## Chapter 4. Electric Fields in Matter

| 4 | Ele | ectric Fields in Matter |                                                   |  |  |
|---|-----|-------------------------|---------------------------------------------------|--|--|
|   | 4.1 | Polariz                 | zation                                            |  |  |
|   |     | 4.1.1                   | Dielectrics                                       |  |  |
|   |     | 4.1.2                   | Induced Dipoles                                   |  |  |
|   |     | 4.1.3                   | Alignment of Polar Molecules                      |  |  |
|   |     | 4.1.4                   | Polarization                                      |  |  |
|   | 4.2 | The Fi                  | eld of a Polarized Object                         |  |  |
|   |     | 4.2.1                   | Bound Charges                                     |  |  |
|   |     | 4.2.2                   | Physical Interpretation of Bound Charges          |  |  |
|   |     | 4.2.3                   | The Field Inside a Dielectric                     |  |  |
|   | 4.3 | The El                  | ectric Displacement                               |  |  |
|   |     | 4.3.1                   | Gauss's Law in the Presence of Dielectrics        |  |  |
|   |     | 4.3.2                   | A Deceptive Parallel                              |  |  |
|   |     | 4.3.3                   | Boundary Conditions                               |  |  |
|   | 4,4 | Linear                  | Dielectrics                                       |  |  |
|   |     | 4.4.1                   | Susceptibility, Permittivity, Dielectric Constant |  |  |
|   |     | 4.4.2                   | Boundary Value Problems with Linear Dielectrics   |  |  |
|   |     | 4.4.3                   | Energy in Dielectric Systems                      |  |  |
|   |     | 4.4.4                   | Forces on Dielectrics                             |  |  |
|   |     |                         |                                                   |  |  |

### **4.4 Linear Dielectrics**

### 4.4.1 Susceptibility, Permittivity, Dielectric Constant

 $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$   $\rightarrow$  In linear dielectrics,  $\mathbf{P}$  is proportional to  $\mathbf{E}$ , provided  $\mathbf{E}$  is not too strong.

 $\mathcal{X}_e$ : Electric susceptibility (It would be a tensor in general cases)

Note that E is the total field from free charges and the polarization itself.

- $\rightarrow$  If, for instance, we put a piece of dielectric into an external field  $E_0$ ,
- ⇒ we cannot compute **P** directly from  $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$ ;  $\mathbf{E} \neq \mathbf{E}_0$
- → E<sub>0</sub> produces P, P will produce its own field, this in turn modifies P, which ... Breaking where?

To calculate **P**, the simplest approach is to begin with the *displacement* **D**, at least in those cases where **D** can be deduced directly from the free charge distribution.

$$\begin{aligned} \mathbf{D} &= \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 \left( 1 + \chi_e \right) \mathbf{E} \\ \mathbf{D} &= \varepsilon \mathbf{E} \end{aligned} \qquad \varepsilon = \varepsilon_0 \left( 1 + \chi_e \right) \text{ : Permittivity} \\ \varepsilon_r &\equiv 1 + \chi_e = \frac{\varepsilon}{\varepsilon_0} \text{ : Relative permittivity} \\ \end{aligned} \tag{Dielectric constant)}$$

| Material             | Dielectric Constant |
|----------------------|---------------------|
| Vacuum               | 1                   |
| Helium               | 1.000065            |
| Neon                 | 1.00013             |
| Hydrogen             | 1.00025             |
| Argon                | 1.00052             |
| Air (dry)            | 1.00054             |
| Nitrogen             | 1.00055             |
| Water vapor (100° C) | 1.00587             |
| Diamond              | 5.7                 |
| Salt                 | 5.9                 |
| Silicon              | 11.8                |

### Susceptibility, Permittivity, Dielectric Constant

**Problem 4.41** In a linear dielectric, the polarization is proportional to the field:  $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$ . If the material consists of atoms (or nonpolar molecules), the induced dipole moment of each one is likewise proportional to the field  $\mathbf{p} = \alpha \mathbf{E}$ . What is the relation between atomic polarizability  $\alpha$  and susceptibility  $\chi_e$ ?

