	Quiz (Solutions
	$\frac{1}{410^{2\log(x)+1}} = 3$
	$\frac{2 \log(x) + 1}{10} = \frac{3}{4}$
	102 logles 10 = 34 . * Review exponent algebra *
	10 2 log(x) = 40
	$\frac{10}{10} \log(x^2) = \frac{3}{40}$
	x² = 30
	$x = \sqrt{\frac{3}{40}} \approx .2738$ (This the same value as the exam solution)
b.)	$e^{KX} = 2e^{X+2}$
	$ln(e^{kx}) = ln(2e^{k+2})$
	Kx ln(e) = ln(2) + ln(ex+2) * this where many of you messed up *
	$Kx = ln(2) + (x+2) ln(e) * ln(e) = log_e(e) = 1*$
	$4x - x = \ln(2) + 2$
	$\chi(x-1) = \ln(2) + 2$
	$x = \ln(2) + 2$
	K-1
C·)	109 (100x) = 2+2109 (x2)
	10g(100) + 10g(x) = 2+2 log(x2)
	log (100) + log(x) = 2+ 4/09(x) * log(B") = u/09(B) *
	log(100) - 2 = 3 log(x) # log(100) = log(102) = 2
	$0 = 3\log(x)$
	0 = 109(x)
	10° = 10 log(x) * exponentiate by base of log (base = 10) *
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \