In [1]:

import pandas as pd

In [2]:

df = pd.read_csv('internet.csv')

In [3]:

df.head()

Out[3]:

	Unnamed: 0	Entity	Code	Year	Cellular Subscription	Internet Users(%)	No. of Internet Users	Broadband Subscription
0	0	Afghanistan	AFG	1980	0.0	0.0	0	0.0
1	1	Afghanistan	AFG	1981	0.0	0.0	0	0.0
2	2	Afghanistan	AFG	1982	0.0	0.0	0	0.0
3	3	Afghanistan	AFG	1983	0.0	0.0	0	0.0
4	4	Afghanistan	AFG	1984	0.0	0.0	0	0.0

In [4]:

df.tail()

Out[4]:

	Unnamed: 0	Entity	Code	Year	Cellular Subscription	Internet Users(%)	No. of Internet Users	Broadband Subscription
8862	8862	Zimbabwe	ZWE	2016	91.793457	23.119989	3341464	1.217633
8863	8863	Zimbabwe	ZWE	2017	98.985077	24.400000	3599269	1.315694
8864	8864	Zimbabwe	ZWE	2018	89.404869	25.000000	3763048	1.406322
8865	8865	Zimbabwe	ZWE	2019	90.102287	25.100000	3854006	1.395818
8866	8866	Zimbabwe	ZWE	2020	88.755806	29.299999	4591211	1.368916

In [5]:

df.shape

Out[5]:

(8867, 8)

```
In [6]:
df.columns
Out[6]:
Index(['Unnamed: 0', 'Entity', 'Code', 'Year', 'Cellular Subscription',
       'Internet Users(%)', 'No. of Internet Users', 'Broadband Subscripti
on'],
      dtype='object')
In [7]:
df.duplicated().sum()
Out[7]:
0
In [8]:
df.isnull().sum()
Out[8]:
Unnamed: 0
                           0
                           0
Entity
                           0
Code
Year
                           0
Cellular Subscription
                           0
Internet Users(%)
                           0
No. of Internet Users
                           0
Broadband Subscription
dtype: int64
In [9]:
df = df.drop('Unnamed: 0', axis = 1)
In [10]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8867 entries, 0 to 8866
Data columns (total 7 columns):
 #
     Column
                              Non-Null Count Dtype
---
0
     Entity
                              8867 non-null
                                              object
 1
     Code
                              8867 non-null
                                              object
 2
     Year
                              8867 non-null
                                               int64
 3
     Cellular Subscription
                              8867 non-null
                                               float64
 4
     Internet Users(%)
                              8867 non-null
                                               float64
 5
     No. of Internet Users
                              8867 non-null
                                               int64
     Broadband Subscription 8867 non-null
                                               float64
dtypes: float64(3), int64(2), object(2)
memory usage: 485.0+ KB
```

```
In [11]:
```

```
df.describe()
```

Out[11]:

	Year	Cellular Subscription	Internet Users(%)	No. of Internet Users	Broadband Subscription
count	8867.000000	8867.000000	8867.000000	8.867000e+03	8867.000000
mean	2000.151799	39.989614	17.043606	1.089138e+07	4.440695
std	11.812151	51.981410	26.883498	1.248841e+08	9.755705
min	1980.000000	0.000000	0.000000	0.000000e+00	0.000000
25%	1990.000000	0.000000	0.000000	0.000000e+00	0.000000
50%	2000.000000	5.501357	0.855662	1.004700e+04	0.000000
75%	2010.000000	82.231594	25.449939	8.664195e+05	2.007603
max	2020.000000	436.103027	100.000000	4.699886e+09	78.524361

In [12]:

```
df.nunique()
```

Out[12]:

Entity 229
Code 216
Year 41
Cellular Subscription 6344
Internet Users(%) 4702
No. of Internet Users 5058
Broadband Subscription 3858

dtype: int64

In [13]:

```
obj_cols = df.select_dtypes(include=['object']).columns
```

In [14]:

```
num_cols = df.select_dtypes(include=['int64', 'float64']).columns
```

In [15]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

In [16]:

```
import numpy as np
```

```
In [17]:
```

```
import warnings
warnings.filterwarnings('ignore')
```

In [18]:

```
df['Entity'].unique()
```

Out[18]:

```
array(['Afghanistan', 'Albania', 'Algeria', 'American Samoa', 'Andorra',
        'Angola', 'Antigua and Barbuda', 'Argentina', 'Armenia', 'Aruba',
        'Australia', 'Austria', 'Azerbaijan', 'Bahamas', 'Bahrain',
        'Bangladesh', 'Barbados', 'Belarus', 'Belgium', 'Belize', 'Benin',
        'Bermuda', 'Bhutan', 'Bolivia', 'Bosnia and Herzegovina',
        'Botswana', 'Brazil', 'British Virgin Islands', 'Brunei',
        'Bulgaria', 'Burkina Faso', 'Burundi', 'Cambodia', 'Cameroon',
        'Canada', 'Cape Verde', 'Cayman Islands',
        'Central African Republic', 'Chad', 'Chile', 'China', 'Colombia',
        'Comoros', 'Congo', 'Costa Rica', "Cote d'Ivoire", 'Croatia',
        'Cuba', 'Curacao', 'Cyprus', 'Czechia',
        'Democratic Republic of Congo', 'Denmark', 'Djibouti', 'Dominica',
        'Dominican Republic', 'East Asia and Pacific', 'Ecuador', 'Egypt',
        'El Salvador', 'Equatorial Guinea', 'Eritrea', 'Estonia',
        'Eswatini', 'Ethiopia', 'Europe and Central Asia',
        'European Union', 'Faeroe Islands', 'Fiji', 'Finland', 'France',
        'French Polynesia', 'Gabon', 'Gambia', 'Georgia', 'Germany',
        'Ghana', 'Gibraltar', 'Greece', 'Greenland', 'Grenada', 'Guam',
        'Guatemala', 'Guinea', 'Guinea-Bissau', 'Guyana', 'Haiti', 'High income', 'Honduras', 'Hong Kong', 'Hungary', 'Iceland',
        'India', 'Indonesia', 'Iran', 'Iraq', 'Ireland', 'Israel', 'Italy',
        'Jamaica', 'Japan', 'Jordan', 'Kazakhstan', 'Kenya', 'Kiribati', 'Kosovo', 'Kuwait', 'Kyrgyzstan', 'Laos', 'Latin America and Caribbean', 'Latvia', 'Lebanon', 'Lesotho',
        'Liberia', 'Libya', 'Liechtenstein', 'Lithuania',
        'Low and middle income', 'Low income', 'Lower middle income', 'Luxembourg', 'Macao', 'Madagascar', 'Malawi', 'Malaysia',
        'Maldives', 'Mali', 'Malta', 'Marshall Islands', 'Mauritania',
        'Mauritius', 'Mexico', 'Micronesia (country)',
        'Middle East and North Africa', 'Middle income', 'Moldova',
        'Monaco', 'Mongolia', 'Montenegro', 'Morocco', 'Mozambique',
        'Myanmar', 'Namibia', 'Nauru', 'Nepal', 'Netherlands',
        'New Caledonia', 'New Zealand', 'Nicaragua', 'Niger', 'Nigeria',
        'North America', 'North Korea', 'North Macedonia',
        'Northern Mariana Islands', 'Norway', 'Oman', 'Pakistan', 'Palau',
        'Palestine', 'Panama', 'Papua New Guinea', 'Paraguay', 'Peru',
        'Philippines', 'Poland', 'Portugal', 'Puerto Rico', 'Qatar',
        'Romania', 'Russia', 'Rwanda', 'Saint Kitts and Nevis',
        'Saint Lucia', 'Saint Vincent and the Grenadines', 'Samoa',
        'San Marino', 'Sao Tome and Principe', 'Saudi Arabia', 'Senegal', 'Serbia', 'Seychelles', 'Sierra Leone', 'Singapore',
        'Sint Maarten (Dutch part)', 'Slovakia', 'Slovenia',
        'Solomon Islands', 'Somalia', 'South Africa', 'South Asia', 'South Korea', 'South Sudan', 'Spain', 'Sri Lanka', 'Sub-Saharan Africa', 'Sudan', 'Suriname', 'Sweden', 'Switzerland',
        'Syria', 'Tajikistan', 'Tanzania', 'Thailand', 'Timor', 'Togo',
        'Tonga', 'Trinidad and Tobago', 'Tunisia', 'Turkey', 'Turkmenistan', 'Turks and Caicos Islands', 'Tuvalu', 'Uganda',
        'Ukraine', 'United Arab Emirates', 'United Kingdom',
        'United States', 'United States Virgin Islands',
        'Upper middle income', 'Uruguay', 'Ūzbekistan', 'Vanuatu', 'Venezuela', 'Vietnam', 'World', 'Yemen', 'Zambia', 'Zimbabwe'],
       dtype=object)
```

```
In [19]:
```

```
df['Entity'].value counts()
Out[19]:
Afghanistan
                               41
Mongolia
                               41
Mali
                               41
Malta
                               41
Mauritania
                               41
                               . .
Palau
                               16
Curacao
                               12
South Sudan
                               11
Kosovo
                                6
Sint Maarten (Dutch part)
                                1
Name: Entity, Length: 229, dtype: int64
In [20]:
df['Code'].unique()
Out[20]:
```

```
array(['AFG', 'ALB', 'DZA', 'ASM', 'AND', 'AGO', 'ATG', 'ARG', 'ARM',
        'ABW', 'AUS', 'AUT', 'AZE', 'BHS', 'BHR', 'BGD', 'BRB', 'BLR'
                     'BEN', 'BMU', 'BTN', 'BOL', 'BIH', 'BWA', 'BRA',
       'BEL',
              'BLZ',
       'VGB', 'BRN', 'BGR', 'BFA', 'BDI', 'KHM', 'CMR', 'CAN', 'CPV',
       'CYM', 'CAF', 'TCD', 'CHL', 'CHN', 'COL', 'COM', 'COG', 'CRI'
             'HRV', 'CUB', 'CUW', 'CYP', 'CZE', 'COD', 'DNK',
                                                                  'DJI',
       'CIV',
       'DMA', 'DOM', 'Region', 'ECU', 'EGY', 'SLV', 'GNQ', 'ERI', 'EST',
       'SWZ', 'ETH', 'FRO', 'FJI', 'FIN', 'FRA', 'PYF', 'GAB', 'GMB',
       'GEO', 'DEU', 'GHA', 'GIB', 'GRC', 'GRL', 'GRD', 'GUM', 'GTM'
       'GIN', 'GNB', 'GUY', 'HTI', 'HND', 'HKG', 'HUN', 'ISL', 'IND', 'IDN', 'IRN', 'IRQ', 'IRL', 'ISR', 'ITA', 'JAM', 'JPN', 'JOR',
       'KAZ', 'KEN', 'KIR', 'OWID_KOS', 'KWT', 'KGZ', 'LAO', 'LVA', 'LBN',
       'LSO', 'LBR', 'LBY', 'LIE', 'LTÚ', 'LUX', 'MAĆ', 'MDĠ', 'MWÍ',
       'MYS', 'MDV', 'MLI', 'MLT', 'MHL', 'MRT', 'MUS', 'MEX', 'FSM',
       'MDA', 'MCO', 'MNG', 'MNE', 'MAR', 'MOZ', 'MMR', 'NAM', 'NRU',
            , 'NLD', 'NCL', 'NZL',
                                     'NIC', 'NER',
                                                           'PRK', 'MKD'
       'NPL'
                                                    'NGA',
                                     'PLW', 'PSE',
                                                           'PNG',
                     'OMN', 'PAK',
                                                   'PAN',
                                                                  'PRY',
       'MNP',
              'NOR',
       'PER', 'PHL', 'POL', 'PRT', 'PRI', 'QAT', 'ROU', 'RUS', 'RWA',
       'KNA', 'LCA', 'VCT', 'WSM', 'SMR', 'STP', 'SAU', 'SEN',
            ', 'SLE', 'SGP', 'SXM', 'SVK', 'SVN', 'SLB', 'SOM', 'ZAF',
       'SYC'
                                    'SDN', 'SUR', 'SWE', 'CHE', 'SYR',
             'SSD', 'ESP',
                            'LKA',
       'TJK', 'TZA', 'THA', 'TLS', 'TGO', 'TON', 'TTO', 'TUN',
       'TKM', 'TCA', 'TUV', 'UGA', 'UKR', 'ARE', 'GBR', 'USA', 'VIR',
       'URY', 'UZB', 'VUT', 'VEN', 'VNM', 'OWID_WRL', 'YEM', 'ZMB',
E'],
      dtype=object)
```

