FERTILIZERS RECOMMENDATION SYSTEM FOR **DISEASE PREDICTION**

TEAM ID: PNT2022TMID23783

ULASA POOJITHA A. NAVYA

THARANI P K VEMBUDHARSINI V

1.INTRODUCTION

1.1 PROJECT OVERVIEW:

Agriculture is the most important sector in today's life. Most plants are affected by a wide variety of bacterial and fungal diseases. Diseases on plants placed a major constraint on the production and a major threat to food security. Hence, early and accurate identification of plant diseases is essential to ensure high quantity and best quality. In recent years, the number of diseases on plants and the degree of harm caused has increased due to the variation in pathogen varieties, changes in cultivation methods, and inadequate plant protection techniques.

An automated system is introduced to identify different diseases on plants by checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases.

1.2 PURPOSE:

Plant diseases especially on leaves is one of the main reason for reduction in both quality and quantity of food crops. In Agriculture aspects, if a plant is affected by leaf disease, then it reduces the growth at agricultural level. Finding the leaf disease is an important role of agriculture preservation. After pre-processing using a median layer, segmentation is done and leaf disease is identified. The disease based similarity measure is used for fertilizer recommendation.

2.LITERATURE SURVEY

2.1 EXISTING PROBLEM:

A proposed method for leaf disease detection and suggest fertilizers to cure leaf diseases. But the method involves less number of train and test sets which results in poor accuracy.

Pandi selvi proposed a simple prediction method for soil based fertilizer recommendation system for predicted crop diseases. This method gives less accuracy and prediction.

Shiva reddy proposed an IOT based system for leaf disease detection and fertilizer recommendation which is based on machine learning techniques that yields less than 80 percentage accuracies.

2.2 REFERENCES:

- [1]. R Indumathi.; N Saagari.; V Thejuswini.; R Swarnareka.;"Leaf Disease Detection and Fertilizer Suggestion",IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), 29-30 March 2019, DOI:10.1109/ICSCAN.2019.8878781
- [2]. P. Pandi Selvi, P.Poornima, "Soil Based Fertilizer Recommendation System for Crop Disease Prediction System", International Journal of Engineering Trends and Applications (IJETA)-Volume 8 Issue 2, Mar-Apr 2021
- [3]. H Shiva reddy, Ganesh hedge, Prof. DR chinnaya3, "IOT based Leaf Disease Detection and Fertilizer Recommendation", International Research Journal of Engineering and Technology (IJRET), Volume: 06 Issue: 11, Nov 2019,e-ISSN:2395-0056
- [4]. Detection of Leaf Diseases and Classification using Digital Image Processing International Conference on Innovations in Information, Embedded and Communication Systems(ICIIECS), IEEE, 2017.

2.3 PROBLEM STATEMENT DEFINITION:

Mostly, the plant leaf diseases are caused by Pathogens which are positioned on the stems of the plants. These different symptoms and diseases of leaves are predicted by different methods in image processing. These different methods include different fundamental processes like segmentation, feature extraction and classification and so on. Mostly, the prediction and diagnosis of leaf diseases are depending on the segmentation such as segmenting the healthy tissues from diseased tissues of leaves.

3.IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS:

3.2 IDEATION AND BRAINSTORMING:

3.3 PROPOSED SOLUTION:

S.no	Parameter	Description
------	-----------	-------------

1	Problem Statement (Problem to be solved)	Disease in plants reduced the quantity and quality of the plants productivity. Identifying the disease in plant is hard to find.
2	Idea / Solution description	One of the solution of the problem is to identifying the disease in early stage and using the correct fertilizer.
3	Novelty / Uniqueness	This application can suggest good fertilizer for the disease in the plant by recognizing the images.
4	Social Impact / Customer Satisfaction	It helps the farmer by identifying the disease in the early stage and increase the quality and quantity of crops in efficient way.
5	Business Model (Revenue Model)	The application is recommends to farmer in subscription basis.
6	Scalability of the Solution	This application can be improved by introducing online purchases of crops, fertilizer easily

3.4 PROBLEM SOLUTION FIT:

4.REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS:

Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
User Registration	Registration through Form ,Gmail , LinkedIN
User Confirmation	Confirmation via Email ,Confirmation via OTP
Capturing image	Capture the image of the leaf
Image processing	Upload the image for the prediction of the disease in the leaf.
Leaf identification	Identify the leaf and predict the disease in leaf.
Image description	Suggesting the best fertilizer for the disease .

