# Class Notes CIS 502 Analysis of Algorithm 4-Greedy Algorithm

Da Kuang

University of Pennsylvania

# 1 Optimization Problem

**Definition 1.1 Optimization Problem:** Minimize or maximize some function subject to some constrains.

Now we start with a special class of optimization problem:

- Given a set of elements, pick a subset.
- Constrains tell you which subsets are allowed.
- Any allowed subset is a feasible solution.
- Objective function assigns a value to every feasible solution.
- Goal is to find the feasible solution with greatest/ least value.

ddd

## 1.1 Minimum Spanning Tree Problem

Minimum spanning tree problem is an example of optimization problem.

**Input:** Connected, undirected graph  $G \in (V, E)$  together with a weight function  $w : E \to \mathbb{R}^+$ .

**Definition 1.2** The **feasible solution** is a set of edges forming an acyclic connected graph on all vertices.

**Definition 1.3** The **cost** of a solution is the sum of the weights of the edges in the solution.

The are problems for which the optimal solution can be pick by choosing one element at a time.

**Definition 1.4** The **greedy algorithm** builds up solution as by taking the next element to be one of the optimal cost value that can be added feasibly.

Most of the time Greedy algorithm itself is simple but it is difficult to prove correctness.

# 2 Activity Selection Problem

- **Input:** n activities  $a_1, \dots, a_n$ , where  $a_i$  starts at time  $x_i$  and ends at time  $y_i$ .
- Feasible Solution: Any subset of these activities such that no two activities in the subset overlap.
- **Objective Function:** Maximize the number of activities we schedule.

## 2.1 Some Attempts

Criterions to be greedy on:

• Pick the activities with shortest duration.

It dose not work. The counter example is as follows:



• Pick the activities what finish first. Sort the activities by finish time and then renumber them so that  $f_1 \le f_2 \cdots \le f_n$ 

## 2.2 Proposed Greedy Algorithm

Given a set of activities,

- Pick the earliest finishing activities that remain.
- Remove all activities that conflict with the chosen activity.
- Repeat.

To prove the correctness, we start by arguing that the first choice algorithm is not wrong.

<u>Claim:</u> **Greedy Choice Property:** Fist choice made by greedy algorithm is not wrong. To be more specific, in activities selection problem, if greedy algorithm choose an activity at first, then there is an optimal feasible solution that contain  $a_1$ .

<u>Proof:</u> Suppose for contradiction that no optimal feasible solution uses  $a_1$ . Let O be the subset of activities in some optimal solution. We can order the activities in O by finish time.

Let  $a_{i1}, a_{i2}, \dots, a_{ik}$  be the activities in O so ordered. We can make an **exchange argument** as the following plot. Throw out  $a_i$  from O and include  $a_1$  in instead to get a new set of activities O'.

There are some properties about O'.

- |O'| = |O|
- O' is feasible.
- O' is also optimal and contains  $a_1$ .  $\Longrightarrow$

an activity chosen by steedy algorithm

time line

time line

There is a way to construct an optimal solution starting with  $a_1$ . This optimal solution should certainly exclude activities that conflict with  $a_1$ . Recursively need to solve a smaller problem consisting of activities that do not conflict with  $a_1$ . In particular, the smaller problem is finding the optimal subset of activities out of the remaining activities.

<u>Claim:</u> **Optimal Substructure Property** In the set of activities, we need to pick an optimal feasible subset activities.

#### Proof:

- A: Original set of activities
- A': Set of activities that remain after throwing out  $a_1$  and its conflicting activities.

Any solution to A' that gives value k can be extended to a solution to A of value (k + 1) by adding  $a_1$ . So need optimal solution to A'

In general. Optimal Substructure Property inductively assumes that greedy solves problem with fewer than *n* activities optimally.

Greedy Choice Property and Optimal Substructure Property imply that greedy solve *n*-activity problem optimally.

#### **2.2.1** Time

We sort the activities by finish time take  $O(n \log n)$ . Then the rest of steps can be done in linear or constant time.

# 3 Linear Algebra

**Definition 3.1** *V* is a vector space over  $\mathbb{R}$  if

- For  $v_1, v_2 \in V, v_1 + v_2 \in V$ .
- For any  $\alpha \in \mathbb{R}$ ,  $v \in V$ ,  $\alpha v \in V$ .

**Definition 3.2** Given a finite set of vectors,  $v_1, v_2, \dots, v_k$ , then **span** S is as follows

$$S(v_1, v_2, \dots, v_k) = \{v : v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k, \alpha_i \in \mathbb{R}\}$$

 $S(v_1, v_2, \dots, v_k)$  is a vector space.

**Definition 3.3**  $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$  is a **linear combination** of vectors.

**Definition 3.4** The set of vector  $v_1, \dots, v_k$  is called **linear dependent** if there exist some coefficient  $\alpha_1, \dots, \alpha_k$  not all 0, so that  $\sum \alpha_i v_i = 0$ 

**Definition 3.5** A set of vector is said to be **linearly independent** if it is not linearly dependent.

**Definition 3.6** If  $v_1, \dots, v_k$  are linearly independent and their span in V, then  $v_1, \dots, v_k$  form a **basis** of V.

**Definition 3.7** If  $v_1, \dots, v_k$  is a basis for v and  $u_1, \dots, u_m$  is another basis. Then m = k.

**Proof.** Suppose for contradiction that m > k. Since  $v_i$ 's from a basis,

$$u_1 = \alpha_{11}v_1 + \dots + \alpha_{1k}v_k$$

$$u_2 = \alpha_{21}v_1 + \dots + \alpha_{2k}v_k$$

$$\vdots$$

$$u_m = \alpha_{m1}v_1 + \dots + \alpha_{mk}v_k$$

Will prove  $(u_1, \dots, u_m)$  is linearly dependent. Need to show  $\sum x_i u_i = 0$  for some  $(x_1, \dots, x_m)$  not all zero.

$$x_1u_1 + x_2u_2 + \cdots + x_mu_m = 0$$

substitue  $u_i$  with  $v_i$ 's,

$$(x_{1}\alpha_{11} + x_{2}\alpha_{21} + \dots + x_{m}\alpha_{m1})v_{1} + \dots + (x_{1}\alpha_{1k} + x_{2}\alpha_{2k} + \dots + x_{m}\alpha_{mk})v_{k} = 0$$

All the coefficients above should be 0. There are k coeficientes, m equations and we assume m > k. Therefore, there are infinite possible combinations of  $x_i$ 's. Therefore, there must be a solution which is not all zeros. Because if there is not such solution, then there should be only one solution which is all zeros.

# 4 Maximum Total Weight Problem

- **Inputs:** vectors  $(v_1, v_2, \dots, v_n)$  with weights  $(w_1, w_2, \dots, w_n)$ .
- Goal: a basis for the space spanned by  $(v_1, v_2, \dots, v_n)$  of maximum total weights.

**Note.** A single vector is linear independent to any other vector if it is a zero vector.

## 4.1 Greedy Algorithm

- Sort vectors by descending order of weights.
- *S* is an empty set of vectors initially.
- For each vectors  $v_i$  in this order, if  $S \cup \{v_i\}$  is linearly independent and  $v_i$  is an non-zero vector, then  $S = S \cup \{v_i\}$ .

#### 4.2 Correctness

- Suppose greedy returns vector  $(v_1, v_2, \dots, v_k)$ .
- Suppose there is an optimal solution that return OPT =  $(v_{j1}, v_{j2}, \dots, v_{jk})$ .

Since the  $v_i$ 's form a basis,

$$v_{i1} = \alpha_1 v_{j1} + \alpha_2 v_{j2} + \dots + \alpha_k v_{jk}$$

 $v_{i1}$  is chosen by greedy algorithm so it is not a zero vector. Therefore, there must be some  $\alpha_l$  is non-zero.

We can add  $v_{i1}$  to the set  $(v_{j1}, v_{j2}, \dots, v_{jk})$  and kick out  $v_{jl}$ .

<u>Claim:</u> This is also a basis whose weight is at least as good as OPT.