

Sequence listing.txt

SEQUENCE LISTING

<110> Christopher C Burgess et al

<120> Detection Methods Using TIMP1

<130> 1657/2012

<160> 138

<170> FastSEQ for windows Version 4.0

<210> 1

<211> 777

<212> DNA

<213> Homo sapiens

<400> 1

ttcttcaaac ctcctcttc cctgtgttct cctacagaga ttgctgattt ctcccttaagc 60
aagagattca ctgcccgttaa gcatggctca gaccaactcg ttcttcatgc tgatctccctc 120
cctgatgttc ctgtctctga gccaaaggcca agaggcccg acagagttgc cccaggcccgg 180
gatcagctgc ccagaaggca ccaatgccta tcgctccctac tgctactact ttaatgaaga 240
ccgtgagacc tgggttgatg cagatctcta ttgccagaac atgaattcgg gcaaccctgg 300
gtctgtgctc acccaggccg aggggtgcctt tggccctca ctgattaagg agagtggcac 360
tgatgacttc aatgtctgga ttggcctcca tgaccccaa aagaaccggc gctggactg 420
gagcagtggg tccctggctt cctacaagtc ctggggcatt ggagccccaa gcagtgttaa 480
tcctggctac tgggtgagcc tgacctcaag cacaggattc cagaatggg aggatgtgcc 540
ttgtgaagac aagttctctt ttgtatgcaaa gttcaaaaaac tagaggcggc tggaaaatac 600
atgtctagaa ctgatccagc aattacaacg gagtcaaaaa ttaaaccggc ccatctctcc 660
aactcaactc aacctggaca ctctttctc tgctgagttt gcctgttaa tcttcaatag 720
tttacctac cccagtctt ggaaccctaa ataataaaaa taaacatgtt ttccact 777

<210> 2

<211> 166

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Gln Thr Asn Ser Phe Phe Met Leu Ile Ser Ser Leu Met Phe
1 5 10 15
Leu Ser Leu Ser Gln Gly Gln Glu Ala Gln Thr Glu Leu Pro Gln Ala
20 25 30
Arg Ile Ser Cys Pro Glu Gly Thr Asn Ala Tyr Arg Ser Tyr Cys Tyr
35 40 45
Tyr Phe Asn Glu Asp Arg Glu Thr Trp Val Asp Ala Asp Leu Tyr Cys
50 55 60
Gln Asn Met Asn Ser Gly Asn Leu Val Ser Val Leu Thr Gln Ala Glu
65 70 75 80
Gly Ala Phe Val Ala Ser Leu Ile Lys Glu Ser Gly Thr Asp Asp Phe
85 90 95
Asn Val Trp Ile Gly Leu His Asp Pro Lys Lys Asn Arg Arg Trp His
100 105 110
Trp Ser Ser Gly Ser Leu Val Ser Tyr Lys Ser Trp Gly Ile Gly Ala
115 120 125
Pro Ser Ser Val Asn Pro Gly Tyr Cys Val Ser Leu Thr Ser Ser Thr
130 135 140
Gly Phe Gln Lys Trp Lys Asp Val Pro Cys Glu Asp Lys Phe Ser Phe
145 150 155 160
Val Cys Lys Phe Lys Asn
165

Sequence listing.txt

<210> 3
<211> 749
<212> DNA
<213> Homo sapiens

<400> 3
agccaacaga gattgttcat ttgcctctta agcaagagat tcattgcagc tcagcatggc 60
tcagaccgc tcatacttca tgctgatctc ctgcctgatg tttctgtctc agagccaagg 120
ccaagaggcc cagacagagt tgcccccaggc cggatcagc tgcccagaag gcaccaatgc 180
ctatcgctcc tactgctact acttaatgaa agaccgtgag acctgggttg atgcagatct 240
ctattggcag aacatgaaat cggccaaacct ggtgtctgtg ctccacccagg ccgagggtgc 300
ctttgtggcc tcactgatata aggagagtgg cactgatgac ttcaatgtct ggattggcct 360
ccatgacccc aaaaagaacc ggcgtggca ctggagcagt gggtccctgg tctccataaa 420
gtcctggggc attggagccc caagcagtgt taatcctggc tactgtgtga gcctgaccc 480
aagcacagga ttccagaaat ggaaggatgt gcctgtgaa gacaagtttgc cctttgtctg 540
caagttcaaa aactagagggc agctggaaaa tacatgtcta gaactgtatcc agcaattaca 600
acggagtcaa aaattaaacc ggaccatctc tccaactcaa ctcaacctgg acactctctt 660
ctctgctgag ttgccttgt taatcttcaa tagtttacc tacccagtc tttggAACCT 720
taaataataa aaataaaacat gtttccact 749

<210> 4
<211> 166
<212> PRT
<213> Homo sapiens

<400> 4
Met Ala Gln Thr Ser Ser Tyr Phe Met Leu Ile Ser Cys Leu Met Phe
1 5 10 15
Leu Ser Gln Ser Gln Gly Gln Glu Ala Gln Thr Glu Leu Pro Gln Ala
20 25 30
Arg Ile Ser Cys Pro Glu Gly Thr Asn Ala Tyr Arg Ser Tyr Cys Tyr
35 40 45
Tyr Phe Asn Glu Asp Arg Glu Thr Trp Val Asp Ala Asp Leu Tyr Cys
50 55 60
Gln Asn Met Asn Ser Gly Asn Leu Val Ser Val Leu Thr Gln Ala Glu
65 70 75 80
Gly Ala Phe Val Ala Ser Leu Ile Lys Glu Ser Gly Thr Asp Asp Phe
85 90 95
Asn Val Trp Ile Gly Leu His Asp Pro Lys Lys Asn Arg Arg Trp His
100 105 110
Trp Ser Ser Gly Ser Leu Val Ser Tyr Lys Ser Trp Gly Ile Gly Ala
115 120 125
Pro Ser Ser Val Asn Pro Gly Tyr Cys Val Ser Leu Thr Ser Ser Thr
130 135 140
Gly Phe Gln Lys Trp Lys Asp Val Pro Cys Glu Asp Lys Phe Ser Phe
145 150 155 160
Val Cys Lys Phe Lys Asn
165

<210> 5
<211> 2974
<212> DNA
<213> Homo sapiens

<400> 5
ctcaggccag agggaggaag gacagcagac cagacagtca cagcagcctt gacaaaacgt 60
tcctgaaact caagctttc tccacagagg aggacagagc agacagcaga gaccatggag 120
tctccctcg 180
tcacttctaa ccttctggaa cccgccccacc actgccaagc tcacttattgaa atccacgccc 240
ttcaatgtcg cagaggggaa ggaggtgttt ctacttgc acaatctgccc ccagcatctt 300
tttggctaca gctggatcaca aggtgaaaga gtggatggca accgtcaaat tataggatat 360

Sequence listing.txt

gtaataggaa	ctcaacaaggc	taccccaggg	cccgcataca	gtgtcgaga	gataatatac	420
cccaatgcatt	ccctgctgat	ccagaacatc	atccagaatg	acacaggatt	ctacacccta	480
cacgtcataa	agtcagatct	tgtgaatgaa	gaagcaactg	gccagttccg	ggtatacccg	540
gagctgcccc	agccctccat	ctccagcaac	aactccaaac	ccgtggagga	caaggatgct	600
gtggccttca	cctgtgaacc	tgagactcag	gacgcaacct	acctgtggtg	gttaaacaat	660
cagagcctcc	cggtcagttc	caggctcag	ctgtccaatg	gcaacaggac	cctcaactca	720
ttcaatgtca	caagaaatgta	cacagcaagc	tacaaatgtg	aaacccagaa	cccagtgagt	780
gccaggcgca	gtgattcagt	catcttgaat	gtcctctatg	gcccgatgc	ccccaccatt	840
tccccctcaa	acacatctt	cagatcaggg	gaaaatctga	acctctcctg	ccacgcagcc	900
tctaaccac	ctgcacagta	ctcttggtt	gtcaatggg	cttccagca	atccacccaa	960
gagcttttta	tccccaacat	cactgtgaat	aatagtgtgat	cctatactgt	ccaagccat	1020
aactcagaca	ctggcctcaa	taggaccaca	gtcacgacga	tcacagtcta	tgcagagcca	1080
cccaaaccct	tcatcaccag	caacaactcc	aacccctgtg	aggatgagga	tgctgtagcc	1140
ttaacctgtg	aacctgagat	tcagaacaca	acctacctgt	gttgggttaaa	taatcagagc	1200
ctcccgtca	gtcccaggt	gcagctgtcc	aatgacaaca	ggaccctcac	tctactcagt	1260
gtcacaaggaa	atgatgttagg	acccttatgag	tgtggaatcc	agaacgaatt	aagtgtgac	1320
cacagcgacc	cagtcatctt	aatgtcctc	tatggcccg	acgacccccac	catttcccc	1380
tcatacacct	attaccgtcc	aggggtgaac	ctcagccct	cctgccccatgc	agcctctaac	1440
ccacctgcac	agtattctt	gctgattgat	gggaacatcc	agcaacacac	acaagagctc	1500
tttatctcca	acatcactga	gaagaacagc	ggactctata	cctgccccaggc	caataactca	1560
gccagtggcc	acagcaggac	tacagtcaag	acaatcacag	tctctgcgg	gctgcccag	1620
ccctccatct	ccagcaacaa	ctccaaaccc	gtggaggaca	aggatgctgt	ggccttcacc	1680
tgtgaacctg	aggctcagaa	cacaacctac	ctgtgggtgg	taaatggtca	gagcctccca	1740
gtcagtccca	ggctgcagct	gtccaaatggc	aacaggaccc	tcactctatt	caatgtcaca	1800
agaaatgacg	caagagccta	tgtatgtgga	atccagaact	cagtgagtgc	aaaccgcagt	1860
gaccaggctca	ccctggatgt	cctctatggg	ccggacaccc	ccatcatttc	ccccccagac	1920
tcgtcttacc	tttcgggagc	gaacctcaac	ctctctgtcc	actcggccctc	taacccatcc	1980
ccgcagttt	tttggcgat	caatgggata	ccgcagcaac	acacacaagt	tctcttatac	2040
gccaatataatc	cgccaaataaa	taacgggacc	tatgcctgtt	ttgtctctaa	cttggctact	2100
ggccgcaata	attccatagt	caagagcatc	acagtctctg	catctggaaac	ttctccctgg	2160
cttcagctg	ggggccactgt	cgccatctg	attggagatgc	ttttttgggtt	tgctctgata	2220
tagcagccct	ggtgttagtt	tttcatttca	ggaagactga	cagtgttttt	gcttcttcct	2280
taaagcattt	gcaacagcta	cagtctaaaa	ttgttctttt	accaaggata	tttacagaaa	2340
agactctgac	cagagatcga	gaccatctta	gccaacatcg	tgaaacccca	tctctactaa	2400
aaataaaaaa	atgagctgg	cttgggtggcg	cgcacctgt	gtcccagtt	ctcgggaggc	2460
tgaggcagga	gaatcgctt	aacccggag	gtggagattt	cagtgagccc	agatcgccacc	2520
actgcactcc	agtctggcaa	cagagcaaga	ctccatctca	aaaagaaaag	aaaagaagac	2580
tctgacctgt	actcttgaat	acaagtttct	gataccactg	cactgtctga	gaatttccaa	2640
aactttaatg	aactaactga	cagcttcatg	aaactgtcca	ccaagatcaa	gcagagaaaa	2700
taattaattt	catgggacta	aatgaactaa	tgaggattgc	tgattcttta	aatgtcttgt	2760
ttcccagattt	ttaggaaact	ttttttcttt	taagctatcc	actttacag	caatttgata	2820
aaataatactt	ttgtgaacaa	aaatttgagac	atttacattt	tctccctatg	tggtcgctcc	2880
agacttggga	aactattcat	gaatatttat	attgtatgtt	aatatagtt	ttgcacaagt	2940
tcaataaaaaa	tctgctcttt	gtataacaga	aaaa			2974

<210> 6
<211> 2032
<212> DNA
<213> Homo sapiens

<400> 6

tccatattgt	gttccacca	ctgccaataaa	caaaataact	agcaaccatg	aagtgggtgg	60
aatcaatttt	ttaattttc	ctactaaatt	ttactgaatc	cagaacactg	catagaaatg	120
aatatggaaat	agcttccata	ttggattctt	accaatgtac	tgcagagata	agtttagctg	180
acctggctac	catattttt	gcccgatttg	ttcaagaagc	cacttacaag	gaagtaagca	240
aaatggtgaa	agatgcattt	actgcaattt	agaaacccac	tggagatgaa	cagtcttcag	300
ggtgtttaga	aaaccagcta	cttgcccttc	tggaaagaact	ttgcatgag	aaagaatattt	360
tggagaagta	cgacattca	gactgctgca	gcccaaagtga	agagggaaaga	cataactgtt	420
ttcttgccaca	aaaaagccc	actccagcat	cgatccact	tttcaagtt	ccagaacctg	480
tcacaagctg	tgaagcatat	gaagaagaca	gggagacatt	catgaacaaa	ttcattttatg	540
agatagcaag	aggcatccc	ttccgtatg	cacctacaat	tctcttttg	gctgctcgct	600
atgacaaaat	aattccatct	tgctgcaaag	ctgaaaatgc	agttgaatgc	ttccaaacaa	660
aggcagcaac	agttacaaaaa	gaattaagag	aaagcagtt	ttttaaatcaa	catgcatgtg	720

Sequence listing.txt

cagtaatgaa aaattttggg acccgaactt tccaagccat aactgttact aaactgagtc 780
 agaagttac caaagttaat tttactgaaa tccagaaact agtcctggat gtggccatg 840
 tacatgagca ctgttgcaga ggagatgtgc tggattgtct gcaggatggg gaaaaaatca 900
 tgtccatcat atgttctcaa caagacactc tgtcaaacaa aataacagaa tgctgcaaac 960
 tgaccacgct ggaacgtggt caatgtataa ttcatgcaga aatgtatgaa aaacctgaag 1020
 gtctatctcc aatctaaac aggttttag gagatagaga tttiaaccaa ttttcttcag 1080
 gggaaaaaaa tatcttcttg gcaagttttg ttcatgaata ttcaagaaga catcctcagc 1140
 ttgctgtctc agtaattcta agagttgcta aaggataccg ggagttattg gagaagtgtt 1200
 tccagactga aacccttctt gaatgccaag ataaaggaga agaagaatta cagaataaca 1260
 tccagagag ccaagcatg gcaaaagcgaa gctgcggcct cttccagaaa ctaggagaat 1320
 attacttaca aatgcgtt ctcgttgc acacaaagaa agccccccag ctgacctcgt 1380
 cggagctgat ggccatcacc agaaaaatgg cagccacacg agccactgt tgccaactca 1440
 gtgaggacaa actattggcc tggcggagg gagcggctga cattattatc ggacacttat 1500
 gtatcagaca taaaatgact ccagtaaacc ctgggttgg ccagtgcgtc acttcttcat 1560
 atgccaacag gaggccatgc ttcagcagct tgggtgttgg taaaacatat gtccctcctg 1620
 cattctctga tgacaagttc attttcata agatctgt ccaagctcag ggtgtagcgc 1680
 tgcaaaacat gaagcaagag tttctcatta accttgcgaa gcaaaagcca caaataacag 1740
 aggaacaact tgaggctgtc attgcagatt tctcaggcct gttggagaaa tgctgccaag 1800
 ggcagaaca gaaagtctgc tttgtgaag agggacaaaa actgatttca aaaactcgtg 1860
 ctgcttggg agtttaattt acttcagggg aagagaagac aaaacgagtc tttcattcgg 1920
 tgtgaacttt tctcttaat tttaactgtat ttaacacttt ttgtgaatta atgaaatgat 1980
 aaagactttt atgtgagatt tccttatac agaaataaaaa tatctccaaa tg 2032

<210> 7
 <211> 1639
 <212> DNA
 <213> Homo sapiens

<400> 7
 agcagagcac acaagttct aggacaagag ccaggaagaa accaccggaa ggaaccatct 60
 cactgtgt aaacatgact tccaagctgg ccgtggctct cttggcagcc ttccgtattt 120
 ctgcagctct gtgtgaagg tgcagggtgc caaggatgtc taaagaactt agatgtcagt 180
 gcataaaagac atactccaaa ctttccacc ccaaattttt caaagaactg agagtattg 240
 agagttgacc acactgcgcc aacacagaaaa ttattgtaaa gcttctgtat ggaagagagc 300
 tctgtcttggc ccccaaggaa aactgggtgc agagggttgc ggagaagttt ttgaagaggg 360
 ctgagaattt ataaaaaaat tcattctcg tggtatccaa gaatcagtga agatgccagt 420
 gaaactcaa gcaaatctac ttcaacactt catgtattgt gtgggtctgt ttagggttg 480
 ccagatgcaa tacaagattt ctggtaaat ttgaatttca gtaacaatg aatagtttt 540
 cattgtacca taaaatatcc agaacataact tataatgtaaa gtattattta ttgaatcta 600
 caaaaaacaa caaataattt ttaaataataa ggattttctt agatattgca cgggagaata 660
 tacaatagc aaaatttgagc caagggccaa gagaatatcc gaactttat ttcaggaatt 720
 gaatgggtt gctagaatgt gatatttggaa gcatcacata aaaatgtatgg gacaataaat 780
 tttgcataa agtcaaattt agctggaaat cctggatttt ttctgtttaa atctggcaac 840
 cctagtctgc tagccaggat ccacaagtc ttgttccact gtgccttggg ttctccctta 900
 ttcttaagtg gaaaatgtat tagccaccat cttacccatc agtgcgttgc tgaggacatg 960
 tggaaactt ttaagtttt tcatttataac taaaattttt tcaaatgttgc tttatataac 1020
 ctatttata ttatgtattt tatttataac tcaaatattt tcaaatgttgc tttatataac 1080
 agaagatgaa tcattgtattt aatagtataa aagatgttgc tttatataac tttatataac 1140
 gatattaaat gatgtttat tagataattt tcaatcaggg ttttagattt aacaaagaa 1200
 acaatgggtt acccagttaa atttcattt cagataaaca acaaataatt tttatgtata 1260
 agtacattat tggttatctg aagttttaa ttgaactaac aatccctgtt tgatactccc 1320
 agtctgtca ttgcccagctg tgggttgc gctgtgttgc attacggat aatgagtttag 1380
 aactattaaa acagccaaaa ctccacagtc aatattgttgc tttatgttgc gttgaaact 1440
 tggttattat gtacaaatag attcttataa tatttataa atgactgcatt ttttaataac 1500
 aaggctttat attttaact ttaagatgtt tttatgttgc ctccaaattt ttttactgt 1560
 ttctgtattt atggaaatattt aaaaatgttgc tttatgttgc tttatgttgc 1620
 aagtaaaaaa aaaaaaaaaa aagtaaaaaat tttatgttgc 1639

<210> 8
 <211> 1524
 <212> DNA
 <213> Homo sapiens

Sequence listing.txt

<400> 8

gcagagcaca	gcatcgctgg	gaccagactc	gtctcaggcc	agtgcagcc	ttctcagcca	60
aacgccgacc	aaggaaaact	caactaccatg	agaattgcag	tgatttgctt	ttgcctccta	120
ggcatcacct	gtgccatacc	agttaaacag	gctgattctg	gaagttctga	gaaaagcag	180
ctttacaaca	aatacccaga	tgctgtggcc	acatggctaa	accctgaccc	atctcagaag	240
cagaatctcc	tagccccaca	gacccttcca	agtaagtcca	acgaaaagcca	tgaccacatg	300
gatgatatgg	atgatgaaga	tgatgatgac	catgtggaca	gccaggactc	cattgactcg	360
aacgactctg	atgatgtaga	tgacactgtat	gattctcacc	agtctgtatga	gtctcaccat	420
tctgtatgaat	ctgtatgaact	ggtcaactgtat	tttcccacgg	acctgcccagc	aaccgaagtt	480
ttcacccatcg	ttgtccccac	agtagacaca	tatgtatggcc	gagggtatag	tgtggtttat	540
ggactgaggt	caaaaatctaa	gaagtttcgc	agacctgaca	tccagttacc	tgatgctaca	600
gacgaggaca	tcacccatcaca	catgaaaagc	gagggttga	atggtgata	caaggccatc	660
cccgttgc	aggacctgaa	cgcgccttct	gattggaca	gccgtggaa	ggacagttat	720
gaaacgagtc	agctggatga	ccagagtgt	gaaacccaca	gccacaagca	gtccagatta	780
tataagcgga	aagccaatgta	tgagagcaat	gagcattccg	atgtgattga	tagtcagggaa	840
cttccaaag	ttagccgtga	attccacacg	catgaatttc	acagccatga	agatatgctg	900
gtttagacc	ccaaaatgtaa	ggaagaagat	aaacacctga	aatttcgtat	ttctcatgaa	960
tttagatagt	catcttctgta	ggtcaattaa	aaggagaaaa	aatacaattt	ctcacttgc	1020
atttagtcaa	aagaaaaaaat	gctttatagc	aaaatgaaag	agaacatgaa	atgcttctt	1080
ctcagtttat	ttgttgaatg	tgtatctatt	tgagtcttga	aataactaat	gtgtttgata	1140
attagtttag	tttggccctt	catgaaaact	ccctgttaac	taaaagcttc	agggttatgt	1200
ctatgttcat	tctatagaag	aaatgcaaaac	tatcactgtat	ttttatatt	tgttattctc	1260
tcatgaatag	aaattttatgt	agaagcaaaac	aaaatacttt	tacccactta	aaaagagaat	1320
ataacatttt	atgtcaactat	aatctttgt	tttttaagtt	agtgtatatt	ttgttgtat	1380
tatcttttg	ttgtgtgaat	aaatctttta	tcttgaatgt	aataagaatt	ttgtgggtgc	1440
aattgcttat	ttgttttccc	acggttgc	agcaattaaat	aaaacataac	ctttttact	1500
gcctaaaaaa	aaaaaaaaaaa	aaaa				1524

<210> 9

<211> 5500

<212> DNA

<213> Homo sapiens

<400> 9

gcagaccgtc	gtctaatgtat	cttggggccg	gtgtcgggcc	ggggcggctt	gatcgcaac	60
tagaaaccc	caggcgcaga	ggccaggagc	gagggcagcg	aggatcagag	gccaggccctt	120
cccggtcgcc	ggcgctcctc	ggaggtcagg	gcagatgagg	aacatgactc	tcccccttcg	180
gaggaggaag	gaagtcccgc	tgccacctt	tctctgtcc	tctgcctcct	ccctgttccc	240
agagctttt	ctctagagaa	gatttgaag	gcggctttt	tgctgacggc	caccacccat	300
catctaaaga	agataaaactt	ggcaatgac	atgcagggtt	ttcaaggcag	aataattgca	360
gaaaatcttc	aaaggaccct	atctgcagat	gttctgaata	cctctgagaa	tagagattga	420
ttattcaacc	aggataccat	atcaagaac	tccagaatc	aggagacgga	gacattttgt	480
cagtttgca	acattggacc	aaatacaatg	aagtattctt	gctgtctct	gttggggct	540
gtcctgggca	cagaatttgc	gggaagcctc	tgttcgact	tcaatcccc	gaggttcaga	600
ggacggatac	agcagggaaacg	aaaaaacatc	cgaccacaa	ttattcttgc	gttaccgat	660
gatcaagatg	ttggagctgg	gtccctgcaa	gtcatgaa	aaacgagaaa	gattatggaa	720
catggggggg	ccacccatc	caatccctt	tgactacac	ccatgtgtcg	ccgtcacgg	780
tcctccatgc	tcaccgggaa	gtatgtc	aatcacaatg	tctacaccaa	caacgagaac	840
tgctcttccc	cctctggca	ggccatgcat	gagcctcgga	cttttgcgt	atatcttaac	900
aacactggct	acagaacacg	cttttttgg	aaatacctca	atgaatataaa	tggcagctac	960
atccccctg	gttggcgaga	atggcttgg	ttaatcaaga	attctcgctt	ctataattac	1020
actgtttgtc	gcaatggcat	caaagaaaag	catggatttg	attatgc	ggactacttc	1080
acagacttaa	tcactaacga	gagcattaaat	tacttcaaaa	tgtctaaagag	aatgtatccc	1140
cataggcccg	ttatgtatgt	gatcagccac	gctgcgcccc	acggccccga	ggactcagcc	1200
ccacagttt	ctaaactgtat	ccccaaatgt	tcccaacaca	taactcttag	ttataactat	1260
gcaccaaata	tggataaaca	ctggattatg	cagtacacag	gacaaatgt	gcccatccac	1320
atggaaattt	caaacattt	acagcgaaa	aggctccaga	cttgcgttgc	agtggatgt	1380
tctgtggaga	ggctgtataa	catgtctgt	gagacgggg	agctggagaa	tacttacatc	1440
atttacaccg	ccgaccatgg	ttaccatatt	gggcagttt	gactggtcaa	ggggaaatcc	1500
atgcccata	actttgtat	tcgtgtgcct	ttttttattt	gtgttcaag	tgtagaacca	1560
ggatcaatag	ccccacagat	cgttctcaac	attgacttgg	cccccacat	cctggatatt	1620
gctgggctcg	acacacccccc	tgatgtggac	ggcaagtctg	tcctcaaaact	tctggacccca	1680
aaaaagccag	gtAACAGGTT	tcgaacaaac	aagaaggcca	aaatttggcg	tgatacattc	1740

Sequence listing.txt

ctagtggaaa	gaggcaaatt	tctacgtaag	aaggaagaat	ccagcaagaa	tatccaacag	1800
tcaaatcact	tgcccaaata	tgaacgggtc	aaagaactat	gccagcaggc	caggtaccag	1860
acagcctgtg	aacaaccggg	gcagaagtgg	caatgcattg	aggatacatc	tggcaagctt	1920
cgaattcaca	agtgtaaagg	acccagtgac	ctgctcacag	tccggcagag	cacgcgaac	1980
ctctacgctc	gcggcttcca	tgacaaagac	aaagagtca	gtttagggaa	gtctggttac	2040
cgtgccagca	gaagccaaag	aaagagtcaa	cggcaattct	tgagaaacca	ggggactcca	2100
aagtacaagc	ccagatttg	ccatactcg	cagacacg	ccttgtccgt	cgaattgaa	2160
ggtgaaatat	atgacataaa	tctggaagaa	gaagaagaat	tgcaagtgtt	gcaaccaaga	2220
aacattgta	agcgtcatg	tgaaggccac	aaggggccaa	gagatctcca	ggcttcagt	2280
ggtggcaaca	ggggcaggat	gctgcagat	agcagcaag	ccgtgggccc	acctaccact	2340
gtccgagtga	cacacaagt	ttttattctt	cccaatgact	ctatccattg	tgagagagaa	2400
ctgtaccaat	cggccagagc	gtggaaggac	cataaggcat	acattgacaa	agagattgaa	2460
gctctgcaag	ataaaaattaa	gaatthaaga	gaagttagag	gacatctgaa	gagaaggaaag	2520
cctgaggaat	gtagctcg	taaacaagac	tattacaata	aagagaaagg	tgtaaaaaaag	2580
caagagaaat	taaagagcca	tcttcaccca	ttcaaggagg	ctgctcagga	atgatagatc	2640
aaactgcaac	tttcaagga	gaacaaccgt	aggaggaaga	aggagaggaa	ggagaagaga	2700
cggcagagga	agggggaaaga	gtgcagctg	cctggcctca	cttgcttcac	gcatgacaac	2760
aaccactggc	agacagcccc	gttctggaac	ctggatctt	tctgtgcttg	cacgagttct	2820
aacaataaca	cctactggtg	tttgcgtaca	gttaatgaga	cgcataattt	tctttctgt	2880
gagttgcta	ctggctttt	ggagatattt	gatatgata	cagatcctt	tcagctcaca	2940
aatacagtgc	acacggtaga	acgaggcatt	ttgaatcagc	tacacgtaca	actaatggag	3000
ctcagaagct	gtcaaggata	taagcagtgc	aacccaagac	ctaagaatct	tgtatgttga	3060
aataaagatg	gaggaagcta	tgacctacac	agaggacagt	tatggatgg	atgggaaggt	3120
taatcagccc	cgtctcactg	cagacatcaa	ctggcaaggc	ctagaggagc	tacacagtgt	3180
gaatgaaaac	atctatgagt	acagacaaaa	ctacagactt	agtctgttgg	actggactaa	3240
ttacttgaag	gatttagata	gagtatttgc	actgctgaa	agtcaactatg	agcaaaataaa	3300
aacaataata	actcaaactg	ctcaaaagtga	cgggttctt	gttgtctctg	ctgagcacgc	3360
tgtgtcaatg	gagatggcct	ctgctgactc	agatgaagac	ccaaggcata	aggttggaa	3420
aacacccat	ttgacccttg	cagctgaccc	tcaaaccctg	catttgaacc	gaccaacatt	3480
aagtccagag	agtaaacttg	aatgaaataa	cgacatttca	gaagttatac	atttgaattt	3540
tgaacactgg	agaaaaaaccc	aaaatggac	ggggcatgaa	gagactatc	atctggaaac	3600
cgatttcagt	ggcgtggca	tgacagagct	agagctcggg	cccagcccc	ggctgcagcc	3660
cattcgcagg	cacccgaaag	aactcccca	gtatggtgg	cctggaaagg	acatttttga	3720
agatcaacta	tatcttcctg	tgcattccga	tggaaattca	tttcatcaga	tgttaccat	3780
ggccaccgc	gaacaccgaa	gtaattccag	catagcgggg	aagatgttga	ccaaggtgga	3840
gaagaatcac	gaaaaggaga	agtacacgca	cctagaaggc	agcgcctcct	cttcactctc	3900
ctctgattag	atgaaactgt	taccttaccc	taaacaacagt	atttctttt	aacttttttta	3960
tttgtaaact	aataaaggta	atcacagcca	ccaacattcc	aagctaccct	gggtacctt	4020
gtgcagtaga	agcttagttag	catgtgagca	agcgggtgtc	acacggagac	tcatcggtat	4080
aatttactat	ctgccaagag	tagaaagaaa	ggctgggat	atttgggtt	gtttgggttt	4140
gatttttgc	ttgtttgtt	gtttgtact	aaaacagtat	tatcttttga	atatcgtagg	4200
gacataagta	tatacatgtt	atccaatcaa	gatggctaga	atgtgtcctt	tctgagtgtc	4260
taaaacttga	cacccctgtt	aaatcttca	acacacttcc	actgcctg	taatgaagtt	4320
ttgatttatt	ttaaaccact	ggaattttt	aatgccgtca	ttttcagtt	gatgatttt	4380
cacccgtt	ttaaaatgtt	atgtcttatt	gattgtctt	attttttt	ttttacaggc	4440
ttatcgtct	cactttgtt	tgtcatttgc	acaaagtcaa	ataaaccccc	aaggacgaca	4500
cacagttatgg	atcacatatt	gtttgaccc	aaacgttttgc	cagaaaaatgt	tgcattgtt	4560
ttacctcgac	ttgctaaaat	cgatttgc	aaaggcatgg	ctaaataatgt	ttgtgggtaa	4620
aataaataaa	taagtaaaca	aaatgaagat	tgccgtct	ctctgtgcct	agcctcaaag	4680
cgttcatcat	acatcatacc	ttaagattt	ctatatttt	gttattttt	ttgacaggag	4740
aaaaagatct	aaagatctt	tattttcatc	ttttttgtt	tttttggcat	gactaagaag	4800
cttaaatgtt	gataaaatat	gactatgtt	gaatttacac	caagaacttc	tcaataaaaag	4860
aaaatcatga	atgctccaca	atttcaacat	accacaagag	aagttat	cttaacattt	4920
tgttctatga	ttatttgtt	gacccatc	aagttctgtat	atctttttaaa	gacatagttc	4980
aaaatgtctt	ttgaaaatct	gtatttttgc	aaatatcctt	gttgttatt	aggtttttaa	5040
ataccagcta	aggatttacc	tcactgtatc	atcgtatccc	tccttattcag	ctccccaaaga	5100
tgtatgtttt	ttgcttacc	taagagaggt	tttcttctt	tttttagata	attcaagtgc	5160
tttagataat	tatgttttct	ttaagtgtt	atggtaaact	cttttaaaga	aaatthaata	5220
tgtttagatct	gaatcttttt	ggtacttta	aatctttatc	atagactctg	tacatatgtt	5280
caaatttagct	gcttgcctga	tgtgtgtatc	atcggtg	tgacagaaca	aacatatttta	5340
tgatcatgaa	taatgtgcct	tgtaaaaaga	tttcaagttt	tttaggaagca	tactctgttt	5400
tttaatcatg	tataatattt	catgatactt	ttatagaaaca	attctggctt	cagggaaagtc	5460
tagaagcaat	atttcttcaa	ataaaaagggt	ttttaaactt			5500

Sequence listing.txt

<210> 10
<211> 1778
<212> DNA
<213> Homo sapiens

<400> 10

tagaagttta	caatgaagtt	tcttctaata	ctgctccgtc	aggccactgc	ttctggagct	60
cttccctgt	acagctctac	aagctggaa	aaaaataatg	tgctatttgg	tgagagatac	120
ttagaaaaat	tttatggcct	tgagataaac	aaacttccag	tgacaaaaat	gaaatatagt	180
ggaaacttaa	tgaaggaaaaa	aatccaagaa	atgcagcact	tcttgggtct	gaaagtgacc	240
gggcaactgg	acacatctac	cctggagatg	atgcacgcac	ctcgatgtgg	agtcccgt	300
ctccatcatt	tcagggaaat	gccagggggg	cccgtatgga	ggaaacattt	tatcacctac	360
agaatcaata	attacacacc	tgacatgaac	cgtgaggatg	ttgactacgc	aatccggaaa	420
gctttccaag	tatggagtaa	tgttacccccc	ttgaaattca	gcaagattaa	cacaggcatg	480
gctgacattt	tggtggtttt	tgccctgtga	gctcatggag	acttccatgc	ttttgatggc	540
aaaggtggaa	tcctagccca	tgcttttgg	cctggatctg	gcattggagg	ggatgcacat	600
ttcgatgagg	acgaattctg	gactacacat	tcaggaggca	caaacttgtt	cctcactgct	660
gttcacgaga	ttggccattt	cttaggtctt	ggccatttctt	gtgatccaaa	ggctgtatg	720
ttccccaccc	acaaatatgt	cgacatcaac	acatttcgccc	tctctgctga	tgacatacgt	780
ggcattcagt	ccctgtatgg	agacccaaaa	gagaaccaac	gcttgccaaa	tcctgacaat	840
tcagaaccag	ctctctgtga	cccccaattt	agttttgtat	ctgtcaactac	cgtggaaaat	900
aagatcttt	tcttcaaaga	caggttcttc	tggctgaagg	tttctgagag	accaaagacc	960
agtgttaat	taatttcttc	cttatggcca	accttgcct	ctggcatttga	agctgcattat	1020
gaaatttgaag	ccagaaaatca	agttttctt	ttttaaagatg	acaaataactg	gttaatttagc	1080
aatttaagac	cagagccaaa	ttatcccag	agcatacat	cttttgggtt	tcctaacttt	1140
gtgaaaaaaaaa	tttgcacgc	tgttttttac	ccacgttttt	ataggaccta	tttcttgtt	1200
gataaccagt	attggaggtt	tgtatggagg	agacagatga	tggaccctgg	ttatccaaa	1260
ctgattacca	agaacttcca	aggaatcggg	cctaaaattt	atgcagtctt	ctattctaaa	1320
aacaatatact	actatttctt	ccaaggatct	aaccatattt	aatatgactt	cctactccaa	1380
cgtatcacca	aaacactgaa	aagcaatagc	tggtttggtt	gttagaaatg	gtgttaattaa	1440
tggtttttgt	tagttcattt	cagcttaata	agtattttt	gcatatttgc	tatgtcctca	1500
gtgtaccact	acttagagat	atgtatcata	aaaataaaaat	ctgtaaacca	taggtatga	1560
ttatataaaa	tacataatat	ttttcaattt	tggaaactct	aattgtccat	tcttgcttga	1620
ctctactatt	aagtttggaa	atagttacct	tcaaagcaag	ataattctat	ttgaagcatg	1680
ctctgttaat	tgcttcctaa	catccttgg	ctgagaattt	atacttactt	ctggcataac	1740
taaaattaag	tatataatatt	ttggctcaaa	taaaattt			1778

<210> 11
<211> 777
<212> DNA
<213> Homo sapiens

<400> 11

ggcccttgt	ctgcagagat	ggctcccaat	gcttccgtcc	tctgtgtgca	tgtccgttcc	60
gaggaatggg	atttaatgac	ctttgtatgcc	aaccatatg	acagcgtgaa	aaaaatccaa	120
gaacatgtcc	ggtctaagac	caagttcct	gtcaggacc	agtttcttt	gctgggtctcc	180
aagatcttaa	agccacggag	aagctctca	tcttatggca	ttgacaaaaga	gaagaccatc	240
cacccatccc	tgaaagtgt	gaagcccagt	gatgaggagc	tgccttgg	tcttggag	300
tcaggtgatg	aggcaagag	gcaccccttc	caggtgcga	ggtccagctc	agtggcacaa	360
gtgaagcaa	tgatcgagac	taagacgggt	ataatccctg	agacccagat	tgtgacttgc	420
aatggaaaga	gacttggaa	tggaaatgt	atggcagatt	acggcatcg	aaagggcaac	480
ttactcttcc	tggcatctt	ttgtatttgg	gggtgaccac	cctggggatg	gggtgttggc	540
aggggtcaaa	aagtttattt	cttttaatct	tttactcaac	gaacacatct	tctgtatgatt	600
tcccaaaattt	aatggaaatg	agatgagtag	agtaagattt	gggtgggatg	ggttaggatga	660
agtatattgc	ccaaactctat	gtttcttgg	ttcttaacaca	attaattaag	tgacatgatt	720
tttactaatg	tattactgttt	actagtaat	aaattttaa	ggcaaaatag	agcattt	777

<210> 12
<211> 5921
<212> DNA

Sequence listing.txt

<213> Homo sapiens

<400> 12

agcagacggg agtttctcct cggggtcgga gcaggaggca cgccggagtgt gaggccacgc 60
 atgagcggac gctaaccccc tccccagcca caaagagtct acatgtctag ggtctagaca 120
 tggtcagctt tggcggaccc tggctccctgc tcctcttagc ggcacccgccc ctccctgacgc 180
 acggccaaga ggaaggccaa gtcgaggggcc aagacgaaga catccccacca atcacctgca 240
 tacagaacgg cctcaggtac catgaccgag acgtgtgaa acccgagccc tgccggatct 300
 gctgtcgcga caacggcgaag gtgttgtcg gatgacgtat ctgtgacgag accaagaact 360
 gccccggcgc cgaagtcccc gagggcgagt gctgtccctg ctggcccgac ggctcagagt 420
 caccaccga ccaagaaacc accggcgctcg agggacccaa gggagacact ggcccccgag 480
 gcccaagggg accccgcaggc cccctggcc gagatggcat ccctggacag cctggacttc 540
 ccggacccccc cggacccccc ggacccccc gaccccccgg cctcggagga aactttgctc 600
 cccagctgtc ttatggctat gatgagaaat caaccggagg aatttccgtg cctggcccca 660
 tgggtccctc tggtcctcg ggtctccctg gccccccctgg tgcacctgtt ccccaaggct 720
 tccaagggtcc ccctggtag gctggcgagc ctggagcttc aggtcccatt ggtcccccgag 780
 gtccccccagg tccccctggaa aagaatggag atgatggggaa agctggaaaaa cctggtcgtc 840
 ctggtagcgt tggggctcct gggcctcagg gtgctcgagg attgcccggaa acagctggcc 900
 tccctggaaat gaaggggacac agaggttca gtgggttggg tggtgccaa ggagatgtcg 960
 gtcctgctgg tcctaagggt gacgctggca gcccctggta aaatggagct cctggtcaga 1020
 tgggcccccg tggcctgctt ggtgagagag gtcgcccctgg agccccctggc cctgctgggt 1080
 ctcgtggaaa tggatgggtct actgggtctg ccggggcccccc tggtcccacc ggcccccgctg 1140
 gtcctcctgg cttccctgg gctgttggg ctaagggtga agctggtccc caaggggcccc 1200
 gaggcctgta aggtccccag ggtgtcgctg gtgagccctgg ccccccctggc cctgctgggt 1260
 ctgctggccc tgctggaaac cctgggtctg atggacagcc tgggtctaaa ggtgccaatg 1320
 gtgctcctgg tattgtctgt gtcctcctgg tccctgggtc ccgaggcccccc tctggacccc 1380
 agggccccgg cggccctctt ggtcccaagg gtaacagcggt tgaacctggt gtcctcctggca 1440
 gcaaaggaga cactgggtct aaggagagc ctggccctgt tgggttccaa ggacccctgt 1500
 gcccgtctgg agaggaagaa aagcgaggag ctggagggtga accccggaccc actggcctgc 1560
 ccggacccccc tggcgagcgt ggtggacccctg ttagccgtgg ttttccctggc gcagatgtgt 1620
 ttgctggtcc caagggtccc gctggtaac gtggttctcc tggcccccgtt ggccccaaag 1680
 gatctcctgg tgaagctgtt cgtccctgg gaaactgtt ccccccctgg aagggtctga 1740
 ctggaaagccc tggcagccctt ggtcctgtat gcaaaaactgg ccccccctggc cccgcccgtc 1800
 aagatggtcg ccccgccac ccaggccccac ctggtcccccc tggtcaggct ggtgtatgg 1860
 gattccctgg acctaaaggt gtcgtggag agccggccaa ggtggagagcg caggtgttcc 1920
 ccggacccccc tggcgctgtc ggtcctgtg gcaaaagatgg agaggctggaa gtcagggac 1980
 cccctggccc tgctggtccc gctggcgaga gaggtgaaca agggccctgt ggctcccccg 2040
 gattccctgg tccctcctgtt cctgtgttc ctccagggtga agcaggcaaa cctggtaac 2100
 agggtgttcc tggagacccctt ggcggccctgg gccccctctgg agcaagaggc gagagaggtt 2160
 tccctggcga gctgtgggtg caagggtcccc ctggtcctgc tggaccccgaa ggggccaacg 2220
 gtgctcccgg caacgtatgtt gctaagggtg atgctgggtc ccctggagct cccgttagcc 2280
 agggcgcccc tggccttcag ggaatgcctg gtgaacgtgg tgcaactgtt cttccaggggc 2340
 ctaagggtga cagagggtat gtcgtccccca aagggtgtat tggctctcctt ggcaaagatg 2400
 gctgtcgtgg tctgaccggc cccattggtc ctccctggccc tgggtgtgtcc cctggtgaca 2460
 agggtaaaag tggccctcag gcccctgtg gtcggccctgg atggccctgg agctgtgtgtt gccccccggag 2520
 accgtggtga gcctggtccc cccggccccctg ctggctttgc tggccccccctt ggtgtacgc 2580
 gccaacctgg tgctaaaggc gaacctgggtg atgctgggtc caaaggcgat gctggtcccc 2640
 ctggccctgc cggaccccgct ggaccccccctg gccccatgg taaatgttggt gtcctggag 2700
 ccaaagggtc tcgcggcagc gtcgtcccc ctgggtctac tgggttccctt ggtgtctgt 2760
 gcccagtcgg tcctcctggc ccctctggaa atgctggacc cccctggccctt cctggtcctg 2820
 ctggccaaaga aggcggccaa ggtccccctg tgagactgg ccctgtctgg cgtcctgggt 2880
 aagtttgtcc ccctggtccc cctggccccctg ctggcgagaa aggtcccccctt ggtgtatgg 2940
 gtcctgtgg tgctcctgtt actccccggc ctcaagggtat tgcgtggacag cgtgggtgtgg 3000
 tcggcctgccc tggtcagaga ggagagagag gcttccctgg tcttcctggc ccctctgggt 3060
 aacctggcaa acaagggtccc tctggagcaa gtggtaacg tggccccccctt ggtcccatgg 3120
 gccccctgg attggctgaa cccctgggtg aatctggacg tgagggggctt ctcgtcccg 3180
 aagggtcccccc tggacgagac ggttctcctg ggcggcaagggg tgaccgtgtt gagaccggcc 3240
 ccgtggacc ccctgggtct cctgggtctc ctgggtcccccc tggccccctt ggccctgtctg 3300
 gcaagaggtgg tgatgtgtt gggactggc ctgggtgtcc cggccgtcccc gtcggccccgg 3360
 tcggcgcccc tggccccccctt ggaccccaag gccccctgg tgacaagggtt gagacaggcg 3420
 aacagggcga cagaggccat aagggtcacc gtggcttctc tggcctccag ggtccccctg 3480
 gcccctggcctt ctctcctgtt gaacaagggtc cctctggacg ctctgggtctt gtcggcccccc 3540
 gaggtcccccc tggctctgtt ggtgtccctg gcaaaagatgg actcaacggt ctcctggcc 3600

Sequence listing.txt

ccattgggcc	ccctggtcct	cgcggtcgca	ctggtgatgc	tggccctgtt	ggtccccccg	3660
gcccttcgtt	accttcgtt	ccccctggtc	ctcccagcgc	tggtttcgac	ttagcttcc	3720
tgcggcagcc	acctcaagag	aaggctcagc	atggtggccg	ctactaccgg	gctgatgatg	3780
ccaatgttgt	tcgtgaccgt	gacctcgagg	tggacaccac	cctcaagagc	ctgagccagc	3840
agatcgagaa	catccggagc	ccagaggaa	gccgcaagaa	ccccgcccgc	acctgcgtg	3900
acctcaagat	gtgccactt	gacttggaga	gtggagagta	ctggatttgc	cccaaccaag	3960
gctgcaacct	ggatgcccac	aaagtcttct	gcaacatgg	gactggtag	acctgcgtgt	4020
accccaacta	gcccagtgt	gcccagaaga	actggtacat	cagaagaac	cccaaggaca	4080
agaggccatgt	ctggttcggc	gagagcatg	ccgatggatt	ccagttcgag	tatggccggcc	4140
agggctccg	ccctggccat	gtggccatcc	agctgaccc	cctgcgcctg	atgtccaccg	4200
aggcctccca	gaacatcacc	taccatgc	agaacagcgt	ggcttacatg	gaccagcaga	4260
ctggcaacct	caagaaggcc	ctgcttcctc	agggctccaa	cgagatcgag	atccgcggcc	4320
agggcaacag	ccgcttcacc	tacagcgtca	ctgtcgatgg	ctgcacgagt	cacacccggag	4380
cctggggcaa	gacagtgatt	gaatacaaaa	ccaccaagtc	ctcccgccctg	cccatcatcg	4440
atgtggcccc	cttggacgtt	ggtggcccg	accaggaatt	cggcttcgac	gttggccctg	4500
tctgcttcct	gtaaactccc	tccatcccaa	cctggctccc	tcccacccaa	ccaaactttcc	4560
cccccaacccg	gaaacagaca	agcaacccaa	actgaacccc	ccaaaagcc	aaaaaatggg	4620
agacaatttc	acatggaccc	tggaaaatat	ttttttcctt	tgcatttcac	tctcaaaactt	4680
agtttttatac	tttgaccaac	cgaacatgac	caaaaaccaa	aagtgcattc	aaccttacca	4740
aaaaaaaaaaa	aaaaaaaaaa	agaataaata	aataagttt	taaaaaagga	agcttggtcc	4800
acttgcgtga	agacccatgc	gggggttaagt	ccctttctgc	ccgttgggtt	atgaaacccc	4860
aatgcgtgcc	tttctgtctc	tttctccaca	cccccttgg	cctcccttcc	actccttccc	4920
aaatctgtct	ccccagaaga	cacagggaaac	aatgtattgt	ctggcccgac	atcaaaggca	4980
atgctcaaac	acccaagtgg	cccccaccc	cagcccgtc	ctggcccgccc	agcaccccc	5040
ggccctgggg	acctgggggtt	ctcagactgc	caaagaagcc	ttgcccatttg	gcgctccat	5100
ggctcttgc	acatctccccc	ttcggttttg	agggggtcat	gccggggggag	ccaccagccc	5160
ctcactgggt	tcggaggaga	gtcaggaagg	gccacgacaa	agcagaaaca	tcggatttgg	5220
ggaacgcgt	tcatcccttg	tgccgcggc	tggcgggag	agactgttct	gttctgttcc	5280
ttgtgtact	gtgttgcgt	aagactaccc	cgttcttgc	ttatgtgttc	accggggcaa	5340
ctgcctgggg	gccccggatgg	gggcagggtg	gaagcggctc	cccatttta	taccaaaggt	5400
gctacatcta	tgtgtatgggt	gggggtgggaa	gggaatca	gggtctatag	aaattgagat	5460
gccccccca	gccagcaat	gttcctttt	gttcaaagtc	tattttatt	cttgtatatt	5520
ttttcttct	ttttttttt	ttttgtggat	ggggacttgt	gaattttct	aaaggtgcta	5580
tttaacatgg	gaggagagcg	tgtgcgtcc	agcccagccc	gctgctcact	ttccaccctc	5640
tctccacctg	cctctggcctt	ctcaggcctc	tgctctcga	cctctctcct	ctgaaaccct	5700
cctccacagc	tgcagcccat	cctccggct	ccctcctagt	ctgtcctgcg	tcctctgtcc	5760
ccgggtttca	gagacaactt	cccaaagcac	aaagcagtt	ttcccttaggg	gtgggaggaa	5820
gaaaagact	ctgtacctat	tttgtatgt	tataataatt	tgagatgtt	ttaattattt	5880
tgattgtgg	aataaagcat	gtggaaatga	cccaaacata	a		5921

<210> 13
<211> 1804
<212> DNA
<213> Homo sapiens

<400> 13

gtatcactca	aatctggca	gccagttccg	tcctgacaga	gttcacagca	tatattggtg	60
gattcttgc	catagtgc	ctgtttaag	aattaacaa	agcagtgtca	agacagtaag	120
gattcaaacc	atttgccaaa	aatgagtcta	agtgcattt	ctctcttcct	ggcatttgatt	180
ggtggtacca	gtggccagta	ctatgattat	gattttcccc	tatcaattt	tgggcaatca	240
tcaccaaact	gtgcaccaga	atgttaactgc	cctgaaagct	acccaagtgc	catgtactgt	300
gatgagctga	attgaaaag	tgtaccaatg	gtgcctcctg	gaatcaagta	tctttacctt	360
aggaataacc	agattgacca	tattgtgaa	aaggccttgc	agaatgtaac	tgatctgcag	420
tggctcattc	tagatcacaa	ccttctagaa	aactccaa	taaaaggag	agttttctct	480
aaattgaaac	aactgaagaa	gctgcata	aaccacaaca	acctgacaga	gtctgtggc	540
ccacttccca	aatctctgt	ggatctgcag	cttactcata	acaagatcac	aaagctggc	600
tcttttgaag	gattggtaaa	cctgaccc	atccatctcc	agcacaatcg	gctgaaagag	660
gatgctgtt	cagctgttt	taaaggctt	aaatcactcg	aatcacctg	cttgagcttc	720
aatcagatag	ccagactg	ttctggctc	cctgtctc	ttcttaactct	ctacttagac	780
aacaataaga	tcaacat	ccctgtatg	tatttcaac	gtttaatgc	attgcagtt	840
ctgcgttat	ctcacaacga	actggctgt	agtggaaatac	ctggaaattc	tttcaatgt	900

Sequence listing.txt

tcatccctgg	ttgagctgga	tctgtcctat	aacaagctta	aaaacatacc	aactgtcaat	960
gaaaaccttgc	aaaacttata	cctggaggc	aatcaacttgc	agaagtttgc	cataaagagc	1020
ttctgcaaga	tcctggggcc	attatcctac	tccaagatca	agcatttgc	tttggatggc	1080
aatcgcatct	cagaaaccag	tcttcaccg	gatatgtatg	aatgtctacg	tgttgctaac	1140
gaagtcactc	ttaattaata	tctgtatcct	ggaacaatat	tttatggta	tgttttctg	1200
tgtgtcagtt	ttcatagtat	ccatattttt	ttactgttta	ttacttccat	gaattttaaa	1260
atctgaggg	aatgtttgt	aaacatttat	ttttttaaa	gaaaagatga	aaggcaggcc	1320
tatccatca	caagaacaca	cacatataca	cgaatagaca	tcaaactcaa	tgctttattt	1380
gtaaatttag	tgttttttta	tttctactgt	caaatgtatg	gcaaaacctt	ttactggttg	1440
catggaaatc	agccaagttt	tataatcctt	aaatcttaat	gttccctaaa	gcttgattt	1500
aatacatatg	gatgttactc	tcttgcacca	aattatcttg	atacattcaa	atttgcttgg	1560
ttaaaaaata	ggtggatag	attgaggcca	agaatattgc	aaaatacatg	aagcttcatg	1620
cacttaaaga	agtatttttta	gaataagaat	ttgcataactt	acctagtga	actttcttag	1680
aattattttt	cactctaagt	catgtatgtt	tctcttgc	tatttgcatg	ttatgtttaa	1740
taagctacta	gcaaaataaa	acatagcaa	tgaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1800
aaaa						1804

<210> 14

<211> 4827

<212> DNA

<213> Homo sapiens

<400> 14

gcgggtggcgc	tgcggagacc	cgggccagac	gcctggcgcc	cgccggcaca	caaggcgctt	60
tctagctccc	ccccccggagc	gcacagcccg	cctcccttccg	cggccctgc	agtggcaggc	120
ttgctctgccc	ctaccgtgac	gcccgtccgg	gacgctctgc	gggtccctgg	caccgggtcc	180
gccccgtggg	gacgacagac	ggaggcgaac	gccatcgta	gcccgtccgc	gagccatcg	240
tcggggcgc	gtcctctccc	cggtcgcc	tccttcctcc	ggggcattcg	ccaccgcctt	300
cctgggctgc	gacgaccgg	tcgtcgcc	cttgcctgt	accgtcgta	gaactcgat	360
gtgcgttgcg	gccagtcgc	actgtgttgc	ggaagcaaa	tgtcgttgc	tgtgcgttgc	420
aaccgcaga	ccaggggccag	caggcgtcc	attaacatct	atctgtttca	caagtcttcc	480
tacgctgaca	gcgtcctcac	tcacccgtat	cttttaccc	agcagcgtct	cttcactgac	540
gtcctctcc	atgcccggaaa	taggaccttc	ccttgcacc	gggcagtgct	ggctgcgtc	600
agtcgtact	ttgaggccat	gttcgttgc	ggcctgaaag	agagccagg	cagtggatgc	660
aactttgaca	attccatcca	cccagaagtc	ttggagctgc	tgcgttgcata	tgcgtactcc	720
tcccgggtca	tcatcaatga	agaaaaatgca	gaatcgctcc	tggaaagctgg	tgacatgctg	780
gagttcaag	acatccggg	tgcatgtgc	gagttccctgg	aaaagaacct	gcatccacc	840
aactgcctgg	gcatgtctgt	gctgtctgt	gcacaccgt	gcaccaagct	gtacgaacta	900
tcttggagaa	tgtgtctcag	caacttccaa	accatcgaa	agaatgaaga	tttccttccag	960
ctgccccagg	acatggtagt	gcaactcttgc	tccagtgaag	agctggagac	agaggatgaa	1020
aggcttgtgt	acgagtctgc	aattaacttgc	atcagctatg	acctgaagaa	gcgcatttgc	1080
taccccccag	aactgttgc	gacagtaagg	ctggcacttc	tgcagccat	ctatctcatg	1140
gagaatgtgg	ccatggagga	actcatcacc	aagcagagaa	agagtaagg	aattgtggaa	1200
gaggccatca	gtgtcaaact	gaaaatccgt	cagaatgacg	gtgtggtaac	cagcctctgt	1260
gcccgaccc	ggaaaactgg	ccatccccc	ttccttcctgg	gaggacagac	tttcatgtgt	1320
gacaaggtagt	atctggtaga	ccagaaggcc	aaagaaatca	ttcccaaggc	tgacattccc	1380
agcccaagaa	agagtttag	tgcatgtgc	atggctgc	aagtgtatc	tactgggggg	1440
cgggggtctg	aaaatgggg	ctcgaaagat	gtctgggtt	atgataccct	gcacgaggag	1500
tggtccaagg	ctgcccccat	gctgggtggcc	aggtttggcc	atggctctgc	tgaactgaag	1560
cactgcctgt	atgtggttgg	ggggcacacg	gccgcaactg	gctgcctccc	ggcctccccc	1620
tcagtccttc	taaaggcagg	agaacattat	gaccccacaa	tcaacaaatg	gaccatgg	1680
gccccactcc	gagaaggcgt	tagcaacgccc	gcagtagtga	gtgccaact	taagttattt	1740
gctttcgag	gtaccagtgt	cagtcatgac	aagctcccc	aagttcgttg	ttacgatcag	1800
tgtaaaaca	ggtggactgt	accggccacc	tgtccccagc	cctggcgta	cacagcagca	1860
gctgtctgg	gaaaccagat	ttttattatg	gggggtgata	cagaattctc	tgcctgtct	1920
gcttataaat	tcaacagtg	gacttaccag	tggaccaag	tggagatgt	gacagcaaag	1980
cgcatagat	gccatgtgt	ggcctctgg	aacaaactct	acgtgggttg	aggatacttt	2040
ggcattcagc	gatgcaagac	tttgactgc	tacgatccaa	cattagacgt	gtggaaacagc	2100
atcaccactg	tcccgtactc	gctgattcct	actgcatttgc	tcagcacctg	gaaacatctg	2160
ccttcttaaa	tgcagttacat	tctaaagaga	gtgagcatga	gctcactcc	tcactcgatg	2220
agataaatatg	agatttctac	ttcgagagg	ccaagtcataa	tgaagagaaa	aaaagggaaa	2280
gaagttgcaa	gactcgaata	aaatctgctg	caccttgc	atgctctaac	tggacatgaa	2340
ggaaaggggc	gagggagggg	ggtgggattt	ttggtgcaag	tagcacatgg	tttaaatatg	2400

Sequence listing.txt

aatgaacaaa	cctgtatct	agtccctgtc	ttgtattgt	ggattaatgt	aatgttaat	2460
cagccctca	aaggagaga	aaagctggac	ctttccctt	gctgtaccat	attcagcatt	2520
tgatttccat	gggccccacc	atttatgtgt	agaatttcaa	atggttgc	cctctcttg	2580
aggacagagc	ttgaagcctc	cacaccagct	gctgctggag	attcaaagcc	caactgtggg	2640
tccgagaggg	aagctggctg	ggctggctga	agaatgaaga	ccactggact	ctccgttaat	2700
ctctaagggg	tctgtcccc	aggaacgtt	ctgaacaatg	gggactttgt	tggtagccat	2760
tttgtatgt	ttcttttcta	tttataagt	actttaaact	ttcccttgc	tgttaagaag	2820
tttgtatag	atttagctat	ttattgttcg	atgcctgc	gctgaaacaa	tgcctacagc	2880
tgtctcaca	tgtatggacg	tgtgtaaatg	gttgcacattt	tgtggctgtt	2940	
gagatgtgt	ttgtgtcaca	aacatgaaaa	ttttgtgat	acaatttgg	gcataactgg	3000
agggtggct	gggggggggt	ggattttaa	aatgtcaaga	caggaaagga	tgacaaaatg	3060
gaaatttaaa	tgacatccta	gaggtagaga	aaccgtggag	atcgcttttc	tcagactcac	3120
caactttaa	ttggatttca	ttgggttgg	ttgtgtcgt	aggtaaggg	gaggctgtt	3180
tctgccttc	ccccactcc	catctgattt	acttaatc	gtctcagctg	ctgaaattt	3240
gaaaggacca	aattgttta	cagtttttt	cttgtgtag	tatctgaaa	tcctggaaaa	3300
ttctatggaa	tagttctgt	tataggcac	aagtaaaggc	attgtccaa	gtttatttat	3360
ttatttatta	ccctaagaat	gcttgcct	aaccacattt	aatggaaaaa	acggcatgt	3420
tcacagatgt	aaattaactc	accagattt	ctgggcctg	actcattctc	ttcttgctat	3480
atgatttagc	aagttctaga	aggttccaa	gacaataatt	acattggcac	aatgtatact	3540
tcagtgtca	cccgtagcaa	atctttttt	aaaaaaactct	ttgtgtcaca	agtaacacat	3600
ttggccacaa	aacaccaaag	aattgttagc	agtggccct	attgagaagt	tttccgttag	3660
agttgaaat	cagttgtgaa	tacattctt	gctagttg	gtgcttg	actaagcatg	3720
tgccgtcgt	ggtatttagt	ctagtctaa	atagggtc	ccctgaggt	gcagggaaag	3780
accaaagttt	gcaactcgaa	ctgcttcgt	ccatgtttt	cacattgt	tattttagaa	3840
aataggggtt	aagactgata	acaacctttt	acattgtgac	tgtgttg	ttgtctaattg	3900
acagataaaat	ccttaacatt	tcttccacc	tttagtactt	agactaattt	tgttgtccg	3960
tccatgcct	gaatgagttt	gctgtagtt	ggcctaata	aatgagctgt	ttgaagaaaa	4020
gaatcacagt	actttccagc	agtca	ttgttccat	atgtgtct	agcaatgc	4080
atgtctaatt	gtccccccat	ggcata	agtgtcg	atattgtac	agttacagct	4140
ctgttagttt	tgtgcaat	ctgcaagag	agatgtatgt	gtca	ggctctgaa	4200
agcaggatga	attttctgca	gctgttca	atgtgggtt	tgttctt	tcctcttatt	4260
attactgtgt	gtgagccaga	gggagctgt	gttgggtt	ggcccccagc	ctgtaggaa	4320
ctttctggac	ccccacttctt	tgaatcgata	taggcattt	gtctca	ttgaccattt	4380
tcacccctgt	aaacgtccca	cacttgaag	caaatacaat	tcacagcaca	gtacacacaa	4440
aaaccttggc	ataagacaga	gaaggttctt	tttattttt	gggctgg	ctgtagaaac	4500
atataaaca	gggcagccct	ccac	tataattgt	tagccctt	tcttgggct	4560
tgacacctgt	tttgaataa	agtgattt	gctgcata	gtccctct	tggctattt	4620
ccatgtgg	cacgtacaaa	actctgtata	agttgaagga	aatgttcat	gttcataatgt	4680
acttgg	tatgactaca	ttttaggtt	ttgtaaaact	gttattttt	tttttttac	4740
aatgtgaaac	tgaaggtcaa	taaatttatt	gagattttct	cttcaaaaaaa	aaaaaaaaaa	4800
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	4827

<210> 15
<211> 1098
<212> DNA
<213> Homo sapiens

<400> 15

cggcacgagg	gtcccgccg	ctccctcgac	ccgctccgct	ccgctccgct	cggcccccgc	60
ccgcccgtca	acatgatccg	ctgcccgt	gcctgcgagc	gctgcccgt	gatcctgccc	120
ctgctccctac	ttagccat	cgccctcgac	atcatcg	tggccggccg	cgctgttt	180
cagtcttagcg	accacggca	gacgtcc	ctgtgttgg	aatgtccca	agagggccgc	240
ggcagcgggt	cctacgagga	gggcgtgt	agcctcatgg	agtagcgt	gggttagagca	300
gcggctgcca	tgctcttct	tggcttcatc	atcctgg	tctgtttcat	cctctcc	360
ttcgccctct	gtggacccca	gatgttgc	ttccgttgg	tgattggagg	tctccttgcc	420
ttggctgt	tgttccagat	catctcc	gtatattacc	ccgtgaagta	cacccagacc	480
ttcacccctc	atgcaaccc	tgctgtact	tacatctata	actggcc	cggcttggg	540
tggcagcc	cgattatct	gatggctgt	gccttctt	tctgtgt	cctcaactac	600
gaagatgacc	ttctggccaa	tgccaagccc	aggtacttct	acacatct	ctaacttggg	660
aatgaatgt	ggagaaaaatc	gctgtgt	agatggactc	cagaagaaga	aactgttct	720
ccaggcgact	ttgaacccat	ttttggcag	tgttcatatt	attaaactag	tcaaaaatgc	780
taaaataatt	ttggagaaaa	tattttttaa	gtatgttat	agttcatgt	ttatcttta	840
ttatgtttt	tgaaggtgt	tcttttact	aattacctat	actatgcca	tatttccctt	900

Sequence listing.txt

tatctatcca taacatttat actacatttg taagagaata tgacacgtgaa acttaacact 960
 ttataaggtt aaaatgagggt ttccaagatt taataatctg atcaagttct tggattttcc 1020
 aaatagaatg gactcggtct gttaagggtc aaggagaaga ggaagataag gttaaaagtt 1080
 gttaatgacc aaacattc 1098

<210> 16
 <211> 1381
 <212> DNA
 <213> Homo sapiens

<400> 16
 atgcgcgatc tcccggagca tgccgcacgc cgccgcgcac gcggggcggt gcctgggtac 60
 cgcgcgct cccggaaatg tgccggcg tcgcgaagg tcagcaggga gccgtggcc 120
 gggcgccggg ttccccggcac gtgtctcgcc acgtggcagc gcccctggcc ctgggcttgg 180
 aggcggccgc gcccctggatc cgccggccgt ggtcggcagc tcgggtcg 240
 cggccacgcg ttcatgtcag ccggcgagag ctcagctccg acccccgcgc gccccgcgct 300
 tcccaggagg ttcatctgtc cttccctgaa ctgcagcgcc aattacagca aagcctggaa 360
 gcttgcacgcg caccgtgtca agcacacggg ggagagacca tttgttgg 420
 gtgtggcaag gccttcatca gggactacca tctgagccgc cacattctga ctcacacagg 480
 agaaaagccg ttgttgg 540
 cttgaagaaa catttgaac gcaaacatga aaatcaacaa aaacaatata tatgcagttt 600
 tgaagactgt aagaagaccc ttaagaaaca tcagcagctg aaaatccatc agtgcacagaa 660
 taccaatgaa cctctattca agtgtaccca ggaaggatgt gggaaacact ttgcacatc 720
 cagcaagctg aaacgacatg ccaaggccca cgagggtctat gtatgtcaaa aaggatgttc 780
 ctttggcaaaa aaaacatgaa cggaaacttct gaaacatgtg agagaaaccc ataaagagga 840
 aatactatgtt gaagtatgccc gggaaacatt taaacgcacaa gattacctt agcaacacat 900
 gaaaactcat gccccagaaa gggatgtatg tcgctgttca agagaaggct gtggaaagaa 960
 ctatacaact gtgtttaatc tccaaagccca tattctctcc ttccatgagg aaagccgccc 1020
 ttttgggtgtt gaacatgctg gctgtggcaa aacatttgc atgaaacaaa gtctcactag 1080
 gcatgctgtt gtacatgatc ctgacaagaa gaaaatgaag ctcaaaatgtca aaaaatctcg 1140
 tgaaaaacggg gagtttggcc ttcatctca gtggatataat cttcccaaaa gggaaacaagg 1200
 gcaaggctta tctttgtgtc aaaacggaga gtcacccaaat tggatgg 1260
 ctcgacagtt gcagttactt cccttggctt agaactgcac tgctttgtt aaaggactgc 1320
 agaccaagga gtcgagctt ctctcagagc atgctttctt ttattaaat tactgatgca 1380
 g

<210> 17
 <211> 1978
 <212> DNA
 <213> Homo sapiens

<400> 17
 gggagggatc tttagggccgg ggctggccca ggctacggcg gctgcagggc tccggcaacc 60
 gctccggcaa cgccaaacccg tccgctgcgc gcaggctggg ctgcaggctc tcggctgcag 120
 cgctgggtgg atctaggatc cggcttccaa catgtggcagc ctctggccct ccctctgtc 180
 cctgctgggtt ttggccatg cccggagcag gccccttttc catccccctgt cggatgagct 240
 ggtcaactat gtcaacaaac ggaataccac gtggcagggc gggcacaact tctacaacgt 300
 ggacatgagc tacttgaaga ggctatgtgg taccccttc ggtggggccca agccacccca 360
 gagagttatg tttaccgagg acctgaagct gcctgcaagc ttctgatgcac gggaaacaatg 420
 gcccacgtgtt cccaccatca aagagatcag agaccaggcc tcctgtggct cctgctggc 480
 cttcggggctt gtggaaagcca tctctgaccg gatctgcac cacaccaatg cgcacgtcag 540
 cgtggagggtg tcggcgaggg acctgctcac atgctgtgg agcatgtgtg gggacggctg 600
 taatgggtggc tattctgtctt aagcttggaa cttctggaca agaaaaggcc tggtttctgg 660
 tggcctctat gaatcccattt tagggtgcag accgtactcc atccctccct gtgagcacca 720
 cgtcaacggc tccccggccca catgcacggg ggagggagat acccccaagt gtagcaagat 780
 ctgtgagctt ggctacagcc cgaccctacaa acaggacaag cactacggat acaattctt 840
 cagcgtctcc aatagcgaga aggacatcat ggccgagatc tacaacaaacg gccccgtgga 900
 gggagctttc tctgtgtatt cggacttccct gctctacaag tcaggagtgt accaacacgt 960
 caccggagag atgatgggtt gccatgccc ccgcacccctg ggctggggag tggagaatgg 1020
 cacaccctac tggctgggtt ccaactccctg gaacactgac tgggtgaca atggcttctt 1080
 taaaatactc agaggacagg atcactgtgg aatcgaatca gaagtgggtgg ctggaaattcc 1140
 acgcaccgtt cagtactgtgg aaaagatcta atctgcccgtt ggcctgtcg gccagtcctg 1200
 gggcgagat cggggtagaa atgcatttttta ttctttttttt tcacgtaaaga tacaagtttc 1260

Sequence listing.txt

agacagggtc	tgaaggactg	gattggccaa	acatcagacc	tgtcttccaa	ggagaccaag	1320
tcctggctac	atcccagct	gtggttacag	tgcagacagg	ccatgtgagc	caccgctgcc	1380
agcacagagc	gtccttcccc	ctgttagacta	gtgccgtagg	gagtacctgc	tgccccagct	1440
gactgtggcc	ccctccgtga	tccatccatc	tccagggagc	aagacagaga	cgcaggaatg	1500
gaaagcggag	ttcctaacag	gatgaaagtt	cccccatcag	ttcccccaagt	acctccaagc	1560
aagtagctt	ccacatttg	cacagaaatc	agaggagaga	tgggttggg	agccctttgg	1620
agaacgcagg	tctcccaggc	ccccctgcac	tatcgagtt	gcaatgtcac	aacctctctg	1680
atcttgcgt	cagcatgatt	ctttaataga	agttttat	tttgcgtcac	tctgctaattc	1740
atgtgggtga	gcccgtggaa	cagcgggaga	cctgtgctag	tttacagat	tgccctctaa	1800
tgacgcggct	caaaaggaaa	ccaagtggc	aggagttgtt	tctgaccac	tgatctctac	1860
taccacaagg	aaaatagtt	aggagaaacc	agctttact	gttttgaaa	aattacagct	1920
tcaccctgtc	aagttaacaa	ggaatgcctg	tgccaataaaa	agtttctcc	aacttgaa	1978

<210> 18

<211> 1074

<212> DNA

<213> Homo sapiens

<400> 18

ggtcaggaaa	gctcaggcaa	gcccaccc	aggcattaca	gctagactcc	gagcttactg	60
ggcagtcac	tgattcgacc	aacatcagtt	cgcaggctt	aagcccagtc	ccttacggcg	120
gctggggagg	gaccaggccc	aagtatataa	agctccctga	gggtccgcgt	tggcttgcg	180
cctgtgagtg	tgattcaaga	acgtcccagt	gcccttgct	cctttcggag	tgtgaccccg	240
tgcttgcac	ggacacgtt	cccagctcg	gtgagaaggg	tatcttccgg	gaacctcgcc	300
ttaatagca	caacgagcgc	agagtccact	ggatctgcga	gaagaaaccg	cgctaactag	360
tttgcctt	cgccgcctc	gtagtcactg	ccgcggcgcc	ttgagtctcc	ggccgcctt	420
gccatggct	cccggtgtt	catcgctcca	gttggcgaga	gttgcgcta	cgtgagtagc	480
ttgcagccct	cgcccaaacg	gccagacgc	gacgtcgacc	agcaggact	gttaagaagt	540
ttgatagctg	taggactgg	tgttgcagct	cttgcattt	caggcgcta	cgcatttcgg	600
atctggaaac	ctctagaaca	agttatcaca	gaaactgca	agaagattt	aactccatgc	660
tttcatctt	actataaagg	aggatttga	cagaaaaatga	gtagggcgaga	agctggctt	720
attttaggt	taagccatc	tgctggcaag	gctaagatta	gaacagctca	taggagagtc	780
atgatttga	atcaccctaga	taaaggtgga	tctccttacg	tagcagccaa	aataaatgaa	840
gcaaaagact	tgctagaaac	aaccaccaa	cattgtatgt	taaggaccac	actgaaggaa	900
aaaaaaagag	gggacttcga	aaaaaaaaa	agccctgca	aatattctaa	aacatggct	960
tcttaatttt	ctatatggat	tgaccacagt	cttatcttcc	accattaagc	tgtataacaa	1020
taaaatgtt	atagtcttgc	tttttattat	cttttaaga	tctccttaaa	ttct	1074

<210> 19

<211> 4098

<212> DNA

<213> Homo sapiens

<400> 19

ggtggccctt	gtggccgtcc	aggctagcgg	cgcccccg	gcggcgggga	gaaagactct	60
ctcacctgtt	tttgcggctg	tggccaccgc	cggccagggg	tgtggagggc	gtgctgccgg	120
agacgtccgc	cgggctctgc	agttccgcgg	ggggtcgggc	agctatggag	ccgcggccca	180
cggccccc	ctccggcgc	ccggactgg	ccgggggtcgg	ggagacgcgc	tcagccgctg	240
cgctggccgc	agccagggtt	gaactgccc	gcacggctgt	cccttcgggt	ccggaggatg	300
ctgcgcccgc	gagccgggac	ggcggcggg	tccgcgtatga	ggggcccg	gcggccgggg	360
acgggctgg	cagaccctt	gggcccaccc	cgagccagag	ccgttccag	gtggacctgg	420
tttccgagaa	cggccggcgg	ggcgtctgt	cgccggcg	ggccggcg	gcagcggcgg	480
cggctgg	ttggggcg	gccaagcaga	cccccg	cggggaagcc	agcggcgaga	540
gcgagcc	taaaggcagc	gaggaagcca	agggccgtt	ccgcgtgaac	tgcgtggacc	600
cagctgc	ctcgtcggt	gaagacagcc	tgtcagatgc	tgcgggggtc	ggagtcgacg	660
ggcccaacgt	gagttccag	aacggcg	acacggtgct	gagcgagg	agcagctgc	720
actccgg	cgccggcg	agtgggcacc	accagacta	ctattatgt	acccacacca	780
acaccta	cctgcgcacc	ttcgccaca	acaccatgg	cgctgtgcc	aggatcgatc	840
actaccgg	cacagccgc	cagctggcg	agaagctgt	ccggcctagc	ctggcgagc	900
tccacgacg	gctggaaaag	gaacctttt	aggatggctt	tgcaaattgg	gaagaaagta	960
ctccaacc	agatgtgt	gtcactgtata	ctgcagaaag	taaaggagtc	gtgaagttt	1020
gctggatca	gggtgttata	gtacgttga	tgttaaacat	ttgggggtgt	atgctttca	1080
tttagattgtc	atggattgt	ggtaagctg	gaatagg	atcgtcc	gtaataatga	1140

Sequence listing.txt

tggccactgt	tgtgacaact	atcacaggat	tgtctacttc	agcaatagca	actaatggat	1200
ttgttaagagg	aggaggagca	tattatttaa	tatctagaag	tctagggcca	gaatttggtg	1260
gtgcaattgg	tctaattttc	gcctttgcca	acgctgtgc	agttgctatg	tatgtggttg	1320
gatttgcaga	aaccgtgggt	gagttgctta	aggaacattc	catactttag	atagatgaaa	1380
tcaatgatat	ccgaattatt	ggagccatta	cagtcgtat	tcttttaggt	atctcagtag	1440
ctggaatgga	gtgggaagca	aaagctcaga	ttgttcttt	ggtgatccta	cttcttgcta	1500
ttggtgattt	cgtcatagga	acatttatcc	cactggagag	caagaagcca	aaagggtttt	1560
ttggttataa	atctgaaata	ttaatgaga	actttggcc	cgattttcg	gaggaagaga	1620
cttcctttc	tgtatttgc	atcttttc	ctgctcaac	tgttattctg	gctggagcaa	1680
atatctcagg	tgatcttgc	gatccctcagt	cagccatacc	caaaggaaaca	ctccctagcca	1740
ttttaattac	tacattgggt	tacgttagaa	ttgcagtatc	tgttaggtct	tgtgttgttc	1800
gagatgccac	tggaaacgtt	aatgacacta	tcgtaacaga	gctaacaac	tgtacttctg	1860
cagcctgcaa	attaaacttt	gattttcat	cttgcgaaag	cagtcctgt	tcctatggcc	1920
taatgaacaa	cttccaggtt	atgagtatgg	tgtcaggatt	tacaccata	atttctgcag	1980
gtatatttc	agccactt	tcttcagcat	tagcatccct	agttagtgc	cccaaataat	2040
ttcaggctct	atgtaaaggac	aacatctacc	cagctttcca	gatgtttgc	aaagggttatg	2100
ggaaaaataa	tgaaccttt	cgtggctaca	tcttaacatt	cttaatttgc	cttggattca	2160
tcttaattgc	tgaactgaat	gttatttgc	caattatctc	aaacttcttc	cttgcattcat	2220
atgcattgtat	caattttca	gtattccatg	catcacttgc	aaaatctcca	ggatggcgctc	2280
ctgcattcaa	atactacaac	atgtggatat	cacttctgg	agcaatttctt	tgttgcata	2340
taatgttgc	cattaactgg	tgggctgc	tgctaacata	tgtatagtc	cttgggtgt	2400
atatttatgt	tacctacaaa	aaaccagatg	tgaattgggg	atcccttaca	caagccctga	2460
cttacctgaa	tgcactgc	cattcaattc	gtctttctgg	agtggaaagac	cacgtaaaaa	2520
acttttaggc	acagtgttt	gttatgacag	gtgctccaaa	ctcacgtcca	gttttacttc	2580
atcttgc	tgatttcaca	aaaaatgtt	gtttgtat	ctgtggccat	gtacatatgg	2640
gtcctcgaag	acaaggcat	aaagagatgt	ccatcgatca	agccaaatat	cagcgatggc	2700
ttattaaagaa	caaaatgaag	gcattttatg	ctccagttaca	tgcagatgac	ttgagagaag	2760
gtgcacagta	tttgcgtc	gctgtggc	ttgggtcgat	gaagccaaac	acacttgc	2820
ttggatttaa	gaaagattgg	ttgcagcag	atatgaggg	tgttggat	tatataaact	2880
tatttcatga	tgcttttgc	atacaatatg	gagtagtgg	tattcgctt	aaagaaggc	2940
tggatataatc	tcatcttca	ggacaagaag	aattttgtc	atcacaagag	aatctcc	3000
gcaccaagga	tgtgttagt	agtgtggat	atagaaaaaa	gtccgattt	gatacttca	3060
aaccactcag	tgaaaaacca	attacacaca	aagttgagga	agaggatggc	aagactgca	3120
ctcaaccact	gttggaaaaaa	gaatccaaag	gccctattgt	gcctttaat	gtagctgacc	3180
aaaagcttct	tgaagctagt	acacagttt	agaaaaaaca	agaaaagaat	actattgtat	3240
tctggggct	tttgcgtat	ggaggttga	ccttattgt	accttac	ctgacgacca	3300
agaaaaatg	gaaagactgt	aagatcagag	tattcattgg	tggaaagata	aacagaatag	3360
accatgaccg	gagagcgt	gctactttgc	ttagcaagtt	ccggatagac	ttttctgtat	3420
tcatgttct	aggagatatc	aataccaaac	caaagaaaga	aaatattata	gcttttgagg	3480
aaatcattga	gccatacaga	cttcatgaag	atgataaaga	gcaagatatt	gcagataaaa	3540
tgaaagaaga	tgaaccatgg	cgaataacag	ataatgagct	tgaactttat	aagaccaaga	3600
cataccggca	gatcagggtt	aatgagttat	taaaggaaaca	ttaaaggcaca	gctaattat	3660
ttgtcatgag	tctcccgat	gcacggaaag	gtgctgtgc	tagtgc	tacatggcat	3720
ggttagaagc	tctatcta	gacattaccac	caatccctt	agttcg	aatcatcaga	3780
gtgtccttac	tttctatttca	taatgttct	atacagtgg	cagccctcca	gaatggact	3840
tcagtgcctt	gtgttagta	ctgaaatctt	caatgacaca	ttaacatcac	aatggcgaat	3900
ggtgactttt	ctttcacgt	ttcatttaatt	tgaaagcaca	cagggaaagct	tgctccattt	3960
ataacgtgtt	tgagacttc	ggttttagtc	aattccat	ctcaatctt	atggtgattt	4020
ttctctgtt	aactgaagtt	tgtgagagta	gttttcc	gctacttgaa	tagcaataaa	4080
agcggtttaa	cttttgg					4098

<210> 20
<211> 3120
<212> DNA
<213> Homo sapiens

<400> 20
aaaggaaaaca caagttgctt ttgataacac atgatgaaa gaaagaattt gaaagaatga 60
gcaatgttgc cggataaaat gacaaacaag tgcacaaagg cccaaagaatg tactacaaa 120
agcttcaaa caatatttgt ttatctttaa agacacatcc atagcatact taaaaataa 180
ggaacttgaa caaggagaac cacaagaaaa actaaatctt agggctgc aagttgtgc 240
cgatgtaaat gtagcaggaa gaaaatttgg aatcaagttt ctaatccctg ttggccatgg 300
tatgtatgaa atgtatttgc gatgtgacca tgagaatcaa tacggccat gatggctgc 360

Sequence listing.txt

ctgcatgttgc	gcatcgaaagg	gcaaaaccat	ggcagacagc	tcctaccagc	cagagggtcct	420
caacatccctt	tcatttctga	ggataaaaaa	caggaactct	gcatctcagg	tggcttcag	480
tctcgaaaac	atggatatga	acccagaatg	tttgtgtca	ccacgggttg	caaaaagaca	540
caaatccaaa	cagctggccg	cccggatct	ggagggcgcac	cagaacgtgg	cccagatgcc	600
cctggtcgaa	gccaagctgc	ggttcatcca	ggcgtggcag	tcactgcctg	agtttggcct	660
cacctactac	cttgtcagat	ttaaaggaag	caaaaaagat	gacattctgg	gagtttcata	720
taacaggttgc	attaaaatttgc	atgcagccac	cgggattcca	gtgacaacat	ggagattcac	780
aaatatcaaa	cagtggatgc	taaactggga	aacccggcag	gtggtcatcg	agtttgcacca	840
aaacgtcttgc	actgttttca	cctgcttgcag	tgcagattgc	aagattgtgc	acgagttacat	900
tggcggttac	attttcttgc	ccaccctgctc	caaggaccag	aatgaaacac	tcgtatgagga	960
cttgttccac	aaattgaccg	gcccgttgcag	tgaaaacaag	cacgcgtgt	cggctcacac	1020
caacaaggca	agccaaaggc	gcccccccccc	agagggatcc	ctaacgtgcc	cagcatgttag	1080
attctgttgc	aacagacaaac	atacatttac	cgctggtac	ccagatctc	attcaaaaccc	1140
actgtgttgc	catccctttc	cttactttgc	cctgtgtctac	cagccacgg	aggagccctt	1200
cttgttttttgc	ctataaaatgc	ggtaggcagg	agaaaagcag	gtgccttaag	attgtcttaa	1260
ggcccagcat	gtggttacag	ttctctgact	tgcagaacat	gcccgtgt	tggtctacaag	1320
ttatctctgt	gtctgtatgt	ctcattacta	agtatgtgc	gaagacagaa	aggtaaaaat	1380
cacgtgttagc	aagaacaact	cttatttac	aaactcaggt	atgaaacgaa	acgcctgtcc	1440
ttcatggaaac	tgtttttgc	tcctgtcttt	tcaaaatggc	agaggaggat	cctacacaca	1500
ctttttccct	ggaggccaag	gtctaggggt	agaaaagggg	gggggtgggc	taccaggtag	1560
cagttgacaa	cccaagggtca	gaggagtggc	cctcgtgtc	atctgtccac	agtgtatact	1620
gccaagatgc	ccactgaccc	acatctggtc	ttagtcattg	gtcttcctcag	atttctgggg	1680
ccacctgcaaa	gccccattcc	attcctacag	atctctcagc	cacctgttaag	tcctttgtga	1740
agatgtgggt	gacacagggg	gacagaaaaa	cccatatttc	aaccaggatc	catgtctcca	1800
ctgcttctac	tctgggttgc	gattcaggaa	gacaggcaca	gtcctctctg	ttcatagaaaa	1860
cacctgttgc	tgtcaaggat	tccagtcagg	tgtctatccc	aactgttcag	ggagagaagg	1920
gcagaccat	tctcaaagac	caccatgttc	aaggctgtac	agctccccac	tggctgcccc	1980
cacaggggct	ttaggtgtgt	ctgggtcatg	gggaagcgtc	cctcttattcg	ctggtctgt	2040
ttctcttgcgc	tttggtatct	atgttgcac	gactcctggc	cttttatcta	aaggactttg	2100
gctttgttaa	atcacaagcc	aataatagac	tttttctcc	ccctctgttt	tttgctgtgt	2160
catctctgccc	ttgagactgc	ctttagacat	tgcttgcct	gagagagtga	gccaattaaac	2220
agctgcttgc	atgttcattt	tccattttgg	tttggtagag	gtgggggggg	tgggttttga	2280
gaaggtcaaa	agcaataacca	gaagtaaagg	gaaatatcg	acaatatttt	attatttttt	2340
catagatgtt	ctgcccacaca	aagaacttgg	ggtgtaaagg	taaggcaaaa	gttccaaatcc	2400
catttttcag	tttcccttagg	atgcacccct	cagggagct	ggccagagg	ccgaggcccg	2460
tgagcgttgc	ctgttgcctt	atttttccatc	aaaggccct	gagaagttag	acctcagcaa	2520
ttccggggatc	cacatagaga	cagacttggc	aggggacccc	ctgggtctga	gcccgttagt	2580
ggccatcttgc	aatttcttgc	ttagcctctc	tttagagggt	aatgtgtat	aaggcttcca	2640
ggcacccgct	gaatttctga	ggccttgctt	aaagctcaga	agtgttttag	gcattttgaa	2700
aatctgttgc	acatcataaa	gaacttgatt	tgaaaatgtt	tctatagaaa	caagtgtctaa	2760
gtgttacgttgc	ttataacttgc	tgttgtcat	ttctcagttc	tatttctcg	ttcttattatt	2820
tttagaacatgc	gtcagttctt	taagattata	actggtccta	cattaaaata	atgcttctcg	2880
atgtcagattt	ttacctgttt	gctgctgaga	acatctctgc	ctaatttacc	aaagccagac	2940
cttcagttca	acatgcttcc	ttagcttttc	atagttgtct	gacatttcca	tgaaaacaaa	3000
ggaaccaact	ttgttttaac	caaacttgc	ttgggttacag	tttcaggggg	agcgtttctt	3060
ccatgacaca	cagcaacatc	ccaaagaaat	aaacaagtgt	gacaaaaaaa	aaaaaaaaaa	3120

<210> 21
<211> 1337
<212> DNA
<213> Homo

<400> 21

ctggcgcccc	cttccggcc	ggccccatg	gaggcgctgg	ggaagctgaa	gcagttcgat	60
gcctacccca	agactttgga	ggacttccgg	gtcaagacct	gcgggggcgc	caccgtgacc	120
attgtcagtg	gccttctcat	gctgctactg	ttccctgtccg	agctgcagta	ttacctcacc	180
acggagggtgc	atccctgagct	ctacgtggac	aagtgcgcgg	gagataaaact	gaagatcaac	240
atcgatgtac	tttttccgca	catgccttgt	gcctatctga	gtattgtatgc	catggatgtg	300
gccggagaac	agcagctgga	tgtggAACAC	aacctgttca	agcaacgact	agataaaagat	360
ggcatccccg	ttagctcaga	ggctgagcgg	catgagcttg	ggaaagtgcg	ggtgacgtgt	420
tttgaccctg	actccctgga	ccctgatcgc	tgtgagagct	gctatggtgc	tgaggcagaa	480
gatatacaagt	gctgtAACAC	ctgtgaagat	gtgcgggagg	catatcgccq	taqaqqctqq	540