4.2 NON FUNCTIONAL REQUIREMENTS:

Non-Functional Requirement	Description					
Usability	Datasets of all the leaf is used to detecting					
	the disease that present in the leaf.					
Security	The information belongs to the user and leaf					
	are secured highly.					

Reliability	The leaf quality is important for the predicting
	the disease in leaf.
Performance	The performance is based on the quality of
	the leaf used for disease prediction.
Availability	It is available for all user to predict the
	disease in the plant
Scalability	Increasing the prediction of the disease in the
	leaf

5.PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS:

5.2 SOLUTION & TECHNICAL ARCHITECTURE:

Solution Architecture

Technical Architecture

5.3 USER STORIES:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1		USN-1	As a customer I can understand the farmers problem. Because country side farmers face many problems such as finding the actual disease is quite difficult.	3	Medium	POOJITHA
Sprint-1	Modelling Phase	USN-2	Data Collection-Collect the sample images of Disease affected leaves of different kind of varieties and unpredicted disease affected leaves.	2	Medium	NAVYA
Sprint-1		USN-3	Image Preprocessing -Preprocess the collected Disease affected images such as rotating to grayscale,calling.	3	Low	VEMBU
Sprint-1		USN-4	Train and test the collected dataset and to measure the accuracy of the dataset.	4	Medium	THARANI
Sprint-2		USN-5	Model building-Create a CNN model for the image segmentation.	5	High	NAVYA
Sprint-2		USN-6	Cnn model evaluation -Evaluvating the cnn model to check the accuracy and precision.	3	High	POOJITHA
Sprint-2	Development Phase	USN-7	SVM algorithm -Use of SVM is classifies the images and give 95% accuracy.	5	High	NAVYA
Sprint-2		USN-8	Database creation for each dataset classes.	3	Medium	THARANI

Sprint			Requirement Number				Priority	Team Members
Sprint-2		USN-9	User database creation for the user details.	2	Low	POOJITHA		
Sprint-2		USN-10	Description Page - It contains the details of predicting criteria and user guides.	3	Medium	NAVYA		
Sprint-3		USN-11	.Login Page - Login the user with phone number and email id.	2	Low	VEMBU		
Sprint-3		USN-12	IAM - Access via OTP or SSH key protection	3	Medium	THARANI		
Sprint-3		USN-13	Dashboard and Input page creation - Contains user profiles and predicting accuracy. Input page we can able to feed the input images.	2	Low	VEMBU		
Sprint-3		USN-14	Prediction page - Show the prediction based on the user input	2	Low	THARANI		
Sprint-4		USN-15	Model Load – API creation using flask	4	Medium	POOJITHA		
Sprint-4	Development Phase	USN-16	Connecting User interface and backend API calls	5	High	VEMBU		
Sprint-4		USN-17	Deploy the application using IBM cloud	5	High	POOJITHA		
Sprint-4	Testing Phase	USN-18	Test the application function to be working with high accuracy and low latency with reliable.	5	High	NAVYA		
Sprint-4		USN-19	Testing the application as a user all user interfaces will be working properly with check the prediction accuracy.	5	High	VEMBU		

6. PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING:

Phrase 1: Requirement analysis and information collection

Phrase 2: Project planning and developing modules

Phrase 3:Implementing highly accurate algorithms

Phrase 4: Deploying the model on cloud and Testing the model

6.2 SPRINT DELIVERY SCHEDULE:

Sprint	Story points	Duration	Start date	End date
Sprint 1	12	6 days	24 Oct 2022	29 Oct 2022
Sprint 2	21	4 days	30 Nov 2022	02 Nov 2022
Sprint 3	09	5 days	03 Nov 2022	07 Nov 2022
Sprint 4	24	5 days	08 Nov 2022	12 Nov 2022

6.3 REPORTS FROM JIRA:

Velocity:

Sprint 1 average velocity: Average Velocity = 12 / 6 = 2 Sprint 2 average velocity: Average Velocity = 21 / 4 = 5.2 Sprint 3 average velocity: Average Velocity = 09 / 5 = 1.8 Sprint 4 average velocity: Average Velocity = 24 / 5 = 4.8

7.CODING & SOLUTIONING

7.1 Feature 1:

Images in the dataset are preprocessed to ensure efficiency and reliability.

