

Survey of Scientific Computing (SciComp 301)

Dave Biersach
Brookhaven National
Laboratory
dbiersach@bnl.gov

Session 06
Statistics,
Euler Line

Session Goals

- Generate Hero ability scores in role-playing games
- Create and call functions in C++
- Calculate the mean, variance, and standard deviation of a sequence of numbers
- How to request "random" integers within a given range
- Develop a computational mathematics experiment that uncovers a magic number hidden in all <u>uniform</u> random number distributions
- Draw Euler's Line

Generating Hero Ability Values

- In most role-playing games, heroes have abilities such as strength, dexterity, intelligence, charism, etc.
- Initial abilities are often
 measured in ranges like 3 18
- At the beginning of the game, players roll dice to determine the initial values for each ability
- The higher the value, the more likely the player will succeed while adventuring

	ABILITY SCORE	ABILITY MODIFIER	TEMP SCORE	TEMP MODIFIER
STR				
DEX				
CON				
INT				
WIS				
СНА				

Generating Hero Ability Values

- Two ways of rolling for initial abilities between 3 and 18
- 1. Roll a **20**-sided die just once (1d20), but reroll if face value is 1, 2, 19, or 20
- 2. Roll a **6**-sided die three times (3d6), summing the value of each roll
- Using the **1d20** method is faster than **3d6**, especially when having to roll for six separate abilities

Functions

- You can declare and define your own custom functions
 - Function names use CamelCase #1 the first letter is Capitalized
 - A function is essentially a custom scope (a group of statements)
- Functions <u>receive</u> value via a <u>parameter list</u>
 - A function can get inbound values passed to it from somewhere else in the source code
 - Each parameter has a data type and variable identifier
- Functions output a value via the return statement
 - A function can only return one intrinsic data type
 - The return statement is usually at the end of the function

Declaring Functions – Function Prototypes

```
Parameter list
             HeroAbilities.cpp
                                     (types & names)
                                                              Function
                   "stdafx.h"
                                                             prototype
   Function name
                namespace std;
          usik
          double CalcMean1d20(double totalRolls);
           /uble CalcMean3d6(double totalRolls);
Return type
             le CalcStdDev1d20(double totalRolls, double mean);
          double CalcStdDev3d6(double totalRolls, double mean);
          seed seq seed{ 2016 };
          default random engine generator{ seed };
          uniform_int_distribution<> distribution1d20(3, 18);
          uniform_int_distribution<> distribution1d6(1, 6);
```

Functions must be declared before they are referenced!

Defining Functions

Functions open a scope

Multiple parameters

```
double CalcStdDev1d20(double totalRolls, double mean)
{
    double sum{};
    for (double rollNumber{}; rollNumber <= totalRolls; ++rollNumber) {
        int roll = distribution1d20(generator);
        sum = sum + pow(roll - mean, 2);
    }
    double variance = sum / totalRolls;
    double stdDev = sqrt(variance);
    return stdDev;
}</pre>
```

Closing function scope

Function ends here, returns this value to the caller

Calling Functions

Generating Hero Ability Values

- Two ways of rolling for initial abilities between 3 and 18:
- 1. Roll a **20**-sided die just once (1d20), but reroll if face value is 1, 2, 19, or 20
- 2. Roll a **6**-sided die three times (3d6), summing the value of each roll
- Which method would you want to use? Why?

Mean vs. Variance

- Imagine two different classes take the same test
 - 1st period students score between 50 and 100 with μ = 75
 - 2^{nd} period students score between 70 and 80 with $\mu = 75$
- Variance (σ^2) is the average "distance" between each number in a set and the mean (μ) of that set
 - 1st period students have a greater variance in scores than 2nd period
 - Variance is a measure of **central tendency** on average how close around the mean do all the numbers fall?
 - For <u>every</u> data point, we sum the **square** of the difference between the number and the mean. Then we divide that sum by the total number of data points

Mean vs. Standard Deviation

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$x = \{2, 9, 11, 5, 6\} :: n = 5$$

$$\sum_{i=1}^{n} x_i = (2+9+11+5+6) = 33$$

$$\mu = \frac{33}{5} = 6.6$$

$$x = \{2, 9, 11, 5, 6\} : n = 5, \mu = 6.6$$

$$\sum_{i=1}^{n} (x_i - \mu)^2 = (2 - 6.6)^2 + (9 - 6.6)^2 + (11 - 6.6)^2 + \dots = 49.2$$

$$\sigma^2 = \frac{49.2}{5} = 9.84$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

