Dynamic Demand for Differentiated Products with Fixed-Effects Unobserved Heterogeneity

Victor Aguirregabiria (University of Toronto)

DSE 2022 – CANBERRA

December 17, 2022

MOTIVATION

- In many markets, consumer demand can be dynamic:
 - Consumers' preferences depend on their past decisions.
- Sources of dynamics in demand include:
 - Storability; durability; habits; switching costs; adoption costs; learning
- Dynamics generate state dependence in consumers' decisions, and differences between short-run and long-run responses.
- The estimation of dynamic structural demand models using consumer-level panel data tries to measure these causal effects and use them for counterfactual policy analysis and welfare evaluation.
 - e.g., taxes; new products; mergers; cost pass-through

IDENTIFICATION CHALLENGES

- Disentangling true dynamics (causal effect of past decisions) versus spurious dynamics (persistent unobserved heterogeneity (UH)).
- Two important issues with **short panels** (with fixed T):
 - Incidental parameters problem
 - Initial conditions problem
- ALL the applications of dynamic discrete choice structural models have considered Random Effects (RE) models (finite mixture).
- Potential misspecification of parametric restrictions on distribution of UH can introduce substantial biases in the estimates of the model parameters.

PURPOSE OF THIS PAPER

- I apply and extend recent developments to study identification & estimation of dynamic demand for differentiated product with Fixed Effects consumer heterogeneity.
- Identification of structural parameters in Logit & Nested Logit: Switching costs; Depretiation (depletion) of durable (storable) products; Price sensitivity.
- 2. Conditional Maximum Likelihood (CML) estimation of these parameters does not suffer the curse of dimensionality.
- 3. Illustrate these results with an **empirical application** using NIELSEN consumer scanner data from Chicago-Kilts Center.

RELATED LITERATURE

- 1. Long empirical literature on dynamic demand models in marketing / IO. In most papers, consumers are not forward-looking.
- 2. Dynamic structural models of demand for differentiated products. Seminal papers:
 - Erdem, Imai, & Keane (2003): Random effects model.
 - Hendel & Nevo (2006): Only observed heterogeneity.
- 3. Dynamic discrete choice models with Fixed Effect unobserved heterogeneity and short panels.
 - Honoré & Kyriazidou (2000, 2019); Honoré & Tamer (2006); Honoré & Weidner (2021).
 - Aguirregabiria, Gu, & Luo (2021)
- Other recent methods: Kong, Dubé, & Daljord (2022); Berry & Compiani (2022). Parameteric models for persistent Unobs. heter.

OUTLINE

- 1. MODEL
- 2. IDENTIFICATION OF STRUCTURAL PARAMETERS
- 3. ESTIMATION
- 4. EMPIRICAL APPLICATION

1. MODEL

MODEL: DECISION & STATE VARIABLES

- J products indexed by j; consumers by i, calendar time by t.
- Consumer Decision variable:

$$y_{it} = 0$$
 means "no purchase"; $y_{it} = j > 0$ means "purchase j "

State variables that depend the consumer's choices:

 $\ell_{it} = \text{brand choice in last purchase}$

$$\ell_{i,t+1} = 1\{y_{it} = 0\}\ell_{it} + 1\{y_{it} > 0\}y_{it}$$

 d_{it} = time duration since last purchase.

$$d_{i,t+1} = 1 + 1\{y_{it} = 0\}d_{it}$$

 State variables that DO NOT depend on the consumer's choices: prices, advertising, other time-varying product characteristics.

$$\mathbf{p}_{it} = (p_{it}(j) : j = 1, 2, ..., J)$$

MODEL: CONSUMER PREFERENCES

Consumers maximize expected & discounted intertemporal utility:

$$\mathbb{E}_t \left[\sum_{s=0}^{\infty} \delta_i^s \ U_{i,t+s} \right]$$

 δ_i is unrestricted: a component of the FE Unobserved Heterogeneity.

• Utility has four components:

$$U_{it} \ = \ b_i \left(y_{it}, \ell_{it}, d_{it} \right) \ + \ m_i \left(y_{it}, \boldsymbol{p}_{it} \right) \ - \ sc_i \left(y_{it}, \ell_{it} \right) \ + \ \epsilon_{it} (y_{it})$$

 $b_i\left(y_{it},\ell_{it},d_{it}\right)=$ utility from consumption of branded product.

