TEAM ID -PNT2022TMID41135 Project Report

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES 11. CONCLUSION 12. FUTURE SCOPE 13. APPENDIX Source Code

GitHub & Project Demo Link

1. INTRODUCTION

1.1 Project Overview

The project implemented using IOT that predict traffic, rainfall, ambulance dectection, human present in road, any alert sound. Using arduino UNO interface with sensors, buzzer, LED etc. Sensor such as Ultrasonic sensor, Temperature sensor, PIR sensor. The user will see the display on SMART SIGNS on the road. The device we designed UI (WEB based Application) given to the traffic controller. They display on SIGNS. The main advantages of the project is prevent the traffic, give path to ambulance, in rainy days give instruction to the driver about weather using open weather app they go fast or slow.

1.2 Purpose

The purpose of the project is make easy road travel with IOT devices. It also save lives. In this UI we have information of temperature, sound, human dectection. It makes travel easer.

2. LITERATURE SURVEY

2.1 Existing Problem

In present Systems the road signs and the speed limits are Static. But the road signs can be changed in some cases. We can consider some cases when there are some road diversions due to heavy traffic or due to accidents then we can change the road signs accordingly if they are digitalized.

The early effects to prevent road accidents and to ensure road safety includes the use of speed detection devices, CCTVs, speed limiters and emergency accident units as the first phase. Despite achieving the state-of theart performance, the existing systems suffer from two main problems.

- Over Speed: These systems cannot control speed at some specific zones.
- Exact location of accident occured: These systems cannot give the precise location of accident .

2.2 References

Authors	Туре	Avail ability	Research	Findings
Houser ,Pierowicz ,& Fuglewicz (2005)	FMC SA repo rt	Pub lic	Areporttoprovideabett erunderstandingofthef un ctionofon- boardsafetysystemsa ndprovideinsightintoth esa fetyandefficiencybenefitsof usingsuchsystems.	Describestheconceptofoperationsandthe voluntaryrequirementsfortheuseofVSS forlargetrucksgreaterthan10,000 pounds GVWR.
Berg ,Nie woh ner, Burk le,& Mor schh euse r (2001)	Jour nal articl e	Pub lic	Aninvestigationof109real lifetruckcrashesandacra s htestinvolvingaMerce des-BenzActros.	Safetybeltsinheavytruckshaveapotentialto savedriversandpassengers. Ejected truck occupant shave the greatest probability of beingk ill IEdina crash.
Trevorrow &Eady(20 10)	Austr alian road s repor t	Pub lic	Areporttoimproveknowl edgeandunderstanding of heavyvehiclebrakesafet yonlongsteepandveryst e eproads. literature review ,review of crash data ,and a vehicle test	Advancedbrakingsystemsofferincreaseds afetyinanemergencyonsteeproadsduet otheautomaticapplicationoftheserviceb rakespreventingroll-overorrun-off-roadcrashes. Whilebrakefailurecrashesaccountedfo rlessthanonequarteroffataltruck crashes ,break failure crashes were found to be mores curious. Fatal break failure crashes were more likely on horizontal curves ,how ever brake failure crashes on acombination of horizontal curveandverticalgradeweremoreseriousth anthoseoccurringonverticalgradealon e. Themainsafetyissuehighlightedwasth edrivers'interactionwiththeauxiliarybra ki ngsystem.Inadequateownersman ualinformationandalackofreal-timedriverfeedbackregardingtheperfor mance(orlackthereoofbrakeswereiden ti
Lam bert & Rech nitzer (2002	MU ARC repo rt	Pub lic	A review and report of the Issue of rear and side under run crashes.	Twomajoreffectsofunderrunontheoutc omesofcrasheswereidentified:underru n canexposelightvehicleoccupantstothe rigidstructuresofthetruckbeforethesaf et yfeaturesofthelightvehiclecomeintoeff ect;anddamagetoheavyvehiclecompo

