QUAN HỆ SONG SONG TRONG KHÔNG GIAN

Bài 10. ĐƯỜNG THẮNG VÀ MẶT PHẮNG TRONG KHÔNG GIAN

A. TÓM TẮT LÝ THUYẾT

1. Khái niệm mở đầu

- \odot Điểm A thuộc mặt phẳng (P), kí hiệu $A \in (P)$.
- Điểm B không thuộc mặt phẳng (P), kí hiệu B ∉ (P).
 Nếu A ∈ (P) ta còn nói A nằm trên (P), hoặc (P) chứa A, hoặc (P) đi qua A.

- Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng.
- Hình biểu diễn của hai đường thẳng song song là hai đường thẳng cắt nhau là hai đường thẳng cắt nhau.
- Hình biểu diễn giữ nguyên quan hệ thuộc giữa điểm và đường thẳng.
- Dùng nét liền để biểu diễn cho đường nhìn thấy và nét đứt đoạn để biểu diễn cho đường bi che khuất.

Các quy tắc khác sẽ được học ở phần sau.

Hình 4.3. Hình biểu diễn của hình chóp tam giác đều và hình lập phương.

ĐIỂM:

Be yourself; everyone else is already taken.

QUICK NOTE

2. Các tính chất thừa nhân

- 7 TÍNH CHÂT 10.1. Có một và chỉ một đường thẳng đi qua hai điểm phân biệt.
- **7** TÍNH CHÂT 10.2. Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng.
- 7 TÍNH CHÂT 10.3. Tồn tại bốn điểm không cùng thuộc một mặt phẳng.
- **7** TÍNH CHÂT 10.4. Nếu một đường thẳng có hai điểm phân biệt cùng thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.
- † TÍNH CHÂT 10.5. Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng còn có một điểm chung khác nữa.

Vậy thì: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung đi qua điểm chung ấy. Đường thẳng đó được gọi là giao tuyến của hai mặt phẳng.

† TÍNH CHÂT 10.6. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng.

3. Cách xác định mặt phẳng

Một mặt phẳng hoàn toàn xác định khi biết:

- ❷ Nó đi qua ba điểm không thẳng hàng.
- ❷ Nó đi qua một điểm và một đường thẳng không đi qua điểm đó.

		/																									
	/																										
• • • •																											
• • • •																											
		•		•			•					•	•	•	•							•					
		•		•		•	•				•	•	•	•	•	•	•	•	•	•		•				•	
		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•		•			•				•	•	•	•	•	•	•	•	•	•		•					
• • • •		•																									
		•		•							٠																
		•		•		•	•		•	•	۰	٠	٠	٠	٠	•	•	•	•	•		•				•	

8	Địa	chỉ:	KDC	Μỹ	Điện, TT.	Tuy P
		Q	UIC	(N	OTE	
-						
• •						
٠.						
•						
٠.						
• •						
٠.						
• •						
٠.						
• •						
٠.						
• •						
• •						
• •						
٠.						
• •						
٠.						
•						

Nó chứa hai đường thẳng cắt nhau.

Các kí hiệu:

- \odot (ABC) là kí hiệu mặt phẳng đi qua ba điểm không thẳng hàng A, B, C.
- \odot (M,d) là kí hiệu mặt phẳng đi qua d và điểm $M \notin d$.
- \odot (d_1, d_2) là kí hiệu mặt phẳng xác định bởi hai đường thẳng cắt nhau d_1, d_2 .

4. Hình chóp và hình tứ diện

Trong mặt phẳng (α) cho đa giác lồi $A_1 A_2 \dots A_n$. Lấy điểm S nằm ngoài (α) . Lần lượt nối S với các đỉnh $A_1, A_2, ..., A_n$ và n tam giác SA_1A_2 , SA_2A_3 ,..., SA_nA_1 được gọi là hình chóp, kí hiệu là $S.A_1A_2...A_n$. Ta gọi:

- \odot S là đỉnh;
- \odot Da giác $A_1 A_2 \dots A_n$ là đáy;
- \bigcirc Các đoạn $SA_1, SA_2,...,SA_n$ là các cạnh
- \odot Các đoạn A_1A_2 , A_2A_3 ,..., A_nA_1 là các cạnh đáy;
- \odot Các tam giác SA_1A_2 , SA_2A_3 ,..., SA_nA_1 là các mặt bên.

Cho bốn điểm A, B, C, D không đồng phẳng. Hình gồm bốn tam giác ABC, ABD, ACD và BCD được gọi là tứ diện ABCD.

B. HỆ THỐNG BÀI TẬP

🖶 Dạng 1. Tìm giao tuyến của hai mặt phẳng

Để xác định giao tuyến của hai mặt phẳng, ta tìm hai điểm chung của chúng. Đường thẳng đi qua hai điểm chung đó là giao tuyến.

Lưu ý: Diễm chung của hai mặt phẳng (α) và (β) thường được tìm như sau: Tim hai đường thẳng a, b lần lượt thuộc (α) và (β) , đồng thời chúng cùng nằm trong mặt phẳng (γ) nào đó; giao điểm $M = a \cap b$ là điểm chung của (α) và (β) .

1. Bài tập tự luận

BÀI 1. Cho hình chóp S.ABCD, đáy ABCD là tứ giác có các cặp cạnh đối không song song, điểm M thuộc cạnh SA. Tìm giao tuyến của các cặp mặt phẳng:

a) (SAC) và (SBD).

b) (SAC) và (MBD).

c) (MBC) và (SAD).

d) (SAB) và (SCD).

BÀI 2. Cho hình chóp S.ABCD có $AC \cap BD = M$ và $AB \cap CD = N$. Tìm giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD).

QUAN HÊ SONG SONG TRONG KHÔNG GIAN ₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱ **QUICK NOTE BÁI 3.** Cho tứ diên ABCD. G là trong tâm tam giác BCD. Tìm giao tuyến của hai mặt phẳng (ACD) và (GAB). **BÁI 4.** Cho hình chóp S.ABCD. Goi I là trung điểm của SD, J là điểm trên SC và không trùng trung điểm SC. Tìm giao tuyến của hai mặt phẳng (ABCD) và (AIJ). **BÀI 5.** Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AD và BC. Tìm giao tuyến của hai mặt phẳng (SMN) và (SAC). 2. Bài tập trắc nghiệm **CÂU 1.** Cho hình chóp S.ABCD có $AC \cap BD = M$ và $AB \cap CD = I$. Giao tuyến của hai mặt phẳng (SAB) và mặt phẳng (SCD) là đường thẳng: (\mathbf{B}) SA. $\bigcirc MN.$ (A) SI. $(\mathbf{D}) SM.$ **CÂU 2.** Cho hình chóp S.ABCD có đáy là hình thang ABCD $(AB \parallel CD)$. Khẳng định nào sau đây sai? (A) Hình chóp S.ABCD có 4 mặt bên. (B) Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO (O là giao điểm của AC và (\mathbf{C}) Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI (I là giao điểm của AD và BC). (\mathbf{D}) Giao tuyến của hai mặt phẳng (SAB) và (SAD) là đường trung bình của ABCD. **CÂU 3.** Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là (A) AM (M là trung điểm của AB). (**B**) AN (N là trung điểm của CD). (\mathbf{C}) AH (H là hình chiếu của B trên CD). (\mathbf{D}) AK (K là hình chiếu của C trên BD). **CÂU 4.** Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Goi I, J lần lượt là trung điểm của SA và SB. Khẳng định nào sau đây **sai**? (A) IJCD là hình thang. **(B)** $(SAB) \cap (IBC) = IB$. $(\mathbf{C})(SBD) \cap (JCD) = JD.$ $(\mathbf{D})(IAC) \cap (JBD) = AO, O$ là tâm hình bình hành ABCD. **CÂU 5.** Cho điểm A không nằm trên mặt phẳng (α) chứa tam giác BCD. Lấy E, F là các điểm lần lượt nằm trên các canh AB, AC. Khi EF và BC cắt nhau tại I thì I không phải là điểm chung của hai mặt phẳng nào sau đây? (A) (BCD) và (DEF). (**B**) (BCD) và (ABC). (\mathbf{D}) (BCD) và (ABD). (\mathbf{C}) (BCD) và (AEF). **CÂU 6.** Cho tứ diên ABCD. Goi M, N lần lượt là trung điểm của AC, CD. Giao tuyến của hai mặt phẳng (MBD) và (ABN) là (A) Đường thẳng MN. (**B**) Đường thẳng AM. (**C**) Đường thẳng BG (G là trọng tâm tam giác ACD).

(**D**) Đường thẳng AH (H là trực tâm tam giác ACD).

Dạng 2. Tìm giao điểm của đường thẳng và mặt phẳng

Để tìm giao điểm của đường thẳng d và mặt phẳng (P) ta cần lưu ý một số trường hợp sau:

Trường hợp 1. Nếu trong (P) có sẵn một đường thẳng d' cắt d tại M, khi đó

$$\begin{cases} M \in d \\ M \in d' \subset (P) \end{cases} \Rightarrow \begin{cases} M \in d \\ M \in (P) \end{cases} \Rightarrow M = d \cap (P).$$

QUICK NOTE	Trường hợp 2. Nếu trong (P) chưa có sẵn d' cắt d thì ta thực hiện theo các bước sau:
	igotimes Bước 1: Chọn một mặt phẳng (Q) chứa
	d.
	$igotimes$ Bước 2: Tìm giao tuyến $\Delta = (P) \cap (Q)$.
	\bigcirc Rurge 3: True (O) goi $M = d \cap \Lambda$ thì
	M chính là giao điểm của $d \cap (P)$.
	Q
	/ 4
	1 Dài 4ân 4-2 lân
	1. Bài tập tự luận
	BAI 1. Cho bốn điểm A, B, C, D không đồng phẳng. Gọi M, N lần của AC và BC . Trên đoạn BD lấy điểm P sao cho $BP = 2PD$. Tìm g
	thẳng CD và mặt phẳng (MNP) .
	BÀI 2. Cho tứ giác $ABCD$ có AC và BD giao nhau tại O và một điểm
	phẳng $(ABCD)$. Trên đoạn SC lấy một điểm M không trùng với S v của đường thẳng SD với mặt phẳng (ABM) .
	BÀI 3. Cho hình chóp tứ giác $S.ABCD$ với đáy $ABCD$ có các cạnh c
	song với nhau và M là một điểm trên cạnh SA .
	a) Tìm giao điểm của đường thẳng SB với mặt phẳng (MCD) .
	b) Tìm giao điểm của đường thẳng MC và mặt phẳng (SBD) .
	,
	BÀI 4. Cho hình chóp tứ giác $S.ABCD, M$ là một điểm trên cạnh SC , Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN) .
	BÀI 5. Cho hình chóp $SABCD$ có đáy $ABCD$ là hình bình hành. G
	trung điềm của các cạnh SA và SC . Điểm N thuộc cạnh SB sao cho
	giao điểm của cạnh SD và mặt phẳng (MNP) . Tính tỷ số $\frac{SQ}{SD}$.
	grao diem cua cami SD va mat phang (MTVT). Timi ty so \overline{SD} .
	2. Bài tập trắc nghiệm
	CÂU 1. Cho tứ diện $ABCD$. Gọi E và F lần lượt là trung điểm của AB
	tâm tam giác BCD . Giao điểm của đường thẳng EG và mặt phẳng (A
	lack A điểm F .
	(B) giao điểm của đường thắng EG và AF .
	$oldsymbol{\mathbb{C}}$ giao điểm của đường thẳng EG và AC . $oldsymbol{\mathbb{D}}$ giao điểm của đường thẳng EG và CD .
	CÂU 2. Cho hình chóp tứ giác $SABCD$ với đáy $ABCD$ có các cạnh song với nhau và M là một điểm trên cạnh SA . Tìm giao điểm của đ
	mặt phẳng (MCD) .
	$lack A$ Điểm H , trong đó $E=AB\cap CD, H=SA\cap EM.$
	$lackbox{\textbf{B}}$ Điểm N , trong đó $E=AB\cap CD, N=SB\cap EM.$
	\bigcirc Điểm F , trong đó $E=AB\cap CD, F=SC\cap EM.$
	\bigcirc Điểm T , trong đó $E = AB \cap CD, T = SD \cap EM$.
	CÂU 3. Cho hình chóp tứ giác $SABCD$ với đáy $ABCD$ có các cạnh C
	song với nhau và M là một điểm trên cạnh SA . Tìm giao điểm của đ mặt phẳng (SBD) .
	mạt phang (SBD) . (A) Điểm H , trong đó $I = AC \cap BD$, $H = MA \cap SI$.
	(B) Diểm F , trong đó $I = AC \cap BD$, $F = MD \cap SI$.
	$lackbox{\textbf{C}}$ Điểm K , trong đó $I=AC\cap BD, K=MC\cap SI.$

- lượt là trung điểm giao điểm của đường
- Skhông thuộc mặt \dot{C} . Tìm giao điểm
- đối diện không song
- N là trên cạnh BC.
- Gọi M, P lần lượt là $\frac{SN}{SB} = \frac{2}{3}.$ Gọi Q là
- B và CD; G là trọng (CD) là
- đối diện không song lường thẳng SB với
- đối diện không song đường thẳng MC và
 - (\mathbf{D}) Điểm V, trong đó $I = AC \cap BD$, $V = MB \cap SI$.

CÂU 4. Cho hình chóp SABC. Gọi M, N lần lượt là trung điểm của SA và BC. P là điểm nằm trên cạnh AB sao cho $\frac{AP}{AB} = \frac{1}{3}$. Gọi Q là giao điểm của SC với mặt phẳng (MNP). $\label{eq:sq} \text{Tính } \frac{SQ}{SC}$

 \bigcirc $\frac{1}{2}$.

CÂU 5. Cho hình chóp S.ABCD có đáy là hình thang ABCD với $AD \parallel BC$ và AD = 2BC. Gọi M là điểm trên cạnh SD thỏa mãn $SM=\frac{1}{3}SD$. Mặt phẳng (ABM) cắt cạnh bên SC

CÂU 6. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, SD và OC. Gọi giao điểm của (MNP) với SA là K. Tỉ số $\frac{KS}{KA}$ là $\frac{2}{5}$.

CÂU 7. Cho hình chóp S.ABCD đáy ABCD là hình bình hành. M, N là lượt là trung điểm của AB và SC. I là giao điểm của AN và (SBD). J là giao điểm của MN với (SBD). Khi đó tỉ số $\frac{IB}{IJ}$ là

(A) 4.

(B) 3.

Dạng 3. Bài toán thiết diện

Để xác định thiết diện của hình chóp $S.A_1A_2...A_n$ cắt bởi mặt phẳng (α) , ta tìm giao điểm của mặt phẳng (α) với các đường thẳng chứa các cạnh của hình chóp. Thiết diện là đa giác có đỉnh là các giao điểm của (α) với hình chóp.

1. Bài tập tự luân

BÀI 1. Cho hình chóp tứ giác S.ABCD, có đáy là hình thang với AD là đáy lớn và P là một điểm trên cạnh SD.

- a) Xác định thiết diện của hình chóp cắt bởi mặt phẳng (PAB).
- b) Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Xác định thiết diện của hình chóp cắt bởi (MNP).

BÁI 2. Cho tứ diên ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc canh BC (P không là trung điểm của BC). Tìm thiết diện của tứ diện bi cắt bởi mặt phẳng (MNP).

BÁI 3. Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD. E, F lần lượt là trung điểm của AB và AD. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG).

BÀI 4. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a (a > 0). Các điểm M, N, P lần lượt là trung điểm của SA, SB, SC. Mặt phẳng (MNP) cắt hình chóp theo một thiết diện có diện tích bằng bao nhiệu?

2. Bài tập trắc nghiệm

CÂU 1. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, Elà điểm trên cạnh CD với ED=3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là

- (A) Tam giác MNE.
- (B) Tứ giác MNEF với F là điểm bất kì trên canh BD.
- (**c**) Hình bình hành MNEF với F là điểm trên cạnh BD mà $EF \parallel BC$.
- (**D**) Hình thang MNEF với F là điểm trên cạnh BD mà $EF \parallel BC$.

 \mathbf{CAU} 2. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, E là trung điểm của SA; F, G lần lượt là các điểm thuộc cạnh BC, CD (CF < FB, GC < GD). Thiết diện của hình chóp cắt bởi mặt phẳng (EFG) là

(A) Tam giác.

(B) Tứ giác.

(C) Ngũ giác.

(**D**) Luc giác.

QUICK NOTE

•			•	•	•	•	•		•	•	•	•				•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•				•	•		•	•	•	•			•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•				•	•		•	•	•	•			•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

																										•	
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠		٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠			٠

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

QUICK NOTE	là một điểm trên cại		có đáy là hình thang v a hình chóp cắt bởi mặ		
	gì? A Tam giác.	B Tứ giác.	C Hình thang.	D Hình bình hành	1.
		SD. Gọi M,N lần lượt	có đáy là hình thang vớ là trung điểm của các c		
	A Ngũ giác.	B Tứ giác.	C Hình thang.	D Hình bình hành	1.
	SA. Thiết diện của h A Tam giác IBC B Hình thang IJ	ình chóp $S.ABCD$ cắt $CB \ (J \ \text{là trung điểm} \ ABC \ (G \ \text{là trung điểm} \ ABC \ (G \ \text{là trung điểm} \ ABC \ (G \ \text{là trung} \ \text{diểm} \ ABC \ (G \ \text{là trung} \ \text{diểm} \ ABC \ \text{(G \ là trung} \ \text{diểm} \ \text{(G \ là trung)} \ \text{(G \ la trung)} \ \text{(G \ là trung)} \ \text{(G \ la trung)} \ $	*		n
			BCD là một hình bình h		
	hình gì?	ann AD, CD, SO . The	ết diện của hình chóp vớ	mat phang (MNP)	la
	A Ngũ giác.	B Tứ giác.	C Hình thang.	D Hình bình hànl	1.
		đều $ABCD$ có cạnh b diện theo một thiết di	oằng a . Gọi G là trọng t	âm tam giác ABC . Mà	át
				$a^2\sqrt{3}$	
	2	4	U	4	
			i các cạnh bằng $2a$. Gọi am giác BCD . Mặt phầ		
	theo một thiết diện c		2 $\sqrt{11}$	$\sim 2/\overline{2}$	
			$\frac{a^2\sqrt{11}}{4}$.		
	Dana 4. Chứn	a minh ba điểm thẳ	ng hàng – ba đường	thẳng đồng guy	
					1
	mặt phẳng pl	nân biệt, khi đó chúng	g ta chứng minh chúng nằm trên đường thẳng g		
	phẳng nên th	ăng hàng.			
	❷ Để chứng min	nh ba đường thẳng đồn	ng qui ta chứng minh gia n lai.	ao điểm của hai đường	
	❷ Để chứng min			ao điểm của hai đường	
	❷ Để chứng min	nh ba đường thẳng đồn đường đường thẳng còn		ao điểm của hai đường	
	 Để chứng min thẳng thuộc 1. Bài tập tự lu BÀI 1. Cho tứ diện 	nh ba đường thẳng đồn đường đường thẳng còi ận S.ABC. Trên SA, SB	n lại. $\label{eq:cappa}$ và SC lấy các điểm $D,$	E và F sao cho DE că	
	 Để chứng min thẳng thuộc c 1. Bài tập tự lu BÀI 1. Cho tứ diện AB tại I, EF cắt B 	nh ba đường thẳng đồn đường đường thẳng còi ận S.ABC. Trên SA, SB	n lại.	E và F sao cho DE că	
	 Để chứng min thẳng thuộc 1. Bài tập tự lu BÀI 1. Cho tứ diện AB tại I, EF cắt B hàng. 	nh ba đường thẳng đồn đường đường thẳng còi ận S.ABC. Trên SA, SB C tại J, FD cắt CA t	n lại. $\begin{array}{c} & \\ \text{và } SC \text{ lấy các điểm } D, \\ \text{tại } K. \text{ Chứng minh rằn} \end{array}$	E và F sao cho DE c ${ m i}$ g ba điểm I,J,K thắn	ng
	 Để chứng min thẳng thuộc c 1. Bài tập tự lu BÀI 1. Cho tứ diện AB tại I, EF cắt Bhàng. BÀI 2. Cho hình chố Một mặt phẳng (α) c 	nh ba đường thẳng đồn đường đường thẳng còi ận S.ABC. Trên SA, SBC tại J, FD cắt CA to C tự giác CA to the cát CA to cắt CA to cắt CA to cắt CA to cắt CA to cát CA to cá	và SC lấy các điểm D , tại K . Chứng minh rằn si O là giao điểm của hai SB , SC , SD tương ứng	E và F sao cho DE cả g ba điểm I,J,K thắn đường chéo AC và BI	ng D.
	 Để chứng min thẳng thuộc 1. Bài tập tự lư BÀI 1. Cho tứ diện AB tại I, EF cắt B hàng. BÀI 2. Cho hình chố Một mặt phẳng (α) Q. Chứng minh rằng 	nh ba đường thẳng đồn đường đường thẳng còi cán $S.ABC$. Trên SA,SB C tại J,FD cắt CA to the first transfer SA,SB các cạnh bên SA,SB các đường thẳng MP .	và SC lấy các điểm D , tại K . Chứng minh rằn vi O là giao điểm của hai SB , SC , SD tương ứng , NQ , SO đồng qui.	E và F sao cho DE cả g ba điểm I,J,K thắn đường chéo AC và BI ; tại các điểm M,N,I	o.
	 Để chứng min thẳng thuộc chi 1. Bài tập tự lư BÀI 1. Cho tứ diện AB tại I, EF cắt Bhàng. BÀI 2. Cho hình chố Một mặt phẳng (α) Q. Chứng minh rằng BÀI 3. Cho tứ diện (α) qua MN cắt AD 	nh ba đường thẳng đồn đường đường thẳng còi cán SA, SB C tại J, FD cắt CA to	và SC lấy các điểm D , tại K . Chứng minh rằn si O là giao điểm của hai SB , SC , SD tương ứng	E và F sao cho DE cả g ba điểm I, J, K thắn đường chéo AC và BI tại các điểm M, N, I AB và CD . Mặt phẩn	ng D. P,
	 Để chứng min thẳng thuộc 1. Bài tập tự lư BÀI 1. Cho tứ diện AB tại I, EF cắt B hàng. BÀI 2. Cho hình chố Một mặt phẳng (α) Q. Chứng minh rằng BÀI 3. Cho tứ diện (α) qua MN cắt AD I, B, D thẳng hàng. 	nh ba đường thẳng đồn đường đường đường thẳng còi sực s. ABC. Trên SA, SB C tại J, FD cắt CA the special các cạnh bên SA, các đường thẳng MP ABCD. Gọi M, N lần BC lần lượt tại P và	và SC lấy các điểm D , tại K . Chứng minh rằn bi O là giao điểm của hai SB , SC , SD tương ứng NQ , SO đồng qui. a lượt là trung điểm của Q . Biết MP cắt NQ tại	E và F sao cho DE cả g ba điểm I, J, K thắn đường chéo AC và BI ; tại các điểm M, N, I AB và CD . Mặt phắn I . Chứng minh ba điển	ng D. P., ng m
	 Để chứng min thẳng thuộc 1. Bài tập tự lư BàI 1. Cho tứ diện AB tại I, EF cắt Bhàng. BàI 2. Cho hình chố Một mặt phẳng (α) Q. Chứng minh rằng BàI 3. Cho tứ diện (α) qua MN cắt AD I, B, D thẳng hàng. BàI 4. Cho tứ diện trên đoạn thẳng AG, 	nh ba đường thẳng đồn đường đường đường thẳng còi lạm S.ABC. Trên SA, SB C tại J, FD cắt CA the special các cạnh bên SA, các đường thẳng MP (ABCD. Gọi M, N lần BC) BC lần lượt tại P và (ABCD. G là trọng tâm BI cắt mặt phẳng (A	và SC lấy các điểm D , tại K . Chứng minh rằn si O là giao điểm của hai SB , SC , SD tương ứng , NQ , SO đồng qui. I lượt là trung điểm của Q . Biết MP cắt NQ tại tam giác BCD , M là trung địah tại J . Khẳng định	E và F sao cho DE cả g ba điểm I, J, K thắn đường chéo AC và BI tại các điểm M, N, I AB và CD . Mặt phắn I . Chứng minh ba điển rung điểm CD, I là điển nào sau đây sai ?	ng D. P., ng m
	 Để chứng min thẳng thuộc chẳng thuộc chẳng thuộc ching thuộc ching thuộc diện AB tại I, EF cắt B hàng. BÀI 2. Cho hình chố Một mặt phẳng (α) Q. Chứng minh rằng BÀI 3. Cho tứ diện (α) qua MN cắt AD I, B, D thẳng hàng. BÀI 4. Cho tứ diện trên đoạn thẳng AG, AM = (ACD) 	nh ba đường thẳng đồn đường đường thẳng còi đường thẳng còi $\widehat{\mathbf{A}}$ $S.ABC$. Trên SA,SB C tại J,FD cắt CA to $\widehat{\mathbf{A}}$ $\mathbf{A$	và SC lấy các điểm D , tại K . Chứng minh rằn bi O là giao điểm của hai SB , SC , SD tương ứng NQ , SO đồng qui. a lượt là trung điểm của Q . Biết MP cắt NQ tại P 0 tại P 1. Khẳng định P 2. Khẳng định P 3. P 4. P 5.	E và F sao cho DE cả g ba điểm I, J, K thắn đường chéo AC và BI , tại các điểm M, N, I AB và CD . Mặt phắn I . Chứng minh ba điển I chung điểm I chung điểm I chung điển chung.	ng D. P., ng m
	 Để chứng min thẳng thuộc chẳng thuộc chẳng thuộc ching thuộc ching thuộc diện AB tại I, EF cắt B hàng. BÀI 2. Cho hình chố Một mặt phẳng (α) Q. Chứng minh rằng BÀI 3. Cho tứ diện (α) qua MN cắt AD I, B, D thẳng hàng. BÀI 4. Cho tứ diện trên đoạn thẳng AG, (A) AM = (ACD) C J là trung điển 	nh ba đường thẳng đồn đường đường thẳng còi đường thẳng còi $\widehat{\mathbf{an}}$ $S.ABC$. Trên SA,SB C tại J,FD cắt CA to $\widehat{\mathbf{ap}}$ tứ giác $S.ABCD$, gọc tá các cạnh bên SA , các đường thẳng MP $ABCD$. Gọi M,N lần BC lần lượt tại P và $ABCD$. G là trọng tâm BI cắt mặt phẳng $(A \cap (ABG))$. In AM .	và SC lấy các điểm D , tại K . Chứng minh rằn si O là giao điểm của hai SB , SC , SD tương ứng , NQ , SO đồng qui. I lượt là trung điểm của Q . Biết MP cắt NQ tại tam giác BCD , M là trung địah tại J . Khẳng định	E và F sao cho DE cả g ba điểm I, J, K thắn đường chéo AC và BI , tại các điểm M, N, I AB và CD . Mặt phắn I . Chứng minh ba điển I chung điểm I chung điểm I chung điển chung.	ng D. P., ng m
	 Để chứng min thẳng thuộc 1. Bài tập tự lư BÀI 1. Cho tứ diện AB tại I, EF cắt Bhàng. BÀI 2. Cho hình chố Một mặt phẳng (α) Q. Chứng minh rằng BÀI 3. Cho tứ diện (α) qua MN cắt AD I, B, D thẳng hàng. BÀI 4. Cho tứ diện trên đoạn thẳng AG, AM = (ACD) C J là trung điển 2. Bài tập trắc 	nh ba đường thẳng đồn đường đường thẳng còi đường đường thẳng còi $\widehat{\mathbf{A}}$ $S.ABC$. Trên SA,SB C tại J,FD cắt CA to SA tại SA tại SA cắt các cạnh bên SA , các đường thẳng SA các đường thẳng SA hành SA hành lượt tại SA và SA cất mặt phẳng SA hành SA hàn	và SC lấy các điểm D , tại K . Chứng minh rằn bi O là giao điểm của hai SB , SC , SD tương ứng NQ , SO đồng qui. a lượt là trung điểm của Q . Biết MP cắt NQ tại P 0 tại P 1. Khẳng định P 2. Khẳng định P 3. P 4. P 5.	E và F sao cho DE cả g ba điểm I, J, K thắn đường chéo AC và BI tại các điểm M, N, I AB và CD . Mặt phắn I . Chứng minh ba điển rung điểm CD, I là điển nào sau đây \mathbf{sai} ? hàng.	ng O. P, ng m

		QUICK NOTE
 CÂU 2. Cho hình tứ diện ABCD có M, N là G, H làn lượt trên cạnh AC, CD sao cho NE khẳng định đúng? A, C, I thẳng hàng. N, G, H thẳng hàng. 		
 CÂU 3. Cho tứ diện SABC. Trên SA, SB và AB tại I, EF cắt BC tại J, FD cắt CA tại K A Ba điểm B, J, K thẳng hàng. C Ba điểm I, J, K không thẳng hàng. 		
CÂU 4. Cho tứ diện $ABCD$. Gọi E, F, G là cá sao cho EF cắt BC tại I, EG cắt AD tại H . B CD, EF, EG .	Ba đường thẳng nào sau đây đồng quy?	

QUICK NOTE	C. HỆ THỐNG	S BÀI TẬP TR	ÁC NGHIÊM		
	•		1. Lí thuyết		
		D qng	i. Li illuyei		
	CÂU 1. Một mặt phẳ	ng hoàn toàn được x	xác đinh nếu biết điề	u nào sau đây?	
	A Một đường thẳng	g và một điểm nằm	trên mặt phẳng đó.	, and the second	
	B Ba điểm mà mặt	t phẳng đó đi qua.			
	© Ba điểm không t	thẳng hàng mà nó đ	i qua.		
	▶ Hai đường thẳng	g nằm trên mặt phẳ	ng.		
	CÂU 2. Trong các tín	h chất sau, tính chấ	t nào không đúng?		
			đi qua hai điểm phâi	n biệt cho trước.	
	B Tồn tại 4 điểm k	chông cùng thuộc m	ột mặt phẳng.		
	Có một và chỉ m	ột mặt phẳng đi qu	a ba điểm không thẳ	ng hàng.	
	\simeq		m thuộc một mặt ph	-	của đường
	thẳng đều thuộc	mặt phẳng đó.	_		
	CÂU 3. Cho các khẳn	g định sau:			
			15 17 7 6 4 5	13 1 1	1.64
	(I) Hai mặt phẳng c	có một điểm chung t	thì chúng có một đườ	ng tháng chung di	ıy nhất.
	(II) Hai mặt phẳng j	phân biệt có một đ	iểm chung thì chúng	có một đường thể	ing chung
	duy nhất.				
	(III) Hai mặt phẳng c	có một điểm chung t	chì chúng còn có vô s	ấ điểm chung khác	e nữa.
	(IV) Nếu ba điểm phá	ân biệt cùng thuộc l	nai mặt phẳng thì ch	úng thẳng hàng.	
	Cá lub ở ng định gọi thoạ	m oá o lelo ² mm dink te	-â 1à		
	Số khẳng định sai tron (A) 1.	ig cac knang dinn ti	C 3.	(D) 4.	
		2.		4.	
	CÂU 4. Trong các mệ		~		
		g không có điểm chu	ong song thì chéo nha	↓u.	
	C Hai đường thẳng		-		
		,	hai mặt phẳng phân	hiệt thì chác nhay	
	CÂU 5. Cho hai đườn	ag thắng a và b chéc	nhau. Có bao nhiêu	mặt phẳng chứa	a và song
	song với b ? \bigcirc 0.	B Vô số.	© 2.	(D) 1.	
	CÂU 6. Trong các hìn	ih vẽ sau, hình nào	có thể là hình biểu di	ên của một hình t	ứ diện?
	$S \wedge$	$S \wedge$		$S \wedge$	S
			\		/
		\hat{B}			Ē
	$A \leftarrow$	$C = A \stackrel{P}{\sim}$	$C A \leftarrow$	\xrightarrow{B} C	$A \sim$
	B				
	(I)	(II)		(III)	II)
			<u> </u>) (II) (III) ()	
	A) Chỉ hình (I), (II).	× `), (II), (III), (IV).	
	C Chỉ hình (I).		(D) Chỉ hình (I)	, (11), (111).	
	CÂU 7. Một hình chó				
	(A) 9 canh.	(B) 10 cạnh.	(\mathbf{c}) 6 cạnh.	(\mathbf{D}) 5 cạnh.	

CÂU 8. Một hình chóp A 5 mặt, 5 cạnh.	có đáy là ngũ giác thì (B) 6 mặt, 5 cạnh.	số mặt và số cạnh của C 6 mặt, 10cạnh.	a nó là D 5 mặt, 10cạnh.	QUICK NOTE
CÂU 9. Hình chóp có 16 (A) 10.	6 cạnh thì có bao nhiê B 8.	u mặt?	D 9.	
CÂU 10. Cho hình chóp SC , BC . Bốn điểm nào s A M , K , A , C .	sau đây đồng phẳng?	K , E lần lượt là tru $ \bigcirc M, N, K, C.$		
CÂU 11. Trong không g bao nhiêu mặt phẳng ph	ân biệt từ các điểm đớ	5?		
(A) 3.	B) 4.	© 2.	D 6.	
📂 Dạng	2. Xác định giao tu	yến của hai mặt pho	ẳng	
CÂU 1. Cho hình chóp mặt phẳng (SAC) và (S.		à hình bình hành. Khi	đó giao tuyến của hai	
		f B Đường thẳng SB $f D$ Đường thẳng SA		
CÂU 2. Cho hình chóp điểm của AD và BC . Gia A SK (K là trung đia B SO (O là tâm của C SF (F là trung đia D SD .	ao tuyến của $(\stackrel{\circ}{SMN})$ iểm của $AB)$. hình bình hành ABC	và (SAC) là	$I,\ N$ lần lượt là trung	
CÂU 3. Cho hình chóp S Gọi O là giao điểm của A A SA.				
CÂU 4. Cho hình chóp t				
là \bigcirc SA .	lacksquare SB .	© SC.	lacktriangledown AC .	
\simeq	n của hai mặt phẳng (điểm của AB và CD .	(MSB) và (SAC) là \bigcirc	,	
CÂU 6. Cho hình chóp tuyến của hai mặt phẳng (A) SO.		ắt BD tại M , AB cắt \bigcirc	t CD tại O . Tìm giao \bigcirc SC .	
CÂU 7. Cho hình chóp lượt là trung điểm của S $(SAB) \cap (IBC) = (SBD) \cap (JCD) = (SBD) \cap (JCD) = (SBD)$	A và SB . Khẳng định $= IB$.		ang.	
CÂU 8. Cho hình chóp AB và CD . Giao tuyến CD CD CD CD CD CD CD CD			D, N là giao điểm của $lacktriangle$ D SN .	
CÂU 9. Cho hình chóp điểm SC. Khẳng định nà (A) Giao tuyến của (S) (B) SA và BD chéo nh (C) AM cắt (SBD).	ào sau đây sai ? $AC)$ và $(ABCD)$ là A hau.	.C.	n tâm O , M là trung	

QUICK NOTE	CÂU 10. Cho tứ diệr	ABCD, M là trur	ng điểm của AB,N là c	điểm trên AC mà $AN =$
	1		9	m của MP và BD , F là
			yến của (BCD) và (CM)	
	\bigcirc	\bigcirc NE .	\bigcirc $MF.$	$\stackrel{'}{\bigcirc} CE.$
	CÂU 11. Cho bốn đi	$\stackrel{\circ}{\text{em}} A, B, C, D$ khô:	ng đồng phẳng. Gọi I,I	K lần lượt là trung điểm
	hai đoạn thẳng AD v			cặp mặt phẳng nào sau
	dây?	D)		(D)
	(IBC) và (KBI		(B) (IBC) và (KC	
	(IBC) và (KAI	,	\bigcirc (ABI) và (KA	,
	1		lần lượt là trung điểm A ặt phẳng (GMN) và (BG)	D và AC . Gọi G là trọng CD) là đường thẳng
	\bigcirc qua M và song		ullet qua N và song	,
	C qua G và song s	_	\bigcirc qua G và song	_
				_
	► Dạng 3.	Tìm giao điệm cứ	ủa đường thẳng với n	nặt phẳng
		CADCD (II)	1 1·2 2 00 0 1	· NT 1> · • • · · · · · · · · · · · · · · · ·
			trung diem của <i>SC</i> . Gọi Giao điểm của <i>AI</i> và (S.	i N là giao điểm của AC
	\bigcirc Diểm A .	f B Điểm M .	\bigcirc Diểm N .	$lackbox{ bidentilde{D}}$ Điểm I .
	CÂU 2. Cho hình chó	р <i>S.ABCD</i> có đáv l	à hình bình hành. Goi Λ	I, N lần lượt thuộc đoạn
			Khẳng định nào sau đây	
	A Giao điểm của I	MN và (SBD) là gi	ao điểm của MN và SB	
	lacksquare Đường thẳng M	N không cắt mặt p	hång (SBD) .	
	Giao điểm của <i>I</i>	MN và (SBD) là gi	ao điểm của MN và SI .	
	D Giao điểm của <i>I</i>	MN và (SBD) là gi	ao điểm của MN và BL).
	CÂU 3. Cho tứ giác	ABCD có AC và B	BD giao nhau tại O và r	nột điểm S không thuộc
	mặt phẳng $(ABCD)$. của đường thẳng SD v			g với S và C . Giao điểm
	A giao điểm của S	,	(B) giao điểm của	SD và AM .
	\bigcirc giao điểm của S		(D) giao điểm của	
	CÂU 4. Cho tứ diện	ABCD Goi M N	lần lượt là trung điểm	các cạnh $AD, BC; G$ là
	trọng tâm của tam giáo			G và mặt phẳng (ABC)
	igwedge là $igwedge$ điểm A .			
		ường thẳng MG và	đường thẳng AN	
	\mathbf{C} điểm N .	aong mang ma va	duong mang mi.	
		ường thẳng MG và	đường thẳng BC	
				1.2 2 00
				là trung điểm của SC . Khẳng định nào sau đây
	đúng?		,	· ·
			\bigcirc $IM = 2IA$.	
	CÂU 6. Cho tứ diên	ABCD có M, N th	neo thứ tư là trung điểm	của $AB,BC.$ Gọi P là
	điểm thuộc cạnh CD s	sao cho $CP = 2PD$	và Q là điểm thuộc cạn	nh AD sao cho bốn điểm
	M, N, P, Q đồng phả			
	1 ×	cua doạn thăng $A($	DQ = 2AQ.	
				AB, CD; G là trọng tâm
		_	ng EG và mặt phẳng (A	CD) lå
	$egin{aligned} (\mathbf{A}) & \text{giao diểm của di} \\ (\mathbf{B}) & \text{diểm } F. \end{aligned}$	uong thang EG va z	orall arGamma .	
		edna thểna EO (γ_D	
		ường thẳng EG và (
	giao diem cua di	ường thẳng EG và ${\it A}$	1∪.	

R MONIN HE SOING	SONG TRONG KHÔN	NG GIAN	∀ t	Dịa chỉ: KDC Mỹ Điền, TT. Tuy Phướ							
			ủa BC , AD . Gọi G là trọ phẳng (ABC) . Khẳng đị								
	$lacksquare$ $I \in BC$.	\bigcirc $I \in AC$.	$\bigcirc I \in AB.$								
CÂU 9. Cho hình c	chóp $S.ABCD$ có đáy	là hình bình hành.	Gọi M , I lần lượt là tru	ng							
			Giao điểm của đường thẳ								
MG với mặt phẳng		SI 5									
A giao điểm của	đường thẳng MG và đ	lường thẳng AI .									
\simeq \sim	đường thẳng MG và đ	-									
\simeq $^{-}$	đường thẳng MG và c										
giao điểm của	đường thẳng MG và đ	Tường thăng AB .									
			CM và N là trung điểm A								
	thuọc mien trong của với (OMN) là giao điển		giáo điểm của MN và C	D							
\bigcirc OM .	\bigcirc	C DO.	\bigcirc KO .								
CÂU 11. Cho hình	chóp S. ABCD. M là n	nôt điểm trên canh S	SC,N là một điểm trên cạ:	nh							
BC , $O = AC \cap BD$,	$I = SO \cap AM, J = A$		o điểm của đường thẳng S								
với mặt phẳng (AM)	<i>'</i>	• • • •	° CD > IM								
\simeq $^{-}$	A) giao điểm của SD và IO . B) giao điểm của SD và JM . C) giao điểm của SD và IJ . D) giao điểm của SD và JO .										
	SD va 13.	giao dieni c	ua SD va SO.								
Cho hình chóp S A I	BC có đáy ABC là tan	n giác, như hình	C								
vẽ bên. Với $M, N,$	Hlần lượt là các điển	n thuộc vào các	<u>*</u>								
	sao cho MN không sơi của hai đường thẳng A										
	tường NH với (SBM) .		H								
sau đây là khẳng địn	nh đúng?										
_	n của hai đường thẳng		$A \leftarrow $	C							
	n của hai đường thẳng										
\simeq	n của hai đường thẳng n của hai đường thẳng		, N								
1 la glao dieli	i cua nai duong thang	IVII Va 50.	B								
CÂU 13. Cho hình	chóp $S.ABCD$ có đáy	ABCD là một tứ gia	ác. Gọi M là trung điểm c	ůa							
SD, N là điểm nằm	trên cạnh SB sao cho	SN = 2NB. Giao	điểm của MN với (ABC)								
	n cách xác định điểm H m của MN với AC .	~	ác phương án sau. iểm của MN với AB .								
\simeq	m của MN với BC .	\simeq									
•				<i>V</i>							
			hành tâm O . Gọi M , N , AC và MN . Giao điểm c								
SO với (MNK) là đ		_	úng nhất trong bốn phươ								
án sau. \bigcirc E là giao điển	n của MN với SO .	B E là giao d	iểm của KN với SO .								
\simeq	n của KH với SO .	\simeq	iểm của KM với SO .								
	🕳 Dạng 4.	Tìm thiết diện									

A tam giác.	B tứ giác.	c ngũ giác.	D lục giác.
			áy lớn AD . Gọi M, N lần
lượt là trung điểm của	a AB , CD . Gọi (P) là	mặt phẳng qua M	N và cắt mặt bên (SBC)
theo một giao tuyến. T	Γhiết diện của (P) và h	ình chóp là	
A hình bình hành	. B hình chữ nhật.	c hình thang.	D hình vuông.

CÂU 1. Cho hình chóp S.ABCD với ABCD là tứ giác lồi. Thiết diện của mặt phẳng (α)

~				
GV VII N	GOC PH	-TG — T/	U0Y3 0VU 8.	I

tùy ý với hình chóp **không** thể là

• Địa chỉ: KDC Mỹ Điên, TT. Tuy F	'hước ♥		☑ QUA	IN HÈ SONG SOV	IG TRONG KHONG GIAN
QUICK NOTE		ứ diện <i>ABCD</i> đơ diện theo một th			am giác ABC , mặt phẳng
	$\mathbf{A} \frac{a^2\sqrt{2}}{6}.$	$lackbox{\textbf{B}} \frac{a^2}{}$	$\frac{\sqrt{3}}{4}$.	\mathbf{c} $\frac{a^2\sqrt{2}}{4}$.	\bigcirc $\frac{a^2\sqrt{3}}{2}$.
	0	•	4	4	2
					nh. Gọi M, N, P lần lượt là phẳng (MNP) là một
	A tam giác			ngũ giác.	D lục giác.
	CÂU 5. Cho t	ứ diên <i>ABCD</i> . T	Frên các canh z	AB. BC. CD lần	lượt lấy các điểm P, Q, R
		1			pi $PQRS$ là thiết diện của
		(2R) với hình tứ đ			
	(A) hình than	- /	•	•	
	(B) hình than	_			
		iác không có cặp	canh đối nào s	song song.	
	D) hình bình				
					hành. Gọi M, N, Q lần lượt nóp với mặt phẳng (MNQ)
	là đa giác có ba		AD, SC . The	t diện của minh ch	iob voi mát buang (M N Q)
	A 3.	B 4.		© 5.	D 6.
	CÂU 7.				
		S.ABCD có đáy	là hình thang,		S
		B = 2CD. Gọi C			Ã
	của AC và BD .		h SA , F thuộc 2		
	cạnh SC sao ch	no $\frac{SE}{SA} = \frac{SF}{SC} =$	$\frac{1}{3}$. Thiết diện		
	của hình chóp (BEF) là	S.ABCD cắt b	ởi mặt phẳng		
	(A) một tam	giác.		E/-=====	
	B) một tứ gi	_		/ /	1
	© một hình			A =	B
	D một hình			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
					ô
				Ď	\dot{C}
					với đáy lớn AD , E là trung ông là trung điểm của SC).
				EFG) là một hình	
	A lục giác.		ũ giác.	c tam giác.	D tứ giác.
		0 0			hành. Gọi I là trung điểm
		diện của hình ch			nann. Gọi 1 là trung diem
	A tứ giác I.	•	op 2.112 c 2 c	10 BOI (120) Id	
		ng $IGBC$ (G là t	trung điểm của	SB).	
	C hình thai	ng $IJCB$ (J là tr	rung điểm của	SD).	
	(D) tam giác	- '		,	
	CÂU 10.				
		ı ARCD có canh	bằng 2 Coi C	là trọng tâm tam	_
				ta được thiết diện	
	có diện tích bằn		- 0 (/	_	
	\bigcirc $\sqrt{3}$.	B $2\sqrt{3}$.	\bigcirc $\sqrt{2}$.	\mathbf{D} $\frac{2\sqrt{2}}{2}$.	
		v = .	· · · ·	\smile 3 ·	$A \leftarrow C$
					G

CÂU 11. Cho khối lập phương ABCD.A'B'C'D' cạnh a. Các điểm E, F lần lượt là trung điểm của C'B' và C'D'. Diện tích thiết diện của khối lập phương cắt bởi mặt phẳng (AEF)bằng

QUICK NOTE

$7a^2\sqrt{17}$
24

B $\frac{a^2\sqrt{17}}{4}$. **C** $\frac{a^2\sqrt{17}}{8}$.

 $\bigcirc \frac{7a^2\sqrt{17}}{12}.$

CÂU 12. Cho hình chóp S.ABCD. Gọi M, N lần lượt là trung điểm của SB và SD. Thiết diện của hình chóp S.ABCD và mặt phẳng (AMN) là hình gì?

(A) Tam giác vuông.

(B) Ngũ giác.

(C) Tam giác cân.

(D) Tứ giác.

CÂU 13. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Thiết diện của hình chóp cắt bởi mặt phẳng (MNK)là một đa giác (\mathcal{H}) . Khẳng định nào dưới đây đúng?

- (A) (\mathcal{H}) là một hình thang có hai đáy không bằng nhau.
- $(\mathbf{B})(\mathcal{H})$ là hình bình hành.
- $(\mathbf{C})(\mathcal{H})$ là một ngũ giác.
- $(\mathbf{D})(\mathcal{H})$ là một tam giác.

CÂU 14. Cho hình chóp tứ giác S.ABCD. Gọi C' là điểm trên cạnh SC sao cho SC' = $\frac{2}{3}SC.$ Thiết diện của hình chóp với mặt phẳng (ABC') là một đa giác m cạnh. Giá trị của m là

(**A**) m = 6.

(B) m = 4.

 $(\mathbf{C}) m = 5.$

CÂU 15. Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc cạnh BC (P không là trung điểm của BC). Thiết diện của tứ diện bị cắt bởi mặt phẳng (MNP) là

- (A) tứ giác.
- (B) ngũ giác.
- C lục giác.
- (**D**) tam giác.

CÂU 16. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng $a \ (a > 0)$. Thiết diện của hình lập phương đã cho cắt bởi mặt phẳng trung trực của đoạn AC' có diện tích bằng

- \bigcirc a^2 .

CÁU 17. Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD. E, F lần lượt là trung điểm của AB và AD. Thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG) là

- (A) tam giác.
- (B) tứ giác.
- (c) ngũ giác.
- (D) luc giác.

CÂU 18. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N và P lần lượt là trung điểm của các canh SA, BC, CD. Hỏi thiết diên của hình chóp cắt bởi mặt phẳng (MNP) là hình gì?

- (A) Hình ngũ giác.
- (B) Hình tam giác.
- (C) Hình tứ giác.
- (D) Hình luc giác.

Dạng 5. Đồng quy, thẳng hàng

CÂU 1. Cho hình chóp S.ABCD có đáy ABCD là hình thang $(AD \parallel BC, AD > BC)$. Goi I là giao điểm của AB và DC, M là trung điểm của SC và DM cắt mặt phẳng (SAB)tại J. Khẳng định nào sau đây **sai**?

- (\mathbf{A}) Ba điểm S, I, J thẳng hàng.
- (**B**) Đường thẳng JM thuộc mặt phẳng (SAB).
- (**C**) Đường thẳng SI là giao tuyến của hai mặt phẳng (SAB) và (SCD).
- (\mathbf{D}) Đường thẳng DM thuộc mặt phẳng (SCI).

CÂU 2. Cho hình tứ diện ABCD có M, N lần lượt là trung điểm của AB, BD. Các điểm G, H lần lượt trên cạnh AC, CD sao cho NH cắt MG tại I. Khẳng định nào sau đây là khẳng định đúng?

 $(\mathbf{A}) A, C, I \text{ thẳng hàng.}$

- $(\mathbf{B}) B, C, I \text{ thẳng hàng.}$
- (\mathbf{C}) N, G, H thẳng hàng.

 $(\mathbf{D}) B, G, H \text{ thẳng hàng.}$

 \overrightarrow{CAU} 3. Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi O là giao điểm của hai đường chéo AC và BD. Một mặt phẳng (α) cắt các cạnh bên SA, SB, SC, SD tương ứng tại các điểm M, N, P, Q. Khẳng định nào sau đây đúng?

- (A) Các đường thẳng MP, NQ, SO đồng quy.
- (**B**) Các đường thẳng MP, NQ, SO chéo nhau.

QUICK NOTE		MP, NQ, SO đôi MP, NQ, SO trùn		
				ắt các cạnh SA , SB , SC D . Chọn khẳng định đúng
	trong các khẳng định	ı dưới đây.		
		$\log AB, CD, C'D'$ đồn		
	1 ~	AB, CD, A'B' đồn		
		$\log A'C', B'D', SI$ đồng $SB, AD, B'C'$ đồng	- ·	
				° 1 40 00 16
		F cắt AD , CD lần lượ		n của cạnh $AB,BC.$ Mặt H cắt FG tại $I.$ Ba điển
	\bullet $I, A, B.$		\bigcirc $I, D, B.$	\bigcirc I, C, D.
				của AC và BD . Một mặ
	phẳng (α) cắt các cạ			điểm M, N, P, Q . Khẳng
	định nào đúng?	$\log MN, PQ, SO$ đồn	or conv	
	_ <u>~</u>	$\log MP, NQ, SO$ đồn		
		$\log MQ$, PN , SO đồn		
		$\log MQ, PQ, SO$ đồng		
		₽ Dan	a (Tî oấ	
		∠ Dạn	g 6. Tỉ số	
	CÂU 1. Cho hình ch	óp $S.ABCD$ có đáy là	hình thang $ABCD$ với	$AD \parallel BC $ và $AD = 2BC$
	Gọi M là điểm trên c	eạnh SD thỏa mãn SN	$M = \frac{1}{3}SD$. Mặt phẳng	(ABM) cắt cạnh bên SC
	SN 2		\bigcirc SN 4	\bigcirc SN 1
	$\overline{SC} = \overline{3}.$		$\overline{SC} = \frac{1}{7}$.	$\overline{SC} = \overline{2}$.
	CÂU 2. Cho hình ch là trong tâm $\triangle SAB$	nóp $S.ABCD$ có đáy A	ABCD là hình chữ nh iao điểm của đường t	ật. Gọi M,N theo thứ tư hẳng MN với mặt phẳng
	(SAC), O là tâm của	a hình chữ nhật $ABCI$	D. Khi đó tỉ số $\frac{SG}{GG}$ bầ	àng
	$\frac{3}{2}$.	B 2.	GO 3.	\bigcirc
	2	_		3
		1		iểm của $SA,\ BC$ và P là
	điểm nằm trên cạnh	AB sao cho $AP = \frac{1}{3}A$	B. Gọi Q là giao điểm	của SC và (MNP) . Tính
	$\operatorname{ti} \operatorname{s\acute{o}} \frac{SQ}{SC}$.			
	$\mathbf{A} \frac{SQ}{SQ} = \frac{2}{5}$.		$\bigcirc SQ = \frac{1}{2}$.	$\bigcirc SQ = \frac{3}{9}$.
	CÂU 4. Cho tứ diên	SC 3 ABCD Goi M N lầi	n lượt là trung điểm cử	ia các cạnh $AD,BC,$ điển
	G là trọng tâm của t	tam giác BCD . Gọi I		thẳng MG và mặt phẳng
	(ABC). Khi đó tỉ lệ	$\frac{AN}{NI}$ bằng bao nhiêu?		
	A 1.	B $\frac{1}{2}$.	$\bigcirc \frac{2}{3}$.	\bigcirc $\frac{3}{4}$.
		- 2	9	4
	là trung điểm của cá	c canh AB, SC, Goi	I. I theo thứ tư là gia	nh. Hai điểm M,N thứ tưao điểm của AN,MN vớ
	mặt phẳng (SBD) . T	$\Gamma \text{inh } k = \frac{IIV}{IA} + \frac{JIV}{IM}?$		
		Finh $k = \frac{IN}{IA} + \frac{JN}{JM}$? $\mathbf{B} \ k = \frac{3}{2}.$		
	CÂU 6. Cho tứ diện	n $ABCD$. Gọi I, J lần	n lượt là trung điểm c	ủa AC và BC . Trên cạnh
		cho $BK = 2KD$. Gọi	F là giao điểm của A	AD với mặt phẳng (IJK)
	Tính tỉ số $\frac{FA}{FD}$.			

	7
A	$\frac{1}{3}$

 $\bigcirc \frac{11}{5}$.

 $\bigcirc \hspace{-3pt} \boxed{\frac{5}{3}}.$

CÂU 7. Cho tứ diện ABCD, gọi M là trung điểm của AC. Trên cạnh AD lấy điểm N sao cho AN=2ND, trên cạnh BC lấy điểm Q sao cho BC=4BQ. Gọi I là giao điểm của đường thẳng MN và mặt phẳng (BCD), J là giao điểm của đường thẳng BD và mặt phẳng (MNQ). Khi đó $\frac{JB}{JD} + \frac{JQ}{JI}$ bằng $\frac{13}{20}$.

CÂU 8. Cho hình chóp S.ABCD có đáy là hình thang ABCD với $AD \parallel BC$ và AD = 2BC. Gọi M là điểm trên cạnh SD thỏa mãn $SM=\frac{1}{3}SD$. Mặt phẳng (ABM) cắt cạnh bên SCtại điểm N. Tính tỉ số $\frac{SN}{SC}$.

CÂU 9. Cho hình chóp S.ABCD đáy ABCD là hình bình hành. M, N là lượt là trung điểm của AB và SC. I là giao điểm của AN và (SBD). J là giao điểm của MN với (SBD). Khi đó tỉ số $\frac{IB}{IJ}$ là

- **A** 4.
- **B**) 3.
- $\bigcirc \frac{7}{2}$.

CÂU 10. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, SD và OC. Gọi giao điểm của (MNP) với SA là K. Tỉ số $\frac{KS}{KA}$

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Bài 11. HAI ĐƯỜNG THẨNG SONG SONG

A. LÝ THUYẾT

1. Vị trí tương đối của hai đường thẳng

- f Định nghĩa 11.1. Cho hai đường thẳng a và b trong không gian.
 - \bigcirc Nếu a và b cùng nằm trong một mặt phẳng thì ta nói a và b đồng phẳng. Khi đó, a và b có thể cắt nhau, song song với nhau hoặc trùng nhau.
 - \bigcirc Nếu a và b không cùng nằm trong bất kì mặt phẳng nào thì ta nói a và b chéo nhau. Khi đó, ta cũng nói a chéo với b, hoặc b chéo với a.

Do đó: Cho hai đường thẳng a và b trong không gian. Khi đó, giữa hai đường thẳng sẽ có 4 vị trí tương đối

- 7 Định nghĩa 11.2.
 - ❷ Hai đường thẳng gọi là đồng phẳng nếu chúng cùng nằm trong một mặt phẳng.
 - ❷ Hai đường thẳng gọi là chéo nhau nếu chúng không đồng phẳng.
 - ❷ Hai đường thẳng gọi là song song nếu chúng đồng phẳng và không có điểm chung.
 - ❷ Có đúng một mặt phẳng chứa hai đường thẳng song song.

2. Tính chất hai đường thẳng song song

- 7 TÍNH CHÂT 11.1. Trong không gian, qua một điểm không nằm trên một đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đó.
- † TÍNH CHÂT 11.2. Trong không gian hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
- † Định Lí 11.1. Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy đồng quy hoặc đôi một song song.

Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng song song với hai đường thẳng đó.

B. HỆ THỐNG BÀI TẬP

QUAN HE SONG SONG TRONG KHONG GIAN	P Địa chỉ: KDC Mỹ Điên, TT. Tuy Phước
Dạng 1. Chứng minh hai đường thẳng song song	QUICK NOTE
Cách 1: Sử dụng tính chất đường trung bình, định lí Ta-let để chứng minh hai đư thẳng song song. Cách 2: Chứng minh hai đường thẳng đó cùng song song với đường thẳng thứ ba. Cách 3: Áp dụng định lí giao tuyến của 3 mặt phẳng và hệ quả quả nó.	ờng
1. Bài tập tự luận	
BÀI 1. Cho tứ diện $ABCD$ có $I;J$ lần lượt là trọng tâm của tam giác ABC,ABD . C minh rằng: $IJ \ /\!\!/ CD$.	Chứng
BÀI 2. Cho tứ diện $ABCD$. Gọi M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, R Chứng minh $MPNQ$ là hình bình hành. Từ đó suy ra ba đoạn MN, PQ, RS cắt nh trung điểm G của mỗi đoạn.	
2. Bài tập trắc nghiệm	
CÂU 1. Cho hai đường thẳng phân biệt không có điểm chung cùng nằm trong mộ phẳng thì hai đường thẳng đó	t mặt
A song song. B chéo nhau. C cắt nhau. D trùng nhau	1.
 CÂU 2. Trong các mệnh đề sau, mệnh đề nào đúng? A Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo B Hai đường thẳng chéo nhau khi chúng không có điểm chung. C Hai đường thẳng song song khi chúng ở trên cùng một mặt phẳng. D Khi hai đường thẳng ở trên hai mặt phẳng thì hai đường thẳng đó chéo nhau. 	nhau.
 CÂU 3. Trong các mệnh đề sau, mệnh đề nào đúng? A Hai đường thẳng không có điểm chung thì chéo nhau. B Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau. C Hai đường thẳng phân biệt không song song thì chéo nhau. D Hai đường thẳng chéo nhau thì không có điểm chung. 	
 CÂU 4. Chọn mệnh đề sai trong các mệnh đề sau: A Hai đường thẳng phân biệt có không quá một điểm chung. B Hai đường thẳng cắt nhau thì không song song với nhau. C Hai đường thẳng không có điểm chung thì song song với nhau. D Hai đường thẳng chéo nhau thì không có điểm chung. 	
 CÂU 5. Mệnh đề nào sau đây là mệnh đề đúng? A Hai đường thẳng phân biệt không song song thì chéo nhau. B Hai đường thẳng nằm trong hai mặt phẳng phân biệt thì chúng chéo nhau. C Hai đường thẳng nằm trong một mặt phẳng thì chúng không chéo nhau. D Hai đường thẳng phân biệt không cắt nhau thì chéo nhau. 	
 CÂU 6. Mệnh đề nào đúng? A Hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không chéo nh B Hai đường thẳng phân biệt không cắt nhau thì chéo nhau. C Hai đường thẳng phân biệt không song song thì chéo nhau. 	
 (D) Hai đường thẳng phân biệt lần lượt thuộc hai mặt phẳng khác nhau thì chéo n (CÂU 7. Chọn mệnh đề đúng. (A) Không có mặt phẳng nào chứa hai đường thẳng a và b thì ta nói a và b chéo n (B) Hai đường thẳng song song nhau nếu chúng không có điểm chung. (C) Hai đường thẳng cùng song song với một đường thẳng thứ ba thì song song với 	hau.
D Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau. CÂU 8. Cho hai đường thẳng chéo nhau a và b . Có bao nhiều mặt phẳng chứa a và	à song

 \bigcirc 0.

B 1.

song với b? A Vô số.

QUICK NOTE		ong song với nhau. Chọn khẳng định sai:
	lack Hai đường thẳng a và b cùng nằi	
		với a thì c song song hoặc trùng với b .
	\bigcirc Mọi mặt phẳng cắt a đều cắt b .	
	$lacktriang{f D}$ Mọi đường thẳng cắt a đều cắt b).
	CÂU 10. Cho hai đường thẳng a và b nhau?	o. Điều kiện nào sau đây đủ để kết luận a và b chéo
	\mathbf{A} a và b không có điểm chung.	
	lacksquare a và b là hai cạnh của một hình	tứ diện.
• • • • • • • • • • • • • • • • • • • •	\bigcirc a và b nằm trên hai mặt phẳng j	bhân biệt.
• • • • • • • • • • • • • • • • • • • •	\bigcirc a và b không cùng nằm trên bất	kỳ mặt phẳng nào.
	CÂU 11. Trong không gian, hai đường	g thẳng không đồng phẳng chỉ có thể:
	A Song song với nhau.	B) Cát nhau.
	C Trùng nhau.	D Chéo nhau.
	CÂU 12. Trong không gian nếu hại d	đường thẳng không có điểm chung thì ta có thể kết
	luận gì về hai đường thẳng đó?	duong thang knong to them thang the to the ket
	A Song song với nhau.	B Chéo nhau.
	Cùng thuộc một mặt phẳng.	D Hoặc song song hoặc chéo nhau.
		? Qua một phép chiếu song song, hình chiếu của hai
	đường thẳng chéo nhau có thể là:	
	A Hai đường thẳng chéo nhau.	(B) Hai đường thẳng cắt nhau.
	C Hai đường thẳng song song với n	nhau. (D) Hai đường thẳng phân biệt.
	CÂU 14. Mệnh đề nào sau đây sai ? đường thẳng cắt nhau có thể là:	Qua một phép chiếu song song, hình chiếu của hai
	A Hai đường thẳng cắt nhau.	(B) Hai đường thẳng song song với nhau.
	C Hai đường thẳng trùng nhau.	D Hai đường thẳng phân biệt.
	CÂU 15. Trong không gian, cho ba đị	tờng thẳng $a; b; c$. Trong các mệnh đề sau đây, mệnh
• • • • • • • • • • • • • • • • • • • •	đề nào đúng?	
	A Nếu hai đường thẳng cùng chéo	với một đường thẳng thứ ba thì chúng chéo nhau.
	B) Nếu hai đường thẳng cùng song s nhau.	song với đường thẳng thứ ba thì chúng song song với
	© Nếu $a \not\parallel b$ và $b; c$ chéo nhau thì a	và c chéo nhau hoặc cắt nhau.
	\bigcirc Nếu a và b cắt nhau, b và c cắt n	nhau thì a và c cắt nhau hoặc song song.
	CÂU 16. Cho các mệnh đề sau:	
	(I) Hai đường thẳng song song thì đ	tồng phẳng.
	(II) Hai đường thẳng không có điểm	chung thì chéo nhau.
	(III) Hai đường thẳng chéo nhau thì l	
	(IV) Hai đường thẳng chéo nhau thì l	không đồng phẳng.
	Có bao nhiêu mệnh đề đúng?	
	(A) 1. (B) 3.	© 4. D 2.
	CÂU 17. Trong không gian cho hai đ	ường thẳng song song a và $b.$ Kết luận nào sau đây
	đúng?	
	A Nếu c cắt a thì c cắt b.	
	$lackbox{\textbf{B}}$ Nếu c chéo a thì c chéo b .	
	$f{C}$ Nếu c cắt a thì c chéo b .	
	lacktriangle Nếu đường thẳng c song song vớ	
	CÂU 18. Trong không gian, cho 3 đườ hai đường thẳng b và c	ơng thẳng a,b,c , biết $a \not\parallel b, a$ và c chéo nhau. Khi đó
	A Trùng nhau hoặc chéo nhau.	B Cắt nhau hoặc chéo nhau.
	Chéo nhau hoặc song song.	Song song hoặc trùng nhau.

☑ QUAN HE SON	IG SONG TRONG KI	HONG GIAN	♀ Địa	chỉ: KDC Mỹ Điền, TT. Tuy Phước
CÂU 19. Nếu ba thì ba đường thẳng	0 0	cùng nằm trong một mặt	phẳng và đôi một cắt nhau	QUICK NOTE
A đồng quy. C trùng nhau.		B tạo thành ta	am giác. ong với một mặt phẳng.	
^		0 0		
là?	ốt từ diện. Số cập du	rơng tháng chữa cạnh củ	a tứ diện đó mà chéo nhau	
A 1.	B 2.	© 3.	D 4.	
và qua đỉnh C kẻ c		song song với BD . Khi	thẳng a song song với BD đó	
B Đường thẳng	g a và đường thẳng b	cắt nhau.		
\simeq		không có điểm chung.		
$lue{D}$ Nếu a và b l	không chéo nhau thì	chúng cắt nhau.		
		éo nhau. Một đường thẳn	ng c song song với a . Có bao	
nhiêu vị trí tương	~	© 3.	(A)	
(A) 1.	B 2.		D) 4.	
			điểm các cạnh AB và CD . thẳng nào trong các đường	
hẳng dưới đây?	Sime DCD. Du		no trong out duong	
A Đường thẳn	~	B Đường thẳn		
© Đường thẳn	$\log DN$.	D Đường thẳn	g CD.	
CÂU 24.				
	BCD.EFGH. Mệnh	đề nào sau	A D	
$\hat{\mathbf{A}}$ BG và HD	chéo nhau.	/		
\bigcirc B) BF và AD (
\bigcirc AB song son		$B \leftarrow$	C	
\bigcirc CG cắt HE				
		E .		
			H	
		F	G	
CÂU 25. Cho tứ c	diên $ABCD$, gọi I và	J lần lượt là trong tâm c	của tam giác ABD và ABC .	
Đường thẳng IJ so	ong song với đường n	nào?		
(A) AB .	(\mathbf{B}) CD .	\bigcirc BC.	\bigcirc AD.	
		·	ệt cùng thuộc đường thẳng	
$AB;P,Q$ là hai đi ϵMQ và $NP.$	êm phân biệt cùng th	nuộc đường thăng CD . X	ác định vị trí tương đối của	
$(A) MQ \operatorname{cắt} NI$	Р.	\bigcirc $MQ /\!\!/ NP.$		
		\bigcirc MQ, NP ch	éo nhau.	
CÂU 27. Cho hìn	nh chóp $S.ABCD$ có	đáy $ABCD$ là hình bình	n hành tâm O . Gọi I, J lần	
ượt là trung điểm	của SA và SC . Đườ	rig thẳng \widetilde{IJ} song song v	ới đường thẳng nào?	
$lackbox{A}$ BC.	$lackbox{\textbf{B}} AC.$	© SO.	\bigcirc BD .	
			Vẽ các tia Bx, Cy, Dz song	
			thời không nằm trong mặt g ứng tại B', C', D' sao cho	
BB' = 2, $DD' = 4$		x = 1, can Dx , Cy , Dz inon	15 ung τὰι D , C , D Sau CHO	
A 6.	B 8.	© 2.	D 3.	
CÂU 29. Cho tứ	diện $ABCD$. Gọi G	và E lần lượt là trọng	tâm của tam giác ABD và	
\overrightarrow{ABC} . Mệnh đề nà				
$ \begin{array}{c} \textbf{A} & GE \parallel CD. \\ \hline \\ \textbf{C} & CE \end{array} $		$ \begin{array}{c} \textbf{B} \ GE \ \text{cắt} \ AD \\ \hline \end{array} $		
\bigcirc GE cắt CD	' .	\bigcirc GE và CD	cheo nhau.	

	I .			
QUICK NOTE			eác cạnh AB,AD lần lượt l	
		Gọi P,Q lần lượt là	trung điểm các cạnh CD ,	CB. Mệnh đề nào sau đây
	đúng Từ ciác MNI	PQ là một hình tha	yn er	
		PQ là mọt minh tha PQ là hình bình hà	_	
		N, P, Q không đồn		
			ặp cạnh đối nào song song	
			thau a và b . Lấy A, B thuộc	
	định nào sau đây đ	úng khi nói về hai	đường thẳng AD và BC ?	a va C, D maye o. mang
		song hoặc cắt nhau	\simeq	
	© Song song nh	nau.	(D) Chéo nhau.	
			N, P, Q lần lượt là trung đi	ểm của AC, BC, BD, AD
	Tìm điều kiện để M $(A) AB = BC.$	MPQ là hình thoi	_	\bigcirc $AB - CD$
			cọi A' , B' , C' , D' lần lượt l hẳng sau đây, đường thẳng	
	A'B'?			
	$igathbox{(A)} AB.$	$lackbox{\textbf{B}} CD.$	\bigcirc $C'D'$.	\bigcirc SC .
			ểm M, N lần lượt là trung	
	H, G lần lượt là tr thẳng nào sau đây?		giác BCD ; ACD . Đường t	hẳng HG chéo với đường
	\bigcirc	\bigcirc CD .	\bigcirc CN .	\bigcirc AB.
			\odot đáy $ABCD$ là một hình t	
• • • • • • • • • • • • • • • • • • • •			lượt là trọng tâm các tan	
			ại M, N . Mặt phẳng (BC	(I) cắt SA , SD tại P , Q
• • • • • • • • • • • • • • • • • • • •	Khẳng định nào sau (A) MN song son		lacksquare MN chéo với	PO
	C MN cắt với	-	D MN trùng với	
		Dạng 2. Tìm giá	ao tuyến của hai mặt ph	ang
	⊘ Cách 1: Tìr	n hai điểm chung p	hân biệt của hai mặt phẳn	g.
	❷ Cách 2: Nế	u hai mặt phẳng (<i>H</i>	(Q)); (Q) lần lượt chứa hai đ	\dot{a} rờng thẳng song song a ,
			$(Q) \cap (Q) = Mx \text{ v\'eti } Mx / \text{/} (Q)$	
	1. Bài tập tự l	uận		
			áy là hình bình hành. Điển	n M thuộc cạnh SA , điển
	E và F lần lượt là i	trung điểm của AE	B và BC.	
	a) Xác định giao	tuyến của hai mặt	s phẳng (SAB) và (SCD) .	
	b) Xác định giac	tuyến của hai mặt	phẳng (MBC) và (SAD)	
	c) Xác định giac	tuyến của hai mặt	phẳng (MEF) và (SAC)	
	tại K , điểm M thu		dáy là hình thang có cạnh	dây lớn AD , AB cắt CL
	a) Xác định giao	tuyến (d) của (SA	(D) và (SBC) . Tìm giao đị	ểm N của KM và (SBC)
				om iv caa iiii va (bbc)
		r ang AM , BN , (d)	dong quy.	
	2. Bài tập trắc	c nghiệm		
			ệt lần lượt chứa hai đường	thẳng song song thì giao
	tuyến của chúng (n	· · · · · · · · · · · · · · · · · · ·		
		i hai đường thẳng c		1 . 4
	Song song vớ	nai dường thăng (đó hoặc trùng với một tron	g nai dương thắng đó.

C Trùng với một tro D Cắt một trong ha	ong hai đường thẳng oi i đường thẳng đó.	ðó.	QUICK NOTE
	là giao điểm của SL	D là hình bình hành. Điểm M thuộc cạnh SC D và (MAB) . Khi đó, hai đường thắng CD và	
A Cắt nhau. C Song song.		B Chéo nhau. D Có hai điểm chung.	
SA, SB, SC, SD lần lư sau đây đúng?	rợt tại M, N, P, Q .	hình chữ nhật. Mặt phẳng (P) cắt các cạnh Gọi I là giao điểm của MQ và NP . Câu nào	
$lack A$ $SI \parallel AB$.	lacksquare $SI # AC$.	\bigcirc SI AD. \bigcirc SI BD.	
		ình thang đáy lớn là CD . Gọi M là trung điểm à mặt phẳng (MCD) . Mệnh đề nào sau đây là	
$\stackrel{\cdot}{\mathbf{A}} MN$ và SD cắt n	ihau.	\blacksquare $MN \parallel CD$.	
\bigcirc MN và SC cắt n	hau.	\bigcirc MN và CD chéo nhau.	
CÂU 5. Mệnh đề nào s	au đây đúng?		
A Nếu một mặt phẩ	áng cắt một trong ha	i đường thẳng song song thì mặt phẳng đó sẽ	
cắt đường thẳng c			
	n lượt đi qua hai đười với một trong hai đười	ng thẳng song song thì cắt nhau theo một giao	
		ai đường thẳng song song thì đường thẳng đó	
sẽ cắt đường thẳn		ar attong thang song song tim attong thang to	
Hai mặt phẳng c			
chung đó.			
		CD là hình bình hành. Gọi d là giao tuyến của	
hai mặt phẳng (SAD) v	, , ,		
(A) d qua S và song s (C) d qua S và song s	_	B d qua S và song song với DC . D d qua S và song song với BD .	
^			
là trọng tâm tam giác		heo thứ tự là trung điểm của AD và AC , G la hai mặt phẳng (GIJ) và (BCD) là đường	
thẳng \bigcirc qua I và song son	ng với AB	$lackbox{\textbf{B}}$ qua J và song song với BD .	
C qua G và song son	_	\bigcirc qua G và song song với BC .	
•			
CAU 8. Cho ba mặt p $(\alpha) \cap (\gamma) = d_3$. Khi đó b		$(\beta), (\gamma) \operatorname{co}(\alpha) \cap (\beta) = d_1; (\beta) \cap (\gamma) = d_2;$	
A Đôi một cắt nhau		B Đôi một song song.	
C Đồng quy.		D Đôi một song song hoặc đồng quy.	
CÂU 9. Cho hình chóp	S.ABCD có đáy Al	BCD là hình bình hành. Gọi I là trung điểm	
_		oởi mặt phẳng (IBC) là	
\bigcirc Tam giác IBC .			
\simeq	J (J là trung điểm SI		
\simeq	C (G là trung điểm S	B).	
\bigcirc Tứ giác $IBCD$.			
(α) qua MN cắt tứ diệ		n lượt là trung điểm AB và AC . Mặt phẳng diện là đa giác (T) . Khẳng định nào sau đây	
đúng?	h a t		
(A) (T) là hình chữ nh	nat.		
(\mathbf{B}) (T) là tam giác. (\mathbf{C}) (T) là hình thoi.			
\simeq ` $'$	oặc hình thang hoặc l	nình bình hành.	

QUICK NOTE	CÂU 11. Gọi G là trọng tâm tứ diện $ABCD$. Giao tuyến của mặt phẳng (ABG) và mặt phẳng (CDG) là
	phẳng (CDG) là \bigcirc Đường thẳng đi qua trung điểm hai cạnh BC và AD .
	B) Dường thẳng đi qua trung điểm hai cạnh AB và CD .
	C Dường thẳng đi qua trung điểm hai cạnh AC và BD .
	lacklacklacklacklacklacklacklack
	CÂU 12. Cho Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Qua S kẻ Sx ; Sy lần lượt song song với AB , AD . Gọi O là giao điểm của AC và BD . Khi đó, khẳng định nào
	dưới đây đúng?
	(A) Giao tuyến của (SAC) và (SBD) là đường thẳng Sx .
	$lackbox{\textbf{B}}$ Giao tuyến của (SBD) và (SAC) là đường thẳng Sy .
	\bigcirc Giao tuyến của (SAB) và (SCD) là đường thẳng Sx .
	\bigcirc Giao tuyến của (SAD) và (SBC) là đường thẳng Sx .
	CÂU 13. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Mặt phẳng (α) qua
	AB và cắt cạnh SC tại M ở giữa S và C . Xác định giao tuyến d giữa mặt phẳng (α) và
	(SCD).
	lacksquare Đường thẳng d qua M song song với AC .
	$lackbox{\textbf{B}}$ Đường thẳng d qua M song song với CD .
	$igcup {f C}$ Đường thẳng d trùng với MA .
	$lackbox{ extbf{D}}$ Đường thẳng d trùng với MD .
	CÂU 14. Cho tứ diện $ABCD$. Gọi M và N lần lượt là trung điểm của $AB,\ AC$. Gọi E
	là điểm trên cạnh CD với $ED=3EC$. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện
	ABCD là
	igatharpoonup Tam giác MNE .
	$ig(egin{array}{c} \egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \egin{array}{c} egin{array}{c} \egin{array}{c} egin{array}{c} \egin{array}{c} a$
	\bigcirc Hình bình hành $MNEF$ với F là điểm trên cạnh BD thỏa mãn $EF \parallel BC$.
	$lacktriangle$ Hình thang $MNEF$ với F là điểm trên cạnh BD thỏa mãn $EF \parallel BC$.

QUICK NOTE

C. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM

Dang	1. Câu	hỏi l	ź thuy	νếΙ

	🗁 Dạng 1	l. Câu hỏi lý thuyết			
CÂU 1. Trong các ph		~	4:1		
\simeq	-	chung thì song song vớ	on nnau.		
\simeq	0	chung thì chéo nhau.			
\simeq	-	g cắt nhau thì song son	_	1	
Hai dương thần	g không năm trêi	n cùng một mặt phẳng	thi chèo	nhau.	
	ng thẳng phân biệ	ệt a và b trong không gi	ian. Có b	ao nhiêu vị trí tương	
đối giữa a và b ?	B) 1.	(C) 2.		(D) 4.	
•				4.	
CÂU 3. Trong các m		~	o∵ 1		
\simeq	~ ~	chung thì song song vớ	on nnau.		
\simeq	ig cheo nhau thi r ig không song son	không có điểm chung.			
\simeq		ig tin cat nnau. 1 và không song song tl	hì chác n	h o	
•			ш спео п	nau.	
CÂU 4. Trong các m	ệnh đề sau, mệnh	đề nào đúng?			
Trong không gian: A Hại đường thẳn	ug không có điểm	chung thì song song.			
\simeq	~ ~	chung thì chéo nhau.			
\simeq	~ ~	g, không cắt nhau thì	chéo nha	11.	
\simeq		và chỉ khi chúng nằm t			
không có điểm		O O	O	0 1	
CÂU 5. Trong các kh	iẳng định sau, có	bao nhiêu khẳng định	sai?		
(1) Hai duong than	.g cneo nnau tni c	chúng có điểm chung.			
(II) Hai đường thẳn	g không có điểm	chung là hai đường thẳ	ing song s	song hoặc chéo nhau.	
(III) Hai đường thẳn	ng song song với n	hau khi chúng ở trên c	cùng một	mặt phẳng.	
(IV) Khi hai đường nhau.	thẳng ở trên hai	mặt phẳng phân biệt	thì hai d	tường thẳng đó chéo	
A) 1.	B) 2.	© 3.		D) 4.	
CAU 6. Trong không song với <i>a</i> . Khẳng địn			nhau. Mộ	t đường thắng c song	
song voi a . Khang dịn b và c chéo nha	· ·	$oxed{\mathbf{B}} b ext{ và } c ext{ cắt}$	nhau		
\simeq	u hoặc cắt nhau.	\simeq		i nhau.	
^					
		cắt nhau từng đôi một i trí tương đối của d_2 v		giao tuyen a_1, a_2, a_3	
(A) Chéo nhau.	B Cắt nhau			D trùng nhau.	
CÂU 8. Trong các m	ônh đồ sau mônh	đề nào đúng?			
		chung thì chéo nhau.			
\simeq	~ ~	không có điểm chung.			
\sim .	ng không song son				
\simeq		ı và không song song tl	hì chéo n	hau.	
•		; với mặt phẳng (α) . No			
giao tuyến là b thì a v			$\operatorname{cu}(\rho)$ CI	(μ) (μ) (μ)	
(A) cắt nhau.	9	(B) trùng nha	ıu.		

song song với nhau.

C chéo nhau.

QUICK NOTE	CÂU 10. Cho hình tứ	$\operatorname{di\hat{e}n}\ ABCD$. Khẳi	ng định nào sau đây đú	ng?
	lack AB và CD cắt r	ıhau.		
	lacksquare AB và CD chéo	nhau.		
	\bigcirc AB và CD song	song.		
	D Tồn tại một mặt	phẳng chứa AB và	CD.	
	CÂU 11. Trong các k	hẳng đinh sau, khẳn	g định nào đúng?	
		g không có điểm chư		
	B Hai đường thẳng	g phân biệt không cấ	it nhau thì song song.	
	C Hai đường thẳng	g không cùng nằm tr	en một mặt phẳng thì	chéo nhau.
	Hai đường thẳng	g không có điểm chu	ng thì song song với nh	au.
	CÂU 12. Cho hai đườ định nào sau đây đúng A Cắt nhau. 			a và C, D thuộc b . Khẳng u.
	Có thể song son	g hoặc cắt nhau.	Chéo nhau.	
	CÂU 13. Trong không b. Khẳng định nào sau		thẳng phân biệt a, b, c	trong đó a song song với
		*	ứa cả hai đường thẳng	a và b .
		với c thì a song son		
			~	g a, b và AB cùng ở trên
	một mặt phẳng.			
	$lackbox{D}$ Nếu c cắt a thì a	$c \cot b$.		
	CÂU 14. Cho đường	thẳng a nằm trên n	np(P), đường thẳng b c	ắt (P) tại O và O không
	thuộc a . Vị trí tương đ			
	A chéo nhau.		B cắt nhau.	
	© song song với nh	ıau.	D) trùng nhau.	
			a, b và điểm M không ti qua M và đồng thời co \bigcirc 2.	huộc a cũng không thuộc ắt cả a và b ? D 1.
	b song song với mặt ph		nào sau đây là đúng?	hẳng (P) và đường thẳng
	(A) a // b.		$(\mathbf{B}) a, b$ không có	
	\bigcirc a, b cắt nhau.		\bigcirc a, b chéo nhau	
	CÂU 17. Trong các m		_	
		~ ~	chông có điểm chung th	
	B) Trong không gia chéo nhau.	ın hai đường thăng	lân lượt năm trên hai	mặt phẳng phân biệt thì
		n hại đường thổng r	ohân biệt không song so	ng thì chéo nhau
			nau thì không có điểm c	-
	Dạng 2. Một	sô bài toán liên qu	ıan đến hai đường th	náng song song
			DCDN 1	10 0 0 1 112 1 11
				tâm O . Gọi I , J lần lượt ẳng nào trong các đường
	thẳng sau?		000	
	\bigcirc AC.	$lackbox{\textbf{B}} BC.$	\bigcirc SO.	\bigcirc BD .
	CÂU 2. Cho hình chố	p $S.ABC$ và G,K lầ	n lượt là trong tâm tam	giác SAB, SBC. Khẳng
	định nào sau đây là đú	ing?		
	lack AGK # AB.	$lackbox{\textbf{B}} GK \ /\!\!/ \ BC.$	\bigcirc $GK \parallel AC$.	\bigcirc $GK \parallel SB$.
	CÂU 3. Cho hình chố	op $S.ABCD$ có AD	không song song với E	BC. Gọi $M; N; P; Q; R; T$
	lần lượt là trung điểm			thẳng nào sau đây song
	song với nhau?			

			<u> </u>	
lacklacklacklacklacklacklacklack	lacksquare MQ và RT .	\bigcirc MN và RT .	\bigcirc PQ và RT .	QUICK NOTE
CÂU 4. Cho hình chóp tâm của ΔSAB ; ΔSAD (A) CD .				
CÂU 5. Cho hình chóp trung điểm của AB , CD Trong các đường thẳng A AD .	và G_1, G_2 lần lượt là	trọng tâm của các cại		
CÂU 6. Cho hình chóp trung điểm của các cạnh (A) $C'D'$.	v		· · · · · · · · · · · · · · · · · · ·	
CÂU 7. Cho tứ diện A Khẳng định nào sau đây (A) MN CD.		lượt là trọng tâm của \bigcirc $MN \ /\!\!/ \ BD.$	tam giác ABC , ABD .	
CÂU 8. Cho hình chóp xét các mệnh đề:	S.ABCDđáy là hìn	h bình hành tâm O , I	V là trung điểm của SC ,	
(I) Đường thẳng IO s	song song với SA .			
(II) Mặt phẳng (IBD)	cắt hình chóp $S.AB$	CD theo thiết diện là	một tứ giác.	
(III) Giao điểm của đư (SBD) .	ờng thẳng AI với m	ặt phẳng (SBD) là t	rọng tâm của tam giác	
(IV) Giao tuyến của ha	i mặt phẳng (IBD) y	và (SAC) là IO .		
Số mệnh đề đúng trong	,	(2110) 14 101		
A 2.	B 4.	© 3.	D 1.	
CÂU 9. Cho tứ diện A	BCD. Gọi I và J lầi	n lượt là trọng tâm Δ	ABC và ΔABD . Mệnh	
đề nào dưới đây đúng? \bigcirc IJ song song với \bigcirc IJ chéo nhau với		$lackbox{\bf B} IJ ext{ song song vo} \ lackbox{\bf D} IJ ext{ cắt } AB.$	ới AB .	
Gọi G và G' lần lượt là \widehat{d} đường thẳng	trọng tâm tam giác S	AB và SAD . Đường t	đáy lớn AD , $AD = 2BC$. chẳng GG' song song với	
(A) AB .	$lackbox{\textbf{B}} AC.$	\bigcirc BD.	\bigcirc SC .	
CAU 11. Cho tứ diện ABC. Mệnh đề nào dước A GE và CD chéo t C GE cắt AD.	i đây đúng	lần lượt là trọng tâm	ı của tam giác ABD và	
	song song với mặt p v sai?		$D (M \neq A, D)$. Gọi (P) cắt BD , DC tại N , P .	
CÂU 13. Cho tứ diện A Đường thẳng IJ song so (A) CM trong đó M (C) DB.	ABCD. Gọi I, J lần lương với đường thẳng:			
CÂU 14. Cho hình chó là trọng tâm ΔSAB ; $\Delta SSAB$; $\Delta SSAB$ bằng	_		t. Gọi M, N theo thứ tự $\mathop{\mathrm{dig}}\nolimits BM; CN.$ Khi đó tỉ	
A 1.	\bigcirc $\frac{1}{2}$.	\bigcirc $\frac{2}{3}$.	\bigcirc $\frac{3}{2}$.	
	ABCD. Điểm P, Q	ần lượt là trung điển	~ 2 n của AB , CD . Điểm R it phẳng (PQR) và AD .	
Khi đó	$\mathbf{\widehat{B}}) SA = 2SD.$		$\widehat{\mathbf{D}} \ 2SA = 3SD.$	

QUICK NOTE	SC. Lấy điểm M đố	i xứng với B qua A . Gọ		N là trung điểm của cạnh thẳng MN và mặt phẳng
	(SAD) là G . Tính tự	$\mathring{y} \stackrel{\circ}{\text{so}} \frac{GM}{GN}$.		
	$\frac{1}{2}$.	$\bigcap_{\mathbf{R}} 1$	(c) 2.	(D) 3.
	$\overline{2}$.	$\overline{3}$.	2.	5.
				tiểm của AB và CD ; điểm
			'. Gọi S là giao điểm $\mathfrak c$	của mặt phẳng (PQR) và
	cạnh AD . Tính tỷ số	$\frac{SH}{SD}$.		
	$\frac{7}{3}$.	B) 2.	$\frac{5}{3}$.	\bigcirc $\frac{3}{2}$.
			9	2
				ên ba cạnh AB , CD , BC AD và mặt phẳng (PQR)
	là S . Khẳng định nà		diem eda ddong mang	11D va mán bhang (1 &10)
	AS = 3DS.		\bigcirc $AD = 2DS$.	
				$^ ^ ^ ^ ^ ^ ^ ^ ^ ^-$
				D với (KLN) . Tính tỷ số
	$\frac{PA}{RR}$.			
	PA 1		\bigcirc PA 3	\bigcirc PA
	$\frac{\mathbf{A}}{PD} = \frac{1}{2}.$	$\stackrel{\textbf{(B)}}{PD} = \frac{1}{3}.$	$\overline{PD} = \overline{2}$.	$\overline{PD} = 2.$
				C = 2MB. Gọi N, P lần
	lượt là trung điểm <i>E</i>	BD và AD . Điểm Q là	giao điểm của AC với	(MNP) . Tính $\frac{QC}{QA}$.
	QC = 3	\bigcirc QC 5	\bigcirc QC	$QC \qquad QA$
	$\frac{\mathbf{A}}{QA} = \frac{1}{2}.$	$\bigcirc \!$	$\frac{\mathbf{C}}{QA} = 2.$	$\frac{Q}{QA} = \frac{1}{2}$.
	CÂU 21. Cho hình	chóp S.ABCD có đáy	là hình bình hành. G	ọi M,N lần lượt là trung
	điểm AB , AD và G			(NG) cắt SC tại điểm H
	Tính $\frac{SH}{GG}$.			
	$\begin{array}{c} \text{Tính } \frac{SH}{SC}.\\ & \begin{array}{c} 2\\ \hline 5 \end{array}. \end{array}$	\bigcirc $\frac{1}{4}$.	\bigcirc $\frac{1}{3}$.	\bigcirc $\frac{2}{3}$.
	$\frac{\mathbf{A}}{5}$.	$\overline{4}$.	$\overline{3}$.	$lue{lue}$ $\overline{3}$.
				ấy một điểm O bất kì. Từ
	O ta dựng các đườn	ng thắng lần lượt song	song với SA , SB , SC	C và cắt các mặt (SBC)
	(SCA), (SAB) theo	thứ tự tại A' , B' , C' .	Khi đó tổng tỷ số $T =$	$\frac{OA'}{SA} + \frac{OB'}{SB} + \frac{OC'}{SC} \text{ bằng}$
	bao nhiêu?			
			(c) $T = 1$.	
	D Dam		ann ann để tìm ci	an kurấn
	— ⊅án	g 3. Sử dụng yếu tố	song song de 11m gi	ao tuyen
	CÂU 1. Cho hình c	hóp <i>S.ABCD</i> có đáy z	4 <i>BCD</i> là hình bình hà	nh. Gọi M,N lần lượt là
		SD. Khi đó giao tuyến		
	A Đường thẳng	CI , với $I = MN \cap BI$	D. B Đường thẳng	MN.
	© Đường thẳng	BD.	Dường thẳng	d đi qua C và $d \parallel BD$.
	CÂU 2. Cho hình c	chóp S.ABCD có đáy	ABCD là hình thang	với $AD \parallel BC$. Gọi M là
	trung điểm của SC .			(MAD). Kết luận
	nào sau đây là sai?			
			B d // AD.	1
	$\bigcirc d \operatorname{c\'at} SA.$		\bigcirc d và AC chéo	
				M là trung điểm SA , (α)
	là mặt phẳng đi qua M và song song với mặt phẳng $(ABCD)$, $d=(\alpha)\cap(SAB)$. Khi đó			
	(A) d là đường thẳng đi qua M và song song AD.			
	$egin{aligned} egin{aligned} \textbf{B} \ d \ \text{là dường thẳng đi qua } M \ \text{và song song } BC. \\ \hline \textbf{C} \ d \ \text{là đường thẳng đi qua } M \ \text{và song song } AC. \end{aligned}$			
	$lackbox{0}{a}$ là đường thẳng đi qua M và song song AC . $lackbox{0}{a}$ là đường thẳng đi qua M và song song AB .			
	$\mu = u$ ia duong the	ang ur qua <i>m</i> va song i	song AD .	

	chóp $S.ABCD$ có đáy là	hình bình hành	. Giao tuyến của (SAB) và	QUICK NOTE
(SCD) là (SCD) là Đường thẳng qua S và song song với AD .				
B Dường thẳng				
© Đường SO vớ				
D Đường thẳng				
•		1 1	1 42 2 40 12 10	
	chóp $S.ABCD$ có đáy là hìn BC) là đường thẳng qua S			
$(SAB) \cap (SAB)$,	va song song AC	·	
C AD // (SBC)	,			
\bigcirc AD $//$ (SBC)				
^				
			Gọi I , J là trung điểm AB D) là đường thẳng song song	
với	o tuyen cua 2 mat phang	(SAD) va (SCL) la duolig thang song song	
lack AD.	$lackbox{\textbf{B}} IJ.$	\bigcirc BJ .	$lackbox{D}$ BI .	
CÂU 7. Cho hình	chóp S.ABCD có đáy (AE	(BCD) là hình bìn	nh hành. Gọi d là giao tuyến	
	(SAD) và (SBC) . Khẳng c			
A Đường thẳng	dđi qua S và song song v	ới AB .		
B Đường thẳng	dđi qua S và song song v	ới DC .		
© Đường thẳng	dđi qua S và song song v	ới BC .		
D Đường thẳng	dđi qua S và song song v	ới BD .		
CÂU 8. Cho hình	chóp $S.ABCD$ có đáy là h	inh thang (AB	$/\!\!/ (CD)$. Gọi I, K lần lượt là	
trung điểm AD và B	BC;G là trọng tâm tam giá	- (giao tuyến của hai mặt phẳng	
(IKG) và (SAB) là				
$\tilde{\sim}$; qua S và song song AB , I	K.		
$lackbox{\textbf{B}}$ Đường thẳng qua S và song song AD .				
\bigcirc Đường thẳng qua G và song song BC .				
D Đường thẳng	; qua G và song song AB , B	K.		
CÂU 9. Cho hình chóp $S.ABCD$ có đáy là hình thang $ABCD$ $(AB \parallel CD)$. Gọi E, F lần lượt là trung điểm của AD và BC . Giao tuyến của hai mặt phẳng (SAB) và (SCD) là A Đường thẳng đi qua S và giao điểm của hai đường thẳng AB và SC .				
\simeq	; đi qua S và song song AD			
\simeq	; đi qua S và song song AF			
•	; đi qua S và song song EF			
			g $(AB \parallel CD)$. Gọi M, N, P	
lân lượt là trung di là	$\stackrel{\text{den}}{=} BC$, $\stackrel{\text{den}}{=$	tuyên của hai m	ặt phẳng (SAB) và (MNP)	
	g qua M và song song BC .	(B) Đường thẳ	ng qua P và song song AB .	
© Đường thẳng		\simeq	ng qua S và song song AB .	
CÂU 11. Cho hình	r n chóp S ABCD có đáy AF	SCD là hình tha	$\operatorname{ang}(AB \parallel CD)$. Gọi I, J lần	
			AB. Giao tuyến của hai mặt	
phẳng (SAB) và $(I$			·	
\simeq	g qua S và song song AB .	B Đường thẳ	ng qua G và song song DC .	
\bigcirc SC .		D Đường thẳ	ng qua G và cắt BC .	
CÂU 12. Cho hìnl	h chóp $S.ABCD$ có đáy A	BCD là hình th	nang, $AD \parallel BC$. Giao tuyến	
$ \stackrel{\text{của }(SAD)}{} \text{và } (SB) $,			
\simeq	; đi qua S và song song với			
B Đường thẳng				
© Đường thẳng				
(D) Đường thẳng				
CÂU 13. Cho hình chóp $S.ABCD$, đáy $ABCD$ là hình bình hành. Giao tuyến của hai mặt				
phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?				

QUICK NOTE	$igathbox{A}D.$	lacksquare AC .	\bigcirc DC.	\bigcirc BD .	
	tuyến của hai mặt			g điểm của AB và AC . Giao g song song với đường thẳng	
	nào sau đây? \bigcirc	$lackbox{\textbf{B}}$ BC .	\bigcirc AB.	\bigcirc SA .	
		, H là giao điểm của A		tâm $O.M$ là một điểm bất BD). Trong các khẳng định	
	lacklacklack H là giao đ	liểm của AM và SD . liểm của AM và BD .	\simeq	iểm của AM và SB . iểm của AM và SO .	
	>	Dạng 4. Sử dụng yếu	tố song song tìm t	hiết diên	
				ểm của các cạnh AB,AD,CL	
	BC. Tìm điều kiệ. $AB = BC$.	n để $MNPQ$ là hình tho $\mathbf{B}) BC = AD.$		$\mathbf{D}) AB = CD.$	
	•			ıh. Gọi M là trung điểm của	
		a mặt phẳng (MCD) với			
	A Tam giác.	B Hình bình hà	ành. © Hình thang	. D Hình thoi.	
	CÂU 3. Cho hình	n chóp $S.ABCD$ có đáy	ABCD là hình thang	g, $AD \parallel BC, AD = 2BC.M$	
	là trung điểm của	SA. Mặt phẳng (MBC) cắt hình chóp theo	thiết diện là	
	•	hành. (B) Tam giác.	(C) Hình chữ n		
	CAU 4. Cho tứ d <i>AM AN</i> 1	liện $ABCD$. Trên các cạ	nh AB , AD lần lượt	lấy các điểm M, N sao cho	
		Gọi P, Q lân lượt là tru	ng điệm các cạnh CI	O, CB. Khẳng định nào sau	
	đây là đúng	NDO 18 18 1 18 1 18 1			
	\simeq	VPQ là hình bình hành.			
	(B) Tứ giác $MNPQ$ là một hình thang nhưng không phải hình bình hành. (C) Bốn điểm M, N, P, Q đồng phẳng.				
	\simeq	N,N,P,Q đóng pháng. NPQ không có cặp cạnh	đối nào song song		
	M, N, P lần lượt	là trung điểm các cạnh		= $O, A'C' \cap B'D' = O'$. Gọi t ó thiết diện do mặt phẳng	
	`	lập phương là hình	NI	D I	
	(A) Tam giác.	(B) Tứ giác.	C Ngũ giác.	D Lục giác.	
				bình hành. Gọi M là trung	
		m 1v nam tren cạnh 5B nh nào sau đây sai?	sao cho $SN = 2NB$	C và O là giao điểm của AC	
		của hình chóp $S.ABCD$	với mặt phẳng (AM	(N) là một hình thang.	
	B Đường thẳn	ng MN cắt mặt phẳng (z	ABCD).		
	C Hai đường t	thẳng MN và SC chéo r	nhau.		
	D Hai đường t	thẳng MN và SO cắt nh	nau.		
	CÂU 7. Cho tứ d	liện $ABCD$. Gọi M là t	rung điểm của AB . (Cắt tứ diện $ABCD$ bới mặt	
		và song song với BC và A			
	A Tam giác đ		B Tam giác vi	uông.	
	C Hình bình l	hành.	D Ngũ giác.		
				hành. Gọi M là trung điểm điểm của AC và BD . Khẳng	
	định nào sau đây		$D_{11} = 2DD, O$ la glao (nom cua no va DD. Knallg	
	lacksquare Đường thẳng MN cắt mặt phẳng $(ABCD)$.				
	f B Thiết diện của hình chóp $S.ABCD$ với mặt phẳng (AMN) là một hình thang.				
	Hai đường t	thẳng MN và SO cắt nh	nau.		
	lacktriangle Hai đường thẳng MN và SC chéo nhau.				

RONN HE SOME SOME IKONG KHONG GIAN	♥ Địa chi: KDC My Điện, 11. Tuy Phước ♥
CÂU 9. Cho hình chóp tứ giác $S.ABCD$, có đáy $ABCD$ là hình bình hàn lần lượt là trung điểm của các cạnh SA, SB và BC . Thiết diện tạo bởi mặt và hình chóp $S.ABCD$ là (A) Tứ giác $MNPK$ với K là điểm tuỳ ý trên cạnh AD . (B) Tam giác MNP . (C) Hình bình hành $MNPK$ với K là điểm trên cạnh KD mà KD mà KD E	phẳng (MNP)
CÂU 10. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâi trung điểm của OB , (α) là mặt phẳng đi qua M , song song với AC và son Thiết diện của hình chóp $S.ABCD$ khi cắt bởi mặt phẳng (α) là hình gì? A Lục giác. B Ngũ giác. C Tam giác.	m O . Gọi M là
CÂU 11. Cho tứ diện $ABCD$. Gọi M,N lần lượt là trung điểm của AE trên cạnh CD với $ED=3EC$. Thiết diện tạo bởi mặt phẳng (MNE) và	
là (A) Tam giác MNE . (B) Tứ giác $MNEF$ với E là điểm bất kì trên cạnh BD . (C) Hình bình hành $MNEF$ với E là điểm trên cạnh BD mà $EF \parallel BC$. (D) Hình thang $MNEF$ với E là điểm trên cạnh BD mà $EF \parallel BC$.	
CÂU 12. Cho hình chóp $S.ABCD$ với các cạnh đáy là AB,CD . Gọi I,J l điểm của các cạnh AD,BC và G là trọng tâm tam giác SAB . Tìm k với thiết diện của mặt phẳng (GIJ) với hình chóp $S.ABCD$ là hình bình hành $(A)K=4$. $(B)K=2$. $(C)K=1$.	AB = kCD để
CÂU 13. Cho tứ diện $ABCD$. Gọi M và N lần lượt là trung điểm của AB trên cạnh CD với $ED=3EC$. Thiết diện tạo bởi mặt phẳng (MNE) và là	
 A Tam giác MNE. B Tứ giác MNEF với F là điểm bất kì trên cạnh BD. C Hình bình hành MNEF với F là điểm bất kì trên cạnh BD mà E. BC. 	F song song với
\bigcirc Hình thang $MNEF$ với F là điểm trên cạnh BD mà EF song song	với BC.
CÂU 14. Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi M, N, I l điểm của SA, SB, BC điểm G nằm giữa S và I sao cho $\frac{SG}{SI} = \frac{3}{4}$. Thiết diệ	
S.ABCD với mặt phẳng (MNG) là $lacktriangle$ hình thang. $lacktriangle$ hình thang. $lacktriangle$ hình than giác. $lacktriangle$ hình bình hành. $lacktriangle$ h	nình ngũ giác.
	The state of the s

LỜI GIẢI CHI TIẾT

Bài 10. ĐƯỜNG THẨNG VÀ MẶT PHẨNG TRONG KHÔNG GIAN

A. TÓM TẮT LÝ THUYẾT

1. Khái niệm mở đầu

- \odot Điểm A thuộc mặt phẳng (P), kí hiệu $A \in (P)$.
- Điểm B không thuộc mặt phẳng (P), kí hiệu $B \notin (P)$. Nếu $A \in (P)$ ta còn nói A nằm trên (P), hoặc (P) chứa A, hoặc (P) đi qua A.

- Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng.
- Hình biểu diễn của hai đường thẳng song song là hai đường thẳng cắt nhau là hai đường thẳng cắt nhau.
- \[
 \overline{\text{\$\leftar}} \] Hình biểu diễn giữ nguyên quan hệ thuộc giữa điểm và đường thẳng.
 \]
- Oùng nét liền để biểu diễn cho đường nhìn thấy và nét đứt đoạn để biểu diễn cho đường bị che khuất.

Hình 4.3. Hình biểu diễn của hình chóp tam giác đều và hình lập phương.

Các quy tắc khác sẽ được học ở phần sau.

2. Các tính chất thừa nhận

- 7 TÍNH CHẬT 10.1. Có một và chỉ một đường thẳng đi qua hai điểm phân biệt.
- 7 TÍNH CHẬT 10.2. Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng.
- 7 TÍNH CHẬT 10.3. Tồn tại bốn điểm không cùng thuộc một mặt phẳng.
- 7 TÍNH CHÂT 10.4. Nếu một đường thẳng có hai điểm phân biệt cùng thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.
- † TÍNH CHẬT 10.5. Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng còn có một điểm chung khác nữa. Vậy thì: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung đi qua điểm chung ấy. Đường thẳng đó được gọi là giao tuyến của hai mặt phẳng.
- TÍNH CHẬT 10.6. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng.

3. Cách xác định mặt phẳng

Một mặt phẳng hoàn toàn xác định khi biết:

- ❷ Nó đi qua ba điểm không thẳng hàng.
- ❷ Nó đi qua một điểm và một đường thẳng không đi qua điểm đó.
- ❷ Nó chứa hai đường thẳng cắt nhau.

Các kí hiệu:

- \odot (ABC) là kí hiệu mặt phẳng đi qua ba điểm không thẳng hàng A, B, C.
- \odot (M,d) là kí hiệu mặt phẳng đi qua d và điểm $M \notin d$.
- Θ (d_1, d_2) là kí hiệu mặt phẳng xác định bởi hai đường thẳng cắt nhau d_1, d_2 .

4. Hình chóp và hình tứ diện

Trong mặt phẳng (α) cho đa giác lồi $A_1A_2...A_n$. Lấy điểm S nằm ngoài (α) . Lần lượt nối S với các đỉnh A_1, A_2, \ldots, A_n và n tam giác $SA_1A_2, SA_2A_3, \ldots, SA_nA_1$ được gọi là hình chóp, kí hiệu là $S.A_1A_2...A_n$. Ta gọi:

- \odot S là đỉnh;
- \odot Da giác $A_1 A_2 \dots A_n$ là đáy;
- \bigcirc Các đoạn $SA_1, SA_2, ..., SA_n$ là các cạnh bên;
- \bigcirc Các đoạn $A_1A_2, A_2A_3, ..., A_nA_1$ là các cạnh đáy;
- \odot Các tam giác SA_1A_2 , SA_2A_3 ,..., SA_nA_1 là các mặt bên.

Cho bốn điểm A, B, C, D không đồng phẳng. Hình gồm bốn tam giác ABC, ABD, ACD và BCD được gọi là tứ diện ABCD.

B. HỆ THỐNG BÀI TẬP

Dạng 1. Tìm giao tuyến của hai mặt phẳng

Để xác định giao tuyến của hai mặt phẳng, ta tìm hai điểm chung của chúng. Đường thẳng đi qua hai điểm chung đó là giao tuyến.

Lưu ý: Diểm chung của hai mặt phẳng (α) và (β) thường được tìm như sau: Tìm hai đường thẳng a, b lần lượt thuộc (α) và (β) , đồng thời chúng cùng nằm trong mặt phẳng (γ) nào đó; giao điểm $M=a\cap b$ là điểm chung của (α) $v\grave{a}$ (β) .

1. Bài tấp tư luân

BAI 1. Cho hình chóp S.ABCD, đáy ABCD là tứ giác có các cặp cạnh đối không song song, điểm M thuộc cạnh SA. Tìm giao tuyến của các cặp mặt phẳng:

a) (SAC) và (SBD).

b) (SAC) và (MBD).

c) (MBC) và (SAD).

d) (SAB) và (SCD).

Dèi giải.

a) Gọi
$$O = AC \cap BD \Rightarrow \begin{cases} O \in AC \subset (SAC) \\ O \in BD \subset (SBD) \end{cases} \Rightarrow O \in (SAC) \cap (SBD).$$

Lại có $S \in (SAC) \cap (SBD).$
 $\Rightarrow SO = (SAC) \cap (SBD).$

b)
$$O = AC \cap BD \Rightarrow \begin{cases} O \in AC \subset (SAC) \\ O \in BD \subset (MBD) \end{cases} \Rightarrow O \in (SAC) \cap (MBD).$$

Và $M \in (SAC) \cap (MBD) \Rightarrow OM = (SAC) \cap (MBD).$

c) Trong
$$(ABCD)$$
, goi $F = BC \cap AD \Rightarrow \begin{cases} F \in BC \subset (MBC) \\ F \in AD \subset (SAD) \end{cases} \Rightarrow F \in (MBC) \cap (SAD).$ Và $M \in (MBC) \cap (SAD) \Rightarrow FM = (MBC) \cap (SAD).$

d) Trong (ABCD), gọi $E = AB \cap CD$, ta có $SE = (SAB) \cap (SCD)$.

BÀI 2. Cho hình chóp S.ABCD có $AC \cap BD = M$ và $AB \cap CD = N$. Tìm giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD).

🗩 Lời giải.

Ta có $(SAC) \cap (SBD) = SM$.

BÀI 3. Cho tứ diện ABCD. G là trọng tâm tam giác BCD. Tìm giao tuyến của hai mặt phẳng (ACD) và (GAB). \bigcirc Lời giải.

A là điểm chung thứ nhất của (ACD) và (GAB).

G là trọng tâm tam giác BCD, N là trung điểm CD nên $N \in BG$ nên N là điểm chung thứ hai của (ACD) và (GAB). Vậy giao tuyến của hai mặt phẳng (ACD) và (GAB) là AN.

BÀI 4. Cho hình chóp S.ABCD. Gọi I là trung điểm của SD, J là điểm trên SC và không trùng trung điểm SC. Tìm giao tuyến của hai mặt phẳng (ABCD) và (AIJ). \bigcirc Lời giải.

A là điểm chung thứ nhất của (ABCD) và (AIJ).

IJ và CD cắt nhau tại F, còn IJ không cắt BC, AD, AB nên F là điểm chung thứ hai của (ABCD) và (AIJ). Vậy giao tuyến của (ABCD) và (AIJ) là AF.

BÀI 5. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AD và BC. Tìm giao tuyến của hai mặt phẳng (SMN) và (SAC).

🗩 Lời giải.

S là điểm chung thứ nhất của (SMN) và (SAC).

O là giao điểm của AC và MN nên $O \in AC$, $O \in MN$ do đó O là điểm chung thứ hai của (SMN) và (SAC). Vậy giao tuyến của hai mặt phẳng (SMN) và (SAC) là SO.

2. Bài tập trắc nghiệm

CÂU 1. Cho hình chóp S.ABCD có $AC \cap BD = M$ và $AB \cap CD = I$.

Giao tuyến của hai mặt phẳng (SAB) và mặt phẳng (SCD) là đường thẳng:

(A) SI.

 (\mathbf{B}) SA.

 $(\mathbf{C}) MN.$

 (\mathbf{D}) SM.

🗩 Lời giải.

Ta có $(SAB) \cap (SCD) = SI$.

Chọn đáp án (A)

CÂU 2. Cho hình chóp S.ABCD có đáy là hình thang ABCD $(AB \parallel CD)$. Khẳng định nào sau đây sai?

- (A) Hình chóp S.ABCD có 4 mặt bên.
- (B) Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO (O là giao điểm của AC và BD).
- (**C**) Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI (I là giao điểm của AD và BC).
- (\mathbf{D}) Giao tuyến của hai mặt phẳng (SAB) và (SAD) là đường trung bình của ABCD.

Dòi giải.

- Θ Hình chóp S.ABCD có 4 mặt bên: (SAB), (SBC), (SCD), (SAD). Do đó Ađúng.
- \odot S là điểm chung thứ nhất của hai mặt phẳng (SAC) và (SBD). $O \in BD \subset (SBD) \Rightarrow O \in (SBD) \Rightarrow O$ là điểm chung thứ hai của hai mặt $O \in AC \subset (SAC) \Rightarrow O \in (SAC)$ phẳng (SAC) và (SBD). $\Rightarrow (SAC) \cap (SBD) = SO$. Do đó B đúng.
- \odot Tương tự, ta có $(SAD) \cap (SBC) = SI$. Do đó C đúng.
- \odot $(SAB) \cap (SAD) = SA$ mà SA không phải là đường trung bình của hình thang ABCD. Do đó D sai.

Chọn đáp án (D)

CÂU 3. Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là

(A) AM (M là trung điểm của AB).

- (\mathbf{B}) AN (N là trung điểm của CD).
- (\mathbf{C}) AH (H là hình chiếu của B trên CD).
- (\mathbf{D}) AK (K là hình chiếu của C trên BD).

🗭 Lời giải.

- \odot A là điểm chung thứ nhất giữa hai mặt phẳng (ACD) và (GAB).
- hai giữa hai mặt phẳng (ACD) và (GAB)

Vậy $(ABG) \cap (ACD) = AN$.

Chọn đáp án (B)

CÂU 4. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Goi I, J lần lượt là trung điểm của SA và SB. Khẳng đinh nào sau đây sai?

- (A) IJCD là hình thang.
- **(B)** $(SAB) \cap (IBC) = IB$.
- $(\mathbf{C})(SBD) \cap (JCD) = JD.$
- $(\mathbf{D})(IAC) \cap (JBD) = AO, O$ là tâm hình bình hành ABCD.

🗭 Lời giải.

Ta có $(IAC) \equiv (SAC)$ và $(JBD) \equiv (SBD)$. Mà $(SAC) \cap (SBD) = SO$, trong đó O là tâm hình bình hành ABCD.

Chọn đáp án (D)

CÂU 5. Cho điểm A không nằm trên mặt phẳng (α) chứa tam giác BCD. Lấy E, F là các điểm lần lượt nằm trên các canh AB, AC. Khi EF và BC cắt nhau tại I thì I không phải là điểm chung của hai mặt phẳng nào sau đây?

- (A) (BCD) và (DEF).
- (**B**) (BCD) và (ABC).
- (\mathbf{C}) (BCD) và (AEF).
- (\mathbf{D}) (BCD) và (ABD).

Lời giải.

Điểm I là giao điểm của EF và BC.

$$\text{Ta c\'o} \begin{cases} EF \subset (DEF) \\ EF \subset (ABC) \Rightarrow \\ EF \subset (AEF) \end{cases} \Rightarrow \begin{cases} I = (BCD) \cap (DEF) \\ I = (BCD) \cap (ABC) \\ I = (BCD) \cap (AEF). \end{cases}$$

Chọn đáp án (D)

CÂU 6. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC, CD. Giao tuyến của hai mặt phẳng (MBD) và (ABN) là

 \bigcirc Đường thẳng MN.

- $lackbox{\textbf{B}}$ Đường thẳng AM.
- \bigcirc Dường thẳng BG (G là trọng tâm tam giác ACD).
- \bigcirc Đường thẳng AH (H là trực tâm tam giác ACD).

D Lời giải.

- Θ B là điểm chung thứ nhất giữa hai mặt phẳng (MBD) và (ABN).
- $\ensuremath{ \bigodot}$ Vì $M,\,N$ lần lượt là trung điểm của $AC,\,CD$ nên suy ra $AN,\,DM$ là hai trung tuyến của tam giác ACD. Gọi $G=AN\cap DM.$
 - $\Rightarrow \begin{cases} G \in AN \subset (ABN) \Rightarrow G \in (ABN) \\ G \in DM \subset (MBD) \Rightarrow G \in (MBD) \end{cases} \Rightarrow G \text{ là điểm chung thứ hai giữa hai mặt phẳng } (MBD) \text{ và } (ABN).$ Vậy $(ABN) \cap (MBD) = BG.$

🖒 Dạng 2. Tìm giao điểm của đường thắng và mặt phẳng

Để tìm giao điểm của đường thẳng d và mặt phẳng (P) ta cần lưu ý một số trường hợp sau: **Trường hợp 1.** Nếu trong (P) có sẵn một đường thẳng d' cắt d tại M, khi đó

$$\begin{cases} M \in d \\ M \in d' \subset (P) \end{cases} \Rightarrow \begin{cases} M \in d \\ M \in (P) \end{cases} \Rightarrow M = d \cap (P).$$

Trường hợp 2. Nếu trong (P) chưa có sẵn d' cắt d thì ta thực hiện theo các bước sau:

- Θ Bước 1: Chọn một mặt phẳng (Q) chứa d.
- \odot Bước 2: Tìm giao tuyến $\Delta = (P) \cap (Q)$.
- \odot Bước 3: Trng (Q) gọi $M = d \cap \Delta$ thì M chính là giao điểm của $d \cap (P)$.

1. Bài tập tự luận

BÀI 1. Cho bốn điểm A, B, C, D không đồng phẳng. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD. Tìm giao điểm của đường thẳng CD và mặt phẳng (MNP).

🗩 Lời giải.

Cách 1. Xét mặt phẳng (BCD) chứa CD.

Do NP không song song CD nên NP cắt CD tại E.

Điểm $E \in NP \Rightarrow (MNP)$. Vậy $CD \cap (MNP)$ tại E.

Cách 2. Ta có
$$\begin{cases} N \in BC \\ P \in BD \end{cases} \Rightarrow NP \subset (MNP), \text{ suy ra } NP, CD \text{ dồng}$$

phẳng.

Gọi E là giao điểm của NP và CD mà $NP\subset (MNP)$ suy ra $CD\cap (MNP)=E.$

Vậy giao điểm của CD và mp(MNP) là giao điểm E của NP và CD.

BÀI 2. Cho tứ giác ABCD có AC và BD giao nhau tại O và một điểm S không thuộc mặt phẳng (ABCD). Trên đoạn SC lấy một điểm M không trùng với S và C. Tìm giao điểm của đường thẳng SD với mặt phẳng (ABM).

🗩 Lời giải.

- \odot Chọn mặt phẳng phụ (SBD) chứa SD.
- \odot Tìm giao tuyến của hai mặt phẳng (SBD) và (ABM).

Ta có B là điểm chung thứ nhất của (SBD) và (ABM).

Trong mặt phẳng (ABCD), gọi $O = AC \cap BD$.

Trong mặt phẳng (SAC), gọi $K = AM \cap SO$.

Khi đó $(SBD) \cap (ABM) = BK$.

Trong (SBD) lấy $N = BK \cap SD$ thì $N = SD \cap (ABM)$.

BÀI 3. Cho hình chóp tứ giác S.ABCD với đáy ABCD có các cạnh đối diện không song song với nhau và M là một điểm trên canh SA.

- a) Tìm giao điểm của đường thẳng SB với mặt phẳng (MCD).
- b) Tìm giao điểm của đường thẳng MC và mặt phẳng (SBD).

🗩 Lời giải.

- a) Trong mặt phẳng (ABCD), gọi $E=AB\cap CD$. Trong (SAB) ta có $N\in EM\subset (MCD)\Rightarrow N\in (MCD)$ và $N\in SB$ nên $N=SB\cap (MCD)$.
- b) Trong (ABCD) gọi $I=AC\cap BD$. Trong (SAC) gọi $K=MC\cap SI$. Ta có $K\in SI\subset (SBD)$ và $K\in MC$ nên $K=MC\cap (SBD)$.

BÀI 4. Cho hình chóp tứ giác S.ABCD, M là một điểm trên cạnh SC, N là trên cạnh BC. Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN).

🗩 Lời giải.

Trong mặt phẳng (ABCD) gọi $O = AC \cap BD, J = AN \cap BD$. Trong (SAC) gọi $I = SO \cap AM$ và $K = IJ \cap SD$. Ta có $I \in AM \subset (AMN), J \in AN \subset (AMN) \Rightarrow IJ \subset (AMN)$. Do đó $K \in IJ \subset (AMN) \Rightarrow K \in (AMN)$. Vậy $K = SD \cap (AMN)$

BÀI 5. Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi M,P lần lượt là trung điềm của các cạnh SA và SC. Điểm N thuộc cạnh SB sao cho $\frac{SN}{SB} = \frac{2}{3}$. Gọi Q là giao điểm của cạnh SD và mặt phẳng (MNP). Tính tỷ số $\frac{SQ}{SD}$.

🗩 Lời giải.

Gọi O là giao điểm của AC và BD,I là giao điểm của MP và SO thì Q là giao điểm của NI với SD.I là trung điểm của SO.

$$\text{Dặt } \frac{SD}{SQ} = x.$$

Do
$$2\overrightarrow{SO} = \overrightarrow{SB} + \overrightarrow{SD}$$
 nên $4\overrightarrow{SI} = \frac{3}{2}\overrightarrow{SN} + x\overrightarrow{SQ} \Rightarrow x = 4 - \frac{3}{2} = \frac{5}{2}$.

Vậy
$$\frac{SQ}{SD} = \frac{2}{5}$$
.

2. Bài tập trắc nghiệm

CÂU 1. Cho tứ diện ABCD. Gọi E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là

 (\mathbf{A}) điểm F.

 (\mathbf{C}) giao điểm của đường thẳng EG và AC.

(**B**) giao điểm của đường thẳng EG và AF. (\mathbf{D}) giao điểm của đường thẳng EG và CD.

Dòi giải.

Vì G là trọng tâm tam giác BCD, F là trung điểm của $CD \Rightarrow G \in (ABF)$. Ta có E là trung điểm của $AB \Rightarrow E \in (ABF)$.

Gọi M là giao điểm của EG và AF mà $AF \subset (ACD)$ suy ra $M \in (ACD)$. Vậy giao điểm của EG và mp(ACD) là giao điểm $M = EG \cap AF$.

Chọn đáp án (B)

 \hat{CAU} 2. Cho hình chóp tứ giác SABCD với đáy ABCD có các cạnh đối diện không song song với nhau và M là một điểm trên cạnh SA. Tìm giao điểm của đường thẳng SB với mặt phẳng (MCD).

(A) Điểm H, trong đó $E = AB \cap CD$, $H = SA \cap EM$.

(B) Điểm N, trong đó $E = AB \cap CD, N = SB \cap EM$.

(**c**) Điểm F, trong đó $E = AB \cap CD, F = SC \cap EM$.

(**D**) Điểm T, trong đó $E = AB \cap CD, T = SD \cap EM$.

Dòi giải.

Trong mặt phẳng (ABCD), gọi $E = AB \cap CD$.

Trong (SAB): ta có $N \in EM \subset (MCD) \Rightarrow N \in (MCD)$ và $N \in SB$ nên $N = SB \cap (MCD)$.

CÂU 3. Cho hình chóp tứ giác SABCD với đáy ABCD có các cạnh đối diện không song song với nhau và M là một điểm trên cạnh SA. Tìm giao điểm của đường thẳng MC và mặt phẳng (SBD).

(A) Điểm H, trong đó $I = AC \cap BD$, $H = MA \cap SI$.

(B) Điểm F, trong đó $I = AC \cap BD$, $F = MD \cap SI$.

- (**c**) Điểm K, trong đó $I = AC \cap BD$, $K = MC \cap SI$.
- (**D**) Điểm V, trong đó $I = AC \cap BD$, $V = MB \cap SI$.

🗩 Lời giải.

Trong (ABCD) gọi $I = AC \cap BD$.

Trong (SAC) goi $K = MC \cap SI$.

Ta có $K \in SI \subset (SBD)$ và $K \in MC$ nên $K = MC \cap (SBD)$.

CÂU 4. Cho hình chóp SABC. Gọi M, N lần lượt là trung điểm của SA và BC. P là điểm nằm trên cạnh AB sao cho $=\frac{1}{3}.$ Gọi Q là giao điểm của SC với mặt phẳng (MNP). Tính $\frac{SQ}{SC}$

 $\bigcirc \frac{2}{3}$.

Lời giải.

Trong mặt phẳng (ABC). Gọi $E = AC \cap PN$. Khi đó $Q = SC \cap EM$.

Áp dụng định lí Menelaus vào tam giác ABC ta có $\frac{AP}{PB} \cdot \frac{BN}{NC} \cdot \frac{CE}{EA} = 1 \Rightarrow \frac{CE}{EA} = 2$. Áp dụng định lí Menelaus vào tam giác SAC ta có $\frac{AM}{MS} \cdot \frac{BQ}{QC} \cdot \frac{CE}{EA} = 1 \Rightarrow \frac{CE}{EA} = \frac{1}{2} \Rightarrow \frac{SQ}{SC} = \frac{1}{3}$.

Chọn đáp án (A)

CÂU 5. Cho hình chóp S.ABCD có đáy là hình thang ABCD với $AD \parallel BC$ và AD = 2BC. Gọi M là điểm trên cạnh SD thỏa mãn $SM = \frac{1}{3}SD$. Mặt phẳng (ABM) cắt cạnh bên SC tại điểm N. Tính tỉ số $\frac{SN}{SC}$.

 $\bigcirc SN \over SC = \frac{1}{2}.$

Gọi F là giao điểm của AB và CD. Nối F với M, FM cắt SC tại điểm N. Khi đó N là giao điểm của (ABM) và SC.

Theo giả thiết, ta chứng minh được C là trung điểm DF.

Trong mặt phẳng (SCD) kẻ CE song song NM (E thuộc SD). Do C là trung điểm DF nên suy ra E là trung điểm MD. Khi đó, ta có SM = ME = ED và M là trung điểm SE.

Do MN // CE và M là trung điểm SE nên MN là đường trung bình của tam giác SCE. Từ đó suy ra N là trung điểm SC và $\frac{SN}{SC}=\frac{1}{2}$.

Chọn đáp án (\overline{D})

CÂU 6. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, SD và OC. Gọi giao điểm của (MNP) với SA là K. Tỉ số $\frac{KS}{KA}$ là

$$\bigcirc \frac{2}{5}$$
.

B
$$\frac{1}{3}$$
.

$$\bigcirc \frac{1}{4}$$
.

$$\bigcirc \frac{1}{2}$$

🗩 Lời giải.

Gọi $J = SO \cap MN$, $K = SA \cap PJ$ thì $K = SA \cap (MNP)$.

Vì M, N lần lượt là trung điểm của SB, SD nên J là trung điểm của SO.

Áp dụng định lí Menelaus vào tam giác SAO với cát tuyến là KP, ta có

Ap duiling duffill in Melleraus valo tailing face
$$SAO$$
 voice $\frac{SK}{KA} \cdot \frac{AP}{PO} \cdot \frac{OJ}{JS} = 1 \Leftrightarrow \frac{SK}{KA} \cdot 3 \cdot 1 = 1 \Leftrightarrow \frac{KS}{KA} = \frac{1}{3}.$ Vây $\frac{KS}{KA} = \frac{1}{3}.$

Chọn đáp án B

CÂU 7. Cho hình chóp S.ABCD đáy ABCD là hình bình hành. M, N là lượt là trung điểm của AB và SC. I là giao điểm của AN và (SBD). J là giao điểm của MN với (SBD). Khi đó tỉ số $\frac{IB}{IJ}$ là

$$\bigcirc \frac{7}{2}$$
.

$$\bigcirc \frac{11}{3}$$
.

Lời giải.

Gọi O là trung điểm của AC nên $O=AC\cap BD.$ Trong mặt phẳng (SAC), $AN\cap SO=I$ nên I là giao điểm của AN và (SBD). Trong (ABN) ta có $MN\cap BI=J$ nên J là giao điểm của MN với (SBD). Gọi K là trung điểm của SD. Suy ra NK // DC // AB và $BI\cap SD=K$ hay $B,\,I,\,J,\,K$ thẳng hàng. Khi đó NK // BM và NK=MA=BM và tứ giác AKMN là hình bình hành. Xét hai tam giác đồng dạng ΔKJN và ΔBJM có $\frac{NK}{BM}=\frac{MJ}{NJ}=\frac{BJ}{JK}=1$ suy ra J là trung điểm của MN và J là trung điểm của BK hay BJ=JK. Trong tam giác ΔSAC có I là trọng tâm của tam giác nên $\frac{NI}{IA}=\frac{1}{2}.$ Do AK // MN nên $\frac{IJ}{IK}=\frac{NI}{IA}=\frac{1}{2}\Rightarrow \frac{IJ}{JK}=\frac{1}{3}=\frac{IJ}{BJ}\Rightarrow \frac{IJ}{BI}=\frac{1}{4}$ hay $\frac{IB}{IJ}=4.$

Chọn đáp án $\stackrel{\frown}{\bf A}$

🝃 Dạng 3. Bài toán thiết diện

Để xác định thiết diện của hình chóp $S.A_1A_2...A_n$ cắt bởi mặt phẳng (α) , ta tìm giao điểm của mặt phẳng (α) với các đường thẳng chứa các cạnh của hình chóp. Thiết diện là đa giác có đỉnh là các giao điểm của (α) với hình chóp.

1. Bài tập tự luận

BÀI 1. Cho hình chóp tứ giác S.ABCD, có đáy là hình thang với AD là đáy lớn và P là một điểm trên cạnh SD.

- a) Xác định thiết diện của hình chóp cắt bởi mặt phẳng (PAB).
- b) Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Xác định thiết diện của hình chóp cắt bởi (MNP).

🗩 Lời giải.

a)

Trong mặt phẳng (ABCD), gọi $E=AB\cap CD$. Trong mặt phẳng (SCD) gọi $Q=SC\cap EP$. Ta có $E\in AB$ nên $EP\subset (ABP)\Rightarrow Q\in (ABP)$, do đó $Q=SC\cap (ABP)$. Thiết diện là tứ giác ABQP.

b)

Trong mặt phẳng (ABCD)gọi $F,\,G$ lần lượt là các giao điểm của MN với AD và CD.

Trong mặt phẳng (SAD) gọi $H = SA \cap FP$

Trong mặt phẳng (SCD) gọi $K = SC \cap PG$.

Ta có $F \in MN \Rightarrow F \in (MNP) \Rightarrow FP \subset (MNP) \Rightarrow H \in (MNP)$.

 $\text{Vây} \begin{cases} H \in SA \\ H \in (MNP) \end{cases} \Rightarrow H = SA \cap (MNP). \text{ Tương tự } K = SC \cap (MNP).$

Thiết diện là ngũ giác MNKPH.

BÀI 2. Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc cạnh BC (P không là trung điểm của BC). Tìm thiết diện của tứ diện bị cắt bởi mặt phẳng (MNP).

Gọi $Q = NP \cap BD$. Gọi $R = QM \cap AD$. Suy ra $Q \in (MNP)$ và $R \in (MNP)$. Vây thiết diện của tứ diện bị cắt bởi mặt phẳng (MNP) là tứ giác MRNP.

BÁI 3. Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD. E, F lần lượt là trung điểm của AB và AD. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG).

Lời giải.

Trong mặt phẳng (ABCD), $EF \cap BC = I$, $EF \cap CD = J$.

Trong mặt phẳng (SCD), $GJ \cap SC = K$, $GJ \cap SD = M$.

Trong mặt phẳng (SBC), $KI \cap SB = H$.

Ta có $(GEF) \cap (ABCD) = EF$, $(GEF) \cap (SAD) = FM$, $(GEF) \cap (SCD) =$

MK, $(GEF) \cap (SBC) = KH$, $(GEF) \cap (SAB) = HE$.

Vậy thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (EFG) là ngũ giác EFMKH.

BÁI 4. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a~(a>0). Các điểm M, N, P lần lượt là trung điểm của SA, SB, SC. Mặt phẳng (MNP) cắt hình chóp theo một thiết diện có diện tích bằng bao nhiêu?

Dòi giải.

Gọi Q là trung điểm của SD.

Tam giác SAD có M, Q lần lượt là trung điểm của SA, SD suy ra $MQ \parallel AD$. Tam giác SBC có N, P lần lượt là trung điểm của SB, SC suy ra $NP \parallel BC$. Mặt khác $AD \parallel BC$ suy ra $MQ \parallel NP$ và MQ = NP suy ra MNPQ là hình vuông.

Khi đó M, N, P, Q đồng phẳng suy ra (MNP) cắt SD tại Q và MNPQ là

thiết diện của hình chóp S.ABCD với (MNP). Vậy diện tích hình vuông MNPQ là $S_{MNPQ} = \frac{S_{ABCD}}{4} = \frac{a^2}{4}$.

2. Bài tập trắc nghiệm

CÂU 1. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là

- (A) Tam giác MNE.
- (B) Tứ giác MNEF với F là điểm bất kì trên canh BD.
- (**©**) Hình bình hành MNEF với F là điểm trên cạnh BD mà $EF \parallel BC$.
- (**D**) Hình thang MNEF với F là điểm trên cạnh BD mà $EF \parallel BC$.

Tam giác ABC có M,N lần lượt là trung điểm của AB,AC.

Suy ra MN là đường trung bình của tam giác $ABC \Rightarrow MN \parallel BC$.

Từ E kẻ đường thẳng d song song với BC và cắt BD tại $F \Rightarrow EF \parallel BC$.

Do đó $MN \parallel EF$ suy ra bốn điểm M, N, E, F đồng phẳng và MNEF là hình thang. Vậy hình thang MNEF là thiết diện cần tìm.

Chọn đáp án (\overline{D})

CÂU 2. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, E là trung điểm của SA; F, G lần lượt là các điểm thuộc cạnh BC, CD (CF < FB, GC < GD). Thiết diện của hình chóp cắt bởi mặt phẳng (EFG) là

- A Tam giác.
- **B** Tứ giác.
- C Ngũ giác.
- D Lục giác.

🗩 Lời giải.

Trong (ABCD), gọi $I = FG \cap AB$; $K = FG \cap AD$.

Trong (SAB), gọi $H = IE \cap SB$.

Trong (SAD), gọi $J = EK \cap SD$.

Ta có

- \odot $(EFG) \cap (ABCD) = FG$,
- \odot $(EFG) \cap (SCD) = JG$,
- \odot $(EFG) \cap (SAD) = JE$,
- \odot $(EFG) \cap (SAB) = HE$,
- \bigcirc $(EFG) \cap (SBC) = HF.$

Do đó thiết diện là ngũ giác EJGFH.

Chon đáp án (C)

CÂU 3. Cho hình chóp tứ giác S.ABCD, có đáy là hình thang với AD là đáy lớn và P là một điểm trên cạnh SD. Thiết diện của hình chóp cắt bởi mặt phẳng (PAB) là hình gì?

- A Tam giác.
- B Tứ giác.
- C Hình thang.
- D Hình bình hành.

D Lời giải.

Trong mặt phẳng (ABCD), gọi $E = AB \cap CD$.

Trong mặt phẳng (SCD), gọi $Q = SC \cap EP$.

Ta có $E \in AB$ nên $EP \subset (ABP) \Rightarrow Q \in (ABP)$, do đó $Q = SC \cap (ABP)$.

Thiết diện là tứ giác ABQP.

Chọn đáp án B

CÂU 4. Cho hình chóp tứ giác S.ABCD, có đáy là hình thang với AD là đáy lớn và P là một điểm trên cạnh SD. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Thiết diện của hình chóp cắt bởi (MNP) là hình gì?

- A Ngũ giác.
- **B** Tứ giác.
- C Hình thang.
- (D) Hình bình hành.

Trong mặt phẳng (ABCD), gọi F,G lần lượt là các giao điểm của MN với AD và CD.

Trong mặt phẳng (SAD), gọi $H = SA \cap FP$.

Trong mặt phẳng (SCD), gọi $K = SC \cap PG$.

Ta có $F \in MN \Rightarrow F \in (MNP) \Rightarrow FP \subset (MNP) \Rightarrow H \in (MNP)$.

$$\text{Vây } \begin{cases} H \in SA \\ H \in (MNP) \end{cases} \Rightarrow H = SA \cap (MNP).$$

Tuong tu $K = SC \cap (MNP)$.

Thiết diện là ngũ giác MNKPH.

Chọn đáp án (A)

CÂU 5. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm SA. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (IBC) là

(A) Tam giác IBC.

- \blacksquare Hình thang IJCB (J là trung điểm SD).
- \bigcirc Hình thang IGBC (G là trung điểm SB).
- D Tứ giác IBCD.

🗩 Lời giải.

Gọi O là giao điểm của AC và BD, G là giao điểm của CI và SO.

Khi đó G là trọng tâm tam giác SAC.

Suy ra G là trọng tâm tam giác SBD.

Goi $J = BG \cap SD$.

Khi đó J là trung điểm SD.

Do đó thiết điện của hình chóp cắt bởi (IBC) là hình thang IJCB (J là trung điểm SD).

Chọn đáp án $\stackrel{oxed}{oxed{B}}$

CÂU 6. Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành tâm O. Gọi M, N, P là ba điểm trên các cạnh AD, CD, SO. Thiết diện của hình chóp với mặt phẳng (MNP) là hình gì?

- A Ngũ giác.
- **B** Tứ giác.
- C Hình thang.
- D Hình bình hành.

🗩 Lời giải.

Trong mặt phẳng (ABCD) gọi E, K, F lần lượt là giao điểm của MN với DA, DB, DC.

Trong mặt phẳng (SDB) gọi $H = KP \cap SB$

Trong mặt phẳng (SAB) gọi $T = EH \cap SA$

Trong mặt phẳng (SBC) gọi $R = FH \cap SC$.

Ta có
$$\begin{cases} E \in MN \\ H \in KP \end{cases} \Rightarrow EH \subset (MNP), \begin{cases} T \in SA \\ T \in EH \subset (MNP) \end{cases} \Rightarrow T = SA \cap (MNP).$$

Lí luận tương tự ta có $R = SC \cap (MNP)$.

Thiết diện là ngũ giác MNRHT.

Chọn đáp án $\stackrel{\textstyle \bullet}{f A}$

CÂU 7. Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC. Mặt phẳng (GCD) cắt tứ diện theo một thiết diện có diện tích là

 $\bigcirc \frac{a^2\sqrt{2}}{6}.$

Gọi M, N lần lượt là trung điểm của AB, BC suy ra $AN \cap MC = G$.

Dễ thấy mặt phẳng (GCD) cắt đường thắng AB tại điểm M.

Suy ra tam giác MCD là thiết diện của mặt phẳng (GCD) và tứ diện ABCD.

Tam giác ABD đều, có M là trung điểm AB suy ra $MD=\frac{a\sqrt{3}}{2}.$ Tam giác ABC đều, có M là trung điểm AB suy ra $MC=\frac{a\sqrt{3}}{2}.$

Gọi H là trung điểm của $CD \Rightarrow MH \parallel CD \Rightarrow S_{\Delta MCD} = \frac{1}{2} \cdot MH \cdot CD$.

Với
$$MH=\sqrt{MC^2-HC^2}=\sqrt{MC^2-\frac{CD^2}{4}}=\frac{a\sqrt{2}}{2}.$$

Vây
$$S_{\Delta MCD} = \frac{1}{2} \cdot \frac{a\sqrt{2}}{2} \cdot a = \frac{a^2\sqrt{2}}{4}.$$

Chọn đáp án (B)

CÂU 8. Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a. Gọi M, N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. Mặt phẳng (MNP) cắt tứ diện theo một thiết diện có diện tích là

$$\bigcirc$$
 $\frac{a^2\sqrt{11}}{4}$.

🗩 Lời giải.

Trong tam giác BCD có P là trọng tâm, N là trung điểm

Suy ra N, P, D thẳng hàng.

Vậy thiết diện là tam giác MND.

Xét tam giác MND, ta có $MN = \frac{AB}{2} = a$;

$$DM = DN = \frac{AD\sqrt{3}}{2} = a\sqrt{3}.$$

Do đó tam giác MND cân tai D.

Gọi H là trung điểm MN suy ra $DH \parallel MN$.

Diện tích tam giác $S_{\Delta MND} = \frac{1}{2}MN \cdot DH = \frac{1}{2}MN \cdot \sqrt{DM^2 - MH^2} = \frac{a^2\sqrt{11}}{4}$.

Chọn đáp án (C)

Dạng 4. Chứng minh ba điểm thẳng hàng – ba đường thẳng đồng quy

- ② Để chứng minh ba điểm thẳng hàng ta chứng minh chúng là điểm chung của hai mặt phẳng phân biệt, khi đó chúng nằm trên đường thẳng giao tuyên của hai mặt phẳng nên thẳng hàng.
- ❷ Để chứng minh ba đường thẳng đồng qui ta chứng minh giao điểm của hai đường thẳng thuộc đường đường thẳng còn lai.

1. Bài tấp tư luân

BÁI 1. Cho tứ diện S.ABC. Trên SA,SB và SC lấy các điểm D,E và F sao cho DE cắt AB tại I,EF cắt BC tại J,FDcắt CA tại K. Chứng minh rằng ba điểm I, J, K thẳng hàng.

Lời giải.

Ta có
$$I = DE \cap AB, DE \subset (DEF) \Rightarrow I \in (DEF).$$

$$AB \subset (ABC) \Rightarrow I \in (ABC).$$
 (1)

Tuong tự
$$J = EF \cap BC \Rightarrow \begin{cases} J \in EF \in (DEF) \\ J \in BC \subset (ABC) \end{cases}$$
 (2)

Tuong tự
$$J = EF \cap BC \Rightarrow \begin{cases} J \in EF \in (DEF) \\ J \in BC \subset (ABC) \end{cases}$$
 (2)
$$K = DF \cap AC \Rightarrow \begin{cases} K \in DF \subset (DEF) \\ K \in AC \subset (ABC) \end{cases}$$
 (3)
Từ (1) (2) và (3) tạ có $J \cup K$ là điểm chung của hai mặt phẳng (ABC) và

Từ (1),(2) và (3) ta có I,J,K là điểm chung của hai mặt phẳng (ABC) và (DEF) nên chúng thẳng hàng.

BAI 2. Cho hình chóp tứ giác S.ABCD, gọi O là giao điểm của hai đường chéo AC và BD. Một mặt phẳng (α) cắt các cạnh bên SA, SB, SC, SD tương ứng tại các điểm M, N, P, Q. Chứng minh rằng các đường thẳng MP, NQ, SO đồng qui.

Dòi giải.

Trong mặt phẳng (MNPQ), gọi $I = MP \cap NQ$.

Ta sẽ chứng minh $I \in SO$.

Dễ thấy
$$SO = (SAC) \cap (SBD)$$
.

$$\begin{cases} I \in MP \subset (SAC) \\ I \in NQ \subset (SBD) \end{cases} \Rightarrow \begin{cases} I \in (SAC) \\ I \in (SBD) \end{cases} \Rightarrow I \in SO.$$

Vậy MP, NQ, SO đồng qui tại I.

BÀI 3. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Mặt phẳng (α) qua MN cắt AD, BC lần lượt tại P và Q. Biết MP cắt NQ tại I. Chứng minh ba điểm I, B, D thẳng hàng.

D Lời giải.

Ta có
$$(ABD) \cap (BCD) = BD$$
.

Lại có
$$\begin{cases} I \in MP \subset (ABD) \\ I \in NQ \subset (BCD) \end{cases} \Rightarrow I$$
 thuộc giao tuyến của (ABD) và (BCD)

 $\Rightarrow I \in BD \Rightarrow I, B, D$ thẳng hàng.

BÀI 4. Cho tứ diện ABCD. G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm trên đoạn thẳng AG, BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây **sai**?

- $(\mathbf{A}) AM = (ACD) \cap (ABG).$
- $(\mathbf{C}) J$ là trung điểm AM.

- $(\mathbf{B}) A, J, M \text{ thẳng hàng.}$
- $(\mathbf{D}) DJ = (ACD) \cap (BDJ).$

🗩 Lời giải.

Ta có $A \in (ACD) \cap (ABG), \ \begin{cases} M \in BG \\ M \in CD \end{cases}$

 $\Rightarrow M \in (ACD) \cap (ABG)$ nên $AM = (ACD) \cap (ABG).$

 $A,\ J,\ M$ cùng thuộc hai mặt phẳng phân biệt $(ACD)\,,(ABG)$ nên $A,\ J,\ M$ thẳng hàng.

Vì $\stackrel{\circ}{I}$ là điểm tùy ý trên AG nên J không phải lúc nào cũng là trung điểm của AM.

Chọn đáp án \bigcirc

2. Bài tập trắc nghiệm

CÂU 1. Cho hình chóp S.ABCD có đáy là hình thang ABCD, $AD \parallel BC$. Gọi I là giao điểm của AB và DC, M là trung điểm SC. DM cắt mặt phẳng (SAB) tại J. Khẳng định nào sau đây sai?

 \triangle S, I, J thẳng hàng.

 $lackbox{\textbf{B}}\ DM \subset (SCI).$

 \bigcirc $JM \subset (SAB)$.

 \bigcirc $SI = (SAB) \cap (SCD).$

D Lời giải.

 $S,\,I,\,J$ thẳng hàng vì ba điểm cùng thuộc hai mp (SAB) và (SCD). $M\in SC\Rightarrow M\in (SCI)$ nên $DM\subset (SCI)$.

 $M \notin (SAB)$ nên $JM \not\subset (SAB)$.

Chọn đáp án C

CÂU 2. Cho hình tứ diện ABCD có M, N lần lượt là trung điểm của AB, BD. Các điểm G, H lần lượt trên cạnh AC, CD sao cho NH cắt MG tại I. Khẳng định nào sau đây là khẳng định đúng?

(A) A, C, I thẳng hàng.

 $lackbox{\textbf{B}}$ B, C, I thẳng hàng.

 \bigcirc N, G, H thẳng hàng.

 \bigcirc B, G, H thẳng hàng.

🗩 Lời giải.

Do NH cắt MG tại I nên bốn điểm M, N, H, G cùng thuộc mặt phẳng (α) .

Xét ba mặt phẳng (ABC), (BCD), (α) phân biệt, đồng thời

 $(\alpha) \cap (ABC) = MG$

 $(\alpha) \cap (BCD) = NH$

 $(ABC) \cap (BCD) = BC.$

 $Ma\ MG \cap NH = I.$

Suy ra MG, NH, BC đồng quy tại I nên B, C, I thẳng hàng.

Chọn đáp án $\stackrel{oxed}{oxed{B}}$

CÂU 3. Cho tứ diện SABC. Trên SA, SB và SC lấy các điểm D, E và F sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K.Khẳng định nào sau đây đúng?

 (\mathbf{A}) Ba điểm B, J, K thẳng hàng.

 (\mathbf{B}) Ba điểm I, J, K thẳng hàng.

 (\mathbf{C}) Ba điểm I, J, K không thẳng hàng.

 (\mathbf{D}) Ba điểm I, J, C thẳng hàng.

Dòi giải.

Ta có $I = DE \cap AB$, $DE \subset (DEF) \Rightarrow I \in (DEF)$ $AB \subset (ABC) \Rightarrow I \in (ABC)$ (1).

Tương tự $J = EF \cap BC$

$$\Rightarrow \begin{cases} J \in EF \in (DEF) \\ J \in BC \subset (ABC) \end{cases}$$
 (2)

Tương tự
$$J = EF \cap BC$$

$$\Rightarrow \begin{cases} J \in EF \in (DEF) \\ J \in BC \subset (ABC) \end{cases} (2)$$

$$K = DF \cap AC \Rightarrow \begin{cases} K \in DF \subset (DEF) \\ K \in AC \subset (ABC) \end{cases} (3)$$
Từ (1) (2) và (3) tạ có $I \in I$ K là điểm chư

Từ (1),(2) và (3) ta có I, J, K là điểm chung của hai mặt phẳng (ABC) và (DEF) nên chúng thẳng hàng.

Chon đáp án (B)

CÂU 4. Cho tứ diện ABCD. Gọi E, F, G là các điểm lần lượt thuộc các cạnh AB, AC, BD sao cho EF cắt BC tại I, EGcắt AD tại H. Ba đường thẳng nào sau đây đồng quy?

$$\bigcirc$$
 CD, EF, EG.

$$(\mathbf{B})$$
 CD , IG , HF .

$$\bigcirc$$
 AB, IG, HF.

$$\bigcirc$$
 AC, IG, BD.

🗩 Lời giải.

Phương pháp: Để chứng minh ba đường thẳng d_1, d_2, d_3 đồng quy ta chứng minh giao điểm của hai đường thẳng d_1 và d_2 là điểm chung của hai mặt phẳng (α) và (β) ; đồng thời d_3 là giao tuyến (α) và (β) .

Gọi $O = HF \cap IG$. Ta có

 $O \in HF$ mà $HF \subset (ACD)$ suy ra $O \in (ACD)$.

 $O \in IG$ mà $IG \subset (BCD)$ suy ra $O \in (BCD)$.

Do đó $O \in (ACD) \cap (BCD)$.

 $Mà(ACD) \cap (BCD) = CD.$

Từ (1) và (2), suy ra $O \in CD$.

Vậy ba đường thẳng CD, IG, HF đồng quy.

(1)

(2)

Chọn đáp án (B)

C. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM

	⊳ Do	ạng 1. Lí thuyết		
CÂU 1. Một mặt phẳn	ıg hoàn toàn được xác định nếu	biết điều nào sau đây?		
A Một đường thẳng	g và một điểm nằm trên mặt ph	ẳng đó.		
B Ba điểm mà mặt	phẳng đó đi qua.			
© Ba điểm không tl	hẳng hàng mà nó đi qua.			
	nằm trên mặt phẳng.			
p Lời giải.	> , > , 2 4· 1	1 2 4/ 4 1 4 2	110 413 10	
Chọn đáp án C	oàn toàn xác định nếu biết mặt	pnang do di qua ba diem	knong thang hang.	
CÂU 2. Trong các tính	n chất sau, tính chất nào không	g đúng?		
A Có hai đường thẳ	ing phân biệt cùng đi qua hai đ	iểm phân biệt cho trước.		
B Tồn tại 4 điểm kl	hông cùng thuộc một mặt phẳn	g.		
Có một và chỉ mớ	ột mặt phẳng đi qua ba điểm kl	hông thẳng hàng.		
Nếu một đường tLời giải.	hẳng đi qua hai điểm thuộc mộ	t mặt phẳng thì mọi điểm	của đường thẳng đều thuộc mặt phẳ	ng đó.
	g thẳng đi qua hai điểm phân b	iệt cho trước.		
Chọn đáp án (A)				
CÂU 3. Cho các khẳng	g định sau:			
(I) Hai mặt phẳng co	ó một điểm chung thì chúng có	một đường thẳng chung d	uy nhất.	
(II) Hai mặt phẳng p	hân biệt có một điểm chung thì	chúng có một đường thẳn	ng chung duy nhất.	
(III) Hai mặt phẳng co	ó một điểm chung thì chúng còn	n có vô số điểm chung khá	c nữa.	
(IV) Nếu ba điểm phâ	n biệt cùng thuộc hai mặt phẳr	ng thì chúng thẳng hàng.		
Số khẳng đinh sai trong	g các khẳng định trên là			
A 1.	B 2.	© 3.	D 4.	
₽ Lời giải.				
	hai mặt phẳng trùng nhau. i hai mặt phẳng trùng nhau.			
Chọn đáp án B				
CÂU 4 Trong các mêr	nh đề sau, mệnh đề nào đúng?			
	phân biệt không song song thì	chéo nhau		
\simeq	không có điểm chung thì chéo n			
\simeq	chéo nhau thì không có điểm c			
\simeq	lần lượt nằm trên hai mặt phẳ	_	1.	
p Lời giải.				
Hai đường thẳng chéo r Chọn đáp án \bigcirc	nhau là hai đường thẳng không	cùng nằm trong mặt phẳn	g nên chúng không có điểm chung.	
CÂU 5. Cho hai đường	g thẳng a và b chéo nhau. Có ba	ao nhiệu mặt phẳng chứa đ	a và song song với b?	
A 0.	B Vô số.	© 2.	D 1.	
₽ Lời giải.				
	hai đường thẳng a và b chéo nh	au thì có một và chỉ một :	mặt phẳng chứa a và song song với b	
Chọn đáp án \bigcirc				

CÂU 6. Trong các hình vẽ sau, hình nào có thể là hình biểu diễn của một hình tứ diện?

- (A) Chỉ hình (I), (II).
- Chỉ hình (I).

- **B** Các hình (I), (II), (III), (IV).
- (D) Chỉ hình (I), (II), (III).

🗩 Lời giải.

Tất cả các hình trên đều là hình biểu diễn của một tứ diện. Chọn đáp án $\stackrel{\frown}{(B)}$

- CÂU 7. Một hình chóp có đáy là ngũ giác thì số cạnh của nó là
 - A 9 canh.
- **B**) 10 canh.
- **(C)** 6 cạnh.

 \bigcirc 5 cạnh.

D Lời giải.

Hình chóp có số cạnh bên bằng số cạnh đáy nên số cạnh của hình chóp ngũ giác là 5+5=10. Chon đáp án (B)

CÂU 8. Một hình chóp có đáy là ngũ giác thì số mặt và số cạnh của nó là

- (A) 5 mặt, 5 cạnh.
- **(B)** 6 mặt, 5 cạnh.
- **C** 6 mặt, 10cạnh.
- (**D**) 5 mặt, 10cạnh.

🗭 Lời giải.

Hình chóp có đáy là ngũ giác có

- Ø 6 mặt gồm 5 mặt bên và 1 mặt đáy.
- ❷ 10 cạnh gồm 5 cạnh bên và 5 cạnh đáy.

Chọn đáp án (C)

CÂU 9. Hình chóp có 16 cạnh thì có bao nhiêu mặt?

A 10.

(B) 8.

(C) 7.

D 9.

🗩 Lời giải.

Hình chóp $S.A_1A_2...A_n, (n \geq 3)$ có n cạnh bên và n cạnh đáy nên có 2n cạnh.

Ta có $2n = 16 \Leftrightarrow n = 8$.

Vậy khi đó hình chóp có 8 mặt bên và 1 mặt đáy nên nó có 9 mặt.

Chọn đáp án (D)

CÂU 10. Cho hình chóp S.ABC. Gọi M, N, K, E lần lượt là trung điểm của SA, SB, SC, BC. Bốn điểm nào sau đây đồng phẳng?

(A) M, K, A, C.

 \bigcirc M, N, A, C.

 \bigcirc M, N, K, C.

 \bigcirc M, N, K, E.

🗭 Lời giải.

Ta thấy M, K cùng thuộc mặt phẳng (SAC) nên bốn điểm M; K; A; C đồng phẳng.

Chọn đáp án (A)

CÂU 11. Trong không gian cho bốn điểm không đồng phẳng, có thể xác định nhiều nhất bao nhiêu mặt phẳng phân biệt từ các điểm đó?

(A) 3.

B) 4.

(C) 2.

 (\mathbf{D}) 6.

🗩 Lời giải.

Trong không gian, bốn điểm không đồng phẳng tạo thành một hình tứ diện. Vì vậy xác định nhiều nhất bốn mặt phẳng phân biệt.

Chọn đáp án (B)

Dạng 2. Xác định giao tuyến của hai mặt phẳng

CÂU 1. Cho hình chóp S.ABCD với ABCD là hình bình hành. Khi đó giao tuyến của hai mặt phẳng (SAC) và (SAD)

- (A) Đường thẳng SC.
- (**B**) Đường thẳng SB.
- (**C**) Đường thẳng SD.
- (\mathbf{D}) Đường thẳng SA.

🗩 Lời giải.

Ta thấy $(SAC) \cap (SAD) = SA$

Chọn đáp án (D)

CÂU 2. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của AD và BC. Giao tuyến của (SMN) và (SAC) là

- (A) SK (K là trung điểm của AB).
- (\mathbf{C}) SF (F là trung điểm của CD).
- 🗩 Lời giải.

Gọi O là tâm hình bình hành ABCDSuy ra O là giao điểm của AC với MN. \Rightarrow $(SMN) \cap (SAC) = SO$.

- (**B**) SO (O là tâm của hình bình hành ABCD).
- $(\mathbf{D}) SD.$

Chọn đáp án (B)

CÂU 3. Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD, AD = 2BC. Gọi O là giao điểm của AC và BD. Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).

(A) SA.

 (\mathbf{B}) AC.

 \bigcirc SO.

 $(\mathbf{D}) SD.$

 $\begin{array}{l} \text{C6 } S \in (SAC) \cap (SBD). \\ O \in AC, AC \subset (SAC) \\ O \in BD, BD \subset (SAC) \\ \text{Nên } SO = (SAC) \cap (SBD). \end{array} \Rightarrow O \in (SAC) \cap (SBD).$

Chọn đáp án \bigcirc

CÂU 4. Cho hình chóp tứ giác S.ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SBC) là

 \bigcirc SA.

lacksquare SB.

 \bigcirc SC.

 \bigcirc AC.

🗩 Lời giải.

Ta có $\begin{cases} S \in (SAB) \cap (SBC) \\ B \in (SAB) \cap (SBC) \end{cases}$.

Suy ra \widehat{SB} là giao tuyến của hai mặt phẳng (SAB) và (SBC).

Chọn đáp án (B)

CÂU 5. Cho hình chóp S.ABCD có đáy là hình thang ABCD $(AD \parallel BC)$. Gọi M là trung điểm của CD. Giao tuyến của hai mặt phẳng (MSB)và (SAC) là

- \bigcirc A SP với P là giao điểm của AB và CD.
- \blacksquare SI với I là giao điểm của AC và BM.
- (\mathbf{C}) SO với O là giao điểm của AC và BD.
- \bigcirc SJ với J là giao điểm của AM và BD.

Lời giải.

Giao tuyến của hai mặt phẳng (MSB) và (SAC) là SI với I là giao điểm của AC và BM.

Chọn đáp án $\stackrel{\textstyle \cdot}{\boxtimes}$

CÂU 6. Cho hình chóp S.ABCD, biết AC cắt BD tại M, AB cắt CD tại O. Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD).

 \bigcirc SO.

 \bigcirc SM.

 \bigcirc SA.

 \bigcirc SC.

Ta có
$$\begin{cases} O = AB \cap CD \\ AB \subset (SAB) & \Rightarrow O \in (SAB) \cap (SCD). \\ CD \subset (SAC) \end{cases}$$

Lại có $S \in (SAB) \cap (SCD)$; $S \neq O$. Khi đó $(SAB) \cap (SCD) = SO$.

Chọn đáp án (A)

CÂU 7. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I và J lần lượt là trung điểm của SA và SB. Khẳng định nào sau đây **sai**?

 $(\mathbf{A}) (SAB) \cap (IBC) = IB.$

(B) IJCD là hình thang.

 (\mathbf{C}) $(SBD) \cap (JCD) = JD$. (\mathbf{D}) $(IAC) \cap (JBD) = AO$.

🗩 Lời giải.

Ta có $(IAC) \cap (JBD) = (SAC) \cap (SBD) = SO$.

Chọn đáp án (D)

CÂU 8. Cho hình chóp S.ABCD có M là giao điểm của AC và BD, N là giao điểm của AB và CD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là

 (\mathbf{A}) SM.

 $(\mathbf{B}) SA.$

 $(\mathbf{C}) MN.$

 $(\mathbf{D}) SN.$

Dòi giải.

S là điểm chung thứ nhất của hai mặt phẳng (SAB) và (SCD).

 $N \in AB \subset (SAB)$ Vì $AB \cap CD = N$ nên $N \in CD \subset (SCD)$.

Do đó N là điểm chung thứ hai của hai mặt phẳng trên.

Vậy SN là giao tuyến của hai mặt phẳng (SAB) và (SCD).

Chọn đáp án (D)

 $\hat{\mathbf{CAU}}$ 9. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, M là trung điểm SC. Khẳng định nào sau đây sai?

(A) Giao tuyến của (SAC) và (ABCD) là AC.

 (\mathbf{B}) SA và BD chéo nhau.

(**C**) AM cát (SBD).

(**D**) Giao tuyến của (SAB) và (SCD) là SO.

Ta có $\begin{cases} O \notin (SAB) \\ O \notin (SCD) \end{cases}$ nên O không phải là điểm chung của hai mặt phẳng (SAB) và (SCD).

Vì vậy, khẳng định "Giao tuyến của (SAB) và (SCD) là SO" là khẳng định sai.

Chọn đáp án (D)

CÂU 10. Cho tứ diện ABCD, M là trung điểm của AB, N là điểm trên AC mà $AN = \frac{1}{4}AC$, P là điểm trên đoạn AD mà $AP = \frac{2}{3}AD$. Gọi E là giao điểm của MP và BD, F là giao điểm của MN và BC. Khi đó giao tuyến của (BCD) và (CMP) là

lack A CP.

 \bigcirc NE.

 \bigcirc MF.

 \bigcirc CE.

🗩 Lời giải.

Ta có $C \in (BCD) \cap (CMP)$. (1) Lại có $BD \cap MP = E$ $\Rightarrow \begin{cases} E \in BD \Rightarrow E \in (BCD) \\ E \in MP \Rightarrow E \in (CMP) \end{cases}$. (2)

 $T\mathring{u}(1) \overset{\frown}{v} (2) \Rightarrow (BCD) \cap (CMP) = CE.$

Chọn đáp án (D)

CÂU 11. Cho bốn điểm A, B, C, D không đồng phẳng. Gọi I, K lần lượt là trung điểm hai đoạn thẳng AD và BC. Đường thẳng IK là giao tuyến của cặp mặt phẳng nào sau đây?

 $igathbol{A}$ (IBC) và (KBD).

 $lackbox{\textbf{B}}(IBC)$ và (KCD).

 \bigcirc (IBC) và (KAD).

 \bigcirc (ABI) và (KAD).

Dài giải.

Ta có $\begin{cases} I \in AD \subset (KAD) \\ I \in (IBC) \end{cases}$

 $\Rightarrow I$ là điểm chung thứ nhất của hai mặt phẳng (IBC) và (KAD).

Lại có $\begin{cases} K \in BC \subset (IBC) \\ K \in (KAD) \end{cases}$

 $\Rightarrow K$ là điểm chung thứ hai của hai mặt phẳng (IBC) và (KAD).

Vậy $(IBC) \cap (KAD) = IK$.

Chọn đáp án C

CÂU 12. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm AD và AC. Gọi G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng

- \bigcirc qua M và song song với AB.
- \bigcirc qua G và song song với CD.

- lacksquare qua N và song song với BD.
- \bigcirc qua G và song song với BC.

D Lời giải.

Ta có MN là đường trung bình tam giác ACD nên $MN \parallel CD$.

Ta có $G \in (GMN) \cap (BCD)$, hai mặt phẳng (ACD) và (BCD) lần lượt chứa hai đường thẳng DC và MN song song với nhau nên giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.

Chọn đáp án C

Dạng 3. Tìm giao điểm của đường thẳng với mặt phẳng

CÂU 1. Cho hình chóp S.ABCD có I là trung điểm của SC. Gọi N là giao điểm của AC với BD; M là giao điểm của AI với SN. Giao điểm của AI và (SBD) là

- \bigcirc Điểm A.
- \bigcirc Điểm M.
- \bigcirc Điểm N.
- $lackbox{D}$ Điểm I.

🗩 Lời giải.

Ta có
$$M = AI \cap SN$$
 nên
$$\begin{cases} M \in AI \\ M \in SN \subset (SBD). \end{cases}$$

Vậy M là giao điểm của AI với mặt phẳng (SBD).

Chọn đáp án $\stackrel{oxed}{\mathbb{B}}$

CÂU 2. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt thuộc đoạn AB, SC, I là giao điểm của CM với BD. Khẳng định nào sau đây đúng?

- ${\color{red} {\bf A}}$ Giao điểm của MN và (SBD) là giao điểm của MN và SB.
- \blacksquare Đường thẳng MN không cắt mặt phẳng (SBD).
- $lue{c}$ Giao điểm của MN và (SBD) là giao điểm của MN và SI.
- \bigcirc Giao điểm của MN và (SBD) là giao điểm của MN và BD.

Gọi
$$K = SI \cap MN$$
, suy ra
$$\begin{cases} K \in MN \\ K \in SI \subset (SBD). \end{cases}$$

Vậy giao điểm của MN với (SBD) là giao điểm của MN với SI.

Chọn đáp án \bigcirc

CÂU 3. Cho tứ giác ABCD có AC và BD giao nhau tại O và một điểm S không thuộc mặt phẳng (ABCD). Trên đoạn SC lấy một điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng (ABM) là

- \bigcirc giao điểm của SD và BK.
- \bigcirc giao điểm của SD và AB.

- lacksquare giao điểm của SD và AM.
- \bigcirc giao điểm của SD và MK.

∞ Lời giải.

Trong mặt phẳng (SAC), gọi $K = SO \cap AM$.

Trong mặt phẳng (SBD), kéo dài BK cắt SD tại N.

Khi đó
$$\begin{cases} N \in BK \subset (ABM) \\ N \in SD. \end{cases}$$

Vậy N là giao điểm của SD với mặt phẳng (ABM).

Chọn đáp án $\widehat{\mathbf{A}}$

CÂU 4. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AD, BC; G là trọng tâm của tam giác BCD. Khi đó, giao điểm của đường thẳng MG và mặt phẳng (ABC) là

- \bigcirc điểm A.
- \bigcirc điểm N.

- ${\color{red}|}{\color{blue}|}{\color{bl$
- $lackbox{ iny D}$ giao điểm của đường thẳng MG và đường thẳng BC.

D Lời giải.

Trong mặt phẳng (AND), gọi $E = AN \cap MG$.

- $\Rightarrow \begin{cases} E \in AN \subset (ABC) \\ E \in MG. \end{cases}$
- $\Rightarrow E = MG \cap (ABC).$

Vậy giao điểm của đường thẳng MG và mặt phẳng (ABC) là E (với $E=AN\cap MG$).

Chọn đáp án B

CÂU 5. Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Gọi I là giao điểm của đường thẳng AM với mặt phẳng (SBD). Khẳng định nào sau đây đúng?

$$\bigcirc$$
 $IA = 3IM.$

$$\bigcirc$$
 $IM = 2IA$.

$$\bigcirc$$
 $IA = 2IM.$

🗩 Lời giải.

Gọi $O = AC \cap BD$ thì $(SAC) \cap (SBD) = SO$.

Trong mặt phẳng (SAC), gọi $I = AM \cap SO$

 $\Rightarrow I = AM \cap (SBD).$

Trong $\triangle SAC$, AM và SO là hai đường trung tuyến, nên I là trọng tâm $\triangle SAC$. Vậy IA=2IM.

Chọn đáp án $\stackrel{\frown}{\mathbb{D}}$

CÂU 6. Cho tứ diện ABCD có M, N theo thứ tự là trung điểm của AB, BC. Gọi P là điểm thuộc cạnh CD sao cho CP = 2PD và Q là điểm thuộc cạnh AD sao cho bốn điểm M, N, P, Q đồng phẳng. Khẳng định nào sau đây đúng?

$$\bigcirc$$
 Q là trung điểm của đoạn thẳng AC .

$$\bigcirc$$
 $AQ = 2DQ$.

D Lời giải.

Do MN là đường trung bình của $\triangle ABC$ nên $MN \parallel AC$.

Hai mặt phẳng (MNP) và (ACD) có MN # AC và P là điểm chung của hai mặt phẳng nên giao tuyến của hai mặt phẳng là đường thẳng PQ đi qua P và song song với AC; cắt AD tại Q.

Mặt khác, trong tam giác ACD có

$$\begin{cases} \dot{C}P = 2PD \\ PQ \# AC \end{cases} \text{ nên } AQ = 2DQ.$$

Chọn đáp án \bigcirc

CÂU 7. Cho tứ diện ABCD, gọi E, F lần lượt là trung điểm của AB, CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là

- (\mathbf{A}) giao điểm của đường thẳng EG và AF.
- (\mathbf{B}) điểm F.
- (\mathbf{C}) giao điểm của đường thẳng EG và CD.
- (\mathbf{D}) giao điểm của đường thẳng EG và AC.

Lời giải.

Xét mặt phẳng (ABF) có E là trung điểm của AB, $BG = \frac{2}{3}BF$ nên EG không song song với AF.

Kéo dài EG và AF cắt nhau tại M.

Vì $AF \subset (ACD)$ nên M là giao điểm của EG và (ACD).

Chọn đáp án A

CÂU 8. Cho tứ diện ABCD có M, N lần lượt là trung điểm của BC, AD. Gọi G là trọng tâm của tam giác BCD. Gọi I là giao điểm của NG với mặt phẳng (ABC). Khẳng định nào sau đây đúng?

- \bigcirc $I \in AM$.
- \blacksquare $I \in BC$.
- \bigcirc $I \in AC$.
- \bigcirc $I \in AB$.

🗩 Lời giải.

Dễ thấy NG và AM cùng nằm trong mặt phẳng (AMD).

Mặt khác ta lại có
$$\frac{DN}{DA} = \frac{1}{2}, \frac{DG}{DM} = \frac{2}{3}.$$

Do đó NG và AM cắt nhau.

Gọi $I = NG \cap AM$, $AM \subset (ABC) \Rightarrow I = NG \cap (ABC)$.

Vậy khẳng định đúng là $I \in AM$.

Chọn đáp án $\stackrel{\textstyle \bullet}{f A}$

CÂU 9. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, I lần lượt là trung điểm của SA, BC điểm G nằm giữa S và I sao cho $\frac{SG}{SI} = \frac{3}{5}$. Giao điểm của đường thẳng MG với mặt phẳng (ABCD) là

- (\mathbf{A}) giao điểm của đường thẳng MG và đường thẳng AI.
- $oxed{\mathbb{B}}$ giao điểm của đường thẳng MG và đường thẳng BC.
- \bigcirc giao điểm của đường thẳng MG và đường thẳng CD.
- \bigcirc giao điểm của đường thẳng MG và đường thẳng AB.

p Lời giải.

Xét trong mặt phẳng (SAI), gọi $MG \cap AI = \{J\}$.

Do đó
$$\begin{cases} J \in AI \subset (\overrightarrow{ABCD}) \\ J \in MG. \end{cases}$$

Suy ra giao điểm của đường thẳng MG với mặt phẳng (ABCD) là điểm J.

Chọn đáp án $\stackrel{\frown}{\bf A}$

CÂU 10. Cho tứ diện ABCD. Lấy điểm M sao cho AM = 2CM và N là trung điểm AD. Gọi O là một điểm thuộc miền trong của $\triangle BCD$; Gọi K là giáo điểm của MN và CD. Giao điểm của BC với (OMN) là giao điểm của BC với

 \bigcirc OM.

lacksquare MN.

C DO.

 \bigcirc KO.

Ta có O và K thuộc (BCD).

Dễ thấy OK cắt BC tại một điểm, suy ra giao điểm của BC với (OMN) là giao điểm của BC với OK.

Chọn đáp án D

CÂU 11. Cho hình chóp S.ABCD, M là một điểm trên cạnh SC, N là một điểm trên cạnh BC, $O = AC \cap BD$, $I = SO \cap AM$, $J = AN \cap BD$. Khi đó giao điểm của đường thẳng SD với mặt phẳng (AMN) là

- \bigcirc giao điểm của SD và IO.
- \bigcirc giao điểm của SD và IJ.

- $lackbox{\textbf{B}}$ giao điểm của SD và JM.
- \bigcirc giao điểm của SD và JO.

p Lời giải.

$$I = SO \cap AM \Rightarrow I \in AM \Rightarrow I \in (AMN)$$
$$J = AN \cap BD \Rightarrow J \in AN \Rightarrow J \in (AMN)$$
$$\Rightarrow IJ \subset (AMN).$$

Khi đó giao điểm của đường thẳng SD với mặt phẳng (AMN) là giao điểm của SD và IJ.

Chọn đáp án \bigcirc

CÂU 12.

Cho hình chóp S.ABC có đáy ABC là tam giác, như hình vẽ bên. Với M, N, H lần lượt là các điểm thuộc vào các cạnh AC, BC, SA sao cho MN không song song với AB. Gọi O là giao điểm của hai đường thẳng AN với BM. Gọi T là giao điểm của đường NH với (SBM). Khẳng định nào sau đây là khẳng định đúng?

- (A) T là giao điểm của hai đường thẳng SO với HM.
- (**B**) T là giao điểm của hai đường thẳng NH và BM.
- \bigcirc T là giao điểm của hai đường thẳng NH và SB.
- \bigcirc T là giao điểm của hai đường thẳng NH và SO.

Lời giải.

Giao tuyến của (SAN) và (SBM) là SO.

Ta có
$$T = NH \cap (SBM) \Rightarrow \begin{cases} T \in NH \\ T \in (SBM) \end{cases} \Rightarrow \begin{cases} T \in (SAN) \\ T \in (SBM) \end{cases} \Rightarrow T \in SO.$$

Vâv $T = NH \cap SO$.

Chon đáp án (D)

CÂU 13. Cho hình chóp S.ABCD có đáy ABCD là một tứ giác. Gọi M là trung điểm của SD, N là điểm nằm trên cạnh SB sao cho SN = 2NB. Giao điểm của MN với (ABCD) là điểm K. Hãy chọn cách xác định điểm K đúng nhất trong các phương án sau.

- (A) K là giao điểm của MN với AC.
- (\mathbf{C}) K là giao điểm của MN với BC.

- (\mathbf{B}) K là giao điểm của MN với AB.
- $(\mathbf{D}) K$ là giao điểm của MN với BD.

Dòi giải.

Xét $\triangle SBD$ có M là trung điểm của SD và N thuộc SB sao cho $SN=2NB\Rightarrow SN=\frac{2}{3}SB.$

Suy ra MN kéo dài cắt BD tại K.

Chọn đáp án $\widehat{\mathbb{D}}$

CÂU 14. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. H là giao điểm của AC và MN. Giao điểm của SO với (MNK) là điểm E. Hãy chọn cách xác định điểm E đúng nhất trong bốn phương án sau.

- lack A E là giao điểm của MN với SO.
- \bigcirc E là giao điểm của KH với SO.

- \blacksquare E là giao điểm của KN với SO.
- (\mathbf{D}) E là giao điểm của KM với SO.

D Lời giải.

Vì $(KMN) \cap (SAC) = KH$. Do đó E là giao điểm của KH với SO.

Chọn đáp án (C)

Dạng 4. Tìm thiết diện

CÂU 1. Cho hình chóp S.ABCD với ABCD là tứ giác lồi. Thiết diện của mặt phẳng (α) tùy ý với hình chóp **không** thể là

- A tam giác.
- **B** tứ giác.
- c ngũ giác.
- D lục giác.

Vì hình chóp S.ABCD với đáy ABCD là tứ giác lồi thì có 4 mặt bên và một mặt đáy nên thiết diên của mặt phẳng (α) tùy ý với hình chóp chỉ có thể có tối đa là 5 canh. Do đó thiết diện không thể là lục giác.

Chọn đáp án (D)

CÂU 2. Cho hình chóp S.ABCD có ABCD là hình thang cân đáy lớn AD. Gọi M, N lần lượt là trung điểm của AB, CD. Gọi (P) là mặt phẳng qua MN và cắt mặt bên (SBC) theo một giao tuyến. Thiết diện của (P) và hình chóp là

- (A) hình bình hành.
- (B) hình chữ nhật.
- (C) hình thang.
- (**D**) hình vuông.

🗩 Lời giải.

Giả sử mặt phẳng cắt theo giao tuyến PQ.

Khi đó do $MN \parallel BC$ nên theo định lý ba giao tuyến song song hoặc đồng quy áp dụng cho ba mặt phẳng (P); (SBC); (ABCD) thì ta được ba giao tuyến MN; BC; PQ đôi một song song.

Do đó thiết diện là một hình thang.

Chọn đáp án (C)

CÂU 3. Cho tứ diện ABCD đều cạnh a. Gọi G là trọng tâm tam giác ABC, mặt phẳng (CGD) cắt tứ diện theo một thiết diện có diện tích là

$$\bigcirc \frac{a^2\sqrt{2}}{4}.$$

Dèi giải.

Gọi giao điểm của CG với AB là I.

Thiết diện của mặt phẳng (CGD) với tứ diện ABCD là tam giác DCI.

Tam giác đều ABC nên ta có $CI = \frac{a\sqrt{3}}{2}$.

Tam giác đều ABD nên ta có $DI = \frac{a\sqrt{3}}{2}$.

Gọi H là trung điểm của CD

Do $\triangle CDI$ có $CI = DI = \frac{a\sqrt{3}}{2}$ nên $IH \perp CD$ tại H.

Áp dụg định lí Py-ta-go trong tam giác vuông
$$CIH$$
, ta có $IH = \sqrt{CI^2 - CH^2} = \sqrt{\frac{3a^2}{4} - \frac{a^2}{4}} = \frac{a\sqrt{2}}{2}$.
Vậy $S_{DCI} = \frac{1}{2} \cdot IH \cdot CD = \frac{1}{2} \cdot \frac{a\sqrt{2}}{2} \cdot a = \frac{a^2\sqrt{2}}{4}$.

Chọn đáp án (C)

CÂU 4. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AD,SC. Thiết diện hình chóp với mặt phẳng (MNP) là một

- (A) tam giác.
- (B) tứ giác.
- (C) ngũ giác.
- (D) lục giác.

Trong (ABCD): CD và BC cắt MN lần lượt tại I và E.

Trong (SBC): PI cắt SB tai J.

Trong (SDC): PE cắt SD tai K.

Khi đó (MNP) giao với (ABCD), (SDA), (SBC), (SAB), (SDC) lần lượt

theo các giao tuyến MN, NK, PJ, JM, KP.

Nên thiết diện tạo thành là ngũ giác MNKPJ.

Chọn đáp án (C)

CÂU 5. Cho tứ diện ABCD. Trên các cạnh AB, BC, CD lần lượt lấy các điểm P, Q, R sao cho $AP = \frac{1}{3}AB$, BQ = 2QC, R không trùng với C, D. Gọi PQRS là thiết diện của mặt phẳng (PQR) với hình tứ diện ABCD. Khi đó PQRS là

- (A) hình thang cân.
- (C) một tứ giác không có cặp cạnh đối nào song song.
- (B) hình thang.
- (**D**) hình bình hành.

🗩 Lời giải.

Từ giả thiết, ta có $\frac{AP}{AB} = \frac{CQ}{CB} = \frac{1}{3} \Rightarrow PQ \parallel AC$. Giao tuyến của mặt phẳng (PQR) và (ACD) là đường thẳng đi qua R và song song với AC, cắt AD tại S.

Do đó PQRS là thiết diện của mặt phẳng (PQR) với hình tứ diện ABCD.

Theo cách dung thì $PQ \parallel RS$ mà R bất kỳ trên canh CD nên thiết diên là hình thang.

Chọn đáp án (B)

CẦU 6. Cho hình chóp S.ABCD. Có đáy ABCD là hình bình hành. Gọi M, N, Q lần lượt là trung điểm của các cạnh AB, AD, SC. Thiết diện của hình chóp với mặt phẳng (MNQ) là đa giác có bao nhiêu cạnh?

🗩 Lời giải.

Trong (ABCD), goi $K = MN \cap CD$, $L = MN \cap BC$ suy ra $K \in (SCD)$, $L \in (SBC)$.

Trong (SCD), gọi $P = KQ \cap SD$.

Trong (SBC), goi $R = LQ \cap SB$.

Khi đó ta có: $(MNQ) \cap (ABCD) = MN; (MNQ) \cap (SAD) = NP;$ $(MNQ) \cap (SCD) = PQ; (MNQ) \cap (SBC) = QR; (MNQ) \cap (SAB) =$

Vậy thiết diện cần tìm là ngũ giác.

Chọn đáp án (C)

CÂU 7.

Cho hình chóp S.ABCD có đáy là hình thang, $AB \parallel CD$ và AB = 2CD. Gọi O là giao điểm của AC và BD. Lấy E thuộc cạnh SA, F thuộc cạnh SC sao cho $\frac{SE}{SA} = \frac{SF}{SC} = \frac{2}{3}$. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (BEF) là

A một tam giác.

- **B** một tứ giác.
- © một hình thang.
- nột hình bình hành.

🗩 Lời giải.

Trong (SAC), gọi $I = SO \cap EF$, trong (SBD), gọi $N = BI \cap SD$. Suy ra N là giao điểm của đường thẳng SD với mặt phẳng (BEF). Thiết diện của hình chóp cắt bởi mặt phẳng (BEF) là tứ giác BFNE.

Chọn đáp án (B)

CÂU 8. Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD, E là trung điểm của cạnh SA, F, G là các điểm thuộc cạnh SC, AB (F không là trung điểm của SC). Thiết diện của hình chóp cắt bởi mặt phẳng (EFG) là một hình

(A) lục giác.

B) ngũ giác.

c tam giác.

D tứ giác.

p Lời giải.

Gọi $N = EG \cap SB; K = NF \cap BC; O = AC \cap BD; I = FE \cap SO; H = NI \cap SD.$

Khi đó, ta có $(SAB) \cap (EGF) = EG; (ABCD) \cap (EGF) = GK; (EGF) \cap (SBC) = KF; (EGF) \cap (SCD) = FH; (EGF) \cap (SAD) = EH.$ Vậy thiết diện của hình chóp cắt bởi mặt phẳng (EGF) là ngũ giác EGKFH.

Chọn đáp án B

CÂU 9. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm của SA. Thiết diện của hình chóp S.ABCD cắt bởi (IBC) là

A tứ giác IBCD.

- $oxed{B}$ hình thang IGBC (G là trung điểm của SB).
- \bigcirc hình thang IJCB (J là trung điểm của SD).
- \bigcirc tam giác IBC.

D Lời giải.

Gọi J là trung điểm của SD. Khi đó IJ là đường trung bình của tam giác SAD, suy ra $IJ \parallel AD$. Mà $AD \parallel BC$ nên $IJ \parallel BC$, thêm nữa $I \in (IBC)$. Do đó, $J \in (IBC)$.

Ta có
$$\begin{cases} (IBC) \cap (ABCD) = BC \\ (IBC) \cap (SBC) = BC \\ (IBC) \cap (SAB) = IB \\ (IBC) \cap (SAD) = IJ \\ (IBC) \cap (SCD) = JC. \end{cases}$$

Vậy thiết diện của hình chóp S.ABCD cắt bởi (IBC) là hình thang IJCB (do $IJ \parallel BC$).

Chon đáp án (C)

CÂU 10.

Cho tứ diện đều ABCD có cạnh bằng 2. Gọi G là trọng tâm tam giác ABC. Cắt tứ diện bởi mặt phẳng (GCD) ta được thiết diện có diện tích bằng

B $2\sqrt{3}$.

 \bigcirc $\sqrt{2}$.

🗩 Lời giải.

Gọi M là trung điểm của AB. Khi đó $M \in CG$, suy ra $M \in (GCD)$.

Ta có
$$\begin{cases} (GCD) \cap (ABC) = CM \\ (GCD) \cap (ABD) = DM \\ (GCD) \cap (ACD) = CD \\ (GCD) \cap (BCD) = CD. \end{cases}$$

Vậy thiết diện của tứ diện ABCD cắt bởi (GCD) là tam giác CDM.

Tam giác ABC đều cạnh bằng 2 nên $CM = \frac{2\sqrt{3}}{2} = \sqrt{3}$.

Tam giác ABD đều cạnh bằng 2 nên $DM = \frac{2\sqrt{3}}{2} = \sqrt{3}$.

Nửa chu vi của tam giác CDM là $p=\frac{CD+CM+DM}{2}=\frac{2+\sqrt{3}+\sqrt{3}}{2}=\sqrt{3}+1.$ Diện tích của tam giác CDM là $S=\sqrt{p(p-CD)(p-CM)(p-DM)}=\sqrt{2}.$

Chọn đáp án \bigcirc

$$\bigcirc \frac{a^2\sqrt{17}}{8}.$$

$$\bigcirc \hspace{-3mm} \boxed{ \frac{7a^2\sqrt{17}}{12} }$$

Vì EF là đường trung bình của tam giác B'C'D' nên $EF \parallel B'D'$. Mà $B'D' \parallel BD$ nên $EF \parallel BD$.

Trong mặt phẳng (ABCD), qua A dựng đường thẳng song song với BD, cắt CD, CB lần lượt tại I và J. Khi đó, $I \in (CDD'C')$ và $J \in (BCC'B').$

Trong mặt phẳng (CDD'C'), gọi G là giao điểm của IF và DD'.

Trong mặt phẳng (BCC'B'), gọi K là giao điểm của JE và BB'.

$$\text{Khi d\'o, ta c\'o} \begin{cases} (AEF) \cap (A'B'C'D') = EF \\ (AEF) \cap (CDD'C') = FG \\ (AEF) \cap (ADD'A') = AG \\ (AEF) \cap (ABB'A') = AK \\ (AEF) \cap (BCC'B') = KE. \end{cases}$$

Vậy thiết diện của khối lập phương ABCD.A'B'C'D' cắt bởi mặt phẳng (AEF) là ngũ giác AKEFG.

Gọi H là giao điểm của IF và JE.

$$\text{Vì} \begin{cases} (IJEF) \cap (BCC'B') = JE \\ (IJEF) \cap (CDD'C') = IF \\ (BCC'B') \cap (CDD'C') = CC' \end{cases} \text{nên các đường thẳng } IF, JE, CC' \text{ đồng quy tại } H, \text{ tức là } H \in CC'. \\ IF \cap JE = H \end{cases}$$

Tứ giác ADBJ có $AD \parallel BJ$ và $BD \parallel AJ$ nên ADBJ là hình bình hành. Suy ra BJ = AD = BC = a.

Ta có
$$\frac{B'K}{BK} = \frac{B'E}{BJ} = \frac{B'E}{BC} = \frac{1}{2}$$
. Suy ra $B'K = \frac{1}{3}BB' = \frac{a}{3}$ và $BK = \frac{2a}{3}$.

Xét hai tam giác vuông EKB' và EHC' có $\widehat{EB'K} = \widehat{EC'H} = 90^{\circ}$, B'E = C'E, $\widehat{B'EK} = \widehat{C'EH}$ (hai góc đối đỉnh). Do đó, $\triangle EKB' = \triangle EHC'$. Suy ra $C'H = B'K = \frac{a}{3}$ và EH = EK.

Tương tự, ta cũng có FH = FG.

Ta có
$$KH = 2EK = 2\sqrt{B'E^2 + B'K^2} = 2\sqrt{\frac{a^2}{4} + \frac{a^2}{9}} = \frac{a\sqrt{13}}{3}.$$

Lại có $AK = \sqrt{AB^2 + BK^2} = \sqrt{a^2 + \frac{4a^2}{9}} = \frac{a\sqrt{13}}{3}.$

Suy ra AK = KH.

Chứng minh tương tự, ta cũng có AG = GH.

Do đó, AGHK là hình thoi.

Vì EF là đường trung bình của tam giác GHKnên $GK=2EF=\underline{B'D'}=a\sqrt{2}$

Trong tam giác
$$ACH$$
 vuông tại C ta có $AH = \sqrt{AC^2 + CH^2} = \sqrt{2a^2 + \left(a + \frac{a}{3}\right)^2} = \frac{a\sqrt{34}}{3}$.

Diện tích hình thoi AGHK là $S_{AGHK} = \frac{1}{2}GK \cdot AH = \frac{1}{2} \cdot a\sqrt{2} \cdot \frac{a\sqrt{34}}{3} = \frac{a^2\sqrt{17}}{3}$. Diện tích tam giác EFH là $S_{EFH} = \frac{1}{4}S_{GHK} = \frac{1}{8}S_{AGHK} = \frac{a^2\sqrt{17}}{24}$. Diện tích ngũ giác AKEFG là $S_{AKEFG} = S_{AGHK} - S_{GHK} = \frac{a^2\sqrt{17}}{3} - \frac{a^2\sqrt{17}}{24} = \frac{7a^2\sqrt{17}}{24}$.

Chọn đáp án (A)

CÂU 12. Cho hình chóp S.ABCD. Gọi M, N lần lượt là trung điểm của SB và SD. Thiết diện của hình chóp S.ABCD

(A) Tam giác vuông.

và mặt phẳng (AMN) là hình gì?

(B) Ngũ giác.

(C) Tam giác cân.

(**D**) Tứ giác.

Lời giái.

Gọi O là giao điểm của AC và BD. Suy ra SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

Trong mặt phẳng (SBD), gọi I là giao điểm của SO và MN.

Trong mặt phẳng (SAC), gọi P là giao điểm của AI và SC. Suy ra $P \in (AMN)$.

Khi đó, ta có
$$\begin{cases} (AMN)\cap (SAB) = AM\\ (AMN)\cap (SBC) = MP\\ (AMN)\cap (SCD) = PN\\ (AMN)\cap (SAD) = AN. \end{cases}$$

Vậy thiết diện của hình chóp S.ABCD và mặt phẳng (AMN) là tứ giác AMPN.

Chọn đáp án (D)

CÂU 13. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Thiết diện của hình chóp cắt bởi mặt phẳng (MNK) là một đa giác (\mathcal{H}) . Khẳng định nào dưới đây đúng?

- (A) (H) là một hình thang có hai đáy không bằng nhau.
- $(\mathbf{C})(\mathcal{H})$ là một ngũ giác.

- (\mathbf{B}) (\mathcal{H}) là hình bình hành.
- $(\mathbf{D})(\mathcal{H})$ là một tam giác.

🗩 Lời giải.

Trong mặt phẳng (ABCD), gọi E, F lần lượt là giao điểm của MN với AB, AD. Suy ra $E \in (SAB)$, $F \in (SAD)$.

Trong mặt phẳng (SAB), gọi G là giao điểm của EK và SB. Suy ra $G \in (MNK)$.

Trong mặt phẳng (SAD), gọi H là giao điểm của FK và SD. Suy ra $H \in (MNK)$.

$$\text{Khi d\'o, ta c\'o} \begin{cases} (MNK) \cap (ABCD) = MN \\ (MNK) \cap (SBC) = NG \\ (MNK) \cap (SAB) = GK \\ (MNK) \cap (SAD) = KH \\ (MNK) \cap (SCD) = HM. \end{cases}$$

Vậy thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNK) là ngũ giác MNGKH. Chon đáp án (C)

CÂU 14. Cho hình chóp tứ giác S.ABCD. Gọi C' là điểm trên cạnh SC sao cho $SC' = \frac{2}{3}SC$. Thiết diện của hình chóp với mặt phẳng (ABC') là một đa giác m cạnh. Giá trị của m là

$$\bigcirc$$
 $M = 6.$

$$(\mathbf{B}) m = 4.$$

(**c**)
$$m = 5$$
.

$$\bigcirc$$
 $m=3.$

🗩 Lời giải.

Gọi O là giao điểm của AC và BD. Suy ra SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

Trong mặt phẳng (SAC), gọi I là giao điểm của SO và AC'.

Trong mặt phẳng (SBD), gọi E là giao điểm của BI và SD. Suy ra $E \in (ABC')$.

Khi đó, ta có
$$\begin{cases} (ABC') \cap (ABCD) = AB \\ (ABC') \cap (SAB) = AB \\ (ABC') \cap (SBC) = BC' \\ (ABC') \cap (SCD) = C'E \\ (ABC') \cap (SAD) = EA. \end{cases}$$

Do đó, thiết diện của hình chóp S.ABCD với mặt phẳng (ABC') là tứ giác ABC'E. Vâv m=4.

Chọn đáp án (B)

CÂU 15. Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc cạnh BC (P không là trung điểm của BC). Thiết diện của tứ diện bị cắt bởi mặt phẳng (MNP) là

- (A) tứ giác.
- (B) ngũ giác.
- (C) lục giác.
- (D) tam giác.

🗩 Lời giải.

П

Vì P không là trung điểm của BC nên MP không song song với AC.

Trong mặt phẳng (ABC), gọi E là giao điểm của MP và AC. Suy ra E thuộc cả hai mặt phẳng (MNP) và (ACD).

Trong mặt phẳng (ACD), gọi Q là giao điểm của EN và AD. Suy ra $Q \in (MNP)$.

Khi đó, ta có
$$\begin{cases} (MNP) \cap (ABC) = MP \\ (MNP) \cap (BCD) = PN \\ (MNP) \cap (ACD) = NQ \\ (MNP) \cap (ABD) = QM. \end{cases}$$

Vậy thiết diện của tứ diện ABCD cắt bởi mặt phẳng (MNP) là tứ giác MPNQ.

Chọn đáp án (A)

CẦU 16. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng $a\ (a>0)$. Thiết diện của hình lập phương đã cho cắt bởi mặt phẳng trung trực của đoạn AC' có diện tích bằng

$$lackbox{\textbf{B}}$$
 a^2 .

$$\bigcirc \frac{3\sqrt{3}}{4}a^2.$$

🗩 Lời giải.

Gọi $E,\,F,\,G,\,H,\,I,\,J$ lần lượt là trung điểm của $BC,\,CD,\,DD',\,A'D',\,A'B',\,BB'.$

Ta có
$$C'E = \sqrt{C'C^2 + EC^2} = \sqrt{a^2 + \frac{a^2}{4}} = \frac{a\sqrt{5}}{2}$$
. Lại có $AE = \sqrt{AB^2 + BE^2} = \sqrt{a^2 + \frac{a^2}{4}} = \frac{a\sqrt{5}}{2}$.

Lai có
$$AE = \sqrt{AB^2 + BE^2} = \sqrt{a^2 + \frac{a^2}{4}} = \frac{a\sqrt{5}}{2}.$$

Suy ra AE = C'E hay E thuộc mặt phẳng trung trực của đoạn thẳng AC'. Chứng minh tương tự, ta cũng có F, G, H, I, J thuộc mặt phẳng trung trực của đoạn thẳng AC'.

Vì EF là đường trung bình của tam giác BCD nên $EF = \frac{BD}{2} = \frac{a\sqrt{2}}{2}$.

Tương tự,
$$FG = GH = HI = IJ = JE = \frac{a\sqrt{2}}{2}$$
.

Vậy thiết diện của hình lập phương đã cho cắt bởi mặt phẳng trung trực của đoạn AC' là lục giác đều EFGHIJ có cạnh bằng $\frac{a\sqrt{2}}{2}$.

Diện tích lục giác đều EFGHIJ là $S = 6 \cdot \left(\frac{a\sqrt{2}}{2}\right)^2 \cdot \frac{\sqrt{3}}{4} = \frac{3a^2\sqrt{3}}{4}$.

Chọn đáp án (C)

CÂU 17. Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD. E, F lần lượt là trung điểm của AB và AD. Thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG) là

(A) tam giác.

(B) tứ giác.

(C) ngũ giác.

(**D**) lục giác.

Lời giải.

Trong mặt phẳng (ABCD), gọi H, I lần lượt là giao điểm của EF với BC, CD. Suy ra $H \in (SBC)$, $I \in (SCD)$.

Trong mặt phẳng (SCD), gọi J, K lần lượt là giao điểm của IG với SD, SC. Suy ra $J \in (EFG)$ và $K \in (EFG)$.

Trong mặt phẳng (SBC), gọi L là giao điểm của KH và BD. Suy ra K thuộc mặt phẳng (EFG).

Khi đó, ta có
$$\begin{cases} (EFG) \cap (ABCD) = EF \\ (EFG) \cap (SAD) = FJ \\ (EFG) \cap (SCD) = JK \\ (EFG) \cap (SBC) = KL \\ (EFG) \cap (SAB) = LE. \end{cases}$$

Vây thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (EFG) là ngũ giác EFJKL. Chọn đáp án $\stackrel{\frown}{(\mathbb{C})}$

CÂU 18. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N và P lần lượt là trung điểm của các cạnh SA, BC, CD. Hỏi thiết diện của hình chóp cắt bởi mặt phẳng (MNP) là hình gì?

A Hình ngũ giác.

(B) Hình tam giác.

C Hình tứ giác.

Hình lục giác.

D Lời giải.

Trong mặt phẳng (ABCD), gọi E, F lần lượt là giao điểm của NP với AB, AD. Suy ra $E \in (SAB)$, $F \in (SAD)$.

Trong mặt phẳng (SAB), gọi G là giao điểm của EM và SB. Suy ra $G \in (MNP)$.

Trong mặt phẳng (SAD), gọi H là giao điểm của FM và SD. Suy ra $H \in (MNP)$.

$$\text{Khi d\'o, ta c\'o} \begin{cases} (MNP) \cap (ABCD) = NP \\ (MNP) \cap (SBC) = NG \\ (MNP) \cap (SAB) = GM \\ (MNP) \cap (SAD) = MH \\ (MNP) \cap (SCD) = HP. \end{cases}$$

Vậy thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNP) là ngũ giác MGNPH. Chọn đáp án $\widehat{(A)}$

> Dạng 5. Đồng quy, thẳng hàng

CÂU 1. Cho hình chóp S.ABCD có đáy ABCD là hình thang $(AD \parallel BC, AD > BC)$. Gọi I là giao điểm của AB và DC, M là trung điểm của SC và DM cắt mặt phẳng (SAB) tại J. Khẳng định nào sau đây **sai**?

- lack A Ba điểm S, I, J thẳng hàng.
- \blacksquare Đường thẳng JM thuộc mặt phẳng (SAB).
- \bigcirc Đường thẳng DM thuộc mặt phẳng (SCI).

Dòi giải.

Ta có $S \in (SAB) \cap (SCD)$.

Lại có $I = AB \cap CD$ nên $I \in (SAB) \cap (SCD)$.

Do đó, $SI = (SAB) \cap (SCD)$.

Khi đó, (SCI) trùng với (SCD). Mà $DM \subset (SCD)$ nên $DM \subset (SCI)$.

Trong mặt phẳng (SCD), gọi J là giao điểm của DM và SI. Khi đó, $J \in DM$, $J \in SI$, $SI \subset (SAB)$ nên J chính là giao điểm của DM và (SAB).

Từ đó suy ra ba điểm S, I, J thắng hàng.

Vì $J \in SI$, $SI \subset (SCD)$, $M \in (SCD)$ nên $JM \subset (SCD)$.

Chọn đáp án $\stackrel{\frown}{(B)}$

CÂU 2. Cho hình tứ diện ABCD có M, N lần lượt là trung điểm của AB, BD. Các điểm G, H lần lượt trên cạnh AC, CD sao cho NH cắt MG tại I. Khẳng định nào sau đây là khẳng định đúng?

 \triangle A, C, I thẳng hàng.

 \bigcirc B) B, C, I thẳng hàng.

 (\mathbf{C}) N, G, H thẳng hàng.

 \triangleright B, G, H thẳng hàng.

D Lời giải.

Vì NH và MG cắt nhau nên chúng cùng thuộc mặt phẳng, ta kí hiệu là (MNHG).

$$\text{Vì} \begin{cases} (MNHG) \cap (ABC) = MG \\ (MNHG) \cap (BCD) = NH \\ (ABC) \cap (BCD) = BC \\ NH \cap MG = I \end{cases} \text{nên } NH, \, MG, \, BC \, \text{đồng quy tại } I.$$

Vậy ba điểm B, C, I thẳng hàng.

Chọn đáp án (B)

CÂU 3. Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi O là giao điểm của hai đường chéo AC và BD. Một mặt phẳng (α) cắt các cạnh bên SA, SB, SC, SD tương ứng tại các điểm M, N, P, Q. Khẳng định nào sau đây đúng?

 \triangle Các đường thẳng MP, NQ, SO đồng quy.

 (\mathbf{B}) Các đường thẳng MP, NQ, SO chéo nhau.

 \bigcirc Các đường thẳng MP, NQ, SO đôi một song song.

 \bigcirc Các đường thẳng MP, NQ, SO trùng nhau.

🗩 Lời giải.

Ta có $S \in (SAC) \cap (SBD), \ O = AC \cap BD$ hay $O \in (SAC) \cap (SBD).$ Do đó, $SO = (SAC) \cap (SBD).$

Mặt phẳng (α) chính là mặt phẳng (MNPQ).

Trong mặt phẳng (MNPQ), gọi I là giao điểm của MP và NQ.

$$\text{Vì} \begin{cases} (MNPQ) \cap (SAC) = MP \\ (MNPQ) \cap (SBD) = NQ \\ (SAC) \cap (SBD) = SO \end{cases} \text{nên các đường thẳng } MP, \, NQ, \, SO \, đồng quy tại } I.$$

$$MP \cap NQ = I$$

Chọn đáp án (A)

CÂU 4. Cho hình chóp S.ABCD. Một mặt phẳng (P) bất kì cắt các cạnh SA, SB, SC, SD lần lượt tại A', B', C', D'. Gọi I là giao điểm của AC và BD. Chọn khẳng định đúng trong các khẳng định dưới đây.

igapha Các đường thẳng AB, CD, C'D' đồng quy.

(B) Các đường thẳng AB, CD, A'B' đồng quy.

(C) Các đường thẳng A'C', B'D', SI đồng quy.

(**D**) Các đường thẳng SB, AD, B'C' đồng quy.

Dèi giải.

Mặt phẳng (P) chính là mặt phẳng (A'B'C'D').

Hai mặt phẳng (A'B'C'D') và (SAC) cắt nhau theo giao tuyến A'C'.

Hai mặt phẳng (A'B'C'D') và (SBD) cắt nhau theo giao tuyến B'D'.

Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SI.

Trong mặt phẳng (A'B'C'D'), gọi O là giao điểm của A'C' và B'D'.

Vậy ba đường thẳng A'C', B'D', SI đồng quy tại O.

Chọn đáp án (C)

CÂU 5. Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của cạnh AB, BC. Mặt phẳng (P) đi qua EF cắt AD, CD lần lượt tại H và G. Biết EH cắt FG tại I. Ba điểm nào sau đây thẳng hàng?

 \bigcirc I, A, B.

 (\mathbf{B}) I, C, B.

 (\mathbf{C}) I, D, B.

 \bigcirc I, C, D.

D Lời giải.

Ta có
$$I = EH \cap FG \Rightarrow \begin{cases} I \in EH \subset (ABD) \\ I \in FG \subset (ABC) \end{cases} \Rightarrow I \in (ABD) \cap (ABC) = BD.$$

Vậy I, D, B thẳng hàng.

Chọn đáp án (C)

CÂU 6. Cho hình chóp tứ giác S.ABCD, gọi O là giao điểm của AC và BD. Một mặt phẳng (α) cắt các cạnh bên SA, SB, SC, SD tương ứng tại các điểm M, N, P, Q. Khẳng định nào đúng?

(A) Các đường thẳng MN, PQ, SO đồng quy.

 (\mathbf{B}) Các đường thẳng MP, NQ, SO đồng quy.

(**C**) Các đường thẳng MQ, PN, SO đồng quy.

(**D**) Các đường thẳng MQ, PQ, SO đồng quy.

Lời giải.

Ta có $MP\subset (SAC);\ NQ\subset (SBD).$ Và $(SAC)\cap (SBD)=SO.$ Gọi $I=MP\cap NQ.$ Thì $I\in SO$ nên $MP,\ NQ,\ SO$ đồng quy. Chọn đáp án $(\overline{\mathbb{B}})$

Dạng 6. Tỉ số

CÂU 1. Cho hình chóp S.ABCD có đáy là hình thang ABCD với $AD \parallel BC$ và AD = 2BC. Gọi M là điểm trên cạnh SD thỏa mãn $SM = \frac{1}{3}SD$. Mặt phẳng (ABM) cắt cạnh bên SC tại điểm N. Tính tỉ số $\frac{SN}{SC}$.

$$\bigcirc SN \over SC = \frac{4}{7}.$$

$$\bigcirc \hspace{-0.2cm} \frac{SN}{SC} = \frac{1}{2}.$$

🗩 Lời giải.

Gọi F là giao điểm của AB và CD. Nối F với M, FM cắt SC tại điểm N. Khi đó N là giao điểm của (ABM) và SC.

Theo giả thiết, ta chứng minh được C là trung điểm DF.

Trong mặt phẳng (SCD) kẻ CE song song NM (E thuộc SD).

Do C là trung điểm DF nên suy ra E là trung điểm MD. Khi đó, ta có SM =ME = ED và M là trung điểm SE.

Do $MN \parallel CE$ và M là trung điểm SE nên MN là đường trung bình của tam giác SCE.

Từ đó suy ra N là trung điểm SC và $\frac{SN}{SC} = \frac{1}{2}$.

Chọn đáp án (D)

CÂU 2. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Gọi M, N theo thứ tự là trọng tâm $\triangle SAB$, $\triangle SCD$. Gọi G là giao điểm của đường thẳng MN với mặt phẳng (SAC), O là tâm của hình chữ nhật ABCD. Khi đó tỉ số $\frac{SG}{GO}$ bằng

Lời giải.

Ta có $O \in FE$. Xét hai mặt phẳng (SEF) và (SCD) có

$$\begin{cases} O \in EF \subset (SEF) \\ O \in AC \subset (SAC) \end{cases} \Rightarrow O \in (SEF) \cap (SAC).$$

Mà $S \in (SEF) \cap (SAC)$ nên $(SEF) \cap (SAC) = SO$. Trong mặt phẳng (SEF) ta có

$$SO\cap MN=G\Rightarrow \begin{cases} G\in MN\\ G\in SO\subset (SAC) \end{cases} \Rightarrow MN\cap (SAC)=\left\{G\right\}.$$

Xét tam giác SFE cóMG // $EF(do\,MN$ // EF) \Rightarrow $\frac{SG}{SO}$ = $\frac{SM}{SE}$ = $\frac{2}{3}$ \Rightarrow $\frac{SG}{GO} = 2.$

Chọn đáp án (B)

CÂU 3. Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA, BC và P là điểm nằm trên cạnh AB sao cho $AP=\frac{1}{3}AB.$ Gọi Q là giao điểm của SC và (MNP). Tính tỉ số $\frac{SQ}{SC}$

$$\mathbf{C} \frac{SQ}{SC} = \frac{1}{3}.$$

Dòi giải.

Gọi I là giao điểm của NP và AC. Khi đó Q là giao điểm của MI và SC.

Khi đó
$$\frac{AK}{BN} = \frac{AP}{BP} = \frac{1}{2} \Rightarrow \frac{IA}{IC} = \frac{AK}{CN} = \frac{1}{2}.$$

Từ
$$A$$
 kẻ đường thẳng song song với BC , cắt IN tại K .

Khi đó $\frac{AK}{BN} = \frac{AP}{BP} = \frac{1}{2} \Rightarrow \frac{IA}{IC} = \frac{AK}{CN} = \frac{1}{2}$.

Từ A kẻ đường thẳng song song với SC , cắt IQ tại E .

Khi đó $\frac{AE}{SQ} = \frac{AM}{SM} = 1 \Rightarrow AE = SQ$, $\frac{AE}{CQ} = \frac{IA}{IC} = \frac{1}{2} \Rightarrow AE = \frac{1}{2}CQ$.

Do đó
$$\frac{SQ}{SC} = \frac{1}{3}$$
.

Chọn đáp án \bigcirc

CÂU 4. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC, điểm G là trọng tâm của tam giác BCD. Gọi I giao điểm của đường thẳng MG và mặt phẳng (ABC). Khi đó tỉ lệ $\frac{AN}{NI}$ bằng bao nhiêu?

B
$$\frac{1}{2}$$
.

$$\frac{2}{3}$$
.

$$\bigcirc \frac{3}{4}.$$

🗩 Lời giải.

Trong (AND), kéo dài MG cắt AN tại I.

Ta có
$$\begin{cases} I \in AN \subset (ABC) \\ I \in MG \end{cases} \Rightarrow I = MG \cap (ABC).$$

Trong $\triangle AMI$, kẻ $NK \parallel AM \Rightarrow \frac{NK}{MD} = \frac{NG}{GD} = \frac{1}{2}$, mà MD = AM nên

$$\frac{NK}{AM} = \frac{NK}{MD} = \frac{1}{2}.$$

Ta lại có $\frac{NK}{AM}=\frac{IN}{IA}=\frac{1}{2}$ hay N là trung điểm IA. Vậy $\frac{AN}{NI}=\frac{1}{2}.$

$$V_{\text{ay}} \frac{AN}{NI} = \frac{1}{2}.$$

Chọn đáp án (A)

CÂU 5. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Hai điểm M, N thứ tự là trung điểm của các cạnh AB, SC. Gọi I, J theo thứ tư là giao điểm của AN, MN với mặt phẳng (SBD). Tính $k = \frac{IN}{IA} + \frac{JN}{JM}$?

$$k = \frac{4}{3}$$
.

Gọi $O = AC \cap BD$, $BD \cap MC = K$. Trong $(SAC) : SO \cap AN = I$. Trong $(SMC): SK \cap MN = J$.

Ta thấy I là trọng tâm tam giác SAC nên $\frac{IN}{IA} = \frac{1}{2}$.

K là trọng tâm tam giác ABC, lấy L là trung điểm KC. Ta có MK=KL=LC. NL là đường trung bình của tam giác SKC nên $NL \parallel SK$, mà K là trung điểm ML nên KJ là đường trung bình của tam giác MNL. Khi đó $\frac{JN}{JM}=1 \Rightarrow \frac{IN}{IA} + \frac{JN}{JM} = \frac{3}{2}.$

Chọn đáp án B

CÂU 6. Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của AC và BC. Trên cạnh BD lấy điểm K sao cho BK = 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số $\frac{FA}{FD}$

 $\bigcirc \frac{5}{3}$.

🗭 Lời giải.

Trong mặt phẳng (BCD) hai đường thẳng JK và CD không song song nên gọi $E = JK \cap CD$ khi đó $E \in (ACD)$. Suy ra $(ACD) \cap (IJK) = EJ$.

Trong (ACD) gọi $F = EI \cap AD$. Khi đó $(IJK) \cap AD = F$. Vẽ $DH \ /\!\!/ BC$ và $H \in IE$. Ta có $\frac{BJ}{HD} = \frac{BK}{KD} = 2 \Rightarrow HD = \frac{BJ}{2} \Rightarrow HD = \frac{1}{2}JC$.

Suy ra D là trung điểm của CE.

Xét $\triangle ACE$ có EI và AD là hai đường trung tuyến nên F là trọng tâm của $\triangle ACE$. Vậy $\frac{AF}{FD}=2$.

Chọn đáp án (B)

CÂU 7. Cho tứ diện ABCD, gọi M là trung điểm của AC. Trên cạnh AD lấy điểm N sao cho AN=2ND, trên cạnh BClấy điểm Q sao cho BC = 4BQ. Gọi I là giao điểm của đường thẳng MN và mặt phẳng (BCD), J là giao điểm của đường thẳng BD và mặt phẳng (MNQ).Khi đó $\frac{JB}{JD}+\frac{JQ}{JI}$ bằng

$$\bigcirc A \frac{13}{20}$$
.

B
$$\frac{20}{21}$$
.

$$\frac{3}{5}$$
.

$$\frac{11}{12}$$
.

P Lời giải.

Vì M là trung điểm AC nên IM là trung tuyến tam giác IAC.

Mặt khác AN = 2ND nên ta có D là trung điểm của IC.

Trong (BCD), gọi $QI \cap BD = J \Rightarrow BD \cap (MNQ) = J$.

Trong (BCD), gọi QI \(\text{BD} = J \Rightarrow BD \cdot (MNQ) = J.\)

Từ Q kể đường thẳng song song BD cắt CD tại P.

Theo định lí Ta-lét, ta có $\frac{QC}{BC} = \frac{QP}{BD} = \frac{CP}{CD} = \frac{3}{4} \Rightarrow QP = \frac{3}{4}BD, CP = \frac{3}{4}CD.$ Ta lại có $JD \# PQ \Rightarrow \frac{JD}{QP} = \frac{ID}{IP} = \frac{IJ}{IQ} = \frac{4}{5} \Rightarrow JD = \frac{4}{5}QP = \frac{4}{5} \cdot \frac{3}{4} \cdot BD = \frac{3}{5}BD.$ Suy ra $\frac{JB}{JD} = \frac{2}{3}$ và $\frac{JQ}{JI} = \frac{DP}{DI} = \frac{1}{4}$.

Vậy $\frac{JB}{JD} + \frac{JQ}{JI} = \frac{2}{3} + \frac{1}{4} = \frac{11}{12}$.

Chon đáp án (D)

CÂU 8. Cho hình chóp S.ABCD có đáy là hình thang ABCD với $AD \parallel BC$ và AD = 2BC. Gọi M là điểm trên cạnh SDthỏa mãn $SM=\frac{1}{3}SD$. Mặt phẳng (ABM) cắt cạnh bên SC tại điểm N. Tính tỉ số $\frac{SN}{SC}$.

Lời giải.

Trong mặt phẳng (ABCD):

Gọi $I = AB \cap CD \Rightarrow I \in AB \subset (ABM)$.

Trong mặt phẳng (SCD): Gọi $N = IM \cap SC$ và K là trung điểm IM.

Ta có:
$$\frac{IC}{ID} = \frac{BC}{AD} = \frac{1}{2}$$
.

Trong tam giác IMD có KC là đường trung bình nên KC # MD và $KC = \frac{1}{2}MD$.

Mà
$$SM = \frac{1}{2}MD \Rightarrow SM = KC.$$

Lại có $KC \# SM(\text{do } M \in SD) \Rightarrow \frac{SN}{NC} = \frac{SM}{KC} = 1.$

$$V_{ay} \frac{SN}{SC} = \frac{1}{2}.$$

Chọn đáp án (A)

CÂU 9. Cho hình chóp S.ABCD đáy ABCD là hình bình hành. M, N là lượt là trung điểm của AB và SC. I là giao điểm của AN và (SBD). J là giao điểm của MN với (SBD). Khi đó tỉ số $\frac{IB}{IJ}$ là

(**A**) 4.

🗭 Lời giải.

Gọi O là trung điểm của AC nên $O = AC \cap BD$. Trong mặt phẳng (SAC): $AN \cap SO = I$ nên I là giao điểm của AN và (SBD).

Trong (ABN) ta có $MN \cap BI = J$ nên J là giao điểm của MN với (SBD).

Gọi K là trung điểm của SD. Suy ra $NK \parallel DC \parallel AB$ và $BI \cap SD = K$ hay B, I, J, K thẳng hàng.

Khi đó $NK \parallel BM$ và NK = MA = BM và tứ giác AKMN là hình bình hành. Xét hai tam giác đồng dạng ΔKJN và ΔBJM có $\frac{NK}{BM} = \frac{MJ}{NJ} = \frac{BJ}{JK} = 1$ suy ra J là trung điểm của MN và J là trung điểm của BK hay BJ = JK.

Trong tam giác $\triangle SAC$ có I là trọng tâm của tam giác nên $\frac{NI}{IA} = \frac{1}{2}$

Do $AK \parallel MN$ nên $\frac{IJ}{IK} = \frac{NI}{IA} = \frac{1}{2} \Rightarrow \frac{IJ}{JK} = \frac{1}{3} = \frac{IJ}{BJ} \Rightarrow \frac{IJ}{BI} = \frac{1}{4}$ hay $\frac{IB}{IJ} = 4$.

Chọn đáp án $\stackrel{\frown}{\bf A}$

CÂU 10. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, SD và OC. Gọi giao điểm của (MNP) với SA là K. Tỉ số $\frac{KS}{KA}$ là

D Lời giải

Trong (SBD), gọi I là giao điểm của MN và SO.

Ta có $SA \subset (SAC)$, $(MNP) \cap (SAC) = PI$.

Trong (SAC), PI cắt SA tại $K \Rightarrow K$ là giao điểm của SA và (MNP).

Mặt khác, MN là đường trung bình của tam giác SBD nên MN cắt SO tại trung điểm I.

$$\Rightarrow \frac{KS}{KA} = \frac{PC}{PA} = \frac{\frac{1}{4}AC}{\frac{3}{4}AC} = \frac{1}{3}.$$

Chọn đáp án (B)

Bài 11. HAI ĐƯỜNG THẨNG SONG SONG

A. LÝ THUYẾT

1. Vị trí tương đối của hai đường thẳng

- \P Định nghĩa 11.1. Cho hai đường thẳng a và b trong không gian.
 - \odot Nếu a và b cùng nằm trong một mặt phẳng thì ta nói a và b đồng phẳng. Khi đó, a và b có thể cắt nhau, song song với nhau hoặc trùng nhau.
 - $oldsymbol{\odot}$ Nếu a và b không cùng nằm trong bất kì mặt phẳng nào thì ta nói a và b chéo nhau. Khi đó, ta cũng nói a chéo với b, hoặc b chéo với a.

Do đó: Cho hai đường thẳng a và b trong không gian. Khi đó, giữa hai đường thẳng sẽ có 4 vị trí tương đối

- 7 Định nghĩa 11.2.
 - ❷ Hai đường thẳng gọi là đồng phẳng nếu chúng cùng nằm trong một mặt phẳng.
 - ❷ Hai đường thẳng gọi là chéo nhau nếu chúng không đồng phẳng.
 - ❷ Hai đường thẳng gọi là song song nếu chúng đồng phẳng và không có điểm chung.
 - ❷ Có đúng một mặt phẳng chứa hai đường thẳng song song.

2. Tính chất hai đường thẳng song song

- **7** TÍNH CHÂT 11.1. Trong không gian, qua một điểm không nằm trên một đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đó.
- **7** TÍNH CHÂT 11.2. Trong không gian hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
- † Định Lí 11.1. Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy đồng quy hoặc đôi một song song.

A Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng song song với hai đường thẳng đó.

B. HỆ THỐNG BÀI TẬP

Dạng 1. Chứng minh hai đường thẳng song song

Cách 1: Sử dụng tính chất đường trung bình, định lí Ta-let để chứng minh hai đường thẳng song song.

Cách 2: Chứng minh hai đường thẳng đó cùng song song với đường thẳng thứ ba.

Cách 3: Áp dụng định lí giao tuyến của 3 mặt phẳng và hệ quả quả nó.

1. Bài tấp tư luân

BÀI 1. Cho tứ diện ABCD có I;J lần lượt là trọng tâm của tam giác ABC, ABD. Chứng minh rằng: $IJ \parallel CD$. Lời giải.

Gọi M là trung điểm của AB.

Xét tam giác
$$ABC$$
 có: $\frac{MI}{MC} = \frac{1}{3}$. Xét tam giác ABD có: $\frac{MJ}{MD} = \frac{1}{3}$.

Do
$$\frac{MI}{MC} = \frac{MJ}{MD} = \frac{1}{3} \Rightarrow IJ \# CD.$$

BAI 2. Cho tứ diện ABCD. Gọi M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, BC, AD, AC, BD. Chứng minh MPNQ là hình bình hành. Từ đó suy ra ba đoạn MN, PQ, RS cắt nhau tại trung điểm G của mỗi đoạn.

Lời giải.

Ta có
$$MQ$$
 là đường trung bình của tam giác $ABD \Rightarrow \begin{cases} MQ \parallel DB \\ MQ = \frac{1}{2}BD. \end{cases}$ (1)

NP là đường trung bình của tam giác $BCD \Rightarrow \begin{cases} PN \parallel BD \\ PN = \frac{1}{2}BD. \end{cases}$

Từ (1); (2) $\Rightarrow PN /\!\!/ QM$ và PN = QM.

Vậy MPNQ là hình bình hành.

 $\Rightarrow MN$ và PQ cắt nhau tại trung điểm G của mỗi đường.

Chứng minh tương tự, ta có: QRPS là hình bình hành.

 $\Rightarrow QP$ và RS cắt nhau tại trung điểm G của mỗi đường.

Vậy MN, PQ, RS cắt nhau tại trung điểm G của mỗi đoạn.

2. Bài tập trắc nghiệm

CÂU 1. Cho hai đường thẳng phân biệt không có điểm chung cùng nằm trong một mặt phẳng thì hai đường thẳng đó

(A) song song.

(B) chéo nhau.

(C) cắt nhau.

(**D**) trùng nhau.

🗩 Lời giải.

Chọn đáp án (A)

CÂU 2. Trong các mệnh đề sau, mệnh đề nào đúng?

- (A) Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau.
- (B) Hai đường thẳng chéo nhau khi chúng không có điểm chung.
- (C) Hai đường thẳng song song khi chúng ở trên cùng một mặt phẳng.
- (D) Khi hai đường thẳng ở trên hai mặt phẳng thì hai đường thẳng đó chéo nhau.

🗩 Lời giải.

Chọn đáp án (A)

CÂU 3. Trong các mệnh đề sau, mệnh đề nào đúng?

(A) Hai đường thẳng không có điểm chung thì chéo nhau.

ð Ðịa chỉ: KDC Mỹ Điền, TT. Tuy Phước ♥	@ QUAN HE SONG	SONG TRONG KHONG GI	AN
A Song song với nhau. B Cắt nhau. D Lời giải.	C Trùng nhau.	D Chéo nhau.	
Chọn đáp án (D)			
CÂU 12. Trong không gian, nếu hai đường thẳng không có c Song song với nhau. C Cùng thuộc một mặt phẳng. Lời giải. Chọn đáp án D	điểm chung thì ta có thể kết (B) Chéo nhau. (D) Hoặc song song ho		
CÂU 13. Mệnh đề nào sau đây là sai ? Qua một phép chiế	ếu song song, hình chiếu cử	a hai đường thẳng chéo nhau có	i thể
à: A Hai đường thẳng chéo nhau. C Hai đường thẳng song song với nhau. D Lời giải. Chan tín (n. A)	B Hai đường thẳng c D Hai đường thẳng p		
Chọn đáp án (A) CÂU 14. Mệnh đề nào sau đây sai? Qua một phép chiếu so (A) Hai đường thẳng cắt nhau. (C) Hai đường thẳng trùng nhau. (D) Lời giải. (C) Chọn đáp án (B)	ng song, hình chiếu của hai B Hai đường thẳng s D Hai đường thẳng p	ong song với nhau.	
 CÂU 15. Trong không gian, cho ba đường thẳng a; b; c. Tro (A) Nếu hai đường thẳng cùng chéo với một đường thẳng (B) Nếu hai đường thẳng cùng song song với đường thẳng (C) Nếu a b và b; c chéo nhau thì a và c chéo nhau hoặc (D) Nếu a và b cắt nhau, b và c cắt nhau thì a và c cắt nh (E) Lời giải. (C) Chọn đáp án (C) 	thứ ba thì chúng chéo nha g thứ ba thì chúng song sor c cắt nhau.	u.	
CÂU 16. Cho các mệnh đề sau:			
(I) Hai đường thẳng song song thì đồng phẳng.			
(II) Hai đường thẳng không có điểm chung thì chéo nhau.			
(III) Hai đường thẳng chéo nhau thì không có điểm chung.			
(IV) Hai đường thẳng chéo nhau thì không đồng phẳng.			
Có bao nhiêu mệnh đề đúng?			
A 1. B Lời giải. Chọn đáp án B	© 4.	D 2.	
 CÂU 17. Trong không gian cho hai đường thẳng song song (A) Nếu c cắt a thì c cắt b. (B) Nếu c chéo a thì c chéo b. (C) Nếu c cắt a thì c chéo b. (D) Nếu đường thẳng c song song với a thì c song song hơ p Lời giải. (Chọn đáp án (D) 		tây đúng?	
CÂU 18. Trong không gian, cho 3 đường thẳng a,b,c , biết A Trùng nhau hoặc chéo nhau. C Chéo nhau hoặc song song. D Lời giải. Giả sử $b \not\parallel c \Rightarrow c \not\parallel a$. Chọn đáp án \textcircled{B}	 a // b, a và c chéo nhau. K B Cắt nhau hoặc ché D Song song hoặc trừ 	o nhau.	

CÂU 19. Nếu ba đường thẳng không cùng nằm trong một mặt phẳng và đôi một cắt nhau thì ba đường thẳng đó

- (A) đồng quy.
- (C) trùng nhau.

- (B) tạo thành tam giác.
- (**D**) cùng song song với một mặt phẳng.

🗩 Lời giải.

Đặt $(\alpha) \equiv (a;b); (\beta) \equiv (a;c); (\gamma) \equiv (b;c)$ Ta thấy, ba mặt phẳng $(\alpha); (\beta); (\gamma)$ cắt nhau theo ba giao tuyến phân biệt và ba giao tuyến (a); (b); (c) đôi một cắt nhau nên chúng đồng quy tại M. Chọn đáp án (A)

CÂU 20. Cho một tứ diện. Số cặp đường thẳng chứa cạnh của tứ diện đó mà chéo nhau là?

(**A**) 1.

(D) 4.

🗩 Lời giải.

Chon đáp án (C)

CÂU 21. Cho hình bình hành ABCD. Qua đỉnh A, kẻ đường thẳng a song song với BD và qua đỉnh C kẻ đường thẳng bkhông song song với BD. Khi đó

- (A) Đường thẳng a và đường thẳng b chéo nhau.
- (**B**) Đường thẳng a và đường thẳng b cắt nhau.
- (**C**) Đường thẳng a và đường thẳng b không có điểm chung.
- (\mathbf{D}) Nếu a và b không chéo nhau thì chúng cắt nhau.

🗩 Lời giải.

Chọn đáp án (D)

CÂU 22. Cho hai đường thẳng a; b chéo nhau. Một đường thẳng c song song với a. Có bao nhiêu vị trí tương đối giữa b và c?

(**A**) 1.

 $(\mathbf{D}) 4.$

🗩 Lời giải.

Nếu $c \parallel b$ thì $a \parallel b \Rightarrow c$ cắt b hoặc c và b chéo nhau.

Chọn đáp án (B)

CAU 23. Cho tứ diện ABCD, gọi M và N lần lượt là trung điểm các cạnh AB và CD. Gọi G là trọng tâm tam giác BCD. Đường thẳng AG cắt đường thẳng nào trong các đường thẳng dưới đây?

- (A) Đường thẳng MN.
- (**B**) Đường thẳng CM.
- (**C**) Đường thẳng DN.
- (\mathbf{D}) Đường thẳng CD.

Lời giải.

Do AG và MN cùng nằm trong mặt phẳng (ABN) nên hai đường thẳng cắt nhau.

Chọn đáp án (A)

CÂU 24.

Cho hình hộp ABCD.EFGH. Mệnh đề nào sau đây sai?

- (\mathbf{A}) BG và HD chéo nhau.
- (\mathbf{B}) BF và AD chéo nhau.
- (**C**) AB song song với HG.
- (**D**) CG cắt HE.

Dèi giải.

Do CG và HE không cùng nằm trong một mặt phẳng nên hai đường thẳng này chéo nhau

Chọn đáp án (D)

CÂU 25. Cho tứ diện ABCD, gọi I và J lần lượt là trọng tâm của tam giác ABD và ABC. Đường thẳng IJ song song với đường nào?

 (\mathbf{B}) CD.

 (\mathbf{C}) BC.

 $(\mathbf{D}) AD.$

🗩 Lời giải.

Gọi N, M lần lượt là trung điểm của BC, BD.

 $\Rightarrow MN$ là đường trung bình của tam giác $BCD \Rightarrow MN \parallel CD$.

J; I lần lượt là trọng tâm các tam giác ABC và ABD $\Rightarrow \frac{AI}{AM} = \frac{AJ}{AN} = \frac{2}{3} \Rightarrow IJ \parallel MN$.
Từ (1) và (2) suy ra $IJ \parallel CD$.

Chọn đáp án (B)

CẦU 26. Cho tứ diện ABCD. Gọi M, N là hai điểm phân biệt cùng thuộc đường thẳng AB; P, Q là hai điểm phân biệt cùng thuộc đường thẳng CD. Xác định vị trí tương đối của MQ và NP.

- $(\mathbf{A}) MQ \operatorname{cắt} NP.$
- (B) MQ # NP.
- \bigcirc $MQ \equiv NP$.
- $(\mathbf{D}) MQ, NP$ chéo nhau.

Xét mặt phẳng (ABP).

Ta có M, N thuộc $AB \Rightarrow M, N$ thuộc mặt phẳng (ABP).

Mặt khác: $CD \cap (ABP) = P$.

Mà: $Q \in CD \Rightarrow Q \notin (ABP) \Rightarrow M, N, P, Q$ không đồng phẳng

 $\Rightarrow MQ$ và NP chéo nhau.

Chọn đáp án (D)

CẦU 27. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I, J lần lượt là trung điểm của SA và SC. Đường thẳng IJ song song với đường thẳng nào?

 (\mathbf{A}) BC.

 (\mathbf{B}) AC.

 (\mathbf{C}) SO.

 $(\mathbf{D}) BD.$

🗩 Lời giải.

Dễ dàng thấy được: IJ là đường trung bình của tam giác $SAC \Rightarrow IJ \parallel AC$.

Chọn đáp án (B)

CÂU 28. Trong mặt phẳng (P), cho hình bình hành ABCD. Vẽ các tia Bx, Cy, Dz song song với nhau, nằm cùng phía với mặt phẳng (ABCD), đồng thời không nằm trong mặt phẳng (ABCD). Một mặt phẳng đi qua A, cắt Bx, Cy, Dz tương ứng tại B', C', D' sao cho BB' = 2, DD' = 4. Tính CC'.

(D) 3.

🗩 Lời giải.

Ta có AB'C'D' là hình bình hành.

 $AC' \cap BD' = I$ và $AC \cap BD = O \Rightarrow OI$ là đường trung bình của tam giác $ACC' \Rightarrow CC' = 2OI.$

 $BB^{\prime}D^{\prime}D$ là hình thang có OIlà đường trung bình

$$\Rightarrow OI = \frac{BB' + DD'}{2} = 3$$

Vây CC' = 6.

Chọn đáp án (D)

CÂU 29. Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề nào dưới đây đúng?

- (A) $GE \parallel CD$.
- (**B**) GE cắt AD.
- (\mathbf{C}) GE cắt CD.
- (\mathbf{D}) GE và CD chéo nhau.

Ta có $\frac{AG}{AI} = \frac{AE}{AJ} = \frac{2}{3} \Rightarrow EG \parallel IJ \text{ Mà } IJ \parallel CD \Rightarrow EG \parallel CD.$

Chọn đáp án (A)

CÂU 30. Cho tứ diện ABCD. Trên các cạnh AB,AD lần lượt lấy các điểm M,N sao cho $\frac{AM}{AB}=\frac{AN}{AD}=\frac{1}{3}$. Gọi P,Q lần lượt là trung điểm các cạnh CD, CB. Mệnh đề nào sau đây đúng

- (A) Tứ giácMNPQ là một hình thang.
- (B) Tứ giác MNPQ là hình bình hành.
- (\mathbf{C}) Bốn điểm M, N, P, Q không đồng phẳng.
- igoplus D Tứ giác MNPQ không có các cặp cạnh đối nào song song.

🗩 Lời giải.

Xét tam giác ABD có: $\frac{AM}{AB}=\frac{AN}{AD}=\frac{1}{3}\Rightarrow MN \parallel BD.$ Xét tam giác BCD có: PQ là đường trung bình của tam giác $\Rightarrow PQ \parallel BD.$ Vậy $PQ \parallel MN \Rightarrow MNPQ$ là hình thang.

Chọn đáp án (A)

CÂU 31. Cho hai đường thẳng chéo nhau a và b. Lấy A, B thuộc a và C, D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?

(A) Có thể song song hoặc cắt nhau.

(B) Cắt nhau.

C Song song nhau.

D Chéo nhau.

🗩 Lời giải.

Theo giả thiết, a và b chéo nhau $\Rightarrow a$ và b không đồng phẳng. Giả sử AD và BC đồng phẳng.

Nếu $AD \cap BC = I \Rightarrow I \in (ABCD) \Rightarrow I \in (a; b)$. Mà a và b không đồng phẳng, do đó, không tồn tại điểm I.

Nếu $AD \parallel BC \Rightarrow a \text{ và } b \text{ đồng phẳng.}$

Vậy điều giả sử là sai. Do đó AD và BC chéo nhau.

Chọn đáp án (D)

CÂU 32. Cho tứ diện ABCD với M, N, P, Q lần lượt là trung điểm của AC, BC, BD, AD. Tìm điều kiện để MNPQ là hình thoi.

- $(\mathbf{A}) AB = BC.$
- (**B**) BC = AD.
- (\mathbf{C}) AC = BD.
- $(\mathbf{D}) AB = CD.$

Lời giải.

Xét tam giác ABC có: $MN = \frac{1}{2}AB$.

Xét tam giác ABD có: $PQ = \frac{1}{2}AB \Rightarrow MN = PQ$.

Chứng minh tương tự, ta có: MQ = NP.

Vậy MNPQ là hình bình hành.

 $\overrightarrow{De} MNPQ$ là hình thoi $\Leftrightarrow MN = NP \Leftrightarrow AB = CD$.

Chọn đáp án $\stackrel{\frown}{\mathbb{D}}$

CÂU 33. Cho hình chóp S.ABCD. Gọi A', B', C', D' lần lượt là trung điểm của các cạnh SA, SB, SC, SD. Trong các đường thẳng sau đây, đường thẳng nào không song song với A'B'?

 $\stackrel{\frown}{(A)} AB.$

 (\mathbf{B}) CD.

 $(\mathbf{C}) C'D'.$

 \bigcirc SC.

D Lời giải.

CÂU 34. Cho tứ diện ABCD. Các điểm M, N lần lượt là trung điểm BD, AD. Các điểm H, G lần lượt là trọng tâm các tam giác BCD; ACD. Đường thẳng HG chéo với đường thẳng nào sau đây?

 $\stackrel{\smile}{\mathbf{A}}$ MN.

 \bigcirc CD.

 (\mathbf{C}) CN.

 \bigcirc AB.

D Lời giải.

 $\label{eq:definition} \text{Do} \; \frac{OG}{OA} = \frac{OH}{OB} = \frac{1}{3} \Rightarrow HG \; /\!\!/ \; AB.$

Xét tam giác ABD có: $MN \parallel AB \Rightarrow HG \parallel MN$.

Lại có $HG \cap CN = G$.

Vậy HG và CD chéo nhau.

Chọn đáp án (B)

CÂU 35. Cho hình chóp S.ABCD có đáy ABCD là một hình thang với đáy AD và BC. Biết AD = a, BC = b. Gọi I và J lần lượt là trọng tâm các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD tại P, Q. Khẳng định nào sau đây là đúng?

- \bigcirc MN song sonng với PQ.
- $(\mathbf{C}) MN$ cắt với PQ.
- D Lời giải.

- \blacksquare MN chéo với PQ.
- $(\mathbf{D}) MN$ trùng với PQ.

Ta có
$$\begin{cases} MN = (ADJ) \cap (SBC) \\ AD \subset (JAD); BC \subset (SBC) \Rightarrow MN \parallel AD \parallel BC. \\ AD \parallel BC \end{cases}$$
 Tương tự:
$$\begin{cases} PQ = (IBC) \cap (SAD) \\ AD \subset (SAD); BC \subset (IBC) \Rightarrow PQ \parallel AD \parallel BC. \\ AD \parallel BC \end{cases}$$
 Vậy $MN \parallel PQ$. Chọn đấp án \widehat{A}

🖒 Dạng 2. Tìm giao tuyến của hai mặt phẳng

- \odot Cách 2: Nếu hai mặt phẳng (P); (Q) lần lượt chứa hai đường thẳng song song a, b và có 1 điểm chung M thì $(P) \cap (Q) = Mx$ với $Mx \not\parallel (a) \not\parallel (b)$.

1. Bài tập tự luận

BÀI 1. Cho hình chóp S.ABCD có đáy là hình bình hành. Điểm M thuộc cạnh SA, điểm E và F lần lượt là trung điểm của AB và BC.

- a) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD).
- b) Xác định giao tuyến của hai mặt phẳng (MBC) và (SAD).
- c) Xác định giao tuyến của hai mặt phẳng (MEF) và (SAC).

a) Ta có
$$\begin{cases} S \in (SAB) \cap (SCD) \\ AB \subset (SAB); CD \subset (SCD) \\ AB \parallel CD \end{cases}$$

$$\Rightarrow Sx = (SAB) \cap (SCD) \text{ với } Sx \parallel AB \parallel CD.$$

$$\Rightarrow Sx = (SAB) \cap (SCD) \text{ v\'oi } Sx \text{ } \text{ } \text{ } AB \text{ } \text{ } \text{ } \text{ } CD.$$
b) Ta có
$$\begin{cases} M \in SA \subset (SAD) \\ M \in (MBC) \end{cases} \Rightarrow M \in (MBC) \cap (SAD).$$

$$Khi \text{ d\'o} \begin{cases} M \in (MBC) \cap (SAD) \\ BC \subset (SBC); AD \subset (SAD) \\ BC \text{ } \text{ } \text{ } AD \end{cases}$$

$$\Rightarrow My = (MBC) \cap (SAD) \text{ v\'oi } My \text{ } \text{ } \text{ } BC \text{ } \text{ } \text{ } \text{ } AD.$$

c) Ta có
$$\begin{cases} M \in SA \subset (SAC) \\ M \in (MEF) \end{cases} \Rightarrow M \in (MEF) \cap (SAC).$$
 Vì EF là đường trung bình của tam giác ABC nên $EF \not\parallel AC$.

$$Do \begin{cases} M \in (MEF) \cap (SAC) \\ EF \subset (MEF); AC \subset (SAC) \Rightarrow Mt = (MEF) \cap (SAC) \text{ v\'oi } EF \parallel AC \parallel Mt. \\ EF \parallel AC \end{cases}$$

BÀI 2. Cho hình chóp S.ABCD. Mặt đáy là hình thang có cạnh đáy lớn AD, AB cắt CD tại K, điểm M thuộc cạnh SD.

- a) Xác định giao tuyến (d) của (SAD) và (SBC). Tìm giao điểm N của KM và (SBC).
- b) Chứng minh rằng AM, BN, (d) đồng quy.

Dèi giải.

a) Ta có
$$\begin{cases} S \in (SAD) \cap (SBC) \\ AD \subset (SAD); BC \subset (SBC) \\ AD \ \# BC \end{cases}$$

$$\Rightarrow Sx = (SAD) \cap (SBC) \text{ với } Sx \ \# AD \ \# BC \Rightarrow (d) \equiv Sx.$$

$$\text{Trong } (SCD) \text{ gọi } N = KM \cap SC \Rightarrow \begin{cases} N \in KM \\ N \in SC \subset (SBC) \end{cases}$$

$$\Rightarrow N = KM \cap (SBC).$$

b) Ta có $(d) = (SAD) \cap (SBC)$. Trong (AMK) gọi O là giao điểm của AM và BN. Suy ra $\begin{cases} O \in AM \subset (SAD) \\ O \in BN \subset (SBC) \end{cases} \Rightarrow O \in (d).$ Vậy ba đường thẳng (d); BN; AM đồng quy tại O.

2. Bài tập trắc nghiệm

CÂU 1. Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ

- (A) Song song với hai đường thẳng đó.
- (B) Song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
- (C) Trùng với một trong hai đường thẳng đó.
- (D) Cắt một trong hai đường thẳng đó.

🗩 Lời giải.

Chọn đáp án (B)

CÂU 2. Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Điểm M thuộc cạnh SC sao cho SM = 3MC, N là giao điểm của SD và (MAB). Khi đó, hai đường thẳng CD và MN là hai đường thẳng

- (A) Cắt nhau.
- (B) Chéo nhau.
- (C) Song song.
- (D) Có hai điểm chung.

🗩 Lời giải.

Ta có
$$\begin{cases} M \in (MAB) \cap (SCD) \\ AB \subset (MAB); CD \subset (SCD) \Rightarrow Mx = (MAB) \cap AB \# CD \end{cases}$$

(SCD) với $Mx \parallel CD \parallel AB$.

Gọi $N = Mx \cap SD$ trong $(SCD) \Rightarrow N = SD \cap (MAB)$.

Vậy MN song song với CD.

Chọn đáp án \bigcirc

CÂU 3. Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q. Gọi I là giao điểm của MQ và NP. Câu nào sau đây đúng?

$$\bigcirc$$
 SI // AB.

$$\bigcirc$$
 SI $/\!\!/$ AC.

$$\bigcirc$$
 SI // AD.

D Lời giải.

Ta có
$$SI = (SBC) \cap (SAD)$$
.
$$SI = (SAD) \cap (SBC)$$
Khi đó
$$\begin{cases} SI = (SAD) \cap (SBC) \\ AD \subset (SAD); BC \subset (SBC) \Rightarrow SI \parallel BC \parallel AD. \\ AD \parallel BC \end{cases}$$

Chọn đáp án \bigcirc

CÂU 4. Cho hình chóp S.ABCD có đáy là hình thang đáy lớn là CD. Gọi M là trung điểm của cạnh SA, N là giao điểm của cạnh SB và mặt phẳng (MCD). Mệnh đề nào sau đây là mệnh đề đúng?

 $\stackrel{\frown}{\mathbf{B}}$ MN # CD.

 \bigcirc MN và SC cắt nhau.

D Lời giải.

Ta có
$$\begin{cases} MN = (MCD) \cap (SAB) \\ CD \subset (MCD); AB \subset (SAB) \Rightarrow MN \ \| \ CD \ \| \ AB. \\ CD \ \| \ AB \end{cases}$$

Chọn đáp án B

CÂU 5. Mệnh đề nào sau đây đúng?

(A) Nếu một mặt phẳng cắt một trong hai đường thẳng song song thì mặt phẳng đó sẽ cắt đường thẳng còn lại...

- (B) Hai mặt phẳng lần lượt đi qua hai đường thẳng song song thì cắt nhau theo một giao tuyến song song với một trong hai đường thẳng đó.
- © Nếu một đường thẳng cắt một trong hai đường thẳng song song thì đường thẳng đó sẽ cắt đường thẳng còn lại.
- (D) Hai mặt phẳng có một điểm chung thì cắt nhau theo một giao tuyến đi qua điểm chung đó.
- 🗩 Lời giải.

Chọn đáp án (A)

CÂU 6. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây đúng?

igapha d qua S và song song với BC.

lacksquare d qua S và song song với DC.

 \bigcirc d qua S và song song với AB.

 (\mathbf{D}) d qua S và song song với BD.

D Lời giải.

Ta có
$$\begin{cases} S \in (SAD) \cap (SBC) \\ AD \subset (SAD), BC \subset (SBC) \Rightarrow (SAD) \cap (SBC) = Sx \ \# \ AD \ \# \ BC. \end{cases}$$

Chọn đáp án (A)

CÂU 7. Cho tứ diện ABCD. Gọi I và J theo thứ tự là trung điểm của AD và AC, G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GIJ) và (BCD) là đường thẳng

lack A qua I và song song với AB.

 (\mathbf{B}) qua J và song song với BD.

 (\mathbf{C}) qua G và song song với CD.

 \bigcirc qua G và song song với BC.

🗭 Lời giải.

Ta có
$$\begin{cases} G \in (GIJ) \cap (BCD) \\ IJ \subset (GIJ), CD \subset (BCD) \Rightarrow (GIJ) \cap (BCD) = Gx \parallel IJ \parallel CD. \\ IJ \parallel CD \end{cases}$$

Chọn đáp án \bigcirc

CÂU 8. Cho ba mặt phẳng phân biệt (α) , (β) , (γ) có $(\alpha) \cap (\beta) = d_1$; $(\beta) \cap (\gamma) = d_2$; $(\alpha) \cap (\gamma) = d_3$. Khi đó ba đường thẳng d_1, d_2, d_3 .

(A) Đôi một cắt nhau.

(B) Đôi một song song.

(C) Đồng quy.

(**D**) Đôi một song song hoặc đồng quy.

D Lời giải.

Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song

song.

Chọn đáp án D

CÂU 9. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm SA. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (IBC) là

- \bigcirc Tam giác IBC.
- \bigcirc Hình thang IGBC (G là trung điểm SB).
- \blacksquare Hình thang IBCJ (J là trung điểm SD).
- D Tứ giác IBCD.

p Lời giải.

$$\operatorname{Ta} \operatorname{c\acute{o}} \begin{cases} I \in (IBC) \cap (SAD) \\ BC \subset (IBC), AD \subset (SAD) \Rightarrow (IBC) \cap (SAD) = Ix \; \# \; BC \; \# \; AD. \\ BC \; \# \; AD \end{cases}$$

Trong mặt phẳng (SAD) gọi $Ix \cap SD = J \Rightarrow IJ \parallel BC$.

Vậy thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (IBC) là hình thang IBCJ.

Chọn đáp án (B)

CÂU 10. Cho tứ diện ABCD, M và N lần lượt là trung điểm AB và AC. Mặt phẳng (α) qua MN cắt tứ diện ABCD theo thiết diện là đa giác (T). Khẳng định nào sau đây đúng?

- (A) (T) là hình chữ nhật.
- (C) (T) là hình thoi.
- 🗭 Lời giải.

- (\mathbf{B}) (T) là tam giác.
- \bigcirc (T) là tam giác hoặc hình thang hoặc hình bình hành.

Trường hợp $(\alpha) \cap AD = K$ thì (T) là tam giác MNK.

Trường hợp $(\alpha) \cap (BCD) = IJ$, với $I \in BD$, $J \in CD$; I, J không trùng D. Suy ra (T) là tứ giác.

Chon đáp án (D)

CÂU 11. Gọi G là trọng tâm tứ diện ABCD. Giao tuyến của mặt phẳng (ABG) và mặt phẳng (CDG) là

- \bigcirc Đường thẳng đi qua trung điểm hai cạnh BC và AD.
- f B) Đường thẳng đi qua trung điểm hai cạnh AB và CD.
- \bigcirc Đường thẳng đi qua trung điểm hai cạnh AC và BD.
- \bigcirc Dường thẳng CG.

Lời giải.

Chọn đáp án B

CÂU 12. Cho Cho hình chóp S.ABCD có đáy là hình bình hành. Qua S kẻ Sx; Sy lần lượt song song với AB, AD. Gọi O là giao điểm của AC và BD. Khi đó, khẳng định nào dưới đây đúng?

- (A) Giao tuyến của (SAC) và (SBD) là đường thẳng Sx.
- (**B**) Giao tuyến của (SBD) và (SAC) là đường thẳng Sy.
- \bigcirc Giao tuyến của (SAB) và (SCD) là đường thẳng Sx.
- \bigcirc Giao tuyến của (SAD) và (SBC) là đường thẳng Sx.

Dèi giải.

Ta có
$$\begin{cases} S \in (SAB) \cap (SCD) \\ AB \subset (SAB); CD \subset (SCD) \\ AB \parallel CD \end{cases}$$

 $\Rightarrow Sx = (SAB) \cap (SCD)$ với Sx # AB # CD.

Chọn đáp án (C)

CÂU 13. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (α) qua AB và cắt cạnh SC tại M ở giữa S và C. Xác định giao tuyến d giữa mặt phẳng (α) và (SCD).

- (A) Đường thẳng d qua M song song với AC.
- $lackbox{\textbf{B}}$ Đường thẳng d qua M song song với CD.

 (\mathbf{C}) Đường thẳng d trùng với MA.

 \bigcirc Đường thẳng d trùng với MD.

P Lời giải.

Ta có
$$\begin{cases} M \in (\alpha) \cap (SCD) \\ AB \subset (\alpha); CD \subset (SCD) \Rightarrow Mx = (SCD) \cap (\alpha) \text{ với } Mx \text{ } \# AB \text{ } \# CD. \end{cases}$$

Vậy $Mx \equiv (d)$.

Chọn đáp án (B)

CÂU 14. Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB, AC. Gọi E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là

- (A) Tam giác MNE.
- (B) Tứ giác MNEF với điểm F bất kỳ trên cạnh BD.
- (C) Hình bình hành MNEF với F là điểm trên cạnh BD thỏa mãn $EF \parallel BC$.
- (**D**) Hình thang MNEF với F là điểm trên cạnh BD thỏa mãn $EF \parallel BC$.

🗩 Lời giải.

Ta có
$$\begin{cases} E \in (MNE) \cap (BCD) \\ MN \subset (MNE); BD \subset (BCD) \Rightarrow Ex = (MNE) \cap MN \# BD \end{cases}$$

(BCD) với Ex # BD # MN.

Trong
$$(BCD)$$
 gọi $F = Ex \cap BC \Rightarrow EF = (BCD) \cap (MNE)$.

Mặt khác
$$\begin{cases} MN = (MNE) \cap (ABD) \\ NE = (MNE) \cap (ACD) \\ MF = (MNE) \cap (ABC. \end{cases}$$

Vậy thiết diện của mặt phẳng (MNE) và tứ diện ABCD là hình thang MNEF.

Chọn đáp án (D)

C. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM

Dạng 1. Câu hỏi lý thuyết

A Hai đường thẳi	hát biểu sau, phát biểu nào đúr ng không có điểm chung thì son	g song với nhau.		
\simeq	ng không có điểm chung thì ché			
$\tilde{\sim}$	ng phân biệt không cắt nhau th			
D Hai duong thai D Lời giải.	ng không nằm trên cùng một m	at phang thi cheo nhau.		
Phương án "Hai đườn Phương án "Hai đườn	g thẳng không có điểm chung t g thẳng không có điểm chung t g thẳng phân biệt không cắt nh	hì chéo nhau" sai vì hai đường		
CÂU 2. Cho hai đườ (A) 3. (D) Lời giải.	rng thẳng phân biệt a và b trong \bigcirc 1.	g không gian. Có bao nhiều vị C 2.	trí tương đối giữa a và b ? \bigcirc 4.	
	n biệt a và b trong không gian c	có những vị trí tương đối sau:		
❷ Hai đường thẳn	g phân biệt a và b cùng nằm tr	ong một mặt phẳng thì chúng	có thể song song hoặc cắt nhau.	
❷ Hai đường thẳn	g phân biệt a và b không cùng	nằm trong một mặt phẳng thì	chúng chéo nhau.	
Vậy chúng có 3 vị trí Chọn đáp án $\stackrel{\frown}{(A)}$	tương đối là song song hoặc cắ	t nhau hoặc chéo nhau.		
	iệnh đề sau, mệnh đề nào đúng ng không có điểm chung thì son			
B Hai đường thẳi	ng chéo nhau thì không có điểm	chung.		
\simeq	ng không song song thì cắt nhai			
p Lời giải.	ng không cắt nhau và không son			
Phương án C sai do l	nai đường thẳng không có điểm nai đường thẳng không song son nai đường thẳng không cắt nhau	g thì có thể trùng nhau hoặc		
CÂU 4. Trong các m	nệnh đề sau, mệnh đề nào đúng	?		
Trong không gian:				
\simeq	ng không có điểm chung thì son	~ ~		
\simeq	ng không có điểm chung thì chế ng không song song, không cắt n			
\simeq	ng song song khi và chỉ khi chún		hẳng và không có điểm chung	
▶ Hai duong thai▶ Lời giải.	ig song song kin va cin kin cinui	ig nam trong cung một mặt þ	nang va knong co diem chung.	
	g song khi và chỉ khi chúng nằm	n trong cùng một mặt phẳng v	rà không có điểm chung.	
CÂU 5. Trong các k	hẳng định sau, có bao nhiêu kh	ẳng định sai?		
(I) Hai đường thẳn	ng chéo nhau thì chúng có điểm	chung.		
(II) Hai đường thẳn	ng không có điểm chung là hai c	đường thẳng song song hoặc c	héo nhau.	
(III) Hai đường thẳn	ng song song với nhau khi chúng	gở trên cùng một mặt phẳng.		
(IV) Khi hai đường	thẳng ở trên hai mặt phẳng ph	ân biệt thì hai đường thẳng đ	ó chéo nhau.	
(A) 1. D Lời giải.	B 2.	© 3.	D 4.	

❷ (I)sai do hai đường thẳng chéo nhau thì chúng không có điểm chung.

₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱

QUAN HỆ SONG SONG TRONG KHÔNG GIAN

🗩 Lời giải.

Ta có a và b là hai đường thẳng chéo nhau nên a và b không đồng phẳng. Giả sử AD và BC đồng phẳng.

-
 Nếu $AD \cap BC = M$ thì $M \in (ABCD) \Rightarrow M \in (a;b)$.
 Mà a và b không đồng phẳng, do đó không tồn tại điểm M.
- \odot Nếu $AD \parallel BC$ thì a và b đồng phẳng.

Vậy điều giả sử là sai. Do đó AD và BC chéo nhau.

Chọn đáp án (D)

CÂU 13. Trong không gian cho ba đường thẳng phân biệt a, b, c trong đó a song song với b. Khẳng định nào sau đây sai?

- $oldsymbol{A}$ Tồn tại duy nhất một mặt phẳng chứa cả hai đường thẳng a và b.
- f B Nếu b song song với c thì a song song với c.
- \bigcirc Nếu điểm A thuộc a và điểm B thuộc b thì ba đường thẳng a, b và AB cùng ở trên một mặt phẳng.
- \bigcirc Nếu c cắt a thì c cắt b.

🗩 Lời giải.

Mệnh đề "Nếu c cắt a thì c cắt b" là mệnh đề sai, vì c và b có thể chéo nhau.

Chọn đáp án (D)

CÂU 14. Cho đường thẳng a nằm trên mp(P), đường thẳng b cắt (P) tại O và O không thuộc a. Vị trí tương đối của a và b là

- A chéo nhau.
- **B** cắt nhau.
- © song song với nhau.
- **D** trùng nhau.

Dòi giải.

Do đường thẳng a nằm trên mp(P), đường thẳng b cắt (P) tại O và O không thuộc a nên đường thẳng a và đường thẳng b không đồng phẳng nên vị trí tương đối của a và b là chéo nhau.

Chọn đáp án A

CÂU 15. Cho hai đường thẳng chéo nhau a, b và điểm M không thuộc a cũng không thuộc b. Có nhiều nhất bao nhiêu đường thẳng đi qua M và đồng thời cắt cả a và b?

A 4.

B 3.

c 2.

D 1.

🗩 Lời giải.

Gọi (P) là mặt phẳng qua M và chứa a; (Q) là mặt phẳng qua M và chứa b.

Giả sử tồn tại đường thẳng c đi qua M và đồng thời cắt cả a và b suy ra $\begin{cases} c \in (P) \\ c \in (Q) \end{cases} \Rightarrow c = (P) \cap (Q).$

Mặt khác nếu có một đường thẳng c' đi qua M và đồng thời cắt cả a và b thì a và b đồng phẳng. Do đó có duy nhất một đường thẳng đi qua M và đồng thời cắt cả a và b.

Chọn đáp án D

CÂU 16. Trong không gian cho đường thẳng a chứa trong mặt phẳng (P) và đường thẳng b song song với mặt phẳng (P). Mệnh đề nào sau đây là đúng?

 \bigcirc $a \not\parallel b$.

B) a, b không có điểm chung.

 \bigcirc a, b cắt nhau.

 $(\mathbf{D}) a, b$ chéo nhau.

- \bigcirc b//(P) thì b có thể song song với a mà b cũng có thể chéo a.

Vậy a, b không có điểm chung. Chọn đáp án $\stackrel{\frown}{(B)}$

- CÂU 17. Trong các mệnh đề sau, mệnh đề nào đúng?
 - (A) Trong không gian hai đường thẳng không có điểm chung thì chéo nhau.
 - (B) Trong không gian hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau.
 - C Trong không gian hai đường thẳng phân biệt không song song thì chéo nhau.
 - Trong không gian hai đường chéo nhau thì không có điểm chung.

🗩 Lời giải.

Áp dụng định nghĩa hai đường thẳng được gọi là chéo nhau nếu chúng không đồng phẳng. Chọn đáp án $\stackrel{\frown}{(B)}$

🗁 Dạng 2. Một số bài toán liên quan đến hai đường thảng song song

CÂU 1. Cho hình chóp S.ABCD có đáy ABCDlà hình bình hành tâm O. Gọi I, J lần lượt là trung điểm SA, SC. Đường thẳng IJ song song với đường thẳng nào trong các đường thẳng sau?

 (\mathbf{C}) SO.

(A) AC. De Lời giải.

Do IJ là đường trung bình của tam giác $SAC \Rightarrow IJ \parallel AC$.

 (\mathbf{B}) BC.

 $(\mathbf{D}) BD.$

Chọn đáp án (A)

 $\widehat{\text{CAU}}$ 2. Cho hình chóp S.ABC và G,K lần lượt là trong tâm tam giác SAB,SBC. Khẳng định nào sau đây là đúng?

- (B) $GK \parallel BC$.
- (\mathbf{C}) $GK \parallel AC$.
- (\mathbf{D}) $GK \parallel SB$.

🗩 Lời giải.

Gọi M, N lần lượt là trung điểm của AB, BC.

Khi đó
$$\frac{SG}{SM} = \frac{2}{3}$$
 và $\frac{SK}{SN} = \frac{2}{3}$ suy ra $\frac{SG}{SM} = \frac{SK}{SN}$.

Suy ra $GK \parallel MN$ mà $MN \parallel AC$.

Nên GK # AC.

Chọn đáp án (C)

CÂU 3. Cho hình chóp S.ABCD có AD không song song với BC. Gọi M; N; P; Q; R; T lần lượt là trung điểm AC; BD; BC; CD; Svà SD. Cặp đường thẳng nào sau đây song song với nhau?

- \bigcirc MP và RT.
- \bigcirc MQ và RT.
- (**c**) MN và RT.
- (**D**) PQ và RT.

🗩 Lời giải.

Ta có: M, Q lần lượt là trung điểm của AC, CD

 $\Rightarrow MQ$ là đường trung bình của tam giác $CAD \Rightarrow MQ \parallel AD$ (1)

Ta có: R, T lần lượt là trung điểm của SA, SD

 $\Rightarrow RT$ là đường trung bình của tam giác $SAD \Rightarrow RT \parallel AD$ (2)

Từ (1), (2) suy ra: $MQ \parallel RT$.

Chọn đáp án (B)

CÂU 4. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi G_1 ; G_2 lần lượt là trọng tâm của ΔSAB ; ΔSAD . Khi đó G_1G_2 song song với đường thẳng nào sau đây?

 (\mathbf{A}) CD.

 $(\mathbf{B}) BD.$

 \bigcirc AD.

 $(\mathbf{D}) AB.$

🗩 Lời giải.

Gọi N là trung điểm của SA.

Vì G_1 ; G_2 lần lượt là trọng tâm của ΔSAB ; ΔSAD nên ta có: $\frac{NG_1}{NB} = \frac{NG_2}{ND} = \frac{1}{3} \Rightarrow G_1G_2//BD$.

Chọn đáp án (B)

CÂU 5. Cho hình chốp S.ABCD có đấy ABCD là hình chữ nhật. Gọi M, N lần lượt là trung điểm của AB, CD và G_1 , G_2 lần lượt là trọng tâm của các cạnh tam giác SAB, SCD. Trong các đường thẳng sau đây, đường thẳng nào không song song với G_1G_2 ?

 $(\mathbf{A}) AD.$

 (\mathbf{B}) BC.

 (\mathbf{C}) SA.

 $(\mathbf{D}) MN.$

Gọi M, N lần lượt là trung điểm của AB, CD và G_1 , G_2 lần lượt là trọng tâm của các tam giác SAB, SCD nên $G_1 \in SM$, $G_2 \in SN$

Chọn đáp án \bigcirc

CÂU 6. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi A', B', C', D' lần lượt là trung điểm của các cạnh SA, SB, SC, SD. Đường thẳng không song song với A'B' là

 \bigcirc C'D'.

 \bigcirc AB.

 \bigcirc CD.

 \bigcirc SC.

🗩 Lời giải.

Ta có $C'D' \parallel CD$; $A'B' \parallel AB$, mà $AB \parallel CD$. Do đó $A'B' \parallel C'D'$ và $A'B' \parallel CD$.

Chọn đáp án $\stackrel{\frown}{\mathbb{D}}$

CÂU 7. Cho tứ diện ABCD và M, N lần lượt là trọng tâm của tam giác ABC, ABD. Khẳng định nào sau đây là đúng?

 \bigcirc MN // CD.

© MN // BD.

 \bigcirc MN # CA.

- \odot Dễ thấy MN, AD là hai đường thẳng chéo nhau nên loại.
- \odot Dễ thấy MN, BD là hai đường thẳng chéo nhau nên loại.
- ❷ Dễ thấy MN, CA là hai đường thẳng chéo nhau nên loại.

Chọn đáp án (A)

CÂU 8. Cho hình chóp S.ABCD đáy là hình bình hành tâm O, I là trung điểm của SC, xét các mệnh đề:

- (I) Đường thẳng IO song song với SA.
- (II) Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác.
- (III) Giao điểm của đường thẳng AI với mặt phẳng (SBD) là trọng tâm của tam giác (SBD).
- (IV) Giao tuyến của hai mặt phẳng (IBD) và (SAC) là IO.

Số mệnh đề đúng trong các mệnh để trên là

(**A**) 2.

(C) 3.

 (\mathbf{D}) 1.

🗩 Lời giải.

- (I) Mệnh đề đúng vì IO là đường trung bình của tam giác SAC.
- (II) Mệnh đề sai vì tam giác IBD chính là thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (IBD).
- (III) Mênh đề đúng vì giao điểm của đường thẳng AI với mặt phẳng (SBD) là giao điểm của AI với SO.
- (IV) Mệnh đề đúng vì I, O là hai điểm chung của 2 mặt phẳng (IBD) và (SAC).

Vậy số mệnh đề đúng trong các mệnh để trên là 3.

Chọn đáp án (C)

CÂU 9. Cho tứ diện ABCD. Gọi I và J lần lượt là trọng tâm ΔABC và ΔABD . Mệnh đề nào dưới đây đúng?

- (A) IJ song song với CD.
- (**B**) IJ song song với AB.
- (\mathbf{C}) IJ chéo nhau với CD.
- (**D**) IJ cắt AB.

Dòi giải.

Gọi E là trung điểm AB.

Vì I và J lần lượt là trọng tâm tam giác ABC và ABD nên: $\frac{EI}{EC} = \frac{EJ}{ED} = \frac{1}{3}$ Suy ra: IJ//CD.

Chọn đáp án (A)

CÂU 10. Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớnAD, AD = 2BC. Gọi G và G' lần lượt là trọng tâm tam giác SAB và SAD. Đường thẳng GG' song song với đường thẳng

 (\mathbf{B}) AC.

 (\mathbf{D}) SC.

🗩 Lời giải.

Gọi H và K lần lượt là trung điểm cạnh AB; AD. Với G và G' lần lượt là trọng tâm tam giác SAB và SAD ta có: $\frac{SG}{SH} = \frac{SG'}{SK} = \frac{2}{3} \Rightarrow GG'//HK.$ Mà HK//BD (HK là đường trung bình tam giác ABD.

Từ và suy ra GG'song song với BD.

Chọn đáp án (C)

CÂU 11. Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề nào dưới đây đúng

- (A) GE và CD chéo nhau.
- (B) $GE \parallel CD$.
- (\mathbf{C}) GE cắt AD.
- (\mathbf{D}) GE cắt CD.

Dèi giải.

Gọi M là trung điểm của AB. Trong tam giác MCD có $\frac{MG}{MD} = \frac{ME}{MC} = \frac{1}{3}$ suy ra GE//CD

Chọn đáp án (B)

CÂU 12. Cho hình tứ diện ABCD, lấy điểm M tùy ý trên cạnh AD ($M \neq A$, D). Gọi (P) là mặt phẳng đi qua M song song với mặt phẳng (ABC) lần lượt cắt BD, DC tại N, P. Khẳng định nào sau đây sai?

- (A) MN // AC.
- (B) $MP \parallel AC$.
- \bigcirc MP // (ABC).
- $(\mathbf{D}) NP /\!\!/ BC.$

Lời giải.

$$\begin{array}{l} \operatorname{Do}\left(P\right) \ /\!\!/ \ (ABC) \ \operatorname{n\'en} \ AB \ /\!\!/ \ (P). \\ \operatorname{Lại \ c\'o} \left\{ \begin{aligned} MN &= (P) \cap (ABD) \\ AB &\subset (ABD) \,, \ AB \ /\!\!/ \ (P). \end{aligned} \right. \end{array}$$

Suy ra, $MN \parallel AB$, mà AB cắt AC nên $MN \parallel AC$ là sai.

Chọn đáp án (A)

CÂU 13. Cho tứ diện ABCD. Gọi I, J lần lượt là trọng tâm của các tam giác ABC, ABD. Đường thẳng IJ song song với đường thẳng:

 \bigcirc AC.

 $\bigcirc DB.$

 (\mathbf{D}) CD.

🗩 Lời giải.

Gọi E là trung điểm của AB. Ta có $\begin{cases} I \in CE \\ J \in DE \end{cases}$ nên suy ra IJ và CD đồng phẳng.

Do I,J lần lượt là trọng tâm của các tam giác $ABC,\,ABD$ nên ta có: $\frac{EI}{EC}=\frac{EJ}{ED}=\frac{1}{3}.$ Suy ra $IJ \ /\!\!/ CD.$

⊘ Cách 2:

Gọi M,N lần lượt là trung điểm của BD và BC. Suy ra $MN \parallel CD$. Do I,J lần lượt là trọng tâm của các tam giác ABC,ABD nên ta có: $\frac{AI}{AN} = \frac{AJ}{AM} = \frac{2}{3}$. Suy ra $IJ \parallel MN$. Từ và suy ra $IJ \parallel CD$.

Có lẽ trong ví dụ này cách này hơi dài, song chúng tôi vẫn sẽ trình bày ở đây, để các bạn có thể hiểu và vận dụng cách 3 hợp lí trong các ví dụ khác.

Đễ thấy, bốn điểm D , C , I , J đồng phẳng.

Ta có:
$$\begin{cases} (DCIJ) \cap (AMN) = IJ \\ (DCIJ) \cap (BCD) = CD \\ (AMN) \cap (BCD) = MN \\ MN \ /\!\!/ CD. \end{cases}$$

Suy ra $IJ \parallel CD \parallel MN$.

Chọn đáp án \bigcirc

CÂU 14. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Gọi M,N theo thứ tự là trọng tâm ΔSAB ; ΔSCD . Gọi I là giao điểm của các đường thẳng BM; CN. Khi đó tỉ số $\frac{SI}{CD}$ bằng

A 1.

 \bigcirc $\frac{1}{2}$

 \bigcirc $\frac{2}{3}$.

 $\bigcirc \hspace{-3pt} \boxed{\frac{3}{2}}.$

Dèi giải.

Gọi E và F lần lượt là trung điểm AB và CD.

Ta có
$$I = BM \cap CN$$
 nên
$$\begin{cases} I \in BM \subset (SAB) \\ I \in CN \subset (SCD) \end{cases}$$

hay $I \in (SAB) \cap (SCD)$.

Mà $S \in (SAB) \cap (SCD)$. Do đó $(SAB) \cap (SCD) = SI$.

Lại có:
$$\begin{array}{l} AB//CD \\ AB \subset (SAB) \\ CD \subset (SCD) \\ (SAB) \cap (SCD) = SI \end{array} \right\} \Rightarrow SI//AB//CD.$$

Vì SI//CD nên SI//CF.

Theo định lý Ta – let ta có: $\frac{SI}{CF} = \frac{SN}{NF} = 2$

Do đó,
$$SI=2CF=CD$$
. Vậy $\frac{SI}{CD}=1$.

$$V_{ay} \frac{SI}{CD} = 1$$

Chọn đáp án (A)

CÂU 15. Cho tứ diện ABCD. Điểm P, Q lần lượt là trung điểm của AB, CD. Điểm R nằm trên cạnh BC sao cho BR = 2RC. Gọi S là giao điểm của mặt phẳng (PQR) và AD. Khi đó

$$\mathbf{B}) SA = 2SD.$$

$$\bigcirc$$
 $SA = SD.$

🗩 Lời giải.

