Internal Assessment Question Paper - 2

M.S. Ramaiah Institute of Technology (Autonomous Institute, Affiliated to VTU)

Department of CSE

Programme: B.E

Course: Finite Automata and Formal languages

Sem: IV

Max Marks: 30

CIE: II

Time: 1Hr

Term: April - Jul 2024

Course Code: CS45

Section: A,B,C Portions for Test: L9-L428

Instructions to Candidates: Mobiles, smart watches or any electronic gadgets are strictly banned. Question 1 is compulsory. Answer any one from question 2 and 3.

SI #		Question	Marks	Bloom's Level	Mapping
1	a)	Obtain a CFG to generate the following language i. $L = \{ww^R \mid w \in \{a, b\}^*\}$ ii. $L = \{0^i \mid j \mid 0^k \mid j > i + k \mid i, k > = 1\}$	4	Apply	СОЗ
	b)	Obtain the grammar in CNF $S \rightarrow 0A 1B$ $A \rightarrow 0AA 1S 1$ $B \rightarrow 1BB 0S 0$	4	Apply	CO4
	(c)	Define Turing Machine. Obtain a Turing Machine to accept the language L={0 ⁿ 1 ²ⁿ n>=1}. Simulate for ID: U01111.	7	Apply	CO5
2	a)	Obtain a PDA for the given CFG $S \rightarrow ABC \mid b D$ $A \rightarrow BC \mid a$ $B \rightarrow bA \mid b$ $C \rightarrow d$	5	Apply	CO3
	b)	Is the following grammar ambiguous? S→aSbS ∮→bSaS S→ε	5	Apply	CO3
	(0)	Prove that if L is CFL and R is regular languages, then so is $L \cap R$ is a CFL	5	Apply	CO4
3		Olaria PRA Carl			

3		Obtain a PDA for language $L = \{a^nb^nc^{n+m} n,m>=0\}$. Simulate the PDA for ID: abcc.	7	Apply	CO3
	b)	Eliminate all ε production for the grammar			
		$S \to ABC \mid bD$ $A \to BC \mid b$	1		
		$A \rightarrow BC b$ $B \rightarrow b \mid \varepsilon$ $C \rightarrow c \mid \varepsilon$	4	Apply	CO4
		$C \rightarrow c \mid \epsilon$			

	$D \rightarrow d$			
c)	Eliminate all unit production for the grammar	1		
	$S \rightarrow AB$			
	$A \rightarrow a$			
	$B \rightarrow C b$	4	Apply	CO4
	$C \rightarrow D$		11.	
	D→E bC			
	$A \rightarrow a$ $B \rightarrow C b$ $C \rightarrow D$ $D \rightarrow E bC$ $E \rightarrow d Ab$			

Outcomes meant to be assessed by the IA Test-I:

- CO3: Convert among equivalently powerful notations for a language, including amon DFAs, NFAs, and regular expressions, between PDAs, CFGs and normal forms of CFGs
- CO4: Prove the various closure and decision properties of formal languages.
- CO5: Explain the concepts of Undecidability, RE languages and Post Correspondence problem.