Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

Thank you to F. Giroire for his slides









## Outline

- Motivations
- 2 Linear Programmes
- First examples
- Solving Methods: Graphical method, simplex...











#### Why linear programming is a very important tool?

- A lot of problems can be formulated as linear programmes, and
- There exist efficient methods to solve them
- or at least give good approximations.
- Solve difficult problems: e.g. original example given by Dantzig (1947). Best assignment of 70 people to 70 tasks.
- $\rightarrow$  Magic algorithmic box.









#### Outline

- Motivations
- 2 Linear Programmes
- First examples
- Solving Methods: Graphical method, simplex...











# What is a linear programme?

- Optimization problem consisting in
  - maximizing (or minimizing) a linear objective function
  - of n decision variables
  - subject to a set of constraints expressed by linear equations or inequalities.
- Originally, military context: "programme"="resource planning". Now "programme"="problem"
- Terminology due to George B. Dantzig, inventor of the Simplex Algorithm (1947)









# **Terminology**

 $X_1, X_2$ 

Decision variables (generally:  $\in \mathbb{R}$ )

max subject to

$$350x_1 + 300x_2$$

$$x_1 + x_2 \le 200$$

$$9x_1 + 6x_2 \le 1566$$

$$12x_1 + 16x_2 \le 2880$$

 $x_1, x_2 > 0$ 

Objective function (linear!!)

Constraints (linear!!)









# Terminology

Decision variables  $X_1, X_2$ 

 $350x_1 + 300x_2$ Objective function max

subject to

 $x_1 + x_2 < 200$ Constraints  $9x_1 + 6x_2 < 1566$  $12x_1 + 16x_2 \le 2880$  $x_1, x_2 > 0$ 

In linear programme: objective function + constraints are all linear

Typically (not always): variables are non-negative

If variables are integer: system called Integer Programme (IP)







Caria-

#### **Terminology**

Linear programmes can be written under the standard form:

Maximize 
$$\sum_{j=1}^{n} c_j x_j$$
  
Subject to:  $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$  for all  $1 \leq i \leq m$   
 $x_j \geq 0$  for all  $1 \leq j \leq n$ .

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables are non-negative.







#### Outline

- Motivations
- 2 Linear Programmes
- First examples
- Solving Methods: Graphical method, simplex...











A company produces copper cable of 5 and 10 mm of diameter on a single production line with the following constraints:

- The available copper allows to produces 21 meters of cable of 5 mm diameter per week. Moreover, one meter of 10 mm diameter copper consumes 4 times more copper than a meter of 5 mm diameter copper.
- Due to demand, the weekly production of 5 mm cable is limited to 15 meters and the production of 10 mm cable should not exceed 40% of the total production.
- Cable are respectively sold 50 and 200 euros the meter.







A company produces copper cable of 5 and 10 mm of diameter on a single production line with the following constraints:

- The available copper allows to produces 21 meters of cable of 5 mm diameter per week. Moreover, one meter of 10 mm diameter copper consumes 4 times more copper than a meter of 5 mm diameter copper.
- Due to demand, the weekly production of 5 mm cable is limited to 15 meters and the production of 10 mm cable should not exceed 40% of the total production.
- Cable are respectively sold 50 and 200 euros the meter.

What should the company produce in order to maximize its weekly revenue?







#### Define two decision variables:

- x<sub>1</sub>: the number of meters of 5 mm cables produced every week
- x<sub>2</sub>: the number of meters of 10 mm cables produced every week

$$z = 50x_1 + 200x_2$$

$$x_1 + 4x_2 \le 21$$
.









#### Define two decision variables:

- x<sub>1</sub>: the number of meters of 5 mm cables produced every week
- x<sub>2</sub>: the number of meters of 10 mm cables produced every week

The revenue associated to a production  $(x_1, x_2)$  is

$$z = 50x_1 + 200x_2$$
.

$$x_1 + 4x_2 \le 21$$
.







#### Define two decision variables:

- x<sub>1</sub>: the number of meters of 5 mm cables produced every week
- x<sub>2</sub>: the number of meters of 10 mm cables produced every week

The revenue associated to a production  $(x_1, x_2)$  is

$$z = 50x_1 + 200x_2$$
.

The capacity of production cannot be exceeded

$$x_1 + 4x_2 \le 21$$
.