 $m_i(y_{it}, \mathbf{p}_{it}) = \text{utility from consumption of composite product.}$

 $sc_i(y_{it}, \ell_{it}) = switching cost / habits.$

 $\varepsilon_{it}(y_{it}) = \text{i.i.d. Logit / Nested Logit shock.}$

UTILITY: CONSUMPTION BRANDED PRODUCT

$$b_i\left(y_{it},\ell_{it},d_{it}\right) \ \equiv \ \begin{cases} \alpha_i(\ell_{it}) \ + \ \ln(c_{it}) & \text{if} \quad y_{it} = 0 \\ \\ \alpha_i(j) \ + \ \ln(c_{it}) & \text{if} \quad y_{it} = j > 0 \end{cases}$$

- $\alpha_i(j)$ = flow utility for consumer i from consuming brand j.
- We can see $\alpha_i(j)$ as a combination of product & consumer characteristics, observable and unobservable to the researcher.

$$\alpha_i(j) = \mathbf{x}_j' \ \boldsymbol{\beta}_i^{\mathsf{x}} \ + \ \boldsymbol{\xi}_j' \ \boldsymbol{\beta}_i^{\boldsymbol{\xi}}$$

• $\alpha_i \equiv (\alpha_i(1), \alpha_i(2), ..., \alpha_i(J))$ are the fixed effects for consumer i.

UTILITY: CONSUMPTION BRANDED PRODUCT [2/2]

- A fundamental measurement problem in this literature is that the researcher does not observe (with enough high frequency) a consumer's amounts of consumption c_{it} and inventory i_{it} .
- Here I follow a similar approach as in Erdem, Imai, & Keane (2003) and assume a consumption rule:

$$c_{it} = \begin{cases} \lambda^{dep}(\mathbf{w}_i, \ell_{it}) \ i_{it} & \text{if} \quad y_{it} = 0 \\ i_{it} & \text{if} \quad y_{it} > 0 \end{cases}$$

where $\lambda^{dep}(\mathbf{w}_i, j) \in (0, 1)$ is an exogenous consumption rate that may vary across products, and across consumers according to observable characteristics \mathbf{w}_i .

• Together with the standard transition rule for inventories, we have:

$$\ln(c_{ht}) = constant - \beta^{dep}(\mathbf{w}_i, j) \ d_{it}$$
 with $\beta^{dep}(\mathbf{w}_i, j) = -\ln(1 - \lambda^{dep}(\mathbf{w}_i, j))$.

UTILITY FROM COMPOSITE GOOD

$$m_i(y_{it}, \mathbf{p}_{it}) = \gamma(\mathbf{w}_i) \left(\mu_i - \sum_{j=1}^J p_{it}(j) \ 1\{y_{it} = j\} \right)$$

- μ_i = consumer's disposable income.
- $m{\circ}$ $\gamma(m{w}_i)=$ marginal utility of the composite good, e.g., $\gamma(m{w}_i)=m{w}_i'$ γ
- Identification results extend to the case of nonlinear in consumption but linear in parameters utility from the composite good:

$$\gamma_1 \left(\mu_i - \sum_{j=1}^J p_{it}(j) \ 1\{y_{it} = j\} \right) + \gamma_2 \left(\mu_i - \sum_{j=1}^J p_{it}(j) \ 1\{y_{it} = j\} \right)^2$$

UTILITY: SWITCHING COSTS

$$sc_{i}(y_{it}, \ell_{it}) = \sum_{k=1}^{J} \sum_{j \neq k} 1\{\ell_{it} = k \& y_{it} = j\} \beta^{sc}(\mathbf{w}_{i}, k, j)$$

• $\beta^{sc}(\mathbf{w}_i, k, j) = \text{cost of switching from brand } k \text{ to brand } j$.

UTILITY: LOGIT IDIOSYNCRATIC SHOCKS

- $\varepsilon_{it}(j)$'s are i.i.d. over (i, t, j) type I extreme value distributed.
- I provide identification & estimation results for Nested Logit version.

