Step-1

(a).

Consider the matrix
$$A = \begin{pmatrix} 1 & 3 \\ 3 & 5 \end{pmatrix}$$
.

The objective is to decide the positive definiteness of these matrices and write out the corresponding $f = x^T A x$

Step-2

Now the corresponding $f = x^T Ax$ is,

$$f = x^{T} A x$$

$$= (x y) \begin{pmatrix} 1 & 3 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= (x+3y 3x+5y) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= (x+3y)x + (3x+5y)y$$

$$= x^{2} + 3xy + 3xy + 5y^{2}$$

$$= x^{2} + 6xy + 5y^{2}$$

Step-3

Compare quadratic expression $f = x^2 + 6xy + 5y^2$ with $f = ax^2 + 2bxy + cy^2$

So,
$$a=1$$
, $2b=6 \Rightarrow b=3$, $c=5$.

Now
$$a > 0$$
 and $ac - b^2 = (1)(5) - (3)^2 = -4 < 0$.

This implies that a > 0 and $ac < b^2$

Notice that if $ax^2 + 2bxy + cy^2$ stays positive, then it necessary $ac > b^2$

Hence, here f is not positive definite.

Step-4

(b).

Consider the matrix
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Now the corresponding $f = x^T A x$ is,

$$f = x^{T} A x$$

$$= (x \quad y) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= (x - y \quad -x + y) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$=(x-y-x+y)(y)$$

$$= (x-y)x + (-x+y)y$$

$$= x^2 - xy - xy + y^2$$

$$= x^2 - 2xy + y^2$$

Step-5

Compare the quadratic expression $f = x^2 - 2xy + y^2$ with $f = ax^2 + 2bxy + cy^2$

We get a = 1, $2b = -2 \Rightarrow b = -1$, c = 1.

Now a > 0 and $ac - b^2 = 1 - (-1)^2 = 0$.

Notice that a > 0 and $ac = b^2$ then it is **positive semidefinite**.

Therefore, f is positive semi definite.

Step-6

(c).

Consider the matrix $A = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$

The corresponding $f = x^T A x$ is,

 $f = x^T A x$ $= \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

$$= (2x+3y \quad 3x+5y) \binom{x}{y}$$

$$=(2x+3y)x+(3x+5y)y$$

$$= 2x^2 + 3xy + 3xy + 5y^2$$

$$=2x^2+6xy+5y^2$$

Step-7

Compare the quadratic expression $f = 2x^2 + 6xy + 5y^2$ with $f = ax^2 + 2bxy + cy^2$

We get
$$a = 2$$
, $2b = 6$, $c = 5$.

Now a > 0 and $ac - b^2 = 1 > 0$.

Notice that if $ax^2 + 2bxy + cy^2$ stays positive, then it necessary $ac > b^2$

Therefore, f is positive definite.

Step-8

(d).

Consider the matrix $A = \begin{pmatrix} -1 & 2 \\ 2 & -8 \end{pmatrix}$

The corresponding $f = x^T A x$ is,

$$f = x^{T} A x$$

$$= \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 2 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \left(-x + 2y \quad 2x - 8y\right) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$=(-x+2y)x+(2x-8y)y$$

$$= -x^2 + 2xy + 2xy - 8y^2$$

$$=-x^2+4xy-8y^2$$

Step-9

Compare the quadratic expression $-x^2 + 4xy - 8y^2$ with $f = ax^2 + 2bxy + cy^2$

We get a = -1, $2b = 4 \Rightarrow b = 2$ and c = -8.

Now a < 0 and $ac - b^2 = 4 > 0$

This implies that a < 0 and $ac > b^2$

The quadratic form is negative definite if and only if a < 0 and $ac > b^2$

Therefore, f is negative definite.