

Лекция Языковые модели

Владимир Гулин

10 марта 2021 г.

Языковые модели

Языковая модель - это вероятностное распределение на множестве словарных последовательностей

Языковые модели

Языковая модель приписывает вероятность фрагменту текста (высказыванию, предложению...)

В хорошей модели вероятности языковых фрагментов соответствуют их относительной частотности в текстах Иными словами

- максимизирует вероятность реальных текстов
- минимизирует вероятность нереальных текстов

Где это требуется?

- Предсказание следующей лингвистической единицы (буквы, слова)
- Определение языка
- Исправление опечаток
- ▶ Снятие неоднозначностей разбора
- Машинный перевод
- Распознавание речи
- Генерация текстов
- Ранжирование результатов поиска
- ▶ и т.д.

Вероятности предложений: Интуиция

Probability of a sentence = насколько вероятно встретить его в естественном языке

P("Иван Грозный википедия") > P("Иван Грозный фото") <math>P("Анекдот про порутчика Ржевского") > P("Телефон порутчика Ржевского")

Language models in NLP

- ▶ В реальности крайне сложно узнать истинную вероятность заданной последовательности слов
- Однако мы можем использовать языковые модели, которые дают нам неплохую аппроксимацию
- Как и любые модели, языковые модели будут хороши в одних задачах и неприменимы в других

N-gram Language Models

Вероятность языковых событий

- ▶ Вероятность основана на подсчете частотности событий
- Обычно считаем по заданному корпусу
- ▶ вероятность = относительная частотность

Пример расчета

Всего слов в корпусе = 411165 sunday = 17

$$P(sunday) = \frac{17}{411165} = 0.00004$$

Оценка вероятности

Maximum Likelihood Estimation, MLE

$$p(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_{w} C(w_{n-1}w)}$$
$$p(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

Вопрос

Что делать с предложениями, которые не встречались никогда в заданном корпусе?

Предложениями, которые не втсречались никогда

the Archaeopteryx soared jaggedly a midst foliage $$\operatorname{\sf vs}$$ jaggedly trees the on flew

- ▶ Первое осмысленное, второе нет
- C(S) = 0 в обоих случаях
- ▶ MLE не работает на полных предложениях

Sparse data problem

- Не достаточно данных для корректной оценки вероятностей (слишком большое признаковое пространство)
- Большинство предложений можно встретить либо слишком редко, либо не встретить вообще, поэтому надо что-то думать :)

Как победить проблему?

Идея:

Будем оценивать вероятности предложений P(S) комбинируя вероятности меньших частей предложения, которые встречаются чаще

Таким образом, получили:

N-граммные языковые модели

ightharpoonup Хотим оценить $P(s=w_1\dots w_n)$

Пример: P(s =иван грозный фото в душе)

▶ По факту это совместное распределение слов в s:

$$P(w_1 = \mathsf{иван}, w_2 = \mathsf{грозный}, w_3 = \mathsf{фото}, w_4 = \mathsf{в}, w_5 = \mathsf{душe})$$

Вспоминаем, что для совместного распределения верно P(X,Y) = P(Y|X)P(X), тогда:

```
P(иван грозный фото в душе) = P(душе|иван грозный фото в) \cdot P(иван грозный фото в) = = P(\text{душе}|\text{иван грозный фото в}) \cdot P(\text{в}|\text{иван грозный фото}) \cdot P(\text{фото}|\text{иван грозный}) \cdot \\ \cdot P(\text{грозный}|\text{иван}) \cdot P(\text{иван})
```

Chain rule дает нам:

$$P(w_1,\ldots,w_n) = \prod_{i=1}^n P(w_i|w_1\ldots w_{i-1})$$

Вопрос:

В чем тут подвох?

Chain rule дает нам:

$$P(w_1,\ldots,w_n) = \prod_{i=1}^n P(w_i|w_1\ldots w_{i-1})$$

▶ Многие из этих условных веротностей попрежнему sparse!

Если мы пытаемся оценить P(иван грозный фото в душе), то нам нужно знать P(душе|иван грозный фото в)

▶ Сделаем предположение, что вероятность слова зависит только от конечного количистева предыдущих слов

