mas651 exercises

Jaemin Oh

 $March\ 31,\ 2021$

Problem (5.1.1).

Let (S, \mathcal{S}) be a state space of X_n where $S = \{1, 2, \dots N\}$ and $\mathcal{S} = 2^S$. Note that N is an absorbing state. And $X_1 = 1$ with probability 1. For fixed k such that $1 \le k < N$, $k \le n$,

$$P(X_{n+1} = k+1|X_n = k) = \frac{N-k}{N}$$

and

$$P(X_{n+1} = k | X_n = k) = \frac{k}{N}.$$

If k > n, then the above are all 0. So it is a temporally inhomogeneous. The Markov property is trivial since the very next state only depends on the current state.

Problem (5.1.2).

$$P(X_4 = 2|X_3 = 1, X_2 = 1, X_1 = 1, X_0 = 0) = (1/16)/(1/4) = 1/4$$

but

$$P(X_4 = 2|X_3 = 1, X_2 = 0, X_1 = 0, X_0 = 0) = (1/16)/(1/8) = 1/2.$$

Thus X_n is not a Markov chain.

Problem (5.1.5).

$$P(X_{n+1} = k+1|X_n = k) = \frac{m-k}{m} \frac{b-k}{m}$$

because we must choose a white ball in the left urn and a black ball in the right urn.

$$P(X_{n+1} = k | X_n = k) = \frac{k}{m} \frac{b-k}{m} + \frac{m-k}{m} \frac{m+k-b}{m}$$

since there are two cases, choosing both black or both white.

$$P(X_{n+1} = k - 1 | X_n = k) = \frac{k}{m} \frac{m + k - b}{m}$$

since we must choose a black ball in the left urn and a white ball in the right urn. Note that the sum of the above is 1, so there is no other transition probability.

Problem (5.1.6).

$$P(S_{n+1} = k+1 | S_n = k) = \frac{P(X_{n+1} = 1, S_n = k)}{P(S_n = k)}$$

2

where the denominator is

$$\int_{\theta \in (0,1)} P(S_n = k|\theta) dP = \binom{n}{x} \frac{x!y!}{(n+1)!} = \frac{1}{n+1}$$

for x = the number of i such that $U_i \le \theta$ and y = n - x. Note that x = (n+k)/2 and y = (n-k)/2 since x + y = n and x - y = k. The numerator is

$$\int_{\theta \in (0,1)} P(X_{n+1} = 1, S_n = k|\theta) dP = \binom{n}{x} \frac{(x+1)!y!}{(n+2)!}$$

These are because $P(S_n = k|\theta) = \theta^x (1-\theta)^y \binom{n}{x}$ and $P(X_{n+1} = 1, S_n = k|\theta) = P(X_{n+1} = 1|\theta)P(S_n = k|\theta) = \binom{n}{x}\theta^{x+1}(1-\theta)^y$ and using the kernel of beta distribution.

Thus, the probability what we want is (n+k+2)/(2n+4) which depends on n. So X_n is temporally inhomogeneous.

$$P(S_{n+1} = k+1 | S_1 = t_1, \dots, S_n = k) = P(X_{n+1} = 1 | X_1 = t_1, \dots, X_n = t_n)$$

where $\sum_{i=1}^{n} t_i = k$. We can show the above is equal to $P(S_{n+1} = k + 1 | S_n = k) = (n+k+2)/(2n+4)$ similarly, by omitting the $\binom{n}{x}$ term of both denominator and numerator.

Problem (5.2.1).

By the given hint,

$$E(1_A 1_B | \mathcal{F}_n) = E(1_A E(1_B | \mathcal{F}_n) | X_n)$$

so it suffices to show that $E(1_B|\mathcal{F}_n) = E(1_B|X_n)$.

Let $Y = 1_{B_n}(\omega_0) \cdots 1_{B_{n+k}}(\omega_k)$. Then $Y \circ \theta_n =$ the indicator function of $\{X_n \in B_n, \cdots, X_{n+k} \in B_{n+k}\} = B$. By the markov property,

$$P(B|\mathcal{F}_n) = E_{X_n}Y.$$

Let $\varphi(x) = E_x Y$ then $\varphi(X_n)$ is $\sigma(X_n)$ -measurable mapping. Thus, when B has a form of $\{X_n \in B_n, \dots, X_{n+k} \in B_{n+k}\}$ for some nonnegative integer k,

$$P(B|\mathcal{F}_n) = P(B|X_n).$$

Note that a collection of such B generates $\sigma(X_n, X_{n+1}, \cdots)$.

