WORKSHEET DAY 6

(Question asked in previous AIEEE & IIT-JEE)

SECTION-A

Q.1 Let z and w are two non zero complex number such that |z| = |w|, and Arg (z) + Arg (w) = π then -

[AIEEE - 2002, IIT-95]

- (A) z = w
- (B) $z = \overline{w}$
- (C) $\overline{z} = \overline{w}$
- (D) $z = -\overline{w}$
- **Q.2** If $|z-2| \ge |z-4|$ then correct statement is-[AIEEE-2002]
 - (A) R (z) \geq 3
- (B) $R(z) \le 3$
- (C) $R(z) \ge 2$
- (D) $R(z) \leq 2$
- **Q.3** If z and ω are two non-zero comlex numbers

such that
$$|z\omega| = 1$$
, and Arg (z) – Arg (ω) = $\frac{\pi}{2}$,

then $\overline{z}\omega$ is equal to-

[AIEEE - 2003]

- (A) i
- (B) 1
- (C) 1
- (D) i
- Let z_1 and z_2 be two roots of the equation z^2 + **Q.4** az + b = 0, \bar{z} being complex. Further assume that the origin, z, and z, form an equilateral triangle. Then [AIEEE - 2003]
 - (A) $a^2 = 4b$
- (B) $a^2 = b$
- (C) $a^2 = 2b$
- (D) $a^2 = 3b$
- If $\left(\frac{1+i}{1-i}\right)^x = 1$, then Q.5
- [AIEEE 2003]
- (A) x = 2n + 1, where n is any positive integer
 - (B) x = 4n, where n is any positive integer
 - (C) x = 2n, where n is any positive integer
 - (D) x = 4n + 1, where n is any positive integer
- **Q.6** Let z, w be complex numbers such that $\overline{z} + i \overline{w} = 0$ and arg $zw = \pi$. Then arg z equals-[AIEEE - 2004]
 - $(A) \pi/4$
- (B) $\pi/2$
- (C) $3 \pi/4$
- (D) $5 \pi/4$
- If z = x iy and $z^{\frac{1}{3}} = p + iq$, then $\frac{\left(\frac{x}{p} + \frac{y}{q}\right)}{\left(p^2 + q^2\right)}$ is Q.7
 - equal to-

[AIEEE - 2004]

- (A) 1
- (B) 1
- (C)2
- (D) 2

Q.8 If $|z^2 - 1| = |z|^2 + 1$, then z lies on-

[AIEEE - 2004]

- (A) the real axis
- (B) the imaginary axis
- (C) a circle
- (D) an ellipse
- **Q.9** If z_1 and z_2 are two non-zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then arg z_1 [AIEEE - 2005] - arg z₂ is equal to -
 - (A) $\frac{\pi}{2}$
- (C)0
- If $w = \frac{z}{z \frac{1}{3}i}$ and |w| = 1, then z lies on -Q.10

[AIEEE - 2005]

- (A) an ellipse
- (B) a circle
- (C) a straight line
- (D) a parabola
- The value of $\sum_{k=1}^{10} \left(\sin \frac{2k\pi}{11} + i \cos \frac{2k\pi}{11} \right) is -$ Q.11

[AIEEE - 2006]

- (A) 1
- (B) 1
- (C) i
- (D) i
- Q.12 If $|z + 4| \le 3$, then the maximum and minimum value of |z + 1| are -[AIEEE - 2007]
 - (A) 4, 1
- (B) 4, 0
- (C) 6, 1
- (D) 6, 0
- The conjugate of a complex number is $\frac{1}{i-1}$. Q.13

Then that complex number is- [AIEEE - 2008]

- Q.14 If $\,\omega\,$ is an imaginary cube root of unity then $(1 + \omega - \omega^2) (1 + \omega^2 - \omega)$ equals- [AIEEE - 2002] (A) 0
- (B) 1
- (C)2
- (D)4

If the cube roots of unity are 1, ω , ω^2 then the Q.15 roots of the equation $(x - 1)^3 + 8 = 0$, are -

[AIEEE-2005]

- $(A) -1, -1 + 2\omega, -1 2\omega^2$
- (B) -1, -1, -1
- (C) -1, $1 2\omega$, $1 2\omega^2$
- (D) -1, $1 + 2\omega$, $1 + 2\omega^2$
- If $z^2 + z + 1 = 0$, where z is a complex number, Q.16 then the value of

$$\left(z + \frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2 + \left(z^3 + \frac{1}{z^3}\right)^2 + \dots +$$

- $\left(z^{6} + \frac{1}{z^{6}}\right)^{2}$ is -
- [AIEEE 2006]

- (A) 54
- (B) 6
- (C) 12
- (D) 18
- Q.17 Let A and B denote the statements

A: $\cos \alpha + \cos \beta + \cos \gamma = 0$

B : $\sin \alpha + \sin \beta + \sin \gamma = 0$

If
$$\cos (\beta - \gamma) + \cos (\gamma - \alpha) + \cos (\alpha - \beta) = -\frac{3}{2}$$
,

then:

[AIEEE-2009]

