Ultracold molecule assembly

Yichao Yu

Ni Group/Harvard

Aug 11, 2017

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

Applications

Simulation of many-body system^[1]

[1] B. Yan et al., "Observation of dipolar spin-exchange interactions with lattice-confined polar molecules.", Nature **501**, 521–5 (2013).

Applications

[2] S. F. Yelin et al., "Schemes for robust quantum computation with polar molecules", 4 (2006).

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

Atom loading and cooling

Single atoms

 85% ground state after Cesium Raman sideband cooling

Atom loading and cooling

- Single atoms
- 85% ground state after Cesium Raman sideband cooling

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter
- Large light shift
- Trap anharmonicity
- Off resonance scattering from Raman beams $\approx 0.2 \sim 0.5 \text{kHz}$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter
- Large light shift
- Trap anharmonicity
- Off resonance scattering from Raman beams $\approx 0.2 \sim 0.5 \text{kHz}$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter
- Large light shift
- Trap anharmonicity
- Off resonance scattering from Raman beams $\approx 0.2 \sim 0.5 \text{kHz}$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter
- Large light shift
- Trap anharmonicity
- Off resonance scattering from Raman beams $\approx 0.2 \sim 0.5 \text{kHz}$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter
- Large light shift
- Trap anharmonicity
- Off resonance scattering from Raman beams
 ≈ 0.2 ~ 0.5kHz

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter
- Large light shift
- Trap anharmonicity
- Off resonance scattering from Raman beams $\approx 0.2 \sim 0.5 \text{kHz}$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter
- Large light shift
- Trap anharmonicity
- Off resonance scattering from Raman beams $\approx 0.2 \sim 0.5 \text{kHz}$

- High initial temperature $(70\mu K)$
- High Lamb Dicke parameter
- Large light shift
- Trap anharmonicity
- Off resonance scattering from Raman beams $\approx 0.2 \sim 0.5 \text{kHz}$

Sequence and simulation

Sequence and simulation

Sequence and simulation

AAIS I (GAIGI)	
Axis	Ground state probability
1 (Axial)	93.1(2.5)%
2 (Radial)	91.9(2.3)%
3 (Radial)	92.9(2.5)%

3D ground state: 79.5(3.6)%Loss after cooling: 15%

Total 3D ground state preparation fidelity: 67.6(3.1)%

Rabi flopping (radial)

Rabi flopping (radial)

Good agreement in ground state probability between spectrum and Rabi flopping data.

Rabi flopping (axial)

In progress

