Avg Bellium error
$$\mathcal{E}^{h}(f,\pi) := \mathbb{E}_{\substack{a_{1:h-1} \sim \pi \\ a_{h} \sim f}} [f(x_{h},a_{h}) - r_{h} - \max_{a \in \mathcal{A}} f(x_{h+1},a)]$$

$$|a_{h}| = \arg\max_{f(x_{h},\cdot)} f(x_{h},x_{h})$$

2. Collect data of
$$\pi_t = \pi_f$$
 & estimate $\leq h_t(f, \pi_t)$ for all f . $\leq some h_t$. $|\hat{\xi}|_{f}(f, \pi_t) - \xi(f, \pi_t)| \leq \xi'$ for some h_t .

3.
$$f_{t+1} := \{ f \in \mathcal{F}_t : | \mathcal{E}^{h_t}(f, \pi_t) | \leq \mathcal{E}^{s} \}$$

$$\Rightarrow \forall f \in \mathcal{F}_{t+1}$$
 $\left| \mathcal{E}^{h_t}(f, \pi_t) \right| \leq 22'$

Lemma:
$$\exists f \in \mathcal{F}_{t}$$
, $|\mathcal{E}^{ht}(f, \pi_{t})| > \frac{\mathcal{E}}{H}$.

Proof $2 \in \mathcal{V}_{f_{t}} - \mathcal{I}(\pi_{t}) = f_{t}(x^{\circ}, \pi_{t}) - \mathcal{I}(\pi_{t})$

$$= \sum_{h=1}^{H} (x_{h}, \alpha_{h}) - Y_{h}$$

$$= \sum_{h=1}^{L} (x_{h}, \alpha_{h}) - Y_{h}$$

$$= \sum_{h=1}^{L} \sum_{h=1}^{L} \sum_{h=1}^{L} (x_{h}, \alpha_{h}) - Y_{h}$$

$$= \sum_{h=1}^{L} \sum_{h=1}^{L} \sum_{h=1}^{L} (x_{h}, \alpha_{h}) - Y_{h}$$

$$= \sum_{h=1}^{L} \sum_{h=1}^{L} \sum_{h=1}^{L} \sum_{h=1}^{L} \sum_{h=1}^{L} (x_{h}, \alpha_{h}) - Y_{h}$$

$$\frac{1}{2} h_{1} \frac{\xi h(f_{1}, T_{14})}{\lambda} = \frac{\xi}{H}.$$

Lemna (adapted from Todd'82). Let E S Rd be a centered ellipsoid. Let V = { v \in E: | p \in v | < u \}. A for som pered. Let Et be the MVEF of V^t Then. if JuEE, W 1 2 3 d 1. $\frac{\text{vol}(E^{\dagger})}{\text{vol}(E)} \leq 0.6.$

f survives if

 $\chi \in \mathbb{R}$. $\|\chi\|_{2} \leq \gamma$. $\chi^{\tau} \in \chi \leq \gamma^{2}$. τ_{pdrd} .

$$\left(\frac{C}{E'}\right)^{2} \gtrsim \frac{Vol(E_0)^{2}}{Vol(E_{final})} > \left(\frac{5}{3}\right)^{\frac{1}{4}iter}$$

$$\Rightarrow$$
 #iter \leq log $\left(\frac{C}{2!}\right)^{B}$

$$= \beta \log_{\frac{1}{3}} \left(\frac{C}{2^{r}} \right).$$