

Honeywell

COMMERCIAL FLIGHT SYSTEMS

MINNEAPOLIS OPERATION CAGE CODE 65507

SPECIFICATION NUMBER ES 32496-04

																			PAR	₹T		OF		
TYPE:			SYSTE TEST	М			DEVEI PROD			Γ					TERI				X] EI	NGIN	lEERII	٧G	
TITLE:	Nav	Algo	rithm	Spe	C -	LASER	EF	5 W	L			٠												
							···																	
00004	DED DV				NATU	JRES	1	·				···	<u> T</u>	ITLE	<u> </u>	·						DA		
 	RED BY		. Nev		<u>'</u>	<u>v .///</u>	ine	m	-0	n												Z9-		
<u> </u>	VED BY		. Bro		<u> </u>		100															?-		
A, 1110	741001	<u> </u>	. <u>Col</u>	bу		<u>) (</u>	XV	}												5	- 2	2 -	22	
]						***************************************				1														
													11											
				CON	TRACT	NUMBER	······································						····			· · · · · · · · · · · · · · · · · · ·	·····			····				
c	USTOME	R FUN	DED	500									······································											
Хн	ONEYW	ELL FUI	NDED		JECT NO .274	JMBER																		
TR	DE	CCDID								IONS													-	
	NTRO	SCRIPT		0550	D -220	ATE	APP H/+/A	ROV タスス	ML MI	LTF	₹			DESC	CRIP	LION	<u></u>		-	DA٦	E	APP	ROV	AL
			-			,	10,0	-77	w															
						•																		
											1													
		•																						
ACE	, +- 1	, J	<u> </u>	1	<u> </u>		ī	T	1	T	1	ī	ı	1	1			, ,	 	Ī	ī	ļ		
AGE EVISION	1 That		-		-			-							<u> </u>									
AGE		_			-	ļ	-	 	ļ				ļ											_
EVISION			+		-		-	ļ			·	ļ			-				PA	GE	1	OF	10	2
-895 REV 7/8								<u></u>	<u></u>			İ	L	יואר)י	rrol									
- 00 ML V //(va												C	OIA	INUL	• (

CONTENTS	HZ	PAGE
DEFINITIONS 32 BIT WORDS VARIABLES CONSTANTS MAG VAR TABLE SM20 SM22 SM21 NM1 NM52 NM11 NM52 NM11 NM14 NM66 NM57 NM15 NM16 NM4 NM58 NM7 NM8 NM9 NM18 NM9 NM18 NM19 NM47 NM49 NM45 NM39 NM45 NM47 NM49 NM45 NM32 NM47 NM49 NM45 NM31 NM62 NM41 NM32 NM62 NM41 NM32 NM62 NM41 NM32 NM63 SM64 NM10 NM27 NM33 NM63 SM64 NM10 NM20 NM67 NM21 NM68 NM22 NM23 NM24 NM25	50 50 50 50 50 50 50 50 50 50 50 50 50 5	657477380123444444455555555566666666677777777777777

NM26	10	79
NM17	10	80
NM43	10	81
NM42	10	82
NM31	5	83
NM64	5	85
SM70	1	86
SM72	1	87
NM55	1	88
NM65	1	89
NM28	1	90
NM29	1	91
NM30	1	92
NM46	1	93
NM53	1	94
NM35	1	95
NM36	1	97
NM37	1	98
NM38	1	100
NM40	1	101
SUBR		102

MODULE	PAGE	DESCRIPTION
		*** With then seen man man stay play along map
SMOO	37	TNDUM NOVDO () I NOVD ()
	40	
	38	
	70	
	86	
	87	
	41	
	49	
NM7	51	PROCESS ORTHOGANAL ROT. ANGLES
NM8	52	COMP FIRMFNER OF DOM MARDIN
NM9	53	UPDATE DIRECTION COSINE MATRIX
NM10	70	BUFFER 10 HZ INPUTS
NM11	43	COMPUTE CORRECTED ACCEL OUTPUTS
NM9 NM10 NM11 NM14 NM15	44	COMPUTE ACCEL ROTATION CORR. AND INC. VELOCITIES
NM15	47	RESOLVE INCR. VELOCITIES INTO LOCAL VERT FRAME
NM16	48	INCREMENT AA/C LOCAL VERT VEL COMP. & AVE OVER 10 HZ
NM17	80	COMP N/E GROUND SPEED COMONENTS
NM18	54	COMPENSATE FOR SYST/MOINT MIGALICAL
NM19	55	COMP PHI & THETA & HIGH THETA CORR. LOGIC FOR ROLL
NM20	72	DET ANGULAR VEL OF LOC VERT FRAME WRT FARME
NM21	73	DET ANGULAR ROT OF LOC VERT FRAME WRT FARTH
NM22	75	UPDATE C MATRIX FOR ROT OF LOC VERT FRAME
NM23		UPDATE D MATRIX
NM24	77 .	FILTER PRECISION TRUE HEADING COMPONENTS
NM25	78	
NM26	79	COMP CORR TO A/C VEL DUE TO G, CORIOLIS, ALT STAB
NM27		UPDATE ALT, ALT RATE & ALT STAB SIG.
NM28		COMPUTE VERT COMP OF GRAVITY
NM29		NORMALIZE C MATRIX
NM30		ORTHOGONALIZE C MATRIX
NM31		COMPUTE LAT, LON, ALFA
	64	COMPUTE TRACK ANGLE REL TO NORTH AND MAG TRACK ANGLE
NM33	67	COMPUTE Z AXIS CORRECTIONS
NM35	95	COMPUTE ACCEL TEMP DEP. MISALIGN COEF
NM36	97	COMPUTE ACCEL TEMP DEP BIAS & SF COEF
NM37	98	COMP ACCEL BIAS, S.F. & WEIGHTING CAL COEF.
NM38	100	COMPUTE PRESSURE DEPENDENT MISALIGNMENT COEFFICIENTS
NM39	61	MEASURE SYST ACCEL ERRORS
NM40	101	COMP GYRO START UP & TEMP DEP CORR
NM41	63	COMP A/C HDG ANGLE & HIGH PITCH ANGLE, HDG AND PSIM
NM42	82	FILTER 10 HZ OUTPUTS
NM43	81	WIND SPEED & DIRECTION COMPUTATION
NM45	60	COMP AAT, ACT, AFPTH, AVERT, VG
NM46	93	PRECISION TRUE HEADING

NM47	57	COMP BODY ACCEL	
NM49	59	COMP TKRT	
NM52	42	COMP ACCEL INCR. OUTPUTS	
NM53	95	COMP MAG DEVIATION	
NM54	65	COMP PSIC, DRIFT, GAMI	
NM55	88	FILTER GYRO TEMP	
NM57	46	ACCEL SIG. CORR FOR IRU MTG	1
NM58	50	GYRO SIG. CORR FOR IRU MTG	
NM59	56	COMP BODY RATES ROLL AND PITCH RATES	1
NM62	62	FILTER & SCALE 50 HZ OUTPUTS	
NM63	68	FILTER & SCALE 25 HZ OUTPUTS	
NM64	85	FILTER 5HZ OUTPUTS	
NM65	89	FILTER ACCEL TEMP	
NM66	45	COMP BW FILTERED ACCEL	
NM67	72	DET ANG. VEL OF EARTH FIXED RAME WRT INERTIAL	
NM68	74	DET ANG. ROT OF LOCAL VERT FRAME WRT INERTIAL	
SUBR	102	SUBROUTINES REQUIRED	

SYMBOL

DEFINITION

SYMBOL	DEFINITION
A(I)	THEOMEDIAME DADANEMED TOO THE
$\alpha(x)$	INTERMEDIATE PARAMETER FOR WALKING WINDOW AND
A11,A12,A33	BUTTERWORTH FILTERED ACCELERATIONS
AAT	ELEMENTS OF INDREMENTAL ROTATION MATRIX
	ALONG-TRACK HORIZONTAL ACCELERATION
AATO	ALONG-TRACK HORIZONTAL ACCELERATION OUTPUT
ABW(I)	BUTTERWORTH FILTERED ACCELERATIONS
ABWI1,ABWI3	COMPENSATED BUTTERWORTH FILTER ACCEL SIGNALS
ABW(I) ABWI1,ABWI3 ACRDXX,ACRDYY,	INTERMEDIATE PARAMETERS FOR LOCAL EARTH RATE
ACRDXY ACT ACTO	
ACT	CROSS-TRACK HORIZONTAL ACCELERATION
ACTO	CROSS-TRACK HORIZONTAL ACCELERATION OUTPUT
AERX, AERY, AERZ	CALIBRATION MODE OUTDUING
AFPTH	FITCHT-DATH HODITONIAL ACCRETEDATION
AFPTHO	FITCHE-DAME HODIZONEAL ACCELERATION
AT.	TAMEDMEDIAME DADAMENDO SON DONO OUTPUT
አፒ.አጥ	PODY IAM ACCELEDANTON
AT A TO C	CROSS-TRACK HORIZONTAL ACCELERATION CROSS-TRACK HORIZONTAL ACCELERATION OUTPUT CALIBRATION MODE OUTPUTS FLIGHT-PATH HORIZONTAL ACCELERATION FLIGHT-PATH HORIZONTAL ACCELERATION OUTPUT INTERMEDIATE PARAMETER FOR ROTATION MATRIX BODY LAT. ACCELERATION BODY LAT. ACCELERATION OUTPUT INTERMEDIATE PARAMETER FOR ROTATION MATRIX WANDER ANGLE (AZIMUTH ANGLE OF LOCAL VERTICAL COMPUTATIONAL FRAME RELATIVE TO NORTH) BUFFERED WANDER ANGLE BODY LONG. ACCELERATION BODY LONG. ACCELERATION BODY NORMAL ACCELERATION BODY NORMAL ACCELERATION CORRECTED FOR G BIAS BODY NORMAL ACCELERATION OUTPUT ANGULAR VELOCITIES OF EARTH FRAME WITH RESPECT TO INERTIAL FRAME ACCEL TEMP FILTER INIT COMPLETE FLAG
ALATO	BODY LAT. ACCELERATION OUTPUT
ALDP	INTERMEDIATE PARAMETER FOR ROTATION MATRIX
ALFA	WANDER ANGLE (AZIMUTH ANGLE OF LOCAL VERTICAL
	COMPUTATIONAL FRAME RELATIVE TO NORTH)
ALFAB	BUFFERED WANDER ANGLE
ALONG	BODY LONG.ACCELERATION
ALONGO	BODY LONG. ACCELERATION OUTPUT
ANORM	BODY NORMAL ACCELERATION
ANORMC	BODY NORMAL ACCELERATION CORRECTED FOR C BIAG
ANORMO	BODY NORMAL ACCELEDATION CUMPUM
ARXED.ARYED.	ANGILLAR VELOCITIES OF FARMU FRAME WITH REGREE
ARZED	TO INFORMATION FRAME WITH RESPECT
ATEICEIC	ACCEL MEMD ETIMED THIM COMPLEME DIAG
AVEDU	WEDDICAL ACCELERATION COMPLETE FLAG
AVEDTO	VERTICAL ACCELERATION
ATTV ATTO	VERTICAL ACCELERATION OUTPUT
AVA, AVZ	TO INERTIAL FRAME ACCEL TEMP FILTER INIT COMPLETE FLAG VERTICAL ACCELERATION VERTICAL ACCELERATION OUTPUT AVERAGE VELOCITIES IN LOCAL VERTICAL FRAME WALKING WINDOW FILTERED ACCELERATION NET ACCELERATION COMPONENTS IN LOCAL VERTICAL F CONSTANT FOR ALTITUDE STABILIZATION COMPUTATION INTERMEDIATE PARAMETER FOR ROTATION MATRIX
Aww (1)	WALKING WINDOW FILTERED ACCELERATION
AX, AY, AZ	NET ACCELERATION COMPONENTS IN LOCAL VERTICAL F
BG1,BG2,BG3	CONSTANT FOR ALTITUDE STABILIZATION COMPUTATION
BT	
BWS1(I), BWS2(I)	SYNCHRONIZED BUTTERWORTH FILTERED ACCELERATION
C10	INTERMEDIATE PARAMETER FOR SYSTEM ACCELERATION
•	ERROR COMPUTATION
C11,C12,C33	DIRECTION COSINES OF A/C WITH RESPECT TO LOCAL
C11C, C12C,	DIRECTION COSINES OF A/C CORRECTED FOR
,	SYSTEM MOUNT MISALIGNMENTS
CllCB, C21CB	
02200,02100	BUFFERED DIRECTION COSINE OF A/C CORRECTED FOR
CA	SYSTEM MOUNT MISALIGNMENTS
CALF	CONSTANT EQUAL TO COMPUTATION CYCLE FREQUENCY (
CMIL	COSINE OF WANDER ANGLE

CALFB CDVX,CDVY,CDVZ	BUFFERED COSINE OF WANDER ANGLE VELOCITY CORRECTIONS FOR GRAVITY, CORIOLIS, AND
CDVZO	ALTITUDE STABILIZATION ACCELERATIONS VELOCITY CORRECTION IN Z AXIS FOR GRAVITY AND 210 CORIOLIS. USED FOR OUTPUT COMPUTATIONS 210
CHF	FILTER COEFICIANT FOR TRUE HEADING PARAMETERS
CLAT	INTERMEDIATE PARAMETER FOR COSINE LATITUDE
CLAT2	INTERMEDIATE PARAMETER FOR COSINE LATITUDE
	(POLAR NAV IMPROVEMENT FIX)
CLATI	INTERMEDIATE PARAMETER FOR COSINE LATITUDE
CLATL	LIMITED CLATI
CLATX	COSINE OF COMPUTED LATITUDE
CLOND	COSINE OF COMPUTED LONGITUDE
CLONX	COSINE OF LONGITUDE CHANGE COMPUTED FROM D-MATRIX
CONSM1, CONSM2, CONSM3	CONING SUMS
CQ	GYRO QUANTIZATION/DEADBAND CONSTANT
	INTERMEDIATE PARAMETERS FOR LOCAL LEVEL EATH RATE
CS1,CS2,CT2	BODY ACCELERATION FILTER CONSTANTS
D11,D12,D33	DIRECTION COSINES OF LOCAL VERTICAL FRAME WITH
• •	RESPECT TO EARTH FIXED FRAME
D21R,D22R,D23R	ELEMENTS OF D MATRIX ROUNDED TO 16 BITS
D21SQ	D21 SQUARED
D22SQ	D22 SQUARED
D23SQ DEGPIRAD DEL1	D23 SQUARED
DEGPIRAD	CONSTANT TO CONVERT DEGREES TO PIRADS
DEL1	INTEGRATION INTERVAL
DELT	COMPUTER MAJOR ITERATION INTERVAL
DLAT	DIFFERENTIAL CHANGE IN LATITUDE
DLON	DIFFERENTIAL CHANGE IN LONGITUDE
DNCT	PLC RESET PULSE LIMIT REDUCTION CONSTANT
DR1C, DR2C, DR3C	CONING CORRECTIONS TO 3 GYROS
DR1I, DR2I, DR3I	INPUT CHANNEL CORRECTIONS TO 3 GYROS
DR1Q, DR2Q, DR3Q	QUANTIZATION CORRECTIONS TO 3 GYROS
DR1S, DR2S, DR3S	GYRO START UP AND TEMPERATURE DEPENDENT CORRECTIONS
DR1SI	GYRO CORRECTION (STARTUP+TEMP DEPENDENT) PARAMETERS
DR1SIP,DR3SIP	INTERMEDIATE PAST VALUE OF GYRO CORRECTION (START UP+TEMP.DEP.) PARAMETERS
DR1T, DR2T, DR3T	SYSTEM LEVEL GYRO CORRECTIONS
DR1TO	INTERMEDIATE VARIABLE
DRIFT	DRIFT ANGLE
DRIFTF	FILTERED DRIFT ANGLE OUTPUT
DRIFTP	PAST VALUE OF DRIFT ANGLE
	GYRO ROTATIONS DUE TO CASTING DISTORTIONS
DRX, DRY	ANGULAR ROTATIONS OF THE LOCAL VERTICAL FRAME WITH
	RESPECT TO THE EARTH FIXED FRAME
DRXL, DRYL, DRZL	ANGULAR ROTATIONS OF THE LOCAL VERTICAL FRAME WITH
	RESPECT TO THE INERTIAL FRAME

