

SEQUENCE LISTING

<110:	Reed, John C.	
<120	REGULATION OF BCL-2 GENE EXPRESSION	
<130	04040/1200990-us7	
<140 <141		
<150: <151:	→ US 09/375,514 → 1999-08-17	
<150 <151	us 09/080,285 1998-05-18	
<150: <151:	→ US 08/465,485 → 1995-06-05	
<150: <151:	→ US 08/124,256 → 1993-09-20	
<150: <151:	→ US 07/840,716 3 → 1992-02-21	
<150×		
<160	> 29	
<170>	PatentIn version 3.1	
<210: <211: <212: <213:	→ 20 → DNA	
<400 cagc	> 1 gtgcgc catccttccc	20
<210; <211; <212; <213;	> 35 > DNA	
<400 cttt1	> 2 cctct gggaaggatg gcgcacgctg ggaga	35
<210: <211: <212: <213:	> 20 > DNA	
<400 gatgo	> 3 caccta cccagcctcc	20
<210; <211; <212; <213;	> 33 > DNA	

acgggg	tacg gaggctgggt aggtgcatct ggt	33
<210> <211> <212> <213>	5 20 DNA Homo sapiens	
<400> acaaag	5 gcat cctgcagttg	20
<210> <211> <212> <213>	6 36 DNA Homo sapiens	
	6 actg caggatgcct ttgtggaact gtacgg	36
<210> <211> <212> <213>	7 20 DNA Homo sapiens	
<400> gggaag	7 gatg gcgcacgctg	20
<210> <211> <212> <213>	8 17 DNA Homo sapiens	
<400> cgcgtg	8 cgac cctcttg	17
<210> <211> <212> <213>	9 17 DNA Homo sapiens	
<400> taccgc	9 gtgc gaccctc	17
<210> <211> <212> <213>	10 17 DNA Homo sapiens	
<400> tcctac	10 cgcg tgcgacc	17
<210><211><211><212>	11 17 DNA	

<400> ccttcc	11 tacc gcgtgcg	17
<210> <211> <212> <213>	12 17 DNA Homo sapiens	
	12 tcct accgcgt	17
<210> <211> <212> <213>	13 17 DNA Homo sapiens	
<400> ggagac	13 cctt cctaccg	17
<210> <211> <212> <213>	14 15 DNA Homo sapiens	
	14 gcag cgcgg	15
<210> <211> <212> <213>	15 15 DNA Homo sapiens	
<400> cggcgg	15 ggcg acgga	15
<210> <211> <212> <213>	16 16 DNA Homo sapiens	
<400> cgggag	16 cgcg gcgggc	16
<210> <211> <212> <213>	17 18 DNA Homo sapiens	
<400> tctccc	17 agcg tgcgccat	18
<210> <211> <212> <213>	18 18 DNA Homo sapiens	
<400>	18	

