

INF2440 Uke 6, våren2014 – Mer om oppdeling av et problem for parallellisering, mye om primtall + thread-safe

Arne Maus
OMS,
Inst. for informatikk

Oppsummering - Uke1

- Vi har gjennomgått hvorfor vi får flere-kjerne CPUer
- Tråder er måten som et Javaprogram bruker for å skape flere uavhengige parallelle programflyter i tillegg til main-tråden
- Tråder deler felles adresserom (data og kode)
- Vi kan gjøre mange typer feil, men det er alltid en løsning.
- En stygg feil vi kan gjøre: Samtidig oppdatering (skriving) på delte data, på samme variabel (eks: i++)
- Samtidig skriving på en variabel må synkroniseres:
 - Alle objekter kan nyttes som en synkroniseringsvariabel, og da kan vi bruke enten en synchronized metode for å gjøre det,
 - eller objekter av spesielle klasser som:
 - CyclickBarrier
 - Semaphore (undervises Uke2)
 - De inneholder metoder som await(), som gjør at tråder venter.
- Helst unngå samtidig skriving på felles variabel.

Hva har vi sett på i Uke2

- I) Tre måter å avslutte tråder vi har startet.
 - join(), Semaphor og CyclicBarrier.
- II) Ulike synkroniseringsprimitiver
 - Vi skal bare lærte oss noen få ett tilstrekkelig sett
- III) Hvor mye tid bruker parallelle programmer
 - JIT-kompilering, Overhead ved start, Synkronisering, Operativsystem og søppeltømming
- IV) 'Lover' om Kjøretid
 - Amdahl lov
 - Gustafsons lov
- Noen algoritmer f
 ølger Amdahl, andre (de fleste) f
 ølger Gustafson

Hva så vi på i uke 3

- Presisering av hva som er pensum
- 2. Samtidig skriving av flere tråder i en array?
 - Går det langsommere når aksessen er til naboelementer?
- 3. Synlighetsproblemet (hvilke verdier ser ulike tråder)
- Java har 'as-if sequential' semantikk for et sekvensielt program (etter Jit-kompilering)
- 5. Viktigste regel om lesing og skriving på felles data.
- 6. To enkle regler for synkronisering og felles variable
- 7. Effekten på eksekveringstid av cache
 - Del 1 Radix-sortering sekvensiell
- Kommentarer til Oblig 1

Hva så vi på i Uke4

- 1. Kommentarer til svar på ukeoppgaven om matrisemultiplikasjon
 - Hvorfor disse gode resultatene (speedup > 40)
 - 2. Hvordan bør vi fremstille slike ytelsestall 8 alternativer
- Hvorfor vi ikke bruker PRAM modellen for parallelle beregninger som skal gå fort.
- Hva skjer egentlig i lageret (main memory) når vi kjører parallelle tråder - the Java Memory Model (ikke pensum)
- Hvorfor synkroniserer vi, og hva skjer da,
 - Hvilke problemer blir løst (f.eks utsatte operasjoner)?
- 5. Ny, 'bedre' forklaring på Radix

Hva så vi på i uke 5

- Mer om matrisemultiplikasjon
 - 1. Radvis (ikke kolonnevis) beregning av C =AxB (speedup≤ 64)
 - Transponering kan også gjøres parallell (last-balansering)
- 2. Modell2-kode for sammenligning av kjøretider på (enkle) parallelle og sekvensielle algoritmer.
 - Spesielt: Start med størst n først for å få kompilert og optimalisert koden mest mulig før vi kjører 'små' n.
- 3. Hvordan lage en parallell løsning tre mislykkete og en vellykket måte parallellisere : i++
 - 1. Vellykket: lokal kopi av 'i' hver tråd, så addering til slutt.
- 4. Vranglås et problem vi lett kan få (og unngå)
 - Sortere synkroniserings-primitivene
- Ulike strategier for å dele opp et problem for parallellisering intro.

