# Case Study: Cars4U using Linear Regression

### Context:

#### Cars4U is a budding tech start-up that aims to find footholes in this market.

- There is a huge demand for used cars in the Indian Market today. As sales of new cars
  have slowed down in the recent past, the pre-owned car market has continued to grow
  over the past years and is larger than the new car market now.
- There is a slowdown in new car sales and that could mean that the demand is shifting towards the pre-owned market.
- Used cars are very different beasts with huge uncertainty in both pricing and supply.
- The pricing scheme of these used cars becomes important in order to grow in the market..

### **Problem:**

#### The dataset aims to answer the following key questions:

- What were the features that affect the price of the car?
- What are the predicting variables actually affecting the Price?
- Does power and engine also affect the selling price, or perhaps, something else?
- Does Kilometers Driven and car age affect Price?
- Does Price has positive or negative correlation with a number of seats, transmission, fuel type, etc?
- What is the impact of location on the price of used cars?
- What is the impact of brand on the price of used cars?

## **Objective:**

Explore the dataset and extract insights from the data.

- 1. Build a linear regression model to predict the prices of used cars.
- 2. Generate a set of insights and recommendations that will help the business.

## **Data Dictionary:**

The data is for 100 randomly selected users of a online news portal called E-news Express. It contains the following variables:

- 1. S.No.: Serial Number
- 2. Name: Name of the car which includes Brand name and Model name

- 3. Location: The location in which the car is being sold or is available for purchase Cities
- 4. Year: Manufacturing year of the car
- 5. Kilometers\_driven: The total kilometers driven in the car by the previous owner(s) in KM
- 6. Fuel\_Type: The type of fuel used by the car. (Petrol, Diesel, Electric, CNG, LPG)
- 7. Transmission : The type of transmission used by the car. (Automatic / Manual)
- 8. Owner: Type of ownership
- 9. Mileage: The standard mileage offered by the car company in kmpl or km/kg
- 10. Engine: The displacement volume of the engine in CC.
- 11. Power: The maximum power of the engine in bhp.
- 12. Seats: The number of seats in the car.
- 13. New\_Price: The price of a new car of the same model in INR Lakhs.(1 Lakh = 100, 000)
- 14. Price: The price of the used car in INR Lakhs (1 Lakh = 100, 000) This is our target value. This means "price" is the value that we want to predict from the data-set, and the predictors should be all the other variables listed

# Key steps

- 1. Overview of the data
- 2. Cleaning Data/Missing Values
- 3. Exploratory Data Analysis
- 4. Data Pre-processing
- 5. Data Preparation for Modeling
- 6. Choose, train and evaluate the model
- 7. Linear Regression using statsmodels
- **8. Checking Linear Regression Assumptions**
- 9. Conclusion

### Import libraries

```
In [1]: # this will help in making the Python code more structured automatically (goo
%load_ext nb_black
```

```
In [2]: # silence unnecessary warnings
import warnings
warnings.filterwarnings("ignore")
```

```
In [3]: # Import necessary libraries.
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm

# Removes the limit for the number of displayed columns
pd.set_option("display.max_columns", None)
# Sets the limit for the number of displayed rows
pd.set_option("display.max_rows", 200)

# To enable plotting graphs in Jupyter notebook
%matplotlib inline

# To build linear regression_model
from sklearn.linear_model import LinearRegression

# To check model performance
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
```

```
In [4]: # Load the data into pandas dataframe
    data = pd.read_csv("used_cars_data.csv")
```

## Overview of the data

```
In [6]: print(f"There are {car.shape[0]} rows and {car.shape[1]} columns.") # f-stri
# Look at 10 random rows
# Setting the random seed via np.random.seed to get the same random results e
np.random.seed(1)
car.sample(n=10)
```

There are 7253 rows and 14 columns.

| Out[6]: | S.No. |      | Name                                                    | Location   | Year | Kilometers_Driven | Fuel_Type | Transmission | Owne |
|---------|-------|------|---------------------------------------------------------|------------|------|-------------------|-----------|--------------|------|
|         | 2397  | 2397 | Ford<br>EcoSport<br>1.5 Petrol<br>Trend                 | Kolkata    | 2016 | 21460             | Petrol    | Manual       |      |
|         | 3777  | 3777 | Maruti<br>Wagon R<br>VXI 1.2                            | Kochi      | 2015 | 49818             | Petrol    | Manual       |      |
|         | 4425  | 4425 | Ford<br>Endeavour<br>4x2 XLT                            | Hyderabad  | 2007 | 130000            | Diesel    | Manual       |      |
|         | 3661  | 3661 | Mercedes-<br>Benz E-<br>Class E250<br>CDI<br>Avantgrade | Coimbatore | 2016 | 39753             | Diesel    | Automatic    |      |
|         | 4514  | 4514 | Hyundai<br>Xcent 1.2<br>Kappa AT<br>SX Option           | Kochi      | 2016 | 45560             | Petrol    | Automatic    |      |

|      | S.No. | Name                                                    | Location   | Year | Kilometers_Driven | Fuel_Type | Transmission | Owne |
|------|-------|---------------------------------------------------------|------------|------|-------------------|-----------|--------------|------|
| 599  | 599   | Toyota<br>Innova<br>Crysta 2.8<br>ZX AT                 | Coimbatore | 2019 | 40674             | Diesel    | Automatic    |      |
| 186  | 186   | Mercedes-<br>Benz E-<br>Class E250<br>CDI<br>Avantgrade | Bangalore  | 2014 | 37382             | Diesel    | Automatic    |      |
| 305  | 305   | Audi A6<br>2011-2015<br>2.0 TDI<br>Premium<br>Plus      | Kochi      | 2014 | 61726             | Diesel    | Automatic    |      |
| 4582 | 4582  | Hyundai<br>i20 1.2<br>Magna                             | Kolkata    | 2011 | 36000             | Petrol    | Manual       |      |
| 5434 | 5434  | Honda<br>WR-V<br>Edge<br>Edition i-<br>VTEC S           | Kochi      | 2019 | 13913             | Petrol    | Manual       |      |

### 

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

| #           | Column            | Non-Null Count  | Dtype   |
|-------------|-------------------|-----------------|---------|
|             |                   |                 |         |
| 0           | S.No.             | 7253 non-null   | int64   |
| 1           | Name              | 7253 non-null   | object  |
| 2           | Location          | 7253 non-null   | object  |
| 3           | Year              | 7253 non-null   | int64   |
| 4           | Kilometers_Driven | 7253 non-null   | int64   |
| 5           | Fuel_Type         | 7253 non-null   | object  |
| 6           | Transmission      | 7253 non-null   | object  |
| 7           | Owner_Type        | 7253 non-null   | object  |
| 8           | Mileage           | 7251 non-null   | object  |
| 9           | Engine            | 7207 non-null   | object  |
| 10          | Power             | 7207 non-null   | object  |
| 11          | Seats             | 7200 non-null   | float64 |
| 12          | New_Price         | 1006 non-null   | object  |
| 13          | Price             | 6019 non-null   | float64 |
| al de conse | 61+04/2\          | C4/3) - L + /0) |         |

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

### Observation:

- S.No.: is the same as Index (We can drop it);
- Name: Name of the car which includes Brand name and Model name, we can categorize
  just by Brand, reduzing number of dummies when we start building the model;
- *Mileage, Engine, Power, New\_Price*: represented as strings but that we really will want to be numeric;
- New\_Price: has NaN values that need to be treated.

In [8]: # looking at which columns have the most missing values
 car.isnull().sum().sort\_values(ascending=False)

Out[8]: New\_Price 6247 Price 1234 Seats 53 Power 46 Engine 46 Mileage 2 0wner\_Type 0 Transmission 0 Fuel\_Type 0 Kilometers\_Driven 0 Year 0 Location 0 Name 0 S.No. 0 dtype: int64

#### **Observations:**

- Some columns have less than 7253 observations non-null, which indicat that there are missing values in it. (*treatment of missing values is necessary*).
- Mileage, Engine and Power should be float variables.
- New\_Price has 6247 missing values
- Price (dependent) has 1234 missing values

In [9]: # checking descriptive statistics
# Are there any mathematical issues that may exist, such as extreme outliers
# include all means even the ones that is not numerical like categorical
car.describe(include="all").T

| Out[9]: |                   | count | unique | top                          | freq | mean    | std     | min  | 25%   | 50%   | 7!  |
|---------|-------------------|-------|--------|------------------------------|------|---------|---------|------|-------|-------|-----|
|         | S.No.             | 7253  | NaN    | NaN                          | NaN  | 3626    | 2093.91 | 0    | 1813  | 3626  | 54  |
|         | Name              | 7253  | 2041   | Mahindra<br>XUV500<br>W8 2WD | 55   | NaN     | NaN     | NaN  | NaN   | NaN   | N   |
|         | Location          | 7253  | 11     | Mumbai                       | 949  | NaN     | NaN     | NaN  | NaN   | NaN   | Ν   |
|         | Year              | 7253  | NaN    | NaN                          | NaN  | 2013.37 | 3.25442 | 1996 | 2011  | 2014  | 20  |
|         | Kilometers_Driven | 7253  | NaN    | NaN                          | NaN  | 58699.1 | 84427.7 | 171  | 34000 | 53416 | 730 |
|         | Fuel_Type         | 7253  | 5      | Diesel                       | 3852 | NaN     | NaN     | NaN  | NaN   | NaN   | Ν   |
|         | Transmission      | 7253  | 2      | Manual                       | 5204 | NaN     | NaN     | NaN  | NaN   | NaN   | Ν   |
|         | Owner_Type        | 7253  | 4      | First                        | 5952 | NaN     | NaN     | NaN  | NaN   | NaN   | Ν   |
|         | Mileage           | 7251  | 450    | 17.0 kmpl                    | 207  | NaN     | NaN     | NaN  | NaN   | NaN   | Ν   |
|         | Engine            | 7207  | 150    | 1197 CC                      | 732  | NaN     | NaN     | NaN  | NaN   | NaN   | Ν   |
|         | Power             | 7207  | 386    | 74 bhp                       | 280  | NaN     | NaN     | NaN  | NaN   | NaN   | Ν   |
|         | Seats             | 7200  | NaN    | NaN                          | NaN  | 5.27972 | 0.81166 | 0    | 5     | 5     |     |
|         | New_Price         | 1006  | 625    | 33.36<br>Lakh                | 6    | NaN     | NaN     | NaN  | NaN   | NaN   | N   |
|         | Price             | 6019  | NaN    | NaN                          | NaN  | 9.47947 | 11.1879 | 0.44 | 3.5   | 5.64  | 9.  |

- S.No.: is just a index, we can drop it;
- *Name*: is Brand name and Model name, there is 2041 unique values, we'll keep just Brand to reduce unique and apply dummies latter on.
- Location has 11 unique value.
- Year range is 1998 to 2019
- Milage, Engine and Power is numerical, we need to remove string.
- Kilometers\_Driven, Engine and Power have outliers
- Price (dependent) goes in the range of 0.440 to 160.0