Now let $\mathcal{G} = \{C : P(C|\mathcal{F}_n) = P(C|X_n)\}$. By putting $B_{n+i} = S$ for $0 \le i \le k$, we earn $\Omega_0 \in \mathcal{G}$. If $C, D \in \mathcal{G}$ and $C \subset D$, then by properties of conditional expectation, $D \setminus C \in \mathcal{G}$. If $C_i \in \mathcal{G}$ and $C_i \uparrow C$ then by monotone convergence theorem for conditional expectation, $C \in \mathcal{G}$. Thus \mathcal{G} is a lambda system containing a collection of B's which generates $\sigma(X_n, \cdots)$. Therefore, by Dynkin's theorem, the third equation is satisfied by any $B \in \sigma(X_n, \cdots)$. By the first equation, we can derive the conclusion.

Problem (5.2.4).

First, claim that

$$P_x(X_n = y | T_y = m) = P_y(X_{n-m} = y).$$

This is because

$$\begin{split} P_x\left(X_n = y | T_y = m\right) &= \frac{P_x\left(X_n = y, T_y = m\right)}{P_x\left(T_y = m\right)} \\ &= \frac{\int_{T_y = m} 1_{(X_n = y)} dP_x}{P_x\left(T_y = m\right)} \\ &= \frac{\int_{T_y = m} E\left(1_{(X_n = y)} | \mathcal{F}_m\right) dP_x}{P_x\left(T_y = m\right)} \\ &= \frac{\int_{T_y = m} E_{X_m} 1_{(X_{n - m} = y)} dP_x}{P_x\left(T_y = m\right)} \\ &= \frac{P_x\left(T_y = m\right) P_y\left(X_{n - m} = y\right)}{P_x\left(T_y = m\right)}. \end{split}$$

Now, note that $P_x(X_n = y) = \sum_{m=1}^n P_x(X_n = y, T_y = m)$. From this and

the above discussion,

$$p^{n}(x,y) = P_{x}(X_{n} = y) = \sum_{m=1}^{n} P_{x}(X_{n} = y | T_{y} = m) P_{x}(T_{y} = m)$$
$$= \sum_{m=1}^{n} P_{y}(X_{n-m} = y) P_{x}(T_{y} = m) = \sum_{m=1}^{n} P_{x}(T_{y} = m) p^{n-m}(y,y).$$

Problem (5.2.6).

Fix $x \in S \setminus C$. Since $P_x(T_C = \infty) = \lim_{M \to \infty} P_x(T_C > M) < 1$, we can choose N_x and ε so that

$$P_x(T_C > M) \le 1 - \varepsilon$$

whenever $M \ge N_x$. Note that we can choose N_x as an integer. Put $N = \max_{x \in S \setminus C} N_x$. Now we get

$$\begin{split} P_y(T_C > 2N) &= \sum_{x \in S \setminus C} P_y(T_C > 2N, T_C > N, X_N = x) \\ &= \sum_{x \in S \setminus C} P_y\left(T_C > 2N | X_N = x, T_C > N\right) P_y(X_n = x, T_C > N) \\ &\leq \sum_{x \in S \setminus C} P_x(T_C > N) P_y(X_N = x, T_C > N) \\ &\leq (1 - \varepsilon) \sum_{x \in S \setminus C} P_y(X_N = x, T_C > N) \\ &\leq (1 - \varepsilon)^2. \end{split}$$

By induction, the result follows.

Remark 1. By $k \to \infty$, we can say that $P_y\left(T_C = \infty\right) = 0$. That is, $P_y\left(T_C < \infty\right) = 1$.

Problem (5.2.7).

1. It is similar to the manipulation of problem 5.2.4:

$$P_x (V_A < V_B) = \sum_y P_x (V_A < V_B, X_1 = y) = \sum_y P_x (V_A < V_B | X_1 = y) P_x (X_1 = y)$$

$$= \sum_y p(x, y) P_x (V_A < V_B | X_1 = y) = \sum_y p(x, y) P_y (V_A < V_B)$$

where the first term is h(x) and the last term is $\sum_{y} p(x,y)h(y)$.

2. I think we must further assume that h is bounded and measurable. For convenience, let $\tau = V_A \wedge V_B = V_{A \cup B}$. By the equation (5.2.2) of our textbook, we get

$$E_x (h(X_{n+1})|\mathcal{F}_n) = \sum_y p(X_n, y)h(y)$$
$$= h(X_n)$$

for $X_n \notin A \cup B$.

