# **INVINET** EMBEDDED



SMARC™ Module

MSC SM2S-IMX8MINI

SMARC Rev. 2.0 Standard

16.08.2021 Rev. 1.5



# **Preface**

#### **Copyright Notice**

Copyright © 2021 MSC Technologies GmbH. All rights reserved.

Copying of this document and providing to others and the use or communication of the contents thereof, is forbidden without express authority of MSC Technologies GmbH. Offenders are liable to the payment of damages.

All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

#### **Important Information**

This documentation is intended for qualified audiences only. The product described herein is not an end user product. It was developed and manufactured for further processing by trained personnel.

#### **Disclaimer**

Although this document has been generated with the utmost care no warranty or liability for correctness or suitability for any particular purpose is implied. The information in this document is provided "as is" and is subject to change without notice.

#### **EMC Rules**

This unit has to be installed in a shielded housing. If not installed in a properly shielded enclosure, and used in accordance with the instruction manual, this product may cause radio interference in which case the user may be required to take adequate measures at his or her owns expense.

#### **Trademarks**

All used product names, logos or trademarks are property of their respective owners.



#### Certification

MSC Technologies GmbH is certified according to DIN EN ISO 9001:2000 standards.

#### **Life-Cycle-Management**

MSC products are developed and manufactured according to high quality standards. Our life-cycle-management assures long term availability through permanent product maintenance. Technically necessary changes and improvements are introduced if applicable. A product- change-notification and end-of-life management process assures early information of our customers.

#### **Product Support**

MSC engineers and technicians are committed to provide support to our customers whenever needed.

Before contacting Technical Support of MSC Technologies GmbH, please consult the respective pages on our web site at <a href="https://www.msc-technologies.eu/support/boards.html">https://www.msc-technologies.eu/support/boards.html</a> for the latest documentation, drivers and software downloads.

If the information provided there does not solve your problem, please contact our Avnet Embedded /MSC Technical Support:

Phone: +49 - 8165 906 - 200

Email: <a href="mailto:support.boards@avnet.eu">support.boards@avnet.eu</a>



# **Contents**

| 1.1 Key Features       11.2 Block Diagram       11.2 Block Diagram       11.3 Power Supply       11.3 Power Supply       11.3 Power Supply       17.4 Power Consumption       18.4 Power Consumption       19.4 Power Consumption       20.4 Power Consumption | 1 IN  | NTRODUCTION                         | 11 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|----|
| 12 Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                     |    |
| 1.3   Power Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                     |    |
| 1.4   Power Consumption   17   17   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                     |    |
| 1.4.1 Use Cases       1.         1.4.2 Hardware used       11         1.4.3 Measurement Results       18         1.6 Mechanical Dimensions       15         1.6 Mechanical Distortion of PCB       22         2 THERMAL SPECIFICATIONS       21         2.1 Thermal Definitions       21         3 MODULE CONNECTOR PINOUT       22         4 MODULE CONNECTOR SIGNAL DESCRIPTION       27         4.1 PS       27         4.2 Ethernet       26         4.3 PCI Express       36         4.4 USB       36         4.5 Camera       33         4.6 LVDS       33         4.7 SPI Bus       36         4.8 CAN       37         4.9 GPIO       36         4.10 SDIO       36         4.11 UART       44         4.12 PC Bus       44         4.13 Watchdog       44         4.14 System Management       45         4.15 Boot Options       45         5 FUNCTIONS ON MODULE       47         5.1 CPU Options       47         5.2 Power-Up Behavlour       47         5.2.2 Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4   |                                     |    |
| 1.4.3       Measurement Results       11         1.5       Mechanical Dimensions       15         1.6       Mechanical Distortion of PCB       20         2       THERMAL SPECIFICATIONS       21         2.1       Thermal Definitions       21         3       MODULE CONNECTOR PINOUT       22         4       MODULE CONNECTOR SIGNAL DESCRIPTION       27         4.1       IS       27         4.2       Ethernet       26         4.3       PCI Express       36         4.4       USB       33         4.5       Camera       33         4.6       LVDS       33         4.7       SPI Bus       36         4.8       CAN       37         4.9       GPIO       33         4.10       SDIO       36         4.11       UART       44         4.12       IPC Bus       44         4.13       Watchdog       45         4.14       System Management       45         4.15       Boot Options       45         5       FUNCTIONS ON MODULE       47         5.1       CPU Options       47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                     |    |
| 1.5       Mechanical Dimensions       15         1.6       Mechanical Distortion of PCB       20         2       THERMAL SPECIFICATIONS       21         2.1       Thermal Definitions       21         3       MODULE CONNECTOR PINOUT       23         4       MODULE CONNECTOR SIGNAL DESCRIPTION       27         4.1       IS       27         4.2       Ethernet       28         4.3       PCI Express       33         4.4       USB       33         4.5       Camera       32         4.6       LVDS       33         4.7       SPI Bus       33         4.8       CAN       35         4.9       GPIO       36         4.10       SDIO       36         4.11       UART       44         4.12       IPC Bus       47         4.13       Watchdog       41         4.14       System Management       42         4.15       Boot Options       45         5.1       CPU Options       47         5.2       Power-On Sequencing       47         5.2.2       Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4.2 | 2 Hardware used                     | 18 |
| 1.6       Mechanical Distortion of PCB       20         2       THERMAL SPECIFICATIONS.       21         2.1       Thermal Definitions       21         3       MODULE CONNECTOR PINOUT       25         4       MODULE CONNECTOR SIGNAL DESCRIPTION       27         4.1       IPS       27         4.2       Ethernet       26         4.3       PCI Express       36         4.4       USB       33         4.5       Camera       32         4.6       LVDS       33         4.7       SPI Bus       33         4.8       CAN       37         4.9       GPIO       36         4.10       SDIO       35         4.11       UART       46         4.12       PC Bus       47         4.13       Watchdog       41         4.14       System Management       42         4.15       Boot Options       45         5       FUNCTIONS ON MODULE       47         5.2.1       Power-On Sequencing       47         5.2.2       Reset Sequencing       48          5.2.2       Reset Sequencing       49     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                     |    |
| 2 THERMAL SPECIFICATIONS.       21         2.1 Thermal Definitions.       21         3 MODULE CONNECTOR PINOUT.       23         4 MODULE CONNECTOR SIGNAL DESCRIPTION.       27         4.1 PS.       27         4.2 Ethernet       28         4.3 PCI Express.       36         4.4 USB.       36         4.5 Camera       36         4.6 LVDS.       33         4.7 SPI Bus       35         4.8 CAN       35         4.9 GPIO.       36         4.10 SDIO.       36         4.11 UART       41         4.12 PC Bus       41         4.13 Watchdog.       41         4.14 System Management       45         4.15 Boot Options       45         5.1 CPU Options       47         5.2 Power-Up Behaviour       47         5.2.1 Power-On Sequencing       48         42.2 Power-Up Behaviour       47         5.2.2 Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     |                                     |    |
| 2.1       Thermal Definitions       21         3       MODULE CONNECTOR PINOUT       23         4       MODULE CONNECTOR SIGNAL DESCRIPTION       27         4.1       PS       22         4.2       Ethernet       28         4.3       PCI Express       33         4.4       USB       33         4.5       Camera       33         4.6       LVDS       33         4.7       SPI Bus       35         4.8       CAN       33         4.9       GPIO       33         4.10       SDIO       35         4.11       UART       44         4.12       PC Bus       44         4.13       Watchdog       45         4.14       System Management       45         4.15       Boot Options       45         5.1       CPU Options       47         5.2.1       Power-Up Behaviour       47         5.2.2       Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6   | Mechanical Distortion of PCB        | 20 |
| 3 MODULE CONNECTOR PINOUT       23         4 MODULE CONNECTOR SIGNAL DESCRIPTION       27         4.1 PS       27         4.2 Ethernet       28         4.3 PCI Express       30         4.4 USB       30         4.5 Camera       33         4.6 LVDS       33         4.7 SPI Bus       33         4.8 CAN       35         4.9 GPIO       35         4.10 SDIO       35         4.11 UART       44         4.12 PC Bus       41         4.13 Watchdog       41         4.14 System Management       45         4.15 Boot Options       45         5 FUNCTIONS ON MODULE       45         5.1 CPU Options       47         5.2.1 Power-Up Behaviour       47         5.2.2 Reset Sequencing       44         42 Reset Sequencing       44         5.2.2 Reset Sequencing       44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 T   | HERMAL SPECIFICATIONS               | 21 |
| 4       MODULE CONNECTOR SIGNAL DESCRIPTION       27         4.1       PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.1   | Thermal Definitions                 | 21 |
| 4       MODULE CONNECTOR SIGNAL DESCRIPTION       27         4.1       PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o 11/ | IODULE CONNECTOR RINGUE             | 00 |
| 4.1       I²S       27         4.2       Ethernet       26         4.3       PCI Express       30         4.4       USB       30         4.5       Camera       32         4.6       LVDS       33         4.7       SPI Bus       35         4.8       CAN       37         4.9       GPIO       36         4.10       SDIO       35         4.11       UART       44         4.12       I²C Bus       41         4.13       Watchdog       41         4.14       System Management       45         4.15       Boot Options       45         5       FUNCTIONS ON MODULE       47         5.1       CPU Options       47         5.2.1       Power-Up Behaviour       47         5.2.1       Power-On Sequencing       52.2         5.2.2       Reset Sequencing       46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |                                     |    |
| 4.2       Ethernet       26         4.3       PCI Express       30         4.4       USB       30         4.5       Camera       32         4.6       LVDS       33         4.7       SPI Bus       35         4.8       CAN       37         4.9       GPIO       38         4.10       SDIO       38         4.11       UART       40         4.12       IPC Bus       41         4.13       Watchdog       41         4.14       System Management       42         4.15       Boot Options       45         5       FUNCTIONS ON MODULE       47         5.1       CPU Options       47         5.2       Power-Up Behaviour       47         5.2.1       Power-On Sequencing       47         5.2.2       Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 N   | IODULE CONNECTOR SIGNAL DESCRIPTION | 27 |
| 4.3       PCI Express       30         4.4       USB       30         4.5       Camera       32         4.6       LVDS       33         4.7       SPI Bus       35         4.8       CAN       37         4.9       GPIO       36         4.10       SDIO       35         4.11       UART       40         4.12       IPC Bus       41         4.13       Watchdog       42         4.14       System Management       43         4.15       Boot Options       45         5       FUNCTIONS ON MODULE       47         5.1       CPU Options       47         5.2       Power-Up Behaviour       47         5.2.1       Power-On Sequencing       47         5.2.2       Reset Sequencing       44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1   |                                     |    |
| 4.4       USB       30         4.5       Camera.       32         4.6       LVDS       33         4.7       SPI Bus       35         4.8       CAN       37         4.9       GPIO       36         4.10       SDIO       36         4.11       UART       40         4.12       I <sup>2</sup> C Bus       41         4.13       Watchdog       45         4.14       System Management       45         4.15       Boot Options       45         5.1       CPU Options       47         5.2       Power-Up Behaviour       47         5.2.1       Power-On Sequencing       47         5.2.1       Power-On Sequencing       44         5.2.2       Reset Sequencing       44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2   |                                     |    |
| 4.5       Camera       32         4.6       LVDS       33         4.7       SPI Bus       35         4.8       CAN       37         4.9       GPIO       36         4.10       SDIO       36         4.11       UART       40         4.12       I²C Bus       41         4.13       Watchdog       45         4.14       System Management       45         4.15       Boot Options       45         5       FUNCTIONS ON MODULE       47         5.1       CPU Options       47         5.2       Power-Up Behaviour       47         5.2.1       Power-On Sequencing       44         5.2.2       Reset Sequencing       44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.3   |                                     |    |
| 4.6       LVDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.4   |                                     |    |
| 4.7       SPI Bus       35         4.8       CAN       37         4.9       GPIO       36         4.10       SDIO       39         4.11       UART       40         4.12       IPC Bus       41         4.13       Watchdog       41         4.14       System Management       45         4.15       Boot Options       45         5.1       CPU Options       45         5.2       Power-Up Behaviour       47         5.2.1       Power-On Sequencing       46         5.2.2       Reset Sequencing       46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                     |    |
| 4.8       CAN       37         4.9       GPIO       38         4.10       SDIO       39         4.11       UART       40         4.12       IPC Bus       41         4.13       Watchdog       41         4.14       System Management       42         4.15       Boot Options       45         5       FUNCTIONS ON MODULE       47         5.1       CPU Options       47         5.2       Power-Up Behaviour       47         5.2.1       Power-On Sequencing       47         5.2.2       Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                     |    |
| 4.9       GPIO       38         4.10       SDIO       39         4.11       UART       40         4.12       I²C Bus       41         4.13       Watchdog       42         4.14       System Management       43         4.15       Boot Options       45         5       FUNCTIONS ON MODULE       47         5.1       CPU Options       47         5.2       Power-Up Behaviour       47         5.2.1       Power-On Sequencing       48         5.2.2       Reset Sequencing       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                     |    |
| 4.10 SDIO       39         4.11 UART       40         4.12 I²C Bus       41         4.13 Watchdog       43         4.14 System Management       43         4.15 Boot Options       45         5 FUNCTIONS ON MODULE       47         5.1 CPU Options       47         5.2 Power-Up Behaviour       47         5.2.1 Power-On Sequencing       48         5.2.2 Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                     |    |
| 4.11 UART       40         4.12 IPC Bus       41         4.13 Watchdog       42         4.14 System Management       43         4.15 Boot Options       45         5 FUNCTIONS ON MODULE       47         5.1 CPU Options       47         5.2 Power-Up Behaviour       47         5.2.1 Power-On Sequencing       48         5.2.2 Reset Sequencing       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                     |    |
| 4.12 I²C Bus       41         4.13 Watchdog       42         4.14 System Management       43         4.15 Boot Options       45         5 FUNCTIONS ON MODULE       47         5.1 CPU Options       47         5.2 Power-Up Behaviour       47         5.2.1 Power-On Sequencing       48         5.2.2 Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                     |    |
| 4.13 Watchdog       43         4.14 System Management       43         4.15 Boot Options       45         5 FUNCTIONS ON MODULE       47         5.1 CPU Options       47         5.2 Power-Up Behaviour       47         5.2.1 Power-On Sequencing       48         5.2.2 Reset Sequencing       48         5.2.2 Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                     |    |
| 4.14 System Management       43         4.15 Boot Options       45         5 FUNCTIONS ON MODULE       47         5.1 CPU Options       47         5.2 Power-Up Behaviour       47         5.2.1 Power-On Sequencing       48         5.2.2 Reset Sequencing       48         5.2.2 Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                     |    |
| 4.15 Boot Options       45         5 FUNCTIONS ON MODULE       47         5.1 CPU Options       47         5.2 Power-Up Behaviour       47         5.2.1 Power-On Sequencing       48         5.2.2 Reset Sequencing       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                     |    |
| FUNCTIONS ON MODULE         47           5.1 CPU Options         47           5.2 Power-Up Behaviour         47           5.2.1 Power-On Sequencing         48           5.2.2 Reset Sequencing         48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.15  |                                     |    |
| 5.1       CPU Options       47         5.2       Power-Up Behaviour       47         5.2.1       Power-On Sequencing       48         5.2.2       Reset Sequencing       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ·                                   |    |
| 5.2       Power-Up Behaviour       47         5.2.1       Power-On Sequencing       48         5.2.2       Reset Sequencing       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -     |                                     |    |
| 5.2.1       Power-On Sequencing       48         5.2.2       Reset Sequencing       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                     |    |
| 5.2.2 Reset Sequencing 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _     |                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.3   |                                     |    |



| 5.3.1 SDRAM                                                                                  | 50                                                                      |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 5.3.2 eMMC                                                                                   | 50                                                                      |
| 5.3.3 EEPROM                                                                                 |                                                                         |
| 5.4 Trusted Platform Module                                                                  | 51                                                                      |
| 5.5 WiFi/Bluetooth                                                                           | 52                                                                      |
| 5.6 MicroSD Card Socket                                                                      | 52                                                                      |
| 5.7 Debug Options                                                                            | 52                                                                      |
| 5.7.1 Debug Connector                                                                        |                                                                         |
| 5.7.2 JTAG Connector                                                                         | 54                                                                      |
| 6 BUS AND ADDRESS MAPPING                                                                    | 56                                                                      |
| 6.1 I <sup>2</sup> C Devices                                                                 |                                                                         |
| 6.2 SPI Devices                                                                              |                                                                         |
|                                                                                              |                                                                         |
| 7 BOARD SUPPORT PACKAGE (BSP)                                                                | 58                                                                      |
| 7.1 General information                                                                      |                                                                         |
| 7.2 MSC-LDK (Yocto)                                                                          | 58                                                                      |
| 7.2.1 MSC-LDK Terms                                                                          | 58                                                                      |
| 7.2.2 Getting Started                                                                        |                                                                         |
| 7.2.3 Setup the MSC-LDK build environment                                                    |                                                                         |
| 7.2.4 Generate images                                                                        |                                                                         |
| 7.2.5 Image Deployment                                                                       |                                                                         |
| 7.3 Running an Image                                                                         |                                                                         |
| 7.3.1 Booting SPL (secondary program loader)/U-Boot                                          |                                                                         |
| 7.3.2 Booting OS                                                                             |                                                                         |
| 7.3.3 Login to FS                                                                            |                                                                         |
| 7.3.4 SMARC GPIO access                                                                      |                                                                         |
| 7.3.5 Bug Reporting                                                                          |                                                                         |
| 7.4 Hotfixes and updating MSC-LDK                                                            | 85                                                                      |
| 8 TROUBLESHOOTING                                                                            | 87                                                                      |
| 8.1 Known issues and limitations                                                             | 87                                                                      |
| 8.1.1 Issue 1. SPI interfaces not available on MSC SM2S-IMX8MINIQC-14N0261I variant Both CAN | transceivers drive SPI[0:1]_DIN signals low even though not selected by |
| chip select signal.                                                                          | 87                                                                      |
| 8.2 Support                                                                                  | 87                                                                      |



