

Contents

- 1 >> 반도체 공정용 RF Generator 개요
- 2 * 구성 및 설계
- 3 * 실험 결과
- 4 >>> 향후 방향과 응용

Slide - 2 Confidential

Contents

- 반도체 공정용 RF Generator 개요

New Power Plasma Confidential

반도체 공정용 RF Generator 용도

반도체 전 공정 중, 핵심 공정인 화학기상증착(Chemical Vapor Deposition) 및 건식 식각(Dry Etch) 공정에서 플라즈마를 발생시키기 위한 핵심 장비임

RFG 관련 반도체 장비시장 전망

전 공정 장비 시장 예측

자료 : SEMI, 2015

공정 변화에 따른 증착, 식각 장비 수요 전망

▶ Multi-patterning and 3D devices such as 3D NAND and FinFET need more etch and deposition equipment

SADP: Self-aligned double patterning, SAQP: Self-aligned quadrupling patterning

Slide - 6 Confidential

New Power Plasma

반도체 공정용 RFG System 구성

장비 구성

RFG : 플라즈마 발생 용 RF Power 공급 및 제어 Matcher : Chamber 와 RFG의 임피던스 매칭

Process Chamber: 플라즈마 발생, 각 제조 공정 수행

Slide - 7 Confidential New Power Plasma

Contents

- 1 * 반도체 공정용 RF Generator 개요
- 2 ** 구성 및 설계
- 3 >> 실험 결과
- 4 * * 향후 방향과 응용

Slide - 8 Confidential Confidential New Power Plasma

RFG 핵심 설계 기술

Power conversion

S.M.P.S design
Inductor ,transformer design
Analog circuit design
DSP firmware programming
PID control design
Interface system design
Switching noise reduction

RF Power AMP

RF circuit design
RF sensor design
High frequency transformer design
High frequency inductor design
High frequency inverter design
RF noise reduction

Digital control

Analog circuit design

Logic circuit design

RF Detector design

Signal generation

FPGA design

DSP firmware programming

PID control design

U.I PC software programming

Slide - 9

Confidential

반도체 공정용 RFG 개발 사양

- Low noise and distortion
- •Wide range power output control
- •High power density and high efficiency

Topology

- Half bridge inverter
- Full bridge inverter
- · Push-pull inverter
- · High frequency ,high power LC filter

Digital control

- •Fast response PID control with dual DSP
- •High accuracy output PID control with dual DSP
- •System monitoring and abnormal protection
- **D.D.S** and signal process with FPGA
- Industrial standard interface
 (Profibus , EtherCAT, Devicenet,RS-232)

Power conversion

- •High power density and compact design
- •High efficiency , High power factor
- •Fast response for dynamic load
- Compliance SAG-22, CE, UL

Topology

- Buck ,Boost converter
- · Cascade Buck-boost converter
- Resonant converter
- Active or passive PFC

Slide - 10 Confidential

RFG H/W 설계

DC/DC

Input :AC ,3Φ 187V ~ 240V Output : DC 75~ 300V ,3.5kW Topology : Cascade Buck-Boost

with synchronous rectification

Regulation : ≤ 1%

Turn on & rise time: ≤ 10ms

Efficiency : ≥ 95%

Power AMP

Output : 13.56MHz

Output range : 1W ~ 3kW

Output impedance: 50ohm

Output type:

Topology: Full bridge inverter

Efficiency : ≥ 88%

de - 12 Confidential

RFG control system 설계

제어 개념도

제어 최종 목표: Pulse /Continuous RF output power

Slide - 13

Confidential

New Power Plasma

DDS 구성

RFG에서 DDS 구성

DDS 설계 사양

Frequency : 13.56MHz \pm 0.005% Main freq. Duty : 1 \sim 50% Phase : 0deg \sim 180deg

Pulse freq :1Hz ~ 50kHz Pulse duty:1~99% & CW Timing resolution : 4ns

Slide - 15

Confidential

구조 및 배치

Main controller DSP Dual core x 2 DDS with FPGA Interface R.F block Dual Power AMP RF gate Driver RF sensor

Slide - 16

U.I PC software

Contents

Slide - 17

1 * 반도체 공정용 RF Generator 개요

Confidential

- 2 * 구성 및 설계
- 3 ** 실험 결과
- 4 >> 향후 방향과 응용

New Power Plasma

New Power Plasma

Water cooling heat sink simulation

Slide - 19

Confidential

New Power Plasma

실험 결과

DC/DC output ripple voltage

*V-ripple: 1.5V @300V(3.5kW) output

실험 결과

DC/DC output @ pulse mode

*Fast response 동작 ,pulse output 대응

Slide - 21

실험 결과

Ramp up output

Confidential

 < 50w/ms >

 ΔPower
 3000 W

 Slope
 50 W/ms

 Set
 60 ms

 Result
 63 ms

< 100w/ms >

ΔPower | 3000 W |
Slope | 100 W/ms |
Set | 30 ms |
Result | 32 ms

< 150w/ms >

ΔPower 3000 W
Slope 150 W/ms
Set 20 ms
Result 21 ms

de - 22

New Power Plasma

실험 결과

Pulse output

< 400Hz 50% duty Rising >

< 400Hz 50% duty Rising >

< 400Hz 50% duty Falling >

< 400Hz 50% duty Falling >

< 1kHz 50% duty Rising >

< 1kHz 50% duty Rising >

< 1kHz 50% duty Falling >

< 1kHz 50% duty Falling >

Slide - 23

Confidential

실험 결과

DC/DC

효율: 95% 이상 달성

Power AMP

효율: 88% 이상 달성

Slide - 24

New Power Plasma

Contents

- 1 ** 반도체 공정용 RF Generator 개요
- 2 * 구성 및 설계
- 3 *> 실험 결과
- 4 * 향후 방향과 응용

Slide - 25 Confidential New Power Plasma

RFG 적용 기술 응용 산업

RF Generator

- ■Fast response
- High accuracy
- Wide range output
- •High power density
- High reliability
- Low noise

산업용 유도 가열기 초음파 발생기

방산 장비 레이더 방송통신기기

의료기기 X-선 진단기

자기 공명 진단 기

신 재생 에너지 에너지 저장 장치

전기 자동차

e - 27 Confidential

응용분야