Now, put $Y_n = h(X_n)$. Then

$$Y_{n \wedge \tau} - Y_0 = h(X_{n \wedge \tau}) - h(X_0) = \sum_{k=1}^{n} 1_{(\tau \ge k)} (Y_k - Y_{k-1}).$$

By using the above,

$$E_x (Y_{n+1 \wedge \tau} - Y_0 | \mathcal{F}_n) = \sum_{k=1}^{n+1} 1_{(\tau \ge k)} E_x (Y_k - Y_{k-1} | \mathcal{F}_n)$$

$$= 1_{(\tau \ge n+1)} (Y_n - Y_0) + 1_{(\tau < n+1)} (Y_\tau - Y_0)$$

$$= 1_{(\tau > n)} (Y_n - Y_0) + 1_{(\tau \le n)} (Y_\tau - Y_0)$$

$$= Y_{n \wedge \tau} - Y_0.$$

So $h(X_{n\wedge\tau})$ is a martingale. Note that the first equality is due to (5.2.2), and the last is due to optional stopping.

3. We assumed that h is bounded. Thus, our martingale is uniformly bounded, so the optional stopping theorem can be applied:

$$x = E_x h(X_0) = E_x h(X_\tau) = E_x [E_x (h(X_\tau) | \mathcal{F}_\tau)]$$

where the last term is equal to

$$E_x [E_{X_{\tau}} h(X_0)] = E_x [1_{(X_{\tau} \in A)} + 0 \cdot 1_{(X_{\tau} \in B)}] = E_x [1_{(X_{\tau} \in A)}].$$

The above is because $P_x(\tau < \infty) = 1$ and h is 1 on A and 0 on B. Note that this implies the result, since $X_{\tau} \in A$ is equivalent to $V_A < V_B$.

Problem (5.2.8).

Let $\tau = V_0 \wedge V_N$. Then $X_{n \wedge \tau}$ is an uniformly bounded martingale since the state space of X_n is finite. By the optional stopping theorem, we get

$$E_x X_0 = E_x X_\tau$$

where the LHS is equal to x. Note that, by the remark 1, we can say that $P_x(\tau < \infty) = 1$. Then the RHS of the above eqn is equal to $0P_x(V_0 < V_N) + NP_x(V_N < V_0)$. Thus,

$$x = NP_x \left(V_N < V_0 \right).$$

Problem (5.2.11).

1. It is similar to the manipulation of problem 5.2.7:

$$\begin{split} E_x V_A &= \sum_{k \geq 1} P_x \left(V_A \geq k \right) \\ &= P_x \left(V_A \geq 1 \right) + \sum_{k \geq 2} P_x \left(V_A \geq k \right) \\ &= 1 + \sum_{k \geq 2} P_x \left(V_A \geq k \right) \\ &= 1 + \sum_{k \geq 2} \sum_y P_x \left(V_A \geq k | X_1 = y \right) P_x \left(X_1 = y \right) \\ &= 1 + \sum_y p(x,y) \sum_{k \geq 2} P_y \left(V_A \geq k - 1 \right) = 1 + \sum_y p(x,y) E_y V_A \end{split}$$

where $P_x(V_A \ge 1) = 1$ since x lies outside of A.

Also, $E_x V_A < \infty$ because

$$E_x \frac{V_A}{N} = \sum_{k \ge 1} P_x (V_A \ge kN)$$
$$\le \sum_{k \ge 1} (1 - \varepsilon)^k < \infty.$$

2. I think we should assume the measurability, and boundedness of g. By the manipulation used in problem 5.2.7, we get:

$$E_x (g(X_{n+1}) + n + 1 | \mathcal{F}_n) = n + 1 + \sum_y p(X_n, y) g(y)$$

= $n + g(X_n)$

for $X_n \notin A$.

Now put $Y_n = g(X_n) + n$ and $\tau = V_A$ for convenience. Then

$$E_x (Y_{n+1 \wedge \tau} - Y_0 | \mathcal{F}_n) = \sum_{k=1}^{n+1} 1_{(\tau \ge k)} E_x (Y_k - Y_{k-1} | \mathcal{F}_n)$$

$$= 1_{(\tau \ge n+1)} (Y_n - Y_0) + 1_{(\tau < n+1)} (Y_\tau - Y_0)$$

$$= Y_{n \wedge \tau} - Y_0.$$

So $X_{n \wedge V_A} + n \wedge V_A$ is a martingale.

