

Waverley, Sydney

An Anglican Day and Boarding School for Girls, Kindergarten to Year 12. Founded in 1856.

2007

TRIAL HIGHER SCHOOL
CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- o Reading Time- 5 minutes
- Working Time 3 hours
- o Write using a blue or black pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.

Total marks (120)

- o Attempt Questions 1-8
- All questions are of equal value
- Start a fresh page for each question.
- Put your student number at the top of this page and on each writing booklet used.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq 1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right) \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Question 1 (15 marks)

(ii)

Marks

1

3

(a) Two complex numbers are given by:

$$z = 3 - 4i$$
 and $w = 2 - 2i$

- (i) Find the value of the product $\overline{z}w$
 - Find the two square roots of z
- (iii) Express w in modulus argument form and hence find the value of w^4 2
- (b) What is the locus of Z if $W = \frac{Z i}{Z 2}$ is purely imaginary? Sketch the locus of Z.
- (c) On an Argand diagram, show the region where the inequalities $1 \le |Z| \le 3 \text{ and } \frac{\pi}{4} \le \arg Z \le \frac{\pi}{2} \text{ hold simultaneously.}$

-2-

- (d) (i) Find all the solutions to the equation $z^6 = 1$ in the form x + iy.
 - (ii) If ω is a non-real solution to the equation $z^6 = 1$, show that $\omega^4 + \omega^2 = -1$.
 - (iii) By choosing one particular value of ω , explain with the aid of a diagram, or otherwise, why $\omega^4 + \omega^2 = -1$.

Question 2 (15 marks)

Marks

The diagram shows the graph of y = f(x)

Draw separate sketches of the following:

(i)
$$y = \frac{1}{f(x)}$$

(ii)
$$y = [f(x)]^2$$

(iii)
$$y^2 = f(x) \quad \checkmark$$

(iv)
$$y = x + f(x)$$

- (b) Find the equation of the tangent to the curve $x^2 + x xy + y + y^2 = 12$ at the point (0, 3).
- (c) If $u_1 = 8$, $u_2 = 20$ and $u_n = 4u_{n-1} 4u_{n-2}$ for $n \ge 3$.
 - (i) Determine u_3 and u_4 .
 - (ii) Prove by induction that $u_n = (n+3)2^n$ for $n \ge 1$.

1

3

-3-

Question 3 (15 marks)

Marks

(a) Find $\int x \sin(x^2 + 3) dx$

2

(b) Show that $e^{-(x-2\log_e \sqrt{x})}$ can be expressed as xe^{-x}

3

3

2

Hence using integration by parts, or otherwise, find $\int e^{(\log_e x - x)} dx$

(c) Use the substitution $u = \sqrt{x}$ to evaluate $\int_{4}^{9} \frac{x}{\sqrt{x(1+x)}} dx.$

(d) (i) Find the real numbers a, b and c such that

 $\frac{2x^2 + 2x + 5}{\left(x^2 + 2\right)\left(1 - x\right)} = \frac{ax + b}{x^2 + 2} + \frac{c}{1 - x}.$

(ii) Hence find $\int \frac{2x^2 + 2x + 5}{(x^2 + 2)(1 - x)} dx$.

(e) By completing the square, prove that $\int_{0}^{1} \frac{4}{4x^2 + 4x + 5} dx = \tan^{-1}\left(\frac{4}{7}\right)$

; ,3

2

Question 4 (15 marks)

Marks

1

2

(a) Given that $z = \cos \theta + i \sin \theta$

(i) Show that $z^n + \frac{1}{z^n} = 2\cos n\theta$

-3

(ii) Hence express $\cos^4 \theta$ in terms of $\cos n\theta$.

(i) Given that $1 - \sqrt{3}i$ is a root of P(x) = 0 where $P(x) = x^4 - 2x^3 + 5x^2 - 2x + 4$, write down two of the linear factors of P(x).

(ii) Hence factorise P(x) completely into real factors.

(c) The cubic equation $x^3 - 5x^2 + 5 = 0$ has roots α , β and γ .

- (i) Find the equation whose roots are $\alpha 1$, $\beta 1$ and $\gamma 1$.
- (ii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$.

3

The roots of the equation $x^3 - px^2 + q = 0$ are α, β and γ .

If $S_n = \alpha^n + \beta^n + \gamma^n$ where n is a positive integer, prove that

 $pS_{n+2} - qS_n = S_{n+3}.$

(15 marks) Ouestion 5

Marks

(a)

The ellipse E, with equation $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ shown in the diagram above, has a tangent at the point $P(a\cos\theta,b\sin\theta)$. The tangent cuts the x-axis at T and the y-axis at R.

Show that the equation of the tangent at the point P is (i)

2

3

1

3

2

2

$$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1.$$

- If T, the point of intersection of the tangent at P with the x-axis, also lies on one of the directrices of the ellipse, show that $\cos \theta = e$.
- Hence find the angle that the focal chord through P makes with the x-axis.
- Using similar triangles, or otherwise, show that $RP = e^2RT$.
- The normal at $P(ct, \frac{c}{2})$ on the rectangular hyperbola $xy = c^2$ meets the curve again at Q
 - Show that the normal to the hyperbola at P has the equation $t^3x - ty = ct^4 - c.$
 - Find the coordinates of Q.
 - A line from Pthrough the origin meets the hyperbola again at R. Prove that $PQ^2 = PR^2 + RQ^2$

Question 6 (15 marks)

Marks

A solid shape is formed as shown at right. Its base is in the xy plane and is in the shape of a parabola $y = x^2$. The vertical cross section is in the shape of a right angled isosceles triangle. By using the method of slicing, calculate the volume of the solid between the values v = 0and y = 4.

