Einfürung in die Algebra Hausaufgaben Blatt Nr. 9

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: January 25, 2024)

I. ZAHLENTHEORIE

Theorem 1. (Division mit Rest)

$$a = bq + r$$
, $0 \le r \le |b| - 1$.

Theorem 2. Sei $\mathbb{Z}^2 \ni (a,b) \neq (0,0)$. Dann gibt es $s,t \in \mathbb{Z}$ mit

$$ggT(a,b) = sa + tb.$$

Theorem 3. Sei $\mathbb{Z}^2 \ni (a,b) \neq (0,0)$ und d ein Teiler von a und b. Es gilt

$$d \cdot ggT\left(\frac{a}{b}, \frac{b}{d}\right) = ggT(a, b).$$

Theorem 4. Seien $a, b, c \in \mathbb{Z}$. Sind a, b teilerfremd, gilt

- (a) $a|bc \implies a|c$
- (b) $a|c \ und \ b|c \implies ab|c$.
- (c) ggT(a,bc) = ggT(a,c)

Theorem 5. *Sei* $a, b \in \mathbb{N}^*$.

$$ab = ggT(a,b) \cdot kgV(a,b).$$

Theorem 6. Sei $a \in \mathbb{Z}$, p eine Primzahl, $a \nmid p$. Dann ist

$$a^{p-1} - 1 \equiv 0 \pmod{p}.$$

Theorem 7. Sei $n \in \mathbb{N}^*$. $\varphi(n)$ ist die Anzahl der natürlichen Zahlen $1 \leq m < n$, die zu n teilerfremd sind.

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

II. ALLGEMEINE GRUPPENTHEORIE

Theorem 8. *Es gilt* $x^{|G|} = 1 \ \forall x \in G$.

Theorem 9. Sei a ein Element der Ordnung $n \in \mathbb{N}^*$. Für $m \in \mathbb{Z}$ sei d = ggT(n, m). Dann hat a^m die Ordnung $\frac{n}{d}$.

Theorem 10. Eine Untergruppe N ist genau dann Normalteiler, wenn $g^{-1}Ng \subseteq N$ für alle $g \in G$ gilt.

Theorem 11. Die Primzahl p teile die Ordnung der endlichen Gruppe G. Dann enthält G ein Element der Ordnung p.

Theorem 12. *Es gibt Untergruppen von Primpotenzordnung* p^r , wenn $p^r||G|$.

Theorem 13. *Jede p-Untergruppe von G liegt in einer p-Sylowgruppe von G.*

Theorem 14. *Die p-Sylowgruppen sind konjugiert.*

Definition 15. Sei $S \subseteq G$. Die Normalisator $N_G(S)$ ist die Elemente $g \in G$, so dass $gSg^{-1} = S$.

Theorem 16. Sei n_p die Anzahl der p-Sylowgruppen von G. Es gilt

- 1. $n_p \equiv 1 \pmod{p}$.
- 2. $n_v = [G : N_G(P)]$
- 3. $n_p|[G:P]$

III. GRUPPENHOMOMORPHISMEN

Theorem 17. *Sei* ϕ : $G \rightarrow H$ *ein Homomorphismus. Es gilt* $ord(\phi(g))|ord(g)$.

Theorem 18. Sei $U \leq G$, $N \leq G$.

$$U/U \cap N \cong UN/N$$
.

Theorem 19. Sei $K \subseteq G$, $K \subseteq H \subseteq G$. $H \subseteq G$ genau dann, wenn $H/K \subseteq G/K$. In diesem Fall ist

$$\frac{G}{H} \cong \frac{G/K}{H/K}.$$

Theorem 20. Die Menge der Konjugationsautomorphismen bezeichnen wir mit Inn(G). Es gilt $G/Z(G) \cong Inn(G)$.

IV. GRUPPENOPERATIONEN

Definition 21. Eine Operation ist ein Homomorphismus $G \to \operatorname{Sym}(M)$.

Theorem 22. Die Länge der Bahn durch $m \in M$ ist $[G : G_m]$.

Theorem 23. Sei $m, n \in M$ in der gleichen Bahn. Dann sind die Stabilisatoren konjugiert.

Theorem 24. Sei m_1, \ldots, m_r Repräsentanten der Bahnen.

$$|M| = \sum_{i=1}^{r} [G:G_{m_i}].$$

Theorem 25. Sei m_1, \ldots, m_r Repräsentanten der Konjugationsklassen, die großer als 1 sind. Es gilt

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G:G_{m_i}].$$

Theorem 26. Für $g \in G$ sei $\chi(g)$ die Anzahl $m \in M$ mit g.m = m. Dann ist

$$\frac{1}{|G|} \sum_{g \in G} \chi(g)$$

die Anzahl der Bahnen auf M.

