

1) Publication number:

0 394 889 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (4) Date of publication of patent specification: 03.08.94 (5) Int. Cl.5: C07D 265/02, A01N 43/72
- 21) Application number: 90107606.7
- 2 Date of filing: 21.04.90
- (S) Heterocyclic diones as pesticides and plant growth regulators.
- ③ Priority: 25.04.89 US 343093
- 43 Date of publication of application: 31.10.90 Bulletin 90/44
- 45 Publication of the grant of the patent: 03.08.94 Bulletin 94/31
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- References cited: GB-A- 2 207 425 US-A- 4 552 585

- 73 Proprietor: SANDOZ AG Lichtstrasse 35 CH-4002 Basel(CH)
- Designated Contracting States:
 BE CH DK ES FR GB GR IT LI LU NL SE
- Proprietor: SANDOZ-PATENT-GMBH Humboldtstrasse 3 D-79539 Lörrach(DE)
- Designated Contracting States:
 DE
- Proprietor: SANDOZ-ERFINDUNGEN Verwaltungsgesellschaft m.b.H. Brunner Strasse 59 A-1230 Wien(AT)
- Designated Contracting States:
 AT
- Inventor: Lee, Shy.Fuh 228 Carbonera Avenue Sunnyvale CA 94986(US)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

The present invention concerns substituted 3,5-dioxo-3,4,5,6-tetrahydrooxazinesas herbicides, processes and intermediates for their preparation, compositions containing them and their use as herbicides and acaricides.

USP 4,695,673 describes a wide range of acylated 1,3-dicarbonyl compounds and their use as herbicides but makes no reference to or suggestion of the 3,5-dioxotetrahydrooxazine ring characterizing the compounds of the present invention.

More particularly, the invention concerns compounds of formula la

15

20

10

wherein each of R_1 , R_2 and R_3 is independently hydrogen, C_{1-8} alkyl, carboxyl, C_{1-4} alkoxycarbonyl, phenyl or phenyl substituted by one to three groups selected from the meanings given for R_1 and R_2 together form a C_{2-6} alkylene bridge;

 R_4 is hydrogen, C_{1-8} alkyl, C_{1-8} alkylcarbonyl, C_{1-8} alkoxycarbonyl, $C(O)NR_7R_8$, C_{1-8} alkylsulphonyl, P-(O)(OR₉)(OR₉'), R₇P(O)-OR₉, benzoyl or a cation;

R is C_{1-8} alkyl optionally substituted by 1 to 6 halogen atoms, C_{1-8} alkoxy optionally substituted by 1 to 6 halogen atoms, C_{1-8} alkylcarbonyl, C_{1-8} alkoxycarbonyl, $NR_7'R_8'$, $O_nS(O)_n'R_{10}$, $NR_7'SO_2R_8'$, halogen, cyano or nitro;

each of R₅ and R₅ is independently hydrogen or selected from the meanings given for R; or

R₅ and R₅ together form the group -Y-W-Z- with the proviso that R₅ and R₅ attach to adjacent carbon atoms of the phenyl ring of the compound of formula la;

each of R7, R7', R7", R8, R8' and R8" is independently hydrogen or C1-8 alkyl;

each of R₉ and R₉ are independently C₁₋₈ alkyl;

R₁₀ is C₁₋₈ alkyl optionally substituted by 1 to 6 halogen atoms;

each of R_{11} , R_{12} , R_{13} and R_{14} is independently hydrogen, halogen or C_{1-8} alkyl optionally substituted by 1 to 6 halogen atoms;

W is $-(CR_{11}R_{12})_t-(CR_{13}R_{14})_t$ or sulphonyl;

each of Y and Z is independently oxygen, sulphur, sulphonyl, CR7"R8";

n is 0 or 1;

n' is 0, 1 or 2;

40 t is 1 or 2; and

ť is 0 or 1.

In the above definitions, halogen is conveniently selected from chloro, bromo and fluoro, C_{1-8} alkyl moieties, preferably have 1 to 4 carbon atoms.

Each of R_1 , R_2 and R_3 is preferably hydrogen, C_{1-4} alkyl especially hydrogen or C_{1-3} alkyl. Where R_1 and R_2 together form an alkylene bridge, it is preferably a C_{3-6} alkylene bridge.

R conveniently signifies C_{1-4} alkyl optionally substituted with halogen, $-(O)_n-S(O)_n-C_{1-4}$ alkyl, halogen or nitro. It is preferably methyl, CF_3 , C_{1-3} alkylsulfonyl, C_{1-3} alkylsulfonyloxy, chloro, bromo or nitro.

 R_5 is preferably bromo, chloro, fluoro, trifluoromethyl, SC_{1-4} alkyl, OSO_2C_{1-4} alkyl, SO_2C_{1-4} alkyl, OSO_2C_{1-4} haloalkyl, NR_7 ' SO_2C_{1-4} alkyl, or, together with R_5 , the group -Y-W-Z-. It is more preferably chloro, C_{1-3} alkylsulfonyl or C_{1-3} alkylsulfonyloxy, or, together with R_5 , methylenedioxy.

 R_s is preferably hydrogen, C_{1-4} alkyl, C_{1-4} alkoxy, bromo, chloro or, together with R_s , the group -Y-W-Z-; it is more preferably hydrogen, methoxy or chloro, or, together with R_s , methylenedioxy.

 R_4 is conveniently hydrogen, C_1 -4alkyl, C_4 -6alkylcarbonyl, benzoyl, C_1 -4alkylsulfonyl or a cation. It is preferably hydrogen, methyl, ethyl, t-butylcarbonyl, isobutylcarbonyl, benzoyl or methylsulfonyl. As a cation R_4 is preferably an alkali metal such as Na^+ , K^+ , Li^+ or an ammonium cation.

