

Graded Quiz

TOTAL POINTS 10

1. Which approach can find an optimal deterministic policy? (select all that apply)

1 point

- Exploring Starts
- ϵ -greedy exploration
- Off-policy learning with an ϵ -soft behavior policy and a deterministic target policy
- 2. When can Monte Carlo methods, as defined in the course, be applied? (Select all that apply)

1 point

- When the problem is continuing and there are sequences of states, actions, and rewards
- When the problem is continuing and there is a model that produces samples of the next state and reward
- When the problem is episodic and there are sequences of states, actions, and rewards
- When the problem is episodic and there is a model that produces samples of the next state and reward
- 3. Which of the following learning settings are examples of off-policy learning? (Select all that apply)

1 point

- Learning about multiple policies simultaneously while following a single behavior policy
- Learning the optimal policy while continuing to explore
- Learning from data generated by a human expert
- 4. If a trajectory starts at time t and ends at time T, what is its relative probability under the target policy π and the behavior $\binom{1}{2}$ point
 - $\bigcap_{k=t}^{T-1} \frac{\pi(A_k \mid S_k)}{b(A_k \mid S_k)}$
 - $\bigcirc \frac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}$
 - $\bigcap \prod_{k=t}^{T-1} rac{\pi(A_k \mid S_k)}{b(A_k \mid S_k)}$
 - $\bigcirc \frac{\pi(A_{T-1} \mid S_{T-1})}{b(A_{T-1} \mid S_{T-1})}$
- 5. When is it possible to determine a policy that is greedy with respect to the value functions v_{π} , q_{π} for the policy π ? (Select 1 point all that apply)

		When state values v_π and a model are available	
		When state values v_π are available but no model is available.	
		When action values q_π and a model are available	
		When action values q_π are available but no model is available.	
6.	Мо	inte Carlo methods in Reinforcement Learning work by	1 point
	\circ	Performing sweeps through the state set	
	\bigcirc	Averaging sample returns	
	\circ	Averaging sample rewards	
	\bigcirc	Planning with a model of the environment	
7.		pose the state s has been visited three times, with corresponding returns $8,4$, and 3 . What is the current Monte Carlo imate for the value of s ?	1 point
	\bigcirc	3	
	\bigcirc	15	
	\circ	5	
	\bigcirc	3.5	
8.	Wh	en does Monte Carlo prediction perform its first update?	1 point
	\bigcirc	After the first time step	
	\circ	When every state is visited at least once	
	\circ	At the end of the first episode	
9.	In N	Monte Carlo prediction of state-values, memory requirements depend on (select all that apply)	1 point
		The number of states	
		The number of possible actions in each state	
		The length of episodes	
10		an ϵ -greedy policy over ${\cal A}$ actions, what is the probability of the highest valued action if there are no other actions with (same value?	1 point
	\bigcirc	$1-\epsilon$	
	\bigcirc	ϵ	
	0	$1-\epsilon+rac{\epsilon}{\mathcal{A}}$	
	\bigcirc	$\frac{\epsilon}{A}$	

I, Dhawal Gupta , understand that submitting work that isn't my own may result in permanent
failure of this course or deactivation of my Coursera account.

6 P P

Learn more about Coursera's Honor Code

Save

Submit