Enfoque de red poros para la simulación de procesos de inyección de agua de baja salinidad (LSWF): efecto de la salinidad en propiedades roca-fluido

Edgar G. Martínez-Mendoza¹, Martín A. Díaz-Viera²

¹Posgrado en Ciencias de la Tierra edgar.g.martinez@hotmail.com

²Instituto Mexicano del Petróleo mdiazv@imp.mx

5ta Reunión Anual del Capítulo Mexicano de Interpore INEEL, 9 de noviembre de 2018

- Objetivos
- 2 Modelo de red de poros
- 3 Flujo y transporte en redes de poro
- 4 Flujo de trabajo para el estudio de LSWF
- 5 Caso de estudio

Objetivos

Objetivos

- Red de poros como herramienta en ingeniería de yacimientos
- Metodología para el estudio de LSWF a escala de poro
- Efectos de salinidad en presión capilar y permeabilidad relativa

Modelo de red de poros

Modelo de red de poros

Figura 1: Red de poros para caliza Ketton (Blunt et al., 2013).

Modelo de red de poros

Principales elementos

Flujo y transporte en redes de poro

Flujo en redes de poro: Hipótesis

Hipótesis generales

- Fluido newtoniano e incompresible
- Flujo monofásico, laminar y uniforme
- Tubería circular uniforme
- No hay reacción fase-fase, fase-medio
- No hay puntos fuente/sumidero

Flujo en redes de poro: Modelo matemático

Relación Hagen-Poiseuille

Balance de masa

$$Q = -\frac{\pi r^4 \Delta p}{8\mu L} \qquad (1) \qquad \qquad \sum q_{ij} = 0 \qquad (2)$$

Considerando conductancia para una garganta cilíndrica:

$$\kappa_{ij} = \frac{\pi r^4}{8\mu L} \tag{3}$$

El modelo de flujo para un MRP es

$$\sum q_{ij} = \sum \kappa_{ij} (p_i - p_j) = 0$$
 (4)

Transporte en redes de poro: Hipótesis

Hipótesis generales

- Cada poro y garganta se considera como un volumen de control.
- El transporte es monocomponente
- Existe una componente disuelta en el fluido
- Balance de masa del componente
- Advección y difusión
- No afecta a flujo

Transporte en redes de poro: Modelo matemático

• Para poros (i)

$$V_i \frac{dc_i}{dt} + \sum_{j \in I_i}^{z_i} q_{ij} c_i - \sum_{j \in I_i}^{z_i} q_{ij} c_{ij} = \sum_{j \in I_i}^{z_i} D_e A_{ij} \frac{c_{ij} - c_i}{l_{ij}}, \quad \forall \ i \in [1, N]$$
 (5)

• Para gargantas (ij)

$$V_{ij}\frac{dc_{ij}}{dt} + q_{ij}c_i + q_{ij}c_j - 2q_{ij}c_{ij} = D_e A_{ij}\frac{c_i - c_{ij}}{l_{ij}} + D_e A_{ij}\frac{c_j - c_{ij}}{l_{ij}}, \quad \forall i \in [1, N]$$
(6)

Donde, V es volumen, c es concentración de sal, q es flujo volumétrico, D_e es difusión efectiva, A y l son área de la sección transversal y longitud, respectivamente. El total de poros es N e I_i son los índices de los poros conectados al poro i.

Implementación del modelo

OpenPNM, Open Pore Network Modeling Software para modelación de red de poros (Gostick et al., 2016)

Figura 2: Modelo de flujo y transporte implementado en OpenPNM 1.6

Objetivos

- -Flujo secuencial:
- Alta salinidad o baja salinidad
- -Presión en poros
- -Flujo volumétrico en gargantas

Objetivos

-Transporte secuencial:

Alta salinidad ightarrow baja salinidad

-Concentración de sal (c) en poros y gargantas

- 2 Flujo
- 3 Transporte
- ÁNGULO DE CONTACTO
- 5 Presión capilar
- 6 Permeabilidad relativa

Objetivos

$$\theta(c) = \theta_{HS} + \frac{c - c_{HS}}{c_{HS} - c_{LS}} (\theta_{HS} - \theta_{LS})$$
(7)

Donde, θ_{HS} es el ángulo de contacto para alta salinidad, c_{HS} . θ_{LS} es el ángulo de contacto para baja salinidad, c_{LS} (Aladasani et al., 2014).

- 3 Transporte
- 4 Ángulo de contacto
- 5 PRESIÓN CAPILAR
 - 6 Permeabilidad relativa

Objetivos

- -Desacoplado a flujo y transporte
- -Drene primario
- -Agua de inyección: mojante
- -Aceite: no mojante

Objetivos

- -Secuencia de invasíon
- -Valores (s_w, p_c)
- -Modelo de capilares:

Rodríguez and Teyssier (1973)

Caso de estudio

- Imperial College London y literatura
- Carbonato genérico C2 (ICL, 2014)
- Porosidad: 24.4 %
- Permeabilidad relativa: 38 [mD]
- Longitud : 2E-03 [m]

Figura 3: Imagen micro-CT para el carbonato C2.

Caso de estudio: Red y geometría

4311 poros (esferas); 7688 gargantas (cilindros)

Figura 4: Modelo de red de poros para el carbonato C2

Caso de estudio: Fluidos

- Agua de formación → Fluido de alta salinidad: HS
- ullet Agua de mar \longrightarrow Fluido de baja salinidad: LS
- ullet Etapa: 7000 [s], $\Delta t=1[s]$
- \bullet $D_e = 2.15 \times 10^{-9} [m^2/s]$ (Qiao et al., 2016)

Cuadro 1: Propiedades de los fluidos considerados (Yousef et al., 2011)

Propiedad	Agua de formación	Agua de mar
TIF [dina/cm]	39.3	33.9
Ańgulo de contacto (°)	92	80
Viscosidad [cP]	0.5	0.3
Concentración de sal [ppm]	213,000	57,600
Saturación de aceite residual	25 %	10 %

Caso de estudio: HS en la red

HS: 213,000 [ppm]

Figura 5: Concentración de sal [ppm] en la red para la etapa de alta salinidad.

Caso de estudio: LS en la red

LS: 57,600 [ppm]

Figura 6: Concentración de sal [ppm] en la red para la etapa de baja salinidad.

Caso de estudio: Ángulo de contacto

HS: 92°; LS: 80°

Figura 7: Ángulo de contacto al término de las etapas de alta y baja salinidad.

Caso de estudio: Presión capilar

Figura 8: Presión capilar [Pa] al inicio (rojo) y término (azul) de la etapa de baja salinidad.

Caso de estudio: Presión capilar

Figura 9: Presión capilar [Pa] al inicio (rojo) y término (azul) de la etapa de baja salinidad.

Caso de estudio: Permeabilidad relativa

Figura 10: Permeabilidad relativa al inicio (rojo) y término (azul) de la etapa de baja salinidad.

Caso de estudio: Permeabilidad relativa

Figura 11: Permeabilidad relativa al inicio (rojo) y término (azul) de la etapa de baja salinidad.

Caso de estudio

Resultados del proceso LSWF en el carbonato C2:

Cuadro 2: Propiedades de presión capilar y permeabilidad relativa

Propiedad	HS	LS
Máxima p_c	24.8 [kPa]	25.0 [kPa]
Entrada p_c	-4.6 [kPa]	0.1 [kPa]
Saturación de agua residual (s_{wr})	26 %	25 %
Saturación de aceite residual (s_{or})	25 %	10 %
Extremo del agua (k_{rw}^0)	0.15	0.40
Extremo del aceite (k_{ro}^0)	0.9	0.9
s_w^{cross}	65 %	68 %
k_{ro}^{scross}	0.09	0.11

Conclusiones y observaciones

En este trabajo:

- Metodología: base para LSWF a escala de poro
- Herramienta: estimación p_c , k_r
- Salinidad en p_c y k_r : mojabilidad
- Información ©

Oportunidades:

- Rocas del país: areniscas y carbonatos
- Otros mecanismos
- Multiescala

¡Gracias por su atención!

Edgar G. Martínez-Mendoza edgar.g.martinez@hotmail.com

Referencias I

- Aladasani, A., Bai, B., Wu, Y.-S., and Salehi, S. (2014). Studying low-salinity waterflooding recovery effects in sandstone reservoirs. *Journal of Petroleum Science and Engineering*, 120(1):39–51. DOI: https://doi.org/10.1016/j.petrol.2014.03.008.
- Blunt, M., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., and Mostaghami, P. (2013). Pore-scale imaging and modeling. *Advances in Water Resources*, 51(1):197-216. DOI: https://doi.org/10.1016/j.advwatres.2012.03.003.
- Gostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M. A., Day, H., Spellacy, B., Sharqawy, M. H., Bazylak, A., Burns, A., Lehnert, W., and Putz, A. (2016). Openpnm: A pore network modeling package. *Computing in Science and Engineering*, 18(4):60–74. DOI: https://doi.org/10.1109/MCSE.2016.49.
- ICL (2014). Imperial college consortium on pore-scale modelling: C2 carbonate. DOI: https://figshare.com/articles/C2_carbonate/1189258.
- Qiao, C., Johns, R., and Li, L. (2016). Modeling low-salinity waterflooding in chalk and limestone reservoirs. *Energy Fuels*, 30(2). DOI: https://doi.org/10.1021/acs.energyfuels.5b02456.

Referencias II

Rodríguez, F. and Teyssier, J. (1973). Permeabilidades relativas en función de la presión capilar y las saturaciones efectivas. Subdirección de Tecnología de Explotación del Instituto Mexicano del Petróleo, Publicación 73 BH/121 del proyecto 2185.

Yousef, A. A., Al-Saleh, S. H., Al-Kaabi, A., and Al-Jawfi, M. S. (2011). Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs. *Society of Petroleum Engineers*, 14(5):1–16. DOI: https://doi.org/10.2118/137634-PA.