# WYRÓWNANIE SIECI METODĄ WIĄZKI W BUNDLAB XTREL

Konspekt ten opisuje przebieg wyrównania sieci zdjęć metodą wiązki w programie Bundlab oraz module xtrel działającym niezależnie od Bundlaba, ale uruchamianym jest bezpośrednio przez interfejs Budnlaba. Zmiana opcji wyrównania możliwa jest poprzez tekstowy plik konfiguracyjny

1. Obliczenie przybliżonych współrzędnych punktów terenowych wraz z kontrolą pomiaru

Moduł xtrel to czystej postaci solver do metody wiązki. W sensie matematycznym program ten nie realizuje nic innego poza wyrównaniem i oceną dokładności. Dane do wyrównania muszą być przygotowane wcześniej, w szczególności muszą być znane przybliżone parametry wyrównania. Dotyczy to także współrzędnych punktów terenowych (fotopunktów oraz punktów wiążących). Zakładamy, że na tym etapie prac każde ze zdjęć posiada we właściwym pliku \*.ida wpisane elementy orientacji zewnętrznej (przybliżone). Na ich podstawie wyznaczymy teraz przybliżone współrzędne punktów terenowych w drodze wcięcia w przód. W wyniku tej operacji Bundlab utworzy plik \*.opo zawierający informacje o położeniu wszystkich punktów terenowych. Nie ma znaczenia czy będą do fotopunkty czy punkty wiążące – położenie każdego punktu zostanie wyznaczone i skontrolowane. Wykonanie tego kroku jest konieczne dla prawidłowego utworzenia projektu rozwiązania.

Uruchamiamy moduł obliczeniowy Intersection (menu Solve/Intersection). Pojawi się następujące okno:



Należy wybrać, który zestaw elementów orientacji zewnętrznej będzie wykorzystywany (Use EO: ) Musimy być pewni, że wskazujemy właściwą opcję, w przeciwnym wypadku wszystkie elementy orientacji wykorzystywane do wcięcia będą "zerowe" i obliczenia zakończą się niepowodzeniem. Jeżeli nie pamiętamy w jakim polu zostały zapisane elementy orientacji zewnętrznej można to zawsze sprawdzić w plikach \*.ida.

Teraz wciskamy kolejno przyciski Solve, potem Save Report oraz Show Report (Jeżeli raport się nie wyświetli – zawsze można go otworzyć – jest dostępny w katalogu REP). Należy przeanalizować raport pod kątem spójności danych. Uzyskiwane odchyłki (na zdjęciach) oraz różnice współrzędnych terenowych dla fotopunktów niekoniecznie muszą być małe bo korzystamy z przybliżonych elementów orientacji wewnętrznej oraz zewnętrznej. Z tego powodu nie zostały podane tutaj żadne wartości graniczne, poniżej których możemy uznać, że obliczenia się powiodły.

Można sprawdzić, czy program w katalogu projektu utworzył plik ze współrzędnymi punktów terenowych (nazwa: taka sama jak nazwa projektu, rozszerzenie: opo)

Uwaga techniczna: w przypadku wcięcia w przód Budlab przypisuje dany punkt do zdjęcia na podstawie ID zdjęcia, zapisanego dla każdego punktu w drugiej kolumnie w pliku \*.pix (nie poprzez nazwę pliku \*.pix!). Trzeba zwrócić na to uwagę np. podczas łączenia danych z kilku projektów. W przypadku błędu w tym zakresie, program może się zakończyć (nie dodano jeszcze obsługi wyjątku).

### 2. Utworzenie projektu wyrównania

Obsługa wyrównania metodą wiązki realizowana jest poprzez menu Solve/Bundle Adjustment. Interfejs graficzny jest tutaj bardzo ograniczony – więcej opcji dostępnych jest z poziomu pliku konfiguracyjnego. W oknie Bundle Adjustment podajemy nazwę rozwiązania (Solution Name:). Określamy, które elementy orientacji zewnętrznej będziemy wykorzystywać (Use Eo:), oraz określamy reprezentację obrotu wykorzystywaną podczas wyrównania (Rotation: ) – zostawiamy tutaj opcję Euler Angles.



