1

ASSIGNMENT 1: GATE 2013 AG: Agricultural Engineering

EE25BTECH11047 - Ravula Shashank Reddy

b) maintain the uniform depth of cut

8)		on of the plough. ge of a tractor mounted rated at 4 km h ⁻¹ . If the no		
	a) 1000.02	b) 285.72	c) 166.67	d) 142.86
9)		or, while negotiating a term the use of differential loo	<u> </u>	of one of the rear wheels.
		, 410 400 01 41110101111111 101		(GATE EE 2025)
	b) equal speed and equalc) equal power and equal	Il power distribution to bo Il torque distribution to bo al torque distribution to bo qual power distribution to	oth the drive wheels oth the drive wheels	
10)		lic cylinder has a rod dia tained constant, the ratio of	-	-
				(GATE EE 2025)
	a) 0.75	b) 1.00	c) 1.33	d) 4.00
11)		el was measured as 90 dB i 0^{-2} N m ⁻² , the measured I		
				(GATE EE 2023)
	a) 6.32	b) 6.32×10^{-1}	c) 1.8×10^{-3}	d) 6.32×10^{-10}
12) During land leveling of agricultural land for irrigation and drainage purposes, the acceptable din elevation from the design value in metre is			s, the acceptable deviation	
		6		(GATE EE 2025)
	a) 0.015	b) 0.025	c) 0.055	d) 0.150
13)	The gridiron pipe drain because	age system is more econo	omical than the herringbo	one pipe drainage system
				(GATE EE 2025)
	b) the number of main of	elds which do not require or sub-main lines is reductions and the double-drained ub-main lines.	ed	
14)	If the drainable porosity of a command area is 5% and the design rate of drop of the water table is $0.25\mathrm{mday^{-1}}$, the drainage coefficient of the command area in $\mathrm{mmday^{-1}}$ will be			
	•		•	(GATE EE 2025)
	a) 250	b) 12.5	c) 1.25	d) 0.0125

5.18, 6.

13)		A soil has a void ratio of 0.75 and a specific gravity of 2.66. The value of critical hy at which quick sand condition will occur is			
	at which quick said c	ondition will occur is			(GATE EE 2025)
	a) 0.95	b) 1.05	c) 2.09	d) 6.0	64
16)	<u> </u>	not have any measurable	influence on the void rati	o or she	earing resistance of
	the soil mass is				(GATE EE 2025)
	a) pore water pressureb) intergranular pressure		c) capillary pressured) surcharge pressure.		
17)	The Rational method	is used to estimate			(GATE EE 2025)
	a) runoff volumeb) peak runoff rate		c) runoff depth d) direct surface runoff	·	
18)	If irrigation scheduling	ecorded at a certain location g based on ratio of irrigation of irrigation at an interva	on water (IW) to cumulat	ive pan	evaporation (CPE)
	a) 3.60	b) 4.41	c) 5.59	d) 30	0.88
19)	18 m s ⁻¹ at 15 m heig fraction is 8 m s ⁻¹ . The	eak is constructed to prote ht. The minimum wind ve e angle of deviation of pre e distance of full protection	velocity at 15 m height cavailing wind direction fro	apable om the p	of moving the soil
	a) 60.44	b) 104.69	c) 306.00	d) 53	,
20)	a temperature of 45°C	eating section of a high tentand leaves at 72°C. Hot wer and leaves at 77°C. The	vater at temperature of 95°	°C enter	s counter-currently
	a) 0.18	b) 0.36	c) 0.54	d) 0.8	84
21)		nting the heat of respirat positive constants a and b		getables	as a function of
	-				(GATE EE 2025)
	a) $q = ae^{b\theta}$ b) $q = ae^{-b\theta}$		c) $q = aln(b\theta)$ d) $q = a + b\theta$.		
22)	<u> </u>	oad equal to 25 spores pen, the spoilage probability			

