

EEE109: Electronic Circuits

The Bipolar Junction Transistor

Contents

- Discuss the physical structure and operation of the bipolar junction transistor.
- Understand the dc analysis and design techniques of bipolar transistor circuits.
- Examine three basic applications of bipolar transistor circuits.
- Investigate various dc biasing schemes of bipolar transistor circuits, including integrated circuit biasing.
- Consider the dc biasing of multistage or multi-transistor circuits.

Bipolar Junction Transistors (BJTs)

- The bipolar junction transistor is a semiconductor device constructed with three doped regions.
- These regions essentially form two 'back-to-back' p-n junctions in the same block of semiconductor material (silicon).
- The most common use of the BJT is in linear amplifier circuits (linear means that the output is proportional to input). It can also be used as a switch (in, for example, logic circuits).

Cross Section of Integrated Circuit npn Transistor

Impurity doping concentrations in the three regions are substantially different.

npn BJT Symbol

The direction of the arrow on the emitter is reversed

BC 547 NPN transistor 45V 100mA hFE 150

Specifications:

BIPOLAR TRANSISTOR, NPN, 45V, TO-92

Transistor Polarity: NPN

Collector Emitter Voltage V(br)ceo: 45V

Transition Frequency Typ ft: 300MHz

Power Dissipation Pd: 625mW

DC Collector Current: 100mA

DC Current Gain hFE: 150

Straight-lead housing

See more information on how to understand the specfication:

https://www.electronics-notes.com/articles/electronic_components/transistor/transistors-specifications.php

Common Configuration

- NPN Transistor Most Common Configuration
- Base, Collector, and Emitter
 - Base is a very thin region with less dopants
 - Base collector junction reversed biased
 - Base emitter junction forward biased

Current flow analogy:

- If current flows into the base, a **much larger current** can flow from the collector to the emitter
- If a signal to be amplified is applied as a current to the base, a valve between the collector and emitter opens and closes in response to signal fluctuations
- PNP Transistor essentially the same except for directionality

Modes of Operation

Modes of Operation

- Forward-Active
 - B-E junction is forward biased
 - B-C junction is reverse biased
- Saturation
 - B-E and B-C junctions are forward biased
- Cut-Off
 - B-E and B-C junctions are reverse biased
- Inverse-Active (or Reverse-Active)
 - B-E junction is reverse biased
 - B-C junction is forward biased

npn BJT in Forward-Active

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrons and Holes in npn BJT

Copyright 8 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Carrier Transport in the Base Region

Since the width of the quasi-neutral

base region ($W_B = x_2 - x_1$) is much smaller than the minority-carrier diffusion length, very few of the carriers injected (from the emitter) into the base recombine before they reach the collector-junction depletion region.

→ Minority-carrier diffusion current is ~constant in the quasi-neutral base

The minority-carrier concentration at the edges of the collector-junction depletion region are ~0.

Diffusion Example Redux

- Linear concentration profile
 - → constant diffusion current

$$J_{p,diff} = -qD_{p} \frac{Q}{Q}$$
$$= qD_{p} \frac{N}{L}$$

- Non-linear concentration profile
 - → varying diffusion current

$$J_{p,diff} = -qD_{p} \frac{dp}{dx}$$

$$= \frac{qD_{p}N}{L_{d}} \exp \frac{-x}{L_{d}}$$

Electrons and Holes in pnp BJT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Circuit Symbols and Current Conventions

Summary of npn Transistor Behavior

Summary of pnp Transistor Behavior

Graphical Representation of Transistor Characteristics

BJT in Active Mode

Operation

- Forward bias of EBJ injects electrons from emitter into base (small number of holes injected from base into emitter)
- Most electrons shoot through the base into the collector across the reverse bias junction (think about band diagram)
- Some electrons recombine with majority carrier in (P-type) base region

Band Diagrams (In equilibrium)

- No current flow
- Back-to-back PN diodes

Band Diagrams (Active Mode)

- EBJ forward biased
 - Barrier reduced and so electrons diffuse into the base
 - Electrons get swept across the base into the collector
- CBJ reverse biased
 - Electrons roll down the hill (high E-field)

