CS2109S: Introduction to AI and Machine Learning

Lecture 10: Introduction to Deep Learning

3 November 2023

Announcement

- Midterm grading is still on progress, sorry :(
 - Q1 is quite painful to grade
 - Probably will be done by **next week**...
- We'll release the mockup final assessment next week (hopefully)

Recap

- Backpropagation
 - Backpropagation on different scenarios:
 - Path, branches, many features, and many samples (sum the gradients)
 - Biological plausibility of backpropagation believed to be <u>not</u> feasible
- Automatic Differentiation
 - Reverse mode automatic differentiation backprop is a special case: $\mathbb{R}^N \to \mathbb{R}$
 - Comparison with other methods: symbolic and numerical differentiation
- Introduction to PyTorch
 - Tensors
 - n-dimensional array representation with GPU support
 - Maintain computational graph
 - Modules & Functions: Linear (linear), ReLU (relu), etc they are equivalent
 - Loss function & Optimizers

Neural Networks and Matrix Multiplication (1)

Input (number of weights per neuron / input variables)

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad W = \begin{bmatrix} \mathbf{W_{11}} & \mathbf{W_{12}} \\ \mathbf{W_{21}} & \mathbf{W_{22}} \\ \mathbf{W_{31}} & \mathbf{W_{32}} \end{bmatrix} \qquad \widehat{\mathbf{y}} = g(\mathbf{W}^T \mathbf{x}) = g\left(\begin{bmatrix} \mathbf{W_{11}} & \mathbf{W_{12}} \\ \mathbf{W_{21}} & \mathbf{W_{22}} \\ \mathbf{W_{31}} & \mathbf{W_{32}} \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \\ \mathbf{W_{31}} & \mathbf{W_{32}} \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = g\left(\begin{bmatrix} \mathbf{W_{11}} & \mathbf{W_{21}} & \mathbf{W_{21}} & \mathbf{W_{21}} \\ \mathbf{W_{12}} & \mathbf{W_{22}} & \mathbf{W_{32}} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} \widehat{y}_1 \\ \widehat{y}_2 \end{bmatrix}$$

Modules and Functions API: Example

```
class NeuralNetRegressor(torch.nn.Module):
                                                               x \in \mathbb{R}^2 \rightarrow Linear
    def init (self, input size, hidden size):
                                                                                                   Linear \rightarrow y \in \mathbb{R}
                                                                                        ReLU
        super(). init ()
        self.linear1 = torch.nn.Linear(input size, hidden size)
        self.linear2 = torch.nn.Linear(hidden size, 1)
                                                                      w1 = torch.tensor(8, 2, requires grad=True)
        self.relu = torch.nn.ReLU()
                                                                      w2 = torch.tensor(1, 8, requires grad=True)
    def forward(self, x):
                                                                      def neural net regressor(x): # also the same
        f1 = self.linear1(x)
                                                                          f1 = torch.nn.functional.linear(x,w1)
        a1 = self.relu(f1)
                                                                          a1 = torch.nn.functional.relu(f1)
        f2 = self.linear2(a1)
                                                                          return torch.nn.functional.linear(a1,w2)
        return f2
model1 = NeuralNetClassifier(2,8) # 2 features, 8 hidden neurons
model2 = torch.nn.Sequential(torch.nn.Linear(2,8), torch.nn.ReLU(), torch.nn.Linear(8,1)) # same
```

Gradient Descent

- Start at some w
- Pick a nearby w that reduces J(w)

$$w_j \leftarrow w_j - \gamma \frac{\partial J(w_0, w_1, \dots)}{\partial w_j}$$

Repeat until minimum is reached

Single-layer Neural Networks with Sigmoid $\gamma(\hat{y} - y)\hat{y}(1 - \hat{y})x_i$

Derive manually!

Multi-layer Neural Networks Backpropagation!

