Listing of Claims:

1. (Currently Amended) A compound of formula I:

wherein A is

 $R^3,\;R^4$, R^8 and R^6 are each, independently, H. halogen, NO₂, $C_{1:10^*} \text{ alkyl. optionally substituted by halogen up to perhaloalkyl,}$ $C_{1:10^*} \text{ alkanoyl. optionally substituted by halogen up to perhaloalkaxy,}$ $C_{1:10^*} \text{ alkanoyl. optionally substituted by halogen up to perhaloalkanoyl,}$ $C_{0:12} \text{ aryl. optionally substituted by } C_{1:10} \text{ alkyl} \text{ or } C_{1:10} \text{ alkoxy,} \text{ or }$ $C_{3:12} \text{ hetaryl. optionally substituted by } C_{1:10} \text{ alkyl} \text{ or } C_{1:10} \text{ alkoxy,}$ and either

optionally substituted by C_{1-10} -alkyl, , halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkenyl, C_{5-12} -aryl, C_{5

in which

 $R^{1} \ is \ H \ or \ C_{1+10} \ alkyl, optionally \ substituted \ by \ halogen \ up \ to \ perhaloalkyl \ and \qquad R^{2} \ is \ C_{1+10} \ alkyl, optionally \ substituted \ by \ halogen, \ up \ to \ perhaloalkyl,$

 $R^{3'},\,R^{4'}$, $R^{5'}$ and $R^{6'}$ are independently H, halogen,

C1 - C10 alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 — C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} eyeloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} arryl, C_{5-12} hetaryl or C_{6-12} arralkyl;

M is CH₂-, -S-, -N(CH₃)-, -NHC(O)- -CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

L is phenyl, substituted by C₁₋₁₀-alkoxy, OH, or -SCH₃, or by

pyridyl, optionally substituted by $C_{1:10}$ -alkyl, $C_{1:10}$ -alkoxy, halogen, OH, -SCH $_3$ or NO $_2$, naphthyl, optionally substituted by $C_{1:10}$ -alkyl, $C_{1:10}$ -alkoxy, halogen, OH, -SCH $_3$ or NO $_2$, pyridone, optionally substituted by $C_{1:10}$ -alkyl, $C_{1:10}$ -alkoxy, halogen, OH, -SCH $_3$ or NO $_2$, pyrazine, optionally substituted by $C_{1:10}$ -alkyl, $C_{1:10}$ -alkoxy, halogen, OH, -SCH $_3$ or NO $_2$,

benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, -OH, -SCH₃ or NO₂,

OI.

benzothiazole, optionally substituted by, C_{1-10} alkyl C_{1-10} alkoxy, halogen, OH, -SCH₃ or NO₂, and wherein the compound of formula I has a pKa greater than 10,

or a pharmaceutically acceptable salt thereof.

- (Cancelled)
- 3. (Previously Presented) A compound according to claim 1, wherein

R3 is H, halogen or C1-10- alkyl, optionally substituted by halogen, up to perhaloalkyl;

R4 is H, halogen or NO2;

R⁵ is H, halogen or C₁₋₁₀- alkyl;

 $R^{\rm n}$ is H, $C_{1.10^{\rm -}}$ alkoxy, thiophene, pyrole or methyl substituted pyrole,

 $R^{3^{\prime}}$ is H, hatogen, $\tilde{C}_{4:10}\text{-alkyl},$ or $CF_{3}^{}$ and

R6' is H. halogen, CH3, CF3 or -OCH3,

- 4. (Previously Presented) A compound according to claim 1, wherein
- R³ is C₄₋₁₀-alkyl, Cl, F or CF₃;

- $R^{6^{\circ}} = is \ H \ or \ OCH_3.$
- 5. (Previously Presented) A compound according to claim 4, wherein $R^{3'}$ or $R^{5'}$ is thutyl.
- 6. (Previously Presented) A compound according to claim 1, wherein M is $-CH_{2^-}$, -N(CH₁)- or -NHC(O)-.
- (Previously Presented) A compound according to claim 6, wherein L¹ is phenyl or pyridyl.
 - 8. (Previously Presented) A compound according to claim 1, wherein M is -O-.
- 9. (Previously Presented) A compound according to claim 8, wherein L^1 is phenyl, pyridyl, pyridyl,
 - 10. (Previously Presented) A compound according to claim 1, wherein M is S-.
- $\label{eq:previously Presented} \mbox{Λ compound according to claim 10, wherein L^1 is phenyl or pyridyl.}$