DRXL1, DRYL1, DRZL1 INTERMEDIATE VALUES DRXL1P,..,DRZL1P PAST VALUES OF INTERMEDIATE VALUES DSMAG

MAGNETIC CORRECTION TO TRUE HEADING

DVX,DVY,DVZ

INCREMENTAL VELOCITIES RESOLVED INTO LOCAL VER

INCREMENTAL VELOCITIES IN LOCAL FRAME CORRECTI

FOR GRAVITY CORTOLLS AND ALEXTONICAL FOR GRAVITY , CORIOLIS AND ALTITUDE STABILIZA ACCELERATIONS ACCELERATIONS

DVXP, DVYP, DVZP

PAST VALUES OF INCREMENTAL VELOCITIES RESOLVED

TMTO LOCAL VERTICAL FRAME DVXP,DVYP,DVZP

PAST VALUES OF INCREMENTAL VELOCITIES RESOLVED
INTO LOCAL VERTICAL FRAME

E 11,E12,E22
E3,E4
CLATX
ELATX
ELATX
ELATY
ELATY
ELATY
ELATY
ELATY
ELATY
ELATY
ELATY
ELOND
ELOND
ELOND
ELOND
ELOND
ELONX
ELONX
F1,F2,F3
F3
F4
F50;F1G
F75;F1G
F75;F2
F50;F1G
F75;F3
F75;F3
F75;F3
F75;F3
F75;F3
F75;F3
F75;F3
F75;F3
F75;F3
F75;F4
F75;F3
F75;F4
F75;F3
F75;F4
F75;F5
F75;F4
F75;F5
F75;F4
F75;F5
F75;F5
F75;F6
F75;F7
F75;F H AIRCRAFT ALTITUDE

H1,H2 SIN AND COSIN OF FILTERED TRUE HEADING
COMPONENTS

H3 RECIPROCAL OF PRODUCT OF CLATX WITH CTHT

H4 FIRST ESTIMATE OF TRUE HEADING
HD ALTITUDE RATE

HERR H MINUS HO

HESW ALTITUDE LOOP HYSTERISIS SWITCH FLAG

HFSC(I) FLAG FOR ACCEL WW/BUTTERWORTH FILTER SYNCHRONIZ CENTRIPETAL)

НО	BITE COMPENSATED REFERENCE ALTITUDE
IADD	INTERMEDIATE PARAMETER USED IN MAGNETIC DEVIATION
HO IADD GIGRID ILAT IDI	MAGNETIC DEVIATION CONSTANT
ILAT	INTERMEDIATE LATITUDE PARAMETER
IPI	
IVRTACL	INTEGRATED VERTICAL ACCEL
JLONG	INTERMEDIATE PARAMETER USED IN MAGNETIC DEVIATION
JXM, JYM, JZM	SYSTEM MISALIGNMENT PARAMETERS
KT	GYRO TEMPERATURE FILTER CONSTANT
IPI IVRTACL JLONG JXM,JYM,JZM KT KTAS	KNOTS TRUE AIRSPEED 1
KIASD	DULLERED ANOTS TRUE ALRSPEED
KT05,,KT50,	OUTPUT FILTER CONSTANTS
アルンピス	
KXA1,KYA2,KZA3	GYRO TRANSIENT AMPLITUDE COEFFICIENTS GYRO BIAS CALIBRATION COEFFICIENTS GYRO INITIAL BIAS COEFFICIENTS GYRO SYSTEM BIAS COEFFICIENTS
KXB, KYB, KZB	GYRO BIAS CALIBRATION COEFFICIENTS
KXBI,KYBI,KZBI	GYRO INITIAL BIAS COEFFICIENTS
KXBSI,KZBSI	GYRO SYSTEM BIAS COEFFICIENTS GYRO BIAS TEMPERATURE COEFFICIENTS (BLOCK TEMP)
KXBT, KYBT, KZBT	GYRO BIAS TEMPERATURE COEFFICIENTS (BLOCK TEMP)
KXBT1, KYBT1, KZBT1	GYRO BIAS TEMPERATURE COEFFICIENTS
KXBT2, KYBT2, KZBT2	GYRO BIAS TEMPERATURE COEFFICIENTS
KXBT3, KYBT3, KZBT3	GYRO BIAS TEMPERATURE COEFFICIENTS
KXBT4, KYBT4, KZBT4	GYRO BIAS TEMPERATURE COEFFICIENTS
KXGTR, KYGTR, KZGTR	GYRO BLOCK GRADIENT RATE TEMPERATURE
. ,	BIAS COEFFICIENTS
KXPT, KYPT, KZPT	GYRO PICKOFF TEMPERATURE COEFFICIENTS
KXX,KYY,KZZ	GYRO PICKOFF TEMPERATURE COEFFICIENTS GYRO SCALE FACTOR CALIBRATION COEFFICIENTS
KXXA1, KYYA1, KZZA1	GYRO CASTING G-SENSITIVE ROTATION DISTORTION
* .	COEFFICIENTS
KXXA2, KYYA2, KZZA2	GYRO CASTING G-SENSITIVE ROTATION DISTORTION
	COEFFICIENTS
KXXA3,KYYA3,KZZA3	GYRO CASTING G-SENSITIVE ROTATION DISTORTION
	COEFFICIENTS
KXXI,KYYI,KZZI	GYRO INITIAL SCALE FACTOR COEFFICIENTS
KXXR, KYYR, KZZR	GYRO ROTATIONS DUE TO NET CASTING DISTORTION
KXXRP,KZZRP	PAST VALUE OF GYRO ROTATIONS DUE TO
	CASTING DISTORTIONS
KXXSI,KZZSI	GYRO SYSTEM S.F. COEFFICIENTS
KXXT, KYYT, KZZT	GYRO TEMPERATURE DEPENDENT SCALE FACTOR COEFFICIENT
KXYA1,KXYA2,	GYRO ACCELERATION EFFECT MISALIGNMENT COEFFICIENTS
KXYI,KYZI,KZXI	GYRO INITIAL MISALIGNMENT COEFFICIENTS
KXZI,KYXI,KZYI	
KZYP, KZXP, KYZP	GYRO PRESSURE DEPENDENT MISALIGNMENT
KYXP, KXZP, KXYP	COEFFICIENTS
LATL	ELATX LIMITED TO 72 DEG
LXB, LYB, LZB	ACCELEROMETER BIAS CALIBRATION COEFFICIENTS
LXBCA	
LYBCA, LZBCA	L(X) B*CA 1
LXBD, LYBD, LZBD	SCALED ACCELEROMETER BIAS CALIBRATION COEFFICIENTS IN
LXBI,LYBI,LZBI	ACCELEROMETER INITIAL BIAS COEFFICIENTS
•	

```
ACCELEROMETER SYSTEM BIAS COEFFICIENTS
 LXBSI,...LZBSI
 LXBSID,
 LYBSID, LZBSID
                   SCALED ACCELEROMETER INITIAL BIAS COEFFICIENTS
                                                                        1L
 LXBT, LYBT, LZBT
                   ACCELEROMETER TEMPERATURE DEPENDENT BIAS
                      COEFFICIENTS
 LXBT1, LYBT1, LZBT1 ACCELEROMETER TEMPERATURE EFFECT BIAS COEFFICIENTS
   LXBT2, LYBT2, LZBT2
   LXBT3, LYBT3, LZBT3
   LXBT4, LYBT4, LZBT4
                   ACCELEROMETER SCALE FACTOR CALIBRATION COEFFICIENTS
 LXX, LYY, LZZ
LXXI, LYYI, LZZI
LXXSI, ... LZZSI
LXXT, LYYT, LZZT
 LXXD, LYYD, LZZD
                   ACCELEROMETER DIGITIZER S.F. COEFFICIENTS
                   ACCELEROMETER DIGITIZER INITIAL S.F. COEFFICIENTS
                   ACCELEROMETER INITIAL SCALE FACTOR COEFFICIENTS
                   ACCELEROMETER SYSTEM S.F. COEFFICIENTS
                   ACCELEROMETER TEMPERATURE DEPENDENT SCALE FACTOR
                     COEFFICIENTS
LXXT1, LYYT1, LZZT1 ACCELEROMETER TEMPERATURE EFFECT SCALE FACTOR
  LXXT2, LYYT2, LZZT2
                       COEFFICIENTS
  LXXT3, LYYT3, LZZT3
  LXXT4, LYYT4, LZZT4
                   ACCELEROMETER MISALIGNMENT CALIBRATION COEFFICIENTS
LXY, LYZ, LZX
  LXZ,LYX,LZY
LZYP, LZXP, LYZP
                   ACCELEROMETER PRESSURE DEPENDENT MISALIGNMENT
  LYXP, LXZP, LXYP
                     COEFFICIENTS
LXYA1, LXYA2 ACCELEROMETER ACCELERATION EFFECT MISALIGNMENT
LXYA3,....
                      COEFFICIENTS
LXYI,LXZI,....
                   ACCELEROMETER INITIAL MISALIGNMENT COEFFICIENTS
LXYT, LXZT, ...
                   ACCELEROMETER SENSOR TEMPERATURE DEPENDENT
                     MISALIGNMENT COEFFICIENTS
LXYTXX, LYZTYY
                  ACCELEROMETER TEMPERATURE EFFECT MISALIGNMENT
  LZXTZZ, LXZTXX,
                     COEFFICIENTS
  LYXTYY, LZYTZZ
NACCL1..NACCL3
                   ACCELEROMETER COUNTS
NACCSF
                  NOMINAL ACCELEROMETER SCALE FACTOR
NCONE1..NCONE3
                   CONING CORRECTION WORDS
NCT(X)
                  PLC RESET PULSE COUNT LIMIT
NCTO
                  INITIAL VALUE OF NCT(X)
NGYRO1..NGYRO3
                 GYRO COUNTS
NGYRO1A, NGYRO2A
                  GYRO COUNT FOR PLC RESET
...NGYRO3A
                     DATA LOSS (PREVIOUS PAST VALUE)
NGYRO1B, NGYRO2B
                  PAST VALUES OF GYRO COUNTS FOR PLC CORRECTION
  NGYRO3B
NLIM
                  MAXIMUM VALUE OF NCT(X)
NP1,...NP4
                  MAGNETIC MAP GRID CORNER LOCATIONS (SAME AS NP(I))
NRESA1,...NRESA3 ACCELEROMETER DIGITIZER INTERGRATER RESIDUALS
OFFLAT
                  MAGNETIC DEVIATION CONSTANT
ORIENT
                  BOX ORIENTATION STATUS WORD
PCRDXX, PCRDYY, PAST VALUES OF CRDXX, CRDYY, CRDXY
```

PCRDXY

	\cdot	
PHI	TRUE A/C ROLL ANGLE	
	GYRO STARTUP TIME CONSTANT COEFFICIENTS	
	AIRCRAFT INERTIAL ROLL RATE	
	FILTERED INERTIAL ROLL RATE OUTPUT	
PHIF		
	FILTERED A/C ROLL ANGLE	
PHIP	PAST VALUE OF A/C ROLL ANGEL	
PHISTD		
•	GYRO PLC COUNTERS	
PLCCMDZ		
PLCCTRX, PLCCTRY,	GYRO PLC RESET COMMANDS	
PLCCTRZ		
PLCREQX, PLCREQY,	PLC RESET REQUEST SIGNAL	
PLCREQZ		
P,Q,R	BODY RATES	
PO,QO,RO	BODY RATE OUTPUTS	
PP.OP.RP		
DDD UDD BDD	PAST BODY RATE VALUES PAST-PAST BODY RATE VALUES	
PPPP	DDESCRIPE AN DESCRIPE DOCUMENTON	
DD1 DD2 DD2	PRESSURE AT PRESENT POSITION GYRO INCREMENTAL ROTATIONS OVER PREVIOUS COMP INTER PAST VALUES OF RESIDUAL VELOCITIES	_
DDU1 DDU2 DDU2	DAGE HALLES OF DESIDIAL MELOCITIES	R
PRVI, PRVZ, PRV3	PAST VALUES OF RESIDUAL VELOCITIES	
	PAST VALUES OF RXED, RYED, RZED	
PSI	TRUE HEADING ANGLE	
PSIC	PLATFORM HEADING	
PSICF	FILTERED PLATFORM HEADING OUTPUT	
PSICP	PAST VALUE OF PLATFORM HEADING	
PSIF	FILTERED TRUE HEADING ANGLE	
	MAGNETIC HEADING	
PSIMF	FILTERED MAGNETIC HEADING OUTPUT	
PSIMP	PAST VALUE OF MAGNETIC HEADING OUTPUT	
PSIP	PAST VALUE OF TRUE HEADING ANGLE	
	HIGH PITCH ANGLE HEADING CORRECTION INTERMEDIATE	
	VARIABLE	
PSIT	AIRCRAFT TRACK ANGLE RELATIVE TO NORTH	
PSITO	INTRMEDIATE TRUE TRACK ANGLE VARIABLE	
PSITF	FILTERED A/C TRACK ANGLE RELATIVE TO NORTH OUTPUT	
PSITH	PRECISION TRUE HEADING	27
PSITM	MAGNETIC TRACK ANGLE	37
PSITMF	FILTER MAGNETIC TRACK ANGLE OUTPUT	
PSITMP	PAST VALUE OF MAGNETIC TRACK ANGLE	
PSITP	PAST VALUE OF A/C TRACK ANGLE RELATIVE TO NORTH	
PSIW	WIND DIRECTION IN LOCAL VERTICAL FRAME	
PSIWF	FILTERED WIND DIRECTION OUTPUT	
PSIWP	PAST VALUE OF WIND DIRECTION	
PTH1, PTH2	COS AND SIN OF TRUE HEADING COMPONENTS	37
PTH1F, PTH2F	FILTERED COS AND SIN OF TRUE HEADING COMPONENTS	37
PTH1P, PTH2P	PASSED VALUE OF COS AND SIN OF TRUE HEADING	
	COMPONENTS	37

SLONX

SPHI, CPHI SPSI, CPSI

PVS POTENTIAL VERTICAL SPEED PVXD,...PVZD PAST VALUE OF CORIOLIS PLUS GRAVITY PLUS ALTI STABILIZATION ACCELERATIONS PVZDO

PAST VALUE OF VZDO. USED FOR OUTPUT COMPUTATIONS

QQ

INTERMEDIATE GRAVITY COMPONENT VARIABLE

QX,QY,QZ

R1,R2,R3

R1C,R2C,R3C

R1CR,R2CR,R3CR

R1P,...R3P

R1PP,...R3P

R1R1,R2R2,R3R3

ROUNDED PRODUCTS OF CORRECTED GYRO

INCREMENTAL ROTATIONS

PAST VALUE OF GYRO INCREMENTAL ROTATIONS

PAST VALUE OF GYRO INCREMENTAL ROTATIONS

PAST VALUE OF GYRO INCREMENTAL ROTATIONS

PAST-PAST VALUES OF R1,R2,R3

ROUNDED PRODUCTS OF CORRECTED GYRO

INCREMENTAL ROTATIONS (R1C,ETC.) INCREMENTAL ROTATIONS (R1C, ETC.) R1R2,R1R3,R2R3 ROUNDED PRODUCTS OF CORRECTED GYRO INCREMENTA: ROTATIONS (R1C, ETC.) CONSTANT TO CONVERT RADIANS TO DEGREES RADDEG CONSTANT EQUAL TO RADDEG*50 RADEG50 RCLATL RECIPROCAL OF CLATL RECIPROCAL OF G1
INTERMEDIATE PARAMETER USED IN MAGNETIC DEVIA'
INTERMEDIATE PARAMETERS DERIVED FROM RQX1,... RG1 RLAT, RLONG RQX, RQY, RQZ RQX1,RQY1,RQZ1 RECIPROCAL OF QX,QY,QZ
RRE RECIPROCAL OF EARTHS EQUATORIAL RADIUS FOR GYRO PULSE WEIGHTS RUX, RUY, RUZ

