

Perm State University Bukireva Str. 15, 614990, Perm, Russia

Ontology-Driven Automation of IoT-Based Human-Machine Interfaces Development

Konstantin Ryabinin

e-mail: kostya.ryabinin@gmail.com

Svetlana Chuprina

e-mail: chuprinas@inbox.ru

Konstantin Belousov

e-mail: belousovki@gmail.com

Custom Hardware Human-Machine Interface?

Custom Hardware
Human-Machine Interface?

Custom Hardware Human-Machine Interface?

Custom Hardware Human-Machine Interface?

Custom Hardware Human-Machine Interface?

Custom Hardware Human-Machine Interface?

Simulators

ita

Vi

Developers:
high technical
qualification needed

Electronic Components: cheap and versatile

Motivation 3 / 20

"We only have two demands!
Why don't people just give us what we want?"

"We only have two demands!
Why don't people just give us what we want?"

- 1. Increase the level of HMI development tools
- 2. Propose the approach of smart systems building to automate:
 - 2.2. IoT devices firmware generation
 - 2.3. Middleware generation
 - 2.4. Using IoT devices as HMI to steer third-party software
- 3. Create the smart system according to the proposed approach
- 4. Test smart system as a middleware to marry custom IoT-based HMI with third-party software

Idea 5 / 20

Ontology – formal model of application domain (T.R. Gruber, 1993)

$$O = \langle T, R, A \rangle$$

T – thesaurus of application domain concepts

R – set of relations between concepts

A – set of axioms

HMI

Integration Module

DFD Editor

Ontologies

Firmware Generator

Middleware Generator

3rd-Party Software Idea 5 / 20

Background: SciVi System

Multiplatform client-server adaptive scientific visualization system SciVi

Ryabinin, K., Chuprina, S.: Development of Ontology-Based Multiplatform Adaptive Scientific Visualization System. Journal of Computational Science 10, 370–381 (2015). https://doi.org/10.1016/j.jocs.2015.03.003

3rd-Party Software

Device Integration Stage

3rd-Party Software

3rd-Party Software

Firmware Composing Stage

3rd-Party Software

3rd-Party Software

Firmware Debug Stage

11 / 20

3rd-Party Software

HMI

3rd-Party Software

Firmware Debug Stage

Firmware Debug Stage

3rd-Party Software

3rd-Party

Software

HMI

3rd-Party Software

Middleware Composing Stage

3rd-Party Software

HMI

Data Link

Control Link

Use Case 17 / 20

Task:

Discover relationships between psychological characteristics of social network users and their verbal behavior

Instruments:

- 1. Semograph computer linguistics system
- 2. SciVi visual analytics system

Data:

- 1. 18'000 posts from VKontakte social network made by 800 users
- 2. Big Five personality traits (psychological profiles) of these users:
 - 2.1. Openness
 - 2.2. Conscientiousness
 - 2.3. Extraversion
 - 2.4. Agreeableness
 - 2.5. Neuroticism

Preprocessing:

Correlation analysis resulting in the graph where psychological characteristics are connected with verbal patterns

Use Case 18 / 20

Verbal behavior patterns are classified into semantic groups

HMI: Use gestures to activate groups with specific spatial semantics

What we have:

- 1. Approach to building ontology driven smart systems for automating hardware HMI creation
- 2. Single smart system with high-level graphical toolset to
 - 2.1. Program
 - 2.2. Debug
 - 2.3. Monitor
- hardware HMI
- 2.4. Create middleware to steer 3rd-party systems (including legacy ones)
- 3. Perceptive-cognitive HMI for multimodal analytics

What we plan:

- 1. Tackle problems of transforming M2M IoT systems into Human-Centric ones
- 2. Create IoT-based healthcare monitoring systems
- 3. Create HMI for virtual reality applications

Perm State University Bukireva Str. 15, 614990, Perm, Russia

Thank You for Attention!

Konstantin Ryabinin

e-mail: kostya.ryabinin@gmail.com

Svetlana Chuprina

e-mail: chuprinas@inbox.ru

Konstantin Belousov

e-mail: belousovki@gmail.com