ESE GATE PSUs State Engg. Exams

WORKDOOK 2025

Detailed Explanations of Try Yourself *Questions*

Mechanical EngineeringRefrigeration and Air-conditioning

Heat Engine, Heat Pump, Refrigerator & Reversed Carnot Cycle

Detailed Explanation of Try Yourself Questions

T1: Solution

 $(COP)_{RE} = (COP)_{HP} - 1 = 4 - 1 = 3$

 $(COP)_{RE} = \frac{Required cooling effect}{Power input}$

 \Rightarrow Required cooling effect = $3 \times 3 = 9 \text{ kW} = 9 \times 60 \text{ kJ/min}$ = 540 kJ/min

Vapour Compression Refrigeration System

Detailed Explanation of

Try Yourself Questions

T1: Solution

$$\begin{array}{lll} h_3 &=& h_4 = 298.9 \; \text{kJ/kg} \\ h_2 &=& h_{g@25^{\circ}\text{C}} = 1465.84 \; \text{kJ/kg} \\ \\ \text{COP} &=& \frac{h_1 - h_4}{h_2 - h_1} & ...(i) \end{array}$$

Compression process 1-2:

$$s_1 = s_2$$

$$s_f + x s_{fg} = s_2$$

$$0.5443 + x \times \frac{(1433.05 - 135.37)}{263} = 1.1242 + \frac{(1465.84 - 298.9)}{298}$$

$$x = 0.911$$

$$h_1 = h_f + x h_{fg}$$

$$= 135.37 + 0.911 (1433.05 - 135.37)$$

$$h_1 = 1317.556 \, \text{kJ/kg}$$

From equation (i)
$$COP = \frac{1317.556 - 298.9}{1465.84 - 1317.556} = 6.87$$

T2: Solution (a)

Given: Rated capacity = 140.7 kW, Mass flow rate = $4 \times 10^{-3} \times 10^{3} = 4$ kg/sec, Water inlet temperature (T_0) = 30°C, Water outlet temperature (T_0) = 40°C, Power input to motor = 48 kW, Motor efficiency (η) = 95%

Heat rejected in condensor $(Q_c) = \dot{m}c_W \times (T_O - T_i)$

$$Q_c = 4 \times 4.1868 \times (40 - 30)$$

= 167.472 kW

Actual refrigeration capacity (RC_a)

$$RC_a = Q_c - P \times \eta$$

= 167.472 - 48 × 0.95
= 121.872 kW = 34.82 TR

T3: Solution (b)

Given: $h_1 = 250 \text{ kJ/kg}$, $h_2 = 300 \text{ kJ/kg}$, $h_{f/\text{evap}} = 50 \text{ kJ/kg}$

$$COP = \frac{h_1 - h_4}{h_2 - h_1} - \frac{250 - h_1}{300 - 250}$$

$$h_4 = 100 \text{ kJ/kg}$$

For dryness fraction at, point 4,

$$h_4 = h_{f/\text{evap}} + x(h_1 - h_2)$$

 $100 = 50 + x(250 - 50)$
 $x = 0.25$

or,

Vapour Absorption Refrigeration System

Of Try Yourself Questions

T1: Solution

$$COP = \frac{T_G - T_0}{T_G} \times \frac{T_R}{T_0 - T_R}$$

 T_R = Evapourator Temperature

 T_G = Generator Temperature

 T_0 = Ambient Temperature (condenser temperature)

$$COP = \frac{360 - 310}{360} \times \frac{260}{310 - 260}$$

$$= 0.72$$

$$0.72 = \frac{T_G - 310}{T_G} \times \frac{250}{310 - 250}$$

$$T_G = 374.9 \text{ K}$$

T2 : Solution (b)

- The vapour absorption system uses heat energy to change the condition of the refrigerant from the evaporator. The vapour compression system uses mechanical energy to change the condition of refrigerant from the evaporator.
- The load variation do not affect the performance of a vapour absorption system. The load variations are
 met by controlling the quantity of steam supplied to the generator. The performance of vapour
 compression system at partial loads is however, poor.

Refrigerants

Detailed Explanation of Try Yourself Questions

T1: Solution (a)

$$R_{114} \ = \ R_{(m-1)(n+1)p}$$
 then,
$$m-1 \ = \ 1, \ m=2$$

$$n + 1 = 1, n = 0$$

$$p = 4$$

We know,
$$n + p + q = 2m + 2$$

$$0 + 4 + q = 2 \times 2 + 2$$

$$q = 2$$

So, the formula is

$$C_m H_n F_p CI_4 = C_2 H_o F_4 CI_4 = C_2 F_4 CI_4$$

Refrigeration Equipment & Gas Refrigeration

Detailed Explanationof

Try Yourself Questions

T1 : Solution (b)

• Gas cycle refrigeration is used in aircraft.

Air-conditioning

Detailed Explanation of

Try Yourself Questions

T1: Solution

$$P_{atm} = 1 \text{ bar} = 100 \text{ kPa}$$

$$DBT = 30^{\circ}C$$

$$\phi = 70\% = 0.7$$

$$P_{vs} = 4.25 \, \text{kPa}$$

Specific humidity, $\omega = ?$

$$\phi = \frac{P_{V}}{PV_{S}}$$

$$0.7 = \frac{P_{v}}{4.25}$$

$$P_{v} = 2.975 \, \text{kPa}$$

Specific humidity,

$$\omega = 0.622 \times \frac{P_v}{P - P_v} = 0.622 \times \frac{2.975}{100 - 2.975}$$

$$= 00.0191 \frac{\text{kg water vapour}}{\text{kg dry air}}$$

T2: Solution

Wet bulb depression at the inlet $= (t_{db} - t_{wb})_{inlet} = (38 - 18)_{inlet} = 20^{\circ}C$

Wet bulb depression at the outlet = (24-18) = 6°C

$$(:: t_{wb \text{ inlet}} = t_{wb \text{ exit}})$$

Percentage change =
$$\frac{20-6}{20}$$
 = 70%

T3: Solution

In cooling tower:

Approach = $T_{c2} - T_{WB}$ We know,

Range = $T_{c1} - T_{c2}$ Wet bulb depression = $T_{DB} - T_{WB}$

Where,

 T_{c2} : Cooling water exit temperature T_{WB} : Wet bulb temperature of air T_{DB} : Dry bulb temperature of air

 T_{c1} : Incoming warm water temperature

As give in question,

 $W_{BD} = A + R$ $T_{DB} - T_{WB} = T_{c2} - T_{WB} + T_{c1} - T_{c2}$ $T_{c1} - T_{DB} = 0$

or,