The length of a curve between the points where x = a and x = b is given by

$$L = \left| \int_{b}^{a} \sqrt{1 + \left[f(x) \right]^{2}} \, dx \right|$$

By considering $f(x) = \sqrt{r^2 - x^2}$ and letting a = r and b = 0 show that the formula for L gives the correct length for one quarter of the circumference of a circle.

- The ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$ is revolved about the line x = 4.
 - Use the method of cylindrical shells to show that the volume of the solid of revolution is given by

$$V = 8\sqrt{3} \pi \int_{-2}^{2} \sqrt{4 - x^2} dx - 2\sqrt{3} \pi \int_{-2}^{2} x \sqrt{4 - x^2} dx$$

(ii) Prove that the volume $V = 16\sqrt{3} \pi^2$

Question 7 (15 marks)

Marks

3 (

1

3

3

2

(a) A body of mass 1Kg is projected vertically upwards from the ground at a speed of 20m per second. The particle is under the effect of both gravity and a resistance which, at any time, has a magnitude of $\frac{1}{40}v^2$, where v is the magnitude of the particle's velocity at that time. Acceleration due to gravity is taken as 10 ms^{-2}

While the body is travelling upwards the equation of motion is

$$\ddot{x} = -(10 + \frac{1}{40}v^2).$$

- (i) Calculate the greatest height reached by the body.
- '(ii) Calculate the time taken to reach this greatest height.
- (ii) Write the equation of motion as the body falls after reaching its greatest height.
- (iii) Find the speed of the particle when it returns to its starting point.
- (b) Let $I_n = \int_0^1 x(x^2 1)^n dx$ for n = 0,1,2,...
 - (i) Use integration by parts to show that $I_n = \frac{-n}{n+1} I_{n-1}$ for $n \ge 1$
 - (ii) Hence or otherwise show that $I_n = \frac{(-1)^n}{2(n+1)}$ for $n \ge 0$
 - (iii) Explain why $I_{2n} > I_{2n-1}$ for $n \ge 0$

Question 8 (15 marks)

Marks

2

- (a) (i) If $x \ge 0$, show that $\frac{x}{x^2 + 4} \le \frac{1}{4}$.
 - (ii) By integrating both sides of this inequality with respect to x between the limits x = 0 and $x = \alpha$, show that

$$e^{\frac{1}{2}\alpha} \ge \frac{1}{4}\alpha^2 + 1$$
 for $\alpha \ge 0$.

(b) The diagram shows a sandstone solid with rectangular base ABQP of length b metres and width a metres.

The end PQRS is a square, and the other end ABC is an equilateral triangle.

Both ends are perpendicular to the base.

Consider the slice of the solid with face WXYZ and thickness Δx metres, as shown in the diagram. The slice is parallel to the ends and AW = BX = x metres.

- (i) Find the height of the equilateral triangle ABC.
- (ii) Given that triangles CRS and CYZ are similar, find YZ in terms of a, b and x.
- Let the perpendicular height of the trapezium WXYZ be h metres:

Show that $h = \frac{a}{2} \left[\sqrt{3} + \left(2 - \sqrt{3}\right) \frac{x}{b} \right]$

(iv) Hence show that the cross-sectional area of WXYZ is given by

 $\frac{a^2}{4b^2} \left[\left(2 - \sqrt{3} \right) x + b\sqrt{3} \right] \left(b + x \right)$

(v) Find the volume of the solid

. 3

3

-8-

-9-

4952

Page no. 1 of 20

Marking Scheme for Task: Trial Examination

Year:	2007

Marking Scheme for Task: Trial Examination		T Car. 2007
Solutions	Marks	Comments
Question /: $Z = 3 - 4i$ $\omega = 2 - 2i$		
a) (i) Zw = (3+4i)(2-2i)		
= 6 + 2 \div + 8	1	
= 14 + 2i		
$(ii) (x+iy)^2 = 3-4i$		
$x^2 - y^2 = 3 - \mathcal{D}$		
22y = -4 - @	1	
also $x^2 + y^2 = 5$ 3	•	
D+3 2x = 8		
$\chi = \pm 2$		
Sabin(2) $y = \mp 1$	1	
$1.\sqrt{3-4i} = \pm (2-i)$	1	
(ii) 1 = 5 = (I)	,	
ω= 2/2 CIS(-4)	'	
$\omega = 2\sqrt{2} \operatorname{Gis}(-\frac{\pi}{4})$ $\omega^{*} = \left[2\sqrt{2} \operatorname{Gis}(-\frac{\pi}{4})\right]^{+}$		
= 64 C(S(-T)		
= 64 [cos(-11) + i Sin(-17)]		
= 64 (-1)		
= 0+ (-1) = -6+	1	
b) $W = \frac{Z-i}{2-2}$ let $Z = X + iy$		
= x +iy - i		
$= \frac{x + iy - i}{x + iy - 2}$		
$= \frac{x + i(y-1)}{(x-2) + iy} \times \frac{(x-2) - iy}{(x-2) - iy}$	仕	
$Tealpart = \frac{x^2 - 2x + y^2 - y}{(x - 2)^2 + y^2} = 0$	(<u>)</u>	
$x^{2}-2x+y^{2}-y=0$		
x2-2x+1+y2-y+==================================	<i>7</i>)	
$(x-1)^{2}+(y-\frac{1}{2})^{2}=(\frac{x}{2})^{2}$	\mathcal{U}^{-*}	
(X-1) + (Z-1) (Z-1) (Z-1)		