Code:

```
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator (rescale = 1./255, shear_range= 0.2,zoom_range= 0.2,
horizontal flip = True)
test_datagen =ImageDataGenerator (rescale = 1)
x train =
train datagen.flow from directory(r'C:\Users\POOJITHA\Downloads\Fertilizers Recommendat
ion_System_For_Disease_Prediction\Dataset Plant Disease\fruit-dataset\fruit-
dataset\train',target size = (128,128), batch size = 32, class mode = 'categorical')
x_test =
test datagen.flow from directory(r'C:\Users\POOJITHA\Downloads\Fertilizers Recommendati
on System For Disease Prediction\Dataset Plant Disease\fruit-dataset\fruit-
dataset\test',target_size = (128,128), batch_size = 32, class_mode = 'categorical')
Found 5384 images belonging to 6 classes.
Found 1686 images belonging to 6 classes.
x train =
train_datagen.flow_from_directory(r'C:\Users\POOJITHA\Downloads\Fertilizers_Recommendat
ion_System_For_Disease_Prediction\Dataset Plant Disease\Veg-dataset\Veg-
dataset\train_set',target_size = (128,128), batch_size = 32, class_mode = 'categorical')
x test =
test_datagen.flow_from_directory(r'C:\Users\POOJITHA\Downloads\Fertilizers_Recommendati
on System For Disease Prediction\Dataset Plant Disease\Veg-dataset\Veg-
dataset\test_set',target_size = (128,128), batch_size = 32, class_mode = 'categorical')
Found 11386 images belonging to 9 classes.
Found 3416 images belonging to 9 classes.
```

7.2 FEATURE 2 :

Histogram analysis is performed to identify all dimensions in image processing.

Code:

import matplotlib.pyplot as plt import numpy as np

```
from skimage.io import imread
I = imread('/content/23ea1618-d554-47fb-bc03-a1b978f14fbf___RS_HL 6008.JPG')
J = imread('/content/25de086c-ea7e-42b0-83fd-bc7d1e584d0a___RS_HL 5852.JPG')
plt.figure()
plt.subplot(121), plt.imshow(I)
plt.subplot(122), plt.imshow(J)
plt.show()
plt.figure(figsize=(10, 10))
plt.imshow(np.abs(I[:, :, 0].astype(float) - J[:, :, 0].astype(float)), cmap='gray')
plt.show()
d = imread('/content/23ea1618-d554-47fb-bc03-a1b978f14fbf RS HL 6008.JPG')
mask = imread('/content/25de086c-ea7e-42b0-83fd-bc7d1e584d0a___RS_HL 5852.JPG')
print(np.amin(d), np.amax(d))
print(np.amin(mask), np.amax(mask))
plt.figure(), plt.imshow(mask), plt.show()
mask = mask[:, :, 0]
maskInv = np.zeros_like(mask)
maskInv[mask == 0] = 255
maskInv[mask == 255] = 0
plt.figure(), plt.imshow(maskInv, cmap='gray'), plt.show()
```