3. From the boundedness of g and the fact that V_A is L^1 function, our martingale is uniformly integrable. Thus we can apply optional stopping theorem:

$$E_x g(X_0) = E_x \left[V_A + g(X_{V_A}) \right]$$

where the first term is g(x) and the second term is $E_xV_A + E_xg(X_{V_A})$. But X_{V_A} lies in A and g is 0 on A. Thus the second term of the equation is E_xV_A .

Problem (5.3.1).

Abbreviation of notation: $P(X_1 \leq x_1, \dots, X_n \leq x_n)$ as $P(X \leq x)$, which is a distribution function of a random vector.

First, let's see that they are identically distributed. Since y is recurrent, the strong Markov property always holds when we are considering \mathcal{F}_{R_k} .

$$P_y(\nu_k \le x) = E_y P_y(\nu_k \le x | \mathcal{F}_{R_{k-1}}) = E_y E_{X_{R_{k-1}}} 1_{(\nu_1 \le x)} = P_y(\nu_1 \le x).$$

So ν_k are identically distributed.

Now, let's see that they are independent.

$$P_{y}(\nu_{1} \leq x_{1}, \cdots, \nu_{n} \leq x_{n}) = E_{y}P_{y}(\nu_{1} \leq x_{1}, \cdots, \nu_{n} \leq x_{n}|\mathcal{F}_{R_{n-1}})$$

$$= E_{y}\left[1_{(\nu_{1} \leq x_{1})} \cdots 1_{(\nu_{n-1} \leq x_{n-1})}P_{y}(\nu_{1} \leq x_{n})\right]$$

$$= P_{y}(\nu_{1} \leq x_{n})P_{y}(\nu_{1} \leq x_{1}, \cdots, \nu_{n-1} \leq x_{n-1})$$

$$= \cdots$$

$$= P_{y}(\nu_{n} \leq x_{n}) \cdots P_{y}(\nu_{1} \leq x_{1})$$

since they are identically distributed. Note that $\nu_1, \dots \nu_{n-1}$ are $\mathcal{F}_{R_{n-1}}$ measurable. This is because $\{X_{R_{n-2}+i} \in B\} \cap \{R_{n-1} = k\} \in \mathcal{F}_k$.

Problem (5.3.2).

On $\{T_y < \infty\}$, by the strong Markov property,

$$\rho_{xy} = P_y(T_z < \infty) = E_x \left(1_{(T_y + T_z < \infty)} | \mathcal{F}_{T_y} \right).$$

Thus,

$$\begin{aligned} \rho_{xy}\rho_{yz} &= E_x \mathbf{1}_{(T_y < \infty)} E_x \left(\mathbf{1}_{(T_y + T_z < \infty)} | \mathcal{F}_{T_y} \right) \\ &= E_x \mathbf{1}_{(T_y < \infty)} \mathbf{1}_{(T_y + T_z < \infty)} \\ &= P_x \left(T_y + T_z < \infty \right) \le P_x \left(T_z < \infty \right) = \rho_{xz}. \end{aligned}$$

Problem (5.3.5).

As in the proof of theorem 5.3.8, $\varphi(X_{n\wedge\tau})$ is a nonnegative supermartingale. So the supmartingale converges to Y a.s. From the modified condition $\varphi \to 0$, we know that $\{x:\varphi(x)>M\}$ is a finite set. So X_n visits $\{x:\varphi(x)>M\}$ only finitely many times for all M>0. Thus $\varphi(X_n)\to 0$ as $n\to\infty$. If $\tau<\infty$ almost surely, then $\varphi(X_{n\wedge\tau})\to\varphi(X_\tau)=0$. But we have the other condition: $\varphi>0$ on F. So $\varphi(X_\tau)=0$ cannot happen; thus $P_x(\tau=\infty)>0$.

If the chain is recurrent, then $\tau < \infty$ a.s. But our case is not the case, so the chain must be transient.

Problem (5.3.7).

First assume the recurrence. Let f be a superharmonic function, so $f(X_n)$ is a nonnegative supermartingale. By the martingale convergence theorem, $f(X_n) \to$

Y a.s. By the recurrence, $P(X_n = x \ i.o.) = 1$ for all $x \in S$. So $P(f(X_n) = f(x) \ i.o.) = 1$, which says $f(X_n) \to f(x) = Y$ a.s. But $x \in S$ is arbitrary, f must be a constant.

Now, assume the transience. Fix $z \in S$. Let $V = \inf\{n \geq 0 : X_n = z\}$. Let $f(x) = P_x(V < \infty)$. We will show that f is a nonconstant superharmonic function. For $x \neq z$,

$$f(x) = P_x(V < \infty) = \sum_y p(x, y) P_y(V < \infty) = \sum_y p(x, y) f(y).$$

For x = z,

$$\sum_{y} p(z,y) f(y) \le \sum_{y} p(z,y) = 1 = f(z)$$

since $f \leq 1$. Thus, f is superharmonic.