<210> 19 <211> 5086 <212> DNA <213> Homo sapiens	
<400> 19 gcgcccgccc ctccgcgccg cctgcccgcc cgcccgcc	60
gtggccccgc cgcgctgccg ccgccgccgc tgccagcgaa ggtgccgggg ctccgggccc	120
tccctgccgg cggccgtcag cgctcggagc gaactgcgcg acgggaggtc cgggaggcga	180
ccgtagtcgc gccgccgcg aggaccagga ggaggagaaa gggtgcgcag cccggaggcg	240
gggtgcgccg gtggggtgca gcggaagagg gggtccaggg gggagaactt cgtagcagtc	300
atccttttta ggaaaagagg gaaaaaataa aaccctcccc caccacctcc ttctcccac	360
ccctcgccgc accacaca gcgcgggctt ctagcgctcg gcaccggcgg gccaggcgcg	420
tcctgccttc atttatccag cagcttttcg gaaaatgcat ttgctgttcg gagtttaatc	480
agaagacgat tectgeetee gteecegget cetteategt eccateteee etgtetetet	540
cctggggagg cgtgaagcgg tcccgtggat agagattcat gcctgtgtcc gcgcgtgtgt	600
gcgcgcgtat aaattgccga gaaggggaaa acatcacagg acttctgcga ataccggact	660
gaaaattgta attcatctgc cgccgccgct gccaaaaaaa aactcgagct cttgagatct	720
ccggttggga ttcctgcgga ttgacatttc tgtgaagcag aagtctggga atcgatctgg	780
aaatcctcct aatttttact ccctctcccc ccgactcctg attcattggg aagtttcaaa	840
tcagctataa ctggagagtg ctgaagattg atgggatcgt tgccttatgc atttgttttg	900
gttttacaaa aaggaaactt gacagaggat catgctgtac ttaaaaaata caagtaagtc	960
tcgcacagga aattggttta atgtaacttt caatggaaac ctttgagatt ttttacttaa	1020
agtgcattcg agtaaattta atttccaggc agcttaatac attgttttta gccgtgttac	1080
ttgtagtgtg tatgccctgc tttcactcag tgtgtacagg gaaacgcacc tgattttta	1140
cttattagtt tgtttttct ttaacctttc agcatcacag aggaagtaga ctgatattaa	1200
caatacttac taataataac gtgcctcatg aaataaagat ccgaaaggaa ttggaataaa	1260
aatttcctgc gtctcatgcc aagagggaaa caccagaatc aagtgttccg cgtgattgaa	1320
gacaccccct cgtccaagaa tgcaaagcac atccaataaa atagctggat tataactcct	1380
cttctttctc tgggggccgt ggggtgggag ctggggcgag aggtgccgtt ggcccccgtt	1440
gcttttcctc tgggaaggat ggcgcacgct gggagaacgg ggtacgacaa ccgggagata	1500
gtgatgaagt acatccatta taagctgtcg cagaggggct acgagtggga tgcgggagat	1560
gtgggcgccg cgcccccggg ggccgccccc gcaccgggca tcttctcctc ccagcccggg	1620
cacacgcccc atccagccgc atcccgcgac ccggtcgcca ggacctcgcc gctgcagacc 4	1680

