Άσκηση 1 : Εύρεση ελαχίστου σε κυρτές συναρτήσεις μιας μεταβλητής

Τεχνικές Βελτιστοποίησης

Ονοματεπώνυμο: Μπαλαούρας Γεώργιος

AEM: 8861

E-mail: <u>mpalaourg@ece.auth.gr</u>

Εξάμηνο: 6° Ηλεκτρονικής

Άσκηση 1 : Εύρεση ελαχίστου σε κυρτές συναρτήσεις μιας μεταβλητής

Ο σκοπός αυτής της άσκησης είναι να συγκριθούν τα αποτελέσματα διαφορών αλγορίθμων αναζήτησης, που εφαρμόζονται σε **αυστηρά σχεδόν κυρτές** συναρτήσεις.

Μέθοδος Διχοτόμου: Η μέθοδος αυτή εκμεταλλεύεται ότι οι f(x), είναι αυστηρά σχεδόνκυρτές στο διάστημα [0,6] και έτσι περιορίζει το διάστημα στο $[\alpha,x_2)$ ή το $(x_1,\beta]$ ανάλογα με το $f(x_1) < f(x_2)$ ή $f(x_1) > f(x_2)$ αντίστοιχα. Ο περιορισμός συνεχίζεται έως ότου το διάστημα να έχει εύρος μικρότερο από l. Τέλος, για να χωρίζεται το διάστημα σε ίσα υποδιαστήματα, τα x_1 , x_2 επιλέγονται συμμετρικά σε απόσταση $\varepsilon > 0$ από την διχοτόμο του.

• Για σταθερό l = 0.01:

Δίνεται σαν όρισμα στο bisection_plot_for_fixed_lamda, διάφορες τιμές του ε και παρατηρούμε την αύξηση των κλήσεων της αντικειμενικής συνάρτησης. Για τιμές $\varepsilon \geq \frac{l}{2}$ ο αλγόριθμος δεν τερματίζει, ενώ για τιμές κοντά στο $\frac{l}{2}$ οι κλήσεις αυξάνονται σημαντικά.

Για το ε, ισχύει $0.0001 \le \varepsilon \le 0.0049$ και επιλέγονται 50 σημεία.

Εικόνα 1: Κλήσεις της αντικειμενικής συνάρτησης για διάφορα ε [Μέθοδος Διχοτόμησης]

• Για σταθερό $\varepsilon = 0.001$:

Αντίστοιχα με πριν, δίνεται σαν όρισμα στο bisection_plot_for_fixed_epsilon, διάφορες τιμές του l και παρατηρούμε την αύξηση των κλήσεων της αντικειμενικής συνάρτησης.

Εικόνα 2: Κλήσεις της αντικειμενικής συνάρτησης για διάφορα l [Μέθοδος Διχοτόμησης]

Για τις τιμές του l ισχύει, $0.0021 \le l \le 0.1$ και επιβεβαιώνεται ότι ο αριθμός των υπολογισμών της αντικειμενικής συνάρτησης είναι -ο μικρότερο θετικός ακέραιος- που ικανοποιεί την σχέση: $n \ge 2 * \log_2 \frac{b_1 - a_1}{l - 2\varepsilon}$.

Πιο συγκεκριμένα, σε κάθε κλήση της bisection. m υπολογίζονται τα x_1, x_2 και στην εντολή if $f(x_1) < f(x_2)$, έχουμε δύο κλήσεις της αντικειμενικής συνάρτησης. Έτσι, ο αριθμός των κλήσεων n συνδέεται με τον αριθμό των επαναλήψεων κ με την σχέση: $n=2*(\kappa-1)$, καθώς αρχικά $\kappa=1$.

Τέλος, τα διαγράμματα με τον περιορισμό του διαστήματος αναζήτησης $[a_{\kappa},b_{\kappa}]$ ανά επανάληψη κ , αποδεικνύουν ότι το εύρος του εκάστοτε διαστήματος περιορίζεται και συγκλίνει ο αλγόριθμος στην λύση.

