

Outline

Have some function J(w,b)

Want to minimize J(w,b) over parameters w & b

Start with any initial value of parameters w & b

Keep changing w & b to reduce J(w,b) until we settle at or near minimum

Function with more than one minimum?

Function with more than one minimum

Gradient decent algorithm

$$M = M - 2 \frac{3J(w,b)}{3W}$$

$$M = b - 2 \frac{3J(w,b)}{3W}$$

Simultaneous update

temp
$$w := w - \lambda \frac{\partial J(v,b)}{\partial w} - D$$

temp $b := b - \lambda \frac{\partial J(v,b)}{\partial b} - \mathcal{D}$
 $w = temp w - \mathcal{D}$
 $b = temp b - \mathcal{D}$

Incorrect.

Simplified Gradient decent algorithm

repeat until convergence {

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$
$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$J(w)$$

$$w = w - \alpha \frac{\partial}{\partial w} J(w)$$

$$\min_{w} J(w)$$

Gradient decent algorithm intuition

$$W = W - 2 \frac{\partial J(w)}{\partial w}$$

Learning rate α

If α is too small, then Gradient decent may converge very slowly.

If α is too large, then
Gradient decent may
overshoot resulting into
diverging rather
converging.