ccggctgccc	ccggcgccgc	cgcggggcct	gcgctcagcc	cggtgccacc	tgtggtccac	1740
ctggccctcc	gccaagccgg	cgacgacttc	tcccgccgct	accgcggcga	cttcgccgag	1800
atgtccagcc	agctgcacct	gacgcccttc	accgcgcggg	gacgctttgc	cacggtggtg	1860
gaggagctct	tcagggacgg	ggtgaactgg	gggaggattg	tggccttctt	tgagttcggt	1920
ggggtcatgt	gtgtggagag	cgtcaaccgg	gagatgtcgc	ccctggtgga	caacatcgcc	1980
ctgtggatga	ctgagtacct	gaaccggcac	ctgcacacct	ggatccagga	taacggaggc	2040
tgggatgcct	ttgtggaact	gtacggcccc	agcatgcggc	ctctgtttga	tttctcctgg	2100
ctgtctctga	agactctgct	cagtttggcc	ctggtgggag	cttgcatcac	cctgggtgcc	2160
tatctgagcc	acaagtgaag	tcaacatgcc	tgccccaaac	aaatatgcaa	aaggttcact	2220
aaagcagtag	aaataatatg	cattgtcagt	gatgtaccat	gaaacaaagc	tgcaggctgt	2280
ttaagaaaaa	ataacacaca	tataaacatc	acacacacag	acagacacac	acacacaa	2340
caattaacag	tcttcaggca	aaacgtcgaa	tcagctattt	actgccaaag	ggaaatatca	2400
tttattttt	acattattaa	gaaaaaagat	ttatttattt	aagacagtcc	catcaaaact	2460
ccgtctttgg	aaatccgacc	actaattgcc	aaacaccgct	tcgtgtggct	ccacctggat	2520
gttctgtgcc	tgtaaacata	gattcgcttt	ccatgttgtt	ggccggatca	ccatctgaag	2580
agcagacgga	tggaaaaagg	acctgatcat	tggggaagct	ggctttctgg	ctgctggagg	2640
ctggggagaa	ggtgttcatt	cacttgcatt	tctttgccct	gggggcgtga	tattaacaga	2700
gggagggttc	ccgtgggggg	aagtccatgc	ctccctggcc	tgaagaagag	actctttgca	2760
tatgactcac	atgatgcata	cctggtggga	ggaaaagagt	tgggaacttc	agatggacct	2820
agtacccact	gagatttcca	cgccgaagga	cagcgatggg	aaaaatgccc	ttaaatcata	2880
ggaaagtatt	tttttaagct	accaattgtg	ccgagaaaag	cattttagca	atttatacaa	2940
tatcatccag	taccttaaac	cctgattgtg	tatattcata	tattttggat	acgcaccccc	3000
caactcccaa	tactggctct	gtctgagtaa	gaaacagaat	cctctggaac	ttgaggaagt	3060
gaacatttcg	gtgacttccg	atcaggaagg	ctagagttac	ccagagcatc	aggccgccac	3120
aagtgcctgc	ttttaggaga	ccgaagtccg	cagaacctac	ctgtgtccca	gcttggaggc	3180
ctggtcctgg	aactgagccg	ggccctcact	ggcctcctcc	agggatgatc	aacagggtag	3240
tgtggtctcc	gaatgtctgg	aagctgatgg	atggagctca	gaattccact	gtcaagaaag	3300
agcagtagag	gggtgtggct	gggcctgtca	ccctggggcc	ctccaggtag	gcccgttttc	3360
acgtggagca	taggagccac	gacccttctt	aagacatgta	tcactgtaga	gggaaggaac	3420
agaggccctg	ggccttccta	tcagaaggac	atggtgaagg	ctgggaacgt	gaggagaggc	3480
aatggccacg	gcccattttg	gctgtagcac	atggcacgtt	ggctgtgtgg	ccttggccac	3540
ctgtgagttt	aaagcaaggc	tttaaatgac	tttggagagg	gtcacaaatc	ctaaaagaag	3600
			3			

```
3660
cattgaagtg aggtgtcatg gattaattga cccctgtcta tggaattaca tgtaaaacat
                                                                     3720
tatcttgtca ctgtagtttg gttttatttg aaaacctgac aaaaaaaaag ttccaggtgt
ggaatatggg ggttatctgt acatcctggg gcattaaaaa aaaatcaatg gtggggaact
                                                                     3780
                                                                     3840
ataaagaagt aacaaaagaa gtgacatctt cagcaaataa actaggaaat ttttttttt
                                                                     3900
tccagtttag aatcagcctt gaaacattga tggaataact ctgtggcatt attgcattat
ataccattta tctgtattaa ctttggaatg tactctgttc aatgtttaat gctgtggttg
                                                                     3960
                                                                     4020
atatttcgaa agctgcttta aaaaaataca tgcatctcag cgtttttttg tttttaattg
                                                                     4080
tatttagtta tggcctatac actatttgtg agcaaaggtg atcgttttct gtttgagatt
tttatctctt gattcttcaa aagcattctg agaaggtgag ataagccctg agtctcagct
                                                                     4140
                                                                     4200
acctaagaaa aacctggatg tcactggcca ctgaggagct ttgtttcaac caagtcatgt
                                                                     4260
gcatttccac gtcaacagaa ttgtttattg tgacagttat atctgttgtc cctttgacct
tgtttcttga aggtttcctc gtccctgggc aattccgcat ttaattcatg gtattcagga
                                                                     4320
                                                                     4380
ttacatgcat gtttggttaa acccatgaga ttcattcagt taaaaatcca gatggcgaat
                                                                     4440
gaccagcaga ttcaaatcta tggtggtttg acctttagag agttgcttta cgtggcctgt
ttcaacacag acccaccag agccctcctg ccctccttcc gcgggggctt tctcatggct
                                                                     4500
                                                                     4560
gtccttcagg gtcttcctga aatgcagtgg tcgttacgct ccaccaagaa agcaggaaac
                                                                     4620
ctgtggtatg aagccagacc tccccggcgg gcctcaggga acagaatgat cagacctttg
aatgattcta atttttaagc aaaatattat tttatgaaag gtttacattg tcaaagtgat
                                                                     4680
                                                                     4740
gaatatggaa tatccaatcc tgtgctgcta tcctgccaaa atcattttaa tggagtcagt
                                                                     4800
ttgcagtatg ctccacgtgg taagatcctc caagctgctt tagaagtaac aatgaagaac
                                                                     4860
gtggacgttt ttaatataaa gcctgttttg tcttttgttg ttgttcaaac gggattcaca
                                                                     4920
gagtatttga aaaatgtata tatattaaga ggtcacgggg gctaattgct agctggctgc
cttttgctgt ggggttttgt tacctggttt taataacagt aaatgtgccc agcctcttgg
                                                                     4980
                                                                     5040
ccccagaact gtacagtatt gtggctgcac ttgctctaag agtagttgat gttgcatttt
ccttattgtt aaaaacatgt tagaagcaat gaatgtatat aaaagc
                                                                     5086
```

