

ARJUNA NEET BATCH

KINEMATICS

LECTURE (11)

NEET

Todays goal

- Motion under gravity
- Ground to ground
- Height to ground
- · MORSY (MR*)

Today's GOAL

MOTION UNDER GRAVITY

Object is projected with 40 m/s then find average speed and velocity in 6 sec.

Total = 24 = 2440 (-880)

 $S = \sqrt{1 + \frac{1}{2}} a x^{2}$ $= \frac{1}{2} |D(2)|^{2} = 2 \text{ om}$ $= \frac{1}{2} |D(2)|^{2} = 2 \text{ om}$ Avy speed = $\frac{1}{2} |D(2)|^{2} = 1 + \frac{1}{2} |D$

$$Snth = u + \frac{a}{2}(2n-1)$$

$$Snsec = u(n) + \frac{1}{2}a(n)^{2}$$

$$t = nsec$$

$$disp^{n} in 8sec$$

$$(o + u + \frac{a}{2}(2n-1)$$

$$t = \frac{a}{2}(2n-1)$$

नित वाल

12+4

Sy

(i)
$$T_5 = \frac{24}{9} = \frac{2 \times 60}{10} = 12 \sec x$$

(ii) $M_{max} = \frac{u^2}{29} = \frac{60 \times 60}{2 \times 10} = 180 \text{m}$
(iii) J_{15}^{m} in $4 - \sec = \frac{160 \text{m}}{100}$
(v) J_{15}^{m} in $8 - \sec = \frac{160 \text{m}}{100}$
(v) J_{15}^{m} in $8 - \sec = \frac{160 \text{m}}{100}$
(vi) J_{15}^{m} in $8 - \sec = \frac{160 \text{m}}{100}$
 $+\frac{1}{2}$ at $2 - \frac{1}{2}$

$$t=9$$
 $t=9$
 $t=9$
 $t=3$
 $t=2$
 $t=2$
 $t=0$
 $t=14$
 $t=14$
 $t=14$

(ii)
$$T_{5} = \frac{24}{9} = \frac{2\times 7}{10} = \frac{190}{2}$$

(iii) $H_{may} = \frac{u^{2}}{2g} = \frac{70\times 70}{2\times 10} = \frac{490}{2}$
(iii) distance in $\frac{1}{2}$ Sec (3sec $\frac{1}{2}$ 4se) $\frac{1}{2}$ $\frac{1}{2}$

Object is projected up and it is at same height at t = 7 sec and t = 11 sec then find maximum height.

Object is projected up the distance travelled in 3rd sec and 8th sec then find that distance.

15 Same

Objected is projected up with, speed 55 m/s then find distance in 6th sec

of journey.
$$+-5.55$$

$$|S_{2}| = 6 \sec \int_{1}^{2} \int_{1}^{2}$$

distatispm Change

Object is projected with speed u then find distance in last (t') sec of upward journey.

 $S_{\eta + h} = u + \frac{\sigma}{2}(2n-2)$ Not applied

.

ARJUNA

. , ,

Ball is projected with speed u and its speed is 10 m/s at half of the maximum height then find maximum height.

A ball is dropped from 125 m and after 3 sec it is stopped and released from rest instantaneously then find total time of flight.

Ball is projected up with speed u then draw graph between $\sqrt{(i)} v/t$ (i) a/t In next lecture of (iii) s/tV=utat u 0>90 (iii) $S = W + \frac{1}{2}at^2$ $S = W - \frac{1}{2}gt^2$ (O,O) 0=-9 next lecture e Pasabel.

ARJUNA

If air friction is not ignored then effect on time of flight and speed of collision (constant air friction)

(Nair)

(iii) tyj = tdown

Jown a gail (#)

* closs in energy due to
friction

2/hu2 > 1/m /2 / U > V

g+a air

Projet town Collsjun friction (पिर्

Ball is projected up and constant air resistance is acting on it 2 m/s² then find $\frac{t_{up}}{t}$.

6 ant = (g.a)

U=0

Rocket starts his motion in upward direction with acceleration 10 m/s^2 upward. After 5 sec engine off then find maximum height from ground.

$$(H_{Max}) = \frac{u^2}{2g} = \frac{50750}{2\times10}$$
after 5-se.

Myax from = 250m Ground = 250m

Total time of Journy (time Df flight) 100

ARJUNA

Motion under gravity from Height to ground.

(0,0)

TN

$$\pm = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$t = \frac{2U}{g} + \sqrt{\frac{4u^2}{g^2} + \frac{8H}{g}}$$

$$t = 2 \left[\frac{u}{y} + \sqrt{\frac{u^2}{y^2} + \frac{2M}{y}} \right]$$

$$an^2+bn+c=0$$

$$t = \frac{u}{y} + \frac{u^2}{y^2} + \frac{2n}{y}$$

$$\frac{1}{y^2} + \frac{2n}{y}$$

$$\frac{1}$$

Ball is projected up with u from height H and collide with 3u at ground then find H = ?

Me 30 en of

Ball is projected with up with speed *u* from Height *H* then time of flight is 9 sec. with some speed *u* it is projected downward then time of flight is 4 sec. Then find time of flight when object is dropped from same height.

Find time of flight.

THANK YOU ©