V. ABELSCHE GRUPPEN

Theorem 27. Sei n die größte Elementordnung in einer abelschen Gruppe G. Dann gilt $g^n = e$ für alle $g \in G$.

Theorem 28. G ist genau dann abelsch, wenn die Zentrumsfaktorgruppe G/Z(G) zyklisch ist.

Theorem 29. Sei p eine Primzahl. Alle Gruppen der Ordnung p^2 sind abelsch.

VI. ZYKLISCHE GRUPPEN

Theorem 30. Sei a ein Erzeuger der zyklischen Gruppe G mit |G| = n. a^m ist genau dann Erzeuger, wenn m und n teilerfremd sind.

Theorem 31. G ist zyklisch genau dann, wenn G zu jedem positiven Teiler t von |G| genau eine Untergruppe der Ordnung t besitzt.

VII. SYMMETRISCHE & ALTERNIERENDE GRUPPEN

Theorem 32. *Sei* σ , $\tau \in S_n$ *disjunkt. Es gilt* $ord(\sigma\tau) = kgV(ord(\sigma), ord(\tau))$

Theorem 33.

$$S_n = \langle (12), (123 \dots n) \rangle.$$

Theorem 34. Sei $\phi = (a_1 a_2 \dots)(b_1 b_2 \dots) \dots \in S_n$ in Zykelnotation und $\psi \in S_n$. Es gilt

$$\psi\phi\psi^{-1}=(\psi(a_1)\psi(a_2)\dots)(\psi(b_1)\psi(b_2)\dots)\dots$$

Theorem 35. Seien $\alpha, \beta \in S_n$ Permutationen mit den gleichen Zykellängen. Dann sind α und β in S_n konjugiert.

Theorem 36. Jede gerade Permutation in S_n ist ein Produkt von 3-Zykeln. Insbesondere wird A_n von den 3-Zykeln aus S_n erzeugt.

Theorem 37. Sei $n \geq 5$. Dann sind alle 3-Zykel in A_n konjugiert.

VIII. EINFACHE GRUPPEN

IX. PRODUKTGRUPPEN

Theorem 38. Sei $A, B \leq G$. AB ist eine Gruppe genau dann, wenn AB = BA.

Theorem 39.

$$|AB| = \frac{|A||B|}{|A \cap B|}.$$

Theorem 40. Internes direktes Produkt: $A, B \subseteq G, A \cap B = \{e\} \implies AB \cong A \times B$.

Theorem 41. Internes semidirektes Produkt: $A \subseteq G$, $B \subseteq G$, $A \cap B = \{e\} \implies AB \cong A \rtimes B$

Definition 42. $A \rtimes_{\varphi} B = (A \times B, \circ, (e, e)), \text{ wobei } (u, v) \circ (\tilde{u}, \tilde{v}) = (u\varphi_v(\tilde{u}), v\tilde{v})$

X. AUFLÖSBARE GRUPPEN

Definition 43. Elemente der Form $aba^{-1}b^{-1}$ heißen Kommutatoren. Die durch die Kommutatoren erzeugte Gruppe heißt die Kommutatorgruppe G' von G. Wir bezeichnen die höhere Kommutatorgruppen mit $G^{(i)}$.

Theorem 44. Die Gruppen $G^{(i)}$ sind alle normal in G.

Theorem 45. Untergruppen, Faktorgruppen und homomorph Bilder von auflösbaren Gruppen sind auflösbar.

Theorem 46. Semidirekte Produkten (und daher direkte Produkten) von auflösbaren sind auflösbar.

Theorem 47.

Theorem 48. (Nicht zu nutzen) Burnside: Gruppen der Ordnung $p^a q^b$ sind auflösbar. Feit Thompson: Endliche Gruppen von ungerade Ordnung sind auflösbar.

XI. BEISPIELVERZEICHNIS

Example 49. (Diedergruppe) Die Diedergruppe D_n hat Ordnung 2n. r hat Ordnung n, s hat Ordnung 2, alle Elemente der Form r^k s haben Ordnung 2

Example 50. (Kleinsche Vierergruppe) $V_4 = \{ \sigma \in A_4 | ord(\sigma) \leq 2 \}$. 4 Elemente und nicht zyklisch.