

Fuzzy Cognitive Map - Decision Tree for making medical decisions

Hoang Thien Ly

- 1/ Fuzzy Cognitive Map
- 2/ Conversation of medical doctors
- 3/ Decision Tree
- 4/ Hybrid model FCM-DT

- 1/ Fuzzy Cognitive Map
- 2/ Conversation of medical doctors
- 3/ Decision Tree
- 4/ Hybrid model FCM-DT

Boolean logic vs. fuzzy logic

Boolean logic vs. fuzzy logic

Degree of membership

At 0°C 0.8 in "cold", 0.2 in "warm"

Fuzzy Cognitive Map

- Consist of nodes (concepts) & weights.
- Nodes ~ attributes, Weight [-1,1] ~ relation

Three possible types of causal relationships:

- W_{ji} > 0: positive causality C_i and C_j. An increase (decrease) in value of C_j leads to an increase (decrease) in value of C_i.
- W_{ii} < 0: negative causality.
- $W_{ii} = 0$: no relationship.

Value of each concept is the influence of other concepts to the specific concept, calculated by:

$$A_{i}^{(k+1)} = f(A_{i}^{(k)} + \sum_{\substack{j \neq i \ j=1}}^{N} A_{j}^{(k)} \cdot w_{ji})$$

where:

 $A_i^{(k+1)}$: value of C_i at time k+1

 $A_j^{(k)}$: value of C_i at time k

 $f = \frac{1}{1 + e^{-\lambda x}}$: sigmoid threshold function

Ozesmi, U. (2004) Ecological models based on people's knowledge: a multi-step fuzzy cognitive mapping approach. Ecological Modelling, 176(1), 43-64

1/ Fuzzy Cognitive Map

2/ Building Fuzzy Cognitive Map

3/ Decision Tree

4/ Hybrid model FCM-DT

I think I am having bladder tumor (guz pęcherza moczowego).
Please perform a tumor grading for me to check my illness.

Alright! In general, bladder tumors are graded 1,2 and 3:

• G1: similar to normal cells, slow-growing (low grade)

• G2: less like normal cell (high grade)

G3: very different from normal cell

Main variables to consider are:

C1: cell distribution

C2: cell size

C3: cell number

C4: cytoplasm (cytoplazma)

C5: nuclei

C6: nucleoli C7: necrosis

C9: tumor grade C8: mitosis

- IF-THEN rule
- Influence value in [0,1]
- Fuzzy set {very very low, very low, low, medium, high, very high, very very high}

- Eg: IF a small change occurs in value C_1 (cell distribution), THEN a small change is caused in value C_9 (tumour grade)
- \rightarrow The influence from C_1 to C_9 is positive very low.

- Expert 1: Influence from C₅ to C₉ positive medium
- Expert 2: Influence from C₅ to C₉ positive high
- Expert 3: Influence from C₅ to C₉ positive very high

Figure 4 Aggregation of three linguistic variables using the SUM technique. Point C is the numerical weight after defuzzification using the CoA method.

Figure 5 The FCM tumour grading model.

Ready to assign grade of every tumor!!

- -> Initial value of C₉ was set a random value in [0,1]
- -> AHL algorithm (Activation Hebbian Learning)
- -> Value of C₉ (grade for tumor)

Figure 7 The estimated 'Grade' values for the 128 cases.

Bright sides of FCM:

- Unlimited number of medical doctors
- Combination of theories of neural network & fuzzy
- Effective decision-making technique
- High performance
- Gathering existing & domain knowledge
- Have been used, especially for radiotherapy

•

Dark sides of FCM:

- Heavily relies on human experience
- Undesired traps of steady states
- Inability of physicians working with big data, especially quantitative data

•

- 1/ Fuzzy Cognitive Map
- 2/ Building Fuzzy Cognitive Map
- 3/ Decision Tree
- 4/ Hybrid model FCM-DT

Set of IF-THEN rules

- 1/ Fuzzy Cognitive Map
- 2/ Building Fuzzy Cognitive Map
- 3/ Decision Tree
- 4/ Hybrid model FCM-DT

References:

- Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision trees: an overview and their use in medicine. J Med Syst. 2002 Oct;26(5):445-63. doi: 10.1023/a:1016409317640. PMID: 12182209.
- Papageorgiou, E., Stylios, C., Groumpos, P. (2003). Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule. In: Gedeon, T.(.D., Fung, L.C.C. (eds) AI 2003: Advances in Artificial Intelligence. AI 2003. Lecture Notes in Computer Science(), vol 2903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24581-0 22
- Papageorgiou, Elpiniki & Stylios, Chrysostomos & Groumpos, Peter. (2007). Hybrid model based on Decision Trees and Fuzzy Cognitive Maps for Medical Decision Support System. 10.1007/978-3-540-36841-0_934.
- Papageorgiou El, Spyridonos PP, Stylios CD, Ravazoula P, Groumpos PP, Nikiforidis GN. Advanced soft computing diagnosis method for tumour grading. Artif Intell Med. 2006 Jan;36(1):59-70. doi: 10.1016/j.artmed.2005.04.001. Epub 2005 Aug 10. PMID: 16095888.

Table 1 Histological features for coding tumours' malignancy		
Histological features	Assessment	Type of values scaled
C_1 : cell distribution	Even, clustered	Two discrete (0 or 1)
C_2 : cell size	Uniform, pleomorphic	Two discrete (0 or 1)
C₃: cell number	Numerous, variable	Two discrete (0 or 1)
C₄: cytoplasm	Homogeneous, variable	Two discrete (0 or 1)
C ₅ : nuclei	Uniform, irregular,	Four fuzzy values
	very irregular, bizarre	(zero, low, medium, high)
C ₆ : nucleoli	Inconspicuous, evident, prominent	Three discrete (0, 0.5 or 1)
C ₇ : necrosis	Inconspicuous, frequent	Two discrete (0 or 1)
C ₈ : mitosis	Absent rate, occasional, numerous	Three discrete (0, 0.5 or 1)