MIT Machine Learning notes

Vincent Courtois

Linear Classifiers

Perceptron Algorithm $\theta=\theta_0=0$. if $y_i(\theta.x_i)\leq 0$ then $\theta=\theta+y_ix_i, \theta_0=\theta_0+y_i$ Large Margin Optimization signed distance to boundary $\frac{y^{(i)}(\theta.x^{(i)}+\theta_0)}{||\theta||}$. Margins are $\frac{1}{||\theta||}$ away from boundary. hinge loss $Loss_h(y^{(i)}(\theta.x^{(i)}+\theta_0))=Loss_h(z)=0$ if z>=1, 1-z if z<1 objective function $J(\theta,\theta_0)=\frac{1}{n}\Sigma_{i=1}^nLoss_h(y^{(i)}(\theta.x^{(i)}+\theta_0))+\frac{\lambda}{2}||\theta||^2$

Optimization algorithms

Stochastic gradient descent $\theta \leftarrow \theta - \eta_t \nabla_{\theta} [Loss_h(y^{(i)}\theta.x^{(i)}) + \frac{\lambda}{2}||\theta||^2]$