

Introduction à la mécanique quantique

ULB – Faculté des Sciences

B2-PHYS: PHYS-F203 - Pr. MASSAR

Sami ABDUL SATER

Année académique 2020-2021

Table des matières

1	Prin	icipes f	ondamentaux de la physique quantique	5	
	1.1	Dualit	té onde-corpuscule de la lumière	5	
			Observation de la dualité onde-particule de la lumière		
	1.2		té onde-corpuscule de la matière		
		1.2.1	Hypothèse de de Broglie		
		1.2.2	Vers l'équation de Schrödinger		
2	L'équation de Schrödinger				
	2.1	Étude	mathématique	11	
		2.1.1	Propriétés		
		2.1.2	Description quantique d'une particule libre		
		2.1.3	Paquet d'ondes à une dimension	13	
		2.1.4	Propagation (étalement) d'un paquet d'onde gaussien	14	
	2.2	Interp	rétation probabiliste de la mécanique quantique	15	
	2.3		ion de Schrödinger en potentiel stationnaire	16	
		2.3.1	Résolution de la partie temporelle de l'équation de Schrödinger		
			en potentiel stationnaire	17	
		2.3.2	Résolution de la partie spatiale de l'équation de Schrödinger en		
			potentiel stationnaire	17	
	2.4	Equat	ion de Schrödinger en potentiel carré	17	
		$2.\overline{4}.1$	Définition d'un potentiel carré	18	
		2.4.2	Puits de potentiel infini	18	
		2.4.3	Puits de potentiel fini	20	
		2.4.4	Marche de potentiel	22	
	2.5	Appro	oximation semi-classique (WKB)	26	
		2.5.1	Résolution de l'équation de Schrödinger	26	
		2.5.2	Interprétation de la solution	27	
		2.5.3	Application de l'approximation WKB en physique nucléaire		
A	Calo	culs des	s coefficients des fonctions d'onde	31	
	A.1	Puits	de potentiel fini	31	

Chapitre 1

Principes fondamentaux de la physique quantique

1.1 Dualité onde-corpuscule de la lumière

La lumière a toujours été dans l'histoire une source d'interrogation. Elle nous sert à voir littéralement, mais certaines manipulations avec permettent d'en étudier la nature. Corpuscule? Ondulatoire? Les deux hypothèses se combattaient au XVIIè siècle, avec Christophe Huygens qui défendait une théorie ondulatoire et Isaac Newton qui défendait une théorie corpusculaire.

Au XIXè siècle, des expériences de diffraction (phénomène purement ondulatoire) menées par Thomas Young et Augustin Fresnel ont permis d'affirmer que la lumière possédait des propriétés ondulatoires. Newton part donc avec un point en moins. Un siècle plus tard, Einstein émet une théorie corpusculaire de la lumière, certaines raisons l'ayant poussé à le faire. Parmi eux, les travaux de Planck.

Max PLANCK étudiait les corps noirs (enceinte macroscopique qui absorbe entièrement tout rayonnement incident, à l'équilibre thermodynamique entre la matière qui le constitue et son propre rayonnement – voir PHYS-F201) et de ses études est ressorti un paramètre qui a les dimensions d'une énergie fois un temps (unités : Js), appelé *constante de Planck*. Ce paramètre qu'on note h décrit formidablement les propriétés des corps noirs – plus précisément, la densité d'énergie de rayonnement d'un corps noir (toujours, voir PHYS-F201). Le résultat obtenu par Planck n'était cependant pas en accord avec la mécanique classique. De son côté, Albert Einstein propose une théorie corpusculaire de la lumière, qui va en accord avec les résultats de Planck, en utilisant notamment cette même constante h pour décrire **l'effet photoélectrique** 1. Ceci souligne l'importance de h car le corps noir et le métal n'ont a priori rien en commun. La constante de Planck est donc une des *constantes fondamentales de l'Univers*.

$$h \approx 6.63; 10^{-34} \text{ Js}$$

Le caractère fondamental de la constante de Planck lui procure également un autre surnom : le *quantum d'action*.

^{1.} Effet expliquant l'émission d'électrons par un métal exposé à de la lumière dans certaines conditions.

Effet photoélectrique

En bombardant une plaque métallique de lumière de longueur d'onde λ (maintenant qu'on sait que la lumière est une onde), on remarque qu'au-delà d'une certaine fréquence seuil ν_0 (λ et ν sont liées par $\lambda=c/\nu$), des électrons sont émis avec une énergie qui augmente linéairement avec la fréquence, avec une pente de h, et dont l'expression de son énergie cinétique T est donnée par :

$$T = h\nu - W$$

où $W = h\nu_0 \equiv$ Travail d'extraction, autrement dit, c'est le travail que doit fournir l'électron pour s'extraire de la plaque métallique. Nous pouvons voir que ce travail correspond à une énergie de fréquence ν_0 , la fréquence seuil.

Les particules de lumière

Einstein est amené à établir une relation entre la longueur d'onde de la lumière et une impulsion (à travers le nombre d'onde, ou plus précisément, le vecteur d'onde \vec{k}). En effet, nous savons par le cours de relativité et électromagnétisme que l'énergie totale d'une particule est donnée par $E=m\gamma c^2$, tandis que l'impulsion vaut $\vec{p}=m\gamma\vec{v}$. Ainsi, nous avons la relation $\vec{p}=\frac{E}{c^2}\vec{v}$. Or si l'on considère bien la lumière comme une particule, nous pouvons exploiter ces relations. Sa vitesse étant de plus constante, de norme c, nous en déduisons que :

$$p = \frac{E}{c^2}c = \frac{E}{c} = \frac{1}{c}\hbar\omega$$
$$= \hbar k$$

où nous avons employé la relation de dispersion pour la lumière $\omega = kc$.

Le fait que E = pc nous donne, par $E^2 = m^2c^4 + c^2p^2$, que la particule qui décrit la lumière est de masse nulle.

En résumé, nous avons donc ces deux relations très importantes qui relient la lumière, une onde, à un caractère corpusculaire;

$$\begin{cases} E \equiv \hbar \omega & \text{(quantification de l'énergie)} \\ \vec{p} \equiv \hbar \vec{k} & \text{(lien longueur d'onde-impulsion)} \end{cases}$$
 (1.1)

L'introduction d'une particule de lumière, a.k.a le **photon** n'est pas super appréciée et nécessite donc d'être démontrée. C'est ce qu'a fait Arthur Compton expérimentalement. Il a démontré que lors d'une interaction (une collision) photon-électron, l'impulsion et l'énergie du photon étaient conservées, tout comme une particule classique. Le photon est donc bien une particule. Et c'est aussi une onde (*cf.* franges de Young).

La lumière se comporte donc à la fois comme une onde et comme une particule.

1.1.1 Observation de la dualité onde-particule de la lumière

On reprend l'expérience des fentes de Young et cette fois-ci en lumière atténuée, pour voir la figure d'interférence se construire progressivement. On alors les impacts un par un, **photon par photon** mais à long terme on voit se dessiner une figure d'interférence, cela veut dire que la lumière est une onde qui passe par les deux fentes à la fois.

Nature corpusculaire : les impacts individuels.

- Nature ondulatoire : la lumière passe par les deux fentes à la fois (figure d'interférence).
- Dualité onde-particule : la lumière est à la fois partout et à un seul endroit.

Une grande morale à cette section est que mine de rien, Einstein a développé et cru en une théorie qui allait à l'encontre de ce qui a été imaginé et prouvé par l'expérience depuis le siècle précédant, et ce malgré la splendide explication théorie de l'électromagnétisme de Maxwell, qui d'ailleurs ne laisse aucune invalidité dans son modèle prouvé par l'expérience! Mais il y avait visiblement de la place pour une autre théorie.

1.2 Dualité onde-corpuscule de la matière

L'aspect corpusculaire de la matière n'a pas besoin d'être introduit. En revanche, son aspect ondulatoire nourrit les interrogations rien qu'à l'usage de l'expression. C'est Louis de Broglie le véritable héros derrière cette hypothèse.

1.2.1 Hypothèse de de Broglie

Par la section précédente, nous avons compris que les travaux de Max Planck et d'Einstein permettent de dire qu'un rayonnement lumineux de fréquence ν est porteur d'énergie $E=h\nu$.

