Lista 1

Probabilidade I

2025-1

Deve escolher exatamente 5 exercícios para entregar, dos quais pelo menos três devem ser dos exercícios marcados com (*) e os outros dois devem ser um de cada semana. Tem até o dia 30 de Março até as 23.59 para enviar a lista. Entrega em LATEX é desejável mas não obrigatória. Enviar no e-mail bruno.andrades@impa.br com o assunto "Lista 1 - [SEU NOME] - Prob I". Pode responder em inglês, espanhol ou português.

Semana 1

1. Sejam (\mathcal{F}, Ω) e (\mathcal{F}', Ω') dois espaços mensuráveis, Q uma medida de probabilidade em (\mathcal{F}', Ω') e $\{\mathbb{P}_{\omega}\}_{\omega\in\Omega'}$ medidas de probabilidade em (\mathcal{F},Ω) tal que para cada $A\in\mathcal{F}$ a aplicação $\omega\mapsto\mathbb{P}_{\omega}(A)$ seja mensurável. Prove que

$$\mathbb{P}(A) := \int_{\Omega'} \mathbb{P}_{\omega}(A) \, dQ(\omega)$$

define uma probabilidade em (\mathcal{F}, Ω)

2. Dado $n \in \mathbb{N}$ fixo, um vetor $s = (s_0, \dots, s_n) \in \mathbb{Z}^{n+1}$ é dito um caminho simples de tamanho nse $s_0=0$ e $|s_k-s_{k-1}|=1$ para todo $k\in[n]$. Seja $(\Omega,\mathcal{P}(\Omega))$ o espaço de todas as caminhadas simples de tamanho 2n com a medida uniforme \mathbb{P} . Prove que para todo $k \in [n]$

$$\mathbb{P}(\{s : \max s_i > 2k - 1\}) = 2\mathbb{P}(\{s : s_{2n} > 2k - 1\})$$

3. (*) Seja $\Omega = C[0,1]$ o espaço das funções continuas reais em [0,1], considere os Borelianos $\mathcal B$ induzidos pela norma $||\cdot||_{\infty}$. E seja

1

$$\mathcal{A} := \sigma\left(\left\{X_t^{-1}(B) : t \in [0, 1], \ B \in \mathcal{B}(\mathbb{R})\right\}\right)$$

a sigma álgebra gerada pelas preimagens das projeções $X_t(\omega) = \omega(t)$.

- (a) Prove que A = B
- (b) Mostre que os seguintes conjuntos são \mathcal{A} -mensuráveis

 - $\begin{array}{l} \text{i. } \left\{\omega \in \Omega: \omega(1/2) \geq 0\right\} \\ \text{ii. } \left\{\omega \in \Omega: \omega \geq 0\right\} \\ \text{iii. } \left\{\omega \in \Omega: \int_{[0,1]} \omega(t) \, dt \geq 0\right\} \\ \end{array}$
- 4. (*) Mostre que se $\mathbb{E}[X_1^-] < \infty$ e $X_n \nearrow X$ então $\mathbb{E}X_n \nearrow \mathbb{E}X$

- 5. Seja $X \ge 0$ uma variável aleatória. Prove que
 - (a) $\lim_{y \to \infty} y \mathbb{E}\left(\frac{1}{X} \mathbb{1}_{[X>y]}\right) = 0$
 - (b) $\lim_{y\to 0^+} y\mathbb{E}\left(\frac{1}{X}\mathbb{1}_{[X>y]}\right) = 0$
- 6. **(*)** Dada X uma variável aleatória real. Definimos $F:\mathbb{R}\to [0,1]$ por $F(x)=\mathbb{P}(X\leq x)$. Prove que
 - (a) F é não decrescente
 - (b) $\lim_{x\to\infty} F(x) = 1$
 - (c) $\lim_{x\to-\infty} F(x) = 0$
 - (d) F é contínua pela direita
 - (e) F é descontínua em x_0 se e somente se $\mathbb{P}(X=x_0)>0$
 - (f) A função $F^{-1}(y):=\inf\{x\in\mathbb{R}:F(x)\geq y\}$ definida em (0,1) é não decrescente, contínua pela esquerda e satisfaz $F^{-1}(F(X))=X$ quase certamente
- 7. Prove as seguintes desigualdades
 - (a) (Designaldade de Markov) Seja $X \geq 0$ uma variável aleatória. Prove que para todo t>0

