Predicting
Hypertension Using
Environmental and
Heritable Risk Factors

Outline

Introduction

Overview of Risk Factors Associated with Hypertension

What is Hypertension?

An individual is diagnosed with hypertension (high blood pressure) if their

Systolic Blood Pressure ≥ 140 mmHg

OR

Diastolic Blood Pressure ≥ 90 mmHg

Known Risk Factors

- Age
- Alcohol Consumption
- Race
- Gender
- Sodium Intake
- Family History
- Response to Stress

Hypothesis to Test: if heritable factors are more important to predicting hypertension than environmental factors

Interacting Risk Factors

"Men are three times more frequent drinkers and intake about 80% more ethanol than women. These sexdifferences tend to decrease among the younger."

- Teixeira et al., 2018, on ELSA

Data Description & Visualization

Exploring Patterns in Hypertension

NHANES DATASET

01

ABOUT THE DATA

Sample: ~5000 people each year Interviews & Physical Exams Medical, Laboratory, Questionnaire

Pre-Processing

Dropped nulls, duplicates, datatype Set target variable and defined thresholds

Correlation of Variables

Data Visualization

0.5

0.0

Diastolic | Systolic Blood Pressure <- Predictor

[Dark Red] Age is highly correlated with other predictors and predicted variables

[Light Red] Relatively significant for the prediction

 sns.corr() — bar plot with selected independentvariables and the correlation with target

Sample Selected Variables Data Visualization

Non-hypertension

hypertension

Systolic Blood Pressure Cross Gender & Age

As people get older, they are more likely to develop hypertension

03

Model & Empirical Analysis

Predicting Hypertension

Forward Stepwise Regression

Forward Selection (Regression) Schematic

Forward Stepwise Regression Results

- Age
- Body Mass Index
- Gender
- Hours use computer past 30 days
- Caffeine intake
- Food stamp benefits
- Number of medication
- Cardiac medication
- Other medication (Eye/Ear)
- Diabetes

- Predictors
 - Age
 - Body Mass Index
 - Gender
 - Hours use computer past 30 days
 - Caffeine intake
 - Food stamp benefits
 - Number of medication
 - Cardiac medication
 - Other medication (Eye/Ear)
 - Diabetes

- Response
- Binary variable
- Hypertension class 1
- Non-hypertension class 0

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-5.1206017	0.4075259	-12.565	< 2e-16	***
ridageyr	0.0623804	0.0029335	21.265	< 2e-16	***
bmxbmi	0.0331222	0.0068914	4.806	1.54e-06	***
riagendr	-0.1900635	0.0939234	-2.024	0.043011	*
paq715	0.0293872	0.0103216	2.847	0.004411	**
total_caffeine	-0.0001768	0.0002270	-0.779	0.435973	
fsd855	0.0110118	0.0775248	0.142	0.887046	
count_meds	-0.0818590	0.0231753	-3.532	0.000412	***
section_I	0.4316776	0.1407836	3.066	0.002168	**
section_H	-0.1865131	0.4563866	-0.409	0.682779	
diq010	-0.1397528	0.1087930	-1.285	0.198941	

	Predicted - 0	Predicted - 1
Actual - 0	1576	53
Actual - 1	218	62

Accuracy: 0.858

Imbalanced Dataset

16% - hypertension 84% - non-hypertension

Problem

Logistic regression predicts most as nonhypertension

Solution

Resampling Clustering

Balance the Dataset

Resampling

- Under-sample: only keep a percentage of non-hypertension data.
- Over-sample: duplicate hypertension data.

Clustering

- K-means clustering
- Cluster non-hypertension data
- Use cluster centroids to replace non-hypertension data

Balanced dataset - resample

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
                    0.518446 -7.327 2.36e-13 ***
(Intercept) -3.798443
ridageyr
         0.068721 0.004154 16.544 < 2e-16 ***
bmxbmi 0.047414
                    0.009598 4.940 7.82e-07 ***
riagendr
           -0.343088
                     0.132078 -2.598 0.009387 **
                     0.019828 2.355 0.018530 *
        0.046692
paq715
count_meds
          -0.107838
                     0.032633 -3.305 0.000951 ***
section_I
          0.516532
                     0.225390 2.292 0.021921 *
diq010
           -0.287728
                     0.151548 -1.899 0.057619 .
```


217

Accuracy: 0.7613

69

Actual - 1

Balanced dataset - cluster

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-2.5759577	0.5662673	-4.549	5.39e-06	***
ridageyr	0.0777491	0.0045383	17.132	< 2e-16	***
bmxbmi	0.0323142	0.0093188	3.468	0.000525	***
riagendr	-0.7324972	0.1713260	-4.275	1.91e-05	***
total_caffeine	-0.0012378	0.0003467	-3.570	0.000357	***
count_meds	-0.1449069	0.0358661	-4.040	5.34e-05	***
section_I	0.8503215	0.2676950	3.176	0.001491	**
dia010	-0.3501939	0.1817966	-1.926	0.054067	

	Predicted - 0	Predicted - 1	
Actual - 0	208	99	
Actual - 1	60	228	

Accuracy: 0.7328

Always Significant Variables

- Age,
- **Body Mass Index**
- Gender

Hypertension Classification Accuracy ~ 75%

KNN: Optimal K

- Potential optimal values of K: {5, 7, 9}
- Risk of a large K:
 - The accuracy curve stays flat after that point
 - Classifying everything as non-hypertension
 - Reducing the model complicity and sacrificing the accuracy

KNN with K = 5

Blood Pressure Confusion Matrix

Model Accuracy <- 0.801 Roc_auc_score(y_test, y_pred) <- 0.739

KNN Using the Best Parameters

KNN Confusion Matrix with Best Parameter

Model Accuracy <- 0.853 Roc_auc_score(y_test, y_pred) <- 0.759

Parameter:

- Weights: uniform & distance
- **Neighbors**: range (1 ~~ 31)
- **power** : range $(1 \sim \sim 6)$

FP rate

RANDOM FOREST

01

Parameters

n_estimators=100 Max_depth,min_sample_leaf, max_features=Default

02

Results

Accuracy:0.854 Precision:0.402 F1 Score:0.175

Recall:0.11

03

Recommendations

The model performed better without enforcing resampling of the training data

RANDOM FOREST

Conclusion

What we've learned about Hypertension

What We have Learned

- Hypertension is challenging to model due to a large class imbalance
- The important risk factors for hypertension are challenging to identify
- Picking the right metric
 - The resampled logistic regression classifies the individuals with hypertension the most
 - The random forest has the highest accuracy
- Future Steps
 - Tune the random forest model
 - Try the same resampling methods for all models
- Perhaps more information would be helpful
 - Many of the selected predictors are not significant
- Hypothesis Result: Heritable factors are more significant predictors than environmental factors in our models

Appendix

Sample Selected Variables Data Visualization

Systolic Blood Pressure with Body Mass Index Diastolic Blood Pressure with Body Mass Index

KNN with Thresholds

- 1000

800

600

- 400

- 200

KNN Model with Thresholds

Best threshold: 0.102

Gmeans: 0.719

	Thresholds	Gmeans
0	1.678571	0.000000
1	0.678571	0.000000
2	0.642857	0.061068
3	0.607143	0.086340
4	0.571429	0.172541
5	0.535714	0.250841
6	0.500000	0.264538
7	0.464286	0.341434
8	0.428571	0.388024
9	0.392857	0.467334
10	0.357143	0.546450

Model Accuracy <- 0.660

Roc_auc_score(y_test, y_pred) <- 0.759