Processamento e Análise de Imagens

Representação e Descrição

Prof. Alexei Machado PUC Minas

O Processo de Visão Computacional Clássico

Representação

- Após a etapa de segmentação da imagem em regiões, os objetos encontrados são representados em um formato apropriado para a próxima fase. Existem três abordagens básicas para a representação dos objetos: utilizar as características externas (contorno), internas (pixels) ou através dos esqueletos/eixos médios.
- A opção de representação por contorno ou eixos é indicada quando se buscam as características de forma da imagem. Já a interna é utilizada quando se deseja caracterizar os objetos por cor ou textura.

Representação por Contorno

 Código de cadeia: Direção de deslocamento no algoritmo de Rosenfeld. Representa a derivada do contorno de um objeto.

Representação por Contorno

Exemplo

3 1 4 7 5 7

CC: 560762217343

Representação por Região

- Matriz de pixels
- Lista de pixels
- Listas comprimidas "run length encoding"
- Quad-trees

Representação por Eixos Médios e Esqueletos

Algoritmo para extração do Esqueleto de Zhang & Wang

P9P2P3P8P1P4P7P6P5

Repita até não haver mais pontos a serem removidos

- Passo 1
- Remova os pontos marcados
- Passo 2
- Remova os pontos marcados

Algoritmo para extração do Esqueleto de Zhang & Wang

Passo 1

Para cada ponto P1 do objeto marque-o se

•
$$S(P1) = 1$$

•
$$P2 \times P4 \times P6 = 0$$

•
$$P4 \times P6 \times P8 = 0$$

P9	P2	P3
P8	P1	P4
P7	P6	P5

Algoritmo para extração do Esqueleto de Zhang & Wang

Passo 2

Para cada ponto P1 do objeto marque-o se

•
$$S(P1) = 1$$

•
$$P6 \times P8 \times P2 = 0$$

•
$$P8 \times P2 \times P4 = 0$$

P9	P2	P3
P8	P1	P4
P7	P6	P5

Descrição

 O processo de descrição é quase um subconjunto da parte de Representação e também é chamado de seleção de características. Essa fase tem como objetivo extrair características que resultem em alguma informação quantitativa de interesse ou que sejam básicas para discriminação entre classes de objetos.

Descrição

• Desafios: selecionar entre as características, quais são eficazes para a tarefa (separação das classes).

- Área
- Perímetro
- Circularidade ou Compacidade $C = \frac{P^2}{4\Pi A}$
- Diâmetro
- Raios máximo e mínimo

- Retângulo Básico: Menor retângulo circunscritor paralelo ao eixo de inclinação
- Eixos máximos e mínimos: Lados do retângulo básico.
- Excentricidade: Eixo máximo / Eixo mínimo
- Retangularidade: Área / Área Retângulo Básico

- Curva Phi-S: derivada do código de cadeia,
 (Ps_i=C_i-C_{i-1}). Representa a curvatura do contorno.
 - Se Ps_i=0, contorno é plano;
 - Se $1 \le (Ps_i + 8) \mod 8 \le 4$, contorno é convexo;
 - Senão contorno é côncavo.
- Número de forma: normalização da curva Phi-S:
 - Calcular (Ps+8) mod 8;
 - Rotacionar o vetor resultante até que se obtenha o menor número octal.

Aproximações Poligonais

- busca capturar a essência da forma com o menor nº de segmentos poligonais
- a menor representação não é trivial de se obter

Assinaturas

- função unidimensional de uma fronteira
- maneira usual: distância da fronteira ao centróide
- centróide: centro da distribuição de pixels do objeto

Cálculo de centróide

Sejam:

- T = total de pixels do objeto
- Sx = soma das coordenadas X de cada pixel do objeto
- Sy = soma das coordenadas Y de cada pixel do objeto
- Cx = coordenada X do centróide
- Cy = coordenada Y do centróide

Assim, temos:
$$Cx = Sx / T$$

 $Cy = Sy / T$

Fecho-convexo (*convex hull*): Menor polígono convexo, H, que engloba todo o objeto S

• a diferença D = H - S é chamada deficiência convexa

Projeções

Texturas

- Padrão visual que possui algumas propriedades de homogeneidade que não resultam simplesmente de uma cor ou intensidade.
- Constituída de elementos mutuamente relacionados: a primitiva de textura dependente de escala.
- Composta de um grande número de elementos similares mais ou menos ordenados.
- Relacionada com coeficientes de uniformidade, densidade, aspereza, regularidade, intensidade, dentre outros, oriundos da probabilidade de ocorrência de variações tonais.