Sequence listing.txt

gccttcaaga	acccagatac	tattgagcag	tgccggcgag	agggcttcag	ccagaagatg	600
caggagcaga	agaatgaagg	ctgccagggt	tatggctct	tggaagtcaa	taaggtggcc	660
ggaaacttcc	actttgcccc	tgggaagagc	ttccagcagt	cccatgtgca	cgtccatgac	720
ttgcagagct	ttggccttga	caacatcaac	atgacccact	acatccagca	cctgtcattt	780
ggggaggact	atccaggcat	tgtgaacccc	ctggaccaca	ccaatgtcac	tgcgccccaa	840
gcctccatga	tgttccagta	ctttgtgaag	gtgggtccca	ctgtgtacat	gaaggtggac	900
ggagaggtac	tgaggacaaa	tcagttctct	gtgaccagac	atgagaaggt	tgccaatggg	960
ctgttggcg	accaaggcct	tcccggagtc	ttcgtcctct	atgagctctc	gccccatgatg	1020
gtgaagctga	cggagaagca	caggcccttc	acccacttcc	tgacaggtgt	gtgcgcacatc	1080
attggggca	tgttcacagt	ggctggactc	atcgattcgc	tcatctacca	ctcagcacga	1140
gcccattcaga	agaaaaattga	tctagggaaag	acaacgtagt	caccctcggt	gcttcctctg	1200
tccctctt	ctccctggcc	tgtggttgtc	ccccagcctc	tgcaccctct	cacccctctg	1260
gtcagcccca	gccccaggtt	gataaatcta	ttgattgatt	gtgatagtaa	aaaaaaaaaa	1320
aaaaaaaaaa	aaaaaaaaaa					1337

<210> 22

<211> 2908

<212> DNA

<213> Homo sapiens

<400> 22

ctgctcgcgg	cggccctccc	tgctcctccc	gctgctgctg	ccgctgccgc	cctgagtcac	60
tgcctcgca	gctccggccg	cctggctccc	catactagtc	gcccgtat	ggagttctta	120
caacatggca	gacattgaca	acaaagaaca	gtctgaactt	gatcaagatt	tggatgatgt	180
tgaagaagta	gaagaagagg	aaactggta	agaaacaaaa	ctcaaagcac	gtcagctaac	240
tgttcagatg	atgcaaaaatc	ctcagattct	tgccagccctt	caagaaagac	ttgatgtct	300
ggtagaaaca	ccaacaggat	acattgaaag	cctgcctagg	gttagttaaa	gacgagtgaa	360
tgctctcaaa	aacctgcaag	ttaaatgtgc	acagatagaa	gccaattct	atgaggaagt	420
tcacgatctt	gaaaggaagt	atgctttct	ctatcagcct	ctatttgata	agcatttga	480
aattattaaat	gcaattttat	aacctacgga	agaagaatgt	gaatggaaac	cagatgaaga	540
agatgagatt	tcggaggaat	tgaagaaaaa	ggccaaaggt	gaagatgaga	aaaaggatga	600
agaaaaagaa	gaccccaaaag	gaattcctga	attttggta	actttttta	agaatgtga	660
cttgctcagt	gatatggttc	aggaacacga	tgaacctatt	ctgaagcact	tgaaagatat	720
taaagtgaag	ttctcagatg	ctggccagcc	tatgagttt	gtcttagaat	ttcacttga	780
acccaatgaa	tattttacaa	atgaagtgt	gacaaagaca	tacaggatga	ggtcagaacc	840
agatgattct	gatccctttt	cttttgcattt	accagaaatt	atgggttgc	cagggtgccca	900
gatagattgg	aaaaaaggaa	agaatgtcac	tttggaaaact	attaagaaga	agcagaaaca	960
caagggacgt	gggacagttc	gtactgtac	taaaacagtt	tccaaatgact	ctttcttaa	1020
ctttttgccc	cctccctgaa	ttccctgagag	tggagatctg	gatgtatgt	ctgaagctat	1080
ccttgcgtca	gacttcgaaa	ttggtcactt	tttacgtgag	cgtataatcc	caagatcagt	1140
gttatatttt	actggagaaag	ctattgaaga	tgatgtatgt	gattatgtat	aagaaggtga	1200
agaagcggat	gaggaagggg	aagaagaagg	agatgagaa	aatgatccag	actatgaccc	1260
aaagaaggat	caaaaccccg	cagagtgc	gcagcgtga	agcaggatgt	atgtggccctt	1320
gaggataacc	tgcactggc	tacccctgtc	ttccctgaa	aggatgaatt	tacatcattt	1380
gacaaggccta	ttttcaagtt	attttttgtt	tggttgc	ttttttttt	tgcagctaaa	1440
ataaaaaattt	caaataacaat	tttagttttt	acaagataat	gtcttaattt	tgtaccaatt	1500
caggtagaag	tagaggccta	ccttgcattt	agggttatac	tcagttttt	acacattgtt	1560
gaagaaaaagg	taccagctt	ggaacgagat	gtctataactaa	taagcaagtg	aaaaaaaaaa	1620
aaaaaaaaagag	gaagaaaaatc	ttaagtgtt	gtgtctgtt	tctttttaaa	aaaaaaaaaa	1680
aaattcattt	tctttgggtt	agagctagag	agaaggcccc	aagtttctat	ggtttcttct	1740
aattcttattt	gcttaaagta	tgatgtatgtc	acttaccctgt	gcttctgttt	actgtgtat	1800
taaaatgggt	agtactgtt	acctaactac	ctcatggatg	tgttaaggca	tattgagtt	1860
aatctccat	aatgtttctc	aatcttgc	aaagctcaaa	attttggcc	tatttgcata	1920
gccagtgtga	cactaagcat	tttgcata	ccacgcctt	ataactaaac	tggaaaacaa	1980
agggtttaag	tacctctgtt	ctggatctgg	gcagtcagca	ctcttttt	atctttgtgt	2040
ggctccattt	tttatagaag	tggagggatg	cactattca	caaggtccaa	gatttttttt	2100
cagatatttt	tgatgactgt	attgtaaata	ctacaggat	agcactatag	tattgtatc	2160
atgagactta	aagtggaaat	aagactattt	ttgacaaaag	atgccattaa	atttcagact	2220
gttagagccac	atttacaata	cctcaggct	attactgtt	attttgggtt	tgaactttt	2280
ttgacagtga	gggtggattt	ttggattgtc	attagagaa	ggtcttagatt	tcctgcctt	2340
aataaaaaattt	cattgaat	attttagag	gtatgaaaa	cttcccttct	gagaagttag	2400
tgttaagggtc	ttggaaatgt	aacacattgt	ttgttagtgc	atccattct	tcctgcagat	2460
tttaacttac	tactggaaat	ccttaaccaa	ttataatgc	tttttttctt	tattttcaaa	2520

Sequence listing.txt

atgatttcct	ttgctttgat	tagacactat	gtgcttttt	ttttaacca	tagttcatcg	2580
aatgcagct	tttctgaac	ttcaaagata	aatcccatt	ttaatgaac	tgaagtagca	2640
aatcatctt	ttcattctt	tagaaatag	ctattgcca	agtgaagggtg	tagataatac	2700
ctagcttgc	tacataaaagg	ggatgtgg	tgcagaagaa	tttctttat	aaaattgaag	2760
tttaaggga	cgtcagtgtt	tatgccattt	ttccagttcc	aaaatgattc	cattccattc	2820
tagaaattt	agttatgtaa	cctgaaatcc	ttaataaaaat	ttggatttaa	ttttataaaa	2880
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa				2908

<210> 23

<211> 3213

<212> DNA

<213> Homo sapiens

<400> 23

agagactcaa	gatgattccc	ttttaccca	tgtttctct	actattgctg	cttattgtta	60
accctataaa	cgccaaacaat	cattatgaca	agatcttgc	tcatagtcgt	atcagggtc	120
gggaccaagg	cccaaatgtc	tgtccccctc	aacagattt	ggcaccaaaa	aagaataact	180
tcaagcactt	taagaactgg	tataaaaagt	ccatctgtgg	acagaaaacg	actgttttat	240
atgaatgtt	ccctggttat	atgagaatgg	aaggaatgaa	aggctgccc	gcagtttgc	300
ccattgacca	tgttatggc	actctgggc	tcgtgggagc	caccacaacg	cagcgctatt	360
ctgacgcctc	aaaactgagg	gaggagatcg	agggaaaggg	atccttact	tactttgcac	420
cgagtaatga	gccttgggac	aacttggatt	ctgatattcg	tagaggttt	gagagcaacg	480
tgaatgttga	attactgaat	gctttacata	gtcacatgt	taataagaga	atgttgacca	540
aggacttaaa	aatggcatg	attattcctt	caatgtataa	caatttgggg	cttttcatta	600
accattatcc	taatgggggtt	gtcactgtt	attgtgctcg	aatcatccat	gggaaccaga	660
ttgcaacaaa	ttgtgttgtc	catgtcattt	accgtgtgct	tacacaattt	gttaccaa	720
ttcaagactt	cattgaagca	gaagatgacc	tttcatcttt	tagagcagct	gccatcacat	780
cggacatatt	ggaggccctt	ggaagagacg	gtcactttcac	actctttgt	cccaccaatg	840
aggctttga	aaaacttcca	cgaggtgtcc	tagaaaggtt	catgggagac	aaagtggctt	900
ccgaagctt	tatgaatgtac	cacatcttaa	atactcttca	gtttctgtag	tctattatgg	960
gaggagcagt	ttttagacg	cttggaggaa	atacaatgt	gataggatgt	gacggtgaca	1020
gtataacagt	aatggaaatc	aaaatggtga	aaaaaaagga	tattgtgaca	aataatggtg	1080
tgatccattt	gattgtatcg	gtccttattt	ctgattctgc	caaacaagtt	attgagctgg	1140
ctggaaaaca	gcaaaaccacc	ttcacggatc	ttgtggccca	attaggctt	gcatctgctc	1200
tgagggccaga	tggagaatac	actttgttgg	cacctgtgaa	taatgcattt	tctgatgata	1260
ctctcagcat	gtttagcgc	ctcccttaat	taattctgc	gaatcacata	ttgaaagtaa	1320
aagttggcct	taatgagctt	tacaacgggc	aaatactgg	aaccatcgga	ggcaaacagc	1380
tcagagtctt	cgatatactgt	acagctgtct	gcattgaaaa	ttcatgcatt	gagaaaggga	1440
gtaagcaagg	gagaaacggt	gcgattcaca	tattcccgca	gatcatcaag	ccagcagaga	1500
aatccctcca	tgaaaagtt	aaacaagata	agcgctttag	cacccctc	agcctacttg	1560
aagctgcaga	tttggaaagag	ctcctgacac	aacctggaga	ctggacatta	tttgcacaa	1620
ccaatgatgc	ttttaaggga	atgacttagt	aagaaaaaga	aattctgata	cgggacaaaa	1680
atgctcttca	aaacatcatt	tttattcacc	tgacaccagg	agttttcatt	ggaaaaggat	1740
ttgaacctgg	tttacttaac	attttaaaga	ccacacaagg	aagcaaaatc	tttctgaaag	1800
aagtaatgt	tacacttctg	gtgaatgaat	tgaaatcaaa	agaatctgac	atcatgacaa	1860
caaatgtgt	aattcatgtt	gtagataaaac	tcctctatcc	agcagacaca	cctgttgaa	1920
atgatcaact	gttggaaata	cttaataat	taatcaaata	catccaattt	aagttgttc	1980
gttggtagc	tttcaaagaa	atccccgtga	ctgtctatac	aactaaaatt	ataaccaaag	2040
ttgttggacc	aaaaattaaa	gttggatgtt	cgagtctca	gccttattatc	aaaactgaag	2100
gaccacact	acaaaatgtc	aaaattgtt	gttggatgtt	attcagactg	attaaagaag	2160
gttggaaata	acttggatgt	atccatggag	agccaattat	taaaaaatac	acaaaaatca	2220
ttgttggatgt	gttggatgtt	ataactgttt	aagagacacg	agaagaacacg	atcattacag	2280
gttggatgtt	aaaatacact	aggatttcta	ctggagggtt	agaaacagaa	gaaactctga	2340
agaaattgtt	acaagaagag	gtcaccaagg	tcaccaatt	cattgttgg	gttggatgtt	2400
atttatttga	agatgttgg	attaaaagac	tgcttcagg	agacacaccc	gttggatgtt	2460
tgcaagccaa	aaaaaaagg	caagtttca	gaagacgatt	aagggttgg	gttggatgtt	2520
aaaaatccaa	aaaccagaaa	aaaatgtt	tacaaccctt	agtcataatac	gttggatgtt	2580
aaaatgtt	gagccaaagg	gacttcagg	actgaaat	cagcacaaag	gttggatgtt	2640
caaataattc	tgaacacaaa	tttaatattt	ttttttctgt	atgagaaaca	gttggatgtt	2700
tgttggatgtt	gttggatgtt	gttggatgtt	gttggatgtt	ataacacaccc	acaccctttt	2760
tcatcttgc	ataaaaagg	ctggctact	ttggatgtt	ttggatgtt	atccttgc	2820
ccagattcat	tacaatttca	atcgaagat	tgtgaactgt	tatccatttgc	aaaagaccga	2880
gccttgc	tatgtttag	atacataaaa	tgcacgcag	ccattatctc	tccatggaa	2940

Sequence listing.txt

gctaagttat	aaaaataggt	gcttgggtgt	caaaactttt	tatataaaa	ggctttgcac	3000
atttctatat	gagtgggtt	actggtaat	tatgttattt	tttacaacta	attttgact	3060
ctcagaatgt	ttgtcatatg	cttcttgc	tgcatatttt	ttaatctcaa	acgtttcaat	3120
aaaaccattt	ttcagatata	aagagaatta	cttcaaattt	agtaattcag	aaaaactcaa	3180
gattnaagtt	aaaaagtgg	ttggacttgg	gaa			3213

<210> 24

<211> 10558

<212> DNA

<213> Homo sapiens

<400> 24

cgatggag	ctcagtcttc	caccaaaggc	cgttcagttc	tcctgggctc	cagccctctg	60
caaggactgc	aagagtttc	ctccgcagct	ctgagtc	acttttttgg	tggagaaagg	120
ctgcaaaaag	aaaaagagac	gcagtgagtg	ggaaaagtat	gcattcctatt	caaaccataat	180
tgaatcgagg	agcccaggg	cacacgcctt	cagggttct	caggggttca	tatgggtgc	240
ttagacaaat	tcaaaatgag	gaaacatcg	cacttgcct	tagtggccgt	ctttgcctc	300
tttctctcag	gcttcctac	aactcatg	cagcagc	aagcagatgt	aaaaatgg	360
gcggctgctg	atataatatt	tctagtgat	tcctcttgg	ccattggaga	ggaacatttc	420
caactgttc	gagagtttct	atatgatgtt	gtaaaatcct	tagctgtgg	agaaaatgtat	480
ttccatttt	ctctggtcca	gttcaacgg	aacccacata	ccgagttct	gttaatacg	540
tatcgacta	aacaagaagt	ccttctcat	atttccaaca	tgtcttat	tggggaaacc	600
aatcagactg	aaaaaggatt	agaatacata	atgcaaaagcc	acccaccaa	ggctgctg	660
agccggccg	gtgacggagt	ccctcagg	atcgtagt	taactgtatgg	acactcgaag	720
gatggccctg	ctctgcctc	agcggaaactt	aagtctgt	atgttaacgt	gtttcaattt	780
ggagttgagg	atgcagatga	aggagcgtt	aaagaaatag	caagtgaacc	gctcaatatg	840
catatgttca	accttagagaa	tttacctca	cttcatgaca	tagtaggaaa	cttagtgtcc	900
tgtgtcatt	atccgtgag	tccagaaagg	gctggggaca	cggaaaccct	taaagacatc	960
acagcacaag	actctgctg	catttttc	cttattgtat	gatcaaaacaa	caccggaaat	1020
gtcaatttcg	cagtcttct	cgacttctt	gtaaatctt	ttgagaaact	cccaatttgg	1080
actcagcaga	tccgagtg	gttggtccag	tttagcgat	agcccgaaac	catgtttcc	1140
ttggacac	actccaccaa	ggcccagg	ctgggtgcag	tgaagccct	cgggttgct	1200
ggtggggagt	tggcaat	cgccctcgcc	cttgatttgc	tggggagaa	ccacttcacc	1260
cgggcagg	gcagccgcgt	ggagaaagg	gttcccagg	tgctggctt	cataagtgc	1320
gggccttcta	gtgacgagat	tcgctacgg	gttggtagc	tgaagcaggc	tagctgttc	1380
tcattcggc	ttggagcc	ggccgcctt	agggcagac	ttcagcacat	agctaccat	1440
gacaacttgg	tgtttactgt	cccggaaattt	cgtagtttgc	ggaccttcca	ggagaaattt	1500
ctggcgata	ttgttggcgt	ggccaaagg	cacattgtt	tgaaccggcc	aaccattgtc	1560
acacaagtca	ttgaagtcaa	caagagagac	atagtcttcc	tggggatgg	ctcatctgca	1620
ctgggactgg	ccaacttcaa	tgccatccg	gacttcattt	ctaaagtcat	ccagaggctg	1680
gaaatcgac	aggatctt	ccagtg	gtggccca	atgcagacac	tgtgaggcct	1740
gaattttatt	tcaatacc	tccaa	agggaagtca	taaccgcgt	cgggaaaatg	1800
aagccctgg	acggctcgg	cctgtacac	ggctctgt	tagactttgt	tcgtaaacac	1860
ctattcacga	tttgcgg	ctaccgg	gccgagg	ttcttaagct	tttgggtctg	1920
atcacagg	gtaaatcc	agatgaaatc	agccagctg	cccaggagct	gaagagaagc	1980
agcataatgg	ccttgc	tggaaacaa	gttgcgc	aggctgatgt	ggaagagatc	2040
gtttcgtact	cctccctgtt	gttcatcc	gctgagttcc	gaggcggccc	attgcaaggc	2100
atgtgtcctg	gttgcgt	accttcagg	accctctt	gaacccttga	agttcactca	2160
aacaaaagag	atatcatctt	tctttggat	ggatcggca	acgttggaaa	aaccaatttc	2220
ccttatgtc	gcgactttt	aatgaaccta	gttacagcc	ttgatattgg	aatgacaat	2280
attcgtgtt	gttttagtgc	atttagtgc	actcctgtt	cgagttct	ttaaacaca	2340
taccagacca	agtcagat	ccttggtcat	ctgaggc	tgca	gggaggtcg	2400
ggcctgaaca	caggctcag	cctaagctat	gtctatgca	accacttcac	ggaagctggc	2460
ggcagcagg	tcgtgaaca	ctgtccgcag	cttctgtt	tgctcac	tggcagtc	2520
gaggactcct	atttgc	tgccaac	ttgacac	cgccat	gacttttgc	2580
gtgggagct	gccaggc	taaggc	ttgagc	ttgtttttaa	cccaaggctg	2640
gtgtatctca	ttggatgattt	cagcttct	ccagtttgc	ctcagcag	gattcagccc	2700
ctaaccacat	atgttagtgg	aggtgtgg	gaagtacc	tcgtc	agagagaag	2760
cgagacattc	tgttctt	tgacgg	gccaat	tggcc	ccctgttgc	2820
cgtgactt	tctacaagat	tatcgat	ctcaat	tgatgt	gaccggaaat	2880
gccccggctc	agtacagcga	tgatgt	gtggag	ttttgtatg	gcaccaggat	2940
aagcctgaga	tcc	tgt	atgaagatc	agacggg	agccctcaac	3000
ctgggctacg	cgctggacta	tgcacagagg	tacattttt	tgaatgt	tggcagccgg	3060

Sequence listing.txt

atcgaggatg gagtgc ttca gttc ctgg tg ctgg tcg cagg aagg tc at ctg acc gt 3120
 gtggatggc cagc aagt aa cctg aagc agtggg ttg tgc ct ttc at cttca agcc 3180
 aagaacgcag accc tgc tga gtt aagc agat cgt ctgc tcc aac gctt tca tttc at cttca 3240
 gcagagtgc tttcc aagat tgg agat ctt cat cc aca gaga tagt gaa at ct ttttca 3300
 gtgcacaacg gagg cacc agc acca gttca ggt gaaa agg acgt gg ttttca ttttca 3360
 ggct ctg agg gctc agg gag cgg ct tcc ct ctg ttttca agt gg ttttca gagg gtgg 3420
 gaaaggctgg atgtgggcca ggaccggc gcg tggccg tgg tggc agt gtttca cagg gtgg 3480
 accaggcccg agtttcttccat gaatttccatc atg aaca aacg agg acgt ctgc ttttca 3540
 cgccagctga ccc tgc tggg agg gccc gacc ccc aac accg gggccccc ttttca 3600
 ctgaggaaaca tcc tgg ttttca ctttgc gggg aacca gggg ttttca 3660
 ctgatcgtcc ttttccatc ctttgc gggg ttttca ctttgc gggg ttttca 3720
 aagagggtg gggctgttcc ctttgc gggg ttttca ctttgc gggg ttttca 3780
 cagaccatct ctttccatcc ctttgc gggg ttttca ctttgc gggg ttttca 3840
 accgttcaac aggttcatctc ttttgc gggg ttttca ctttgc gggg ttttca 3900
 ctgcaggccg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 3960
 ttttccatcg atgggtccca aagtgc gggg ctttgc gggg ttttca ctttgc gggg ttttca 4020
 gagaggctgg ttgacttccat ggacgttggc ttttgc gggg ttttca ctttgc gggg ttttca 4080
 ttcagcgatg accccaaaggc ggagg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4140
 cagaacgcgg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4200
 ctggagttacg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4260
 gtcccacagt ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4320
 gcggtggagc ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4380
 gaggagctgg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4440
 gagctgccc gtttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4500
 atccagaacg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4560
 gacattgtct ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4620
 cgagattttt ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4680
 ggggtcgtgc agtttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4740
 caggccccc gtttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4800
 actggcaagg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4860
 atagaagacg gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4920
 gtgtccagg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 4980
 cggaaacatcg acagaacaga gtttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5040
 gtgcgagatg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5100
 tcccgagcca ctttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5160
 aagaagacg acattgttt ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5220
 caggaagtgc ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5280
 atccaagtgg gtttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5340
 ttctcttacca agaggcagat ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5400
 cacgccaaca ctttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5460
 ggcaggccg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5520
 gtggaaagatg cacaggatgt gtttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5580
 gttggagtga ggaatatcga ctttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5640
 gcttccgcg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5700
 ttgcatgatg ctttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5760
 aatcttgc gtttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5820
 aagggttcg agtccaaagg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5880
 agtgcagcg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 5940
 ggcaggccg ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 6000
 aacatgcgca ctttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 6060
 aagtttccatc agtccctc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 6120
 gacggagatc ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 6180
 gccttgc ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 6240
 ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 6300
 gaactagccg agcagcttgc ctttgc gggg ttttca ctttgc gggg ttttca 6360
 tgctctggc agaggggaga ctttgc gggg ttttca ctttgc gggg ttttca 6420
 ggagaagacg gtttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 6480
 ctttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 6540
 ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 6600
 ggtgaagatg gagacaaagg ttttgc gggg ttttca ctttgc gggg ttttca 6660
 aggggtgtata aaggacctcg agggagaaa ggagaaaggag gagatgttgg gattcgagg 6720
 gacccgggta acccaggaca agacagccag gagagaggac ccaaaggaga aaccgggtgac 6780
 ctggccccca ttttgc gggg ttttca ctttgc gggg ttttca ctttgc gggg ttttca 6840

Sequence listing.txt

aagaatggtg	gctttggccg	aaggggaccc	cccggagacta	aggcaacaa	gggcggtcct	6900
ggccagccgg	gctttgaggg	agagcagggg	accagaggtg	cacaggccc	agctggtcct	6960
gctggtcctc	cagggctgat	aggagaacaa	ggcatttctg	gacctagggg	aagcggaggt	7020
gcccgccgg	ctcctggaga	acgaggcaga	accggtccac	tggaaagaaa	gggtgagccc	7080
ggagagccag	gaccaaagg	aggaatcggg	aacccgggcc	ctcggtggga	gacgggagat	7140
gacgggagag	acggagttgg	cagtgaagga	cgcagaggca	aaaaaggaga	aagaggattt	7200
cctggatacc	caggaccaa	ggtaacccca	ggtgaacctg	gcttaatgg	aacaacagga	7260
ccaaaggca	ttagggccg	aaggggaaat	tcgggaccc	cagggatagt	tggacagaag	7320
gggagacctg	gttacccagg	accagctgg	ccaaggggca	acagggcga	ctccatcgat	7380
caatgtgccc	tatccaaag	catcaaagat	aatggccctt	gctttaggg	gcccctggag	7440
tgcccgtct	ttccaaacaga	actagcctt	gcttttagaca	cctctgaggg	agtcaaccaa	7500
gacacttcg	gccggatg	agatgtgg	tttagtattt	tgaatgtct	gaccattgct	7560
gagagaact	gcccgcacgg	ggccgggtg	gctgtggta	cctacaacaa	cgaggtgacc	7620
acggagatcc	gttttgcga	cttcaagagg	aagtccgtt	tcctggacaa	gattaagaac	7680
cttcaggtgg	ctctgacatc	caaacagcag	agtctggaga	ctgcccattgc	gtttgtggcc	7740
aggaacacat	ttaagcgtgt	gaggaacgga	ttcctaattga	ggaaagtggc	tgtttcttc	7800
agcaacacac	ccacaagagc	atccccacag	ctcagagagg	ctgtgctcaa	actctcagat	7860
gcggggatca	cccccttgtt	ccttacaagg	caggaagacc	ggcagctcat	caacgcctt	7920
cagatcaata	acacagcagt	ggggcatg	cttgccttc	ctgcagggag	agacctcaca	7980
gacttccctgg	agaatgtct	cacgtgtcat	gtttgttgg	acatctgca	catcgaccca	8040
tcctgtggat	ttggcagttt	gaggccttcc	ttcagggaca	ggagagcggc	agggagtgat	8100
gtggacatcg	acatggctt	catcttagac	agcgttgata	ccaccaccc	gttccagttc	8160
aatgagatga	agaagtacat	agcgtacctg	gtcagacaac	tggacatgag	cccagatccc	8220
aaggcctccc	agcacttcg	cagagtggca	gttgcgcag	acgcgcctc	tgagtcgt	8280
gacaatgcca	gcatgcccacc	tgtgaaggtg	gaattctccc	tgactgacta	tggctccaag	8340
gagaagctgg	tggacttct	cagcagggg	atgacacagt	tcgaggaaac	cagggccta	8400
ggcagtgcca	ttgaatacac	catagagaat	gtctttgaaa	gtgccccaaa	cccacgggac	8460
ctgaaaattt	tggctctgt	gctgacgggc	gaggtgcgg	agcagcagt	ggaggaggcc	8520
cagagagtca	tctgcaggg	caaattcaag	ggctacttct	tcgtgttct	ggcattggc	8580
aggaaggtga	acatcaaga	ggtatacacc	ttcggccatg	agccaaacga	cgttttttc	8640
aaatttagtgg	acaagtccac	cgagtcac	gaggagcctt	tatgcgtt	cgggaggctg	8700
ttgcgcgtct	tcgtcagcag	tgaaaatgt	tttacttgt	ccccagat	caggaacacag	8760
tgtgatttgt	tccaaaggga	ccaaacccaca	aagaacctt	tgaagtttg	tcacaacaa	8820
gtaaatgttc	cgaataacgt	tacttcaat	cctacatcca	accaggatgc	gacaacgaag	8880
ccggtgacta	cgacgaagcc	ggtgaccacc	acaacaaagc	ctgtaccac	cacaacaaag	8940
cctgtgacta	ttataaatca	gccatctgt	aagccagcc	ctgcaagcc	ggccccctgc	9000
aaacctgtgg	ctgccaaggg	tgtgcccaca	aagacggca	ctgttagacc	cccagtggc	9060
gtgaagccag	caacagcagc	gaaggctgt	gcagcaaaag	cagcagctgt	aagaccccc	9120
gctgctgctg	caaaaccagt	ggcgaacca	cctgagg	ctaggccaca	ggcagccaa	9180
ccagctgcca	ccaagccagc	caccacta	cccggtt	agatgtccg	tgaagtccag	9240
gttttgaga	taacagaga	cagcgc	ctccactgg	agaggcctg	gccccccgg	9300
ccttattttt	atgacctcac	cgtcac	gcccattatc	agtccctgtt	tctgaagcag	9360
aacccacgg	tcacggaccc	cgtcattt	ggcctgtcg	ctgggcagac	ataccatgt	9420
gctgttgtct	gttacctg	gttccatgg	agagccac	accacggaa	tttcagata	9480
aagaatctc	agccccccacc	tccacagcc	gcaagg	cttctatgt	aaccatcaat	9540
ctaattgtga	gcacagaac	attggcttc	actgaaacag	atatatgca	tttgcgaaa	9600
gacgaaggaa	tttgcaggga	tttcatat	aatatgtact	atgatccaa	caccaaaagc	9660
tgtcaagat	tctgttat	aggttgg	ggaaacgaaa	acaatatttgg	atcacagaaa	9720
gaatgtaaa	aggtttgc	tcctgtct	gccaaccc	gagtcatc	tgtgatgg	9780
acctaagcgt	gggtggccaa	catcatatac	ctcttgaaga	agaaggatc	agccatcgcc	9840
aacttgtctc	tgttagaact	ccgggtgt	attcccttgc	actgtatcat	ttcatgttt	9900
gatttacact	cgaactcg	agggaaacatc	ctgtgtcat	acctatcagt	atggtgctaa	9960
tgtgtctgt	gaccctcg	ctctgtct	agcgttct	tcgaatactt	tgaatgtt	10020
gtaacagtt	gccactcg	gtgttat	gaacatttct	atcaatccaa	attccctct	10080
gagtttcatg	ttatgcct	tgcaggca	tgtaaagtct	agaaaataat	gcaaagtca	10140
cggtactt	atatactt	gcttgg	tttttttcc	cttttagtta	agcatgactt	10200
tagatggaa	gcctgtgt	cgtggagaa	caagagacca	acttttcat	ccctgcccc	10260
caatttccca	gactagatt	caagctt	ttcttttct	gaagcctct	acaatgatc	10320
tagttcagaa	ggaagcaaa	tcccttaat	tatgtgcacc	gttgggacca	atgccttaat	10380
taaagaattt	aaaaaagt	taatagagaa	tattttttgc	atttctct	atgttgcgt	10440
ttttttttt	ttgtgtct	gaggaggg	atthaattt	aattttaaaa	tgttttaggaa	10500
atttatacaa	agaaacttt	taataaagta	tattgaaat	ttaaaaaaaa	aaaaaaa	10558

Sequence listing.txt

<210> 25
<211> 2133
<212> DNA
<213> Homo sapiens

<400> 25

cgggagagcg cgctctgcct gccgcctgcc tgcctgcac tgagggttcc cagcaccatg 60
agggcctgga tttctttct ccttgcctg gccgggaggg ccttggcagc ccctcagcaa 120
gaagccctgc ctgatgagac agaggtggg gaagaaactg tggcagaggt gactgaggt 180
tctgtggag ctaatctgt ccagtgaaatgttggagaat ttgtatgtgg tgccagggaa 240
accgaagg aggtggtggc ggaaaatccc tgccagaacc accatgcaa acacggcaag 300
gtgtgcgagc tggatgagaa caacacccccccatgtgcgtgt gccaggaccc caccagctgc 360
ccagccccca ttggcgagggt tgagaaggtg tgcagcaatg acaacaagac cttcgactct 420
tcctgccact tctttgcacaaagtgccacc ctggaggggca ccaagaaggg ccacaagctc 480
cacctggact acatcgggcc ttgcaaatac atccccctt gcctggactc tgagctgacc 540
gaattcccccc tgcgcatgctggactggctc aagaacgtcc tggtcaccct gtatgagagg 600
gatgaggaca acaaccttct gactgagaag cagaagctgc gggtaagaa gatccatgag 660
aatgagaagc gcctggagggc aggagaccac cccgtggagc tgctggcccg ggacttcgag 720
aagaactata acatgtacat cttccctgtat cactggcagt tcggccagct ggaccagcac 780
cccattgacg ggtacctctc ccacacccggatggctccatgcgtcc cctcatcccc 840
atggagcatt gcaccacccg cttttcgag acctgtgacc tggacaatga caagtacatc 900
gccctggatg agtggggccgg ctgcttcggc atcaagcaga aggatatcgca caaggatctt 960
gtgatctaaa tccactccctt ccacagtacc ggattctctc ttaaaccctc cccttcgtgt 1020
ttcccccaat gttaaaatgt tttggatgggt ttgtgttct gcctggagac aaggtgctaa 1080
catagattta agtgaataca ttaacgggtc taaaaatgaa aattctaacc caagacatga 1140
cattcttagc tgtaacttaa ctattaaggc cttttccaca cgcattaata gtcccatttt 1200
tctcttgcca ttgttagct tgccattgt ctattggca catgggtggc cacggatctg 1260
ctgggctctg ccttaaacac acattggcagc ttcaactttt ctcttagtgc ttctgtttga 1320
aactaataact taccgagtc gactttgtgt tcatttcatt tcagggttgc ggctgcgtgt 1380
gggctcccccc aggtggcctg gaggtgggca aagggaaata acagacacac gatgttgtca 1440
aggatggttt tgggactaga ggctcagttgg tgggagagat ccctgcagaa tccaccaacc 1500
agaacgtgtt ttgcctgagg ctgttaactga gagaaggatt ctggggctgt cttatgaaaa 1560
tatagacatt ctcacataaag cccagttcat caccatttc tcctttaccc ttcatgtcag 1620
tttctttca cattaggctg ttgggtcaaa cttttgggag cacggactgt cagttctctg 1680
ggaagtggtc agcgcatcct gcagggttc tcctcctctg tctttggag aaccagggt 1740
cttctcagggg gctctaggaa ctgcccaggct gtttcagcca ggaaggccaa aatcaagagt 1800
gagatgtaga aagttgtaaa atagaaaaag tggagttgtt gaatcggttgc ttctttctc 1860
acattggat gattgtcata aggttttag catgttcctc cttttcttca ccctccctt 1920
tgttcttcta ttaatcaaga gaaacttcaa agttaatggg atgtcggat ctcacaggct 1980
gagaactcgt tcacctccaa gcatttcatg aaaaagctgc ttcttattaa tcatacaaac 2040
tctcaccatg atgtgaagag tttcacaaat ctttcaaaat aaaaagtaat gacttagaaa 2100
ctgaaaaaaaaaaaaaaa aaaaaaaaaaaa aaa . 2133

<210> 26
<211> 2691
<212> DNA
<213> Homo sapiens

<400> 26

gcttggccgt cggtcgctag ctcgcctcggt gcgcgtcgtc ccgcctccatg ggcgtcttcg 60
tgcggctgct ggctctgcctt cttggctctgg ccctggggcc cgcgcgcgacc ctggcggtc 120
ccgccaagtc gcccattaccag ctgggtgcgc agcacagcag gctccggggc cgccagcacg 180
gccccaaacgt gtgtgcgtgt cagaaggta ttggcactaa taggaagtac ttcaccaact 240
gcaaggcgtg gtacccaaagg aaaatctgtg gcaaatcaac agtcatcagc tacgagtgt 300
gtcctggata tgaaaagggtc cctggggaga agggctgtcc agcagcccta ccactctcaa 360
accttacga gaccctggga gtcgttggat ccaccaccc tcagctgtac acggaccgca 420
cgaggaaagct gaggcctgag atggaggggc ccggcagtt caccatcttc gcccctagca 480
acgaggccctg ggcctccttg ccagctgaag tgctggactc cctggtcagc aatgtcaaca 540
ttgagctgtc caatgcccctc cgctaccata tggtggcag gcgagtcctg actgtatgagc 600
tgaacacgg catgacccttc acctctatgt accagaattt ccacatccag atccaccact 660
atccataatgg gattgttaact gtgaactgtg cccggctctt gaaagccgac caccatgcaa 720

Sequence listing.txt

ccaacggggt	ggtgtcaccc	atcgataagg	tcatctccac	catcaccaac	aacatccagc	780
agatcattga	gatcgaggac	acctttgaga	cccttcggc	tgctgtggct	gcatcaggc	840
tcaacacgt	gcttgaaggt	aacggccagt	acacgcttt	ggccccgacc	aatgaggcct	900
tcgagaagat	cccttagttag	actttgaacc	gtatctggg	cgaccaggaa	gcccctgagag	960
acctgctgaa	caaccacatc	ttgaagttag	ctatgtgtc	tgaagccatc	gttgcgggc	1020
tgtctgtaga	gaccctggag	ggcacgacac	tggaggtggg	ctgcagcggg	gacatgctca	1080
ctatcaacgg	gaaggcgatc	atcttcaata	aagacatcct	agccaccaac	gggggtgatcc	1140
actacattga	ttagctactc	atcccagact	cagccaagac	actatgtgg	ttggctgcag	1200
agtctgtatgt	gtccacagcc	attgaccctt	tcagacaagc	cggcctcggc	aatcatctct	1260
ctggaagtga	gccccgtgacc	ctcctggctc	ccctgtattc	tgtattcaaa	gatggaaacc	1320
ctccaattga	tgcccatata	aggaatttgc	ttcggaaacca	cataattaaa	gaccagctgg	1380
cctctaagta	tctgttccat	ggacagaccc	tggaaactct	ggccggcaaa	aaactgagag	1440
tttttttta	tcgtatata	ctctgcattt	agaacagctg	catcgcggcc	cacgacaaga	1500
gggggaggtt	cggggacccct	ttcacgtgg	accgggtgt	gaccggggca	atggggactg	1560
tcatggatgt	cctgaagggg	gacaatcgct	ttagcatgt	gttagctgcc	atccagtcg	1620
caggactgac	ggagacccctc	aaccgggaaag	gagtctacac	agtctttgt	cccacaaatg	1680
aaggcttccg	agccctgcca	ccaagagaac	ggagcagact	cttggggagat	gccaagaac	1740
ttgccaacat	cctgaaatac	cacattgggt	atgaaatcct	gttagcgga	ggcatcgggg	1800
ccctgggtcg	gctaaagtct	ctccaaagggt	acaagcttga	agttagcttg	aaaaacaatg	1860
tggtgagtgt	caacaaggag	cctgttgcgg	agcctgacat	catggccaca	aatggcgtgg	1920
tccatgtcat	caccaatgtt	ctgcagcctc	cagccaacag	acctcaggaa	agaggggatg	1980
aacttgcaga	ctctgcgttt	gagatcttca	aacaagcatc	agcgttttcc	agggcttccc	2040
agaggtctgt	gcgacttagcc	cctgtctatc	aaaagttatt	agagaggatg	aagcattagc	2100
ttgaagcaact	acaggaggaa	tgaccacgg	cagcttcccg	ccaatttctc	tcagatttcc	2160
acagagactg	tttgaatgtt	ttcaaaacca	agtatcacac	ttaatgtac	atgggcccga	2220
ccataatgag	atgtgagctt	tgtgcattgt	ggggaggagg	gagagagatg	tacttttaa	2280
atcatgttcc	ccctaaacat	ggctgttaac	ccactgcatt	cagaaacttg	gtgtcactg	2340
cctgacattc	acttccagag	aggacctatc	ccaaatgtgg	aattgactgc	ctatgccaag	2400
tccctggaaa	aggagcttca	gtattgtgg	gctcataaaa	catgaatcaa	gcaatccagc	2460
ctcatgggaa	gtccctggcac	agttttgtt	aagcccttgc	acagctggag	aatggcattc	2520
attataagct	atgagtttga	atgttctgtc	aatgtgttca	cacatctaca	cgtggcttgg	2580
aggctttat	ggggccctgt	ccagtagaa	aagaaatgtt	atgttagatc	tagatttccc	2640
tatttgaca	gagccatgtt	gtgtttgtaa	taataaaaacc	aaagaaacat	a	2691

<210> 27

<211> 8027

<212> DNA

<213> Homo sapiens

<400> 27

acgcccgcgc	cggctgtgt	gcacaggggg	aggagaggga	accccaggcg	cgagcggaa	60
gaggggacct	gcagccacaa	cttctctgg	cctctgcac	ccttctgtcc	ctccaccgt	120
cccctccccc	accctctgtc	ccccaccc	ttggaggcga	caaccccccgg	gaggcattag	180
aagggatttt	tcccgacgtt	gcaaggggaa	gcaaactgg	tggcaacttg	cctcccggt	240
cgggcgtctc	tccccccacgg	tctcaacatg	cttaggggtc	cggggcccccgg	gtgtctgcgt	300
ctggccgtcc	agtgcctgg	gacagcgggt	ccctccacgg	gaggctcgaa	gagcaagagg	360
caggctcagc	aatatgttca	gccccagttc	cgggtggctg	tcaatgttca	caagcccggt	420
tgttatgaca	atggaaaaca	ctatcagata	aatcaacatg	gggagcggac	ctacctaggc	480
aatgcgttgg	tttgcgttgc	ttatggagga	agccgaggtt	ttaatgtcga	gagtaaacct	540
gaagctgaag	agacttgcgt	tgacaagatc	actggggaca	cttaccgtgt	gggtgacact	600
tatgagcgtc	ctaaagactc	catgatctgg	gactgttacct	gcattcggggc	tgggcgaggg	660
agaataagct	gtaccatcgc	aaaccgctgc	catgaagggg	gtcaatgttca	caagattgtt	720
gacaccttgg	ggagaccaca	tgagacttgg	gtttatcatgt	tagatgtgtt	gtgtcttgg	780
aatggaaaag	gagaatggac	ctgcaagccc	atagctgaga	agtgttttgc	tcatgctgt	840
gggacttcct	atgtgggtcg	agaaacgtgg	gagaaggccct	accaaggctg	gatgtatgtt	900
gattgttactt	gcctggggaga	aggcagcgg	cgcatttactt	gcatttctgt	aaatagatgc	960
aacgatcagg	acacaaggac	atcctataga	attggagaca	ccttggagcaa	gaaggataat	1020
cgagggaaacc	tgctccatgt	catctgcaca	ggcaacggcc	gaggagatgt	gaagtgtgag	1080
aggcacaccc	ctgtgcagac	cacatcgagc	ggatctggcc	ccttcaccgt	tgttcgtcgt	1140
gctgtttacc	aaccgcggcc	tcacccccc	ccttcctccct	atggccactg	tgtcacagac	1200
agtgggttgg	tctactctgt	ggggatgtc	tggctgttca	cacaaggaaa	taagcaaatg	1260
ctttgcacgt	gcctggggca	cggagtcagc	tgccaagaga	cagctgttaac	ccagacttac	1320
ggtggcaact	caaattggaga	gccatgtgtc	ttaccatca	ccttacaatgg	caggacgttc	1380

Sequence listing.txt

tactcctgca	ccacggaagg	gcgacaggac	ggacatctt	ggtgcagcac	aacttcgaat	1440
tatgagcagg	accagaata	ctctttctgc	acagaccaca	ctgttttggt	tcagactcga	1500
ggagggaaatt	ccaatggtgc	cttgccac	ttcccttcc	tataacaaca	ccacaattac	1560
actgattgca	cttctgaggg	cagaagagac	aacatgaagt	ggtgtggac	cacacagaac	1620
tatgatgccg	accagaagg	tgggttctgc	cccatggctg	cccacgagga	aatctgcaca	1680
accaatgaag	gggtcatgt	ccgcattgga	gatcagtggg	ataagcagca	tgacatgggt	1740
cacatgatga	ggtgcacgt	tgttgggaat	ggtcgtgggg	aatggacatg	cattgctac	1800
tcgcagctc	gagatcagt	cattgttgc	gacatca	acaatgtgaa	cgacacattc	1860
cacaagcgtc	atgaagaggg	gcacatgctg	aactgtacat	gcttcggta	gggtcggg	1920
aggtgaaagt	gtgtatcccgt	cgaccatgc	caggatttag	agactgggac	gttttatcaa	1980
attggagat	catgggagaa	gtatgtcat	ggtgtcat	accagtgtca	ctgctatggc	2040
cgtggcattg	gggagtggca	ttgcacac	ttacagac	atccaagctc	aagtggcc	2100
gtcgaatgt	ttatcactga	gactccgat	cagcccaact	cccacccat	ccagtgaat	2160
gcaccacagc	catctcacat	ttccaagatc	attctca	ggagaccta	aaattctgt	2220
ggccgttgg	aggaagctac	cataccaggc	cacttaaact	cctacaccat	caaaggcctg	2280
aagcctgg	tgttatacga	gggcagctc	atcagcatcc	agcagatcgg	ccacccaagaa	2340
gtgactcgct	ttgacttcac	caccaccagc	accagcacac	ctgtgaccag	caacaccgt	2400
acaggagaga	cgactccctt	ttctcctctt	gtggccactt	ctgaatctgt	gaccgaaatc	2460
acagccagta	gctttgttgt	ctccctgg	tcagttccg	acaccgtgc	gggattccgg	2520
gtggaatatg	agctgagt	ggagggagat	gagccacat	acctggatct	tccaagcaca	2580
gccactctg	tgaacatccc	tgacctgctt	cctggccaa	aatacattgt	aatgtctat	2640
cagatatctg	aggatggg	gcagat	atcctgtcta	ttcacaaac	aacagcgcct	2700
gatgcccctc	ctgaccgc	tgtggac	ttgtatgaca	cctcaattgt	tgttcgt	2760
agcagacccc	aggctccat	cacagg	agaatagtct	attcgccatc	agtagaaggt	2820
agcagacag	aactcaac	tcctgaaact	gcaaactccg	tcaccctcg	tgacttgca	2880
cctgggtt	agtataacat	cactatctat	gctgtggaa	aaaatcaaga	aagtacac	2940
gttgcattc	acaaga	cactggc	ccacgctcg	atacagtgc	ctctccagg	3000
gacctgc	ttgtggaa	gacagacgt	aaggtcaca	tcatgtggac	accgcctg	3060
agtgc	ccggctacc	tgtgtat	atcccgtc	acctgcctgg	cgagcagg	3120
cagagcgtc	ccatcagc	gaacac	gcagaagt	ccggcgtc	ccctggg	3180
acatttact	tcaaaat	tgca	catgggg	agagcaagcc	tctgactg	3240
caacagaca	ccaaactg	tgctcc	aac	ttgtcaatg	aactgattct	3300
actgtctgg	tgagatgg	tccac	gcccagata	cagataccg	actgaccgt	3360
ggccttaccc	gaagaggc	gcc	tacaatgt	gtccctctgt	ctccaagtac	3420
cccctgagga	atctgcag	tgcat	tacacc	ccctcgtgg	cataaagg	3480
aaccaagaga	gccccaa	cactgg	tttacc	tgcagcctg	gagctctatt	3540
ccacccat	acacc	gactg	accat	tcacatgg	gcctgc	3600
agaattgg	ttaagct	tgtac	agccagg	gagagg	acgagaag	3660
acttcagact	caggaag	cg	ggctg	caggat	atacgtctac	3720
accatccaag	tcctgag	tg	gagat	caattgt	caaagtgg	3780
acaccattgt	ctcc	aaact	ctgg	gac	tggagtgc	3840
acagtctct	ggg	gac	accat	tc	taccaca	3900
cctacaac	gcc	gg	actt	tc	tcagac	3960
tgcacttt	ataac	tgcc	gag	tc	cactgtca	4020
gatgacaagg	aaagt	tat	cat	tc	tcctcc	4080
gacc	tcacca	tggt	accat	tc	tccac	4140
tccattgatt	taacca	cctgt	tact	tc	ggaagatgt	4200
gcagagtgt	caattt	tca	gag	ta	cctgc	4260
acagaatatg	tagt	cc	actt	aaat	4320	
ggaagacaga	aaac	cc	ttt	ct	accc	4380
aactcttta	ctgt	gtc	ttt	tc	caggat	4440
catcatcc	ac	actt	cg	gg	ctctcg	4500
tccatcac	cc	actt	ca	gt	cg	4560
aatggcagag	agg	cc	ac	gg	tt	4620
agggac	tt	tt	tt	tc	tg	4680
gctgtc	ca	tt	tc	tc	gt	4740
caggagtt	ca	tt	tc	gg	cc	4800
gtt	cc	tt	tc	gg	cg	4860
aagccaa	tt	cc	tt	cc	ca	4920
gatgttc	ca	tt	tc	cc	at	4980
tacagagta	cc	tt	tc	cc	aact	5040
ccagatcaa	ca	tt	tc	cc	tg	5100
gtctatgctc	agaa	tt	tc	cc	act	5160

Sequence listing.txt

attgatcgcc	ctaaaggact	ggcattca	ct	gatgtggat	tcgattccat	caaaattgct	5220
tggaaagcc	cacaggggca	agtttccagg	tacagggtga	cctactcgag	ccctgaggat	5280	
ggaatccatg	agctattccc	tgcacctgat	ggtgaagaag	acactgcaga	gctgcaaggc	5340	
ctcagaccgg	gttctgagta	cacagtca	gtggttgcct	tgcacgatga	tatggagagc	5400	
cagccccctga	tttggAACCC	gtccacagct	attcctgcac	caactgac	gaagttca	5460	
caggtcacac	ccacaaggct	gagcggccag	tggacaccac	ccaatgttca	gctca	5520	
tatcgagtgc	gggtgacccc	caaggagaag	accggacca	tgaagaaat	caaccttgct	5580	
cctgacagct	catccgttgt	tgtatcagga	cttatggtgg	ccaccaaaata	tgaagtgagt	5640	
gtctatgctc	ttaaggacac	tttgacaagc	agaccagctc	agggtgttgt	caccactctg	5700	
gagaatgtca	gcccacca	aagggtcg	gtgacagat	ctactgagac	caccatcacc	5760	
attagctgga	gaaccaagac	tgagacgatc	actggctcc	aagtgtatgc	cggtccagcc	5820	
aatggccaga	cttcaatcca	gagaaccatc	aaggccatg	tcagaagct	caccatcaca	5880	
ggtttacaa	caggcactg	ctacaagatc	tacctgtaca	ccttgaatga	caatgctcg	5940	
agctcccctg	ttgtcatcg	cgccctccat	gcccattgt	caccatccaa	cctgcgtt	6000	
ctggccacca	cacccattt	cttgcgtgt	tcatggcagc	cgccacgtgc	caggattacc	6060	
ggctacatca	tcaagtatga	gaaggctggg	tctcctccca	gagaagtgg	ccctcgccc	6120	
cgccctgg	tcacagaggg	tactattact	ggcctggaa	cgggaaaccg	atatacaatt	6180	
tatgtcattt	ccctgaagaa	taatcagaag	agcgagcccc	tgatttggaa	aaaaaaagaca	6240	
gacgagctt	cccaactggt	aacccttca	caccccaatc	ttcatggacc	agagatctt	6300	
gatgttcctt	ccacagttca	aaagaccctt	ttcgtcaccc	accctgggt	tgacactgga	6360	
aatggattt	agcttctgg	cacttctgt	cagcaacc	gttttggca	acaaatgatc	6420	
tttggagga	atggtttt	tgccgaccaca	ccgcccacaa	cgcccacccc	cataaggcat	6480	
aggccaagac	cataccccc	gaatgttag	caagaagctc	tcttcagac	aaccatctca	6540	
tgggccccat	tccaggacac	ttctgtgt	atcatttcat	gtcatctgt	tggca	6600	
gaagaaccct	tacagttcg	gttttctgg	acttctacca	gtgccact	gacaggcctc	6660	
accagaggt	ccacctacaa	catcatagt	gaggcactg	aagaccagca	gaggcataag	6720	
gttcggaa	aggttgg	ctgtggcaac	tctgtca	aaggcttga	ccaaacctac	6780	
gatgactcg	gttttgaccc	ctacacagt	tcccattat	cggttggaga	tgagtggaa	6840	
cgaatgtcg	aatcaggct	taaactgtt	tgccagtgt	tagcttgg	aagtggcat	6900	
ttcagatgt	attcatctg	atggtccat	gacaatgtt	tgaactacaa	gattggagag	6960	
aagtggacc	gtcaggggaga	aaatggccag	atgatgat	gcacatgtt	tgggaacgga	7020	
aaaggagaat	tcaagtgt	ccctcatg	gcaacgtt	acgatgtt	gaagacatac	7080	
cacgttagg	aacagtggc	gaagaat	ctcgggt	tttgc	cacatgtt	7140	
ggaggccagc	ggggctggcg	ctgtgacaac	tgccgcagac	ctgggggt	acccagtccc	7200	
gaaggcacta	ctggccagtc	ctacaacc	tattctcaga	gataccatc	gagaacaaac	7260	
actaatgtt	attgccc	tgagtgtt	atgcctt	atgtacaggc	tgacagagaa	7320	
gattccc	gat	tttccatc	cagagga	agcatgtt	tctgcca	7380	
tccatctaa	ctggagtgt	gttagcagac	ccagctt	gttcttctt	ctttctta	7440	
cccttgctc	ttggagga	tctccag	cagctca	cacagttt	ccaagcatc	7500	
ccctggag	ttcctgagg	ttttctcata	aatgggct	gcacatttgc	tgttctgtt	7560	
cgaagtattt	aataccgctc	agtattttaa	atgaagt	tctaa	gttttggat	7620	
caataggaaa	gcatatgc	ccaaacc	tgcaatgtt	ttgaaatgt	atgaccaaaa	7680	
tttaa	gaaagtcc	caaactt	tgctt	taagtgtct	gcccgaata	7740	
ctgttggaa	aagcatgt	ttgttact	gatattttaa	atatccac	tactcactt	7800	
ttccaaatg	tccttagt	tgccatgaa	tatcttct	ttacctgtt	tttatcaatt	7860	
tttcc	ttttat	gaaaaattt	tattgaaaac	acttagat	cgatgtataa	7920	
gaggaattt	gtataattt	ggtgggt	tattttt	actgtatgt	ccaaagctt	7980	
actactgtt	aaagacaact	gtttataaa	aagatttaca	ttccaca		8027	

<210> 28
 <211> 5084
 <212> DNA
 <213> Homo sapiens

<400> 28
 agcaccacgg cagcaggagg tttcggtaa gttggaggta ctggccacga ctgcacatgccc 60
 gcccggcca ggtgatacc ctgcgggtga cccaggggct ctgcgacaca aggagtctgc 120
 atgtctaagt gctagacatg ctca

Sequence listing.txt

ggaactttgc	tgctcagtat	gatggaaaag	gagttggact	tggccctgga	ccaatgggct	420
taatgggacc	tagaggccca	cctgtgcag	ctggagcccc	aggccctcaa	ggtttccaag	480
gacctgctgg	tgagcctggt	gaacctggtc	aaactggtc	tgcaggtgt	cgtggccag	540
ctggccctcc	tggcaaggt	ggtgaagatg	gtcaccctgg	aaaacccgga	cgacctggt	600
agagaggagt	tgttggacca	cagggtgctc	gtggtttccc	tggaaactcct	ggacttcctg	660
gcttcaaagg	cattagggga	cacaatggtc	tggatggatt	gaagggacag	cccggtgctc	720
ctggtgtgaa	gggtgaacct	ggtgcccctg	gtaaaaatgg	aactccaggt	caaacaggag	780
cccgtgggct	tcctggtgag	agaggacgtg	ttggtgcccc	tggcccaagct	gtgcccgtg	840
gcagtatgg	aagtgtgggt	cccggtggtc	ctgctggtc	cattgggtct	gtggccctc	900
caggcttcc	aggtggccct	ggccccaagg	gtggaaatgg	agctgttggt	aacgctggtc	960
ctgctggtcc	cggccgttcc	cgtgtgaag	tgggtcttc	aggcccttc	ggccccgttg	1020
gaccccttgg	taatcctgga	gcaaaacggcc	ttactgggtc	caagggtgt	gtggcccttc	1080
ccggcggtgc	tggggctccc	ggcccttc	gaccggcgg	tattcttgc	ctgttgggt	1140
ctggccgtgc	tactgggtcc	agaggactt	ttggtgagcc	tgttccagct	ggctccaaag	1200
gagagagcgg	taacaaggt	gagcccgct	ctgctggcc	ccaagggtct	cctggtccca	1260
gtggtaaga	aggaaagaga	ggccctaatt	gggaagctgg	atctgcccggc	cctccaggac	1320
ctcctgggct	gagaggtagt	cttgcgttcc	gtggtcttc	tggagctgt	ggcagagctg	1380
gcgtcatggg	ccctcctggt	agtgcgtggt	caagtggcc	tgtggagtc	cgaggaccta	1440
atggagatgc	tggtcgcct	ggggagcctg	gtctcatggg	acccagaggt	cttcctgggt	1500
cccctggaaa	tatcgcccc	gctggaaaag	aagggtctgt	cgccctccct	ggcatcgacg	1560
gcaggcctgg	cccaattg	ccagctggag	caagaggaga	gcctggcaac	attggattcc	1620
ctggacccaa	aggccccact	ggtgatcctg	gcaaaaaacgg	tgataaaaggt	catgctggtc	1680
ttgctggtgc	tcgggggtgc	ccaggtcctg	atggaaacaa	tggtgcttag	ggaccccttg	1740
gaccacaggg	tgttcaaggt	ggaaaaggtg	aacaggggtc	cgctggctct	ccaggccttcc	1800
agggtctgcc	tggccctca	ggtcccgtg	gtgaagttgg	caaaccagga	gaaaggggtc	1860
tccatggtga	gtttggtctc	cttgcgtc	ctggtccaag	aggggaacgc	gttccccag	1920
gtgagagtgg	tgctgcccgt	cctactggtc	ctattggaa	ccgagggtct	tctggacccc	1980
cagggcctga	tggaaaacaag	ggtgaaacctg	gtgtgggttg	tgcgtggc	actgctggtc	2040
catctggtcc	tagtggactc	ccagggagaga	gggggtgtgc	tggcataac	ggaggcaagg	2100
gagaaaagg	tgaacctgtt	ctcaggggtg	aaatttggtaa	ccctggcaga	gttgggtc	2160
gtggtgctca	tggtgctgt	ggtggccctg	gtcctgtc	agccacaggt	gaccggggcg	2220
aagctggggc	tgctggctt	gctgtc	ctggtc	ggaaagccct	gttgaacgtg	2280
gcgagggtcg	tcctgctg	cccaacggat	ttgtggtcc	ggctgggtct	gttggcaac	2340
cgggtctaa	aggagaaaaga	ggagccaaag	ggcctaagg	tgaaaacgg	gttgggtc	2400
ccacaggccc	cggtggagct	gctggcccag	ctggtccaaa	tgttcccccc	gttccctgctg	2460
gaagtctgg	tgtatggaggc	ccccctggta	tgactgggtt	ccctgggtct	gctggacgga	2520
ctggcccccc	aggaccctt	ggtatttctg	gcccttc	tcccctgg	cctgctggg	2580
aagaagggt	tctgtgtc	ctgtgtgacc	aagggtcc	tggcgaact	ggagaagtag	2640
gtgcagttgg	tccccctg	ttcgtgtgt	agaagggtcc	ctctggagag	gttggta	2700
ctggacccct	ttgcactc	ggtcctc	gtcttc	tgcctctgt	attctgggtc	2760
tccctggctc	gagagggt	ctgtgtctac	ctgggtt	tggtgctgt	gttgaacctg	2820
gtcctcttgg	cattgccc	cctc	cccgtgg	tccctgg	gtgggtagtc	2880
ctggagtcaa	cggtgtct	ggtgaagctg	gtcgtgtatgg	caaccctgg	aacgtatggc	2940
ccccaggctg	cgatggtcaa	cccgacaca	agggagagcg	cggttaccc	ggcaatattg	3000
gtcccggtgg	tgctgcagg	gcac	ctcatggcc	ctgtgg	gtggcaaaac	3060
atggaaaccg	tggtaaaact	ggtc	tcctgtt	tcctgtgt	gttggtagtc	3120
caagagggtc	tagtggccca	caagg	gtggcgataa	gggagagccc	gttggaaaagg	3180
ggcccaagg	tcttcc	ttaaagg	caatagg	gcaagg	cctggat	3240
ctggtcacca	tggtgat	ggtgc	ctcc	tgc	cctagggg	3300
ctgctggtcc	ttctggcc	gctg	atgg	tc	gttacgtt	3360
gacctgtgg	cattcgagg	cctc	acca	tgctgg	cctggccc	3420
ctggccctcc	tggac	ggt	gtgt	ttgt	tacgtatgg	3480
acttctacag	ggctgacc	cctc	cac	tgc	gactatgaa	3540
ttgatgtac	tctgaa	tc	atgg	tgc	cctgaaagg	3600
ctagaaagaa	cccag	acat	actt	tc	gatggagca	3660
gtggttacta	ctggat	cct	atgc	actt	aaagtata	3720
gtgatttctc	tactgg	ac	ggg	ggat	ccagcca	3780
actggatag	gagct	aca	ggcc	gtat	atcaatgct	3840
gcagccagtt	tgaatata	gt	aaa	ggaa	acccaa	3900
ccttcatgc	cctg	aactat	actt	ggctgt	tgcaagaaca	3960
gcattgcata	catggat	gagact	ggca	catt	ctacagg	4020
ctaatatgt	tgaactt	gt	ac	ac	tgtt	4080
atggctgctc	aaaaagaca	aat	aa	cat	aaaacaata	4140

Sequence listing.txt

agccatcacg	cctgcccttc	cttgatattg	cacctttgga	catcggttgt	gctgaccatg	4200
aattcttgt	ggacattggc	ccagtcgtt	tcaaataaat	gaactcaatc	taaattaaaa	4260
aagaaagaaa	tttggaaaaaa	cttctcttt	gccattctt	cttcttctt	tttaactgaa	4320
agctgaatcc	ttccatttct	tctgcacatc	tacttgctt	aattgtggc	aaaagagaaa	4380
aagaaggatt	gatcagagca	ttgtgcaata	cagtttcat	aactccttcc	cccgctcccc	4440
caaaaattt	g a a t t t t t t	tcaacactct	tacacctgtt	atggaaaatg	tcaaccctt	4500
taagaaaacc	aaaataaaaa	ttgaaaaata	aaaaccat	aaacccaaac	cacttggc	4560
ttttgaat	ttccacaga	gggaagttt	aaacccaaac	ttccaaaggt	ttaaactacc	4620
tcaaaacact	ttcccatgag	tgtgatccac	attgttaggt	gctgacctag	acagagatga	4680
actgagg	ttgtttttt	ttgttcataa	tacaaagg	ctaattata	gtat	4740
tacttgaaga	atgttgcgtt	tgctagaaga	atttgagaag	aaataactcct	gtat	4800
gtatcg	gtgtttttt	taaaaaattt	gatttagat	tcatattt	cat	4860
ccaaat	atgcagat	tatttgc	aagttgttcc	cttcttcaga	ttcagcattt	4920
gttcttgc	agtctcat	tcatattt	ccatgg	acagaagctt	tgttcttgg	4980
gcaagcagaa	aaattaaattt	gtac	ttat	atgtttttaa	ataaatttgc	5040
aaaaaaatga	aataaagcat	gtttgg	tttt	ccaaaagaac	at	5084

<210> 29
<211> 595
<212> DNA
<213> Homo sapiens

<400> 29
gggcaggcgt gggccggaa gggcgtgggt tgaggagagg ctccagaccc gcacgcgcg 60
cgcacagacg ttcagcgcc gctccagcc acagcctcc ggcctcgct cagctcaac 120
atggcaaaaa ttcagcc tacagagact gagcgggtca tcgagtcctt gattgtgtc 180
ttccagaagt atgctggaaa ggtatggat aactacatc tcttcaagac agatcccta 240
agtttcatga atacagaact agtcgcctt acaaagaacc agaaggaccc tggtgcctt 300
gaccgcgtga tgaagaaact ggacaccaac agtgcgttgc agtgcgttgc ctcagaattt 360
cttaatctga ttggtggcct agtcatggct tgccatgact cttccctcaa ggctgtccct 420
tcccagaagc ggacctgagg accccttggc cttggcctt aaacccaccc ctttccttc 480
cagccttct gtcatcatct ccacagccca cccatccctt gagcacacta accacccat 540
gcagggccca cttgccaata gtaataaagc aatgtcactt tttaaaaca tgaaa 595

<210> 30
<211> 2116
<212> DNA
<213> Homo sapiens

<400> 30
gtgaaggccg ggcgcgtcgc cggccgaggt gggatcccga ggcctctcca gtccgcgcg 60
ggcgcaccac cggcccgctt cgccgcgc gccggggagg tggagcacga ggcgcacgtgt 120
taggatccga aagatggtga actatgcctg ggcaggcgcg agcgcaggaga aactctgggt 180
gagggtccgtt gccgtcctgt cgtccaaatc ggtcgtccga ccttgggtata ggggcgggct 240
ccaggccgagg cgggtcgacgc tcctggaaac ttgcgcgcgc gctcgcgcaca ctgcgcgg 300
agcgatgaag atggtcgcgc cctggacgcg gtttacttcc aacgcgtgtc gtttgcgtc 360
ccatgtccgc accggccacca tcctgtcgg cgtctggat tctgtatcatca atgctgtgtt 420
actgttgatt ttattggatg cccttggctgt tccggatcatg tataactttt caagttctga 480
actggggatg gactttgatg tcatggatgt tgccaaatcg tgcatgttca ttgcgatttc 540
tcttcctatg atccctgatat gtgtatggc tacttacggc gctgtacaagc aacgcgcagc 600
ctggatcatc ccatttttct gttaccagat ctttgactttt gcccgttcaaa tgttgggtgc 660
aatcactgtt cttatattatc caaaatccat tcaggaatac atacggcaac tgcctctaa 720
ttttccctac agagatgttgc tcatgttcatg gaatccatc tttttgggtcc ttattattct 780
tctgtttattt agcattatct tgactttaa gggttacttg attagctgtt tttggactg 840
ctaccgatac atcaatggta ggaactccgc tgatgtccgt gtttattgttta ccagcaatga 900
caactacggtg ctgttaccc cgtatgtatc tgccactgtg aatgggtgtc gcaaggagcc 960
accgcaccc tacgtgtctg cctaaacccctt caagtggcg gactgtgggg cagcagctt 1020
actttgcaga catctgatc atagttctgt tatttactt ttgcctatgtt cctctctgag 1080
tttgggtttt gctgaaatgc tactttaa aatttagatg ttagattgaa aactgttagtt 1140
ttcaacatat gcttgcgtt aacactgtatc tagattaact gtagaattct tcctgtacga 1200
ttggggatat aatgggcctt actaacccctt ccttaggcatt gaaacttccc ccaaattctga 1260

Sequence listing.txt

tggacctaga	agtctgcttt	tgtacctgct	ggggccaaa	gttggcatt	tttctctctg	1320
ttccctct	tttggaaaatg	taaaataaaa	ccaaaaatag	acaactttt	ttcagccat	1380
tccagcatag	agaacaaaac	cttatggaaa	caggaatgtc	aattgtgtaa	tcattgttct	1440
aattaggtaa	atagaagtcc	ttatgtatgt	gttacaagaa	tttccccac	aacatcctt	1500
atgactgaag	ttcaatgaca	gtttgtgtt	gggtggtaaa	ggattttctc	catggcctga	1560
attaagacca	tttagaaagca	ccaggccgtg	ggagcagtga	ccatctgctg	actgttcttg	1620
tggatcttgc	gtccaggac	atgggggtgac	atgcctcgta	tgtgttagag	gttggaatgg	1680
atgtgtttgg	cgctgcatgg	gatctggtgc	ccctcttctc	ctggatttcac	atccccaccc	1740
agggcccgt	tttactaagt	gttctgccct	agattggttc	aaggaggtca	tccaactgac	1800
tttatacaagt	ggaattggga	tatatttgat	atacttcgtc	ctaacaacat	ggaaaagggt	1860
tttctttcc	ctgcaagct	catcctactg	cttgaacct	ccaagtatgt	ctagtcacct	1920
tttaaaatgt	aaacatttc	agaaaaatga	ggattgcctt	ccttgtatgc	gcttttacc	1980
ttgactacct	gaatttcaag	ggatttttat	atattcatat	gttacaagg	cagcaactct	2040
cctgttggtt	cattattgaa	tgtgtgtaa	attaagtgt	tttcaattaa	aacaaggttt	2100
ccccacaaaa	aaaaaa					2116

<210> 31

<211> 3583

<212> DNA

<213> Homo sapiens

<400> 31

cgcggacccg	gccggcccaag	gcccgcgccc	gccgcggccc	tgagaggccc	cggcaggtcc	60
cggccggcg	gcggcagcca	tggccggggg	gccgggccc	ggggagcccg	cagccccgg	120
cgcccagcac	ttcttgcacg	aggtgcgc	ctgggtcatg	tgccgcttct	acaaagtat	180
ggaccccctg	gagccgcgcg	actgggtcc	gttcggcc	ctgatctgc	gcgaccagac	240
cgagctgcgg	ctgtgcgagc	gctccgggca	gcccacggcc	agcgtctgt	ggccctggat	300
caaccgcac	gcccgtgtgg	ccgacactcg	gcacatctc	acgcacactc	agctgtccg	360
tgcgcgggac	atcatcacag	cttgcaccc	tcccgcgg	cttgcgtccc	caggcaccac	420
tgccccggg	cccagcagca	tccctgcacc	cgccgaggg	gaggccttgg	gccccggaa	480
gttgcattcc	tcagcctca	ccttctctc	cccagcttt	ccaggctccc	agacccattc	540
agggcctgag	ctcgccctgg	ttccaagccc	tgcttccctg	tgccctccac	cgcacatctc	600
agcccttct	tctaccaagc	caggcccaga	gagctcaatg	tccctctgc	agggagcccg	660
cccctctccg	ttttgctgac	ccctctgtga	gatttcccg	ggcacccaca	acttctcgga	720
ggagctcaag	atcggggagg	gtggcttgg	gtgcgtgtac	cgggcggtga	tgaggaacac	780
ggtgtatgt	gtgaagaggg	tgaaggagaa	cgctgacctg	gagtgactg	cagtgaagca	840
gagcttcctg	accgagggtgg	agcagctgtc	caggtttctg	cacccaaaca	ttgtggactt	900
tgctggctac	tgtgtcaga	acggcttcta	ctgcctgg	tacggcttcc	tgcccacgg	960
ctccctggag	gaccgtctcc	actgccagac	ccaggctgc	ccacctctct	cctggcctca	1020
gcgactggac	atccttctgg	gtacagccc	ggcaattcag	tttctacatc	aggacagccc	1080
cagcctcatc	catggagaca	tcaagagttc	caacgtcctt	ctggatgaga	ggctgacacc	1140
caagctggga	gactttggcc	tggcccggtt	cagccgctt	gcccgggtcca	gccccagcca	1200
gagcagcatg	gtggcccgga	cacagacagt	cgggggcacc	ctggcctacc	tgcccggagga	1260
gtacatcaag	acgggaaggc	tggctgtgg	cacggacacc	ttcagctttg	gggtggtagt	1320
gcttagagacc	ttggctggc	agagggctgt	gaagacgcac	ggtgcaggg	ccaagtatct	1380
gaaagacactg	gtggaaaggg	aggctgagga	ggctggagtg	gctttagag	gcacccagag	1440
cacactgca	gcaggctctgg	ctgcagatgc	ctgggctgt	cccatcgcca	tgcagatcta	1500
caagaagcac	ctggacccca	ggccggggcc	ctggccaccc	gagctggggcc	tggccctggg	1560
ccagctggcc	tgctgctg	tgcacccgg	ggccaaaagg	aggccctcta	tgacccagg	1620
gtacgagagg	ctagagaagc	tgcaggcgt	gttggcggg	gtccccgggc	atttggaggc	1680
cgcacgtgc	atccccccctt	cccccgacca	gaactccat	gtgtccagca	ctggcagagc	1740
ccacagtggg	gctgtccat	ggcagccctt	ggcagcgc	tcaggagcca	gtgcccaggc	1800
agcagagcg	ctgcagagag	gcccccaacca	gcccgtggag	agtgacgaga	gccttaggcgg	1860
cctctctgt	gccctgcgt	cctggcactt	gactccaa	tgcctctgg	acccagacc	1920
cctcaggggag	gccggctgtc	ctcaggggga	cacggcagga	aatcgagct	gggggagtg	1980
cccaggatcc	cgccccacag	ccgtggagg	actggccctt	ggcagctctg	catcatcg	2040
gtcagagcca	ccgcagat	tcatcaaccc	tgcccacag	aagatgtcc	agaagctgg	2100
cctgtacgag	gatggggccc	tggacagcc	gcagctgt	tcgtccagct	ccctccagg	2160
cttggcctg	gaacaggaca	ggcagggggcc	cgaagaaatg	gatgaattt	agagctgat	2220
tgttcacatg	ggcagatccc	ccaaatccgg	aagtcaatgt	tctcatgg	agaagttctc	2280
atggtgacacg	agtccatcagc	actctgcccgg	cagtgggggt	gggggcccatt	gccccggggg	2340
gagagaagga	gttggccctg	ctgttcttag	ctctgtggc	ataggcaggc	agagtgaac	2400
cctgcctcca	tgccagcatc	tggggcaag	gaaggctggc	atcatccagt	gaggaggctg	2460

Sequence listing.txt

gcccgttt	ggaggctgt	ggctgcacag	accgtgagg	ggaggagagg	ggctgctgt	2520
cagggtgt	gagtagggag	ctggctcccc	tgagagccat	gcagggcgtc	tgcagccag	2580
gcctctggca	gcagctctt	gccatctct	ttggacagtg	gccaccctgc	acaatgggc	2640
cgacgaggcc	tagggccctc	ctacctgtt	acaatttgg	aaagtgtgg	cgggtgcgt	2700
ggctcacgcc	tgtaatccca	gcactttggg	aggccaaggc	aggaggatcg	ctggagccca	2760
gttagtcaag	accagccagg	gcaacatgtat	gagaccctgt	ctctgccaaa	aaattttta	2820
aactattagc	ctggcgttgt	agcgcacgccc	tgtggtccca	gctgctgggg	aggctgaagt	2880
aggaggatca	tttatgtctg	ggaggtcgag	gctgcagtga	gtcatgattt	tatgactgca	2940
ctccagcctg	ggtgacagag	caagaccctg	tttcaaaaaaag	aaaaccctg	gaaaaagtga	3000
agtatggctg	taagtctcat	gttctcgtcc	tagcaagaag	cgagaattct	gagatcctcc	3060
agaaagtcga	gcagcaccca	cctccaaacct	cgggcccagt	tcttcaggct	ttactgggga	3120
cctgcgcgact	gcgcctaatgt	ggtgccctgc	aaggccaggcc	atccctgggc	gccacagacg	3180
agctccgagc	caggtcagggc	ttcgaggccc	acaagctcg	cctcaggccc	aggcaactgat	3240
tgtggcagag	gggcccactac	ccaaggtcta	gctaggccca	agacacttagt	accaggacag	3300
tgagaagccc	cttggaaaggca	gaaaagttgg	gagcatgca	gacagggaag	gaaaacattt	3360
tcagggaaaaa	gacatgtatc	acatgtctt	agaagcaagt	cagtttcat	gtaaccgagt	3420
gtcccttgc	gtgtccaaaaa	gtagcccagg	gctgtacac	aggcttcaca	gtgattttgt	3480
gttcagccgt	gagtcacact	acatgcccccc	gtgaagctgg	gcattggtga	cgtccagggtt	3540
gtcccttgagt	aataaaaacg	tatgttccct	aaaaaaaaaaa	aaa		3583

<210> 32

<211> 905

<212> DNA

<213> Homo sapiens

<400> 32

caacacagg	gcagtctcca	ggacctccac	accattaaca	agatgagcct	tgtgctccct	60
tgggccttag	agaggaagcc	cctctgagcc	ctcagccccc	cttcctccccc	tctccctaaag	120
taatttgatc	ctcaggaaat	tgttctgccc	tcatctggcc	ctggccagct	ctgcatttga	180
caaatccag	gaagaggaaa	ctgttgagaa	aacggaaacta	ctggggaaag	ggagggtca	240
ctgagaacc	tcccggtaac	ccgaccggcc	ctggtcacca	tgaaccacat	tgtgcaaaacc	300
ttctctcctg	tcaacagccg	ccagccccc	aactacgaga	tgctcaagga	ggagcaggaa	360
gtggctatgc	ttggggggggcc	ccacaaccct	gctcccccga	cgtccaccgt	gatccacatc	420
cgcagcgaga	cctccgtgcc	tgaccatgtc	gtctggtccc	tgttcaacac	cctcttcatg	480
aacacctgct	gcctgggctt	catagcattc	gcctactccg	tgaagtctag	ggacaggaag	540
atggttggcg	acgtgaccgg	ggcccaggcc	tatgccttca	ccgccaagt	cctgaacatc	600
tgggcctgat	ttttgggcat	tttcatgacc	attctgctcg	tcatcatccc	agtgttggtc	660
gtccaggccc	agcgtatagat	caggaggcat	cattgaggcc	aggagctctg	cccggtacct	720
gtatcccacg	tactctatct	tccatttcctc	gccctgcccc	cagaggccag	gagctctgcc	780
cttgacctgt	attccactta	ctccaccttc	cattcctcgc	cctgtcccca	cagccgagtc	840
ctgcatcagc	cctttatcct	cacacgctt	tctacaatgg	cattcaataaa	agtgtatatg	900
						905

<210> 33

<211> 782

<212> DNA

<213> Homo sapiens

<400> 33

aggggcctta	gcgtgccgca	tcgcccagat	ccagcggcca	gagagacacc	agagaaccca	60
ccatggcccc	ctttgagccc	ctggcttctg	gcatccgtt	tttgctgtgg	ctgatagccc	120
ccagcaggcc	ctgcacctgt	gtcccacccc	acccacagac	ggccttctgc	aattccgacc	180
tcgtcatcag	ggccaagtcc	gtggggacac	cagaagtcaa	ccagaccacc	ttataccagc	240
gttatgagat	caagatgacc	aagatgtata	aagggttcca	agccttaggg	gatgccgtg	300
acatccggtt	cgtctacacc	cccggcatgg	agagtgtctg	cggataacttc	cacaggtccc	360
acaaccgcag	cgaggagtt	ctcattgtcg	aaaaactgca	ggatggactc	ttgcacatca	420
ctacctgcag	tttcgtggct	ccctggaaca	gcctgagctt	agctcagcgc	cggggcttca	480
ccaagaccta	cactgttggc	tgtgaggaat	gcacagtgtt	tccctgttta	tccatcccct	540
gcaaactgca	gagtggcact	cattgttgt	ggacggacca	gctccctccaa	ggctctgaaa	600
agggccttcca	gtcccggtcac	cttgcctgccc	tgcctcgaaa	gccagggtctg	tgcacccgtc	660
agtccctgcg	gtcccagata	gcctgaatcc	tgcccggagt	ggaactgaag	cctgcacagt	720
gtccaccctgt	ttcccactcc	catctttctt	ccggacaatg	aaataaaagag	ttaccaccca	780
						782

Sequence listing.txt

<210> 34
<211> 1124
<212> DNA
<213> Homo sapiens

<400> 34

gccgcgtgcca	ccgcaccccg	ccatggagcg	gccgtcgctg	cgcgcctgc	tcctcggcgc	60
cgctgggctg	ctgctcctgc	tcctgcccct	ctcccttcc	tccttcccg	acacctgcgg	120
ccccctgcag	ccggcctcct	gcccgcctt	gccccgcgtg	ggctgcctgc	tggcgagac	180
ccgcgcacgc	tgccgcgtgt	gccctatgtg	cgccccgcggc	gagggcgagc	cgtgcggggg	240
tggcgccgc	ggcagggggt	actgcgcggc	gggcattggag	tgcgtgaaga	gccgcaagag	300
gcggaaagggt	aaagccgggg	cagcagccgg	cggtccgggt	gtaacgcggc	tgtgcgtgt	360
caagagcgc	tacccgggt	gcccgcggc	cggcaccacc	tacccggcg	gctgccagct	420
gcgcgcgc	agccagaggg	ccgagagccg	cgggggagaag	gccatcaccc	aggtcagcaa	480
gggcacctgc	gagcaagggtc	cttccatagt	gacgcgcggc	aaggacatct	ggaatgtcac	540
tggtgcggcag	gtgtacttga	gctgtgaggt	catcggaaatc	ccgacacctg	tcctcatctg	600
gaacaaggta	aaaagggggtc	actatggagt	tcaaaggaca	gaactcctgc	ctggtgaccg	660
ggacaacctg	gccattcaga	cccgggggtgg	cccagaaaaag	catgaagtaa	ctggctgggt	720
gctggtatct	cctctaagta	aggaagatgc	tggagaatat	gagtgccatg	catccaattc	780
ccaaaggacag	gcttcagcat	cagaaaaat	tacagtgggt	gatgccttac	atgaaataacc	840
agtaaaaaaa	gttgaagggtg	ccgagctata	aacctccaga	atattattag	tctgcatgtt	900
taaaagtatg	catggataac	tacattacct	gttcttgcc	aataagttt	tttaatcca	960
atccactaac	acttttagtt	tattcactgg	tttacacag	agaaatacaa	aataaagatc	1020
acacatcaag	actatctaca	aaaattttt	atatattac	agaagaaaag	catgcatatc	1080
attaaacaaa	taaaatactt	tttatcacaa	aaaaaaaaaa	aaaa		1124

<210> 35
<211> 647
<212> DNA
<213> Homo sapiens

<400> 35

gctcaactgag	caccgtccca	gcataccggac	accacagcg	cccttcgctc	cacgcagaaa	60
accacacttc	tcataccttc	actcaacact	tccttccca	aagccagaag	atgcacaagg	120
aggaacatga	ggtggctgt	ctggggcac	ccccccagcac	cattcttcca	aggtccaccg	180
tgattaacat	ccacagcgg	acctccgtgc	ccgaccatgt	cgtctggtcc	ctgttcaaca	240
ccctcttctt	gaactgggt	tgtctgggt	tcatagcatt	cgcctactcc	gtaaagtcta	300
gggacaggaa	gatgggttgc	gacgtgaccg	ggggccaggc	ctatgcctcc	accgccaagt	360
gcctgaacat	ctggggccctg	attctggca	tcctcatgac	cattggattc	atccctttac	420
tggtatttcgg	ctctgtaa	gtctaccata	ttatgttaca	gataatacag	aaaaaacggg	480
gttactagta	gccgcggata	gcctgcaacc	tttgacttcc	actgtcaat	gctggccctg	540
cacgctgggg	ctgttgcggc	tgccccctt	gtcctgcggc	tagatacgc	agtttataacc	600
cacacacctg	tctacagtgt	cattcaataa	agtgcacgtg	tttgta		647

<210> 36
<211> 5489
<212> DNA
<213> Homo sapiens

<400> 36

ggctgagttt	tatgacgggc	ccgggtgctga	agggcaggg	acaacttgat	ggtgctactt	60
tgaactgctt	ttcttttctc	cttttgcac	aaagagtctc	atgtctgata	tttagacatg	120
atgagtttg	tgcaaaagg	gagctggcta	cttctcgctc	tgcttcatcc	cactattatt	180
ttggcacaac	aggaagctgt	tgaaggagga	tgttccatc	ttgttcgtc	ctatgcggat	240
agagatgtct	ggaagccaga	accatgccaa	atatgtgtct	gtgactcagg	atccgttctc	300
tgcgtatgaca	taatatgtg	cgatcaagaa	ttagactgcc	ccaacccaga	aattccattt	360
ggagaatgtt	gtgcagttt	cccacagcct	ccaaactgctc	ctactcgccc	tcctaatgg	420
caaggacctc	aaggccccaa	gggagatcca	ggccctctgg	gtattcctgg	gagaatgg	480
gaccctggta	ttccaggaca	accagggtcc	cctggttctc	ctggccccc	tggaatctgt	540
gaatcatgcc	ctactggtcc	tcagaactat	tctccccagt	atgattcata	tgatgtcaag	600
tctggagtag	cagtagggagg	actcgccaggc	tatcctggac	cagctggccc	cccagggccct	660
cccggtcccc	ctggtacatc	tggtcatcct	ggttccctg	gatctccagg	ataccaagga	720

Sequence listing.txt

ccccctggtg aacctgggca agctggtcct tcaggccctc cagggaccc 780
ggccatctg gtcctgctgg aaaagatgg aatcaggtt gacccggacg acctggagag 840
cgaggattgc ctggacccccc aggtatcaa ggtccagctg ggataccctgg attccctgg 900
atgaaaggac acagaggcct cgtggacga aatggagaaa aggtgaaac aggtgcctc 960
ggattaaagg gtgaaaatgg tcttccaggc gaaaatggag ctcctggacc catgggtcca 1020
agaggggctc ctggtgagcg aggacggcca ggacttcctg gggctgcagg tgctcggtt 1080
aatgacgggt ctcgaggcag tggatgtcaa ccaggccctc ctggcctcc tggaactgcc 1140
ggattccctg gatccctgg tgcataagggt gaagttggac ctgcagggtc tcctgggtca 1200
aatggtgccc ctggacaaag aggagaacct ggacctcagg gacacgctgg tgctcaaggt 1260
cctccctggcc ctccctggat taatggtagt cctggtgta aaggcgaaat gggtcccgc 1320
ggcattccctg gagctccctgg actgtatggg gcccgggtc ctccaggacc agccgggtc 1380
aatggtgctc ctggactgcg aggtggtcg ggtgagctg gtaagaatgg tgccaaagga 1440
gagccggac cacgtggta acgcggtag gctggatttc cagggttcc aggagctaaa 1500
ggcgaagatg gcaaggatgg atcacctggaa gAACCTGGT CAAATGGGCT tccaggagct 1560
gcaggagaaa ggggtgcccc tgggttccga ggacctgtg gaccaaatgg catcccagga 1620
gaaaagggtc ctgctggaga gcgtggtgct ccaggccctg caggggccag aggagctgct 1680
ggagaacctg gcagagatgg cgtccctggaa ggtccagggaa tgaggggcat gcccggaaat 1740
ccaggaggac caggaagtgta tggaaaacca gggcctcccg gaagtcaagg agaaagtgg 1800
cgaccaggc ctcctggccc atctggtccc aagaatggag aacggatggg ctggtgcata 1860
ggtcctaaag gaaatgtatgg tgctctgg tggaaagaat ggtgaaactg gacctaagg ccctggagga 1920
cctggccctc agggtcctcc tggaaagaat ggtgaaactg gacctaagg acccccaagg 1980
cctactggc ctggtggtgt caaaggagac acaggacccc ctggtccaca aggattacaa 2040
ggcttgccctg gtacagggtt tcctccaggaa gaaaatggaa aacctgggaa accaggcca 2100
aagggtgatg cccgtgcacc tggagctcca ggaggcaagg gtatgtctgg tgccctgg 2160
gaacgtggac ctccctggatt ggcagggggcc ccaggactta gaggtggagc tggccccct 2220
ggtcccgaag gaggaaaggg tgcgtctggt cctcctggc caccctggc tgctggact 2280
cctggctgc aaggaatggc tggagaaaga ggaggtctt gaaatggaa aacccctgggaa accaggcca 2340
gacaagggtg aaccaggccg cccagggtct gatggtgc caggggaaaga tggcccaagg 2400
ggtcctactg gtcctattgg tcctctggc ccagctggc agcctggaga taagggtgaa 2460
ggtggtggccc cccgactttc aggtatagct ggacctctgg tgcgtctgg tgagagaggt 2520
gaaactggcc ctccaggacc tgcgtgtttc cctgggtctt ctggacagaa tggtaacact 2580
ggtggtaaag gagaagagg ggctccgggt gagaatggg aaggaggccc tcctggagtt 2640
gcaggacccc ctggagggtc tggacctgt ggtcctctg gtccccaagg tgccttcct 2700
gaacgtggca gtcctgggtt acctgggtct gctggcttc ctggtgc tggcttcct 2760
ggtcctccctg ttagtaatgg taacccaggaa ccccccaggc ccagggttc tccaggcaag 2820
gatggcccc cagggtctgc ggttaacact ggtcctctg gcagccctgg agtgtctgg 2880
ccaaaagggt atgctggcca accaggagag aagggtatgc ctggtgcacc gggccacca 2940
ggagctccag gcccacttgg gattgtggg atcaactggg cacggggct tgcaggacca 3000
ccaggcatgc cagggtcttag gggaaaggcc tggcctcagg gttgtcaaggg tggaaagtgg 3060
aaaccaggag ctaacggtct cagtgagaa cgtggcccc ctggacccca gggtcttcct 3120
ggtctggctg gtacagctgg tgaacctggaa agagatggaa accctggatc agatggctt 3180
ccaggcccgg atggatctcc tgggtggcaag ggtgatctg gtggaaatgg ctctcctgg 3240
gcccctggcg ctccctggca tccaggcccc cctggtctg tcggtccagg tggaaagagt 3300
ggtgcacagag gagaatgggg ccctgtggc cctgtctggt ctccgggtcc tgctggttcc 3360
cgagggtctc ctgggtctca aggcccacgt ggtgacaaag gtggaaacagg tgaacgtgg 3420
gctgtggca tcaaaggaca tgcaggattt cctggtaatc cagggtcccc agtttctcca 3480
ggccctgtg gtcagcagggg tgcatactggc agtccagac ctgcaggccc cagaggaccc 3540
gttggaccca gtggacccct tggcaaaagat ggaacaggc gacatccagg tcccattgg 3600
ccaccaggcc ctcgaggtaa cagagggtt gaggatctg agggtcccc agggccacca 3660
ggcaaccagg gcccctctgg acctccctggt gcccctgtc ctgtctgtgg tgggtttgg 3720
gccgctgcca ttgtggat tggaggtgaa aaagctggcg gttttggccc gtattatgg 3780
gatgaaccaa tggatttcaa aatcaacacc gatgagatc tgacttact caagtctgtt 3840
aatggacaaa tagaaaggcct cattgtctc gatggttctc gtaaaaaaccc cgctagaaac 3900
tgcagagacc tgaatttctg ccatctggaa ctcaagatgt gagaataactg gtttgcct 3960
aaccaaggat gcaatttggaa tgctatcaag gtattctgtat atatggaaac tggggaaaca 4020
tgcataagtgc ccaatccccc gatgttcca cgaaacact ggtggacaga ttcttagtgc 4080
gagaagaaac acgtttgggt tggaggttcc atggatggtg gttttcgtt tagctacggc 4140
aatccctgaac ttccctgaaga tgccttgcgt gtcagctgg cattccctcg acttctctcc 4200
agccgagctt cccagaacat cacatatcac tgcaaaaata gcattgcata catggatcag 4260
gccagtggaa atgtaaagaa gcccctggaa ctgtatgggt caaatgaagg tgaattcaag 4320
gctgaaggaa atagcaaatc caccatcaca gttctggagg atggttgcac gaaacacact 4380
ggggaaatggaa gcaaaaacagt ctttgaatat cgaacacgcg aggctgttag actacccatt 4440
gtagatatttgc caccctatgaa cattgggtt gctgtatc gatggatggt ggacgttggc 4500

