Assignment

- By using bisection method, find the root of the following function(s):
 - $f(x) = x^2 3x 2$ • $f(x) = x^3 + x^2 - 3x - 2$
- 2. By using **numerical integration**, find the area under following curve(s):

SK5002 ALGORITMA DAN RANCANGAN PERANGKAT LUNAK

Tugas Individu Minggu III

Mohammad Rizka Fadhli 20921004@mahasiswa.itb.ac.id

13 September 2021

TASK 1

Soal

By using bisection method, find the root of the following functions:

1.
$$f(x) = x^2 - 3x - 2$$

2. $f(x) = x^3 + x^2 - 3x - 2$

Jawab

Pada metode bisection, pemilihan selang iterasi menjadi penting. Berdasarkan teorema nilai antara:

Misalkan $f \in C[a, b]$ dan L adalah suatu nilai di antara f(a) dan f(b). Maka **ada** suatu nilai $c \in (a, b)$ yang memenuhi f(c) = L.

Oleh karena itu, kita perlu menemukan selang awal iterasi [a, b] yang memenuhi f(a).f(b) < 0. Iterasi akan dihentikan saat error memenuhi nilai yang diinginkan. Saya menggunakan kriteria pemberhentian iterasi sebagai berikut:

$$b_n - a_n < 10^{-5}, n = 1, 2, ..., I$$

Berikut adalah function metode bisection yang saya buat di R:

```
FB = f(b)
    # tulis hasil dalam data frame
    hasil[i,] = list(i,a,b,p)
    if(FA*FP < 0)\{b = p\} else\{a = p\}
    # untuk iterasi berikutnya
    akar = p
    # tambahin dulu checking apakah f(a), f(b), atau f(c) ada yang nol?
    if(FP == 0){
      akar = p
      break} else if(\overline{FA} == 0){
        akar = a
        break} else if(FB == 0){
          akar = b
          break}
# mencatat iterasi terbesar
iterasi = i-1 # dikurang satu karena pada i+1
hasil = list(
  `iterasi max` = iterasi,
  `akar persamaan` = akar,
  `hasil perhitungan` = hasil
return(hasil)
```

Persamaan I

Pertama-tama, mari kita buat grafik dari $f(x) = x^2 - 3x - 2$ sebagai berikut:

Figure 1: Grafik fungsi f(x)

Dari grafik di atas, terlihat bahwa f(x) memiliki dua akar sebagai berikut:

- 1. Satu akar f(x) berada di selang [-1, 0].
- 2. Satu akar f(x) lainnya berada di selang [3,4].

Berdasarkan informasi di atas, kita akan lakukan metode bisection di kedua selang tersebut.

Bisection pada selang [-1,0] Berikut adalah hasil proses bisection di selang tersebut:

```
## $\iterasi max\
##
  [1] 17
##
## $ akar persamaan
## [1] -0.5615463
##
## $`hasil perhitungan`
      n iter
                                  b
##
                                             С
## 1
           1 -1.0000000
                         0.000000 -0.5000000
## 2
           2 -1.0000000 -0.5000000 -0.7500000
           3 -0.7500000 -0.5000000 -0.6250000
## 3
## 4
           4 -0.6250000 -0.5000000 -0.5625000
           5 -0.5625000 -0.5000000 -0.5312500
## 5
## 6
           6 -0.5625000 -0.5312500 -0.5468750
## 7
           7 -0.5625000 -0.5468750 -0.5546875
           8 -0.5625000 -0.5546875 -0.5585938
## 8
## 9
           9 -0.5625000 -0.5585938 -0.5605469
## 10
          10 -0.5625000 -0.5605469 -0.5615234
## 11
          11 -0.5625000 -0.5615234 -0.5620117
## 12
          12 -0.5620117 -0.5615234 -0.5617676
          13 -0.5617676 -0.5615234 -0.5616455
## 13
## 14
          14 -0.5616455 -0.5615234 -0.5615845
## 15
          15 -0.5615845 -0.5615234 -0.5615540
## 16
          16 -0.5615540 -0.5615234 -0.5615387
## 17
          17 -0.5615540 -0.5615387 -0.5615463
```

Bisection pada selang [3,4] Berikut adalah hasil proses bisection di selang tersebut:

```
##
## $`akar persamaan`
## [1] 3.561546
##
## $`hasil perhitungan`
      n iter
##
                              b
## 1
           1 3.000000 4.000000 3.500000
## 2
           2 3.500000 4.000000 3.750000
           3 3.500000 3.750000 3.625000
## 3
## 4
           4 3.500000 3.625000 3.562500
           5 3.500000 3.562500 3.531250
## 5
           6 3.531250 3.562500 3.546875
## 6
## 7
           7 3.546875 3.562500 3.554688
           8 3.554688 3.562500 3.558594
## 8
           9 3.558594 3.562500 3.560547
## 9
## 10
          10 3.560547 3.562500 3.561523
## 11
          11 3.561523 3.562500 3.562012
## 12
          12 3.561523 3.562012 3.561768
          13 3.561523 3.561768 3.561646
## 13
## 14
          14 3.561523 3.561646 3.561584
          15 3.561523 3.561584 3.561554
## 15
          16 3.561523 3.561554 3.561539
## 16
          17 3.561539 3.561554 3.561546
## 17
```

Kesimpulan f(x) memiliki akar pada x = -0.5615463 dan x = 3.561546

Persamaan II

Pertama-tama, mari kita buat grafik dari $f(x) = x^3 + x^2 - 3x - 2$ sebagai berikut:

Figure 2: Grafik fungsi f(x)

Dari grafik di atas, terlihat ada tiga akar persamaan di selang:

- 1. [-3, -1]
- [-1,0]
- 3. [1, 2]

Berdasarkan informasi di atas, kita akan lakukan metode bisection di ketiga selang tersebut.

Bisection pada selang [-3, -1] Berikut adalah hasil proses bisection di selang tersebut:

```
## $`iterasi max`
## [1] 1
##
## $`akar persamaan`
## [1] -2
##
## $`hasil perhitungan`
## n_iter a b c
## 1 1 -3 -1 -2
```

Bisection pada selang [-1,0] Berikut adalah hasil proses bisection di selang tersebut:

```
## $\iterasi max\
##
  [1] 17
##
## $ akar persamaan
## [1] -0.6180344
##
## $`hasil perhitungan`
      n iter
                                  b
##
                                             С
## 1
           1 -1.0000000
                         0.000000 -0.5000000
## 2
           2 -1.0000000 -0.5000000 -0.7500000
           3 -0.7500000 -0.5000000 -0.6250000
## 3
## 4
           4 -0.6250000 -0.5000000 -0.5625000
           5 -0.6250000 -0.5625000 -0.5937500
## 5
## 6
           6 -0.6250000 -0.5937500 -0.6093750
## 7
           7 -0.6250000 -0.6093750 -0.6171875
## 8
           8 -0.6250000 -0.6171875 -0.6210938
## 9
           9 -0.6210938 -0.6171875 -0.6191406
## 10
          10 -0.6191406 -0.6171875 -0.6181641
## 11
          11 -0.6181641 -0.6171875 -0.6176758
## 12
          12 -0.6181641 -0.6176758 -0.6179199
          13 -0.6181641 -0.6179199 -0.6180420
## 13
## 14
          14 -0.6180420 -0.6179199 -0.6179810
## 15
          15 -0.6180420 -0.6179810 -0.6180115
## 16
          16 -0.6180420 -0.6180115 -0.6180267
## 17
          17 -0.6180420 -0.6180267 -0.6180344
```

Bisection pada selang [1,2] Berikut adalah hasil proses bisection di selang tersebut:

```
bagi_dua(a = 1,
         b = 2,
         f,
         iter_max = 50,
         tol_max = 10^{-5})
## $\iterasi max\
## [1] 17
##
## $`akar persamaan`
## [1] 1.618034
##
## $`hasil perhitungan`
      n iter
##
                              b
## 1
           1 1.000000 2.000000 1.500000
## 2
           2 1.500000 2.000000 1.750000
## 3
           3 1.500000 1.750000 1.625000
## 4
           4 1.500000 1.625000 1.562500
           5 1.562500 1.625000 1.593750
## 5
           6 1.593750 1.625000 1.609375
## 6
           7 1.609375 1.625000 1.617188
## 7
           8 1.617188 1.625000 1.621094
## 8
           9 1.617188 1.621094 1.619141
## 9
          10 1.617188 1.619141 1.618164
## 10
## 11
          11 1.617188 1.618164 1.617676
## 12
          12 1.617676 1.618164 1.617920
          13 1.617920 1.618164 1.618042
## 13
## 14
          14 1.617920 1.618042 1.617981
```

Kesimpulan f(x) memiliki akar pada x = -2, x = -0.6180344, dan x = 1.618034.

15 1.617981 1.618042 1.618011

16 1.618011 1.618042 1.618027

17 1.618027 1.618042 1.618034

15

16

17

TASK 2

Soal

By using numerical integration, find the area under the following curve:

Figure 3: Soal 2

Jawab

Lingkaran I

Kita akan hitung terlebih dahulu untuk luas lingkaran pertama.

Perhatikan bahwa kita bisa membentuk kurva tersebut dengan fungsi $f(x) = \sqrt{6^2 - x^2}$, untuk x $\in [0, 6]$.

Grafik Fungsi Lingkaran Berjari-jari 6

Cari luas dibawah kurva!

Figure 4: Soal 2

Untuk menghitung luas f(x) di [0,6] secara exact, setidaknya kita bisa melakukan dua hal, yakni:

- 1. Menghitung $\int_0^6 f(x)dx$.
- 2. Menghitung dari rumus luas lingkaran: $\frac{1}{4}\pi r^2 = \frac{1}{4}\pi .6^2 = 28.2743339$.

Untuk menghampirinya secara numerik, kita akan hitung penjumlahan luas dari *square* atau *trapezoid* yang dibangun di bawah kurva.

Berikut adalah function yang dibuat di ${\bf R}$ untuk kedua metode tersebut:

Sekarang kita akan hitung luas f(x) untuk berbagai macam nilai n kemudian akan kita bandingkan hasilnya dengan hitungan exact sebelumnya.

Saya definisikan:

 $\Delta = \operatorname{exact} - \operatorname{hampiran}$

Table 1:	Hasil	Perhitungan	Hampiran	vs	Exact	Lingkaran
I						

n	luas_persegi	luas_trapezoid	delta_persegi_exact	delta_trapezoid_exact
5	30.93344	27.33344	-2.6591056	0.9408944
10	29.74066	27.94066	-1.4663311	0.3336689
25	28.90977	28.18977	-0.6354329	0.0845671
50	28.60442	28.24442	-0.3300827	0.0299173
100	28.44375	28.26375	-0.1694194	0.0105806
200	28.36059	28.27059	-0.0862586	0.0037414
500	28.30939	28.27339	-0.0350534	0.0009466
1000	28.29200	28.27400	-0.0176653	0.0003347
3000	28.28027	28.27427	-0.0059356	0.0000644
5000	28.27790	28.27430	-0.0035701	0.0000299
10000	28.27612	28.27432	-0.0017894	0.0000106
20000	28.27523	28.27433	-0.0008963	0.0000037
50000	28.27469	28.27433	-0.0003591	0.0000009

Lingkaran II

Secara exactluas lingkarannya adalah $\frac{3}{4}\pi 6^2 = 84.8230016.$

Pada lingkaran berikutnya, kita akan membuat fungsi sebagai berikut:

$$g(y) = \begin{cases} -\sqrt{6^2 - y^2}, \text{ untuk y } \in [-6, 0]\\ \sqrt{6^2 - y^2}, \text{ untuk x } \in [-6, 6] \end{cases}$$

Oleh karena luas merupakan nilai positif, maka untuk menghitungnya kita akan buat fungsinya menjadi |g(y)|. Akibatnya:

$$g(y) = \begin{cases} \sqrt{6^2 - y^2}, \text{ untuk y } \in [-6, 0] \\ \sqrt{6^2 - y^2}, \text{ untuk x } \in [-6, 6] \end{cases}$$

Saya juga akan hitung Δ hampiran terhadap exact dengan definisi yang sama.

