ARMY MISSILE COMMAND REDSTONE ARSENAL AL GROUND EQU--ETC F/6 11/4 AD-A102 881 QUANTITATIVE ANALYSIS OF IMPACT DAMAGED COMPOSITE TENSION-TORSI--ETC(U) SEP 80 J A SCHAEFFEL DRSMI/RL-80-12-TR NL UNCLASSIFIED 1 0+ 3 40 A 200 1.4

LEVELT

(35)

Technical Report RL-80-12

QUANTITATIVE ANALYSIS OF IMPACT DAMAGED COMPOSITE TENSION-TORSION SPECIMENS USING LASER SPECKLE INTERFEROMETRY

John A. Schaeffel Ground Equipment and Missile Structures Directorate US Army Missile Laboratory

September 1980

U.S. ARMY MISSILE COMMAND
Redstone Arsenal, Alabama 35809

Approved for public release; distribution unlimited.

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

	1	
(14	UNCLASSIFIED	
	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
DK of	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	7. REPORT NUMBER 2. GOVT ACCESSION N	
}	30-12-11 AD-A103881	1/9
	42 TIPLE (and Substitute) reserves and a construction of the const	5. TYPE OF REPORT & PERIOD COVERED
(6)	Quantitative Analysis of Impact Damaged Composite	
	Tension-Torsion Specimens Using Laser Speckle Interferometry	Technical Report
j		
	7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(a)
(10)	John A./Schaeffel, Jr/	DA1L162303A2 4
	9. PERFORMING ORGANIZATION NAME AND ADDRESS Commander, US Army Missile Command, ATTN: DRSMI-RL	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
}	Redstone Arsenal, Alabama 35898	AMCMS 6123032140911
1	11. CONTROLLING OFFICE NAME AND ADDRESS	TE REPORT DATE
1	Commander, US Army Missile Command,	September 1989
	ATTN: DRSMI-RPT Redstone Arsenal, Alabama 35898	S. NUMBER OF PAGES
}	14. MONITORING AGENCY NAME & ADDRESSELL different from Controlling Office)	15. SECURITY CLASS. (of this report)
	(I_{i}, I_{i})	Unclassified
	Constant of the	15a. DECLASSIFICATION DOWNGRADING
i	16. DISTRIBUTION STATEMENT (of this Report)	
1	To by The tion of the amen't (by and happeny	
1	Approved for public release; distribution unlimite	od l
- 1	The state of the s	
Į		
}	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different f	rom Report)
ł	The state of the s	100
1		
1		
ŀ	18. SUPPLEMENTARY NOTES	
		1
1		<u> </u>
1		İ
Ī	19. KEY WORDS (Continue on reverse side if necessary and identify by block number	
j		of Composites tection
ł		ructive Testing
j		Fringes
Į.	20. ABSTRACT (Continue on reverse side if necessary and identify by block number	,
· · · · ·	Test specimens in the form of standard tensile XP250 composite laminate material manufactured by six different wrap angles, measured from and symme specimen axis was used. At each wrap angle eight flaws due to dynamic impact loading. Five unflawe	coupons were fabricated from the 3M Company. A series of tric to the longitudinal specimens were fabricated with
	ted for comparison purposes. Each of the flawed s specimen at each wrap angle were individually place	pecimens and one unflawed ed in an apparatus for
L		(continued)_

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

410365

7.W

20. ABSTRACT (Cont'd)

generating low load level tension and torsion. Laser speckle interferograms of the specimens were made and analyzed. The ratio of the strain in the flawed region of each specimen was compared to the unflawed specimens at each wrap angle using laser speckle interferometry. These results were correlated with the ultimate strength of each specimen obtained in a simple tension test using an Instron machine. Comparison of results was favorable.

ACKNOWLEDGEMENT

The author sincerely wishes to thank Mr. Terry L. Vandiver and Ms. Alison S. Dempsey for their assistance in this project.

CUNTENTS

Section	on		Page
I.	INT	RODUCTION	3
II.	THE	ORETICAL AND EXPERIMENTAL CONSIDERATIONS	6
	A.	Experimental Apparatus	6
	В.	Composite Tensile Specimens	12
III.	EXP	ERIMENTATION	26
	A.	Specimens	26
	В.	Dynamic Impact Apparatus	26
	c.	Specimen Preparation	31
	٥.	Specimen Properties	33
	E.	Specimen Loading	33
	F.	Optical Specifications	34
	G.	Specimen Rotation Angles	34
IV.	EXP	ERIMENTAL RESULTS	35
٧.	CON	CLUSIONS	39
	App	endix A	41
	App	endix B	57
	App	endix C	59
	App	endix D	69
	App	endix E	119
	Арр	endix F	139
	Ann	andiv G	1/12

CONTENTS (Concluded)

Section		Page
Appe	ndix H	147
Appe	ndix I	191
Appe	ndix J	205
Appe	ndix K	211

I. INTRODUCTION

The behavior of composite materials is a complex phenomena of immense scientific and engineering importance. Since many aircraft and missile structures are currently being fabricated from these materials, it is most advantageous to fully understand and appreciate their behavior under a wide variety of conditions. [1, 2] It is a relatively simple task to obtain material behavior data for the case of static loading. It is harder to apply this data to engineering design. When the loading case becomes one of dynamic loading, the problems associated with obtaining useful data are many orders of magnitude greater.

The study presented in this report was conducted to observe how composite tensile specimens deform when subjected to simple tension and torsion loading. [2] The interesting twist to this problem is the fact that the specimens suffered damage prior to loading. The damage was due to fiber breakage and resin crazing from dynamic impact loading.

The dynamic impact loads were introduced in tensile specimens using a drop weight which struck an impacter dart. The impact dart transferred the energy from the drop weight to the specimen in a prescribed manner. This particular type of load configuration might be found in any situation where a composite component is subjected to a blow from another object.

The amount of deformation of the specimen when loaded in tension and torsion was compared with the flaw geometry and ultimate strength data obtained from tensile testing to failure to determine the sensitivity of the structure to the particular flaw type. In the tests, the amount of impact energy, impact dart geometry, specimen wrap angle, and torsion load were all varied for a fixed uniaxial tensile load. The amount of deformation in going from a loaded to an unloaded tensile state was determined for these variables. Since the tensile specimens were damaged in most of the cases, a noncontact method for determining surface deformation had to be utilized. Laser speckle interferometry was chosen since it allowed for variable sensitivity and provided the necessary resolution.

Laser speckle interferograms are most commonly used to make deformation measurements of deformable bodies. Figure 1 illustrates the basic method for

Figure 1. Laser speckle interferometry configuration.

PATH OF LASER BEAM ILLUMINATION

Figure 2. Experimental apparatus used to measure the deformation of tensile specimens loaded with torsion and subjected to dynamic impact damage.

making a laser speckle interferogram. [3] When a diffuse surface of a structure is illuminated with coherent radiation, a grainy speckle effect is imaged by the eye or film plane of a camera due to the interference of light from the structure. This speckle effect is enhanced when the structure has microscopic surface irregularities. If the optical configuration remains fixed, the speckle pattern of the test object may be recorded on the film plane of a camera. Further, if the structure is deformed, the speckle points shift with the deformation and a second exposure of the deformed speckle pattern can be made.

Using a technique of double exposure, speckle interferograms of a structure are normally made by photographing the speckle pattern in a deformed and undeformed configuration. A beam of laser light is then passed through a region of the double exposure where the local deformation is desired. As the beam passes through the film, the deformed and undeformed speckle recorded there diffract the laser light and cause an interference effect on a viewing screen. A diffraction halo modulated by light and dark bars of light is produced where the distance 2d between bars is inversely proportional to the distance between the undeformed and deformed speckle on the film plane. A normal to the light and dark bar pattern indicates the axis of deformation of the speckle.

The work conducted and presented in this report is not intended to be conclusive data for all composites in general. Rather, it is presented to illustrate the methodology of testing composites under a unique load configuration and using an optical non-contact method of measuring surface deformation in going from a loaded to an unloaded state. The results should not be used to generalize composite material behavior when the material properties and geometry differ significantly from those of the host material.

II. THEORETICAL AND EXPERIMENTAL CONSIDERATIONS

This section documents the experimental apparatus used in the experiments, the composite tensile specimens, their method of manufacture, and the optical method of analysis.

A. Experimental Apparatus

Figure 2 illustrates the basic apparatus used in the experiment. A combined tension/torsion load machine shown in Figures 3 through 7 was

Figure 3. Combined tension and torsion loading machine.

Figure 4. Primary load assembly to tension/torsion load machine.

Figure 5. Pneumatic load cylinder for generating a tensile load T in composite specimens.

Figure 6. Tensile/torsion load machine A rotator.

Figure 7. Close-up of rotator head assembly.

fabricated to the drawings shown in Appendix A. This machine was used to introduce a tensile load T into the specimen which was pre-twisted an amount 0 over its overall length. The pre-twist angle is a qualitative measure of the degree of torsion loading in the specimen. In a typical test, a specimen (flawed due to impact dynamic loading) was placed between the grips shown in Figure 1. An amount of 0 pre-twist was applied through the rotator and then the rotator was locked in place. This rotator was capable of rotating a specimen to 90.0° in 5.0° increments. A tensile load T was then applied to the specimen resulting in a combined tension and torsion load condition. The tensile load was generated using air supplied to a 400 psi rated air cylinder. The air pressure was regulated using a Matheson 0-60 psig model 40-L pressure regulator. Fine control of the air pressure was performed using a Whitey micrometer air valve and the pressure was monitored on a 100 cm Hg manometer. Figures 8 and 9 illustrate the gas supply system.

Once the specimen was loaded, the beam from a Spectra-Physics Model 125 He-Ne gas laser was expanded onto its surface. A Spectra-Physics Model 332 Spatial Filter was used to filter and expand the laser beam. A Uniblitz Model 310B shutter timer control unit was used to control the laser beam exposure time. While in the loaded state, a photograph of the specimen was made. The load was then removed and a second exposure was made. The resulting interferogram was then analyzed and surface displacement data was obtained. Results from the interferograms were then compared to ultimate strength tests obtained from Instron testing the specimens to failure under simple tension loading. Figures 10 and 11 illustrate the experimental lab geometry.

B. Composite Tensile Specimens

The uniaxial tensile test specimens were fabricated according to these instructions. One hundred and forty uniaxial composite tensile specimens were prepared.

1. Specific Instructions

a. Material - 3M Scotchply SP250 (also referred to as XP250) prepeg composite sheets in the wrap angles listed in Table 1.

Figure 8. Gas supply system.

Figure 9. Manometer and pressure regulator assembly.

Figure 10. Experimental lab apparatus.

Figure 11. Optical alignment of the laser and camera system.

TABLE 1. COMPOSITE SHEET MATERIAL FOR TENSILE SPECIMENS

8 Ply <u>+</u> 15° _s	8 Ply <u>+</u> 60° _s
8 Ply + 20°s	8 Ply 0°
8 Ply ± 30°s	14 Ply 0°/90°s
8 Ply <u>+</u> 45° _s	8 Ply 0°/ <u>+</u> 45°/90° _s

These materials were used to form the composite uniaxial tension specimens. Eight (8) ply \pm 60°s material is equivalent to 8 ply \pm 30°s rotated 90°.

- b. Endtabs were bonded to the ends of the tensile specimens for gripping in uniaxial tension. Figure 12 shows how each of the four endtabs was placed on a single tensile specimen. The endtab material was 14 Ply $0^{\circ}/90^{\circ}_{\text{S}}$ symmetrical 3M Company Scotchply SP250 prepreg composite sheet.
- c. Endtabs were bonded to the composite uniaxial tensile specimens using the Eastman 910 adhesive system. Manufacturer's instructions were followed for adhesive bonding of the composite materials.
- $\ensuremath{\text{d.}}$ Dimensions for the specimens are given in Table 2 and Figure 13.
- e. When bonding endtabs to the uniaxial tensile specimens, all plys adjacent to the adhesive glue-bond joint had the same filament orientation.
- f. Endtabs were bonded to each uniaxial tensile specimen before final machining took place.
- g. All uniaxial tension specimens and endtabs were cut at least 3 mm oversize and final dimensions were obtained by milling or grinding, or both with water flow.
- h. All uniaxial tensile specimens had their respective plys oriented symmetric to the primary axis as given in Figure 1. All ply angles are measured from the primary axis.
- i. Specimens did not have any visible delaminations present in either the endtabs or tensile specimens.

Figure 12. Composite tensile specimen.

Figure 13. Diffraction halo geometry.