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}X}{t}$$

(b) (Desigualdade de Chebyshev) Dado $X \in L^2(\mathbb{P})$, definimos $\operatorname{Var} X = \mathbb{E}\left[(X - \mathbb{E}X)^2\right]$. Prove que $\operatorname{Var} X < \infty$ e se t > 0 então

$$\mathbb{P}(|X - \mathbb{E}X| \ge t) \le \frac{\operatorname{Var} X}{t^2}$$

8. O objetivo do seguinte exercício é provar alguns teoremas determinísticos via métodos probabilísticos. Seja \mathcal{G}_n é a família dos grafos com conjunto de vértices [n]. Para cada $n \in \mathbb{N}$ e $p \in (0,1)$ defina a função

$$\mu_{n,p}:\mathcal{G}_n\to[0,1]$$

por

$$\mu_{n,p}(G) = p^{e(G)} (1-p)^{\binom{n}{2} - e(G)}$$

onde e(G) é o número de arestas de G.

- (a) Prove que para todo $n\in\mathbb{N}$ e $p\in(0,1)$ temos que μ define uma medida de probabilidade em $(\mathcal{G}_n,\mathcal{P}(\mathcal{G}_n))$
- (b) Seja $e: \mathcal{G}_n \to \mathbb{Z}_{\geq 0}$ definida como antes. Prove que $e \sim \text{Bin}\left(\binom{n}{2}, p\right)$, i.e.

$$\mathbb{P}(e=k) = \binom{\binom{n}{2}}{k} p^k (1-p)^{\binom{n}{2}-k}$$

calcule $\mathbb{E}[e]$ e Var(e).

- (c) Dizemos que (v_1,\cdots,v_k) é um C_k em G se $v_1,\cdots,v_k\in V(G)$ são distintos dois a dois e $v_1v_2,v_2v_3,\cdots,v_{k-1}v_k,v_kv_1\in E(G)$, além disso, dizemos que dois C_k são o mesmo se as arestas coincidem. Seja $X_k:\mathcal{G}_n\to\mathbb{Z}_{\geq 0}$ a função tal que $X_k(G)$ seja o número de C_k em G. Escolha um valor de $p=p(n)\in (0,1)$ tal que
 - $\mathbb{E}X_k = O(n)$
 - $\mathbb{E}[e] = \Theta\left(n^{1+1/k}\right)$

concluir que existe c>0 tal que para todo n existem grafos com $e(G)\geq cn^{1+1/k}$ arestas e sem nenhum C_k .

(Dica: Utilize Markov e Chebyshev para provar que existem grafos que satisfazem as duas propriedades no mesmo tempo, e de algum desses grafos obtenha o grafo sem C_k)

Observação 1. O máximo numero de arestas de um grafo de n vértices que não tem nenhum C_k é denotado por $\operatorname{ex}(n,C_k)$. É um problema aberto calcular asintóticamente $\operatorname{ex}(n,C_{2k})$, a ordem exata é só sabida para k=2,3,5. O que acabamos de provar é que existe um c>0 tal que

$$ex(n, C_{2k}) > cn^{1+1/2k}$$

é sabido também que existe C>0 tal que

$$ex(n, C_{2k}) \le Cn^{1+1/k}$$

a conjetura de Erdős-Simonovits diz que

$$\mathbf{ex}(n, C_{2k}) = \Theta\left(n^{1+1/k}\right)$$

e é um dos problemas mais importantes da teoria extremal de grafos

(d) Prove que para todo $k \in \mathbb{N}$ grande suficiente existem grafos em $n \geq \frac{k}{\sqrt{2}e} 2^{k/2}$ vértices sem nenhum conjunto de k vértices tais que estejam todos conectados ou todos desconectados.

(Dica: Considere $\mu_{n,1/2}$ e calcule a esperança do número de conjuntos dessa forma. Pode usar sem provar que para todo n,k temos $\binom{n}{k} \leq (en/k)^k$.)

