Développements limités usuels en 0

$$\begin{array}{lll} \mathbf{e}^{x} & = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \cdots + \frac{x^{n}}{n!} + \mathrm{O}\left(x^{n+1}\right) \\ \mathbf{sh} \; x & = x + \frac{x^{3}}{3!} + \cdots + \frac{x^{2n+1}}{(2n+1)!} + \mathrm{O}\left(x^{2n+3}\right) \\ \mathbf{ch} \; x & = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots + \frac{x^{2n}}{(2n)!} + \mathrm{O}\left(x^{2n+2}\right) \\ \mathbf{sin} \; x & = x - \frac{x^{3}}{3!} + \cdots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + \mathrm{O}\left(x^{2n+3}\right) \\ \mathbf{cos} \; x & = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots + (-1)^{n} \frac{x^{2n}}{(2n)!} + \mathrm{O}\left(x^{2n+2}\right) \\ (1 + x)^{\alpha} \; = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} \; x^{2} + \cdots + \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!} \; x^{n} + \mathrm{O}\left(x^{n+1}\right) \\ \mathbf{ln}(1 - x) \; = -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} - \cdots - \frac{x^{n}}{n} + \mathrm{O}\left(x^{n+1}\right) \\ \mathbf{ln}(1 - x) \; = -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} - \cdots + (-1)^{n} \frac{x^{n}}{n} + \mathrm{O}\left(x^{n+1}\right) \\ \mathbf{ln}(1 + x) \; = \; x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \cdots + (-1)^{n-1} \frac{x^{n}}{n} + \mathrm{O}\left(x^{n+1}\right) \\ \sqrt{1 + x} \; = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \cdots + (-1)^{n-1} \frac{1 \times 3 \times \cdots \times (2n - 3)}{2 \times 4 \times \cdots \times 2n} x^{n} + \mathrm{O}\left(x^{n+1}\right) \\ \frac{1}{\sqrt{1 + x}} \; = 1 - \frac{x}{2} + \frac{3}{8} x^{2} - \cdots + (-1)^{n} \frac{1 \times 3 \times \cdots \times (2n - 1)}{2 \times 4 \times \cdots \times 2n} x^{n} + \mathrm{O}\left(x^{n+1}\right) \\ \mathbf{Arctan} \; x \; = x - \frac{x^{3}}{3} + \cdots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + \mathrm{O}\left(x^{2n+3}\right) \\ \mathbf{Argth} \; x \; = x + \frac{1}{2} \frac{x^{3}}{3} + \cdots + (-1)^{n} \frac{1 \times 3 \times \cdots (2n - 1)}{2 \times 4 \times \cdots \times 2n} \frac{x^{2n+1}}{2n+1} + \mathrm{O}\left(x^{2n+3}\right) \\ \mathbf{Argsh} \; x \; = x - \frac{1}{2} \frac{x^{3}}{3} + \cdots + (-1)^{n} \frac{1 \times 3 \times \cdots (2n - 1)}{2 \times 4 \times \cdots \times 2n} \frac{x^{2n+1}}{2n+1} + \mathrm{O}\left(x^{2n+3}\right) \\ \mathbf{th} \; x \; = x - \frac{x^{3}}{3} + \frac{2}{15} x^{5} - \frac{17}{315} x^{7} + \mathrm{O}\left(x^{9}\right) \\ \mathbf{tan} \; x \; = x + \frac{1}{2} x^{3} + \frac{2}{15} x^{5} + \frac{17}{215} x^{7} + \mathrm{O}\left(x^{9}\right) \\ \mathbf{tan} \; x \; = x + \frac{1}{2} x^{3} + \frac{2}{15} x^{5} + \frac{17}{215} x^{7} + \mathrm{O}\left(x^{9}\right) \\ \end{array}$$

Développements en série entière usuels

$$e^{ax} = \sum_{n=0}^{\infty} \frac{a^n}{n!} x^n \qquad a \in \mathbb{C}, x \in \mathbb{R}$$

$$\text{sh } x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} \qquad x \in \mathbb{R}$$

$$\mathbf{ch} \ \mathbf{x} \qquad = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \ x^{2n} \qquad x \in \mathbb{R}$$

$$\sin x$$
 = $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ $x \in \mathbb{R}$

$$\cos x \qquad = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \qquad x \in \mathbb{R}$$

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n \quad (\alpha \in \mathbb{R}) \quad x \in]-1;1[$$

$$\frac{1}{a-x} \qquad = \sum_{n=0}^{\infty} \frac{1}{a^{n+1}} x^n \qquad (a \in \mathbb{C}^*) \qquad x \in]-|a|;|a|[$$

$$\frac{1}{(a-x)^2} = \sum_{n=0}^{\infty} \frac{n+1}{a^{n+2}} x^n \qquad (a \in \mathbb{C}^*) \qquad x \in]-|a|;|a|[$$

$$\frac{1}{(a-x)^k} = \sum_{n=0}^{\infty} \frac{C_{n+k-1}^{k-1}}{a^{n+k}} x^n \qquad (a \in \mathbb{C}^*) \qquad x \in]-|a|; |a|[$$

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n$$
 $x \in [-1;1[$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n \qquad x \in]-1;1]$$

$$\sqrt{1+x}$$
 = $1+\frac{x}{2}+\sum_{n=2}^{\infty}(-1)^{n-1}\frac{1\times 3\times \cdots \times (2n-3)}{2\times 4\times \cdots \times (2n)}x^n$ $x\in]-1;1[$

$$\frac{1}{\sqrt{1+x}} = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} x^n \qquad x \in]-1;1[$$

Arctan
$$x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$
 $x \in [-1;1]$

Argth
$$x = \sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1}$$
 $x \in]-1;1[$

$$\mathbf{Arcsin} \ \boldsymbol{x} = x + \sum_{n=1}^{\infty} \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} \ \frac{x^{2n+1}}{2n+1}$$
 $x \in]-1;1[$

Argsh
$$x = x + \sum_{n=1}^{\infty} (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} \frac{x^{2n+1}}{2n+1}$$
 $x \in]-1;1[$

