Tema 1: Introducción a las redes de computadores e Internet

- Comprender qué es una red de computadores, tomando como ejemplo Internet
 - Sus componentes básicos
 - Los tipos de servicio que ofrece
 - Modos de funcionamiento interno de la red
 - Tipo de conmutación
 - Retardos
 - Protocolos de red
- Comprender el concepto de arquitectura de comunicaciones y su necesidad
 - Conocer los niveles de la arquitectura TCP/IP y dónde se emplean

1. ¿Qué es Internet?

- Componentes de una red
- Cómo interconectar redes
- Estructura comercial de Internet: ISP's
- 2. La frontera de la red
 - Modelos de aplicación distribuida
 - Tecnologías de acceso a Internet
- 3. Técnicas de conmutación
 - Conmutación de circuito
 - Conmutación de paquete
- 4. Retardos en una red de conmutación de paquete
- 5. Arquitecturas de comunicación

SESIÓN A1: ¿Qué es Internet?

Lectura posterior:

Kurose2010, sección 1.1

Conceptos:

- ¿Qué es Internet?
 - Componentes esenciales de una red de computadores [1.1.1]
 - Hosts o sistemas terminales
 - Enlaces
 - Dispositivos de red
 - Definición de Internet
 - Interconexión de redes
 - Routers
 - Identificación de los hosts: direcciones IP
 - Notación decimal
 - Proveedor de servicios de Internet (ISP)
- Protocolos [1.1.3]
 - Necesidad
 - Definición
 - Protocolos TCP/IP
 - IETF y los Request for Comments (RFCs)

Componentes físicos de una red

 Basada en alguna tecnología de red, que determina sus características

- ¿Qué necesitamos a nivel lógico para que la red funcione?
- Que los sistemas se entiendan -> Protocolo

```
A: Hola
B: Hola. Buenos días

A: Quisiera un lápiz
B: Aquí tiene

A: Gracias. Adiós
B: Adiós
```

```
220 disca.upv.es Sendmail SMI-8.6/SVR4 ready at Fri, 5 Feb 2010 19:28:52 GMT HELO ovidi.disca.upv.es
250 disca.upv.es Hello ovidi.disca.upv.es [158.42.53.1], pleased to meet you
MAIL From:<ovidi@disca.upv.es>
250 <ovidi@disca.upv.es>... Sender ok
RCPT To:<pau@disca.upv.es>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
Hola,
Te apetece venirte al cine?
Bye
.
250 TAA11108 Message accepted for delivery
QUIT
221 disca.upv.es closing connection
```

 Poder identificar a cada uno de los hosts que se comunican → Direccionamiento

Interconexión de redes

Dispositivo de interconexión de redes denominado pasarela o *router*

Dispositivo de interconexión de redes denominado pasarela o *router*

- Requisitos para la comunicación
 - Que los sistemas se entiendan
 - Protocolo TCP/IP
 - Poder identificar a cada uno de los hosts que se comunican
 - **Direccionamiento IP**
 - Interconexión física y lógica
 - Routers

- Direcciones IP (*Internet Protocol*)
 - v4 = 32 bits
 - Ej: 158.52.4.123
 - v6 = 128 bits
 - 2001:0db8:85a3:0000:1319:8a2e:0370:7344
 - 2001:odb8:85a3::1319:8a2e:0370:7344
- A las direcciones IP se les puede asociar un nombre

– Si un *host* desea enviar un bloque de datos (**paquete**) a

- ... lo hace llegar al *router* adecuado, que lo recibe y lo

— ... a un nuevo router, que repite la operación...

...hasta alcanzar el host destino.

- Cada "salto" cuesta un tiempo
 - Transmitir el paquete y procesarlo
- El router debe almacenar el paquete
 - Si no tiene memoria disponible, ¡¡¡puede descartarlo!!!
- La ruta se elige de forma distribuida
 - Cada *router* puede tomar decisiones en función de su entorno
- El origen no sabe dónde está el paquete tras el primer salto.
 - Necesitamos supervisar el funcionamiento de Internet

- Internet es una red de comunicación de datos...
 - Formada por múltiples redes interconectadas:
 - Emplea *routers* y conmutación de paquetes
- Todos los sistemas utilizan el mismo conjunto de protocolos de comunicación:
 - Los protocolos TCP/IP
- Tienen un esquema de direccionamiento común:
 - Direcciones IP

■ ISP: Internet Service Provider

 Un paquete puede tener que atravesar redes de distintos proveedores

Sesión A2

Protocolos de comunicaciones. Conmutación de paquetes

SESIÓN A2: Protocolos de comunicaciones. Conmutación de paquetes Lectura previa:

- Kurose2010, sección 1.2 (excepto 1.2.3)
- Kurose2010, sección 1.3.1 (solo la introducción de la sección y el apartado "Conmutación de paquetes");
- Kurose2010, secciones 1.3.2 y 1.4 (excepto 1.4.2)

Conceptos:

- La frontera de la red[1.2]
 - Aplicaciones distribuidas[1.2.1]
 - Concepto
 - Redes de acceso [1.2.2]
 - Tecnologías más comunes
 - · Acceso telefónico, DSL, Cable, Fibra óptica, Ethernet, WiFi
 - Resumen de las características básicas
- Conmutación de paquetes [1.3.1]
 - · Concepto de paquete
 - Paquete
 - Formación a partir de un mensaje
 - Cabecera y datos
 - Funcionamiento de la conmutación de paquetes [1.3.2]
 - Funcionamiento de los routers
 - Almacenamiento y retransmisión
 - Tablas de retransmisión
 - Formación de colas
 - Retardos [1.4.1]
 - En las líneas de comunicación
 - Retardo de transmisión y de propagación
 - En los routers
 - Retardo de procesamiento y de espera en las colas
 - Pérdidas de paquetes
 - Motivos

- Las redes permiten las aplicaciones distribuidas:
 - Varios procesos colaboran para ofrecer un servicio.
- Dos modelos de aplicación distribuida:
 - Cliente-servidor
 - Entre pares (peer-to-peer = p2p)
- Dos tipos de servicio:
 - Orientado a la conexión
 - Sin conexión

- Muchas aplicaciones en red lo utilizan
- Dos extremos:
 - Cliente: solicita un servicio
 - Servidor: proporciona el servicio solicitado
- Aplicación distribuida: parte en el servidor y parte en el cliente

- Todos los miembros incorporan la funcionalidad de servidor y de cliente
- Las peticiones se pueden dirigir a cualquiera de los otros miembros

Similar al teléfono

- Conexión antes de transferir los datos
- Información de estado asociada a la comunicación ... pero en los dos extremos
- Ofrece transferencia de datos fiable
- Entrega ordenada
- Control de flujo y de error
- Control de la congestión
- Protocolo TCP (RFC 793)
- Se usa en las aplicaciones tradicionales (e-mail, web, ftp, ...)

Similar al correo

- Cada mensaje se trata de forma independiente
- No necesita información de estado
- Es un servicio más rápido y simple que el orientado a la conexión
- Sin control de error o de flujo ni garantía de entrega
- Protocolo UDP (RFC 768)
- Empleado para:
 - Transferencia de información multimedia
 - Aplicaciones que requieren difusiones
 - Aplicaciones pregunta-respuesta cortas

- Las direcciones IP identifican de forma unívoca un computador en la red
- ¿Cómo distinguir entre distintos procesos dentro del mismo computador?
- Identificador de *puerto* (16 bits)

- Para conectar un ordenador al primer router que le permite acceder a Internet se necesita:
 - Un medio físico sobre el que enviar los datos (medio de transmisión)
 - Una tecnología de acceso a la red

- Módem telefónico
- DSL (Digital Subscriber Line)
- Cable
 - HFC (Hybrid Fiber coaxial Cable)
- Ethernet
- Acceso inalámbrico
 - IEEE 802.11 (WiFi)
 - WiMax
 - Telefonía móvil

Comparativa "última milla"

Tecnología	Tipo de enlace	Infraestructura	Compartido	Simétrico	Capacidad
Acceso telefónico	Punto a punto	Par trenzado Módem telef.	No	Si	56 kbps
DSL (Digital Subscriber Line)	Punto a punto	Par trenzado Módem DSL	No	No	12-55 Mbps 1,6-20Mbps
Cable (HFC – Hybrid Fiber Cable)	De difusión, compartido	Coaxial Módem cable	Sí	No	Similares DSL
FTTH (Fiber To The Home)	Punto a punto	Fibra óptica	No	No	Teórica: hasta Gbps Ofrecida por los ISPs: hasta 100Mbps (bajada), entre 2-10 Mbps (subida)

Medio de transmisión: aire

- Enlaces de difusión

Tecnología	Alcance	Simétrico	Capacidad
WiFi (802.11)	Área local (unos metros)	Sí	802.11a y g hasta 54Mbps, 802.11n hasta 74Mbps
Telefonía móvil 3G (UMTS)	Área extensa	Sí (videoconferencia) No (acceso a Internet)	1-2 Mbps
WiMAX (802.16)	Área extensa	No	Bajada: 75 Mbps a varios km Subida: 30 Mbps a varios km
ZigBee (802.15.4)	Área local (unos metros)	Si	256 Kbps
BlueTooth (802.15.1)	Área local (unos metros)	No	De 1 Mbps a 24 Mbps (según versiones)

