Symmetric Spaces

1 1

Definition 1.1. A Riemann symmetric space is a Riemannian manifold (M,g) such that $\forall p \in M$ there exists a isometry $s_p : M \to M$ satisfying $s_p(p)$ and $ds_p|_p = -\mathrm{id}$.

Remark. A Riemannian manifold M does not have isometries in general.

A few examples:

Example. • On \mathbb{R}^n , $s_p(p+v) = p-v$.

- $S^n \subset \mathbb{R}^n$ given w.l.o.g at $p = (0, 0, \dots, 0, 1)$ as $s_p(x_1, \dots, x_{n+1}) = (-x_1, \dots, -x_n, x_{n+1})$.
- \mathbb{H}^n as the Poincare disc model $(\mathbb{D}^n, g_{\text{hyp}})$ by $s_0(v) = -v$.

Definition 1.2. A Riemannian manifold (M,g) is called a **locally symmetric** space if $\forall p \in M$ there exists a neighbourhood of $p, p \in \mathcal{U}_p$ and an isometry $s_p : \mathcal{U}_p \to \mathcal{U}_p$ of $(\mathcal{U}_p, g|_{\mathcal{U}_p})$ such that $ds_p|_p = -id$.