Dérivées usuelles

Fonction		Dérivée	Dérivabilité	
x^n	$n \in \mathbb{Z}$	nx^{n-1}	\mathbb{R}^*	
x^{α}	$\alpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$	\mathbb{R}_+^*	
$e^{\alpha x}$	$\alpha\in\mathbb{C}$	$\alpha e^{\alpha x}$	\mathbb{R}	
a^x	$a \in \mathbb{R}_+^*$	$a^x \ln a$	\mathbb{R}	
$\ln x $		$\frac{1}{x}$	\mathbb{R}^*	
$\log_a x$	$a \in \mathbb{R}_+^* \setminus \{1\}$	$\frac{1}{x \ln a}$	\mathbb{R}^*	
$\cos x$		$-\sin x$	\mathbb{R}	
$\sin x$		$\cos x$	\mathbb{R}	
$\tan x$		$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\mathbb{R} \setminus \left\{ \left. \frac{\pi}{2} + k\pi \right k \in \mathbb{Z} \right\}$	
$\cot x$		$-1 - \cot^2 x = \frac{-1}{\sin^2 x}$	$\mathbb{R} \setminus \pi \mathbb{Z}$	
$\operatorname{ch} x$		$\operatorname{sh} x$	\mathbb{R}	
$\operatorname{sh} x$		$\operatorname{ch} x$	\mathbb{R}	
th x		$1 - \operatorname{th}^2 x = \frac{1}{\operatorname{ch}^2 x}$	\mathbb{R}	
$\coth x$		$1 - \coth^2 x = \frac{-1}{\sinh^2 x}$	\mathbb{R}^*	
Arcsin x		$\frac{1}{\sqrt{1-x^2}}$]-1;1[
Arccos x		$\frac{-1}{\sqrt{1-x^2}}$] -1;1[
$Arctan \ x$		$\frac{1}{1+x^2}$	${\mathbb R}$	
${\rm Argsh}\ x$		$\frac{1}{\sqrt{x^2+1}}$	\mathbb{R}	
${\rm Argch}\ x$		$\frac{1}{\sqrt{x^2 - 1}}$	$]1;+\infty[$	
Argth x		$\frac{1}{1-x^2}$] -1;1[

Primitives usuelles

I Polynômes et fractions simples

Fo	onction	Primitive	Intervalles
$(x-x_0)^n$	$x_0 \in \mathbb{R}$ $n \in \mathbb{Z} \setminus \{-1\}$	$\frac{(x-x_0)^{n+1}}{n+1}$	$n \in \mathbb{N} : x \in \mathbb{R}$ $n \in \mathbb{Z} \setminus (\mathbb{N} \cup \{-1\}) :$ $x \in] -\infty; x_0 [,] x_0; +\infty[$
$(x-x_0)^{\alpha}$	$x_0 \in \mathbb{R}$ $\alpha \in \mathbb{C} \setminus \{-1\}$	$\frac{(x-x_0)^{\alpha+1}}{\alpha+1}$	$]x_0;+\infty[$
$(x-z_0)^n$	$z_0 \in \mathbb{C} \setminus \mathbb{R}$ $n \in \mathbb{Z} \setminus \{-1\}$	$\frac{(x-z_0)^{n+1}}{n+1}$	${\mathbb R}$
$\frac{1}{x-a}$	$a \in \mathbb{R}$	$\ln x-a $	$]-\infty;a[,]a;+\infty[$
$\frac{1}{x - (a + ib)}$	$a\in\mathbb{R},\ b\in\mathbb{R}^*$	$\frac{1}{2}\ln\left[(x-a)^2 + b^2\right] + i \operatorname{Arctan} \frac{x-a}{b}$	${\mathbb R}$

II Fonctions usuelles

Fonction	Primitive	Intervalles
$\ln x$	$x(\ln x - 1)$	$]0;+\infty[$
$e^{\alpha x} \alpha \in \mathbb{C}^*$	$\frac{1}{\alpha}e^{\alpha x}$	\mathbb{R}
$\sin x$	$-\cos x$	\mathbb{R}
$\cos x$	$\sin x$	$\mathbb R$
$\tan x$	$-\ln \cos x $	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$
$\cot x$	$\ln \sin x $	$]k\pi;(k+1)\pi[$
$\operatorname{sh} x$	ch x	$\mathbb R$
$\operatorname{ch} x$	$\operatorname{sh} x$	$\mathbb R$
th x	$\ln(\operatorname{ch} x)$	$\mathbb R$
$\coth x$	$\ln \operatorname{sh} x $	$]-\infty;0[,]0;+\infty[$