RUX1, RUY1, RUZ1

RECIPROCALS OF UX, UY, UZ

RUX1, RUY1, RUZ1

RECIPROCAL OF UX, UY, UZ (INTERMEDIATE VALUE) RUXNACC, RUYNACC, RUZNACC RU(X) *NACCSF RUXWTR, RUYWTR, RUZWTR RU(X)*WTR RV1,RV2,RV3 RESIDUAL VELOCITIES RVG RECIPROCAL GROUND SPEED RVGSQ
RECIPROCAL OF GROUND SPEED SQUARED
RVG1,RVG2
RVSPD
RVSPD
RVSPD1,RVSPD2
RXD1,RYD1
RXD1,RYD1
RXD2,RYD2
RXED,RYED,RZED
RXED,RYED,RZED
RYSPD1,RVSPD2
RXED,RYED,RZED
RXED,RYED,RZED
RXED,RYED,RZED
RYSPD1,RVSPD2
RXED,RYED,RZED
RYSPD1,RVSPD2
RXED,RYED,RZED
RYSPD1,RVSPD2
RXED,RYED,RZED
RYSPD1,RVSPD2
RXED,RYED,RZED
RYSPD3,RVSPD COMPUTATIONS SINE OF WANDER ANGLE
BUFFERED SINE OF WANDER ANGLE
SECANT OF PITCH ANGLE
SINE OF COMPUTED LATITUDE
SINE OF LONGITUDE CHANGE COMPUTED FROM D-MATR
SINE AND COSINE OF A/C ROLL ANGLE
SINE AND COSINE OF A/C HEADING ANGLE SALF SALFB SECTHT SLATX

E

Rel

STHT, CTHT SINE AND COSINE OF A/C PITCH ANGLE CUMULATIVE VELOCITIES USED TO COMPUTE SYSTEM SX,SY,SZ ACELLERATION ERRORS CALIBRATION MODE TIME INTERVAL CONSTANTS T1,T2 TAS TASB TSREQX, TSREQY, AIRCRAFT TRUE AIR SPEED TAS BUFFERED AIRCRAFT TRUE AIRSPEED GYRO PATH LENGTH CONTROL TIMER TSREQZ THBTO TIMER MAXIMUM VALUE THT TRUE A/C PITCH ANGLE AIRCRAFT INERTIAL PITCH RATE THTD THTDF FILTERED INERTIAL PITCH RATE OUTPUT FILTERED A/C PITCH ANGLE THTF PAST VALUE OF A/C PITCH ANGLE THTP TKRTTRACK ANGLE RATE TKRTF FILTERED TRACK ANGLE RATE OUTPUT PAST VALUE OF TRACK ANGLE RATE TKRTP TIME VATIABLE DURING CALIBRATION MODE TMTXBAV, TYBAV, TZBAV SCALED TXBAVI, ... TXBT, TYBT, TZBT GYRO BIAS TEMPERATURE (BLOCK TEMP)
TXC, TYC, TZC GYRO PICKOFF TEMPERATURES
TXD, TYD, TZD ACCELEROMETER TEMPERATURES
TXDI, TYDI, TZDI ACCELEROMETER TEMPERATURE VOLTAGE TXDIN, TYDIN, TZDIN ACCELEROMETER NEGATIVE TEMPERATURE VOLTAGE TXDIP,...TZDIP PAST VALUE OF ACCELEROMETER TEMPERATURE VOLTAGE TXVBI,...TZVBI GYRO A (DS1) BLOCK LEG FILTERED TEMPERATURE VOLTAGE TXVBII,...TZVBII GYRO A (DS1) BLOCK LEG TEMPERATURE VOLTAGE TXVBIIN, TYVBIIN GYRO A (DS1) BLOCK LEG NEGATIVE TZVBIIN TEMPERATURE VOLTAGE TXVBIIP, TYVBIIP, PAST VALUE OF GYRO A (DS1) BLOCK LEG TEMPERATURE VOLTAGE TZVBIIP TZVBIIP TEMPERATURE VOLTAGE
TXVCI,...TZVCI GYRO FILTERED PICKOFF TEMPERATURE VOLTAGE TXVCII, ... TZVCII GYRO PICKOFF TEMPERATURE VOLTAGE TXVCIIN, TYVCIIN, GYRO PICKOFF NEGATIVE TEMPERATURE VOLTAGE TZVCIIN TXVCIIP, TYVCIIP, PAST VALUE OF GYRO PICKOFF TZVCIIP TEMPERATURE VOLTAGE UX,UY,UZ =(1+LXX), (1+LYY), (1+LZZ)VA DOT PRODUCT OF VELOCITY AND ACCELERATION VECTORS IN LOCAL VERTICAL FRAME V1, V2, V3 V1,V2,V3 V1C,V2C,V3C ACCELEROMETER INCREMENTAL VELOCITIES (SAME AS VCI) INCREMENTAL VELOCITIES V1CO, V2CO, V3CO CORRECTED ACCELEROMETER OUPUTS V1C00 INTERMEDIATE VARIABLE VEF FILTERED EAST A/C VELOCITY OUTPUT VEP PAST VALUE OF FILTERED EAST A/C VELOCITY OUTPUT VG AIRCRAFT GROUND SPEED VGF FILTERED AIRCRAFT GROUND SPEED OUTPUT

TO CENTER OF RANGE AT APPROX 1G.

32 BIT WORDS

```
A11, A12, A13, A21, A22, A23, A31, A32, A33
ACRDXX, ACRDYY, ACRDXY
AERX, AERY, AERZ
ALDP
ARXED, ARYED, ARZED
AVX, AVY, AVZ
C11, C12, C13, C21, C22, C23, C31, C32, C33
CDVX, CDVY, CDVZ
CLAT, CLAT2
CONSM1, CONSM2, CONSM3
CRDXX, CRDYY, CRDXY
D11, D12, D13, D21, D22, D23, D33
D23SQ, D22SQ, D21SQ
DLAT, DLON
DR1C, DR2C, DR3C, DR1T, DR2T, DR3T
DR1I, DR2I, DR3I, DR1Q, DR2Q, DR3Q
DR1S, DR2S, DR3S, DR1SI, DR2SI, DR3SI, DR1SIP, DR2SIP, DR3SIP
DRX, DRY, DRXL, DRYL, DRZL
DV1S, DV2S, DV3S
DVX, DVY, DVZ, DVXP, DVYP, DVZPZ
DVXC, DVYC
E11,E12,E22
ELATX, ELONX, ELOND, ELONO
F1, F2, F3, F4
GD
H, HD
KXB, KYB, KZB
NCONE1, NCONE2, NCONE3
PCRDXX, PCRDYY, PCRDXY
PRXED, PRYED, PRZED
QX,QY,QZ
R1, R2, R3
R1C,R2C,R3C
R1P,R2P,R3P,R1PP,R2PP,R3PP
R1R1,R2R2,R3R3,R1R2,R1R3,R2R3
RUX, RUY, RUZ, RQX, RQY, RQZ
RXD1,RYD1,RXD2,RYD2
RXED, RYED, RZED
S12,S13,S23
SLATX, CLATX, SLONX, CLONX
SX,SY,SZ
TXVBI, TYVBI, TZVBI
TXVCI, TYVCI, TZVCI, TXD, TYD, TZD
```

UX,UY,UZ
V1,V2,V3
V1C,V2C,V3C
V1CO,V2CO,V3CO
VX,VY,VZ,VXD,VYD,VZD
VXB,VYB,VZB
VXP,VYP,VZPZ
WTAX,WTAY,WTAZ,WTGX,WTGY,WTGZ

1.19

VARIABLES

		MAXIMUM	REQUIRED	
SYMBOL	UNITS	VALUE	ACCURACY	
A(I)	FT/SEC2	256.		
A11,A12,A33	RAD	.25		4
AAT	FT/SEC2	256.	1.75E-8	
AATO	G'S	4.0	7.8 E-3	
ABW1,ABW2	FT/SEC2	104.	2.44E-4	_
ABW3	FT/SEC2	220.	.015630 21	
ABWI1,,ABWI3	VOLTS	8.0	.015630 21	.3
ACRDXXACRDXY		.015	3.05E-3	
ACT	FT/SEC2	256.	1.5 E-11	
ACTO	G'S	4.0	7.8 E-3	
AERX, AERY, AERZ	FT/SEC2	20.	2.44E-4	
AFPTH	FT/SEC2	256.	7 0	
AFPTHO	G'S	4.0	7.8 E-3	
AL	NONE	.0154	2.44E-4	
ALAT	FT/SEC2		2.37E-7	
ALATO	G'S	256.	7.8 E-3	
ALDP	NONE	4.0	2.44E-4	
ALFA	PIRAD	.0154	E-10	
ALFAB	PIRAD	1.0	3.8 E-5	
ALONG		1.0	3.8 E-5	
ALONGO	FT/SEC2 G'S	256.	7.8 E-3	
ANORM	_	4.0	2.44E-4	
ANORMC	FT/SEC2	256.	7.8 E-3	
ANORMO	FT/SEC2 G'S	256.	7.8 E-3	
ARXED, ARYED, ARZED		4.0	2.44E-4	
ATFICFLG		7.3 E-5	2(-43)	
AVERT	NONE	1.0		
AVERTO	FT/SEC2	256.	7.8 E-3	
AVX, AVY	G'S	4.0	2.44E-4	
AVZ	FT/SEC	4096.	3.8 E-6	
AWW(I)	FT/SEC	1024.	3.8 E-6	
AX, AY, AZ	FT/SEC2	256.	1.6 E-2 94	1
•	FT/SEC2	256.	7.8 E-3	
BG1	1/SEC2	7.5 E-3	2(-15)	
BG2	1/SEC3	1.25 E-4	2 (-15)	
BG3	1/SEC	1.5 E-1	2 (-15)	
BT	NONE	.0077	2.37 E-7	
BWS1(I)	FT/SEC	20.	2.5 E-3 94	Į.
BWS2(I)	FT/SEC2	4.0	5.0 E-4 94	
C10	1/SEC	2 E-4		
C11,C12,C23	NONE	1.0	1.0 E-9	
C31,C32,C33	NONE	1.0	1.2 E-6	
	NONE	1.0	6.1 E-5	
	NONE	1.0	6.1 E-5	
	NONE	1.0	1.0 E-4	
CALFB	NONE	1.0	1.0E-4	
			~ 1 O LJ	

CDVX, CDVY	FT/SEC	.04	1.9 E-6	
CDVZ	FT/SEC	4.0	E-6	
CDVZO	FT/SEC	4.0	E-6	210
CLAT	NONE	1.0	3.05 E-5	
	NONE		1.49 E-8	
CLAT2	NONE	1.0	E-4	
CLATI		1.0	5.0 E-9	
CLATX	NONE	1.0	2.0 E-5	
CLOND	PIRAD		5.0 E-9	
CLONX	NONE	1.0	and the second s	
CONSM1CONSM3	NONE	2 (+31)		
CPHI	NONE	1.0	- · · · · · · · · · · · · · · · · · · ·	
CPSI	NONE	1.0	4.0 E-4	
CRDXX,CRDYY	NONE	1.5 E-2	1.5 E-11	
CRDXY	NONE	7.5 E-3	and the second s	
CTHT	NONE	1.0	4.0 E-4	
D11,D12,D33	NONE	1.0	1.5 E-8	
D21R, D22R, D23R	NONE	1.0	2(-16)	
D23SQ, D22SQ, D21SQ	NONE	1.0	1.9 E-9	
DLAT	PIRAD	1.0	3.5 E-9	
DLON	PIRAD	1.0	2.0 E-8	
DR1C, DR2C, DR3C	RAD	.00035	E-11	
DR1I, DR2I, DR3I	RAD	.0039	1.0 E-7	
DR1Q, DR2Q, DR3Q	RAD	.00001	E-11	
DR1S, DR2S, DR3S	RAD	.000975	3.0 E-11	213
DR1SI, DR2SI, DR3SI		.000975	E-11	
DR1SIP, DR2SIP	RAD	.000975	E-11	
DR3SIP				
DR1T, DR2T, DR3T	RAD	.005	E-11	
	PIRAD	1.0	8.0 E-5	
DRIFT	PIRAD	0.5	7.6 E-6	
DRIFTF	PIRAD	1.0	8.0 E-5	
DRIFTP		.005	E-11	
DR1TO	RAD	.062	1.2 E-10	
DRX, DRY	RAD		1.2 E-10	
DRXL, DRYL, DRZL	RAD .	.062	1.2 E-10	
DRXL1P	RAD	.062	1.2 E-10	
DRXL1,,DRZL1	RAD	.062	5.6 E-5	
DSMAG	PIRAD	0.96	E-7	
DVX,DVY,DVZ	FT/SEC	22.1		
DVXC, DVYC	FT/SEC	22.2	E-7	
DVXP, DVYP	FT/SEC	256.	1.9 E-6	
DVZP	FT/SEC	256.	1.9 E-6	
E11,E12,E22	NONE	2(-15)	2 (-29)	
E3	NONE	1.0	2 (-30)	37
ELATX	PIRAD	0.5	9.5 E-7	
ELATXF	PIRAD	0.5	6.0 E-8	
ELATXP	PIRAD	0.5	3.2 E-6	
ELFLG	NONE	1.0		
ELOND	PIRAD	1.0	3.2 E-6	

ELONDF	PIRAD	1.0	3.2 E-6
ELONDP	PIRAD	1.0	3.2 E-6
ELONO	PIRAD	1.0	3.2 E-6
ELONX	PIRAD	1.0	3.2 E-6
F1,F2,F3,F4	RAD	1.0	E-7
F05IFLG	NONE	1.0	E-7
F10IFLG	NONE	1.0	
F25IFLG	NONE	1.0	
F50IFLG	NONE	1.0	
FCFLG	NONE	1.0	
FCYLFG	NONE	1.0	
FICFLG	NONE	1.0	
FSC(I)	NONE	1.0	
GAMÌ	PIRAD	0.5	
GAMIF .	PIRAD	0.5	5.5 E-5
GAMIP	PIRAD	0.5	3.8 E-6
GD	FT/SEC2	35.53	5.5 E-5
GRID1,,GRID4	DEG	173.	9.0 E-8
Н	FT	131072.	1.5625 E-2
H1,H2,H3,H4	NONE	1.0	E-2
HD	FT/SEC	1024.	2(-31) 37
HF	FEET -		E-2
HFSC(I)	FT/SEC2	131072.	E-2
HERR	FT	8.0	7.8 E-3
HESW	NONE	2048.	E-2
НО	FEET	1.0	
HP	FT	131072.	E-2
HREF	FT	131072	E-2
IADD	NONE	131072	E-2
IVRTACL	FT/SEC	224.0	0.
ILAT	NONE	256	E-7
JLONG	NONE	12.0	0.
KTAS	KT	16.0	0.
KTASB	KT	2048	6.25 E-2 1
KXB, KYB, KZB		2048	6.25 E-2
KXBT, KYBT, KZBT	RAD	1.03E-3	1.2 E-7
LATL	RAD/VOLT	1.49E-8	4.553-13
LXB, LYB, LZB	PIRAD	0.4	9.5 E-7
LXBCA,	FT/SEC	.0154	9.54 E-7
LYBCA, LZBCA	TITE / C.O.		
	FT/S2	.77	2.35E-5 1
LXBD, LYBD, LZBD	FT/SEC	.0154	4.7 E-7 1N
LXBT, LYBT, LZBT	FT/SEC	.0039	3.9 E-7
LXX, LYY, LZZ	NONE	.499	1.53E-5
LXXT, LYYT, LZZT	NONE	.125	1.14E-5
LXY, LXZ,	NONE	.0156	4.76 E-7
LXYT, LXZT,	NONE	.005	9.5 E-7
NP1,,NP4	NONE	447.	0.
NACCL1NACCL3	COUNTS	280.	PERFECT
NCONE1NCONE3	NONE	7445000.	
		· · · · ·	

NCT(X)	COUNTS	3036.	5.0 E-1
NGYRO1NGYRO3	COUNTS	12804.	5.0 E-I
NGYRO1A, NGYRO2A	COUNTS	12804.	:
NGYRO3A			
NGYRO1B, NGYRO2B	COUNTS	12804.	•
NGYR03B		12004.	
NRESA1, NRESA2,	VOLTS	8.0	
NRESA3	.0115	0.0	3.9 E-3
ORIENT	NONE	2 0	ν.
P,Q,R	RAD/SEC	3.0	
PCRDXX, PCRDYY	NONE	4.0	1.22 E-4
PCRDXY	NONE	1.5 E-2	1.5 E-11
PHERR		7.5 E-3	7.3 E-12
PHID	FT	2048.	E-2
	RAD/SEC	4.0	1.2 E-4
PHIDF	DEG/SEC	128.0	4.0 E-3
PHI	PIRAD	1.0	E-4
PHIF	PIRAD	1.0	6.1 E-4
PHIP	PIRAD	1.0	3.31 E-5
PHISTD	PIRAD	1.0	3.31 E-5
PLC(I)	NONE	1.0	
PLCCMDX, PLCCMDY,	NONE	1.0	
PLCCMDZ			
PLCCTRX, PLCCTRY,	NONE	4.0	
PLCCTRZ			
PO,QO,RO	DEG/SEC	128.0	7.8 E-3
PP,QP,RP	RAD/SEC	2.24	3.5 E-5
PPP,QPP,RPP	RAD/SEC	2.24	3.5 E-5
PPPP	LBS/IN2	15.0	1.0
PR1,PR2,PR3	RAD	.125	1.16E-10
PRV1, PRV2, PRV3	FT/SEC	.125	2(-19)
PRXED, PRYED, PRZED	RAD/SEC	7.3 E-5	2(-43)
PSI	PIRAD	1.0	3.05 E-5
PSIC	PIRAD	1.0	3.05 E-5
PSICF	PIRAD	1.0	
PSICP	PIRAD	1.0	3.05 E-5
PSIF	PIRAD	1.0	3.05 E-5
PSIM	PIRAD		3.05 E-5
PSIMF	PIRAD	1.0	3.05 E-5
PSIMP	PIRAD	1.0	3.05 E-5
PSIP	PIRAD	1.0	3.05 E-5
PSISTDD		1.0	3.05 E-5
PSIT	PIRAD	1.0	3.05 E-5
	PIRAD	1.0	3.05 E-5
PSITF	PIRAD	1.0	3.05 E-5
PSITH	NONE	1.0	2(-30) 37
PSITM	PIRAD	1.0	3.05 E-5
PSITMF	PIRAD	1.0	3.05 E-5
PSITMP	PIRAD	1.0	3.05 E-5
PSITO	PIRAD	1.0	3.05 E-5

PSITP PSIW PSIWF	PIRAD PIRAD	1.0	3.05 E-5 3 E-4
PSIWP	PIRAD	1.0	3 E-4
PTH1,PTH2	PIRAD	1.0	3 E-4
	NONE	1.0	2(-31) 37
PTH1F, PTH2F	NONE	1.0	2(-31) 37
PTH1P,PTH2P PVXD,PVYD	NONE	1.0	2(-31) 37
PVS	FT/SEC2	2.0	E-5
PVZD	FT/MIN	32768.	1.0
PVZDO	FT/SEC2	256.	5.0 E-4
QQ	FT/SEC2	256.	5.0 E-4 210
QX,QY,QZ	NONE	1.10	9.0 E-10
R1,R2,R3	NONE	1.0072	7.18 E-7
R1C, R2C, R3C	RAD	.125	3.0 E-10
RICR, R2CR, R3CR	RAD	.14	1.16E-10
R1P,,R3P	RAD RAD	.14	7.6 E-6 94
R1PP,R3PP	RAD RAD	.125	4.65 E-10
R1R1, R2R2,	RAD RAD	0.125	9.31 E-10
R1R2,R1R3,R2R3	RAD	.01	2.2 E-11 94
RCLATL	NONE	.01	2.2 E-11 94
RLAT, RLONG	NONE	100.	3.9 E-3
RQX, RQY, RQZ	NONE	1.0	3.05 E-5
RQX1, RQY1, RQZ1	NONE	1.05	7.2 E-7
	HONE	1.05	6.1 E-5
RUXNACC.			0.1 E-2
RUXNACC, RUYNACC, RUZNACC	(FT/S2) /t/		0.1 E-2
RUYNACC, RUZNACC	(FT/S2)/V	12.85	1
RUYNACC, RUZNACC RUXWTR,		12.85	
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR	(FT/S2)/V	12.85 E-2	1
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ	(FT/S2)/V NONE	12.85 1.534 E-2 1.996	1 1.86 E-9
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR	(FT/S2)/V NONE NONE	12.85 1.534 E-2 1.996 1.996	1 1.86 E-9 6.1 E-5
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1	(FT/S2)/V NONE NONE SEC/FT	12.85 1.534 E-2 1.996 1.996	1 1.86 E-9 6.1 E-5 4.8 E-7
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG	(FT/S2)/V NONE NONE SEC/FT SEC/FT	12.85 1.534 E-2 1.996 1.996 .031	1 1.86 E-9 6.1 E-5 4.8 E-7 4.8 E-7
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1	(FT/S2)/V NONE NONE SEC/FT SEC/FT (S/FT)2	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4	1 1.86 E-9 6.1 E-5 4.8 E-7 4.8 E-7 4.8 E-7
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ	(FT/S2)/V NONE NONE SEC/FT SEC/FT (S/FT)2 SEC/FT	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031	1 1.86 E-9 6.1 E-5 4.8 E-7 4.8 E-7 4.8 E-7 4.8 E-7
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2	(FT/S2)/V NONE NONE SEC/FT SEC/FT (S/FT)2 SEC/FT SEC/FT SEC/FT	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031 .031	1 1.86 E-9 6.1 E-5 4.8 E-7 4.8 E-7 4.8 E-7 4.8 E-7 4.8 E-7 4.8 E-7
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD1 RVSPD2	(FT/S2)/V NONE NONE SEC/FT SEC/FT (S/FT)2 SEC/FT SEC/FT SEC/FT	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031 .031	1 1.86 E-9 6.1 E-5 4.8 E-7
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD1 RVSPD2	(FT/S2)/V NONE NONE SEC/FT SEC/FT (S/FT)2 SEC/FT SEC/FT SEC/FT SEC/FT	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031	1 1.86 E-9 6.1 E-5 4.8 E-7
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD1 RVSPD2 RV1, RV2, RV3 RXD1, RYD1	(FT/S2)/V NONE NONE SEC/FT SEC/FT (S/FT)2 SEC/FT SEC/FT SEC/FT SEC/FT FT/SEC	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031 .031	1 1.86 E-9 6.1 E-5 4.8 E-7 2(-19)
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD1 RVSPD2 RV1, RV2, RV3 RXD1, RYD1 RXD2, RYD2	(FT/S2)/V NONE NONE SEC/FT SEC/FT (S/FT)2 SEC/FT SEC/FT SEC/FT SEC/FT FT/SEC RAD/SEC	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031 .031 .031 .125 2.0 E-4	1 1.86 E-9 6.1 E-5 4.8 E-7 2(-19) 1.2 E-13
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD1 RVSPD2 RV1, RV2, RV3 RXD1, RYD1 RXD2, RYD2 RXD2, RYD2 RXED, RYED, RZED	(FT/S2)/V NONE NONE SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT FT/SEC RAD/SEC RAD/SEC	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031 .031 .031 .031 .051 .051 .051	1 1.86 E-9 6.1 E-5 4.8 E-7 2(-19) 1.2 E-13 7.2 E-15
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD1 RVSPD2 RV1, RV2, RV3 RXD1, RYD1 RXD2, RYD2 RXED, RYED, RZED S12, S13, S23	(FT/S2)/V NONE NONE SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT FT/SEC RAD/SEC RAD/SEC RAD/SEC	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031 .031 .031 .031 .125 2.0 E-4 6.0 E-6 7.3 E-5	1 1.86 E-9 6.1 E-5 4.8 E-7 2(-19) 1.2 E-13 7.2 E-15 2(-43)
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD1 RVSPD2 RV1, RV2, RV3 RXD1, RYD1 RXD2, RYD2 RXED, RYED, RZED S12, S13, S23 SALF	(FT/S2)/V NONE NONE SEC/FT SEC/FT (S/FT)2 SEC/FT SEC/FT SEC/FT SEC/FT FT/SEC RAD/SEC RAD/SEC RAD/SEC RAD/SEC	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031 .031 .031 .031 .031 .031	1 1.86 E-9 6.1 E-5 4.8 E-7 2(-19) 1.2 E-13 7.2 E-15 2(-43) 1.6 E-11 94
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD1 RVSPD2 RV1, RV2, RV3 RXD1, RYD1 RXD2, RYD2 RXED, RYED, RZED S12, S13, S23	(FT/S2)/V NONE NONE SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT FT/SEC RAD/SEC RAD/SEC RAD/SEC RAD/SEC RAD	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031 .031 .031 .031 .031 .031	1 1.86 E-9 6.1 E-5 4.8 E-7 2(-19) 1.2 E-13 7.2 E-15 2(-43) 1.6 E-11 94 1.0 E-4
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD1 RVSPD2 RV1, RV2, RV3 RXD1, RYD1 RXD2, RYD2 RXED, RYED, RZED S12, S13, S23 SALF	(FT/S2)/V NONE NONE SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT FT/SEC RAD/SEC RAD/SEC RAD/SEC RAD NONE NONE	12.85 1.534 E-2 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031 .031 .125 2.0 E-4 6.0 E-6 7.3 E-5 .02 1.0 1.0	1 1.86 E-9 6.1 E-5 4.8 E-7 2(-19) 1.2 E-13 7.2 E-15 2(-43) 1.6 E-11 94 1.0 E-4 1.0 E-4
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD2 RV1, RV2, RV3 RXD1, RYD1 RXD2, RYD2 RXED, RYED, RZED S12, S13, S23 SALF SALFB SECTHT SLATX	(FT/S2)/V NONE NONE SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT FT/SEC RAD/SEC RAD/SEC RAD/SEC RAD NONE NONE	12.85 1.534 E-2 1.996 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031 .031 .125 2.0 E-4 6.0 E-6 7.3 E-5 .02 1.0 1.0 11.494	1 1.86 E-9 6.1 E-5 4.8 E-7 2(-19) 1.2 E-13 7.2 E-15 2(-43) 1.6 E-11 94 1.0 E-4 1.0 E-4 4.9 E-4
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD2 RV1, RV2, RV3 RXD1, RYD1 RXD2, RYD2 RXED, RYED, RZED S12, S13, S23 SALF SALFB SECTHT	(FT/S2)/V NONE NONE SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT FT/SEC RAD/SEC RAD/SEC RAD/SEC RAD NONE NONE NONE	12.85 1.534 E-2 1.996 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031 .031 .125 2.0 E-4 6.0 E-6 7.3 E-5 .02 1.0 1.0 1.0 11.494 1.0	1 1.86 E-9 6.1 E-5 4.8 E-7 2(-19) 1.2 E-13 7.2 E-15 2(-43) 1.6 E-11 94 1.0 E-4 1.0 E-4 4.9 E-4 5.0 E-9
RUYNACC, RUZNACC RUXWTR, RUYWTR, RUZWTR RUX, RUY, RUZ RUX1, RUY1, RUZ1 RVG RVG1 RVGSQ RVG2 RVSPD RVSPD1 RVSPD2 RV1, RV2, RV3 RXD1, RYD1 RXD2, RYD2 RXED, RYED, RZED S12, S13, S23 SALF SALFB SECTHT SLATX	(FT/S2)/V NONE NONE SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT SEC/FT FT/SEC RAD/SEC RAD/SEC RAD/SEC RAD NONE NONE	12.85 1.534 E-2 1.996 1.996 1.996 .031 .031 9.2 E-4 .031 .031 .031 .031 .125 2.0 E-4 6.0 E-6 7.3 E-5 .02 1.0 1.0 11.494	1 1.86 E-9 6.1 E-5 4.8 E-7 2(-19) 1.2 E-13 7.2 E-15 2(-43) 1.6 E-11 94 1.0 E-4 1.0 E-4 4.9 E-4

SPSI	NONE	_	
STHT	NONE	1.0	4.0 E-4
SX,SY	NONE	1.0	4.0 E-4
SZ SZ	FT/SEC	1 E+5	5.0 E-2 94
T1	FT/SEC	5 E+6	5.0 E-2 94
T2	SEC	50.	
TAS	SEC	150.	
	FT/SEC	4000.	1.2 E-1
TASB	FT/SEC	4000.	1.2 E-1
TSREQX,TSREQY TSREQZ	SEC/50	9000.	1.0
THT	PIRAD	0.5	E-4
THTD	RAD/SEC	4.0	1.2 E-4
THTDF	DEG/SEC	128.0	4.0 E-3
THTF	PIRAD	0.5	
THTP	PIRAD	1.0	6.1 E-4
TKRT	DEG/SEC	32.	3.31 E-5
TKRTF	DEG/SEC	32.0	.005
TKRTP	DEG/SEC		.005
TM	SEC	32.	.005
TXBT, TYBT, TZBT	VOLTS	240.	5.0 E-3
TXC, TYC, TZC	VOLTS	10.0	4.8828E-3
TXD, TYD, TZD		10.0	4.88 E-3
TXDI, TYDI, TZDI	VOLTS	10.0	4.9 E-3
TXDIN, TYDIN, TZDIN		10.0	
TXDIP, TYDIP, TZDIP		10.0	4.9 E-3
		10.0	
TXVBI, TYVBI, TZVBI		10.0	
TXVBII,,TZVBII	VOLTS	10.0	4.9 E-3
TXVBIIN, TYVBIIN, TZVBIIN	VOLTS	10.0	4.9 E-3
TXVBIIP, TYVBIIP	VOLTS	10.0	4.9 E-3
TZVBIIP			- -
TXVCI, TYVCI, TZVCI		10.0	4.9 E-3
TXVCII,,TZVCII	VOLTS	10.0	_ _ _
TXVCIIN, TYVCIIN,	VOLTS	10.0	4.9 E-3
TZVCIIN			- 1 2 3
TXVCIIP, TYVCIIP	VOLTS	10.0	4.9 E-3
TZVCIIP			175 2 3
U	FT/SEC	128.	E-2
UX,UY,UZ	NONE	1.50	1.53 E-5
V1, V2, V3	FT/SEC	8.	1.5 E-8
V1C, V2C, V3C	FT/SEC	11.6	E-7
V1CO, V2CO, V3CO	FT/SEC	10.1	E-7
V1C00	FT/SEC	10.1	E-7
VA			
VG	FT2/SEC3	1048576.	1.2 E-3 210
VGF	FT/SEC	4096.	5.0 E-1
	KNOTS	2427.	125
VGP	FT/SEC	4096.	5.0 E-1
VGSQ	FT2/SEC2	16.777216 E6	4.88 E+2

VN, VE VNF, VEF VNP, VEP VP(I) VSPD VSPSQ VW VWF VWP VWX, VWY VX, VY VXB, VYB VZ VZB VXD, VYD VXP, VYP, VZP VZPP VZD VZDO VZF VZM VZMP WTAX, WTAY, WTAZ WTAXO, WTAYO, WTGZ		1024. 256. 256. 32768. 32768. 32768. .0558 2.795352174 E-2	2.5 E-1 .125 2.5 E-1 1.5 E-8 0.5 4.88 E+2 .12 .12 .12 .12 .12 .12 1.9 E-6 1.9 E-11 1.0 E0 1.0 E0 5.8 E-11 1.5 E-11	94
WTGX,WTGY,WTGZ WWS1(I) WWS2(I)	RAD/PULSE FT/SEC	1.02 E-5 32.	7.0 E-12 2.5 E-3	94
		• •	1.3 E-4	94

CONSTANTS

SYMBOL	UNITS	PREC OR	- IGIN	NOMINAL VALUE		MAXIMUI VALUE	M.
BG1C) Baro BG2C Loop BG3C Constants	1/SEC2 1/SEC3 1/SEC 1/SEC	SP SP SP	0000	7.5 1.25 1.5 50.0	E-3 E-4 E-1		
CHF	NONE	DP	C	2.44	E-2	1.0	E-0
CQ	RAD	DP	C	1.2120342031	E-6		
CS1	NONE	SP	С	2.0	E-02	8.0	E-02
CS2	NONE	\mathtt{SP}	С	2.8	E-02	6.0	E-02
CS3	NONE	SP	С	1.4	ΕO		
CS4	NONE	SP	С	.972	EO		
CT2	NONE	SP	С	1.66667	E+01		
DEGPIRAD	PIRAD/DEG	SP	C .	5.55556	E-03		
DEL1	SEC	DP	C	1.00000	E-01		
DEL2	SEC	DP	C	. 4	E-1		
DELT	SEC	DP	С	2.00000	E-02		
DNCT	PULSES	SP	С	6.25000	E+01		
E	NONE	DP	C .	3.35233	E-03		
FTS2G	G'S/FT/SEC2	SP	C	3.1082	E-02		
FTSKNT	KNOTS/FT/SEC	SP	С	5.9241706	E-01		
G1	FT/SEC2	DP	С	3.214655000	E+01		
G2	NONE	DP	С	5.21880	E-02		
IGRID	1/PIRAD	SP	С	1.6	E+01		
IPI	NONE	DP	С	3.183098862	E-01		
KNTFTS	FT/SEC/KT	SP	С	1.68800			
KT	NONE	SP	С	4.77	E-02	1.0000	E-0
KT05	NONE	SP	С	4.2080778	E-01		
KT10	NONE	SP	С	4.2081	E-01		
KT25	NONE	SP	С	2.0430	E-01		
KT25H	NONE	SP	С	6.1176	E-01		
KT50	NONE	SP	С	3.5474	E-01		
KZYC	NONE	SP	С	-0.498	E-06		
KZXC	NONE	SP	С	-1.129	E-06		
KYZC	NONE	SP	С	-0.498	E-06	•	
KYXC	NONE	SP	С	-3.037	E-06		
KXZC	NONE	SP	С	-1.129	E-06		
KXYC	NONE	SP	С	-3.037	E-06		
LZYC	NONE	SP	С	3.403	E-06		
LZXC	NONE	SP	С	-3.138	E-06		
LYZC	NONE	SP	С	-0.95	E-06		
LYXC	NONE	SP	С	-4.898	E-06		
LXZC	NONE	SP	С	-7.079	E-06		
LXYC	NONE	SP	С	-5.716	E-06		
NACCSF	FT/SEC2/VOLT	SP	С	6.4376			

NCTO OFFLAT NLIM RADDEG RADEG50 RG1 RRE THBTO W2R WE WTAXYC WTAXYC WTAZC WTC WTG WTR	PULSES PIRAD PULSES DEG/RAD DEG/RAD/SEC SEC2/FT 1/FT SEC FT/SEC2 RAD/SEC FT/SEC/PULSE FT/SEC/PULSE RAD RAD/PULSE FT/SEC/VOLT	SP SP SP SP DP DP DP DP DP	00000000000000	4.686844005 9.681780833 7.6862	E-02 E-11	1.8000 E+	-03
ZBIAS	VOLTS	SP	Ċ	6.209	E-03		

CALIBRATION CONSTANTS

SYMBOL	UNITS	PREC- OR:	- IGIN	NOMINAL VALUE	MAXIMUI VALUE	M
JXM,JYM,JZM KXA1,KYA2,KZA3 KXBI,KYBI,KZBI KXBSI,KYBSI,KZBSI KXBT1,KYBT1,KZBT1 KXBT2,KYBT2,KZBT2 KXBT3,KYBT3,KZBT3 KXBT4,KYBT4,KZBT4 KXPT,KYPT KZPT KXXI,KYYI,KZZI KXXSI,KYYSI,KZZSI KXYI,KYXI,KZXI	RAD RAD RAD RAD RAD RAD/VOLT RAD/VOLT2 RAD/VOLT3 RAD/VOLT4 RAD/VOLT RAD/VOLT NONE NONE	SP SP SP SP SP SP SP SP SP		-9.4901 1 9.4901 1	1.2500 4.0 9.5000 9.5000 3.7253 2.3283 2.9104 3.6380 5.0 5.0 7.8125 7.2	E-4 E-07 E-07 E-09 E-10 E-11 E-12 E-5 E-5
KXZI,KYZI,KZYI LXBI,LYBI,LZBI LXBSI,LYBSI,LZBSI LXBSID,	FT/SEC FT/SEC	SP SP	D D		.0115	
LYBSID, LZBSID LXBT1, LYBT1, LZBT1 LXBT2, LYBT2, LZBT2 LXBT3, LYBT3, LZBT3 LXBT4, LYBT4, LZBT4 LXXI, LYYI, LZZI LXXSI, LYYSI, LZZSI LXXT1, LYYT1, LZZT1	FT/SEC FT/SEC/VOLTS FT/SEC/VOLTS3 FT/SEC/VOLTS4 NONE NONE VOLT(-1)	DP SP SP SP SP SP	0000000		0.15 1.64 6.0 6.24 1.03 .374	1 E-4 E-6 E-7 E-7
LXXT2,LYYT2,LZZT2 LXXT3,LYYT3,LZZT3 LXXT4,LYYT4,LZZT4 LXYI,LYXI,LZXI LXZI,LYZI,LZYI	VOLT(-1) VOLT(-2) VOLT(-3) VOLT(-4) NONE	SP	D D D D		1.54 3.3 2.41 5.24 .011	E-3 E-4 E-5 E-6
LXYTXX,LYXTYY LZXTZZ,LXZTXX LYZTYY,LZYTZZ PHI1,PHI2,PHI11	VOLTS (-1)		D D		1.0000	E+00

NOTE--THE ORIGIN CODE A,B,C,D IS DEFINED AS FOLLOWS

A=SENSOR PROMS

B=SYSTEM PROMS

C=SYSTEM MEMORY

D=ALIGN MODE, OR INITILIZATION MODE ZERO HZ CALCULATION

(**	**MAGNETIC	VARIATION	TABLE	(1980 M	ODEL) ***
. (LO	OKUP TA	BLE	CC	ORDINA	TE POSI	TION
((WOI	RD 1	10.	MAGNETIC	LATII	a adur	AST LON	CTUIDE
(CORRECTION	(DEC		(DEG	
Ì			(DEG)	(523	- /	(550	,
MVO		DATA	-19.9635	- 73.	125	0.00	
		DATA	-20.2936		87,5	0.00	
		DATA			625	0.00	
		DATA	-25.8638		375	0.00	
		DATA	-24.8484	-28.		0.00	
		DATA	-19.6726	-16.		0.00	
		DATA	-13.1526	-5.6	25	0.00	
		DATA	-8.3074	5.62	25	0.00	
		DATA	- 5.6196	16.8	375	0.00	
		DATA		28.1	.25	0.00	
		DATA		39.3	75	0.00	MV10
		DATA		50.6	525	0.00	
		DATA		61.8	375	0.00	
		DATA		73.1	.25	0.00	
		DATA		-73.	125	11.25	
		DATA		-61.		11.25	
			-25.3729	-50.		11.25	
			-25.2337	- 39.		11.25	
			-21.8913	-28.		11.25	
		DATA		-16.		11.25	
		DATA		-5.6		11.25	
		DATA		5.62		11.25	
		DATA		16.8		11.25	
		DATA		28.1		11.25	
		DATA		39.3		11.25	
		DATA		50.6		11.25	
	•	DATA		61.8		11.25	
		DATA		73.1		11.25	
		DATA		-73.		22.50	
		DATA		-61.		22.50	
		DATA	-29.2975	-50.		22.50	MV30
		DATA DATA	-25.9989	-39.		22.50	
		DATA	-18.7929 -10.3334	-28.		22.50	
		DATA	-4.8443	-16.		22.50	
		DATA	-1.9650	-5.6 5.6		22.50	
		DATA	-0.3661	5.62		22.50	
		DATA	0.7877	16.8		22.50	
		DATA	1.8190	28.1		22.50	
		DATA	2.8109	39.3		22.50	
		DATA	3.9949	50.6 61.8		22.50	WITAO
		DWIW	3 . 3 2 4 3	61.8	13	22.50	MV40

NAV ALGORITHM SPEC - LASEREF-SM ES32496-04

DATA	4.9073	73.125	22.50	
DATA	-44.2407	-73.125	33.75	
DATA	-39.0430	-61.875	33.75	
DATA	-35.2599	-50.625	33.75	
DATA	-29.7858	-39.375	33.75	
DATA	-18.8465	-28.125	33.75	
DATA	-7.8290	-16.875	33.75	
DATA		-5.625	33.75	
DATA	-0.1819	5.625		
DATA	0.9994	16.875	33.75	10750
DATA	2.0718		33.75	MV50
DATA	3.5575	28.125	33.75	
DATA	5.9415	39.375	33.75	
DATA	9.3220	50.625	33.75	
	12.4665	61.875	33.75	
DATA	-53.2248	73.125	33.75	
DATA		-73.125	45.00	
DATA	-46.9327	-61.875	45.00	
DATA	-42.2028	-50.625	45.00	
DATA	-35.5758	-39.375	45.00	
DATA	-23.2508	-28.125	45.00	MV60
DATA	-9.9658	-16.875	45.00	
DATA	-2.8764	-5.625	45.00	
DATA	-0.1398	5.625	45.00	
DATA	1.1453	16.875	45.00	
DATA	2.3213	28.125	45.00	
DATA	4.3160	39.375	45.00	
DATA	8.1412	50.625	45.00	
DATA	13.7831	61.875	45.00	
DATA	19.2682	73.125	45.00	
DATA	-62.5390	-73.125	56.25	MV70
DATA	-54.7758	- 61.875	56.25	
DATA	-48.3759	-50.625	56.25	
DATA	-40.2486	- 39.375	56.25	
DATA	-27.6032	-28.125	56.25	
DATA	-13.9527	-16.875	56.25	
DATA	-5.6306	- 5.625	56.25	
DATA	-1.9521	5.625	56.25	
DATA	-0.0462	16.875	56.25	
DATA	1.6893	28.125	56.25	
DATA	4.4174	39.375	56.25	MV80
DATA	9.4679	50.625	56.25	
DATA	16.9844	61.875	56.25	
DATA	24.8486	73.125	56.25	
DATA	-72.1013	-73.125	67.50	
DATA	-61.9691	-61.875	67.50	
DATA	-52.5675	-50.625	67.50	
DATA	-41.8296	-39.375	67.50	
DATA	-28.3659	-28.125	67.50	
			.	

DATA	-15.4832	-16.875	67.50	
DATA	-7.5172	-5.625	67.50	MV90
DATA	-3.6664	5.625	67.50	11130
DATA	-1.4505	16.875	67.50	
DATA	0.6928	28.125	67.50	
DATA	3.9614	39.375	67.50	
DATA	9.6210	50.625	67.50	
DATA	18.1867	61.875	67.50	
DATA	28.3863	73.125	67.50	
DATA	-81.9313	-73.125	78.75	
DATA	-68.1766	-61.875	78.75	
DATA	-54.1892	-50.625	78.75	MV100
DATA	-39.8002	-39.375	78.75	-
DATA	-25.1443	-28.125	78.75	
DATA	-13.4401	-16.875	78.75	
DATA	-6.7615	-5.625	78.75	
DATA	-3.6175	5.625	78.75	
DATA	-1.9136	16.875	78.75	
DATA	-0.1645	28.125	78.75	
DATA	2.8258	39.375	78.75	
DATA	7.9974	50.625	78.75	
DATA	16.2605	61.875	78.75	MV110
DATA	28.4451	73.125	78.75	
DATA	-92.2141	-73.125	90.00	
DATA	-73.1555	-61.875	90.00	
DATA	-52.4553	-50.625	90.00	
DATA	-33.6804	- 39.375	90.00	
DATA	-18.4379	-28.125	90.00	
DATA	-8.6310	-16.875	90.00	
DATA	-3.8047	-5.625	90.00	
DATA	-1.9089	5.625	90.00	
DATA	-1.2484	16.875	90.00	M V120
DATA	-0.5709	28.125	90.00	
DATA	1.0913	39.375	90.00	
DATA	4.2760	50.625	90.00	
DATA		61.875	90.00	
DATA DATA	22.8772	73.125	90.00	
	-103.3789	-73.125	101.25	•
DATA	-76.3365	-61.875	101.25	
DATA	-45.4739	-50.625	101.25	
DATA	-23.2579	-39.375	101.25	
DATA	-9.9246	-28.125	101.25	MV130
DATA	-3.1636	-16.875	101.25	
DATA	-0.5142	-5.625	101.25	
DATA	0.0277	5.625	101.25	
DATA	-0.3625	16.875	101.25	
DATA	-0.9549	28.125	101.25	
DATA	-1.2879	39,375	101.25	

DATA	-1.1775	50.625	101.25	
DATA	0.5553	61.875	101.25	
DATA	10.6247	73.125	101.25	
DATA	-116.2735	- 73.125	112.50	MV140
DATA	-75.8897	-61.875	112.50	
DATA	-30.9119	-50.625	112.50	
DATA	-11.0522	-39.375	112.50	
DATA	-2.7478	-28.125	112.50	
DATA	0.5886	-16.875	112.50	
DATA	1.4017	-5.625	112.50	
DATA	0.8802	5.625	112.50	
	-0.4016	16.875	112.50	
DATA	-2.1758	28.125	112.50	
DATA	-4.4018	39.375	112.50	MV150
DATA		50.625	112.50	111150
DATA	-7.0425	61.875	112.50	
DATA	-8.9333		112.50	
DATA	-3.4617	73.125	123.75	
DATA	-132.5393	-73.125	123.75	
DATA	-64.6239	-61.875	123.75	
DATA	-11.0404	-50.625	123.75	
DATA		-39.375	123.75	
DATA	1.9643	-28.125		
DATA	2.6236	-16.875	123.75	W1160
DATA		-5.625	123.75	M V160
DATA		5.625	123.75	
DATA		16.875	123.75	
DATA		28.125	123.75	
DATA		39.375	123.75	
DATA		50.625	123.75	
	-14.4756	61.875	123.75	
	-12.0550	73.125	123.75	
DATA	-155.0250	- 73.125	135.00	
DATA	-13.2088	- 61.875	135.00	
DATA	6.0406	-50.625	135.00	MV170
DATA	6.5713	-39.375	135.00	
DATA	5.5593	-28.125	135.00	
DATA	4.5744	-16.875	135.00	
DATA	3.5820	- 5.625	135.00	
DATA	1.9133	5.625	135.00	
DATA	-0.7541	16.875	135.00	
DATA	-4.2003	28.125	135.00	
DATA	-8.1540	39.375	135.00	
DATA	-12.1908	50.625	135.00	
DATA	-15.2963	61.875	135.00	MV180
DATA	-14.0217	73.125	135.00	
DATA	174.2379	-73.125	146.25	
DATA	34.4077	-61.875	146.25	
DATA	17.0728	-50.625	146.25	
W. T. T. T. T.				

DATA DATA DATA DATA DATA DATA DATA DATA	12.0864 9.0331 7.1312 5.7490 4.0068 1.2823 -2.3685 -6.3669 -9.9961 -12.5131 -11.4860	-39.375 -28.125 -16.875 -5.625 5.625 16.875 28.125 39.375 50.625 61.875 73.125	146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25 146.25	M V190
DATA DATA DATA DATA DATA DATA DATA DATA	141.7481 45.7981 23.6609 16.2760 12.1720 9.7582 8.3009 6.9067	-73.125 -61.875 -50.625 -39.375 -28.125 -16.875 -5.625 5.625 16.875	157.50 157.50 157.50 157.50 157.50 157.50 157.50 157.50	M V200
DATA DATA DATA DATA DATA DATA DATA DATA		28.125 39.375 50.625 61.875 73.125 -73.125 -61.875 -50.625 -39.375	157.50 157.50 157.50 157.50 157.50 168.75 168.75	MV210
DATA DATA DATA DATA DATA DATA DATA DATA	14.5045 11.7578 10.3487 9.5021 8.1482 5.6341 2.6768 0.3948	-39.375 -28.125 -16.875 -5.625 5.625 16.875 28.125 39.375 50.625	168.75 168.75 168.75 168.75 168.75 168.75 168.75 168.75	M V220
DATA DATA DATA DATA DATA DATA DATA	-0.7892 0.6374 100.4848 47.9599 28.8600 20.6551 15.7876 12.7638	61.875 73.125 -73.125 -61.875 -50.625 -39.375 -28.125 -16.875	168.75 168.75 180.00 180.00 180.00 180.00 180.00	
DATA DATA DATA	11.1858 10.6191 10.3497	-5.625 5.625 16.875	180.00 180.00 180.00	MV230

DATA	9.4634	28.125	180.00	
DATA	8.0019	39.375	180.00	
DATA	6.9109	50.625	180.00	
DATA	6.6232	61.875	180.00	
DATA	8.5155	73.125	180.00	
DATA	88.7159	- 73.125	191.25	
DATA	46.6954	-61.875	191.25	
DATA	29.0397	-50.625	191.25	MV240
DATA	20.9462	-39.375	191.25	
DATA	16.0475	-28.125	191.25	
DATA	12.7982	-16.875	191.25	
DATA	10.8910	-5.625	191.25	
DATA	10.2494	5.625	191.25	
DATA	10.7630	16.875	191.25	
DATA	11.7022	28.125	191.25	
DATA	12.3826	39.375	191.25	
DATA	13.1275	50.625	191.25	
DATA	14.2173	61.875	191.25	MV250
DATA	16.9318	73.125	191.25	
DATA	79.6925	- 73.125	202.50	
DATA	45.2843	-61.875	202.50	
DATA	28.7256	-50.625	202.50	
DATA	20.6680	-39.375	202.50	
DATA	15.7445	-28.125	202.50	
DATA		-16.875	202.50	
DATA	10.2468	-5.625	202.50	
DATA	9.6186	5.625	202.50	
DATA	10.6297	16.875	202.50	MV260
DATA	12.8424	28.125	202.50	111200
DATA	15.3998	39.375	202.50	
DATA	18.2149	50.625	202.50	
DATA	21.2845	61.875	202.50	
DATA	25.4802	73.125	202.50	
DATA	72.2057	- 73.125	213.75	
DATA		-61.875	213.75	
DATA	28.6115	-50.625	213.75	
DATA	20.4812	-39.375	213.75	-
DATA	15.4639	-28.125	213.75	MV270
DATA	11.9037	-16.875	213.75	1112.0
DATA	9.7746	-5.625	213.75	
DATA	9.3138	5.625	213.75	
DATA	10.6866	16.875	213.75	
DATA	13.5569	28.125	213.75	
DATA	17.1838	39.375	213.75	
DATA	21.6623	50.625	213.75	
DATA	27.1184	61.8750	213.75	
DATA	27.1184	61.875	213.75	
DATA	33.7380	73.125	213.75	
DWIW	23.7200	13.123	213.13	

DATA		-73.125	225.00	MV280
DATA		-61.875	225.00	111200
DATA		-50.625	225.00	
DATA		-39.375	225.00	
DATA	15.3056	-28.125	225.00	
DATA	11.5142	-16.875	225.00	
DATA	9.2617	-5.625	225.00	
DATA	8.8309	5.625	225.00	
DATA	10.3604	16.875	225.00	
DATA	13.5721	28.125	225.00	
DATA	17.7197	39.375	225.00	MIZOOO
DATA	23.2014	50.625	225.00	M V290
DATA		61.875	225.00	
DATA		73.125	225.00	
DATA		- 73.125	236.25	
DATA		-61.875		
DATA	29.4360	-50.625	236.25 236.25	
DATA		-39.375	236.25	
DATA		-28.125		
DATA		-16.875	236.25	
DATA		-5.625	236.25	157000
DATA		5.625	236.25	MV300
DATA		16.875	236.25	
DATA	12.8660	28.125	236.25	
DATA		39.375	236.25	
DATA		50.625	236.25	
DATA		61.875	236.25	
DATA		73.125	236.25	
DATA		-73.125	236.25	
DATA	39.2508	-61.875	247.50	
DATA		-50.625	247.50	151010
DATA		-39.375	247.50	MV310
DATA		-28.125	247.50	
DATA		-16.875	247.50	
DATA		-5.625	247.50	
DATA	8.5833	5.625	247.50	
DATA	9.3875	16.875	247.50	
DATA	11.4840	28.125	247.50	
DATA	14.5285	39.375	247.50	
DATA	19.0022	50.625	247.50	
DATA	27.9125	61.875	247.50	
DATA	46.6112	73.125	247.50	MV320
DATA	45.8752	-73.125 -73.125	247.50	
DATA	35.7275	-61.875	258.75	
DATA	28.6552	-50.625	258.75	
DATA	21.6324	-39.375	258.75	
DATA	15.5852	-28.125	258.75	
DATA	11.6271		258.75	
		-16.875	258.75	

DATA	9.4476	-5.625	258.75	
DATA	8.3539		258.75	
DATA	8.0921	16.875	258.78	MV330
DATA	8.6720	28.125	258.75	
DATA	9.7869	39.375	258.75	
DATA	11.3445	50.625	258.75	
DATA	14.5728	61.875	258.75	
DATA	18.0255	73.125	258.75	
DATA	38.8315	-73.125	270.00	
DATA	30.7553	-61.875	270.00	
DATA	25.6948	-50.625	270.00	
DATA	20.2504	- 39.375	270.00	
DATA	14.7280	-28.125	270.00	MV340
DATA	10.7549	-16.875	270.00	
DATA	8.1875	-5.625	270.00	
DATA	6.2905	5.625	270.00	
DATA		16.875	270.00	
DATA	3.6734	28.125	270.00	
DATA		39.375	270.00	
DATA	-0.8645	50.625	270.00	
DATA	-9.4297	61.875	270.00	
DATA	- 52.8777	73.125	270.00	
DATA	31.5214	- 73.125	281.25	MV350
DATA		-61.875	281.25	
	20.1752	-50.625	281.25	
DATA	15.7408	- 39.375	281.25	
DATA	10.6673	-28.125	281.25	
	6.5231	- 16.875	281.25	
DATA		- 5.625	281.25	
DATA	1.2521	5.625	281.25	
DATA	-0.9849	16.875	281.25	
DATA	-3.6232	28.125	281.25	
DATA	-7.4848	39.375	281.25	MV360
	-14.3609	50.625	281.25	
	-29.8137	61.875	281.25	
	-63.9547	73.125	281.25	
DATA	24.0580	-73.125	292.50	
DATA	17.2462	-61.875	292.50	
DATA	12.3561	-50.625	292.50	
DATA	7.5686	-39.375	292.50	
DATA	2.5312	-28.125	292.50	
DATA	-1.5436	-16.875	292.50	
DATA	-4.29930	-5.625	292.50	MV370
DATA	-6.39997	5.625	292.50	
DATA	-8.6807	16.875	292.50	
DATA	-11.7324	28.125	292.50	
DATA	-16.1770	39.375	292.50	
DATA	-23.6908	50.625	292.50	

DATA	-37.9658	61.875	292.50	
DATA		73.125	292.50	•
DATA		-73.125	303.75	
DATA		-61.875	303.75	
DATA		-50.625	303.75	MV380
DATA		-39.375	303.75	MA290
DATA		-28.125	303.75	
DATA		-16.875	303.75	
DATA		-5.625	303.75	
DATA		5.625	303.75	
DATA		16.875		
DATA		28.125	303.75	
DATA		39.375	303.75	
DATA		50.625	303.75	
DATA		61.875	303.75	1077200
DATA		73.125	303.75 303.75	MV390
DATA		-73.125		
DATA		-61.875	315.00 315.00	
DATA		-50.625		
DATA	-12.6788	-39.375	315.00 315.00	
DATA	-17.2688	-28.125		
DATA	-18.8683	-16.875	315.00 315.00	
DATA	-18.9537	- 5.625		
DATA	-18.4932	5.625	315.00	
DATA	-18.1785	16.875	315.00	16774.00
DATA	-18.6197	28.125	315.00	MV400
DATA	-20.6433	39.375	315.00 315.00	
DATA		50.625	315.00	
DATA		61.875	315.00	
DATA	-46.2674	73.125	315.00	
DATA	1.8536	-73.125	326.25	
DATA	-4.0380	-61.875	326.25	
DATA	-12.1583	-50.625	326.25	
DATA	-20.0634	-39.375	326.25	
DATA	-23.4926	-28.125	326.25	M77410
DATA	-23.3727	-16.875	326.25	MV410
DATA	-21.7585	-5.625	326.25	
DATA		5.625		
DATA	-17.6138	16.875	326.25 326.25	
DATA	-16.6129	28.125	326.25	
DATA	-17.6062	39.375	326.25	
DATA	-21.5183	50.625	326.25	
DATA	-28.5569	61.875	326.25	
DATA	-37.7132	73.125	326.25	
DATA	-5.3698	-73.125	337.50	MV420
DATA	-9.9217	-61.875	337.50	11 V 4 Z U
DATA	-17.3123	-50.625	337.50	
DATA	-24.4340	-39.375	337.50	
			337.30	

DATA	-26.4048		-28.125	337.50	
DATA	-24.6070		-16.875	337.50	
DATA	-21.1369		-5.625	337.50	
DATA	-17.4157		5.625	337.50	•
DATA	-14.4506		16.875	337.50	
DATA	-12.8423		28.125	337.50	
DATA	-13.3021		39.375	337.50	MV430
DATA	-16.3965		50.625	337.50	
DATA	-21.9239		61.875	337.50	
DATA	-28.9407		73.125	337.50	
DATA	-12.5989		-73.125	348.75	
DATA	- 15.2343		-61.875	348.75	
DATA	-20.7036		-50.625	348.75	
DATA	-26.0718		-39.375	348.75	
DATA	-26.5840		-28.125	348.75	
DATA	-23.1095		-16.875	348.75	
DATA	- 17.7975		-5.625	348.75	MV440
DATA	-13.0461		5.625	348.75	
DATA	-9.9395		16.875	348.75	
DATA	-8.4599		28.125	348.75	
DATA	-8.7514		39.375	348.75	
DATA	-11. 0590		50.625	348.75	-
DATA	-15.0868		61.875	348.75	
DATA			73.125	348.75	
NOTE	ROUND(X)	IS	DEFINED AS	FOLLOWS	

IF X IS TO BE RESCALED BY SHIFTING TO THE RIGHT

A 1 BIT IS ADDED IMMEDIATELY TO THE RIGHT OF THE LAST BINARY BIT TO APPEAR AFTER THE RIGHT SHIFT. THE WORD IS THEN SHIFTED TO THE RIGHT.

IN ALL OTHER CASES

A 1 BIT IS ADDED TO THE LOWEST BIT POSITION. THE WORD IS THEN SHIFTED TO THE RIGHT ONE BIT AND IS THEN SHIFTED TO THE LEFT ONE BIT.

NOTE: SIGN(X) IS DEFINED AS FOLLOWS

INPUT : DOUBLE PRECISION VALUE IN (A,B)

OUTPUT: = -1 IF INPUT IS NEGATIVE

O IF INPUT IS ZERO

+1 IF INPUT IS POSITIVE

+++SM20. INPUT GYRO INCREMENTAL ROTATION PULSE COUNTS AND CONING CORRECTION WORDS (50 HZ)

GYRO COUNTS=NGYRO1, NGYRO2, NGYRO3
CONING CORRECTOR WORDS =NCONE1, NCONE2, NCONE3

```
+++SM22. GYRO PATH LENGTH CONTROL (PLC) LOOP (50 HZ)
   IF TT GE 4100 (82 SEC)
   THEN
 2 IF FIRST PASS THROUGH MODULE
 2 THEN
      PLCCMD(X)=1, (X)=X,Y,Z
 2 ELSE
     DO FOR (I)=1,2,3; (X)=X,Y,Z
 3 IF PLCREQ(X)=1.0 (RESET REQUEST RECEIVED)
 3 THEN
 4 IF REQCTR(X) GE 5
 4 THEN
     REQCTR(X) = 5
 5 IF TSCMD(X) GE 3 (60 MSEC)
 5 THEN
 6 IF TSCMD(X) GE 500 (10 SEC)
 6 THEN
 7 IF TSREQ(X) LT 9000 (3 MINUTES)
 7 THEN
      TSREQ(X) = TSREQ(X) + 1
 8 IF TSREQ(X) LT 6000 (2 MINUTES)
 8 THEN
      NCT(X) = NCTO
 8 ELSE
      NCT(X) = TSREQ(X) - 6000 + NCTO
 8 ENDIF
 8 IF ABS(NGYRO(I)) LESS THAN NCT(X) AND PLCCTR(X) = 0.0
      PLCCMD(X) = 0 (RESET COMMAND WORD)
 8 ENDIF
      PLCCMD(X) = 0 (RESET COMMAND WORD)
 7 ENDIF
 6 ENDIF
      TSREQ(X) = TSREQ(X) + 1
 5 ELSE
      TSREQ(X) = 0
 5 ENDIF
 4 ELSE
      REQCTR(X) = REQCTR(X) + 1
      TSREQ(X) = 0
```

```
4 ENDIF
 3 ELSE
      TSREQ(X)=0
                   (RESET TIMER)
      NCT(X) = NCT0
 3 ENDIF
      OUTPUT PLCCMD(X) (PLC RESET COMMAND WORD)
 3 IF PLCCTR(X) GREATER THAN 0.0
 3 THEN
      PLCCTR(X) = PLCCTR(X) - 1
 3 ENDIF
3 IF PLCCMD(X) = 0.0
3 THEN
      PLCCMD(X) = 1.0
                       (PLC RESET COMMAND OFF)
      TSCMD(X) = 1.0
      PLCCTR(X) = 4.0
3 ELSE
4 IF TSCMD(X) LT 500 (10 SEC)
4 THEN
   TSCMD(X) = TSCMD(X) + 1
4 ENDIF
  CASEENTRY
  CASE 1, FOR PLCCTR(X)=3.0
     NGYRO(I) A=NGYRO(I)
  CASE 2, FOR PLCCTR(X)=2.0
     NGYRO(I) B=NGYRO(I)
  CASE 3, FOR PLCCTR(X)=1.0
4 IF ABS((NGYRO(I)B-NGYRO(I))-0.5*(NGYRO(I)A-NGYRO(I))) .GT. 30.0
4 THEN
     NGYRO(I) = NGYRO(I) + 0.5 * (NGYRO(I) A - NGYRO(I)) + (NGYRO(I) - NGYRO(I) B)
4 ENDIF
  CASE 4, FOR PLCCTR(X)=0.0
      CONTINUE
  ENDCASE
3 ENDIF
  ENDDO
      OUTPUT PLC RESET COMMAND WORD
2 ENDIF
  ENDIF
```

+++SM21. INPUT ACCELEROMETER INCREMENTAL PULSE COUNTS, DIGITIZER INTEGRATOR

RESIDUALS AND BUTTERWORTH FILTERED SIGNALS (50 HZ)

