

Северо-Восточный федеральный университет им. М.К. Аммосова Научно-исследовательская кафедра вычислительных технологий

Метод конечных элементов для уравнения диффузии нейтронов в гексагональной геометрии

Аввакумов А.В., Вабищевич П.Н., Васильев А.О., Стрижов В.Ф.

Препринт 2020

Метод конечных элементов для уравнения диффузии нейтронов в гексагональной геометрии

Аввакумов А.В., Вабищевич П.Н., Васильев А.О., Стрижов В.Ф.

Аннотация

В данной статье рассматривается уравнение диффузии нейтронов в гексагональной геометрии, которое в операторной форме можно записать как обобщенную задачу на собственные значения. Ищется наименьшее собственное число, характеризирующее эффективный коэффициент размножения и соответствующая ему собственная функция, описывающая стационарное распределение нейтронного потока. Для численного решения используется метод конечных элементов, реализованный в вычислительном пакете FEniCS[1], библиотека для решения спектральных задач SLEPc[2], а для построения и генерации сетки – программа Gmsh[3].

Ключевые слова: ядерный реактор, активная зона, эффективный коэффициент размножения, ТВС, ВВЭР, уравнение диффузии нейтронов, двухгрупповое приближение, спектральная задача, метод конечных элементов, FEniCS.

1 Введение

Физические процессы, происходящие в ядерном реакторе [4], зависят от распределения нейтронного потока, математическое описание которого основыва-

Аввакумов А.В.

Институт проблем безопасного развития атомной энергетики РАН, Б. Тульская 52, Москва, 115191, Россия;

Вабищевич П.Н.

п Институт проблем безопасного развития атомной энергетики РАН, Б. Тульская 52, Москва, 115191, Россия;

vabishchevich@gmail.com,

Васильев А.О.

Северо-Восточный федеральный университет, Белинского 58, Якутск, 677000, Россия; haska87@gmail.com

Стрижов В.Ф.

Институт проблем безопасного развития атомной энергетики РАН, Б. Тульская 52, Москва, 115191, Россия;

ется на уравнении переноса нейтронов [5]. В общем виде это уравнение имеет интегро-дифференциальную форму, а искомое распределение потока нейтронов зависит от времени, энергии, пространственных и угловых переменных. Для практических расчетов ядерных реакторов, как правило, используют упрощенные формы уравнения переноса нейтронов. Наибольшее распространение для анализа реакторов получило уравнение, известное как групповое диффузионное приближение[6],[7] которое используется в подавляющем большинстве инженерных нейтронно-физических кодов. В практике реакторных расчетов особое место занимает решение условно-критической задачи[8], которая в математической формулировке сводится к задаче на собственные значения, характеризующее эффективный коэффициент размножения нейтронов. Собственной функцией этой задачи является стационарное распределение потока нейтронов.

2 Постановка задачи

В операторной форме стационарное уравнение переноса нейтронов в размножающей системе, ограниченной областью Ω с выпуклой границей $\partial\Omega$, можно записать в следующем виде (как обобщенную задачу на собственные значения):

$$M\Phi = \lambda F\Phi \tag{1}$$

где М — оператор, описывающий убыль (потерю) нейтронов за счет процессов переноса (утечки), поглощения и рассеяния, а F — оператор, описывающий образование (генерацию) нейтронов за счет процессов деления и рассеяния из верхней области энергий. Наименьшее собственное число λ характеризует эффективный коэффициент размножения нейтронов $K_{eff} = 1/\lambda$, а соответствующая ему собственная функция $\Phi(\mathbf{r})$ описывает стационарное распределение нейтронного потока в данной системе ($\mathbf{r} \in \Omega$).

В двухгрупповом диффузионном приближении уравнение (1) имеет следующий вид:

$$-\nabla(D_1\nabla\Phi_1) + (\Sigma_{a1} + \Sigma_r)\Phi_1 = \frac{1}{K_{eff}}(\nu_1\Sigma_{f1}\Phi_1 + \nu_2\Sigma_{f2}\Phi_2),$$

$$-\nabla(D_2\nabla\Phi_2) + \Sigma_{a2}\Phi_2 = \Sigma_r\Phi_1.$$
 (2)

Групповые параметры $D_g(\mathbf{r}), \Sigma_{ag}(\mathbf{r}), \nu_g(\mathbf{r}), \Sigma_{fg}(\mathbf{r})$ — коэффициент диффузии, макросечение поглощения, число вторичных нейтронов и макросечение деления, соответственно, а $\Sigma_r(\mathbf{r})$ — макросечение рассеяния.