| Figure 1-1: Block Diagram                                                                    |     |
|----------------------------------------------------------------------------------------------|-----|
| Figure 1-2: Module Dimensions                                                                |     |
| Figure 1-3: Overall height without heat spreader of the SMARC™ Module                        | 19  |
| Figure 1-4: Distance between mounting holes                                                  |     |
| Figure 2-1: Defined Temperature Point                                                        | 22  |
| Figure 5-1: Start-up Sequence                                                                |     |
| Figure 5-2: Power-On Timings                                                                 | 48  |
| Figure 5-3: Reset Sequencing                                                                 | 49  |
| Figure 5-4: Reset Timings                                                                    | 49  |
| Figure 5-5: Module top side with debug UART FFC connectors marked in red*                    |     |
| Figure 5-6: Module top side with MSC UART debug adapter                                      | 53  |
| Figure 5-7: Module bottom side with JTAG FFC connectors marked in red*                       | 55  |
| Figure 5-8: Module bottom side with MSC JTAG debug adapter                                   |     |
| Figure 7-1. RSA key generation                                                               | .59 |
| Figure 7-2. Clone base MSC-LDK repo                                                          |     |
| Figure 7-3. Initial content of the root MSC-LDK directory                                    | 61  |
| Figure 7-4. Create build directory.                                                          |     |
| Figure 7-5. Base directory content after setup build directory                               |     |
| Figure 7-6. Enter build directory.                                                           |     |
| Figure 7-7. Prepare docker container for MSC-LDK. Part 1                                     |     |
| Figure 7-8. Prepare docker container for MSC-LDK. Part 2                                     | .64 |
| Figure 7-9. Prepare docker container for MSC-LDK. Part 3                                     |     |
| Figure 7-10. Start and enter the MSC-LDK container.                                          |     |
| Figure 7-11. Leave the MSC-LDK container.                                                    |     |
| Figure 7-12. Re-start and re-enter the MSC-LDK container                                     |     |
| Figure 7-13. Stop the MSC-LDK container and release its resources.                           | 67  |
| Figure 7-14. Building msc-image-qt5 image.                                                   |     |
| Figure 7-15. Content of 'version_layer' file                                                 |     |
| Figure 7-16. SPL boot selector on EP1 carrier board (S2801)                                  |     |
| Figure 7-17. Forced SPL boot from carrier SD card                                            | 72  |
| Figure 7-18. SPL boot selector on EP1 carrier board (S2801). eMMC flash boot mode (default). | 72  |
| Figure 7-19. SPL boot from module eMMC flash.                                                |     |
| Figure 7-20. Booting OS (linux) from on-carrier SD card.                                     |     |
| Figure 7-21. Booting OS (linux) from on-module eMMC flash.                                   | /5  |
| Figure 7-22. Preparing U-Boot environment for net boot.                                      |     |
| Figure 7-23. Booting OS (linux) from network.                                                |     |
| Figure 7-24. Booting OS (linux) from USB device (pen drive)                                  |     |
| Figure 7-25. Bug report. Main page                                                           |     |
| Figure 7-26. Bug report. User message editor.                                                | 82  |
| Figure 7-27. Bug report. Viewer page.                                                        | 83  |
| Figure 7-28. Bug report. Zip archive content selector.                                       | 84  |



| Figure 7-29. Bug report. Target partition selector. | 85 |
|-----------------------------------------------------|----|
| Table 1: Module Power Inputs                        | 17 |
| Table 1: Module Fower Imputs                        | 12 |
| Table 3: Typical Power Consumption Measurement *    | 12 |
| Table 4: Temperature Range                          |    |
| Table 5: Module Connector Pinout                    |    |
| Table 6: I <sup>2</sup> S Signal Description        |    |
| Table 7: Ethernet Signal Description                |    |
| Table 8: PCIe Signal Description                    |    |
| Table 9: USB Signal Description                     |    |
| Table 10: HDMI Signal Description                   |    |
| Table 11: LVDS Signal Description                   |    |
| Table 12: SPI Signal Description                    |    |
| Table 13: CAN Signal Description *                  | 37 |
| Table 14: GPIO Signal Description                   |    |
| Table 15: SDIO Signal Description                   | 39 |
| Table 16: UART Signal Description                   |    |
| Table 17: I <sup>2</sup> C Signal Description       | 42 |
| Table 18: Watchdog Signal Description               | 43 |
| Table 19: System Management Signal Description      |    |
| Table 20: Boot Options Control Signal Description   |    |
| Table 21: Boot Options                              |    |
| Table 22: Available SDRAM options                   |    |
| Table 23: Available eMMC devices                    |    |
| Table 24: I <sup>2</sup> C Interfaces Overview      |    |
| Table 25: SPI Interfaces Overview                   |    |
| Table 26: Available images                          |    |
| Table 27: Carrier SD Card Boot Mode                 |    |
| Table 28: eMMC Boot Mode                            |    |
| Table 29: Network Boot Mode                         |    |
| Table 30: USB Boot Mode                             |    |
| Table 31. Available DT-blobs.                       |    |
| Table 32. Available user accounts                   |    |
| Table 33. Available SMARC GPIOs                     | 80 |



# **Revision History**

| Rev. | Date               | Description                              |
|------|--------------------|------------------------------------------|
| 1.0  | July 31, 2020      | First Release                            |
| 1.1  | September 16, 2020 | Added comment in section EEPROM          |
| 1.2  | February 10, 2021  | Bug fix                                  |
| 1.3  | March 17, 2021     | Fix USB Boot option and Section 2.1      |
| 1.4  | April 30, 2021     | Corrected Section 4.5 Camera             |
| 1.5  | August 16, 2021    | Changed Debug Adapter to 82479, Avnet CI |
|      |                    |                                          |
|      |                    |                                          |
|      |                    |                                          |
|      |                    |                                          |



# Reference Documents

[1] SMARC™ Specification

Revision 2.0

Last update: June 2nd 2016

http://www.sget.org

[2] IEEE Std. 802.3-2002 802.3-2002.pdf

http://www.ieee.org

[3] i.MX8 Series of Application Processors IMX8MMIEC.pdf

http://www.nxp.com

[4] Module Datasheet

MSC-SM2S-IMX8MINI.pdf

https://www.msc-technologies.eu/products-solutions/products/boards/smarc/msc-sm2s-imx8mini.html

[5] i.MX Yocto Project User's Guide

i.MX\_Yocto\_Project\_User's\_Guide.pdf

Rev. L4.19.35 1.1.0, 11/2019

http://www.nxp.com

[6] i.MX Reference Manual.

i.MX\_Reference\_Manual.pdf

Rev. L4.19.35-1.1.0, 11/2019

http://www.nxp.com

[7] i.MX Linux User's Guide

i.MX\_Linux\_User's\_Guide.pdf

Rev. L4.19.35 1.1.0, 11/2019

http://www.nxp.com

[8] i.MX Porting Guide

i.MX\_Porting\_Guide.pdf

Rev. L4.19.35\_1.1.0, 11/2019

http://www.nxp.com



[9] Docker documentation https://docs.docker.com/



# 1 Introduction

SMARC™ modules are compact, highly integrated Single Board Computers.

Typically a SMARC™ module consists of a CPU, chipset, memory, Ethernet controller and USB controller. Interface controllers or connectors (e.g. RJ45) are implemented on a base board on to which the SMARC™ module can be mounted.

In addition to the power supply PCIe, USB, etc. interfaces are present on the connector.

Due to the standardized mechanics and interfaces the system can be scaled arbitrarily. Despite the modular concept the system design is very flat and compact.

SMARC™ modules require a carrier board to build a working system. For evaluation purposes MSC recommends the MSC SM2-MB-EP1 Evaluation Board.

## 1.1 Key Features

#### SoC:

NXP™ i.MX8M Mini ARM® CORTEX™-A53
 Assembly options for i.MX8M Mini single, dual or quad-core

#### **SDRAM:**

• Up to 4GB LPDDR4

#### Video:

Dual Channel LVDS 18-bit/24-bit (1920x1080 max.) or 1x Single Channel LVDS (1366x768 max.) or 1x MIPI-DSI 4 lane (1920x1080 max.)

#### Audio:

• 2x I2S links for audio codec connection



#### Camera Interface:

1x MIPI CSI-2 2 Lane or 1x MIPI CSI-2 4 Lane \*

#### **PCI Express Interface:**

• Up to 1x PCle x1 Gen.2 \*

#### **Network:**

- Up to 2x 10/100/1000BASE-T Ethernet \*
- Optional: H&D Wireless™ Module SPB209A with 802.11 ac/a/b/g/n and Bluetooth 4.2 with BLE support \*

#### **USB**:

- 1x USB2.0 Host Port with device Interface capability and on-the-go (OTG) support
- 1x USB2.0 Host Port or 4x USB2.0 Host Ports (with additional USB hub populated on module)

#### **GPIO:**

• 12x GPIO configurable as input or output (push-pull or open-drain).

#### SPI:

• 2x SPI with 2 chip selects each \*



#### I<sup>2</sup>C Bus:

- 1x I2C for power Management functions
- 1x I<sup>2</sup>C bus for general purposes
- 1x I<sup>2</sup>C bus for display interface
- 1x I2C bus for camera interface

#### **UART:**

- 2x UART without RTS/CTS support
- 2x UART with RTS/CTS support

#### Flash:

- Up to 64GByte eMMC NAND flash
- Optional: 32Mbit QSPI NOR Flash

#### **Storage Interface:**

- 1bit/4bit SD/SDIO/MMC Interface
- Optional: on module microSD Card Socket \*

#### **EEPROM:**

• 64Kbit EEPROM for module information and user applications

#### CAN:

• Optional: 2x CAN 2.0B (up to 1Mbps) \*



#### **Real-time Clock:**

- High accuracy RTC
- Optional RTC with temperature compensated DTCXO

### Watchdog:

Module provides a watchdog connected to the SMARC™ connector

#### **Security Device:**

- Advanced Security, Safety, and Reliability integrated in the SOC
- Optional Trusted Platform Module 2.0 (TPM): Infineon™ SLB9673 or STMicroelectronics™ ST33TPHF20I2C

#### **Environment Temperature:**

- 0° ... 70°C (all components commercial temp. or better)
- -40° ... 85°C (all components industrial temp.)
- -40° ... 85°C (storage)

### **Environment Humidity:**

- 5 ... 95% (operating)
- 5... 95% (storage)

#### \*NOTES:

- the second Ethernet interfaces makes use of the PCIe interface, so the PCIe Lane is not available when second Ethernet is populated (mutually exclusive assembly option)

microSD card socket and Wireless/BT module are mutually exclusive assembly options.

CSI 2-Lane and CSI 4-Lane are mutual exclusive assembly options.



The SPI interface(s) are used to implement the optional CAN interface(s) and so are mutually exclusive options. If two CAN controllers are used, then the two SPI buses are not available.



# 1.2 Block Diagram

JTAG DEBUG FFC Connector FFC Connector Gbit Ethernet LPDDR4 DRAM LPDDR4 Controller up to 4GB eMMC 5.1 up to 64GB **Gbit Ethernet** Controller USB1 (USB 2.0) MicroSD Socket x4 - → SDIO USB Hub USB[2:4] (USB 2.0) WiFi/BT\* MIPI DSI NO SMARC QPSI NOR Flash 32Mb i.MX8M MINI SMARC EDGE ARM CORTEX 4x A53 + M4 Connector EEPROM 64Kb RTC TPM 2.0 LANE x2 LANE x4 2x SAI Temp. Sensor SDIC I2C\_PM I2C\_CAM I2C\_GP I2C\_LCD 4x I2C 4x UART SER[0:3] Default components 12x GPIC GPIO]0:11] Assembly option

Figure 1-1: Block Diagram



# 1.3 Power Supply

**Table 1: Module Power Inputs** 

| Power Rail | Description                                                                                                            |                           |                                      |
|------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|
| VDD_IN     | Primary power input                                                                                                    | Nominal                   | +5V                                  |
|            |                                                                                                                        | Voltage Range             | +4.75V +5.25V                        |
|            |                                                                                                                        | Max. Input Ripple         | ±100mV                               |
|            |                                                                                                                        | Max. Rate of Voltage Rise | < 250V/s                             |
| VDD_RTC    | May be sourced from a Lithium cell or a Super Cap.                                                                     | Nominal                   | +3V                                  |
|            |                                                                                                                        | Voltage Range             | +1.5V +5.5V                          |
|            |                                                                                                                        | Max. Input Ripple         | ±20mV                                |
|            |                                                                                                                        | Current                   | 0.18μA typ. @ VDD = 3V<br>(1μA max.) |
| GND        | Power and signal return path. All available GND connector pins shall be connected and tied to Carrier Board GND plane. |                           |                                      |

# 1.4 Power Consumption

#### 1.4.1 Use Cases

- Uboot Idle: Ethernet link established, no display used, no USB devices
- Linux Idle: Ethernet link established, no display used, no USB devices
- Linux Heavy Load: CPU load 100% on each core, memory tester, LVDS display, Ethernet traffic generated with iperf
- Deep Sleep: wake on power button press



#### 1.4.2 Hardware used

Table 2: Modules used for Power Consumption Measurement

| Order<br>Number | Reference                            | СРИ                                                     | RAM       | Temp. Range    |
|-----------------|--------------------------------------|---------------------------------------------------------|-----------|----------------|
| 78402           | MSC SM2S-IMX8MINIQC-14N0261I PCBFTX  | i.MX8M Mini Quad, Quad-Core Cortex-A53 at 1.8GHz        | 2G LPDDR4 | -40°C to +85°C |
| 78370           | MSC SM2S-IMX8MINIQC-13N4200I PCBFTX  | i.MX8M Mini Quad, Quad-Core Cortex-A53 at 1.8GHz        | 2G LPDDR4 | -40°C to +85°C |
| 79649           | MSC SM2S-IMX8MINIQC-03N0840E PCBFTX  | i.MX8M Mini Quad, Quad-Core Cortex-A53 at 1.8GHz        | 1G LPDDR4 | -25°C to +85°C |
| 78368           | MSC SM2S-IMX8MINIDC-03N4200I PCBFTX  | i.MX8M Mini Dual, Dual-Core Cortex-A53 at 1.8GHz        | 1G LPDDR4 | -40°C to +85°C |
| 78404           | MSC SM2S-IMX8MINISC-03N4210I PCBFTX  | i.MX8M Mini Solo, Single-Core Cortex-A53 at 1.8GHz      | 1G LPDDR4 | -40°C to +85°C |
| 78406           | MSC SM2S-IMX8MINISCL-03N0880I PCBFTX | i.MX8M Mini Solo Lite, Single-Core Cortex-A53 at 1.8GHz | 1G LPDDR4 | -40°C to +85°C |

#### 1.4.3 Measurement Results

Table 3: Typical Power Consumption Measurement\*

| Order<br>Number | Reference                            | Uboot Idle [W] | Linux idle [W] | Linux Heavy<br>Load [W] | Deep Sleep [W] |
|-----------------|--------------------------------------|----------------|----------------|-------------------------|----------------|
| 78402           | MSC SM2S-IMX8MINIQC-14N0261I PCBFTX  | 2.045          | 1.790          | 4.650                   | 0.315          |
| 78370           | MSC SM2S-IMX8MINIQC-13N4200I PCBFTX  | 2.030          | 1.780          | 4.610                   | 0.315          |
| 79649           | MSC SM2S-IMX8MINIQC-03N0840E PCBFTX  | 1.950          | 1.710          | 4.320                   | 0.140          |
| 78368           | MSC SM2S-IMX8MINIDC-03N4200I PCBFTX  | 1.905          | 1.615          | 3.820                   | 0.350          |
| 78404           | MSC SM2S-IMX8MINISC-03N4210I PCBFTX  | 1.810          | 1.580          | 3.050                   | 0.310          |
| 78406           | MSC SM2S-IMX8MINISCL-03N0880I PCBFTX | 1.925          | 1.660          | 3.046                   | 0.140          |

\*NOTE: Unless stated otherwise, all measurements were taken at room temperature approx 23°C.



## 1.5 Mechanical Dimensions

Figure 1-2: Module Dimensions



Figure 1-3: Overall height without heat spreader of the SMARC™ Module



The overall height is dependent on the MXM3 connector used on the baseboard.



### 1.6 Mechanical Distortion of PCB

For thermal heat dissipation the heat sink needs to have a good mechanical contact to the CPU housing which means the heat sink should be mounted such that there is some mechanical stress applied. The higher the force applied the better the thermal resistance and consequently the better the thermal cooling. This pressure may result in a slight mechanical bending of the SMARC module PCB.

Production tolerance, material deviation and thermal expansion lead to a range of possible pressure range and bending. A negative pressure with an air gap between the heat spreader and the chip case needs to be avoided and likewise too much distortion.

Component types and their distance to the heat spreader mounting holes need to be considered.

Referring to data sheets of the relevant parts and referring to AEC-Q200 the bending needs to be less than 1mm over 90mm. (1.11%) > 0.75mm



Figure 1-4: Distance between mounting holes



# 2 Thermal Specifications

The cooling solution for a SMARC™ module is based on a heat spreader or heat-sink concept.

A heat spreader or heat sink is typically made of aluminum mounted on top of the module. The connection between this plate and the module components is made using thermal interface materials such as phase change foils, gap pads and copper or aluminum blocks. A very good thermal conductivity is required in order to transfer the heat from the SoC to the heat spreader plate. The heat sink concept maximizes the surface contact area with the cooling medium.

Heat spreader and heat sinks used by the MSC module are thermally attached using phase change material. Stand-alone heat sinks generally offer best thermal transfer characteristics. Please contact MSC Technologies support for a suitable heat-sink solution for the MSC SM2S-IMX8MINI SMARC™ Module.

The main goal for the thermal design of a system is that each device on the module is operated within its specified thermal limits. There may be system implementations where the heat spreader temperature could be higher. In such a case the cooling solution design should be validated such that the thermal specifications of all the components on the module are not violated across the system operating temperature range even under worst case conditions.

### 2.1 Thermal Definitions

**Tpcb** This is the temperature on the surface of the module PCB at point P (defined below).

**Tpcb\_max** The maximum temperature allowed for the surface of the module PCB at point P (defined below).

**Tpcb\_min** This is defined as the minimum temperature allowed for the surface of the module PCB.

**P** The point on the module PCB where the PCB temperature must be measured.

The stabilized temperature measured on the heat spreader and the module PCB during runtime mostly depends on the computing power demand from the application and the cooling solution implemented in the system. It is the responsibility of the system designer to provide a cooling solution in addition to the heat spreader that fulfils the requirements of the application.



The temperature at the defined point on the PCB shall not exceed the temperature range in the following table.

**Table 4: Temperature Range** 

| Module Variant                                         | Tpcb_min | Tpcb_max |
|--------------------------------------------------------|----------|----------|
| Module variants with commercial temperature components | 0 °C     | +70 °C   |
| Module variants with extended temperature components   | -25 °C   | + 85 °C  |
| Module variants with industrial temperature components | - 40 °C  | + 85 °C  |

Figure 2-1: Defined Temperature Point





# 3 Module Connector Pinout

The pinout of the module connector is based on the SMARC™ specification[1].

