RESUME PHYSIQUE-CHIMIE CLASSE $3^{\grave{e}me}$ Avec Prof : M^r Bruno

MECANIQUE

I- La masse, le poids et la poussée d'Archimède

	Masse	Poids	Poussée d'Archimède
Formules	$m = a \times v$	$P = m \times g$	$F = P - f$ ou $F = a_1 \times v_1 \times g$
Grandeurs	m: masse(kg,g)	P: poids	F: poussée d'Archimède (N)
et unités	a: masse volumique	(N)	P: poids apparent (N)
	$(kg/dm^3, g/cm^3)$	m:masse	a_1 masse volumique du liquide
	v : volume (dm^3 ;	(kg)	(kg/dm^3)
	cm^3)	g: intensité	V_1 :volume du liquide déplacé
		de la	ou volume de la partie immergé
		pesanteur	(dm^3)
		(N/kg)	

II- Les caractéristiques des forces

Les forces	poids	Poussée d'Archimède
Point d'application	Centre de gravité G	Centre de la poussée C
direction	verticale	Verticale
sens	Vers le bas	Vers le haut
intensité	P= m×g	$F = P - f$ ou $F = a_1 \times v_1 \times g$

III- Le travail et la puissance

	Travail	Puissance
Formules	$W = P \times h$	$p = \frac{w}{t}$
Grandeurs	W: travail (joule J)	W: travail (joule J)
	P: poids(kg)	P: puissance (W)
	h: hauteur (m)	t: temps (s)

ELECTRICITE

I- Loi d'Ohm

Loi d'Ohm		
Formule	$U = R \times I$	
Grandeurs	U: tension (V)	
	$R:$ résistance (Ω)	
	I: intensité (A)	

II- Loi d'association

	Montage en série	Montage en dérivation (parallèle)
Résistance équivalente	$R_{\acute{e}q} = R_1 + R_2 + \cdots$	$\frac{1}{R_c} = \frac{1}{R_c} + \frac{1}{R_c}$
Tension	$U_G = U_1 + U_2 + \cdots$	$U_G = U_1 = U_2 = \cdots$
intensité	$I_G = I_1 = I_2 = \cdots$	$I_G = I_1 + I_2 + \cdots$

III- Energie et puissance

	Energie électrique	puissance	Effet joule	Puissance dissipé
formule	$E = P \times t$	$P = U \times I$	$E = R \times I2 \times t$	$P = R \times I2$
Grandeurs	E: énergie électrique (J) P: puissance électrique (W) t: temps (s)	P: puissance électrique (W) U: tension électrique (V) I: intensité du courant (A)	E: énergie électrique $(J)t$: temps $(s)R$: résistance (Ω) I: intensité du courant (A)	P: puissance électrique (W) R : résistance (Ω) I: intensité du courant (A)

CHIMIE

I- ELECTROLYSE DE L'EAU :

- 1) Définition : L'électrolyse de l'eau est la décomposition de l'eau par un courant électrique.
- 2) Dispositif expérimental

Le gaz à la cathode est l'hydrogène

Identification : Présente une petite détonation à l'approche d'une flamme

Le gaz à l'anode est du dioxygène

3) Relation entre le volume du gaz

$$V_H = 2V_o$$

4) Équation bilan de la décomposition de l'eau :

Identification : Rallume vivement une tige d'allumette présentant un point incandescent.

$$2H_2O \longrightarrow 2H_2 + O_2$$

II- Synthèse de l'eau

1) Équation bilan

2) La mas
$$2H_2 + O_2 \rightarrow 2H_2O$$

$$mH_2 + mO_2 = mH_2O$$

III- SOLUTION AQUEUSE:

1) la solution acide, basique et neutre

Nature de	Nombre de moles	Caractérisation	pH de la	Ion
la solution	d'ions	par BBT	solution	responsable
ACIDE	$n_{H^+} > n_{OH^-}$	Jaune	0 < pH < 7	H +
BASIQUE	$n_{H^+} < n_{OH^-}$	Bleue	7 < pH < 14	OH ⁻
NEUTRE	$n_{H^+} = n_{OH^-}$	Vert	pH = 7	