# Cleaning Data/Missing Values

## **Cleaning Data:**

### 1. Droping columns

```
In [10]: # Dropping S.No. column once it just represent the index
    car.drop(["S.No."], axis=1, inplace=True)
```

### 2. Numerical Columns containing string

- There are some columns that should be numerical.
- The values all end with some string representing the unit.
- First We want to detect which columns fit this pattern, and then We'll turn these into numbers.

```
def str_to_num(pos_val):
    """For each value, take the number before the ' '
    unless it is not a string value. This will only happen
    for NaNs so in that case we just return NaN.
    if isinstance(pos_val, str):
        return float(pos_val.split()[0])
    else:
        return np.nan

position_cols = ["Mileage", "Engine", "Power"]

car["Power"] = car["Power"].replace(
        "null bhp", np.nan
) # replacing some NaN values that were set as str null.

for colname in position_cols:
    car[colname] = car[colname].apply(str_to_num)
```

#### Observations:

• Running the funciton str\_to\_num, We got an error showing that some null values were set as a string instead of blank, We fixed it using replace

#### In [12]:

```
# check column types and number of values
car.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7253 entries, 0 to 7252 Data columns (total 13 columns): # Column Non-Null Count Dtype 0 Name 7253 non-null object 1 Location 7253 non-null object 7253 non-null 2 Year int64 3 Kilometers\_Driven 7253 non-null int64 object 4 Fuel\_Type 7253 non-null 5 Transmission 7253 non-null object 6 Owner\_Type 7253 non-null object 7 7251 non-null float64 Mileage 8 7207 non-null float64 Engine 9 Power 7078 non-null float64 10 Seats 7200 non-null float64 11 New\_Price 1006 non-null object Price 6019 non-null float64 12 dtypes: float64(5), int64(2), object(6) memory usage: 736.8+ KB

#### In [13]:

car.head()

#### Out[13]:

|   | Name                                      | Location   | Year | Kilometers_Driven | Fuel_Type | Transmission | Owner_Type | Mile |
|---|-------------------------------------------|------------|------|-------------------|-----------|--------------|------------|------|
| 0 | Maruti<br>Wagon R<br>LXI CNG              | Mumbai     | 2010 | 72000             | CNG       | Manual       | First      | 2    |
| 1 | Hyundai<br>Creta 1.6<br>CRDi SX<br>Option | Pune       | 2015 | 41000             | Diesel    | Manual       | First      | ,    |
| 2 | Honda<br>Jazz V                           | Chennai    | 2011 | 46000             | Petrol    | Manual       | First      | 1    |
| 3 | Maruti<br>Ertiga VDI                      | Chennai    | 2012 | 87000             | Diesel    | Manual       | First      | 2    |
| 4 | Audi A4<br>New 2.0<br>TDI<br>Multitronic  | Coimbatore | 2013 | 40670             | Diesel    | Automatic    | Second     | 1    |

## Missing values

- 1. New\_Price: 86% of New\_Price is missing, We'll drop the column;
- 2. *Price*: We'll drop all the rows without price, since the price of used cars is what we're trying to predict in our upcoming analysis.
- 3. Seats, Power, Engine, Mileage: We should analize summary statistics to decide between mean or median to replace missing values

```
In [14]: | car.isnull().sum().sort_values(ascending=False)
```

```
Out[14]: New_Price
                               6247
         Price
                               1234
         Power
                                 175
         Seats
                                  53
         Engine
                                  46
         Mileage
                                  2
         0wner_Type
         Transmission
                                   0
         Fuel Type
                                   0
         Kilometers_Driven
         Year
         Location
                                   0
         Name
         dtype: int64
```

### New\_Price

New\_ Price has 6247 missing data that represent 86% of datapoints. We'll drop the whole column

```
In [15]: # Dropping New_Price column once 86% of data is missing
    car.drop("New_Price", axis=1, inplace=True)
```

#### **Price**

Price has 1234 missing data and we should delete the whole row, because the Price is what we want to predict. Whitout Price information, we cant use the others informations on our predict model.

```
In [16]: # Dropping rows where Price is Nan
    car.dropna(subset=["Price"], inplace=True)
```

## Seats, Power, Engine and Milage

Is missing values, and after checked descriptive statistics we'll choose to replace NaN values with median.

```
# we will replace missing values in every column with its median
medianFiller = lambda x: x.fillna(x.median())
numeric_columns = car.select_dtypes(include=np.number).columns.tolist()
car[numeric_columns] = car[numeric_columns].apply(medianFiller, axis=0)
```

# **Exploratory Data Analysis**

## Univariate analysis

```
In [18]: # While doing univariate analysis of numerical variables we want to study the # Let us write a function that will help us create boxplot and histogram for # This function takes the numerical column as the input and returns the boxpl # Let us see if this help us write faster and cleaner code.
```

```
def histogram_boxplot(feature, figsize=(15, 8), bins=None):
    """Boxplot and histogram combined
    feature: 1-d feature array
    figsize: size of fig (default (9,8))
    bins: number of bins (default None / auto)
    sns.set(font scale=2) # setting the font scale for seaborn
    f2, (ax_box2, ax_hist2) = plt.subplots(
        nrows=2, # Number of rows of the subplot grid=2
        sharex=True, # x-axis will be shared among all subplots
        gridspec_kw={"height_ratios": (0.25, 0.75)},
        figsize=figsize,
    ) # creating the 2 subplots
    sns.boxplot(
        feature, ax=ax box2, showmeans=True, color="orange"
    ) # boxplot will be created and a star will indicate the mean value of t
    sns.distplot(feature, kde=F, ax=ax_hist2, bins=bins) if bins else sns.dis
        feature, kde=False, ax=ax_hist2
    ) # For histogram
    ax_hist2.axvline(
       feature.mean(), color="g", linestyle="--"
    ) # Add mean to the histogram
   ax_hist2.axvline(
        feature.median(), color="red", linestyle="-"
      # Add median to the histogram
```

#### **Exploring the dependent variable** *Price*





#### **Observations**

- Price is right skewed, which means some brands have cars with price upper than 60 Lakhs
- Mean Price is around 5.640.

```
In [20]: histogram_boxplot(car.Kilometers_Driven)
```



- Kilometers\_Driven is right skewed.
- There is one car with a really high Kilometers (6500000), an outliers, with deep analises, seems to have a extra 0 on the number.

### Distribution of each numerical variable

```
In [21]: # lets plot histogram of all numerical variables

all_col = car.select_dtypes(include=np.number).columns.tolist()
plt.figure(figsize=(17, 75))

for i in range(len(all_col)):
   plt.subplot(18, 3, i + 1)
   plt.hist(car[all_col[i]], color="c")
   # sns.histplot(car[all_col[i]], kde=True) # you can comment the previous
   plt.tight_layout()
   plt.title(all_col[i], fontsize=25)
```



- Mileage is somewhat normal distributed.
- Kilometers\_Driven, Engine, Power and Price are right-skewed, and Seats is left-skewed.

```
In [22]:
          # Function to create barplots that indicate percentage for each category.
          def bar_perc(dataframe, xlabel_df, colors, ylabel_df="Count"):
              This function takes the category column as the input and returns the barp
              dataframe: 1-d categorical feature array
              xlabel_df: x axis label
              ylabel_df: y axis label (default 'Count')
              colors: list of colors to use for the different variables
              # Figure aesthetics
              sns.set_style("whitegrid")
              sns.set_context("talk")
              # Plot informations
              plt.figure(figsize=(12, 6))
              plot_df = sns.countplot(dataframe, palette=colors)
              plt.xlabel(xlabel_df)
              plt.ylabel(ylabel_df)
              plt.xticks(rotation=45)
              # Calculating the length of the column
              total = len(dataframe)
              # Looping to calculate percentage of each class of the category and annot
              for cat in plot_df.patches:
                  percentage = "{:.1f}%".format(100 * cat.get_height() / total)
```

```
# setting plot annotate location and size
x = cat.get_x() + cat.get_width() / 2 - 0.25
y = cat.get_y() + cat.get_height() + 1
plot_df.annotate(percentage, (x, y), size=14)
```

```
In [23]: # List of colors to use for the different products
    colors = "Set3"

# Using the functio to plot barplot wtih percentage values
    bar_perc(car["Location"], "Location", colors)
```



• Distribution between Location is fair, around 9.1% of datapoint by location.

```
In [24]: # List of colors to use for the different products
    colors = "Set3"

# Using the functio to plot barplot wtih percentage values
    bar_perc(car["Year"], "Year", colors)
```



Pre-owned car market has continued to grow over the past years

```
In [25]: # List of colors to use for the different products
    colors = "Set3"

# Using the functio to plot barplot wtih percentage values
    bar_perc(car["Fuel_Type"], "Fuel_Type", colors)
```



• Used car market is divided in Diesel and Petrol Fuel Type, showing high demand for this kind of cars.

```
In [26]: # List of colors to use for the different products
    colors = "Set3"

# Using the functio to plot barplot wtih percentage values
    bar_perc(car["Transmission"], "Transmission", colors)
```



- There is a preference for Manual cars, witch can be explained with more analysis between correlation with price
- Manual Transmission is most popular on the market (71.4%).



• Firt Owner represent 82% of cars availables on the market.

## **Bivariate Analysis**

### Looking for correlations (HeatMap)

```
In [28]: numeric_columns = car.select_dtypes(include=np.number).columns.tolist()
    corr = (car[numeric_columns].corr())#.sort_values(by=["Price"], ascending=Fal

# Set up the matplotlib figure
    f, ax = plt.subplots(figsize=(28, 15))

# Draw the heatmap with the mask and correct aspect ratio
    sns.heatmap(
        corr,
        cmap='PRGn',
        annot=True,
        fmt=".1f",
        vmin=-1,
    )
```

#### Out[28]: <AxesSubplot:>



```
car[car.columns[:]].corr()["Price"][:]
In [29]:
                               0.305327
         Year
Out[29]:
         Kilometers_Driven
                              -0.011493
                               -0.306588
         Mileage
         Engine
                               0.657347
                               0.769711
         Power
                               0.052811
         Seats
                               1.000000
         Price
         Name: Price, dtype: float64
```

#### **Observations**

- *Price* is highly correlated with *Power* and *Engine*, which means that when Power or Engine moved up, the Price tend to move in the same direction.
- Year have a positive weaker correlated with price.

• *Price* have a negative weaker linear relationship with *Mileage* (a negative correlation: where the values of one variable tend to increase when the values of the other variable decrease.).

