1. Abstract

Calculation overview 81.0 mm Deep groove ball bearing Deep groove ball bearing Non-Locating Locating SKF Explorer Static safety Frictional Power loss Bearing rating life Grease factor moment Catalogue SKF life Designation **Basic** Total grease life $P_{loss}(W)$ L_{10h} (h) L_{10mh} (h) L₁₀ (h) S_0 M (Nmm) > 2x10^5 Left **■** 6004-2Z > 2x10⁵ 80100 13.8 4.75 0.03 Right ■ 6005-2Z 20200 8510 17000 4.29 181 1.1

Left bearing

Consideration

All calculated values are best estimates resulting from the input data and assumptions, and well-recognized data sources, and well-established calculation methods.

SKF follows standards and methods suggested by Greenhouse Gas Protocol for CO2 estimates.

For details about data, methods, and assumptions used, follow the link below.

If you intend to use these values for decision making, contact SKF for more details and correct interpretation of calculation results. The values calculated by SKF Bearing Select should not be compared with values obtained from other tools or sources, unless you are confident about the data sources, methods and assumptions used. More info

Consideration

Grease consumption is almost zero, therefore ${\rm CO_2}$ emissions are not calculated.

Consideration

Low viscosity ratio k, reduced asperity contact. It is recommended to select a higher viscosity lubricant or improve cooling. It is not appropriate to look at basic rating life only. Instead use SKF rating life method. Recommended to use anti-wear (AW) or extreme pressure (EP) additives to reduce wear More info

Consideration

For rating life results above 100000 hours, other failure modes than those included in the current rating life models will dominate and limit the life of the bearing.

Right bearing

Consideration

Grease consumption is almost zero, therefore ${\rm CO_2}$ emissions are not calculated.

Consideration

All calculated values are best estimates resulting from the input data and assumptions, and well-recognized data sources, and well-established calculation methods.

SKF follows standards and methods suggested by Greenhouse Gas Protocol for CO2 estimates.

For details about data, methods, and assumptions used, follow the link below.

If you intend to use these values for decision making, contact SKF for more details and correct interpretation of calculation results. The values calculated by SKF Bearing Select should not be compared with values obtained from other tools or sources, unless you are confident about the data sources, methods and assumptions used. More info

Consideration

Low viscosity ratio k, reduced asperity contact. It is recommended to select a higher viscosity lubricant or improve cooling. It is not appropriate to look at basic rating life only. Instead use SKF rating life method. Recommended to use anti-wear (AW) or extreme pressure (EP) additives to reduce wear More info

2. Input

2.1. Bearing data

		Bearing type	Principa	l dimensi	ons	Basic load	l ratings	Fatigue load limit	Speed ratin	gs	Clearance class
	Designation					Dynamic	Static		Reference	Limiting	
			d (mm)	D (mm)	B (mm)	C (kN)	C_0 (kN)	P _u (kN)	n _{ref} (r/min)	n _{lim} (r/min)	
Left	6004-27	Deep groove ball bearing	20.0	42.0	12.0	9.95	5.0	0.212	38000.0	19000.0	Normal
Right	■ <u>6005-2Z</u>	Deep groove ball bearing	25.0	47.0	12.0	11.9	6.55	0.275	32000.0	16000.0	Normal

2.2. Loads & Speed

Locating	1	
Bearing distance	81.0	mm
Shaft orientation	Vertical	
Rotating ring	Inner ring rotation	

			Coordinate system	Coordinate	es		Forces			Speed	Case weight
		Load		x r (mm)	y θ (mm deg)	z (mm)	Fx Fr (kN)	Fy Fθ (kN)	Fz (kN)	(r/min)	
L	.C1	F1	Cartesian	0.0	0.0	375.0	0.1	0.0	-2.5	60.0	1

2.3. Temperature

	Left		Right	
Load cases	Inner ring (°C)	Outer ring (°C)	Inner ring (°C)	Outer ring (°C)
LC1	30	30	30	30

Maximum temperature is used for calculating the actual viscosity, kappa, \boldsymbol{a}_{SKF} and SKF rating life.

Mean temperature is used for calculating bearing friction and power loss.

