Inner product on a vector space

• The inner product on \mathbb{R}^n generalizes to an arbitrary vector space.

An **inner product** on a vector space V is a function that, to each pair of vectors \mathbf{u} and \mathbf{v} in V, associates a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ and satisfies the following axioms, for all \mathbf{u}, \mathbf{v} , and \mathbf{w} in V and all scalars c:

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$
- **4.** $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$

A vector space with an inner product is called an **inner product space**.

- Example: Let a_1, \dots, a_n be positive real numbers, we can define a "weighted" inner product on \mathbb{R}^n as $\langle \mathbf{u}, \mathbf{v} \rangle = a_1 u_1 v_1 + \cdots a_n u_n v_n$.
- Example

EXAMPLE 7 For f, g in C[a, b], set

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t) dt$$

Show that (5) defines an inner product on C[a, b].

Preof: The properties 1). 2), 3) of the inner product is clear. For the last property, notice that $(f,f) = \int_a^b f(t)^2 dt >> 0$, and it is Zero iff f = 0. \square

Lengths, distances and orthogonality

- Let V be an inner product space. For $\mathbf{v} \in V$, we define its length to be $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$, and the distance between $\mathbf{u}, \mathbf{v} \in V$ to be $\|\mathbf{u} \mathbf{v}\|$.
- Two vectors $\mathbf{u}, \mathbf{v} \in V$ are said to be orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
- Pythagoras theorem: Two vectors $\mathbf{u}, \mathbf{v} \in V$ are orthogonal if and only if $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- Let W be a sub vector space of V, we can define its orthogonal complement W^{\perp} as $\{\mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{w} \rangle = 0, \forall \mathbf{w} \in W\}$.
- Theorem: Let W be a sub vector space of V, then W^{\perp} remains a sub vector space of V, and we have $W \cap W^{\perp} = \{0\}, W + W^{\perp} = V$.

- So any vector $\mathbf{v} \in V$ can be written uniquely as $\mathbf{v} = \operatorname{Proj}_W(\mathbf{v}) + \operatorname{Proj}_{W^{\perp}}(\mathbf{v})$, with $\operatorname{Proj}_W(\mathbf{v}) \in W$, $\operatorname{Proj}_{W^{\perp}}(\mathbf{v}) \in W^{\perp}$.
- The projection formula holds also in the new more general setting. In particular, for a line $L = \operatorname{Span}\{\mathbf{u}\}$, we have $\operatorname{Proj}_L(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$.
- Theorem

The Cauchy-Schwarz Inequality
For all
$$\mathbf{u}$$
, \mathbf{v} in V ,

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\| \tag{4}$$

$$\Rightarrow \|v\| > \|\text{Pej}_{W}(v)\|$$
In particular, let $W = \text{Span}\{u\}$,
then
$$\|v\| > \|\frac{\langle v, u \rangle}{\langle u, u \rangle} \|u\|$$

$$= \frac{|\langle v, u \rangle|}{\|u\|^{2}} \|u\|$$

FIGURE 2 The hypotenuse is the longest side.

Theorem

The Triangle Inequality

For all \mathbf{u} , \mathbf{v} in V,

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

Prof:
$$\| u + v \|^2 = \langle u + v, u + v \rangle$$

 $= \langle u, u \rangle + \langle v, v \rangle + 2 \langle u, v \rangle$
 $= \| u \|^2 + \| v \|^2 + 2 \langle u, v \rangle$
cauchy $\leq \| u \|^2 + \| v \|^2 + 2 \| u \| \cdot \| v \|$
 $= (\| u \| + \| v \|)^2$
 $\Rightarrow \| u + v \| \leq \| u \| + \| v \|$

Quadratic forms and symmetric matrices

- The Euclidean norm square $\|\mathbf{v}\|^2 = v_1^2 + \dots + v_n^2$ is a particular quadratic form (二次型) on \mathbb{R}^n .
- In general, a quadratic form on \mathbb{R}^n is a function

$$Q(\mathbf{x}) = c_1 x_1^2 + \dots + c_n x_n^2 + \sum_{i \neq j=1}^n c_{ij} x_i x_j.$$

• The terms $c_{ii}x_ix_i$ are called cross-product terms (交叉项).

- Notice that it can be written in matrix form: Let $A=(a_{ij})$ be the $n\times n$ symmetric matrix such that $a_{ii}=c_i$ and $a_{ij}=a_{ji}=c_{ij}/2$, then $Q(\mathbf{x})=\mathbf{x}^tA\mathbf{x}$. The matrix A is called the matrix of the quadratic form.
- Similar to the relationship between Euclidean norm and the inner product, we can associate the function $B(\mathbf{x}, \mathbf{y}) = \mathbf{x}^t A \mathbf{y}$. It is clear that $Q(\mathbf{x}) = B(\mathbf{x}, \mathbf{x})$.
- As A is symmetric, the function $B(\mathbf{x}, \mathbf{y}) = \mathbf{x}^t A \mathbf{y}$ satisfies the properties:
- 1. $B(\mathbf{x}, \mathbf{y}) = B(\mathbf{y}, \mathbf{x})$,
- 2. $B(\mathbf{x}_1 + \mathbf{x}_2, \mathbf{y}) = B(\mathbf{x}_1, \mathbf{y}) + B(\mathbf{x}_2, \mathbf{y}),$
- 3. $B(c\mathbf{x}, \mathbf{y}) = cB(\mathbf{x}, \mathbf{y})$.
- For this reason, \emph{B} is called a symmetric bilinear form (对称双线性形式).

