### УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

## Курсовая работа

Часть 1 Вариант 109

> Студент Елисеев Константин Иванович Р3108

Преподаватель Поляков Владимир Иванович Функция  $f(x_1,x_2,x_3,x_4,x_5)$  принимает значение 1 при  $1<|x_1x_2x_5-x_3x_4|\leq 4$  и неопределенное значение при  $|x_1x_2x_5-x_3x_4|=1$ 

### Таблица истинности

| Nº | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_1x_2x_5$ | $x_3x_4$ | $x_1 x_2 x_5$ | $x_3x_4$ | f |
|----|-------|-------|-------|-------|-------|-------------|----------|---------------|----------|---|
| 0  | 0     | 0     | 0     | 0     | 0     | 0           | 0        | 0             | 0        | 0 |
| 1  | 0     | 0     | 0     | 0     | 1     | 1           | 0        | 1             | 0        | d |
| 2  | 0     | 0     | 0     | 1     | 0     | 0           | 1        | 0             | 1        | d |
| 3  | 0     | 0     | 0     | 1     | 1     | 1           | 1        | 1             | 1        | 0 |
| 4  | 0     | 0     | 1     | 0     | 0     | 0           | 2        | 0             | 2        | 1 |
| 5  | 0     | 0     | 1     | 0     | 1     | 1           | 2        | 1             | 2        | d |
| 6  | 0     | 0     | 1     | 1     | 0     | 0           | 3        | 0             | 3        | 1 |
| 7  | 0     | 0     | 1     | 1     | 1     | 1           | 3        | 1             | 3        | 1 |
| 8  | 0     | 1     | 0     | 0     | 0     | 2           | 0        | 2             | 0        | 1 |
| 9  | 0     | 1     | 0     | 0     | 1     | 3           | 0        | 3             | 0        | 1 |
| 10 | 0     | 1     | 0     | 1     | 0     | 2           | 1        | 2             | 1        | d |
| 11 | 0     | 1     | 0     | 1     | 1     | 3           | 1        | 3             | 1        | 1 |
| 12 | 0     | 1     | 1     | 0     | 0     | 2           | 2        | 2             | 2        | 0 |
| 13 | 0     | 1     | 1     | 0     | 1     | 3           | 2        | 3             | 2        | d |
| 14 | 0     | 1     | 1     | 1     | 0     | 2           | 3        | 2             | 3        | d |
| 15 | 0     | 1     | 1     | 1     | 1     | 3           | 3        | 3             | 3        | 0 |
| 16 | 1     | 0     | 0     | 0     | 0     | 4           | 0        | 4             | 0        | 1 |
| 17 | 1     | 0     | 0     | 0     | 1     | 5           | 0        | 5             | 0        | 0 |
| 18 | 1     | 0     | 0     | 1     | 0     | 4           | 1        | 4             | 1        | 1 |
| 19 | 1     | 0     | 0     | 1     | 1     | 5           | 1        | 5             | 1        | 1 |
| 20 | 1     | 0     | 1     | 0     | 0     | 4           | 2        | 4             | 2        | 1 |
| 21 | 1     | 0     | 1     | 0     | 1     | 5           | 2        | 5             | 2        | 1 |
| 22 | 1     | 0     | 1     | 1     | 0     | 4           | 3        | 4             | 3        | d |
| 23 | 1     | 0     | 1     | 1     | 1     | 5           | 3        | 5             | 3        | 1 |
| 24 | 1     | 1     | 0     | 0     | 0     | 6           | 0        | 6             | 0        | 0 |
| 25 | 1     | 1     | 0     | 0     | 1     | 7           | 0        | 7             | 0        | 0 |
| 26 | 1     | 1     | 0     | 1     | 0     | 6           | 1        | 6             | 1        | 0 |
| 27 | 1     | 1     | 0     | 1     | 1     | 7           | 1        | 7             | 1        | 0 |
| 28 | 1     | 1     | 1     | 0     | 0     | 6           | 2        | 6             | 2        | 1 |
| 29 | 1     | 1     | 1     | 0     | 1     | 7           | 2        | 7             | 2        | 0 |
| 30 | 1     | 1     | 1     | 1     | 0     | 6           | 3        | 6             | 3        | 1 |
| 31 | 1     | 1     | 1     | 1     | 1     | 7           | 3        | 7             | 3        | 1 |