**Table 5: Module Connector Pinout** 

| Primary (Top) Side |                | Secondary (Bottom) Side |              |  |
|--------------------|----------------|-------------------------|--------------|--|
| P1                 | SMB_ALERT_1V8# | S1                      | I2C_CAM1_CK  |  |
| P2                 | GND            | S2                      | I2C_CAM1_DAT |  |
| P3                 | CSI1_CK+       | S3                      | GND          |  |
| P4                 | CSI1_CK-       | S4                      | NC           |  |
| P5                 | NC             | S5                      | I2C_CAM0_CK  |  |
| P6                 | GBE0_SDP       | S6                      | CAM_MCK      |  |
| P7                 | CSI1_RX0+      | S7                      | I2C_CAM0_DAT |  |
| P8                 | CSI1_RX0-      | S8                      | CSI0_CK+     |  |
| P9                 | GND            | S9                      | CSI0_CK-     |  |
| P10                | CSI1_RX1+      | S10                     | GND          |  |
| P11                | CSI1_RX1-      | S11                     | CSI0_RX0+    |  |
| P12                | GND            | S12                     | CSI0_RX0-    |  |
| P13                | CSI1_RX2+      | S13                     | GND          |  |
| P14                | CSI1_RX2-      | S14                     | CSI0_RX1+    |  |
| P15                | GND            | S15                     | CSI0_RX1-    |  |
| P16                | CSI1_RX3+      | S16                     | GND          |  |
| P17                | CSI1_RX3-      | S17                     | GBE1_MDI0+   |  |

| Primary (Top) Side |                | Secondary (Bottom) Side |                |  |
|--------------------|----------------|-------------------------|----------------|--|
| P18                | GND            | S18                     | GBE1_MDI0-     |  |
| P19                | GBE0_MDI3-     | S19                     | GBE1_LINK100#  |  |
| P20                | GBE0_MDI3+     | S20                     | GBE1_MDI1+     |  |
| P21                | GBE0_LINK100#  | S21                     | GBE1_MDI1-     |  |
| P22                | GBE0_LINK1000# | S22                     | GBE1_LINK1000# |  |
| P23                | GBE0_MDI2-     | S23                     | GBE1_MDI2+     |  |
| P24                | GBE0_MDI2+     | S24                     | GBE1_MDI2-     |  |
| P25                | GBE0_LINK_ACT# | S25                     | GND            |  |
| P26                | GBE0_MDI1-     | S26                     | GBE1_MDI3+     |  |
| P27                | GBE0_MDI1+     | S27                     | GBE1_MDI3-     |  |
| P28                | NC             | S28                     | NC             |  |
| P29                | GBE0_MDI0-     | S29                     | NC             |  |
| P30                | GBE0_MDI0+     | S30                     | NC             |  |
| P31                | SPI0_CS1#      | S31                     | GBE1_LINK_ACT# |  |
| P32                | GND            | S32                     | NC             |  |
| P33                | SDIO_WP        | S33                     | NC             |  |
| P34                | SDIO_CMD       | S34                     | GND            |  |



| Primary | (Top) Side  | Secondary (Bottom) Side |            |  |
|---------|-------------|-------------------------|------------|--|
| P35     | SDIO_CD#    | S35                     | USB4+      |  |
| P36     | SDIO_CK     | S36                     | USB4-      |  |
| P37     | SDIO_PWR_EN | S37                     | NC         |  |
| P38     | GND         | S38                     | AUDIO_MCK  |  |
| P39     | SDIO_D0     | S39                     | I2S0_LRCK  |  |
| P40     | SDIO_D1     | S40                     | I2S0_SDOUT |  |
| P41     | SDIO_D2     | S41                     | I2S0_SDIN  |  |
| P42     | SDIO_D3     | S42                     | I2S0_CK    |  |
| P43     | SPI0_CS0#   | S43                     | NC         |  |
| P44     | SPI0_CK     | S44                     | NC         |  |
| P45     | SPI0_DIN    | S45                     | NC         |  |
| P46     | SPI0_DO     | S46                     | NC         |  |
| P47     | GND         | S47                     | GND        |  |
| P48     | NC          | S48                     | I2C_GP_CK  |  |
| P49     | NC          | S49                     | I2C_GP_DAT |  |
| P50     | GND         | S50                     | I2S2_LRCK  |  |
| P51     | NC          | S51                     | I2S2_SDOUT |  |
| P52     | NC          | S52                     | I2S2_SDIN  |  |
| P53     | GND         | S53                     | I2S2_CK    |  |
| P54     | SPI1_CS0#   | S54                     | NC         |  |
| P55     | SPI1_CS1#   | S55                     | NC         |  |

| Primary | (Top) Side    | Secondary (Bottom) Side |       |  |  |  |
|---------|---------------|-------------------------|-------|--|--|--|
| P56     | SPI1_CK       | S56                     | NC    |  |  |  |
| P57     | SPI1_DIN      | S57                     | NC    |  |  |  |
| P58     | SPI1_DO       | S58                     | NC    |  |  |  |
| P59     | GND           | S59                     | NC    |  |  |  |
| P60     | USB0+         | S60                     | NC    |  |  |  |
| P61     | USB0-         | S61                     | GND   |  |  |  |
| P62     | USB0_EN_OC#   | S62                     | NC    |  |  |  |
| P63     | USB0_VBUS_DET | S63                     | NC    |  |  |  |
| P64     | USB0_OTG_ID   | S64                     | GND   |  |  |  |
| P65     | USB1+         | S65                     | NC    |  |  |  |
| P66     | USB1-         | S66                     | NC    |  |  |  |
| P67     | USB1_EN_OC#   | S67                     | GND   |  |  |  |
| P68     | GND           | S68                     | USB3+ |  |  |  |
| P69     | USB2+         | S69                     | USB3- |  |  |  |
| P70     | USB2-         | S70                     | GND   |  |  |  |
| P71     | USB2_EN_OC#   | S71                     | NC    |  |  |  |
| P72     | NC            | S72                     | NC    |  |  |  |
| P73     | NC            | S73                     | GND   |  |  |  |
| P74     | USB3_EN_OC#   | S74                     | NC    |  |  |  |
|         |               | S75                     | NC    |  |  |  |
| KEY     |               | KEY                     |       |  |  |  |



| Primary | (Top) Side    | Secondary (Bottom) Side |     |  |  |  |
|---------|---------------|-------------------------|-----|--|--|--|
| P75     | PCIE_A_RST#   | S76                     | NC  |  |  |  |
| P76     | USB4_EN_OC#   | S77                     | NC  |  |  |  |
| P77     | NC            | S78                     | NC  |  |  |  |
| P78     | NC            | S79                     | NC  |  |  |  |
| P79     | GND           | S80                     | GND |  |  |  |
| P80     | NC            | S81                     | NC  |  |  |  |
| P81     | NC            | S82                     | NC  |  |  |  |
| P82     | GND           | S83                     | GND |  |  |  |
| P83     | PCIE_A_REFCK+ | S84                     | NC  |  |  |  |
| P84     | PCIE_A_REFCK- | S85                     | NC  |  |  |  |
| P85     | GND           | S86                     | GND |  |  |  |
| P86     | PCIE_A_RX+    | S87                     | NC  |  |  |  |
| P87     | PCIE_A_RX-    | S88                     | NC  |  |  |  |
| P88     | GND           | S89                     | GND |  |  |  |
| P89     | PCIE_A_TX+    | S90                     | NC  |  |  |  |
| P90     | PCIE_A_TX-    | S91                     | NC  |  |  |  |
| P91     | GND           | S92                     | GND |  |  |  |
| P92     | NC            | S93                     | NC  |  |  |  |
| P93     | NC            | S94                     | NC  |  |  |  |
| P94     | GND           | S95                     | NC  |  |  |  |
| P95     | NC            | S96                     | NC  |  |  |  |

| Primary | (Top) Side  | Second | ary (Bottom) Side     |
|---------|-------------|--------|-----------------------|
| P96     | NC          | S97    | NC                    |
| P97     | GND         | S98    | NC                    |
| P98     | NC          | S99    | NC                    |
| P99     | NC          | S100   | NC                    |
| P100    | GND         | S101   | GND                   |
| P101    | NC          | S102   | NC                    |
| P102    | NC          | S103   | NC                    |
| P103    | GND         | S104   | NC                    |
| P104    | NC          | S105   | NC                    |
| P105    | NC          | S106   | NC                    |
| P106    | NC          | S107   | LCD1_BKLT_EN          |
| P107    | NC          | S108   | LVDS1_CK+ / DSI1_CLK+ |
| P108    | GPIO0       | S109   | LVDS1_CK- / DSI1_CLK- |
| P109    | GPIO1       | S110   | GND                   |
| P110    | GPIO2       | S111   | LVDS1_0+ / DSI1_D0+   |
| P111    | GPIO3       | S112   | LVDS1_0- / DSI1_D0-   |
| P112    | GPIO4       | S113   | NC                    |
| P113    | GPIO5 (PWM) | S114   | LVDS1_1+ / DSI1_D1+   |
| P114    | GPIO6 (CLK) | S115   | LVDS1_1- / DSI1_D1-   |
| P115    | GPIO7       | S116   | LCD1_VDD_EN           |
| P116    | GPIO8       | S117   | LVDS1_2+ / DSI1_D2+   |



| Primary | (Top) Side | Secondary (Bottom) Side |                       |  |  |  |
|---------|------------|-------------------------|-----------------------|--|--|--|
| P117    | GPIO9      | S118                    | LVDS1_2- / DSI1_D2-   |  |  |  |
| P118    | GPIO10     | S119                    | GND                   |  |  |  |
| P119    | GPIO11     | S120                    | LVDS1_3+ / DSI1_D3+   |  |  |  |
| P120    | GND        | S121                    | LVDS1_3- / DSI1_D3-   |  |  |  |
| P121    | I2C_PM_CK  | S122                    | LCD1_BKLT_PWM         |  |  |  |
| P122    | I2C_PM_DAT | S123                    | NC                    |  |  |  |
| P123    | BOOT_SEL0# | S124                    | GND                   |  |  |  |
| P124    | BOOT_SEL1# | S125                    | LVDS0_0+ / DSI0_D0+   |  |  |  |
| P125    | BOOT_SEL2# | S126                    | LVDS0_0- / DSI0_D0-   |  |  |  |
| P126    | RESET_OUT# | S127                    | LCD0_BKLT_EN          |  |  |  |
| P127    | RESET_IN#  | S128                    | LVDS0_1+ / DSI0_D1+   |  |  |  |
| P128    | POWER_BTN# | S129                    | LVDS0_1- / DSI0_D1-   |  |  |  |
| P129    | SER0_TX    | S130                    | GND                   |  |  |  |
| P130    | SER0_RX    | S131                    | LVDS0_2+ / DSI0_D2+   |  |  |  |
| P131    | SER0_RTS#  | S132                    | LVDS0_2- / DSI0_D2-   |  |  |  |
| P132    | SER0_CTS#  | S133                    | LCD0_VDD_EN           |  |  |  |
| P133    | GND        | S134                    | LVDS0_CK+ / DSI0_CLK+ |  |  |  |
| P134    | SER1_TX    | S135                    | LVDS0_CK- / DSI0_CLK- |  |  |  |
| P135    | SER1_RX    | S136                    | GND                   |  |  |  |
| P136    | SER2_TX    | S137                    | LVDS0_3+ / DSI0_D3+   |  |  |  |
| P137    | SER2_RX    | S138                    | LVDS0_3- / DSI0_D3-   |  |  |  |

| Primary | (Top) Side | Secondary (Bottom) Side |                |  |  |  |
|---------|------------|-------------------------|----------------|--|--|--|
| P138    | SER2_RTS#  | S139                    | I2C_LCD_CK     |  |  |  |
| P139    | SER2_CTS#  | S140                    | I2C_LCD_DAT    |  |  |  |
| P140    | SER3_TX    | S141                    | LCD0_BKLT_PWM  |  |  |  |
| P141    | SER3_RX    | S142                    | NC             |  |  |  |
| P142    | GND        | S143                    | GND            |  |  |  |
| P143    | CAN0_TX    | S144                    | NC             |  |  |  |
| P144    | CAN0_RX    | S145                    | WDT_TIME_OUT#  |  |  |  |
| P145    | CAN1_TX    | S146                    | PCIE_WAKE#     |  |  |  |
| P146    | CAN1_RX    | S147                    | VDD_RTC        |  |  |  |
| P147    | VCC        | S148                    | LID#           |  |  |  |
| P148    | VCC        | S149                    | SLEEP#         |  |  |  |
| P149    | VCC        | S150                    | VIN_PWR_BAD#   |  |  |  |
| P150    | VCC        | S151                    | CHARGING#      |  |  |  |
| P151    | VCC        | S152                    | CHARGER_PRSNT# |  |  |  |
| P152    | VCC        | S153                    | CARRIER_STBY#  |  |  |  |
| P153    | VCC        | S154                    | CARRIER_PWR_ON |  |  |  |
| P154    | VCC        | S155                    | FORCE_RECOV#   |  |  |  |
| P155    | VCC        | S156                    | BATLOW#        |  |  |  |
| P156    | VCC        | S157                    | TEST#          |  |  |  |
|         |            | S158                    | GND            |  |  |  |



# 4 Module Connector Signal Description

In the following tables signals are marked with the power rail associated with the pin, and for input and I/O pins, with the input voltage tolerance. The pin power rail and the pin input voltage tolerance may be different.

Output pins are also classified as push pull (PP) or open drain (OD).

The column "PU/PD" describes pull-up resistors (PU) or pull-down resistors (PD) implemented on the module.

### 4.1 I<sup>2</sup>S

The module provides two I<sup>2</sup>S Links for connecting I<sup>2</sup>S codecs on the carrier board. Driver support for I<sup>2</sup>S is only available for Linux. Some features:

- · Programmable data interface modes such as I2S, LSB or MSB-justified
- Programmable word length (16, 20, 24 or 28bits)
- AC97 and TDM support
- Time Slot Mask Registers for reduced ARM platform overhead (for both Transmit and Receive)
- 128-word Transmit FIFO and 128-word Receive FIFO

Table 6: I<sup>2</sup>S Signal Description

| Signal     | Pin Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD | Description                                    |
|------------|----------|--------------|-----------------------|-------------------------|--------------------|-------|------------------------------------------------|
| I2S0_LRCK  | O PP     | 1.8V CMOS    | AC14                  | SAI5_RXD1               | 1.8V               |       | Sample-synchronization signal to the codec(s). |
| 12S0_CK    | O PP     | 1.8V CMOS    | AD13                  | SAI5_RXD2               | 1.8V               |       | Serial data clock                              |
| I2S0_SDOUT | O PP     | 1.8V CMOS    | AC13                  | SAI5_RXD3               | 1.8V               |       | Serial TDM data output to the codec.           |
| I2S0_SDIN  | I        | 1.8V CMOS    | AD18                  | SAI5_RXD0               | 1.8V               |       | Serial TDM data inputs from the codec.         |
| I2S2_LRCK  | O PP     | 1.8V CMOS    | AB19                  | SAI1_TXFS               | 1.8V               |       | Sample-synchronization signal to the codec(s). |
| 12S2_CK    | O PP     | 1.8V CMOS    | AC18                  | SAI1_TXC                | 1.8V               |       | Serial data clock                              |
| I2S2_SDOUT | O PP     | 1.8V CMOS    | AG20                  | SAI1_TXD0               | 1.8V               |       | Serial TDM data output to the codec.           |



| Signal    | Pin Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD | Description                            |
|-----------|----------|--------------|-----------------------|-------------------------|--------------------|-------|----------------------------------------|
| I2S2_SDIN | I        | 1.8V CMOS    | AG15                  | SAI1_RXD0               | 1.8V               |       | Serial TDM data inputs from the codec. |
| AUDIO_MCK | O PP     | 1.8V CMOS    | H26                   | CLKOUT1                 | 1.8V               |       | Connected by default.                  |

### 4.2 Ethernet

Based on Texas Instruments™ DP83867 Ethernet Controller the module provides 10/100/1000 Mbps Ethernet with MDI differential pairs on GBE0 Interface.

The module provides a second 10/100/1000 Mbps Ethernet option (GBE1 interface) based on Intels ™ I210 Ethernet Controller. In case GBE1 interface is implemented PCIe will no longer be available. PCIE\_A and GBE1 are mutually exclusive assembly options.

Both Ethernet Controllers include a voltage mode line driver, so using an analog powered center tap is not allowed. Therefore Pin P28 GBE0\_CTREF and S28 GBE1\_CTREF specified in the SMARC™ specification 2.0 are not connected on the module and can be left unconnected.

Both Ethernet Controller have built in termination resistors. As a result, no external termination resistors should be used. Please refer to the DP83867EVM schematics for correct magnetics wiring. Each Center tap of the magnetics should be independently de-coupled to ground via a 0.1µF capacitor.

**Table 7: Ethernet Signal Description** 

| Signal                   | Pin<br>Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini | Power Tolerance | PU/PD | Description                                                                                            |
|--------------------------|-------------|--------------|-----------------------|-------------------------|-----------------|-------|--------------------------------------------------------------------------------------------------------|
| GBE0_MDI0+<br>GBE0_MDI0- | I/O         | Analog       | n.a.                  | n.a.                    | 3.3V            |       | Media Dependent Interface Differential Pair 0<br>Used for the receive pair in 10/100 Mbit/s mode       |
| GBE0_MDI1+<br>GBE0_MDI1- | I/O         | Analog       | n.a.                  | n.a.                    | 3.3V            |       | Media Dependent Interface Differential Pair 1<br>Used for the transmit pair in 10/100 Mbit/s mode      |
| GBE0_MDI2+<br>GBE0_MDI2- | I/O         | Analog       | n.a.                  | n.a.                    | 3.3V            |       | Media Dependent Interface Differential Pair 2<br>This signal pair is only used for 1000Mbit/s<br>mode. |
| GBE0_MDI3+<br>GBE0_MDI3- | I/O         | Analog       | n.a.                  | n.a.                    | 3.3V            |       | Media Dependent Interface Differential Pair 3 This signal pair is only used for 1000Mbit/s mode.       |
| GBE0_LINK_ACT#           | O OD        | 3.3V CMOS    | n.a.                  | n.a.                    | 3.3V            |       | Link/Activity Indication, active low and 24mA sink capability.                                         |



| Signal                   | Pin<br>Type | Signal Level | Pin on i.MX8M Mini | Pin name on i.MX8M Mini | Power Tolerance | PU/PD | Description                                                                                            |
|--------------------------|-------------|--------------|--------------------|-------------------------|-----------------|-------|--------------------------------------------------------------------------------------------------------|
| GBE0_LINK100#            | O OD        | 3.3V CMOS    | n.a                | n.a                     | 3.3V            |       | Link Speed Indication for 100Mbps, active low, and 24mA sink capability.                               |
| GBE0_LINK1000#           | O OD        | 3.3V CMOS    | n.a.               | n.a.                    | 3.3V            |       | Link Speed Indication for 1000Mbps, active low, and 24mA sink capability.                              |
| GBE1_MDI0+<br>GBE1_MDI0- | I/O         | Analog       | n.a.               | n.a.                    | 3.3V            |       | Media Dependent Interface Differential Pair 0<br>Used for the receive pair in 10/100 Mbit/s mode       |
| GBE1_MDI1+<br>GBE1_MDI1- | I/O         | Analog       | n.a.               | n.a.                    | 3.3V            |       | Media Dependent Interface Differential Pair 1<br>Used for the transmit pair in 10/100 Mbit/s mode      |
| GBE1_MDI2+<br>GBE1_MDI2- | I/O         | Analog       | n.a.               | n.a.                    | 3.3V            |       | Media Dependent Interface Differential Pair 2<br>This signal pair is only used for 1000Mbit/s<br>mode. |
| GBE1_MDI3+<br>GBE1_MDI3- | I/O         | Analog       | n.a.               | n.a.                    | 3.3V            |       | Media Dependent Interface Differential Pair 3 This signal pair is only used for 1000Mbit/s mode.       |
| GBE1_LINK_ACT#           | O OD        | 3.3V CMOS    | n.a.               | n.a.                    | 3.3V            |       | Link/Activity Indication, active low and 24mA sink capability.                                         |
| GBE1_LINK100#            | O OD        | 3.3V CMOS    | n.a                | n.a                     | 3.3V            |       | Link Speed Indication for 100Mbps, active low, and 24mA sink capability.                               |
| GBE1_LINK1000#           | O OD        | 3.3V CMOS    | n.a.               | n.a.                    | 3.3V            |       | Link Speed Indication for 1000Mbps, active low, and 24mA sink capability.                              |



# 4.3 PCI Express

The i.MX8M Mini SoC supports PCle x1 Gen2 lane.\*

**Table 8: PCle Signal Description** 

| Signal                         | Pin Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini  | Power<br>Tolerance     | PU/PD  | Description                                                                           |
|--------------------------------|----------|--------------|-----------------------|--------------------------|------------------------|--------|---------------------------------------------------------------------------------------|
| PCIE_A_TX+<br>PCIE_A_TX-       | 0        | LVDS PCIe    | B20<br>A20            | PCIE_TXN_P<br>PCIE_TXN_N | According to PCIe spec |        | PCI Express Differential Transmit Pairs. AC coupled on module                         |
| PCIE_A_RX+<br>PCIE_A_RX-       | I        | LVDS PCIe    | B19<br>A19            | PCIE_RXN_P<br>PCIE_RXN_N | According to PCIe spec |        | PCI Express Differential Receive Pairs                                                |
| PCIE_A_REFCK+<br>PCIE_A_REFCK- | 0        | LVDS PCIe    | B21<br>A21            | PCIE_CLK_N<br>PCIE_CLK_P | According to PCIe spec |        | PCI Express Reference Clock. AC coupled on module. Clock enabled by default.          |
| PCIE_WAKE#                     | I        | 3.3V CMOS    | N27                   | NAND_RE_B                | 3.3V                   | PU 10k | PCI Express Wake signal. Asserted by device when requesting wake up. (CPU GPIO3_IO15) |
| PCIE_A_RST#                    | O PP     | 3.3V CMOS    | K27                   | NAND_CLE                 | 3.3V                   |        | PCI Express Reset output signal.                                                      |

\*NOTE: In case GBE1 Interface is implemented on the module the PCIe Interface will no longer be available. Pins can be left unconnected

### 4.4 USB

The USB controller supports USB 2.0.