 R_1 and R_2 are preferably H, C_{1-4} alkyl, phenyl or phenyl substituted by one to three groups selected from the meanings given for R; more preferably H or C_{1-3} alkyl e.g. H and methyl;

R₃ is preferably C₁₋₈ alkyl, more preferably C₁₋₄ alkyl, e.g., CH₃ C₂H₅;

R₄ is preferably H;

R is preferably NO2, Cl, CF3, more preferably NO2 or Cl;

 R_5 is preferably Cl, Br, F, CF₃, SO₂-R₁₀, SR₁₀, OSO₂R₁₀, more preferably Cl, CF₃, OSO₂R₁₀, or SR₁₀, e.g., Cl, CF₃ or SCH₃;

R₆ is preferably H;

 R_{10} is preferably C_{1-4} alkyl optionally halogen substituted, more preferably C_{1-3} alkyl optionally halogen substituted, e.g., C_{1-3} alkyl.

Preferred groups are those in which R_1 , R_2 and R_3 are each methyl and R_4 is hydrogen and those in which R_6 is hydrogen, R is nitro and R_5 is chloro or SCH₃. Two particularly preferred compounds are 2,6,6-trimethyl-4-(4-chloro-2-nitrobenzoyl)-2H-1,2-oxazine-3,5-(4H,6H)-dione, and 2,6,6-trimethyl-4-(4-methylthio-2-nitrobenzoyl)-2H-1,2-oxazine-3,5-(4H, 6H)-dione.

The compounds of the present invention of formula la are new substances which can be prepared by methods analogous to methods known in the art for the preparation of 2-aroyl-1,3-cycloalkyl-1,3-diones. More particularly, they can be obtained by, for example: rearranging an enol ester of formula lia

 R_1 R_2 R_3 R_6 R_6 R_6

wherein R-R₃, R₅ and R₆ are as previously defined.

This rearrangement is conveniently effected by reacting the compound of formula IIa with a cyanide source and a moderate base.

For example, the reaction may be carried out in the presence of a catalytic amount of a source of cyanide anion and/or hydrogen cyanide, together with a molar excess, with respect to the enol ester, of a moderate base. The reaction is conveniently carried out in a solvent which is inert under the reaction conditions, e.g. 1,2-dichloroethane, toluene, acetonitrile, methylene chloride, ethyl acetate, dimethylformamide (DMF) and methyl isobutyl ketone (MIBK). In general, depending on the nature of the reactants and the cyanide source, the rearrangement may be conducted at temperatures up to about 80 °C. In some cases, for instance when there is a possible problem of excessive by-product formation, the temperatures should be kept at about 40 °C maximum.

Preferred cyanide sources are alkali metal cyanides such as sodium and potassium cyanide; cyanohydrins of methyl alkyl ketones having from 1-4 carbon atoms in the alkyl groups, such as acetone or methyl isobutyl ketone cyanohydrins; cyanohydrins of benzaldehyde or of C_2 - C_5 aliphatic aldehydes such as acetaldehyde, propionaldehyde, etc., cyanohydrins; zinc cyanide; tri(lower alkyl) silyl cyanides, notably trimethyl silyl cyanide; and hydrogen cyanide itself. Among cyanohydrins the preferred cyanide source is acetone cyanohydrin. The cyanide source is used in an amount up to about 50 mole percent based on the enol ester. Generally about 1-10 mol % of the cyanide source is preferred.

By the term "moderate base" is meant a substance which acts as a base yet whose strength or activity as a base lies between that of strong bases such as hydroxides (which could cause hydrolysis of the enol ester) and that of weak bases such as bicarbonates (which would not function effectively). Moderate bases suitable for use in this reaction include both organic bases such as tertiary amines and inorganic bases such as alkali metal carbonates and phosphates. Suitable tertiary amines include trialkylamines such as triethylamine, trialkanolamines such as triethanolamine, and pyridine. Suitable inorganic bases include potassium carbonate and trisodium phosphate. The base is used in an amount of from about 1 to about 4 moles per mole of enol ester, preferably about 1.3-2 moles per mole.

When the cyanide source is an alkali metal cyanide, particularly, potassium cyanide, a phase transfer catalyst may be included in the reaction. Particularly suitable phase transfer catalysts are the Crown ethers.

Compounds of formula I where R₄ is as previously defined but excluding H, can be prepared by reacting a compound of formula la wherein R₄ is H and R-R₃, R₅ and R₆ are as previously defined with either

3

20

15

5

25

- i) the compound R4-OH and a catalyst, or
- ii) the compound R₄-Q and a moderate base, wherein Q is a halogen atom.

The above reaction i) is carried out in the presence of a catalyst such as concentrated sulfuric acid. The reaction is conveniently carried out in a solvent which is also the reactant such as methanol, and at an elevated temperature.

The above reaction ii) is carried out in the presence of a moderate base such as triethylamine or pyridine and conveniently at RT or below.

The salt forms of compounds of formula la may be prepared by methods known per se, for example by reacting stoichiometric quantities of the compounds of formula la wherein R4 is hydrogen with an appropriate base, for example, an alkali metal hydroxide, carbonate or bicarbonate, an alkaline earth metal hydroxide or carbonate, ammonia or an amine (e.g. diethanolamine, triethanolamine, octylamine, morpholine or dioctylamine), in a suitable solvent. Acid addition salts of compounds of general formula la which incorporate an amino radical may be prepared from the corresponding compounds of formula la by methods known per se, for example by reacting stoichiometric quantities of the compound of formula la and the appropriate acid, for example an inorganic acid, e.g. hydrochloric acid, sulphuric acid, phosphoric acid or nitric acid, or an organic acid, e.g. acetic acid, in a suitable solvent. The salts may, if necessary, be purified by recrystallisation from one, two or more suitable solvents.

The compounds of formula la may be recovered from the reaction mixture in which they are formed by working up by established procedures.