Ta có
$$\frac{DF}{FB} \cdot \frac{BR}{RC} \cdot \frac{CQ}{QD} = 1 \Rightarrow \frac{DF}{FB} = \frac{RC}{BR} = \frac{1}{2}.$$

Gọi
$$F = BD \cap RQ$$
. Nối P với F cắt AD ở S . Ta có $\frac{DF}{FB} \cdot \frac{BR}{RC} \cdot \frac{CQ}{QD} = 1 \Rightarrow \frac{DF}{FB} = \frac{RC}{BR} = \frac{1}{2}$. Tương tự ta có $\frac{DF}{FB} \cdot \frac{BP}{PA} \cdot \frac{AS}{SD} = 1 \Rightarrow \frac{SA}{SD} = \frac{FB}{DF} = 2 \Rightarrow SA = 2SD$.

Chọn đáp án (B)

CÂU 16. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A. Gọi giao điểm của đường thẳng MN và mặt phẳng (SAD) là G. Tính tỷ số $\frac{G\dot{M}}{GN}$

$$\bigcirc 1$$
 $\frac{1}{2}$.

Gọi giao điểm của AC và BD là O và kẻ OM cắt AD tại K.

Do O là trung điểm AC, N là trung điểm SC nên $ON \parallel SA$. Vậy hai mặt phẳng (MON) và (SAD) cắt nhau tại giao tuyến GK song song với NO.

Áp dụng định lí Ta-lét cho $GK \parallel ON$, ta có $\frac{GM}{GN} = \frac{KM}{KO}$. (1)

Gọi I là trung điểm AB, vì O là trung điểm BD nên theo tính chất đường trung bình thì $OI \parallel AD$. Vậy theo định lý Ta-lét ta có $\frac{KM}{KO} = \frac{AM}{AI} = \frac{AB}{AI} = 2$. (2)

Từ (1) và (2) ta có $\frac{GM}{GN} = 2$.

Chọn đáp án (C)

CÂU 17. Cho tứ diện ABCD. Các điểm P, Q lần lượt là trung điểm của AB và CD; điểm R nằm trên cạnh BC sao cho BR = 2RC. Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD. Tính tỷ số $\frac{SA}{SD}$

 $\bigcirc \frac{3}{2}$.

🗩 Lời giải.

Gọi $F = BD \cap RQ$. Nối P với F cắt AD ở S. Ta có $\frac{DF}{FB} \cdot \frac{BR}{RC} \cdot \frac{CQ}{QD} = 1 \Rightarrow \frac{DF}{FB} = \frac{RC}{BR} = \frac{1}{2}$. Tương tự ta có $\frac{DF}{FB} \cdot \frac{BP}{PA} \cdot \frac{AS}{SD} = 1 \Rightarrow \frac{SA}{SD} = \frac{FB}{DF} = 2$.

CÂU 18. Cho tứ diện ABCD. Lấy ba điểm P, Q, R lần lượt trên ba cạnh AB, CD, BC sao cho PR # AC và CQ = 2QD. Gọi giao điểm của đường thẳng AD và mặt phẳng (PQR) là S. Khẳng định nào dưới đây đúng?

 $(\mathbf{A}) AS = 3DS.$

B) AD = 3DS.

 $(\mathbf{C}) AD = 2DS.$

 $(\mathbf{D}) AS = DS.$

$$\text{Ta c\'o} \begin{cases} Q \in (PQR) \cap (ACD) \\ PR \subset (PQR) \\ AC \subset (ACD) \\ PQ \ \# \ AC \end{cases} \Rightarrow (PQR) \cap (ACD) = Qx \text{ v\'oi } Qx \ \# \ PR \ \# \ AC.$$

Gọi
$$S = Qx \cap AD \Rightarrow S = (PQR) \cap AD$$
.
Xét tam giác ACD có $QS \# AC$.
Ta có $\frac{SD}{AD} = \frac{QD}{CD} = \frac{1}{3} \Rightarrow AD = 3SD$.

Chon đáp án (B)

CÂU 19. Cho tứ diện ABCD. Gọi K, L lần lượt là trung điểm AB và BC. Lấy N là điểm thuộc đoạn CD sao cho CN=2ND. Gọi P là giao điểm của AD với (KLN). Tính tỷ số $\frac{PA}{PD}$

$$\mathbf{C} \frac{PA}{PD} = \frac{3}{2}.$$

$$\mathbf{D} \frac{PA}{PD} = 2.$$

$$\bigcirc \frac{PA}{PD} = 2$$

🗩 Lời giải.

Giả sử $LN\cap BD=I$. Nối KI cắt AD tại P, suy ra $AD\cap (KLN)=P$. Ta có $KL \#AC\Rightarrow PN \#AC\Rightarrow \frac{PA}{PD}=\frac{NC}{ND}=2$.

Ta có
$$KL \parallel AC \Rightarrow PN \parallel AC \Rightarrow \frac{PA}{PD} = \frac{NC}{ND} = 2.$$

Chọn đáp án (D)

CÂU 20. Cho tứ diện ABCD, M là điểm thuộc BC sao cho MC = 2MB. Gọi N, P lần lượt là trung điểm BD và AD. Điểm Q là giao điểm của AC với (MNP). Tính $\frac{QC}{QA}$

$$\bigcirc \frac{QC}{QA} = 2.$$

$$\bigcirc \frac{QC}{QA} = \frac{1}{2}.$$

Ta có $NP \# AB \Rightarrow AB \# (MNP)$.

Mặt khác $AB \subset (ABC)$, (ABC) và (MNP) có điểm M chung nên giao tuyến của (ABC) và (MNP) là đường thẳng

 $\begin{array}{l} MQ \parallel AB, \ Q \in \stackrel{\textstyle \cdot}{AC}. \\ \text{Vây } \frac{QC}{QA} = \frac{MC}{MB} = 2. \end{array}$

Chọn đáp án (C)

CÂU 21. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm AB, AD và G là trọng tâm tam giác SBD. Mặt phẳng (MNG) cắt SC tại điểm H. Tính $\frac{SH}{SC}$

 $\bigcirc \frac{2}{3}$.

 $igathbolde{\mathbf{A}} \ \frac{2}{5}.$ $m{\mathcal{D}}$ Lời giải.

Trong mặt phẳng (ABCD), gọi $E = MN \cap AC$.

Trong mặt phẳng (SAC), gọi $H = EG \cap SC$.

Ta có
$$\begin{cases} H \in EG, EG \subset (MNG) \\ H \in SC \end{cases} \Rightarrow H = SC \cap (MNG).$$

Gọi I, J lần lượt là trung điểm SG và SH.

Ta có
$$\begin{cases} IJ \ \# \ HG \\ IA \ \# \ GE \end{cases} \Rightarrow A, I, J \text{ thẳng hàng.}$$

Xét $\triangle ACJ$ có $EH \parallel AJ \Rightarrow \frac{CH}{HJ} = \frac{CE}{EA} = 3 \Rightarrow CH = 3HJ.$ Lại có SH = 2HJ nên SC = 5HJ. Vây $\frac{SH}{SC} = \frac{2}{5}.$

$$V_{ay} \frac{SH}{SC} = \frac{2}{5}.$$

Chọn đáp án (A)

CÂU 22. Cho hình chóp S.ABC. Bên trong tam giác ABC ta lấy một điểm O bất kì. Từ O ta dựng các đường thẳng lần lượt song song với SA, SB, SC và cắt các mặt (SBC), (SCA), (SAB) theo thứ tự tại A', B', C'. Khi đó tổng tỷ số lần lượt song song voi san, $T = \frac{OA'}{SA} + \frac{OB'}{SB} + \frac{OC'}{SC} \text{ bằng bao nhiều?}$ $\textbf{(A)} \ T = 3.$ $\textbf{(B)} \ T = \frac{3}{4}.$

$$T = 1.$$

🗩 Lời giải.

Gọi M, N, P lần lượt là giao điểm của AO và BC, BO và AC, CO và AB.

$$\begin{array}{l} \text{Goi } M, N, P \text{ lan lubt la giao diem cua } AO \text{ va } BC, BO \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va } AD \text{ va } AC, CO \text{ va$$

Dạng 3. Sử dụng yếu tố song song để tìm giao tuyến

CÂU 1. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SB, SD. Khi đó giao tuyến của hai mặt phẳng (CMN) và (ABCD) là

- (A) Đường thẳng CI, với $I = MN \cap BD$.
- (**B**) Đường thẳng MN.

(**C**) Đường thẳng BD.

(**D**) Đường thẳng d đi qua C và $d \parallel BD$.

Ta có M, N là trung điểm của SB, SD nên MN là đường trung bình của tam giác SBD. Suy ra MN # BD.

Ta có
$$\begin{cases} C \in (CMN) \cap (ABCD) \\ MN \subset (CMN) \\ BD \subset (ABCD) \\ MN \; /\!\!/\; BD \end{cases} \Rightarrow (CMN) \cap (ABCD) = d \; /\!\!/\; MN \; /\!\!/\; BD \; (d \; \text{di qua } C).$$

CÂU 2. Cho hình chóp S.ABCD có đáy ABCD là hình thang với $AD \parallel BC$. Gọi M là trung điểm của SC. Gọi d là giao tuyến của hai mặt phẳng (SBC) và (MAD). Kết luận nào sau đây là sai?

Chon đáp án (D)

- (B) $d \parallel AD$.
- (**C**) $d \cot SA$.
- $(\mathbf{D}) d$ và AC chéo nhau.

🗩 Lời giải.

Ta có
$$\begin{cases} M \in (SBC) \cap (MAD) \\ BC \not\parallel AD & \Rightarrow d \text{ di qua } M, d \not\parallel BC. \\ d = (SBC) \cap (MAD) \end{cases}$$

Do đó d cắt SB, d và SA chéo nhau

Chọn đáp án (C)

CÂU 3. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm SA, (α) là mặt phẳng đi qua M và song song với mặt phẳng (ABCD), $d = (\alpha) \cap (SAB)$. Khi đó

- (A) d là đường thẳng đi qua M và song song AD.
- (\mathbf{B}) d là đường thẳng đi qua M và song song BC.
- (**C**) d là đường thẳng đi qua M và song song AC.
- (\mathbf{D}) d là đường thẳng đi qua M và song song AB.

🗩 Lời giải.

$$\operatorname{Vi} \begin{cases} (\alpha) \text{ } \text{ } \text{ } \text{} (ABCD) \\ (SAB) \cap (ABCD) = AB \\ M \in (SAB) \cap (\alpha) \\ (\alpha) \cap (SAB) = d \end{cases} \Rightarrow d \text{ d is qua M và song song AB.}$$

Chọn đáp án (D)

- **CÂU 4.** Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của (SAB) và (SCD) là
 - lack A Đường thẳng qua S và song song với AD.
 - (\mathbf{C}) Đường SO với O là tâm hình bình hành.
- (B) Đường thẳng qua S và song song với CD.
- (\mathbf{D}) Đường thẳng qua S và cắt AB.

🗩 Lời giải.

Ta có
$$\begin{cases} AB \subset (SAB) \\ CD \subset (SCD) \\ AB \not\parallel CD \\ S \in (SAB) \cap (SCD) \end{cases} \Rightarrow (SAB) \cap (SCD) = d, \text{ với } d \text{ qua } S \text{ và song song } AB, CD.$$

Chọn đáp án (B)

- **CÂU 5.** Cho hình chóp S.ABCD có đáy là hình bình hành. Mệnh đề nào sau đây là sai?
 - $(A)(SAD) \cap (SBC)$ là đường thẳng qua S và song song AC.
 - $(\mathbf{B})(SAB) \cap (SAD) = SA.$
 - $(\mathbf{C}) AD \# (SBC).$
 - $(\mathbf{D})SA$ và CD chéo nhau.

🗩 Lời giải.

Ta có
$$\begin{cases} AD \subset (SAD) \\ BC \subset (SBC) \\ AD \ \# BC \\ (SAD) \cap (SBC) = d \end{cases} \Rightarrow d \text{ qua } S \text{ và song song } AD, BC.$$
 Chọn đáp án $\widehat{\mathbb{A}}$

CÂU 6. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I, J là trung điểm AB và CB. Khi đó giao tuyến của 2mặt phẳng (SAB) và (SCD) là đường thẳng song song với

(A) AD.

 (\mathbf{B}) IJ.

 (\mathbf{C}) BJ.

 $(\mathbf{D})BI.$

🗩 Lời giải.

Ta có
$$\begin{cases} AB \subset (SAB) \\ CD \subset (SCD) \\ AB \not\parallel CD \\ S \in (SAB) \cap (SCD) \end{cases} \Rightarrow (SAB) \cap (SCD) = d, \text{ với } d \text{ qua } S \text{ và song song } AB, CD.$$

Vậy giao tuyến cần tìm song song BI.

Chọn đáp án (D)

CÂU 7. Cho hình chóp S.ABCD có đáy (ABCD) là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây là đúng?

- (A) Đường thẳng d đi qua S và song song với AB.
- (**C**) Đường thẳng d đi qua S và song song với BC.
- (**B**) Đường thẳng d đi qua S và song song với DC.
- (**D**) Đường thẳng d đi qua S và song song với BD.

🗩 Lời giải.

Ta có
$$\begin{cases} BC \subset (SBC) \\ AD \subset (SAD) \\ BC \not\parallel AD \\ S \in (SBC) \cap (SAD) \end{cases} \Rightarrow (SBC) \cap (SAD) = d, \text{ với } d \text{ qua } S \text{ và song song } BC, AD.$$

Chọn đáp án (C)

CÂU 8. Cho hình chóp S.ABCD có đáy là hình thang $(AB \parallel CD)$. Gọi I, K lần lượt là trung điểm AD và BC; G là trọng tâm tam giác SAB. Khi đó giao tuyến của hai mặt phẳng (IKG) và (SAB) là

- (A) Đường thẳng qua S và song song AB, IK.
- (**C**) Đường thẳng qua G và song song BC.
- (B) Đường thẳng qua S và song song AD.
- (\mathbf{D}) Đường thẳng qua G và song song AB, IK.

Ta có
$$\begin{cases} IK \subset (IKG) \\ AB \subset (SAB) \\ IK \not\parallel AB \\ G \in (IKG) \cap (SAB) \end{cases} \Rightarrow (IKG) \cap (SAB) = d, \text{ với } d \text{ qua } G \text{ và song song } AB, IG.$$

Chọn đáp án (D)

CÂU 9. Cho hình chóp S.ABCD có đáy là hình thang ABCD ($AB \parallel CD$). Goi E, F lần lượt là trung điểm của AD và BC. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là

- (A) Đường thẳng đi qua S và giao điểm của hai đường thẳng AB và SC.
- (**B**) Đường thẳng đi qua S và song song AD.
- (**C**) Đường thẳng đi qua S và song song AF.
- (**D**) Đường thẳng đi qua S và song song EF.

🗩 Lời giải.

Ta có
$$\begin{cases} AB \subset (SAB) \\ CD \subset (SCD) \\ AB \parallel CD \\ S \in (SAB) \cap (SCD) \end{cases} \Rightarrow (SAB) \cap (SCD) = d, \text{ với } d \text{ qua } S \text{ và song song } AB, CD.$$

Lại có $AB \parallel EF$ nên giao tuyến song song EF.

Chọn đáp án (D)

CÂU 10. Cho tứ diện S.ABCD có đáy ABCD là hình thang $(AB \parallel CD)$. Gọi M, N, P lần lượt là trung điểm BC, ADvà SA. Giao tuyến của hai mặt phẳng (SAB) và (MNP) là

- (A) Đường thẳng qua M và song song BC.
- (B) Đường thẳng qua P và song song AB.

(**C**) Đường thẳng PM.

(**D**) Đường thẳng qua S và song song AB.

🗩 Lời giải.

Ta có
$$\begin{cases} MN \ \# \ AB \\ MN \subset (PMN), AB \subset (SAB) \\ P \in (PMN) \cap (SAB) \\ (PMN) \cap (SAB) = d \end{cases} \Rightarrow d \text{ dì qua } P \text{ và song song } MN, AB.$$
 Chọn đáp án \textcircled{B}

CÂU 11. Cho hình chóp S.ABCD có đáy ABCD là hình thang $(AB \parallel CD)$. Gọi I, J lần lượt là trung điểm của AD và BC; G là trọng tâm tam giác SAB. Giao tuyến của hai mặt phẳng (SAB) và (IJG) là

(A) Đường thẳng qua S và song song AB.

(**B**) Đường thẳng qua G và song song DC. (\mathbf{D}) Đường thẳng qua G và cắt BC.

 (\mathbf{C}) SC.

🗩 Lời giải.

Ta có
$$\begin{cases} IJ \ \# \ AB \\ IJ \subset (GIJ), AB \subset (SAB) \Rightarrow Gx = (GIJ) \cap (SAB), \ Gx \ \# \ AB \ \# \ CD. \\ G \in (GIJ) \cap (SAB) \end{cases}$$
 Chọn đáp án \textcircled{B}

CÂU 12. Cho hình chóp S.ABCD có đáy ABCD là hình thang, $AD \parallel BC$. Giao tuyến của (SAD) và (SBC) là

(A) Đường thẳng đi qua S và song song với AB.

(**B**) Đường thẳng đi qua S và song song với CD.

(**C**) Đường thẳng đi qua S và song song với AC.

 \bigcirc Đường thẳng đi qua S và song song với AD.

Ta có hai mặt phẳng (SAD) và (SBC) có 1 điểm chung là S và lần lượt chứa hai đường thẳng AD và BC song song nhau nên giao tuyến d của hai mặt phẳng (SAD) và (SBC)đi qua S và song song AD, BC.

Chọn đáp án (D)

CÂU 13. Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?

 $(\mathbf{A}) AD.$

 (\mathbf{B}) AC.

 $\bigcirc DC.$

 $(\mathbf{D}) BD.$

🗩 Lời giải.

Ta có $AD \parallel BC \Rightarrow (SAD) \cap (SBC) = d$, với d là đường thẳng đi qua S và song song với AD.

Chọn đáp án (A)

CÂU 14. Cho hình chóp S.ABC. Gọi M và N lần lượt là trung điểm của AB và AC. Giao tuyến của hai mặt phẳng (SMN)và (SBC) là một đường thẳng song song với đường thẳng nào sau đây?

 (\mathbf{A}) AC.

 (\mathbf{B}) BC.

 $(\mathbf{D}) SA.$

🗩 Lời giải.

Xét $\triangle ABC$ có M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình suy ra $MN \; /\!\!/ \; BC.$

 $\begin{cases} S \in (SMN) \cap (SBC) \\ MN \subset (SMN); BC \subset (SBC) \Rightarrow (SMN) \cap (SBC) = Sx \# MN \# BC. \end{cases}$

Chọn đáp án (B)

CÂU 15. Cho hình chớp $S \cdot ABCD$ có đáy là hình bình hành tâm O.M là một điểm bất kì thuộc cạnh SC, H là giao điểm của AM và mặt phẳng (SBD). Trong các khẳng định sau khẳng định nào đúng?

- (\mathbf{A}) H là giao điểm của AM và SD.
- $(\mathbf{C}) H$ là giao điểm của AM và BD.

- (**B**) H là giao điểm của AM và SB.
- $(\mathbf{D}) H$ là giao điểm của AM và SO.

Gọi $O = AC \cap BD$. Ta có $(SAC) \cap (SBD) = SO$. Trong mặt phẳng (SAC), kẻ $AM \cap SO = \{H\}$.

Ta có:
$$\begin{cases} H \in AM \\ H \in SO \subset (SBD) \end{cases} \Rightarrow H = AM \cap (SBD).$$

Chọn đáp án \bigcirc

Dạng 4. Sử dụng yếu tố song song tìm thiết diện

CÂU 1. Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, AD, CD, BC. Tìm điều kiện để MNPQ là hình thoi.

$$\bigcirc B BC = AD.$$

$$\bigcirc$$
 $AC = BD$.

🗩 Lời giải.

Xét tam giác ABD có MN là đường trung bình nên $MN \parallel BD$, $MN = \frac{1}{2}BD$.

Tương tự tam giác BCD có PQ là đường trung bình nên $PQ \parallel BD$, $PQ = \frac{1}{2}BD$.

Tứ giác MNPQ có MN # PQ, MN = PQ suy ra tứ giác MNPQ là hình bình hành. Để MNPQ là hình thoi thì MN = MQ hay BD = AC.

Chọn đáp án \bigcirc

CÂU 2. Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của sa. Thiết diện của mặt phẳng (MCD) với hình chóp S.ABCD là hình gì?

A Tam giác.

B Hình bình hành.

C Hình thang.

(D) Hình thơi.

Lời giải.

Gọi N là trung điểm của SB. Do MN // AB,AB // $CD\Rightarrow MN$ // CD.

Như vậy suy ra N thuộc mặt phẳng (MCD). Ta có: $\begin{cases} (MCD) \cap (SAD) = MD \\ (MCD) \cap (SAB) = MN \\ (MCD) \cap (SBC) = NC \\ (MCD) \cap (ABCD) = CD \end{cases}$

Vậy tứ giác MNCD là thiết diện của hình chóp bị cắt bởi mặt phẳng (MCD). Kết hợp với MN//CD, suy ra MNCD là hình thang.

Chọn đáp án C

CÂU 3. Cho hình chóp S.ABCD có đáy ABCD là hình thang, $AD \parallel BC, AD = 2BC.M$ là trung điểm của SA. Mặt phẳng (MBC) cắt hình chóp theo thiết diện là

A Hình bình hành.

B Tam giác.

C Hình chữ nhật.

▶ Hình thang.

Ta có $(BMC) \cap (ABCD) = BC$, $(BMC) \cap (SAB) = BM$. $(BMC) \cap (SAD) = Mx$, $Mx \parallel AD \parallel BC$, $Mx \cap SD = N$, $(BMC) \cap (SCD) = NC$. Suy ra thiết diện của hình chóp cắt bởi mặt phẳng (MBC) là tứ giác BMNC. Ta có $\frac{MN = \frac{1}{2}AD}{MN \parallel AD} \quad \text{suy ra} \; \left\{ \begin{array}{l} MN = BC \\ MN \parallel BC \end{array} \right. \; \text{nên thiết diện } BMNC \; \text{là hình bình hành.}$

Chọn đáp án (A)

- **CÂU 4.** Cho tứ diện ABCD. Trên các cạnh AB, AD lần lượt lấy các điểm M, N sao cho $\frac{AM}{AB} = \frac{AN}{AD} = \frac{1}{3}$ Gọi P, Q lần lượt là trung điểm các cạnh CD, CB. Khẳng định nào sau đây là đúng
 - (A) Tứ giác MNPQ là hình bình hành.
 - (B) Tứ giác MNPQ là một hình thang nhưng không phải hình bình hành.
 - (\mathbf{C}) Bốn điểm M, N, P, Q đồng phẳng.
 - (**D**) Tứ giác MNPQ không có cặp cạnh đối nào song song.

🗭 Lời giải.

Ta có $\frac{AM}{AB} = \frac{AN}{AD} = \frac{1}{3} \Rightarrow MN \; /\!\!/ \; BD$ và $\frac{MN}{BD} = \frac{1}{3}.$

Mặt khác vì PQ là đường trung bình của tam giác $BCD \Rightarrow PQ = \frac{1}{2}BD, PQ \parallel BD.$ (2)

Từ suy ra tứ giác MNPQ là hình thang, nhưng không là hình bình hành.

Chọn đáp án (B)

- **CÂU 5.** Cho hình lập phương $ABCD \cdot A'B'C'D'$, $AC \cap BD = O$, $A'C' \cap B'D' = O'$. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, CC'. Khi đó thiết diện do mặt phẳng (MNP) cắt hình lập phương là hình
 - (A) Tam giác.
- (B) Tứ giác.
- C) Ngũ giác.
- **D**) Lục giác.

Dèi giải.

Ta có
$$\begin{cases} MN \ \# \ AC \\ NP \ \# \ AB' \end{cases} \Rightarrow (MNP) \ \# \ (AB'C).$$

 \Rightarrow (MNP) cắt hình lập phương theo thiết diện là lục giác.

Chọn đáp án (D)

- \hat{CAU} 6. Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi M là trung điểm của SD, điểm N nằm trên cạnh SB sao cho SN=2NB và O là giao điểm của AC và BD. Khẳng định nào sau đây sai?
 - (A) Thiết diện của hình chóp S.ABCD với mặt phẳng (AMN) là một hình thang.
 - (**B**) Đường thẳng MN cắt mặt phẳng (ABCD).
 - (**C**) Hai đường thẳng MN và SC chéo nhau.
 - (**D**) Hai đường thẳng MN và SO cắt nhau.

Lời giải.

MN không song song với BD. Suy ra trong (SBD) ta có MN cắt BD. Do đó đáp án "Đường thẳng MN cắt mặt phẳng (ABCD)" đúng.

Hai đường thẳng MN và SC chéo nhau. Hiển nhiên đúng do S.ABCD là hình chóp. Do đó đáp án "Hai đường thẳng MN và SC chéo nhau" đúng.

Hai đường thẳng MN và SO cắt nhau vì chúng cùng nằm trong mặt phẳng (SBD). Do đó đáp án "Hai đường thẳng MN và SO cắt nhau" đúng.

Chọn đáp án (A)

 \mathbf{CAU} 7. Cho tứ diện ABCD. Gọi M là trung điểm của AB. Cắt tứ diện ABCD bới mặt phẳng đi qua M và song song với BC và AD, thiết diện thu được là hình gì?

- (A) Tam giác đều.
- (B) Tam giác vuông.
- (C) Hình bình hành.
- (**D**) Ngũ giác.

🗩 Lời giải.

Gọi α là mặt phẳng đi qua M và song song với BC và AD.

nên $(\alpha) \cap (ABD) = MQ$ với Q là trung điểm BD.

nên $(\alpha) \cap (BCD) = QP$ với P là trung điểm CD.

 $\begin{array}{l} \text{X\'et } (\alpha) \text{ v\'a } (ABD) \text{ c\'o} \left\{ \begin{array}{l} M \in (\alpha) \cap (ABD) \\ (\alpha) \# AD \end{array} \right. \\ \text{X\'et } (\alpha) \text{ v\'a } (MNPQ) \text{ c\'o} \left\{ \begin{array}{l} Q \in (\alpha) \cap (BCD) \\ (\alpha) \# BC \end{array} \right. \\ \text{X\'et } (\alpha) \text{ v\'a } (ACD) \text{ c\'o} \left\{ \begin{array}{l} P \in (\alpha) \cap (ACD) \\ (\alpha) \# AD \end{array} \right. \end{array}$ nên $(\alpha) \cap (ACD) = NP$ với N là trung điểm AC.

Mà MN, PQ là hai đường trung bình của tam giác ABC và DBC. Nên ta có $\left\{ \begin{array}{l} MN \| PQ \\ MN = PQ. \end{array} \right.$

M Vậy thiết diện là hình bình hành MNPQ.

Chọn đáp án (C)

CAU 8. Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Gọi M là trung điểm của SD, N là điểm trên cạnh SBsao cho SN = 2SB, O là giao điểm của AC và BD. Khẳng định nào sau đây sai ?

- (A) Đường thẳng MN cắt mặt phẳng (ABCD).
- (B) Thiết diện của hình chóp S.ABCD với mặt phẳng (AMN) là một hình thang.
- (**C**) Hai đường thẳng MN và SO cắt nhau.
- (**D**) Hai đường thẳng MN và SC chéo nhau.

🗩 Lời giải.

 $MN \cap BD = I \Rightarrow MN \cap (ABCD) = I$. nên "Đường thẳng MN cắt mặt phẳng (ABCD)"

Hai đường thẳng MN và SO cắt nhau do cùng nằm trong mặt phẳng (SBD) và không song song nên "Hai đường thẳng MN và SO cắt nhau" đúng.

Hai đường thẳng MN và SC chéo nhau vì không cùng nằm trong một mặt phẳng nên "Hai đường thẳng MN và SC chéo nhau" đúng.

Chon đáp án (B)

 \hat{CAU} 9. Cho hình chóp tứ giác S.ABCD, có đáy ABCD là hình bình hành. Gọi M,N,P lần lượt là trung điểm của các cạnh SA, SB và BC. Thiết diện tạo bởi mặt phẳng (MNP) và hình chóp S.ABCD là

- (A) Tứ giác MNPK với K là điểm tuỳ ý trên cạnh AD.
- (**B**) Tam giác MNP.
- (\mathbf{C}) Hình bình hành MNPK với K là điểm trên cạnh AD mà $PK \parallel AB$.
- $ig(oldsymbol{\mathsf{D}} ig)$ Hình thang MNPK với K là điểm trên cạnh AD mà PK//AB..

Dèi giải.

Vì $MN \parallel AB \Rightarrow AB \parallel (MNP)$ mà $AB \subset (ABCD)$ nên mp(MNP) cắt mp(ABCD) theo giao tuyến là đường thẳng qua P và song song với AB. Trong mp(ABCD), qua P kẻ đường thẳng song song với AB cắt AD tai $K \Rightarrow MN // PK$.

Vậy thiết diện tạo bởi mặt phẳng (MNP) và hình chóp S.ABCD là hình thang MNPK với K là điểm trên cạnh AD mà $PK \parallel AB$.

Chon đáp án (D)

CẦU 10. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của OB, (α) là mặt phẳng đi qua M, song song với AC và song song với SB. Thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (α) là hình

(A) Lục giác.

(B) Ngũ giác.

(C) Tam giác.

D) Tứ giác.

Lời giải.

Ta có:

$$\left\{\begin{array}{ll} M\in(\alpha)\cap(ABCD)\\ (ABCD)\supset AC//(\alpha) \end{array}\right. \Rightarrow (\alpha)\cap(ABCD)=d_1 \text{ di qua }M \text{ và song song với }AC \;.$$

Trong (ABCD), gọi I, H lần lượt là giao điểm của d_1 với AB và BC. Khi đó, I và H lần lượt là trung điểm của AB và BC. Ta lai có:

$$\left\{ \begin{array}{l} I \in (\alpha) \cap (SAB) \\ (SAB) \supset SB//(\alpha) \end{array} \right. \Rightarrow (\alpha) \cap (AB) = d_2 \text{ di qua } I \text{ và song song với } SB \ .$$

Trong (SAB), gọi J là giao điểm của d_2 với SA. Khi đó, J là trung điểm của SA.

Ta cũng có
$$\left\{ \begin{array}{l} H \in (\alpha) \cap (SBC) \\ (SBC) \supset SB \not\parallel (\alpha) \end{array} \right. \Rightarrow (\alpha) \cap (SBC) = d_3 \text{ di qua H và song song với SB.}$$

Trong (SBC), gọi L là giao điểm của d_3 với SC. Khi đó, L là trung điểm của SC.

Mặt khác
$$\left\{ \begin{array}{l} M \in (\alpha) \cap (SBD) \\ (SBD) \supset SB \not\parallel (\alpha) \end{array} \right. \Rightarrow (\alpha) \cap (SBD) = d_4 \text{ di qua } M \text{ và song song với } SB.$$

Trong (SBC), gọi K là giao điểm của d_4 với SD.

Vậy thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (α) là ngũ giác HIJKL.

Chon đáp án (B)

CÂU 11. Cho tứ diên ABCD. Goi M, N lần lượt là trung điệm của AB, AC.E là điểm trên canh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là

- (\mathbf{A}) Tam giác MNE.
- (**B**) Tứ giác MNEF với E là điểm bất kì trên canh BD.
- (C) Hình bình hành MNEF với E là điểm trên canh BD mà $EF \parallel BC$.
- (**D**) Hình thang MNEF với E là điểm trên cạnh BD mà $EF \parallel BC$.

Lời giải.

Do M, N lần lượt là trung điệm của $AB, AC \Rightarrow MN \parallel BC$. Ta có

$$\begin{cases} E \in (MNE) \cap (BCD) \\ MN \subset (MNE), BC \subset (BCD) \Rightarrow (MNE) \cap (BCD) = EF \ /\!/ \ MN \ /\!/ \ BC \end{cases} (F \in BD).$$

$$MN \ /\!/ \ BC$$

Ta có: $(MNE) \cap (ABC) = MN$, $(MNE) \cap (ACD) = NE$, $(MNE) \cap (BCD) = EF$, $(MNE) \cap (BCD)$ (ABD) = FM.

Vậy thiết diện là hình thang
$$MNEF$$
. Xét $\triangle CAD$ có $\frac{CN}{CA} = \frac{1}{2} \neq \frac{CE}{CD} = \frac{1}{4} \Rightarrow EN \cap AD = I$.

 $(MNE) \cap (ABD) = FM$ $(ABD) \cap (ACD) = AD$ $\Rightarrow MN, AD, FM$ đồng qui tại I. Do đóMNEF không thể là hình bình hành. Ta có $(MNE) \cap (ACD) = EN$ $EN \cap AD = I$

Chọn đáp án (D)

CÂU 12. Cho hình chóp S.ABCD với các cạnh đáy là AB,CD. Gọi I,J lần lượt là trung điểm của các cạnh AD,BC và G là trọng tâm tam giác SAB. Tìm k với AB = kCD để thiết diện của mặt phẳng (GIJ) với hình chóp S.ABCD là hình bình hành.

$$(A) K = 4.$$

$$\mathbf{B} K = 2.$$

$$K = 1.$$

Dèi giải.

Dễ thấy giao tuyến của hai mặt phẳng (GIJ) và (SAB) là đường thẳng Gx đi qua G và song song với các đường thẳng AB, IJ. Giao tuyến Gx cắt SA tại M và cắt SB tại N. Thiết diện của mặt phẳng (GIJ) với hình chóp S.ABCD là hình thang IJNM vì IJ //

IJ là đường trung bình của hình thang ABCD nên ta có

$$IJ = \frac{AB + CD}{2} = \frac{kCD + CD}{2} = \frac{k+1}{2}CD.$$

G là trọng tâm tam giác SABnên $MN=\frac{2}{3}AB=\frac{2}{3}kCD.$ Để IJNM là hình bình hành ta cần phải c
ó IJ=

$$\Leftrightarrow \frac{k+1}{2}CD = \frac{2}{3}kCD \Leftrightarrow \frac{k+1}{2} = \frac{2k}{3} \Leftrightarrow k = 3.$$

Chon đáp án (D)

- (A) Tam giác MNE.
- (**B**) Tứ giác MNEF với F là điểm bất kì trên cạnh BD.
- (\mathbf{C}) Hình bình hành MNEF với F là điểm bất kì trên canh BD mà EF song song với BC.
- (**D**) Hình thang MNEF với F là điểm trên cạnh BD mà EF song song với BC.

🗩 Lời giải.

Chọn đáp án (D)

CÂU 14. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, I lần lượt là trung điểm của SA, SB, BC điểm Gnằm giữa S và I sao cho $\frac{SG}{SI} = \frac{3}{4}$. Thiết diện của hình chóp S.ABCD với mặt phẳng (MNG) là (A) hình thang. (B) hình tam giác. (C) hình bình hành.

(**D**) hình ngũ giác.

🗩 Lời giải.

Xét trong mặt phẳng (SBC) ta có $NG \cap BC = \{P\}$.

Vì $MN \parallel AB$ nên $(MNG) \cap (ABCD)$ theo giao tuyến đi qua P song song với AB, CD và cắt AD tại Q.

 $(MNG) \cap (SAB) = MN$ $(MNG) \cap (SBC) = NP$ $(MNG) \cap (ABCD) = PQ$ $(MNG) \cap (SAD) = QM$

Suy ra: Thiết diện của hình chóp S.ABCD với mặt phẳng (MNG) là tứ giác MNPQ.

Chọn đáp án (A)

QUAN HỆ	SONG SONG TRONG KHÔNG GIAN	1
_	Bài 10. Đường thẳng và mặt phẳng trong không gian	1
	A Tóm tắt lý thuyết	1
	B Hệ thống bài tập	
	 Dạng 1.Tìm giao tuyến của hai mặt phẳng Dạng 2.Tìm giao điểm của đường thẳng và mặt phẳng 	
	► Dạng 3.Bài toán thiết diện	
	Dạng 4.Chứng minh ba điểm thẳng hàng – ba đường thẳng đồng quy	
	Hệ thống bài tập trắc nghiệm	
	► Dang 1.Lí thuyết	
	Dạng 1.Li thuyết	
	Dạng 3.Tìm giao điểm của đường thẳng với mặt phẳng	
	Dang 4. Tim thiết diện	
	► Dạng 5.Đồng quy, thẳng hàng	
	► Dạng 6.Tỉ số	14
	Bài 11. Hai đường thẳng song song	16
	A Lý thuyết	16
	B Hệ thống bài tập	16
	Dạng 1.Chứng minh hai đường thẳng song song	
	Dạng 2.Tìm giao tuyến của hai mặt phẳng	
	Hệ thống bài tập trắc nghiệm	
	Dạng 1.Câu hỏi lý thuyết	
	Dạng 2.Một số bài toán liên quan đến hai đường thảng song song	
	Dạng 3.Sử dụng yếu tố song song để tìm giao tuyến	
	Dạng 4.Sử dụng yếu tố song song tìm thiết diện	28
L ỜI GIẢI	CHI TIẾT	30
	Bài 10. Đường thẳng và mặt phẳng trong không gian	20
		30
	A Tóm tắt lý thuyết	
	B Hệ thống bài tập	
	Dạng 1.Tìm giao tuyến của hai mặt phẳng	
	Dạng 2.Tìm giao điểm của đường thẳng và mặt phẳng	
	► Dạng 3.Bài toán thiết diện	
	Dạng 4.Chứng minh ba điểm thẳng hàng – ba đường thẳng đồng quy	
	Hệ thống bài tập trắc nghiệm	
	Dang 1.Lí thuyết	
	 Dạng 2.Xác định giao tuyến của hai mặt phẳng Dạng 3.Tìm giao điểm của đường thẳng với mặt phẳng 	
	Dang 4. Tim giao diem cua duong thang voi mat phang	
	Dạng 5.Đồng quy, thẳng hàng	
	Dạng 6.Tỉ số	
	Bài 11. Hai đường thẳng song song	77
	A Lý thuyết	
	B Hệ thống bài tập	
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
	Daily 1. Chang minn has duong thang song song	

Dạng 2.Tìm giao tuyến của hai mặt phẳng	86
Hệ thống bài tập trắc nghiệm	93
► Dạng 1.Câu hỏi lý thuyết	93
Dạng 2.Một số bài toán liên quan đến hai đường thảng song song	96
Dạng 3.Sử dụng yếu tố song song để tìm giao tuyến	106
Dạng 4.Sử dụng yếu tố song song tìm thiết diện	