```
In [30]: # Ploting Bivariate Scatter Plots
sns.pairplot(car[numeric_columns], corner=True)
```

Out[30]: <seaborn.axisgrid.PairGrid at 0x2472dee2670>



Looking at the graphs of variables that are correlated with *Price*.

## Observations on Price by Power

```
In [31]: sns.set_style("darkgrid")
  plt.figure(figsize=(10, 7))
  sns.scatterplot(
      y="Price",
      x="Power",
      data=car,
)
```

Out[31]: <AxesSubplot:xlabel='Power', ylabel='Price'>



### **Observation:**

- Could power possibly predict the price of a car?
- There is a linear relationship between Price and Power.
- This relationship make sense, cars with more Power tend to me more expensive.
- There is some outliers that needs to be treated.

## Observations on Price by Power per Engine

```
In [32]: plt.figure(figsize=(10, 7))
    sns.scatterplot(y="Price", x="Power", hue="Engine", data=car)

Out[32]: <AxesSubplot:xlabel='Power', ylabel='Price'>
```



- There is a positive correlation between Price, Power and Engine.
- Higher the price, higer the car Power an Engine.
- Data points are concentrated on lower power, engine and power.

## Observations on Price by Kilometers\_Driven per Car Year

```
In [33]: sns.set_style("darkgrid")
  plt.figure(figsize=(10, 7))
  sns.scatterplot(y="Price", x="Kilometers_Driven", hue="Year", data=car)
```

Out[33]: <AxesSubplot:xlabel='Kilometers\_Driven', ylabel='Price'>



- Kilometers\_Driven has one data set highly far from mean (outlier).
- Is this Kilometers\_Driven outlier correct? It seems to be a new car (2016), to have so many Kilometers Driven.
- There is a relationship between Year and Price, We can see that newer is the car it tends to have high price.

Looking at the graphs of a few variables that are not correlated with Price.

## **Observations on Price by Seats**

```
sns.set_style("darkgrid")
In [34]:
          plt.figure(figsize=(10, 7))
          sns.scatterplot(y="Price", x="Engine", hue="Seats", data=car)
```

Out[34]: <AxesSubplot:xlabel='Engine', ylabel='Price'>



- Cars with 2 Seats tend to have bigger Engine and Higher Price.
- Cars are concentrated on lower price, lower engine and 5 seats (mostly comum cars)



### **Observation:**

• Cars on First Owner Type has higher mean of price.

```
In [36]: plt.figure(figsize=(17, 9))
    sns.boxplot(x="Seats", y="Price", data=car)
    plt.show()
```



- Cars with 2 seats tend to have higher price (Bigger Engine)
- Is this Kilometers\_Driven outlier correct? It seems to be a new car (2016), to have so many Kilometers Driven.
- There is a relationship between Year and Price, We can see that newer is the car it tends to have high price.

```
In [37]: # price by age of car
plt.figure(figsize=(15, 7))
sns.lineplot(x="Year", y="Price", data=car, ci=None)
```

### Out[37]: <AxesSubplot:xlabel='Year', ylabel='Price'>



• The newer the car, the higher its price.

```
plt.figure(figsize=(10, 7))
In [38]:
            sns.scatterplot(y="Price", x="Location", data=car)
           plt.xticks(rotation=45)
Out[38]: ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

[Text(0, 0, ''),

Text(0, 0, ''),
             Text(0, 0,
              160
              140
              120
              100
               80
               60
               40
               20
                 0
                                 Chermai
                           brue
                                                       Location
```

**Observations** Doesn't seems to have strong correlation between Price and Location

```
In [39]: plt.figure(figsize=(17, 9))
    sns.boxplot(x="Fuel_Type", y="Price", data=car, hue="Transmission")
    plt.show()
```



In [40]:

In [42]:

- Price tends to be greater on Diesel type and Automatic transmission.
- There is some outliers that needs some attention.

# **Data Pre-processing**

### 1. Dropping Name and keeping Brand instead

# We will use only brand and set as categorical type;

#### Observations:

• Isuzu was written in different ways, We gonna use title to fix it.

# using .title() in case of capitalization issues

```
'Jaguar', 'Volvo', 'Chevrolet', 'Skoda', 'Mini', 'Fiat', 'Jeep', 'Smart', 'Ambassador', 'Isuzu', 'Force', 'Bentley', 'Lamborghini'], dtype=object)
```

```
In [44]: car["Brand"].value_counts()
Out[44]: Maruti
                            1211
          Hyundai
                            1107
          Honda
                             608
          Toyota
                             411
          Mercedes-Benz
                             318
          Volkswagen
                             315
          Ford
                             300
          Mahindra
                             272
          Bmw
                             267
          Audi
                             236
          Tata
                             186
          Skoda
                             173
          Renault
                             145
          Chevrolet
                             121
          Nissan
                              91
          Land
                              60
          Jaquar
                              40
          Fiat
                              28
          Mitsubishi
                              27
          Mini
                              26
          Volvo
                              21
          Porsche
                              18
          Jeep
                              15
          Datsun
                              13
          Force
                               3
          Isuzu
                               3
          Lamborghini
                               1
          Bentley
                               1
          Ambassador
                               1
          Smart
                               1
          Name: Brand, dtype: int64
```

- Our data doesn't have enought data point per brand, and this will reflect in our model.
- Brands with less than 3 datapoints, I'll group them and call it as `Others'

```
In [45]: # Replacing Brands with less than 10 data point to Others (grouping them)
    car["Brand"] = car["Brand"].replace("Force", "Others")
    car["Brand"] = car["Brand"].replace("Isuzu", "Others")
    car["Brand"] = car["Brand"].replace("Lamborghini", "Others")
    car["Brand"] = car["Brand"].replace("Smart", "Others")
    car["Brand"] = car["Brand"].replace("Ambassador", "Others")
    car["Brand"] = car["Brand"].replace("Bentley", "Others")
```

```
car["Brand"].value_counts()
In [46]:
Out[46]: Maruti
                             1211
          Hyundai
                             1107
          Honda
                              608
          Toyota
                              411
          Mercedes-Benz
                              318
          Volkswagen
                              315
          Ford
                              300
          Mahindra
                              272
          {\sf Bmw}
                              267
                              236
          Audi
```

| Tata   |        | 18     | 36    |
|--------|--------|--------|-------|
| Skoda  |        | 17     | 73    |
| Renau  | lt     | 14     | 45    |
| Chevro | olet   | 12     | 21    |
| Nissar | ı      | g      | 91    |
| Land   |        | (      | 50    |
| Jagua  | r      | 4      | 10    |
| Fiat   |        | 2      | 28    |
| Mitsul | oishi  | 2      | 27    |
| Mini   |        | 2      | 26    |
| Volvo  |        | 2      | 21    |
| Porsch | ne     | -      | 18    |
| Jeep   |        | -      | 15    |
| Datsur | า      | -      | 13    |
| Others |        | -      | 10    |
| Name:  | Brand, | dtype: | int64 |

### 2. Converting categorical variables

We already know that the data-type of these columns (*Brand, Location, Fuel\_Type, Transmission, Owner\_Type, Seats*) is object. So, we need to convert them to categorical type for further processing in the next steps.

```
In [47]: car["Brand"] = car["Brand"].astype("category")
    car["Location"] = car["Location"].astype("category")
    car["Fuel_Type"] = car["Fuel_Type"].astype("category")
    car["Transmission"] = car["Transmission"].astype("category")
    car["Owner_Type"] = car["Owner_Type"].astype("category")
    car["Seats"] = car["Seats"].astype("category")
```

```
In [48]: car.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 6019 entries, 0 to 6018
Data columns (total 12 columns):

| #    | Column              | Non-Null Count   | Dtype    |
|------|---------------------|------------------|----------|
|      |                     |                  |          |
| 0    | Location            | 6019 non-null    | category |
| 1    | Year                | 6019 non-null    | int64    |
| 2    | Kilometers_Driven   | 6019 non-null    | int64    |
| 3    | Fuel_Type           | 6019 non-null    | category |
| 4    | Transmission        | 6019 non-null    | category |
| 5    | Owner_Type          | 6019 non-null    | category |
| 6    | Mileage             | 6019 non-null    | float64  |
| 7    | Engine              | 6019 non-null    | float64  |
| 8    | Power               | 6019 non-null    | float64  |
| 9    | Seats               | 6019 non-null    | category |
| 10   | Price               | 6019 non-null    | float64  |
| 11   | Brand               | 6019 non-null    | category |
| dtvp | es: category(6), fl | oat64(4). int64( | 2)       |

dtypes: category(6), float64(4), int64(2)

memory usage: 526.5 KB

```
In [49]: car.head()
```

| Out[49]: |   | Location | Year | Kilometers_Driven | Fuel_Type | Transmission | Owner_Type | Mileage | Engin |
|----------|---|----------|------|-------------------|-----------|--------------|------------|---------|-------|
|          | 0 | Mumbai   | 2010 | 72000             | CNG       | Manual       | First      | 26.60   | 998.  |
|          | 1 | Pune     | 2015 | 41000             | Diesel    | Manual       | First      | 19.67   | 1582. |
|          | 2 | Chennai  | 2011 | 46000             | Petrol    | Manual       | First      | 18.20   | 1199. |
|          | 3 | Chennai  | 2012 | 87000             | Diesel    | Manual       | First      | 20.77   | 1248. |

|   | Location     | Year | Kilometers_Driven | Fuel_Type | Transmission | Owner_Type | Mileage | Engin |
|---|--------------|------|-------------------|-----------|--------------|------------|---------|-------|
| _ | 1 Coimbatore | 2013 | 40670             | Diesel    | Automatic    | Second     | 15.20   | 1968. |

## 3. Binning Seats

Sometimes binning is necessary, it tends to improve the performance of the model. Seats is mostly concentrated on 5, so we'll do here for Seats.

```
car["Seats"].value_counts()
In [50]:
          5.0
                   5056
Out[50]:
                    674
                     134
                      99
          6.0
                      31
          2.0
                      16
          10.0
          9.0
                       3
          0.0
                       1
          Name: Seats, dtype: int64
In [51]:
           # can add custom labels
           car['Seats bin'] = pd.cut(
                car['Seats'], [-np.inf, 4, 7, np.inf],
                labels = ["Under 5", "5 to 7", "Over 7"]
           car.drop(['Seats'], axis=1, inplace=True)
           car['Seats_bin'].value_counts(dropna=False)
          5 to 7
                       5761
Out[51]:
          Over 7
                        142
          Under 5
                        116
          Name: Seats_bin, dtype: int64
           car.tail(5)
In [52]:
                  Location
                           Year
                                 Kilometers_Driven Fuel_Type
                                                             Transmission
                                                                           Owner_Type
Out [52]:
                                                                                        Mileage En
          6014
                     Delhi
                           2014
                                            27365
                                                       Diesel
                                                                    Manual
                                                                                   First
                                                                                          28.40
                                                                                                12
          6015
                                           100000
                                                       Diesel
                     Jaipur 2015
                                                                    Manual
                                                                                   First
                                                                                          24.40
                                                                                                 11
          6016
                     Jaipur
                           2012
                                            55000
                                                       Diesel
                                                                    Manual
                                                                                Second
                                                                                          14.00
                                                                                                24
           6017
                    Kolkata
                                                       Petrol
                           2013
                                            46000
                                                                    Manual
                                                                                   First
                                                                                          18.90
                                                                                                 9
          6018 Hyderabad
                                            47000
                                                       Diesel
                                                                    Manual
                                                                                          25.44
                           2011
                                                                                   First
                                                                                                 9
```

## Checking for duplicated rows

## 4. Log transformation

Some features are very skewed and will likely behave better on the log scale.

I'll transform Kilometers\_Driven , Engine , Power and Price .

```
In [53]: cols_to_log = ["Kilometers_Driven", "Engine", "Power", "Price"]

for colname in cols_to_log:
    car[colname] = np.log(car[colname] + 1)

for colname in cols_to_log:
    plt.hist(car[colname], bins=50)
    plt.title(colname)
    plt.show()
    print(np.sum(car[colname] <= 0))</pre>
```







• After appling Log to transform skewed data to approximately conform to normality, we can observe that it reduce skewness.

| In [54]: | car.describe()    | .т     |             |          |             |             |             |     |
|----------|-------------------|--------|-------------|----------|-------------|-------------|-------------|-----|
| Out[54]: |                   | count  | mean        | std      | min         | 25%         | 50%         |     |
|          | Year              | 6019.0 | 2013.358199 | 3.269742 | 1998.000000 | 2011.000000 | 2014.000000 | 20′ |
|          | Kilometers_Driven | 6019.0 | 10.758812   | 0.715736 | 5.147494    | 10.434145   | 10.878066   |     |
|          | Mileage           | 6019.0 | 18.134966   | 4.581528 | 0.000000    | 15.170000   | 18.150000   |     |
|          | Engine            | 6019.0 | 7.331420    | 0.339041 | 4.290459    | 7.089243    | 7.309212    |     |
|          | Power             | 6019.0 | 4.646652    | 0.407664 | 3.561046    | 4.369448    | 4.592085    |     |
|          | Price             | 6019.0 | 2.018429    | 0.748221 | 0.364643    | 1.504077    | 1.893112    |     |
|          |                   |        |             |          |             |             |             |     |

## 5. Checking at outliers in every numeric column

```
In [55]: # let's plot the boxplots of all columns to check for outliers
   numeric_columns1 = car.select_dtypes(include=np.number).columns.tolist()
   plt.figure(figsize=(20, 30))

for i, variable in enumerate(numeric_columns1):
      plt.subplot(5, 4, i + 1)
      plt.boxplot(car[variable], whis=1.5)
      plt.tight_layout()
      plt.title(variable)

plt.show()
```



#### 5.1 Outlier Treatment

```
# Let's treat outliers by flooring and capping
def treat_outliers(df, col):
    .....
    treats outliers in a variable
    col: str, name of the numerical variable
    df: dataframe
    col: name of the column
    Q1 = df[col].quantile(0.25) # 25th quantile
    Q3 = df[col].quantile(0.75) # 75th quantile
    IQR = Q3 - Q1
    Lower_Whisker = Q1 - 1.5 * IQR
    Upper_Whisker = Q3 + 1.5 * IQR
    # all the values smaller than Lower_Whisker will be assigned the value of
    # all the values greater than Upper_Whisker will be assigned the value of
    df[col] = np.clip(df[col], Lower_Whisker, Upper_Whisker)
    return df
def treat_outliers_all(df, col_list):
    treat outlier in all numerical variables
```

```
col_list: list of numerical variables
df: data frame
"""

for c in col_list:
    df = treat_outliers(df, c)

return df
```

```
In [57]: # Treating the outliers
   numerical_col1 = car.select_dtypes(include=np.number).columns.tolist()
   car = treat_outliers_all(car, numerical_col1)
```

```
In [58]: # let's look at box plot to see if outliers have been treated or not
plt.figure(figsize=(20, 30))

for i, variable in enumerate(numeric_columns1):
    plt.subplot(5, 4, i + 1)
    plt.boxplot(car[variable], whis=1.5)
    plt.tight_layout()
    plt.title(variable)
plt.show()
```



```
In [59]: all_col = car.select_dtypes(include=np.number).columns.tolist()
plt.figure(figsize=(17, 75))

for i in range(len(all_col)):
    plt.subplot(18, 3, i + 1)
    plt.hist(car[all_col[i]], color="c")
    # sns.histplot(car[all_col[i]], kde=True) # you can comment the previous
    plt.tight_layout()
    plt.title(all_col[i], fontsize=25)
plt.show()
```



In [60]: car[car.columns[:]].corr()["Price"][:]

Name: Price, dtype: float64

Out[60]: Year 0.477991 Kilometers\_Driven -0.215410 Mileage -0.294237 Engine 0.703444 Power 0.784418 Price 1.000000

In [61]: car.describe().T

Out[61]:

|                   | count  | mean        | std      | min         | 25%         | 50%         |     |
|-------------------|--------|-------------|----------|-------------|-------------|-------------|-----|
| Year              | 6019.0 | 2013.374149 | 3.213540 | 2003.500000 | 2011.000000 | 2014.000000 | 20′ |
| Kilometers_Driven | 6019.0 | 10.783243   | 0.623619 | 9.288020    | 10.434145   | 10.878066   |     |
| Mileage           | 6019.0 | 18.199198   | 4.322077 | 6.275000    | 15.170000   | 18.150000   |     |
| Engine            | 6019.0 | 7.331264    | 0.335376 | 6.344425    | 7.089243    | 7.309212    |     |
| Power             | 6019.0 | 4.645526    | 0.404051 | 3.561046    | 4.369448    | 4.592085    |     |
| Price             | 6019.0 | 2.010468    | 0.727227 | 0.364643    | 1.504077    | 1.893112    |     |
|                   |        |             |          |             |             |             |     |

| In [62]: | С | ar.head()  |        |                   |           |              |            |         |      |
|----------|---|------------|--------|-------------------|-----------|--------------|------------|---------|------|
| Out[62]: |   | Location   | Year   | Kilometers_Driven | Fuel_Type | Transmission | Owner_Type | Mileage | E    |
|          | 0 | Mumbai     | 2010.0 | 11.184435         | CNG       | Manual       | First      | 26.60   | 6.90 |
|          | 1 | Pune       | 2015.0 | 10.621352         | Diesel    | Manual       | First      | 19.67   | 7.36 |
|          | 2 | Chennai    | 2011.0 | 10.736418         | Petrol    | Manual       | First      | 18.20   | 7.09 |
|          | 3 | Chennai    | 2012.0 | 11.373675         | Diesel    | Manual       | First      | 20.77   | 7.13 |
|          | 4 | Coimbatore | 2013.0 | 10.613271         | Diesel    | Automatic    | Second     | 15.20   | 7.58 |
|          |   |            |        |                   |           |              |            |         |      |

```
In [63]: car.shape
Out[63]: (6019, 12)
```

# **Data Preparation for Modeling**

```
In [64]:
          # defining X and y variables
          X = car.drop(["Price"], axis=1)
          y = car[["Price"]]
          print(X.head())
          print(y.head())
               Location
                            Year
                                  Kilometers_Driven Fuel_Type Transmission Owner_Type
          0
                 Mumbai
                          2010.0
                                           11.184435
                                                            CNG
                                                                      Manual
                                                                                   First
                                           10.621352
          1
                         2015.0
                                                                      Manual
                   Pune
                                                        Diesel
                                                                                   First
                                           10.736418
          2
                                                        Petrol
                                                                      Manual
                Chennai
                          2011.0
                                                                                   First
          3
                Chennai
                                           11.373675
                                                                      Manual
                          2012.0
                                                        Diesel
                                                                                   First
                                           10.613271
             Coimbatore 2013.0
                                                        Diesel
                                                                   Automatic
                                                                                  Second
             Mileage
                        Engine
                                    Power
                                              Brand Seats_bin
          0
               26.60
                      6.906755
                                 4.080246
                                             Maruti
                                                       5 to 7
                                                       5 to 7
          1
               19.67
                      7.367077
                                 4.845761
                                           Hyundai
                                 4.496471
                                                       5 to 7
               18.20
                      7.090077
                                              Honda
               20.77
                      7.130099
                                 4.497139
                                             Maruti
                                                       5 to 7
               15.20
                      7.585281
                                 4.954418
                                               Audi
                                                       5 to 7
                Price
          0
             1.011601
          1
             2,602690
             1.704748
             1.945910
             2.930660
In [65]:
          print(X.shape)
          print(y.shape)
          (6019, 11)
          (6019, 1)
          # creating dummy variables
In [66]:
          X = pd.get_dummies(
               Χ,
               columns=[
                   "Brand",
                   "Location"
                   "Fuel_Type",
                   "Transmission",
                   "Owner_Type",
                   "Seats_bin",
               ],
               drop_first=True,
          X.head()
```

```
Out[66]:
                Year Kilometers_Driven Mileage
                                                    Engine
                                                               Power Brand_Bmw Brand_Chevrolet Bra
              2010.0
                              11.184435
                                            26.60
                                                  6.906755
                                                            4.080246
                                                                                 0
                                                                                                   0
                                                                                 0
                                                                                                   0
              2015.0
                              10.621352
                                            19.67
                                                   7.367077
                                                             4.845761
                                            18.20
                                                  7.090077
                                                             4.496471
                                                                                 0
                                                                                                   0
              2011.0
                              10.736418
```

|   | Year   | Kilometers_Driven | Mileage | Engine   | Power    | Brand_Bmw | Brand_Chevrolet | Bra |
|---|--------|-------------------|---------|----------|----------|-----------|-----------------|-----|
| 3 | 2012.0 | 11.373675         | 20.77   | 7.130099 | 4.497139 | 0         | 0               |     |
| 4 | 2013.0 | 10.613271         | 15.20   | 7.585281 | 4.954418 | 0         | 0               |     |

```
In [67]:
          X. shape
Out[67]: (6019, 49)
In [68]:
          # split the data into train and test
          from sklearn.model_selection import train_test_split
          X_train, X_test, y_train, y_test = train_test_split(
               X, y, test_size=0.3, random_state=42
In [69]:
          X_train.head()
Out[69]:
                  Year Kilometers_Driven Mileage
                                                           Power Brand_Bmw Brand_Chevrolet
                                                  Engine
          4201 2011.0
                              11.251574
                                          22.07
                                                7.090077
                                                         4.316154
          4383 2016.0
                              9.900884
                                          20.36 7.088409
                                                         4.380776
```

15.10 7.687080 4.948760

16.47 7.089243 4.316154

4.317488

25.20 7.130099

0

0

0

0

0

# Choose, train and evaluate the model

11.169928

11.654390

10.981097

```
In [70]:
          # fitting the model on the train data (70% of the whole data)
          from sklearn.linear_model import LinearRegression
          linearregression = LinearRegression()
          linearregression.fit(X_train, y_train)
Out[70]: LinearRegression()
          # predictions on the test set
In [71]:
          pred = linearregression.predict(X_test)
          df = pd.DataFrame({"Actual": y_test.values.flatten(), "Predicted": pred.flatt
Out[71]:
                 Actual Predicted
            0 1.909543
                        1.772028
             1 2.405142
                        2.457937
```

**1779** 2014.0

**4020** 2013.0

3248 2011.0

|      | Actual   | Predicted |
|------|----------|-----------|
| 2    | 2.180417 | 2.162881  |
| 3    | 1.223775 | 1.494487  |
| 4    | 0.955511 | 1.416018  |
| •••  |          |           |
| 1801 | 2.348514 | 2.509778  |
| 1802 | 1.435085 | 1.325882  |
| 1803 | 1.658228 | 1.531062  |
| 1804 | 2.012233 | 2.074766  |
| 1805 | 1.932970 | 2.066552  |

1806 rows × 2 columns

• We can observe that the model has returned good prediction results, and the actual and predicted values are a little bit different, but closer to each other.

