

Statistical Sciences

DoSS Summer Bootcamp Probability Module 9

Ichiro Hashimoto

University of Toronto

July 27, 2023

July 27, 2023

Recap

Learnt in last module:

- Stochastic convergence
 - ▷ Convergence in distribution
 - Convergence in probability
 - Convergence almost surely
 - \triangleright Convergence in L^p
 - ▶ Relationship between convergences

Outline

- Convergence of functions of random variables
 - ▷ Slutsky's theorem
 - ▷ Continuous mapping theorem
- Laws of large numbers
 - ▶ WLLN
 - ⊳ SLLN
- Central limit theorem

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

$$e-9$$
. $f(x_{n}, x_{k}) = x_{k} + x_{k}$

$$f(x_{k}, x_{k}) = x_{k} + x_{k}$$

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

Convergence of functions of random variables (a.s.)

Suppose the probability space is complete, if $X_n \xrightarrow{a.s.} X$, $Y_n \xrightarrow{a.s.} Y$, then for any real numbers a, b,

- $aX_n + bY_n \xrightarrow{a.s.} aX + bY$;
- $X_n Y_n \xrightarrow{a.s.} XY$.

Remark:

• Still require all the random variables to be defined on the same probability space

Convergence of functions of random variables (probability)

Suppose the probability space is complete, if $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$, then for any real numbers a,b,

- $aX_n + bY_n \xrightarrow{P} aX + bY$;
- $X_n Y_n \xrightarrow{P} XY$.

Remark:

• Still require all the random variables to be defined on the same probability space

$$X_{n}+Y_{n} \xrightarrow{p} X+Y$$

(Proof) Relogs on torongolar inequality | $a+b| \leq |a|+|b|$.

 $|X_{n}+Y_{n}-(X+Y)|=|(X_{n}-X)+(X_{n}-Y)|$
 $\leq |X_{n}-X|+|Y_{n}-Y|$

Convergence of functions of random variables (L^p)

Suppose the probability space is complete, if $X_n \xrightarrow{L^p} X$, $Y_n \xrightarrow{L^p} Y$, then for any real numbers a, b,

• $aX_n + bY_n \xrightarrow{L^p} aX + bY$;

Remark:

• Still require all the random variables to be defined on the same probability space

Read $\|X\|_{L^p} = (E|X|^p)^{Y_p}$.

Fact If $p \ge 1$, then L^p space has friendly inequality,

i.e. $\|XtY\|_{L^p} \le \|Xt\|_{L^p} + \|Yt\|_{L^p}$

Vsiz Mis feet,

(1 Xn+7n - (x+7) Mcm = [| Xn-x|| m + |17n-7|| m -); 0)

hy kn + x n lm hy 7n-7 in lm

Remark: Convergence in distribution is different.

einhor to

Slutsky's theorem

If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{P} c$ (c is a constant), then

- $X_n + Y_n \stackrel{d}{\rightarrow} X + c$;
- $X_n Y_n \stackrel{d}{\rightarrow} cX$;
- $X_n/Y_n \xrightarrow{d} X/c$, where $c \neq 0$.

Remark: Convergence in distribution is different.

Slutsky's theorem

If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{P} c$ (c is a constant), then

- $X_n + Y_n \xrightarrow{d} X + c$;
- $X_n Y_n \stackrel{d}{\rightarrow} cX$;
- $X_n/Y_n \stackrel{d}{\to} X/c$, where $c \neq 0$.

Remark:

• The theorem remains valid if we replace all the convergence in distribution with convergence in probability.

Remark: The requirement that $Y_n \xrightarrow{P} c$ (c is a constant) is necessary.

Remark: The requirement that $Y_n \stackrel{P}{\to} c$ (c is a constant) is necessary.

Examples:
$$Y_n \sim \mathcal{N}(0,1), Y_n = -X_n$$
, then $Y_n = -Y_n \sim \mathcal{N}(0,1)$

- $X_n \xrightarrow{d} Z \sim \mathcal{N}(0,1), Y_n \xrightarrow{d} Z \sim \mathcal{N}(0,1)$:
- $X_n + Y_n \stackrel{d}{\to} 0;$ for an $X_n + X_n = -X_n^2 \stackrel{d}{\to} -\chi^2(1);$
- $X_n/Y_n = -1$.

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot): \mathbb{R} \to \mathbb{R}$ satisfies $\mathbb{P}(X \in D_g) = 0$, then

- $X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$;
- $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$;
- $X_n \stackrel{d}{\to} X \quad \Rightarrow \quad g(X_n) \stackrel{d}{\to} g(X)$;

where D_g is the set of discontinuity points of $g(\cdot)$.

