1. Лабораторная работа №1. МЕТОДЫ ОЦЕНКИ ПОГРЕШНОСТЕЙ

1.1. Погрешности приближенных вычислений

1.1.1. Правила оценки погрешностей

Пусть A и a — два «близких» числа. A — точное, a — приближенное.

Определение. Величина $\Delta(a) = |A - a|$ называется абсолютной погрешностью приближенного числа a, а величина $\delta(a) = \frac{\Delta a}{|a|}$ — относительной погрешностью.

Числа Δ_a и δ_a такие, что $\Delta_a \geq \Delta a$ и $\delta_a \geq \delta a$ называются оценками или границами абсолютной или относительной погрешностей (предельные погрешности).

Пусть a и b – два приближенных числа.

Абсолютные погрешности:

$$\Delta(a+b) = \Delta a + \Delta b ,$$

$$\Delta(a-b) = \Delta a + \Delta b,$$

$$\Delta(a \cdot b) = a\Delta b + b\Delta a$$

$$\Delta \left(\frac{a}{b}\right) = \frac{a\Delta b + b\Delta a}{b^2}.$$

Относительные погрешности:

$$\delta(a+b) = \frac{\Delta(a+b)}{|a+b|} = \frac{\Delta a + \Delta b}{|a+b|} = \frac{|a|}{|a+b|} \frac{\Delta a}{|a|} + \frac{|b|}{|a+b|} \frac{\Delta b}{|b|} = \frac{|a|}{|a+b|} \delta a + \frac{|b|}{|a+b|} \delta b,$$

$$\delta(a-b) = \frac{\Delta(a-b)}{|a-b|} = \frac{\Delta a + \Delta b}{|a-b|} = \frac{|a|}{|a-b|} \frac{\Delta a}{|a|} + \frac{|b|}{|a-b|} \frac{\Delta b}{|b|} = \frac{|a|}{|a-b|} \delta a + \frac{|b|}{|a-b|} \delta b,$$

$$\delta(a \cdot b) = \delta\left(\frac{a}{b}\right) = \delta a + \delta b,$$

$$\delta(a^k) = k\delta a.$$

Определение. Для приближенного числа, полученного округлением, *предельная абсолютная погрешность* Δ_a равна половине единицы последнего разряда числа.

Пример. a = 0.817, $\Delta_a = 0.0005$.

Определение. Значащими цифрами числа называются все его цифры, начиная с первой ненулевой слева.

Пример. $0,000\underline{15}$ — две значащие цифры, $\underline{12,150}$ — все цифры значащие.

Определение. Округлением числа a называется замена его числом b с меньшим количеством значащих цифр.

Определение. Значащую цифру приближенного числа называют *верной*, если абсолютная погрешность числа не превосходит половины единицы разряда, в котором стоит эта цифра (в узком смысле) или единицы разряда (в широком смысле).

1.1.2. Оценка ошибок при вычислении функций

Пусть дана функция y = f(x) и a — приближенное значение аргумента x, Δa — его абсолютная погрешность. Тогда за абсолютную погрешность функции можно принять ее приращение или дифференциал.

$$\Delta y \approx dy$$
, $\Delta y = |f'(a)| \cdot \Delta a$.

Для функции n переменных можно записать:

$$\Delta y = |f'_{x_1}(x_1,...,x_n)| \cdot \Delta x_1 + ... + |f'_{x_n}(x_1,...,x_n)| \cdot \Delta x_n$$

где $\Delta x_1,...,\Delta x_n$ – абсолютные погрешности.

$$\delta y = \frac{\Delta y}{|f(x_1,...,x_n)|}$$
 — относительная погрешность.

Пример. $y = \sin x$, a - приближенное значение x.

$$\Delta y = \Delta(\sin x) = |\cos(a)| \cdot \Delta a$$
.

1.1.3. Правила подсчета цифр

Принции Крылова: Согласно техническому подходу, приближенное число должно записываться так, чтобы в нем все значащие цифры, кроме последней, были верными и лишь последняя была бы сомнительна и притом в среднем не более чем на одну единицу.

