Advanced Level Experimental Physics

H₃-1: Radioactive Decay

Apparatus

About 200 small cubes, marked \odot and \otimes on two faces; two trays; 2 x 500ml beakers; periodic table of the elements; 2 sheets graph paper.

Introduction

In this model of radioactive decay, the cubes represent atoms. They are either parent (not decayed) atoms or daughter (decayed) atoms. When a cube is thrown at random, if a marked face of the cube faces up, then the atom has decayed.

Decay Model 1

(uses 1 tray and 1 beaker only)

Reaction:
$${}^{12}_{5}B \longrightarrow {}^{A}_{Z}X + \beta^{-}$$
 in the tray discarded

- 1. Count the cubes. This is N_0 , the number of parent atoms of $^{12}_5B$ at time t=0.
- 2. Place all the cubes in a beaker and empty the beaker into a tray. Shake the tray until all the cubes lie flat (do not touch any cubes).
- 3. Each time you empty a beaker into a tray, 0.01s has elapsed. Record the time t=0.01s. Discard cubes showing \odot or \otimes (these are atoms of $_Z^AX$, the daughter atoms). Count and record N, the number of cubes left in the tray.
- 4. Place the cubes now in the tray into the beaker. Empty the beaker into the tray and shake as before. Record t=0.02s. Discard decayed atoms. Record the new number N of cubes left in the tray.

- 5. Continue for $t = 0.03, 0.04, 0.05, \dots 2.5$ s, or until N = 0.
- 6. Tabulate your readings as follows:

t	/s	0	0.01	0.02	0.03		0 + 0
N		N _o =					e .c.

Analysis

- 1. Plot a graph of N vs. t. From the graph find the half life $T_{\frac{1}{2}}$. The decay rate (lamda λ) is related to the half life as follows: $\lambda=\ln\frac{2}{T_{\frac{1}{2}}}$
- 2. Using the formula: $\frac{dN}{dt} = -\lambda N$, calculate the decay rate when t=0. Find the graph's gradient at time t=0; is this the same (approximately) as the calculated value?
- 3. On the same sheet of graph paper, plot another curve showing the number of daughter atoms.
- 4. Find A, Z, and X. Is this atom stable?

Decay Model 2

(uses 2 trays and 2 beakers)

In this experiment, tray #1 contains $^{227}_{90}Th$ atoms and tray #2 contains $^{A1}_{Z1}X$ daughter atoms. These daughter atoms decay again and are discarded.

- 1. Place all the cubes into tray #1, count them, and record number $\,N_0$ at time $\,t=0$. Record for tray #2 that $N_0=0$ at $\,t=0$.
- 2. Place tray#1 cubes into beaker #1, return to tray #1 and shake tray to settle the cubes. Move cubes showing \otimes into tray #2. Record N for tray #1 and tray #2 at this time t=5 days.

2

3. FIRST: Place cubes from tray #2 into beaker #2. Return to tray #2 and shake. Discard cubes showing ⊙.

SECOND: Place cubes from tray #1 into beaker #1. Return to tray #1 and shake. Move cubes showing \otimes to tray #2.

THEN: Count and record N for trays #1 and #2 at t=10 days.

- 4. Continue repeating step 3, letting t=15, 20, 25, ... up to 200 days. (Each time you perform step 3, t advances by 5 days).
- 5. Tabulate your readings as follows:

t	/days	0	5	10	15	20	25	
tray#1	N	N . =						etc.
tray#2	N	$N_{\bullet} = 0$						

Analysis

- 1. On the same piece of graph paper plot $\,N\,{\rm vs.}\,\,t$ for trays #1 and #2 to obtain two curves.
- 2. Using the #1 curve, find $T_{\frac{1}{2}}$ for $\frac{227}{90}Th$. Calculate λ and thus find N at t=40 days (use $N=N_0e^{-\lambda t}$). Check that the value of N at t=40 days is about the same by using the graph, and note this value.
- 3. Explain carefully why the curve #2 has the shape that it does.
- 4. Use the reaction equations given above to determine A1, Z1, X and also A2, Z2, and Y.

Questions

1. $\frac{A2}{Z2}Y$ is unstable and decays. There follows a whole series of decays, ending with a stable atom, as follows:

$$egin{aligned} rac{A2}{Z2}Y &\longrightarrow ?+lpha & T_{rac{1}{2}} &= 3.92\mathrm{s} \ ? &\longrightarrow ?+lpha & T_{rac{1}{2}} &= 1.8 imes 10^{-3}\mathrm{s} \ ? &\longrightarrow ?+eta^- & T_{rac{1}{2}} &= 36.1\mathrm{min} \ ? &\longrightarrow ?+lpha & T_{rac{1}{2}} &= 2.15\mathrm{min} \ ? &\longrightarrow ?+eta^- & T_{rac{1}{2}} &= 4.8\mathrm{min} \end{aligned}$$

Write down the above set of reactions, deducing each of the ?s, giving atomic mass, atomic number, and symbol in each case.

- 2. A sample of $^{227}_{90}Th$, when left for 30 days, is found to contain a lot of $^{227}_{90}Th$, $^{A1}_{Z1}X$, and the final stable isotope. There is very little of $^{A2}_{Z2}Y$ and the four intermediate isotopes. Why?
- 3. Draw a decay chain to map the complete series of seven decays from $^{227}_{90}Th$ to the stable isotope.

© 2015 <u>CC-BY</u> by Bob Drach and Norman Price Based off of book published ???? About