Computación Numérica

Tema 2. Álgebra lineal numérica (I): vectores, matrices y normas

Irene Parada

irene.parada@upc.edu

Departamento de Matemáticas Universitat Politècnica de Catalunya · BarcelonaTech

26 de febrero de 2024

Repaso

Breve recordatorio del Tema 1.2

- Coma fija vs. coma flotante.
- Norma IEEE-754: historia, definición, S, E, M.
- Norma IEEE-754: desviación del exponente.
- ► IEEE-754 precisión simple (32 bits): definición, conversión.
- ► IEEE-754 precisión doble (64 bits): definición, eps, realmax y realmin.
- ightharpoonup El conjunto F(eta,t,L,U): definición, rango, mantisa y épsilon de la máquina.
- Aritmética en coma flotante. Teorema de las operaciones elementales en coma floatante.
- Problemas sensibles a las condiciones iniciales. Polinomio de Wilkinson.
- Problemas mal condicionados. Números de condición.
- Inestabilidad numérica.
- Pérdida de cifras significativas por cancelación.
- Reducir o evitar la propagación de errores. Regla de Horner.

Comentarios de las sesiones prácticas 1 y 2

- Para las cifras decimales correctas y significativas correctas has que usar floor() o fix().
- $1e-6 = 10^-6$
- Signo del error absoluto y relativo: si se pone, ponerlo bien.
- format
- Peligros y usos del == y \sim =; no confundirse con el redondeo en el formato.
- Evitar sobreescribir valores predefinidos (eps, realmax,...)
- Salida del bucle while.
- Explicaciones.

Comentarios de las sesiones prácticas 1 y 2

- Para las cifras decimales correctas y significativas correctas has que usar floor() o fix().
- $1e-6 = 10^-6$
- Signo del error absoluto y relativo: si se pone, ponerlo bien.
- format
- Peligros y usos del == y \sim =; no confundirse con el redondeo en el formato.
- Evitar sobreescribir valores predefinidos (eps, realmax,...)
- Salida del bucle while.
- Explicaciones.

Practicar

lacksquare Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.

- lacksquare Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot \text{eps}=2^{k-52}.$

- lacksquare Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot \text{eps}=2^{k-52}.$

- lacktriangle Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot \text{eps}=2^{k-52}.$

- lacksquare Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot \text{eps}=2^{k-52}.$

- lacksquare Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot \text{eps}=2^{k-52}.$

Parte del Ejercicio 1. Comprobar y argumentar que MATLAB no distingue entre 2^{53} y $2^{53}+1$.

¿Qué pasa con $2^{53} + 1$ y con $2^{53} + 1 + \text{eps}$?

- lacksquare Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot \text{eps}=2^{k-52}.$

Parte del Ejercicio 1. Comprobar y argumentar que MATLAB no distingue entre 2^{53} y $2^{53}+1$.

¿Qué pasa con $2^{53} + 1$ y con $2^{53} + 1 + \text{eps}$?

52 ceros de la mantisa

- lacksquare Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot {\rm eps}=2^{k-52}.$

Parte del Ejercicio 1. Comprobar y argumentar que MATLAB no distingue entre 2^{53} y $2^{53}+1$.

¿Qué pasa con $2^{53} + 1$ y con $2^{53} + 1 + \text{eps}$?

- lacksquare Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados

$$2^k/2^{52} = 2^k \cdot \mathsf{eps} = 2^{k-52}$$
.

Parte del Ejercicio 1. Comprobar y argumentar que MATLAB no distingue entre 2^{53} y $2^{53}+1$.

¿Qué pasa con $2^{53}+1$ y con $2^{53}+1+{\rm eps}$?

- lacktriangle Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot {\rm eps}=2^{k-52}.$

Parte del Ejercicio 1. Comprobar y argumentar que MATLAB no distingue entre 2^{53} y $2^{53}+1$.

¿Qué pasa con $2^{53}+1$ y con $2^{53}+1+{\rm eps}$?

- lacktriangle Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot {\rm eps}=2^{k-52}.$

Parte del Ejercicio 1. Comprobar y argumentar que MATLAB no distingue entre 2^{53} y $2^{53}+1$.

¿Qué pasa con $2^{53} + 1$ y con $2^{53} + 1 + \text{eps}$?

- lacktriangle Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot {\rm eps}=2^{k-52}.$

Parte del Ejercicio 1. Comprobar y argumentar que MATLAB no distingue entre 2^{53} y $2^{53}+1$.

¿Qué pasa con $2^{53}+1$ y con $2^{53}+1+{\rm eps}$?

IEEE 754: en caso de empate, redondeo a par.

- lacktriangle Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados

$$2^k/2^{52} = 2^k \cdot \mathsf{eps} = 2^{k-52}$$
.

Parte del Ejercicio 1. Comprobar y argumentar que MATLAB no distingue entre 2^{53} y $2^{53}+1$.

¿Qué pasa con $2^{53}+1$ y con $2^{53}+1+{\rm eps}$?

- lacksquare Entre potencias consecutivas de 2 hay $2^{52}-1$ números máquina equidistantes.
- Entre 2^k y 2^{k+1} los números máquina están separados $2^k/2^{52}=2^k\cdot {\rm eps}=2^{k-52}.$

Parte del Ejercicio 1. Comprobar y argumentar que MATLAB no distingue entre 2^{53} y $2^{53}+1$.

Álgebra Lineal Numérica

El objetivo principal del tema es el estudio de métodos computacionales básicos para el álgebra lineal.

- Vectores, matrices y normas.
- Resolución de sistemas lineales no homogéneos.
 - Métodos directos: eliminación gaussiana, método de Gauss-Jordan, descomposición LU, factorización QR.
 - Métodos iterativos: Jacobi, Gauss-Seidel y sobrerelajación.
 - Mínimos cuadrados.
- Cálculo de vectores y valores propios.
 - Métodos de la potencia.
 - Método QR.
 - Valores singulares.

Ejemplo.

$$\begin{pmatrix} \text{eps} & 2 & | & 4 \\ 1 & -1 & | & 1 \end{pmatrix} \qquad \begin{array}{ccc} 2^{-52}x_1 + 2x_2 & = & 4 \\ x_1 - x_2 & = & 1 \end{array}$$

Ejemplo.

$$\left(\begin{array}{cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array}\right)$$

Solución esperable:

$$x_2 \approx 2$$
 $x_1 \approx 3$
 $[3, 2]$

Ejemplo.

Solución esperable:
$$x_2 \approx 2$$

$$\left(\begin{array}{cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array}\right)$$

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

Ejemplo.

Solución esperable:

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$\begin{pmatrix} \text{eps} & 2 & | & 4 \\ 1 & -1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \text{eps} & 2 & | & 4 \\ 0 & -1 - \frac{2}{\text{eps}} & | & 1 - \frac{4}{\text{eps}} \end{pmatrix}$$

Ejemplo.

Solución esperable:

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$\left(\begin{array}{cc|c} \operatorname{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array} \right) - \left(\begin{array}{cc|c} \operatorname{eps} & 2 & 4 \\ 0 & -1 - \frac{2}{\operatorname{eps}} & 1 - \frac{4}{\operatorname{eps}} \end{array} \right) - \left(1 + \frac{2}{\operatorname{eps}} \right) x_2 = 1 - \frac{4}{\operatorname{eps}}$$

Ejemplo.

Recordemos. \triangleright eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

$$\rightarrow$$
 4 - eps = 4

$$\begin{pmatrix} \text{eps} & 2 & | & 4 \\ 1 & -1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \text{eps} & 2 & | & 4 \\ 0 & -1 - \frac{2}{\text{eps}} & | & 1 - \frac{4}{\text{eps}} \end{pmatrix} \longrightarrow -(1 + \frac{2}{\text{eps}})x_2 = 1 - \frac{4}{\text{eps}}$$

$$\rightarrow (\text{eps} + 2)x_2 = -\text{eps} + 4$$

Ejemplo.

Solución esperable: [3, 2]

$$ightharpoonup$$
 eps = 2^{-52}

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$-4 - eps = 4$$

$$\begin{pmatrix} \text{eps} & 2 & | & 4 \\ 1 & -1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \text{eps} & 2 & | & 4 \\ 0 & -1 - \frac{2}{\text{eps}} & | & 1 - \frac{4}{\text{eps}} \end{pmatrix} \rightarrow -(1 + \frac{2}{\text{eps}})x_2 = 1 - \frac{4}{\text{eps}}$$

$$\rightarrow (\text{eps} + 2)x_2 = -\text{eps} + 4$$

Ejemplo.

$$\left(\begin{array}{cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array}\right)$$

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$\begin{pmatrix} \text{eps} & 2 & | & 4 \\ 1 & -1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \text{eps} & 2 & | & 4 \\ 0 & -1 - \frac{2}{\text{eps}} & | & 1 - \frac{4}{\text{eps}} \end{pmatrix} \rightarrow -(1 + \frac{2}{\text{eps}})x_2 = 1 - \frac{4}{\text{eps}}$$

$$\rightarrow (\text{eps} + 2)x_2 = -\text{eps} + 4$$

$$\rightarrow 2x_2 = 4$$

Ejemplo.

Recordemos. \triangleright eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$\begin{pmatrix} \text{eps} & 2 & | & 4 \\ 1 & -1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \text{eps} & 2 & | & 4 \\ 0 & -1 - \frac{2}{\text{eps}} & | & 1 - \frac{4}{\text{eps}} \end{pmatrix} \longrightarrow -(1 + \frac{2}{\text{eps}})x_2 = 1 - \frac{4}{\text{eps}}$$

$$\rightarrow (\text{eps} + 2)x_2 = -\text{eps} + 4$$

$$\rightarrow 2x_2 = 4$$

$$\rightarrow x_2 = 2$$

Ejemplo.

$$\left(\begin{array}{cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array}\right)$$

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

eps
$$2 \mid 4$$

 $\begin{pmatrix} \text{eps} & 2 \mid 4 \\ 1 & -1 \mid 1 \end{pmatrix}$ \rightarrow $\begin{pmatrix} \text{eps} & 2 \\ 0 & -1 - \frac{2}{\text{eps}} \mid 1 - \frac{4}{\text{eps}} \end{pmatrix}$ \rightarrow $-(1 + \frac{2}{\text{eps}})x_2 = 1 - \frac{4}{\text{eps}}$ \rightarrow $(\text{eps} + 2)x_2 = -\text{eps} + 4$ \rightarrow $2x_2 = 4$ \rightarrow $x_2 = 2$

Ejemplo.

$$\left(\begin{array}{cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array}\right)$$

$$\begin{pmatrix} \text{eps} & 2 & | & 4 \\ 1 & -1 & | & 1 \end{pmatrix} \qquad 2^{-52}x_1 + 2x_2 = 4 \qquad x_2 \approx 2 \\ x_1 - x_2 = 1 \qquad x_1 \approx 3 \qquad [3, 2]$$

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

eps
$$2 \mid 4$$
 \downarrow eps $2 \mid 4$ \downarrow eps $2 \mid 4$ \downarrow eps $x_1 + 2x_2 = 4$ \downarrow eps $x_2 + 2x_2 = 4$ \downarrow eps $x_1 + 2x_2 = 4$ \downarrow eps $x_2 + 2x_2 = 4$ \downarrow eps $x_1 + 2x_2 = 4$ \downarrow eps $x_2 + 2x_2 = 4$

$$\Rightarrow \operatorname{eps} \cdot x_1 + 2x_2 - 4$$

$$\Rightarrow \operatorname{eps} \cdot x_1 = 0$$

$$\Rightarrow -(1 + \frac{2}{\operatorname{eps}})x_2 = 1 - \frac{4}{\operatorname{eps}}$$

$$\Rightarrow (\operatorname{eps} + 2)x_2 = -\operatorname{eps} + 4$$

$$\Rightarrow 2x_2 = 4$$

$$\Rightarrow x_2 = 2$$

Ejemplo.

$$\left(\begin{array}{cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array}\right)$$

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

eps
$$x_1 + 2x_2 = 4$$

$$\begin{pmatrix} \text{eps} & 2 & | & 4 \\ 1 & -1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \text{eps} & 2 & | & 4 \\ 0 & -1 - \frac{2}{\text{eps}} & | & 1 - \frac{4}{\text{eps}} \end{pmatrix} \rightarrow \begin{pmatrix} \text{eps} \cdot x_1 + 2x_2 = 4 \\ -(1 + \frac{2}{\text{eps}})x_2 = 1 - \frac{4}{\text{eps}} \end{pmatrix} \rightarrow \begin{pmatrix} \text{eps} + 2)x_2 = -\text{eps} + 4 \\ -(2x_1 - 4)x_2 = -4 \end{pmatrix}$$

eps
$$\cdot x_1 + 2x_2 = 4$$

$$- \operatorname{eps} \cdot x_1 = 0 - x_1 = 0$$

$$- (1 + \frac{2}{\operatorname{eps}})x_2 = 1 - \frac{4}{\operatorname{eps}}$$

$$- (\operatorname{eps} + 2)x_2 = -\operatorname{eps} + 4$$

$$- 2x_2 = 4$$

$$- x_2 = 2$$

Ejemplo.

$$\left(\begin{array}{cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array}\right)$$

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

Eliminación gaussiana sin pivotamiento.

eps
$$\cdot x_1 + 2x_2 = 4$$

$$\left(\begin{array}{c|ccc} \text{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array}\right) \rightarrow \left(\begin{array}{c|ccc} \text{eps} & 2 & 4 \\ 0 & -1 - \frac{2}{\mathsf{eps}} & 1 - \frac{4}{\mathsf{eps}} \end{array}\right) \rightarrow -(1 + \frac{2}{\mathsf{eps}})x_2 = 1 - \frac{4}{\mathsf{eps}}$$

$$eps \cdot x_1 + 2x_2 = 4$$

$$eps \cdot x_1 = 0 \rightarrow x_1 = 0$$

$$-(1 + 2)x_2 = 1 - 4$$

Solución obtenida: [0,2]

$$- (eps + 2)x_2 = -eps + 4$$

$$- 2x_2 = 4$$

$$-x_2=2$$

Ejemplo.

Solución esperable:

$$ightharpoonup$$
 eps = 2^{-5}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

Eliminación gaussiana con pivotamiento parcial.

$$\left(\begin{array}{cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array}\right)$$

Ejemplo.

Solución esperable:

$$ightharpoonup$$
 eps = 2^{-53}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

Eliminación gaussiana con pivotamiento parcial.

$$\left(\begin{array}{cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array}\right) \to \left(\begin{array}{cc|c} 1 & -1 & 1 \\ \mathsf{eps} & 2 & 4 \end{array}\right)$$

Ejemplo.

Solución esperable:

$$\begin{pmatrix} \text{eps} & 2 & | & 4 \\ 1 & -1 & | & 1 \end{pmatrix} \qquad 2^{-52}x_1 + 2x_2 = 4 \qquad x_2 \approx 2 \\ x_1 - x_2 = 1 \qquad x_1 \approx 3 \qquad [3, 2]$$

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

Eliminación gaussiana con pivotamiento parcial.

$$\left(\begin{array}{cc|cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ \mathsf{eps} & 2 & 4 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ 0 & 2 + \mathsf{eps} & 4 - \mathsf{eps} \end{array} \right)$$

Ejemplo.