				n ents(e.g.,steering,braking,etc.) can reduce the controllability of the truck during or after the crash.
				Thereislittleevidencesuggestingthatimprov ementsintruckunderrunprotectioncan notbeachieved.
				Thereissomeevidencethatenforcementofunde rrunrequirementsandstandardsislac king. Performanceoffrontbarriersmusthave asignificantlyhigherstandard,atleast twice that of rear under run barriers. The requirements of barriers should extend to
				vehicles of 3.0tonnesGVM.
Hart(2010)	Conf eren ce pape r	Pub lic	Describesthedevelopmentof theAustralianbrakebal ancecodeofpracticetoguidet heintermixingofbraket echnologiesonheavyvehicle combinationvehicles.	Awiderangeofbrakingtechnologiescannow beintermixedoncombinationvehicles,e. g.,advancedelectroniccontrolsarebeingco nnectedtobasicvehicles.Therecommen dedperformancelevelsetoutbythecodeisth atacombinationvehiclebeabletoachieve aninstantaneousdecelerationlevelonase aled60km/h

2.3 Problem Statement Definition

The traffic problem is one or the common problems in metropolitan cities around the world. It causes accidents and loss of lives .We cannot control the occurrences of accidents but taking precautions to avoid life threatening injuries due to road accident is in our hands-by wearing helmet.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation and Brain storming

3.3 Proposed Solution

S.NO.	PARAMETER	DESCRIPTION		
1.	Problem Statement	The traffic problem is one or the common problems in metropolitan cities around the world. It causes accidents and loss of lives.		
2.	Solution	Traffic management Rules and regulations must be impressed upon everyone from drivers and passengers to pedestrians that safety comes firsts. Including road safety issue in textbooks. Finding alternative to road transportation and emphasizing on waterways and rail communication.		
3.	Uniqueness	An algorithm is given to predict the traffic solidity for future to minimize the traffic congestion. Development of IOT based traff management system. Identify and penalize traffic violators and help officials identify unauthorized drivers. Reroute th ambulance to the low congestion roads to help get medical care at the earliest.		
4.	Social Impact	It helps the driver free from traffic jam also save lot of time.		
	occia impact	Minimize road accident by regulating the traffic also get free flow of traffic without unnecessary interruption and congestion. Promotes driver confidence.		
5.	Business Model	Drivers are under pressure to reach the destination in correct time due to traffic jams. To overcome this pressure, they can make use of predictive models which help them to ease the smart signs. Drivers free from congestion.		
6.	Scalability	Further to reduce the immense pressure faced by the drivers to travel on road, the model can also helped driver travel safely		

3.4 Problem Solution Fit

4. REQUIREMENT ANALYSIS

4.1 Functional Requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-
		Task)
FR No.1	Drivers and number of passenger on the vehicle	Number of passenger on the vehicle are noted
FR No.2	Predicting vehicle speed using sensors	IR sensor, Proximity sensor etc
FR.No.3	Pre-processing the speed of vehicle	Determination of Moving Vehicle speed using Image Processing

FR.No.4	Classification of sensor	A few examples of analog sensors are: accelerometers, pressure sensors, light, and sound sensors. Digital Sensors (also known as electronic or electrochemical sensors) convert
		the data transmission, digitally.
		Examples include digital accelerometers, pressure, and temperature sensors
FR.No.5	Building and training the system	The proposed system uses a set of ultrasonic sensors and has two modules: one for vehicle monitoring and other for priority management.
FR.No.6	Testing the model	In this phase, we tested the accuracy of the models with the test dataset that was formed in previous phase and the most accurate model is figured out.

4.2 Functional Requirement

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	It is simpler and possible to predict speed of the vehicle, accident at an earlier stage. Because that it benefits all kinds of people, it is a life saving option.
NFR-2	Security	Predict speed of the vehicle, accident helps to saves the life.
NFR-3	Reliability	This approach offers excellent performance and scalability, making it more dependable.

