WHAT IS CLAIMED IS:

(I)

wherein:

1. A compound comprising the formula:

 $R_{1} = \left\{ \begin{array}{c} R_{2} \\ C \\ R_{3} \end{array} \right\}_{m} \left(\begin{array}{c} Y_{1} \\ Y_{1} \\ Y_{2} \\ Y_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{array} \right)_{m} \left(\begin{array}{c}$

 R_1 is a polymeric residue;

 Y_1 is O, S or NR_4 ;

M is O, S or NR₅;

E₁ is

 $\begin{array}{c|c}
 & Y_2 \\
 & C \\
 & C
\end{array}$ $\begin{array}{c|c}
 & C \\
 & R_6
\end{array}$

 E_{2-4} are independently H, E_1 or

- (a) is zero or one;
- (m) is zero or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 R_{2-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D₁ and D₂ are independently OH,

or a terminal branching group;

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

J is
$$NR_{12}$$
 or

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

 $R_{11\text{-}14}$ are independently selected from the group consisting of hydrogen, $C_{1\text{-}6}$ alkyls, $C_{3\text{-}12}$ branched alkyls, $C_{3\text{-}8}$ cycloalkyls, $C_{1\text{-}6}$ substituted alkyls, $C_{3\text{-}8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls, $C_{1\text{-}6}$ heteroalkyls, substituted $C_{1\text{-}6}$ heteroalkyls, $C_{1\text{-}6}$ alkoxy, phenoxy and $C_{1\text{-}6}$ heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

 B_1 and B_2 are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties.

2. The compound of claim 1, wherein R₁ further comprises a capping group A, selected from the group consisting of hydrogen, NH₂, OH, CO₂H, C₁₋₆ moieties and

$$E_{2} \xrightarrow{\begin{array}{c} E_{1} \\ C \end{array}} \begin{array}{c} Y_{1} \\ W \end{array} \begin{array}{c} X_{2} \\ C \end{array} \begin{array}{c} X_{2} \\ C \end{array} \begin{array}{c} X_{2} \\ X_{3} \end{array} \begin{array}{c} X_{2} \\ X_{3} \end{array} \begin{array}{c} X_{3} \\ X$$

3. A compound of claim 2, comprising the formula:

$$E_{2} - C - N - C - M$$

$$E_{3} \quad E_{4} \quad C - M$$

$$E_{3} \quad E_{4} \quad C - M$$

$$E_{2} - C - M$$

$$E_{2} - C - M$$

$$E_{3} \quad E_{4} \quad C - M$$

$$E_{2} - C - M$$

$$E_{3} \quad E_{4} \quad C - M$$

$$E_{3} \quad E_{4} \quad E_{3} \quad E_{4} \quad E_{3}$$

4. The compound of claim 1, wherein said terminal branching group comprises the formula:

$$E_{35}$$
 $N - C - E_{36}$
 E_{38}
 E_{37}

wherein

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\$$

 E_{36-38} are independently H, E_{35} or

$$\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

(n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 R_{6-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} hetero-

alkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D'1 and D'2 are independently OH,

or

$$\begin{array}{c|c}
(VII) & E_{45} \\
\hline
-N & C & -E_{46} \\
E_{48} & E_{47}
\end{array}$$

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

 R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

 B_1 and B_2 are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

$$\begin{array}{c|c}
 & & Y_2 \\
 & & \downarrow \\
 & C \\
 & C \\
 & R_6
\end{array}$$

$$\begin{array}{c|c}
 & & Y_2 \\
 & & C \\
 & & C \\
 & & N
\end{array}$$

 E_{46-48} are independently H, E_{45} or

$$\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

wherein

D''1 and D''2 are independently OH,

or

- 5. The compound of claim 3, Y_1 is O.
- 6. The compound of claim 1, wherein R₁ comprises a polyalkylene oxide residue.
- 7. The compound of claim 6, wherein R_1 comprises a polyethylene glycol residue.
- 8. The compound of claim 3, wherein R_1 comprises a polyethylene glycol residue.
- 9. The compound of claim 6, wherein R₁ is selected from the group consisting of

$$-C(=Y_6)-(CH_2)_f-O-(CH_2CH_2O)_x-A,$$

$$-C(=Y_6)-Y_7-(CH_2)_{f}O-(CH_2CH_2O)_{x}-A$$

$$-C(=Y_6)-NR_{23}-(CH_2)_f-O-(CH_2CH_2O)_x-A,$$

$$-(CR_{24}R_{25})_e$$
-O- $(CH_2)_f$ -O- $(CH_2CH_2O)_x$ -A,

$$-C(=Y_6)-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-C(=Y_6)-$$

$$-C(=Y_6)-Y_7-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-Y_7-C(=Y_6)-$$

$$-C(=Y_6)-NR_{23}-(CH_2)_{c}O-(CH_2CH_2O)_{x}-(CH_2)_{c}NR_{23}-C(=Y_6)-$$

$$-(CR_{24}R_{25})_e$$
-O- $(CH_2)_f$ -O- $(CH_2CH_2O)_x$ - $(CH_2)_f$ -O- $(CR_{24}R_{25})_e$ -, and

wherein: Y₆ and Y₇ are independently O, S or NR₂₃;

x is the degree of polymerization;

R₂₃, R₂₄ and R₂₅ are independently selected from among H, C₁₋₆ alkyls,

 C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls,

 C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

e and f are independently zero, one or two; and

A is a capping group.

10. The compound of claim 9, wherein R_1 comprises -O-(CH_2CH_2O)_x and x is a positive integer so that the weight average molecular weight is at least about 20,000.

- 11. The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 20,000 to about 100,000.
- 12. The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 25,000 to about 60,000.
- 13. A compound of claim 3, comprising the formula

14. The compound of claim 13, wherein D_1 is

15. The compound of claim 13, wherein D_1 is

$$E_{35}$$
 $-N_{---}C_{---}E_{36}$
 E_{38}
 E_{37}

- 16. The compound of claim 1, wherein L_1 is $(CH_2CH_2O)_2$.
- 17. The compound of claim 1, wherein L_2 is selected from the group consisting of $-CH_2$ -, $-CH(CH_3)$ -, $-CH_2C(O)NHCH(CH_3)$ -, $-(CH_2)_2$ -, $-CH_2C(O)NHCH_2$ -, $-(CH_2)_2$ -NH-, $-(CH_2)_2$ -NH-C(O)(CH₂)₂NH- and $-CH_2C(O)NHCH(CH_2CH(CH_3)_2)$ -.
- 18. A compound of claim 1, selected from the group consisting of:

wherein R₁ is a PEG residue and D is selected from the group consisting of:

where B is a residue of an amine or a hydroxyl- containing drug.

- 19. A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; *p*-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemcitabine
- 20. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D_1 is a residue of a biologically active moiety.
- 21. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.

22. The compound of claim 1, wherein Ar comprises the formula:

wherein R_{11} and R_{18-20} are individually selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy.

- 23. The compound of claim 22, wherein R_{11} and R_{18-20} are each H or CH_3 .
- 24. A method of preparing a polymer conjugate, comprising: reacting a compound of the formula (VIII):

$$H-J \longrightarrow L_{1} \longrightarrow L_{2} \longrightarrow C$$

$$R_{13} \longrightarrow R_{15} \longrightarrow K_{15} \longrightarrow K_{16}$$

$$R_{14} \longrightarrow R_{16}$$

$$R_{11} \longrightarrow K_{11}$$

$$(VIII)$$

wherein

(v) and (t) are independently 0 or a positive integer up to about 6;

J is
$$NR_{12}$$
 or $\frac{1}{\xi}$

L₁ and L₂ are independently selected bifunctional linkers;

 Y_{4-5} are independently selected from the group consisting of O, S and NR₁₇;

 R_{11-17} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B'₁ is a residue of a hydroxyl- or an amine-containing moiety; with a compound of the formula (IX):

$$R_{1} = \left\{ \begin{array}{c} R_{2} \\ C \\ R_{3} \end{array} \right\} \begin{array}{c} Y_{1} \\ M \end{array} \begin{array}{c} E_{5} \\ C \\ R_{8} \end{array} \begin{array}{c} E_{6} \text{ (IX)} \end{array}$$

wherein

 E_{6-8} are independently H, E_5 or

D₃ and D₄ are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

 R_1 is a polymeric residue;

 Y_1 is O, S or NR_4 ;

M is O, S or NR₅;

- (a) is zero or one;
- (m) is 0 or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ; and

 $R_{2\text{-}10}$ are independently selected from the group consisting of hydrogen, $C_{1\text{-}6}$ alkyls, $C_{3\text{-}12}$ branched alkyls, $C_{3\text{-}8}$ cycloalkyls, $C_{1\text{-}6}$ substituted alkyls, $C_{3\text{-}8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls, $C_{1\text{-}6}$ heteroalkyls, substituted $C_{1\text{-}6}$ heteroalkyls, $C_{1\text{-}6}$ alkoxy, phenoxy and $C_{1\text{-}6}$ heteroalkoxy;

under conditions sufficient to cause a polymeric conjugate to be formed.