Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Photolithography 光刻 Part I: Optics

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Integrate Circuits

Moore's law

transistor number

Transistor Size

CMOS Process

'Lithography is the cornerstone of modern IC technology'
---- Silicon VLSI, Plummer et al.,

Lithography

litho- 石头 -graph 图案

Photography

显影

2. Developing

Photolithography(光刻)

Photolithography(光刻)

Exposure (曝光)

接触式

接近式

投影式

1:1 Exposure Systems

Usually 4X or 5X Reduction

Figure 5.3 **Contact Printing**

Proximity Printing

Projection Printing

High resolution. But mask wear, defect generation.

Less mask wear /contamination, less resolution (depend on gap).

Fast, simple and inexpensive, choice for R&D.

No mask wear/contamination, mask de-magnified 4× (resist features 4× smaller than mask). Very expensive, mainly used for IC industry.

Exposure (曝光)

stepper (步进投影)

Video

Method of stepper

Photomasks (掩膜)

Chrome photomask

Photomasks (掩膜)

Photomasks (掩膜)

- Layout design
 - CAD tools
 - see examples

Example

design layout

- Transparency film
 - flexible mask
- Chrome mask
 - glass substrate
 - chrome coating

transparency film

chrome mask

ideal case

actual case

diffraction: light is a wave!

the smaller, the harder

contact and proximity mode

- **R** resolution
- wavelength
- g gap size

$$R \sim \sqrt{\lambda \cdot g}$$

smaller λ , $g \longrightarrow$ smaller R

- λ UV, DUV, EUV, x-ray, ...
- g minimum: resist film thickness

projection mode

modulation transfer function (MTF)

$$MTF = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

diffraction pattern (Airy's disk)

Rayleigh Criterion:

the first diffraction minimum of one source coincides with the maximum of another

aperture

resolution

$$\left[0.6 \frac{\lambda}{NA} typical\right]$$

 $NA \equiv numerical \ aperture \ of \ lens$.

 $=n.\sin\Theta$, where n is the index of refraction

 k_1 = a constant between 0.25 and 1, depending on optics, resist, and process latitude

$$R \sim 0.6 \cdot \frac{\lambda}{n \sin \theta}$$

smaller λ , larger NA ---> smaller resolution

 λ UV, DUV, EUV, x-ray, ...

n refractive index (air: 1, oil: 1.4~1.7)

 $\sin\theta$ maximum = 1.0

Spatial Coherence

S = spatial coherence of light source

$$S = \frac{\text{light source diameter}}{\text{condenser lens diameter}} = \frac{s}{d}$$

Resolution Improvement

$$R \sim 0.6 \cdot \frac{\lambda}{n \sin \theta}$$

decrease λ increase θ increase n??

Large Aperture

FAST (天眼,贵州)

Immersion Lithography

$$R \sim 0.6 \cdot \frac{\lambda}{n \sin \theta}$$

n > 1.0

n = 1.0

B. J. Lin (林本坚) 2018 未来科学大奖

If high index fluid n = 1.7, resolution is reduced by ~40%

袁隆平、林本坚等7人获百万美元"未来科学大奖" The ChinaPress · 21 hours ago

Phase Shift Mask

Double Patterning

Double Patterning

Conventional Lithography Double Patterning Geometry features disappearing due to Enables printing of images below minimum lithography distortion spacing design rules

Multiple Patterning

3LE Triple and 4LE Quadruple Patterning

Optical Proximity Correction (OPC)

Resolution Improvement

$$R \sim 0.6 \cdot \frac{\lambda}{n \sin \theta}$$

For deep-UV, λ = 193 nm

normal R	116 nm
+ immersion (<i>n</i> = 1.7)	68 nm
+ immersion (<i>n</i> = 1.7) + double pattern	34 nm
+ immersion (<i>n</i> = 1.7) + quad pattern	17 nm
•••	•••

Manufacturing Gets Complicated

multiple patterning steps

Depth of Focus (DOF)

Depth of Focus (DOF)

$$\Delta z = k_2 \frac{\lambda}{(NA)^2}$$
$$0.5 < k_2 < 1$$

$$\Delta z = k_2 \frac{\lambda}{(NA)^2}$$

$$0.5 < k_2 < 1$$

$$\approx \frac{\pm \frac{l_m}{2}}{\tan \theta} \approx \frac{\pm \frac{l_m}{2}}{\sin \theta} = \pm \frac{\lambda}{2(NA)^2}$$
for small θ

(1)
$$l_m \approx 0.6 \frac{\lambda}{NA}$$
 want small l_m
(2) $DOF = \pm \frac{\lambda}{2(NA)^2}$ want large DOF

trade-off between resolution and DOF

Light Sources

- Mercury (Hg) arc lamp
 - **g-line 436 nm, h-line 405 nm, i-line 365 nm**

$$R \sim 0.6 \cdot \frac{\lambda}{n \sin \theta}$$

Filters can be used to limit exposure wavelengths.

Light Sources

- Mercury (Hg) arc lamp
 - g-line 436 nm, h-line 405 nm, i-line 365 nm

yellow light in cleanroom

Light Sources

- Deep UV (DUV)
 - excimer lasers: KrF (248 nm), ArF (193 nm)

$$R \sim 0.6 \cdot \frac{\lambda}{n \sin \theta}$$

- Extreme UV (EUV)
 - □ Tin (Sn) plasma lasers, 13.5 nm
- X-ray
 - □ 0.01 ~ 10 nm
- Electron beam (E-beam)
- ...

Optics for EUV

at EUV (λ = 13.5 nm):

glass is not transparent
metal is not reflective
even air is absorptive

Optics for EUV

multilayer mirrors (Mo/Si)

reflective masks

Optics

optical loss > 95%

UV (365 nm)

EUV (13.5 nm)

Equipment

UV (365 nm)
resolution ~ 2 μm
price ~ 200,000 RMB

EUV (13.5 nm)
resolution ~ 10 nm
price ~ 100,000,000 \$\$\$

X-ray Lithography

wavelength 0.01~10 nm

Electron Beam (Ebeam) Lithography

similar to a scanning electron microscope (SEM)

wave-particle duality

$$\lambda = \frac{h}{\text{momentum}}$$

wavelength

$$\lambda(\text{nm}) = \frac{1.23}{\sqrt{V}}$$

Example:

for V = 30 kV, $\lambda = 0.007 \text{ nm}$

Electron Beam (Ebeam) Lithography

- The resolution is limited by secondary electrons
 - higher V -> lower resolution
 - resolution ~ 10 nm

proximity effect

- No mask for electron, only direct writing!
 - slow process
- Only for research purposes now

NanoPhotonics

Optical Cloak

An optical cloak made of dielectrics

Jason Valentine1*, Jensen Li1*, Thomas Zentgraf1*, Guy Bartal1 and Xiang Zhang1,2†

Metalens

RESEARCH ARTICLE

APPLIED OPTICS

Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging

Mohammadreza Khorasaninejad, ^{1*} Wei Ting Chen, ^{1*} Robert C. Devlin, ^{1*} Jaewon Oh, ^{1,2} Alexander Y. Zhu, ¹ Federico Capasso ¹†

Top Down vs. Bottom Up

Bottom Up Approaches

nanowire growth

block copolymer assembly

quantum dot

0.3 M H₂SO₄, 25 V D₂ = 60 nm

 $0.5 C_2 H_2 O_4$, 40 V $D_c = 100 \text{ nm}$

1.1 M H₃PO₄, 160 V D_c = 420 nm

anodized alumina

Nano Structures in Nature

