Lecture 21 Signals and Systems (ELL205)

By Dr. Abhishek Dixit

Dept. of Electrical Engineering

IIT Delhi

Lecture 21: Introduction to Fourier Transforms

$$a_k = \frac{2T_1}{T} \frac{\sin(k\omega_0 T_1)}{k\omega_0 T_1}$$

$$a_k = \frac{2T_1}{T} \frac{\sin(k\omega_0 T_1)}{k\omega_0 T_1}$$

By substituting $k\omega_0 = \omega$

$$a_k T = 2T_1 \frac{\sin(\omega T_1)}{\omega T_1}$$

$$a_k = \frac{2T_1}{T} \frac{\sin(k\omega_0 T_1)}{k\omega_0 T_1}$$

By substituting $k\omega_0 = \omega$

$$a_k T = 2T_1 \frac{\sin(\omega T_1)}{\omega T_1}$$

Summary

Period	Spectrum	Analysis tool
Aperiodic	Continuous	Fourier
		Transforms
Periodic	Discrete (line)	Fourier Series

Analysis and Synthesis Eq. of Fourier Transform

 $x_p(t) \rightarrow \text{periodic version of } x(t) \text{ with period T (periodic extension)}$

$$x_p(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_p(t) e^{-jk\omega_0 t} dt$$

Step 1:
$$a_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_p(t) e^{-jk\omega_0 t} dt$$

Step 2: Since x(t) and $x_p(t)$ are same in $-\frac{T}{2}$ to $+\frac{T}{2}$ so x(t) replaces $x_p(t)$ $a_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \, e^{-jk\omega_0 t} dt$

Step 3: Since
$$x(t)$$
 exists only in $-\frac{T}{2}$ to $+\frac{T}{2}$ so a_k is: $a_k = \frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-jk\omega_0 t} dt$

Step 4:
$$a_k = \frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-jk\omega_0 t} dt$$
 $a_k = \frac{1}{T} X(k\omega_0)$

$$H(\omega) \triangleq \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau$$
,

and thus
$$X(\omega) \triangleq \int_{-\infty}^{\infty} x(\tau)e^{-j\omega\tau}d\tau$$

Step 5:
$$x_p(t) = \sum_{k=-\infty}^{\infty} \frac{1}{T} X(k\omega_0) e^{jk\omega_0 t} \quad \text{using} \quad a_k = \frac{1}{T} X(k\omega_0)$$

Step 6: Substituting
$$T = \frac{2\pi}{\omega_0}$$
, $x_p(t) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(k\omega_0) e^{jk\omega_0 t} \omega_0$

Step 7: As
$$T \to \infty$$
, $x_p(t) = x(t)$, $k\omega_0 \to \omega$, $\omega_0 \to d\omega$, $\sum \to \int x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$

Synthesis:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

 $\omega \rightarrow t$ Inverse Fourier Transform

Analysis:

$$a_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-jk\omega_0 t} dt$$

$$X(\omega) = \int_{-\infty}^{\infty} x(\tau) e^{-j\omega\tau} d\tau$$

 $t \rightarrow \omega$ Fourier Transform

Fourier Series

Fourier Transform

Physical meaning of $X(\omega)$

$$a_k = \frac{1}{T}X(k\omega_0)$$

$$a_k = \frac{\omega_0}{2\pi} X(k\omega_0)$$

When $T \to \infty$,

$$a_{\omega} = \frac{X(\omega)d\omega}{2\pi}$$

$$2\pi a_{\omega} = X(\omega)d\omega$$

 $X(\omega)$ is amplitude spectral density

Convergence of Fourier Transforms

$$X(\omega) = \int_{-\infty}^{\infty} x(\tau) e^{-j\omega\tau} d\tau$$

$$\tilde{x}(t) = \frac{1}{2\pi} \int_{-W}^{W} X(\omega) e^{j\omega t} d\omega$$

$$e(t) = x(t) - \tilde{x}(t)$$

• $x(\tau)$ square integrable,

If
$$\int_{-\infty}^{\infty} |x(\tau)|^2 d\tau < \infty$$
 Then $\int_{-\infty}^{\infty} \lim_{W \to \infty} |e(t)|^2 dt \to 0$

Convergence of Fourier Transforms

Dirichlet conditions

If
$$\int_{-\infty}^{\infty} |x(\tau)| d\tau < \infty$$
 and $x(t)$ is "well-behaved"
Then $\lim_{W \to \infty} e(t) \to 0$ except at discontinuities

Well-behaved ≜

- 1) Finite no. of maxima and minima in a finite time period
- 2) Finite no. of finite discontinuities in a finite time period

These are sufficient conditions not necessary conditions. Ex. u(t) is neither absolutely integrable nor an energy signal but has a Fourier Transform.

Fourier Transform of $e^{-at}u(t)$ is $X(\omega)$ where a>0

How many statements are correct?

$1) X(\omega) = \frac{1}{a+j\omega}$	2) $ X(\omega) $ is an even function
3) $\angle X(\omega)$ is an odd function	4) $X(\omega)$ is a low pass filter

$$X(\omega) = \int_{-\infty}^{\infty} e^{-at} e^{-j\omega t} dt \, u(t)$$
$$= \int_{0}^{\infty} e^{-(a+j\omega)t} dt$$
$$X(\omega) = \frac{1}{a+j\omega}$$
$$|X(\omega)| = \frac{1}{\sqrt{a^2 + \omega^2}}$$
$$\angle X(\omega) = -tan^{-1} \left(\frac{\omega}{a}\right)$$

$$dB = 20\log_{10} r$$

Ratio	dB
1	
$\sqrt{2}$	
2	
10	

$$dB = 20\log_{10} r$$

Ratio	dB
1	0
$\sqrt{2}$	
2	
10	

$$dB = 20\log_{10} r$$

Ratio	dB
1	0
$\sqrt{2}$	3
2	
10	

$$dB = 20\log_{10} r$$

Ratio	dB
1	0
$\sqrt{2}$	3
2	6
10	

$$dB = 20\log_{10} r$$

Ratio	dB
1	0
$\sqrt{2}$	3
2	6
10	20

dB(decibel)=
$$20\log\left(\frac{1}{a} \times \frac{\sqrt{2}a}{1}\right) \approx 3dB$$

One sided BW = a

Two sided BW = 2a

By convention we normally use one-sided $^{\omega}$ BW.

$$\angle X(\omega) = -tan^{-1}\left(\frac{\omega}{a}\right)$$