Tutorial 4: Classification I: Logit, LDA, KNN

ECO3080: Machine Learning in Business

Instructor: Prof. Qihui Chen Teaching Assistant: Long Ma

September 28, 2022

■ Let's look at the data set first: 1250 Obs. and 9 variables

^	Year [‡]	Lag1 [‡]	Lag2 [‡]	Lag3 [‡]	Lag4 [‡]	Lag5 [‡]	Volume [‡]	Today	Direction [‡]
1	2001	0.381	-0.192	-2.624	-1.055	5.010	1.19130	0.959	Up
2	2001	0.959	0.381	-0.192	-2.624	-1.055	1.29650	1.032	Up
3	2001	1.032	0.959	0.381	-0.192	-2.624	1.41120	-0.623	Down
4	2001	-0.623	1.032	0.959	0.381	-0.192	1.27600	0.614	Up
5	2001	0.614	-0.623	1.032	0.959	0.381	1.20570	0.213	Up
6	2001	0.213	0.614	-0.623	1.032	0.959	1.34910	1.392	Up
7	2001	1.392	0.213	0.614	-0.623	1.032	1.44500	-0.403	Down
8	2001	-0.403	1.392	0.213	0.614	-0.623	1.40780	0.027	Up
9	2001	0.027	-0.403	1.392	0.213	0.614	1.16400	1.303	Up
10	2001	1.303	0.027	-0.403	1.392	0.213	1.23260	0.287	Up
11	2001	0.287	1.303	0.027	-0.403	1.392	1.30900	-0.498	Down
12	2001	-0.498	0.287	1.303	0.027	-0.403	1.25800	-0.189	Down
13	2001	-0.189	-0.498	0.287	1.303	0.027	1.09800	0.680	Up
14	2001	0.680	-0.189	-0.498	0.287	1.303	1.05310	0.701	Up
15	2001	0.701	0.680	-0.189	-0.498	0.287	1.14980	-0.562	Down

Data Description

- This data set consists of percentage returns for the S&P 500 stock index over 1250 days, from the beginning of 2001 until the end of 2005.
- For each date, we have recorded the percentage returns for each of the five previous trading days, Lag1 through Lag5.
- We have also recorded Volume (the number of shares traded on the previous day, in billions), Today (the percentage return on the date in question) and Direction (whether the market was Up or Down on this date).
- Our goal is to predict Direction (a qualitative response) using the other features.

Summary Statistic

Table: Summary Statistic

Statistic	N	Mean	St. Dev.	Min	Max
Year	1,250	2,003.016	1.409	2,001	2,005
Lag1	1,250	0.004	1.136	-4.922	5.733
Lag2	1,250	0.004	1.136	-4.922	5.733
Lag3	1,250	0.002	1.139	-4.922	5.733
Lag4	1,250	0.002	1.139	-4.922	5.733
Lag5	1,250	0.006	1.148	-4.922	5.733
Volume	1,250	1.478	0.360	0.356	3.152
Today	1,250	0.003	1.136	-4.922	5.733

Summary Statistic

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

Correlation of variables

Summary Statistic

Sampling

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

Training Set: 2001 - 2004

Validation Set: 2005

```
attach(Stock_Data)
train <- (Year < 2005)
Stock_Data_test <- Stock_Data[!train, ]
Stock_Data_train <- Stock_Data[train, ]
Direction_2005 <- Direction[!train]
detach(Stock_Data)</pre>
```


Logit/Probit Models


```
logitreg <- glm(Direction ~ Lag1 + Lag2 + Volume,
                data = Stock Data.
                family = binomial(link = logit).
                 subset = train)
summary(logitreg)
logit_probs <- predict(logitreg, Stock_Data_test, type = "response")</pre>
logit_pred <- rep("Down", 252)</pre>
logit pred[logit probs > 0.5] <- "Up"
table(logit_pred, Direction_2005)
probitreg <- glm(Direction ~ Lag1 + Lag2 + Volume,
                 data = Stock Data.
                 family = binomial(link = probit),
                  subset = train)
summary(probitreg)
probit_probs <- predict(probitreg, Stock_Data_test, type = "response")</pre>
probit_pred <- rep("Down", 252)</pre>
probit pred[probit probs > 0.5] <- "Up"
table(probit_pred, Direction_2005)
stargazer(logitreg, probitreg, type = "html", title = "Example")
```

Logit/Probit Models

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

	Dependent variable:			
=	Direction			
	logistic pro			
	(1)	(2)		
Lag1	-0.054	-0.034		
	(0.052)	(0.032)		
Lag2	-0.046	-0.029		
	(0.052)	(0.032)		
Volume	-0.120	-0.075		
	(0.238)	(0.149)		
Constant	0.197	0.123		
	(0.332)	(0.208)		
Observations	998	998		
Log Likelihood	-690.574	-690.575		
Akaike Inf. Crit.	1,389.147	1,389.149		
Note:	°p<0.1; **p<0	.05; ***p<0.01		