Εικόνα 3: Περιορισμός του $[a_{\kappa}, b_{\kappa}]$ για 3 τιμές του l στην f_1 [Μέθοδος Διχοτόμησης]

Εικόνα 4: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_{2} [Μέθοδος Διχοτόμησης]

Εικόνα 5: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_2 [Μέθοδος Διχοτόμησης]

Μέθοδος Χρυσού τομέα: Η μέθοδος του χρυσού τομέα εκμεταλλεύεται την ίδια ιδιότητα των αυστηρά σχεδόν-κυρτών, στο διάστημα [0,6], f(x). Ωστόσο, σ' αυτή την μέθοδο τα δύο διαστήματα που προκύπτουν κατά την k-οστή επανάληψη, ικανοποιούν την σχέση:

$$\frac{b_{k+1} - a_{k+1}}{b_k - a_k} = \gamma , \mu \varepsilon \gamma \in (0,1)$$
 (1)

Αφού τα x_{1k} , $x_{2k} \in (\alpha_k, b_k)$ –άρα και στην ευθεία που ορίζεται- τότε μπορούμε να επιλέξουμε:

$$x_{1k} = a_k + (1 - \gamma)(b_k - a_k) \kappa \alpha i \, x_{2k} = a_k + \gamma(b_k - a_k)$$

Τέλος, γνωρίζουμε ότι σε κάθε νέα επανάληψη τα x_{1k+1} και x_{2k+1} είναι τέτοια ώστε $x_{1k+1}=x_{2k}$ ή $x_{2k+1}=x_{1k}$. Παράλληλα, ο περιορισμός του διαστήματος σε $[\alpha,x_2)$ ή $(x_1,\beta]$ ανάλογα με το $f(x_1)< f(x_2)$ ή $f(x_1)> f(x_2)$ και η (1) συνεπάγονται ότι $\gamma=0.618$.

Χρησιμοποιώντας το golden_section_plot_for_different_lamda, μελετάω τον αριθμό των κλήσεων της συνάρτησης για διαφορετικά l:

Εικόνα 6:Κλήσεις της αντικειμενικής συνάρτησης για διάφορα l [Μέθοδος Χρυσού Τομέα]

Όπου, επιβεβαιώνεται η θεωρητική σχέση $(0.618)^{n-1} \ge \frac{l}{b_1-a_1}$ όπου: n ο αριθμός των κλήσεων της αντικειμενικής συνάρτησης και l το τελικό εύρος.

Πιο συγκεκριμένα, την πρώτη φορά που καλείται η golden_section.m, υπολογίζονται τα x_1, x_2 και στην εκτέλεση της εντολής if $f(x_1) > f(x_2)$ έχουμε 2 κλήσεις τις f. Από την επόμενη, όμως, επανάληψη είτε το x_1 είτε το x_2 είναι γνωστά και έτσι έχουμε 1 κλήση της f.

Άρα,
$$n=2+\underbrace{1+1+\cdots+1}_{\kappa-1}-1=\kappa$$
, καθώς αρχικά $\kappa=1$.

Η σύγκλιση των άκρων του διαστήματος, ανά βήμα επανάληψης για κάθε συνάρτηση:

Εικόνα 7: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_1 [Μέθοδος Χρυσού Τομέα]

Εικόνα 8: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_2 [Μέθοδος Χρυσού Τομέα]

Εικόνα 9: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_3 [Μέθοδος Χρυσού Τομέα]

Μέθοδος Fibonacci: Μοιάζει σε μεγάλο βαθμό με την μέθοδο του χρυσού τομέα, ωστόσο τα υπο-διαστήματα κατά την k-οστή επανάληψη δεν συνδέονται με κάποια σταθερά, <u>αλλά</u> μεταβάλλονται, από επανάληψη σε επανάληψη, βασιζόμενα στην ακολουθία Fibonacci.

$$F_n = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ F_{n-1} + F_{n-2}, & n \ge 2 \end{cases}$$

