BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

2018. 07. 19.

김동화

I. Abstract

BERT

• Bidirectional Encoder Representations from Transformers

- 다양한 NLP task문제에서 Baseline 보다 5~6%의 성능개선을 가짐

요약

- ELMo, GPT의 영향을 받은 방법
- 모델이 굉장히 큼, 3억 4천만개 파라미터
- Masked LM
 - Pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers
- Pre-training이 되었을 때(2일) NLP Task 학습(fine-tunning)에 대해서 30분
 (Batch size:32, epoch:3)돌리면 사람 수준의 성능을 가짐

Pre-trained language representation를 Task에 적용하는 두가지 방법

- Feature-based (Parameters are **fixed**)
 - **ELMo**: <u>downstream</u> tasks-specific architectures
 - I. Token representation
 - 2. Bidirectional Language Model (biLM)
 - 3. Freezed 한 후 token embeddings(x)과 biLM output(h) 에 elmo embeddings를 병합한 supervised learning

Pre-trained language representation를 Task에 적용하는 두가지 방법

- Feature-based (Parameters are fixed)
 - ELMo: <u>downstream</u> tasks-specific architectures
 - 1. Token representation
 - 2. Bidirectional Language Model (biLM)
 - 3. Freezed 한 후 token embeddings(x)과 biLM output(h) 에 elmo embeddings를 병합한 supervised learning
- Fine-tunning (Parameters are not fixed)
 - Generative Pre-trained Transformer (GPT)
 - Unidirectional language models

Limitation

- Unidirectional LM
 - Left-to-right architecture
 - 이전 단어들을 가지고 다음 단어를 예측/attention
 - Fine-tunning을 적용할 때 Sub-optimal를 가지는 문제가 있음

New objective

- Masked language model(MLM)
 - 입력 token을 랜덤하게 masking 처리(15%) 한 후 masking 된 token id를 예측
 - 좌우 문맥을 결합시킬 수 있음(bidirectional)

Contribution

• Masking을 사용하여 pre-trained deep bidirectional representations

- 독립적인 Forward LM, Backward LM를 병합한 것과 다름
- 다양한 NLP Task에 문장, 단어를 표현할 수 있는 fine-tunning-based representation
- 높은 성능을 가짐

BERT

• 구조

Encoder: Bidirectional

Decoder: left-context-only

• 설명 전개

- Input representation
- Pre-training task
- Pre-training & Fine-tunning procedure

Input representation

Position Encoding

- Add some sequential structure
- $-PE_{(pos,2i)} = \sin(pos/10^{4\cdot2i/d_{model}})$
- $-PE_{(pos,2i+1)} = \cos(pos/10^{4\cdot2i/d_{model}})$
 - d_{model} : embedding size
 - i: embedding size의 인덱스(a feature)
 - Pos: max length의 인덱스(a word)

Input representation

- Position Encoding
 - 모델에게 문장의 길이를 추론시켜 학습된 문장보다 더 길게 생성시킬 수 있는 효과가 있음

```
import numpy as np
import matplotlib.pyplot as plt

max_length = 512
embed_size = 1024
position_enc = np.array([
        [pos / np.power(10000, 2*i/embed_size) for i in range(embed_size)]
        if pos != 0 else np.zeros(embed_size) for pos in range(max_length)])

position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i
position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1

img = plt.imshow(position_enc, cmap='hot', interpolation='nearest', aspect='auto')
cmap = plt.get_cmap('hot')
plt.colorbar(img, cmap=cmap)
plt.show()
```


Input representation

Position Encoding
 No temporal information

Add some sequential structure

•
$$p_i \in \mathbb{R}^f$$

$$-e_{i}=\left(w_{i}+p_{i}\right) + ----$$

- Position Embeddings
 - Max length = sequence length = 512

Input representation

- Segment embedding
 - [SEP]이라는 token을 삽입해 sentence를 구분
 - A pair sentences: type ids, documents: segment ids
 - 각 문장사이의 숫자가 append (e.g. 0, I, . . .)

```
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 0
```


Encoder Block

- Self attention head(A)
 - BERT base: 12개
 - BERT large: 24개
- Max length = 512
 - $-512 \times 24 = 12,2887$
- 병렬 처리 관련
 - 병렬 처리가 아닌 블록들이 Recursive하게 반복 처리

Encoder Block

- Multi-Head Attention
 - 서로 다른 가중치 행렬을 계산
 - 어텐션 head를 여러 번(h) 계산
 - Concatenation

 $ext{MultiHead}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = [ext{head}_1; \dots; ext{head}_h] \mathbf{W}^O$ $ext{where head}_i = ext{Attention}(\mathbf{Q} \mathbf{W}_i^Q, \mathbf{K} \mathbf{W}_i^K, \mathbf{V} \mathbf{W}_i^V)$