Standard Deviation

$$x = \{2, 9, 11, 5, 6\}$$

 $\sigma^2 = 9.84$
 $\sigma = \sqrt{9.84} \approx 3.13$

Pseudorandom Numbers

Pseudorandom Numbers

```
double CalcStdDev3d6(double totalRolls, double mean) {
    double sum{};
    for (double rollNumber{}; rollNumber <= totalRolls;++rollNumber) {
        int roll = distribution1d6(generator)
            + distribution1d6(generator);
        sum = sum + pow(roll - mean, 2);
    }
    double variance = sum / totalRolls;
    double stdDev = sqrt(variance);
    return stdDev;
}</pre>
Calling the

distribution1d6()
function 3 times.
Each invocation moves the generator to the next state
```

Pseudorandom Numbers

Open Lab 1 – Hero Abilities

- Update a program to generate 1,000,000 hero ability scores, comparing the mean and standard deviation of the 1d20 versus the 3d6 dice roll methods
- In particular, write the missing code to correctly calculate the CalcStdDev1d20 function
- Use **pow**(x, y) to calculate x^y
- Which dice roll method would you want to use to generate your hero's abilities?

Edit Lab 1 – Hero Abilities

```
hero-abilities.cpp 💥
          // hero-abilities.cpp
          #include "stdafx.h"
          using namespace std;
          seed seg seed{ 2016 };
          default random engine generator{ seed };
          uniform int distribution⇔ distribution1d20(3, 18);
    9
          uniform int distribution → distribution1d6(1, 6);
   10
   11
   12
          double CalcMean1d20(double totalRolls)
   13
              double sum{};
   14
   15
              for (double rollNumber{}: rollNumber <= totalRolls: ++rollNumber) {</pre>
                  int roll = distribution1d20(generator);
   16
                  sum = sum + roll;
   17
   18
   19
              double mean = sum / totalRolls;
   20
              return mean:
   21
   22
   23
          double CalcStdDev1d20(double totalRolls, double mean)
   24
   25
              double sum{}:
              for (double rollNumber(): rollNumber <= totalRolls; ++rollNumber) {</pre>
   26
   27
                      Insert the correct code here
   28
   29
   30
              double variance = sum / totalRolls:
   31
              double stdDev = sqrt(variance);
   32
              return stdDev;
   33
```

Edit Lab 1 – Hero Abilities

```
roll = x_i \qquad totalRolls = n \qquad mean = \mu
\begin{vmatrix} 23 & \\ 24 & \\ 25 & \\ 26 & \\ 26 & \\ 27 & \\ 28 & \\ 29 & \\ 30 & \\ 30 & \\ 30 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 33 & \\ 31 & \\ 32 & \\ 32 & \\ 33 & \\ 32 & \\ 33 & \\ 32 & \\ 33 & \\ 32 & \\ 33 & \\ 32 & \\ 33 & \\ 32 & \\ 33 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\ 34 & \\
```

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 \quad \text{ where } \quad \mu \ = \frac{1}{n} \sum_{i=1}^n x_i$$

Run Lab 1 – Hero Abilities

```
double CalcStdDev1d20(double totalRolls, double mean)

double sum{};

for (double rollNumber{}; rollNumber <= totalRolls; ++rollNumber) {
    int roll = distribution1d20(generator);
    sum = sum + pow(roll - mean, 2);
}

double variance = sum / totalRolls;
double stdDev = sqrt(variance);
return stdDev;
}</pre>
```

Check Lab 1 – Hero Abilities

- Given an existing program that can:
 - Generate 15 sets of random size between 1 million & 2 million items
 - Within each set, every item is a random integer chosen within a range between a lower limit and an upper limit
 - The lower limit is a random number between 0 and 1000
 - The upper limit is 2x that set's lower limit + another random number between 0 and 1000
 - Calculate the mean (μ) and variance (σ^2) for each set

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \quad \text{where} \quad \mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

- Your assignment is to discover a magic number hidden in <u>all</u> uniform random number distributions
 - Calculate and display this "constant" for each set:

$$magicNumber = \frac{(upperLimit - lowerLimit)^2}{variance}$$

- Is this number the same for ALL uniform distributions?
- Can we use this value to test if dice are loaded?