Depending on the module variant the following USB lane options are available:

- Option 1 with USB 2.0 Hub: USB[0] = USB 2.0 host/device OTG compliant USB[1:4] = USB 2.0 host
- Option 2 without USB 2.0 Hub: USB[0] = USB 2.0 host/device OTG compliant USB[1] = USB 2.0 host.



**Table 9: USB Signal Description** 

| Signal                 | Option<br>Availability | Pin Type | Signal Level | Pin on<br>i.MX8M<br>Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD          | Description                                                                            |
|------------------------|------------------------|----------|--------------|--------------------------|-------------------------|--------------------|----------------|----------------------------------------------------------------------------------------|
| USB0+<br>USB0-         | 1 & 2                  | I/O      | USB          | B22<br>A22               | USB1_DP<br>USB1_DN      | 3.3V               |                | Differential USB 2.0 data pairs connected to SoC. Can be configured as host or device. |
| USB1+<br>USB1-         | 1                      | I/O      | USB          | n.a.                     | n.a.                    | 3.3V               |                | Differential USB 2.0 data pairs connected to USB hub. Can be configured as host only.  |
|                        | 2                      | I/O      | USB          | B23<br>A23               | USB2_DP<br>USB2_DN      | 3.3V               |                | Differential USB 2.0 data pairs connected to SoC. Can be configured as host only.      |
| USB[2:4]+<br>USB[2:4]- | 1                      | I/O      | USB          | n.a.                     | n.a.                    | 3.3V               |                | Differential USB 2.0 data pairs connected to USB hub. Can be configured as host only.  |
| USB0_VBUS_DET          | 1 & 2                  | I        | Analog       | F22                      | USB1_VBUS               | 5V                 |                | external VBUS detection pin                                                            |
| USB0_OTG_ID            | 1 & 2                  | I        | 3.3V CMOS    | D22                      | USB1_ID                 | 3.3V               | PU 10k<br>3.3V | USB host/client control select pin for the USB controller on the module                |
| USB0_EN_OC#            | 1 & 2                  | I/O OD   | 3.3V CMOS    | AB10                     | GPIO1_IO12              | 3.3V               | PU 10k<br>3.3V | Host/client dependent enable signal for USB power switch on the carrier board. *       |
| USB1_EN_OC#            | 1                      | I/O OD   | 3.3V CMOS    | n.a                      | n.a                     | 3.3V               | PU 10k<br>3.3V | Multi-function signal for enabling USB power and indicating an over-current event.*    |
|                        | 2                      | I/O OD   | 3.3V CMOS    | P26                      | NAND_READY_B            | 3.3V               | PU 10k<br>3.3V | Multi-function signal for enabling USB power and indicating an over-current event.     |
| USB2_EN_OC#            | 1                      | I/O OD   | 3.3V CMOS    | n.a.                     | n.a.                    | 3.3V               | PU 10k<br>3.3V | Multi-function signal for enabling USB power and indicating an over-current event.*    |



| Signal      | Option<br>Availability | Pin Type | Signal Level | Pin on<br>i.MX8M<br>Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD          | Description                                                                          |
|-------------|------------------------|----------|--------------|--------------------------|-------------------------|--------------------|----------------|--------------------------------------------------------------------------------------|
| USB3_EN_OC# | 1                      | I/O OD   | 3.3V CMOS    | n.a.                     | n.a.                    | 3.3V               | PU 10k<br>3.3V | Multi-function signal for enabling USB power and indicating an over-current event. * |
| USB4_EN_OC# | 1                      | I/O OD   | 3.3V CMOS    | n.a.                     | n.a.                    | 3.3V               | PU 10k<br>3.3V | Multi-function signal for enabling USB power and indicating an over-current event.*  |

\*NOTE: Module pulls USB[0:4]\_EN\_OC# low to disable USB power delivery on carrier board. Carrier board pulls the signal low to indicate over-current situation. If over-current monitoring is desired, an OD driver should be implemented. In case no power switches are used, USB[0:4]\_EN\_OC# should be left unconnected.

## 4.5 Camera

MIPI CSI-2 interface is supported on CSI0 with 2 lanes or on CSI1 with 4 lanes, mutually exclusive assembly option.

**Table 10: HDMI Signal Description** 

| Signal                     | Pin<br>Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini        | Power<br>Tolerance | PU/PD | Description                  |
|----------------------------|-------------|--------------|-----------------------|--------------------------------|--------------------|-------|------------------------------|
| CSI0_RX[0]-<br>CSI0_RX[0]+ | I           | 1.8V CMOS    | A14<br>B14            | MIPI_CSI_D0_N<br>MIPI_CSI_D0_P | 1.8V               |       | CSI differential data inputs |
| CSI0_RX[1]-<br>CSI0_RX[1]+ | I           | 1.8V CMOS    | A15<br>B15            | MIPI_CSI_D1_N<br>MIPI_CSI_D1_P | 1.8V               |       | CSI differential data inputs |
| CSI1_RX[0]-<br>CSI1_RX[0]+ | I           | 1.8V CMOS    | A14<br>B14            | MIPI_CSI_D0_N<br>MIPI_CSI_D0_P | 1.8V               |       | CSI differential data inputs |
| CSI1_RX[1]-<br>CSI1_RX[1]+ | I           | 1.8V CMOS    | A15<br>B15            | MIPI_CSI_D1_N<br>MIPI_CSI_D1_P | 1.8V               |       | CSI differential data inputs |
| CSI1_RX[2]-<br>CSI1_RX[2]+ | I           | 1.8V CMOS    | A17<br>B17            | MIPI_CSI_D2_N<br>MIPI_CSI_D2_P | 1.8V               |       | CSI differential data inputs |
| CSI1_RX[3]-<br>CSI1_RX[3]+ | I           | 1.8V CMOS    | A18<br>B18            | MIPI_CSI_D3_N<br>MIPI_CSI_D3_P | 1.8V               |       | CSI differential data inputs |



| Signal               | Pin<br>Type | Signal Level | Pin on i.MX8M Mini | Pin name on i.MX8M Mini          | Power<br>Tolerance | PU/PD        | Description                                        |
|----------------------|-------------|--------------|--------------------|----------------------------------|--------------------|--------------|----------------------------------------------------|
| CSI0_CK+<br>CSI0_CK- | I           | 1.8V CMOS    | A22<br>B22         | MIPI_CSI_CLK_N<br>MIPI_CSI_CLK_P | 1.8V               |              | CSI differential clock inputs                      |
| CSI1_CK+<br>CSI1_CK- | 1           | 1.8V CMOS    | A19<br>B19         | MIPI_CSI_CLK_N<br>MIPI_CSI_CLK_P | 1.8V               |              | CSI differential clock inputs                      |
| CAM_MCK              | O PP        | 1.8V CMOS    | J26                | CLKOUT2                          | 1.8V               |              | Master clock for camera                            |
| I2C_CAM0_CK          | O OD        | 1.8V CMOS    | F15                | UART2_RXD                        | 1.8V               | PU 2.2k 1.8V | CAM0 DDC clock line (CPU GPIO5_IO24) *             |
| I2C_CAM0_DAT         | I/O OD      | 1.8V CMOS    | E15                | UART2_TXD                        | 1.8V               | PU 2.2k 1.8V | CAM0 DDC data line (CPU GPIO5_IO25) *              |
| I2C_CAM1_CK          | O OD        | 1.8V CMOS    | F15                | UART2_RXD                        | 1.8V               | PU 2.2k 1.8V | CAM0 DDC clock line (CPU GPIO5_IO24)*              |
| I2C_CAM1_DAT         | I/O OD      | 1.8V CMOS    | E15                | UART2_TXD                        | 1.8V               | PU 2.2k 1.8V | CAM1 DDC data line (CPU GPIO5_IO25) *              |
| CAM0_PWR#            | I/O OD      | 1.8V CMOS    | AG14               | GPIO1_IO00                       | 1.8V               | PU 470k 1.8V | CAM0 Power Enable, active low. GPIO0 alternate use |
| CAM1_PWR#            | I/O OD      | 1.8V CMOS    | AF14               | GPIO1_IO01                       | 1.8V               | PU 470k 1.8V | CAM1 Power Enable, active low. GPIO1 alternate use |
| CAM0_RST#            | I/O OD      | 1.8V CMOS    | AF13               | GPIO1_IO03                       | 1.8V               | PU 470k 1.8V | CAM0 Reset, active low. GPIO2 alternate use        |
| CAM1_RST#            | I/O OD      | 1.8V CMOS    | AF12               | GPIO1_IO05                       | 1.8V               | PU 470k 1.8V | CAM1 Reset, active low. GPIO3 alternate use        |

\*NOTE: CSI0 and CSI1 share the same I2C bus.

CAMO and CAM1 I<sup>2</sup>C drivers are implemented using bit-banged IO operation.

## 4.6 LVDS

LVDS channel 0 and 1 are available on the SMARC™ module depending on module variant. An on-module DSI bridge converts the MIPI DSI data stream to Single-Link LVDS and Dual-link LVDS.



#### Features:

- Single-Link and Dual-Link with four data lanes per link
- Supports 18bpp and 24bpp
- Pixel clock up to 154 MHz

Table 11: LVDS Signal Description

| Signal                                         | Pin<br>Type | Signal<br>Level | Pin on<br>i.MX8M<br>Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD | Description                       |
|------------------------------------------------|-------------|-----------------|--------------------------|-------------------------|--------------------|-------|-----------------------------------|
| LVDS0_0+ / DSI0_D0+<br>LVDS0_0- / DSI0_D0-     | 0           | LVDS            | n.a.                     | n.a.                    | 2.8V               |       | LVDS Channel 0 differential pair  |
| LVDS0_1+ / DSI0_D1+<br>LVDS0_1- / DSI0_D1-     | 0           | LVDS            | n.a.                     | n.a.                    | 2.8V               |       | LVDS Channel 0 differential pair  |
| LVDS0_2+ / DSI0_D2+<br>LVDS0_2- / DSI0_D2-     | 0           | LVDS            | n.a.                     | n.a.                    | 2.8V               |       | LVDS Channel 0 differential pair  |
| LVDS0_3+ / DSI0_D3+<br>LVDS0_3- / DSI0_D3-     | 0           | LVDS            | n.a.                     | n.a.                    | 2.8V               |       | LVDS Channel 0 differential pair  |
| LVDS0_CK+ / DSI0_CLK+<br>LVDS0_CK- / DSI0_CLK+ | 0           | LVDS            | n.a.                     | n.a.                    | 2.8V               |       | LVDS Channel 0 differential clock |
| LVDS1_0+ / DSI1_D0+<br>LVDS1_0- / DSI1_D0-     | 0           | LVDS            | n.a.                     | n.a.                    | 2.8V               |       | LVDS Channel 1 differential pair  |
| LVDS1_1+ / DSI1_D1+<br>LVDS1_1- / DSI1_D1-     | 0           | LVDS            | n.a.                     | n.a.                    | 2.8V               |       | LVDS Channel 1 differential pair  |
| LVDS1_2+ / DSI1_D2+<br>LVDS1_2- / DSI1_D2-     | 0           | LVDS            | n.a.                     | n.a.                    | 2.8V               |       | LVDS Channel 1 differential pair  |
| LVDS1_3+ / DSI1_D3+<br>LVDS1_3- / DSI1_D3-     | 0           | LVDS            | n.a.                     | n.a.                    | 2.8V               |       | LVDS Channel 1 differential pair  |



| Signal                                         | Pin<br>Type | Signal<br>Level | Pin on<br>i.MX8M<br>Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD           | Description                                        |
|------------------------------------------------|-------------|-----------------|--------------------------|-------------------------|--------------------|-----------------|----------------------------------------------------|
| LVDS1_CK+ / DSI1_CLK+<br>LVDS1_CK- / DSI1_CLK+ | 0           | LVDS            | n.a.                     | n.a.                    | 2.8V               |                 | LVDS Channel 1 differential clock                  |
| LCD0_VDD_EN                                    | O PP        | 1.8V<br>CMOS    | AF21                     | SAI1_TXD3               | 1.8V               | PD 10k          | LCD0 panel power enable (CPU<br>GPIO4_IO15)        |
| LCD0_BKLT_EN                                   | O PP        | 1.8V<br>CMOS    | AF20                     | SAI1_TXD1               | 1.8V               |                 | LCD0 backlight enable (CPU GPIO4_IO13)             |
| LCD0_BKLT_PWM                                  | O PP        | 1.8V<br>CMOS    | AF8                      | SPDIF_EXT_CLK           | 1.8V               | PD 10k          | LCD0 backlight brightness control (PWM1_OUT)       |
| LCD1_VDD_EN                                    | O PP        | 1.8V<br>CMOS    | AG22                     | SAI1_TXD4               | 1.8V               | PD 10k          | LCD1 panel power enable (CPU GPIO4_IO16)*          |
| LCD1_BKLT_EN                                   | O PP        | 1.8V<br>CMOS    | AG21                     | SAI1_TXD2               | 1.8V               |                 | LCD1 backlight enable (CPU GPIO4_IO14)*            |
| LCD1_BKLT_PWM                                  | O PP        | 1.8V<br>CMOS    | AG9                      | SPDIF_RX                | 1.8V               | PD 10k          | LCD1 backlight brightness control (PWM2_OUT)*      |
| I2C_LCD_CK                                     | O PP        | 1.8V<br>CMOS    | D13                      | I2C4_SCL                | 1.8V               | PU 2.2k<br>1.8V | I <sup>2</sup> C clock output for LVDS display use |
| I2C_LCD_DAT                                    | I/O OD      | 1.8V<br>CMOS    | E13                      | I2C4_SDA                | 1.8V               | PU 2.2k<br>1.8V | I <sup>2</sup> C data line for LVDS display use    |

\*NOTE: LCD1\_VDD\_EN, LCD1\_BKLT\_EN and LCD1\_BKLT\_PWM can be left unconnected in case dual-link LVDS is used

The DSI-LVDS Bridge is only capable of a single-link output on channel 0 or a dual-link output on channel 0 and 1. A simultaneous output of the same source on LVDS channel 0 and channel 1 or independent usage on LVDS channel 0 and channel 1 is not supported.

## 4.7 SPI Bus

The i.MX8M Mini SMARC module offers two Enhanced Configurable SPI (ECSPI) busses with two slave select signals each.

Key features of the ECSPI include:

• Full-duplex synchronous serial interface



- Master/Slave configurable
- Two Chip Select (CS) signals to support multiple peripherals
- Transfer continuation function allows unlimited length data transfers
- 32-bit wide by 64-entry FIFO for both transmit and receive data
- Polarity and phase of the Chip Select (CS) and SPI Clock (SCLK) are configurable
- Direct Memory Access (DMA) support

**Table 12: SPI Signal Description** 

| Signal    | Pin<br>Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD       | Description                  |
|-----------|-------------|--------------|-----------------------|-------------------------|--------------------|-------------|------------------------------|
| SPI0_DIN  | I           | 1.8V CMOS    | A7                    | ECSPI1_MISO             | 1.8V               |             | Master Input Slave Output    |
| SPI0_DO   | O PP        | 1.8V CMOS    | B7                    | ECSPI1_MOSI             | 1.8V               |             | Master Output Slave Input    |
| SPI0_CK   | O PP        | 1.8V CMOS    | D6                    | ECSPI1_SCLK             | 1.8V               |             | Clock Output                 |
| SPI0_CS0# | O PP        | 1.8V CMOS    | B6                    | ECSPI1_SS0              | 1.8V               | PU 10k 1.8V | Chip-Select 0                |
| SPI0_CS1# | O PP        | 1.8V CMOS    | AD22                  | SAI2_TXC                | 1.8V               | PU 10k 1.8V | Chip-Select 1 (GPIO4_IO25) * |
| SPI1_DIN  | I           | 1.8V CMOS    | A8                    | ECSPI2_MISO             | 1.8V               |             | Master Input Slave Output    |
| SPI1_DO   | O PP        | 1.8V CMOS    | B8                    | ECSPI2_MOSI             | 1.8V               |             | Master Output Slave Input    |
| SPI1_CK   | O PP        | 1.8V CMOS    | E6                    | ECSPI2_SCLK             | 1.8V               |             | Clock Output                 |
| SPI1_CS0# | O PP        | 1.8V CMOS    | A6                    | ECSPI2_SS0              | 1.8V               | PU 10k 1.8V | Chip-Select 0                |
| SPI1_CS1# | O PP        | 1.8V CMOS    | AC22                  | SAI2_TXD0               | 1.8V               | PU 10k 1.8V | Chip-Select 1 (GPIO4_IO26) * |

\*NOTE: SPI[0:1] are not available if CAN[0:1] interfaces are implemented on the module.



