Expediting Deep Learning with Transfer Learning: PyTorch Playbook

GETTING STARTED WITH TRANSFER LEARNING

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Understand the use of pre-trained models and transfer learning

Understand source and destination domains

Understanding source and destination tasks

Learn when to use transfer learning

Explore PyTorch support for transfer learning

Prerequisites and Course Outline

Prerequisites

Comfortable programming in Python
Basic understanding of neural networks
Worked with PyTorch to build and train
neural networks

Prerequisite Courses

Foundations of PyTorch

Building Your First PyTorch Solution

Image Classification With PyTorch

Course Outline

Understanding and leveraging transfer learning

Performing fixed feature extraction with pre-trained models

Reusing model architectures and designs

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Avoid designing NN architecture from scratch

Transfer Learning

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Only makes sense for common, widely studied use-cases

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

In which basic problem structure stays same, but details vary

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Image recognition, language translation are classic examples

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Often the hardest part - allows us to "stand on the shoulders of giants"

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Re-train from scratch, fine-tune model weights, use entirely as-is

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Several choices based on size and similarity of datasets

Traditional ML

Traditional ML Dataset 1 Model 1 Model 2 Dataset 2

Traditional ML

Traditional ML Dataset 1 Model 1 Model 2 Dataset 2

Traditional ML Transfer Learning Dataset 1 **Dataset 1** Model 1 Model 1 Knowledge Dataset 2 Model 2 Dataset 2 Model 2

Transferred knowledge is especially useful when the new dataset is small and not sufficient to train a model from scratch

Source and Target Domains and Tasks

A Survey on Transfer Learning

https://ieeexplore.ieee.org/document/5288526

Original Model: English to French

Transfer Learning: Hindi to Spanish

Source Domain

English

Target Domain

Hindi

Domains refer to where the X variables are drawn from and how they are distributed

Source and Target Tasks

Source Task

Translation to French

Target Task

Translation to Spanish

Tasks refer to the Y variables and how they are related to X

Target Domain: Labels available?

Target Domain: Labels available?

Yes No

Target Domain: Labels available?

Target Domain: Labels available?

Yes No Yes No

Target Domain: Labels available?

Source Domain: Labels available?

Yes

No

Source and target domains and tasks are different but related

Source and target domains are the **same**

Source and target tasks are different but related

Source Domain: Labels available? Target Domain: Labels available?

Multi-task Learning

Subfield of machine learning in which multiple learning tasks are solved at the same time to exploit commonalities across tasks

Multi-task Learning

Multi-task Learning

Multi-task Learning

Multi-task Learning

Target Domain: Labels available?

Source Domain: Labels available? Multi-task learning Classification Regression Unsupervised transfer learning Clustering

Yes

Yes

Target Domain: Labels available?

Source Domain: Labels available?

Multi-task learningClassificationRegression	 Tricky - need expert judgment Are source and target domains the same?
	 Unsupervised transfer learning Clustering Dimensionality Reduction

Yes

No

.

Target Domain: Labels available?

Source and target domains different but related

Source and target tasks are the **same**

Yes

163

different, needs domain

adaptation

Yes - Domain is

the same fix

No - Domain is

biases

 Unsupervised transfer learning

Clustering

Dimensionality
 Reduction

No

Source Domain: Labels available?

Yes

Multi-task

Target Domain: Labels available?

Source Domain: Labels available?

Source and target domains different but related

Source and target tasks are the **same**

Multi-task learning

Classification

Regression

Self-taught learning

- Transfer learning from unlabeled data
- Widely used in practice

Yes - Domain is the same fix biases

 No - Domain is different, needs domain adaptation

- Unsupervised transfer learning
- Clustering

 Dimensionality Reduction Yes

No

Yes

Self-taught Learning

Can be thought of as semi-supervised, transfer learning. Uses labeled data belonging to the desired classes and unlabeled data from other similar classes.

Self-taught Learning

Can be thought of as semi-supervised, transfer learning. Uses labeled data belonging to the desired classes and unlabeled data from other similar classes.

Target Domain: Labels available?

Source Domain: Labels available?

