$\begin{array}{c} \textbf{Projeto Mathematical Ramblings} \\ \textbf{mathematical ramblings.blogspot.com} \end{array}$

Volume do parabolóide de revolução.

Consideremos a função $f(x) = \sqrt{x}$, cujo gráfico é um trecho de parábola.

Rotacionando seu gráfico ao redor do eixo x teremos um parabolóide de revolução.

Vamos calcular seu volume.

O método mais cabível à situação é o dos discos, que diz que o volume do sólido de revolução gerado pela rotação do gráfico de uma função qualquer não negativa em torno do eixo x, no intervalo [a,b], é dado pela fórmula:

$$V = \pi \int_a^b [f(x)]^2 dx$$

Procedendo, desejando conhecer o volume até uma certa altura h:

$$V = \pi \int_0^h x \ dx = \frac{\pi x^2}{2} \mid_0^h = \frac{\pi h^2}{2}$$

Generalizando o resultado para um paraboló
ide qualquer, partindo-se da função $g(x)=\sqrt{\alpha x},$ chega-se à fórmula:

$$V = \frac{\pi \alpha h^2}{2}$$

Documento compilado em Tuesday 18th February, 2020, 10:58, UTC +0.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Comunicar erro: "a.vandre.g@gmail.com".