Note that, the atomic polarizability  $\alpha$  was defined for an isolated atom subject to an external field coming from somewhere else,  $E_{else} \rightarrow p = \alpha E_{else}$ 

For N atoms in unit volume, the polarization can be set  $\rightarrow P = N\alpha E_{\rm else}$ 



There is another electric field,  $\mathbf{E}_{self}$ , produced by the polarization  $\mathbf{P}$ :

$$\mathbf{E}_{\text{self}} = -\frac{1}{4\pi\epsilon_0} \frac{q\mathbf{d}}{R^3} \longrightarrow \mathbf{p} = q\mathbf{d} = (\frac{4}{3}\pi R^3)\mathbf{P}, \longrightarrow \mathbf{E}_{\text{self}} = -\frac{1}{3\epsilon_0}\mathbf{P}$$

$$\longrightarrow \mathbf{E}_{\text{self}} = -\frac{N\alpha}{3\epsilon_0} \mathbf{E}_{\text{else}}$$

$$(N\alpha)$$



Therefore, the total field is  $\mathbf{E} = \mathbf{E}_{\mathrm{self}} + \mathbf{E}_{\mathrm{else}} = \left(1 - \frac{N\alpha}{3\epsilon_0}\right) \mathbf{E}_{\mathrm{else}}$ 

The total field **E** finally produce the polarization **P**:

$$\mathbf{P} = \frac{N\alpha}{(1 - N\alpha/3\epsilon_0)} \mathbf{E} = \epsilon_0 \chi_e \mathbf{E} \longrightarrow \alpha = \frac{\epsilon_0}{N} \frac{\chi_e}{(1 + \chi_e/3)} \quad \text{or} \quad \alpha = \frac{3\epsilon_0}{N} \left( \frac{\epsilon_r - 1}{\epsilon_r + 2} \right)$$

### Susceptibility, Permittivity, Dielectric Constant

#### A metal sphere of radius a carries a charge Q. Example 4.5 It is surrounded, out to radius b, by linear dielectric material of permittivity $\varepsilon$ .

Find the potential **V** at the center (relative to infinity).



To compute V, we need to know E.  $\rightarrow$  Because it has spherical symmetry, calculate D first.

Inside the metal sphere,  $\mathbf{E} = \mathbf{P} = \mathbf{D} = 0$ .

Outside the metal sphere.

the metal sphere, 
$$\mathbf{D} = \frac{Q}{4\pi r^2} \hat{\mathbf{r}}, \qquad \text{for all points } r > a. \implies \mathbf{E} = \left\{ \begin{array}{l} \frac{Q}{4\pi \epsilon r^2} \hat{\mathbf{r}}, & \text{for } a < r < b, \\ \\ \frac{Q}{4\pi \epsilon_0 r^2} \hat{\mathbf{r}}, & \text{for } r > b. \end{array} \right.$$

The potential at the center is therefore

$$V = -\int_{\infty}^{0} \mathbf{E} \cdot d\mathbf{I} = -\int_{\infty}^{b} \left(\frac{Q}{4\pi\epsilon_{0}r^{2}}\right) dr - \int_{b}^{a} \left(\frac{Q}{4\pi\epsilon r^{2}}\right) dr - \int_{a}^{0} (0) dr$$
$$= \frac{Q}{4\pi} \left(\frac{1}{\epsilon_{0}b} + \frac{1}{\epsilon a} - \frac{1}{\epsilon b}\right).$$

Note that the polarization **P** in the dielectric is

arization **P** in the dielectric is 
$$\mathbf{P} = \epsilon_0 \chi_e \mathbf{E} = \frac{\epsilon_0 \chi_e Q}{4\pi \epsilon r^2} \hat{\mathbf{r}} \quad \text{for } a < r < b$$

$$\rho_b = -\nabla \cdot \mathbf{P} = 0 \qquad \sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}} = \begin{cases} \frac{\epsilon_0 \chi_e Q}{4\pi \epsilon b^2}, & \text{at the outer surface,} \\ \frac{-\epsilon_0 \chi_e Q}{4\pi \epsilon a^2}, & \text{at the inner surface.} \end{cases}$$

### The two vectors of E and D is parallel in linear dielectric.

In linear dielectrics,  $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E} \longrightarrow \mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 (1 + \chi_e) \mathbf{E}$ 

 $\nabla \times \mathbf{E} = 0 \rightarrow \nabla \times \mathbf{D} = 0$ ?? since E and D are parallel???

