	Examen final de Xarxes de Computado	ors (XC)	Grau en Ingeniería Informàtica	19/06/2024	Primavera 2024
Nom		Cognoms		Grup	DNI
Durac	ió: 3h. El test es recollirà en 30 minuts. R	espondre els pro	blemes en el mateix enunciat		
Test (s són multiresposta: totes les combinacions són pos	sibles (de tot fals	a tot cert); i valen la meitat si hi ha
1. I	En la xarxa de la figura, estima quin	que els acks te	a finestra òptima mesurada en segments per a nen mida igual a 0 i que el retard de propagac nsmissió no és zero.	una Ethern ió en PC1	et, Full duplex, 100 Mbps PC2 VLAN
2. !	En la xarxa de la figura i les suposici	ons anteriors, e	□ 10 □ 1 □ 2 □ 6 □ 3 □ 12 estima quina serà la velocitat eficaç en Mbps d	l'una	f1 1 f1 2 runk
(·		nt (és a dir, stop-and-wait) entre entre PC2 i S	s. s	3 X1 f2 f3 X2 f2 port
3 1	■ 20 □ 10 □ 33,33 □ 1	·	் ப 50 ப 8,33 n màxima velocitat que permet la xarxa amb T	CD can a S Dig	ues en quins norts és probable
	que els commutadors enviïn trames	de pausa. Nota	ció: commutador, port.	Cr cap a 3. Digi	ies en quins ports es probable
4	■ X1,f1 ■ X2,f1 □ X1,f3	•			ID l tl
1			uides. PC1 fa ping a l'adreça IP de S. Digues si enerat pel ping. Notació: dispositiu, IP _{dispositiu}		
	\square PC2, IP _R \blacksquare S, IP_R \square PC	2, IP _S □ PC1	, $IP_S \square S$, $IP_{PC1} \blacksquare PC1$, $IP_R \blacksquare R$, $IP_S \blacksquare$	R, IP _{PC1}	
9		n en les tàules	de forwarding del commutador) i ARP estan MAC quan PC1 rep resposta. Només hi ha el		
	\square X2, 3, f2, M _S \square X2, 2, f1, \square	M _{PC2} ■ X1,3	, f2, M _R ■ X2, 3, f2, M _R ■ X2, 1, f3, M _{PC1}	□ X1, 2, f2, M	R ■ X1, 1, f2, M _R
	En la xarxa de la figura, digues quan PC2 i S:	tes IP s'hauran	d'assignar com a mínim a interfícies dels disp	ositius perquè h	i hagi connectivitat entre PC1,
	□ 3 □ 4 ■ 6 □ 8 □ 7	□ 5			
7. 1	Les trames Ethernet porteUna de les adreces que hi	Cs connectats n dues adreces ha en les tram haver PCs con	en mode Half Duplex i Full Duplex s es WiFi és el BSSID nectats en mode Half Duplex i Full Duplex		
8. 1	Digues si en les capçaleres dels segi IP, flag de don't fragment TCP, flag de PUSH IP, camp de protocol UDP, flag de PUSH UDP, camp TTL	ients protocols	hi ha els camps que s'indiquen:		
9. 1		otocol (STP) Message Proto Tree Protocol (Solitiple Access with	col (ICMP) STP) ith Collision Avoidance (CSMA/CA) I Collision Detection (CSMA/CD)		
10. I	□ En els dos protocols s'envio□ El camp "advertised windo	c amp de chec en ACKs per co w" de la capçal	ksum per detectar si hi ha errors nfirmar la recepció correcta d'informació era de TCP varia en funció de la congestió de en sempre els ports que identifiquen el socke		l servidor
11.	□ El client de correu ha de de■ Per poder enviar missatge	ervidor de cori emanar un reso s amb conting	reu un client pot fer servir HTTP o SMTP urce record de timpus MX al servidor de noms		el missatge
12. l	Les dades que envia el servUn del camps de la capçal	satge de Respo vidor han d'esta era del missato	onse hi ha un codi que indica si hi ha error ar codificades en ASCII ge de Query y Response pot ser Content-Type hi ha el mètode (GET, POST)	2	

 $\hfill \Box$ Un del camps de la capçalera del missatge de Response pot ser Reset per avortar la connexió

Examen final. Xarxes de Computad	lors (XC), Grau en Enginyeria Informàtica	19/06/2024	Primavera 2024
NOM (MAJÚSCULES):	COGNOMS (MAJÚSCULES):	GRUP:	DNI/NIE:

Contestar en el mateix full.

