More Similar Vulnerable Functions

Functions	Descriptions		
printf	prints to the 'stdout' stream		
fprintf	prints to a FILE stream		
sprintf	prints into a string		
snprintf	prints into a string with length checking		
vprintf	prints to 'stdout' from a va_arg structure		
vfprintf	print to a FILE stream from a va_arg structure		
vsprintf	prints to a string from a va_arg structure		
vsnprintf	prints to a string with length checking from a va_arg structure		
syslog	output to the syslog facility		
err	output error information		
warn	output warning information		
verr	output error information with a va_arg structure		
vwarn	output warning information with a va_arg structure		

History of Format String Vulnerability

Originally noted as a software bug (1989)

By the fuzz testing work at the University of Wisconsin

Such bugs can be exploited as an attack vector (September 1999)

snprintf can accept user-generated data without a format string, making privilege escalation was possible

Security community became aware of its danger (June 2000)

Since then, a lot of format string vulnerabilities have been discovered in different applications.

Application	Found by	Impact	years
wu-ftpd 2.*	security.is	remote root	> 6
Linux rpc.statd	security.is	remote root	> 4
IRIX telnetd	LSD	remote root	> 8
Qualcomm Popper 2.53	security.is	remote user	> 3
Apache + PHP3	security.is	remote user	> 2
NLS / locale	CORE SDI	local root	?
screen	Jouko Pynnōnen	local root	> 5
BSD chpass	TESO	local root	?
OpenBSD fstat	ktwo	local root	?

How to Fix Format String Vulnerability

Limit the ability of attackers to control the format string

- Hard-coded format strings.
- Do not use %n
- Compiler support to match printf arguments with format string

```
#include <stdio.h>
#include <string.h>

int main(int argc, char* argv[]) {
   char user_input[100];
   scanf("%s", user_input);
   printf(user_input);
}
printf("%s\n", user_input);
}
```

Outline

- **▶** Format String Vulnerabilities
- Integer Overflow Vulnerabilities
- Scripting Vulnerabilities

Integer Representation

In mathematics integers form an infinite set.

In a computer system, integers are represented in binary.

- The representation of an integer is a binary string of fixed length (precision), so there is only a finite number of "integers".
- Signed integers can be represented as two's complement: the Most Significant Bit (MSB) indicates the sign of the integer:
 - MSB is 0: positive integer
 - MSB is I: negative integer.