→ Unfortunately, it does *not:* 

$$\nabla \times \mathbf{D} = \epsilon_0 (\nabla \times \mathbf{E}) + (\nabla \times \mathbf{P}) = \nabla \times \mathbf{P} \neq 0$$



Of course, if the space is *entirely* filled with a homogeneous ( $\chi_e$  is the same in all position) linear dielectric,

→ D can be found from the free charge just as though the dielectric were not there:

$$\mathbf{D} = \epsilon_0 \mathbf{E}_{\text{vac}} \longrightarrow \mathbf{E} = \frac{1}{\epsilon} \mathbf{D} = \frac{1}{\epsilon_r} \mathbf{E}_{\text{vac}}$$

Conclusion: When all space is filled with a homogeneous linear dielectric, the field everywhere is simply reduced by a factor of one over the dielectric constant.

For example, if a free charge q is embedded in a large dielectric  $\varepsilon \rightarrow \mathbf{E} = \frac{1}{4\pi \epsilon} \frac{q}{r^2} \hat{\mathbf{r}}$ 

→ It becomes weaker! Because **P** shield the charge.



### **In Linear Dielectrics**

**Example 4.6** A parallel-plate capacitor is filled with insulating material of dielectric constant  $\varepsilon_r$ .

What effect does this have on its capacitance?



→ The dielectric will reduce E, and hence also the potential difference V, by a factor  $1/\epsilon_r$ . Accordingly, the capacitance C = QIV is *increased by a factor of the dielectric constant* 

 $ightharpoonup C = \epsilon_r C_{\text{vac}}$ 

**Problem 4.19** Half-fill a parallel-plate capacitor with a given potential difference V.

With no dielectric,  $C_0 = A\epsilon_0/d$  (A = wl)



The electric field is uniform in all volume  $\rightarrow E = V/d$ 

The surface charge density  $\sigma$  is uniform on the parallel plate  $\Rightarrow \sigma = \epsilon_0 E = \epsilon_0 V/d$ 

At the top surface of dielectric, there is a bound surface charge due to P:

$$P = \epsilon_0 \chi_e E = \epsilon_0 \chi_e V/d \longrightarrow \sigma_b \equiv \mathbf{P} \cdot \hat{\mathbf{n}} = -\epsilon_0 \chi_e V/d$$



On the top plate above dielectric, a free surface charge  $\sigma_f$  must exist:

$$\sigma_f = \sigma - \sigma_b = \epsilon_0 V/d + \epsilon_0 \chi_e V/d = \epsilon_0 V(1 + \chi_e)/d = \epsilon_0 \epsilon_r V/d$$

$$\sigma_f + \sigma_b = \sigma$$

$$C_b = \frac{Q}{V} = \frac{1}{V} \left( \sigma \frac{A}{2} + \sigma_f \frac{A}{2} \right) = \frac{A}{2V} \left( \epsilon_0 \frac{V}{d} + \epsilon_0 \frac{V}{d} \epsilon_r \right) = \frac{A\epsilon_0}{d} \left( \frac{1 + \epsilon_r}{2} \right) \qquad C_b = \frac{C_b}{C_0} = \frac{1 + \epsilon_r}{2}$$

### **In Linear Dielectrics**

**Problem 4.20** A sphere of linear dielectric material with a uniform free charge density  $\rho$  has embedded in it without charge. Find **the potential at the center of the sphere** (relative to infinity), if its radius is R and its dielectric constant is  $\varepsilon_r$ .