In [21]:

```
df['Entity'].value_counts()
```

Out[21]:

Afghanistan 41 41 Mongolia Mali 41 41 Malta Mauritania 41 . . Palau 16 Curacao 12 South Sudan 11 Kosovo 6 Sint Maarten (Dutch part) 1

Name: Entity, Length: 229, dtype: int64

In [22]:

```
df['Year'].unique()
```

Out[22]:

```
array([1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020], dtype=int64)
```

```
In [23]:
```

```
df['Year'].value_counts()
```

```
Out[23]:
2020
        223
        223
2019
2015
        222
        222
2012
2010
        222
1990
        222
2004
        222
2003
        221
2002
        221
        220
2014
2001
        219
2017
        219
2013
        219
2009
        219
2007
        219
2005
        219
2000
        219
1999
        218
2011
        218
2016
        217
1998
        217
2008
        217
2006
        216
1996
        216
1997
        215
        215
1980
1995
        215
1992
        213
1993
        213
1994
        213
1981
        213
1982
        213
1983
        212
1991
        211
1986
        211
1984
        211
1988
        210
1985
        210
1987
        209
1989
        208
2018
        205
```

Name: Year, dtype: int64

In [24]:

```
for i in num_cols:
    plt.figure(figsize=(15,6))
    sns.histplot(df[i], kde = True, bins = 20, palette = 'hls')
    plt.xticks(rotation = 90)
    plt.show()
```


In [25]:

```
for i in num_cols:
    plt.figure(figsize=(15,6))
    sns.distplot(df[i], kde = True, bins = 20)
    plt.xticks(rotation = 90)
    plt.show()
```


In [26]:

```
for i in num_cols:
    plt.figure(figsize=(15,6))
    sns.boxplot(df[i], data = df, palette = 'hls')
    plt.xticks(rotation = 90)
    plt.show()
```


In [27]:

```
for i in num_cols:
    plt.figure(figsize=(15,6))
    sns.violinplot(df[i], data = df, palette = 'hls')
    plt.xticks(rotation = 90)
    plt.show()
```


In [29]:

```
for col in num_cols:
    fig = px.box(df, y=col, title=f"{col} Boxplot")
    fig.show()
```

Year Boxplot

In [30]:

```
for col in num_cols:
    fig = px.violin(df, y=col, title=f"{col} Boxplot")
    fig.show()
```

Year Boxplot

In [31]:

```
for i in num_cols:
    if i != 'Year':
        plt.figure(figsize=(15,6))
        sns.barplot(x = df['Year'], y = df[i], data = df, ci = None, palette = 'hls')
        plt.xticks(rotation = 90)
        plt.show()
```



```
In [33]:
```

```
for i in num_cols:
    for j in num_cols:
         if i != j:
              plt.figure(figsize=(15,6))
              sns.lineplot(x = df[i], y = df[j], data = df, ci = None, palette = 'hls')
              plt.xticks(rotation = 90)
              plt.show()
  100
  80
Cellular Subscription
  40
  20
                                            ₩ 2000
                1985
                         1990
                                  1995
                                                     2005
                                                                                2020
  50
  40
In [34]:
temp=df[~(df['Code']=='Region')]
In [35]:
temp1= temp.groupby(['Entity','Year']).sum().reset_index()
In [36]:
```

```
df1=temp1[(temp1['Entity']=='India')|(temp1['Entity']=='China')|(temp1['Entity']=='Unite
```