Example 2: Training NN using modular API

```
model = NeuralNetRegressor()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
loss function = torch.nn.MSELoss()
for epoch in range(num epochs):
                                                         Gradient Descent
    optimizer.zero grad()
                                                   Start at some w
    y_pred = model(x)
                                                   Pick a nearby w that reduces I(w)
    loss = loss function(y pred, y)
    loss.backward()

    Repeat until minimum is reached

    optimizer.step()
```

Outline

- Deep Neural Networks
- Convolution Neural Networks
 - Motivation: handling spatial structure
 - Convolution, Pooling Layer, and Common Architectures
 - Applications
- Recurrent Neural Networks
 - Motivation: handling sequential data
 - Recurrent Neural Networks and Variants
 - Applications
- Attention, Transformers, GPT, and ChatGPT (if time permits)
- Issues with Deep Learning

Outline

- Deep Neural Networks
- Convolution Neural Networks
 - Motivation: handling spatial structure
 - Convolution, Pooling Layer, and Common Architectures
 - Applications
- Recurrent Neural Networks
 - Motivation: handling sequential data
 - Recurrent Neural Networks and Variants
 - Applications
- Attention, Transformers, GPT, and ChatGPT (if time permits)
- Issues with Deep Learning

What is Al?

Deep Learning System

Credit: IEEE Spectrum

Credit: Guardian

Credit: NYTimes

What is Al?

Deep Learning System

Credit: Tesla

Credit: Eden Al

Shallow Neural Networks

Deep Neural Networks Neural Network with the number of layers L > 3

Deep Neural Networks Neural Network with the number of layers L > 3

Arbitrary function compositions: can have any* functions and any* compositions!

XNOR, XOR

Differentiable

T&C applies

Outline

- Deep Neural Networks
- Convolution Neural Networks
 - Motivation: handling spatial structure
 - Convolution, Pooling Layer, and Common Architectures
 - Applications
- Recurrent Neural Networks
 - Motivation: handling sequential data
 - Recurrent Neural Networks and Variants
 - Applications
- Attention, Transformers, GPT, and ChatGPT (if time permits)
- Issues with Deep Learning

Computer Vision Problem

Cat or Dog?

Computer Vision Problem: A Naïve Attempt

Computer Vision Problem: A Naïve Attempt

Same image, <u>shifted</u> → **dramatic change** in input of NN

Image has spatial structures, which are ignored

Computer Vision Problem: A Better Idea

Input: A **group** of Pixels

Note: same colour → same function

Computer Vision Problem: A Better Idea

Image has spatial structures, which are preserved

Input: A **group** of Pixels

Note: same colour → same function

Same image, <u>shifted</u> → **same** set of inputs

How to do this?

$$f_{conv}(X) = W*X$$

0	1	1	0	0		Г			1			
0	1	1	0	0		0	-1	0		3	T	
1	0	0	1	1	*	-1	5	-1	=			\Box
0	1	1	0	1		0	-1	0		Ш		
1	1	1	1	1		Kerr	nel / F <i>W</i>	ilter		Feat	ure N	Лар
	lma	age In	put	4	•		**					

Multiply the sliding input window with kernel then sum

 \boldsymbol{X}

$$f_{conv}(X) = W*X$$

	0	1	1	0	0		Г			1			
	0	1	1	0	0		0	-1	0		3	3	
	1	0	0	1	1	*	-1	5	-1	=			
	0	1	1	0	1		0	-1	0				
	1	1	1	1	1		Kerr	nel / F <i>W</i>	ilter		Feat	ure	Map
'		lma	age In	put	4	1		**					

Multiply the sliding input window with kernel then sum

$$f_{conv}(X) = W*X$$

-													
0	1	1	0	0		Г			1				
0	1	1	0	0		0	-1	0		3	3	-2	
1	0	0	1	1	*	-1	5	-1	=				
0	1	1	0	1		0	-1	0					İ
1	1	1	1	1		Kerr	nel / F W	ilter		Feat	ture	Ma)
	lma	age In	put		1		**						