Coefficients

```
Out[72]:
```

| Year              | 0.094236  |
|-------------------|-----------|
| Kilometers_Driven | -0.075441 |
| Mileage           | -0.012928 |
| Engine            | 0.286198  |
| Power             | 0.558538  |
| Brand_Bmw         | -0.048642 |
| Brand_Chevrolet   | -0.806758 |
| Brand_Datsun      | -0.831162 |
| Brand_Fiat        | -0.751407 |
| Brand_Ford        | -0.611105 |
| Brand_Honda       | -0.584284 |
| Brand_Hyundai     | -0.577294 |
| Brand_Jaguar      | 0.054469  |
| Brand_Jeep        | -0.371983 |
| Brand_Land        | 0.249507  |
| Brand_Mahindra    | -0.664240 |

#### Coefficients

```
Brand_Maruti
                               -0.518786
     Brand_Mercedes-Benz
                              -0.040846
                Brand_Mini
                               0.249277
          Brand_Mitsubishi
                               -0.365001
              Brand_Nissan
                               -0.609744
              Brand_Others
                              -0.506298
            Brand_Porsche
                                0.251120
             Brand_Renault
                               -0.593479
              Brand_Skoda
                               -0.561615
                Brand_Tata
                               -0.912179
              Brand_Toyota
                               -0.356701
         Brand_Volkswagen
                               -0.614767
               Brand_Volvo
                               -0.137102
        Location_Bangalore
                                0.105262
          Location_Chennai
                               0.008942
       Location_Coimbatore
                               0.082088
             Location_Delhi
                               -0.078622
       Location_Hyderabad
                               0.081992
            Location_Jaipur
                               -0.036585
            Location_Kochi
                               -0.040128
          Location_Kolkata
                               -0.202746
          Location_Mumbai
                               -0.053760
             Location_Pune
                               -0.034739
          Fuel_Type_Diesel
                                0.155795
         Fuel_Type_Electric
                                1.320921
            Fuel_Type_LPG
                              -0.004938
          Fuel_Type_Petrol
                               -0.046071
      Transmission_Manual
                              -0.094239
Owner_Type_Fourth & Above
                               -0.076740
       Owner_Type_Second
                               -0.044371
         Owner_Type_Third
                               -0.102263
           Seats_bin_5 to 7
                               -0.162816
          Seats_bin_Over 7
                               -0.148451
                  Intercept -190.695029
```

```
In [73]: # defining function for MAPE
    def mape(targets, predictions):
        return np.mean(np.abs((targets - predictions)) / targets) * 100
```

```
In [74]: # Checking model performance on train set (seen 70% data)
          print("Train Performance\n")
          model_perf(linearregression, X_train, y_train)
         Train Performance
Out[74]:
               MAE
                      MAPE
                               RMSE
                                        R^2
         0 0.139745 7.987014 0.182886 0.93581
In [75]:
          # Checking model performance on test set (unseen 30% data)
          print("Test Performance\n")
          model_perf(linearregression, X_test, y_test)
         Test Performance
               MAE
                       MAPE
                                         R^2
Out[75]:
                               RMSE
```

**0** 0.147489 8.620238 0.20303 0.924601

- The training and testing scores are 93.5% and 92.4% respectively, and both the scores are comparable. Hence, the model is a good fit.
- R-squared is 0.925 on the test set, i.e., the model explains 92.4% of total variation in the test dataset. So, overall the model is very satisfactory.
- MAE indicates that our current model is able to predict Price within a mean error of 0.14
   Lakhs on the test data.
- MAPE on the test set suggests we can predict within 8.6% of the Price.

# Linear Regression using statsmodels

|                                          | OLS Regress         | sion Result    | s<br>              |       |       |
|------------------------------------------|---------------------|----------------|--------------------|-------|-------|
| = Dep. Variable:                         | Price               | R-squared      | :                  |       | 0.93  |
| 6 Model:                                 | OLS                 | Adj. R-sq      |                    |       | 0.93  |
| 5<br>Method:                             | Least Squares       | F-statist      | ic:                |       | 123   |
| 9.<br>Date:<br>0                         | Sat, 19 Jun 2021    | Prob (F-s      | tatistic):         |       | 0.0   |
| Time:                                    | 01:34:49            | Log-Likel      | ihood:             |       | 1179. |
| No. Observations:<br>9.                  | 4213                | AIC:           |                    |       | -225  |
| Df Residuals:<br>2.                      | 4163                | BIC:           |                    |       | -194  |
| Df Model:<br>Covariance Type:            | 49<br>nonrobust<br> |                |                    |       |       |
| [0.025 0.975]                            | coef                | std err        | t                  | P> t  |       |
| const<br>6.044 -185.346                  | -190.6950           | 2.728          | -69.895            | 0.000 | -19   |
| Year 0.092 0.097                         | 0.0942              | 0.001          | 70.134             | 0.000 |       |
| Kilometers_Driven 0.088 -0.063           | -0.0754             | 0.006          | -11.895            | 0.000 | _     |
| Mileage<br>0.015 -0.010                  | -0.0129             | 0.001          | -10.262            | 0.000 | -     |
| Engine 0.230 0.342                       | 0.2862              | 0.028          | 10.048             | 0.000 |       |
| Power 0.517 0.600                        | 0.5585              | 0.021          | 26.652             | 0.000 |       |
| Brand_Bmw 0.088 -0.009                   | -0.0486             | 0.020          | -2.420             | 0.016 | _     |
| Brand_Chevrolet<br>0.860 -0.754          | -0.8068             | 0.027          | -29.735            | 0.000 | _     |
| Brand_Datsun<br>0.974 -0.688             | -0.8312<br>-0.7514  | 0.073<br>0.047 | -11.408<br>-15.927 | 0.000 | _     |
| Brand_Fiat<br>0.844 -0.659<br>Brand_Ford | -0.6111             | 0.022          | -28.143            | 0.000 | _     |
| 0.654 -0.569<br>Brand_Honda              | -0.5843             | 0.020          | -29.456            | 0.000 | _     |
| 0.623 -0.545<br>Brand_Hyundai            | -0.5773             | 0.019          | -29.934            | 0.000 | _     |

0.615

-0.539

|                                     | Cars4U-A | Amanda Mendonca |                 |       |   |
|-------------------------------------|----------|-----------------|-----------------|-------|---|
| Brand_Jaguar                        | 0.0545   | 0.037           | 1.457           | 0.145 | _ |
| 0.019 0.128<br>Brand_Jeep           | -0.3720  | 0.058           | -6.378          | 0.000 | _ |
| 0.486 -0.258<br>Brand_Land          | 0.2495   | 0.033           | 7.582           | 0.000 |   |
| 0.185                               |          |                 |                 |       |   |
| Brand_Mahindra<br>0.708 -0.620      | -0.6642  | 0.023           | -29.439         | 0.000 | _ |
| Brand_Maruti                        | -0.5188  | 0.020           | -25.735         | 0.000 | _ |
| 0.558 -0.479<br>Brand_Mercedes-Benz | -0.0408  | 0.019           | -2.143          | 0.032 | _ |
| 0.078 -0.003                        |          |                 |                 |       |   |
| Brand_Mini<br>0.154                 | 0.2493   | 0.049           | 5.128           | 0.000 |   |
| Brand_Mitsubishi                    | -0.3650  | 0.046           | -7.862          | 0.000 | _ |
| 0.456 -0.274<br>Brand_Nissan        | -0.6097  | 0.029           | -20.912         | 0.000 | _ |
| 0.667 -0.553                        | 0 5062   |                 | 6 524           | 0.000 |   |
| Brand_Others<br>0.658 -0.354        | -0.5063  | 0.077           | -6 <b>.</b> 534 | 0.000 | _ |
| Brand_Porsche 0.132 0.370           | 0.2511   | 0.061           | 4.128           | 0.000 |   |
| Brand_Renault                       | -0.5935  | 0.026           | -22.562         | 0.000 | _ |
| 0.645 -0.542<br>Brand_Skoda         | -0.5616  | 0.023           | -24.413         | 0.000 | _ |
| 0.607 -0.517                        |          |                 |                 |       |   |
| Brand_Tata<br>0.962 -0.863          | -0.9122  | 0.025           | -36.145         | 0.000 | _ |
| Brand_Toyota                        | -0.3567  | 0.021           | -16.957         | 0.000 | _ |
| 0.398 -0.315<br>Brand_Volkswagen    | -0.6148  | 0.021           | -28.695         | 0.000 | _ |
| 0.657 -0.573                        |          |                 |                 |       |   |
| Brand_Volvo<br>0.232 -0.042         | -0.1371  | 0.048           | -2.834          | 0.005 | _ |
| Location_Bangalore                  | 0.1053   | 0.019           | 5.573           | 0.000 |   |
| 0.068 0.142<br>Location_Chennai     | 0.0089   | 0.018           | 0.493           | 0.622 | _ |
| 0.027 0.045 Location_Coimbatore     | 0.0821   | 0.018           | 4.691           | 0.000 |   |
| 0.048 0.116                         | 0.0021   | 0.010           | 4.091           | 0.000 |   |
| Location_Delhi 0.113 -0.044         | -0.0786  | 0.018           | -4 <b>.</b> 458 | 0.000 | _ |
| Location_Hyderabad                  | 0.0820   | 0.017           | 4.809           | 0.000 |   |
| 0.049 0.115<br>Location_Jaipur      | -0.0366  | 0.019           | -1.965          | 0.049 | _ |
| 0.073 -9.13e-05                     |          |                 |                 |       |   |
| Location_Kochi<br>0.074 -0.006      | -0.0401  | 0.017           | -2.303          | 0.021 | _ |
| Location_Kolkata                    | -0.2027  | 0.018           | -11.347         | 0.000 | - |
| 0.238 -0.168<br>Location_Mumbai     | -0.0538  | 0.017           | -3.145          | 0.002 | _ |
| 0.087 -0.020<br>Location_Pune       | -0.0347  | 0.017           | -1.994          | 0.046 | _ |
| 0.069 -0.001                        |          |                 |                 |       |   |
| Fuel_Type_Diesel 0.095 0.216        | 0.1558   | 0.031           | 5.061           | 0.000 |   |
| Fuel_Type_Electric                  | 1.3209   | 0.189           | 6.990           | 0.000 |   |
| 0.950 1.691<br>Fuel_Type_LPG        | -0.0049  | 0.072           | -0.068          | 0.946 | _ |
| 0.147 0.137                         |          |                 |                 |       |   |
| Fuel_Type_Petrol 0.107 0.015        | -0.0461  | 0.031           | -1.479          | 0.139 | _ |
| Transmission_Manual                 | -0.0942  | 0.009           | <b>-9.</b> 947  | 0.000 | - |
| Owner_Type_Fourth & Above           | -0.0767  | 0.083           | -0.926          | 0.354 | _ |
| 0.239 0.086<br>Owner_Type_Second    | -0.0444  | 0.008           | -5.285          | 0.000 | _ |
| 0.061 -0.028                        |          |                 |                 |       | _ |
| Owner_Type_Third                    | -0.1023  | 0.022           | -4 <b>.</b> 732 | 0.000 | _ |