## 4.8 CAN

The i.MX8M Mini SMARC module optionally features two CAN interfaces based on the Microchip™ MCP2515 stand-alone controller. The controller implements CAN 2.0B protocol specification with up to 1Mbps bit rate. Standard data, extended data and remote frames are supported.

Several features are supported (time-triggered protocols, data byte filtering and one-shot mode).

Table 13: CAN Signal Description \*

| Signal  | Pin<br>Type | Signal Level | Pin on<br>i.MX8M<br>Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD | Description         |  |
|---------|-------------|--------------|--------------------------|-------------------------|--------------------|-------|---------------------|--|
| CAN0_TX | 0           | 1.8V CMOS    | n.a.                     | n.a.                    | 1.8V               |       | CAN Transmit output |  |
| CAN0_RX | I           | 1.8V CMOS    | n.a.                     | n.a.                    | 1.8V               |       | CAN Receive input   |  |
| CAN1_TX | 0           | 1.8V CMOS    | n.a.                     | n.a.                    | 1.8V               |       | CAN Transmit output |  |
| CAN1_RX | I           | 1.8V CMOS    | n.a.                     | n.a.                    | 1.8V               |       | CAN Receive input   |  |

\*NOTE: CAN0 and CAN1 Controllers are accessible via SPI0 and SPI1. Refer to Chapter 6.2 for further information



# 4.9 **GPIO**

The CPU GPIO can be used with default Linux GPIO SYSFS interface in user space.

**Table 14: GPIO Signal Description** 

| Signal            | Pin<br>Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD        | Description               |
|-------------------|-------------|--------------|-----------------------|-------------------------|--------------------|--------------|---------------------------|
| GPIO0 / CAM0_PWR# | I/O         | 1.8V CMOS    | AG14                  | GPIO1_IO00              | 1.8V               | PU 470k 1.8V | CPU GPIO1_IO00            |
| GPIO1 / CAM1_PWR# | I/O         | 1.8V CMOS    | AF14                  | GPIO1_IO01              | 1.8V               | PU 470k 1.8V | CPU GPIO1_IO01            |
| GPIO2 / CAM0_RST# | I/O         | 1.8V CMOS    | AF13                  | GPIO1_IO03              | 1.8V               | PU 470k 1.8V | CPU GPIO1_IO03            |
| GPIO3 / CAM1_RST# | I/O         | 1.8V CMOS    | AF12                  | GPIO1_IO05              | 1.8V               | PU 470k 1.8V | CPU GPIO1_IO05            |
| GPIO4 / HDA_RST#  | I/O         | 1.8V CMOS    | AG11                  | GPIO1_IO05              | 1.8V               | PU 470K 1.8V | CPU GPIO1_IO06            |
| GPIO5 / PWM_OUT   | I/O         | 1.8V CMOS    | AD6                   | SAI3_MCLK               | 1.8V               | PU 470K 1.8V | CPU GPIO5_IO02 / PWM4_OUT |
| GPIO6 / TACHIN    | I/O         | 1.8V CMOS    | AF6                   | SAI3_TXD                | 1.8V               | PU 470K 1.8V | CPU GPIO5_IO01            |
| GPIO7             | I/O         | 1.8V CMOS    | AB22                  | SAI2_RXC                | 1.8V               | PU 470K 1.8V | CPU GPIO4_IO22            |
| GPIO8             | I/O         | 1.8V CMOS    | AD15                  | SAI5_MCLK               | 1.8V               | PU 470K 1.8V | CPU GPIO3_IO25            |
| GPIO9             | I/O         | 1.8V CMOS    | AG8                   | SAI3_RXFS               | 1.8V               | PU 470K 1.8V | CPU GPIO4_IO28            |
| GPIO10            | I/O         | 1.8V CMOS    | AF10                  | GPIO1_IO09              | 1.8V               | PU 470K 1.8V | CPU GPIO1_IO09            |
| GPIO11            | I/O         | 1.8V CMOS    | AF11                  | GPIO1_IO07              | 1.8V               | PU 470K 1.8V | CPU GPIO1_IO07            |



## 4.10 SDIO

The SDIO interface on the SMARC™ connector supports:

- 1-bit / 4-bit for SD/SDIO mode (standard up to version 3.0)
- 1-bit / 4-bit for MMC mode (standard up to version 5.0)
- SD/SDIO 1.8 V or 3.3 V operation with auto detection
- Default Speed, High-Speed and UHS-I (SDR50, DDR50 and SDR104)

**Table 15: SDIO Signal Description** 

| Signal      | Pin<br>Type | Signal Level    | Pin on i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD              | Description                   |
|-------------|-------------|-----------------|--------------------|-------------------------|--------------------|--------------------|-------------------------------|
| SDIO_D0     | I/O         | 3.3V / 1V8 CMOS | AB23               | SD2_DATA0               | 3.3V / 1.8V        | PU 10k 3.3V / 1.8V | SDIO Controller Data          |
| SDIO_D1     | I/O         | 3.3V / 1V8 CMOS | AB24               | SD2_DATA1               | 3.3V / 1.8V        | PU 10k 3.3V / 1.8V | SDIO Controller Data          |
| SDIO_D2     | I/O         | 3.3V / 1V8 CMOS | V24                | SD2_DATA2               | 3.3V / 1.8V        | PU 10k 3.3V / 1.8V | SDIO Controller Data          |
| SDIO_D3     | I/O         | 3.3V / 1V8 CMOS | V23                | SD2_DATA3               | 3.3V / 1.8V        | PU 10k 3.3V / 1.8V | SDIO Controller Data          |
| SDIO_CMD    | I/O         | 3.3V / 1V8 CMOS | W24                | SD2_CMD                 | 3.3V / 1.8V        | PU 10k 3.3V / 1.8V | SDIO Controller Command       |
| SDIO_CK     | 0           | 3.3V / 1V8 CMOS | W23                | SD2_CLK                 | 3.3V / 1.8V        | PU 10k 3.3V / 1.8V | SDIO Controller Clock         |
| SDIO_PWR_EN | O PP        | 3.3V CMOS       | AB26               | SD2_RESET_B             | 3.3V               | PU 10k 3.3V        | SDIO Controller Power enable  |
| SDIO_CD#    | I           | 3.3V / 1V8 CMOS | AA26               | SD2_CD_B                | 3.3V / 1.8V        | PU 10k 3.3V / 1.8V | SDIO Controller Card Detect   |
| SDIO_WP     | I           | 3.3V / 1V8 CMOS | AA27               | SD2_WP                  | 3.3V / 1.8V        | PU 10k 3.3V / 1.8V | SDIO Controller Write Protect |



Maximum bus speed for SDIO interface is set per default to High Speed Mode (HS) with a maximum frequency of 50MHz and 3.3V signal voltage.

To achieve higher bus speed mode (SDR50 and SDR104) it is highly recommend to keep SD signal trace length less then 100mm. A load switch with quick output discharge should be used for SD-Card power.

Please contact Avnet Embedded /MSC Technical Support if this feature is required.



## 4.11 UART

The i.MX8M Mini offers four separate UART interfaces that are linked to the SMARC™ connector, two of them with Hardware flow control support signals.

The UART interfaces supports Serial RS-232NRZ mode, 9-bit RS-485 mode or IrDA mode and includes the following features amongst others:

- High-speed TIA/EIA-232-F compatible, up to 5.0 Mbit/s
- Serial IR interface low-speed, IrDA-compatible (up to 115.2 Kbit/s)
- 9-bit or Multidrop mode (RS-485) support (automatic slave address detection)
- 7 or 8 data bits for RS-232 characters, or 9 bit RS-485 format
- 1 or 2 stop bits
- Programmable parity (even, odd, and no parity)
- Hardware flow control support for request to send (RTS\_B) and clear to send (CTS\_B) signals
- RS-485 driver direction control via CTS\_B signal
- Edge-selectable RTS\_B and edge-detect interrupts
- Status flags for various flow control and FIFO states
- Voting logic for improved noise immunity (16x oversampling)
- Transmitter FIFO empty interrupt suppression
- UART internal clocks enable/disable
- Auto baud rate detection (up to 115.2 Kbit/s)
- Receiver and transmitter enable/disable for power saving
- RX\_DATA input and TX\_DATA output can be inverted respectively in RS-232/RS-485 mode
- Maskable interrupts
- Two DMA Requests (TxFIFO DMA Request and RxFIFO DMA Request)
- Escape character sequence detection
- Software reset (SRST\_B)
- Two independent, 32-entry FIFOs for transmit and receive



**Table 16: UART Signal Description** 

| Signal    | Pin<br>Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Toleranc<br>e | PU/PD       | Description                           |  |
|-----------|-------------|--------------|-----------------------|-------------------------|------------------------|-------------|---------------------------------------|--|
| SER0_TX   | 0           | 1.8V CMOS    | F13                   | UART1_TXD               | 1.8V                   | PU 10k 1.8V | UART transmit data (see Note 1 below) |  |
| SER0_RX   | I           | 1.8V CMOS    | E14                   | UART1_RXD               | 1.8V                   | PU 10k 1.8V | UART receive data (see Note 1 below)  |  |
| SER0_RTS# | 0           | 1.8V CMOS    | AC24                  | SAI2_TXFS               | 1.8V                   | PU 10k 1.8V | UART handshake, ready to receive data |  |
| SER0_CTS# | I           | 1.8V CMOS    | AD23                  | SAI2_RXD0               | 1.8V                   | PU 10k 1.8V | UART handshake, ready to send data    |  |
| SER1_TX   | 0           | 1.8V CMOS    | D18                   | UART3_TXD               | 1.8V                   | PU 10k 1.8V | UART transmit data                    |  |
| SER1_RX   | 1           | 1.8V CMOS    | E18                   | UART3_RXD               | 1.8V                   | PU 10k 1.8V | UART receive data                     |  |
| SER2_TX   | 0           | 1.8V CMOS    | AG6                   | SAI3_TXC                | 1.8V                   | PU 10k 1.8V | UART transmit data                    |  |
| SER2_RX   | 1           | 1.8V CMOS    | AC6                   | SAI3_TXFS               | 1.8V                   | PU 10k 1.8V | UART receive data                     |  |
| SER2_RTS# | 0           | 1.8V CMOS    | AF7                   | SAI3_RXD                | 1.8V                   | PU 10k 1.8V | UART handshake, ready to receive data |  |
| SER2_CTS# | I           | 1.8V CMOS    | AG7                   | SAI3_RXC                | 1.8V                   | PU 10k 1.8V | UART handshake, ready to send data    |  |
| SER3_TX   | 0           | 1.8V CMOS    | F18                   | UART4_TXD               | 1.8V                   | PU 10k 1.8V | UART transmit data                    |  |
| SER3_RX   | I           | 1.8V CMOS    | F19                   | UART4_RXD               | 1.8V                   | PU 10k 1.8V | UART receive data                     |  |

Note 1: By default, SER0\_RX/TX carries the Debug console output of U-Boot and Linux, typically at 115200Bd/8N1. The same serial signals (level-shifted to 3.3 V) also connect to the on-board Serial Debug connector, see also chapter 5.7. So for access to the serial Console of U-Boot / Linux, either one connection can be used as appropriate.

# 4.12 I<sup>2</sup>C Bus

I2C\_GP on the SMARC™ connector is also linked to an on-module EEPROM at address 0x50.

For further I<sup>2</sup>C bus signals see also Camera, LCD/LVDS and System Management interfaces.



The I<sup>2</sup>C bus driven by CPU core function has the following key features:

- Compatible with I2C bus standard
- Multimaster operation
- Software programmability for one of 64 different serial clock frequencies
- · Software-selectable acknowledge bit
- Interrupt-driven, byte-by-byte data transfer
- Arbitration-lost interrupt with automatic mode switching from master to slave
- Calling address identification interrupt
- Start and stop signal generation/detection
- Repeated Start signal generation
- Acknowledge bit generation/detection
- Bus-busy detection
- Data rates up to 100kbits/s in Standard mode and 400kbits/s in Fast mode

Table 17: I<sup>2</sup>C Signal Description

| Signal         | Pin<br>Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD        | Description                       |
|----------------|-------------|--------------|-----------------------|-------------------------|--------------------|--------------|-----------------------------------|
| I2C_GP_CK      | O OD        | 1.8V CMOS    | E10                   | I2C2_SCL                | 1.8V               | PU 2.2k 1.8V | General Purpose SMB clock output  |
| I2C_GP_DAT     | I/O OD      | 1.8V CMOS    | F10                   | I2C2_SDA                | 1.8V               | PU 2.2k 1.8V | General Purpose SMB data I/O line |
| SMB_ALERT_1V8# | I OD        | 1.8V CMOS    | AF9                   | SPDIF_TX                | 1.8V               | PU 2.2k 1.8V | Interrupt Signal (GPIO5_IO03)     |



# 4.13 Watchdog

**Table 18: Watchdog Signal Description** 

| Signal        | Pin<br>Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD | Description                          |
|---------------|-------------|--------------|-----------------------|-------------------------|--------------------|-------|--------------------------------------|
| WDT_TIME_OUT# | O PP        | 1.8V CMOS    | AG13                  | GPIO1_IO02              | 1.8V               |       | Watch-Dog-Timer Output from the SOC. |

# 4.14 System Management

**Table 19: System Management Signal Description** 

| Signal          | Pin<br>Type | Signal Level | Pin on i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD                | Description                                                                                                                                                         |  |
|-----------------|-------------|--------------|--------------------|-------------------------|--------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| VIN_PWR_BAD#    | IOD         | 1.8V         | n.a.               | n.a.                    | 5.0V               | PU 18K Vin<br>PD 10K | Pulled low at carrier until external power supply is ready. Pulled-up at module by voltage divider. Should be driven by OD part on carrier.                         |  |
| CARRIER_PWR_ ON | O PP        | 1.8V CMOS    | n.a.               | n.a.                    | 1.8V               |                      | Carrier board circuits should not be powered up until module asserts this signal.                                                                                   |  |
| CARRIER_STBY#   | O PP        | 1.8V CMOS    | n.a.               | n.a.                    | 1.8V               |                      | Module asserts this signal to indicate standby power state.                                                                                                         |  |
| RESET_OUT#      | O PP        | 1.8V CMOS    | AD19               | SAI2_MCLK               | 1.8V               |                      | General purpose reset for carrier board. (CPU GPIO4_IO27)                                                                                                           |  |
| RESET_IN#       | IOD         | 1.8V CMOS    | n.a.               | n.a.                    | 1.8V               | PU 18k Vin<br>PD 10K | Reset input from Carrier board. Carrier drives low to force a Module reset, floats the line otherwise. Pulled up on module. Should be driven by OD part on carrier. |  |
| POWER_BTN#      | I           | 1.8V CMOS    | n.a.               | n.a.                    | 1.8V               | PU 10k 1V8           | Power button to bring system into a power state. Pulled up on module. Driven by OD part on carrier.  Do not connect any Pull-down or Pull-up resistors on Carrier.  |  |



| Signal         | Pin<br>Type | Signal Level | Pin on i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD        | Description                                                                                                                                                                                  |
|----------------|-------------|--------------|--------------------|-------------------------|--------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHARGING#      | I           | 1.8V CMOS    | AC15               | SAI5_RXC                | 1.8V               | PU 10k 1V8   | Held low by Carrier during battery charging. Carrier to float the line when charge is complete. Pulled up on Module. Driven by OD part on Carrier. (CPU GPIO3_IO20)                          |
| CHARGER_PRSNT# | I           | 1.8V CMOS    | AF18               | SAI1_RXD5               | 1.8V               | PU 10k 1V8   | Held low by Carrier if DC input for battery charger is present. Pulled up on Module. Driven by OD part on Carrier.  (CPU GPIO4_IO07)                                                         |
| SLEEP#         | IOD         | 1.8V CMOS    | AF19               | SAI1_RXD7               | 1.8V               | PU 10k 1.8V  | Sleep indicator from Carrier board. May be sourced from user Sleep button or Carrier logic. Carrier to float the line in in-active state. Driven by OD part on Carrier. Pulled up on module. |
|                |             |              |                    |                         |                    |              | (CPU GPIO4_IO09)                                                                                                                                                                             |
| LID#           | IOD         | 1.8V CMOS    | AB18               | SAI1_MCLK               | 1.8V               | PU 10k 1.8V  | Lid open/close indication to Module. Low indicates lid closure. Carrier to float the line in inactive state. Active low, level sensitive. Pulled up on Module. Driven by OD part on Carrier. |
|                |             |              |                    |                         |                    |              | (CPU GPIO4_IO20)                                                                                                                                                                             |
| BATLOW#        | IOD         | 1.8V CMOS    | AB15               | SAI5_RXFS               | 1.8V               | PU 10k 1.8V  | Battery low indication to Module. Carrier to float the line in in-active state. Pulled up on Module. Driven by OD part on Carrier.                                                           |
|                |             |              |                    |                         |                    |              | (CPU GPIO3_IO19)                                                                                                                                                                             |
| I2C_PM_CK      | O OD        | 1.8V CMOS    | D10                | I2C2_SCL                | 1.8V               | PU 2.2k 1.8V | Power management I <sup>2</sup> C clock output                                                                                                                                               |
| I2C_PM_DAT     | I/O OD      | 1.8V CMOS    | D9                 | I2C2_SDA                | 1.8V               | PU 2.2k 1.8V | Power management I <sup>2</sup> C data I/O                                                                                                                                                   |



# 4.15 Boot Options

**Table 20: Boot Options Control Signal Description** 

| Signal       | Pin<br>Type | Signal Level | Pin on<br>i.MX8M Mini | Pin name on i.MX8M Mini | Power<br>Tolerance | PU/PD       | Description                                                                                                        |
|--------------|-------------|--------------|-----------------------|-------------------------|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------|
| BOOT_SEL0#   | IOD         | 1.8V CMOS    | AF23                  | SAI1_TXD7               | 1.8V               | PU 10k 1.8V | Input straps determine the module boot device. Pulled up on Module. Driven by OD part on Carrier. (CPU GPIO4_IO19) |
| BOOT_SEL1#   | IOD         | 1.8V CMOS    | AG23                  | SAI1_TXD6               | 1.8V               | PU 10k 1.8V | Input straps determine the module boot device. Pulled up on Module. Driven by OD part on Carrier. (CPU GPIO4_IO18) |
| BOOT_SEL2#   | IOD         | 1.8V CMOS    | AF22                  | SAI1_TXD5               | 1.8V               | PU 10k 1.8V | Input straps determine the module boot device. Pulled up on Module. Driven by OD part on Carrier. (CPU GPIO4_IO17) |
| FORCE_RECOV# | I OD        | 1.8V CMOS    | n.a.                  | n.a.                    | 1.8V               | PU 10k 1.8V | Pulled up on Module. Driven by OD part on Carrier.                                                                 |
| TEST#        | IOD         | 1.8V CMOS    | n.a.                  | n.a.                    | 1.8V               | PU 10k 1.8V | Active low signal for test mode activation. Pulled up on Module. Driven by OD part on Carrier.                     |

If the SMARC module is powered up with VIN\_PWR\_BAD# left floating and RESET\_IN# left floating, the module boots from selected boot device. The boot process consists of two parts:

- Primary boot Loader (includes Uboot)
- Operating System boot



The boot device for the primary boot loader is selected using the TEST# signal:

- If TEST# is pulled low the module uses carrier SD-Card as the primary boot device.
- If TEST# is left floating the module loads the boot loader from eMMC.

