Math 220 Section 108 Lecture 18

8th November 2022

Source: https://personal.math.ubc.ca/~PLP/auxiliary.html

Recall - Equivalence Classes

Definition (Definition 9.3.3 of PLP)

Given an equivalence relation R defined on a set A, we define the **equivalence** class of $x \in A$ (with respect to R) to be the set of elements related to x:

$$[x] = \{ y \in A : yRx \}.$$

Variation of an old final question

- cos2x+sin=1 3. Let **R** be a relation on \mathbb{R} defined as $\mathbf{R} = \{(a, b) : \cos^2(a) + \sin^2(b) = 1\}.$ trig identity
- (a) Prove that \mathbf{R} is an equivalence relation.

(b) For $\theta \in [0, \pi/2]$, find the equivalence class $[\theta]$.

Given aRb, we have symmetric: $\cos^{2}(a) + \sin^{2}(b) = 1$

$$\Rightarrow$$
 $((-\sin^2(a)) + (1-\cos^2(b)) = 1$

$$= ((-\sin^{2}(a)) + (1-\cos^{2}(b))^{2})$$

$$= (1+\sin^{2}a + 6s^{2}b)$$

$$1 = \cos^2 b + \sin^2 a,$$

so bRa.

(Continued 1/2)

(Continued) 3. Define: $\mathbf{R} = \{(a, b) \in \mathbb{R} \times \mathbb{R} : \cos^2(a) + \sin^2(b) = 1\}.$

(a) Prove that R is an equivalence relation.

(b) For $\theta \in [0, \pi/2]$, find the equivalence class $[\theta]$.

(a) (ctd.) transitive: Given aRb & bRc, some a, b, cets, we have (1) cos²a + sin²b = (& 2) cos²b + sin²c = 1.

(b) Consider $[\theta] = \{ t \in \mathbb{R} \mid t \in \mathbb{R} \}$ => $\cos^2 t + \sin^2 \theta = 1 = \sum_{s \in \mathbb{R}} \sin^2 \theta = 1 - \cos^2 t = \sin^2 t$.

Math 220 Section 108 Lecture 18

(Continued 2/2)

- (Continued) 3. Define: $\mathbf{R} = \{(a, b) \in \mathbb{R} \times \mathbb{R} : \cos^2(a) + \sin^2(b) = 1\}.$
- (a) Prove that ${\it R}$ is an equivalence relation.
- (b) For $\theta \in [0, \pi/2]$, find the equivalence class $[\theta]$.

Recall - Partitions

Definition (Definition 9.3.11 of PLP)

A **partition** of a set A is a collection \mathcal{P} of non-empty subsets of A, so that

- if $x \in A$, then there exists $X \in \mathcal{P}$ so that $x \in X$, and
- if $X, Y \in \mathcal{P}$, then either $X \cap Y = \emptyset$ or X = Y.

$$\{1/23\} = A \qquad 1=n$$

Theorem (Theorem 9.3.12 of PLP)

Let **R** be an equivalence relation on A. The set of equivalence classes of **R** forms a partition of A. That is, $\mathcal{P} = \{[x] \mid x \in A\}$ is a partition of A.

Partitions

- 4. (a) Give an example of a partition $\mathcal P$ of $A=\{1,2,3,\dots,9,10\}$ that has exactly four elements.
- (b) Is the power set $\mathcal{P}(A)$ a partition of A?
- (c) Is a partition of A a subset of the power set $\mathcal{P}(A)$?

(a)
$$P = \{\{1,10\}^3, \{2,3,4\}, \{8\}^3, \{5,6,7,9\}\}\}$$
. (b) $\phi \in P(A)$, so it can't be a partition.
 $P(A) - \phi$: This is still not a partition, since $\{1,2\}^3, \{2,3\}^7 \in P(A) - \phi$ and they overlap, i.e. $\{1,2\}^3, n\{2,3\}^7 \neq \phi$.
(c) Yes. Every element of P is a $\{P\} = 4$ subset of A , so $P \in P(A)$.

Partitions

5. Suppose \mathcal{P} is a partition of a set A. Define a relation \mathbf{R} on A where $x\mathbf{R}y$ if $x,y\in\mathcal{S}$ for some $S\in\mathcal{P}$. Prove \mathbf{R} is an equivalence relation on A.

reflexive: Given any aEA, aRa since a is in the same element of P symmetric: If aRb, then abes, for some SEP. So bass, some SEP, so bRa. transitive: If aRb & bRc, 3 Si, Sz & P s.t. apes, & b,c & Sz. Since be 5,05z, and so 5,05z

(Continued)

(Continued) 5. Suppose \mathcal{P} is a partition of a set A. Define a relation \mathbf{R} on Awhere $x\mathbf{R}y$ if $x, y \in \mathbb{R}$ for some $S \in \mathcal{P}$. Prove \mathbf{R} is an equivalence relation on A.

is non-empty. Therefore, we must $S_1 = S_2$, and so $a,b,c \in S_1$. So aRc.

So R is an equivalence relation.