Organización del Computador 1

Lógica digital Algebra de Boole y circuitos combinatorios

Lógica digital

- La computadora está construida con circuitos que operan con 2 valores [0,1] que podemos interpretar como [Falso, Verdadero]
- Idea: implementar operaciones lógicas y matemáticas combinando circuitos

Álgebra de Boole

George Boole 1815-1864

- George Boole desarrolló un sistema algebraico para formalizar la lógica proposicional ("Análisis matemático de la lógica")
- El sistema consiste en un cálculo para resolver problemas de lógica proposicional con sólo 2 valores posibles
 - Da igual: 1 y 0, Verdadero y Falso, On y Off, Boca y River.
- 3 Operaciones:
 - AND
 - OR
 - NOT

Funciones booleanas: AND

Función booleana AND (aka producto booleano)

X	Y	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

Notación: X.Y

Funciones booleanas: OR

Función booleana OR (aka suma booleana)

X	Y	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

Notación: X+Y

Funciones booleanas: NOT

Función booleana NOT (aka complemento booleano)

X	NOT
0	1
0	1
1	0
1	0

Notación: ~X

Tablas de Verdad

- Una función f es una función matemática cuyo dominio e imagen está incluido en Bool {0,1}
- Se puede describir completamente unívocamente usando tablas de verdad
- Por ejemplo, F: Bool x Bool x Bool → Bool

X	Y	Z	F(X,Y,Z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Expresiones booleanas

- Utilizan:
 - Variables booleanas (X,Y,Z, etc)
 - Las operaciones
 - AND (X.Y)
 - OR (X+Y)
 - NOT (~X)

Expresiones Booleanas

- ¿Qué expresión booleana representa a F?
- ¿Es única?

X	Υ	Z	F(X,Y,Z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Expresiones booleanas

- Las expresiones booleanas
 - $(\sim X.Y.\sim Z)+(\sim X.Y.Z)+(X.\sim Y.Z)+(X.Y.\sim Z)+(X.Y.Z)$
 - (X.~Z)+Y
- ... son expresiones booleanas distintas que representan a la misma función booleana f(x,y,z)

Funciones booleanas: NAND y NOR

X	Υ	X NAND Y
0	0	1
0	1	1
1	0	1
1	1	0

X	Y	X NOR Y
0	0	1
0	1	0
1	0	0
1	1	0

Propiedades del Algebra de Boole

Identidad 1.A=A 0+A=A

Nula 0.A=0 1+A=1

Idempotencia A.A=A A+A=A

Inversa $A.^A=0$ $A+^A=1$

Conmutativa A.B=B.A A+B=B+A

Asociativa (A.B)C=A.(B.C) (A+B)+C=A+(B+C)

Distributiva A+B.C=(A+B).(A+C) A.(B+C)=A.B+A.C

Absorción A.(A+B)=A A+A.B=A

De Morgan (A.B) = A+B (A+B) = A.B

Ejemplo

 Usando las propiedades del algebra de Boole podemos reducir la expresión

 $(X+Y).(X+^{\sim}Y).(^{\sim}X+Z) \qquad \text{DeMorgan} \\ (X.X+X.^{\sim}Y+Y.X+Y.^{\sim}Y).(^{\sim}X+Z) \qquad \text{Distributiva} \\ (X+X.^{\sim}Y+Y.X+0).(^{\sim}X+Z) \qquad \text{Indempotencia e Inversa} \\ (X+X.(^{\sim}Y+Y)).(^{\sim}X+Z) \qquad \text{Nula y Distributiva} \\ (X).(^{\sim}X+Z) \qquad \text{Inversa, Identidad y Nula} \\ X.^{\sim}X+X.Z \qquad \text{Distributiva} \\ XZ \qquad \text{Inversa e Identidad} \\ X$

Funciones universales

 Un conjunto de funciones booleanas se denomina "universal" si alcanza para definir cualquier función booleana usando solamente esas funciones

Preguntas:

- ¿Es {NOT,AND,OR} un conjunto universal?
- ¿Es {NAND} un conjunto universal?
- ¿Es {NOT} un conjunto universal?

Expresiones equivalentes

- Varias expresiones booleanas pueden representar la misma función booleana
 - Son lógicamente equivalentes
- En general se suelen elegir formas normals
 - Suma de productos

$$- F(X,Y,Z) = X.Y + X.Z + Y.Z$$

- Producto de sumas
 - $F(X,Y,Z) = (X+Y) \cdot (X+Z) \cdot (Y+Z)$

Suma de Productos

- Se obtiene fácilmente a partir de la tabla de verdad
- Elegimos filas que cuyo resultado es 1 y hacemos "producto" (AND) de las entradas
- Luego "sumamos" (OR) todas las expresiones

F(x	$F(x,y,z) = x\overline{z}+y$				
x	У	z	xz+y		
0	0	0	0		
0	0	1	0		
0	1	0	1		
0	1	1	1		
1	0	0	1		
1	0	1	0		
1	1	0	1		
1	1	1	1		

 $F(X,Y,Z) = (\sim X.Y.\sim Z) + (\sim X.Y.Z) + (X.\sim Y.\sim Z) + (X.Y.\sim Z) + (X.Y.Z)$

- Una compuerta es un dispositivo electrónico que produce resultado en base a un conjunto de valores de entrada
- Idea: una compuerta implementa funciones del Álgebra de Boole "recurrentes".
- Son el "átomo" de la computación

 Implementan las funciones booleanas que vimos

Transistores

- Las compuertas se construyen usando transistores
- ¿A qué compuerta equivale este circuito?

Transistores

X	NOT
0	1
0	1
1	0
1	0

¿Cómo implemento el NAND? ¿y el NOR?

• ¿Cómo implemento el NAND? ¿y el NOR?

Circuitos Lógicos

- Un circuito es una combinación de compuertas que implementan una función booleana.
- ¿Qué expresión booleana representa este circuito?

 ¿El valor de salida del circuito se propaga instantáneamente?

Circuito ideal / Mundo real

Circuitos digitales: resumiendo

Ejercicio

Implementar una compuerta NOT usando solamente compuertas NAND

Ejercicio: Idem para AND y OR

Ejercicio

Implementar una compuerta NOT usando solamente compuertas NAND

Ejercicio: Idem para AND y OR

Recap.

- Funciones booleanas
- Expresiones booleanas
- Circuitos combinatorios

 La aritmética (cuentas) y las operaciones lógicas del CPU se implementan usando Circuitos Combinatorios

Sumadores

 ¿Cómo podemos construir un circuito que sume 2 bits?

Inputs		Outputs		
x	Y	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Half-Adder

 Al circuito que suma 2 bits se lo llama "Half-Adder"

Inp	uts	Outputs		
X	Y	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Full-Adder

 ¿Cómo podemos hacer el circuito que sume 3 bits?

	Inputs		Outputs	
x	Carry X Y In			Carry Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adders

¿Cómo puedo hacer un sumador de 4 (cuatro bits) usando full adders y half adders?

Decodificadores

- Un decodificador de n entradas puede seleccionar una de 2ⁿ salidas
- Son muy importantes
 - Por ejemplo: seleccionar banco de memoria a partir de dirección

Decodificador de 2 bits

• Si x=0 e y=1 ¿qué salida queda habilitada?

Multiplexores

 Se "forwardea" una línea de entrada a la línea de salida de acuerdo al valor de las líneas de control

Demultiplexor: es lo inverso al multiplexor

Ejercicio

- Construir ALU (Unidad Aritmético Lógica) de 1 bit
- 3 entradas: A, B y carry_in
- 2 salida: resultado y carry_out
- 2 líneas de control:

c_0	c_1	operación
0	0	A.B
0	1	A+B
1	0	~B
1	1	sumar(A,B,carry_in)

ALU 8 bits

Memoria ROM

		Inpu	ıts		Outputs							
I ₄	l ₃	l ₂	I ₁	I ₀	A ₇	\mathbf{A}_6	A_5	A_4	\mathbf{A}_3	A ₂	A ₁	A_0
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

ROM usando un decoder

Bibliografía obligatoria

 Leer capítulo 3 del Libro Null hasta la sección 3.5 INCLUSIVE (Circuitos Combinatorios)