На границе области $\partial\Omega$ ставятся условия альбедного типа:

$$D_g \frac{\partial \Phi_g}{\partial n} = -\gamma_g \Phi_g, \quad g = 1, 2, \tag{3}$$

где \boldsymbol{n} — внешняя нормаль границы $\partial\Omega,\,\gamma_g$ — групповой альбедный параметр (логарифмическая производная).

Решением уравнений (2)-(3) является эффективный коэффициент размножения нейтронов K_{eff} и стационарное распределение нейтронного потока $\Phi(\mathbf{r})$. Одной из основных задач в физике ядерных реакторов является оценка различных функционалов нейтронного потока. Определим нейтронную мощность $P(\mathbf{r})$ как следующий функционал:

$$P = A(\Sigma_{f1}\Phi_1 + \Sigma_{f2}\Phi_2),\tag{4}$$

где A — коэффициент нормировки на заданное значение интегральной мощности.

3 Конечно-элементная аппроксимация

Для численного решения задачи методом конечных элементов, уравнения (2)-(3) необходимо привести к вариационной постановке [9]. Основным способом перевода дифференциальной задачи в вариационную является: умножение уравнения на некую функцию v, интегрирование полученного уравнения по области, замена производных второго порядка через интегрирование по частям. Функция v называется $mecmosoù \phiyhkuueu$, а искомая функция — $npobhoù \phiyhkuueu$. В нашем случае мы каждое уравнение умножаем на тестовую функцию, первое на v_1 , второе на v_2 и интегрируем полученные уравнения по области Ω . Тогда получаем:

$$-\int_{\Omega} \nabla (D_{1} \nabla \Phi_{1}) v_{1} d\mathbf{r} + \int_{\Omega} (\Sigma_{a1} + \Sigma_{r}) \Phi_{1} v_{1} d\mathbf{r}$$

$$= \frac{1}{K_{eff}} \int_{\Omega} (\nu_{1} \Sigma_{f1} \Phi_{1} + \nu_{2} \Sigma_{f2} \Phi_{2}) v_{1} d\mathbf{r}, \qquad (5)$$

$$-\int_{\Omega} \nabla (D_{2} \nabla \Phi_{2}) v_{2} d\mathbf{r} + \int_{\Omega} \Sigma_{a2} \Phi_{2} v_{2} d\mathbf{r} = \int_{\Omega} \Sigma_{r} \Phi_{1} v_{2} d\mathbf{r}.$$

Далее заменяем первые интегралы с помощью интегрирования по частям и используем формулу Гаусса-Остроградского для перехода к поверхностному интегралу:

$$-\int_{\Omega} \nabla (D_1 \nabla \Phi_1) v_1 d\mathbf{r} = \int_{\Omega} (D_1 \nabla \Phi_1, \nabla v_1) d\mathbf{r} - \int_{\partial \Omega} D_1 v_1 \frac{\partial \Phi_1}{\partial n} d\mathbf{s},$$

$$-\int_{\Omega} \nabla (D_2 \nabla \Phi_2) v_2 d\mathbf{r} = \int_{\Omega} (D_2 \nabla \Phi_2, \nabla v_2) d\mathbf{r} - \int_{\partial \Omega} D_2 v_2 \frac{\partial \Phi_2}{\partial n} d\mathbf{s}.$$
(6)

Тогда из (3) и (6) получаем следующую систему уравнений:

$$\int_{\Omega} (D_{1}\nabla\Phi_{1}, \nabla v_{1})d\mathbf{r} + \int_{\Omega} (\Sigma_{a1} + \Sigma_{r})\Phi_{1}v_{1}d\mathbf{r} + \int_{\partial\Omega} \gamma_{1}\Phi_{1}v_{1}d\mathbf{s}
= \frac{1}{K_{eff}} \int_{\Omega} (\nu_{1}\Sigma_{f1}\Phi_{1} + \nu_{2}\Sigma_{f2}\Phi_{2})v_{1}d\mathbf{r},
\int_{\Omega} (D_{2}\nabla\Phi_{2}, \nabla v_{2})d\mathbf{r} + \int_{\Omega} \Sigma_{a2}\Phi_{2}v_{2}d\mathbf{r} + \int_{\partial\Omega} \gamma_{2}\Phi_{2}v_{2}d\mathbf{s}
= \int_{\Omega} \Sigma_{r}\Phi_{1}v_{2}d\mathbf{r}.$$
(7)