The compounds of formula IIa may be prepared by reacting a compound of formula III

with a compound of formula IV

20

25

30

35

40

45

50

This reaction is carried out in the presence of a base such as triethylamine, potassium carbonate, pyridine, preferably triethylamine and in an inert solvent such as dichloromethane, acetonitrile, toluene, tetrahydrofuran, dimethylformamide. The reaction is conveniently carried out at RT or below.

The compounds of formula III are new and also form part of the invention.

They may be prepared by decarboxylating a compound of formula V

$$R_2$$
 R_2
 R_3
 R_{20}
 R_{20}

wherein R₂₀ is alkoxy, especially ethoxy or methoxy and R₁, R₂ and R₃ are as defined above. The reaction may be carried out at elevated temperatures e.g. 80-90 and in an inert solvent such as e.g. wet dimethylsulfoxide.

5

50

EP 0 394 889 B1

The compounds of formula V may be prepared analogously to known methods e.g. according to the following reaction scheme.

wherein R_{1-3} and R_{20} are as previously defined.

Reaction (a) may be carried out in an inert solvent such as dichloromethane and aqueous ether and in the presence of a base such as triethylamine or sodium carbonate at RT.

Reaction (b) may be carried out in an inert solvent such as toluene benzene or tetrahydrofuran in the presence of a base such as sodium methoxide or sodium hydride.

The remaining starting materials and reagents employed in the process described herein are either known or, insofar as they are not known, may be produced in a manner analogous to the processes described herein or to known processes [cf for compounds VI Kornowski et al. Bull. Soc. Chim France 1966(2)683].

The compounds of this invention wherein the OH group is unsubstituted can have four structural formulae because of tautomerism as illustrated as follows for formula la where R4 is H:

35
$$R_{2} \longrightarrow R_{3} \longrightarrow R_{6} \longrightarrow R_{5} \longrightarrow R_{2} \longrightarrow R_{3} \longrightarrow R_{6} \longrightarrow R_{5} \longrightarrow R$$

The novel compounds of formula la are useful for the control of weeds, using pre- and/or post-emergent treatments. Compounds of formula la are also useful as plant growth regulators (PGRs) and acaricides. The compounds can be applied in the form of dusts, granules, solutions, emulsions, wettable powders, flowables and suspensions. Application of a compound of the present invention as herbicides is made according to conventional procedure to the weeds or their locus using an herbicidally effective amount of the compounds, usually from about one-tenth or less to ten pounds per acre (0.11 or less to 11 kg/ha, e.g. 0.05 to 11 kg/ha) more usually 0.05 to 5 kg/ha, and preferably 0.1 to 1 kg/ha, the application being repeated as necessary. The application of a compound of the present invention to the "locus" of the weed includes

application to the seeds, the plant (weed) or parts of the plant, or the soil.

Application of a compound of the present invention as an acaracide is made according to conventional procedure to the site of infestation using an acaricidally effective amount of the compound, usually 100 g/ha to 1 kg/ha.

The term "herbicide", as used herein, refers to an active ingredient which modifies the growth of plants because of phytotoxic or plant growth regulating properties so as to retard the growth of the plant or damage the plant sufficiently to kill it.

The compounds of the present invention, when applied as either post or pre-emergents, demonstrate high levels of herbicidal activity on broadleaf, grass and sedge weeds. They also exhibit selectivity in wheat (e.g. compound 6 in Table A); corn and cotton (e.g. compound 2 in Table A); and rice.

In the use of the compounds of formula la for combatting weeds and acari, a compound of formula la, or mixture thereof, can conveniently be employed as compositions in association with acceptable diluent(s) for application to the weed, acari or their loci. Such compositions also form part of the present invention.

Methods of preparing suitable formulations which can be used with a compound of the present invention are described in the literature along with suitable liquid or solid carriers. The optimum usage of a compound of the present invention is readily determinable by one of ordinary skill in the art using routine testing such as greenhouse testing and small plot testing.

Suitable formulations contain from 0.01 to 99 % by weight of active ingredient, from 0 to 20 % of surfactant and from 1 to 99.99 % of solid or liquid diluent(s). Higher ratios of surfactant to active ingredient are sometimes desirable and are achieved by incorporation into the formulation or by tank mixing. Application forms of a composition generally contain between 0.01 and 25 % by weight of active ingredient. Lower or higher levels of active ingredient can, of course, be present depending on the intended use, the physical properties of the compound and the mode of application. Concentrate forms of a composition intended to be diluted before use generally contain between 2 and 90 %, preferably between 5 and 80 % by weight of active ingredient.

Useful formulations of the compounds of formula la include dusts, granules, suspension concentrates, wettable powders, flowables and the like. They are obtained by conventional manner, e.g. by mixing a compound of formula la with the diluent(s) and optionally with other ingredients.

Alternatively, the compounds of formula la may be used in micro-encapsulated form.

The compounds of formula la can be combined with a cylcodextrin to make a cylcodextrin inclusion complex for application to the weeds, acari or their loci.

Agriculturally acceptable additives may be employed in the herbicidal compositions to improve the performance of the active ingredient and to reduce foaming, caking and corrosion, for example.

"Surfactant" as used herein means an agriculturally acceptable material which imparts emulsifiability, spreading, wetting, dispersibility or other surface-modifying properties. Examples of surfactants are sodium lignin sulfonate and lauryl sulfate.

"Diluent" as used herein means a liquid or solid agriculturally acceptable material used to dilute a concentrated material to a usable or desirable strength. For dusts or granules it can be e.g. talc, kaolin or diatomaceous earth, for liquid concentrate forms for example a hydrocarbon such xylene or an alcohol such as isopropanol, and for liquid application forms, e.g. water or diesel oil.

The compositions of this invention can also comprise other compounds having biological activity, e.g. compounds having similar or complementary acaricidal or herbicidal activity for broadspectrum weed control or compounds having antidotal, fungicidal, insecticidal or insect attractant activity.

Typical herbicidal composition, according to this invention, are illustrated by the following Examples A,

B and C in which the quantities are in parts by weight.