for 
$$r < R$$
;  $\longrightarrow D4\pi r^2 = \rho \frac{4}{3}\pi r^3 \longrightarrow D = \frac{1}{3}\rho r \longrightarrow \mathbf{E} = (\rho r/3\epsilon)\,\hat{\mathbf{r}}$   
for  $r > R$ .  $\longrightarrow D4\pi r^2 = \rho \frac{4}{3}\pi R^3 \longrightarrow D = \rho R^3/3r^2 \longrightarrow \mathbf{E} = (\rho R^3/3\epsilon_0 r^2)\,\hat{\mathbf{r}}$   
 $V = -\int_{\infty}^{0} \mathbf{E} \cdot d\mathbf{l}$   
 $= \frac{\rho R^3}{3\epsilon_0} \frac{1}{r} \Big|_{\infty}^{R} - \frac{\rho}{3\epsilon} \int_{R}^{0} r dr = \frac{\rho R^2}{3\epsilon_0} + \frac{\rho}{3\epsilon} \frac{R^2}{2} = \boxed{\frac{\rho R^2}{3\epsilon_0} \left(1 + \frac{1}{2\epsilon_r}\right)}.$ 

### 4.4.2 Boundary Value Problems with Linear Dielectrics

$$\rho_b = -\nabla \cdot \mathbf{P}$$

$$\rho_b = -\nabla \cdot \mathbf{P} \qquad \qquad \rho_b = -\nabla \cdot \mathbf{P} = -\nabla \cdot \left(\epsilon_0 \frac{\chi_e}{\epsilon} \mathbf{D}\right) = -\left(\frac{\chi_e}{1 + \chi_e}\right) \rho_f$$

- → The bound charge density is proportional to the free charge density.
- → If  $\rho_f = 0$ ;  $\rho_b = 0$  → Any net charge must resident at the surface
- $\rightarrow$  Within a dielectric when  $\rho_f = 0$ ; the potential obeys Laplace's equation.

$$D_{1n} - D_{2n} = \sigma_f$$



$$D_{1n} - D_{2n} = \sigma_f$$
  $\epsilon_{above} E_{above}^{\perp} - \epsilon_{below} E_{below}^{\perp} = \sigma_f$ 

$$E_{\mathrm{above}}^{\perp} - E_{\mathrm{below}}^{\perp} = \frac{1}{\epsilon_0} \sigma$$
 (If embedded in vacuum)

OR 
$$\epsilon_{\text{above}} \frac{\partial V_{\text{above}}}{\partial n} - \epsilon_{\text{below}} \frac{\partial V_{\text{below}}}{\partial n} = -\sigma_f$$

$$V_{
m above} - V_{
m below} = -\int_{
m a}^{
m b} {
m E} \cdot d{
m l}$$
  $V_{
m above} = V_{
m below}$  (As a approaches to b)



$$V_{\rm above} = V_{\rm below}$$

### Summary on Boundary Conditions for Electrostatics

Electric field 
$$\mathbf{E}_{\text{above}}^{\parallel} - \mathbf{E}_{\text{below}}^{\parallel} = 0$$

$$E_{
m above}^{\perp} - E_{
m below}^{\perp} = rac{1}{\epsilon_0} \sigma \quad \left(\sigma = \sigma_{_f} + \sigma_{_b}
ight)$$

### Field displacement

$$\mathbf{D}_{\text{above}}^{\parallel} - \mathbf{D}_{\text{below}}^{\parallel} = \mathbf{P}_{\text{above}}^{\parallel} - \mathbf{P}_{\text{below}}^{\parallel}$$

$$D_{\mathrm{above}}^{\perp} - D_{\mathrm{below}}^{\perp} = \sigma_f$$
  $\longleftrightarrow$   $\epsilon_{\mathrm{above}} E_{\mathrm{above}}^{\perp} - \epsilon_{\mathrm{below}} E_{\mathrm{below}}^{\perp} = \sigma_f$ 

**Potential** 

$$V_{\rm above} = V_{\rm below}$$

### E, P, and D; Boundary Conditions

#### The space between the plates of a parallel plate capacitor Problem 4 18 is filled with two slabs of linear dielectric material. Each slab has thickness a. Slab 1 has a dielectric constant of $\varepsilon_1 = 2$ , and slab 2, $\varepsilon_2 = 1.5$ . The free charge density on the top plate is a and on the bottom plate $\sigma$ .