III Puissances et inverses de fonctions usuelles

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fonction	Primitive	Intervalles
$\tan^2 x \qquad \tan x - x \qquad \left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$ $\cot^2 x \qquad -\cot x - x \qquad \left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$ $\sinh^2 x \qquad \frac{\sinh^2 x}{4} - \frac{x}{2} \qquad \mathbb{R}$ $\cosh^2 x \qquad \frac{\sinh^2 x}{4} + \frac{x}{2} \qquad \mathbb{R}$ $\coth^2 x \qquad x - \cot x \qquad \left] -\infty; 0 \left[, \right] 0; +\infty \right[$ $\frac{1}{\sin x} \qquad \ln \left \tan \frac{x}{2} \right \qquad \left k\pi; (k+1)\pi \right $ $\frac{1}{\cosh x} \qquad \ln \left \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right \qquad \left -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$ $\frac{1}{\sinh x} \qquad \ln \left \ln \frac{x}{2} \right \qquad \left -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$ $\frac{1}{\sinh x} \qquad \ln \left \ln \frac{x}{2} \right \qquad \left -\infty; 0 \left[, \right] 0; +\infty \right[$ $\frac{1}{\sinh^2 x} = 1 + \cot^2 x \qquad -\cot x \qquad \left k\pi; (k+1)\pi \right[$ $\frac{1}{\cosh^2 x} = 1 + \tan^2 x \qquad \tan x \qquad \left -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$ $\frac{1}{\sinh^2 x} = \coth^2 x - 1 \qquad -\cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot^2 x \qquad \cot^2 x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot^2 x \qquad \cot^2 x \qquad \left -\cot x \qquad \right $ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x \qquad \cot^2 x$	$\sin^2 x$	$\frac{x}{2} - \frac{\sin 2x}{4}$	R
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\cos^2 x$	$\frac{x}{2} + \frac{\sin 2x}{4}$	\mathbb{R}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\tan^2 x$	$\tan x - x$	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\cot^2 x$	$-\cot x - x$	$]k\pi;(k+1)\pi[$
	$\operatorname{sh}^2 x$	$\frac{\sinh 2x}{4} - \frac{x}{2}$	\mathbb{R}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\operatorname{ch}^2 x$	$\frac{\sinh 2x}{4} + \frac{x}{2}$	\mathbb{R}
$\frac{1}{\sin x} \qquad \ln \left \tan \frac{x}{2} \right \qquad \left k\pi; (k+1)\pi \right $ $\frac{1}{\cos x} \qquad \ln \left \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right \qquad \left -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right $ $\frac{1}{\sinh x} \qquad \ln \left \ln \left \frac{x}{2} \right \qquad \left -\infty; 0 \right , \left 0; +\infty \right $ $\frac{1}{\cosh x} \qquad 2 \operatorname{Arctan} e^{x} \qquad \mathbb{R}$ $\frac{1}{\sin^{2} x} = 1 + \cot^{2} x \qquad -\cot x \qquad \left k\pi; (k+1)\pi \right $ $\frac{1}{\cosh^{2} x} = 1 + \tan^{2} x \qquad \tan x \qquad \left -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right $ $\frac{1}{\sinh^{2} x} = \coth^{2} x - 1 \qquad -\cot x \qquad \left -\infty; 0 \right , \left 0; +\infty \right $ $\frac{1}{\sinh^{2} x} = 1 - \tan^{2} x \qquad \cot x \qquad \left -\cot x \right $ $\frac{1}{\sinh^{2} x} = 1 - \tan^{2} x \qquad d \qquad \left k\pi; (k+1)\pi \right $ $\frac{1}{\sin^{4} x} \qquad -\cot x - \frac{\cot x}{3} \qquad \left k\pi; (k+1)\pi \right $ $\frac{1}{\sin^{4} x} \qquad -\cot x - \frac{\cot x}{3} \qquad \left k\pi; (k+1)\pi \right $	$\operatorname{th}^2 x$	$x - \operatorname{th} x$	\mathbb{R}
$ \frac{1}{\cos x} \qquad \ln \left \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right \qquad \left -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right $ $ \frac{1}{\sinh x} \qquad \ln \left \ln \left \frac{x}{2} \right \qquad \left -\infty; 0 \right , \left 0; +\infty \right $ $ \frac{1}{\sinh x} \qquad -\cot x \qquad \left k\pi; (k+1)\pi \right $ $ \frac{1}{\sin^2 x} = 1 + \tan^2 x \qquad \tan x \qquad \left -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right $ $ \frac{1}{\sinh^2 x} = \coth^2 x - 1 \qquad -\cot x \qquad \left -\infty; 0 \right , \left 0; +\infty \right $ $ \frac{1}{\sinh^2 x} = 1 - \tan^2 x \qquad -\cot x \qquad \left -\infty; 0 \right , \left 0; +\infty \right $ $ \frac{1}{\sinh^2 x} = 1 - \tan^2 x \qquad -\cot x \qquad \left -\infty; 0 \right , \left 0; +\infty \right $ $ \frac{1}{\sinh^2 x} = 1 - \tan^2 x \qquad -\cot x \qquad \left -\infty; 0 \right , \left 0; +\infty \right $ $ \frac{1}{\sinh^2 x} = 1 - \tan^2 x \qquad -\cot x \qquad \left -\infty; 0 \right , \left 0; +\infty \right $ $ \frac{1}{\sinh^2 x} = 1 - \tan^2 x \qquad -\cot x \qquad \left -\infty; 0 \right , \left 0; +\infty \right $ $ \frac{1}{\sinh^2 x} = 1 - \tan^2 x \qquad -\cot x \qquad \left -\infty; 0 \right , \left 0; +\infty \right $ $ \frac{1}{\sinh^2 x} = 1 - \tan^2 x \qquad -\cot x \qquad \left -\infty; 0 \right , \left 0; +\infty \right $	$\coth^2 x$	$x - \coth x$	$]-\infty;0[,]0;+\infty[$