EXAMPLE A

Preparation of a Dust

50

10 Parts of a compound according to this invention and 90 parts of powdered talc are mixed in a mechanical grinder-blender and are ground until a homogeneous, free-flowing dust of the desired particle size is obtained. This dust is suitable for direct application to the site of the weed infestation.

EXAMPLE B

Preparation of Wettable Powder

25 Parts of a compound according to this invention are mixed and milled with 25 parts of synthetic fine silica, 2 parts of sodium lauryl sulphate, 3 parts of sodium ligninsulphonate and 45 parts of finely divided kaolin until the mean particle size is about 5 micron. The resulting wettable powder is diluted with water before use to a spray liquor with the desired concentration.

10 EXAMPLE C

Preparation of Emulsifiable Concentrates (EC)

13.37 Parts of a compound according to this invention are mixed in a beaker with 1.43 parts of Toximul® 360A (a mixture of anionic and non-ionic surfactants containing largely anionic surfactants), 5.61 parts of Toximul® 360B (a mixture of anionic and non-ionic surfactants containing largely non-ionic surfactants), 23.79 parts of dimethyl formamide and 55.8 parts of Tenneco 500-100 (predominantly a mixture of alkylated aromatics such as xylene and ethylbenzene) until solution is effected. The resulting EC is diluted with water for use.

The following Examples are provided to illustrate the practice of the present invention. Temperature is given in degrees Centigrade. RT means room temperature. Parts and percentages are by weight.

FINAL COMPOUNDS

25 EXAMPLE I

Preparation of 2,6-dimethyl-4-(4-chloro-2-nitrobenzoyl)-2H-1,2-oxazine-3,5-(4H,6H)-dione (formula la wherein R_1 and R_3 are CH_3 ; R_2 , R_4 and R_6 are H; R_1 is NO_2 ; R_5 is CI; (Compound No. 1 Table A)).

3.65 g of 2,6-dimethyl-5-(4-chloro-2-nitrobenzoyloxy)-6H-1,2-oxazine-3-one is treated at RT with 3.06 ml of triethylamine and 0.3 ml of acetone cyanohydrin in 20 ml of acetonitrile. After stirring overnight the solution is concentrated to a small volume and then taken up in dichloromethane and water. The combined extracts are washed with dilute HCl, brine, dried and evaporated to yield an oily residue. The crude product is recrystallized from ether to give crystalline 2,6-dimethyl-4-(4-chloro-2-nitrobenzoyl)-2H-1,2-oxazine-3,5-(4H,6H)-dione, m.p. 127.5 °C.

35

40

45

50

55

EP 0 394 889 B1

Proceeding analogously to Example I the following compounds of formula la are obtained.

TABLE A

5									
·	<u>Cpd</u>	<u>R</u> 1	R ₂	R ₃	R.	R	<u>R</u> s	<u>R</u> s	m.p.
10	1	CH3	н	СН3	Н	NO2	4-C1	н	127.5•
	2	CH ₃	CH ₃	СН3	Н	NO ₂	4-C1	н	105•
	3	CH ₃	CH ₃	СН ₃	Н	Cl	4-SO ₂ CH ₃	н	110•
	4	CH ₃	CH ₃	CH ₃	н	NO2	4-Br	н	Foam
15	5	CH ₃	CH ₃	CH ₃	н	NO ₂	4-OSO ₂ CH ₃	н	128•
	6	CH ₃	CH3	CH3	н	NO2	4-SCH ₃	н	104-6•
	7	CH ₃	CH ₃	CH3	н	NO2	4-F	н	137•
20	8	CH ₃	СН3	CH ₃	Н	NO2	4-SO ₂ CH ₃	н	124•
	9	СН₃	CH ₃	C2H5	н	NO2	4-C1	н	Foam
	10	CH3	CH ₃	C ₂ H ₅	н	NO ₂	4-OSO ₂ CH ₃	н	115•
25	11	CH ₃	CH ₃	CH3	Н	CF3	4-F	н	86•
	12	CH ₃	СН	CH ₃	н	NO2	4-CF ₃	н	102-103.5*
	13	CH ₃	СН	CH ₃	н	NO ₂	4-SO2CH2C1	н	
	14	CH ₃	CH ₃	CH ₃	Н	NO2	4-SO ₂ C ₂ H ₅	Н	
	15	Н	н	C ₂ H ₅	Н	NO2	4-C1	Н	
30	16	н	н	n-C ₃ H ₇	н	NO ₂	4-C1	Н	
	17	Н	н	$n - C_4H_9$	Н	NO ₂	4-C1	Н	
35	18	н	Н	n-C ₄ H ₉	Н	NO2	4-CF ₃	Н	
	19	CH3	н	n-C ₃ H ₇	H	NO2	4-C1	н	
	20	CH3	н	n-C ₃ H ₇	Н	NO2	4-CF ₃	Н	
	21	CH ₃	CH ₃	CH3	Н	NO ₂	Н	Н	87.5°
40	22	CH ₃	CH ₃	CH ₃	н	NO2	OCHF ₂	н	
	NMP Spectra								

NMR Spectra

Compound 4

¹H nmr (CDCL₃): δ 1.30, 1.53 (s,s,6H,C(CH₃)₂), 3.08, 3.38 (s,s,3H,NCH₃) 7.21 (d,1H,8Hz), 7.83 (dd,1H,8Hz), 8.33 (d,1H,2Hz-phenyl H)

Compound 9

¹H nmr (CDCL₃): δ 1.33, 1.53 (s,s,6H,C(CH₃)₂), 1.20 (m, 3H,NCH₂CH₃), 3.66 (m,2H,NCH₂CH₃), 7.28 (d,1H,8Hz), 7.66 (dd,1H,8Hz), 8.18 (d,1H,2Hz-pheny1 H).