8. TESTING

8.1 TEST CASES:

from tensorflow.keras.models import load_model

Code:

```
test_dir=r"C:\Users\POOJITHA\Downloads\Fertilizers_Recommendation_
System For Disease Prediction\Dataset Plant Disease\fruit-dataset\fruit-dataset\test"
 import tensorflow as tf
 from tensorflow import keras
 from tensorflow.keras.preprocessing.image import ImageDataGenerator
model =
tf.keras.models.load\_model(r"C:\Users\POOJITHA\Downloads\Fertilizers\_Recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommendation\_recommenda
System_For_Disease_ Prediction\Dataset Plant Disease\fruit.h5")
test_datagen_1=ImageDataGenerator(rescale=1)
test_generator_1=test_datagen_1.flow_from_directory(
          test dir,
          target_size=(128,128),
          batch size=20,
          class_mode='categorical'
)
     import numpy as np
```

```
from tensorflow.keras.preprocessing import imagei
img=image.load_img(r"C:\Users\POOJITHA\Downloads\Fertilizers_Recommendation_
System_For_Disease_ Prediction\Dataset Plant Disease\fruit-dataset\fruit-
dataset\train\Corn_(maize)___healthy\11c1e3ce-73d1-4338-8939-473087e9dcbb___R.S_HL
0604.JPG")
mg=image.load_img(r"C:\Users\POOJITHA\Downloads\Fertilizers_Recommendation_
System_For_Disease_ Prediction\Dataset Plant Disease\fruit-dataset\fruit-
dataset\train\Corn_(maize)___healthy\11c1e3ce-73d1-4338-8939-473087e9dcbb___R.S_HL
0604.JPG")
img
img=image.load_img(r"C:\Users\POOJITHA\Downloads\Fertilizers_Recommendation_
System_For_Disease_ Prediction\Dataset Plant Disease\fruit-dataset\fruit-
dataset\train\Corn_(maize)___healthy\11c1e3ce-73d1-4338-8939-473087e9dcbb___R.S_HL
0604.JPG",target_size=(128,128))
x=image.img_to_array(img)
x=np.expand dims(x,axis=0)
y=np.argmax(model.predict(x),axis=1)
index=['Apple___Black_rot', 'Apple___healthy', 'Corn_(maize)___healthy',
'Corn_(maize)___Northern_Leaf_Blight', 'Peach___Bacterial_spot', 'Peach___healthy']
index[y[0]]
model.evaluate(test_generator_1,steps=50)
```

TEST CASES:

1 2 3	-				Dale Team ID Penjent Hame Haninum Harks	85-Hau-22 PHT2822THID25785 Prelitioner Resonantidation Squ		 				i 		
5	Test care	Faatura Typa	Comp	Tast Scanarin	Pro-Requirite	Steps To Execute	Tast Data	Expected Result	Actua	Sŧ	Commestr	TC fer	BU	Executed By
	LaginPago_T C_001	Functional	Hame Page	Vorify wor is able to see the Login/Signup popup when wor clicked on My account button	l I Fraild inkadiN	1.Enter URL and click qu 2.Click on My Account dropdown button 3.Verify login/Singup pagus dirplayed or not		Laqin/Siqnup papup rhauld dirplay	Warking ar expecte d	Par		A-t t f 		NAVYA
7	LaqinPaqo_T C_002	UI	Hame Page	Verify the UI elements in Laqin/Siqnup papup	HtmlPagofar Rogiutration	LEnter URL and click qu 2. Click and My Account drap-daun buttan 3. Verify laqin/Singup papup uith bolau UI elements: a.email text bax b.parzuard text bax c.Laqin buttan d.Mou curtamer? Create account link e.Lart parzuard	http://frhapenzer.s amf	Application.rhauldzhau belau Ul elemente: a.email text bax b.parruard text bax c.Laqin buttan uith arange calaur d.Neu curtamer? Create account link e.Lart parruard? Recovery parruard link	Working ar oxpocto d	Fail	Steps are not clear to follou		BUG 1234	Pasjitha
	LaqinPaqo_T C_003	Functional	Hamo	Vorify wor ir ablo ta laq inta application uith Valid crodontialr	Authentication Security	1.Enter URL (http://frhapenzer.c um/) and click qu 2. Click an My Account drapdaun button 3. Enter Valid wername/email in Email text box 4. Enter valid parzuard in parzuard text box	Urername: chalam@qmail.com parsuord: Tertinq123	Uzorshauld navigato ta wor account homopago	Warking ar oxpocto d	Par r				Paajitha
	LaqinPaqo_T C_004	Functional	Login page	Vorify wor ir ablo ta laq inta applicatian uith InValid crodontialr	Authentication Security	Clintor URL (http://rhpponzor.clim/) and click qu 2. Olick an My Account drap-daun button S.Entor InValid urornamofomail in Email toot bax 4. Entor valid parsuard in parsuard toxt bax		Applicationshouldshou 'Incorrect omail or passuord' validation mossago.	Working ar expecte d	Par ,		+		Tharani
18	LaqinPaqo_T C_004	Functional	Login page	Vorify wor ir ablo ta laq inta application with InValid crodentials	Authontication Socurity	1.Enter URL (https://rhopenzer.c URL (https://rhopenzer.c um/) and click qu 2.Olick an My Account drapdaun buttan 3.Enter Valid uvername/email in Email teat bax 4.Enter Invalid paruard in paruard toxt bax	chalam@qmail.com parruord:	Applicationshouldshou 'Incorrect omail or passuard' validation mossage.	Warking ar oxpocto d	Par r				Vembudharzini