Current Relationships and IV Characteristics

Collector Current

• Electrons that diffuse across the base to the CBJ junction are swept across the CBJ depletion region to the collector b/c of the higher potential applied to the collector.

$$i_C = I_s e^{v_{BE}/V_T}$$
 where the saturation current is $I_S = qA_E D_n n_{p0}/W$

and we can rewrite the saturation current as:

$$I_S = \frac{qA_E D_n n_i^2}{N_A W}$$

- Note that i_C is independent of v_{CB} (potential bias across CBJ) ideally
- Saturation current is
 - inversely proportional to W and directly proportional to A_F
 - Want short base and large emitter area for high currents
 - dependent on temperature due to n_i^2 term

Base Current

- Base current i_B composed of two components:
 - holes injected from the base region into the emitter region

$$i_{B1} = \frac{qA_E D_p n_i^2}{N_D L_P} e^{v_{BE}/V_T}$$

• holes supplied due to recombination in the base with diffusing electrons and depends on minority carrier lifetime τ_b in the base

And the Q in the base is

$$i_{B2} = \frac{Q_n}{\tau_b}$$

$$Q_n = \frac{qA_E W n_i^2}{N_A} e^{v_{BE}/V_T}$$

So, current is

$$i_{B2} = \frac{qA_EWn_i^2}{N_A\tau_b}e^{v_{BE}/V_T}$$

Total base current is

$$i_B = \left(\frac{qA_E D_p n_i^2}{N_D L_P} + \frac{qA_E W n_i^2}{N_A \tau_b}\right) e^{v_{BE}/V_T}$$

Beta

• Can relate i_B and i_C by the following equation

$$i_B = \frac{i_C}{\beta} = \frac{I_S}{\beta} e^{v_{BE}/V_T}$$

and eta is

$$\beta = \frac{1}{\frac{D_p}{D_n} \frac{N_A}{N_D} \frac{W}{L_p} + \frac{1}{2} \frac{W^2}{D_n \tau_b}}$$

- Beta is constant for a particular transistor
- On the order of 100-200 in modern devices (but can be higher)
- Called the common-emitter current gain
- For high current gain, want small W, low N_A , high N_D

Current Relationships

Common-emitter current gain: **\beta**

Common-base current gain: α

$$i_{E} = i_{C} + i_{B}$$

$$i_{C} = \beta i_{B}$$

$$i_{E} = (1 + \beta i_{B})$$

$$i_{C} = \alpha i_{E}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

Current Relationships

- Common-base current Gain α:
 - $\underline{\alpha}$ is the fraction of <u>electrons</u> that <u>diffuse</u> <u>across</u> the narrow Base region
 - $1-\alpha$ is the fraction of electrons that recombine with holes in the Base region to create base current
- The common-emitter current Gain β is expressed in terms of the β (beta) of the transistor (often called h_{fe} by manufacturers).
- β is Temperature and Voltage dependent.
- β can vary a lot among transistors (common values for signal BJT: 20 200).

$$I_{C} = \alpha I_{E}$$

$$I_{B} = (1 - \alpha)I_{E}$$

$$\beta = \frac{I_{C}}{I_{B}} = \frac{\alpha}{1 - \alpha}$$

Common-Emitter Configurations

- (a) CE circuit with npn transistor
- (b) CE circuit with pnp transistor
- (c) CE circuit with pnp transistor with a positive voltage source

Common-Base Configuration

Copyright © The McGraw-Hill Companies, Inc.

The common-base device is nearly an ideal constant current source.

Common-base current gain: α

Current-Voltage Characteristics of a Common-Base Circuit

Current-Voltage Characteristics of a Common-Emitter Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Early Voltage/Finite Output Resistance

Copyright ® The McGraw-Hill Companies, Inc.
Permission required for reproductioner dipplay:

Base-width modulation — Early Effect!