EXAMPLE 2

5

15

Preparation of 2,6-dimethyl-5-(4-chloro-2-nitrobenzoyloxy)-6H-1,2-oxazine-3-one (formula IIa, $R_1 = R_3 = CH_3$, $R_2 = R_6 = H$, $R = NO_2$, $R_5 = CI$)

To a solution of 1.77 g of 2,6-dimethyl-2H-1,2-oxazine-3,4-(4H,6H)-dione in 15 ml of dichloromethane containing 2.4 ml of triethylamine is added dropwise at 0 °C a solution of 2.72 g of 4-chloro-2-nitrobenzoyl chloride in 10 ml of dichloromethane. After the addition is complete, the reaction mixture is stirred at RT for one hour, then diluted with dichloromethane, washed, dried and evaporated to dryness to give the title compound.

EXAMPLE 3

Preparation of 2,6-dimethyl-2H-1,2-oxazine-3,5-(4H,6H)-dione (Formula III $R_1 = R_3 = CH_3$, $R_2 = H$)

4.9 g of an oily mixture of 2,6-dimethyl-4-methoxycarbonyl-2H-1,2-oxazine-3,5-(4H,6H)-dione and 2,6-dimethyl-4-ethoxycarbonyl-2H-1,2-oxazine-3,5-(4H,6H)-dione is obtained e.g. as illustrated below is heated at 79 °C in 25 ml of DMSO and 0.9 ml of water for 3 hours. The reaction mixture is taken up in ether, poured into water and extracted thoroughly with ether. The combined extracts are dried and evaporated to give 2,6-dimethyl-2H-1,2-oxazine-3,5-(4H,6H)-dione.

The following two diones may be prepared analogously. 2,6,6-trimethyl-2H-1,2-oxazine-3,5-(4H,6H)-dione (Formula III $R_1 = R_2 = R_3 = CH_3$) 2-ethyl-6,6-dimethyl-2H-1,2-oxazine-3,5-(4H,6H)-dione (Formula III $R_1 = R_2 = CH_3$, $R_3 = C_2H_5$).

25 EXAMPLE 4

Preparation of 2,6-dimethyl-4-methoxycarbonyl-2H-1,2-oxazine-3,5-(4H,6H)-dione and 2,6-dimethyl-4-ethoxycarbonyl-2H-1,2-oxazine-3,5-(4H,6H)-dione as a mixture.

To a suspended solution of sodium methoxide, freshly prepared from 694 mg of sodium metal and methanol, in 45 ml of toluene is added dropwise at RT a solution of 7.1 g of methyl N-ethoxycarbonylacetyl-2-methylaminooxypropionate, in 10 ml of toluene. After completing the addition, the resulting mixture is stirred at RT for 24 hours. The reaction mixture is poured into ice-water and extracted with ether (discarded). The aqueous solution is then acidified with 10% aqueous HCt and extracted with dichloromethane. The combined extracts were dried and evaporated to dryness to yield an oily mixture of the title compounds.

EXAMPLE 5

40 Preparation of methyl N-ethoxycarbonylacetyl-2-methylaminooxypropionate

To a solution of 5.32 g of methyl 2-methylaminooxypropionate in 50 ml of dichloromethane is added dropwise at 0 ° C a solution of 6.62 g of ethylmalonyl chloride in 15 ml of dichloromethane. After the addition is complete, the resulting solution is stirred at 0 ° C for additional one hour. The reaction mixture is poured into water, and extracted with ether. The combined extracts are washed with dilute HC1, brine, dried and evaporated to give an oily residue which is chromatographed on silica gel to yield oily methyl Nethoxycarbonylacetyl-2-methylaminooxypropionate.

NMR spectra for the compounds of examples 2 to 5.

50 Example 2

¹H nmr (CDC t_3): δ 1.47 (d,3H,OCH(C \underline{H}_3)), 3.20 (s,3H,NCH $_3$), 4.81 (q,1H,OC \underline{H} (CH $_3$)), 6.15 (s,1H,=CHCO) and 7.77, 7.97 (s,dd,3H,phenyl H).

55 Example 3

¹H nmr (CDCt₃): δ 1.43 (d,3H,OCH(C<u>H</u>₃)), 3.30 (S,1H,NCH₃), 3.53 (q,2H,OCCH₂CO) and 4.40 (q,1H,OC<u>H</u>₃)).

Example 4

2,6-dimethyl-4-carbomethoxy-2H-1,2-oxazine-3,5(4H,6H)-dione

5 'H nmr (CDCL₃): δ 1.50 (d,3H,OCH(C<u>H</u>₃)), 3.21 (s,3H,NCH₃), 3.93 (2,3H,OCH₃), and 4.73 (q,1H,OC<u>H</u>-(CH₃)).

2,6-dimethyl-4-carboethoxy-2H-1,2-oxazine-3,5(4H,6H)-dione

 1 H nmr (CDC L_3): δ 1.40 (t,3H,OCH $_2$ CH $_3$), 1.48 (d,3H,OCH(CH $_3$)), 3.21 (s,3H,NCH $_3$), 4.41 (q,2H,OCH $_3$ CH $_3$) and 4.73 (q,1H,OCH(CH $_3$)).

Example 5

10

Methyl N-ethoxycarbonylacetyl-2-methylaminooxypropionate

15 ¹H nmr (CDCl₃): δ 1.28 (t,3H,OCH₂CH₃), 3.23 (s,3H,NCH₃), 3.70 (q,2H,OCCH₂CO), 3.77 (s,3H,OCH₃), 4.21 (q,2H,OCH₂CH₃) and 4.57 (q,1H,OCH(CH₃).

