

NPTEL ONLINE CERTIFICATION COURSE

ANOVA

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- Sample Size Calculation
- One Way ANOVA Introduction

Determining Sample Size when Estimating μ

Z formula

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

- Error of Estimation (tolerable error)
- Estimated Sample Size

$$n = \frac{Z_{\frac{\alpha}{2}}^2 \sigma^2}{E^2} = \left(\frac{Z_{\frac{\alpha}{2}}\sigma}{E}\right)^2$$

 $E = \overline{X} - \mu$

• Estimated σ

$$\sigma \approx \frac{1}{4} range$$

Example: Sample Size when Estimating μ

$$E = 1$$
, $\sigma = 4$
90% confidence $\Rightarrow Z = 1.645$

$$n = \frac{Z_{\frac{\alpha}{2}}^{2} \sigma^{2}}{E^{2}}$$

$$= \frac{(1.645)^{2} (4)^{2}}{1^{2}}$$

$$= 43.30 \text{ or } 44$$

Example

$$E = 2$$
, $range = 25$
95% confidence $\Rightarrow Z = 1.96$
estimated σ : $\frac{1}{4} range = \left(\frac{1}{4}\right)(25) = 6.25$

$$n = \frac{Z^{2} \sigma^{2}}{E^{2}}$$

$$= \frac{(1.96)^{2} (6.25)^{2}}{2^{2}}$$

$$= 37.52 \text{ or } 38$$

Determining Sample Size when Estimating P

• Z formula

$$Z = \frac{\hat{p} - P}{\sqrt{\frac{P \cdot Q}{n}}}$$

• Error of Estimation (tolerable error)

$$E = \hat{p} - P$$

• Estimated Sample Size

$$n = \frac{Z^2 PQ}{E^2}$$

Example

$$E = 0.03$$

98% Confidence $\Rightarrow Z = 2.33$
estimated $P = 0.40$
 $Q = 1 - P = 0.60$

$$n = \frac{Z^{2} PQ}{E^{2}}$$

$$= \frac{(2.33)^{2} (0.40)(0.60)}{(.003)^{2}}$$

$$= 1,447.7 \text{ or } 1,448$$

Determining Sample Size when Estimating P with No Prior Information

Р	PQ			
0.5	0.25			
0.4	0.24			
0.3	0.21			
0.2	0.16			
0.1	0.09			

$$n = \frac{Z^2 \frac{1}{4}}{E^2}$$

Example

$$E = 0.05$$

90% Confidence $\Rightarrow Z = 1.645$
with no prior estimate of P, use $P = 0.50$
 $Q = 1 - P = 0.50$

$$n = \frac{Z^{2} PQ}{E^{2}}$$

$$= \frac{(1.645)^{2} (0.50)(0.50)}{(.05)^{2}}$$

$$= 270.6 \text{ or } 271$$

Why ANOVA?

- We could compare the means, one by one using t-tests for difference of means.
- Problem: each test contains type I error
- The total type I error is $1-(1-\alpha)^k$ where k is the number of means.
- For example, if there are 5 means and you use a=.05, you must make 10 two by two comparisons.
- Thus, the type I error is 1-(.95)¹⁰, which is .4012.
- That is, 40% of the time you will reject the null hypothesis of equal means in favor of the alternative!

Hypothesis Testing With Categorical Data

- Chi Square tests can be viewed as a generalization of Z tests of proportions
- Analysis of Variance (ANOVA) can be viewed as a generalization of ttests: a comparison of differences of means across more than 2 groups.
- Like Chi Square, if there are only two groups, the two analyses will produce identical results – thus a t-test or ANOVA can be used with 2 groups

Production Process inputs and outputs

Application of quality-engineering techniques and the systematic reduction of process variability

Effect of Teaching Methodology

Group 1 Black Board	Group 2 Case Presentation	Group 3 PPT
4	2	2
3	4	1
2	6	3

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	6	2	3	1.5	0.296296	5.143253
Within Groups	12	6	2			
Total	18	8				

Thank You

