MA 101 (Mathematics - I)

Differentiation: Exercise set 2: Hints and Solutions

CMVT/L'Hôpital's Rules

1. Use CMVT to derive the following: Suppose f, g are differentiable on [a, b] and $|f'(x)| \ge 1$ |g'(x)| > 0 for all x. Show that for $a \le x < y \le b$, $|f(y) - f(x)| \ge |g(y) - g(x)|$.

Solution: (Hint.) There is $c \in (x,y)$ such that $\frac{f(y)-f(x)}{g(y)-g(x)} = \frac{f'(c)}{g'(c)}$. Now use the given condition.

2. Find the following by using L'Hôpital's Rules, whenever needed. Do not forget to check the conditions needed for using L'Hôpital's Rules.

(i)
$$\lim_{x\to 0+} \frac{\sqrt{1+x}-1}{\sqrt{x}}$$

(ii)
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x}$$

(iii)
$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$$

(iv)
$$\lim_{x \to 0+} \left(\frac{\sin x}{x}\right)^{1/x}$$

$$(v) \lim_{x \to 0+} \frac{e^{-1/x}}{x}$$

$$\tan x).$$

(i)
$$\lim_{x \to 0+} \frac{\sqrt{1+x} - 1}{\sqrt{x}}$$
 (ii) $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x}$ (iii) $\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$ (iv) $\lim_{x \to 0+} \left(\frac{\sin x}{x}\right)^{1/x}$ (v) $\lim_{x \to 0+} \frac{e^{-1/x^2}}{x}$ (vi) $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$ (vii) $\lim_{x \to \infty} \frac{x - \sin x}{2x + \sin x}$ (viii) $\lim_{x \to \pi/2-} (\sec x - 1) = \frac{1}{x}$

(vii)
$$\lim_{x \to \infty} \frac{x - \sin x}{2x + \sin x}$$

(viii)
$$\lim_{x \to \pi/2-} (\sec x -$$

Solution:

- (i) 0, (ii) 1/4
- (iii) 0. Since $\lim_{x\to 0} \frac{x}{\sin x} = 1$, and $\lim_{x\to 0} x \sin \frac{1}{x} = 0$, we have $\lim_{x\to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = 0$.

(iv) Let
$$h(x) = \left(\frac{\sin x}{x}\right)^{1/x}$$
 for $x > 0$.

Then,
$$\ln h(x) = \frac{\ln \sin x - \ln x}{x} = \frac{f_1(x)}{g_1(x)}$$
 is in $\left(\frac{0}{0}\right)$ form as $x \to 0+$.

Now,
$$\frac{f_1'(x)}{g_1'(x)} = \frac{x \cos x - \sin x}{x \sin x} = \frac{f_2(x)}{g_2(x)}$$
 is in $(\frac{0}{0})$ form as $x \to 0+$.

Again,
$$\frac{f_2'(x)}{g_2'(x)} = \frac{x \sin x}{\sin x + x \cos x} = \frac{f_3(x)}{g_3(x)}$$
 is in $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ form as $x \to 0+$.

Now,
$$\frac{f_3'(x)}{g_3'(x)} = \frac{\sin x + x \cos x}{2 \cos x - x \sin x} \to 0$$
 as $x \to 0+$. Therefore, by LH1, $\lim_{x \to 0+} \ln h(x) = 0$.

Since Exp is continuous, $\lim_{x\to 0+} h(x) = e^0 = 1$.

(v) Put
$$x = 1/t$$
 for $x > 0$. Then, $0 < \frac{e^{-1/x^2}}{x} = \frac{t}{e^{t^2}} < \frac{t}{t^2} = x$, since $e^{t^2} > t^2$. Now, use sandwich theorem.

(vii) For
$$x > 0$$
, put $f(x) = \frac{x - \sin x}{2x + \sin x} = \frac{1 - \frac{\sin x}{x}}{2 + \frac{\sin x}{x}}$. Now, given $\epsilon > 0$, we have $\left| \frac{\sin x}{x} \right| \le \frac{1}{x} < \epsilon$, if $x > \frac{1}{\epsilon}$. Thus, $\lim_{x \to \infty} \frac{\sin x}{x} = 0$, and hence $\lim_{x \to \infty} \frac{x - \sin x}{2x + \sin x} = 1/2$. (viii) 0.

3. Let f be a differentiable on $(0, \infty)$ and suppose that $\lim_{x \to \infty} (f(x) + f'(x)) = L$. Show that $\lim_{x \to \infty} f(x) = L$ and $\lim_{x \to \infty} f'(x) = 0$.

Solution: (Hint.) Note that $f(x) = \frac{e^x f(x)}{e^x}$. Now use L'Hôpital's Rule II, which holds also in the case when $\lim_{x\to\infty} e^x f(x) = 0$ is not given. See L'Hôpital's Rule given in Bartle and Sherbert (6.3.5).

4. Try to use L'Hôpital's Rule to find the limit of $\frac{\tan x}{\sec x}$ as $x \to (\pi/2)$. Also, evaluate it directly by changing to sines and cosines.

Solution: For $f(x) = \tan x$, $g(x) = \sec x$, $\frac{f'(x)}{g'(x)} = \frac{g(x)}{f(x)}$. So, the existence of the limit $\lim_{x \to (\pi/2) -} \frac{f(x)}{g(x)}$ cannot be concluded by L'Hôpital's Rules.

However, for $0 < x < \pi/2$, $\frac{f(x)}{g(x)} = \sin x \to 1$ as $x \to (\pi/2)$.

Taylor's Theorem

5. Let x_0 be a fixed in \mathbb{R} . Find the *n*-th Taylor polynomial and the remainder for the following functions f about x_0 , and check for $x \in \mathbb{R}$ whether the remainder term converges to zero as $n \to \infty$.

(i)
$$f(x) := e^x$$
 on \mathbb{R} , (ii) $f(x) := \sin x$ on \mathbb{R} ,

Solution: (i)
$$T_n(f,x_0)(x) = e^{x_0} + \frac{e^{x_0}}{1!}(x-x_0) + \dots + \frac{e^{x_0}}{n!}(x-x_0)^n$$
, $R_n = \frac{e^t}{(n+1)!}(x-x_0)^{n+1}$ for some t between x and x_0 . For any $x \in \mathbb{R}$, $R_n \to 0$ as $n \to \infty$. (ii) $T_n(f,x_0)(x) = \sin x_0 + \frac{\cos x_0}{1!}(x-x_0) - \frac{\sin x_0}{2!}(x-x_0)^2 - \frac{\cos x_0}{3!}(x-x_0)^3 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$, $R_n = \frac{f^{(n+1)}(t)}{(n+1)!}(x-x_0)^{n+1}$ for some t between x and x_0 . For any $x \in \mathbb{R}$, $|R_n| \leq \frac{|x-x_0|^{n+1}}{(n+1)!} \to 0$ as $n \to \infty$.

6. Show that for any $k \in \mathbb{N}$ and for all x > 0

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots - \frac{x^{2k}}{2k} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{x^{2k+1}}{2k+1}.$$

Solution: Applying Taylor's theorem to the function ln(1+x) gives for x>0

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots - \frac{x^{2k}}{2k} + \frac{c^{2k+1}}{2k+1}$$

for some $c \in (0, x)$. Since $0 < \frac{c^{2k+1}}{2k+1} < \frac{x^{2k+1}}{2k+1}$, we get the inequalities.

7. For a differentiable function $f:[a,b] \to \mathbb{R}$, a point $c \in (a,b)$ is called a **point of inflection** of f if f(x) - f(c) - f'(c)(x-c) changes sign as x increases through c in an interval containing c.

Suppose $n \in \mathbb{N}$ is odd, $f^{(n)}$ is continuous, $f'(c) = \cdots = f^{(n-1)}(c) = 0$ and $f^{(n)}(c) \neq 0$. Show that c is a point of inflection for f.

Solution: (Note: Continuity of $f^{(n)}$, which is needed, was missing in the original question.)

Under the given condition, using Taylor's theorem to f about c, we have

$$f(x) - f(c) - f'(c)(x - c) = \frac{f^{(n)}(d)}{n!}(x - c)^n,$$

for some d between x and c. Since $f^{(n)}$ is continuous and $f^{(n)}(c) \neq 0$, $f^{(n)}(x)$ assumes same sign as $f^{(n)}(c)$ in some interval $(c - \delta, c + \delta)$. Thus, f(x) - f(c) - f'(c)(x - c) assumes sign as that of $f^{(n)}(c)$ when $x \in (c, c + \delta)$ and assumes sign as that of $-f^{(n)}(c)$ when $x \in (c - \delta, c)$. Thus, the result follows.

8. What is the Taylor series for a polynomial?

Solution: The polynomial itself.

9. Consider the function

$$f(t) = \begin{cases} e^{-1/t}, & \text{if } t > 0, \\ 0, & \text{if } t \le 0. \end{cases}$$

Show that

- (1) f is infinitely differentiable on \mathbb{R} .
- (2) f has a Taylor series about the point 0.
- (3) the Taylor series converges to a function different from f.

Solution: The problem is similar to the problem 5 of Tutorial 5.

10. Determine whether x = 0 is a point of local maximum/minimum of the following functions defined on \mathbb{R} :

(i)
$$f(x) := x^4 - x^3 + 2$$
, (ii) $g(x) := x - \sin x$, (iii) $h(x) = \sin x + \frac{1}{6}x^3$, (iv) $k(x) := \cos x - 1 + \frac{1}{2}x^2$.

Solution: (i) Local minimum, (ii) Neither, (iii) Neither, (iv) Local minimum.

Limit superior/inferior

- 11. Find limit superior and limit inferior of the following sequences.
 - (1) $a_n = \frac{n}{n+1}$, if n is odd, and $a_n = \frac{1}{n}$, if n is even.
 - (2) $a_n = (-1)^n (1 \frac{1}{n}).$
 - (3) $a_n = (-1)^n (n + \frac{1}{2^n})$
 - (4) $(1,-1,\frac{1}{2},-2,\frac{1}{3},-3,\ldots)$
 - $(5) (-1)^n (1-\frac{1}{n})n^{1/n}$

Solution: (1) For $n \in \mathbb{N}$, $\text{lub}\{a_n, a_{n+1}, \ldots\} = 1$, and $\text{glb}\{a_n, a_{n+1}, \ldots\} = 0$.

Therefore, $\limsup a_n = 1$, and $\liminf a_n = 0$.

(2) $(a_n) = (0, \frac{1}{2}, -\frac{2}{3}, \frac{3}{4}, -\frac{4}{5}, \ldots)$. For $n \in \mathbb{N}$, $\text{lub}\{a_n, a_{n+1}, \ldots\} = 1$, and $\text{glb}\{a_n, a_{n+1}, \ldots\} = -1$.

Therefore, $\limsup a_n = 1$, and $\liminf a_n = -1$.

- (3) (a_n) is not bounded above, and not bounded below. Therefore, $\limsup a_n = \infty$, and $\liminf a_n = -\infty$.
- (4) For n = 2k 1 and n = 2k, $k \in \mathbb{N}$, $\text{lub}\{a_n, a_{n+1}, \ldots\} = \frac{1}{k} \to 0$ as $k \to \infty$. Therefore, $\limsup a_n = 0$. As (a_n) is not bounded below, $\liminf a_n = -\infty$.
- (5) The given sequence is $b_n = a_n n^{1/n}$, where $a_n = (-1)^n (1 \frac{1}{n})$. Since $n^{1/n} \to 1$, we have $\limsup b_n = \limsup a_n = 1$, and $\liminf b_n = \liminf a_n = -1$ (see [6.5] of Differential Notes).