Jeżeli chcemy liczyć samokalibrację, zaznaczamy opcję Camera Calibration. Jeżeli chcemy aby program wygenerował dla nas certyfikat kalibracji musimy zaznaczyć odpowiedni check box oraz wskazać plik konfiguracyjny certyfikatu (rozszerzenie .yaml). W ramach zajęć dydaktycznych nie przewiduje się generowania certyfikatu kalibracji. Rozwiązanie generujemy przyciskiem Generate Solution.

Rozwiązanie (Solution) zostaje utworzone w katalogu BAJ, który znajduje się katalogu projektu. W katalogu BAJ może istnieć wiele Solution o różnych nazwach. W katalogu rozwiązania najdziemy 4 pliki tekstowe:

- config.yaml : plik konfiguracyjny (Znaczenie poszczególnych wpisów w pliku konfiguracyjnym zostanie omówione w następnym punkcie)
- eo.txt : plik z elementami orientacji zewnętrznej
- image\_observations.txt : plik z pomiarami na zdjęciach
- object\_points.txt : plik ze współrzędnymi fotopunktów

Plik object\_points.txt zawiera współrzędne wszystkich punktów obiektowych. W poszczególnych kolumnach pliku zapisane są kolejno następujące dane: Nazwa punktu,

współrzędna X, współrzędna Y, współrzędna Z, Typ punktu, Odchylenia standardowe trzech współrzędnych. Dopuszczalne są następujące typy punktów:

- 0 : punkt wiążący
- 3 : fotopunkt
- 4 : punkt kontrolny (check point)
- 9 : punkt osnowy geodezyjnej (nie będzie tu stosowany)

Jeżeli chcemy, możemy np. zmienić niektóre fotopunkty na punkty kontrolne. Punkty osnowy geodezyjnej stosowane są tylko przy wyrównaniu zintegrowanym (obserwacje fotogrametryczne + obserwacje geodezyjne). Uwaga! Inne wartości typów nie są obsługiwane – użycie innych wartości może prowadzić do nieprawidłowego działania programu. Zaleca się sprawdzenie pliku object\_points.txt przed uruchomieniem wyrównania.

## 3. Edycja pliku konfiguracyjnego

Plik konfiguracyjny może być przez nas edytowany. Daję nam to bardzo szeroką kontrolę nad procesem wyrównania. Poniższa tabela podaje nam pełną listę dostępnych możliwości:

| Nazwa                               | typ     | Opis                                                                                                                               | Dopuszczalne wartości                                                                                                                                                                                               |
|-------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NumOfCameras:                       | integer | liczba kamer                                                                                                                       | 1 lub więcej                                                                                                                                                                                                        |
| MathModel:                          | string  | algorytm wyrównania – pole to definiuje<br>sposób traktowania fotopunktów w<br>wyrównaniu                                          | RIGID – wyrównanie zakłada<br>bezbłędność fotopunktów<br>SOFT – wyrównanie zakłada<br>błędność fotopunktów<br>TIGHT – wyrównanie zamiast<br>fotopunktów wykorzystuje<br>surowe obserwacje<br>geodezyjne             |
| ImageMesAcc:                        | float   | dokładność pomiaru punktu na zdjęciu<br>wyrażona w pikselach                                                                       | wartości dodatnie                                                                                                                                                                                                   |
| HzAngleMesAcc:                      | float   | dokładność pomiaru kąta poziomego<br>wyrażona w [cc]                                                                               | wartości dodatnie                                                                                                                                                                                                   |
| VAngleMesAcc:                       | float   | dokładność pomiaru kąta zenitalnego<br>wyrażona w [cc]                                                                             | wartości dodatnie                                                                                                                                                                                                   |
| DistMesAcc:                         | float   | dokładność pomiaru odległości wyrażona<br>w tych samych jednostkach co<br>współrzędne punktów terenowych                           | wartości dodatnie                                                                                                                                                                                                   |
| LossFunction:                       | string  | nazwa funkcji tłumienia zastosowana w<br>wyrównaniu                                                                                | NONE – brak funkcji tłumienia<br>HUBER – funkcja tłumienia<br>Hubera<br>CAUCHY – funkcja tłumienia<br>Cauchyego                                                                                                     |
| LossFunctionParameter:              | float   | parametr funkcji tłumienia                                                                                                         | zazwyczaj jest to wartość z<br>przedziału od 1 do 2                                                                                                                                                                 |
| CamFixMasks:                        | integer | ciąg czterech liczb, z których każda może<br>być równa 0 lub 1, 1 oznacza przyjęcie<br>jako stałej określonego parametru<br>kamery | pole 1: ustal/uwolnij ck, x <sub>0</sub> , y <sub>0</sub><br>pole 2: ustal/uwolnij k <sub>1</sub> , k <sub>2</sub><br>pole 3: ustal/uwlonij k <sub>3</sub><br>pole 4: ustal/uwolnij p <sub>1</sub> , p <sub>2</sub> |
| GenerateCalibrationCertificate:     | integer | pole definiujące czy ma być generowany certyfikat kamery                                                                           | 0 – nie generuj certyfikatu<br>1 – generuj certyfikat                                                                                                                                                               |
| FilenameImagePoints:                | string  | plik zawierający pomiary na zdjęciach                                                                                              | ścieżka do istniejącego pliku                                                                                                                                                                                       |
| FilenameObjectPoints:               | string  | plik ze współrzędnymi punktów<br>terenowych                                                                                        | ścieżka do istniejącego pliku                                                                                                                                                                                       |
| FilenameGeodeticClotrollPoints:     | string  | plik z punktami osnowy geodezyjnej                                                                                                 | ścieżka do istniejącego pliku                                                                                                                                                                                       |
| FilenameExternalOrientation:        | string  | plik z przybliżonymi elementami<br>orientacji                                                                                      | ścieżka do istniejącego pliku                                                                                                                                                                                       |
| FilenameGeodeticMeasurements:       | string  | plik ze pomiarami geodezyjnymi                                                                                                     | ścieżka do istniejącego pliku                                                                                                                                                                                       |
| FilenameReport:                     | string  | nazwa pliku raportu                                                                                                                | nazwa pliku raportu                                                                                                                                                                                                 |
| FilenameCalibrationCertificateData: | string  | plik certyfikatu kalibracji o rozszerzeniu<br>.yaml                                                                                | ścieżka do istniejącego pliku                                                                                                                                                                                       |

Jeżeli w oknie Bundle Adjustment zaznaczyliśmy opcję kalibracji kamery, w polu CamFixMask będą widniały same zera. Jeżeli nie rozwiązujemy kalibracji, maska będzie miała postać: 1111. W przypadku kalibracji można zablokować wyznaczanie niektórych parametrów zamieniając 0 na 1. Podczas zajęć (samokalibracja, wyrównanie sieci zdjęć naziemnych) zmiany w pliku config.yaml nie są konieczne (nie stosujemy funkcji tłumienia, nie generujemy certyfikatu itp).

#### 4. Wyrównanie

Wyrównanie uruchamiamy przyciskiem Run Solver. Należy sprawdzić, czy w konsoli nie zostały wypisane żadne ostrzeżenia lub błędy.

## Uwaga! Następujący błąd:

E0224 12:47:21.407425 1716 covariance\_impl.cc:684] Jacobian matrix is rank deficient. Number of columns: 776 rank: 769 F0224 12:47:21.407425 1716 bundleadjustment.cpp:439] Check failed: covariance.Compute(covariance\_blocks, &Problem) spowodowany jest najczęściej nieobsługiwanymi typami punktów terenowych w pliku object\_points.txt (patrz punkt 2).