Multi-task learning	 Yes - Domain is the same fix biases 	
 Classification 	 No - Domain is 	`
 Regression 	different, needs domain adaptation	
Self-taught learning	 Unsupervised transfer learning 	
 Transfer learning from 	· Clustering	
unlabeled data	 Dimensionality Reduction 	
 Widely used in practice 	Reduction	

Yes

No

Yes

Target Domain: Labels available?

Source Domain: Labels available?

Target Domain: Labels available?

Source Domain: Labels available?

Yes

Target Domain: Labels available?

Source Domain: Labels available?

Yes

Transfer Learning Strategies

Types of Transfer Learning Strategies and their Settings

Learning Strategy	Related Areas	Source & Target Domains	Sure Domain Labels	Target Domain Labels	Sourece & Target Tasks	Tasks
Inductive Transfer Learning	Multi_task Learning	The Same	Available	Available	Different but Related	Regression Classification
	Self-taught Learning	The Same	Unavailable	Available	Different but Related	Regression Classification
Unsupervised Transfer Learning		Different but Related	Unavailable	Unavailable	Different but Related	Clustering Dimensionality Reduction
Transductive Transfer Learning	Domain Adaptation,Sample Selection Bias & Co-variate Shift	Different but Related	Available	Unavailable	The Same	Regression Classification

Scenarios in Transfer Learning

Original Model: English to French

Transfer Learning: Hindi to Spanish

Re-training vs. Fine-tuning

Re-train from scratch

Find new model weights starting from scratch

Keep model architecture as-is

Fine-tune model weights

Find new model weights starting from original model weights

Keep model architecture as-is

How similar are the old and new datasets?

How much new training data is available?

How similar are the old and new datasets?

How much new training data is available?

Different

How similar are the old and new datasets?

How much new training data is available?

Lots Re-train from Re-use architecture Little Fine-tune model weights Fine-tune only final layers

How similar are the old and new datasets?

How much new training data is available?

 Re-use architecture Re-calculate model weights Re-train from scratch 	 Re-use architecture Fine-tune model weights Fine-tune all layers
	 Re-use architecture Fine-tune model weights Fine-tune only final layers

Lots

Little

Different

How similar are the old and new datasets?

How much new training data is available?

· Re-use architecture	 Re-use architecture
 Re-calculate model weights 	Fine-tune model weights
 Re-train from scratch 	Fine-tune all layers
 Re-use architecture 	· Re-use architecture
 Fine-tune model weights 	Fine-tune model weights

Little

Different

Fit classifier on

initial layers

Similar

Fine-tune only

How similar are the old and new datasets?

How much new training data is available?

 Re-use	 Re-use
architecture	architecture
 Re-calculate	 Fine-tune
model weights	model weights
 Re-train from	 Fine-tune all
scratch	layers
 Re-use	 Re-use
architecture	architecture
 Fine-tune model weights 	 Fine-tune model weights
 Fit classifier on initial layers 	 Fine-tune only final layers

Lots

Little

Different

How similar are the old and new datasets?

How much new training data is available?

 Re-use architecture 	 Re-use architecture
 Re-calculate model weights 	 Fine-tune model weights
 Re-train from scratch 	 Fine-tune all layers
 Re-use architecture 	 Re-use architecture
110 010	

Lots

Little

Different

How similar are the old and new datasets?

How much new training data is available?

 Re-use architecture Re-calculate model weights Re-train from scratch 	 Re-use architecture Fine-tune model weights Fine-tune all layers
Re-use architectureFine-tune model weights	Re-use architectureFine-tune model weights
· Fit classifier on	· Fine-tune only

Lots

Little

Different

How similar are the old and new datasets?

How much new training data is available?

· Re-use architecture	· Re-use architecture
 Re-calculate	 Fine-tune
model weights	model weights
 Re-train from	 Fine-tune all
scratch	layers
· Re-use	 Re-use
architecture	architecture
 Fine-tune	 Fine-tune
model weights	model weights

Lots

Little

Different

Freeze or Fine-tune Layers

Transfer Learning: Hindi to Spanish

Transfer Learning: Hindi to Spanish

Usually the **top** (later) layers of the neural network are **more specific** to the problem and will need to be tuned

Freeze or Fine-tune?

