Review of linear models

5 Sep 2024

Licensed under the Creative Commons attribution-noncommercial license. Please share & remix noncommercially, mentioning its origin.

```
## it's nice to include packages at the top
## (and NOT automatically install them)
## try not to carry over packages you don't use
library(faux)
library(brglm2) ## for lizards data
library(ggplot2); theme_set(theme_bw())
## diagnostics
library(performance)
library(DHARMa)
## downstream model evaluation
library(broom)
library(dotwhisker)
library(emmeans)
library(effects)
library(marginaleffects)
library(parameters)
## library(ggeffects)
```

Why linear models? (Lindeløv 2019)

Common statistical tests are linear models

See worked examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear

	Common name Built-in function in R		Equivalent linear model in R Exact?		The linear model in words		
(×	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	t.test(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	for N >14	One number (intercept, i.e., the mean) predicts y (Same, but it predicts the <i>signed rank</i> of y .)	- 22	
Multiple regression: $Im(y \sim 1 + x_1 + x_2 +)$ Simple regression: $Im(y \sim 1 + x_1 + x_2 +)$	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$Im(y_2 - y_1 \sim 1)$ $Im(signed_rank(y_2 - y_1) \sim 1)$	√ f <u>or N >14</u>	One intercept predicts the pairwise y ₂ -y ₁ differences (Same, but it predicts the <i>signed rank</i> of y ₂ -y ₁ .)	Z →	
	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	Im(y ~ 1 + x) Im(rank(y) ~ 1 + rank(x))	√ for N >10	One intercept plus x multiplied by a number (slope) predicts y . - (Same, but with <i>ranked</i> x and y)	نعليبسر	
	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$\begin{split} & Im(y\sim 1+G_2)^A \\ & gls(y\sim 1+G_2, weights=^B)^A \\ & Im(signed_rank(y)\sim 1+G_2)^A \end{split}$	√ √ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y. - (Same, but with one variance per group instead of one common.) - (Same, but it predicts the signed rank of y.)	*	
	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$\begin{split} & Im(y\sim 1+G_2+G_3++G_N)^A \\ & Im(rank(y)\sim 1+G_2+G_3++G_N)^A \end{split}$	√ for N >11	An intercept for group 1 (plus a difference if group ≠ 1) predicts y . - (Same, but it predicts the <i>rank</i> of y .)	i _t t†	
	P: One-way ANCOVA	aov(y ~ group + x)	Im(y ~ 1 + G_2 + G_3 ++ G_N + x) ^A	~	- (Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.		
	P: Two-way ANOVA	aov(y ~ group * sex)	$\begin{split} & Im(y \sim 1 + G_2 + G_3 + \ldots + G_N + \\ & S_2 + S_3 + \ldots + S_K + \\ & G_2^* S_2 + G_3^* S_3 + \ldots + G_N^* S_K) \end{split}$	4	Interaction term: changing sex changes the $y \sim group$ parameters. Note: $G_{2x} = k3$ an $\frac{indicate}{i} (Op. C1)$ for each non-intercept levels of the group variable. Similarly for $S_{2x} = k7$ or sex. The first line (with G) is min effect of group, $k7$ is escond (with S_1 for sex and the third is the group x sex interaction. For two levels (e.g. male/female), line 2 would ps S_1 multiple with each G_2 .	[Coming]	
	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model glm(y ~ 1 + G_2 + G_3 + + G_N + G_2 + S_3 + + S_K + G_2 * S_3 + + S_K + S	~	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments; size model, familympoisson(I) As linear-model, the Chi-square test is log(y) = log(y) + log(a) + log(a) + log(a) by there a, and \(\beta\), are proportions. See more into in the accompanying notebook	Same as Two-way ANOVA	
M	N: Goodness of fit	chisq.test(y)	glm(y ~ 1 + G ₂ + G ₃ ++ G _N , family=) ^A	1	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA	

