Module 2: Linux Walkthrough

Module Objectives

Topic Title	Topic Objective
Linux Basics	Explain why Linux skills are essential for network security monitoring and investigation.
Working in the Linux Shell	Use the Linux shell to manipulate text files.
Linux Servers and Clients	Explain how client-server networks function.
Basic Server Administration	Explain how a Linux administrator locates and manipulates security log files.
The Linux File System	Manage the Linux file system and permissions.
Working in the Linux GUI	Explain the basic components of the Linux GUI.
Working on a Linux Host	Use tools to detect malware on a Linux host.

Linux Overview What is Linux?

- ▶ Linux is an operating system that was created in 1991.
- ► Linux is open source, fast, reliable, and small. It requires very little hardware resources to run and is highly customizable.
- ► Linux is part of several platforms and can be found on devices anywhere from wristwatches to supercomputers.
- ▶ Linux is designed to be connected to the network, which makes it much simpler to write and use network-based applications.
- A Linux distribution is the term used to describe packages created by different organizations and include the Linux kernel with customized tools and software packages.

Linux Overview What is Linux?

 Linux means the kernel of the system, which is the central controller of everything that happens on the computer.

 Linux is a combination of software called GNU/Linux, which defines the operating system.

- GNU is the free software that provides open source equivalents of many common UNIX commands.
- The Linux part of this combination is the Linux kernel, which is the core of the operating system.
- The story of Linux begins with UNIX, an operating system developed at AT&T Bell Labs in the 1970s.
- UNIX is written in the C language.

Linux Overview

Linux Has Distributions

- A distribution refers to the Linux kernel, tools, and suite of applications that come bundled together.
- Take Linux and the GNU tools, add some user-facing applications like a web browser and an email client, and you have a full Linux system.
- There are distributions suited to every imaginable purpose.
- There are distributions that focus on running servers, desktops, or even industryspecific tools like electronics design or statistical computing.

Linux Overview

The Value of Linux

Linux is often the operating system of choice in the Security Operations Center (SOC). These are some of the reasons to choose Linux:

- Linux is open source Any person can acquire Linux at no charge and modify it to fit
 specific needs.
- The Linux CLI is very powerful The Linux Command Line Interface (CLI) is extremely powerful and enables analysts to perform tasks not only directly on a terminal, but also remotely.
- The user has more control over the OS The administrator user in Linux, known as the root user, or superuser, can modify any aspect of the computer with a few keystrokes.
- It allows for better network communication control Control is an inherent part of Linux.

Linux Overview

Linux in the SOC (Contd.)

The following table lists a few tools that are often found in a SOC:

SOC Tool	Description
Network packet capture software	 A crucial tool for a SOC analyst as it makes it possible to observe and understand every detail of a network transaction. Wireshark is a popular packet capture tool.
Malware analysis tools	 These tools allow analysts to safely run and observe malware execution without the risk of compromising the underlying system.
Intrusion detection systems (IDSs)	 These tools are used for real-time traffic monitoring and inspection. If any aspect of the currently flowing traffic matches any of the established rules, a pre-defined action is taken.

Linux in the SOC (Contd.)

SOC Tool	Description
Firewalls	This software is used to specify, based on pre-defined rules, whether traffic is allowed to enter or leave a network or device.
Log managers	 Log files are used to record events. Because a network can generate a very large number of log entries, log manager software is employed to facilitate log monitoring.
Security information and event management (SIEM)	SIEMs provide real-time analysis of alerts and log entries generated by network appliances such as IDSs and firewalls.
Ticketing systems	 Task ticket assignment, editing, and recording is done through a ticket management system. Security alerts are often assigned to analysts through a ticketing system.

Linux Overview Linux Tools

- Linux computers that are used in the SOC often contain penetration testing tools.
- A penetration test, also known as PenTesting, is the process of looking for vulnerabilities in a network or computer by attacking it.
- Packet generators, port scanners, and proof-of-concept exploits are examples of PenTesting tools.
- Kali Linux is a Linux distribution which contains many penetration tools together in a single Linux distribution.
- Notice all the major categories of penetration testing tools of Kali Linux.

The Linux Shell

- In Linux, the user communicates with the OS by using the CLI or the GUI.
- Linux often starts in the GUI by default. This hides the CLI from the user.
- One way to access the CLI from the GUI is through a terminal emulator application.
 These applications provide user access to the CLI and are named as some variation of the word terminal.
- In Linux, popular terminal emulators are Terminator, eterm, xterm, konsole, and gnome-terminal.
- Fabrice Bellard has created JSLinux which allows an emulated version of Linux to run in a browser.

Note: The terms shell, console, console window, CLI terminal, and terminal window are often used interchangeably.

