Appunti di Algebra 2

Github Repository: Oxke/appunti/Algebra2

Secondo semestre, 2024 - 2025, prof. Paola Frediani

I testi preferiti sono

- Algebra, di Michael Artin
- Algebra, di Herstein

1 Azioni di gruppi su insiemi

Chiameremo G un gruppo e S un insieme

Definizione 1.1: Azione di gruppo

Un'azione (sinistra) di G su S e un'applicazione

$$F: G \times S \to S$$

tale che

- i) F(e, s) = s per ogni $s \in S$
- ii) $\forall g,h \in G$ e $\forall s \in S$ vale F(g,F(h,s)) = F(gh,s)

Si usa anche la notazione F(g,s) =: g(s) che permette la scrittura più concisa

$$e(s) = s$$
 e $g(h(s)) = (gh)(s)$ $\forall s \in S, \forall g, h \in G$

Proposizione 1.1. Per ogni $g \in G$, l'applicazione $F_g : S \to S$ definita da $F_g(s) = F(g,s) = g(s)$ è una biiezione e in particolare

$$F_q^{-1} = F_{q^{-1}} (1.1)$$

Dimostrazione.

$$F_g \circ F_{g^{-1}}(s) = g(g^{-1}(s)) \stackrel{(ii)}{=} e(s) \stackrel{(i)}{=} s$$

e analogamente per l'altra composizione

Proposizione 1.2. L'applicazione $\psi: G \to S(S) = \{f: S \to S \text{ biunivoche}\}\ dove <math>S(S)$ il gruppo delle permutazioni di S è un omomorfismo di gruppi.

Dimostrazione.

$$\psi(gh) = F_{qh} \stackrel{(ii)}{=} F_q \circ F_h = \psi(g) \circ \psi(h)$$

Definizione 1.2: Azione fedele

Un'azione $F:G\times S\to S$ si dice **fedele** se ψ è iniettivo

Osservazione. Ovvero se e solo se $\text{Ker}\psi = \{e\} \iff (\psi(g) = \text{Id}_S \iff g = e)$

Esempio 1.1. Se S = G il gruppo stesso e sia

$$m: G \times G \to G$$
 con $m(g,h) = gh$

la moltiplicazione a sinistra. Allora m è un'azione sinistra, infatti

- i) m(e,h) = eh = h per ogni $h \in G$
- ii) m(gg',h)=(gg')h=g(g'h)=m(g,g'h) per ogni $g,g',h\in G$

Inoltre m è un'azione fedele, infatti

$$\psi(g)(h) = h \quad \forall h \in G \iff gh = h \implies g = e$$

Osservazione. Se G è un gruppo finito, con #G = n allora $S(G) \cong S_n$ e poiché ψ è iniettivo, $G \cong \psi(G) < S(G) \cong S_n$ il teorema di Cayley.

Esempio 1.2. Sempre con G = S possiamo considerare l'azione di coniugio

$$\varphi: G \times G \to G \quad \text{con} \quad \varphi(g,h) = ghg^{-1}$$

- i) $\varphi(e,h) = ehe^{-1} = h$ per ogni $h \in G$
- ii) $\varphi(gg',h) = (gg')h(gg')^{-1} = gg'hg'^{-1}g^{-1} = g(\varphi(g',h))g^{-1} = \varphi(g,\varphi(g',h))$

 $\psi:G\to S(G)$ e ${\rm Im}\psi={\rm Inn}(G)<{\rm Aut}(G).$ Non è necessariamente un'azione fedele, infatti

$$\operatorname{Ker}(\psi) = \{ g \in G : \forall h \in G \mid ghg^{-1} = h \} = Z(G)$$

da cui per il primo teorema di isomorfismo

$$G/Z(G) = \operatorname{Inn}(G)$$

Esempio 1.3. Con $G = S_n$ e $S = \{1, ..., n\}$ allora la funzione

$$(\sigma, i) \mapsto \sigma(i)$$

è ovviamente un'azione

Esempio 1.4. Preso $G \cong \mathbb{Z}/2\mathbb{Z} \cong \{1, \sigma\}$ con $\sigma^2 = 1$ e $S = \mathbb{C}$ allora la funzione

$$F: G \times \mathbb{C} \to \mathbb{C}$$
 con $F(1,z) = z$ e $F(\sigma,z) = \overline{z} \quad \forall z \in \mathbb{C}$

è un'azione.