Hva skal vi se på i Uke6

- Mer om ulike strategier for å dele opp et problem for parallellisering
- 2. Oppdeling av en algoritme i flere faser.
 - Med synkronisering mellom hver fase
- 3. Om 'store' primtall og faktorisering (intro til Oblig2)
 - Hvordan lage og lagre mange primtall
 - Litt om hvordan faktorisere store tall N
 (= finne de primtall som multiplisert sammen gir N)
- 4. Om trådsikre-programmer og biblioteks-klasser (Api)

1) Om å parallelliser et problem

- Utgangspunkt: Vi har en sekvensiell effektiv og riktig sekvensiell algoritme som løser problemet.
- Vi kan dele opp både koden og data (hver for seg?)
- Vanligst å dele opp data
 - Som oftest deler vi opp data med en del til hver tråd, og lar 'hele' koden virke på hver av disse data-delene.
 - Eks: Matriser
 - radvis eller kolonnevis oppdeling av C til hver tråd
 - Omforme data slik at de passer bedre i cachene (transponere B)
 - Rekursiv oppdeling av data ('lett')
 - Eks: Quicksort
 - Primtalls-faktorisering av store tall N for kodebrekking:
 - $N = p_1 * p_2$
- Også mulig å dele opp koden:
 - Alternativ Oblig3 i INF1000: Beregning av Pi (3,1415..) med 17 000 sifre med tre ArcTan-rekker

4

Å parallellisere algoritmen

- Koden består en eller flere steg; som oftest i form av en eller flere samlinger av løkker (som er enkle, doble, triple..)
- Vi vil parallellisere med k tråder, og hver slikt steg vil få hver sin parallellisering med en CyclicBarrier-synkronisering mellom hver av disse delene
 - + en synkronisert avslutning av hele algoritmen(join(), ..).
- Eks:
 - finnMax hadde ett slikt steg: for (int i = 0 ...n-1) -løkke
 - MatriseMult hadde ett slikt steg med trippel-løkke
 - Radix hadde 4 slike steg:
 - en enkelt løkke i radix2
 - tre steg i radixSort : a),b) og c) alle enkeltløkker (gjenntatt 2 ganger)
 - Hver av disse må få sin parallellisering.

Å dele opp data – del 2

- For å planlegge parallellisering av ett slikt steg må vi finne:
 - Hvilke data i problemet er lokale i hver tråd?
 - Hvilke data i problemet er felles/delt mellom trådene?
- Viktig for effektiv parallell kode.
 - Hvordan deler vi opp felles data (om mulig)
 - Kan hver tråd beregne hver sin egen, disjunkte del av data
 - Færrest mulig synkroniseringer (de tar alt for 'mye' tid)

- Kan vi kopiere aktuelle deler av felles data til hver tråd (ha en lokal en kopi av disse i lokale data i hver tråd)?
- Hver tråd oppdaterer så sin kopi og etter en synkronisering kan disse lokale kopiene 'summeres/syes sammen' slik at vi får riktig felles resultat i de felles data?
 - Da vil en for-løkke bli til to steg:
 - Steg 1: Lag kopi de felles data og kjør løkka på 'din' lokale del av data.
 - Synkroniser på en CyclicBarrier
 - Steg 2: De lokale data samles/adderes til slik data blir som i den sekvensielle algoritmen (hvis neste steg kan bruke disse lokale kopiene, beholdes de)
 - Disse sammen-satte data er nå igjen felles, delte data.
- Eks: FinnMaks haddde en int max; som felles data. Den kunne lett kopieres til hver tråd som int mx, og felles resultat ble beregnet som de største av disse mx-ene fra alle trådene.