Claims

1. A compound having the formula la

 R_1 R_2 R_3 R_6 R_5 R_6

30

35

40

45

50

55

25

wherein each of R_1 , R_2 and R_3 is independently hydrogen, C_{1-8} alkyl, carboxyl, C_{1-4} alkoxycarbonyl, phenyl or phenyl substituted by one to three groups selected from the meanings given for R, or R_1 and R_2 together form a C_{2-6} alkylene bridge;

 R_4 is hydrogen, C_{1-8} alkyl, C_{1-8} alkylcarbonyl, C_{1-8} alkoxycarbonyl, $C(O)NR_7R_8$, C_{1-8} alkylsulphonyl, P(O)- $(OR_9)(OR_9)$, $R_7P(O)$ - OR_9 , benzoyl or a cation;

R is C_{1-8} alkyl optionally substituted by 1 to 6 halogen atoms, C_{1-8} alkoxy optionally substituted by 1 to 6 halogen atoms, C_{1-8} alkylcarbonyl, C_{1-8} alkoxycarbonyl, NR_7 'R₈', $O_nS(O)_nR_{10}$, NR_7 'SO₂R₈', halogen, cyano or nitro;

each of R₅ and R₅ is independently hydrogen or selected from the meanings given for R; or

 R_5 and R_6 together form the group -Y-W-Z- with the proviso that R_5 and R_6 attach to adjacent carbon atoms of the phenyl ring of the compound of formula la;

each of R₇, R₇', R₇", R₈, R₈' and R₈" is independently hydrogen or C₁₋₈alkyl;

each of R₉ and R₉' are independently C₁₋₈ alkyl;

R₁₀ is C₁₋₈ alkyl optionally substituted by 1 to 6 halogen atoms:

each of R₁₁, R₁₂, R₁₃ and R₁₄ is independently hydrogen, halogen or C₁₋₈ alkyl optionally substituted by 1 to 6 halogen atoms;

W is -($CR_{11}R_{12}$)_t-($CR_{13}R_{14}$)_t- or sulphonyl;

each of Y and Z is independently oxygen, sulphur, sulphonyl or CR7" R8";

n is 0 or 1;

n' is 0, 1 or 2;

t is 1 or 2; and

t' is 0 or 1.

2. A compound according to Claim 1, wherein

each of R₁, R₂, R₃ is independently selected from hydrogen or C₁₋₄alkyl;

R is selected from C_{1-4} alkyl optionally substituted with halogen, $-(O)_n-S(O)_n-C_{1-4}$ alkyl, halogen or nitro;

Rs is selected from bromo, chloro, fluoro, trifluoromethyl, SC1-4alkyl, OSO2C1-4alkyl, SO2C1-4al-

kyl, OSO₂-C₁-₄haloalkyl, NR₇'SO₂C₁-₄alkyl, or, together with R₆ the group -Y-W-Z-;

 R_{δ} is selected from hydrogen, C_{1-4} alkyl, C_{1-4} alkoxy, bromo, chloro or, together with R_{δ} , the group -Y-W-Z-;

and R4 is selected from H, C1-4 alkyl, C4-8 alkylcarbonyl, benzoyl, C1-4 alkylsulphonyl or a cation.

3. A compound according to Claim 1 wherein

each of R_1 and R_2 is independently selected from H, C_{1-4} alkyl, phenyl or phenyl substituted by one to three groups selected from the meanings given for R;

R₃ is C₁₋₈alkyl;

R4 is H;

5

10

15

30

35

40

45

50

55

R is selected from NO2 and CI;

R₅ is selected from Cl, Br, F, CF₃, SO₂R₁₀, SR₁₀ and OSO₂R₁₀;

R₆ is H;

and R₁₀ is selected from C₁₋₄ alkyl optionally halogen substituted.

- A compound according to Claim 3, wherein R₁, R₂ and R₃ are each methyl, R₄ and R₅ are each hydrogen, R is nitro and R₅ is chloro or -SCH₃.
- A pesticidal composition comprising the compound of formula la as defined in Claims 1 to 4, in association with an agriculturally acceptable carrier.
 - 6. A method of controlling weeds comprising applying to the weeds or their locus a herbicidally effective amount of a compound of formula la as defined in Claims 1 to 4.
- 5 7. A process for preparing a compound of the formula la

wherein R-R₃, R₅ and R₆ are as defined in Claim 1, which comprises

a) when R4 is H, rearranging an enol ester of formula IIa

$$\begin{array}{c|c} R_1 & O & R_5 \\ \hline R_1 & O & R_5 \\ \hline R_6 & R_6 \end{array}$$

wherein R-R₃, R₅ and R₆ are as defined above; or

- b) when R₄ is as defined in Claim 1 but excluding H, reacting a compound of formula la wherein R₄ is H and R-R₃, R₅ and R₅ are as defined in Claim 1 with either
 - i) the compound R4-OH and a catalyst, or
- ii) the compound R4-Q and a moderate base, wherein Q is a halogen atom and R4 is as defined in Claim 1 but excluding H.

8. A compound of formula III

32 0 N III

wherein R₁, R₂ and R₃ are as defined in Claim 1.

Patentansprüche

5

10

15

30

35

55

1. Eine Verbindung der Formel la

worin R₁, R₂ und R₃ jeweils unabhängig voneinander Wasserstoff, C₁-8 Alkyl, Carboxyl,

C₁₋₄Alkoxycarbonyl, Phenyl oder durch ein bis drei Gruppen ausgewählt unter denen für R angegebenen Bedeutungen substituiertes Phenyl, oder

R₁ und R₂ zusammen eine C₂₋₆ Alkylen-Brücke,

 R_4 Wasserstoff, C_{1-8} Alkyl, C_{1-8} Alkylcarbonyl, C_{1-8} Alkoxycarbonyl, $C(O)NR_7$ R_8 ,

C₁₋₈ Alkylsulfonyl, P(O)(OR₉)(OR₉'), R₇P(O)-OR₉, Benzoyl oder ein Kation,

R gegebenenfalls durch 1 bis 6 Halogenatome substituiertes C_{1-8} Alkyl, gegebenenfalls durch 1 bis 6 Halogenatome substituiertes C_{1-8} Alkoxy, C_{1-8} Alkylcarbonyl,

