

第十八届全国大学生机器人大赛 RoboMaster 2019 机甲大师赛

西安交通大学速加网笃行战队设计报告

2019.02

V 1.4

目录

摘要	3
第 1 章 需求确定	4
1.1 总体需求	4
1.2 机器人具体需求	4
1.2.1 步兵机器人	4
1.2.2 英雄机器人	5
1.2.3 工程机器人	5
1.2.4 哨兵机器人	6
1.2.5 空中机器人	7
第 2 章 系统框图	8
2.1 硬件资源	9
2.2 程序逻辑	9
第 3 章 结构设计	12
3.1 需求分析	12
3.2 设计图纸	14
3.3 材料和工艺	16
3.4 有限元分析	17
第 4 章 算法设计	20
4.1 需求分析	20
4.2 方案设计	20
4.3 算法对比与性能分析	22
第 5 章 人机工程分析	23
第6章 科学设计方法	25
第7章 科学实践改进	28
7.1 测试需求	28
7.2 测试方案	28
7.3 测试结果记录	29
7.4 结果分析	31

第十八届全国大学生机器人大赛RoboMaster 2019机甲大师赛 设计报告

7.5 优化改进	31
第8章 传感器选型	32
第9章 创新性	
第 10 章 外观设计	35

摘要

本文挑选2019赛季机器人设计和制造中的部分典型案例进行阐述。根据新规则分析了各机器人的研制优先级和技术指标以及技术要点。以英雄机器人为例阐述机器人系统框图与控制逻辑;以工程机器人为例阐述机器人结构设计和传感器选型;以步兵机器人为例阐述机器人研发中的人机工程分析和外观设计;以哨兵机器人为例,分析视觉算法设计,并对相关算法做了理论对比和分析。在科学设计方法部分,对超级电容模块的主电路部分做了理论分析,并在第9章阐述了超级电容模块的创新性。在科学实践改进部分,阐述了针对弹道稳定性的改进工作,并附上了实验结果。整篇报告突出了战队在2019赛季的新设计和新算法。总结了现阶段代表性成果,为下一步工作做好了技术积累。

第1章 需求确定

1.1 总体需求

2019赛季规则较2018赛季无较大变化,强调了战车底盘的场地适应性以及弹道的稳定性。地面机器人要求有更高的场地适应性:英雄和步兵机器人提高了对远距离弹道稳定性的要求,工程机器人需要同时具备上下岛、取弹、补给、救援等多重功能。哨兵机器人增加了底盘功率限制,限制了哨兵的机动性。空中机器人改动较大,增大了载弹量,放宽了火力输出限制,要求空中机器人有更稳定,精确的火力输出,提高射击效率。

1.2 机器人具体需求

1.2.1 步兵机器人

优先级: 高

步兵机器人底盘需具有较强的场地适应性及良好的机动性。云台及发射机构需具备稳定的远程弹道。具体指标和技术点如表1-1和表1-2所示:

步兵机器人技术指标	
重量	≤15kg (不含裁判系统)
大小	规则范围内
射频 ≥15/s	
射速	控制误差 ± 1.5m/s
机动性	≥3m/s
.) U	可以飞跃沟壑
弹道	5m/小装甲命中率≥90%
开足	8m大装甲命中率≥90%
能量机关	6发/次,≤3.3s
自动打击	5m内慢速目标命中率≥90%
容弹量	≥260发

表 1-1 步兵机器人指标

表 1-2 步兵机器人主要技术点

	步兵机器人主要技术点
机械	侧置弹舱&云台轻量化
电控	超级电容
出江	状态机模型
视觉	目标跟踪&轨迹预测

1.2.2 英雄机器人

优先级: 高

功能需求:具备较强的机动和场地适应性;远距离发射稳定,命中率高;同时具备发射两种口径弹丸的能力。具体技术指标和技术点如表1-3和1-4所示:

表 1-3 英雄机器人技术指标

Service Servic	
英雄机器人技术指标	
重量	≥30kg (不含裁判系统)
大小	规则范围内
容弹量	大弹丸≥40
台坪里	小弹丸≥60
±⊓ =+₩+	≥2.3m/s
机动性	可以飞跃沟壑
发射机构	具有两种弹丸的发射能力
白十小五	小弹丸极限≥15/s
射频	大弹丸极限≥5/s
射速	控制误差 ±1.5m/s
弹道	3m/小装甲命中率≥95%
	7m大装甲命中率≥60%
自动打击	5m内慢速目标命中率≥90%

表 1-4 英雄机器人技术点

英雄机器人技术点		
机械	底盘悬挂	
	拨弹机构&云台发射机构	
电控	线路布局	
	超级电容	
视觉	目标跟踪&轨迹预测	

1.2.3 工程机器人

优先级:高

功能需求: 高机动性和场地适应性,稳定的上下岛,获取弹药箱,弹药补给和拖曳救援能力。工程车具体技术指标和技术点如表1-5和表1-6所示:

表 1-5 工程机器人技术指标

工程机器人技术指标	
重量	≤35kg
大小	规则范围内
登岛	≤20s
取弹	≤10s
补弹	≤10s
拖车	≤10s

表 1-6 工程机器人技术点

工程机器人技术点	
机械	底盘机构
	登岛机构稳定性
	取弹拖车机构强度达标
电控	线路布局
	一键控制逻辑
	传感选型&交互
视觉	岛上定位
	弹药箱识别

1.2.4 哨兵机器人

优先级:中

功能需求:在不超功率限制条件下的良好机动性;对运动目标的准确识别和打击。具体技术指标和技术点如表1-7和1-8所示:

表 1-7 哨兵机器人技术指标

哨兵机器人技术指标	
机动性	走完单向全程≤10s,转弯处无卡顿
火力机动性	YAW轴360度打击且不影响电气性能
	PITCH射界≥75度
射速	控制误差 ±1.5m/s
射频	≥20/s
自动打击	5m内慢速移动目标命中率≥90%

表 1-8 哨兵机器人技术点

132 (1000)	
哨兵机器人技术点	
机械	悬挂与行走机构
	全角度云台
电控	线路布局
	功率控制
视觉	目标检测,目标跟踪
	目标测距,轨迹预测

1.2.5 空中机器人

优先级:中

功能需求: 良好的飞行稳定性, 持续高效的火力输出。具体技术点和技术指标如表1-9和1-10所示:

表 1-9 空中机器人技术指标

	空中机器人技术指标
总负重	≤11.6kg (含裁判系统及弹丸)
续航时间	最大负重下≥8分钟
射频	≥20/s
射速	控制误差 ± 1.5m/s

表 1-10 空中机器人技术点

空中机器人技术点	
机械	动力系统更换
	两轴云台
电控	飞行控制
	云台控制

第2章 系统框图

本章以英雄机器人为例进行分析。英雄机器人系统框图如图2.1所示:

图 2.1 英雄机器人系统框图

进行视觉信息处理及目标识别的主要设备

获取图像信息

2.1 硬件资源

英雄机器人软件运行过程中使用到的全部硬件设备及软件外设如表2-1和2-2所示:

SOARSEA八代i78850U四核mini pc

HF900 1080P工业摄像头

序号 硬件设备 主要用途 云台主控板 实现云台控制的硬件电路 1 2 底盘中心板 实现底盘控制的硬件电路 转接板 用于实现电源以及信号的链接 4 光电门 用于检测供弹以及发射子弹的数量 5 WIFI模块 用于向上位机传输底盘运行状态信息 6 ADXRS810传感器(单轴陀螺仪) 用于解算YAW轴实际旋转角度 7 底盘运动、云台发射拨弹动力源 RM3510电机+R820电调 8 云台PITCH、YAW轴电机 RM6623电机 9 遥控器组件 实现整车远程控制 10 24V - 12V 降压模块 用于工控机供电 用于云台主控板供电 11 24V - 5V 降压模块 12 用于实现气动悬挂以及大子弹助推 电磁阀

表 2-1 英雄机器人硬件设备

表 3-2 英雄机器人软件外设

序号	软件外设	主要用途
1	FreeRTOS实时操作系统	实现整车系统级开发
2	DMA传输遥控器数据	用于接收遥控器数据帧
3	CAN通信协议	实现电机控制与板间通信以及单轴陀螺仪数据的获取
4	IIC通信协议	实现MPU9250传感器通信
5	USB通信协议	实现主控板与工控机通信以及摄像头与工控机通信
6	串口通信	实现WIFI模块与底盘板之间的数据交换
7	WIFI通信协议	实现WIFI模块与PC上位机之间的通讯用以实时监测运行状态
8	SWD	用于程序调试与下载

2.2 程序逻辑

13

14

逻辑流程图分为两部分,分别为整车控制逻辑图,云台任务和底盘任务逻辑图。

图 2.2 英雄机器人整车控制逻辑

图 2.3 云台和底盘任务逻辑流程图

第3章 结构设计

本章以工程机器人为例进行分析。

3.1 需求分析

根据规则,工程机器人的主要需求如下: 1、良好的场地适应性(上坡,过障碍等); 2、上下资源岛; 3、完成在岛下和岛上取弹; 4、救援步兵和与英雄进行补弹交互。

根据以上需求工程设计主要分为以下四个模块:底盘机构、提升机构、取弹机构、交互机构(救援、弹仓)。

工程整车设计如图3.1所示

轴侧图

正视图 侧视图

俯视图

提升侧视图

图 3.1 工程机器人概览

由于篇幅限制,以下主要以底盘机构为例进行分析。

3.1.1 底盘机构

根据分析规则得到的设计需求,设计了纵版悬挂,如图3.2所示

底盘正视图

底盘轴侧图

轮组

图 3.2 底盘&轮组

工程的悬挂设计选用气缸当做避震系统中的弹簧阻尼,优点如下: 1、气缸价格低; 2、悬挂刚度调节比较方便; 3、气缸选型比较容易。

底盘受力分析如图3.3所示:

图 3.3 底盘受力分析图

底盘在向右加速运动时候,设计要求悬挂板处于水平状态,其受力分析如图3.3所示: 对于前轮而言:

$$F_f + F \cos \alpha = F_2$$

$$F_f(a + R) + F_N L_2 = F(L_1 + L_2) \sin \alpha$$

$$F_N + F_1 = F \sin \alpha$$

其中F表示两个气缸压力;R表示麦轮半径;a表示麦轮中心离水平支撑板距离; F_f 表示地面给单个麦轮的摩擦力; L_1 表示气缸头部离旋转中心距离; L_2 表示麦轮中心离旋转中心距离。

根据实际轮子尺寸以及测量数据,气缸选择MI10*30的型号,在气压为 0.6MPa 的时候 F=100N 、 R=75mm、 $F_f=40N$ 、 $L_2=100mm$ 、 $F_N=100N$ 、 a=30mm

选择不同的结构限制,对不同的 L 的值进行计算,结果如表3-1所示:

 $\overline{F_2}/N$ α /° L_1 / mm F_1 / N 60 72 5 71 70 10 84 64 80 53 20 100 90 23 117

表 3-1 不同条件下的计算结果

根据计算和实验后最后选定: $L_1 = 70mm$,此时 $\alpha = 64^\circ$ 、 $F_1 = 10N$ 、 $F_2 = 84N$.

3.2 设计图纸

以底盘3508电机电机座为例,二维图纸如图3.4所示:

图 3.4 3508 电机座工程图

三维图如图3.5所示:

图 3.5 3508 电机电机座三维图

3.3 材料和工艺

表 3-2 材料和加工工艺

步骤	特征	公差等级	要求	说明	成本 (元)
毛培	铝合金6061块(长*宽*高) 60mm*50mm*55mm	IT13	外观良好	长度可以有余量	5
粗铣	粗铣外轮廓 (长*宽*高) 53.5mm*42.5mm*52.5mm	IT10	尺寸在要求范围内	留0.5mm加工余量	20
粗铣	粗铣内槽 (长*宽*高) 38.5mm*42.5mm*44.5mm	IT10	尺寸在要求范围内	留0.5mm加工余量	40
精铣	精铣上表面	IT7	尺寸在要求范围内	达到图纸精度要求	25
精铣	精铣上表面槽	IT7	尺寸在要求范围内	达到图纸精度要求	20
精铣	精铣内槽	IT7	尺寸在要求范围内	达到图纸精度要求	20
粗铣	粗铣电机侧表面外轮廓	IT10	尺寸在要求范围内	留0.5mm加工余量	15
精铣	精铣电机侧表面外轮廓	IT7	尺寸在要求范围内	达到图纸精度要求	20
精铣	精铣轮轴侧表面外轮廓	IT7	尺寸在要求范围内	达到图纸精度要求	20
粗铣	粗铣电机座定位孔	T10	尺寸在要求范围内	留0.5mm加工余量	25
精铣	精铣电机座定位孔	IT7	尺寸在要求范围内	达到图纸精度要求	35
钻孔	钻电机座每个表面孔位	IT7	尺寸在要求范围内	达到图纸精度要求	40
后处理	去毛刺、氧化喷砂	IT7	表面良好无毛刺		25
	成本合计				310

从上表可以看到铣内槽的加工费用最高,但电机内槽对精度没有很大的要求,所以不用精铣内槽,直接一次粗铣成我们需要的尺寸即可,且电机外轮廓的尺寸也无需精铣,因此也可以直接粗铣,而且在加工过程中我们要尽量较少装夹定位,所以在铣平面时直接完成每个平面的打孔工作,这样就能够减少一定成本。新的工艺流程如表3.3所示:

农 5-5						
步骤	特征	公差等级	要求	说明	成本 (元)	
毛培	铝合金6061块(长*宽*高) 60mm*50mm*55mm	IT13	外观良好	长度可以有余量	5	
粗铣	粗铣外轮廓 (长*宽*高) 53.5mm*42.5mm*52.5mm	IT10	尺寸在要求范围内	留0.5mm加工余量	20	
粗铣	粗铣内槽	IT10	尺寸在要求范围内	达到图纸精度要求	40	
精铣	精铣上表面	IT7	尺寸在要求范围内	达到图纸精度要求	25	
精铣 打孔	精铣上表面槽,并完成上表面打孔	IT7	尺寸在要求范围内	达到图纸精度要求	25	
粗铣	粗铣电机侧表面外轮廓	IT10	尺寸在要求范围内	达到图纸精度要求	15	
精铣 打孔	精铣轮轴侧表面外轮廓并完成侧面大孔	IT7	尺寸在要求范围内	达到图纸精度要求	30	
粗铣	粗铣电机座定位孔	T10	尺寸在要求范围内	留0.5mm加工余量	25	
精铣	精铣电机座定位孔	IT7	尺寸在要求范围内	达到图纸精度要求	35	
后处理	去毛刺、氧化喷砂	IT7	表面良好无毛刺		25	
	成本合计				245	

表 3-5 新工艺流程表

旧工艺加工一个电机座价格为310元。而新的加工工艺一个电机座价格为: 245元,这样每一个电机座就能 节省65元

3.4 有限元分析

对悬挂固定板进行有限元分析。因为悬挂连接板的强度在底盘非常重要,影响车的整体性能,所以我们选 择对悬挂固定板进行有限元分析,材料选择为碳纤维,具体分析如下:

加载分析

简化载荷为气缸和轮轴给悬挂支撑板子的力。每个气缸力大小为50N,单侧轮轴给悬挂支撑板力大小也为50N。固定简化为单边固定,如图3.6所示:

图 3.6 悬挂支撑板载荷及夹具

网格划分

网格划分比较精细。最小网格设置为0.4mm,最大网格设置为2mm,雅克比点数为4,单元大小增长比率为1.6,圆中最小单元数为8。绘制的网格如图3.7所示:

图 3.7 悬挂支撑板网格划分

结果分析

最大应力如图3.8所示:

图 3.8 悬挂支撑板最大应力

可以看出其最大应力小于材料屈服强度,因此该结构合理可靠。在整车底盘的多次实验后,悬挂支撑板损耗部位与分析部位基本相同,证明了分析的正确性。

优化处理

基于上述分析,悬挂支撑板的主要易损在轮支撑出,因此在不影响性能的情况下,悬挂支撑板的轮支撑处两侧分别增加一个3MM厚的碳板用固定轴承座的螺栓连接固定,这样既能减少加工的难度又降低了加工的成本,并且还有助于提升零件的强度。悬挂支撑板优化后装配图3.9所示:

图 3.9 悬挂支撑板优化后装配图

第4章 算法设计

本章以哨兵机器人视觉识别算法为例进行分析。

4.1 需求分析

哨兵是场上的自动防御机器人,需要准确、高效地识别目标,并且在多目标同时出现时,决策优先攻击的目标。同时哨兵需要由多个摄像头配合形成360度全向视野。具体需求如表4-1所示:

算法模块	需求	硬件依赖	性能要求
	准确度90%以上		
	静止,移动目标均可识别	SOARSEA八代i78850U四	
目标检测	360度全向识别无死角	别无死角 核minipc	
	多目标检测		单模块每帧图像
目标跟踪	<2.5m/s全跟踪		处理速度15ms以
目标测距	误差5%以内	HF900 120帧1080P无畸变	内
口小则坦	角度检测	工业摄像头	
轨迹预测	直线运动物体轨迹预测		

表 4-1 哨兵机器人视觉算法需求分析

4.2 方案设计

算法流程图如图4.1所示。该算法先提取图像中的颜色信息,对比几何特征;再利用solvePnP算法测量目标相对位姿,求解其相对机器人的距离和角度,根据距离信息选择装甲板筛选方案,对于远距离情况采用 ANN_MLP神经网络方法对装甲板进行再筛选,最后利用KCF算法做目标追踪,卡尔曼滤波算法做轨迹预测。

图 4.1 哨兵机器人视觉算法流程图

PNP问题(Perspective-n-Point),即给定一个在世界坐标系中的已知点集和他们在像平面对应的投影,同时已知摄像机内部参变量,求在世界坐标系和摄像机坐标系之间的变换矩阵(三个旋转参变量和三个平移参变量)。

图 4.2 p3p 算法示意图

经典的P3P问题可以转化为一个四面体形状的确定问题,如图4.2所示。即已知条件为知道控制点 A,B,C的

位置以及在摄像机中的投影坐标求棱长边a',b',c'.的问题。图中的P点相当于相机的光心,A,B,C相当于世界坐标系下已知相对位置关系的三个控制点,A',B',C'为图像坐标系中对应的三个点。

由于P3P问题的多解现象,我们采用四组控制点求解目标位姿。当控制点共面时,P4P问题有唯一解。

KCF(Kernel Correlation Filter)是一种鉴别式追踪方法,这类方法一般都是在追踪过程中训练一个目标检测器,使用目标检测器去检测下一帧预测位置是否是目标,然后再使用新检测结果去更新训练集进而更新目标检测器。该算法将线性空间的脊回归通过核函数映射到非线性空间,在非线性空间通过求解一个对偶问题和某些常见的约束,同样的可以使用循环矩阵傅里叶空间对角化简化计算。我们在i3CPU上测试KCF算法,帧率达到了100帧以上,可以满足实时性要求。

4.3 算法对比与性能分析

本节以目标跟踪算法为例进行分析。

目标跟踪有两大方向,一个是实时性的相关滤波方向,另一个是深度学习方向,但目前在速度方面,相关滤波占优,是当前工业界目标跟踪领域使用的主要算法框架。

CN跟踪器:它联合颜色特征(Color Name)和灰度特征来描述目标。CN跟踪器对很多复杂的视频序列都有很好的跟踪结果,比如:光照变化,遮挡,非刚性形变,运动模糊,平面内旋转,出平面旋转和背景杂乱。缺点在于,尺度变化,快速运动,出视角和低分辨率,等视频的跟踪效果不佳。

KCF跟踪器: KCF跟踪器对光照变化,遮挡,非刚性形变,运动模糊,背景杂乱和旋转等视频均能跟踪良好,但对尺度变化,快速运动,刚性形变等视频跟踪效果不佳。

STC跟踪器: 是一个简单快速而且鲁棒的算法,它利用稠密的空时场景模型来进行跟踪。该算法对尺度变化,姿势变化,遮挡,旋转,背景杂乱和突然运动的视频都有较好的跟踪,但对刚性形变,出视角和低分辨率的视频效果不佳。

帧速率对比如表4-2所示: (单位FPS)

表 4-2 目标跟踪算法帧率对比

CN	KCF	STC	
152	172	150	

第5章 人机工程分析

本章以步兵云台为例进行分析

由于采用下供弹方案,步兵摩擦轮、发射机构等需要置于pitch轴线前端,造成云台发射机构重心过于靠前,如图5.1所示,此时云台重心与转轴距离为120mm,会导致其产生1.57~N·m 的低头力矩,会增加云台俯仰的力矩,导致pitch轴电机过热。新云台设计时将pitch轴电机置于发射机构后方,如图5.2,通过平行四连杆机构进行传动,可以保证电机轴转动角度与云台俯仰角度相同,方便电控调车,同时后移其重心,使云台重心与云台转轴距离为53.5mm,增加云台稳定性且力矩变为1.05~N·m。

图 5.1 旧版云台及其重心

图 5.2 新版云台及其重心

相对于传统的下供弹方式连接复杂,安装繁琐,新的侧供弹方法简化了安装及设计,更多利用榫卯结构, 且可以有效减少子弹在滑道中的运动时间,减少子弹存留量,加快供弹速度,弹丸击发延迟从下供弹的340ms减少到侧供弹的70-120ms,也优化了操作手的操作体验,提高了打击效率。如图5.4所示:

图 5.3 下供弹弹道链

图 5.4 新拨弹及弹舱

第6章 科学设计方法

本章以超级电容系统中的主电路为例进行阐述。

6.1设计指标

设计一个机器人加速器电源,用于电机驱动器前级。要求电源具有很高的过载能力,具体项目指标如下:

项目	指标
电池电压 U_d	22~26Vdc
最大输入功率 $P_{d,max}$	80W
最大輸出功率 Pomax	600W
输出最大功率时间	>3S

表 6-1 设计指标

6.2主电路设计

6.2.1 电容 C_a 电压的工作范围选择

最高电容电压选在电池电压附近。

在传输相同功率时,电容电压 U_{ca} 越低,电感电流 I_{La} 越大。同时,最低电容电压越低,电容存储能量越高。因此最低电容电压的选择是需要多方面考虑的:

所需电感值 L_a

设计电感 L_a 时,一般根据当电感电流最大时,其纹波峰峰值不超过40%来设计。40%是一个根据经验优化

的值。稳态时, 电感电流峰峰值可由下式计算:

$$\Delta i_{La,pp} = \frac{(U_d - U_{ca})}{L_a} dT_s = \frac{U_d T_s}{L_a} (d - d^2)$$

稳态时, 电感电流平均值 $i_{La,ave}$ 可由下式计算:

$$I_{La,ave} = \frac{P_{c,max}}{U_{ca}} = \frac{P_{c,max}}{dU_d}$$

可见,电感电流最大值在占空比d最小的时候取得。令此时纹波峰峰值小于40%,即 $\Delta i_{La,pp}=40\%I_{La,ave}$,可得:

$$L_a = \frac{{U_d}^2 T_s}{0.4 P_{c,max}} (d_{min}^2 - d_{min}^3)$$

电感电流ila

上面已经计算得, 电感电流平均值I_{La.ave}最大为:

$$I_{La,ave,max} = \frac{P_{c,max}}{U_{ca,min}} = \frac{P_{c,max}}{d_{min}U_d}$$

其中, $P_{c,max}$,为最大输出功率 $P_{o,max} - P_{d,max}$ 即为520W。由于两相交错并联,所以每相取为260W。

为了减小制作工作量,选取市场上可以买到的电感。上面两个方面的公式可以作为两个选择条件。可以预见, d_{min} 取得越小,电感电流越大,虽然感值也变小,市场上超大电流、低感值的电感不容易选到。

最终选择的最小占空比 d_{min} 为0.3,即最低电容电压 $U_{ca,min}$ 为6.6V。核算所存储的能量,当挂载的超级电容 C_a 为10F时,电容电压从最高放至最低所释放的能量 $E_{c,max}$ 为

$$E_{c,max} = \frac{1}{2}C_a(U_{ca,max}^2 - U_{ca,min}^2) = 2022.2 J$$

最大功率输出时间4.2S。

6.2.2 超级电容保护电路

由于超级电容容值参数、漏电流等不同,存在均压问题。需要设置均压电路或者保护电路。使用BW6101芯 片做超级电容电压保护。其内部结构如图6.2所示:

图 6.2 BW6101 内部结构图

因应用于2.7V电容保护电路,故选择基准为2.65V。将SEL引脚接高电平即可。下面将选择外部泄放MOS的型号。

考虑极端情况,应是机车在最大输出功率时急停,假设的场景为:此时驱动器600W输出,速度为4m/S,机车动能为150J。此时急停,驱动器回馈的峰值功率为600W,假设此时转矩也是固定的,即速度线性递减。则驱动器回馈的功率也线性递减。如果这部分能量全部回馈至超级电容,假如某个保护电路动作时电容串的总电压

为20V,则泄放电路所需承受的电流值随时间变化的图如图6.3所示:

图 6.3 充电最苛刻电流

选用泄放MOS管为NCE2060K,器件手册中其动态等效热阻图为:

Square Wave Pluse Duration(sec)

图 6.4 所选泄放开关管动态热阻图

可见,在近似于单脉冲的条件下(假设急停动作不频繁出现),0.5S的时间尺度下管子的结壳热阻仅为0.3K/W。承受如此的脉冲能量是足够的。

选泄放限流电阻,其至少可以承受正常80W充电电流下的发热。此时泄放支路的总损耗 P_{dd} 为:

$$P_{dd} = U_{ca,single} \frac{P_{ca}}{U_{ca}} = 2.65 \times \frac{80}{20} = 10.6 W$$

第7章 科学实践改进

7.1 测试需求

在测试中,我们在3.5m的距离上测试摩擦轮硬度,机械限位对弹道稳定性的影响。

7.2 测试方案

7.2.1 通用测试平台

检测弹着点,采用玻纤板上覆盖复印纸和白纸的方法。该方法可以较为精确的反映子弹在一定距离飞行后的弹道分布情况,且结果易于保存,方便二次分析。

摩擦轮电机采用拆掉减速箱的3508电机,自带转速闭环,且其转速和扭矩都能很好的满足要求。 小子弹发射机构安装在固定于地面的测试平台上,发射时枪管保持与地面水平。

7.2.2 摩擦轮硬度测试方案

我们定做了两款基于3508的摩擦轮,并利用3508轴和3508电机外圈进行定位,减小摩擦轮的动不平衡量。 摩擦轮胶圈加工邵氏硬度60和55两款摩擦轮。摩擦轮外径63,高度为9,材料为聚氨酯,内芯为6061铝合金,包 胶中心线与枪管轴线位于同一水平面,如图7.1所示:

摩擦轮与枪管相对位置

摩擦轮与电机

图 7.1 摩擦轮设计图

7.2.3 机械限位测试方案

18赛季比赛中,枪管限位为枪管底下一球形机构,通过一弹簧保证其上下运动,如图7.2所示。为了保证子弹的定心,我们首先考虑进行上下双限位设计。紧接着为了验证定心效果对于子弹弹道准确性,我们先后设计

与制作了两款限位即平面型和弧形两款,如图7.3所示:

平面型限位

弧形限位

图 7.3 新款限位

7.3 测试结果记录

7.3.1 摩擦轮硬度测试结果

全新的摩擦轮在同一批子弹下做发射实验。每个摩擦轮测试5次,每次100发子弹。通过观测摩擦轮上附着物判断胶圈硬度对子弹磨损程度的影响。摩擦轮硬度在55的时候,对于子弹磨损程度低,击发500发子弹后摩擦轮上附着物很少,如图7.4(a)所示。硬度60的摩擦轮,击发100发子弹后,摩擦轮附着物较多,如图7.4(b)所示。

(a) 硬度 55, 击发 500 发子弹

(b) 硬度 60, 击发 100 发子弹

图 7.4 摩擦轮硬度测试结果

7.3.2机械限位测试结果

在3.5m处,射速28m/s,进行测试,旧款限位的散布图如图7.5所示,新款平面型限位子弹散布图如图7.6 (a) 所示,弧形限位子弹散布图如图7.6 (b) 所示。可以看出子弹准确度,新款优于旧款,并且弧形限位优于平面型限位。

图 7.5 旧款限位子弹散布 (部分子弹超出纸面)

(b) 弧型限位子弹散布

图 7.6 新款限位子弹散布

7.4 结果分析

对测试结果进行对比后可以看出,使用邵氏硬度为55的胶圈,对子弹磨损程度低,持续击发的稳定性较好。相较于以前的单限位,上下双限位能更好的保证子弹定心,且弧形限位较平面型限位有更好的子弹散布。综上所述,提高弹道稳定性的关键在于保证子弹进入摩擦轮时的定心,确保子弹在进入摩擦轮时左右受力均匀,减少子弹出镗后的自旋。

7.4 优化改进

优化子弹进入枪管的受力情况,增加摩擦轮到拨弹之间的直线距离。

装配上针对枪管设计一定位凸台,并且利用摩擦轮电机的外径以及圆台进行定位,二者保证在同一平面即可,如图7.7所示

图 7.7 枪管与摩擦轮定位基准板

第8章 传感器选型

本章以工程机器人为例进行传感器选型分析。

8.1 需求分析

在比赛场上工程机器人承担了取弹,战术跑位等任务,这就要求它的运动具有较高的精度,主要体现在能 跑直线,岛上进行精准定位等功能,由此我们选择了一些实用的传感器,分别是陀螺仪,激光测距传感器及激 光雷达。

8.2 传感器选型

8.2.1 陀螺仪

目的:修正底盘行走偏差,提高控制精度。

要求: 灵敏度高, 零点漂移较小。

陀螺仪选型为ADXRS810 , 其技术参数为:

表 8-1 ADXRS810 技术参数

参数	测试条件	典型值	单位		
测量范围	满量程范围	300	%sec		
灵敏度	-	80	LSB/ %sec		
零点	25 ℃	-2	%sec		
噪声性能	25 ℃	0.015	%sec/√Hz		
低通滤波器	-	77.5	Hz		
谐振频率	-	15.5	kHz		
抗冲击和振动特性	-	0.03	%sec/g		

优点: 灵敏度高, 很好的解决了底盘起步跑偏的问题。

缺点:零点容易跑偏,使上岛容错性降低。

8.2.2 激光测距传感器

目的: 为了实现岛上精准快速定位, 提高取弹的速度。

要求: 测量范围覆盖4m。

选用的激光测距传感器为GY-53L1红外测距模块, 其技术参数为:

表 8-2 红外测距模块 GY-53L1 技术参数

名称	参数	
测量范围	5cm-4m	
响应频率	22ms (最高)	
工作电压	3-5 V	
工作电流	0.2-20mA	
工作温度	-20 ℃-85 ℃	
储存温度	-40 °-125 °	
尺寸	25mm*15.6mm	
传感器芯片	VL53L1X	