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation y = 1 + x is R shorthand for $y = 1 + b + a \cdot x$ which most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they all are across colors! For non-parametric models, the linear models are reasonable approximations for non-small sample sizes (see "Exact" column and click links to see simulations). Other less accurate approximations exist, e.g., Wilcoxon for the sign test and Goodness-of-fit for the binomial test. The signed rank function is $signed_t = tunction(x) sign(x) * tank(abs(x))$. The variables (Gand S. are "dummy coded" indicator variables (link or 0 r) exploiting the fact that when $\Delta x = 1$ between categories the signe. Subscripts (e.g., G_2 or y.) indicate difference equations in the signed variables (link) and the sig

Basics

- assume $\mathbf{v} \sim \text{Normal}(\mathbf{X}\beta, \sigma)^1$
- **X** is the *model matrix*, can be anything we want it to be
- the *Gauss-Markov theorem* (Wikipedia) makes weaker assumptions: $y = X\beta + \epsilon$; as long as ϵ is mean-zero, homoscedastic with finite variance, and uncorrelated ... then the OLS solution

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

is the BLUE (or MVUE).

we'll embrace the assumptions (which are needed for inference!)

Computation

- matrix decompositions (QR with pivoting; see here)
- big problems: biglm, speedglm, RcppEigen::fastLm

[^] See the note to the two-way ANOVA for explanation of the notation.

B Same model, but with one variance per group: $gls(value \sim 1 + G_{g_f}, weights = varIdent(form = ~1)group)$, method="ML").

¹Notation-abuse warning ...

- optimized BLAS, kernel trick, etc.
- memory vs speed vs robustness ...
- -p vs. n vs. many-small-regressions vs. ...

Inference

- σ^2 (residual variance) is RSS/(n-p)
- The covariance matrix is $\Sigma = \sigma^2(\mathbf{X}^\top \mathbf{X})^{-1}$.
- Individual coefficients are *t*-distributed
- Linear combinations of coefficients (contrasts or predictions) are t-distributed with covariance matrix $\mathbf{C}^{\top} \Sigma^{-1} \mathbf{C}$
- Joint hypotheses on coefficients are *F*-distributed
- Wald and likelihood ratio test comparisons are equivalent (but need to be careful about marginality)

Model matrices

- model definition converted to **X** before we start
- input variables vs predictor variables (Schielzeth (2010), Gelman and Hill (2006), CV)
 - transformations
 - encoding of categorical variables: contrasts
 - interactions
 - basis expansions (e.g. polynomials)

Wilkinson-Rogers formulas

- Wilkinson and Rogers (1973), updated by Chambers and Hastie (1991, ch. 2)
- operators: +, *, :, /, -, ^
- I()

Contrasts

treatment contrasts

- intercept = baseline, subsequent values are differences

- contrast matrix:

$$\mathbf{C}\beta = \begin{pmatrix} 1 & 0 & 0 & \dots \\ 1 & 1 & 0 & \dots \\ 1 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \dots \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \dots \end{pmatrix} \quad .$$

Maybe easier to start from the **inverse** contrast matrix: $\beta = \mathbf{C}^{-1}\mu$.

```
C <- cbind(1, contr.treatment(3)) ## R omits the intercept by default
solve(C)</pre>
```

We have to specify the baseline level (contr.treatment uses first level of a factor; contr.SAS() uses the last level).

It's nice when contrasts are *orthogonal*, i.e. all rows are independent $\to \mathbf{C}^\top \mathbf{C}$ is diagonal.

