12ML:: BASICS

Data

 $\mathcal{X} \subset \mathbb{R}^p$: p-dimensional **feature / input space** Usually we assume $\mathcal{X} \equiv \mathbb{R}^p$, but sometimes, dimensions may be bounded (e.g., for categorical or non-negative features.)

 $\mathcal{Y} \subset \mathbb{R}^g$: target space

e.g.: $\mathcal{Y}=\mathbb{R}$, $\mathcal{Y}=\{0,1\}$, $\mathcal{Y}=\{-1,+1\}$, $\mathcal{Y}=\{1,\dots,g\}$ with g classes

 $\mathbf{x} = (x_1, \dots, x_p)^T \in \mathcal{X}$: feature vector

 $y \in \mathcal{Y}$: target / label / output

 $\mathbb{D}_n = (\mathcal{X} \times \mathcal{Y})^n \subset \mathbb{D}$: set of all finite data sets of size n

 $\mathbb{D} = \bigcup_{n \in \mathbb{N}} (\mathcal{X} \times \mathcal{Y})^n$: set of all finite data sets

 $\mathcal{D}=\left(\left(\mathsf{x}^{(1)},y^{(1)}\right),\ldots,\left(\mathsf{x}^{(n)},y^{(n)}\right)
ight)\in\mathbb{D}_n$: data set with n observations

 $\mathcal{D}_{\mathsf{train}}$, $\mathcal{D}_{\mathsf{test}} \subset \mathcal{D}$: data for training and testing (often: $\mathcal{D} = \mathcal{D}_{\mathsf{train}} \ \dot{\cup} \ \mathcal{D}_{\mathsf{test}}$)

 $(x^{(i)}, y^{(i)}) \in \mathcal{X} \times \mathcal{Y} : i$ -th observation or instance

 \mathbb{P}_{xy} : joint probability distribution on $\mathcal{X} \times \mathcal{Y}$

 $\pi_k = \mathbb{P}(y = k)$: **prior probability** for class k In case of binary labels we might abbreviate: $\pi = \mathbb{P}(y = 1)$.

Model and Learner

Model / hypothesis: $f: \mathcal{X} \to \mathbb{R}^g$, $x \mapsto f(x)$ is a function that maps feature vectors to predictions, often parametrized by $\theta \in \Theta$ (then we write f_{θ} , or, equivalently, $f(x \mid \theta)$).

 $\Theta \subset \mathbb{R}^d$: parameter space

 $\theta = (\theta_1, \theta_2, ..., \theta_d) \in \Theta$: model **parameters** Some models may traditionally use different symbols.

 $\mathcal{H}=\{f:\mathcal{X}\to\mathbb{R}^g\mid f \text{ belongs to a certain functional family}\}:$ hypothesis space – set of functions defining a specific model class to which we restrict our learning task

Learner $\mathcal{I}: \mathbb{D} \times \Lambda \to \mathcal{H}$ takes a training set $\mathcal{D}_{\mathsf{train}} \in \mathbb{D}$ and produces a model $f: \mathcal{X} \to \mathbb{R}^g$, its hyperparameters set to $\lambda \in \Lambda$.

For a parametrized model this can be adapted to $\mathcal{I}: \mathbb{D} imes \mathbf{\Lambda} o \Theta$

 $\Lambda = \Lambda_1 \times \Lambda_2 \times ... \times \Lambda_\ell \subset \mathbb{R}^\ell$, where $\Lambda_j = (a_j, b_j)$, $a_j, b_j \in \mathbb{R}$, $j = 1, 2, ..., \ell$: hyperparameter space

 $oldsymbol{\lambda} = (\lambda_1, \lambda_2, ..., \lambda_\ell) \in oldsymbol{\Lambda}$: model hyperparameters

 $\pi_k(x) = \mathbb{P}(y = k \mid x) \in [0, 1]$: **posterior probability** for class k, given x

In case of binary labels we might abbreviate: $\pi(x) = \mathbb{P}(y = 1 \mid x)$.

 $h(x): \mathbb{R}^g \to \mathcal{Y}:$ **prediction function** for classification that maps class scores / posterior probabilities to discrete classes

 $\epsilon = y - f(x)$ or $\epsilon^{(i)} = y^{(i)} - f(x^{(i)})$: (i-th) **residual** in regression

yf(x) or $y^{(i)}f(x^{(i)})$: **margin** for (i-th) observation in binary classification (with $\mathcal{Y} = \{-1, 1\}$).

 \hat{y} , \hat{f} , \hat{h} , $\hat{\pi}_k(\mathbf{x})$, $\hat{\pi}(\mathbf{x})$ and $\hat{m{ heta}}$

The hat symbol denotes learned functions and parameters.

Loss and Risk

 $L: \mathcal{Y} imes \mathbb{R}^g o \mathbb{R}:$ loss function

L(y, f(x)) quantifies the "quality" of the prediction f(x) for a single observation x.

 $\mathcal{R}_{\mathsf{emp}}:\mathcal{H} o \mathbb{R}:$ empirical risk

The ability of a model f to reproduce the association between x and y that is present in the data \mathcal{D} can be measured by the summed loss:

$$\mathcal{R}_{\mathsf{emp}}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

Learning then amounts to **empirical risk minimization** – figuring out which model \hat{f} has the smallest summed loss.

Since f is usually defined by **parameters** θ , this becomes:

$$\hat{f} = rg \min_{oldsymbol{ heta} \in \Theta} \mathcal{R}_{emp}(oldsymbol{ heta})) = rg \min_{oldsymbol{ heta} \in \Theta} \sum_{i=1}^n L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta}
ight)
ight),$$

where $\mathcal{R}_{\mathsf{emp}}:\Theta o \mathbb{R}$.

Components of Learning

Learning = Hypothesis space + Risk + Optimization = $\mathcal{H} + \mathcal{R}_{emp}(\theta) + arg \min_{\theta \in \Theta} \mathcal{R}_{emp}(\theta)$

Regression Losses

Basic idea (L2 loss / squared error):

$$L(y, f(x)) = (y - f(x))^2 \text{ or } L(y, f(x)) = 0.5(y - f(x))^2$$

Convex and differentiable

Tries to reduce large residuals (loss scaling quadratically)

 $\hat{f}(x) = \text{mean of } y | x$

Basic idea (L1 loss / absolute error):

L(y, f(x)) = |y - f(x)|

Convex and more robust

Non-differentiable for y = f(x), optimization becomes harder

 $\hat{f}(x) = \text{median of } y | x$

Classification Losses

tbd

Classification

Assume we are given a classification problem:

$$\mathbf{x} \in \mathcal{X}$$
 feature vector $y \in \mathcal{Y} = \{1, \dots, g\}$ categorical output variable (label) $\mathcal{D} = \left(\left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}\right), \dots, \left(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}\right)\right)$ observations of \mathbf{x} and \mathbf{y}

Classification usually means to construct g discriminant functions:

 $f_1(x), \dots, f_g(x)$, so that we choose our class as $h(x) = \arg\max_{k \in \{1, \dots, g\}} f_k(x)$

Linear Classifier: If the functions $f_k(x)$ can be specified as linear functions, we will call the classifier a *linear classifier*.

Binary classification: If only 2 classes exist, we can use a single discriminant function $f(x) = f_1(x) - f_2(x)$.