(Optional) OLS Properties

Name: Jikhan Jeong

March 3, 2022

1. Positive Definite, Trace, Idempotent, Inverse, Matrix Derivative

1.1 Positive Definite

- X'X = Square Matrix = Positive Definite = Convex = Can be minimized
- In OLS assumptions, we requires $(X'X)^{-1} \to 0$ to derive consistency of $Cov(\beta)$

1.2 Trace

- (Example) Trace $\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} = \sum_{i=1}^{3} x_{ii} = x_{11} + x_{22} + x_{33}$
- $\operatorname{Trace}(\operatorname{scalar} \times X) = \operatorname{scalar} \times \operatorname{Trace}(X)$
- Trace(X+Z) = Trace(X) + Trace(Z)
- Trace(X') = Trace(X)
- Trace(AB) = Trace(BA)
- We need it when $Cov(Y) = \sigma^2 I = Cov(\varepsilon) = E(\varepsilon \varepsilon')$, where E[Trace(e'Me)] = Trace[M]E(e'e)] = (n-k)E(e'e), where n = sample number, k = variable numbers = column dim(X)

1.3 Idempotent Matrix

- We need it when $Cov(Y) = \sigma^2 I = Cov(\varepsilon) = E(\varepsilon \varepsilon')$, where E[Trace(e'M'Me)] = E[Trace(e'Me)]
- $P \subset Idempotent Matrix$, then P'P = P
- P \subset Idempotent Matrix, then I P = M, M \subset Idempotent Matrix

1.4 Inverse Matrix

- $A = (A^{-1})^{-1}$
- $(A')^{-1} = (A^{-1})'$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $|\mathbf{A}^{-1}| = \frac{1}{|A|}$

1.5 Matrix Derivative

- From Prof. Ron's Book p.440, Useful for OLS Loss minimization
- \mathbf{z} : (k x 1) vector, \mathbf{A} : (k x j) matrix, \mathbf{w} : (j x 1) vector
- $\frac{\vartheta z' A w}{\vartheta z} = A w$
- $\frac{\vartheta z'Aw}{\vartheta w} = A'w$
- $\frac{\vartheta z'Az}{\vartheta z}=2Az$, where k=j and A is a symmetric (A'=A)
- $\frac{\vartheta z'w}{\vartheta z} = w$, (k=j)
- $\frac{\vartheta z'w}{\vartheta w} = z$, (k=j)

2. Summarize the classical assumptions of GLM

- $E(Y) = x\beta$ and $E(\varepsilon)=0$
- $Cov(Y) = \sigma^2 I = Cov(\varepsilon) = E(\varepsilon \varepsilon')$
- x is a fixed matrix of values with rank(x) = k, where k = unknown parameters

3. OLS objective function

- S = e'e, OLS minimize S
- $S = e'e = (y-x\beta)'(y-x\beta)$
- FOC β : $-2X'y + 2X'X\hat{\beta} = 0 \mapsto X'y = X'X\hat{\beta} \mapsto (X'X)^{-1}X'y = \hat{\beta}$
- SOC β : 2X'X is a positive definite

4. Gauss-Markov

- $\hat{\beta}$ in OLS is unbiased and efficient within the class of linear, unbiased estimator (BLUE)
- $\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'(X\beta + e) = (X'X)^{-1}X'X\beta + (X'X)^{-1}X'e$ = $\beta + (X'X)^{-1}X'e$
- $E(\hat{\beta}) = E(\beta + (X'X)^{-1}X'e) = \beta + 0 = \beta$, unbias
- $Cov(\hat{\beta}) = E[(\hat{\beta}-E(\hat{\beta}))(\hat{\beta}-E(\hat{\beta}))'] = E[(\hat{\beta}-\beta)(\hat{\beta}-\beta)'] = E[(X'X)^{-1}X'ee'X(X'X)^{-1}]$ = $(X'X)^{-1}X'E(ee')X(X'X)^{-1}$, where $E(ee') = \sigma^2 I$ = $\sigma^2(X'X)^{-1}X'X(X'X)^{-1} = \sigma^2(X'X)^{-1}$
- $\bullet \ \operatorname{Cov}(Y) = \operatorname{E}(\hat{e}'\hat{e}) = \operatorname{E}[(Y \hat{\beta}X)(Y \hat{\beta}X)'] = \operatorname{E}[(Y \hat{\beta}X)(Y \hat{\beta}X)'] = \operatorname{E}[e'M'Me] = \operatorname{E}[e'Me]$
- = E[Tr(e'Me)]= E[Tr(M)e'e]= Tr(M)E(e'e) = Tr(I-P) σ^2 = (n-k) σ^2
- $\frac{\hat{e}'\hat{e}}{n-k} = s^2$, sample variance to make it unbiased estimator of $\sigma^2 \mapsto E(\frac{\hat{e}'\hat{e}}{n-k}) = E(s^2) = \sigma^2$

