EXP.NO: 11

AIM:

To design and implement the logic gates using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 1 or 2 inputs into the canvas.
- 3) Connect the inputs to the following gates:
 - a. XOR gate
 - b. AND gate
 - c. OR gate
 - d. NOR gate
 - e. NOT gate
 - f. NAND gate
- 4) Insert 1 output into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

AND

A	В	C
0	0	0
0	1	0
1	0	0
1	1	1

OUTPUT

Result:

Thus the verification of logic gates completed successfully

EXP:12

HALF ADDER

AIM:

To design and implement the two bit half adder using Logisim simulator.

PROCEDURE:

- 7) Pick and place the necessary gates.
- 8) Insert 2 inputs into the canvas.
- 9) Connect the inputs to the XOR gate and AND gate.
- 10) Insert 2 outputs into the canvas.
- 11) Make the connections using the connecting wires.
- 12) Verify the truth table.

TRUTH TABLE:

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = A XOR B$$
 $C = A AND B$

OUTPUT

RESULT: Thus 2-bit half adder has been designed and implemented successfully using logisim simulator.

EXP:13

TWO BIT HALF SUBTRACTOR

AIM:

To design and implement the two bit half subtractor using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 2 inputs into the canvas.
- 3) Connect the inputs to the OR gate, AND gate and NOT gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

Inp	uts	Outputs		
Α	В	Diff	Borrow	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Diff=A'B+AB'Borrow = A'B

OUTPUT

RESULT: Thus 2-bit half subtractor has been designed and implemented successfully using logisim simulator.

EXP:14

FULL ADDER

AIM:

To design and implement the full adder using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 3 inputs into the canvas.
- 3) Connect the inputs to the XOR gate, AND gate and OR gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

Inputs		Outputs		
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $Sum=(A \bigoplus B) \bigoplus C_{in}$

Carry= $A.B + (A \oplus B)$

OUTPUT

RESULT: Thus full adder has been designed and implemented successfully using logisim simulator.

FULL SUBTRACTOR

AIM:

To design and implement the full subtractor using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 3 inputs into the canvas.
- 3) Connect the inputs to the XOR gate, AND gate and OR gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

Inputs		Outputs		
Α	В	Borrowin	Diff	Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

 $Diff=(A \oplus B) \oplus 'Borrow_{in'}$

 $Borrow=A'.B + (A \bigoplus B)'$

OUTPUT

RESULT: Thus full subtractor has been designed and implemented successfully using logisim simulator.