Durant la même époque de ces travaux, les spectres d'émission et d'absorption de certains atomes (notamment l'hydrogène) étaient étudiés, et la quantification de l'énergie absorbée par ces atomes permettait de bien expliquer le fait que l'on observait un spectre de raies fines distinctes.

En effet, on observa qu'un électron d'un atome ne peut passer d'un état à l'autre qu'en absorbant (ou émettant) une quantité bien définie d'énergie E_{ij} :

$$E_{ij} = h\nu_{ij} = |E_i - E_j|$$

où E_i correspond à l'énergie d'un état i.

La mécanique classique ne permettant pas d'expliquer ce phénomène, Louis de Broglie a alors émis l'hypothèse

que tous les corpuscules matériels peuvent avoir un aspect ondulatoire, et que les aspects corpuscule et ondulatoire sont reliés par la formule (1.2).

$$\begin{cases} E = \hbar \omega \\ \vec{p} = \hbar \vec{k} \end{cases} \implies \lambda = \frac{h}{p} \quad (Relation de de Broglie)$$

Son hypothèse a ensuite été validée lorsqu'il a réussi à montrer des figures d'interférences par diffraction d'électrons.

Les relations d'Einstein pour le photon se généralise donc pour des particules, à l'échelle microscopique (en effet, les aspects ondulatoires de la matières deviennent négligeables au niveau macroscopique).

FIGURE 1.1 – Louis de Broglie. Il obtint le prix Nobel en 1929 à 37 ans pour la découverte de la nature ondulatoire de l'électron.

Il faut bien comprendre l'étape à laquelle nous sommes; c'est de la que se construit une nouvelle physique qui est la mécanique quantique.

Il faut dès lors commencer à prendre en compte, dans les équations, l'aspect ondulatoire d'une particule. Ce qui peut alors se faire est de décrire une particule par une équation d'onde (l'équation d'onde EM pour le photon).

La section suivante vise donc à montrer comment arriver à l'équation de Schrödinger, autrement dit, comment arriver à établir une relation qui décrit une particule quantique de manière ondulatoire.

1.2.2 Vers l'équation de Schrödinger

Considérons un corpuscule matériel.

Nous allons lui associer une fonction d'onde qui est solution de l'équation d'onde ; ainsi, le corpuscule correspondra bien à la définition d'une onde.

En utilisant cette équation d'onde, nous allons en premier lieu **établir une équivalence** entre des grandeurs physiques et des opérateurs.

En deuxième lieu, il nous suffira de relier ces grandeurs physiques avec les relations 1.1, ainsi qu'avec l'expression de l'énergie d'une particule (donnée en électromagnétisme). On obtiendra finalement une équation liant plusieurs aspects de la fonction d'onde.

(a) Équivalence entre opérateurs.

L'équation d'onde est de la forme :

$$\left(\frac{1}{c^2}\partial_t^2 - \Delta\right)\vec{A} = 0$$

et une solution possible de cette équation est l'onde place, c'est-à-dire une fonction de la forme :

$$A(\vec{x},t) = A_0 e^{-i(\omega t - \vec{k} \cdot \vec{x})}.$$

De ce fait, nous pouvons en déduire que :

- dériver A par rapport au temps revient à multiplier A par $-i\omega$,

$$\omega \longleftrightarrow \frac{i}{A}\partial_t A \tag{1.3}$$

– prendre le gradient revient à multiplier par $i\vec{k}$,

$$\vec{k} \longleftrightarrow -\frac{i}{A} \vec{\nabla} A \quad \Rightarrow \quad k^2 \longleftrightarrow -\frac{1}{A} \Delta A$$
 (1.4)

(b) Recherche d'une relation à exploiter.

Afin de décrire notre système quantique, nous allons utiliser une équation représentant son énergie, dans lequel nous pourrons exploiter les relations d'équivalence 1.3 et 1.4 obtenues précédemment. De cette manière, nous aurons la représentation de l'énergie d'un système quantique, tout en ayant tenu compte de son caractère ondulatoire.

Plus particulièrement, relions donc d'abord la pulsation ω et le nombre d'onde k avec l'énergie et l'impulsion, ce qui est possible grâce à 1.1; ainsi, nous avons

$$\begin{cases}
E = \hbar\omega = \frac{i\hbar}{\psi}\partial_t\psi \\
\vec{p} = \hbar\vec{k} = -\frac{i\hbar}{\psi}\vec{\nabla}\psi \Rightarrow p^2 = -\frac{\hbar^2}{\psi}\Delta\psi
\end{cases} \implies \begin{cases}
E = \frac{i\hbar}{\psi}\partial_t\psi \\
p^2 = \frac{i\hbar}{\psi}\partial_t\psi
\end{cases} (1.5)$$

où ψ est ce que l'on va appeler la fonction d'onde du système quantique. Ensuite, exploitons une relation qui fait intervenir les grandeurs E et p. Nous allons y distinguer 2 cas :

i) Cas relativiste:

$$E^2 = m^2 c^4 + p^2 c^2$$

La substitution des relations de (1.5) dans cette relation décrit le comportement d'une particule quantique relativiste et constitue l'**équation de Klein-Gordon**.

Équation de Klein-Gordon :
$$-\hbar^2 \partial_t^2 \phi + c^2 \hbar^2 \Delta \phi - c^4 m^2 \phi = 0$$
 (1.6)

De ce que l'on peut voir, elle est d'ordre 2 en le temps, autrement dit, sa non-linéarité rend la résolution de l'équation trop compliquée à notre niveau. Cette équation sera donc traitée en BA3.

ii) Cas non-relativiste:

$$E = \frac{p^2}{2m} + V(\vec{r}, t)$$

De manière similaire, on obtient l'équation de **Schrödinger** :

Équation de Schrödinger :
$$i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \Delta \psi + V(\vec{r}, t) \psi$$
 (1.7)

En général, il ne sera pas possible de trouver des solutions analytiques, mais nous verrons plus tard qu'avec des approximations appropriées, il est possible d'en tirer des conclusions intéressantes. Le cas non-relativiste d'une particule est d'ailleurs celui que nous allons étudier profondément cette année (en particulier, c'est le sujet de tout le chapitre suivant, où ses propriétés et son interprétation seront discutées, munis de quelques exemples). Notons également que les solutions ψ (fonction d'onde associée à une particule quantique) de cette équation de Schrödinger sont ce qui permettent de décrire l'état de la particule. Autrement dit, la fonction d'onde contient toutes les informations nécessaires sur la particule.

Chapitre 2

L'équation de Schrödinger

Les résultats du chapitre précédent ont permis de mettre en évidence certaines observations qui ont fini par constituer les principes fondamentaux de la physique quantique. Son résultat notable a été l'obtention d'une équation qui régit le comportement d'une particule quantique, étant à la fois celui d'une onde et celui d'un corpuscule. Dans le régime non-relativiste, cette équation s'appelle **équation de Schrödinger**.

Dans ce chapitre, nous expliciterons son intérêt mathématique, son contenu physique (interprétation), et enfin traiterons quelques exemples de résolution avec différents cas de potentiels $V(\vec{r},t)$. Nous verrons en effet qu'une étude simple de cette équation mène a des résultats qui diffèrent radicalement de la physique classique et qui ont un intérêt non-négligeable, comme par exemple l'effet tunnel.

Équation de Schrödinger

$$i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \Delta \psi + V(\vec{r}, t) \psi \quad (= \hat{H} \psi)$$
 (2.1)

2.1 Étude mathématique

Dans cette section nous verrons plusieurs choses:

- Résolution de l'équation de Schrödinger pour une particule libre, *i.e* pour V=0
- Sa solution générale, menant à la formation d'un paquet d'onde
- Les propriétés des paquets d'ondes, ainsi que des paquets d'ondes gaussiens

2.1.1 Propriétés

Les propriétés de l'équation de Schrödinger sont bien plus appréciables que celle de Klein-Gordon. En effet, l'équation de Schrödinger est

– linéaire; autrement dit, si ψ_1 et ψ_2 sont des solutions distinctes de l'équation, alors leur combinaison linéaire reste une solution. C'est également ce qu'on appelle le principe de superposition;

- de premier ordre en le temps : ce caractère est préféré (pour des raisons obscures)
 à l'équation de Klein-Gordon qui contient une dérivée seconde par rapport au temps ¹.
- en accord avec les conditions de de Broglie puisque l'équation découle en partie de ces conditions;
- en accord avec la conservation de la probabilité, dans le sens où la probabilité de trouver la particule dans l'espace en entier est une constante. Cette propriété ne se déduit pas si simplement par de l'analyse mais sera effectivement démontrée une fois que le cadre mathématique de la mécanique quantique aura été posé.