Полученная вариационная задача формулируется следующим образом: нужно найти такие функции $\Phi_g \in V$, которые удовлетворяют системе уравнений (7) для любых $v_g \in \hat{V}$, где V — пространство пробных функций, а \hat{V} — пространство тестовых функций. Здесь $V = H^1(\Omega)$, $\hat{V} = H^1(\Omega)$, где $H^1(\Omega)$ — пространство Соболева, состоящее из функций v_g таких, что v_g^2 и $|\nabla v_g|^2$ имеют конечный интеграл в Ω .

Далее мы должны перейти от непрерывной вариационной задачи (7) к дискретной задаче. Введем конечномерные пространства $V_h \subset V$, $\hat{V_h} \subset \hat{V}$ и определим в них дискретную задачу: найти $\Phi_{gh} \in V_h$ такие, что

$$\int_{\Omega} (D_{1}\nabla\Phi_{1h}, \nabla v_{1h}) d\mathbf{r} + \int_{\Omega} (\Sigma_{a1} + \Sigma_{r}) \Phi_{1h} v_{1h} d\mathbf{r} + \int_{\partial\Omega} \gamma_{1} \Phi_{1h} v_{1h} d\mathbf{s}
= \frac{1}{K_{eff}} \int_{\Omega} (\nu_{1} \Sigma_{f1} \Phi_{1h} + \nu_{2} \Sigma_{f2} \Phi_{2h}) v_{1h} d\mathbf{r},
\int_{\Omega} (D_{2}\nabla\Phi_{2h}, \nabla v_{2h}) d\mathbf{r} + \int_{\Omega} \Sigma_{a2} \Phi_{2h} v_{2h} d\mathbf{r} + \int_{\partial\Omega} \gamma_{2} \Phi_{2h} v_{2h} d\mathbf{s}
= \int_{\Omega} \Sigma_{r} \Phi_{1h} v_{2h} d\mathbf{r}, \quad \forall v_{g} h \in \hat{V}_{h}.$$
(8)

В качестве пространств V_h будем использовать стандартные пространства Лагранжевых полиномов[10], [11].

Переписав уравнение (8) в операторном виде получаем уравнение (1). Операторы M и F являются блочными:

$$M = \begin{pmatrix} M_{11} & 0 \\ -M_{21} & M_{22} \end{pmatrix}, \qquad F = \begin{pmatrix} F_{11} & F_{12} \\ 0 & 0 \end{pmatrix}. \tag{9}$$

Здесь операторы M_{11} , M_{21} и M_{22} соответствуют билинейным формам a_{11} , a_{21} и a_{22} соответственно, которые представляется в виде:

$$a_{11} = \int_{\Omega} (D_1 \nabla \Phi_{1h}, \nabla v_{1h}) d\boldsymbol{r} + \int_{\Omega} (\Sigma_{a1} + \Sigma_r) \Phi_{1h} v_{1h} d\boldsymbol{r} + \int_{\partial \Omega} \gamma_1 \Phi_{1h} v_{1h} d\boldsymbol{s},$$

$$a_{21} = \int_{\Omega} \Sigma_r \Phi_{1h} v_{2h} d\boldsymbol{r},$$

$$a_{22} = \int_{\Omega} (D_2 \nabla \Phi_{2h}, \nabla v_{2h}) d\boldsymbol{r} + \int_{\Omega} \Sigma_{a2} \Phi_{2h} v_{2h} d\boldsymbol{r} + \int_{\partial \Omega} \gamma_2 \Phi_{2h} v_{2h} d\boldsymbol{s}.$$

А операторы F_{11} и F_{12} соответстуют билинейным формам b_{11} и b_{12} , которые представляется следующим образом:

$$egin{aligned} b_{11} &= \int_{\Omega}
u_1 \Sigma_{f1} \Phi_{1h} v_{1h} dm{r}, \ b_{12} &= \int_{\Omega}
u_2 \Sigma_{f2} \Phi_{2h} v_{1h} dm{r}. \end{aligned}$$

Функция Φ называется собственной функцией операторов M и F. Число λ называется собственным значением операторов M и F, соответствующего собственной функции Φ .