The demand constraints have to be satisfied

$$x_2\leq \frac{4}{10}(x_1+x_2)$$

$$x_1 \le 15$$

Negative quantities cannot be produced

Exercise: Write the above programme in standard form







**The model:** To maximize the sell revenue, determine the solutions of the following linear programme  $x_1$  and  $x_2$ :

max 
$$z = 50x_1 + 200x_2$$
  
subject to 
$$x_1 + 4x_2 \le 21$$

$$-4x_1 + 6x_2 \le 0$$

$$x_1 \le 15$$

$$x_1, x_2 \ge 0$$







# Example 2: Maximum flow (Reminder on the Problem)

Directed graph: D=(V,A), source  $s\in V$ , destination  $d\in V$ , capacity  $c:A\to \mathbb{R}^+$ .  $N^-(s)=\emptyset$  and  $N^+(d)=\emptyset$ 



flow  $f: A \to \mathbb{R}^+$  such that :

- capacity constraint:  $\forall a \in A$ ,  $f(a) \le c(a)$
- conservation constraint:  $\forall v \in V \setminus \{s,d\}, \sum_{w \in N^-(v)} f(wv) = \sum_{w \in N^+(v)} f(vw)$
- value of flow:  $v(f) = \sum_{w \in N^+(s)} f(sw)$ .









#### (on an example)



**Exercise:** Give a LP computing a maximum flow in the above graph hint: variables correspond to the expected solution











#### (on an example)



**Exercise:** Give a LP computing a maximum flow in the above graph hint: variables correspond to the expected solution

**Solution:** flow  $f: A \to \mathbb{R}^+$ Variables:  $f_x \in \mathbb{R}^+$  for each  $x \in A$ 







## (on an example)



**Exercise:** Give a LP computing a maximum flow in the above graph hint: variables correspond to the expected solution

**Solution:** flow  $f: A \to \mathbb{R}^+$ 

**Objective:** maximize the flow leaving *s* 

subject to:

Variables:  $f_x \in \mathbb{R}^+$  for each  $x \in A$ 

Max.  $f_{sa} + f_{sc}$ 









# (on an example)



**Exercise:** Give a LP computing a maximum flow in the above graph

hint: variables correspond to the expected solution

**Solution:** flow  $f: A \to \mathbb{R}^+$ 

Variables:  $f_x \in \mathbb{R}^+$  for each  $x \in A$ 

**Objective:** maximize the flow leaving s

Max.  $f_{sa} + f_{sc}$ 

subject to:

**Capacity constraints:**  $f_{sa} \le 3$ ;  $f_{sc} \le 2$ ;  $f_{ab} \le 3$ ;  $f_{ae} \le 2$ ;  $f_{cb} \le 1$ ;  $f_{ce} \le 1$ ;  $f_{bd} \le 3$ ;  $f_{ed} \le 2$ .







#### (on an example)



Exercise: Give a LP computing a maximum flow in the above graph

hint: variables correspond to the expected solution

**Solution:** flow  $f: A \to \mathbb{R}^+$ 

Variables:  $f_x \in \mathbb{R}^+$  for each  $x \in A$ 

**Objective:** maximize the flow leaving s

Max.  $f_{sa} + f_{sc}$ 

subject to:

**Capacity constraints:**  $f_{sa} \le 3$ ;  $f_{sc} \le 2$ ;  $f_{ab} \le 3$ ;  $f_{ae} \le 2$ ;  $f_{cb} \le 1$ ;  $f_{ce} \le 1$ ;  $f_{bd} \le 3$ ;  $f_{ed} \le 2$ . **Conservation constraints:**  $f_{sa} = f_{ab} + f_{ae}$ ;  $f_{sc} = f_{cb} + f_{ce}$ ;  $f_{ae} + f_{ce} = f_{ed}$  and  $f_{ab} + f_{cb} = f_{bd}$ .









#### (on an example)



**Exercise:** Give a LP computing a maximum flow in the above graph hint: variables correspond to the expected solution

**Solution:** flow  $f: A \to \mathbb{R}^+$ 

Variables:  $f_x \in \mathbb{R}^+$  for each  $x \in A$ 

**Objective:** maximize the flow leaving s

Max.  $f_{sa} + f_{sc}$ 

subject to:

Capacity constraints:  $f_{sa} \le 3$ ;  $f_{sc} \le 2$ ;  $f_{ab} \le 3$ ;  $f_{ae} \le 2$ ;  $f_{cb} \le 1$ ;  $f_{ce} \le 1$ ;  $f_{bd} \le 3$ ;  $f_{ed} \le 2$ . Conservation constraints:  $f_{sa} = f_{ab} + f_{ae}$ ;  $f_{sc} = f_{cb} + f_{ce}$ ;  $f_{ae} + f_{ce} = f_{ed}$  and  $f_{ab} + f_{cb} = f_{bd}$ . Variables domain:  $f_x > 0$  for any  $x \in A$ 









D = (V, A) be a graph with capacity  $c : A \to \mathbb{R}^+$ , and  $s, t \in V$ .

