Lab #4 : DFA Minimisation

## Exercise 1

Let M be the DFA  $M = (\Sigma, Q, \delta, q_0, F)$  with  $\Sigma = \{a, b\}$ ,  $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$ ,  $F = \{q_3, q_4, q_5, q_6\}$  and  $\delta$  defined by the following table:

| $\delta$ | a     | b     |
|----------|-------|-------|
| $q_0$    | $q_1$ | $q_2$ |
| $q_1$    | $q_1$ | $q_3$ |
| $q_2$    | $q_1$ | $q_2$ |
| $q_3$    | $q_4$ | $q_5$ |
| $q_4$    | $q_4$ | $q_6$ |
| $q_5$    | $q_4$ | $q_5$ |
| $q_6$    | $q_4$ | $q_5$ |

- $\bullet$  minimise M
- what is the language accepted by the minimized DFA obtained?

## Exercise 2

Let M be the following DFA over  $\{0,1\}^*$ :



Minimize M and draw the obtained DFA.

## Exercise 3

Let N be the following NFA over  $\{0,1\}^*$ :



- $\bullet$  give a complete DFA M which accepts the same language
- $\bullet$  convert N to a DFA M' using the NFA-to-DFA algorithm reviewed in class
- $\bullet$  minimize M' and compare the resulting DFA to N

## Exercise 4

Let N be the NFA  $M=(\Sigma,Q,\delta,0,F)$  with  $\Sigma=\{a,b\},\ Q=\{0,1,2,3\},\ F=\{2\}$  and  $\delta$  defined by the following table:

| $\delta$ | a | b          |
|----------|---|------------|
| 0        | 1 | 3          |
| 1        | - | $\{0, 2\}$ |
| 2        | 0 | -          |
| 3        | 0 | -          |

N is not complete because some transitions are missing.

- $\bullet$  complete the NFA N to get N' a corresponding complete NFA, then build a DFA for the same language using the NFA-to-DFA algorithm, and finally minimize the DFA you get
- build directly a DFA for the same language using the NFA-to-DFA algorithm, complete it if it's not complete and finally minimize it
- compare the two DFA's you've got in the two previous questions