- (Original) A pharmaceutical composition comprising a compound of claim 1, and a physiologically acceptable carrier.
- (Original) A pharmaceutical composition comprising a compound of claim
 and a physiologically acceptable carrier.
- 15. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula II:

or a pharmaceutically acceptable salt thereof wherein

Δ i

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_0 , wherein n is 0-3 and each W is independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-C(O)-R^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, $-NR^7C(O)R^7$, $-C_{10}$ alkyl, $-C_{10}$ alkenyl, $-C_{10}$ alkenyl, $-C_{10}$ alkenyl, $-C_{10}$ alkoxy, $-C_{10}$ alkoxy; $-C_{10}$ alkaryl, optionally substituted with halogen, $-C_{10}$ alkyl, or $-C_{10}$ alkoxy; $-C_{10}$ alkeroaryl, optionally substituted with halogen, $-C_{10}$ alkyl, or $-C_{10}$ alkoxy; $-C_{10}$ alkeroaryl, optionally substituted with halogen, $-C_{10}$ alkyl, or $-C_{10}$ alkoxy; $-C_{10}$ alkeroaryl, optionally substituted with halogen, $-C_{10}$ alkyl, or $-C_{10}$ alkoxy; substituted $-C_{10}$ alkyl, substituted $-C_{10}$ alkoxy, substituted $-C_{10}$ alkoyl, substituted

wherein if W is a substituted group which does not contain aryl or hetaryl moieties, it is substituted by one or more substituents independently selected from the group consisting of $-CN_s - CO_2R^2, -C(O)R^7, -C(O)NR^2R^7, -OR^7, -SR^7, -NR^2R^7, NO_2, -NR^2C(O)R^7, -NR^2C(O)OR^7, -NR^2C$

wherein each R^7 is independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{12} aryl, C_7 - C_{13} hetaryl, C_7 - C_{24} alkaryl, C_4 - C_{25} alkheteroaryl, up to perhalosubstituted C_7 - C_{10} alkyl, up to perhalosubstituted C_7 - C_{10} alkyl, up to perhalosubstituted C_7 - C_{10} cycloalkyl, up to perhalosubstituted C_7 - C_{10} cycloalkyl, up to perhalosubstituted C_7 - C_{10} hetaryl,

 $\label{eq:wherein M is - O-, -S-, -N(R^2)-, -(CH_2)-_m, -C(O)-, -CH(OH)-, -(CH_2)_mO-, -NR^2C(O) NR^2R^2-, -NR^2C(O)-, -C(O)NR^2-, -(CH_2)_mS-, -(CH_2)_mN(R^2)-, -O(CH_2)_m-, -(CH_2)_mN(R^2)-, -O(CH_2)_m-, -(CH_2)_mN(R^2)-, -O(CH_2)_m-, -(CH_2)_mN(R^2)-, -O(CH_2)_m-, -(CH_2)_mN(R^2)-, -O(CH_2)_m-, -(CH_2)_mN(R^2)-, -(CH_2)_mN(R^2)-,$

L¹ is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} , wherein $_{n1}$ is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R², -C(O)NR²R², -C(O)-NR², -NO₂, -OR², -SR², -NR²R², -NR²C(O)QR², -C(O)R², -NR²C(O)R², C₁₋₂ alkyl, C₃-C₁₀ alkyl, C₅-C₁₀ alkyl, C₆-C₁₄ aryl, C₃-C₁₃ hetaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, -CO₂R², -C(O)NR²R², -OR², -SR², -NO₃, -NR²R², -NR²C(O)R² and -NR²C(O)OR²,

wherein $R^{3'}$, $R^{1'}$, $R^{5'}$ and $R^{6'}$ are each independently H, halogen, C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl, $C_1 - C_{10}$ alkoxy, optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{5'}$ and $R^{6'}$ together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} eyeloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl.