- "Última milla" en zonas aisladas o rurales
- Elude obstáculos pequeños

Dos tipos:

Estándar	Frecuencia	Velocidad	Rango
WiMAX fijo (802.16-2004)	2-11 GHz (3.5 GHz en Europa)	75 mbps	10 km
WiMAX móvil (802.16e)	2-6 GHz	30 mbps	3,5 km

Pensado para permitir "calidad de servicio" (QoS)

- Objetivo de una red: transferir datos entre los sistemas conectados a la misma.
- Para mover la información a través de la red hay fundamentalmente dos formas:
 - Conmutación de circuito
 - Conmutación de paquete

- Las aplicaciones generan mensajes de longitud arbitraria
- Pero ... por motivos de eficiencia las redes limitan el tamaño máximo de los paquetes que se pueden transmitir:
- Por ejemplo, 1500 bytes = 12.000 bits
- Los mensajes mayores tienen que ser fragmentados en una secuencia de paquetes

- Como una carta:
 - Información de control (dirección remitente y destinatario ...)
 - Se llama cabecera
 - Contenido
 - Se llaman datos
- Paquete = cabecera + datos
 - En cada red, el paquete tiene una longitud máxima
 - Por ejemplo: 1500 bytes

- No se reservan recursos en la subred
- Funcionamiento en los dispositivos de conmutación:
 - Almacenamiento y reenvío
 - Provoca retardo
 - Se necesitan colas en los enlaces de salida
 - Puede provocar retardo
 - Posible pérdida de paquetes

Fragmentación vs. prestaciones

- Tiempos asociados a los enlaces:
 - Tiempo de transmisión
 - Cada enlace tiene una capacidad que se mide « segundo (b/s = bps)

• T_{trans} depende de la velocidad de transmisión del enlace (V_{trans} bps) y de la longitud del paquete en bits (L)

$$T_{trans} = L / V_{trans}$$

- Tiempo de propagación
 - Depende de la distancia (D metros) y la velocidad de propagación de las ondas en el medio $(V_{prop} = de 2.10^8 \text{m/s} a 3.10^8 \text{m/s})$

$$T_{prop} = D / V_{prop}$$

- Retardos asociados a los dispositivos de conmutación:
 - Tiempo de procesamiento
 - Para tomar una decisión de encaminamiento del paquete
 - Depende del dispositivo
 - Tiempo de espera en la cola de salida
 - Depende del tráfico y ... ¡de las V_{trans} de los enlaces!

Sesión A₃

Conmutación de circuitos Arquitectura de redes

Sesión A3: Conmutación de circuitos y arquitectura de las redes Lectura previa:

• Kurose2010, sección 1.3.1 (solo la introducción el apartado "Conmutación de circuitos" p.25) y sección 1.5

Conceptos:

- Conmutación de circuitos [1.3.1, 2ª parte]
 - Concepto
 - Comparación con la conmutación de paquetes
- Arquitectura de comunicaciones
 - Arquitectura en capas o niveles [1.5.1]
 - Conveniencia
 - Niveles de protocolos
 - Modelo TCP/IP
 - Nivel de aplicación
 - Nivel de transporte
 - Nivel de red
 - Nivel de enlace
 - Nivel físico
 - Modelo OSI
 - Diferencias respecto TCP/IP
 - Encapsulamiento en TCP/IP [1.5.2]
 - Concepto
 - Mensajes, segmentos, datagramas y tramas
 - Definición y construcción

Reserva estática

- Se reserva un conjunto de enlaces (circuito) por conversación
- 3 fases:
 - Establecimiento, transferencia de datos y cierre
 - Tras el establecimiento los recursos permanecen asociados al circuito se transfieran datos o no
- Se utiliza en las redes telefónicas
- Enlaces multiplexados en frecuencia o en tiempo
 - por un enlace pasan varios circuitos
- ¿Adecuado para la comunicación entre computadores?

- La complejidad de las comunicaciones aconseja el empleo de modelos jerárquicos
 - Se dividen las tareas en diferentes capas o niveles
 - Cada nivel soluciona un objetivo particular
 - Para cada nivel se emplea uno o más protocolos específicos
- Este modelo jerárquico se denomina arquitectura de comunicación

Arquitectura de comunicación (I)

- Cada nivel proporciona un servicio al nivel superior
- Sólo hay comunicación entre niveles adyacentes
- Dos arquitecturas actuales
 - Protocolos TCP/IP (Internet):5 niveles
 - Modelo de referencia ISO/OSI:7 niveles

Escola Tècnica Superior d'Enginyeria Informàtica etsinf La arquitectura de Internet (TCP/IP)

La arquitectura ISO/OSI

Encapsulamiento en TCP/IP