Problema 1 (1,75 punts)

La figura mostra una xarxa amb dues VLAN i dos commutadors Ethernet (SWA i SWB). La VLAN1 té els dispositius a, b, c, d, e, f i el servidor S1. La VLAN 2 té els servidors S2A i S2B, un "hub" amb 5 dispositius (p_i) i un punt d'accés WiFi a 120Mbps amb 10 dispositius (w_i). El "hub" i el punt d'accés WiFi tenen una eficiència del 80%. Els commutadors tenen activat el control del flux i tots els enllaços són Fast Ethernet (100Mbps). Totes les connexions entre client i servidor són TCP amb tràfic sostingut a la màxima velocitat possible.

Per a cada una de les situacions següents identificar quins ports dels commutadors són coll d'ampolla i activen el control de flux (notació: SWx-port) i la velocitat efectiva que poden assolir els dispositius.

a) (0,25) Tots els dispositius de la VLAN1 envien informació a S1. No hi ha cap més comunicació activa.

Port/ports on hi ha coll d'ampolla: SWB-4 SWA-3

Velocitat efectiva en Mbps de a: 10 b: 10 c: 20 d: 20 e: 20 f: 20

b) (0,25) S1 envia informació als dispositius de VLAN1. No hi ha cap més comunicació activa. Port/ports on hi ha coll d'ampolla: cap; TCP distribueix els 100Mbps de S1 entre els clients (100/6=16,6) Velocitat efectiva en Mbps de a: 16,6 b: 16,6 c: 16,6 d: 16,6 e: 16,6 f: 16,6

c) (0,35) Tots els dispositius de la VLAN1 envien informació a S1 i a la vegada S1 envia informació als dispositius de VLAN1. No hi ha cap més comunicació activa.

Port/ports on hi ha coll d'ampolla: SWB-4 SWA-3

Velocitat efectiva de transmissió de a: 10 b: 10 c: 20 d: 20 e: 20 f: 20 Velocitat efectiva de recepció de a: 16.6 b: 16.6 c: 16.6 d: 16.6 e: 16.6 f: 16.6

d) (0,25) Tots els dispositius i servidors de la VLAN2 envien informació a S1. No hi ha cap més comunicació activa.

Port/ports on hi ha coll d'ampolla: SWB-4 SWA-2

Velocitat efectiva en Mbps de p_i: 16.6/5=3.33 w; 16.6/10=1.6 S2A: 50 S2B: 50/3=16.6

e) (0,25) S1 envia informació als dispositius i servidors de VLAN2. No hi ha cap més comunicació activa. Port/ports on hi ha coll d'ampolla: cap; TCP distribueix els 100Mbps de S1 entre els clients (100/17=5,88) Velocitat efectiva en Mbps de p_i: 5,88 w_i: 5,88 S2A: 5,88 S2B: 5,88 Verificació medi compartit. Hub: 5,88*5=29,41 < 80Mbps; AP: 5,88*10=58,8 < 96Mbps

f) (0,40) Tots els dispositius i servidors de la VLAN2 envien informació a S1 i S1 envia informació als dispositius i servidors de VLAN2 a la vegada. No hi ha cap més comunicació activa.

Port/ports on hi ha coll d'ampolla: SWB-4 SWA-2

Velocitat efectiva de transmissió de p_i : 11,1/5=2,2 w_i : 11,1/10=1,1 S2A: 33,3 S2B: 33,3/3=11,1 Velocitat efectiva de recepció de p_i : 33,3/17=1,96 w_i : 1,96 S2A: 1,96 S2B: 1,96 Verificació medi compartit. Hub: (2,2+1,96)*5=20,8<80Mbps. AP: (1,1+1,96)*10=30,6<80Mbps.

Examen Final de Xarxes de	19/06/2024	Primavera 2024	
NOM (MAJÚSCULES):	COGNOMS (MAJÚSCULES)	GRUP:	DNI

Prob X (2pt) En la red de la figura (es la misma que la red del test) tenemos dos conmutadores (X1 y X2), dos PCs en distintas VLANs (PC1 en VLAN1 y PC2 en VLAN2), un servidor (S) en VLAN 3 y un router (R) con tres interfaces virtuales (uno por VLAN) conectados a un enlace ethernet en modo trunk. PC1 y PC2 establecerán dos conexiones TCP con S con una duración muy grande (primero se conectará PC1 y después PC2) y pueden generar datos a una velocidad muy elevada. Cada uno de los interfaces virtuales del router R dispone de un buffer de 100 kB.