Basic Commands

- Linux commands are programs created to perform a specific task.
- As the commands are programs stored on the disk, when a user types a command, the shell must find it on the disk before it can be executed.
- The following table lists basic Linux commands and their functions:

Command	Description
mv	Moves or renames files and directories.
chmod	Modifies file permissions.
chown	Changes the ownership of a file.
dd	Copies data from an input to an output.
pwd	Displays the name of the current directory.
ps	Lists the processes that are currently running in the system.
su	Simulates a login as another user or to become a superuser.

Basic Commands (Contd.)

Command	Description
sudo	Runs a command as a super user, by default, or another named user.
grep	Used to search for specific strings of characters within a file or other command outputs.
ifconfig	Used to display or configure network card related information.
apt-get	Used to install, configure and remove packages on Debian and its derivatives.
iwconfig	Used to display or configure wireless network card related information.
shutdown	Shuts down the system and performs shut down related tasks including restart, halt, put to sleep or kick out all currently connected users.
passwd	Used to change the password.
cat	Used to list the contents of a file and expects the file name as the parameter.
man	Used to display the documentation for a specific command.

File and Directory Commands

Many command line tools are included in Linux by default. The following table lists a few of the most common commands related to files and directories:

Command	Description
Is	Displays the files inside a directory.
cd	Changes the current directory.
mkdir	Creates a directory under the current directory.
ср	Copies files from source to destination.
mv	Moves files to a different directory.
rm	Removes files.
grep	Searches for specific strings of characters within a file or other commands outputs.
cat	Lists the contents of a file and expects the file name as the parameter.

Working in the Linux Shell Working with Text Files

- Linux has many different text editors, with various features and functions.
- Some text editors include graphical interfaces while others are command-line only tools. Each text editor includes a feature set designed to support a specific type of task.
- Some text editors focus on the programmer and include features such as syntax highlighting, parenthesis check, and other programming-focused features.
- While graphical text editors are convenient and easy to use, command line-based text editors are very important for Linux users. The main benefit of command-linebased text editors is that they allow for text file editing from a remote computer.

Working in the Linux Shell Working with Text Files (Contd.)

- The figure shows nano, a popular command-line text editor.
- The administrator is editing firewall rules. Text editors are often used for system configuration and maintenance in Linux.
- Due to the lack of graphical support, nano (or GNU nano) can only be controlled with the keyboard.

The Importance of Text Files in Linux

- In Linux, everything is treated as a file. This includes the memory, the disks, the monitor, and the directories.
- Configuration files are text files which are used to store adjustments and settings for specific applications or services.
- Users with proper permission levels can use text editors to change the contents of configuration files.
- After the changes are made, the file is saved and can be used by the related service or application. Users are able to specify exactly how they want any given application or service to behave. When launched, services and applications check the contents of specific configuration files to adjust their behavior accordingly.

Note: The administrator used the command **sudo nano /etc/hosts** to open the file. The command **sudo** (short for "superuser do") invokes the superuser privilege to use the nano text editor to open the host file.

The Importance of Text Files in Linux (Contd.)

- In the figure, the administrator opened the host configuration file in nano for editing.
- The host file contains static mappings of host IP addresses to names.
- The names serve as shortcuts that allow connecting to other devices by using a name instead of an IP address. Only the superuser can change the host file.

Basic Server Administration

Hardening Devices

- Device hardening involves implementing proven methods of securing the device and protecting its administrative access.
- Some of these methods involve maintaining passwords, configuring enhanced remote login features, and implementing secure login with SSH.
- Depending on the Linux distribution, many services are enabled by default. Stopping such services and ensuring they do not automatically start at boot time is another device hardening technique.
- OS updates are extremely important to maintaining a hardened device. OS
 developers create and issue fixes and patches regularly.

Basic Server Administration

Hardening Devices (Contd.)

The following are basic best practices for device hardening:

- Ensure physical security
- Minimize installed packages
- Disable unused services
- Use SSH and disable the root account login over SSH
- Keep the system updated
- Disable USB auto-detection
- Enforce strong passwords
- Force periodic password changes
- Keep users from re-using old passwords

Basic Server Administration

Monitoring Service Logs

- Log files are the records that a computer stores to keep track of important events.
 Kernel, services, and application events are all recorded in log files.
- By monitoring Linux log files, an administrator gains a clear picture of the computer's performance, security status, and any underlying issues.
- In Linux, log files can be categorized as:
 - Application logs
 - Event logs
 - Service logs
 - System logs
- Some logs contain information about daemons that are running in Linux. A daemon is a background process that runs without the need for user interaction.

Basic Server Administration Monitoring Service Logs (Contd.)