If the primary Boot device fails, module will always try to load the primary boot loader from the Carrier SD card. This is unintended behavior but cannot be changed as it is configured by the ROM code in the CPU.

Once the Uboot starts it will check the state of the BOOT\_SELx# signals to decide where to boot the Operating System from. (See table below)

If FORCE\_RECOV# signal is pulled low at carrier, the module boots via USB-Client Mode (this feature is only intended for recovery and requires dedicated software from NXP). For normal operation do not pull FORCE\_RECOV# signal low.

**Table 21: Boot Options** 

|   | BOOT_SEL2# | BOOT_SEL1# | BOOT_SEL0# | Boot Source                                                                        |
|---|------------|------------|------------|------------------------------------------------------------------------------------|
| 0 | GND        | GND        | GND        | Carrier SATA (not supported)                                                       |
| 1 | GND        | GND        | Float      | Carrier SD Card                                                                    |
| 2 | GND        | Float      | GND        | Carrier SPI1 with CS0# (not sensible for ARM devices, not planned to be supported) |
| 3 | GND        | Float      | Float      | Carrier SPI0 with CS0# (not sensible for ARM devices, not planned to be supported) |
| 4 | Float      | GND        | GND        | Module SD Card                                                                     |
| 5 | Float      | GND        | Float      | Remote boot                                                                        |
| 6 | Float      | Float      | GND        | Module eMMC Flash                                                                  |
| 7 | Float      | Float      | Float      | USB Mass Storage                                                                   |



# 5 Functions on Module

# 5.1 CPU Options

The module can be ordered with several i.MX8M Mini CPU types. Detailed information is provided in the module datasheet which can be downloaded from <a href="https://www.msc-technologies.eu/support/boards/smarc/msc-sm2s-imx8mini.html">https://www.msc-technologies.eu/support/boards/smarc/msc-sm2s-imx8mini.html</a>.

For details regarding the i.MX8M Mini CPU please refer to the NXP™ website. For order information please contact Avnet Embedded /MSC.

# 5.2 Power-Up Behaviour

The module will behave in the following ways:

- When coming from complete power off (5V unpowered), the module will boot if VIN\_PWR\_BAD# or TEST# is not low and 5V is present.
- When OS is shut down and 5V is still powered, a power button press is required to restart the module.
- If the module does not come up in test mode or force recovery mode it fetches the OS and the file system from the boot source, defined by the BOOT SEL strapping pins.
- On keeping the power button pressed for 8 seconds or longer, the module will shut down, and restart as soon as the power button is pressed again.



## 5.2.1 Power-On Sequencing

VIN\_PWR\_BAD# (Carrier to Module)

CARRIER\_PWR\_ON (Module to Carrier)

CARRIER\_STBY# (Module to Carrier)

Figure 5-2: Power-On Timings

RESET\_OUT# (Module to Carrier)

| Time Slot | Description                           | Value  |
|-----------|---------------------------------------|--------|
| T1        | CARRIER_PWR_ON to VIN_PWR_BAD# timing | 10.8ms |
| T2        | RESET_OUT# to CARRIER_PWR_ON          | 355ms  |



## 5.2.2 Reset Sequencing

I.MX8M Mini can't be reset by internal reset and a power cycle is preferred. Some peripherals require a power cycle during system reset.

RESET\_IN# assertion leads to a module power cycle as shown in the following figure:

RESET\_IN# (Carrier to Module)

CARRIER\_PWR\_ON (Module to Carrier)

CARRIER\_STBY# (Module to Carrier)

RESET\_OUT# (Module to Carrier)

Figure 5-4: Reset Timings

| Time Slot | Description                        | Value  |
|-----------|------------------------------------|--------|
| T1        | CARRIER_PWR_ON to RESET_IN# timing | 10.8ms |
| T2        | RESET_OUT# to CARRIER_PWR_ON       | 355ms  |



# 5.3 Memory

#### 5.3.1 SDRAM

The DDR Controller supports 32/16-bit LPDDR4-3000.

MSC SM2S-IMX8MINI SMARC™ modules use one physical rank with up to 4GByte SDRAM.

**Table 22: Available SDRAM options** 

| СРИ                                | Bus Width        | Memory Size | Memory<br>Organisation |
|------------------------------------|------------------|-------------|------------------------|
| i.MX8M Mini Solo, Dual<br>and Quad | 64-bit Interface | 1 GB        | 2x 32Mx16x8B           |
|                                    | 64-bit Interface | 2 GB        | 4x 32Mx16x8B           |
|                                    | 64-bit Interface | 4 GB        | 4x 64Mx16x8B           |

#### 5.3.2 eMMC

Up to 64GB eMMC are supported. The eMMC is used in 8 bit mode.

Table 23: Available eMMC devices

| Memory Size | Technology   | Operating Temperature | Chip Identification |  |
|-------------|--------------|-----------------------|---------------------|--|
|             | Extended     |                       |                     |  |
| 8 GB        | 15nm X2 eMLC | -25°C to +85°C        | SDINBDG4-8G-I1      |  |
| 16 GB       | 15nm X2 eMLC | -25°C to +85°C        | SDINBDG4-16G-I1     |  |
| 32 GB       | 15nm X2 eMLC | -25°C to +85°C        | SDINBDG4-32G-I1     |  |
| 64 GB       | 15nm X2 eMLC | -25°C to +85°C        | SDINBDG4-64G-I1     |  |
| Industrial  |              |                       |                     |  |



| Memory Size | Technology   | Operating Temperature | Chip Identification |
|-------------|--------------|-----------------------|---------------------|
| 8 GB        | 15nm X2 eMLC | -40°C to +85°C        | SDINBDG4-8G-XI1     |
| 16 GB       | 15nm X2 eMLC | -40°C to +85°C        | SDINBDG4-16G-XI1    |
| 32 GB       | 15nm X2 eMLC | -40°C to +85°C        | SDINBDG4-32G-XI1    |
| 64 GB       | 15nm X2 eMLC | -40°C to +85°C        | SDINBDG4-64G-XI1    |

#### **5.3.3 EEPROM**

64Kb EEPROM for board data connected to I2C3 bus at address 0x50.

The EEPROM on address 0x50 of the I2C\_GP Bus holds the Board Information (boardinfo) structure, which is evaluated by U-Boot to determine the exact board variant and set necessary parameters.

Make sure to leave this EEPROM in place, and DO NOT block address 0x50 on the I2C\_GP Bus with other devices, otherwise the module will be unable to boot!

The Board information structure occupies the first 0x80 bytes inside the EEPROM. The remaining upper range starting at offset 0x80 is freely available for customer purposes. When making use of this option, make sure to keep the lower 0x80 bytes intact, otherwise the board will also not boot any more.

## 5.4 Trusted Platform Module

The i.MX8M Mini SMARC™ module offers an optional Trusted Platform Module 2.0 (TPM): Infineon™ SLB9673 or STMicroelectronics™ ST33TPHF20I2C.

The TPM is connected to the I2C1 bus.



## 5.5 WiFi/Bluetooth

The i.MX8M Mini SMARC™ module offers an optional WiFi/Bluetooth module the SPB209A from H&D Wireless™. The module is connected via SDHC3 interface\* and is equipped with an RF micro coaxial connector (U.FL receptacle).

#### Key features:

- IEEE 802.11ac compliant
- IEEE 802.11 PHY data rates of up to 433 Mbps
- Bluetooth 4.2
- Supports multiple SW features such as 802.11e/i (Security, QoS), Soft AP and Wi-Fi Direct
- Extensive DMA hardware support for data flow to reduce CPU load

\*NOTE: microSD card socket and WiFi/BT module are mutually exclusive assembly options.

## 5.6 MicroSD Card Socket

An optional on-module microSD card socket is connected via SDHC3 interface. The interface only supports High Speed (HS) Mode at 50MHz frequency and data rates up to 25MB/s (3.3V operation only).

# 5.7 Debug Options

### 5.7.1 Debug Connector

Access to the Debug UART port is possible via an 8pin FFC connector.

Note: This connector may not be populated on all board variants. Contact Avnet Embedded /MSC Technical Support if this feature is required.



Figure 5-5: Module top side with debug UART FFC connectors marked in red\*



Figure 5-6: Module top side with MSC UART debug adapter



MSC Debug-Adaptor 82479

Debug UART Adapter for i.MX8-based SMARC, Qseven and nanoRISC modules, with 8-pin FFC cable to connect COM module to 9-pin D-Sub connector

Use top / top cables.

Serial signals on the Debug connector are at 3.3V TTL level.

Pinout: 1: Ground 2: NC 3: NC 4: NC

5: UART\_TXD 6: UART\_RXD 7: RESET\_IN# 8: VCC\_3V3



For using this Debug connector, customers can obtain a small size debug board (including FCC cable) as an accessory with Order No. 82479. This board converts the Debug UART signals to RS-232 level and offers them on a standard DSUB9-M connector.

Additionally, this debug board has a soft-reset button and three LEDs on GPIOs for additional debug capabilities.

#### **Serial Debug Console Output options**

The Debug connector offers the same SER0\_RX/TX signals which are also duplicated on the SMARC connector, pins P129/130 (there with 1.8V level, while on Debug connector with 3.3V TTL level). See also section 4.11.

So for accessing the U-Boot / Linux console, depending on availability and usage of the port on the target Carrier board, either connection via the Carrier board + SMARC connector or via the Debug connector on the module can be chosen to the same effect.

#### 5.7.2 JTAG Connector

JTAG access to the IMX8M Mini CPU is possible via a 10pin FFC connector. The JTAG Chain only contains the CPU itself, so all suitable JTAG debuggers should work with their default configuration for the respective CPU.

The JTAG connector is not populated by default. Please contact Avnet Embedded /MSC Technical Support if this feature is required.

NOTE: JTAG\_MODE has an on-module 10k pull down. If JTAG Mode is left open or pulled low, the CPU is in debug-JTAG mode (JTAG Interface is connected to the CPU core for software debug). If pulled up, JTAG is connected to the boundary-scan chain of the CPU.

# **INVINET** EMBEDDED

Figure 5-7: Module bottom side with JTAG FFC connectors marked in red\*



#### Pinout:

10: VCC\_1V8

9: JTAG\_TRST#

8: JTAG\_TDI

7: JTAG TDO

6: JTAG\_TMS

5: JTAG\_TCK

4: JTAG\_MOD

3: NC

2: RESET\_IN#

1: Ground

Figure 5-8: Module bottom side with MSC JTAG debug adapter



MSC JTAG-Adaptor FFC 10pol 68948

Debug JTAG Adapter for i.MX8-based SMARC modules, with 10-pin FFC cable to connect COM module to connectors for JTAG connection to Lauterbach and/or Goepel debuggers

Use top / top cables.



# 6 Bus and Address Mapping

## 6.1 I<sup>2</sup>C Devices

Table 24: I<sup>2</sup>C Interfaces Overview

| CPU Interface | Device               | SMARC Connector | 7-bit Address |
|---------------|----------------------|-----------------|---------------|
| I2C1          | ТРМ                  |                 | 0x2E          |
|               | PMIC1                |                 | 0x31          |
|               | PMIC2                |                 | 0x33          |
|               | Temp. Sensor         |                 | 0x71          |
|               | RTC                  |                 | 0x32          |
|               | PCIe Clock Generator |                 | 0x6B          |
| I2C2          |                      | I2C_PM          |               |
| I2C3          | Serial EEProm        | I2C_GP          | 0x50          |
| I2C4          |                      | I2C_LCD         |               |
| GPIO          |                      | I2C_CAM0*       |               |
|               |                      | I2C_CAM1*       |               |

\*NOTE: CAM0 and CAM1 are GPIO based (bit-banged) and share the same I2C interface.



## 6.2 SPI Devices

**Table 25: SPI Interfaces Overview** 

| CPU Interface | Chip Select | CPU Pin | CPU Pin Name | Device          | SMARC Connector | Description                                 |
|---------------|-------------|---------|--------------|-----------------|-----------------|---------------------------------------------|
| ECSPI1        | CS0         | B6      | ECSPI1_SS0   |                 | SPI0_CS0#       |                                             |
|               | CS1         | AD22    | SAI2_TXC     |                 | SPI0_CS1#       | GPIO based chip select<br>(CPU GPIO4_IO25)* |
|               | CS1         | AD22    | SAI2_TXC     | CAN0 Controller |                 | Dedicated chip select for CAN0 Controller*  |
| ECSPI2        | CS0         | A6      | ECSPI1_SS0   |                 | SPI1_CS0#       |                                             |
|               | CS1         | AC22    | SAI2_TXD0    |                 | SPI1_CS1#       | GPIO based chip select (CPU GPIO4_IO26)*    |
|               | CS1         | AC22    | SAI2_TXD0    | CAN1 Controller |                 | Dedicated chip select for CAN1 Controller*  |
| QSPI_A        | CS0         | N24     | NAND_CE0_B   | QSPI NOR Flash  |                 | Dedicated chip select for QSPI NOR Flash*   |

\*NOTE: SPI[0:1]\_CS1# are not available if the CAN interfaces are implemented on the module. The on-module QSPI NOR Flash is an assembly option.



# 7 Board Support Package (BSP)

## 7.1 General information

MSC-LDK and the underlying NXP release are based on the Yocto build system (<a href="https://yoctoproject.org">https://yoctoproject.org</a>).

The current MSC-LDK and the msc-sm2s-imx8mm BSP base on NXP's Release L4.19.35\_1.1.0.

# 7.2 MSC-LDK (Yocto)

#### 7.2.1 MSC-LDK Terms

- The Yocto-based MSC-LDK uses a sophisticated approach to generate Linux images.
- A target is the hardware or CPU module on which the generated Linux software is to be run.
- An image contains all the files necessary for execution by the targeted hardware, e.g. the Linux kernel and the root filesystem.
- Software that is part of a Linux image is called a package.
- A package is generated from sources by a recipe, which is a description of where to download the sources and how to compile them within Yocto.
- A layer is a collection of recipes. They are stackable and can extend or modify recipes defined in other layers. A BSP provides the necessary layers to MSC-LDK to support the target's hardware.
- MSC-LDK is mainly an installer of Yocto, MSC specific layers and BSP layers.

### 7.2.2 Getting Started

#### 7.2.2.1 System requirements

- 64bit Linux x86 development host with at least 8GB of RAM 16GB or more recommended
- Ubuntu 16.04 (LTS) or newer, other distributions may also work.
- Internet access for downloading packages (HTTP, FTP, Git and SSH).
- Lots of free disk space for the initial build (>128 GB)
- Python3 with 'pip' installed (at least Python v3.3).



#### 7.2.2.2 Registration on the MSC Git Server

Downloading files from the MSC Git server requires a registration on:

http://www.msc-technologies.eu/register.html.

Registered users may apply for specific Git repositories by sending an email with their public SSH key and desired project name to: support.boards@avnet.eu

#### 7.2.2.3 Creating SSH key

If there is no SSH key already available (/.ssh/id rsa.pub), it can be generated with following command:

```
$ ssh-keygen -t rsa
```

Example:

```
waldemar@Workstation3~$ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/waldemar/.ssh/id rsa):
Created directory '/home/waldemar/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/waldemar/.ssh/id rsa.
Your public key has been saved in /home/waldemar/.ssh/id rsa.pub.
The key fingerprint is:
SHA256:lUnkxE/cUq7ZmCv2zI9HpVq1YhNhc3ZrqFMqbo0mGRI waldemar@Workstation3
The key's randomart image is:
+---[RSA 2048]----+
          0+.+0.
          +.=0Boo.
          .=+00B 0
             .*0
             0 0
 ----[SHA256]----+
waldemar@Workstation3~$
```

Figure 7-1. RSA key generation

Share the public key in /.ssh/id\_rsa.pub with MSC during Git registration.





Make sure to keep the Private Key "id\_rsa" well secured. It is generally possible to share one keypair within one and the same project, to allow several people access to the MSC sources. But then the validated user is responsible to keep track of the Private Key any time, and MUST inform MSC Support if the key has been compromised and access must be withdrawn.



The SSH key **must not** have a passphrase. It will be used in background communication and therefore there is no possibility to enter the passphrase. Trying to fetch repositories from the MSC Public GIT Server would fail with no hint that the passphrase is missing.

#### 7.2.2.4 Configuring HTTP proxy

Some source files will be downloaded from HTTP and FTP servers. If a proxy must be used, these environment variables have to be set:

```
export http_proxy=http://my-proxy:3128
export https_proxy=http://my-proxy:3128
export ftp proxy=http://my-proxy:3128
```

Note: Replace "my-proxy" with the appropriate address of your network's proxy, Port number "3128" may also vary depending on your network. Please consult your admin for proper settings.

On some networks, tunneling Git SSH access over HTTPS may be additionally necessary. Please contact Avnet Embedded /MSC Technical Support for a related App Note.

#### 7.2.3 Setup the MSC-LDK build environment



The MSC-LDK must be installed on a partition with at least 128 GB free space. As a lot of source files will be accessed, it is recommended to use an EXT4 partition with the mount options "noatime, nodiratime".



#### 7.2.3.1 The "classic" method

#### 7.2.3.1.1 Step 1: Clone the base MSC-LDK repo

To clone and enter the base MSC-LDK repo, run the following command:

```
git clone ssh://gitolite@msc-git02.msc-ge.com:9418/msc_ol99/msc-ldk --branch v1.5.0 msc-ldk-v1.5.0 cd msc-ldk-v1.5.0
```

#### Example:

```
waldemar@workstation1/mnt/data2/Develop/repos/msc/msc-ldk$git clone ssh://gitolite@msc-git02.msc-ge.com:9418/msc_o199/ms
c-ldk --branch v1.5.0 msc-ldk-v1.5.0
Cloning into 'msc-ldk-v1.5.0'...
remote: Counting objects: 5473, done.
remote: Compressing objects: 100% (2027/2027), done.
remote: Total 5473 (delta 3709), reused 4834 (delta 3283)
Receiving objects: 100% (5473/5473), 691.87 KiB | 7.60 MiB/s, done.
Resolving deltas: 100% (3709/3709), done.
waldemar@workstation1/mnt/data2/Develop/repos/msc/msc-ldk$cd msc-ldk-v1.5.0/
waldemar@workstation1/mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0 (v1.5.0)$[
```

Figure 7-2. Clone base MSC-LDK repo

Your current directory now contains the following sub directories:

```
waldemar@Workstation1/mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0 (v1.5.0) $tree -d -L 1

scripts
template

2 directories
```

Figure 7-3. Initial content of the root MSC-LDK directory.

