Illumination

(faking light effects via pixel colors)

Simple Lighting/Illumination Models

Scene rendered using direct lighting only

Scene rendered using a physicallybased global illumination model with manual tuning of colors

Photograph

(Frederic Drago and Karol Myszkowski, *Validation Proposal for Global Illumination and Rendering Techniques*, http://www.mpi-sb.mpg.de/resources/atrium/)

Light From a Scene

- Ideally, need to consider light coming to the viewer from each point on each surface in a scene: mathematically intractable
- Tractable: break each surface into surface elements
 - only consider a finite number of pieces of surface
 - figure out how much light comes to the viewer from each of these pieces of surface

- Tangent plane approximation
 - most surfaces are curved, not flat
 - imagine breaking a surface up into a finite number of very small pieces. Pieces are still curved, but if they're small enough, can make them arbitrarily close to being flat

Global Illumination

Lights and shadows

- most light striking a surface element comes directly from emissive light sources in the scene (direct illumination)
- sometimes light from source is blocked by other objects
- surface element is then in "shadow" from that light source

from Pixar's "Luxo Jr."

Inter-object reflection

- light bounces off other objects toward our surface element
- when that light reaches our surface element, it brightens it (indirect illumination)

Global illumination (GI)

- simulates what happens when other objects affect light reaching a surface element
- expensive to compute: light reaching surface element may be affected by many other objects in the scene

Non-Global Illumination

- Concentrate on light from light sources
 - ignore effects of all other objects in the scene when considering a particular surface element
 - pro: scene can be rendered much faster
 - con: pay a price in lost realism; lose interesting effects of light transport
- We lose effects of global illumination
 - soft shadows
 - inter-object reflection
 - refraction, i.e. bending of light at translucent surfaces
 - volumetric effects of participating media such as air, water, and fog

global illumination

non-global illumination

Wikipedia: GI

- Trade-Offs
 - depending on what you can afford, pick the effects you need and ignore the rest

Describing Light

Consider light incident on/exiting from surface

- Factors in computing "Light exiting surface"
 - Properties/characteristics of the light sources
 - Color and intensity of light sources; Position: finite distance to object or at infinity; Geometry: spot-light or with dimension (important for shadows); Physical properties (e.g., phosphorescence)
 - Properties/characteristics of the surface
 - Orientation/position: with respect to viewer and other (potentially blocking) objects; Physical properties of the surface (material): how much light it absorbs, reflects, or refracts;
- Difficult to define some of these inputs

Model of Light

For our purposes, simple model of light:

- photons* are emitted by light source
- they travel unimpeded (if no smoke, fog etc)
- until they hit surface

Afterwards, a few things can happen, depending on the characteristics of the surface:

∷__ Light source

- Real surfaces posses various combinations of these elements and more (e.g., SSS - subsurface scattering, where light is transmitted under surface, bounced around, and then reflected at some other point)
- In physics, a photon is the elementary particle that carries the electromagnetic radiation of all wavelengths (including light)

Bidirectional Reflection Distribution Functions: BRDFs

- A relatively accurate description of surface characteristics
- Describes the probability than an incoming photon will leave in a particular outgoing direction
 - given incoming light ray, BRDF is used to calculate how much light will be reflected in a particular outgoing direction (function of incoming and outgoing angles)
- Huge topic!

- Many different ways to get these BRDFs:
 - from analytical models
 - hacks: amb+diff+spec
 - measurements of actual surfaces

A Simple Illumination Model

Components of a simple model

- Characteristics of surfaces:
 - ambient component
 - to account for non-specific global light
 - diffuse component
 - specular component

Reflection caveats

- NOT physically-based, and does NOT attempt to accurately calculate global illumination
- does attempt to simulate some of the most important observable effects of common light interactions
- can be computed quickly and efficiently, so still in use today in graphics software and especially in hardware renderers

Reflection Characteristics of Surfaces: Difussion (1/3)

Diffuse Reflection

- Diffuse (Lambertian) reflection
 - typical of dull, matte surfaces (e.g., carpet)
 - independent of viewer position
 - dependent on light source position (in this case a point source, again a non-physical abstraction)

• In general, light exiting surface = $cos(\theta) I_p k_d$

Reflection Characteristics of Surfaces: Difussion (2/3)

Lambert's cosine law:

$$I = I_p k_d \cos \theta,$$
i.e.,
$$I = I_p k_d (\vec{N} \cdot \vec{L})$$

 \overrightarrow{N} — unit normal of A

 \overline{L} — unit vector in direction of light

 k_d — diffuse reflection coefficient; specifies fraction of I_p reflected

 If we just use this, two surfaces located at different distances from the light source but at the same angle would be identically illuminated – not good

Reflection Characteristics of Surfaces: Difussion (3/3)

Reflection – Energy Density Falloff

Light energy density falls off proportionally to the distance between source and surface:

$$I = f_{att} * (I_p k_d)(N \cdot L)$$
, where $f_{att} = \frac{1}{(d_I)^2}$

 d_i —path length from light to object

This makes surfaces with equal K_d ($\overline{N} \bullet \overline{L}$) vary in appearance if they are at different distances from the light—important if two surfaces overlap:

- Formula often creates harsh effect two surfaces at slightly different distances will be very differently illuminated
- Instead use: $f_{att} = min(\frac{1}{c_1 + c_2 d_1 + c_3 (d_1)^2}, 1)$ where c_1 , c_2 , c_3 are experimentally-defined constants. This is a heuristic! (nice word for a hack)

Reflection Characteristics of Surfaces: Ambient (1/2)

Ambient Light

- Diffuse surfaces reflect light
- Some light goes to eye, some goes to scene
 - light bounces off of other objects and eventually reaches this surface element. Expensive to keep track of accurately, so we use another hack instead.
- Ambient component
 - independent of object position and viewer position
 - constant
 - exists in most environments—some light hits surface from all directions – a crude approximation of indirect lighting/global illumination
 - images without some form of ambient lighting look stark, they have too much contrast

$$I = I_a k_a + f_{att} I_p k_d (\overline{N} \bullet \overline{L})$$

 I_a —intensity of ambient light k_a —fraction reflected, $0 \le k_a \le 1$

Total reflected Light Intensity = Ambient + Diffuse components

Reflection Characteristics of Surfaces: Ambient (2/2)

Colored Lights and Surfaces

- Write separate equation for each component of color model
 - represent an object's <u>diffuse</u> color by one value of O_d for each component
 - e.g., O_{dR} , O_{dG} , O_{dB} in RGB (object diffuse red etc.)
 - I_{pR} , I_{pG} , I_{pB} are reflected in proportion to k_dO_{dR} , k_dO_{dG} , k_dO_{dB} , respectively. This works the same way for ambient color.
 - e.g., for the red component:

$$I_{R} = I_{aR}k_{a}O_{dR} + f_{att}I_{pR}k_{d}O_{dR}(\vec{N} \bullet \vec{L})$$

Reflection Characteristics of Surfaces: Specular (1/2) Specular Reflection

- Directed reflection from shiny surfaces
 - typical of bright, shiny surfaces, e.g. mirrors.

- color depends on material and how it scatters light energy
 - in plastics: color of point light source
 - in metal: color of metal
 - in others: combine color of light and material
- dependent on light source position and viewer position
- for perfect reflector, we see light iff $\alpha = 0$
- for real reflector, reflected light falls off as α increases
- cosine law again? Not exactly: $I_p k_s cos^n(\alpha)$

Reflection Characteristics of Surfaces (2/2)

Specular Reflection (cont.)

- Phong Approximation
 - specular reflection proportional to cosⁿa

• as *n* increases, highlight is more concentrated, surface appears glossier

- run the 2D Reflection applet (from Applets) to see how the reflection vector is calculated
- paper small n; metal high n
- more complex formulas allow for multi-directional variance of specular highlights

gaussian surface

hemi-sphere with specular

A Simple Illumination Model

Non-Physical Lighting Equation based on ambient, diffuse, and specular hacks

Energy from a single light reflected by a single surface element

$$I_{\lambda} = I_{a\lambda} k_a O_{d\lambda} + f_{att} I_{p\lambda} [k_d O_{d\lambda} (\vec{N} \bullet \vec{L}) + k_s O_{s\lambda} (\vec{R} \bullet \vec{V})^n]$$

 k_s - specular coefficient, fraction of light reflected $O_{s\lambda}$ - object specular color (not necessarily the same as $O_{d\lambda}$)

• For multiple point lights, simply sum contributions

$$I_{\lambda} = I_{a\lambda} k_a O_{d\lambda} + \sum_{m} f_{att} I_{p\lambda} [k_d O_{d\lambda} (\vec{N} \bullet \vec{L}) + k_S O_{S\lambda} (\vec{R} \bullet \vec{V})^n]$$

- This is an easy-to-evaluate equation that gives useful results.
 - it is used in most real-time applications, but it has no basis in theory and does not model reflections correctly

How Many Ops?

Summary

- Illumination
- Global vs. local illumination
- Light, BRDFs & hacks
- Illumination models
 - Non-physically based
 - Lambert (diffuse) reflection
 - Ambient reflection
 - Specular reflection the Phong reflection model
 - All together: the Phong Illumination model!
 - Physically-based