

1. Rectangle ABCD has side lengths AB=10 and BC=12. Let the midpoint of CD be point M. Compute the area of the overlap between \triangle AMB and \triangle ADC.

Answer: 20

Solution: We have that the area of \triangle ADC is $\frac{12\cdot 10}{2}=60$. The area of \triangle ADM is $\frac{12\cdot 5}{2}=30$. Let the intersection of AC and BM be N. Then, we can see that \triangle ABN and \triangle CMN are similar, with ratio $\frac{AB}{CM}=\frac{10}{5}=2$, so the height of \triangle CMN is $\frac{12}{3}=4$ and the area of \triangle CMN is $\frac{5\cdot 4}{2}=10$. Then, the area of the overlap between \triangle AMB and \triangle ADC is [ADC]-[ADM]-[CMN]=60-30-10=20.

2. Let ω_1 be the incircle of \triangle ABC with side lengths AB = AC = 13 and BC = 10, and let ω_2 be the circle inside \triangle ABC that is externally tangent to ω_1 and tangent to segments AB and AC. Compute the radius of the circle inside \triangle ABC that is externally tangent to ω_1 and ω_2 and tangent to segment AB.

Answer: $\frac{8}{15}$

Solution: The radius r_1 of ω_1 is $\frac{[ABC]}{(AB+BC+CA)/2}=\frac{(10\cdot 12)/2}{(13+13+10)/2}=\frac{10}{3}$. Then, we can note that ω_2 is a dilation of ω_1 centered at A, so the radius r_2 of ω_2 is $\frac{12-20/3}{12}\cdot\frac{10}{3}=\frac{40}{27}$. Let ω_1 and ω_2 be tangent to AB at P_1 and P_2 , respectively. Let the centers of ω_1 and ω_2 be O_1 and O_2 , respectively, and let the center of the circle we are finding the radius of be O_3 . Let the line passing through O_3 parallel to AB meet O_1P_1 and O_2P_2 at Q_1 and Q_2 , respectively. Then, $Q_1Q_2=P_1P_2$. We can find that $AP_1=12\cdot\frac{10/3}{5}=8$ and $AP_2=12\cdot\frac{40/27}{5}=\frac{32}{9}$, so $P_1P_2=8-\frac{32}{9}=\frac{40}{9}$. Denote the radius that we want to compute as r. From right triangle $O_1Q_1O_3$, we have $O_1Q_1=\frac{10}{3}-r$ and $O_1O_3=\frac{10}{3}+r$, so $Q_1O_3=2\sqrt{10r/3}$. Similarly, $Q_2O_3=2\cdot\sqrt{40r/27}$. Finally, we have

$$\begin{aligned} Q_1O_3 + Q_2O_3 &= Q_1Q_2 \\ 2 \cdot \sqrt{10r/3} + 2 \cdot \sqrt{40r/27} &= \frac{40}{9} \\ \sqrt{r} &= \frac{2\sqrt{30}}{15} \\ r &= \boxed{\frac{8}{15}} \, . \end{aligned}$$

3. Let circles ω_1 and ω_2 be circles with radii 6 and 13, respectively, such that the distance between their centers is 25. A common external tangent touches ω_1 at point P and ω_2 at point Q. A common internal tangent touches ω_1 at point P and P and intersects line P at point P and P at point P and P at point P at point

Answer: $12 - \sqrt{66}$

Solution: Denote the intersection of the common external tangent with the other internal tangent as U, and let the centers of ω_1 and ω_2 be O_1 and O_2 , respectively. Let the midpoint of segment O_1O_2 be M. Note that since M is the midpoint of O_1O_2 , and O_1P , O_2Q are perpendicular to PQ, then the line passing through M perpendicular to PQ passes through the midpoint of segment of PQ, which we denote N. Thus, M lies on the perpendicular bisector of segment PQ, so M is equidistant from P and Q.

Next, note that TO_1 bisects $\angle PTR$ and TO_2 bisects $\angle QTS$ by considering that TP, TR are tangent to ω_1 and TQ, TS are tangent to ω_2 . This gives us $O_1TO_2=90^\circ$. We can similarly argue that $O_1UO_2=90^\circ$. Then, O_1TUO_2 is a cyclic quadrilateral with center M. Since P and Q are equidistant from M, we know that the powers of P and Q with respect to (O_1TUO_2) are equal, which means (PT)(PT+TU)=(QU)(QU+UT), so we conclude that PT=QU. Denote PT=x. We have $MN=\frac{O_1P+O_2Q}{2}=\frac{19}{2}$ and $PQ=\sqrt{O_1O_2^2-(O_2Q-O_1P)^2}=\sqrt{25^2-7^2}=24$ so PN=12. Then, $MP=\sqrt{\left(\frac{19}{2}\right)^2+12^2}$ and the power of P with respect to (O_1TUO_2) is $\left(\frac{19}{2}\right)^2+12^2-\left(\frac{25}{2}\right)^2=78$. Then, (PT)(PU)=x(24-x)=78 which gives us $x=12\pm\sqrt{66}$. Since we see that 2x< PQ=24, the valid solution is $x=12-\sqrt{66}$, so $TR=TP=\boxed{12-\sqrt{66}}$.