Jeżeli wyrównanie zakończy się pomyślnie, w katalogu rozwiązania pojawi się plik raportu. Jeżeli zaznaczyliśmy opcję generowania certyfikatu, znajdzie się tam również plik certyfikatu. Należy sprawdzić plik raportu pod kątem występowania błędów pomiarowych i ewentualnie powtórzyć wyrównanie po poprawieniu błędów. Tematyka analizy raportu nie jest poruszana w tym konspekcie. Poszczególne sekcje raportu zostały wyraźnie wyszczególnione a osoba o inżynierskiej znajomości rachunku wyrównawczego nie będzie miała problemu z interpretacją raportu.

### 5. Wczytanie wyrównanych elementów orientacji zewnętrznej

Wyrównane elementy orientacji zewnętrznej nie są automatycznie zapisywane w plikach obrazów (\*.ida). Musimy je tam sami zaimportować. W tym celu należy w raporcie odszukać "wylistowane" elementy orientacji (blok 'External orientation, list:'):



Teraz należy skopiować wylistowane elementy orientacji do nowego pliku tekstowego. Następnie z menu wybieramy opcję Images/Import EO/From File:



Pojawi się okno importu elementów orientacji zewnętrznej:



Należy wybrać plik z elementami orientacji zewnętrznej (File Name), oraz zaznaczyć zdjęcia, dla których chcemy dokonać importu (najczęściej po prostu zaznaczamy wszystkie obrazy). Określamy w jakim polu w plikach \*.ida zostaną zapisane elementy orientacji zewnętrznej (As Approximated, As Observed, As Adjusted). Ponieważ importowane elementy orientacji zewnętrznej są wyrównane, należy zaznaczyć opcję As Adjusted. Można też zaznaczyć opcję As Approximated. Z listy rozwijalnej wybieramy także metodę parametryzacji importowanych kątów. Bundlab domyślnie stosuje parametryzację al-ni-ka, i w przypadku zdjęć naziemnych należy przy tym wyborze pozostać. Reszta opcji powinna być ustawiona tak jak pokazano powyżej. Wciskamy teraz przycisk Import. Można sprawdzić czy zaimportowane elementy orientacji zapisały się w plikach \*.ida:

Jeżeli elementy orientacji zostały wyliczone poprawnie, w oknie widoku, w trybie stereo, po sprzęgnięciu znaczka (klawisz F5) nie powinniśmy zobaczyć paralaksy poprzecznej.

Wyliczone i zapisane w plikach \*.ida elementy orientacji można teraz eksportować w parametryzacji omega-phi-kappa i wczytać do innego oprogramowania (Images/Export EO).

# 6. Utworzenie nowego pliku kamery

Plik dla kamery po kalibracji należy utworzyć samodzielnie na podstawie raportu. W tym celu najlepiej skopiować sobie jakiś istniejący plik kamery, zapisać go pod odpowiednią nazwą a następnie wpisać do niego obliczone parametry (stałą kamery, współrzędne punktu głównego, dystorsja). Konspekt Camera\_calibration\_AGH\_testfield[PL] opisuje strukturę pliku kamery oraz określa jak plik kamery może oraz jak nie powinien się nazywać. Rysunek poniżej wskazuje, które parametry z raportu należy wpisać do pliku kamery:



Tak utworzony plik kamery może być użyty np. w programie do usuwania dystorsji Quadro (<a href="http://home.agh.edu.pl/~kolecki/programy/">http://home.agh.edu.pl/~kolecki/programy/</a> - w tej lokalizacji znajduje się również instrukcja). Dla zdjęć z usuniętą dystorsją należy stosować plik kamery z wyzerowaną dystorsją oraz z zerowymi współrzędnymi punktu głównego!

Jeżeli nowy plik kamery chcemy przypisać do zdjęć w programie Bundlab, należy skorzystać z opcji Images/Change Camera, wskazać właściwy plik kamery oraz zaznaczyć zdjęcia, dla których nowa kamera będzie zastosowana.