Multiply the sliding input window with kernel then sum

$$f_{conv}(X) = W*X$$

					-							
0	1	1	0	0		Г			1			
0	1	1	0	0		0	-1	0		3	3	-2
1	0	0	1	1	*	-1	5	-1	=	-3		
0	1	1	0	1		0	-1	0				
1	1	1	1	1		Kerr	nel / F <i>W</i>	ilter		Feat	ture	Map
	lma	age In	put		-		••					

Multiply the sliding input window with kernel then sum

 \boldsymbol{X}

$$f_{conv}(X) = W*X$$

						•		9					
	0	1	1	0	0		Г			1			
	0	1	1	0	0		0	-1	0		3	3	-2
•	1	0	0	1	1	*	-1	5	-1	=	-3	-3	
,	0	1	1	0	1		0	-1	0				
	1	1	1	1	1		Kerr	nel / F <i>W</i>	ilter		Feat	ure	Мар
		lma	age In	put		•		<i>,</i> ,					

Multiply the sliding input window with kernel then sum

$$f_{conv}(X) = W*X$$

	0	1	1	0	0		Г			1			
	0	1	1	0	0		0	-1	0		3	3	-2
	1	0	0	1	1	*	-1	5	-1	=	-3	-3	4
	0	1	1	0	1		0	-1	0				
	1	1	1	1	1		Kerr	nel / F <i>W</i>	ilter		Feat	ure	Мар
•		lma	age In	put		•		**					

Multiply the sliding input window with kernel then sum

$$f_{conv}(X) = W*X$$

					•							
0	1	1	0	0					1			
0	1	1	0	0		0	-1	0		3	3	-2
1	0	0	1	1	*	-1	5	-1	=	-3	-3	4
0	1	1	0	1		0	-1	0		3		
1	1	1	1	1		Kerr	nel / F <i>W</i>	ilter		Feat	ure	Мар
	lma	age In	put		•		••					

Multiply the sliding input window with kernel then sum

 \boldsymbol{X}

$$f_{conv}(X) = W*X$$

					-							
0	1	1	0	0		Г			1			
0	1	1	0	0		0	-1	0		3	3	-2
1	0	0	1	1	*	-1	5	-1	=	-3	-3	4
0	1	1	0	1		0	-1	0		3	3	
1	1	1	1	1		Kerr	nel / F <i>W</i>	ilter		Feat	ure	Мар
	lm	age In	put		1		**					

Multiply the sliding input window with kernel then sum

$$f_{conv}(X) = W * X$$

0	-1	0	
-1	5	-1	•
0	-1	0	

Kernel / Filter

W

3	3	-2
-3	-3	4
3	3	4

Feature Map

What if we want to detect other features (e.g., mouth)?

*

$$f_{conv}(\mathbf{X}) = \mathbf{W} * \mathbf{X}$$

0	1	1	0	0
0	1	1	0	0
1	0	0	1	1
0	1	1	0	1
1	1	1	1	1

Image Input $\it X$

0	-1	0	
-1	5	-1	=
0	-1	0	

3	3	-2
-3	-3	4
3	3	4

Kernel / Filter $W^{[1]}$

*

*

Feature Map 1

0	1	0
1	0	1
0	1	0

0 Filter

Kernel / Filter $\pmb{W}^{[2]}$

Feature Map 2

Convolution: 2D Example

Original

Outline

Sobel

-2	-1	0
-1	1	1
0	1	2

Blur

.06	.01	.06
.12	.25	.12
.06	.12	.06

Convolution or Cross-correlation?

$$f_{conv}(X) = W*X$$

0	1	1	0	0
0	1	1	0	0
1	0	0	1	1
0	1	1	0	1
1	1	1	1	1

Image Input X

Kernel / Filter *W*

Feature Map

This is **cross-correlation!**Need to flip the kernel

Convolution or Cross-correlation?

$$f_{conv}(X) = W*X$$

0	1	1	0	0
0	1	1	0	0
1	0	0	1	1
0	1	1	0	1
1	1	1	1	1

Image Input X

Kernel / Filter $flip(\mathbf{W})$

Feature Map

This is now **convolution**!