TABLE 2. UNIAXIAL TENSILE SPECIMEN DATA

· · · · · · · ·	DIMENSIONS (mm)				
WRAP ANGL!	Λ	В	C	MO. REOUTRED	
8P + 15°s	304.8	38.1	25.4	20	
$8P \pm 20^{\circ}_{s}$	304.8	38.1	25.4	20	
$8P \pm 30^{\circ}$ s	304.8	38.1	25.4	20	
$8P + 45^{\circ}_{s}$	304.8	38.1	25.4	20	
$8P \pm 60^{\circ}s$	304.8	38.1	25.4	20	
8P 90° *	304.8	38.1	25.4	20	
8P 0°	304.8	38.1	25.4	20	

*8P 90° specimens were too fragile to test.

All specimens were fabricated according to the "Standard Test Method for Tensile Properties of Oriented Fiber Composites" ASTM American National Standard ANSI/ASTM D 3039-76.

where,

S = film scale factor (magnification ratio).

 λ = wavelength of laser illumination source.

f = distance from interferogram to analyzer screen.

d = distance from central bright spot to first minima.

 \textbf{U}_{θ} -= displacement of the point illuminated by the laser on the object in the θ direction.

The vertical, UV and horizontal, UH components of displacement may be obtained from U $_{\theta}$ [6] as:

$$U_{H} = U_{\theta} \cos\theta = \frac{S\lambda f}{2d} \cos\theta \tag{2}$$

$$U_{V} = U_{\theta} \sin\theta = \frac{S\lambda f}{2d} \sin\theta$$
 (3)

and from the geometry,

$$\frac{d}{dH} = \cos\theta \tag{4}$$

$$\frac{\mathrm{d}}{\mathrm{d}_V} = \sin\theta \tag{5}$$

therefore,

$$v_{\rm H} = \frac{\rm S\lambda\,f}{2d_{\rm H}} \tag{6}$$

$$U_{V} = \frac{S\lambda f}{2d_{V}} . (7)$$

To speed up the analysis of interferograms, a technique of reading the number of the fringe order at some distance D (shown in Figure 13) was utilized. In this project, flaws were placed at the centers of the tension/torsion specimens. Displacements at eight locations along the primary axis (through the center of the specimen) and symmetrically centered about the flaw, were taken for each interferogram. This was accomplished by reading the fringe order occurring at some location D in the analyzer screen plane and along the direction of the primary axis. Thus, deformation around the flawed region and along the primary axis was determined. Figure 14 illustrates a segment of a diffraction halo and how data is obtained from it. In this figure the distance D is fixed and lies in the analyzer plane along the primary axis direction. The order of the fringe at a distance D from the central bright spot is recorded as n.

For the general case,

$$u = \frac{S\lambda f}{7X} \tag{8}$$

and from Figure 14,

$$X = \frac{D}{2n-1} \tag{9}$$

therefore,

$$u = \frac{S\lambda f}{2D} \quad (2n-1) \tag{10}$$

Figure 14. Method of fringe order analysis.

Now the strain $u^1 = \frac{du}{dx}$ is determined from

$$u^{1} = \frac{du}{dx} = \frac{2s\lambda f}{2D} \frac{dn}{dx} = \frac{S\lambda f}{D} n^{1} . \qquad (11)$$

Define a series of N locations equally spaced on the interferogram plate (i.e., $N = 0, 1, 2, \ldots, 6, 7$) and let

$$\beta = \frac{dn}{dN} \tag{12}$$

then,

$$n^{\dagger} = \frac{dn}{dN} \frac{dN}{dx} \tag{13}$$

$$\varepsilon = \frac{S\lambda f}{D} \qquad n^{1} = \theta \frac{dN}{dx} \qquad \frac{S\lambda f}{D} \qquad (14)$$

Therefore, if the fringe order gradient β is known for some location N on an interferogram and if the gradient of N with respect to X is known, then the absolute strain ϵ can be determined from Equation 14. In order to accurately predict β at the center of the specimen and in the flawed region of the specimen, a least squares analysis was used.

Suppose \overline{N} data samples (i.e., $\overline{N}max = 8$) of fringe order n versus plate location N are taken. No corresponds to Xo on the interferogram, N₁ to X₁ and so forth. ΔX is the distance on the interferogram between the evenly spaced Xi. Using a quadratic least squares polynomial,

$$y = ux^2 + VX + w . ag{15}$$

In Equation 15, X corresponds to Ni and y to the fringe order $\, n \,$ at location Ni.

Forming the difference function yields:

$$\delta = \sum_{i=1}^{N} y_i - (ux^2 + vx^2 + w)^2$$
(16)

Differentiating δ with respect to u, v, w to obtain a minima, yields:

$$\frac{\partial \delta}{\partial \mathbf{u}} = 0 = \sum_{i=1}^{\overline{N}} -2 \left[\mathbf{y_i} - (\mathbf{u}\mathbf{x_i}^2 + \mathbf{v}\mathbf{x_i} + \mathbf{w}) \right] \mathbf{x_i}^2 = 0$$

$$\frac{\partial \delta}{\partial \mathbf{u}} = 0 = \sum_{i=1}^{N} -2[yi - (uxi^2 + vxi + w)] Xi = 0$$

$$\frac{\partial \delta}{\partial w} = 0 = \sum_{i=1}^{N} -2[yi - (uxi^2 + uxi + w)] = 0$$
 (17)

Let,
$$\vec{N}$$

$$\sum_{i=1}^{\infty} = \sum_{j=1}^{\infty}$$

$$\Sigma xi^{4} = x_{4}$$

$$\Sigma xi^{3} = x_{3}$$

$$\Sigma xi^{2} = x_{2}$$

$$\Sigma xi^{1} = x_{1}$$

$$\Sigma xi^{0} = \overline{N} = x_{0}$$

$$\Sigma yixi^{2} = y_{2}$$

$$\Sigma yixi^{1} = y_{1}$$

$$\Sigma yi = y_{0}$$

Then Equation 17 may be written as

$$\Sigma_{yiXi}^{2} = u\Sigma_{xi}^{4} + v\Sigma_{xi}^{3} + w\Sigma_{xi}^{2}$$

$$\Sigma_{yiXi} = u\Sigma_{xi}^{3} + v\Sigma_{xi}^{2} + w\Sigma_{xi}$$

$$\Sigma_{yi} = u\Sigma_{xi}^{2} + v\Sigma_{xi} + w\overline{N}$$
(19)

(18)

or,

$$y_2 = uX_4 + vX_3 + wX_2$$

 $y_1 = uX_3 + vX_2 + wX_1$
 $y_0 = uX_2 + vX_1 + wX_0$. (20)

Now let

$$y_2 = A$$
 $X_4 = D$
 $y_1 = B$ $X_3 = E$
 $y_0 = C$ $X_2 = F$
 $X_0 = H$ $X_1 = G$ (21)

Then,

$$\begin{bmatrix} D & E & F \\ E & F & G \\ F & G & H \end{bmatrix} \begin{bmatrix} U \\ V \\ W \end{bmatrix} = \begin{bmatrix} A \\ B \\ C \end{bmatrix}$$
(22)

Using Crammer's Rule:

$$Q = D \cdot [F \cdot H - G \cdot G] - E \cdot [E \cdot H - G \cdot F] + F \cdot [E \cdot G - F \cdot F]$$

$$R = A \cdot [F \cdot H - G \cdot G] - E \cdot [B \cdot H - G \cdot C] + F \cdot [B \cdot G - F \cdot C]$$

$$S = D \cdot [B \cdot H - G \cdot C] - A \cdot [E \cdot H - G \cdot F] + F \cdot [E \cdot C - B \cdot F]$$

$$T = D \cdot [F \cdot C - B \cdot G] - E \cdot [E \cdot C - B \cdot F] + A \cdot [E \cdot G - F \cdot F]$$
(23)

and,

$$U = \frac{R}{Q}$$

$$V = \frac{S}{Q}$$

$$W = \frac{T}{Q}$$
(24)

Finally, differentiating Equation 15 yields,

$$\beta = |2UX + V| = Y \tag{25}$$

Appendix B contains a computer program used to compute β at x=3.5 for $\overline{N}=8$ samples of n fringe orders.

III. EXPERIMENTATION

This section documents the experimentation conducted on the dynamically impacted composite specimens.

A. Specimens

In the testing program, 13 specimens at each of the following wrap angles were used:

Specimen Wrap No. of Category Angle Specimens 8P 0° 1 13 8P ± 15° 2 13 $8P \pm 20^{\circ}_{e}$ 3 13 $8P + 30^{\circ}$ 13 $8P + 45^{\circ}_{s}$ 5 13

 $8P \pm 60_{s}^{O}$

13

TABLE 3. SPECIMEN WRAP ANGLES

General data for each specimen includes:

6

Nominal total length = 12.0 in = 304.8mm

Nominal left-hand tab length = 1.50 in = 38.1mm

Nominal right-hand tab length = 1.50 in = 38.1mm

Nominal specimen length = 9.0 in = 228.6mm

Nominal specimen width = 1.0 in = 25.4mm.

B. Dynamic Impact Apparatus

For each wrap angle in the test program, eight of the thirteen specimens were dynamically impacted and five remained unflawed. Figures 15 through 18 illustrate the dynamic impact apparatus modified from a previous project [7] to accommodate the new specimens. In the machine, a 4.76 lb weight is raised to a predetermined height and released. At the bottom of the

Figure 15. Dynamic impact apparatus.

Figure 16. Side view of dynamic impact apparatus.

Figure 17. Dynamic impact darts.

Figure 18. Drop weight transfer of load through the dart to the specimen.

fixture a dart shown in Figure 17, rests on top of a specimen. When the falling weight strikes the dart it transfers its energy to the specimen through the dart. Figure 19 illustrates the operation of the machine. A set of four dynamic impact darts was used in the experiment. These are tabulated in Table 4.

TABLE 4. EXPERIMENTAL DYNAMIC IMPACT DARTS

Impact	Nominal	Measured
Dart Size	Dart Radius	Dart Radius
A	.25 in.	.2497 in.
В	.1875 in.	.1879 in.
С	.125 in.	.1246 in.
D	.09 in.	.0911 in.

In the testing program, thirteen specimens were selected for each wrap angle. Specimens 1 through 8 had flaws created by dynamic impact according to Table 5. Specimens A, B, C, D, and E were unflawed and were used for comparison purposes.

C. Specimen Preparation

Before the specimens were dynamically impacted, one side of each specimen was painted with the following material to improve the laser speckle resolution:

Pacific 8010-00-584-3150 Lacquer, Nitrocellulose, Type I, TT-L-50G & Amend. III, Flat White, No. 37875 Contract GS-10S-40992, flash point -56.6° C $(-70^{\circ}$ F).

Before the specimens were painted and impacted, their thickness in the pre-flaw region was measured. This information is presented in Appendix C.

Appendix D contains pictures of both sides of each dynamically impacted specimen.

Figure 19. Schematic of dynamic impact apparatus.

D. Specimen Properties

The specific material properties of SP250 composite material are included for reference purposes [8]:

$$E_{11}^{T} = 5.64 \times 10^{6} \text{ psi}$$
 $E_{22}^{T} = 1.74 \times 10^{6} \text{ psi}$
 $V_{12}^{T} = 0.299$
 $C_{12}^{C} = 0.680 \times 10^{6} \text{ psi}$
 $C_{11}^{C} = 5.87 \times 10^{6} \text{ psi}$
 $C_{12}^{C} = 2.12 \times 10^{6} \text{ psi}$
 $C_{12}^{C} = 0.317$
 $C_{12}^{T} = 134 \text{ KSI}$
 $C_{13}^{T} = 134 \text{ KSI}$
 $C_{14}^{T} = 112 \text{ KSI}$
 $C_{15}^{T} = 7.55 \text{ KSI}$
 $C_{16}^{T} = 7.55 \text{ KSI}$
 $C_{16}^{T} = 7.23 \text{ KSI}$

E. Specimen Loading

To make the laser speckle interferograms, a 61.20 cm Hg gage air pressure was supplied to the tension generating air cylinder of the tension/torsion apparatus. In order to move the piston in this cylinder, 11.88 cm Hg gage air pressure had to be supplied. Therefore, the actual cylinder air pressure used to supply tension to the specimen was $\Delta P = 61.20$ cm Hg - 11.88 cm Hg = 49.32 cm Hg which is the equivalent of 9.5385 psi. The area of the cylinder used to supply tension to the specimen was 11.8672 in². Therefore, the tensile load was

$$L = \Delta PA = 9.5385 \text{ psi } (11.8672 \text{ in}^2)$$

 $L = 113.1953 \text{ lb.}$

When a specimen was clamped in the grips of the tension/torsion apparatus, the grip holder separation was 9.33 inches to allow for end-tab slope requirements. Appendix C indicates the average load stress over an unflawed section of each specimen for the load L = 113.1953 lb. It was computed by dividing the load L by the cross sectional area of each specimen in tension.