Edit Lab 2 – Variance of Uniform Distributions

```
VarianceUniformDistribution.cpp 💥
   28
   29
                   int lowerLimit = distLimits(generator);
   30
                   int upperLimit = 2 * lowerLimit + distLimits(generator);
   31
   32
                   uniform int distribution<> distRange(lowerLimit, upperLimit);
   33
   34
                   double sum{}:
   35
                   for (int n{}; n < setSize;++n)</pre>
                       sum += distRange(generator);
   36
   37
                   double mean = sum / setSize:
   38
   39
                   distRange.reset();
   40
   41
                   sum = 0:
   42
                   for (int n{}; n < setSize;++n)</pre>
   43
                       sum += pow(distRange(generator) - mean, 2);
                   double variance = sum / setSize:
   44
                   double magicNumber = 0;
                                                              Fix this formula
   48
                   cout << right << fixed</pre>
   49
                       << setw(5) << setNumber
   50
                       << setw(7) << lowerLimit
   51
                       << setw(7) << upperLimit
   52
                       << setw(12) << setSize
   53
                       << setw(12) << setprecision(3) << mean
   54
                       << setw(13) << setprecision(3) << variance</pre>
   55
                       << setw(8) << setprecision(0) << magicNumber</pre>
   56
                       << endl;
   57
   5.8
```

Run Lab 2 – Variance of Uniform Distributions

```
VarianceUniformDistribution.cpp 💥
   28
   29
                   int lowerLimit = distLimits(generator);
   30
                   int upperLimit = 2 * lowerLimit + distLimits(generator);
   31
   32
                   uniform int distribution<> distRange(lowerLimit, upperLimit);
   33
   34
                   double sum{};
   35
                   for (int n{}; n < setSize;++n)</pre>
   36
                       sum += distRange(generator);
   37
                   double mean = sum / setSize;
   38
   39
                   distRange.reset();
   40
   41
                   sum = 0:
   42
                   for (int n{}; n < setSize;++n)</pre>
   43
                       sum += pow(distRange(generator) - mean, 2);
   44
                   double variance = sum / setSize;
   45
                   double magicNumber = pow(upperLimit - lowerLimit,2) / variance;
   46
   47
   48
                   cout << right << fixed</pre>
                       << setw(5) << setNumber
   49
                       << setw(7) << lowerLimit
   50
   51
                       << setw(7) << upperLimit
   52
                       << setw(12) << setSize
   53
                       << setw(12) << setprecision(3) << mean
   54
                       << setw(13) << setprecision(3) << variance
   55
                       << setw(8) << setprecision(0) << magicNumber</pre>
   56
                       << endl;
   57
   5.8
```

Check Lab 2 – Variance of Uniform Distributions

- Every set had a different lower and upper limit, size, mean, and variance... yet the magic number was 12 for all of them!
- Why would Mother Nature pick the value 12 for this magic number?
 What is so special about 12? Why not pick a nice even 10?
- Boundless natural curiosity is what makes a good scientist...

Moment Generating Function

$$\mu = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left(\frac{x^{2}}{2} \mid_{a}^{b} \right) = \frac{b^{2} - a^{2}}{2(b-a)} \qquad \sigma^{2} = \mathbb{E}(X^{2}) - \mu^{2}$$

$$= \frac{(b-a)(b+a)}{2(b-a)} = \frac{b+a}{2}$$

$$\sigma^{2} = \mathbb{E} (X - \mathbb{E}(X))^{2}$$

$$\sigma^{2} = \mathbb{E} [X^{2} - 2X\mathbb{E}(X) + (\mathbb{E}(X))^{2}]$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - 2\mathbb{E}(X)^{2} + \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mu^{2}$$

Moment Generating Function

$$\mu = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left(\frac{x^{2}}{2} \mid_{a}^{b} \right) = \frac{b^{2}-a^{2}}{2(b-a)} \qquad \sigma^{2} = \mathbb{E}(X^{2}) - \mu^{2}$$

$$= \frac{(b-a)(b+a)}{2(b-a)} = \frac{b+a}{2}$$

$$E(X^{2}) = \int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{(b-a)} \left(\frac{x^{3}}{3} \mid_{a}^{b} \right)$$

$$= \frac{b^{3}-a^{3}}{3(b-a)} = \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}$$

$$\sigma^{2} = \mathbb{E} (X - \mathbb{E}(X))^{2}$$

$$\sigma^{2} = \mathbb{E} [X^{2} - 2X\mathbb{E}(X) + (\mathbb{E}(X))^{2}]$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - 2\mathbb{E}(X)^{2} + \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - u^{2}$$