| 0.145          | -0.1628<br>-0.1485 | 0.023<br>0.031    | -6.967<br>-4.764 | 0.000<br>0.000 | -     |
|----------------|--------------------|-------------------|------------------|----------------|-------|
|                |                    |                   |                  |                |       |
| = Omnibus:     | 278.469            | Durbin—Wat        | tson:            |                | 1.96  |
| Prob(Omnibus): | 0.000              | Jarque-Bera (JB): |                  | 13             | 14.30 |
| Skew:          | -0.065             | Prob(JB):         |                  | 4.0            | 0e-28 |
| Kurtosis:<br>6 | 5.733              | Cond. No.         |                  | 1.             | 94e+0 |
| _              | ========           | ========          | ========         | ========       | ===== |

#### Notes:

 $\[1\]$  Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.94e+06. This might indicate that there a re

strong multicollinearity or other numerical problems.

#### **Observations**

- Negative values of the coefficient show that *Price* decreases with the increase of corresponding attribute value.
- Positive values of the coefficient show that *Price* increases with the increase of corresponding attribute value.
- p-value of a variable indicates if the variable is significant or not. we gonna consider the significance level to be 0.05 (5%).
- But these variables might contain multicollinearity, which will affect the p-values.
- So, lets deal with multicollinearity and check the other assumptions of linear regression first, and then look at the p-values.

# **Checking Linear Regression Assumptions**

Checking the following Linear Regression assumptions:

- 1. No Multicollinearity
- 2. Mean of residuals should be 0
- 3. No Heteroscedasticity
- 4. Linearity of variables
- 5. Normality of error terms

#### 1. TEST FOR MULTICOLLINEARITY

In [77]: from statsmodels.stats.outliers\_influence import variance\_inflation\_factor

```
vif_series1 = pd.Series(
    [variance_inflation_factor(X.values, i) for i in range(X.shape[1])], inde
)
print("VIF Scores: \n\n{}\n".format(vif_series1))
```

#### VIF Scores:

| VIF Scores:                          |               |
|--------------------------------------|---------------|
| const                                | 920364.486869 |
| Year                                 | 2.303025      |
| Kilometers_Driven                    | 1.943818      |
| Mileage                              | 3.534225      |
| Engine                               | 11.050082     |
| Power                                | 8.847576      |
| Brand_Bmw                            | 2.105615      |
| Brand_Chevrolet                      | 1.787446      |
| Brand Datsun                         | 1.123072      |
| Brand Fiat                           | 1.190172      |
| Brand Ford                           | 2.825584      |
| _                                    |               |
| Brand_Honda                          | 4.424763      |
| Brand_Hyundai                        | 6.872355      |
| Brand_Jaguar                         | 1.176361      |
| Brand_Jeep                           | 1.095515      |
| Brand_Land                           | 1.273144      |
| Brand_Mahindra                       | 2.701392      |
| Brand_Maruti                         | 8.119727      |
| Brand_Mercedes-Benz                  | 2.256220      |
| Brand_Mini                           | 1.205947      |
| Brand_Mitsubishi                     | 1.182377      |
| Brand_Nissan                         | 1.602841      |
| Brand_Others                         | 1.069538      |
| Brand Porsche                        | 1.168474      |
| Brand Renault                        | 1.944096      |
| Brand Skoda                          | 1.853299      |
| Brand Tata                           | 2.321093      |
| Brand_Toyota                         | 3.499852      |
| Brand_Volkswagen                     | 2.854993      |
| Brand_Volvo                          | 1.089394      |
| Location_Bangalore                   | 2.485958      |
| Location_Chennai                     | 3.006042      |
| Location_Coimbatore                  | 3.541483      |
|                                      |               |
| Location_Delhi                       | 3.179997      |
| Location_Hyderabad                   | 3.832402      |
| Location_Jaipur                      | 2.693769      |
| Location_Kochi                       | 3.590784      |
| Location_Kolkata                     | 3.155256      |
| Location_Mumbai                      | 4.030378      |
| Location_Pune                        | 3.443976      |
| Fuel_Type_Diesel                     | 29.082733     |
| Fuel_Type_Electric                   | 1.051184      |
| Fuel_Type_LPG                        | 1.196637      |
| Fuel_Type_Petrol                     | 29.591562     |
| Transmission_Manual                  | 2.294648      |
| Owner_Type_Fourth & Above            | 1.016666      |
| Owner_Type_Second                    | 1.179123      |
| Owner_Type_Third                     | 1.113021      |
| Owner_Type_Third<br>Seats_bin_5 to 7 | 2.726364      |
| Seats_bin_Over 7                     | 2.778880      |
| dtype: float64                       |               |
| · >1                                 |               |

• Engine have a VIF score greater than 10, let's dropped it and check the model R2

# **Removing Multicollinearity**

To remove multicollinearity

- 1. Drop every column one by one that has VIF score greater than 10.
- 2. Look at the adjusted R-squared of all these models.
- 3. Drop the variable that makes least change in adjusted R-squared.
- 4. Check the VIF scores again.
- 5. Continue till you get all VIF scores under 10.

#### VIF Scores:

```
const
                             920075.285563
Year
                                  2.277008
Kilometers Driven
                                  1.930246
Mileage
                                  3.116889
Power
                                  4.149090
Brand Bmw
                                  2.088459
Brand Chevrolet
                                  1.769466
Brand_Datsun
                                  1.095832
Brand Fiat
                                  1.177468
Brand Ford
                                  2.849609
Brand Honda
                                  4.373398
Brand_Hyundai
                                  6.997639
Brand_Jaguar
                                  1.187239
Brand_Jeep
                                  1.101465
Brand Land
                                  1.267555
Brand_Mahindra
                                  2.635627
Brand Maruti
                                  8.113328
Brand_Mercedes-Benz
                                  2.238045
Brand Mini
                                  1.179493
Brand_Mitsubishi
                                  1.168991
Brand_Nissan
                                  1.594368
Brand_Others
                                  1.055005
Brand_Porsche
                                  1.186635
Brand_Renault
                                  1.897713
Brand_Skoda
                                  1.865378
Brand_Tata
                                  2.296495
Brand_Toyota
                                  3.275574
Brand_Volkswagen
                                  2.845089
Brand_Volvo
                                  1.100997
Location_Bangalore
                                  2.598754
Location_Chennai
                                  3.024490
Location_Coimbatore
                                  3.607807
Location_Delhi
                                  3.265957
Location_Hyderabad
                                  3.908331
Location_Jaipur
                                  2.702022
                                  3.668755
Location_Kochi
                                 3.229806
Location_Kolkata
Location_Mumbai
                                 4.086660
Location_Pune
                                  3.529917
                                29.329026
Fuel_Type_Diesel
                                 1.044866
Fuel_Type_Electric
Fuel_Type_LPG
                                  1.229275
Fuel_Type_Petrol
                                29.562725
Transmission_Manual
                                 2.276387
Owner_Type_Fourth & Above
                                 1.012832
Owner_Type_Second
                                 1.176127
Owner_Type_Third
                                  1.122574
Seats_bin_5 to 7
                                  2.838834
Seats_bin_Over 7
                                  2.842221
```

dtype: float64

• It seemed to have helped, VIF has come down, and there is no other variable greater than 10 besides dummies(categorical).

```
In [79]: olsmod1 = sm.OLS(y_train, X_train2)
    olsres1 = olsmod1.fit()
    print(olsres1.summary())
```

| OLS Regression Results                        |                                         |           |                  |         |        |
|-----------------------------------------------|-----------------------------------------|-----------|------------------|---------|--------|
| =<br>Dep. Variable:                           | Price                                   | R-squared | <br> :           |         | 0.93   |
| 4 Model:                                      |                                         |           | Adj. R-squared:  |         |        |
| 3                                             |                                         | -         | •                |         | 0.93   |
| Method:<br>3.                                 | Least Squares                           | F-statist | :1C:             |         | 123    |
| Date:<br>0                                    | Sat, 19 Jun 2021                        | Prob (F-s | tatistic):       |         | 0.0    |
| Time:<br>0                                    | 01:34:50                                | Log-Likel | ihood:           |         | 1129.  |
| No. Observations:                             | 4213                                    | AIC:      |                  |         | -216   |
| 0.<br>Df Residuals:                           | 4164                                    | BIC:      |                  |         | -184   |
| 9.<br>Df Model:<br>Covariance Type:           | 48<br>nonrobust                         |           |                  |         |        |
| =======================================       | ======================================= | =======   | =======          | ======= | ====== |
| [0.025 0.975]                                 | coef                                    | std err   | t                | P> t    |        |
| <br>const                                     | -188.4166                               | 2.751     | -68 <b>.</b> 482 | 0.000   | -19    |
| 3.811 -183.023<br>Year                        | 0.0938                                  | 0.001     | 69.037           | 0.000   |        |
| 0.091 0.096<br>Kilometers_Driven              | -0.0739                                 | 0.006     | -11.522          | 0.000   | _      |
| 0.087 -0.061<br>Mileage                       | -0.0180                                 | 0.001     | -15.400          | 0.000   | _      |
| 0.020 -0.016<br>Power                         | 0.7124                                  | 0.014     | 49.213           | 0.000   |        |
| 0.684 0.741<br>Brand_Bmw                      | -0 <b>.</b> 0477                        | 0.020     | -2.346           | 0.019   | _      |
| 0.088 -0.008                                  | -0.8075                                 | 0.027     |                  | 0.000   |        |
| Brand_Chevrolet 0.861 -0.754                  |                                         |           |                  |         | _      |
| Brand_Datsun<br>0.975                         | -0.8304                                 | 0.074     |                  | 0.000   | _      |
| Brand_Fiat<br>0.859 -0.672                    | -0.7655                                 | 0.048     | -16.042          | 0.000   | _      |
| Brand_Ford<br>0.627 -0.542                    | -0.5847                                 | 0.022     | -26.805          | 0.000   | _      |
| Brand_Honda<br>0.607 -0.528                   | -0.5675                                 | 0.020     | -28.375          | 0.000   | _      |
| Brand_Hyundai                                 | -0.5765                                 | 0.020     | -29.540          | 0.000   | _      |
| Brand_Jaguar                                  | 0.0661                                  | 0.038     | 1.749            | 0.080   | _      |
| 0.008 0.140<br>Brand_Jeep                     | -0.3910                                 | 0.059     | -6.628           | 0.000   | _      |
| 0.507 -0.275<br>Brand_Land                    | 0.2502                                  | 0.033     | 7.514            | 0.000   |        |
| 0.185 0.316<br>Brand_Mahindra<br>0.661 -0.573 | -0.6168                                 | 0.022     | -27.627          | 0.000   | -      |