Solución esperable:

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$> 2 + eps = 2$$

$$\rightarrow 4 - eps = 4$$

$$\left(\begin{array}{cc|cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ \mathsf{eps} & 2 & 4 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ 0 & 2 + \mathsf{eps} & 4 - \mathsf{eps} \end{array} \right)$$

$$\leftarrow \left(\begin{array}{cc|c} 1 & -1 & 1 \\ 0 & 2 & 4 \end{array} \right)$$

Ejemplo.

Solución esperable:

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$\left(\begin{array}{cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ \mathsf{eps} & 2 & 4 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ 0 & 2 + \mathsf{eps} & 4 - \mathsf{eps} \end{array} \right)$$

Ejemplo.

Solución esperable:

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$\left(\begin{array}{cc|cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ \mathsf{eps} & 2 & 4 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ 0 & 2 + \mathsf{eps} & 4 - \mathsf{eps} \end{array} \right)$$

Ejemplo.

Solución esperable:

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$\left(\begin{array}{cc|cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ \mathsf{eps} & 2 & 4 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ 0 & 2 + \mathsf{eps} & 4 - \mathsf{eps} \end{array} \right)$$

Ejemplo.

Solución esperable:

$$ightharpoonup$$
 eps = 2^{-52}

$$2 + eps = 2$$

Recordemos.
$$\triangleright$$
 eps = 2^{-52} \triangleright 2 + eps = 2 \triangleright 4 - eps = 4

$$\left(\begin{array}{cc|cc|c} \mathsf{eps} & 2 & 4 \\ 1 & -1 & 1 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ \mathsf{eps} & 2 & 4 \end{array} \right) \boldsymbol{\rightarrow} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ 0 & 2 + \mathsf{eps} & 4 - \mathsf{eps} \end{array} \right)$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 4 \end{pmatrix} \rightarrow x_1 - x_2 = 1 \rightarrow x_1 = 3$$

$$\rightarrow x_2 = 2 \qquad \text{Solución obtenida: } [3, 2]$$

Vectores, Matrices y Normas

Notación

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \Rightarrow A = (a_{ij}) \text{ con } 1 \le i \le m, 1 \le j \le n.$$

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \Rightarrow \mathbf{u} = (u_1, u_2, \dots, u_n)^t = (u_i)^t \text{ con } 1 \le i \le n.$$

Definición: Producto escalar

El producto escalar es una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R} (o \mathbb{C}) que denotaremos por $\langle \cdot, \cdot \rangle$, y que verifica las siguientes propiedades:

- ightharpoonup Definida positiva: $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$.
- No degenerada: $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ si y solo si $\mathbf{u} = \mathbf{0}$.
- ightharpoonup Hermítica (simétrica en \mathbb{R}): $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$.
- Lineal por la izquierda: $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$ y lineal conjugada por la derecha: $\langle \mathbf{u}, \alpha \mathbf{v} + \beta \mathbf{w} \rangle = \bar{\alpha} \langle \mathbf{u}, \mathbf{v} \rangle + \bar{\beta} \langle \mathbf{u}, \mathbf{w} \rangle$.

Definición: Producto escalar

El producto escalar es una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R} (o \mathbb{C}) que denotaremos por $\langle \cdot, \cdot \rangle$, y que verifica las siguientes propiedades:

- ▶ Definida positiva: $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$.
- No degenerada: $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ si y solo si $\mathbf{u} = \mathbf{0}$
- ightharpoonup Hermítica (simétrica en \mathbb{R}): $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$.
- cambio de signo de la componente imaginaria.

Conjugado complejo:

Lineal por la izquierda: $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$ y lineal conjugada por la derecha: $\langle \mathbf{u}, \alpha \mathbf{v} + \beta \mathbf{w} \rangle = \bar{\alpha} \langle \mathbf{u}, \mathbf{v} \rangle + \bar{\beta} \langle \mathbf{u}, \mathbf{w} \rangle$.

Definición: Producto escalar

El producto escalar es una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R} (o \mathbb{C}) que denotaremos por $\langle \cdot, \cdot \rangle$, y que verifica las siguientes propiedades:

- ightharpoonup Definida positiva: $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$.
- No degenerada: $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ si y solo si $\mathbf{u} = \mathbf{0}$,
- ightharpoonup Hermítica (simétrica en \mathbb{R}): $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$.

- ►Conjugado complejo: cambio de signo de la componente imaginaria.
- Lineal por la izquierda: $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$ y lineal conjugada por la derecha: $\langle \mathbf{u}, \alpha \mathbf{v} + \beta \mathbf{w} \rangle = \bar{\alpha} \langle \mathbf{u}, \mathbf{v} \rangle + \bar{\beta} \langle \mathbf{u}, \mathbf{w} \rangle$.
- ▶ Desigualdad de Cauchy-Schwarz: $\langle \mathbf{u}, \mathbf{v} \rangle^2 \leq \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.

Definición: Producto escalar

El producto escalar es una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R} (o \mathbb{C}) que denotaremos por $\langle \cdot, \cdot \rangle$, y que verifica las siguientes propiedades:

- ightharpoonup Definida positiva: $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$.
- No degenerada: $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ si y solo si $\mathbf{u} = \mathbf{0}$.
- ightharpoonup Hermítica (simétrica en \mathbb{R}): $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$.

- Conjugado complejo: cambio de signo de la componente imaginaria.
- Lineal por la izquierda: $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$ y lineal conjugada por la derecha: $\langle \mathbf{u}, \alpha \mathbf{v} + \beta \mathbf{w} \rangle = \bar{\alpha} \langle \mathbf{u}, \mathbf{v} \rangle + \bar{\beta} \langle \mathbf{u}, \mathbf{w} \rangle$.
- ▶ Desigualdad de Cauchy-Schwarz: $\langle \mathbf{u}, \mathbf{v} \rangle^2 \le \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.

Usaremos:
$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + \ldots + u_n v_n = \sum_{i=1}^n u_i v_i = u^t v$$
.

Definición: Norma de un vector

Una norma es una función de \mathbb{R}^n en \mathbb{R} , que denotaremos como $\|\cdot\|$, que verifica las siguientes propiedades:

- No negatividad: $\|\mathbf{u}\| \geq 0$,
- ightharpoonup además $\|\mathbf{u}\| = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$.
- ► Homogeneidad: $||k\mathbf{u}|| = |k|||\mathbf{u}||$ para $k \in \mathbb{R}$.
- ▶ Desigualdad triangular: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Definición: Norma de un vector

Una norma es una función de \mathbb{R}^n en \mathbb{R} , que denotaremos como $\|\cdot\|$, que verifica las siguientes propiedades:

Se puede derivar del resto:

- ► No negatividad: $\|\mathbf{u}\| \ge 0$, $\longrightarrow 0 = \|\mathbf{0}\| = \|\mathbf{x} \mathbf{x}\| \le \|\mathbf{x}\| + \| \mathbf{x}\| = 2\|\mathbf{x}\|$
- ightharpoonup además $\|\mathbf{u}\| = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$. de donde $\|\mathbf{x}\| \geq 0$
- ► Homogeneidad: $||k\mathbf{u}|| = |k|||\mathbf{u}||$ para $k \in \mathbb{R}$.
- ▶ Desigualdad triangular: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Definición: Norma de un vector

Una norma es una función de \mathbb{R}^n en \mathbb{R} , que denotaremos como $\|\cdot\|$, que verifica las siguientes propiedades:

Se puede derivar del resto:

- ► No negatividad: $\|\mathbf{u}\| \ge 0$, $\longrightarrow 0 = \|\mathbf{0}\| = \|\mathbf{x} \mathbf{x}\| \le \|\mathbf{x}\| + \| \mathbf{x}\| = 2\|\mathbf{x}\|$
- ightharpoonup además $\|\mathbf{u}\| = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$. de donde $\|\mathbf{x}\| \geq 0$
- ► Homogeneidad: $||k\mathbf{u}|| = |k|||\mathbf{u}||$ para $k \in \mathbb{R}$.
- ▶ Desigualdad triangular: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Cada producto escalar tiene asociada una norma: $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$. En nuestro caso es la norma euclídea (canónica) $\|\mathbf{u}\|_2$.

Definición: Norma de un vector

Una norma es una función de \mathbb{R}^n en \mathbb{R} , que denotaremos como $\|\cdot\|$, que verifica las siguientes propiedades:

Se puede derivar del resto:

- ► No negatividad: $\|\mathbf{u}\| \ge 0$, $\longrightarrow 0 = \|\mathbf{0}\| = \|\mathbf{x} \mathbf{x}\| \le \|\mathbf{x}\| + \| \mathbf{x}\| = 2\|\mathbf{x}\|$
- ightharpoonup además $\|\mathbf{u}\| = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$. de donde $\|\mathbf{x}\| \geq 0$
- ► Homogeneidad: $||k\mathbf{u}|| = |k|||\mathbf{u}||$ para $k \in \mathbb{R}$.
- ▶ Desigualdad triangular: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Cada producto escalar tiene asociada una norma: $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$. En nuestro caso es la norma euclídea (canónica) $\|\mathbf{u}\|_2$.

► Cauchy–Schwarz: $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\|_2 \cdot \|\mathbf{v}\|_2$.

Definición: Norma de un vector

Una norma es una función de \mathbb{R}^n en \mathbb{R} , que denotaremos como $\|\cdot\|$, que verifica las siguientes propiedades:

Se puede derivar del resto:

- No negatividad: $\|\mathbf{u}\| \ge 0$, $\longrightarrow 0 = \|\mathbf{0}\| = \|\mathbf{x} \mathbf{x}\| \le \|\mathbf{x}\| + \| \mathbf{x}\| = 2\|\mathbf{x}\|$
- ► además $\|\mathbf{u}\| = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$. de donde $\|\mathbf{x}\| \ge 0$
- ► Homogeneidad: $||k\mathbf{u}|| = |k|||\mathbf{u}||$ para $k \in \mathbb{R}$.
- ▶ Desigualdad triangular: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Cada producto escalar tiene asociada una norma: $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$. En nuestro caso es la norma euclídea (canónica) $\|\mathbf{u}\|_2$.

► Cauchy–Schwarz: $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}||_2 \cdot ||\mathbf{v}||_2$.

Interpretación geométrica: $\langle \mathbf{u}, \mathbf{v} \rangle = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos \alpha$

Sea $\mathbf{u} = (u_1, \dots, u_n)$ un vector en \mathbb{R}^n .

Norma 1: $\|\mathbf{u}\|_1 = \sum_{i=1}^n |u_i|$.

- Norma 1: $\|\mathbf{u}\|_1 = \sum_{i=1}^n |u_i|$.
- Norma 2: $\|\mathbf{u}\|_2 = \sqrt{\sum_{i=1}^n u_i^2}$.

- Norma 1: $\|\mathbf{u}\|_1 = \sum_{i=1}^n |u_i|$.
- Norma 2: $\|\mathbf{u}\|_2 = \sqrt{\sum_{i=1}^n u_i^2}$.
- Norma p: $\|\mathbf{u}\|_p = \sqrt[p]{\sum_{i=1}^n |u_i|^p}$.

- Norma 1: $\|\mathbf{u}\|_1 = \sum_{i=1}^n |u_i|$.
- Norma 2: $\|\mathbf{u}\|_2 = \sqrt{\sum_{i=1}^n u_i^2}$.
- Norma p: $\|\mathbf{u}\|_p = \sqrt[p]{\sum_{i=1}^n |u_i|^p}$.
- Norma infinito: $\|\mathbf{u}\|_{\infty} = \max_{1 \leq i \leq n} |u_i|$.

- Norma 1: $\|\mathbf{u}\|_1 = \sum_{i=1}^n |u_i|$.
- Norma 2: $\|\mathbf{u}\|_2 = \sqrt{\sum_{i=1}^n u_i^2}$.
- Norma p: $\|\mathbf{u}\|_p = \sqrt[p]{\sum_{i=1}^n |u_i|^p}$.
- Norma infinito: $\|\mathbf{u}\|_{\infty} = \max_{1 \le i \le n} |u_i|$.

Sea $\mathbf{u} = (u_1, \dots, u_n)$ un vector en \mathbb{R}^n .

- Norma 1: $\|\mathbf{u}\|_1 = \sum_{i=1}^n |u_i|$.
- Norma 2: $\|\mathbf{u}\|_2 = \sqrt{\sum_{i=1}^n u_i^2}$.
- Norma p: $\|\mathbf{u}\|_p = \sqrt[p]{\sum_{i=1}^n |u_i|^p}$.
- Norma infinito: $\|\mathbf{u}\|_{\infty} = \max_{1 \leq i \leq n} |u_i|$.

Las normas $\|\cdot\|_1$, $\|\cdot\|_2$, $\|\cdot\|_p$ y $\|\cdot\|_\infty$ son equivalentes, lo que significa que para cualquier par $\|\cdot\|_a$, $\|\cdot\|_b$ existen constantes c_{ab} , $C_{ab} > 0$ tales que $c_{ab}\|\mathbf{u}\|_a \le \|\mathbf{u}\|_b \le C_{ab}\|\mathbf{u}\|_a$, $\forall \mathbf{u} \in \mathbb{R}^n$.

Sea $\mathbf{u} = (u_1, \dots, u_n)$ un vector en \mathbb{R}^n .

- Norma 1: $\|\mathbf{u}\|_1 = \sum_{i=1}^n |u_i|$.
- Norma 2: $\|\mathbf{u}\|_2 = \sqrt{\sum_{i=1}^n u_i^2}$.
- Norma p: $\|\mathbf{u}\|_p = \sqrt[p]{\sum_{i=1}^n |u_i|^p}$.
- Norma infinito: $\|\mathbf{u}\|_{\infty} = \max_{1 \leq i \leq n} |u_i|$.

Las normas $\|\cdot\|_1$, $\|\cdot\|_2$, $\|\cdot\|_p$ y $\|\cdot\|_\infty$ son equivalentes, lo que significa que para cualquier par $\|\cdot\|_a$, $\|\cdot\|_b$ existen constantes c_{ab} , $C_{ab} > 0$ tales que $c_{ab}\|\mathbf{u}\|_a \le \|\mathbf{u}\|_b \le C_{ab}\|\mathbf{u}\|_a$, $\forall \mathbf{u} \in \mathbb{R}^n$.

De hecho, en \mathbb{R}^n todas las normas son equivalentes (generan la misma topología, es decir, mismos conjuntos abiertos).

Convergencia de sucessiones de vectores

Una sucesión $\{\mathbf{x}^{(k)}\}_{k=1,\dots,\infty}$ de vectores en \mathbb{R}^n se dice que converge a \mathbf{x} si, dado un ε , existe un n tal que

$$\|\mathbf{x}^{(k)} - \mathbf{x}\| < \varepsilon \quad k > n$$

y se escribe $\lim_{k\to\infty} \mathbf{x}^{(k)} = \mathbf{x}$.

Convergencia de sucessiones de vectores

Una sucesión $\{\mathbf{x}^{(k)}\}_{k=1,\dots,\infty}$ de vectores en \mathbb{R}^n se dice que converge a \mathbf{x} si, dado un ε , existe un n tal que

$$\|\mathbf{x}^{(k)} - \mathbf{x}\| < \varepsilon \quad k > n$$

y se escribe $\lim_{k\to\infty} \mathbf{x}^{(k)} = \mathbf{x}$.

Convergencia por componentes: $\lim_{k\to\infty} x_i^{(k)} = x_i$.