 (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula IIa:

wherein A is

R3, R4, R3 and R6 are each independently H, halogen, NO2,

C1-10- alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,

C1-10- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

C₀₋₁₂ aryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy, or

 $C_{s,12}$ hetaryl, optionally substituted by $C_{1\text{--}10}$ alkyl or $C_{1\text{--}10}$ alkoxy, and either

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by $C_{1:10}$ -alkyl, halo-substituted $C_{1:10}$ -alkyl up to perhaloalkyl, $C_{1:10}$ -alkoxy, halo-substituted $C_{1:10}$ -alkoxy up to perhaloalkoxy, $C_{3:10}$ -cycloalkyl, $C_{2:10}$ -alkenyl, $C_{1:10}$ -alkanoyl; $C_{0:12}$ -aryl, $C_{3:12}$ -hetaryl, $C_{0:12}$ -alkaryl, halogen; $-NR^1R^1$; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; -CN; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SOR^$

in which

 R^{1} is H or C_{1-10} -alkyl, optionally substituted by halogen, up to perhalo and

R² is C₁₄₀-alkyl, optionally substituted by halogen,

R³, R⁴, R⁵ and R⁶ are independently H, halogen, C₁ - C₁₀ alkyl, optionally substituted by halogen up to perhaloalkyl, C₁-C₁₀ alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of R³, R³, R⁵ and R⁶, together with the base phenyl. hetaryl or C₆₋₁₂ aralkyl, halogen up to perhalo;

 $L^{\perp} = is \ phenyl, \ pyridyl, \ naphthyl, \ pyridone, \ pyrazine, \ pyrimidine, \ benzodiaxane, \ benzopyridine or benzothiazole, each optionally substituted by \ C_{1-10}-alkyl, \ C_{1-10}-alkoxy, \ halogen, \\ OH, \ -SCH_1, \ NO_2 \ or, \ where \ Y \ is \ phenyl, \ by$

or a pharmaceutically acceptable salt thereof.

17. (Previously Presented) A method according to claim 16, wherein

R³ is halogen or C₁₋₁₀- alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

R⁵ is H, halogen or C₁₋₁₀- alkyl;

 $R^{\hat{\alpha}}$ is \bar{H} , $C_{1\text{--}10^{+}}$ alkoxy, thiophene, pyrole or methylsubstituted pyrole

R3 is H, halogen, C4-10-alkyl, or CF3 and

 $R^{6'}$ is H. halogen, CH_3 , CF_3 or OCH_3 .

18. (Previously Presented) A method according to claim 16, wherein M is -CH₂-, -S-, -N(CH₃)- or -NHC(O)- and L^{\perp} is phenyl or pyridyl.

20. (Currently Amended) A compound of formula 1:

wherein A is

 R^3 , R^4 , R^5 and R^6 are each, independently, H, halogen, NO_2 , C_{1-10° alkyl, optionally substituted by halogen up to perhaloalkyl, C_{1-10° alkoxy, optionally substituted by halogen up to perhaloalkoxy, pyridinyl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, and one of R^3 , R^4 , R^5 and R^6 is -M-L¹;

 $R^{y'}$, $R^{x'}$ and $R^{x'}$ are independently H, halogen, C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl. C_1 - C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{y'}$, $R^{y'}$, $R^{x'}$ and $R^{x'}$, together with the base phenyl, form a naphthyl group, optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl;

M is -CH₂-, -S-, -N(CH₃)-, -NHC(O)- -CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

L¹ is phenyl, substituted by C₁₋₁₀-alkoxy, OH, θF -SCH₃, or by

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, OH, one C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂,

or

benzothiazole, optionally substituted by, C₁₋₁₀ alkyl C₁₋₁₀ alkoxy, halogen, OH, -SCH₃ or NO₂, and wherein the compound of formula I has a pKa greater than 10, or a pharmaceutically acceptable salt thereof.

wherein A is

wherein

 R^3 is H. halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H. halogen or NO₂;

R⁵ is H, halogen or C₁₋₁₀- alkyl;