8.2 USER ACCEPTANCE TESTING:

Defect Analysis :

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	77

Test Case Analysis:

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	1	50
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9.RESULTS

9.1 PERFORMANCE METRICS:

Model Summary:

Values:

_ , , , , , , , , , , , , , , , , , , ,						
<pre>/usr/local/lib/python3.7/dist-packag</pre>	ges/ipykernel	_launcher	.py:47: Use	erWarning:	Model.predict_gene	rator is depr
Confusion Matrix						
Normalized confusion matrix						
Classification Report						
	precision	recall	f1-score	support		
Apple Black rot	0.98	1.00	0.99	181		
Apple healthy	0.99	1.00	1.00	445		
		1.00	1.00	217		
Corn_(maize)Northern_Leaf_Blight	1.00					
Corn_(maize)healthy	1.00	1.00	1.00	301		
PeachBacterial_spot	0.99	0.99	0.99	493		
Peachhealthy	1.00	0.98	0.99	49		
Pepper,_bellBacterial_spot	0.97	0.92	0.94	317		
Pepper,_bellhealthy	0.94	0.99	0.97	448		
PotatoEarly_blight	0.96	1.00	0.98	300		
PotatoLate_blight	0.92	0.96	0.94	290		
Potatohealthy	0.97	0.71	0.82	52		
TomatoBacterial_spot	0.96	0.99	0.97	667		
Tomato Late blight	0.96	0.95	0.96	599		
Tomato Leaf Mold	0.96	0.91	0.94	322		
Tomato <u> Sep</u> toria_leaf_spot	0.94	0.92	0.93	421		
accuracy			0.97	5102		
macro avg	0.97	0.95	0.96	5102		
weighted avg	0.97	0.97	0.97	5102		

Accuracy:

Training accuracy: 0.95 Validation accuracy: 0.98

Model Confusion Matrix:

10.ADVANTAGES & DISADVANTAGES

ADVANTAGES:

- The Proposed model here produces very high accuracy of classification.
- Very large datasets can also be trained and tested.
- Images of very high can be resized within the proposed itself.

DISADVANTAGES:

- For training and testing , computational time is a little high.
- The neural network architecture used in this project work is complex.

11.CONCLUSION

The model proposed here involves image classification of fruit datasets and vegetable datasets. The following points are observed during model testing and training:

- •The accuracy of Classification increased by increasing the number of epochs.
- For different batch sizes, different classification accuracies are obtained.

- •The accuracies are increased by increasing more convolution layers.
- •The accuracy of classification also increased by varying dense layers.
- •Different accuracies are obtained by varying the size of kernel used in the convolution layer output.
- Accuracies are different while varying the size of the train and test dataset.

12.FUTURE SCOPE

This further research is implementing the proposed algorithm with the existing public datasets. Also, various segmentation algorithms can be implemented to improve accuracy. The proposed algorithm can be modified further to identify the disease that affects the various other plant organs such as stems and fruits.