Avant de continuer, rappelons les choses qui doivent être acquis afin de comprendre la suite :

- on considère la particule également comme une onde;
- sa fonction d'onde associée, notée ψ (ou parfois ϕ), contient toutes les informations sur la particule dans une situation donnée;
- on fait apparaître une interprétation probabiliste en mécanique quantique, où $|\psi(\vec{x},t)|^2$ correspond à la densité de probabilité de mesurer la présence de la particule à l'instant t, à la position \vec{x} ;
- la probabilité de mesurer la particule dans *tout* l'espace est constante, et normalisée à 1 (notion de probabilité). Ainsi :

$$\int_{\mathbb{R}^3} |\psi(x,t)|^2 \, \mathrm{d}x = 1 \tag{2.2}$$

Ce dernier point nous informe en particulier qu'il est nécessaire que les fonctions d'onde soient de carré sommable. Autrement, la fonction d'onde perdrait son sens physique. Une étude plus approfondie de l'espace des fonctions d'ondes sera faite au chapitre 4 (réf).

2.1.2 Description quantique d'une particule libre

Considérons une particule dont l'énergie potentielle est nulle, V=0 (par exemple un électron suffisamment loin de tout corps). La particule n'étant soumise à aucune force, on dit qu'elle est libre.

Dans ce cas, l'équation de Schrödinger devient $i\hbar\partial_t\psi=-\frac{\hbar^2}{2m}\Delta\psi$, et elle admet alors des solutions de la forme :

$$\psi(\vec{r},t) = A e^{-i\omega(k)t} e^{i\vec{k}\cdot\vec{r}}, \qquad (2.3)$$

avec

$$\omega(k) = \frac{\hbar k^2}{2m}$$
 (relation de dispersion) (2.4)

Remarque : Par les relations de de Broglie, cette dernière équation 2.4 nous donne que $E=\frac{p^2}{2m}$. On retrouve bien l'énergie d'une particule libre de la physique classique.

^{1.} En effet, sans le justifier davantage, si l'on considère une particule décrite par l'équation de Klein-Gordon, écrire la conservation de la probabilité sur elle, $\partial_t \rho + \vec{\nabla} \cdot \vec{J} = 0$, donnerait mathématiquement comme solution des ρ positifs ou négatifs. Or une densité de masse négative est aberrante en physique. Donc la dérivée seconde par rapport au temps dérange le Physicien!

Par la solution 2.3, on observe que

$$|\psi(\vec{r},t)|^2 = |A|^2$$
.

Cela signifie donc que l'onde plane représente une particule dont la densité de probabilité de présence est uniforme dans tout l'espace.

Cependant, nous pouvons facilement constater qu'elle n'est pas de carré sommable (son intégrale sur tout l'espace diverge). Ainsi, l'onde plane **ne représente pas** un état physique! Une superposition d'onde plane peut par contre avoir du sens; c'est donc ce dont on va discuter à présent.

Solution générale:

En effet, par le principe de superposition, une combinaison des solutions du type onde plane reste une solution, et nous pouvons écrire cette combinaison comme :

$$\psi(\vec{r},t) = \frac{1}{(2\pi)^{3/2}} \int d^3k \ g(\vec{k}) \ e^{-i\omega(k)t} \ e^{i\vec{k}\cdot\vec{r}} \ . \tag{2.5}$$

Ceci constitue donc la solution générale à l'équation de Schrödinger pour une particule libre, et on dit également que cette superposition d'ondes forme un **paquet d'ondes**. Afin de comprendre ce que représente g(k), restreignons nous à un mouvement à 1D (dans la direction x par exemple), et à un instant donné t=0.

$$\psi(x,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(k)e^{ikx} dk$$

On voit sur cette équation que g(k) n'est rien autre que la transformée de Fourier de $\psi(x,0)$ (voir annexe sur notions de math) :

$$g(k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \psi(x,0) e^{-ikx} dx$$

g(k) et $\psi(x,0)$ ont donc même module, par le théorème de Plancherel.

2.1.3 Paquet d'ondes à une dimension

Une onde plane (2.3), bien que solution à l'équation de Schrödinger, n'est pas une solution physiquement acceptable. Une solution générale du style (2.5) l'est par contre. Dans cette section, nous parlerons des différentes vitesses qui caractérisent de tels ondes.

Propriétés d'une onde plane

Pour une onde plane à une dimension :

$$\psi(x,t) = A e^{-i\omega(k)t} e^{ikx},$$

et la propriété qui caractérise la vitesse de propagation de cette onde plane (qui n'est pas un objet physique au final) est la quantité ω/k , qu'on appelle la *vitesse de phase* de la phase k:

Vitesse de phase :
$$v_{\varphi} = \frac{\omega(k)}{k} = \frac{\hbar k}{2m}$$
 (2.6)

Propriétés d'un paquet d'ondes

Pour un paquet d'ondes :

$$A(x,t) = \int dk \, g(k) \, e^{-i\omega(k)t} \, e^{ikx} \, ,$$

On peut toujours identifier une vitesse de phase pour chaque phase k, mais ce n'est pas ce qui représentera la vitesse de la particule. Nous pouvons considérer g(k) centré en un k_0 en forme de gaussienne de largeur Δ :

$$g(k - k_0) = e^{-\frac{(k - k_0)^2}{2\Delta^2}}$$

de sorte à pouvoir étendre w(k) au deuxième ordre en k_0 :

$$w(k) = w(k_0) + w'(k_0)(k - k_0) + w''(k_0)\frac{(k - k_0)^2}{2}.$$

Ainsi, le paquet d'onde peut encore se réécrire :

$$A(x,t) = e^{-i\omega(k_0)t}e^{ik_0x} \int dk \ g(k-k_0) \ e^{i(k-k_0)\cdot[\omega'(k_0)t+x]}$$
 (2.7)

ce qui est à quelques facteurs près la transformée de Fourier de

$$g(\omega'(k_0)t - x) = \exp{-\frac{(\omega'(k_0)t - x)^2}{2\Lambda^2}}$$
.

De cette dernière expression on peut tirer que le paquet d'onde se déplace à une vitesse qui est nulle autre que la dérivée de $\omega(k)$ pour la valeur k_0 . On appelle cette quantité la vitesse de groupe.

Vitesse de groupe :
$$v_g(k) = \frac{\partial \omega}{\partial k} = \frac{\hbar k}{m}$$
 (2.8)

On remarque très très rapidement que pour une particule classique où $\hbar k$ est l'impulsion en scalaire, la vitesse de groupe correspond à la vitesse classique.

2.1.4 Propagation (étalement) d'un paquet d'onde gaussien

Un paquet d'onde gaussien s'écrit comme :

$$\psi(x,t) = \frac{\sqrt{a}}{(2\pi)^{3/4}} \int_{-\infty}^{+\infty} dk \exp\left[-\frac{a^2}{4}(k-k_0)^2\right] \exp\left[i\left(kx - \frac{\hbar k^2}{2m}t\right)\right]$$
(2.9)

que nous allons évaluer en utilisant [...]. Après évaluation de l'intégrale, on trouve une expression de ψ qui est encore une gaussienne, comme quoi la transformée de Fourier d'une gaussienne est bel et bien encore une gaussienne, mais la largeur trouvée est dépendante du temps :

$$\Delta x = \frac{a}{2} \sqrt{1 + \frac{4\hbar^2 t^2}{m^2 a^4}} \tag{2.10}$$

ce qui montre que la dispersion spatiale dépend du temps. En revanche, celle sur l'impulsion est donnée par

$$\Delta p = \hbar \Delta k$$

, où Δk est la largeur de la gaussienne $g(k-k_0)$ donnée par $|g(k,t=0)|^2$ qui est la même qu'en tout temps parce que

 $g(k,t) = e^{-i\omega t}g(k,0)$

ce qui implique la conservation du module à travers le temps. Autrement dit, la largeur de la gaussienne,

 $\Delta k = |g(k, t = 0)|^2 = \frac{1}{a}$

est constante : il n'y a donc pas d'étalement sur l'impulsion.

