五、实验数据处理

1.计算光栅常数d,并计算不确定度u(d)

(1)原始数据记录表格

测量级次	-1级		+1级		$\frac{1}{2\theta} = \frac{1}{2\theta} \left[(\alpha_1 - \beta_2) - (\alpha_2 - \beta_2) \right]$
测量次数	α_1	β_1	α_2	β_2	$2\theta_1 = \frac{1}{2} [(\alpha_1 - \beta_1) - (\alpha_2 - \beta_2)]$
1	156.47°	336.5°	136.37°	316.3°	20.250°
2	219.05°	39.04°	198.42°	18.42°	20.375°
3	290.59°	110.55°	270.37°	90.33°	20.367°
4	353.24°	173.23°	333.01°	153.0°	20.383°
5	52.05°	232.08°	31.45°	211.46°	20.350°

_	-2级		-2级	$2\theta = \frac{1}{2} [(\alpha + \beta) + (\alpha + \beta)]$		
α_1	β_1	α_2	eta_2	$2\theta_2 = \frac{1}{2} \left[(\alpha_1 - \beta_1) - (\alpha_2 - \beta_2) \right]$		
62.35°	242.29°	21.1°	201.12°	41.35°		

(2)计算光栅常数d

$$\overline{2\theta_1} = \frac{\sum_{k=1}^5 2\theta_1}{5} = 20.345^{\circ}$$

$$\overline{\theta_1} = \frac{1}{2} \overline{2\theta_1} = 0.1775 rad$$

$$\overline{\theta_2} = \frac{1}{2} \overline{2\theta_2} = 0.3608 rad$$

由
$$d\sin\theta = k\lambda$$
,取 $k = 1$ 得 $d = \frac{\lambda}{\sin\theta_1}$

又钠黄光 $\lambda = 589.3mm$

$$d = \frac{\lambda}{\sin \theta_1} = 3.337 \mu m$$

取
$$k = 2$$
得 $d' = \frac{2\lambda}{\sin \theta_2} = 3.338 \mu m$

(3)计算不确定度u(d)

1. ±1级d的不确定度

$$u_a(\overline{2\theta}) = \sqrt{\frac{\sum_{i=1}^{5} (2\theta_i - \overline{2\theta_1})^2}{5 \times 4}} = 0.000426 rad$$
$$u_b(\overline{2\theta}) = \frac{1}{\sqrt{3}} = 0.000168 rad$$

2. ±2级d的不确定度

(4)测量结果加权平均求d最佳值

测量结果:

$$d \pm u(d) = ((3.337 \pm 0.004))\mu m$$

$$d' \pm u(d') = ((3.3382 \pm 0.0007))\mu m$$

$$\overline{d} = \frac{\frac{d}{u^2(d)} + \frac{d'}{u^2(d')}}{\frac{1}{u^2(d)} + \frac{1}{u^2(d')}} = 3.338\mu m$$

$$u^2(\overline{d}) = \frac{1}{\frac{1}{u^2(d)} + \frac{1}{u^2(d')}} = 5.354 \times 10^{-7} \mu m^2$$

$$\therefore u(\overline{d}) = 7.3 \times 10^{-4} \mu m$$

:. 光栅常数d的最终表达式为 $\bar{d} \pm u(\bar{d}) = ((3.3381 \pm 0.0007)) \mu m$

2.计算氢原子的里德伯常数 $R_H+u(R_H)$;并通过加权平均获得 R_H 的最佳值 $\overline{R_H}\pm u(\overline{R_H})$

巴耳末系:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right) (n = 3, 4, 5, 6 \dots)$$

当 n=3 时,光谱颜色为红光; 当 n=5 时,光谱颜色为蓝光; 当 n=6 时,光谱颜色为紫光;

以下将分别计算红光,蓝光,紫光对应的 R_H :

(1)红光

测量级次	-1级		+1级		$\frac{1}{20}$
测量次数	α_1	β_1	α_2	β_2	$2\theta_{\gamma} = \frac{1}{2} \left[(\alpha_1 - \beta_1) - (\alpha_2 - \beta_2) \right]$
1	53.15°	233.19°	30.33°	210.34°	22.725°
2	117.55°	297.59°	45.17°	275.16°	47.675°
3	183.11°	3.12°	160.29°	340.31°	22.692°
4	249.01°	69.0°	226.19°	46.18°	22.700°
5	311.31°	131.29°	288.49°	108.47°	22.700°