Sequence listing.txt

cctgtttgct	ttttataaaac	caaactctat	ctgaaatccc	aacaaaaaaaaa	atthaactcc	4560
atatgttgc	ctcttgttct	aatcttgtca	accagtgca	gtgaccgaca	aaattccagt	4620
tatttatttc	caaaatgttt	ggaaacagta	taatttgaca	aagaaaaaatg	atacttctct	4680
tttttgctg	ttccaccaaa	tacaattcaa	atgcttttg	tttattttt	ttaccaattc	4740
caatttcaaa	atgtctcaat	ggtgtataa	taaataaaact	tcaacactct	ttatgataac	4800
aacactgtgt	tatattcttt	gaatccttagc	ccatctgcag	agcaatgact	gtgctcacca	4860
gtaaaagata	acctttcttt	ctgaatagt	caaatacgaa	attagaaaaag	ccctccctat	4920
tttaactacc	tcaactggtc	agaaacacag	attgtattct	atgagtccca	gaagatgaaa	4980
aaaattttat	acgttgataa	aactataaa	tttcatttgat	taatctccctg	gaagatgtgt	5040
ttaaaaagaa	aagtgtaat	caagaattta	aagaaatatt	ttttaagcca	caatttatttt	5100
aatattggat	atcaactgct	tgtaaagggt	ctccctttt	ttcttgcat	tgctggtaaa	5160
gattactaat	atttgggaag	gctttaaaa	cgcatgttat	ggtgctaaatg	tactttcact	5220
tttaaactct	agatcagaat	tgttgacttg	cattcagaac	ataaatgcac	aaaatctgta	5280
catgtctccc	atcagaaaaga	ttcattggca	tgccacaggg	atttcctcc	ttcatctgt	5340
aaaggtaaac	aataaaaacc	aaattatggg	gctgctttt	tcacactagc	atagagaatg	5400
tgttgaaatt	taactttgt	agctgtatg	tggttgta	tctttttt	ccttacagac	5460
acccataata	aaatatcata	ttaaaaattc				5489

<210> 37
<211> 1722
<212> DNA
<213> Homo sapiens

<400> 37

ggggaaaaga	gcttaggaaaag	agctgcaaag	cagtgtggc	tttttccctt	tttttgcctc	60
tttcattac	ccctcctccg	ttttcacccct	tctccggact	tcgcgtagaa	cctgcgaatt	120
tcgaagagga	ggtggcaaag	ttggagaaaa	gaggtgttag	ggtttgggt	ttttttgttt	180
ttgtttttgt	tttttaattt	cttgatctca	acattttttc	ccacccctctc	ggctgcagcc	240
aacgcctctt	acctgttctg	cggcgcgcg	caccgctggc	agctgagggt	tagaaagcgg	300
ggtgtatttt	agatttaag	caaaaattt	aaagataaaat	ccatttttct	ctccccacccc	360
caacgccatc	tccactgcat	ccgatctcat	tatttcgtg	tttgccttggg	ggtgaacaat	420
tttggcctt	tttttccctt	ataattctga	cccgctcagg	tttgcgggtt	tctccggcct	480
ccgctcactg	cgtgcacctg	gcgtgcccct	gcttccccca	acctgttgca	aggcttaat	540
tcttgcact	gggacctgt	cgcaggccacc	ccagccctcc	acctctctct	acattttgc	600
aagtgtctgg	gggagggcac	ctgctctacc	tgccagaaat	ttttaaaacaa	aaacaaaaac	660
aaaaaaatct	ccggggggccc	tcttggcccc	tttatccctg	cactctcgct	ctcctgcccc	720
accccgaggt	aaaggggggcg	actaagagaa	gatggtgtt	ctcaccgcgg	tcctccgt	780
gctggccgccc	tatgcgggccc	cggcccagag	cctgggctcc	ttcgtgcact	gcgagccctg	840
cgacgagaaa	gccctctcca	tgtggccccc	cagccccctg	ggctgcgagc	tggtcaagga	900
gccgggctgc	ggctgctgca	tgacctgcgc	cctggccgag	gggcagtcgt	gcggcgtcta	960
caccgagcgc	tgcgcccagg	ggctgctgctg	cctcccccgg	cagacgcggg	agaagccgct	1020
gcacgcccctg	ctgcacggcc	gcggggttt	cctcaacgaa	aagagctacc	gcgagcaagt	1080
caagatcgag	agagactccc	gtgacgacga	ggagcccccacc	acctctgaga	tggccgagga	1140
gacctactcc	cccaagatct	tccggcccaa	acacaccggc	atctccgagc	tgaaggctga	1200
agcagtgaag	aaggaccgca	gaaagaagct	gaccctgtcc	aaggttgtcg	ggggagccga	1260
gaacactgccc	caccccccgg	tcatctctgc	acctgtatg	agacaggagt	ctgagcagggg	1320
ccccctccgc	agacacatgg	aggctccct	gcaggagctc	aaagccagcc	cacgcattgt	1380
ccccctgtct	gtgtacctgc	ccaattgtga	ccgcaaaagg	ttctacaaga	gaaaggcgtg	1440
caaaccttcc	cgtggccgca	agcgtggcat	ctgctggtgc	gtgacaagt	acggggatgaa	1500
gctgcccaggc	atggagta	ttgacgggg	cttcagttgc	cacacccctcg	acagcagcaa	1560
cgttgagtga	tgcgtcccc	cccaacctt	ccctcaccc	ctcccacccc	cagcccccac	1620
tccaggccagc	gcctccctcc	accccaggac	gccactcatt	tcatctcatt	taagggaaaa	1680
atatatatct	atctatttga	ggaaaaaaaaa	aaaaaaaaaa	aa		1722

<210> 38
<211> 1200
<212> DNA
<213> Homo sapiens

<400> 38
aagatataaa agctccagaa acgttgactg ggaccactgg agacactgaa gaaggcaggg 60

Sequence listing.txt

gcccttagag	tcttggttgc	caaacagatt	tgcagatcaa	ggagaaccca	ggagttcaa	120
agaagcgcta	gtaaggcttc	tgagatcctt	gcactagcta	catcctcagg	gtaggaggaa	180
gatggcttc	agaagcatgc	ggctgctcct	attgctgagc	tgctcgttgc	aaacaggagt	240
cctgggtat	atcatcatga	gaccaggctg	tgctccttgc	tggtttacc	acaagtccaa	300
ttgctatgtt	tacttcagga	agctgaggaa	ctggctgtat	gccgagctcg	agtgtcagtc	360
ttacggaaac	ggagcccacc	tggcatctat	cctgagttt	aaggaaagcca	gcaccatagc	420
agagtacata	agtggctatc	agagaagcca	gccgatatgg	attggcctgc	acgaccacaa	480
gaagaggcag	cagtggcagt	ggattgtatgg	ggccatgtat	ctgtacagat	cctggcttgc	540
caagtccatg	ggtgggaaca	agcactgtgc	tgagatgagc	tccaataaca	acttttaac	600
ttggagcagc	aacgaatgca	acaaggcaca	acacttcctg	tgcaagttacc	gaccatagag	660
caagaatcaa	gattctgcta	actctgcac	agccccgtcc	tcttccttc	tgctagcctg	720
gctaaatctg	ctcattattt	cagagggaa	acctagcaaa	ctaagagtga	taagggccct	780
actacactgg	cttttttagg	cttagagaca	gaaacttttag	cattggccca	gtatggctt	840
ctagctctaa	atgtttgccc	cgccatccct	ttccacagta	tcccttctcc	ctcctccct	900
gtctctggct	gtctcgagca	gtctagaaga	gtgcatctcc	agcttatgaa	acagctgggt	960
cttggccat	aagaagtaaa	gatttgaaga	cagaaggaag	aaactcagga	gtaagcttct	1020
agacccttc	agcttctaca	cccttctgcc	ctctctccat	tgctgcacc	ccacccccc	1080
caactcaactc	ctgcttgttt	ttcccttggc	cataggaagg	tttaccagta	gaatccttgc	1140
tagttgatg	tggccatac	attcccttaa	taaaccattt	tgtacataag	aaaaaaaaaa	1200

<210> 39

<211> 1701

<212> DNA

<213> Homo sapiens

<400> 39

ccgcatccata	gccggcgact	cacacaaggc	aggtgggtga	ggaaatccag	agttgcccatt	60
gagaaaattc	cagtgtcagc	attcttgctc	cttggggccc	tcttcctacac	tctggccaga	120
gataccacag	tcaaacctgg	agccaaaaag	gacacaaagg	actctcgacc	caaactgccc	180
Cagaccctct	ccagaggttg	gggtgaccaa	ctcatcttgc	ctcagacata	tgaagaagct	240
ctatataaat	ccaagacaag	caacaaaccc	ttgatgatata	ttcatcaatt	ggatgagtgc	300
ccacacagtc	aagctttaaa	gaaagtgttt	gctgaaaata	aagaatccaa	gaaattggca	360
gagcagtttg	tcctcctcaa	tctggtttat	gaaacaactg	acaaacacct	ttctcctgat	420
ggccagatgt	tcccccaggat	tatgtttgtt	gaccctatctc	tgacagtttg	agccgatatc	480
acttggaaat	attcaaatcg	tctctatgtc	tacgaacctg	cagatacagc	tctgttgctt	540
gacaacatgt	agaaagctct	caagttgtc	aagactgaat	tgtaaagaaa	aaaaatctcc	600
aagcccttc	gtctgtcagg	ccttggact	tgaaaccaga	agaatgtga	gaagactggc	660
tagtggaa	gcatagtgaa	cacactgatt	agtttatgtt	ttaatgttac	aacaactatt	720
ttttaagaaa	aacaagttt	agaaatttgg	tttcaagttt	acatgtgtga	aaacaatatt	780
gtataactacc	atagtggacc	atgattttct	aaaaaaaaaa	ataaatgttt	tgggggtgtt	840
ctgtttctc	caacttggtc	tttccacagt	tttcgtttac	caaataaggat	taaacacaca	900
caaaatgctc	aaggaaaggga	caagacaaaa	ccaaaactag	tccaaatgtat	gaagacccaa	960
gaccaagtt	tcatctcacc	acaccacagg	ttctcaactag	atgactgtaa	gtagacacga	1020
gcttaatcaa	cagaagtgatc	aaggccatgt	ctttagcata	aaagaatatt	tagaaaaaca	1080
tcccaagaaa	atcacatcac	taccttagat	caactctggc	cagaactct	aaggtacaca	1140
cttcattta	gtatataat	tttagtgcata	ttttggccaa	cctaatgtctc	tcagggaaag	1200
cctctggcaa	gtatcttct	ccttcagagg	tcttaatttgc	tagaaagggtc	atccaaagaa	1260
catctgcaact	cctgaacaca	ccctgaagaa	atccctggaa	ttgaccttgc	aatcgatttgc	1320
tctgtcaagg	tccttaaagta	ctggagtgaa	ataaaatttgc	ccaaacatgtg	actaatttgc	1380
agaagagcaa	agggtgggtg	cgtgttgatg	aggcagatgg	agatcagagg	ttacttaggt	1440
ttagggaaacg	tggaaaggctg	tggcatcagg	gtaggggagc	attctgcctt	acagaaattt	1500
gaatttgttg	ttaatgttctt	cactctatac	ttaatctcacc	attcattaaat	atatggaaattt	1560
cctctactgc	ccagccccc	ctgattttctt	tggcccccgg	actatgtgc	tgtatataat	1620
gctttgcagt	atctgttgc	tgtcttgatt	aacttttttg	gataaaaccc	tttttgaaca	1680
aaaaaaaaaa	aaaaaaaaaa	a				1701

<210> 40

<211> 2259

<212> DNA

<213> Homo sapiens

<400> 40

Sequence listing.txt

cagttgcttc	agcgtcccg	tgtggctgtg	ccgtgggcc	tgtcggtca	cttagccaag	60
atgcctgagg	aaacccagac	ccaagaccaa	ccgatggagg	aggaggaggt	tgagacgttc	120
gccttcagg	cagaatttc	ccagttgtat	tcattgtatca	tcaataacttt	ctactcgaac	180
aaagagatct	ttctgagaga	gctcattca	aattcatcg	atgcattgga	aaaatccgg	240
tatgaaagct	tgacagatcc	cagtaaatta	gactctggaa	aagagctgca	tattaacctt	300
ataccgaaca	aacaagatcg	aactctact	attgtggata	ctggaaattgg	aatgaccaag	360
gctgacttga	tcaataacct	tggtaactatc	gccaagttcg	ggaccaaaggc	gttcatggaa	420
gctttgcagg	ctgggtcaga	tatctctatg	attggccagt	tcgggttgg	tttttattct	480
gcttattttg	ttgctgagaa	agtaactgtg	atcaccaac	ataacgatga	tgagcagtac	540
gcttggggat	cctcagcagg	gggatcattc	acagtggaga	cagacacagg	tgaacctatg	600
ggtcgtggaa	caaaaatgtt	cctacacctg	aaagaagacc	aaactgagta	cttggaggaa	660
cgaagaataa	aggagattgt	gaagaaacat	tctcagttt	ttggatatcc	cattactt	720
tttggggaga	aggaacgtga	taaagaagta	agcgatgtat	aggctgaaga	aaaggaagac	780
aaagaagaag	aaaaaagaaaa	agaagagaaa	gagtcggaa	acaaacctgaa	aattgaagat	840
gttggttctg	atgaggaaga	agaaaaagaag	gatggtgaca	agaagaagaa	gaagaagatt	900
aaggaaaagt	acatcgatca	agaagagctc	aacaaaacaa	agcccatctg	gaccgaaaat	960
cccgacgata	ttactaatga	ggagtaacgg	gaattctata	agagcttgc	caatgactgg	1020
gaagatcaact	ttggcagtgaa	gcattttca	gttgaaggac	agttggaaatt	cagagccctt	1080
ctatttgc	cacgacgtgc	tcctttgtat	ctgtttgaaa	acagaaagaa	aaagaacaac	1140
atcaaattgt	atgtacgcag	agttttcatc	atggataact	gtgaggagct	aatccctgaa	1200
tatctgaact	tcatttaggg	gggtggtagac	tcggaggatc	tccctctaaa	catatcccgt	1260
gagatgttgc	aacaaagcaa	aattttgaaa	gttacgatc	agaatttgg	caaaaaatgc	1320
ttagaactct	ttactgaact	ggcggaaagat	aaagagaact	acaagaaatt	ctatgagcag	1380
ttctctaaa	acataaaagct	tggaatacac	gaagactctc	aaaatcgaa	gaagcttca	1440
gagctgttaa	ggtaactacac	atctgcctct	ggtgatgaga	tgggttctct	caaggactac	1500
tgcaccagaa	tgaaggagaa	ccagaaacat	atcttattata	tcacaggtga	gaccaaggac	1560
caggtagta	actcagccct	tgtggaaacgt	cttcggaaac	atgctttaga	agtgatctat	1620
atgattgagc	ccattgtatg	gtactgtgtc	caacagctga	aggaatttga	ggggaagact	1680
ttagtgtcag	taccaaaa	aggctggaa	cttccagagg	atgaagaaga	aaaaaagaag	1740
caggaagaga	aaaaaacaacaa	gtttggaaac	ctctgcaaaa	tcatgaaaga	catattggag	1800
aaaaaagttg	aaaaggtgt	tgtgtcaaac	cgattggtga	catctccatg	ctgtatttgc	1860
acaagcacat	atggctggac	agcaaaacatg	gagagaatca	tgaaagctca	agccctaaga	1920
gacaactcaa	caatgggta	catggcagca	aagaaacacc	tggagataaa	ccctgaccat	1980
tccattattg	agaccttaag	gcaaaaggca	gaggctgata	agaacgcacaa	gtctgtgaag	2040
gatctgtca	tcttgcttta	tgaaactgcg	ctcctgtctt	ctggcttcag	tctggaaagat	2100
ccccagacac	atgctaacaag	gatctacagg	atgatcaac	ttggtctgg	tattgtatgaa	2160
gatgacccta	ctgctgatga	taccagtgt	gctgtactg	aagaaatgccc	accccttgaa	2220
ggagatgacg	acacatcacg	catggaaagaa	gtagactaa			2259

<210> 41
<211> 7080
<212> DNA
<213> Homo sapiens

<400> 41						
gagctagcgc	tcaaggcagag	cccagcgcgg	tgctatcgga	cagagcctgg	cgagcgcac	60
cggcgcgggg	agccagcggg	gctgagcgcg	gccagggtct	gaacccagat	ttcccagact	120
agctaccact	ccgcttgc	acgccccggg	agctcgcggc	gcctggcggt	cagcgaccag	180
acgtccgggg	ccgctgcgt	cctggcccgc	gaggcgtgac	actgtctcg	ctacagaccc	240
agagggagca	cactgcccagg	atgggagctg	ctggggaggca	ggacttccctc	ttcaaggcca	300
tgctgaccat	cagctggctc	actctgacct	gcttccctgg	ggccacatcc	acagtggctg	360
ctgggtgccc	tgaccagagc	cctgagttgc	aaccctggaa	ccctggccat	gaccaagacc	420
accatgtgca	tatcgccag	ggcaagacac	tgctgctcac	cttttctg	acggtctatt	480
ccatccacat	ctcagaggga	ggcaagctgg	tcattaaaga	ccacgacgag	ccgattgttt	540
tgcgaacccg	gcacatcctg	attgacaacg	gaggagagct	gcatgctgg	agtcccct	600
gcccttcca	gggcaatttc	accatcattt	tgtatggaa	ggctgatgaa	gttatttgc	660
cggatcctt	ctatggctg	aagtacattg	gggttggtaa	aggaggcgct	cttgagttgc	720
atggacagaa	aaagctctcc	tggacatttc	tgaacaagac	ccttcaccca	ggtggcatgg	780
cagaaggagg	ctatttttt	gaaaggagct	ggggccaccg	tggagttatt	gttcatgtca	840
tcgaccccaa	atcaggcaca	gtcatccatt	ctgaccggtt	tgacacctat	agatccaaga	900
aagagagtga	acgtctggtc	cagtatttga	acgcggtgcc	cgatggcagg	atcccttctg	960
ttgcagtgaa	tgtatgaaaggt	tctcgaaatc	tggatgacat	ggccaggaaag	gcatgtacca	1020
aattggaaag	caaacacttc	ctgcacccctt	gatttagaca	cccttggagt	tttctaactg	1080

Sequence listing.txt

tgaaaggaaa	tccatcatct	tcagtggaaag	accatattga	atatcatgga	catcgaggct	1140
ctgctgctgc	ccgggttattc	aaattgttcc	agacagagca	tggcgaatat	ttcaatgttt	1200
cttgc当地	tgagtgggtt	caagacgtgg	agtggacgga	gtggttcgat	catgataaaag	1260
tatctc当地	taaagggtggg	gagaaaattt	cagacctctg	gaaagctcac	ccagggaaaaaa	1320
tatgcaatcg	tcccattgtat	atacaggcca	ctacaatgga	tggagttaac	ctcagcaccg	1380
aggtgtcta	caaaaaaggc	caggattata	ggttgcttg	ctacgaccgg	ggcagagcct	1440
gccggagcta	ccgtgtacgg	ttccctgtgt	ggaagccgt	gaggcccaa	ctcacagtca	1500
ccattgacac	caatgtgaac	agcaccattc	tgaacttgg	ggataatgt	cagtcatgga	1560
aacctggaga	taccctgtgc	attggcagta	ctgattactc	catgtaccag	gcagaagagt	1620
tccaggtgt	tccctgcaga	tccgtgcggcc	ccaaagggt	caaagtggca	gggaaacc	1680
tgtacccgtca	catcggggag	gagatagacg	gcgtggacat	gcggggcggag	gttgggttcc	1740
tgagccggaa	catcatagtg	atgggggaga	tggaggacaa	atgttacccc	tacagaaacc	1800
acatctgcaa	tttcttgcac	ttcgatacct	ttgggggcca	catcaagtt	gctctggat	1860
ttaaggcagc	acacttggag	ggcacggagc	tgaagcatat	gggacagcag	ctgggtggtc	1920
agtacccgtat	tcacttccac	ctggccgtg	atgtagacga	aaggggaggt	tatgaccac	1980
ccacatacat	cagggacctc	tccatccatc	atacatttc	tcgtgcgtc	acagtccatg	2040
gctccaatgg	cttggatgc	aaggacgtt	tggctataa	ctcttgggc	cactgcttct	2100
tcacggaaaga	tggggccggag	gaacgcaaca	ctttgacca	ctgtcttggc	ctccttgtca	2160
agtctggaaac	cctccccc	tcggaccgt	acagcaagat	gtgcaagatg	atcacagagg	2220
actcctaccc	ggggtacatc	cccaagccca	ggcaagactg	caatgtctgt	tccaccttct	2280
ggatggccaa	tcccaacaac	aacctcatca	actgtccgc	tgcaggatct	gaggaaactg	2340
gattttgggtt	tattttccac	cacgtaccaa	cgggccctc	cgtggaaatg	tactccccag	2400
gttattcaga	gcacattcca	ctggaaaat	tctataacaa	ccgagcacat	tccaactacc	2460
gggctggcat	gatcatagac	aacggagtca	aaaccacca	ggcctctg	aaggacaagc	2520
ggccgttct	ctcaatcatc	tctggcagat	acagccctca	ccaggacg	gaccgctga	2580
agccccggga	gcccggccatc	atcagacact	tcattgccta	caagaaccag	gaccacggg	2640
cctggctgcg	ccggggggat	gtgtggctgg	acagctggc	gttgcgtac	aatggcattg	2700
gcctgaccct	ggccagtgt	ggaaacctcc	cgtatgcga	cggctccaa	caagagataa	2760
agaacagctt	gttgggtgc	gagagtggca	acgtggggac	ggaatgtat	gacaatagga	2820
tctggggccc	tggcggctt	gaccatagcg	gaaggaccc	ccctataggc	cagaatttcc	2880
caatttagagg	attcagtt	tatgtatggcc	ccatcaacat	ccaaacttc	actttccgaa	2940
agtttgtggc	cctggagggc	cgccacacca	gcgccttgc	cttccgcct	aataatgcct	3000
ggcagagctg	cccccataac	aacgtgaccg	gcattgcctt	tgaggacgtt	ccgattactt	3060
ccagagtgtt	cttcggagag	cctggccct	ggttcaacca	gctggacatg	gatgggata	3120
agacatctgt	gttccatgac	gtcgacggct	ccgtgtcga	gtacccttggc	tcctacctca	3180
cgaagaatga	caactggctg	gtccggcacc	cagactgc	caatgttccc	gactggagag	3240
gggcatttg	cagtgggtgc	tatgcacaga	tgtacattca	agcctacaag	accagtaacc	3300
tgcgaatgaa	gatcatcaag	aatgacttcc	ccagccaccc	tcttacctg	gagggggcgc	3360
tcaccaggag	cacccattac	cagcaatacc	aaccgttgc	caccctgc	aagggtacaa	3420
ccatccactg	ggaccagacg	ccccccgg	aactgc	ctgctc	aacttcaaca	3480
agggcgactg	gatccgatgt	gggctctgt	acccgc	gagg	tccatccct	3540
cggatgttca	caatgcctg	ctgaagcaaa	cgtccaa	ggcgtctt	gtgaggacct	3600
tgcagatgg	caaagggtgg	cagactacc	ctggcaggag	ccactactac	tgggacgagg	3660
actcagggt	gttggctctg	aagctgaaag	ctcagaacga	gagagagaag	tttgc	3720
gctccatgaa	aggctgtgt	aggatataaga	ttaaagtct	gattccaa	aacgcaggcg	3780
tcagtgcact	cacagccaca	gcttacccc	agttcaccga	gagggtgtc	gtagacgtgc	3840
cgatccccaa	aaaggtcttt	ggtttc	tggaaacaaa	ggaccat	ttggaggtga	3900
agatggagag	ttccaagcag	cacttcttcc	acctctgaa	cgacttc	tacattgaag	3960
tggatgggaa	gaagtacccc	agttcggagg	atggcatca	ggttgtgg	attgacggga	4020
accaaggcg	cgtgtgt	cacacgagct	tcaggaactc	cattctg	ggcataccat	4080
ggcagctttt	caactatgt	gcgaccatcc	ctgacaattc	catagtgtt	atggcatcaa	4140
agggaaagata	cgtctccaga	ggcccatgga	ccagagtgt	ggaaaagctt	ggggcagaca	4200
ggggcttcaa	gttggaaagag	caaattggat	tcgttgc	caaaggc	ttccggccca	4260
tctgggtgac	actggacact	gaggatcaca	aagccaaat	tttcaagtt	gtgcccattc	4320
ctgtgggtgaa	gaagaagaag	ttgtgaggac	agctgccc	cggtgccc	tcgtggtaga	4380
ctatgacgtt	gacttgc	agcagaccag	tggggatgg	ctgggtcccc	cagccctgc	4440
cagcagctgc	ctggaaagc	cgtgtttc	ccctgatgg	ccaaggga	gtatcagag	4500
accctggtgc	tgccacact	ccctactca	gtgtctac	ggagccct	ggcgggtgt	4560
ggccaatgt	gaaacattc	acttgc	agcctcttgg	gtgttctt	cctatctgt	4620
cctcttctgt	gggggtttgg	ggaccat	aggagaccc	gttgtgt	acagcaaaga	4680
tccactttgg	caggagccct	gaccagcta	ggaggtgt	tggagggt	gtcattcaca	4740
gatccccatg	gtcttc	gacaagt	ggtgttaat	gtaggagaa	gagccttggc	4800
cttaaggaaa	tcttactcc	tgtaagcaag	agccaac	acaggattag	gagctgggt	4860

Sequence listing.txt

agaactggct	atccttgggg	aagaggcaag	ccctgcctct	ggccgtgtcc	acctttcagg	4920
agacttttag	tggcagggtt	ggacttggac	tagatgactc	tcaaaggccc	tttttagttct	4980
gagattccag	aatctgctg	catttcacat	ggtacctgga	acccaacagt	tcatggatat	5040
ccactgatat	ccatgatgt	gggtgccccca	gcmcacacgg	gatggagagg	tgagaactaa	5100
tgcctagctt	gaggggctcg	cagtccagta	gggcaggcag	tcaggtccat	gtgcactgca	5160
atgccagggt	gagaatcac	agagaggtaa	aatggaggcc	agtgcattt	cagaggggag	5220
gctcaggaag	gcttcttgc	tacaggaatg	aaggctgggg	gcattttgc	ggggggagat	5280
gagggcgcct	ctggaatggc	tcagggattc	agccctccct	gccgctgcct	gctgaagctg	5340
gtgactacgg	ggtgcgcctt	tgctcacgtc	tctctggccc	actcatgtg	gagaagtgtg	5400
gtcagagggg	agcaatgggc	tttgcgtctt	atgcacag	aggaattcag	tcccaggca	5460
gcccgtcc	tgactccaag	agggtaagt	ccacagaatg	gagctcctgc	cttagggcct	5520
catttgc	tatccagggg	aactgagcac	agggggcctc	caggagaccc	tagatgtct	5580
cgtactccct	ccgcctggga	tttcagagct	ggaaatata	aaaatatcta	gcccaaagcc	5640
ttcattttaa	cagatgggg	aagtgcggcc	ccaagatggg	aaagaaccac	acagctaagg	5700
gagggcctgg	ggagcccccac	cctagccctt	gctgccacac	cacattgcct	caacaaccgg	5760
ccccagagt	cccaggca	cctgaggtag	tttctggaaa	tggggacaag	tccctctgaa	5820
ggaaaggaaa	tgactagagt	agaatgacag	ctagcagatc	tcttccctcc	tgctccagc	5880
gcacacaaac	ccgcctcc	cttgcgttgc	gcccgtcc	tggccttcac	tttgttca	5940
acctgtcagc	ccagcctggg	tgcacagtag	ctgcaactcc	ccattggtgc	tacctgctc	6000
tcctgtctc	gcagctctac	aggtgaggcc	cagcagaggg	atggggctc	gccatgttc	6060
tggtgagcca	atttggctga	tcttgggtgt	ctgaacagct	atttggtcca	ccccagtc	6120
tttcagctgc	tgcttaatgc	cctgctctc	ccctggccca	ccttata	agccccaaaga	6180
gctccgtaa	gagggagaac	tctatctgt	gtttataatc	ttgcacgagg	caccagatc	6240
tccctgggtc	ttgtgtatgaa	ctacatttat	cccccttc	gccccaaacca	caaactctt	6300
ccttcaaaga	gggcctgc	ggctccctcc	acccaactgc	accatgaga	ctcggtccaa	6360
gagtcattc	cccagggtgg	agccaactgt	cagggaggtc	tttcccacca	aacatcttc	6420
agctgtcggg	aggtgaccat	agggctctgc	ttttaaagat	atggctgtt	caaaggccag	6480
agtcacagga	aggacttctt	ccagggagat	tagtggat	ggagaggaga	gttaaatga	6540
cctcatgtcc	ttctgttca	cggtttgtt	gagttttcac	tcttctaatg	caagggtctc	6600
acactgtgaa	ccacttaga	tgtgtact	ttcagggtgc	caggaatgtt	aatgtctt	6660
ggctcagttc	atttaaaaaaa	gatatctatt	tgaaagtct	cagagttgt	catatgttc	6720
acagtacagg	atctgtatcat	aaaagttct	ttcctaaacc	attcaccaag	agccaaatatc	6780
taggcatttt	tttgcgttagca	caaattttct	tattgtcttag	aaaattgtcc	tccttgttat	6840
ttctgtttgt	aagacttaag	tgagtttagt	cttaaggaa	agcaacgctc	ctctgaaatg	6900
cttgctttt	ttctgttgc	gaaatagctg	gtccttttc	gggagttaga	tgtatagagt	6960
gtttgtatgt	aaacatttct	tgtaggcatc	accatgaaca	aagatatatt	ttctattttat	7020
ttattatatg	tgcacttcaa	gaagtca	tcagagaaat	aaagaattgt	cttaaatgtc	7080

<210> 42
<211> 1973
<212> DNA
<213> Homo sapiens

<400> 42

gggatattgg	agtagcaaga	ggctggaaag	ccatcactta	ccttgcactg	agaaaagaaga	60
caaaggccag	tatgcacagc	tttccctcac	tgctgtct	gctgttctgg	ggtgtgtgt	120
ctcacagctt	cccagcgact	ctagaaacac	aagagcaaga	tgtggactta	gtccagaaat	180
acctgaaaaa	atactacaac	ctgaagaatg	atgggaggca	agttgaaaag	cggagaaata	240
gtggccca	gttggaaaaaa	ttgaagcaaa	tgcaggatt	cttgggctg	aaagtgactg	300
ggaaaccaga	tgctgaaacc	ctgaagggtga	tgaagcagcc	cagatgtgga	gtgcctgatg	360
tggctcagtt	tgtcctact	gaggggaacc	ctcgctgg	gcaaacacat	ctgacccata	420
ggattgaaaa	ttacacgc	gattgccaa	gagcagatgt	ggaccatgcc	attgagaaag	480
ccttccaact	ctggagtaat	gtcacaccc	tgacattcac	caaggtctct	gagggtcaag	540
cagacatcat	gatatcttt	gtcaggggag	atcatcgga	caactctc	tttgatggac	600
ctggaggaaa	tcttgc	gttttcaac	caggcccagg	tattggaggg	gatgctcatt	660
ttgatgaa	tgaaagggtgg	accaacaatt	tcagagat	caacttacat	cgtttgcgg	720
ctcatgaa	cggccatttc	cttgcact	cccattctac	tgtatcg	gctttgatgt	780
accctagct	cacccatgt	ggtgtatgtc	agctagctca	ggatgacatt	gatggcatcc	840
aagccatata	tggacgttcc	caaaatctg	tccagccat	cggcccacaa	accccaaag	900
cgtgtacag	taagctaacc	tttgcgtca	taactacat	tcggggagaa	gtgtatgtt	960

Sequence listing.txt

ttaaagacag	attctacatg	cgcacaaatc	ccttctaccc	ggaagtttag	ctcaatttca	1020
tttctgttt	ctggccacaa	ctgccaaatg	ggcttgaagc	tgcttacgaa	tttgcgaca	1080
gagatgaagt	ccggtttttc	aaaggaaata	agtactggc	tgttcaggga	cagaatgtgc	1140
tacacggata	ccccaaaggac	atctacagct	ccttggctt	ccctagaact	gtgaagcata	1200
tcgatgctgc	tcttctgag	gaaaacactg	gaaaaaccta	cttcttgtt	gctaacaat	1260
actggaggt	tgatgaatat	aaacgatcta	tggatccagg	ttatcccaa	atgatagcac	1320
atgactttcc	ttgaatttggc	cacaagttg	atgcagttt	catgaaagat	ggattttct	1380
atttcttca	ttgaacaaga	caatacaat	ttgatccaa	aacgaagaga	attttactc	1440
tccagaaagc	taatagctgg	ttcaactgca	ggaaaaattt	aacattacta	atttgaatgg	1500
aaaacacatg	gtgtgagttc	aaagaagggt	ttttctgaa	gaactgtcta	ttttctcagt	1560
catttttaac	ctctagatgc	actgatacac	agaatataat	cttatttata	cctcagttt	1620
catattttt	tactatttag	aatgtagttt	ttttgtact	gatataattt	agttccacaa	1680
atggtggta	caaaaaagtc	agtttggc	ttatggattc	atataggcca	gagttgcaaa	1740
gatctttcc	agagtatgca	actctgacgt	tgatcccaga	gagcagctt	agtgacaaac	1800
atatcttcc	aagacagaaa	gagacaggag	acatgatct	ttgccggagg	aaaagcagct	1860
caagaacaca	tgtcagtc	ctgggtcac	cctggatagg	caaggatcaa	ctcttcta	1920
acaaaataag	tgtttatgt	ttggataaa	gtcaacctt	tttctactgt	ttt	1973

<210> 43

<211> 1127

<212> DNA

<213> Homo sapiens

<400> 43

accaaataa	ccatagggtcc	aagaacaatt	gtctctggac	ggcagctatg	cgactcaccg	60
tgctgtgtc	tgtgtccctg	ctgcctggca	gcctggccct	gccgctgcct	caggaggcgg	120
gaggcatgag	ttagctacag	tgggaaacagg	ctcaggacta	tctcaagaga	ttttatctct	180
atgacttgc	aacaaaaaat	gccaacagt	tagaagccaa	actcaaggag	atgcaaaaat	240
tctttggcct	acctataact	ggaatgtta	actcccgcgt	catagaaata	atgcagaagc	300
ccagatgtgg	agtggcagat	gttgcagaat	actcaactt	tccaaatagc	ccaaaatgg	360
cttccaaatg	gttgcacccat	aggatcgat	cataatactg	agacttaccg	catattacag	420
tggatcgatt	agtgtcaaa	gtttaaaca	tgtggggcaa	agagatcccc	ctgcattca	480
ggaaagttgt	atggggaaact	gctgacatca	tgattggctt	tgcgcgagga	gctcatggg	540
actccatccc	atttgcattgg	ccagaaaca	cgctggctca	tgcccttgcg	cctggacag	600
gtctcgagg	agatgctcac	ttcgatgagg	atgaacgctg	gacggatgtt	agcagttctag	660
ggattaactt	cctgtatgt	gcaactcatg	aacttggcca	ttctttgggt	atgggacatt	720
cctctgtatcc	taatgcagtg	atgtatccaa	cctatggaaa	tggagatccc	caaaatttta	780
aactttccca	ggatgatatt	aaaggcattc	agaaactata	tggaaagaga	agtaattcaa	840
gaaagaaata	gaaacttcag	gcagaacatc	cattcattca	ttcattggat	tgtatatcat	900
tgttgcacaa	tcagaatttga	taagcactgt	tcctccactc	catttagcaa	ttatgtcacc	960
ctttttatt	gcagttgggt	tttgaatgtc	tttcaactct	tttattgggt	aaactccctt	1020
atggtgtgac	tgtgtcttat	tccatctatg	agctttgtca	gtgcgcgtag	atgtcaataa	1080
atgttacata	cacaataaaa	taaaatgtt	attccatgtt	aaattta		1127

<210> 44

<211> 1163

<212> DNA

<213> Homo sapiens

<400> 44

agatccagca	ggtgccgcgaa	accgcggcgc	gccgcctcc	gcccgttat	gaggccccgc	60
tccggcccca	cgccggaaatcc	gcggctccga	gccttcggc	gcgtcccgac	ccgaggccgg	120
acccgaggcc	agtcccgcgg	ctgcgcagcc	gaagccagt	cggggcctga	gagggacgcg	180
cggccgggg	ccccccgcgc	gggcaccatg	ggcgtctccc	actccgcgtc	tgaggaggt	240
cggggactcg	agggcaagac	cggctctca	tcggatcaga	tcgagcagct	ccatcggaga	300
tttaagcagc	ttagtggaga	tcagcctacc	attcgcaagg	agaacttcaa	caatgtccc	360
gacctggagc	tcaacccat	ccgatccaaa	attgttctgt	ccttcttcga	caacagaaac	420
ctgcgcagg	gaccctagg	cctggctgt	gagatcaatt	tcgaggactt	cctgaccatc	480
atgtcctact	tccggcccat	cgacaccacc	atggacgagg	aacaggtgga	gctgtcccgg	540
aaggagaagc	ttagatttct	gttccacatg	tacgactcgg	acagcgcacgg	ccgcacatact	600
ctggaaagaat	atcgaaatgt	aaagtggctg	aggagctgt	gtcgggaaac	cctcacatct	660
agaaggagtc	cgctcgctcc	atcgccgacg	gggcctatgt	ggaggcggcc	agcgtgtgca	720
tggggcagat	ggagcctgt	cagggttacg	agggatcac	cttcgaggac	ttcctgaaga	780

Sequence listing.txt

tctggcaggg	gatgcacatt	gagaccaaga	tgcacgtccg	cttccttaac	atggaaacca	840
tggccctctg	ccactgaccc	accgccacct	ccgcggagag	actgcacttt	gcaatgggc	900
cgcctccccg	cgtagctgga	gcagccccagg	cccggccggac	agcctcttcc	tgcagcgc	960
gtacatagcc	aaggctcgtc	tgcgcacctt	gtgtcttga	gggtatggta	tgtggactt	1020
cgctttttt	atctccaata	aaaaaaaaaa	aaaaaggttt	gttaattaaa	aaaaaaaaaa	1080
aaaagaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaagaaaaa	aaaaaaaaaa	aaaaaaaaaa	1140
aaaaaaaaaa	aaaaaaaaaa	aaa				1163

<210> 45

<211> 2007

<212> DNA

<213> Homo sapiens

<400> 45

agcggagggg	gaaatctga	gcgcaggcca	gggttgggg	gttttgggt	gtgctggat	60
gaaaggcacc	cttggaaatgg	aaggtaatg	agcaatggaa	aaacttcacg	gcaagattag	120
aaagataacct	gagccccata	ccgcctgtat	gtcggtggcc	acacctccgg	gttaccagg	180
gaagggagga	agcaaaactgt	catattgtat	tggctctaaa	caacaacagt	gtgcgaaggc	240
ccaggggcac	tttgggatgt	accaagagga	aacacaagtt	gcacaatgtat	acaatcttgt	300
tggtacaatt	gtcagagaag	ggaactccca	cagcaaaggc	cataaaacca	tccagggcag	360
tctggggcgg	ctcagttctg	cggtgccagg	gagtggagca	gagctcagcc	ccgtcccaaa	420
cacagatggg	accatgaact	ccggacacag	cttcagccag	acccccctcg	cctccttcca	480
tggcggccgga	ggtggctggg	gccggcccgag	gagcttcccc	agggctccca	ccgtccatgg	540
cggtgtgggg	ggagcccgca	tctccctgtc	cttcaccacag	cggagctgccc	caccctctgg	600
agggtcttgg	ggttctggaa	gaagcagccc	cctacttaggc	ggaatggga	aggccaccat	660
gcagaatctc	aacgaccgccc	tggcctccata	cgtggagaag	gttcgcgc	tggaggaggc	720
caacatgaag	ctggaaagcc	gcatccctgaa	atggcaccag	cagagagatc	ctggcagtaa	780
gaaagattat	tcacagtatg	aggaaaacat	cacacacccgt	caggagcaga	tagggatgg	840
taagatgacc	aatgctcaga	ttattttctt	cattgacaaat	gccaggatgg	cagtggatgt	900
cttcaacctc	aagtatgaaa	atgaacactc	ctttaagaaa	gacttggaaa	ttgaagtctg	960
gggcctccga	aggaccttag	acaacctgac	cattgtcaca	acagacctag	aacaggaggt	1020
ggaagaatg	aggaaagagc	tcattctcat	gaagaagcac	catgagcagg	aatggagaa	1080
gcatcatgtg	ccaagtgact	tcaatgtcaa	tgtgaagggt	gatacgggtc	ccagggaaaga	1140
tctgattaag	gtcctggagg	atatgagaca	agaatatgtag	cttataataa	agaagaagca	1200
tcgagacttg	gacacttgg	ataaagaaca	gtctgcagcc	atgtcccagg	aggcagccag	1260
tccagccact	gtgcagagca	gacaaggtga	catccacgaa	ctgaagcgc	cattccaggc	1320
cctggagatt	gacctgcaga	cacagtacag	cacgaaatct	gctttggaaa	acatgttata	1380
cgagacccag	tctcggtact	cctgcaagct	ccaggacatg	caagagatca	tctccacta	1440
tgaggaggaa	ctgacgcagc	tacccatga	actggagcgg	cagaacaatg	aataccaatg	1500
gctgctggc	atcaaaaccc	acctggagaa	ggaaatcacc	acgtaccgac	ggctccctgg	1560
gggagagagt	gaagggacac	gggaagaatc	aaagtgcagc	atggaaagtgt	ttgcaactcc	1620
aaagatcaag	gccataaccc	aggagaccat	caacggaaaga	ttagttcttt	gtcaagtgaa	1680
tgaatccaa	aagcacgcac	gagaccaatg	aaagttccg	cctgttgtaa	aatctatttt	1740
cccccaagga	aagtccctgc	acagacacca	gtgagtgt	tctaaaagat	acccttgaa	1800
ttatcagact	cagaaaacttt	tattttttt	ttctgtact	gtctcaccag	acttctcata	1860
atgctttaa	tatattgcac	ttttcttaatc	aaagtgcgag	tttatgaggg	taaagctcta	1920
ctttcctact	gcagccctca	gattctcatc	attttgcatc	tattttgtag	ccaataaaac	1980
tccgcaactag	aaaaaaaaaa	aaaaaaaaaa				2007

<210> 46

<211> 1650

<212> DNA

<213> Homo sapiens

<400> 46

gcctttttt	cagtctcagg	acgggcgtt	tggagccggc	cccaggcagc	gtgtgtcggt	60
cgcctagtct	ggagaactag	tcctcgactc	acgggtgggg	aatggaccga	cacgggtatt	120
gtaccgctga	ggggaaaggag	cgggactccg	gacctccagg	agtgcacgg	tgatgctgaa	180
aggaataaca	aggcttatct	ctagatcca	taagttggac	cctgggcgtt	ttttacacat	240
ggggacccag	gctcgccaaa	gcattgctgc	tcaccttagat	aaccaggttc	cagttgagag	300
tccgagagct	atttcccgca	ccaatgagaa	tgaccggcc	aagcatgggg	atcagcacga	360
gggtcagcac	tacaacatct	ccccccagg	tttggagact	gtatccccc	atggccctcc	420
tcctcgctt	gtgatgcagg	tgaagacatt	cagtgcacgt	tgcctgtatgg	taaggaaacc	480

Sequence listing.txt

agccctagaa	cttctgcatt	acctgaaaaa	caccagttt	gcttatccag	ctatacgata	540
tcttcgtat	ggagagaagg	gaacaggaaa	aaccctaagt	cttgcctatg	ttattcattt	600
ctgtcaaaa	caggactggc	tgatactaca	tattccagat	gctcatctt	gggtgaaaaa	660
ttgtcggat	cttctgcagt	ccagctacaa	caaacagcgc	tttgatcaac	ctttagaggc	720
ttcaacctgg	ctgaagaatt	tcaaaactac	aatatgagcgc	ttctgtacc	agataaaaagt	780
tcaagagaag	tagtgtctgga	ataagagaga	aagcactgag	aaagggagtc	ctctgggaga	840
agtgggtgaa	cagggcataa	cacgggtgag	gaacgcacca	gatgcagttg	gaattgtgtc	900
gaaagagcta	aagaggcaaa	gttctttggg	tatgtttcac	ctcctagtgg	ccgtggatgg	960
aatcaatgtc	cttggggaa	gaaccactct	gaaaagagaa	gataaaagcc	cgattgcccc	1020
cgaggatta	gcactgttc	acaacttgag	gaaaatgt	aaaatgtt	ggcatggagg	1080
cgccattgtg	tcggcttga	gccagactgg	gtctctttt	aaggccccga	aagctatct	1140
gccccaggag	ttgctgggaa	aggaaggatt	tatgtccctg	gatccccctt	ttcccatcct	1200
ggtttcaac	tataacccaa	aggaatttga	aagttgtatt	cagtattatt	tggaaaacaa	1260
ttggcttcaa	catgagaaaag	ctcctacaga	agaaggaaaa	aaagagctgc	tgttccaaag	1320
taacgcgaac	ccctcgctgc	tggagcggca	ctgtgcctac	ctctaagcca	agatcacagc	1380
atgtgaggaa	gacagtggac	atctgcttta	tgctggaccc	agtaagatga	ggaagtcggg	1440
cagtacacag	gaagaggagc	cagggccctt	tacctatggg	attggacagg	actgcagttg	1500
gctctggacc	tgcattaaaaa	tgggtttcac	tgtgaatgc	tgacaataag	atattccctt	1560
gttcctaaaa	cittatatac	gtttatttga	tgtggtttt	cacatttaag	ataattatgg	1620
ctctttcct	aaaaaataaaa	atatcttct				1650

<210> 47

<211> 2566

<212> DNA

<213> Homo sapiens

<400> 47

cgcttttttt	tttttttct	tttttgaga	tggagctgc	tctgtcaccc	aggctggagt	60
gcagtggcac	gatcacagct	cactgcaact	tccgcccacct	gggttcaagc	aattttcctg	120
cttcaacctc	ccgagtagtt	gagattacag	gcacgtgcca	ccacacctga	ctgatttttgc	180
tatttttagt	agagacaggg	tttcaccaat	ttggccaggc	tggcttgc	ctcctgaccc	240
caagtatcc	acccacctca	gtctaccaaa	gtgctggat	tacagttgt	gagccactgc	300
acccggcctc	tgtctgactt	ttaaatgt	gagtatccca	gaggtcaggc	tttagagctc	360
ttctttcttc	catctacaga	gtgctcattt	cttgggtat	ctcattcagt	ctcacggctt	420
tgaatgttat	atgctgat	gtcccaactt	tctctgtctc	gcctaaaccc	cccctaata	480
cagaacctga	tatcaaagt	cctatttgc	atctccactt	agatatctaa	taagcatctt	540
taatgtaaaa	tttccaaac	ttagctcta	caattccctc	ccacacttgc	tcagtttcc	600
ccatctaagc	taatggcaac	tccatccctc	cagttgc	ggccaaaact	tttgagggt	660
cttgcactgc	tttttttctc	ccttcttaca	ttgtgc	ccttcttcc	aggcaattc	720
tgtttggat	accttcaat	atatctagaa	ttctatactt	ctcactaccc	ctcattccca	780
ttatcttga	aacacactcc	aatgagggtt	ttacccccc	tattccacca	aaaacactct	840
tgtgaaagtc	accagatgt	ggttcttcag	gctatcatct	gtctccgt	ttattttaag	900
agcctcccta	actggctcc	ttgttccagc	ccctgc	ttaactctat	tctcaata	960
acagtccagag	gatcttata	aaaccgtaa	tcagatata	taattctgt	tgaacaccc	1020
caatgttac	ccacttcaga	gtaaaagtt	aagggtttt	tttgc	aaatattttg	1080
atccctatga	tctatgtct	tcttacccaa	atgtggcc	tcataccgc	agaactggca	1140
ttctctggaa	gcttgcgt	aatgttagat	ctctggc	aagattttct	aaatcagaat	1200
ctgcattttc	atcagcttc	ttggcaattc	atatgttgc	gaaggactg	tgtatgc	1260
tactgcctc	cctgctgcta	tgtgc	tagtacact	gtccctctgg	ctatccgt	1320
aagatggaaa	ctctcctg	tcagggctt	tgcacact	gctccctctg	tctaggataa	1380
tcttccccag	aaaactgc	gccagttg	ttatccctt	caggtctt	ttgaagtac	1440
tttctcatta	aacactttt	ggcccatc	gtctaaact	gcattccca	acccttctt	1500
tcccttttct	ccactttt	ctttttttaa	actatagtt	ttatcaacat	agtatatgtt	1560
ttgcttattt	atccgttta	ttgtctgact	caacaatgt	aatttgc	agaaaaatgt	1620
tacttctctt	tttttgcgt	tccaccaat	acaattca	tgctttttgt	tttattttt	1680
taccaattcc	aatttcaaaa	tgtctcaat	gtgtataat	aaataaaactt	caacactctt	1740
tatgataaca	acactgtgtt	atattcttgc	aatcctagcc	catctgcaga	gcaatgactg	1800
tgctcaccag	taaaagataa	ccttcttcc	tgaaatagtc	aaatacgaaa	ttagaaaagc	1860
cctccctatt	ttaactaccc	caactggc	gaaacacaga	ttgtattct	tgagtcccag	1920
aagatgaaaa	aaattttata	cgttgataaa	acttataat	ttcattgatt	aatctccctt	1980
aagatgggtt	taaaaagaaa	agtgtatgc	aagaattaa	agaaatattt	ttaaagccac	2040
aatttatttta	atattggata	tcaactgc	gtaaagggtc	tcctcccttt	tcttgcatt	2100
gctggc	attactaata	tttggaaagg	ctttaaagac	gcattgtat	gtgctaatt	2160

Sequence listing.txt

actttcactt	ttaaactcta	gatcagaatt	gttgacttgc	attcagaaca	taaatgcaca	2220
aatatctgtac	atgtctccca	tcagaaaagat	tcattggcat	gccacagggg	attctccctcc	2280
ttccatcctgt	aaaggtcaac	aataaaaacc	aaattatggg	gctgcttttgc	tcacactagc	2340
atagagaatg	tgttgaatt	taacittgt	agcttgtatg	tgggtgtga	tctttttttt	2400
ccttacagac	accataata	aaatatcata	ttaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2460
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2520
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2566

<210> 48

<211> 2067

<212> DNA

<213> Homo sapiens

<400> 48

cgcttttttt	ttttttttt	atgaataaaat	tgtatgtgtt	tctagctgaa	actactcacc	60
aatatgcac	ttaaattcaa	tcctcttta	cctattctt	gatataactc	cttgaagttt	120
tcccattctc	ctacatcatc	tcccccaccc	ccactgagtc	atttctataa	tacaaacata	180
ttatctttt	attaaattaa	aaatctacct	gtacacctt	aatgacaatg	ctcgagactc	240
ccctgtggtc	atcgacgcct	ccactgccc	tgatgcacca	tccaaacctgc	gtttcctggc	300
caccacaccc	aattccttc	tggtatcatg	gcagccgca	cgtgccagga	ttaccggcta	360
catcatcaag	tatgagaagc	ctgggtctcc	tcccagagaa	gtgtccctc	ggccccccc	420
tgggtgtcaca	gaggctacta	ttactggcct	ggaaccggg	acccaatata	caatttatgt	480
cattggccctg	agaataatac	agaagagcga	gccccctgatt	ggaaggaaaa	agacaggaca	540
agaagctctc	tctcagacaa	ccatctcatg	ggccccattc	caggacactt	ctgagtagat	600
catttcatgt	catcctgtt	gcactgtatg	agaaccccta	cagttcaggg	ttcctggaac	660
ttctaccagt	gcccactctg	caggcctcac	cagaggtgcc	acccacaaca	tcatagtgga	720
ggcactgaaa	gaggcaggaga	ggcataagg	tcgggaaagag	tttgcattcc	tgggcaactc	780
tgtcaacgaa	gcttgaacc	aacctacgg	tgactcgtgc	tttgcattcc	acacagttc	840
ccattatgcc	gttggagatg	agtggaaacg	aatgtctgaa	tcaggcttta	aactgttg	900
ccagtctta	ggcttggaa	gttgcattt	catatgtgt	tcatctagat	gttgcattga	960
caatgggtgt	aactacaaga	ttggagagaa	gtgggacccgt	caggagaaaa	atggccagat	1020
gatgagctgc	acatgtctt	ggaacggaaa	aggagaattc	aagtgtgacc	ctcatgaggc	1080
aacgtgttat	gatgtggg	agacatacca	cgttagagaa	cagtggcaga	aggaatatct	1140
cgggccatt	tgctcctgca	catgcttgg	aggccagcg	ggctggcgct	gtgacaactg	1200
ccgcagacct	gggggtgaac	ccagtcgg	aggcactact	ggccagtcct	acaaccagta	1260
ttctcagaga	taccatcaga	gaacaaacac	taatgttaat	tgcccaattt	atgtcttcat	1320
gcctttagat	gtacaggctg	acagagaaga	ttcccgagag	taaatcatct	ttccaaatcca	1380
gaggaacaag	catgtctctc	tgccaaagatc	catctaaact	ggagtgtatgt	tagcagaccc	1440
agcttagagt	tcttctttt	ttcttaagcc	cttgctctg	gagaagttc	tccagcttca	1500
gctcaactca	cagttctcc	aagcatcacc	ctgggagttt	cctgagggtt	ttctcataaa	1560
tgagggctgc	acattgcctg	ttctgcttc	aagtattca	taccgctcag	tattttaaat	1620
gaagtgtttc	taagattttt	tttgggatca	ataggaaaagc	atatgcagcc	aaccaagatg	1680
caaatttttt	gaaatgtat	gacaaaaatt	ttaagtagga	aagtcaccca	aacacttctg	1740
ctttcaactt	agtgtctgg	ccgcaataact	gttagaaacaa	gcatgtatctt	gttactgtga	1800
tattttaat	atccacagta	ctcactttt	ccaaatgtatc	cttagtaattt	cctagaaata	1860
tctttctctt	acctgttatt	tatcaatttt	tcccagtatt	tttatacgga	aaaaattgtt	1920
ttgaaaacac	ttagtatgca	gttgataaga	ggaattttgtt	ataattatgg	tgggtgatta	1980
ttttttatac	tgtatgtgcc	aaagctttac	tactgtggaa	agacaactgt	ttaataaaaa	2040
gatttacatt	ccaaaaaaaaaa	aaaaaaaaaa				2067

<210> 49

<211> 1752

<212> DNA

<213> Homo sapiens

<400> 49

ctgctccttc	taggatctcc	gcctggttcg	gcccgcctgc	ctccactcct	gcctccacca	60
tgtccatcg	ggtgaccccg	aagtctaca	aggtgtccac	ctctggccccc	cgggccttca	120
gcagccgctc	ctacacgagt	gggcccgggtt	cccgcatcg	ctcctcgagc	ttctcccgag	180
tgggcagcag	caactttcgc	ggtgccctgg	gcggcggtca	tggtggggcc	agcggcatgg	240
gaggcatcac	cgcagttacg	gtcaaccaga	gcctgctgag	cccccttgc	ctggaggtgg	300
accccaacat	ccaggccgtg	cgcacccagg	agaaggagca	gatcaagacc	ctcaacaaca	360
agtttgccctc	tttcatacgac	aaggtacggt	tcctggagca	gcagaacaag	atgctggaga	420

Sequence listing.txt

ccaagtggag	cctcctgcag	cagcagaaga	cggctcgaag	caacatggac	aacatgttcg	480
agagctacat	caacaacctt	aggcggcagc	tggagactct	gggccaggag	aagctgaagc	540
tggaggcgg	gcttggcaac	atgcaggggc	tggtggagga	cttcaagaac	aagtatgagg	600
atgagatcaa	taagcgtaca	gagatggaga	acgaatttgt	cctcatcaag	aaggatgtgg	660
atgaagctt	catgaacaag	gtagagctgg	agtctcgcc	ggaagggctg	accgacgaga	720
tcaacttcct	caggcagct	tatgaagagg	agatccggg	gctgcagtcc	cagatctcg	780
acacatctgt	ggtgtgtcc	atggacaaca	gccgctccct	ggacatggac	agcatcattg	840
ctgaggtcaa	ggcacagtac	gaggatattg	ccaaccgcag	ccgggctgag	gctgagagca	900
tgtaccagat	caagtatgag	gagctgcaga	gcctggctgg	gaagcacggg	gatgacctgc	960
ggcgcacaaa	ggtgagatc	tctgagatga	accggacat	caggcggctc	caggctgaga	1020
ttgaggccct	caaaggccag	agggcttccc	tggaggccgc	cattgcagat	gccgagcagc	1080
gtggagagct	ggccattaag	gatgccaacg	ccaagttgtc	cgagctggag	gccgcccctgc	1140
agcgggcca	gcaggacatg	gcmcggcagc	tgcgtagta	ccaggagctg	atgaacgtca	1200
agctggccct	ggacatcgag	atcgccacct	acaggaagct	gctggagggc	gaggagagcc	1260
ggctggagtc	ttggatgcag	aacatgagta	ttcatacgaa	gaccaccagc	ggctatgcag	1320
gtggtctgag	ctcggcctat	gggggcctca	caagccccc	cctcagctac	agcctgggct	1380
ccagctttgg	ctctggcgcg	ggctccagct	ccttcagccg	caccagctcc	tccagggccg	1440
tggttgtgaa	gaagatcgag	acacgtatg	ggaagctgtt	gtctgagttc	tctgacgtcc	1500
tgcccagt	aacagctgcg	gcagccctc	ccagcctacc	cctctgcgc	tgccccagag	1560
cctggaaagg	aggccgtat	gcagggtagc	actgggaaca	ggagacccac	ctgaggctca	1620
gccctagccc	tcagcccacc	tggggagttt	actacctggg	gacccccctt	gcccattgcct	1680
ccagctacaa	aacaattcaa	ttgtttttt	tttttggtcc	aaaataaaaac	ctcagcttagc	1740
						1752

<210> 50
<211> 1412
<212> DNA
<213> Homo sapiens

<400> 50	cggggtcg	cgcaaaggc	cttgcctgtc	ctttctct	ccccggacag	catgagcttc	60
accactcg	ccaccttctc	caccaactac	cggtccctgg	gctctgtcca	ggcccccagc	120	
tacggcgcc	ggccggtcag	cagcgcggcc	agcgtctatg	caggcgtgg	gggctctgg	180	
tcccgatct	ccgtgtcccg	ctccaccagc	ttcagggcg	gcatggggtc	cgggggcctg	240	
gccaccggg	tagccgggg	tctggcagga	atgggaggca	tccagaacga	gaaggagacc	300	
atgcaaagcc	tgaacgaccg	cctggcctct	tacctggaca	gagtggaggag	cctggagacc	360	
gagaaccg	ggctggagag	caaaatccgg	gagcacttgg	agaagaagggg	accccaggc	420	
agagactg	gccattactt	caagatcatc	gaggacctga	gggctcagat	cttcgcaa	480	
actgtggaca	atgcccgc	cgttctgcag	attgacaatg	cccgcttgc	tgctgatgac	540	
tttagagt	agtatgagac	agagctggcc	atgcggcagt	ctgtggagaa	cgacatccat	600	
gggctccg	aggtcattga	tgacaccaat	atcacacac	tgca	gacagagatc	660	
gaggctct	aggaggag	gctttcatg	aagaagaacc	acgaagagga	agtaaaaggc	720	
ctacaagcc	agattgccc	ctctgggtt	accgtggagg	tagatgccc	caaatttc	780	
gacctcg	agatcatg	agacatccgg	gcccata	acgagctggc	tcgaa	840	
cgagaggag	tagacaagta	ctggctcag	cagattgagg	agagcaccac	agtggtacc	900	
acacagtct	ctgagggtt	agctgtcg	acgacgc	cagactgag	acgtacatgc	960	
cagtcc	agatcgac	ggactccat	agaaatctga	aggccagctt	ggagaacagc	1020	
ctgagggagg	ttggaggcc	ctacgccc	catgggagc	agctcaacgg	gatcctgct	1080	
cac	tgagt	caagactgg	acagacccgg	gcagagg	ccaggaggat	1140	
gaggcc	tgaacat	ggtaa	ggtcaagctg	gaggctgaga	ccgcccctg	1200	
ctgg	agat	ttat	tttggt	atgccttgg	acagcagcaa	1260	
accatcc	agacc	ccgcggata	gtggatggca	aagtggtgc	tgagaccaat	1320	
gacac	ttctgagg	ttaa	ggagcagg	taccctt	ggagcaggag	1380	
gccaata	aa	tttgc	tttgc	tttgc	tttgc	1412	

<210> 51
<211> 1407
<212> DNA
<213> Homo sapiens

<400> 51	cgcgaatcgc	agcttctgag	accagggtt	ctccgtccgt	gctccgcctc	gccatgactt	60
cctacagct	tcgccc	tcgccc	tcgccc	tcgccc	tcgccc	tcgccc	120

Sequence listing.txt

tgcgtttgg	gccgggggtc	gccttcgcg	cgtccagat	tcacgggggc	tccggcggcc	180
gcggcgatc	cgtgtctcc	gcccgtttg	tgtcctcg	ctccctgggg	gcctacggcg	240
gcggctacgg	cggcgctctg	accgcgtccg	acgggctgt	ggcgccaa	gagaagctaa	300
ccatgcagaa	cctcaacgac	cgcctggcct	cctacctgga	caaggtgcgc	cccctggagg	360
cggccaacgg	cgagctagag	gtgaagatcc	gcaactggt	ccagaagcag	gggcctgggc	420
cctcccgca	ctacagccac	tactacacga	ccatccagga	cctgcgggac	aagattctt	480
gtgcccacat	tgagaactcc	aggattgtcc	tgcagatcg	caatgcccgt	ctggctgcag	540
atgacttccg	aaccaagt	gagacggaa	aggctctcg	catgagcgt	gaggccgaca	600
tcaacggcct	gcmcgggtg	ctggatgac	tgaccctggc	cagaccgac	ctggagatgc	660
agatcgaagg	cctgaaggaa	gagctggcct	acctgaagaa	gaaccatgag	gaggaatca	720
gtacgcgtg	ggggccaaatg	ggagggccagg	tcagtgtt	ggtggattcc	gtcccgcc	780
ccgatctcg	caagatctt	agtgcacatgc	gaagccaat	tgaggtcatg	gccgagcaga	840
accggaaagg	tgctgaagcc	tggttcacca	gccggactga	agaattgaac	cgggaggtcg	900
ctggccacac	ggagcagctc	cagatgagca	ggtccggaggt	tactgacctg	cggcgacacc	960
ttcagggtct	tgagattttag	ctgcgttcac	agctgagcat	gaaagctgcc	ttgaaagaca	1020
caactggcaga	aacggaggcg	cgcttggag	cccagctgc	gcatatccag	gcgctgatca	1080
gcggtattga	agcccagctg	ggcgatgtc	gagctgatag	tgagcggcag	aatcaggagt	1140
accagcggct	catggacatc	aagtgcggc	tggagcagga	gattgccacc	taccgcagcc	1200
tgctcgaggg	acaggaagat	cactacaaca	atttgcgtc	ctccaagg	ctctgaggca	1260
gcaggctctg	gggcttctgc	tgtccttgg	agggtgtt	ctgggttagag	ggatgggaag	1320
gaaggggaccc	ttaccccccgg	ctcttctcc	gacctgcca	taaaaattt	tggtccaagg	1380
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa				1407

<210> 52
<211> 1723
<212> DNA
<213> Homo sapiens

<400> 52						
caaccatcct	gaagctacag	gtgctccctc	ctggaatctc	caatggattt	cagtcgcaga	60
agcttccaca	gaaggcctgag	ctcccttgc	caggccctg	tagtcgtac	agtgggcatg	120
cagcgcctcg	ggacgcacacc	cagcgttat	gggggtgt	gaggccgggg	catccgcata	180
tccaaactcca	gacacacggt	gaactatggg	agcgatctc	caggcggcgg	ggacctgttt	240
gttggcaatg	agaaaaatggc	catgcagaac	ctaaatgacc	gtctagcgt	ctacctagaa	300
aagggtcgga	ccctggagca	gttcaactcc	aaacttgaag	tgcaaatcaa	gcagtggta	360
gaaaccaacg	ccccggggc	tggtcgcgac	tacagtgc	attacagaca	aattgaagag	420
ctgcgaagtc	agattaagga	tgctcaactg	caaaatgctc	ggtgtgtcct	gcaaattgtat	480
aatgctaaac	tggctgctg	ggacttcaga	ctgaagtatg	agactgagag	aggaatacgt	540
ctaacagtgg	aagctgatct	ccaaggcctg	aataaggct	ttgtatgac	aaccctacat	600
aaaacagatt	tggagattca	aatttgaagaa	ctgaataaaag	acctagct	cctcaaaaag	660
gagcatcagg	aggaagtgc	tggcttacac	aagcatctgg	gcaacactgt	caatgtggag	720
gttgtgtctg	ctccaggcct	gaaccttggc	gtcatcatg	atgaaatgag	gcagaagtat	780
gaagtcatgg	cccagaagaa	ccttcaagag	gccaagaac	agtttgagag	acagactgca	840
gttctgcagc	acacgggtc	agtgaatact	gaagaatata	aaggactg	gttcaacta	900
acggagctga	gacgcaccc	ccagagcctt	gagatagaac	tccagtccc	tctcagcatg	960
aaagagtctt	tggagcacac	tcttagggag	accaaggccc	tttacagc	ccagttagcc	1020
aaccttcagg	cgctgttg	ctcttggag	gccaactg	tgcaagattc	gagtaacatg	1080
gaacgccaga	acaacgaaata	ccatatcctt	cttgacataa	agactcgact	tgaacaggaa	1140
attgctactt	accggccct	tcttgcagg	gaagacgtt	aaactacaga	atatcgtt	1200
agcacccctgg	aagagagaga	tataaagaaa	accagggaa	ttaagacagt	cgtcaagaa	1260
gtatggatg	gcaagggtgt	gtcatctgaa	gtcaaaagg	tggaaagaaaa	tatctaaata	1320
gctaccagaa	ggagatgtgt	ctgggtttt	gaaagaaaatt	tggtctataat	tttatcttg	1380
ctccctgcaa	gaaatcagcc	ataagaaagc	actattata	ctctgcgt	attagaaggg	1440
gtgggggtggc	ggaaatcc	tttacatc	tctgtat	aatataatg	ttttactcag	1500
aggagctgca	aattgcgtc	aaaaatgaaa	tccagtgc	actagaatat	ttaaaacatc	1560
attactgcca	tctttatcat	gaagcacatc	aattacaag	tgttagaccac	ctaataatcaa	1620
tttgcgtt	atgttccctg	aaatgtcaat	acatttcaat	tataactaaac	ctcacaaatg	1680
agaggaatcc	atgtaaattt	caaataaacc	actttctt	ttt		1723

<210> 53
<211> 4139
<212> DNA
<213> Homo sapiens

Sequence listing.txt

<400> 53

ccgctccacc	tctcaaggcag	ccagcgcctg	cctgaatctg	ttctgcccc	tccccaccca	60
tttcaccacc	accatgacac	cgggcaccca	gtctcccttc	ttcctgctgc	tgctccctcac	120
agtgttaca	gttgttacag	gttctggta	tgcaagctct	accccagtg	gagaaaagga	180
gacttcggct	acccagagaa	gttcagtgcc	cagctctact	gagaagaatg	ctgtgagtat	240
gaccaggcgc	gtactctcca	gccacagccc	cggttcaggc	tcctccacca	ctcagggaca	300
ggatgtcact	ctggccccgg	ccacggaaacc	agcttcagg	tcagctgcca	cctggggaca	360
ggatgtcacc	tcggccccgg	tcaccaggcc	agccctggc	tccaccaccc	cgccagccca	420
cgtgtcacc	tcagccccgg	acaacaaggcc	agccccggc	tccaccgccc	ccccagccca	480
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	540
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	600
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	660
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	720
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	780
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	840
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	900
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	960
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1020
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1080
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1140
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1200
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1260
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1320
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1380
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1440
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1500
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1560
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1620
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1680
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1740
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1800
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1860
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1920
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	1980
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2040
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2100
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2160
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2220
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2280
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2340
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2400
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2460
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2520
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2580
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2640
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2700
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2760
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2820
cgggtcacc	tcggccccgg	acaccaggcc	ggccccggc	tccaccgccc	ccccagccca	2880
tgggtcacc	tcggccccgg	acaacaggcc	cgccctggc	tccaccgccc	ctccagtc	2940
caatgtcacc	tcggcctcag	gctctgcata	aggctcagct	tctactctgg	tgcacaacgg	3000
cacctgtgcc	agggtacca	caaccccagc	cagcaagagc	actccattct	caattccag	3060
ccaccactct	gataactccta	ccacccttgc	cagccatagc	accaagactg	atgccagtag	3120
cactcaccat	agctcggta	ctcctctc	ctcctccaa	cacagcactt	ctccccagtt	3180
gtctacttgg	gtctctttct	ttttctgtc	tttacat	tcaaacc	agtttaattc	3240
ctctctggaa	gatcccagca	ccgactacta	ccaagagctg	cagagagaca	tttctgaaat	3300
gttttgcag	atttataa	aagggggtt	tctgggcctc	tccaaatatta	agttcaggcc	3360
aggatctgt	gtggtacaat	tgactctggc	tttccgagaa	ggtaccatca	atgtccacga	3420
cgtggagaca	cagttcaat	agtataaaac	ggaaggcagcc	tctcgatata	acctgacgat	3480
ctcagacgtc	agcgtgagtg	atgtgccatt	tcctttct	gcccagtctg	gggctggggt	3540
gccaggtctgg	gcatcgcgc	tgctggtgct	ggtctgtt	ctggttgcc	tggccattgt	3600
ctatctcatt	gccttggctg	tctgtcagtg	ccggccgaaag	aactacgggc	agctggacat	3660

Sequence listing.txt

ctttccagcc	cgggataacct	accatcctat	gagcagatc	cccacctacc	acacccatgg	3720
gcgctatgt	ccccctagca	gtaccgatcg	tagcccatt	gagaaggtt	ctgcaggtaa	3780
cggtggcagc	agcctcttt	acacaaaaccc	agcagtggca	gccgcttctg	ccaacttgt	3840
gggcacgtcg	cgctgagct	gagtggccag	ccagtgccat	tccactccac	tcaggttctt	3900
caggccagag	cccctgcacc	ctgtttggc	tggtagctg	ggagttcagg	tgggctgctc	3960
acagccctct	ttagaggccc	caccaattt	tcggacactt	ctcagtgtgt	ggaagctcat	4020
gtggccccc	gaggctcatg	cctggaaat	gttgggggg	ctcccaggag	gactggccca	4080
gagagccctg	agatagcggg	gatcctgaac	tggactgaat	aaaacgtgt	ctcccactg	4139

<210> 54

<211> 15720

<212> DNA

<213> Homo sapiens

<400> 54

caacccacac	cgccccctgcc	agccaccatg	gggctgccac	tagcccgct	ggcggctgt	60
tgcctggccc	tgtctttggc	agggggctcg	gagctccaga	cagagggcag	aacccgatac	120
cacggccgca	acgtctgcag	cacccggg	aacttccact	acaagaccc	cgacggggac	180
gtcttcgc	tcccccggc	ctgcactac	aacttcgct	ccgactgccc	aggctctac	240
aaggaattt	ctgtgcac	gaagcggg	ccgggcccagg	ctgaggcccc	cggccgggt	300
gagtccatcc	tgctgaccat	caaggatgac	accatctacc	tcacccgcca	cctggctgt	360
cttaacgggg	ccgtggtcag	caccccgac	tacagcccc	ggctgctcat	tgagaagagc	420
gatgcctaca	ccaaagtcta	ctcccgcc	ggcctcaccc	tcatgtggaa	ccgggaggat	480
gcactcatgc	tggagctgga	cactaagtt	cgaaaccaca	cctgtggct	ctgcggggac	540
tacaacggcc	tgcagagct	ttcagaattt	ctctctgac	gcgtgctt	cagtccctg	600
gagttggga	acatgcagaa	gatcaaccag	cccgtatgtt	tgtgtgagga	tcccggaggag	660
gaggtggccc	ccgcatttc	ctccggac	cgcggcag	gtgaggggt	gctgacccg	720
gaggcctcg	cgactgtc	ggacctgg	ccgctgg	cgtatctgc	cgcctggcag	780
caggacgc	ggcggtgccc	ggcggtgac	acctgcgt	gcagcaccgt	ggccgagtt	840
tcccggc	gctccac	cggccgg	cccgga	ggaggaccgc	cacgctctg	900
cccaagac	gccccgggaa	cctgggt	ctggagagc	gctgccc	catggacacc	960
tgctcacacc	tggaggtgag	cagctgtc	gaggagcacc	gatggacgg	ctgtttctg	1020
ccagaaggca	ccgtatata	cgacatcg	gacagtgt	gcgttctgt	gagccagtgc	1080
ca	ctgtacaca	ccgggccc	agatcacc	tgactgcg	1140	
cagtgtgt	gtaacgtt	ccgtgggt	tgcaagacc	tgccctgccc	cgacacc	1200
gcccggaa	gcccgtcc	catcacc	ttcgatgg	agacgtac	cttccac	1260
gactgtact	atgtcttgc	caagggt	cacaacgatt	cctacgct	cctgggg	1320
ctggccccc	gtggctcc	agacaagg	acctgcct	agacgggt	gtgttgg	1380
gacaagaaga	agaatgcgt	ggttcaag	tccgatgg	gtgtactgt	caacc	1440
caggtaacc	tgccccac	gaccgc	ttctctgt	tcccccgt	ttcctacc	1500
atcatggta	gcatggccat	tggcg	ctgcagg	agctggcc	agtcatg	1560
ctcttgt	ca	ggcctcc	ggcagg	agggcct	cggaaact	1620
aacggcc	agggtgac	cttcaag	gcccgg	tggggagg	cacgggg	1680
ggcttgc	acac	ggcag	acctgc	acaag	ctgggg	1740
gatccctg	ccctg	gag	actac	gtgg	ctccctc	1800
aagaagac	agcccc	tgccagg	ccat	actgtt	tgagtatt	1860
aagagg	tgca	aatatg	tgc	aggactgc	gtgc	1920
ctgtctt	acgcgc	tgca	agg	ctgggg	gggg	1980
catgtct	acaagg	atgt	gtt	gtgttgg	gtacaac	2040
accac	gcagac	ggc	cc	ggat	tctcgagg	2100
tttgc	ggc	cc	cc	ggat	gaagg	2160
tgc	ggc	cc	cc	ggat	ggggg	2220
gtgg	ggc	gg	cc	ggat	ctgttag	2280
atccgg	ggc	gg	cc	ggat	gggg	2340
actgc	ggc	gg	cc	ggat	gggg	2400
tacc	ggc	gg	cc	ggat	gggg	2460
gg	gg	gg	cc	ggat	gggg	2520
ggc	gg	gg	cc	ggat	gggg	2580
acc	gg	gg	cc	ggat	gggg	2640
gat	gg	gg	cc	ggat	gggg	2700
ggc	gg	gg	cc	ggat	gggg	2760
ac	gg	gg	cc	ggat	gggg	2820
ga	gg	gg	cc	ggat	gggg	2880

Sequence listing.txt

cgggaggtgg	gccagtacct	ggtggtggag	tccagcacgg	gcatcatcg	catctggac	2940
aagaggacca	ccgtgttcat	caagctggct	ccctcttaca	agggcaccgt	gtgtggcctg	3000
tgtgggaact	ttgaccaccc	ctccaacaac	gacttcacca	cgcgggacca	catgggtgg	3060
agcagcgagc	tggacttcgg	gaacagctgg	aaggaggccc	ccacccctgccc	agatgtgagc	3120
accaaccccg	agccctgcag	cctgaaccccg	caccgcgc	cctggggccga	gaagcagtgc	3180
agcatcctca	aaagcagcgt	gttcagcatc	tgccacagca	aggtggaccc	caagcccttc	3240
tacgaggcct	gtgtgcacga	ctcgctcc	tgtgacacgg	gtggggactg	tgagtgc	3300
tgctctccg	tggcctcc	cgcccgagg	tgtaccaaag	agggggccctg	cgtgttctgg	3360
aggacgccc	acctgtgccc	catattctgc	gactactaca	accctccgc	tgagtgtgag	3420
tggcactatg	agccatgtgg	gaacccggac	ttcgagacat	gcaggacat	caacggcatt	3480
caetccaaca	tctccgtgtc	ctacccgtgg	ggctgctacc	cccggtgccc	caaggacagg	3540
cccatctatg	aggaggatct	gaagaagtgt	gtcaactgc	acaatgttgg	ctgctatgtc	3600
gaggacaccc	actacccacc	tggagacatcg	gttcccaccc	aggagacctg	caagtcc	3660
gtgtgtacca	actcctccca	agtctgtc	aggccggagg	aagaaaatg	tcttaaccag	3720
acccaggatg	gccccttctg	ctactggag	atctgtgcc	ccaacggac	gttggagaag	3780
caetccaaca	tctgttccat	tacgacacgc	ccgtccaccc	tgaccacctt	caccaccatc	3840
accctcccc	ccaccccccac	ctcccttacc	actaccacca	ccaccaccac	ccgcac	3900
agcacagttt	tatcaacaac	tccgaagctg	tgctgcctt	ggtctgactg	gatcaatgag	3960
gaccacccca	gcagtggcag	cgacgacgg	gaccgagaac	catttgc	gttgcggg	4020
gcccctgagg	acatcgagtg	caggtcggtc	aaggatcccc	acctcagtt	ggagcagcat	4080
ggccagaagg	tgcagtgtg	tgtctctgtt	gggttcat	gcaagaatga	agaccagtt	4140
ggaaatggac	catttggact	gtgttacgac	tacaagatac	gtgtcaattg	ttgctggccc	4200
atggataagt	gtatcaccac	tcccagccct	ccaactacca	ctcccagcc	tccaccaacc	4260
acgacgacca	cccttccacc	aaccaccacc	cccagccctc	caaccaccac	cacaaccacc	4320
cctccaccaa	ccaccaccc	cagcccttca	ataaccacca	cgaccaccc	tctaccaacc	4380
accactccca	gccctccaaat	aagcaccaca	accacccctc	caccaaccac	cactccagc	4440
cctccaccaa	ccactccca	cccttcaacc	accactcca	gcccttcaac	aaccaccaca	4500
accacccctc	ccacaaccac	cactccac	cctccaaatg	ctacggccat	cactccacca	4560
gcccagacta	ccacccttcc	accaaccac	actccac	cttccaaac	caccacaacc	4620
acccctccac	caaccaccac	tcccagtct	ccaacgacta	cgcccatc	tccaccaacc	4680
agcactacta	cccttccacc	aaccaccact	cccgccctc	caccaaccac	cacaaccacc	4740
cctccaccaa	ccaccactcc	cagcccttca	acaaccacca	ctcccagtcc	tccaccaatc	4800
accacaacca	cccctccacc	aaccaccact	cccagccctc	caacaacgac	cacaaccacc	4860
cctccaccaa	ccaccactcc	cagcccttca	acgactacac	ccatcactcc	accaaccagc	4920
actaccaccc	ttccaccaac	caccactccc	agccctccac	caaccaccac	aaccaccct	4980
ccaccaacca	ccactccca	cccttcaaca	accaccactc	ccagccctcc	aataaccacc	5040
acaaccaccc	ctccaccaac	caccactccc	agctctccaa	taaccaccac	tccagccct	5100
ccaaacaacca	ccatgaccac	cccttcacca	accaccaccc	ccagctctcc	aataaccacc	5160
acaaccaccc	cttcctcaac	taccactccc	agccctccac	caaccaccat	gaccaccct	5220
tcaccaacca	ccactccca	cccttcaaca	accaccatg	ccacccttcc	accaaccacc	5280
acttcagcc	ctctaacaac	tactccctca	cctccatcaa	taactctcc	tacatttca	5340
ccattctcaa	cgacaacccc	tactacccca	tgcgtgc	tctgcaattg	gactggctgg	5400
ctggattctg	gaaaacccaa	ctttcacaaa	ccaggtggag	acacagaatt	gattggagac	5460
gtctgtggac	caggctgggc	agctaacatc	tcttgcag	ccaccaatgt	tcctgtatgtt	5520
cccatatggac	agcttggac	aacagtggtg	tgtgtatgt	ctgtggggct	gatatgc	5580
aatgaagacc	aaaagccagg	tgggttc	cctatggct	tctgc	ctacgagatc	5640
aacgttc	gctgtggat	tgtcacccaa	cccaccacca	tgacaaaccac	caccacagag	5700
aacccaaactc	cgccaaaccac	gacaccatcc	accaccacca	ctacgggtac	cccaacccca	5760
acacccaccg	gcacacagac	cccaaccacg	acacccatca	ccaccaccac	tacgggtac	5820
ccaaacccaa	cacccacccg	cacacagacc	ccaaaccacg	cacccatcac	caccaccact	5880
acggtgaccc	caaccccaac	acccaccggc	acacagaccc	caaccacgac	acccatcacc	5940
accaccacta	cggtgacccc	aaccccaaca	cccaaccggc	cacagacccc	aaccacgaca	6000
cccatccacca	ccaccactac	ggtgacccc	accccaacac	ccaccggcac	acagacccca	6060
accacgacac	ccatcaccac	caccactacg	gtgacccc	ccccaaacacc	caccggcac	6120
cagacccaa	ccacgacacc	catcaccacc	accactacgg	tgacccc	ccaaacacc	6180
accggcacac	agaccccaac	cacgacaccc	atcaccacca	ccactacgg	gaccccaacc	6240
ccaaacccca	ccggcacaca	gaccccaacc	acgacacca	tcaccac	cactacgg	6300
accccaaccc	caacacccac	cggcacacag	accccaacca	cgacacccat	caccaccacc	6360
actacgggt	ccccaaaccc	aacacccacc	ggcacacaga	ccccaaaccc	gacaccatc	6420
accaccacca	ctacgggtac	cccaacccca	acacccaccg	gcacacagac	cccaacccacg	6480
acacccatca	ccaccaccc	tacgggtac	ccaaacccaa	cacccaccgg	cacacagacc	6540
ccaaacccacg	cacccatcac	caccaccc	acggtgaccc	ccaaacccaa	acccaccggc	6600
acacagaccc	caaccacgac	acccatcac	accaccacta	cggtgacccc	aaccccaaca	6660

