

Course on Basic Data Structures (C++)

Pulkit Chhabra • Lesson 1 • Jan 21, 2021

Declare 10 diff

Declare an array of size 10 $a(o) \leftarrow 1^{st}$ a[1] (- 2) a [9] (- 10 x)

a(o)	0{i]	a[1]	, ——		—		a[9]
------	------	------	------	--	---	--	------

stack Memory => int a[10];

Neak Memory => int * a. = now int [10];

delete [] a;

٠.

V -> cap -> 0.

-> all derre Size -> same $\begin{array}{c|c}
\hline
1 \\
\hline
2 \\
\hline
3 \\
\hline
5
\end{array}$ size -> same ---Size - Aff.

 $1, 2, 3, 1, 2 \Rightarrow 1^{it}$ one 1, 2, 3

 2, 3, 5. (v. 67+5, 1)

1, 2, 2, 3, 4

Amortiquel T. (. Analysis

$$\left(2^{K},1\right)$$
 = $O(N)$
othorism

Arrays: Introduction

With Pulkit Chhabra

Let's crack Competitive Programming together!

1. Which of the following declaration of array gives a compilation error?

```
A. int arr[4] = {};

B. int arr[] = {};

C. int arr[];

D. int arr[4];
```

1. Which of the following declaration of array gives a compilation error?

```
A. int arr[4] = {};

B. int arr[] = {};

C. int arr[];

D. int arr[4];
```

Solution: The error is: storage size of 'arr' isn't known

2. Which of the following is not a valid index of **int** arr[5];

A. 0

B. 5

C. 2

D. 3

2. Which of the following is not a valid index of **int** arr[5];

A. 0

B. 5

C. 2

D. 3

Solution: The set of valid indices is: {0, 1, 2, 3, 4}

3. Where would the memory corresponding to

```
int arr[4] = {}; (inside the main function) be allocated?
```

- A. Stack
- B. Heap

3. Where would the memory corresponding to

```
int arr[4] = {}; (inside the main function) be allocated?
```

A. Stack

B. Heap

4. If the base address of array of type int (sizeof(int) is 4), arr is 0, what would be the address of arr[4]?

A. 4

B. 8

C. 16

D. 32

4. If the base address of array of type int (sizeof(int) is 4), arr is 0, what would be the address of arr[4]?

Solution: Size of one *int* object is 4 bytes, thus the address of arr[4] = 0 + 4 * 4 = 16.

5. What is the time complexity for accessing memory from an index of array allocated in heap memory? (*n* is the length of array)

- A. O(1)
- B. O(n)
- C. O(nlogn)
- D. O(logn)

5. What is the time complexity for accessing memory from an index of array allocated in heap memory? (*n* is the length of array)

- A. O(1)
- B. O(n)
- C. O(nlogn)
- D. O(logn)

Solution: No matter the origin of allocation, access time for an array is **O(1)**

6. What would be the output for the given block of code?

```
A. 0
```

B. -736521

C. 1

D. Compilation Error

```
int main() {
    { int arr[5] = {}; }
    cout << arr[1];
    return 0;
}</pre>
```

6. What would be the output for the given block of

code?

```
A. 0
```

B. -736521

C. 1

D. Compilation Error

```
int main() {
    { int arr[5] = {}; }
    cout << arr[1];
    return 0;
}</pre>
```

Solution: The braces around the declaration of arr limits the scope to its local, and arr[1] results into a compilation error:

'arr' was not declared in this scope

7. Memory corresponding to dynamic arrays is allocated in?

A. Stack

B. Heap

7. Memory corresponding to dynamic arrays is allocated in?

A. Stack

B. Heap

Solution: Memories for a *dynamic* array is *dynamically* allocated, thus it points us to the usage for heap memory.

8. Amortized time complexity for vector **push_back** and **pop_back** is?

- A. O(1)
- B. O(n)
- C. O(nlogn)
- D. O(logn)

8. Amortized time complexity for vector **push_back** and **pop_back** is?

- A. O(1)
- B. O(n)
- C. O(nlogn)
- D. O(logn)

Solution: Vectors possess the property of dynamic arrays, time complexity of *push_back* and *pop_back* is derived from the same

9. Initial *capacity* of a dynamic array *d* is 1. If at *push_back* the data overflows, the capacity gets doubled. What would the capacity of *d* be after 3 *push_back*? (initially the array is empty)

A. 3

B. 4

C. 6

D. 8

9. Initial *capacity* of a dynamic array *d* is 1. If at *push_back* the data overflows, the capacity gets doubled. What would the capacity of *d* be after 3 *push_back*? (initially the array is empty)

A. 3

B. 4

C. 6

D. 8

Solution: Initially, size = 0, capacity = 1,

After first push_back: size = 1, capacity = 1; after second: size

= 2, capacity = 2; at last: size = 3, capacity = 4

10. Which of the following pointer is used for a 2D array?

```
A. int arr;
B. int *arr;
C. int **arr;
D. int ***arr;
```

10. Which of the following pointer is used for a 2D array?

```
A. int arr;
B. int *arr;
C. int **arr;
D. int ***arr;
```


Thank You

Let's crack Competitive Programming together!

Rgmax K size k subarvays k sums 6 m (12) M 2 5, K, 3 1 2 3 4 5

M28, K15

1 2 3 4 5 7 8

(REMOVED) Which of the following declaration of array is correct?

```
A. int arr;
B. array arr[5];
C. int arr[5];
D. int arr{0, 1, 2, 3, 4};
```

(REMOVED) Which of the following declaration of array is correct?

```
A. int arr;

B. array arr[5];

C. int arr[5];

D. int arr{0, 1, 2, 3, 4};
```

Solution: Option A declares an integer, and B & D are syntactically wrong

$$1'' \rightarrow 1$$
 $2'' \rightarrow 1 + 1$
 $3'' \rightarrow 1 + 1$
 $5'' \rightarrow 1 + 4$
 $5'' \rightarrow 1$
 $3'' \rightarrow 1$

b -> 1 9th + 1 + 8 ·
! 1. -> 1 12 -> 1+14

N dements

2 2 N 1+2+2 2 × N

109. N 2 ki porver main Lit La rakhein k ans 2 N caye $2^{k} \leq N$ $1 + 2^{l} + 2^{2} \dots \qquad 2^{k}$ 2^{l}

2 - N - 1