## Аналитический вид

### Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2}$ 

### Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$   $(\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)$   $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$ 

# Минимизация булевой функции методом Квайна-Мак-Класки

### Кубы различной размерности и простые импликанты

|          | $K^0(f)$ |              | K                          | $^{1}(f)$                       |              | $K^2(f)$                      |                   |       |               |  |  |  |  |
|----------|----------|--------------|----------------------------|---------------------------------|--------------|-------------------------------|-------------------|-------|---------------|--|--|--|--|
| $m_4$    | 00100    | <b>√</b>     | $m_4$ - $m_5$              | 0010X                           | <b>√</b>     | $m_4$ - $m_5$ - $m_6$ - $r$   |                   | 001XX | $\overline{}$ |  |  |  |  |
| $m_8$    | 01000    | <b>√</b>     | $m_4 - m_6$                | 001X0                           | <b>√</b>     | $m_8$ - $m_9$ - $m_{10}$ -    |                   | 010XX | •             |  |  |  |  |
| $m_{16}$ | 10000    | <b>√</b>     | $m_1 - m_5$                | 00X01                           | <b>√</b>     | $m_1$ - $m_5$ - $m_9$ - $r$   |                   | 0XX01 |               |  |  |  |  |
|          | 00001    | <b>√</b>     |                            | 00X01                           | <b>√</b>     |                               |                   | 0XX10 |               |  |  |  |  |
| $m_1$    | 00011    | <b>√</b>     | $m_2$ - $m_6$              | 0100X                           | <b>√</b>     | $m_2$ - $m_6$ - $m_{10}$ -    |                   | 10XX0 |               |  |  |  |  |
| $m_2$    |          |              | $m_8$ - $m_9$              |                                 |              | $m_{16}$ - $m_{18}$ - $m_{2}$ |                   |       | /             |  |  |  |  |
| $m_6$    | 00110    | $\checkmark$ | $m_8$ - $m_{10}$           | 010X0                           | <b>√</b>     | $m_4$ - $m_5$ - $m_{20}$ -    |                   | X010X | <b>√</b>      |  |  |  |  |
| $m_9$    | 01001    | $\checkmark$ | $m_1$ - $m_9$              | 0X001                           | <b>√</b>     | $m_4$ - $m_6$ - $m_{20}$ -    |                   | X01X0 | $\checkmark$  |  |  |  |  |
| $m_{18}$ | 10010    | $\checkmark$ | $m_2$ - $m_{10}$           | 0X010                           | <b>√</b>     | $m_2$ - $m_6$ - $m_{18}$ -    |                   | X0X10 |               |  |  |  |  |
| $m_{20}$ | 10100    | <b>√</b>     | $m_{16}$ - $m_{18}$        | 100X0                           | <b>√</b>     | $m_{20}$ - $m_{21}$ - $m_{2}$ |                   | 101XX | $\checkmark$  |  |  |  |  |
| $m_5$    | 00101    | <b>√</b>     | $m_{16}$ - $m_{20}$        | 10X00                           | <b>√</b>     | $m_{18}$ - $m_{19}$ - $m_{2}$ |                   | 10X1X |               |  |  |  |  |
| $m_{10}$ | 01010    | <b>√</b>     | $m_2$ - $m_{18}$           | X0010                           | <b>√</b>     | $m_{20}$ - $m_{22}$ - $m_{2}$ |                   | 1X1X0 |               |  |  |  |  |
| $m_7$    | 00111    | <b>√</b>     | $m_4$ - $m_{20}$           | X0100                           | <b>√</b>     | $m_6$ - $m_7$ - $m_{22}$ -    | $m_{23}$          | X011X | <b>√</b>      |  |  |  |  |
| $m_{11}$ | 01011    | ✓            | $m_6$ - $m_7$              | 0011X                           | <b>√</b>     | $m_5$ - $m_7$ - $m_{21}$ -    | $m_{23}$          | X01X1 | <b>√</b>      |  |  |  |  |
| $m_{19}$ | 10011    | <b>√</b>     | $m_5$ - $m_7$              | 001X1                           | <b>√</b>     | $m_6$ - $m_{14}$ - $m_{22}$   | $-m_{30}$         | XX110 |               |  |  |  |  |
| $m_{21}$ | 10101    | <b>√</b>     | $m_{10}$ - $m_{11}$        | 0101X                           | <b>√</b>     | $m_{22}$ - $m_{23}$ - $m_3$   | $_{0}$ - $m_{31}$ | 1X11X |               |  |  |  |  |
| $m_{28}$ | 11100    | ✓            | $m_9$ - $m_{11}$           | 010X1                           | ✓            |                               |                   |       |               |  |  |  |  |
| $m_{13}$ | 01101    | ✓            | $m_9$ - $m_{13}$           | 01X01                           | ✓            |                               |                   |       |               |  |  |  |  |
| $m_{14}$ | 01110    | ✓            | $m_{10}$ - $m_{14}$        | 01X10                           | ✓            |                               |                   |       |               |  |  |  |  |
| $m_{22}$ | 10110    | ✓            | $m_5$ - $m_{13}$           | 0X101                           | $\checkmark$ |                               |                   |       |               |  |  |  |  |