Texturas

- Descritas por medidas que quantificam suas propriedades de suavidade, rugosidade e regularidade.
- Características estatísticas ou propriedades estruturais locais constantes, com pouca variação ou aproximadamente periódicas.
- Relacionadas à variação de intensidade luminosa em partes das imagens.

Texturas

Exemplos de texturas naturais (a,b,c,d,h) e artificiais (e,f,g).

Matrizes de Co-ocorrência

Considere:

- *I (N, M)* uma imagem quantizada em *G* níveis de cinza.
- P é uma matrix GxG. Cada elemento da matriz designa a probabilidade de ocorrência simultânea de dois nível de cinza $i, j \in 0...G-1$ para pares de pixels nas direções e distâncias especificadas.
- Na matriz de co-ocorrência circular, apenas d é usado

Matrizes de Co-ocorrência

Assim:

- 1. Percorre-se a imagem na forma descrita pelo operador $p(d, \theta)$ ou p(dx, dy) ou p(d), contando-se quantas vezes um tom de cinza co-ocorre com outro na posição dada pelo operador
- 2. A matriz de probabilidades é calculada dividindose os valores de co-ocorrências pelo somatório da matriz.

Matrizes de Co-ocorrência

Matriz de ocorrência de tons de cinza

Matriz de co-ocorrência de tons de cinza $C_{1,0}$ Para calcular $P_{1,0}$ dividir $C_{1,0}$ por 16.

Característica	Descrição	Fórmula Matemática
Homogeneidade	Distribuição de <i>pixels</i> .	$\sum_{i} \sum_{j} \frac{p(i,j)}{(1+ i-j)}$
Probabilidade Máxima	Indica a direção mais importante da textura a ser examinada.	$\max_{i,j} p(i,j)$
Entropia	Mede a informação contida em p, muitos valores nulos representam pouca informação.	$-\sum_{i}\sum_{j}p(i,j)\log_{2}p(i,j)$

Momento de diferenças ordem <i>k</i>	Distorção da imagem. Este descritor apresenta valores pequenos se <i>p</i> tiver maiores valores na diagonal principal.	$\sum_{i} \sum_{j} (i-j)^{k} p(i,j)$
Momento inverso de diferenças de ordem <i>k</i>	Inverso de contraste. Este descritor apresenta valores maiores pequenos se <i>p</i> tiver pequenos valores na diagonal principal.	$\sum_{i} \sum_{j} \frac{p(i,j)}{(i-j)^k}$
Energia ou Uniformidade Retorna a soma dos elementos elevados ao quadrado dentro da matriz de co-ocorrência de tons de cinza. Faixa de valores possíveis: 0 a 1. A energia possui valor 1 para uma imagem constante (mesmo tom de cinza em toda a sua extensão).		$\sum_{i}\sum_{j}p^{2}(i,j)$

Variância ou Contraste	Retorna uma medida do contraste entre as intensidades de um <i>pixel</i> analisado e do <i>pixel</i> vizinho. A comparação é realizada em todos os pixels da imagem. Para uma imagem constante (mesmo tom de cinza em toda a extensão), o contraste é 0 (zero). Contraste da imagem corresponde ao Momento de ordem 2.	$\sum_{i} \sum_{j} (i-j)^2 p(i,j)$
Variância Inversa	Inverso de contraste.	$\sum_{i} \sum_{j} \frac{p(i,j)}{(i-j)^{2}}, i \neq j$

Texturas naturais monocromáticas. (a) Textura 1 - Entropia = 5.8766. (b) Textura 2 - Entropia = 5.9851. (c) Textura 3 - Entropia = 6.2731.

Momentos Invariantes de Hu

Se f(x,y) é a intensidade de uma imagem digital, então:

$$\mu_{pq} = \sum_{1}^{nx} \sum_{1}^{ny} (x - ar{x})^p (y - ar{y})^q f(x,y)$$

$$\eta_{pq}=rac{\mu_{pq}}{\mu_{00}^{\left(rac{p+q}{2}+1
ight)}}$$

Momentos Invariantes de Hu

$$\begin{split} I_1 &= \eta_{20} + \eta_{02} \\ I_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ I_3 &= (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ I_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ I_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\ I_6 &= (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\ I_7 &= (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] - (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \end{split}$$