The following table lists a few popular Linux log files and their functions:

Linux Log File	Description
/var/log/messages	 This directory contains generic computer activity logs. It is mainly used to store informational and non-critical system messages.
/var/log/auth.log	 This file stores all authentication-related events in Debian and Ubuntu computers. Anything involving the user authorization mechanism can be found in this file.
/var/log/secure	 This directory is used by RedHat and CentOS computers. It also tracks sudo logins, SSH logins, and other errors logged by SSSD.
/var/log/boot.log	This file stores boot-related information and messages logged during the computer startup process.

Basic Server Administration Monitoring Service Logs (Contd.)

Linux Log File	Description
/var/log/dmesg	 This directory contains kernel ring buffer messages. Information related to hardware devices and their drivers is recorded here. It is very important because, due to their low-level nature, logging systems such as syslog are not running when these events take place and are unavailable to the administrator in real-time.
/var/log/kern.log	This file contains information logged by the kernel.
/var/log/cron	 Cron is a service used to schedule automated tasks in Linux and this directory stores its events. Whenever a scheduled task (or cron job) runs, all its relevant information including execution status and error messages are stored here.
/var/log/mysqld.log or /var/log/mysql.log	 This is the MySQL log file. All debug, failure and success messages related to the mysqld process and mysqld_safe daemon are logged here.

Basic Server Administration Monitoring Service Logs (Contd.)

- The command output shows a portion of /var/log/messages log file
- Each line represents a logged event.
- The timestamps at the beginning of the lines mark the moment the event took place.

```
[analyst@secOps ~]$ sudo cat /var/log/messages
Mar 20 15:28:45 secOps kernel: Linux version 4.15.10-1-ARCH (builduser@heftig-18961) (gcc version 7.3.1
20180312 (GCC)) #1 SMP PREEMPT Thu Mar 15 12:24:34 UTC 2018
Mar 20 15:28:45 secOps kernel: Command line: BOOT_IMAGE=/boot/vmlinuz-linux root=UUID=07c6b457-3f39-
4ddf-bfd8-c169e8a877b2 rw quiet
Mar 20 15:28:45 secOps kernel: KERNEL supported cpus:
Mar 20 15:28:45 secOps kernel:
                               Intel GenuineIntel
Mar 20 15:28:45 secOps kernel: AMD AuthenticAMD
Mar 20 15:28:45 secOps kernel: Centaur CentaurHauls
Mar 20 15:28:45 secOps kernel: x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers'
Mar 20 15:28:45 secOps kernel: x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
Mar 20 15:28:45 secOps kernel: x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
Mar 20 15:28:45 secOps kernel: x86/fpu: xstate offset[2]: 576, xstate sizes[2]: 256
Mar 20 15:28:45 secOps kernel: x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using
'standard' format.
Mar 20 15:28:45 secOps kernel: e820: BIOS-provided physical RAM map:
Mar 20 15:28:45 secOps kernel: BIOS-e820: [mem 0x00000000000000-0x00000000009fbff] usable
Mar 20 15:28:45 secOps kernel: BIOS-e820: [mem 0x00000000009fc00-0x00000000009ffff] reserved
Mar 20 15:28:45 secOps kernel: BIOS-e820: [mem 0x00000000000000000000000000000000fffff] reserved
Mar 20 15:28:45 secOps kernel: BIOS-e820: [mem 0x0000000000100000-0x000000003ffeffff] usable
Mar 20 15:28:45 secOps kernel: BIOS-e820: [mem 0x000000003fff0000-0x000000003ffffffff] ACPI data
Mar 20 15:28:45 secOps kernel: BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
Mar 20 15:28:45 secOps kernel: BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
Mar 20 15:28:45 secOps kernel: BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
Mar 20 15:28:45 secOps kernel: NX (Execute Disable) protection: active
Mar 20 15:28:45 secOps kernel: random: fast init done
Mar 20 15:28:45 secOps kernel: SMBIOS 2.5 present.
Mar 20 15:28:45 secOps kernel: DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
Mar 20 15:28:45 secOps kernel: Hypervisor detected: KVM
Mar 20 15:28:45 secOps kernel: e820: last_pfn = 0x3fff0 max_arch_pfn = 0x4000000000
Mar 20 15:28:45 secOps kernel: MTRR: Disabled
Mar 20 15:28:45 secOps kernel: x86/PAT: MTRRs disabled, skipping PAT initialization too.
Mar 20 15:28:45 secOps kernel: CPU MTRRs all blank - virtualized system.
```

The File System Types in Linux

- There are many different kinds of file systems, varying in properties of speed, flexibility, security, size, structure, logic and more.
- The administrator decides the file system type which is suitable for the operating system.
- The following table lists a few file system types commonly found and supported by Linux.