Table 2: Hasil Perhitungan Hampiran v
s Exact Lingkaran Π

n	luas_persegi	luas_trapezoid	delta_persegi_exact	delta_trapezoid_exact
5	92.80032	82.00032	-7.9773167	2.8226833
10	89.22199	83.82199	-4.3989932	1.0010068
25	86.72930	84.56930	-1.9062987	0.2537013
50	85.81325	84.73325	-0.9902482	0.0897518
100	85.33126	84.79126	-0.5082582	0.0317418
200	85.08178	84.81178	-0.2587759	0.0112241
500	84.92816	84.82016	-0.1051602	0.0028398
1000	84.87600	84.82200	-0.0529960	0.0010040
3000	84.84081	84.82281	-0.0178068	0.0001932
5000	84.83371	84.82291	-0.0107102	0.0000898
10000	84.82837	84.82297	-0.0053682	0.0000318
20000	84.82569	84.82299	-0.0026888	0.0000112
50000	84.82408	84.82300	-0.0010772	0.0000028

TASK 3

Soal

Based on the following differential equation:

$$\frac{d}{dt}y(t) = t\sqrt{y(t)}; y(0) = 1$$

Define y(t) for t = 0,1,2,...,10 by using 4th order Runge-Kutta! Use h=0.1.

Compare the result with the following exact solution:

$$y(t) = \frac{1}{16}(t^2 + 4)^2$$

Jawab

Untuk menjawabnya, pertama-tama kita akan buat function Runge-Kutta di $\mathbf R$ sebagai berikut:

Sekarang kita akan hitung bagaimana hasilnya:

Lalu akan saya bandingkan hasilnya dari perhitungan exact dan menghitung $\Delta = numerik - exact$ berikut:

```
y = function(t){(1/16)*(t^2 + 4)^2}
exact =
  data.frame(t = seq(0,10,by = h)) %>%
  mutate(y = y(t))
```

Table 3: Hasil Perhitungan Exact vs Numerik (RK4)

t	y_numerik	y_exact	delta
0.0	1.000000	1.000000	0.00e+00
0.1	1.005006	1.005006	0.00e+00
0.2	1.020100	1.020100	0.00e+00
0.3	1.045506	1.045506	0.00e+00
0.4	1.081600	1.081600	0.00e+00
0.5	1.128906	1.128906	0.00e+00
0.6	1.188100	1.188100	0.00e+00
0.7	1.260006	1.260006	-1.00e-07
0.8	1.345600	1.345600	-1.00e-07
0.9	1.446006	1.446006	-1.00e-07
1.0	1.562500	1.562500	-1.00e-07
1.1	1.696506	1.696506	-2.00e-07
1.2	1.849600	1.849600	-2.00e-07
1.3	2.023506	2.023506	-3.00e-07
1.4	2.220100	2.220100	-3.00e-07
1.5	2.441406	2.441406	-4.00e-07
1.6	2.689599	2.689600	-5.00e-07