2.2 Interprétation probabiliste de la mécanique quantique

Dans cette section, nous abordons le cas de la conservation de la probabilité, une nécessité que doit offrir une solution à (2.1) pour être physiquement acceptable. La conservation de la probabilité se déclinera selon 2 faits démontrés plus bas :

- (a) L'intégrale de $|\psi|^2$ sur tout l'espace est indépendante du temps. Cela permettra de la fixer à 1 en normalisant ψ et ainsi considérer $|\psi|^2$ comme une densité de probabilité.
- (b) La densité de probabilité est localement conservée : elle répond à une équation de continuité.

Démontrons ces deux énoncés.

- (a) Démonstration. Ultérieurement.
- (b) $D\acute{e}monstration$. Utilisant que \acute{H} est hermitique,

$$\hat{H}\psi = \hat{H}\bar{\psi}
\Rightarrow i\hbar\partial_t\bar{\psi} = -\frac{\hbar^2}{2m}\Delta\bar{\psi} + V\bar{\psi}$$

Or

$$i\hbar\partial_t\psi=-i\hbar\partial_t\bar{\psi}$$
.

De plus, par définition,

$$\rho = |\psi|^2 = \psi \bar{\psi} .$$

Ainsi, en dérivant ρ par rapport au temps et en multipliant par $i\hbar$:

$$i\hbar\partial_{t}\rho = \left(-\frac{\hbar^{2}}{2m}\Delta\psi\right)\bar{\psi} - \left(-\frac{\hbar^{2}}{2m}\Delta\bar{\psi}\right)\psi$$

$$= -\frac{\hbar^{2}}{2m}\left(\bar{\psi}\Delta\psi - \psi\Delta\bar{\psi}\right)$$

$$\Rightarrow 0 = \partial_{t}\rho + \frac{\hbar}{2mi}\vec{\nabla}\left(\bar{\psi}\Delta\psi - \psi\Delta\bar{\psi}\right)$$

En définissant

$$\vec{J} := \frac{1}{m} \mathcal{I}m \left[\hbar \bar{\psi}(\vec{\nabla}\psi) \right] \tag{2.11}$$

Nous pouvons écrire l'équation de continuité suivante :

$$\left| \frac{\partial}{\partial t} \rho(\vec{x}, t) + \operatorname{div} \vec{J} = 0 \right| \tag{2.12}$$

La grandeur \vec{J} apparaît en réagissant à la variation de la densité de probabilité dans le temps. Une variation non nulle fait apparaître un \vec{J} pour compenser. Cette grandeur est appelée **courant de probabilité**, et l'équation (2.12) démontre que l'équation de Schrödinger offre une conservation locale de la probabilité. Un **courant de probabilité** apparaît aux endroits où la densité de probabilité a baissé. Ce n'est ni une cause ni une conséquence, juste une équation qui explique que rien ne se crée, rien ne se perd, tout se conserve.

Exemple d'une onde plane

Pour une onde plane $A\ e^{-i\omega t}\ e^{i\vec k\cdot\vec r}$, un calcul montre que le courant de probabilité est donné par

$$\vec{J} = \frac{\vec{p}}{m}A^2 ,$$

soit directement lié à la vitesse de la particule.

Origine de l'interprétation probabiliste : étude des collisions

Max Born étudiait les collisions dans son laboratoire. Il connaissait les travaux de Schrödinger et trouvait que son équation s'appliquait bien dans le cas d'une collision. Son raisonnement arrive à une étape où, en résolvant l'équation de Schrödinger en tenant compte de la composante diffusée, la fonction d'onde du système obtenu est :

$$\psi(\vec{r}) = Ae^{i\vec{k}\cdot\vec{r}} + \underbrace{\int d^{3}\vec{k} \ e^{i\vec{k}\cdot\vec{r}} \ C(\vec{k})}_{\text{composante diffusée}}$$

L'équation de Schödinger donne donc une solution qui fait intervenir la diffusion dans **toutes les directions à la fois** (à travers l'intégrale), alors que dans le laboratoire on ne voit la diffusion que dans une seule direction. Il en déduit alors que ce que prend en compte la solution à (2.1) est la **probabilité de diffusion** dans une direction, et que la mécanique quantique est probabiliste.

2.3 Equation de Schrödinger en potentiel stationnaire

Reprenons la forme standard de l'équation de Schrödinger, en supposant cette fois que le **potentiel ne dépend pas du temps**. Nous obtenons l'équation (2.13), où le potentiel est dit **stationnaire**.

$$i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \Delta \psi + V(\vec{r}, t) \psi \tag{2.13}$$

Résolvons-la par la méthode de séparation des variables. Montrons en effet qu'il existe $\varphi(\vec{x})$ et $\chi(t)$ tels que

$$\psi(\vec{r},t) = \varphi(\vec{x})\chi(t) \ .$$

En écrivant l'équation différentielle (2.13) avec ce changement de fonctions, nous pouvons arriver à la forme suivante, séparant les parties temporelle et spatiale :

$$i\hbar \frac{1}{\chi(t)} \frac{\mathrm{d}}{\mathrm{d}t} \chi(t) = \frac{1}{\varphi(\vec{r})} \left[-\frac{\hbar^2}{2m} \Delta \varphi(\vec{r}) \right] + V(\vec{r})$$
 (2.14)

L'équation (2.13) sépare les variables temporelle et spatiale, de telle sorte à les faire égaler obligatoirement une constante pour satisfaire l'égalité. Notons cette constante $\hbar\omega$.

2.3.1 Résolution de la partie temporelle de l'équation de Schrödinger en potentiel stationnaire

Cette étape-ci de la résolution consiste à égaler la partie temporelle de (2.13) à $\hbar\omega$ et à résoudre l'équation différentielle, qui est du premier ordre en le temps. La solution est une exponentielle complexe en le temps.

$$i\hbar \frac{1}{\chi(t)} \frac{\mathrm{d}}{\mathrm{d}t} \chi(t) = \hbar \omega$$

$$\iff i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \chi(t) = \hbar \omega \chi(t)$$

$$\iff \chi(t) = A \exp(-i\omega t) \quad A \in \mathbb{C}$$
(2.15)

2.3.2 Résolution de la partie spatiale de l'équation de Schrödinger en potentiel stationnaire

Il vient ici d'égaler le second membre de (2.13) à $\hbar\omega$. Il vient :

$$\varphi(\vec{r})$$
 t.q $\left[-\frac{\hbar^2}{2m}\Delta + V(\vec{r})\right] \varphi(\vec{r}) = \underbrace{\hbar\omega}_{E} \varphi(\vec{r})$ (2.16)

La constante $\hbar\omega$ correspond bien à l'énergie de la particule. En résolvant (2.16), cela nous donne la forme d'une solution à l'équation de Schrödinger en potentiel stationnaire.

$$\psi(\vec{r},t) = \varphi(\vec{r}) A e^{-i\omega t}$$
 solution de (2.13)

Une telle fonction est appelée **solution stationnaire de l'équation de Schrödinger**, car elle conduit à une densité de probabilité indépendante du temps. On remarque que pour une solution stationnaire, **une seule pulsation apparaît** : les états d'énergie y sont bien définis. Là où en classique on insiste sur le fait que l'énergie doit bien être conservée, ici on insiste sur le fait que les états d'énergie doivent être bien définis, qu'il existe une énergie bien déterminée.

La résolution de (2.16) dépend de la forme du potentiel. Nous en explorons quelques exemples. Nous pouvons déjà noter que pour faire apparaître des effets quantiques, les potentiels doivent présenter des variations sur des faibles longueurs, typiquement plus faibles que la longueur d'onde des ondes correspondant aux particules en jeu.

