Australia's Rainfall Prediction Using Artificial Neural Networks

PRESENTED BY

Esra Kazi

Kagge

What is Kaggle?

- Kaggle is an online community platform for data scientists and machine learning enthusiasts.
- Kaggle allows users to collaborate with other users, find and publish datasets, use GPU integrated notebooks, and compete with other data scientists to solve data science challenges.

Home Page of Kaggle

Dataset

- Dataset used to predict rainfall is weatherAus.csv is dataset taken from Kaggle.
- This dataset contains about 10 years of daily weather observations from many locations across Australia.

Rain in Australia

Predict next-day rain in Australia

Code (468) Discussion (20) Metadata

About Dataset

Context

Predict next-day rain by training classification models on the target variable RainTomorrow.

Content

This dataset contains about 10 years of daily weather observations from many locations across Australia.

RainTomorrow is the target variable to predict. It means -- did it rain the next day, Yes or No? This column is Yes if the rain for that day was 1mm or more.

Source & Acknowledgements

Observations were drawn from numerous weather stations. The daily observations are available from http://www.bom.gov.au/climate/data. An example of latest weather observations in Canberra: http://www.bom.gov.au/climate/dwo/IDCJDW2801.latest.shtml

Definitions adapted from http://www.bom.gov.au/climate/dwo/IDCJDW0000.shtml Data source: http://www.bom.gov.au/climate/dwo/ and http://www.bom.gov.au/climate/data.

Copyright Commonwealth of Australia 2010, Bureau of Meteorology.

Usability ① 10.00

License

Other (specified in description)

Expected update frequency

Data Categories

□ Date	=	A Location	=	A MinTemp	=	▲ MaxTemp =	▲ Rainfall	=	▲ Evaporation	=	▲ Sunshine =	▲ WindGustDir	=	▲ WindGustSpeed	d =
The date of o	observation	The common name location of the wea station		The minimum temp		The maximum temperature in degrees celsius	The amount of rainfa recorded for the day mm		The so-called Class A evaporation (mm) in the 24 hours to 9am		The number of hours of bright sunshine in the day	The direction of the strongest wind gus 24 hours to midnig	t in the	The speed (km/h) of strongest wind gus 24 hours to midnig	st in the
		Canberra	2%	NA	1%		0	63%	NA	43%	NA 489	NA	7%	NA	7%
	1	Sydney	2%	11	1%	506 unique values	0.2	6%	4	2%	0 29	W	7%	35	6%
1Nov07	25Jun17	Other (138680)	95%	Other (143076)	98%		Other (45619)	31%	Other (79331)	55%	Other (73266) 509	Other (125219)	86%	Other (125982)	87%

▲ WindDir9am	=	▲ WindDir3pm	=	▲ WindSpeed9am	=	▲ WindSpeed3pm	=	▲ Humidity9am	=	▲ Humidity3pm	=	▲ Pressure9am	=	▲ Pressure3pm	=
Direction of the wir 9am	nd at	Direction of the wir 3pm	nd at	Wind speed (km/hr averaged over 10 m prior to 9am		Wind speed (km/hr) averaged over 10 m prior to 3pm		Humidity (percent) a	at 9am	Humidity (percent) a	at 3pm	Atmospheric pressu (hpa) reduced to m sea level at 9am		Atmospheric pressu (hpa) reduced to m sea level at 3pm	
N	8%	SE	7%	9	9%	13	9%	99	2%	NA	3%	NA	10%	NA	10%
NA	7%	W	7%	13	9%	17	9%	70	2%	52	2%	1016.4	1%	1015.3	1%
Other (123136)	85%	Other (124512)	86%	Other (118679)	82%	Other (120341)	83%	Other (139043)	96%	Other (138202)	95%	Other (129579)	89%	Other (129646)	89%

▲ Cloud9am	=	▲ Cloud3pm	=	▲ Temp9am	=	▲ Temp3pm	=	▲ RainToday	₽	A RainTomorrow	=
Fraction of sky obscured by cloud at 9am. This is measured in "oktas", which are a unit of eigths. It records how many		Fraction of sky obscured by cloud (in "oktas": eighths) at 3pm. See Cload9am for a description of the values		Temperature (degrees C) at 9am		Temperature (degrees C) at 3pm		Boolean: 1 if precipitation (mm) in the 24 hours to 9am exceeds 1mm, otherwise 0		The amount of next day rain in mm. Used to create response variable RainTomorrow. A kind of measure of the "risk".	
NA	38%	NA	41%	NA	1%	NA	2%	No	76%	No	76%
7	14%	7	13%	17	1%	20	1%	Yes	22%	Yes	22%
Other (69600)	48%	Other (67873)	47%	Other (142781)	98%	Other (140969)	97%	Other (3261)	2%	Other (3267)	2%