Does this matter?

Convolution: Common Practice

Image Input
X

Convolution: Common Practice

Image Input

X

Convolution Layer vs Feedforward Layer

Convolution Layer

Input and Output (3D Matrix)
Concatenation of **feature maps**

Feedforward (Linear) Layer

•
$$a^{[l]} = (W^{[l]})^T a^{[l-1]}$$

Weights
(2D matrix)

Pooling Layer

- Downsamples Feature Maps
- Helps to train later <u>kernels</u> to detect higher-level features
- Reduces dimensionality
- Aggregation methods
 - Max-Pool (most common)
 - Average-Pool
 - Sum-Pool

Convolutional Neural Networks (CNN)

Popular CNN Architectures

Further reading: https://www.jeremyjordan.me/convnet-architectures/

Applications of CNN

Image Classification e.g., face emotions

Object Detection e.g., self-driving cars

Image Segmentation e.g., cancer cell detection

Outline

- Deep Neural Networks
- Convolution Neural Networks
 - Motivation: handling spatial structure
 - Convolution, Pooling Layer, and Common Architectures
 - Applications

Recurrent Neural Networks

- Motivation: handling sequential data
- Recurrent Neural Networks and Variants
- Applications
- Attention, Transformers, GPT, and ChatGPT (if time permits)
- Issues with Deep Learning

Sequential Data

Sentiment Analysis

"Indomie is the best noodles ever"

Credit: Indomie

Sequential Data: 1st Attempt

Sentiment Analysis

"Indomie is the best noodles ever"

Credit: Indomie

Credit: Indomie

Instant Noodles Instant Noodles Vii en Noodles Vii Print Noodles NET WT / POIDS NET: 3.00 or (55g) EXPORT PRODUCT

Sequential Data: 1st Attempt

Sentiment Analysis

"Indomie is the best noodles ever"

Learn that this input/feature is important

Credit: Indomie

Sequential Data: 1st Attempt

Sentiment Analysis

"Indomie is the best noodles ever"

Learn that this input/feature is important

Sequential Data: 2nd Attempt

Sentiment Analysis

"Indomie is the best noodles ever"

Credit: Indomie

Sequential Data: 3rd Attempt

Sentiment Analysis

"Indomie is the best noodles ever"

Credit: Indomie

Sequential Data: 3rd Attempt

Sentiment Analysis

"Indomie is the best noodles ever"

Credit: Indomie

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN)

Feed-forward networks

$$\mathbf{y} = g^{[y]} \left(\left(\mathbf{W}^{[hy]} \right)^{\mathsf{T}} \mathbf{h} \right)$$
$$\mathbf{h} = g^{[h]} \left(\left(\mathbf{W}^{[xh]} \right)^{\mathsf{T}} \mathbf{x} \right)$$

Recurrent Neural Networks

$$\mathbf{y} = g^{[y]} \left(\left(\mathbf{W}^{[hy]} \right)^{\mathsf{T}} \mathbf{h} \right) \qquad \mathbf{y}_{t} = g^{[y]} \left(\left(\mathbf{W}^{[hy]} \right)^{\mathsf{T}} \mathbf{h}_{t} \right)$$

$$\mathbf{h} = g^{[h]} \left(\left(\mathbf{W}^{[xh]} \right)^{\mathsf{T}} \mathbf{x} \right) \qquad \mathbf{h}_{t} = g^{[h]} \left(\left(\mathbf{W}^{[xh]} \right)^{\mathsf{T}} \mathbf{x}_{t} + \left(\mathbf{W}^{[hh]} \right)^{\mathsf{T}} \mathbf{h}_{t-1} \right)$$

Backpropagation Through Time (BPTT)

Long Short-Term Memory (LSTM) & Gated Recurrent Unit (GRU)

