COS10004 – Computer Systems

Name: Nguyen Manh Dung

Student ID: SWH01226

4. Wire 4-bit big endian register with D Flip Flop

6. Test schedule

Ox	Input Binary	Output Binary
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
5	0100	0100
Α	1010	1010
В	1011	1011
С	1100	1100
D	1101	1101
E	1110	1110
F	1111	1111

7.1

Hardware counters plays a role is to show the information for counting task by showing the decimal number which is counted.

7.2

A ripple counter is an asynchronous counter where the first flip flop output act as clock pulse for second flipflop. A clock pulse is applied to first flipflop and the output of the flip flop be a second flipflop clock and the sequence continue in that order.

9. Big-endian 3-bit ripple counter of JK Flip Flop (Count from 000 to 111)

12. Big-endian 3-bit ripple counter of JK Flip Flop (Count from 111 to 000)

14. Modify step 9 (count from 0 to 111) using common clock

16. Modify Step 14 (count from 0 to 5)

17.2

It is important to handling the illegal state to ensure that the counter will be albe to run smoothly without any problem.

18.Display MOD 6 with HEX Digit Display