4 Тестовые расчеты

Для тестирования данной методики рассмотрим несколько двумерных численных тестов, имитирующих различные конфигурации загрузок типа ВВЭР с гексагональной кассетной структурой. В расчетах варьировались следующие параметры:

- *n* параметр, характеризующий детализацию расчетной сетки число расчетных ячеек (конечных элементов) на кассету; диапазон изменения *n*: от 6 до 1536 (см. рисунок 1);
- p порядок конечных элементов; диапазон изменения p: от 1 до 3;

Вычислялись следующие параметры:

- эффективный коэффициент размножения K_{eff} ;
- распределение нейтронной мощности P(4) по кассетам с нормировкой на среднее значение по активной зоне.

Рис. 1: Разбиение кассеты на 6, 24 и 96 конечных элементов.

С целью анализа сходимости и эффективности разработанного алгоритма все тестовые расчеты были выполнены с фиксированной точностью отгонки собственного числа равной 10^{-15} . Сравнение полученных результатов проводилось с результатами расчетов по диффузионной мелкосеточной программе DIF3D-FD[13] (эталонное решение было получено путем экстраполяции результатов на бесконечно малый размер элементарной ячейки расчетной сетки). Будем рассматривать следующие отклонения в расчетных параметрах:

- для эффективного коэффициента размножения, абсолютное отклонение от «эталонного» значения K_{ref} : $\Delta K = |K_{eff} K_{ref}|$, выражается в pcm (percent-milli, т.е. 10^{-5});
- для распределения покассетных мощностей P_i вычисляются относительные отклонения ε_i (выраженные в %):

$$\varepsilon_i = \frac{P_i - P_i^{ref}}{P_i^{ref}},$$

где P_i^{ref} — «эталонное» значение мощности в кассете $i\ (i=1,...,N).$

- по отклонениям ε_i рассчитываются интегральные отклонения:
 - среднеквадратическое отклонение RMS:

$$RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \varepsilon_i^2},$$

- среднее по модулю отклонение AVR:

$$AVR = \frac{1}{N} \sum_{i=1}^{N} |\varepsilon_i|,$$

– максимальное по модулю отклонение МАХ:

$$MAX = \max_{i} |\varepsilon_i|.$$

Определим критерии «приемлемости» результатов с точки зрения достижения достаточной для практических расчетов ВВЭР точности:

- отклонение K_{eff} не выше 0.1% (100 pcm);
- максимальное по модулю отклонение в покассетных мощностях не выше 2%.

Будем считать «оптимальным» вариант, удовлетворяющий этим критериям и наиболее экономичный (по времени счета). Результаты расчетов, полученные для «оптимального» варианта будут отражены на рисунках и выделены в таблицах (серым цветом). Все вычисления проводились на компьютере со следующей конфигурацией: processor – Intel Core i3 3.30GHz, memory – 8Gb.

4.1 Модифицированный тест IAEA-2D без отражателя

Тестовая задача является модификацией на случай гексагональной геометрии известной тестовой задачи IAEA-2D[13]. Геометрическая модель активной зоны реактора моделируется набором кассет гексагональной формы. Активная зона имеет 13 стрежней СУЗ (устройства систем управления и защиты реактора) и 1/12 зеркальную симметрию. Размер кассеты «под ключ» равен 20 см. На рисунке 2 показана геометрическая модель активной зоны, где цифрами показаны кассеты различных сортов. Диффузионные нейтронно-физические константы заданы в таблице 1. Отражатель не моделируется, граничные условия задаются в виде логарифмической производной. Рассматривается два варианта, отличающиеся значениями логарифмической производной на границе. Результаты расчета модифицированного теста IAEA-2D без отражателя приведены в таблицах 2, 3. Здесь приняты следующие обозначения: n — число ячеек на кассету; p — порядок конечного элемента; K_{eff} — эффективный коэффициент размножения; ΔK — абсолютное отклонение от «эталонного» значения; RMS — среднеквадратичное отклонение; AVR — среднее отклонение; MAX — максимальное отклонение; t — время счета.

Распределение мощности показаны на рисунках 3, 5. Здесь для каждой кассеты сверху вних приведены: материал, «эталонное» решение, решение и относительное отклонение от «эталонного» решения.

