NM 23.01.17

Powtórka

Definicja nanomateriału:

- przynajmniej jeden wymiar nanometryczny (mniejszy niż 100nm)
- zmiana właściwości względem materiału makro

Klasyfikacja na układy o różnej liczbie wymiarowości w skali nano:

- 0D (nanocząstki)
- 1D (nanopręty, nanorurki)
- 2D (nanopowłoki, nanofilmy)
- 3D (nie są nanomateriałami)

Liczba mówi o tym ile materiałów "wypada" poza wymiary nanometryczne

Klasyfikacja ze względu na techniki otrzymywania:

- top-down (mielenie, litografia, laserowa ablacja)
- bottom-up

(Wykład Feynmana w 1959 r xD)

Techniki badawcze:

• dyfrakcja rentgenowska (XRD) - określenie struktury

Narzędzie	Zasada działania	Uzyskana informacja
XRD - dyfrakcja rentgenowska	dyfrakcja Bragga	krystalografia, informacja o strukturze
TEM/HRTEM/SEM - transmisyjna/skaningowa mikroskopia elektronowa	wiązka elektronów przenika próbkę lub jest od niej odbita	morfologia - kształt, rozmiar
STM/AFM - mikroskopia sił atomowych	technika wykorzystująca sondę skanującą	obraz powierzchni z rozdzielczością atomową
UV/Vis	struktura elektronowa, przejścia promieniste	widma
TCSPC - time correlated single photon counting	ultraszybka spektroskopia laserowa, kwantowo-mechaniczna natura luminescencji	czas życia luminescencji
DLS - dynamiczne rozpraszanie światła	rozpraszanie światła, ruchy Browna	stopień agregacji, wykres rozkładu wielkości cząstek

Zależność Abbego:

Maksymalna rozdzielczość obserwacji

$$d_{max}pproxrac{\lambda}{2}$$

$$d = rac{0.9\lambda}{Bcos heta_b}$$

- d rozmiar krystalitu w nanometrach
- B szerokość połówkowa refleksu

Nanomaterialy:

- Nanomateriały półprzewodnikowe
 - kropki kwantowe wraz ze zmniejszaniem materiału zwiększa się przerwa energetyczna, ewentualna emisja jest przesunięta w stronę krótszych długości fal. Możemy dzięki temu przestrajać właściwości optyczne kropek zmieniając ich wielkość.
- nanomateriały domieszkowane jonami pierwiastków ziem rzadkich (f-elektronowych) domieszkowanie struktur krystalicznych (matryc) jonami p.z.r. Up-konwersja i down-konwersja fotonów. Długie czasy życia luminescencji.
- nanomateriały metaliczne oscylacja elektronów swobodnych na powierzchni plazmonów. Drgające elektrony wytwarzają pole magnetyczne, które oddziałuje z promieniowaniem. Absorbcja.
 Właściwości bakteriobójcze.
- nanostruktury węglowe dwie makroskopowe odmiany alotropowe węgla: grafit, diament. Z grafitu możemy otrzymać: fulereny (0D), grafen (2D), nanorurki (1D). Można syntezować nanodiamenty (0D), które coś tam świecą ale bez rewelacji. Właściwości nanomateriałów węglowych: duża wytrzymałość, przewodzenie prądu.
- nano hydroksyapatyty $Ca_{10}(PO_4)_6OH_2$. Budulec kości. Biokompatybilny. Stosowany jako matryca do jonów p.z.r., nośnik leków (porowatość), kompozyty jako implanty kości, dodatek do pasty do zębów.
- czujniki czujniki gazu, związków organicznych, jonów metali ciężkich działanie przez pomiar zmiany rezystancji. Bezkontaktowy pomiar temperatury zmiana emisji.

Potencjalne zagrożenia:

- mało wiemy badanie nesessere est, trzeba informować jak jest w produkcie
- są małe trzymamy w instalacji Schlenka (w roztworze), ewentualnie nosimy maski i rękawiczki
- mogą agregować w człowieku (np. w płucach) zagregowane nanorurki jak azbest uszkadzają
 mechanicznie makrofagi w pęcherzykach płucnych
- poza tym są bezpieczne, chyba, że chcemy jeść kropki selenowo kadmowe
- omnia sunt venena, nihil est sine veneno. Sola dosis facit venenum

Nanoteranostyki - nanomateriały, które mogą jednocześnie diagnozować i leczyć

Przynieść kartkę papieru!