2.4. Lubrication

		Lubricant	Effective EP additives	Contamination	
	Designation	Name		Method	Cleanliness / Factor
Left	■ <u>6004-2Z</u>	MT47	False	Detailed guidelines	High cleanliness
Right	6005-27	MT47	False	Detailed guidelines	High cleanliness

2.5. CO_2 emissions settings

	Designation	Input energy mix manually	Geographical location	Period of interest [Years]	Time operational [%]
Left	■ <u>6004-2Z</u>	False	European Union	1	100
Right	■ <u>6005-2Z</u>	False	European Union	1	100

2.6. Fits and tolerances

		Requirements	Tolerance Class		Calculated interference	Include Smoothing
	Designation	Guidance	Housing	Shaft		
Left	<u>6004-27</u>	False	G7	g6	True	True
Right	■ <u>6005-2Z</u>	False	G7	g6	True	True

3. Results

3.1. Loads & static safety

		Load ratio	Static safety factor	Equivalent dynamic load	Equivalent static load
	Designation	C/P	S ₀	P (kN)	P ₀ (kN)
Left	■ <u>6004-27</u>	27.41	13.8	0.36	0.363
Right	■ <u>6005-2Z</u>	4.18	4.29	2.85	1.53

3.2. Bearing minimum load

		Reaction fo	rces	Minimum load	
	Designation	Radial	Axial		Requirements
		F _r (kN)	F _a (kN)	F _{rm} (kN)	met?
Left	■ <u>6004-2Z</u>	0.363	0	0.00936	yes
Right	■ <u>6005-2Z</u>	0.463	2.5	0.0126	yes

3.3. Adjusted reference speed

		Adjusted reference speed	Adjustment factors	
	Designation		For bearing load P	For oil viscosity
		n _{ar} (r/min)	fp	f _v
Left	■ <u>6004-2Z</u>	43200	0.97	1.18
Right	■ <u>6005-2Z</u>	17400	0.52	1.06

3.4. Lubrication conditions

		Operating visc	osity		Viscosity ratio
	Designation	Actual	Rated	Rated @ 40 °C	
		ν (mm^2/s)	ν ₁ (mm^2/s)	v_{ref} (mm^2/s)	К
Left	■ <u>6004-2Z</u>	128	247	137	0.51
Right	■ <u>6005-2Z</u>	128	229	128	0.55

3.5. Grease life and relubrication interval

		Catalogue grease life	Speed factor
	Designation		Speed x mean diameter
		L ₁₀ (h)	nd _m (mm/min)
Left	<u>6004-2Z</u>	80100	1860
Right	6005-2 <u>Z</u>	17000	2160

3.6. Bearing rating life

		Bearing rating life		SKF life modification factor	Contamination factor
	Designation	Basic	SKF		
		L _{10h} (h)	L _{10mh} (h)	a _{skf}	ης
Left	■ <u>6004-2Z</u>	> 2x10^5	> 2x10^5	1.19	0.29
Right	■ <u>6005-2Z</u>	20200	8510	0.42	0.33

Left bearing

Consideration

Low viscosity ratio k, reduced asperity contact. It is recommended to select a higher viscosity lubricant or improve cooling. It is not appropriate to look at basic rating life only. Instead use SKF rating life method. Recommended to use anti-wear (AW) or extreme pressure (EP) additives to reduce wear More info

Consideration

For rating life results above 100000 hours, other failure modes than those included in the current rating life models will dominate and limit the life of the bearing.

Right bearing

Consideration

Low viscosity ratio k, reduced asperity contact. It is recommended to select a higher viscosity lubricant or improve cooling. It is not appropriate to look at basic rating life only. Instead use SKF rating life method. Recommended to use anti-wear (AW) or extreme pressure (EP) additives to reduce wear More info

3.7. Bearing friction & power loss

		Frictional m	oment	Friction source	Power loss			
	Designation	Total	At start 20-30°C and zero speed	Rolling	Sliding	Seals	Drag loss	
		M (Nmm)	M _{start} (Nmm)	M _{rr} (Nmm)	M _{sl} (Nmm)	M _{seal} (Nmm)	M _{drag} (Nmm)	P _{loss} (W)
Left	■ <u>6004-2Z</u>	4.75	4.23	1.76	2.99	0	0	0.03
Right	■ <u>6005-2Z</u>	181	238	16.4	165	0	0	1.1

