Packet transmission delay = time needed to transmit L-bit packet into link = $\frac{L (Bits)}{R (Bits/sec)}$ Breaks into smaller chunks, known as **packets**, of length **L** bits

Four sources of packet delay

d(nodal) = d(proc) + d(queue) + d(transe) + d(prop)

d(proc); nodal processing

- *chk bit error
- *determine output link
- *typically < msec

d(queue); queueing delay

* time waiting at output link for transmission

d(trans); transmission delay

- *L: packet length (bits)
- *R: link bandwith (bps)
- *d(trans) = L/R

d(prop); propagation delay

- *d: length of physical link
- *s: propagation speed in medium (2*10° m/sec)
- *d(prop) = d/s

d(trans) and **d(prop)** are very different from each other #NOTTHESAME

Queueing delay

- R: link bandwith (bps)
- L: packet length (bits)
- a: average packet arrival rate

La/R = 0: avg kø delay is small

La/R -> 1: avg kø delay large

La/R > 1: more "work" arriving

The nodal delays accumulate and give an end-to-end delay, d(end)-(end) = N (dproc + dtrans + dprop)