

Magma transport processes

Paul A. Jarvis

paul.jarvis@unige.ch

13th November 2020

Magmatic transport processes

Viscosity and density control how magma is transported within the Earth's crust Can consider transport of bulk magma, or **fractionation** of individual phases

Fractionation by crystal settling

Sills can contain **cumulates** - dense regions of crystals which have settled to the base of a chamber

In viscous fluid, three forces act on sphere:

- Gravity $F_{\rm g}=4\pi\rho_{\rm c}r^3g/3$
- Buoyancy $F_b = 4\pi \rho_m r^3 g/3$
- Viscous drag $F_{\rm v}=6\pi\eta_{\rm m} r v_{\rm s}$

where r= radius, $v_{\rm s}=$ settling speed

In equilibrium $F_{\rm g} = F_{\rm b} + F_{\rm v} \implies$

$$v_{\mathsf{s}} = \frac{2(\rho_{\mathsf{c}} - \rho_{\mathsf{m}})gr^2}{9\eta_{\mathsf{m}}}$$

Simple models of cumulate formation: Convecting or static magma

Partially-molten sill, 2 populations of crystals size d_1 and d_2 where $d_1 > d_2$ $\implies v_{\rm s,1} > v_{\rm s,2}$

Static magma

Convecting magma

 $\phi_1, \phi_2 = \phi_1(\mathbf{x}, t), \phi_2(\mathbf{x}, t)$

$$\phi_1,\phi_2=\phi_1(t),\phi_2(t)$$

Both populations are homogeneously dispersed throughout the sill

Populations settle at different speeds

$$t = dt$$

Volume of settling particles per unit area:

$$\phi_1 v_{s,1} dt$$
 $\phi_2 v_{s,2} dt$

Ratio of population volumes =
$$\frac{\phi_1 v_{s,1}}{\phi_2 v_{s,2}}$$

All of the coarse population has settled.

What does the cumulate look like?

Both populations are homogeneously dispersed throughout the sill

Convection keeps both populations homogeneously dispersed Viscous boundary layer at base of sill from which crystals cannot escape

Depth-integrated volume of suspended particles: $H\phi_1\mathrm{d}A$

 $H\phi_2 dA$

Volume of particles settling into viscous boundary layer, and therefore sedimenting, in interval $\mathrm{d}t$

 $v_{s,1}\phi_1\mathrm{d}t\mathrm{d}A$

$$d(H\phi_1 dA) = -v_{s,1}\phi_1 dt dA$$

$$d(H\phi_2 dA) = -v_{s,2}\phi_2 dt dA$$

$$H dA d\phi_1 = -v_{s,1} \phi_1 dt dA$$

$$H dA d\phi_2 = -v_{s,2} \phi_2 dt dA$$

$$\frac{\mathrm{d}\phi_1}{\mathrm{d}t} = -\frac{v_{\mathrm{s},1}\phi_1}{H}$$

$$\frac{\mathrm{d}\phi_2}{\mathrm{d}t} = -\frac{v_{\mathsf{s},2}\phi_2}{H}$$

Linear, first-order, ordinary differential equation \implies exponential solution

$$\phi_1 = lpha_1 \exp\left(-rac{v_{\mathsf{s},1}t}{H}
ight) + eta_1$$

$$\phi_2 = \alpha_2 \exp\left(-\frac{v_{\mathsf{s},2}t}{H}\right) + \beta_2$$

Boundary conditions:

$$\phi_1(t\to\infty)\to 0 \implies \beta_1=0$$

$$\phi_2(t \to \infty) \to 0 \implies \beta_2 = 0$$

$$\phi_1(t=0) = \phi_{1,0} \implies \alpha_1 = \phi_{1,0}$$

$$\phi_2(t=0) = \phi_{2,0} \Longrightarrow \alpha_2 = \phi_{2,0}$$

Ratio of population volumes:

$$\frac{\phi_1 v_{s,1}}{\phi_2 v_{s,2}} = \frac{\phi_{1,0} v_{s,1}}{\phi_{2,0} v_{s,2}} \exp\left(-\frac{(v_{s,1} - v_{s,2})t}{H}\right)$$

What does the cumulate look like?

Cumulate formation

Can use crystal size distributions to distinguish if cumulates formed from static or convecting magmas

Model has many simplifying assumptions, e.g.:

- Two crystal populations
- No crystallisation during settling
- No cooling of the sill

Bubble formation - volatile solubility

As magma rises, pressure falls and bubble solubility decreases

Solubility - Amount of substance that can be dissolved in a mixture

If volatile concentrations exceed solubility, then magma is supersaturated

Bubble formation - Supersaturation

Supersaturation - Difference between actual pressure, and that at which concentration of dissolved volatiles would be in equilibrium

Nucleation - Process by which bubbles initially form

Nucleation creates an interface between melt and volatile

Interfacial tension - Energy created to create an interface between two substances

Required amount of supersaturation corresponds to energy needed

Bubble formation - Nucleation

Two types of nucleation:

Homogeneous

Heterogeneous

Bubble formation - Homogenous nucleation

Occurs in the absence of crystals

Bubbles nucleate in the melt

Requires supersaturation of \sim 10-100 MPa

Bubble formation - Heterogeneous nucleation

Interfacial energy between vapour and crystal less than that between vapour and melt

Bubbles nucleate on crystals

Requires supersaturation of \sim 1-10 MPa

⇒ in presence of crystals, nucleation will almost always be heterogeneous

Bubble growth - Mass and momentum conservation

As pressure decreases, bubbles grow due to:

- Direct decompression
- Increasing supersaturation

Model bubble growth according using conservation of momentum and mass:

$$\frac{4\eta_{\mathsf{m}}}{r_{\mathsf{b}}}\frac{\mathrm{d}r_{\mathsf{b}}}{\mathrm{d}t} = P_{\mathsf{b}} - P_{\mathsf{m}} - \frac{2\sigma}{r_{\mathsf{b}}}$$

$$\frac{\mathrm{d}(\rho_{\mathrm{b}}r_{\mathrm{b}}^{3})}{\mathrm{d}t} = 4r_{\mathrm{b}}^{2}\rho_{\mathrm{m}} \sum_{i} D_{i} \left. \frac{\partial C_{i}}{\partial r} \right|_{r=r_{\mathrm{b}}}$$

 $P_{m(b)}$ = Pressure in the melt (bubble)

 $\sigma = Interfacial tension$

 C_i = Concentration of volatile species in melt, e.g., X_{H_2O} , X_{CO_2}

 $D_i = \text{Diffusion coefficient of each species}$

Bubble growth - Diffusion in the melt

Also need to model transport of volatiles to the bubbles

Gonnermann & Gardner (2013)

$$\frac{\partial C_i}{\partial t} + \mathbf{u} \cdot \nabla C_i = D_i \nabla^2 C_i$$

Exploit spherical symmetry:

Boundary conditions:

$$\frac{\partial C_i}{\partial t} + u_r \frac{\partial C_i}{\partial r} = \frac{D_i}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C_i}{\partial r} \right)$$

$$\frac{\partial C_i}{\partial t} + u_r \frac{\partial C_i}{\partial r} = \frac{D_i}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C_i}{\partial r} \right) \qquad C_i(r = r_b) = C_{s,i}, \quad \frac{\partial C_i}{\partial r} \bigg|_{r=S_b} = 0$$

Bubble growth: Viscosity-limited growth

Assumption: Only consider H₂O

$$\begin{split} \frac{4\eta_{\mathsf{m}}}{r_{\mathsf{b}}} \frac{\mathrm{d}r_{\mathsf{b}}}{\mathrm{d}t} &= P_{\mathsf{b}} - P_{\mathsf{m}} - \frac{2\sigma}{r_{\mathsf{b}}} \\ \frac{\mathrm{d}(\rho_{\mathsf{b}}r_{\mathsf{b}}^3)}{\mathrm{d}t} &= 4r_{\mathsf{b}}^2 \rho_{\mathsf{m}} D_{\mathsf{H}_2\mathsf{O}} \left. \frac{\partial C_{\mathsf{H}_2\mathsf{O}}}{\partial r} \right|_{r=r_{\mathsf{b}}} \\ \frac{\partial C_{\mathsf{H}_2\mathsf{O}}}{\partial t} + u_r \frac{\partial C_{\mathsf{H}_2\mathsf{O}}}{\partial r} &= \frac{D_{\mathsf{H}_2\mathsf{O}}}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C_{\mathsf{H}_2\mathsf{O}}}{\partial r} \right) \end{split}$$

- Melt viscosity is sufficiently high to slow down bubble expansion
- Leads to large supersaturation and build up of over-pressure in bubbles (mechanical disequilibrium)
- Significant for $\eta_{\rm m} \geq 10^9$ Pa s (silicic melts at shallow depths and low $X_{
 m H_2O}$

Bubble growth: Diffusion-limited growth

Assumption: Only consider H₂O

$$\begin{split} \frac{4\eta_{\text{m}}}{r_{\text{b}}}\frac{\mathrm{d}r_{\text{b}}}{\mathrm{d}t} &= P_{\text{b}} - P_{\text{m}} - \frac{2\sigma}{r_{\text{b}}} \\ \frac{\mathrm{d}(\rho_{\text{b}}r_{\text{b}}^{3})}{\mathrm{d}t} &= 4r_{\text{b}}^{2}\rho_{\text{m}}D_{\text{H}_{2}\text{O}}\left.\frac{\partial C_{\text{H}_{2}\text{O}}}{\partial r}\right|_{r=r_{\text{b}}} \\ \frac{\partial C_{\text{H}_{2}\text{O}}}{\partial t} + u_{r}\frac{\partial C_{\text{H}_{2}\text{O}}}{\partial r} &= \frac{D_{\text{H}_{2}\text{O}}}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial C_{\text{H}_{2}\text{O}}}{\partial r}\right) \end{split}$$

- Melt diffusivity is too low for oversaturated volatiles to diffuse to pre-existing bubbles (chemical disequilibrium)
- Leads to nucleation at the expense of growth
- Results in many small bubbles

Bubble growth: Solubility-limited growth

Assumption: Only consider H₂O

$$\begin{split} \frac{4\eta_{\text{m}}}{r_{\text{b}}}\frac{\mathrm{d}r_{\text{b}}}{\mathrm{d}t} &= P_{\text{b}} - P_{\text{m}} - \frac{2\sigma}{r_{\text{b}}} \\ \frac{\mathrm{d}(\rho_{\text{b}}r_{\text{b}}^3)}{\mathrm{d}t} &= 4r_{\text{b}}^2\rho_{\text{m}}D_{\text{H}_2\text{O}} \left. \frac{\partial C_{\text{H}_2\text{O}}}{\partial r} \right|_{r=r_{\text{b}}} \\ \frac{\partial C_{\text{H}_2\text{O}}}{\partial t} + u_r \frac{\partial C_{\text{H}_2\text{O}}}{\partial r} &= \frac{D_{\text{H}_2\text{O}}}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C_{\text{H}_2\text{O}}}{\partial r} \right) \end{split}$$

- Diffusivity high, and viscosity low, enough to allow mechanical and chemical equilibrium
- Bubbles can grow unhindered
- Favoured for low melt viscosity (hot, mafic) and low ascent rates

Bubble rise speed

Bubble rise speed can be estimated by assuming spherical shape and using Stokes law

$$v_{\rm b} = \frac{(\rho_{\rm m} - \rho_{\rm b})gr_{\rm b}^2}{3\eta_{\rm m}}$$

Depends on:

- $\rho_{\rm m}=$ Melt density
- $\rho_{\rm b}=$ Bubble density
- r_b = Bubble radius
- $\eta_{\rm m} = {\sf Melt \ viscosity}$

Other factors:

- Bubble shape
- Bubble concentration ϕ_{b}
- Crystal fraction ϕ_c

Bubble flow regimes

 $v_b = Bubble speed, v_m = Melt speed$

flow

If $v_h \ll v_m \implies$ dispersed flow:

- Bubbly flow
- Bubbles dispersed
- Move as passive tracers

If $v_b \gtrsim v_m \implies$ separated flow

- $1 \le v_{\rm b}/v_{\rm m} \le 10 \implies \text{slug flow}$
- $v_{\rm b}/v_{\rm m} \gtrsim 10 \implies$ annular flow

Flow regimes are observed for gas flow in a vertical pipe Application to volcanic conduits remains debatable

Conduit flow

Flow driven by pressure gradient $\mathrm{d}P/\mathrm{d}z$ Velocity profile given by

$$\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{r}{2\eta} \frac{\mathrm{d}P}{\mathrm{d}z}$$

Friction with conduit walls means flow is fastest in centre
Model is valid if flow is NOT separated

Fragmentation

Fragmentation - During explosive eruptions, magma fragements to form **pyroclasts** - ash, lapilli, bombs

- Style of fragmentation depends on magma rheology
- In turn depends on $\phi_{\rm c}, \phi_{\rm b}, \eta_{\rm m}, \dot{\epsilon}$
- Controls style of eruption

Modeling volcanic processes

Magma mixing and mingling

Magma mixing and mingling - Magmas of different compositions juxtapose and interact

- Viscosity and density contrasts between magmas inhibit mixing
- Heat transfer fromm hot to cold magma associated with rheological changes
- Style of mixing changes with time

Summary

Magma transport processes can describe movement of bulk magma or individual phases

Various physical processes can be modeled, e.g.:

- Crystal fractionation
- Bubble formation, growth, rise
- Conduit flow
- Magma fragmentation
- Magma mixing and mingling

Models depend on properties and processes:

- Temperature
- Pressure
- Composition

- Fluid dynamics
- Heat transfer
- Phase equilibria