Equations

Dom Hutchinson

May 1, 2018

Linear Algebra & Geometry

Dot Product -
$$\boldsymbol{v} \cdot \boldsymbol{w} := \sum_{i=1}^n v_i w_i, \quad \boldsymbol{v}$$

Norm - $\|\boldsymbol{v}\| := \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}} = \sqrt{\sum_{i=1}^n v_i^2},$

Angle Between Vectors - $\cos(\theta) = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|}$

Modulus of Complex Numbers - $|z| := \sqrt{x^2 + y^2} = \sqrt{\bar{z}}z$

Euler's Formula - $e^{i\theta} = \cos(\theta) + i.\sin(\theta)$

de Moivre's Formula - $z^n = (\cos(\theta) + i.\sin(\theta))^n = \cos(n\theta) + i.\sin(n\theta)$

Leibniz Formula - $\det(A) := \sum_{\sigma \in S_n} \left(sign(\sigma). \prod_{j=1}^n a_{\sigma(j),j} \right)$

Cramer's Rule - $x_j = \frac{\det(A_j)}{\det(A)}$

Cross Product - $\boldsymbol{x} \times \boldsymbol{y} := \begin{vmatrix} e_1 & e_2 & e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$

Calculus

Differentiable -
$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Angle between Tangents - $\phi = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$
Taylor Series Polynomial - $T_n(x) = f(a) + (x-a)f'(a) + \dots + \frac{1}{n}(x-a)^n f^n(a)$
Taylor Series Remainder - $R_n(x) = \frac{1}{n} \int_a^x (x-t)^n f^{(n+1)}(t) dt$
Curvature, Cartesian - $K(x) = \frac{|y''(x)|}{[1 + y'(x)^2]^{\frac{3}{2}}}$
Curvature, Parametric - $K(t_0) = \frac{y''(t_0)x'(t_0) - y'(t_0)x''(t_0)}{[x'(t_0)^2 + y'(t_0)^2]^{\frac{3}{2}}}$
Wronskian - $W[x,y] = \begin{vmatrix} x & y \\ x' & y' \end{vmatrix}$
Wronskian of Sequences - $W[x,y] = \begin{vmatrix} x_n & y_n \\ x_{n+1} & y_{n+1} \end{vmatrix}$

Directional Derivative - $D_{\boldsymbol{u}}\boldsymbol{f}(\boldsymbol{x}) := \boldsymbol{f}'(\boldsymbol{x}).\boldsymbol{u}$

Directional Derivative - $\nabla f(\boldsymbol{x}) := (f_{x_1}(\boldsymbol{x}), \dots, f_{x_d}(\boldsymbol{x}))$