<210> 20 <211> 717

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(717) <223>

<400> 20

atg gcg cac gct ggg aga acg ggg tac gac aac cgg gag ata gtg atg

Met 1	ΑΊа	His	Ala	G]y 5	Arg	Thr	Gly	Tyr	Asp 10	Asn	Arg	Glu	Ile	Val 15	Met		
aag Lys	tac Tyr	atc Ile	cat His 20	tat Tyr	aag Lys	ctg Leu	tcg Ser	cag Gln 25	agg Arg	ggc Gly	tac Tyr	gag Glu	tgg Trp 30	gat Asp	gcg Ala	!	96
gga Gly	gat Asp	gtg val 35	ggc Gly	gcc Ala	gcg Ala	ccc Pro	ccg Pro 40	ggg Gly	gcc Ala	gcc Ala	ccc Pro	gca Ala 45	ccg Pro	ggc Gly	atc Ile	1	44
														cgc Arg		19	92
														ggc Gly		24	40
														ctg Leu 95		28	88
ctc Leu	cgc Arg	caa Gln	gcc Ala 100	ggc Gly	gac Asp	gac Asp	ttc Phe	tcc Ser 105	cgc Arg	cgc Arg	tac Tyr	cgc Arg	ggc Gly 110	gac Asp	ttc Phe	33	36
														cgg Arg		38	84
cgc Arg	ttt Phe 130	gcc Ala	acg Thr	gtg Val	gtg Val	gag Glu 135	gag Glu	ctc Leu	ttc Phe	agg Arg	gac Asp 140	ggg Gly	gtg Val	aac Asn	tgg Trp	43	32
ggg Gly 145	agg Arg	att Ile	gtg val	gcc Ala	ttc Phe 150	ttt Phe	gag Glu	ttc Phe	ggt Gly	ggg Gly 155	gtc Val	atg Met	tgt Cys	gtg Val	gag Glu 160	48	80
														ctg Leu 175		57	28
atg Met	act Thr	gag Glu	tac Tyr 180	ctg Leu	aac Asn	cgg Arg	cac His	ctg Leu 185	cac His	acc Thr	tgg Trp	atc Ile	cag Gln 190	gat Asp	aac Asn	57	76
gga Gly	ggc Gly	tgg Trp 195	gat Asp	gcc Ala	ttt Phe	gtg Val	gaa Glu 200	ctg Leu	tac Tyr	ggc Gly	ccc Pro	agc Ser 205	atg Met	cgg Arg	cct Pro	62	24
														ttg Leu		67	72
ctg Leu 225	gtg Val	gga Gly	gct Ala	tgc Cys	atc Ile 230	acc Thr	ctg Leu	ggt Gly	gcc Ala	tat Tyr 235	ctg Leu	agc Ser	cac His	aag Lys		7:	17
~ ~ .																	