- a) ¿Cuál sería el RTT (tiempo de ida y vuelta) mínimo que podríamos tener en esta red para los paquetes del 3WHS si los retardos de propagación son despreciables y no tenemos en cuenta las cabeceras Ethernet?
 - b) *RTT mínimo*: 12x3.2 = 38,4 microsegundos
 - c) *Motivación:* Los paquetes del 3WHS miden 40 Bytes= 320 bits, por lo que el tiempo de transmisión es de 3.2 microsegundos, y el paquete necesita 6 transmisiones para llegar al destino (es decir 12 para ir y volver).

En t=0, PC1 establece una conexión TCP con S (PC2 está inactivo). En la tabla se muestra la secuencia de paquetes monitorizada en PC1. El tiempo se mide en milisegundos desde t=0:

t (mseg)	IP orig	IP dst	Port orig	Port dst	Flags	awnd
0	PC1	S	2000	80	SYN	100 kB
0.064	S	PC1	80	2000	SYN+ACK	16 kB
0.065	PC1	S	2000	80	ACK	100 kB

¿Cuál es la ocupación del buffer del interfaz de R en VLAN3 en t=0? (supón en ese momento en la red podría haber tráfico de otras conexiones).

Ocupación del buffer: Estará vacío

Motivación: el RTT (64 μs) no es mucho mayor que el RTT mínimo estimado anteriormente.

d) Rellena la siguiente tabla con los estados de la conexión TCP en PC1 y de S para los instantes de tiempo indicados. En la última fila de la tabla se supone que el tercer paquete del 3WHS ya ha sido procesado por su destinatario.

Tiempo (ms)	Estado de conexión TCP en PC1	Estado de conexión TCP en S
0.010	SYN_SENT	LISTEN (listening socket)
0.050	SYN_SENT	SYN_RECEIVED
0.110	ESTABLISHED	ESTABLISHED

e) Una vez establecida la conexión, asumiendo ahora que no hay más conexiones en la red, PC1 comienza una transferencia de datos continua a S. Los paquetes miden 1500 B. ¿Cuál crees que será a la máxima velocidad de transferencia que podrá alcanzar? ¿Quién limita esa velocidad, el control de flujo/congestión de TCP o la capacidad de los enlaces de la red? ¿Cuál será la ocupación media del buffer del interfaz de R en VLAN3?

Máxima velocidad de transferencia: 100 Mbps=min(100 Mbps, 128 Kb/ 739.2 micros = 138.5 Mbps) (algo menos si tenemos descontamos el overhead introducido por las cabeceras IP y TCP).

NOTA: se dará también por válida la respuesta en la que se calcule RTT= 12* 120 micro, que da lugar a una velocidad máxima de 88 Mbps controlada por la ventana anunciada

Motivación: La awnd es de 16 KB= 128 Kb. El tiempo de transmisión de los paquetes es de 1500*8/100 M= 120 microsec => RTTmin= <math>6*120 + 6*3.2 = 720 + 31 = 739.2 microsec.

Quién limita la máxima velocidad de transferencia: La velocidad vendrá limitada por los enlaces permitirían 100 Mbps (y solo tenemos la conexión de PC1-S).

Ocupación del buffer: Vacío

Motivación: el buffer tiene una entrada limitada a 100 Mbps y se vacía a 100 Mbps, por lo que no se saturará, es decir, ocupación cero según las aproximaciones que hacemos en clase. En la práctica al estar muy cerca del límite podría tener cierto llenado

Una vez que la conexión PC1-S ha alcanzado su máxima velocidad, PC2 establece una conexión TCP con S, con el mismo valor de *awnd* y tamaño de los paquetes. Una vez establecida la conexión, PC2 comienza una transferencia de datos continua a S a la máxima velocidad posible.

f) ¿Cuál crees que será la máxima velocidad de transferencia entre PC2 y S? ¿Quién limita esa velocidad, TCP o la capacidad de los enlaces de la red? ¿Cuál será el efecto que tiene esta nueva conexión en la velocidad de transferencia entre PC1-S?