Чтобы результаты арифметических действий, совершенных над приближенными числами, записанными в соответствии с принципом Крылова, так же соответствовали этому принципу, нужно придерживаться следующих правил:

- 1. При сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков.
- 2. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр.
- 3. При определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента следует грубо оценить значение модуля производной функции. Если это значение не превосходит единицы или близко к ней, то в значении функции можно считать верными столько знаков после запятой, сколько их имеет значение аргумента. Если же модуль производной функции В окрестности приближенного значения аргумента превосходит единицу, то количество верных десятичных знаков в значении функции меньше, чем в значении аргумента на величину k, где k – наименьший показатель степени, при котором имеет место $|f'(x)| < 10^k$.
- 4. Результаты промежуточных вычислений должны иметь 1–2 запасных знака, которые затем должны быть отброшены.

1.1.4. Вычисления со строгим учетом предельных абсолютных погрешностей

Этот метод предусматривает использование правил вычисления предельных абсолютных погрешностей.

При пооперационном учете ошибок промежуточные результаты, так же как и их погрешности, заносятся в специальную таблицу, состоящую из двух параллельно заполняемых частей — для результатов и их погрешностей.

1.1.5. Вычисления по методу границ

Если нужно иметь абсолютно гарантированные границы возможных значений вычисляемой величины, используют специальный метод вычислений – метод границ.

Пусть f(x,y) — функция непрерывная и монотонная в некоторой области допустимых значений аргументов x и y. Нужно получить ее значение f(a, b), где a и b — приближенные значения аргументов, причем достоверно известно, что

$$H\Gamma_a < a < B\Gamma_a$$
;

$$H\Gamma_b < b < B\Gamma_b$$
.

Здесь НГ, ВГ – обозначения соответственно нижней и верхней границ значений параметров. Итак, вопрос состоит в том, чтобы найти строгие границы значения f(a, b) при известных границах значений a и b.

Допустим, что функция f(x,y) возрастает по каждому из аргументов x и y. Тогда

$$f(H\Gamma_a, H\Gamma_b) < f(a, b) < f(B\Gamma_a, B\Gamma_b).$$

Пусть теперь f(x,y) возрастает по аргументу x и убывает по аргументу y. Тогда будет строго гарантировано неравенство

$$f(H\Gamma_a, B\Gamma_b) \le f(a, b) \le f(B\Gamma_a, H\Gamma_b).$$

Рассмотрим указанный принцип на примере основных арифметических действий.

Пусть
$$f(x,y) = x + y$$
. Тогда очевидно, что

$$H\Gamma_a + H\Gamma_b < a + b < B\Gamma_a + B\Gamma_b$$
.

Точно так же для функции f(x,y) = x - y (она по x возрастает, а по y убывает) имеем

$$H\Gamma_a - B\Gamma_b \le a - b \le B\Gamma_a - H\Gamma_b$$
.

Аналогично для умножения и деления:

$$H\Gamma_a \cdot H\Gamma_b < a \cdot b < B\Gamma_a \cdot B\Gamma_b$$

$$H\Gamma_a / B\Gamma_b < a / b < B\Gamma_a / H\Gamma_b$$
.

Вычисляя по методу границ с пошаговой регистрацией промежуточных результатов, удобно использовать обычную вычислительную таблицу, состоящую из двух строк - отдельно для вычисления НГ и ВГ результата (по этой причине метод границ называют еще методом двойных вычислений). При выполнении промежуточных вычислений и округлении результатов используются все рекомендации правил подсчета цифр с ОДНИМ дополнением: округление нижних границ ведется по недостатку, а верхних – по избытку. Окончательные результаты округляются по этому же правилу до последней верной цифры.

1.2. Пример выполнения лабораторной работы

1.2.1. Задание к лабораторной работе

- 1. Число X, все цифры которого верны в строгом смысле, округлите до трех значащих цифр. Для полученного числа $X_1 \approx X$ найдите предельную абсолютную и предельную относительную погрешности. В записи числа X_1 укажите количество верных цифр (в узком и широком смысле).
- 2. Вычислите с помощью микрокалькулятора значение величины Z при заданных значениях параметров $a,\ b$ и $c,\$ используя «ручные» расчетные таблицы для пошаговой регистрации результатов вычислений, тремя способами:
 - 1) по правилам подсчета цифр;
 - 2) по методу строгого учета границ абсолютных погрешностей;

3) по способу границ.

Сравните полученные результаты между собой, прокомментируйте различие методов вычислений и смысл полученных числовых значений.

1.2.2. Решение типового примера

1. Число X = 7,3344, все цифры которого верны в строгом смысле, округлите до трех значащих цифр. Для полученного числа $X_1 \approx X$ найдите предельную абсолютную и предельную относительную погрешности. В записи числа X_1 укажите количество верных цифр (в узком и широком смысле).

