$Small\ Bracket:$

The Distributive Property states that a(b+c)=ab+ac, for all $a,b,c\in\mathbb{R}$

 ${\bf Square\ Bracket}:$

the equivalence class of a is [a].

Curly Brackets:

The set A is defined to be $\{1, 2, 3\}$.

Dollar sign :

The movie ticket cost \$11.50.

Use Case of left and right

in small bracket

$$2\left(\frac{1}{x^2-1}\right)$$

in curly bracket

$$2\left\{\frac{1}{x^2-1}\right\}$$

in square bracket

$$2\left[\frac{1}{x^2-1}\right]$$

in ;; bracket

$$2\left\langle \frac{1}{x^2-1}\right\rangle$$

or using rangle and langle

$$2\left\langle \frac{1}{x^2-1}\right\rangle$$

$$\left. \frac{dy}{dx} \right|_{x=1}$$

complex fraction

$$\left(\frac{1}{1+\left(\frac{1}{1+x}\right)}\right)$$

table:

table.					
x	1	2	3	4	5
f(x)	10	11	12	13	14

x	1	2	3	4	5
f(x)	$\frac{1}{2}$	11	12	13	14

Table 1: These values represent the function of x

f(x)	f'(x)
x > 0	The function $f(x)$ is increasing.

Table 2: the relationship between the f and f'

Arrays:

$$5x^2$$
 place your words here
$$5x^2 - 9 = x + 3 \tag{2}$$

$$5x^2 - x - 12 = 0 \tag{3}$$

$$5x^2$$
 place your words here
$$5x^2 - 9 = x + 3 \tag{5}$$

$$5x^2 - x - 12 = 0 \tag{6}$$

 $5x^2$ place your words here

$$5x^2 - 9 = x + 3$$
$$5x^2 - x - 12 = 0$$