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot): \mathbb{R} \to \mathbb{R}$ satisfies $\mathbb{P}(X \in D_g) = 0$, then

- $X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$;
- $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$;
- $X_n \stackrel{d}{\to} X \quad \Rightarrow \quad g(X_n) \stackrel{d}{\to} g(X)$;

where D_g is the set of discontinuity points of $g(\cdot)$.

Remark:

- If $g(\cdot)$ is continuous, then ...
- If X is a continuous random variable, and D_g only include countably many points, then ...

Weak Law of Large Numbers (WLLN)

If X_1, X_2, \dots, X_n are i.i.d. random variables, $\mu = \mathbb{E}(|X_1|) < \infty$, then

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \xrightarrow{P} \mu.$$

Remark:

A more easy-to-prove version is the L^2 weak law, where an additional assumption $Var(X_i) < \infty$ is required.

Sketch of the proof:

$$E\left(\overline{X} - m\right)^{2} = Van\left(\overline{X}\right) = Van\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)$$

Thundan X on (x)

Thundan X on (x)

Reall that L2 convergen implies convergen in probability.

Su, X -> M in probability.

A generalization of the theorem: triangular array

Triangular array

A triangular array of random variables is a collection $\{X_{n,k}\}_{1 \leq k \leq n}$.

Remark: We can consider the limiting property of the row sum S_n .

Law of Large Numbers

L^2 weak law for triangular array

Suppose $\{X_{n,k}\}$ is a triangular array, $n=1,2,\cdots,k=1,2,\cdots,n$. Let $S_n=\sum_{k=1}^n X_{n,k},\ \mu_n=\mathbb{E}(S_n),\ \text{if}\ \sigma_n^2/b_n^2\to 0,\ \text{where}\ \sigma_n^2=Var(S_n)\ \text{and}\ b_n\ \text{is a sequence}$ of positive real numbers, then

$$\frac{S_n-\mu_n}{b_n} \stackrel{P}{\longrightarrow} 0.$$

Remark:

The L^2 weak law for i.i.d. random variables is a special case of that for triangular array.

Proof:

$$\frac{\left[\frac{3n-M_{1}}{h_{2}}\right]^{2}}{\left[\frac{3n-M_{1}}{h_{2}}\right]^{2}} = \frac{\sigma_{n}^{2}}{\left[\frac{h_{2}^{2}}{h_{2}^{2}}\right]} = \frac{\sigma$$

Proof:

Remark:

A more generalized version incorporates truncation, then the second-moment constraint is relieved.

Strong Law of Large Numbers (SLLN)

Let
$$X_1, X_2, \cdots$$
 be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^n X_i}{n}$ μ .

Remark: The proof needs Borel-Cantelli lemma.

Strong Law of Large Numbers (SLLN)

Let X_1, X_2, \cdots be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{\longrightarrow} \quad \mu.$

Remark: The proof needs Borel-Cantelli lemma.

Glivenko-Cantelli theorem

Let X_i , $i = 1, \dots, n$ i.i.d. with distribution function $F(\cdot)$, and let

 $\sup_{x\in\mathbb{R}} |F(x)-F_n(x)| \to 0$, a.s. (5 easy to prove by $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$, then as $n \to \infty$,

Note that I(Xi =x) are did random varible.

July 27, 2023

14/1

of large numbers Glivento Contelli

Proof:

For each
$$X \in \mathbb{P}$$
,
$$F_{Y}(X) = \frac{1}{2!} \sum_{i=1}^{n} I(X_{i} \leq X_{i})$$

= P(x; 5K): F(K)

Central Limit Theorem

-) Graduata Probability I

What is the limiting distribution of the sample mean?

Classic CLT

Suppose $X_1, \dots X_n$ is a sequence of i.i.d. random variables with $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2 < \infty$, then

$$\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}$$
 $\stackrel{d}{\Longrightarrow}$ $\mathcal{N}(0,1)$.

Remark:

- The proof involves characteristic function.
- A more generalized CLT is referred to as "Lindeberg CLT".

Central Limit Theorem

Example:

Example: Suppose $X_i \sim \underbrace{Bernoulli(p)}$, i.i.d., consider $Z_n = \frac{\sum_{i=1}^n X_i - np}{\sqrt{np(1-p)}}$, then by CLT, $Z_n \sim \mathcal{N}(0,1)$ asymptotically.

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{a.s.} X$, $Y_n \xrightarrow{a.s.} Y$, then $X_n + Y_n \xrightarrow{a.s.} X + Y$.

Problem 2: Prove that on a complete probability space, if $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$.

Problem 3: A bank teller serves customers standing in the queue one by one. Suppose that the service time X_i for customer i has mean $\mathbb{E}(X_i) = 2$ (minutes) and $Var(X_i) = 1$. We assume that service times for different bank customers are independent. Let Y be the total time the bank teller spends serving 50 customers. Find $\mathbb{P}(90 < Y < 110)$.

July 27, 2023