F. Optical Specifications

The following optical specifications were used in the testing program:

- The double exposure interferograms were made using two 18 second exposures on AGFA-GEVAERT 10E75 Holotest 4" x 5" glass plate film.
- 2. 50 milliwatts of output laser beam power was used.
- 3. The nominal lense to specimen distance was 15.0 inch.
- 4. A Sinar Camera at F5.6 was used.
- 5. The nominal spatial filter to specimen distance was 19.0 inchs.

G. Specimen Rotation Angles

For each of the six wrap angles tested, a set of nine specimens from each was tested interferometrically. These tests included specimens 1 through 8 which were flawed and specimen A which had no flaw present. For each specimen tested at each wrap angle a set of four interferograms was made. Each specimen had one of four pre-rotation angles shown in Table 6 introduced into it. The specimen was then loaded and a laser exposure was made. The load was removed and a second exposure was made. Each of the interferograms in the test program was coded as in the following example.

A total of 216 interferograms was analyzed.

TABLE 6. SPECIMEN TORSION ANGLES

Angle of Rotation Code	Total Rotation Angle	Rotation in degrees Per inch of specimen (over 9.0 inch)	Rotation in Rad. Per inch of specimen (over 9.0 inch)
1	0°	0.0000 °/in	0.0000 rad/in.
2	10°	1.1111 $^{\rm O}/{\rm in}$	0.0387 rad/in.
3	20°	2.2222 °/in	0.0775 rad/in.
4	30°	3.3333 °/in	0.1163 rad/in.

IV. EXPERIMENTAL RESULTS

After the experimental apparatus was constructed and assembled onto an optical vibration-isolation table, the experimental work was ready to begin. First, all the specimens were checked for delaminations and rejected if any proved of any significance. They were then cleaned using and air dried. Next, each specimen was individually measured for thickness values in their center. In flawed specimens, this was the pre-flaw region. Based on the tensile load T in Section F, the working stress levels for the specimens were computed. The thickness measurements and stress levels are tabulated in Appendix C.

Upon completion of all thickness measurements and stress calculations, the specimens were painted according to Section C and allowed to air dry. Dynamic impact flaws were then placed in Specimens 1 through 8 for each of the six wrap angles according to Section B and Table 5. Appendix D contains the results of this particular effort.

The next step was to make laser speckle interferograms of Specimens 1 through 8 and A for each of the six wrap angles. A total of four interferograms was made of each specimen according to Table 6 and Section G. For each specimen, the rotator was set at one of the angles: 0° , 10° , 20° , or 30° . The specimen was then loaded to 113 lbs, a laser photograph was taken, the load removed and a second (double exposure) photograph taken according to Section E. The interferograms were processed in Kodak HRP Developer, Stop Bath and Rapid Fixer. They were then dried and stores for analysis.

TABLE 5. FLAWED SPECIMEN BREAK-OUT

SPECIMEN NUMBER	INDENTER DART SIZE	IMPACT WEIGHT	IMPACT HEIGHT	IMPACT ENERGY
1	Α	5.76 lb	7.15 in.	41.184 in-lb
2	A	5.76 lb	15.15 in.	87.264 in-lb
3	В	5.7£ lb	7.15iin.	41.184 in-lb
4	В	5.76 lb	15.15 in.	87.264 in-lb
5	С	5.76 lb	7.15 in.	41,184 in-lb
6	С	5.76 lb	15.15 in.	87.264 in-lb
7	D	5.76lb	7.15 in.	41.184 in-lb
8	D	5.76 lb	15.15 in.	87.264 in-lb
L	l		<u> </u>	l

Analysis of the interferograms was as follows:

- 1. The scale factor S = $(1.14)^{-1}$ in Equation 14. Also $\lambda = 2.4913 \times 10^{-5}$ in, f = 64.25 in., D = 2.90 in., and $\Delta \chi = .5$ inch. dN/dX = 2.0.
- 2. Figure 20 illustrates the locations on each interferogram where the fringe order n was obtained as a function of r.

For this case r is the equivalent to N.

Appendix E contains tables of n values versus r for all the interferograms. The data was obtained according to Section 2.3. The next step was to use the information contained in Appendix E and Section 2.3 to generate the β values for each interferogram given in Appendix F. β was computed for r = 3.5 for each interferogram. This corresponded to the center of each specimen flaw region.

Now from Equation 14:

$$E = \frac{S\lambda f}{D} \beta \frac{dN}{dX}$$

For a flawed specimen i:

$$Ei = \frac{S\lambda f}{D} \beta i \frac{dN}{dX}$$
 (26)

And for the unflawed specimen A:

$$EA = \frac{S\lambda f}{D} \beta_A \frac{dN}{dX}$$
 (27)

To compute the percent change in strain in a flawed specimen i as compared to the unflawed specimen A in the region r - 3.5 yields

PCS = Percent Change in Strain =
$$\left| \frac{Ei - E_A}{E_A} \right| \times 100\% = \left| \frac{\beta i - \beta_A}{\beta_A} \right| \times 100\%$$
 (28)

This information is shown tabulared in Appendix G.

After the interferometric data was analyzed, the specimens were placed in a 10,000 pound capacity Instron Machine and tested to failure. The specimens were loaded at .1 inch/min load rate. Appendix H contains photographs of the specimens tested to failure. Appendix I contains tables giving the ultimate load for each specimen and at each wrap angle. The five unflawed

Figure 20. Location of laser speckle data inspection points on interferograms.

specimens were used at each wrap angle to obtain an average unflawed ultimate load value and to check the variation in the ultimate failure load for the unflawed specimens. Appendix J contains a summary of the ultimate failure load data for the test specimens. Appendix K contains a complete summary of all the experimental results.

V. CONCLUSIONS

Figures D-1 through D-48 of Appendix D illustrate the flawed regions of each specimen following impact loading. As observed from these figures, fiber-matrix delamination occurs parallel to the wrap angle and the amount of delamination increases with the impact energy. Wrap angle specimens of 0° and 60° are particularly susceptible to impact damage. 15° to 30° specimens appear to resist impact damage the best. These results are further substantiated in Appendices I and J which contain the ultimate load strength data for each specimen. Figure J-1 illustrates that as the wrap angle increases the ultimate load strength of the unflawed specimens decreases. Tables J-3 and J-4 of Appendix J illustrate that the ultimate load strength of a tensile specimen is particularly "flaw sensitive" at 0° and above 45° wrap angle. 15° to 10° wrap angle specimens show the least flaw sensitivity. Table J-5 illustrates that 10° specimens and 10° and above wrap angle specimens are particularly sensitive to an increase in dynamic impact energy.

Tables G-1 through G-6 in Appendix G illustrate the percent change in strain over the flawed region of a specimen as compared to an unflawed specimen. The results tend to have a rather random nature independent of flaw site and geometry. However, at 60° wrap angles, Table G-6 illustrates that the probability of detecting a flaw significantly increases. The detectibility of a flawed region appears to be largely independent of the specimen rotation angle (torsional angle). Tables G-1 through G-6 were individually averaged together to obtain an average percent change in strain at each wrap angle. This number takes into account all loading energies, specimen rotation angles and possible indenter dart sites. This information is listed at the bottom of each table. From these results it is seen that 0° and 60° specimens are ideally detectable and for some reason the 30° specimens show unusual sensitivity. Again, as indicated by the tensile testing program, the 15° and 20° specimens show the least detectability and have the least decrease in ultimate failure load.

Appendix K contains a summary of the laser speckle interferometry data. Table K-1 was computed by averaging β for all the flawed specimen conditions at each wrap and rotation angle. These values are referred to as $\beta 1$. Note that $\beta 1$ increases with wrap angle and generally has a minimum value between 10° and 20° rotation angle. Table K-2 is identical to Table K-1 except that only specimen A is recorded at each wrap and rotation angle. Values in Table K-1 are referred to as $\beta 2$ values. Figure K-1 is a graph of $\beta 2$ versus wrap angle. The data at 45° wrap angle is suspicious and is shown for reference. Curves both including and not including data at 45° were graphed. From this figure the correct value of $\beta 2$ is believed to be about .272 but is very questionable. It is possible that there is some unusual material behavior around 45° wrap angle. Table K-3 contains a summary of the ultimate failure loads of the specimens. L_1 is the average failure load for specimens 1-8 at each wrap angle. L_2 is the average failure load for the unflawed specimens A-E.

Table K-4 contains a summary of all the data in Appendix K. $\Delta\beta$ is the ration of the average strain in the flawed region of the specimens to that of an unflawed specimens. ψ is a measure of the sensitivity of the interferometric analysis process and is the ratio of $\Delta\beta$ to ΔL . Figure K-2 illustrates the variation of ψ with wrap angle. Above 45° wrap angle the sensitivity becomes very large. Ideally $\Delta\beta$ indicates the sensitivity of the laser speckle interferometric flaw detection process. The more that $\Delta\beta$ deviates from 1.0 the greater the sensitivity. ΔL indicates how critical the set of flaw conditions was to the specimens. The smaller values of ΔL (<1.0) indicate greater dynamic impact sensitivity. From this information, 60° wrap angle specimen flaws are the easiest to detect and exert the greatest influence on the strength of the specimens. However, 20° wrap angle specimen flaws are the hardest to detect and exert the least influence on the strength of the specimens.

In conclusion, the results of the tensile test program agree fairly well with those of the interferometric testing program. Results indicate that, although some scatter exists in the interferometric data, it proves to be a viable solution to flaw detection.

APPENDIX A

These drawings were used to build the combined tension and torsion loading machine used in this experiment.

Figure A-10

APPENDIX B

Computer code used to compute the variable quantities of Section 2.3.

TABLE B-1

```
FORTRAN IV
                  V01U-03A
0001
             DIMENSION 0(8)
0002
             CONTINUE
       1
0003
             A=0.
0004
             B=0.
0005
             C=O.
0006
             Dec O.
0007
             E=0.
0008
             F = 0 .
0009
             G=0.
0010
             H=0.
0011
             READ(5,2) = O(1) *O(2) *O(3) *O(4) *O(5) *O(6) *O(7) *O(8)
0012
             FORMAT(SF5.0)
0013
             DO 3 I=1,8,1
0014
             IF(O(I).EQ.O.) GOTO 3
0016
             F=0(I)
0017
             X=FLOAT(I-1)
0018
             △=△+(P*X*X)
0019
             节=B+(P*X)
0020
             C=C+F
0021
             D=D+(X*X*X*X)
0022
             E=E+(X*X*X)
0023
             F=F+(X*X)
0024
             G≔G+X
0025
             H=H+1.
0026
      3
             CONTINUE
0027
             Q=D*(F*H-G*G)-E*(E*H-G*F)+F*(E*G-F*F)
0028
             R=A*(F*H-G*G)-E*(B*H-G*C)+F*(B*G-F*C)
0029
             S=D*(B*H-G*C)-A*(E*H-G*F)+F*(E*C-b(F)
0030
             THD*(F*C-B*G)-E*(E*C-B*F)+台*(E*G-F*F)
0031
             U=RZQ
0032
             V=S/Q
0033
             W::T/Q
0034
             Y=ABS(7.*U+V)
0035
             WRITE(5,4) U,U,U,U,Y
             FORMATO' Um', F12.6,5%, VeryF12.6,5,5%, Um', F12.6,
0036
            15X, (Y=(,F12,6)
6037
             GOTO 1
0038
             END
```

APPENDIX C

This appendix contains thickness data and working stress levels for the flawed and unflawed specimens when loaded in the tension/ torsion fixture.

$$% D = \frac{\sigma\omega(\max) - \sigma\omega(\min)}{\sigma\omega(avg)} X 100%$$

%D*=2.
$$\frac{\sigma\omega(\max) - \sigma\omega(\min)}{\sigma\omega(\max) + \sigma\omega(\min)} \times 100\%$$

 $\sigma\omega$ = Specimen Stress Level

TABLE C-1 00 WRAP ANGLE SPECIMEN THICKNESS MEASUREMENTS AND WORKING STRESS LEVELS

SPECIMEN NUMBER	SPECIMEN THICKNESS	SPECIMEN STRESS LEVEL
-	.0652 in.	1736.1 psi
2	.0658 in.	1720.2 psi
e	.0652 in.	1736.1 psi
4	.0652 in.	1736.1 psi
ß	.0661 in.	1712,4 psi
9	.0652 in,	1736.1 psi
7	.0669 in.	1692.0 psi
8	.0658 in.	1720.2 psi

% D = 2.55% % D = 2.57%

TABLE C-2 + 15° WRAP ANGLE SPECIMEN THICKNESS MEASUREMENTS AND WORKING STRESS LEVELS

SPECIMEN NUMBER	SPECIMEN THICKNESS	SPECIMEN STRESS LEVEL
ı	.0660 in.	1715.0 psi
2	.0658 in.	1720.2 psi
3	.0658 in.	1720.2 psi
4	.0654 in.	1730.8 psi
5	.0656 in.	1725,5 psi
9	.0662 in.	1709.8 psi
7	.0661 in.	1712,4 psi
8	.0648 in.	1746.8 psi

%D = 2.14% %D*= 2.14%

TABLE C-3 + 20° WRAP ANGLE SPECIMEN THICKNESS MEASUREMENTS AND WORKING STRESS LEVELS

SPECIMEN NUMBER	SPECIMEN THICKNESS	SPECIMEN STRESS LEVEL
1	.0664 in.	1704.7 psi
2	.0642 in.	1763.1 psi
က	.0643 in.	1760.4 psi
4	.0656 in.	1725.5 psi
ß	.0643 in.	1760.4 psi
9	.0666 in.	1699,6 psi
7	.0651 in.	1738.7 psi
œ	.0645 in.	1754.9 psi

%D = 3.65% %D* = 3.66%

TABLE C-4 + 30° WRAP ANGLE SPECIMEN THICKNESS MEASUREMENTS AND MORKING STRESS LEVELS.