Таблица 1: Диффузионные константы для модифицированного теста IAEA-2D.

Материал	1	2	3	4
D_1	1.500	1.500	1.500	1.500
D_2	0.400	0.400	0.400	0.400
$\Sigma_{a1} + \Sigma_r$	3.00e-2	3.00e-2	3.00e-2	4.00e-2
Σ_{a2}	8.00e-2	8.50e-2	1.30e-1	1.00e-2
Σ_r	2.00e-2	2.00e-2	2.00e-2	4.00e-2
Σ_{f1}	0.00	0.00	0.00	0.00
Σ_{f2}	5.60e-2	5.60e-2	5.60e-2	0.00
$\nu_1 \Sigma_{f1}$	0.00	0.00	0.00	0.00
$\nu_2 \Sigma_{f2}$	1.35e-1	1.35e-1	1.35e-1	0.00

Рис. 2: Геометрическая модель активной зоны модифицированного теста IAEA-2D без отражателя.

Таблица 2: Результаты расчета модифицированного теста IAEA-2D без отражателя при $\gamma=0.5.$

n	p	K_{eff}	$\Delta K(pcm)$	RMS(%)	AVR(%)	MAX(%)	t(sec)
	1	0.9733476	472.94	3.80	2.94	9.04	0.03
6	2	0.9775987	47.83	0.45	0.39	0.87	0.08
	3	0.9780084	6.86	0.07	0.06	0.12	0.19
	1	0.9765384	153.86	1.28	1.04	2.86	0.07
24	2	0.9779893	8.77	0.08	0.07	0.16	0.35
	3	0.9780690	0.80	0.01	0.01	0.03	0.94
	1	0.9776501	42.69	0.36	0.30	0.79	0.32
96	2	0.9780655	1.15	0.02	0.01	0.03	2.00
	3	0.9780757	0.13	0.01	0.01	0.02	5.50
	1	0.9779644	11.26	0.10	0.08	0.20	1.88
384	2	0.9780752	0.18	0.01	0.01	0.02	12.50
	3	0.9780764	0.06	0.01	0.00	0.01	34.70
	1	0.9780477	2.93	0.03	0.02	0.05	11.60
1536	2	0.9780763	0.07	0.01	0.00	0.01	82.70
	3	0.9780764	0.06	0.01	0.00	0.01	230.50
Ref.		0.9780770					

Рис. 3: Распределение мощности для модифицированного теста IAEA-2D без отражателя при $\gamma=0.5$.

Рис. 4: Плотность потока быстрых нейтронов для модифицированного теста IAEA-2D без отражателя при $\gamma=0.5, n=1536, p=1.$

Таблица 3: Результаты расчета модифицированного теста IAEA-2D без отражателя при $\gamma=0.125.$

n	p	K_{eff}	$\Delta K(pcm)$	RMS(%)	AVR(%)	MAX(%)	t(sec)
	1	0.9877260	365.20	3.65	2.66	8.40	0.03
6	2	0.9910086	36.94	0.39	0.28	0.80	0.08
	3	0.9913262	5.18	0.06	0.04	0.12	0.20
	1	0.9901896	118.84	1.21	0.88	2.65	0.08
24	2	0.9913114	6.66	0.07	0.05	0.15	0.36
	3	0.9913743	0.37	0.01	0.01	0.02	0.99
	1	0.9910477	33.03	0.34	0.25	0.74	0.34
96	2	0.9913713	0.67	0.01	0.01	0.02	2.10
	3	0.9913789	0.09	0.00	0.00	0.01	5.70
	1	0.9912924	8.56	0.09	0.07	0.20	1.96
384	2	0.9913785	0.05	0.01	0.00	0.01	12.80
	3	0.9913792	0.12	0.00	0.00	0.01	35.00
	1	0.9913571	2.09	0.02	0.02	0.06	12.00
1536	2	0.9913792	0.12	0.00	0.00	0.01	83.00
	3	0.9913793	0.13	0.00	0.00	0.01	231.50
Ref.		0.9913780					

Рис. 5: Распределение мощности для модифицированного теста IAEA-2D без отражателя при $\gamma=0.125$.