NFR-4	Performance	It provides accuracy of over 90%. Thus, it has a high performance rate.
NFR-5	Availability	By having few basic data set of people we can predict the accident ,speed of the vehicle
NFR-6	Scalability	It has more efficiency in detecting speed of the vehicle ,accident than any other models.

5. PROJECT DESIGN

5.1 Data Flow Diagram

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system.

A neat and clear DFD can depict the light amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 Solution and Technical Architecture

Technical Architecture:

5.3 User Stories

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / 1°ask	Acceptance ciiteiia	Pilolity	Release
Customer Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and conforming my password.	Access my account / dashboard	High	Spfint-1
Weather	Open weather map	USN-2	As a user, I want to check the weather of that location			Spiint-1
Iot devices	Automation	USN-3	As a user, I want to use Iot devices for automation purposes	Get the work done without manual effort	High	Spfint-2
Python code	Random data	USN-4	As a user, I want to give some input to the devices for performing some action to complete the tasks very easily	Get the data Work flow	Medium	Spfint-1
IBM Cloud	Cloud services	USN-5	As a user, I want to deploy these application for public version	Useful for all domain users	High	Spfint-1
Node-Red	Integration	USN-6	As a user, I want to integrate the applications withhardware	iot precise for linear work flow	Medium	Spfint-3
Web UI	Interaction	USN-7	As a user, I want to interact with the digital products	IOT interact with the users	Medium	Spiint-2

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning and Estimation

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Resource	Create a account in Tinkercad ,Open weather map app, MIT etc	1	Low	R.Mathaniza M.Viji K.Nishitha
Sprint-2	Software	Python IDLE	1	Medium	B.Priyadharshini R.Kalavani
Sprint-3	Interface	Interface wokwi with IBM lot Watson. Interface MIT with IBM lot Watson	2	High	R.Mathaniza M.Viji
Sprint-3	Interface	Interface Node-red with cloud	2	Medium	K.Nishitha M.Viji
Sprint-4	Hardware	Integrate the hardware components to the IBM cloud(IOT Watson)	2	High	M.Viji R.Mathaniza
Sprint-4	Road Safety	User has better road safety	1	Low	R.Mathaniza
	6)				

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	5 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

7. CODING & SOLUTIONING (Explain the features added in the project along with code) 7.1 Feature1

OPEN WEATHER MAP

Coding

```
import requests #importing a library #replace
the url and it should be in ""
a="https://api.openweathermap.org/data/2.5/weather?q=Chennai,%20IN&appid=bc453a0b339cb9ee1ad10
d2dd64d0bc0"
r=requests.get(url=a)
print(r)
```