Οι βοηθητικές μεταβλητές c, d ισούνται με :

$$c_{\kappa} = a_{\kappa} + \left(1 - \frac{F_{n-1-k}}{F_{n-k}}\right) * (b_{\kappa} - a_{\kappa}) \kappa \alpha i \ d_{\kappa} = a_{\kappa} + \frac{F_{n-1-k}}{F_{n-k}} * (b_{\kappa} - a_{\kappa})$$

Ακόμα μία σημαντική διαφορά είναι ότι για αυτή την μέθοδο είναι αναγκαίο να γνωρίζουμε εκ των προτέρων των αριθμό n των επαναλήψεων. Για να υπολογιστεί, εκμεταλλευόμαστε το γεγονός ότι σε κάθε επανάληψη το εύρος αναζήτησης μειώνεται κατά $\frac{F_{n-1-k}}{F_{n-k}}$. Άρα,

$$F_n \le \frac{b-a}{l} \le F_{n+1}$$
.

Σημείωση για τον κώδικα: Για τον υπολογισμό των αριθμών Fibonacci, δημιουργήθηκε το αρχείο fib.m. Για να μειωθεί ο χρόνος εκτέλεσης και για να μην γίνει χρήση πίνακα για την αποθήκευση, εκμεταλλεύομαι το γεγονός ότι η τιμή που ψάχνω εξαρτάται από τις δυο προηγούμενες, οι οποίες βρίσκονται στις μεταβλητές old_value και pre_old_value.

Χρησιμοποιώντας το fibonacci_mine_plot_for_different_lamda, μελετάω τον αριθμό των κλήσεων της συνάρτησης για διαφορετικά l:

Εικόνα 10: Κλήσεις της αντικειμενικής συνάρτησης για διάφορα l [Μέθοδος Fibonacci]

Σημείωση: Για την ακολουθία Fibonacci, δεν ακολούθησα την σύμβαση του βιβλίου (ότι F(0)=1), αλλά ότι F(0)=0. Έτσι, για τον αριθμό των υπολογισμών της αντικειμενικής συνάρτησης ισχύει ότι $F_{n+2}>\frac{b_1-a_1}{I}$, σχέση που επιβεβαιώνεται και από το παραπάνω διάγραμμα.

Πχ, για
$$l=0.1 \Rightarrow n=9$$
 και $F_{11}=89>\frac{b_1-a_1}{l}=60$

Πιο συγκεκριμένα, την πρώτη φορά που καλείται η fibonacci_mine.m, υπολογίζονται τα x_1,x_2 και στην εκτέλεση της εντολής if $f(\mathbf{x}_1) > f(\mathbf{x}_2)$ έχουμε 2 κλήσεις τις f. Από την επόμενη, όμως, επανάληψη είτε το x_1 είτε το x_2 είναι γνωστά και έτσι έχουμε 1 κλήση της f. Άρα, $2+\underbrace{1+1+\cdots+1}_{\kappa-1}-1=\kappa$, καθώς αρχικά $\kappa=1$. Ωστόσο, το block των εντολών του for $\mathbf{k}=\mathbf{1}$: \mathbf{n} - $\mathbf{1}$, θα εκτελεστεί έως ότου $\kappa=n-1$

Η σύγκλιση των άκρων του διαστήματος, ανά βήμα επανάληψης για κάθε συνάρτηση:

Εικόνα 11: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_1 [Μέθοδος Fibonacci]

Εικόνα 12: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_2 [Μέθοδος Fibonacci]

Εικόνα 13: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_3 [Μέθοδος Fibonacci]

Μέθοδος Διχοτόμου (με την χρήση παραγώγου): Σ΄ αυτήν την μέθοδο, εκμεταλλευόμαστε την κλίση της συνάρτησης, στο συγκεκριμένο σημείο x^* . Αν $\frac{df}{dx}\Big|_{x=x^*}=0$, τότε το σημείο είναι το ελάχιστο. Για $\frac{df}{dx}\Big|_{x=x^*}>0$ η συνάρτηση έχει θετική κλίση ("αυξάνει") και έτσι για $x>x^*$, ισχύει $f(x)>f(x^*)$ και το διάστημα θα ισούται με $[a,x^*)$. Τέλος, για $\frac{df}{dx}\Big|_{x=x^*}<0$ η συνάρτηση έχει αρνητική κλίση ("φθίνει") και έτσι για $x<x^*$, ισχύει $f(x)>f(x^*)$ και το διάστημα θα ισούται με $(x^*,b]$.

