Welcome to the CoGrammar Lecture: MongoDB

The session will start shortly...

Questions? Drop them in the chat. We'll have dedicated moderators answering questions.

Full Stack Web Development Session Housekeeping

- The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.
 (Fundamental British Values: Mutual Respect and Tolerance)
- No question is daft or silly ask them!
- There are Q&A sessions midway and at the end of the session, should you
 wish to ask any follow-up questions. Moderators are going to be
 answering questions as the session progresses as well.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Academic Sessions. You can submit these questions here: <u>Questions</u>

Full Stack Web Development Session Housekeeping cont.

- For all non-academic questions, please submit a query:
 www.hyperiondev.com/support
- Report a safeguarding incident:
 www.hyperiondev.com/safeguardreporting
- We would love your feedback on lectures: Feedback on Lectures

Skills Bootcamp 8-Week Progression Overview

Fulfil 4 Criteria to Graduation

Criterion 1: Initial Requirements

Timeframe: First 2 Weeks
Guided Learning Hours (GLH):
Minimum of 15 hours
Task Completion: First four tasks

Due Date: 24 March 2024

Criterion 2: Mid-Course Progress

60 Guided Learning Hours

Data Science - **13 tasks** Software Engineering - **13 tasks** Web Development - **13 tasks**

Due Date: 28 April 2024

Skills Bootcamp Progression Overview

Criterion 3: Course Progress

Completion: All mandatory tasks, including Build Your Brand and resubmissions by study period end Interview Invitation: Within 4 weeks post-course Guided Learning Hours: Minimum of 112 hours by support end date (10.5 hours average, each week)

Criterion 4: Demonstrating Employability

Final Job or Apprenticeship
Outcome: Document within 12
weeks post-graduation
Relevance: Progression to
employment or related
opportunity

Databases

A large container of data with the ability to order the data in multiple ways, while providing access to the data itself.

- Data refers to raw, unprocessed facts. Once data has been processed, we call it information.
- The production of accurate, timely and relevant information is the key to good decision-making, which is the key to a business' survival in a competitive global environment.
- Timely and useful information requires accurate data, which must be captured properly and stored in a format that is easy to access and process

DBMS

- A database is usually controlled by a database engine, commonly known as a Database Management System (DBMS).
- DBMSs serve as a tool between a user and their data, organising and cataloging the data for quick and easy retrieval.
- The data and the DBMS, and the applications associated with them are referred to as a database system, usually shortened to database.

DBMS

- The advantages of the DBMS are:
 - > **Data sharing:** Better access to more, better managed data across applications and users.
 - > Data integration: Unified view of well-managed data combined from multiple sources.
 - > Data consistency: Minimised risk of different versions of the same data stored in different places.
 - Data access: The DBMS makes it possible to produce quick answers to spur-of-the-moment requests for data.

Types of Databases

Single/Multi-user Database	Refers to how many users can work on the database at the same time.
Enterprise Database	A multi-user database that supports more than 50 users and an entire organisation, across departments.
Centralised/Distributed Database	Refers to how many sites the database is distributed across.
Structured/Unstructured Database	Refers to whether data is stored in the form collected in or if it has been processed to facilitate operations.

Types of Databases

Single/Multi-user Database	Refers to how many users can work on the database at the same time.
Enterprise Database	A multi-user database that supports more than 50 users and an entire organisation, across departments.
Centralised/Distributed Database	Refers to how many sites the database is distributed across.
Structured/Unstructured Database	Refers to whether data is stored in the form collected in or if it has been processed to facilitate operations.

Let's Breathe!

Let's take a small break before moving on to the next topic.

Relational Databases

Any database system that allows data to be associated and grouped by common attributes.

- Relational databases are comprised of a number of tables (relations), within each are:
 - > Rows also known as records or tuples
 - Columns also known as attributes or fields
- Each record is identified with a unique key, known as the primary key.
- Records from one table can be references in other tables using their key, in this case they are called **foreign keys**.
- Each table/relation represents one "entity type".

NoSQL Databases

- The performance of relational databases degrades as the volume of data increases.
- Web applications usually have to store massive amounts of data, so NoSQL databases were developed to improve performance.
- NoSQL databases have the following characteristics:
 - Not based on the relational model.
 - Support distributed database architectures.
 - > High scalability, high availability and fault tolerance.
 - > Support large amounts of sparse data.
 - Geared toward performance rather than transactional consistency

Types of NoSQL DBs

Key-value store databases	Simplest form of the NoSQL DB. Every item is stored as a key and a value.
Column-oriented databases	A key is used to identify values but can identify multiple values instead of one.
Document-store databases	A key is used to identify a particular document (like XM, JSON, PDF, etc.)
Graph databases	Graph structure (nodes connected by links or edges) is used to store data.
Object-oriented databases	Combines OOP and database principles.

MongoDB

A document store and NoSQL database, made up of collections and documents.

- Collections: A group of documents, similar to an entity or table in RDBs.
- Documents: Equivalent to a record in an RDB (or row in a RDB table).
- MongoDB uses Binary JSON (BSON) which uses JSON files and stores type information, which makes it quicker and more efficient to use.
- If a user wants to access, add, or change any information that needs to persist, they will need access to the MongoDB database.
- Clients interact with a web server that runs Node.js, which makes use of MongoDB drivers to communicate with MongoDB.

Installation

Installing MongoDB to use Mongo and Atlas to host MongoDB on the cloud.

- 1. Install MongoDB's free <u>Community Server</u>.
- 2. Configure MongoDB Atlas:
 - a. Enter your information <u>here</u>.
 - b. On the Database Deployments page, click of Build a Database.
 - c. Under 'Cloud provider and Region', select AWS and any free tier region.
 - d. Under 'Cluster Tier', select the free M0 option.
 - e. You can rename your cluster under 'Cluster Name'.
 - f. Click 'Create' to create your cluster.
 - g. Get the connection string to connect to the database server.

Shell Commands

- show dbs;
 - > List all the databases in your cluster.
- use db_name;
 - > Select a database or create it if it does not exist.
- show collections;
 - > Shows all the collections in the previously selected database.
- db.dropDatabase();
 - > Deletes the selected database.

Mongoose

A library that makes working with the MongoDB driver simpler.

- Install Mongoose using NPM:
 - a. npm install mongoose
- 2. Create a schema which outlines the data in our database and how it is organised and structured.
- 3. Create a controller file to perform data manipulation.
- 4. Connect to the database and execute operations.

CRUD Operations

Create, Read, Update and Delete

- These are the 4 basic operations which act as the foundation of any computer programming language.
- We need to understand CRUD in Mongoose to interact with databases.
 - 1. Create: To add or insert collections or documents into it.
 - a. insertOne({document});
 - b. insertMany([{document1}, {document2}]);
 - 2. Read: To retrieve or fetch documents from your collection.
 - a. find()

CRUD Operations

- **3. Update:** To modify documents within a collection.
 - a. updateOne({field}, { \$set: {new_document}});
 - b. updateMany({field}, { \$set: {new_document}});
- **4. Delete:** To remove or delete documents from a collection.
 - a. deleteOne({field});
 - b. deleteMany({field});

Questions and Answers

Thank you for attending