COMPLETE UTILITY FUNCTION

• Putting together the different components:

$$\label{eq:uit} \textit{U}_{it} = \left\{ \begin{array}{ll} \alpha_i(\ell_{it}) - \beta^{dep}(\ell_{it}) \ \textit{d}_{it} + \epsilon_{it}(0) & \textit{if} \quad \textit{y}_{it} = 0 \\ \\ \alpha_i(j) + \gamma_i \left(\mu_i - p_{it}(j)\right) - \beta^{sc}(\ell_{it}, j) + \epsilon_{it}(j) & \textit{if} \quad \textit{y}_{it} = j > 0 \end{array} \right.$$

• We use $\mathbf{x}_{it} = (\ell_{it}, d_{it})$, and:

 $u_{\alpha_i}(y_{it}, \mathbf{x}_{it}, \mathbf{p}_{it}) = \text{utility excluding unobservable logit shocks}.$

MODEL: STOCHASTIC PROCESS FOR PRICES

• $p_{it}(j)$ has two components: persistent, $z_{it}(j)$; and transitory, $e_{it}(j)$.

$$p_{it}(j) = \rho(z_{it}(j), e_{it}(j))$$

where $\rho(.)$ is a known function.

- Define $\mathbf{z}_{it} \equiv (z_{it}(j) : j = 1, 2, ..., J)$ and $\mathbf{e}_{it} \equiv (e_{it}(j) : j = 1, 2, ..., J)$.
- ASSUMPTION 1:
 - (i) \mathbf{z}_{it} follows a first order Markov process.
 - (ii) Conditional independence of transitory component of prices: Conditional on \mathbf{z}_{it} , $(\mathbf{e}_{i,t+1},\mathbf{z}_{i,t+1})$ does not depend on \mathbf{e}_{it} .

EXAMPLE: HI-LO PRICING

Figure: Weekly time series: price of laundry detergent product (Tide liquid 70oz)

EXAMPLE: HI-LO PRICING (2/2)

- Many supermarket products: evolution of weekly prices is characterized by the alternation between a regular price and a promotion price. See Hitsch, Hortacsu, & Lin (2019).
- Stochastic process for price:

$$p_{it}(j) = (1 - e_{it}(j)) z_{it}^{reg}(j) + e_{it}(j) z_{it}^{pro}(j)$$

- $z_{it}^{reg}(j) = \text{Regular price (follows Markov chain.)}$
- $z_{it}^{pro}(j) = Promotion price (follows Markov chain.)$
- $e_{it}(j) = \text{Dummy variable for "promotion for product } j \text{ in market } i \text{ at period } t$ ". Satisfies the Conditional Independence Assumption 1(ii).

STOCHASTIC PROCESS FOR PRICES & IDENTIFICATION

- The stochastic process of prices is not needed for the identification of the parameters β^{sc} and β^{dep} .
- However, it plays a key role in the identification of the price parameter γ in a FE forward-looking model.
- Both \mathbf{z}_{it} and \mathbf{e}_{it} affect a consumer's current utility, but expected future utility (the continuation value) depends on \mathbf{z}_{it} but not on \mathbf{e}_{it} .
- ullet This exclusion restriction is key in the identification of γ .
- Given data on prices and a specification of the $\rho(.)$ function, it is possible to identify the two components \mathbf{z}_{it} and \mathbf{e}_{it} .

CONSUMER DYNAMIC DECISION PROBLEM

• The decision problem of consumer *i* at period *t* is:

$$y_{it} = argmax_{j \in \mathcal{Y}} \{ u_{\alpha_i}(j, \mathbf{x}_{it}, \mathbf{p}_{it}) + \varepsilon_{it}(j) + v_{\alpha_i}(f_{\mathbf{x}}(j, \mathbf{x}_{it}), \mathbf{z}_{it}) \}$$

- $f_x(j, \mathbf{x}_{it}) = \text{value of } \mathbf{x}_{i,t+1} \text{ given state } \mathbf{x}_{it} \text{ and decision } y_{it} = j.$
- $v_{\alpha_i}(f_x(j, \mathbf{x}_{it}), \mathbf{z}_{it}) = continuation value function.$
- $P(j|\mathbf{x}_{it}, \mathbf{z}_{it}, \mathbf{e}_{it}, \alpha_i) =$ Conditional Choice Probability (CCP).
- Model implies:

$$\log P(j|\mathbf{x}_{it}, \mathbf{z}_{it}, \mathbf{e}_{it}, \boldsymbol{\alpha}_{i}) =$$

$$= u_{\alpha_{i}}(j, \mathbf{x}_{it}, \mathbf{p}_{it}) + v_{\alpha_{i}}(f_{\mathbf{x}}(j, \mathbf{x}_{it}), \mathbf{z}_{it}) - \sigma_{\alpha_{i}}(\mathbf{x}_{it}, \mathbf{z}_{it}, \mathbf{e}_{it})$$

where $\sigma_{\alpha_i}(\mathbf{x}_{it}, \mathbf{z}_{it}, \mathbf{e}_{it})$ be the log of the denominator in the Logit CCP function (i.e, log of sum of exponentials of utilities).

2. IDENTIFICATION OF STRUCTURAL PARAMETERS

SUFFICIENT STATISTICS APPROACH

- I follow Aguirregabiria, Gu, & Luo (2021) who consider a sufficient statistic - conditional likelihood approach in the spirit of Cox (1958), Rasch (1960).
- Let $\mathbf{y}_i = \{\ell_1, d_1, y_1, y_2, ..., y_T\}$ be an individual's observed history; and let $\widetilde{\mathbf{z}}_i \equiv (\mathbf{z}_{i1}, \mathbf{z}_{i2}, ..., \mathbf{z}_{iT})$ and $\widetilde{\mathbf{e}}_i \equiv (\mathbf{e}_{i1}, \mathbf{e}_{i2}, ..., \mathbf{e}_{iT})$.
- θ is the vector of structural parameters: $\beta^{sc}(.)$, $\beta^{dep}(.)$, and γ
- Probability of \mathbf{y}_i conditional on history of prices $\widetilde{\mathbf{z}}_i$, $\widetilde{\mathbf{e}}_i$ and α_i is:

$$\mathbb{P}\left(\mathsf{y}_{i}|\widetilde{\mathsf{z}}_{i},\widetilde{\mathsf{e}}_{i},\pmb{lpha}_{i},\pmb{ heta}
ight)=$$

$$p^{*}(\ell_{i1}, d_{i1}|\alpha_{i}) \prod_{t=2}^{T} \frac{\exp\{u_{\alpha_{i}}(y_{it}, \mathbf{x}_{it}, \mathbf{p}_{it}) + v_{\alpha_{i}}(y_{it}, \mathbf{x}_{it}, \mathbf{z}_{it})\}}{\sum_{j=0}^{J} \exp\{u_{\alpha_{i}}(j, \mathbf{x}_{it}, \mathbf{p}_{it}) + v_{\alpha_{i}}(j, \mathbf{x}_{it}, \mathbf{z}_{it})\}}$$

SUFFICIENT STATISTICS APPROACH (2/2)

• This log-probability has the following structure:

$$\log \mathbb{P}\left(\mathbf{y}_{i} | \widetilde{\mathbf{z}}_{i}, \widetilde{\mathbf{e}}_{i}, \alpha_{i}, \theta\right) = \mathbf{s}(\mathbf{y}_{i}, \widetilde{\mathbf{z}}_{i}, \widetilde{\mathbf{e}}_{i})' \mathbf{g}(\alpha_{i}) + \mathbf{c}(\mathbf{y}_{i}, \widetilde{\mathbf{z}}_{i}, \widetilde{\mathbf{e}}_{i})' \theta$$

- This structure has several important implications.
- 1. $\mathbf{s}(\mathbf{y}_i, \widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i)$ is a sufficient statistic for α .
- 2. If the elements in the vector $[\mathbf{s}(\mathbf{y}_i, \widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i))', \mathbf{c}(\mathbf{y}_i, \widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i)']$ are linearly independent, then CMLE implies the identification of $\boldsymbol{\theta}$.