Om å parallellisere et problem; dele opp data – del 3

- Hvilke data i problemet er felles og som skal endres?
- Matrisemultiplikasjon: Ingen delte data skal skrives (pinlig parallelliserbart)
- Radix-sortering: Arrayene: a[] og b[] og count[] er felles.
 - a[] og b[] er lette å dele opp count [] vanskeligere
 - Kan hver tråd få sin lokale kopi av count[]?
 - Blir det samme oppdeling i hvert steg av algoritmen?
 - Sannsynligvis ikke samme oppdeling
 - En av stegene (finnMaks) har vi allerede parallellisert med en lokal kopi av max til hver tråd.
- Noen andre problemer kan deles opp rekursivt eks QuickSort
 - Meget lett å parallelliser (mer om det senere)

Husk at vi skal lage effektive algoritmer!

- Vi må ikke synkronisere for mange ganger!
 - Fordi hver synkronisering tar 'lang' tid (skriving av cachene til lageret, utføre utsatte operasjoner,..)
- Vi kan ikke synkronisere hver gang vi i den sekvensielle algoritmen bruker (leser/skriver) felles data.
- Regel for synkronisering:
 - Antall synkroniseringer på felles data må være av en lavere orden enn selve algoritmen.
 - Eks:
 - $O(n \log n)$, O(n) eller $O(\log n)$ synkroniseringer (under tvil: $O(n^2)$) hvis algoritmen er $O(n^3)$
 - O($\log n$) hvis algoritmen er O(n) eller høyere.
 - Aller helst bare et fast antall synkroniseringer uavhengig av n – f.eks antallTråder + antall faser

Vår modell for parallelle programmer

```
import java.util.concurrent.*;
class Problem { int x,y,r1,r2,...; // felles data
    public static void main(String [] args) {
         Problem p = new Problem();
         p.utfoer(12);
    void utfoer (int antT) {
        Thread [] t = new Thread [antT];
       for (int i = 0; i < antT; i++)
          (t[i] = new Thread(new Arbeider(i))).start();
        for (int i =0; i< antT; i++) t[i].join();
    class Arbeider implements Runnable {
      int ind, lokaleData; // lokale data
       Arbeider (int in) \{ind = in;\}
          public void run(int ind) {
                // kalles når tråden er startet
         } // end run
    } // end indre klasse Arbeider
} // end class Problem
```


Synkronisering av algoritme i flere steg. Med venting på en felles CyclicBarrier mellom hvert steg:

Effektivitet: Husk, ikke lag alt for mange tråder!

- Det er grovt sett ingen vits i å lage flere tråder enn vi har kjerner (av og til lønner det seg med færre tråder).
- Har vi f.eks en rekursiv metode for quicksort, må vi holde opp å si new Thread(...) hver gang vi deler opp området vi sorterer i to.
 - Fordi et rekursivt kall er mye raskere enn å si new Thread(..)
- Det vil si at i noen typer av rekursive løsninger så:
 - Så bruker vi den sekvensielle algoritmen hvis n<LIMIT
 - Vi parallelliserer så lenge vi har tråder igjen
 - Vi går så tilbake til den sekvensielle rekursive algoritmen i hver tråd.
 - Vi har da k stk sekvensielle algoritmer i parallell

Steg i radix2:


```
static void radix2(int [] a) {
    ...... sekvensielle enkelt-setninger ....

// 1) FINN MAX i a[] -
    bruk parallell variant

Barrier

sekvensielle enkelt-setninger ....
    radixSort( a,b, bit1, 0);
    radixSort( a,b, bit2, bit1);

Barrier

Barrier
```

Vi har parallellisert Radix2 hvis vi greier å parallelliser steg 2) 3) og 4)

```
static void radixSort ( .....){
    ..... sekvensielle enkelt-setninger ....
   // 2) tell opp hvor mange av hver sifferverdi
     for (int i = 0; i < n; i++)
      count[(a[i]>> shift) & mask]++;
                                                    Barrier
   // 3) Legg sammen count[] til hvor hver verdi
   // i a[] skal i b[]
    for (int i = 0; i <= mask; i++) {
       j = count[i];
        count[i] = acumVal;
        acumVal += j;
                                                    Barrier
   // 4 ) Flytt fra a[] til b[] i sortert på dette sifferet
    for (int i = 0; i < n; i++)
      b[count[(a[i]>>shift) \& mask]++] = a[i];
                                                    Barrier
```


3) Om primtall

- Et primtall er :
 Et heltall som bare lar seg dividere med 1 og seg selv.
 - 1 er ikke et heltall (det mente mange på 1700-tallet)
- Ethvert tall N >0 lar seg faktorisere som et produkt av primtall:
 - $N = p_{1*}p_{2*}p_{3*....*}p_k$
 - Denne faktoringen er entydig; dvs. den eneste faktoriseringen av N
 - Hvis det bare er ett tall i denne faktoriseringen, er N et primtall.

Hvordan lage og lagre primtall

Z:\INF2440Para\Primtall>java PrimtallESil 2000000000
max primtall m:2000000000
Genererte primtall <= 2000000000 paa 18949.04 millisek
med Eratosthenes sil og det største primtallet er:1999999973

Z:\INF2440Para\Primtall>java PrimtallDiv 2000000000

Genererte alle primtall <=2000000000 paa 1577302.55 millisek med divisjon , og det største primtallet er:1999999973

 Å lage primtallene p og finne dem ved divisjon (del på alle primtall < SQRT(p)) er ca. 100 ganger langsommere enn Erotasthenes avkryssings-tabell (kalt Erotasthenes sil).

Å lage og lagre primtall (Erotasthenes sil)

- Som en bit-tabell (1- betyr primtall, 0-betyr ikke-primtall)
 - Påfunnet i bronsealderen av Eratosthenes (ca. 200 f.kr)
 - Man skal finne alle primtall < M
 - Man finner da de første primtallene og krysser av alle multipla av disse (N.B. dette forbedres/endres senere):
 - Eks: 3 er et primtall, da krysses 6, 9,12,15,... Av fordi de alle er ett-eller-annet-tall (1,2,3,4,5,...) ganger 3 og følgelig selv ikke er et primtall. 6=2*3, 9 = 3*3, 12 =2*2*3, 15 = 5*3, ..osv
 - De tallene som ikke blir krysset av , når vi har krysset av for alle primtallene vi har, er primtallene
- Vi finner 5 som et primtall fordi, etter at vi har krysset av for 3, finner første ikke-avkryssete tall: 5, som da er et primtall (og som vi så krysser av for, ...finner så 7 osv)

To helt avgjørende observasjoner

- 1) Hvis vi vet alle primtall < M, så kan vi faktorisere all tall N < M*M, fordi:
 - Hvis N ikke er et primtall selv så består faktoriseringen av minst to primtall N=p1*p2. Ett av p1 eller p2 er minst, si p1, og da ser vi at p1 ≤ SQRT(N).
 - Dvs. har delt N på alle primtall < M, så finner vi enten en faktor i faktoriseringa av N, eller fastslår at N er et primtall (fordi ingen av divisjonene hadde en rest ==0)
- 2) Når vi krysser av for et primtall p, så det første tallet vi trenger å krysse av for er p*p, fordi alle mindre multipla et krysset av for av mindre primtall.
 - Eks: Avkryssing for 5. Vi starter på 5*5 = 25 fordi 10,15,20 er allerede krysset av 2,3,4=2*2. Men etter 25 må vi krysse av 35,45,55,.. osv.

+ en til

3) Vi representerer bare oddetallene i bit-arrayen vår:

fordi vi vet at bare 2 av partallene er et primtall. Det er denne tallrekken vi krysser av i.

