Способ представления графа в задаче о разбиении текста

Для представления графа в данной задаче можно воспользоваться характерной особенностью, а именно: символы всех входящих в разбиение подстрок связаны однонаправлено – от предыдущих к последующим.

Порядок и количество возможных подстрок подобно убывающей прогрессии. Тогда полное число ребер в графе разбиения равно сумме арифметической прогрессии по длине текста.

$$E = S_n = \frac{2 + (n-1)}{2} \cdot n, \quad n = length(text)$$
 (1)

Поскольку характер убывания определенный и постоянный ребра, графа можно закодировать в одномерном массиве длины 1+E (ячейка с индексом 0 не задействована для удобства индексации вершин).

u	0						1					2				
v	1	2	3	4	5	6	2	3	4	5	6	3	4	5	6	
	1	1		1			1	1	1			1	1			

При таком представлении можно добиться следующей сложности при доступе к ребрам и вершинам графа:

1. О(1) для определения индекса ребра:

$$i_E = F_E(u, v, n) = (v - u) + u \cdot n - \frac{u \cdot (u - 1)}{2}$$
 (2)

2. для поиска вершин $(u,v) = F_V(i_E,n)$ использовать двоичный поиск за $O(\log(n))$.