Семинар №9. Доверительные интервалы.

Определение. Пара статистик $(T_1(X), T_2(X))$ (где X — наблюдение) называется доверительным интервалом уровня доверия γ для параметра θ , если для $\forall \theta \in \Theta \subset \mathbb{R}$ выполнено

$$P_{\theta}(T_1(X) < \theta < T_2(X)) \ge \gamma.$$

Доверительный интервал называется точным, если $\forall \theta \in \Theta$

$$P_{\theta}(T_1(X) < \theta < T_2(X)) = \gamma.$$

Метод центральной статистики.

Пусть случайная величина $G(X,\theta)$ такова, что её распределение известно и не зависит от θ . Пусть также $G(X,\theta)$ строго монотонна и непрерывна по θ .

Пусть $p_1 < p_2$, $p_i \in [0,1]$, таковы, что $p_2 - p_1 = \gamma$. Обозначим через G_{p_i} p_i -тую квантиль распределения $G(X,\theta)$ (т.е. $P(G(X,\theta) \leq G_{p_i}) = p_i$, если распределение $G(X,\theta)$ непрерывно). Пусть $T_i(X)$ — решения уравнений $G(X,T_i(X)) = G_{p_i}$. Тогда

$$P_{\theta}(T_1(X) < \theta < T_2(X)) = P_{\theta}(G_{p_1} < G(X, \theta) < G_{p_2}) = p_2 - p_1 = \gamma,$$

т.е. $(T_1(X), T_2(X))$ – доверительный интервал уровня доверия γ .

Замечание. От доверительного интервала требуется как можно меньшая длина, чтобы "локализовать" неизвестное значение параметра. С этой целью p_1 и p_2 выбираются, как правило, симметричными относительно 0,5, ведь у распределения могут быть тяжёлые хвосты.

Это всё, безусловно, прекрасно, но без примера не особо понятно. Посему

Пример. Пусть X_1, \dots, X_n — выборка из распределения с плотностью $p_{\theta}(x) = e^{-(x-\theta)}I\{x \geq \theta\}$ (экспоненциальное распределение со сдвигом). Построить доверительный интервал уровня доверия γ .

<u>Решение.</u> Заметим, что $X_i - \theta \sim Exp(1)$ — не зависит от θ . Тогда возьмём $G(X,\theta) = \sum_{i=1}^n X_i - n\theta \sim \Gamma(1,n)$, так как сумма независимых, одинаково экспоненциально распределенных случайных величин имеет гамма-распределение. Выберем $u_{\frac{1-\gamma}{2}}$ и $u_{\frac{1+\gamma}{2}}$ — квантили уровня $\frac{1-\gamma}{2}$ и $\frac{1+\gamma}{2}$ из распределения $\Gamma(1,n)$ соответственно. Тогда

$$\gamma = \frac{1+\gamma}{2} - \frac{1-\gamma}{2} = P_{\theta} \left(u_{\frac{1-\gamma}{2}} < \sum_{i=1}^{n} X_i - n\theta < u_{\frac{1+\gamma}{2}} \right) = P_{\theta} \left(\overline{X} - \frac{u_{\frac{1+\gamma}{2}}}{n} < \theta < \overline{X} - \frac{u_{\frac{1-\gamma}{2}}}{n} \right),$$

т.е. доверительный интервал для θ в нашей задаче такой: $\left(\overline{X} - \frac{u_{\frac{1+\gamma}{2}}}{n}; \overline{X} - \frac{u_{\frac{1-\gamma}{2}}}{n}\right)$.

Асимптотические доверительные интервалы.

Определение. $X = (X_1, \dots, X_n)$ — выборка из $P \in \{P_\theta, \theta \in \Theta\}$. Последовательность случайных интервалов $\left(T_1^{(n)}(X_1, \dots, X_n), T_2^{(n)}(X_1, \dots, X_n)\right)$ называется асимптотическим доверительным интервалом уровня доверия γ для θ , если для $\forall \theta \in \Theta$

$$\liminf_{n \to \infty} P_{\theta}\left(T_1^{(n)}(X_1, \dots, X_n) < \theta < T_2^{(n)}(X_1, \dots, X_n)\right) \ge \gamma.$$