SPECIMEN STRESS LEVEL	1694.5 psi	1744.1 psi	1746.8 psi	1771.4 psi	1715.0 psi	1722.9 psi	1768.6 psi	1738.7 psi
SPECIMEN THICKNESS	.0668 in.	.0649 in.	.0648 in.	.0639 in.	.0660 in.	.0657 in.	.0640 in.	.0651 in.
SPECIMEN NUMBER	1	2	3	4	5	9	7	8

%D = 4.42% %D*= 4.43%

TABLE C-5 + 45⁰ WRAP ANGLE SPECIMEN THICKNESS MEASUREMENTS AND WORKING STRESS LEVELS

SPECIMEN NUMBER	SPECIMEN THICKNESS	SPECIMEN STRESS LEVEL
-	.0646 in.	1752.2 psi
2	.0662 in.	1709.8 psi
m	.0656 in.	1725.5 psi
4	.0658 in.	1720.2 psi
£.	.0647 in.	1749.5 psi
9	.0638 in.	1774.2 psi
7	.0672 in.	1684.4 psi
8	.0670 in.	1689.4 psi

%D = 5.20% %D*= 5.19%

TABLE C-6 + 60° WRAP ANGLE SPECIMEN THICKNESS MEASUREMENTS AND MORKING STRESS LEVELS

SPECIMEN NUMBER	SPECIMEN THICKNESS	SPECIMEN STRESS LEVEL
-	.0637 in.	1770.0 psi
2	.0639 in.	1771.4 psi
E	.0645 in.	1754.9 psi
4	.0623 in.	1816.9 psi
S	.0632 in.	1791.0 psi
9	.0629 in.	1799.6 psi
7	.0597 in.	1896.0 psi
8	.0629 in.	1799.6 psi

% D = 7.83% % D = 7.72%

TABLE C-7 00 WRAP ANGLE UNFLAWED SPECIMEN THICKNESS MEASUREMENTS

SPECIMEN NUMBER	SPECIMEN THICKNESS
A	.0660 in.
В	.0668 in.
С	.0668 in.
D	.0663 in.
E	.0672 in.

TABLE C-8 ± 150 WRAP ANGLE UNFLAWED SPECIMEN THICKNESS MEASUREMENTS

SPECIMEN NUMBER	SPECIMEN THICKNESS
A	.0652 in.
В	.0650 in.
С	,0649 in.
D	.0651 in.
ε	.0653 in.

TABLE C-9 ± 20° WRAP ANGLE UNFLAWED SPECIMEN THICKNESS MEASUREMENTS

SPECIMEN NUMBER	SPECIMEN THICKNESS
A	.0668 in.
В	.0645 in.
С	.0666 in.
D	,0655 in.
E	.0651 in.

TABLE C-10 ± 30° WRAP ANGLE UNFLAWED SPECIMEN THICKNESS MEASUREMENTS

SPECIMEN NUMBER	SPECIMEN THICKNESS
Α	.0640 in.
В	.0653 in.
С	.0643 in.
D	.0644 in.
E	.0640 in.

TABLE C-11 ± 45° WRAP ANGLE UNFLAWED SPECIMEN THICKNESS MEASUREMENTS

SPECIMEN NUMBER	SPECIMEN THICKNESS			
Α	.0652 in.			
В	.0668 in.			
С	.0658 in.			
D	.0643 in.			
E	.0649 in.			

TABLE C-12 ± 60° WRAP ANGLE UNFLAWED SPECIMEN THICKNESS MEASUREMENTS

SPECIMEN NUMBER	SPECIMEN THICKNESS		
A	.0632 in.		
В	.0619 in.		
С	.0648 in.		
D	.0609 in.		
E	.0633 in.		

APPENDIX D

This appendix contains photographs of the flawed regions of all the dynamically impacted specimens used in this effort. Both the painted and unpainted sides of each specimen are shown.

Figure D-1 - 0'-1 specimen.

Parameter Parameter Speciments

Time 9-3 Comments

Figure 0-4 Para Francisco

figure Data (Mail open from)

Figure D-6 00-6 specimen.

Himure Delice Control of the Asset

Figure D-8 of- specimen.

Figure 9-9 15 - Specimen.

The same of the first of the second

Figure $0-10^{\circ}$ 16° -4 specimen.

Admiro Malaston englishmen.

Figure Dall to accommunic

Thomas 1974 - 1872 And theory

France D-Dig to the region to our

, and the state of the state o

Franco (210 - 100) Species of

A temperate the tree of the past of the con-

Figure Dal's Company of

Transfer Department of the Source

.•

Trapped Garan

AD-A102 881 ARMY MISSILE COMMAND REDSTONE ARSENAL AL GROUND EQUETC F/6 11/4 QUANTITATIVE ANALYSIS OF IMPACT DAMAGED COMPOSITE TENSION-TORSIETC(U) SEP 80 J A SCHAEFFEL UNCLASSIFIED DRSMI/RL-80-12-TR NL								
2 of 3		M M						
			· p					
					E			
						17%		
		·						

Figure D-24 harman specimen.

Flower to the second of

Figure 9-26 () . The men.

Tieure P-21 200-3 goodwar.

Figure 0-28 (10) in Fem.

Higher hard of the formation

France D-37 (nº-6 species).

Figure 9-31 - The forms

Figure D-32 (n^o - specimen)

Comments of the State of the St

Figure 0-34 45% - Species of

 $f = \{ \{ \{ \}_{i \in \mathcal{V}} \}^{1} \} = \{ \{ \}_{i \in \mathcal{V}} \} = \{ \}_{i \in \mathcal{V}} \}$

; ;

Figure 0-36 10 =: 300 (mag)

Lours P.R. Common Service

Hidage In W. 16 house mer.

House Dago Pilit in the House

Figure D-40 400 commission.

Tippe PAL Para Care Care

Figure N-87 - Superiors

Figure 0.03 pr 1 s specimen.

figure 0-40 600. I specimen.

Figure D-46 + 30-5 spectron.

Li une D-46 12 12 per inin

Figure 9-47 (30-7) perimen.

Higure N-4° es " Speciego,

APPENDIX E

This appendix contains tables of n values versus r for all the laser speckle interferograms made in this report.

TABLE E-1 n VALUES VERSUS r FOR 00 SPECIMENS

			,					
SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r=6	r=7
1–1	5.70	5.45	5.11	4.69	4.42	4.08	3.72	3.45
1-2	4.55	4.67	4.70	4.65	4.65	4.45	4.40	4.35
1–3	4.35	4.45	4.52	4.65	4.52	4.62	4.71	4.69
1-4	4.35	4.42	4.48	4.49	4.48	4.49	4.49	4.49
2-1	7.25	6.81	6.62	6.30	5.81	5.65	5.32	4.81
2-2	6.71	6.62	6.38	6.25	5.71	5.70	5.56	5. 36
2-3	6.70	6.65	6.45	6.31	6.12	5.95	5.72	5.61
2-4	6.70	6.65	6.39	6.41	6.25	6.09	5.81	5.65
3–1	4.39	4.11	3.65	3.37	3.02	2.65	2.39	2.15
3-2	4.35	4.26	3.77	3.55	3.26	2.86	2.65	2.38
3–3	3.85	3.71	3.64	3.43	3.23	3.15	2.75	2.68
3-4	3.91	3.82	3.64	3.48	3.35	3.25	2.95	2.76

TABLE E-2 n VALUES VERSUS r FOR 00 SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r=6	r=7
4-1	6.82	6.43	5.88	5.69	5.25	4.76	4.50	4.25
4–2	6.68	6.35	5.83	5.56	5.26	4.81	4.62	4.26
4–3	6.68	6.25	5.93	5.62	5.38	5.08	4.70	4.46
4-4	6.72	6.33	5.95	5.62	5.35	4.95	4.75	4.50
5–1	6.23	5.82	5.51	5.27	4.82	4.68	4.42	4.25
5-2	6.35	6.05	5.75	5.41	5.25	4.95	4.62	4.52
5–3	6.25	6.01	5.71	5.45	5.31	5.12	4.75	4.62
5-4	6.35	6.02	5.82	5.45	5.35	5.12	4.76	4.61
6–1	4.55	4.23	3.78	3.32	3.06	2.71	2.42	1.95
6–2	3.81	3.65	3.35	3.05	2.85	2.65	2.46	2.23
6–3	3.45	3.31	3.16	2.81	2.75	2.53	2.36	2.13
6-4	3.31	2.98	2.69	2.52	2.41	2.36	2.16	1.83

TABLE E-3 n VALUES VERSUS r FOR 00 SPECIMENS

SPECIMEN	r=0	r=1	r=2	r≈3	r=4	r=5	r=6	r=7
7-1	7.15	6.68	6.21	5.83	5.38	5.03	4.71	4.33
7–2	5.41	5.45	5.48	5.48	5.44	5.44	5.35	5.25
7-3	4.75	4.99	5.21	5,41	5.61	5.71	5.78	5.85
7-4	4.51	4.72	4.81	4,85	4.91	4.99	5.08	5.10
8–1	4.75	4.63	4.37	4.11	3.78	3.38	3.23	2.83
8–2	3.85	3.82	3.91	3.94	3.75	3.81	3.75	3.65
8–3	3.52	3.68	3.73	3.82	3.82	3.82	3.82	3.84
8-4	3.68	3.68	3.75	3.82	3.82	3.83	3.81	3.80
A-1	6.25	5.89	5.62	5.38	5.08	4.81	4.65	4.48
A-2	5.81	5.69	5.48	5.35	5.11	4.95	4.81	4.71
A-3	5.82	5.71	5.52	5.37	5,18	5.01	4.91	4.65
A-4	6.35	6.01	5.81	5.69	5.48	5.28	5.03	4.81

TABLE E-4 n VALUES VERSUS r FOR + 150 SPECIMENS

SPECIMEN	r≈0	r=1	r=2	r=3	r=4	r=5	r=6	r=7
1–1	6.95	6.65	6.35	5.95	5.61	5.30	4.80	4.69
1-2	5.65	5.70	5.75	5.70	5.65	5.65	5.75	~
1–3	4.75	5.35	5.40	5.45	5.35	5.35	5.50	~
1-4	5.40	5.55	5.35	5.35	5.35	5,25	4.85	~
2–1	5.75	5.45	4.90	4.65	4.35	3.80	3.55	3.25
2–2	6.32	5.82	5.38	4.82	4.42	3.95	3.65	3.00
23	6.60	5.75	5.35	4.82	4.35	3.78	3.38	~
2-4	6.95	6.30	5.65	4.85	4.35	3.95	3.35	2.95
3–1	7.35	7.10	6.52	6.35	5.80	5.35	5.30	4.85
3–2	7.25	6.75	6.55	6.31	5.98	5.69	5.33	5.25
3–3	7.25	6.75	6.55	6.35	6.10	5.75	5.52	5.35
3–4	7.35	6.77	6.65	6.35	6.10	5.70	5.41	5.35

TABLE E-5 n VALUES VERSUS r FOR ± 150 SPECIMENS

SPECIMEN	r=0	r=1	r=2	r≈3	r=4	r=5	r=6	r=7
4-1	7.30	6.85	6.68	6.45	6.35	5.85	5.69	5.45
4-2	7.32	7.10	6.81	6.72	6.38	6.11	5.88	5.68
4-3	7.35	7.08	6.75	6.69	6.45	6.22	5.82	5.71
4-4	7.36	7.07	6.83	6.63	6.38	5.98	5.82	5.70
5–1	5.16	4.65	4.28	3.79	3.47	3.24	2.97	2.48
5–2	4.65	4.35	4.32	3.82	3.68	3.49	3.31	3.08
5–3	4.36	4.26	3.99	3.85	3.69	3.65	3.51	3.38
5–4	4.25	4.19	4.08	3.99	3.71	3.68	3.62	3.58
6–1	7.06	6.75	6.55	6.23	5.71	5.39	5.08	4.69
6–2	6.65	6.48	6.32	6.19	5.81	5.69	5.52	
6–3	6.55	6.45	6.35	6.20	5.91	5.69	5.60	
6–4	6.82	6.62	6.41	6.32	6.08	5.70	5.62	

TABLE E-6 n VALUES VERSUS r FOR + 150 SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r≈5	r=6	r=7
71	5.62	5.32	5.08	4.69	4.32	4.31	3.79	3.65
72	5.82	5.59	5.25	4.80	4.63	4.31	4.02	3.69
7–3	5.72	5.37	4.82	4.71	4.38	3.88	3.65	3.32
7-4	5.81	5.62	5.08	4.70	4.35	3.81	3.71	3.32
8–1	7.38	7.07	6.73	6.49	6.04	5.72	5.38	5.11
8-2	7.01	6.72	6.65	6.43	6.07	5.92	5.68	5.32
8-3	6.95	6.71	6.59	6.41	5.98	5.71	5.62	5.50
8-4	7.01	6.71	6.58	6.37	5.95	5.70	5.58	5.21
A-1	7.35	7.18	6.81	6.52	6.29	5.58	5.65	5.32
A-2	7.21	7.01	6.73	6.60	6.31	6.16	5.81	5.68
A-3	7.35	7.00	6.81	6.49	6.25	5.95	5.75	5.45
A-4	6.71	6.61	6.30	6.15	5.72	5.48	5.35	5.23

TABLE E-7 n VALUES VERSUS r FOR + 200 SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r=6	r=7
A-1	5.80	5,35	4.82	4.42	3.81	3.45	3,10	2.68
A-2	5.32	4.92	4.55	4.31	3.70	3.58	3.24	2.76
A-3	5.35	4.82	4.72	4.35	3.85	3.45	3.32	2.75
A-4	4.75	4.45	4.12	3.68	3.40	3.18	2.81	2.68
1–1	5.68	5,31	4.95	4.61	4.25	3.75	3.60	3.30
1–2	5.25	4.81	4.70	4.52	4.35	3.85	3.70	3.45
1-3	5.30	4.85	4.75	4.58	4.30	3.85	3.75	3.60
1-4	5.38	5.25	4.75	4,55	4.35	3.85	3.75	3.58
2-1	5.62	5.08	4.52	4.00	3.45	2.95	2.45	2.08
2-2	5.65	5.15	4.51	4.08	3.45	3.05	2.68	2.21
2–3	5,51	4.95	4.55	4.18	3.40	3.28	2.70	2.35
2–4	5.56	5.15	4.55	4.15	3.70	3.35	2.70	2.35

TABLE E-8 n VALUES VERSUS r FOR + 200 SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r=6	r=7
3–1	6.80	6.55	6.19	5.68	5.35	4.81	4.65	4.23
3–2	6.85	6.55	6.28	5.75	5.35	5.08	4.65	4.35
3–3	6.70	6.35	6.01	5.58	5.30	5.12	4.68	4.38
3-4	6.78	6.52	6.18	5.70	5.32	5.15	4.70	4.35
4–1	8.01	7.61	7.35	6.80	6.35	5.81	5.62	5.28
4–2	7.75	7.62	7.25	6.75	6.55	6.25	5.70	5.60
4-3	8.30	7.72	7.35	6.98	6.62	6.35	5.75	5.50
4-4	8.25	7.68	7.35	6.75	6.40	6.20	5.65	5.35
5–1	5.38	4.75	4.65	4.35	3.70	3.38	2.80	2.68
5–2	4.38	4.25	4.15	3.95	3.70	3.68	3.65	3.50
5–3	4.01	3.82	3.75	3.68	3.65	3.60	3.55	3.45
5–4	4.61	4.45	4.30	3.75	3.70	3.62	3.35	2.75

TABLE E-9 n VALUES VERSUS r FOR + 200 SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r≈5	r=6	r=7
6-1	5.76	5.48	5.25	4.70	4.50	4.30	3.70	3.65
6–2	6.30	5.70	5.35	4.75	4.50	3.78	3.70	3.45
6-3	6.75	6.30	5.62	5.00	4.45	4.01	3.35	2.68
6-4	7.35	6.38	5.70	5.01	4.65	3.70	3.01	2.45
7–1	5.35	5.12	4.72	4.57	4.25	3.70	3.65	3.35
7-2	5.82	5.65	5.35	4.75	4.35	3.80	3.65	3.35
7–3	6.70	6.25	5.45	4.82	4.38	3.82	3.45	2.78
7-4	6.35	5.65	5.20	4.55	4.20	3.65	3.20	2.35
8-1	8.30	8.01	7.65	7.35	6.80	6.35	6.32	5.80
8–2	8.35	8.20	7.75	7.40	7.30	6.82	6.65	6.35
8–3	8.20	7.75	7.50	7.30	7.20	6.70	6.50	6.35
8-4	9.05	8.45	8.30	7.65	7.35	7.18	6.65	6.40

TABLE E-10 n VALUES VERSUS r FOR ± 30° SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r=6	r=7
1–1	5.55	4.80	4.55	4.05	3.65	3.26	2.70	2.42
1–2	4.75	4.40	4.30	3.90	3.75	3.45	3.28	2.85
1–3	4.28	4.25	3.85	3.68	3.60	3.40	3.25	2.85
1–4	4.68	4.45	4.35	3.98	3.70	3.55	3.20	2.70
2–1	6.68	6.20	5.70	5.65	5.20	4.70	4.30	3.85
2–2	6.75	6.40	5.95	5.70	5.25	4.75	4.40	4.05
2–3	6.70	6.25	5.70	5.35	4.95	4.60	4.20	3.70
2–4	6.85	6.45	5.95	5.40	4.95	4.50	4.25	3.75
3–1	6.50	6.05	5.65	5.20	4.75	4.35	3.75	3.45
3–2	7.30	6.70	5.82	5.45	4.75	4.35	3.80	2.95
3–3	7.40	6.70	6.05	5.55	4.95	4.35	3.75	2.95
3–4	7.35	6.70	6.00	5.45	4.85	4.25	3.70	3.10

TABLE E-11 n VALUES VERSUS r FOR ± 30° SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r=6	r=7
4–1	6.60	6.05	5.68	5.25	4.70	4.35	3.80	3.60
4-2	6.70	6.30	5.70	5.38	4.85	4.55	4.05	3.65
4–3	6.80	6.35	5.80	5.35	4.82	4.38	3.95	3.68
4-4	7.01	6.45	5.78	5.38	4.70	4.50	3.85	3.70
5–1	6.35	5.75	5.60	4.98	4.70	4.35	3.80	3,60
5–2	6.45	5.95	5.70	5.20	4.70	4.30	3.80	3.62
5–3	6.68	6.30	5.70	5.30	4.70	4.35	3.82	3.70
5-4	6.95	6.38	5.80	5.32	4.75	4.30	3.75	3.30
6–1	6.95	6.65	6.25	5.68	5.25	4.75	4.30	3.95
6–2	6.70	6,35	5.85	5.75	5.35	4.88	4.68	4.30
6–3	6.75	6.42	6.10	5.75	5.50	5.21	4.75	4.30
6–4	7.01	6.52	6.30	5.82	5.45	5.20	4.65	4.32

TABLE E-12 n VALUES VERSUS r FOR ± 30° SPECIMENS

SPECIMEN	r=0	r≈1	r=2	r=3	r=4	r=5	r=6	r=7
A-1	7.01	6.70	6.35	5.80	5.60	5.25	4.75	4.45
A-2	6.06	6.30	6.05	5.75	5.70	5.30	5.25	5.05
A-3	6.50	6.25	5.95	5.70	5.60	5.35	5.20	4.75
A-4	6.30	6.00	5.75	5.60	5.35	5.10	4.70	4.60
7-1	9.10	8.70	8.25	7.75	7.25	6.60	6.35	5.75
7–2	8.50	8.30	7.95	7.75	7.35	6.75	6.65	6.40
7–3	8.15	7.82	7.65	7.35	7.25	6.75	6.55	6.45
7-4	8.35	7.95	7.70	7.25	6.75	6.55	6.40	5.75
8-1	5.25	5.00	4.75	4.45	4.10	3.75	3.60	3.25
8–2	4.75	4.65	4.55	4.45	4.05	3.80	3.60	3.50
8–3	5.30	4.95	4.70	4.30	3.95	3.70	3.35	3.10
8-4	5.40	5.10	4.75	4.45	3.85	3.50	3.25	2.75

TABLE E-13 n VALUES VERSUS r FOR + 450 SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r=6	r=7
1-1	8.85	8.35	7.80	7.32	6.85	6.25	5.79	5.18
1-2	8.20	7.88	7.45	7.25	6.83	6.68	6.08	5.70
1-3	8.95	8.38	7.83	7.35	6.95	6.72	6.25	5.75
1-4	9.18	8.45	7.92	7.37	6.98	6.42	5.75	5.25
2–1	9.75	8.75	7.82	7.02	6.35	5.68	5.00	4.35
2–2	9.10	8.45	7.72	6.85	6.32	5.61	4.95	4.33
2–3	9.08	8.20	7.41	6.85	6.15	5.60	4.88	4.49
2–4	8.65	7.80	7.10	6.65	5.93	5.26	4.68	4.11
3–1	9.52	88.8	8.15	7.35	6.83	6.11	5.52	4.82
3–2	8.75	8.21	7.83	7.36	6.82	6.38	5.87	5.32
3–3	8.72	8.15	7.72	7.37	6.81	6.35	5.82	5.33
3–4	8.32	7.83	7.36	6.83	6.38	5.83	5.42	4.85

TABLE E-14 n VALUES VERSUS r FOR ± 450 SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r=6	r=7
4–1	11.18	10.05	9.38	8.55	7.61	6.75	5.75	5.25
4-2	8.63	8.42	8.33	8.31	7.88	7.75	7.65	7.35
4–3	7.85	7.88	7.78	7.78	7.78	7.91	7.91	~
4-4	7.92	7.92	7.92	7.90	7.85	7.75	7.65	7.65
5–1	8.83	8,20	7.65	6.86	6.33	5.65	5.03	4.39
5–2	7.65	7.38	7.12	6.87	6.63	6.35	5.85	~
5–3	7.20	7.22	7.22	6.81	6.68	6.35	6.28	5.95
5-4	7.62	7.37	7.25	6.83	6.70	6.37	5.86	5.76
6–1	9.37	8.53	7.82	7.32	6.68	5.81	5.26	4.75
6–2	8.15	7.81	7.36	6.88	6.61	6.20	5.85	5.32
6–3	8.33	8.01	7.55	7.15	6.81	6.38	6.05	5.61
6–4	8.62	8.08	7.65	7.11	6.81	6.19	5.82	5.57

TABLE E-15 n VALUES VERSUS r FOR ± 45° SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r=6	r=7
7–1	9.82	9.06	8.16	7.61	6.80	5.97	5.30	4.75
7–2	8.71	8.30	7.85	7.32	6.89	6.18	5.89	5.30
7–3	8.12	7.89	7.62	7.13	6.89	6.33	5.70	~
7-4	8.70	8.11	7.81	7.27	6.81	6.23	5.85	5.45
8–1	10.15	9.23	8.55	7.82	6.82	6.09	5.48	~
8-2	10.62	9,82	8.65	7.83	6.92	5.97	5.27	~
8-3	11.26	9.78	8.88	7.99	6.85	6.30	5.30	~
8-4	11.02	9.88	8.72	7.81	6.92	6.02	5.35	~
A-1	9.15	8.23	7.68	6.87	6.18	5.43	4.82	4.18
A-2	9.75	8.72	7.86	6.89	6.21	5.41	4.61	3.78
A-3	10.38	8.88	7.79	6.97	6.18	5.32	4.62	~
A-4	10.11	8.82	7.80	6.85	6.16	5.41	4.32	~

TABLE E-16 n VALUES VERSUS r FOR + 60° SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r≈4	r=5	r=6	r=7
1-1	11.75	11.25	10.31	9.45	7.69	6.83	6.31	5.55
1-2	11.33	10.82	10.15	9.45	7.77	7.31	6.38	5.81
1–3	11.31	10.75	10.18	9.43	7.81	7.23	6.74	5.88
1-4	11.62	10.75	10.35	9.62	7.83	7.25	6.56	5.76
2–1	~	~	22.75	~	7.58	6.76	6.18	5.52
2–2	~	~	~	~	7.69	7.26	6.52	6.00
2–3	~	~	~	~	7.71	7.62	6.75	6.35
2-4	~	~	~	~	7.75	7.63	6.83	6.48
3–1	14.25	13.10	12.26	11.26	9.83	8,01	7.35	6.68
3–2	~	12.15	11.75	11.32	10.21	9.67	9.35	9.00
3–3	11.45	11.70	11.31	11.01	10.32	9.70	9.60	~
3–4	12.01	12.21	11.65	11.15	10.38	9.85	9.50	~

TABLE E-17 n VALUES VERSUS r FOR ± 60° SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r=6	r≈7
4–1	~	TOO MANY	FRINGES	~	8.68	7.70	6.90	6.25
4–2	~	EST @ 43 FF	INGES	~	8.62	7.82	7.51	~
4–3	~	~	~	~	8.51	8.18	8.18	~
4-4	~	~	2	~	8.55	8.31	7.85	~
5–1	10.70	9.75	9.10	8.35	7.19	6.39	5.68	4.82
5–2	8.55	8.35	8.08	7.82	7.35	7.06	6.75	~
5–3	7.65	7.92	7.82	7.68	7.35	6.93	6.75	~
5-4	8.35	8.25	8,10	7.69	7.52	6.77	6.25	~
6–1	~	~	~	~	9.32	8.74	7.82	7.25
6-2	~	~	~	~	9.71	9.32	8.75	8.35
6-3	~	~	~	~	9.65	9.31	9.05	8.75
6-4	~	EST 42 FI	~ RINGES	~	9.52	8.75	8.55	8.01

TABLE E-18 n VALUES VERSUS r FOR ± 60° SPECIMENS

SPECIMEN	r=0	r=1	r=2	r=3	r=4	r=5	r≂6	r=7
7–1	13.25	12.38	11.55	10.70	9.68	8.76	7.95	6.35
7–2	11.82	11.43	10.92	10.50	9.81	9.30	8.70	8.01
7_3	11.62	11.25	10.81	10.49	9.92	9.45	9.82	~
7-4	12.05	11.68	11.19	10.77	10.15	9.69	9.06	8.75
8–1	~	14.75	13.68	12.75	7.92	7.31	6.32	5.68
8–2	15.45	14.68	13.48	12.79	8.25	7.62	6.93	6.35
8–3	14.68	13.71	13.21	12.70	8.25	7.74	7.18	6.65
8–4	14.35	13.62	12.95	12.48	8.33	7.91	7.26	6,68
A-1	12.75	12.15	11.38	10.81	10.07	9.31	8.61	7.75
A-2	11.53	11.25	10.83	10.67	10.37	9.72	9.56	9,25
A-3	11.35	11.23	10.81	10.62	10.35	9.70	9.62	9,18
A-4	11.72	11.35	10.78	10.63	10.22	9.68	8.98	8.70

APPENDIX F

This appendix contains tables of β values for each interferogram used in this project. β was computed at r = 3.5 in all cases.

TABLE F-1 B VALUES FOR 00 SPECIMENS

SPECIMEN	SPECIMEN NUMBER									
ROTATION	Α	1	2	3	4	5	6	7	8	
00	.253	.330	.332	.328	.374	.283	.365	.399	.282	
10 ⁰	.165	.041	.206	.295	.344	.268	.229	.021	.026	
20°	.165	.045	.166	.174	.310	.233	.189	.158	.038	
30°	.208	.016	.150	.163	.317	.246	.185	.077	.020	

TABLE F-2 \$ VALUES FOR ± 150 SPECIMENS

SPECIMEN		SPECIMEN NUMBER									
ROTATION ANGLE	A	1	2	3	4	5	6	7	8		
00	.297	.340	.364	.363	.254	.364	.344	.287	.331		
10 ⁰	.222	.003	.461	.285	.238	.224	.199	.306	.233		
20°	.266	.045	.503	.263	.233	.140	.181	.339	.222		
30°	.232	.107	.575	.284	.246	.107	.212	.370	.253		

TABLE F-3 & VALUES FOR ± 200 SPECIMENS

SPECIMEN ROTATION	SPECIMEN NUMBER											
ANGLE	A	1	2	3	4	5	6	7	8			
00	.450	.347	.514	.380	.406	.394	.318	.294	.361			
10 ⁰	.355	.248	.493	.369	.331	.128	.415	.385	.293			
20°	.357	.242	.451	.327	.390	.068	.578	.556	.258			
30°	.307	.273	.461	.352	.407	.245	.684	.538	.371			

TABLE F-4 β VALUES FOR ± 30° SPECIMENS

SPECIMEN ROTATION	SPECIMEN NUMBER											
ANGLE	A	1	2	3	4	5	6	7	8			
00	.371	.436	.389	.442	.437	.393	.448	.483	.289			
10 ⁰	.174	.257	.392	.595	.435	.419	.338	.320	.198			
20°	.230	.195	.416	.614	.459	.451	.338	.250	.318			
30°	.245	.271	.446	.602	.484	.521	.379	.355	.382			

TABLE F-5. B VALUES FOR ± 45° SPECIMENS

SPECIMEN ROTATION ANGLE		SPECIMEN NUMBER											
	A	1	2	3	4	5	6	7	8				
00	.705	.519	.757	.670	.855	.636	.659	.734	.777				
10°	.837	.347	.687	.483	.178	.298	.397	.492	.893				
20°	.866	.437	.653	.476	.020	.192	.389	.431	.916				
30°	.888	.546	.638	.492	.045	.277	.444	.467	.903				

TABLE F-6 . B VALUES FOR \pm 60° SPECIMENS

SPECIMEN ROTATION	SPECIMEN NUMBER											
ANGLE	A	1	2	3	4	5	6	7	8			
00	.710	.955	3.173	1.141	6.880	.842	6,697	.950	1.814			
10 ⁰	.333	.845	3.094	.590	8.427	.323	6.525	.546	1,482			
20°	.319	.815	3.038	.420	8.290	.234	6,475	.483	1.306			
30°	.436	.869	3.022	.520	8.336	.406	6.588	.491	1.247			

APPENDIX G

This appendix contains tables of the PCS (Percent Change in Strain) in the flawed regions of specimens 1 through 8 as compared to Specimen A for each of the six wrap angles.

TABLE G-1. PERCENT CHANGE IN STRAIN FOR 0° FLAWED SPECIMENS

SPECIMEN ROTATION	SPECIMEN NUMBER										
ANGLE	1	2	3	4	5	6	7	8			
00	30.43	31.23	29.64	47.83	11.86	44.27	57.71	11.46			
10 ⁰	75.15	24.85	78.79	108.48	62.42	38.79	87.27	84.24			
20 ⁰	72.73	0.61	5.45	87.88	41,21	14.55	4.24	76.97			
30°	92.31	27.88	21.63	52.40	18.27	11.06	62.98	90.38			

TABLE G-2. PERCENT CHANGE IN STRAIN FOR $\pm~15^{\rm O}$ FLAWED SPECIMENS

SPECIMEN ROTATION	SPECIMEN NUMBER										
ANGLE	1	2	3	4	5	6	7	8			
00	14.48	22.56	22.22	14.48	22.56	15,82	3.37	11.45			
10°	98.65	107.66	28.38	7.21	0.90	10.36	37.84	4.95			
20°	83.08	89.10	1.13	12.41	47.37	31.95	27.44	16.54			
30°	53.88	147.84	22.41	6.03	53.88	8.62	59.48	9.05			

TABLE G-3. PERCENT CHANGE IN STRAIN FOR ± 20° FLAWED SPECIMENS

SPECIMEN	SPECIMEN NUMBER											
ROTATION	1	2	3	4	5	6	7	8				
00	22.89	14.22	15.56	9.78	12.44	29.33	34.67	19.78				
10 ⁰	30.14	38.87	3.94	6.76	63.94	16.90	8.45	17.46				
20 ⁰	32.21	26.33	8.40	9.24	80.95	61.90	55.74	27.73				
30°	11.07	50.16	14.66	32.57	20.20	122.80	75.24	20.85				

TABLE G-4. PERCENT CHANGE IN STRAIN FOR ± 30° FLAWED SPECIMENS

SPECIMEN ROTATION	SPECIMEN NUMBER										
ANGLE	1	2	3	4	5	6	7	8			
0°	17.52	4.85	19.14	17.79	5.93	20.75	30.19	22.10			
10°	47.70	125.29	241.95	150.00	140.80	94.25	83.91	13.79			
20°	15.22	80.87	166.96	99.57	96.09	46.96	8.70	38.26			
30°	10.61	82.04	145.71	97.55	112.65	54.69	44.90	55.92			

TABLE G-5. PERCENT CHANGE IN STRAIN FOR ± 45° FLAWED SPECIMENS

SPECIMEN	SPECIMEN NUMBER										
ROTATION	1	2	3	4	5	6	7	8			
00	26.38	7.38	4.96	21.28	9.79	6.52	4.11	10.21			
10 ⁰	58.54	17.92	42.29	78.73	64.40	52.57	41.22	6.69			
20°	49.54	24.60	45.03	97.69	77.83	55.08	50.23	5.77			
30°	38.51	28.15	44.59	94.93	68.81	50.00	47.41	1.69			

AVERAGE % CHANGE = 38.52%

TABLE G-6. PERCENT CHANGE IN STRAIN FOR \pm 60° FLAWED SPECIMENS

SPECIMEN		SPECIMEN NUMBER										
ROTATION ANGLE	1	2	3	4	5	6	7	8				
00	34.51	346.90	60.70	869.01	18.59	843.24	33.80	155.49				
10 ⁰	153.75	829.13	77.18	2430.63	3.00	1859.46	63.96	345.05				
20°	155.49	852.35	31.66	2498.75	26.65	1929.78	51,41	309.40				
30°	99.31	593.12	19.27	1811.93	6.88	1411.01	12.61	186.01				

AVERAGE % CHANGE = 566.25%

APPENDIX H

Composite tensile specimens tested to their ultimate strength are shown in this appendix.

Figure H-1. 0° -1 specimen.

Figure 4-2. 0^{0} -2 specimen.

Figure H-3. 0° -3 specimen.

Figure H-4. 0° -5 specimen.

Figure H-5. 0° -5 specimen.

Figure H-6. 10-6 specimen.

Figure H-7. n^0 -7 specimen.

Figure H-8. J⁰-8 spec men.

77

Figure H-9. 0° -A specimen.

Figure H-10 . The Alexander man.

Figure H-11. 0° -C specimen.

Figure H-12: of the presentation

Figure H-13. 0° -E specimen.

Figure H-14. 15⁰-1 specimen.

Francisco Haller Commission Const.

Figure H-16. 15⁰-3 specimen.

Figure H-17. 15^{o} 4 specimen.

Figure H-18. 15⁰-5 specimen.

Figure H-19. 150-6 specimen.

Figure H-20. 15⁰-7 specimen.

Figure H-21. 150-9 specimen.

Figure H-22 . 15⁰-A specimen.

Figure H-23. 150-5 specimen.

Figure H-24. 15⁰-C specimen.

Figure H-25. 15°-D specimen.

Figure H-26. 15⁰-E specimen.

Figure H-27. 20⁰-1 specimen.

A temporary of the state of the

Figure H-29. 200-3 specimen.

Figure H-30 . 200-1 specimen.

Figure H-31. 200-5 specimen.

Figure H-32. 200-6 specimen.

Figure H-33. 200-7 specimen.

Timere H. M. snecimen.

Figure H-35 . 20° -9 specimen.

Figure H-36. 20° -B specimen.

Figure H-37. 200-C specimen.

Figure H-39. 90 - 9 specimen.

Figure H-39. 20°-E specimen.

Figure H-40. 30°-1 specimen.

Figure H-41. $30^{O_{\pi}^{-2}}$ specimen.

Figure H-42 . 30°-3 specimen.

Figure H-43. 30°-2 specimen.

Figure H-44. 30⁰-5 specimen.

Figure H-45. 30°-n specimen.

Figure H-46. 30°-7 specimen.

Figure H-47. 346-8 stortmen.

Figure H-48 . 30° -A specimen.

Figure μ -49 = $\chi_{i}^{(0)}$ = specimen.

Figure H-50 . 30° -C specimen.

I temperate in the second of t

Figure H-52 . 300-E specimen.

Figure H-53. 45⁰-1 specimen.

Figure H-54, 467, coastines

Figure H-55. $26^{O_{+}}$ concurren

Figure H S6. 44. 1 specimer.

Figure H-57. 45°-5 specimen.

Figure H-58. 450-6 specimen.

Figure H-59. 45⁰-7 specimen.

Figure H-60. At - specimen.

Figure H-61. 45° -A specimen.

Alternative process of the contraction of the contr

Figure H-63. 450-C specimen.

Them of Habita Billian and Society

Figure H-65. 45°-E snecimen.

Figure H-66 $+0^{9}$ -1 see inen.

Firmer Hand, From Commence

Figure H-68. 60° -3 specimen.

Figure H-69. 60^{0} -4 specimen.

Figure H-70. 600-5 specimen.

to paper H-71 - Addison specimens

Figure H-72. 60° -7 specimen.

figure H-73. 60°-8 specimen.

Figure H-74. 60° -A specimen.

+ igure 4-75. 60°-8 - (an isjen.

Figure H-76. 60° -C specimen.

Figure 4-77. 60°-2 speciess.

Figure H-78. 60°-1 specimen.

APPENDIX I

This appendix contains the ultimate load data for each specimen obtained by testing to failure.

TABLE I-1. 0° WRAP ANGLE ULTIMATE STRENGTH TEST DATA

	
SPECIMEN NUMBER	ULTIMATE LOAD
1	5530 LB
2	4880 LB
3	7505 LB
4	6545 LB
5	6225 LB
6	6805 LB
7	6715 LB
8	5225 LB
A	8935 LB
В	8380 LB
С	9805 LB
D	9230 LB
E	9325 LB

=9135 LB

MAXIMUM PERCENT DIFFERENCE OF UNFLAWED SPECIMENS' ULTIMATE LOAD

= 15.59%

TABLE I-2. + 15° WRAP ANGLE ULTIMATE STRENGTH TEST DATA

SPECIMEN NUMBER	ULTIMATE LOAD
SI ECHIEN NONDER	OZTIMATE 2011
1	5190 LB
2	5055 LB
3	5400 LB
4	4640 LB
5	5285 LB
6	4630 LB
7	5490 LB
8	4725 LB
Α	5545 LB
В	5320 LB
С	5290 LB
D	5445 LB
E	5225 LB

=<u>5365 LB</u>

MAXIMUM PERCENT DIFFERENCE OF UNFLAWED SPECIMENS' ULTIMATE LOAD

= <u>5.96%</u>

TABLE I-3. + 200 WRAP ANGLE ULTIMATE STRENGTH TEST DATA

SPECIMEN NUMBER	ULTIMATE LOAD
1	4780 LB
2	4285 LB
3	4605 LB
4	4295 LB
5	4665 LB
6	4365 LB
7	4680 LB
8	4075 LB
A	4790 LB
В	4885 LB
С	4715 LB
D	4305 LB
E	4610 LB

= 4661 LB

MAXIMUM PERCENT DIFFERENCE OF UNFLAWED SPECIMENS' ULTIMATE LOAD

= 5.90%

TABLE I-4. \pm 30° WRAP ANGLE ULTIMATE STRENGTH TEST DATA

SPECIMEN NUMBER	ULTIMATE LOAD
1	3735 LB
2	3310 LB
3	3475 LB
4	2960 LB
5	3545 LB
6	3270 LB
7	3435 LB
8	3120 LB
Α	3560 LB
В	3785 LB
С	3755 LB
D	3765 LB
E	3720 LB

= <u>3717 LB</u>

MAXIMUM PERCENT DIFFERENCE OF UNFLAWED SPECIMENS' ULTIMATE LOAD

= 6.05%

TABLE I-5 . \pm 45° WRAP ANGLE ULTIMATE STRENGTH TEST DATA

SPECIMEN NUMBER	ULTIMATE LOAD
1	1382 LB
2	1068 LB
3	1284 LB
4	980 LB
5	1382 LB
6	958 LB
7	1382 LB
8	1095 LB
Α	1538 LB
В	1616 LB
С	1635 LB
D	1566 LB
E	1570 LB

= 1585 LB

MAXIMUM PERCENT DIFFERENCE OF UNFLAWED SPECIMENS' ULTIMATE LOAD

= <u>6.11%</u>

TABLE I-6 . + 60° WRAP ANGLE ULTIMATE STRENGTH TEST DATA

SPECIMEN NUMBER	ULTIMATE LOAD
1	287 LB
2	165 LB
3	340 LB
4	137 LB
5	228 LB
6	147 LB
7	378 LB
8	219 LB
Α	594 LB
В	488 LB
С	593 LB
D	563 LB
E	545 LB

= 556.6 LB

MAXIMUM PERCENT DIFFERENCE OF UNFLAWED SPECIMENS' ULTIMATE LOAD

= 19.04%

TABLE I-7. 0° WRAP ANGLE PERCENT DIFFERENCES IN ULTIMATE STRENGTH TEST DATA

SPECIMEN	% DIFFERENCE IN ULTIMATE STRENGTH FROM THE AVERAGE UNFLAWED SPECIMEN ULTIMATE LOAD	% DIFFERENCE IN ULTIMATE STRENGTH DUE TO LOADING ENERGY
-	39.46%	+ 12.48%
2	46.57%	- 12.48%
ε	17.84%	+ 13.66%
7	28.35%	- 13.66%
ស	31.85%	%06'8
9	25.50%	%06°8 +
2	26.49%	+ 24.95%
8	42.80%	- 24.95%

TABLE I-8. + 15⁰ WRAP ANGLE PERCENT DIFFERENCES IN ULTIMATE STRENGTH TEST DATA

SPECIMEN NUMBER	% DIFFERENCE IN ULTIMATE STRENGTH FROM THE AVERAGE UNFLAWED SPECIMEN ULTIMATE LOAD	% DIFFERENCE IN ULTIMATE STRENGTH DUE TO LOADING ENERGY
1	3.26%	+ 2.63%
2	8.22.5	- 2.63%
3	%99' —	+ 15.13%
4	13.51%	- 15.13%
S	1.49%	+ 13.21%
9	13.69%	- 13.21%
7	-2.32%	+ 14.97%
6 0	11.92%	- 14.97%

TABLE I-9 . + 20⁰ WRAP ANGLE PERCENT DIFFERENCES IN ULTIMATE STRENGTH TEST DATA

SPECIMEN NUMBER	% DIFFERENCE IN ULTIMATE STRENGTH FROM THE AVERAGE UNFLAWED SPECIMEN ULTIMATE LOAD	% DIFFERENCE IN ULTIMATE STRENGTH DUE TO LOADING ENERGY
1	-2.55%	+ 10.92%
2	8.06%	- 10.92%
3	1.20%	%96 ['] 9 +
4	7.85%	%96'9 -
ទ	%8580' -	+ 6.64%
9	6.35%	- 6.64%
7	407%	+ 13.82%
œ	12.57%	- 13.82%

TABLE I-10, + 300 WRAP ANGLE PERCENT DIFFERENCES IN ULTIMATE STRENGTH TEST DATA

SPECIMEN NUMBER	% DIFFERENCE IN ULTIMATE STRENGTH FROM THE AVERAGE UNFLAWED SPECIMEN ULTIMATE LOAD	% DIFFERENCE IN ULTIMATE STRENGTH DUE TO LOADING ENERGY
1	4.84%	+ 12.06%
2	10.94%	- 12.06%
3	6.51%	+ 16.00%
4	20.36%	- 16.00%
5	4.62%	+ 8.07%
9	12.02%	- 8.07%
7	7.58%	%09 ⁻ 6 +
80	16.06%	%09 ⁻⁶ –

TABLE I-11. + 45⁰ WRAP ANGLE PERCENT DIFFERENCES IN ULTIMATE STRENGTH TEST DATA

SPECIMEN NUMBER	% DIFFERENCE IN ULTIMATE STRENGTH FROM THE AVERAGE UNFLAWED SPECIMEN ULTIMATE LOAD	% DIFFERENCE IN ULTIMATE STRENGTH DUE TO LOADING ENERGY
1	12.80%	+ 25.63%
2	32.61%	- 25.63%
3	18.99%	+ 26.85%
4	38.17%	- 26,85%
S	12.80%	+ 36.23%
9	%9 <u>9</u> 76£	- 36.23%
7	12.80%	+ 23.17%
89	30.91%	- 23.17%

TABLE I-12 , $+ 60^{\rm O}$ WRAP ANGLE PERCENT DIFFERENCES IN ULTIMATE STRENGTH TEST DATA

SPECIMEN NUMBER	% DIFFERENCE IN ULTIMATE STRENGTH FROM THE AVERAGE UNFLAWED SPECIMEN ULTIMATE LOAD	% DIFFERENCE IN ULTIMATE STRENGTH DUE TO LOADING ENERGY
1	48.43%	+ 53.98%
2	70.35%	- 53.98%
3	38.91%	+ 85.11%
4	%8E ⁻ 34%	- 85.11%
5	%20'65	+ 43.20%
9	73,58%	- 43.20%
7	32.08%	+ 53.26%
8	60.65%	- 53.26%

APPENDIX J

This appendix contains a summary of the ultimate failure load for the test specimens.

Figure J-1. Ultimate failure load versus wrap angle for unflawed tensile specimens.

IABLE J-1. ULTIMATE FAILURE LOADS OF TENSILE SPECIMENS DYNAMICALLY IMPACTED WITH 41.184 IN-LB OF ENERGY

WRAP		SPECII	UNFLAWED			
ANGLE	1 JASJ	3	5	7	AVG. LOAD	8%
00	5530	7505	6225	6715	9135	15.59%
15 ⁰	5190	5400	5 285	5490	53 65	5.96
20°	4780	4605	4665	4680	4661	5.90
30°	3735	3475	3545	3435	3717	6.05
45 ⁰	1382	1284	1382	1382	1585	6.11
60°	287	340	228	378	556.6	14.04

TABLE J-2 . ULTIMATE FAILURE LOADS OF TENSILE SPECIMENS DYNAMICALLY IMPACTED WITH 87.264 IN-LB OF ENERGY

WRAP		- SPECII	UNFLAWED			
ANGLE	1 JASJ	3	5	7	AVG. LOAD	8%
0°	4880	6545	6805	5225	9135	15.59
15 ⁰	5055	4640	4630	4725	5365	5.96
20 ⁰	4285	4295	4365	4075	4661	5.90
30°	3310	2960	3270	3120	3717	6.05
45 ⁰	1068	980	958	1095	1585	6.11
60°	165	137	147	219	556.6	14.04

TABLE J-3. PERCENT DECREASE IN ULTIMATE FAILURE LOAD FOR TENSILE SPECIMENS DYNAMICALLY IMPACTED WITH 41.184 IN-LB OF ENERGY

WRAP	Ī	SPECIMEN NUMBER							
ANGLE	1	3	5	7					
00	39.46	17.84	31.85	26.49					
15 ⁰	3.26	65	1.49	- 2,32					
20°	- 2.55	1.20	0858	407					
30°	4.84	6.51	4,62	7.58					
45°	12.80	18,99	12.80	12.80					
60°	48.43	38,91	59.03	32.08					

TABLE J-4. PERCENT DECREASE IN ULTIMATE FAILURE LOAD FOR TENSILE SPECIMENS DYNAMICALLY IMPACTED WITH 87.264 IN-LB OF ENERGY

WRAP		- SPECIMEN	NUMBER-	
ANGLE	2	4	6	8
00	46.57	28.35	25.50	42.80
15 ⁰	5.77	13.51	13.69	11.92
20 ⁰	8.06	7.85	6.35	12.57
30°	10.94	20.36	12.02	16.06
45°	32.61	38.17	39.55	30.91
60°	70.35	75.38	73.58	60.65

TABLE J-5. PERCENT DECREASE IN ULTIMATE FAILURE LOAD FOR TENSILE SPECIMENS LOADED WITH 87.264 IN-LB OF DYNAMIC IMPACT LOAD VERSUS THOSE LOADED WITH 41.184 IN-LB FOR THE SAME TYP FLOW TYPE FLAW TYPE

		- SPECIMENS	NS -		
ANGLE	1-2	3-4	2–6	7-8	
00	12.48	13.66	- 8.90	24.95	
150	2.63	15.13	13.21	14.97	
200	10.92	96.9	6.64	13.82	
300	12.06	16.00	8.07	9.60	
45°	25.63	26.85	36.23	23.17	
909	53.98	85.11	43.20	53.26	
					_

APPENDIX K

This appendix contains a summary of the laser speckle interferometry data.

TABLE K-1 . AVERAGE VALUES OF B FOR ALL THE FLAWED UPUCIMEN CONDITIONS EXAMINED (B1)

909	2.806	2.729	2.632	2.684	2.712
45°	.700	.471	.439	.476	.521
30 ₀	414	696.	380	.430	398
20 ₀	376	.332	.358	.416	.370
150	0EE'	.243	.240	.269	.270
00	.336	.178	.164	.146	.206
ANGLE	00	100	200	300	AVERAGES =
	0° 15° 20° 30° 45°	.336 .330 .376 .414 .700	.336 .330 .376 .414 .700 .178 .243 .332 .369 .471	.336 .330 .376 .414 .700 .178 .243 .332 .369 .471 .164 .240 .358 .380 .439	.336 .330 .376 .414 .700 .178 .243 .332 .369 .471 .164 .240 .358 .380 .439 .146 .269 .416 .430 .476

TABLE K-2 . VALUES OF ${\tt B}$ FOR ALL THE UNFLAWED SPECIMEN CONDITIONS EXAMINED (\$2)

SPECIMEN ROTATION			WRAP	ANGLE		
ANGLE	00	15 ⁰	20°	30°	45°	60°
00	.253	.297	.450	.371	.705	.710
10°	.165	.222	.355	.174	.837	.333
20°	.165	.266	.357	.230	.866	.319
30°	.208	.232	.307	.245	.888	.436
AVERAGES =	.791	.452	.367	.255	.824	.449

TABLE K-3 . AVERAGE ULTIMATE FAILURE LOADS OF SPECIMENS

WRAP ANGLE	AVERAGE FAILURE LOAD OF FLAWED SPECIMENS L ₁ (LBS)	AVERAGE FAILURE LOAD OF UNFLAWED SPECIMENS L ₂ (LBS)	^L 1 L ₂
00	6178	9135	.676
15 ⁰	5051	5365	.941
20°	4468	4661	.958
30°	3356	3717	.902
45°	1191	1585	.751
60°	237	556	.426

Figure K-1. B2 versus wrap angle.

TABLE K-4. COMPARISON OF △B AND △L DATA OBTAINED FROM TABLES 67 AND 68

WRAP ANGLE	βη	ξ	2 _θ ι _{θ=θ∇}	47	٦,	ار2 1-17	7∇ \$∀*-∱
00	.206	.791	.260	6178	9135	929	.384
150	.270	.452	.597	5051	5365	.941	.634
200	.370	.367	1.008	4468	4661	926.	1.052
300	.398	.255	1.560	3326	3717	206.	1.729
450	.521	.824	.632	1191	1585	751	.841
909	2.712	.449	6.040	237	556	.426	14.178
ADJUSTED 45°	.521	272	1.915	1191	1585	.751	2.549

Figure K-2. ΔB versus wrap angle. ΔL

LIST OF SYMBOLS

Symbol	Definition
Α	Cross-sectional area of tensile specimen
2d	Fringe spacing
2d _H	Horizontal fringe spacing
2d _V	Vertical fringe spacing
Eij	Compressive stiffness
$E_{\mathbf{i}\mathbf{j}}^T$	Tensile stiffness
Gij	Shear stiffness
D	Analyzer screen coordinate
f	Interferogram to analyzer screen spacing
L	Specimen load
n	Fringe Order
N	Interferogram plate locations
\overline{N}	Number of interferogram data samples
ΔΡ	Net gage pressure change
r	Interferogram plate location
\$	Film scale factor
S _{ij}	Ultimate shear strength
Т	Tensile Load
u	Quadratic term of least squares curve fit
U_{Θ}	Displacement in the θ direction
U _H	Horizontal displacement
U _V	Vertical displacement
V	Linear term of least squares curve fit
W	Constant term of least squares curve fit
×	Interferogram coordinate

SYMBOLS (Concluded)

Symbol .	<u>Definition</u>
χ ^c	Compressive ultimate strength
x_i^T	Tensile ultimate strength
Y	Least squares curve fit for β
β	Interferogram fringe order gradient
δ	Least squares difference
E	Absolute strain
θ	Rotator angle
λ	Wavelength of light from laser
vij VI Vii	Poisson's ratio in compression
vii	Poisson's ratio in tension

REFERENCES

- Smith, D.G., Schaeffel, J. A., "Quantitative Nondestructive Evaluation", Technical Report RL-80-6, U.S. Army Missile Command, October 1979.
- 2. Takeda, N., Sierakowski, R. L., "Localized Impact Problems of Composite Laminates", The Shock and Vibration Digest, Volume 12, No. 8, August 198 p. 3.
- 3. Schaeffel, J. A., "Acoustical Speckle Interferometry," Technical Report T-79-39, US Army Missile R&D Command, 22 March 1979.
- 4. Leendertz, J., "Interferometric Displacement Measurement on Scattering Surfaces Utilizing Speckle Effect," <u>Journal on Physics E</u>, Volume 3, 197 p. 214.
- Mullinix, B. R., Ranson, W. F., Swinson, W.F., and Cost, T. L., "Quantification of Flaws in Fibered Composite Structures Using Inter-Ferometric Fringe Patterns", U.S. Army Missile Command, Redstone Arsena Alabama, 20 April 1976, Technical Report RL-76-18.
- 6. Schaeffel, J. A., "Automated Laser Speckle Interferometry Displacement Contour Analyzer", Technical Report T-79-71, US Army Missile Command Redstone Arsenal, Alabama 2 July 1979.
- 7. Vandiver, T. L., "Flaw Detection and Evaluation of Composite Cylinders
 Using Laser Speckle Interferometry and Holography", Technical Report
 RL-80-7, US Army Missile Command, Redstone Arsenal, Alabama, 23 November 7.
- 8. Smith, D. G., Huang, J. C., <u>Post-Crating Stress Analysis of Glass-Epoxy Laminates</u>, Tennessee Technological University, Dept. of Engineering Science and Mechanics, Cookeville, Tennessee, May 1979, Contract No. DAAK40-78-C-0165.

•	No. of Copies
Defense Documentation Center Cameron Station Alexandria, Virginia 22314	12
Defense Metals Information Center Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201	1
Commander US Army Foreign Science and Technology Center ATTN: DRXST-SD3 220 Seventh Street, NE. Charlottesville, Virginia 22901	1
Office of Chief of Research and Development Department of the Army ATTN: DARD-ARS-P Washington, DC 20301	1
Commander US Army Electronics Command ATTN: DRSEL-PA-P -CT-DT -PP, Mr. Sulkolove Fort Monmouth, New Jersey 07703	1 1 1
Commander US Army Natick Laboratories Kansas Street ATTN: STSNLT-EQR Natick, Massachusetts 01760	. 1
Commander US Army Mobility Equipment Research and Development Center Fort Belyoir, Virginia 22060	1

· .	No. of Copies
Director USA Mobility Equipment Research and Development Center	
Coating and Chemical Laboratory ATTN: STSFB-CL	1
Aberdeen Proving Ground, Maryland 21005	
Commander	
Edgewood Arsenal	_
ATTN: SAREA-TS-A	1
Aberdeen Proving Ground, Maryland 21010	
Commander	•
Picatinny Arsenal ATTN: SARPA-TS-S, Mr. M. Costello	1
Dover, New Jersey 07801	•
Commander *	
Rock Island Arsenal	
Research and Development	
ATTN: 9320	1
Rock Island, Illinois 61201	
Commander	_
Watervliet Arsenal	1
Watervliet, New York 12189	
Commander	
US Army Aviation Systems Command ATTN: DRSAV-EE	1
-MT, Mr. Vollmer	i
St. Louis, Missouri 63166	
Commander	
US Army Aeronautical Depot	_
Maintenance Center (Mail Stop)	1
Corpus Christi, Texas 78403	•
Commander	
UA Army Test and Evaluation Command ATTN: DRSTE-RA	1
Aherdeen Proving Ground, Maryland 21005	•

•	No. of Copies
Commander	
ATTN: STEAP-MT	1
Aberdeen Proving Ground, Maryland 21005	
Chief	
Bureau of Naval Weapons	
Department of the Navy	1
Washington, DC 20390	•
Chief	
Bureau of Ships	
Department of the Navy	_
Washington, DC 20315	1
	•
Naval Research Laboratory	
ATTN: Dr. M.M. Krafft	1
Code 8430	
Washington, DC 20375	•
Commander	
Wright Air Development Division	
ATTN: ASRC	1
Wright-Patterson AFB, Ohio 45433	. '
Director	
Air Force Materiel Laboratory	•
ATTN: AFML-DO-Library	1
Wright-Patterson AFB, Ohio 45433	•
Director	
Army Materials and Mechanics Research Center •	
ATTN: DRXMR-PL	
-MT, Mr. Farrow	1
Watertown, Massachusetts 02172	•
Commander	
White Sands Missile Range	
ATTN: STEWS-AD-L	1
White Sands Missile Range, New Mexico 88002	r

	No. of Copies
Jet Propulsion Laboratory	
California Institute of Technology	
ATTN: Library/Acquisitions 111-113	1
4800 Oak Grove Drive	
Pasadena, California 91103	
Sandia Laboratories	
ATTN: Library	1
P.O. Box 969	
Livermore, California 94550	
Commander	
US Army Air Defense School	
ATTN: 'ATSA-CD-MM	1
Fort Bliss, Texas 79916	
Technical Library	
Naval Ordnance Station	1
Indian Head, Maryland 20640	
Commander	
US Army Materiel Development and Readiness Command	_
ATTN: DRCMT	1
Washington, DC 20315	
Headquarters	•
SAC/NRI (Stinfo Library)	1
Offutt Air Force Base, Nebraska 68113	
Commander	
Rock Island Arsenal	•
ATTN: SARRI-KLPL-Technical Library	1
Rock Island, Illinois 61201	
Commander (Code 233)	
Naval Weapons Center	
ATTN: Library Division	3
China Lake, California 93555	
Department of the Army	
US Army Research Office	
ATTN: Information Processing Office	1
P.O. Box 12211	
Research Triangle Park, North Carolina 27709	

DISTRIBUTION (Concluded)

	No. of Copies
Commander	
US Army Research Office	_
ATTN: DRXRO-PW, Dr. R. Lontz	2
P.O. Box 12211	
Research Triangle Park, North Carolina 27709	
US Army Research and Standardization Group (Europe)	
ATTN: DRXSN-E-RX, Dr. Alfred K. Nodoluha	2
Box 65	
FPO New York 09510	
Headquarters	
Department of the Army Office of the DCS for Research	
Development and Acquisition	
Room 3A474, The Pentagon	
ATTN: DAMA-ARZ	2
Washington, DC 20310	_
Tradining to the cool of	
US Army Materiel Systems Analysis Activity	
ATTN: DRXSY-MP	1
Aberdeen Proving Ground, Maryland 21005	
IIT Research Institute	
ATTN: GACIAC	1
10 West 35th Street	•
Chicago, Illinois 60616	
ADTC (DLDSL)	
Eglin Air Force Base, Florida 32542	1
University of California	
Los Alamos Scientific Laboratory	
ATTN: Reports Library	1
P.O. Box 1663	
Los Alamos, New Mexico 87545	
Commander	
US Army Materiel Development and Readiness Command	
ATTN: DRCRD	1
DRCDL	1
5001 Eisenhower Avenue	
Alexandria, Virginia 22333	
Director	
Defense Advanced Research Projects Agency	1
1400 Wilson Boulevard	•
Arlington Virginia 22200	

DISTRIBUTION Concluded)

	No. of Copies
DRSMI-LP, Mr. Voigt	1
-R, Dr. McCorkle	1
-RL, Mr. Comus	1
-RLA, Mr. Pettey	1
Mr. Schaeffel	50