4.1 (Proof E[e'Me] = σ^2 Tr(M), Econometrics(Hayashi, p31)

- e'Me = $\sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} \varepsilon_i \varepsilon_j$, derivation of quadratic form
- $E(e'Me|X) = \sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} E(\varepsilon_{i}\varepsilon_{j}|X)$, where $E(m\varepsilon_{i}\varepsilon_{j}|X) = m_{ij} E(\varepsilon_{i}\varepsilon_{j}|X)$ as m_{ij} is function of $X = \sigma^{2} \sum_{i=1}^{n} m_{ii}$, as the classical assumptions of $OLS = \sigma^{2}I = Cov(\varepsilon) = E(\varepsilon\varepsilon') = \sigma^{2} \cdot Trace(M)$

5. Consistent estimator of θ

- If $\hat{\theta}$ converges in probability to θ , then we say it is a consistent estimator
- plim $\hat{\beta} \to \beta$, consistent estimator as follows: plim $\hat{\beta} = \beta + \text{plim}(X'X)^{-1}X'e = \beta + \text{plim}(X'X\frac{n}{n})^{-1}X'e = \beta + \text{plim}(X'X\frac{1}{n})^{-1}\frac{X'e}{n}$ $=\beta + \text{plim}(X'X\frac{1}{n})^{-1}\cdot 0 = \beta$
- plim $s^2 = \frac{\hat{e}'\hat{e}}{n-k} = \rightarrow \sigma^2$, consistent estimator as follows: $s^2 = \frac{\hat{e}'\hat{e}}{n-k} = \frac{e'Me}{n-k} = \frac{e'(I-P)e}{n-k} = \frac{e'e-e'X(X'X)^{-1}X'e}{n-k} = \frac{e'e}{n-k} \frac{e'X(X'X)^{-1}X'e}{n-k}$ plim $s^2 \rightarrow \text{plim}(\frac{e'e}{n-k}) \text{plim}(\frac{e'X(X'X)^{-1}X'e}{n-k}) \rightarrow \sigma^2 \text{plim}(\frac{e'X(X'X)^{-1}X'e}{n-k}) \rightarrow \sigma^2$, where plim $(\frac{e'X(X'X)^{-1}X'e}{n-k}) = 0$ as $\frac{(X'X)^{-1}}{n} \rightarrow 0$

6. R^2

- Simple regression case, 1 exogeneous variable"
- \mathbb{R}^2 measures the precentage of variations in \hat{Y} can be explained by the regression model
- SST = total sum of squares = $(Y-\bar{Y})(Y-\bar{Y})$
- SSE = error sum of squares = $(Y-\hat{Y})(Y-\hat{Y})$
- SSR = sum of square residuals = SST SSE = $(\hat{Y} \bar{Y})(\hat{Y} \bar{Y})$
- $R^2 = \frac{SSR}{SST} = \frac{SST SSE}{SST} = 1 \frac{SSE}{SST}$

Reference

- Mittelhammer, R.C. and Mittelhammer, R.C., 1996. Mathematical statistics for economics and business (Vol. 78). New York: Springer.
- Fomby, T.B., Hill, R.C. and Johnson, S.R., 2012. Advanced econometric methods. Springer Science & Business Media.
- Hayashi, F., 2000. Econometrics. 2000. Princeton University Press.