Пусть X = 7,3344.

Округлим данное число до трех значащих цифр, получим число:

$$X_1 = 7.33$$
.

Вычислим абсолютную погрешность:

$$\Delta X_1 = |X - X_1| = |7,3344 - 7,33| = 0,0044.$$

Определим границы абсолютной погрешности (предельную погрешность), округляя с избытком до одной значащей цифры:

$$\Delta_{X_1} = 0.005$$
.

Предельная относительная погрешность составляет:

$$\delta_{X_1} = \frac{\Delta_{X_1}}{|X_1|} = \frac{0,005}{7,33} = 0,0007 = 0,07\%.$$

Укажем количество верных цифр в узком и широком смысле в записи числа $X_1 = 7,33$.

Так как $\Delta_{X_1} = 0,005 \le 0,005$, следовательно, в узком смысле верными являются все цифры числа X_1 7, 3, 3.

Так как $\Delta_{X_1} = 0,005 \le 0,01$, следовательно, в широком смысле верными являются также все цифры числа X_1 7, 3, 3.

2. Вычислите с помощью микрокалькулятора значение величины $Z = \frac{ab-4c}{\ln a+b} \ \text{при заданных значениях параметров } a = 12,762, \, b = 0,4534$

и c = 0,290, используя «ручные» расчетные таблицы для пошаговой регистрации результатов вычислений, тремя способами:

- 1) по правилам подсчета цифр;
- 2) по методу строгого учета границ абсолютных погрешностей;
- 3) по способу границ.

Сравните полученные результаты между собой, прокомментируйте различие методов вычислений и смысл полученных числовых значений.

1) «Правила подсчета цифр»

$$Z = \frac{ab - 4c}{\ln a + b}$$

а	b	C	a·b	4· <i>c</i>	$a \cdot b - 4 \cdot c$	ln a	$\ln a + b$	Z
12,762	0,4534	0,290	5,786 3	1,16 0	4,62 6	2,546 5	3,000 0	1,54 2

Прокомментируем ход вычислений.

1) Сначала вычислим $a \cdot b = 12,762 \cdot 0,4534 = 5,786 \ 290 \ 8$. Воспользуемся правилом, что при умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр. Число 12,762 содержит пять значащих цифр, число 0,4534 — четыре значащие цифры, т. е. в полученном значении следует сохранить четыре значащие цифры. Округляя с одной запасной цифрой, получаем 5,7863 (запасная цифра выделена) и заносим результаты в таблицу.

$$a \cdot b = 12,762 \cdot 0,4534 = 5,786\ 290\ 8 \approx 5,786$$
3.

2) Вычислим $4 \cdot c = 4 \cdot 0,290 = 1,160$. Воспользуемся правилом, что при определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента следует грубо

оценить значение модуля производной функции. Оценка величины производной в этой точке: $4 < 10^1$, т. е. в полученном значении следует сохранить на один десятичный знак меньше, чем в значении аргумента. Округляя с одной запасной цифрой, получаем 1,160 (запасная цифра выделена) и заносим результаты в таблицу.

$$4 \cdot c = 4 \cdot 0.290 = 1.160 \approx 1.160$$
.

3) Вычислим $a \cdot b - 4 \cdot c = 5,7863 - 1,160 = 4,6263$. Воспользуемся правилом, что при сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков. Число 5,7863 содержит три десятичных знака, число 1,160 - 2,7863 десятичных знака, т. е. в полученном значении следует сохранить два десятичных знака. Округляя с одной запасной цифрой, получаем 4,626 (запасная цифра выделена) и заносим результаты в таблицу.

$$a \cdot b - 4 \cdot c = 5,7863 - 1,160 = 4,6263 \approx 4,626.$$

4) Вычислим $\ln a = \ln 12,762 = 2,546472005446$. Воспользуемся правилом, что при определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента следует грубо оценить значение модуля производной функции. этой Оценка производной величины В точке: $(\ln a)' = \frac{1}{a} = \frac{1}{12.762} \approx 0,784 < 10^{\circ}$. Так как значение производной не превосходит единицы, то в значении функции можно считать верными столько знаков после запятой, сколько их имеет значение аргумента. Округляя с одной запасной цифрой, получаем 2,5465 (запасная цифра выделена) и заносим результаты в таблицу.