Early Effect

Early Effect

- Current in active region depends (slightly) on v_{CE}
- V_A is a parameter for the BJT (50 to 100) and called the Early voltage
- Due to a decrease in effective base width W as reverse bias increases
- Account for Early effect with additional term in collector current equation
- Nonzero slope means the output resistance is NOT infinite, but...
 - I_C is collector current at the boundary of active region

Summary: Input characteristics

42

 $\bullet V_{\rm BE} \approx 0.7 V$

Summary: Output characteristics

- •At a fixed IB, Ic is not dependent on VCE
- •Slope of output characteristics in linear region is near 0 (scale exaggerated)

Effects of Leakage Currents on I-V Characteristics

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Effect of Collector-Base Breakdown on Common Base I-V Characteristics

Effect of Collector-Base Breakdown on Common Emitter I-V Characteristics

- The basic limitation of the max. voltage in a transistor is the same as that in a *pn* junction diode.
- However, the voltage breakdown depends not only on the nature of the junction involved but also on the external circuit arrangement.
- In **Common Base** configuration, the maximum voltage between the collector and base with the emitter open, BV_{CBO} is determined by the avalanche breakdown voltage of the CBJ.
- In **Common Emitter** configuration, the maximum voltage between the collect and emitter with the base open, BV_{CEO} can be much smaller than BV_{CBO} .

In general, BV_{CEO} is related to BV_{CEO} by the following expression,

 $BV_{CEO} = BV_{CBO} \sqrt[n]{1-\alpha} \approx BV_{CBO} / \sqrt[n]{\beta}$

The typical value of *n* is between 2 to 4 in silicon.

In general, the actual breakdown voltage is between BV_{CEO} and BV_{CBO} , depending on the external resistance seen by the base, R_B .

For a planar abrupt p+n junction, the avalanche breakdown voltage is given by

$$BV = \frac{\varepsilon_s \varepsilon_0 E_{crit}^2}{2qN_D}$$

where E_{crit} is the critical electric field, and N_D is the doping concentration for the low doping region.

- As V_{CB} (or V_{CE}) increases, the depletion region will continue to spread into the base region.
- If the base become completely depleted, the depletion region from the collector and emitter touch each other, resulting in a short between the n+ and n regions.

Operation region summary

Operation Region	I _B or V _{CE} Char.	BC and BE Junctions	Mode
Cutoff	I _B = Very small	Reverse & Reverse	Open Switch
Saturation	V _{CE} = Small	Forward & Forward	Closed Switch
Active Linear	V _{CE} = Moderate	Reverse & Forward	Linear Amplifier
Break- down	V _{CE} = Large	Beyond Limits	Overload

DC Equivalent Circuit

DC Equivalent Circuit for npn Common Emitter

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

DC Equivalent Circuit for pnp Common Emitter

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Problem-Solving Technique: Bipolar DC Analysis

- 1. Assume that the transistor is biased in forward active mode
 - a. $V_{BE} = V_{BE}(on)$, $I_{B} > 0$, & $I_{C} = \beta I_{B}$
- 2. Analyze 'linear' circuit.
- 3. Evaluate the resulting state of transistor.
 - a. If $V_{CE} > V_{CE}(sat)$, assumption is correct
 - b. If $I_B < 0$, transistor likely in cutoff
 - c. If $V_{CF} < 0$, transistor likely in saturation
- 4. If initial assumption is incorrect, make new assumption and return to Step 2.

Summary of DC Problem

• Bias transistors so that they operate in the linear region B-E junction forward biased, C-E junction reversed biased

• Use $V_{BE} = 0.7$ (npn), $I_{C} \approx I_{E}$, $I_{C} = I_{B}$

• Represent base portion of circuit by the Thevenin circuit

• Write B-E, and C-E voltage loops.

• For analysis, solve for Ic, and VcE.

• For design, solve for resistor values (Ic and Vce specified).

Voltage Transfer Characteristic

Voltage Transfer Characteristic for npn Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$V_{CE}(sat) = 0.2 \text{ V}$$

$$\beta$$
 = 120

Voltage Transfer Characteristic for pnp Circuit

Digital Logic Circuit

Digital Logic

INPUT		OUTPUT
Α	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

<i>V</i> 1 (V)	V2 (V)	<i>Vo</i> (V)
0	0	5
5	0	0.2
0	5	0.2
5	5	0.2

Bipolar Inverter as Amplifier

Copyright @ The McGraw-Hill Companies, Inc.