$ \frac{1}{\sinh x} \qquad \qquad \ln \left \tan \left(\frac{1}{2} + \frac{1}{4} \right) \right \qquad \left -\frac{1}{2} + k\pi; \frac{1}{2} + k\pi \right \\ \frac{1}{\sinh x} \qquad \qquad \ln \left \ln \left \frac{x}{2} \right \qquad \left -\infty; 0[,]0; +\infty[$ $ \frac{1}{\sinh^2 x} = 1 + \cot^2 x \qquad \qquad -\cot x \qquad \qquad \left k\pi; (k+1)\pi[$ $ \frac{1}{\cosh^2 x} = 1 + \tan^2 x \qquad \qquad \tan x \qquad \left -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi[$ $ \frac{1}{\sinh^2 x} = \coth^2 x - 1 \qquad \qquad -\cot x \qquad \qquad \left -\infty; 0[,]0; +\infty[$ $ \frac{1}{\cosh^2 x} = 1 - \tan^2 x \qquad \qquad -\cot x \qquad \qquad \left -\infty; 0[,]0; +\infty[$ $ \frac{1}{\sinh^2 x} = 1 - \tan^2 x \qquad \qquad \ln \left \ln \left \frac{\pi}{2} + \frac{\pi}{2} \right + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} \right + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} \right + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \ln \left \frac{\pi}{2} + \frac{\pi}{$	$\frac{1}{\sin x}$	$\ln\left \tan\frac{x}{2}\right $	$]k\pi;(k+1)\pi[$
$\frac{1}{\sinh x}$ $\frac{1}{\cosh x}$ $\frac{1}{\cosh x}$ $\frac{1}{\cosh x}$ $\frac{1}{\cosh x}$ $2 \operatorname{Arctan} e^{x}$ R $\frac{1}{\sin^{2} x} = 1 + \cot^{2} x$ $-\cot x$ $\frac{1}{\cos^{2} x} = 1 + \tan^{2} x$ $\tan x$ $\frac{1}{\sinh^{2} x} = \coth^{2} x - 1$ $\frac{1}{\cosh^{2} x} = 1 - \tan^{2} x$ $-\cot x$ $\frac{1}{\sinh^{2} x} = 1 - \tan^{2} x$ $-\cot x$ $\frac{1}{\sinh^{2} x} = 1 - \tan^{2} x$ $-\cot x$ $\frac{1}{\sinh^{2} x} = 1 - \tan^{2} x$ $-\cot x - \cot x$ $\frac{1}{\sinh^{2} x} = 1 - \tan^{2} x$ $-\cot x - \cot x$ $\frac{1}{\sinh^{2} x} = 1 - \tan^{2} x$ $-\cot x - \cot x$ $\frac{1}{\sinh^{2} x} = 1 - \tan^{2} x$ $-\cot x - \cot x$ $\frac{1}{\sinh^{2} x} = 1 - \cot x$ $-\cot x - \cot x$ $\frac{1}{\sinh^{2} x} = 1 - \cot x$ $-\cot x - \cot x$		$\ln\left \tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right $	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$
$\frac{1}{\sin^2 x} = 1 + \cot^2 x$ $-\cot x$ $\frac{1}{\sin^2 x} = 1 + \tan^2 x$ $\frac{1}{\sinh^2 x} = \coth^2 x - 1$ $\frac{1}{\cosh^2 x} = 1 - \tan^2 x$ $\tan x$ $-\cot x$ $\frac{1}{\sinh^2 x} = \coth^2 x - 1$ $\frac{1}{\cosh^2 x} = 1 - \tan^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = -\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$ $-\cot x$ $\frac{1}{\sinh^2 x} = 1 - \cot^2 x$		$\ln\left \operatorname{th}\frac{x}{2}\right $	$]-\infty;0[,]0;+\infty[$
$\frac{1}{\cos^2 x} = 1 + \tan^2 x$ $\tan x$ $\frac{1}{\sinh^2 x} = \coth^2 x - 1$ $\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$ $\frac{1}{\sinh^4 x}$ $\tan x$ $-\coth x$ $\lim_{x \to \infty} \left[-\cos x - \frac{\cos x}{3} \right] - \frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi $ $\lim_{x \to \infty} \left[-\cos x - \frac{\cot x}{3} \right] - \frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi $ $\lim_{x \to \infty} \left[-\cos x - \frac{\cot x}{3} \right] - \frac{\pi}{3} + \frac{\pi}{3} $ $\lim_{x \to \infty} \left[-\cos x - \frac{\cot x}{3} \right] - \frac{\pi}{3} + \frac{\pi}{3} $ $\lim_{x \to \infty} \left[-\cos x - \frac{\cot x}{3} \right] - \frac{\pi}{3} + \frac{\pi}{3} $	$\frac{1}{\operatorname{ch} x}$	2 Arctan e^x	\mathbb{R}
$\frac{1}{\sinh^2 x} = \coth^2 x - 1$ $-\coth x$ $\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$ $\frac{1}{\sin^4 x}$ $-\cot x - \frac{\cot x}{3}$ $\frac{1}{\sin^3 x}$ $\frac{1}{\sinh^3 x}$ $-\cot x - \frac{\cot x}{3}$ $\frac{1}{\sinh^3 x}$ $\frac{1}{\sinh^3 x}$ $\frac{1}{\sinh^3 x}$ $\frac{1}{\sinh^3 x}$	$\frac{1}{\sin^2 x} = 1 + \cot^2 x$	$-\cot x$	$]k\pi;(k+1)\pi[$
$\frac{1}{\cosh^2 x} = 1 - \cosh^2 x$ $\frac{1}{\sin^4 x}$ $-\cot x - \frac{\cot x^3 x}{3}$ $\tan^3 x$ $\lim_{x \to \infty} \pi = \pi$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\tan x$	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$
$\frac{1}{\sin^4 x} \qquad -\cot x - \frac{\cot x^3 x}{3} \qquad]k\pi; (k+1)\pi[$ $\tan^3 x \qquad \exists \pi, \pi$	$\frac{1}{\sinh^2 x} = \coth^2 x - 1$	$-\coth x$	$]-\infty;0[,]0;+\infty[$
1 $\tan^3 x$ π π	$\frac{1}{\operatorname{ch}^2 x} = 1 - \operatorname{th}^2 x$	th x	\mathbb{R}
$\frac{1}{\cos^4 x} \qquad \qquad \tan x + \frac{\tan^3 x}{3} \qquad \qquad \left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \left[\right]$	$\frac{1}{\sin^4 x}$	$-\cot x - \frac{\cot^3 x}{3}$	$]k\pi;(k+1)\pi[$
L L	$\frac{1}{\cos^4 x}$	$\tan x + \frac{\tan^3 x}{3}$	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$