<210> 21 <211> 239 <212> PRT <213> Homo sapiens

<400> 21

Met Ala His Ala Gly Arg Thr Gly Tyr Asp Asn Arg Glu Ile Val Met 1 5 10 15

Lys Tyr Ile His Tyr Lys Leu Ser Gln Arg Gly Tyr Glu Trp Asp Ala 20 25 30

Gly Asp Val Gly Ala Ala Pro Pro Gly Ala Ala Pro Ala Pro Gly Ile 35 40 45

Phe Ser Ser Gln Pro Gly His Thr Pro His Pro Ala Ala Ser Arg Asp 50 55 60

Pro Val Ala Arg Thr Ser Pro Leu Gln Thr Pro Ala Ala Pro Gly Ala 65 70 75 80

Ala Ala Gly Pro Ala Leu Ser Pro Val Pro Pro Val Val His Leu Ala 85 90 95

Leu Arg Gln Ala Gly Asp Asp Phe Ser Arg Arg Tyr Arg Gly Asp Phe 100 105 110

Ala Glu Met Ser Ser Gln Leu His Leu Thr Pro Phe Thr Ala Arg Gly
115 120 125

Arg Phe Ala Thr Val Val Glu Glu Leu Phe Arg Asp Gly Val Asn Trp 130 140

Gly Arg Ile Val Ala Phe Phe Glu Phe Gly Gly Val Met Cys Val Glu 145 150 155 160

Ser Val Asn Arg Glu Met Ser Pro Leu Val Asp Asn Ile Ala Leu Trp 165 170 175

Met Thr Glu Tyr Leu Asn Arg His Leu His Thr Trp Ile Gln Asp Asn 180 185 190

Gly Gly Trp Asp Ala Phe Val Glu Leu Tyr Gly Pro Ser Met Arg Pro 195 200 205

Leu Phe Asp Phe Ser Trp Leu Ser Leu Lys Thr Leu Leu Ser Leu Ala 210 215 220

Leu Val Gly Ala Cys Ile Thr Leu Gly Ala Tyr Leu Ser His Lys 225 230 235

<211> <212> <213>	615 DNA Homo	sap	iens												
<220> <221> <222> <223>	CDS (1).	.(61	5)												
<400> atg go Met Al 1															48
aag ta Lys Ty	c atc r Ile	cat His 20	tat Tyr	aag Lys	ctg Leu	tcg Ser	cag Gln 25	agg Arg	ggc Gly	tac Tyr	gag Glu	tgg Trp 30	gat Asp	gcg Ala	96
gga ga Gly As	t gtg p Val 35	ggc Gly	gcc Ala	gcg Ala	ccc Pro	ccg Pro 40	ggg Gly	gcc Ala	gcc Ala	ccc Pro	gca Ala 45	ccg Pro	ggc Gly	atc Ile	144
ttc tc Phe Se 50	r Ser	cag Gln	ccc Pro	ggg Gly	cac His 55	acg Thr	ccc Pro	cat His	cca Pro	gcc Ala 60	gca Ala	tcc Ser	cgc Arg	gac Asp	192
ccg gt Pro Va 65	c gcc 1 Ala	agg Arg	acc Thr	tcg Ser 70	ccg Pro	ctg Leu	cag Gln	acc Thr	ccg Pro 75	gct Ala	gcc Ala	ccc Pro	ggc Gly	gcc Ala 80	240
gcc gc Ala Al	g ggg a Gly	cct Pro	gcg Ala 85	ctc Leu	agc Ser	ccg Pro	gtg Val	cca Pro 90	cct Pro	gtg val	gtc val	cac His	ctg Leu 95	gcc Ala	288
ctc cg Leu Ar	c caa g Gln	gcc Ala 100	ggc Gly	gac Asp	gac Asp	ttc Phe	tcc ser 105	cgc Arg	cgc Arg	tac Tyr	cgc Arg	ggc Gly 110	gac Asp	ttc Phe	336
gcc ga Ala Gl	g atg u Met 115	tcc Ser	agc Ser	cag Gln	ctg Leu	cac His 120	ctg Leu	acg Thr	ccc Pro	ttc Phe	acc Thr 125	gcg Ala	cgg Arg	gga Gly	384
cgc tt Arg Ph 13	t gcc e Ala O	acg Thr	val	gtg Val	Glu	Glu	ctc Leu	ttc Phe	agg Arg	gac Asp 140	ggg Gly	gtg Val	aac Asn	tgg Trp	432
ggg ag Gly Ar 145	g att g Ile	gtg Val	gcc Ala	ttc Phe 150	ttt Phe	gag Glu	ttc Phe	ggt Gly	ggg Gly 155	gtc Val	atg Met	tgt Cys	gtg Val	gag Glu 160	480
agc gt Ser Va	c aac 1 Asn	cgg Arg	gag Glu 165	atg Met	tcg Ser	ccc Pro	ctg Leu	gtg Val 170	gac Asp	aac Asn	atc Ile	gcc Ala	ctg Leu 175	tgg Trp	528
atg ac Met Th	t gag r Glu	tac Tyr 180	ctg Leu	aac Asn	cgg Arg	cac His	ctg Leu 185	сас His	acc Thr	tgg Trp	atc Ile	cag Gln 190	gat Asp	aac Asn	576
gga gg Gly Gl	c tgg y Trp 195	gta Val	ggt Gly	gca Ala	tct Ser	ggt Gly 200	gat Asp	gtg Val	agt Ser	ctg Leu	ggc Gly 205				615

