахуванням норм «Положення про академічну доброчесність у Національному університеті «Львівська політехніка» (затверджене вченою радою університету від 20.06.2017 р., протокол № 35).

11. УНІФІКОВАНИЙ ДОДАТОК

Національний університет «Львівська політехніка» забезпечує реалізацію права осіб з особливими освітніми потребами на здобуття вищої освіти. Інклюзивні освітні послуги надає Служба доступності до можливостей навчання «Без обмежень», метою діяльності якої є забезпечення постійного індивідуального супроводу навчального процесу здобувачів освіти з інвалідністю та хронічними захворюваннями. Важливим інструментом імплементації інклюзивної освітньої політики в Університеті є Програма підвищення кваліфікації науковопедагогічних працівників та навчально-допоміжного персоналу у сфері соціальної інклюзії та інклюзивної освіти. Звертатися за адресою:

вул. Карпінського, 2/4, І-й н.к., кімн. 112

E-mail: nolimits@lpnu.ua

Websites: https://lpnu.ua/nolimits, https://lpnu.ua/integration

12. Зміни та доповнення до робочої програми навчальної дисципліни

№ 3/п	Зміст внесених змін (доповнень)	Дата і № протоколу засідання кафедри	Примітки
1	Оновлено теми та вміст лекційних занять в п.4.1. опису навчальної дисципліни.	Протокол від 29.08.2025 р. № 1	
2	Оновлено список базової та допоміжної літератури в п.8.	Протокол від 29.08.2025 р. № 1	
3	Оновлено перелік інформаційних ресурсів в п.9.	Протокол від 29.08.2025 р. № 1	