

Data Mining with Weka

Decision trees

Top-down: recursive divide-and-conquer

- Select attribute for root node
 Create branch for each possible attribute value
- Split instances into subsets
 - One for each branch extending from the node
- * Repeat recursively for each branch
 - using only instances that reach the branch
- Stop
 - if all instances have the same class

Which attribute to select?

Which is the best attribute?

- Aim: to get the smallest tree
- Heuristic
 - choose the attribute that produces the "purest" nodes
 - I.e. the greatest information gain
- Information theory: measure information in bits

entropy
$$(p_1, p_2, ..., p_n) = -p_1 \log p_1 - p_2 \log p_2 ... - p_n \log p_n$$

- Amount of information gained by knowing the value of the attribute
- (Entropy of distribution before the split) (entropy of distribution after it)

Claude Shannon, American mathematician and scientist 1916–2001

Which attribute to select?

Continue to split ...

gain(temperature) = 0.571 bits gain(windy) = 0.020 bitsgain(humidity) = 0.971 bits

Use J48 on the weather data

- Open file weather.nominal.arff
- Choose J48 decision tree learner (trees>J48)
- Look at the tree
- Use right-click menu to visualize the tree

- ❖ J48: "top-down induction of decision trees"
- Soundly based in information theory
- Produces a tree that people can understand
- Many different criteria for attribute selection
 rarely make a large difference
- Needs further modification to be useful in practice (next lesson)