1 Lecture Review

1.1 Independence, Basis and Dimension

1.1.1 Definitions

1. A set of vectors $\{v_1,\ldots,v_n\}$ is linearly independent if the only constants c_1,\ldots,c_n which solve

$$c_1v_1 + \dots + c_nv_n = 0$$

are $c_1 = \cdots = c_n = 0$.

- 2. A set of vectors $\{v_1, \ldots, v_n\}$ is linearly dependent if it is not linearly independent.
- 3. The span of a set of vectors $\{v_1, \ldots, v_n\}$, denoted span (v_1, \ldots, v_n) , is the set of linear combinations of v_1, \ldots, v_n .
- 4. If V is a vector space, we say that $\{v_1, \ldots, v_n\}$ is a basis for V if it is linearly independent and spans V.
- 5. If V is a vector space such that $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_m\}$ are both bases for V, then m = n. We call the number n (or m) the dimension of V, denoted $\dim(V)$.
- 6. If A is a square matrix, we say that A is nonsingular if it is invertible, and otherwise say it is singular.

1.1.2 Properties and Examples

Let A be an $m \times n$ matrix.

- 1. The column space of A is equal to the span of the columns of A; if a_1, \ldots, a_n are the columns of A this can be expressed as $col(A) = span(a_1, \ldots, a_n)$.
- 2. The dimension of the column space is equal to the rank of A: $\dim(\operatorname{col}(A)) = \operatorname{rank}(A)$.
- 3. Any set of n vectors in \mathbb{R}^m is linearly dependent if n > m.
- 4. There is one and only one way to write v as a linear combination of basis vectors.
- 5. The following statements are equivalent:
 - (a) The columns of A are linearly independent.
 - (b) The columns of A form a basis for Col(A).
 - (c) The only solution to Ax = 0 is x = 0.
 - (d) $Null(A) = \{0\}.$
 - (e) The rank of A is n (the number of columns of A).
 - (f) For any $b \in \mathbb{R}^m$, there is exactly 0 or 1 solution to Ax = b. There is 1 exactly when $b = UU^Tb$.
- 6. The following statements are equivalent:
 - (a) v_1, \ldots, v_n is a basis for \mathbb{R}^n .
 - (b) The matrix $A = (v_1 \cdots v_n)$ is invertible.
 - (c) For any $b \in \mathbb{R}^n$, the matrix Ax = b has a unique solution in \mathbb{R}^n .
 - (d) The full form SVD and compact form SVD of A are the same.

2 Problems

1. Let v_1, \ldots, v_n be vectors.

(a) Check that the span of the v's form a vector space.

(b) If n=3, show that that span is either \mathbb{R}^3 , a plane, a line, or a point. When is it a point?

2. Describe the subspace of \mathbb{R}^3 (is it a line or a plane or \mathbb{R}^3) spanned by the following vectors, then identify a basis:

(a) The vectors (1, 1, -1) and (-1, -1, 1).

(c) All vectors in \mathbb{R}^3 with integer components.

(b) The vectors (0,1,1), (1,1,0) and (0,0,0).

(d) All vectors with positive components.

3. Show that v_1, v_2, v_3 are independent but v_1, v_2, v_3, v_4 are dependent:

$$m{v}_1 = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, \quad m{v}_2 = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}, \quad m{v}_3 = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}, \quad m{v}_4 = egin{pmatrix} 2 \ 3 \ 4 \end{pmatrix}.$$

What is the span of the v's?

4. Suppose w_1, w_2, w_3 are independent vectors and $v_1 = w_2 - w_3$, $v_2 = w_1 - w_3$, $v_3 = w_1 - w_2$.

(a) Show that the \boldsymbol{v} 's are dependent.

(b) Which of the following matrices are nonsingular: $A = (w_1 \ w_2 \ w_3), B = (v_1 \ v_2 \ v_3)$.

(c) Explain why we can always find a unique solution to Ax = b for any $b \in \mathbb{R}^3$.

(d) Explain (using only linear independence) why Null(B) contains more than a point. Find a nonzero vector in this null space.

5. Consider the plane P with equation x - 2y + 3z = 0 in \mathbb{R}^3 .

(a) Find a basis for the plane P.

(b) Find a basis for the intersection of P with the xy-plane.

(c) Find a basis for all vectors perpendicular to plane P.

6. Find a basis and the dimension for the following subspaces of 3×3 matrices:

(a) All diagonal matrices

(b) All symmetric matrices $(A^T = A)$.

(c) All antisymmetric matrices $(A^T = -A)$.

7. Find a basis for the space of 2×3 matrices whose nullspace contains (2,1,1).