4.2 Модифицированный тест IAEA-2D с отражателем

Тестовая задача аналогична предыдущей, за исключением того, что был добавлен внешний ряд отражателя (материал 4). Диффузионные нейтроннофизические константы заданы в таблице 1. Граничные условия задаются в виде логарифмической производной. Так же рассматривается два варианта, отличающиеся значениями логарифмической производной на границе. Результаты расчета модифицированного теста IAEA-2D с отражателем приведены в таблицах 4, 5 и на рисунках 6, 7.

Таблица 4: Результаты расчета модифицированного теста IAEA-2D с отражателем при $\gamma=0.5.$

n	p	K_{eff}	$\Delta K(pcm)$	RMS(%)	AVR(%)	MAX(%)	t(sec)
	1	1.0104126	490.56	13.29	11.13	23.73	0.03
6	2	1.0062265	71.95	1.88	1.59	3.40	0.11
	3	1.0055754	6.84	0.22	0.18	0.41	0.27
	1	1.0069873	148.03	4.54	3.77	8.45	0.10
24	2	1.0056090	10.20	0.30	0.25	0.57	0.54
	3	1.0055135	0.65	0.02	0.02	0.04	1.46
	1	1.0059079	40.90	1.28	1.06	2.41	0.50
96	2	1.0055186	1.16	0.04	0.03	0.07	3.00
	3	1.0055097	0.27	0.01	0.01	0.02	8.30
	1	1.0056119	10.49	0.34	0.28	0.64	2.95
384	2	1.0055102	0.32	0.01	0.01	0.02	18.70
	3	1.0055096	0.26	0.01	0.01	0.02	52.00
	1	1.0055354	2.84	0.09	0.08	0.17	18.65
1536	2	1.0055096	0.26	0.01	0.01	0.02	132.30
	3	1.0055096	0.26	0.01	0.01	0.02	370.50
Ref.		1.0055070					

Рис. 6: Распределение мощности для модифицированного теста IAEA-2D с отражателем при $\gamma=0.5.$

Таблица 5: Результаты расчета модифицированного теста IAEA-2D с отражателем при $\gamma=0.125.$

n	p	K_{eff}	$\Delta K(pcm)$	RMS(%)	AVR(%)	MAX(%)	t(sec)
	1	1.0120630	543.3	13.72	11.55	24.47	0.03
6	2	1.0074831	85.31	2.00	1.69	3.60	0.11
	3	1.0067469	11.69	0.23	0.19	0.44	0.27
	1	1.0083333	170.33	4.74	3.95	8.80	0.10
24	2	1.0067838	15.38	0.32	0.27	0.60	0.54
	3	1.0066733	4.33	0.02	0.02	0.04	1.46
	1	1.0071200	49.00	1.34	1.11	2.52	0.50
96	2	1.0066790	4.9	0.04	0.03	0.07	3.00
	3	1.0066682	3.82	0.01	0.01	0.01	8.30
	1	1.0067847	15.47	0.35	0.29	0.67	2.95
384	2	1.0066688	3.88	0.01	0.01	0.02	18.70
	3	1.0066680	3.8	0.01	0.01	0.01	52.00
	1	1.0066975	6.75	0.09	0.08	0.18	18.65
1536	2	1.0066680	3.8	0.01	0.01	0.01	132.30
	3	1.0066680	3.8	0.01	0.01	0.01	370.50
Ref.		1.0066300					

Рис. 7: Распределение мощности для модифицированного теста IAEA-2D с отражателем при $\gamma=0.125.$

4.3 Двухмерная модель ВВЭР-1000 без отражателя

Геометрическая модель активной зоны BBЭР-1000 моделируется набором кассет гексагональной формы. На рисунке 8 показана геометрическая модель активной зоны BBЭР-1000, где цифрами показаны кассеты различных сортов. Размер кассеты «под ключ» равен 23.6 см. Активная зона имеет 25 стержней СУЗ и 1/6 зеркальную симметрию. Диффузионные нейтронно-физические константы заданы в таблице 6. На внешней границе реактора задается условие границы с вакуумом (логарифмическая производная $\gamma=0.5$) и более реалистичные условия (логарифмическая производная $\gamma=0.125$). Результаты расчета двухмерного теста ВВЭР-1000 без отражателя приведены в таблицах 7, 8 и на рисунках 9, 11.

Рис. 8: Геометрическая модель активной зоны двухмерной модели BBЭР-1000 без отражателя.

