## ISEL – LEIM Processamento de Imagem e Visão

Inverno 2024-2025

Série de Exercícios 1

Dada a seguinte imagem binária,

| 1 | 1 | 1 | 1 |   |  |
|---|---|---|---|---|--|
| 1 | 1 | 1 | 1 | 1 |  |
|   | 1 | 1 | 1 | 1 |  |
|   | 1 | 1 | 1 |   |  |
|   |   | 1 |   |   |  |
|   |   |   |   |   |  |

qual o resultado da operação morfológica de erosão com o elemento estruturante

qual o resultado da operação morfológica de erosão com o elemento  $\Theta$  BOX(3,3)?



| 1 | 1 | 1 | 1 |   |  |
|---|---|---|---|---|--|
| 1 | 1 | 1 | 1 | 1 |  |
|   | 1 | 1 | 1 | 1 |  |
|   | 1 | 1 | 1 |   |  |
|   |   | 1 |   |   |  |
|   |   |   |   |   |  |

| 1 | 1 | 1 | 1 | 1 |   |
|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |
|   | 1 | 1 | 1 | 1 |   |
|   | 1 | 1 | 1 |   |   |
|   |   | 1 |   |   |   |



Considere que dispõem de uma câmara com um sensor de 1" e relação largura/altura de 4/3 (dimensões do sensor: altura 12,8mm e largura 16,0mm). Utilizando o modelo de projecção simples, qual a distância focal da lente para que, a 10 metros de distância, tenha um campo de visão vertical de 2 metros (considere que a distância é medida a partir do plano focal)?

32 mm.

15 mm.

10 mm.

64 mm.



atribuída por um classificador:

## 1

Considere o seguinte conjunto de dados X com classe verdadeira  $\omega$  e classe estimada  $\hat{\omega}$ .

Qual a matriz de confusão?

|            | $\hat{\omega}_1$ | $\hat{\omega}_2$ | $\hat{\omega}_3$ |
|------------|------------------|------------------|------------------|
| $\omega_1$ | 1                | 1                | 0                |
| $\omega_2$ | 1                | 0                | 2                |
| $\omega_3$ | 0                | 0                | 3                |

|            | $\hat{\omega}_1$ | $\hat{\omega}_2$ | $\hat{\omega}_3$ |
|------------|------------------|------------------|------------------|
| $\omega_1$ | 1                | 1                | 0                |
| $\omega_2$ | 1                | 3                | 0                |
| $\omega_3$ | 0                | 1                | 1                |

|            | $\hat{\omega}_1$ | $\hat{\omega}_2$ | $\hat{\omega}_3$ |
|------------|------------------|------------------|------------------|
| $\omega_1$ | 3                | 0                | 0                |
| $\omega_2$ | 0                | 1                | 1                |
| $\omega_3$ | 0                | 0                | 3                |

|            | $\hat{\omega}_1$ | $\hat{\omega}_2$ | $\hat{\omega}_3$ |
|------------|------------------|------------------|------------------|
| $\omega_1$ | 1                | 0                | 0                |
| $\omega_2$ | 1                | 4                | 0                |
| $\omega_3$ | 0                | 2                | 0                |



Dada a seguinte imagem:

arredondado às unidades.

| 133 | 184 | 248 | 110 |
|-----|-----|-----|-----|
| 25  | 38  | 165 | 210 |
| 209 | 168 | 204 | 21  |
| 208 | 122 | 116 | 2/1 |

209 168 204 21 208 132 116 34

Qual o resultado para uma filtragem de média com uma máscara de dimensão 3x3? Considere que fora dos limites da imagem o valor é zero e o resultado da filtragem é

| 42 | 88  | 106 | 81  |
|----|-----|-----|-----|
| 84 | 153 | 150 | 106 |
| 87 | 141 | 121 | 83  |
| 80 | 115 | 75  | 42  |

| 0  | 38  | 110 | 0   |
|----|-----|-----|-----|
| 38 | 168 | 168 | 110 |
| 38 | 165 | 132 | 34  |
| 0  | 132 | 34  | 0   |

| 79  | 131 | 159 | 113 |
|-----|-----|-----|-----|
| 72  | 103 | 172 | 119 |
| 137 | 153 | 146 | 82  |
| 126 | 126 | 100 | 34  |

| 44  | 15  | 167 | 4   |
|-----|-----|-----|-----|
| 100 | 102 | 160 | 251 |
| 212 | 134 | 74  | 43  |
| 205 | 106 | 110 | 27  |

Num olho humano...

Os bastonetes discriminam a tonalidade da luz em 3 bandas diferentes.

Existem somente dois tipos de foto-receptores, bastonetes e cones.

Os cones estão distribuídos uniformemente ao longo da retina.

Os cones são sensíveis somente à intensidade luminosa.



Uma imagem em formato SDTV480i (640x480) tem uma resolução aproximada de:

## 2 MPixel.

## 0.3 MPixel.



## 2.8 MPixel.

## MPixel.



Pretende-se armazenar uma imagem com 2048 cores distintas. Qual o número de bits necessário para representar cada píxel?

9 bits.

bits.



bits. 12

10 bits.



Considere que dispõem de uma câmara com um sensor de resolução 1280 colunas por 960 linhas, dimensão 6,4mm de largura e 4,8mm de altura e distância focal de 10mm. Um objecto à distância de 5m e com dimensão 50cm de largura e 170cm de altura apresenta na imagem a seguinte resolução:

100 pixeis de largura por 340 pixeis de altura.



A câmara com estas caraterísticas não consegue visualizar a totalidade do objeto.





1 0 0 0 1 1 0 1 0 0

Dada a seguinte imagem binária.

| _ | ) | ) | ) | 4 |
|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |

qual o resultado da operação de extração de componentes conexos para uma vizinhança de 8?

| 1 | 0 | 0 | 0 | 2 |
|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |

| 1 | 0 | 0 | 0 | 3 |
|---|---|---|---|---|
| 1 | 0 | 2 | 0 | 0 |
| 0 | 2 | 2 | 2 | 2 |
| 2 | 2 | 0 | 2 | 2 |
| 2 | 2 | 2 | 2 | 2 |

| 1 | 0 | 0 | 0 | 2 |
|---|---|---|---|---|
| 1 | 0 | 2 | 0 | 0 |
| 0 | 2 | 2 | 2 | 2 |
| 2 | 2 | 0 | 2 | 2 |
| 2 | 2 | 2 | 2 | 2 |

| 1 | 0 | 0 | 0 | 1 |
|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |

Dada a seguinte imagem binária

| 2 | 2 | 2 | 5 | 6 | 5 | 7 |
|---|---|---|---|---|---|---|
| 6 | 4 | 5 | 7 | 2 | 3 | 1 |
| 2 | 3 | 5 | 1 | 4 | 1 | 3 |

Qual o seu histograma?







