DOCUMENTS ET CALCULATRICES NON AUTORISÉS

La précision des raisonnements et le soin apporté à la rédaction seront pris en compte DANS LA NOTATION

Exercice 1

On définit, pour tout $n \in \mathbb{N}$, $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ $t \longmapsto (-1)^n t e^{-(2n+1)t}$

On pose $S = \sum_{n=0}^{+\infty} f_n$.

- 1. Montrer que le domaine de définition de la fonction S est $[0, +\infty[$.
- 2. Montrer que, pour tout $t \in [0, +\infty[, S(t) = \frac{t}{2\operatorname{ch}(t)}]$.
- 3. Soit $n \in \mathbb{N}$. On pose $u_n = \int_0^{+\infty} |f_n|$. Calculer u_n , à l'aide d'une intégration par parties. (Ne pas oublier de justifier l'existence de u_n .)
- 4. Après avoir justifié l'existence de l'intégrale $\int_0^{+\infty} \frac{t}{2 \operatorname{ch}(t)} dt$, l'écrire comme somme d'une série numérique convergente.

Exercice 2

Question préliminaire : Soient $\sum_{n\in\mathbb{N}}u_n$ et $\sum_{n\in\mathbb{N}}v_n$ deux séries numériques à termes positifs convergentes.

On pose, pour $n \in \mathbb{N}$, $w_n = \max(u_n, v_n)$. Montrer que la série numérique $\sum_{n \in \mathbb{N}} w_n$ est convergente.

On définit, pour tout $n \in \mathbb{N}^*$, $g_n :]-1,+\infty[\longrightarrow \mathbb{R}$ $x \longmapsto \frac{x}{n} - \ln(1 + \frac{x}{n})$

On pose $G = \sum_{n=1}^{+\infty} g_n$.

- 1. Montrer que la série d'applications $\sum_{n>1} g_n$ converge simplement sur $]-1,+\infty[$.
- 2. (a) Etudier, pour $n \geq 2$, les variations de g_n .
 - (b) La série d'applications $\sum_{n\geq 1} g_n$ converge-t-elle normalement sur] $-1, +\infty$ [? Justifier la réponse.
 - (c) Soit $a \ge 0$. Montrer que série d'applications $\sum_{n\ge 1} g_n$ converge normalement sur]-1,a].
- 3. Justifier que G est continue sur $]-1,+\infty[$.
- 4. (a) Montrer que l'application $\sum_{n=0}^{+\infty} g_n$ admet une limite finie en -1 et écrire cette limite comme somme d'une série numérique convergente.
 - (b) Après avoir justifié son existence, déterminer la limite de G en -1.
- (a) Montrer que la série d'applications $\sum_{n\geq 1} g'_n$ converge absolument sur $]-1,+\infty[$.
 - (b) Montrer que la série d'applications $\sum_{n\geq 1} g'_n$ converge normalement sur tout segment de $]-1,+\infty[$.
 - (c) Justifier que G est de classe \mathcal{C}^1 sur $]-1,+\infty[$, écrire G' comme somme d'une série d'applications.