Linux File System	Description
ext2 (second extended file system)	 ext2 was the default file system in several major Linux distributions until supplanted by ext3. ext2 is still the file system of choice for flash-based storage media, as its lack of a journal, increases performance and minimizes the number of writes. As flash memory devices have a limited number of write operations, minimizing write operations increases the device's lifetime.

The File System Types in Linux (Contd.)

Linux File System	Description
ext3 (third extended file system)	 ext3 is a journaled file system designed to improve the existing ext2 file system. A journal or log, the main feature added to ext3, is a technique used to minimize the risk of file system corruption in the event of sudden power loss. The file systems keeps a log of all the changes to be made. If the computer crashes before the change is complete, the journal can be used to restore or correct any issues created by the crash. The maximum file size in ext3 file systems is 32 TB.
ext4 (fourth extended file system)	 ext4 was created based on a series of extensions to ext3. While the extensions improve the performance of ext3 and increase supported file sizes, developers were concerned about stability issues and were opposed to adding the extensions to the stable ext3. The ext3 project was split in two; one kept as ext3 and its normal development and the other, named ext4, incorporated the mentioned extensions.

The File System Types in Linux (Contd.)

Linux File System	Description
NFS (Network File System)	 NFS is a network-based file system, allowing file access over the network. From the user standpoint, there is no difference between accessing a file stored locally or on another computer on the network. NFS is an open standard which allows anyone to implement it.
CDFS (Compact Disc File System)	CDFS was created specifically for optical disk media.
Swap File System	 The swap file system is used by Linux when it runs out of RAM. When this happens, the kernel moves inactive RAM content to the swap partition on the disk. While swap partitions can be useful to Linux computers with a limited amount of memory, they should not be considered as a primary solution. Swap partition is stored on disk which has much lower access speeds than RAM.

The File System Types in Linux (Contd.)

Linux File System	Description
HFS Plus or HFS+ (Hierarchical File System Plus)	 A file system used by Apple in its Macintosh computers. The Linux kernel includes a module for mounting HFS+ for read-write operations.
APFS (Apple File System)	 An updated file system that is used by Apple devices. It provides strong encryption and is optimized for flash and solid-state drives.
Master Boot Record (MBR)	 Located in the first sector of a partitioned computer, the MBR stores all the information about the way in which the file system is organized. The MBR quickly hands over control to a loading function, which loads the OS.

The Linux File System The File System Types in Linux (Contd.)

- Mounting is the term used for the process of assigning a directory to a partition.
- After a successful mount operation, the file system contained on the partition is accessible through the specified directory.
- The command output shows the output of the mount command issued in the Cisco CyberOPS VM.

```
[analyst@secOps ~]$ mount
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
sys on /sys type sysfs (rw.nosuid.nodev.noexec.relatime)
dev on /dev type devtmpfs (rw,nosuid,relatime,size=494944k,nr_inodes=123736,mode=755)
run on /run type tmpfs (rw.nosuid.nodev.relatime.mode=755)
/dev/sda1 on / type ext4 (rw,relatime)
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000)
tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,mode=755)
cgroup2 on /sys/fs/cgroup/unified type cgroup2 (rw,nosuid,nodev,noexec,relatime,nsdelegate)
cgroup on /sys/fs/cgroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,xattr,name=systemd)
pstore on /sys/fs/pstore type pstore (rw,nosuid,nodev,noexec,relatime)
none on /sys/fs/bpf type bpf (rw,nosuid,nodev,noexec,relatime,mode=700)
cgroup on /sys/fs/cgroup/rdma type cgroup (rw,nosuid,nodev,noexec,relatime,rdma)
cgroup on /sys/fs/cgroup/cpu,cpuacct type cgroup (rw,nosuid,nodev,noexec,relatime,cpu,cpuacct)
cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,blkio)
cgroup on /sys/fs/cgroup/hugetlb type cgroup (rw,nosuid,nodev,noexec,relatime,hugetlb)
cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset)
cgroup on /sys/fs/cgroup/devices type cgroup (rw,nosuid,nodev,noexec,relatime,devices)
cgroup on /sys/fs/cgroup/pids type cgroup (rw,nosuid,nodev,noexec,relatime,pids)
cgroup on /sys/fs/cgroup/memory type cgroup (rw,nosuid,nodev,noexec,relatime,memory)
cgroup on /sys/fs/cgroup/net cls.net prio type cgroup (rw.nosuid.nodev.noexec.relatime.net cls.net prio)
cgroup on /sys/fs/cgroup/perf_event type cgroup (rw,nosuid,nodev,noexec,relatime,perf_event)
cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatime,freezer)
systemd-1 on /proc/sys/fs/binfmt_misc type autofs
(rw,relatime,fd=29,pgrp=1,timeout=0,minproto=5,maxproto=5,direct,pipe ino=11792)
debugfs on /sys/kernel/debug type debugfs (rw,nosuid,nodev,noexec,relatime)
tracefs on /sys/kernel/tracing type tracefs (rw,nosuid,nodev,noexec,relatime)
hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime,pagesize=2M)
mqueue on /dev/mqueue type mqueue (rw.nosuid.nodev.noexec.relatime)
tmpfs on /tmp type tmpfs (rw,nosuid,nodev)
```

Linux Roles and File Permissions

- Linux uses file permissions in order to organize the system and enforce boundaries within the computer.
- Every file in Linux carries its file permissions, which define the actions that the owner, the group, and others can perform with the file.
- The possible permission rights are Read, Write, and Execute.
- The Is command with the -I parameter lists additional information about the file.