Sum-to-zero contrasts

- intercept is the (unweighted!) average rather than baseline value $(\sum \mu_i/n)$
- ullet other parameters are differences between mean of level i and intercept $(\mu_i \sum_j \mu_j/n)$
- last level is dropped

```
mfun <- function(C) MASS::fractions(solve(C))
(C <- cbind(1,contr.sum(3)))</pre>
```

mfun(C)

Helmert contrasts

- Weird but orthogonal
- intercept, diff of first two levels, diff of level 3 from 1 & 2, ...

```
(C <- cbind(1,contr.helmert(3)))</pre>
```

mfun(C)

```
1 2 3

[1,] 1/3 1/3 1/3

[2,] -1/2 1/2 0

[3,] -1/6 -1/6 1/3
```

others

- MASS::contr.sdif() (successive-differences)
- contr.poly() (orthogonal polynomial contrasts)
- custom (e.g., "none" vs "symbiont effect" vs "crabs vs shrimp" vs "two-symbiont effect") (McKeon et al. (2012); data here)

```
none C S CS intercept 1/4 1/4 1/4 1/4 avg_symb 1 -1/3 -1/3 -1/3 C.vs.S 0 1 -1 0 twosymb 0 1/2 1/2 -1
```

```
## contrast matrix
mfun(cc_inv)
```

```
intercept avg_symb C.vs.S twosymb
             3/4
                      0
none
            -1/4
C
      1
                    1/2
                           1/3
S
      1
            -1/4
                    -1/2 1/3
            -1/4 0 -2/3
CS
      1
```

practical issues

- too many ways to set contrasts (options(), contrasts(f) <-, lm(..., contrasts = list(...))
- terrible naming conventions: you can get used to it or use the faux package
- OK to fit models and later use emmeans to recover desired contrasts (switching linear bases)

```
mtcars$fcyl <- factor(mtcars$cyl)
lm0 <- lm(mpg ~ fcyl, mtcars)
cn <- function(x) names(coef(x))
cn(lm0)</pre>
```

```
[1] "(Intercept)" "fcyl6" "fcyl8"
```

```
update(lm0, contrasts = list(fcyl = contr.sum(3))) |> cn()
```

```
[1] "(Intercept)" "fcyl1" "fcyl2"
```

```
update(lm0, contrasts = list(fcyl = contr.helmert(3))) |> cn()
```

using faux

```
update(lm0, data = transform(mtcars, fcyl = contr_code_sum(fcyl))) |> cn()

[1] "(Intercept)" "fcyl.4-intercept" "fcyl.6-intercept"

update(lm0, data = transform(mtcars, fcyl = contr_code_helmert(fcyl))) |> cn()

[1] "(Intercept)" "fcyl.6-4" "fcyl.8-4.6"
```

Interactions

- differences in differences
- parameter values of main effects (and p values etc.) depend on contrasts/centering!
- overall model fit $(R^2$, predictions, etc.) is invariant

Lizard data (Schoener (1970), from the brglm2 package):


```
data("lizards", package = "brglm2")
lmTL1 <- lm(grahami~time+light,data=lizards)</pre>
pp <- with(lizards,expand.grid(time=levels(time),light=levels(light)))</pre>
pp$grahami <- predict(lmTL1,newdata=pp)</pre>
cc <- as.list(plyr::rename(coef(lmTL1),c(`(Intercept)`="int")))</pre>
labelpos <- with(cc,</pre>
  list(x=c(1,2,3,1), xend=c(1,2,3,1),
      y=c(int,int,int,int),
      yend=c(int,int+timemidday,int+timelate,int+lightshady)))
xpos < -0.1
ggplot(pp,aes(x=time,y=grahami,colour=light))+geom_point()+
  geom_line(aes(group=light))+
  annotate("segment", x=labelpos$x, xend=labelpos$xend, y=labelpos$y,
           yend=labelpos$yend,alpha=0.5,
           arrow=arrow(length = unit(0.3, "cm"), ends="both"))+
  annotate("text", x=with(labelpos, (x+xend)/2)+xpos, y=with(labelpos, (y+yend)/2),
label=paste0("beta[",1:4,"]"),parse=TRUE)+
  annotate("segment", x=labelpos$x[1], xend=labelpos$x[3], y=labelpos$y[1],
           yend=labelpos$y[1],alpha=0.3,lty=2) +
    labs(title = "additive model")
```