ACCELEROMETER COUNTS = NACCL1, NACCL2, NACCL3
ACCELEROMETER DIGITIZER INTEGRATOR RESIDUALS =
NRESA1, NRESA2, NRESA3
BUTTERWORTH FILTERED SIGNALS = ABWI1, ABWI2, ABWI3

+++NM1. COMPUTE GYRO INCREMENTAL OUTPUTS (50 HZ)

COMPUTE R1, R2, AND R3:

R1=ROUND(WTGX*NGYRO1)-KXB	1 K
R2=ROUND(WTGY*NGYRO2)-KYB	1 K
R3=ROUND(WTGZ*NGYRO3)-KZB	110
THE THOUSE (MICH HOTELOS) KUD	TV

+++NM52. COMPUTE ACCELEROMETER INCREMENTAL OUTPUTS (50 HZ)

COMPUTE V1, V2, AND V3: V1=WTAX*NACCL1-LXBD 1N · 1N V2=WTAY*NACCL2-LYBD 1N V3=WTAZ*NACCL3-LZBD COMPUTE RV1, RV2, AND RV3: 1N RV1=NRESA1*RUXWTR 1N RV2=NRESA2*RUYWTR RV3=NRESA3*RUZWTR 1N CORRECT FOR RESIDUALS: 84 V1=V1-RV1+PRV1 84 V2=V2-RV2+PRV2

V3=V3-RV3+PRV3

PRV1=RV1 PRV2=RV2 PRV3=RV3 84

+++NM11.	COMPUTE	CORRECTED	ACCELEROMETER	OUTPUTS	(50 HZ)	1
V20	CO=V2-(L)	BSID+LYX*	[*V1+LXY*V2+LX] V1+LYYSI*V2+LY] V1+LZY*V2+LZZS]	Z*V3)+(L)	(S1*2*R (S2*2*R	3R3) 3R3)	1L, 1L, 1L,

+++NM14. COMPUTE ACCELEROMETER ROTATION CORRECTIONS AND INCREMENTAL VELOCITIES (50 HZ)	1	
R1C=R1+ROUND(DR1T) R1CR=ROUND(R1C)	1 1	
R2C=R2+ROUND(DR2T) R2CR=ROUND(R2C)	1	
R3C=R3+ROUND(DR3T) R3CR=ROUND(R3C)	1	
V1C=V1CO+(V3CO*R2CR-V2CO*R3CR)/2. V2C=V2CO+(V1CO*R3CR-V3CO*R1CR)/2. V3C=V3CO+(V2CO*R1CR-V1CO*R2CR)/2.	1 1 1	
NOTETHE TRUNCATED VALUES OF V1CO, V2CO, V3CO SHOULD USED IN MULTIPLICATION BY R1CR, R2CR, R3CR.	BE	1

+++NM66. COMPENSATE BUTTERWORTH FILTERED ACCELERATIONS (50 HZ)

ABW(1)=RUXNACC*ABWI1-LXBCA	1 N
ABW(2)=RUYNACC*ABWI2-LYBCA	1 N
ABW(3)=RUZNACC*(ABWI3-ZBIAS)-LZBCA+GD	1N

+++NM57. ACCELEROMETER SIGNAL CORRECTION FOR IRU MOUNTING (50 HZ)

```
CASEENTRY
FOR CONNECTOR RIGHT IRU (ORIENT = 2)
   V1C00=V1C
   V1C=-V2C
   V2C= V1C00
   V10=V1
   V1 = -V2
   V2=V10
   ABWO=ABW(1)
   ABW(1) = -ABW(2)
   ABW(2) = ABWO
FOR CONNECTOR LEFT IRU (ORIENT = 0)
   V1COO=V1C
   V1C=V2C
   V2C=-V1C00
   V10=V1
   V1=V2
   V2=-V10
   ABWO=ABW(1)
```

FOR CONNECTOR AFT IRU (ORIENT = 1)

V1C=-V1C V2C=-V2C V1=-V1 V2=-V2 ABW(1)=-ABW(1) ABW(2)=-ABW(2) ENDCASE

ABW(1) = ABW(2)ABW(2) = -ABWO

+++NM15. RESOLVE INCREMENTAL VELOCITIES INTO LOCAL VERTICAL FRAME (50 HZ)

DVX=C21*V1C+C22*V2C+C23*V3C DVY=C11*V1C+C12*V2C+C13*V3C DVZ=-C31*V1C-C32*V2C-C33*V3C IVRTACL=IVRTACL+DVZ

+++NM16. INCREMENT A/C LOCAL VERTICAL VELOCITY COMPONENTS AND COMPUTE AVERAGE VELOCITIES OVER 10 HZ INTERVAL (50 HZ)

VZPP=VZ VX=VX+DVX+CDVX VY=VY+DVY+CDVY VZ=VZ+DVZ+CDVZ DVXP=VX-VXP+DVXP DVYP=VY-VYP+DVYP DVZP=VZ-VZP+DVZP

NOTE--LIMIT VX, VY AND VZPP TO THEIR MAX VALUES

+++NM4. COMPUTE GYRO CORRECTIONS (50 HZ)

COMPUTE GYRO SYSTEM INPUT CHANNEL CORRECTIONS	1
DR1I=KXBSI+KXXSI*R1+(KXYI+KXYP)*R2+(KXZI+KXZP)*R3 DR2I=KYBSI+(KYXI+KYXP)*R1+KYYSI*R2+(KYZI+KYZP)*R3 DR3I=KZBSI+(KZXI+KZXP)*R1+(KZYI+KZYP)*R2+KZZSI*R3	1 1 1

COMPUTE QUANTIZATION CORRECTIONS

DR1Q=CQ*(SIGN(R1)-SIGN(PR1))
DR2Q=CQ*(SIGN(R2)-SIGN(PR2))
DR3Q=CQ*(SIGN(R3)-SIGN(PR3))

PR1=R1 PR2=R2 PR3=R3

COMPUTE CONING CORRECTIONS

DR1C=WTC*NCONE1
DR2C=WTC*NCONE2
DR3C=WTC*NCONE3

CONSM1=CONSM1+NCONE1 CONSM2=CONSM2+NCONE2 CONSM3=CONSM3+NCONE3

NOTE: CONSM1,2,3 ARE FOR TEST ONLY

COMPUTE TOTAL GYRO SYSTEM CORRECTIONS

DR1T=-DR1I+DR1Q+DR1C DR2T=-DR2I+DR2Q+DR2C DR3T=-DR3I+DR3Q+DR3C

+++NM58. GYRO SIGNAL CORRECTIONS FOR IRU MOUNTING (50 HZ)

CASEENTRY

FOR CONNECTOR RIGHT IRU (ORIENT = 2)

DR1TO=DR1T

DR1T=-DR2T

DR2T=DR1TO

R10=R1

R1=-R2

R2=R10

FOR CONNECTOR LEFT IRU (ORIENT = 0)

DR1TO=DR1T

DR1T=DR2T

DR2T=-DR1TO

R10=R1

R1=R2

R2 = -R10

FOR CONNECTOR AFT IRU (ORIENT = 1)

DR1T=-DR1T

DR2T=-DR2T

R1=-R1

R2=-R2

ENDCASE

+++NM7. PROCESS ORTHOGONAL ROTATION ANGLES (50 HZ)

R1C=R1+ROUND(DR1T) R2C=R2+ROUND(DR2T) R3C=R3+ROUND(DR3T)

R1R1=ROUND((1.0/2.0)*R1C*R1C) R2R2=ROUND((1.0/2.0)*R2C*R2C) R3R3=ROUND((1.0/2.0)*R3C*R3C) R1R2=ROUND((1.0/2.0)*R1C*R2C) R1R3=ROUND((1.0/2.0)*R1C*R3C) R2R3=ROUND((1.0/2.0)*R2C*R3C)

S12=R1R1+R2R2 S13=R1R1+R3R3 S23=R2R2+R3R3

R1CR=ROUND(R1C) R2CR=ROUND(R2C) R3CR=ROUND(R3C)

+++NM8. COMPUTE ELEMENTS OF ROTATION MATRIX (50 HZ)

ALDP=(2./3.)*((1./2.)*R1R1+(1./2.)*R2R2+(1./2.)*R3R3)

BT=-(1./2.)*ROUND(ALDP)

AL=ROUND(ALDP-1.2*BT*BT)

A11=S23+BT*S23

A12=-R1R2-AL*R3CR-BT*R1R2

A12=R3C+ROUND(A12)

A13=-R1R3+AL*R2CR-BT*R1R3

A13 = -R2C + ROUND(A13)

A21=-R1R2+AL*R3CR-BT*R1R2

A21=-R3C+ROUND(A21)

A22=S13+BT*S13

A23=-R2R3-AL*R1CR-BT*R2R3

A23=R1C+ROUND(A23)

 $A31 = -R1R3 - AL \times R2CR - BT \times R1R3$

A31=R2C+ROUND(A31)

A32=-R2R3+AL*R1CR-BT*R2R3

A32 = -R1C + ROUND(A32)

A33=S12+BT*S12

NOTE--USE TRUNCATED VALUES OF R1R2,R1R3,ETC IN PRODUCTS WITH BT NOTE--THE (2./3.) CONSTANT IN THE ALDP CALCULATION SHOULD BE CARRIED TO DOUBLE PRECISION. THE (1.2) CONSTANT SHOULD BE SINGLE PRECISION IN ALL CALCULATIONS.

+++NM9. UPDATE A/C DIRECTION COSINE MATRIX AND COMPUTE 3RD ROW OF DIRECTION COSINE MATRIX (50 HZ)

A/C DIRECTION COSINE MATRIX:

C11=C11-ROUND(C11*A11+C12*A21+C13*A31)

C12=C12-ROUND(C11*A12+C12*A22+C13*A32)

C13=C13-ROUND(C11*A13+C12*A23+C13*A33)

C21=C21-ROUND(C21*A11+C22*A21+C23*A31)

C22=C22-ROUND(C21*A12+C22*A22+C23*A32)

C23=C23-ROUND(C21*A13+C22*A23+C23*A33)

NOTE--THE SUM OF PRODUCTS TERMS FOR EACH ROW OF COSINES SHOULD BE COMPUTED BEFORE THAT ROW OF COSINES IS UPDATED.

NOTE--THE DIRECTION COSINES SHOULD BE LIMITED AT THEIR MAX

3RD ROW OF DIRECTION COSINE MATRIX:

C31=C12*C23-C13*C22

C32=C13*C21-C11*C23

C33=C11*C22-C12*C21

NOTE--THE DIRECTION COSINES SHOULD BE LIMITED AT THEIR MAX VALUES

+++NM19. COMPUTE A/C ROLL AND PITCH ANGLES AND COMPUTE HIGH PITCH ANGLE CORRECTION LOGIC FOR ROLL (50 HZ)

COMPUTE A/C ROLL AND PITCH ANGLES:

STHT=-C31C CTHT=SQRT(1.0-STHT*STHT)

IF CTHT GREATER THAN OR EQUAL TO .087 THEN

EPFLG=CLEAR
SECTHT=1.0/CTHT
SPHI=C32C*SECTHT
CPHI=C33C*SECTHT
PHI=ARCTAN(SPHI,CPHI)
ELSE
EPFLG=SET

THT=ARCTAN (STHT, CTHT)

ENDIF

NOTE--PHI SHOULD BE EXPRESSED AS ANGLE BETWEEN -1 AND +1 PIRADS, THT AS ANGLE BETWEEN -0.5 AND +0.5 PIRADS NOTE--STHT, CTHT, SPHI AND CPHI SHOULD BE LIMITED AT THEIR MAX VALUE

+++NM59. COMPUTE BODY RATES, ROLL AND PITCH RATES (50 HZ)

P=16.66666*(R1+R1P+R1PP) Q=16.66666*(R2+R2P+R2PP) R=16.66666*(R3+R3P+R3PP) R1PP=R1P R2PP=R2P R3PP=R3P R1P=R1 R2P=R2

R3P=R3

NOTE--USE TRUNCATED VALUES OF R1, R2, R3, R1P, R2P, R3P, R1PP, R2PP, AND R3PP IN FORMING P,Q, AND R

NOTE--P,Q,R SHALL BE LIMITED TO THEIR MAXIMUM VALUES.

IF EPFLG CLEAR (ABS(THT) LE 85 DEG) THEN	1 1
PHID=P+ROUND(Q*SPHI+R*CPHI)*(STHT/CTHT)	1
ELSE	1
PHID=0	•
ENDIF	1
THTD=ROUND(Q*CPHI-R*SPHI)	1
NOTEPHID AND THTD SHALL BE LIMITED TO THEIR MAXIMUM	1

```
CAGE CODE 65507
NAV ALGORITHM SPEC - LASEREF-SM ES32496-04
```

+++NM47. COMPUTE BODY ACCELERATIONS (50 HZ)

```
CALCULATE WALKING WINDOW FILTERED ACCELERATIONS:
```

DO FOR I=1,2,3

AWW(I)=CT2*(V(I)+VP(I)+VPP(I))

VPP(I)=VP(I)

VP(I)=V(I)

ENDDO

NOTE--V(1), V(2) AND V(3) ARE IDENTICALLY V1, V2 AND V3

OFFSET Z-AXIS DIGITAL ACCELERATION:

AWW(3) = AWW(3) + GD

CALCULATE SYNCHRONIZED WALKING WINDOW FILTERED ACCELERATIONS AND COMPUTE SYNCRONIZED BUTTERWORTH FILTERED ACCELERATIONS:

DO FOR I=1,2,3

IF(ABS(ABW(I))+HFSC(I)) IS GREATER THAN OR EQUAL TO 38.64 THEN

WWS1(I)=WWS1(I)+WWS2(I)*DELT

WWS2(I) = WWS2(I) * CS4 - WWS1(I) * CS1

A(I) = AWW(I) + WWS2(I)

BWS2(I) = A(I) - ABW(I)

BWS1(I) = -CS3 * BWS2(I)

HFSC(I)=6.44

ELSE

BWS1(I)=BWS1(I)+BWS2(I)*DELT

BWS2(I) = BWS2(I) * CS4 - BWS1(I) * CS1

A(I) = ABW(I) + BWS2(I)

WWS2(I) = A(I) - AWW(I)

WWS1(I) = -CS3 * WWS2(I)

HFSC(I)=0

ENDIF

ENDDO

NOTE: CS3=CS2/CS1 CS4=1-CS2

SET BODY ACCELERATIONS:

ALONG=A(1) ALAT=A(2) ANORM=-A(3)

CORRECT VERTICAL ACCELERATION FOR G BIAS:

ANORMC=A(3)-GD

NOTE: A(I), AWW(1), AWW(3), WWS1(I), BWS2(I), AND WWS2(I) SHALL BE LIMITED TO THEIR MAXIMUM VALUES.

