High Throughput sequencing or Next Generation Sequencing (NGS)

History of Illumina sequencing

Sequencing costs have decreased massively over time

High Throughput Sequencing

- Short-read sequencing technologies (2nd generation):
 - Sequence millions of clonally amplified molecules at the same time
 - Reads are typically 150 bp long
 - Illumina
- Long-read technologies (3rd generation):
 - Single molecules are sequenced in real-time, fast but expensive and high error rates
 - Reads typically kb long
 - PacBio or Nanopore

Sanger Sequencing

- Manually check each sequence
- Resequence failed sequences

Illumina flowcell: millions of DNA sequences

Sequencing by synthesis by Illumina

2-channel sequencing by synthesis

(used by these Illumina machines: Novaseq, Nextseq, MiniSeq)

Long read sequencing technologies

PacBio

PacBio HiFi reads

Whole-genome sequencing (shotgun sequencing)

RAD sequencing

Restriction Associated DNA sequencing

Trade-offs: Splitting reads (i.e. costs) among:

- Number of sites to sequence
- Number of samples
- Sequencing depth
- Example: 1 Hiseq2500 flow cell
 ~250 mio read pairs of 125 bp each -> 75 Gb data
 - 5 whole-genomes of a species with 1 Gb genome size at 15x coverage
 - 50 whole-genomes of a species with 500 Mb genome size at 3x coverage
 - 30 Mbp sequenced for 100 samples with a RAD sequencing at a sequencing depth of 25

Fastq format

```
Header (must start with @)
@HWUSI-EAS611:34:6669YAAXX:1:1:5069:1159 1:N:0:
TCGATAATACCGTTTTTTTCCGTTTGATGTTGATACCATT
                                                       Base calls (sequence)
+
                                                       Quality scores
@HWUSI-EAS611:34:6669YAAXX:1:1:5243:1158 1:N:0:
TATCTGTAGATTTCACAGACTCAAATGTAAATATGCAGAG
DF=DBD<BBFGGGGGGGBD@GGGD4@CA3CGG>DDD:D,B
@HWUSI-EAS611:34:6669YAAXX:1:1:5266:1162 1:N:0:
GGAGGAAGTATCACTTCCTTGCCTGCCTCCTCTGGGGCCT
: GBGGGGGGGGDGDEDGGDGGGGDHHDHGHHGBGG : GG
```

Quality scores

```
@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG
CCGTCAATTCATTAGTTTTTAACCTTTGCGGCCGTACTCCCCAGGCGGT
+
AAAAAAAAAAAAAAA:9@::::??@@::FFAAAAAACCAA::::BB@@?A?
```

ASCII encoding

:	:	:
45:E	95 : _	146 : f
44:D	94:^	145 : e
43:C	93:]	144:d
42:B	92:\	143:c
41:A	91:[142:b
40:0	90:Z	141 : a

Phred = $-10 \log_{10} p$

p = Probability call is incorrect

Quality Score	Probability of incorrect base call	Base call accuracy
10	I in 10	90%
20	I in 100	99%
30	I in 1000	99.9%
40	I in 10000	99.99%

FastQC: Quality across bases (good example)

FastQC: Quality across bases (bad example)

Let's have a look at the first few sequences and check the sequencing quality with fastqc