- Consider the change of variable $\mathbf{x} = P\mathbf{y}$, the quadratic form will be changed to $Q(\mathbf{y}) = \mathbf{y}^t(P^tAP)\mathbf{y}$.
- Question: Is it possible to find a change of variable such that the matrix of the quadratic form is nice? For example, diagonal?
- In case that P is orthogonal, i.e. $P^{-1} = P^t$, the transformation becomes $P^{-1}AP$ and is related to the diagonalization of the matrix A.
- Definition: The symmetric matrix A is said to be orthogonally diagonalizable if there exists an orthogonal matrix P such that $P^{-1}AP$ is diagonal.
- It is clear that A is orthogonally diagonalizabel if and only the eigenvectors of A forms an orthonormal basis of \mathbb{R}^n .

Diagonalization of symmetric matrices

Theorem

The Spectral Theorem for Symmetric Matrices

An $n \times n$ symmetric matrix A has the following properties:

- a. A has n real eigenvalues, counting multiplicities.
- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
- c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
- d. A is orthogonally diagonalizable.
- Geometrically, this means that we can find an orthonormal basis of \mathbb{R}^n such that A acts as dilation with respect to this coordinate system.

• Lemma: Let A be an $n \times n$ symmetric matrix, then all the complex roots of the characteristic equation $\det(A - \lambda I) = 0$ are in fact real.

Preof: Let $\det(A - \lambda I) = \prod_{i=1}^{m} (\lambda_i - \lambda)^{m_i}$ with $\lambda_i \in \mathbb{C}$. Consider A as a linear transformation $A: \mathbb{C}^m \to \mathbb{C}^m$, then for each λ_i , we have an eigenvector

$$A v_i = \lambda_i v_i$$

Over \mathbb{C}^n , we can define an inner product similar to the Euclidean inner product: For $z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$, $w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \in \mathbb{C}^n$, let $\langle z, w \rangle = \overline{z}_1 w_1 + \cdots + \overline{z}_n w_n = \overline{z}_n \cdot w$.

It is clear that the inner product has the properties

- $(3, \omega) = \langle \omega, \xi \rangle$
- 2) $\langle z, c_1 w_1 + c_2 w_2 \rangle = c_1 \langle z, w_1 \rangle + c_2 \langle z, w_2 \rangle$, $\forall c_1, c_2 \in \mathbb{C}$,
- 3) $\langle \xi, \xi \rangle$ is real >0 and $\langle \xi, \xi \rangle = 0$ iff $\xi = 0$.

Now consider the inner product $\langle v_i, A v_i \rangle = \overline{v}_i^t A v_i$. On the one hand, $A \text{ real symmetric} = (A v_i)^t v_i$

(*) $\langle v_i, A v_i \rangle = \langle v_i, \lambda_i v_i \rangle = \lambda_i \langle v_i, v_i \rangle$ = $\langle A v_i, v_i \rangle$ On the other hand,

 $(**) \quad \langle v_{i}, A v_{i} \rangle = \langle A v_{i}, v_{i} \rangle = \langle \lambda_{i} v_{i}, v_{i} \rangle = \overline{\lambda_{i}} \langle v_{i}, v_{i} \rangle$

Compare (*), (**), get $\lambda_i = \overline{\lambda}_i$, so $\lambda_i \in \mathbb{R}$ as claim.

• Lemma: Let A be an $n \times n$ symmetric matrix, let \mathbf{v} be an eigenvector of A, then A preserves the orthogonal complement of $\mathrm{Span}\{\mathbf{v}\}$.

Proof Suppose that
$$Av = \lambda v$$
 for some $\lambda \in \mathbb{R}$.

For $w \in \text{Span}\{v\}^{\perp}$, we have
$$\langle v, Aw \rangle = v^{t} A w = (Av)^{t} w = \langle Av, w \rangle$$

$$= \langle \lambda v, w \rangle = 0$$

So AWE Spando), and hence A preserves spandojt.

