Improving Precision Calculation for LHC

Erwan Herlandy, Supervised by Prof. Heribertus Bayu Hartanto and Dr. Souvik Bera

Project: Approximating and Simplifying Loop Amplitude

Research project

Employ ML to approximate scattering amplitude Evaluating $A^{(L)}$ is often time consuming ML will speed up evalution for σ calculation

Achievements

- 1. Constructing a **framework** to apply **machine learning** for **loop scattering** amplitude evaluation
- 2. Application for simple case [$e^+e^- \rightarrow t\bar{t}$] (Presented in interim presentation)
- 3. Application for complicated case $[u\overline{u} \rightarrow t\overline{t}\gamma]$
 - 1. Optimization for **small number** of dataset (5.000 dataset)
 - 2. Check the approximation for physical observables

System Framework

Machine Learning Framework

Cross Section

tree level: 0.193111 pb

one-loop (exact amplitude): 0.141319 pb

one-loop (approximated amplitude) (10K Dataset): 0.140657 pb

one-loop (approximated amplitude) (5K Dataset) [After Tuning]: 0.140938 pb

approximation for **physical observables**

Outlook

Try the framework on the two loop amplitude