IV Fonctions dérivées de fonctions réciproques

Fonction	Primitive	Intervalles
$\frac{1}{1+x^2}$	Arctan x	\mathbb{R}
$\frac{1}{a^2 + x^2} \qquad a \in$	$\frac{1}{a}\operatorname{Arctan}\frac{x}{a}$	\mathbb{R}
$\frac{1}{1-x^2}$	$\begin{cases} \text{Argth } x \\ \frac{1}{2} \ln \left \frac{1+x}{1-x} \right \end{cases}$	$\begin{cases}]-1;1[\\]-\infty;-1[,\\]-1;1[,]1;+\infty[\end{cases}$
$\frac{1}{a^2 - x^2} \qquad a \in$	$ \begin{cases} \frac{1}{a} \operatorname{Argth} \frac{x}{a} \\ \frac{1}{2a} \ln \left \frac{a+x}{a-x} \right \end{cases} $	$\begin{cases}]- a ; a [\\]-\infty;- a [\;,\\]- a ; a [\;,\;] a ;+\infty[\end{cases}$
$\frac{1}{\sqrt{1-x^2}}$	Arcsin x]-1;1[
$\frac{1}{\sqrt{a^2 - x^2}} \qquad a \in$	\mathbb{R}^* Arcsin $\frac{x}{ a }$]- a ; a [
$\frac{1}{\sqrt{x^2+1}}$	$\operatorname{Argsh} x = \ln\left(x + \sqrt{x^2 + 1}\right)$	$\mathbb R$
$\frac{1}{\sqrt{x^2 - 1}}$	$\begin{cases} \operatorname{Argch} x \\ -\operatorname{Argch} (-x) \\ \ln x + \sqrt{x^2 - 1} \end{cases}$	$\begin{cases}]1; +\infty[\\]-\infty; -1[\\]-\infty; -1[\text{ ou }]1; +\infty[\end{cases}$
$\frac{1}{\sqrt{x^2 + a}} \qquad a \in$	$\ln\left x + \sqrt{x^2 + a}\right $	$\begin{cases} a > 0 : \mathbb{R} \\ a < 0 : \\] -\infty; -\sqrt{-a} [\\ \text{ou }] \sqrt{a}; +\infty [\end{cases}$
$\frac{1}{(x^2+1)^2}$	$\frac{1}{2}\operatorname{Arctan} x + \frac{x}{2(x^2+1)}$	\mathbb{R}
$\frac{x^2}{(x^2+1)^2}$	$\frac{1}{2}\operatorname{Arctan} x - \frac{x}{2(x^2+1)}$	$\mathbb R$

Trigonométrie

I Fonctions circulaires

1 Premières propriétés

	$\sin x$	$\cos x$	$\tan x$	$\cot x$
Ensemble de définition	\mathbb{R}	\mathbb{R}	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$	$\mathbb{R} \setminus \pi \mathbb{Z}$
Période	2π	2π	π	π
Parité	impaire	paire	impaire	impaire
$f(\pi - x)$	$\sin x$	$-\cos x$	$-\tan x$	$-\cot x$
$f(\pi + x)$	$-\sin x$	$-\cos x$	$\tan x$	$\cot x$
$f\left(\frac{\pi}{2}-x\right)$	$\cos x$	$\sin x$	$\cot x$	$\tan x$
$f\left(\frac{\pi}{2} + x\right)$	$\cos x$	$-\sin x$	$-\cot x$	$-\tan x$
Ensemble de dérivabilité	\mathbb{R}	\mathbb{R}	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$	$\mathbb{R} \setminus \pi \mathbb{Z}$
Dérivée	$\cos x$	$-\sin x$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$-1 - \cot^2 x$ $= \frac{-1}{\sin^2 x}$

2 Valeurs remarquables

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\sin x$	0	$\sqrt{1}/2$	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos x$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	$\sqrt{1}/2$	0
$\tan x$	0	$1/\sqrt{3}$	1	$\sqrt{3}$	indéfini
$\cot x$	indéfini	$\sqrt{3}$	1	$1/\sqrt{3}$	0

II Fonctions réciproques des fonctions circulaires

1 Définition

Les périodicités et les symétries des fonctions trigonométriques introduisent une difficulté pour résoudre les équations du type $\sin x = \lambda.$ Par exemple, $\pi/6$, $5\pi/6$ et $\pi/6+4\pi$ ont tous la même image par la fonction sinus. Les « fonctions circulaires réciproques » Arcsin , Arccos , Arctan et Arccot ne sont pas de vraies réciproques, puisque les fonctions de départ ne sont pas des bijections ; ajoutons qu'elles ne sont pas périodiques. Il faut les combiner avec la périodicité et, pour sinus et cosinus, avec les symétries par rapport à l'axe des ordonnées et l'axe des abscisses respectivement.

- Si $\sin x = \lambda \in [-1;1]$, alors $x = \operatorname{Arcsin} \lambda \mod 2\pi$ ou $x = \pi \operatorname{Arcsin} \lambda \mod 2\pi$
- Si $\cos x = \lambda \in [-1; 1]$, alors $x = \operatorname{Arccos} \lambda \mod 2\pi$ ou $x = -\operatorname{Arcsin} \lambda \mod 2\pi$
- Si $\tan x = \lambda \in \mathbb{R}$, alors $x = \arctan \lambda \mod \pi$
- Si cotan $x = \lambda \in \mathbb{R}$, alors $x = \operatorname{Arccot} \lambda \mod \pi$

Le problème réciproque est, lui, sans difficulté: si $x = Arcsin \lambda$, alors $\sin x = \lambda$.

2 Propriétés

	Arcsin x	${\rm Arccos}\ x$	${\rm Arctan}\ x$	${\rm Arccot}\ x$
Ensemble de définition	[-1;1]	[-1;1]	\mathbb{R}	\mathbb{R}
Ensemble image	$[-\pi/2;\pi/2]$	$[0;\pi]$	$]-\pi/2;\pi/2[$	$]0;\pi[$
Période	aucune	aucune	aucune	aucune
Parité	impaire	aucune	impaire	aucune
Ensemble de dérivabilité] -1;1[] -1;1[\mathbb{R}	\mathbb{R}
Dérivée	$\frac{1}{\sqrt{1-x^2}}$	$\frac{-1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$	$\frac{-1}{1+x^2}$

Trigonométrie

3 Relations

 $\operatorname{Arccos} x + \operatorname{Arcsin} x = \pi/2$

$$\text{Arctan } x + \text{Arctan } y = \text{Arctan } \frac{x+y}{1-xy} + \varepsilon \pi \quad \text{où} \ \ \varepsilon = \left\{ \begin{array}{ll} 0 \ \text{si } xy < 1 \\ 1 \ \text{si } xy > 1 \ \text{et } x, y \geqslant 0 \\ -1 \ \text{si } xy > 1 \ \text{et } x, y \leqslant 0 \end{array} \right.$$