Definizione 1.3: Orbita e Stabilizzatore

Sia $F:G\times S\to S$ un'azione di un gruppo G su S. Allora per ogni $s\in S$ si definisce **orbita** di s l'insieme

$$O_s = \{g(s) : g \in G\}$$

e si definisce **stabilizzatore** di s l'insieme

$$stab_s = \{ g \in G : g(s) = s \}$$

Esempio 1.5. Nell'esempio dell'azione di coniugio lo stabilizzatore di h è

$$stab_h = \{g \in G : ghg^{-1} = h\} = \{g \in G : gh = hg\} = C_G(h)$$

Proposizione 1.3. Le orbite O_s per un'azione di G sono classi di equivalenza per la relazione di equivalenza su S seguente:

$$S \sim S' \iff \exists g \in G : s' = g(s) = F(g, s)$$

 $Dimostrazione. \sim$ è in effetti una relazione di equivalenza, infatti:

- riflessiva: s = e(s)
- simmetrica: se s' = g(s) allora $s = g^{-1}(s')$ per la proposizione 1.1
- transitiva: se s' = g(s) e s'' = h(s') allora $s'' = h(s') = h(g(s)) \stackrel{(ii)}{=} (hg)(s)$

Ne segue chiaramente che
$$O_s = [s]_{\sim}$$
 e allora $S = \coprod_{s \in S} O_s$

Proposizione 1.4. $stab_s < G$

Dimostrazione. Supponiamo $g, h \in \operatorname{stab}_s$. Allora g(s) = h(s) = s, ne consegue che

$$F_{gh^{-1}}(s) = F_g(F_{h^{-1}}(s)) \stackrel{\text{(1.1)}}{=} F_g(F_h^{-1}(s)) = F_g(s) = s$$

Definizione 1.4: Azione transitiva

Un'azione $F:G\times S\to S$ si dice **transitiva** se per ogni $s,s'\in S$ esiste $g\in G$ tale che s'=g(s)

Proposizione 1.5. Sia $F: G \times S \to S$ un'azione di gruppo. Allora fissato un $s \in S$, consideriamo $O_s \subseteq S$ e $H:= \operatorname{stab}_s < G$. Allora esiste un'applicazione naturale biettiva

$$\Phi: G/H \longrightarrow O_s$$

 $gH \longmapsto \Phi(gH) = g(s) = F(g,s)$

Inoltre per ogni $C \in G/H$, $g(\Phi(C)) = \Phi(g(C))$ dove la prima azione è quella di G su O_s e la seconda è quella di G su G/H

Dimostrazione.

- Ben definita: se aH = bH allora $b^{-1}a \in H$ e quindi esiste un $h \in H$ tale che $b^{-1}a = h$ e quindi a = bh. Allora F(a, s) = F(bh, s) = F(b, F(h, s)) = F(b, s)
- Iniettiva: supponiamo che esistano $a,b\in G$ tali che $\Phi(aH)=\Phi(bH),$ allora F(a,s)=F(b,s) ma allora

$$F(b^{-1}a,s) = F(b^{-1},F(a,s)) = F(b^{-1},F(b,s)) = F(b^{-1}b,s) = F(e,s) = s$$

e quindi $b^{-1}a \in H \iff aH = bH$

- Suriettiva: per ogni $s' \in O_s$ esiste $g \in G$ tale che s' = g(s) e quindi $s' = g(s) = \Phi(gH)$

Corollario 1.5.1. Se G è un gruppo finito e ho un'azione $F: G \times S \to S$, allora per ogni $s \in S$ vale $\#O_s = [G: stab_s]$ o equivalentemente

$$\#G = \#O_s \cdot \#\mathrm{stab}_s$$

e inoltre

$$\#G = \sum_{[s] \in S} \#O_s$$

Corollario 1.5.2. Sia $F: G \times G \to G$ l'azione di coniugio $(g,h) \mapsto ghg^{-1}$. Ricordiamo che stab_a = C(a) e la formula delle classi si traduce in

$$\#G = \#C(a) \cdot \#O_a = \sum_{[g] \in G} \#O_g = \sum_{[g] \in G} \frac{\#G}{\#C(g)}$$

inoltre se $g \in Z(G)$ allora C(g) = G e dunque

$$#G = #Z + \sum_{[g] \in G \setminus Z} #O_g = #Z + \sum_{[g] \in G \setminus Z} \frac{#G}{#C(g)}$$
(1.2)