- (A) A is false and B is true
- (B) both A and B are true
- (C) both A and B are false
- (D) A is true and B is false
- If $\left| Z \frac{4}{z} \right| = 2$, then the maximum value of $\left| Z \right|$ is Q.18

equal to:

[AIEEE 2009]

- (A) $\sqrt{5} + 1$
- (B) 2
- (C) 2 + $\sqrt{2}$
- (D) $\sqrt{3} + 1$

SECTION-B

- **Q.1** The equation not representing a circle is given [IIT - 91]
 - (A) $R_e \left(\frac{1+z}{1-z} \right) = 0$
 - (B) $z\bar{z} + iz i\bar{z} + 1 = 0$
 - (C) arg $\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$
 - (D) $\left| \frac{z-1}{z+1} \right| = 1$

- Q.2 If z is a complex number such that $z \neq 0$ and $R_a(z) = 0$, then -
 - (A) $R_{e}(z^{2}) = 0$
- [IIT 92] (B) $I_m(z^2) = 0$
- (C) $R_a(z^2) = I_m(z^2)$ (D) none of these
- **Q.3** If α and β are different complex numbers with

$$\mid \beta \mid$$
 = 1, then $\left| \frac{\beta - \alpha}{1 - \overline{\alpha} \beta} \right|$ is equal to -

[IIT - 92]

- (A) 0
- (B) 1/2
- (C) 1
- (D) 2
- The smallest positive integer n for which **Q.4** $(1 + i)^{2n} = (1 - i)^{2n}$ is -[IIT - 93]
 - (A) 4
- (B) 8
- (C) 2
- (D) 12
- **Q.5** If α and β are two fixed non-zero complex numbers and 'z' a variable complex number.

If the lines $\alpha \overline{z} + \overline{\alpha} z + 1 = 0$ and $\beta \overline{z} + \overline{\beta} z$ -1 = 0 are mutually perpendicular, then

[IIT - 93]

- (A) $\alpha\beta + \overline{\alpha} \overline{\beta} = 0$
- (B) $\alpha\beta \overline{\alpha} \overline{\beta} = 0$
- (C) $\overline{\alpha} \beta \alpha \overline{\beta} = 0$
- (D) $\alpha \overline{\beta} + \overline{\alpha} \beta = 0$
- If $z_1 = 8 + 4i$, $z_2 = 6 + 4i$ and $arg \left(\frac{z z_1}{z z_2} \right)$ Q.6

=
$$\frac{\pi}{4}$$
, then z satisfies- [IIT - 93]

- (A) |z 7 4i| = 1 (B) $|z-7-5i| = \sqrt{2}$
- (C) |z 4i| = 8 (D) $|z 7i| = \sqrt{18}$
- **Q.7** if ω is an imaginary cube root of unity, then

the value of $\sin \left[(\omega^{10} + \omega^{23}) \pi - \frac{\pi}{4} \right]$ is-

- (A) $-\frac{\sqrt{3}}{2}$
- (B) $-\frac{1}{\sqrt{2}}$
- (C) $\frac{1}{\sqrt{2}}$
- (D) $-\frac{\sqrt{3}}{2}$

(C)
$$-i$$
 (D) 0

Q.8 If z_1 , z_2 , z_3 are vertices of an equilateral triangle inscribed in the circle |z| = 2 and If **IIIT - 94.991**

$$z_1 = 1 + i \sqrt{3}$$
, then - [IIT - 9]

(A)
$$z_2 = -2$$
, $z_3 = 1 - i \sqrt{3}$

(B)
$$z_2 = 2$$
, $z_3 = 1 - i \sqrt{3}$

(C)
$$z_2 = -2$$
, $z_3 = -1 - i \sqrt{3}$

(D)
$$z_2 = -1 - i \sqrt{3}$$
, $z_3 = -1 - i \sqrt{3}$

- **Q.9** If ω (\neq 1) is a cube root of unity and $(1 + \omega)^7$ = A + Bω, then A & B are respectively the numbers [IIT - 95]
 - (A) 0, 1
 - (B) 1,1
 - (C) 1, 0
 - (D) 1, 1
- Q.10 If $(\omega \neq 1)$ is a cube root of unity then

$$\begin{vmatrix} 1 & 1+i+\omega^2 & \omega^2 \\ 1-i & -1 & \omega^2 - 1 \\ -i & -i+\omega - 1 & -1 \end{vmatrix} =$$

IIIT - 951

- (A) 0
- (B) 1
- (C) i
- (D) ω
- $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + i y , then- [IIT 98]$
 - (A) x = 3, y = 1
 - (B) x = 1, y = 3
 - (C) x = 0, y = 3
 - (D) x = 0, y = 0
- Q.12 If ω is an imaginary cube root of unity , then $(1 + \omega - \omega^2)^7$ equals [IIT - 98]
 - (A) 128 ω
- (B) -128ω
- (C) 128 ω^2
- (D) $128 \omega^2$
- The value of the sum $\sum_{n=1}^{13} (i^n + i^{n+1})$, where Q.13

$$i = \sqrt{-1}$$
, equals

[IIT- 98]