包

• Proof of the theorem:

For the remaining assertions, we'll prove that A is orthogonally diagonalizable, i.e. there exists an orthogonal matrix p such that $A = p \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} p^t$ $\begin{pmatrix} p^{-1} = p^t \end{pmatrix}$

This implies the assertion b). c), d). Indeed, let $P = [v_1 \cdots v_n]$, then $\{v_1, \cdots, v_n\}$ from an orthonormal basis, and $A = P \begin{pmatrix} \lambda_1 & \dots & \lambda_n \end{pmatrix} P^t = P \begin{pmatrix} \lambda_1 & \dots & \lambda_n \end{pmatrix} P^{-1}$

is equivalent to
$$AP = P(\lambda_1, \lambda_n)$$
, i.e. $A(v_1, \dots, v_n) = [v_1, \dots, v_n](\lambda_1, \dots, \lambda_n)$

 \Leftrightarrow A $v_i = \lambda_i \vee i$, $i = 1, \dots, n$.

We pare the assertion that A is orthogonally diagonalisable by induction. The case n=1 is evident. Suppose that the assertion is proved for n-1. Then for an $n\times n$ matrix A, it is known from lemma 1 that $\det (A-\lambda I) = \prod_{i=1}^r (\lambda_i - \lambda_i)^m, \text{ with } \lambda_i \in R.$

Let v_i be an eigenvector with eigenvalue λ_i , (*) $A v_i = \lambda v_i$.

Without less of generality, we can assume that $\|v_1\| = 1$. By lemma 2, it is know that A preserves Span $\{v_1\}^{\perp}$. Let $\{v_2, ..., v_n\}$ be an athonormal basis of Span $\{\vec{v}_i\}$. Hen $\{v_1, ..., v_n\}$ is an athonormal basis of \mathbb{R}^n .

Notice that (*) and the fact that A preserves Span { v,] implies:

 $A[v_1 \ v_2 \cdots \ v_n] = [v_1 \ v_2 \cdots \ v_n] \begin{pmatrix} \lambda_1 & 0 \cdots & 0 \\ 0 & & \\ \vdots & & A' \end{pmatrix}$ $P_1 \text{ orthogonal}.$

$$\Rightarrow A = P_{1} \begin{bmatrix} \lambda_{1} \\ A' \end{bmatrix} P_{1}^{t}.$$

$$\uparrow \text{ induction hypothesis}$$

$$A' = P_{2} \begin{pmatrix} \lambda_{2} \\ \lambda_{n} \end{pmatrix} P_{2}^{t}.$$

$$\Rightarrow A = P_{1} \begin{pmatrix} \lambda_{1} \\ P_{2} \end{pmatrix} \begin{pmatrix} \lambda_{2} \\ \lambda_{n} \end{pmatrix} P_{2}^{t}$$

$$= P_{1} \begin{pmatrix} 1 \\ P_{2} \end{pmatrix} \begin{pmatrix} \lambda_{1} \\ \lambda_{2} \\ \lambda_{n} \end{pmatrix} \begin{pmatrix} 1 \\ P_{2} \\ \lambda_{n} \end{pmatrix} \begin{pmatrix} P_{1}^{t} \\ P_{2}^{t} \end{pmatrix}$$

$$P \text{ poduct of on the general.}$$

夏

EXAMPLE 3 Orthogonally diagonalize the matrix
$$A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$
, whose characteristic equation is

$$0 = -\lambda^3 + 12\lambda^2 - 21\lambda - 98 = -(\lambda - 7)^2(\lambda + 2)$$

Applications to quadratic forms

- Recall that a quadratic form can be written as $Q(\mathbf{x}) = \mathbf{x}^t A \mathbf{x}$ for a symmetric matrix A, and that a change of variable $\mathbf{x} = P \mathbf{y}$ by an orthogonal matrix P will change Q to $Q(\mathbf{y}) = \mathbf{y}^t (P^t A P) \mathbf{y}$.
- · Combined with the spectral theorem of symmetric matrices, we get the theorem

The Principal Axes Theorem

Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into a quadratic form $\mathbf{y}^T D \mathbf{y}$ with no cross-product term.

• The column vectors of P are the eigenvectors of A, they are called the principle axes (主轴) of the quadratic form Q.

- In other words, with respect to the coordinate system given by the principal axes, the matrix for the quadratic form will be diagonal, i.e. it will be of the form $Q(\mathbf{y}) = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2$.
- Definition

A quadratic form Q is:

- a. **positive definite** if $Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- b. **negative definite** if $Q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- c. **indefinite** if $Q(\mathbf{x})$ assumes both positive and negative values.

Negative definite

Theorem

Quadratic Forms and Eigenvalues

Let A be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}^T A \mathbf{x}$ is:

- a. positive definite if and only if the eigenvalues of A are all positive,
- b. negative definite if and only if the eigenvalues of A are all negative, or
- c. indefinite if and only if A has both positive and negative eigenvalues.

• A quadratic form is called degenerate, if the associated matrix has 0 as one of its eigenvalues. With respect to the principal axis, it takes the form $Q(\mathbf{y}) = \lambda_1 y_1^2 + \dots + \lambda_r y_r^2$, with $\lambda_1, \dots, \lambda_r \neq 0$ and r < n.