优点:能够契合资源岛尺寸,成本较低。

缺点:无法测量小于5cm的距离。

8.2.3 激光雷达

目的:获得岛上平面地图,对确定工程机器人姿态及相对位置进行测量,进而辅助工程机器人进行岛上自动取弹。加快取弹速度,降低操作手操作难度。

具体要求如下表所示:

表 8-3 激光雷达选型要求

W ○ S INVOINTERED SOL					
项目	单位	要求			
最大测量距离	米 (m)	>4.5			
扫描角度	度(Deg)	0-360			
测距分辨率	毫米(mm)	<5			
角度分辨率	度(Deg)	<3			
扫描频率	赫兹(Hz)	>1			

表 8-4 思岚科技 RPLIDAR A2M4 激光雷达基本信息

项目	单位	最小值	典型值	最大值	备注
测距范围	₩ (m)	0.15	-	6	白色 70% 反射率
扫描角度	度(Deg)	-	0-360	-	-
测距分辨率	穿率 毫米(mm)	-	<0.5		测量距离 <1.5m
炒吃力			<实际距离的1%	-	全部量程范围内
角度分辨率	度(Deg)	0.45	0.9	1.35	10hz扫描
单次测距时间	毫秒(ms)	-	0.25	-	-
扫描频率	赫兹(Hz)	5	10	15	扫描400点
重量	克(g)	-	190	-	-

优点: 容易集成, 轻便, 可测距离大

缺点: 150mm以内无法测量

第9章 创新性

本章以超级电容板为例进行描述。

9.1 问题提出

规则限制底盘功率80W,车辆在正常运行状态下的平均功率不及80W,但在车辆启停瞬间、上坡时,战车所需功率将远超80W。规则中的60J缓冲能量远不能满足加速与上坡的要求,因此提出超级电容概念解决此问题,即加入一组能在功耗较低时储存电能,功耗高时释放电能的电容来达"低功储能、高功放能"的效果。

9.2 设计思路

因电机负载具有时间常数较大的功率脉动特征,而规则要求电池端输出功率不得超过80W,所以所设计变换器中需要有储能元件,用于对负载功率"削峰填谷"。并且要求变换器拓扑可双向运行,在负载功率低于输入功率时,电池给储能元件充电;在负载功率大于输入功率时,储能元件给负载放电。

因电机负载机电常数一般较大,故选择超级电容作为储能元件。

因超级电容的耐压一般较低,故选择降压型双向DCDC拓扑,可选元件最少、结构最简单双向Buck/Boost电路,拓扑如图 9.1所示:

图 9.1 主功率拓扑

相对于升压型电路, 其优点如下:

- 1) 可使超级电容电压Uca理论在0到电池电压, 电容能量利用率高
- 2) 不需要初始电压,不用提前为超级电容充电,更加节能
- 3) 没有升压型拓扑使超级电容电压过高击穿的风险

缺点:

- 1) 注入到直流母线的电流是方波,谐波成分较大,对滤波器要求较高。
- 2) 超级电容在低压段运行, 电流较大,

考虑到所流过的电流以及优化源侧滤波器设计,最终采用两相交错并联的双向Buck/Boost拓扑。

第10章 外观设计

本章以新款步兵进行外观设计的阐述:

10.1 云台部分

今年采用侧供弹、卯榫支架、滑环云台等设计,如图10.1所示。同时为了照顾第五块大装甲,云台空间十分狭窄。

图 10.1 步兵侧供弹云台

为了便于走线,我们将云台的主控板放置在云台上方,如下图中A处;将云台电源转接板放置在B处。这样方便电路板更换与检修。

图 10.2 步兵云台电路板位置

为了保护电线,我们为云台设计了电路板的保护壳以及藏线用保护壳,可以保证比赛中电路部分不外漏。

图 10.3 电路板保护壳

最后,云台其他的线路可以从支架之间传过去,如下图所示,而工控机刚好可以放置其中的插槽中,利用 扎带即可固定。

图 10.4 隐藏工控机后的卯榫支架

10.2 底盘部分

图 10.5 底盘图片

如上图所示,底盘采用半包裹保险杠设计,并采用PP板材折弯作为整体的防护壳。由于PP板韧性极好,密度低,不导电,易加工等等特性,我们认为用它们可以很好的进行防护。

总结:本车的外观延续了西安交大老牌机械的特色,具有硬朗、简洁美。其具有斜度的平面,极具侵略性

并且可以有效弹开子弹。采用PP材质,密度低但是抗打击性能好。对于刚度要求高的部位则采用铝合金和碳板,防护能力足够。步兵机器人整车如图10.6所示。

图 10.6 整车渲染图