2. BERT 15/43

Encoder Block

- Multi-Head Attention
 - 서로 다른 가중치 행렬을 계산
 - 어텐션 head를 여러 번(h) 계산
 - Concatenation

 $\operatorname{MultiHead}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = [\operatorname{head}_1; \dots; \operatorname{head}_h] \mathbf{W}^O$ where head_i = Attention($\mathbf{QW}_{i}^{Q}, \mathbf{KW}_{i}^{K}, \mathbf{VW}_{i}^{V}$) 인코더 이든 스테이트 부여 받은 K 디코더 히든 스테이트 Concat Scaled Dot-Product Attention Linear Encoder Block(t+1),.. ~ 24개 Encoder Block(t)

2. BERT 16/43

Encoder Block

Multi-Head Attention

Encoder Block(t-1)

Encoder Block(t+1),.. ~ 24개

Encoder Block

- Multi-Head Attention
 - 서로 다른 가중치 행렬을 계산
 - 어텐션 head를 여러 번(h) 계산

Encoder Block

Inputs

Encoder Block

Encoder & Decoder Block

2. BERT 22/43

Masked Attention

- Mask 3D Tensor(Attention mask)
 - [batch_size, seq_length(encoder), seq_length(decoder)]
 - [batch_size, I, seq_length(encoder), seq_length(decoder)]
 - I.0: 어텐션 하고 싶은 위치(0)
 - 0.0: mask 위치(-10000.0)
 - 제로 패딩은 항상 마스킹 처리해 패널티 부과

```
adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
```


Training

Masked Language Model

- 문장의 다음 단어를 예측하는 것이 아니라 문장내 랜덤한 단어를 마스킹하고 이를 예측
- 너무 Mask token만 예측하려고 함(수렴...); 주변 단어들도 잘 학습되게 correct word/incorrect word를 섞음
- MLM 방식은 Q&A task에 충분하지 않는 성질을 가짐
- Rather than always replacing the chosen words with [MASK], the data generator will do the following:
- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy \rightarrow my dog is [MASK]
- 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple
- 10% of the time: Keep the word unchanged, e.g., my dog is hairy

 my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

Training

- Next Sentence Prediction
 - 50% 비율로 참인 문장과 랜덤하게 추출되어 거짓인 문장의 비율로 구성
 - 98%의 정확성

2. BERT 25/43

Pre-training Procedure

- BooksCorpus
- English Wikipedia (60 GB)
 - sampled such that the combined length is ≤ 512 tokens
 - Batch size: 256
 - L2 decay: 0.01
 - Learning rate: 0.0001 and decay after 10,000 steps
 - Batch norm params: scale=0.9, shift=0.999
- Object function
 - Mean masked LM likelihood + Mean next sentence prediction
- GPU 몇 백개 사용

2. BERT 26/43

Fine-tunning Procedure

• First token([CLS])의 대한 final hidden state(output of the Transformer)

2. BERT 27/43

Fine-tunning Procedure

- First token([CLS])의 대한 final hidden state(output of the Transformer)
 - Pre-training에서 설정했던 파라미터와 같게 설정

성능비교

- Baseline GPT
 - 이 방법론도 [CLS], [SEP] 사용, sentence A/B
- GLUE datasets (2018)
 - MNLI: entailment classification task(text and hypothesis에 대해서 참, 중립, 거짓)
 - QQP: 두 질문 문장이 의미론 적으로 동등한지 이진 분류
 - QNLI: Q & A에 대한 두 문장들이 참/거짓을 분류하는 이진 분류
 - SST-2: binary sentiment classification
 - CoLA: 영어 문장이 문법적인 오류 있는지/없는지 분류
 - STS-B: 뉴스기사 제목에 대한 두 문장이 얼마나 유사한지 I~5점 척도로 매긴 데이터
 - MRPC: 두 문장이 의미론적으로 동등한지 이진 분류
 - RTE: entailment classification task

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

성능비교

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

성능비교

SQuAD

- Input(Question, paragraph), output(Answer)
- Question, paragraph를 하나의 pair of sentence로 간주
- Start vector(S)
- End vector(E)

$$P_i = \frac{e^{S \cdot T_i}}{\sum_j e^{S \cdot T_j}}$$

• Input Question:

Where do water droplets collide with ice crystals to form precipitation?

• Input Paragraph:

... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. ...

• Output Answer:

within a cloud

(c) Question Answering Tasks: SQuAD v1.1

T

성능비교

CoNLL 2003 NER

- Person, Organization, Location, Miscellaneous, others
- WordPiece tokenizer

Jim	Hen	##son	was	a	puppet	##eer
I-PER	I-PER	X	0	0	0	X

System	Dev F1	Test F1
ELMo+BiLSTM+CRF	95.7	92.2
CVT+Multi (Clark et al., 2018)	-	92.6
BERT _{BASE}	96.4	92.4
BERT _{LARGE}	96.6	92.8

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER