Intro, MDP

Return

Discounted sum of rewards from time step t to horizon H:

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots + \gamma^{H-1} r_{t+H-1}$$

Value function

Expected return from starting in state *s*:

$$V(s) = E[G_t | s_t = s] = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots + \gamma^{H-1} r_{t+H-1} | s_t = s]$$

If the process is deterministic, the return G_t is equal to value function V(s), the expectation term drops.

Deterministic Grid World

Stochastic Grid World

MDP

Markov Decision Process is a tuple consisting of S, A, P, R, γ **S**: states, 3 different definitions

- Full environment state S_t^e : private to the environment, not visible, maybe irrelevant
- Agent state S^a_t : private to the agent, history of observations, rewards and actions. The agent constructs a state representation using a function of history $S^a_t = f(H_t)$ to decide on the next action
- Information state: useful information from the history. S_t^a with special constraints in $f(H_t)$.

P: state transition matrix. The rows sum up to 1.0 and *P* could change over time.

R: reward function. Can depend on state and action, or only on state.

 γ : discount factor. Mathematically convenient. Humans act as if there's a discount factor < 1.

If episode lengths are always finite($H < \infty$), can use $\gamma = 1$.

 $\gamma=0$: myopic. Only care about immediate reward

 $\gamma=1$: future reward is as beneficial as immediate reward

A large γ implies we weight delayed/long term rewards more.

Goal

Maximize the expected return $E[G_t]$

Policies

• Deterministic: $a=\pi(s)$

• Stochastic: $\pi(a|s) = P[A_t = a|S_t = s]$