2.4 Equation de Schrödinger en potentiel carré

Dans cette sections nous traitons plusieurs cas de potentiels, qui ont pour point commun de répondre à la définition de "potentiel carré" présentée à la section suivante. Nous pouvons les organiser de la sorte :

- Puits de potentiel : on mettra en évidence la présence d'états liés

- * Infini
- * Fini
- Marche de potentiel : on verra l'effet tunnel

2.4.1 Définition d'un potentiel carré

Un potentiel carré est un potentiel présentant des discontinuités sous la forme de "marches" ². Une grandeur physique ne pouvant pas présenter de discontinuité en réalité, le potentiel carré en est néanmoins souvent une excellente **approximation**.

FIGURE 2.1 – Illustration d'un puits de potentiel carré en comparaison avec un puits de potentiel réel.

Un puits de potentiel est une région de l'espace où le potentiel atteint un minimum. Cette notion existe en mécanique classique, alors nous pourrions parler ici de puits quantique pour parler d'un puits dont les dimensions sont si petites qu'elles ne peuvent nous protéger d'entrer dans la mécanique quantique (cf. début de section). Mais nous garderons la dénomination de "puits de potentiel" car ce document ne concerne que la mécanique quantique.

2.4.2 Puits de potentiel infini

Un puits de potentiel infini a des discontinuités tendant vers l'infini. Il peut s'apparenter à une "boîte", c'est pourquoi on parle souvent de "particule dans une boîte". Par ailleurs, intuitivement, comme une particule ne peut pas exister dans une région où règne un potentiel infini, la particule sera **confinée dans une boîte**.

Résolution de l'équation (2.13) dans un puits en 1D

L'équation de Schrödinger se réécrit encore

$$i\hbar \frac{\partial}{\partial t} \psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x,t) + V(x)\psi(x,t)$$
 (2.18)

où V(x) suit la figure 2.2. La séparation des variables s'écrit :

$$\psi(x,t) = \chi(t)\varphi(x)$$

^{2.} Synonymes: potentiel en marche d'escalier, potentiels continus par morceaux

FIGURE 2.2 – Puits de potentiel.

et la partie temporelle se résout facilement.

$$\chi(t) = \chi_0 e^{-iE t/\hbar}$$

La partie spatiale elle s'écrit :

$$\begin{cases} \left(-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x)\right)\varphi(x) = E \\ \text{Conditions au bord}: \quad \varphi(0) = \varphi(L) \end{cases}$$

Nous allons nous intéresser qu'au cas où la particule est entre 0 et L, car elle ne peut pas exister dans une zone où le potentiel est infini. **Dans le cas où** 0 < x < L, nous avons donc un potentiel nul et les conditions aux bords à respecter, d'où :

$$-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} \varphi(x) = E \varphi(x)$$

$$(\text{en posant}) \quad k = \sqrt{\frac{2mE}{\hbar^2}}$$

$$\Leftrightarrow \qquad \varphi(x) = \alpha \sin(kL) + \beta \cos(kL)$$

$$CB : \begin{cases} \varphi(0) = 0 \Rightarrow \beta = 0\\ \varphi(L) = 0 \Rightarrow kL = n\pi \end{cases}$$

$$\Rightarrow \quad k_n = \frac{n\pi}{L}$$

$$(2.19)$$

Les conditions aux bords imposent donc une condition sur k_n , et *a fortiori* sur l'énergie aussi, par la définition de k_n . Ainsi, par la définition du problème du puits de potentiel, la particule confinée au sein du puits ne peut avoir que certains états d'énergie. L'énergie est alors dite quantifiée.

Quantification de l'énergie :
$$E_n = \frac{\hbar^2 \pi^2 n^2}{2m L^2}$$
 (2.20)

De retour à l'équation de Schrödinger avec la forme générale de $\varphi(x)$, avec $\beta=0$ et α indéterminé, la solution à (2.18) s'écrit comme produit de $\varphi(x)$ et de $\chi(t)$:

$$\psi_n(x,t) = A e^{-i\frac{E_n}{\hbar}t} \sin(\frac{n\pi}{L} x)$$

Pour obtenir la solution générale, il convient de sommer sur les états d'énergie :

$$\psi(x,t) = \sum_{n=1}^{+\infty} \psi_n(x,t)$$

Puits de potentiel fini 2.4.3

Un puits de potentiel fini est un cas assez basique de potentiel carré. Une image vaut mieux que mille mots:

FIGURE 2.3 – Illustration d'un puits de potentiel fini de largeur a et de profondeur V_0 .

Écrivons la partie spatiale de l'équation de Schrödinger et observons qu'une équation avec V fonction de x peut se réécrire en 3 équations avec V constant : les 3 zones $x \le$ -a/2, $-a/2 \le x \le a/2$, et $a/2 \le x$.

$$-\frac{\hbar^{2}}{2m}\partial_{x}^{2}\varphi = (E - V(x))\varphi \quad \Rightarrow \quad \begin{cases} \text{Zone I} \quad V = 0 & -\frac{\hbar^{2}}{2m}\partial_{x}^{2}\varphi = E\varphi \\ \text{Zone II} \quad V = -V_{0} & -\frac{\hbar^{2}}{2m}\partial_{x}^{2}\varphi = (E + V_{0})\varphi \\ \text{Zone III} \quad V = 0 & -\frac{\hbar^{2}}{2m}\partial_{x}^{2}\varphi = E\varphi \end{cases}$$

$$(2.21)$$

Ces équations sont simples à résoudre, et donnent :

$$\varphi_{\rm I}(x) = B_1 e^{\rho x} + B_1' e^{-\rho x} \tag{2.22}$$

$$\varphi_{\rm II}(x) = A_2 e^{ikx} + A_2' e^{-ikx} \tag{2.23}$$

$$\varphi_{\text{III}}(x) = B_3 e^{\rho x} + B_3' e^{-\rho x} \tag{2.24}$$

où

$$\rho = \sqrt{-\frac{2mE}{\hbar}} \in \mathbb{C}$$

$$k = \sqrt{\frac{2m(E + V_0)}{\hbar}} \in \mathbb{R}$$
(2.25)

$$k = \sqrt{\frac{2m(E + V_0)}{\hbar}} \quad \in \mathbb{R} \tag{2.26}$$

(2.27)

Les coefficients apparaissant dans la forme de la fonction d'onde doivent être déterminés. C'est la physique du problème qui nous les offira. Les conditions les plus simples auxquelles une fonction d'onde doit répondre sont :

Fonction bornée pour que la fonction soit de carré sommable (ch.4)

Fonction continue garantit la conservation de la probabilité

Dérivée continue offre une quantification de l'énergie

TABLE 2.1 – Conditions de raccord lors de la résolution d'une équation de Schrödinger qui peut s'étudier en différentes zones distinctes.

Dans le cas d'un puits de potentiel fini, il n'y a pas d'autres conditions particulières à imposer. La première impose $B_1'=B_3=0$.

Les deux suivantes imposent ensembles :

$$\left(\frac{\rho - ik}{\rho + ik}\right)^2 = e^{2ika} \tag{2.28}$$

Ce qui possède deux solutions.

(i)
$$\frac{\rho - ik}{\rho + ik} = -e^{ika}$$

Nous avons dans le membre de gauche un quotient de deux nombres complexes z_1/z_2 . Le module de ce nombre est \bar{z}_1/\bar{z}_2 (soit 1 ici) et sa phase est $\phi(z_1) - \phi(z_2)$ où $\phi(z) = b/a$. Alors, le membre de gauche est de module 1 et de phase $-2 \times \arctan(k/\rho)$. Grâce à ça nous pouvons écrire :

$$1 \times e^{-2i \arctan(k/\rho)} = -e^{ika}$$

$$\iff \frac{k}{\rho} = \tan\left(\frac{ka}{2}\right)$$

Posons à présent $k_0 = \sqrt{k^2 + \rho^2}$ et exploitons la relation trigonométrique

$$\frac{1}{\cos^2(x)} = \tan^2(x) + 1$$

en l'appliquant à ka/2. Il vient :

$$\frac{1}{\cos^2\left(\frac{ka}{2}\right)} = \tan^2\left(\frac{ka}{2}\right) + 1 = \frac{k^2 + \rho^2}{k^2} = \left(\frac{k}{k_0}\right)^2$$

La solution s'obtient donc en résolvant le système d'équations suivant :

$$\begin{cases} \left| \cos \left(\frac{ka}{2} \right) \right| &= \frac{k}{k_0} \\ \tan \left(\frac{ka}{2} \right) &> 0 \end{cases}$$
 (2.29)

qui peut se résoudre graphiquement en traçant les intersections de la droite k/k_0 avec des arcs de cosinusoïdes.

(ii)
$$\frac{\rho - ik}{\rho + ik} = e^{ika}$$

Par une démarche similaire à la précédente, les résultats sont aussi similaires. Nous avons :

$$\begin{cases} \left| \sin\left(\frac{ka}{2}\right) \right| &= \frac{k}{k_0} \\ \tan\left(\frac{ka}{2}\right) &< 0 \end{cases}$$
 (2.30)

La résolution de cette équation de Schrödinger passe par l'obtention de ces coefficients. Comme on vient de le voir, il est possible de ne pas en obtenir une expression directe (résolution analytique), mais une résolution **graphique** permet d'obtenir les états liés sous le potentiel en question. Par exemple, ici, il suffit d'observer les intersections entre les arcs de (co-)sinusoïdes et la droite k/k_0 , et ne considérer que celles qui ont un k tel que la tangente est positive (pour les cosinusoïdes) ou négative (sinusoïdes).

FIGURE 2.4 – Résolution graphique d'une équation de Schrödinger. Partant de l'équation, une séparation a été faite en 3 zones, donnant des états d'énergie possibles au sein de la barrière (états **liés**) caractérisés par le nombre k. Les énergies des états liés sont ceux dont le k donne un point d'intersection sur la figure.

De ce graphe nous tirons l'information suivante. Dépendant de la pente $1/k_0$, un certain nombre d'états liés peuvent exister. Particulièrement, lorsque $1/k_0 \ge A/(\pi a)$ (autrement dit $k_0 \le \pi a$), alors la particule n'a qu'un seul état lié au potentiel. De manière générale, si $(n-1)\pi/a \le k_0 \le n\pi/a$, la particule aura n états liés.

2.4.4 Marche de potentiel

Une marche de potentiel est similaire au puits fini mais avec un potentiel positif. Ce potentiel s'oppose donc à l'énergie de la particule et c'est pour cette raison qu'on parle souvent de "barrière de potentiel".

Comparaison avec la mécanique classique

Etudier ce cas est très intéressant car une marche de potentiel en physique quantique donne un résultat extrêmement différent de la physique classique. En effet, en physique classique, une particule arrivant avec une énergie

FIGURE 2.5 – Illustration d'un puits de potentiel fini de largeur a et de profondeur V_0 .

inférieure à V_0 rebondira. Avec une énergie supérieure à V_0 , elle sera ralentie dans le potentiel (potentiel constant veut dire "force nulle" donc la particule a quoi qu'il arrive une vitesse constante) et repart avec sa vitesse initiale. Avec une énergie $E = V_0$, elle s'arrête. Ces discussions sont reprises sur la figure ci-contre.

Pour ce qui est de la physique quantique, il faut passer par une résolution de l'équation de Schrödinger. Comme pour le puits de potentiel, écrivons l'équation dans les différentes zones et écrivons les conditions de raccordement. Notons que la forme des solutions obtenues diffère selon si $E > ou < V_0$.

Résolution lorsque $E > V_0$

Nous pouvons poser le nombre

$$k_2 = \sqrt{\frac{2m(E - V_0)}{\hbar}}$$

de sorte à ce qu'il soit réel, et séparer en zones comme fait pour le puit de potentiel fini.

$$-\frac{\hbar^{2}}{2m}\partial_{x}^{2}\varphi = (E - V(x))\varphi \quad \Rightarrow \quad \begin{cases} \text{Zone I} \quad V = 0 \quad -\frac{\hbar^{2}}{2m}\partial_{x}^{2}\varphi = E\varphi \\ \text{Zone II} \quad V = V_{0} \quad -\frac{\hbar^{2}}{2m}\partial_{x}^{2}\varphi = (E - V_{0})\varphi \end{cases}$$

$$\text{Zone III} \quad V = 0 \quad -\frac{\hbar^{2}}{2m}\partial_{x}^{2}\varphi = E\varphi$$

Ces équations sont simples à résoudre, et donnent :

$$\varphi_{\rm I}(x) = A_1 e^{k_1 x} + A_1' e^{-k_1 x} \tag{2.32}$$

$$\varphi_{\rm II}(x) = A_2 e^{ik_2 x} + A_2' e^{-ik_2 x} \tag{2.33}$$

$$\varphi_{\text{III}}(x) = A_3 e^{k_1 x} + A_3' e^{-k_1 x} \tag{2.34}$$

où

$$k_1 = \sqrt{-\frac{2mE}{\hbar}} \quad \in \mathbb{C}$$

Les considérations physiques et les conditions de raccord impliquent encore des relations entre les coefficients. Notamment :

$$A_1 = \left[\cos(k_2 L) - i \, \frac{k_1^2 + k_2^2}{2k_1 k_2} \, \sin(k_2 L)\right] e^{ik_1 L} A_3 \tag{2.35}$$

$$A_1' = i \frac{k_2^2 - k_1^2}{2k_1 k_2} \sin(k_2 L) e^{ik_1 L} A_3$$
 (2.36)

Une manière d'interpréter la physique du système est d'observer les ainsi nommés **coefficients de transmission et de réflexion**. Comme leur nom l'indique, ces coefficients quantifient la probabilité que la particule traverse la barrière et la probabilité qu'elle soit réfléchie en la rencontrant. Ainsi, ces coefficients seront toujours exprimés comme un rapport où le dénominateur est A_1 : le coefficient de la partie de la fonction d'onde qui symbolise une particule se dirigant vers les x > 0 avec un nombre d'onde k_1 , soit l'état initial de la particule.

De là, la réflexion de la particule sera lue dans le coefficient A'_1 , qui correspond à une fonction d'onde dans la zone 1 de nombre d'onde k_1 se propageant vers la gauche.

$$R = \left| \frac{A_1'}{A_1} \right|^2$$

La transmission sera caractérisée par le coefficient A_3 , qui multiplie une fonction d'onde dans la zone 3 se déplaçant avec un nombre d'onde k_1 vers la droite.

$$T = \left| \frac{A_3}{A_1} \right|^2$$

Les calculs dans ce cas précis montrent que :

$$R = \frac{(k_1^2 - k_2^2)^2 \sin^2(k_2 L)}{4k_1^2 k_2^2 + (k_1^2 - k_2^2)^2 \sin(k_2 L)}$$
(2.37)

$$T = \frac{4k_1^2k_2^2}{4k_1^2k_2^2 + (k_1^2 - k_2^2)^2\sin(k_2L)}$$
(2.38)

Chose chouette:

$$R+T=1$$
.

Compte tenu des définitons des k_i , le coefficient de transmission peut se réécrire en fonction de E sous la forme suivante :

$$T = \frac{4E(E - V_0)}{4E(E - V_0) + V_0^2 \sin^2 \left[\sqrt{2m(E - V_0)} L/\hbar \right]}$$
(2.39)

On voit que le coefficient de transmission est périodique en E et que sa valeur maximale est 1, lorsque le sinus s'annule. Ceci est le phénomène de **résonnance** et arrive lorsque $k_2L = n\pi$, $n \in \mathbb{Z}$.

FIGURE 2.7 – Variation du coefficient de transmission de la barrière de potentiel en fonction de sa largeur. Résonnances aux multiples de π/k_2 .