7.2 Feature2

Wokwi

Coding

```
#include <WiFi.h>
#include <PubSubClient.h>
#include <ArduinoJson.h>
WiFiClient wifiClient;
#define ORG"qwgdoc"
#define DEVICE TYPE"viji123"
#define DEVICE_ID"Project"
#define TOKEN"S0HcG0IoKAvRf5I*X("
#define speed 0.034
char server[] = ORG".messaging.internetofthings.ibmcloud.com"; char
publishTopic[] = "iot-2/evt/abcd_1/fmt/json"; char topic[] ="iot-
2/cmd/home/fmt/String"; char authMethod[] ="use-token-auth"; char
token[] = TOKEN; char clientId[] ="d:"ORG":" DEVICE TYPE ":"
DEVICE_ID; PubSubClient client(server, 1883, wifiClient); void
publishData(); const int buzzer=9; int led = 13;
                                                                // the
pin that the LED is atteched to int sensor = 2;
                                                             // the
pin that the sensor is atteched to int state = LOW;
                                                                // by
default, no motion detected
int val = 0;
                             // variable to store the sensor status (value)
// Interfacing Ultrasonic sensor with Arduino uno
#define echoPin 12 //connect echo pin of ultrasonic sensor to D12 of Arduino
#define trigPin 10 //connect trigger pin of ultrasonic sensor to D10 of Arduino
long duration; // declare variables to hold duration and distance int
distance;
#include <math.h>
```

```
int sensorPin = A0; // select the input pin for the potentiometer
double Thermistor(int RawADC) {
  double Temp;
 Temp = log(10000.0*((1024.0/RawADC-1)));
 Temp = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * Temp * Temp ))* Temp );
                                // Convert Kelvin to Celcius
 Temp = Temp - 273.15;
//Temp = (Temp * 9.0) / 5.0 + 32.0; // Convert Celcius to Fahrenheit
return Temp;
}
// the setup function runs once when you press reset or power the board void
 // initialize digital pin LED_BUILTIN as an output.
pinMode(buzzer, OUTPUT);
 // PIR Sensor pinMode(led, OUTPUT);
                                         // initalize LED
as an output pinMode(sensor, INPUT); // initialize
sensor as an input Serial.begin(9600);
                                           // initialize
 pinMode(trigPin,OUTPUT); //set trigPin as output pin of Arduino
pinMode(echoPin,INPUT); //set echoPin as output pin of Arduino
}
// the loop function runs over and over again forever void
loop() {     val = digitalRead(sensor);     // read sensor
is HIGH
           digitalWrite(led, HIGH); // turn LED ON
   delay(500);
                            // delay 100 milliseconds
   if (state == LOW) {
     Serial.println("Motion detected!");
                                              state =
HIGH;
      // update variable state to HIGH
            else {
                       digitalWrite(led, LOW); //
turn LED OFF
                 delay(500);
                                         // delay 200
milliseconds
            if (state ==
HIGH){
       Serial.println("Motion stopped!");
                                                state =
LOW;
          // update variable state to LOW
   }
 digitalWrite(trigPin,LOW); //generate square wave at trigger pin
delayMicroseconds(2); digitalWrite(trigPin,HIGH);
delayMicroseconds(10); digitalWrite(trigPin,LOW);
duration=pulseIn(echoPin,HIGH);//calculation of distance of obstacle
distance=(duration*0.034/2); Serial.print("Distance : ");
Serial.print(distance);
Serial.println(" cm ");
delay(1000); int
readVal=analogRead(sensorPin);
double temp = Thermistor(readVal);
Serial.print("Temperature : ");
Serial.println(temp); // display tempature
```

```
//Serial.println(readVal); // display tempature
  delay(500); digitalWrite(buzzer, HIGH); // turn the LED on (HIGH is the
voltage level) delay(1000); // wait for a second
digitalWrite(buzzer, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second
}
```

8. TESTING

8.1 Test Cases

IBM Cloud output

8.2 User Acceptance Testing

MIT APP Inventor

9. RESULTS

9.1 Performance Metrics

Mobile view of user

"À" 2.00 Vo 046 1 1 54 10:04 SIGNS WITH SMART CONNECTIVITY FOR BETTER ROAD SAFE1 SIGNS WITH SMART CONNECTIVITY BETTER ROAD SAFETY TEMPERATURE 31 HUMIDITY 38 DISTANCE 44 Motor ON Motor OFF

10.ADVANTAGES AND DISADVANTAGES

Advantages	Disadvantages
Minimizes the human work and effort	Increased privacy concerns
Saves time and effort	Increased unemployment rates
Good for personal safety and security	Highly dependent on the internet
Useful in traffic and other tracking or monitoring systems	Lack of mental and physical activity by humans leading to health issues.
Beneficial for the healthcare industry	Complex system for maintenance
Improved security in homes and offices	Lack of security
Reduced use of many electronic devices as one device does the job of a lot of other devices	Absence of international standards for better communication 674 × 469

11.CONCLUSION

We have presented a system, to alert the driver about the speed limits in specific areas and reduce the speed of the vehicles in sensitive public zones without any interference of the drivers where controls are taken automatically by the use of a wireless local area network. In the initial phase, we designed the basic block and circuit diagram for the system. In the implementation phase, we executed the Stimulation with the help of IoT connecting tecnologies such as MIT APP. Extensive experiments conducted on IoT and other connecting technologies.

