TD1

<u>Thématiques abordées</u>: diagramme espace temps, horloge de Lamport, ordre total, horloge vectorielle.

Sujet:

- 1- Faire le diagramme espace temps de la séquence décrite en dessous
- 2-Rajouter les horloges de Lamport
- 3- Calculer l'ordre total de cette exécution
- 4- Donner une exécution équivalente en minimisant le nombre de messages en cours
- <u>5-</u>Rajouter les horloges vectorielles
- 6- e₄ précède t-il e₁₂?

Séquence :

e₁ interne s₁

e₂ s₁ envoie à s₃

e₃ s₄ envoie à s₂

e₄ interne s₂

e₅ s₃ envoie à s₁

e₆ s₁ reçoit de s₃

e₇ interne s₂

e₈ s₄ envoie à s₁

e₉ s₃ reçoit de s₁

e₁₀ s₂ reçoit de s₄

e₁₁ s₂ envoie à s₁

e₁₂ interne s₃

e₁₃ interne s₄

e₁₄ s₃ envoie à s₂

e₁₅ s₁ reçoit de s₄

e₁₆ s₁ envoie à s₂

e₁₇ s₁ reçoit de s₂

 e_{18} s_2 reçoit de s_1

e₁₉ s₂ reçoit de s₃

Solutions:

Question 1:

Question 2:

Explications : cf. cours partie sur les horloges de Lamport plus spécifiquement les 3 règles suivantes :

- Si e_0 est un **événement initial** (sauf une réception) $\theta(e_0) = 0$ (–)
- Si e est un événement **d'émission ou un événement interne**, et e' l'événement qui **le précède sur le même site**, $\theta(e) = \theta(e') + 1$ (-)
- -Si e est un événement de **réception** et e' l'événement qui le précède sur le même site et f l'événement d'envoi du message qui est reçu, $\theta(e) = \max(\theta(e'), \theta(f)) + 1$ (-)(* ici e'=0 et f=1 donc $\max(0,1)+1=2$))

Question 3:

Pour cela il faut tout d'abord estampiller chaque événement par un couple (h, i) avec h les horloges de Lamport calculées à la question 2 et i l'identifiant du site. Ce qui donne :

Le but étant de placer **les horloges dans l'ordre croissant**, de 0 à 6 (6 la plus grande horloge dans notre cas). Quand plusieurs couples ont l**a même coordonnée** de gauche (horloge) **les trier à l'aide de la coordonnée de droite** (numéro de site), toujours dans l'ordre croissant (ici de 1 à 4). Ce qui donne :

 e_1 , e_4 , e_5 , e_3 , e_2 , e_7 , e_8 , e_6 , e_{10} , e_9 , e_{13} , e_{15} , e_{11} , e_{12} , e_{16} , e_{14} , e_{17} , e_{18} , e_{19}

Ouestion 4:

Il faut se rappeler de toujours garder l'ordre causal : **sur un même site l'ordre est strictement ordonné**, et l'événement d'envoi de message précède toujours la réception de ce même message. Le but ici est d'avoir le moins de messages en transition possible (d'avoir des vecteurs plus courts) Nous pourrions donc avoir :

 $e_4,\ e_1,\ e_7,\ e_3,\ e_{10},\ e_2,\ e_5,\ e_6,\ e_9,\ e_8,\ e_{15},\ e_{12},\ e_{13},\ e_{11},\ e_{16},\ e_{18},\ e_{17},\ e_{14},\ e_{19}$

Question 5:

On associe à chaque site un vecteur. Les lignes du vecteur correspondent à un site. Première ligne <=> premier site, deuxième ligne <=> deuxième site etc.

Si le i ème site produit un événement, la i ème coordonnée du vecteur de l'événement que l'on traite = la valeur de la i ème coordonnée du dernier événement qui avait eu lieu sur cet i ème site + 1.

Pour les autres coordonnées du vecteur, si l'événement est une réception de message, on prendra max(dernier vecteur qui avait eu lieu sur le même site que lui, événement d'envoi). Sinon on garde les mêmes.

(-) explications:

C'est un élément de réception. On compare donc le dernier vecteur qui a eu lieu sur le site (0 4 0 1) et « le vecteur d'envoi » (5 0 1 2).

On fait donc le max pour chaque ligne des vecteurs.

Algorithmique distribuée, 12/09/2022

0 < 5

4 > 0

0 < 1

1 < 2

Ce qui donne (5 4 1 2).

Il suffit de faire + 1 sur la coordonnée représentant le site 2 (car on est sur le site 2). On a bien comme vecteur final (5 5 1 2).

Question 6:

0 < 2

1 > 0

0 < 3

0 = 0

Donc non e_4 ne précède pas e_{12} car e_4 a une coordonnée plus grande.