Bipolar Transistor Biasing

Bipolar Inverter as Amplifier

Copyright @ The McGraw-Hill Companies, Inc.

Effect of Improper Biasing on Amplified Signal Waveform

Biasing a Transistor

- •We must operate the transistor in the linear region.
- •A transistor's operating point (Q-point) is defined by Ic, VCE, and IB.

Single Base Resistor Biasing

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Common Emitter with Voltage Divider Biasing and Emitter Resistor

Permission required for reproduction or display

Example:

- •Use a voltage divider, R_{B1} and R_{B2} to bias V_B to avoid two power supplies.
- •Make the current in the voltage divider about 10 times I_B to simplify the analysis. Use $V_B = 3V$ and I = 0.2mA.
 - (a) R_{B1} and R_{B2} form a voltage divider.

Assume I >> I_B I =
$$V_{CC}/(R_{B1} + R_{B2})$$

.2mA = 9 /(R_{B1} + R_{B2})

AND

$$V_B = V_{CC}[R_{B2}/(R_{B1} + R_{B2})]$$

$$3 = 9 [R_{B2}/(R_{B1} + R_{B2})]$$
, Solve for R_{B1} and R_{B2} .

$$R_{B1} = 30K\Omega$$
, and $R_{B2} = 15K\Omega$.

Example (Cont')

Find the operating point

- •Use the <u>Thevenin equivalent circuit</u> for the base
- •Makes the circuit simpler

$$\bullet V_{BB} = V_B = 3V$$

- •RBB is measured with voltage sources grounded
- •R_{BB} = R_{B1} \parallel R_{B2} = 30K Ω \parallel 15K Ω = .10K Ω

Example (Cont')

Write B-E loop and C-E loop

B-E loop

$$V_{BB} = I_B R_{BB} + V_{BE} + I_E R_E$$

 $I_E = 2.09 \text{ mA}$

C-E loop

$$V_{CC} = I_{C}R_{C} + V_{CE} + I_{E}R_{E}$$

$$V_{CE} = 4.8 V$$

This is how all DC circuits are analyzed and designed!

Integrated Circuit Biasing

ermission required for reproduction or display

Multistage Circuits

Multistage Cascade Transistor Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Multistage Cascode Transistor Circuit

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MOFET VS BIPOLAR Comparison of Characteristics

- For MOSFET, the important feature is how V_{GS} controls I_D , shown as the **transfer characteristic**, I_D against V_{GS} .
- For a BJT the transfer characteristic is almost a straight line with slope β (transfer characteristics don't vary) so it is not necessary to examine it.
- For the BJT the **input characteristic** is examined (I_B as a function of V_{BE}) whereas no current flows into a MOSFET so it has the input characteristic is $I_G = 0$.

An enhancement MOSFET is "on" – "active" - if $V_{GS} > V_T$, where V_T is the **threshold voltage**.

Comparison of Characteristics

Bipolar

- I_B controls the collector current
- Control varies greatly from transistor to transistor as β varies by a large amount
- Input voltage threshold is $V_{BF} > 0.7$ volts.
- When conducting V_{BE} is almost constant at about 0.7V

MOSFET

- V_{GS} controls the drain current (strictly V_{GS} $V_{T)}$
- ullet Control varies greatly from transistor to transistor as $V_{\mathcal{T}}$ varies by a large amount
- ullet Input voltage threshold is $V_{ au}$ varies with transistor.
- $I_G = 0$ for all situations so is constant

Contents of Chapter

- Discuss the physical structure and operation of the bipolar junction transistor.
- Understand the dc analysis and design techniques of bipolar transistor circuits.
- Examine three basic applications of bipolar transistor circuits.
- Investigate various dc biasing schemes of bipolar transistor circuits, including integrated circuit biasing.
- Consider the dc biasing of multistage or multi-transistor circuits.