BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI HYDERABAD CAMPUS SECOND SEMESTER 2022-2023 COURSE HANDOUT (PART II)

Date:16/01/2023

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : ECE F242, EEE F242, INSTR F242

Course Title : Control Systems
Instructor-in-charge : Dr. Joyjit Mukherjee

Instructors : Dr. Harish V Dixit, Dr. Ankur Bhattacharjee, Dr. Gopal K Kamath

1. Scope & Objective of the Course:

Feedback automatic control systems are an essential feature of numerous industrial processes, scientific instruments and even commercial, social and management situations. A thorough understanding of the elementary principles of this all embracing technology is of great relevance for all engineers and scientists. This course tries to bring out the basic principles of Feedback Control Systems.

2. Learning outcomes:

By the end of the semester, the students should be able to:

- Develop mathematical models of linear time invariant (LTI) control systems for electrical, mechanical and electromechanical systems.
- Analyze the transient response, steady-state response and system stability of LTI control system.
- Analyze and design control system compensators to achieve specified control system performances in time domain utilizing root-locus techniques.
- Analyze and design control system compensators to achieve specified control system performances utilizing frequency-response techniques.

3. Text Book:

(T1) Nagrath I. J. and M. Gopal, Control Systems Engineering, New Age International (P) Limited, **5**th**ed**, 2007.

4. Reference Books:

- (**R1**) Kuo, B. C., and Golnaraghi, F., Automatic Control Systems, John Wiley & Sons, 8thed, 2003.
- (**R2**) Dorf, R. C., and Bishop, R. H., Modern Control Systems, Addison Wesley, 7thed, 1995.
- (**R3**) Norman S. Nise, Control System Engineering, John Wiley & Sons. 4th ed. 2009.

5. Course Plan:

Lecture	Learning objectives	Topics to be covered	Text Book
No.			

1	Introduction	Concret understanding of the concept of control	
1	Introduction Control system terminology-system, control,	General understanding of the concept of control system. Identification of various examples	1.1-1.4 and
	feedback, transfer function. Linear Time	encountered in life from engineering and non-	Class notes
	invariant system	engineering fields as well.	Class libles
2		Basics of Laplace transform to derive the	Class Notes
	Introduction to Laplace transform and its application to control systems	_	and
	application to control systems	transfer function, convert differential equation	appendix- I
		into transfer function and vice versa.	appendix- i
3	Mathematical Modelling.	Understanding examples from various systems	2.1, 2.2
	Integro-differential equations for electrical,	and making block diagram model of the same.	2.1, 2.2
	mechanical systems and Transfer functions,	Working out transfer function by various	
	Gear reduction, disturbance input	methods and gears	
4	Mathematical modelling of	Understanding the electromechanical system	2.4
	electromechanical system – example of	with DC motor as an example and developing	
	control of armature and field controlled DC	the block diagram	
	motor as a drive, hydraulic and thermal		
	system examples		
5-6	Block diagram development, closed loop	Developing a block diagram of applications	2.5
	transfer function		
7-8	Signal flow graph	Developing the signal flow graph of a system	2.6,
	Mason's gain formula, Various Examples		
9	Open loop and closed loop example.	Learning about more examples of open loop and	3.1
	Effect on gain, dynamic response disturbance	closed loop control systems and their	
	input	comparison	
10	Sensitivity to parameter variation.	To learn the control of system sensitive to	3.2, 3.6, 3.7
	Concept of frequency content in signals,	parameter variations	
	regenerative feedback, further examples		
11	Examples of servomotor, stepper motor	linearization concept, block diagram and transfer	4.1, 4,2,
		function of real life examples.	4.3,4.4
12	Hydraulic control system	Block diagram and transfer function	4.5, 4.6
	Pneumatic control components	development	
13-14	Various Test signals in time domain,	Transient and natural response analysis of	5.1, 5.2, 5.3
	Response of zeroth and first order systems	dynamic first order systems to different	5.4
	Second order systems	excitations	
15 10	Time year and spicious of accord and a	Transient and natural response analysis of	
15-16	Time response specifications of second order systems, error constants, effect of adding	Transient and natural response analysis of dynamic second order systems to different	5.4, 5,5, 5.6
	pole(s)/zero(s)	excitations	
	poic(3)/2c10(3)	CACITATIONS	
17-18	Compensation Techniques	To design control system for given time domain	5.7, 5.8,
	Higher order systems.	specifications.	5.10
19-20	Stability; Routh criterion	To apply Routh Test to closed loop system	6.1, 6.2,
		stability study.	6.4, 6.5, 6.6
21	Root Locus.	To draw root locus for various systems and there	7.1, 7.2
	Introduction,	from infer information on time response and	
	Magnitude and Angle criterion	stability	
22-23	Root Locus for second order systems without	- do -	7.2
	zero and with zeros		
24	Other rules of root locus.	- do -	7.3
	Higher order examples.		7.5
25	Higher order examples (contd.)	- do -	7.4
	Root contours		
25-26	Frequency Response; Introduction,	To plot frequency response of systems and use	8.1, 8.2, 8.3
	Polar plot	for analysis by frequency domain approach.	

27-28	Bode plot	- do -	8.4
29	Identification of Transfer function from Bode plot, Gain margin and phase margin	- do -	8.5 & 8.6,9.4
30	Nyquist criterion; Introduction. Nyquist contour	Investigation of the stability of closed loop system using their open loop transfer function frequency plot.	9.1, 9.2, 9.3
31-32	Nyquist stability criterion. Various Examples	- do -	9.3
33-35	Introduction to Design	To design lag, lead compensators, Tuning of PID controllers	10.1-10.7
36-43	State variable analysis and design	Analysis and design of a system using state variable approach	12.1 to 129

6. Evaluation Scheme:

Component	Duration	Weightage	Mar ks	Date	Remarks
Midsem	1.5 hours	30%	60	15/03 9.30 - 11.00AM	СВ
Quizzes (Best 2 out of 3)	40 min	30%	60	To be announced	СВ
Comprehensive Exam.	3 hours	20%+20%	80	12/05 FN	OB/CB

- **7. Chamber Consultation Hours:** to be announced in the class.
- **8. Notices:** Notices concerning the course will be put up on the CMS website.
- **9. Make-up Policy:** No make up for quizzes and assignments.
- **10. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-In-Charge ECE F242, EEE F242, INSTR F242