|                           | Utech                                  |
|---------------------------|----------------------------------------|
| Name :                    | (4)                                    |
| Roll No.:                 | To Albana (V Executings 2nd Explicate) |
| Inviailator's Sianature : |                                        |

# CS/B.TECH (CT-OLD)/SEM-3/M (CT)-301/2011-12 2011

## **APPLIED MATHEMATICS**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

#### **GROUP - A**

## (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$ 

- i) If  $f(z) = \frac{\sin z}{z^3}$  then z = 0 is a pole of order 2.
  - a) True

- b) False.
- ii) If  $f(z) = \frac{z+1}{z^4-2z^3}$ , then z = 0 is a pole of order
  - a) 3

b) 2

c) 1

- d) 4.
- iii) Residue of  $f(z) = \frac{2 + 3 \sin \pi z}{z(z-1)^2}$  at z = 0 is
  - a) 1

b) 2

c) 3

d) i.

3171 (O) [ Turn over



- cos nx is a periodic function where fundamental period
  - a)

b)  $n\pi$ 

- d)  $2n\pi$ .
- Value of the integral  $\int \sin(mx) \cos nx \, dx$  is

( where m, n are unequal positive numbers )

a)

b)  $2\pi$ 

c)

- d) none of these.
- The inverse Fourier Transform of vi)

$$F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$$
 is given by

a) 
$$\int_{0}^{\infty} F(s) e^{-isx} ds$$

b) 
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} F(s) e^{-isx} ds$$

c) 
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{-isx} ds$$

3171 (O)



d) 
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{isx} ds$$
.

- vii) The residue of  $f(z) = \frac{z+1}{z^2-2z}$  at the pole z=0 is
  - a)  $-\frac{1}{2}$

c)  $\frac{1}{2}$ 

- d)  $\frac{3}{2}$ .
- viii) The number of poles of

$$f(z) = \frac{z}{(z-1)(z-2)(z-3)}$$
 inside the circle

$$|z-2| = 2 \text{ is}$$

a)

b) 1

c)

- d) 0.
- The value of the integral  $\oint_C \frac{dz}{z-4}$  where C: |z| = 1

is

a)  $2\pi i$  b)  $-2\pi i$ 

- d) none of these.
- The complete solution of  $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$  is

a) 
$$z = ax + (1 + a)y + c$$

b) 
$$z = ax + (1 - a)y + 2$$



d) 
$$z = ax + (1 - a)y + c$$
.



If the events A and B are such that A and B are independent, then P ( B / A ) equals to

P(B)a)

P(A)b)

c) 1 d) 0.

xii) Value of the expectation  $E\{X + E(X)\}$  is

1 a)

- b) 0
- c) mean of X
- d) none of these.

xiii) Probability of obtaining 3 heads with a toss of 4 coins is

a)

d)  $\frac{3}{16}$ .

xiv) 3 dice and 3 coins are rolled out. The number of elementary events in the sample space is

- $6^3 \propto 2^3$ a)

 $2^{2}$ c)

d)  $6^3 \propto 2^2$ .

#### **GROUP - B**

# (Short Answer Type Questions)

Answer any *three* of the following.  $3 \times 5 = 15$ 

Evaluate the limit :  $\lim_{z \varnothing i} \left( \frac{iz^4 - 1}{z - i} \right)$ .

3171 (O)

4



- 3. State Cauchy's integral formula and use it to evaluate  $\int \frac{e^{z+1}}{z^2+4} dz \text{ where } C \text{ is the circle } |z-i| = 2.$
- 4. Find the value of  $10^{1/2}$  correct up to 4 significant figures using Newton-Raphson method.
- 5. Using Fourth order Runge-Kutta method, solve

$$\frac{dy}{dx} = x^2 + y^2$$
,  $y(0) = 1$ 

at x = 0.2 using a step length h = 0.1.

6. Define Fourier cosine transform. Solve the integral equation

$$\int_{0}^{\infty} f(x) \cos \lambda x \, dx = e^{-\lambda} .$$

7. Find the complete solution of the following p.d.e.:

$$p + q = x$$
.

#### **GROUP - C**

#### (Long Answer Type Questions)

Answer any three of the following questions.

$$3 \times 15 = 45$$

8. a) Obtain the Fourier series to represent  $x^2$  in  $-\pi \le x \le \pi$ . Hence show that

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6} .$$



b) Using Cauchy's Residue theorem, prove that

$$\oint_C \frac{z \cos z}{\left(z - \frac{\pi}{2}\right)^3} dz = -2\pi i.$$



- b) Expand  $f(z) = \frac{z-1}{z+1}$  as a Taylor's series about z=1 and determine the region of convergence. 8+7
- 10. a) Prove that  $\int_{0}^{+\infty} \frac{dx}{x^2 + 1} = \frac{\pi}{2}$ , by using Cauchy's residue theorem.
  - b) Find the Fourier series of the function

$$f(x) = \begin{cases} \pi + 2x & \text{if } -\pi < x < 0 \\ \pi - 2x & \text{if } 0 \le x < \pi \end{cases}$$

Hence, deduce that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \infty = \frac{\pi^2}{8} . 7 + 8$$

11. a) If  $F\{f(x)\} = F(s)$  be the Fourier transform of f(x), show that

$$F\left\{ f\left(\,x+a\,\right)\,\right\} = e^{\,-\,i\alpha s}\;\;F\left(\,s\,\right)\,.$$



- b) Find out the Fourier transform of  $K.e^{-\chi^2/2}$ , K is a constant.
- c) Show that  $P(\overline{A}/B) = 1 P(A/B)$ , where A and B are any two events. 5 + 6 + 4
- 12. a) The probability that a teacher will give a surprise test during any class of a particular day is  $\frac{1}{5}$ . If a student is absent, on two days, what is the probability that he will miss at least one test?

b) If 
$$f(x) = \frac{1}{4} - Kx$$
,  $0 \le x \le 4$ 

$$= 0$$
, otherwise

is the p.d.f. of a random variable X,

determine —

- i) the value of K and
- ii) P(|X-2| < 0.5).

Also find out the mean of X.

7 + 8