<211> 205

<212> PRT

<213> Homo sapiens

<400> 23

Met Ala His Ala Gly Arg Thr Gly Tyr Asp Asn Arg Glu Ile Val Met $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Lys Tyr Ile His Tyr Lys Leu Ser Gln Arg Gly Tyr Glu Trp Asp Ala 20 25 30

Gly Asp Val Gly Ala Ala Pro Pro Gly Ala Ala Pro Ala Pro Gly Ile 35 40 45

Phe Ser Ser Gln Pro Gly His Thr Pro His Pro Ala Ala Ser Arg Asp 50 55 60

Pro Val Ala Arg Thr Ser Pro Leu Gln Thr Pro Ala Ala Pro Gly Ala 65 70 75 80

Ala Ala Gly Pro Ala Leu Ser Pro Val Pro Pro Val Val His Leu Ala 85 90 95

Leu Arg Gln Ala Gly Asp Asp Phe Ser Arg Arg Tyr Arg Gly Asp Phe 100 105 110

Ala Glu Met Ser Ser Gln Leu His Leu Thr Pro Phe Thr Ala Arg Gly 115 120 125

Arg Phe Ala Thr Val Val Glu Glu Leu Phe Arg Asp Gly Val Asn Trp 130 135 140

Gly Arg Ile Val Ala Phe Phe Glu Phe Gly Gly Val Met Cys Val Glu 145 150 155 160

Ser Val Asn Arg Glu Met Ser Pro Leu Val Asp Asn Ile Ala Leu Trp 165 170 175

Met Thr Glu Tyr Leu Asn Arg His Leu His Thr Trp Ile Gln Asp Asn 180 185 190

Gly Gly Trp Val Gly Ala Ser Gly Asp Val Ser Leu Gly 195 200 205

<210> 24

<211> 18

<212> DNA

<213> Homo sapiens

<400> 24

tctccc	agcg tgcgccat	18
<210> <211> <212> <213>	25 18 DNA Homo sapiens	
<400> tgcact	25 cacg ctcggcct	18
<210> <211> <212> <213>	26 20 DNA Homo sapiens	
<400> gcgcgg	26 cggg cgggcgggca	20
<210> <211> <212> <213>	27 20 DNA Homo sapiens	
<400> gggcgg	27 aggc cggccggcgg	20
<210> <211> <212> <213>	28 20 DNA Homo sapiens	
<400> agcggc	28 ggcg gcggcagcgc	20
<210> <211> <212> <213>	29 20 DNA Homo sapiens	
<400>	29 ggaa gggcgcccgc	20