A MORE INTUITIVE DESCRIPTION

- For every parameter in the vector $\boldsymbol{\theta}$, say θ_k , there exist two choice histories, say A and B, such that $\mathbf{s}(A) = \mathbf{s}(B)$ and $\mathbf{c}(A) \mathbf{c}(B)$ is a vector where all the elements are zero except element k that is one.
- Under these conditions, we have that:

$$\theta_k = \log \mathbb{P}(A) - \log \mathbb{P}(B),$$

• Parameter θ_k is identified from the log odds ratio of histories A and B.

IDENTIFICATION OF β^{sc} AND γ

• For $k, j \ge 1$ with $k \ne j$, and any two natural numbers n_1 and n_2 , consider the following choice histories ($\mathbf{0}_n$ = vector of n zeros):

$$A = (k, \mathbf{0}_{n_1}, j, \mathbf{0}_{n_2}, k, \mathbf{0}_{n_2}, j); B = (k, \mathbf{0}_{n_1}, k, \mathbf{0}_{n_2}, j, \mathbf{0}_{n_2}, j)$$

And the following condition on the history of prices:

$$\mathbf{z}_{it}$$
 is constant from period $n_1 + 2$ to $n_1 + 2n_2 + 4$

• Under these conditions, we have that:

$$\log \mathbb{P}(A) - \log \mathbb{P}(B) =$$

$$-\ \widetilde{\beta}^{sc}(k,j) - \gamma\ (e_{n_1+2}(j) - e_{n_1+3}(j) - e_{n_1+2}(k) + e_{n_1+3}(k))$$

IDENTIFICATION OF β^{sc} **AND** γ (2/2)

$$\log \mathbb{P}(A) - \log \mathbb{P}(B) =$$

$$-\widetilde{\beta}^{sc}(k,j) - \gamma \ (e_{n_1+2}(j) - e_{n_1+3}(j) - e_{n_1+2}(k) + e_{n_1+3}(k))$$

- This equation shows that:
 - 1. A change between periods $n_1 + 2$ and $n_1 + 3$ in the transitory component of the price of product j or k identifies parameter γ .
 - 2. The switching cost parameter $\tilde{\beta}^{sc}(k,j)$ is identified from histories where this transitory component is constant.

IDENTIFICATION OF β^{dep}

• **ASSUMPTION 2.** For any product j, there is a value of duration d_j^* – which can vary across products – such that $\beta^{dep}(j,n) = \beta^{dep}(j,d_j^*)$ for any duration $n \ge d_i^*$.

• **PROPOSITION**. For any product *j* and any duration *n*, define the pair of histories:

$$A_{j,n} = (j, \mathbf{0}_{n-1}, j, \mathbf{0}_{n+1})$$
 and $B_{j,n} = (j, \mathbf{0}_n, j, \mathbf{0}_n).$

If $d_j^* \leq (T-1)/2$, then d_j^* is identified from the following expression:

$$d_i^* = \max\{n : \log \mathbb{P}(A_{j,n}) - \log \mathbb{P}(B_{j,n}) \neq 0\}$$

IDENTIFICATION OF β^{dep} (2/2)

• Then, for $n = d_j^* - 1$, we have that:

$$\log \mathbb{P}(A_{j,n}) - \log \mathbb{P}(B_{j,n}) = -\beta^{dep}(j, d_j^*) + \beta^{dep}(j, d_j^* - 1)$$

- The (local) depreciation rate $\beta^{dep}(j,d_j^*) \beta^{dep}(j,d_j^*-1)$ is identified.
- If $\beta^{dep}(j,d)$ is a linear function, i.e., $\beta^{dep}(j,d) = \overline{\beta}_j^{dep} d$, then the product-specific depreciation rate $\overline{\beta}_j^{dep}$ is identified.