Máxima velocidad de transferencia: 50 Mbps

Motivación: La awnd 16 KB= 128 Kb. El tiempo de transmisión de los paquetes es de 1500*8/100 M= 120 microsec => RTTmin= 5*120 microsec+5*3.2 = 600 + 16= 616 microsec (algo menor que en c) ya que nos evitamos un enlace de ida y otro de vuelta). La máxima velocidad que nos permite el control de flujo de TCP es de 204.5 Mbps Mbps. Sin embargo, el enlace trunk S2-R está compartido con el flujo PC1-S, y entonces máx velocidad de transferencia sería de 50 Mbps

Quién limita la máxima velocidad de transferencia: La limitación viene dada por la capacidad de los enlaces de la red.

Efecto en transferencia PC1-S: su velocidad de transferencia sería de 50 Mbps.

Usamos TCP Tahoe, es decir, la versión de TCP explicada en clase, con *Slow-Start* (SS) y *Congestion Avoidance* (CA). Suponemos las condiciones del apartado c).

e) Si no ha habido pérdidas hasta el momento, ¿en qué estado se encontraría el mecanismo de control de congestión de PC1? ¿cuánto valdría la variable ssthresh?.

Estado: Estará en Slow Start, ssthresh: un valor muy grande (teóricamente, infinito)

Ahora en la conexión entre PC1 y S se pierde un paquete (por ejemplo, por error en transmisión).

f) ¿Qué mecanismo usa TCP para detectar la pérdida? ¿Qué valor tendrán la ventana de congestión y ssthersh justo después de detectar la pérdida? Si después no hay más pérdidas, ¿Cuánto debe valer la ventana de congestión para pasar de SS a CA?

Detección de pérdida: Por un Retransmission Time Out (RTO), es decir, paquete no confirmado.

Ventana de congestión y ssthresh: la ventana de congestión se reduce inicialmente a 1 paquete y que *ssthresh* = max(min(16 KB, cwnd) / 2, 3 MB) = 8 KB.

Ventana de congestión para pasar de SS a CA: cuando llegue al valor de ssthresh, 8KB

Examen Final de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica			Primavera 2024
NOM (MAJÚSCULES): COGNOMS (MAJÚSCULES):		GRUP:	DNI/NIE:

Duració: 2h45m total. El test es recollirà en 30 minuts. Respondre en el mateix enunciat.

Problema 3 (2,5 punts)

Suposem un nou correu web UPC a l'URL: http://c.upc.edu/i.html i un navegador amb HTTP1.1 (inclou pipelining). El teu portàtil es connecta a Internet a casa. El teu router fa NAT i reenvia peticions DNS al teu proveïdor d'internet. RTT cap a aquest servidor DNS és 1 ms, cap a qualsevol servidor DNS o HTTP extern és 5 ms. Cada element de contingut (HTML, imatge) és 50 KB, MSS 1 KB, transferència dades 1 MSS ~0 ms, awnd: 200 KB.

El teu portàtil i router a casa s'encenen (memòria cau/caché buida), i s'obre el navegador amb aquest URL, que per tant primer de tot demana resoldre el nom DNS a aquest URL.

a) Quant de temps trigaria, com a mínim, en rebre resposta d'aquesta resolució DNS? Indica quins servidors participen.

Mínim: **1 ms**. PC ↔ NS proveïdor d'internet, si té una resposta vàlida a la cau.

Pregunta A? Resposta →RR A de c.upc.edu.

b) Quant de temps trigaria, com a màxim, en rebre resposta d'aquesta resolució DNS? Indica servidors i registres DNS (RR) involucrats.

Màxim: PC ↔ NS proveïdor d'Internet amb recursió: Pregunta A?

1 ms a) + recursió: 5 ms root «.» \leftrightarrow NS edu + 5 ms TLD edu \leftrightarrow NS upc.edu + 5 ms upc.edu \leftrightarrow A = **16 ms**.

Per una segona consulta immediata del mateix nom DNS degut a una imatge incrustada a la pàgina web visitada i situada al mateix servidor:

c) Quant de temps trigaria en rebre resposta a la resolució i perquè? Suposa un TTL del RR «c» suficientment llarg.

0 ms, estaria a la caché local.

d) Respon la mateixa pregunta que c) però ara suposant TTL=0 del RR «c».

TTL = 0 s: 1 + 5 = 6 ms, o més consultes. Torna a preguntar (RR caducats) als servidors DNS que calgui.

TTL = 100 s: cas c).

Quant de temps trigaria en carregar-se, per primera vegada i de forma eficient, la pàgina http://c.upc.edu/i.html (situació de l'apartat (a)) als següents escenaris alternatius: (considera DNS, TCP amb slow-start sense pèrdues, HTTP 1.1)

e) Si la pàgina no inclou cap imatge.