П

Teorema 1.6

Sia G un gruppo tale che $\#G = p^n$ con p primo. Allora $Z(G) \neq \{e\}$

Dimostrazione. Se $a \notin Z$ allora $C(a) = p^{n_a}$ con $n_a < n$ e quindi da

$$p^{n} = \#G = \#Z + \sum_{[g] \in G \searrow Z} \#\frac{p^{n}}{p^{n_{a}}}$$

ne deduciamo che $p \mid \#Z$

Corollario 1.6.1. Sia G un gruppo di cardinalità p^2 , con p primo. Allora G è abeliano.

Dimostrazione. Per il teorema sappiamo che $Z \neq \{e\}$ e quindi #Z = p oppure $\#Z = p^2$. Nel secondo caso G = Z e quindi è abeliano. Nel primo caso invece esiste un $a \in G \setminus Z$ e dunque $C(a) \neq G$. Ma

$$\{e\} < Z < C(a) < G$$

e quindi C(a) = Z per cardinalità che è assurdo perché $a \in C(a)$ e $a \notin Z$.

Esempio 1.6. Riprendendo l'esempio della moltiplicazione a sinistra $m: G \times G \to G$. Allora m è un'azione transitiva. Infatti per ogni $g', g'' \in G$ se prendo $h = (g')^{-1}g''$ allora $m(g',h) = g'(g'^{-1}g'') = g''$

Esempio 1.7. Se prendo GL(V) il gruppo lineare delle trasformazioni invertibili su uno spazio vettoriale V, allora l'azione $(T, v) \mapsto Tv$ è transitiva su $V \setminus \{0\}$

Teorema 1.7: Cauchy per gruppi abeliani

Sia G un gruppo abeliano finito e p un primo tale che $p \mid \#G$. Allora

$$\exists e \neq a \in G \text{ tale che } a^p = e$$

Dimostrazione. Procediamo per induzione su n = #G. Se 2 = #G allora $G = \{e, a\}$ e dunque $a^2 = e$. Supponiamo ora $\#G \ge 3$.

Se G non ha sottogruppi $e \neq H \neq G$ allora G è ciclico di ordine primo. Infatti se G non è ciclico allora esistono due elementi $e \neq g_1, g_2$ e $g_2 \notin \langle g_1 \rangle$. Ma allora $\{e\} \neq \langle g_1 \rangle \neq G$ è un sottogruppo. Dunque G è ciclico, inoltre è di ordine primo perché se così non fosse (ad esempio n = ab) allora $\{e\} \neq \langle g^a \rangle \neq G$ è un sottogruppo, con g tale che $\langle g \rangle = G$.

Allora se G non ha sottogruppi propri esistono p-1 elementi in G di ordine p. Supponiamo ora che G abbia qualche sottogruppo non banale. Sia N < G con $\{e\} \neq N \neq G$. Allora se $p \mid \#N$ per ipotesi induttiva si conclude. Se invece $p \nmid \#N$ allora G/N è un gruppo abeliano con #G/N < #G e quindi per ipotesi induttiva (infatti G/N ha ordine multiplo di p poiché N non lo è) esiste $bN \in G/N$, $b \notin N$ e tale che $b^p \in N$. Allora $b^{p\#N} = e$ e ci resta solo da dimostrare che $c := b^{\#N} \neq e$. Supponiamo che $c = b^{\#N} = e$. Sappiamo che MCD(p, #N) = 1 e dunque per

il teorema di Bézout esistono $\alpha, \beta \in \mathbb{Z}$ tali che $\alpha p + \beta \# N = 1$. Allora

$$bN = (bN)^{\alpha p + \beta \# N} = (bN)^{\alpha p} \cdot (bN)^{\beta \# N}$$

e poiché $b^p \in N$ e $b^{\#N} = e$ otteniamo che bN = N che è assurdo perché $b \notin N$. \square

Teorema 1.8: Cauchy

Sia G è un gruppo finito e p è un primo tale che $p \mid \#G$. Allora

$$\exists a \in G \text{ tale che } \#\langle a \rangle = p$$

Dimostrazione. Vogliamo procedere per induzione su #G. Se #G=2 è già dimostrato. Se esiste H < G tale che $p \mid \#H$ concludo per ipotesi induttiva.