Sequence Modelling

One-to-one $T_x = T_y = 1$ Feedforward Network

One-to-many

$$T_x = 1, T_y > 1$$

Image captioning, text generation

Many-to-many $T_x > 1, T_y > 1$ Name entity recognition

 $T_x > 1$, $T_y = 1$ Sentiment classification

Many-to-many

$$T_x \neq T_y$$

Machine translation

Applications of RNN

Outline

- Deep Neural Networks
- Convolution Neural Networks
 - Motivation: handling spatial structure
 - Convolution, Pooling Layer, and Common Architectures
 - Applications
- Recurrent Neural Networks
 - Motivation: handling sequential data
 - Recurrent Neural Networks and Variants
 - Applications
- Attention, Transformers, GPT, and ChatGPT (if time permits)
- Issues with Deep Learning

Machine Translation (English → **Japanese)**

Machine Translation (English → **Japanese)**

"Indomie is the best noodles ever created by humankind. ... <100 words later> ... This concludes my argument why I like the noodles."

Forgot about what it has read before!

"Maggi is noodles..."

Machine Translation (English → **Japanese)**

Machine Translation (English → **Japanese)**

Machine Translation (English → **Japanese)**

Machine Translation (English → **Japanese)**

"Indomie is the best ..."

Attention

$$Attention(Q, K, V) = softmax \left(\frac{QK^T}{\sqrt{d_k}}\right)V$$
Query
Key
Value

Image credit: https://vaclavkosar.com/ml/cross-attention-in-transformer-architecture

Transformers

Transformers

Generative Pretrained Transformers (GPT)

Indomie is the best noodles ever created by _

Indomie is the best noodles ever created by humankind

Trained to **predict the next word** on ~300 billion tokens (~words)

ChatGPT

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Outline

- Deep Neural Networks
- Convolution Neural Networks
 - Motivation: handling spatial structure
 - Convolution, Pooling Layer, and Common Architectures
 - Applications
- Recurrent Neural Networks
 - Motivation: handling sequential data
 - Recurrent Neural Networks and Variants
 - Applications
- Attention, Transformers, GPT, and ChatGPT (if time permits)
- Issues with Deep Learning

Issues with Deep Learning

- Overfitting → Regularization
- Gradient Vanishing/Exploding

Regularization: Dropout

During training, randomly set some activations to 0

Regularization: Dropout

During training, randomly set some activations to 0

Regularization: Dropout

During training, randomly set some activations to 0

Regularization: Early Stopping

Vanishing/Exploding Gradient

- Vanishing gradient: small gradients got multiplied again and again until it reaches almost zero.
- Exploding gradient: large gradients got multiplied again and again until it overflows.

• Mitigation:

- Proper Weight Initialization
- Using Non-saturating Activation Functions, e.g. ReLU
- Batch Normalization ~ feature scaling at every layer
- Gradient Clipping ~ clip gradient within range [min, max]

Summary

- Deep Neural Networks neural networks with >3 layers
- Convolution Neural Networks
 - Motivation: handling **spatial structure**, translation **invariant**
 - Convolution (multiply-sum), Pooling (downsampling) Layer, and Common Architectures
 - Applications: image recognition, image segmentation, object detection
- Recurrent Neural Networks
 - Motivation: handling sequential data
 - Recurrent Neural Networks and Variants:
 - neural networks with loop y_t , $h_t = RNN(x_t, h_{t-1})$
 - Applications: machine translation, summarization, etc
- Attention, Transformers, GPT, and ChatGPT
 - Attention: focus on things that matters. Massive neural networks; train with billions of data.
- Issues with Deep Learning: overfitting, gradient vanishing/exploding

Coming Up Next Week

- Unsupervised Learning
- Clustering
 - K-means clustering
 - Hierarchical clustering
- Dimensionality Reduction
 - Principal component analysis (PCA) Math!

To Do

- Lecture Training 10
 - +100 Free EXP
 - +50 Early bird bonus
- Problem Set 6 is due tomorrow!