Sequence listing.txt

cccaccggca cacagacccc aaccacgaca cccatcacca ccaccactac ggtgacccc 6720
 accccaacac ccacccggcac acagacccc accacgacac ccatcaccac caccactacg 6780
 gtgaccccaa ccccaacacc caccggcaca cagacccaa ccacgacacc catcaccacc 6840
 accactacgg tgaccccaac cccaacaccc accggcacac agaccccaac cagacacccc 6900
 atcaccacca ccactacgt gaccccaacc ccaacaccc cccgcacaca gaccccaacc 6960
 acgacacccca tcaccaccc cactacggt accccaaaccc caacacccac cggcacacag 7020
 accccaaacca cgacacccat caccacccac actacggtga ccccaacccc aacacccacc 7080
 ggcacacaga ccccaacccac gacacccatc accacccaca ctacggtgac cccaaacccca 7140
 acacccacccg gcacacagac cccaaacccg acacccatca ccacccacac tacggtgacc 7200
 ccaaccccaa caccacccgg cacacagacc ccaacccacga caccatcac caccacccat 7260
 acggtgaccc caaccccaac accccacggc acacagaccc caaccacgac acccatcacc 7320
 accaccacta cggtgacccc aaccccaaca cccacccgca cacagacccc aaccacgaca 7380
 cccatcacca ccaccactac ggtgacccca accccaaacac ccacccggcac acagacccca 7440
 accacgacac ccatcaccac caccactacg gtgaccccaa ccccaacacc caccggcaca 7500
 cagaccccaa ccacgacacc catcaccacc accactacgg tgaccccaac cccaaacccca 7560
 accggcacac agaccccaac cagacacccc atcaccacca ccactacggt gaccccaacc 7620
 ccaaccccaa cccgcacaca gaccccaacc accggcacca tcaccaccc cactacggtg 7680
 accccaaaccc caacacccac cggcacacag accccaaacca cgacacccat caccacccacc 7740
 actacggtga ccccaacccca aacacccacc accggcacaca ccccaacccac gacacccatc 7800
 accaccacca ctacggtgac cccaaacccca acacccacccg gcacacagac cccaaacccg 7860
 acacccatca ccaccaccc tacggtgacc ccaaccccaa caccacccgg cacacagacc 7920
 ccaaccacga caccacccatc caccacccatc acggtgaccc caaccccaac accccacccgg 7980
 acacagaccc caaccacgac acccatcacc accaccacta cggtgacccc aaccccaaca 8040
 cccacccggca cacagacccc aaccacgaca cccatcacca ccaccactac ggtgacccca 8100
 accccaaacac ccacccggcac acagacccca accacgacac ccatcaccac caccactacg 8160
 gtgaccccaa ccccaacacc caccggcaca cagaccccaa ccacgacacc catcaccacc 8220
 accactacgg tgaccccaac cccaaaccc accggcacac agaccccaac cagacacccc 8280
 atcaccacca ccactacgt gaccccaacc ccaacacccca ccggcacaca gaccccaacc 8340
 acgacacccca tcaccaccc cactacggt accccaaaccc caacacccac cggcacacag 8400
 accccaaacca cgacacccat caccacccac actacggtga ccccaacccca aacacccacc 8460
 ggcacacaga ccccaacccac gacacccatc accaccacca ctacggtgac cccaaacccca 8520
 acacccacccg gcacacagac cccaaacccg ccaacccaa caccacccac tacggtgacc 8580
 ccaaccccaa caccacccgg cacacagacc acggtgaccc caccatcac caccacccact 8640
 acggtgaccc caaccccaac accccacccgg acacagaccc caaccacgac acccatcacc 8700
 accaccacta cggtgacccc aaccccaaca cccacccggca cacagacccc aaccacgaca 8760
 cccatcacca ccaccactac ggtgacccca accccaaacac ccacccggcac acagacccca 8820
 accacgacac ccatcaccac caccactacg gtgaccccaa ccccaacacc caccggcaca 8880
 cagaccccaa ccacgacacc catcaccacc accactacgg tgaccccaac cccaaacccca 8940
 accggcacac agaccccaac cagacaccc accaccatca ccactacggt gaccccaacc 9000
 ccaaccccaa cccgcacaca gaccccaacc accccaaacca cgacacccat cactacggtg 9060
 accccaaaccc caacacccac cggcacacag actacggtga ccccaacccc ggcacacaga ccccaacccac gacacccatc 9120
 accaccacca ctacggtgac cccaaacccca acacccacccg gcacacagac cccaaacccg 9240
 acacccatca ccaccaccc tacggtgacc ccaaccccaa caccacccgg cacacagacc 9300
 ccaaccacga caccacccatc caccacccatc acacccatca cggtgaccc caaccccaac accccacccgg 9360
 acacgaccc caaccacgac acccatcacc cccatcacca ccaccactac ggtgacccca 9420
 cccacccggca cacagacccc aaccacgaca accacgacac ccatcaccac caccactacg 9480
 accccaaacac ccaccggcac acagacccca cccatcacca ccaccactac caccactacg 9540
 gtgaccccaa ccccaacacc caccggcaca accggcacac agaccccaac caccacccacc 9600
 accactacgg tgaccccaac cccaaacaccc accggcacac cccacccggcac acacgacccca 9660
 atcaccacca ccactacgt gaccccaacc ccaacacccca ccggcacaca gaccccaacc 9720
 acgacacccca tcaccaccc cactacggt accccaaaccc caacacccac cggcacacag 9780
 accccaaacca cgacacccat caccacccac actacggtga ccccaacccc aacacccacc 9840
 ggcacacaga ccccaacccac gacacccatc accaccacca ctacggtgac cccaaacccca 9900
 acacccacccg gcacacagac cccaaacccg accaccatca ccaccaccc tacggtgacc 9960
 ccaaccccaa caccacccgg cacacagacc ccaaccacga caccatcac caccacccact 10020
 acggtgaccc caaccccaac accccacccggc acacgaccc caaccacgac acccatcacc 10080
 accaccacta cggtgacccc aaccccaaca cccacccggca cacagacccc aaccacgaca 10140
 cccatcacca ccaccactac ggtgacccca accccaaacac ccaccggcac acagacccca 10200
 accacgacac ccatcaccac caccactacg gtgaccccaa ccccaacacc caccggcaca 10260
 cagaccccaa ccacgacacc catcaccacc accactacgg tgaccccaac cccaaacccca 10320
 accggcacac agaccccaac cagacaccc accaccatca ccactacgt gaccccaacc 10380
 ccaaccccaa ccggcacaca gaccccaacc acgacacccca tcaccaccc cactacggtg 10440

Sequence listing.txt

accccaaccc caacacccac cggcacacag accccaacca cgacacccat caccaccacc 10500
 actacggta ccccaacccc aacacccacc ggcacacaga ccccaaccac gacacccatc 10560
 accaccacca ctacggtgac cccaaacccc acacccaccg gcacacagac cccaaaccacg 10620
 acacccatca ccaccaccac tacggtgacc ccaaccccaa caccaccgg cacacagacc 10680
 ccaaccacga caccatcac caccaccact acggtgaccc caacccaaac acccaccggc 10740
 acacagaccc caaccacgac acccatcacc accaccacta cggtgaccc aacccaaaca 10800
 cccaccggca cacagacccc aaccacgaca cccatcacca ccaccactac ggtgacccca 10860
 accccaacac ccaccggcac acagacccc accacgacac ccatcaccac caccactacg 10920
 gtgacccaa ccccaacacc caccggcaca cagaccccaa ccacgacacc catcaccacc 10980
 accactacgg tgacccaa cccaaacccc accggcacac agacccaaac cagacacccc 11040
 atcaccacca ccactacgt gacccaaacc ccaacaccca cggcacaca gacccaaacc 11100
 acgacacccca tcaccaccac cactacggtg accccaaccc caacacccac cggcacacag 11160
 accccaacca cgacacccat caccaccacc actacggtgaccccaac aacacccacc 11220
 ggcacacaga ccccaacccac gacacccatc accaccacca ctacggtgac cccaaacccca 11280
 acacccaccc gcacacagac cccaaaccacg acacccatca ccaccaccac tacggtgacc 11340
 ccaacccaa caccaccgg cacacagacc ccaacccacg caccatcac caccaccact 11400
 acggtgaccc caaccccaac acccaccggc acacagaccc caaccacgac acccattacc 11460
 accaccacta cggtgacccca aacccaaaca cccaccggc acagacccca aaccacgaca 11520
 cccatcacca ccaccactac ggtgacccca accccaacac ccaccggc acagacccca 11580
 accacgacac ccatcaccac caccactacg gtgacccaa cccaaacacc caccggcaca 11640
 cagacccaa ccacgacacc catcaccacc accactacgg tgacccaaac cccaaacaccc 11700
 accggcacac agaccccaac caccacaccc atcaccacca ccactacgt gacccaaacc 11760
 ccaacacccca cgggcacaca gacccaaacc acgacacccca tcaccaccac cactacggtg 11820
 accccaaccc caacacccac cggcacacag accccaacca cgacacccat caccaccacc 11880
 actacggta ccccaacccc aacacccacc ggcacacaga ccccaaccac gacacccatc 11940
 accaccacca ctacggtgac cccaaacccc acacccaccg gcacacagac cccaaaccacg 12000
 acacccatca ccaccaccac tacggtgacc ccaaccccaa caccaccgg cacacagacc 12060
 ccaaccacga caccatcac caccaccact acggtgaccc caacccaaac acccaccggc 12120
 acacagaccc caaccacgac acccatcacc accaccacta cggtgacccca aacccaaaca 12180
 cccaccggca cacagacccc aaccacgaca cccatcacca ccaccactac ggtgacccca 12240
 accccaacac ccaccggcac acagacccca accacgacac ccattaccac caccactacg 12300
 gtgacccaa ccccaacacc caccggcaca cagacccca acccgacacc catcaccacc 12360
 accactacgg tgacccaaac cccaaacacc accggcacac agaccccaac cagacacccc 12420
 atcaccacca ccactacgt gacccaaacc ccaacaccca cggcacaca gacccaaacc 12480
 acgacacccca tcaccaccac cactacggtg accccaaccc caacacccac cggcacacag 12540
 accccaacca cgacacccat caccaccacc actacggtgaccccaaccc aacacccacc 12600
 ggcacacaga cggggcccccc caccacaca agcagacac cgttgcgtga gttgaccaca 12660
 tccaatcctc cgcctgagtc ctcaacccct cagacctctc ggttccaccc ttccctctc 12720
 acggagtcaa ccaccccttct gatgtacca ccaacgttca ttgagatgac cagcaggcc 12780
 ccaccctcca caccacacggc acccacgacc acgagcgag gccacacact gtctccaccg 12840
 cccagcacca ccacgtcccccc tccaggcacc cccactcgccgttccatcgac cgggtcatct 12900
 tcagccccca ccccccacgac tggcagacg accaccacca gtggctggac cccaaacgccc 12960
 accccactct ccacacccacg catcatcagg accacagggc tgaggcccta cccttcctct 13020
 gtgcttatct gctgttctt gaaacgaccc tactacgac caggtgagga ggtgtacaac 13080
 ggcacatacg gagacacccgt ttatttcgtc aactgctcac tgactgttac gttggagttc 13140
 tataacttgt cctgccccat cacccttcc ccaacaccca cgcctccaa gtcgacgccc 13200
 acgccttcca agccatcgtc cacccttcc aaggccgaccc cggcaccaa gccccccgag 13260
 tgcccacact ttgatcctcc cagacaggag aacgagactt ggtggctgtg cgactgttcc 13320
 atggccacgt gcaagttacaa caacacgttccat cggagttac atcgacaact accactgcga tcccaacgac 13380
 cccatgccccca cctgctccaa cggctccaa cccgtcgccgttccatcgac cggctgtcc 13440
 tgctggact gggagtgccg ctgttactgc acgggttccat cggactgttac tcatgttacc 13500
 ttcgacggac tctactacag ctaccaggcc aactgttacc acgtgttccat ggaggagatc 13560
 agccctccg tggacaactt cggagttac atcgacaact accactgcga tcccaacgac 13620
 aagggttccct gtcggccac cctcatcgccgttccatcgac cggctgtccat cggctgtcc 13680
 accgtgcata tggatccccat cggatgttccat cggactgttac tcatgttacc ggtggactgt 13740
 ccctacaaga agtacgggttccat cggatgttccat cggactgttac tcatgttacc ggtggacatc 13800
 cccgagctgg gtgttcccttccat ctccttccat cggactgttac tcatgttacc ggtggactgt 13860
 caccgggtttt gcaacaacac caaggccat cggactgttac tcatgttacc ggtggactgt 13920
 gactgcatttccat cggccatggcgg gggatgttccat cggactgttac tcatgttacc ggtggactgt 13980
 ctggtgaacg accccctccaa cccacactgc cccacacggc gctccacacgac caagcggcc 14040
 gccgttactg tgccccgggggg cggtaaaacg accccacaca agggactgcac cccatctccc 14100
 ctctggccacg tcatcaagga cggctgtttt gcccaggccat cggactgttac gccccccgag 14160
 cactactacg atggctcgatcgttccatcgac cggactgttac tcatgttacc ggtggactgt 14220

Sequence listing.txt

gccagtctgc	aggcctacgc	agccctctgt	gcccagcaga	acatctgcct	cgactggcgg	14280
aaccacacgc	atggggcctg	cttggtggag	tgcccatctc	acagggagta	ccaggcctgt	14340
ggccctgcag	aagagccac	gtcaaataatcc	agctccccc	agcagaacaa	cacagtccctg	14400
gtggaaaggct	gcttctgtcc	tgagggcacc	atgaactacg	ctccctggctt	tatgtctgc	14460
gtgaagacct	gcccgtgtgt	gggacctgac	aatgtgccc	gagagtttgg	ggagcacttc	14520
gagttcact	gcaagaactg	tgtctgcctg	gagggtgaa	gtggcatcat	ctgccaaccc	14580
aagaggtgca	gccagaagcc	cgttaccac	tgcgtgaa	acggcaccta	cctcgccacg	14640
gaggtcaacc	ctgcccacac	ctgctgcaac	attaccgtct	gcaagtgcac	caccagcctg	14700
tgcaaagaga	agccctccgt	gtgcccgtg	ggattcgaag	tgaagagcaa	gatggtgccct	14760
ggaagggtgct	gtcccttc	ctgggttgag	tccaaggggg	tgtgttca	cgggaatgtct	14820
gagtaccgc	ccgggtctcc	agtttattcc	tccaagtgc	aggactgcgt	gtgcacggac	14880
aagggtggaca	acaacaccct	gctcaacgtc	atgcctgtca	cccacgtgcc	ctgcaacacc	14940
tcctgcagcc	ctggcttcga	actcatggag	gccccccgggg	agtctgtaa	gaagtgtgaa	15000
cagacgact	gtatcatcaa	acggccccgac	aaccagcacg	tcatcctgaa	gcccggggac	15060
ttcaagagcg	acccgaagaa	caactgcaca	ttcttcagct	gcgtgaagat	ccacaaccag	15120
ctcatctcg	ccgtctccaa	catcacctgc	cccaactttg	atgccagcat	ttgcattcccg	15180
ggctccatca	cattcatgcc	caatggatgc	tgcaagacct	gcacccctcg	caatgagacc	15240
aggggtccct	gctccaccgt	ccccgttacc	acggaggttt	cgtacgcccgg	ctgcaccaag	15300
accgtccctca	tgaatcattg	ctccgggtcc	tgccggacat	ttgtcatgta	ctcgcccaag	15360
gcccaggccc	tggaccacag	ctgcttgc	tgcaaaagagg	agaaaaccag	ccagcgtgag	15420
gtggtctgta	gctgccccaa	tggccgctg	ctgacacaca	cctacaccca	catcgagagc	15480
tgccagtgcc	aggacaccgt	ctgccgggtc	cccaccgca	cctcccgccg	gccccggcgc	15540
tccccttaggc	atctggggag	cggttgagcg	gggtgggcac	agcccccttc	actgcccctcg	15600
acagctttac	ctccccccgga	ccctctgagc	ctcctaagct	cggcttcctc	tcttcagata	15660
tttattgtct	gagtctttgt	tcagtccttgc	ctttccaata	ataaactcag	ggggacatgc	15720

<210> 55
 <211> 4707
 <212> DNA
 <213> Homo sapiens

<400> 55						
gatcaccatc	accgagacca	cctcacacag	tactccca	tacactaccc	caatcaccac	60
caccgagacc	ccctcacaca	gtactccc	ctacactacc	tcaatcacca	ccaccgagac	120
cccatcacac	agtactccca	gttcaacttc	ttcaatcacc	accaccgaga	ccacatccca	180
cagtactccc	agcttcaactt	cttcaatcag	gaccacccgag	accacatcct	acagtactcc	240
cagcttcact	tcttcaataa	ccatcaactga	gaccaccca	cacagtactc	ccagctacat	300
tacctaatac	accaccaccc	agacccccc	aagcgtact	cccaagttca	gttcttcgat	360
caccacca	gagaccacat	cccacagtac	tcccggttcc	acttcttcaa	tcaccaccac	420
tgagactaca	tcccacagta	ctccca	cacttctcg	atcaccacca	ctgagaccac	480
ctcacatgt	actccca	tcacttcttc	aatcaccacc	agtgagaccc	cttcacacag	540
tactccca	ccatccatcc	taatcaccac	caccaagacc	acccatccaca	gtactccca	600
cttcaatct	tcgtatcacca	ccaccgagac	cacccatccac	agtctcgca	gttcaatcc	660
ttcgatcacc	accaccgaga	ccaccatccac	caataactccg	agcttcaatc	ttcgatcac	720
caccaccgag	accacatcc	acagttactac	cagttcaatc	tcttcgatca	ccaccaccga	780
gaccaccc	cacagtactc	ccagttcaatc	ttcttc	accaccactg	agaccccttc	840
acacagtact	cctggcctac	ttcgtgggt	caccaccc	aagaccaccc	cacacattac	900
tcctggcctc	acttcttca	tcaccaccac	tgagactacc	tcacacagta	tcggccgtt	960
cacttctca	atcaccacca	ctgagaccac	ctcagagat	actccca	tcagttcttc	1020
aaccatctac	tccacagtca	gcacatccac	aactgcacatc	acccatccat	ttactaccc	1080
agagactgcg	gtgactccca	cacctgtaa	cccatcttct	ctgagatc	acatcccgac	1140
cacaaggcta	cgaaactctca	ccccttcgtc	tgtggccacc	agcacttcat	tgactacaac	1200
cacagacttt	ccctctatac	ccactgatat	cagtaccc	ccaactcgaa	cacacatcat	1260
ttcatcttct	ccctccatcc	aaagtacaga	aacccatcc	ttgtggca	ccacccctcc	1320
caccatgtcc	actgtgagaa	tgaccctc	aattactgag	aacacccaa	tcagttctt	1380
tagcacaagt	attgttgtt	tacctgaaac	cccaacacag	acccctcc	tactgacgtc	1440
agccactggg	acccaaacat	ctccctgcacc	tactactgtc	accccttggaa	gtacggattc	1500
ctccacgtcc	acttccatca	ctcttactcc	atcaacagcc	ttgagcacga	tcgtgtcaac	1560
atcacaggtt	catttcctt	gcacacattc	ctccaccctt	caaaaactc	tttctactcc	1620
ctcattgcaa	acttcactca	catctacaag	tgagttact	acagaatctt	tcacttaggg	1680

Sequence listing.txt

aagtacgtct	acaaatgcaa	tcttgacttc	tttttagtacc	atcatctgg	cctcaacacc	1740
cactattatc	atgtcctctt	ctccatcttc	tgccagcata	actccagtgt	tctccactac	1800
cattcattct	gttccttctt	caccatacat	tttcagtaca	gaaaatgtgg	gctccgcttc	1860
tatcacaggc	tttccttagtc	tctcttcctc	tgcaactacc	agcaacttctt	caaccagctc	1920
ctctctgacc	acagctctca	ctgaataaac	cccctttct	tatatttccc	ttccctccac	1980
cacaccctgt	ccaggaacta	taacaattac	catagtcct	gcctctccca	ctgatccatg	2040
tgttgaatg	gatcccagca	ctgaagctac	ttctcctccc	accaccccat	taacagtctt	2100
tcccttact	accgaaatgg	tcacctgtcc	tacctccatc	agtatccaaa	ctactcttac	2160
tacatataatg	gacacttctt	ccatgatgcc	agaaaagtgg	tccagcatct	cacccaatgc	2220
ttccagttcc	actggcactg	ggactgtacc	cacaacaca	gttttcacaa	gtactcgact	2280
gcccacccgt	gagacctggc	tgagacaag	ttctgtgatc	cccctacctc	ttcctggcgt	2340
ctctaccatc	ccgcctcacca	tgaacccaag	cagtagctc	ccgaccatcc	tgaggacttc	2400
aagcaagtca	acacacccat	ccccacccac	cactaggact	ttagagacac	cagtggccac	2460
tacccagact	cctaccaccc	ttacatcacg	caggacaact	cgcatcaact	ctcagatgac	2520
cacacagtcc	acgttgacca	ccactgcagg	cacctgtgac	aatggggca	cctggaaaca	2580
ggggccagtgt	gcttgccctc	cggggttttc	tggggaccgc	tgtcagctcc	agaccagatg	2640
ccagaatggg	ggtcagtgg	atggcctcaa	atgccagtgc	cccacccact	tctatgttc	2700
cagttgttag	tttgcgttgg	aacaggtgga	tcttagatgca	gaagattttt	gcagacatgc	2760
agggcttcac	tttcaaggg	gtggagatcc	tgtccctgag	gaatggcagc	atcgtgggt	2820
actacctgg	cctgctggag	atgcccctca	gccccccact	ggagagcgg	tatgagcagg	2880
tgaagaccac	gctgaaggag	gggctgcaga	acgcccacca	ggtatgtgaac	agctgcccgg	2940
actcccaagac	cctgtgtttt	aagcctgact	ccatcaaggt	gaacaacaac	agcaagacag	3000
agctgacccc	gjcagccatc	tgccgcgcgc	cgctccac	ggctatgaag	agttctactt	3060
ccccttgg	gaggccaccc	ggctccctg	tgtcaccaaa	tgcacgtctg	gggtggacaa	3120
cgccatcgac	tgtcaccagg	gccagtgcgt	tctggagacg	agcggctcc	cgtgtcgctg	3180
ctactccacc	gacacgcact	ggtttctctgg	cccgcgtc	gaggtggccg	tccactggag	3240
ggcgcgtggc	ggggcctgac	ggccggcgcg	cgctgttgg	gctgtgtc	gtggcgttgg	3300
gcgtccggc	ggtgcgcctc	ggatgggtgg	gcccgcagcg	ccgaggccgg	tcctgggacc	3360
aggacaggaa	atggttcgag	acctgggatg	aggaagtctgt	ggcactttt	tcaaactggg	3420
gtttcgagga	cgacggaaaca	gacaaggata	caaatttta	tgtggcttgg	gagaacgtga	3480
caccatcgat	aagggtgcaca	tcaagagacc	cgagatgacc	tcgtcctc	tgtgagccctg	3540
cgggggccct	tcaccacccc	ctcccccctg	ccccggacac	aagggtctgc	attgcgtcca	3600
tttcaagagg	tgacccccc	acgcgggcag	cccaggctcc	tgctgttgc	gggcaagatg	3660
agactgttcc	cccaaataccc	atccctctcc	ttccaactt	gctgaaaccc	acctggagac	3720
gcagttcact	tccaggctct	tccactgtgg	aatcttggc	aagtcaat	cgagccctc	3780
tttccctacc	tgcaaaaacgg	gtacagcatt	cctgtatgat	acgtcagcc	gttgggtga	3840
aaaccacata	gacttggtca	attctcggtc	ctactctgc	ctcccgctc	agccctcg	3900
ttgccattgc	ctctctcgga	tcctccaatc	ctcacgtct	tcacctggc	tctggccctg	3960
gttcttattt	tctctcaatt	ccctactg	tgtttcttac	tttgaacctg	gaggcagcct	4020
gcagccccat	cccatctctt	gccctctct	gatctaactc	cctgtgtcat	ctcttgc	4080
cattccttag	acgtcctccc	cttttgaccc	cggtccttca	tccatctgc	accccagtcc	4140
cccagcccta	aatccctccct	cctctctca	catcctg	cctagcaagg	tatagatagc	4200
ctctgtgtct	taggatacc	cggtgtctgt	tccctcg	atccgttgc	ccagttcccc	4260
gtttctcttg	ctctcatttt	tgtatcctt	cccccttta	gcccg	tcatcggtt	4320
tgccccccgac	cccccccgac	ctaaatacc	cagctgtgt	tccccccatc	accctgtgc	4380
ccaaattttt	atttccacc	cctttctctc	acccctggag	ccctgcgggt	ggggcaggg	4440
catgagttcc	ccagttccca	aggaaaggca	gccccctc	tctccctct	cctcatcccc	4500
ttccatctcc	ctcccccctg	cctttaaac	ccatcccc	cgatcccc	cctccccct	4560
ctctccctgg	tgtcacctgg	attctcgac	taattctg	cccttgaat	cctcagtcgc	4620
cttggcgggg	aagattgg	ttggggacag	gaggtcggca	catctccagg	tcttcatgtg	4680
cgcaatata	tgatattt	aaaaac				4707

<210> 56
<211> 4151

<212> DNA

<213> Homo sapiens

<400> 56

gggacaggggc	actctccccc	gccgtccaca	caatgagtgt	tggccggagg	aagctggccc	60
tgctctgggc	cctggccttc	gctctggcct	gcacccggca	tacaggccat	gcccaggatg	120
gctccctccga	atccagctac	aagcaccacc	ctgccccttc	tcctatcgcc	cgggggccca	180
tcgggggtccc	gctccgtgg	gcaactgtct	tcccatctct	gaggaccatc	cctgtggtac	240
gagccctccaa	cccgccgcac	aacggggcggg	tgtgcagcac	ctggggcagc	ttccactaca	300

Sequence listing.txt

agaccttcga	cggcgacgtc	ttccgcttcc	ccggcctctg	caactacgtg	ttctccgagc	360
actgcggtgc	cgcctacgag	gatttaaca	tcccagctac	gccgcagcca	ggagtcagcg	420
gcccccacgc	tgagcagggt	cctcatgaag	gtggatggcg	tggatcatcca	gctgaccaag	480
ggctccgtcc	tggtaacagg	ccacccggc	ctgctccct	tcagccagtc	tgggtcctc	540
attcagcaag	agcagcagct	acaccaaggt	ggaagccagg	ctggcccttg	tcctcatgtg	600
gaaccacat	gacagcctgc	tgcttggaa	tggacaccaa	atacgcaac	aagaacctgt	660
gggctctgt	gggacttcaa	cgggatgccc	gtggatcagcg	agctcctctc	ccacaacacc	720
aagctgacac	ccatggaaatt	cgggaaacctg	ccgaaagatg	gacgaaccca	cgagcagtg	780
tcaggaccct	gtccctgaac	ccccgaagaa	ctgctccact	ggcttggca	tcctgtgagg	840
agctctgtc	cggccagctg	ttcttggct	gctggccgtc	gtggacgtc	ggcagctacc	900
tggaggcttgc	caggcaagac	ctctgttct	gtaaagacac	cgaccctgctc	agctgcgtct	960
gcccacccct	tggcagatc	tcccgccgt	gcacccatgc	agggggttgc	ccccaggact	1020
ggcggggccc	tgacttctgc	cccccagaatg	gcccccaacaa	catgcagtc	cacgagtgcc	1080
gctccccctg	cgcagacacc	tgcttcaacc	aggagactc	ccggccctgt	gaggaccact	1140
gtgtggccgg	ctgcttctgc	cctgagggga	cggtcttga	cgacatcgcc	cagaccggct	1200
gtgtccctgt	gtcaaagtgt	gcctgcgtct	acaacggggc	tgcctatgcc	ccagggggca	1260
cctactccac	agactgcacc	aactgcacct	gctccggagg	ccggtgagc	tgccaggaag	1320
ttccatgccc	gggttacctgc	tctgtgttgc	gaggtgcca	cttctcaacg	tttacggga	1380
agcaatacac	ggtgcacggc	gactgcagct	atgtgttgc	caagccctgt	gacagcagtg	1440
ccttcactgt	actggcttag	ctgcgcagg	gccccgttgc	ggacagcag	acctgcctga	1500
agagcgtgac	actgagcctg	gatggggcgc	agacgggttgc	gtgtatcaag	gccagtgggg	1560
aagtgttctc	gaaccagatc	tacacccagc	tgcccatctc	tgcaagccaa	gtcaccatct	1620
tcagaccctc	aaccccttc	atcatcgccc	agaccaggct	gggctgcag	ctgaacctgc	1680
agctgggtcc	caccatgcag	ctgttcatgc	agctggcgcc	caagctccgt	gggcagacact	1740
gcccgtctcg	tgggaacttc	aacagcatcc	aggccgtatga	cttccggacc	ctcagtgggg	1800
tggtgaggc	caccgcgtcg	gccttctca	acacccctaa	gaccaggccc	gcctgcccc	1860
acatcaggaa	cagttcgag	gaccctgtc	ctctgttgcgt	ggagaatgag	aagtatgtc	1920
agcactggtg	ctcgcagctg	accgtatggc	acggccctt	cgccgggtgc	catgctgccc	1980
tgaaggccgg	aacctactac	tcgaactgc	tgttgcac	ctgcaactgt	gagcggagcg	2040
aggactgcct	gtgcgcgcgc	ctgttcttc	acgtgcacgc	ctgttgcgc	aaggcgtgc	2100
agctccggcg	ctggagggac	ggcgttgc	cgaaggctat	gaccacttgc	cccaagtcaa	2160
tgacgtacca	ctaccatgtc	agcacctgc	agccaccctg	ccgttccctg	agcgagggg	2220
acatcacctg	cagtgttggc	ttcatcccc	tggatggctg	catttgc	aagggcacact	2280
tcctggacga	cacgggcaag	tgtgtgcagg	ccagcaactg	tccctgttac	cacagaggct	2340
ccatgatccc	caatggggag	tcgggtgcac	acagcggggc	tatctgcacc	tgcacacatg	2400
ggaagcttag	ctgcatcgga	ggccaaagcc	ccgccccagt	gtgtgttgc	cccatgggt	2460
tctttactg	ccgaaatgcc	acgcccgggg	acacaggggc	tgggtgtc	aagagctgcc	2520
acacactgga	catgacctgt	tacagcccc	aatgtgttgc	tgggtgtc	tgccccgacg	2580
ggctgttgc	ggacggcggag	ggcgttgc	tcacttgc	ggactgtccc	tgcgtgcaca	2640
atgaggccag	ctaccggggc	ggccagacca	tccgggttgg	ctgcaacacc	tgcacctgt	2700
acagcaggat	gtggcggtgc	acagatgacc	cctgccttgc	cacctgc	gtgtacggg	2760
acggccacta	cctcaccttc	gacggacaga	gctacagctt	caacgaggag	actgcgagta	2820
ctcgcttgc	cagaaccgc	gtggcgggaa	agacagcacc	caggactcct	ttcgttgcgt	2880
caccgagaac	gtccccctgc	gcaccacagg	gaccacccgc	tccaaaggcc	tcaagattt	2940
cctgggggaa	cttcgagctg	aagctaagcc	atgggaagg	ggaggtgtc	gggacggacg	3000
agagccagga	gtgtccat	accatccggc	agatggggat	ctaccctgg	gtggacaccg	3060
acattggct	gtgtgtc	tgggacaaga	agaccagcat	tttcatcaac	ctcagcccc	3120
agttcaagg	cagggttgc	ggccctgttgc	ggaacttgc	cgacatcgcc	gttaatgact	3180
ttgccacgc	gagccggct	gtgggggggg	acgtgttgc	gtttggaaac	agctggaaagc	3240
tctccccc	ctgccc	gttgc	ccaaaggaccc	ctgcacggcc	aacccttcc	3300
gcaagtcc	ggccc	caag	tcctccacgg	ccccaccc	gccgcctg	3360
acgcacacgt	ggagccggcc	aggta	aggccgt	gaacgacgc	tgcgcctg	3420
actccgggg	tgactgc	tgcttgc	cggttgc	ccgttacgc	caggcc	3480
atgaagttag	cac	tg	cccaagcat	ctgccc	ttctgc	3540
actacaaccc	cgaa	tg	actacc	ctgcgggg	ccctgc	3600
gcaccc	gaac	gg	tgccc	ccgggg	gaagg	3660
accccaagt	cccac	act	ttgt	caagat	tgtgt	3720
cctgccc	cccg	cc	gttgc	ggat	tacgg	3780
gtgcagtgt	gccc	cc	acttgc	ggat	ggc	3840
agtgcacca	caa	gt	tcac	ggac	gttcc	3900
gggacgtcat	ta	cc	tgat	ggcc	cc	3960
ccaacggc	catt	gg	ggat	ggcc	cg	4020
ccaccc	tt	cc	cc	cc	cc	4080

Sequence listing.txt

gcccaga cgcgcacaca ggccctccga gcagcgcctg gcccaccaca gcaggcactt 4140
 ctcccaggac g 4151

<210> 57

<211> 880

<212> DNA

<213> Homo sapiens

<400> 57

tccagcaatt tgctcgggtc acggcctcct cctggctccc aggacccac cataggcaga 60
 ggcagccctt cctacaccct actccctgtg cctccaggt cgactagtcc ctagcaactcg 120
 acgactgagt ctctgagatc acttcaccgt ggtctccgccc tcacccttgg cgctggacca 180
 gtgagaggag agggctgggg cgctccgctg agccactcct gcgcggccctt ggccttgtct 240
 acctcttgc ccccgaaaggg ttatgtgtcga gtcacccca gcatcctaca acctccctgg 300
 ggcctgccc ccccccacaac cccgaggtat aaagccaggt acacgaggca ggggacgcac 360
 caaggatgga gatgttccag gggctgctgc tggctgtct gctgagcatg ggcgggacat 420
 gggcatccaa ggagccgctt cgccacccgt gccgccccat caatgccacc ctggctgtgg 480
 agaaggaggg ctgccccgtg tgcacccacg tcaacaccac catctgtgcc ggctactgcc 540
 ccaccatgac ccgcgtgctg cagggggtcc tgccggccct gcctcagggtg gtgtgcaact 600
 accgcgatgt ggcgttcag tccatccggc tccctggctg cccgcgcggc gtgaaccccg 660
 tggctcccta cgccgtggct ctcagctgtc aatgtgcact ctggccgcgc agcaccactg 720
 actgcggggg tcccaaggac cacccttga cctgtatgaa ccccgcttc caggactcct 780
 cttcctcaaa ggccctccc cccagccatc caagtccatc ccgactcccg gggccctcg 840
 acaccccgat cctcccaacaa taaaggcttc tcaatccgca 880

<210> 58

<211> 5532

<212> DNA

<213> Homo sapiens

<400> 58

ggcgcgtgc gccggagttc cgagctagcc ccggcgccgc cgccgcccag accggacgac 60
 aggcacacc cgtcggttcc gcccggatcc ccgcctcgcc gccaacgcac caaccaccgc 120
 gcacggcccc ctgactccgt ccagtttga tcggggagagc cggagcgagc tttcgggga 180
 gcagcgatgc gaccctccgg gacggccggg gcagcgctcc tggcgctgt ggctgcgtc 240
 tgccggcga gtcgggctt ggagggaaag aaagtttgc aaggcacgag taacaagctc 300
 acgcagttgg gcacttttga agatcattt ctcagccccc agaggatgtt caataactgt 360
 gaggtgttcc ttggaaattt ggaatttacc tatgtgcaga ggaattatga tcttccttc 420
 ttaaagacca tccaggaggt ggctgttat gtcctcattt ccctcaacac agtggagcga 480
 attccttgg aaaacctgca gatcatcaga gaaaaatgt actacaaaaa ttccatgcc 540
 ttagcagtct tatctaactt tgatcaaat aaaaccggac tgaaggagct gcccattgaga 600
 aatttacagg aaatccgtca tggcgccgtg cggttcagca acaaccctgc cctgtgcaac 660
 gtggagagca tccagtggcg ggacatagtc agcagtgtact ttctcagcaat catgtcgatg 720
 gactttcaga accacccgtt cagctgccaa aagtgtgtc caagctgtcc caatgggagc 780
 tgctgggtt caggagagga gaactggccag aaactgacca aatcatctg tgcccagcag 840
 tgctccgggc gtcgtcgatc caagttccccc agtgcgtct gccacaacca gtgtgctgca 900
 ggctgcacag gccccccggg gaggcactgc ctggctgtcc gcaattccg agacgaagcc 960
 acgtgcaagg acacccgtt cccactcatg ctctacaacc ccacacgtt ccagatggat 1020
 gtgaaccccg agggcaaaa cagctttgtt gccacctcg tgaagaagtg tccccgtaat 1080
 tatgtgttga cagatcacgg ctcgtcgatc cgagcctgtt gggccgcacag ctatgagatg 1140
 gaggaagacg gctgtccgcaaa gtgttggaaag tgcgttggccaa atgtgttgc 1200
 ggaataggtt ttgggttatt taaagactca ctctccatata atgttacgaa tattaaacac 1260
 ttcaaaaact gcacccat cagttggcgat ctccacatcc tgccgggtggc atttaggggt 1320
 gactccatca cacatactcc tcctctggat ccacaggaac tggatattct gaaaaccgtt 1380
 aaggaaatca cagggtttt gctgttccat gcttggccctt aaaacaggac ggacccat 1440
 gccttgaga accttagaaat catacgccgc aggaccaagc aacatggtca gtttctctt 1500
 gcagtcgtca gctgttccat aacatcccttggatttgcgttccat gataagtgtat 1560
 ggagatgtga taatccatgg aaacaaaaat ttgtgttgcgttccat gaaatataat aaactgaaa 1620
 aaactgtttt ggacccatccgg tcagaaaaacc aaaattataa gcaacagagg tggaaaacagc 1680
 tgcaaggccaa caggcccgat ctcgttccat gcttggccctt ccgagggtgttggggcccg 1740
 gagcccgaggg actgcgttcc ttggccgtt gtcgttccat gcaacggatg cgtggacaag 1800
 tgcaaggcttcc tggagggttga gccaaggggg gttgtggatg actgtgttgc 1860
 caccctggat gctgttccat gggccatccat gtcgttccat cttttttttt accagacaac 1920

Sequence listing.txt

tgtatccagt	gtgcccacta	cattgacggc	ccccactgcg	tcaagacctg	ccggcagga	1980
gtcatggag	aaaacaacac	cctgtctgg	aagtacgcag	acggccggcca	tgtgtgccac	2040
ctgtccatc	caaactgcac	ctacggatgc	actggggccag	gtcttgaagg	ctgtccaacg	2100
aatgggccta	agatcccgtc	catcgccact	gggatggtgg	ggggccctcct	cttgctgctg	2160
gtggtggccc	tggggatcg	cctcttcatg	cgaaggcgc	acatcggtcg	gaagcgcacg	2220
ctgcgaggc	tgctgcagga	gaggagactt	gtggagcctc	ttacacccag	tggagaagct	2280
cccaaccaag	ctctcttgag	gatcttgaag	gaaactgaat	tcaaaaagat	caaagtgc	2340
ggctccggtg	cgttcggcac	ggtgtataag	ggactcttga	tcccagaagg	tgagaagtt	2400
aaaatcccg	tcgctatcaa	ggaattaaga	gaagcaacat	ctccgaaagc	caacaaggaa	2460
atcctcgat	aagcctacgt	gatggccagc	gtggacaacc	ccacgtgtg	ccgcctgctg	2520
ggcatctgcc	tcacccac	cgtcaacgc	atcacgcagc	tcatgccct	cggctgcctc	2580
ctggactatg	tccggaaaca	caaagacaat	atggctccc	agtacgtgt	caactgggt	2640
gtgcagatcg	caaagggcat	gaactactt	gaggaccgtc	gcttggtca	ccgcgcacgt	2700
gcagccagga	acgtactgt	gaaaacaccg	cacatgtca	agatcacaga	ttttggctg	2760
gccaactgc	tggtgcgga	agagaaaagaa	taccatgcag	aaggaggca	agtgcctatc	2820
aagtgatgg	catttgaatc	aattttacac	agaatctata	cccacccagag	tgtatgtctgg	2880
agctacgggg	tgaccgttt	ggagttgtat	acctttgtat	ccaagccata	tgacggaaatc	2940
cctgcccacg	agatctccctc	catcctggag	aaaggagaac	gcctccctca	gccaccata	3000
tgtaccatcg	atgtctacat	gatcatggc	aagtgcgtt	tgtatagacgc	agatagtcgc	3060
ccaaagttcc	gtgagttgtat	catcaattc	tccaaaatgg	cccgagaccc	ccagcgctac	3120
cttgcattc	agggggatga	aagaatgcat	ttgccaagtc	ctacagactc	caacttctac	3180
cgtgcccacg	ttggatgaaga	agacatggac	gacgtgggtt	atggcgcacg	gtacctcatc	3240
ccacagcagg	gcttcttcag	cagccctcc	acgtcacgg	ctccctctt	gagctctctg	3300
agtgcaccca	gcaacaattc	cacgtggct	tgcattgata	gaaatgggt	gcaaagctgt	3360
cccatcaagg	aagacagctt	cttgcagcga	tacagcttag	accccacagg	cgccttact	3420
gaggacagca	tagacgacac	cttcctccca	gtgcctgaat	acataaaacca	gtccgttccc	3480
aaaaggcccg	ctggctctgt	gcagaatctt	gtctatcaca	atcgcctct	gaaccccgcg	3540
cccagcagag	acccacacta	ccagggcccc	cacagcactg	cagtgggcaa	ccccgagttat	3600
ctcaacactc	tccagggccac	ctgtgtcaac	agcacattcg	acagccctgc	ccactgggccc	3660
cagaaggcga	gccaccaaat	tagctggac	aaccctgtact	accagcaggaa	cttcttccc	3720
aaggaagcca	agccaaatgg	catcttaag	ggctccacag	ctggaaatgc	agaataacca	3780
agggtcgcgc	cacaaagcag	tgaattttt	ggagcatgac	cacggaggat	agtagagcc	3840
ctaaaaatcc	agactcttc	gatacccagg	accaagccac	agcaggtctt	ccatccaaac	3900
agccatgccc	gcattagctc	ttagacccac	agactgggtt	tgcacacgtt	acaccgacta	3960
gccaggaagt	acttccaccc	cgggcacatt	ttggaaatgtt	gcattccctt	gtcttcaaacc	4020
tgtgaagcat	ttacagaaac	gcattccagca	agaatattgt	ccctttgagc	agaaatttat	4080
ctttcaaaga	ggtatatttt	aaaaaaaaaa	aaaaagtata	tgtgaggatt	tttatttatt	4140
ggggatctt	gagtttttca	ttgtcgctat	tgatttttac	ttcaatgggc	tcttccaaaca	4200
aggaagaagc	ttgctggtag	cacttgctac	cctgagttca	tccaggcccc	actgtgagca	4260
aggagcaca	gccacaagtc	ttccagagga	tgcttgattt	cagtggttct	gtttcaaggc	4320
ttccactgca	aaacactaaa	gatccaagaa	ggccttcatg	gccccagcag	gccggatcgg	4380
tactgtatca	agtcatggc	ggtacagtag	gataagccac	tctgtccctt	cctggcaaa	4440
gaagaaacgg	agggggatgaa	ttctccctt	gacttacttt	tgtaaaaatg	tccccacggt	4500
acttactccc	cactgtatgg	ccagtggttt	ccagtcata	gcgttagact	gacttggtt	4560
tcttcattc	cattttttt	aaactcagta	tgccgcctt	gtcttgcgtt	catgaaatca	4620
gcaagagagg	atgacacatc	aaataataac	tcggatttca	gccccatgt	gattcatcag	4680
catttgacc	aatagccac	agctgagaat	gtggaatacc	taaggataatc	accgctttt	4740
ttctcgaaaa	aacgtatctc	ctaattttag	gctcagatgt	aatgcatcag	gtcttttggg	4800
gcatagatca	gaagactaca	aaaatgaagc	tgctctgttt	tctccctttag	ccatcaccc	4860
aaccccca	aatttagttt	tgttacttat	ggaagatagt	tttctccctt	tacttactt	4920
caaaagcttt	ttactcaaaag	agtatatgtt	ccctccagg	cagctgc	caaaccctt	4980
ccttacgctt	tgtcacacaa	aaagtgtctc	tgccttgcgt	catactattca	agcacttaca	5040
gctctggcca	caacagggca	ttttacaggt	gcgaatgaca	gttagcattat	gagtagtgc	5100
aattcaggta	gtaaatatga	aactagggtt	tgaaattgtat	aatgtttca	caacatttgc	5160
agatgtttt	gaaggaaaaaa	agttcccttcc	taaaataatt	tctctacaat	tggaagattt	5220
gaagattcag	ctagtttaga	gcccatttt	tcctaacttg	tgtgtccct	gtaacctgac	5280
tggtaacag	cagtccctt	taaacagttt	tttaaactct	cctgtcaat	atccacccca	5340
tccaatttat	caaggaagaa	atgggtcaga	aaatattttc	agcctacagt	tatgttcagt	5400
cacacacaca	tacaaaatgt	tccttttgc	tttaaagtaa	tttttgactc	ccagatcagt	5460
cagagccct	acagcattgt	taagaaaagta	tttgattttt	gtctcaatga	aaataaaaact	5520
atattcattt	cc					5532

Sequence listing.txt

<210> 59
<211> 4530
<212> DNA
<213> Homo sapiens

<400> 59
aatttcgag ctcgtcgacc ggtcgacgag ctcgagggtc gacgagctcg agggcgccg 60
cccggccccc accccctcgca gcaccccgcg ccccgccccc tcccgccgg gtccagccgg 120
agccatgggg cccggagccgc agttagcacc atggagctgg cggcccttgg cccgtgggg 180
ctcccttcgc ccctcttgc ccccgagccg cggagccccc aagtgtgcac cggcacagac 240
atagaatctgc ggctccctgc cagttcccgag accccacctgg acatgtctcg ccaccttac 300
cagggtcgcc aggtgggtgca gggaaacctg gaactcacct acctgcccac caatgccagc 360
ctgtccttcc tgcaggatat ccaggaggtg cagggtctacg tgctcatcg tcacaaccaa 420
gtgaggcagg tcccactgca gaggtgcgg attgtgcgg gcacccagct ctttggggac 480
aactatgccc tggccgtgt agacaatggaa gacccgtga acaataaccac ccctgtcaca 540
ggggcctccc caggaggcct gcgggagctg cagttcgaa gcctcacaga gatcttggaaa 600
ggaggggtct tgatccagcg gaaccccgag ctctgttacc aggacacgtt tttgtgaaag 660
gacatcttcc acaagaacaa ccagctggct ctcacactga tagacaccaa cccgtctcg 720
gcctgccacc cctgttctcc gatgtgtaa ggctcccgct gctggggaga gagttctgag 780
gattgtcaga gcctgacgcg cactgtctgt gccgggtgct gtgcccgtg caaggggcca 840
ctgcccactg actgtgtgcca tgagcagtgt gctgcccgt gcacgggccc caagcactct 900
gactgcctgg cctgcctcca cttcaaccac agtggcatct gtgagctgca ctgcccagcc 960
ctggtcaccc acaacacaga cacgtttgag tccatgcctt atcccgggg cccgtataca 1020
ttcggcgcca gctgtgtgac tgccgttccc tacaactacc ttcttacggg cgtgggatcc 1080
tgcacccctcg tctgccccct gcacaaccaa gaggtgacag cagaggatgg aacacagcg 1140
tgtgagaagt gcaagcaaggc ctgtgcccga gtgtgtctat gtcgtggcat ggagcacttg 1200
cgagaggtga gggcgtttac cagtgccaaat atccaggagt ttgctggctg caagaagatc 1260
tttgggagcc tggcattttc gccggagagc tttgtatggg acccagcctc caacactgccc 1320
ccgctccagc cagagcagctt ccaagtgtt gagactctgg aagagatcac agtttaccta 1380
tacatctcag catggccgga cagctgcctt gacccgttgcg tcttccagaa cctgcaagta 1440
atccggggac gaattctgca caatggcgcc tactcgctga ccctgcaagg gctgggcatc 1500
agctggctgg ggctgcgtc actgaggaa ctggggcgtt gactggccctt catccaccat 1560
aacacccacc tctgcttctgt gcacacgggtt ccctgggacc agctcttgcg gaacccgcac 1620
caagctctgc tccacactgca caaccggcca gaggacgagt gtgtgggca gggcttggcc 1680
tgccaccagc tggcgtcccg agggcactgc tggggtccag ggcccaccac gttgttcaac 1740
tgcagccagt tccttcgggg ccaggagtgcc gtggaggaat gccggacttgc gcaggggctc 1800
cccaggaggat atgtgaatgc caggactgtt tgccgttgc accctgttgc tcagccccag 1860
aatggctcag tgacctgttt tggaccggag gctgaccatgt gtgtggccctg tgcccactat 1920
aaggaccctc cttctcgctg ggcccgctgc cccagcggtg taaaacctga cctctcttac 1980
atgcccattt ggaagttttc agatgaggag ggccgtatcc agccttgcctt catcaactgc 2040
acccactctt gtgtggaccc ggtatacaag ggctgccccg ccgagcagag agccagccct 2100
ctgacgtcca tcgtctctgc ggtgttggc attctgttgc tcgtgttgc ggggttggc 2160
tttgggatcc tcatcaagcg acggcagcag aagatccggaa agtacacgt gcccggactg 2220
ctgcaggaaa cggagctgtt ggagccgtt acaccttagt gaggcatgtcc caaccaggcg 2280
cagatgcggc ttctgaaaga gacggagctg aggaagggttga aggtgttgg atctggcgct 2340
tttggcacaag tctacaaggc catctggatc cctgtatggg agaatgtgaa aattccagtg 2400
gccatcaaag tggcgtgggaa aaacacatcc cccaaaggcca acaaaggaaat ctttagacgaa 2460
gcatacgtga tggctgggtt gggctcccca tatgttcccc gccttctggg catctgcctg 2520
acatccacgg tgcagctgtt gacacagctt atgcccctatg gctgcctt agaccatgtc 2580
cgggaaaacc gccggacgcctt gggctcccgag gacccgttgc actgggttat gcaagatgtcc 2640
aaggggatga gctacctgga ggtatgttgcg ctcgtacaca ggacttggc cgctcgaaac 2700
gtgctggtca agagtcctaa ccatgtcaaa attacagact tcgggctggc tcggctgtc 2760
gacattgacg agacagagta ccatgtcgat gggggcaagg tgcccatcaa gtggatggcg 2820
ctggagttcca ttctcccgcc ggggttccacc caccagatgt atgtgttggg ttatgggttg 2880
actgtgttggg agctgtatgac ttttggggcc aaaccttacg atgggatccc agcccggag 2940
atccctgacc tgctggaaaa gggggagcgg ctggcccgac ccccccattctg caccattgtat 3000
gtctacatga tcatggtcaa atgttggatg attgactctg aatgtcgccg aagattccgg 3060
gagttgggtgt ctgaatttctc ccgcattggcc agggacccccc agcgtttgtt ggtcatccag 3120
aatgaggact tggggccagc cagttcccttg gacagcacct tctaccgtctc actgtgttgg 3180
gacgtgtaca tggggggaccc ggtggatgtt gaggagttatc tggtacccca gcagggttcc 3240
ttctgtcccg accctgcctcc gggcgctggg ggcattggtcc accacaggca ccgcagctca 3300
tctaccagga gtggcggtgg ggacccgtaca cttagggctgg agccctctga agaggaggcc 3360

Sequence listing.txt

cccaggtctc	cactggcacc	ctccgaaggg	gctggctccg	atgtatttga	tggtgacctg	3420
ggaatggggg	cagccaaggg	gctgcaaagc	ctccccacac	atgaccccag	ccctctacag	3480
cggtacagtg	aggacccac	agtacccctg	ccctctgaga	ctgatggcta	cgttgcccc	3540
ctgacctgca	gccccccagcc	tgaatatgtg	aaccagccag	atgttcggcc	ccagccccct	3600
tcgccccgag	agggccctt	gcctgctgcc	cgacctgtg	gtgccactct	ggaaagggcc	3660
aagactctct	ccccagggaa	gaatgggtc	gtcaaagacg	ttttgcctt	tgggggtgcc	3720
gtggagaacc	cgagactt	gacacccag	ggaggagctg	ccctctagcc	ccacccctc	3780
cctgccttca	gcccagcctt	cgacaacctc	tattactgg	accaggaccc	accagagcg	3840
ggggctccac	ccagcacctt	caaagggaca	cctacggcag	agaacccaga	gtacctgggt	3900
ctggacgtgc	cagtgtgaac	cagaaggcga	agtccgcaga	agccctgtat	tgtcctcagg	3960
gagcaggaa	ggccctgactt	ctgctggcat	caagaggtgg	gaggccctc	cgaccacttc	4020
caggggaacc	tgccatgcca	ggaacctgtc	ctaaggaacc	ttccctctg	cttgagttcc	4080
cagatggctg	gaaggggtcc	agcctcggt	gaagaggaac	agcactgggg	agtctttgtg	4140
gattctgagg	ccctgccccaa	tgagactcta	gggtccagtg	gatgccacag	cccagcttgg	4200
cccttcctt	ccagatctcg	ggtaactgaaa	gccttaggga	agctggcctg	agaggggaag	4260
cggccctaag	ggagtgtcta	agaacaaaag	cgaccattc	agagactgtc	cctgaacact	4320
agtactgccc	cccatgagga	aggaacagca	atggtgtcag	tatccaggct	ttgtacagag	4380
tgctttctg	tttagtttt	actttttt	ttttttttt	ttaaagacga	aataaagacc	4440
caggggagaa	tggtgttgt	atggggaggc	aagtgtgggg	ggtccttctc	cacaccact	4500
ttgtccattt	gcaaataat	tttggaaaac				4530

<210> 60

<211> 801

<212> DNA

<213> Homo sapiens

<400> 60

caccgcaccc	tcggactgcc	ccaaggcccc	cgccgcccgt	ccagcgcgc	gcagccacccg	60
ccgcccgcgc	cgccctctc	tagtcgcgc	catgacgacc	gcgtccacct	cgcaggtgcg	120
ccagaactac	caccaggact	cagaggccgc	catcaaccgc	catatcaacc	tggagctcta	180
cgcctctac	gtttacctgt	ccatgtctta	ctactttgac	cgcgatgatg	tggcttgaa	240
gaacttgcc	aaatactttc	ttcaccaatc	tcatgaggag	agggAACATG	ctgagaaact	300
gatgaagctg	cagaaccaac	gaggtggccg	aatcttc	cagatatac	agaaaccaga	360
ctgtgatgac	ttggagagcg	ggctgaatgc	aatggagtg	gcattacatt	tggaaaaaaa	420
tgtgaatcag	tcactactgg	aactgcacaa	actggccact	gacaaaaatg	accccccattt	480
gtgtgacttc	attgagacac	attacctgaa	tgagcagggt	aaagccatca	aagaattggg	540
tgaccacgtg	accaacttgc	gcaagatggg	agcggccgaa	tctggcttgg	cggaatatct	600
ctttgacaag	cacacctgg	agacagtgt	aatgaaagct	aaggctcggg	ctaatttccc	660
atagccgtgg	ggtgacttcc	tggtcaccaa	ggcagtgcac	gcatgttggg	gtttccctta	720
cctttctat	aagttgtacc	aaaacatcca	cttaagttct	ttgatttgta	ccattcccttc	780
aaataaagaa	atttggtacc	c				801

<210> 61

<211> 878

<212> DNA

<213> Homo sapiens

<400> 61

gtcccgccgg	tctgtctctt	gcttcaacag	tgtttggacg	gaacagatcc	ggggactctc	60
ttccagcctc	cgaccgcctt	ccgatttcc	ctccgcttg	aacctccggg	accatcttct	120
cggccatctc	ctgcttctgg	gaccgtccag	caccgttttt	gtggtagct	ccttcttgcc	180
aaccaaccat	gagctccca	attcgctcaga	attattccac	cgacgtggag	gcagccgtca	240
acagccttgt	caatttgtac	ctgcaggcct	cctacaccta	cctctctctg	ggcttctatt	300
tcgaccgcga	tgatgtggct	ctggaaaggcg	tgagccactt	cttccgcgaa	ttggccgagg	360
agaagcgcga	gggctacgag	cgtccctga	agatgcaaaa	ccagcgtggc	ggccgcgtc	420
tcttccagga	catcaagaag	ccagctgaag	atgagtgggg	taaaacccca	gacccatga	480
aagctgccc	ggccctggag	aaaaagctga	accaggccct	tttgatctt	catgccctgg	540
gttctgccc	cacggacccc	catctctgt	acttccttgg	gactcacttc	ctagatgagg	600
aagtgaagct	tatcaagaag	atgggtgacc	acctgacc	cctccacagg	ctgggtggcc	660
cggaggctgg	gctgggcgag	tatcttctcg	aaaggctcac	tctcaagcac	gactaagagc	720
cttctgagcc	cagcgactt	tgaaggccc	ttgcaagt	aataggctt	ctgcctaagc	780
ctctccctcc	agccaatagg	cagcttctt	aactatcc	acaaggcttg	gaccaaata	840
aaataaagct	ttttgtatgc	aaaaaaaaa	aaaaaaaaa			878

Sequence listing.txt

<210> 62
<211> 2747

<212> DNA

<213> Homo sapiens

<400> 62
catactccat gcccagaatt cctgcctcgc cactgtcctg ctgccctcca gacatgctgg 60
ggccctgcat gctgctgctg ctgctgctgc tggcctgtag gctacagctc tccctggca 120
tcatcttagt tgaggaggag aaccggact tctggaaaccg cgaggcagcc gaggccctgg 180
gtgcgcgcaa gaagctgcag cctgcacaga cagccgc当地 gaacctcatc atcttcctgg 240
gcgcggat ggggtgtct acgggtacag ctggcaggat cctaaaaggg cagaagaagg 300
acaaaactggg gcctgagata cccctggca tggaccgctt cccatatgtg gctctgtcca 360
agacatacaa ttagacaaa catgtgccc acagtggagc cacagccacg gcctacctgt 420
gcggggtcaa gggcaacttc cagaccattt gcttgatgtc agccgcccgc ttaaccagt 480
gcaacacgc acgcggcaac gaggtcatct ccgtgatgaa tcgggccaag aaagcaggga 540
agtcagtggg agtggtaacc accacacgag tgcagcacgc ctcgcccagcc ggcacccatcg 600
cccacacggt gaaccgc当地 tggtaactcg acgcccacgt gcctgcctcg gcccggccagg 660
aggggtgcca ggacatcgct acgcagctca tctccaacat ggacatttgc gtgatcctag 720
gtgggggccc aaagtacatg tttcgatgg gaaccccaaa ccctgagttc ccagatgact 780
acagccaagg tgggaccagg ctggacggg agaatctgtt gcaggaatgg ctggcgaagc 840
gccagggtgc cccgtacgtg tggaccgc当地 ctgagctcat gcaggcttcc ctggaccctgt 900
ctgtggccca tctcatgggt ctcttgagc ctggagacat gaaatacgag atccaccgag 960
actccacact ggacccctcc ctgtatggaga tgacagaggc tgcctgc当地 ggtcatcatg 1020
ggaacccccc cggcttcttc ctcttcgtgg agggtggctg catcgaccat 1080
aaagcaggcc ttaccgggca ctgactgaga cgatcatgtt cgacgacgc当地 attgagaggg 1140
cggggcagct caccagcgag gaggacacgc tgagcctcgt cactggc当地 cactccacg 1200
tcttcctt cggaggctac cccctgc当地 ggagctccat cttcgggctg gcccctggca 1260
aggcccgggaa cagggaggcc tacacggtcc tcctatacgg aaacggtcca ggctatgtc 1320
tcaaggacgg cggccggccg gatgttaccg agagcgagag cggagggccc gatgtacggc 1380
agcagtcagc agtggccctg gacgaagaga cccacgc当地 cgaggacgtg gcggtgttc 1440
cgcgcggccc gcaggcgac ctgggtc当地 gctgtc当地 gcaaccccttc atagcgacg 1500
tcatggccctt cggcccttc当地 ctggagccct acaccgc当地 cgacccggc当地 cccccc当地 1560
gcaccaccga cggccgc当地 ccggggc当地 ccgtggtccc cgc当地 cctctgtgg 1620
ccgggaccct gctgtgctg gagacggcc当地 ctgctccctg agtgtccctg ccttgggct 1680
cctgcttccc catccggag ttctctgtc当地 ccccgccctt tgctgtc当地 cctggcctcc 1740
agcccgagtc gtcatccccg gagtccctat acagaggctt tgccatggaa ctttccctc 1800
cccgtcgctt ctggggactt agcccatgac accaaacctt ccccttggct gctctcgac 1860
tccctacccc aaccccgagg actgc当地 gtgcctgt gctgc当地 ccccgaggaaa 1920
ggagggggct caggccatcc agccaccacc tacagccag tgggtaccag gcaggctccc 1980
ttcctgggaa aaagaagcac ccagaccctt cggccctgt atcttc当地 cagtc当地 2040
atcacctgtt ggacttgagg actcggtatc ttctaggacgc ctggagaagg gtgggttc 2100
gccaccctgc tggcaagga ggctctggg gtggggatca ccaggggat ttgacacag 2160
ccttcggctg cccccc当地 agttaattcc acaccctgtt accccccc当地 gggccctctg 2220
cctcatggca aaggcttgc当地 ccaaacttca acttctc当地 cgttccatc ccccacatgc 2280
caatttc当地 accaaacttca gatccggagc gtc当地 cggggatcc accccctgggat gcaggacact 2340
ggtc当地 gagggcc当地 cccaggaca tctggacat gggcatagat ttctcaagaa 2400
ggaagactcc cctgcctccc caggccctt gctctctt gagacaaggc aataataaaa 2460
ggaagtgttt gtaatcccgacttgggaa ggccggatgtt ggccggatc gaggtcagga 2520
gatggagacc atccctggctt acacgggttaccatc tatgc当地 ctggc当地 tagtcccgac 2580
tacccaggag gctgaaggc当地 gataatcgct tgaacccggg cggccggat gtc当地 ctggc当地 2640
cgaggtcatg ccactgc当地 gcaggctggg cgacagacgc agattctgccc tcaaaaataa 2700
acaataataat tttaaaataa aataataat aaaaggaaatgtttagac 2747

<210> 63
<211> 2062
<212> DNA
<213> Homo sapiens

<400> 63
gtcagtc当地 cctgttagccg ccgc当地 ccgc当地 ccctctgcca gcagctccgg 60
cgccacctcg ggccggc当地 tccggccggc当地 gggagccagg cgctgacggg cgccggccggg 120
cgccggccgaggc gctcctgccc当地 ctgc当地 ctggc当地 cc当地 atggccggc当地 180

Sequence listing.txt

tggcctgcgg	cgcctggcg	ctctgagatt	gtcactgcgt	ttccaagggc	acacgcagag	240
ggatttggaa	ttcctggaga	gttgccttg	tgagaagctg	gaaatatttc	tttcaattcc	300
atctcttagt	tttccatagg	aacatcaaga	aatcatgaac	aacttggta	atgaagagtt	360
tgactgcccac	ttcctcgatg	aagttttac	tgccaaggac	attctggacc	agaaaattaa	420
tgaagttct	tcttctgtatg	ataaggatgc	cttctatgtg	gcagacctgg	gagacattct	480
aaagaaacat	ctgaggtgt	taaaagctct	ccctcggtc	accccccttt	atgcagtc当地	540
atgtaatgtat	agcaaaagcca	tcgtgaagac	ccttgcgtct	accgggacag	gatttgactg	600
tgcttagcaag	actgaaatac	agttggtgca	gagtctgggg	gtgcctccag	agaggattat	660
ctatgcaaat	ccttgcataac	aagtatctca	aattaagttat	gctgctaata	atggagtc当地	720
gatgtatgtat	tttgcataatg	aagtgtatg	gatgaaagtt	gccagagcac	atcccaaaggc	780
aaagttgggtt	ttgcggattt	ccactgtatg	ttccaaagca	gtctgtc当地	tcagtgtgaa	840
attcggtgcc	acgctcagaa	ccagcaggct	ccttttgaa	cggcgaaag	agctaataat	900
cgatgttgg	ggtgtcagct	tccatgtatg	aagcggctgt	accatccctg	agaccttc当地	960
gcaggcaatc	tctgtatgccc	gctgtgtt	tgacatgggg	gctgagggtt	gtttcagcat	1020
gtatctgctt	gatattggcg	gtggcttcc	tggatctgag	gatgtgaaac	ttaaatttga	1080
agagatcacc	ggcgtatcca	acccacgtt	ggacaaatac	ttttcgtc当地	actctggagt	1140
gagaatcata	gctgagcccg	gcagatacta	tgttgc当地	gcttcacgc	ttgcagttaa	1200
tatcattgccc	aagaaaattt	tattaaagga	acagacgggc	tctgtatgacg	aagatgagtc	1260
gagtgagcag	acctttatgt	attatgtaa	tgatggc当地	tatggatcat	ttaatttgc当地	1320
actctatgac	cacgcacatg	taaagccct	tctgcaaaag	agacctaatac	cagatgagaa	1380
gtattattca	tccagcatat	ggggaccaac	atgtgatgc	ctcgatc当地	ttgttgagcg	1440
ctgtgacctg	cctgaaatgc	atgtgggtg	ttggatgctc	tttggaaaaca	ttggcgctta	1500
caacttgc	gctgcctcta	cggtcaatgg	cttccagagg	ccgacgatct	actatgtat	1560
gtcaggccct	gcgtggcaac	tcatgcagca	attccagaac	cccgacttcc	caccgc当地	1620
agaggaacag	gatgcccagca	ccctgcctgt	gtcttgc当地	tgggagagtg	ggatgaaacg	1680
ccacagagca	gcctgtgc当地	cggctagat	taatgtgtat	atagcactct	gttagctgtt	1740
aactgcaagt	ttagtgc当地	ttaagggtt	tggggggacc	atgtactta	attactgctt	1800
gttttggaaat	gtctttgtaa	gagtagggtc	gccatgtgc	agccatatgg	aagacttagg	1860
tatgggtcac	acttatctgt	gttccatgg	aaactatttgc	aatatttgc当地	ttatatggat	1920
ttttatttca	tcttcagaca	cgctactaa	gagttccct	cagtc当地	acaagcattt	1980
gtagcttgc当地	caatggc当地	atggccaaa	agcttagtgc当地	tgtgacctgt	ttttaaaata	2040
aagtatcttgc当地	aaataatttgc当地	gc				2062

<210> 64

<211> 3557

<212> DNA

<213> Homo sapiens

<400> 64

gagagggtcc	ttcagggtct	gtttatgccc	ttgttcaaga	acaccagtgt	cagctctctg	60
tactctggtt	gcagactgac	cttgc当地	cctgagaagg	atggggc当地	caccagagt	120
gatgtgtct	gcacccatcg	tcctgacccc	aaaagccctg	gactggacag	agagcgctg	180
tacttgc当地	tgagccagct	gaccacggc	atcaactgac	tggccccc当地	caccctggac	240
aggcacagtc	tctatgtcaa	tgggttccacc	catcagact	ctatgc当地	caccagaact	300
cctgatactt	ccacaatgca	cttgc当地	tcgagaactc	cagccctc当地	gtctggacct	360
acgaccgc当地	gcccctctcc	ggtgc当地	acaatatta	tcacccatcac	taacctgc当地	420
tatgaggaga	acatgc当地	ccctggctct	agaaagtttgc当地	acaccacggc当地	gagagtcc当地	480
cagggtctgc当地	tcaggc当地	gttcaagaac	accagtgttgc当地	gccctctgtc当地	ctctggctgc当地	540
agactgacct	tgctcaggcc	caagaaggat	ggggc当地	ccaaagtggaa	tgccatctgc当地	600
acctaccgc当地	ctgatcccaa	aagccctgga	ctggacagag	agcagctata	ctgggagctg当地	660
agccagctaa	cccacagcat	cactgagctg	ggccc当地	ccctggacag	ggacagtctc当地	720
tatgtcaatg	gtttcacaca	gcggagctct	gtgccc当地	ctagcattcc当地	tgggacccccc当地	780
acagtggacc	tgggacacatc	tgggactcca	gtttctaaac	ctggccctc当地	ggctgccc当地	840
cctctcttgc当地	tgcttattc	tctcaacttc当地	accatcacca	acctgc当地	tgaggagaac当地	900
atgcagcacc	ctggctccag	gaagttcaac	accacggaga	gggtc当地	gggcctgctc当地	960
aggccctgt	tcaagagcac	cagtgttggc当地	cctctgtact	ctggctgc当地	actgactttg当地	1020
ctcaggcctg当地	aaaaggatgg	gacagccact	ggagtggatg	ccatctgc当地	ccaccaccct当地	1080
gacccaaaa	gcccttagct	ggacagagag	cagctgtatt	gggagctg	ccagctgacc当地	1140
cacaatata	ctgagctgg	ccactatgca	ctggacaacg	acagccctt当地	tgtcaatgt当地	1200
ttcactcatc	ggagctctgt	gtccaccacc	agcaactc当地	ggacccccc当地	agtgtatctg当地	1260
ggagcatcta	agactccagc	ctcgatattt	ggcccttc当地	ctggc当地	tctccttgata当地	1320
ctattcaccc	tcaacttc	catacta	ctgc当地	aggagaacat当地	gtggcctggc当地	1380
tccaggaagt	tcaacactac	agagagggtc当地	cttc当地	tgctaaggcc当地	cttgc当地	1440

Sequence listing.txt

aacaccagt	ttggccctct	gtactctggc	tccaggctga	cctgctcag	gccagagaaa	1500
gatgggaaag	ccaccggagt	ggatgccatc	tgacccacc	gccctgaccc	cacagggcct	1560
gggctggaca	gagagcagct	gtatggag	ctgagccagc	tgacccacag	catcaactgag	1620
ctggggccct	acacacttgg	cagggacagt	ctctatgtca	atggtttca	ccatcgagc	1680
tctgtaccca	ccaccagcac	cggggtggtc	agcgaggagc	cattcacact	gaacttcacc	1740
atcaacaacc	tgcgctacat	ggcggacatg	ggccaacccg	gctccctcaa	gttcaacatc	1800
acagacaacg	tcatgaagca	cctgctcagt	ccttggtcc	agaggagcag	cctgggtgca	1860
cgttacacag	gctgcagggt	catcgacta	aggtctgtga	agaacgggtgc	tgagacacgg	1920
gtggacctcc	tctgcacca	cctgcagccc	ctcagcggcc	caggtctgccc	tatcaagcag	1980
gtgttccatg	agtcgagcga	gcagacccat	ggcatcaccc	ggctggggcc	ctactctctg	2040
gacaaagaca	gcctctaccc	taacggttac	aatgaacccg	gtctagatga	gcctccata	2100
actcccaagc	cagccacccac	attctgcct	cctctgtcag	aaggcacaac	agccatgggg	2160
taccacctga	agaccctcac	actcaacttc	accatctca	atctccatgt	ttcaccagat	2220
atggcaagg	gctcagctac	attcaactcc	accgaggggg	tccttcagca	cctgctcaga	2280
ccctgttcc	agaagagcag	catggggccc	ttctacttgg	gttccaact	gtatccctc	2340
aggcctgaga	aggatggggc	agccacttgg	gtggacacca	cctgcaccta	ccacccctgac	2400
cctgtgggc	ccgggcttgg	catacagcag	ctttaacttgg	agctgagtca	gctgaccat	2460
ggtgtcaccc	aactgggctt	ctatgtcctg	gacaggata	gcctcttcat	caatggctat	2520
gcaccccaga	atttatcaat	ccggggcgag	taccagataa	attttccat	tgtcaactgg	2580
aacctcagta	atccagaccc	cacatccctca	gagtacatca	ccctgctgag	ggacatccag	2640
gacaaggtca	ccacactcta	caaaggcagt	caactacatg	acacattccg	cttctgcctg	2700
gtcaccact	tgacgatgga	ctccgttgg	gtcaactgtca	aggattgtt	ctcctccaaat	2760
ttggacccca	gcctgggtgg	gcaagtctt	ctagataaga	ccctgaatgc	ctcattccat	2820
tggctggct	ccacctacca	gttgggtggac	atccatgtga	cagaaatgg	gtcatcagtt	2880
tatcaaccaa	caaggcagctc	cagcacccag	cacttctacc	cgaatttccat	catcaccac	2940
ctaccatatt	cccaggacaa	agcccgccca	ggcaccacca	attaccagag	gaacaaaagg	3000
aatatttggg	atgcgctcaa	ccaacttcc	cgaaacagca	gcatcaagag	ttatttttct	3060
gactgtcaag	tttcaacatt	caggctgtc	cccaacaggc	accacacgg	gttggactcc	3120
ctgtgtact	tctcgccact	ggctcggaga	gtagacagag	ttggcatcta	tgaggaattt	3180
ctgcggatga	cccggaaatgg	taccagctg	cagaacttca	ccctggacag	gagcagtgtc	3240
cttggatgt	ggtatttcc	caacagaaat	gagcccttaa	ctggaaatgt	tgacccccc	3300
ttctgggctg	tcatcttcat	cggttggca	ggactcttgg	gactcatcac	atgcctgatc	3360
tgcgggttcc	ttgtgaccac	ccgcggcgg	aagaaggaag	gagaatacaa	cgtccagcaa	3420
cagtccccag	gctactacca	gtcacaccta	gacctggagg	atctgcaatg	actggaaactt	3480
gccgggtgcct	gggggtgcctt	tccccagcc	agggtccaaa	gaagcttggc	tggggcagaa	3540
ataaaaccata	ttggtcg					3557

<210> 65
<211> 3464
<212> DNA
<213> Homo sapiens

<400> 65						
cagccgtgct	cgaaggcgttc	ctggagccca	agctctcctc	cacaggtgaa	gacagggcc	60
gcaggagaca	ccatggggca	cctctcagcc	ccacttcaca	gagtgcgtgt	accctggcag	120
gggcttctgc	tcacagcctc	acttcttaacc	ttctggaaacc	cgcaccac	tgcccagctc	180
actactgaat	ccatgccatt	caatgttgc	gagggggaaagg	agtttcttct	cttgtccac	240
aatctgcccc	agcaactttt	tggctacagc	tggtacaaag	ggaaaagagt	ggatggcaac	300
cgtcaaattt	taggatatgc	aataggaact	caacaagct	cccgaggggcc	cgcaaacagc	360
ggtcgagaga	caatatacc	caatgcattc	ctgctgatcc	agaacgtcac	ccagaatgac	420
acaggattct	acaccctaca	agtcataaag	tcagatctt	tgaatgaaga	agcaactgg	480
cagttccatg	tatacccgga	gctgcccag	ccctccatct	ccagcaacaa	ctccaaccct	540
gtggaggaca	aggatgtgt	ggccttcacc	tgtgaacctg	agactcagga	cacaacctac	600
ctgtgggtga	taaacaatca	gagctcccg	gtcagtccca	ggctgcagct	gtccaatggc	660
aacaggaccc	tcaactctact	cagtgtcaca	aggaatgaca	caggacccta	tgagtgtgaa	720
atacagaacc	cagtgtact	gaaccgcagt	gacccagtc	ccttgaatgt	cacctatggc	780
ccggacaccc	ccaccatttc	cccttcagac	accttattacc	gtccaggggc	aaacctcagc	840
ctctctgt	atgcagcctc	taaccaccc	gcacagtact	cctggcttat	caatggaaaca	900
ttccagcaaa	gcacacaaga	gcttttatac	cctaacatca	ctgtgaataa	tagtggatcc	960
tatacctgcc	acgccaataa	ctcagtcact	ggctgcaaca	ggaccacagt	caagacgatc	1020
atagtcaact	agctaagtcc	agtagtagca	aagccccaaa	tcaaagccag	caagaccaca	1080
gtcacaggag	ataaggactc	tgtgaacctg	acctgctca	caaatgacac	tggaatctcc	1140
atccgttgg	tcttcaaaaa	ccagagtctc	ccgtcctcg	agaggatgaa	gctgtccag	1200

Sequence listing.txt

ggcaacacca	ccctcagcat	aaaccctgtc	aagagggagg	atgtctggac	gtattggtgt	1260
gagggtctca	acccaatcg	taagaaccaa	agcgacccca	tcatgctgaa	cgtaaactat	1320
aatgctctac	cacaagaaaa	tggcctctca	cctggggcca	ttgctggcat	tgtgatgg	1380
gtagttggccc	ttgttgctct	gatagcagta	gccctggcat	gttttctgca	tttcgggaag	1440
accggcaggg	caagcgacca	gcgtgatctc	acagagcaca	aaccctcagt	ctccaaccac	1500
actcaggacc	actccaatg	cccacctaac	aagatgaatg	aagttactta	ttctaccctg	1560
aactttaaag	cccagcaacc	cacacaacca	acttcagcc	cccatccct	aacagccaca	1620
gaaataattt	attcagaatg	aaaaaaagcag	taatgaaacc	tgtctgtctc	actgcagtgc	1680
tgatgtat	caagtctctc	accctcatca	ctaggagatt	cctttccct	ctagggtaga	1740
gggggtggga	cagaacacaac	tttccctac	tcttcctcc	taataggcat	cttcagggctg	1800
cctggtaact	gcccctctc	cagtgtaat	agatgaaatg	acattgggag	tctgttaggaa	1860
acccaacctt	tttgtcattt	aaatttggca	aaatgtac	tgggaaagag	ggaccagaac	1920
ttccccctcc	ttcccccttt	cccaacctgg	acttggttt	aacttgcctg	ttcagagcac	1980
tcattccctc	ccaccccccag	tcctgtctta	tcactcta	tcggatttg	catagcctt	2040
aggttatgtc	cttttccatt	aagtacatgt	gccaggaaac	agcgagagag	agaaagtaaa	2100
cggcagtaat	gcttctcc	tttctccaaa	gccttggtg	aactagcaaa	gagaagaaaa	2160
ccaaatataat	aaccaatagt	gaaatgccac	aggtttgtc	actgtcagg	ttgtctacct	2220
gtaggatcg	ggtctaagca	ccttggtgct	tagctagaat	accaccta	ccttctggca	2280
agcgtgtctt	cagagaaccc	actagaagca	actaggaaaa	atcacttgcc	aaaatccaag	2340
gcaattcc	atggaaaatg	caaaagcaca	tatatgttt	aatatcttta	tgggctctgt	2400
tcaaggcagt	gctgagaggg	aggggttata	gcttcaggag	ggaaccagct	tctgataaac	2460
acaatctgct	aggaacttgg	gaaaggaatc	agagagctc	ccttcagcga	ttattnaaat	2520
tattgttaaa	gaatacaca	tttgggtat	ttgggattttt	tccttttct	ctgagacatt	2580
ccaccat	tttattttgt	actgttattt	tatgtgaaaa	gggttatttt	tacttagctt	2640
agctatgtca	gccaatccga	ttgccttagg	tgaaagaaac	caccgaaatc	cctcaggtcc	2700
cttggtcagg	agcctctcaa	gattttttt	gtcagaggct	ccaaatagaa	aataagaaaa	2760
gttttcttc	tttcatggct	agagcttagat	ttaactca	ttcttaggcac	ctcagacc	2820
tcataactc	ccatttattt	ccatgttgc	acctgtgc	tttctgtttt	ccccattca	2880
ctttgtcagg	aaaccttgc	ctctgtctaa	gtgttattgg	tcctttaggaa	gtgggagcac	2940
cctacaggga	cactatact	catgtgg	gcattgttta	cagctagaaa	gctgcactgg	3000
tgctaattgt	ccttggggaaa	tgggctgtg	aggaggagga	ttataacttta	ggcctagcct	3060
cttttaacag	cctctgaat	ttatctttt	ttctatgggg	tttataaaatg	tatcttataa	3120
taaaaaggaa	ggacaggagg	aagacaggca	aatgtactt	tcacccagtc	ttctacacag	3180
atggaatctc	tttggggct	agagaaaaggt	tttattctat	attgttacc	tgatctcatg	3240
tttaggcctaa	gaggctttt	ccagaggat	tagcttgg	ttctctatac	tcaggtacct	3300
ctttcagggt	tttctaacc	tgacacggac	tgtgcata	ttccctcatc	catgtgtgc	3360
tgtgttattt	atttttctt	ggctaaatgc	atgtctgaat	tatgtatgaa	aattattctt	3420
tgttttata	ataaaaataa	tatatcagac	atcgaaaaaa	aaaa		3464

<210> 66
<211> 1022
<212> DNA
<213> Homo sapiens

<400> 66						
tcctggagcc	caggctt	tccacagagg	agggaaagagc	aggcagcaga	gaccatgggg	60
ccccccctcag	cccctccccca	cagagaatgc	atcccctggc	aggggcttct	gctcacagcc	120
tcacttctaa	acttctggaa	cccgccccacc	actgccaagc	tcactattga	atccatgccc	180
ctcagtgtcg	cagagggaaa	ggaggtgtt	ctacttgtcc	acaatctgcc	ccagcatctt	240
tttggctaca	gctgttacaa	aggggaaaaga	gtggatggca	acagtcta	tgtggatata	300
gtaataggaa	ctcaacaagc	taccccagg	gccgcata	gcgtcgaga	gacaatatac	360
accaatgc	ccctgtgtat	ccagaatgtc	acccagaatg	acataggatt	ctacaccctt	420
caagtctataa	agtcatgat	tgtgaatgaa	gaagcaactg	gacagtcc	tgtataccaa	480
gaaaatgccc	caggccttcc	tgtgggggccc	gtcgcggca	tcgtgaccgg	gttcctggc	540
ggagtggcgc	ttgtggccgc	gctgtgtgt	ttcctgtcc	ttgcca	ttgaaagccg	600
tggtccctcc	cacagctctg	ccttctcgat	gtcccctct	tccactgcct	aggccccct	660
acccaacccc	aggacagcag	cttccatcta	tgagaagtgg	cttcttagct	tcctccagga	720
gctgctcc	ttgggttgc	gagagtccc	aaggccccca	gccctgggga	tggggaaagga	780
catgaaggct	gagccagaga	accagctata	agtccgtgaga	agacactgtt	gtctggggac	840
agggagggat	ggggccctt	atgaatatct	ggagacctcg	acagcctg	ctagggccctt	900
ggtgggtcag	gacaaaggcc	tctcatacc	gcagaaagcg	ggggcttgc	gggaaagtga	960
atggccctgt	ggcccacctg	gggtcacttg	gaaaggatct	gaataaaagg	gacccttc	1020
cg						1022

Sequence listing.txt

```

<210> 67
<211> 1190
<212> DNA
<213> Homo sapiens

<400> 67
gtcagcagcc ccgacagccg acagtcacag cagctctgac aagagcgttc ctggagccca 60
gctcctctcc acagaccaca agcaccgcg agagaccatg ggccccccct cagccgctcc 120
ccgtggaggg cacaggccct ggcaggggct cctgatcaca gcctcaactt taaccttctg 180
ggacccgccc accactgtcc agttcaactat tgaagccctg ccatccagtg ctgcagaggg 240
aaaggatgtt ctctactgg cctgcaatat ttcagaaact attcaagcct attattggca 300
caaggggaaa acggcagaag ggagccctct cattgctgt tatataacag acattcaagc 360
aaatatccca gggccgcattt acagtggctg agagcaagta taccctaattt gatccctgtc 420
gttccaaaac atacccttgg aggacgcagg atcctacacc ctacgaacca taaatgcac 480
ttacgactct gaccaagcaa ctggccagct ccacgtacac caaaacaacg tcccgaggct 540
tcctgtgggg gccgtcgctg gcatcggtac tggggctctg gttggggctt ctctgggtgc 600
cgccctgggt tttttctgc ttcttccag gactggaaagg gccagcatcc agcgtgaccc 660
caggaggcag ccgccccccag cttccacccc tggccatgtt ccctctcaca gatccacctt 720
ctcgcccccctt ctacccagcc ccagaacagc cactcccatc tatgtggaaat ttctataactc 780
tgatgcaaaac atttactgcc agatcgacca caaagcagat gtgtctctt aggttccctct 840
gggagctgct ttgtgggtt gatggagcgt cctcgaagct ccagccctgg ggacggggaa 900
ggacatggag cctgagccag agaaccagct ctgagtcctg aggagacaca ggcctgggaa 960
cagggagggaa tgggagtccc tgctgaatat ctggagaccc tgacaggttg ccctgggctc 1020
cggtgtggcc gggacaaagg cctctcatca ccacaggaag cgggggctt caagggaaagt 1080
gaatgggcct gtggccacc cggggtcacc agggaaaggat ctgaataaag aggacccttc 1140
ctctcattgg ctcttttctt gctcacggga acttagcaga aactcacctg 1190

```

```

<210> 68
<211> 2249
<212> DNA
<213> Homo sapiens

<400> 68
ctcctctaca aagagggtgga cagagaagac agcagagacc atgggacccc cctcagccccc 60
tccctgcaga ttgcattgtcc cctggaaagg ggtcctgtc acagcctcac ttctaacctt 120
ctggaaccca cccaccactg ccaagctcac tattgaatcc acgcattca atgtcgcaga 180
ggggaaggag gttcttctac tcgcccacaa cctgccccag aatgtattg gttacagctg 240
gtacaaggc gaaagagtgg atggcaacag tctaattgtt ggatatgtaa taggaactca 300
acaaggctacc ccaggggcccg catacagtgg tcgagagaca atataccca atgcattccct 360
gctgatccag aacgtcacc cagaatgacac aggattctat accctacaag tcataaagt 420
agatcttgc aatgaagaag caacccgaca gttccatgtt tacccggagc tgcccaagcc 480
ctccatctcc agcaacaact ccaacccctg ggaggacaag gatgtgtgg cttcacctg 540
tgaacctgag gttcagaaca caacctaccc gtgggtggta aatgttcaga gcctcccggt 600
cagtcccgagg ctgcagctgt ccaatggcaa catgaccctc actctactca gctgtcaaaag 660
gaacgatgca ggtatcctatg aatgtgaaat acagaacccca gcgagtgcac accgcagtgt 720
cccagtccac ctgaatgtcc tctatggccc agatgtcccc accattttcc cctcaaaaggc 780
caattaccgt ccaggggaaa atctgaacct ctcctgcccc gcagcctcta accccacctgc 840
acagactct tggtttatca atgggacgtt ccagaaatcc acacaagagc tctttatccc 900
caacatcaact gtgaataata gcggtatccta tatgtgccaa gcccataact cagggactgg 960
cctcaatagg accacagtca cgtatcactc agtctctggg agtgcctctg tctctctcagc 1020
tgtggccacc gtcggcatca cgatggagat gctggccagg gtggctctga tatacgagcc 1080
ctgggtgtatt ttgcataattt caggaagact ggcagattgg accagaccct gaatttctct 1140
agctcccca atccccatttt atcccatggaa accactaaaa acaaggctcg ctctgctccct 1200
gaagccctat atgctggaga tggacaactc aatgaaaatt taaaggggaaa accctcaggc 1260
ctgaggtgtg tgccactcag agacttcacc taactagaga cagtcactact gcaaaccatg 1320
gtgagaaaatt gacgacttca cactatggac agctttccc aagatgtcaa aacaagactc 1380
ctcatcatga taaggctctt accccctttt aatttgcct tgcttatgcc tgcctcttc 1440
gcttggcagg atgatgtgtt cattagttt ctcacaagaag tagcttcaga gggtaactta 1500
acagagtgtc agatctatct tgtcaatccc aacgtttac ataaaataag agatccttta 1560
gtgcacccag tgactgacat tagcagcatc ttaacacag ccgtgtgttcc aatgtacag 1620
tggtcctttt cagagttggaa cttcttagact cacctgttct cactccctgt ttaattcaa 1680
cccagccatg caatgccaat taatagaatt gctccctacc agctgaacag ggaggagtct 1740

```

Sequence listing.txt

gtgcagttc	tgacacttgt	tgttgaacat	ggctaaatac	aatgggtatc	gctgagacta	1800
agttgttagaa	attaacaat	gtgcgttgc	gtttaaaatgg	ctacactcat	ctgactcatt	1860
ctttattctt	ttttagttgg	tttgatctt	gcctaaggtg	cgtatccaa	ctcttggtat	1920
taccctcctt	atagtcatac	tagtagtcat	actccctgtt	gtatgtatt	ctctaaaagc	1980
tttaaatgtc	tgcatgcagc	cagccatcaa	atagtgaatg	gtctctctt	ggctggaatt	2040
acaaaactca	gagaaatgtg	tcatcaggag	aacatcataa	cccatgaagg	ataaaagccc	2100
caaattgtgg	taactgataa	tagactaat	gctttaagat	ttgttacac	tctcacctag	2160
gtgagcgcac	tgagccagtg	gtgctaaatg	ctacatactc	caactgaaat	gttaaggaag	2220
aagatagatc	aaaaaaaaaa	aaaaaaaaaa				2249

<210> 69
<211> 2292
<212> DNA
<213> Homo sapiens

<400> 69

ccatgggttc	cccttcagcc	tgtccatata	gagtgtgcat	tccctggcag	gggctccgc	60
tcacagcctc	gcttttaacc	ttcttggacc	tgccaaacag	tgcccagacc	aatattgatg	120
tcgtgccgtt	caatgtcgca	gaagggagg	aggtccttct	agtagtccat	aatgagtccc	180
agaatctta	tggctacaac	tggtacaag	gggaaaggg	gatgccaac	tatcgattt	240
taggatatgt	aaaaaatata	agtcaagaaa	atgccccagg	gcccgcacac	aacggtcgag	300
agacaatata	ccccaatgga	accctgctga	tccagaacgt	taccacaaat	gacgcaggat	360
tctataccct	acacgttata	aaagaaaatc	ttgtgaatga	agaagtaacc	agacaattct	420
acgtattctc	ggagccaccc	aagccctca	tcaccagcaa	caacttcaat	ccggtgagaa	480
acaaagatata	tgtgttttta	acctgtcaac	ctgagactca	gaacacaacc	tacctgttgt	540
gggttaacaa	ttagagcctc	ctggtcagtc	ccaggctgt	gctctccact	gacaacagga	600
ccctcggttct	actcagcgcc	acaagaatg	acataggacc	ctatgaatgt	gaaatacaga	660
acccagtggg	tgccagccgc	agtgaccacag	tcaccctgaa	tgtccgctat	gagtcaagtac	720
aagcaagttc	acctgaccc	tcagctggga	ccgctgtcg	catcatgatt	ggagtactgg	780
ctgggatggc	tctgatata	cagcttgg	gtatgtttt	catttggga	agagtgtttt	840
tattatccac	ctgcagactg	gactggattt	ttctagctcc	ttcaatccca	ttttcttctg	900
tggcatca	aatgtataaga	cctgtcttct	tcctgaagac	ctataagtg	gaggtggaca	960
actcaatgt	aatttcaagg	aaaaaccctc	atgcctgaga	tgtggccac	tcagagctaa	1020
ccaaaatgtt	caacaccata	actagagaca	ctcaaattgc	caaccaggac	aagaagttga	1080
tgacttcatg	ctgtggacag	tttttccaa	gatgtccaa	gcctcatcg	gacgaggctc	1140
ttatcccact	ccatttttcc	ctgctcatgc	ctgcctctt	aatttggtaa	gataatgctg	1200
taactagaat	ttcacaatca	gcgccttgc	caggcaattt	gacagagtgt	tggatgtgtc	1260
atgtcatcat	gtcaaaccca	aatatttgc	ctaaggatc	ctttattctg	cccagttggct	1320
aactttaaca	acatccctaa	tacaactgtt	tattcaatg	cacgggtgtc	cctgttagag	1380
ttagacctct	agactcacct	gttctcacgc	cctgttttaa	tttaaccctg	ctatggatg	1440
ccagataaca	gaatttgcgc	ctacagactg	aacaggagg	agtttgc	gttgctgaca	1500
cttctgttg	cacataaata	aatacagtgg	gtactataga	gactcagtt	caaaaattaa	1560
caaatatgt	gcttgattaa	aatgggtagg	cttctcatgt	ggctcattct	ttaatctatt	1620
ctctttatt	tggtttgg	catgggtct	ctgcctatgg	atcataactt	aaactcttgg	1680
tgtgatcctc	ctgattgtca	caatattat	taccctgtgt	tgcgttattc	tctaaaacct	1740
ttaaatgttt	gcatgcagcc	attcgtcaaa	tgtcaaatat	tctcttttg	gctggaatga	1800
caaaaactca	ataaaatgt	tgatttaggag	gacatctaa	cctatgaatg	atggaaagtcc	1860
aaaatgtgg	taactgacag	tagttaat	gcctttagtt	tagtcaact	ctcattttagg	1920
tgacagcctg	tgactccag	aatggagcc	gtcatgctaa	atgccccata	ctcacactga	1980
aacatgagga	agcaggtaga	tcccagaacaa	gacaaaactt	tcctaaaaac	atgagagtcc	2040
aggctgtctg	agttagcaca	gtaagaaagt	cctttctgt	ttaactctt	aaaaaaagta	2100
atatgaagta	ttctgaaatt	aaccaatcag	tttattttaa	tcaatttatt	tatattctt	2160
tgttctgtgg	ttcccatttt	acaaaaccct	ctgttctact	gttgtattgc	ccagtagggag	2220
ctatcaat	attttgcaga	atggaaactg	ccctgactct	tgaatcacaa	ataaaagcc	2280
attgtatctg	tt					2292