additive model


```
lmTL2 <- lm(grahami~time*light,data=lizards)
gg_color_hue <- function(n) {</pre>
```

```
hues = seq(15, 375, length=n+1)
  hcl(h=hues, l=65, c=100)[1:n]
pp2 <- pp
pp2$grahami <- predict(lmTL2,newdata=pp)</pre>
cc <- as.list(plyr::rename(coef(lmTL2),c(`(Intercept)`="int",</pre>
        `timemidday:lightshady`="midshady",`timelate:lightshady`="lateshady")))
labelpos <- with(cc,</pre>
  list(x=c(1,2,3,1,2,3), xend=c(1,2,3,1,2,3),
      y=c(int,int,int,int,int+lightshady+timemidday,int+lightshady+timelate),
      yend=c(int,int+timemidday,int+timelate,int+lightshady,
             int+timemidday+lightshady+midshady,int+timelate+lightshady+lateshady)))
xpos <- -0.1
ggplot(pp2,aes(x=time,y=grahami,colour=light))+geom_point()+
  geom_line(aes(group=light))+
  annotate("segment", x=1:2, xend=2:3,
           y=with(cc,c(int+lightshady,int+timemidday+lightshady)),
           yend=with(cc,c(int+timemidday+lightshady,int+timelate+lightshady)),
           colour=gg_color_hue(2)[2],lty=2)+
  annotate("segment", x=labelpos$x, xend=labelpos$xend, y=labelpos$y,
           yend=labelpos$yend,alpha=0.5) +
           ## arrow=arrow(length = unit(0.3, "cm"), ends="both"))+
  annotate("text", x=with(labelpos, (x+xend)/2)+xpos, y=with(labelpos, (y+yend)/2),
label=paste0("beta[",1:6,"]"),parse=TRUE)+
  annotate("segment", x=rep(labelpos$x[1],2),
                     xend=rep(labelpos$x[3],2),
                     y=labelpos yend[c(1,4)],
           yend=labelpos$yend[c(1,4)],alpha=0.3,lty=2) +
    labs(title = "interaction model")
```


Marginality

- Venables (1998)
- 'type (X) sums of squares'
- scaling and centering (Schielzeth 2010) alleviates many problems; sum-to-zero contrasts (weighted or unweighted?)

Making life easier with emmeans

- important to understand contrasts
- but easier to compute expected marginal means, contrasts via emmeans package
- contrasts expressed in terms of group means
- e.g.
- good documentation, vignettes

Model interpretation, visualization, testing

Diagnostics

• linearity > heteroscedasticity, outliers > normality

- upstream problems can induce downstream problems first
- universal plots are universal, but less interpretable than problem-specific exploration (try to identify problematic predictors/groups/etc.)

Graphical diagnostics

```
    base R: stats::plot.lm()
    performance::check_model()
    DHARMa (simulateResiduals(., plot = TRUE))
    - (plotResiduals(simout, form = pred_var))
    broom::augment() + plot-your-own (ggplot2)
```

performance::check_model(lmTL2)

DHARMa residual

plot(ss, form = lizards\$time)

Within–group deviation from uniformity n.s. Levene Test for homogeneity of variance n.s.

Solutions to problems

- **nonlinearity**: transformation, add covariates (??), add interactions, add polynomial terms etc.
- outliers: drop values (report both!), use robust regression
- heteroscedasticity: transformation, model dispersion explicitly, GLMs
- non-Normality: transformation, GLMs

Transformation

- May do too much at once (GLMs and GAMs allow more flexibility)
- Log-transformation is often interpretable and solves problems
- Transforming boundary values (e.g. log(0)) is problematic
- **Box-Cox transformations**: $y \to \frac{y^{\lambda}-1}{\lambda}$ (include Jacobian term $GM^{\lambda-1}$ in denominator to keep log-likelihood comparable)
 - flexible
 - in practice people often use 'round numbers': $\lambda = 0$ (log), 1/2 (square root), etc.