Moment Generating Function

$$\mu = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left(\frac{x^{2}}{2} \mid_{a}^{b} \right) = \frac{b^{2} - a^{2}}{2(b-a)}$$

$$= \frac{(b-a)(b+a)}{2(b-a)} = \frac{b+a}{2}$$

$$E(X^{2}) = \int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{(b-a)} \left(\frac{x^{3}}{3} \mid_{a}^{b} \right)$$

$$\sigma^{2} = \mathbb{E} (X - \mathbb{E}(X))^{2}$$

$$\sigma^{2} = \mathbb{E} [X^{2} - 2X\mathbb{E}(X) + (\mathbb{E}(X))^{2}]$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - 2\mathbb{E}(X)^{2} + \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mu^{2}$$

$$= \frac{b^3 - a^3}{3(b - a)} = \frac{(b - a)(b^2 + ab + a^2)}{3(b - a)} = \frac{b^2 + ab + a^2}{3}$$

$$\sigma^2 = E(X^2) - \mu^2 = \frac{b^2 + ab + a^2}{3} - \left(\frac{b + a}{2}\right)^2 = \frac{4b^2 + 4ab + 4a^2 - 3b^2 - 6ab - 3a^2}{12}$$

$$= \frac{b^2 - 2ab + a^2}{12} = \frac{(b - a)^2}{12}$$

Random Straws

- Write a program to perform ten million runs of an experiment that places a varying number of straws end-to-end each run
- In each run, start with a single straw of random length between 0 ≤ n < 1
- Then enter a loop that keeps adding additional straws of random length (0 ≤ n < 1) until the total length is > 1
- Find the **mean** number of straws added before the total length exceeds 1, across all million runs of the experiment

Random Straws

Edit Lab 3 – Random Straws

```
12
       int main()
13
     \square{
14
           double maxIterations = 10000000:
15
           double totalStraws = 0:
                                                                  Write code to
16
            cout.imbue(locale(""));
17
                                                               perform each step
18
            cout << fixed << setprecision(θ);</pre>
                                                                of the experiment
19
            cout << "Performing " << maxIterations</pre>
                 << " experiments.." << endl;
20
21
22
            for (double iteration = 0; iteration < maxIterations; iteration++) {</pre>
23
                // Insert your code here
24
25
26
            double meanStrawsPerUnitLength = totalStraws / maxIterations;
27
28
            cout << setprecision(6) << endl</pre>
29
                 << "Mean straws per iteration: "
30
                 << meanStrawsPerUnitLength << endl;</pre>
31
32
            cout << "Base of natural logarithm: "</pre>
33
                 << exp(1) << endl;
34
35
            return 0:
36
37
```

Run Lab 3 – Random Straws

```
12
       int main()
13
     \square{
14
           double maxIterations = 10000000:
15
           double totalStraws = 0;
16
17
            cout.imbue(locale(""));
18
            cout << fixed << setprecision(0);</pre>
19
            cout << "Performing " << maxIterations</pre>
20
                 << " experiments.." << endl;
21
22
            for (double iteration = 0; iteration < maxIterations; iteration++) {
23
               double straws = 1;
24
                double length = distribution(generator);
25
                while (length <= 1.0) {
26
                    straws++:
27
                    length += distribution(generator);
28
29
                totalStraws += straws;
30
31
            double meanStrawsPerUnitLength = totalStraws / maxIterations;
32
33
            cout << setprecision(6) << endl</pre>
34
                 << "Mean straws per iteration: "
35
                 << meanStrawsPerUnitLength << endl;</pre>
36
37
            cout << "Base of natural logarithm: "</pre>
38
                 << exp(1) << endl;
39
40
            return 0;
41
42
```

Check Lab 3 – Random Straws

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = 2.718281828459...$$

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + ...$$

A Geometry Gem the Greeks Overlooked

- Centroid = center of mass
- Circumcenter = intersection
 of ⊥ side bisectors
- Orthocenter = intersection of the altitudes

Euler was the first to realize and prove those **three** points are **always colinear** for <u>any</u> given triangle!

