Application No.: 10/792,034

AMENDMENTS TO THE CLAIMS

1. (Original) An optical transmission system comprising: a signal light source

outputting signal light with a positive chirp;

an optical fiber transmission line through which the signal light propagates; and

a lumped Raman amplifier provided between said signal light source and said optical

fiber transmission line, and Raman-amplifying the signal light outputted from said signal light

source, said lumped Raman amplifier including a high-nonlinearity fiber having a negative

chromatic dispersion at a wavelength of the signal light and a nonlinear coefficient (2 π / λ).

(n₂/A_{eff}) of 6.9 (1/W/km) or more which is defined by a nonlinear refractive index n₂ and an

effective area A_{eff} at a wavelength of λ .

2. (Currently Amended) An optical transmission system according to claim $2 \underline{1}$,

wherein a phase shift amount Φ_{LRA} of the signal light in said high-nonlinearity fiber is 1/2 or

more of a phase shift amount Φ_T of the signal light in said optical fiber transmission line.

3. (Original) An optical transmission system according to claim 1, wherein the

nonlinear coefficient $(2 \pi / \lambda) \cdot (n_2/A_{eff})$ of said high-nonlinearity fiber is 12.2 (1/W/km) or more.

4. (Original) An optical transmission system according to claim 1, wherein said

high-nonlinearity fiber has a transmission loss of 0.7 dB or less at a wavelength of 1500 nm.

2

Application No.: 10/792,034

- 5. (Original) An optical transmission system according to claim 1, wherein said high-nonlinearity fiber has a transmission loss whose increase, to which OH-absorption near a wavelength of 1390 nm contributes, is 0.5 dB/km or less.
- 6. (Original) An optical transmission system according to claim 1, wherein said high-nonlinearity fiber has a chromatic dispersion of -20 ps/nm/km or less at the wavelength of the signal light.
- 7. (Currently Amended) An optical transmission system according to claim 1, wherein the signal light includes a plurality of signal channels having a wavelength spacing of 10 nm or more, and said high-nonlinearity fiber ha has a chromatic dispersion of -10 ps/nm/km or less at the wavelength of the signal light.