论文分享

浙江大学 计算机科学与技术学院 分享人:张凤达 2019年11月2日

Federated Learning (联邦学习)

- 一、背景
 - 1) AI 深度学习
 - 2) 《GDPR》 《CCPA》
 - 3)数据孤岛
- 二、概念
 - 1) 本质
 - 2) 目标
 - 3) 挑战
- 三、进展
 - 1) 首次提出
 - 2) 学术研究
 - 3)业界应用

Paper-1 Active Federated Learning (主动联邦学习)

Active Learning (主动学习)

一、背景

样本标注成本过高,希望使 用较少的训练样本来获得性能较好 的模型。

二、原理

区别于从样本总体中随机的抽取样本进行学习,主动学习(Active Learning)会在对样本进行评估后,选取"较难"分类的样本供模型学习,进而提高模型的学习效率。

Motivation (动机)

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

initialize
$$w_0$$

for each round $t = 1, 2, ...$ do
 $m \leftarrow \max(C \cdot K, 1)$
 $S_t \leftarrow$ (random set of m clients)
for each client $k \in S_t$ in parallel do
 $w_{t+1}^k \leftarrow$ ClientUpdate (k, w_t)
 $w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k$

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\operatorname{split} \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

$$v_k^{(t+1)} = \begin{cases} \mathcal{V}(\mathbf{x}_k, \mathbf{y}_k; \mathbf{w}^{(t)}) & \text{if } U_k \in S_t \\ v_k^{(t)} & \text{otherwise.} \end{cases}$$

Active Federated Learning algorithm for a binary classification problem. The red and blue dots on each client show the private data on the client. At each training step the following happens:

- Clients send their valuations to the server
- Server converts individual client valuations into probability of each client being selected in the next batch.
- Server selects next training batch randomly using these client probabilities.

Figure 1: Active Federated Learning framework for a binary classification problem.

Algorithm (算法)

Algorithm 1: Sampling algorithm

Input: Client Valuations $\{v_1,...,v_K\}$, tuning parameters $\alpha_1,...,\alpha_3$, number of clients per round m Output: Client indices $\{k_1,...,k_m\}$ Sort users by v_k For the $\alpha_1 K$ users with smallest $v_k, v_k = -\infty$ for k from 1 to K do $| p_k \propto e^{\alpha_2 v_k}$ end
Sample $(1-\alpha_3)m$ users according to their p_k , producing set \mathcal{S}' Sample $\alpha_3 m$ from the remaining users uniformly at random, producing set \mathcal{S}'' return $\mathcal{S} = \mathcal{S}' \cup \mathcal{S}''$

$$v_k = \frac{1}{\sqrt{n_k}} l(\mathbf{x}_k, \mathbf{y}_k; \mathbf{w})$$

The $\alpha 1$ proportion of users with the smallest valuations will have their valuations set to $-\infty$. They can still be selected by random sampling. $\alpha 2$ is our softmax temperature.

 $\alpha 3$ is the proportion of users which are selected uniformly at random.

$$(\alpha 1 = 0.75; \alpha 2 = 0.01; \alpha 3 = 0.1)$$

Experiments (实验)

Figure 2: Comparison of AUC increase on Reddit and Sticker Intent datasets

注:

AUC曲线: ROC曲线下与坐标轴围成的面积

ROC曲线:的横坐标是伪阳性率(假正类率,False Positive Rate),纵坐标

是真阳性率(真正类率,True Positive Rate)

Paper-2 FedMD: Heterogenous Federated Learningvia Model Distillation (联邦蒸馏学习)

Knowledge Distillation (知识蒸馏)

Paper: Distilling the Knowledge in a Neural Network (2014 NIPS)

Motivation: Model compression.

What is Knowledge: Soft Target

LOSS:
$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)} \qquad D_{\mathrm{KL}}(P\|Q) = -\sum_i P(i) \ln \frac{Q(i)}{P(i)}.$$

$$L = \lambda * L_{soft} + (1 - \lambda) * L_{hard}$$

Why it works: extra information / dark knowledge

Motivation (动机)

蒸馏的优势:

- 1) 模型异构
- 2)通信量
- 3) 模型表示
- 4) 数据非同分布

Algorithm (算法)

Algorithm 1: The FedMD framework enabling federated learning for heterogeneous models.

Input: Public dataset \mathcal{D}_0 , private datasets \mathcal{D}_k , independently designed model f_k , $k = 1 \dots m$,

Output: Trained model f_k

Transfer learning: Each party trains f_k to convergence on the public \mathcal{D}_0 and then on its private \mathcal{D}_k .

for j=1,2...P do

Communicate: Each party computes the class scores $f_k(x_i^0)$ on the public dataset, and transmits the result to a central server.

Aggregate: The server computes an updated consensus, which is an average

$$\tilde{f}(x_i^0) = \frac{1}{m} \sum_k f_k(x_i^0).$$

Distribute: Each party downloads the updated consensus $\tilde{f}(x_i^0)$.

Digest: Each party trains its model f_k to approach the consensus \tilde{f} on the public dataset \mathcal{D}_0 .

Revisit: Each party trains its model f_k on its own private data for a few epochs.

end

Experiments (实验)

谢谢