

Deep Generative models: VAE, GAN, and Diffusion

Rubin Won
UST-ETRI
MS Student
rubrub@etri.re.kr
Nov 16th, 2023

Contents

- Recap
 - → What is Generative model?
- Approaches & Technical Methods
 - → VAEs
 - → GANs
 - → Diffusion models

Recap

- > A **generative model** can be defined as follows:
 - A generative model describes how a dataset is **generated**, in terms of a **probabilistic model**. By **sampling** from this model, we are able to **generate new data**.
- A generative model must also be probabilistic rather than deterministic.

Generative model is a statistical model of the joint probability distribution P(X, Y) on given observable variable X and target variable Y

Goal for generative models:

- To learn the underlying <u>data distribution</u> of the training data.
 - Once this distribution is learned, the model can generate new data points that are statistically similar to the training data.

VAEs

1. Discrete Random Variables → Binomial and multinomial distributions

1. Continuous Random Variables → Gaussian distributions

Those distributions are called **parametric distributions** since they are governed by small number of adaptive parameters (e.g. mean, variance)

→ We need a procedure for determining suitable values for the parameters given an observed dataset.

Purpose of Inference: In probabilistic modeling, the goal is to find the distribution of data.

→ This involves identifying the parameters of the model.

Posterior distribution of latent given data.

$$p(z|X) = \frac{p(X|z)p(z)}{\int p(X|z)p(z)dz}$$

This becomes intractable!

We use Variational inference to solve this issue.

Variational inference approximates the posterior distribution **p(z|X)** with some simpler distribution **q(z)** which is <u>"close"</u> to our target distribution.

KL divergence

$$\mathit{KL}(q(z)||p(z)) = \int q(z) \log \frac{q(z)}{p(z)} dz = \mathsf{E}_{q(z)}[\log \frac{q(z)}{p(z)}]$$

The optimization problem

 \rightarrow KL divergence achieve its minimum value when q(z) = p(z)

$$q^*(z) = \underset{q \in Q}{\arg\min} KL(q(z)||p(z|x))$$

← Hard to optimize

$$\begin{aligned} \textit{KL}(q(z)||p(z|x)) &= \mathsf{E}_{q(z)}[\log \frac{q(z)}{p(z|x)}] \\ &= \mathsf{E}_{q(z)}[\log q(z)] - \mathsf{E}_{q(z)}[\log p(z|x)] \\ &= \mathsf{E}_{q(z)}[\log q(z)] - \mathsf{E}_{q(z)}[\log \frac{p(z,x)}{p(x)}] \\ &= \mathsf{E}_{q(z)}[\log q(z)] - \mathsf{E}_{q(z)}[\log p(z,x)] + \mathsf{E}_{q(z)}[\log p(x)] \\ &= \mathsf{E}_{q(z)}[\log q(z)] - \mathsf{E}_{q(z)}[\log p(z,x)] + \log p(x) \end{aligned}$$

ELBO

$$\mathsf{ELBO}(q) = \mathsf{E}_{q(z)}[\log p(z,x)] - \mathsf{E}_{q(z)}[\log q(z)]$$

→ Since we need to "minimize" KL divergence, we give **lower bound** of this and **maximize** it.

VAE: probabilistic autoencoder

- ➤ Encoder: takes the observed data x and produces the latent variable z.
- ➤ **Decoder**: uses the z produced by the encoder to reconstruct x.

VAEs - Creating a Latent Vector

Decoder part of VAE assumes a gaussian distribution.

$$p\left(x|z
ight)=N\left(x|f_{\mu}\left(z
ight),f_{\sigma}\left(z
ight)^{2} imes I
ight)$$

Using MLE parameter estimation, by marginal log-likelihood log p(x) we need to optimize log p(x)

$$\log p\left(x\right) = \log \sum_{z} p\left(x | f_{\mu}\left(z\right), f_{\sigma}\left(z\right)^{2} \times I\right) p\left(z\right) \qquad \leftarrow \text{Hard to optimize}$$

Using Variational Inference - We have the ELBO function

$$\left(\log p\left(x
ight) \geq E_{z\sim q\left(z
ight) }\left[\log p(x|z)
ight] -D_{KL}\left(q\left(z
ight) ||p\left(z
ight)
ight)$$

(log evidence) we want this to be high to say that the model explains the data well

MAXIMIZE ELBO to maximize log p(x)

In typical variational inference, q(z) is set to be a gaussian distribution

$$q\left(z
ight)=N\left(\mu_{q},\sigma_{q}^{2}
ight)$$

→ for more complex data, parameters of q are set as functions of x

$$q\left(z|x
ight)=N\left(\mu_{q}\left(x
ight),\Sigma_{q}\left(x
ight)
ight)$$

$$q\left(z|x\right)=N\left(\mu_{q}\left(x\right),\Sigma_{q}\left(x\right)\right)$$

We train q to maximize the **ELBO** \rightarrow the distribution of q will continuously change as x changes.