Càrrega element amb HTTP 50 KB amb TCP slow-start (inicial, creixent): win inicial = 1 MSS.

Cada RTT TCP envia win, transf. dades \sim 0 ms: 1 KB, 2 KB, 4 KB, 8 KB, 16 KB, 19 KB = 50 KB. HTTP: 6*5 = 30 ms.

win final = 32+19 = 51 KB.

Total: DNS: 1 ms + TCP: 5 ms + HTTP: 30 ms = **36 ms**.

f) Si la pàgina inclou 3 imatges al mateix servidor: http://c.upc.edu/i1.png...i3.png i un navegador sense límit de connexions que pot obrir a la vegada.

Pot demanar a la vegada una imatge a cada connexió.

36 ms e) + 2 connexions TCP més: 5 ms (si no obertes abans) + càrrega imatge per HTTP: 30 ms = 71 ms.

g) Si la pàgina inclou 3 imatges al mateix servidor i un navegador que només obre una connexió per servidor.

Amb win = 51 KB. Cada imatge ara: HTTP GET→50 KB, awnd > 50 KB. Per això HTTP 1.1 és persistent.

36 ms e) + 3 imatges HTTP amb pipelining: 5 ms * 2 (o 3) RTT = **46 ms**. (o 51)

h) Si la pàgina inclou 3 imatges que es troben a http://img.upc.edu/ i un navegador sense límit de connexions que pot obrir a la vegada.

S'han de resoldre el nou nom i obrir noves connexions TCP.

36 ms e) + DNS img.upc.edu: 1 + 5 = 6 ms, 3 TCP en paral·lel: 5 ms + HTTP: 30 ms = 77 ms. = f) + nou DNS.

Examen Final de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica			Primavera 2024
NOM (MAJÚSCULES): COGNOM (MAJÚSCULES):		GRUP:	DNI:

Duració: 3 hores. El test es recollirà en 25 minuts. Responeu els problemes en el mateix enunciat.

Problema 4 (2.5 punts)
Un departament d'una
universitat té els recursos
repartits entre dos
campus, l'est (CE) i l'oest
(CO). La figura adjunta en
mostra la infraestructura
de xarxa. Al CE hi ha les
aules. Al CO hi ha els
despatxos, el laboratori i

Hi ha una subxarxa per cada *switch*, cinc en total:

els servidors.

Aula1, Aula2, Despatxos, Laboratori i Servidors. La figura especifica el nombre de *hosts* de cadascuna (per exemple, la de Servidors en té 5). Cada *host* està connectat a un *switch*. Cada *host* de CE té assignat una IP del rang 100.200.10.0/23 i cadascun dels de CO del rang 100.200.14.0/24. Totes les connexions són Ethernet tret que no s'especifiqui el contrari. Tots els recursos utilitzen el servidor DNS del departament per a la resolució de noms.

Ambdues seus estan interconnectades a través d'internet mitjançant un túnel IP. El proveïdor de servei d'accés a Internet (ISP) de la universitat ha assignat els següents paràmetres de xarxa a cadascun dels campus:

• **CO** IP pública: 18.16.14.86, porta d'enllaç: 18.16.14.1

• CE IP pública: 18.16.13.34, porta d'enllaç: 18.16.13.1

Les lletres majúscules dels recursos indiquen les IPs de les targes de xarxa; les minúscules les MACs. Per exemple, R1.e2 és la IP de la interfície e2 d'R1, mentre que r1.e2 n'és la MAC. Utilitza aquesta notació si no s'explicita el criteri.

Contesta les preguntes següents emprant les cel·les lliures de les taules. Cal que les respostes de cada pregunta siguin coherents amb les respostes donades les preguntes anteriors (adreces i rangs de IPs, etc.).

a) (0.25 punts) Assigna IPs numèriques i màscares en notació de barra (per exemple /24) a R2.tun0 i a R3.tun0 minimitzant la quantitat d'adreces no assignades dins del rang i minimitzant l'ús d'IPs públiques.

IP R2.tun0	Màscara	IP R3.tun0	Màscara
192.168.0.1	/30	192.168.0.2	/30

b) (0.25 punts) Completa la configuració del túnel a R3 per tal que el CE accedeixi al CO a través del túnel:

R3# ip tunnel	add tun0	mode gre remote	18.16.14.	86 local	18.16.	13.34	ttl 255
R3# ifconfig	tun0	192.168.0.2	netmask 2	55.255.255.25	52		
R3# route add	-net	100.200.14.0	netmask	255.255.25	55.0 gw	192.16	68.0.1

c) (0.25 punts) Completa la taula de rutes d'R3 per fer que tots els *host*s de CE surtin a internet a través de R2.

