MATH 8803:

CHARACTERISTIC CLASSES

OF VECTOR BUNDLES

AND SURFACE BUNDLES

FALL 2013 GEORGIA TECH

DAN MARGALIT

Theory of Characteristic classes:

Bundles	over	B/	 H*(B)
500 01 00			

so as to distinguish burdles, e.g.

This course: Vector bundles, surface bundles.

VECTOR BUNDLES

$$B = base$$
 $E p^{-1}(B) = fiber Struct. of vector space V.$
 $P : B Covered by U s.t.$
 $B p^{-1}(u) \longrightarrow U \times V homeo respecting$
 $V.s. Structure of fibers$

Important because smooth manifolds have targent burdles, submanifolds have normal burdles.

e.g. can distinguish two smooth structures on a manifold if we can distinguish their tangent bundles using characteristic classes.

Thm (Milnor) I exotic 7-spheres.

CHARACTERISTIC CLASSES

A char. class for vect. bundles is a function
$$X: \{V \text{-bundles over } B\} \longrightarrow H^k(B;G)$$

for fixed V, K, G (B allowed to vary!) that is natural:

$$\chi(f^*(E)) = f^* \chi(E)$$

EULER CLASS

Take V=R", K=n, G=7L, restrict to oriented bundles.

~> Euler class e.

$$B=M$$
 $E=TM \rightarrow e(TM) \in H^n(M; \mathbb{Z}) \cong \mathbb{Z}$
 $\chi^n(M)$.

Euler char is a char. class. It has many interpretations, e.g.:

- (1) Combinatorial: $\chi(M) = \sum_{i=1}^{n} (-1)^{i} (\# i cells)$
- (2) Geometric: $\chi(M) = \frac{1}{\text{vols}^n} \int_M k(x) d\text{vol}_M$
- (3) Homological: $\chi(M) = \sum (-1)^i \operatorname{rank} H_i(M; \mathbb{Z})$
- (4) Cohomological $\chi(M) = \text{Self-intersection of } M \text{ in } TM$.
- (4) implies X(M) is obstruction to nonvanishing vector field (recall Thurston's proof).

GRASSMANN MANIFOLDS

Euler class is so beautiful, we want to find all other char classes.

$$G_n = \text{space of } n\text{-planes in } \mathbb{R}^\infty$$
.
 $E_n = \text{canonical burdle over } G_n:$
 $(n\text{-plane in } \mathbb{R}^\infty, \text{ vector in that plane}) \subseteq G_n \times \mathbb{R}^\infty$.

We will Show:

This gives:

{ char. classes for
$$\mathbb{R}^n$$
-bundles} $\iff \mathbb{H}^*(G_n; G)$.

Goal: compute the latter.

If we care about:

complex bundles
$$\sim$$
 $G_n(C)$ oriented real bundles \sim G_n

STIEFEL-WHITNEY GLASSES

We will show: H*(Gn; 7L2) ≈ 7L2[W1,..., Wn] Wi called ith SW class.

We is very concrete $\in H^1(B; 7L_2) \stackrel{\sim}{=} Hom(H_1(B; 7L_2); \mathbb{Z})$ Herecords whether the bundle is orientable over an element of H_1 .

 $W_i = obstruction to finding n-k+1 indep.$ sections over the i-skeleton of B.

Thm (Thom). Two manifolds are cobordant iff their SW numbers of their tangent burdles are equal.

OTHER CHARACTERISTIC CLASSES

vector bundle	coeff.	characteristic classes
real	72	SW
complex	7	Chem
real	2	Pontryagin, SW
oriented real	7	Pont., SW, Euler.

SURFACE BUNDLES

Sg-burdle
$$p = P^{-1}(u) \cong U \times Sg$$

B

Important class of manifolds (also, they are the next-simplest burdles).

Characteristic class

$$\chi: \begin{cases} \text{Soriented} \\ \text{Sg-burdles} \\ \text{over B} \end{cases} / \text{isom.}$$

naturality $\chi(f^*(E)) = f^*(\chi(E))$

BHomeot(Sg) = Space of Sg-Submanifolds of
$$TR^{\infty}$$

= $K(MCG(Sg), 1)$

So: Char. classes for orient. Sq-bundles
$$\iff$$
 H*(MCG(Sq); G).

MORITA'S THEOREM

 $\pi: \operatorname{Diff}^+(\operatorname{Sg}) \longrightarrow \operatorname{MCG}(\operatorname{Sg})$ has no section $g \gg 0$.

Proof: e3 +0, T*(e3) = 0.

ODD MMM classes are geometric.

 $e_1 \in H^2(B; \mathbb{Z})$ WLOG: B = Surface. $\Rightarrow E = 4 - \text{manifold } M$ Hirzebruch: $e_1(B) = V(M)$ Signature.

But T (honce e1) ignores bundle structure evon though e1 defined via bundle structure. Say e1 is geometric.

Thm (Church-Farb-Thibault) eziti is geometric.

e.g. I S4-burdle over S17 = S49 burdle over S2.

Pf that e_1 is geometric: $e_1(E) = p_1(M) \leftarrow 1^{5+}$ Pontryagin class. = $\nabla(M)$ (Hirzebruch).