Observação 2. O mínimo número de vértices n tal que todo grafo de n vértices tem um conjunto dessa forma, é chamado o número de Ramsey de k denotado por R(k). O que acabamos de provar é que

$$R(k) \ge \frac{k}{\sqrt{2}e} 2^{k/2}$$

para todo k grande suficiente, isso foi provado por Erdős em 1947 e foi o primeiro uso do que hoje é conhecido como método probabilístico. Um argumento simples prova que $R(k) \leq 4^k$ para tudo k. No ano 2023 foi feita a primeira melhora exponencial ao limitante superior por Campos (IMPA), Griffits (PUC-Rio), Morris (IMPA) e Sahasrabudhe (Cambridge) que provaram

$$R(k) \le 3.995^k$$

e refinando seus métodos Gupta, Ndiaye, Norin e Wei provaram em 2024 que

$$R(k) \le 3.8^k$$

nenhuma melhora exponencial foi feita no limitante inferior; a única melhora foi por um fator de 2 por Spencer no ano 1975. Hoje em dia, os melhores limitantes são

$$(1+o(1))\frac{\sqrt{2k}}{e}2^{k/2} \le R(k) \le 3.8^k$$

 $\acute{\mathsf{E}}$ um problema aberto determinar se existe um $c \in \mathbb{R}$ tal que

$$\lim_{k} \sqrt[k]{R(k)} = c$$

Semana 2

- 1. Seja $h:\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0}$ uma função absolutamente contínua tal que $h'\geq 0$ e h(0)=0. Dado $X\geq 0$ uma variável aleatória
 - (a) Prove que

$$\mathbb{E}[h(X)] = \int_0^\infty h'(t) \mathbb{P}(X \ge t) dt$$

(b) Conclua que se X assume valores em $\mathbb{Z}_{>0}$ então

$$\mathbb{E}\left[X^2\right] = \mathbb{E}X + 2\sum_{n \geq 0} n\mathbb{P}(X > n)$$

2. Seja $(X_n)_n$ uma sequencia de variáveis aleatórias reais tais que para todo $B \in \mathcal{B}(\mathbb{R}^n)$ temos $\mathbb{P}((X_1,\cdots,X_n)\in B)=\lambda^n(B\cap[0,1]^n)$ onde λ^n é a medida de Lebesgue em \mathbb{R}^n . Seja

$$N = \min\{n : X_1 + \dots + X_n > 1\}$$

calcule $\mathbb{E}[N]$ e $\mathbb{E}\left[N^2\right]$

- 3. Seja X uma variável aleatória tal que $0 < \mathbb{E}[X^2] < \infty$. Mostre que se t > 0 e $a \in (0,1)$ então
 - (a) $\mathbb{P}(X \neq 0) \ge \frac{\mathbb{E}[X]^2}{\mathbb{E}[X^2]}$
 - (b) $\mathbb{P}(X \mathbb{E}X \ge t) \le \frac{\operatorname{Var} X}{\operatorname{Var} X + t^2}$
 - (c) Se $X \geq 0$ então $\mathbb{P}(X \geq a\mathbb{E}X) \geq (1-a)^2 \frac{\mathbb{E}[X]^2}{\mathbb{E}[X^2]}$

- 4. **(*)** Dada uma variável aleatória real X, dizemos que $m \in X$ é uma mediana de X se $\mathbb{P}(X \ge m) \ge 1/2$ e $\mathbb{P}(X \le m) \ge 1/2$. Prove que
 - (a) Toda variável aleatória real possui uma mediana
 - (b) Se $X \in L^1(\mathbb{P})$ então m é mediana se e somente se minimiza $\mathbb{E}|X-m|$
 - (c) Prove que se $X \in L^1(\mathbb{P})$ então para qualquer m mediana temos

$$|\mathbb{E}X - m| \le \sqrt{\operatorname{Var}X}$$

 $(\operatorname{Var} X \text{ poderia ser infinito})$

- (d) Mostre que o conjunto de medianas de X é um intervalo
- (e) Seja $m_+(X)$ o supremo das medianas de X. Prove que $m_+(X) < \infty$ e que $m_+(X)$ é uma mediana
- (f) Seja $f:\mathbb{R} \to \mathbb{R}$ convexa. Prove que para qualquer mediana m de X temos

$$f(m) \le m_+(f(X))$$

- 5. (*) O objetivo desse exercício é definir e estudar a função geradora de momentos
 - (a) Mostre que existe r>0 tal que $\mathbb{E}e^{\lambda X}<\infty$ para todo $\lambda\in(-r,r)$ se e somente se

$$\limsup_{p} \frac{||X||_{p}}{p} < \infty$$

(b) Prove que supondo as condições do item anterior temos para todo $\lambda \in (-r,r)$

$$\mathbb{E}e^{\lambda X} = \sum_{p\geq 0} \frac{\lambda^p \mathbb{E}\left[X^p\right]}{p!}$$

