Consistency and asymptotic normality Example: (Poisson) X; lid Pois (B) g(D)=9 Tn = L = x: (MLE estimator) $Var_{o}(\tau_{u}) = \frac{9}{8}$ AS U -> 00 1. LLN: Tn -> 0 2. CLT: Vm (Tm - 9) d . (0, Var(x)) = Wo (0, 9) 3. Saupling distribution of In is approximately No(2, 2) (normal approximation)

<u>Definition</u>: Convergence in distribution det 2 Tului, and T+ be r.v. we say that (Tm donerges in distribution if for all continuous bounded functions f, lim E[f(Tw)] = E[f(T+)] Note: Convergence in Probability implies Convergence in distribution Theorem (Sleetsky) Let (&Th, Any, T+) be a collection of RP-r.v. and a e RP be a vector of constants. Assume that To to and An Para a. Then An In do at. Tt. Recoll: MLE estimator Tm of g(0) Im = arquax log Pob). we should in the last lecture that the MLE estimator is an Mestinabrand Gusistent Tant

Goal: Show that the MLE estimator Goal: Show that the MLE estimator is asymptotically mornal and there is a general formula for its assymptotic variouse.

Theorem: (Asympotic normality of MLE estimates)

Let X; iiid Po (x) for Soe ((true powareter))

and let Po (x) be the litelihe od of our Stationard and let To be the MLE estimator on X1,..., Xn. Suppose the following assumptions

hold:

- (A1) parameter space (1): compact 80 E (1): Linthe interior of (1) not in the Boundary.
- (A2) The log-likelihood la) is differentiable in 9.
- (A3) In has unique value of De @ that solves the equation 0 = l'(n). ('Indentifiability.)
- (A4) Uniform integrability for the

Score function. + EDO, JEDO S.1. Sup ED[|S(x)|1{S(x)>4}](E (K5) The map 0-logpoce) continuous 3 integrable function M(x) s.t. (log Poch) < Mc) + 9 = 6) Eno [M(x)] < 00. Tm is asymptiotically normal √n (7m-90) 3 No (0, I-1(0d)) I(9) = Vars (S(x)) = - E& [S(x)) Where

Soce) = 30 log Pocc) S'(c) = 372 log Poce)

More: . In is as you portably unbiased The bias of To is less than order 1/11. Otherwise M(Tu-90) Should not converge to a distribution with zero mean

· The various ce of Tom is approximately 1/m I(Ob).

In particular the standard error is of a nder / i and the variance is the main contribution factor to the mean square error of Th.

. if Do is the the parameter the sampling distribution of This approximately Wolds, 1 MIWS

Example: (Poisson)

log Po (x) = log y e' = x log y-2-logx!

So the score function and Hederitative: $S_{\theta}(x) = \frac{\partial}{\partial \theta} \log \Gamma_{\theta}(x) : \frac{x}{\partial \theta} - 1, S_{\theta}(x) > \frac{\partial^{2}}{\partial \theta^{2}} \log \Gamma_{\theta}(x)$

Fisher infrance manix:

T(3) = - E = [S'(x)] = 1/9

50 Vm (Tn-9) => Wo(0,9)

Leura: (properries of the score function) For Se @: En (So(x)) =0 Wars (500) = - E (500) Proof: By Chain rule of differentiation Sa(x) Pa(x) = (3 log (5(x)) 95(x) = 2 Po(x)
Po(x) = <u>3</u> p (*). (*)

Since | P (*) d = L [[] (S[6]) =] So(5) Po(6) dx =] 3 Po(6) dx = \frac{\text{99}}{2} \frac{\text{1.8}}{2} \text{1.8} \text{1.8} we differentiate this identity with respect to 2:

$$= \frac{\partial}{\partial s} E_{0}(s_{0}(s_{0}))$$

$$= \frac{\partial}{\partial s} \left[S_{0}(s_{0}(s_{0})) + S_{0}(s_{0}) \right] dx$$

$$= \int_{0}^{\infty} S_{0}(s_{0}) P_{0}(s_{0}) + S_{0}(s_{0}) P_{0}(s_{0}) dx$$

$$= \left[E_{0}(s_{0}(s_{0})) + V_{0}(s_{0}(s_{0})) \right] dx$$

$$= E_{0}(s_{0}(s_{0})) + V_{0}(s_{0}(s_{0})) + V_{0}(s_{0}(s_{0}))$$

$$= E_{0}(s_{0}(s_{0})) + V_{0}(s_{0}(s_{0}))$$

$$= E_{0}(s_{0}(s_{0})) + V_{0}(s_{0}(s_{0}))$$

Scench prod: Since In moximizes

l(A) we must have l(In) = 0. Consisting

of Im ensures that In moo Do. This

oflows us to apply a first order

Tay for expansion to the equation 0 = l'(Th) around 0 = 0. 0 = l'(Th) around 0 = 0.

$$\sqrt{n} \left(\sqrt{1} - \sqrt{3} \right) \sqrt{n} - \sqrt{n} \frac{\ell'(0, 1)}{\ell'(0, 3)}$$

For the denominator, by the LLN $\frac{1}{N} 2''(90) = \frac{1}{N} \frac{3^2}{89^2} (\log P_0(a)) |_{9=90}$

For the mominator recall by Lemma (properties of the Score)

SLX) has zero wear and variance

I (O) when x, N Po, (a). Then by

CLT
$$\frac{1}{\sqrt{N}} \varrho'(\vartheta_s) = \frac{1}{\sqrt{N}} \frac{3}{(1+\frac{3}{2})^2} \left(\log P_s(s) \right) = \vartheta_s$$

$$=\frac{1}{\sqrt{u}}\sum_{i=1}^{2}S_{i}(x_{i})\frac{1}{u_{i}}N_{o}(0,10)$$

By considere mapping Theorem

slatsty's lew ma $\sqrt{n}(\tau_n - 90) \rightarrow \frac{1}{T(80)} W(0, 2)$

Note: Continuous mapping Theorem

Let Ku P> x g co-rimons

=> g (xu) -> g (x)

1 2 x: P> h g (x) = x2

The (\frac{1}{2} \, \text{Tr})^2 \, \text{P}> \ \mu^2