Таблица 6: Диффузионные константы для ВВЭР-1000.

Материал	1	2	3	4	5
D_1	1.3832	1.38299	1.39522	1.39446	1.39506
D_2	0.386277	0.389403	0.386225	0.387723	0.384492
$\Sigma_{a1} + \Sigma_r$	2.48836e-2	2.62865e-2	2.45662e-2	2.60117e-2	2.46141e-2
Σ_{a2}	6.73049e-2	8.10328e-2	8.44801e-1	9.89671e-2	8.93878e-2
Σ_r	1.64977e-2	1.47315e-2	1.56219e-2	1.40185e-2	1.54981e-2
Σ_{f1}	1.86139e-3	1.81560e-3	2.36371e-3	2.31026e-3	2.50773e-3
Σ_{f2}	3.48111e-2	3.50622e-2	4.91322e-2	4.95721e-2	5.31856e-2
$\nu_1 \Sigma_{f1}$	4.81619e-3	4.66953e-3	6.04889e-3	5.91507e-3	6.40256e-3
$\nu_2 \Sigma_{f2}$	8.46154e-2	8.52264e-2	1.19428e-1	1.20497e-1	1.29281e-1

Таблица 7: Результаты расчета двухмерного теста ВВЭР-1000 без отражателя при $\gamma=0.5.$

n	p	K_{eff}	$\Delta K(pcm)$	RMS(%)	AVR(%)	MAX(%)	t(sec)
	1	1.0048221	166.29	5.71	4.57	12.07	0.03
6	2	1.0063892	9.58	0.66	0.52	1.41	0.12
	3	1.0064425	4.25	0.14	0.11	0.28	0.30
	1	1.0059909	49.41	1.94	1.55	4.20	0.12
24	2	1.0064407	4.43	0.16	0.13	0.32	0.59
	3	1.0064454	3.96	0.08	0.07	0.15	1.61
	1	1.0063266	15.84	0.58	0.47	1.25	0.54
96	2	1.0064455	3.95	0.08	0.07	0.15	3.37
	3	1.0064466	3.84	0.07	0.06	0.14	8.96
	1	1.0064156	6.94	0.19	0.16	0.37	3.15
384	2	1.0064466	3.84	0.07	0.06	0.14	19.77
	3	1.0064469	3.81	0.07	0.06	0.14	55.00
	1	1.0064389	4.61	0.10	0.08	0.17	18.00
1536	2	1.0064469	3.81	0.07	0.06	0.14	129.70
	3	1.0064469	3.81	0.07	0.06	0.14	366.50
Ref.		1.0064850					

Рис. 9: Распределение мощности для модели ВВЭР-1000 без отражателя при $\gamma=0.5.$

Рис. 10: Плотность потока быстрых нейтронов для модели ВВЭР-1000 без отражателя при $\gamma=0.5, n=1536, p=1.$

Таблица 8: Результаты расчета двухмерного теста ВВЭР-1000 без отражателя при $\gamma=0.125.$

n	p	K_{eff}	$\Delta K(pcm)$	RMS(%)	AVR(%)	MAX(%)	t(sec)
	1	1.0125412	186.58	4.74	3.88	11.75	0.04
6	2	1.0142977	10.93	0.49	0.38	1.31	0.13
	3	1.0143626	4.44	0.11	0.09	0.30	0.32
	1	1.0138537	55.33	1.54	1.26	3.83	0.12
24	2	1.0143603	4.67	0.12	0.10	0.34	0.62
	3	1.0143685	3.85	0.07	0.06	0.13	1.69
	1	1.0142317	17.53	0.46	0.38	1.15	0.57
96	2	1.0143684	3.86	0.07	0.06	0.14	3.51
	3	1.0143698	3.72	0.06	0.05	0.12	9.32
	1	1.0143340	7.30	0.15	0.13	0.39	3.03
384	2	1.0143698	3.72	0.06	0.05	0.12	19.62
	3	1.0143701	3.69	0.06	0.05	0.12	54.00
	1	1.0143608	4.62	0.08	0.07	0.18	18.6
1536	2	1.0143701	3.69	0.06	0.05	0.12	134.00
	3	1.0143701	3.69	0.06	0.05	0.12	378.70
Ref.		1.0144070					

Рис. 11: Распределение мощности для модели ВВЭР-1000 без отражателя при $\gamma=0.125.$

4.4 Анализ результатов расчетов

Для иллюстрации результатов расчета тестовых задач по разработанному алгоритму рассмотрим несколько графиков для первой тестовой задачи. На рисунках 12-14 приведены кривые отклонения ΔK , максимального отклонения мощности MAX и времени счета задачи t в зависимости от числа конечных элементов на кассету n и порядка конечных элементов p.