Марковское свойство:

$$P(w_i|w_1, w_2, \ldots, w_{i-1}) = P(w_i|w_{i-n+1}, \ldots, w_{i-1})$$

- ▶ trigram model: $P(w_i|w_0, w_1, ..., w_{i-1}) \approx P(w_i|w_{i-2}, w_{i-1})$
- ▶ bigram model: $P(w_i|w_0, w_1, ..., w_{i-1}) \approx P(w_i|w_{i-1})$
- ▶ unigram model: $P(w_i|w_0, w_1, ..., w_{i-1}) \approx P(w_i)$

$$P(w_{i}|w_{1}, w_{2}, \dots, w_{i-1}) = P(w_{i}|w_{i-n+1}, \dots, w_{i-1}) =$$

$$= \frac{P(w_{i}, w_{i-1}, \dots, w_{i-n+1})}{P(w_{i-1}, \dots, w_{i-n+1})} \approx$$

$$\approx \frac{Count(w_{i}, w_{i-1}, \dots, w_{i-n+1})}{Count(w_{i-1}, \dots, w_{i-n+1})}$$

Проблемы N-граммных моделей

$$P(w_{i}|w_{1}, w_{2}, \dots, w_{i-1}) = P(w_{i}|w_{i-n+1}, \dots, w_{i-1}) =$$

$$= \frac{P(w_{i}, w_{i-1}, \dots, w_{i-n+1})}{P(w_{i-1}, \dots, w_{i-n+1})} \approx$$

$$\approx \frac{Count(w_{i}, w_{i-1}, \dots, w_{i-n+1})}{Count(w_{i-1}, \dots, w_{i-n+1})}$$

Какие в этой формуле проблемы?

Backoff (aka "stupid backoff")

 Иногда помогает использование меньшего контекста

Backoff

- Если есть достаточно статистики, то используем триграммы
- ▶ Иначе биграммы
- Иначе униграммы

```
"иван грозный фото в" не встречалось \to пробуем "иван грозный фото"
```

 $P(exttt{душe}| exttt{иван грозный фото в}) pprox P(exttt{душe}| exttt{иван грозный фото})$

"иван грозный фото" не встречалось ightarrow пробуем "иван грозный"

 $P(exttt{душe}| exttt{иван грозный фото}) pprox P(exttt{душe}| exttt{иван грозный})$

"иван грозный" не встречалось o пробуем "иван"

 $P(\text{душe}|\text{иван грозный}) \approx P(\text{душe}|\text{иван})$

Более интелектуальный подход: Линейная интерполяция

Сделаем линейную комбинацию униграмм, биграмм, триграмм и т.д.

$$P(w_i|w_1, w_2, \dots, w_{i-1}) \approx \lambda_3 P(w_i|w_{i-2}, w_{i-1}) + \lambda_2 P(w_i|w_{i-1}) + \lambda_1 P(w_i)$$

$$\sum_{k=0}^{n-1} \lambda_k = 1$$

Более интелектуальный подход: Линейная интерполяция

Сделаем линейную комбинацию униграмм, биграмм, триграмм и т.д.

$$P(w_i|w_1, w_2, \dots, w_{i-1}) \approx \lambda_3 P(w_i|w_{i-2}, w_{i-1}) + \lambda_2 P(w_i|w_{i-1}) + \lambda_1 P(w_i)$$

$$\sum_{i=1}^{n-1} \lambda_k = 1$$

Вопрос:

Как выбрать λ_k ?

Как оценивать языковые модели

Оценивание на промежуточных подзадачах

- Perplexity
- Cross entropy

Оценивание на реальных задачах

- ▶ Встраиваем языковую модель в реальную боевую систему
- Учим смодель системы с разными языковыми моделями
- Если итоговое качество лучше, то успех!

Cross-entropy and Perplexity

▶ Для $(w_1 w_2 \dots w_n)$ cross entropy определяется как

$$H_M(w_1w_2\ldots w_n)=-\frac{1}{n}\cdot \log P_M(w_1w_2\ldots w_n)$$

- Чем меньше cross entropy, тем лучше модель предсказывает следующее слово
- Perplexity (часто можно встретить в статьях):

$$Perplexity = 2^{cross-entropy}$$

Проблемы N-граммных моделей

$$P(w_{i}|w_{1}, w_{2}, \dots, w_{i-1}) = P(w_{i}|w_{i-n+1}, \dots, w_{i-1}) =$$

$$= \frac{P(w_{i}, w_{i-1}, \dots, w_{i-n+1})}{P(w_{i-1}, \dots, w_{i-n+1})} \approx$$

$$\approx \frac{Count(w_{i}, w_{i-1}, \dots, w_{i-n+1})}{Count(w_{i-1}, \dots, w_{i-n+1})}$$

А что если числитель равен 0?