R6 is H. C₁₋₁₀- alkoxy, thiophene, pyrole or methyl substituted pyrole,

 $R^{3'}$ is H. Cl. F. $C_{440}\text{-}alkyl.$ or $\bar{C}F_3$ and

R is H, Clor F;

R⁵: is H. Cl. F or C₄₋₁₀-alkyl; and

 $R^{6^{\circ}} = is\; H$, halogen, $CH_3,\; CF_3\; or\; -OCH_3,\;$

and one of R3. R4. R5 and R6 is M-L1: wherein

L1 is phenyl, substituted by C1-10-alkoxy, OH, or -SCH3, or by

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrizine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂, or

benzothiazole, optionally substituted by, $C_{1^{-10}}$ alkyl $C_{1^{-10}}$ alkoxy, halogen, -SCH₃ or NO₂, and wherein the compound of formula I has a pKa greater than 10,

or a pharmaceutically acceptable salt thereof.

22. (Previously Presented) A compound according to claim 21, wherein \mathbb{R}^3 or \mathbb{R}^{8^n} is t-butyl.

. 1

C115- . -N(CH3)- or NHC(O)-.

- $24. \qquad (Previously \mbox{ Presented}) \qquad \mbox{Λ compound according to claim 21, wherein $\mbox{$L^1$ is phenyl or pyridyl.}}$
- $\label{eq:25.2} 25. \qquad \mbox{(Previously Presented)} \qquad \mbox{ A compound according to claim 21, wherein M is $-$8-.}$
- ${\it 26.} \qquad {\it (Previously Presented)} \qquad {\it A compound according to claim 26, wherein L^4 is phenyl or pyridyl.}$
 - 27. (Currently Amended) A compound of formula I:

wherein A is

R3, R4, R5 and R6 are each, independently, H, halogen, NO2,

 $C_{1:10}$ - alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_{1-10} -alkoxy, optionally substituted by halogen up to perhaloalkoxy,

C1-10- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

C₆₋₁₂ aryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy, or

 C_{5-12} hetaryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, and either

one of R3, R4, and R5 is -M-L1; or

two adjacent of R^3 , R^4 , R^3 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by $C_{1:10^*}$ alkyl, , halo-substituted $C_{1:10^*}$ alkyl up to perhaloalkyl, $C_{1:10^*}$ alkoxy, halo-substituted $C_{1:10^*}$ alkoxy up to perhaloalkoxy, $C_{3:10^*}$ -cycloalkyl, $C_{2:10^*}$ alkenyl, $C_{1:10^*}$ alkanoyl, $C_{6:12^*}$ aryl, $C_{5:12^*}$ hetaryl; $C_{6:12^*}$ aralkyl, $C_{6:12^*}$ alkaryl, halogen; NR^1R^1 ; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; -CN; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SR^2$;

in which

 R^1 is H or $C_{1:10}$ -alkyl, optionally substituted by halogen up to perhaloalkyl and R^2 is $C_{1:10}$ -alkyl, optionally substituted by halogen, up to perhaloalkyl,

 $R^{3^{\prime}},\,R^{4^{\prime}}\,,\,R^{5^{\prime}}$ and $R^{6^{\dagger}}$ are independently H, halogen,

C₁ - C₁₀ alkyl, optionally substituted by halogen up to perhaloalkyl,

 $C_1 = C_{10}$ alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{\mathcal{R}}$, $R^{\mathcal{R}'}$, $R^{\mathcal{R}'}$ and $R^{\mathcal{R}'}$, together with the base phenyl, form a naphthyl group, optionally

M is -CH₂-, -S-, -N(CH₃)-, -NHC(O)- -CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

L¹ is phenyl, substituted by C₁₋₁₀-alkoxy, OH, θF -SCH₃, or by

is phenyl, substituted by $C_{1\text{-}40}$ -alkoxy, OH_2 or SCH_3 , or \underline{by}

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂,

or

benzothiazole, optionally substituted by, C₁-10 alkyl C₁-10 alkoxy, halogen, OH, -SCH₃ or NO₂, or a pharmaceutically acceptable salt thereof.