Statistical Computing with R: MDS 503 (S13) Third Batch, SMS, TU, 2024

Shital Bhandary

Associate Professor

Statistics/Bio-statistics, Demography and Public Health Informatics
Patan Academy of Health Sciences, Lalitpur, Nepal
Faculty, Data Analysis and Decision Modeling, MBA, Pokhara University, Nepal

Faculty, FAIMER Fellowship in Health Professions Education, India/USA.

Review Preview

- Basic graphics/plots:
 - Plots from raw data

- Special graph:
 - Additional features

Graph from data frame

 Check the structure of in-built "mtcars" data

Barplot of "mpg" variable

• Histogram of "mpg" variable

Which one do you prefer?

How to get bar diagram of a categorical variable from data frame?

#Define as data frame, if required

df <- as.data.frame(mtcars)

#Bar plot of cylinder data

barplot(df\$cyl)

 This barplot shows the number of cylinders for 50 cars of the dataset

Do we want this?

How to get bar diagram of a categorical variable from data frame?

#Let's define cyl as factor variable

f.cyl <- as.factor(df\$cyl)

 Error in barplot.default(f.cyl): 'height' must be a vector or a matrix

#And get gar plot of cylinder data

barplot(f.cyl)

• This means variable is factor but its frequencies are not found!

Did you get the barplot?

What to do now?

• Why?

How to get bar diagram from data frame?

- # First we **need frequencies** of cars with 4, 6 and 8 cylinders
- table(df\$cyl)
- #Bar plot of freq. of cylinder data
- barplot(table(df\$cyl))
- #We can assign this as object
- bpd <- table(df\$cyl)
- #Get the barplot
- barplot(bpd)

We can get the barplot of "gear" and "carb" too as they are factors (categorical variables)

Class work: How to get barplot of "mpg" variable? mpg: miles per gallon (continuous variable)

```
#MPG – range for class interval
```

- range(df\$mpg)
- R = 33.9 10.4 #23.5
- I = round(sqrt(R)) # 5

#We need to construct 5 classes with width of 5 (10, 15, 20, 25, 30)

#We need to define the breaks

breaks = c(10, 15, 20, 25, 30, 35) or

breaks = seq(10, 35, by=5)

 mpg.bin <- cut(df\$mpg, breaks, labels = c("10-15", "15-20", "20-25", "25-30", "30-35"))

• mpg.bin

table(mpg.bin)

barplot(table(mpg.bin))

Outputs:

Barplot of Miles Per Gallon (MPG) of Selected Cars

Histogram and abline for mean of "mpg":

- hist(df\$mpg, col = "steelblue", main = "Histogram of MPG", xlab = "MPG Categories")
- abline(v=mean(df\$mpg), lwd=3, lty=2)
- v = vertical "abline"
- h = horizontal "abline"
- lwd = line width (3=3 times wide)
- Ity =line types (2 = dashed line)

Line types:

•	Ity =	1	(solid	line)
		_	(

Ity = 2 (dashed line)

• Ity = 3 (dotted line)

• Ity = 4 (dot and dashed line)

• Ity = 5 (long dash line)

Ity = 6 (two dashed line)

6.'twodash'

5.'longdash' — — — — — — — — — — —

4.'dotdash'

3.'dotted'

2.'dashed' ------

1.'solid'

0. blank

Can you justify the use of mean for "mpg" variable in the histogram?

- qqnorm(mtcars\$mpg)
- > qqline(mtcars\$mpg, col=2)
- Which measure of central tendency is most useful for the mpg variable?
- Which measure of central tendency can be located by histogram "graphically"?

Histogram and abline of median of "mpg":

- hist(df\$mpg, col = "steelblue", main = "Histogram of MPG", xlab = "MPG Categories")
- abline(v=median(df\$mpg), lwd=3, lty=2)

- v = vertical "abline"
- h = horizontal "abline"

summary(df\$mpg)

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
10.40	15.43	19.20	20.09	22.80	33.90

Assignment: Locate median graphically for "mpg" variable

- Create a more than cumulative frequency curve
- Create a less than cumulative frequency curve
- Draw both of them in a single plot

- The point of intersection of more than and less than cumulative frequency curve will given the "median" value
- Draw a perpendicular to the x-axis from this point of intersection to find the median
- Compare it with the result of the "median" function of R!

Class work: Locate the mode in the histogram graphically!

 Now do the same for "mpg" variable in R Studio with R Script!

- Check your value with the builtin function of model
- mode(df\$mpg) ??
- table(df\$mgp) ?? (highest freq?)
- which.max(df\$mpg) ??

ChatGPT: how to locate mode graphically in r with histogram?

- # Generate some example data
- data <- rnorm(1000, mean = 10, sd = 2)
- # Create a histogram of the data
- hist(data)
- # Add a density line to the histogram
- lines(density(data))
- # Locate the mode
- density_values <- density(data)\$y
- max_density <- max(density_values)
- mode <density(data)\$x[which.max(density_values)]
- # Add a vertical line at the mode location
- abline(v = mode, col = "red")

I AM NOT CONVINCED! ARE YOU? USE CHATGPT!

How to get mode of a variable with bi-model or multi-model distribution like "mpg"?

X	freq	X	freq		
10.4	2	19.2	2		
13.3	1	19.7	1		
14.3	1	21.0	2	Mode = 3 Median – 2 Mean	
14.7	1	21.4	2	mode <- 3*median(df\$mpg) - 2	
15.0	1	21.5	1	*mean(df\$mpg)	
15.2	2	22.8	2	mode	
15.5	1	24.4	1	[1] 17.41875 (How to interpret?)	
15.8	1		_	() () () () () () () () () ()	
16.4	1	26.0	1		
17.3	1	27.3	1	Now show this value as "mode" in the	
17.8	1	30.4	2	histogram!	
18.1	1	32.4	1		
18.7	1	33.9	1		

Histogram and abline of mode of "mpg":

- hist(df\$mpg, col = "steelblue", main = "Histogram of MPG", xlab = "MPG Categories")
- abline(v=3*median(df\$mpg) 2*mean(df\$mpg), lwd=3, lty=2)

- v = vertical "abline"
- h = horizontal "abline"

summary(df\$mpg)

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
10.40	15.43	19.20	20.09	22.80	33.90

Assignment: Show the mode, median and mean of "mpg" variable in a single histogram

With ablines of different colors

With a legend for each color

Scatterplot with horizontal "abline":

#Scatterplot with abline
plot(df\$mpg, df\$wt, pch=16, main
= "Scatterplot of MPG and
Weight", xlab = "MPG", ylab =
"Weight")
abline(h=2, col = "blue", lwd=2)
abline(h=4, col = "blue", lwd=2)

Here, h = horizontal line in y-axis and lwd = line width parameter

Scatterplot with vertical "abline":

- plot(df\$mpg, df\$wt, pch=16, main = "Scatterplot of MPG and Weight", xlab = "MPG", ylab = "Weight")
- abline(v=15, col = "red", lwd=2)
- abline(v=30, col = "red", lty=2)

 Here, v=Vertical line at x-axis and lty = line type parameter

Scatterplot of MPG and Weight

Scatterplot with mean ± 1*sd of y-variable:

- plot(df\$wt, df\$mpg, pch=16)
- abline(h=mean(df\$mpg), lwd =2, col = "red")
- abline(h=mean(df\$mpg) + 1*sd(df\$mpg), col = "blue", lwd=3, lty = 2)
- abline(h=mean(df\$mpg) -1*sd(df\$mpg), col = "blue", lwd=3, lty = 2)

Scatterplot with "abline" from a model:

- plot(df\$wt, df\$mpg, main =
 "Scatterplot with abline", xlab =
 "Weight", ylab = "MPG")
- reg_mod <- Im(df\$mpg ~ df\$wt)
- abline(reg_mod)
- plot(df\$wt, df\$mpg, main =
 "Scatterplot with abline", xlab =
 "Weight", ylab = "MPG")
- abline(lm(df\$mpg ~ df\$wt))

Scatterplot with "abline" and "lines" for a non-linear data:

- plot(df\$hp, df\$disp, main =
 "Scatterplot with model abline",
 xlab = "Horse power", ylab =
 "Displacement")
- abline(lm(df\$disp ~ df\$hp))
- lines(lowess(df\$hp, df\$disp), col= "red", lwd = 3)

Lowess = Locally weighted
 Scatterplot Smoothing

Scatterplot with "abline" and "lines" for a non-linear data: DO NOT OVERFIT!

- plot(df\$hp, df\$disp, main =
 "Scatterplot with model abline",
 xlab = "Horse power", ylab =
 "Displacement")
- abline(lm(df\$disp ~ df\$hp))
- lines(lowess(df\$hp, df\$disp), col = "red", lwd = 3)
- lines(lowess(df\$hp, df\$disp, f=1), col = "purple", lwd = 3)
- lines(lowess(df\$hp, df\$disp, f=0.1), col = "blue", lwd = 3)

Scatterplot with model abline

More on plots: https://r-coder.com/plot-r/

• set.seed(1)

- # Generate sample data
- x <- rnorm(500)
- y <- x + rnorm(500)

- # Plot the data
- plot(x, y)

- # Equivalent
- M <- cbind(x, y)
- plot(M)

Function and arguments

Output plot

plot(x,y)

 Scatterplot of x and y numeric vectors

plot(factor)

Barplot of the factor

plot(factor, y)

 Boxplot of the numeric vector and the levels of the factor

plot(time_series)

• Time series plot

Function and arguments

Output plot

plot(date, y)

Plots a date-based vector

plot(function, lower, upper)

 Plot of the function between the lower and maximum value specified

Question/Queries?

Thank you!

@shitalbhandary