(a) Find the electric displacement D in each slab.



$$\int \mathbf{D} \cdot d\mathbf{a} = Q_{f_{\text{enc}}} \longrightarrow DA = \sigma A \longrightarrow D = \sigma$$
  $\mathbf{D} = \mathbf{0}$  inside the metal plate

(b) Find the electric field E in each slab. 
$$\mathbf{D} = \epsilon \mathbf{E} \longrightarrow E = \sigma/\epsilon \longrightarrow \epsilon_1 = 2\epsilon_0 \longrightarrow E_1 = \sigma/2\epsilon_0$$
 (c) Find the polarization P in each slab. 
$$\epsilon_2 = \frac{3}{2}\epsilon_0 \longrightarrow E_2 = 2\sigma/3\epsilon_0$$

e polarization P in each slab. 
$$\epsilon_2 = \frac{3}{2}\epsilon_0 \longrightarrow E_2 = 2\sigma/3\epsilon_0 \int_{-\infty}^{\infty} \mathbf{P} = \epsilon_0 \chi_e \, \mathbf{E} \longrightarrow P = \epsilon_0 \chi_e \, \sigma/(\epsilon_0 \epsilon_r) \longrightarrow P = (1 - \epsilon_r^{-1})\sigma \longrightarrow P_1 = \sigma/2 \qquad P_2 = \sigma/3$$

(d) Find the potential difference between the plates. 
$$V=E_1a+E_2a=(\sigma a/6\epsilon_0)(3+4)=7\sigma a/6\epsilon_0$$

(e) Find the location and amount of all bound charge.

$$\begin{split} \rho_b &= 0 \quad \sigma_b = -P_1 = -\sigma/2 \ \text{ at top of slab (1)} \\ \sigma_b &= +P_1 = \sigma/2 \quad \text{ at bottom of slab (1)} \\ \sigma_b &= -P_2 = -\sigma/3 \quad \text{at top of slab (2)} \\ \sigma_b &= +P_2 = \sigma/3 \quad \text{ at bottom of slab (2)} \end{split}$$



(f) Recalculate the electric field in each slab, using the relation of  $E = \frac{\sigma}{\epsilon_0}$ 

### Check up the Boundary Conditions

#### Problem 4 18

$$\begin{split} D_{\text{above}}^{\perp} - D_{\text{below}}^{\perp} &= \sigma_f \\ E_{\text{above}}^{\perp} - E_{\text{below}}^{\perp} &= \frac{1}{\epsilon_0} (\sigma_f + \sigma_b) \\ \epsilon_{\text{above}} E_{\text{above}}^{\perp} - \epsilon_{\text{below}} E_{\text{below}}^{\perp} &= \sigma_f \end{split}$$



$$D = \sigma.$$

$$D = 0 \text{ in side the metal plant}$$

$$D = 0$$
 inside the metal plate

$$\Rightarrow \begin{array}{c} D_{\text{above}}^{\perp} = 0 \\ D_{\text{below}}^{\perp} = \sigma \end{array} \qquad \qquad D_{\text{above}}^{\perp} - D_{\text{below}}^{\perp} = \sigma$$



### **Boundary Value Problems with Linear Dielectrics**

**Example 4.7** A sphere of homogeneous linear dielectric material is placed in an otherwise uniform electric field **E**o. Find the electric field inside the sphere.