Supponiamo dunque che p non divide l'ordine di nessun sottogruppo proprio di G. Nella formula delle classi (1.2), tutti i termini della serie sono divisibili per p, infatti se $a \notin Z$, $C(a) \neq G$ è un sottogruppo proprio e quindi $p \nmid \#C(a)$. Allora $p \mid \#Z$ ma quindi Z = G e quindi G è abeliano. Concludiamo con il teorema di Cauchy per gruppi abeliani.

Teorema 1.9: Sylow (prima parte)

Sia G un gruppo finito e p un primo tale che esiste $\mathbb{Z} \ni m \geq 1$ tale che $p^m \mid \#G$ ma $p^{m+1} \nmid G$. Allora

$$\exists H < G$$
tale che $\# H = p^m$

Dimostrazione. Procediamo per induzione su #G e su m. Se #G=2 allora H=G. Supponiamo ora #G > 2 e il risultato vero per ogni gruppo di cardinalità minore di G. Se m=1 allora ci si riduce al teorema di Cauchy. Supponiamo ora che $m\geq 2$ e $\#G \ge 3$.

Se esiste H < G proprio con $p^m \mid \#G$ allora concludo per ipotesi induttiva. Supponiamo dunque che $p^m \nmid \#K$ per ogni K < G proprio.

Come nel teorema di Cauchy usiamo (1.2), otteniamo che $p \mid \#Z$ e quindi per il teorema di Cauchy abbiamo che esiste $e \neq b \in Z$ tale che $b^p = e$. Allora $\langle b \rangle \subseteq G$.

Ma allora poiché $\#(G/\langle b \rangle) = \#G/p$ abbiamo che $p^{m-1} \mid \#(G/\langle b \rangle)$ e dunque per ipotesi induttiva esiste $\overline{S} < G/\langle b \rangle$ tale che $\# \overline{S} = p^{m-1}$. Allora $S = \pi^{-1}(\overline{S})$ è un sottogruppo di $G \in \overline{S} = S/B$. Ne consegue infine che $\#S = p^m$.

Osservazione. Il sottogruppo H viene detto p-sottogruppo di Sylow di G.

2 Gruppi di permutazioni

Definizione 2.1: Definizioni riguardo alle permutazioni

Una permutazione $\sigma \in S_n$ si dice **pari**se si può scrivere come prodotto di un numero pari di trasposizioni. Questo è ben definito perché esiste un unico omomorfismo $\varepsilon: S_n \to \mathbb{Z}/2 \ \varepsilon(\sigma) = 1$ se σ è una trasposizione. Tale omomorfismo è detto **segno** della permutazione.

Il **gruppo alterno** A_n è il nucleo di ε .

Poiché A_n ha indice 2 in S_n , $A_n extleq S_n$.

Osservazione (Ogni $\sigma \in A_n$ si può esprimere come prodotto di 3-cicli). Basta mostrare che ogni prodotto di 2 trasposizioni è scrivibile come prodotto di 3-cicli. Se $\sigma = (a\,b)(b\,c) = (a\,b\,c)$ è facile. Se invece $\sigma = (a\,b)(c\,d)$ disgiunti allora $\sigma = (c\,b\,a)(a\,c\,d)$. Notando che i 3-cicli sono pari si conclude anche che il sottogruppo generato dai 3-cicli è esattamente A_n

Esempio 2.1 (Per $n \geq 5$ tutti i 3-cicli sono tra loro coniugati in A_n). Prendiamo $\sigma = (i\,j\,k)$ e $\sigma' = (i'\,j'\,k')$ due 3-cicli. Allora esiste $\gamma \in S_n$ tale che $\gamma\sigma\gamma^{-1} = \sigma'$. Supponiamo $\gamma \not\in A_n$. Siccome $n \geq 5$ allora esistono $r,s \in \{1,\ldots,n\} \setminus \{i,j,k\}$. Ma allora $\theta = \gamma \cdot (r\,s) \in A \cap e$ $\theta\sigma\theta^{-1} = \sigma'$

Esercizio 2.1 2 elementi coniugati in S_5 ma non in A_5

Mostrare che (12345) e (21345) non sono coniugati in A_5 (ma lo sono in S_5).

Definizione 2.2: Gruppo semplice

G si dice **semplice** se gli unici sottogruppi normali sono $\{e\}$ e G stesso.

Teorema 2.1

 $\forall n \geq 5, A_n \text{ è semplice}$

Dimostrazione. Sia $N \subseteq A_n$ con $N \neq \{e\}$. Dimostriamo che N contiene un 3-ciclo σ allora N contiene tutti i coniugati di σ perché è normale.

Sia $\sigma \in N$ con $\sigma \neq 1$ con il massimo numero di punti fissi. Vogliamo mostrare che σ è un 3-ciclo.

Consideriamo l'azione $\langle \sigma \rangle \times \{1, \dots, n\} \rightarrow \{1, \dots, n\}$ data da $(\sigma^k, i) \mapsto \sigma^k(i)$. Siccome $\sigma \neq e$ esiste un i tale che $\sigma(i) = j \neq i$. Dunque $O_i \ni \{i, j\}$ e quindi $\#O_i \geq 2$.

1. Supponiamo che tutte le orbite di elementi non fissati da σ abbiano cardinalità 2. Poiché σ è pari ci devono essere almeno 2 orbite O_i, O_r di cardinalità 2 (porta ad assurdo)

Quindi esiste almeno un'orbita di $\langle \sigma \rangle$ con 3 elementi i, j, k. Se $\sigma = (i j k)$ ho finito. Altrimenti, σ necessariamente deve muovere altri due elementi, essendo pari. Siano essi r e s. Allora prendiamo $\tau = (k r s)$. A questo punto

$$\sigma' = \underbrace{\tau \sigma \tau^{-1}}_{\in N} \ \sigma^{-1} \in N$$

Allora tutti i punti fissi di σ lo sono anche per σ' e inoltre $\sigma'(j) = j$ che non è punto fisso di σ , dunque σ' ha più punti fissi di σ , assurdo.

Esempio 2.2 (A_4 non è semplice). $A_4 = \{e, (123), (132), (124), (142), (234), (243), (134), (143), (234), (243), (324)\}$ e $H = \{e, (12)(34), (13)(24), (14)(23)\}$ è normale in A_4 e non è $\{e\}$ o A_4 . Infatti è l'unione dell'intera classe di coniugio del tipo di due trasposizioni disgiunte (e l'identità).

Definizione 2.3: Gruppo risolubile

Un gruppo G si dice **risolubile** se esiste una catena di sottogruppi

$$\{e\} = G_0 \unlhd G_1 \unlhd G_2 < \cdots \unlhd G_n = G$$

dove tutti i quozienti G_{i+1}/G_i sono abeliani per ogni $i=0,\ldots,n-1$

Osservazione. Non è detto che $G_i \subseteq G$ per ogni i.

Esempio 2.3 (Gruppi abeliani). Ogni gruppo abeliano è risolubile, con la catena $\{1\} \leq G$

Esempio 2.4 (S_3) . S_3 è risolubile con la catena

$$\{1\} \subseteq A_3 \subseteq S_3$$

Infatti $S_3/A_3 \cong \mathbb{Z}/2\mathbb{Z}$ è abeliano e $A_3/\{1\} \cong \mathbb{Z}/3\mathbb{Z}$ è abeliano.

Esempio 2.5. D_n è risolubile con la catena

$$\{1\} \leq \langle r \rangle \leq D_n$$

Infatti
$$D_n = \langle r, s \mid r^n = 1, s^2 = 2, rs = sr^{-1} \rangle = \langle r \rangle \rtimes_{\varphi} \langle s \rangle$$

Esempio 2.6. S_4 è risolubile con la catena

$$\{1\} \supseteq V_4 \supseteq A_4 \supseteq S_4$$

con V_4 il gruppo di Klein (in particolare anche A_4 è risolubile). Notare l'osservazione precedente: Il sottogruppo $\langle (1\,2)(3\,4) \rangle$ è normale in V_4 ma non in S_4

Gruppi di ordine 12 Vogliamo mostrare che esistono esattamente 5 classi di isomorfismo di gruppi di ordine 12:

- $-\mathbb{Z}/12\mathbb{Z}$
- $-\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/6\mathbb{Z}$
- $-D_6$
- $-A_{4}$

$$-\left\langle x,y\mid x^{4}=1,y^{3}=1,xyx^{-1}=y^{2}\right\rangle =\mathbb{Z}/3\mathbb{Z}\rtimes\mathbb{Z}/4\mathbb{Z}$$

Dimostrazione. $12 = 2^2 \cdot 3$ quindi per il teorema di Sylow esiste un 2-Sylow e un 3-Sylow. Sia H un 2-Sylow e K un 3-Sylow. Allora $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ oppure $H \cong \mathbb{Z}_4$, $K \cong \mathbb{Z}_3$. Per il teorema di Sylow il numero r di 2-Sylow deve essere 1 oppure 3. Inoltre s il numero di 3-Sylow deve essere 1 oppure 4.

Ora necessariamente $H \subseteq G$ oppure $K \subseteq G$. Infatti supponiamo che K non sia normale in G, allora esistono 4 3-Sylow tra loro coniugati. Li chiamiamo K_1, K_2, K_3, K_4 . Allora poiché 3 è primo, $K_i \cap K_j = \{1\}$ per ogni $i \neq j$. Allora $\# \bigcup_{i=1}^4 K_i = 9$ ma quindi gli unici elementi che non prende sono 3 elementi. Allora H, un 2-Sylow, deve contenere tali 3 elementi. Essendocene uno solo, è normale. Ora possiamo procedere nei casi seguenti:

1. $H \subseteq G \in K \subseteq G$.

Allora $H \cap K = \{e\}$. HK < G e $\#HK = \frac{\#H \cdot \#K}{\#H \cap K} = 12$. Allora HK = G e $G \cong H \times K$ tramite l'isomorfismo $(h,k) \mapsto hk$

Allora ne consegue che $G \cong \mathbb{Z}_4 \times \mathbb{Z}_3 = \mathbb{Z}_{12}$ oppure $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_2 \times \mathbb{Z}_6$

2. K non è normale e $H \triangleleft G$.

Sia $\psi: G \to A(S) \cong S_4$. Allora $\operatorname{Stab}_{K_i} = \{g \in G: gK_ig^{-1} = K_i\} = N(K_i)$. Ma allora $\#N(K_i) = 3$ (formula delle classi) e poiché $K_i \subseteq N(K_i)$ e ha la stessa cardinalità, essi coincidono. Ma allora $\operatorname{Ker} \psi = \{e\}$ e ψ è iniettivo.

G ha 4 3-Sylow e dunque ha 8 elementi di ordine 3. Ma questi sono anche tutti i 3-cicli di S_4 , e dunque per cardinalità $G\cong A_4$

3. $K \triangleleft G$ e H non è normale.

Definizione 2.4

Sia G un gruppo abeliano di ordine p^n con p primo. Allora $G \cong A_1 \times \ldots A_k$ con $\langle a_i \rangle = A_i$ e $o(a_i) = p^{n_i}$ e $n_1 \geq n_2 \geq \cdots \geq n_k > 0$. Allora gli n_i si dicono invarianti di G e

$$\#G = p^n = p^{n_1} \cdot \dots \cdot p^{n_k}$$

gli invarianti danno una partizione di n.

Osservazione. $\forall m \in \mathbb{Z} \quad G(m) = \{x \in G : x^m = e\} \leq G$

Lemma 2.2. Sia G un gruppo abeliano come nella definizione precedente. Sia $m \in \mathbb{Z}$ tale che $n_t > m \ge n_{t+1}$. Allora

$$G(p^m) \cong B_1 \times \cdots \times B_t \times A_{t+1} \times \cdots \times A_k$$

dove B_i è ciclico di ordine p^m e

$$\#G(p^m) = p^u \quad u = tn + \sum_{j=t+1}^k n_j$$

Dimostrazione.

