Supervised Learning with Quantum Measurements

Fabio A. González QCP 2020-2

Universidad Nacional de Colombia

1. Supervised Machine Learning Given $T = \{(x_i, y_i)^2\}$. (training data set) find $f: X \rightarrow Y$ $x_i \in X$ $y_i \in Y$ $f(x) = arg max P(y=y_k|x)$ $Y = \{y_1, \dots, y_m\}$ 1) model the joint P(y,x), from this get P(y|x) Implicitely induces a feature map $\phi: X \longrightarrow F$ $f(x) = \sum_{i=1}^{\infty} X_i K(I, X_i) Y_i \qquad \text{Learning} \qquad \text{Estimating}$ $(X_i, Y_i) \in S \qquad \text{Finding param}$ Learning . Estimating probabilities · Finding parameters using optimization.

2. Quantum Machine Learning > Classical NL algorithms > with quantum inspiration data processing device Quantum implementation of ML algorithms to CC CQ deal with classical data. QCUsing ML algorithms to support

> quantum computing or research C - classical, Q - quantum

3. Quantum measurement Classiffication (Training) Yx: X -> Hx

Yy: Y -> Hy

Soth inputs and

outputs are represented

xi -> [4x(xi)> yi -> 14y(yi)> as quantum states 1. Quantum feature mapping training data y: Xxy →> Hx & Hy $\{(x_i,y_i)\}_{i=1...n}$ $(x_i, y_i) \longmapsto | (x_i) > \otimes | (y_2(2i)) \rangle$ Quantum $ightarrow egin{array}{l} |\psi_i
angle := \ |\psi_{\mathcal{X}}(x_i)
angle \otimes |\psi_{\mathcal{Y}}(y_i)
angle \end{array}$ 2. Training state estimation feature mapping $\frac{P_{\text{train}}}{T_{\text{his represents}}} = \frac{1}{N} \sum_{i=1}^{N} |\psi_{i}\rangle \langle \psi_{i}|$ Training state $ho_{
m train}$ estimation Figure 1. Training

Quantum $\longrightarrow |\psi_{\mathcal{X}}(x^{\star})\rangle$ feature mapping Quantum P(x,y) Partial

4. QMC (Prediction)

1. Quantum feature mapping $x^{t} \mapsto [\forall_{x}(x^{t}) >$ 2. Prediction operator $\pi(x^*) = | \Psi_x(x^*) > < \Psi_x(x^*) | \otimes \mathbb{I}d_{H_y}$ 3. Quantum measurement P'= T'(x*) (train T'(x*) tr[77(x*) (+rain 17(x*)] 4. Partial trace ey= T~[[]

Proposition 1. Let $T = \{(x_i, y_i)\}_{i=1,...,n}$ be a set of training samples, x^* a sample to classify, with $x_i, x^* \in \{1, ... m\}$ and $y_i \in \{1, 2\}$. Let ρ_{train} be the state calculated using the mixed state, eq. (8) or equivalently the classic mixture eq. (9), and a one-hot encoding feature map for both x_i and y_i . Then the diagonal elements of the density matrix $\rho'_{\mathcal{Y}}$ calculated using eq. (12) correspond to an estimation, using Bayesian inference, of the conditional probabilities $P(y = i | x^*)$:

$$\rho'_{\mathcal{Y}i,i} = P(y=i|x^*) = \frac{P(x^*|y=i)P(y=i)}{P(x^*)}, \qquad (13)$$
where $P(x^*|y=i)$, $P(y=i)$ and $P(x^*)$ are estimated

where $P(x^*|y=i)$, P(y=i) and $P(x^*)$ are estimated from T.

Proposition 2. Let $T = \{(x_i, y_i)\}$ be a set of training samples, x^* a sample to classify, with $x_i, x^* \in \mathcal{X}$ and $y_i \in \mathcal{Y}$. Let ρ_{train} be the state calculated using a mixed state (eq. (8)) and quantum feature maps $\psi_{\mathcal{X}}$ and $\psi_{\mathcal{Y}}$. Then the density matrix $\rho'_{\mathcal{Y}}$, calculated with eq. (12), can be expressed as:

$$\rho_{\mathcal{Y}}' = \mathcal{M} \sum_{i=1}^{N} |k(x^{\star}, x_i)|^2 |\psi_{\mathcal{Y}}(y_i)\rangle \langle \psi_{\mathcal{Y}}(y_i)|, \qquad (14)$$

where $k(x^*, x_i) = \langle \psi_{\mathcal{X}}(x^*) | \psi_{\mathcal{X}}(x_i) \rangle$ and $\mathcal{M}^{-1} = \text{Tr}[\pi(x^*)\rho_{train}\pi(x^*)]$.