 C_{1-8} Alkoxycarbonyl, NR₇'R₈', O_nS(O)_n'R₁₀, NR₇'SO₂R₈', Halogen, Cyan oder Nitro,

 R_{S} und R_{G} unabhängig voneinander Wasserstoff oder eine der für R gegebenen Bedeutungen, oder R_{S} und R_{G} gemeinsam die Gruppe -Y-W-Z- mit der Massgabe, dass R_{S} und R_{G} jeweils an benachbarte Kohlenstoffatome des Phenylrings der Verbindung der Formel la gebunden sind,

40 R₇, R₇'', R₈'', R₈'' jeweils unabhängig voneinander Wasserstoff oder C₁₋₈ Alkyl,

R₉ und R₉' jeweils unabhängig voneinander C₁₋₈Alkyl,

R₁₀ gegebenenfalls durch 1 bis 6 Halogenatome substituiertes C₁₋₈ Alkyl,

 R_{11} , R_{12} , R_{13} und R_{14} jeweils unabhängig voneinander Wasserstoff, Halogen oder gegebenenfalls durch 1 bis 6 Halogenatome substituiertes C_{1-8} Alkyl,

W die Gruppe -($CR_{11}R_{12}$)_t-($CR_{13}R_{14}$)_t'- oder Sulfonyl,

Y und Z jeweils unabhängig voneinander Wasserstoff, Schwefel, Sulfonyl oder CR7"R8", n null oder 1,

n' null, 1 oder 2,

t 1 oder 2, und

A O adag 4 hada.

50 t' 0 oder 1 bedeuten.

2. Verbindung gemäss Anspruch I, worin

R₁, R₂, R₃ unabhängig voneinander Wasserstoff oder C₁₋₄ Alkyl;

R gegebenenfalls durch Halogen substituiertes C₁₋₄Alkyl, -(O)_n-S(O)_n'-C₁₋₄Alkyl, Halogen oder Nitro.

R₅ Brom, Chlor, Fluor, Trifluormethyl, SC₁-₄Alkyl, OSO₂C₁-₄Alkyl, SO₂C₁-₄Alkyl, OSO₂-C₁-₄Halogenalkyl, NR₇'SO₂C₁-₄Alkyl oder gemeinsam mit R₅ die Gruppe -Y-W-Z-;

 R_6 Wasserstoff, C_1 -4 Alkyl, C_1 -4 Alkoxy, Brom, Chlor oder gemeinsam mit R_5 die Gruppe -Y-W-Z-; und R_4 Wasserstoff, C_1 -4 Alkyl, C_4 -8 Alkylcarbonyl, Benzoyl, C_1 -4 Alkylsulfonyl oder ein Kation bedeuten.

3. Verbindung gemäss Anspruch 1, worin

 R_1 und R_2 unabhängig voneinander Wasserstoff, C_{1-4} Alkyl, Phenyl oder durch 1 bis 3 Substituenten ausgewählt unter den Bedeutungen von R substituiertes Phenyl;

R₃ C₁₋₈ Alkyl;

R₄ Wasserstoff;

5

10

20

35

40

45

50

55

R NO₂ oder CI;

R₅ Cl, Br, F, CF₃, SO₂R₁₀, SR₁₀, oder OSO₂R₁₀;

R₆ Wasserstoff; und

R₁₀ gegebenenfalls durch Halogen substituiertes C₁₋₄ Alkyl bedeuten.

- Verbindungen gemäss Anspruch 3, worin R₁, R₂ und R₃ jeweils Methyl, R₄ und R₅ jeweils Wasserstoff, R Nitro und R₅ Chlor oder SCH₃ bedeuten.
- 5. Pestizides Mittel, enthaltend eine Verbindung der Formel la gemäss Ansprüchen 1 bis 4 zusammen mit einem in der Landwirtschaft annehmbaren Trägermaterial.
 - Verfahren zur Kontrolle von Unkräutern, das darin besteht, dass man die Unkräuter oder ihren Standort mit einer herbizid wirksamen Menge einer Verbindung der Formel la gemäss Ansprüchen 1 bis 4 behandelt.
 - 7. Verfahren zur Herstellung einer Verbindung der Formel la

worin R-R₃, R₅ und R₆ wie im Anspruch 1 definiert sind, dadurch gekennzeichnet, dass man a) wenn R₄ für Wasserstoff steht, einen Enolester der Formel IIa

$$R_1$$
 R_2
 R_3
 R_5
 R_6
 R_6
 R_6

worin R-R₃, R₅ und R₆ wie oben definiert sind, umlagert; oder

- b) wenn R₄ mit Ausnahme von Wasserstoff wie im Anspruch 1 definiert ist, eine Verbindung der Formel Ia, worin R₄ Wasserstoff bedeutet und R-R₃, R₅ und R₆ wie im Anspruch 1 definiert sind, entweder
 - i) mit einer Verbindung R4-OH und einem Katalysator, oder
 - ii) mit einer Verbindung R_4 -Q und einer milden Base, worin Q ein Halogenatom ist und R_4 mit Ausnahme von Wasserstoff wie im Anspruch 1 definiert ist, umsetzt.

8. Eine Verbindung der Formel III

worin R1, R2 und R3 wie im Anspruch 1 definiert sind.