Рис. 12: Отклонение коэффициента размножения, ΔK .

Рис. 13: Максимальное отклонение мощности, МАХ.

Рис. 14: Время счета задачи, t.

Из рисунков 12-14, а также таблиц 2-5, 7 и 8 можно сделать следующие выводы:

- наблюдается устойчивая сходимость решения тестовых задач при увеличении числа конечных элементов на кассету n и порядка конечных элементов p;
- с точки зрения экономичности расчета, увеличение порядка конечных элементов p намного эффективнее увеличения числа конечных элементов на кассету n;
- расчет с использованием конечных элементов первого порядка (p=1) с малым числом конечных элементов на кассету (n=6 или 24) дает неудовлетворительные результаты;
- определены параметры «оптимального» варианта, удовлетворяющего выбранным критериям «приемлемости» результатов с точки зрения достижения достаточной для практических расчетов ВВЭР точности:
 - -n=6; p=2 для тестов IAEA-2D и модели BBЭР-1000 без отражателя;
 - -n=6; p=3 для тестов IAEA-2D с отражателем.

5 Заключение

- 1. Рассмотрено уравнение диффузии нейтронов в гексагональной геометрии, которое в операторном виде представляет спектральную задачу. Искались наименьшее собственное число и соответствующая ему собственная функция, которые характеризуют эффективный коэффициент размножения нейтронов и пространственное распределение плотности нейтронного потока соответсвенно.
- 2. Разработан алгоритм решения спектральной задачи на основе метода конечных элементов. Написан программный код на основе разработанного алгоритма использующий вычислительную библиотеку FEniCS и библиотеку для решения спектральных задач SLEPc.
- 3. Проведено тестирование разработанного программного кода на следующих двухмерных тестах, с различными граничными условиями:
 - модифицированный тест IAEI-2D без отражателя;
 - модифицированный тест IAEI-2D с отражателем;
 - модель ВВЭР-1000 без отражателя.
- 4. Исследовалась сходимость метода в зависимости от числа конечных элементов на кассету n и порядка конечных элементов p. Разработанный алгоритм демонстрирует быструю сходимость и высокую точность при значениях n=6 и p=2 или 3;

Список литературы

- [1] A. Logg, K.A. Mardal, G. Wells. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Lecture Notes in Computational Science and Engineering. Springer, 2012.
- [2] C. Campos, J.E. Roman, E. Romero, A. Tomas. SLEPc Users Manual, 2013.
- [3] C. Geuzaine, J.F. Remacle. Gmsh Reference Manual, 2014.
- [4] А.Н. Климов. Ядерная физика и ядерные реакторы. Атомиздат, 1971.
- [5] W.M. Stacey. Nuclear Reactor Physics. John Wiley & Sons, 2007.
- [6] И.Х. Ганев, Н.А. Доллежаль. *Физика и расчет реактора*. Энергоиздат, 1981.
- [7] Г.И. Марчук, В.И. Лебедев. Численные методы в теории переноса нейтронов. Атомиздат, 1981.
- [8] S. Gonzalez-Pintor, G. Verdu, D. Ginestar. Approximation of the neutron diffusion equation on hexagonal geometries. New York, 2009.
- [9] A. Hebert. Application of a dual variational formulation to finite element reactor calculations. *Annals of Nuclear Energy*, 20:823–845, 1993.
- [10] A. Quarteroni, A. Valli. Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics. Springer, 2008.
- [11] S.C. Brenner, R. Scott. *The Mathematical Theory of Finite Element Methods*. Texts in Applied Mathematics. Springer, 2008.
- [12] D. Kressner. Numerical Methods for General and Structured Eigenvalue Problems. Lecture Notes in Computational Science and Engineering. Springer, 2006.
- [13] Y.A. Chao, Y.A. Shatilla. Conformal mapping and hexagonal nodal methodsii: Implementation in the anc-h code. *Nuclear Science and Engineering*, 121:210–225, 1995.