Encoder includes two neural networks: (f_{μ},f_{σ})

Finally, pick a **noise** from the **zero-mean Gaussian** and add and multiply it with the mean and variance outputted by f μ and f σ to create the **sampled latent vector z**

$$z = \mu(x) + \sigma(x) \times \epsilon$$
, $\epsilon \sim N(0, 1)$

Thus, even if x is the same z can differ due to the noise drawn from the zero-mean Gaussian when creating z. (The reason the term 'variational' is prefixed in VAE)

Based on the proposed scheme, variational autoencoder successfully generates images:

Interpolation of latent variables induce transitions in generated images:

GANs

explicit likelihood for the data.

- Implicit density models define a stochastic procedure that can directly generate data.

This is the only place where sampling happens

Real-World Data Training:

- The discriminator (D) aims to maximize the probability of correctly labeling real data as "True" (D(x) = 1).

Objective Function:

- The GAN is defined by a value function V(D, G) that both players (the generator G and the discriminator D) aim to optimize.
- It is a combination of two terms representing the binary cross-entropy loss for both real and generated data:

$$V(D,G) = E_{x \sim p_{data(x)}}[logD(x)] + E_{z \sim p_z(z)}[log(1 - D(G(z))]$$

 $\min_{G} \max_{D} V(D,G)$

G: should minimize log(1-D(G(x))), maximize D(G(x))

D: should minimize D(G(x))

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

The discriminator tries to maximize this function, while the generator tries to minimize it.

Diffusion models

> Diffusion model tries to learn the reverse of noise generation procedure

Forward step(q): Iteratively add noise to the original sample

Forward (diffusion) process

Diffusion model tries to learn the reverse of noise generation procedure

Forward step(q): Iteratively add noise to the original sample

Reverse $step(p\theta)$: Recover the original sample from the noise (generation happens here)

Reverse process

Forward (diffusion) process

ELBO of diffusion models

$$\begin{aligned} log p(\mathbf{x}) \geq & \mathbb{E}_{q(\mathbf{x}_{1}|\mathbf{x}_{0})}[log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})] - \\ & D_{KL}(q(\mathbf{x}_{T}|\mathbf{x}_{0})||p(\mathbf{x}_{T})) - \\ & \sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{x}_{t}|\mathbf{x}_{0})}[D_{KL}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))] \\ & = L_{0} - L_{T} - \sum_{t=2}^{T} L_{t-1} \end{aligned}$$

Simplified Version of the loss function:

$$L_t^{ ext{simple}} = \mathbb{E}_{\mathbf{x}_0,t,m{\epsilon}} \Big[\|m{\epsilon} - m{\epsilon}_{ heta}(\sqrt{ar{a}_t}\mathbf{x}_0 + \sqrt{1-ar{a}_t}m{\epsilon},t)||^2 \Big]$$

- (1) We take a random sample x0 from the real unknown and complex data distribution q(x0)
- (2) Then, we sample a noise level t uniformly between 1 and T (i.e., a random time step)
- (3) We sample some noise from a Gaussian distribution and corrupt the input by this noise at level t using the nice property defined above.
- (4) The **neural network is trained to predict this noise** based on the corrupted image xt

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\left\|oldsymbol{\epsilon} - oldsymbol{\epsilon}_{ heta} \left(\sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t} oldsymbol{\epsilon}, t
ight)
ight\|^2$$

6: until converged

Reverse process

Forward (diffusion) process

Trilemma of Generative models: Quality vs. Diversity vs. Speed

Which model should we use?

VAEs (Variational Autoencoders):

 Good balance of diversity and speed, but generally lower in output quality compared to GANs and Diffusion Models.

GAN (Generative Adversarial Networks):

Fast and capable of producing high-quality outputs.

Diffusion Models:

Excellent in quality, with high diversity, but slower.

What's Next?

Implementation

> Research results and review

Thank You!

Q&A