Додаток 1

Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант 29

Виконав студент <u>III-15 Рибалка Ілля Сергійович</u>

(шифр, прізвище, ім'я, по батькові)

Перевірив Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 6

Дослідження рекурсивних алгоритмів

Мета - дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Індивідуальне завдання

Варіант 29

Перетворення натурального числа з десяткової системи числення у двійкову.

1. Постановка задачі

Перевести число десяткової системи числення у двійкову шляхом перетворення натурального числа в рекурсивній функції.

2. Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Основна програма			
Десяткове число	Натуральне	num	Вхідні дані
Двійкове число	Натуральне	res	Вихідні дані
Переведення у двійкову систему	Підпрограма	bin	Початкові дані
Десяткове число	Натуральне, 0	num	Вхідні дані
Двійкове число	Натуральне, 0	binum	Вхідні, проміжні дані
Остача від ділення	Натуральне, 0	bit	Проміжні дані

Алгоритм переведення в двійкову систему схожий на роботу рекурсивної функції.

- Спочатку *рекурсивний спуск*, цілочисельне ділення десяткового числа на 2 (для отримання цілої частини від ділення на 2 використаємо оператор *div*), поки не отримаємо результат 1 або 0.
- Потім *рекурсивне повернення*, починаючи з результату записуємо остачу від ділення (для отримання остачі від ділення використаємо оператор *mod*), зліва на право.

Це і буде виконувати підпрограма bin.

В основній програмі вводиться десяткове число num, наступною дією є присвоєння змінній res значення підпрограми bin.

Вхідними даними підпрограми є пит, змінній binum присвоюється значення 0.

Основи програмування – 1. Алгоритми та структури даних

- Рекурсивний спуск відбувається до того моменту, поки пит не набуде значення меншого за 2, для цього змінна *binum* набуває значення підпрограми *bin(num div 2)*.
- Після цього починається рекурсивне повернення зі знаходженням змінної *bit* і додаванням її до *binum*10*.

Підпрогрограма повертає значення binum, що присвоюється змінній res в основній програмі, останньою дією є виведення res в консоль.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми. Крок 1. Визначимо основні дії.

- Крок 2. Деталізуємо крок знаходження res за рахунок підпрограми.
- Крок 3. Визначимо основні дії підпрограми.
- Крок 4. Деталізуємо дію рекурсивного спуску.
- Крок 5. Деталізуємо дію знаходження bit.
- Крок 6. Деталізуємо дію знаходження binum.

Псевдокод

Основна програма

крок 1

початок

Введення num

Знаходимо res

Виведення res

кінець

крок 2

початок

Введення num

res = bin (num)

Виведення res

кінець

Підпрограма

крок 3

bin (num)

binum = 0

Рекурсивний спуск

Знаходження bit

Знаходження binnum

повернути binnum

кінець bin

крок 4

bin (num)

binum = 0

якщо num > 1

binum = bin (num div 2)

все якщо

Знаходження bit

Знаходження binnum

повернути binnum

кінець bin

крок 5

bin (num)

binum = 0

якщо num > 1

binum = bin (num div 2)

все якщо

 $bit = num \mod 2$

Знаходження binnum

повернути binnum

кінець bin

крок 6

bin (num)

binum = 0

якщо num > 1

binum = bin (num div 2)

все якщо

 $bit = num \mod 2$

binum *= 10

binum += bit

повернути binnum

кінець bin

Блок-Схема

Основна програма

Підпрограма

Код

```
#include <iostream>
int bin(int);
int main()
  int num, res;
  std::cout << "Введіть натуральне число десяткової системи = ";
  std::cin >> num;
  res = bin(num);
   std::cout << "Число " << num << " в двійковій системі числення: " << res << std::endl;
   return 0;
nt bin(int num)
  int bit, binum = 0;
   if (num > 1)
       binum = bin(num / 2);
  bit = num % 2;
  binum *= 10;
  binum += bit;
   return binum;
```

Основи програмування – 1. Алгоритми та структури даних

Тестування

Блок	Дія
	Початок
1	num = 14
2	bin(14)
3	14>1 == True, bin (14 div 2)
4	7>1 == True, bin (7 div 2)
5	3>1 == True, bin (3 div 2)
6	1>1 == False
7	bit = $1 \mod 2 = 1$, binum = $0*10 + 1 = 1$
8	bit = $3 \mod 2 = 1$, binum = $1*10 + 1 = 11$
9	bit = $7 \mod 2 = 1$, binum = $11*10 + 1 = 111$
10	bit = $14 \mod 2 = 0$, binum = $111*10 + 0 = 1110$
11	res = 1110
12	Виведення 1110
	Кінець

Висновок

Я дослідив особливості роботи рекурсивних алгоритмів та набув практичних навичок їх використання під час складання програмних специфікацій підпрограм. Було створено алгоритм переведення числа з десяткової, в двійкову систему числення. Алгоритм було протестовано на числі 14, результатом слугувало число 1110.