

IEL – protokol k projektu

Michal Novák xnovak3g

21. prosince 2021

Obsah

1	Příklad 1	2
2	Příklad 2	5
3	Příklad 3	7
4	Příklad 4	11
5	Příklad 5	14
6	Shrnutí výsledků	17

Stanovte napětí U_{R7} a proud I_{R7} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
E	115	55	485	660	100	340	575	815	255	225

Transformace trojúhelník - hvězda:

$$R_A = \frac{R_1 R_2}{R_1 + R_2 + R_3}$$
 $R_A = \frac{485 \cdot 660}{485 + 660 + 100} \doteq 257, 1084 \,\Omega$
 $R_B = \frac{R_1 R_3}{R_1 + R_2 + R_3}$ $R_B = \frac{485 \cdot 100}{485 + 660 + 100} \doteq 38, 9558 \,\Omega$
 $R_C = \frac{R_2 R_3}{R_1 + R_2 + R_3}$ $R_C = \frac{660 \cdot 100}{485 + 660 + 100} \doteq 53, 0120 \,\Omega$

Postupné zjednodušování:

$$U = U_1 + U_2$$
 $U = 115 + 55 = 170 V$

$$R_{45} = \frac{R_4 R_5}{R_4 + R_5}$$
 $R_{45} = \frac{340.575}{340 + 575} \doteq 213,6612 \,\Omega$

$$R_{B457} = R_B + R_{45} + R_7$$
 $R_{B457} = 38,9558 + 213,6612 + 255 \doteq 507,6170 \Omega$

$$R_{C6} = R_C + R_6$$
 $R_{C6} = 53,0120 + 815 \doteq 868,0120 \Omega$

$$R_{BC4567} = \frac{R_{B457}R_{C67}}{R_{B457} + R_{C6}}$$
 $R_{BC4567} = \frac{508,6170 \cdot 868,0120}{508,6170 + 868,0120} \doteq 320,3027 \,\Omega$

$$R = R_A + R_{BC4567} + R_8$$
 $R = 257, 1084 + 320, 3027 + 225 \doteq 802, 4111 \Omega$
 $I = \frac{U}{R}$ $I = \frac{170}{802,4111} \doteq 0, 2119 A$

Získávání hodnot pro odpor č. 7:

$$U = U_A + U_{RBC4567} + U_8 = I(R_A + R_{BC4567} + R_8)$$

$$U_{RBC4567} = IR_{BC4567}$$
 $U_{RBC4567} = 0,2119 \cdot 320,3027 \doteq 67,8721 V$

$$U_{RBC4567} = U_{RB457} = U_{RC6}$$

$$I_{RB} = I_{R45} = I_{R7}$$

$$I_{R7} = \frac{U_{RBC4567}}{R_{B457}}$$
 $I_{R7} = \frac{67,8721}{507,6170} \doteq 0,1337$ A

$$U_{R7} = I_{R7}R_7$$
 $U_{R7} = 0,1337 \cdot 255 \doteq \underline{34,0935} V$

Ověření ve falstadu: OBVOD

Stanovte napětí U_{R1} a proud I_{R1} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
С	200	70	220	630	240	450

Zjednodušení obvodu:

$$R_{45} = R_4 + R_5$$
 $R_{45} = 240 + 450 = 690 \,\Omega$

$$R_{345} = \frac{R_3 R_{45}}{R_3 + R_{45}}$$
 $R_{345} = \frac{630 \cdot 670}{630 + 670} \doteq 329,3182 \,\Omega$

Pro zkratovaný zdroj:

$$I_0 = \frac{U}{R_2 + R_{345}}$$
 $I_0 = \frac{200}{220 + 329,3182} \doteq 0,3641 A$

$$R_i = \frac{R_2 R_{345}}{R_2 + R_{345}}$$
 $R_i = \frac{220 \cdot 329,3182}{220 + 329,3182} \doteq 131,8908 \,\Omega$ $U_{R2} = I_0 R_2$ $U_{R345} = I_0 R_{345}$ $U_{AB} = U_{R2} = U - U_{R345}$ $U_{AB} = 0,3641 \cdot 220 \doteq 80,0993 \,V$ $I_{R1} = \frac{U_{AB}}{R_i + R_1}$ $I_{R1} = \frac{80,0993}{131,8908 \cdot 70} \doteq 0,3967 \,A$ $U_{R1} = R_1 I_{R1}$ $U_{R1} = 70 \cdot 0,3967 \doteq 27,7722 \,V$