3.8. Bearing frequencies

		Rotational f	requencies		Frequency of over-rolling			
	Designation	Inner ring	Outer ring	Rolling element set & cage	Rolling element about its axis	Point on inner ring	Point on outer ring	Rolling element
		$f_i(Hz)$	$f_e(Hz)$	$f_c(Hz)$	$f_r(Hz)$	f _{ip} (Hz)	$f_{ep}(Hz)$	$f_{rp}(Hz)$
Left	■ <u>6004-2Z</u>	1.0	0.0	0.398	2.339	5.422	3.578	4.677
Right	■ <u>6005-2Z</u>	1.0	0.0	0.406	2.574	5.937	4.063	5.148

3.9. Estimation of CO₂ emissions over period of interest

		CO ₂ emissions caused by bearing production	CO ₂ emissions over period of i	during bearing op nterest	Resources consumed during bearing operation - over period of interest		
	Designation		Frictional Grease power loss consumption		Sum of CO ₂ during operation	Energy	Grease
		kg of CO ₂	kg of CO ₂	kg of CO ₂	kg of CO ₂	kWh	kg
Left	■ <u>6004-2Z</u>	*0.3 (Learn more)	0.1	0.0	0.1	0.26	0.0
Right	■ <u>6005-2Z</u>	*0.3 (Learn more)	4.6	0.0	4.6	10.0	0.0

^{*} Value is not designation specific, but based on bearing mass

Left bearing

Consideration

All calculated values are best estimates resulting from the input data and assumptions, and well-recognized data sources, and well-established calculation methods.

SKF follows standards and methods suggested by Greenhouse Gas Protocol for CO2 estimates.

For details about data, methods, and assumptions used, follow the link below.

If you intend to use these values for decision making, contact SKF for more details and correct interpretation of calculation results. The values calculated by SKF Bearing Select should not be compared with values obtained from other tools or sources, unless you are confident about the data sources, methods and assumptions used. More info

Consideration

Grease consumption is almost zero, therefore CO_2 emissions are not calculated.

Right bearing

Consideration

Grease consumption is almost zero, therefore CO2 emissions are not calculated.

Consideration

All calculated values are best estimates resulting from the input data and assumptions, and well-recognized data sources, and well-established calculation methods.

SKF follows standards and methods suggested by Greenhouse Gas Protocol for CO2 estimates.

For details about data, methods, and assumptions used, follow the link below.

If you intend to use these values for decision making, contact SKF for more details and correct interpretation of calculation results. The values calculated by SKF Bearing Select should not be compared with values obtained from other tools or sources, unless you are confident about the data sources, methods and assumptions used. More info

3.10. Fits and tolerances

3.10.1. Tolerances

		Shaft outer diameter		Bearing bore		Bearing outer diameter		Housing bore		Smoothing	
	Designatio n	Minimum	Maximum	Minimu m	Maximum	Minimum	Maximum	Minimum	Maximum	Shaft and bearing bore	Bearing outer ring and housing
		(µm)	(µm)	(µm)	(µm)	(μm)	(µm)	(µm)	(µm)	(µm)	(μm)
Left	■ <u>6004-2Z</u>	-20	-7	-10	0	-11	0	9	34	7	12
Right	■ <u>6005-2</u> Z	-20	-7	-10	0	-11	0	9	34	7	12

Consideration

For the tolerances calculation, the normal tolerance for the bearing bore and outer diameter is used.

3.10.2. Fits, Probable Interference (+) / Clearance (-)

		Shaft			Housing		
	Designation	Probable minimum	Middle	Probable maximum	Probable minimum	Middle	Probable maximum
		(µm)	(µm)	(µm)	(µm)	(µm)	(µm)
Left	■ <u>6004-2Z</u>	-24	-16	-7	-53	-39	-25
Right	■ <u>6005-2Z</u>	-24	-16	-7	-53	-39	-25