#### 7.2.3.1.2 Step 2: Create build directory

To create your build directory run the following command:

```
./setup.sh --bsp=0103801 --checkout-layers
```





The 0103801 refers to the MSC LDK for the SM2S-i.MX8MMini module.

#### Example:

```
waldemar@Workstation1/mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0 (v1.5.0)$./setup.sh --bsp=0103801 --checkout-la
Switching libMscBoostPython to 'v1.1.2'
Executing 'git checkout master'
Executing 'git checkout v1.1.2'
NOTICE: libMscBoostPython is at <Branch: master, TAG: v1.1.2 [Detached HEAD]>
NOTICE: MSC-LDK git server: 'ssh://gitolite@msc-git02.msc-ge.com:9418/'
NOTICE: MSC-LDK root: /mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0
NOTICE: MSC-LDK is based on Yocto branch: warrior, MSC-LDK is at <Branch: v1.5.0 [LOL99 20191211 V1 5 0-2-q5dcf4d6]>
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/msc 0103801/msc-ldk-bsp-recipes'
NOTICE: MSC-LDK Configuration: BSP=0103801
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/thirdparty/yocto'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/thirdparty/meta-openembedded'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/thirdparty/meta-qt5'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/thirdparty/meta-secure-core'
NOTICE: Installing repository 'ssh://qitolite@msc-qit02.msc-qe.com:9418/msc o199/meta-msc-1dk-core-recipes'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/msc_o199/meta-msc-ldk-core'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/msc o199/meta-msc-ldk-mscio'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/thirdparty/meta-freescale'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/thirdparty/meta-freescale-distro'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/thirdparty/meta-fsl-bsp-release'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/thirdparty/meta-browser'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/thirdparty/meta-gt5-extra'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/msc o199/meta-msc-arm-extensions'
NOTICE: Installing repository 'ssh://gitolite@msc-git02.msc-ge.com:9418/msc_o199/meta-msc-ldk-marvell'
NOTICE: Created '/mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0/build/0103801/conf/local.conf'
NOTICE: Created '/mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0/build/0103801/conf/bblayers.conf'
INFO: You can now cd to /mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0/build/0103801 and run 'make' or './build.sh
image-name>'
waldemar@Workstation1/mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0 (v1.5.0)$
```

Figure 7-4. Create build directory.

Your current directory now contains the following sub directories:

```
waldemar@Workstation1/mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0 (v1.5.0)$tree -d -L 1

build
scripts
sources
template
4 directories
```

Figure 7-5. Base directory content after setup build directory.



#### 7.2.3.1.3 Step 3: Enter build directory

#### To enter the build directory execute:

```
cd build/0103801
```

#### Example:

```
waldemar@Workstation1/mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0/build/0103801 (v1.5.0)$tree -d -L 1
L conf
1 directory
```

Figure 7-6. Enter build directory.

#### 7.2.3.2 The "docker" method

We assume that the docker packages (docker, docker.io, etc.) are already installed on your development system and your local user is a member of the docker group. Using "docker" may especially be helpful under newer versions of the host's OS, such as Ubuntu 18.04 LTS or higher.

For detailed information about docker installation, container handling and development under docker please take a look at [9].

#### 7.2.3.2.1 Step 1: Create MSC-LDK container

#### Execute:

```
git clone ssh://gitolite@msc-git02.msc-ge.com:9418/msc_ol99/docker-msc-ldk
cd docker-msc-ldk
git checkout v1.3.0
mkdir src
mkdir -p rootfs/home/.ssh
cp ~/.ssh/id_rsa rootfs/home/.ssh
cp ~/.ssh/id_rsa.pub rootfs/home/.ssh
docker build -t=msc-ldk .
rm -rf rootfs/home/.ssh
```



#### Example:

```
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp$git clone ssh://gitolite@msc-git02.msc-ge.co
m:9418/msc_ol99/docker-msc-ldk
Cloning into 'docker-msc-ldk'...
remote: Counting objects: 50, done.
remote: Compressing objects: 100% (41/41), done.
remote: Total 50 (delta 22), reused 0 (delta 0)
Receiving objects: 100% (50/50), 7.58 KiB | 3.79 MiB/s, done.
Resolving deltas: 100% (22/22), done.
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp$cd docker-msc-ldk
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk (master)$git checkout v1.3.0
Note: checking out 'v1.3.0'.
You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.
If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:
 git checkout -b <new-branch-name>
HEAD is now at d93d2c9 removed default proxy configuration (MLDK-428)
```

Figure 7-7. Prepare docker container for MSC-LDK. Part 1.

```
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$mkdir src
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$mkdir -p rootfs/ho
waldemar@waldemar-HP-26-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$cp ~/.ssh/id rsa r
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$cp ~/.ssh/id rsa.p
ub rootfs/home/ ssh
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$docker build -t=ms
Sending build context to Docker daemon 76.8kB
Step 1/29 : FROM ubuntu:16.04
 ---> 657d80a6401d
Step 2/29 : MAINTAINER mpie
 ---> Using cache
 ---> 296dd372d9ea
Step 3/29 : ARG UID=1000
 ---> Using cache
 ---> e8c7fa8ac2af
Sten 4/29 · ARG GTD=100
```

Figure 7-8. Prepare docker container for MSC-LDK. Part 2.



```
Step 26/29 : RUN mkdir -p /src /src/msc-ldk-downloads /src/msc-ldk-sstate-cache &&
                                                                                      chown ${UID}:${GID} /src -R &&
 chown ${UID}:${GID} ${HOME} -R &&
 ---> Using cache
 ---> cdf0e59b2dcc
Step 27/29 : USER ${UID}
 ---> Using cache
---> ebf5c3e99cf1
Step 28/29 : RUN echo "if [ -e /src/.bashrc ]; then source /src/.bashrc; fi" >> ${HOME}/.bashrc
 ---> Using cache
---> acd86641a26a
Step 29/29 : WORKDIR /src
 ---> Using cache
 ---> 91a6a285b92c
Successfully built 91a6a285b92c
Successfully tagged msc-ldk:latest
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$rm -rf rootfs/home
```

Figure 7-9. Prepare docker container for MSC-LDK. Part 3.

#### 7.2.3.2.2 Step 2: Start and enter the MSC-LDK container for the first time

#### Execute:

```
docker run --privileged -t -i --dns $(nmcli -f 'IP4.DNS' \
    -m multiline device show 2>&1 | sed -rn 's/IP4.DNS\[1\]: *(.*)/\1/p') \
    --name msc-ldk -h docker -v `pwd`/src:/src msc-ldk /bin/bash
```

#### Example:

```
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$docker run --privi leged -t -i --dns (v1.3.0)$docker run --privi multiline device show 2>&1 | sed -rn 's/IP4.DNS\[1\]: *(.*)/\1/p') --name msc-ldk -h docker -v `pwd`/src:/src msc-ldk /bin/bash
```

Figure 7-10. Start and enter the MSC-LDK container.

#### 7.2.3.2.3 Step 3: Clone and enter the base MSC-LDK repo

See 7.2.3.1.1

7.2.3.2.4 Step 4: Create build directory

See 7.2.3.1.2

7.2.3.2.5 Step 5: Enter build directory

See 7.2.3.1.3



#### 7.2.3.2.6 Leave the MSC-LDK container.

Execute:

exit

Example:

```
user@docker:/src$
user@docker:/src$ exit
exit
waldemar@waldemar-HP-26-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$
```

Figure 7-11. Leave the MSC-LDK container.

#### 7.2.3.2.7 Re-start and re-enter the MSC-LDK container.

#### Execute:

```
docker container start msc-ldk
docker container exec -ti msc-ldk /bin/bash
```

#### Example:

```
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$docker container s tart msc-ldk msc-ldk msc-ldk msc-ldk waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$docker container e xec -ti msc-ldk /bin/bash user@docker:/src$
```

Figure 7-12. Re-start and re-enter the MSC-LDK container.

#### 7.2.3.2.8 Stop the MSC-LDK container and release its resources.

#### Execute:

```
docker stop msc-ldk
docker rm msc-ldk
```



#### Example:

```
waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$docker stop msc-ldk k msc-ldk msc-ldk waldemar@waldemar-HP-Z6-G4-Workstation/mnt/raid1/Develop/repos/msc-ldk/temp/docker-msc-ldk ((v1.3.0))$docker rm msc-ldk msc-ldk
```

Figure 7-13. Stop the MSC-LDK container and release its resources.



## 7.2.4 Generate images

#### 7.2.4.1 Choosing an MSC-LDK image

The MSC-LDK provides different images for the sms2-imx8mmini module. The following table lists all currently available images, their contents and sizes.

Table 26: Available images

| dtb            | approx size | comment                                                                                                                    |
|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------|
| msc-image-base | 612MiB      | A small Wayland GUI image with full target device hardware support.  Contains MSC features/tools.                          |
| msc-image-qt5  | 2,3GiB      | A Wayland GUI image with full target device hardware support. Contains Qt5/Qml, gstreamer, opencv, and MSC features/tools. |

#### 7.2.4.2 Building an Image with MSC-LDK

The MSC-LDK build uses the:

./build.sh bitbake <component>

command, where <component> can be:

- image name (e.g. msc-image-qt5, etc.)
- package name (e.g. u-boot-imx, linux-imx, memtester, etc.)



Example:

```
waldemar@Workstation1/mnt/data2/Develop/repos/msc/msc-ldk/msc-ldk-v1.5.0/build/0103801 (v1.5.0)$./build.sh bitbake msc-i
 WANTING: You have included the meta-gnome layer, but 'x11' has not been enabled in your DISTRO_FEATURES. Some bbappend is 
les may not take effect. See the meta-gnome README for details on enabling meta-gnome support. 
RRNING: Host distribution "linuxmint-19.1" has not been validated with this version of the build system; you may possib
 Loaded 4177 entries from dependency cache.
   : Resolving any missing task queue dependencies
Build Configuration:
                     = "1.42.0"
BB_VERSION
                      = "x86 64-linux"
BUILD SYS
NATIVELSBSTRING
                      = "universal"
TARGET_SYS
                      = "aarch64-poky-linux"
MACHINE
                      = "sm2s-imx8mm-gc"
DISTRO
                     = "poky"
= "2.7.1"
DISTRO VERSION
TUNE_FEATURES
TARGET FPU
meta-poky
                      = "warrior-4.19.35-1.1.0-msc:4175f1771245d5c0208994c9b0dcaa96dab30541"
meta-yocto-bsp
meta
                      = "master:023a8dcd46bd32d038b01ff42afe97e926e430c4"
meta
                      = "warrior-4.19.35-1.1.0-msc:4175f1771245d5c0208994c9b0dcaa96dab30541"
meta-oe
meta-networking
meta-python
                      = "warrior-msc-v1.5.0:f1b18c0da7f247998c2269069d7b47ed1e62bf12"
meta-qt5.git
                      = "warrior-msc-v1.5.0:8586caf2f2f5c11fb2ddff29eefe5dd7fc08cf38"
meta
meta-integrity
meta-signing-key
                     = "warrior-v1.5.0:0fbe3c26c5836b5a040d8799ffa70d95493930e3"
meta-tpm2
meta-msc-ldk-core-recipes.git = "warrior:dcc2653c37d8e97da5fcd24b69ed289b9bbba281"
meta-msc-ldk-core.git = "warrior:d24dc70dd92eb3525108f64f768752a651d61c3a"
meta-msc-ldk-mscio.git = "warrior:e8418741adcefda5b442e338cff366ec40d4fa77"
meta-freescale.git = "warrior-4.19.35-1.1.0-msc:c6fc58555ac9b22270944b5759c98f8188022864"
meta-freescale-distro.git = "warrior-4.19.35-1.1.0-msc:67465321a8038282eebab5cd40e57f204b6203be"
meta-bsp
                      = "warrior-4.19.35-1.1.0-msc:301bcd8d9d48056366c58ae3fec2fc800f2bd194"
meta-sdk
meta-browser.git = "warrior-4.19.35-1.1.0:5f365ef0f842ba4651efe88787cf9c63bc8b6cb3"
meta-qt5-extra.git = "warrior-msc-v1.5.0:2b32b3c0318c45b6a69614dde8e98968ae4d6e75"
meta-msc-arm-extensions.git = "warrior:7db7a75f1d03a1712505fadbd476ae8d07b97ca5"
meta-multimedia
                     = "warrior-msc-v1.5.0:f1b18c0da7f247998c2269069d7b47ed1e62bf12"
 meta-msc-ldk-marvell.git = "v1.5.0:ed1c4212e979883aba7ba29440cf0f782182eb46"
Sstate summary: Wanted 0 Found 0 Missed 0 Current 2950 (0% match, 100% complete)
   : Executing SetScene Tasks
   : Executing RunOueue Tasks
   : Tasks Summary: Attempted 7925 tasks of which 7925 didn't need to be rerun and all succeeded.
   : No commit since BUILDHISTORY COMMIT != '1'
 ummary: There were 2 WARNING messages shown.
```

Figure 7-14. Building msc-image-qt5 image.

For more details and further information see also [5], Chapter 5 "Building an image"



Some scripts of the recipes use an 'echo -e <somewhat>' command. bitbake calls the buildscripts with /bin/sh as shell. If your hostsystem uses "bash" as "/bin/sh" everything works fine. But if a shell with less functionality like "dash" is used, it is necessary to setup "bash" as sh. This can be done on most debian derivated systems by:

```
user@devhost:$ sudo dpkg-reconfigure dash
```

The subsequent question has to be answered with "no"



Depending on the internet connection and the development host a first build may take several hours. To speed it up on further installations, share the directories downloads and sstate-cache. All generated images can be collected in a specific directory with:

```
user@devhost:msc-ldk$ make install images DESTDIR=/tmp/msc-ldk-images
```

#### 7.2.4.3 Reproduce Images with MSC-LDK

One of the key features of Yocto is the strong versioning of the resulting images. Each package uses a predefined version, e.g. busybox 1.32.0. When compiling an image, yocto also prints the used GIT layer versions (see **Fehler! Verweisquelle konnte nicht gefunden werden.**)

For further improvement, MSC-LDK has these additional features to recreate the image after it has been built and shipped:

• The used layers and the setup line how the BSP was configured is stored in the image's file /etc/version\_layer. After compilation, the file can be also found in the build directory under:

```
tmp/work/sm2s imx8mm qc-poky-linux/msc-image-base/1.0-r0/rootfs/etc/
```

```
rooc@smzs-imxomm-uc;~#
Poot@sm2s-imx8mm-qc:~# cat /etc/version_layer
MSC-LDK LOL99_20191211_V1_5_0-2-g5dcf4d6 built on Mon Jul 13 10:15:26 UTC 2020 by waldemar@waldemar-HP-Z6-G4-Workstation
Poky (Yocto Project Reference Distro) 2.7.1 \n \l
LAYER meta-browser=LOL99_20190718_V1_4_0-72-g5f365ef
LAYER meta-freescale-distro=2.2-48-g6746532
LAYER meta-freescale=LOL99_20170627_V1_2_0-1231-gc6fc5855
LAYER meta-fsl-bsp-release=301bcd8d9
LAYER meta-msc-arm-extensions=LOL99_20191211_V1_5_0-4-g7db7a75
LAYER meta-msc-ldk-core=
LAYER meta-msc-ldk-core=LOL99_20191211_V1_5_0-8-gd24dc70
LAYER meta-msc-ldk-core-recipes=LOL99 20191211 V1 5 0-13-gdcc2653
LAYER meta-msc-ldk-marvell=LOL99 20191211 V1 5 0-1-ged1c421
LAYER meta-msc-ldk-mscio=LOL99_20191211_V1_5_0-6-ge841874
LAYER meta-openembedded=warrior-msc-LOL99_20191211_V1_5_0
LAYER meta-gt5-extra=warrior-msc-LOL99 20191211 V1 5 0
LAYER meta-qt5=warrior-msc-LOL99_20191211_V1_5_0
LAYER meta-secure-core=warrior-LOL99_20191211_V1_5_0
LAYER msc-ldk-bsp-recipes=LOL99_20190718_V1_4_0-78-g023a8dc
LAYER yocto=warrior-21.0.1-27-g4175f17712
SETUP --bsp=0103801 --checkout-layers
```

Figure 7-15. Content of 'version layer' file.

• The setup tool allows to checkout exactly these layers and configure the BSP as before. To use it, call setup.py with only one argument -- version-file, e.g.

```
./setup.py --version-file ~/version layer
```





- Modifications of conf/local.conf are not traced.
- This will checkout exactly the versions used by version\_layer. It is then no longer possible to use scripts/update.py to pull the latest changes on the branch. A fresh checkout of MSC-LDK is necessary. The directories downloads and sstate-cache can be moved or copied to improve build speed.
- Time stamps in the image will be updated, e.g. in /etc/issue.

#### 7.2.5 Image Deployment

See [5], Chapter 6, "Image Deployment"

#### 7.2.5.1 Flashing an SD card image

To flash an SD card image, run the following command:

sudo dd if=<image name>.sdcard of=/dev/sd<partition> bs=4MiB conv=fsync

# 7.3 Running an Image

### 7.3.1 Booting SPL (secondary program loader)/U-Boot

The TEST# pin is used to select one of the following boot schema.

#### 7.3.1.1 TEST# = LOW: Forced booting SPL/U-Boot from carrier SD card

With TEST# = LOW (e.g. on MSC SM2-MB-EP1 Carrier Board: "Test Mode Select" DIP Switch = ON), the iMX8MMini Boot ROM code uses the carrier SD card as boot media regardless of whether the module eMMC flash contains a properly programmed system image or not.



Figure 7-16. SPL boot selector on EP1 carrier board (S2801).

Forced carrier SD card boot mode.



Example:

```
U-Boot SPL 2019.04-4.19.35-1.1.0+ged283a8930 (Jul 13 2020 - 07:35:13 +0000)
company ..... msc
form factor ..... sm2s
platform ..... imx8mm
processor ..... qc
feature ..... 03N0840E
serial ...... 1009641171
revision (MES) ... B0
boot count ..... 156
DDRINFO: start DRAM init
DRAM PHY: 1D image training for 3000MTS ... passed
DRAM PHY: 1D image training for 400MTS ... passed
DRAM PHY: 1D image training for 100MTS ... passed
DRAM PHY: 2D image training for 3000MTS ... passed
DDRINFO:ddrphy calibration done
DDRINFO: ddrmix config done
Normal Boot
Trying to boot from MMC2
U-Boot 2019.04-4.19.35-1.1.0+ged283a8930 (Jul 13 2020 - 07:35:13 +0000)
```

Figure 7-17. Forced SPL boot from carrier SD card

#### 7.3.1.2 TEST# = HIGH: Booting SPL/U-Boot from module eMMC flash

With TEST# line = HIGH (e.g. on MSC SM2-MB-EP1 Carrier Board: "Test Mode Select" DIP Switch = OFF), the iMX8MMini Boot ROM code uses the module eMMC flash as **primary** and the carrier SD card as **secondary** (fallback) boot media. The fall back media is always selected, when booting from primary media is not possible (empty, corrupted, etc.)