 $Arctan x + Arccot x = \pi/2$

$$\operatorname{Arccot}\, x = \begin{cases} \operatorname{Arctan}\, 1/x & \text{si } x > 0 \\ \pi + \operatorname{Arctan}\, 1/x & \text{si } x < 0 \end{cases}$$

 $\arctan x + \arctan 1/x = \operatorname{sign}(x) \times \pi/2$

III Formules

1 Corollaires du théorème de Pythagore

$$\cos^{2} x + \sin^{2} x = 1$$

$$\cos^{2} x = \frac{1}{1 + \tan^{2} x}$$

$$\sin^{2} x = \frac{1}{1 + \cot^{2} x} = \frac{\tan^{2} x}{1 + \tan^{2} x}$$

2 Addition des arcs

$$\cos(a+b) = \cos a \cos b - \sin a \sin b \qquad \cos p + \cos q = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\sin(a+b) = \sin a \cos b + \sin b \cos a \qquad \sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \qquad \tan p + \tan q = \frac{\sin(p+q)}{\cos p \cos q}$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b \qquad \sin p - \sin q = 2 \sin \frac{p-q}{2} \cos \frac{p+q}{2}$$

$$\sin(a-b) = \sin a \cos b - \sin b \cos a \qquad \cos p - \cos q = -2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \qquad \tan p - \tan q = \frac{\sin(p-q)}{\cos p \cos q}$$

3 Arc double, arc moitié

$$\cos 2x = \cos^2 x - \sin^2 x \qquad \cos^2 x = \frac{1 + \cos 2x}{2}$$

$$= 2\cos^2 x - 1$$

$$= 1 - 2\sin^2 x$$

$$\sin 2x = 2\sin x \cos x \qquad \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x} \qquad \tan x = \frac{\sin 2x}{1 + \cos 2x} = \frac{1 - \cos 2x}{\sin 2x}$$

En notant $t = \tan \frac{x}{2}$ comme dans les règles de Bioche, on a :

$$\sin x = \frac{2t}{1+t^2} \qquad \qquad \cos x = \frac{1-t^2}{1+t^2}$$

4 Formule de Moivre

$$(\cos a + i \sin a)^n = \cos na + i \sin na$$

$$\cos 3a = \cos^3 a - 3\cos a \sin^2 a$$

$$= 4\cos^3 a - 3\cos a$$

$$\sin 3a = 3\cos^2 a \sin a - \sin^3 a$$

$$= 3\sin a - 4\sin^3 a$$

$$\tan 3a = \frac{3\tan a - \tan^3 a}{1 - 3\tan^2 a}$$

5 Arcs en progression arithmétique

$$\sum_{k=0}^{n} \sin kx = \frac{\sin \frac{nx}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}$$

$$\sum_{k=0}^{n} \cos kx = \frac{\cos \frac{nx}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}$$

 $\cosh^2 x - \sinh^2 x = 1$

IV Trigonométrie hyperbolique

$$\operatorname{ch}(a+b) = \operatorname{ch} a \operatorname{ch} b + \operatorname{sh} a \operatorname{sh} b \qquad \operatorname{ch} p + \operatorname{ch} q = 2 \operatorname{ch} \frac{p+q}{2} \operatorname{ch} \frac{p-q}{2}$$

$$\operatorname{sh}(a+b) = \operatorname{sh} a \operatorname{ch} b + \operatorname{sh} b \operatorname{ch} a \qquad \operatorname{sh} p + \operatorname{sh} q = 2 \operatorname{sh} \frac{p+q}{2} \operatorname{ch} \frac{p-q}{2}$$

$$\operatorname{th}(a+b) = \frac{\operatorname{th} a + \operatorname{th} b}{1 + \operatorname{th} a \operatorname{th} b} \qquad \operatorname{th} p + \operatorname{th} q = \frac{\operatorname{sh}(p+q)}{\operatorname{ch} p \operatorname{ch} q}$$

$$\operatorname{ch}(a-b) = \operatorname{ch} a \operatorname{ch} b - \operatorname{sh} a \operatorname{sh} b \qquad \operatorname{ch} p - \operatorname{ch} q = 2 \operatorname{sh} \frac{p+q}{2} \operatorname{sh} \frac{p-q}{2}$$

$$\operatorname{sh}(a-b) = \operatorname{sh} a \operatorname{ch} b - \operatorname{sh} b \operatorname{ch} a \qquad \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p+q}{2}$$

$$\operatorname{th}(a-b) = \frac{\operatorname{th} a - \operatorname{th} b}{1 - \operatorname{th} a \operatorname{th} b} \qquad \operatorname{th} p - \operatorname{th} q = \frac{\operatorname{sh}(p-q)}{\operatorname{ch} p \operatorname{ch} q}$$

En notant $t = \operatorname{th} \frac{x}{2}$, on a:

sh
$$x = \frac{2t}{1 - t^2}$$
 ch $x = \frac{1 + t^2}{1 - t^2}$

$$(\operatorname{ch} a + \operatorname{sh} a)^n = \operatorname{ch} na + \operatorname{sh} na$$

d'où

ch
$$3a = \text{ch}^{3} a + 3 \text{ch} a \text{sh}^{2} a$$

= $4 \text{ch}^{3} a - 3 \text{ch} a$

$$sh 3a = 3 ch^{2} a sh a + sh^{3} a$$

$$= 4 sh^{3} a + 3 sh a$$

th
$$3a = \frac{3 \operatorname{th} a + \operatorname{th}^3 a}{1 + 3 \operatorname{th}^2 a}$$