3. ESTIMATION

CML ESTIMATION

• Let represent a sufficient statistic for α_i as a binary indicator that combines the condition $\mathbf{y}_i \in \{A \cup B\}$, and restrictions on prices, that we represent as $r(\widetilde{\mathbf{z}_i}, \widetilde{\mathbf{e}_i}) = \mathbf{0}$. That is:

$$s_i = 1\{\mathbf{y}_i \in A \cup B \text{ and } r(\widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i) = \mathbf{0}\}$$

• There are many of these binary sufficient statistics. Let index them by $m \in \{1, 2, ..., M\}$. Then, the conditional log-likelihood function is:

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{m=1}^{M} \sum_{i=1}^{N} 1\{\mathbf{y}_i \in A^m \cup B^m\} \ 1\{r^m(\widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i) = \mathbf{0}\}$$

$$\log \left(\frac{\exp\{c^m(\mathbf{y}_i, \widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i)'\theta\}}{\exp\{c^m(A^m, \widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i)'\theta\} + \exp\{c^m(B^m, \widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i)'\theta\}} \right)$$

CML ESTIMATION (2/2)

- Imposing exactly the restrictions on prices typically implies loosing a substantial amount of observations.
- To deal with this issue, we follow the Kernel weighting in Honore & Kyriazidou (2000)
- The Kernel Weighted conditional log-likelihood function is:

$$\mathcal{L}^{KW}(\boldsymbol{\theta}) = \sum_{m=1}^{M} \sum_{i=1}^{N} 1\{\mathbf{y}_{i} \in A^{m} \cup B^{m}\} K\left(\frac{r^{m}(\widetilde{\mathbf{z}}_{i}, \widetilde{\mathbf{e}}_{i})}{b_{N}}\right)$$

$$\log \left(\frac{\exp\{c^m(\mathbf{y}_i, \widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i)'\theta\}}{\exp\{c^m(A^m, \widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i)'\theta\} + \exp\{c^m(B^m, \widetilde{\mathbf{z}}_i, \widetilde{\mathbf{e}}_i)'\theta\}} \right)$$

4. EMPIRICAL APPLICATION

DATA

- NIELSEN scanner data from Chicago-Kilts center.
- Period 2006-2019. Current estimates using only years 2017-2018.
- More than 40k participating households all over US.
- Rich demographics (w_i) : ZIP code, income, age, education, occupation, race, family size, family composition, type of residence,
- Data on every shopping trip.
- Product: Laundry detergent

ESTIMATION OF DEMAND PARAMETERS

Fixed Effects provide precise enough estimates (N = 19,776).

Estimates of Structural Parameters				
	FE Kernel W. CML		RE (2 types) + $\mathbf{w}_i'\alpha(j)$	
Parameter	Estimate	(s.e.)	Estimate	(s.e.)
γ Price	1.7392	(0.3018)	1.155	(0.1221)
$eta^{sc}(\mathit{habits})$ Brand 1	0.3804	(0.0290)	0.7551	(0.0101)
$\beta^{sc}(habits)$ Brand 2	0.2556	(0.0573)	0.6695	(0.0110)
$\beta^{sc}(habits)$ Brand 3	0.2388	(0.0591)	0.7360	(0.0162)
$eta^{dep}(\mathit{linear})$ Brand 1	0.0597	(0.0112)	-0.0089	(0.0040)
$\beta^{dep}(linear)$ Brand 2	0.0611	(0.0118)	-0.0161	(0.0046)
$\beta^{dep}(linear)$ Brand 3	0.0692	(0.0172)	-0.0208	(0.0072)
Hausman test (p-value)	0.0000			

ESTIMATION OF DEMAND PARAMETERS

Hausman test clearly rejects the Random Effects model.

Estimates of Structural Parameters				
	FE Kernel W. CML		RE (2 types) + $\mathbf{w}_i'\alpha(j)$	
Parameter	Estimate	(s.e.)	Estimate	(s.e.)
γ Price	1.7392	(0.3018)	1.155	(0.1221)
$eta^{sc}(\mathit{habits})$ Brand 1	0.3804	(0.0290)	0.7551	(0.0101)
$\beta^{sc}(habits)$ Brand 2	0.2556	(0.0573)	0.6695	(0.0110)
$\beta^{sc}(habits)$ Brand 3	0.2388	(0.0591)	0.7360	(0.0162)
$eta^{dep}(\mathit{linear})$ Brand 1	0.0597	(0.0112)	-0.0089	(0.0040)
$\beta^{dep}(linear)$ Brand 2	0.0611	(0.0118)	-0.0161	(0.0046)
$\beta^{dep}(linear)$ Brand 3	0.0692	(0.0172)	-0.0208	(0.0072)
Hausman test (p-val)	0.0000			

ESTIMATION OF STRUCTURAL PARAMETERS

Random Effects model over-estimates habits parameters.