Ověření ve falstadu: OBVOD

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Α	120	0.9	0.7	53	49	65	39	32

Převedeme si napěťový zdroj na proudový

$$I = \frac{U}{R_5}$$
 $I = \frac{120}{32} = 3,75 A$

Zjednodušení pro rezistory:

$$R_{45} = \frac{R_4 R_5}{R_4 + R_5}$$
 $R_{45} = \frac{39 \cdot 32}{39 + 32} = \frac{1247}{71} \Omega$

Převod rezistorů na vodivosti:

$$G_1 = \frac{1}{R_1}$$
 $G_1 = \frac{1}{53} S$

$$G_2 = \frac{1}{R_2}$$
 $G_2 = \frac{1}{49} S$

$$G_3 = \frac{1}{R_3}$$
 $G_1 = \frac{1}{65} S$

$$G_{45} = \frac{1}{R_{45}} \qquad G_{45} = \frac{71}{1248} S$$

Sestavení a úprava rovnic pro uzlová napětí:

1)
$$I + I_1 - G_1U_A + G_{45}(U_B - U_A) = 0$$

2)
$$-I - G_{45}(U_B - U_A) + I_2 - G_3(U_B - U_C) = 0$$

3)
$$-I_2 + G_3(U_B - U_C) - G_2U_C = 0$$

1)
$$-U_A(G_1+G_{45})+U_BG_{45}+0=-I-I_1$$

2)
$$U_AG_{45} - U_B(G_3 + G_{45}) + U_CG_3 = I - I_2$$

3)
$$0 + U_B G_3 - U_C (G_2 + G_3) = I_2$$

$$\begin{pmatrix} -G_1 - G_{45} & G_{45} & 0 \\ G_{45} & -G_3 - G_{45} & G_3 \\ 0 & G_3 & -G_2 - G_3 \end{pmatrix} \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} -I - I_1 \\ I - I_2 \\ I_2 \end{pmatrix}$$

Dosazení a výpočet determinantů pomocí Cramerova a Sarrusova pravidla:

$$\begin{pmatrix} -\frac{3891}{6784} & \frac{71}{1248} & 0\\ \frac{71}{1248} & -\frac{4743}{8320} & \frac{1}{65}\\ 0 & \frac{1}{65} & -\frac{114}{3185} \end{pmatrix} \begin{pmatrix} U_A\\ U_B\\ U_C \end{pmatrix} = \begin{pmatrix} -\frac{93}{20}\\ \frac{61}{20}\\ 0,7 \end{pmatrix}$$

$$\Delta = \left[\left(-\frac{3891}{6784} \right) \cdot \left(-\frac{4743}{8320} \right) \cdot \left(-\frac{114}{3185} \right) \right] - \left[\frac{71}{1248} \cdot \frac{71}{1248} \cdot \left(-\frac{114}{3185} \right) \right] - \left[\left(-\frac{3891}{6784} \right) \cdot \frac{1}{65} \cdot \frac{1}{65} \right]$$

$$\Delta_{UB} = \left[\left(-\frac{3891}{6784} \right) \cdot \frac{61}{20} \cdot \left(-\frac{114}{3185} \right) \right] - \left[\frac{71}{1248} \cdot \left(-\frac{93}{20} \right) \cdot \left(-\frac{114}{3185} \right) \right] - \left[\left(-\frac{3891}{6784} \right) \cdot 0, 7 \cdot \frac{1}{65} \right]$$

$$\Delta_{UC} = \left[\left(-\frac{3891}{6784} \right) \cdot \left(-\frac{4743}{8320} \right) \cdot 0, 7 \right] + \left[\frac{71}{1248} \right) \cdot \frac{1}{65} \cdot \left(-\frac{93}{20} \right) \right] - \left[\frac{71}{1248} \cdot \frac{71}{1248} \cdot 0, 7 \right] - \left[\left(-\frac{3891}{6784} \cdot \frac{1}{65} \cdot \frac{61}{20} \right) \right] - \left[\frac{71}{1248} \cdot \frac{71}{1248} \cdot 0, 7 \right] - \left[\left(-\frac{3891}{6784} \cdot \frac{1}{65} \cdot \frac{61}{20} \right) \right] - \left[\frac{71}{1248} \cdot \frac{71}{1248} \cdot 0, 7 \right] - \left[\left(-\frac{3891}{6784} \cdot \frac{1}{65} \cdot \frac{61}{20} \right) \right] - \left[\frac{71}{1248} \cdot \frac{71}{1248} \cdot 0, 7 \right] - \left[\left(-\frac{3891}{6784} \cdot \frac{1}{65} \cdot \frac{61}{20} \right) \right] - \left[\frac{71}{1248} \cdot \frac{71}{1248} \cdot 0, 7 \right] - \left[\frac{71}{1248} \cdot \frac{1}{1248} \cdot \frac{1}{1248}$$