The problem is to solve Laplace's equation for  $V(r, \theta)$ , under the boundary conditions:

(i) 
$$V_{\rm in} = V_{\rm out}$$
, at  $r = R$ ,

(ii) 
$$\epsilon \frac{\partial V_{\text{in}}}{\partial r} = \epsilon_0 \frac{\partial V_{\text{out}}}{\partial r}$$
, at  $r = R$ , (since no free charge at the surface)

(iii) 
$$V_{\text{out}} \rightarrow -E_0 r \cos \theta$$
, for  $r \gg R$ 

The general solution is 
$$V(r,\theta) = \sum_{l=0}^{\infty} \left( A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

Inside the sphere, 
$$V_{\rm in}(r,\theta) = \sum_{l=0}^{\infty} A_l r^l P_l(\cos\theta)$$

Outside the sphere, 
$$V_{\text{out}}(r,\theta) = -E_0 r \cos \theta + \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}} P_l(\cos \theta)$$

(i) 
$$\sum_{l=0}^{\infty} A_l R^l P_l(\cos \theta) = -E_0 R \cos \theta + \sum_{l=0}^{\infty} \frac{B_l}{R^{l+1}} P_l(\cos \theta)$$

$$A_l = B_l = 0, \quad \text{for } l \neq 1,$$

$$A_l = B_l = 0, \quad \text{for } l \neq 1,$$

$$A_l = -\frac{3}{\epsilon_r + 2} E_0 \quad B_l = \frac{\epsilon_r - 1}{\epsilon_r + 2} R^3 E_0.$$

$$A_l = -\frac{3}{\epsilon_r + 2} E_0 \quad B_l = \frac{\epsilon_r - 1}{\epsilon_r + 2} R^3 E_0.$$

$$V_{\rm in}(r,\theta) = -\frac{3E_0}{\epsilon_r + 2} \, r \cos\theta = -\frac{3E_0}{\epsilon_r + 2} \, z \qquad \qquad \mathbf{E} = \frac{3}{\epsilon_r + 2} \mathbf{E}_0 \qquad \Rightarrow \text{The field inside the sphere is (surprisingly) } \, uniform:$$

### **Boundary Value Problems with Linear Dielectrics**

# **Problem 4.23** Find the electric field inside the sphere. Use the following method of *successive approximations*:



- $\rightarrow$  First pretend the field inside is just  $E_0$
- $\rightarrow$  Write down the resulting polarization  $P_0$   $\longrightarrow$   $\mathbf{P}_0 = \epsilon_0 \chi_e \mathbf{E}_0$

$$ightharpoonup P_0$$
 generates a field of its own,  $E_1$   $\longrightarrow$   $E_1 = -\frac{1}{3\epsilon_0} P_0 = -\frac{\chi_e}{3} E_0$ 

$$\rightarrow$$
  $E_1$  modifies the polarization by an amount  $P_1$   $\longrightarrow$   $\mathbf{P}_1 = \epsilon_0 \chi_e \mathbf{E}_1 = -\frac{\epsilon_0 \chi_e^2}{3} \mathbf{E}_0$ 

$$ightarrow$$
 and so on.  $\longrightarrow$   $\mathbf{E}_n = \left(-rac{\chi_e}{3}
ight)^n \, \mathbf{E}_0$ 

$$\rightarrow$$
 The resulting field is  $\rightarrow$   $\mathbf{E} = \mathbf{E}_0 + \mathbf{E}_1 + \mathbf{E}_2 + \dots = \left[\sum_{n=0}^{\infty} \left(-\frac{\chi_e}{3}\right)^n\right] \mathbf{E}_0$ 

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad \boxed{\mathbf{E}} = \frac{1}{(1+\chi_e/3)} \, \mathbf{E}_0 \quad \boxed{\mathbf{E}} = \frac{3}{\epsilon_r + 2} \, \mathbf{E}_0$$

### **Boundary Value Problems**

**Example 4.8** Calculate the force on a point charge q situated a distance d above a uniform linear dielectric material of susceptibility  $\chi_e$ .

$$\rho_b = -\nabla \cdot \mathbf{P} = -\left(\frac{\chi_e}{1 + \chi_e}\right) \rho_f = 0$$
 (since no free charge inside)