<210> 70
<211> 2297
<212> DNA
<213> Homo sapiens

<400> 70

agccgtgctc	agaaagtttc	tggatcccag	gctcatctcc	acagaggaga	acacgcaggc	60
------------	------------	------------	------------	------------	------------	----

Sequence listing.txt

agcagagacc	atggggccca	tctcagcccc	ttcctgcaga	tggcgcatcc	cctggcaggg	120
gctccctgctc	acagcctcac	ttttcacctt	ctggaacccg	cccaccactg	ctcagctcac	180
tattgaagct	gtgccatcca	atgctgcaga	ggggaaaggag	gttcttctac	ttgtccacaa	240
tctgccccag	gaccctcgtg	gctacaactg	gtacaaaggg	gaaacagtgg	atgccaaccg	300
tcgaattata	ggatatgtaa	tatcaaatca	acagattacc	ccagggcctg	catacagcaa	360
tcgagagaca	atataccca	atgcattccct	gctgatgcgg	aacgtcacca	gaaatgacac	420
aggatcctac	accctacaag	tcataaagct	aatctttag	agtgaagaag	taactgccca	480
gttcagcgta	catccggaga	ctcccaagcc	ctccatctcc	agcaacaact	ccaacccgt	540
ggaggacaag	gatgctgtgg	ccttcacctg	tgaacctgag	actcagaaca	caacctacct	600
gtgggggta	aatggtcaga	gtctcccggt	cagtcccgag	ctgcagctgt	ccaatgcaa	660
caggaccctc	actctactca	gtgtcacaag	gaatgacgta	ggaccctatg	aatgtgaaat	720
acagaaccc	gggagtgcaa	acttcagtga	cccagtacc	ctgaatgtcc	tctatggccc	780
agatcccccc	accatttccc	cttcagacac	cttattaccat	gcaggggtaa	atctcaacct	840
ctctggccat	gccccctcta	atccaccctc	acagtttct	tggctgtca	atggcacatt	900
ccagcaatac	acacaaaagc	tctttatccc	caacatca	acaaagaaca	gcggatccct	960
tgcctgccc	accactaact	cagccactgg	ccgcaacagg	accacagtca	ggatgatcac	1020
agtctctgat	gcttttagtac	aaggaagttc	tcctggcctc	tcagcttagag	ccactgtcag	1080
catcatgatt	ggagtagtgg	ccaggggtggc	tctgatata	tagctctgg	gtagttctg	1140
catttcaaga	agactggcag	acagttgttt	ttattcttc	tcaaagcatt	tgcaatcagc	1200
taccattcaa	aattgcttct	tcttcagat	ttatggaaaa	tactctgacg	agtactctt	1260
aacacaagtt	cctgataact	ttaagatcac	gccactggac	tgtctatgaa	cttgc当地aca	1320
ggctgatacc	tttgtgaagt	tgcccaccaa	aacacagaag	aaaaaaaaca	tgaatttcat	1380
tgaactaaat	aataatgagg	ataatgtttt	taagattttt	ttttttttt	gagatgaaat	1440
ctcgctctgt	cgccccaggt	ggagtgcagt	ggcacgatct	caactca	caagctccgc	1500
ctcctgggtt	cacaccattc	tcctgcctca	gcctcctgag	tagctggac	tacaggcgcc	1560
tgccacaacg	cccggtcta	tttttgtatt	tttagtagag	acggggttt	actgtgtct	1620
caatctcctg	acttcatgt	ccgcctgcct	cagcctccca	aagttctggg	attacaggt	1680
tgagccaccg	cgccccagccc	gttttaaga	ttttttttt	aaaaaattgc	caattctta	1740
agtgttttct	ttttcagatt	tatgaattt	tttatcttt	aagctatcta	taccttact	1800
caatttggta	aagcagactt	tttgtaaca	aaattataac	attactttt	gctccctacc	1860
tgactgccc	agaactgggc	aactattcat	gagtttcat	atgtttatgg	taattcagtt	1920
atttgacaaa	gttcagttag	aatctgctgt	cttataatg	ggatatagg	taaaacattt	1980
gttatattac	caaggcttg	attggatgt	tatatttgag	aaaatacaga	gaatgataga	2040
ttaacggagt	gtctaatcta	tcgtgtcaac	cccaaattt	tacgtatgag	atcccttagt	2100
ccacccaatg	gctgacagta	acagcatctt	taacacaact	cttgttcaa	atgtactat	2160
gtctcttta	gagtcagact	cctagactca	cttgcctca	ctgtctgtt	taatttaacc	2220
caggcatgca	atgcttagata	ataaaaattgc	tccctattgg	ctgatcaaaa	aaaaaaaacaa	2280
aaaaaaaaaa	aaaaaaaaaa					2297

<210> 71

<211> 1552

<212> DNA

<213> Homo sapiens

<400> 71

gcccgtacac	accgtgtgct	gggacacccc	acagtcagcc	gcatggctcc	cctgtgcccc	60
agccccctggc	ccccctctgtt	gatcccggcc	cctgctccag	gcctcactgt	gcaactgtcg	120
ctgtca	ctgttctgt	gcctgtccat	ccccagaggt	tgccccggat	gcaggaggat	180
tccccctgg	gaggagggtc	ttctggggaa	gatgaccac	tggcgagga	ggatctgccc	240
agtgaagagg	attcacccag	agaggaggat	ccacccggag	aggaggatct	acctggagag	300
gaggatctac	ctggagagaga	ggatctac	gaagttaa	ctaaatcaga	agaagagggc	360
tccctgaagt	tagaggatct	acctactgtt	gaggctctg	gagatcctca	agaacccag	420
aataatgccc	acagggacaa	agaagggat	gaccagatc	atggcgcta	tggaggcgac	480
ccgccccctggc	cccggtgtc	cccagcctgc	gcggggccgt	tccagtcccc	ggtggatata	540
cgccccccagc	tcgcccctt	ctgcccggcc	ctgcgcccc	tggaaactcct	gggcttccag	600
ctcccccgc	tcccagaact	gcgcctgcgc	aacaatggcc	acagtgtgca	actgaccctg	660
cctcctgggc	tagagatggc	tctgggtccc	gggcgggagt	accgggctct	gcagctgcat	720
ctgcacttggg	gggctgtcagg	tcgtccggc	tcggagcaca	ctgttggaa	ccaccgttt	780
cctgcccaga	tccacgtgt	tcacccatc	accgcctt	ccagagttga	cgaggcctt	840
gggcggccgg	gaggcctg	cgtgttggcc	gccttctgg	aggaggggccc	ggaagaaaac	900
agtgcctatg	agcagtgt	gtctcgctt	gaagaaatcg	ctgaggaagg	ctcagagact	960
caggcccag	gactggacat	atctgcactc	ctgcccctcg	acttcagccg	ctacttccaa	1020
tatgagggggt	ctctgactac	accgcctgt	gcccgagggt	tcatctggac	tgtttaac	1080

Sequence listing.txt

cagacagtga tgctgagtgc taagcagctc cacaccctct ctgacaccct gtggggaccc 1140
 ggtgactctc ggctacagct gaacctccga gcgcacgcgc ctttgaatgg gcgagtgatt 1200
 gaggcctcct tccctgctgg agtggacagc agtcctcggg ctgctgagcc agtccagctg 1260
 aattccctgcc tggctgctgg tgacatccta gcccctgggtt ttggcctcct ttttgcgtc 1320
 accagcgtcg cgttccttgt gcagatgaga aggagcaca gaaggggaaac caaagggggt 1380
 gtgagctacc gcccagcaga ggtagccgag actggagccct agaggctgga tcttggagaa 1440
 tgtgagaagc cagccagagg catctgaggg ggagccggtt actgtcctgt cctgctcatt 1500
 atgcccacttc ctttaactg ccaagaaatt ttttaaaata aatatttata at 1552

<210> 72

<211> 702

<212> PRT

<213> Homo sapiens

<400> 72

Met Glu Ser Pro Ser Ala Pro Pro His Arg Trp Cys Ile Pro Trp Gln
 1 5 10 15
 Arg Leu Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr
 20 25 30
 Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly
 35 40 45
 Lys Glu Val Leu Leu Leu Val His Asn Leu Pro Gln His Leu Phe Gly
 50 55 60
 Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Arg Gln Ile Ile
 65 70 75 80
 Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Tyr Ser
 85 90 95
 Gly Arg Glu Ile Ile Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Ile
 100 105 110
 Ile Gln Asn Asp Thr Gly Phe Tyr Thr Leu His Val Ile Lys Ser Asp
 115 120 125
 Leu Val Asn Glu Glu Ala Thr Gly Gln Phe Arg Val Tyr Pro Glu Leu
 130 135 140
 Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Lys Pro Val Glu Asp Lys
 145 150 155 160
 Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Thr Gln Asp Ala Thr Tyr
 165 170 175
 Leu Trp Trp Val Asn Asn Gln Ser Leu Pro Val Ser Pro Arg Leu Gln
 180 185 190
 Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Phe Asn Val Thr Arg Asn
 195 200 205
 Asp Thr Ala Ser Tyr Lys Cys Glu Thr Gln Asn Pro Val Ser Ala Arg
 210 215 220
 Arg Ser Asp Ser Val Ile Leu Asn Val Leu Tyr Gly Pro Asp Ala Pro
 225 230 235 240
 Thr Ile Ser Pro Leu Asn Thr Ser Tyr Arg Ser Gly Glu Asn Leu Asn
 245 250 255
 Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser Trp Phe
 260 265 270
 Val Asn Gly Thr Phe Gln Gln Ser Thr Gln Glu Leu Phe Ile Pro Asn
 275 280 285
 Ile Thr Val Asn Asn Ser Gly Ser Tyr Thr Cys Gln Ala His Asn Ser
 290 295 300
 Asp Thr Gly Leu Asn Arg Thr Thr Val Thr Thr Ile Thr Val Tyr Ala
 305 310 315 320
 Glu Pro Pro Lys Pro Phe Ile Thr Ser Asn Asn Ser Asn Pro Val Glu
 325 330 335
 Asp Glu Asp Ala Val Ala Leu Thr Cys Glu Pro Glu Ile Gln Asn Thr
 340 345 350
 Thr Tyr Leu Trp Trp Val Asn Asn Gln Ser Leu Pro Val Ser Pro Arg
 355 360 365
 Leu Gln Leu Ser Asn Asp Asn Arg Thr Leu Thr Leu Leu Ser Val Thr
 370 375 380

Sequence listing.txt

Arg Asn Asp Val Gly Pro Tyr Glu Cys Gly Ile Gln Asn Glu Leu Ser
 385 390 395 400
 Val Asp His Ser Asp Pro Val Ile Leu Asn Val Leu Tyr Gly Pro Asp
 405 410 415
 Asp Pro Thr Ile Ser Pro Ser Tyr Thr Tyr Tyr Arg Pro Gly Val Asn
 420 425 430
 Leu Ser Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser
 435 440 445
 Trp Leu Ile Asp Gly Asn Ile Gln Gln His Thr Gln Glu Leu Phe Ile
 450 455 460
 Ser Asn Ile Thr Glu Lys Asn Ser Gly Leu Tyr Thr Cys Gln Ala Asn
 465 470 475 480
 Asn Ser Ala Ser Gly His Ser Arg Thr Thr Val Lys Thr Ile Thr Val
 485 490 495
 Ser Ala Glu Leu Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Lys Pro
 500 505 510
 Val Glu Asp Lys Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Ala Gln
 515 520 525
 Asn Thr Thr Tyr Leu Trp Trp Val Asn Gly Gln Ser Leu Pro Val Ser
 530 535 540
 Pro Arg Leu Gln Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Phe Asn
 545 550 555 560
 Val Thr Arg Asn Asp Ala Arg Ala Tyr Val Cys Gly Ile Gln Asn Ser
 565 570 575
 Val Ser Ala Asn Arg Ser Asp Pro Val Thr Leu Asp Val Leu Tyr Gly
 580 585 590
 Pro Asp Thr Pro Ile Ile Ser Pro Pro Asp Ser Ser Tyr Leu Ser Gly
 595 600 605
 Ala Asn Leu Asn Leu Ser Cys His Ser Ala Ser Asn Pro Ser Pro Gln
 610 615 620
 Tyr Ser Trp Arg Ile Asn Gly Ile Pro Gln Gln His Thr Gln Val Leu
 625 630 635 640
 Phe Ile Ala Lys Ile Thr Pro Asn Asn Asn Gly Thr Tyr Ala Cys Phe
 645 650 655
 Val Ser Asn Leu Ala Thr Gly Arg Asn Asn Ser Ile Val Lys Ser Ile
 660 665 670
 Thr Val Ser Ala Ser Gly Thr Ser Pro Gly Leu Ser Ala Gly Ala Thr
 675 680 685
 Val Gly Ile Met Ile Gly Val Leu Val Gly Val Ala Leu Ile
 690 695 700

<210> 73
 <211> 609
 <212> PRT
 <213> Homo sapiens

<400> 73
 Met Lys Trp Val Glu Ser Ile Phe Leu Ile Phe Leu Leu Asn Phe Thr
 1 5 10 15
 Glu Ser Arg Thr Leu His Arg Asn Glu Tyr Gly Ile Ala Ser Ile Leu
 20 25 30
 Asp Ser Tyr Gln Cys Thr Ala Glu Ile Ser Leu Ala Asp Leu Ala Thr
 35 40 45
 Ile Phe Phe Ala Gln Phe Val Gln Glu Ala Thr Tyr Lys Glu Val Ser
 50 55 60
 Lys Met Val Lys Asp Ala Leu Thr Ala Ile Glu Lys Pro Thr Gly Asp
 65 70 75 80
 Glu Gln Ser Ser Gly Cys Leu Glu Asn Gln Leu Pro Ala Phe Leu Glu
 85 90 95
 Glu Leu Cys His Glu Lys Glu Ile Leu Glu Lys Tyr Gly His Ser Asp
 100 105 110
 Cys Cys Ser Gln Ser Glu Glu Gly Arg His Asn Cys Phe Leu Ala His

Sequence listing.txt

115	120	125
Lys Lys Pro Thr Pro Ala Ser Ile Pro Leu Phe Gln Val Pro Glu Pro		
130	135	140
Val Thr Ser Cys Glu Ala Tyr Glu Glu Asp Arg Glu Thr Phe Met Asn		
145	150	155
Lys Phe Ile Tyr Glu Ile Ala Arg Arg His Pro Phe Leu Tyr Ala Pro		160
165	170	175
Thr Ile Leu Leu Trp Ala Ala Arg Tyr Asp Lys Ile Ile Pro Ser Cys		
180	185	190
Cys Lys Ala Glu Asn Ala Val Glu Cys Phe Gln Thr Lys Ala Ala Thr		
195	200	205
Val Thr Lys Glu Leu Arg Glu Ser Ser Leu Leu Asn Gln His Ala Cys		
210	215	220
Ala Val Met Lys Asn Phe Gly Thr Arg Thr Phe Gln Ala Ile Thr Val		
225	230	235
Thr Lys Leu Ser Gln Lys Phe Thr Lys Val Asn Phe Thr Glu Ile Gln		240
245	250	255
Lys Leu Val Leu Asp Val Ala His Val His Glu His Cys Cys Arg Gly		
260	265	270
Asp Val Leu Asp Cys Leu Gln Asp Gly Glu Lys Ile Met Ser Tyr Ile		
275	280	285
Cys Ser Gln Gln Asp Thr Leu Ser Asn Lys Ile Thr Glu Cys Cys Lys		
290	295	300
Leu Thr Thr Leu Glu Arg Gly Gln Cys Ile Ile His Ala Glu Asn Asp		
305	310	315
Glu Lys Pro Glu Gly Leu Ser Pro Asn Leu Asn Arg Phe Leu Gly Asp		320
325	330	335
Arg Asp Phe Asn Gln Phe Ser Ser Gly Glu Lys Asn Ile Phe Leu Ala		
340	345	350
Ser Phe Val His Glu Tyr Ser Arg Arg His Pro Gln Leu Ala Val Ser		
355	360	365
Val Ile Leu Arg Val Ala Lys Gly Tyr Gln Glu Leu Leu Glu Lys Cys		
370	375	380
Phe Gln Thr Glu Asn Pro Leu Glu Cys Gln Asp Lys Gly Glu Glu Glu		
385	390	395
Leu Gln Lys Tyr Ile Gln Glu Ser Gln Ala Leu Ala Lys Arg Ser Cys		400
405	410	415
Gly Leu Phe Gln Lys Leu Gly Glu Tyr Tyr Leu Gln Asn Ala Phe Leu		
420	425	430
Val Ala Tyr Thr Lys Lys Ala Pro Gln Leu Thr Ser Ser Glu Leu Met		
435	440	445
Ala Ile Thr Arg Lys Met Ala Ala Thr Ala Ala Thr Cys Cys Gln Leu		
450	455	460
Ser Glu Asp Lys Leu Leu Ala Cys Gly Glu Gly Ala Ala Asp Ile Ile		
465	470	475
Ile Gly His Leu Cys Ile Arg His Glu Met Thr Pro Val Asn Pro Gly		480
485	490	495
Val Gly Gln Cys Cys Thr Ser Ser Tyr Ala Asn Arg Arg Pro Cys Phe		
500	505	510
Ser Ser Leu Val Val Asp Glu Thr Tyr Val Pro Pro Ala Phe Ser Asp		
515	520	525
Asp Lys Phe Ile Phe His Lys Asp Leu Cys Gln Ala Gln Gly Val Ala		
530	535	540
Leu Gln Thr Met Lys Gln Glu Phe Leu Ile Asn Leu Val Lys Gln Lys		
545	550	555
Pro Gln Ile Thr Glu Glu Gln Leu Glu Ala Val Ile Ala Asp Phe Ser		560
565	570	575
Gly Leu Leu Glu Lys Cys Cys Gln Gly Gln Glu Gln Glu Val Cys Phe		
580	585	590
Ala Glu Glu Gly Gln Lys Leu Ile Ser Lys Thr Arg Ala Ala Leu Gly		
595	600	605
val		

Sequence listing.txt

<210> 74
<211> 99
<212> PRT
<213> Homo sapiens

<400> 74
Met Thr Ser Lys Leu Ala Val Ala Leu Leu Ala Ala Phe Leu Ile Ser
1 5 10 15
Ala Ala Leu Cys Glu Gly Ala Val Leu Pro Arg Ser Ala Lys Glu Leu
20 25 30
Arg Cys Gln Cys Ile Lys Thr Tyr Ser Lys Pro Phe His Pro Lys Phe
35 40 45
Ile Lys Glu Leu Arg Val Ile Glu Ser Gly Pro His Cys Ala Asn Thr
50 55 60
Glu Ile Ile Val Lys Leu Ser Asp Gly Arg Glu Leu Cys Leu Asp Pro
65 70 75 80
Lys Glu Asn Trp Val Gln Arg Val Val Glu Lys Phe Leu Lys Arg Ala
85 90 95
Glu Asn Ser

<210> 75
<211> 300
<212> PRT
<213> Homo sapiens

<400> 75
Met Arg Ile Ala Val Ile Cys Phe Cys Leu Leu Gly Ile Thr Cys Ala
1 5 10 15
Ile Pro Val Lys Gln Ala Asp Ser Gly Ser Ser Glu Glu Lys Gln Leu
20 25 30
Tyr Asn Lys Tyr Pro Asp Ala Val Ala Thr Trp Leu Asn Pro Asp Pro
35 40 45
Ser Gln Lys Gln Asn Leu Leu Ala Pro Gln Thr Leu Pro Ser Lys Ser
50 55 60
Asn Glu Ser His Asp His Met Asp Asp Met Asp Asp Glu Asp Asp Asp
65 70 75 80
Asp His Val Asp Ser Gln Asp Ser Ile Asp Ser Asn Asp Ser Asp Asp
85 90 95
Val Asp Asp Thr Asp Asp Ser His Gln Ser Asp Glu Ser His His Ser
100 105 110
Asp Glu Ser Asp Glu Leu Val Thr Asp Phe Pro Thr Asp Leu Pro Ala
115 120 125
Thr Glu Val Phe Thr Pro Val Val Pro Thr Val Asp Thr Tyr Asp Gly
130 135 140
Arg Gly Asp Ser Val Val Tyr Gly Leu Arg Ser Lys Ser Lys Lys Phe
145 150 155 160
Arg Arg Pro Asp Ile Gln Tyr Pro Asp Ala Thr Asp Glu Asp Ile Thr
165 170 175
Ser His Met Glu Ser Glu Glu Leu Asn Gly Ala Tyr Lys Ala Ile Pro
180 185 190
Val Ala Gln Asp Leu Asn Ala Pro Ser Asp Trp Asp Ser Arg Gly Lys
195 200 205
Asp Ser Tyr Glu Thr Ser Gln Leu Asp Asp Gln Ser Ala Glu Thr His
210 215 220
Ser His Lys Gln Ser Arg Leu Tyr Lys Arg Lys Ala Asn Asp Glu Ser
225 230 235 240
Asn Glu His Ser Asp Val Ile Asp Ser Gln Glu Leu Ser Lys Val Ser
245 250 255
Arg Glu Phe His Ser His Glu Phe His Ser His Glu Asp Met Leu Val

Sequence listing.txt

260	265	270
Val Asp Pro Lys Ser Lys Glu Glu	Asp Lys His Leu Lys	Phe Arg Ile
275	280	285
Ser His Glu Leu Asp Ser Ala Ser Ser Glu Val Asn		
290	295	300

<210> 76
<211> 871
<212> PRT
<213> Homo sapiens

<400> 76
Met Lys Tyr Ser Cys Cys Ala Leu Val Leu Ala Val Leu Gly Thr Glu
1 5 10 15
Leu Leu Gly Ser Leu Cys Ser Thr Val Arg Ser Pro Arg Phe Arg Gly
20 25 30
Arg Ile Gln Gln Glu Arg Lys Asn Ile Arg Pro Asn Ile Ile Leu Val
35 40 45
Leu Thr Asp Asp Gln Asp Val Glu Leu Gly Ser Leu Gln Val Met Asn
50 55 60
Lys Thr Arg Lys Ile Met Glu His Gly Ala Thr Phe Ile Asn Ala
65 70 75 80
Phe Val Thr Thr Pro Met Cys Cys Pro Ser Arg Ser Ser Met Leu Thr
85 90 95
Gly Lys Tyr Val His Asn His Asn Val Tyr Thr Asn Asn Glu Asn Cys
100 105 110
Ser Ser Pro Ser Trp Gln Ala Met His Glu Pro Arg Thr Phe Ala Val
115 120 125
Tyr Leu Asn Asn Thr Gly Tyr Arg Thr Ala Phe Phe Gly Lys Tyr Leu
130 135 140
Asn Glu Tyr Asn Gly Ser Tyr Ile Pro Pro Gly Trp Arg Glu Trp Leu
145 150 155 160
Gly Leu Ile Lys Asn Ser Arg Phe Tyr Asn Tyr Thr Val Cys Arg Asn
165 170 175
Gly Ile Lys Glu Lys His Gly Phe Asp Tyr Ala Lys Asp Tyr Phe Thr
180 185 190
Asp Leu Ile Thr Asn Glu Ser Ile Asn Tyr Phe Lys Met Ser Lys Arg
195 200 205
Met Tyr Pro His Arg Pro Val Met Met Val Ile Ser His Ala Ala Pro
210 215 220
His Gly Pro Glu Asp Ser Ala Pro Gln Phe Ser Lys Leu Tyr Pro Asn
225 230 235 240
Ala Ser Gln His Ile Thr Pro Ser Tyr Asn Tyr Ala Pro Asn Met Asp
245 250 255
Lys His Trp Ile Met Gln Tyr Thr Gly Pro Met Leu Pro Ile His Met
260 265 270
Glu Phe Thr Asn Ile Leu Gln Arg Lys Arg Leu Gln Thr Leu Met Ser
275 280 285
Val Asp Asp Ser Val Glu Arg Leu Tyr Asn Met Leu Val Glu Thr Gly
290 295 300
Glu Leu Glu Asn Thr Tyr Ile Ile Tyr Thr Ala Asp His Gly Tyr His
305 310 315 320
Ile Gly Gln Phe Gly Leu Val Lys Gly Lys Ser Met Pro Tyr Asp Phe
325 330 335
Asp Ile Arg Val Pro Phe Phe Ile Arg Gly Pro Ser Val Glu Pro Gly
340 345 350
Ser Ile Val Pro Gln Ile Val Leu Asn Ile Asp Leu Ala Pro Thr Ile
355 360 365
Leu Asp Ile Ala Gly Leu Asp Thr Pro Pro Asp Val Asp Gly Lys Ser
370 375 380
Val Leu Lys Leu Leu Asp Pro Glu Lys Pro Gly Asn Arg Phe Arg Thr
385 390 395 400

Sequence listing.txt

Asn Lys Lys Ala Lys Ile Trp Arg Asp Thr Phe Leu Val Glu Arg Gly
 405 410 415
 Lys Phe Leu Arg Lys Lys Glu Glu Ser Ser Lys Asn Ile Gln Gln Ser
 420 425 430
 Asn His Leu Pro Lys Tyr Glu Arg Val Lys Glu Leu Cys Gln Gln Ala
 435 440 445
 Arg Tyr Gln Thr Ala Cys Glu Gln Pro Gly Gln Lys Trp Gln Cys Ile
 450 455 460
 Glu Asp Thr Ser Gly Lys Leu Arg Ile His Lys Cys Lys Gly Pro Ser
 465 470 475 480
 Asp Leu Leu Thr Val Arg Gln Ser Thr Arg Asn Leu Tyr Ala Arg Gly
 485 490 495
 Phe His Asp Lys Asp Lys Glu Cys Ser Cys Arg Glu Ser Gly Tyr Arg
 500 505 510
 Ala Ser Arg Ser Gln Arg Lys Ser Gln Arg Gln Phe Leu Arg Asn Gln
 515 520 525
 Gly Thr Pro Lys Tyr Lys Pro Arg Phe Val His Thr Arg Gln Thr Arg
 530 535 540
 Ser Leu Ser Val Glu Phe Glu Gly Glu Ile Tyr Asp Ile Asn Leu Glu
 545 550 555 560
 Glu Glu Glu Glu Leu Gln Val Leu Gln Pro Arg Asn Ile Ala Lys Arg
 565 570 575
 His Asp Glu Gly His Lys Gly Pro Arg Asp Leu Gln Ala Ser Ser Gly
 580 585 590
 Gly Asn Arg Gly Arg Met Leu Ala Asp Ser Ser Asn Ala Val Gly Pro
 595 600 605
 Pro Thr Thr Val Arg Val Thr His Lys Cys Phe Ile Leu Pro Asn Asp
 610 615 620
 Ser Ile His Cys Glu Arg Glu Leu Tyr Gln Ser Ala Arg Ala Trp Lys
 625 630 635 640
 Asp His Lys Ala Tyr Ile Asp Lys Glu Ile Glu Ala Leu Gln Asp Lys
 645 650 655
 Ile Lys Asn Leu Arg Glu Val Arg Gly His Leu Lys Arg Arg Lys Pro
 660 665 670
 Glu Glu Cys Ser Cys Ser Lys Gln Ser Tyr Tyr Asn Lys Glu Lys Gly
 675 680 685
 Val Lys Lys Gln Glu Lys Leu Lys Ser His Leu His Pro Phe Lys Glu
 690 695 700
 Ala Ala Gln Glu Val Asp Ser Lys Leu Gln Leu Phe Lys Glu Asn Asn
 705 710 715 720
 Arg Arg Arg Lys Lys Glu Arg Lys Glu Lys Arg Arg Gln Arg Lys Gly
 725 730 735
 Glu Glu Cys Ser Leu Pro Gly Leu Thr Cys Phe Thr His Asp Asn Asn
 740 745 750
 His Trp Gln Thr Ala Pro Phe Trp Asn Leu Gly Ser Phe Cys Ala Cys
 755 760 765
 Thr Ser Ser Asn Asn Asn Thr Tyr Trp Cys Leu Arg Thr Val Asn Glu
 770 775 780
 Thr His Asn Phe Leu Phe Cys Glu Phe Ala Thr Gly Phe Leu Glu Tyr
 785 790 795 800
 Phe Asp Met Asn Thr Asp Pro Tyr Gln Leu Thr Asn Thr Val His Thr
 805 810 815
 Val Glu Arg Gly Ile Leu Asn Gln Leu His Val Gln Leu Met Glu Leu
 820 825 830
 Arg Ser Cys Gln Gly Tyr Lys Gln Cys Asn Pro Arg Pro Lys Asn Leu
 835 840 845
 Asp Val Gly Asn Lys Asp Gly Gly Ser Tyr Asp Leu His Arg Gly Gln
 850 855 860
 Leu Trp Asp Gly Trp Glu Gly
 865 870

Sequence listing.txt

<211> 470
 <212> PRT
 <213> Homo sapiens

<400> 77
 Met Lys Phe Leu Leu Ile Leu Leu Leu Gln Ala Thr Ala Ser Gly Ala
 1 5 10 15
 Leu Pro Leu Asn Ser Ser Thr Ser Leu Glu Lys Asn Asn Val Leu Phe
 20 25 30
 Gly Glu Arg Tyr Leu Glu Lys Phe Tyr Gly Leu Glu Ile Asn Lys Leu
 35 40 45
 Pro Val Thr Lys Met Lys Tyr Ser Gly Asn Leu Met Lys Glu Lys Ile
 50 55 60
 Gln Glu Met Gln His Phe Leu Gly Leu Lys Val Thr Gly Gln Leu Asp
 65 70 75 80
 Thr Ser Thr Leu Glu Met Met His Ala Pro Arg Cys Gly Val Pro Asp
 85 90 95
 Leu His His Phe Arg Glu Met Pro Gly Gly Pro Val Trp Arg Lys His
 100 105 110
 Tyr Ile Thr Tyr Arg Ile Asn Asn Tyr Thr Pro Asp Met Asn Arg Glu
 115 120 125
 Asp Val Asp Tyr Ala Ile Arg Lys Ala Phe Gln Val Trp Ser Asn Val
 130 135 140
 Thr Pro Leu Lys Phe Ser Lys Ile Asn Thr Gly Met Ala Asp Ile Leu
 145 150 155 160
 Val Val Phe Ala Arg Gly Ala His Gly Asp Phe His Ala Phe Asp Gly
 165 170 175
 Lys Gly Gly Ile Leu Ala His Ala Phe Gly Pro Gly Ser Gly Ile Gly
 180 185 190
 Gly Asp Ala His Phe Asp Glu Asp Glu Phe Trp Thr Thr His Ser Gly
 195 200 205
 Gly Thr Asn Leu Phe Leu Thr Ala Val His Glu Ile Gly His Ser Leu
 210 215 220
 Gly Leu Gly His Ser Ser Asp Pro Lys Ala Val Met Phe Pro Thr Tyr
 225 230 235 240
 Lys Tyr Val Asp Ile Asn Thr Phe Arg Leu Ser Ala Asp Asp Ile Arg
 245 250 255
 Gly Ile Gln Ser Leu Tyr Gly Asp Pro Lys Glu Asn Gln Arg Leu Pro
 260 265 270
 Asn Pro Asp Asn Ser Glu Pro Ala Leu Cys Asp Pro Asn Leu Ser Phe
 275 280 285
 Asp Ala Val Thr Thr Val Gly Asn Lys Ile Phe Phe Phe Lys Asp Arg
 290 295 300
 Phe Phe Trp Leu Lys Val Ser Glu Arg Pro Lys Thr Ser Val Asn Leu
 305 310 315 320
 Ile Ser Ser Leu Trp Pro Thr Leu Pro Ser Gly Ile Glu Ala Ala Tyr
 325 330 335
 Glu Ile Glu Ala Arg Asn Gln Val Phe Leu Phe Lys Asp Asp Lys Tyr
 340 345 350
 Trp Leu Ile Ser Asn Leu Arg Pro Glu Pro Asn Tyr Pro Lys Ser Ile
 355 360 365
 His Ser Phe Gly Phe Pro Asn Phe Val Lys Lys Ile Asp Ala Ala Val
 370 375 380
 Phe Asn Pro Arg Phe Tyr Arg Thr Tyr Phe Phe Val Asp Asn Gln Tyr
 385 390 395 400
 Trp Arg Tyr Asp Glu Arg Arg Gln Met Met Asp Pro Gly Tyr Pro Lys
 405 410 415
 Leu Ile Thr Lys Asn Phe Gln Gly Ile Gly Pro Lys Ile Asp Ala Val
 420 425 430
 Phe Tyr Ser Lys Asn Lys Tyr Tyr Phe Phe Gln Gly Ser Asn Gln
 435 440 445
 Phe Glu Tyr Asp Phe Leu Leu Gln Arg Ile Thr Lys Thr Leu Lys Ser
 450 455 460

Sequence listing.txt

Asn Ser Trp Phe Gly Cys
465 470

<210> 78
<211> 165
<212> PRT
<213> Homo sapiens

<400> 78
Met Ala Pro Asn Ala Ser Cys Leu Cys Val His Val Arg Ser Glu Glu
1 5 10 15
Trp Asp Leu Met Thr Phe Asp Ala Asn Pro Tyr Asp Ser Val Lys Lys
20 25 30
Ile Lys Glu His Val Arg Ser Lys Thr Lys Val Pro Val Gln Asp Gln
35 40 45
Val Leu Leu Leu Gly Ser Lys Ile Leu Lys Pro Arg Arg Ser Leu Ser
50 55 60
Ser Tyr Gly Ile Asp Lys Glu Lys Thr Ile His Leu Thr Leu Lys Val
65 70 75 80
Val Lys Pro Ser Asp Glu Glu Leu Pro Leu Phe Leu Val Glu Ser Gly
85 90 95
Asp Glu Ala Lys Arg His Leu Leu Gln Val Arg Arg Ser Ser Val
100 105 110
Ala Gln Val Lys Ala Met Ile Glu Thr Lys Thr Gly Ile Ile Pro Glu
115 120 125
Thr Gln Ile Val Thr Cys Asn Gly Lys Arg Leu Glu Asp Gly Lys Met
130 135 140
Met Ala Asp Tyr Gly Ile Arg Lys Gly Asn Leu Leu Phe Leu Ala Ser
145 150 155 160
Tyr Cys Ile Gly Gly
165

<210> 79
<211> 1464
<212> PRT
<213> Homo sapiens

<400> 79
Met Phe Ser Phe Val Asp Leu Arg Leu Leu Leu Leu Ala Ala Thr
1 5 10 15
Ala Leu Leu Thr His Gly Gln Glu Glu Gly Gln Val Glu Gly Gln Asp
20 25 30
Glu Asp Ile Pro Pro Ile Thr Cys Val Gln Asn Gly Leu Arg Tyr His
35 40 45
Asp Arg Asp Val Trp Lys Pro Glu Pro Cys Arg Ile Cys Val Cys Asp
50 55 60
Asn Gly Lys Val Leu Cys Asp Asp Val Ile Cys Asp Glu Thr Lys Asn
65 70 75 80
Cys Pro Gly Ala Glu Val Pro Glu Gly Glu Cys Cys Pro Val Cys Pro
85 90 95
Asp Gly Ser Glu Ser Pro Thr Asp Gln Glu Thr Thr Gly Val Glu Gly
100 105 110
Pro Lys Gly Asp Thr Gly Pro Arg Gly Pro Arg Gly Pro Ala Gly Pro
115 120 125
Pro Gly Arg Asp Gly Ile Pro Gly Gln Pro Gly Leu Pro Gly Pro Pro
130 135 140
Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Leu Gly Gly Asn Phe Ala
145 150 155 160
Pro Gln Leu Ser Tyr Gly Tyr Asp Glu Lys Ser Thr Gly Gly Ile Ser
165 170 175
Val Pro Gly Pro Met Gly Pro Ser Gly Pro Arg Gly Leu Pro Gly Pro

Sequence listing.txt

180	185	190		
Pro Gly Ala Pro Gly Pro Gln Gly Phe Gln Gly Pro Pro Gly Glu Pro	195	200	205	
Gly Glu Pro Gly Ala Ser Gly Pro Met Gly Pro Arg Gly Pro Pro Gly	210	215	220	
Pro Pro Gly Lys Asn Gly Asp Asp Gly Glu Ala Gly Lys Pro Gly Arg	225	230	235	240
Pro Gly Glu Arg Gly Pro Pro Gly Pro Gln Gly Ala Arg Gly Leu Pro	245	250	255	
Gly Thr Ala Gly Leu Pro Gly Met Lys Gly His Arg Gly Phe Ser Gly	260	265	270	
Leu Asp Gly Ala Lys Gly Asp Ala Gly Pro Ala Gly Pro Lys Gly Glu	275	280	285	
Pro Gly Ser Pro Gly Glu Asn Gly Ala Pro Gly Gln Met Gly Pro Arg	290	295	300	
Gly Leu Pro Gly Glu Arg Gly Arg Pro Gly Ala Pro Gly Pro Ala Gly	305	310	315	320
Ala Arg Gly Asn Asp Gly Ala Thr Gly Ala Ala Gly Pro Pro Gly Pro	325	330	335	
Thr Gly Pro Ala Gly Pro Pro Gly Phe Pro Gly Ala Val Gly Ala Lys	340	345	350	
Gly Glu Ala Gly Pro Gln Gly Pro Arg Gly Ser Gly Pro Gln Gly	355	360	365	
Val Arg Gly Glu Pro Gly Pro Pro Gly Pro Ala Gly Ala Ala Gly Pro	370	375	380	
Ala Gly Asn Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys Gly Ala Asn	385	390	395	400
Gly Ala Pro Gly Ile Ala Gly Ala Pro Gly Phe Pro Gly Ala Arg Gly	405	410	415	
Pro Ser Gly Pro Gln Gly Pro Gly Gly Pro Pro Gly Pro Lys Gly Asn	420	425	430	
Ser Gly Glu Pro Gly Ala Pro Gly Ser Lys Gly Asp Thr Gly Ala Lys	435	440	445	
Gly Glu Pro Gly Pro Val Gly Val Gln Gly Pro Pro Gly Pro Ala Gly	450	455	460	
Glu Glu Gly Lys Arg Gly Ala Arg Gly Glu Pro Gly Pro Thr Gly Leu	465	470	475	480
Pro Gly Pro Pro Gly Glu Arg Gly Gly Pro Gly Ser Arg Gly Phe Pro	485	490	495	
Gly Ala Asp Gly Val Ala Gly Pro Lys Gly Pro Ala Gly Glu Arg Gly	500	505	510	
Ser Pro Gly Pro Ala Gly Pro Lys Gly Ser Pro Gly Glu Ala Gly Arg	515	520	525	
Pro Gly Glu Ala Gly Leu Pro Gly Ala Lys Gly Leu Thr Gly Ser Pro	530	535	540	
Gly Ser Pro Gly Pro Asp Gly Lys Thr Gly Pro Pro Gly Pro Ala Gly	545	550	555	560
Gln Asp Gly Arg Pro Gly Pro Pro Gly Pro Pro Gly Ala Arg Gly Gln	565	570	575	
Ala Gly Val Met Gly Phe Pro Gly Pro Lys Gly Ala Ala Gly Glu Pro	580	585	590	
Gly Lys Ala Gly Glu Arg Gly Val Pro Gly Pro Pro Gly Ala Val Gly	595	600	605	
Pro Ala Gly Lys Asp Gly Glu Ala Gly Ala Gln Gly Pro Pro Gly Pro	610	615	620	
Ala Gly Pro Ala Gly Glu Arg Gly Glu Gln Gly Pro Ala Gly Ser Pro	625	630	635	640
Gly Phe Gln Gly Leu Pro Gly Pro Ala Gly Pro Pro Gly Glu Ala Gly	645	650	655	
Lys Pro Gly Glu Gln Gly Val Pro Gly Asp Leu Gly Ala Pro Gly Pro	660	665	670	
Ser Gly Ala Arg Gly Glu Arg Gly Phe Pro Gly Glu Arg Gly Val Gln	675	680	685	

Sequence listing.txt

Gly Pro Pro Gly Pro Ala Gly Pro Arg Gly Ala Asn Gly Ala Pro Gly
 690 695 700
 Asn Asp Gly Ala Lys Gly Asp Ala Gly Ala Pro Gly Ala Pro Gly Ser
 705 710 715 720
 Gln Gly Ala Pro Gly Leu Gln Gly Met Pro Gly Glu Arg Gly Ala Ala
 725 730 735
 Gly Leu Pro Gly Pro Lys Gly Asp Arg Gly Asp Ala Gly Pro Lys Gly
 740 745 750
 Ala Asp Gly Ser Pro Gly Lys Asp Gly Val Arg Gly Leu Thr Gly Pro
 755 760 765
 Ile Gly Pro Pro Gly Pro Ala Gly Ala Pro Gly Asp Lys Gly Glu Ser
 770 775 780
 Gly Pro Ser Gly Pro Ala Gly Pro Thr Gly Ala Arg Gly Ala Pro Gly
 785 790 795 800
 Asp Arg Gly Glu Pro Gly Pro Pro Gly Pro Ala Gly Phe Ala Gly Pro
 805 810 815
 Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys Gly Glu Pro Gly Asp Ala
 820 825 830
 Gly Ala Lys Gly Asp Ala Gly Pro Pro Gly Pro Ala Gly Pro Ala Gly
 835 840 845
 Pro Pro Gly Pro Ile Gly Asn Val Gly Ala Pro Gly Ala Lys Gly Ala
 850 855 860
 Arg Gly Ser Ala Gly Pro Pro Gly Ala Thr Gly Phe Pro Gly Ala Ala
 865 870 875 880
 Gly Arg Val Gly Pro Pro Gly Pro Ser Gly Asn Ala Gly Pro Pro Gly
 885 890 895
 Pro Pro Gly Pro Ala Gly Lys Glu Gly Lys Gly Pro Arg Gly Glu
 900 905 910
 Thr Gly Pro Ala Gly Arg Pro Gly Glu Val Gly Pro Pro Gly Pro Pro
 915 920 925
 Gly Pro Ala Gly Glu Lys Gly Ser Pro Gly Ala Asp Gly Pro Ala Gly
 930 935 940
 Ala Pro Gly Thr Pro Gly Pro Gln Gly Ile Ala Gly Gln Arg Gly Val
 945 950 955 960
 Val Gly Leu Pro Gly Gln Arg Gly Glu Arg Gly Phe Pro Gly Leu Pro
 965 970 975
 Gly Pro Ser Gly Glu Pro Gly Lys Gln Gly Pro Ser Gly Ala Ser Gly
 980 985 990
 Glu Arg Gly Pro Pro Gly Pro Met Gly Pro Pro Gly Leu Ala Gly Pro
 995 1000 1005
 Pro Gly Glu Ser Gly Arg Glu Gly Ala Pro Ala Ala Glu Gly Ser Pro
 1010 1015 1020
 Gly Arg Asp Gly Ser Pro Gly Ala Lys Gly Asp Arg Gly Glu Thr Gly
 1025 1030 1035 1040
 Pro Ala Gly Pro Pro Gly Ala Pro Gly Ala Pro Gly Ala Pro Gly Pro
 1045 1050 1055
 Val Gly Pro Ala Gly Lys Ser Gly Asp Arg Gly Glu Thr Gly Pro Ala
 1060 1065 1070
 Gly Pro Ala Gly Pro Val Gly Pro Val Gly Ala Arg Gly Pro Ala Gly
 1075 1080 1085
 Pro Gln Gly Pro Arg Gly Asp Lys Gly Glu Thr Gly Glu Gln Gly Asp
 1090 1095 1100
 Arg Gly Ile Lys Gly His Arg Gly Phe Ser Gly Leu Gln Gly Pro Pro
 1105 1110 1115 1120
 Gly Pro Pro Gly Ser Pro Gly Glu Gln Gly Pro Ser Gly Ala Ser Gly
 1125 1130 1135
 Pro Ala Gly Pro Arg Gly Pro Pro Gly Ser Ala Gly Ala Pro Gly Lys
 1140 1145 1150
 Asp Gly Leu Asn Gly Leu Pro Gly Pro Ile Gly Pro Pro Gly Pro Arg
 1155 1160 1165
 Gly Arg Thr Gly Asp Ala Gly Pro Val Gly Pro Pro Gly Pro Pro Gly
 1170 1175 1180
 Pro Pro Gly Pro Pro Gly Pro Pro Ser Ala Gly Phe Asp Phe Ser Phe

Sequence listing.txt

1185	1190	1195	1200
Leu Pro Gln Pro Pro Gln Glu Lys Ala His Asp Gly Gly Arg Tyr Tyr			
1205	1210	1215	
Arg Ala Asp Asp Ala Asn Val Val Arg Asp Arg Asp Leu Glu Val Asp			
1220	1225	1230	
Thr Thr Leu Lys Ser Leu Ser Gln Gln Ile Glu Asn Ile Arg Ser Pro			
1235	1240	1245	
Glu Gly Ser Arg Lys Asn Pro Ala Arg Thr Cys Arg Asp Leu Lys Met			
1250	1255	1260	
Cys His Ser Asp Trp Lys Ser Gly Glu Tyr Trp Ile Asp Pro Asn Gln			
1265	1270	1275	1280
Gly Cys Asn Leu Asp Ala Ile Lys Val Phe Cys Asn Met Glu Thr Gly			
1285	1290	1295	
Glu Thr Cys Val Tyr Pro Thr Gln Pro Ser Val Ala Gln Lys Asn Trp			
1300	1305	1310	
Tyr Ile Ser Lys Asn Pro Lys Asp Lys Arg His Val Trp Phe Gly Glu			
1315	1320	1325	
Ser Met Thr Asp Gly Phe Gln Phe Glu Tyr Gly Gly Gln Gly Ser Asp			
1330	1335	1340	
Pro Ala Asp Val Ala Ile Gln Leu Thr Phe Leu Arg Leu Met Ser Thr			
1345	1350	1355	1360
Glu Ala Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Val Ala Tyr			
1365	1370	1375	
Met Asp Gln Gln Thr Gly Asn Leu Lys Lys Ala Leu Leu Leu Lys Gly			
1380	1385	1390	
Ser Asn Glu Ile Glu Ile Arg Ala Glu Gly Asn Ser Arg Phe Thr Tyr			
1395	1400	1405	
Ser Val Thr Val Asp Gly Cys Thr Ser His Thr Gly Ala Trp Gly Lys			
1410	1415	1420	
Thr Val Ile Glu Tyr Lys Thr Thr Lys Ser Ser Arg Leu Pro Ile Ile			
1425	1430	1435	1440
Asp Val Ala Pro Leu Asp Val Gly Ala Pro Asp Gln Glu Phe Gly Phe			
1445	1450	1455	
Asp Val Gly Pro Val Cys Phe Leu			
1460			

<210> 80
 <211> 338
 <212> PRT
 <213> Homo sapiens

<400> 80			
Met Ser Leu Ser Ala Phe Thr Leu Phe Leu Ala Leu Ile Gly Gly Thr			
1	5	10	15
Ser Gly Gln Tyr Tyr Asp Tyr Asp Phe Pro Leu Ser Ile Tyr Gly Gln			
20	25	30	
Ser Ser Pro Asn Cys Ala Pro Glu Cys Asn Cys Pro Glu Ser Tyr Pro			
35	40	45	
Ser Ala Met Tyr Cys Asp Glu Leu Lys Leu Lys Ser Val Pro Met Val			
50	55	60	
Pro Pro Gly Ile Lys Tyr Leu Tyr Leu Arg Asn Asn Gln Ile Asp His			
65	70	75	80
Ile Asp Glu Lys Ala Phe Glu Asn Val Thr Asp Leu Gln Trp Leu Ile			
85	90	95	
Leu Asp His Asn Leu Leu Glu Asn Ser Lys Ile Lys Gly Arg Val Phe			
100	105	110	
Ser Lys Leu Lys Gln Leu Lys Lys Leu His Ile Asn His Asn Asn Leu			
115	120	125	
Thr Glu Ser Val Gly Pro Leu Pro Lys Ser Leu Glu Asp Leu Gln Leu			
130	135	140	
Thr His Asn Lys Ile Thr Lys Leu Gly Ser Phe Glu Gly Leu Val Asn			
145	150	155	160

Sequence listing.txt

Leu Thr Phe Ile His Leu Gln His Asn Arg Leu Lys Glu Asp Ala Val
 165 170 175
 Ser Ala Ala Phe Lys Gly Leu Lys Ser Leu Glu Tyr Leu Asp Leu Ser
 180 185 190
 Phe Asn Gln Ile Ala Arg Leu Pro Ser Gly Leu Pro Val Ser Leu Leu
 195 200 205
 Thr Leu Tyr Leu Asp Asn Asn Lys Ile Ser Asn Ile Pro Asp Glu Tyr
 210 215 220
 Phe Lys Arg Phe Asn Ala Leu Gln Tyr Leu Arg Leu Ser His Asn Glu
 225 230 235 240
 Leu Ala Asp Ser Gly Ile Pro Gly Asn Ser Phe Asn Val Ser Ser Leu
 245 250 255
 Val Glu Leu Asp Leu Ser Tyr Asn Lys Leu Lys Asn Ile Pro Thr Val
 260 265 270
 Asn Glu Asn Leu Glu Asn Tyr Tyr Leu Glu Val Asn Gln Leu Glu Lys
 275 280 285
 Phe Asp Ile Lys Ser Phe Cys Lys Ile Leu Gly Pro Leu Ser Tyr Ser
 290 295 300
 Lys Ile Lys His Leu Arg Leu Asp Gly Asn Arg Ile Ser Glu Thr Ser
 305 310 315 320
 Leu Pro Pro Asp Met Tyr Glu Cys Leu Arg Val Ala Asn Glu Val Thr
 325 330 335
 Leu Asn

<210> 81
 <211> 589
 <212> PRT
 <213> Homo sapiens

<400> 81
 Met Ser Val Ser Val His Glu Asn Arg Lys Ser Arg Ala Ser Ser Gly
 1 5 10 15
 Ser Ile Asn Ile Tyr Leu Phe His Lys Ser Ser Tyr Ala Asp Ser Val
 20 25 30
 Leu Thr His Leu Asn Leu Leu Arg Gln Gln Arg Leu Phe Thr Asp Val
 35 40 45
 Leu Leu His Ala Gly Asn Arg Thr Phe Pro Cys His Arg Ala Val Leu
 50 55 60
 Ala Ala Cys Ser Arg Tyr Phe Glu Ala Met Phe Ser Gly Gly Leu Lys
 65 70 75 80
 Glu Ser Gln Asp Ser Glu Val Asn Phe Asp Asn Ser Ile His Pro Glu
 85 90 95
 Val Leu Glu Leu Leu Asp Tyr Ala Tyr Ser Ser Arg Val Ile Ile
 100 105 110
 Asn Glu Glu Asn Ala Glu Ser Leu Leu Glu Ala Gly Asp Met Leu Glu
 115 120 125
 Phe Gln Asp Ile Arg Asp Ala Cys Ala Glu Phe Leu Glu Lys Asn Leu
 130 135 140
 His Pro Thr Asn Cys Leu Gly Met Leu Leu Leu Ser Asp Ala His Gln
 145 150 155 160
 Cys Thr Lys Leu Tyr Glu Leu Ser Trp Arg Met Cys Leu Ser Asn Phe
 165 170 175
 Gln Thr Ile Arg Lys Asn Glu Asp Phe Leu Gln Leu Pro Gln Asp Met
 180 185 190
 Val Val Gln Leu Leu Ser Ser Glu Glu Leu Glu Thr Glu Asp Glu Arg
 195 200 205
 Leu Val Tyr Glu Ser Ala Ile Asn Trp Ile Ser Tyr Asp Leu Lys Lys
 210 215 220
 Arg Tyr Cys Tyr Leu Pro Glu Leu Leu Gln Thr Val Arg Leu Ala Leu
 225 230 235 240
 Leu Pro Ala Ile Tyr Leu Met Glu Asn Val Ala Met Glu Glu Leu Ile

Sequence listing.txt

245	250	255	
Thr Lys Gln Arg Lys Ser Lys Glu Ile Val Glu Glu Ala Ile Arg Cys			
260	265	270	
Lys Leu Lys Ile Leu Gln Asn Asp Gly Val Val Thr Ser Leu Cys Ala			
275	280	285	
Arg Pro Arg Lys Thr Gly His Ala Leu Phe Leu Leu Gly Gly Gln Thr			
290	295	300	
Phe Met Cys Asp Lys Leu Tyr Leu Val Asp Gln Lys Ala Lys Glu Ile			
305	310	315	320
Ile Pro Lys Ala Asp Ile Pro Ser Pro Arg Lys Glu Phe Ser Ala Cys			
325	330	335	
Ala Ile Gly Cys Lys Val Tyr Ile Thr Gly Gly Arg Gly Ser Glu Asn			
340	345	350	
Gly Val Ser Lys Asp Val Trp Val Tyr Asp Thr Leu His Glu Glu Trp			
355	360	365	
Ser Lys Ala Ala Pro Met Leu Val Ala Arg Phe Gly His Gly Ser Ala			
370	375	380	
Glu Leu Lys His Cys Leu Tyr Val Val Gly Gly His Thr Ala Ala Thr			
385	390	395	400
Gly Cys Leu Pro Ala Ser Pro Ser Val Ser Leu Lys Gln Val Glu His			
405	410	415	
Tyr Asp Pro Thr Ile Asn Lys Trp Thr Met Val Ala Pro Leu Arg Glu			
420	425	430	
Gly Val Ser Asn Ala Ala Val Val Ser Ala Lys Leu Lys Leu Phe Ala			
435	440	445	
Phe Gly Gly Thr Ser Val Ser His Asp Lys Leu Pro Lys Val Gln Cys			
450	455	460	
Tyr Asp Gln Cys Glu Asn Arg Trp Thr Val Pro Ala Thr Cys Pro Gln			
465	470	475	480
Pro Trp Arg Tyr Thr Ala Ala Ala Val Leu Gly Asn Gln Ile Phe Ile			
485	490	495	
Met Gly Gly Asp Thr Glu Phe Ser Ala Cys Ser Ala Tyr Lys Phe Asn			
500	505	510	
Ser Glu Thr Tyr Gln Trp Thr Lys Val Gly Asp Val Thr Ala Lys Arg			
515	520	525	
Met Ser Cys His Ala Val Ala Ser Gly Asn Lys Leu Tyr Val Val Gly			
530	535	540	
Gly Tyr Phe Gly Ile Gln Arg Cys Lys Thr Leu Asp Cys Tyr Asp Pro			
545	550	555	560
Thr Leu Asp Val Trp Asn Ser Ile Thr Thr Val Pro Tyr Ser Leu Ile			
565	570	575	
Pro Thr Ala Phe Val Ser Thr Trp Lys His Leu Pro Ser			
580	585		

<210> 82

<211> 193

<212> PRT

<213> Homo sapiens

<400> 82

Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu Pro			
1	5	10	15
Leu Leu Leu Leu Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu Ala Gly			
20	25	30	
Arg Gly Trp Leu Gln Ser Ser Asp His Gly Gln Thr Ser Ser Leu Trp			
35	40	45	
Trp Lys Cys Ser Gln Glu Gly Gly Ser Gly Ser Tyr Glu Glu Gly			
50	55	60	
Cys Gln Ser Leu Met Glu Tyr Ala Trp Gly Arg Ala Ala Ala Ala Met			
65	70	75	80
Leu Phe Cys Gly Phe Ile Ile Leu Val Ile Cys Phe Ile Leu Ser Phe			
85	90	95	

Sequence listing.txt

Phe Ala Leu Cys Gly Pro Gln Met Leu Val Phe Leu Arg Val Ile Gly
100 105 110
Gly Leu Leu Ala Leu Ala Ala Val Phe Gln Ile Ile Ser Leu Val Ile
115 120 125
Tyr Pro Val Lys Tyr Thr Gln Thr Phe Thr Leu His Ala Asn Pro Ala
130 135 140
Val Thr Tyr Ile Tyr Asn Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr
145 150 155 160
Ile Ile Leu Ile Gly Cys Ala Phe Phe Phe Cys Cys Leu Leu Asn Tyr
165 170 175
Glu Asp Asp Leu Leu Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Thr Ser
180 185 190
Ala

<210> 83
<211> 423
<212> PRT
<213> Homo sapiens

<400> 83
Met Arg Ser Ser Gly Ala Asp Ala Gly Arg Cys Leu Val Thr Ala Arg
1 5 10 15
Ala Pro Gly Ser Val Pro Ala Ser Arg Glu Gly Ser Ala Gly Ser Arg
20 25 30
Gly Pro Gly Ala Arg Phe Pro Ala Arg Val Ser Ala Arg Gly Ser Ala
35 40 45
Pro Gly Pro Gly Leu Gly Ala Gly Ala Leu Asp Pro Pro Ala Val
50 55 60
Val Ala Glu Ser Val Ser Ser Leu Thr Ile Ala Asp Ala Phe Ile Ala
65 70 75 80
Ala Gly Glu Ser Ser Ala Pro Thr Pro Pro Arg Pro Ala Leu Pro Arg
85 90 95
Arg Phe Ile Cys Ser Phe Pro Asp Cys Ser Ala Asn Tyr Ser Lys Ala
100 105 110
Trp Lys Leu Asp Ala His Leu Cys Lys His Thr Gly Glu Arg Pro Phe
115 120 125
Val Cys Asp Tyr Glu Gly Cys Gly Lys Ala Phe Ile Arg Asp Tyr His
130 135 140
Leu Ser Arg His Ile Leu Thr His Thr Gly Glu Lys Pro Phe Val Cys
145 150 155 160
Ala Ala Asn Gly Cys Asp Gln Lys Phe Asn Thr Lys Ser Asn Leu Lys
165 170 175
Lys His Phe Glu Arg Lys His Glu Asn Gln Gln Lys Gln Tyr Ile Cys
180 185 190
Ser Phe Glu Asp Cys Lys Lys Thr Phe Lys Lys His Gln Gln Leu Lys
195 200 205
Ile His Gln Cys Gln Asn Thr Asn Glu Pro Leu Phe Lys Cys Thr Gln
210 215 220
Glu Gly Cys Gly Lys His Phe Ala Ser Pro Ser Lys Leu Lys Arg His
225 230 235 240
Ala Lys Ala His Glu Gly Tyr Val Cys Gln Lys Gly Cys Ser Phe Val
245 250 255
Ala Lys Thr Trp Thr Glu Leu Leu Lys His Val Arg Glu Thr His Lys
260 265 270
Glu Glu Ile Leu Cys Glu Val Cys Arg Lys Thr Phe Lys Arg Lys Asp
275 280 285
Tyr Leu Lys Gln His Met Lys Thr His Ala Pro Glu Arg Asp Val Cys
290 295 300
Arg Cys Pro Arg Glu Gly Cys Gly Arg Thr Tyr Thr Thr Val Phe Asn
305 310 315 320
Leu Gln Ser His Ile Leu Ser Phe His Glu Glu Ser Arg Pro Phe Val

Sequence listing.txt

	325	330	335												
Cys	Glu	His	Ala	Gly	Cys	Gly	Lys	Thr	Phe	Ala	Met	Lys	Gln	Ser	Leu
	340		345				350								
Thr	Arg	His	Ala	val	val	His	Asp	Pro	Asp	Lys	Lys	Lys	Met	Lys	Leu
	355			360			365								
Lys	Val	Lys	Lys	Ser	Arg	Glu	Lys	Arg	Glu	Phe	Gly	Leu	Ser	Ser	Gln
	370			375			380								
Trp	Ile	Tyr	Pro	Pro	Lys	Arg	Lys	Gln	Gly	Gln	Gly	Leu	Ser	Leu	Cys
	385			390			395								400
Gln	Asn	Gly	Glu	Ser	Pro	Asn	Cys	Val	Glu	Asp	Lys	Met	Leu	Ser	Thr
	405			410											415
val	Ala	Val	Leu	Thr	Leu	Gly									
	420														

<210> 84

<211> 339

<212> PRT

<213> Homo sapiens

<400> 84

Met	Trp	Gln	Leu	Trp	Ala	Ser	Leu	Cys	Cys	Leu	Leu	Val	Leu	Ala	Asn
1		5			10										15
Ala	Arg	Ser	Arg	Pro	Ser	Phe	His	Pro	Leu	Ser	Asp	Glu	Leu	Val	Asn
	20				25										30
Tyr	Val	Asn	Lys	Arg	Asn	Thr	Thr	Trp	Gln	Ala	Gly	His	Asn	Phe	Tyr
	35				40										45
Asn	Val	Asp	Met	Ser	Tyr	Leu	Lys	Arg	Leu	Cys	Gly	Thr	Phe	Leu	Gly
	50				55										60
Gly	Pro	Lys	Pro	Pro	Gln	Arg	Val	Met	Phe	Thr	Glu	Asp	Leu	Lys	Leu
	65				70										80
Pro	Ala	Ser	Phe	Asp	Ala	Arg	Glu	Gln	Trp	Pro	Gln	Cys	Pro	Thr	Ile
			85			90									95
Lys	Glu	Ile	Arg	Asp	Gln	Gly	Ser	Cys	Gly	Ser	Cys	Trp	Ala	Phe	Gly
	100				105										110
Ala	val	Glu	Ala	Ile	Ser	Asp	Arg	Ile	Cys	Ile	His	Thr	Asn	Ala	His
	115				120										125
Val	Ser	Val	Glu	Val	Ser	Ala	Glu	Asp	Leu	Leu	Thr	Cys	Cys	Gly	Ser
	130				135										140
Met	Cys	Gly	Asp	Gly	Cys	Asn	Gly	Gly	Tyr	Pro	Ala	Glu	Ala	Trp	Asn
	145				150										160
Phe	Trp	Thr	Arg	Lys	Gly	Leu	Val	Ser	Gly	Gly	Leu	Tyr	Glu	Ser	His
			165			170									175
Val	Gly	Cys	Arg	Pro	Tyr	Ser	Ile	Pro	Pro	Cys	Glu	His	His	Val	Asn
	180				185										190
Gly	Ser	Arg	Pro	Pro	Cys	Thr	Gly	Glu	Gly	Asp	Thr	Pro	Lys	Cys	Ser
	195				200										205
Lys	Ile	Cys	Glu	Pro	Gly	Tyr	Ser	Pro	Thr	Tyr	Lys	Gln	Asp	Lys	His
	210				215										220
Tyr	Gly	Tyr	Asn	Ser	Tyr	Ser	Val	Ser	Asn	Ser	Glu	Lys	Asp	Ile	Met
	225				230										240
Ala	Glu	Ile	Tyr	Lys	Asn	Gly	Pro	Val	Glu	Gly	Ala	Phe	Ser	Val	Tyr
			245			250									255
Ser	Asp	Phe	Leu	Leu	Tyr	Lys	Ser	Gly	Val	Tyr	Gln	His	Val	Thr	Gly
			260			265									270
Glu	Met	Met	Gly	Gly	His	Ala	Ile	Arg	Ile	Leu	Gly	Trp	Gly	Val	Glu
			275			280									285
Asn	Gly	Thr	Pro	Tyr	Trp	Leu	Val	Ala	Asn	Ser	Trp	Asn	Thr	Asp	Trp
	290				295										300
Gly	Asp	Asn	Gly	Phe	Phe	Lys	Ile	Leu	Arg	Gly	Gln	Asp	His	Cys	Gly
	305				310										320
Ile	Glu	Ser	Glu	Val	Val	Ala	Gly	Ile	Pro	Arg	Thr	Asp	Gln	Tyr	Trp
	325						330								335

Sequence listing.txt

Glu Lys Ile

<210> 85
<211> 150
<212> PRT
<213> Homo sapiens

<400> 85
Met Ala Ala Arg Gly Val Ile Ala Pro Val Gly Glu Ser Leu Arg Tyr
1 5 10 15
Ala Glu Tyr Leu Gln Pro Ser Ala Lys Arg Pro Asp Ala Asp Val Asp
20 25 30
Gln Gln Gly Leu Val Arg Ser Leu Ile Ala Val Gly Leu Gly Val Ala
35 40 45
Ala Leu Ala Phe Ala Gly Arg Tyr Ala Phe Arg Ile Trp Lys Pro Leu
50 55 60
Glu Gln Val Ile Thr Glu Thr Ala Lys Lys Ile Ser Thr Pro Ser Phe
65 70 75 80
Ser Ser Tyr Tyr Lys Gly Gly Phe Glu Gln Lys Met Ser Arg Arg Glu
85 90 95
Ala Gly Leu Ile Leu Gly Val Ser Pro Ser Ala Gly Lys Ala Lys Ile
100 105 110
Arg Thr Ala His Arg Arg Val Met Ile Leu Asn His Pro Asp Lys Gly
115 120 125
Gly Ser Pro Tyr Val Ala Ala Lys Ile Asn Glu Ala Lys Asp Leu Leu
130 135 140
Glu Thr Thr Thr Lys His
145 150

<210> 86
<211> 1212
<212> PRT
<213> Homo sapiens

<400> 86
Met Glu Pro Arg Pro Thr Ala Pro Ser Ser Gly Ala Pro Gly Leu Ala
1 5 10 15
Gly Val Gly Glu Thr Pro Ser Ala Ala Leu Ala Ala Ala Arg Val
20 25 30
Glu Leu Pro Gly Thr Ala Val Pro Ser Val Pro Glu Asp Ala Ala Pro
35 40 45
Ala Ser Arg Asp Gly Gly Val Arg Asp Glu Gly Pro Ala Ala Ala
50 55 60
Gly Asp Gly Leu Gly Arg Pro Leu Gly Pro Thr Pro Ser Gln Ser Arg
65 70 75 80
Phe Gln Val Asp Leu Val Ser Glu Asn Ala Gly Arg Ala Ala Ala
85 90 95
Ala Ala Ala Ala Ala Ala Ala Ala Gly Ala Gly Ala Gly
100 105 110
Ala Lys Gln Thr Pro Ala Asp Gly Glu Ala Ser Gly Glu Ser Glu Pro
115 120 125
Ala Lys Gly Ser Glu Glu Ala Lys Gly Arg Phe Arg Val Asn Phe Val
130 135 140
Asp Pro Ala Ala Ser Ser Ser Ala Glu Asp Ser Leu Ser Asp Ala Ala
145 150 155 160
Gly Val Gly Val Asp Gly Pro Asn Val Ser Phe Gln Asn Gly Gly Asp
165 170 175
Thr Val Leu Ser Glu Gly Ser Ser Leu His Ser Gly Gly Gly Gly
180 185 190
Ser Gly His His Gln His Tyr Tyr Asp Thr His Thr Asn Thr Tyr

Sequence listing.txt

195	200	205		
Tyr Leu Arg Thr Phe Gly His Asn Thr Met Asp Ala Val Pro Arg Ile	210	215	220	
Asp His Tyr Arg His Thr Ala Ala Gln Leu Gly Glu Lys Leu Leu Arg	225	230	235	240
Pro Ser Leu Ala Glu Leu His Asp Glu Leu Glu Lys Glu Pro Phe Glu	245	250	255	
Asp Gly Phe Ala Asn Gly Glu Glu Ser Thr Pro Thr Arg Asp Ala Val	260	265	270	
Val Thr Tyr Thr Ala Glu Ser Lys Gly Val Val Lys Phe Gly Trp Ile	275	280	285	
Lys Gly Val Leu Val Arg Cys Met Leu Asn Ile Trp Gly Val Met Leu	290	295	300	
Phe Ile Arg Leu Ser Trp Ile Val Gly Gln Ala Gly Ile Gly Leu Ser	305	310	315	320
Val Leu Val Ile Met Met Ala Thr Val Val Thr Thr Ile Thr Gly Leu	325	330	335	
Ser Thr Ser Ala Ile Ala Thr Asn Gly Phe Val Arg Gly Gly Ala	340	345	350	
Tyr Tyr Leu Ile Ser Arg Ser Leu Gly Pro Glu Phe Gly Gly Ala Ile	355	360	365	
Gly Leu Ile Phe Ala Phe Ala Asn Ala Val Ala Val Ala Met Tyr Val	370	375	380	
Val Gly Phe Ala Glu Thr Val Val Glu Leu Leu Lys Glu His Ser Ile	385	390	395	400
Leu Met Ile Asp Glu Ile Asn Asp Ile Arg Ile Ile Gly Ala Ile Thr	405	410	415	
Val Val Ile Leu Leu Gly Ile Ser Val Ala Gly Met Glu Trp Glu Ala	420	425	430	
Lys Ala Gln Ile Val Leu Leu Val Ile Leu Leu Leu Ala Ile Gly Asp	435	440	445	
Phe Val Ile Gly Thr Phe Ile Pro Leu Glu Ser Lys Lys Pro Lys Gly	450	455	460	
Phe Phe Gly Tyr Lys Ser Glu Ile Phe Asn Glu Asn Phe Gly Pro Asp	465	470	475	480
Phe Arg Glu Glu Glu Thr Phe Phe Ser Val Phe Ala Ile Phe Phe Pro	485	490	495	
Ala Ala Thr Gly Ile Leu Ala Gly Ala Asn Ile Ser Gly Asp Leu Ala	500	505	510	
Asp Pro Gln Ser Ala Ile Pro Lys Gly Thr Leu Leu Ala Ile Leu Ile	515	520	525	
Thr Thr Leu Val Tyr Val Gly Ile Ala Val Ser Val Gly Ser Cys Val	530	535	540	
Val Arg Asp Ala Thr Gly Asn Val Asn Asp Thr Ile Val Thr Glu Leu	545	550	555	560
Thr Asn Cys Thr Ser Ala Ala Cys Lys Leu Asn Phe Asp Phe Ser Ser	565	570	575	
Cys Glu Ser Ser Pro Cys Ser Tyr Gly Leu Met Asn Asn Phe Gln Val	580	585	590	
Met Ser Met Val Ser Gly Phe Thr Pro Leu Ile Ser Ala Gly Ile Phe	595	600	605	
Ser Ala Thr Leu Ser Ser Ala Leu Ala Ser Leu Val Ser Ala Pro Lys	610	615	620	
Ile Phe Gln Ala Leu Cys Lys Asp Asn Ile Tyr Pro Ala Phe Gln Met	625	630	635	640
Phe Ala Lys Gly Tyr Gly Lys Asn Asn Glu Pro Leu Arg Gly Tyr Ile	645	650	655	
Leu Thr Phe Leu Ile Ala Leu Gly Phe Ile Leu Ile Ala Glu Leu Asn	660	665	670	
Val Ile Ala Pro Ile Ile Ser Asn Phe Phe Leu Ala Ser Tyr Ala Leu	675	680	685	
Ile Asn Phe Ser Val Phe His Ala Ser Leu Ala Lys Ser Pro Gly Trp	690	695	700	

Sequence listing.txt

Arg Pro Ala Phe Lys Tyr Tyr Asn Met Trp Ile Ser Leu Leu Gly Ala
 705 710 715 720
 Ile Leu Cys Cys Ile Val Met Phe Val Ile Asn Trp Trp Ala Ala Leu
 725 730 735
 Leu Thr Tyr Val Ile Val Leu Gly Leu Tyr Ile Tyr Val Thr Tyr Lys
 740 745 750
 Lys Pro Asp Val Asn Trp Gly Ser Ser Thr Gln Ala Leu Thr Tyr Leu
 755 760 765
 Asn Ala Leu Gln His Ser Ile Arg Leu Ser Gly Val Glu Asp His Val
 770 775 780
 Lys Asn Phe Arg Pro Gln Cys Leu Val Met Thr Gly Ala Pro Asn Ser
 785 790 795 800
 Arg Pro Ala Leu Leu His Leu Val His Asp Phe Thr Lys Asn Val Gly
 805 810 815
 Leu Met Ile Cys Gly His Val His Met Gly Pro Arg Arg Gln Ala Met
 820 825 830
 Lys Glu Met Ser Ile Asp Gln Ala Lys Tyr Gln Arg Trp Leu Ile Lys
 835 840 845
 Asn Lys Met Lys Ala Phe Tyr Ala Pro Val His Ala Asp Asp Leu Arg
 850 855 860
 Glu Gly Ala Gln Tyr Leu Met Gln Ala Ala Gly Leu Gly Arg Met Lys
 865 870 875 880
 Pro Asn Thr Leu Val Leu Gly Phe Lys Lys Asp Trp Leu Gln Ala Asp
 885 890 895
 Met Arg Asp Val Asp Met Tyr Ile Asn Leu Phe His Asp Ala Phe Asp
 900 905 910
 Ile Gln Tyr Gly Val Val Val Ile Arg Leu Lys Glu Gly Leu Asp Ile
 915 920 925
 Ser His Leu Gln Gly Gln Glu Leu Leu Ser Ser Gln Glu Lys Ser
 930 935 940
 Pro Gly Thr Lys Asp Val Val Val Ser Val Glu Tyr Ser Lys Lys Ser
 945 950 955 960
 Asp Leu Asp Thr Ser Lys Pro Leu Ser Glu Lys Pro Ile Thr His Lys
 965 970 975
 Val Glu Glu Glu Asp Gly Lys Thr Ala Thr Gln Pro Leu Leu Lys Lys
 980 985 990
 Glu Ser Lys Gly Pro Ile Val Pro Leu Asn Val Ala Asp Gln Lys Leu
 995 1000 1005
 Leu Glu Ala Ser Thr Gln Phe Gln Lys Lys Gln Gly Lys Asn Thr Ile
 1010 1015 1020
 Asp Val Trp Trp Leu Phe Asp Asp Gly Gly Leu Thr Leu Leu Ile Pro
 1025 1030 1035 1040
 Tyr Leu Leu Thr Thr Lys Lys Trp Lys Asp Cys Lys Ile Arg Val
 1045 1050 1055
 Phe Ile Gly Gly Lys Ile Asn Arg Ile Asp His Asp Arg Arg Ala Met
 1060 1065 1070
 Ala Thr Leu Leu Ser Lys Phe Arg Ile Asp Phe Ser Asp Ile Met Val
 1075 1080 1085
 Leu Gly Asp Ile Asn Thr Lys Pro Lys Lys Glu Asn Ile Ile Ala Phe
 1090 1095 1100
 Glu Glu Ile Ile Glu Pro Tyr Arg Leu His Glu Asp Asp Lys Glu Gln
 1105 1110 1115 1120
 Asp Ile Ala Asp Lys Met Lys Glu Asp Glu Pro Trp Arg Ile Thr Asp
 1125 1130 1135
 Asn Glu Leu Glu Leu Tyr Lys Thr Lys Thr Tyr Arg Gln Ile Arg Leu
 1140 1145 1150
 Asn Glu Leu Leu Lys Glu His Ser Ser Thr Ala Asn Ile Ile Val Met
 1155 1160 1165
 Ser Leu Pro Val Ala Arg Lys Gly Ala Val Ser Ser Ala Leu Tyr Met
 1170 1175 1180
 Ala Trp Leu Glu Ala Leu Ser Lys Asp Leu Pro Pro Ile Leu Leu Val
 1185 1190 1195 1200
 Arg Gly Asn His Gln Ser Val Leu Thr Phe Tyr Ser

Sequence listing.txt

1205

1210

<210> 87
<211> 230
<212> PRT
<213> Homo sapiens

<400> 87
Met Asn Glu Met Tyr Leu Arg Cys Asp His Glu Asn Gln Tyr Ala Gln
1 5 10 15
Trp Met Ala Ala Cys Met Leu Ala Ser Lys Gly Lys Thr Met Ala Asp
20 25 30
Ser Ser Tyr Gln Pro Glu Val Leu Asn Ile Leu Ser Phe Leu Arg Met
35 40 45
Lys Asn Arg Asn Ser Ala Ser Gln Val Ala Ser Ser Leu Glu Asn Met
50 55 60
Asp Met Asn Pro Glu Cys Phe Val Ser Pro Arg Cys Ala Lys Arg His
65 70 75 80
Lys Ser Lys Gln Leu Ala Ala Arg Ile Leu Glu Ala His Gln Asn Val
85 90 95
Ala Gln Met Pro Leu Val Glu Ala Lys Leu Arg Phe Ile Gln Ala Trp
100 105 110
Gln Ser Leu Pro Glu Phe Gly Leu Thr Tyr Tyr Leu Val Arg Phe Lys
115 120 125
Gly Ser Lys Lys Asp Asp Ile Leu Gly Val Ser Tyr Asn Arg Leu Ile
130 135 140
Lys Ile Asp Ala Ala Thr Gly Ile Pro Val Thr Thr Trp Arg Phe Thr
145 150 155 160
Asn Ile Lys Gln Trp Asn Val Asn Trp Glu Thr Arg Gln Val Val Ile
165 170 175
Glu Phe Asp Gln Asn Val Phe Thr Ala Phe Thr Cys Leu Ser Ala Asp
180 185 190
Cys Lys Ile Val His Glu Tyr Ile Gly Gly Tyr Ile Phe Leu Ser Thr
195 200 205
Arg Ser Lys Asp Gln Asn Glu Thr Leu Asp Glu Asp Leu Phe His Lys
210 215 220
Leu Thr Gly Gly Gln Asp
225 230

<210> 88
<211> 383
<212> PRT
<213> Homo sapiens

<400> 88
Met Glu Ala Leu Gly Lys Leu Lys Gln Phe Asp Ala Tyr Pro Lys Thr
1 5 10 15
Leu Glu Asp Phe Arg Val Lys Thr Cys Gly Gly Ala Thr Val Thr Ile
20 25 30
Val Ser Gly Leu Leu Met Leu Leu Phe Leu Ser Glu Leu Gln Tyr
35 40 45
Tyr Leu Thr Thr Glu Val His Pro Glu Leu Tyr Val Asp Lys Ser Arg
50 55 60
Gly Asp Lys Leu Lys Ile Asn Ile Asp Val Leu Phe Pro His Met Pro
65 70 75 80
Cys Ala Tyr Leu Ser Ile Asp Ala Met Asp Val Ala Gly Glu Gln Gln
85 90 95
Leu Asp Val Glu His Asn Leu Phe Lys Gln Arg Leu Asp Lys Asp Gly
100 105 110
Ile Pro Val Ser Ser Glu Ala Glu Arg His Glu Leu Gly Lys Val Glu
115 120 125

Sequence listing.txt

Val Thr Val Phe Asp Pro Asp Ser Leu Asp Pro Asp Arg Cys Glu Ser
 130 135 140
 Cys Tyr Gly Ala Glu Ala Glu Asp Ile Lys Cys Cys Asn Thr Cys Glu
 145 150 155 160
 Asp Val Arg Glu Ala Tyr Arg Arg Arg Gly Trp Ala Phe Lys Asn Pro
 165 170 175
 Asp Thr Ile Glu Gln Cys Arg Arg Glu Gly Phe Ser Gln Lys Met Gln
 180 185 190
 Glu Gln Lys Asn Glu Gly Cys Gln Val Tyr Gly Phe Leu Glu Val Asn
 195 200 205
 Lys Val Ala Gly Asn Phe His Ala Pro Gly Lys Ser Phe Gln Gln
 210 215 220
 Ser His Val His Val His Asp Leu Gln Ser Phe Gly Leu Asp Asn Ile
 225 230 235 240
 Asn Met Thr His Tyr Ile Gln His Leu Ser Phe Gly Glu Asp Tyr Pro
 245 250 255
 Gly Ile Val Asn Pro Leu Asp His Thr Asn Val Thr Ala Pro Gln Ala
 260 265 270
 Ser Met Met Phe Gln Tyr Phe Val Lys Val Val Pro Thr Val Tyr Met
 275 280 285
 Lys Val Asp Gly Glu Val Leu Arg Thr Asn Gln Phe Ser Val Thr Arg
 290 295 300
 His Glu Lys Val Ala Asn Gly Leu Leu Gly Asp Gln Gly Leu Pro Gly
 305 310 315 320
 Val Phe Val Leu Tyr Glu Leu Ser Pro Met Met Val Lys Leu Thr Glu
 325 330 335
 Lys His Arg Ser Phe Thr His Phe Leu Thr Gly Val Cys Ala Ile Ile
 340 345 350
 Gly Gly Met Phe Thr Val Ala Gly Leu Ile Asp Ser Leu Ile Tyr His
 355 360 365
 Ser Ala Arg Ala Ile Gln Lys Lys Ile Asp Leu Gly Lys Thr Thr
 370 375 380

<210> 89

<211> 391

<212> PRT

<213> Homo sapiens

<400> 89

Met Ala Asp Ile Asp Asn Lys Glu Gln Ser Glu Leu Asp Gln Asp Leu
 1 5 10 15
 Asp Asp Val Glu Glu Val Glu Glu Glu Glu Thr Gly Glu Glu Thr Lys
 20 25 30
 Leu Lys Ala Arg Gln Leu Thr Val Gln Met Met Gln Asn Pro Gln Ile
 35 40 45
 Leu Ala Ala Leu Gln Glu Arg Leu Asp Gly Leu Val Glu Thr Pro Thr
 50 55 60
 Gly Tyr Ile Glu Ser Leu Pro Arg Val Val Lys Arg Arg Val Asn Ala
 65 70 75 80
 Leu Lys Asn Leu Gln Val Lys Cys Ala Gln Ile Glu Ala Lys Phe Tyr
 85 90 95
 Glu Glu Val His Asp Leu Glu Arg Lys Tyr Ala Val Leu Tyr Gln Pro
 100 105 110
 Leu Phe Asp Lys Arg Phe Glu Ile Ile Asn Ala Ile Tyr Glu Pro Thr
 115 120 125
 Glu Glu Glu Cys Glu Trp Lys Pro Asp Glu Glu Asp Glu Ile Ser Glu
 130 135 140
 Glu Leu Lys Glu Lys Ala Lys Ile Glu Asp Glu Lys Lys Asp Glu Glu
 145 150 155 160
 Lys Glu Asp Pro Lys Gly Ile Pro Glu Phe Trp Leu Thr Val Phe Lys
 165 170 175
 Asn Val Asp Leu Leu Ser Asp Met Val Gln Glu His Asp Glu Pro Ile

Sequence listing.txt

180	185	190
Leu Lys His Leu Lys Asp Ile Lys Val Lys Phe Ser Asp Ala Gly Gln	195	200
Pro Met Ser Phe Val Leu Glu Phe His Phe Glu Pro Asn Glu Tyr Phe	210	215
Thr Asn Glu Val Leu Thr Lys Thr Tyr Arg Met Arg Ser Glu Pro Asp	225	230
Asp Ser Asp Pro Phe Ser Phe Asp Gly Pro Glu Ile Met Gly Cys Thr	245	250
Gly Cys Gln Ile Asp Trp Lys Lys Lys Asn Val Thr Leu Lys Thr	260	265
Ile Lys Lys Gln Lys His Lys Gly Arg Gly Thr Val Arg Thr Val	275	280
Thr Lys Thr Val Ser Asn Asp Ser Phe Phe Asn Phe Ala Pro Pro	290	295
Glu Val Pro Glu Ser Gly Asp Leu Asp Asp Asp Ala Glu Ala Ile Leu	305	310
Ala Ala Asp Phe Glu Ile Gly His Phe Leu Arg Glu Arg Ile Ile Pro	325	330
Arg Ser Val Leu Tyr Phe Thr Gly Glu Ala Ile Glu Asp Asp Asp Asp	340	345
Asp Tyr Asp Glu Glu Gly Glu Glu Ala Asp Glu Glu Gly Glu Glu Glu	355	360
Gly Asp Glu Glu Asn Asp Pro Asp Tyr Asp Pro Lys Lys Asp Gln Asn	370	375
Pro Ala Glu Cys Lys Gln Gln	385	390

<210> 90

<211> 836

<212> PRT

<213> Homo sapiens

<400> 90

Met Ile Pro Phe Leu Pro Met Phe Ser Leu Leu Leu Leu Ile Val	1	5	10	15
Asn Pro Ile Asn Ala Asn Asn His Tyr Asp Lys Ile Leu Ala His Ser	20	25	30	
Arg Ile Arg Gly Arg Asp Gln Gly Pro Asn Val Cys Ala Leu Gln Gln	35	40	45	
Ile Leu Gly Thr Lys Lys Tyr Phe Ser Thr Cys Lys Asn Trp Tyr	50	55	60	
Lys Lys Ser Ile Cys Gly Gln Lys Thr Thr Val Leu Tyr Glu Cys Cys	65	70	75	80
Pro Gly Tyr Met Arg Met Glu Gly Met Lys Gly Cys Pro Ala Val Leu	85	90	95	
Pro Ile Asp His Val Tyr Gly Thr Leu Gly Ile Val Gly Ala Thr Thr	100	105	110	
Thr Gln Arg Tyr Ser Asp Ala Ser Lys Leu Arg Glu Glu Ile Glu Gly	115	120	125	
Lys Gly Ser Phe Thr Tyr Phe Ala Pro Ser Asn Glu Ala Trp Asp Asn	130	135	140	
Leu Asp Ser Asp Ile Arg Arg Gly Leu Glu Ser Asn Val Asn Val Glu	145	150	155	160
Leu Leu Asn Ala Leu His Ser His Met Ile Asn Lys Arg Met Leu Thr	165	170	175	
Lys Asp Leu Lys Asn Gly Met Ile Ile Pro Ser Met Tyr Asn Asn Leu	180	185	190	
Gly Leu Phe Ile Asn His Tyr Pro Asn Gly Val Val Thr Val Asn Cys	195	200	205	
Ala Arg Ile Ile His Gly Asn Gln Ile Ala Thr Asn Gly Val Val His	210	215	220	

