Discrete Mathematics

Daniel Gonzalez Cedre

University of Notre Dame Spring of 2023

Chapter 6

Cardinality

6.1 Functions

Definition 6.1 (Function).

As a reminder, we say that $f: X \to Y$ is a function from X to Y iff both of the following hold:

- I. $f \subseteq X \times Y$
- II. $(\forall x \in X)(\exists ! y \in Y)((x, y) \in f)$

Definition 6.2 (Injectivity).

We say that a function $f: X \to Y$ is an *injection* : \Leftrightarrow either of the following two statements holds:

- I. $(\forall x_1 \in X)(\forall x_2 \in X)(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$
- II. $(\forall x_1 \in X)(\forall x_2 \in X)(f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$

Notice that these two statements are equivalent since the leading quantifiers are identical and the unquantified implications are contrapositives of each other, and we know from the propositional logic that $(p \to q) \Leftrightarrow (\neg q \to \neg p)$. It is common to denote injective functions using the notation $f: X \hookrightarrow Y$.

Definition 6.3 (Surjectivity).

We say that a function $f: X \to Y$ is a surjection $:\Leftrightarrow (\forall y \in Y)(\exists x \in X)(f(x) = y)$. It is common to denote injective functions using the notation $f: X \to Y$.

Definition 6.4 (Bijectivity).

We say that a function $f: X \to Y$ is a bijection $\Leftrightarrow f$ is both injective and surjective.

For bijections, it is common to combine the injective and surjective notations and denote them $f: X \hookrightarrow Y$.

Example 6.1.

Consider the function $f: \mathbb{Z} \to \mathbb{Z}$ given by f(z) = z - 1. This function is a bijection.

Proof. Let $x_1, x_2 \in \mathbb{Z}$ and suppose $f(x_1) = f(x_2)$. Then, we can observe

$$f(x_1) = f(x_2) \implies x_1 - 1 = x_2 - 1$$
 by definition
 $\Rightarrow x_1 = x_2$ by basic algebra

Therefore, f is an injection.

Now, let $y \in \mathbb{Z}$ and note $y + 1 \in \mathbb{Z}$. Since f(y + 1) = (y + 1) - 1 = y by definition, we have that f is surjective.

Since f is both injective and surjective, f is a bijection by definition.

Q.E.D.

Definition 6.5 (Cardinality).

Let A and B be sets. The *cardinality* of a set, which we denote by $|A|^*$, corresponds to our intuitive notion of its *size* relative to other sets. If we want to compare two sets, we assess their relative cardinalities by determining whether or not one set *fits inside* the other by seeing what kinds of functions it is possible to define between them.

We say that the *cardinality* of A is no greater than the *cardinality* of $B : \Leftrightarrow \exists f : A \to B$ such that f is an injection. In this case, we say that $|A| \leq |B|$.

We say that the *cardinality* of A is no lesser than the *cardinality* of $B : \Leftrightarrow \exists f : A \to B$ such that f is an surjection. In this case, we say that $|A| \geqslant |B|$.

Naturally, we then say that A and B have the same cardinality : $\Leftrightarrow \exists f: A \to B \text{ such that } f \text{ is a bijection, which we denote by } |A| = |B|.$

Definition 6.6 (Finite Set).

We say that a set A is finite : $\Leftrightarrow (\exists n \in \mathbb{N})(\exists f : A \to n)(f \text{ is a bijection})$. In this case, we will say that |A| = n.

Definition 6.7 (Countable Set).

We say that a set A is countable : $\Leftrightarrow (\exists f : A \to \mathbb{N})(f \text{ is an injection})$. In this case, we say that $|A| \leqslant \aleph_0$.

Example 6.1.

Let's prove that $|\mathbb{N}| = |\mathbb{Z}|$.

Proof. Consider the function $f: \mathbb{Z} \to \mathbb{N}$ given by

$$f(z) = \begin{cases} 2z & \text{if } z \geqslant 0\\ 2(-z) - 1 & \text{if } z < 0 \end{cases}$$

First, let's see that this is an injection. Let $x_1, x_2 \in \mathbb{Z}$ and suppose $f(x_1) = f(x_2)$. We now have two cases.

Case 1:

If $f(x_1)$ is even, then we know $f(x_1) = 2k$ for some $k \in \mathbb{N}$ by definition. Then, we have $f(x_2) = 2k$ as well, since $f(x_1) = f(x_2)$.

Now, we claim that $x_1 \ge 0$: if we assume x < 0 towards the contrary, then we would have $f(x_1) = 2(-x_1) - 1$, which is odd. We would then have

$$2(-x_1) - 1 = 2k \implies 2(-x_1) - 2k = 1$$

 $\implies 2(k - x_1) = 1$
 $\implies k - x_1 = 1/2$

However, since k and x_1 are both integers (and \mathbb{Z} is an ordered ring), $k-x_1$ must be an integer.

By the same argument, we also have that $x_2 \ge 0$. Therefore, $2x_1 = f(x_1) = f(x_2) = 2x_2$, so $x_1 = x_2$.

Case 2:

This case is left as an exercise to the reader.

Thus, f is injective since $x_1 = x_2$ in both cases.

Now, let's show that f is a surjection. Suppose $y \in \mathbb{N}$ and again we have two cases.

Case 1:

If y is even, then y=2k for some $k\in\mathbb{N}$. But then, we can simply see $k\in\mathbb{Z}$ and f(k)=2k since $k\geqslant 0$.

Case 2:

If y is odd, then y = 2k+1 for some $k \in \mathbb{N}$. Then, $k \in \mathbb{Z}$ and f(-k-1) = 2(k+1)-1 = 2k+2-1 = 2k+1 because $k \geqslant 0 \Rightarrow -k \leqslant 0 \Rightarrow -k-1 < -k \leqslant 0$ and $-k-1 \in \mathbb{Z}$.

Therefore, since we found a preimage for y in both cases, f is surjective.

This means f is a bijection, so we can conclude that $|\mathbb{N}| = |\mathbb{Z}|$.

Q.E.D.

^{*}The cardinality of a set is not always guaranteed to exist without the Axiom of Choice.

${\bf Theorem~6.1~(Cantor\text{-}Shr\"{o}der\text{-}Bernstein).}$

Given two sets A and B, if there exist injections $f:A\hookrightarrow B$ and $g:B\hookrightarrow A$, then there exists a bijection $h:A\hookrightarrow B$.