 $\sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}} = P_z = \epsilon_0 \chi_e E_z$  ( $\mathbf{E_z}$  is the z-component of **the total field** just inside the dielectric, at z = 0. This field is due in part to  $\mathbf{q}$  and in part to the bound charge itself.)

$$\mathbf{E_z}$$
 field due to **q** is  $-\frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + d^2)} \cos \theta = -\frac{1}{4\pi\epsilon_0} \frac{qd}{(r^2 + d^2)^{3/2}}$ 

 $\mathbf{E_z}$  field due to the bound charge  $\sigma_{\mathbf{b}}$  is  $-\sigma_b/2\epsilon_0 \leftarrow \mathbf{E_{above}} - \mathbf{E_{below}} = \frac{\sigma}{\epsilon_0} \hat{\mathbf{n}}$ 

$$\sigma_b = \epsilon_0 \chi_e \left[ -\frac{1}{4\pi \epsilon_0} \frac{qd}{(r^2 + d^2)^{3/2}} - \frac{\sigma_b}{2\epsilon_0} \right] \longrightarrow \sigma_b = -\frac{1}{2\pi} \left( \frac{\chi_e}{\chi_e + 2} \right) \frac{qd}{(r^2 + d^2)^{3/2}}$$

We could obtain the field of  $\sigma_b$  by direct integration:  $\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int \left(\frac{\hat{\mathbf{z}}}{\hbar^2}\right) \sigma_b da$ 

But as in the case of the conducting plane, there is a nicer solution by the method of images. Indeed, if we replace the dielectric by a single point charge  $q_b$  at the image position (0, 0, -d),

$$q_{b} = \int \sigma_{b} da = -\left(\frac{\chi_{e}}{\chi_{e} + 2}\right) q \qquad \longleftarrow \int_{0}^{2\pi} \int_{0}^{\infty} \frac{-qd}{2\pi (r^{2} + d^{2})^{3/2}} r dr d\phi = \frac{qd}{\sqrt{r^{2} + d^{2}}} \Big|_{0}^{\infty} = -q$$

$$\mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{qq_b}{(2d)^2} \hat{\mathbf{z}} = -\frac{1}{4\pi\epsilon_0} \left(\frac{\chi_e}{\chi_e + 2}\right) \frac{q^2}{4d^2} \hat{\mathbf{z}}$$

### 4.4.3 Energy in Dielectric Systems

Note that the work to charge up a capacitor with potential V is



$$W = \frac{1}{2}CV^2$$
  $C = \epsilon_r C_{\text{vac}}$ 

- → Evidently the work necessary to charge a dielectric-filled capacitor is increased by a factor of the dielectric constant.
- → The reason is pretty clear: you have to pump on more (free) charge to achieve a given potential, because part of the field is canceled off by the bound charges.

A general formula for the energy stored in any electrostatic system was

$$W = \frac{\epsilon_0}{2} \int E^2 d\tau.$$

The case of the dielectric-filled capacitor suggests that this should be changed to

$$W = \frac{\epsilon_0}{2} \int \epsilon_r E^2 \, d\tau$$

→ The energy, increased by a factor of the dielectric constant, can be stored in a dielectric-filled capacitor.

## **Energy in Dielectric Systems**

$$W = \frac{\epsilon_0}{2} \int \epsilon_r E^2 d\tau = \frac{1}{2} \int \mathbf{D} \cdot \mathbf{E} d\tau$$



