Consider the operator B given by Bf = f' with domain D(B) = {f \in C¹([-1,0],C) : f'(0) = β f(0) + \langle f, \vee \rangle }. We claim that

B is the generator of a strongly continuous semigroup (4.13) $(S(t))_{t\geq 0}$. Moreover, $(S(t))_{t\geq 0}$ is dominated by $(T(t))_{t\geq 0}$ if and only if $Re\beta \leq \alpha$ and $|\nu| \leq \mu$.

<u>Remark</u>. It is of interest to find a condition on B which implies that the semigroup $(S(t))_{t\geq 0}$ is stable (see A-IV,Sec.1). Using the positivity of $(T(t))_{t\geq 0}$ it is shown in B-IV,Ex.3.9, that $(T(t))_{t\geq 0}$ is stable if and only if $\|\mu\| + \alpha < 0$. Since a semigroup which is dominated by a stable semigroup is itself stable we obtain from (4.13) that $(S(t))_{t\geq 0}$ is stable if $\|\nu\| + \text{Re}\beta < 0$.

Proof of (4.13). We first assume that $\alpha:=\text{Re }\beta$ and $\mu=|\nu|$. We show that (4.12) is satisfied. Consider the operator A_{max} on C[-1,0] given by $A_{max}f=f'$ with domain $D(A_{max})=C^1[-1,0]$. We know by B-II,Example 2.12 that $Re<(\text{sign }\overline{f})Af,\phi>\leq Re<(\text{si}\widehat{g}n }\overline{f})$ (Af), $\phi>=(|f|,(A_{max})',\phi>)$ for all $f\in D(A_{max})$, $0\leq\phi\in D((A_{max})')$. In particular

 $(4.14) Re < (sign f) Bf, \phi > \leq < |f|, A' \phi >$

holds for all $f \in D(B)$, $0 \le \phi \in D((A_{max})')$. It is not difficult to see that $D(A') = D((A_{max})') + \mathcal{E}_0$, and since $D((A_{max})') = BV[-1,0]$ (see B-II,Example 2.12) this is an order direct sum. Thus, in view of (4.14), it remains to show that

(4.15) Re<(sign \bar{f}) Bf, δ_{O} $\leq \langle |f|, A'\delta_{O} \rangle$

for all f \in D(B). By the definition of A , $\delta_{\rm O}$ \in D(A') and A' $\delta_{\rm O}$ = $\alpha\delta_{\rm O}$ + μ . Hence for f \in D(B),

Re<(sign \bar{f})Bf, δ_{O} > = Re((sign \bar{f})f')(0) = Re((sign \bar{f} (0)) \cdot(\beta f(0)) + <f,\nu>)) \leq Re\beta |f(0)| + |<f,\nu>| \leq \alpha |f(0)| + <|f|,\mu> = <|f|,\mu'\delta_{O}>\cdot.

Thus (4.15) and so also (4.12) are proved.

As in the proof in Example 2.14 one shows that λ - B is surjective for large real λ . Hence by Theorem 4.14, B is the generator of a strongly continuous semigroup $(S(t))_{t\geq 0}$ which is dominated by $(T(t))_{t\geq 0}$. This proves the first assertion of (4.13) and the sufficiency of the second.

Now we assume that the semigroup $(S(t))_{t\geq 0}$ is dominated by $(T(t))_{t\geq 0}$. We have to show that $\operatorname{Re}\beta \leq \alpha$ and $|\nu| \leq \mu$. Since $\delta_O \in D(A') \cap D(B')$ we have for all $f \in C[-1,0]_+$ satisfying f(0) = 0, $|\langle f, \nu \rangle| = |\langle f, B' \delta_O \rangle| = \lim_{t \to 0+} 1/t \; |\langle S(t) f - f \rangle| = \lim_{t \to 0+} 1/t \; |\langle S(t) f - f \rangle|$