1. $\overline{2\theta_{\gamma}} = \frac{\sum_{k=1}^{5} 2\theta_{\gamma}}{5} = 0.0084rad$ 由 $d\sin\theta = \lambda$ 得 $\lambda_{\gamma} = d\sin\theta_{\gamma} = d\sin\frac{\overline{2\theta_{\gamma}}}{2} = 799.039nm$ 在巴耳末系中对应n取3,有 $\frac{1}{\lambda_{\gamma}} = R_{H_{1}} \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right)$ $\therefore R_{H_{1}} = \frac{1}{\lambda_{\gamma}} \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right) = 9010828.698089m^{-1}$

2. 不确定度的计算

$$u_b(\overline{2\theta}) = \frac{1}{\sqrt{3}} = 9.6225 \times 10^{-3} = 1.679 \times 10^{-4} rad$$

$$\therefore 不确定度合成为 \ u(\overline{2\theta_{\gamma}}) = \sqrt{u_a^2(\overline{2\theta_{\gamma}}) + u_b^2(\overline{2\theta_{\gamma}})} = 4.5928 \times 10^{-2} rad$$

$$u(\overline{\theta_{\gamma}}) = \frac{1}{2} \ u(\overline{2\theta_{\gamma}}) = 2.2964 \times 10^{-2} rad$$

$$\therefore \theta_{\gamma} \pm u(\theta_{\gamma}) = ((0.24 \pm 0.02)) rad$$

$$\overline{m} \ R_{H_1} = \frac{1}{\lambda_{\gamma}} \left(\frac{1}{2^2} - \frac{1}{3^2}\right) = \frac{7.2}{d \sin \theta_{\gamma}}$$

$$\therefore \ln R_{H_1} = \ln 7.2 - \ln d - \ln d \sin \theta_{\gamma}$$

$$\therefore \frac{u(R_{H_1})}{R_{H_1}} = \sqrt{\left[\frac{\partial \ln d}{\partial d} \ u(d)\right]^2 + \left[\frac{\partial \ln \sin \theta_{\gamma}}{\partial \theta_{\gamma}} \ u(\theta_{\gamma})\right]^2} = \sqrt{\left[\frac{u(d)}{d}\right]^2 + \left[\frac{u(\theta_{\gamma})}{\tan \theta_{\gamma}}\right]^2} = 9.3148 \times 10^{-2}$$

$$\therefore \ u(R_{H_1}) = R_{H_1} \ \frac{u(R_{H_1})}{R_{H_1}} = 8.39337918 \times 10^5$$

$$R_{H_1} \pm u(R_{H_1}) = ((9.0 \pm 0.8) \times 10^6) m^{-1}$$

 $u_a(\overline{2\theta_{\gamma}}) = \sqrt{\frac{\sum_{i=1}^{5} (2\theta_{\gamma_i} - \overline{2\theta_{\gamma_i}})^2}{5 \times 4}} = 4.5928 \times 10^{-2} rad$

测量级次	-1级		+1级		$2\theta_{1} = \frac{1}{2} \left[\left(\alpha_{1} - \beta_{2} \right) - \left(\alpha_{2} - \beta_{2} \right) \right]$
测量次数	α_1	β_1	α_2	eta_2	$2\theta_b = \frac{1}{2} \left[(\alpha_1 - \beta_1) - (\alpha_2 - \beta_2) \right]$
1	50.18°	230.2°	33.31°	213.33°	16.783°
2	114.57°	296.0°	98.1°	278.12°	17.292°
3	180.15°	0.14°	163.28°	343.29°	16.767°
4	246.04°	66.02°	229.18°	49.16°	16.767°
5	308.32°	128.31°	291.48°	111.42°	16.775°

(2)蓝光(深绿)

1.

$$\overline{2\theta_b} = \frac{\sum_{k=1}^5 2\theta_b}{5} = 0.29455 rad$$
由 $d \sin \theta = \lambda$ 得 $\lambda_b = d \sin \theta_b = d \sin \frac{\overline{2\theta_b}}{2} = 489.854 \mu m$
在巴耳末系中对应n取4,有 $\frac{1}{\lambda_b} = R_{H_2} \left(\frac{1}{2^2} - \frac{1}{4^2}\right)$

$$\therefore R_{H_2} = \frac{1}{\lambda_b} \left(\frac{1}{2^2} - \frac{1}{4^2}\right) = 1.0888 \times 10^7 m^{-1}$$

2. 不确定度的计算

$$u_{a}(\overline{2\theta_{b}}) = \sqrt{\frac{\sum_{i=1}^{5} (2\theta_{b_{i}} - \overline{2\theta_{\gamma}})^{2}}{5 \times 4}} = 1.03796 \times 10^{-1} rad$$

$$u_{b}(\overline{2\theta}) = \frac{1}{\sqrt{3}} = 9.6225 \times 10^{-3} = 1.679 \times 10^{-4} rad$$

$$\therefore 不确定度合成为 \ u(\overline{2\theta_{b}}) = \sqrt{u_{a}^{2}(\overline{2\theta_{b}}) + u_{b}^{2}(\overline{2\theta_{b}})} = 1.04241 \times 10^{-1} rad$$

$$u(\overline{\theta_{b}}) = \frac{1}{2} \ u(\overline{2\theta_{b}}) = 5.21205 \times 10^{-2} rad$$

$$\therefore \theta_{b} \pm u(\theta_{b}) = (0.15 \pm 0.05)$$

$$\overline{m} \ R_{H_{2}} = \frac{1}{\lambda_{b}} \left(\frac{1}{2^{2}} - \frac{1}{4^{2}}\right) = \frac{5.333}{d \sin \theta_{b}}$$

$$\therefore \ln R_{H_{2}} = \ln 5.333 - \ln d - \ln d \sin \theta_{b}$$

$$\therefore \ln R_{H_{2}} = \ln \int \frac{\partial \ln \sin \theta_{b}}{\partial \theta_{b}} \ u(\theta_{b}) = \sqrt{\left[\frac{u(\theta_{b})}{d}\right]^{2} + \left[\frac{u(\theta_{b})}{\tan \theta_{b}}\right]^{2}} = 3.5133 \times 10^{-1}$$

$$\therefore u(R_{H_{2}}) = R_{H_{2}} \frac{u(R_{H_{2}})}{R_{H_{2}}} = 3.8251705 \times 10^{6} m^{-1}$$

$$R_{H_{2}} \pm u(R_{H_{2}}) = ((1.1 \pm 0.4) \times 10^{7}) m^{-1}$$

测量级次	-1级		+1级		$\frac{1}{2\theta} = \frac{1}{2\theta} \left[(\alpha_1 - \beta_1) - (\alpha_2 - \beta_2) \right]$
测量次数	α_1	β_1	α_2	β_2	$2\theta_p = \frac{1}{2} \left[(\alpha_1 - \beta_1) - (\alpha_2 - \beta_2) \right]$
1	49.22°	229.25°	34.28°	214.29°	14.917°
2	114.0°	294.04°	99.04°	229.08°	39.933°
3	179.2°	359.2°	164.23°	344.23°	14.950°
4	245.09°	65.05°	230.12°	50.1°	14.933°
5	307.39°	127.37°	292.42°	112.39°	14.958°

(3)紫光(青)

1.

$$\overline{2\theta_p} = \frac{\sum_{k=1}^5 2\theta_p}{5} = 0.17399 rad$$

由 $d \sin \theta = \lambda$ 得 $\lambda_p = d \sin \theta_p = d \sin \frac{\overline{2\theta_p}}{2} = 577.89200 nm$
在巴耳末系中对应n取5,有 $\frac{1}{\lambda_p} = R_{H_3} \left(\frac{1}{2^2} - \frac{1}{5^2}\right)$
∴ $R_{H_3} = \frac{1}{\lambda_p} \left(\frac{1}{2^2} - \frac{1}{5^2}\right) = 8.240129 \times 10^6 m^{-1}$

2. 不确定度的计算

$$u_{a}(\overline{2\theta_{p}}) = \sqrt{\frac{\sum_{i=1}^{5} (2\theta_{p_{i}} - \overline{2\theta_{\gamma}})^{2}}{5 \times 4}} = 4.9988 \times 10^{0} rad$$

$$u_{b}(\overline{2\theta}) = \frac{1}{\sqrt{3}} = 9.6225 \times 10^{-3} = 1.679 \times 10^{-4} rad$$

$$\therefore 不确定度合成为 \ u(\overline{2\theta_{p}}) = \sqrt{u_{a}^{2}(\overline{2\theta_{p}}) + u_{b}^{2}(\overline{2\theta_{p}})} = 4.9988 \times 10^{0} rad$$

$$u(\overline{\theta_{p}}) = \frac{1}{2} \ u(\overline{2\theta_{p}}) = 2.4994 \times 10^{0} rad$$

$$\therefore \theta_{p} \pm u(\theta_{p}) = ((0 \pm 2)) rad$$

$$\overline{m} \ R_{H_{3}} = \frac{1}{\lambda_{p}} \left(\frac{1}{2^{2}} - \frac{1}{5^{2}}\right) = \frac{1}{0.21} \ \frac{1}{d \sin \theta_{p}}$$

$$\therefore \ln R_{H_{3}} = \ln \frac{1}{0.21} - \ln d - \ln d \sin \theta_{p}$$

$$\therefore \frac{u(R_{H_{3}})}{R_{H_{3}}} = \sqrt{\left[\frac{\partial \ln d}{\partial d} \ u(d)\right]^{2} + \left[\frac{\partial \ln \sin \theta_{p}}{\partial \theta_{p}} \ u(\theta_{p})\right]^{2}} = \sqrt{\left[\frac{u(d)}{d}\right]^{2} + \left[\frac{u(\theta_{p})}{\tan \theta_{p}}\right]^{2}} =$$

$$\therefore \ u(R_{H_{3}}) = R_{H_{3}} \ \frac{u(R_{H_{3}})}{R_{H_{3}}} = 8.24012918 \times 10^{6} m^{-1}$$

$$R_{H_{3}} \pm u(R_{H_{3}}) = ((8 \pm 117) \times 10^{6}) m^{-1}$$

3. 加权平均求 R_H 的最佳值

$$\overline{R_H} = \frac{\frac{R_{H_1}}{u^2 R_{H_1}} + \frac{R_{H_2}}{u^2 R_{H_2}} + \frac{R_{H_3}}{u^2 R_{H_3}}}{\frac{1}{u^2 R_{H_1}} + \frac{1}{u^2 R_{H_2}} + \frac{1}{u^2 R_{H_3}}} = 9.0970 \times 10^6 m^{-1}$$

$$u^2(\overline{R_H}) = \frac{1}{\frac{1}{u^2 R_{H_1}} + \frac{1}{u^2 R_{H_2}} + \frac{1}{u^2 R_{H_3}}} = m^{-1}$$

$$\therefore u(\overline{R_H}) = 819813.46864194m^{-1}$$

$$\therefore E = 10.0970 \times 10^6 m^{-1}$$

∴ 最佳测量值 $\overline{R_H} \pm u(\overline{R_H}) = ((9.1 \pm 0.8) \times 10^6) m^{-1}$

- 3.分别计算钠黄光k=1,2级的角散射率和分辨本领,并由此说明钠黄光双线能 否被分开
- (1)色分辨本领

$$\therefore N = \frac{D}{d} = 0.66$$

$$\therefore R = \frac{\lambda}{\delta_{\lambda}} = kN = \begin{cases} 0.66, & k = 1\\ 1.32, & k = 2 \end{cases}$$

(2)角色散率

由前面实验,
$$\overline{\theta_1} = 0.1775^{\circ}$$
, $\overline{\theta_1} = 0.3608^{\circ}$ 由公式 $D_{\theta} = \frac{k}{ds \sin \theta}$,求解可得
$$k = 1 \quad \text{时}, \ D_{\theta_1} = \frac{1}{d \sin \overline{\theta_1}} = 1.69619 \times 10^0 rad/m$$

$$k = 2 \quad \text{时}, \ D_{\theta_2} = \frac{2}{d \sin \overline{\theta_2}} = 1.69695 \times 10^0 rad/m$$

(3)钠黄光双线

$$\theta_1 = \arcsin \frac{\lambda_1}{d} = 0.177^{\circ}$$

$$\theta_2 = \arcsin \frac{\lambda_2}{d} = 0.178^{\circ}$$

$$\Delta \theta = \theta_1 - \theta_2 = 0.000^{\circ}$$

根据谱线的半角宽度计算公式可得

$$\delta_{\theta} = \arcsin \frac{2\lambda N_0}{Nd} = 0.000183^{\circ}$$

6

 $\Delta_{\theta} > \delta_{\theta}$

::本实验可将钠黄光的双线分开。