

Bone Density Following Three Years of Recovery from Long-Duration Space Flight

¹Shreyasee Amin MD CM, MPH, ¹Sara J. Achenbach MS, ¹Elizabeth J. Atkinson MS, ²Jean Sibonga PhD.

BACKGROUND

- It is well recognized that bone mineral density [BMD] at load-bearing sites of the hip and spine sustain significant loss during space flight, estimated at ~0.5-1.0% per month. (LeBlanc J Musc Neur Int 2007)
- However, the long-term effects on bone health following return from long-duration space flight remain unclear.
- Using prediction models for BMD created from community adults (which included the age range of US astronauts), we have previously shown that at
- ~12 months following return from a long-duration mission in space, men, but not women, had lower BMD at most sites than would be predicted had they not been exposed to microgravity. (Amin [abstract] 2010)
- It is unknown whether BMD for men recovers beyond 1 year following return from space to what would be predicted or if deficits persist.

OBJECTIVE

 Using our previously created prediction models, we compared the observed BMD of male US crew following 3 years since returning from longduration space flight with what would be predicted if they had not been exposed to microgravity.

METHODS

Study Subjects

- Male US crew members serving on long-duration missions in space aboard Mir or ISS who had BMD measurements beyond ~12 months since their return.
- Of 36 US crew who have served on Mir or ISS, and have had pre- and at least one post-flight BMD measured as of December 2010, 28 are men.
- 15/28 men [mean age ± SD at pre-flight BMD: 47 ± 5 yrs, range: 36-54 yrs] have had their BMD measured up to ~3 yrs after landing.

MFTHODS

Prediction Models for BMD

• Prediction models were created using 348 men [mean age \pm SD: 55 \pm 20 yrs, range: 22-90 yrs] who represented an agestratified random sample of the Rochester, MN community, and who have had longitudinal BMD measurements over 4 yrs of follow-up.

BMD Measurements in US Crew members

- BMD (g/cm²) was measured in US crew members pre-flight, immediately post-flight and ~36 months post-flight
- BMD from US crew members were measured using DXA (Hologic QDR 2000, QDR 45000 and Discovery scanners), with at least half having pre- and post-flight measurements on the same machine.
- BMD measures at the total hip, lumbar spine, wrist (ultradistal and mid-shaft radius) and total body were used in analyses.

BMD Measurements in Community-Based Cohort

• BMD was measured in the community-based cohort of men at baseline, 2 yrs and 4 yrs of follow-up using the QDR 2000 scanner and at the same sites listed for US crew members.

Analyses

- We created prediction models for follow-up BMD using the community cohort of men.
- We used linear mixed-effects models to predict follow-up BMD using baseline BMD, age and follow-up time, adjusting for the fact that most people were measured more than once.
- We then applied the created models to predict follow-up BMD for US crew members and compared them to what was actually observed immediately and at ~36 months post-flight

RESULTS

- Median flight duration was 179 days (range 115-215 days) for the 15 male US crew.
- The immediate post-flight BMD was measured a median of 19 days (range: 3-33 days) after their landing.
- BMD was also measured a median of 36 months after landing (range 33-41 months), and none of the 15 male US crew had had a second long-duration mission in space in the interim.

RESULTS

BMD Site*	Mean Immediate Post-Flight BMD [g/cm²] % Change per Month (95% Confidence Interval)								
	Pre- Flight	Predicted		Observed					
		BMD	% change/month (95% CI)	BMD	% change/month (95% CI)	p- value*			
Total	8MD 1.079	1.082	0.04 (0.00, 0.07)	1.007	-0.79 (-1.00, -	<0.00			
Hip Lumbar Spine	1.082	1.092	0.11 (0.09, 0.13)	1.024	0.58) -0.60 (-0.82, -	<0.001			
Ultra-	0.555	0.552	-0.05 (-0.06, -	0.544	-0.21 (-0.41, -	<0.01			
Radius Shaft	0.738	0.751	0.18 (0.13, 0.24)	0.735	-0.03 (-0.18, 0.11)	0.02			
Radius	1.299	1.294	-0.04 (-0.05	1,262	-0.31 (-0.46	0.03			

^{*} N=14 for the hip and N=10 for the radius sites

^{**}p-value for difference between predicted vs. observed BN

BMD Site*	Mean 3 Year Post-Flight BMD [g/cm²] % Change per Month (95% Confidence Interval)								
	Pre- Flight	Predicted		Observed					
		BMD	% change/month (95% CI)	BMD	% change/month (95% CI)	p- value*			
Total	8MD 1.079	1.085	0.01 (0.01, 0.02)	1.063	-0.03 (-0.05	<0.00			
Hip Lumbar Spine	1.082	1.096	0.03 (0.03, 0.03)	1.081	-0.00 (-0.04, 0.03)	0.10			
Ultra-	0.555	0.535	-0.08 (-0.09, -	0.546	-0.04 (-0.06, -	<0.01			
Radius	0.738	0.745	0.02 (0.00, 0.03)	0.736	-0.00 (-0.05, 0.04)	0.18			
Radius	1.299	1.291	-0.01 (-0.02	1.271	-0.04 (-0.10, 0.01)	0.23			

^{*} N=1490 the hip and N=10 for the radius sites

SUMMARY OF RESULTS

 Among the 15 male US crew who have had BMD measured at least ~3 yrs after landing, only BMD at the hip continues to be lower than would be predicted.

LIMITATIONS

- BMD is a surrogate measure of bone strength; differences in predicted and observed BMD may still underestimate deficits in bone strength, given recent findings based on finite-element models of QCT hip scans from US crew (Lang JBMR 2004 & 2006: Kevak Bone 2009).
- There were too few women with BMD measures ~3 yrs after landing to be able to confirm that there remained no long-term negative effects on bone.
- Analyses are limited to those men who returned for BMD measures.

CONCLUSIONS

- By ~3 yrs after landing, BMD at most sites in male US crew became closer to what would be predicted, derived from a community-based cohort of men.
- However, hip BMD, the site most affected by exposure to microgravity, remained lower than what would be predicted, even after ~3 yrs following return from space.
- Findings suggest a potential long-term negative impact of long-duration space flight on load-bearing bones of men.
- Implications of these findings on future hip fracture risk for men serving on long-duration missions in space remain unknown.

ACKNOWLEDGEMENTS

 Supported by NASA (NNX08AQ20G) and the NIH (AR-027065)

^{**}p-value for difference between predicted vs. observed BMD