Using the ideal parameters

Nontino	Logic	AND	Crate
Negative	Logic	7-11-1	Clare

A	B	Vo
V(0)	V(0)	-V(0)
V(0)	VCI)	V(0)
VO	V(0)	V(0)
		V(1)

Steal Panameters

D= 100 = 19

$$A = V(0) = 5V$$

$$A = V(0) = 5V$$
 $B = V(0) = 5V$

Putting the ideal parameters, i.e.
$$R = 2.2 \text{ K}\Omega = 2200 - \Omega$$

$$R_s = 50_12$$
 and $R_f = 100_12$

$$\dot{\lambda} = \frac{5 - 0.6}{2200 + \frac{100}{2} + \frac{50}{2}}$$

$$= 1.93 \text{ m A}$$

Since connected to ground,

$$V_0 = iR = 1.93 \times 2.2 = 4.246 V = V(0)$$

$$B = V(1) = 0V$$

Here, Di is in forward bias and Do in reverse bias . V+ 11+ 2-

5y + 0g + y

Applying KVL, $-5 + iR_{5} + iR_{f} + 0.6 + iR = 0$ $\Rightarrow i(R_{5} + R_{f} + R_{5}) = 5 - 0.6$ $\Rightarrow i = \frac{5 - 0.6}{R_{5} + R_{f} + R_{5}}$ 5 - 0.6

= 1000 + 50 + 2200

i = 1.87 mA

So,

$$V_0 = iR = 1.87 \times 2.2$$

 $= 4.114$
 $= V(0)$
Case 3:
 $A = V(i) = 0V$
 $B = V(0) = 5V$
Di is in Reverse bias & D2
in Forward bias
 R_S
 R_S

Transistorized NOT Conte Case 4 % A = OV = V(I)B = OV = V(1) Here, both D, & D2 are in reverse bias. Rs $V_0 = 0V = V(1)$ (0) V = V 2.0 = V Case 1: V: = 0.2V = V(0) Using Superposition Theorem. (e.a) - 001 + (c1-) - 21 = 4V