

10/789,586
Page 2 of 9

IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (original) An optical return-to-zero transmitter comprising:
 - 2 means for providing a pulsed optical signal;
 - 3 an optical modulator arranged to receive a non-return-to-zero electrical
 - 4 data signal and a bias signal, to modulate said optical signal with said data
 - 5 signal;
 - 6 whereby said optical signal providing means and said modulator
 - 7 provide a return-to-zero optical output signal modulated with said data signal;
 - 8 means for controlling the difference in phase between said pulsed
 - 9 optical signal and said data signal in response to a phase control signal;
 - 10 means for adding a first dither signal to said difference in phase and a
 - 11 second dither signal, having a different frequency than said first dither signal,
 - 12 to said bias signal;
 - 13 means for monitoring the amplitude of variations in the power of the
 - 14 optical output signal corresponding to cross-modulation of said first and
 - 15 second dither signal frequencies; and
 - 16 means responsive to said monitored amplitude for adjusting said phase
 - 17 control signal to maintain phase synchronization between said pulsed optical
 - 18 signal and said data signal.

1. (original) The optical return-to-zero transmitter of claim 1, wherein
2 said means for providing a pulsed optical signal comprises:
 - 3 means for providing a continuous optical signal;
 - 4 a second optical modulator arranged to receive a clock signal to
 - 5 modulate said optical signal with pulses.

557602_1

10/789,586

Page 3 of 9

- 1 3. (original) The transmitter of claim 2, wherein said second optical modulator
2 is connected downstream of said optical modulator arranged to receive said
3 non-return-to-zero electrical data signal.
- 1 4. (original) The transmitter of claim 2, wherein said optical modulators are
2 Mach-Zehnder modulators.
- 1 5. (original) The transmitter of claim 1, wherein the frequency of said second
2 dither signal is substantially lower than the frequency of said first dither
3 signal, and said means for monitoring the amplitude comprises first means for
4 monitoring a first amplitude, being the amplitude of variations in the power of
5 the optical output signal at the frequency of the first dither signal and second
6 means for monitoring the amplitude of variations of said first amplitude at the
7 frequency of the second dither signal.
- 1 6. (original) In a return-to-zero optical transmitter in which an optical signal is
2 modulated by a non-return-to-zero electrical data signal applied to an electro-
3 optical modulator and pulsation at the data rate of said data signal is provided
4 by a clock signal, to provide a return-to-zero optical output signal, a method of
5 controlling the difference in phase between said clock signal and said data
6 signal, said method comprising:
 - 7 adding a first dither signal to said difference in phase and a second
8 dither signal, having a different frequency than said first dither signal, to a bias
9 signal applied to said electro-optical modulator;
 - 10 monitoring the amplitude of variations in the power of the optical
11 output signal corresponding to cross-modulation of said first and second dither
12 signal frequencies; and
 - 13 controlling said difference in phase in response to said amplitude.
- 1 7. (original) The method of claim 6, wherein said optical modulator is a
2 Mach-Zehnder modulator.

557602_1

10/789,586

Page 4 of 9

- 1 8. (original) The method of claim 6, wherein the frequency of said second
- 2 dither signal is substantially lower than the frequency of said first dither
- 3 signal, and monitoring the amplitude comprises monitoring a first amplitude,
- 4 being the amplitude of variations in the power of the optical output signal at
- 5 the frequency of the first dither signal and monitoring the amplitude of
- 6 variations of said first amplitude at the frequency of the second dither signal.

- 1 9. (New) An optical transmitter comprising:
 - 2 a first optical modulator adapted to provide a NRZ modulated optical
 - 3 signal in response to a data signal and a NRZ bias signal summed with a first
 - 4 dither signal;
 - 5 a second optical modulator for modifying said NRZ modulated optical
 - 6 signal in response to a periodic pulse signal adapted according to a feedback
 - 7 signal and a second dither signal to provide a resulting optical signal; and
 - 8 a feedback circuit for processing said resultant optical signal to provide
 - 9 said feedback signal, said feedback circuit including a two-dimensional
 - 10 demodulator for detecting a mean optical output power of said resultant
 - 11 optical signal corresponding to a cross modulation of said first and second
 - 12 dither signals

- 1 10. (New) The optical transmitter of claim 9, wherein said optical modulators
- 2 are Mach-Zehnder modulators.

- 1 11. (New) The optical transmitter of claim 9, wherein the frequency of said
- 2 second dither signal being substantially lower than the frequency of said first
- 3 dither signal.

557602_1