Sean A una matriz $m \times n$ y B una matriz $n \times p$, la multiplicación de matrices $C = A \cdot B$ se define como:

Sean A una matriz $m \times n$ y B una matriz $n \times p$, la multiplicación de matrices $C = A \cdot B$ se define como:

 $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$ para $1 \le i \le m, 1 \le j \le p$.

Complejidad computacional.

Sean A una matriz $m \times n$ y B una matriz $n \times p$, la multiplicación de matrices $C = A \cdot B$ se define como:

$$c_{ij} = \sum_{i=1}^{n} a_{ik} \cdot b_{kj}$$
 para $1 \le i \le m, 1 \le j \le p$.

Complejidad computacional.

Número de operaciones: mnp multiplicaciones, mnp-mp sumas (algoritmo simple).

Total: $\mathcal{O}(mnp)$.

Sean A una matriz $m \times n$ y B una matriz $n \times p$, la multiplicación de matrices $C = A \cdot B$ se define como:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$
 para $1 \le i \le m, 1 \le j \le p$.

Complejidad computacional.

Número de operaciones: mnp multiplicaciones, mnp - mp sumas (algoritmo simple).

Total: $\mathcal{O}(mnp)$.

Existen algoritmos más rápidos pero menos estables numéricamente. La complejidad computacional es un área muy activa de investigación; a día de hoy: $\mathcal{O}(n^{2.371552})$ [2023] (matrices $n \times n$). En la práctica, depende del tamaño.

Para una matriz cuadrada M de orden n, el determinante $\det(M)$ se puede calcular recursivamente:

$$\det(M) = \sum_{i=1}^{\infty} (-1)^{i+j} \cdot m_{ij} \cdot \det(\text{submatriz sin la fila } i \text{ y sin la columna } j).$$

Para una matriz cuadrada M de orden n, el determinante $\det(M)$ se puede calcular recursivamente:

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} \cdot m_{ij} \cdot \det(\text{submatriz sin la fila } i \text{ y sin la columna } j).$$

El número de operaciones / multiplicaciones de este método es $\Omega(n!)$.

Para una matriz cuadrada M de orden n, el determinante $\det(M)$ se puede calcular recursivamente:

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} \cdot m_{ij} \cdot \det(\text{submatriz sin la fila } i \text{ y sin la columna } j).$$

- El número de operaciones / multiplicaciones de este método es $\Omega(n!)$.
- ► Teorema (nada trivial): $det(A \cdot B) = det(A) det(B)$.

Para una matriz cuadrada M de orden n, el determinante $\det(M)$ se puede calcular recursivamente:

$$\det(M) = \sum_{i=1}^{\infty} (-1)^{i+j} \cdot m_{ij} \cdot \det(\text{submatriz sin la fila } i \text{ y sin la columna } j).$$

- ightharpoonup El número de operaciones / multiplicaciones de este método es $\Omega(n!)$.
- ► Teorema (nada trivial): $det(A \cdot B) = det(A) det(B)$.

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{pmatrix}$$

Para una matriz cuadrada M de orden n, el determinante $\det(M)$ se puede calcular recursivamente:

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} \cdot m_{ij} \cdot \det(\text{submatriz sin la fila } i \text{ y sin la columna } j).$$

- ightharpoonup El número de operaciones / multiplicaciones de este método es $\Omega(n!)$.
- ► Teorema (nada trivial): $det(A \cdot B) = det(A) det(B)$.
- El determinante de una matriz triangular es el producto de los elementos de la

diagonal principal.

Útil para las descomposiciones que veremos.

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{pmatrix}$$

Para una matriz cuadrada M de orden n, el determinante $\det(M)$ se puede calcular recursivamente:

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} \cdot m_{ij} \cdot \det(\text{submatriz sin la fila } i \text{ y sin la columna } j).$$

- ightharpoonup El número de operaciones / multiplicaciones de este método es $\Omega(n!)$.
- ► Teorema (nada trivial): $det(A \cdot B) = det(A) det(B)$.

diagonal principal.
$$PA = LU \rightarrow \det(A) = \operatorname{sgn}(\operatorname{perm.}) \det(L) \det(U) \begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{pmatrix}$$
 matriz triangular inferior
$$\operatorname{matriz} \operatorname{de} \operatorname{permutación}$$

Para una matriz cuadrada M de orden n, el determinante $\det(M)$ se puede calcular recursivamente:

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} \cdot m_{ij} \cdot \det(\text{submatriz sin la fila } i \text{ y sin la columna } j).$$

- El número de operaciones / multiplicaciones de este método es $\Omega(n!)$. (Ξ)
- ► Teorema (nada trivial): $det(A \cdot B) = det(A) det(B)$.
- El determinante de una matriz triangular es el producto de los elementos de la diagonal principal.

$$PA = LU \to \det(A) = \operatorname{sgn}(\operatorname{perm.}) \det(L) \det(U)$$

diagonal principal.
$$PA = LU \rightarrow \det(A) = \operatorname{sgn}(\operatorname{perm.}) \det(L) \det(U) \begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{pmatrix}$$

Determinante de matrices

Para una matriz cuadrada M de orden n, el determinante $\det(M)$ se puede calcular recursivamente:

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} \cdot m_{ij} \cdot \det(\text{submatriz sin la fila } i \text{ y sin la columna } j).$$

- ightharpoonup El número de operaciones / multiplicaciones de este método es $\Omega(n!)$.
- ► Teorema (nada trivial): $det(A \cdot B) = det(A) det(B)$.
- ► El determinante de una matriz triangular es el producto de los elementos de la diagonal principal. $(u_{11} \ u_{12} \ u_{13} \ \dots \ u_{1n})$

$$PA = LU \to \det(A) = \operatorname{sgn}(\operatorname{perm.}) \det(L) \det(U)$$
 Complejidad: descomposición LU $+\mathcal{O}(n)$

 \blacktriangleright El determinante de M es el producto de sus valores propios.

Normas matriciales: definición

Sea $A=(a_{ij})$, $i\leq i,j\leq n$ una matriz en $K^{m\times n}$, donde K es $\mathbb R$ o $\mathbb C$.

Definición: Norma de una matriz

Una norma es una función del conjunto de todas las matrices $K^{m \times n}$ en \mathbb{R} , que denotaremos como $\|\cdot\|$, que verifica las siguientes propiedades:

- No negatividad: $||A|| \ge 0$,
- ightharpoonup además $||A|| = 0 \Leftrightarrow A = 0$.
- ► Homogeneidad: $||kA|| \le |k|||A||$ para $k \in \mathbb{R}$.
- ▶ Desigualdad triangular: $||A + B|| \le ||A|| + ||B||$.

Normas matriciales: definición

Sea $A=(a_{ij})$, $i\leq i,j\leq n$ una matriz en $K^{m\times n}$, donde K es $\mathbb R$ o $\mathbb C$.

Definición: Norma de una matriz

Una norma es una función del conjunto de todas las matrices $K^{m \times n}$ en \mathbb{R} , que denotaremos como $\|\cdot\|$, que verifica las siguientes propiedades:

- No negatividad: $||A|| \ge 0$,
- ightharpoonup además $||A|| = 0 \Leftrightarrow A = 0$.
- ▶ Homogeneidad: $||kA|| \le |k|||A||$ para $k \in \mathbb{R}$.
- ▶ Desigualdad triangular: $||A + B|| \le ||A|| + ||B||$.

Adicionalmente, para matrices cuadradas, la normas matriciales que satisfacen la siguiente condición (normas sub-multiplicativas) son particularmente últiles:

$$||A \cdot B|| \le ||A|| \cdot ||B||.$$

Normas matriciales: definición

Sea $A=(a_{ij})$, $i\leq i,j\leq n$ una matriz en $K^{m\times n}$, donde K es $\mathbb R$ o $\mathbb C$.