NAV ALGORITHM SPEC - LASEREF-SM ES32496-04

+++NM49. COMPUTE TRACK ANGLE RATE (50 HZ)

DVXC=DVX+CDVX
DVYC=DVY+CDVY
TKRT=(DVXC*VY-DVYC*VX)*RVGSQ*RADEG50

NOTE--TKRT SHALL BE LIMITED TO ITS MAXIMUM VALUE

+++NM45. ALONG-TRACK, CROSS-TRACK, FLIGHT-PATH HORIZONTAL, VERTICAL ACCELERATION (50 HZ)

<pre>IF IN CALMODE THEN VZDO = -GD ELSE VZDO = VZD+BG1*HERR+U ENDIF CDVZO = (VZDO+PVZDO)*DELT/2. PVZDO = VZDO</pre>	21 21 21 21 21 21 21 21
NOTE: CDVZO AND VZDO SHALL BE LIMITED TO THEIR MAX VALUES.	21 21
AX=C21*ALONG+C22*ALAT+C23*ANORMC+CA*CDVX AY=C11*ALONG+C12*ALAT+C13*ANORMC+CA*CDVY AZ=-C31*ALONG-C32*ALAT-C33*ANORMC+CA*CDVZO AVERT=AZ AAT=(VX*AX+VY*AY)*RVG ACT=(VY*AX-VX*AY)*RVG VA=(VX*AX+VY*AY+VZ*AZ)	

AFPTH=VA*RVSPD

NOTE: AX,AY,AZ,VA,AAT,ACT AND AFPTH SHALL BE LIMITED TO THEIR MAXIMUM VALUES

+++NM39. MEASURE SYSTEM ACCELERATION ERRORS (50 HZ)

NOTE--THIS COMPUTATION IS ONLY UTILIZED DURING SYSTEM CALIBRATION MODE

INCREMENT TM:

TM=TM+DELT

IF TM IS GREATER THAN OR EQUAL TO TI

2 IF TM IS LESS THAN 0.5*(T1+T2)
THEN
SX=SX-ROUND(VX)
SY=SY-ROUND(VY)

SZ=SZ-ROUND(VZ)
ELSE

3 IF TM IS LESS THAN T2 THEN

SX=SX+ROUND(VX)
SY=SY+ROUND(VY)
SZ=SZ+ROUND(VZ)

AERX=C10*SX AERY=C10*SY AERZ=C10*SZ

3 ELSE CALFLG=0

3 ENDIF

2 ENDIF ELSE SX = 0 SY = 0 SZ = 0 CALFLG=-1

ENDIF

7

7

7

+++NM62. FILTER AND SCALE 50 HZ OUTPUTS (50 HZ)

VZM=VZ*60

IF NOT FIRST PASS

THEN

PHIF=PHIF+KT50*2.0*((PHI-PHIP)/2.0+PHIP-PHIF)

THTF=THTF+KT50*2.0*((THT-THTP)/2.0+THTP-THTF)

VZF=VZF+KT50*(VZM+VZMP-2.0*VZF)
TKRTF=TKRTF+KT50*((TKRT+TKRTP)-2.0*TKRTF)

ELSE

PHIF=PHI

THTF=THT

VZF=VZM

TKRTF=TKRT

ENDIF

PHIP=PHI

THTP=THT

VZMP=VZM

TKRTP=TKRT

PVS=60*VA*RG1+VZF

PHIDF=RADDEG*PHID

THTDF=RADDEG*THTD

AATO=FTS2G*AAT

ALATO=FTS2G*ALAT

ALONGO=FTS2G*ALONG

ANORMO=FTS2G*ANORM

ACTO=FTS2G*ACT

AFPTHO=FTS2G*AFPTH

AVERTO=FTS2G*AVERT

PO=RADDEG*P

QO=RADDEG*Q

RO=RADDEG*R

NOTE--CALCULATIONS FOR VZM, PVS, PHIDF, THTDF, AATO, ALATO, ALONGO, ANORMO, ACTO, AFPTHO, AVERTO, PO, QO, RO SHALL BE PERFORMED IN LIMITED MODE TO PREVENT OVERFLOW.

+++NM41. COMPUTE A/C HEADING ANGLE ,HIGH PITCH ANGLE AND MAGNETIC HEADING 3 CORRECTION LOGIC FOR HEADING (25HZ (CALLED IN ALIGN, NAV, ATT.)

IN ALIGN MODES, NM41 SHALL BE CALLED ONLY DURING LAB TEST)

A/C HEADING ANGLE:

IF EPFLG=CLEAR

(ABS(THT) LESS THAN OR EQUAL 85 DEG)

THEN

SPSI=ROUND(C21C*CALF-C11C*SALF) *SECTHT
CPSI=ROUND(C11C*CALF+C21C*SALF) *SECTHT
PSI=ARCTAN(SPSI,CPSI)

ENDIF

PSIM=PSI+DSMAG

31

NOTE--USE TRUNCATED VALUES OF DIRECTION COSINES IN THE ABOVE CALCULATIONS

NOTE--PSI SHOULD BE EXPRESSED AS ANGLE BETWEEN -1.0 AND +1.0 PIRAD

NOTE--SPSI AND CPSI SHOULD BE LIMITED AT THEIR MAX VALUES

+++NM32.	COMPUTE	TRACK	ANGLE	RELATIVE	TO	NORTH	MAGNETIC	31
PS1	TO=ARCTA T=PSITO- TM=PSIT+	-ALFA	/Y)					31

NAV ALGORITHM SPEC - LASEREF-SM ES32496-04

+++NM54. COMPUTE PLATFORM HEADING, DRIFT ANGLE AND INERTIAL FLIGHT PATH ANG (25 HZ)

NOTE--THE FOLLOWING CALCULATION SHOULD NOT BE INTERRUPTED

COMPUTE PLATFORM HEADING:

IF EPFLG=CLEAR
THEN

PSIC=ARCTAN(C21C,C11C)
ENDIF

(ABS(THT) LESS THAN OR EQUAL 85 DEG)

COMPUTE DRIFT ANGLE AND INERTIAL FLIGHT PATH ANGLE:

DRIFT=PSITO-PSIC GAMI=ARCTAN(VZ,VG)

NOTE: VZ AND VG SHALL BE LIMITED TO 1024 IN THIS COMPUTATION ONLY.

NOTE: GAMI SHALL BE LIMITED TO ITS MAXIMUM VALUE

+++NM27. UPDATE ALTITUDE, ALTITUDE RATE AND ALTITUDE STABILIZATION SIGNAL (25 HZ) (IN ATT MODE ONLY AFTER TATT .GE. 1000)

```
HERR=H-HO
  IF IN CALMODE
  THEN
     HD=VZPP
  ELSE
2 IF HERR GREATER THAN OR EQUAL TO 500.
  THEN
     HESW=1.0
  ELSE
3 IF HERR GREATER THAN OR EQUAL TO 0.0
  THEN
4 IF HESW=-1.0
  THEN
     HESW=0.0
4 ENDIF
3 ELSE
4 IF HERR GREATER THAN OR EQUAL TO -500.
  THEN
5 IF HESW=1.0
  THEN
     HESW=0.0
5 ENDIF
4 ELSE
     HESW=-1.0
4 ENDIF
3 ENDIF
2 ENDIF
2 IF HESW=0.0
  THEN
     HD=VZPP-.5*BG3*(HERR+PHERR)
     BG1=.0075
     BG2=.000125
  ELSE
     HD=-300*SIGN(HESW)
     BG1=0
     BG2=0
     U=0
2 ENDIF
  ENDIF
     H=H+HD*DEL2
     U=U+(HERR+PHERR) *BG2*DEL2/2.0
     PHERR=HERR
```

NOTE--U, HERR, HD AND H SHOULD BE LIMITED AT THEIR MAX VALUES

+++NM33. COMPUTE Z-AXIS CORRECTIONS TO A/C VELOCITY COMPONENTS DUE TO GRAVITY, CORIOLIS AND ALTITUDE STABILIZATION ACCELERATIONS (25 HZ)

IF IN CALMODE

THEN

VZD=-GD

ELSE

VZD=-GD-BG1*HERR-U

-(RXD1+RXD2+2.0*WE*D21)*AVY+(RYD1+RYD2+2.0*WE*D22)*AVX

ENDIF

CDVZ=(VZD+PVZD)*DELT/2.0

PVZD=VZD

NOTE--CDVZ SHOULD BE LIMITED TO ITS MAX VALUE

+++NM63. FILTER 25 HZ OUTPUTS (25 HZ)

```
IF ELFLG=SET
                                                        31
THEN
                                                        31
   PSIMF=PSIM
                                                        31
   PSIMP=PSIM
                                                        31
   PSITMF=PSITM
                                                        31
   PSITMP=PSITM
                                                        31
ENDIF
                                                        31
IF NOT FIRST PASS
THEN
   GAMIF=GAMIF+KT25*2.0*((GAMI-GAMIP)/2.0+GAMIP-GAMIF)
   DRIFTF=DRIFTF+KT25*2.0*((DRIFT-DRIFTP)/2.0+DRIFTP-DRIFTF)
   PSICF+PSICF+KT25*2.0*((PSIC-PSICP)/2.0+PSICP-PSICF)
   PSITMF=PSITMF+KT25*2.0*((PSITM-PSITMP/2.0+PSITMP-PSITMPF)
   PSITF=PSITF+KT25*2.0((PSIT-PSITP)/2.0+PSITP-PSITF)
   PSIMF=PSIMF+KT25*2.0((PSIM-PSIMP)/2.0+PSIMP-PSIMF)
   PSIF=PSIF+KT25*2.0*((PSI-PSIP)/2.0+PSIP-PSIF)
ELSE
   GAMIF=GAMI
   DRIFTF=DRIFT
   PSICF=PSIC
   PSITMF=PSITM
   PSITF=PSIT
   PSIMF=PSIM
   PSIF=PSI
ENDIF
   GAMIP=GAMI
   DRIFTP=DRIFT
   PSICP=PSIC
   PSITMP=PSITM
   PSITP=PSIT
   PSIMP=PSIM
   PSIP=PSI
IF NOT FIRST PASS
   HF=HF+KT25H*(H+HP-2.0*HF)
ELSE
  HF=H
ENDIF
  HP=H
```

NOTE--HF CALCULATION SHALL BE PERFORMED IN LIMITED MODE TO PREVENT OVERFLOW.

1

IRS NAVIGATION ALGORITHM SPEC ES 32496-01 REV	7 –	PAGE	70
+++SM64. INPUT TRUE AIRSPEED AND CONVERT TO FT/S	(10 HZ)		1M
TAS=KTAS*KNTFTS			1M

+++NM10. BUFFER 10 HZ INPUTS (10 HZ)

ALFAB=ALFA C11CB=C11C C21CB=C21C SALFB=SALF CALFB=CALF KTASB=KTAS VXB=VX VYB=VY VZB=VZ TASB=TAS

+++NM20. DETERMINE ANGULAR VELOCITIES OF LOCAL VERTICAL FRAME WITH RESPECT TO THE EARTH FIXED FRAME (10 HZ)

```
AVX=VXP+ROUND((1.0/5.0)*(DVXP+(1.0/2.0)*(VXP-VX)))
AVY=VYP+ROUND((1.0/5.0)*(DVYP+(1.0/2.0)*(VYP-VY)))
AVZ=VZP+ROUND((1.0/5.0)*(DVZP+(1.0/2.0)*(VZP-VZ)))
VXP=+VX
VYP=+VY
VZP=+VZ
DVXP=0.0
DVYP=0.0
DVZP=0.0
RYD1=+RRE*AVX
RXD1=-RRE*AVY
CRDYY=+H*RRE+E*(1.0-3.0*D21*D21-D22*D22)
CRDXX=+H*RRE+E*(1.0-3.0*D22*D22-D21*D21)
CRDXY=+E*D21*D22
ACRDYY=+(1.0/2.0) *(CRDYY+PCRDYY)
ACRDXX=+(1.0/2.0) *(CRDXX+PCRDXX)
ACRDXY=+CRDXY+PCRDXY
PCRDYY=+CRDYY
PCRDXX=+CRDXX
PCRDXY=+CRDXY
RYD2=-RYD1*ACRDYY-RXD1*ACRDXY
RXD2=-RXD1*ACRDXX-RYD1*ACRDXY
```

NOTE--AVX, AVY SHOULD BE LIMITED TO THEIR MAX VALUE

+++NM67. DETERMINE ANGULAR VELOCITIES OF EARTH FIXED FRAME WITH RESPECT TO INERTIAL FRAME (10 HZ)

RXED=+WE*D22 RYED=+WE*D21

RZED=-WE*D23

ARXED=+(1.0/2.0)*(RXED+PRXED)

ARYED=+(1.0/2.0)*(RYED+PRYED)

ARZED=+(1.0/2.0)*(RZED+PRZED)

PRXED=+RXED

PRYED=+RYED

PRZED=+RZED

+++NM21. DETERMINE ANGULAR ROTATIONS OF THE LOCAL VERTICAL FRAME WITH RESPECT TO THE EARTH FIXED FRAME (10 HZ)

DRX=ROUND((RXD1+RXD2)*DEL1)
DRY=ROUND((RYD1+RYD2)*DEL1)

+++NM68. DETERMINE ANGULAR ROTATIONS OF THE LOCAL VERTICAL FRAME WITH RESPECT TO INERTIAL FRAME (10 HZ)

IF (NOT CALMODE) OR (CALMODE AND FCFLG<2.0) THEN

DRXL1=ROUND((RYD1+RYD2+ARXED)*DEL1)
DRYL1=ROUND((RXD1+RXD2+ARYED)*DEL1)

DRZL1=ROUND(ARZED*DEL1)

DRXL=DRXL1+0.5*(DRXL1-DRXL1P)

DRYL=DRYL1+0.5*(DRYL1-DRYL1P)

DRZL=DRZL1+0.5*(DRZL1-DRZL1P)

DRXL1P=DRXL1

DRYL1P=DRYL1

DRZL1P=DRZL1

FCFLG=FCFLG+1

ENDIF

		·
		·

+++NM22. UPDATE DIRECTION COSINE MATRIX FOR ROTATION OF LOCAL VERTICAL FRAME (10 HZ NAVMODE, 50 HZ ALIGN MODE)

NOTE--THE FOLLOWING COMPUTATIONS SHOULD NOT BE INTERRUPTED

```
C11=C11+ROUND(C21*DRZL-C31*DRYL)
C12=C12+ROUND(C22*DRZL-C32*DRYL)
C13=C13+ROUND(C23*DRZL-C33*DRYL)
C21=C21+ROUND(C31*DRXL-C11*DRZL)
C22=C22+ROUND(C32*DRXL-C12*DRZL)
C23=C23+ROUND(C33*DRXL-C13*DRZL)
```

NOTE--ALL SUM OF PRODUCT TERMS FOR THE COSINE ELEMENTS SHOULD BE COMPUTED BEFORE ANY COSINES ARE UPDATED: NOTE--THE DIRECTION COSINES SHOULD BE LIMITED AT THEIR MAX VALUES

+++NM23. UPDATE DIRECTION COSINES OF LOCAL VERTICAL FRAME RELATIVE TO THE EARTH FIXED FRAME (10 HZ)

D11=D11-ROUND(D13*DRY)

D12=D12+ROUND(D13*DRX)

D13=D13+ROUND(D11*DRY-D12*DRX)

D21=D21-ROUND(D23*DRY)

D22=D22+ROUND(D23*DRX)

D23=D23+ROUND(D21*DRY-D22*DRX)

NOTE--THE DIRECTION COSINES SHOULD BE LIMITED AT THEIR MAX VALUES

NOTE--ALL SUM OF PRODUCT TERMS FOR THE COSINE ELEMENTS SHOULD BE COMPUTED BEFORE ANY COSINES ARE UPDATED

+++NM24. FILTER PRECISION TRUE HEADING COMPONENTS (10HZ)

PTH1=C21*D22-C11*D21 PTH2=C11*D22+C21*D21

PTH1F=PTH1F+CHF*(PTH1+PTH1P-2*PTH1F) PTH2F=PTH2F+CHF*(PTH2+PTH2P-2*PTH2F)

PTH1P=PTH1 PTH2P=PTH2

+++NM25. COMPUTE CORIOLIS, GRAVITY, AND ALTITUDE STABILIZATION ACCELERATIONS (10 HZ)

VXD=-(RYD1+RYD2+2.0*WE*D22)*AVZ+2.0*WE*D23*AVY VYD=+(RXD1+RXD2+2.0*WE*D21)*AVZ-2.0*WE*D23*AVX

+++NM26. COMPUTE CORRECTIONS TO A/C VELOCITY COMPONENTS DUE TO GRAVITY, CORIOLIS AND ALTITUDE STABILIZATION ACCELERATIONS (10 HZ)

IF IN CALMODE

THEN

CDVX=0

CDVY=0

ELSE

CDVX=(VXD+PVXD)*DELT/2.0

CDVY=(VYD+PVYD)*DELT/2.0

ENDIF

PVXD=VXD

PVYD=VYD