t	y_numerik	y_exact	delta
1.7	2.967006	2.967006	-6.00e-07
1.8	3.276099	3.276100	-7.00e-07
1.9	3.619505	3.619506	-8.00e-07
2.0	3.999999	4.000000	-9.00e-07
2.1	4.420505	4.420506	-1.10e-06
2.2	4.884099	4.884100	-1.20e-06
2.3	5.394005	5.394006	-1.40e-06
2.4	5.953598	5.953600	-1.60e-06
2.5	6.566404	6.566406	-1.70e-06
2.6	7.236098	7.236100	-2.00e-06
2.7	7.966504	7.966506	-2.20e-06
2.8	8.761598	8.761600	-2.40e-06
2.9	9.625504	9.625506	-2.60e-06
3.0	10.562497	10.562500	-2.90e-06
3.1	11.577003	11.577006	-3.20e-06
3.2	12.673597	12.673600	-3.50e-06
3.3	13.857003	13.857006	-3.80e-06
3.4	15.132096	15.132100	-4.10e-06
3.5	16.503902	16.503906	-4.40e-06
3.6	17.977595	17.977600	-4.70e-06
3.7	19.558501	19.558506	-5.10e-06
3.8	21.252094	21.252100	-5.50e-06
3.9	23.064000	23.064006	-5.80e-06
4.0	24.999994	25.000000	-6.20e-06
4.1	27.066000	27.066006	-6.60e-06
4.2	29.268093	29.268100	-7.10e-06
4.3	31.612499	31.612506	-7.50e-06
4.4	34.105592	34.105600	-7.90e-06
4.5	36.753898	36.753906	-8.40e-06
4.6	39.564091	39.564100	-8.80e-06
4.7	42.542997	42.543006	-9.30e-06
4.8	45.697590	45.697600	-9.80e-06
4.9	49.034996	49.035006	-1.03e-05
5.0	52.562489	52.562500	-1.08e-05
5.1	56.287495	56.287506	-1.13e-05
5.2	60.217588	60.217600	-1.19e-05
5.3	64.360494	64.360506	-1.24e-05
5.4	68.724087	68.724100	-1.30e-05
5.5	73.316393	73.316406	-1.36e-05
5.6	78.145586	78.145600	-1.41e-05
5.7	83.219992	83.220006	-1.47e-05
5.8	88.548085	88.548100	-1.53e-05
5.9	94.138490	94.138506	-1.60e-05

t	y_numerik	y_exact	delta
6.0	99.999983	100.000000	-1.66e-05
6.1	106.141489	106.141506	-1.72e-05
6.2	112.572082	112.572100	-1.79e-05
6.3	119.300988	119.301006	-1.86e-05
6.4	126.337581	126.337600	-1.92e-05
6.5	133.691386	133.691406	-1.99e-05
6.6	141.372079	141.372100	-2.06e-05
6.7	149.389485	149.389506	-2.13e-05
6.8	157.753578	157.753600	-2.20e-05
6.9	166.474483	166.474506	-2.28e-05
7.0	175.562477	175.562500	-2.35e-05
7.1	185.027982	185.028006	-2.43e-05
7.2	194.881575	194.881600	-2.50e-05
7.3	205.133980	205.134006	-2.58e-05
7.4	215.796073	215.796100	-2.66e-05
7.5	226.878879	226.878906	-2.74e-05
7.6	238.393572	238.393600	-2.82e-05
7.7	250.351477	250.351506	-2.90e-05
7.8	262.764070	262.764100	-2.99e-05
7.9	275.642975	275.643006	-3.07e-05
8.0	288.999968	289.000000	-3.16e-05
8.1	302.846974	302.847006	-3.24e-05
8.2	317.196067	317.196100	-3.33e-05
8.3	332.059472	332.059506	-3.42e-05
8.4	347.449565	347.449600	-3.51e-05
8.5	363.378870	363.378906	-3.60e-05
8.6	379.860063	379.860100	-3.69e-05
8.7	396.905968	396.906006	-3.79e-05
8.8	414.529561	414.529600	-3.88e-05
8.9	432.743966	432.744006	-3.98e-05
9.0	451.562459	451.562500	-4.07e-05
9.1	470.998465	470.998506	-4.17e-05
9.2	491.065557	491.065600	-4.27e-05
9.3	511.777463	511.777506	-4.37e-05
9.4	533.148055	533.148100	-4.47e-05
9.5	555.191360	555.191406	-4.57e-05
9.6	577.921553	577.921600	-4.67e-05
9.7	601.352958	601.353006	-4.78e-05
9.8	625.500051	625.500100	-4.88e-05
9.9	650.377456	650.377506	-4.99e-05
10.0	675.999949	676.000000	-5.10e-05

Terlihat bahwa Δ yang didapatkan sudah sangat kecil, yang berarti perhitungan secara exact

dan numerik sudah \mathbf{sangat} \mathbf{dekat} (\mathbf{akurat}).