Computer Animation and Games I CM50244

Today's Lectures

- Implicit Surface Modeling
- Subdivision Surface Modeling

Implicit Surface Modeling

Overview

- 2D explicit representation

 implicit representation
- 3D explicit representation ⇔ implicit representation
- Implicit surface applications
- Implicit surfaces to meshes
 - Sampling implicit function
 - Marching cubes

Recap: 2D Curve Representation

- Implicit representation
- Explicit representation

2D Curve Representation

- Implicit representation F(x,y) = 0
 - For any curve point, x and y coordinates should satisfy a single equation.

$$F(x,y) = x^2 + y^2 - r^2 = 0.$$

easily check if a point is on/inside/outside curve by evaluating the function value

2D Curve Representation

- Explicit representation y = f(x)
 - y coordinate is explicitly represented as a function of x coordinate.

$$F(x,y) = x^{2} + y^{2} - r^{2} = 0$$

$$f(y) = \sqrt{r^{2} - x^{2}}$$

$$f(y) = -\sqrt{r^{2} - x^{2}}$$

$$y$$

$$(x,y)$$

$$(x,y)$$

simple since y coord. is explicitly represented by x coord. but not convenient for multi-valued curve function

From Explicit Rep. to Implicit Rep.

• Explicit representation: y = f(x)Implicit representation: F(x,y) = 0

$$\Rightarrow F(x, y) = f(x) - y = 0.$$

Straightforward to construct F given f.

is it always possible to construct *f* given *F*?

From Implicit Rep. to Explicit Rep.

Is it always possible to **globally** construct f given F? No.

have to split the circle since y = f(x) cannot represent multi-value function

From Implicit Rep. to Explicit Rep.

Is it always possible to construct f locally given F?

- y = f(x) is defined around $\mathbf{a} = (x_a, y_a)$.
- y = f(x) is not well defined around $\mathbf{b} = (x_b, y_b)$:

Derivative
$$\frac{\partial y}{\partial x}$$
 is infinite at **b**.

Instead,
 x = g(y) is defined around b.

[roles of x and y exchanged]

From Implicit Rep. to Explicit Rep.

Implicit function theorem:

- Suppose $F(x_a, y_a) = 0$ and $\frac{\partial F}{\partial y}(x_a, y_a) \neq 0$ at $\mathbf{a} = (\mathbf{x}_a, \mathbf{y}_a)$.
- Then, it is possible to find f around \mathbf{a} , s.t., $y_a = f(x_a)$.
- At **b**= (x_b, y_b) , $\frac{\partial F}{\partial x}(x_b, y_b) \neq 0$
- Therefore, we can find $g: x_b = g(y_b)$

Overview

- 2D explicit representation ⇔ implicit representation
- 3D explicit representation

 implicit representation
- Implicit surface applications
- Implicit surfaces to meshes
 - Sampling implicit function
 - Marching cubes

3D Surface Representation

- Implicit representation
- Explicit representation

3D Surface Representation

- Implicit representation F(x, y, z) = 0
 - For any surface point, x, y, z coordinates should satisfy a single equation

$$x^2 + y^2 + z^2 - R^2 = 0$$

easily check if a point is on/inside/outside the surface by evaluating the function value

3D Surface Representation

- Explicit representation z = f(x, y)
 - z coordinate is explicitly represented as a function of x and y coordinates

$$z = \sqrt{R^2 - x^2 - y^2}$$

$$z = -\sqrt{R^2 - x^2 - y^2}$$

simple since z coord. is explicitly represented by x and y coord. but not convenient for multi-valued surface function

Explicit and Implicit Surfaces

From explicit rep. to implicit rep.:

$$z = f(x, y)$$

$$\Rightarrow F(x, y, z) = f(x, y) - z = 0.$$

From implicit rep. to explicit rep.:

if
$$\frac{\partial F(x, y, z)}{\partial z} \neq 0$$
 at $\mathbf{a} = (a_x, a_y, a_z)$,

one can find f such that f(x,y)=z around **a** (similarly for g(y,z)=x and h(x,z)=y).