$$\ln a = \ln 12,762 = 2,546 472 005 446 \approx 2,5465.$$

5) Вычислим $\ln a + b = 2,5465 + 0,4534 = 2,9999$. Воспользуемся правилом, что при сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков. Число 2,5465 содержит три десятичных знака, число 0,4534 — четыре десятичных знака, т. е. в полученном значении следует сохранить три десятичных знака. Округляя с одной запасной цифрой, получаем 3,0000 (запасная цифра выделена) и заносим результаты в таблицу.

$$\ln a + b = 2,546\mathbf{5} + 0,4534 = 2,9999 \approx 3,000\mathbf{0}.$$

6) Вычислим
$$Z = \frac{ab - 4c}{\ln a + b} = \frac{4,626}{3,0000} = 1,542$$
. Воспользуемся равилом что при умножении и делении в результате следует

правилом, что при умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр. Число 4,626 содержит три значащих цифры, число 3,0000 — четыре значащие цифры, т. е. в полученном значении следует сохранить три значащие цифры. Округляя с одной запасной цифрой, получаем 1,542 (запасная цифра выделена) и заносим результаты в таблицу.

$$Z = \frac{ab - 4c}{\ln a + b} = \frac{4,626}{3,0000} = 1,542 \approx 1,542.$$

Округляя окончательный результат без запасной цифры, получим Z = 1,54 (три верные значащие цифры).

2) «Метод строгого учета границ абсолютных погрешностей»

Проделаем пошаговые вычисления по методу строгого учета границ предельных абсолютных погрешностей в предположении, что исходные данные a, b и c имеют предельные абсолютные погрешности $\Delta a = 0,0005$, $\Delta b = 0,000$ 05, $\Delta c = 0,0005$ (т. е. у a, b и c все цифры верны в узком смысле).

Промежуточные результаты вносятся в таблицу после округления до одной запасной цифры (с учетом вычисленной параллельно величины погрешности); значения погрешностей для удобства округляются (с возрастанием) до двух значащих цифр.

а	12,762	Δa	0,0005
b	0,4534	Δb	0,000 05
С	0,290	Δc	0,0005
a·b	5,78 6	$\Delta(a \cdot b)$	0,000 87
4· <i>c</i>	1,160	$\Delta(4\cdot c)$	0,002
$a \cdot b - 4 \cdot c$	4,62 6	$\Delta(a \cdot b - 4 \cdot c)$	0,0029
ln a	2,546 47	$\Delta(\ln a)$	0,000 040
$\ln a + b$	2,999 9	$\Delta(\ln a + b)$	0,000 09
Z	1,542	ΔZ	0,0011

1) Вычисляем $a \cdot b = 12,762 \cdot 0,4534 = 5,786 \ 290 \ 8$. Подсчитаем предельную абсолютную погрешность:

$$\Delta(a \cdot b) = b \cdot \Delta a + a \cdot \Delta b = 0.4534 \cdot 0.0005 + 12,762 \cdot 0.00005 = 0.000865 \approx 0.00087.$$

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 5,786 (запасная цифра выделена) и вносим его в таблицу.

2) Вычисляем $4 \cdot c = 4 \cdot 0,290 = 1,160$. Подсчитаем предельную абсолютную погрешность:

$$\Delta(4\cdot c) = |(4c)'| \cdot \Delta c = 4 \cdot 0,0005 = 0,002.$$

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 1,160 (запасная цифра выделена) и вносим его в таблицу.

3) Вычисляем $a \cdot b - 4 \cdot c = 5,7863 - 1,160 = 4,6263$. Подсчитаем предельную абсолютную погрешность:

$$\Delta(a \cdot b - 4 \cdot c) = \Delta(a \cdot b) + \Delta(4 \cdot c) = 0,000 \ 87 + 0,002 = 0,002 \ 87 \approx 0,0029.$$

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 4,626 (запасная цифра выделена) и вносим его в таблицу.

4) Вычисляем $\ln a = \ln 12,762 = 2,546\,472\,005\,446$. Подсчитаем предельную абсолютную погрешность:

$$\Delta(\ln a) = |(\ln a)'| \cdot \Delta a = 1 / 12,762 \cdot 0,0005 = 0,000 039 178 81 \approx 0,000 040.$$

Судя по ее величине, в полученном значении в узком смысле верны четыре знака после запятой. Округляем это значение с одной запасной цифрой 2,546 47 (запасная цифра выделена) и вносим его в таблицу.

5) Вычисляем $\ln a + b = 2,546 \ 47 + 0,4534 = 2,999 \ 87$. Подсчитаем предельную абсолютную погрешность:

$$\Delta(\ln a + b) = \Delta(\ln a) + \Delta b = 0,000\ 040 + 0,000\ 05 = 0,000\ 09.$$

Судя по ее величине, в полученном значении в узком смысле верны три знака после запятой. Округляем это значение с одной запасной цифрой 2,999 (запасная цифра выделена) и вносим его в таблицу.

6) Вычисляем $Z = \frac{ab-4c}{\ln a+b} = \frac{4,626}{2,9999} = 1,542\ 051\ 4$. Подсчитаем предельную абсолютную погрешность:

$$\Delta Z = \frac{(ab - 4c)\Delta(\ln a + b) + (\ln a + b)\Delta(ab - 4c)}{(\ln a + b)^2} =$$

$$= \frac{4,626 \cdot 0,000 \cdot 09 + 2,9999 \cdot 0,0029}{2,9999^2} = 0,001 \cdot 012 \cdot 96 \approx 0,0011.$$

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 1,542 (запасная цифра выделена) и вносим его в таблицу.

Округляя окончательный результат до последней верной в узком смысле цифры, а также округляя погрешность до соответствующих разрядов результата, окончательно получаем: $Z = 1,54 \pm 0,01$.

3) «Способ границ»

Нижняя и верхняя границы значений a, b и c определены из условия, что в исходных данных a=12,762, b=0,4534 и c=0,290 все цифры верны в узком смысле ($\Delta a=0,0005$, $\Delta b=0,00005$ и $\Delta c=0,0005$), т. е.

$$12,7615 < a < 12,7625; 0,453 35 < b < 0,453 45; 0,2895 < c < 0,2905.$$

При выполнении промежуточных вычислений и округлении результатов будем использовать все рекомендации правил подсчета цифр с одним важным дополнением: округление нижних границ ведется по недостатку, а верхних — по избытку. Окончательные результаты округляются по этому же правилу до последней верной цифры.

	НГ	ВГ
a	12,7615	12,7625
b	0,453 35	0,453 45
С	0,2895	0,2905
$a \cdot b$	5,785 4 2	5,787 1 6
4·c	1,1580	1,1620
$a \cdot b - 4 \cdot c$	4,6234	4,629 2
ln a	2,546 43	2,546 5 2
$\ln a + b$	2,999 78	2,999 97
Z	1,541 4	1,543 2

1)
$$H\Gamma_{ab} = H\Gamma_a \cdot H\Gamma_b = 12,7615 \cdot 0,453 \ 35 = 5,785 \ 426 \ 025 \approx 5,785 \ 42;$$

 $B\Gamma_{ab} = B\Gamma_a \ B\Gamma_b = 12,7625 \cdot 0,453 \ 45 = 5,787 \ 155 \ 625 \approx 5,787 \ 16.$

2)
$$H\Gamma_{4c} = 4 \cdot 0,2895 = 1,1580;$$

 $B\Gamma_{4c} = 4 \cdot 0,2905 = 1,1620.$

3)
$$H\Gamma_{ab-4c} = H\Gamma_{ab} - B\Gamma_{4c} = 5,785 \ 42 - 1,1620 = 4,623 \ 42 \approx 4,6234;$$

 $B\Gamma_{ab-4c} = B\Gamma_{ab} - H\Gamma_{4c} = 5,787 \ 16 - 1,1580 = 4,629 \ 16 \approx 4,6292.$

4)
$$H\Gamma_{\ln a} = \ln(H\Gamma_a) = \ln(12,7615) = 2,546 \ 432 \ 825 \ 867 \approx 2,546 \ 43;$$

 $B\Gamma_{\ln a} = \ln(B\Gamma_a) = \ln(12,7625) = 2,546 \ 511 \ 183 \ 491 \approx 2,546 \ 52.$

5)
$$H\Gamma_{\ln a + b} = H\Gamma_{\ln a} + H\Gamma_b = 2,546 \, 43 + 0,453 \, 35 = 2,999 \, 78 \approx 2,999 \, 78$$
;

$$B\Gamma_{\ln a + b} = B\Gamma_{\ln a} + B\Gamma_b = 2,54652 + 0,45345 = 2,99997 \approx 2,99997.$$

6)
$$H\Gamma_Z = H\Gamma_{ab-4c} / B\Gamma_{\ln a+b} = 4,6234 / 2,999 97 = 1,541 148 744 821 \approx 1,5411$$
;

BΓ_Z = BΓ_{ab-4c} / HΓ_{ln a + b} = 4,629**2** / 2,999 7**8** = 1,543 179 833 188
$$\approx$$
 1,543**2**.

Таким образом, результат вычислений значения Z по методу границ имеет вид $1,541 \le Z \le 1,543$.

Вычисляя значение величины Z тремя разными способами, получили следующие результаты:

- 1) $Z \approx 1.54$,
- 2) $Z = 1.54 \pm 0.01$,
- 3) 1,541 < *Z* < 1,543.

1.2.3. Варианты заданий

№	X	Z	а	b	c
1	0,068 147	$\frac{(b-c)^2}{2a+b}$	1,105	6,453	3,54
2	0,121 38	$\frac{\ln b - a}{a^2 + 12c}$	0,9319	15,347	0,409

Продолжение

No	X	Z	а	b	С
3	7,321 47	$\frac{\ln(b+c)}{b-ac}$	0,2399	4,893	1,172
4	0,007 275	$\frac{(a-c)^2}{\sqrt{a}+3b}$	11,437	0,609 37	8,67081
5	45,548	$\frac{a - bc}{\ln a + 3b}$	10,589	0,5894	0,125
6	10,7818	$\frac{b^2 - \ln c}{\sqrt{c - a}}$	2,038	3,912 53	5,0075
7	1,005 745	$\frac{a - \cos b}{13c + b}$	3,149	0,85	0,007
8	2,189 01	$\frac{\cos^2 a + 2b}{\sqrt{2c} - a}$	1,068 32	3,043	2,7817
9	35,3085	$\frac{\sqrt{a+b}}{3a-c}$	9,6574	1,4040	1,126
10	78,5457	$\frac{a - \sin b}{b^2 + 6c}$	2,751	1,215	0,1041
11	0,9538	$\frac{\ln a + 4b}{ab - c}$	7,0345	0,231	0,6572
12	2,0543	$\frac{\sqrt{ab}}{b-2c}$	3,124	5,92	1,789
13	0,108 34	$\frac{c+\sin b}{c-a^2}$	0,3107	13,27	4,711
14	0,001 245	$\frac{b-\sin a}{a+3c}$	3,672	3,863	0,1098
15	11,2621	$\frac{\ln c - 10a}{\sqrt{bc}}$	0,1135	0,101 56	89,453
16	2,734 91	$\frac{\lg(a-b)}{\sqrt{b-c}}$	8,325 74	3,156	1,0493
17	37,5461	$\frac{b + \cos c}{b + 2a}$	0,134 87	14,025	3,001 29

Окончание

Nº	X	Z	а	b	с
18	23,6394	$\frac{a^2 - b}{\sqrt{ab + c}}$	2,7252	3,034	0,7065
19	14,1674	$\frac{\sqrt{b-c}}{\ln a+b}$	19,034 73	3,751	0,1071
20	1,450 06	$\frac{ac+b}{\sqrt{b-c}}$	0,093	2,3471	1,231 74
21	0,5485	$\frac{10c + \sqrt{b}}{a^2 - b}$	1,289	1,0346	0,34
22	3,8469	$\frac{a+\sqrt{c}}{\lg(a^2+b)}$	1,621	5,5943	16,65
23	15,0897	$\frac{(a-c)^2}{\sqrt{a}+3b}$	11,7	0,0937	5,081
24	0,058 64	$\frac{10c + \sqrt{b}}{a^2 - b}$	1,247 34	0,346	0,051
25	2,504 71	$\frac{\ln b - a}{a^2 + 10c}$	0,7219	135,347	0,013
26	6,200 89	$\frac{(b-c)^2}{2a+b}$	4,05	6,723	0,032 54
27	12,4782	$\frac{b^2 - \ln c}{\sqrt{c - a}}$	0,038	3,9353	5,75
28	5,023 84	$\frac{\ln a + 4b}{ab - c}$	7,345	0,31	0,098 72
29	8,5441	$\frac{a^2 - b}{\sqrt{ab + c}}$	3,714 52	3,03	0,765
30	0,246 89	$\frac{b + \cos c}{b + 2a}$	0,115 87	4,25	3,009 71