Word Meaning and Similarity

Word Similarity:
Distributional Similarity
(II)

Using syntax to define a word's context

- Zellig Harris (1968)
 - "The meaning of entities, and the meaning of grammatical relations among them, is related to the restriction of combinations of these entities relative to other entities"
- Two words are similar if they have similar parse contexts
- Duty and responsibility (Chris Callison-Burch's example)

Modified by adjectives	additional, administrative, assumed, collective, congressional, constitutional
Objects of verbs	assert, assign, assume, attend to, avoid, become, breach

Co-occurrence vectors based on syntactic dependencies

Dekang Lin, 1998 "Automatic Retrieval and Clustering of Similar Wo

- The contexts C are different dependency relations
 - Subject-of- "absorb"
 - Prepositional-object of "inside"
- Counts for the word cell:

subj-of, absorb subj-of, adapt subj-of, adapt subj-of, behave pobj-of, inside mmod-of, abnormality nmod-of, architecture mod-of, architecture obj-of, attack obj-of, call obj-of, decorate mmod, bacteria nmod, bacteria

PMI applied to dependency relations

Hindle, Don. 1990. Noun Classification from Predicate-Argument Structure. ACL

Object of "drink"	Count	PMI
tea	2	11.8
liquid	2	10.5
wine	2	9.3
anything	3	5.2
it	3	1.3

- "Drink it" more common than "drink wine"
- But "wine" is a better "drinkable" thing than "it"

similarity

 v_i is the PPMI value for word v in context i w_i is the PPMI value for word w in context i.

 $Cos(\overrightarrow{v,w})$ is the cosine similarity of \overrightarrow{v} and \overrightarrow{w}

Cosine as a similarity metric

- -1: vectors point in opposite directions
- +1: vectors point in same directions
- 0: vectors are orthogonal

- Raw frequency or PPMI are non-
- negative, so cosine range 0-1

Dan Jurafsky

$$\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\vec{v}}{|\vec{v}|} \cdot \frac{\vec{w}}{|\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

	large	data	compute r
apricot	1	0	0
digital	0	1	2
.information	1	6	1

Which pair of words is more similar: $\frac{1}{1+0+0}$ cosine(apricot,information) = $\sqrt{1+0+0}$ $\sqrt{1+36+1}$ = $\frac{1}{\sqrt{38}}$ = .16

cosine(digital,information) =
$$\sqrt{\frac{0+6+2}{\sqrt{0+1+4}}} = \frac{8}{\sqrt{38}\sqrt{5}} = .58$$

cosine(apricot,digital) =
$$\frac{0+0+0}{\sqrt{1+0+0}} =$$

Other possible similarity measures

$$sim_{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\sum_{i=1}^{N} v_i \times w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

$$sim_{Jaccard}(\vec{v}, \vec{w}) = \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)}$$

$$sim_{Dice}(\vec{v}, \vec{w}) = \frac{2 \times \sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} (v_i + w_i)}$$

$$sim_{JS}(\vec{v}||\vec{w}) = D(\vec{v}|\frac{\vec{v} + \vec{w}}{2}) + D(\vec{w}|\frac{\vec{v} + \vec{w}}{2})$$

Evaluating similarity (the same as for thesaurus-based)

- Intrinsic Evaluation:
 - Correlation between algorithm and human word similarity ratings
- Extrinsic (task-based, end-to-end) Evaluation:
 - Spelling error detection, WSD, essay grading
 - Taking TOEFL multiple-choice vocabulary tests

```
<u>Levied</u> is closest in meaning to which of these: imposed, believed, requested, correlated
```

Word Meaning and Similarity

Word Similarity:
Distributional Similarity
(II)