Now claim that there is $y \in S$ such that f(y) < 1. If no such y exists, then f(y) = 1 for all $y \in S$. This says that $P_y(V < \infty) = 1$ for all y which is equivalent to the recurrence of z. But we assumed the recurrence of our chain. So there is $y \in S$: f(y) < 1. And this says f is nonconstant.

Problem (5.5.2).

Let N_y^x be the number of hittings to y before returning to x. Then $\mu_x(y) = E_x N_y^x$. Also, we can write

$$N_y^x = \sum_{k=1}^{\infty} 1_{\left(T_y, \cdots, T_y^k < T_x\right)} = \sum_{k=1}^{\infty} 1_{\left(T_y^k < T_x\right)}.$$

By using the strong Markov property and the induction, we get

$$E_{x}N_{y}^{x} = \sum_{k=1}^{\infty} P_{x} \left(T_{y}^{k} < T_{x} \right)$$

$$= \sum_{k=1}^{\infty} E_{x} \left[P_{x} \left(T_{y}, T_{y}^{k} < T_{x} | \mathcal{F}_{T_{y}} \right) \right]$$

$$= \sum_{k=1}^{\infty} E_{x} \left[1_{(T_{y} < T_{x})} P_{y} \left(T_{y}^{k-1} < T_{x} \right) \right]$$

$$= \cdots$$

$$= \sum_{k=1}^{\infty} P_{x} (T_{y} < T_{x}) P_{y} (T_{y} < T_{x})^{k-1}$$

$$= \frac{P_{x} (T_{y} < T_{x})}{1 - P_{y} (T_{y} < T_{x})} = \frac{w_{xy}}{w_{yx}}.$$

Problem (5.5.3).

Irreducibility and recurrence implies the existence of unique(up to constant multiple) stationary measure. The recurrence implies that $y \mapsto \mu_x(y)$ is the stationary measure. Thus, for some c > 0, $\mu_y(z) = \mu_x(z) \cdot c$. So $\mu_y(z)p(z,y) = c\mu_x(z)p(z,y)$. By adding over z,

$$1 = \mu_y(y) = \sum_z \mu_y(z) p(z, y) = c \sum_z \mu_x(z) p(z, y) = c \mu_x(y).$$

Thus $c = 1/\mu_x(y)$ and this leads the result.

Problem (5.5.4).

 $E_xT_y=\infty$ says that the chain is expected to not reach the state y. So $\mu_x(y)=0$, contradiction. Also

$$\sum_{x} E_x T_y p(x, y) + 1 = E_y T_y < \infty$$

by positive recurrence. Therefore E_xT_y should be finite.

Problem (5.5.5).

On the contrary, assume that p is positive recurrent. Then, with irreducibility, the existence of stationary distribution π is guaranteed. Also, any stationary measure is constant multiple of π by theorem 5.5.9. Thus $c\pi(x) = \mu(x)$ for some constant c > 0. Then,

$$\infty = \sum_{x} \mu(x) = c \sum_{x} \pi(x) = c < \infty,$$

which is a contradiction. Hence p cannot be positive recurrent.

Problem (5.5.9).

Note that $Y_{n \wedge \tau} - Y_0 = \sum_{k=1}^n 1_{(\tau > k)} (Y_k - Y_{k-1})$. Using this,

$$E_{x}(Y_{n+1\wedge\tau} - Y_{0}|\mathcal{F}_{n}) = \sum_{k=1}^{n} 1_{(\tau \geq k)} (Y_{k} - Y_{k-1}) + 1_{(\tau \geq n+1)} [E_{x}(X_{n+1}|\mathcal{F}_{n}) - X_{n} + \varepsilon]$$

$$\leq \sum_{k=1}^{n} 1_{(\tau \geq k)} (Y_{k} - Y_{k-1}) + 1_{(\tau \geq n+1)} [X_{n} - \varepsilon - X_{n} + \varepsilon]$$

$$= Y_{n\wedge\tau} - Y_{0}.$$

Thus $Y_{n\wedge\tau}$ is a nonnegative supermartingale. Now, by theorem 4.8.4, we have

$$x = E_x[Y_0] \ge E_x[Y_\tau] = E_x[X_\tau + \tau \varepsilon] \ge \varepsilon E_x[\tau]$$

since $X_n \geq 0$. By dividing both sides by ε , we earn the result.