(dette halverer lagringsplassen og arbeidet med avkryssing)

Litt regneregler for logaritmer med ulike grunntall

DEF: Vi har at $\log_a N$ (logaritmen til N med 'a' som grunntall) er det tallet x , som er slik at $a^x = N$ a sier vi er grunntallet til logaritmen (a =2,e,10,...)

$$\log_2 x$$
 = antall bit i x, $\log_{10} x$ = antall desimale sifre i x

Regneregler om logaritmer med ulikt grunntall (som informatikere bruker vi ofte grunntall 2):

$$\log_{b} x = \frac{\log_{a} x}{\log_{a} b} = \frac{1}{\log_{a} b} \log_{a} x$$

$$b = 2, a = e(2.7182..)$$

$$\log_{2} x = 1.44 \ln x$$

$$\ln x = 0.693 \log_{2} x$$

Hvor mange primtall er < N

Antall primtall
$$< N = \text{teoretisk} \frac{N}{\ln N}$$
,

men i praksis =
$$\frac{N}{\ln N - 1,06} = \frac{N}{0.693 \log_2 N - 1.06}$$

$$N = 1000$$
, antall primtall = 171 = 17%

$$N = 1$$
 mill, antall primtall = $78397 = 7.8\%$

$$N = 2000$$
mill, antall primtall = 98 249 139 = 4,9%

og byte - arrayen med 7 oddetall i hver byte trenger N/14 byter

Hvordan faktorisere et stort tall (long)

- Anta at vi har en long M:
- Vi kan faktorisere den hvis vi vet alle primtall $< N = \sqrt{M}$
- For å finne alle primtall < N, må vi krysse av for alle primtall Q $<\sqrt{N}=\sqrt{\sqrt{M}}$

For å faktorisere så store tall som M

 $N = \sqrt{M} \subset \text{for å lage all primtall} < N$

- Q = \sqrt{N} \leftarrow Vi må krysse av for disse primtallene

Μ

1	3	5 7		9	
11	13	15	17	19	
21	23	25	27	29	
31	33	35	37	39	
41	43	45	47	49	
51	53	55	57	59	
61	63	65	67	69	
71	73	75	77	79	
81	83	85	87	89	
91	93	95	97	99	

1	3	5	7	9
11	13	15	17	19
21	23	25	27	29
31	33	35	37	39
41	43	45	47	49
51	53	55	57	59
61	63	65	67	69
71	73	75	77	79
81	83	85	87	89
91	93	95	97	99

Avkryssing for 5 (starter med 25, så 25+2*5, 25+4,5,..):

1	3	5	7	9	
11	13	15	17	19	
21	23	25	27	29	
31	33	35	37	39	
41	43	45	47	49	
51	53	55	57	59	
61	63	65	67	69	
71	73	75	77	79	
81	83	85	87	89	
91	93	95	97	99	

1	3	5	7	9			
11	13	15	17	19			
21	23	25 27 29					
31	33	35	37	39			
41	43	45 45	47	49			
51	53	55	57	59			
61	63	65	67	69			
71	73	75 75	77	79			
81	83	85 87 8		89			
91	93	95	97	99			

Avkryssing for 7 (starter med 49, så 49+2*7,49+4*7,.):

1	3	5	7	9
11	13	15	17	19
21	23	25	27	29
31	33	35	37	39
41	43	45 45	47	49
51	53	55	57	59
61	63	65	67	69
71	73	75 75	77	79
81	83	85	87	89
91	93	95	97	99

1	3	5	7	9			
11	13	15	15 17 19				
21	23	25	29				
31	33	35	37	39			
41	43	45 45	47	49			
51	53	55	57	59			
61	63 63	65	67	69			
71	73	75 75	77	79			
81	83	85	87	89			
91	93	95	97	99			

Er nå ferdig fordi neste primtall vi finner: 11, så er 11*11=121 utenfor tabellen

Fasit fra nettet mot våre tall (vi vet at 2 er et primtall)

1	3	5	7	9
11	13	15	17	19
21	23	25	27	29
31	33	35	37	39
41	43	45 45	47	49
51	53	55	57	59
61	63 63	65	67	69
71	73	75 75	77	79
81	83	85	87	89
91	93	95	97	99

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	.55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Et lite talleksempel

- Hvis vi krysser av med alle primtall < 100
- Så finner vi alle primtall $< 100^2 = 10000$
- Da kan vi faktorisere alle tall
 M < 10 000² = 100 000 000 = 100 mill,
 dvs. alle 8 sifrete tall

Den store fordelen med at for å krysse av for primtall p først med p*p, er at det er så få primtall vi skal krysse av med. Avkryssing går fra å være en O(n) algoritme til en O(\sqrt{n}) algoritme.