**Problem:** Compute a maximum flow from s to t.

Solution:  $f: A \to \mathbb{R}^+$ 

Objective function: maximize value of the flow

 $\Rightarrow$  variables  $f_a$ , for each  $a \in A$  $\sum f(su)$  $u \in \overline{N^+}(s)$ 

#### Constraints:

capacity constraints:

 $f(a) \le c(a)$  for each  $a \in A$ 

flow conservation:

 $\sum_{u \in N^+(v)} f(vu) = \sum_{u \in N^-(v)} f(uv), \forall v \in V \setminus \{s, t\}$ 







D = (V, A) be a graph with capacity  $c : A \to \mathbb{R}^+$ , and  $s, t \in V$ . **Problem:** Compute a maximum flow from s to t.

Maximize 
$$\sum_{u \in N^+(s)} f(su)$$
Subject to: 
$$f(a) \leq \sum_{u \in N^+(v)} f(vu) = \sum_{u \in N^-(v)} f(uv) \qquad \text{for all } a \in A$$

$$f(a) \geq 0 \qquad \text{for all } a \in A$$







#### **Outline**

- Motivations
- 2 Linear Programmes
- First examples
- 4 Solving Methods: Graphical method, simplex...











# Solving Difficult Problems

- Difficulty: Large number of solutions.
  - Choose the best solution among 2<sup>n</sup> or n! possibilities: all solutions cannot be enumerated.
  - Complexity of studied problems: often NP-complete. but Polynomial-time solvable when variables are real!!
- Solving methods:
  - Optimal solutions:
    - · Graphical method (2 variables only).
    - Simplex method. exponential-time, work well in practice polynomial-time
    - interior point method

polynomial-time

Approximations:

Ellipsoid

- Theory of duality (assert the quality of a solution).
- Approximation algorithms.









- The constraints of a linear programme define a zone of solutions.
- The best point of the zone corresponds to the optimal solution.
- For problem with 2 variables, easy to draw the zone of solutions and to find the optimal solution graphically.









#### Example:

max 
$$350x_1 + 300x_2$$
 subject to  $x_1 + x_2 \le 200$   $9x_1 + 6x_2 \le 1566$   $12x_1 + 16x_2 \le 2880$   $x_1, x_2 \ge 0$ 















































COATI









COATI













# Computation of the optimal solution

The optimal solution is at the intersection of the constraints:

$$x_1 + x_2 = 200$$

$$9x_1 + 6x_2 = 1566$$

We get:

$$x_1 = 122$$

$$x_2 = 78$$

Objective = 66100.







# Optimal Solutions: Different Cases











# Optimal Solutions: Different Cases



#### Three different possible cases:

- · a single optimal solution,
- an infinite number of optimal solutions, or
- no optimal solutions.









#### Three different possible cases:

- a single optimal solution,
- an infinite number of optimal solutions, or
- no optimal solutions.

If an optimal solution exists, there is always a corner point optimal solution!







# Solving Linear Programmes











#### Solving Linear Programmes

- The constraints of an LP give rise to a geometrical shape: a convex polyhedron.
- If we can determine all the corner points of the polyhedron, then we calculate the objective function at these points and take the best one as our optimal solution.
- The Simplex Method intelligently moves from corner to corner until it can prove that it has found the optimal solution.









#### Solving Linear Programmes

- Geometric method impossible in higher dimensions
- Algebraical methods:
  - Simplex method (George B. Dantzig 1949): skim through the feasible solution polytope.
    - Similar to a "Gaussian elimination".
    - Very good in practice, but can take an exponential time.
  - Polynomial methods exist:
    - Leonid Khachiyan 1979: ellipsoid method. But more theoretical than practical.
    - Narendra Karmarkar 1984: a new interior method. Can be used in practice.









- Feasible region: a set of discrete points.
- Corner point solution not assured.
- No "efficient" way to solve an IP.
- Solving it as an LP provides a relaxation and a bound on the solution.









# Summary: To be remembered

- What is a linear programme.
- The graphical method of resolution.
- Linear programs can be solved efficiently (polynomial).
- Integer programs are a lot harder (in general no known polynomial algorithms). In this case, we look for approximate solutions.