Top-layers Specific to the Problem

Bottom Layers: Freeze or Fine-tune?

Freeze or Fine-tune?

Initial n layers can be frozen or fine tuned.

- Frozen: not updated during training
- Fine-tuned: updated during training

Freeze or Fine-tune?

Which to do depends on target task:

- Freeze: target task labels are scarce, and we want to avoid overfitting
- Fine-tune: target task labels are more plentiful

Can set learning rates to be different for each layer

input

input

Hindi input

Highly optimized NN architecture

Spanish output

Transfer Learning for Image Classification

Initial layers detect features common to all images

Color blobs, general filters, edges, lines

Later layers learn abstract details more specific to the problem

"Ride on the shoulders of giants"

- NN architecture
- Choice of initialization
- Activation functions
- Number and density of layers

"Do more with less"

Make do with less training data

- English to French: Lots of training data
- Hindi to Spanish: Little or no training data

"Faster, cheaper"

Training process is far faster, easier

- Smaller training data
- Only higher layers to train
- In a cloud-enabled world, less time => less money

Transfer Learning in PyTorch

Transfer Learning in PyTorch

Support for several famous NN architectures

torchvision.models

- AlexNet
- VGG
- ResNet
- Densenet
- Inception and many others

PyTorch transfer learning models are trained on the ImageNet dataset

ImageNet

14 million images with 20,000 categories

Hand-annotated using crowdsourcing

Used for the famous annual contest

"ImageNet Large Scale Visual Recognition Challenge" (ILSVRC)

ImageNet

PyTorch models trained on a subset with 1000 categories

Transfer Learning in PyTorch

Support for several famous NN architectures

torchvision.models

- AlexNet
- VGG
- ResNet
- Densenet
- Inception and many others

Transfer Learning in PyTorch

Support for several famous NN architectures

torchvision.models

- AlexNet
- VGG
- ResNet
- Densenet
- Inception and many others

AlexNet

Big innovation - stack convolutional layers directly atop each other

Do not place pooling layers between these directly stacked layers

Mitigate overfitting risk by high dropout (50%) and randomly shifting training images by offsets

AlexNet

Uses form of normalization called "local response normalization"

Strongly activated neurons inhibit nearby neurons

Causes neurons to "compete" to specialize in different types of features

AlexNet won 2012 ImageNet contest by a huge margin

Transfer Learning in PyTorch

Support for several famous NN architectures

torchvision.models

- AlexNet
- VGG
- ResNet
- Densenet
- Inception and many others

ResNet

Famous CNN architecture

Won the ImageNet challenge in 2015

Extremely deep

"Skip connections" aka shortcut connections

Shares many features with typical CNN architectures

ResNet

Big innovation - "skip connections"

Connect output of lower layers to farahead higher layers

Batch normalization after each convolution and before each activation

Model is forced to focus on what is not learnt by intermediate layers

"Residual Learning"

Transfer Learning in PyTorch

Support for several famous NN architectures

torchvision.models

- AlexNet
- VGG
- ResNet
- Densenet
- Inception and many others

DenseNet

Extends idea of residual learning

Big innovation ~ Dense blocks, within which layers are densely connected to each other

DenseNet

Each dense block consists of layers with three components

- Batch normalization
- ReLU activation
- 3x3 convolution

DenseNet

DenseNet leads to compact models with relatively few parameters

Training is easy due to phenomenon called implicit deep supervision

Dense connections lead to gradient flowing back more easily

Transfer Learning in PyTorch

Support for several famous NN architectures

torchvision.models

- AlexNet
- VGG
- ResNet
- Densenet
- Inception and many others

VGG

Big innovation - stacking multiple small filters without pooling

E.g. Stack 3 convolutional layers of 3x3 rather than 1 convolutional layer of 7x7

Increase representational power without too many parameters

Small filters also provide regularization and mitigate overfitting

Demo

Set up a deep learning VM on the cloud

Demo

Explore pre-trained models available for image classification in PyTorch

Summary

Understand the use of pre-trained models and transfer learning

Understand source and destination domains

Understanding source and destination tasks

Learn when to use transfer learning

Explore PyTorch support for transfer learning