12.FUTURE SCOPE

We can be enhanced this system by implementing camera using Raspberri pi, GSM module in case of network unavailability and low RAM module/zigbee module for long range communication.

13.APPENDIX Source code

```
import time
import sys
import ibmiotf.application
import ibmiotf.device

#provide your ibm watson Device
credentials organization = "vd4xhx"
devicetype="mathaniza1234"
deviceid="christian" authmethod="token"
authtoken="JLJdQ8p?5Rizji2Xa"
```

```
myCommandCallBack(cmd):
   print("Command received: %s"% cmd.data('command')
  PIR sensor tester
(9600);
} void loop() {int ledPin = 13;
                                           // choose the pin for the
                              // choose the input pin (for PIR
LED int inputPin = 2;
                                // we start, assuming no motion
sensor) int pirState = LOW;
detected int val = 0;
                                    // variable for reading the pin
status
void setup() {    pinMode(ledPin, OUTPUT);
                                          // declare
LED as output pinMode(inputPin, INPUT);
                                        // declare
sensor as input
 Serial.begin val = digitalRead(inputPin); // read input
is HIGH digitalWrite(ledPin, HIGH); // turn LED ON
if (pirState == LOW) {
     // we have just turned on
     Serial.println("Motion detected!");
     // We only want to print on the output change, not state
pirState = HIGH;
   } } else { digitalWrite(ledPin,
LOW); // turn LED OFF if (pirState ==
HIGH) {
     // we have just turned of
     Serial.println("Motion ended!");
     // We only want to print on the output change, not state
pirState = LOW;
json
#replace the url and it should be in""
a="https://api.openweathermap.org/data/2.5/weather?q=chennai,%20IN&appid=bc453a0b339cb9ee1ad10d2dd64d0bc0"
r=requests.get(url=a) print(r) data =r.json () tem=data ('main')('h')
                                                                            print(tem)
 HC-SR04 Ultrasonic Sensor Example.
```

```
Turn the LED on when an object is within 100cm range.
 Copyright (C) 2021, Uri Shaked
void setup() {
 Serial.begin(115200);
pinMode(LED_BUILTIN, OUTPUT);
pinMode(TRIG_PIN, OUTPUT);
pinMode(ECHO_PIN, INPUT);
} float readDistanceCM() {
digitalWrite(TRIG_PIN, LOW);
delayMicroseconds(2);
digitalWrite(TRIG_PIN, HIGH);
delayMicroseconds(10);
digitalWrite(TRIG_PIN, LOW); int
duration = pulseIn(ECHO_PIN, HIGH);
return duration * 0.034 / 2;
} void loop() { float distance =
readDistanceCM();
  bool isNearby = distance < 100;
digitalWrite(LED_BUILTIN, isNearby);
  Serial.print("Measured distance: ");
  Serial.println(readDistanceCM());
delay(100);
DEMO using the server test.mosquitto.org
You can use any MQTT client with the following
settings Server : test.mosquitto.org no login / no
password
port: 1883 or 8081 for websocket
Topic: /AnnexTest
Subscribe: /AnnexTx
Or you can use the free MQTT online client
https://www.cicciocb.com/MQTT/
 this is already configured so
just
- click on Connect

    write your message in "Publish Message"

- Press "Publish" to send your message that will be shown in the scrolling display
- Click on Subscribe to receive the temperature sensor data
```

Disconnect the device and the application from the cloud devicecli.disconnect()

GITHUB LINK: https://github.com/IBM-EPBL/IBM-Project-20790-1659763214 DEMO

LINK: https://drive.google.com/file/d/1DTZk3AGML1iaFbhNa-

Tm3wNQ6xPG6bbV/view?usp=share_link