| $m_{23}$ | 10111    |              | $m_6$ - $m_{14}$           | 0X110                           | $\checkmark$ |                               |                   |       |               |  |  |  |  |
| $m_{30}$ | 11110    | ✓            | $m_{18}$ - $m_{19}$        | 1001X                           | $\checkmark$ |                               |                   |       |               |  |  |  |  |
| $m_{31}$ | 11111    | $\checkmark$ | $m_{20}$ - $m_{21}$        | 1010X                           | ✓            |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{20}$ - $m_{22}$        | 101X0                           | $\checkmark$ |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{18}$ - $m_{22}$        | 10X10                           | ✓            |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{20}$ - $m_{28}$        | 1X100                           | $\checkmark$ |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_5$ - $m_{21}$           | X0101                           | ✓            |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_6$ - $m_{22}$           | X0110                           | ✓            |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{22}$ - $m_{23}$        | 1011X                           | <b>√</b>     |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{21}$ - $m_{23}$        | 101X1                           | <b>√</b>     |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{19}$ - $m_{23}$        | 10X11                           | <b>√</b>     |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{28}$ - $m_{30}$        | 111X0                           | <b>√</b>     |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{22}$ - $m_{30}$        | 1X110                           | ✓            |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_7$ - $m_{23}$           | X0111                           | <b>√</b>     |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{14}$ - $m_{30}$        | X1110                           | <b>√</b>     |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{30}$ - $m_{31}$        | 1111X                           | <b>√</b>     |                               |                   |       |               |  |  |  |  |
|          |          |              | $m_{23}$ - $m_{31}$        | 1X111<br>1X111                  | <b>√</b>     |                               |                   |       |               |  |  |  |  |
|          |          |              | 11023-11031                | 2 ( a)                          | ٧            |                               | 7(1)              |       |               |  |  |  |  |
|          | 20-      | 200          | m m ~~                     | $\frac{K^{\mathfrak{s}}(f)}{m}$ |              | VOIVV                         | Z(f)              |       |               |  |  |  |  |
|          | $m_{2}$  | 4-1115-1     | $m_6$ - $m_7$ - $m_{20}$ - | $m_{21}$ - $m_{22}$ -           | $-111_{23}$  | X01XX                         | 010X              | 1     |               |  |  |  |  |
|          |          |              |                            |                                 |              |                               | 0XX0              | 1     |               |  |  |  |  |
|          |          |              |                            |                                 |              |                               | 0XX1              |       |               |  |  |  |  |
|          |          |              |                            |                                 |              |                               | 10XX              |       |               |  |  |  |  |
|          |          |              |                            |                                 |              |                               | X0X1              |       |               |  |  |  |  |
|          |          |              |                            |                                 |              |                               | 10X1X             |       |               |  |  |  |  |
|          |          |              |                            |                                 |              |                               | 1X1X              |       |               |  |  |  |  |
|          |          |              |                            |                                 |              |                               | XX11              |       |               |  |  |  |  |
|          |          |              |                            |                                 |              |                               | 1X112             | 1     |               |  |  |  |  |
|          |          |              |                            |                                 |              |                               | X01X              | X     |               |  |  |  |  |

### Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

| Простые импликанты |   | 0-кубы |   |     |   |    |     |                |     |    |     |                |    |          |     |
|--------------------|---|--------|---|-----|---|----|-----|----------------|-----|----|-----|----------------|----|----------|-----|
|                    |   | 0      | 0 | 0   | 0 | 0  | 1 0 | 1 0            | 1 0 | 0  | 1 0 | 0              | 1  | 1        | 1 1 |
|                    |   | 1      | 1 | 0   |   | 0  | 0   | 0              | 0   |    |     | 1              | 1  | 1        | 1 1 |
|                    |   | Į į    | 1 | Į į | 1 | 1  | 0   | 0              | 10  |    | 1   | 1              | 0  | 0        | 1   |
| 010VV              | 4 | 6      |   | 8   | 9 | 11 | 16  | 18             | 19  | 20 | 21  | 23             | 28 | 30       | 31  |
| 010XX              |   |        |   | A   | 1 | X. |     |                |     |    |     |                |    |          |     |
| 0XX01              |   |        |   |     | X |    |     |                |     |    |     |                |    |          |     |
| 0XX10              |   | X      |   |     |   |    |     |                |     |    |     |                |    |          |     |
| 10XX0              |   |        |   |     |   |    | Х   | Х              |     | X  |     |                |    |          |     |
| X0X10              |   | v      |   |     |   |    | 1   | v              |     | 1  |     |                |    |          |     |
|                    |   | 1      |   |     |   |    |     | 37             | 37  |    |     | v              |    |          |     |
| 10X1X              |   |        |   |     |   |    |     | <del>- X</del> | X.  |    |     | <del>  X</del> |    |          |     |
| 1X1X0              |   |        |   |     |   |    |     |                |     | Х  |     |                | Ж  | Х        |     |
| XX110              |   | v      |   |     |   |    |     |                |     |    |     |                |    | \ \tau   |     |
|                    |   | 1      |   |     |   |    |     |                |     |    |     | v              |    | 37       | v   |
| 1X11X              |   |        |   |     |   |    |     |                |     |    |     | <del>  X</del> |    | <u> </u> | X   |
| X01XX              | X | X      | X |     |   |    |     |                |     | X  | X   | X              |    |          |     |

Ядро покрытия:

$$T = \begin{cases} X01XX \\ 010XX \\ 10XX0 \\ 10X1X \\ 1X1X0 \\ 1X11X \end{cases}$$

Вся таблица вычеркнулась, следовательно ядро покрытия является минимальным покрытием

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} X01XX \\ 010XX \\ 10XX0 \\ 10X1X \\ 1X1X0 \\ 1X11X \end{cases}$$
$$S^{a} = 17$$
$$S^{b} = 23$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_2} \, x_3 \vee \overline{x_1} \, x_2 \, \overline{x_3} \vee x_1 \, \overline{x_2} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_4 \vee x_1 \, x_3 \, \overline{x_5} \vee x_1 \, x_3 \, x_4$$

### Минимизация булевой функции на картах Карно

### Определение МДНФ



$$f = \overline{x_2} \, x_3 \vee \overline{x_1} \, x_2 \, \overline{x_3} \vee x_1 \, \overline{x_2} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_4 \vee x_1 \, x_3 \, \overline{x_5} \vee x_1 \, x_3 \, x_4$$

