Resume MS-RCPSP: Algorithmes et Priorites

Table des Matieres

- 1. Introduction au MS-RCPSP
- 2. Contraintes principales
- 3. Algorithmes utilises
 - 3.1 Ordonnancement parallele
 - 3.2 Ordonnancement en serie
- 4. Criteres de priorite utilises
 - 4.1 Duree la plus courte (SPT)
 - 4.2 Duree la plus longue (LPT)
 - 4.3 Nombre de successeurs le plus eleve
 - 4.4 Importance / poids
- 5. Resume des performances
- 6. Sources et articles utiles
- 7. Conclusion

Chapitre 1: Introduction au MS-RCPSP

Le Multi-Skill Resource-Constrained Project Scheduling Problem (MS-RCPSP) est une variante avancee du probleme classique d'ordonnancement ou :

- Chaque tache necessite certaines competences (skills).
- Les ressources sont limitees pour chaque competence.
- Les taches ont des dependances (predecesseurs).
- L'objectif est d'optimiser le planning (minimiser le temps total makespan).

Applications : gestion de projets complexes, planning industriel, gestion d'equipes multi-competences.

Chapitre 2 : Contraintes principales

- Predecesseurs : Une tache ne peut commencer que si toutes ses taches precedentes sont terminees.
- Competences limitees : Les ressources (personnes) avec une competence donnee sont limitees (ex. 2 developpeurs, 1 testeur).
- Duree variable : Chaque tache a une duree specifique.
- Priorites : Permettent de decider dans quel ordre demarrer les taches pretes.

Chapitre 3: Algorithmes utilises

3.1 Ordonnancement parallele

- Plusieurs taches peuvent s'executer simultanement si les ressources necessaires sont disponibles.

Resume MS-RCPSP: Algorithmes et Priorites

- A chaque instant, on cherche a lancer le plus de taches pretes possible, en respectant les competences disponibles.
- Avantages : reflète mieux la realite de projets multi-taches.

3.2 Ordonnancement en serie

- Une seule tache a la fois est executee.
- Les taches sont choisies selon une priorite parmi celles pretes.
- Plus simple, mais moins realiste dans un environnement multi-ressources.

Chapitre 4 : Criteres de priorite utilises

4.1 Duree la plus courte (SPT : Shortest Processing Time)

- Priorise les taches les plus courtes.
- Permet souvent de reduire le temps d'attente global.

4.2 Duree la plus longue (LPT : Longest Processing Time)

- Priorise les taches les plus longues.
- Utile pour eviter que les grandes taches retardent la fin du projet.

4.3 Nombre de successeurs le plus eleve

- Priorise les taches dont le nombre de taches dependantes est maximal.
- Cela favorise le demarrage rapide des taches critiques pour le flux global.

4.4 Importance / poids

- Priorise les taches jugees les plus importantes (par ex. selon une ponderation metier).
- Permet d'integrer des priorites metier.

Chapitre 5 : Resume des performances

Algorithm	e Priorite	Avantages	Limites
Parallele	SPT	Reduit la duree moyenne	Necessite gestion fine des ressources
Parallele	LPT	Evite blocage par taches longu	les Peut augmenter le temps total
Parallele	Nb Successe	eurs Ameliore le flux global	Calcul parfois complexe
Parallele	Importance	S'adapte aux priorites metie	r Dependant des poids donnes
Serie	Toutes	Simple a implementer	Ne tire pas parti du parallellisme

Resume MS-RCPSP: Algorithmes et Priorites

Chapitre 6 : Sources et articles utiles

1. Brucker et al. (1999), "Resource-Constrained Project Scheduling: Notation, Classification, Models, and Methods"

European Journal of Operational Research

-> Introduction complete aux variantes du RCPSP

https://doi.org/10.1016/S0377-2217(98)00355-4

2. Hartmann & Briskorn (2010), "A Survey of Variants and Extensions of the Resource-Constrained Project Scheduling Problem"

European Journal of Operational Research

-> Panorama des variantes comme MS-RCPSP

https://doi.org/10.1016/j.ejor.2009.05.022

3. Kolisch & Hartmann (1999), "Heuristic Algorithms for the Multi-Skill Resource-Constrained Project Scheduling Problem"

International Journal of Production Research

-> Algorithmes pour MS-RCPSP et priorites

https://doi.org/10.1080/002075499193404

4. Artigues et al. (2003), "Resource-Constrained Project Scheduling: Models, Algorithms, Extensions and Applications"

Springer

- -> Livre complet sur les algorithmes d'ordonnancement
- 5. Google OR-Tools
 - -> Outils puissants pour les problemes complexes d'ordonnancement https://developers.google.com/optimization/scheduling

Chapitre 7: Conclusion

- Le MS-RCPSP est un probleme complexe mais crucial en gestion de projet.
- Les algorithmes parallele et serie permettent une comparaison simple entre gestion multi-taches vs mono-tache.
- Les regles de priorite influencent fortement la qualite du planning.
- En pratique, l'utilisation d'heuristiques ou outils specialises est souvent necessaire pour les gros projets.

Resume MS-RCPSP : Algorithmes et Priorites

Fin du resume