

Repeaters, hubs, Switches & Bridges

Goals of Today's Lecture

- Devices that shuttle data at different layers
 - Repeaters and hubs
 - -Bridges and switches
 - -Routers
- Switch protocols and mechanisms
 - Dedicated access and full-duplex transfers
 - -Cut-through switching
 - -Self learning of the switch table
 - -Spanning trees
- Virtual LANs (VLANs)

Shuttling Data at Different Layers

- Different devices switch different things
 - Network layer: packets (routers)
 - Link layer: frames (bridges and switches)
 - Physical layer: electrical signals (repeaters and hubs)

Application gateway

Transport gateway

Router

Bridge, switch

Repeater, hub

Physical Layer: Repeaters

- Distance limitation in local-area networks
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on the length of a LAN
- Repeaters join LANs together
 - Analog electronic device
 - Continuously monitors electrical signals on each LAN
 - Transmits an amplified copy

Physical Layer: Hubs

- Joins multiple input lines electrically
 - Designed to hold multiple line cards
 - Do not necessarily amplify the signal
- Very similar to repeaters
 - Also operates at the physical layer

Limitations of Repeaters and Hubs

- One large shared link
 - Each bit is sent everywhere
 - So, aggregate throughput is limited
 - E.g., three departments each get 10 Mbps independently
 - ... and then connect via a hub and must share 10 Mbps
- Cannot support multiple LAN technologies
 - Does not buffer or interpret frames
 - So, can't interconnect between different rates or formats
 - E.g., 10 Mbps Ethernet and 100 Mbps Ethernet
- Limitations on maximum nodes and distances
 - Shared medium imposes length limits (see next lecture)
 - E.g., cannot go beyond 2500 meters on Ethernet

Link Layer: Bridges

- Connects two or more LANs at the link layer
 - Extracts destination address from the frame
 - Looks up the destination in a table
 - Forwards the frame to the appropriate LAN segment
- Each segment can carry its own traffic

Link Layer: Switches

- Typically connects individual computers
 - A switch is essentially the same as a bridge
 - ... though typically used to connect hosts, not LANs
- Like bridges, support concurrent communication
 - Host A can talk to C, while B talks to D

Dedicated Access and Full Duplex

- Dedicated access
 - Host has direct connection to the switch
 - ... rather than a shared LAN connection
- Full duplex
 - Each connection can send in both directions
 - Host sending to switch, and host receiving from switch
 - E.g., in 10BaseT and 100Base T
- Completely supports concurrent transmissions
 - Each connection is a bidirectional point-to-point link

Bridges/Switches: Traffic Isolation

- Switch breaks subnet into LAN segments
- Switch filters packets
 - Frame only forwarded to the necessary segments
 - Segments can support separate transmissions

Advantages Over Hubs/Repeaters

- Only forwards frames as needed
 - Filters frames to avoid unnecessary load on segments
 - Sends frames only to segments that need to see them
- Extends the geographic span of the network
 - Separate segments allow longer distances
- Improves privacy by limiting scope of frames
 - Hosts can "snoop" the traffic traversing their segment
 - ... but not all the rest of the traffic
- Can join segments using different technologies

Disadvantages Over Hubs/Repeaters

- Delay in forwarding frames
 - Bridge/switch must receive and parse the frame
 - ... and perform a look-up to decide where to forward
 - Storing and forwarding the packet introduces delay
 - Solution: cut-through switching
- Need to learn where to forward frames
 - Bridge/switch needs to construct a forwarding table
 - Ideally, without intervention from network administrators
 - Solution: self-learning
- Higher cost
 - More complicated devices that cost more money

Motivation For Cut-Through Switching

- Buffering a frame takes time
 - Suppose L is the length of the frame
 - And R is the transmission rate of the links
 - Then, receiving the frame takes L/R time units
- Buffering delay can be a high fraction of total delay
 - Propagation delay is small over short distances
 - Making buffering delay a large fraction of total

Cut-Through Switching

- Start transmitting as soon as possible
 - Inspect the frame header and do the look-up
 - If outgoing link is idle, start forwarding the frame
- Overlapping transmissions
 - Transmit the head of the packet via the outgoing link
 - ... while still receiving the tail via the incoming link
 - Analogy: different folks crossing different intersections

Motivation For Self Learning

- Switches forward frames selectively
 - Forward frames only on segments that need them
- Switch table
 - Maps destination MAC address to outgoing interface
 - Goal: construct the switch table automatically

Self Learning: Building the Table

- When a frame arrives
 - Inspect the source MAC address
 - Associate the address with the incoming interface
 - Store the mapping in the switch table
 - Use a time-to-live field to eventually forget the mapping

Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
 - Forward the frame out all of the interfaces
 - ... except for the one where the frame arrived
 - Hopefully, this case won't happen very often

When in doubt, shout!

A

Switch Filtering/Forwarding

When switch receives a frame:

```
index switch table using MAC dest address
if entry found for destination
 then{
   if dest on segment from which frame arrived
     then drop the frame
      else forward the frame on interface indicated
  else flood
                  forward on all but the interface
```

on which the frame arrived

Flooding Can Lead to Loops

- Switches sometimes need to broadcast frames
 - Upon receiving a frame with an unfamiliar destination
 - Upon receiving a frame sent to the broadcast address
- Broadcasting is implemented by flooding
 - Transmitting frame out every interface
 - ... except the one where the frame arrived
- Flooding can lead to forwarding loops
 - E.g., if the network contains a cycle of switches
 - Either accidentally, or by design for higher reliability

Solution: Spanning Trees

20

- Ensure the topology has no loops
 - Avoid using some of the links when flooding
 - ... to avoid forming a loop
- Spanning tree
 - Sub-graph that covers all vertices but contains no cycles
 - Links not in the spanning tree do not forward frames

Constructing a Spanning Tree

- Need a distributed algorithm
 - Switches cooperate to build the spanning tree
 - ... and adapt automatically when failures occur

One hop

- Key ingredients of the algorithm
 - Switches need to elect a "root"
 - The switch with the smallest identifier
 - Each switch identifies if its interface is on the shortest path from the root
 - And it exclude from the tree if not
 - Messages (Y, d, X)
 - From node X
 - Claiming Y is the root
 - And the distance is d

Moving From Switches to Routers

- Advantages of switches over routers
 - Plug-and-play
 - Fast filtering and forwarding of frames
 - No pronunciation ambiguity (e.g., "rooter" vs. "rowter")
- Disadvantages of switches over routers
 - Topology is restricted to a spanning tree
 - Large networks require large ARP tables
 - Broadcast storms can cause the network to collapse