Он называется точным, если $\forall \theta \in \Theta$

$$\liminf_{n \to \infty} P_{\theta} \left(T_1^{(n)}(X_1, \dots, X_n) < \theta < T_2^{(n)}(X_1, \dots, X_n) \right) = \gamma.$$

Метод построения. Пусть $\widehat{\theta}_n(X)$ – асимптотически нормальная оценка θ , т.е., по определению,

$$\sqrt{n}\left(\widehat{\theta}_n - \theta\right) \xrightarrow{d_{\theta}} N(0, \sigma^2(\theta)).$$

Тогда

$$\frac{\sqrt{n}\left(\widehat{\theta}_n - \theta\right)}{\sigma(\theta)} \xrightarrow[]{d_{\theta}} N(0, 1).$$

У нас есть большое желание построить какой-нибудь доверительный интервал для θ при использовании квантилей нормального распределения, но нам мешает $\sigma(\theta)$ в знаменателе (имеется в виду, что не всегда из доверительного интервала для статистики $\frac{\sqrt{n}(\widehat{\theta}_n-\theta)}{\sigma(\theta)}$ мы можем получить доверительный интервал для параметра θ). Оказывается, если $\sigma(\theta)$ непрерывна по θ , то вместо θ в $\sigma(\theta)$ можно подставить $\widehat{\theta}_n$ (действительно, ведь тогда $\sigma(\widehat{\theta}_n) \xrightarrow{d_{\theta}} \sigma(\theta)$ по теореме о наследовании сходимости), причём сходимость к нормальному закону сохранится (это следует из леммы Слуцкого).

Если $u_{1-\frac{\alpha}{2}}$ и $u_{\frac{\alpha}{2}}$ – квантили $N(0,1), \ \alpha=1-\gamma$ (а $u_{1-\frac{\alpha}{2}}=-u_{\frac{\alpha}{2}}$ в силу симметрии распределения N(0,1)), то

$$P_{\theta}\left(-u_{1-\frac{\alpha}{2}} < \frac{\sqrt{n}\left(\widehat{\theta}_{n} - \theta\right)}{\sigma(\widehat{\theta}_{n})} < u_{1-\frac{\alpha}{2}}\right) = P_{\theta}\left(\widehat{\theta}_{n} - \frac{u_{1-\frac{\alpha}{2}}\sigma(\widehat{\theta}_{n})}{\sqrt{n}} < \theta < \widehat{\theta}_{n} + \frac{u_{1-\frac{\alpha}{2}}\sigma(\widehat{\theta}_{n})}{\sqrt{n}}\right) \longrightarrow \underbrace{\frac{1}{n \to \infty} 1 - \alpha = \gamma},$$

т.е. асимптотический доверительный интервал для θ при наличии асимптотически нормальной оценки $\widehat{\theta}_n$ выглядит так: $\left(\widehat{\theta}_n - \frac{u_{1-\frac{\alpha}{2}}\sigma(\widehat{\theta}_n)}{\sqrt{n}}; \widehat{\theta}_n + \frac{u_{1-\frac{\alpha}{2}}\sigma(\widehat{\theta}_n)}{\sqrt{n}}\right)$.

Пример. Пусть X_1, \ldots, X_n — выборка из $Bern(\theta)$. Построить асимптотический доверительный интервал уровня доверия γ для параметра θ .

<u>Решение.</u> Из ЦПТ, $\sqrt{n}(\overline{X}-\theta) \xrightarrow{d_{\theta}} N(0,\theta(1-\theta))$, то есть асимптотически нормальную оценку для построения асимптотического доверительного интервала мы получили. Осталось просто подставить нашу оценку и значение асимптотической дисперсии в ту формулу, которую мы вывели выше:

$$\left(\overline{X} - \frac{u_{\frac{1+\gamma}{2}}}{\sqrt{n}}\sqrt{\overline{X}(1-\overline{X})}, \ \overline{X} + \frac{u_{\frac{1+\gamma}{2}}}{\sqrt{n}}\sqrt{\overline{X}(1-\overline{X})}\right)$$

– искомый асимптотический доверительный интервал для параметра θ уровня доверия γ , где $u_{\frac{1+\gamma}{2}}$ – попрежнему квантиль уровня $\frac{1+\gamma}{2}$ из распределения N(0,1).