Det størst talleksemplet

- Hvis vi krysser av med alle primtall < 44 721</p>
- Så finner vi alle primtall $< 44722^2 = 2000057284$
- Da kan vi faktorisere alle tall
 M < 4 000 229 139 281 456 656, dvs. 18-19 sifrete tall
- Største tall med 58 bit er et mindre tall (18-sifret): 288 230 376 151 711 743 = 3*59*233*1103*2089*3033169

Vi har nådd vårt mål om å kunne knekke 58-bit koder (GSM) hvis vi vi har en bitarray for oddetallene som er ca.1 milliard bit lang, dvs.

1 milliard/14 = 73 millioner byter lang

Nyttige tips om implementering av dette

Tillegg:

- Da jeg laget en implementasjon av en slik bit-array nyttet en array av byter: byte [] bitArr = new byte [(len/14)+1];
- Husk at alle typer heltall (byte, short, int og long) har et fortegnsbit som sier om tallet er positivt eller negativt – helst ikke rør det!
- Det betyr at vi bruker 7 bit i hver byte til å representere om et tall er primtall (1) eller ikke primtall(0) – f.eks er 1,3,5,7,9,11,13 representert i byte [0], mens 15,17,.. er i byte[1]

- Husk et i/14 gir hvilken byte i bitArr[] tallet 'i' er representert i
- Husk at (i%14)>>1 gir hvilket bit-nummer i den byten tallet 'i' er.
- Du må av og til veksle mellom long og int for eksempel slik (ttall er int:
 - long p = (long) tall + 2L;

Resultater fra kjøring av min sekvensielle løsning

```
3999999999998764380 = 2*2*3*5*17*151*212141*122421659
399999999998764381 = 23*37*14683*309559*1034123
3999999999998764382 = 2*1429*58243*24030014353
3999999999998764383 = 3*1333333333332921461
3999999999998764384 = 2*2*2*2*2*7*179*347*287494451357
399999999998764385 = 5*13*127*1303*63587*5848307
3999999999998764386 = 2*3*3*222222222222153577
399999999998764387 = 399999999998764387
399999999998764388 = 2*2*11*19*4784688995213833
100 faktoriseringer beregnet paa: 62991.7493ms -
      629.9175ms. per faktorisering
Stoerste 58-bit tall:288230376151711743 =
3*59*233*1103*2089*3033169
```

3) Om thread-safe og fail-fast

- En klasse er thread-safe hvis den tåler at to eller flere tråder samtidig aksesser dets metoder.
 - Kan for eksempel oppnås ved at alle metodene er synchronized (men det er treigt!)
- Fail-fast brukes i Java om iterereratorer, og prøver å garanterer at det kastes en ConcurrentModificationException når flere tråder samtidig har aksessert en mengde – eks:

```
ArrayList fak = new ArrayList();
for (Long tall:fak)
    System.out.println(«Neste tall i fak:»+tall);
```

- De fleste av klassene i JavaAPI er ikke thread-safe!
 - Det må du selv fikse lage f.eks egne metoder beskyttet av en ConcurrentLock som så kaller klassens tilsvarende metode mens låsen holdes.
 - Husk at ConcurrentLock er 5x fortere enn synchronized og gjør det samme.

Hva skal vi se på i Uke6

- Mer om ulike strategier for å dele opp et problem for parallellisering
- Oppdeling av en algoritme i flere faser.
 - Med synkronisering mellom hver fase
- Om trådsikre-programmer og biblioteks-klasser (Api)
- 4. Om 'store' primtall og faktorisering (intro til Oblig2)
 - Hvordan lage og lagre mange primtall
 - Noe om hvordan faktorisere store tall N –
 (= finne de primtall som ganget sammen gir N)