Fachrichtung Mathematik

Institut für Analysis

Prof. Dr. S. Siegmund

PD Dr. A. Kalauch

Übung 30.01. bis 03.02.2023

Analysis I

15. Übungsblatt: Komplexe Wurzeln, Umkehrfunktionen der trigonometrischen Funktionen

Aufgabe 15.1

Ermitteln Sie alle Zahlen $z \in \mathbb{C}$, die den folgenden Gleichungen genügen:

- (a) $z^4 = -16$,
- (b) $z^3 + 3iz^2 3z 9i = 0$,

Hinweis: Kubische Ergänzung.

(c)
$$z^2 - 3z + 3 - i = 0$$
.

Aufgabe 15.2

Vereinfachen Sie für die folgenden Funktionen jeweils die Zuordnungsvorschrift. Geben Sie einen Definitionsbereich an, auf dem die (stetige) Funktion streng monoton ist. Ermitteln Sie die Umkehrfunktion.

- (a) $x \mapsto \tan(\arccos x)$
- (b) $x \mapsto \arccos(\sin x)$

Aufgabe 15.3

(a) Konvergiert die folgende Reihe (in \mathbb{R})?

$$\sum_{k=1}^{\infty} \log \left(1 + \frac{1}{k} \right)$$

Hinweis: Ermitteln Sie zuerst die *n*-te Partialsumme (Teleskopsumme).

(b) Konvergiert die folgende Reihe (in \mathbb{C})?

$$\sum_{n=1}^{\infty} \frac{\mathrm{i}^n}{n}$$

Hinweis: Real- und Imaginärteil betrachten.

Aufgabe 15.4

Sei $x \in \mathbb{R} \setminus \{(2k+1)\pi; \ k \in \mathbb{Z}\}$. Beweisen Sie: Ist $u := \tan \frac{x}{2}$, dann gilt

$$\sin x = \frac{2u}{1+u^2}, \quad \cos x = \frac{1-u^2}{1+u^2}.$$

Aufgabe 15.5

Für $x \in [-1, 1]$ und $n \in \mathbb{N}$ setze

$$T_n(x) := \cos(n \arccos x).$$

Zeigen Sie die Rekursionsformel $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$. Schlussfolgern Sie induktiv, dass T_n ein Polynom n-ten Grades in x mit ganzzahligen Koeffizienten ist. T_n heißt T_n