Definición: Norma de una matriz

Una norma es una función del conjunto de todas las matrices $K^{m \times n}$ en \mathbb{R} , que denotaremos como $\|\cdot\|$, que verifica las siguientes propiedades:

- No negatividad: $||A|| \ge 0$,
- ightharpoonup además $||A|| = 0 \Leftrightarrow A = 0$.
- ▶ Homogeneidad: $||kA|| \le |k|||A||$ para $k \in \mathbb{R}$.
- En algunos textos se requiere que las normas sean sub-multiplicativas.
- ▶ Desigualdad triangular: $||A + B|| \le ||A|| + ||B||$.

Adicionalmente, para matrices cuadradas, la normas matriciales que satisfacen la siguiente condición (normas sub-multiplicativas) son particularmente últiles:

$$||A \cdot B|| \le ||A|| \cdot ||B||.$$

ightharpoonup Dada una matriz A y un vector ${\bf x}$ cualquiera, $A{\bf x}$ es el vector transformado.

- ightharpoonup Dada una matriz A y un vector ${\bf x}$ cualquiera, $A{\bf x}$ es el vector transformado.
- ▶ Una norma matricial $\|\cdot\|$ en $K^{m\times n}$ es consistente con una norma vectorial $\|\cdot\|_{\alpha}$ en K^n y con una norma vectorial $\|\cdot\|_{\beta}$ en K^m si:

$$||A\mathbf{x}||_{\beta} \le ||A|| \cdot ||\mathbf{x}||_{\alpha}.$$

- ightharpoonup Dada una matriz A y un vector ${\bf x}$ cualquiera, $A{\bf x}$ es el vector transformado.
- ▶ Una norma matricial $\|\cdot\|$ en $K^{m\times n}$ es consistente con una norma vectorial $\|\cdot\|_{\alpha}$ en K^n y con una norma vectorial $\|\cdot\|_{\beta}$ en K^m si:

$$||A\mathbf{x}||_{\beta} \le ||A|| \cdot ||\mathbf{x}||_{\alpha}.$$

En el caso especial m=n y $\alpha=\beta$, $\|\cdot\|$ también se llama compatible con $\|\cdot\|_{\alpha}$. Toda norma matricial sub-multiplicativa en $K^{n\times n}$ induce una norma vectorial compatible en K^n .

- ightharpoonup Dada una matriz A y un vector ${\bf x}$ cualquiera, $A{\bf x}$ es el vector transformado.
- ▶ Una norma matricial $\|\cdot\|$ en $K^{m\times n}$ es consistente con una norma vectorial $\|\cdot\|_{\alpha}$ en K^n y con una norma vectorial $\|\cdot\|_{\beta}$ en K^m si:

$$||A\mathbf{x}||_{\beta} \le ||A|| \cdot ||\mathbf{x}||_{\alpha}.$$

- En el caso especial m=n y $\alpha=\beta$, $\|\cdot\|$ también se llama compatible con $\|\cdot\|_{\alpha}$. Toda norma matricial sub-multiplicativa en $K^{n\times n}$ induce una norma vectorial compatible en K^n .
- ▶ Dadas una norma vectorial $\|\cdot\|_{\alpha}$ en K^n y una norma vectorial $\|\cdot\|_{\beta}$ en K^m , se define la siguiente norma matricial consistente:

$$||A||_{\alpha,\beta} = \sup_{\mathbf{x}\neq 0} \left\{ \frac{||A\mathbf{x}||_{\alpha}}{||\mathbf{x}||_{\beta}} \right\} = \sup\{||A\mathbf{x}||_{\alpha} : ||\mathbf{x}||_{\beta} = 1\}.$$

- ightharpoonup Dada una matriz A y un vector ${\bf x}$ cualquiera, $A{\bf x}$ es el vector transformado.
- ▶ Una norma matricial $\|\cdot\|$ en $K^{m\times n}$ es consistente con una norma vectorial $\|\cdot\|_{\alpha}$ en K^n y con una norma vectorial $\|\cdot\|_{\beta}$ en K^m si:

$$||A\mathbf{x}||_{\beta} \le ||A|| \cdot ||\mathbf{x}||_{\alpha}.$$

- En el caso especial m=n y $\alpha=\beta$, $\|\cdot\|$ también se llama compatible con $\|\cdot\|_{\alpha}$. Toda norma matricial sub-multiplicativa en $K^{n\times n}$ induce una norma vectorial compatible en K^n .
- ▶ Dadas una norma vectorial $\|\cdot\|_{\alpha}$ en K^n y una norma vectorial $\|\cdot\|_{\beta}$ en K^m , se define la siguiente norma matricial consistente:

$$||A||_{\alpha,\beta} = \sup_{\mathbf{x}\neq 0} \left\{ \frac{||A\mathbf{x}||_{\alpha}}{||\mathbf{x}||_{\beta}} \right\} = \sup\{||A\mathbf{x}||_{\alpha} : ||\mathbf{x}||_{\beta} = 1\}.$$

Esta norma mide cuánto puede estirar vectores la transformación inducida por A.

Norma p, $1 \le p \le \infty$: Inducida por la norma p vectorial en \mathbb{R}^n y \mathbb{R}^m :

$$||A||_p = \sup_{\mathbf{x} \neq 0} \left\{ \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p} \right\} = \sup\{||A\mathbf{x}||_p : ||\mathbf{x}||_p = 1\}.$$

Norma p, $1 \le p \le \infty$: Inducida por la norma p vectorial en \mathbb{R}^n y \mathbb{R}^m :

$$||A||_p = \sup_{\mathbf{x} \neq 0} \left\{ \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p} \right\} = \sup\{||A\mathbf{x}||_p : ||\mathbf{x}||_p = 1\}.$$

Norma 1: Máxima suma absoluta de entre las columnas:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{i,j}|.$$

Norma p, $1 \le p \le \infty$: Inducida por la norma p vectorial en \mathbb{R}^n y \mathbb{R}^m :

$$||A||_p = \sup_{\mathbf{x} \neq 0} \left\{ \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p} \right\} = \sup\{||A\mathbf{x}||_p : ||\mathbf{x}||_p = 1\}.$$

Norma 1: Máxima suma absoluta de entre las columnas:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{i,j}|.$$

Norma infinito: Máxima suma absoluta de entre las filas:

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{i,j}|.$$

Norma p, $1 \le p \le \infty$: Inducida por la norma p vectorial en \mathbb{R}^n y \mathbb{R}^m :

$$||A||_p = \sup_{\mathbf{x} \neq 0} \left\{ \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p} \right\} = \sup\{||A\mathbf{x}||_p : ||\mathbf{x}||_p = 1\}.$$

Norma 1: Máxima suma absoluta de entre las columnas:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{i,j}|.$$

Norma infinito: Máxima suma absoluta de entre las filas:

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{i,j}|.$$

Norma 2: Es la norma espectral. Es el mayor valor singular de A, $\sigma_{\max}(A)$ (la raíz cuadrada del mayor autovalor de $A^{*^t}A$):

$$||A||_2 = \sqrt{|\lambda|_{\mathsf{max}}(A^{*^t}A)} = \sigma_{\mathsf{max}}(A).$$

Norma p, $1 \le p \le \infty$: Inducida por la norma p vectorial en \mathbb{R}^n y \mathbb{R}^m :

$$||A||_p = \sup_{\mathbf{x} \neq 0} \left\{ \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p} \right\} = \sup\{||A\mathbf{x}||_p : ||\mathbf{x}||_p = 1\}.$$

Norma 1: Máxima suma absoluta de entre las columnas:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{i,j}|.$$

Norma infinito: Máxima suma absoluta de entre las filas:

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{i,j}|.$$

Norma 2: Es la norma espectral. Es el mayor valor singular de A, $\sigma_{\max}(A)$ (la raíz cuadrada del mayor autovalor de $A^{*^t}A$): A^{*^t} : conjugada transpuesta de A $\|A\|_2 = \sqrt{|\lambda|_{\max}(A^{*^t}A)} = \sigma_{\max}(A).$ (adjunta)

Norma p, $1 \le p \le \infty$: Inducida por la norma p vectorial en \mathbb{R}^n y \mathbb{R}^m :

$$||A||_p = \sup_{\mathbf{x} \neq 0} \left\{ \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p} \right\} = \sup\{||A\mathbf{x}||_p : ||\mathbf{x}||_p = 1\}.$$

Norma 1: Máxima suma absoluta de entre las columnas:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{i,j}|.$$

Norma infinito: Máxima suma absoluta de entre las filas:

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{i,j}|.$$

Norma 2: Es la norma espectral. Es el mayor valor singular de A, $\sigma_{\max}(A)$ (la raíz cuadrada del mayor autovalor de $A^{*^t}A$): A^{*^t} : conjugada transpuesta de A $\|A\|_2 = \sqrt{\frac{|\lambda|_{\max}(A^{*^t}A)}{\rho}} = \sigma_{\max}(A).$ (adjunta)

Norma de Frobenius (o Hilbert–Schmidt): Inducida por el producto interno usual en el espacio de matrices de $m \times n$, similar a la norma euclidiana en \mathbb{R}^n :

$$||A||_F = \sqrt{\operatorname{tr}(A^{*t}A)} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2},$$

Norma de Frobenius (o Hilbert-Schmidt): Inducida por el producto interno usual en el espacio de matrices de $m \times n$, similar a la norma euclidiana en \mathbb{R}^n :

$$\|A\|_F = \sqrt{\operatorname{tr}(A^{*^t}A)} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2},$$
 traza: suma elementos en la diagonal principal

Norma de Frobenius (o Hilbert–Schmidt): Inducida por el producto interno usual en el espacio de matrices de $m \times n$, similar a la norma euclidiana en \mathbb{R}^n :

$$\|A\|_F = \sqrt{\operatorname{tr}(A^{*^t}A)} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2},$$
 traza: suma elementos en la diagonal principal

Todas las normas anteriores son sub-multiplicativas. En cambio, la siguiente no lo es:

Norma de Frobenius (o Hilbert–Schmidt): Inducida por el producto interno usual en el espacio de matrices de $m \times n$, similar a la norma euclidiana en \mathbb{R}^n :

$$\|A\|_F = \sqrt{\operatorname{tr}(A^{*^t}A)} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2},$$
 traza: suma elementos en la diagonal principal

Todas las normas anteriores son sub-multiplicativas. En cambio, la siguiente no lo es:

$$||A||_{\max} = \max_{ij} |a_{ij}|.$$

Norma de Frobenius (o Hilbert–Schmidt): Inducida por el producto interno usual en el espacio de matrices de $m \times n$, similar a la norma euclidiana en \mathbb{R}^n :

$$\|A\|_F = \sqrt{\operatorname{tr}(A^{*^t}A)} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2},$$
 traza: suma elementos en la diagonal principal

Todas las normas anteriores son sub-multiplicativas. En cambio, la siguiente no lo es:

$$||A||_{\max} = \max_{ij} |a_{ij}|.$$

$$A = \left(\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array}\right)$$

Norma de Frobenius (o Hilbert–Schmidt): Inducida por el producto interno usual en el espacio de matrices de $m \times n$, similar a la norma euclidiana en \mathbb{R}^n :

$$\|A\|_F = \sqrt{\operatorname{tr}(A^{*^t}A)} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2},$$
 traza: suma elementos en la diagonal principal

Todas las normas anteriores son sub-multiplicativas. En cambio, la siguiente no lo es:

$$||A||_{\max} = \max_{ij} |a_{ij}|.$$

$$A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \qquad A^2 = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix}$$

Norma de Frobenius (o Hilbert–Schmidt): Inducida por el producto interno usual en el espacio de matrices de $m \times n$, similar a la norma euclidiana en \mathbb{R}^n :

$$\|A\|_F = \sqrt{\mathrm{tr}(A^{*^t}A)} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2},$$
 traza: suma elementos en la diagonal principal

Todas las normas anteriores son sub-multiplicativas. En cambio, la siguiente no lo es:

$$||A||_{\max} = \max_{ij} |a_{ij}|.$$

$$A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \qquad A^2 = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix} \quad ||A \cdot A|| = 8 > 4 = ||A|| \cdot ||A||$$

Tipos de matrices

- Una matriz cuadrada $A=(a_{ij})$, $1\leq i,j\leq n$, $a_{ij}\in\mathbb{C}$ es:
- lacksquare Ortogonal si $A^t=A^{-1}$ o $A^tA=AA^t=I_n$, $a_{ij}\in\mathbb{R}$.
- ightharpoonup Unitaria si $U^{*^t}U = UU^{*^t} = I_n$.
- ightharpoonup Hermitiana (o hermítica) si $A^{*^t} = A$.
- ightharpoonup Simétrica si $A^t = A$, $a_{ij} \in \mathbb{R}$.
- Antisimétrica si $-A^t = A$, $a_{ij} \in \mathbb{R}$.
- ightharpoonup Tridiagonal si $a_{ij} = 0$ si |i j| > 1.
- ▶ Definida positiva si A es una matriz hermitiana tal que $\mathbf{x}^t A \mathbf{x} > 0, \forall \mathbf{x} \neq \mathbf{0}$. Una matriz real M puede tener la propiedad $\mathbf{x}^t A \mathbf{x} > 0$ para todo vector real $\mathbf{x} \neq \mathbf{0}$ sin ser simétrica. Esto sucede cuando $(M + M^t)/2$ es definida positiva.
- Estrictamente diagonal dominante si $|a_{ii}| > \sum_{1 < j < n, i \neq j} |a_{ij}|$.
- Diagonal dominante si $|a_{ii}| \ge \sum_{1 \le j \le n, i \ne j} |a_{ij}|$.

Tipos de matrices

Una matriz cuadrada $A=(a_{ij})$, $1\leq i,j\leq n$, $a_{ij}\in\mathbb{C}$ es:

- ightharpoonup Ortogonal si $A^t = A^{-1}$ o $A^t A = AA^t = I_n$, $a_{ij} \in \mathbb{R}$.
- ightharpoonup Unitaria si $U^{*^t}U = UU^{*^t} = I_n$.
- lackbox Hermitiana (o hermítica) si $A^{*^t}=A$. \longrightarrow autovalores reales
- ightharpoonup Simétrica si $A^t=A$, $a_{ij}\in\mathbb{R}$.
- ightharpoonup Antisimétrica si $-A^t=A$, $a_{ij}\in\mathbb{R}$.
- Tridiagonal si $a_{ij} = 0$ si |i j| > 1.
- ▶ Definida positiva si A es una matriz hermitiana tal que $\mathbf{x}^t A \mathbf{x} > 0, \forall \mathbf{x} \neq \mathbf{0}$. Una matriz real M puede tener la propiedad $\mathbf{x}^t A \mathbf{x} > 0$ para todo vector real $\mathbf{x} \neq \mathbf{0}$ sin ser simétrica. Esto sucede cuando $(M + M^t)/2$ es definida positiva.
- Estrictamente diagonal dominante si $|a_{ii}| > \sum_{1 < j < n, i \neq j} |a_{ij}|$.
- Diagonal dominante si $|a_{ii}| \ge \sum_{1 \le j \le n, i \ne j} |a_{ij}|$.