Corollario 2.2.1. Nelle ipotesi del lemma 2.2, $\#G(p) = p^k$

Teorema 2.3: Classificazione

Due gruppi abeliani di ordine p^n , con p primo sono isomorfi se e solo se hanno gli stessi invarianti.

Equivalentemente se G e G' sono due gruppi abeliani con $\#G = \#G' = p^n$ e

$$G \cong A_1 \times \dots \times A_k \quad A_i = \langle a_i \rangle \quad (o(a_i) = p^{n_i}) \quad n_1 \ge n_2 \ge \dots \ge n_k > 0$$

$$G' \cong A'_1 \times \dots \times A'_s \quad A'_i = \langle a'_i \rangle \quad o(a'_i) = p^{n'_i} \quad n'_1 \ge n'_2 \ge \dots \ge n'_s > 0$$

Dimostrazione.

 \Longrightarrow Se $G \cong G'$ allora $G(p) \cong G'(p)$ e dunque #G(p) = #G'(p) e quindi k = s. Supponiamo ora che esista un i tale che $n_i \neq h_i$. Sia t il primo tale intero, supponendo che $m := n_t > h_t$ Sia $H = \{x^{p^m} : x \in G\} \leq G$ perché G è abeliano e $H' = \{x'^{p^m} : x' \in G\} \leq G$ perché G' è abeliano. \iff se k = s e $n_i = n'_i \ \forall i$ allora

$$\begin{split} \Phi: G &\longrightarrow G' \\ (a_1^{\alpha_1} \dots a_k^{\alpha_k}) &\longmapsto \Phi((a_1^{\alpha_1} \dots a_k^{\alpha_k k})) = (a_1'^{\alpha_1} \dots a_k'^{\alpha_k}) \end{split}$$

Corollario 2.3.1. Il numero di classi di isomorfismo di gruppi abeliani di ordine p^n è il numero di partizioni di n

Corollario 2.3.2. Il numero di classi di isomorfismo di gruppi abeliani di ordine $p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ con p_i primi distinti è uguale a $p(\alpha_i) \cdots p^{\alpha_r}$ dove p^{α_i} è il numero di partizioni di α_i

Esempio 2.7. I gruppi abeliani di ordine 8 sono 3, infatti $8 = 2^3$ e 3 ha 3 partizioni:

- $-3=3 \implies C_8$
- $-3 = 2 + 1 \implies C_4 \times C_2$
- $-3 = 1 + 1 + 1 \implies C_2 \times C_2 \times C_2$

che per il teorema sono sicuramente non isomorfi e tutti.

Esempio 2.8. I gruppi abeliani di ordine 12 sono 2, infatti $12 = 2^2 \cdot 3$ e le partizioni di 2 sono 2: 2 = 2 e 2 = 1 + 1, e i gruppi sono $C_2 \times C_2 \times C_3$ e $C_4 \times C_3$

Esercizio 2.2

Elencare i gruppi abeliani di ordine 36

Esercizio 2.3

Supponiamo di avere un gruppo G di ordine $1125=3^2\cdot 5^3$ a tale che un suo 5-Sylow sia ciclico. Allora:

- Mostrare che G è abeliano
- Determinare tutte le classi di isomorfismo possibili per G

Esiste solo un 5-Sylow, infatti $1+5k \mid 3^2 \iff k=0$ e quindi è normale. Per questioni di ordine deve essere quindi che $G \cong H \rtimes_{\varphi} K$ con H il 5-Sylow e K un 3-Sylow. Allora sapendo che H è ciclico, $\operatorname{Aut}(G) = C_{125}^*$ che ha ordine $\varphi(125) = 100$. Allora $\operatorname{Im}(\varphi) < \operatorname{Aut}(H)$ ma inoltre $\operatorname{Im}(\varphi) < K$ e dunque necessariamente $\#\operatorname{Im}(\varphi) = 1$ e quindi $G \cong H \times K$ è abeliano.

Sapendo che K è abeliano di ordine 9 possiamo trovare le due possibili classi di isomorfismo, ossia C_{1125} e $C_{375}\times C_3$