NE250 – Reactor Theory

8/24/2017

Nuclear Reactions

Two types

1. Spontaneous (decay)

- $\alpha: {}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}X + {}_{2}^{4}\alpha$
- $\beta: {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X + \beta + \bar{\nu}$
- $\gamma X^* \rightarrow X+\gamma$

Decay Equations

$$t \to N(t)$$

$$t + dt \rightarrow N(t + dt)$$

$$dN(t) = N(t + dt) - N(t)$$

 $dN(t) = -\lambda N(t)dt$ where λ is the decay constant.

... working through, with B.C. $N(t=0)=N_0\,\dots$

$$N(t) = N_0 e^{-\lambda t}$$

Mean Lifetime:

 $\frac{dN(t)}{N_0} = \lambda e^{-\lambda t} dt = p_d(t)$ where $p_d(t) dt$ is the probability of decay in time dt

$$\bar{t} = \int_0^\infty t p(t) dt = \frac{1}{\lambda}$$

Half Life:

 $T_{1/2}$ is defined as the time s.t. $N(T_{1/2}) = \frac{N_0}{2}$;

$$T_{1/2} = \frac{ln2}{\lambda}$$

2. Induced (projectile/target)

this will be the emphasis of NE 250

Neutron-Nucleus

- · elastic scattering
- inelastic scattering/compound nuclear reaction

$$n +_Z^A X \to_Z^{A+1} X^*$$

(could result in production of a γ or α , emission of a n, or fission)

Capture is a subset of absorption!

Absorption: $(n, \alpha), (n, \gamma), (n, f)$

Capture: (n, γ)

Cross Sections (σ)

- A property of the isotope and reaction
- A function of the isotope temperature (vibrational motion) and neutron speed (linear motion)
- Tabulated in XSec libraries (3 common formats)
 - ENDF (USA)
 - JEFF (Europe/NEA)
 - JENDL (Japan)

- Resonances in X-Sec plots due to excited energy levels that can be reached; nuclei only all excitation to these levels, and so only neutrons with this energy amount will be absorbed
- Cross sections measured at 300K (room temp); calculated using

$$E = k_B T$$

where k_B is Boltzmann's constant and $T=300~\mathrm{K} \Rightarrow E=0.0253~\mathrm{eV}$

 Higher temperatures cause resonant peak widths to broaden (less time spent near center of vibrational trajectory) → Doppler Broadening

Units

1 barn =
$$10^{24}$$
 cm²
1 eV = 1.602×10^{-19} J

8/25/2017

Nuclear Reactions (cont.)

Fission

Can be spontaneous or induced

$$n + ^{235} \text{U} \rightarrow X + Y + \bar{\nu}n + E$$

 $\bar{\nu}$ is the average number of neutrons produced in a given fission event.

 $E_{\!f} pprox 200~{
m MeV}$ (this is much higher than chemical reactions which are on the order of eV!)

Fissile Isotopes

$$E_b > E_{\text{threshold}}$$

These neutrons could (almost) be considered as "able to fission from 0 KE neutrons."

Includes
$$^{235}U$$
, ^{233}U , ^{239}Pu , ^{241}Pu

Fissionable Isotopes

Fission requires collision with high ${\cal E}$ neutrons.

For ^{235}U this is empirically given by

$$\chi(E) = 0.453e^{-1.036E} \sinh(\sqrt{2.29E})$$

Figure 4: Fission spectrum for thermal neutron induced fission in $^235\mathrm{U}$

Also, note that $\bar{\nu}$ depends on the isotope. Below is a plot of $\bar{\nu}$ for $^{239}{\rm Pu}$, $^{233}{\rm U}$ and $^{235}{\rm U}$:

Figure 3: average # of neutrons released per fission as a function of energy

Fertile Isotopes

Isotopes which either undergo neutron capture (and subsequent decay) to become fissile isotopes.

Energy breakdown of fission outputs

- ~ 180 MeV in the KE of fission products
- ~ 5 MeV in the kinetic energy of neutrons
- ~ 7 MeV in prompt γ s
- ~ 8 MeV in β^- decay of fission products
- ~ 7 MeV in delayed γs
- ~ 12 MeV in neutrinos

The energy from all outputs can be captured except for neutrinos.

Criticality

Multiplication Factor, k

$$k = \frac{\text{# neutrons generated}}{\text{# neutrons lost}}$$

neutrons generated = neutrons fission

neutrons lost = # neutrons absorbed + # neutrons leaked

k = 1: the reaction is critical; the chain reaction is controlled (reactor)

k < 1: the reactor is subcritcal; boring

k > 1: the reaction is supercritical; this is a bomb

Need to know:

1. n: neutron density [n/cm^3]

2. *N*: atom/nuclide density [nuclei/cm³]

3. σ : microscopic cross section [cm²]

Reaction rate: $R = nN\sigma$

Macroscopic cross section [1/cm]: $\Sigma = N\sigma$

Angular neutron density $\left[\frac{n}{\text{cm}^3 \cdot \text{sr}}\right]$: $n(\vec{r}, E, \hat{\Omega}, t)$

 $\vec{v} = v \, \hat{\Omega}, \, \, |\hat{\Omega}| = 1$ (describes a sphere, formed by θ and ϕ)

$$dr^3 = dx \ dy \ dz$$

dE

 $d\Omega = \sin\theta \ d\theta \ d\phi$; $d\Omega$ is a scalar, about the original position defined by vector Ω .

Altogether, $n(\vec{r,E}, \hat{\Omega,t})$ d^3r dE $d\hat{\Omega,t}$ gives the # of neutrons in the small volume about \vec{r} with energy, E, and moving in direction $d\hat{\Omega}$ about $\hat{\Omega}$ at time t.

Angular neutron flux (scalar): $\phi(\vec{r,E},\hat{\Omega,t}) = vn(\vec{r,E},\hat{\Omega,t})$ Angular neturon current (vector): $\vec{J(r,E},\hat{\Omega,t}) = \hat{\Omega\phi(r,E,\Omega,t)}$

We can find the number of neutrons in a volume V using

$$\int_{V} n(\vec{r,E}, \hat{\Omega,t}) d^{3}r$$

Change with time is then

$$\frac{\partial}{\partial t} \left[\int_{V} n(\vec{r}, \vec{E}, \hat{\Omega}, t) d^{3}r \right] dE d\hat{\Omega} = \text{# neutrons gained - # neutrons lost}$$

neutrons gained: source (fission), in-scattering $(E',\Omega^{'}\to E,\Omega)$ # neutrons lost: absorption, scattering ($E,\Omega\to E',\Omega^{'}$)

We also add a streaming term, to quantify neutrons leaking out (and in) to the system.