In [37]:

df1

Out[37]:

	Entity	Year	Cellular Subscription	Internet Users(%)	No. of Internet Users	Broadband Subscription
1579	China	1980	0.000000	0.000000	0	0.000000
1580	China	1981	0.000000	0.000000	0	0.000000
1581	China	1982	0.000000	0.000000	0	0.000000
1582	China	1983	0.000000	0.000000	0	0.000000
1583	China	1984	0.000000	0.000000	0	0.000000
7900	United States	2016	122.594551	85.544418	279910069	32.727173
7901	United States	2017	123.044838	87.274887	287824925	33.283627
7902	United States	2018	106.464684	88.498901	293940279	33.860367
7903	United States	2019	108.092651	89.430283	298983035	34.725369
7904	United States	2020	106.185554	90.900002	305371298	36.608768

120 rows × 6 columns

In [38]:

In [39]:

```
fig = px.scatter(df1, x="Year", y="Cellular Subscription", color="Entity", trendline="ol
fig.show()
```


In [40]:

```
fig = px.area(df1, x="Year", y="Cellular Subscription", color="Entity", title="Mobile ph
fig.show()
```


In [41]:

In [42]:

```
fig = px.box(df1, x="Entity", y="Cellular Subscription", color="Entity", title="Mobile p
fig.show()
```


In [43]:

```
fig = px.violin(df1, x="Entity", y="Cellular Subscription", color="Entity", box=True, po
fig.show()
```


In [44]:

In [45]:

```
fig = px.scatter(df1, x="Year", y="Broadband Subscription", color="Entity", trendline="o
fig.show()
```


In [46]:

```
fig = px.area(df1, x="Year", y="Broadband Subscription", color="Entity", title="Broadban
fig.show()
```


In [47]:

In [48]:

```
fig = px.box(df1, x="Entity", y="Broadband Subscription", color="Entity", title="Broadba
fig.show()
```


In [49]:

```
fig = px.violin(df1, x="Entity", y="Broadband Subscription", color="Entity", title="Broafig.show()
```

Broadband subscriptions per 100 people 1980 to 2020


```
In [50]:
```

```
df2 = df[df['Code']=='Region']
```

In [51]:

```
df2['Entity'].unique()
```

Out[51]:

In [52]:

```
temp=df2[(df2['Entity']=='East Asia and Pacific')|(df2['Entity']=='Europe and Central As
```

In [53]:

In [54]:

```
fig = px.scatter(df2, x="Year", y="Cellular Subscription", color="Entity", trendline="ol
fig.show()
```


In [55]:

```
fig = px.area(df2, x="Year", y="Cellular Subscription", color="Entity", title="Mobile ph
fig.show()
```


In [56]:

In [57]:

```
fig = px.box(df2, x="Entity", y="Cellular Subscription", color="Entity", title="Mobile p
fig.show()
```



```
In [58]:
```

```
fig = px.violin(df2, x="Entity", y="Cellular Subscription", color="Entity", box=True, po
fig.show()
```


In [59]:

In [60]:

```
fig = px.scatter(df2, x="Year", y="Broadband Subscription", color="Entity", trendline="o
fig.show()
```


In [61]:

```
fig = px.area(df2, x="Year", y="Broadband Subscription", color="Entity", title="Landline
fig.show()
```


In [62]:

In [63]:

```
fig = px.box(df2, x="Entity", y="Broadband Subscription", color="Entity", title="Landlin
fig.show()
```


In [64]:

```
fig = px.violin(df2, x="Entity", y="Broadband Subscription", color="Entity", title="Land
fig.show()
```