Overview

- 2D explicit representation ⇔ implicit representation
- 3D explicit representation ⇔ implicit representation
- Implicit surface applications
- Implicit surfaces to meshes
 - Sampling implicit function
 - Marching cubes

Implicit Representation Benefits

- Implicit rep. allows
 - Quick test if a point is on/inside/outside a surface:
 Easy collision detection.
 - Natural representation for volumetric data.
 - Suitable representation for constructive solid geometry.

Volumetric Data

- CT and MRI scanners produce volume of density values F(x,y,z).
- Individual features (e.g., bone, brain surfaces) are implicit-surfaces of the volume with different isovalue c: F(x,y,z)=c.

MRI

CT

Constructive Solid Geometry (CSG)

 Designers build up a shape by using three dimensional blocks and a selection of Boolean operations in which they can combine.

Constructive Solid Geometry (CSG)

Why is implicit surface modelling suitable for CSG?

Implicit Surface + CSG

Union

$$F_{C \cup S}(\cdot) = \min\{F_C(\cdot), F_S(\cdot)\}$$

Intersection

$$F_{C \cap S}(\cdot) = \max\{F_C(\cdot), F_S(\cdot)\}$$

Difference

$$F_{S\setminus C}(\cdot) = \max\{-F_C(\cdot), F_S(\cdot)\}$$

F(x,y,z)<0 means inner, F(x,y,z)>0 means outer, F(x,y,z)=0 gives implicit surface

Overview

- 2D explicit representation ⇔ implicit representation
- 3D explicit representation ⇔ implicit representation
- Implicit surface applications
- Implicit surfaces to meshes
 - Sampling implicit function
 - Marching cubes

Mesh Representation

A discrete 3D surface representation

$$M = (V, E, F)$$

V: mesh vertex set

E: mesh edge set

F: mesh face set

How to convert implicat representation for mesh representation? applications: visualization, simulation, etc.

Sampling Implicit Function

- + sign: a point \mathbf{x} is outside the curve $(F(\mathbf{x})>0)$.
- - sign: inside $(F(\mathbf{x})<0)$.
- Classify all squares based on F(x)
 - o Inside/outside/intersection.
- Intersected cells (squares) are refined.

Marching Square (2D)

- 1. Classify grid nodes as inside/outside Is F(u,v)>0 or <0?
- 2. Classify cell: 2⁴ configuration In/out for each corner.
- Compute zero-crossing intersection points
 Linear interpolation along edges.
- 4. Connect zero-crossing by edges

 Look-up table for edge

 configuration.

Marching Square (2D)

Intersection Points

Regular 2D grid

Compute implicit function values at nodes.

Computer zero-crossing point on grid edge

F(01)

Intersection Points

Regular 2D grid

- Compute implicit function values at nodes.
- Computer zero-crossing point on grid edge

$$f(u) = uf(0) + (1 - u)f(1) = 0$$

$$\Leftrightarrow u = \frac{f(1)}{f(0) - f(1)}$$

Marching Cubes

- Classify grid nodes as inside/outside
 Is F(u, v, w)>0 or <0?
- 2. Classify cell: 28 configuration In/out for each corner.
- 3. Compute boundary intersection points. Linear **interpolation** along edges.
- Connect them by edges.
 Look-up table for edge configuration.

[Lor87]

Marching Cubes

Look-up table with 28 entries

256 cases are reduced to 15 cases based on symmetry

Intersection Points

- Linear interpolation along edges.
- Lookup table for mesh face configuration.

Uniform Sampling

Progressive Sampling

References

[Shi09] Shirley et al., Fundamentals of Computer Graphics, 2009.

[PAR12] Parent, Computer Animation Algorithms & Techniques, 2012.

[Li16] Li, Explicit & Implicit Surfaces.

[Lor87] Lorensen and Cline, "Marching Cubes: A High Resolution 3D Surface Construction Algorithm," Computer Graphics, vol. 21, no. 3, pp. 163-169, July 1987