MPAM1_EL1, MPAM1 Register (EL1)

The MPAM1 EL1 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL1.

When EL2 is implemented and enabled in the current Security state, the MPAM virtualization option is present, <u>MPAMHCR_EL2</u>.GSTAPP_PLK == 1 and <u>HCR_EL2</u>.TGE == 0, MPAM1_EL1 is used instead of <u>MPAM0_EL1</u> to generate MPAM labels for memory requests when executing at EL0.

MPAM1_EL1 is an alias for $\underline{\text{MPAM2_EL2}}$ when executing at EL2 with $\underline{\text{HCR EL2}}$.

MPAM1_EL12 is an alias for MPAM1_EL1 when executing at EL2 or EL3 with $\frac{1}{1}$ HCR EL2.E2H == 1.

If EL2 is implemented and enabled in the current Security state, the MPAM virtualization option is present and MPAMHCR_EL2.EL1_VPMEN == 1, MPAM PARTIDs in MPAM1_EL1 are virtual and mapped into physical PARTIDs for the current Security state. This mapping of MPAM1_EL1 virtual PARTIDs to physical PARTIDs when EL1_VPMEN is 1 also applies when MPAM1_EL1 is used at EL0 due to MPAMHCR_EL2.GSTAPP PLK.

Configuration

AArch64 System register MPAM1_EL1 bit [63] is architecturally mapped to AArch64 System register MPAM3_EL3[63] when EL3 is implemented.

AArch64 System register MPAM1_EL1 bit [63] is architecturally mapped to AArch64 System register MPAM2_EL2[63] when EL3 is not implemented and EL2 is implemented.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to MPAM1 EL1 are undefined.

Attributes

MPAM1 EL1 is a 64-bit register.

Field descriptions

63	62 61	60		5958575655	5	4	535251504948	4746454443424140	3938373635343332
MPAMEN	NRESO F	ORCED_	NS	RES0	ALTSP	FRCD	RES0	PMG_D	PMG_I
PARTID_D						PART	ΓID_I		
31	30 29	28		2726252423	2	2	212019181716	151413121110 9 8	7 6 5 4 3 2 1 0

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs are output as their default value in the corresponding ID space.

MPAMEN	Meaning
0b0	The default PARTID and
	default PMG are output in
	MPAM information.
0b1	MPAM information is output
	based on the MPAMn ELx
	register for ELn according
	the MPAM configuration.

If neither EL3 nor EL2 is implemented, this field is read/write.

If EL3 is implemented, this field is read-only and reads the current value of the read/write bit MPAM3 EL3.MPAMEN.

If EL3 is not implemented and EL2 is implemented, this field is readonly and reads the current value of the read/write bit MPAM2 EL2.MPAMEN.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

- Access is **RW** if all of the following are true:
 - EL3 is not implemented
 - EL2 is not implemented
- Otherwise, access to this field is **RO**.

Bits [62:61]

Reserved, res0.

FORCED_NS, bit [60] When FEAT_MPAMv0p1 is implemented:

In the Secure state, FORCED_NS indicates the state of MPAM3 EL3.FORCE NS.

FORCED_NS	Meaning
0b0	In the Non-secure state,
	always reads as 0.
	In the Secure state,
	indicates that
	<u>MPAM3_EL3</u> .FORCE_NS ==
	0.
0b1	In the Secure state,
	indicates that
	MPAM3 EL3.FORCE NS ==
	1.

Always reads as 0 in the Non-secure state.

Writes are ignored.

Access to this field is **RO**.

Otherwise:

Reserved, res0.

Bits [59:55]

Reserved, res0.

ALTSP_FRCD, bit [54]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Alternative PARTID forced for PARTIDs in this register.

ALTSP_FRCD	Meaning
0b0	The PARTIDs in
	MPAM1_EL1 and
	MPAM0_EL1 are using
	the primary PARTID
	space.
0b1	The PARTIDs in
	MPAM1_EL1 and
	MPAM0_EL1 are using
	the alternative PARTID
	space.

This bit indicates that a higher Exception level has forced the PARTIDs in this register to use the alternative PARTID space defined for the current Security state.

In MPAM1_EL1, it also indicates that <u>MPAM0_EL1</u> is forced to use alternative PARTID space.

For more information, see 'Alternative PARTID spaces and selection' in Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

Access to this field is **RO**.

Otherwise:

Reserved, res0.

Bits [53:48]

Reserved, res0.

PMG D, bits [47:40]

Performance monitoring group property for PARTID D.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PMG I, bits [39:32]

Performance monitoring group property for PARTID I.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PARTID D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PARTID I, bits [15:0]

Partition ID for instruction accesses made from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing MPAM1 EL1

When <u>HCR_EL2</u>.E2H is 1, without explicit synchronization, accesses from EL3 using the mnemonic MPAM1_EL1 or MPAM1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM1_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0101	0b000

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
   elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 ==
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x900];
    else
        X[t, 64] = MPAM1\_EL1;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR_EL2.E2H == '1' then
        X[t, 64] = MPAM2\_EL2;
        X[t, 64] = MPAM1\_EL1;
elsif PSTATE.EL == EL3 then
   X[t, 64] = MPAM1\_EL1;
```

MSR MPAM1 EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0101	0b000

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && MPAM2 EL2.TRAPMPAM1EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x900] = X[t, 64];
    else
        MPAM1\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MPAM3 EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR_EL2.E2H == '1' then
        MPAM2\_EL2 = X[t, 64];
    else
        MPAM1\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
   MPAM1\_EL1 = X[t, 64];
```

MRS <Xt>, MPAM1 EL12

op0	op1	CRn	CRm	op2
0b11	0b101	0b1010	0b0101	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101'
then
        X[t, 64] = NVMem[0x900];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1'
then
        AArch64.SystemAccessTrap(EL3, 0x18);
```

```
else
            AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1'
then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        else
            X[t, 64] = MPAM1\_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR EL2.E2H == '1' then
        X[t, 64] = MPAM1 EL1;
    else
        UNDEFINED;
```

MSR MPAM1_EL12, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b101	0b1010	0b0101	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV1, NV> == '101'
then
        NVMem[0x900] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1'
then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1'
then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        else
            MPAM1\_EL1 = X[t, 64];
    else
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions

Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.