Natural Language Processing

Introduction

What is Natural Language Processing (NLP)?

NLP is a field at the intersection of:

- computer science
- artificial intelligence
- linguistics

Goal: for computers to process or "understand" natural language in order to perform tasks that are useful

Сложности в русском языке

• Анафоры

«Мы отдали бананы обезьянам, потому что они были голодные» и «Мы отдали бананы обезьянам, потому что они были перезрелые»

• Свободный порядок слов (компенсируется морфологией, служебными словами и знаками препинания)

«Бытие определяет сознание» — что определяет что?

- Неологизмы
- Омонимы

Задачи

- Machine Translation
- Question Answering
- Dialog System or Conversational Agent (CA)
- Sentiment Analysis
- Speech Recognition
- Text Summarization
- Text Classification
- Optical Character Recognition
- Named Entity Extraction
- Semantic Text Similarity
- Topic modeling

(Stemming, Lemmatization, Part of Speech Tagging, Named Entity Recognition, Coreference resolution, Syntactic Parsing,

Word sense disambiguation)

Main approaches in NLP

- Rule-based methods
 - Regular expressions
 - Context-free grammars
 - ...
- 2. Probabilistic modeling and machine learning
 - Likelihood maximization
 - Linear classifiers
 - ...
- 3. Deep Learning
 - Recurrent Neural Networks
 - Convolutional Neural Networks
 - ...

Pipeline

Text Preprocessing

- Tokenization
- Token Normalization (Stemming, Lemmatization)
- Normalizing Capital Letters, Acronyms
- Noise Removal
- Token Standardization (replacing tokens)

Feature Engineering on text data

- Bag of Words
- N-Grams as Features
- Tf-idf

Bag of Words Example

Term

Document 1

The quick brown fox jumped over the lazy dog's back.

Document 2

Now is the time for all good men to come to the aid of their party. Document 1

aid	0	1
all	0	1
back	1	0
brown	1	0
come	0	1
dog	1	0
fox	1	0
good	0	1
jump	1	0
lazy	1	0
men	0	1
now	0	1
over	1	0
party	0	1
quick	1	1
their	0	1
time	0	1

Stopword List

	for	
0.0	is	
1,0	of	
1,5	the	
100	to	

Problems BOW

- Loose word order
- counters are not normalized

Complex Features

- Semantic features (Word Embeddings, Topic Modeling, NER, ...)
- Syntactic features (Dependency tree, consistency tree, ...)
- Morphological features (PoS, ...)

Notebook example

Text classification with 4 classes using BOW as features and 3 different models: logistic regression, random forest classifiers, simple neural network with 2 dense layers.

Metrics - Accuracy