# Distributed Algorithm on AHCv2: Waves: Tarry's Traversal and Tree Algorithms, Release V1.0.0

Berkay Şahin

May 15, 2024

## Outline

- Introduction
- 2 Tarry's Algorithm
- 3 Tree Algorithm
- 4 Implementation and Methodology
- Results
- 6 Discussion
- Conclusion



#### Introduction

#### Context:

- Introduction to the challenges and importance of efficient traversal algorithms in distributed systems.
- Essential for managing complex networks involved in distributed systems.

#### Problem Statement

#### **Problem Statement:**

- The need for effective network traversal and spanning tree construction.
- Importance of designing protocols that minimize communication overhead.
- Ensuring completion even in dynamic network topologies.

## Significance and Necessity

#### Significance and Necessity:

- Why these algorithms are crucial for system robustness and performance.
- Impact on efficient resource management and fault diagnosis.

# Overview of Tarry's Algorithm

#### Tarry's Traversal Algorithm:

- Designed for undirected graphs.
- Ensures every node is visited exactly once.

# Principles and Mechanism

#### Principles and Mechanism:

- Simple token-passing mechanism.
- Each channel is visited twice to ensure completeness.

# Pseudocode of Tarry's Algorithm

```
Pseudocode:
if node is initiator then
   send token to an arbitrary neighbor;
end
while token is received from neighbor do
   mark self as visited;
   if there are unvisited neighbors then
       choose an unvisited neighbor and send the token;
   else
       return token to sender;
   end
end
```

**Algorithm 1:** Tarry's Algorithm

## Benefits and Evaluation

#### **Benefits and Evaluation:**

- Ensures complete network coverage.
- Minimizes message overhead by avoiding revisits.

## Overview of Tree Algorithm

#### Tree Algorithm:

- Designed for acyclic networks.
- Focuses on quick spanning tree formation.

# Principles and Mechanism

#### Principles and Mechanism:

- Waits for messages from all neighbors except one.
- Decision making by exactly two nodes in the network.

## Pseudocode of Tree Algorithm

```
Pseudocode:
foreach node in network do
   Listen for messages from all neighbors except one;
   if messages received from all but one neighbor then
       Select the neighbor with no message as parent;
       Send message to selected parent;
   end
   if message received from parent then
       Finalize decision;
   end
end
```

**Algorithm 2:** Tree Algorithm

### Benefits and Evaluation

#### **Benefits and Evaluation:**

- Efficient message utilization.
- Quick decision-making process.

# Simulation Setup

#### Simulation Setup:

- Description of the AHCv2 simulation environment.
- Details on network topologies used: linear, tree, and random graphs.

# Methodological Approach

#### Methodological Approach:

- Nodes initialized with specific algorithms.
- Monitoring and capturing efficiency and coverage metrics.

#### Theoretical Results

#### Theoretical Results:

- Expected message usage and network traversal completeness for Tarry's Algorithm.
- Speed and message overhead implications for the Tree Algorithm.

# Implications of Findings

#### Implications of Findings:

- Suitability of Tarry's Algorithm for detailed network exploration.
- Applicability of the Tree Algorithm for rapid deployment in structured networks.

## Practical Recommendations

#### **Practical Recommendations:**

 Application scenarios for each algorithm based on their strengths.

#### Conclusion

#### **Summary of Findings:**

- Comparative analysis of Tarry's and the Tree Algorithms.
- Future research directions for reducing overhead and improving adaptability.

# Final Thoughts

#### **Final Thoughts:**

- Necessity of empirical validation of theoretical predictions.
- Importance of continued research in distributed systems traversal algorithms.

Introduction
Tarry's Algorithm
Tree Algorithm
mplementation and Methodology
Results
Discussion
Conclusion

## References

Introduction
Tarry's Algorithm
Tree Algorithm
Implementation and Methodology
Results
Discussion
Conclusion

## Questions

Thank you! Any questions?