### Определение МКНФ



$$f = (x_1 \lor x_2 \lor x_3) \ (x_1 \lor \overline{x_2} \lor \overline{x_3}) \ (\overline{x_1} \lor \overline{x_2} \lor x_3) \ (x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_2} \lor x_4 \lor \overline{x_5})$$

## Преобразование минимальных форм булевой функции

### Факторизация и декомпозиция МДНФ

$$f=\overline{x_2}\,x_3\vee\overline{x_1}\,x_2\,\overline{x_3}\vee x_1\,\overline{x_2}\,\overline{x_5}\vee x_1\,\overline{x_2}\,x_4\vee x_1\,x_3\,\overline{x_5}\vee x_1\,x_3\,x_4 \qquad S_Q=23 \quad \tau=2$$
 
$$f=\overline{x_2}\,x_3\vee x_1\,\left(x_4\vee\overline{x_5}\right)\,\left(\overline{x_2}\vee x_3\right)\vee\overline{x_1}\,x_2\,\overline{x_3} \qquad \qquad S_Q=15 \quad \tau=3$$
 
$$\varphi=x_2\,\overline{x_3}$$
 
$$\overline{\varphi}=\overline{x_2}\vee x_3$$
 
$$f=\overline{x_2}\,x_3\vee x_1\,\left(x_4\vee\overline{x_5}\right)\,\overline{\varphi}\vee\varphi\,\overline{x_1} \qquad \qquad S_Q=15 \quad \tau=4$$
 Декомпозиция нецелесообразна 
$$f=\overline{x_2}\,x_3\vee x_1\,\left(x_4\vee\overline{x_5}\right)\left(\overline{x_2}\vee x_3\right)\vee\overline{x_1}\,x_2\,\overline{x_3} \qquad \qquad S_Q=15 \quad \tau=3$$

### Факторизация и декомпозиция МКНФ

$$f = (x_1 \lor x_2 \lor x_3) \ (x_1 \lor \overline{x_2} \lor \overline{x_3}) \ (\overline{x_1} \lor \overline{x_2} \lor x_3) \ (x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_2} \lor x_4 \lor \overline{x_5}) \quad S_Q = 22 \quad \tau = 2$$
 Декомпозиция невозможна 
$$f = (x_2 \lor x_3 \lor x_1 \ (x_4 \lor \overline{x_5})) \ (\overline{x_1} \lor \overline{x_2} \lor x_3 \ (x_4 \lor \overline{x_5})) \ (x_1 \lor \overline{x_2} \lor \overline{x_3}) \qquad \qquad S_Q = 20 \quad \tau = 4$$

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 0]) = 1$$

### Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_2} x_3 \lor x_1 (x_4 \lor \overline{x_5}) (\overline{x_2} \lor x_3) \lor \overline{x_1} x_2 \overline{x_3} (S_Q = 15, \tau = 3)$$



Схема по упрощенной МКНФ:

$$f = (x_2 \vee x_3 \vee x_1 \ (x_4 \vee \overline{x_5})) \ (\overline{x_1} \vee \overline{x_2} \vee x_3 \ (x_4 \vee \overline{x_5})) \ (x_1 \vee \overline{x_2} \vee \overline{x_3}) \quad (S_Q = 20, \tau = 4)$$



### Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДН $\Phi$  в базисе И, НЕ:

$$f = \overline{\overline{x_2 x_3}} \overline{x_1 \overline{x_4} x_5 \overline{\varphi}} \overline{\varphi \overline{x_1}} \quad (S_Q = 20, \tau = 6)$$
$$\varphi = x_2 \overline{x_3}$$



Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_1} \, x_2 \, x_3 \, \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \, \overline{x_1} \, x_2 \, \overline{x_4} \, x_5 \quad (S_Q = 27, \tau = 3)$$



### Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДНФ в базисе И-НЕ с ограничением на число входов:



Схема по упрощенной МКН $\Phi$  в базисе И-НЕ с ограничением на число входов:



