1 Quocientes de Espaços Vetoriais

Sejam Vum K-espaçovetorial e $U\leq V$ um subespaço.

def (Relação de Congruência Módulo U). A $relação \sim em V$ é definida por

$$\mathbf{v} \sim \mathbf{v}' \stackrel{DEF}{\iff} \mathbf{v} - \mathbf{v}' \in \mathbf{U}.$$

É chamada de congruência módulo U. Também denotamos $v \sim v'$ por $\mathbf{v} \equiv \mathbf{v}' \pmod{\mathbf{U}}$.

def (Classe Residual(ou de Equivalência)). Denotamos por \mathbf{V}/\mathbf{U} o conjunto das classes módulo U. A classe de $v \in V$ em V/U é denotada por $\overline{\mathbf{v}}$, \mathbf{v} (mod \mathbf{U}) ou $\mathbf{v} + \mathbf{U}$. Além disso,

$$\overline{v} = \{v' \in V : v' \equiv v \pmod{U}\}$$
$$= v + U \stackrel{DEF}{=} \{v + u : u \in U\}.$$

$$\overline{\mathbf{v}} \oplus \overline{\mathbf{w}} \stackrel{DEF}{=} \overline{\mathbf{v} + \mathbf{w}}, \qquad \alpha \odot \overline{\mathbf{v}} \stackrel{DEF}{=} \overline{\alpha \cdot \mathbf{v}}.$$

def (Espaço Quociente). O K-espaço vetorial $(\mathbf{V}/\mathbf{U}, \oplus, \odot)$ é chamado de Espaço Quociente de V por U.

def (Mapa Quociente (Projeção Canônica)). O mapa $\pi: \mathbf{V} \to \mathbf{V}/\mathbf{U}$ dado por $\pi(v) = \overline{v}$ é o mapa quociente (projeção canônica).

Teorema (Propri. Universal do Quociente). Se $T:V\to W$ é K-linear e $U\le {\rm Ker}(T)$, então existe um único K-linear $\overline{T}:V/U\to W$ tal que $T=\overline{T}\circ\pi$, onde $\pi:V\to V/U$ é a projeção canônica.

Teorema (Isomorfismo). Se $T: V \to W$ é K-linear e sobrejetor, então $\mathbf{V}/\operatorname{Ker}(\mathbf{T}) \simeq \mathbf{W}$. Em geral, $\mathbf{V}/\operatorname{Ker}(\mathbf{T}) \simeq \Im(\mathbf{T})$.

Teorema (Dimensão para Quocientes). Se V tem dimensão finita e $U \leq V$, então

$$\dim_{\mathbf{K}}(\mathbf{V}/\mathbf{U}) = \dim_{\mathbf{K}}(\mathbf{V}) - \dim_{\mathbf{K}}(\mathbf{U}).$$

cor (Teorema do Núcleo e da Imagem). Se $T:V\to W \ \acute{e} \ K\text{-}linear \ e \ \dim_K(V)<\infty, \ ent\~ao$

$$\dim_{\mathbf{K}}(\mathbf{V}) - \dim_{\mathbf{K}}(\mathrm{Ker}(\mathbf{T})) = \dim_{\mathbf{K}}(\Im(\mathbf{T})).$$

2 Teoria de Anéis

def (Anel). Um conjunto não vazio R com $+ e \cdot \acute{e}$ um anel $(R, +, \cdot)$ se:

- (i) (R, +) é grupo abeliano (neutro 0);
- (ii) a multiplicação é associativa;
- (iii) a multiplicação é distributiva em relação à adição (e vice-versa).

def (Anel Comutativo). Se o produto é comutativo, $(R, +, \cdot)$ é anel comutativo.

def (Anel com 1). Se existe $1 \in R$ com $1 \neq 0$ tal que $a \cdot 1 = 1 \cdot a = a$ para todo $a \in R$, então R é anel com 1.

def (Divisor de Zero). $Um \ a \in R \ \acute{e} \ divisor \ de$ zero à esquerda se $\mathbf{a} \cdot \mathbf{b} = \mathbf{0}$ para algum $b \neq 0$ (analogamente, à direita se $\mathbf{b} \cdot \mathbf{a} = 0$).

def (Domínio). Um anel comutativo com 1 é domínio se não possui divisores de zero.

def (Unidade). Em anel com 1, $a \in R \setminus \{0\}$ é unidade se existe (único) $a^{-1} \in R \setminus \{0\}$ com $aa^{-1} = 1 = a^{-1}a$. O conjunto das unidades é \mathbf{R}^{\times} .

def (Corpo). Um domínio $(R, +, \cdot)$ é corpo se todo $a \in R^{\times} = R \setminus \{0\}$ é unidade.

def (Anel de Divisão). Um anel com 1 é anel de divisão se todo $a \in R \setminus \{0\}$ é unidade.

def (Centro do Anel).

$$\mathbf{Z}(\mathbf{R}) \stackrel{DEF}{=} \{ \mathbf{y} \in \mathbf{R} : \ \mathbf{y}\mathbf{x} = \mathbf{x}\mathbf{y}, \ \forall \mathbf{x} \in \mathbf{R} \}$$

é um anel comutativo chamado centro de R.

def (Polinômio Ciclotômico). Se $U_{\infty} = \{z \in \mathbb{C} : z^n = 1 \text{ para algum } n \geq 1\}$, o d-ésimo polinômio ciclotômico é

$$\phi_{\mathbf{d}}(\mathbf{T}) \stackrel{DEF}{=} \prod_{\lambda \in \mathbf{U}_{\infty}, \ \mathrm{o}(\lambda) = \mathbf{d}} (\mathbf{T} - \lambda).$$

prop (Domínio Finito é Corpo). $Se(R, +, \cdot)$ é domínio finito, então R é corpo.

Teorema (Wedderburn). $Se(R,+,\cdot)$ é anel de divisão finito, então R é corpo.

prop (Critério da Deri. para Separabilidade). Se um polinômio não possui raízes em comum com sua derivada, então ele não possui raízes repetidas.

prop (Fatoração de $T^n - 1$). Para qualquer $n \ge 1$, $\mathbf{T^n} - 1 = \prod_{\mathbf{d} \mid \mathbf{n}} \phi_{\mathbf{d}}(\mathbf{T})$.

3 Subanéis e Morfismos

def (Subanel). Um subconjunto $\emptyset \neq S \subseteq R$ é subanel de R se (i) S é anel com as operações induzidas; (ii) se R possui 1_R , então $1_R \in S$.

def (Morfismo (Homomorfismo) de Anéis). $Um \ mapa \ f : R \to S \ \acute{e} \ morfismo \ de \ anéis \ se$ $f(a+b) = f(a) + f(b), \ f(a \cdot b) = f(a) \cdot f(b) \ e,$ $se \ h\acute{a} \ unidades, \ f(1_R) = 1_S.$

 \mathbf{def} (Endomorfismo). Se f for morfismo e f:

 $R \rightarrow R$ então f é endomorfismo.

def (Isomorfismo). Se f for morfismo e a inversa é morfismo então f é isomorfismo.

def (Automorfismo). Se f for isomorfismo e endomorfismo então f é Automorfismo.

def (Núcleo de um Morfismo).

$$\operatorname{Ker}(\mathbf{f}) \stackrel{DEF}{=} \{ \mathbf{r} \in \mathbf{R} : \ \mathbf{f}(\mathbf{r}) = \mathbf{0}_{\mathbf{S}} \} = \mathbf{f}^{-1}(\mathbf{0}_{\mathbf{S}}).$$

prop (Caracterização de Subanel). $Um \emptyset \neq S \subseteq R$ é subanel de $R \iff para\ quaisquer\ a,b \in S,$ $\mathbf{a} - \mathbf{b} \in \mathbf{S}$ e $\mathbf{a} \cdot \mathbf{b} \in \mathbf{S}$; e, se R tem 1, então $\mathbf{1} \in \mathbf{S}$.

prop (Morfismo Bijetor é Isomorfismo). Se $f: R \to S$ é morfismo, então f é bijetor \iff f é isomorfismo.

4 Ideais

def (Ideal à Esquerda / à Direita). $Um \emptyset \neq I \subseteq R$ é ideal à esquerda (resp. à direita) se

$$\alpha \mathbf{x} + \beta \mathbf{y} \in \mathbf{I} \quad (resp. \ \mathbf{x}\alpha + \mathbf{y}\beta \in \mathbf{I})$$

para quaisquer $x, y \in I$ e $\alpha, \beta \in R$.

def (Ideal). Se I é ideal à esquerda e à direita, dizemos ideal de R. Em anel comutativo com 1, escrevemos $I \triangleleft R$; se $I \subsetneq R$, é ideal próprio.

def (Ideal Principal). Em anel comutativo com $1, I \triangleleft R \text{ \'e principal se } \exists x \in R \text{ tal que } I = (x).$

def (Ideal Gerado por S). Para $S \subseteq R$,

$$\langle \mathbf{S} \rangle \stackrel{DEF}{=} \bigcap_{\mathbf{S} \subseteq \mathbf{I} \triangleleft \mathbf{R}} \mathbf{I}.$$

Se $S = \{s_1, \ldots, s_N\}$, escrevemos (s_1, \ldots, s_N) .

def (Soma e Produto de Ideais). Se $I, J \triangleleft R$, definimos $I + J = \langle I \cup J \rangle$ e

$$\mathbf{I} \cdot \mathbf{J} \stackrel{DEF}{=} \langle \{ \mathbf{a} \cdot \mathbf{b} : \mathbf{a} \in \mathbf{I}, \mathbf{b} \in \mathbf{J} \} \rangle.$$

def (Ideais Coprimos). Se $I, J \triangleleft R$ e I + J = R = (1), dizemos que I e J são coprimos.

def (Ideal Primo e Maximal). Em anel comutativo com 1, ideal próprio I é **primo** se $\mathbf{ab} \in \mathbf{I} \Rightarrow \mathbf{a} \in \mathbf{I}$ ou $\mathbf{b} \in \mathbf{I}$ (notações: $I \triangleleft_p R$, $I \in \operatorname{Spec}(R)$); é **maximal** se é maximal por inclusão entre ideais próprios (notações: $I \triangleleft_m R$, $I \in \operatorname{Specm}(R)$).

prop (Ideais de \mathbb{Z}). Se $I \triangleleft \mathbb{Z}$, então $\mathbf{I} = (\mathbf{n})$ para algum $n \geq 0$.

Lema (Lema de Zorn). $Se(X, \leq)$ é um POSET não vazio e toda cadeia tem cota superior, então X possui elemento maximal.

Teorema (Existência de Ideal Maximal). Se R é comutativo com 1 (\neq 0), então R possui um ideal maximal.

Teorema (Ideal Próprio \subseteq Ideal Maximo). Se $I \triangleleft R$ é próprio (com R comutativo com $1, \neq 0$), então existe ideal maximal m com $I \subseteq m$.

prop (Forma Explícita do Ideal Gerado). $Para S \subseteq R \ (anel \ comutativo \ com \ 1),$

$$\langle \mathbf{S} \rangle = \{ \sum_{i=1}^k \mathbf{r}_i \mathbf{s}_i : \ \mathbf{r}_i \in \mathbf{R}, \ \mathbf{s}_i \in \mathbf{S}, \ \mathbf{k} \in \mathbb{Z}_{\geq 1} \}.$$

5 Quocientes de Anéis por Ideais

Seja R um anel comutativo com 1 $(\neq 0)$ e $I \triangleleft R$.

def (Anel Quociente). O anel R/I é o quociente de R por I (anel das classes residuais de R módulo I).

def (Mapa Quociente (Anéis)). O morfismo $\pi: \mathbf{R} \to \mathbf{R}/\mathbf{I}$ dado por $\pi(x) = \overline{x}$ é o mapa quociente.

Teorema (Propri. Universal do Quociente). Se $f: R \to S$ é morfismo de anéis e $I \subseteq \operatorname{Ker}(f)$, então existe único $\overline{f}: R/I \to S$ tal que $\overline{f} \circ \pi = f$.

cor (Teorema do Isomorfismo). $Para f : R \rightarrow S$, $vale \mathbf{R}/\operatorname{Ker}(\mathbf{f}) \simeq \Im(\mathbf{f})$.

prop (Caracterização de Id Primos e Max). $Se I \triangleleft R$ é próprio, então

- (a) $I \notin primo \iff R/I \notin domínio;$
- (b) $I \notin maximal \iff R/I \notin corpo.$

cor. Todo ideal maximal é primo.

Teorema (Correspondência). Existe bijeção entre ideais de R/I e ideais de R que contêm I, preservando inclusões, dada por $J \mapsto \pi(J)$.

Teorema (Relação de Quocientes). $Se \ J \triangleleft R$ $com \ J \supset I, \ então$

$$\mathbf{R}/\mathbf{J} \simeq (\mathbf{R}/\mathbf{I})/(\mathbf{J}/\mathbf{I}),$$

onde $J/I = \pi(J)$ é ideal de R/I.

Teorema (Chinês dos Restos). Se $I_1, ..., I_n$ são ideais próprios de R dois a dois coprimos ($I_i + I_j = R, i \neq j$), então

$$I_1 \cdot \ldots \cdot I_n = \bigcap_{k=1}^n I_k,$$

$$\mathbf{R}/(\bigcap_{k=1}^{n}\mathbf{I}_{k}) \simeq \mathbf{R}/\mathbf{I}_{1} \times \cdots \times \mathbf{R}/\mathbf{I}_{n}.$$