Résolution lorsque $E < V_0$

Une résolution similaire, voire même identique, s'obtient en posant

$$k_2 \longrightarrow -i\rho_2 \qquad \rho_2 = \sqrt{2m(V_0 - E)/\hbar^2} \in \mathbb{R}$$

aux résultats déjà obtenus. Ainsi:

$$T = \left| \frac{A_3}{A_1} \right|^2 = \frac{-4k_1^2 \rho_2^2}{-4k_1^2 \rho_2^2 + (k_1^2 + \rho_2^2)^2 \sin(-i\rho_2 L)}$$
(2.40)

$$= \frac{4E(V_0 - E)}{4E(V_0 - E) + V_0^2 \sinh^2(\rho_2 L)}$$
(2.41)

Observons ce qui se passe lorsque la barrière est très imposante par rapport à l'énergie de la particule : $\rho_2 L \gg 1$. Le sinus hyperbolique peut subir une approximation et la fraction peut se simplifier largement.

$$\sinh(x) = \frac{e^x - e^{-x}}{2} \Rightarrow \sinh^2(x)_{|_{x \gg 1}} \sim e^{2x}/4$$
 (2.42)

$$\Rightarrow T \approx \frac{16(V_0 - E)}{V_0^2} e^{-2\rho_2 L} \tag{2.43}$$

Nous voyons que lorsque la barrière est imposante (large et à haut potentiel), la particule a tout de même une probabilité non-nulle de la franchir. Ceci est propre à la mécanique quantique et ne serait jamais arrivé en mécanique classique. Ce phénomène porte le nom d'**Effet Tunnel** et possède comme application notable le microscope à effet tunnel.

2.5 Approximation semi-classique (WKB)

Toujours dans le cadre de l'étude de l'équation de Schrödinger, nous allons dans cette section étudier une solution **approximative** de cette équation, valable dans la limite $\hbar \to 0$. Cette approximation est nommée en l'honneur de Léon Brillouin, Hendrik Anthony Kramers et Gregor Wentzel. L'idée est la suivante : en poussant \hbar vers zéro, nous devrions retrouver des résultats de la mécanique classique. Abordons donc cela en écrivant premièrement l'équation de Schrödinger. Ensuite, inteprétons la solution obtenue.

2.5.1 Résolution de l'équation de Schrödinger

$$-\frac{\hbar^2}{2m}\partial_x^2\phi + V(x)\psi = E\psi \tag{2.44}$$

Posons $\psi(x) = A(x)e^{i\,S(x)/\hbar}$. Pour remplacer dans 2.44, calculons d'abord les dérivées de ψ en fonction de A et S et écrivons ce que donne l'équation de Schrödinger.

$$\psi' = \left[A' + \frac{i}{\hbar} S' A \right] e^{i S/\hbar} \tag{2.45}$$

$$\psi'' = \left[A'' + \frac{i}{\hbar} (S'' A + S' A') - \frac{1}{\hbar^2} S'^2 A + \frac{i}{\hbar} S' A' \right] e^{i S/\hbar}$$
 (2.46)

$$\Rightarrow -\frac{\hbar^2}{2m} \left[A'' + \frac{i}{\hbar} (S'' A + S' A') - \frac{1}{\hbar^2} S'^2 A + \frac{i}{\hbar} S' A' \right] e^{i S/\hbar} + V A e^{i S/\hbar} = E A e^{i S/\hbar}$$
(2.47)

En séparant les parties réelle et imaginaire de l'équation 2.47, on obtient le système suivant. Ce système est l'équivalent de 2.44.

$$2S' A' + A S'' = 0 (2.48)$$

$$\frac{S^{\prime 2}}{2m} - \frac{\hbar^2}{2m} \frac{A^{\prime \prime}}{A} + V = E \tag{2.49}$$

L'équation 2.48 a une solution exacte. Elle est donnée par

$$A(x) = \frac{A_0}{\sqrt{S'(x)}}\tag{2.50}$$

L'équation 2.49 peut être modifiée par notre approximation $\hbar \longrightarrow 0$, car alors $\hbar^2/2m \longrightarrow 0$. L'équation obtenue est **l'équation de Hamilton-Jacobi**³.

$$\frac{S'^2}{2m} + V(x) = E {(2.51)}$$

En posant $p(x) = \sqrt{2m[E - V(x)]}$, on obtient aisemment

$$S(x) = \pm \int_{-\infty}^{x} dx' p(x')$$
 (2.52)

Et la fonction d'onde prend alors la forme suivante :

$$\psi(x) = \pm \frac{A_0}{\sqrt{p(x)}} e^{\pm i \int_{-\infty}^{x} dx' p(x')/\hbar}$$
 (2.53)

^{3.} Retenez bien ce nom car il m'a valu 4 points sur 20 à l'examen de Mécanal

27

2.5.2 Interprétation de la solution

La vitesse de groupe du paquet d'onde est la vitesse classique

L'impulsion de la particule est donnée par la fonction p. Calculons le nombre d'onde par la relation de De Broglie pour le nombre d'onde. Ce résultat sera important pour obtenir la vitesse de groupe. Il est important de saisir ici que le nombre d'onde dépend de la position.

$$k(x) = \frac{p(x)}{\hbar}$$

La vitesse de groupe v_g est donnée par $d\omega/dk$. Alors on fait les physiciens et on renverse la fraction pour dériver k par rapport à ω qu'on exprime comme E/\hbar . Alors :

$$\frac{1}{v_g} = \frac{dk}{d\omega} = \frac{d(p/\hbar)}{E/\hbar} = \frac{dp}{dE} = \frac{m}{p(x)} = \frac{1}{v_{\text{classique}}}$$

Ainsi, nous voyons que l'approximation semi-classique mène à une solution de l'équation de Schrödinger qui, une fois utilisée pour construire des paquets d'onde pour constituer une particule, donne une vitesse de groupe égale à la vitesse classique de la particule.

Région classiquement permise et région classiquement interdite

La région classiquement permise est définie par l'ensemble des x où V(x) < E. Dans cette région, on peut voir par la forme 2.53 de la fonction d'onde que la probabilité de présence de la particule est inversement proportionnelle à l'impulsion. Ceci est le cas car pour E > V, $p \in \mathbb{R}$ donc l'exponentielle dans 2.53 reste imaginaire donc son module reste 1. On voit alors que la probabilité de présence diminue quand l'impulsion de la particule augmente, ce qui rejoint notre intuition 4 .

Région classiquement permise :
$$E > V(x)$$
 \Rightarrow $|\psi|^2 \propto \frac{1}{p}$

Dans la zone interdite, E < V et l'impulsion devient alors imaginaire. L'exponentielle devient réelle et la probabilité de présence devient proportionnelle à une exponentielle négative, mais pas nulle! On retrouve ici l'effet tunnel déjà discuté, mais ici pour un potentiel quelconque qui est supérieur à l'énergie. Attention : on ne retrouve que l'exponentielle négative car les considérations physiques (fonction d'onde bornée) imposent un coefficient nul à l'exponentielle croissante (pour éviter qu'elle explose à l'infini).

Région classiquement interdite :
$$E < V(x) \implies |\psi|^2 \propto e^{-\int^x p(x') \mathrm{d}x'}$$

Les figures ci-dessous reprennent un cas de potentiel et l'allure de la fonction d'onde correspondante. On voit aux lignes verticales pointillées, qui correspondent aux frontières entre les régions permise et interdite, que la probabilité devient exponentiellement décroissante mais non nulle (effet tunnel).

Etats liés

Si nous sommes dans le cas d'une solution qui décroit exponentiellement à grande distance, en notant b et a les points de rebroussement de la trajectoire classique, les états

^{4.} De toute façon quand ça parle de mécanique classique, tout rejoint un peu notre intuition.

FIGURE 2.8 – Graphe d'une fonction d'onde d'une particule et de sa densité de probabilité de présence sous l'approximation WKB.

liés, dans la région permise donc, sont décrits par les fonctions suivantes, selon si on est proche de la frontière gauche avec la région interdite ou la frontière droite :

$$\psi(x) = \frac{1}{\sqrt{k(x)}} \cos \left[\int_b^x k(x') \, dx' - \pi/4 \right] \quad x > b$$

$$\psi(x) = \frac{1}{\sqrt{k(x)}} \cos \left[\int_x^a k(x') \, dx' + \pi/4 \right] \quad x < a$$
(2.54)

Une condition de quantification est que la somme des phases des cosinus soit égale à un multiple de $\pi/2$ confirmation needed, source wikipedia. En sommant sur le domaine d'intégration, on obtient l'intégrale du nombre d'onde entre les deux points de rebroussement (les points de frontière).