	a) 10^{-5}	b) 10 ⁻⁶	c) 10^{-8}	d) 10 ⁻⁹
23)	and x is the moisture co	the BET equation relating ontent on dry basis, are 18 onolayer moisture content	and 2, respectively. The	= -
	constant c una BET inc	monayer monstare content	in (iv) are respectively	(GATE EE 2025)
	a) 40 and 20	b) 30 and 15	c) 20 and 10	d) 10 and 5
24)		is constructed with 10 m ng thermal conductivities $^{2}W^{-1}$ is offered by		
	The resistance of 4 Kin	W is offered by		(GATE EE 2025)
	a) mortar	b) brick	c) insulation	d) wood-board
25)		e motor running the comf evaporating heat with 1.		
	a) 0.5	b) 1.0	c) 1.5	d) 2.0
	Given $f(x) = e^{-x^2}$ for $x = 1.1$, 1.2, 1.3, 1.4, and 1.5, evaluate $\int_{1.1}^{1.5} f(x) dx$ by Simpson's 1/3rd rule is (GATE EE 2025) A tractor operated single acting trailing type disc harrow has 8 discs on each gang. The gang angle of both the gangs is maintained at 35°. The horizontal component of resultant soil reaction force on each disc is 600 N and it makes an angle of 30° with the gang axis. If the speed of operation is 6 km h ⁻¹ , the required drawbar power in kW to operate the harrow will be (GATE EE 2025)			
28)	resistance of the tractor	tor pulls an implement the is 2.5 kN. Under these consmission is 20%, the per	ircumstances, the slip of	1.5 kN. The total motion the drive wheels is 20%.
29)	An unconfined aquifer of and specific retention of from this aquifer, the w	extends over an area of 1 20 m per day, 30% and 10 vater table dropped to a d .5 m below the ground lead	0%, respectively. After pullepth of 20 m from the g	mping some groundwater ground level. If the water dwater storage in million
30)	horizontal impermeable porosity of 0.25. One-clower canal with the he respectively. If a sediment	m apart fully penetrate layer. The aquifer has a hadimensional steady groun ight of water levels in the ent layer of 4 cm thick we the inflow face, the ground will be	hydraulic conductivity of 3 adwater flow occurs from the canals 10 m and 8.5 m with hydraulic conductivity	8 m day^{-1} and an effective in the upper canal to the from the aquifer bottom, of $1.2 \times 10^{-2} \text{ m day}^{-1}$ is

(GATE EE 2025)

					(GATE EE 2023)
31)	decreased due to foulin	er coefficient based on the g during operation from 1 exchanger in W m ⁻² K ⁻¹ is	$000Wm^{-2}K^{-1}$ to $800W$		K ⁻¹ . The fouling film
32)	and 40 bar respectivel capacity of whole milk	homogenizer operates use homogenizing 30 L of are 1030 kg m ⁻³ and 3.8 kerature rise of whole milk	whole milk per hour. If $J kg^{-1} K^{-1}$, respectively. A	Dens	ity and specific heat
33)	The plates are at -35° can be assumed to be 2 of fusion is 330 kJ kg ⁻¹	ickness having 85% moist C and the heat transfer c 2.0 W m ⁻² K ⁻¹ . The initial density of fish is 1100 e required to freeze the fi	oefficient between the fill freezing temperature of kg m ⁻³ and thermal cond	llet a fish i ducti	and the freezer plates is -2.5° C, latent heat vity of frozen fish is
					(GATE EE 2025)
34)		s out of which 3 are red. ndom from each box sim			
	a) 0.07	b) 0.47	c) 0.53	d)	0.75
35)	_	of 300 mm diameter is c top, the volume of water i	= -	and	water. If the oil layer (GATE EE 2025)
	a) 1.27	b) 3.73	c) 7.07	d)	14.14
36)	force of 3.2 kN occurs a plane. The knives of t	et type reciprocating mowalong the pitman at 32° crahe cutterbar are riveted the slider material is 50 N	ank angle and 27° pitman o the slider. If each of	ang	le with the horizontal allowable tensile and onal area of the slider
					(GATE EE 2025)
	a) 29.05	b) 33.91	c) 54.27	d)	57.02
37)	connected to a worm g gear is 24 and number	d operated chaff cutter with ear assembly for driving of starts (threads) of the v	the feed rollers. The num	nber	of teeth of the worm
	15 cm, the chaff length	in mm will be			(GATE EE 2025)

38) A piston pump is driven by a 5 m diameter horizontal axis wind turbine for supplying water from a borehole with a total pump head of 10 m. The mean velocity of air is $18\,\mathrm{km}\,h^{-1}$ and the density