Figure 7-18. SPL boot selector on EP1 carrier board (S2801). eMMC flash boot mode (default).

#### Example:



```
U-Boot SPL 2019.04-4.19.35-1.1.0+ged283a8930 (Jul 13 2020 - 07:35:13 +0000)
company ..... msc
form factor ..... sm2s
platform ..... imx8mm
processor ..... qc
feature ..... 03N0840E
serial ...... 1009641171
revision (MES) ... B0
boot count ..... 157
DDRINFO: start DRAM init
DRAM PHY: 1D image training for 3000MTS ... passed
DRAM PHY: 1D image training for 400MTS ... passed
DRAM PHY: 1D image training for 100MTS ... passed
DRAM PHY: 2D image training for 3000MTS ... passed
DDRINFO:ddrphy calibration done
DDRINFO: ddrmix config done
Normal Boot
Trying to boot from MMC1
U-Boot 2019.04-4.19.35-1.1.0+ged283a8930 (Jul 13 2020 - 07:35:13 +0000)
```

Figure 7-19. SPL boot from module eMMC flash.

#### 7.3.1.3 Booting SPL from USB

Not supported yet.



#### 7.3.2 Booting OS

According to chapter 4.15 "Boot Options", the BOOT\_SEL [0:2] pins are used to select one of the following OS boot schema.

#### 7.3.2.1 Booting OS from carrier SD card

| Carrier SD Card Boot Mode |            |            |                                                       |  |  |  |
|---------------------------|------------|------------|-------------------------------------------------------|--|--|--|
| BOOT_SEL0#                | BOOT_SEL1# | BOOT_SEL2# | Dip Switches on SM2-MB-EP1                            |  |  |  |
| HIGH                      | LOW        | LOW        | Boot Select 1# 10 10 10 10 10 10 10 10 10 10 10 10 10 |  |  |  |

Table 27: Carrier SD Card Boot Mode

In this configuration the Linux kernel image (Image) and the device tree blob are loaded from the first partition on the carrier SD card. The second partition contains the Linux file system (FS, ext4).

```
Hit any key to stop autoboot: 0
Boardinfo: OK, complete.
Using carrier SD card as boot device ...
switch to partitions #0, OK
mmc1 is current device
Loading image <Image> from mmc 1:1
24478208 bytes read in 1043 ms (22.4 MiB/s)
Loading fdt <msc-sm2s-imx8mm-03N0840E-headless.dtb> from mmc 1:1
46277 bytes read in 8 ms (5.5 MiB/s)
## Flattened Device Tree blob at 43000000
  Booting using the fdt blob at 0x43000000
  Using Device Tree in place at 0000000043000000, end 000000004300e4c4
Starting kernel ...
    0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd034]
    0.000000] Linux version 4.19.35-1.1.0+ga9eed949e290 (oe-user@oe-host) (gcc version 8.3.0 (GCC)) #1 SMP PREEMPT Mon
Jul 13 07:21:05 UTC 2020
    0.000000] Machine model: MSC SM2S-IMX8MM
```

Figure 7-20. Booting OS (linux) from on-carrier SD card.



#### 7.3.2.2 Booting OS from module eMMC flash

| eMMC Boot Mode |            |            |                                                            |  |  |  |
|----------------|------------|------------|------------------------------------------------------------|--|--|--|
| BOOT_SEL0#     | BOOT_SEL1# | BOOT_SEL2# | Dip Switches on SM2-MB-EP1                                 |  |  |  |
| LOW            | HIGH       | HIGH       | Boot Select 2# 100 Boot Select 1# 100 Boot Select 0# 100 C |  |  |  |

Table 28: eMMC Boot Mode

In this configuration the Linux kernel image (Image) and the device tree blob are loaded from the first partition on the module eMMC flash. The second partition contains the Linux file system (FS, ext4).

```
Hit any key to stop autoboot: 0
Board<u>info: OK, complete.</u>
Using module eMMC flash as boot device ...
switch to partitions #0, OK
mmc0(part 0) is current device
Loading image <Image> from mmc 0:1
24478208 bytes read in 94 ms (248.3 MiB/s)
Loading fdt <msc-sm2s-imx8mm-03N0840E-headless.dtb> from mmc 0:1
46277 bytes read in 4 ms (11 MiB/s)
## Flattened Device Tree blob at 43000000
  Booting using the fdt blob at 0x43000000
  Using Device Tree in place at 0000000043000000, end 000000004300e4c4
Starting kernel ...
    0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd034]
    0.000000] Linux version 4.19.35-1.1.0+ga9eed949e290 (oe-user@oe-host) (gcc version 8.3.0 (GCC)) #1 SMP PREEMPT Mon
Jul 13 07:21:05 UTC 2020
    0.000000] Machine model: MSC SM2S-IMX8MM
```

Figure 7-21. Booting OS (linux) from on-module eMMC flash.



#### 7.3.2.3 Booting OS from Network (Ethernet)

| Network Boot Mode |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-------------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| BOOT_SEL0#        | BOOT_SEL1# | BOOT_SEL2# | Dip Switches on SM2-MB-EP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| HIGH              | LOW        | HIGH       | Boot Select 2# Common C |  |  |  |

Table 29: Network Boot Mode

In this configuration the Linux kernel image (Image) and the device tree blob are loaded from the TFTP-, and the Linux file system is mounting on NFS-Server on LAN.

Depending on your local network infrastructure, set the following environment variables at the U-Boot prompt:

```
setenv serverip <TFTP/NFS server IP>
setenv nfsroot <nfs root path on NFS server>
saveenv
```

#### Example:

```
u-boot=>
u-boot=>
u-boot=> setenv nfsroot /home/public/0103801/rootfs
u-boot=> setenv serverip 172.30.206.100
u-boot=> saveenv
Saving Environment to MMC... Writing to MMC(0)... OK
u-boot=>
```

Figure 7-22. Preparing U-Boot environment for net boot.

Then continue system boot with:

Boot

or simply reboot (power cycle) your system.



```
u-boot=> boot
Boardinfo: OK, complete.
Using network/ethernet as boot device ...
BOOTP broadcast 1
DHCP client bound to address 172.30.206.104 (36 ms)
Using ethernet@30be0000 device
TFTP from server 172.30.206.100; our IP address is 172.30.206.104
Filename 'Image'.
Load address: 0x40480000
*************************
   15.6 MiB/s
Bytes transferred = 25274880 (181aa00 hex)
BOOTP broadcast 1
DHCP client bound to address 172.30.206.104 (36 ms)
Using ethernet@30be0000 device
TFTP from server 172.30.206.100; our IP address is 172.30.206.104
Filename 'msc-sm2s-imx8mm-03N0840E-headless.dtb'.
Load address: 0x43000000
Loading: ####
   11.1 MiB/s
done
Bytes transferred = 46623 (b61f hex)
## Flattened Device Tree blob at 43000000
 Booting using the fdt blob at 0x43000000
 Using Device Tree in place at 0000000043000000, end 000000004300e61e
Starting kernel ...
 0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd034]
 0.000000] Linux version 4.19.35-g50a2e865233e-dirty (waldemar@waldemar-HP-Z6-G4-Workstation) (gcc version 7.3.0 (G
C)) #6 SMP PREEMPT Tue Jun 30 14:23:31 CEST 2020
 0.000000] Machine model: MSC SM2S-IMX8MM
```



Figure 7-23. Booting OS (linux) from network.

#### 7.3.2.4 Booting OS from USB

| USB Boot Mode |            |            |                                                     |  |  |  |
|---------------|------------|------------|-----------------------------------------------------|--|--|--|
| BOOT_SEL0#    | BOOT_SEL1# | BOOT_SEL2# | Dip Switches on SM2-MB-EP1                          |  |  |  |
| HIGH          | HIGH       | HIGH       | Boot Select 1# 6 Boot Select 0# 6 Force Recovery# 6 |  |  |  |

Table 30: USB Boot Mode

In this configuration the Linux kernel image (Image) and the device tree blob are being loaded from the first partition on the USB. The second partition contains the Linux file system (FS, ext4).

```
Hit any key to stop autoboot: 0
Boardinfo: OK, complete.
Using USB as boot device ...
starting USB...
USB0: Port not available.
USB1: USB EHCI 1.00
scanning bus 1 for devices... 3 USB Device(s) found
      scanning usb for storage devices... 1 Storage Device(s) found
Device 0: Vendor: Intenso Rev: 8.07 Prod: Rainbow Line
           Type: Removable Hard Disk
           Capacity: 3840.0 MB = 3.7 GB (7864320 x 512)
 .. is now current device
Loading image <Image> from usb 0:1
24478208 bytes read in 2004 ms (11.6 MiB/s)
Loading fdt <msc-sm2s-imx8mm-03N0840E-headless.dtb> from usb 0:1
46277 bytes read in 13 ms (3.4 MiB/s)
## Flattened Device Tree blob at 43000000
  Booting using the fdt blob at 0x43000000
  Using Device Tree in place at 0000000043000000, end 000000004300e4c4
Starting kernel ...
    0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd034]
    0.000000] Linux version 4.19.35-1.1.0+ga9eed949e290 (oe-user@oe-host) (gcc version 8.3.0 (GCC)) #1 SMP PREEMPT Mon
Jul 13 07:21:05 UTC 2020
    0.000000] Machine model: MSC SM2S-IMX8MM
```



Figure 7-24. Booting OS (linux) from USB device (pen drive).

#### 7.3.2.5 Available device tree blobs (DTBs)

Table 31. Available DT-blobs.

| dtb                                      | comment                                                                                            |
|------------------------------------------|----------------------------------------------------------------------------------------------------|
| msc-sm2s-imx8mm-03N0840E-headless        | for 03N0840E variant based headless systems                                                        |
| msc-sm2s-imx8mm-03N0840E-dsi-rm67191     | for 03N0840E variant based systems with Raydium RM67191 (1080x1920)<br>MIPI/DSI panel              |
| msc-sm2s-imx8mm-03N0840E-dsi-avd-tt78qt  | for 03N0840E variant based systems with AV Display TT78QT (400x1280) MIPI/DSI panel                |
| msc-sm2s-imx8mm-03N0880I-headless        | for 03N0880I variant based headless systems                                                        |
| msc-sm2s-imx8mm-03N0880I-dsi-rm67191     | for 03N0880I variant based systems with Raydium RM67191 (1080x1920) MIPI/DSI panel                 |
| msc-sm2s-imx8mm-03N4200I-headless        | for 03N4200I variant based headless systems                                                        |
| msc-sm2s-imx8mm-03N4200I-lvds-am800480n7 | for 03N4200I variant based systems with Ampire AMA-800480N7 (800x480)<br>single channel LVDS panel |
| msc-sm2s-imx8mm-03N4200I-lvds-ama121a01  | for 03N4200I variant based systems with Ampire AMA-121A01 (1280x800) single channel LVDS panel     |
| msc-sm2s-imx8mm-03N4200I-lvds-p251hvn01  | for 03N4200I variant based systems with AUO P215HVN01 (1920x1080) dual channel LVDS panel          |
| msc-sm2s-imx8mm-03N4210I-headless        | for 03N4210I variant based headless systems                                                        |
| msc-sm2s-imx8mm-03N4210I-lvds-am800480n7 | for 03N4210I variant based systems with Ampire AMA-800480N7 (800x480) single channel LVDS panel    |
| msc-sm2s-imx8mm-03N4210I-lvds-ama121a01  | for 03N4210I variant based systems with Ampire AMA-121A01 (1280x800) single channel LVDS panel     |
| msc-sm2s-imx8mm-03N4210I-lvds-p251hvn01  | for 03N4210I variant based systems with AUO P215HVN01 (1920x1080)<br>dual channel LVDS panel       |
| msc-sm2s-imx8mm-13N4200I-headless        | for 13N4200I variant based headless systems                                                        |
| msc-sm2s-imx8mm-13N4200I-dsi-tm055jvhg14 | for 13N4200I variant based systems with Tianma TM055JVHG14 (720x1280)  MIPI/DSI panel              |
| msc-sm2s-imx8mm-13N4200I-lvds-am800480n7 | for 13N4200I variant based systems with Ampire AMA-800480N7 (800x480) single channel LVDS panel    |
| msc-sm2s-imx8mm-13N4200I-lvds-ama121a01  | for 13N4200I variant based systems with Ampire AMA-121A01 (1280x800) single channel LVDS panel     |
| msc-sm2s-imx8mm-13N4200I-lvds-p251hvn01  | for 13N4200l variant based systems with AUO P215HVN01 (1920x1080)<br>dual channel LVDS panel       |
| msc-sm2s-imx8mm-14N0261I-headless        | for 14N0261I variant based headless systems                                                        |



| msc-sm2s-imx8mm-14N0261I-lvds-ama070a04 | for 14N0261I variant based systems with Ampire AMA-800480N7 (800x480) single channel LVDS panel |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| msc-sm2s-imx8mm-14N0261I-lvds-ama121a01 | for 14N0261I variant based systems with Ampire AMA-121A01 (1280x800) single channel LVDS panel  |  |  |
| msc-sm2s-imx8mm-14N0261I-lvds-p251hvn01 | for 14N0261I variant based systems with AUO P215HVN01 (1920x1080) dual channel LVDS panel       |  |  |

## 7.3.3 Login to FS

Login is enabled via serial console (115200 baud/8 bits/no parity). All images also have telnet login enabled.

Table 32. Available user accounts.

| account | password | comment                             |
|---------|----------|-------------------------------------|
| root    | mscldk   | root user                           |
| msc     | msc      | standard user with sudo permissions |

#### 7.3.4 SMARC GPIO access

According to [1] following GPIOs are available on sms2-imx8mmini module:

Table 33. Available SMARC GPIOs

| SMARC GPIO | IMX GPIO |    | Linux/U-Boot idx mscio-cmd' alias | comment         |                |
|------------|----------|----|-----------------------------------|-----------------|----------------|
| SWARC GPIO | bank     | id | (bank-1)*32+id                    | mscio-cina anas | Comment        |
| 0          | 1        | 0  | 0                                 | gpio0           | EP1.CAM0_PWR   |
| 1          | 1        | 1  | 1                                 | gpio1           | available      |
| 2          | 1        | 3  | 3                                 | gpio2           | EP1.CAM0_RST   |
| 3          | 1        | 5  | 5                                 | gpio3           | available      |
| 4          | 1        | 6  | 6                                 | gpio4           | EP1.HDA_RST    |
| 5          | 5        | 2  | 130                               | gpio5           | EP1.FAN_PWMOUT |
| 6          | 5        | 1  | 129                               | gpio6           | EP1.FAN_TACHIN |
| 7          | 4        | 22 | 118                               | gpio7           | available      |



| 8  | 3 | 25 | 89  | gpio8  | available |
|----|---|----|-----|--------|-----------|
| 9  | 4 | 28 | 124 | gpio9  | available |
| 10 | 1 | 9  | 9   | gpio10 | available |
| 11 | 1 | 7  | 7   | gpio11 | available |

For detailed information about GPIO hardware- and software-operation see [6]:

- chapter 2.1.5.6.1 "GPIO Hardware Operation"
- chapter 2.1.6 "General Purpose Input/Output (GPIO)"

### 7.3.5 Bug Reporting

To simplify collecting information necessary for effectively responding to bug reports, please use the msc\_bug\_report.sh tool to generate bug report message. It will collect all necessary information like hardware description/configuration, kernel logs etc.

• Run msc\_bug\_report.sh



Figure 7-25. Bug report. Main page.



• Select "Edit User Message".



Figure 7-26. Bug report. User message editor.

• Enter bug report message and press Ctrl-O and Ctrl-X.



• Optionally you can then view the message with the board report (hardware information).



Figure 7-27. Bug report. Viewer page.

• Press "Create a zip file" and select the components you want to send (e.g. bootlog, mscio.ini, last kernel logs (dmesg) or the installed hardware).





Figure 7-28. Bug report. Zip archive content selector.

- Press "Save ZIP to a disc" and select the filesystem where to store the zip file. It is recommended to use a USB stick.
- Send the files msc\_bug\_report\_brief.txt and msc\_bug\_report.zip to Avnet Embedded /MSC Technical Support: <a href="mailto:support.boards@avnet.eu">support.boards@avnet.eu</a>





Figure 7-29. Bug report. Target partition selector.

# 7.4 Hotfixes and updating MSC-LDK

Typically twice a year a full MSC-LDK release is issued. A release may contain an updated Yocto or other updated layers as well as new supported boards. For each release an own branch is used (e.g. v1.0.0) which is tagged with the date encoded (e.g. LC984\_20150421\_V0\_4\_0, 21st April 2015), too. The release is checked out using the version syntax (e.g.: git checkout v1.3.0) as described above. Sometimes an intermediate hot-fix is necessary which doesn't modify the resulting image but fixes changed repository locations of third party software or similar minor changes. Hot-fixes are tagged with a newer date stamp (e.g. LC984\_20160113\_V0\_4\_0). A hot-fix can be checked out explicitly using these tags. When MSC-LDK is checked out the first time all hot-fixes are applied automatically.

To update an older checkout and to pull all the newer hot-fixes, run "scripts/update.py" from the MSC-LDK root directory. This will update MSC-LDK and all layers. Depending on the kind of hot-fixes applied in the meantime, running setup.py again might be necessary. When a hot-fix has been checked out explicitly, running update will not make sense and it will fail with an error.

After the first call of setup.py, no manual "git checkout" is required, as its layers will already be in synchronization with MSC-LDK. Either use update.py or clone MSC-LDK again. The subdirectories "download" and "sstate-cached" can be moved to other MSC-LDK installations or shared by symbolic links.



Customers who want to keep pace with development rather than building on a fixed status might want to use the "master" branch instead of a released branch. Here update.py must also be used. However, on the SM2S-IMX8MINI, currently the "master" branch is not applicable, instead all current changes are applied as hotfixes to the MSC-LDK release state of "v1.5.0" (State: March 2021).

This may change soon, as MSC is working on the next release already. Please ask Avnet Embedded /MSC Technical Support for respective last state at any given time.



# 8 Troubleshooting

## 8.1 Known issues and limitations

8.1.1 Issue 1. SPI interfaces not available on MSC SM2S-IMX8MINIQC-14N0261I variant Both CAN transceivers drive SPI[0:1]\_DIN signals low even though not selected by chip select signal.

Source: Hardware

Workaround: Not specified yet.

# 8.2 Support

For additional help please contact Avnet Embedded /MSC Technical Support:

Phone: +49 8165 906-200

WWW https://www.msc-technologies.eu/support/boards.html

Email: <a href="mailto:support.boards@avnet.eu">support.boards@avnet.eu</a>