Sequence listing.txt

Val Ile Asp Arg Val Leu Thr Gln Ile Gly Thr Ser Ile Gln Asp Phe
 225 230 235 240
 Ile Glu Ala Glu Asp Asp Leu Ser Ser Phe Arg Ala Ala Ala Ile Thr
 245 250 255
 Ser Asp Ile Leu Glu Ala Leu Gly Arg Asp Gly His Phe Thr Leu Phe
 260 265 270
 Ala Pro Thr Asn Glu Ala Phe Glu Lys Leu Pro Arg Gly Val Leu Glu
 275 280 285
 Arg Phe Met Gly Asp Lys Val Ala Ser Glu Ala Leu Met Lys Tyr His
 290 295 300
 Ile Leu Asn Thr Leu Gln Cys Ser Glu Ser Ile Met Gly Gly Ala Val
 305 310 315 320
 Phe Glu Thr Leu Glu Gly Asn Thr Ile Glu Ile Gly Cys Asp Gly Asp
 325 330 335
 Ser Ile Thr Val Asn Gly Ile Lys Met Val Asn Lys Lys Asp Ile Val
 340 345 350
 Thr Asn Asn Gly Val Ile His Leu Ile Asp Gln Val Leu Ile Pro Asp
 355 360 365
 Ser Ala Lys Gln Val Ile Glu Leu Ala Gly Lys Gln Gln Thr Thr Phe
 370 375 380
 Thr Asp Leu Val Ala Gln Leu Gly Leu Ala Ser Ala Leu Arg Pro Asp
 385 390 395 400
 Gly Glu Tyr Thr Leu Leu Ala Pro Val Asn Asn Ala Phe Ser Asp Asp
 405 410 415
 Thr Leu Ser Met Val Gln Arg Leu Leu Lys Leu Ile Leu Gln Asn His
 420 425 430
 Ile Leu Lys Val Lys Val Gly Leu Asn Glu Leu Tyr Asn Gly Gln Ile
 435 440 445
 Leu Glu Thr Ile Gly Gly Lys Gln Leu Arg Val Phe Val Tyr Arg Thr
 450 455 460
 Ala Val Cys Ile Glu Asn Ser Cys Met Glu Lys Gly Ser Lys Gln Gly
 465 470 475 480
 Arg Asn Gly Ala Ile His Ile Phe Arg Glu Ile Ile Lys Pro Ala Glu
 485 490 495
 Lys Ser Leu His Glu Lys Leu Lys Gln Asp Lys Arg Phe Ser Thr Phe
 500 505 510
 Leu Ser Leu Leu Glu Ala Ala Asp Leu Lys Glu Leu Leu Thr Gln Pro
 515 520 525
 Gly Asp Trp Thr Leu Phe Val Pro Thr Asn Asp Ala Phe Lys Gly Met
 530 535 540
 Thr Ser Glu Glu Lys Glu Ile Leu Ile Arg Asp Lys Asn Ala Leu Gln
 545 550 555 560
 Asn Ile Ile Leu Tyr His Leu Thr Pro Gly Val Phe Ile Gly Lys Gly
 565 570 575
 Phe Glu Pro Gly Val Thr Asn Ile Leu Lys Thr Thr Gln Gly Ser Lys
 580 585 590
 Ile Phe Leu Lys Glu Val Asn Asp Thr Leu Leu Val Asn Glu Leu Lys
 595 600 605
 Ser Lys Glu Ser Asp Ile Met Thr Thr Asn Gly Val Ile His Val Val
 610 615 620
 Asp Lys Leu Leu Tyr Pro Ala Asp Thr Pro Val Gly Asn Asp Gln Leu
 625 630 635 640
 Leu Glu Ile Leu Asn Lys Leu Ile Lys Tyr Ile Gln Ile Lys Phe Val
 645 650 655
 Arg Gly Ser Thr Phe Lys Glu Ile Pro Val Thr Val Tyr Thr Thr Lys
 660 665 670
 Ile Ile Thr Lys Val Val Glu Pro Lys Ile Lys Val Ile Glu Gly Ser
 675 680 685
 Leu Gln Pro Ile Ile Lys Thr Glu Gly Pro Thr Leu Thr Lys Val Lys
 690 695 700
 Ile Glu Gly Glu Pro Glu Phe Arg Leu Ile Lys Glu Gly Glu Thr Ile
 705 710 715 720
 Thr Glu Val Ile His Gly Glu Pro Ile Ile Lys Lys Tyr Thr Lys Ile

Sequence listing.txt

Ile	Asp	Gly	val	Pro	val	Glu	Ile	Thr	Glu	Lys	Glu	Thr	Arg	Glu	Glu	
725						730							735			
740						745							750			
Arg	Ile	Ile	Thr	Gly	Pro	Glu	Ile	Lys	Tyr	Thr	Arg	Ile	Ser	Thr	Gly	
755						760							765			
Gly	Gly	Glu	Thr	Glu	Glu	Thr	Leu	Lys	Lys	Leu	Leu	Gln	Glu	Glu	Val	
770						775							780			
Thr	Lys	Val	Thr	Lys	Phe	Ile	Glu	Gly	Asp	Gly	His	Leu	Phe	Glu		
785						790							800			
Asp	Glu	Glu	Ile	Lys	Arg	Leu	Leu	Gln	Gly	Asp	Thr	Pro	Val	Arg	Lys	
													805			
Leu	Gln	Ala	Asn	Lys	Lys	Val	Gln	Gly	Ser	Arg	Arg	Arg	Leu	Arg	Glu	
													820			
Gly	Arg	Ser	Gln											825		
														830		
															835	

<210> 91
<211> 3176
<212> PRT
<213> Homo sapiens

<400> 91																
Met	Arg	Lys	His	Arg	His	Leu	Pro	Leu	Val	Ala	Val	Phe	Cys	Leu	Phe	
1						5						10			15	
Leu	Ser	Gly	Phe	Pro	Thr	Thr	His	Ala	Gln	Gln	Gln	Gln	Ala	Asp	Val	
						20						25			30	
Lys	Asn	Gly	Ala	Ala	Ala	Asp	Ile	Ile	Phe	Leu	Val	Asp	Ser	Ser	Trp	
						35						40			45	
Thr	Ile	Gly	Glu	Glu	His	Phe	Gln	Leu	Val	Arg	Glu	Phe	Leu	Tyr	Asp	
						50						55			60	
Val	Val	Lys	Ser	Leu	Ala	Val	Gly	Glu	Asn	Asp	Phe	His	Phe	Ala	Leu	
65						70						75			80	
Val	Gln	Phe	Asn	Gly	Asn	Pro	His	Thr	Glu	Phe	Leu	Leu	Asn	Thr	Tyr	
						85						90			95	
Arg	Thr	Lys	Gln	Glu	Val	Leu	Ser	His	Ile	Ser	Asn	Met	Ser	Tyr	Ile	
						100						105			110	
Gly	Gly	Thr	Asn	Gln	Thr	Gly	Lys	Gly	Leu	Glu	Tyr	Ile	Met	Gln	Ser	
						115						120			125	
His	Leu	Thr	Lys	Ala	Ala	Gly	Ser	Arg	Ala	Gly	Asp	Gly	Val	Pro	Gln	
						130						135			140	
Val	Ile	Val	Val	Leu	Thr	Asp	Gly	His	Ser	Lys	Asp	Gly	Leu	Ala	Leu	
145						150						155			160	
Pro	Ser	Ala	Glu	Leu	Lys	Ser	Ala	Asp	Val	Asn	Val	Phe	Ala	Ile	Gly	
						165						170			175	
Val	Glu	Asp	Ala	Asp	Glu	Gly	Ala	Leu	Lys	Glu	Ile	Ala	Ser	Glu	Pro	
						180						185			190	
Leu	Asn	Met	His	Met	Phe	Asn	Leu	Glu	Asn	Phe	Thr	Ser	Leu	His	Asp	
						195						200			205	
Ile	Val	Gly	Asn	Leu	Val	Ser	Cys	Val	His	Ser	Ser	Val	Ser	Pro	Glu	
						210						215			220	
Arg	Ala	Gly	Asp	Thr	Glu	Thr	Leu	Lys	Asp	Ile	Thr	Ala	Gln	Asp	Ser	
						225						230			235	
Ala	Asp	Ile	Ile	Phe	Leu	Ile	Asp	Gly	Ser	Asn	Asn	Thr	Gly	Ser	Val	
						245						250			255	
Asn	Phe	Ala	Val	Ile	Leu	Asp	Phe	Leu	Val	Asn	Leu	Leu	Glu	Lys	Leu	
						260						265			270	
Pro	Ile	Gly	Thr	Gln	Gln	Ile	Arg	Val	Gly	Val	Val	Gln	Phe	Ser	Asp	
						275						280			285	
Glu	Pro	Arg	Thr	Met	Phe	Ser	Leu	Asp	Thr	Tyr	Ser	Thr	Lys	Ala	Gln	
						290						295			300	
Val	Leu	Gly	Ala	Val	Lys	Ala	Leu	Gly	Phe	Ala	Gly	Gly	Glu	Leu	Ala	
						305						310			315	
															320	

Sequence listing.txt

Asn Ile Gly Leu Ala Leu Asp Phe Val Val Glu Asn His Phe Thr Arg
 325 330 335
 Ala Gly Gly Ser Arg Val Glu Glu Gly Val Pro Gln Val Leu Val Leu
 340 345 350
 Ile Ser Ala Gly Pro Ser Ser Asp Glu Ile Arg Tyr Gly Val Val Ala
 355 360 365
 Leu Lys Gln Ala Ser Val Phe Ser Phe Gly Leu Gly Ala Gln Ala Ala
 370 375 380
 Ser Arg Ala Glu Leu Gln His Ile Ala Thr Asp Asp Asn Leu Val Phe
 385 390 395 400
 Thr Val Pro Glu Phe Arg Ser Phe Gly Asp Leu Gln Glu Lys Leu Leu
 405 410 415
 Pro Tyr Ile Val Gly Val Ala Gln Arg His Ile Val Leu Lys Pro Pro
 420 425 430
 Thr Ile Val Thr Gln Val Ile Glu Val Asn Lys Arg Asp Ile Val Phe
 435 440 445
 Leu Val Asp Gly Ser Ser Ala Leu Gly Leu Ala Asn Phe Asn Ala Ile
 450 455 460
 Arg Asp Phe Ile Ala Lys Val Ile Gln Arg Leu Glu Ile Gly Gln Asp
 465 470 475 480
 Leu Ile Gln Val Ala Val Ala Gln Tyr Ala Asp Thr Val Arg Pro Glu
 485 490 495
 Phe Tyr Phe Asn Thr His Pro Thr Lys Arg Glu Val Ile Thr Ala Val
 500 505 510
 Arg Lys Met Lys Pro Leu Asp Gly Ser Ala Leu Tyr Thr Gly Ser Ala
 515 520 525
 Leu Asp Phe Val Arg Asn Asn Leu Phe Thr Ser Ser Ala Gly Tyr Arg
 530 535 540
 Ala Ala Glu Gly Ile Pro Lys Leu Leu Val Leu Ile Thr Gly Gly Lys
 545 550 555 560
 Ser Leu Asp Glu Ile Ser Gln Pro Ala Gln Glu Leu Lys Arg Ser Ser
 565 570 575
 Ile Met Ala Phe Ala Ile Gly Asn Lys Gly Ala Asp Gln Ala Glu Leu
 580 585 590
 Glu Glu Ile Ala Phe Asp Ser Ser Leu Val Phe Ile Pro Ala Glu Phe
 595 600 605
 Arg Ala Ala Pro Leu Gln Gly Met Leu Pro Gly Leu Leu Ala Pro Leu
 610 615 620
 Arg Thr Leu Ser Gly Thr Pro Glu Val His Ser Asn Lys Arg Asp Ile
 625 630 635 640
 Ile Phe Leu Leu Asp Gly Ser Ala Asn Val Gly Lys Thr Asn Phe Pro
 645 650 655
 Tyr Val Arg Asp Phe Val Met Asn Leu Val Asn Ser Leu Asp Ile Gly
 660 665 670
 Asn Asp Asn Ile Arg Val Gly Leu Val Gln Phe Ser Asp Thr Pro Val
 675 680 685
 Thr Glu Phe Ser Leu Asn Thr Tyr Gln Thr Lys Ser Asp Ile Leu Gly
 690 695 700
 His Leu Arg Gln Leu Gln Leu Gln Gly Gly Ser Gly Leu Asn Thr Gly
 705 710 715 720
 Ser Ala Leu Ser Tyr Val Tyr Ala Asn His Phe Thr Glu Ala Gly Gly
 725 730 735
 Ser Arg Ile Arg Glu His Val Pro Gln Leu Leu Leu Leu Leu Thr Ala
 740 745 750
 Gly Gln Ser Glu Asp Ser Tyr Leu Gln Ala Ala Asn Ala Leu Thr Arg
 755 760 765
 Ala Gly Ile Leu Thr Phe Cys Val Gly Ala Ser Gln Ala Asn Lys Ala
 770 775 780
 Glu Leu Glu Gln Ile Ala Phe Asn Pro Ser Leu Val Tyr Leu Met Asp
 785 790 795 800
 Asp Phe Ser Ser Leu Pro Ala Leu Pro Gln Gln Leu Ile Gln Pro Leu
 805 810 815
 Thr Thr Tyr Val Ser Gly Gly Val Glu Glu Val Pro Leu Ala Gln Pro

Sequence listing.txt

820	825	830
Glu Ser Lys Arg Asp Ile Leu Phe Leu Phe Asp Gly Ser Ala Asn Leu		
835	840	845
Val Gly Gln Phe Pro Val Val Arg Asp Phe Leu Tyr Lys Ile Ile Asp		
850	855	860
Glu Leu Asn Val Lys Pro Glu Gly Thr Arg Ile Ala Val Ala Gln Tyr		
865	870	875
Ser Asp Asp Val Lys Val Glu Ser Arg Phe Asp Glu His Gln Ser Lys		
885	890	895
Pro Glu Ile Leu Asn Leu Val Lys Arg Met Lys Ile Lys Thr Gly Lys		
900	905	910
Ala Leu Asn Leu Gly Tyr Ala Leu Asp Tyr Ala Gln Arg Tyr Ile Phe		
915	920	925
Val Lys Ser Ala Gly Ser Arg Ile Glu Asp Gly Val Leu Gln Phe Leu		
930	935	940
Val Leu Leu Val Ala Gly Arg Ser Ser Asp Arg Val Asp Gly Pro Ala		
945	950	955
Ser Asn Leu Lys Gln Ser Gly Val Val Pro Phe Ile Phe Gln Ala Lys		
965	970	975
Asn Ala Asp Pro Ala Glu Leu Glu Gln Ile Val Leu Ser Pro Ala Phe		
980	985	990
Ile Leu Ala Ala Glu Ser Leu Pro Lys Ile Gly Asp Leu His Pro Gln		
995	1000	1005
Ile Val Asn Leu Leu Lys Ser Val His Asn Gly Ala Pro Ala Pro Val		
1010	1015	1020
Ser Gly Glu Lys Asp Val Val Phe Leu Leu Asp Gly Ser Glu Gly Val		
1025	1030	1035
Arg Ser Gly Phe Pro Leu Leu Lys Glu Phe Val Gln Arg Val Val Glu		
1045	1050	1055
Ser Leu Asp Val Gly Gln Asp Arg Val Arg Val Ala Val Val Gln Tyr		
1060	1065	1070
Ser Asp Arg Thr Arg Pro Glu Phe Tyr Leu Asn Ser Tyr Met Asn Lys		
1075	1080	1085
Gln Asp Val Val Asn Ala Val Arg Gln Leu Thr Leu Leu Gly Gly Pro		
1090	1095	1100
Thr Pro Asn Thr Gly Ala Ala Leu Glu Phe Val Leu Arg Asn Ile Leu		
1105	1110	1115
Val Ser Ser Ala Gly Ser Arg Ile Thr Glu Gly Val Pro Gln Leu Leu		
1125	1130	1135
Ile Val Leu Thr Ala Asp Arg Ser Gly Asp Asp Val Arg Asn Pro Ser		
1140	1145	1150
Val Val Val Lys Arg Gly Gly Ala Val Pro Ile Gly Ile Gly Ile Gly		
1155	1160	1165
Asn Ala Asp Ile Thr Glu Met Gln Thr Ile Ser Phe Ile Pro Asp Phe		
1170	1175	1180
Ala Val Ala Ile Pro Thr Phe Arg Gln Leu Gly Thr Val Gln Gln Val		
1185	1190	1195
Ile Ser Glu Arg Val Thr Gln Leu Thr Arg Glu Glu Leu Ser Arg Leu		
1205	1210	1215
Gln Pro Val Leu Gln Pro Leu Pro Ser Pro Gly Val Gly Gly Lys Arg		
1220	1225	1230
Asp Val Val Phe Leu Ile Asp Gly Ser Gln Ser Ala Gly Pro Glu Phe		
1235	1240	1245
Gln Tyr Val Arg Thr Leu Ile Glu Arg Leu Val Asp Tyr Leu Asp Val		
1250	1255	1260
Gly Phe Asp Thr Thr Arg Val Ala Val Ile Gln Phe Ser Asp Asp Pro		
1265	1270	1275
Lys Ala Glu Phe Leu Leu Asn Ala His Ser Ser Lys Asp Glu Val Gln		
1285	1290	1295
Asn Ala Val Gln Arg Leu Arg Pro Lys Gly Gly Arg Gln Ile Asn Val		
1300	1305	1310
Gly Asn Ala Leu Glu Tyr Val Ser Arg Asn Ile Phe Lys Arg Pro Leu		
1315	1320	1325

Sequence listing.txt

Gly Ser Arg Ile Glu Glu Gly Val Pro Gln Phe Leu Val Leu Ile Ser
 1330 1335 1340
 Ser Gly Lys Ser Asp Asp Glu Val Val Val Pro Ala Val Glu Leu Lys
 1345 1350 1355 1360
 Gln Phe Gly Val Ala Pro Phe Thr Ile Ala Arg Asn Ala Asp Gln Glu
 1365 1370 1375
 Glu Leu Val Lys Ile Ser Leu Ser Pro Glu Tyr Val Phe Ser Val Ser
 1380 1385 1390
 Thr Phe Arg Glu Leu Pro Ser Leu Glu Gln Lys Leu Leu Thr Pro Ile
 1395 1400 1405
 Thr Thr Leu Thr Ser Glu Gln Ile Gln Lys Leu Leu Ala Ser Thr Arg
 1410 1415 1420
 Tyr Pro Pro Pro Ala Val Glu Ser Asp Ala Ala Asp Ile Val Phe Leu
 1425 1430 1435 1440
 Ile Asp Ser Ser Glu Gly Val Arg Pro Asp Gly Phe Ala His Ile Arg
 1445 1450 1455
 Asp Phe Val Ser Arg Ile Val Arg Arg Leu Asn Ile Gly Pro Ser Lys
 1460 1465 1470
 Val Arg Val Gly Val Val Gln Phe Ser Asn Asp Val Phe Pro Glu Phe
 1475 1480 1485
 Tyr Leu Lys Thr Tyr Arg Ser Gln Ala Pro Val Leu Asp Ala Ile Arg
 1490 1495 1500
 Arg Leu Arg Leu Arg Gly Gly Ser Pro Leu Asn Thr Gly Lys Ala Leu
 1505 1510 1515 1520
 Glu Phe Val Ala Arg Asn Leu Phe Val Lys Ser Ala Gly Ser Arg Ile
 1525 1530 1535
 Glu Asp Gly Val Pro Gln His Leu Val Leu Val Leu Gly Gly Lys Ser
 1540 1545 1550
 Gln Asp Asp Val Ser Arg Phe Ala Gln Val Ile Arg Ser Ser Gly Ile
 1555 1560 1565
 Val Ser Leu Gly Val Gly Asp Arg Asn Ile Asp Arg Thr Glu Leu Gln
 1570 1575 1580
 Thr Ile Thr Asn Asp Pro Arg Leu Val Phe Thr Val Arg Glu Phe Arg
 1585 1590 1595 1600
 Glu Leu Pro Asn Ile Glu Glu Arg Ile Met Asn Ser Phe Gly Pro Ser
 1605 1610 1615
 Ala Ala Thr Pro Ala Pro Pro Gly Val Asp Thr Pro Pro Pro Ser Arg
 1620 1625 1630
 Pro Glu Lys Lys Lys Ala Asp Ile Val Phe Leu Leu Asp Gly Ser Ile
 1635 1640 1645
 Asn Phe Arg Arg Asp Ser Phe Gln Glu Val Leu Arg Phe Val Ser Glu
 1650 1655 1660
 Ile Val Asp Thr Val Tyr Glu Asp Gly Asp Ser Ile Gln Val Gly Leu
 1665 1670 1675 1680
 Val Gln Tyr Asn Ser Asp Pro Thr Asp Glu Phe Phe Leu Lys Asp Phe
 1685 1690 1695
 Ser Thr Lys Arg Gln Ile Ile Asp Ala Ile Asn Lys Val Val Tyr Lys
 1700 1705 1710
 Gly Gly Arg His Ala Asn Thr Lys Val Gly Leu Glu His Leu Arg Val
 1715 1720 1725
 Asn His Phe Val Pro Glu Ala Gly Ser Arg Leu Asp Gln Arg Val Pro
 1730 1735 1740
 Gln Ile Ala Phe Val Ile Thr Gly Gly Lys Ser Val Glu Asp Ala Gln
 1745 1750 1755 1760
 Asp Val Ser Leu Ala Leu Thr Gln Arg Gly Val Lys Val Phe Ala Val
 1765 1770 1775
 Gly Val Arg Asn Ile Asp Ser Glu Glu Val Gly Lys Ile Ala Ser Asn
 1780 1785 1790
 Ser Ala Thr Ala Phe Arg Val Gly Asn Val Gln Glu Leu Ser Glu Leu
 1795 1800 1805
 Ser Glu Gln Val Leu Glu Thr Leu His Asp Ala Met His Glu Thr Leu
 1810 1815 1820
 Cys Pro Gly Val Thr Asp Ala Ala Lys Ala Cys Asn Leu Asp Val Ile

Sequence listing.txt

1825	1830	1835	1840												
Leu	Gly	Phe	Asp	Gly	Ser	Arg	Asp	Gln	Asn	Val	Phe	Val	Ala	Gln	Lys
1845	1850	1855													
Gly	Phe	Glu	Ser	Lys	Val	Asp	Ala	Ile	Leu	Asn	Arg	Ile	Ser	Gln	Met
1860	1865	1870													
His	Arg	Val	Ser	Cys	Ser	Gly	Gly	Arg	Ser	Pro	Thr	Val	Arg	Val	Ser
1875	1880	1885													
Val	Val	Ala	Asn	Thr	Pro	Ser	Gly	Pro	Val	Glu	Ala	Phe	Asp	Phe	Asp
1890	1895	1900													
Glu	Tyr	Gln	Pro	Glu	Met	Leu	Glu	Lys	Phe	Arg	Asn	Met	Arg	Ser	Gln
1905	1910	1915	1920												
His	Pro	Tyr	Val	Leu	Thr	Glu	Asp	Thr	Leu	Lys	Val	Tyr	Leu	Asn	Lys
1925	1930	1935													
Phe	Arg	Gln	Ser	Ser	Pro	Asp	Ser	Val	Lys	Val	Val	Ile	His	Phe	Thr
1940	1945	1950													
Asp	Gly	Ala	Asp	Gly	Asp	Leu	Ala	Asp	Leu	His	Arg	Ala	Ser	Glu	Asn
1955	1960	1965													
Leu	Arg	Gln	Glu	Gly	Val	Arg	Ala	Leu	Ile	Leu	Val	Gly	Leu	Glu	Arg
1970	1975	1980													
Val	Val	Asn	Leu	Glu	Arg	Leu	Met	His	Leu	Glu	Phe	Gly	Arg	Gly	Phe
1985	1990	1995	2000												
Met	Tyr	Asp	Arg	Pro	Leu	Arg	Leu	Asn	Leu	Leu	Asp	Leu	Asp	Tyr	Glu
2005	2010	2015													
Leu	Ala	Glu	Gln	Leu	Asp	Asn	Ile	Ala	Glu	Lys	Ala	Cys	Cys	Gly	Val
2020	2025	2030													
Pro	Cys	Lys	Cys	Ser	Gly	Gln	Arg	Gly	Asp	Arg	Gly	Pro	Ile	Gly	Ser
2035	2040	2045													
Ile	Gly	Pro	Lys	Gly	Ile	Pro	Gly	Glu	Asp	Gly	Tyr	Arg	Gly	Tyr	Pro
2050	2055	2060													
Gly	Asp	Glu	Gly	Pro	Gly	Glu	Arg	Gly	Pro	Pro	Gly	Val	Asn	Gly	
2065	2070	2075	2080												
Thr	Gln	Gly	Phe	Gln	Gly	Cys	Pro	Gly	Gln	Arg	Gly	Val	Lys	Gly	Ser
2085	2090	2095													
Arg	Gly	Phe	Pro	Gly	Glu	Lys	Gly	Glu	Val	Gly	Glu	Ile	Gly	Leu	Asp
2100	2105	2110													
Gly	Leu	Asp	Gly	Glu	Asp	Gly	Lys	Gly	Leu	Pro	Gly	Ser	Ser	Gly	
2115	2120	2125													
Glu	Lys	Gly	Asn	Pro	Gly	Arg	Arg	Gly	Asp	Lys	Gly	Pro	Arg	Gly	Glu
2130	2135	2140													
Lys	Gly	Glu	Arg	Gly	Asp	Val	Gly	Ile	Arg	Gly	Asp	Pro	Gly	Asn	Pro
2145	2150	2155	2160												
Gly	Gln	Asp	Ser	Gln	Glu	Arg	Gly	Pro	Lys	Gly	Glu	Thr	Gly	Asp	Leu
2165	2170	2175													
Gly	Pro	Met	Gly	Val	Pro	Gly	Arg	Asp	Gly	Val	Pro	Gly	Gly	Pro	Gly
2180	2185	2190													
Glu	Thr	Gly	Lys	Asn	Gly	Gly	Phe	Gly	Arg	Arg	Gly	Pro	Pro	Gly	Ala
2195	2200	2205													
Lys	Gly	Asn	Lys	Gly	Gly	Pro	Gly	Gln	Pro	Gly	Phe	Glu	Gly	Glu	Gln
2210	2215	2220	2225												
Gly	Thr	Arg	Gly	Ala	Gln	Gly	Pro	Ala	Gly	Pro	Ala	Gly	Pro	Pro	Gly
2225	2230	2235	2240												
Leu	Ile	Gly	Glu	Gln	Gly	Ile	Ser	Gly	Pro	Arg	Gly	Ser	Gly	Gly	Ala
2245	2250	2255													
Arg	Gly	Ala	Pro	Gly	Glu	Arg	Gly	Arg	Thr	Gly	Pro	Leu	Gly	Arg	Lys
2260	2265	2270													
Gly	Glu	Pro	Gly	Glu	Pro	Gly	Pro	Lys	Gly	Gly	Ile	Gly	Asn	Pro	Gly
2275	2280	2285													
Pro	Arg	Gly	Glu	Thr	Gly	Asp	Asp	Gly	Arg	Asp	Gly	Val	Gly	Ser	Glu
2290	2295	2300													
Gly	Arg	Arg	Gly	Lys	Lys	Gly	Glu	Arg	Gly	Phe	Pro	Gly	Tyr	Pro	Gly
2305	2310	2315	2320												
Pro	Lys	Gly	Asn	Pro	Gly	Glu	Pro	Gly	Leu	Asn	Gly	Thr	Thr	Gly	Pro
2325	2330	2335													

Sequence listing.txt

Lys Gly Ile Arg Gly Arg Arg Gly Asn Ser Gly Pro Pro Gly Ile Val
 2340 2345 2350
 Gly Gln Lys Gly Arg Pro Gly Tyr Pro Gly Pro Ala Gly Pro Arg Gly
 2355 2360 2365
 Asn Arg Gly Asp Ser Ile Asp Gln Cys Ala Leu Ile Gln Ser Ile Lys
 2370 2375 2380
 Asp Lys Cys Pro Cys Cys Tyr Gly Pro Leu Glu Cys Pro Val Phe Pro
 2385 2390 2395 2400
 Thr Glu Leu Ala Phe Ala Leu Asp Thr Ser Glu Gly Val Asn Gln Asp
 2405 2410 2415
 Thr Phe Gly Arg Met Arg Asp Val Val Leu Ser Ile Val Asn Val Leu
 2420 2425 2430
 Thr Ile Ala Glu Ser Asn Cys Pro Thr Gly Ala Arg Val Ala Val Val
 2435 2440 2445
 Thr Tyr Asn Asn Glu Val Thr Thr Glu Ile Arg Phe Ala Asp Ser Lys
 2450 2455 2460
 Arg Lys Ser Val Leu Leu Asp Lys Ile Lys Asn Leu Gln Val Ala Leu
 2465 2470 2475 2480
 Thr Ser Lys Gln Gln Ser Leu Glu Thr Ala Met Ser Phe Val Ala Arg
 2485 2490 2495
 Asn Thr Phe Lys Arg Val Arg Asn Gly Phe Leu Met Arg Lys Val Ala
 2500 2505 2510
 Val Phe Phe Ser Asn Thr Pro Thr Arg Ala Ser Pro Gln Leu Arg Glu
 2515 2520 2525
 Ala Val Leu Lys Leu Ser Asp Ala Gly Ile Thr Pro Leu Phe Leu Thr
 2530 2535 2540
 Arg Gln Glu Asp Arg Gln Leu Ile Asn Ala Leu Gln Ile Asn Asn Thr
 2545 2550 2555 2560
 Ala Val Gly His Ala Leu Val Leu Pro Ala Gly Arg Asp Leu Thr Asp
 2565 2570 2575
 Phe Leu Glu Asn Val Leu Thr Cys His Val Cys Leu Asp Ile Cys Asn
 2580 2585 2590
 Ile Asp Pro Ser Cys Gly Phe Gly Ser Trp Arg Pro Ser Phe Arg Asp
 2595 2600 2605
 Arg Arg Ala Ala Gly Ser Asp Val Asp Ile Asp Met Ala Phe Ile Leu
 2610 2615 2620
 Asp Ser Ala Glu Thr Thr Leu Phe Gln Phe Asn Glu Met Lys Lys
 2625 2630 2635 2640
 Tyr Ile Ala Tyr Leu Val Arg Gln Leu Asp Met Ser Pro Asp Pro Lys
 2645 2650 2655
 Ala Ser Gln His Phe Ala Arg Val Ala Val Val Gln His Ala Pro Ser
 2660 2665 2670
 Glu Ser Val Asp Asn Ala Ser Met Pro Pro Val Lys Val Glu Phe Ser
 2675 2680 2685
 Leu Thr Asp Tyr Gly Ser Lys Glu Lys Leu Val Asp Phe Leu Ser Arg
 2690 2695 2700
 Gly Met Thr Gln Leu Gln Gly Thr Arg Ala Leu Gly Ser Ala Ile Glu
 2705 2710 2715 2720
 Tyr Thr Ile Glu Asn Val Phe Glu Ser Ala Pro Asn Pro Arg Asp Leu
 2725 2730 2735
 Lys Ile Val Val Leu Met Leu Thr Gly Glu Val Pro Glu Gln Gln Leu
 2740 2745 2750
 Glu Glu Ala Gln Arg Val Ile Leu Gln Ala Lys Cys Lys Gly Tyr Phe
 2755 2760 2765
 Phe Val Val Leu Gly Ile Gly Arg Lys Val Asn Ile Lys Glu Val Tyr
 2770 2775 2780
 Thr Phe Ala Ser Glu Pro Asn Asp Val Phe Phe Lys Leu Val Asp Lys
 2785 2790 2795 2800
 Ser Thr Glu Leu Asn Glu Glu Pro Leu Met Arg Phe Gly Arg Leu Leu
 2805 2810 2815
 Pro Ser Phe Val Ser Ser Glu Asn Ala Phe Tyr Leu Ser Pro Asp Ile
 2820 2825 2830
 Arg Lys Gln Cys Asp Trp Phe Gln Gly Asp Gln Pro Thr Lys Asn Leu

Sequence listing.txt

2835	2840	2845
Val Lys Phe Gly His Lys Gln Val Asn Val Pro Asn Asn Val Thr Ser	2850	2855
Ser Pro Thr Ser Asn Pro Val Thr Thr Thr Lys Pro Val Thr Thr Thr	2865	2870
Lys Pro Val Thr Thr Thr Lys Pro Val Thr Thr Thr Lys Pro	2885	2890
Val Thr Ile Ile Asn Gln Pro Ser Val Lys Pro Ala Ala Ala Lys Pro	2900	2905
Ala Pro Ala Lys Pro Val Ala Ala Lys Pro Val Ala Thr Lys Thr Ala	2915	2920
Thr Val Arg Pro Pro Val Ala Val Lys Pro Ala Thr Ala Ala Lys Pro	2930	2935
Val Ala Ala Lys Pro Ala Ala Val Arg Pro Pro Ala Ala Ala Lys	2945	2950
Pro Val Ala Thr Lys Pro Glu Val Pro Arg Pro Gln Ala Ala Lys Pro	2965	2970
Ala Ala Thr Lys Pro Ala Thr Thr Lys Pro Val Val Lys Met Leu Arg	2980	2985
Glu Val Gln Val Phe Glu Ile Thr Glu Asn Ser Ala Lys Leu His Trp	2995	3000
Glu Arg Pro Glu Pro Pro Gly Pro Tyr Phe Tyr Asp Leu Thr Val Thr	3010	3015
Ser Ala His Asp Gln Ser Leu Val Leu Lys Gln Asn Leu Thr Val Thr	3025	3030
Asp Arg Val Ile Gly Gly Leu Leu Ala Gly Gln Thr Tyr His Val Ala	3045	3050
Val Val Cys Tyr Leu Arg Ser Gln Val Arg Ala Thr Tyr His Gly Ser	3060	3065
Phe Ser Thr Lys Lys Ser Gln Pro Pro Pro Gln Pro Ala Arg Ser	3075	3080
Ala Ser Ser Ser Thr Ile Asn Leu Met Val Ser Thr Glu Pro Leu Ala	3090	3095
Leu Thr Glu Thr Asp Ile Cys Lys Leu Pro Lys Asp Glu Gly Thr Cys	3105	3110
Arg Asp Phe Ile Leu Lys Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys	3125	3130
Ala Arg Phe Trp Tyr Gly Gly Cys Gly Gly Asn Glu Asn Lys Phe Gly	3140	3145
Ser Gln Lys Glu Cys Glu Lys Val Cys Ala Pro Val Leu Ala Lys Pro	3155	3160
Gly Val Ile Ser Val Met Gly Thr	3170	3175

<210> 92

<211> 303

<212> PRT

<213> Homo sapiens

<400> 92

Met Arg Ala Trp Ile Phe Phe Leu Leu Cys Leu Ala Gly Arg Ala Leu	1	5	10	15
Ala Ala Pro Gln Gln Glu Ala Leu Pro Asp Glu Thr Glu Val Val Glu	20	25	30	
Glu Thr Val Ala Glu Val Thr Glu Val Ser Val Gly Ala Asn Pro Val	35	40	45	
Gln Val Glu Val Gly Glu Phe Asp Asp Gly Ala Glu Glu Thr Glu Glu	50	55	60	
Glu Val Val Ala Glu Asn Pro Cys Gln Asn His His Cys Lys His Gly	65	70	75	80
Lys Val Cys Glu Leu Asp Glu Asn Asn Thr Pro Met Cys Val Cys Gln	85	90	95	

Sequence listing.txt

Asp Pro Thr Ser Cys Pro Ala Pro Ile Gly Glu Phe Glu Lys Val Cys
100 105 110
Ser Asn Asp Asn Lys Thr Phe Asp Ser Ser Cys His Phe Phe Ala Thr
115 120 125
Lys Cys Thr Leu Glu Gly Thr Lys Lys Gly His Lys Leu His Leu Asp
130 135 140
Tyr Ile Gly Pro Cys Lys Tyr Ile Pro Pro Cys Leu Asp Ser Glu Leu
145 150 155 160
Thr Glu Phe Pro Leu Arg Met Arg Asp Trp Leu Lys Asn Val Leu Val
165 170 175
Thr Leu Tyr Glu Arg Asp Glu Asp Asn Asn Leu Leu Thr Glu Lys Gln
180 185 190
Lys Leu Arg Val Lys Lys Ile His Glu Asn Glu Lys Arg Leu Glu Ala
195 200 205
Gly Asp His Pro Val Glu Leu Leu Ala Arg Asp Phe Glu Lys Asn Tyr
210 215 220
Asn Met Tyr Ile Phe Pro Val His Trp Gln Phe Gly Gln Leu Asp Gln
225 230 235 240
His Pro Ile Asp Gly Tyr Leu Ser His Thr Glu Leu Ala Pro Leu Arg
245 250 255
Ala Pro Leu Ile Pro Met Glu His Cys Thr Thr Arg Phe Phe Glu Thr
260 265 270
Cys Asp Leu Asp Asn Asp Lys Tyr Ile Ala Leu Asp Glu Trp Ala Gly
275 280 285
Cys Phe Gly Ile Lys Gln Lys Asp Ile Asp Lys Asp Leu Val Ile
290 295 300

<210> 93
<211> 683
<212> PRT
<213> Homo sapiens

<400> 93
Met Ala Leu Phe Val Arg Leu Leu Ala Leu Ala Leu Ala Leu
1 5 10 15
Gly Pro Ala Ala Thr Leu Ala Gly Pro Ala Lys Ser Pro Tyr Gln Leu
20 25 30
Val Leu Gln His Ser Arg Leu Arg Gly Arg Gln His Gly Pro Asn Val
35 40 45
Cys Ala Val Gln Lys Val Ile Gly Thr Asn Arg Lys Tyr Phe Thr Asn
50 55 60
Cys Lys Gln Trp Tyr Gln Arg Lys Ile Cys Gly Lys Ser Thr Val Ile
65 70 75 80
Ser Tyr Glu Cys Cys Pro Gly Tyr Glu Lys Val Pro Gly Glu Lys Gly
85 90 95
Cys Pro Ala Ala Leu Pro Leu Ser Asn Leu Tyr Glu Thr Leu Gly Val
100 105 110
Val Gly Ser Thr Thr Thr Gln Leu Tyr Thr Asp Arg Thr Glu Lys Leu
115 120 125
Arg Pro Glu Met Glu Gly Pro Gly Ser Phe Thr Ile Phe Ala Pro Ser
130 135 140
Asn Glu Ala Trp Ala Ser Leu Pro Ala Glu Val Leu Asp Ser Leu Val
145 150 155 160
Ser Asn Val Asn Ile Glu Leu Leu Asn Ala Leu Arg Tyr His Met Val
165 170 175
Gly Arg Arg Val Leu Thr Asp Glu Leu Lys His Gly Met Thr Leu Thr
180 185 190
Ser Met Tyr Gln Asn Ser Asn Ile Gln Ile His His Tyr Pro Asn Gly
195 200 205
Ile Val Thr Val Asn Cys Ala Arg Leu Leu Lys Ala Asp His His Ala
210 215 220
Thr Asn Gly Val Val His Leu Ile Asp Lys Val Ile Ser Thr Ile Thr

Sequence listing.txt

225	230	235	240
Asn Asn Ile Gln Gln Ile Ile Glu Ile Glu Asp Thr Phe Glu Thr Leu			
245	250	255	
Arg Ala Ala Val Ala Ala Ser Gly Leu Asn Thr Met Leu Glu Gly Asn			
260	265	270	
Gly Gln Tyr Thr Leu Leu Ala Pro Thr Asn Glu Ala Phe Glu Lys Ile			
275	280	285	
Pro Ser Glu Thr Leu Asn Arg Ile Leu Gly Asp Pro Glu Ala Leu Arg			
290	295	300	
Asp Leu Leu Asn Asn His Ile Leu Lys Ser Ala Met Cys Ala Glu Ala			
305	310	315	320
Ile Val Ala Gly Leu Ser Val Glu Thr Leu Glu Gly Thr Thr Leu Glu			
325	330	335	
Val Gly Cys Ser Gly Asp Met Leu Thr Ile Asn Gly Lys Ala Ile Ile			
340	345	350	
Ser Asn Lys Asp Ile Leu Ala Thr Asn Gly Val Ile His Tyr Ile Asp			
355	360	365	
Glu Leu Leu Ile Pro Asp Ser Ala Lys Thr Leu Phe Glu Leu Ala Ala			
370	375	380	
Glu Ser Asp Val Ser Thr Ala Ile Asp Leu Phe Arg Gln Ala Gly Leu			
385	390	395	400
Gly Asn His Leu Ser Gly Ser Glu Arg Leu Thr Leu Leu Ala Pro Leu			
405	410	415	
Asn Ser Val Phe Lys Asp Gly Thr Pro Pro Ile Asp Ala His Thr Arg			
420	425	430	
Asn Leu Leu Arg Asn His Ile Ile Lys Asp Gln Leu Ala Ser Lys Tyr			
435	440	445	
Leu Tyr His Gly Gln Thr Leu Glu Thr Leu Gly Gly Lys Lys Leu Arg			
450	455	460	
Val Phe Val Tyr Arg Asn Ser Leu Cys Ile Glu Asn Ser Cys Ile Ala			
465	470	475	480
Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg			
485	490	495	
Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp			
500	505	510	
Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr			
515	520	525	
Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn			
530	535	540	
Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly			
545	550	555	560
Asp Ala Lys Glu Leu Ala Asn Ile Leu Lys Tyr His Ile Gly Asp Glu			
565	570	575	
Ile Leu Val Ser Gly Gly Ile Gly Ala Leu Val Arg Leu Lys Ser Leu			
580	585	590	
Gln Gly Asp Lys Leu Glu Val Ser Leu Lys Asn Asn Val Val Ser Val			
595	600	605	
Asn Lys Glu Pro Val Ala Glu Pro Asp Ile Met Ala Thr Asn Gly Val			
610	615	620	
Val His Val Ile Thr Asn Val Leu Gln Pro Pro Ala Asn Arg Pro Gln			
625	630	635	640
Glu Arg Gly Asp Glu Leu Ala Asp Ser Ala Leu Glu Ile Phe Lys Gln			
645	650	655	
Ala Ser Ala Phe Ser Arg Ala Ser Gln Arg Ser Val Arg Leu Ala Pro			
660	665	670	
Val Tyr Gln Lys Leu Leu Glu Arg Met Lys His			
675	680		

<210> 94
 <211> 2355
 <212> PRT
 <213> Homo sapiens

Sequence listing.txt

<400> 94

Met Leu Arg Gly Pro Gly Pro Gly Leu Leu Leu Leu Ala Val Gln Cys
 1 5 10 15
 Leu Gly Thr Ala Val Pro Ser Thr Gly Ala Ser Lys Ser Lys Arg Gln
 20 25 30
 Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val Ala Val Ser Gln Ser
 35 40 45
 Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr Gln Ile Asn Gln Gln
 50 55 60
 Trp Glu Arg Thr Tyr Leu Gly Asn Ala Leu Val Cys Thr Cys Tyr Gly
 65 70 75 80
 Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro Glu Ala Glu Glu Thr
 85 90 95
 Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg Val Gly Asp Thr Tyr
 100 105 110
 Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys Thr Cys Ile Gly Ala
 115 120 125
 Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn Arg Cys His Glu Gly
 130 135 140
 Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg Arg Pro His Glu Thr
 145 150 155 160
 Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly Asn Gly Lys Gly Glu
 165 170 175
 Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe Asp His Ala Ala Gly
 180 185 190
 Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys Pro Tyr Gln Gly Trp
 195 200 205
 Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly Ser Gly Arg Ile Thr
 210 215 220
 Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp Thr Arg Thr Ser Tyr
 225 230 235 240
 Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn Arg Gly Asn Leu Leu
 245 250 255
 Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu Trp Lys Cys Glu Arg
 260 265 270
 His Thr Ser Val Gln Thr Thr Ser Ser Gly Ser Gly Pro Phe Thr Asp
 275 280 285
 Val Arg Ala Ala Val Tyr Gln Pro Gln Pro His Pro Gln Pro Pro Pro
 290 295 300
 Tyr Gly His Cys Val Thr Asp Ser Gly Val Val Tyr Ser Val Gly Met
 305 310 315 320
 Gln Trp Leu Lys Thr Gln Gly Asn Lys Gln Met Leu Cys Thr Cys Leu
 325 330 335
 Gly Asn Gly Val Ser Cys Gln Glu Thr Ala Val Thr Gln Thr Tyr Gly
 340 345 350
 Gly Asn Ser Asn Gly Glu Pro Cys Val Leu Pro Phe Thr Tyr Asn Gly
 355 360 365
 Arg Thr Phe Tyr Ser Cys Thr Thr Glu Gly Arg Gln Asp Gly His Leu
 370 375 380
 Trp Cys Ser Thr Thr Ser Asn Tyr Glu Gln Asp Gln Lys Tyr Ser Phe
 385 390 395 400
 Cys Thr Asp His Thr Val Leu Val Gln Thr Arg Gly Gly Asn Ser Asn
 405 410 415
 Gly Ala Leu Cys His Phe Pro Phe Leu Tyr Asn Asn His Asn Tyr Thr
 420 425 430
 Asp Cys Thr Ser Glu Gly Arg Arg Asp Asn Met Lys Trp Cys Gly Thr
 435 440 445
 Thr Gln Asn Tyr Asp Ala Asp Gln Lys Phe Gly Phe Cys Pro Met Ala
 450 455 460
 Ala His Glu Glu Ile Cys Thr Thr Asn Glu Gly Val Met Tyr Arg Ile
 465 470 475 480
 Gly Asp Gln Trp Asp Lys Gln His Asp Met Gly His Met Met Arg Cys

Sequence listing.txt

485	490	495
Thr Cys Val Gly Asn Gly Arg Gly Glu Trp Thr Cys Ile Ala Tyr Ser		
500	505	510
Gln Leu Arg Asp Gln Cys Ile Val Asp Asp Ile Thr Tyr Asn Val Asn		
515	520	525
Asp Thr Phe His Lys Arg His Glu Glu Gly His Met Leu Asn Cys Thr		
530	535	540
Cys Phe Gly Gln Gly Arg Gly Arg Trp Lys Cys Asp Pro Val Asp Gln		
545	550	555
Cys Gln Asp Ser Glu Thr Gly Thr Phe Tyr Gln Ile Gly Asp Ser Trp		
565	570	575
Glu Lys Tyr Val His Gly Val Arg Tyr Gln Cys Tyr Cys Tyr Gly Arg		
580	585	590
Gly Ile Gly Glu Trp His Cys Gln Pro Leu Gln Thr Tyr Pro Ser Ser		
595	600	605
Ser Gly Pro Val Glu Val Phe Ile Thr Glu Thr Pro Ser Gln Pro Asn		
610	615	620
Ser His Pro Ile Gln Trp Asn Ala Pro Gln Pro Ser His Ile Ser Lys		
625	630	635
Tyr Ile Leu Arg Trp Arg Pro Lys Asn Ser Val Gly Arg Trp Lys Glu		
645	650	655
Ala Thr Ile Pro Gly His Leu Asn Ser Tyr Thr Ile Lys Gly Leu Lys		
660	665	670
Pro Gly Val Val Tyr Glu Gly Gln Leu Ile Ser Ile Gln Gln Tyr Gly		
675	680	685
His Gln Glu Val Thr Arg Phe Asp Phe Thr Thr Thr Ser Thr Ser Thr		
690	695	700
Pro Val Thr Ser Asn Thr Val Thr Gly Glu Thr Thr Pro Phe Ser Pro		
705	710	715
Leu Val Ala Thr Ser Glu Ser Val Thr Glu Ile Thr Ala Ser Ser Phe		
725	730	735
Val Val Ser Trp Val Ser Ala Ser Asp Thr Val Ser Gly Phe Arg Val		
740	745	750
Glu Tyr Glu Leu Ser Glu Glu Gly Asp Glu Pro Gln Tyr Leu Asp Leu		
755	760	765
Pro Ser Thr Ala Thr Ser Val Asn Ile Pro Asp Leu Leu Pro Gly Arg		
770	775	780
Lys Tyr Ile Val Asn Val Tyr Gln Ile Ser Glu Asp Gly Glu Gln Ser		
785	790	795
Leu Ile Leu Ser Thr Ser Gln Thr Thr Ala Pro Asp Ala Pro Pro Asp		
805	810	815
Pro Thr Val Asp Gln Val Asp Asp Thr Ser Ile Val Val Arg Trp Ser		
820	825	830
Arg Pro Gln Ala Pro Ile Thr Gly Tyr Arg Ile Val Tyr Ser Pro Ser		
835	840	845
Val Glu Gly Ser Ser Thr Glu Leu Asn Leu Pro Glu Thr Ala Asn Ser		
850	855	860
Val Thr Leu Ser Asp Leu Gln Pro Gly Val Gln Tyr Asn Ile Thr Ile		
865	870	875
Tyr Ala Val Glu Glu Asn Gln Glu Ser Thr Pro Val Val Ile Gln Gln		
885	890	895
Glu Thr Thr Gly Thr Pro Arg Ser Asp Thr Val Pro Ser Pro Arg Asp		
900	905	910
Leu Gln Phe Val Glu Val Thr Asp Val Lys Val Thr Ile Met Trp Thr		
915	920	925
Pro Pro Glu Ser Ala Val Thr Gly Tyr Arg Val Asp Val Ile Pro Val		
930	935	940
Asn Leu Pro Gly Glu His Gly Gln Arg Leu Pro Ile Ser Arg Asn Thr		
945	950	955
Phe Ala Glu Val Thr Gly Leu Ser Pro Gly Val Thr Tyr Tyr Phe Lys		
965	970	975
Val Phe Ala Val Ser His Gly Arg Glu Ser Lys Pro Leu Thr Ala Gln		
980	985	990

Sequence listing.txt

Gln Thr Thr Lys Leu Asp Ala Pro Thr Asn Leu Gln Phe Val Asn Glu
 995 1000 1005
 Thr Asp Ser Thr Val Leu Val Arg Trp Thr Pro Pro Arg Ala Gln Ile
 1010 1015 1020
 Thr Gly Tyr Arg Leu Thr Val Gly Leu Thr Arg Arg Gly Gln Pro Arg
 1025 1030 1035 1040
 Gln Tyr Asn Val Gly Pro Ser Val Ser Lys Tyr Pro Leu Arg Asn Leu
 1045 1050 1055
 Gln Pro Ala Ser Glu Tyr Thr Val Ser Leu Val Ala Ile Lys Gly Asn
 1060 1065 1070
 Gln Glu Ser Pro Lys Ala Thr Gly Val Phe Thr Thr Leu Gln Pro Gly
 1075 1080 1085
 Ser Ser Ile Pro Pro Tyr Asn Thr Glu Val Thr Glu Thr Thr Ile Val
 1090 1095 1100
 Ile Thr Trp Thr Pro Ala Pro Arg Ile Gly Phe Lys Leu Gly Val Arg
 1105 1110 1115 1120
 Pro Ser Gln Gly Gly Glu Ala Pro Arg Glu Val Thr Ser Asp Ser Gly
 1125 1130 1135
 Ser Ile Val Val Ser Gly Leu Thr Pro Gly Val Glu Tyr Val Tyr Thr
 1140 1145 1150
 Ile Gln Val Leu Arg Asp Gly Gln Glu Arg Asp Ala Pro Ile Val Asn
 1155 1160 1165
 Lys Val Val Thr Pro Leu Ser Pro Pro Thr Asn Leu His Leu Glu Ala
 1170 1175 1180
 Asn Pro Asp Thr Gly Val Leu Thr Val Ser Trp Glu Arg Ser Thr Thr
 1185 1190 1195 1200
 Pro Asp Ile Thr Gly Tyr Arg Ile Thr Thr Pro Thr Asn Gly Gln
 1205 1210 1215
 Gln Gly Asn Ser Leu Glu Glu Val Val His Ala Asp Gln Ser Ser Cys
 1220 1225 1230
 Thr Phe Asp Asn Leu Ser Pro Gly Leu Glu Tyr Asn Val Ser Val Tyr
 1235 1240 1245
 Thr Val Lys Asp Asp Lys Glu Ser Val Pro Ile Ser Asp Thr Ile Ile
 1250 1255 1260
 Pro Ala Val Pro Pro Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro
 1265 1270 1275 1280
 Asp Thr Met Arg Val Thr Trp Ala Pro Pro Ser Ile Asp Leu Thr
 1285 1290 1295
 Asn Phe Leu Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala
 1300 1305 1310
 Glu Leu Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu
 1315 1320 1325
 Leu Pro Gly Thr Glu Tyr Val Val Ser Val Ser Val Val Tyr Glu Gln
 1330 1335 1340
 His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp Ser
 1345 1350 1355 1360
 Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe Thr Val
 1365 1370 1375
 His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr Arg Ile Arg His
 1380 1385 1390
 His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp Arg Val Pro His
 1395 1400 1405
 Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr Pro Gly Thr Glu Tyr
 1410 1415 1420
 Val Val Ser Ile Val Ala Leu Asn Gly Arg Glu Glu Ser Pro Leu Leu
 1425 1430 1435 1440
 Ile Gly Gln Gln Ser Thr Val Ser Asp Val Pro Arg Asp Leu Glu Val
 1445 1450 1455
 Val Ala Ala Thr Pro Thr Ser Leu Leu Ile Ser Trp Asp Ala Pro Ala
 1460 1465 1470
 Val Thr Val Arg Tyr Tyr Arg Ile Thr Tyr Gly Glu Thr Gly Gly Asn
 1475 1480 1485
 Ser Pro Val Gln Glu Phe Thr Val Pro Gly Ser Lys Ser Thr Ala Thr

Sequence listing.txt

1490	1495	1500	
Ile Ser Gly Leu Lys Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala			
1505	1510	1515	
Val Thr Gly Arg Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile		1520	
1525	1530	1535	
Asn Tyr Arg Thr Glu Ile Asp Lys Pro Ser Gln Met Gln Val Thr Asp			
1540	1545	1550	
Val Gln Asp Asn Ser Ile Ser Val Lys Trp Leu Pro Ser Ser Ser Pro			
1555	1560	1565	
Val Thr Gly Tyr Arg Val Thr Thr Pro Lys Asn Gly Pro Gly Pro			
1570	1575	1580	
Thr Lys Thr Lys Thr Ala Gly Pro Asp Gln Thr Glu Met Thr Ile Glu			
1585	1590	1595	1600
Gly Leu Gln Pro Thr Val Glu Tyr Val Val Ser Val Tyr Ala Gln Asn			
1605	1610	1615	
Pro Ser Gly Glu Ser Gln Pro Leu Val Gln Thr Ala Val Thr Asn Ile			
1620	1625	1630	
Asp Arg Pro Lys Gly Leu Ala Phe Thr Asp Val Asp Val Asp Ser Ile			
1635	1640	1645	
Lys Ile Ala Trp Glu Ser Pro Gln Gly Gln Val Ser Arg Tyr Arg Val			
1650	1655	1660	
Thr Tyr Ser Ser Pro Glu Asp Gly Ile His Glu Leu Phe Pro Ala Pro			
1665	1670	1675	1680
Asp Gly Glu Glu Asp Thr Ala Glu Leu Gln Gly Leu Arg Pro Gly Ser			
1685	1690	1695	
Glu Tyr Thr Val Ser Val Val Ala Leu His Asp Asp Met Glu Ser Gln			
1700	1705	1710	
Pro Leu Ile Gly Thr Gln Ser Thr Ala Ile Pro Ala Pro Thr Asp Leu			
1715	1720	1725	
Lys Phe Thr Gln Val Thr Pro Thr Ser Leu Ser Ala Gln Trp Thr Pro			
1730	1735	1740	
Pro Asn Val Gln Leu Thr Gly Tyr Arg Val Arg Val Thr Pro Lys Glu			
1745	1750	1755	1760
Lys Thr Gly Pro Met Lys Glu Ile Asn Leu Ala Pro Asp Ser Ser Ser			
1765	1770	1775	
Val Val Val Ser Gly Leu Met Val Ala Thr Lys Tyr Glu Val Ser Val			
1780	1785	1790	
Tyr Ala Leu Lys Asp Thr Leu Thr Ser Arg Pro Ala Gln Gly Val Val			
1795	1800	1805	
Thr Thr Leu Glu Asn Val Ser Pro Pro Arg Arg Ala Arg Val Thr Asp			
1810	1815	1820	
Ala Thr Glu Thr Thr Ile Thr Ile Ser Trp Arg Thr Lys Thr Glu Thr			
1825	1830	1835	1840
Ile Thr Gly Phe Gln Val Asp Ala Val Pro Ala Asn Gly Gln Thr Pro			
1845	1850	1855	
Ile Gln Arg Thr Ile Lys Pro Asp Val Arg Ser Tyr Thr Ile Thr Gly			
1860	1865	1870	
Leu Gln Pro Gly Thr Asp Tyr Lys Ile Tyr Leu Tyr Thr Leu Asn Asp			
1875	1880	1885	
Asn Ala Arg Ser Ser Pro Val Val Ile Asp Ala Ser Thr Ala Ile Asp			
1890	1895	1900	
Ala Pro Ser Asn Leu Arg Phe Leu Ala Thr Thr Pro Asn Ser Leu Leu			
1905	1910	1915	1920
Val Ser Trp Gln Pro Pro Arg Ala Arg Ile Thr Gly Tyr Ile Ile Lys			
1925	1930	1935	
Tyr Glu Lys Pro Gly Ser Pro Pro Arg Glu Val Val Pro Arg Pro Arg			
1940	1945	1950	
Pro Gly Val Thr Glu Ala Thr Ile Thr Gly Leu Glu Pro Gly Thr Glu			
1955	1960	1965	
Tyr Thr Ile Tyr Val Ile Ala Leu Lys Asn Asn Gln Lys Ser Glu Pro			
1970	1975	1980	
Leu Ile Gly Arg Lys Lys Thr Asp Glu Leu Pro Gln Leu Val Thr Leu			
1985	1990	1995	2000

Sequence listing.txt

Pro His Pro Asn Leu His Gly Pro Glu Ile Leu Asp Val Pro Ser Thr
 2005 2010 2015
 Val Gln Lys Thr Pro Phe Val Thr His Pro Gly Tyr Asp Thr Gly Asn
 2020 2025 2030
 Gly Ile Gln Leu Pro Gly Thr Ser Gly Gln Gln Pro Ser Val Gly Gln
 2035 2040 2045
 Gln Met Ile Phe Glu Glu His Gly Phe Arg Arg Thr Thr Pro Pro Thr
 2050 2055 2060
 Thr Ala Thr Pro Ile Arg His Arg Pro Arg Pro Tyr Pro Pro Asn Val
 2065 2070 2075 2080
 Gly Gln Glu Ala Leu Ser Gln Thr Thr Ile Ser Trp Ala Pro Phe Gln
 2085 2090 2095
 Asp Thr Ser Glu Tyr Ile Ile Ser Cys His Pro Val Gly Thr Asp Glu
 2100 2105 2110
 Glu Pro Leu Gln Phe Arg Val Pro Gly Thr Ser Thr Ser Ala Thr Leu
 2115 2120 2125
 Thr Gly Leu Thr Arg Gly Ala Thr Tyr Asn Ile Ile Val Glu Ala Leu
 2130 2135 2140
 Lys Asp Gln Gln Arg His Lys Val Arg Glu Glu Val Val Thr Val Gly
 2145 2150 2155 2160
 Asn Ser Val Asn Glu Gly Leu Asn Gln Pro Thr Asp Asp Ser Cys Phe
 2165 2170 2175
 Asp Pro Tyr Thr Val Ser His Tyr Ala Val Gly Asp Glu Trp Glu Arg
 2180 2185 2190
 Met Ser Glu Ser Gly Phe Lys Leu Leu Cys Gln Cys Leu Gly Phe Gly
 2195 2200 2205
 Ser Gly His Phe Arg Cys Asp Ser Ser Arg Trp Cys His Asp Asn Gly
 2210 2215 2220
 Val Asn Tyr Lys Ile Gly Glu Lys Trp Asp Arg Gln Gly Glu Asn Gly
 2225 2230 2235 2240
 Gln Met Met Ser Cys Thr Cys Leu Gly Asn Gly Lys Gly Glu Phe Lys
 2245 2250 2255
 Cys Asp Pro His Glu Ala Thr Cys Tyr Asp Asp Gly Lys Thr Tyr His
 2260 2265 2270
 Val Gly Glu Gln Trp Gln Lys Glu Tyr Leu Gly Ala Ile Cys Ser Cys
 2275 2280 2285
 Thr Cys Phe Gly Gly Gln Arg Gly Trp Arg Cys Asp Asn Cys Arg Arg
 2290 2295 2300
 Pro Gly Gly Glu Pro Ser Pro Glu Gly Thr Thr Gly Gln Ser Tyr Asn
 2305 2310 2315 2320
 Gln Tyr Ser Gln Arg Tyr His Gln Arg Thr Asn Thr Asn Val Asn Cys
 2325 2330 2335
 Pro Ile Glu Cys Phe Met Pro Leu Asp Val Gln Ala Asp Arg Glu Asp
 2340 2345 2350
 Ser Arg Glu
 2355

<210> 95
 <211> 1366
 <212> PRT
 <213> Homo sapiens

<400> 95
 Met Leu Ser Phe Val Asp Thr Arg Thr Leu Leu Leu Ala Val Thr
 1 5 10 15
 Leu Cys Leu Ala Thr Cys Gln Ser Leu Gln Glu Glu Thr Val Arg Lys
 20 25 30
 Gly Pro Ala Gly Asp Arg Gly Pro Arg Gly Glu Arg Gly Pro Pro Gly
 35 40 45
 Pro Pro Gly Arg Asp Gly Glu Asp Gly Pro Thr Gly Pro Pro Gly Pro
 50 55 60
 Pro Gly Pro Pro Gly Pro Pro Gly Leu Gly Asn Phe Ala Ala Gln

Sequence listing.txt

65 Tyr Asp Gly Lys Gly Val Gly Leu Gly Pro Gly Pro Met Gly Leu Met 80
 85 90 95
 Gly Pro Arg Gly Pro Pro Gly Ala Ala Gly Ala Pro Gly Pro Gln Gly 100 105 110
 115 120 125
 Phe Gln Gly Pro Ala Gly Glu Pro Gly Glu Pro Gly Gln Thr Gly Pro 115 120 125
 130 135 140
 Ala Gly Ala Arg Gly Pro Ala Gly Pro Pro Gly Lys Ala Gly Glu Asp 130 135 140
 Gly His Pro Gly Lys Pro Gly Arg Pro Gly Glu Arg Gly Val Val Gly 145 150 155 160
 145 150 155 160
 Pro Gln Gly Ala Arg Gly Phe Pro Gly Thr Pro Gly Leu Pro Gly Phe 165 170 175
 175 180 185 190
 Lys Gly Ile Arg Gly His Asn Gly Leu Asp Gly Leu Lys Gly Gln Pro 180 185 190
 195 200 205
 Gly Ala Pro Gly Val Lys Gly Glu Pro Gly Ala Pro Gly Glu Asn Gly 195 200 205
 Thr Pro Gly Gln Thr Gly Ala Arg Gly Leu Pro Gly Glu Arg Gly Arg 210 215 220
 Val Gly Ala Pro Gly Pro Ala Gly Ala Arg Gly Ser Asp Gly Ser Val 225 230 235 240
 225 230 235 240
 Gly Pro Val Gly Pro Ala Gly Pro Ile Gly Ser Ala Gly Pro Pro Gly 245 250 255
 245 250 255
 Phe Pro Gly Ala Pro Gly Pro Lys Gly Glu Ile Gly Ala Val Gly Asn 260 265 270
 260 265 270
 Ala Gly Pro Ala Gly Pro Ala Gly Pro Arg Gly Glu Val Gly Leu Pro 275 280 285
 275 280 285
 Gly Leu Ser Gly Pro Val Gly Pro Pro Gly Asn Pro Gly Ala Asn Gly 290 295 300
 290 295 300
 Leu Thr Gly Ala Lys Gly Ala Ala Gly Leu Pro Gly Val Ala Gly Ala 305 310 315 320
 305 310 315 320
 Pro Gly Leu Pro Gly Pro Arg Gly Ile Pro Gly Pro Val Gly Ala Ala 325 330 335
 325 330 335
 Gly Ala Thr Gly Ala Arg Gly Leu Val Gly Glu Pro Gly Pro Ala Gly 340 345 350
 340 345 350
 Ser Lys Gly Glu Ser Gly Asn Lys Gly Glu Pro Gly Ser Ala Gly Pro 355 360 365
 355 360 365
 Gln Gly Pro Pro Gly Pro Ser Gly Glu Glu Gly Lys Arg Gly Pro Asn 370 375 380
 370 375 380
 Gly Glu Ala Gly Ser Ala Gly Pro Pro Gly Pro Pro Gly Leu Arg Gly 385 390 395 400
 385 390 395 400
 Ser Pro Gly Ser Arg Gly Leu Pro Gly Ala Asp Gly Arg Ala Gly Val 405 410 415
 405 410 415
 Met Gly Pro Pro Gly Ser Arg Gly Ala Ser Gly Pro Ala Gly Val Arg 420 425 430
 420 425 430
 Gly Pro Asn Gly Asp Ala Gly Arg Pro Gly Glu Pro Gly Leu Met Gly 435 440 445
 435 440 445
 Pro Arg Gly Leu Pro Gly Ser Pro Gly Asn Ile Gly Pro Ala Gly Lys 450 455 460
 450 455 460
 Glu Gly Pro Val Gly Leu Pro Gly Ile Asp Gly Arg Pro Gly Pro Ile 465 470 475 480
 465 470 475 480
 Gly Pro Ala Gly Ala Arg Gly Glu Pro Gly Asn Ile Gly Phe Pro Gly 485 490 495
 485 490 495
 Pro Lys Gly Pro Thr Gly Asp Pro Gly Lys Asn Gly Asp Lys Gly His 500 505 510
 500 505 510
 Ala Gly Leu Ala Gly Ala Arg Gly Ala Pro Gly Pro Asp Gly Asn Asn 515 520 525
 515 520 525
 Gly Ala Gln Gly Pro Pro Gly Pro Gln Gly Val Gln Gly Gly Lys Gly 530 535 540
 530 535 540
 Glu Gln Gly Pro Ala Gly Pro Pro Gly Phe Gln Gly Leu Pro Gly Pro 545 550 555 560
 545 550 555 560
 Ser Gly Pro Ala Gly Glu Val Gly Lys Pro Gly Glu Arg Gly Leu His 565 570 575
 565 570 575

Sequence listing.txt

Gly Glu Phe Gly Leu Pro Gly Pro Ala Gly Pro Arg Gly Glu Arg Gly
 580 585 590
 Pro Pro Gly Glu Ser Gly Ala Ala Gly Pro Thr Gly Pro Ile Gly Ser
 595 600 605
 Arg Gly Pro Ser Gly Pro Pro Gly Pro Asp Gly Asn Lys Gly Glu Pro
 610 615 620
 Gly Val Val Gly Ala Val Gly Thr Ala Gly Pro Ser Gly Pro Ser Gly
 625 630 635 640
 Leu Pro Gly Glu Arg Gly Ala Ala Gly Ile Pro Gly Gly Lys Gly Glu
 645 650 655
 Lys Gly Glu Pro Gly Leu Arg Gly Glu Ile Gly Asn Pro Gly Arg Asp
 660 665 670
 Gly Ala Arg Gly Ala His Gly Ala Val Gly Ala Pro Gly Pro Ala Gly
 675 680 685
 Ala Thr Gly Asp Arg Gly Glu Ala Gly Ala Ala Gly Pro Ala Gly Pro
 690 695 700
 Ala Gly Pro Arg Gly Ser Pro Gly Glu Arg Gly Glu Val Gly Pro Ala
 705 710 715 720
 Gly Pro Asn Gly Phe Ala Gly Pro Ala Gly Ala Ala Gly Gln Pro Gly
 725 730 735
 Ala Lys Gly Glu Arg Gly Ala Lys Gly Pro Lys Gly Glu Asn Gly Val
 740 745 750
 Val Gly Pro Thr Gly Pro Val Gly Ala Ala Gly Pro Ala Gly Pro Asn
 755 760 765
 Gly Pro Pro Gly Pro Ala Gly Ser Arg Gly Asp Gly Gly Pro Pro Gly
 770 775 780
 Met Thr Gly Phe Pro Gly Ala Ala Gly Arg Thr Gly Pro Pro Gly Pro
 785 790 795 800
 Ser Gly Ile Ser Gly Pro Pro Gly Pro Pro Gly Pro Ala Gly Lys Glu
 805 810 815
 Gly Leu Arg Gly Pro Arg Gly Asp Gln Gly Pro Val Gly Arg Thr Gly
 820 825 830
 Glu Val Gly Ala Val Gly Pro Pro Gly Phe Ala Gly Glu Lys Gly Pro
 835 840 845
 Ser Gly Glu Ala Gly Thr Ala Gly Pro Pro Gly Thr Pro Gly Pro Gln
 850 855 860
 Gly Leu Leu Gly Ala Pro Gly Ile Leu Gly Leu Pro Gly Ser Arg Gly
 865 870 875 880
 Glu Arg Gly Leu Pro Gly Val Ala Gly Ala Val Gly Glu Pro Gly Pro
 885 890 895
 Leu Gly Ile Ala Gly Pro Pro Gly Ala Arg Gly Pro Pro Gly Ala Val
 900 905 910
 Gly Ser Pro Gly Val Asn Gly Ala Pro Gly Glu Ala Gly Arg Asp Gly
 915 920 925
 Asn Pro Gly Asn Asp Gly Pro Pro Gly Arg Asp Gly Gln Pro Gly His
 930 935 940
 Lys Gly Glu Arg Gly Tyr Pro Gly Asn Ile Gly Pro Val Gly Ala Ala
 945 950 955 960
 Gly Ala Pro Gly Pro His Gly Pro Val Gly Pro Ala Gly Lys His Gly
 965 970 975
 Asn Arg Gly Glu Thr Gly Pro Ser Gly Pro Val Gly Pro Ala Gly Ala
 980 985 990
 Val Gly Pro Arg Gly Pro Ser Gly Pro Gln Gly Ile Arg Gly Asp Lys
 995 1000 1005
 Gly Glu Pro Gly Glu Lys Gly Pro Arg Gly Leu Pro Gly Leu Lys Gly
 1010 1015 1020
 His Asn Gly Leu Gln Gly Leu Pro Gly Ile Ala Gly His His Gly Asp
 1025 1030 1035 1040
 Gln Gly Ala Pro Gly Ser Val Gly Pro Ala Gly Pro Arg Gly Pro Ala
 1045 1050 1055
 Gly Pro Ser Gly Pro Ala Gly Lys Asp Gly Arg Thr Gly His Pro Gly
 1060 1065 1070
 Thr Val Gly Pro Ala Gly Ile Arg Gly Pro Gln Gly His Gln Gly Pro

Sequence listing.txt

1075	1080	1085	
Ala Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Val Ser			
1090	1095	1100	
Gly Gly Gly Tyr Asp Phe Gly Tyr Asp Gly Asp Phe Tyr Arg Ala Asp			
1105	1110	1115	1120
Gln Pro Arg Ser Ala Pro Ser Leu Arg Pro Lys Asp Tyr Glu Val Asp			
1125	1130	1135	
Ala Thr Leu Lys Ser Leu Asn Asn Gln Ile Glu Thr Leu Leu Thr Pro			
1140	1145	1150	
Glu Gly Ser Arg Lys Asn Pro Ala Arg Thr Cys Arg Asp Leu Arg Leu			
1155	1160	1165	
Ser His Pro Glu Trp Ser Ser Gly Tyr Tyr Trp Ile Asp Pro Asn Gln			
1170	1175	1180	
Gly Cys Thr Met Asp Ala Ile Lys Val Tyr Cys Asp Phe Ser Thr Gly			
1185	1190	1195	1200
Glu Thr Cys Ile Arg Ala Gln Pro Glu Asn Ile Pro Ala Lys Asn Trp			
1205	1210	1215	
Tyr Arg Ser Ser Lys Asp Lys Lys His Val Trp Leu Gly Glu Thr Ile			
1220	1225	1230	
Asn Ala Gly Ser Gln Phe Glu Tyr Asn Val Glu Gly Val Thr Ser Lys			
1235	1240	1245	
Glu Met Ala Thr Gln Leu Ala Phe Met Arg Leu Leu Ala Asn Tyr Ala			
1250	1255	1260	
Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Ile Ala Tyr Met Asp			
1265	1270	1275	1280
Glu Glu Thr Gly Asn Leu Lys Lys Ala Val Ile Leu Gln Gly Ser Asn			
1285	1290	1295	
Asp Val Glu Leu Val Ala Glu Gly Asn Ser Arg Phe Thr Tyr Thr Val			
1300	1305	1310	
Leu Val Asp Gly Cys Ser Lys Lys Thr Asn Glu Trp Gly Lys Thr Ile			
1315	1320	1325	
Ile Glu Tyr Lys Thr Asn Lys Pro Ser Arg Leu Pro Phe Leu Asp Ile			
1330	1335	1340	
Ala Pro Leu Asp Ile Gly Gly Ala Asp His Glu Phe Phe Val Asp Ile			
1345	1350	1355	1360
Gly Pro Val Cys Phe Lys			
1365			

<210> 96

<211> 105

<212> PRT

<213> Homo sapiens

<400> 96

Met Ala Lys Ile Ser Ser Pro Thr Glu Thr Glu Arg Cys Ile Glu Ser			
1	5	10	15
Leu Ile Ala Val Phe Gln Lys Tyr Ala Gly Lys Asp Gly Tyr Asn Tyr			
20	25	30	
Thr Leu Ser Lys Thr Glu Phe Leu Ser Phe Met Asn Thr Glu Leu Ala			
35	40	45	
Ala Phe Thr Lys Asn Gln Lys Asp Pro Gly Val Leu Asp Arg Met Met			
50	55	60	
Lys Lys Leu Asp Thr Asn Ser Asp Gly Gln Leu Asp Phe Ser Glu Phe			
65	70	75	80
Leu Asn Leu Ile Gly Gly Leu Ala Met Ala Cys His Asp Ser Phe Leu			
85	90	95	
Lys Ala Val Pro Ser Gln Lys Arg Thr			
100	105		

<210> 97

<211> 283

Sequence listing.txt

<212> PRT

<213> Homo sapiens

<400> 97

Met Val Asn Tyr Ala Trp Ala Gly Arg Ser Gln Arg Lys Leu Trp Trp
1 5 10 15
Arg Ser Val Ala Val Leu Thr Cys Lys Ser Val Val Arg Pro Gly Tyr
20 25 30
Arg Gly Gly Leu Gln Ala Arg Arg Ser Thr Leu Leu Lys Thr Cys Ala
35 40 45
Arg Ala Arg Ala Thr Ala Pro Gly Ala Met Lys Met Val Ala Pro Trp
50 55 60
Thr Arg Phe Tyr Ser Asn Ser Cys Cys Leu Cys Cys His Val Arg Thr
65 70 75 80
Gly Thr Ile Leu Leu Gly Val Trp Tyr Leu Ile Ile Asn Ala Val Val
85 90 95
Leu Leu Ile Leu Ser Ala Leu Ala Asp Pro Asp Gln Tyr Asn Phe
100 105 110
Ser Ser Ser Glu Leu Gly Gly Asp Phe Glu Phe Met Asp Asp Ala Asn
115 120 125
Met Cys Ile Ala Ile Ala Ile Ser Leu Leu Met Ile Leu Ile Cys Ala
130 135 140
Met Ala Thr Tyr Gly Ala Tyr Lys Gln Arg Ala Ala Trp Ile Ile Pro
145 150 155 160
Phe Phe Cys Tyr Gln Ile Phe Asp Phe Ala Leu Asn Met Leu Val Ala
165 170 175
Ile Thr Val Leu Ile Tyr Pro Asn Ser Ile Gln Glu Tyr Ile Arg Gln
180 185 190
Leu Pro Pro Asn Phe Pro Tyr Arg Asp Asp Val Met Ser Val Asn Pro
195 200 205
Thr Cys Leu Val Leu Ile Leu Leu Phe Ile Ser Ile Ile Leu Thr
210 215 220
Phe Lys Gly Tyr Leu Ile Ser Cys Val Trp Asn Cys Tyr Arg Tyr Ile
225 230 235 240
Asn Gly Arg Asn Ser Ser Asp Val Leu Val Tyr Val Thr Ser Asn Asp
245 250 255
Thr Thr Val Leu Leu Pro Pro Tyr Asp Asp Ala Thr Val Asn Gly Ala
260 265 270
Ala Lys Glu Pro Pro Pro Pro Tyr Val Ser Ala
275 280

<210> 98

<211> 712

<212> PRT

<213> Homo sapiens

<400> 98

Met Ala Gly Gly Pro Gly Pro Gly Glu Pro Ala Ala Pro Gly Ala Gln
1 5 10 15
His Phe Leu Tyr Glu Val Pro Pro Trp Val Met Cys Arg Phe Tyr Lys
20 25 30
Val Met Asp Ala Leu Glu Pro Ala Asp Trp Cys Gln Phe Ala Ala Leu
35 40 45
Ile Val Arg Asp Gln Thr Glu Leu Arg Leu Cys Glu Arg Ser Gly Gln
50 55 60
Arg Thr Ala Ser Val Leu Trp Pro Trp Ile Asn Arg Asn Ala Arg Val
65 70 75 80
Ala Asp Leu Val His Ile Leu Thr His Leu Gln Leu Leu Arg Ala Arg
85 90 95
Asp Ile Ile Thr Ala Trp His Pro Pro Ala Pro Leu Pro Ser Pro Gly
100 105 110
Thr Thr Ala Pro Arg Pro Ser Ser Ile Pro Ala Pro Ala Glu Ala Glu

Sequence listing.txt

115	120	125
Ala Trp Ser Pro Arg Lys Leu Pro Ser Ser Ala Ser Thr Phe Leu Ser		
130	135	140
Pro Ala Phe Pro Gly Ser Gln Thr His Ser Gly Pro Glu Leu Gly Leu		
145	150	155
Val Pro Ser Pro Ala Ser Leu Trp Pro Pro Pro Pro Ser Pro Ala Pro		
165	170	175
Ser Ser Thr Lys Pro Gly Pro Glu Ser Ser Val Ser Leu Leu Gln Gly		
180	185	190
Ala Arg Pro Ser Pro Phe Cys Trp Pro Leu Cys Glu Ile Ser Arg Gly		
195	200	205
Thr His Asn Phe Ser Glu Glu Leu Lys Ile Gly Glu Gly Gly Phe Gly		
210	215	220
Cys Val Tyr Arg Ala Val Met Arg Asn Thr Val Tyr Ala Val Lys Arg		
225	230	235
Leu Lys Glu Asn Ala Asp Leu Glu Trp Thr Ala Val Lys Gln Ser Phe		
245	250	255
Leu Thr Glu Val Glu Gln Leu Ser Arg Phe Arg His Pro Asn Ile Val		
260	265	270
Asp Phe Ala Gly Tyr Cys Ala Gln Asn Gly Phe Tyr Cys Leu Val Tyr		
275	280	285
Gly Phe Leu Pro Asn Gly Ser Leu Glu Asp Arg Leu His Cys Gln Thr		
290	295	300
Gln Ala Cys Pro Pro Leu Ser Trp Pro Gln Arg Leu Asp Ile Leu Leu		
305	310	315
Gly Thr Ala Arg Ala Ile Gln Phe Leu His Gln Asp Ser Pro Ser Leu		
325	330	335
Ile His Gly Asp Ile Lys Ser Ser Asn Val Leu Leu Asp Glu Arg Leu		
340	345	350
Thr Pro Lys Leu Gly Asp Phe Gly Leu Ala Arg Phe Ser Arg Phe Ala		
355	360	365
Gly Ser Ser Pro Ser Gln Ser Ser Met Val Ala Arg Thr Gln Thr Val		
370	375	380
Arg Gly Thr Leu Ala Tyr Leu Pro Glu Glu Tyr Ile Lys Thr Gly Arg		
385	390	395
Leu Ala Val Asp Thr Asp Thr Phe Ser Phe Gly Val Val Val Leu Glu		
405	410	415
Thr Leu Ala Gly Gln Arg Ala Val Lys Thr His Gly Ala Arg Thr Lys		
420	425	430
Tyr Leu Lys Asp Leu Val Glu Glu Glu Ala Glu Glu Ala Gly Val Ala		
435	440	445
Leu Arg Ser Thr Gln Ser Thr Leu Gln Ala Gly Leu Ala Ala Asp Ala		
450	455	460
Trp Ala Ala Pro Ile Ala Met Gln Ile Tyr Lys Lys His Leu Asp Pro		
465	470	475
Arg Pro Gly Pro Cys Pro Pro Glu Leu Gly Leu Gly Leu Gly Gln Leu		
485	490	495
Ala Cys Cys Cys Leu His Arg Arg Ala Lys Arg Arg Pro Pro Met Thr		
500	505	510
Gln Val Tyr Glu Arg Leu Glu Lys Leu Gln Ala Val Val Ala Gly Val		
515	520	525
Pro Gly His Leu Glu Ala Ala Ser Cys Ile Pro Pro Ser Pro Gln Glu		
530	535	540
Asn Ser Tyr Val Ser Ser Thr Gly Arg Ala His Ser Gly Ala Ala Pro		
545	550	555
Trp Gln Pro Leu Ala Ala Pro Ser Gly Ala Ser Ala Gln Ala Ala Glu		
565	570	575
Gln Leu Gln Arg Gly Pro Asn Gln Pro Val Glu Ser Asp Glu Ser Leu		
580	585	590
Gly Gly Leu Ser Ala Ala Leu Arg Ser Trp His Leu Thr Pro Ser Cys		
595	600	605
Pro Leu Asp Pro Ala Pro Leu Arg Glu Ala Gly Cys Pro Gln Gly Asp		
610	615	620

Sequence listing.txt

Thr Ala Gly Glu Ser Ser Trp Gly Ser Gly Pro Gly Ser Arg Pro Thr
625 630 635 640
Ala Val Glu Gly Leu Ala Leu Gly Ser Ser Ala Ser Ser Ser Glu
645 650 655
Pro Pro Gln Ile Ile Ile Asn Pro Ala Arg Gln Lys Met Val Gln Lys
660 665 670
Leu Ala Leu Tyr Glu Asp Gly Ala Leu Asp Ser Leu Gln Leu Leu Ser
675 680 685
Ser Ser Ser Leu Pro Gly Leu Gly Leu Glu Gln Asp Arg Gln Gly Pro
690 695 700
Glu Glu Ser Asp Glu Phe Gln Ser
705 710

<210> 99
<211> 132
<212> PRT
<213> Homo sapiens

<400> 99
Met Asn His Ile Val Gln Thr Phe Ser Pro Val Asn Ser Gly Gln Pro
1 5 10 15
Pro Asn Tyr Glu Met Leu Lys Glu Glu Gln Glu Val Ala Met Leu Gly
20 25 30
Gly Pro His Asn Pro Ala Pro Pro Thr Ser Thr Val Ile His Ile Arg
35 40 45
Ser Glu Thr Ser Val Pro Asp His Val Val Trp Ser Leu Phe Asn Thr
50 55 60
Leu Phe Met Asn Thr Cys Cys Leu Gly Phe Ile Ala Phe Ala Tyr Ser
65 70 75 80
Val Lys Ser Arg Asp Arg Lys Met Val Gly Asp Val Thr Gly Ala Gln
85 90 95
Ala Tyr Ala Ser Thr Ala Lys Cys Leu Asn Ile Trp Ala Leu Ile Leu
100 105 110
Gly Ile Phe Met Thr Ile Leu Leu Val Ile Ile Pro Val Leu Val Val
115 120 125
Gln Ala Gln Arg
130

<210> 100
<211> 207
<212> PRT
<213> Homo sapiens

<400> 100
Met Ala Pro Phe Glu Pro Leu Ala Ser Gly Ile Leu Leu Leu Leu Trp
1 5 10 15
Leu Ile Ala Pro Ser Arg Ala Cys Thr Cys Val Pro Pro His Pro Gln
20 25 30
Thr Ala Phe Cys Asn Ser Asp Leu Val Ile Arg Ala Lys Phe Val Gly
35 40 45
Thr Pro Glu Val Asn Gln Thr Thr Leu Tyr Gln Arg Tyr Glu Ile Lys
50 55 60
Met Thr Lys Met Tyr Lys Gly Phe Gln Ala Leu Gly Asp Ala Ala Asp
65 70 75 80
Ile Arg Phe Val Tyr Thr Pro Ala Met Glu Ser Val Cys Gly Tyr Phe
85 90 95
His Arg Ser His Asn Arg Ser Glu Glu Phe Leu Ile Ala Gly Lys Leu
100 105 110
Gln Asp Gly Leu Leu His Ile Thr Thr Cys Ser Phe Val Ala Pro Trp
115 120 125
Asn Ser Leu Ser Leu Ala Gln Arg Arg Gly Phe Thr Lys Thr Tyr Thr

Sequence listing.txt

130	135	140	
Val	Gly Cys Glu Glu Cys Thr Val	Phe Pro Cys Leu Ser Ile Pro Cys	
145	150	155	
Lys	Leu Gln Ser Gly Thr His Cys Leu Trp Thr Asp Gln Leu	Leu Gln	
	165	170	175
Gly	Ser Glu Lys Gly Phe Gln Ser Arg His Leu Ala Cys Leu	Pro Arg	
	180	185	190
Glu	Pro Gly Leu Cys Thr Trp Gln Ser Leu Arg Ser Gln Ile Ala		
195	200	205	

<210> 101
<211> 282
<212> PRT
<213> Homo sapiens

<400> 101

Met	Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu	Gly Ala Ala Gly Leu		
1	5	10	15	
Leu	Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser	Asp Thr Cys		
	20	25	30	
Gly	Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro	Leu Gly Cys		
	35	40	45	
Leu	Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys	Pro Met Cys Ala		
	50	55	60	
Arg	Gly Glu Gly Glu Pro Cys Gly Gly Gly Ala	Gly Arg Gly Tyr		
	65	70	75	80
Cys	Ala Pro Gly Met Glu Cys Val Lys Ser Arg Lys Arg	Arg Lys Gly		
	85	90	95	
Lys	Ala Gly Ala Ala Ala Gly Gly Pro Gly Val Ser	Gly Val Cys Val		
	100	105	110	
Cys	Lys Ser Arg Tyr Pro Val Cys Gly Ser Asp Gly	Thr Thr Tyr Pro		
	115	120	125	
Ser	Gly Cys Gln Leu Arg Ala Ala Ser Gln Arg Ala	Glu Ser Arg Gly		
	130	135	140	
Glu	Lys Ala Ile Thr Gln Val Ser Lys Gly Thr Cys	Glu Gln Gly Pro		
	145	150	155	160
Ser	Ile Val Thr Pro Pro Lys Asp Ile Trp Asn Val	Thr Gly Ala Gln		
	165	170	175	
Val	Tyr Leu Ser Cys Glu Val Ile Gly Ile Pro Thr Pro	Val Leu Ile		
	180	185	190	
Trp	Asn Lys Val Lys Arg Gly His Tyr Gly Val Gln	Arg Thr Glu Leu		
	195	200	205	
Leu	Pro Gly Asp Arg Asp Asn Leu Ala Ile Gln Thr	Arg Gly Pro		
	210	215	220	
Glu	Lys His Glu Val Thr Gly Trp Val Leu Val Ser	Pro Leu Ser Lys		
	225	230	235	240
Glu	Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Ser	Gln Gly Gln		
	245	250	255	
Ala	Ser Ala Ser Ala Lys Ile Thr Val Val Asp Ala	Leu His Glu Ile		
	260	265	270	
Pro	Val Lys Lys Gly Glu Gly Ala Glu Leu			
	275	280		

<210> 102
<211> 125
<212> PRT
<213> Homo sapiens

<400> 102

Met	His Lys Glu Glu His Glu Val Ala Val	Leu Gly Ala Pro Pro Ser	
1	5	10	15

Sequence listing.txt

Thr Ile Leu Pro Arg Ser Thr Val Ile Asn Ile His Ser Glu Thr Ser
20 25 30
Val Pro Asp His Val Val Trp Ser Leu Phe Asn Thr Leu Phe Leu Asn
35 40 45
Trp Cys Cys Leu Gly Phe Ile Ala Phe Ala Tyr Ser Val Lys Ser Arg
50 55 60
Asp Arg Lys Met Val Gly Asp Val Thr Gly Ala Gln Ala Tyr Ala Ser
65 70 75 80
Thr Ala Lys Cys Leu Asn Ile Trp Ala Leu Ile Leu Gly Ile Leu Met
85 90 95
Thr Ile Gly Phe Ile Leu Leu Val Phe Gly Ser Val Thr Val Tyr
100 105 110
His Ile Met Leu Gln Ile Ile Gln Glu Lys Arg Gly Tyr
115 120 125

