Работа 3.2.4

Свободные колебания в электрическом контуре.

Подлесный Артём группа 827

5 декабря 2019 г.

Цель работы: исследование свободных колебаний в контуре.

Краткая теоретическая справка.

Для колебательного контура с включенным в него сопротивлением можно написать уравнение:

 $RI + U_c = -L\frac{dI}{dt}.$

Если продифференцировать его во времени и принять следующие обозначения: $\gamma = \frac{R}{2L},~\omega_0^2 = \frac{1}{CL},$ то это уравнение принимает вид:

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0. \tag{1}$$

В данном случае нас интересует случай, когда $\gamma \ll \omega_0$, тогда решая (1) получаем:

$$I = -\frac{U_0}{L\omega}e^{-\gamma t}\sin\omega t,\tag{2}$$

где

$$\omega = \sqrt{\omega_0^2 - \gamma^2}.$$

Тогда в нашем случае:

$$T = 2\pi\sqrt{LC},\tag{3}$$

а временная зависимость напряжения:

$$U_C = U_0 \exp^{-\gamma t} \cos \omega_0 t.$$

При $\gamma = \omega_0$ происходит переход в апериодический режим, чему соответствует критическое сопротивление:

$$R_{\rm Kp} = 2\sqrt{\frac{L}{C}}. (4)$$

Введем добротность:

$$Q = 2\pi \frac{W}{\Delta W},$$

которая характеризует потери энергии W в затухающих колебаниях, наряду с декрементом затухания:

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}},\tag{5}$$

где U_k – амплитуда k-того колебания. Если выразить добротность через параметры установки, получаем:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\pi}{\Theta}.$$
 (6)

Экспериментальная установка

Рис. 1: Экспериментальная установка для исследования свободных колебаний.

После сборки схемы можно приступать к снятию экспериментальных данных.

Экспериментальные данные

В работе было необходимо снять зависимости для измерения зависимости периода контура от емкости конденсатора, критическое сопротивление при котором колебательный режим переходит в апериодический, а так же исследовать затухающие колебания контура на фазовой плоскости. Далее о каждом из пунктов подробнее.

Измерение периодов

В данном случае сопротивление R на магазине сопротиления выставляли равным 0. Для расчета периода в зависимости от емкости: T(C), на осциллографе, зная масштабирование оси x по времени: Δ , измерялась ширина, занимаемая некоторым целым числом полных периодов колебаний (что видно на осциллографе), на основании чего рассчитывался период по следующей формуле:

$$T = \frac{x\Delta}{n}. (7)$$

Результаты представлены на таблице 1.

C , мк Φ	Δ , мс/см	$\mid n \mid$	x, cm	$\mid T$, mc \mid	
0.02	0.2	3	5	0.33	
0.11	0.5	3	5.6	0.93	
0.2	0.5	3	6.4	1.07	
0.29	0.5	3	7.8	1.30	
0.38	1	5	7.4	1.48	
0.47	1	4	6.6	1.65	
0.56	1	4	7.2	1.80	
0.65	1	4	7.8	1.95	
0.74	1	3	6.2	2.07	
0.83	1	3	6.6	2.20	
0.9	1	3	6.8	2.27	

Таблица 1: Зависимость периода электрических колебаний T от емкости конденсатора C в контуре.

Критическое сопротивление и декремент затухания

Приняв $L=200~{\rm M}\Gamma$ н, можно найти емкость конденсатора, которая нужна для того, чтобы частота собственных колебаний была равна $\nu_0=5~{\rm k}\Gamma$ ц по следущей формуле:

$$C = (4\pi^2 \nu_0^2 L)^{-1} = 0.005 \text{ MK}\Phi,$$

откуда по формуле (4):

$$R_{\mathrm{Kp}} = 2\sqrt{\frac{L}{C}} \approx 13 \text{ KOm.}$$
 (8)

Плавно изменяя сопротивление, можно поймать момент, когда колебания становятся апериодичными. Исходя из этого "подбора"получаем такое сопротивление:

$$R_{\rm kp} = 9500 \; {\rm Om}.$$

Оно сильно отличается, однако это только потому, что индуктивность не совпадает с реальным значением.

Найдем зависимость декремента затухания в зависимости от сопротивления магазина, в области $0.1R_{\rm kp} \div 0.3R_{\rm kp}$, при известной емкости. Декремент затухания считается по формуле (5). Эта зависимость представлена на таблице 2.

$R/R_{ m Kp}$	R, Om	$\mid n \mid$	U_k , cm	U_{k+n} , cm	Θ
0.1	950	2	5.6	1.6	0.626
0.13	1235	2	4.7	1	0.774
0.16	1520	2	4	0.6	0.949
0.19	1805	2	3.3	0.4	1.055
0.22	2090	2	6.8	0.5	1.305
0.25	2375	1	5.7	1.2	1.558
0.28	2660	1	4.8	0.8	1.792
0.3	2850	1	4.2	0.6	1.946

Таблица 2: Зависимость декремента затухания колебаний Θ от сопротивления R, установленного на магазине сопротивлений.

Колебания на фазовой плоскости

С помощью осциллографа были проведены наблюдения колебаний на фазовой плоскости, для 2 значений R в близи нижней и высшей границ измерения декремента затухания цепи. Эти картины представлены на рис. 2.