2) Rappel

a- Nombre de mole

$$n = \frac{m}{M}$$
 Avec n en mol M en g/mol m en kg

À la condition normale de la température et de pression (C.N.T.P)

$$n = \frac{v}{V}$$
 Avec n en mol
$$v \text{ en } l$$
 $V \text{ en } l$

b- Concentration massique

$$C = \frac{m}{V}$$
 Avec C en g/l m en g V en l

c- Concentration molaire

$$C = \frac{n}{V}$$
 ou $C = \frac{m}{M \times V}$

Avec
$$n$$
 en mol C en g/l m en g V en l M en g/mol

IV- Réaction entre l'acide et le basique

Acide + Base
$$\rightarrow$$
 Sel + eau

Équation bilan globale

$$HCl + NaOH \rightarrow NaCl + H_2O$$

V- Réaction entre l'acide chlorhydrique et les métaux

Acide + Base
$$\rightarrow$$
 Sel + H_2

Acide chlorhydrique :
$$HCl$$
 $(H^+; Cl^-)$

Zinc:
$$Zn$$
 (Zn^{2+})

Sulfate :
$$SO_4$$
 (SO_4^{2-})

Exemple: Réaction entre l'acide chlorhydrique et le zinc

a) Équation bilan ionique

$$2(H^+;Cl^-) + Zn \rightarrow (Zn^{2+};2Cl^-) + H_2$$

b) Équation bilan globale

$$2HCl + Zn \rightarrow ZnCl_2 + H_2$$

Réaction entre l'acide chlorhydrique et le fer II

a) Équation bilan ionique

$$2(H^+;Cl^-) + Fe \rightarrow (Fe^{2+};2Cl^-) + H_2$$

b) Équation bilan globale

$$2HCl + Fe \rightarrow FeCl_2 + H_2$$

VI- Réaction entre les solutions d'hydroxyde de sodium et les solutions

métallique Cu^{2+} , Fe^{2+} , Fe^{2+} , Zn^{2+}

Réaction entre les solutions d'hydroxyde de sodium et le Cuivre

a) Équation bilan ionique

$$2(Na^+ + OH^-) + (Cu^{2+} + SO_4^{2-}) \rightarrow (Cu^{2+} + 2OH^-) + (2Na^+ + SO_4^{2-})$$

b) Équation bilan globale

$$2NaOH + CuSO_4 \rightarrow Cu(OH)_2 + 2NaSO_4$$

Réaction entre les solutions d'hydroxyde de sodium et le Fer II

a) Équation bilan ionique

$$2(Na^+ + OH^-) + (Fe^{2+} + SO_4^{2-}) \rightarrow (Fe^{2+} + 2OH^-) + (2Na^+ + SO_4^{2-})$$

b) Équation bilan globale

$$2NaOH + FeSO_4 \rightarrow Fe(OH)_2 + 2NaSO_4$$

Réaction entre les solutions d'hydroxyde de sodium et le Fer III

a) Équation bilan ionique

$$6(Na^{+} + OH^{-}) + (2Fe^{3+} + 3SO_{4}^{2-}) \rightarrow 2(Fe^{3+} + 3OH^{-}) + 3(2Na^{+} + SO_{4}^{2-})$$

b) Équation bilan globale

$$6NaOH + Fe_2(SO_4)_3 \rightarrow 2Fe(OH)_3 + 3Na_2SO_4$$

Réaction entre les solutions d'hydroxyde de sodium et le Zinc

a) Équation bilan ionique

$$2(Na^+ + OH^-) + (Zn^{2+} + SO_4^{2-}) \rightarrow (Zn^{2+} + 2OH^-) + (2Na^+ + SO_4^{2-})$$

b) Équation bilan globale

$$2NaOH + ZnSO_4 \rightarrow Zn(OH)_2 + 2NaSO_4$$

Précipité	Couleur
Hydroxyde de cuivre $Cu(OH)_2$	Bleu
Hydroxyde de Fer II $Fe(OH)_2$	Vert
Hydroxyde de Fer III $Fe(OH)_3$	Rouille
Hydroxyde de Zinc $Zn(OH)_2$	Blanc

OPTIQUE

	Réflexion de l a lumière	Réfraction de la lumière
Lois	1ère loi : le rayon incident et le rayon réfléchi, la normale au	1ère loi : le rayon incident et réfraction sont dans le plan d'incidence.
	point d'incidence sont dans le	2 ^{ème} loi : -Lorsqu'un rayon lumineux
	plan d'incidence.	· · · · · · · · · · · · · · · · · · ·
	•	passe d'un milieu à un autre, il change
	2 ^{ème} loi : l'angle d'incidence	de direction sauf s'il arrive
	est égal à l'angle de réflexion	perpendiculaire à la surface.
	$(\hat{l} = \hat{r})$	$n_1 \sin \hat{l} = n_2 \sin \hat{r}$
		Où n_1 et n_2 sont les indices de
		refraction des milieux

1) Analyse de la lumière

La lumière blanche est constitué les 7 radiations : rouge, orange, jaune, vert, indigo, bleu, violet.

2) Synthèse de la lumière

Définition d'un filtre : un filtre est une substance qui absorbe certaine radiation.