|                                                 | Cars4U-A | Amanda Mendonca | l       |         |       |
|-------------------------------------------------|----------|-----------------|---------|---------|-------|
| Brand_Maruti                                    | -0.5145  | 0.020           | -25.225 | 0.000   | _     |
| 0.554 -0.474 Brand_Mercedes-Benz                | -0.0288  | 0.019           | -1.495  | 0.135   | _     |
| 0.067 0.009<br>Brand_Mini                       | 0.2708   | 0.049           | 5.511   | 0.000   |       |
| 0.174 0.367<br>Brand_Mitsubishi                 | -0.2849  | 0.046           | -6.156  | 0.000   | _     |
| 0.376 -0.194<br>Brand_Nissan                    | -0.5834  | 0.029           | -19.854 | 0.000   | _     |
| 0.641 -0.526<br>Brand_Others                    | -0.4403  | 0.078           | -5.636  | 0.000   | _     |
| 0.593 -0.287<br>Brand_Porsche                   | 0.3139   | 0.061           | 5.127   | 0.000   |       |
| 0.194 0.434<br>Brand_Renault                    | -0.5976  | 0.027           | -22.454 | 0.000   | _     |
| 0.650 -0.545<br>Brand_Skoda                     | -0.5401  | 0.023           | -23.304 | 0.000   | _     |
| 0.586 -0.495<br>Brand_Tata                      | -0.9025  | 0.026           | -35.365 | 0.000   | _     |
| 0.953 -0.852<br>Brand_Toyota                    | -0.2945  | 0.020           | -14.474 | 0.000   | _     |
| 0.334 -0.255<br>Brand_Volkswagen                | -0.6043  | 0.022           | -27.908 | 0.000   | _     |
| 0.647 -0.562<br>Brand_Volvo                     | -0.1545  | 0.049           | -3.157  | 0.002   | _     |
| 0.250 -0.059<br>Location_Bangalore              | 0.1054   | 0.019           | 5.514   | 0.000   |       |
| 0.068 0.143<br>Location_Chennai                 | 0.0103   | 0.018           | 0.561   | 0.575   | _     |
| 0.026 0.046 Location_Coimbatore                 | 0.0842   | 0.018           | 4.752   | 0.000   |       |
| 0.049 0.119<br>Location_Delhi                   | -0.0767  | 0.018           | -4.298  | 0.000   | _     |
| 0.112 -0.042<br>Location_Hyderabad              | 0.0834   | 0.017           | 4.835   | 0.000   |       |
| 0.050 0.117<br>Location_Jaipur                  | -0.0349  | 0.019           | -1.851  | 0.064   | _     |
| 0.072 0.002<br>Location_Kochi                   | -0.0386  | 0.018           | -2.187  | 0.029   | _     |
| 0.073 -0.004<br>Location_Kolkata                | -0.2017  | 0.018           | -11.155 | 0.000   | _     |
| 0.237 -0.166<br>Location_Mumbai                 | -0.0497  | 0.017           | -2.876  | 0.004   | _     |
| 0.084 -0.016<br>Location_Pune                   | -0.0305  | 0.018           | -1.732  | 0.083   | _     |
| 0.065 0.004 Fuel_Type_Diesel                    | 0.1675   | 0.031           | 5.382   | 0.000   |       |
| <pre>0.106</pre>                                | 1.1366   | 0.190           | 5.972   | 0.000   |       |
| 0.763 1.510 Fuel_Type_LPG 0.178 0.108           | -0.0351  | 0.073           | -0.481  | 0.631   | _     |
| Fuel_Type_Petrol 0.144 -0.021                   | -0.0825  | 0.031           | -2.637  | 0.008   | _     |
| Transmission_Manual 0.111 -0.074                | -0.0926  | 0.010           | -9.664  | 0.000   | _     |
| Owner_Type_Fourth & Above 0.250 0.078           | -0.0859  | 0.084           | -1.025  | 0.306   | -     |
| 0.061 -0.027                                    | -0.0441  | 0.008           | -5.193  | 0.000   | _     |
| 0.001 0.027<br>0wner_Type_Third<br>0.145 -0.059 | -0.1019  | 0.022           | -4.660  | 0.000   | _     |
| Seats_bin_5 to 7<br>0.208 -0.115                | -0.1612  | 0.024           | -6.817  | 0.000   | _     |
| Seats_bin_Over 7<br>0.189 -0.065                | -0.1271  | 0.031           | -4.040  | 0.000   | -     |
|                                                 |          | =======         |         | ======= | ===== |

Omnibus: 270.115 Durbin-Watson: 1.97

1
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1256.65
3
Skew: -0.026 Prob(JB): 1.32e-27
3
Kurtosis: 5.675 Cond. No. 1.93e+0

Notes:

[2] The condition number is large, 1.93e+06. This might indicate that there a re

strong multicollinearity or other numerical problems.

- Earlier adj. R-squared was 0.931, now it is reduced to 0.929.
- Now the above model has no multicollinearity, so we can look at p-values of predictor variables to check their significance.

#### **Observations**

- There are no p-value greater than 0.05, so they are significant, we'll not drop them.
- On categorical variables, p-value greater than 0.05 doesn't mean we'll drop it, because
  it is from a categorical variable and there are other levels of this category that are
  significant.\*\*

## Now we'll check the rest of the assumptions on model olsres1

- 1. Mean of residuals should be 0
- 2. Linearity of variables
- 3. Normality of error terms
- 4. No Heteroscedasticity

#### MEAN OF RESIDUALS SHOULD BE 0

```
In [80]: residual = olsres1.resid
np.mean(residual)
```

Out[80]: -8.475647590997978e-14

Mean of redisuals is very close to 0.

#### **TEST FOR LINEARITY**

#### Why the test?

• Linearity describes a straight-line relationship between two variables, predictor variables must have a linear relation with the dependent variable.

#### How to check linearity?

Make a plot of fitted values vs residuals, if they don't follow any pattern, they we say the
model is linear, otherwise model is showing signs of non-linearity.

#### How to fix if this assumption is not followed?

• We can try to transform the variables and make the relationships linear.

```
In [81]: residual = olsres1.resid
  fitted = olsres1.fittedvalues # predicted values
```

```
In [82]: sns.set_style("whitegrid")
    sns.residplot(fitted, residual, color="aquamarine", lowess=True)
    plt.xlabel("Fitted Values")
    plt.ylabel("Residuals")
    plt.title("Residual vs Fitted plot")
    plt.show()
```



- Scatter plot shows the distribution of residuals (errors) vs fitted values (predicted values).
- If there exist any pattern in this plot, we consider it as signs of non-linearity in the data and a pattern means that the model doesn't capture non-linear effects.
- We see no pattern in the plot above. Hence, the assumption is satisfied.

#### **TEST FOR NORMALITY**

#### What is the test?

- Error terms/Residuals should be normally distributed
- If the error terms are non- normally distributed, confidence intervals may become too
  wide or narrow. Once confidence interval becomes unstable, it leads to difficulty in
  estimating coefficients based on minimization of least squares.

#### What do non-normality indicate?

• It suggests that there are a few unusual data points which must be studied closely to make a better model.

#### **How to Check the Normality?**

- It can be checked via QQ Plot, Residuals following normal distribution will make a straight line plot otherwise not.
- Other test to check for normality: Shapiro-Wilk test.

#### What is the residuals are not-normal?

• We can apply transformations like log, exponential, arcsinh, etc. as per our data.

```
In [83]: sns.distplot(residual)
  plt.title("Normality of residuals")
  plt.show()
```



The QQ plot of residuals can be used to visually check the normality assumption. The normal probability plot of residuals should approximately follow a straight line.

```
import pylab
import scipy.stats as stats

stats.probplot(residual, dist="norm", plot=pylab)
plt.show()
```



```
In [85]: stats.shapiro(residual)
```

Out[85]: ShapiroResult(statistic=0.981600284576416, pvalue=5.493219029554584e-23)

- The residuals are not normal as per shapiro test, but as per QQ plot they are approximately normal.
- The issue with shapiro test is when dataset is big, even for small deviations, it shows data as not normal.
- Hence we go with the QQ plot and say that residuals are normal.
- We can try to treat data for outliers and see if that helps in further normalizing the residual curve.

#### TEST FOR HOMOSCEDASTICITY

- Test goldfeldquandt test
- **Homoscedacity**: If the variance of the residuals are symmetrically distributed across the regression line, then the data is said to homoscedastic.
- **Heteroscedacity**: If the variance is unequal for the residuals across the regression line, then the data is said to be heteroscedastic. In this case the residuals can form an arrow shape or any other non symmetrical shape.

For goldfeldquandt test, the null and alternate hypotheses are as follows:

- Null hypothesis : Residuals are homoscedastic
- Alternate hypothesis: Residuals have heteroscedasticity

```
import statsmodels.stats.api as sms
from statsmodels.compat import lzip

name = ["F statistic", "p-value"]
test = sms.het_goldfeldquandt(residual, X_train2)
lzip(name, test)
```

```
Out[86]: [('F statistic', 1.0389582863285913), ('p-value', 0.19303288531465843)]
```

Since p-value = 0.193 > 0.05, we can say that the residuals are homoscedastic. This assumption is therefore valid in the data.

