

UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEE CURSO DE CIRCUITOS ELÉTRICOS EM CA

PROF: RUTH P.S. LEÃO

IMPEDÂNCIA

A prática V foi convertida em laboratório de simulação usando o software PSIM, tendo sido mantido os objetivos da prática original.

OBJETIVOS

- Explorar o conceito de impedância.
- Medir ângulo de defasagem entre tensão e corrente a partir da impedância.
- Observar a existência de componente resistiva no indutor e capacitor.
- Fazer uso de ponteiras de tensão e corrente para capturar formas de onda.

MATERIAL A SER UTILIZADO NA PRÁTICA

- Microcomputador
- Simulador PSIM.

CONCEITO TEÓRICO

Impedância é a medida de oposição à passagem de corrente em um circuito elétrico ca, resultante dos efeitos combinados da resistência e reatância ôhmicas.

No domínio dos fasores, a impedância é expressa pela razão entre a representação complexa da tensão senoidal nos terminais de um componente do circuito e a representação complexa da corrente que flui através dele.

$$Z = \frac{\vec{V}}{\vec{I}} = \frac{Ve^{j(\omega t + 0^{\circ})}}{Ie^{j(\omega t \mp \theta)}} = \frac{Ve^{j\omega t} \cdot e^{j0^{\circ}}}{Ie^{j\omega t} \cdot e^{\mp j\theta^{\circ}}} = \frac{V}{I}e^{\pm j\theta} = |Z|e^{\pm j\theta} \equiv |Z| \angle \pm \theta \equiv |Z|(\cos\theta \pm j \sin\theta) = R \pm jX$$
(1)

Embora impedância seja a relação entre o fasor de tensão e o fasor de corrente, a impedância não é fasor, mas uma grandeza complexa constante no tempo, que possui uma parte real referente à resistência R e uma parte imaginária que representa a reatância X. A unidade da impedância é ohms $[\Omega]$, sendo a mesma unidade para a resistência e reatância.

Resistência e reatância variam com a frequência. A resistência varia com a frequência devido a distribuição não uniforme da corrente no condutor. A reatância indutiva é diretamente proporcional à frequência e a reatância capacitiva varia inversamente com a frequência.

$$X_L = \omega L$$
 (2)

$$X_C = 1/\omega C$$
 (3)

$$X_c = 1/\omega C \tag{3}$$

Em (2) e (3), pode ser visto que para frequência nula (sinal cc) a reatância indutiva é nula (curto-circuito) e a reatância capacitiva é infinita (circuito aberto). Portanto, em circuito cc não se verifica a presença de reatâncias.

Profa Ruth P.S. Leão Email: rleao@dee.ufc.br 1

PROCEDIMENTO

Em todos os circuitos desta prática, considere cada indutor individual $L_i = 1,5 H$, cada capacitor individual $C_i = 9,2 \mu F$ e cada resistor individual $R_i = 150 \Omega$.

1. No simulador PSIM, crie um projeto e na área de trabalho monte o circuito *RL*-série como mostrado na Figura 1, com a fonte de tensão senoidal ajustada para tensão eficaz de 100 *V*, 60 Hz e ângulo de fase 0°. *L* representa a combinação em paralelo de indutores e *R* a associação de resistores em paralelo, como definidos no Quadro 1.

Quadro 1 - Valores rms medidos no PSIM e calculados.

Associação		$V_F[V]$	I[A]	$ heta^{\circ}$	$ Z [\Omega]$	$R\left[\Omega\right]$	$X_L[\Omega]$	$\angle V_R/V_F$	
	R = 9	L = 9							
	R = 9	L=3							
	R = 3	L = 9							

R=no. de resistores em paralelo

L=no. de indutores em paralelo

a) Usando uma ponteira de tensão (node-to-ground voltage probe) e uma ponteira de corrente (current probe) para medição da tensão de entrada e corrente do circuito, simule o circuito (Simulate \rightarrow Simulation Control), plote as formas de ondas dos pontos de medição e meça o valor eficaz de v_F e i. Qual a posição angular de i em relação a v_F ?

Dicas:

i) Na janela *Simulation Control*, vista na Figura 2, ajuste o parâmetro *Total Time* para 0,15 s, que corresponde a 9 ciclos em 60 Hz, o parâmetro *Print Time* para 0,05 s e default para os demais parâmetros. *Print Time* indica o tempo a partir do qual a curvas serão plotadas, neste caso, deixando de mostrar o transitório das ondas.

Figura 2 – Configuração do controlador de simulação.

ii) O valor *rms* deve ser obtido somente para a condição de regime permanente, portanto, os ciclos transitórios iniciais não devem estar incluídos no cálculo do *rms*. Para que o *rms* seja calculado quando o circuito está em regime permanente, na janela com as curvas plotadas deve-se ajustar o período para o qual se deseja calcular o valor *rms* das curvas. Para isso, deve-se clicar na barra de ferramentas em *Edit X-Axis* e, no campo '*Range*' informar os valores inicial *From* e final *To* do eixo X, em segundos, que correspondem, nessa prática, aos

Prof^a Ruth P.S. Leão Email: rleao@dee.ufc.br 2

tempos do *Print Time* e *Total Time*, respectivamente, conforme Figura 3. Observe que o intervalo de tempo considerado para o eixo X é igual 0,10 s que correspondente a 6 ciclos de uma onda em 60 Hz. É sobre esse número inteiro de ciclos em regime permanente que se deseja calcular o valor *rms*.

Figura 3 – Configurações do eixo X no simulador do PSIM.

iii) Na barra de ferramentas na janela Run Simulation selecionar o botão rms (Figura 4).

Figura 4 – Cálculo do valor rms.

b) Calcule o ângulo de defasagem entre as ondas v_F e i, para isso na janela de plotagem das curvas, selecione o botão como indicado na Figura 5 para medir o ângulo de defasagem θ para cada uma das associações de resistores e indutores definidas no Ouadro 1.

Figura 5 - Habilitação do botão de medição de defasagem angular.

- c) Calcule manualmente a impedância |Z| equivalente do circuito e suas componentes R e X_L . Desenhe o diagrama de impedâncias do circuito.
- d) Com uma ponteira de tensão, capture a tensão sobre v_R e meça o ângulo de fase entre v_R e v_F . Que defasagem representa $\angle V_R/V_F$?
- e) Capture e plote a tensão sobre v_L e i. Qual a defasagem entre as ondas?
- 2. Normalmente os indutores não são dispositivos ideais com apenas indutância, mas seu enrolamento tem uma componente resistiva. Considere o valor de resistência em série igual a $R_{L_1}=30~\Omega$ para cada indutor na associação R_9 e L_3 , do circuito da Figura 3. Repita a operação para resistências de cada indutor, $R_{L_2}=60~\Omega$ e $R_{L_3}=200~\Omega$.

Dicas

Na janela de especificação do indutor, selecionar *Model Level* como *Level 2*, conforme Figura 6 e inserir em *Series Resistance* o valor desejado para a resistência interna do indutor. Então, utilizar o valor de resistência indicado acima no campo *Series Resistance*.

Prof^a Ruth P.S. Leão Email: rleao@dee.ufc.br 3

Figura 6 - Configurações do indutor não-ideal.

- a) Com a ponteira de tensão (node-to-node voltage probe), plote as ondas de tensão v_L e i do circuito para os diferentes valores de resistência do indutor. Como se apresenta o deslocamento angular da tensão no indutor e a corrente que flui através dele? Compare com o resultado da questão 1.e), e comente.
- b) Desenhe o diagrama fasorial de tensão e corrente e o diagrama de impedância para os circuitos da questão 2.
- 3. Para o circuito da Figura 1, considere as associações de resistores e capacitores, conforme mostrado no Quadro 2, e repita os procedimentos da questão 1. Considere o capacitor como sendo ideal.

Ouadro 2- Valores rms medidos e calculados.

Associação		$V_F[V]$	I[A]	$ heta^{\circ}$	$ Z [\Omega]$	$R\left[\Omega\right]$	$X_{c}[\Omega]$	$\angle V_R/V_F$
R = 3	<i>C</i> = 6							
R = 6	<i>C</i> = 6							
R = 6	<i>C</i> = 3							

R=no. de resistores em paralelo

C=no. de capacitores em paralelo

4. Do ponto de vista de uso da energia, comente sobre as características dos circuitos RL e RC.

QUESTÕES

- 1) Calcule a potência complexa para os arranjos de circuito dos Quadros 1 e 2.
- 2) O que é efeito pelicular em condutores? Explique o fenômeno.

REFERÊNCIAS

HAYT, Jr., W.H., KEMMERLY, J.E. **Análise de Circuitos em Engenharia**. São Paulo: McGraw-Hill do Brasil, 1973.

Prof^a Ruth P.S. Leão Email: rleao@dee.ufc.br 4