Course: HSC Mathematics Extension 2

Marking Scheme for Task: Trial Examination

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions	Marks	Comments
Question 1: c)	2	
d). (i) 36-1=0 36=1 3=1 and -1 other roots equally spaced around unit circle	1	
	l	
Solutions: $3 = \pm 1$, $\pm C_{1} = \pm \frac{3}{2}$ $3 = \pm 1$, $\pm \pm \frac{1}{2}i$, $-\frac{1}{2} \pm \frac{1}{2}i$	1	
(ii) $3^{6}-1 = (3^{2}-1)(3^{4}+3^{2}+1) = 0$ If w is a non real solution then $\omega^{4}+\omega^{2}+1 = 0$ $\omega^{4}+\omega^{2}=-1$	2	
(111) vector addition of w^{+} and w^{+} results in -1 .: $w^{+} + w^{+} = -1$	1	

Page no. 3 of 20

Course: HSC Mathematics Extension 2

Page no.4 of 20

30 %

Marking Scheme for Task: Trial Examination

Year	2007

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions	Marks	Comments
Question (: d) (11) take $\omega = Cis \frac{\pi}{3}$ $\omega^2 = Cis \frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ $\omega^4 = Cis \frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$ Now $\omega^2 + \omega^4 = Cis \frac{2\pi}{3} + Cis \frac{4\pi}{3}$ $= -1 (by addition)$	1	
Swestian 2: a)(i) $y = \frac{1}{f(e)}$	2	
$y = [f \infty]^{2}$	2	
$(m) \qquad \qquad y^2 = f(x)$	2	
y = x + f(x)	2	

Marking Scheme for Task: Trial Examination	7 X X	Campunanta
Solutions	Marks	Comments
Question 2: b) $x^2 + x - xy + y + y^2 = 12$		
2x + 1 - y - x dy + dy + 2y dy = 0	**Orders	
(2x + 1 - y) + dy (1 + 2y - x) = 0		
$\frac{dy}{dx} = \frac{y - 2x - 1}{1 + 2y - x}$		
$at(0,3)$ $cly = \frac{3-1}{1+6}$	Thistoph	
= 37		
; tangent has equation		
$y-3=\frac{2}{7}(x-0)$		
74-21 = 2×	1	٠
2x - 7y + 21 = 0	ř	
c) U1 = 8 U2 = 20 Un = 4 Un-1 - 4 Un-2 m2	3	
(i) $U_3 = 4U_2 - 4U_1$ $U_4 = 4U_3 - 4U_2$		
= 80 - 32 = 192 - 80		
= 48 = 1/2		
(11) Prove Un = (n+3)2" n≥1		
M=1 Un= 4.2'=8 true	,	
n=2 Un=5.22 = 20 true.	•	
let k be integer $k \ge 2$ assume $U_k = (k+3) \cdot 2^k + U_{k-1} = (k+2) \cdot 2^{k-1}$,	
assume the (RTS)2	1	
L = L / L = L / L = L / L = L / L = L / L = L =		
$=4-((k+3),2^{-1}-(k+2))$		
$= 4(k+3)2^{k} - 2(k+2)2^{k}$		
$= (2k+8)2^{k}$		
$= (2k + 8)^{2} k + 1$ $= (k + 4)^{2} k + 1$ $= (k + 1 + 3)^{2} k + 1$		
= (R+1 7 2)2		

Page no. 5 of 20

a Grah

Year: 2007

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions	Marks	Comments
Hence for RZ2 true for all positive		
Integers n = k implies frue for n=k+1		
But U, and Uz are true therefore by		
Induction trul for all n =1		
1e. $C_n = (n+3)2^n$ for all $n \ge 1$	/	
Ocestron 3: a) $\int x \sin(x^2+3) dx = x^2+3$		
du = 22 cm	1	
= 1 Sinu du		
= - 1 Cosu + C		
$= -\frac{1}{2} \cos(x^2 + 3) + C$	1	
b) e -(x - 2/0gevx) -x 2/0gevx = e . e . e . e . e . e . e . e . e . e		
_ -		
$=e^{-x}.x$		
$= xe^{-x}$,	
Now fe (loge x-x) dx		
$= \int x.e^{-x} dx \qquad u=x v=-e^{-x}$ $= -x.e^{-x} + \int e^{-x} dx \qquad u'=1 v'=e^{-x}$	1	
= -xex+ [exdx 4=1 v=ex	•	
$= -xe^{-x} - e^{-x} + c$		
$=-e^{-x}(x+1)+c$	l	
c) $\int_{-\infty}^{9} \frac{x}{dx} dx = \sqrt{x} = u^2$		
c) $\int_{4}^{9} \frac{x}{\sqrt{x}(1+x)} dx \qquad u = \sqrt{x} x = u^{2}$ $du = \frac{1}{2\sqrt{x}} dx$		
$= 2 \int_{-1+u^2}^{3} \frac{u^2}{1+u^2} du \qquad x=9 u=3 \\ x=4 u=2$	1	
- J ₂ 1+u ²	•	

Course: HSC Mathematics Extension 2

Page no 6 of 20

Year: 2007 Marking Scheme for Task: Trial Examination

Marking Scheme for Task: Trial Examination		1 ear. 2007
Solutions	Marks	Comments
$=2\int_{2}^{3}\left(\frac{1+u^{2}}{1+u^{2}}-\frac{1}{1+w}\right)du$	1	
$=2\int_{2}^{3}\left(1-\frac{1}{1+u^{2}}\right)du$		
$= 2 \left[u - \tan^{-1} u \right]_{2}^{3}$		
$= 2 \left[(3 - \tan^{-1} 3) - (2 - \tan^{-1} 2) \right]$		
$= 2 - 2 \tan^{3} + 2 \tan^{2} 2$	1	
$d)(i) \frac{2x^{2}+2x+5}{(x^{2}+2)(i-x)} = \frac{ax+b}{x^{2}+2} + \frac{c}{i-x}$		
$=\frac{(\alpha x+b)(1-x)+C(x+2)}{(x+a)(1-x)}$		
true iff $2x^{2}+2x+5=(ax+b)(1-x)+c(x^{2}+2)$	1	
$let x = 1 \qquad 9 = 3c \implies c = 3$		
$let x = 0 \qquad 5 = b + 2c \implies b = -1$		
$ (ct x = -1) = 5 = (-a - 1)^2 + 9$ $5 = -2a + 7 \implies a = 1$		
3 = -12 + 1 = 3 $3 = -1$	1	
(11) $\int \frac{2x^2 + 2x + 5}{(x^2 + 2)(1 - x)} dx = \int \frac{x - 1}{x^2 + 1} + \frac{3}{1 - x} dx$		
$= \int \frac{x}{x^2+2} dx - \int \frac{1}{x^2+2} dx + \int \frac{3}{1-x^2} dx$	1	
$= \frac{1}{2} \ln(x^{2}+2) - \frac{1}{\sqrt{2}} \tan^{-1}(\frac{x}{\sqrt{2}} - 3 \ln 1-x + C$		
$= /n \left \frac{\sqrt{x^{2}+2}}{(1-x)^{3}} \right - \frac{1}{\sqrt{2}} \tan^{2} \frac{x}{\sqrt{2}} + C$	1	

Solutions Question 3 e)

Course: HSC Mathematics Extension 2

Page no. 7 of 20

Course: HSC Mathematics Extension 2

Marking Scheme for Task: Trial Examination

Page no. 8 of 20

Year: 2007

)	ear: 2007	
	Comments	
		4

FUMBE

Marking Scheme for Task: Trial Examination		Year: 2007
olutions	Marks	Comments
$\frac{4}{6} \int_{0}^{1} \frac{4}{4x^{2}+4x+5} dx$ $= \int_{0}^{1} \frac{4}{(2x+1)^{2}+4} dx efu=2x+1 x=0 u=1$ $= \int_{1}^{3} \frac{2}{u^{2}+4} du$	1 1	
$= \left[+ a n^{-1} \frac{u}{2} \right]_{1}^{3}$ $= + a n^{-1} \frac{3}{2} - + a n^{-1} \frac{1}{2}$	1	
$= fan' \left(\frac{\frac{3}{2} - \frac{1}{2}}{1 + \frac{3}{2} \cdot \frac{1}{2}} \right)$ $= fan' \left(\frac{4}{7} \right)$	1	
estion 4 a) $Z = cos\theta + isin\theta$ (i) $g^n = cosn\theta + isinn\theta$ (De Moivre's) $\frac{1}{3^n} = cos(-n\theta) + isin(-n\theta)$ (De Moivre's) $\frac{1}{3^n} = cosn\theta - isinn\theta$		
$\int_{0}^{\infty} dt = 2 \cos n\theta$	1	V
(11) from (i) $z\cos\theta = \frac{3}{3} + \frac{1}{3}$: $16\cos^4\theta = \left(\frac{3}{3} + \frac{1}{3}\right)^4$ $= \frac{3}{3} + \frac{1}{3} + 1$		
$= (3^{4} + \frac{1}{3^{4}}) + 4(3^{4} + \frac{1}{3^{2}}) + 6$ $= (2^{4} + \frac{1}{3^{4}}) + 4(3^{4} + \frac{1}{3^{2}}) + 6$ $= 2\cos 4\theta + 8\cos 2\theta + 6$ $\cos^{4}\theta = \frac{1}{8}\cos 4\theta + \frac{1}{2}\cos 2\theta + \frac{3}{8}$	1	

Solutions	Marks	Comments
Question 4 h) If $d = 1 - \sqrt{3}i$ is one root		
$\overline{\lambda} = 1 + \sqrt{2}i$ is also a root (coefficients of $P(x)$ are real)	/	
(1) [x - (1- vsi)] and [x - (1+ vsi)]		
are linear factors		
1. (x-1+13i) and (x-1-13i)	/	
(11) Since (x-1+vzi) and (x-1-vzi)		
are factors then (x-1+v3i)(x-1-v3i) is factor		
1e. x2-x- v3xi-x+1+15i+ v3xi-v3c+3	ı	
$= \chi^2 - 2\chi + 4 \text{ is a factor}$		
$x^{2} f(x) = (x^{2} - 2x + 4)(x^{2} + 1)$	/	
c). $x^3 - 5x^2 + 5 = 0$		
$let y = x - 1$ $\therefore x = y + 1$	1	
Sub-in () $(y+1)^3 - 5(y+1)^2 + 5 = 0$		
$y^3 + 3y^2 + 3y + 1 - 5y^2 - 10y = 0$		
y3-2y2-7y+1=0 :, required polynomial is		
$x^3 - 2x^2 - 7x + 1 = 0$	•	

t stitha.

Course: HSC Mathematics Extension 2

Page no. 9 of 20

Marking Scheme for Task: Trial Examination Y

Year: 2007

Marking Scheme for rask. That Examination			
Solutions	Marks	Comments	_
Question 4 d (11) If & B & are 100ts then			
x3-522+5=0			i
$\beta^3 - 5\beta^2 + 5 = 0$			
$8^3 - 58^2 + 5 = 0$			
(adding)	1		
now $\alpha^2 + \beta^2 + \delta^2 = (\alpha + \beta + \delta)^2 - 2(\alpha \beta + d \delta + \beta \delta)$			
<u>=</u> 25 −0			
= 25			
$a^{3} + \beta^{3} + \delta^{3} - 5(25) + 15 = 0$			
$A^{3} + A^{3} + A^{3} = 110$	1		
d) $S_n = x^n + \beta^n + y^n$ $x^3 - \rho x^2 + q = 0$			
" OCTA " - F			
$\therefore \mathcal{L} + \beta + \delta = \beta$ $\mathcal{L}_{HS} = \beta S_{n+1} - q S_n \qquad \alpha \beta \delta = q$			
$= \rho \left(\lambda^{n+2} + \beta^{n+2} + \beta^{n+2} \right) - q \left(\lambda^{n} + \beta^{n} + \beta^{n} \right)$			
= p (ddn+ppn+82n) - gdn+98n+98n			
$= d^{n}(pd^{2}-q) + \beta^{n}(p\beta^{2}-q) + \delta^{n}(p\beta^{2}-q)$	l		
Apon if disa root of x3-px+q=0			
then d3 = pd-9	,		
Similarly for B+ Y	1		
1. LHS = L"d" + B" p" + 8 my3			
$= \alpha^{n+3} + \beta^{n+3} + \beta^{n+3}$			
= Sn+3			
= RHS.	ı		

Course: HSC Mathematics Extension 2

1 33/12/127

Page no./0 of 20

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions	Marks	Comments
Questions: a) (i) at l. $x = a\cos\theta$ $y = b\sin\theta$ $dx = -a\sin\theta$ $dy = b\cos\theta$		
$\frac{dy}{dx} = -\frac{bcos\theta}{asin\theta}$	1	
: Equation of tangent 1s $y - b \sin \theta = -\frac{b \cos \theta}{a \sin \theta} (x - a \cos \theta)$		
ansine - absing = -bx coop + at coste		
$bx \cos\theta + ay \sin\theta = ab \left(\sin^2\theta + \cos^2\theta \right)$ $ab \frac{x \cos\theta}{a} + \frac{y \sin\theta}{b} = 1 \text{as required}$	1	
(ii) If T is on directrix. Thus coordinates $(\frac{a}{\epsilon}, 0)$	1	
gradient of tangent at $P = \frac{b \cos \theta}{a \sin \theta}$ gradient of $PT = \frac{b \sin \theta - \theta}{a \cos \theta - \frac{a}{e}}$ = $\frac{eb \sin \theta}{ae\cos \theta - a}$	1	
$\frac{eBSIND}{aSIND} = -\frac{b\cos\theta}{aSIND}$		
: abe $\sin^2\theta = -abe \cos^2\theta + ab \cos\theta$: $abe(\sin^2\theta + \cos^2\theta) = ab \cos\theta$: $abe(\sin^2\theta + \cos^2\theta) = ab \cos\theta$: $abe(\sin^2\theta + \cos^2\theta) = ab \cos\theta$	1	*
(iii) coordinates of P (ae, Lsino) [coso=e	7	
1. focal chord through P males an angle of 90° with x axis as	1	
four (ae, o)		

际自由 Page no. 11 of 20

Course: HSC Mathematics Extension 2

Page no/2 of 20

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions y	Marks	Comments
Din Pto M so that M is foot of		
perpendicular to 2 axis from	1	
Coordinate of M (a(a),0) Coordinate of T (&,0)	•	
$now \frac{RP}{RT} = \frac{om}{oT} \left(ratio of infercepts \right)$	1	
$\frac{RP}{RT} = \frac{a\cos\theta}{a_e}$		
$\frac{RP}{RT} = e\cos\theta$ * but $\cos\theta = e\left(\text{from (ii)}\right)$		
$\frac{RP}{RT} = e^{2} \implies RP = e^{2}RT$ as required.	1	
b). $p(ct, \frac{c}{\epsilon})$		

Marking Scheme for Task: Trial Examination	Year: 2007	
Solutions	Marks	Comments
$ (1) y = \frac{c^2}{x} \frac{dy}{dx} = -\frac{c^2}{x^2} $		
at $P \frac{dy}{dx} = -\frac{c^2}{c^2t^2}$		
$= -\frac{1}{t^2}$ igradient of normal at $l = t^2$	1	
i equation of normal y +		
$ty - c = t^3x - ct^4$ 12. $t^3x - ty = ct^4 - c$	I	
(11) Set $y = \frac{C^2}{X}$ into normal		
$t^3x - \frac{tc^2}{x} = ct^4 - c$ $t^3x^2 - tc^2 = ct^4x - cx$		
$t^3x^2 - (ct^4 - c)x - tc^2 = 0$	1	
$X = (ct^{4}-c)^{2} + \sqrt{(ct^{4}-c)^{2}+4t^{4}}$ $2t^{3}$		
$= \frac{(ct^{4}-c)^{+} \sqrt{(ct^{4}+c)^{2}}}{2t^{3}}$		
$= ct, -\frac{c}{t^3}$		
$y = \frac{C}{t}, ct^3$		
$\Rightarrow Q\left(-\frac{c}{t^2}, -ct^3\right)$	*	
(iii) gradient $PR = \frac{CE}{ct} = \frac{L}{t^2}$		
gradient $\Delta R = -\frac{Ct^3 + \frac{C}{t}}{-\frac{C}{t^3} + Ct}$		
$= \frac{t^3}{-ct^4 + c} \times \frac{t^3}{ct^4 - c}$ $= -t^2$		
= -t2		

Page no. 13 of 20

Marking Scheme for Task: Trial Examination

Year: 2007

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions	Marks	Comments
Swestions b) (iii) i. $PR \perp QR$ $(M, M_x = -1)$ i. $\triangle PQR$ is right angled at R By Pythagoras $PR^2 = PR^2 + RQ^2$	1	
Question 6 a) $y = x^2$ length of base of isosceles $\Delta = 2x$: height of isosceles $\Delta = 2x$	1 1	
1. : area of typical slice = 2x"	l	,
New SV = 2x2 Sy		oops: a bit easy
$V = \sum_{y=0}^{4} 2x^{2} Sy \text{but } y = x^{2}$!	for 5 marks
$= \int_0^4 2y \ dy$		
=		
= 16 U ³	1	
1.). $f(x) = (r^2 - x^2)^{\frac{1}{2}}$ $f(x) = \frac{1}{2}(r^2 - x^2)^{\frac{1}{2}} - 2x$	1	
$=\frac{-x}{\sqrt{r^2-x^2}}$ $\therefore L = \int_0^r \sqrt{1 + \frac{x^2}{r^2-x^2}} dx$		
$=\int_0^r \sqrt{\frac{r^2}{r^2-x^2}} dx$		
$= \int_0^r \frac{r}{\sqrt{r^2 - x^2}} dx$	+	

Course: HSC Mathematics Extension 2

Page no. 14 of 20

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions	Marks	Comments
Question 6 d) = r [sin-1 x]		
$= r \left[\sin^2 (1 - \sin^2 0) \right]$	1	
· leno H = IIC		
= 2TTC ; quarter circle		
c) (x,y)		
Sx 1+		
(1) $\delta V = \pi \left[R^2 - \Gamma^2 \right] h$ = $\pi \left[(4-x)^2 - (4-x-6x)^2 \right] = 4$ for $2\pi \times 4$	1	
$= 2\pi \left[(4-x)^{2} - (4-x)^{2} + 2(4-x) \delta x - \delta x^{2} \right] = 2\pi \left[2(4-x) \delta x \right] 4 (ignoring (\delta x)^{2})$		
= 411 (4-x) y 8x		
$V = 4\pi \int_{-2}^{2} (4-x) \frac{\sqrt{3}}{2} \sqrt{4-x^{2}} dx \qquad \frac{\text{Note}}{y^{2} = 3(1-\frac{2c^{2}}{4})}$	1	
$= 2\pi\sqrt{3} \int_{-2}^{2} (4-x^{2}) \frac{1}{4-x^{2}} dx = \frac{3}{4} (4-x^{2})$ $y = \frac{3}{2} \sqrt{(4-x^{2})}$		
$= 8\sqrt{3}\pi \int_{-2}^{2} \sqrt{4-x^{2}} dx - 2\sqrt{3}\pi \int_{-2}^{2} x \sqrt{4-x^{2}} dx$	1	

. Ariasah

Course: HSC Mathematics Extension 2

Page no 15 of 20

swolders.

Course: HSC Mathematics Extension 2

Page no. 16 of 20

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions	Marks	Comments
Question 6 c) (1) $\therefore V = 8\sqrt{3}\pi \int_{-2}^{2} \sqrt{4-x^2} dx$	1	
* Note $\int_{-2}^{2} x \sqrt{4-x^{2}} dx = 0$	add function)	
: V = 8/2 IT. 1 TT 22 (Cemic	circle)	
= 16J3 TT m3	1	
$\frac{\text{Suestion 7: a)(i)}}{\text{vision}} \ddot{x} = -\left(10 + \frac{1}{40}v^2\right)$		
$\frac{\partial u}{\partial x} = -\left(10 + \frac{1}{40}v^{2}\right)$		
$\frac{1}{9} \frac{1}{40} v^2 \qquad \frac{1}{40} v^2 = -\left(\frac{400 + v^2}{40}\right)$,	
$u=20 \times = 0$: $-dx = \frac{40 V}{400 + V^2} dV$		
at greatest height $-\int_{0}^{\chi} dn = \int_{20}^{0} \frac{40V}{400+V^{2}} dV$ $-\chi t = \left[20/n\left(400+V^{2}\right)\right]_{20}^{0}$		
$-x = 20 \ln 400 - 20 \ln 800$		
$x = 20 \ln 2$ $= 20 \log 2$	1	
$ (11) \qquad \frac{dv}{dt} = -\left(\frac{400+v^2}{40}\right)^2 $	1	
$\frac{dt}{dv} = -\frac{40}{400 + v^2}$ Integrating : $t = -\int_{400 + v^2}^{0} 4v$		
Integrating : $t = -\int_{400 + v^2}^{40} dv$		

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions	Marks	Comments
Question 7 a)(ii) :: $t = -\left[2 + an^{-1} \frac{v}{20}\right]_{20}^{\circ}$		
$t = -\left[0 - \frac{\pi}{2}\right]$		
$t = \frac{\pi}{2}$	1	
	1	
$\frac{dv}{du} = \frac{4\infty - v^2}{40r}$		
$\frac{dx}{dv} = \frac{40v}{400 - v^2}$	1	
$\int_0^x dx = \int_0^x \frac{40v}{400 - v^2} dv$		
but from part (i) body falls distance doln.	2	
$\int_{0}^{20/nx} dx = \int_{0}^{v} \frac{40v}{400 - v^{2}} dv$	1	
$20 \ln 2 = -20 \int_{0}^{\infty} \frac{-2v}{400 - v^{2}} dv$		
$20/n2 = -20 \left[\ln (400 - v^2) \right]_0^{-1}$		

 $20\ln 2 = -20 \ln(400-v^2) + 20\ln 400$ $(-20) : \ln 2 = -\ln(400-v^2) + \ln 400$ $\ln (400-v^2) = \ln 400 - \ln 2$ $\ln (400-v^2) = \ln 200$

: 400 - V2 = 200

· 图5古花园66

Course: HSC Mathematics Extension 2

Page no 17of 20

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions	Marks	Comments
Question 7 b)(1) $I_n = \int_0^1 x(x^2-1)^n dx$		
$u = (x^2 - 1)^n \qquad v = \frac{x^2}{2}$		
$\mu' = 2nx(x-1)^{n-1} v' = x$	1	
$I_n = \left(\frac{x^2}{2}(x^{-1})^n\right)_0^1 - \int_0^1 \frac{x^2}{2} 2nx(x^{-1})^{n-1} dx$	l l	
$= 0 - n \int_0^1 x^3 (x^2 - t)^{n-1} dx$		
$= -n \int_0^1 \frac{x^3 (x^2 - 1)^n}{x^2 - 1} dx$		
$=-n\int_0^1 \left(x+\frac{x}{x^2-i}\right)(x^2-i)^n dx$	1	
$: I_{\eta} = -n \int_{0}^{1} x (x^{2}-1)^{n} dx - n \int_{0}^{1} x (x^{2}-1)^{n-1} dx $		
$= -n I_n - n I_{n-1}$		
: (n+1)In = -n In-1		
$: I_n = -\frac{n}{n+1} I_{n-1} \text{for } n \ge 1$!	
$(1) I_n = \frac{-n}{n+1} I_{n-1}$		
	1	
$= (-1)^n \cdot \frac{1}{2(n+1)} n \ge 0$		
Note $I_0 = \int_0^1 x(x^2)^n dx$ = $\left(\frac{x^2}{x^2}\right)_0^1$		
$=\frac{1}{2}$		

Course: HSC Mathematics Extension 2

i shailini

Page no. of

Marking Scheme for Task: Trial Examination		Year: 2007
Solutions	Marks	Comments
Question 7 b) (11) $I_0 = \frac{1}{2}$		
$T_1 = -\frac{1}{4}$		
I2 = 6		
$I_3 = \frac{1}{8}$		
$I_4 = \frac{1}{10}$		
Clearly (even) In >0		
(odd) Ian+1 < 0		
$: I_{2n} > I_{2n+1}$		
OR From (11) $I_{2n} = \frac{(-1)^{2n}}{2(2n+1)}$		
$= \frac{1}{2(2n\pi)}$ $> 0 \text{for } n \ge 0$		
$I_{2n+1} = \frac{\left(-1\right)^{2n+1}}{2(2n+2)}$		
$= \frac{-1}{4(n+1)}$ $< 0 \text{for } n \ge 0$		
$: I_{2n} > I_{2n+1}$		

Page no. 18 of 20

Course: HSC Mathematics Extension 2

Satisfyrid :

Page no 19 of 20

Marking Scheme for Task: Trial Examination

Year:	2007
i cai.	2007

Marking Orland Compared Military Control	,	V
Marking Scheme for Task: Trial Examination Solutions	Marks	Year: 2007 Comments
Question 8: a) (i) $\frac{x}{x^2+4} \leq \frac{1}{4}$	TTACK AND	
1.e. Prove $\frac{\chi}{\chi^2 + \mu} - \frac{1}{\mu} \leq 0$	1	
$\angle HS = \frac{4x - x^2 - 4}{4(x^2 + \epsilon)}$		
$= -\frac{(x^2-4x+4)}{4(x^2+4)}$		
$= \frac{-\left(x-2\right)^2}{4\left(x^2+4\right)}$		
≤ o for all x≥0	1	
$\int_{0}^{\frac{x}{x^{2}+4}} dx \leq \int_{0}^{x} \int_{0}^{x} dx$		
$\left\ \left(\frac{1}{2} \ln(x^2 + \epsilon) \right)^{\alpha} \right\ \leq \left[\frac{1}{4} \right]_0^{\alpha}$	1	
$\frac{1}{2}\ln\left(k^{2}+4\right)-\frac{1}{2}\ln 4 \leq \frac{2}{4}$		
$\frac{1}{2} \ln \left(\frac{\lambda^2 + 4}{4} \right) \leq \frac{\lambda}{4}$ $\ln \left(\frac{\lambda^2 + 4}{4} \right) \leq \frac{\lambda}{2}$		
$\frac{1}{4} \left(\frac{1}{4} \right) \leq \frac{1}{2}$ $\frac{1}{4} \leq \frac{1}{4} \leq \frac{1}{4}$ $\frac{1}{4} \leq \frac{1}{4} \leq \frac{1}{4}$ $\frac{1}{4} \leq \frac{1}{4} \leq \frac{1}{4}$		
$2^{2}+4 \leq 46^{2}$ $1 = 2^{2} \geq 2^{2}+1$ $1 = 2^{2} \geq 2^{2}+1$,	
: e² = 4 d≥o		

Solutions Solutions	Marks	Comments
Question 8: b.		
(i) $a = a^{1} - (\frac{a}{2})^{2}$ $h^{2} = a^{2} - \frac{a^{2}}{4}$		
$h^2 = a^2 - \frac{a^2}{4}$ $h^2 = \frac{3a^2}{4}$		
$h = \sqrt{3} \frac{a}{2}$	1	
(ii) A Since ACYZ III ACRS		
$\frac{y}{ D } \geq \frac{1}{4} \qquad \frac{y^2}{ RS } = \frac{CD}{CE}$ $\frac{y}{ S } = \frac{RS}{CE} \cdot \frac{CD}{CE}$		
$R = \frac{1E}{S} $ $\therefore yz = \frac{RS.CD}{CE}$	ļ	
$=\frac{ax}{b}$	2	
(iii) 2 as the edges of the solid ane linear than		
h = mx + c	1	
when $x = 0$ $h = \sqrt{3}q$ (par	<i>+(i))</i>	
$ \begin{array}{ccc} x = l & h = a \\ \vdots & \overline{3}a = m.0 + C \end{array} $		
,		
$a = mb + \sqrt{3}a$ $\therefore m = a - \sqrt{3}a = 2a - \sqrt{3}a$ $2a + \sqrt{3}a = 2a - \sqrt{3}a$	1	
· h = 20-032 10 7 32		
$= \frac{a}{2} \left[(2 - \sqrt{3}) \frac{x}{4} + \sqrt{3} \right]$		
$=\frac{a}{2}\left(\sqrt{3}+(2-\sqrt{3})\frac{x}{4}\right)$	1	

Page no 20 of 20

Marking Scheme for Task: Trial Examination

Questions: (iv) area of trapezium = 4 [a+6]	Comments
, , ,	
$A = \frac{4}{4} \left[\sqrt{3} + (2 - \sqrt{3}) + \sqrt{2} \right] \left[a + \frac{ax}{4} \right]$	
$\pm \frac{a}{4} \left[\frac{6\sqrt{3} + (2-\sqrt{3})x}{6} \right] \left[\frac{ab + ax}{6} \right]$	
$= \frac{a}{4\ell} \left[\ell \sqrt{3} + \left(2 - \sqrt{3} \right) X \right] \frac{a}{\ell} \left[\ell + X \right]$	
$= \frac{a^{2}}{4b^{2}} \left[(2-\sqrt{3})x + b\sqrt{3} \right] \left[b + x \right]$	
$(V) V = \int_{0}^{L} \frac{a^{2}}{4b^{2}} [(2-\sqrt{3})x + b\sqrt{3}](b+x) dx$	
$= \frac{a^{2}}{4b^{2}} \int_{0}^{b} \left(b(2-\sqrt{3})x + (2-\sqrt{3})x^{2} + b\sqrt{3} + bx\sqrt{3} \right) da$	
$= \frac{a^{2}}{4b^{2}} \int_{0}^{4} 2bx - \sqrt{3}x + (2-\sqrt{3})x + 2\sqrt{3}x + 2\sqrt{3}x dx$	
$= \frac{a^2}{46^2} \left[46x^2 + (2-\sqrt{3})x^3 + 6\sqrt{3}x \right]_0^4$	
$=\frac{a^{2}}{4t^{2}}\left[t^{3}+2t^{3}-\frac{\sqrt{3}t^{3}}{3}+t^{3}\sqrt{3}\right]$	
$=\frac{3}{40}\left(1+\frac{2}{3}-\frac{\sqrt{3}}{3}+\sqrt{3}\right)$	
$=\frac{\partial l}{\partial t}\left[\frac{3+2-\sqrt{3}+3\sqrt{3}}{3}\right]$	
$=\frac{dl}{4}\left(\frac{5+2\sqrt{3}}{3}\right) O^{3}$	