Výpočet potřebných uzlových napětí:

$$U_B = \frac{\Delta_{UB}}{\Delta} \qquad U_B \doteq 6,1476 \, V$$

$$U_C = \frac{\Delta_{UB}}{\Delta} \qquad U_C \doteq -16,9146 \ V$$

Napětí a proud na rezistoru R_7 :

$$U_{R3} = U_B - U_C$$
 $U_{R3} = 6,1476 - (-16,9146)$ $U_{R3} \doteq \underline{23,0622} V$

$$I_{R3} = \frac{U_{R3}}{R_3} \qquad I_{R3} = \frac{69,4873}{65} \qquad I_{R3} \doteq \underline{0,3548} A$$

Ověření ve falstadu: OBVOD

Pro napájecí napětí platí: $u_1=U_1\cdot\sin(2\pi ft),\ u_2=U_2\cdot\sin(2\pi ft).$ Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot\sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [\mathrm{mH}]$	C_1 [µF]	C_2 [µF]	f [Hz]
E	5	3	14	13	130	60	100	65	90

Do obvodu si znázorníme smyčkové proudy:

Vyjádříme si úhlovou rychlost ω :

$$\omega = 2\pi f = 2\pi \cdot 90 = 180\pi \ rad/s$$

Sestavíme rovnice pro jednotlivé smyčky:

$$I_A$$
) $L_1 \omega i I_A + U_1 + \frac{1}{C_1 \omega i} (I_A - I_C) + R_1 (I_A - I_B) = 0$

$$I_B$$
) $R_1(I_B - I_A) + U_2 + \frac{1}{C_1\omega_i}I_B = 0$

$$I_C$$
) $\frac{1}{\omega C_2 i} (I_C - I_A) + L_2 \omega i I_C + R_2 I_C - U_2 = 0$

Upravíme a sestavíme matici:

$$\begin{pmatrix} R_1 - \frac{1}{\omega C_2} i + \omega L_1 i & -R_1 & \frac{1}{\omega C_2} i \\ -R_1 & R_1 - \frac{1}{\omega C_1} i & 0 \\ \frac{1}{\omega C_2} i & 0 & R_2 - \frac{1}{\omega C_2} i + \omega L_2 i \end{pmatrix} \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -U_1 \\ -U_2 \\ U_2 \end{pmatrix}$$

$$\begin{pmatrix} 14 + 46,3073i & -14 & 27,2060i \\ -14 & 14 - 17,6839i & 0 \\ 27,2060i & 0 & 13 + 6,7232i \end{pmatrix} \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -5 \\ -3 \\ 3 \end{pmatrix}$$

Uplatníme Cramerovo a Sarusovo pravidlo pro výpočet determinantů a získáme hoddnotu I_C :

$$\Delta \doteq 18313, 7316 - 2373, 9271i$$

$$\Delta_C \doteq 4862, 2145 + 4249, 2523i$$

$$I_C = \frac{\Delta_C}{\Delta}$$
 $I_C \doteq \frac{4862,2145+4249,2523i}{18313,7316-2373,9271i} \doteq 0,2315+0,2620i A$

$$I_{L2} \equiv I_C$$

Vypočítáme napětí na cívce U_{L2} :

$$Z_{L2} = \omega L_2 i$$
 $Z_{L2} = 180\pi \cdot 60 \cdot 10^{-3} i = \frac{54\pi}{5} i \Omega$

$$U_{L2} = I_{L2}Z_{L2}$$
 $U_{L2} = (0, 2315 + 0, 2620i) \cdot \frac{54}{5}i = -8,8907 + 7,8556i V$

