

DM-Spring-2020-Q6-Grade

52.63% (10/19)

- ✓ 1. KNN is
 - A data-driven method
 - B model-driven method
 - C I do not know
- **2.** The dependent variable of the classification is
 - A categorical
 - **B** numeric
 - C I do not know
- ✓ 3. KNN can be used for regression
 - A Yes
 - **B** No
 - C I do not know
- 4. In the case of KNN classification we use
 - A average of outcomes
 - majority voting scheme
 - C I do not know
- X 5. Which of these errors will increase constantly by increasing k?
 - A train error
 - B test error
 - **c** both
 - D I do not know

/	6.	This function can be used to perform KNN classificationin R
	A	knn()
	В	k_nn()
	C	knnreg()
	D	knearneib()
	E	I do not know
X	7.	With the increase of k, the decision boundary will be
	Α	simplified
	В	more complex
	C	I do not know
	D	unchanged
/	8.	KNN algorithm is sensitive to outliers
	A	True
	В	False
	C	I do not know
X	9.	KNN
	A	is a supervised learning algorithm.
	В	is an unsupervised learning algorithm.
	C	I do not know
X	10.	In the case of small k we have
	Α	overfitting
	В	underfitting
	C	it depends on the situation
	D	I do not know
X	11.	Why do we need scaling in KNN?
	A	to avoid overfitting

B to avoid underfitting

D I do not know

c to have "equal" weights for variables

X	12.	Let k = n, (n- number of observations), K-NN is same as
	A	random guessing
	В	everything will be classified as the most probable class (in total)
	C	everything will be classified as the least probable class (in total)
	D	I do not know
X	13.	This function can be used to perform K-NN regression in R
	Α	knn.reg
	В	knnforreg
	C	regknn
	D	knnforregression
	E	I do not know
/	14.	Do you need to worry about scaling with one explanatory variable?
	A	No
	В	Yes
	C	I do not know
/	15.	n - the number of observation, m - the number of explanatory variables When n=k, m=1, the decision boundary for regression is
	A	a line
	В	a stepwise constant function
	C	a stepwise quadratic function
	D	I do not know
X	16.	Which of these algorithms can be used to fill the missing values
	Α	KNN for regression
	В	KNN for classification
	C	both
	D	I do not know

/	17.	Which one is better: KNN regression or Linear regression?
	A	KNN outperform LR if the parametric form that has been selected is close to the true linear form
	В	LR outperform KNN if the parametric form that has been selected is close to the true linear form
	C	KNN will always outperform the LR
	D	I do not know
/	18.	Which one is the Disadvantage of KNN?
	Α	required assumptions
		cannot be applied for regression
		difficult to perform
		the problem of high dimensional data
	E	I do not know
X	19.	The best k for train set equals to
	Α	1
	В	2
	С	0
	D	I do not know