Laplace smoothing

- Сделаем вид, что мы видели каждое слово на один раз больше, чем на самом деле
- ▶ Добавим ко всем статистикам по единице

Если 1 слишком грубое приближение, то можное взять небольшую константу δ для каждого слова $w_i \in V$.

$$P(w_i|w_{i-n+1},\ldots,w_{i-1}) = \frac{\delta + P(w_i,w_{i-1},\ldots,w_{i-n+1})}{\delta \cdot |V| + P(w_{i-1},\ldots,w_{i-n+1})}$$

Good-Turing

Идея

Сдвинем плотность распределения n-грамм, которые встречаются r+1 раз в обучающих данных к плотности распределения n-грамм, которые встречаются r раз. Пусть n_r - число n-грамм, повторяющихся ровно r раз. Сдвинем частоты:

$$r* = (r+1)\frac{n_{r+1}}{n_r}$$

и положим

$$p_{GT}(w_{i-n+1}^i) = \frac{r*}{N},$$

где
$$N=\sum_{r=0}^{\infty}n_{r}r^{*}$$

Kneser-Ney smoothing

Идея:

Модель более низкого порядка имеет смысл пользовать только когда статистика по модели высокго порядка равна 0 или незначительна

- ► Пример: Рассмотрим "San Francisco" и положим, что "Francisco" встречается только после "San"
- ▶ "Francisco" будет иметь высокую униграммную вероятность, после каждой новой биграммы
- Лучше дать "Francisco" низкую униграммную вероятность, потому что он встречается только после "San", тогда биграммная модель юудет адекватной

Kneser-Ney smoothing

► Пускай счетчик для каждой униграммы определяется как число различных слов, которые идут после него:

$$N_{1+}(\bullet w_i) = \|w_{i-1} : c(w_{i-1}w_i) > 0\|$$

$$N_{1+}(\bullet \bullet) = \sum_{w_i} N_{1+}(\bullet w_i)$$

Распределение меньшего порядка:

$$p_{KN}(w_i) = \frac{N_{1+}(\bullet w_i)}{N_{1+}(\bullet \bullet)}$$

Объединяем вместе:

$$p_{KN}(w_i|w_{i-n+1}^{i-1}) = \frac{\max\{c(w_{i-n+1}^{i-1}) - \delta, 0\}}{\sum\limits_{w_i} c(w_{i-n+1}^{i})} + \frac{\delta}{\sum\limits_{w_i} c(w_{i-n+1}^{i})} N_{1+}(w_{i-n+1}^{i-1} \bullet) p_{KN}(w_i|w_{i-n+2}^{i-1})$$

Определение языка

Подходы

- Графематический
- ▶ N-граммный
- Лексический

Графематический подход

Система письменности

- Кириллица
- Латиница

Алфавит

- Русский А..Я
- Украинский не используются Ё, Ъ, Ы, Э, но есть Г', І с точками и т.д.
- Казахский

N-граммный подход

Russian	Ukrainian	English	French
^п 1.91 ^по 0.84	^п 1.97 ^на 0.85	^t 3.17 ^th 2.00	es 2.31 es\$ 1.77
^c 1.71 ^пр 0.68	^в 1.75 на\$ 0.73	th 2.48 the 1.62	le 1.97 ^de 0.98
^в 1.68 ^на 0.66	^н 1.68 ^по 0.72	^a 2.41 he\$ 1.44	^d 1.84 le\$ 0.82
^н 1.55 ^и\$ 0.61	на 1.45 ^пр 0.63	he 2.24 ed\$ 0.78	^l 1.74 de\$ 0.76
CT 1.43 ^B\$ 0.60	^3 1.40 ^3a 0.59	in 1.94 nd\$ 0.73	on 1.70 ^le 0.72
то 1.29 ^не 0.56	^c 1.25 ^не 0.56	er 1.60 ing 0.73	re 1.48 re\$ 0.68
но 1.23 ть\$ 0.48	po 1.13 oro 0.54	an 1.54 ^an 0.72	^c 1.46 nt\$ 0.58

- Ранговый
- Марковский

Пословный подход

• ???

 án került vagy től majd új ami ő kategória ben szerint amikor hogy amerikai két ezt mint alatt magyar itt második már

• ???

 cel cod său cu cea l după ro va județul această în către sunt pe toate astfel ani prin ca departamentul din timpul într

• ???

 ayrıca iklimi gibi tarafından olu kültür birlikte ula yol tarihinde veya iyi sonra türk bulunan kar çalı göre oldu

Пословный подход

Hungarian

 án került vagy től majd új ami ő kategória ben szerint amikor hogy amerikai két ezt mint alatt magyar itt második már

Romanian

 cel cod său cu cea l după ro va județul această în către sunt pe toate astfel ani prin ca departamentul din timpul într

Turkish

 ayrıca iklimi gibi tarafından olu kültür birlikte ula yol tarihinde veya iyi sonra türk bulunan kar çalı göre oldu

Вопросы