Tipos de matrices

Una matriz cuadrada $A=(a_{ij})$, $1\leq i,j\leq n$, $a_{ij}\in\mathbb{C}$ es:

- lacksquare Ortogonal si $A^t=A^{-1}$ o $A^tA=AA^t=I_n$, $a_{ij}\in\mathbb{R}$.
- ightharpoonup Unitaria si $U^{*^t}U = UU^{*^t} = I_n$.
- lackbox Hermitiana (o hermítica) si $A^{*^t}=A$. \longrightarrow autovalores reales
- ightharpoonup Simétrica si $A^t = A$, $a_{ij} \in \mathbb{R}$.
- Antisimétrica si $-A^t = A$, $a_{ij} \in \mathbb{R}$.
- Tridiagonal si $a_{ij} = 0$ si |i j| > 1.

- autovalores (reales) positivos
- Definida positiva si A es una matriz hermitiana tal que $\mathbf{x}^t A \mathbf{x} > 0, \forall \mathbf{x} \neq \mathbf{0}$. Una matriz real M puede tener la propiedad $\mathbf{x}^t A \mathbf{x} > 0$ para todo vector real $\mathbf{x} \neq \mathbf{0}$ sin ser simétrica. Esto sucede cuando $(M + M^t)/2$ es definida positiva.
- Estrictamente diagonal dominante si $|a_{ii}| > \sum_{1 < j < n, i \neq j} |a_{ij}|$.
- ▶ Diagonal dominante si $|a_{ii}| \ge \sum_{1 < j < n, i \ne j} |a_{ij}|$.

Transformaciones ortogonales

Una matriz A de $\mathbb{R}^{n \times n}$ siempre verifica

$$\langle \mathbf{x}, A\mathbf{y} \rangle = \langle A^t \mathbf{x}, \mathbf{y} \rangle, \quad \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^n.$$

Transformaciones ortogonales

Una matriz A de $\mathbb{R}^{n \times n}$ siempre verifica

$$\langle \mathbf{x}, A\mathbf{y} \rangle = \langle A^t \mathbf{x}, \mathbf{y} \rangle, \quad \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^n.$$

Las matrices ortogonales conservan el producto escalar y la norma euclidiana; es decir, dada Q ortogonal

$$\langle Q\mathbf{x}, Q\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

 $\|Q\mathbf{x}\|_2 = \|\mathbf{x}\|_2, \quad \forall \mathbf{x} \in \mathbb{R}^n.$

Transformaciones ortogonales

Una matriz A de $\mathbb{R}^{n \times n}$ siempre verifica

$$\langle \mathbf{x}, A\mathbf{y} \rangle = \langle A^t \mathbf{x}, \mathbf{y} \rangle, \quad \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^n.$$

Las matrices ortogonales conservan el producto escalar y la norma euclidiana; es decir, dada ${\cal Q}$ ortogonal

$$\langle Q\mathbf{x}, Q\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

 $||Q\mathbf{x}||_2 = ||\mathbf{x}||_2, \quad \forall \mathbf{x} \in \mathbb{R}^n.$

En este caso, decimos que las normas $||A||_2$ y $||\mathbf{x}||_2$ son invariantes bajo transformaciones ortogonales.

Matrices convergentes

Una matriz $A = (a_{ij})$, $1 \le i, j \le n$, cuadrada se dice convergente si las potencias de la matriz tienen componentes con límite cero,

$$\lim_{k \to \infty} (A^k)_{ij} = 0.$$

Una matriz A es convergente si y solo si $\rho(A) < 1$.

Ejemplo.

$$A = \begin{pmatrix} 1/2 & 0 \\ 1/4 & 1/2 \end{pmatrix} \Rightarrow A^k = \begin{pmatrix} 1/2^k & 0 \\ k/2^{k+1} & 1/2^k \end{pmatrix}$$

Radio espectral

Se define el radio espectral de una matriz A, y se denota como $\rho(A)$, como el máximo de los módulos de los valores propios de la matriz,

$$\rho(A) = \max_{i} \{ |\lambda_i| : Av_i = \lambda_i v_i \}.$$

Geométricamente, representa el radio del círculo mínimo (centrado en 0) que contiene a todos los valores propios de la matriz A.

Teorema

El radio espectral de una matriz es una cota inferior de todas las normas submultiplicativas de la matriz,

$$\rho(A) \le ||A||_r \quad r = \{1, 2, \infty, F\}.$$

Sigui A una matriz, y $\|\cdot\|$ cualquier norma sub-multiplicativa,

Definición: Número de condición

$$\operatorname{Cond}(A) = \mathcal{K}(A) = \begin{cases} \|A\| |A^{-1}\|, & \det(A) \neq 0 \\ \infty, & \det(A) = 0 \end{cases}$$

Sigui A una matriz, y $\|\cdot\|$ cualquier norma sub-multiplicativa,

Definición: Número de condición

$$\operatorname{Cond}(A) = \mathcal{K}(A) = \begin{cases} \|A\| |A^{-1}\|, & \det(A) \neq 0 \\ \infty, & \det \text{ de lo contrario} \end{cases}$$

La matriz A está bien condicionada si su número de condición está cerca de 1 y está mal condicionada si es significativamente mayor que 1, lo que nos indicaría que pequeñas variaciones en los datos pueden producir grandes variaciones en los resultados y por tanto que la solución del sistema $A\mathbf{x} = \mathbf{b}$ es propensa a grandes errores de redondeo.

Sigui A una matriz, y $\|\cdot\|$ cualquier norma sub-multiplicativa,

Definición: Número de condición

$$\operatorname{Cond}(A) = \mathcal{K}(A) = \begin{cases} \|A\| |A^{-1}\|, & \det(A) \neq 0 \\ \infty, & \det \text{ de lo contrario} \end{cases}$$

Propiedades

- ightharpoonup Cond $(A) \ge 1$ Cond(I) = 1.
- ▶ Si B = kA, con $k \neq 0$ real, entonces Cond(B) = Cond(A).
- ightharpoonup Cond $(AB) \leq \operatorname{Cond}(A)\operatorname{Cond}(B)$.
- ightharpoonup Cond₂(A) = $\sigma_{\text{max}}(A)/\sigma_{\text{min}}(A)$.
- ightharpoonup Cond $_2(A) = \mathsf{Cond}_2(AQ) = \mathsf{Cond}_2(QA)$ para Q matriz ortogonal (o unitaria).

Sigui A una matriz, y $\|\cdot\|$ cualquier norma sub-multiplicativa,

Definición: Número de condición

$$\operatorname{Cond}(A) = \mathcal{K}(A) = \begin{cases} \|A\| |A^{-1}\|, & \det(A) \neq 0 \\ \infty, & \det(A) = 0 \end{cases}$$

Propiedades

- ightharpoonup Cond $(A) \ge 1$ Cond(I) = 1.
- ▶ Si B = kA, con $k \neq 0$ real, entonces Cond(B) = Cond(A).
- Cond(AB) ≤ Cond(A)Cond(B).
 σ_{max}(A) y σ_{min}(A) son el mayor y el
 Cond₂(A) = σ_{max}(A)/σ_{min}(A).
 menor valor singular de A.
- ightharpoonup Cond $_2(A) = \mathsf{Cond}_2(AQ) = \mathsf{Cond}_2(QA)$ para Q matriz ortogonal (o unitaria).

Guia de estudio

Libro Càlcul numèric: teoria i pràctica de M. Grau Sánchez y M. Noguera Batlle

- Conceptos asociados: Apèndix A Àlgebra Matricial, de la pàgina 417 a la 422. Libro *Cálculo numérico* de M. Grau Sánchez, y M. Noguera Batlle
- Conceptos asociados: A. Álgebra matricial, de la página 335 a la 339.

Otros libros de consulta

- Cálculo Científico con MATLAB y Octave de A. Quarteroni y F. Saleri.
- Métodos Numéricos con MATLAB de J. H. Mathews y K. D. Fink.
- Numerical Computing with MATLAB de C. Moler.