- 1. Zbiory aksjomatyczna teoria zbiorów.
 - (a) Zbiór pojęcie pierwotne (nie definiujemy go)
 - (b) bycie elementem zbioru pojęcie pierwotne
 - (c) $A, B, C, \ldots X, \ldots$ zbiory
 - (d) $a \in A$ a jest elementem zboiru A (a należy do A)
 - (e) $a \notin A \iff \neg(a \in A)$ a nie należy do A
 - (f) Aksjomat ekstencjonalności
 - i. Zbiory A i B są równe wtedy i tylko wtedy gdy mają te same elementy, czyli
 - ii. $A = B \iff \forall_x (x \in A \iff x \in B)$
 - iii. **Uwaga** aby pokazać, że A = B wystarczy udowodnić dwie implikacje $\forall_x (x \in A \implies x \in B) \land (x \in B \implies x \in A)$
 - (g) Aksjomat zbioru pustego
 - i. Istnieje zbiór pusty czyli taki, który nie ma żadnego elementów
 - ii. \emptyset -zbiór pusty, $\forall_x x \notin \emptyset$
 - iii. Twierdzenie istnieje tylko jeden zbiór pusty
 - D: A, B zbiory puste, $\neg (A = B)$ czyli $A \neq B$
 - : Z aksjomatu ekstencjonalności zbiory są różne $\iff \exists_x \neg ((x \in A \implies x \in B) \land (x \in B \implies x \in A)) \iff \exists_x \neg (x \in A \implies x \in B) \lor \neg (x \in B \implies x \in A) \iff$
 - $\exists_x (x \in A \land x \notin B) \lor (x \in B \land a \notin B)$
 - : $x \in A \land x \notin B$ zdanie fałszywe, bo A jest zbiorem pustym
 - : $x \in B \land a \notin B$ zdanie fałszywe, bo B jest zbiorem pustym
 - : Sprzeczność istnieje tylko jeden zbiór pusty
 - (h) Aksjomat wyróżniania
 - i. Jeśli A jest zbiorem, a $\phi(x)$ funkcją zdaniową o zakresie A ($x \in A$), to istnieje zbiór $\{x: x \in A \land \phi(x)\} = \{x \in A: \phi(x)\}$
 - Czyli $a \in \{x \in A : \phi(x)\} \iff a \in A \land \phi(x)$
 - (i) Uwaga: nie istnieje zbiór wszystkich zbiorów
 - D: V- zbiór wszystkich zbiorów
 - $A = \{X \in V : X \notin X\}$ zbiór na mocy aksjomatu wyróżnienia
 - : $A \in A \implies A \notin A$ sprzeczność. Stąd $A \notin A \implies \neg \phi(A) \iff \neg (A \notin A) \implies A \in A$ też sprzeczność
 - : Stąd nie istnieje zbiór wszystkich zbiorów
 - (j) Antynomia (paradoks) Russella
 - $Z = \{X: X \notin X\}. \text{Czy } Z \in Z?$
 - : $Z \in Z = \{X : X \notin X\} \iff Z \notin Z$ sprzeczność
 - (k) Sposoby definiowania zbiorów
 - i. $A = \{1, 3, \sqrt{2}\}, \mathbb{N} = \{1, 2, 3, \dots\}$
 - ii. $\phi(x)$ funkcja zdaniowa $A = \{x: \phi(x)\}$ na przykład $P = \{x: x \text{ jest liczbą parzystą}\}$
 - A. $a \in \{x : \phi(x)\} \iff \phi(a)$
 - (l) $\mathbf{Def.}$ Zbiór A zawiera się w zbiorze B (A jest podzbiorem B) wtedy i tylko wtedy gdy każdy element z A jest elementem B
 - $A \subseteq B \iff \forall_x (x \in A \implies x \in B)$
 - (m) **Def.** A jest właściwym podzbiorem B jeśli $A \subseteq B \land A \neq B$ (oznaczenie $A \subseteq B$)
 - (n) Proste własności
 - i. A = A
 - ii. $(A = B \land B = C) \implies A = C$
 - iii. $A = B \iff B = A$
 - iv. $A \subseteq A$
 - v. $(A \subseteq B \land B \subseteq C) \implies A \subseteq C$
 - D: $A \subseteq B \land B \subseteq C$ (Z)

$$\begin{array}{ll} : & A \subseteq C? \\ : & x \in A \implies {}^?x \in C \\ : & x \in A \implies x \in B \implies x \in C \text{--} \text{z Z} \\ \text{vi. } A = B \iff A \subseteq B \land B \subseteq A \end{array}$$

- (o) Aksjomat sumy
 - i. Jeśli Ai Bsą zbiorami, to istnieje zbiór $A \cup B = \{x: \, x \in A \vee x \in B\}$
- (p) **Def.** Iloczyn (przecięcie) zbiorów to zbiór $A \cap B = \{x \in A : x \in B\}$ (jest to zbiór na mocy aksjomatu wyróżniania)
- (q) **Def.** Różnica zbiorów A i B to zbiór $A \setminus B = \{x \in A: x \not\in B\}$
- (r) Prawa rachunku zbiorów A, B, C zbiory

i.
$$A \cup B = B \cup A$$

ii.
$$A \cap B = B \cap A$$

iii.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

iv.
$$A \cap (B \cap C) = (A \cap B) \cap C$$

v.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

vi.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

D: Trzeba pokazać, że implikacje zachodzą w obie strony. Aksjomat sumy, definicja iloczynu, rachunek zdań, aksjomat sumy

vii.
$$A \cap B \subseteq A$$

viii.
$$A \subseteq A \cup B$$

ix.
$$A \cap A = A = A \cup A$$