Zeta Function of Elliptic Curves (7)

The zeta function (L-function) of an elliptic curve is defined by

$$L(\mathbf{E},s) = \left(\prod_{\mathbf{P}} \frac{1}{1 - (\mathbf{P} + 1 - \mathbf{N}_{\mathbf{P}}) \, \mathbf{P}^{-s} + \mathbf{P}^{-2s}}\right) \times (\mathsf{Bad Factors})$$

Modularity Theorem (2nd form)

For an elliptic curve E, there is a **modular form f** satisfying

$$L(E,s) = L(f,s)$$

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Zeta Function of Elliptic Curves (8)

- Modularity is only the beginning of the whole story.
- We have more general symmetric power
 L-functions L(Sym^N E, s) for N≥1.
- General Reciprocity Laws proposed by Langlands (Langlands's program) predict they are related to automorphic forms.

Zeta Function of Elliptic Curves (9)

Partial solutions of Langlands's Conj implies striking applications, e.g., the Sato-Tate Conj (solved in 2011).

Robert Phelan Andrew John Langlands (1936-)

Wiles (1953-)

Mikio Sato (1928-)

John Torrence Tate, Jr. (1925-)

https://en.wikipedia.org/wiki/Robert Langlands Notices of the AMS, vol 54, Num 2 (2007), p.210 https://en.wikipedia.org/wiki/John Tate

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Interlude: Five Fundamental Operations

"There are five fundamental operations in mathematics: addition, subtraction, multiplication, division, and modular forms." (Martin Eichler, 1912-1992)

