МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

Факультет физическии					
Кафедра физико-технической информа	тики				
Направление подготовки					
Образовательная программа:					
выпускная квал	ИФИКАЦИОН	НАЯ РАБОТА БА	КАЛАВРА		
Каны	шина Артемия F (Фамилия, Имя, Отчесть				
Тема работы: АВТОМАТИЗАЦИЯ	ИЗМЕРЕНИЙ	ПОПЕРЕЧНЫХ	РАЗМЕРОВ	ПУЧКА В	
БУСТЕРЕ БЭП					
***		***			
«К защите допущена»		Н	аучный руко	водитель	
Заведующий кафедрой, ученая степен		ченая степень,	, звание		
ученая степень, звание		до	должность, место работы		
Погашенко И. Б. /		C	Сенченко А. И. /		
фамилия , И., О.) / (подпись, МП)		(ф	(фамилия , И., О.) / (подпись, МП)		
«»20г.		«	»	2017 г.	

Дата защиты: «.....» июня 2017 г.

СОДЕРЖАНИЕ

Содержание	2
Введение	3
Глава 1. Оборудование и программные средства	
1.1 ПЗС камера Chameleon	
1.2 Система Tango	
1.3 Инструментарий разработки ПО Qt	
1.4 Дополнительные программные библиотеки	
Глава 2. Разработка	
2.1 Поставленные задачи	
2.2 Удобный интерфейс для работы с камерой Chameleon	
2.3 Аппаратная часть	
2.4 Клиентская часть	
2.5 Алгоритм измерения параметров пучка по изображению синхротронного излу	учения
Глава 3. Тестирование	
3.1 Быстродействие системы	
3.2 Устойчивость алгоритма к шумам на изображении	
Заключение	
Список литературы	

ВВЕДЕНИЕ

Электрон-позитронный коллайдер ВЭПП-2000 был введён в эксплуатацию в 2010 году. С 2010 по 2013 годы было проведено три успешных запуска установки с накоплением данных в диапазоне энергий пучка частиц от 160 до 1000 МэВ. В течении этой работы комплекс ВЭПП-2000 использовал инжекционный канал его предшественника ВЭПП-2М. Данная установка работала на энергии, меньшей 700 МэВ, и показывала светимость в 30 раз меньшую, чем проектный уровень светимости в 10^{32} см⁻² с⁻¹ для ВЭПП-2000 с энергией пучка 1 ГэВ. В итоге, скорость образования позитронов была недостаточной для достижения светимости, ограниченной лишь пороговым значением пучка. Это ограничение было устранено путем соединения каналом К-500 с новым инжекционным комплексом ВЭПП-5, способного создавать интенсивные электронные и позитронные пучки высокого качества энергией 450 МэВ. Полная схема инжекционного комплекса ВЭПП-5 и комплекса ВЭПП-2000 показана на рис. 1.

Рис. 1: Схема инжекционного комплекса и комплекса ВЭПП-2000

Другое ограничение эффективности ВЭПП-2000 приходило от максимальной энергии работы бустерного кольца БЭП, ограниченного значением 800 МэВ [1]. От этого пучок частиц, перепущенный из БЭП в ВЭПП-2000, неизбежно уменьшается после ускорения в кольце коллайдера. Поэтому в 2013 году было принято решение о модернизации бустерного кольца БЭП как для увеличения максимальной энергии работы до 1 ГэВ, так и для успешной инжекции пучков электронов и позитронов из инжекционного комплекса ВЭПП-5 [2], с целью достижения проектной светимости коллайдера ВЭПП-2000 [3].

В рамках задачи модернизации бустерного кольца было принято решение оборудовать несколько выводов синхротронного излучения новыми, современными ПЗС

матрицами для создания новой системы диагностики пучка. В качестве такой матрицы выбрана ПЗС камера Chameleon CMLN-13S2M, характеристики которой описаны соответствующей главе.

Также, из-за большого количества различных текстовых протоколов передачи данных в системе управления установкой, в задачу модернизации входила задача унификации всех этих протоколов. Выполнить задачу унификации позволила система Tango, предназначенная для управления ускорителями, экспериментальными установками, а также различным оборудованием и программным обеспечением.

Данная работа посвящена разработке системы автоматизированного измерения параметров пучка частиц по изображению синхротронного излучения, таких как положение, поперечные размеры и наклон, на базе системы Tango.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. А. Роговский и др. «Recomissioning and perspectives of VEPP-2000 complex», Proc of International Particle Accelerator Conference RuPAC-2016, Saint-Petersburg, Russia.
- 2. Д. Е. Беркаев и др. «Comissioning of Upgraded VEPP-2000 Injection Chain», Proc. of International Particle Accelerator Conference IPAC-2016, Busan, Korea.
- 3. Шварц Д. Б. и др. «Booster of electrons and positrons (BEP) upgrade to 1 GeV», Proc. of International Particle Accelerator Conference IPAC-2014, Dresden, Germany.