The Euler Line


```
seed_seq seed{ 2016 };
default_random_engine gen{ seed };
uniform_int_distribution<int> dist(0, 20);
```

The Euler Line

Open Lab 4 – Euler Line

```
void eventHandler(SimpleScreen& ss, ALLEGRO EVENT& ev)
   if (ev.type == ALLEGRO EVENT KEY CHAR) {
        if (ev.keyboard.keycode == ALLEGRO KEY N) {
            CreateTriangle();
            ss.Clear();
            ss.Redraw();
                                             Press the N key to
                                                 draw a new
                                              random triangle
int main()
   SimpleScreen ss(draw, eventHandler);
   ss.SetWorldRect(-30, -30, 30, 30);
   CreateTriangle();
    ss.HandleEvents();
    return 0;
```

View Lab 4 – Euler Line

```
void draw(SimpleScreen& ss)
    // Connect the three vertices
    PointSet ps:
    ps.add(&v1);
    ps.add(&v2);
    ps.add(&v3);
    ss.DrawLines(&ps, "black", 2, true);
    // Calculate the slope of each side
    double slope12 = (v2.y - v1.y) / (v2.x - v1.x);
    double slope13 = (v3.y - v1.y) / (v3.x - v1.x);
    double slope23 = (v3.v - v2.v) / (v3.x - v2.x);
    // Calculate perpendicular slopes of each side
    slope12 = -1 / slope12;
    slope13 = -1 / slope13;
    slope23 = -1 / slope23;
    // Calculate the centroid
    Point2D centroid((v1.x + v2.x + v3.x) / 3,
                     (v1.v + v2.v + v3.v) / 3);
    // Connect vertices to centroid
    ss.DrawLine(v1, centroid, "orange", 3);
    ss.DrawLine(v2, centroid, "orange", 3);
    ss.DrawLine(v3, centroid, "orange", 3);
```

Note: This code only draws the line connecting the centroid and circumcenter

```
// Calculate side bisector points
Point2D bis12((v1.x + v2.x) / 2, (v1.y + v2.y) / 2);
Point2D bis13((v1.x + v3.x) / 2, (v1.y + v3.y) / 2);
Point2D bis23((v2.x + v3.x) / 2, (v2.y + v3.y) / 2);
// Calculate y-intercept of each perpendicular side bisector
double yint12 = bis12.y - slope12*bis12.x;
double yint13 = bis13.y - slope13*bis13.x;
double vint23 = bis23.v - slope23*bis23.x;
// Calculate the circumcenter
double ccx = (vint13 - vint12) / (slope12 - slope13):
double ccv = slope12*ccx + vint12;
Point2D cc(ccx, ccy);
// Connect the side bisectors to the circumcenter
ss.DrawLine(bis12, cc, "green", 3);
ss.DrawLine(bis13, cc, "green", 3);
ss.DrawLine(bis23, cc, "green", 3);
```

```
// Calculate the point-slope of the Euler line
// connecting the centroid with the circumcenter
double slope_el = (centroid.y - cc.y) / (centroid.x - cc.x);
double yint_el = cc.y - slope_el*cc.x;

// Draw the Euler line
Point2D el1(-30, -30 * slope_el + yint_el);
Point2D el2(30, 30 * slope_el + yint_el);
ss.DrawLine(el1, el2, "red", 4);
```

Run Lab 4 – Euler Line

random triangle

Check Lab 4 – Euler Line

Edit Lab 4 – Euler Line

- Recall Euler proved the orthocenter (the intersection of the altitudes) is also on that <u>same</u> red line
- The orthocenter is similar to the circumcenter, except instead of using the midpoint of each side, we use the vertex opposite each side, to find the point-slope form of each altitude
 - Use v1 and the negative reciprocal of slope v2v3
 - Use v2 and the negative reciprocal of slope v1v3
- Add code to Lab 4 to calculate and draw the orthocenter, to visually confirm it falls on the same line formed from the centroid and circumcenter – for all triangles!

Now you know...

- How to calculate Mean,
 Variance, Standard Deviation
- Variance is just another average: it is the average distance between each data point and the mean μ of the entire set
- Create and call custom functions to organize code into named scopes having specific purposes

- A seemingly random process hides a different universal constant: e
- Some statistics are only meaningful after generating a very large sample set – everything in scientific computing is big