Fooling Sets

Jake Kinsella

March 24, 2021

Consider a two-party protocol for determining whether two inputs are equal:

$$EQ(x,y) = \begin{cases} 1 \text{ if } x=y \\ 0 \text{ otherwise} \end{cases}$$
 (1)

The "obvious protocol" is for Player 1 to send it's entire input to Player 2 and let Player 2 compare the values itself.

Protocol Π

Player 1	Player 2
x = 111	y = 110
$P_1(x) \longrightarrow$	
	$p_1 = 111$
	$\leftarrow P_2(y, p_1) = P_2(110, 111) = 0$
$p_2 = 0$	

In this example, 4 bits are communicated. More generally the $C(\Pi) = |x| + 1$, the cost for Player 1 to communicate x plus one bit for Player 2 to communicate the answer.

Theorem: $C(EQ) \ge n$

Claim: For any (x,x) and (x',x'), if on both inputs, both Players communicate the exact same sequence of bits, then f(x,x) = f(x',x') = f(x,x') = f(x',x)

$$(x,x) (x',x')$$

Player 1	Player 2
x	x
$P_1(x) \longrightarrow$	
	$\begin{vmatrix} p_1 \\ \leftarrow P_2(x, p_1) \end{vmatrix}$
p_2	$(12(x,p_1))$

Player 1	Player 2
$\begin{array}{c} x \\ P_1(x') \longrightarrow \end{array}$	x
, ,	$ \begin{array}{c} p_1' \\ \longleftarrow P_2(x', p_1') \end{array} $
p_2'	

 $p_1 = p'_1$ and $p_2 = p'_2$ $p_2 = p'_2$ is the final answer.

If (x,x) and (x',x') have the same communication pattern, then it doesn't matter which way the inputs are mixed. Each x and x' produce the same bits.

If they produce the same sequence of bits, then they agree on the output (as the output is just the final bit).

Proof: $C(EQ) \ge n$

Assume a protocol Π' with complexity n-1 exists that solves EQ.

 Π' has 2^{n-1} (0,1 over n-1 bits) possible communication patterns if it can communicate a max n-1 bits.

However, there are 2^n input pairs (x,x) (|x| = n, 0, 1 over n bits)

 Π' has 2^{n-1} possible communication patterns. However there are 2^n equal input pairs.

Thus there exists some: (x,x) and (x',x') where $x \neq x'$ that have the same communication protocol

This is a contradiction.

$$EQ(x,x')=0\neq EQ(x,x)$$

Thus: $C(EQ) \ge n$

Lemma (generalization of the above theorem): Given some $f: 0, 1^n \times 0, 1^n \to 0, 1$. f has a M-sized fooling set if there exists an M-sized subset $S \subset 0, 1^n \times 0, 1^n$ and a value $b \in 0, 1$ such that:

1)
$$\forall (x,y) \in S, f(x,y) = b$$

2)
$$\forall distinct(x,y), (x',y') \in S, either f(x,y') \neq bor f(x',y) \neq b$$

If f has a size-M fooling set, then $C(f) \geq log(M)$

Example:

Determining whether two sets are disjoint across two parties.

$$x, y \subset 1, 2, ..., n$$

$$DISJ(x,y) = \begin{cases} 1 \text{ if } x \cap y = \emptyset \\ 0 \text{ otherwise} \end{cases}$$
 (2)

Fooling set for *DISJ*:

$$S = (A, \overline{A})|A \subset 1, 2, ..., n$$

1)
$$\forall A, DISJ(A, \overline{A}) = 1$$

2)
$$\forall (A,\overline{A}), (B,\overline{B}), eitherDISJ(A,\overline{B}) = 0 orDISJ(B,\overline{A}) = 0$$

There are 2^n possible A sets

Thus S is a 2^n -sized fooling set

Therefore $C(DISJ) \ge log(M) \ge n$