(c) Conclua que nesta situação

$$\left. \frac{d^p}{d\lambda^p} \mathbb{E}e^{\lambda X} \right|_{\lambda=0} = \mathbb{E}\left[X^p\right]$$

- 6. (Desigualdades de Chernoff) Seja X uma variável aleatória real tal que $M(t)=\mathbb{E}e^{tX}$ é finito em uma vizinhança (-r,r) com r>0.
 - (a) Prove que para tudo $a \in \mathbb{R}$ temos

$$\mathbb{P}(X \ge a) \le \inf_{t \in (0,r)} M(t)e^{-ta}$$
$$\mathbb{P}(X \le a) \le \inf_{t \in (-r,0)} M(t)e^{-ta}$$

(b) Mostre que se $X \sim \text{Bin}(n,p)$ e $\delta \in (0,1)$ então

$$\mathbb{P}(X \ge (1+\delta)\mathbb{E}X) \le \exp(-\delta^2 \mathbb{E}X/3)$$

$$\mathbb{P}(X \le (1-\delta)\mathbb{E}X) \le \exp(-\delta^2 \mathbb{E}X/2)$$

$$\mathbb{P}(|X - \mathbb{E}X| \ge \delta \mathbb{E}X) \le 2 \exp(-\delta^2 \mathbb{E}X/3)$$

7. Seja $\mu_{n,p}$ definido como no item (8) da semana 1. Prove que se $p=p(n)>\frac{2\log n}{n}$ então se $\varepsilon>0$ temos

$$\mu_{n,p}(\{G \in \mathcal{G}_n : (1-\varepsilon)pn \le \deg i \le (1+\varepsilon)pn, \ \forall i \in [n]\}) \to 1$$

8. Seja $X \in \mathbb{R}^d$ um vetor aleatório. Defina para $\xi \in \mathbb{R}^d$

$$\Phi_X(\xi) = \mathbb{E}\left[e^{i\langle \xi, X\rangle}\right]$$

prove que

- (a) $e^{i\langle \xi, X \rangle} \in L^1(\mathbb{P})$
- (b) Se $A \in \mathbb{R}^{p \times d}$ e $b \in \mathbb{R}^p$ então

$$\Phi_{AX+b}(\xi) = e^{i\langle \xi, b \rangle} \Phi_X(A^T \xi)$$

(c) Suponha que $Z \sim \mathcal{N}(0, \sigma^2)$ e que X_i são i.i.d com $\mathbb{E} X_i = \mu$ e $\mathrm{Var}\, X_i = \sigma^2$. Seja além disso

$$Y_n = \frac{\sum_{j=1}^n X_j - n\mu}{\sqrt{n}}$$

prove que para todo $\xi \in \mathbb{R}$

$$\Phi_{Y_n}(\xi) \to \Phi_Z(\xi)$$

(Dica: Calcule Φ_Z e Φ_{Y_n} separadamente. Para calcular Φ_{Y_n} use que a esperança é multiplicativa para variáveis aleatórias independentes e o teorema de Taylor)

Observação 3. O teorema de Lévy diz que se $\Phi_{X_n} \to \Phi_X$ pontualmente, então $X_n \xrightarrow{(d)} X$. Em particular, o que acabamos de provar, junto com o teorema de Lévy, da uma prova do teorema central do limite

9. Sejam $(X_n)_{n\geq 1}$ variáveis aleatórias i.i.d. com

$$\mathbb{P}(X_i = 1) = p$$

$$\mathbb{P}(X_i = -1) = 1 - p$$

onde $p \in [0,1]$. Seja

$$S_n = \sum_{i=1}^n X_i$$

 S_n pode ser pensado como uma caminhada aleatória em $\mathbb Z$ de comprimento n com um viés de p de dar um passo na direita.

(a) Dizemos que S_n é transitória se

$$\mathbb{P}(\forall n > 1: S_n \neq 0) > 0$$

prove que se $p \neq 1/2$ então S_n é transitória

(Dica: Use o exercício (6.b) dessa semana)

(b) Prove que se p=1/2 então S_n não é transitória

(Dica: Ache uma fórmula para a probabilidade de que exista $n \in \mathbb{N}$ tal que $\mathbb{P}(S_n = M, S_i \neq 0 \ \forall i \in [n])$)

(c) Prove que para todo $\varepsilon > 0$ temos

$$\mathbb{P}\left(|S_n - \mathbb{E}S_n| \le n^{1/2 + \varepsilon}\right) \to 1$$