Tableaux des dérivées et primitives et quelques formules en prime

Fonction	Domaine de dérivabilité	Dérivée
$\ln(x)$	R+,*	$\frac{1}{x}$
e^x	\mathbb{R}	$\frac{x}{e^x}$
$\frac{1}{x}$	R *	$-\frac{1}{x^2}$
\sqrt{x}	$\mathbb{R}^{+,*}$	$\frac{1}{2\sqrt{x}}$ $\alpha x^{\alpha-1}$
$x^{\alpha}, \alpha \in \mathbb{R}$	$\mathbb{R}^{+,*}$	$\alpha x^{\alpha-1}$
$\cos(x)$	\mathbb{R}	$-\sin(x)$
$\sin(x)$	\mathbb{R}	$\cos(x)$
$\tan(x)$	$] - \frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi[, k \in \mathbb{Z}$	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$
arccos(x)] - 1;1[$\frac{-1}{\sqrt{1-x^2}}$
$\arcsin(x)$] - 1;1[$\frac{1}{\sqrt{1-x^2}}$
$\arctan(x)$	\mathbb{R}	$\frac{1}{1+x^2}$

Opération	Dérivée
f+g	f'+g'
$f \cdot g$	$f' \cdot g + f \cdot g'$
\underline{f}	$f' \cdot g - f \cdot g'$
g	g^2
$g \circ f$	$f' \times g' \circ f$
1	u'
$\frac{1}{u}$	$-\frac{1}{u^2}$
$\frac{u}{u^n}$	$\frac{-\frac{u}{u^2}}{nu'u^{n-1}}$
<u> </u>	u'
\sqrt{u}	$\overline{2\sqrt{u}}$
e^u	$u'e^u$
1 ()	u'
$\ln(u)$	$\frac{\overline{u}}{u}$
$\sin(u)$	$u'\cos(u)$
$\cos(u)$	$-u'\sin(u)$

Fonction	Intervalle d'intégration	Primitive
$(x-a)^n, n \in \mathbb{N}, a \in \mathbb{R}$	\mathbb{R}	$\frac{1}{n+1}(x-a)^{n+1}$
$\frac{1}{x-a}, a \in \mathbb{R}$	$]-\infty;a[$ OU $]a;+\infty[$	$\ln(x-a)$
$\frac{1}{x-a}, a \in \mathbb{R}$ $\frac{1}{(x-a)^n}, a \in \mathbb{R}, n \ge 2$	$]-\infty;a[$ OU $]a;+\infty[$	$-\frac{1}{(n-1)(x-a)^{n-1}}$
$\cos(ax), a \in \mathbb{R} \backslash \{0\}$	\mathbb{R}	$\frac{\frac{1}{a}\sin(ax)}{-\frac{1}{a}\cos(ax)}$
$\sin(ax), a \in \mathbb{R} \setminus \{0\}$	\mathbb{R}	$-\frac{1}{a}\cos(ax)$
$\tan(x)$	$]k\pi - \frac{\pi}{2}; k\pi + \frac{\pi}{2}[, k \in \mathbb{Z}]$	$-\ln(\cos(x))$
$\ln(x)$	$\mathbb{R}^{+,*}$	$x \ln(x) - x$
$e^{ax}, a \in \mathbb{R} \backslash \{0\}$	\mathbb{R}	$\frac{1}{a}e^{ax}$
$(x-a)^{\alpha}, a \in \mathbb{R}, \alpha \in \mathbb{R} \setminus \{-1\}$	$]a;+\infty[$	$\frac{1}{\alpha+1}(x-a)^{\alpha+1}$
$a^x, a > 0$	\mathbb{R}	$\frac{\frac{1}{\alpha+1}(x-a)^{\alpha+1}}{\frac{1}{\ln(a)}a^x}$
$\frac{1}{x^2+1}$	\mathbb{R}	$\arctan(x)$
$\sqrt{x-a}, a \in \mathbb{R}$	$]a;+\infty[$	$\frac{2}{3}(x-a)^{3/2}$
$\frac{1}{\sqrt{x-a}}, a \in \mathbb{R}$	$]a;+\infty[$	$2\sqrt{x-a}$
$\frac{1}{\sqrt{1-x^2}}$] - 1; 1[$\arcsin(x)$

Quelques formules de trigonométrie vraiment utiles. a,b et x sont des réels (quelconques) :

$$\cos^2(x) + \sin^2(x) = 1, \quad \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b), \quad \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b),$$
$$\cos(2x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x), \quad \cos^2(x) = \frac{1 + \cos(2x)}{2},$$
$$\sin(2x) = 2\sin(x)\cos(x), \quad \sin^2(x) = \frac{1 - \cos(2x)}{2}.$$

Fonctions usuelles : logarithme et exponentielle, fonction puissance, fonctions circulaires et leurs réciproques

<u>Définition</u> 1 (Logarithme). On définit $\ln :]0, +\infty[\to \mathbb{R}$ comme <u>la</u> primitive de $x \mapsto \frac{1}{x}$ qui s'annule en 1.

1. In est continue et strictement croissante sur $]0, +\infty[$.

2.
$$\forall x, y \in]0, +\infty[, \ln(x \cdot y) = \ln(x) + \ln(y).$$

3.
$$\forall x > 0, \ln(\frac{1}{x}) = -\ln(x)$$
.

Propriété 1.

4.
$$\forall x, y \in]0, +\infty[, \ln(\frac{x}{y}) = \ln(x) - \ln(y).$$

5.
$$\forall n \in \mathbb{N}, \forall x > 0, \ln(x^n) = n \ln(x)$$
.

6.
$$\lim_{x \to 0^+} \ln(x) = -\infty$$
 et $\lim_{x \to +\infty} \ln(x) = +\infty$

<u>Définition</u> 2 (Exponentielle). On définit $exp: \mathbb{R} \to]0, +\infty[$ comme $\underline{\mathbf{la}}$ solution de l'équation différentielle y'=y de condition initiale y(0)=1.

On note $\exp(x) = e^x$.

1. exp est continue et strictement croissante sur \mathbb{R} .

2.
$$\forall x, y \in \mathbb{R}, e^{x+y} = e^x \cdot e^y$$
.

3.
$$\forall x \in \mathbb{R}, e^{-x} = 1/e^x$$
.

Propriété 2.

4.
$$\forall x, y \in \mathbb{R}, e^{x-y} = \frac{e^x}{e^y}$$
.

5.
$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, e^{nx} = (e^x)^n$$
.