- (A) i
- (B) i 1

Q.14 If $i = \sqrt{-1}$, then $4+5 \left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} + 3$

$$\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$$
 is equal to- **[IIT - 99]**

- (A) $1 i \sqrt{3}$ (B) $1 + i \sqrt{3}$
- (C) i $\sqrt{3}$
- (D) i $\sqrt{3}$
- If z_1 , z_2 , z_3 are complex numbers such that Q.15

$$|z_1| = |z_2| = |z_3| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1$$
, then $|z_1 + z_2 + z_3|$ is - [IIT - 2000]

- (A) equal to 1
- (B) less than 1
- (C) greater than 3
- (D) equal to 3
- If arg(z) < 0, then arg(-z) arg(z) =Q.16

- (B) $-\pi$ (D) $\frac{\pi}{2}$
- Q.17 The complex numbers z_1, z_2 and z_3 satisfying $\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2}$ are the vertices of a tri-[IIT - 2001] angles which is
 - (A) of area zero
 - (B) right angled isosceles
 - (C) equilateral
 - (D) obtuse angled isosceles
- Q.18 If z_1 and z_2 be the nth roots of unity which subtend right angle at the origin. Then n must be of the form [IIT - 2001]
 - (A) 4 k + 1
- (B) 4k + 2
- (C) 4k + 3
- (D) 4k
- Q.19 For all complex numbers z₁, z₂ satisfying $|z_1| = 12$ and $|z_2 - 3 - 4i| = 5$, the minimum value of $|z_1 - z_2|$ is -[IIT - 2002]
 - (A) 0
- (B) 2

- (C) 7
- (D) 17
- Let $\omega = -1/2 + i \sqrt{3}/2$. Then the value of the Q.20

- (A) 3ω
- (B) $3\omega(\omega-1)$
- (C) $3\omega^2$
- (D) $3\omega (1 \omega)$
- If |z| = 1, $z \ne -1$ and $w = \frac{z-1}{z+1}$ then real part of w = ? [IIT Sc-2003]
 - (A) $\frac{-1}{|z+1|^2}$ (B) $\frac{1}{|z+1|^2}$
 - (C) $\frac{2}{|z+1|^2}$ (D) 0
- Q.22 If ω is cube root of unity ($\omega \neq 1$) then the least value of n, where n is positive integer
 - $(1 + \omega^2)^n = (1 + \omega^4)^n$ is -(A) 2 (B) 3 [IIT - Sc-2004]
- (C) 5
- (D) 6
- Q.23 A man walks a distance of 3 units from the origin towards the north-east (N 45° E) direction. From there, he walks a distance of 4 units towards the north-west (N 45° W) direction to reach a point P. Then the position of P in the Argand plane is- [IIT - 2007]
 - (A) $3e^{i\pi/4} + 4i$
- (B) $(3 4i) e^{i\pi/4}$
- (C) $(4 + 3i) e^{i\pi/4}$
- (D) $(3 + 4i) e^{i\pi/4}$

- If |z| = 1 and $z \neq \pm 1$, then all the values of $\frac{Z}{1-z^2}$ lie on-[IIT - 2007]
 - (A) a line not passing through the origin
 - (B) $|z| = \sqrt{2}$
 - (C) the x-axis
 - (D) the y-axis
- Q.25 Let $z = \cos\theta + i \sin \theta$. Then the value of

$$\sum_{m=1}^{15} Im(Z^{2m-1}) \text{ at } \theta = 2^{\circ} \text{ is } \qquad \text{[IIT - 2009]}$$

- (A) $\frac{1}{\sin 2^{\circ}}$ (B) $\frac{1}{3\sin 2^{\circ}}$
- (D) $\frac{1}{4\sin 2^{\circ}}$
- Q.26 Let z = x + iy be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $z\bar{z}^3 + \bar{z}z^3 = 350$ [IIT - 2009]

equation
$$z\overline{z}^3 + \overline{z}z^3 = 350$$

- (A) 48
- (B) 32
- (C)40
- (D) 80

ANSWER KEY

WORKSHEET DAY 5

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	Α	Α	D	В	D	D	O	В	Α	O	С	В	Α	В	В	D	В	В	В	В
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	D	D	В	В	D	Α	Α	Α	Α	D	Α	D	Α	Α	В	В	Α	Α	В	D
Q.No.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	D	В	D	С	В	Α	D	D	D	В	Α	С	В	С	В	С	В	D	В	В
Q.No.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	В	O	В	В	В	D	Α	В	В	В	С	В	В	Α	Α	O	С	В	D	Α
Q.No.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	D	С	Α	В	Α	D	D	Α	В	С	С	С	С	С	D	Α	С	Α	Α	В
Q.No.	101	102																		
Ans.	С	C	1																	

MATHONGO

WORKSHEET DAY 6

SECTION-A

	Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Ī	Ans.	D	Α	Α	D	В	С	D	В	С	С	С	С	В	D	С	С	В	Α

SECTION - B

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	D	В	С	С	D	В	С	Α	В	Α	D	D	В	С	Α	Α	С	D	В	В
Q.No.	21	22	23	24	25	26														
Ans.	D	В	D	D	D	Α														