- 13.3 Two coils connected in series-aiding fashion have a total inductance of 500 mH. When connected in a series-opposing configuration, the coils have a total inductance of 300 mH. If the inductance of one coil (L₁) is three times the other, find L₁, L₂, and M. What is the coupling coefficient?
 - 13.24 In the circuit of Fig. 13.93,

- (a) find the coupling coefficient,
 - (b) calculate v_o ,
 - (c) determine the energy stored in the coupled inductors at t = 2 s.

Figure 13.93

For Prob. 13.24.

13.29 In the circuit of Fig. 13.98, find the value of the coupling coefficient k that will make the $10-\Omega$ resistor dissipate 320 W. For this value of k, find the energy stored in the coupled coils at t = 1.5 s.

Figure **13.98** For Prob. 13.29.

13.41 Determine I_1 and I_2 in the circuit of Fig. 13.106.

Figure 13.106

For Prob. 13.41.

13.53 Refer to the network in Fig. 13.118.

- (a) Find n for maximum power supplied to the $200-\Omega$ load.
- (b) Determine the power in the 200- Ω load if n = 10.

Figure 13.118

For Prob. 13.53.

13.71 In the autotransformer circuit in Fig. 13.134, show that

$$\mathbf{Z}_{\rm in} = \left(1 + \frac{N_1}{N_2}\right)^2 \mathbf{Z}_L$$

Figure 13.134

For Prob. 13.71.

- 13.90 A 4-kVA, 2,400/240-V rms transformer has 250 turns on the primary side. Calculate:
 - (a) the turns ratio,
 - (b) the number of turns on the secondary side,
 - (c) the primary and secondary currents.