### Predicting on the test data

```
In [87]: X train2.columns
e'.
                    'Location_Chennai', 'Location_Coimbatore', 'Location_Delhi',
'Location_Hyderabad', 'Location_Jaipur', 'Location_Kochi',
'Location_Kolkata', 'Location_Mumbai', 'Location_Pune',
'Fuel_Type_Diesel', 'Fuel_Type_Electric', 'Fuel_Type_LPG',
'Fuel_Type_Petrol', 'Transmission_Manual', 'Owner_Type_Fourth & Abov
           e',
                    'Owner_Type_Second', 'Owner_Type_Third', 'Seats_bin_5 to 7',
                    'Seats_bin_Over 7'],
                   dtype='object')
            # Selecting columns from test data that we used to create our final model
In [88]:
            X test final = X test[X train2.columns]
            X test final.head()
In [89]:
Out[89]:
                  const
                           Year Kilometers_Driven Mileage
                                                                Power Brand_Bmw Brand_Chevrolet Bra
            2868
                         2013.0
                                          11.141876
                                                     23.400 4.317488
                                                                                 0
                                                                                                   0
                     1.0
                          2017.0
            5924
                     1.0
                                          10.193991
                                                     15.400 4.795791
                                                                                  0
                                                                                                   0
            3764
                     1.0
                         2014.0
                                          11.362114
                                                      15.100 4.948760
                                                                                  0
                                                                                                   0
            4144
                         2016.0
                                         10.859018
                                                     25.000 4.248638
                     1.0
            2780
                     1.0 2009.0
                                          11.512935
                                                      6.275 4.592085
           # Checking model performance on train set (seen 70% data)
In [90]:
            print("Train Performance\n")
            model_perf(olsres1, X_train2.values, y_train)
           Train Performance
Out[90]:
                  MAE
                          MAPE
                                    RMSE
                                                R^2
            0 0.141071 8.081216 0.185091 0.934253
In [91]:
            # Checking model performance on test set (seen 70% data)
            print("Test Performance\n")
            model_perf(olsres1, X_test_final.values, y_test)
```

Test Performance

Out[91]: MAE MAPE RMSE R^2

0 0.149894 8.803791 0.206935 0.921673

- Now we can see that the model has low test and train RMSE and MAE, and both the errors are comparable. So, our model is not suffering from overfitting.
- The model is able to explain 92% of the variation on the test set, which is very good.
- The MAPE on the test set suggests we can predict within 8.8% of the Price.

# Hence, we can conclude the model *olsres1* is good for prediction as well as inference purposes.

```
In [92]:
          # let us print the model summary
          olsmod1 = sm.OLS(y_train, X_train2)
          olsres1 = olsmod1.fit()
          print(olsres1.summary())
                                       OLS Regression Results
         Dep. Variable:
                                            Price
                                                    R-squared:
                                                                                        0.93
         4
         Model:
                                              0LS
                                                    Adj. R-squared:
                                                                                        0.93
         3
         Method:
                                   Least Squares
                                                    F-statistic:
                                                                                        123
         3.
         Date:
                                Sat, 19 Jun 2021
                                                    Prob (F-statistic):
                                                                                        0.0
         0
         Time:
                                        01:34:53
                                                    Log-Likelihood:
                                                                                      1129.
         No. Observations:
                                             4213
                                                    AIC:
                                                                                      -216
         Df Residuals:
                                             4164
                                                    BIC:
                                                                                      -184
         9.
         Df Model:
          Covariance Type:
                                       nonrobust
                                                                              P>|t|
                                            coef
                                                    std err
                                                                      t
          [0.025
                      0.975]
                                      -188.4166
                                                      2.751
                                                                -68.482
                                                                              0.000
                                                                                        -19
          const
                   -183.023
          3.811
                                          0.0938
                                                       0.001
                                                                              0.000
          Year
                                                                 69.037
          0.091
                      0.096
         Kilometers_Driven
                                        -0.0739
                                                       0.006
                                                                -11.522
                                                                              0.000
         0.087
                     -0.061
         Mileage
                                        -0.0180
                                                       0.001
                                                                -15.400
                                                                              0.000
          0.020
                     -0.016
          Power
                                          0.7124
                                                       0.014
                                                                 49.213
                                                                              0.000
                      0.741
          0.684
         Brand_Bmw
                                        -0.0477
                                                       0.020
                                                                 -2.346
                                                                              0.019
          0.088
                     -0.008
         Brand_Chevrolet
                                        -0.8075
                                                       0.027
                                                                -29.411
                                                                              0.000
          0.861
                     -0.754
         Brand Datsun
                                         -0.8304
                                                       0.074
                                                                -11.264
                                                                              0.000
          0.975
                     -0.686
```

-0.7655

0.048

-16.042

0.000

|                                               | Cars+U-A | ilialida Michdolica |                  |       |   |
|-----------------------------------------------|----------|---------------------|------------------|-------|---|
| 0.859 -0.672<br>Brand_Ford                    | -0.5847  | 0.022               | -26.805          | 0.000 | _ |
| 0.627 -0.542                                  |          |                     |                  |       |   |
| Brand_Honda<br>0.607 -0.528                   | -0.5675  | 0.020               | -28 <b>.</b> 375 | 0.000 | - |
| Brand_Hyundai                                 | -0.5765  | 0.020               | -29.540          | 0.000 | _ |
| 0.615 -0.538<br>Brand_Jaguar                  | 0.0661   | 0.038               | 1.749            | 0.080 | _ |
| 0.008 0.140<br>Brand_Jeep                     | -0.3910  | 0.059               | -6.628           | 0.000 | _ |
| 0.507 -0.275                                  |          |                     |                  |       |   |
| Brand_Land<br>0.185                           | 0.2502   | 0.033               | 7.514            | 0.000 |   |
| Brand_Mahindra                                | -0.6168  | 0.022               | -27.627          | 0.000 | _ |
| 0.661 -0.573<br>Brand_Maruti                  | -0.5145  | 0.020               | -25.225          | 0.000 | _ |
| 0.554 -0.474 Brand_Mercedes-Benz              | -0.0288  | 0.019               | -1.495           | 0.135 | _ |
| 0.067 0.009                                   |          |                     |                  | 0.000 |   |
| Brand_Mini<br>0.174                           | 0.2708   | 0.049               | 5.511            | 0.000 |   |
| Brand_Mitsubishi<br>0.376 -0.194              | -0.2849  | 0.046               | -6.156           | 0.000 | _ |
| Brand_Nissan                                  | -0.5834  | 0.029               | -19.854          | 0.000 | _ |
| 0.641 -0.526<br>Brand_Others                  | -0.4403  | 0.078               | -5.636           | 0.000 | _ |
| 0.593 -0.287<br>Brand_Porsche                 | 0.3139   | 0.061               | 5.127            | 0.000 |   |
| 0.194 0.434                                   |          |                     |                  |       |   |
| Brand_Renault<br>0.650 -0.545                 | -0.5976  | 0.027               | -22.454          | 0.000 | _ |
| Brand_Skoda                                   | -0.5401  | 0.023               | -23.304          | 0.000 | _ |
| 0.586 -0.495<br>Brand_Tata                    | -0.9025  | 0.026               | -35.365          | 0.000 | _ |
| 0.953 -0.852<br>Brand_Toyota                  | -0.2945  | 0.020               | -14.474          | 0.000 | _ |
| 0.334 -0.255                                  |          |                     |                  |       |   |
| Brand_Volkswagen<br>0.647 -0.562              | -0.6043  | 0.022               | -27.908          | 0.000 | _ |
| Brand_Volvo                                   | -0.1545  | 0.049               | -3.157           | 0.002 | _ |
| 0.250 -0.059<br>Location_Bangalore            | 0.1054   | 0.019               | 5.514            | 0.000 |   |
| 0.068 0.143 Location_Chennai                  | 0.0103   | 0.018               | 0.561            | 0.575 | _ |
| 0.026 0.046 Location_Coimbatore               | 0.0842   | 0.018               | 4.752            | 0.000 |   |
| 0.049 0.119                                   |          |                     |                  |       |   |
| Location_Delhi 0.112 -0.042                   | -0.0767  | 0.018               | -4.298           | 0.000 | - |
| Location_Hyderabad<br>0.050 0.117             | 0.0834   | 0.017               | 4.835            | 0.000 |   |
| Location_Jaipur                               | -0.0349  | 0.019               | -1.851           | 0.064 | _ |
| 0.072 0.002<br>Location_Kochi                 | -0.0386  | 0.018               | -2.187           | 0.029 | _ |
| 0.073 -0.004<br>Location_Kolkata              | -0.2017  | 0.018               | -11.155          | 0.000 | _ |
| 0.237 -0.166                                  |          |                     |                  |       |   |
| Location_Mumbai<br>0.084 -0.016               | -0.0497  | 0.017               | -2.876           | 0.004 | _ |
| Location_Pune<br>0.065 0.004                  | -0.0305  | 0.018               | -1.732           | 0.083 | _ |
| Fuel_Type_Diesel                              | 0.1675   | 0.031               | 5.382            | 0.000 |   |
| <pre>0.106     0.229 Fuel_Type_Electric</pre> | 1.1366   | 0.190               | 5.972            | 0.000 |   |
| 0.763 1.510<br>Fuel_Type_LPG                  | -0.0351  | 0.073               | -0.481           | 0.631 |   |
| 0.178 0.108                                   |          |                     |                  |       | _ |
| Fuel_Type_Petrol 0.144 -0.021                 | -0.0825  | 0.031               | -2.637           | 0.008 | - |
| <b></b>                                       |          |                     |                  |       |   |

| 0 111 0 074                               | 0.0320    | 0.010     | -3:004   | 0.000    |        |
|-------------------------------------------|-----------|-----------|----------|----------|--------|
| 0.111 -0.074<br>Owner_Type_Fourth & Above | -0.0859   | 0.084     | -1.025   | 0.306    | _      |
| 0.250 0.078<br>Owner_Type_Second          | -0.0441   | 0.008     | -5.193   | 0.000    | _      |
| 0.061 –0.027<br>Owner_Type_Third          | -0.1019   | 0.022     | -4.660   | 0.000    | _      |
| 0.145 -0.059<br>Seats_bin_5 to 7          | -0.1612   | 0.024     | -6.817   | 0.000    | _      |
| 0.208 -0.115<br>Seats_bin_Over 7          | -0.1271   | 0.031     | -4.040   | 0.000    | _      |
| 0.189 -0.065<br>                          | :======== | ========  | ======== | ======== | =====: |
| =<br>Omnibus:                             | 270.115   | Durhin Wa | +        |          | 1 0    |
| OIIIITDUS:                                | 2/0.113   | Durbin-Wa | LSUII    |          | 1.97   |

= Omnibus: 270.115 Durbin-Watson: 1.97
1 Prob(Omnibus): 0.000 Jarque-Bera (JB): 1256.65
3 Skew: -0.026 Prob(JB): 1.32e-27
3 Kurtosis: 5.675 Cond. No. 1.93e+0

=

#### Notes:

- $\[1\]$  Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.93e+06. This might indicate that there a re strong multicollinearity or other numerical problems.

# **Conclusions**

Transmission Manual

*olsres1* is our final model which follows all the assumptions, and can be used for interpretations.

- 1. Power come out to be very significant, as expected. As Power increase, the Price also increase, as is visible in the positive coefficient sign.
- 2. Kilometers Driven come out to weak significant, it was a surprise. As Kilometers increase, the Price decrease, as is visible in the negative coefficient sign.
- 3. 1 unit increase in Year (year Manufacturing) leads to a decrease in Price by 0.0938 Lakhs.
- 4. Diesel fuel type tend to have higher prices compared to Petrol.

## **Business Recommendations**

- Model improvement can be done with more Data points, more informations about he characteristics of the car, more data points to compare patterns and make better predictions.
- Not enough training data. This can be solved by training with more data (Eventhough this may not always succeed. Sometimes it may give noise towards data).
- Maximize the profit but also be aware to be sold for a reasonable price for someone who
  would want to own it.
- First owners cars, manually transmission and Diesel are most popular cars available on market.