c) 19.6

d) 39.2

b) 12.8

a) 9.8

of air is 1.29 kg m ⁻³ . The actual power coefficient of the wind tu efficiency is 60%. Neglecting the transmission losses, the expected			
a) 2.90 b) 5.80 c) 28.50	d) 32.27		
A 4-cylinder, 4-stroke compression ignition engine has piston strought 11 cm. At a mean piston speed of 7 m s ⁻¹ , the developed brake 1. The brake power in kW developed by the engine is			
	(GATE EE 2025)		
a) 39.40 b) 43.24 c) 86.48	d) 172.96		
A centrifugal pump having an overall efficiency of 75% requires 6 kW power at 1450 rpm to deliver water against a suction head of 5 m and a delivery head of 12 m. If the pump runs at 1650 rpm and frictional head losses are negligible, the total head developed by the pump in metres will be (GATE EE 2025)			
a) 22.01 b) 25.05 c) 29.35	d) 31.72		
A 100 ha watershed received rainfall at a rate of $5\mathrm{cm}h^{-1}$ for 2 hours. If the runoff generated by the storm was at the rate of $1\mathrm{m}^3\mathrm{s}^{-1}$ for 10 hours, the runoff coefficient for the watershed would be (GATE EE 2025)			
a) 3.6×10^{-3} b) 6.0×10^{-2} c) 0.36	d) 36		
A 10 ha field has 1.2 m deep layer of sandy loam soil underlain by sandy soil up to a depth of 5 m. A pre-irrigation rainfall brings moisture content of the top 0.3 m layer to its field capacity. The moisture content of rest of the sandy loam layer remains at permanent wilting point. The volumetric moisture content at field capacity and permanent wilting point are 32 and 16%, respectively for the sandy loam soil. The field is irrigated with a stream size of 240 L s ⁻¹ for 24 hours. Considering the drainage from the sandy loam soil as deep percolation, application efficiency and deep percolation			
ratio in percent respectively are	(GATE EE 2025)		
a) 56.40 and 43.60 b) 69.44 and 30.56 c) 75.18 and 2	24.82 d) 92.60 and 7.40		
A watershed, with an area of 360 km ² , has a triangular shaped 4-h unit hydrograph with a base of 50 hours. The peak discharge of direct runoff hydrograph due to 3 cm of rainfall-excess in 4 hours from the watershed in m ³ s ⁻¹ is			
	(GATE EE 2025)		
a) 13.33 b) 40.00 c) 120.00	d) 160.00		

39)

40)

41)

42)

43)

44) A rotary dryer is used to dry $1200 \, \text{kg} \, \text{h}^{-1}$ of paddy containing 30% moisture (wet basis) to give a product containing 15% moisture (wet basis). Alternately, a portion of the dry product may be recycled and mixed with the fresh feed such that the mixed feed enters the dryer with moisture content of 20% (wet basis). The moisture evaporation rate without recycle and the paddy recycle rate in kg h⁻¹ respectively in the dryer are

(GATE EE 2025)

(GATE EE 2025)

a) 211.76 and 240b) 211.76 and 600		c) 256.5 and 240d) 256.5 and 600		
Sieve No. 340 (3		Sieve No. 40 (0.42 mm o	of the product pass through opening), respectively, the po	
consumed in Kw	to crush 5000 kg ii Oi s	orginum is	(GATE EE 20	025)
a) 9.77	b) 20.49	c) 26.29	d) 32.29	
respectively. Mas		the feed and overflow are	rflow are 150, 140 and 10 kg e 0.9 and 0.96, respectively. (GATE EE 20)	The
a) 32	b) 42	c) 52	d) 62	,
	Poise. If the fat density is		asity 1030 kg m ⁻³ and coefficed to rise 10 mm for this (GATE EE 20	s fat
a) 0.57	b) 34.57	c) 35.57	d) 95.57	
120 m × 90 m. Th wheel rpm to the transferred from t	e effective ground wheel of fluted roller rpm is 2. Fo the seed box to the seed to s and the total time was	diameter of the seed drill r one complete rotation on the average time take	eed of 3 km h ⁻¹ in a field of is 0.5 m and the ratio of ground feach fluted roller, 6.8 g seed the for each turn while operation of the source of the field of the source of the field of the source of the field o	ound ed is ating
io) The seed rate in	ng na win se		(GATE EE 20	025)
a) 108.32	b) 122.55	c) 136.99	d) 240.71	
49) The actual field of	capacity of the machine in	hah^{-1} is	(GATE EE 20	025)
a) 0.30	b) 0.32	c) 0.36	d) 0.40	
energy conserving is heated up to 6 the final temperar at 70°C and 40°C	g system, 1 kg s ⁻¹ air at 30°5°C. Water at the wet bu	C with constant absolute all temperature of air is tour mixture is 40°C. Late 1-1, respectively.	8 kJ kg ⁻¹ K ⁻¹ , respectively. In humidity of 0.02 kg water (kg then sprayed into the air so and heat of vaporization of w	dry air) ⁻¹ that