- MASS::boxcox()
- hard to interpret!

Example

```
library(faraway)
m1 <- lm(perm ~ area, rock)
performance::check_model(m1, check = c("linearity", "homogeneity", "outliers", "qq"))</pre>
```

Linearity Homogeneity of Variance
Reference line should be flat and horizontal Reference line should be flat and horizontal

Influential Observations Points should be inside the contour lines

Normality of Residuals Dots should fall along the line


```
m <- MASS::boxcox(m1, interp = FALSE)
abline(v=1/4, col = 2)</pre>
```



```
m2 <- update(m1, perm^(1/4) ~ .)
performance::check_model(m2, check = c("linearity", "homogeneity", "outliers", "qq"))</pre>
```

Linearity Homogeneity of Variance Reference line should be flat and horizont Reference line should be flat and horizontal 2 √|Std. residuals| 1.0 Residuals 0 -10.5 -2 3.5 4.0 4.5 3.5 4.0 3.0 5.0 3.0 4.5 5.0 Fitted values Fitted values Influential Observations Normality of Residuals Points should be inside the contour lines Dots should fall along the line 2 4 Sample Quantile Deviations 0.5 Std. Residuals -4-2 0.00 0.05 0.10 -2 -1 0 Leverage (h_{ii}) Standard Normal Distribution Quantiles

When we transform we have to add the logs of the Jacobian of the transform to the log-

```
likelihood, or subtract \sum \log(J_i) from the negative log-likelihood. e.g. if we log-transform, \sum \log(J(y_i)) = \sum \log\left(\partial(\log(y_i))/\partial y\right) = \sum \log(1/y_i) = -\sum \log y_i. In this case \sum \log(J(y_i)) = \sum \log((1/4)P^(-3/4)) = -N\log 4 - 3/4\sum \log(P):
```

Check:

```
logJ <- -(nrow(rock)*log(4) + 3/4*sum(log(rock$perm)))
lm2 <- logLik(m2) + logJ
lm1 <- logLik(m1)
lm2-lm1</pre>
```

```
'log Lik.' 23.3844 (df=3)
```

```
## difference from Box-Cox sequence
max(m$y)-m$y[m$x==1]
```

[1] 23.52213

Reminder about parameter scaling

- Schielzeth (2010), Gelman (2008)
- centering ensures no problems with marginality (analogous to sum-to-zero contrasts)
- scaling predictors gives coefficients equal units (analogous to Cohen's d)
- scaling response makes coefficients *standardized partial regression coefficients* (equal to partial correlation coefficients if predictors are independent)
- scaling by 2 SD makes coefficients equivalent to those from balanced binary predictors
- scaling inputs or scaling predictors?

What about correlated predictors?

- Can compute variance inflation factors (VIFs)
- Dropping correlated factors is dubious: Graham (2003), Dormann et al. (2012), Morrissey and Ruxton (2018), Vanhove (2021)
- perfect collinearity gets handled automatically by R's pivoting, but may want to change contrasts/model setup

```
summary(lmTL2)
```

Call:

lm(formula = grahami ~ time * light, data = lizards)

Residuals:

Min 1Q Median Max ЗQ -30.250 -4.125 1.250 6.875 17.750

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	11.750	5.375	2.186	0.04311	*
timemidday	-5.083	8.211	-0.619	0.54408	
timelate	-6.250	7.602	-0.822	0.42238	
lightshady	11.750	7.602	1.546	0.14061	
timemidday:lightshady	32.833	11.190	2.934	0.00927	**
timelate:lightshady	-6.500	10.751	-0.605	0.55343	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.75 on 17 degrees of freedom Multiple R-squared: 0.7504, Adjusted R-squared: 0.677 F-statistic: 10.22 on 5 and 17 DF, p-value: 0.0001179

broom::tidy(lmTL2)

```
# A tibble: 6 x 5
```

	term	${\tt estimate}$	${\tt std.error}$	${\tt statistic}$	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	11.8	5.38	2.19	0.0431
2	timemidday	-5.08	8.21	-0.619	0.544
3	timelate	-6.25	7.60	-0.822	0.422
4	lightshady	11.8	7.60	1.55	0.141
5	timemidday:lightshady	32.8	11.2	2.93	0.00927
6	timelate:lightshady	-6.50	10.8	-0.605	0.553

```
## automatically drop intercept; optional by_2sd argument
dotwhisker::dwplot(lmTL2) + geom_vline(xintercept = 0, lty = 2) +
   labs(x="difference in grahami count")
```


Interpretation and testing

- Look at coefficient tables: summary() or coef(summary())
- model comparison: drop1(), anova(), car::Anova()
- coefficient *plots*: broom + ggplot2, dotwhisker

Downstream methods

- plot predictions with data
- partial residuals plots (e.g. remef package)
- prediction, effects plots
- uncertainty of predictions
- emmeans, marginaleffects, effects, sjPlot ...

References

Chambers, J. M., and T. J. Hastie, eds. 1991. *Statistical Models in S*. 1st ed. Chapman & Hall/CRC.

- Dormann, Carsten F., Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel Carré, Jaime R. García Marquéz, et al. 2012. "Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance." *Ecography*, no–. https://doi.org/10.1111/j.1600-0587.2012.07348.x.
- Gelman, Andrew. 2008. "Scaling Regression Inputs by Dividing by Two Standard Deviations." *Statistics in Medicine* 27 (15): 2865–73. https://doi.org/10.1002/sim.3107.
- Gelman, Andrew, and Jennifer Hill. 2006. *Data Analysis Using Regression and Multi-level/Hierarchical Models*. Cambridge, England: Cambridge University Press.
- Graham, Michael H. 2003. "Confronting Multicollinearity in Ecological Multiple Regression." *Ecology* 84 (11): 2809–15. https://doi.org/10.1890/02-3114.
- Lindeløv, Jonas Kristoffer. 2019. "Common Statistical Tests Are Linear Models (or: How to Teach Stats)." https://lindeloev.github.io/tests-as-linear/.
- McKeon, C., Adrian Stier, Shelby McIlroy, and Benjamin Bolker. 2012. "Multiple Defender Effects: Synergistic Coral Defense by Mutualist Crustaceans." *Oecologia* 169 (4): 1095–1103. https://doi.org/10.1007/s00442-012-2275-2.
- Morrissey, Michael B., and Graeme D. Ruxton. 2018. "Multiple Regression Is Not Multiple Regressions: The Meaning of Multiple Regression and the Non-Problem of Collinearity." *Philosophy, Theory, and Practice in Biology* 10 (3).
- Schielzeth, Holger. 2010. "Simple Means to Improve the Interpretability of Regression Coefficients: Interpretation of Regression Coefficients." *Methods in Ecology and Evolution* 1 (2): 103–13. https://doi.org/10.1111/j.2041-210X.2010.00012.x.
- Schoener, Thomas W. 1970. "Nonsynchronous Spatial Overlap of Lizards in Patchy Habitats." *Ecology* 51 (3): 408–18. https://doi.org/10.2307/1935376.
- Vanhove, Jan. 2021. "Collinearity Isn't a Disease That Needs Curing." *Meta-Psychology* 5 (April). https://doi.org/10.15626/MP.2021.2548.
- Venables, W. N. 1998. "Exegeses on Linear Models." In. 1998 International S-PLUS User Conference. Washington, DC. http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf.
- Wilkinson, G. N., and C. E. Rogers. 1973. "Symbolic Description of Factorial Models for Analysis of Variance." *Journal of the Royal Statistical Society. Series C (Applied Statistics)* 22 (3): 392–99. https://doi.org/10.2307/2346786.