Lista 11

Zadanie 1. Niech \mathbb{V} będzie przestrzenią liniową nad \mathbb{R} a $\langle \cdot, \cdot \rangle$ będzie iloczynem skalarnym na tej przestrzeni. Niech $B = \vec{b}_1, \dots, \vec{b}_n$ będzie bazą ortonormalną \mathbb{V} a $P : \mathbb{V} \to \mathbb{V}$ rzutem prostopadłym na podprzestrzeń jednowymiarowa $\mathbb{W} < \mathbb{V}$.

Pokaż, że suma kwadratów długości rzutów prostopadłych wektorów z B na \mathbb{W} wynosi 1, tj.:

$$\sum_{i=1}^{n} \|P\vec{b}_{i}\|^{2} = 1.$$

 \mathbb{W} yraż rzut przez bazę ortonormalną $\mathbb{W}.$

Zadanie 2. Zdefiniujmy iloczyn skalarny na przestrzeni wielomianów jako

$$\langle g, h \rangle = \frac{1}{2} \int_{-1}^{1} g(x)h(x) dx$$
.

Dokonaj ortonormalizacji (dowolnej) bazy przestrzeni wielomianów stopnia nie większego niż 2. Zrzutuj prostopadle na tą przestrzeń wielomiany x^3 oraz $x^3 - x^2 + x - 1$.

Wskazówka: Do drugiej części: to jest rzut. Co więcej, rzut jest przekształceniem liniowym.

Zadanie 3. Uzupełnij do bazy a następnie zortonormalizuj podane układy wektorów:

- $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2});$ $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}), (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}).$

Zadanie 4. Pokaż, że "rzut prostopadły nie zwiększa długości": niech P będzie rzutem prostopadłym na $\mathbb{W} \leq \mathbb{V}$. Wtedy dla każdego $\vec{v} \in \mathbb{V}$ zachodzi

$$\|\vec{v}\| \ge \|P\vec{v}\|$$

i równość zachodzi wtedy i tylko wtedy, gdy $\vec{v} \in \mathbb{W}$.

Zadanie 5. Niech $\mathbb V$ będzie przestrzenią Euklidesową, zaś A jej bazą. Pokaż, że jeśli baza B powstaje z bazy A przez ortonormalizację Grama-Schmidta, to M_{BA} i M_{AB} są macierzami górnotrójkątnymi.

Zadanie 6. Pokaż, że następujące przekształcenia są izometriami.

- obrót o kąt α na płaszczyźnie;
- zamiana jednej ze współrzędnych (w bazie ortonormalnej) na przeciwną.
- symetria względem podprzestrzeni

Zadanie 7. Udowodnij, że złożenie izometrii jest izometrią.

Zadanie 8. Udowodnij, że jeśli M jest macierzą ortogonalną, to $\det(M) \in \{-1,1\}$. Wywnioskuj z tego, że jeśli F jest izometrią, to $\det F \in \{-1, 1\}$.

Zadanie 9. Pokaż, że macierze ortogonalne są zamkniete na mnożenie, transpozycje i branie macierzy odwrotnej. Tj. jeśli A, B są ortogonalne (i tego samego rozmiaru), to również AB, A^T, A^{-1} są ortogonalne.

Zadanie 10 (Nierówność Hadamarda; * nie liczy się do podstawy). Niech $M = [\vec{C}_1|\cdots|\vec{C}_n]$ będzie macierzą kwadratową o kolumnach $\vec{C}_1, \ldots, \vec{C}_n$. Pokaż, że

$$|\det(M)| \le \prod_{i=1}^n \|\vec{C}_i\|$$

 $(\text{gdzie} \parallel \cdot \parallel \text{to długość w standardowym iloczynie skalarnym})$ i że równość zachodzi wtedy i tylko wtedy, gdy $\vec{\vec{C}}_1, \dots, \vec{C}_n$ są układem ortogonalnym.

zadań z tej listy, nawet jeśli nie umiesz ich pokazać. prowadź ortonormalizację. Co się dzieje ze stronami nierówności? W dowodzie możesz korzystać z innych Wskazówka: Rozważ najpierw przypadek, gdy C_1,\ldots,C_n są układem ortogonalnym. W ogólności prze-

Zadanie 11. Pokaż, że jeśli λ jest wartością własną macierzy dodatnio określonej M, to $\lambda > 0$.

Wskazówka: Niech V będzie odpowiadającym wektorem własnym. Ile wynosi V^TMV ?