<210> 103
<211> 1466
<212> PRT
<213> Homo sapiens

<400> 103
Met Met Ser Phe Val Gln Lys Gly Ser Trp Leu Leu Leu Ala Leu Leu
1 5 10 15
His Pro Thr Ile Ile Leu Ala Gln Gln Glu Ala Val Glu Gly Gly Cys
20 25 30
Ser His Leu Gly Gln Ser Tyr Ala Asp Arg Asp Val Trp Lys Pro Glu
35 40 45
Pro Cys Gln Ile Cys Val Cys Asp Ser Gly Ser Val Leu Cys Asp Asp
50 55 60
Ile Ile Cys Asp Asp Gln Glu Leu Asp Cys Pro Asn Pro Glu Ile Pro
65 70 75 80
Phe Gly Glu Cys Cys Ala Val Cys Pro Gln Pro Pro Thr Ala Pro Thr
85 90 95
Arg Pro Pro Asn Gly Gln Gly Pro Gln Gly Pro Lys Gly Asp Pro Gly
100 105 110
Pro Pro Gly Ile Pro Gly Arg Asn Gly Asp Pro Gly Ile Pro Gly Gln
115 120 125
Pro Gly Ser Pro Gly Ser Pro Gly Pro Pro Gly Ile Cys Glu Ser Cys
130 135 140
Pro Thr Gly Pro Gln Asn Tyr Ser Pro Gln Tyr Asp Ser Tyr Asp Val
145 150 155 160
Lys Ser Gly Val Ala Val Gly Gly Leu Ala Gly Tyr Pro Gly Pro Ala
165 170 175
Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Thr Ser Gly His Pro Gly
180 185 190
Ser Pro Gly Ser Pro Gly Tyr Gln Gly Pro Pro Gly Glu Pro Gly Gln
195 200 205
Ala Gly Pro Ser Gly Pro Pro Gly Pro Pro Gly Ala Ile Gly Pro Ser
210 215 220
Gly Pro Ala Gly Lys Asp Gly Glu Ser Gly Arg Pro Gly Arg Pro Gly
225 230 235 240
Glu Arg Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly Ile
245 250 255
Pro Gly Phe Pro Gly Met Lys Gly His Arg Gly Phe Asp Gly Arg Asn
260 265 270
Gly Glu Lys Gly Glu Thr Gly Ala Pro Gly Leu Lys Gly Glu Asn Gly
275 280 285
Leu Pro Gly Glu Asn Gly Ala Pro Gly Pro Met Gly Pro Arg Gly Ala
290 295 300
Pro Gly Glu Arg Gly Arg Pro Gly Leu Pro Gly Ala Ala Gly Ala Arg
305 310 315 320
Gly Asn Asp Gly Ala Arg Gly Ser Asp Gly Gln Pro Gly Pro Pro Gly

Sequence listing.txt

325	330	335	
Pro Pro Gly Thr Ala Gly Phe Pro Gly Ser Pro Gly Ala Lys	Gly Glu		
340	345	350	
Val Gly Pro Ala Gly Ser Pro Gly Ser Asn Gly Ala Pro	Gly Gln Arg		
355	360	365	
Gly Glu Pro Gly Pro Gln Gly His Ala Gly Ala Gln	Gly Pro Pro Gly		
370	375	380	
Pro Pro Gly Ile Asn Gly Ser Pro Gly Gly Lys	Gly Glu Met Gly Pro		
385	390	395	400
Ala Gly Ile Pro Gly Ala Pro Gly Leu Met Gly Ala Arg	Gly Pro Pro		
405	410	415	
Gly Pro Ala Gly Ala Asn Gly Ala Pro Gly Leu Arg	Gly Gly Ala Gly		
420	425	430	
Glu Pro Gly Lys Asn Gly Ala Lys Gly Glu Pro Gly Pro	Arg Gly Glu		
435	440	445	
Arg Gly Glu Ala Gly Ile Pro Gly Val Pro Gly Ala Lys	Gly Glu Asp		
450	455	460	
Gly Lys Asp Gly Ser Pro Gly Glu Pro Gly Ala Asn	Gly Leu Pro Gly		
465	470	475	480
Ala Ala Gly Glu Arg Gly Ala Pro Gly Phe Arg Gly Pro	Ala Gly Pro		
485	490	495	
Asn Gly Ile Pro Gly Glu Lys Gly Pro Ala Gly Glu Arg	Gly Ala Pro		
500	505	510	
Gly Pro Ala Gly Pro Arg Gly Ala Ala Gly Glu Pro	Gly Arg Asp Gly		
515	520	525	
Val Pro Gly Gly Pro Gly Met Arg Gly Met Pro Gly Ser	Pro Gly Gly		
530	535	540	
Pro Gly Ser Asp Gly Lys Pro Gly Pro Pro Gly Ser	Gln Gly Glu Ser		
545	550	555	560
Gly Arg Pro Gly Pro Pro Gly Pro Ser Gly Pro Arg Gly	Gln Pro Gly		
565	570	575	
Val Met Gly Phe Pro Gly Pro Lys Gly Asn Asp Gly Ala	Pro Gly Lys		
580	585	590	
Asn Gly Glu Arg Gly Gly Pro Gly Gly Pro Gly Pro	Gln Gly Pro Pro		
595	600	605	
Gly Lys Asn Gly Glu Thr Gly Pro Gln Gly Pro Pro	Gly Pro Thr Gly		
610	615	620	
Pro Gly Gly Asp Lys Gly Asp Thr Gly Pro Pro Gly	Pro Gln Gly Leu		
625	630	635	640
Gln Gly Leu Pro Gly Thr Gly Gly Pro Pro Gly Glu Asn	Gly Lys Pro		
645	650	655	
Gly Glu Pro Gly Pro Lys Gly Asp Ala Gly Ala Pro	Gly Ala Pro Gly		
660	665	670	
Gly Lys Gly Asp Ala Gly Ala Pro Gly Glu Arg Gly	Pro Pro Gly Leu		
675	680	685	
Ala Gly Ala Pro Gly Leu Arg Gly Gly Ala Gly Pro	Pro Pro Gly Pro Glu		
690	695	700	
Gly Gly Lys Gly Ala Ala Gly Pro Pro Gly Pro Pro	Gly Ala Ala Gly		
705	710	715	720
Thr Pro Gly Leu Gln Gly Met Pro Gly Glu Arg Gly	Gly Leu Gly Ser		
725	730	735	
Pro Gly Pro Lys Gly Asp Lys Gly Glu Pro Gly Gly	Pro Gly Ala Asp		
740	745	750	
Gly Val Pro Gly Lys Asp Gly Pro Arg Gly Pro Thr	Gly Pro Ile Gly		
755	760	765	
Pro Pro Gly Pro Ala Gly Gln Pro Gly Asp Lys	Gly Glu Gly Ala		
770	775	780	
Pro Gly Leu Pro Gly Ile Ala Gly Pro Arg Gly Ser	Pro Gly Glu Arg		
785	790	795	800
Gly Glu Thr Gly Pro Pro Gly Pro Ala Gly Phe Pro	Gly Ala Pro Gly		
805	810	815	
Gln Asn Gly Glu Pro Gly Gly Lys Gly Glu Arg Gly	Ala Pro Gly Glu		
820	825	830	

Sequence listing.txt

Lys Gly Glu Gly Gly Pro Pro Gly Val Ala Gly Pro Pro Gly Gly Ser
 835 840 845
 Gly Pro Ala Gly Pro Pro Gly Pro Gln Gly Val Lys Gly Glu Arg Gly
 850 855 860
 Ser Pro Gly Gly Pro Gly Ala Ala Gly Phe Pro Gly Ala Arg Gly Leu
 865 870 875 880
 Pro Gly Pro Pro Gly Ser Asn Gly Asn Pro Gly Pro Pro Gly Pro Ser
 885 890 895
 Gly Ser Pro Gly Lys Asp Gly Pro Pro Gly Pro Ala Gly Asn Thr Gly
 900 905 910
 Ala Pro Gly Ser Pro Gly Val Ser Gly Pro Lys Gly Asp Ala Gly Gln
 915 920 925
 Pro Gly Glu Lys Gly Ser Pro Gly Ala Gln Gly Pro Pro Gly Ala Pro
 930 935 940
 Gly Pro Leu Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly
 945 950 955 960
 Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro Gly Pro Gln Gly Val
 965 970 975
 Lys Gly Glu Ser Gly Lys Pro Gly Ala Asn Gly Leu Ser Gly Glu Arg
 980 985 990
 Gly Pro Pro Gly Pro Gln Gly Leu Pro Gly Leu Ala Gly Thr Ala Gly
 995 1000 1005
 Glu Pro Gly Arg Asp Gly Asn Pro Gly Ser Asp Gly Leu Pro Gly Arg
 1010 1015 1020
 Asp Gly Ser Pro Gly Gly Lys Gly Asp Arg Gly Glu Asn Gly Ser Pro
 1025 1030 1035 1040
 Gly Ala Pro Gly Ala Pro Gly His Pro Gly Pro Pro Gly Pro Val Gly
 1045 1050 1055
 Pro Ala Gly Lys Ser Gly Asp Arg Gly Glu Ser Gly Pro Ala Gly Pro
 1060 1065 1070
 Ala Gly Ala Pro Gly Pro Ala Gly Ser Arg Gly Ala Pro Gly Pro Gln
 1075 1080 1085
 Gly Pro Arg Gly Asp Lys Gly Glu Thr Gly Glu Arg Gly Ala Ala Gly
 1090 1095 1100
 Ile Lys Gly His Arg Gly Phe Pro Gly Asn Pro Gly Ala Pro Gly Ser
 1105 1110 1115 1120
 Pro Gly Pro Ala Gly Gln Gln Gly Ala Ile Gly Ser Pro Gly Pro Ala
 1125 1130 1135
 Gly Pro Arg Gly Pro Val Gly Pro Ser Gly Pro Pro Gly Lys Asp Gly
 1140 1145 1150
 Thr Ser Gly His Pro Gly Pro Ile Gly Pro Pro Gly Pro Arg Gly Asn
 1155 1160 1165
 Arg Gly Glu Arg Gly Ser Gly Ser Pro Gly His Pro Gly Gln Pro
 1170 1175 1180
 Gly Pro Pro Gly Pro Pro Gly Ala Pro Gly Pro Cys Cys Gly Gly Val
 1185 1190 1195 1200
 Gly Ala Ala Ala Ile Ala Gly Ile Gly Gly Glu Lys Ala Gly Gly Phe
 1205 1210 1215
 Ala Pro Tyr Tyr Gly Asp Glu Pro Met Asp Phe Lys Ile Asn Thr Asp
 1220 1225 1230
 Glu Ile Met Thr Ser Leu Lys Ser Val Asn Gly Gln Ile Glu Ser Leu
 1235 1240 1245
 Ile Ser Pro Asp Gly Ser Arg Lys Asn Pro Ala Arg Asn Cys Arg Asp
 1250 1255 1260
 Leu Lys Phe Cys His Pro Glu Leu Lys Ser Gly Glu Tyr Trp Val Asp
 1265 1270 1275 1280
 Pro Asn Gln Gly Cys Lys Leu Asp Ala Ile Lys Val Phe Cys Asn Met
 1285 1290 1295
 Glu Thr Gly Glu Thr Cys Ile Ser Ala Asn Pro Leu Asn Val Pro Arg
 1300 1305 1310
 Lys His Trp Trp Thr Asp Ser Ser Ala Glu Lys Lys His Val Trp Phe
 1315 1320 1325
 Gly Glu Ser Met Asp Gly Gly Phe Ser Tyr Gly Asn Pro Glu

Sequence listing.txt

1330	1335	1340
Leu Pro Glu Asp Val	Leu Asp Val Gln Leu Ala Phe Leu Arg Leu Leu	
1345	1350	1355
Ser Ser Arg Ala Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Ile		1360
1365	1370	1375
Ala Tyr Met Asp Gln Ala Ser Gly Asn Val Lys Lys Ala Leu Lys Leu		
1380	1385	1390
Met Gly Ser Asn Glu Gly Glu Phe Lys Ala Glu Gly Asn Ser Lys Phe		
1395	1400	1405
Thr Tyr Thr Val Leu Glu Asp Gly Cys Thr Lys His Thr Gly Glu Trp		
1410	1415	1420
Ser Lys Thr Val Phe Glu Tyr Arg Thr Arg Lys Ala Val Arg Leu Pro		
1425	1430	1435
Ile Val Asp Ile Ala Pro Tyr Asp Ile Gly Gly Pro Asp Gln Glu Phe		1440
1445	1450	1455
Gly Val Asp Val Gly Pro Val Cys Phe Leu		
1460	1465	

<210> 104

<211> 272

<212> PRT

<213> Homo sapiens

<400> 104

Met Val Leu Leu Thr Ala Val Leu Leu Leu Leu Ala Ala Tyr Ala Gly			
1	5	10	15
Pro Ala Gln Ser Leu Gly Ser Phe Val His Cys Glu Pro Cys Asp Glu			
20	25	30	
Lys Ala Leu Ser Met Cys Pro Pro Ser Pro Leu Gly Cys Glu Leu Val			
35	40	45	
Lys Glu Pro Gly Cys Gly Cys Met Thr Cys Ala Leu Ala Glu Gly			
50	55	60	
Gln Ser Cys Gly Val Tyr Thr Glu Arg Cys Ala Gln Gly Leu Arg Cys			
65	70	75	80
Leu Pro Arg Gln Asp Glu Glu Lys Pro Leu His Ala Leu Leu His Gly			
85	90	95	
Arg Gly Val Cys Leu Asn Glu Lys Ser Tyr Arg Glu Gln Val Lys Ile			
100	105	110	
Glu Arg Asp Ser Arg Glu His Glu Glu Pro Thr Thr Ser Glu Met Ala			
115	120	125	
Glu Glu Thr Tyr Ser Pro Lys Ile Phe Arg Pro Lys His Thr Arg Ile			
130	135	140	
Ser Glu Leu Lys Ala Glu Ala Val Lys Lys Asp Arg Arg Lys Lys Leu			
145	150	155	160
Thr Gln Ser Lys Phe Val Gly Gly Ala Glu Asn Thr Ala His Pro Arg			
165	170	175	
Ile Ile Ser Ala Pro Glu Met Arg Gln Glu Ser Glu Gln Gly Pro Cys			
180	185	190	
Arg Arg His Met Glu Ala Ser Leu Gln Glu Leu Lys Ala Ser Pro Arg			
195	200	205	
Met Val Pro Arg Ala Val Tyr Leu Pro Asn Cys Asp Arg Lys Gly Phe			
210	215	220	
Tyr Lys Arg Lys Gln Cys Lys Pro Ser Arg Gly Arg Lys Arg Gly Ile			
225	230	235	240
Cys Trp Cys Val Asp Lys Tyr Gly Met Lys Leu Pro Gly Met Glu Tyr			
245	250	255	
Val Asp Gly Asp Phe Gln Cys His Thr Phe Asp Ser Ser Asn Val Glu			
260	265	270	

<210> 105

<211> 158

Sequence listing.txt

<212> PRT

<213> Homo sapiens

<400> 105

Met Ala Ser Arg Ser Met Arg Leu Leu Leu Leu Ser Cys Leu Ala
1 5 10 15
Lys Thr Gly Val Leu Gly Asp Ile Ile Met Arg Pro Ser Cys Ala Pro
20 25 30
Gly Trp Phe Tyr His Lys Ser Asn Cys Tyr Gly Tyr Phe Arg Lys Leu
35 40 45
Arg Asn Trp Ser Asp Ala Glu Leu Glu Cys Gln Ser Tyr Gly Asn Gly
50 55 60
Ala His Leu Ala Ser Ile Leu Ser Leu Lys Glu Ala Ser Thr Ile Ala
65 70 75 80
Glu Tyr Ile Ser Gly Tyr Gln Arg Ser Gln Pro Ile Trp Ile Gly Leu
85 90 95
His Asp Pro Gln Lys Arg Gln Gln Trp Gln Trp Ile Asp Gly Ala Met
100 105 110
Tyr Leu Tyr Arg Ser Trp Ser Gly Lys Ser Met Gly Gly Asn Lys His
115 120 125
Cys Ala Glu Met Ser Ser Asn Asn Asn Phe Leu Thr Trp Ser Ser Asn
130 135 140
Glu Cys Asn Lys Arg Gln His Phe Leu Cys Lys Tyr Arg Pro
145 150 155

<210> 106

<211> 175

<212> PRT

<213> Homo sapiens

<400> 106

Met Glu Lys Ile Pro Val Ser Ala Phe Leu Leu Leu Val Ala Leu Ser
1 5 10 15
Tyr Thr Leu Ala Arg Asp Thr Thr Val Lys Pro Gly Ala Lys Lys Asp
20 25 30
Thr Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser Arg Gly Trp
35 40 45
Gly Asp Gln Leu Ile Trp Thr Tyr Glu Glu Ala Leu Tyr Lys
50 55 60
Ser Lys Thr Ser Asn Lys Pro Leu Met Ile Ile His His Leu Asp Glu
65 70 75 80
Cys Pro His Ser Gln Ala Leu Lys Lys Val Phe Ala Glu Asn Lys Glu
85 90 95
Ile Gln Lys Leu Ala Glu Gln Phe Val Leu Leu Asn Leu Val Tyr Glu
100 105 110
Thr Thr Asp Lys His Leu Ser Pro Asp Gly Gln Tyr Val Pro Arg Ile
115 120 125
Met Phe Val Asp Pro Ser Leu Thr Val Arg Ala Asp Ile Thr Gly Arg
130 135 140
Tyr Ser Asn Arg Leu Tyr Ala Tyr Glu Pro Ala Asp Thr Ala Leu Leu
145 150 155 160
Leu Asp Asn Met Lys Lys Ala Leu Lys Leu Leu Lys Thr Glu Leu
165 170 175

<210> 107

<211> 732

<212> PRT

<213> Homo sapiens

<400> 107

Met Pro Glu Glu Thr Gln Thr Gln Asp Gln Pro Met Glu Glu Glu
Page 108

Sequence listing.txt

1	5	10	15	
Val Glu Thr Phe Ala Phe Gln Ala Glu Ile Ala Gln Leu Met Ser Leu	20	25	30	
Ile Ile Asn Thr Phe Tyr Ser Asn Lys Glu Ile Phe Leu Arg Glu Leu	35	40	45	
Ile Ser Asn Ser Ser Asp Ala Leu Asp Lys Ile Arg Tyr Glu Ser Leu	50	55	60	
Thr Asp Pro Ser Lys Leu Asp Ser Gly Lys Glu Leu His Ile Asn Leu	65	70	75	80
Ile Pro Asn Lys Gln Asp Arg Thr Leu Thr Ile Val Asp Thr Gly Ile	85	90	95	
Gly Met Thr Lys Ala Asp Leu Ile Asn Asn Leu Gly Thr Ile Ala Lys	100	105	110	
Ser Gly Thr Lys Ala Phe Met Glu Ala Leu Gln Ala Gly Ala Asp Ile	115	120	125	
Ser Met Ile Gly Gln Phe Gly Val Gly Phe Tyr Ser Ala Tyr Leu Val	130	135	140	
Ala Glu Lys Val Thr Val Ile Thr Lys His Asn Asp Asp Glu Gln Tyr	145	150	155	160
Ala Trp Glu Ser Ser Ala Gly Gly Ser Phe Thr Val Arg Thr Asp Thr	165	170	175	
Gly Glu Pro Met Gly Arg Gly Thr Lys Val Ile Leu His Leu Lys Glu	180	185	190	
Asp Gln Thr Glu Tyr Leu Glu Glu Arg Arg Ile Lys Glu Ile Val Lys	195	200	205	
Lys His Ser Gln Phe Ile Gly Tyr Pro Ile Thr Leu Phe Val Glu Lys	210	215	220	
Glu Arg Asp Lys Glu Val Ser Asp Asp Glu Ala Glu Glu Lys Glu Asp	225	230	235	240
Lys Glu Glu Glu Lys Glu Glu Lys Glu Ser Glu Asp Lys Pro	245	250	255	
Glu Ile Glu Asp Val Gly Ser Asp Glu Glu Glu Glu Lys Lys Asp Gly	260	265	270	
Asp Lys Lys Lys Lys Lys Ile Lys Glu Lys Tyr Ile Asp Gln Glu	275	280	285	
Glu Leu Asn Lys Thr Lys Pro Ile Trp Thr Arg Asn Pro Asp Asp Ile	290	295	300	
Thr Asn Glu Glu Tyr Gly Glu Phe Tyr Lys Ser Leu Thr Asn Asp Trp	305	310	315	320
Glu Asp His Leu Ala Val Lys His Phe Ser Val Glu Gly Gln Leu Glu	325	330	335	
Phe Arg Ala Leu Leu Phe Val Pro Arg Arg Ala Pro Phe Asp Leu Phe	340	345	350	
Glu Asn Arg Lys Lys Lys Asn Asn Ile Lys Leu Tyr Val Arg Arg Val	355	360	365	
Phe Ile Met Asp Asn Cys Glu Glu Leu Ile Pro Glu Tyr Leu Asn Phe	370	375	380	
Ile Arg Gly Val Val Asp Ser Glu Asp Leu Pro Leu Asn Ile Ser Arg	385	390	395	400
Glu Met Leu Gln Gln Ser Lys Ile Leu Lys Val Ile Arg Lys Asn Leu	405	410	415	
Val Lys Lys Cys Leu Glu Leu Phe Thr Glu Leu Ala Glu Asp Lys Glu	420	425	430	
Asn Tyr Lys Lys Phe Tyr Glu Gln Phe Ser Lys Asn Ile Lys Leu Gly	435	440	445	
Ile His Glu Asp Ser Gln Asn Arg Lys Lys Leu Ser Glu Leu Leu Arg	450	455	460	
Tyr Tyr Thr Ser Ala Ser Gly Asp Glu Met Val Ser Leu Lys Asp Tyr	465	470	475	480
Cys Thr Arg Met Lys Glu Asn Gln Lys His Ile Tyr Tyr Ile Thr Gly	485	490	495	
Glu Thr Lys Asp Gln Val Ala Asn Ser Ala Phe Val Glu Arg Leu Arg	500	505	510	

Sequence listing.txt

Lys His Gly Leu Glu Val Ile Tyr Met Ile Glu Pro Ile Asp Glu Tyr
 515 520 525
 Cys Val Gln Gln Leu Lys Glu Phe Glu Gly Lys Thr Leu Val Ser Val
 530 535 540
 Thr Lys Glu Gly Leu Glu Leu Pro Glu Asp Glu Glu Glu Lys Lys Lys
 545 550 555 560
 Gln Glu Glu Lys Lys Thr Lys Phe Glu Asn Leu Cys Lys Ile Met Lys
 565 570 575
 Asp Ile Leu Glu Lys Lys Val Glu Lys Val Val Val Ser Asn Arg Leu
 580 585 590
 Val Thr Ser Pro Cys Cys Ile Val Thr Ser Thr Tyr Gly Trp Thr Ala
 595 600 605
 Asn Met Glu Arg Ile Met Lys Ala Gln Ala Leu Arg Asp Asn Ser Thr
 610 615 620
 Met Gly Tyr Met Ala Ala Lys Lys His Leu Glu Ile Asn Pro Asp His
 625 630 635 640
 Ser Ile Ile Glu Thr Leu Arg Gln Lys Ala Glu Ala Asp Lys Asn Asp
 645 650 655
 Lys Ser Val Lys Asp Leu Val Ile Leu Leu Tyr Glu Thr Ala Leu Leu
 660 665 670
 Ser Ser Gly Phe Ser Leu Glu Asp Pro Gln Thr His Ala Asn Arg Ile
 675 680 685
 Tyr Arg Met Ile Lys Leu Gly Leu Gly Ile Asp Glu Asp Asp Pro Thr
 690 695 700
 Ala Asp Asp Thr Ser Ala Ala Val Thr Glu Glu Met Pro Pro Leu Glu
 705 710 715 720
 Gly Asp Asp Asp Thr Ser Arg Met Glu Glu Val Asp
 725 730

<210> 108

<211> 1361

<212> PRT

<213> Homo sapiens

<400> 108

Met Gly Ala Ala Gly Arg Gln Asp Phe Leu Phe Lys Ala Met Leu Thr
 1 5 10 15
 Ile Ser Trp Leu Thr Leu Thr Cys Phe Pro Gly Ala Thr Ser Thr Val
 20 25 30
 Ala Ala Gly Cys Pro Asp Gln Ser Pro Glu Leu Gln Pro Trp Asn Pro
 35 40 45
 Gly His Asp Gln Asp His His Val His Ile Gly Gln Gly Lys Thr Leu
 50 55 60
 Leu Leu Thr Ser Ser Ala Thr Val Tyr Ser Ile His Ile Ser Glu Gly
 65 70 75 80
 Gly Lys Leu Val Ile Lys Asp His Asp Glu Pro Ile Val Leu Arg Thr
 85 90 95
 Arg His Ile Leu Ile Asp Asn Gly Glu Leu His Ala Gly Ser Ala
 100 105 110
 Leu Cys Pro Phe Gln Gly Asn Phe Thr Ile Ile Leu Tyr Gly Arg Ala
 115 120 125
 Asp Glu Gly Ile Gln Pro Asp Pro Tyr Tyr Gly Leu Lys Tyr Ile Gly
 130 135 140
 Val Gly Lys Gly Gly Ala Leu Glu Leu His Gly Gln Lys Lys Leu Ser
 145 150 155 160
 Trp Thr Phe Leu Asn Lys Thr Leu His Pro Gly Gly Met Ala Glu Gly
 165 170 175
 Gly Tyr Phe Phe Glu Arg Ser Trp Gly His Arg Gly Val Ile Val His
 180 185 190
 Val Ile Asp Pro Lys Ser Gly Thr Val Ile His Ser Asp Arg Phe Asp
 195 200 205
 Thr Tyr Arg Ser Lys Lys Glu Ser Glu Arg Leu Val Gln Tyr Leu Asn

Sequence listing.txt

210	215	220	
Ala Val Pro Asp Gly Arg Ile Leu Ser Val	Ala Val Asn Asp Glu Gly		
225	230	235	
Ser Arg Asn Leu Asp Asp Met Ala Arg Lys	Ala Met Thr Lys Leu Gly	240	
245	250	255	
Ser Lys His Phe Leu His Leu Gly Phe Arg His	Pro Trp Ser Phe Leu		
260	265	270	
Thr Val Lys Gly Asn Pro Ser Ser Val Glu Asp	His Ile Glu Tyr		
275	280	285	
His Gly His Arg Gly Ser Ala Ala Ala Arg Val	Phe Lys Leu Phe Gln		
290	295	300	
Thr Glu His Gly Glu Tyr Phe Asn Val Ser	Leu Ser Ser Glu Trp Val		
305	310	315	320
Gln Asp Val Glu Trp Thr Glu Trp Phe Asp His	Asp Lys Val Ser Gln		
325	330	335	
Thr Lys Gly Gly Glu Lys Ile Ser Asp Leu Trp	Lys Ala His Pro Gly		
340	345	350	
Lys Ile Cys Asn Arg Pro Ile Asp Ile Gln Ala	Thr Thr Met Asp Gly		
355	360	365	
Val Asn Leu Ser Thr Glu Val Val Tyr Lys	Gly Gln Asp Tyr Arg		
370	375	380	
Phe Ala Cys Tyr Asp Arg Gly Arg Ala Cys Arg	Ser Tyr Arg Val Arg		
385	390	395	400
Phe Leu Cys Gly Lys Pro Val Arg Pro	Lys Leu Thr Val Thr Ile Asp		
405	410	415	
Thr Asn Val Asn Ser Thr Ile Leu Asn Leu Glu	Asp Asn Val Gln Ser		
420	425	430	
Trp Lys Pro Gly Asp Thr Leu Val Ile Ala Ser	Thr Asp Tyr Ser Met		
435	440	445	
Tyr Gln Ala Glu Glu Phe Gln Val Leu Pro Cys	Arg Ser Cys Ala Pro		
450	455	460	
Asn Gln Val Lys Val Ala Gly Lys Pro Met	Tyr Leu His Ile Gly Glu		
465	470	475	480
Glu Ile Asp Gly Val Asp Met Arg Ala Glu Val	Gly Leu Leu Ser Arg		
485	490	495	
Asn Ile Ile Val Met Gly Glu Met Glu Asp Lys	Cys Tyr Pro Tyr Arg		
500	505	510	
Asn His Ile Cys Asn Phe Phe Asp Phe Asp Thr	Phe Gly Gly His Ile		
515	520	525	
Lys Phe Ala Leu Gly Phe Lys Ala Ala His	Leu Glu Gly Thr Glu Leu		
530	535	540	
Lys His Met Gly Gln Gln Leu Val Gly Gln	Tyr Pro Ile His Phe His		
545	550	555	560
Leu Ala Gly Asp Val Asp Glu Arg Gly	Gly Tyr Asp Pro Pro Thr Tyr		
565	570	575	
Ile Arg Asp Leu Ser Ile His His Thr Phe	Ser Arg Cys Val Thr Val		
580	585	590	
His Gly Ser Asn Gly Leu Leu Ile Lys Asp Val	Val Gly Tyr Asn Ser		
595	600	605	
Leu Gly His Cys Phe Phe Thr Glu Asp Gly	Pro Glu Glu Arg Asn Thr		
610	615	620	
Phe Asp His Cys Leu Gly Leu Leu Val Lys	Ser Gly Thr Leu Leu Pro		
625	630	635	640
Ser Asp Arg Asp Ser Lys Met Cys Lys	Met Ile Thr Glu Asp Ser Tyr		
645	650	655	
Pro Gly Tyr Ile Pro Lys Pro Arg Gln Asp Cys	Asn Ala Val Ser Thr		
660	665	670	
Phe Trp Met Ala Asn Pro Asn Asn Asn Leu	Ile Asn Cys Ala Ala Ala		
675	680	685	
Gly Ser Glu Glu Thr Gly Phe Trp Phe Ile Phe	His His Val Pro Thr		
690	695	700	
Gly Pro Ser Val Gly Met Tyr Ser Pro Gly	Tyr Ser Glu His Ile Pro		
705	710	715	720

Sequence listing.txt

Leu Gly Lys Phe Tyr Asn Asn Arg Ala His Ser Asn Tyr Arg Ala Gly
 725 730 735
 Met Ile Ile Asp Asn Gly Val Lys Thr Thr Glu Ala Ser Ala Lys Asp
 740 745 750
 Lys Arg Pro Phe Leu Ser Ile Ile Ser Ala Arg Tyr Ser Pro His Gln
 755 760 765
 Asp Ala Asp Pro Leu Lys Pro Arg Glu Pro Ala Ile Ile Arg His Phe
 770 775 780
 Ile Ala Tyr Lys Asn Gln Asp His Gly Ala Trp Leu Arg Gly Gly Asp
 785 790 795 800
 Val Trp Leu Asp Ser Cys Arg Phe Ala Asp Asn Gly Ile Gly Leu Thr
 805 810 815
 Leu Ala Ser Gly Gly Thr Phe Pro Tyr Asp Asp Gly Ser Lys Gln Glu
 820 825 830
 Ile Lys Asn Ser Leu Phe Val Gly Glu Ser Gly Asn Val Gly Thr Glu
 835 840 845
 Met Met Asp Asn Arg Ile Trp Gly Pro Gly Gly Leu Asp His Ser Gly
 850 855 860
 Arg Thr Leu Pro Ile Gly Gln Asn Phe Pro Ile Arg Gly Ile Gln Leu
 865 870 875 880
 Tyr Asp Gly Pro Ile Asn Ile Gln Asn Cys Thr Phe Arg Lys Phe Val
 885 890 895
 Ala Leu Glu Gly Arg His Thr Ser Ala Leu Ala Phe Arg Leu Asn Asn
 900 905 910
 Ala Trp Gln Ser Cys Pro His Asn Asn Val Thr Gly Ile Ala Phe Glu
 915 920 925
 Asp Val Pro Ile Thr Ser Arg Val Phe Phe Gly Glu Pro Gly Pro Trp
 930 935 940
 Phe Asn Gln Leu Asp Met Asp Gly Asp Lys Thr Ser Val Phe His Asp
 945 950 955 960
 Val Asp Gly Ser Val Ser Glu Tyr Pro Gly Ser Tyr Leu Thr Lys Asn
 965 970 975
 Asp Asn Trp Leu Val Arg His Pro Asp Cys Ile Asn Val Pro Asp Trp
 980 985 990
 Arg Gly Ala Ile Cys Ser Gly Cys Tyr Ala Gln Met Tyr Ile Gln Ala
 995 1000 1005
 Tyr Lys Thr Ser Asn Leu Arg Met Lys Ile Ile Lys Asn Asp Phe Pro
 1010 1015 1020
 Ser His Pro Leu Tyr Leu Glu Gly Ala Leu Thr Arg Ser Thr His Tyr
 1025 1030 1035 1040
 Gln Gln Tyr Gln Pro Val Val Thr Leu Gln Lys Gly Tyr Thr Ile His
 1045 1050 1055
 Trp Asp Gln Thr Ala Pro Ala Glu Leu Ala Ile Trp Leu Ile Asn Phe
 1060 1065 1070
 Asn Lys Gly Asp Trp Ile Arg Val Gly Leu Cys Tyr Pro Arg Gly Thr
 1075 1080 1085
 Thr Phe Ser Ile Leu Ser Asp Val His Asn Arg Leu Leu Lys Gln Thr
 1090 1095 1100
 Ser Lys Thr Gly Val Phe Val Arg Thr Leu Gln Met Asp Lys Val Glu
 1105 1110 1115 1120
 Gln Ser Tyr Pro Gly Arg Ser His Tyr Tyr Trp Asp Glu Asp Ser Gly
 1125 1130 1135
 Leu Leu Phe Leu Lys Leu Lys Ala Gln Asn Glu Arg Glu Lys Phe Ala
 1140 1145 1150
 Phe Cys Ser Met Lys Gly Cys Glu Arg Ile Lys Ile Lys Ala Leu Ile
 1155 1160 1165
 Pro Lys Asn Ala Gly Val Ser Asp Cys Thr Ala Thr Ala Tyr Pro Lys
 1170 1175 1180
 Phe Thr Glu Arg Ala Val Val Asp Val Pro Met Pro Lys Lys Leu Phe
 1185 1190 1195 1200
 Gly Ser Gln Leu Lys Thr Lys Asp His Phe Leu Glu Val Lys Met Glu
 1205 1210 1215
 Ser Ser Lys Gln His Phe Phe His Leu Trp Asn Asp Phe Ala Tyr Ile

Sequence listing.txt

1220	1225	1230
Glu Val Asp Gly Lys Lys Tyr Pro Ser Ser Glu Asp Gly Ile Gln Val		
1235	1240	1245
Val Val Ile Asp Gly Asn Gln Gly Arg Val Val Ser His Thr Ser Phe		
1250	1255	1260
Arg Asn Ser Ile Leu Gln Gly Ile Pro Trp Gln Leu Phe Asn Tyr Val		
1265	1270	1275
Ala Thr Ile Pro Asp Asn Ser Ile Val Leu Met Ala Ser Lys Gly Arg		
1285	1290	1295
Tyr Val Ser Arg Gly Pro Trp Thr Arg Val Leu Glu Lys Leu Gly Ala		
1300	1305	1310
Asp Arg Gly Leu Lys Leu Lys Glu Gln Met Ala Phe Val Gly Phe Lys		
1315	1320	1325
Gly Ser Phe Arg Pro Ile Trp Val Thr Leu Asp Thr Glu Asp His Lys		
1330	1335	1340
Ala Lys Ile Phe Gln Val Val Pro Ile Pro Val Val Lys Lys Lys Lys		
1345	1350	1355
Leu		1360

<210> 109
<211> 469
<212> PRT
<213> Homo sapiens

<400> 109			
Met His Ser Phe Pro Pro Leu Leu Leu Leu Leu Phe Trp Gly Val Val			
1	5	10	15
Ser His Ser Phe Pro Ala Thr Leu Glu Thr Gln Glu Gln Asp Val Asp			
20	25	30	
Leu Val Gln Lys Tyr Leu Glu Lys Tyr Tyr Asn Leu Lys Asn Asp Gly			
35	40	45	
Arg Gln Val Glu Lys Arg Arg Asn Ser Gly Pro Val Val Glu Lys Leu			
50	55	60	
Lys Gln Met Gln Glu Phe Phe Gly Leu Lys Val Thr Gly Lys Pro Asp			
65	70	75	80
Ala Glu Thr Leu Lys Val Met Lys Gln Pro Arg Cys Gly Val Pro Asp			
85	90	95	
Val Ala Gln Phe Val Leu Thr Glu Gly Asn Pro Arg Trp Glu Gln Thr			
100	105	110	
His Leu Thr Tyr Arg Ile Glu Asn Tyr Thr Pro Asp Leu Pro Arg Ala			
115	120	125	
Asp Val Asp His Ala Ile Glu Lys Ala Phe Gln Leu Trp Ser Asn Val			
130	135	140	
Thr Pro Leu Thr Phe Thr Lys Val Ser Glu Gly Gln Ala Asp Ile Met			
145	150	155	160
Ile Ser Phe Val Arg Gly Asp His Arg Asp Asn Ser Pro Phe Asp Gly			
165	170	175	
Pro Gly Gly Asn Leu Ala His Ala Phe Gln Pro Gly Pro Gly Ile Gly			
180	185	190	
Gly Asp Ala His Phe Asp Glu Asp Glu Arg Trp Thr Asn Asn Phe Arg			
195	200	205	
Glu Tyr Asn Leu His Arg Val Ala Ala His Glu Leu Gly His Ser Leu			
210	215	220	
Gly Leu Ser His Ser Thr Asp Ile Gly Ala Leu Met Tyr Pro Ser Tyr			
225	230	235	240
Thr Phe Ser Gly Asp Val Gln Leu Ala Gln Asp Asp Ile Asp Gly Ile			
245	250	255	
Gln Ala Ile Tyr Gly Arg Ser Gln Asn Pro Val Gln Pro Ile Gly Pro			
260	265	270	
Gln Thr Pro Lys Ala Cys Asp Ser Lys Leu Thr Phe Asp Ala Ile Thr			
275	280	285	

Sequence listing.txt

Thr Ile Arg Gly Glu Val Met Phe Phe Lys Asp Arg Phe Tyr Met Arg
 290 295 300
 Thr Asn Pro Phe Tyr Pro Glu Val Glu Leu Asn Phe Ile Ser Val Phe
 305 310 315 320
 Trp Pro Gln Leu Pro Asn Gly Leu Glu Ala Ala Tyr Glu Phe Ala Asp
 325 330 335
 Arg Asp Glu Val Arg Phe Phe Lys Gly Asn Lys Tyr Trp Ala Val Gln
 340 345 350
 Gly Gln Asn Val Leu His Gly Tyr Pro Lys Asp Ile Tyr Ser Ser Phe
 355 360 365
 Gly Phe Pro Arg Thr Val Lys His Ile Asp Ala Ala Leu Ser Glu Glu
 370 375 380
 Asn Thr Gly Lys Thr Tyr Phe Phe Val Ala Asn Lys Tyr Trp Arg Tyr
 385 390 395 400
 Asp Glu Tyr Lys Arg Ser Met Asp Pro Gly Tyr Pro Lys Met Ile Ala
 405 410 415
 His Asp Phe Pro Gly Ile Gly His Lys Val Asp Ala Val Phe Met Lys
 420 425 430
 Asp Gly Phe Phe Tyr Phe His Gly Thr Arg Gln Tyr Lys Phe Asp
 435 440 445
 Pro Lys Thr Lys Arg Ile Leu Thr Leu Gln Lys Ala Asn Ser Trp Phe
 450 455 460
 Asn Cys Arg Lys Asn
 465

<210> 110
 <211> 267
 <212> PRT
 <213> Homo sapiens

<400> 110
 Met Arg Leu Thr Val Leu Cys Ala Val Cys Leu Leu Pro Gly Ser Leu
 1 5 10 15
 Ala Leu Pro Leu Pro Gln Glu Ala Gly Gly Met Ser Glu Leu Gln Trp
 20 25 30
 Glu Gln Ala Gln Asp Tyr Leu Lys Arg Phe Tyr Leu Tyr Asp Ser Glu
 35 40 45
 Thr Lys Asn Ala Asn Ser Leu Glu Ala Lys Leu Lys Glu Met Gln Lys
 50 55 60
 Phe Phe Gly Leu Pro Ile Thr Gly Met Leu Asn Ser Arg Val Ile Glu
 65 70 75 80
 Ile Met Gln Lys Pro Arg Cys Gly Val Pro Asp Val Ala Glu Tyr Ser
 85 90 95
 Leu Phe Pro Asn Ser Pro Lys Trp Thr Ser Lys Val Val Thr Tyr Arg
 100 105 110
 Ile Val Ser Tyr Thr Arg Asp Leu Pro His Ile Thr Val Asp Arg Leu
 115 120 125
 Val Ser Lys Ala Leu Asn Met Trp Gly Lys Glu Ile Pro Leu His Phe
 130 135 140
 Arg Lys Val Val Trp Gly Thr Ala Asp Ile Met Ile Gly Phe Ala Arg
 145 150 155 160
 Gly Ala His Gly Asp Ser Tyr Pro Phe Asp Gly Pro Gly Asn Thr Leu
 165 170 175
 Ala His Ala Phe Ala Pro Gly Thr Gly Leu Gly Gly Asp Ala His Phe
 180 185 190
 Asp Glu Asp Glu Arg Trp Thr Asp Gly Ser Ser Leu Gly Ile Asn Phe
 195 200 205
 Leu Tyr Ala Ala Thr His Glu Leu Gly His Ser Leu Gly Met Gly His
 210 215 220
 Ser Ser Asp Pro Asn Ala Val Met Tyr Pro Thr Tyr Gly Asn Gly Asp
 225 230 235 240
 Pro Gln Asn Phe Lys Leu Ser Gln Asp Asp Ile Lys Gly Ile Gln Lys

Sequence listing.txt

245

250

255

Leu Tyr Gly Lys Arg Ser Asn Ser Arg Lys Lys
 260 265

<210> 111

<211> 216

<212> PRT

<213> Homo sapiens

<400> 111

Met Arg Pro Arg Ser Gly Pro Thr Arg Asn Pro Arg Leu Arg Ala Phe
 1 5 10 15
 Ala Gly Val Pro Thr Arg Gly Arg Thr Arg Gly Gln Ser Arg Arg Cys
 20 25 30
 Ala Ala Glu Ala Ser Ala Gly Pro Glu Arg Asp Ala Arg Pro Gly Ala
 35 40 45
 Pro Ala Ala Gly Thr Met Gly Ala Ala His Ser Ala Ser Glu Glu Val
 50 55 60
 Arg Glu Leu Glu Gly Lys Thr Gly Phe Ser Ser Asp Gln Ile Glu Gln
 65 70 75 80
 Leu His Arg Arg Phe Lys Gln Leu Ser Gly Asp Gln Pro Thr Ile Arg
 85 90 95
 Lys Glu Asn Phe Asn Asn Val Pro Asp Leu Glu Leu Asn Pro Ile Arg
 100 105 110
 Ser Lys Ile Val Arg Ala Phe Phe Asp Asn Arg Asn Leu Arg Lys Gly
 115 120 125
 Pro Ser Gly Leu Ala Asp Glu Ile Asn Phe Glu Asp Phe Leu Thr Ile
 130 135 140
 Met Ser Tyr Phe Arg Pro Ile Asp Thr Thr Met Asp Glu Glu Gln Val
 145 150 155 160
 Glu Leu Ser Arg Lys Glu Lys Leu Arg Phe Leu Phe His Met Tyr Asp
 165 170 175
 Ser Asp Ser Asp Gly Arg Ile Thr Leu Glu Tyr Arg Asn Val Lys
 180 185 190
 Trp Ser Arg Ser Cys Cys Arg Glu Thr Leu Thr Ser Arg Arg Ser Pro
 195 200 205
 Leu Ala Pro Ser Pro Thr Gly Pro
 210 215

<210> 112

<211> 422

<212> PRT

<213> Homo sapiens

<400> 112

Met Asn Ser Gly His Ser Phe Ser Gln Thr Pro Ser Ala Ser Phe His
 1 5 10 15
 Gly Ala Gly Gly Gly Trp Gly Arg Pro Arg Ser Phe Pro Arg Ala Pro
 20 25 30
 Thr Val His Gly Gly Ala Gly Gly Ala Arg Ile Ser Leu Ser Phe Thr
 35 40 45
 Thr Arg Ser Cys Pro Pro Pro Gly Gly Ser Trp Gly Ser Gly Arg Ser
 50 55 60
 Ser Pro Leu Leu Gly Gly Asn Gly Lys Ala Thr Met Gln Asn Leu Asn
 65 70 75 80
 Asp Arg Leu Ala Ser Tyr Val Glu Lys Val Arg Ala Leu Glu Glu Ala
 85 90 95
 Asn Met Lys Leu Glu Ser Arg Ile Leu Lys Trp His Gln Gln Arg Asp
 100 105 110
 Pro Gly Ser Lys Lys Asp Tyr Ser Gln Tyr Glu Glu Asn Ile Thr His
 115 120 125

Sequence listing.txt

Leu Gln Glu Gln Ile Val Asp Gly Lys Met Thr Asn Ala Gln Ile Ile
 130 135 140
 Leu Leu Ile Asp Asn Ala Arg Met Ala Val Asp Asp Phe Asn Leu Lys
 145 150 155 160
 Tyr Glu Asn Glu His Ser Phe Lys Lys Asp Leu Glu Ile Glu Val Glu
 165 170 175
 Gly Leu Arg Arg Thr Leu Asp Asn Leu Thr Ile Val Thr Thr Asp Leu
 180 185 190
 Glu Gln Glu Val Glu Gly Met Arg Lys Glu Leu Ile Leu Met Lys Lys
 195 200 205
 His His Glu Gln Glu Met Glu Lys His His Val Pro Ser Asp Phe Asn
 210 215 220
 Val Asn Val Lys Val Asp Thr Gly Pro Arg Glu Asp Leu Ile Lys Val
 225 230 235 240
 Leu Glu Asp Met Arg Gln Glu Tyr Glu Leu Ile Ile Lys Lys His
 245 250 255
 Arg Asp Leu Asp Thr Trp Tyr Lys Glu Gln Ser Ala Ala Met Ser Gln
 260 265 270
 Glu Ala Ala Ser Pro Ala Thr Val Gln Ser Arg Gln Gly Asp Ile His
 275 280 285
 Glu Leu Lys Arg Thr Phe Gln Ala Leu Glu Ile Asp Leu Gln Thr Gln
 290 295 300
 Tyr Ser Thr Lys Ser Ala Leu Glu Asn Met Leu Ser Glu Thr Gln Ser
 305 310 315 320
 Arg Tyr Ser Cys Lys Leu Gln Asp Met Gln Glu Ile Ile Ser His Tyr
 325 330 335
 Glu Glu Glu Leu Thr Gln Leu Arg His Glu Leu Glu Arg Gln Asn Asn
 340 345 350
 Glu Tyr Gln Val Leu Leu Gly Ile Lys Thr His Leu Glu Lys Glu Ile
 355 360 365
 Thr Thr Tyr Arg Arg Leu Leu Glu Gly Glu Ser Glu Gly Thr Arg Glu
 370 375 380
 Glu Ser Lys Ser Ser Met Lys Val Phe Ala Thr Pro Lys Ile Lys Ala
 385 390 395 400
 Ile Thr Gln Glu Thr Ile Asn Gly Arg Leu Val Leu Cys Gln Val Asn
 405 410 415
 Glu Ile Gln Lys His Ala
 420

<210> 113
 <211> 398
 <212> PRT
 <213> Homo sapiens

<400> 113
 Met Met Leu Lys Gly Ile Thr Arg Leu Ile Ser Arg Ile His Lys Leu
 1 5 10 15
 Asp Pro Gly Arg Phe Leu His Met Gly Thr Gln Ala Arg Gln Ser Ile
 20 25 30
 Ala Ala His Leu Asp Asn Gln Val Pro Val Glu Ser Pro Arg Ala Ile
 35 40 45
 Ser Arg Thr Asn Glu Asn Asp Pro Ala Lys His Gly Asp Gln His Glu
 50 55 60
 Gly Gln His Tyr Asn Ile Ser Pro Gln Asp Leu Glu Thr Val Phe Pro
 65 70 75 80
 His Gly Leu Pro Pro Arg Phe Val Met Gln Val Lys Thr Phe Ser Glu
 85 90 95
 Ala Cys Leu Met Val Arg Lys Pro Ala Leu Glu Leu Leu His Tyr Leu
 100 105 110
 Lys Asn Thr Ser Phe Ala Tyr Pro Ala Ile Arg Tyr Leu Leu Tyr Gly
 115 120 125
 Glu Lys Gly Thr Gly Lys Thr Leu Ser Leu Cys His Val Ile His Phe

Sequence listing.txt

130	135	140
Cys Ala Lys Gln Asp Trp Leu Ile Leu His Ile Pro Asp Ala His Leu	150	155
145		160
Trp Val Lys Asn Cys Arg Asp Leu Leu Gln Ser Ser Tyr Asn Lys Gln	165	175
Arg Phe Asp Gln Pro Leu Glu Ala Ser Thr Trp Leu Lys Asn Phe Lys	180	190
Thr Thr Asn Glu Arg Phe Leu Asn Gln Ile Lys Val Gln Glu Lys Tyr	185	195
195	200	205
Val Trp Asn Lys Arg Glu Ser Thr Glu Lys Gly Ser Pro Leu Gly Glu	210	215
210		220
Val Val Glu Gln Gly Ile Thr Arg Val Arg Asn Ala Thr Asp Ala Val	225	235
225	230	240
Gly Ile Val Leu Lys Glu Leu Lys Arg Gln Ser Ser Leu Gly Met Phe	245	255
245	250	255
His Leu Leu Val Ala Val Asp Gly Ile Asn Ala Leu Trp Gly Arg Thr	260	265
260	265	270
Thr Leu Lys Arg Glu Asp Lys Ser Pro Ile Ala Pro Glu Glu Leu Ala	275	280
275		285
Leu Val His Asn Leu Arg Lys Met Met Lys Asn Asp Trp His Gly Gly	290	295
290		300
Ala Ile Val Ser Ala Leu Ser Gln Thr Gly Ser Leu Phe Lys Pro Arg	305	310
305	310	320
Lys Ala Tyr Leu Pro Gln Glu Leu Leu Gly Lys Glu Gly Phe Asp Ala	325	330
325	330	335
Leu Asp Pro Phe Ile Pro Ile Leu Val Ser Asn Tyr Asn Pro Lys Glu	340	345
340		350
Phe Glu Ser Cys Ile Gln Tyr Tyr Leu Glu Asn Asn Trp Leu Gln His	355	360
355	360	365
Glu Lys Ala Pro Thr Glu Glu Gly Lys Lys Glu Leu Leu Phe Leu Ser	370	375
370	375	380
Asn Ala Asn Pro Ser Leu Leu Glu Arg His Cys Ala Tyr Leu	385	390
385		395

<210> 114

<211> 75

<212> PRT

<213> Homo sapiens

<400> 114

Met Leu Ser His Phe Arg Val Lys Val Lys Gly Phe Ile Leu Ile Ser	1	5	10	15
Lys Tyr Phe Asp Pro Tyr Asp Leu Val Ser Ser Tyr Pro Lys Tyr Gly	20	25	30	
Pro His Thr Ser Arg Thr Gly Ile Leu Trp Glu Leu Val Arg Asn Val	35	40	45	
Glu Ser Leu Val Leu Arg Phe Ser Lys Ser Glu Ser Ala Phe Ser Ser	50	55	60	
Ala Leu Leu Ala Ile His Met Phe Glu Lys Asp	65	70	75	

<210> 115

<211> 163

<212> PRT

<213> Homo sapiens

<400> 115

Met Ser Glu Ser Gly Phe Lys Leu Leu Cys Gln Cys Leu Gly Phe Gly	1	5	10	15
Ser Gly His Phe Arg Cys Asp Ser Ser Arg Trp Cys His Asp Asn Gly	20	25	30	

Sequence listing.txt

Val Asn Tyr Lys Ile Gly Glu Lys Trp Asp Arg Gln Gly Glu Asn Gly
35 40 45
Gln Met Met Ser Cys Thr Cys Leu Gly Asn Gly Lys Gly Glu Phe Lys
50 55 60
Cys Asp Pro His Glu Ala Thr Cys Tyr Asp Asp Gly Lys Thr Tyr His
65 70 75 80
Val Gly Glu Gln Trp Gln Lys Glu Tyr Leu Gly Ala Ile Cys Ser Cys
85 90 95
Thr Cys Phe Gly Gln Arg Gly Trp Arg Cys Asp Asn Cys Arg Arg
100 105 110
Pro Gly Glu Pro Ser Pro Glu Gly Thr Thr Gly Gln Ser Tyr Asn
115 120 125
Gln Tyr Ser Gln Arg Tyr His Gln Arg Thr Asn Thr Asn Val Asn Cys
130 135 140
Pro Ile Glu Cys Phe Met Pro Leu Asp Val Gln Ala Asp Arg Glu Asp
145 150 155 160
Ser Arg Glu

<210> 116
<211> 483
<212> PRT
<213> Homo sapiens

<400> 116
Met Ser Ile Arg Val Thr Gln Lys Ser Tyr Lys Val Ser Thr Ser Gly
1 5 10 15
Pro Arg Ala Phe Ser Ser Arg Ser Tyr Thr Ser Gly Pro Gly Ser Arg
20 25 30
Ile Ser Ser Ser Phe Ser Arg Val Gly Ser Ser Asn Phe Arg Gly
35 40 45
Gly Leu Gly Gly Tyr Gly Gly Ala Ser Gly Met Gly Gly Ile Thr
50 55 60
Ala Val Thr Val Asn Gln Ser Leu Leu Ser Pro Leu Val Leu Glu Val
65 70 75 80
Asp Pro Asn Ile Gln Ala Val Arg Thr Gln Glu Lys Glu Gln Ile Lys
85 90 95
Thr Leu Asn Asn Phe Ala Ser Phe Ile Asp Lys Val Arg Phe Leu
100 105 110
Glu Gln Gln Asn Lys Met Leu Glu Thr Lys Trp Ser Leu Leu Gln Gln
115 120 125
Gln Lys Thr Ala Arg Ser Asn Met Asp Asn Met Phe Glu Ser Tyr Ile
130 135 140
Asn Asn Leu Arg Arg Gln Leu Glu Thr Leu Gly Gln Glu Lys Leu Lys
145 150 155 160
Leu Glu Ala Glu Leu Gly Asn Met Gln Gly Leu Val Glu Asp Phe Lys
165 170 175
Asn Lys Tyr Glu Asp Glu Ile Asn Lys Arg Thr Glu Met Glu Asn Glu
180 185 190
Phe Val Leu Ile Lys Lys Asp Val Asp Glu Ala Tyr Met Asn Lys Val
195 200 205
Glu Leu Glu Ser Arg Leu Glu Gly Leu Thr Asp Glu Ile Asn Phe Leu
210 215 220
Arg Gln Leu Tyr Glu Glu Glu Ile Arg Glu Leu Gln Ser Gln Ile Ser
225 230 235 240
Asp Thr Ser Val Val Leu Ser Met Asp Asn Ser Arg Ser Leu Asp Met
245 250 255
Asp Ser Ile Ile Ala Glu Val Lys Ala Gln Tyr Glu Asp Ile Ala Asn
260 265 270
Arg Ser Arg Ala Glu Ala Glu Ser Met Tyr Gln Ile Lys Tyr Glu Glu
275 280 285
Leu Gln Ser Leu Ala Gly Lys His Gly Asp Asp Leu Arg Arg Thr Lys

Sequence listing.txt

290	295	300
Thr Glu Ile Ser Glu Met Asn Arg Asn Ile Ser Arg Leu Gln Ala Glu		
305	310	315
Ile Glu Gly Leu Lys Gly Gln Arg Ala Ser Leu Glu Ala Ala Ile Ala		
325	330	335
Asp Ala Glu Gln Arg Gly Glu Leu Ala Ile Lys Asp Ala Asn Ala Lys		
340	345	350
Leu Ser Glu Leu Glu Ala Ala Leu Gln Arg Ala Lys Gln Asp Met Ala		
355	360	365
Arg Gln Leu Arg Glu Tyr Gln Glu Leu Met Asn Val Lys Leu Ala Leu		
370	375	380
Asp Ile Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Ser		
385	390	395
Arg Leu Glu Ser Gly Met Gln Asn Met Ser Ile His Thr Lys Thr		
405	410	415
Ser Gly Tyr Ala Gly Gly Leu Ser Ser Ala Tyr Gly Gly Leu Thr Ser		
420	425	430
Pro Gly Leu Ser Tyr Ser Leu Gly Ser Ser Phe Gly Ser Gly Ala Gly		
435	440	445
Ser Ser Ser Phe Ser Arg Thr Ser Ser Ser Arg Ala Val Val Val Lys		
450	455	460
Lys Ile Glu Thr Arg Asp Gly Lys Leu Val Ser Glu Ser Ser Asp Val		
465	470	475
Leu Pro Lys		

<210> 117

<211> 430

<212> PRT

<213> Homo sapiens

<400> 117

Met Ser Phe Thr Thr Arg Ser Thr Phe Ser Thr Asn Tyr Arg Ser Leu			
1	5	10	15
Gly Ser Val Gln Ala Pro Ser Tyr Gly Ala Arg Pro Val Ser Ser Ala			
20	25	30	
Ala Ser Val Tyr Ala Gly Ala Gly Gly Ser Gly Ser Arg Ile Ser Val			
35	40	45	
Ser Arg Ser Thr Ser Phe Arg Gly Gly Met Gly Ser Gly Gly Leu Ala			
50	55	60	
Thr Gly Ile Ala Gly Gly Leu Ala Gly Met Gly Gly Ile Gln Asn Glu			
65	70	75	80
Lys Glu Thr Met Gln Ser Leu Asn Asp Arg Leu Ala Ser Tyr Leu Asp			
85	90	95	
Arg Val Arg Ser Leu Glu Thr Glu Asn Arg Arg Leu Glu Ser Lys Ile			
100	105	110	
Arg Glu His Leu Glu Lys Lys Gly Pro Gln Val Arg Asp Trp Ser His			
115	120	125	
Tyr Phe Lys Ile Ile Glu Asp Leu Arg Ala Gln Ile Phe Ala Asn Thr			
130	135	140	
Val Asp Asn Ala Arg Ile Val Leu Gln Ile Asp Asn Ala Arg Leu Ala			
145	150	155	160
Ala Asp Asp Phe Arg Val Lys Tyr Glu Thr Glu Leu Ala Met Arg Gln			
165	170	175	
Ser Val Glu Asn Asp Ile His Gly Leu Arg Lys Val Ile Asp Asp Thr			
180	185	190	
Asn Ile Thr Arg Leu Gln Leu Glu Thr Glu Ile Glu Ala Leu Lys Glu			
195	200	205	
Glu Leu Leu Phe Met Lys Lys Asn His Glu Glu Glu Val Lys Gly Leu			
210	215	220	
Gln Ala Gln Ile Ala Ser Ser Gly Leu Thr Val Glu Val Asp Ala Pro			
225	230	235	240

Sequence listing.txt

Lys Ser Gln Asp Leu Ala Lys Ile Met Ala Asp Ile Arg Ala Gln Tyr
 245 250 255
 Asp Glu Leu Ala Arg Lys Asn Arg Glu Glu Leu Asp Lys Tyr Trp Ser
 260 265 270
 Gln Gln Ile Glu Glu Ser Thr Thr Val Val Thr Thr Gln Ser Ala Glu
 275 280 285
 Val Gly Ala Ala Glu Thr Thr Leu Thr Glu Leu Arg Arg Thr Val Gln
 290 295 300
 Ser Leu Glu Ile Asp Leu Asp Ser Met Arg Asn Leu Lys Ala Ser Leu
 305 310 315 320
 Glu Asn Ser Leu Arg Glu Val Glu Ala Arg Tyr Ala Leu Gln Met Glu
 325 330 335
 Gln Leu Asn Gly Ile Leu Leu His Leu Glu Ser Glu Leu Ala Gln Thr
 340 345 350
 Arg Ala Glu Gly Gln Arg Gln Ala Gln Glu Tyr Glu Ala Leu Leu Asn
 355 360 365
 Ile Lys Val Lys Leu Glu Ala Glu Ile Ala Thr Tyr Arg Arg Leu Leu
 370 375 380
 Glu Asp Gly Glu Asp Phe Asn Leu Gly Asp Ala Leu Asp Ser Ser Asn
 385 390 395 400
 Ser Met Gln Thr Ile Gln Lys Thr Thr Arg Arg Ile Val Asp Gly
 405 410 415
 Lys Val Val Ser Glu Thr Asn Asp Thr Lys Val Leu Arg His
 420 425 430

<210> 118

<211> 400

<212> PRT

<213> Homo sapiens

<400> 118

Met Thr Ser Tyr Ser Tyr Arg Gln Ser Ser Ala Thr Ser Ser Phe Gly
 1 5 10 15
 Gly Leu Gly Gly Ser Val Arg Phe Gly Pro Gly Val Ala Phe Arg
 20 25 30
 Ala Pro Ser Ile His Gly Gly Ser Gly Gly Arg Gly Val Ser Val Ser
 35 40 45
 Ser Ala Arg Phe Val Ser Ser Ser Ser Gly Ala Tyr Gly Gly Gly
 50 55 60
 Tyr Gly Gly Val Leu Thr Ala Ser Asp Gly Leu Leu Ala Gly Asn Glu
 65 70 75 80
 Lys Leu Thr Met Gln Asn Leu Asn Asp Arg Leu Ala Ser Tyr Leu Asp
 85 90 95
 Lys Val Arg Ala Leu Glu Ala Ala Asn Gly Glu Leu Glu Val Lys Ile
 100 105 110
 Arg Asp Trp Tyr Gln Lys Gln Gly Pro Gly Pro Ser Arg Asp Tyr Ser
 115 120 125
 His Tyr Tyr Thr Thr Ile Gln Asp Leu Arg Asp Lys Ile Leu Gly Ala
 130 135 140
 Thr Ile Glu Asn Ser Arg Ile Val Leu Gln Ile Asp Asn Ala Arg Leu
 145 150 155 160
 Ala Ala Asp Asp Phe Arg Thr Lys Phe Glu Thr Glu Gln Ala Leu Arg
 165 170 175
 Met Ser Val Glu Ala Asp Ile Asn Gly Leu Arg Arg Val Leu Asp Glu
 180 185 190
 Leu Thr Leu Ala Arg Thr Asp Leu Glu Met Gln Ile Glu Gly Leu Lys
 195 200 205
 Glu Glu Leu Ala Tyr Leu Lys Lys Asn His Glu Glu Glu Ile Ser Thr
 210 215 220
 Leu Arg Gly Gln Val Gly Gly Gln Val Ser Val Glu Val Asp Ser Ala
 225 230 235 240
 Pro Gly Thr Asp Leu Ala Lys Ile Leu Ser Asp Met Arg Ser Gln Tyr

Sequence listing.txt

245	250	255		
Glu Val Met Ala Glu Gln Asn Arg Lys Asp Ala Glu Ala Trp Phe Thr	260	265	270	
Ser Arg Thr Glu Glu Leu Asn Arg Glu Val Ala Gly His Thr Glu Gln	275	280	285	
Leu Gln Met Ser Arg Ser Glu Val Thr Asp Leu Arg Arg Thr Leu Gln	290	295	300	
Gly Leu Glu Ile Glu Leu Gln Ser Gln Leu Ser Met Lys Ala Ala Leu	305	310	315	320
Glu Asp Thr Leu Ala Glu Thr Glu Ala Arg Phe Gly Ala Gln Leu Ala	325	330	335	
His Ile Gln Ala Leu Ile Ser Gly Ile Glu Ala Gln Leu Gly Asp Val	340	345	350	
Arg Ala Asp Ser Glu Arg Gln Asn Gln Glu Tyr Gln Arg Leu Met Asp	355	360	365	
Ile Lys Ser Arg Leu Glu Gln Glu Ile Ala Thr Tyr Arg Ser Leu Leu	370	375	380	
Glu Gly Gln Glu Asp His Tyr Asn Asn Leu Ser Ala Ser Lys Val Leu	385	390	395	400

<210> 119

<211> 424

<212> PRT

<213> Homo sapiens

<400> 119

Met Asp Phe Ser Arg Arg Ser Phe His Arg Ser Leu Ser Ser Leu	1	5	10	15
Gln Ala Pro val Val Ser Thr Val Gly Met Gln Arg Leu Gly Thr Thr	20	25	30	
Pro Ser Val Tyr Gly Gly Ala Gly Arg Gly Ile Arg Ile Ser Asn	35	40	45	
Ser Arg His Thr Val Asn Tyr Gly Ser Asp Leu Thr Gly Gly Asp	50	55	60	
Leu Phe Val Gly Asn Glu Lys Met Ala Met Gln Asn Leu Asn Asp Arg	65	70	75	80
Leu Ala Ser Tyr Leu Glu Lys Val Arg Thr Leu Glu Gln Ser Asn Ser	85	90	95	
Lys Leu Glu Val Gln Ile Lys Gln Trp Tyr Glu Thr Asn Ala Pro Arg	100	105	110	
Ala Gly Arg Asp Tyr Ser Ala Tyr Tyr Arg Gln Ile Glu Glu Leu Arg	115	120	125	
Ser Gln Ile Lys Asp Ala Gln Leu Gln Asn Ala Arg Cys Val Leu Gln	130	135	140	
Ile Asp Asn Ala Lys Leu Ala Ala Glu Asp Phe Arg Leu Lys Tyr Glu	145	150	155	160
Thr Glu Arg Gly Ile Arg Leu Thr Val Glu Ala Asp Leu Gln Gly Leu	165	170	175	
Asn Lys Val Phe Asp Asp Leu Thr Leu His Lys Thr Asp Leu Glu Ile	180	185	190	
Gln Ile Glu Glu Leu Asn Lys Asp Leu Ala Leu Leu Lys Lys Glu His	195	200	205	
Gln Glu Glu val Asp Gly Leu His Lys His Leu Gly Asn Thr Val Asn	210	215	220	
Val Glu Val Asp Ala Ala Pro Gly Leu Asn Leu Gly Val Ile Met Asn	225	230	235	240
Glu Met Arg Gln Lys Tyr Glu Val Met Ala Gln Lys Asn Leu Gln Glu	245	250	255	
Ala Lys Glu Gln Phe Glu Arg Gln Thr Ala Val Leu Gln Gln Val	260	265	270	
Thr Val Asn Thr Glu Glu Leu Lys Gly Thr Glu Val Gln Leu Thr Glu	275	280	285	

Sequence listing.txt

Leu Arg Arg Thr Ser Gln Ser Leu Glu Ile Glu Leu Gln Ser His Leu
 290 295 300
 Ser Met Lys Glu Ser Leu Glu His Thr Leu Glu Glu Thr Lys Ala Arg
 305 310 315 320
 Tyr Ser Ser Gln Leu Ala Asn Leu Gln Ser Leu Leu Ser Ser Leu Glu
 325 330 335
 Ala Gln Leu Met Gln Ile Arg Ser Asn Met Glu Arg Gln Asn Asn Glu
 340 345 350
 Tyr His Ile Leu Leu Asp Ile Lys Thr Arg Leu Glu Gln Glu Ile Ala
 355 360 365
 Thr Tyr Arg Arg Leu Leu Gly Glu Asp Val Lys Thr Thr Glu Tyr
 370 375 380
 Gln Leu Ser Thr Leu Glu Glu Arg Asp Ile Lys Lys Thr Arg Lys Ile
 385 390 395 400
 Lys Thr Val Val Gln Glu Val Val Asp Gly Lys Val Val Ser Ser Glu
 405 410 415
 Val Lys Glu Val Glu Glu Asn Ile
 420

<210> 120
 <211> 1255
 <212> PRT
 <213> Homo sapiens

<400> 120
 Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
 1 5 10 15
 Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly
 20 25 30
 Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser
 35 40 45
 Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His
 50 55 60
 Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu
 65 70 75 80
 Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln
 85 90 95
 Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Thr
 100 105 110
 Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Lys Pro Ala Pro
 115 120 125
 Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr
 130 135 140
 Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser
 145 150 155 160
 Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His
 165 170 175
 Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala
 180 185 190
 Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro
 195 200 205
 Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr
 210 215 220
 Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser
 225 230 235 240
 Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His
 245 250 255
 Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala
 260 265 270
 Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro
 275 280 285
 Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr

Sequence listing.txt

290	295	300
Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser	310	315
305		320
Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His	325	330
	330	335
Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala	340	345
	345	350
355		
Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro	360	365
	365	
Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr	370	375
	380	
370		
Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser	390	395
385		400
Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His	405	410
	410	415
Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala	420	425
	430	
420		
Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro	435	440
	445	
Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr	450	455
	460	
450		
Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser	470	475
465		480
Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His	485	490
	490	495
Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala	500	505
	510	
500		
Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro	515	520
	525	
Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr	530	535
	540	
530		
Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser	550	555
545		560
Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His	565	570
	570	575
Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala	580	585
	590	
580		
Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro	595	600
	605	
Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr	610	615
	620	
610		
Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser	630	635
625		640
Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His	645	650
	650	655
Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala	660	665
	670	
660		
Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro	675	680
	685	
Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr	690	695
	700	
690		
Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser	710	715
705		720
Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His	725	730
	730	735
Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala	740	745
	750	
740		
Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro	755	760
	765	
Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr	770	775
	780	
770		
Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser	790	795
	800	
785		

Sequence listing.txt

Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His
 805 810 815
 Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala
 820 825 830
 Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro
 835 840 845
 Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr
 850 855 860
 Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser
 865 870 875 880
 Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His
 885 890 895
 Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala
 900 905 910
 Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro
 915 920 925
 Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn
 930 935 940
 Arg Pro Ala Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser
 945 950 955 960
 Ala Ser Gly Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly
 965 970 975
 Thr Ser Ala Arg Ala Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe
 980 985 990
 Ser Ile Pro Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His
 995 1000 1005
 Ser Thr Lys Thr Asp Ala Ser Ser Thr His His Ser Ser Val Pro Pro
 1010 1015 1020
 Leu Thr Ser Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val
 1025 1030 1035 1040
 Ser Phe Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser
 1045 1050 1055
 Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp
 1060 1065 1070
 Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly
 1075 1080 1085
 Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr
 1090 1095 1100
 Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln
 1105 1110 1115 1120
 Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile
 1125 1130 1135
 Ser Asp Val Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser
 1140 1145 1150
 Gly Ala Gly Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys
 1155 1160 1165
 Val Leu Val Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys
 1170 1175 1180
 Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg
 1185 1190 1195 1200
 Asp Thr Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly
 1205 1210 1215
 Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val
 1220 1225 1230
 Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val
 1235 1240 1245
 Ala Ala Ala Ser Ala Asn Leu
 1250 1255

<210> 121
 <211> 5179
 <212> PRT

Sequence listing.txt

<213> Homo sapiens

<400> 121
 Met Gly Leu Pro Leu Ala Arg Leu Ala Ala Val Cys Leu Ala Leu Ser
 1 5 10 15
 Leu Ala Gly Gly Ser Glu Leu Gln Thr Glu Gly Arg Thr Arg Tyr His
 20 25 30
 Gly Arg Asn Val Cys Ser Thr Trp Gly Asn Phe His Tyr Lys Thr Phe
 35 40 45
 Asp Gly Asp Val Phe Arg Phe Pro Gly Leu Cys Asp Tyr Asn Phe Ala
 50 55 60
 Ser Asp Cys Arg Gly Ser Tyr Lys Glu Phe Ala Val His Leu Lys Arg
 65 70 75 80
 Gly Pro Gly Gln Ala Glu Ala Pro Ala Gly Val Glu Ser Ile Leu Leu
 85 90 95
 Thr Ile Lys Asp Asp Thr Ile Tyr Leu Thr Arg His Leu Ala Val Leu
 100 105 110
 Asn Gly Ala Val Val Ser Thr Pro His Tyr Ser Pro Gly Leu Leu Ile
 115 120 125
 Glu Lys Ser Asp Ala Tyr Thr Lys Val Tyr Ser Arg Ala Gly Leu Thr
 130 135 140
 Leu Met Trp Asn Arg Glu Asp Ala Leu Met Leu Glu Leu Asp Thr Lys
 145 150 155 160
 Phe Arg Asn His Thr Cys Gly Leu Cys Gly Asp Tyr Asn Gly Leu Gln
 165 170 175
 Ser Tyr Ser Glu Phe Leu Ser Asp Gly Val Leu Phe Ser Pro Leu Glu
 180 185 190
 Phe Gly Asn Met Gln Lys Ile Asn Gln Pro Asp Val Val Cys Glu Asp
 195 200 205
 Pro Glu Glu Glu Val Ala Pro Ala Ser Cys Ser Glu His Arg Ala Glu
 210 215 220
 Cys Glu Arg Leu Leu Thr Ala Glu Ala Phe Ala Asp Cys Gln Asp Leu
 225 230 235 240
 Val Pro Leu Glu Pro Tyr Leu Arg Ala Cys Gln Gln Asp Arg Cys Arg
 245 250 255
 Cys Pro Gly Gly Asp Thr Cys Val Cys Ser Thr Val Ala Glu Phe Ser
 260 265 270
 Arg Gln Cys Ser His Ala Gly Gly Arg Pro Gly Asn Trp Arg Thr Ala
 275 280 285
 Thr Leu Cys Pro Lys Thr Cys Pro Gly Asn Leu Val Tyr Leu Glu Ser
 290 295 300
 Gly Ser Pro Cys Met Asp Thr Cys Ser His Leu Glu Val Ser Ser Leu
 305 310 315 320
 Cys Glu Glu His Arg Met Asp Gly Cys Phe Cys Pro Glu Gly Thr Val
 325 330 335
 Tyr Asp Asp Ile Gly Asp Ser Gly Cys Val Pro Val Ser Gln Cys His
 340 345 350
 Cys Arg Leu His Gly His Leu Tyr Thr Pro Gly Gln Glu Ile Thr Asn
 355 360 365
 Asp Cys Glu Gln Cys Val Cys Asn Ala Gly Arg Trp Val Cys Lys Asp
 370 375 380
 Leu Pro Cys Pro Gly Thr Cys Ala Leu Glu Gly Ser His Ile Thr
 385 390 395 400
 Thr Phe Asp Gly Lys Thr Tyr Thr Phe His Gly Asp Cys Tyr Tyr Val
 405 410 415
 Leu Ala Lys Gly Asp His Asn Asp Ser Tyr Ala Leu Leu Gly Glu Leu
 420 425 430
 Ala Pro Cys Gly Ser Thr Asp Lys Gln Thr Cys Leu Lys Thr Val Val
 435 440 445
 Leu Leu Ala Asp Lys Lys Lys Asn Ala Val Val Phe Lys Ser Asp Gly
 450 455 460
 Ser Val Leu Leu Asn Gln Leu Gln Val Asn Leu Pro His Val Thr Ala
 465 470 475 480

Sequence listing.txt

Ser Phe Ser Val Phe Arg Pro Ser Ser Tyr His Ile Met Val Ser Met
 485 490 495
 Ala Ile Gly Val Arg Leu Gln Val Gln Leu Ala Pro Val Met Gln Leu
 500 505 510
 Phe Val Thr Leu Asp Gln Ala Ser Gln Gly Gln Val Gln Gly Leu Cys
 515 520 525
 Gly Asn Phe Asn Gly Leu Glu Gly Asp Asp Phe Lys Thr Ala Ser Gly
 530 535 540
 Leu Val Glu Ala Thr Gly Ala Gly Phe Ala Asn Thr Trp Lys Ala Gln
 545 550 555 560
 Ser Thr Cys His Asp Lys Leu Asp Trp Leu Asp Asp Pro Cys Ser Leu
 565 570 575
 Asn Ile Glu Ser Ala Asn Tyr Ala Glu His Trp Cys Ser Leu Leu Lys
 580 585 590
 Lys Thr Glu Thr Pro Phe Gly Arg Cys His Ser Ala Val Asp Pro Ala
 595 600 605
 Glu Tyr Tyr Lys Arg Cys Lys Tyr Asp Thr Cys Asn Cys Gln Asn Asn
 610 615 620
 Glu Asp Cys Leu Cys Ala Ala Leu Ser Ser Tyr Ala Arg Ala Cys Thr
 625 630 635 640
 Ala Lys Gly Val Met Leu Trp Gly Trp Arg Glu His Val Cys Asn Lys
 645 650 655
 Asp Val Gly Ser Cys Pro Asn Ser Gln Val Phe Leu Tyr Asn Leu Thr
 660 665 670
 Thr Cys Gln Gln Thr Cys Arg Ser Leu Ser Glu Ala Asp Ser His Cys
 675 680 685
 Leu Glu Gly Phe Ala Pro Val Asp Gly Cys Gly Cys Pro Asp His Thr
 690 695 700
 Phe Leu Asp Glu Lys Gly Arg Cys Val Pro Leu Ala Lys Cys Ser Cys
 705 710 715 720
 Tyr His Arg Gly Leu Tyr Leu Glu Ala Gly Asp Val Val Val Arg Gln
 725 730 735
 Glu Glu Arg Cys Val Cys Arg Asp Gly Arg Leu His Cys Arg Gln Ile
 740 745 750
 Arg Leu Ile Gly Gln Ser Cys Thr Ala Pro Lys Ile His Met Asp Cys
 755 760 765
 Ser Asn Leu Thr Ala Leu Ala Thr Ser Lys Pro Arg Ala Leu Ser Cys
 770 775 780
 Gln Thr Leu Ala Ala Gly Tyr Tyr His Thr Glu Cys Val Ser Gly Cys
 785 790 795 800
 Val Cys Pro Asp Gly Leu Met Asp Asp Gly Arg Gly Gly Cys Val Val
 805 810 815
 Glu Lys Glu Cys Pro Cys Val His Asn Asn Asp Leu Tyr Ser Ser Gly
 820 825 830 830
 Ala Lys Ile Lys Val Asp Cys Asn Thr Cys Thr Cys Lys Arg Gly Arg
 835 840 845
 Trp Val Cys Thr Gln Ala Val Cys His Gly Thr Cys Ser Ile Tyr Gly
 850 855 860
 Ser Gly His Tyr Ile Thr Phe Asp Gly Lys Tyr Tyr Asp Phe Asp Gly
 865 870 875 880
 His Cys Ser Tyr Val Ala Val Gln Asp Tyr Cys Gly Gln Asn Ser Ser
 885 890 895
 Leu Gly Ser Phe Ser Ile Ile Thr Glu Asn Val Pro Cys Gly Thr Thr
 900 905 910
 Gly Val Thr Cys Ser Lys Ala Ile Lys Ile Phe Met Gly Arg Thr Glu
 915 920 925
 Leu Lys Leu Glu Asp Lys His Arg Val Val Ile Gln Arg Asp Glu Gly
 930 935 940
 His His Val Ala Tyr Thr Thr Arg Glu Val Gly Gln Tyr Leu Val Val
 945 950 955 960
 Glu Ser Ser Thr Gly Ile Ile Val Ile Trp Asp Lys Arg Thr Thr Val
 965 970 975
 Phe Ile Lys Leu Ala Pro Ser Tyr Lys Gly Thr Val Cys Gly Leu Cys

Sequence listing.txt

980	985	990
Gly Asn Phe Asp His Arg Ser Asn Asn Asp Phe Thr Thr Arg Asp His		
995	1000	1005
Met Val Val Ser Ser Glu Leu Asp Phe Gly Asn Ser Trp Lys Glu Ala		
1010	1015	1020
Pro Thr Cys Pro Asp Val Ser Thr Asn Pro Glu Pro Cys Ser Leu Asn		
1025	1030	1035
Pro His Arg Arg Ser Trp Ala Glu Lys Gln Cys Ser Ile Leu Lys Ser		
1045	1050	1055
Ser Val Phe Ser Ile Cys His Ser Lys Val Asp Pro Lys Pro Phe Tyr		
1060	1065	1070
Glu Ala Cys Val His Asp Ser Cys Ser Cys Asp Thr Gly Gly Asp Cys		
1075	1080	1085
Glu Cys Phe Cys Ser Ala Val Ala Ser Tyr Ala Gln Glu Cys Thr Lys		
1090	1095	1100
Glu Gly Ala Cys Val Phe Trp Arg Thr Pro Asp Leu Cys Pro Ile Phe		
1105	1110	1115
Cys Asp Tyr Tyr Asn Pro Pro His Glu Cys Glu Trp His Tyr Glu Pro		
1125	1130	1135
Cys Gly Asn Arg Ser Phe Glu Thr Cys Arg Thr Ile Asn Gly Ile His		
1140	1145	1150
Ser Asn Ile Ser Val Ser Tyr Leu Glu Gly Cys Tyr Pro Arg Cys Pro		
1155	1160	1165
Lys Asp Arg Pro Ile Tyr Glu Glu Asp Leu Lys Lys Cys Val Thr Ala		
1170	1175	1180
Asp Lys Cys Gly Cys Tyr Val Glu Asp Thr His Tyr Pro Pro Gly Ala		
1185	1190	1195
Ser Val Pro Thr Glu Glu Thr Cys Lys Ser Cys Val Cys Thr Asn Ser		
1205	1210	1215
Ser Gln Val Val Cys Arg Pro Glu Glu Gly Lys Ile Leu Asn Gln Thr		
1220	1225	1230
Gln Asp Gly Ala Phe Cys Tyr Trp Glu Ile Cys Gly Pro Asn Gly Thr		
1235	1240	1245
Val Glu Lys His Phe Asn Ile Cys Ser Ile Thr Thr Arg Pro Ser Thr		
1250	1255	1260
Leu Thr Thr Phe Thr Thr Ile Thr Leu Pro Thr Thr Pro Thr Ser Phe		
1265	1270	1275
Thr Thr Thr Thr Thr Pro Thr Ser Ser Thr Val Leu Ser		
1285	1290	1295
Thr Thr Pro Lys Leu Cys Cys Leu Trp Ser Asp Trp Ile Asn Glu Asp		
1300	1305	1310
His Pro Ser Ser Gly Ser Asp Asp Gly Asp Arg Glu Pro Phe Asp Gly		
1315	1320	1325
Val Cys Gly Ala Pro Glu Asp Ile Glu Cys Arg Ser Val Lys Asp Pro		
1330	1335	1340
His Leu Ser Leu Glu Gln His Gly Gln Lys Val Gln Cys Asp Val Ser		
1345	1350	1355
Val Gly Phe Ile Cys Lys Asn Glu Asp Gln Phe Gly Asn Gly Pro Phe		
1365	1370	1375
Gly Leu Cys Tyr Asp Tyr Lys Ile Arg Val Asn Cys Cys Trp Pro Met		
1380	1385	1390
Asp Lys Cys Ile Thr Thr Pro Ser Pro Pro Thr Thr Pro Ser Pro		
1395	1400	1405
Pro Pro Thr Thr Thr Thr Leu Pro Pro Thr Thr Pro Ser Pro		
1410	1415	1420
Pro Thr Thr Thr Thr Pro Pro Pro Thr Thr Pro Ser Pro		
1425	1430	1435
Pro Ile Thr Thr Thr Pro Leu Pro Thr Thr Thr Pro Ser Pro		
1445	1450	1455
Pro Ile Ser Thr Thr Thr Pro Pro Pro Thr Thr Pro Ser Pro		
1460	1465	1470
Pro Thr Thr Thr Pro Ser Pro Pro Thr Thr Pro Ser Pro Pro Thr		
1475	1480	1485

Sequence listing.txt

Thr Thr Thr Thr Pro Pro Pro Thr Thr Pro Ser Pro Pro Met
 1490 1495 1500
 Thr Thr Pro Ile Thr Pro Pro Ala Ser Thr Thr Leu Pro Pro Thr
 1505 1510 1515 1520
 Thr Thr Pro Ser Pro Pro Thr Thr Thr Thr Pro Pro Pro Thr
 1525 1530 1535
 Thr Thr Pro Ser Pro Pro Thr Thr Pro Ile Thr Pro Pro Thr Ser
 1540 1545 1550
 Thr Thr Thr Leu Pro Pro Thr Thr Pro Ser Pro Pro Pro Thr Thr
 1555 1560 1565
 Thr Thr Thr Pro Pro Pro Thr Thr Pro Ser Pro Pro Thr Thr Thr
 1570 1575 1580
 Thr Pro Ser Pro Pro Thr Ile Thr Thr Thr Pro Pro Pro Pro Thr Thr
 1585 1590 1595 1600
 Thr Pro Ser Pro Pro Thr Thr Thr Thr Pro Pro Pro Pro Thr Thr
 1605 1610 1615
 Thr Pro Ser Pro Pro Thr Thr Thr Pro Ile Thr Pro Pro Thr Ser Thr
 1620 1625 1630
 Thr Thr Leu Pro Pro Thr Thr Pro Ser Pro Pro Pro Thr Thr Thr
 1635 1640 1645
 Thr Thr Pro Pro Pro Thr Thr Pro Ser Pro Pro Thr Thr Thr Thr
 1650 1655 1660
 Pro Ser Pro Pro Ile Thr Thr Thr Thr Pro Pro Pro Thr Thr Thr
 1665 1670 1675 1680
 Pro Ser Ser Pro Ile Thr Thr Thr Pro Ser Pro Pro Thr Thr Thr Met
 1685 1690 1695
 Thr Thr Pro Ser Pro Thr Thr Pro Ser Ser Pro Ile Thr Thr Thr
 1700 1705 1710
 Thr Thr Pro Ser Ser Thr Thr Pro Ser Pro Pro Pro Thr Thr Met
 1715 1720 1725
 Thr Thr Pro Ser Pro Thr Thr Pro Ser Pro Pro Thr Thr Thr Met
 1730 1735 1740
 Thr Thr Leu Pro Pro Thr Thr Ser Ser Pro Leu Thr Thr Thr Pro
 1745 1750 1755 1760
 Leu Pro Pro Ser Ile Thr Pro Pro Thr Phe Ser Pro Phe Ser Thr Thr
 1765 1770 1775
 Thr Pro Thr Pro Cys Val Pro Leu Cys Asn Trp Thr Gly Trp Leu
 1780 1785 1790
 Asp Ser Gly Lys Pro Asn Phe His Lys Pro Gly Gly Asp Thr Glu Leu
 1795 1800 1805
 Ile Gly Asp Val Cys Gly Pro Gly Trp Ala Ala Asn Ile Ser Cys Arg
 1810 1815 1820
 Ala Thr Met Tyr Pro Asp Val Pro Ile Gly Gln Leu Gly Gln Thr Val
 1825 1830 1835 1840
 Val Cys Asp Val Ser Val Gly Leu Ile Cys Lys Asn Glu Asp Gln Lys
 1845 1850 1855
 Pro Gly Gly Val Ile Pro Met Ala Phe Cys Leu Asn Tyr Glu Ile Asn
 1860 1865 1870
 Val Gln Cys Cys Glu Cys Val Thr Gln Pro Thr Thr Met Thr Thr Thr
 1875 1880 1885
 Thr Thr Glu Asn Pro Thr Pro Pro Thr Thr Thr Pro Ile Thr Thr Thr
 1890 1895 1900
 Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr
 1905 1910 1915 1920
 Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro
 1925 1930 1935
 Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr
 1940 1945 1950
 Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr
 1955 1960 1965
 Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly
 1970 1975 1980
 Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr

Sequence listing.txt

1985	1990	1995	2000
Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile			
2005	2010	2015	
Thr Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln			
2020	2025	2030	
Thr Pro Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr			
2035	2040	2045	
Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr			
2050	2055	2060	
Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro			
2065	2070	2075	2080
Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr			
2085	2090	2095	
Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr			
2100	2105	2110	
Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr			
2115	2120	2125	
Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr			
2130	2135	2140	
Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val			
2145	2150	2155	2160
Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro			
2165	2170	2175	
Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr			
2180	2185	2190	
Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro			
2195	2200	2205	
Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr			
2210	2215	2220	
Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr			
2225	2230	2235	2240
Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro			
2245	2250	2255	
Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr			
2260	2265	2270	
Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr			
2275	2280	2285	
Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro			
2290	2295	2300	
Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr			
2305	2310	2315	2320
Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr			
2325	2330	2335	
Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly			
2340	2345	2350	
Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr			
2355	2360	2365	
Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile			
2370	2375	2380	
Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln			
2385	2390	2395	2400
Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr			
2405	2410	2415	
Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr			
2420	2425	2430	
Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro			
2435	2440	2445	
Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr			
2450	2455	2460	
Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr			
2465	2470	2475	2480
Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr			
2485	2490	2495	

Sequence listing.txt

Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr
 2500 2505 2510
 Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val
 2515 2520 2525
 Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro
 2530 2535 2540
 Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr
 2545 2550 2555 2560
 Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro
 2565 2570 2575
 Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr
 2580 2585 2590
 Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr
 2595 2600 2605
 Pro Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro
 2610 2615 2620
 Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr
 2625 2630 2635 2640
 Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr
 2645 2650 2655
 Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro
 2660 2665 2670
 Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr
 2675 2680 2685
 Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr
 2690 2695 2700
 Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly
 2705 2710 2715 2720
 Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr Val Thr
 2725 2730 2735
 Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile
 2740 2745 2750
 Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln
 2755 2760 2765
 Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr
 2770 2775 2780
 Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr
 2785 2790 2795 2800
 Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro
 2805 2810 2815
 Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr
 2820 2825 2830
 Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
 2835 2840 2845
 Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr
 2850 2855 2860
 Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr
 2865 2870 2875 2880
 Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val
 2885 2890 2895
 Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro
 2900 2905 2910
 Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr
 2915 2920 2925
 Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro
 2930 2935 2940
 Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr
 2945 2950 2955 2960
 Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr
 2965 2970 2975
 Pro Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro
 2980 2985 2990
 Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr

Sequence listing.txt

2995	3000	3005
Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr		
3010	3015	3020
Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro		
3025	3030	3035
Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr		
3040		
3045	3050	3055
val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr		
3060	3065	3070
Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly		
3075	3080	3085
Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Val Thr		
3090	3095	3100
Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile		
3105	3110	3115
Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln		
3120		
3125	3130	3135
Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr		
3140	3145	3150
Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr		
3155	3160	3165
Thr Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro		
3170	3175	3180
Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr		
3185	3190	3195
3200		
Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr		
3205	3210	3215
Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr		
3220	3225	3230
Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr		
3235	3240	3245
Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val		
3250	3255	3260
Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro		
3265	3270	3275
3280		
Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr		
3285	3290	3295
Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro		
3300	3305	3310
Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr		
3315	3320	3325
Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr		
3330	3335	3340
Pro Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro		
3345	3350	3355
3360		
Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr		
3365	3370	3375
Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr		
3380	3385	3390
Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro		
3395	3400	3405
Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr		
3410	3415	3420
Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr		
3425	3430	3435
3440		
Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly		
3445	3450	3455
Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr		
3460	3465	3470
Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile		
3475	3480	3485
Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln		
3490	3495	3500

Sequence listing.txt

Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr
 3505 3510 3515 3520
 Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr
 3525 3530 3535
 Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro
 3540 3545 3550
 Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr
 3555 3560 3565
 Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr Thr Thr
 3570 3575 3580
 Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr
 3585 3590 3595 3600
 Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr
 3605 3610 3615
 Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val
 3620 3625 3630
 Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro
 3635 3640 3645
 Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr
 3650 3655 3660
 Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro
 3665 3670 3675 3680
 Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr
 3685 3690 3695
 Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr
 3700 3705 3710
 Pro Thr Thr Thr Pro Ile Thr Thr Thr Val Thr Pro Thr Pro
 3715 3720 3725
 Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr Thr
 3730 3735 3740
 Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr
 3745 3750 3755 3760
 Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro
 3765 3770 3775
 Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
 3780 3785 3790
 Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr
 3795 3800 3805
 Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly
 3810 3815 3820
 Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr
 3825 3830 3835 3840
 Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile
 3845 3850 3855
 Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln
 3860 3865 3870
 Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr
 3875 3880 3885
 Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr
 3890 3895 3900
 Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro
 3905 3910 3915 3920
 Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr
 3925 3930 3935
 Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
 3940 3945 3950
 Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr
 3955 3960 3965
 Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr
 3970 3975 3980
 Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val
 3985 3990 3995 4000
 Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro

Sequence listing.txt

4005	4010	4015	
Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr			
4020	4025	4030	
Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro			
4035	4040	4045	
Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr			
4050	4055	4060	
Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr			
4065	4070	4075	4080
Pro Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro			
4085	4090	4095	
Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr			
4100	4105	4110	
Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr			
4115	4120	4125	
Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro			
4130	4135	4140	
Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr			
4145	4150	4155	4160
Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr			
4165	4170	4175	
Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly			
4180	4185	4190	
Thr Gln Thr Gly Pro Pro Thr His Thr Ser Thr Ala Pro Ile Ala Glu			
4195	4200	4205	
Leu Thr Thr Ser Asn Pro Pro Glu Ser Ser Thr Pro Gln Thr Ser			
4210	4215	4220	
Arg Ser Thr Ser Ser Pro Leu Thr Glu Ser Thr Thr Leu Leu Ser Thr			
4225	4230	4235	4240
Leu Pro Pro Ala Ile Glu Met Thr Ser Thr Ala Pro Pro Ser Thr Pro			
4245	4250	4255	
Thr Ala Pro Thr Thr Ser Gly Gly His Thr Leu Ser Pro Pro Pro			
4260	4265	4270	
Ser Thr Thr Thr Ser Pro Pro Gly Thr Pro Thr Arg Gly Thr Thr Thr			
4275	4280	4285	
Gly Ser Ser Ser Ala Pro Thr Pro Ser Thr Val Gln Thr Thr Thr			
4290	4295	4300	
Ser Ala Trp Thr Pro Thr Pro Leu Ser Thr Pro Ser Ile Ile			
4305	4310	4315	4320
Arg Thr Thr Gly Leu Arg Pro Tyr Pro Ser Ser Val Leu Ile Cys Cys			
4325	4330	4335	
Val Leu Asn Asp Thr Tyr Tyr Ala Pro Gly Glu Glu Val Tyr Asn Gly			
4340	4345	4350	
Thr Tyr Gly Asp Thr Cys Tyr Phe Val Asn Cys Ser Leu Ser Cys Thr			
4355	4360	4365	
Leu Glu Phe Tyr Asn Trp Ser Cys Pro Ser Thr Pro Ser Pro Thr Pro			
4370	4375	4380	
Thr Pro Ser Lys Ser Thr Pro Thr Pro Ser Lys Pro Ser Ser Thr Pro			
4385	4390	4395	4400
Ser Lys Pro Thr Pro Gly Thr Lys Pro Pro Glu Cys Pro Asp Phe Asp			
4405	4410	4415	
Pro Pro Arg Gln Glu Asn Glu Thr Trp Trp Leu Cys Asp Cys Phe Met			
4420	4425	4430	
Ala Thr Cys Lys Tyr Asn Asn Thr Val Glu Ile Val Lys Val Glu Cys			
4435	4440	4445	
Glu Pro Pro Pro Met Pro Thr Cys Ser Asn Gly Leu Gln Pro Val Arg			
4450	4455	4460	
Val Glu Asp Pro Asp Gly Cys Cys Trp His Trp Glu Cys Asp Cys Tyr			
4465	4470	4475	4480
Cys Thr Gly Trp Gly Asp Pro His Tyr Val Thr Phe Asp Gly Leu Tyr			
4485	4490	4495	
Tyr Ser Tyr Gln Gly Asn Cys Thr Tyr Val Leu Val Glu Glu Ile Ser			
4500	4505	4510	

Sequence listing.txt

Pro Ser Val Asp Asn Phe Gly Val Tyr Ile Asp Asn Tyr His Cys Asp
 4515 4520 4525
 Pro Asn Asp Lys Val Ser Cys Pro Arg Thr Leu Ile Val Arg His Glu
 4530 4535 4540
 Thr Gln Glu Val Leu Ile Lys Thr Val His Met Met Pro Met Gln Val
 4545 4550 4555 4560
 Gln Val Gln Val Asn Arg Gln Ala Val Ala Leu Pro Tyr Lys Lys Tyr
 4565 4570 4575
 Gly Leu Glu Val Tyr Gln Ser Gly Ile Asn Tyr Val Val Asp Ile Pro
 4580 4585 4590
 Glu Leu Gly Val Leu Val Ser Tyr Asn Gly Leu Ser Phe Ser Val Arg
 4595 4600 4605
 Leu Pro Tyr His Arg Phe Gly Asn Asn Thr Lys Gly Gln Cys Gly Thr
 4610 4615 4620
 Cys Thr Asn Thr Thr Ser Asp Asp Cys Ile Leu Pro Ser Gly Glu Ile
 4625 4630 4635 4640
 Val Ser Asn Cys Glu Ala Ala Ala Asp Gln Trp Leu Val Asn Asp Pro
 4645 4650 4655
 Ser Lys Pro His Cys Pro His Ser Ser Thr Thr Lys Arg Pro Ala
 4660 4665 4670
 Val Thr Val Pro Gly Gly Lys Thr Thr Pro His Lys Asp Cys Thr
 4675 4680 4685
 Pro Ser Pro Leu Cys Gln Leu Ile Lys Asp Ser Leu Phe Ala Gln Cys
 4690 4695 4700
 His Ala Leu Val Pro Pro Gln His Tyr Tyr Asp Ala Cys Val Phe Asp
 4705 4710 4715 4720
 Ser Cys Phe Met Pro Gly Ser Ser Leu Glu Cys Ala Ser Leu Gln Ala
 4725 4730 4735
 Tyr Ala Ala Leu Cys Ala Gln Gln Asn Ile Cys Leu Asp Trp Arg Asn
 4740 4745 4750
 His Thr His Gly Ala Cys Leu Val Glu Cys Pro Ser His Arg Glu Tyr
 4755 4760 4765
 Gln Ala Cys Gly Pro Ala Glu Glu Pro Thr Cys Lys Ser Ser Ser
 4770 4775 4780
 Gln Gln Asn Asn Thr Val Leu Val Glu Gly Cys Phe Cys Pro Glu Gly
 4785 4790 4795 4800
 Thr Met Asn Tyr Ala Pro Gly Phe Asp Val Cys Val Lys Thr Cys Gly
 4805 4810 4815
 Cys Val Gly Pro Asp Asn Val Pro Arg Glu Phe Gly Glu His Phe Glu
 4820 4825 4830
 Phe Asp Cys Lys Asn Cys Val Cys Leu Glu Gly Ser Gly Ile Ile
 4835 4840 4845
 Cys Gln Pro Lys Arg Cys Ser Gln Lys Pro Val Thr His Cys Val Glu
 4850 4855 4860
 Asp Gly Thr Tyr Leu Ala Thr Glu Val Asn Pro Ala Asp Thr Cys Cys
 4865 4870 4875 4880
 Asn Ile Thr Val Cys Lys Cys Asn Thr Ser Leu Cys Lys Glu Lys Pro
 4885 4890 4895
 Ser Val Cys Pro Leu Gly Phe Glu Val Lys Ser Lys Met Val Pro Gly
 4900 4905 4910
 Arg Cys Cys Pro Phe Tyr Trp Cys Glu Ser Lys Gly Val Cys Val His
 4915 4920 4925
 Gly Asn Ala Glu Tyr Gln Pro Gly Ser Pro Val Tyr Ser Ser Lys Cys
 4930 4935 4940
 Gln Asp Cys Val Cys Thr Asp Lys Val Asp Asn Asn Thr Leu Leu Asn
 4945 4950 4955 4960
 Val Ile Ala Cys Thr His Val Pro Cys Asn Thr Ser Cys Ser Pro Gly
 4965 4970 4975
 Phe Glu Leu Met Glu Ala Pro Gly Glu Cys Cys Lys Lys Cys Glu Gln
 4980 4985 4990
 Thr His Cys Ile Ile Lys Arg Pro Asp Asn Gln His Val Ile Leu Lys
 4995 5000 5005
 Pro Gly Asp Phe Lys Ser Asp Pro Lys Asn Asn Cys Thr Phe Phe Ser

Sequence listing.txt

5010	5015	5020
Cys Val Lys Ile His Asn Gln Leu Ile Ser Ser Val Ser Asn Ile Thr		
5025	5030	5035
Cys Pro Asn Phe Asp Ala Ser Ile Cys Ile Pro Gly Ser Ile Thr Phe		5040
5045	5050	5055
Met Pro Asn Gly Cys Cys Lys Thr Cys Thr Pro Arg Asn Glu Thr Arg		
5060	5065	5070
Val Pro Cys Ser Thr Val Pro Val Thr Thr Glu Val Ser Tyr Ala Gly		
5075	5080	5085
Cys Thr Lys Thr Val Leu Met Asn His Cys Ser Gly Ser Cys Gly Thr		
5090	5095	5100
Phe Val Met Tyr Ser Ala Lys Ala Gln Ala Leu Asp His Ser Cys Ser		
5105	5110	5115
Cys Cys Lys Glu Glu Lys Thr Ser Gln Arg Glu Val Val Leu Ser Cys		5120
5125	5130	5135
Pro Asn Gly Gly Ser Leu Thr His Thr Tyr Thr His Ile Glu Ser Cys		
5140	5145	5150
Gln Cys Gln Asp Thr Val Cys Gly Leu Pro Thr Gly Thr Ser Arg Arg		
5155	5160	5165
Ala Arg Arg Ser Pro Arg His Leu Gly Ser Gly		
5170	5175	

<210> 122
<211> 1217
<212> PRT
<213> Homo sapiens

<400> 122			
Ile Thr Ile Thr Glu Thr Thr Ser His Ser Thr Pro Ser Tyr Thr Thr			
1	5	10	15
Ser Ile Thr Thr Glu Thr Pro Ser His Ser Thr Pro Ser Tyr Thr			
20	25	30	
Thr Ser Ile Thr Thr Glu Thr Pro Ser His Ser Thr Pro Ser Phe			
35	40	45	
Thr Ser Ser Ile Thr Thr Glu Thr Thr Ser His Ser Thr Pro Ser			
50	55	60	
Phe Thr Ser Ser Ile Arg Thr Thr Glu Thr Thr Ser Tyr Ser Thr Pro			
65	70	75	80
Ser Phe Thr Ser Ser Asn Thr Ile Thr Glu Thr Thr Ser His Ser Thr			
85	90	95	
Pro Ser Tyr Ile Thr Ser Ile Thr Thr Glu Thr Pro Ser Ser Ser			
100	105	110	
Thr Pro Ser Phe Ser Ser Ser Ile Thr Thr Glu Thr Thr Ser His			
115	120	125	
Ser Thr Pro Gly Phe Thr Ser Ser Ile Thr Thr Glu Thr Thr Ser			
130	135	140	
His Ser Thr Pro Ser Phe Thr Ser Ser Ile Thr Thr Glu Thr Thr Thr			
145	150	155	160
Ser His Asp Thr Pro Ser Phe Thr Ser Ser Ile Thr Thr Ser Glu Thr			
165	170	175	
Pro Ser His Ser Thr Pro Ser Ser Thr Ser Leu Ile Thr Thr Thr Lys			
180	185	190	
Thr Thr Ser His Ser Thr Pro Ser Phe Thr Ser Ser Ile Thr Thr Thr			
195	200	205	
Glu Thr Thr Ser His Ser Ala Arg Ser Phe Thr Ser Ser Ile Thr Thr			
210	215	220	
Thr Glu Thr Thr Ser His Asn Thr Arg Ser Phe Thr Ser Ser Ile Thr			
225	230	235	240
Thr Thr Glu Thr Asn Ser His Ser Thr Thr Ser Phe Thr Ser Ser Ile			
245	250	255	

Sequence listing.txt

Thr Thr Thr Glu Thr Thr Ser His Ser Thr Pro Ser Phe Ser Ser Ser
 260 265 270
 Ile Thr Thr Thr Glu Thr Pro Leu His Ser Thr Pro Gly Leu Thr Ser
 275 280 285
 Trp Val Thr Thr Thr Lys Thr Thr Ser His Ile Thr Pro Gly Leu Thr
 290 295 300
 Ser Ser Ile Thr Thr Glu Thr Thr Ser His Ser Thr Pro Gly Phe
 305 310 315 320
 Thr Ser Ser Ile Thr Thr Thr Glu Thr Thr Ser Glu Ser Thr Pro Ser
 325 330 335
 Leu Ser Ser Ser Thr Ile Tyr Ser Thr Val Ser Thr Ser Thr Thr Ala
 340 345 350
 Ile Thr Ser His Phe Thr Thr Ser Glu Thr Ala Val Thr Pro Thr Pro
 355 360 365
 Val Thr Pro Ser Ser Leu Ser Thr Asp Ile Pro Thr Thr Ser Leu Arg
 370 375 380
 Thr Leu Thr Pro Ser Ser Val Gly Thr Ser Thr Ser Leu Thr Thr Thr
 385 390 395 400
 Thr Asp Phe Pro Ser Ile Pro Thr Asp Ile Ser Thr Leu Pro Thr Arg
 405 410 415
 Thr His Ile Ile Ser Ser Ser Pro Ser Ile Gln Ser Thr Glu Thr Ser
 420 425 430
 Ser Leu Val Gly Thr Thr Ser Pro Thr Met Ser Thr Val Arg Met Thr
 435 440 445
 Leu Arg Ile Thr Glu Asn Thr Pro Ile Ser Ser Phe Ser Thr Ser Ile
 450 455 460
 Val Val Ile Pro Glu Thr Pro Thr Gln Thr Pro Pro Val Leu Thr Ser
 465 470 475 480
 Ala Thr Gly Thr Gln Thr Ser Pro Ala Pro Thr Thr Val Thr Phe Gly
 485 490 495
 Ser Thr Asp Ser Ser Thr Ser Thr Leu His Thr Leu Thr Pro Ser Thr
 500 505 510
 Ala Leu Ser Thr Ile Val Ser Thr Ser Gln Val Pro Ile Pro Ser Thr
 515 . 520 525
 His Ser Ser Thr Leu Gln Thr Thr Pro Ser Thr Pro Ser Leu Gln Thr
 530 535 540
 Ser Leu Thr Ser Thr Ser Glu Phe Thr Thr Glu Ser Phe Thr Arg Gly
 545 550 555 560
 Ser Thr Ser Thr Asn Ala Ile Leu Thr Ser Phe Ser Thr Ile Ile Trp
 565 570 575
 Ser Ser Thr Pro Thr Ile Ile Met Ser Ser Ser Pro Ser Ser Ala Ser
 580 585 590
 Ile Thr Pro Val Phe Ser Thr Thr Ile His Ser Val Pro Ser Ser Pro
 595 600 605
 Tyr Ile Phe Ser Thr Glu Asn Val Gly Ser Ala Ser Ile Thr Gly Phe
 610 615 620
 Pro Ser Leu Ser Ser Ser Ala Thr Thr Ser Thr Ser Ser Thr Ser Ser
 625 630 635 640
 Ser Leu Thr Thr Ala Leu Thr Glu Ile Thr Pro Phe Ser Tyr Ile Ser
 645 650 655
 Leu Pro Ser Thr Thr Pro Cys Pro Gly Thr Ile Thr Ile Thr Ile Val
 660 665 670
 Pro Ala Ser Pro Thr Asp Pro Cys Val Glu Met Asp Pro Ser Thr Glu
 675 680 685
 Ala Thr Ser Pro Pro Thr Thr Pro Leu Thr Val Phe Pro Phe Thr Thr
 690 695 700
 Glu Met Val Thr Cys Pro Thr Ser Ile Ser Ile Gln Thr Thr Leu Thr
 705 710 715 720
 Thr Tyr Met Asp Thr Ser Ser Met Met Pro Glu Ser Glu Ser Ser Ile
 725 730 735
 Ser Pro Asn Ala Ser Ser Ser Thr Gly Thr Gly Thr Val Pro Thr Asn
 740 745 750
 Thr Val Phe Thr Ser Thr Arg Leu Pro Thr Ser Glu Thr Trp Leu Ser

Sequence listing.txt

755	760	765
Asn Ser Ser Val Ile Pro Leu Pro Leu Pro Gly Val Ser Thr Ile Pro		
770	775	780
Leu Thr Met Lys Pro Ser Ser Ser Leu Pro Thr Ile Leu Arg Thr Ser		
785	790	795
Ser Lys Ser Thr His Pro Ser Pro Pro Thr Thr Arg Thr Ser Glu Thr		800
805	810	815
Pro Val Ala Thr Thr Gln Thr Pro Thr Thr Leu Thr Ser Arg Arg Thr		
820	825	830
Thr Arg Ile Thr Ser Gln Met Thr Thr Gln Ser Thr Leu Thr Thr Thr		
835	840	845
Ala Gly Thr Cys Asp Asn Gly Gly Thr Trp Glu Gln Gly Gln Cys Ala		
850	855	860
Cys Leu Pro Gly Phe Ser Gly Asp Arg Cys Gln Leu Gln Thr Arg Cys		
865	870	875
Gln Asn Gly Gly Gln Trp Asp Gly Leu Lys Cys Gln Cys Pro Ser Thr		
885	890	895
Phe Tyr Gly Ser Ser Cys Glu Phe Ala Val Glu Gln Val Asp Leu Asp		
900	905	910
Val Val Glu Thr Glu Val Gly Met Glu Val Ser Val Asp Gln Gln Phe		
915	920	925
Ser Pro Asp Leu Asn Asp Asn Thr Ser Gln Ala Tyr Arg Asp Phe Asn		
930	935	940
Lys Thr Phe Trp Asn Gln Met Gln Lys Ile Phe Ala Asp Met Gln Gly		
945	950	955
Phe Thr Phe Lys Gly Val Glu Ile Leu Ser Leu Arg Asn Gly Ser Ile		
965	970	975
Val Val Asp Tyr Leu Val Leu Leu Glu Met Pro Phe Ser Pro Gln Leu		
980	985	990
Glu Ser Glu Tyr Glu Gln Val Lys Thr Thr Leu Lys Glu Gly Leu Gln		
995	1000	1005
Asn Ala Ser Gln Asp Val Asn Ser Cys Gln Asp Ser Gln Thr Leu Cys		
1010	1015	1020
Phe Lys Pro Asp Ser Ile Lys Val Asn Asn Asn Ser Lys Thr Glu Leu		
1025	1030	1035
Thr Pro Ala Ala Ile Cys Arg Arg Ala Ala Pro Thr Gly Tyr Glu Glu		
1045	1050	1055
Phe Tyr Phe Pro Leu Val Glu Ala Thr Arg Leu Arg Cys Val Thr Lys		
1060	1065	1070
Cys Thr Ser Gly Val Asp Asn Ala Ile Asp Cys His Gln Gly Gln Cys		
1075	1080	1085
Val Leu Glu Thr Ser Gly Pro Thr Cys Arg Cys Tyr Ser Thr Asp Thr		
1090	1095	1100
His Trp Phe Ser Gly Pro Arg Cys Glu Val Ala Val His Trp Arg Ala		
1105	1110	1115
Leu Val Gly Gly Leu Thr Ala Gly Ala Ala Leu Leu Val Leu Leu Leu		
1125	1130	1135
Leu Ala Leu Gly Val Arg Ala Val Arg Ser Gly Trp Trp Gly Gly Gln		
1140	1145	1150
Arg Arg Gly Arg Ser Trp Asp Gln Asp Arg Lys Trp Phe Glu Thr Trp		
1155	1160	1165
Asp Glu Glu Val Val Gly Thr Phe Ser Asn Trp Gly Phe Glu Asp Asp		
1170	1175	1180
Gly Thr Asp Lys Asp Thr Asn Phe Tyr Val Ala Leu Glu Asn Val Asp		
1185	1190	1195
Thr Thr Met Lys Val His Ile Lys Arg Pro Glu Met Thr Ser Ser Ser		
1205	1210	1215
Val		

<210> 123
<211> 1373

Sequence listing.txt

<212> PRT

<213> Homo sapiens

<400> 123

Met Ser Val Gly Arg Arg Lys Leu Ala Leu Leu Trp Ala Leu Ala Leu
1 5 10 15
Ala Leu Ala Cys Thr Arg His Thr Gly His Ala Gln Asp Gly Ser Ser
20 25 30
Glu Ser Ser Tyr Lys His His Pro Ala Leu Ser Pro Ile Ala Arg Gly
35 40 45
Pro Ile Gly Val Pro Leu Arg Gly Ala Thr Val Phe Pro Ser Leu Arg
50 55 60
Thr Ile Pro Val Val Arg Ala Ser Asn Pro Ala His Asn Gly Arg Val
65 70 75 80
Cys Ser Thr Trp Gly Ser Phe His Tyr Lys Thr Phe Asp Gly Asp Val
85 90 95
Phe Arg Phe Pro Gly Leu Cys Asn Tyr Val Phe Ser Glu His Cys Gly
100 105 110
Ala Ala Tyr Glu Asp Phe Asn Ile Pro Ala Thr Pro Gln Pro Gly Val
115 120 125
Ser Gly Pro His Ala Glu Gln Gly Pro His Glu Gly Gly Trp Arg Gly
130 135 140
His Pro Ala Asp Gln Gly Leu Arg Pro Gly Gln Arg Pro Pro Gly Pro
145 150 155 160
Ala Ala Leu Gln Pro Val Trp Gly Pro His Ser Ala Arg Ala Ala Ala
165 170 175
Thr Pro Arg Trp Lys Pro Gly Trp Ala Leu Ser Ser Cys Gly Thr Thr
180 185 190
Met Thr Ala Cys Cys Trp Lys Leu Asp Thr Lys Tyr Ala Asn Lys Asn
195 200 205
Leu Trp Ala Leu Trp Gly Leu Gln Arg Asp Ala Arg Gly Gln Arg Ala
210 215 220
Pro Leu Pro Gln His Gln Ala Asp Thr His Gly Ile Arg Glu Pro Ala
225 230 235 240
Glu Arg Trp Thr Asn Pro Arg Ser Ser Val Arg Thr Leu Ser Leu Asn
245 250 255
Pro Arg Arg Thr Ala Pro Leu Ala Leu Ala Ser Cys Glu Glu Leu Leu
260 265 270
His Gly Gln Leu Phe Ser Gly Cys Val Ala Leu Val Asp Val Gly Ser
275 280 285
Tyr Leu Glu Ala Cys Arg Gln Asp Leu Cys Phe Cys Glu Asp Thr Asp
290 295 300
Leu Leu Ser Cys Val Cys His Thr Leu Ala Glu Tyr Ser Arg Gln Cys
305 310 315 320
Thr His Ala Gly Gly Leu Pro Gln Asp Trp Arg Gly Pro Asp Phe Cys
325 330 335
Pro Gln Lys Cys Pro Asn Asn Met Gln Tyr His Glu Cys Arg Ser Pro
340 345 350
Cys Ala Asp Thr Cys Ser Asn Gln Glu His Ser Arg Ala Cys Glu Asp
355 360 365
His Cys Val Ala Gly Cys Phe Cys Pro Glu Gly Thr Val Leu Asp Asp
370 375 380
Ile Gly Gln Thr Gly Cys Val Pro Val Ser Lys Cys Ala Cys Val Tyr
385 390 395 400
Asn Gly Ala Ala Tyr Ala Pro Gly Ala Thr Tyr Ser Thr Asp Cys Thr
405 410 415
Asn Cys Thr Cys Ser Gly Gly Arg Trp Ser Cys Gln Glu Val Pro Cys
420 425 430
Pro Gly Thr Cys Ser Val Leu Gly Gly Ala His Phe Ser Thr Phe Asp
435 440 445
Gly Lys Gln Tyr Thr Val His Gly Asp Cys Ser Tyr Val Leu Thr Lys
450 455 460
Pro Cys Asp Ser Ser Ala Phe Thr Val Leu Ala Glu Leu Arg Arg Cys

Sequence listing.txt

465	470	475	480
Gly Leu Thr Asp Ser Glu Thr Cys Leu Lys Ser Val Thr Leu Ser Leu			
485	490	495	
Asp Gly Ala Gln Thr Val Val Val Ile Lys Ala Ser Gly Glu Val Phe			
500	505	510	
Leu Asn Gln Ile Tyr Thr Gln Leu Pro Ile Ser Ala Ala Asn Val Thr			
515	520	525	
Ile Phe Arg Pro Ser Thr Phe Phe Ile Ile Ala Gln Thr Ser Leu Gly.			
530	535	540	
Leu Gln Leu Asn Leu Gln Leu Val Pro Thr Met Gln Leu Phe Met Gln			
545	550	555	560
Leu Ala Pro Lys Leu Arg Gly Gln Thr Cys Gly Leu Cys Gly Asn Phe			
565	570	575	
Asn Ser Ile Gln Ala Asp Asp Phe Arg Thr Leu Ser Gly Val Val Glu			
580	585	590	
Ala Thr Ala Ala Ala Phe Phe Asn Thr Phe Lys Thr Gln Ala Ala Cys			
595	600	605	
Pro Asn Ile Arg Asn Ser Phe Glu Asp Pro Cys Ser Leu Ser Val Glu			
610	615	620	
Asn Glu Lys Tyr Ala Gln His Trp Cys Ser Gln Leu Thr Asp Ala Asp			
625	630	635	640
Gly Pro Phe Gly Arg Cys His Ala Ala Val Lys Pro Gly Thr Tyr Tyr			
645	650	655	
Ser Asn Cys Met Phe Asp Thr Cys Asn Cys Glu Arg Ser Glu Asp Cys			
660	665	670	
Leu Cys Ala Ala Leu Ser Ser Tyr Val His Ala Cys Ala Ala Lys Gly			
675	680	685	
Val Gln Leu Gly Gly Trp Arg Asp Gly Val Cys Thr Lys Pro Met Thr			
690	695	700	
Thr Cys Pro Lys Ser Met Thr Tyr His Tyr His Val Ser Thr Cys Gln			
705	710	715	720
Pro Thr Cys Arg Ser Leu Ser Glu Gly Asp Ile Thr Cys Ser Val Gly			
725	730	735	
Phe Ile Pro Val Asp Gly Cys Ile Cys Pro Lys Gly Thr Phe Leu Asp			
740	745	750	
Asp Thr Gly Lys Cys Val Gln Ala Ser Asn Cys Pro Cys Tyr His Arg			
755	760	765	
Gly Ser Met Ile Pro Asn Gly Glu Ser Val His Asp Ser Gly Ala Ile			
770	775	780	
Cys Thr Cys Thr His Gly Lys Leu Ser Cys Ile Gly Gly Gln Ala Pro			
785	790	795	800
Ala Pro Val Cys Ala Ala Pro Met Val Phe Phe Asp Cys Arg Asn Ala			
805	810	815	
Thr Pro Gly Asp Thr Gly Ala Gly Cys Gln Lys Ser Cys His Thr Leu			
820	825	830	
Asp Met Thr Cys Tyr Ser Pro Gln Cys Val Pro Gly Cys Val Cys Pro			
835	840	845	
Asp Gly Leu Val Ala Asp Gly Glu Gly Cys Ile Thr Ala Glu Asp			
850	855	860	
Cys Pro Cys Val His Asn Glu Ala Ser Tyr Arg Ala Gly Gln Thr Ile			
865	870	875	880
Arg Val Gly Cys Asn Thr Cys Thr Cys Asp Ser Arg Met Trp Arg Cys			
885	890	895	
Thr Asp Asp Pro Cys Leu Ala Thr Cys Ala Val Tyr Gly Asp Gly His			
900	905	910	
Tyr Leu Thr Phe Asp Gly Gln Ser Tyr Ser Phe Asn Glu Glu Thr Ala			
915	920	925	
Ser Thr Arg Trp Cys Arg Thr Ala Val Ala Gly Lys Thr Ala Pro Arg			
930	935	940	
Thr Pro Phe Val Leu Ser Pro Arg Thr Ser Pro Ala Ala Pro Gln Gly			
945	950	955	960
Pro Pro Ala Pro Arg Pro Ser Arg Phe Ser Trp Gly Asn Phe Glu Leu			
965	970	975	

Sequence listing.txt

Lys Leu Ser His Gly Lys Val Glu Val Ile Gly Thr Asp Glu Ser Gln
 980 985 990
 Glu Val Pro Tyr Thr Ile Arg Gln Met Gly Ile Tyr Leu Val Val Asp
 995 1000 1005
 Thr Asp Ile Gly Leu Val Leu Leu Trp Asp Lys Lys Thr Ser Ile Phe
 1010 1015 1020
 Ile Asn Leu Ser Pro Glu Phe Lys Gly Arg Val Cys Gly Leu Cys Gly
 1025 1030 1035 1040
 Asn Phe Asp Asp Ile Ala Val Asn Asp Phe Ala Thr Arg Ser Arg Ser
 1045 1050 1055
 Val Val Gly Asp Val Leu Glu Phe Gly Asn Ser Trp Lys Leu Ser Pro
 1060 1065 1070
 Ser Cys Pro Asp Ala Leu Ala Pro Lys Asp Pro Cys Thr Ala Asn Pro
 1075 1080 1085
 Phe Arg Lys Ser Trp Ala Gln Lys Gln Cys Ser Ile Leu His Gly Pro
 1090 1095 1100
 Thr Phe Ala Ala Cys His Ala His Val Glu Pro Ala Arg Tyr Tyr Glu
 1105 1110 1115 1120
 Ala Cys Val Asn Asp Ala Cys Ala Cys Asp Ser Gly Gly Asp Cys Glu
 1125 1130 1135
 Cys Phe Cys Thr Ala Val Ala Arg Tyr Ala Gln Ala Cys His Glu Val
 1140 1145 1150
 Gly Thr Cys Val Cys Leu Arg Thr Pro Ser Ile Cys Pro Leu Phe Cys
 1155 1160 1165
 Asp Tyr Tyr Asn Pro Glu Gly Gln Cys Glu Trp His Tyr Gln Pro Cys
 1170 1175 1180
 Gly Val Pro Cys Leu Arg Thr Cys Arg Asn Pro Arg Gly Asp Cys Leu
 1185 1190 1195 1200
 Arg Asp Val Arg Gly Leu Glu Gly Cys Tyr Pro Lys Cys Pro Pro Glu
 1205 1210 1215
 Ala Pro Ile Phe Asp Glu Asp Lys Met Gln Cys Val Ala Thr Cys Pro
 1220 1225 1230
 Thr Pro Pro Leu Pro Pro Arg Cys His Val His Gly Lys Ser Tyr Arg
 1235 1240 1245
 Pro Gly Ala Val Val Pro Ser Asp Lys Asn Cys Gln Ser Cys Leu Cys
 1250 1255 1260
 Thr Glu Arg Gly Val Glu Cys Thr Tyr Lys Ala Glu Ala Cys Val Cys
 1265 1270 1275 1280
 Thr Tyr Asn Gly Gln Arg Phe His Pro Gly Asp Val Ile Tyr His Thr
 1285 1290 1295
 Thr Asp Gly Thr Gly Gly Cys Ile Ser Ala Arg Cys Gly Ala Asn Gly
 1300 1305 1310
 Thr Ile Glu Arg Arg Val Tyr Pro Cys Ser Pro Thr Thr Pro Val Pro
 1315 1320 1325
 Pro Thr Thr Phe Ser Phe Ser Thr Pro Pro Leu Val Val Ser Ser Thr
 1330 1335 1340
 His Thr Pro Ser Asn Gly Pro Ser Ser Ala His Thr Gly Pro Pro Ser
 1345 1350 1355 1360
 Ser Ala Trp Pro Thr Thr Ala Gly Thr Ser Pro Arg Thr
 1365 1370

<210> 124

<211> 165

<212> PRT

<213> Homo sapiens

<400> 124

Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Ser Met Gly
 1 5 10 15
 Gly Thr Trp Ala Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro Ile
 20 25 30
 Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr
 Page 140

Sequence listing.txt

	35	40	45												
Val	Asn	Thr	Thr	Ile	Cys	Ala	Gly	Tyr	Cys	Pro	Thr	Met	Thr	Arg	Val
50						55				60					
Leu	Gln	Gly	Val	Leu	Pro	Ala	Leu	Pro	Gln	Val	Val	Cys	Asn	Tyr	Arg
65						70			75					80	
Asp	Val	Arg	Phe	Glu	Ser	Ile	Arg	Leu	Pro	Gly	Cys	Pro	Arg	Gly	Val
						85			90				95		
Asn	Pro	Val	Val	Ser	Tyr	Ala	Val	Ala	Leu	Ser	Cys	Gln	Cys	Ala	Leu
						100		105		110					
Cys	Arg	Arg	Ser	Thr	Thr	Asp	Cys	Gly	Gly	Pro	Lys	Asp	His	Pro	Leu
						115		120		125					
Thr	Cys	Asp	Asp	Pro	Arg	Phe	Gln	Asp	Ser	Ser	Ser	Ser	Lys	Ala	Pro
						130		135		140					
Pro	Pro	Ser	Leu	Pro	Ser	Pro	Ser	Arg	Leu	Pro	Gly	Pro	Ser	Asp	Thr
145						150			155			160			
Pro	Ile	Leu	Pro	Gln											
				165											

<210> 125

<211> 1210

<212> PRT

<213> Homo sapiens

<400> 125

Met	Arg	Pro	Ser	Gly	Thr	Ala	Gly	Ala	Ala	Leu	Leu	Ala	Leu	Ala	
1						5			10			15			
Ala	Leu	Cys	Pro	Ala	Ser	Arg	Ala	Leu	Glu	Glu	Lys	Lys	Val	Cys	Gln
						20		25			30				
Gly	Thr	Ser	Asn	Lys	Leu	Thr	Gln	Leu	Gly	Thr	Phe	Glu	Asp	His	Phe
						35		40		45					
Leu	Ser	Leu	Gln	Arg	Met	Phe	Asn	Asn	Cys	Glu	Val	Val	Leu	Gly	Asn
						50		55		60					
Leu	Glu	Ile	Thr	Tyr	Val	Gln	Arg	Asn	Tyr	Asp	Leu	Ser	Phe	Leu	Lys
65						65		70		75			80		
Thr	Ile	Gln	Glu	Val	Ala	Gly	Tyr	Val	Leu	Ile	Ala	Leu	Asn	Thr	Val
						85		90		95					
Glu	Arg	Ile	Pro	Leu	Glu	Asn	Leu	Gln	Ile	Ile	Arg	Gly	Asn	Met	Tyr
						100		105		110					
Tyr	Glu	Asn	Ser	Tyr	Ala	Leu	Ala	Val	Leu	Ser	Asn	Tyr	Asp	Ala	Asn
						115		120		125					
Lys	Thr	Gly	Leu	Lys	Glu	Leu	Pro	Met	Arg	Asn	Leu	Gln	Glu	Ile	Leu
						130		135		140					
His	Gly	Ala	Val	Arg	Phe	Ser	Asn	Asn	Pro	Ala	Leu	Cys	Asn	Val	Glu
145						145		150		155			160		
Ser	Ile	Gln	Trp	Arg	Asp	Ile	Val	Ser	Ser	Asp	Phe	Leu	Ser	Asn	Met
						165		170		175					
Ser	Met	Asp	Phe	Gln	Asn	His	Leu	Gly	Ser	Cys	Gln	Lys	Cys	Asp	Pro
						180		185		190					
Ser	Cys	Pro	Asn	Gly	Ser	Cys	Trp	Gly	Ala	Gly	Glu	Glu	Asn	Cys	Gln
						195		200		205					
Lys	Leu	Thr	Lys	Ile	Ile	Cys	Ala	Gln	Gln	Cys	Ser	Gly	Arg	Cys	Arg
						210		215		220					
Gly	Lys	Ser	Pro	Ser	Asp	Cys	Cys	His	Asn	Gln	Cys	Ala	Ala	Gly	Cys
						225		230		235			240		
Thr	Gly	Pro	Arg	Glu	Ser	Asp	Cys	Leu	Val	Cys	Arg	Lys	Phe	Arg	Asp
						245		250		255				255	
Glu	Ala	Thr	Cys	Lys	Asp	Thr	Cys	Pro	Pro	Leu	Met	Leu	Tyr	Asn	Pro
						260		265		270					
Thr	Thr	Tyr	Gln	Met	Asp	Val	Asn	Pro	Glu	Gly	Lys	Tyr	Ser	Phe	Gly
						275		280		285					
Ala	Thr	Cys	Val	Lys	Lys	Cys	Pro	Arg	Asn	Tyr	Val	Val	Thr	Asp	His
						290		295		300					

Sequence listing.txt

Gly Ser Cys Val Arg Ala Cys Gly Ala Asp Ser Tyr Glu Met Glu Glu
 305 310 315 320
 Asp Gly Val Arg Lys Cys Lys Lys Cys Glu Gly Pro Cys Arg Lys Val
 325 330 335
 Cys Asn Gly Ile Gly Ile Gly Glu Phe Lys Asp Ser Leu Ser Ile Asn
 340 345 350
 Ala Thr Asn Ile Lys His Phe Lys Asn Cys Thr Ser Ile Ser Gly Asp
 355 360 365
 Leu His Ile Leu Pro Val Ala Phe Arg Gly Asp Ser Phe Thr His Thr
 370 375 380
 Pro Pro Leu Asp Pro Gln Glu Leu Asp Ile Leu Lys Thr Val Lys Glu
 385 390 395 400
 Ile Thr Gly Phe Leu Ile Gln Ala Trp Pro Glu Asn Arg Thr Asp
 405 410 415
 Leu His Ala Phe Glu Asn Leu Glu Ile Ile Arg Gly Arg Thr Lys Gln
 420 425 430
 His Gly Gln Phe Ser Leu Ala Val Val Ser Leu Asn Ile Thr Ser Leu
 435 440 445
 Gly Leu Arg Ser Leu Lys Glu Ile Ser Asp Gly Asp Val Ile Ile Ser
 450 455 460
 Gly Asn Lys Asn Leu Cys Tyr Ala Asn Thr Ile Asn Trp Lys Lys Leu
 465 470 475 480
 Phe Gly Thr Ser Gly Gln Lys Thr Lys Ile Ile Ser Asn Arg Gly Glu
 485 490 495
 Asn Ser Cys Lys Ala Thr Gly Gln Val Cys His Ala Leu Cys Ser Pro
 500 505 510
 Glu Gly Cys Trp Gly Pro Glu Pro Arg Asp Cys Val Ser Cys Arg Asn
 515 520 525
 Val Ser Arg Gly Arg Glu Cys Val Asp Lys Cys Lys Leu Leu Glu Gly
 530 535 540
 Glu Pro Arg Glu Phe Val Glu Asn Ser Glu Cys Ile Gln Cys His Pro
 545 550 555 560
 Glu Cys Leu Pro Gln Ala Met Asn Ile Thr Cys Thr Gly Arg Gly Pro
 565 570 575
 Asp Asn Cys Ile Gln Cys Ala His Tyr Ile Asp Gly Pro His Cys Val
 580 585 590
 Lys Thr Cys Pro Ala Gly Val Met Gly Glu Asn Asn Thr Leu Val Trp
 595 600 605
 Lys Tyr Ala Asp Ala Gly His Val Cys His Leu Cys His Pro Asn Cys
 610 615 620
 Thr Tyr Gly Cys Thr Gly Pro Gly Leu Glu Gly Cys Pro Thr Asn Gly
 625 630 635 640
 Pro Lys Ile Pro Ser Ile Ala Thr Gly Met Val Gly Ala Leu Leu Leu
 645 650 655
 Leu Leu Val Val Ala Leu Gly Ile Gly Leu Phe Met Arg Arg Arg His
 660 665 670
 Ile Val Arg Lys Arg Thr Leu Arg Arg Leu Leu Gln Glu Arg Glu Leu
 675 680 685
 Val Glu Pro Leu Thr Pro Ser Gly Glu Ala Pro Asn Gln Ala Leu Leu
 690 695 700
 Arg Ile Leu Lys Glu Thr Glu Phe Lys Lys Ile Lys Val Leu Gly Ser
 705 710 715 720
 Gly Ala Phe Gly Thr Val Tyr Lys Gly Leu Trp Ile Pro Glu Gly Glu
 725 730 735
 Lys Val Lys Ile Pro Val Ala Ile Lys Glu Leu Arg Glu Ala Thr Ser
 740 745 750
 Pro Lys Ala Asn Lys Glu Ile Leu Asp Glu Ala Tyr Val Met Ala Ser
 755 760 765
 Val Asp Asn Pro His Val Cys Arg Leu Leu Gly Ile Cys Leu Thr Ser
 770 775 780
 Thr Val Gln Leu Ile Thr Gln Leu Met Pro Phe Gly Cys Leu Leu Asp
 785 790 795 800
 Tyr Val Arg Glu His Lys Asp Asn Ile Gly Ser Gln Tyr Leu Leu Asn

Sequence listing.txt

805	810	815	
Trp Cys Val Gln Ile Ala Lys Gly	Met Asn Tyr Leu Glu Asp Arg Arg		
820	825	830	
Leu Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Lys Thr Pro			
835	840	845	
Gln His Val Lys Ile Thr Asp Phe Gly Leu Ala Lys Leu Leu Gly Ala			
850	855	860	
Glu Glu Lys Glu Tyr His Ala Glu Gly Gly Lys Val Pro Ile Lys Trp			
865	870	875	880
Met Ala Leu Glu Ser Ile Leu His Arg Ile Tyr Thr His Gln Ser Asp			
885	890	895	
Val Trp Ser Tyr Gly Val Thr Val Trp Glu Leu Met Thr Phe Gly Ser			
900	905	910	
Lys Pro Tyr Asp Gly Ile Pro Ala Ser Glu Ile Ser Ser Ile Leu Glu			
915	920	925	
Lys Gly Glu Arg Leu Pro Gln Pro Pro Ile Cys Thr Ile Asp Val Tyr			
930	935	940	
Met Ile Met Val Lys Cys Trp Met Ile Asp Ala Asp Ser Arg Pro Lys			
945	950	955	960
Phe Arg Glu Leu Ile Ile Glu Phe Ser Lys Met Ala Arg Asp Pro Gln			
965	970	975	
Arg Tyr Leu Val Ile Gln Gly Asp Glu Arg Met His Leu Pro Ser Pro			
980	985	990	
Thr Asp Ser Asn Phe Tyr Arg Ala Leu Met Asp Glu Glu Asp Met Asp			
995	1000	1005	
Asp Val Val Asp Ala Asp Glu Tyr Leu Ile Pro Gln Gln Gly Phe Phe			
1010	1015	1020	
Ser Ser Pro Ser Thr Ser Arg Thr Pro Leu Leu Ser Ser Leu Ser Ala			
1025	1030	1035	1040
Thr Ser Asn Asn Ser Thr Val Ala Cys Ile Asp Arg Asn Gly Leu Gln			
1045	1050	1055	
Ser Cys Pro Ile Lys Glu Asp Ser Phe Leu Gln Arg Tyr Ser Ser Asp			
1060	1065	1070	
Pro Thr Gly Ala Leu Thr Glu Asp Ser Ile Asp Asp Thr Phe Leu Pro			
1075	1080	1085	
Val Pro Glu Tyr Ile Asn Gln Ser Val Pro Lys Arg Pro Ala Gly Ser			
1090	1095	1100	
Val Gln Asn Pro Val Tyr His Asn Gln Pro Leu Asn Pro Ala Pro Ser			
1105	1110	1115	1120
Arg Asp Pro His Tyr Gln Asp Pro His Ser Thr Ala Val Gly Asn Pro			
1125	1130	1135	
Glu Tyr Leu Asn Thr Val Gln Pro Thr Cys Val Asn Ser Thr Phe Asp			
1140	1145	1150	
Ser Pro Ala His Trp Ala Gln Lys Gly Ser His Gln Ile Ser Leu Asp			
1155	1160	1165	
Asn Pro Asp Tyr Gln Gln Asp Phe Phe Pro Lys Glu Ala Lys Pro Asn			
1170	1175	1180	
Gly Ile Phe Lys Gly Ser Thr Ala Glu Asn Ala Glu Tyr Leu Arg Val			
1185	1190	1195	1200
Ala Pro Gln Ser Ser Glu Phe Ile Gly Ala			
1205	1210		

<210> 126

<211> 1255

<212> PRT

<213> Homo sapiens

<400> 126

Met Glu Leu Ala Ala Leu Cys Arg Trp	Gly Leu Leu Leu Ala Leu	Leu	
1	5	10	15
Pro Pro Gly Ala Ala Ser Thr Gln Val	Cys Thr Gly Thr Asp Met Lys		
20	25	30	

Sequence listing.txt

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His
 35 40 45
 Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr
 50 55 60
 Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val
 65 70 75 80
 Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu
 85 90 95
 Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr
 100 105 110
 Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro
 115 120 125
 Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser
 130 135 140
 Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln
 145 150 155 160
 Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn
 165 170 175
 Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys
 180 185 190
 His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser
 195 200 205
 Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys
 210 215 220
 Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys
 225 230 235 240
 Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu
 245 250 255
 His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val
 260 265 270
 Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg
 275 280 285
 Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu
 290 295 300
 Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln
 305 310 315 320
 Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys
 325 330 335
 Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu
 340 345 350
 Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys
 355 360 365
 Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp
 370 375 380
 Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe
 385 390 395 400
 Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro
 405 410 415
 Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg
 420 425 430
 Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu
 435 440 445
 Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly
 450 455 460
 Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val
 465 470 475 480
 Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr
 485 490 495
 Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His
 500 505 510
 Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys
 515 520 525
 Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys

Sequence listing.txt

530	535	540
Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys	550	555
545		560
Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys	565	570
	575	
Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp	580	585
		590
Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu	595	600
	605	
Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln	610	615
		620
Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys	625	630
	635	640
Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Val Ser	645	650
		655
Ala Val Val Gly Ile Leu Leu Val Val Leu Gly Val Val Phe Gly	660	665
		670
Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg	675	680
		685
Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly	690	695
		700
Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu	705	710
	715	720
Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys	725	730
		735
Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile	740	745
		750
Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu	755	760
	765	
Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg	770	775
		780
Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu	785	790
	795	800
Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg	805	810
		815
Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly	820	825
		830
Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala	835	840
		845
Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe	850	855
		860
Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp	865	870
		875
		880
Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg	885	890
		895
Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val	900	905
		910
Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala	915	920
		925
Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro	930	935
		940
Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met	945	950
		955
		960
Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe	965	970
		975
Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu	980	985
		990
Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu	995	1000
		1005
Leu Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr Leu	1010	1015
		1020
Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly Ala Gly	1025	1030
	1035	1040

Sequence listing.txt

Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg Ser Gly Gly
 1045 1050 1055
 Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu Glu Ala Pro Arg
 1060 1065 1070
 Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Ser Asp Val Phe Asp Gly
 1075 1080 1085
 Asp Leu Gly Met Gly Ala Ala Lys Gly Leu Gln Ser Leu Pro Thr His
 1090 1095 1100
 Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu Asp Pro Thr Val Pro Leu
 1105 1110 1115 1120
 Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Leu Thr Cys Ser Pro Gln
 1125 1130 1135
 Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pro Gln Pro Pro Ser Pro
 1140 1145 1150
 Arg Glu Gly Pro Leu Pro Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu
 1155 1160 1165
 Arg Ala Lys Thr Leu Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val
 1170 1175 1180
 Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln
 1185 1190 1195 1200
 Gly Gly Ala Ala Pro Gln Pro His Pro Pro Ala Phe Ser Pro Ala
 1205 1210 1215
 Phe Asp Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg Gly Ala
 1220 1225 1230
 Pro Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr
 1235 1240 1245
 Leu Gly Leu Asp Val Pro Val
 1250 1255

<210> 127

<211> 190

<212> PRT

<213> Homo sapiens

<400> 127

Met Thr Thr Ala Ser Thr Ser Gln Val Arg Gln Asn Tyr His Gln Asp
 1 5 10 15
 Ser Glu Ala Ala Ile Asn Arg Gln Ile Asn Leu Glu Leu Tyr Ala Ser
 20 25 30
 Tyr Val Tyr Leu Ser Met Ser Tyr Tyr Phe Asp Arg Asp Asp Val Ala
 35 40 45
 Leu Lys Asn Phe Ala Lys Tyr Phe Leu His Gln Ser His Glu Glu Arg
 50 55 60
 Glu His Ala Glu Lys Leu Met Lys Leu Gln Asn Gln Arg Gly Gly Arg
 65 70 75 80
 Ile Phe Leu Gln Asp Ile Lys Lys Pro Asp Cys Asp Asp Trp Glu Ser
 85 90 95
 Gly Leu Asn Ala Met Glu Cys Ala Leu His Leu Glu Lys Asn Val Asn
 100 105 110
 Gln Ser Leu Leu Glu Leu His Lys Leu Ala Thr Asp Lys Asn Asp Pro
 115 120 125
 His Leu Cys Asp Phe Ile Glu Thr His Tyr Leu Asn Glu Gln Val Lys
 130 135 140
 Ala Ile Lys Glu Leu Gly Asp His Val Thr Asn Leu Arg Lys Met Gly
 145 150 155 160
 Ala Pro Glu Ser Gly Leu Ala Glu Tyr Leu Phe Asp Lys His Thr Trp
 165 170 175
 Glu Thr Val Ile Met Lys Ala Lys Pro Arg Ala Asn Phe Pro
 180 185 190

<210> 128

Sequence listing.txt

<211> 175

<212> PRT

<213> Homo sapiens

<400> 128

Met Ser Ser Gln Ile Arg Gln Asn Tyr Ser Thr Asp Val Glu Ala Ala
1 5 10 15
Val Asn Ser Leu Val Asn Leu Tyr Leu Gln Ala Ser Tyr Thr Tyr Leu
20 25 30
Ser Leu Gly Phe Tyr Phe Asp Arg Asp Asp Val Ala Leu Glu Gly Val
35 40 45
Ser His Phe Phe Arg Glu Leu Ala Glu Glu Lys Arg Glu Gly Tyr Glu
50 55 60
Arg Leu Leu Lys Met Gln Asn Gln Arg Gly Gly Arg Ala Leu Phe Gln
65 70 75 80
Asp Ile Lys Lys Pro Ala Glu Asp Glu Trp Gly Lys Thr Pro Asp Ala
85 90 95
Met Lys Ala Ala Met Ala Leu Glu Lys Lys Leu Asn Gln Ala Leu Leu
100 105 110
Asp Leu His Ala Leu Gly Ser Ala Arg Thr Asp Pro His Leu Cys Asp
115 120 125
Phe Leu Glu Thr His Phe Leu Asp Glu Glu Val Lys Leu Ile Lys Lys
130 135 140
Met Gly Asp His Leu Thr Asn Leu His Arg Leu Gly Gly Pro Glu Ala
145 150 155 160
Gly Leu Gly Glu Tyr Leu Phe Glu Arg Leu Thr Leu Lys His Asp
165 170 175

<210> 129

<211> 535

<212> PRT

<213> Homo sapiens

<400> 129

Met Leu Gly Pro Cys Met Leu Leu Leu Leu Leu Leu Gly Leu Arg
1 5 10 15
Leu Gln Leu Ser Leu Gly Ile Ile Leu Val Glu Glu Glu Asn Pro Asp
20 25 30
Phe Trp Asn Arg Glu Ala Ala Glu Ala Leu Gly Ala Ala Lys Lys Leu
35 40 45
Gln Pro Ala Gln Thr Ala Ala Lys Asn Leu Ile Ile Phe Leu Gly Asp
50 55 60
Gly Met Gly Val Ser Thr Val Thr Ala Ala Arg Ile Leu Lys Gly Gln
65 70 75 80
Lys Lys Asp Lys Leu Gly Pro Glu Ile Pro Leu Ala Met Asp Arg Phe
85 90 95
Pro Tyr Val Ala Leu Ser Lys Thr Tyr Asn Val Asp Lys His Val Pro
100 105 110
Asp Ser Gly Ala Thr Ala Thr Ala Tyr Leu Cys Gly Val Lys Gly Asn
115 120 125
Phe Gln Thr Ile Gly Leu Ser Ala Ala Arg Phe Asn Gln Cys Asn
130 135 140
Thr Thr Arg Gly Asn Glu Val Ile Ser Val Met Asn Arg Ala Lys Lys
145 150 155 160
Ala Gly Lys Ser Val Gly Val Val Thr Thr Arg Val Gln His Ala
165 170 175
Ser Pro Ala Gly Thr Tyr Ala His Thr Val Asn Arg Asn Trp Tyr Ser
180 185 190
Asp Ala Asp Val Pro Ala Ser Ala Arg Gln Glu Gly Cys Gln Asp Ile
195 200 205
Ala Thr Gln Leu Ile Ser Asn Met Asp Ile Asp Val Ile Leu Gly Gly
210 215 220

Sequence listing.txt

Gly Arg Lys Tyr Met Phe Arg Met Gly Thr Pro Asp Pro Glu Tyr Pro
 225 230 235 240
 Asp Asp Tyr Ser Gln Gly Gly Thr Arg Leu Asp Gly Lys Asn Leu Val
 245 250 255
 Gln Glu Trp Leu Ala Lys Arg Gln Gly Ala Arg Tyr Val Trp Asn Arg
 260 265 270
 Thr Glu Leu Met Gln Ala Ser Leu Asp Pro Ser Val Ala His Leu Met
 275 280 285
 Gly Leu Phe Glu Pro Gly Asp Met Lys Tyr Glu Ile His Arg Asp Ser
 290 295 300
 Thr Leu Asp Pro Ser Leu Met Glu Met Thr Glu Ala Ala Leu Arg Leu
 305 310 315 320
 Leu Ser Arg Asn Pro Arg Gly Phe Phe Leu Phe Val Glu Gly Arg
 325 330 335
 Ile Asp His Gly His His Glu Ser Arg Ala Tyr Arg Ala Leu Thr Glu
 340 345 350
 Thr Ile Met Phe Asp Asp Ala Ile Glu Arg Ala Gly Gln Leu Thr Ser
 355 360 365
 Glu Glu Asp Thr Leu Ser Leu Val Thr Ala Asp His Ser His Val Phe
 370 375 380
 Ser Phe Gly Gly Tyr Pro Leu Arg Gly Ser Ser Ile Phe Gly Leu Ala
 385 390 395 400
 Pro Gly Lys Ala Arg Asp Arg Lys Ala Tyr Thr Val Leu Leu Tyr Gly
 405 410 415
 Asn Gly Pro Gly Tyr Val Leu Lys Asp Gly Ala Arg Pro Asp Val Thr
 420 425 430
 Glu Ser Glu Ser Gly Ser Pro Glu Tyr Arg Gln Gln Ser Ala Val Pro
 435 440 445
 Leu Asp Glu Glu Thr His Ala Gly Glu Asp Val Ala Val Phe Ala Arg
 450 455 460
 Gly Pro Gln Ala His Leu Val His Gly Val Gln Glu Gln Thr Phe Ile
 465 470 475 480
 Ala His Val Met Ala Phe Ala Ala Cys Leu Glu Pro Tyr Thr Ala Cys
 485 490 495
 Asp Leu Ala Pro Pro Ala Gly Thr Thr Asp Ala Ala His Pro Gly Arg
 500 505 510
 Ser Val Val Pro Ala Leu Leu Pro Leu Leu Ala Gly Thr Leu Leu Leu
 515 520 525
 Leu Glu Thr Ala Thr Ala Pro
 530 535

<210> 130

<211> 461

<212> PRT

<213> Homo sapiens

<400> 130

Met Asn Asn Phe Gly Asn Glu Glu Phe Asp Cys His Phe Leu Asp Glu
 1 5 10 15
 Gly Phe Thr Ala Lys Asp Ile Leu Asp Gln Lys Ile Asn Glu Val Ser
 20 25 30
 Ser Ser Asp Asp Lys Asp Ala Phe Tyr Val Ala Asp Leu Gly Asp Ile
 35 40 45
 Leu Lys Lys His Leu Arg Trp Leu Lys Ala Leu Pro Arg Val Thr Pro
 50 55 60
 Phe Tyr Ala Val Lys Cys Asn Asp Ser Lys Ala Ile Val Lys Thr Leu
 65 70 75 80
 Ala Ala Thr Gly Thr Gly Phe Asp Cys Ala Ser Lys Thr Glu Ile Gln
 85 90 95
 Leu Val Gln Ser Leu Gly Val Pro Pro Glu Arg Ile Ile Tyr Ala Asn
 100 105 110
 Pro Cys Lys Gln Val Ser Gln Ile Lys Tyr Ala Ala Asn Asn Gly Val

Sequence listing.txt

115	120	125
Gln Met Met Thr Phe Asp Ser	Glu Val Glu Leu Met Lys Val Ala Arg	
130	135	140
Ala His Pro Lys Ala Lys Leu Val Leu Arg Ile Ala Thr Asp Asp Ser		
145	150	155
Lys Ala Val Cys Arg Leu Ser Val Lys Phe Gly Ala Thr Leu Arg Thr		160
165	170	175
Ser Arg Leu Leu Leu Glu Arg Ala Lys Glu Leu Asn Ile Asp Val Val		
180	185	190
Gly Val Ser Phe His Val Gly Ser Gly Cys Thr Asp Pro Glu Thr Phe		
195	200	205
Val Gln Ala Ile Ser Asp Ala Arg Cys Val Phe Asp Met Gly Ala Glu		
210	215	220
Val Gly Phe Ser Met Tyr Leu Leu Asp Ile Gly Gly Gly Phe Pro Gly		
225	230	235
Ser Glu Asp Val Lys Leu Lys Phe Glu Glu Ile Thr Gly Val Ile Asn		240
245	250	255
Pro Ala Leu Asp Lys Tyr Phe Pro Ser Asp Ser Gly Val Arg Ile Ile		
260	265	270
Ala Glu Pro Gly Arg Tyr Tyr Val Ala Ser Ala Phe Thr Leu Ala Val		
275	280	285
Asn Ile Ile Ala Lys Lys Ile Val Leu Lys Glu Gln Thr Gly Ser Asp		
290	295	300
Asp Glu Asp Glu Ser Ser Glu Gln Thr Phe Met Tyr Tyr Val Asn Asp		
305	310	315
Gly Val Tyr Gly Ser Phe Asn Cys Ile Leu Tyr Asp His Ala His Val		320
325	330	335
Lys Pro Leu Leu Gln Lys Arg Pro Lys Pro Asp Glu Lys Tyr Tyr Ser		
340	345	350
Ser Ser Ile Trp Gly Pro Thr Cys Asp Gly Leu Asp Arg Ile Val Glu		
355	360	365
Arg Cys Asp Leu Pro Glu Met His Val Gly Asp Trp Met Leu Phe Glu		
370	375	380
Asn Met Gly Ala Tyr Thr Val Ala Ala Ala Ser Thr Phe Asn Gly Phe		
385	390	395
Gln Arg Pro Thr Ile Tyr Tyr Val Met Ser Gly Pro Ala Trp Gln Leu		400
405	410	415
Met Gln Gln Phe Gln Asn Pro Asp Phe Pro Pro Glu Val Glu Glu Gln		
420	425	430
Asp Ala Ser Thr Leu Pro Val Ser Cys Ala Trp Glu Ser Gly Met Lys		
435	440	445
Arg His Arg Ala Ala Cys Ala Ser Ala Ser Ile Asn Val		
450	455	460

<210> 131

<211> 1148

<212> PRT

<213> Homo sapiens

<400> 131

Met Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly Cys			
1	5	10	15
Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Arg Val			
20	25	30	
Asp Ala Val Cys Thr His Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp			
35	40	45	
Arg Glu Arg Leu Tyr Trp Lys Leu Ser Gln Leu Thr His Gly Ile Thr			
50	55	60	
Glu Leu Gly Pro Tyr Thr Leu Asp Arg His Ser Leu Tyr Val Asn Gly			
65	70	75	80
Phe Thr His Gln Ser Ser Met Thr Thr Thr Arg Thr Pro Asp Thr Ser			
85	90	95	

Sequence listing.txt

Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser Leu Ser Gly Pro
 100 105 110
 Thr Thr Ala Ser Pro Leu Leu Val Leu Phe Thr Ile Asn Phe Thr Ile
 115 120 125
 Thr Asn Leu Arg Tyr Glu Glu Asn Met His His Pro Gly Ser Arg Lys
 130 135 140
 Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Val Phe
 145 150 155 160
 Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu
 165 170 175
 Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys
 180 185 190
 Thr Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu
 195 200 205
 Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro
 210 215 220
 Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg
 225 230 235 240
 Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Pro Thr Val Asp Leu
 245 250 255
 Gly Thr Ser Gly Thr Pro Val Ser Lys Pro Gly Pro Ser Ala Ala Ser
 260 265 270
 Pro Leu Leu Val Leu Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Arg
 275 280 285
 Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr
 290 295 300
 Glu Arg Val Leu Gln Gly Leu Leu Arg Ser Leu Phe Lys Ser Thr Ser
 305 310 315 320
 Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu
 325 330 335
 Lys Asp Gly Thr Ala Thr Gly Val Asp Ala Ile Cys Thr His His Pro
 340 345 350
 Asp Pro Lys Ser Pro Arg Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu
 355 360 365
 Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly His Tyr Ala Leu Asp
 370 375 380
 Asn Asp Ser Leu Phe Val Asn Gly Phe Thr His Arg Ser Ser Val Ser
 385 390 395 400
 Thr Thr Ser Thr Pro Gly Thr Pro Thr Val Tyr Leu Gly Ala Ser Lys
 405 410 415
 Thr Pro Ala Ser Ile Phe Gly Pro Ser Ala Ala Ser His Leu Leu Ile
 420 425 430
 Leu Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn
 435 440 445
 Met Trp Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln
 450 455 460
 Gly Leu Leu Arg Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr
 465 470 475 480
 Ser Gly Ser Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Glu Ala
 485 490 495
 Thr Gly Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Thr Gly Pro
 500 505 510
 Gly Leu Asp Arg Glu Gln Leu Tyr Leu Glu Leu Ser Gln Leu Thr His
 515 520 525
 Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr
 530 535 540
 Val Asn Gly Phe Thr His Arg Ser Ser Val Pro Thr Thr Ser Thr Gly
 545 550 555 560
 Val Val Ser Glu Glu Pro Phe Thr Leu Asn Phe Thr Ile Asn Asn Leu
 565 570 575
 Arg Tyr Met Ala Asp Met Gly Gln Pro Gly Ser Leu Lys Phe Asn Ile
 580 585 590
 Thr Asp Asn Val Met Lys His Leu Leu Ser Pro Leu Phe Gln Arg Ser

Sequence listing.txt

595	600	605
Ser Leu Gly Ala Arg Tyr Thr Gly Cys Arg Val Ile Ala Leu Arg Ser		
610	615	620
Val Lys Asn Gly Ala Glu Thr Arg Val Asp Leu Leu Cys Thr Tyr Leu		
625	630	635
Gln Pro Leu Ser Gly Pro Gly Leu Pro Ile Lys Gln Val Phe His Glu		
645	650	655
Leu Ser Gln Gln Thr His Gly Ile Thr Arg Leu Gly Pro Tyr Ser Leu		
660	665	670
Asp Lys Asp Ser Leu Tyr Leu Asn Gly Tyr Asn Glu Pro Gly Leu Asp		
675	680	685
Glu Pro Pro Thr Thr Pro Lys Pro Ala Thr Thr Phe Leu Pro Pro Leu		
690	695	700
Ser Glu Ala Thr Thr Ala Met Gly Tyr His Leu Lys Thr Leu Thr Leu		
705	710	715
Asn Phe Thr Ile Ser Asn Leu Gln Tyr Ser Pro Asp Met Gly Lys Gly		
725	730	735
Ser Ala Thr Phe Asn Ser Thr Glu Gly Val Leu Gln His Leu Leu Arg		
740	745	750
Pro Leu Phe Gln Lys Ser Ser Met Gly Pro Phe Tyr Leu Gly Cys Gln		
755	760	765
Leu Ile Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp		
770	775	780
Thr Thr Cys Thr Tyr His Pro Asp Pro Val Gly Pro Gly Leu Asp Ile		
785	790	795
Gln Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Gly Val Thr Gln		
805	810	815
Leu Gly Phe Tyr Val Leu Asp Arg Asp Ser Leu Phe Ile Asn Gly Tyr		
820	825	830
Ala Pro Gln Asn Leu Ser Ile Arg Gly Glu Tyr Gln Ile Asn Phe His		
835	840	845
Ile Val Asn Trp Asn Leu Ser Asn Pro Asp Pro Thr Ser Ser Glu Tyr		
850	855	860
Ile Thr Leu Leu Arg Asp Ile Gln Asp Lys Val Thr Thr Leu Tyr Lys		
865	870	875
Gly Ser Gln Leu His Asp Thr Phe Arg Phe Cys Leu Val Thr Asn Leu		
885	890	895
Thr Met Asp Ser Val Leu Val Thr Val Lys Ala Leu Phe Ser Ser Asn		
900	905	910
Leu Asp Pro Ser Leu Val Glu Gln Val Phe Leu Asp Lys Thr Leu Asn		
915	920	925
Ala Ser Phe His Trp Leu Gly Ser Thr Tyr Gln Leu Val Asp Ile His		
930	935	940
Val Thr Glu Met Glu Ser Ser Val Tyr Gln Pro Thr Ser Ser Ser Ser		
945	950	955
960		
Thr Gln His Phe Tyr Pro Asn Phe Thr Ile Thr Asn Leu Pro Tyr Ser		
965	970	975
Gln Asp Lys Ala Gln Pro Gly Thr Thr Asn Tyr Gln Arg Asn Lys Arg		
980	985	990
Asn Ile Glu Asp Ala Leu Asn Gln Leu Phe Arg Asn Ser Ser Ile Lys		
995	1000	1005
Ser Tyr Phe Ser Asp Cys Gln Val Ser Thr Phe Arg Ser Val Pro Asn		
1010	1015	1020
Arg His His Thr Gly Val Asp Ser Leu Cys Asn Phe Ser Pro Leu Ala		
1025	1030	1035
1040		
Arg Arg Val Asp Arg Val Ala Ile Tyr Glu Glu Phe Leu Arg Met Thr		
1045	1050	1055
Arg Asn Gly Thr Gln Leu Gln Asn Phe Thr Leu Asp Arg Ser Ser Val		
1060	1065	1070
Leu Val Asp Gly Tyr Ser Pro Asn Arg Asn Glu Pro Leu Thr Gly Asn		
1075	1080	1085
Ser Asp Leu Pro Phe Trp Ala Val Ile Phe Ile Gly Leu Ala Gly Leu		
1090	1095	1100

Sequence listing.txt

Leu Gly Leu Ile Thr Cys Leu Ile Cys Gly Val Leu Val Thr Thr Arg
1105 1110 1115 1120
Arg Arg Lys Lys Glu Gly Glu Tyr Asn Val Gln Gln Gln Cys Pro Gly
1125 1130 1135
Tyr Tyr Gln Ser His Leu Asp Leu Glu Asp Leu Gln
1140 1145

<210> 132

<211> 526

<212> PRT

<213> Homo sapiens

<400> 132

Met Gly His Leu Ser Ala Pro Leu His Arg Val Arg Val Pro Trp Gln
1 5 10 15
Gly Leu Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr
20 25 30
Thr Ala Gln Leu Thr Thr Glu Ser Met Pro Phe Asn Val Ala Glu Gly
35 40 45
Lys Glu Val Leu Leu Leu Val His Asn Leu Pro Gln Gln Leu Phe Gly
50 55 60
Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Arg Gln Ile Val
65 70 75 80
Gly Tyr Ala Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Asn Ser
85 90 95
Gly Arg Glu Thr Ile Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Val
100 105 110
Thr Gln Asn Asp Thr Gly Phe Tyr Thr Leu Gln Val Ile Lys Ser Asp
115 120 125
Leu Val Asn Glu Glu Ala Thr Gly Gln Phe His Val Tyr Pro Glu Leu
130 135 140
Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Asn Pro Val Glu Asp Lys
145 150 155 160
Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Thr Gln Asp Thr Thr Tyr
165 170 175
Leu Trp Trp Ile Asn Asn Gln Ser Leu Pro Val Ser Pro Arg Leu Gln
180 185 190
Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Leu Ser Val Thr Arg Asn
195 200 205
Asp Thr Gly Pro Tyr Glu Cys Glu Ile Gln Asn Pro Val Ser Ala Asn
210 215 220
Arg Ser Asp Pro Val Thr Leu Asn Val Thr Tyr Gly Pro Asp Thr Pro
225 230 235 240
Thr Ile Ser Pro Ser Asp Thr Tyr Tyr Arg Pro Gly Ala Asn Leu Ser
245 250 255
Leu Ser Cys Tyr Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser Trp Leu
260 265 270
Ile Asn Gly Thr Phe Gln Gln Ser Thr Gln Glu Leu Phe Ile Pro Asn
275 280 285
Ile Thr Val Asn Asn Ser Gly Ser Tyr Thr Cys His Ala Asn Asn Ser
290 295 300
Val Thr Gly Cys Asn Arg Thr Thr Val Lys Thr Ile Ile Val Thr Glu
305 310 315 320
Leu Ser Pro Val Val Ala Lys Pro Gln Ile Lys Ala Ser Lys Thr Thr
325 330 335
Val Thr Gly Asp Lys Asp Ser Val Asn Leu Thr Cys Ser Thr Asn Asp
340 345 350
Thr Gly Ile Ser Ile Arg Trp Phe Phe Lys Asn Gln Ser Leu Pro Ser
355 360 365
Ser Glu Arg Met Lys Leu Ser Gln Gly Asn Thr Thr Leu Ser Ile Asn
370 375 380
Pro Val Lys Arg Glu Asp Ala Gly Thr Tyr Trp Cys Glu Val Phe Asn

Sequence listing.txt

385	390	395	400
Pro Ile Ser Lys Asn Gln Ser Asp Pro Ile Met Leu Asn Val Asn Tyr			
405	410	415	
Asn Ala Leu Pro Gln Glu Asn Gly Leu Ser Pro Gly Ala Ile Ala Gly			
420	425	430	
Ile Val Ile Gly Val Val Ala Leu Val Ala Leu Ile Ala Val Ala Leu			
435	440	445	
Ala Cys Phe Leu His Phe Gly Lys Thr Gly Arg Ala Ser Asp Gln Arg			
450	455	460	
Asp Leu Thr Glu His Lys Pro Ser Val Ser Asn His Thr Gln Asp His			
465	470	475	480
Ser Asn Asp Pro Pro Asn Lys Met Asn Glu Val Thr Tyr Ser Thr Leu			
485	490	495	
Asn Phe Glu Ala Gln Gln Pro Thr Gln Pro Thr Ser Ala Ser Pro Ser			
500	505	510	
Leu Thr Ala Thr Glu Ile Ile Tyr Ser Glu Val Lys Lys Gln			
515	520	525	

<210> 133

<211> 212

<212> PRT

<213> Homo sapiens

<400> 133

Met Gly Pro Pro Ser Ala Pro Pro His Arg Glu Cys Ile Pro Trp Gln			
1	5	10	15
Gly Leu Leu Leu Thr Ala Ser Leu Leu Asn Phe Trp Asn Pro Pro Thr			
20	25	30	
Thr Ala Lys Leu Thr Ile Glu Ser Met Pro Leu Ser Val Ala Glu Gly			
35	40	45	
Lys Glu Val Leu Leu Leu Val His Asn Leu Pro Gln His Leu Phe Gly			
50	55	60	
Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Ser Leu Ile Val			
65	70	75	80
Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Ala Ala Tyr Ser			
85	90	95	
Gly Arg Glu Thr Ile Tyr Thr Asn Ala Ser Leu Leu Ile Gln Asn Val			
100	105	110	
Thr Gln Asn Asp Ile Gly Phe Tyr Thr Leu Gln Val Ile Lys Ser Asp			
115	120	125	
Leu Val Asn Glu Glu Ala Thr Gly Gln Phe His Val Tyr Gln Glu Asn			
130	135	140	
Ala Pro Gly Leu Pro Val Gly Ala Val Ala Gly Ile Val Thr Gly Val			
145	150	155	160
Leu Val Gly Val Ala Leu Val Ala Ala Leu Val Cys Phe Leu Leu Leu			
165	170	175	
Ala Lys Thr Gly Arg Pro Trp Ser Leu Pro Gln Leu Cys Leu Leu Asp			
180	185	190	
Val Pro Ser Leu His Cys Leu Gly Pro Pro Thr Gln Pro Gln Asp Ser			
195	200	205	
Ser Phe His Leu			
210			

<210> 134

<211> 244

<212> PRT

<213> Homo sapiens

<400> 134

Met Gly Pro Pro Ser Ala Ala Pro Arg Gly Gly His Arg Pro Trp Gln			
1	5	10	15

Sequence listing.txt

Gly Leu Leu Ile Thr Ala Ser Leu Leu Thr Phe Trp Asp Pro Pro Thr
20 25 30
Thr Val Gln Phe Thr Ile Glu Ala Leu Pro Ser Ser Ala Ala Glu Gly
35 40 45
Lys Asp Val Leu Leu Leu Ala Cys Asn Ile Ser Glu Thr Ile Gln Ala
50 55 60
Tyr Tyr Trp His Lys Gly Lys Thr Ala Glu Gly Ser Pro Leu Ile Ala
65 70 75 80
Gly Tyr Ile Thr Asp Ile Gln Ala Asn Ile Pro Gly Ala Ala Tyr Ser
85 90 95
Gly Arg Glu Gln Val Tyr Pro Asn Gly Ser Leu Leu Phe Gln Asn Ile
100 105 110
Thr Leu Glu Asp Ala Gly Ser Tyr Thr Leu Arg Thr Ile Asn Ala Ser
115 120 125
Tyr Asp Ser Asp Gln Ala Thr Gly Gln Leu His Val His Gln Asn Asn
130 135 140
Val Pro Gly Leu Pro Val Gly Ala Val Ala Gly Ile Val Thr Gly Val
145 150 155 160
Leu Val Gly Val Ala Leu Val Ala Ala Leu Val Cys Phe Leu Leu Leu
165 170 175
Ser Arg Thr Gly Arg Ala Ser Ile Gln Arg Asp Leu Arg Glu Gln Pro
180 185 190
Pro Pro Ala Ser Thr Pro Gly His Gly Pro Ser His Arg Ser Thr Phe
195 200 205
Ser Ala Pro Leu Pro Ser Pro Arg Thr Ala Thr Pro Ile Tyr Val Glu
210 215 220
Phe Leu Tyr Ser Asp Ala Asn Ile Tyr Cys Gln Ile Asp His Lys Ala
225 230 235 240
Asp Val Val Ser

<210> 135
<211> 344
<212> PRT
<213> Homo sapiens

<400> 135
Met Gly Pro Pro Ser Ala Pro Pro Cys Arg Leu His Val Pro Trp Lys
1 5 10 15
Glu Val Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr
20 25 30
Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly
35 40 45
Lys Glu Val Leu Leu Ala His Asn Leu Pro Gln Asn Arg Ile Gly
50 55 60
Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Ser Leu Ile Val
65 70 75 80
Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Tyr Ser
85 90 95
Gly Arg Glu Thr Ile Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Val
100 105 110
Thr Gln Asn Asp Thr Gly Phe Tyr Thr Leu Gln Val Ile Lys Ser Asp
115 120 125
Leu Val Asn Glu Glu Ala Thr Gly Gln Phe His Val Tyr Pro Glu Leu
130 135 140
Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Asn Pro Val Glu Asp Lys
145 150 155 160
Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Val Gln Asn Thr Thr Tyr
165 170 175
Leu Trp Trp Val Asn Gly Gln Ser Leu Pro Val Ser Pro Arg Leu Gln
180 185 190
Leu Ser Asn Gly Asn Met Thr Leu Thr Leu Leu Ser Val Lys Arg Asn

Sequence listing.txt

195	200	205
Asp Ala Gly Ser Tyr Glu Cys	Glu Ile Gln Asn Pro Ala Ser Ala Asn	
210	215	220
Arg Ser Asp Pro Val Thr Leu Asn Val Leu Tyr Gly Pro Asp Val Pro		
225	230	235
Thr Ile Ser Pro Ser Lys Ala Asn Tyr Arg Pro Gly Glu Asn Leu Asn		
245	250	255
Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser Trp Phe		
260	265	270
Ile Asn Gly Thr Phe Gln Gln Ser Thr Gln Glu Leu Phe Ile Pro Asn		
275	280	285
Ile Thr Val Asn Asn Ser Gly Ser Tyr Met Cys Gln Ala His Asn Ser		
290	295	300
Ala Thr Gly Leu Asn Arg Thr Thr Val Thr Met Ile Thr Val Ser Gly		
305	310	315
Ser Ala Pro Val Leu Ser Ala Val Ala Thr Val Gly Ile Thr Ile Gly		
325	330	335
Val Leu Ala Arg Val Ala Leu Ile		
340		

<210> 136

<211> 265

<212> PRT

<213> Homo sapiens

<400> 136

Met Gly Ser Pro Ser Ala Cys Pro Tyr Arg Val Cys Ile Pro Trp Gln			
1	5	10	15
Gly Leu Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Leu Pro Asn			
20	25	30	
Ser Ala Gln Thr Asn Ile Asp Val Val Pro Phe Asn Val Ala Glu Gly			
35	40	45	
Lys Glu Val Leu Leu Val Val His Asn Glu Ser Gln Asn Leu Tyr Gly			
50	55	60	
Tyr Asn Trp Tyr Lys Gly Glu Arg Val His Ala Asn Tyr Arg Ile Ile			
65	70	75	80
Gly Tyr Val Lys Asn Ile Ser Gln Glu Asn Ala Pro Gly Pro Ala His			
85	90	95	
Asn Gly Arg Glu Thr Ile Tyr Pro Asn Gly Thr Leu Leu Ile Gln Asn			
100	105	110	
Val Thr His Asn Asp Ala Gly Phe Tyr Thr Leu His Val Ile Lys Glu			
115	120	125	
Asn Leu Val Asn Glu Glu Val Thr Arg Gln Phe Tyr Val Phe Ser Glu			
130	135	140	
Pro Pro Lys Pro Ser Ile Thr Ser Asn Asn Phe Asn Pro Val Glu Asn			
145	150	155	160
Lys Asp Ile Val Val Leu Thr Cys Gln Pro Glu Thr Gln Asn Thr Thr			
165	170	175	
Tyr Leu Trp Trp Val Asn Asn Gln Ser Leu Leu Val Ser Pro Arg Leu			
180	185	190	
Leu Leu Ser Thr Asp Asn Arg Thr Leu Val Leu Leu Ser Ala Thr Lys			
195	200	205	
Asn Asp Ile Gly Pro Tyr Glu Cys Glu Ile Gln Asn Pro Val Gly Ala			
210	215	220	
Ser Arg Ser Asp Pro Val Thr Leu Asn Val Arg Tyr Glu Ser Val Gln			
225	230	235	240
Ala Ser Ser Pro Asp Leu Ser Ala Gly Thr Ala Val Ser Ile Met Ile			
245	250	255	
Gly Val Leu Ala Gly Met Ala Leu Ile			
260	265		

Sequence listing.txt

<210> 137
<211> 349
<212> PRT
<213> Homo sapiens

<400> 137
Met Gly Pro Ile Ser Ala Pro Ser Cys Arg Trp Arg Ile Pro Trp Gln
1 5 10 15
Gly Leu Leu Leu Thr Ala Ser Leu Phe Thr Phe Trp Asn Pro Pro Thr
20 25 30
Thr Ala Gln Leu Thr Ile Glu Ala Val Pro Ser Asn Ala Ala Glu Gly
35 40 45
Lys Glu Val Leu Leu Leu Val His Asn Leu Pro Gln Asp Pro Arg Gly
50 55 60
Tyr Asn Trp Tyr Lys Gly Glu Thr Val Asp Ala Asn Arg Arg Ile Ile
65 70 75 80
Gly Tyr Val Ile Ser Asn Gln Gln Ile Thr Pro Gly Pro Ala Tyr Ser
85 90 95
Asn Arg Glu Thr Ile Tyr Pro Asn Ala Ser Leu Leu Met Arg Asn Val
100 105 110
Thr Arg Asn Asp Thr Gly Ser Tyr Thr Leu Gln Val Ile Lys Leu Asn
115 120 125
Leu Met Ser Glu Glu Val Thr Gly Gln Phe Ser Val His Pro Glu Thr
130 135 140
Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Asn Pro Val Glu Asp Lys
145 150 155 160
Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Thr Gln Asn Thr Thr Tyr
165 170 175
Leu Trp Trp Val Asn Gly Gln Ser Leu Pro Val Ser Pro Arg Leu Gln
180 185 190
Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Leu Ser Val Thr Arg Asn
195 200 205
Asp Val Gly Pro Tyr Glu Cys Glu Ile Gln Asn Pro Ala Ser Ala Asn
210 215 220
Phe Ser Asp Pro Val Thr Leu Asn Val Leu Tyr Gly Pro Asp Ala Pro
225 230 235 240
Thr Ile Ser Pro Ser Asp Thr Tyr Tyr His Ala Gly Val Asn Leu Asn
245 250 255
Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ser Gln Tyr Ser Trp Ser
260 265 270
Val Asn Gly Thr Phe Gln Gln Tyr Thr Gln Lys Leu Phe Ile Pro Asn
275 280 285
Ile Thr Thr Lys Asn Ser Gly Ser Tyr Ala Cys His Thr Thr Asn Ser
290 295 300
Ala Thr Gly Arg Asn Arg Thr Thr Val Arg Met Ile Thr Val Ser Asp
305 310 315 320
Ala Leu Val Gln Gln Ser Ser Pro Gly Leu Ser Ala Arg Ala Thr Val
325 330 335
Ser Ile Met Ile Gly Val Leu Ala Arg Val Ala Leu Ile
340 345

<210> 138
<211> 459
<212> PRT
<213> Homo sapiens

<400> 138
Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Leu Ile Pro Ala
1 5 10 15
Pro Ala Pro Gly Leu Thr Val Gln Leu Leu Leu Ser Leu Leu Leu
20 25 30
Met Pro Val His Pro Gln Arg Leu Pro Arg Met Gln Glu Asp Ser Pro

Sequence listing.txt

35	40	45													
Leu	Gly	Gly	Gly	Ser	Ser	Gly	Glu	Asp	Asp	Pro	Leu	Gly	Glu	Glu	Asp
50						55					60				
Leu	Pro	Ser	Glu	Glu	Asp	Ser	Pro	Arg	Glu	Glu	Asp	Pro	Pro	Gly	Glu
65						70			75					80	
Glu	Asp	Leu	Pro	Gly	Glu	Glu	Asp	Leu	Pro	Gly	Glu	Asp	Leu	Pro	
						85			90				95		
Glu	Val	Lys	Pro	Lys	Ser	Glu	Glu	Gly	Ser	Leu	Lys	Leu	Glu	Asp	
						100			105			110			
Leu	Pro	Thr	Val	Glu	Ala	Pro	Gly	Asp	Pro	Gln	Glu	Pro	Gln	Asn	Asn
						115			120			125			
Ala	His	Arg	Asp	Lys	Glu	Gly	Asp	Asp	Gln	Ser	His	Trp	Arg	Tyr	Gly
						130			135			140			
Gly	Asp	Asp	Pro	Pro	Trp	Pro	Arg	Val	Ser	Pro	Ala	Cys	Ala	Gly	Arg
						145			150			155			160
Gln	Ser	Pro	Val	Asp	Ile	Arg	Pro	Gln	Leu	Ala	Ala	Phe	Cys	Pro	Ala
						165			170			175			
Leu	Arg	Pro	Leu	Glu	Leu	Leu	Gly	Phe	Gln	Leu	Pro	Pro	Leu	Pro	Glu
						180			185			190			
Leu	Arg	Leu	Arg	Asn	Asn	Gly	His	Ser	Val	Gln	Leu	Thr	Leu	Pro	Pro
						195			200			205			
Gly	Leu	Glu	Met	Ala	Leu	Gly	Pro	Gly	Arg	Glu	Tyr	Arg	Ala	Leu	Gln
						210			215			220			
Leu	His	Leu	His	Trp	Gly	Ala	Ala	Gly	Arg	Pro	Gly	Ser	Glu	His	Thr
						225			230			235			240
Val	Glu	Gly	His	Arg	Phe	Pro	Ala	Glu	Ile	His	Val	Val	His	Leu	Ser
						245			250			255			
Thr	Ala	Phe	Ala	Arg	Val	Asp	Glu	Ala	Leu	Gly	Arg	Pro	Gly	Gly	Leu
						260			265			270			
Ala	Val	Leu	Ala	Ala	Phe	Leu	Glu	Glu	Gly	Pro	Glu	Glu	Asn	Ser	Ala
						275			280			285			
Tyr	Glu	Gln	Leu	Leu	Ser	Arg	Leu	Glu	Glu	Ile	Ala	Glu	Glu	Gly	Ser
						290			295			300			
Glu	Thr	Gln	Val	Pro	Gly	Leu	Asp	Ile	Ser	Ala	Leu	Leu	Pro	Ser	Asp
						305			310			315			320
Phe	Ser	Arg	Tyr	Phe	Gln	Tyr	Glu	Gly	Ser	Leu	Thr	Thr	Pro	Pro	Cys
						325			330			335			
Ala	Gln	Gly	Val	Ile	Trp	Thr	Val	Phe	Asn	Gln	Thr	Val	Met	Leu	Ser
						340			345			350			
Ala	Lys	Gln	Leu	His	Thr	Leu	Ser	Asp	Thr	Leu	Trp	Gly	Pro	Gly	Asp
						355			360			365			
Ser	Arg	Leu	Gln	Leu	Asn	Phe	Arg	Ala	Thr	Gln	Pro	Leu	Asn	Gly	Arg
						370			375			380			
Val	Ile	Glu	Ala	Ser	Phe	Pro	Ala	Gly	Val	Asp	Ser	Ser	Pro	Arg	Ala
						385			390			395			400
Ala	Glu	Pro	Val	Gln	Leu	Asn	Ser	Cys	Leu	Ala	Ala	Gly	Asp	Ile	Leu
						405			410			415			
Ala	Leu	Val	Phe	Gly	Leu	Leu	Phe	Ala	Val	Thr	Ser	Val	Ala	Phe	Leu
						420			425			430			
Val	Gln	Met	Arg	Arg	Gln	His	Arg	Arg	Gly	Thr	Lys	Gly	Gly	Val	Ser
						435			440			445			
Tyr	Arg	Pro	Ala	Glu	Val	Ala	Glu	Thr	Gly	Ala					
						450			455						