DEALING WITH MISSING DATA

```
print(i, data[i].isnull().sum())
MinTemp 1485
MaxTemp 1261
Rainfall 3261
Evaporation 62790
Sunshine 69835
WindGustSpeed 10263
WindSpeed9am 1767
WindSpeed3pm 3062
Humidity9am 2654
Humidity3pm 4507
Pressure9am 15065
Pressure3pm 15028
Cloud9am 55888
Cloud3pm 59358
Temp9am 1767
Temp3pm 3609
```

for i in num cols:

```
for i in num_cols:
    data[i].fillna(data[i].median(), inplace=T
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 145460 entries, 0 to 145459
Data columns (total 23 columns):
                   Non-Null Count
     Column
                                   Dtype
                   _____
                   145460 non-null object
     Date
    Location
                   145460 non-null
                                   object
    MinTemp
                   145460 non-null float64
    MaxTemp
                   145460 non-null float64
    Rainfall
                   145460 non-null float64
    Evaporation
                   145460 non-null float64
    Sunshine
                   145460 non-null float64
    WindGustDir
                   135134 non-null object
    WindGustSpeed 145460 non-null float64
    WindDir9am
                   134894 non-null object
    WindDir3pm
                   141232 non-null
                                   object
    WindSpeed9am
                   145460 non-null float64
    WindSpeed3pm
                   145460 non-null float64
    Humidity9am
                   145460 non-null float64
    Humidity3pm
                   145460 non-null float64
    Pressure9am
                   145460 non-null float64
    Pressure3pm
                   145460 non-null float64
    Cloud9am
                   145460 non-null float64
    Cloud3pm
                   145460 non-null float64
    Temp9am
                   145460 non-null float64
    Temp3pm
                   145460 non-null float64
```

```
data[i].isnull().sum()
Date
Location
MinTemp
MaxTemp
Rainfall
WindGustDir
WindGustSpeed
WindDir9am
                  0
WindDir3pm
WindSpeed9am
                  0
WindSpeed3pm
                  0
Humidity9am
                  0
Humidity3pm
Pressure9am
                  0
Pressure3pm
                  0
Cloud9am
                  0
Temp9am
Temp3pm
                  0
```

ENCODING STRING DATA

Why Encode String Data?

- When creating a machine learning model, mathematical functions like ReLu, softmax, sigmoid functions are used on data.
- Every single data value should be encoded as series of numbers to 'compute' the string input.

Location	MinTemp	MaxTemp	Rainfall	WindGustDir	WindGustSpeed	WindDir9am	WindDir3pm
Albury	13.4	22.9	0.6	W	44.0	W	WNW
Albury	7.4	25.1	0.0	WNW	44.0	NNW	WSW
Albury	12.9	25.7	0.0	WSW	46.0	W	WSW
Albury	9.2	28.0	0.0	NE	24.0	SE	Е
Albury	17.5	32.3	1.0	W	41.0	ENE	NW

Location	MinTemp	MaxTemp	Rainfall	WindGustDir	WindGustSpeed	WindDir9am	WindDir3pm
-1.531666	0.191328	-0.041360	-0.203581	1.045228	0.327736	1.328766	1.366458
-1.531666	-0.751052	0.268745	-0.275097	1.258262	0.327736	-0.221338	1.586813
-1.531666	0.112796	0.353318	-0.275097	1.471296	0.479465	1.328766	1.586813
-1.531666	-0.468338	0.677518	-0.275097	-0.872075	-1.189550	0.442992	-1.718521
-1.531666	0.835287	1.283631	-0.155903	1.045228	0.100143	-1.328556	-0.176032

```
sc = StandardScaler()
x = sc.fit_transform(x)
print(x)
[[-1.53166617 0.19132753 -0.04135977 ... -0.01407077 0.02310362
 -0.52979545]
[-1.53166617 -0.75105231 0.26874452 ... 0.03244663 0.387799
 -0.52979545]
[-1.53166617 0.11279588 0.35331842 ... 0.62166712 0.22733303
 -0.52979545]
 [ 1.20928479 -1.06517892  0.52246622  ... -0.69632607  0.65037966
 -0.52979545]
[ 1.20928479 -0.68822699  0.53656187 ... -0.29317521  0.63579185
 -0.52979545]
[ 1.20928479  0.42692249 -0.45013361 ... -0.30868102 -0.10818671
 -0.52979545]]
```