Estimates of Structural Parameters					
	FE Kernel W. CML		RE (2 types) + $\mathbf{w}_i'\alpha(j)$		
Parameter	Estimate	(s.e.)	Estimate	(s.e.)	
γ Price	1.7392	(0.3018)	1.155	(0.1221)	
$eta^{sc}(\mathit{habits})$ Brand 1	0.3804	(0.0290)	0.7551	(0.0101)	
$\beta^{sc}(habits)$ Brand 2	0.2556	(0.0573)	0.6695	(0.0110)	
$\beta^{sc}(habits)$ Brand 3	0.2388	(0.0591)	0.7360	(0.0162)	
$eta^{dep}(\mathit{linear})$ Brand 1	0.0597	(0.0112)	-0.0089	(0.0040)	
$\beta^{dep}(linear)$ Brand 2	0.0611	(0.0118)	-0.0161	(0.0046)	
$\beta^{dep}(linear)$ Brand 3	0.0692	(0.0172)	-0.0208	(0.0072)	
· · · · · ·		,		,	
Hausman test (p-value)	0.0000				

ESTIMATION OF STRUCTURAL PARAMETERS

Random Effects model provides wrong sign for duration dependence.

Estimates of Structural Parameters				
	FE Kernel W. CML		RE (2 types) + $\mathbf{w}_i'\alpha(j)$	
Parameter	Estimate	(s.e.)	Estimate	(s.e.)
γ Price	1.7392	(0.3018)	1.155	(0.1221)
$\beta^{sc}(habits)$ Brand 1	0.3804	(0.0290)	0.7551	(0.0101)
$\beta^{sc}(habits)$ Brand 2	0.2556	(0.0573)	0.6695	(0.0110)
$\beta^{sc}(habits)$ Brand 3	0.2388	(0.0591)	0.7360	(0.0162)
$eta^{dep}(\mathit{linear})$ Brand 1	0.0597	(0.0112)	-0.0089	(0.0040)
$\beta^{dep}(linear)$ Brand 2	0.0611	(0.0118)	-0.0161	(0.0046)
$\beta^{dep}(linear)$ Brand 3	0.0692	(0.0172)	-0.0208	(0.0072)
. ,				
Hausman test (p-value)	0.0000			

ESTIMATION OF DEMAND PARAMETERS

Random Effects model under-estimates price-sensitivity of demand.

Estimates of Structural Parameters				
	FE Kernel W. CML		RE (2 types) + $\mathbf{w}_i'\alpha(j)$	
Parameter	Estimate	(s.e.)	Estimate	(s.e.)
γ Price	1.7392	(0.3018)	1.155	(0.1221)
$eta^{sc}(\mathit{habits})$ Brand 1	0.3804	(0.0290)	0.7551	(0.0101)
$\beta^{sc}(habits)$ Brand 2	0.2556	(0.0573)	0.6695	(0.0110)
$\beta^{sc}(habits)$ Brand 3	0.2388	(0.0591)	0.7360	(0.0162)
$eta^{dep}(\mathit{linear})$ Brand 1	0.0597	(0.0112)	-0.0089	(0.0040)
$\beta^{dep}(linear)$ Brand 2	0.0611	(0.0118)	-0.0161	(0.0046)
$\beta^{dep}(linear)$ Brand 3	0.0692	(0.0172)	-0.0208	(0.0072)
· · · · · · ·				
Hausman test (p-value)	0.0000			

CONCLUSIONS / EXTENSIONS

- This paper presents a Fixed Effects dynamic panel data model of demand for different products where consumers are forward looking.
- Some relevant extensions:
- Identification of aggregate price elasticities (i.e., AME) following recent results.
- 2. Consumer purchases of multiple units (for inventory).
- 3. Dynamics from state variables other than ℓ_{it} and d_{it} .
- 4. Combining this dynamic demand model with dynamic model of price competition.

