"Capítol 3: Introducció al SQL"

Fitxers i bases de dades

September 19, 2016

Capítol 3: In troducció al SQL

- Resum del llenguatge de cerca SQL
- Definició de les dades
- Estructura de cerca bàsica
- Funcions bàsiques addicionals
- Conjunt d'operacions
- Valors nuls
- Funcions agregades
- Subcerques aniuades
- Modificació de la base de dades

Història

- El llenguatge "IBM Sequel"" va ser desenvolupat com a part del Sistema del projecte R al laboratori de recerca San José d'IBM
- Redefinit com "Structured Query Language" (SQL)
- ANSI i ISO estàndard SQL:
 - SQL-86, SQL-89, SQL-92
 - SQL:1999, SQL:2003, SQL:2008
- La majoria de sistemes comercials, si no tots, ofereixen l'aplicació SQL-92
 - Potser no tots els exemples d'aquí funcionen al teu ordinador

Llenguatge de Definició de les Dades

El llenguatge de definició de les dades (DDL) permet l'especificació d'informació sobre relacions, incloent:

- L'esquema per a cada relació
- El domini de valors associats amb cada atribut
- Restriccions íntegres
- I com es veurà posteriorment, altra informació com ara:
 - El conjunt d'índexs a mantenir per cada relació
 - Seguretat i autorització d'informació per a cada relació
 - L'estructura d'emmagatzematge físic per a cada relació al disc dur

Tipus de dominis en SQL

- char(n). Longitud de cadena de caracters fixada, definida per l'usuari n
- varchar(n). Variable cadena de caracters, amb una longitud definida per l'usuari màxima de n
- int. Enter
- smallint. Enter petit
- numeric(p,d) Número de punt flotant, amb precisió p digits, amb n digits a la dreta del decimal definits per l'usuari
- real, double orecision. Punt flotant i de doble precisió
- float(n)Número de punt flotant com a mínim amb n dígits definits per l'usuari
- Alguns més inclosos al Capítol 4

Construcció Create Table

Una relació d'SQL és definida usant el comandament create table

```
create table r(A_1D_1, A_2D_2, \dots, A_nD_n, (restriccio_1), \dots, (restriccio_k))
```

- r és el nom de la relació
- ullet Cada A_i és el nom d'un atribut en l'esquema de la relació r
- ullet D_i és el tipus de dada de valor del domini de l'atribut A_i
- Exemple:

- Insert into instructor values ('10211', 'Smith', 'Biology', 66000);
- Insert into instructor values ('10211', 'null', 'Biology', 66000);

Restriccions íntegres en un Create Table

- not null
- primary key (A_1, \ldots, A_n)
- foreign key (A_m, \ldots, A_n) references r

Exemple: Declarar dept_name com a clau primària per department

La declaració de **primary key** a un atribut automàticament assegura valors **not null**

Algunes definicions relacionals més

```
    create table student (

            ID
                          varchar(5),
                          varchar(20) not null,
           name
           dept_name
                          varchar(20)
                          numeric(3,0),
            tot_cred
                          (ID),
           primary key
           foreign key
                          (dept_name) references department));
create table takes (
   ID
                  varchar(5),
                  varchar(8),
   couse id
                  varchar(8),
   sec_id
                  varchar(6),
   semester
                  numeric(4,0),
   vear
   grade
                  varchar(2),
                  (ID, course\_id, sec\_id, semester, year),
   primary key
   foreign key
                  (ID) references student,
   foreign key
                  (course_id, sec_id, semester, year) references section);
```

I més encara

 La declaració de clau primària pot ser combinada amb declaracions d'atributs com s'acaba de mostrar

Deixar i modificar construccions de taules

- drop table student
 - Elimina la taula i els seus continguts
- delete from student
 - Elimina tots els continguts de la taula però no aquesta
- alter table
 - alter table r add A D
 - On A és el nom de l'atribut a afegir a la relació r i D és el domini d'A.
 - S'assigna null a totes les tuples en la relació com a valor pel nou atribut.
 - alter table r drop A
 - On A és el nom de l'atribut de relació r.
 - Eliminant els atributs no soportats per vàries bases de dades

Estructura Bàsica de Consulta

- El llenguatge de manipulació de dades (DML) proporciona l'habilitat de cercar informació, a més d'insertar, borrar i actualitzar tuples
- La consulta típica d'SQL té la forma:

select
$$A_1, A_2, \ldots, A_n$$

from r_1, r_2, \ldots, r_m
where P

- ullet A_i representa un atribut
- R_i representa una relació
- P és un predicat
- El resultat d'una cerca d'SQL és una relació.

La condició select

- La condició select llista els atributs desitjats en el resultat d'una consulta
- Exemple: trobar els noms de tots els instructors:

select name

from instructor

- NOTA: SQL no discrimina majúscules i minúscules.
 - És a dir, Name \equiv NAME \equiv name
 - Algunes persones fan servir majúscules on es fa servir negreta.

la condició Select (Cont.)

- SQL permet duplicats en relacions així com en resultats de les consultes.
- Per forçar l'eliminació de duplicats, insertar la paraula distinct seguit del select.
- Trobar els noms de tots els departaments amb instructor, i eliminar duplicats:

select distinct dept_name

from instructor

• La paraula all especifica que no s'eliminaran els duplicats:

select all dept_name

from instructor

la condició Select (Cont.)

• Un asterisc a la condició select indica "tots els atributs".

select *

from instructor

- La condició select pot contenir expressions aritmètiques tals com els operadors +, -, * i /, operant en constants o atributs de tuples.
- La consulta:

select ID, name, salary/12

from instructor

Retornaria una relació igual a la relació *instructor* excepte que el valor de l'atribut *salary* seria divida per 12.

la condició where

- La clàusula where especifica les condicions que el resultat ha de satisfer
 - Correspon a la selecció d'atributs de l'àlgebra relacional.
- Per trobar tots els instructors en Comp. Sci. dept amb salary > 80000:

select name

from instructor

where dept_name = 'Comp. Sci.' and salary > 80000

- La comparació de resultats pot ser combinada fent servir els operadors
- lògics and, or i not.
- Les comparacions poden ser aplicades a resultats d'expressions aritmètiques.

la condició from

- La clàusula from llista les relacions implicades en la consulta
 - Correspon a l'operació del producte Cartesià de l'àlgebra relacional.
- Per trobar el producte Cartesià instructor X teaches:

select *

from instructor, teaches

- Genera tots els parells possibles instructor-teacher amb tots els atributs d'ambdues relacions
- El producte Cartesià directament no és molt útil, però sí combinat amb la clàusula where (selecció d'operacions en l'àlgebra relacional)

Producte Cartesià: instructor X teaches

instructor

teaches

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
22151	0.11	731 .	00000

		040,10	_	
ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	l 1 l	Fall	2009

inst.ID	пате	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	12121	FIN-201	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	15151	MU-199	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	22222	PHY-101	1	Fall	2009
			•••					
12121	Wu	Finance	90000	10101	CS-101	1	Fall	2009
12121	Wu	Finance	90000	10101	CS-315	1	Spring	2010
12121	Wu	Finance	90000	10101	CS-347	1	Fall	2009
12121	Wu	Finance	90000	12121	FIN-201	1	Spring	2010
12121	Wu	Finance	90000	15151	MU-199	1	Spring	2010
12121	Wu	Finance	90000	22222	PHY-101	1	Fall	2009

Figure: Exemple de producte cartesià.

Unions

 Per a tots els instructors que han ensenyat algun curs, trobar els seus noms i l'identificador del curs que han donat instructor X teaches:

select name, course_id

from instructor, teaches

where instructor.ID = teaches.ID

 Trobar l'identificador del curs, semestre, any i títol de cada curs que ofereix el departament de Comp. Sci:

select section.course_id, semester, year, title

from section, course

where section.course_id = course.course_id and

dept_name = 'Comp. Sci.'

Intenteu escriure algunes consultes en SQL

• Escribiu algunes consultes per fer...

Unió Natural

 La Unió natural enganxa tuples amb els mateixos valors per a tots els atributs comuns, i només conserva una còpia per a cada columna comuna

select *

from instructor natural join teaches;

ID	name	dept_name	salary	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	CS-101	1	Fall	2009
		Comp. Sci.			1	Spring	2010
		Comp. Sci.			1	Fall	2009
	Wu	Finance	90000		1	Spring	2010
15151	Mozart	Music	40000	MU-199	1	Spring	2010
22222	Einstein	Physics	95000	PHY-101	1	Fall	2009
32343	El Said	History	60000	HIS-351	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-101	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-319	1	Spring	2010
76766	Crick	Biology	72000	BIO-101	1	Summer	2009
76766	Crick	Biology	72000	RIO-301	1	Summer	2010

Figure: Exemple d'unió natural.

Exemple Unió Natural

- Llistar els noms dels instructors juntament amb l'identificador de curs que han ensenyat
 - select name, course_id
 from instructor, teaches
 where instructor.ID = teaches.ID;
 - select name, course_id
 from instructor natural join teaches;

Natural Join (Cont.)

- Perill en una unió natural: atenció amb els atributs no relacionats amb el mateix nom però incorrectament equivalents
- Llistar els noms dels instructors amb els títols dels cursos que han donat
 - Versió incorrecte (makes course.dept_name = instructor.dept_name)
 select name, title
 from instructor natural join teaches natural join course;
 - Versió correcte select name, title from instructor natural join teaches, course where teaches.course_id = course.course_id;
 - Una altra versió correcte select name, title from (instructor natural join teaches) join course using (course_id);

L'operació Rebatejar

SQL permet rebatejar relacions i atributs utilitzant l'expressió as:

nom-antic as nom-nou

- Exemple:
 - select ID, name, salary/12 as monthly_salary
 from instructor
- Trobar el nom de tots els instructors que tinguin un salary més elevat que qualsevol instructor del departament 'Comp. Sci.'.
 - select distinct T.name
 from instructor as T instructor as S
 where T.salary > S.salary and S.dept_name = 'Comp. Sci'.
- La paraula as és opcional i es pot ometre instructor as $T \equiv instructor T$
 - La paraula as pot ser eliminada en Oracle

Operacions cadena de caracters

- SQL inclou l'opció de combinar operadors de caracters per comparar cadenes de caracters. L'operador "like" utilitza patrons que són descrits utilizant dos caracters especials:
 - Percentatge (%). El % combina qualsevol subcadena de caracters.
 - Guionet baix (_). El _ combina qualsevol caracter.
- Trobar els noms de tots els instructors els quals els seus noms incloguin la subcadena "dar".

select name

from instructor

where name like '%dar%'

• Combinar la cadena "100 %"

like '100 \%' escape '\'

Operacions cadena de caracters (Cont.)

- Els patrons discriminen majúscules i minúscules.
- Exemple de combinació de patrons:
 - 'Intro%' combina qualsevol cadena que comenci per "Intro".
 - "Comp" combina qualsevol cadena que contingui "Comp" com a subcadena.
 - '_ _ _' combina qualsevol cadena d'exactament 3 caracters.
 - '_ _ _ %' combina qualsevol cadena d'almenys 3 caracters.
- SQL suporta una varietat d'operacions amb cadenes tals com
 - Concatenació (fent servir "|")
 - Convertir majúscula en minúscula i a l'inversa
 - Trobar el tamany d'una cadena, extreure subcadenes, etc...

Ordenant la visualització de les Tuples

 Llistar en ordre alfabètic el nom de tots els instructors select distinct name from instructor order by name

- Podem especificar desc per ordenar de manera descendent i asc per ascendent; aquesta última és per defecte.
 - Exemple: order by name desc
- Es pot ordenar per múltiples atributs
 - Exemple: order by dept_name, name

Opció amb la condició Where

- SQL inclou l'operador comparador between
- Exemple: Trobar els noms de tots els instructors amb salari entre 90.000\$ i 100.000\$ (és a dir, \geq 90.000\$ i \leq 100.000\$)

```
select name
from instructor
where salary between 90000 and 100000
```

Comparant Tuples

```
select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, 'Biology');
```

Duplicats

- A les relacions amb duplicats, SQL pot definir quantes còpies de tuples han d'aparèixer al resultat.
- ullet Versions multiset d'alguns operadors d'àlgebra relacionals donades relacions r_1 i r_2 :
 - **1** $\sigma_{\theta}(r_1)$: Si hi ha c_1 còpies de tuples t_1 a r_1 i t_1 satisfà la selecció σ_{θ} , aleshores hi ha c_1 còpies de t_1 en $\sigma_{\theta}(r_1)$.
 - ② $\Pi_a(r)$: Per cada còpia de tuple t_1 a r_1 , hi ha una còpia de tuple $\Pi_a(t_1)$ a $\Pi_a(r_1)$ on $\Pi_a(t_1)$ denota la projecció de l'única tuple t_1 .
 - ① $r_1 \times r_2$: Si hi ha c_1 còpies de tuples t_1 a r_1 i c_2 còpies de tuples t_2 a r_2 , hi ha $c_1 \times c_2$ còpies de tuples $t_1 \cdot t_2$ a $r_1 \times r_2$

Duplicats (Cont.)

• Exemple: Suposem un conjunt múltiple de relacions r_1 (A,B) i r_2 (C) següents:

$$r_1 = \{(1, a)(2, a)\}$$
 $r_2 = \{(2), (3), (3)\}$

- Aleshores $\Pi_B(r_1)$ seria $\{(a),(a)\}$, mentre $\Pi_B(r_1) \times r_2$ seria $\{(a,2),(a,3),(a,3)\}$
- SQL duplica semàntica:

select distinct
$$A_1, A_2, \ldots, A_n$$
 from r_1, r_2, \ldots, r_m where P

és equivalent a la versió multiconjunt de l'expressió:

$$\Pi_{A_1,A_2,\ldots,A_n}(\sigma_P(r_1 \times r_2 \times \ldots \times r_m))$$

Conjunt d'operacions

- Trobar cursos que es van impartir la tardor del 2009 o primavera del 2010 (select course_id from section where sem = 'Fall' and year = 2009) union (select course_id from section where sem = 'Spring' and year = 2010)
- Trobar cursos que es van impartir la tardor del 2009 i primavera del 2010 (select course_id from section where sem = 'Fall' and year = 2009) intersect
 (select course_id from section where sem = 'Spring' and year = 2010)
- Trobar cursos que es van impartir la tardor del 2009 però no primavera del 2010
 - (select course_id from section where sem = 'Fall' and year = 2009) except (select course_id from section where sem = 'Spring' and year = 2010)

Conjunt d'operacions

- Conjunt d'operacions union, intersect i except
 - Cadascuna de les operacions anteriors eliminen automàticament els duplicats
- Per conservar tots els duplicats s'han de fer servir les corresponents versions multiconjunts union all, intersect all i except all

Suposem que una tuple passa m vegades en r i n en s. Aleshores passa:

- \bullet m+n vegades en r union all s
- $ullet \ min(m,n)$ vegades en r intersect all s
- max(0, m-n) vegades en r except all s

Null values

- És possible l'existència de tuples amb valor nul, denotat per null, per alguns atributs.
- null significa un valor desconegut o inexistent.
- Els resultats d'operacions aritmètiques que continguin l'expressió null és null
 - Exemple: 5 + null retorna null
- L'afirmació is null es pot fer servir per comprovar valors nuls.
 - Exemple: Trobar tots els instructors els quals el seu salari sigui nul.

select name from instructor where salary is null

Null values i tres valors lògics

- Qualsevol comparació amb null retorna unknown.
 - Exemple: 5 < null o null <> null o null = null
- Tres valors lògics fent servir el valor verdades unknown:
 - OR: (unknown or true) = true, (unknown or false) = unknown, (unknown or unknown) = unknown,
 - AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown,
 - NOT: (not unknown) = unknown
 - ullet "P is unknown" evaluates to true if predicate P evaluates to unknown
- El resultat de l'afirmació where és tractat com a fals si evalua a unknown

Funcions agregades

 Aquestes funcions operen sobre un conjunt de valors de relació per columna i retornen un valor

avg: mitjana del valor

min: valor mínim

max: valor màxim

sum: suma dels valors

count: nombre de valors

Funcions agregades (Cont.)

- Trobar la mitjana del salari dels instructors del departament de Computer Science
 - select avg (salary)
 from instructor
 where dept_name = 'Comp. Sci.';
- Trobar el nombre total d'instructors que van donar classes el semestre de primavera del 2010
 - select count (distinct ID)
 from teaches
 where semester = 'Spring' and year = 2010;
- Trobar el nombre de tuples a la relació course
 - select count (*)from course;

Funcions agregades - Group By

- Trobar la mitjana del salari dels instructors de cada departament
 - select dept_name, avg (salary)
 from instructor
 group by dept_name;
- Nota: Els departaments sense instructors no apareixeran al resultat

ID	name	dept_name	salary
76766	Crick	Biology	72000
45565	Katz	Comp. Sci.	75000
10101	Srinivasan	Comp. Sci.	65000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
12121	Wu	Finance	90000
76543	Singh	Finance	80000
32343	El Said	History	60000
58583	Califieri	History	62000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
22222	Einstein	Physics	95000

dept_name	avg_salary
Biology	72000
Comp. Sci.	77333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

Figure: Exemple de funcions agregades - Group By.

Agregacions (Cont.)

- Attributes in select clause outside of aggregate functions must appear in group by list
 - /* erroneous query */ select dept_name, ID, avg (salary) from instructor group by dept_name;

Funcions agregades - Condició Having

 Trobar el nom i la mitjana del salari de tots els departaments els quals la mitjana del salari sigui més gran de 42000

```
select dept_name, avg salary
from instructor
group by dept_name
having avg (salary) > 42000;
```

Nota: Predicates in the **having** clause are applied after the formation of groups whereas predicates in the **where** clause are applied before forming groups.

Null Values and Aggregates

• Trobar el total de tots els salaris

```
select sum (salary)
from instructor
```

- Els arguments anteriors ignoren les quantitats nul·les
- El resultat és null si no hi ha quantitats no nul·les
- Totes les operacions agregades excepte count(*) ignoren tuples amb valors nuls als atributs agregats
- Què passa si només hi ha valors nuls?
 - Count retorna 0
 - Totes les altres agregacions retornen null

Subconsultes aniuades

- SQL proporciona un mecanisme per fer subconsultes aniuades.
- Una subquery és una expressió select-from-where que és aniuada dins d'una altra consulta.
- Un ús habitual de subconsultes és portar a terme tests per conjunts de membres, conjunt de comparacions and set cardinality.

Exemple Query

• Trobar els cursos oferts a la tardor del 2009 i primavera del 2010

 Trobar els cursos oferts a la tardor del 2009 però no a la primavera del 2010

Exemple Query

 Trobar el nombre total (distinct) d'estudiants els quals el seu instructor hagi sigut el ID 10101

Nota: La consulta anterior pot ser escrita d'una manera molt més simple.
 Només es posa l'exemple per il·lustrar funcions de l'SQL.

Set Comparison

 Trobar els noms dels instructors amb salari més gran que algun instructor (almenys un) del departament de biologia

```
select distinct T.name)
from instructor as T.instructor as S
where T.salary > S.salary and S.dept\_name =  'Biology';
```

• La mateixa consulta fent servir > la condició some

Definició d'algunes clàusula

```
• F < comp >  some r \Leftrightarrow \exists t \in r tal que (F < comp > t)

On < comp >  pot ser: <, \le, >, =, \ne

(5 <  some \{0, 5, 6\}) =  true. (read: 5 <  alguna tupla en la relació)

(5 <  some \{0, 5\}) =  false

(5 =  some \{0, 5\}) =  true

(5 \ne  some \{0, 5\}) =  true ( since 0 \ne 5)

(= some) = in

però, (\ne  some) \ne  not in
```

Exemple Query

 Trobar els noms dels instructors amb salari més gran que tots els instructors del departament de biologia

Definició de tota clàusula

•
$$F < comp >$$
 all $r \Leftrightarrow \forall t \in r \ (F < comp > t)$
(5 $<$ all $\{0,5,6\}$) = false
(5 $<$ all $\{6,10\}$) = true
(5 $=$ all $\{4,5\}$) = false
(5 \neq all $\{4,6\}$) = true (since $5 \neq 4$ and $5 \neq 6$)
(\neq all) = not in
però, (= all) \neq in

Test per relacions buides

- El constructe exist retorna el valor true si l'argument de la subconsulta no és buit.
- exists $r \Leftrightarrow r \neq \emptyset$
- not exists $r \Leftrightarrow r = \emptyset$

Variables correlacionades

 Una altra manera per fer la consulta anterior: "Trobar els cursos fets a la tardor del 2009 i primavera del 2010"

```
select course_id
from section as S
where semester = 'Fall' and year = 2009 and
    exists (select *
        from section as T
        where semester = 'Spring' and year = 2010
        and S.course_id = T.course_id);
```

- Subconsulta correlacionada
- Correlation name or correlation variable

Not Exist

 Trobar tots els estudiants que han rebut tots els cursos oferts pel departament de Biologia

- $\bullet \ \ \mathsf{Noteu} \ \ \mathsf{que} \ X Y = \varnothing \Leftrightarrow X \subseteq Y$
- Nota: Aquesta consulta no es pot escriure fent servir = all i les seves variants

Test per absència de duplicats de tuples

- The unique construct tests whether a subquery has any duplicate tuples in its result.
 - (Evaluates to "true" on an empty set)
- Trobar tots els cursos que han estat impartits almenys una vegada al 2009

Subqueries in the From Clause

- SQL permet una expressió de subconsulta utilitzada a la condició from
- Trobar la mitjana del salari dels instructors dels departaments on la mitjana del salary és més gran que 42000\$

```
select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary
    from instructor
    group by dept_name)
where avg_salary > 42000;
```

- Noteu que no s'ha necessitat la condició having
- Una altra manera d'escriure la consulta anterior

Subqueries in the From Clause (Cont.)

• I encara una altra manera d'escriure-la usant la condició lateral

- Lateral clause permits later part of the from clause (after the lateral keyword) to access correlation variables from the earlier part.
- Note: lateral is a part of the SQL standard, but is not supported on many database systems; some databases such as SQL Server offer alternative syntax.
- Note: Això no funciona sempre!

Condició With

- La condició with proporciona una manera de definir temporalment on les seves definicions són disponibles només en la consulta on la condició with apareix
- Trobar tots els departaments amb el pressupost màxim

```
with max_budget(value) as
    (select max (budget)
    from department)
select budget
from department, max_budget
where department.budget = max_budget.value
```

Consultes complexes fent servir la condició With

- La condició With és molt útil per fer queries complexes
- Suportat per la majoria de sistemes de base de dades, amb variacions de sintaxi menors
- Trobar tots els departaments on el total del salari és mes gran que la mitjana total del salari de tots els departaments

```
with dept_total(dept_name, value) as
    (select dept_name, sum(salary)
    from instructor
    group by dept_name),
dept_total_avg(value) as
    (select avg(value)
    from dept_total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value >= dept_total_avg.value;
```

Scalar Subquery

• Scalar subquery is one which is used where a single value is expected

- e Ex.: select name,
 from instructor
 where salary * 10 >
 (select budget from department
 where department.dept_name = instructor.dept_name);
- Runtime error if subquery returns more than one result tuple

Modificació de la base de dades

- Deletion of tuples from a given relation
- Inserció de noves tuples en una relació donada
- Actualitzant valors d'algunes tuples en una relació donada

Modificació de la base de dades - Eliminació

Borrar tots els instructors

delete from instructor

• Borrar tots els instructors del departament de finances

delete from instructor

where dept_name = 'Finance';

 Borrar totes les tuples a la relació instructor per aquells instructors associats amb el departament localitzat a l'edifici Watson

delete from instructor

where dept_name in (select dept_name

from department

where building = 'Watson');

Eliminació (Cont.)

• Borrar tots els instructors els quals el seu salari sigui menor que la mitjana

delete from instructor

where salary < (select avg (salary) from instructor)

- Problema: En el moment en què es borren tuples, la mitjana del salari canvia
- Solució utilitzada en SQL:
 - Primer, calcular la mitjana del salari avg i trobar totes les tuples a borrar
 - ② Després, borrar totes les tuples trobades (sense recalcular avg o repetir les tuples)

Modificació de la base de dades - Inserció

• Afegir una nova tuple a course

insert into course

• O de manera equivalent

insert into course (course_id, title, dept_name, credits)

• Afegir una nova tuple a student amb tot_creds amb valor nul

insert into student

values ('3003', 'Green', 'Finance', null)

Inserció - (Cont.)

• Afegir tots els instructors a la relació student amb tot_creds fixats a 0

insert into student

select ID, name, dept_name, 0

from instructor

 La declaració select from where és evaluada totalment abans any of its results are inserted into the relation (otherwise queries like

insert into table1 select * from table1

would cause problems, it table1 did not have any primary key defined).

Modificació de la base de dades - Actualització

- Augmentar els salaris dels instructors els quals el seu salari sigui més de 100.000\$ un 3%, a tota la resta incrementar-los en un 5%
 - Cal escriure dues declaracions a actualitzar:

```
update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;</pre>
```

- L'ordre és important
- Es pot fer millor fent servir la instrucció case (pròxima transparència)

Declaració Case o Actualitzacions Condicionades

• Una consulta similar però amb la condició case:

```
update instructor  {\it set \ salary} = {\it case} \\ {\it when \ salary} <= 100000 \ {\it then \ salary} \ * 1.05 \\ {\it else \ salary} \ * 1.03 \\ {\it end}
```

Actualitzacions amb subconsultes escalars

- Assigna null tot_creds als estudiants que no han fet cap curs
- En comptes de sum (credits), fer servir:

```
case student S when sum (credits) = is not null then sum(credits) else 0 end
```


FINAL DEL CAPÍTOL 3

Característiques avançades de SQL

Create a table with the same schema as an existing table:
 create table temp_account like account

пате	dept_name	building
Srinivasan	Comp. Sci.	Taylor
Wu	Finance	Painter
Mozart	Music	Packard
Einstein	Physics	Watson
El Said	History	Painter
Gold	Physics	Watson
Katz	Comp. Sci.	Taylor
Califieri	History	Painter
Singh	Finance	Painter
Crick	Biology	Watson
Brandt	Comp. Sci.	Taylor
Kim	Elec. Eng.	Taylor

dept_name	count
Comp. Sci.	3
Finance	1
History	1
Music	1