6.
$$\lim_{x \to -\infty} e^x = 0$$
 et $\lim_{x \to +\infty} e^x = +\infty$.

Propriété 3. On a $\forall x \in \mathbb{R}$, $\ln(e^x) = x$ et $\forall x > 0$, $e^{\ln(x)} = x$.

<u>Définition</u> 3 (Fonction puissance). Soit $a \in \mathbb{R}$. On définit la fonction puissance sur $]0, +\infty[$ par $p_a(x) := e^{a \ln(x)}$. On note $x^a := e^{a \ln(x)}$.

Exemples:

$$\ln(x^2) = 2\ln(x), \quad e^{2x+y} = e^{2x} \cdot e^y, \quad 2^x = e^{x\ln(2)}, \quad \sqrt{x} = x^{\frac{1}{2}} = e^{\frac{1}{2}\ln(x)}, \quad \sqrt[3]{x} = x^{\frac{1}{3}} = e^{\frac{1}{3}\ln(x)}.$$

Croissances comparées : Pour tous $\alpha > 0, \beta > 0$,

$$\lim_{x\to +\infty} \frac{(\ln x)^\alpha}{x^\beta} = 0 \quad \text{et} \quad \lim_{x\to 0^+} x^\beta |\ln x|^\alpha = 0$$

$$\lim_{x\to +\infty}\frac{e^{\alpha x}}{x^{\beta}}=+\infty\quad \text{et}\quad \lim_{x\to -\infty}|x|^{\beta}e^{\alpha x}=0$$

Autrement dit, l'exponentielle impose toujours sa limite en $\pm \infty$ aux fonctions puissances, et celles-ci imposent toujours leur limites en 0^+ ou $+\infty$ au logarithme.

Fonctions circulaires réciproques

On suppose connues les fonctions *sinus* et *cosinus*. On rappelle que la fonction *tangente* est définie sur $]-\frac{\pi}{2};\frac{\pi}{2}[$ par $\tan(x)=\frac{\sin(x)}{\cos(x)}.$

Valeurs spéciales des fonctions trigonométriques

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan(x)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Formules de trigonométrie

$$\cos^{2}(x) + \sin^{2}(x) = 1 \qquad \tan(x) = \frac{\sin(x)}{\cos(x)}$$
$$\cos(x + 2\pi) = \cos(x) \qquad \sin(x + 2\pi) = \sin(x) \qquad \tan(x + \pi) = \tan(x)$$
$$\cos(2x) = 2\cos^{2}(x) - 1 = 1 - 2\sin^{2}(x) \qquad \sin(2x) = 2\sin(x)\cos(x)$$

<u>Définition</u> 4 (Arcsinus). Sinus est une bijection de $[-\frac{\pi}{2}; \frac{\pi}{2}]$ sur [-1; 1]. On appelle *arcsinus* sa réciproque.

$$\forall x \in [-1; 1], \forall \theta \in [-\frac{\pi}{2}; \frac{\pi}{2}], \quad x = \sin(\theta) \Leftrightarrow \arcsin(x) = \theta.$$

<u>Définition</u> 5 (Arccosinus). Cosinus est une bijection de $[0; \pi]$ sur [-1; 1]. On appelle *arccosinus* sa réciproque.

$$\forall x \in [-1; 1], \forall \theta \in [0; \pi], \quad x = \cos(\theta) \Leftrightarrow \arccos(x) = \theta.$$

<u>Définition</u> 6 (Arctangente). Tangente est une bijection de $]-\frac{\pi}{2};\frac{\pi}{2}[$ sur \mathbb{R} . On appelle *arctangente* sa réciproque.

$$\forall x \in \mathbb{R}, \forall \theta \in]-\frac{\pi}{2}; \frac{\pi}{2}[, \quad x = \tan(\theta) \Leftrightarrow \arctan(x) = \theta.$$

Arcsinus

Arccosinus

Arctangente

1. $\forall x \in [-1; 1], \sin(\arcsin(x)) = x$.

Propriété 4.

- 2. $\forall x \in [-1; 1], \cos(\arccos(x)) = x$.
- 3. $\forall x \in \mathbb{R}, \tan(\arctan(x)) = x$.
- 1. $\forall \theta \in [-\frac{\pi}{2}; \frac{\pi}{2}], \arcsin(\sin(\theta)) = \theta.$

Propriété 5.

- 2. $\forall \theta \in [0; \pi], \arccos(\cos(\theta)) = \theta$.
- 3. $\forall \theta \in]-\frac{\pi}{2}; \frac{\pi}{2}[, \arctan(\tan(\theta)) = \theta.$

Ici x appartient au domaine de définition de la fonction réciproque.

 \bigstar Attention, ici θ ne parcourt pas tout l'ensemble de définition des fonctions sinus, cosinus ou tangente!

Exemples:

- 1. $\arcsin(\sin(\frac{17\pi}{5})) = \arcsin(\sin(\frac{20\pi}{5} \frac{3\pi}{5})) = \arcsin(\sin(-\frac{3\pi}{5})) = -\frac{3\pi}{5}$.
- 2. $\arccos(\cos(\frac{17\pi}{5})) = \arccos(\cos(\frac{20\pi}{5} \frac{3\pi}{5})) = \arccos(\cos(-\frac{3\pi}{5})) = \arccos(\cos(\frac{3\pi}{5})) = \frac{3\pi}{5}$.
- 3. $\arctan(\tan(\frac{17\pi}{5})) = \arctan(\tan(-\frac{3\pi}{5})) = -\frac{3\pi}{5}$.

Dérivées : Les fonctions arcsinus et arccosinus sont (infiniment) dérivables sur]-1;1[et arctangente est (infiniment) dérivable sur \mathbb{R} . Leurs dérivées sont données par

3

Propriété 6.

1.
$$\forall x \in]-1;1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$$

2.
$$\forall x \in]-1;1[, \boxed{\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}}]$$

3.
$$\forall x \in \mathbb{R}, \boxed{\arctan'(x) = \frac{1}{1+x^2}}$$