

BAB 3

RANGKAIAN PENYESUAI IMPEDANSI

TTH313

Elektronika Telekomunikasi

Fungsi:

• Digunakan untuk menghasilkan impendansi yang tampak sama dari impedansi beban maupun impedansi sumber agar terjadi transfer daya maksimum. Penyesuai impedansi ini hanya dapat diaplikasikan pada rangkaian dengan sumber AC.

Konsep IMC (Impedance Matching Circuits) 1. Tranfer daya maksimal (konjugate match)

- Daya akan sampai ke Z_L dengan maksimum jika $Z_S = Z_L^*$ atau $Z_L = Z_S^*$
- Dimana : $Z_S = R_S + jX_S dan Z_L = R_L + jX_L$
- Bagaimana jika $Z_S \neq Z_I *?$
- Maka tidak akan terjadi transfer daya maksimum, sehingga diperlukan rangkaian penyesuai impedansi (Impedance Matching Circuit = IMC).

Konsep IMC (Impedance Matching Circuits)

2. Koefisien pantul $\Gamma=0$, $Z_L=Z_S$

- Sinyal akan sampai ke Z_L tanpa cacat akibat pantulan, jika $Z_S = Z_L$
- IMC disini berfungsi membuat supaya $\Gamma=0$.
- Dalam pembahasan pada bab ini, yang lebih banyak kita diskusikan IMC yang bertujuan agar terjadi transfer daya maksimal (konjugate match)

Berdasarkan bentuk rangkaian dan jumlah elemennya, penyesuai impendansi ini dibagi menjadi 3:

- Penyesuai impendansi bentuk L
 (2 elemen)
- 2. Penyesuai Impendansi bentuk T atau Π (3 elemen)
- 3. Penyesuai Impendansi multi-elemen (wideband, Low-Q)

Diselesaikan dengan:

- Perhitungan matematis
- Dengan bantuan Smith Chart

1. Penyesuai impendansi bentuk L

- Penyesuai impendansi ini merupakan bentuk penyesuai yang paling sederhana
- Merupakan dasar dari penyesuai impendansi bentuk Π dan bentuk Π

a. Impendansi hanya komponen resistif

 \triangleright Bila R_s < R_I, maka IMC L kanan

Ada 2 kemungkman komigurasi.

i. Bersifat Low-pass

ii. Bersifat high-pass

> Rs > Rl, maka IMC L kiri

Ada 2 kemungkinan konfigurasi:

i. Bersifat Low-pass

ii. Bersifat high-pass

> Rumus yang dipakai:

$$Q_{S} = Q_{P} = \sqrt{\frac{R_{P}}{R_{S}}} - 1$$

$$Q_{S} = \frac{X_{S}}{R_{S}}$$

$$Q_{P} = \frac{R_{P}}{X_{P}}$$

• Keterangan :

- Qs = Faktor kualitas seri
- Xs = Reaktansi Seri = Xc
- Xp = Reaktansi Pararel
- Qp = Faktor kualitas paralel
- Rp = Resistansi paralel (Resistansi yang lebih besar R_{sumber} atau R_L)
- Rs = Resistansi seri = Rc (Resistansi yang lebih kecil R_{sumber} atau R_L)

• Contoh soal:

Rancang suatu IMC bentuk "L" yang menyepadankan Rs = 100Ω dan RL = $1K\Omega$ pada f = 100MHz, dengan sifat meloloskan sinyal DC.

Penyelesaian: meloloskan sinyal DC berarti bersifat LPF, $R_S < R_L$, maka rangkaian pengganti yang dipilih Gbr yang sesuai, yaitu:

Penyelesaian: (lanjutan)

$$Q_S = Q_P = \sqrt{\frac{R_P}{R_S} - 1} = \sqrt{\frac{1000}{100} - 1} = \sqrt{9} = 3$$

$$Q_S = \frac{X_S}{R_S}$$
 sehingga $X_S = Q_S \times R_S = 3 \times 100 = 300\Omega$

$$X_S = X_L = 2 \, \pi \, f \, L$$
 sehingga $L = \frac{X_L}{2\pi \, f} = \frac{300}{2 \, \pi \, 10^8} = 4.77 \, x \, 10^{-7} \, H = 477 \, nH$

$$Q_{P} = \frac{R_{P}}{X_{P}}$$
 sehingga $X_{P} = \frac{R_{P}}{Q_{P}} = \frac{1000}{3} = 333,3 \Omega$

$$X_{P} = X_{C} = \frac{1}{2\pi f C}$$
 sehingga
$$C = \frac{1}{2\pi f X_{C}} = \frac{1}{2\pi 10^{8}.333,3} = 4.8 \, pF$$

$$AC$$

$$4.8 \, pF$$

$$TTH313 - Elektronika Telekomunikasi$$

- b. Bila impendansi sumber atau beban bilangan kompleks:
 - > Terdapat 2 prinsip dasar yaitu absorpsi dan resonansi
 - > Dasar perhitungan masih menggunakan sumber atau beban bilangan riil (resistif saja).