13.APPENDIX

SOURCE CODE : Python Code app.py

import requests
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
import numpy as np
import pandas as pd
import tensorflow as tf
from flask import Flask, request, render_template, redirect, url_for
import os
from werkzeug.utils import secure_filename
from tensorflow.python.keras.backend import set_session
app = Flask(__name__)

```
#load both the vegetable and fruit models
model = load_model("vegetable.h5")
model1=load model("fruit.h5")
#home page
@app.route('/')
def home():
  return render_template('home.html')
#prediction page
@app.route('/prediction')
def prediction():
  return render_template('predict.html')
@app.route('/predict',methods=['POST'])
def predict():
  if request.method == 'POST':
    # Get the file from post request
    f = request.files['image']
    # Save the file to ./uploads
     basepath = os.path.dirname( file )
    file_path = os.path.join(
       basepath, 'uploads', secure_filename(f.filename))
    f.save(file_path)
    img = image.load_img(file_path, target_size=(128, 128))
    x = image.img\_to\_array(img)
    x = np.expand_dims(x, axis=0)
    plant=request.form['plant']
    print(plant)
```

```
if(plant=="vegetable"):
       preds = model.predict(x)
       preds=np.argmax(preds)
       print(preds)
       df=pd.read_excel('precautions - veg.xlsx')
       print(df.iloc[preds]['caution'])
     else:
       preds = model1.predict(x)
       preds=np.argmax(preds)
       df=pd.read_excel('precautions - fruits.xlsx')
       print(df.iloc[preds]['caution'])
    return df.iloc[preds]['caution']
if __name__ == "__main__":
  app.run(debug=False)
HTML CODE:
home.html
<!DOCTYPE html>
<html >
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>
            Plant Disease Prediction</title>
 <link href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet'</pre>
type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet'</pre>
type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet'</pre>
type='text/css'>
```

```
k href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300'
rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}">
<link href='https://fonts.googleapis.com/css?family=Merriweather'</pre>
rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Josefin Sans' rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Montserrat' rel='stylesheet'>
<style>
.header {
                   top:0;
                   margin:0px;
                   left: 0px;
                   right: 0px;
                   position: fixed;
                   background-color: #28272c;
                   color: white;
                   box-shadow: 0px 8px 4px grey;
                   overflow: hidden;
                   padding-left:20px;
                   font-family: 'Josefin Sans';
                   font-size: 2vw;
                   width: 100%;
                   height:8%;
                   text-align: center;
             }
             .topnav {
 overflow: hidden;
 background-color: skyblue;
}
.topnav-right a {
 float: left;
 color: #f2f2f2;
```

```
text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 18px;
.topnav-right a:hover {
 background-color: #ddd;
 color: black;
}
.topnav-right a.active {
 background-color: #565961;
 color: white;
.topnav-right {
 float: right;
 padding-right:100px;
body {
 background-color:#ffffff;
 background-repeat: no-repeat;
 background-size:cover;
 background-position: 0px 0px;
 .button {
 background-color: #28272c;
 border: none;
 color: white;
 padding: 15px 32px;
```

```
text-align: center;
 text-decoration: none;
 display: inline-block;
 font-size: 16px;
 border-radius: 12px;
.button:hover {
 box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24), 0 17px 50px 0 rgba(0,0,0,0.19);
form {border: 3px solid #f1f1f1; margin-left:400px;margin-right:400px;}
input[type=text], input[type=password] {
 width: 100%;
 padding: 12px 20px;
 display: inline-block;
 margin-bottom:18px;
 border: 1px solid #ccc;
 box-sizing: border-box;
button {
 background-color: #28272c;
 color: white;
 padding: 14px 20px;
 margin-bottom:8px;
 border: none;
 cursor: pointer;
 width: 15%;
 border-radius:4px;
button:hover {
 opacity: 0.8;
```

```
}
.cancelbtn {
 width: auto;
 padding: 10px 18px;
 background-color: #f44336;
}
.imgcontainer {
 text-align: center;
 margin: 24px 0 12px 0;
}
img.avatar {
 width: 30%;
 border-radius: 50%;
}
.container {
 padding: 16px;
span.psw {
 float: right;
 padding-top: 16px;
/* Change styles for span and cancel button on extra small screens */
@media screen and (max-width: 300px) {
 span.psw {
   display: block;
  float: none;
```

```
.cancelbtn {
  width: 100%;
.home{
      margin:80px;
 width: 84%;
 height: 500px;
 padding-top:10px;
 padding-left: 30px;
.login{
      margin:80px;
      box-sizing: content-box;
 width: 84%;
 height: 420px;
 padding: 30px;
 border: 10px solid blue;
}
.left,.right{
box-sizing: content-box;
height: 400px;
margin:20px;
border: 10px solid blue;
}
.mySlides {display: none;}
img {vertical-align: middle;}
/* Slideshow container */
```

```
.slideshow-container {
 max-width: 1000px;
 position: relative;
 margin: auto;
/* Caption text */
.text {
 color: #f2f2f2;
 font-size: 15px;
 padding: 8px 12px;
 position: absolute;
 bottom: 8px;
 width: 100%;
 text-align: center;
/* The dots/bullets/indicators */
.dot {
 height: 15px;
 width: 15px;
 margin: 0 2px;
 background-color: #bbb;
 border-radius: 50%;
 display: inline-block;
 transition: background-color 0.6s ease;
.active {
 background-color: #717171;
/* Fading animation */
.fade {
```

```
-webkit-animation-name: fade;
 -webkit-animation-duration: 1.5s;
 animation-name: fade;
 animation-duration: 1.5s;
}
@-webkit-keyframes fade {
 from {opacity: .4}
 to {opacity: 1}
}
@keyframes fade {
 from {opacity: .4}
 to {opacity: 1}
/* On smaller screens, decrease text size */
@media only screen and (max-width: 300px) {
 .text {font-size: 11px}
</style>
</head>
<body style="font-family:'Times New Roman', Times, serif;background-
color:#C2C5A8;">
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:white;</pre>
padding-top:1%">Plant Disease Prediction</div>
 <div class="topnav-right"style="padding-top:0.5%;">
  <a class="active" href="{{ url_for('home')}}">Home</a>
```

```
<a href="C:\Users\POOJITHA\OneDrive\Documents\Predict.html"
class="button">Predict</button></a>
 </div>
</div>
<div style="background-color:#ffffff;">
<div style="width:60%;float:left;">
<div style="font-size:50px;font-family:Montserrat;padding-left:20px;text-</pre>
align:center;padding-top:10%;">
<br/><br/>know Your Plant!</b></div><br/>or>
<div style="font-size:20px;font-family:Montserrat;padding-left:70px;padding-</pre>
right:30px;text-align:justify;">Agriculture was the essential development in the
rise of human
 civilization, whereby farming of acclimatize species produced food oversupply
that enabled people to reside in cities.
 Plants were independently sophisticated in at least 11 regions of the world.
Industrial agriculture based on large-scale monocropping in the twentieth century
came to influence agricultural output, though
 about 2 billion people still depended on maintaining agriculture. The plant
diseases effect the production. Identification of diseases and taking necessary
precautions is all done through naked eye, which requires labour and laboratries.
This application helps farmers in detecting the diseases by observing the spots on
</div>
</div>
<div style="width:40%;float:right;"><br><br>
<img src="C:\Users\POOJITHA\Downloads\leaves.jpeg"style="max-</pre>
height:200%;max-width:200%;">
</div>
</div>
<div class="home">
```

```
<br>
</div>
<script>
var slideIndex = 0;
showSlides();
function showSlides() {
 var i;
 var slides = document.getElementsByClassName("mySlides");
 var dots = document.getElementsByClassName("dot");
 for (i = 0; i < slides.length; i++) {
  slides[i].style.display = "none";
 }
 slideIndex++;
 if (slideIndex > slides.length) {slideIndex = 1}
 for (i = 0; i < dots.length; i++) {
  dots[i].className = dots[i].className.replace(" active", "")
 }
</script>
</body>
</html>
predict.html:
<!DOCTYPE html>
<html lang="en">
<head>
  <title>predict</title>
</head>
```

```
<style>
  .container{
    display: flex;
    padding: 60px 70px 60px 70px;
  }
  .card{
    padding: 70px 80px 70px 80px;
  }
  .menu{
    padding: 10px 10px 10px;
    background-color: black;
    color: white;
    font-size: 15pt;
</style>
<body>
  <div class="menu">
    Plant disease Prediction</div>
  <div class="container">
    <img src="C:\Users\POOJITHA\Downloads\Fields.jpeg">
    <div class="card">
    <form>
       <h1>Drop in the image to get the Prediction </h1><br><br>>
       <label><select name="Fruit" id="plant">
         <option value="fruit" id="fruit">Fruit</option>
         <option value="vagitable" id="vig">vegitable</option>
         </select>
       </label><br><br><br>>
       <input id="default-btn" type="file" name=""
onchange="document.getElementById('output').src=window.URL.createObjectUR
L(this.files[0])"><br><br><br>
       <img src="" id="output">
```

DATE SET LINK:

https://drive.google.com/file/d/1fxs7ptI6zh7NTbCOZARKZ7AmYKjnprrY/view?usp=sharing

FLASK FILES:

https://drive.google.com/drive/folders/1C0Qu-08T-zZP07scXTdUDzs8-vzNC-ge

GitHub LINK:

https://github.com/IBM-EPBL/IBM-Project-34603-1660239698

DEMO VIDEO LINK:

https://drive.google.com/drive/u/0/folders/1M7q068LcdA6CoEs RpljTBmPQleO8kK0U