Рис. 2: Картины колебаний на фазовой плоскости для 4 значений R в контуре, слева на право: 0.1, 0.12, 0.28, 0.3 от $R_{\rm kp}$. Из-за искажений при печати они могут выглядеть нечетко, однако в цифровом варианте на них четко видны линии, по которым можно посчитать необходимые значения.

Отсюда отношение амплитуд можно определить по отношению расстояний пересчений витков с осями, что соответствует амплитудам колебаний, разделенными целым числом периодов. Благодаря цифровой картине, можно существенно повысить точность измерения этих аплитуд, тк можно игнорировать цену деления осциллографа.

Оммическое сопротивление катушки и её индуктивность измерялись с помощью LCR-измерителя на переменном токе. Данные представлены на таблице 3.

f , Γ ц	50	1000	5000		
R_L , Om	10.2	12.6	20.1		
L , м Γ н	150.2	144.4	145.4		

Таблица 3: Результаты измерений LCR. Как видно, при изменении частоты, меняется и оммическое сопротивление. Это связано с тем, что при измерении в контуре возникают вынужденные колебания, и импеданс колебаний зависит от частоты генератора.

Обработка экспериментальных данных.

Соответствие теоретических и экспериментальных периодов колебаний контура

Так как частота контура лежит в диапазоне $1000 \div 5000 \, \Gamma$ ц, то возьмем следующее значение для индуктивности катушки: $L = 145 \, \mathrm{m}\Gamma$ н. Тогда по формуле получаем зависимость $T_{\mathrm{эксп}}(T_{\mathrm{теор}})$, представленная на рис. 3.

Этот график позволяет утверждать, что осциллограф крайне точно передает картину колебаний, легкое несоответствие результатов вызвано лишь несовершенством установки.

Расчет критического сопротивления через декремент затухания

Формула для расчета критического сопротивления:

$$R_{\rm Kp} = 2\pi\sqrt{\alpha},\tag{9}$$

где α – коэффициент наклона графика следующей зависимости: $1/\Theta^2=f(1/R_{\text{конт}})$, где $R_{\text{конт}}=R+R_L$. Этот график показан на рис. 4. Для данной емкости частота соответствует 5900 Гц, поэтому $R_L=20\pm 2$ Ом, $L=145.4\pm 9.0$ мГн.

Рис. 3: График зависимости $T_{\text{эксп}}(T_{\text{теор}})$. На графике видно, что только 1 точка не ложится на прямую, имеющую коэффициент наклона крайне близкий к еденице. Эта точка скорее всего является результатом неправильной интерпретации картинки на осциллографе.

Получаем значение коэффициента наклона этого графика:

$$\alpha = (2.44 \pm 0.10) \times 10^6 \text{ Om}^2,$$

откуда:

$$R_{\rm kp} = 9.8 \pm 0.4 \; {\rm kO_M}.$$

Как видно, этот результат согласуется с определенным качественно по картине колебаний на осциллографе. Теоретически посчитаем критическое сопротивление по формуле (2):

$$R_{\rm kp_{\rm reop}} = 10.8 \pm 0.7 \; {\rm kO_M}.$$

С учетом погрешности результаты согласуются, хотя точность оставляет желать лучшего.

Расчет добротности контура

Расчет добротности проводился для максимального и минимального сопротивлений резистора: 0.1 и 0.3 от критического сопротивления. По формуле (6) можем рассчитать добротности по данным установки и по декременту

Рис. 4: График зависимости $1/\Theta^2 = f(1/R_{\text{конт}})$. Точки на графике не слишком хорошо ложатся на прямую, и, скорее всего, это из-за того, что значение R_L было измерено при другой частоте, чем частота контура в этом эксперименте.

затухания. Они будут представлены в секции "Результаты". Так же использовался метод расчета добротности по спиралям на фазовой плоскости. Для этого с помощью k-радиусов спирали отсчитывались декремент затухания, а из него по формуле (6) - добротность.

Результаты

Для того, чтобы было удобно сравнить результаты, они оформлены в виде таблицы 4.

	$R_{ m \kappa p},~{ m кO}{ m M}$				Q		
$L_{ ext{Kat}}$, м Γ н	теор.	подбор	граф.	R, Om	теор.	$f(\Theta)$	спираль
145 ± 9	10.8 ± 0.7	9.5	9.8 ± 0.4	$950(\min)$	5.55 ± 0.17	5.02	5.39
				2850(max)	1.89 ± 0.06	1.61	1.75

Таблица 4: Результаты измерений критического сопротивления $R_{\rm kp}$ и добротности Q 3 разными методами, описанными в тексте работы.

Вывод

Были исследованы свободные колебания в контуре, и разными методами получены ответы на поставленные вопросы. Теперь можно сравнить их и дать характеристику разным методам. Для измерения $R_{\rm kp}$ лучше использовать метод графика с использованием декремента затухаания. Так будут получены более точные результаты. Проблемы расчета с помощью формулы (4) в том, что L и R зависят от частоты контура, что создает дополнительную погрешность, так как в работе индуктивность и сопротивление катушки измеряны при другой частоте, чем возникает в контуре с используемой емкостью. Подбором можно получить лишь качественную оценку критического сопротивления, однако по близости к нему можно определить достоверность остальных результатов, так как при этом сопротивлении ясно виден перееход колебаний в апериодичный режим.

Расчет добротности через параметры установки имеет ту же проблему, но с учетом погрешности согласуются со значениями, полученными методом спирали - самым точным методом. Его точность выше, потому что можно точнее определить деркемент затухания.