Encoded value for data['Location']== 'Albury' as -1.53166617

SPLITTING DATA TO TRAIN AND TEST SETS

```
1 x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3, random_state = 42)
```

While training, I faced an issue caused by the difference in data types. So I used this piece of code to convert the data type as float

```
1 x_train = np.asarray(x_train).astype('float32')
2 y_train = np.asarray(y_train).astype('float32')
```

CREATING, TRAINING AND TESTING THE MODEL

Training Models

```
11]:
   #Early stopping
   early stopping = EarlyStopping(
     min_delta=0.001, # minimium amount of change to count as an improvement
     patience=20, # how many epochs to wait before stopping
     restore best weights=True,
   # Initialising the NN
   model = Sequential()
   # Layers
   model.add(Dense(units = 32, kernel initializer = 'uniform', activation = 'relu', input dim = 21))
   model.add(Dense(units = 32, kernel initializer = 'uniform', activation = 'relu'))
   model.add(Dense(units = 16, kernel initializer = 'uniform', activation = 'relu'))
   model.add(Dropout(0.25))
   model.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu'))
   model.add(Dropout(0.5))
   model.add(Dense(units = 1, kernel initializer = 'uniform', activation = 'sigmoid'))
   # Compiling the ANN
   opt = Adam(learning rate=0.00009)
   model.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['accuracy'])
   # Train the ANN
   history = model.fit(x_train, y_train, batch_size = 26, epochs = 5, callbacks=[early_stopping], validation_split=0.2)
   Epoch 1/5
   Epoch 2/5
   Epoch 3/5
   Epoch 4/5
  Epoch 5/5
```

Early Stopping

EarlyStopping() is a programmer friendly function that calls back the model training process, if the model has repeatedly the same or with such small difference of accuracy improvement during the epoch.

```
#Early stopping
early_stopping = EarlyStopping(
    min_delta=0.001, # minimium amount of change to count as an improvement
    patience=20, # how many epochs to wait before stopping
    restore_best_weights=True,
)
```

- In our model;
 - Change amount is declared as min_delta = 0.001
 - Number of epoch's EarlyStopping() function will pass is =20.
 On 20th epoch, if minimum change is still 0.001, training will stop.

model = Sequential()

```
model.add(Dense(units = 32, kernel initializer = 'uniform', activation = 'relu', input dim = 23))
model.add(Dense(units = 32, kernel initializer = 'uniform', activation = 'relu'))
model.add(Dense(units = 16, kernel_initializer = 'uniform', activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(units = 1, kernel initializer = 'uniform', activation = 'sigmoid'))
model.add(Flatten())
opt = Adam(learning rate=0.00009)
model.compile(optimizer = opt, loss = 'binary crossentropy', metrics = ['accuracy'])
# Train the ANN
history = model.fit(x_train, y_train, batch_size = 26, epochs = 30, callbacks=[early_stopping], validation_split=0.2)
```


- RainTomorrow is the target variable to predict. It means did it rain the next day, Yes or No?
- This column is Yes if the rain for that day was 1mm or more.

```
history_df = pd.DataFrame(history.history)

plt.plot(history_df.loc[:, ['accuracy']], label='Training accurate plt.plot(history_df.loc[:, ['val_accuracy']], label='Validation

plt.title('Training and Validation accuracy')
 plt.xlabel('Epochs')
 plt.ylabel('Accuracy')
 plt.legend()
 plt.show()
```



```
history_df = pd.DataFrame(history.history)

plt.plot(history_df.loc[:, ['loss']], label='Training loss')
plt.plot(history_df.loc[:, ['val_loss']], label='Validation l
plt.title('Training and Validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend(loc="best")

plt.show()
```

