AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the

application:

LISTING OF CLAIMS:

Claims 1-28 (canceled)

29. (Previously Presented) A method of forming a crushing surface of a rock

crusher, the rock crusher comprising an outer container forming a concave inner

crushing surface defining a vertical axis, and an inner member arranged interiorly of

the inner surface, wherein material to be crushed passes downwardly between the

crushing surface and the inner member, the crushing surface formed by a method

comprising the steps of:

A) arranging over a concave inner mounting surface of the container a

circumferentially extending wear-resistant band, the band having an inner

surface extending at least partially around the circumference of the mounting

surface; thereafter

B) cutting through the band to separate the concave into a plurality of

circumferentially adjacent segments; and

C) leaving the segments in place on the mounting surface to define the

concave inner crushing surface.

Attorney's Docket No. 024445-061

Application No. <u>09/758,680</u>

Page 5

30. (Previously Presented) The method according to claim 29 wherein step A

comprises arranging a plurality of vertically adjacent bands over the mounting

surface, and step B comprises cutting through each band.

31. (Previously Presented) The method according to claim 30 wherein each

band extends less than the entire circumference of the mounting surface, and further

including the step of arranging over the mounting surface a plurality of

circumferentially adjacent bands, and step B comprises cutting through each of the

bands.

32. (Previously Presented) The method according to claim 29 wherein each

band extends less than the entire circumference of the mounting surface, and further

including the step of arranging over the mounting surface a plurality of

circumferentially adjacent bands, and step B comprises cutting through each of the

bands.

33. (Previously Presented) The method according to claim 29 wherein the

band includes at least one portion of reduced thickness, wherein the cutting of step B

is performed through the reduced thickness portion.

34. (Previously Presented) The method according to claim 33 wherein the

portion of reduced thickness is formed by a groove disposed in an outer surface of

the band.

Attorney's Docket No. <u>024445-061</u> Application No. <u>09/758,680</u>

Page 6

35. (Previously Presented) The method according to claim 33 wherein is

frusto-conical, the portion of reduced thickness being formed by a groove disposed

in the inner surface of the band, the inner surface of the band comprising frusto-

conical surface portions spaced apart by the groove.

36. (Previously Presented) The method according to claim 29 wherein the

band forms an arc of 360 degrees.

37. (Previously Presented) The method according to claim 29 wherein the

band forms an arc of at least 180 degrees.

38. (Previously Presented) The method according to claim 29 wherein the

band forms an arc of at least 90 degrees.

39. (Previously Presented) The method according to claim 29 wherein step B

comprises cutting through the band at least two times to separate the band into at

least three segments.

40. (Previously Presented) The method according to claim 29 wherein the

mounting surface is of frusto-conical shape, and the band is of correspondingly

frusto-conical shape.

- 41. (Currently Amended) A method of forming a crushing surface of a rock crusher, the rock crusher comprising an outer container forming a concave frusto conical inner crushing surface defining a vertical axis, and an inner member arranged interiorly of the inner surface and including a convex crushing surface facing the inner crushing surface to form therebetween an annular gap which becomes narrower toward a bottom end of the gap, wherein material to be crushed passes downwardly within the gap, wherein the convex crushing surface is of convex curvature as viewed in a direction parallel to the vertical axis and extends substantially 360 degrees, the inner crushing surface formed by arranging over a concave inner frusto-conical mounting surface of the container a circumferentially extending wear-resistant band, the band including: a concave frusto-conical inner surface extending at least partially around the circumference of the mounting surface, a convex frusto-conical outer surface facing the mounting surface, and a groove formed in one of the inner and outer surfaces of the band and extending toward, and stopping short of, the other of the inner and outer surfaces of the band, wherein the one surface includes frusto-conical surface segments separated by the groove, the groove including a dimension in a first direction intersecting the inner and outer surfaces, and a dimension in a second direction extending circumferentially. wherein the dimension in the first direction is greater than the greatest dimension in the second direction, each groove extending completely through the band in a third direction extending transversely relative to both of the first and second directions.
- 42. (Currently Amended) A wear resistant band adapted to be mounted on an inner mounting surface of a rock crusher, the band comprising a frusto-conical

body forming an arc of at least 90 degrees and including a concave frusto-conical

inner surface and a convex frusto-conical outer surface, a distance from the inner

surface to the outer surface defining a thickness of the band, one of the inner and

outer surfaces including a groove extending toward the other of the inner and outer

surfaces and stopping short of such other surface to form a portion of reduced

thickness in the body, wherein the one surface includes frusto-conical surface

segments separated by the groove, the groove including a dimension in a first

direction intersecting the inner and outer surfaces, and a dimension in a second

direction extending circumferentially, wherein the dimension in the first direction is

greater than the greatest dimension in the second direction, each groove extending

completely through the band in a third direction extending transversely relative to

both of the first and second directions.

43. (Previously Presented) The wear-resistant band according to claim 42

wherein the groove is disposed in the outer surface.

44. (Previously Presented) The wear-resistant band according to claim 42

wherein the groove is disposed in the inner surface.

45. (Previously Presented) The wear-resistant band according to claim 42

wherein the band forms an arc of at least 180 degrees.

46. (Previously Presented) The wear-resistant band according to claim 42

wherein the band forms an arc of 360 degrees.

Attorney's Docket No. <u>024445-061</u> Application No. <u>09/758,680</u>

- 47. (Previously Presented) The wear-resistant band according to claim 42 wherein the band comprises a ceramic material.
- 48. (Previously Presented) The wear-resistant band according to claim 42 wherein the band comprises iron.
- 49. (Previously Presented) The wear-resistant band according to claim 42 wherein the band includes an additional groove disposed in the one surface.
- 50. (Currently Amended) A wear resistant band adapted to be mounted on an inner mounting surface of a rock crusher, the band comprising a curvalinear body forming an arc of at least 90 degrees and including a concave inner crushing surface and a convex outer surface, a distance from the inner surface to the outer surface defining a thickness of the band, the outer surface including a groove extending toward the inner surface and stopping short of the inner surface to form a portion of reduced thickness in the body, the groove including a dimension in a first direction intersecting the inner and outer surfaces, and a dimension in a second direction extending circumferentially, wherein the dimension in the first direction is greater than the greatest dimension in the second direction, each groove extending completely through the band in a third direction extending transversely relative to both of the first and second directions.