Dopočítáme $|U_{L_2}|$ a φ_{L_2} :

$$|U_{L_2}| = \sqrt{Re(U_{L_2})^2 + Im(U_{L_2})^2}$$
 $|U_{L_2}| = \sqrt{(-8,8907)^2 + 7,8556^2} \doteq 11,8640V$

$$\varphi_{L_2} = \arctan \frac{\operatorname{Im}(U_{L_2})}{\operatorname{Re}(U_{L_2})} \qquad \varphi_{L_2} = \arctan \frac{7,8556}{-8,8907} \doteq \underline{-0,7237} \, rad$$

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

sk.	U[V]	$R\left[\Omega\right]$	C[F]	$u_C(0)$ [V]
С	45	5	30	12
	Ъ			

Sestavení rovnic pro sériový RC obvod:

$$U = u_R + u_C$$
$$u_R = Ri$$
$$u'_C = \frac{i}{C}$$

Úprava rovnic:

$$U = R_i + u_C$$
$$U = RCu'_c + u_C$$

Rovnice $U=RCu_c'+u_C$ je diferenciální rovnice popisující chování obvodu.

Pro řešení nehomogenní diferenciální rovnice prvního řádu použijeme úpravu:

$$RC\lambda + 1 = 0$$
$$\lambda = -\frac{1}{RC}$$

Dosadíme do očekávaného řešení a derivujeme:

$$u_C = C(t)e^{-\frac{1}{RC}t}$$

$$u'_C = C'(t)e^{-\frac{1}{RC}t} - \frac{1}{RC}C(t)e^{-\frac{1}{RC}t}$$

C(t) je pro nás neznámá proměnná.

Spolu s očekávaným řešením dosadíme do počáteční rovnice a následně upravíme:

$$\begin{split} RC[C'(t)e^{-\frac{1}{RC}t} + (-\frac{1}{RC})C(t)e^{-\frac{1}{RC}t}] + C(t)e^{-\frac{1}{RC}t} &= U \\ RC \cdot C'(t)e^{-\frac{1}{RC}t} - RC \cdot \frac{1}{RC}C(t)e^{-\frac{1}{RC}t} + C(t)e^{-\frac{1}{RC}t} &= U \end{split}$$

$$RC \cdot C'(t)e^{-\frac{1}{RC}t} = U$$

Neznámou C(t) vypočítáme pomocí derivace:

$$RC \cdot C'(t)e^{-\frac{1}{RC}t} = U$$
$$C'(t) = \frac{U}{RCe^{-\frac{1}{RC}t}}$$

$$\int C'(t) = \int \frac{U}{RC} e^{\frac{1}{RC}t}$$

$$C(t) = Ue^{\frac{1}{RC}}t + k$$

Vyjádřené C(t) dosadíme opět do očekávaného řešení:

$$u_C = (Ue^{\frac{1}{RC}}t + k)e^{-\frac{1}{RC}t}$$

$$u_C = U + ke^{-\frac{1}{RC}t}$$

K výpočtu parametru k dosadíme do rovnice počáteční podmínku t=0 a zadané hodnoty pro prvky obvodu:

$$12 = 45 + ke^{-\frac{1}{5\cdot30}\cdot0}$$

$$12 = 45 + k$$

$$k = -33$$

Analytické řešení pro zadaný obvod tedy bude:

$$u_C = 45 - 33e^{-\frac{1}{150}t}$$

Ověření výsledku:

Pro
$$t = 0$$
:

$$u_C = 45 - 33e^{-\frac{1}{150} \cdot 0}$$

$$u_C = 45 - 33$$

$$u_C = 12 V$$

Pro $t = \infty$:

$$u_C = 45 - 33e^{-\frac{1}{150} \cdot \infty}$$

$$u_C = 45 - \frac{33}{\infty}$$

 u_C se bude nekonečně

blížit hodnotě 45 V.

Shrnutí výsledků

Příklad	Skupina	$ m V\acute{y}sledky$				
1	Е	$U_{R7} = 34,0935 V$	$I_{R7} = 0,1337 A$			
2	С	$U_{R1} = 27,7722 V$	$I_{R1} = 0,3967 A$			
3	A	$U_{R3} = 23,0622 V$	$I_{R3} = 0,3548 A$			
4	Е	$ U_{L_2} = 11,8640 V$	$\varphi_{L_2} = -0,7237 \ rad$			
5	С	$u_C = 45 -$	$-33e^{-\frac{1}{150}t}$			