### Let's prove it.

As we bring in free charge, a bit at a time, the work done on the increamental free charge  $\Delta \rho_f$  is

$$\begin{split} \Delta W &= \int (\Delta \rho_f) V \, d\tau \\ &= \int [\nabla \cdot (\Delta \mathbf{D})] V \, d\tau \quad \longleftarrow \quad \Delta \rho_f = \nabla \cdot (\Delta \mathbf{D}), \quad \text{since} \quad \nabla \cdot \mathbf{D} = \rho_f \\ &= \int \nabla \cdot [(\Delta \mathbf{D}) V] \, d\tau + \int (\Delta \mathbf{D}) \cdot \mathbf{E} \, d\tau \quad \longleftarrow \quad \nabla \cdot [(\Delta \mathbf{D}) V] = [\nabla \cdot (\Delta \mathbf{D})] V + \Delta \mathbf{D} \cdot (\nabla V) \\ &= \int (\Delta \mathbf{D}) \cdot \mathbf{E} \, d\tau \quad \longleftarrow \quad \text{The divergence theorem turns the first term into a surface integral, which vanishes over all of space.} \end{split}$$

If the medium is a linear dielectric,  $\mathbf{D} = \epsilon \mathbf{E} \longrightarrow \frac{1}{2} \Delta (\mathbf{D} \cdot \mathbf{E}) = \frac{1}{2} \Delta (\epsilon E^2) = \epsilon (\Delta \mathbf{E}) \cdot \mathbf{E} = (\Delta \mathbf{D}) \cdot \mathbf{E}$ 

$$\Delta W = \Delta \left(\frac{1}{2} \int \mathbf{D} \cdot \mathbf{E} \, d\tau\right) \xrightarrow{\text{Total work done} = \text{Stored energy}} W = \frac{1}{2} \int \mathbf{D} \cdot \mathbf{E} \, d\tau$$

### 4.4.4 Forces on Dielectrics

Consider, the case of a slab of linear dielectric material, partially inserted between the plates of a parallel-plate capacitor with a **total charge Q**.

Inside a parallel-plate capacitor,

- → the field is uniform and zero outside.
- → no net force on the dielectric at all, since the field everywhere would be perpendicular to the plates.

However, there is in reality a **fringing field** around the edges.

- → This nonuniform fringing field that pulls the dielectric into the capacitor.
- → Fringing fields are notoriously difficult to calculate.
- → thus, to calculate the force on dielectric may be too difficult.







### **Forces on Dielectrics**

$$\sigma = \epsilon_0 E = \epsilon_0 V/d$$

$$\sigma_f = \epsilon_0 \epsilon_r V/d = \epsilon_r \sigma$$

$$C = \frac{Q}{V} = \frac{Q}{V} \left[ wx\sigma + w(l-x)\sigma_f \right]$$

$$= \frac{\varepsilon_0 w}{d} \left[ \varepsilon_r l - (\varepsilon_r - 1)x \right] = \frac{\varepsilon_0 w}{d} \left( \varepsilon_r l - \chi_e x \right)$$

$$\sigma_f + \sigma_b = \sigma$$

**Q** is

The energy stored in the capacitor with a constant charge Q is

$$W = \frac{1}{2} \frac{Q^2}{C} \longrightarrow F = -\frac{dW}{dx} = \frac{1}{2} \frac{Q^2}{C^2} \frac{dC}{dx} = \frac{1}{2} V^2 \frac{dC}{dx}$$
$$\frac{dC}{dx} = -\frac{\epsilon_0 \chi_e w}{d} \longrightarrow F = -\frac{\epsilon_0 \chi_e w}{2d} V^2$$

(the dielectric is pulled into the capacitor)

Note that, if we use the energy form (with **V** constant) of

$$W = \frac{1}{2}CV^2 \longrightarrow F = -\frac{dW}{dx} = -\frac{1}{2}V^2\frac{dC}{dx}$$
 (the sign is opposite!)

To maintain the capacitor at a fixed potential V, we need to connect it up to **a battery**. But in that case the **battery** *also does work* as the dielectric moves;

$$F = -\frac{dW}{dx} + V\frac{dQ}{dx} = -\frac{1}{2}V^2\frac{dC}{dx} + V^2\frac{dC}{dx} = \frac{1}{2}V^2\frac{dC}{dx} \longrightarrow F = -\frac{\epsilon_0\chi_e w}{2d}V^2$$
 (the same sign)

→ In conclusion, it's simpler to calculate the force assuming constant Q.