実験2日目(予習)

3次元計測

✓ 3次元化する

前回「視差」を測る

画像とカメラの座標系

2台のカメラを 平行に設置した場合

視差dと奥行きZの関係

Z =【視差d, 焦点距離f, 基線長l で表せ】

XとYも計算できる

 $X = [Z, u_L, f$ で表せ], $Y = [Z, v_L, f$ で表せ]

3次元座標の計算手順

手順1 $p_L(u_L, v_L)$ に対応する $p_R(u_R, v_R)$ を見つける。

手順2 視差を測る。 $d = |u_R - u_L|$

手順3 深度(奥行き)に換算する。 Z = [視差d, 焦点距離f, 基線長l で表せ]

手順4 3次元座標を得る。 $X = \begin{bmatrix} Z, u_L, f \text{ で表せ} \end{bmatrix}, Y = \begin{bmatrix} Z, v_L, f \text{ で表せ} \end{bmatrix}$