Linux Roles and File Permissions (Contd.)

The output of the **Is -I** command provides a lot of information about the file **space.txt**:

- The first field displays the permissions with space.txt (-rwxrw-r--).
- The second field defines the number of hard links to the file (number 1 after the permissions).
- The third and fourth field display the user (analyst) and group (staff) who own the file respectively.
- The fifth field displays the file size in bytes.
 The space.txt file has 253 bytes.
- The sixth field displays the date and time of the last modification.
- The seventh field displays the file name.

```
[analyst@secOps ~]$ ls -l space.txt
-rwxrw-r-- 1 analyst staff 253 May 20 12:49 space.txt
  (1)(2)(3)(4)(5)(6)(7)
[analyst@secOps ~]$
```

Linux Roles and File Permissions (Contd.)

The figure here shows a breakdown of file permissions in Linux. The file **space.txt** has the following permissions:

- The dash (-) means that this is a file.
- The first set of characters (rwx) is for user permission. The user (analyst) who owns the file can Read, Write and eXecute the file.
- The second set of characters is for group permissions (rw-). The group (staff) who owns the file can Read and Write to the file.
- The third set of characters is for any other user or group permissions (r--) who can only Read the file.

Linux Roles and File Permissions (Contd.)

- Octal values are used to define permissions.
- File permissions are a fundamental part of Linux and cannot be broken.
- The only user that can override file permission on a Linux computer is the root user.

Binary	Octal	Permission	Description
000	0		No access
001	1	X	Execute only
010	2	-W-	Write only
011	3	-WX	Write and Execute
100	4	r	Read only
101	5	r-x	Read and Execute
110	6	rw-	Read and Write
111	7	rwx	Read, Write and Execute

Hard Links and Symbolic Links

- A hard link is another file that points to the same location as the original file.
- Use the command In to create a hard link.
- The first argument is the existing file and the second argument is the new file.
- As shown in the command output, the file space.txt is linked to space.hard.txt and the link field now shows 2.
- Both files point to the same location in the file system. If you change one file, the other is changed, as well.
- The echo command is used to add some text to space.txt.

```
[analyst@secOps ~]$ In space.txt space.hard.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ ls -1 space*
-rw-r--r-- 2 analyst analyst 239 May 7 18:18 space.hard.txt
-rw-r--r-- 2 analyst analyst 239 May 7 18:18 space.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ echo "Testing hard link" >> space.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ ls -l space*
-rw-r--r-- 2 analyst analyst 257 May 7 18:19 space.hard.txt
-rw-r--r-- 2 analyst analyst 257 May 7 18:19 space.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ rm space.hard.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ more space.txt
Space... The final frontier...
These are the voyages of the Starship Enterprise. Its continuing mission:
- To explore strange new worlds...
- To seek out new life; new civilizations...
- To boldly go where no one has gone before!
Testing hard link
[analyst@secOps ~]$
```

Hard Links and Symbolic Links (Contd.)

- A symbolic link, also called a symlink or soft link, is similar to a hard link in that applying changes to the symbolic link will also change the original file.
- As shown in the command output, use the **In** command option -s to create a symbolic link.
- Notice that adding a line of text to test.txt also adds the line to mytest.txt.

```
[analyst@secOps ~]$ echo "Hello World!" > test.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ ln -s test.txt mytest.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ echo "It's a lovely day!" >> mytest.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ more test.txt
Hello World!
It's a lovely day!
[analyst@secOps ~]$
[analyst@secOps ~]$ rm test.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ more mytest.txt
more: stat of mytest.txt failed: No such file or directory
[analyst@secOps ~]$
[analyst@secOps ~]$ ls -1 mytest.txt
lrwxrwxrwx 1 analyst analyst 8 May 7 20:17 mytest.txt -> test.txt
[analyst@secOps ~]$
```

The Linux File System Hard Links and Symbolic Links (Contd.)

The following table shows several benefits of symbolic links over hard links:

Hard Links	Soft Links
Locating hard links is difficult.	Symbolic links show the location of the original file in the Is -I command.
Hard links are limited to the file system in which they are created.	Symbolic links can link to a file in another file system.
Hard links cannot link to a directory as the system itself uses hard links to define the hierarchy of the directory structure.	Symbolic links can link to directories.

Working with the Linux GUI

X Window System

- The graphical interface present in most Linux computers is based on the X Window System.
- X Window, also known as X or X11, is a windowing system designed to provide the basic framework for a GUI.
- X includes functions for drawing and moving windows on the display device and interacting with a mouse and keyboard.
- X works as a server, which allows a remote user to use the network to connect, start a graphical application, and have the graphical window open on the remote terminal.
- X does not specify the user interface, leaving it to other programs, such as window managers, to define all the graphical components.

Working with the Linux GUI

X Window System (Contd.)

Examples of window managers are Gnome and KDE.

The Gnome Window Manager

The KDE Window Manager

Working with the Linux GUI The Linux GUI

- While an operating system does not require a GUI to function, GUIs are considered more userfriendly than the CLI. The Linux GUI as a whole can be easily replaced by the user.
- Ubuntu is a very popular and user-friendly Linux distribution.
- Ubuntu Linux uses Gnome 3 as its default GUI.
- The figure shows the location of some of the features of the Ubuntu Gnome 3 Desktop.

Working with the Linux GUI

The Linux GUI (Contd.)

The following table lists the main UI components of Unity:

UI Component	Description
Apps Menu	 The Apps Menu shows icons for the apps that are installed on the system. A right-click menu provides shortcuts that allow starting or configuring the apps. The system search box is available from Activities View.
Ubuntu Dock	 A dock on the left side of the screen that serves as an application launcher and switcher for app favorites. Click to launch an application and when the application is running, click again to switch between running applications. If more than one application is running, launcher will display all instances. Right-click any application on the launcher to see details about that the application.
Top Bar	 This menu bar contains a menu for the application that currently has the focus. It displays the current time and indicates whether there are new system messages. It also provides access to the Activity desktop view and the system Status Menu.

Working with the Linux GUI The Linux GUI (Contd.)

UI Component	Description
Calendar and System Message Tray	 Click the day and time to see the full appointment calendar and any current system messages. Access the appointment calendar from here to create new appointments.
Activities	 Switch to application view to switch to or close running applications. A powerful search tool is available here that will find apps, files, and values within files. Allows switching between workspaces.
Status Menu	 Allows configuration of the network adaptor and other running devices. The current user can logoff or change their settings. System configuration changes can be made here. The workstation can be locked or shutdown from here.

Installing and Running Applications on a Linux Host

- Many end-user applications are complex programs written in compiled languages.
- To aid in the installation process, Linux includes programs called package managers.
- By using a package manager to install a package, all the necessary files are placed in the correct file system location.
- A package is the term used to refer to a program and all its supporting files.
- The command output shows the output of a few apt-get commands used in Debian distributions.

```
analyst@cuckoo:~$ sudo apt-get update
[sudo] password for analyst:
Hit:l http://us.archive.ubuntu.com/ubuntu xenial InRelease
Get:2 http://us.archive.ubuntu.com/ubuntu xenial-updates InRelease [102 kB]
Get:3 http://security.ubuntu.com/ubuntu xenial-security InRelease [102 kB]
Get:4 http://us.archive.ubuntu.com/ubuntu xenial-backports InRelease [102 kB]
Get:5 http://us.archive.ubuntu.com/ubuntu xenial-updates/main amd64 Packages [534 kB]
<output omitted>
Fetched 4,613 kB in 4s (1,003 kB/s)
Reading package lists... Done
analyst@cuckoo:~$
analyst@cuckoo:~$ sudo apt-get upgrade
Reading package lists Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following packages have been kept back:
linux-generic-hwe-16.04 linux-headers-generic-hwe-16.04
linux-image-generic-hwe-16.04
The following packages will be upgraded:
firefox firefox-locale-en girl.2-javascriptcoregtk-4.0 girl.2-webkit2-4.0 libjavascriptcoregtk-4.0-18
libwebkit2gtk-4.0-37 libwebkit2gtk-4.0-37-gtk2 libxen-4.6 libxenstore3.0 linux-libc-dev logrotate
openssh-client
qemu-block-extra qerau-kvm qemu-system-common qemu-system-x86 qemu-utils
```

Keeping the System Up to Date

- OS updates, also known as patches, are released periodically by OS companies to address any known vulnerabilities in their operating systems.
- Modern operating systems will alert the user when updates are available for download and installation, but the user can check for updates at any time.
- The following table compares Arch Linux and Debian/Ubuntu Linux distribution commands to perform package system basic operations.

Task	Arch	Debian/Ubuntu
Install a package by name	pacman -S	apt install
Remove a package by name	pacman -Rs	apt remove
Update a local package	pacman -Syy	apt-get update
Upgrade all currently installed packages	pacman -Syu	apt-get upgrade

Keeping the System Up to Date (Contd.)

- A Linux GUI can also be used to manually check and install updates.
- In Ubuntu for example, to install updates you would click Dash Search Box, type software updater, and then click the Software Updater icon.

Processes and Forks

- A process is a running instance of a computer program.
- Forking is a method that the kernel uses to allow a process to create a copy of itself.
- Processes need a way to create new processes in multitasking operating systems. The fork operation is the only way of doing so in Linux.
- When a process calls a fork, the caller process becomes the parent process and the newly created process becomes its child.
- After the fork, the processes are, to some extent, independent processes. They have different process IDs but run the same program code.

Processes and Forks (Contd.)

The following table lists three commands that are used to manage processes.

Command	Description		
ps	 Used to list the processes running on the computer at the time it is invoked. It can be instructed to display running processes that belong to the current user or other users. 		
top	 Used to list running processes, but unlike ps, top keeps displaying running processes dynamically. Press q to exit top. 		
kill	 Used to modify the behavior of a specific process. Depending on the parameters, kill will remove, restart, or pause a process. In many cases, the user will run ps or top before running kill. This is done so the user can learn the PID of a process before running kill. 		

Working on a Linux Host Processes and Forks (Contd.)

The command output shows the output of the **top** command on a Linux computer.

```
[analyst@secOps ~]$ top
top - 11:29:16 up 0 min, 1 user, load average: 1.09, 0.31, 0.11
Tasks: 119 total, 1 running, 118 sleeping, 0 stopped, 0 zombie
%Cpu(s): 5.4 us, 2.0 sy, 0.0 ni, 87.4 id, 2.7 wa, 1.4 hi, 1.0 si, 0.0 st
MiB Mem :
               982.8 total,
                              67.9 free,
                                              765.8 used,
                                                             149.1 buff/cache
MiB Swap:
               0.0 total,
                               0.0 free,
                                              0.0 used.
                                                             39.3 avail Mem
       PID USER
                       PR NI VIRT
                                      RES
                                              SHR S %CPU %MEM
                                                                     TIME+ COMMAND
       729 analyst
                          0 2652376 284472 61076 5
                                                   2.7
                                                                0:06.75 Web Con+
       570 analyst
                          0 2691388 215728 62404 5
                                                    2.0 21.4
                                                                0:06.99 firefox
                              267972 91960 18468 5
       357 root
                                                     1.3
                                                                 0:01.63 Xorg
       461 analyst
                            322208 21000
                                            7480 5
                                                    1.3
                                                                0:00.67 xfce4-p+
       121 root
                       20
                                                                 0.0 0:00.43 kswapd0
                                              1688 S
                                                     0.3 0.4
                                                                  0:00.66 systemd
       1 root
                            0 174376
                                       4196
       294 root
                              245036
                                      11876
                                              868 S
                                                      0.3
                                                                 0:00.34 python2+
       539 analyst
                         0 150824
                                                               0:00.02 VBoxCli+
                     20
       800 analyst
                     20
                            477768
                                    18968
                                            9800 S
                                                                0:00.30 xfce4-t+
       2 root
                       20
                                                                 0.0
                                                                       0:00.00 kthreadd
                       0 -20
                                                                 0.0
                                                                       0:00.00 rcu gp
       3 root
                                                           0.0
                                                                       0:00.00 rcu par+
                       0 -20
       4 root
                                                                       0:00.00 kworker+
                                                                 0.0
       5 root
       6 root
                       0 -20
                                                                 0.0
                                                                       0:00.00 kworker+
                                                                       0:00.00 kworker+
       7 root
                       20
                                                                 0.0
                       0 -20
                                                                 0.0
                                                                       0:00.00 mm perc+
       8 root
                                                           0.0
                       20 0
                                                           0.0
                                                                 0.0
                                                                      0:00.02 ksoftir+
       9 root
 analyst@secOps ~]$
```

Malware on a Linux Host

- Linux malware includes viruses, Trojan horses, worms, and other types of malware that can affect the operating system.
- A common Linux attack vector is its services and processes.
- The command output shows an attacker using the Telnet command to probe the nature and version of a web server (port 80).
- The attacker has learned that the server is running nginx version 1.12.0. The next step would be to research known vulnerabilities in the nginx 1.12.0 code.

```
analyst@secOps ~]$ telnet 209.165.200.224 80
Trying 209.165.200.224...
Connected to 209.165.200.224.
Escape character is '^]'.
<type anything to force an HTTP error response>
HTTP/1.1 400 Bad Request
Server: nginx/1.12.0
Date: Wed, 17 May 2017 14:27:30 GMT
Content-Type: text/html
Content-Length: 173
Connection: close
<html>
<head><title>400 Bad Request</title></head>
<body bgcolor="white">
<center><h1>400 Bad Request</h1></center>
<hr><center>nginx/1.12.0</center>
</body>
</html >
Connection closed by foreign host.
analyst@secOps ~1$
```

Rootkit Check

- A rootkit is a type of malware designed to increase an unauthorized user's privileges or grant access to portions of the software that should not normally be allowed.
- A rootkit is destructive as it changes kernel code and its modules, changing the most fundamental operations of the OS itself.
- Rootkit detection methods include booting the compute from a trusted media.
- Rootkit removal can be complicated. Re-installation of the operating system is the only real solution to the problem.
- **chkrootkit** is a popular Linux-based program designed to check the computer for known rootkits.
- The command output shows the output of chkrootkit on an Ubuntu Linux.

```
analyst@cuckoo:~$ sudo ./chkrootkit
[sudo] password for analyst:
ROOTDIR is '/'
Checking 'amd'... not found
Checking 'basename'... not infected
Checking 'biff'... not found
Checking 'chfn'... not infected
Checking 'chsh'... not infected
Checking 'cron'... not infected
Checking 'crontab'... not infected
Checking 'date'... not infected
Checking 'du'... not infected
Checking 'dirname'... not infected
Checking 'echo'... not infected
Checking 'egrep'... not infected
Checking 'env'- not infected
Checking 'find'... not infected
Checking 'fingerd'... not found
Checking 'gpm'... not found
Checking 'grep'... not infected
Checking 'hdparm'... not infected
Checking 'su'... not infected
Checking 'ifconfig'... not infected
Checking 'inetd'... not tested
Checking 'inetdconf'... not found
```

Working on a Linux Host Piping Commands

- Although command line tools are usually designed to perform a specific, well-defined task, many commands can be combined to perform more complex tasks by a technique known as piping.
- Piping consists of chaining commands together, feeding the output of one command into the input of another.
- The two commands, Is and grep, can be piped together to filter out the output of Is. This is shown in the output of the Is -I | grep host command and the Is -I | grep file command.

```
[analyst@secOps ~]$ 1s -1
total 40
drwxr-xr-x 2 analyst analyst
                              4096 Mar 22 2018 Desktop
drwxr-xr-x 3 analyst analyst
                              4096 April 2 14:44 Downloads
-rw-r--r-- 1 analyst analyst
                                 9 May 20 10:51 hostfile1.txt
-rw-r--r-- 1 analyst analyst
                                 9 May 20 10:51 hostfile2.txt
-rw-r--r-- 1 analyst analyst
                                 9 May 20 10:52 hostfile3.txt
drwxr-xr-x 9 analyst analyst
                              4096 Jul 19 2018 lab.support.files
-rw-r--r-- 1 analyst analyst
                                19 May 20 10:53 mytest.com
-rw-r--r- 1 analyst analyst 228844 May 20 10:54 rkhunter-1.4.6-1-any.pkg.tar.xz
drwxr-xr-x 2 analyst analyst
                              4096 Mar 21 2018 second drive
-rw-r--r-- 1 analyst analyst
                               257 May 20 10:52 space.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ ls -1 | grep host
-rw-r--r-- 1 analyst analyst
                                 9 May 20 10:51 hostfile1.txt
-rw-r--r-- 1 analyst analyst
                                 9 May 20 10:51 hostfile2.txt
-rw-r--r-- 1 analyst analyst
                                 9 May 20 10:52 hostfile3.txt
[analyst@secOps ~]$
[analyst@secOps ~]$ ls -1 | grep file
-rw-r--r-- 1 analyst analyst
                                 9 May 20 10:51 hostfile1.txt
-rw-r--r-- 1 analyst analyst
                                 9 May 20 10:51 hostfile2.txt
-rw-r--r-- 1 analyst analyst
                                 9 May 20 10:52 hostfile3.txt
drwxr-xr-x 9 analyst analyst
                              4096 Jul 19 2018 lab.support.files
[analyst@secOps ~]$
```

Summary

- Linux is a fast, reliable, and small open-source operating system.
- In Linux, the user communicates with the operating system through a GUI or a command-line interface (CLI), or shell.
- Servers are computers that have software installed that enables them to provide services to client computers across the network.
- Linux supports a number of different file systems that vary by speed, flexibility, security, size, structure, logic, and more. Some of the file systems that are supported by Linux are ext2, ext3, ext4, NFS, and CDFS.
- The X Windows, or X11, system is a basic software framework that includes functions for creating, controlling, and configuring a windows GUI in a point-and-click interface.
- To install applications on Linux hosts, programs called package managers are used.
 Packages are software applications and all of their supporting files.