15 Revendications

30

35

40

45

50

55

1. Un composé répondant à la formule la

dans laquelle chaque R_1 , R_2 et R_3 signifie indépendamment l'hydrogène ou un groupe alkyle en C_1 - C_8 , carboxy, alcoxy en C_1 - C_4 -carbonyle, phényle ou phényle substitué par 1 à 3 groupes choisis parmi les significations données pour R, ou bien R_1 et R_2 forment ensemble un pont alkylène en C_2 - C_6 ,

 R_4 signifie l'hydrogène ou un groupe alkyle en C_1 - C_8 , alkyl en C_1 - C_8 -carbonyle, alcoxy en C_1 - C_8 -carbonyle, $C(O)NR_7R_8$, alkylsulfonyle en C_1 - C_8 ,

P(O)-(OR₉)(OR₉'), R₇P(O)-OR₉, benzoyle ou un cation,

R signifie un groupe alkyle en C_1 - C_8 éventuellement substitué par 1 à 6 atomes d'halogène, un groupe alcoxy en C_1 - C_8 éventuellement substitué par 1 à 6 atomes d'halogène, un groupe alkyl en C_1 - C_8 -carbonyle, alcoxy en C_1 - C_8 -carbonyle, NR_7 ' R_8 ', $O_nS(O)_n$: R_{10} , NR_7 ' SO_2 R_8 ', un halogène ou un groupe cyano ou nitro, chaque R_5 et R_6 signifie indépendamment l'hydrogène ou est choisi parmi les significations données pour R, ou bien

R₅ et R₆ forment ensemble le groupe -Y-W-Z-, R₅ et R₆ devant être fixés à des atomes de carbone adjacents du cycle phényle du composé de formule la, chaque R₇, R₇', R₈, R₈' et R₈" signifie indépendamment l'hydrogène ou un groupe alkyle en C₁-C₈,

chaque R₉ et R₉' signifie indépendamment un groupe alkyle en C₁-C₈,

 R_{10} signifie un groupe alkyle en $C_1\text{-}C_8$ éventuellement substitué par 1 à 6 atomes d'halogène,

chaque R_{11} , R_{12} , R_{13} et R_{14} signifie indépendamment l'hydrogène, un halogène ou un groupe alkyle en C_1 - C_8 éventuellement substitué par 1 à 6 atomes d'halogène,

W signifie - $(CR_{11}R_{12})_t$ - $(CR_{13}R_{14})_t$ - ou un groupe sulfonyle,

chaque Y et Z signifie indépendamment l'oxygène, le soufre, un groupe sulfonyle ou CR₇ "R₈", n signifie 0 ou 1,

n' signifie 0, 1 ou 2,

t signifie 1 ou 2, et

t' signifie 0 ou 1.

2. Un composé selon la revendication 1, dans lequel

chaque R₁, R₂, R₃ est choisi indépendamment parmi l'hydrogène et les groupes alkyle en C₁-C₄,

R est choisi parmi les groupes alkyle en C_1 - C_4 éventuellement substitués par de l'halogène, -(O)_n-S(O)n'-alkyle en C_1 - C_4 , les halogènes et le groupe nitro,

 R_5 est choisi parmi le brome, le chlore, le fluor et les groupes trifluorométhyle, S-alkyle en C_1 - C_4 , OSO₂-alkyle en C_1 - C_4 , SO₂-alkyle en C_1 - C_4 , OSO₂-haloalkyle en C_1 - C_4 et NR₇'SO₂-alkyle en C_1 - C_4 ,

ou forme, ensemble avec R₆, le groupe -Y-W-Z-,

 R_{δ} est choisi parmi l'hydrogène, les groupes alkyle en C_1 - C_4 , alcoxy en C_1 - C_4 , le brome et le chlore, ou forme, ensemble avec R_{δ} , le groupe -Y-W-Z-, et

 R_4 est choisi parmi H et les groupes alkyle en C_1 - C_4 , alkyl en C_4 - C_8 -carbonyle, benzoyle et alkyl en C_1 - C_4 -sulfonyle ou signifieun cation.

 Un composé selon la revendication 1, dans lequel chaque R₁ et R₂ est choisi indépendamment parmi H et les groupes alkyle en

C₁-C₄, phényle ou phényle substitué par 1 à 3 groupes choisis parmi les significations données pour R, R₃ signifie un groupe alkyle en C₁-C₈,

R₄ signifie H,

5

10

15

25

30

35

40

45

50

55

R est choisi parmi NO2 et CI,

 R_5 est choisi parmi Cl, Br, F, CF_3 , SO_2R_{10} , SR_{10} et OSO_2R_{10} ,

R₆ signifie H, et

- R₁₀ est choisi parmi les groupes alkyle en C₁-C₄ éventuellement substitués par de l'halogène.
- Un composé selon la revendication 3, dans lequel R₁, R₂ et R₃ signifient chacun un groupe méthyle, R₄ et R₅ signifient chacun l'hydrogène, R signifie un groupe nitro et R₅ signifie le chlore ou -SCH₃.
- 20 5. Une composition pesticide comprenant le composé de formule la tel que défini aux revendications 1 à 4, en association avec un véhicule acceptable en agriculture.
 - 6. Une méthode pour combattre les mauvaises herbes, qui comprend l'application sur les mauvaises herbes ou leur zone de croissance d'une quantité efficace du point de vue herbicide d'un composé de formule la tel que défini aux revendications 1 à 4.
 - 7. Un procédé de préparation d'un composé de formule la

$$R_1$$
 R_2
 R_3
 R_6
 R_5
 R_5

dans laquelle R-R₃, R₅ et R₆ sont tels que définis à la revendication 1, qui comprend a) lorsque R₄ signifie H, le réarrangement d'un ester énolique de formule lla

$$R_1$$
 R_2
 R_3
 R_5
 R_5
 R_5

dans laquelle R-R₃, R₅ et R₆ sont tels que définis plus haut, ou

- b) lorsque R₄ est tel que défini à la revendication 1 mais à l'exclusion de H, la réaction d'un composé de formule la dans laquelle R₄ signifie H et R-R₃, R₅ et R₅ sont tels que définis à la revendication 1 avec
 - i) le composé R4-OH et un catalyseur, ou

ii) le composé R_4 -Q et une base modérée, où Q signifie un atome d'halogène et R_4 est tel que défini à la revendication 1 mais à l'exculsion de H.

8. Un composé de formule III

R₂ O N III

dans laquelle R_1 , R_2 et R_3 sont tels que définis à la revendication 1.