a) 18.2 b) 36.5 c) 101.0 d) 166.8

51)	The absolute humidity	of the exhaust air from th	e spray chamber in kg wa	ater (kş	g dry air) ⁻¹ is (GATE EE 2025)
	a) 0.027	b) 0.029	c) 0.031	d) 0.	033
52)	m ahead of rear axle co 50 kN on a leveled cor The tractor hitch point During operation, 20% coefficient of rolling re- ground reactions are as	entre. The tractor is pulling acrete road while maintain is 42 cm behind the rear of the gross trailer weign sistance for each of the track.	wheel base of 2.1 m. The ng a single-axle trailer wining the line of pull paral axle centre and 52.5 cm aght is transferred to the tractor and trailer wheels it eir respective wheel centre rear wheels in kN is	th grostlel to the above the tractor is taken	ss trailer weight of he ground surface. he ground surface. hitch point. If the as 0.04, and their
					(GATE EE 2025)
	a) 14.0	b) 24.0	c) 24.5	d) 26	5.4
53)	the gross traction ratio	developed by the tractor i	s		(GATE EE 2025)
	a) 0.061	b) 0.082	c) 0.108	d) 0.	123
ŕ		ficient of discharge for the	a triangular notch is 0.00 notch is 0.7. If the require		harge is 0.1 m ³ s ⁻¹ , (GATE EE 2025)
	<i>a)</i> 0.00013	0) 0.033	C) 0.263	u) 07	.13
55)	the corresponding width	n of water surface in m is			(GATE EE 2025)
	a) 0.80	b) 0.099	c) 0.00043	d) 0.	00086
ŕ	If $3 \le X \le 5$ and $8 \le Y$ a) $\frac{3}{5} \le \frac{X}{Y} \le \frac{8}{5}$ b) $\frac{3}{11} \le \frac{X}{Y} \le \frac{5}{8}$ c) $\frac{3}{11} \le \frac{X}{Y} \le \frac{8}{5}$ d) $\frac{3}{5} \le \frac{X}{Y} \le \frac{8}{11}$	\leq 11 then which of the f	ollowing options is TRUE	Ξ?	(GATE EE 2025)
57)	The Headmaster	<u> </u>	omplete the above sentence	e?	(GATE EE 2025)
58)	d) was wanting Mahatama Gandhi was	known for his humility a nt role in humiliating exinitarian causes.			(GATE EE 2025)

· •	modesty in his interaction	ns.		
d) he was a fine	human being.			
59) All engineering <i>II III</i>	students should learn me <i>IV</i>	chanics, mathematics and	how to do computation. I	
		he sentence is not appropr	riate?	
	r	TI II	(GATE EE	E 2025)
a) I	b) II	c) III	d) IV	
60) Select the pair to water: pipe::	that best expresses a relat	ionship similar to that exp	ressed in the pair:	
1 1			(GATE EE	E 2025)
a) cart: road		c) sea: beach		
b) electricity: w	ire	d) music: instrui	nent	
		ward direction is given by tween 32 m s ⁻¹ and 64 m s		ime) is
	,		(GATE EE	E 2025)
a) (1, 3/2)		c) $(1/2, 3/2)$		
b) (1/2, 1)		d) (1, 3)		
Out of the tota	I production, 2% of M_1 ponent from the combined	nufacture 60% and 40% of and 3% of M_2 are found do lot is found defective, where M_2 is a small standard for the standard form.	I to be defective. If a ran	ndomly
manuractured o	y 141 <u>7</u> :		(GATE EE	E 2025)
a) 0.35	b) 0.45	c) 0.5	d) 0.4	
		om different countries visit	ing India in the year 2011	l.
('ountry Nu	mber of Tourists			

Country	Number of Tourists
USA	2000
England	3500
Germany	1200
Italy	1100
Japan	2400
Australia	2300
France	1000

Which two countries contributed to the one third of the total number of tourists who visited India in 2011? (GATE EE 2025)

- a) USA and Japan
- b) USA and Australia
- c) England and France
- d) Japan and Australia
- 64) If |-2X + 9| = 3 then the possible value of $|-X| X^2$ would be:

(GATE EE 2025)

a) 30

- b) -30
- c) -42

d) 42

65) All professors are researchers

Some scientists are professors

Which of the given conclusions is logically valid and is inferred from the above arguments:

(GATE EE 2025)

- a) All scientists are researchers
- b) All professors are scientists
- c) Some researchers are scientists
- d) No conclusion follows