LUMASS

Land Use Management Support System

Alexander Herzig, Daniel Rutledge, Anne-Gaelle Ausseil, John Dymond

Sustainable Landscape Management

How does the system work?

How does it react to management?

Spatially explicit system dynamics modelling

- System understanding
- Impact assessment

What do we do?

Where do we do it?

Optimal spatial resource/land-use allocation

- Land-use development scenarios
- Limits testing
- Resource-use efficiency

LUMASS - Key features

- Multi-objective spatial optimisation framework
 - Science integration from different domains to support spatial planning
 - Integration of stake holder preferences
 - Optimal spatial resource allocation
 - Identifying trade-offs between conflicting objectives
 - Flexible specification of objectives and constraints
 - Scale independent
- Spatially explicit system dynamics modelling framework
 - Model development for non-programmers
 - Model integration across domains
 - Component-based modelling (Lego brick principle); re-use of components
 - Support for big data and multi-temporal modelling
 - (Immediate result publication via OGC web services (WCS))
- Free and open source
 - No license fees
 - Transparent
 - Extensible

Architecture

Graphical User Interface

LUMASS Modelling Framework

Raster Processing Library

Orfeo Toolbox (OTB) / Insight Toolkit (ITK)

Visualisation
Visualisation Toolkit (VTK)

Optimisation lp_solve

VI

Image Input/Output Adaptors

OTB ImageIO

Vector I/O Adaptors

Image DB Access

Image File Access

Vector File Access

OGR

Multi-Objective Spatial Optimisation Framework

- Exploring Limits
- > Identifying trade-offs
- Discovering Potentials