	Direct	tion_	200
logit_pred	Down	Up	
Down	79	100	
Up	32	41	

Direction_2005 probit_pred Down Up Down 79 100 Up 32 41

LDA/QDA

Direction_2005 lda_class Down Up Down 79 100 Up 32 41

Direction_2005 Down Up Down 84 110 Up 27 31

*Multi-class Logit Model

	Α.		Α.	Α.
	age	blood.pressure	sex	outcome
1	69.00142	108.74175	female	fair
2	48.26654	137.89989	male	poor
3	51.02515	130.86595	female	poor
4	45.55499	126.00097	female	fair
5	56.68986	132.78573	female	fair
6	30.99371	140.14470	female	poor
7	49.40744	160.97023	female	fair
8	62.77955	83.59071	male	poor
9	67.49486	100.63270	female	fair
10	62.41583	157.18749	male	fair
11	70.06186	118.57335	female	fair
12	58.14854	171.09122	female	poor
13	50.18173	149.34822	female	good
14	60.92908	116.85020	female	good
15	59.47216	133.26287	male	good
16	59.19672	125.20865	male	fair
17	53.45896	137.21191	female	poor
18	50.49316	128.99013	male	good
19	70.19562	113.10960	female	fair
20	68.59046	102.21017	female	good

- (1) Category space: $J = \{j_1, \dots, j_m\}$
- (2) Probability space: $\Pi = \{\pi_1, \dots, \pi_m\}, \ \pi_1 + \pi_2 + \dots + \pi_m = 1$
- (3) Model:

$$\begin{cases} ln\left(\frac{\pi_{1}}{\pi_{m}}\right) = \beta_{1,1} + \beta_{2,1}x_{2} + \beta_{3,1}x_{3} + \dots + \beta_{K,1}x_{K} \\ ln\left(\frac{\pi_{2}}{\pi_{m}}\right) = \beta_{1,2} + \beta_{2,2}x_{2} + \beta_{3,2}x_{3} + \dots + \beta_{K,2}x_{K} \\ \vdots \\ ln\left(\frac{\pi_{m-1}}{\pi_{m}}\right) = \beta_{1,m-1} + \beta_{2,m-1}x_{2} + \beta_{3,m-1}x_{3} + \dots + \beta_{K,m-1}x_{K} \end{cases}$$

*Multi-class Logit Model


```
> library(nnet)
> multi_logit <- multinom(outcome ~ sex + age + blood.pressure,
                         data = data001)
# weights: 15 (8 variable)
initial value 1098.612289
iter 10 value 1094,983885
iter 10 value 1094.983879
iter 10 value 1094.983879
final value 1094,983879
converged
> summary(multi_logit)
Call:
multinom(formula = outcome ~ sex + age + blood.pressure. data = data001)
Coefficients:
     (Intercept)
                   sexmale
                                  age blood.pressure
fair -0.4241529 -0.1419478 0.01163071 -0.001496184
      0.7139910 -0.2725475 0.00297585 -0.005947562
aood
Std. Errors:
     (Intercept)
                  sexmale
                                  age blood.pressure
fair
      0.7921629 0.1557941 0.007830494
                                         0.005086707
      0.7858788 0.1560237 0.007814219 0.005084151
aood
Residual Deviance: 2189.968
ATC: 2205.968
```


#2 Cumulative odds ratio model:

- (1) Category space: $J = \{j_1, ..., j_m\}, j_1 < j_2 < \cdots < j_m$
- (2) Probability space: $\Pi = \{\pi_1, ..., \pi_m\}, \ \pi_h \equiv P(y_i \le j_h | X)$
- (3) Model:

$$\begin{cases} ln\left(\frac{\pi_1}{1-\pi_1}\right) = \beta_{1,1} + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_K x_K \\ ln\left(\frac{\pi_2}{1-\pi_2}\right) = \beta_{1,2} + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_K x_K \\ \vdots \\ ln\left(\frac{\pi_{m-1}}{1-\pi_{m-1}}\right) = \beta_{1,m-1} + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_K x_K \end{cases}$$

*Multi-class Logit Model


```
> library(MASS)
> # set up regression
> orderlogit <- polr(ordered(outcome) ~ sex + age + blood.pressure.</pre>
                     data = data001)
> summary(orderlogit)
Re-fitting to get Hessian
call:
polr(formula = ordered(outcome) ~ sex + age + blood.pressure.
    data = data001)
Coefficients:
                   Value Std. Error t value
sexmale
               -0.202041
                           0.116722 - 1.7310
                0.002005
                           0.005918 0.3388
age
blood.pressure -0.004331
                           0.003777 - 1.1467
Intercepts:
          Value Std. Error t value
poor|fair -1.2312 0.5910
                             -2.0832
fair|good 0.1681 0.5896
                              0.2850
Residual Deviance: 2192.436
ATC: 2202.436
```

*Multi-class Logit Model

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

- > library(brant)
- > brant(orderlogit)

Test for	X2	df	probability
Omnibus	2.4	3	0.49
sexmale	0	1	0.96
age	2.28	1	0.13
blood.pressure	0.11	1	0.74

HO: Parallel Regression Assumption holds

Naive Bayes model: we have N observations

$$\Pr(y_i = c_m | x_1, x_2, ..., x_k) = \frac{\Pr(y_i = c_m) \prod_{i=1}^k \Pr(x_i | y_i = c_m)}{\prod_{i=1}^k \Pr(x_i)}$$

(1)
$$\widehat{Pr}(y_i = c_m) = \frac{\sum I(y_i = c_m)}{N}$$

(2)
$$\Pr(x_i|y_i = c_m) = \frac{\sum I(y_i = c_m, x_i)}{\sum I(y_i = c_m)}$$

(3)
$$Pr(x_i) = \frac{\sum I(x_i)}{N}$$

[Question:] What is the most important assumption here? How to estimate the last two probabilities when x is continuous?

*Naive Bayes