Condition de quantification semi-classique :
$$\frac{1}{\hbar} \int_b^a dx \sqrt{2m(E - V(x))} = \left(n + \frac{1}{2}\right) \pi$$

2.5.3 Application de l'approximation WKB en physique nucléaire

Par la section précédente, nous avons compris que l'approximation WKB consistait à prendre la limite $\hbar \to 0$, mais dans quel cas pouvons-nous réellement passer à une application de cette approximation?

Tentative d'explication mais le paragraphe en entier est à vérifier : Il se trouve que cette approximation peut être valable lorsque l'on veut considérer des effets quantiques qui s'appliquent sur un système, pendant que ce dernier peut également être décrit d'un point de vue classique, ainsi que lorsqu'il n'est pas possible de trouver de solution analytique sans faire aucune approximation.

Nous allons ici illustrer un exemple d'application de l'approximation WKB qui est celui de la désintégration- α , et qui en particulier met en avant la loi de Geiger-Nuttal. Nous allons prendre en compte le fait que des particules α vont s'échapper d'un noyau par *effet tunnel*, et notre description fera apparaître des *interprétations probabilistes* sur

l'émission de ces particules, tout en utilisant les relations données par l'approximation WKB afin d'en tirer une conclusion cohérente avec des données expérimentales.

Avant de rentrer dans les détails, rappelons brièvement ce que sont la désintégration alpha et un temps de demi-vie $t_{1/2}$:

- **Désintégration** $\alpha \equiv$ (wikipédia à vérifier) forme de désintégration radioactive où un noyau atomique éjecte une particule α ($=He^{++}$) et se transforme en un noyau plus léger;
- Demi-vie t_{1/2} d'un isotope radioactif ≡ (wikipédia) c'est le temps au bout duquel la moitié des noyaux de cet isotope initiaux se sont désintégrés.
 Notons qu'il est important de reconnaître la différence entre cette définition et celle d'un temps moyen : 2 fois le temps de demi-vie ≠ la vie complète!!

Rentrons à présent dans des détails de calculs.

Considérons un noyau de rayon R qui contient des particules α possédant une énergie E. Les particules α sont confinées dans le noyau, autrement dit leur énergie est plus faible que le potentiel qui les retient. Or, nous avons déjà vu qu'une particule pouvait traverser une zone classiquement interdite par effet tunnel, et se propage comme une onde "evanescente" (qui décroît exponentiellement) dans cette zone.

C'est en fait ce qu'il va se passer ici pour les particules α ; on peut, analogiquement, imaginer que les particules sont confinées dans une boîte, faisant des allers-retours. C'est à ces points de rebroussement que peut se produire la transmission de particules par effet tunnel.

Une fois sorti du noyau, le potentiel ressenti par les particules α est simplement le potentiel coulombien créé par les charges du noyau. Ainsi, pour tout r > R, le potentiel s'écrit comme suit :

$$V(r) = \frac{z_{\alpha}ze^2}{4\pi\epsilon_0 r} \tag{2.55}$$

où z_{α} , $z \equiv$ charges du noyau.

Notons R_{α} la distance à partir de laquelle l'énergie E de la particule devient plus grande que le potentiel coulombien ressenti V(r), autrement dit, R_{α} est la distance au noyau à partir de laquelle la particue devient libre et peut se propager de manière semi-classique (c'est-à-dire tel que la longueur d'onde varie très peu sur une distance égale à la longueur d'onde même).

L'énergie de la particule étant considérée comme une constante dans ce cas-ci, et puisque l'on considère également que la particule α émise peut se propager au moins jusqu'à une distance R_{α} du noyau, notons son énergie E:

$$E = \frac{z_{\alpha} z e^2}{4\pi\epsilon_0 R_{\alpha}}$$

Ensuite, il se trouve que la probabilité d'émission de particule alpha par unité de temps se trouve approximativement par l'inverse du temps de demi-vie. Cela illustre bien le fait que plus ce temps de demi-vie est long, moins il n'y a de probabilité qu'une particule alpha soit émise en une seconde. En utilisant les relations de la fonction d'onde obtenues grâce à l'approximation WKB, nous avons en particulier que :

$$\frac{P(\text{ \'emission })}{temps} \approx \frac{1}{t_{1/2}} \approx e^{-2\gamma} \quad (\approx |\psi(r)|^2 \text{ effet tunnel})$$
 (2.56)

où

$$\begin{split} \gamma &= \frac{1}{\hbar} \int_{R}^{R_{\alpha}} \sqrt{2m_{\alpha}(V(r) - E)} dr \\ &= \frac{1}{\hbar} \sqrt{2m_{\alpha}} \sqrt{\frac{z_{\alpha}ze^{2}}{4\pi\epsilon_{0}}} \int_{R}^{R_{\alpha}} \sqrt{\frac{1}{r} - \frac{1}{R_{\alpha}}} dr \\ &= \frac{1}{\hbar} \sqrt{2m_{\alpha}} \sqrt{\frac{z_{\alpha}ze^{2}}{4\pi\epsilon_{0}}} \int_{R}^{R_{\alpha}} \frac{1}{\sqrt{R_{\alpha}}} \sqrt{\frac{R_{\alpha}}{r} - 1} dr \\ &= \frac{1}{\hbar} \sqrt{2m_{\alpha}} \sqrt{\frac{z_{\alpha}ze^{2}}{4\pi\epsilon_{0}}} \sqrt{R_{\alpha}} \int_{0}^{1} \sqrt{\frac{1-z}{z}} dz \quad \text{(grâce au changement de variable : } z = \frac{r}{R_{\alpha}}\text{)} \\ &\approx \frac{\pi}{2} \sqrt{R_{\alpha}} \quad \text{(intégrale calculée par un changement de variable comme } z = \cos^{2}(x) \text{ par exmple)} \end{split}$$

Enfin, en utilisant le fait que $R_{\alpha} = \frac{z_{\alpha}ze^2}{4\pi\epsilon_0 E}$, on a :

$$\gamma = \frac{\pi}{2\hbar} \sqrt{2m_{\alpha}} \left(\frac{z_{\alpha} z e^{2}}{4\pi\epsilon_{0}} \right) \frac{1}{\sqrt{E}}$$

$$\implies log(t_{1/2}) = a \frac{z}{\sqrt{E}} + b \quad \text{Loi de Geiger-Nuttal}$$
(2.57)

Remarque:

- Nous pouvons voir que cette équation 2.57 met en relation l'inverse de la racine de l'énergie au logarithme du temps de demi-vie. Cela signifie qu'une grande augmentation du temps $t_{1/2}$ est équivalent à une légère diminution de l'énergie. On peut donc considérer que des isotopes qui émettent des particules alpha, à un temps de demi-vie d'ordres de grandeur assez variés, ont approximativement la même énergie;
- Cette loi est bien vérifiée expérimentalement;
- Elle explique également pourquoi la désintégration en noyau plus lourd est impossible (dépendance en m_{α} et z_{α}) Pourquoi???

Annexe A

Calculs des coefficients des fonctions d'onde

A.1 Puits de potentiel fini

D'entrée, nous pouvons imposer que le coefficient B_3 doit s'annuler pour pas que la fonction soit bornée dans la zone III(en particulier, ne tende vers l'infini quand x tend vers l'infini). Il en va de même pour la zone I où nous devons fixer B'_1 à zéro.

$$B_3 = B_1' = 0$$

Les *conditions de raccord* imposent que la fonction soit *continue* et que sa dérivée première le soit aussi. Nous devons donc vérifier ces conditions aux frontières des zones, endroits d'éventuelles discontinuités, et imposer la continuité par les coefficients.

Conditions de raccord en x = -a/2

$$\varphi_{\rm I}(-a/2) = \varphi_{\rm II}(-a/2) \iff A_2 = e^{-(\rho + ik)a/2} \frac{\rho + ik}{2ik} B_1$$
(A.1)

$$\varphi'_{\rm I}(-a/2) = \varphi'_{\rm II}(-a/2) \iff A'_2 = -e^{-(\rho + ik)a/2} \frac{\rho - ik}{2ik} B_1$$
 (A.2)

Conditions de raccord en x = a/2

$$\varphi_{\text{II}}(a/2) = \varphi_{\text{III}}(a/2) \tag{A.3}$$

$$\varphi'_{\mathrm{II}}(a/2) = \varphi'_{\mathrm{III}}(a/2) \tag{A.4}$$