Nom de la destinació	Prefix numèric	Màscara	Porta d'enllaç	Interfície
ISP-R3	18.16.13.1	/32	-	ppp0
R2	18.16.14.86	/32	18.16.13.1	ppp0
Túnel	192.168.0.0	/30	-	tun0
Aula1	100.200.10.0	/27	-	e1
Aula2	100.200.10.32	/27	-	e2
Per defecte (default)	0.0.0.0/0		192.168.0.1	tun0
-	-		-	-

d) (0.25 punts) Quantes aules hi pot haver a CE sabent que en cada una hi pot haver fins 25 hosts?

Nombre màxim d'aules 16	Nombre màxim d'aules	16
-------------------------	----------------------	----

e) (0.25 punts) Assigna un subrang d'IPs a cada subxarxa de CO de manera que les quantitats d'adreces no assignades dins de cada subrang i entre subrangs sigui mínimes. Ordena les files de la taula per ordre creixent de prefix. Indica el nom de les subxarxes, el nombre d'IPs assignades, el prefix i la màscara de subxarxa en notació de barra.

Nom de la subxarxa	Nombre d'IPs assignades	Prefix numèric	Màscara
R1-R2	2	100.200.14.0 (qualsevol rang priv.)	/30
Servidors	6	100.200.14.8	/29
Despatxos	8	100.200.14.16	/28
Laboratori	37	100.200.14.64	/26
-	-	-	-

f) (0.25 punts) Digues si cal fer NAT en algun element de la xarxa per tal que tots els *hosts* d'ambdós campus siguin accessibles entre ells i que tots puguin sortir a internet. Si és el cas, indica en quins.

Sí / No	No	Quins?	-	Per què?	Tots els hosts tenen IP pública	
---------	----	--------	---	----------	---------------------------------	--

g) (0.25 punts) Immediatament després d'haver estat reiniciat, el *host* amb IP *A1_1* de l'Aula1 fa *ping* a *exmple.com*, per tant, fora de la universitat. Completa la seqüència de datagrames IP que passen per R2 sabent que és aquest *router* el que anuncia el rang de CE a internet.

IP origen	IP destí	Protocol	Continguts
A1_1	DNS	UDP	DNS Request example.com
DNS	A1_1	UDP	DNS Reply example.com_IP
A1_1	example.com_IP	ICMP	ECHO RQ
example.com_IP	A1_1	ICMP	ECHO RP
-	-	-	-

h) (0.25 punts) A1 1 fa un traceroute al servidor WEB. Indica els dispositius i adreces IP que sortiran a la llista.

R3.e1, R2.tun0, R1.e0, WEB

i) (0.25 punts) Immediatament després, el *host* amb IP *D1* dels despatxos és reinicialitzat i fa *ping* al servidor DNS. Completa la seqüència de datagrames IP que passen per R1. (R1 ja coneix la MAC de DNS de la comanda anterior)

	Ethernet		IP		
Adreça origen	Adreça destí Continguts		Adreça origen	Adreça destí	Continguts
d1.e0	FF:FF:FF:FF:FF	ARP RQ R1.e1			
r1.e1	d1.e0	ARP RP R1 at R1.e1			
d1.e0	r1.e1		D1.e0	DNS.e0	ICMP ECHO RQ
r1.e0	dns.e0		D1.e0	DNS.e0	ICMP ECHO RQ
dns.e0	r1.e0		DNS.e0	D1.e0	ICMP ECHO RP
r1.e0	r1.e0		DNS.e0	D1.e0	ICMP ECHO RP

j) (0.25 punts) Indica les regles de filtratge de sortida (OUT) que cal aplicar a R2.e1 per tal que des d'Internet es pugui accedir exclusivament als serveis WEB (port HTTP 80 i HTTPS 443) i DNS (port 53). Aquestes regles no han d'afectar als hosts de CE.

IP origen	Port origen	IP destí	Port destí	Protocol	Acció
100.200.10.0/23	any	100.200.14.0/24	any	any	accept
any	any	WEB/32	443	TCP	accept
any	any	WEB/32	80	TCP	accept
any	any	DNS/32	53	UDP	accept
-	-	-	-	-	-
any	any	any	any	any	deny