Absorbsi:

langkah-langkah:

- 1. Anggap impendansi beban dan impendansi sumber hanya komponen resistif.
- 2. Hitung $X_{c-total}$ (atau $X_{seri total}$) dan $X_{p-total}$
- 3. Lakukan absorbsi sehingga:

```
j(X_S + X_{C'}) = jX_{seri total} (untuk komponen induktif)

j(X_L // X_{P'}) = jX_{paralel total} (untuk komponen kapasitif)

X_{C'} dan X_{P'} adalah hasil yang kita hitung!
```


Contoh:

 Dengan menggunakan metode absorpsi, rancanglah IMC bentuk "L" pada 100MHz dengan sifat meloloskan sinyal DC pada rangkaian berikut:

• Solusi:

Langkah-langkah:

- 1. Hitung harga Xrl dan Xrs agar pada beban dan sumber terjadi resonansi (menghilangkan komponen imajiner pada beban dan sumber).
- 2. Setelah terjadi resonansi pada beban dan sumber, hitung Xp' dan Xc'. (gunakan: impendansi beban = Rl dan impendansi sumber = Rs)
- 3. Hitung Xc' seri-dengan Xrs maupun Xp' paralel-dengan Xrl.

Contoh:

 Rancanglah suatu IMC yang dapat memblock sinyal DC antara beban-sumber rangkaian dibawah ini, pada frekuensi operasi 75 MHz. Gunakan metode resonansi.

• Solusi:

2. Penyesuai Impendansi 3 Elemen:

(sumber dan beban resistif)

Bentuk T:

• Bentuk Π

- Digunakan untuk memperoleh Q yang tinggi (Bandwidth yang sempit)
- Merupakan penggabungan dari IMC L kiri dan IMC L kanan

IMC 'T'

 R_v (R_{virtual}) ditentukan harus lebih besar dari Rs maupun Rl dan dihitung berdasarkan Q yang diinginkan.

$$Q = \sqrt{\frac{R_{v}}{R_{kecil}}} - 1$$

$$R_{\text{kecil}} = Pilih yg kecil [R_s, R_l]$$

- Xc₁ dan Xp₁ menyepadankan R_s dengan R_v; Xc₂ dan Xp₂ menyepadankan R_v dengan R_l
- Xp₁ dan Xp₂ dapat digabungkan menjadi satu komponen.

• R_v ($R_{virtual}$) ditentukan harus lebih kecil dari R_s maupun R_l dan dihitung berdasarkan Q yang diinginkan.

$$Q = \sqrt{\frac{R_{besar}}{R_{v}}} - 1$$

$$R_{besar} = Pilih yg besar [R_{s}, R_{l}]$$

- Xc₁ dan Xp₁ menyepadankan R_s dengan R_v
- Xc₂ dan Xp₂ menyepadankan R_v dengan R_I
- Xc₁ dan Xc₂ dapat digabungkan menjadi satu komponen.

Contoh:

- Rancanglah 4 kemungkinan konfigurasi IMC bentuk "T" untuk menyepadankan R_s =10 Ω dan R_l =50 Ω dengan Q=10.
- Rancanglah 4 kemungkinan konfigurasi IMC bentuk " π " yang menyepadankan $R_s=100\Omega$, $R_l=1000\Omega$, dengan faktor kualitas Q=15.

3. Penyesuai impendansi multi elemen (Q rendah)

- ➤ Bila ingin memperlebar Bandwidth
 - ✓ Dilakukan dengan cara mengkaskadekan beberapa buah IMC L-section.
 - ✓ Contoh : L kanan tiga tingkat $(R_S > R_L)$

$$\frac{Rs}{Rv_1} = \frac{Rv_1}{Rv_2} = \frac{Rv_2}{RL}$$

$$Q = \sqrt{\frac{Rv}{Rkecil} - 1} = \sqrt{\frac{Rbesar}{Rv} - 1}$$

SELESAI THANK YOU