Network Analysis (contd ..)

Centrality

Centrality

- A common goal in SNA (social network analysis) is to identify the "central" nodes of a network.
- What does "central" mean?
- * active?
- * important?
- * non-redundant?

Definition of 'central' varies by context/purpose.

Centrality: Who's Important Based On Their Network Position

In each of the above networks, X has higher centrality than Y according to a particular measure

Common centrality measures

- We will define and compare three centrality measures:
- Degree centrality (based on degree)
- Betweeness centrality (based on geodesics)
- Closeness centrality (based on average distances)

Degree Centrality

Idea: A central actor is one with many connections.

- Undirected degree centrality (number of edges connecting to the node)
- Indegree centrality (number of edges coming into the node)
- Outdegree centrality (number of edges coming out of the node)

Degree Centrality is a best measure when number of connections is important

Indegree and Outdegree

Trade in petroleum 1998

Source : NBER---United Nations Trade Data

Which countries have high indegree?

- USA
- Japan
- UK

Indicates more imports to above countries

Which country has high outdegree

Saudi Arabia

Indicates more exports from Saudi Arabia

example financial trading networks

high centralization: one node trading with many others

low centralization: trades are more evenly distributed

In What Contexts May Degree Be Insufficient To Describe Centrality?

- Ability to broker between group
- Likelihood that information originating anywhere in the network reaches you...

Betweenness Centrality

- Betweenness centrality quantifies the number of times a node acts as a bridge along path between two other nodes.
- Betweenness Centrality =

•

$$C_B(i) = \sum_{j < k} g_{jk}(i) / g_{jk}$$

• Where g_{jk} = the number of geodesics connecting j and k, and $g_{jk}(i)$ = the number of geodesics that node i is on.

X has higher betweenness in the following graphs

Closeness is based on the length of the average shortest path between a vertex and all vertices in the graph

Closeness Centrality

Where d(i,j) = shortest distance from i to j

$$C_c(i) = \left[\sum_{j=1}^{N} d(i,j)\right]^{-1}$$

Closeness examples Chas higher closeness centrality and is closer to all nodes compared to others

D has higher closeness centrality and is closer to all nodes compared to others

A has higher closeness centrality and is closer to all nodes compared to others

*****Eigenvector'Centrality **Other centrality measures**

Katz'Centrality'

http://cs.brynmawr.edu/Courses/cs380/spring2013/section02/slides/05 Centrality.pdf

http://www2.unb.ca/~ddu/6634/Lecture notes/Lecture 4 centrality measure.pdf **References**http://cs224w.stanford.edu