Χρησιμοποιώντας το bisection_der_plot_for_different_lamda, μελετάω τον αριθμό των κλήσεων της συνάρτησης για διαφορετικά l:

Εικόνα 14:Κλήσεις της αντικειμενικής συνάρτησης για διάφορα [[Μέθοδος Διχοτόμησης με Παράγωγο]

Γνωρίζουμε, ότι σε κάθε επανάληψη το διάστημα αναζήτησης μειώνεται κατά το ήμισυ. Έτσι, για την $i-o\sigma \tau$ ή επανάληψη, θα ισχύει: $\Delta_i=\frac{\Delta_0}{2^i}$, όπου Δ_0 το αρχικό διάστημα. Για την τελική επανάληψη n και με εύρος αναζήτησης l, πρέπει $\Delta_n \leq l \Rightarrow \frac{b_0-a_0}{2^n} \leq l \Rightarrow n \geq \log_2\left(\frac{b_0-a_0}{l}\right)$

Πιο συγκεκριμένα, κάθε φορά που καλείται η bisection_der.m, υπολογίζεται το x_{κ} και στην εκτέλεση της εντολής value = subs(df, x_1) έχουμε 1 κλήση της f. Άρα, $\underbrace{1+1+\cdots+1}_{\kappa}=\kappa$. Ωστόσο, το block των εντολών της for k=1:n, θα εκτελεστεί n φορές.

Η σύγκλιση των άκρων του διαστήματος, ανά βήμα επανάληψης για κάθε συνάρτηση:

Εικόνα 15: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_1 [Μέθοδος Διχοτόμησης με Παράγωγο]

Εικόνα 16: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_2 [Μέθοδος Διχοτόμησης με Παράγωγο]

Εικόνα 17: Περιορισμός του $[a_{\kappa},b_{\kappa}]$ για 3 τιμές του l στην f_3 [Μέθοδος Διχοτόμησης με Παράγωγο]

Συμπεράσματα:

Τρέχοντας όλους τους αλγορίθμους για τα ίδια δεδομένα, παρατηρούμε:

n, αριθμός επαναλήψεων και κ , κλήσεις αντικειμενικής συνάρτησης

<u>Μέθοδος</u>	<u>Τελικό εύρος αναζήτησης l</u>	Αριθμός υπολογισμών της αντικειμενικής συνάρτησης
Διχοτόμησης $\kappa=2*(n-1)$	0.0021	32
	0.01	20
	0.1	12
Χρυσού Τομέα $\kappa \ = \ n$	0.0021	18
	0.01	15
	0.1	10

Fibonacci	0.0021	17
$\kappa = n-1$	0.01	13
	0.1	9
Διχοτόμησης (με παράγωγο)	0.0021	12
$\kappa = n$	0.01	10
	0.1	6

Ο πιο αποδοτικός αλγόριθμος για την εύρεση του ελαχίστου, σε μια κυρτή συνάρτηση μιας μεταβλητής, είναι ο αλγόριθμος της διχοτόμησης με χρήση παραγώγου. Αν ο υπολογισμός της παραγώγου είναι απαγορευτικός, τότε ακολουθεί ο αλγόριθμος Fibonacci, που αν και πιο περίπλοκος εκμεταλλεύεται είτε το c είτε το d, που είναι γνωστά στην επόμενη επανάληψη, και μειώνει σημαντικά τις πράξεις. Τέλος, ακολουθεί ο αλγόριθμος του Χρυσού τομέα.

Τέλος, ένα μειονέκτημα των αλγορίθμων Fibonacci και Διχοτόμησης με χρήση παραγώγου, μπορεί να θεωρηθεί το γεγονός του υπολογισμού του n, δηλαδή, τον αριθμό των επαναλήψεων.