

Deep Learning Basics Lecture 2: Backpropagation

Princeton University COS 495

Instructor: Yingyu Liang

How to train the dragon?

 $l(x;\theta) = l(f_{\theta}, x, y)$

Find direction *d* so that:

Loss $l(x; \theta + d)$

How to find $d: l(x; \theta + \epsilon v) \approx l(x; \theta) + \nabla l(x; \theta) * \epsilon v$ for small scalar ϵ

Loss $l(x; \theta + d)$

Conclusion: Move θ along $-\nabla l(x;\theta)$ for a small amount

Loss $l(x; \theta + d)$

Neural Networks as real circuits

Pictorial illustration of gradient descent

Gradient

- Gradient of the loss is simple
 - E.g., $l(f_{\theta}, x, y) = (f_{\theta}(x) y)^2/2$
 - $\frac{\partial l}{\partial \theta} = (f_{\theta}(x) y) \frac{\partial f}{\partial \theta}$
- Key part: gradient of the hypothesis

Open the box: real circuit

Single neuron

Function: $f = x_1 - x_2$

Single neuron

Function: $f = x_1 - x_2$

Gradient: $\frac{\partial f}{\partial x_1} = 1, \frac{\partial f}{\partial x_2} = -1$

Two neurons

Function: $f = x_1 - x_2 = x_1 - (x_3 + x_4)$

Two neurons

Function:
$$f = x_1 - x_2 = x_1 - (x_3 + x_4)$$

Gradient:
$$\frac{\partial x_2}{\partial x_3} = 1$$
, $\frac{\partial x_2}{\partial x_4} = 1$. What about $\frac{\partial f}{\partial x_3}$?

Two neurons

Function:
$$f = x_1 - x_2 = x_1 - (x_3 + x_4)$$

Gradient: $\frac{\partial f}{\partial x_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial x_3} = -1$

Multiple input

Function:
$$f = x_1 - x_2 = x_1 - (x_3 + x_5 + x_4)$$

Gradient: $\frac{\partial x_2}{\partial x_5} = 1$

Multiple input

Function:
$$f = x_1 - x_2 = x_1 - (x_3 + x_5 + x_4)$$

Gradient: $\frac{\partial f}{\partial x_5} = \frac{\partial f}{\partial x_5} \frac{\partial x_5}{\partial x_3} = -1$

Weights on the edges

Function: $f = x_1 - x_2 = x_1 - (w_3 x_3 + w_4 x_4)$

Weights on the edges

Function: $f = x_1 - x_2 = x_1 - (w_3 x_3 + w_4 x_4)$

Weights on the edges

Function:
$$f = x_1 - x_2 = x_1 - (w_3 x_3 + w_4 x_4)$$

Gradient: $\frac{\partial f}{\partial w_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial w_3} = -1 \times x_3 = -x_3$

Function:
$$f = x_1 - x_2 = x_1 - \sigma(w_3x_3 + w_4x_4)$$

Function:
$$f = x_1 - x_2 = x_1 - \sigma(w_3x_3 + w_4x_4)$$

Let $net_2 = w_3x_3 + w_4x_4$

Function:
$$f = x_1 - x_2 = x_1 - \sigma(w_3 x_3 + w_4 x_4)$$

Gradient: $\frac{\partial f}{\partial w_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial net_2} \frac{\partial net_2}{\partial w_3} = -1 \times \sigma' \times x_3 = -\sigma' x_3$

Function:
$$f = x_1 - x_2 = x_1 - \sigma(w_3 x_3 + w_4 x_4)$$

Gradient: $\frac{\partial f}{\partial w_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial net_2} \frac{\partial net_2}{\partial w_3} = -1 \times \sigma' \times x_3 = -\sigma' x_3$

Multiple paths

Function: $f = x_1 - x_2 = (x_1 + x_5) - \sigma(w_3 x_3 + w_4 x_4)$

Multiple paths

Function:
$$f = x_1 - x_2 = (x_1 + x_5) - \sigma(w_3 x_3 + w_4 x_4)$$

Multiple paths

Function:
$$f = x_1 - x_2 = (x_3 + x_5) - \sigma(w_3 x_3 + w_4 x_4)$$

Cradiant: $\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial x_3} \frac{\partial x_4}{\partial x_4} = \frac{1}{2} \times \sigma' \times w_4 + \frac{1}{2} \times \frac{1}{2} = \sigma' w_4 +$

Gradient:
$$\frac{\partial f}{\partial x_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial net_2} \frac{\partial net_2}{\partial x_3} + \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial x_3} = -1 \times \sigma' \times w_3 + 1 \times 1 = -\sigma' w_3 + 1$$

Summary

- Forward to compute f
- Backward to compute the gradients

Math form

Gradient descent

- Minimize loss $\hat{L}(\theta)$, where the hypothesis is parametrized by θ
- Gradient descent
 - Initialize θ_0
 - $\theta_{t+1} = \theta_t \eta_t \nabla \hat{L}(\theta_t)$

Stochastic gradient descent (SGD)

Suppose data points arrive one by one

•
$$\hat{L}(\theta) = \frac{1}{n} \sum_{t=1}^{n} l(\theta, x_t, y_t)$$
, but we only know $l(\theta, x_t, y_t)$ at time t

- Idea: simply do what you can based on local information
 - Initialize θ_0
 - $\theta_{t+1} = \theta_t \eta_t \nabla l(\theta_t, x_t, y_t)$

Mini-batch

Instead of one data point, work with a small batch of b points

$$(x_{tb+1}, y_{tb+1}), ..., (x_{tb+b}, y_{tb+b})$$

Update rule

$$\theta_{t+1} = \theta_t - \eta_t \nabla \left(\frac{1}{b} \sum_{1 \le i \le b} l(\theta_t, x_{tb+i}, y_{tb+i}) \right)$$

• Typical batch size: b = 128