CS4102 Algorithms Spring 2020 - Horton's Slides

We didn't finish the slides "L14" titled:

Dynamic Programming, Part Deux

These are updated slides on the LCS problem

Today's Keywords

- Dynamic Programming
- Longest Common Subsequence
- Bottom-up vs. Top-down solutions

CLRS Readings

- Chapter 15
 - -Section 15.4, longest common subsequence

Reminders: Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example:

X = ATCTGATY = TGCATA

LCS = TCTA

X = AT C TGATY = TGCAT A

Brute force: Compare every subsequence of

X with *Y*: $\Omega(2^n)$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first i characters of X, first j character of Y Find LCS(i, j):

Case 1:
$$X[i] = Y[j]$$

$$X = ATCTGCGT$$

$$Y = TGCATAT$$

$$LCS(i,j) = LCS(i-1,j-1) + 1$$
Case 2: $X[i] \neq Y[j]$
$$X = ATCTGCGA$$

$$Y = TGCATAC$$

$$LCS(i,j) = LCS(i,j-1)$$

$$LCS(i,j) = LCS(i-1,j)$$

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of YFind LCS(i, j):

Case 1:
$$X[i] = Y[j]$$

$$X = ATCTGCGT$$

 $Y = TGCATAT$
 $LCS(i,j) = LCS(i-1,j-1) + 1$

Case 2:
$$X[i] \neq Y[j]$$

$$X = ATCTGCGA$$

 $Y = TGCATAC$
 $LCS(i, i) = LCS(i, i - 1)$

$$X = ATCTGCGA$$
 $X = ATCTGCGA$
 $Y = TGCATAC$ $Y = TGCATAC$
 $LCS(i,j) = LCS(i,j-1)$ $LCS(i,j) = LCS(i-1,j)$

$$LCS(i,j) = \begin{cases} 0 & \text{Read from M[i,j]} & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 \\ A & 6 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \end{cases}$$

To fill in cell (i, j) we need cells (i - 1, j - 1), (i - 1, j), (i, j - 1)Fill from Top->Bottom, Left->Right (with any preference)

LCS Length Algorithm

```
LCS-Length(X, Y) // Y for M's rows, X for its columns
1. n = length(X) // get the # of symbols in X
2. m = length(Y) // get the # of symbols in Y
3. for i = 1 to m M[i,0] = 0 // special case: Y_0
4. for j = 1 to n M[0,j] = 0 // special case: X_0
                // for all Y<sub>i</sub>
5. for i = 1 to m
6. for j = 1 to n
                                 // for all X_i
7.
          if(X[i] == Y[j])
8.
                 M[i,j] = M[i-1,j-1] + 1
9.
           else M[i,j] = max(M[i-1,j], M[i,j-1])
10. return M[m,n] // return LCS length for Y and X
```

Run Time?

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 \\ A & 6 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \end{cases}$$

Run Time: $\Theta(n \cdot m)$ (for |X| = n, |Y| = m)

Reconstructing the LCS

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{cases}$$

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{cases}$$

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Top-Down Solution with Memoization

We need two functions; one will be recursive.

LCS-Length(X, Y) // Y is M's cols.

- 1. n = length(X)
- 2. m = length(Y)
- 3. Create table M[m,n]
- 4. Assign -1 to all cells M[i,j]
- // get value for entire sequences
- 5. return **LCS-recur**(X, Y, M, m, n)

LCS-recur(X, Y, M, i, j)

- 1. if (i == 0 || j == 0) return 0
- // have we already calculated this subproblem?
- 2. if (M[i,j] != -1) return M[i,j]
- 3. if (X[i] == Y[j])
- 4. M[i,j] = LCS-recur(X, Y, M, i-1, j-1) + 1
- 5. else
- 5. M[i,j] = max(**LCS-recur**(X, Y, M, <mark>i-1</mark>, <mark>j</mark>), **LCS-recur**(X, Y, M, <mark>i, j-1</mark>))
- 7. return M[i,j]

Another LCS Example

Let's see how LCS algorithm works on the following example:

- X = ABCB
- Y = BDCAB

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$

 $X = A B C B$
 $Y = B D C A B$

LCS Example (0)

ABCB BDCAB

	j	0	1	2	3	4	5 D
i		Yj	В	D	C	A	В
0	Xi						
1	A						
2	В						
3	C						
4	В						

$$X = ABCB; m = |X| = 4$$

 $Y = BDCAB; n = |Y| = 5$
Allocate array M[5,4]

Note: In this example, X is M's rows, Y is the columns.
Opposite from earlier example.

LCS Example (1)

ABCB BDCAB

	j	0	1	2	3	4	5	ענ
i		Yj	В	D	C	A	В	-
0	Xi	0	0	0	0	0	0	
1	A	0						
2	В	0						
3	C	0						
4	В	0						

for
$$i = 1$$
 to m $M[i,0] = 0$
for $j = 1$ to n $M[0,j] = 0$

ABCB LCS Example (2) ₅BDCAB i \mathbf{C} Yj (\mathbf{B}) \mathbf{D} B Xi 0 0 0 0 0 0 0 0 0 B 2 0 3 \mathbf{C} 0 B 4 0

if
$$(X[i] == Y[j])$$

 $M[i,j] = M[i-1,j-1] + 1$
else $M[i,j] = max(M[i-1,j], M[i,j-1])$

ABCB LCS Example (3) ₅BDCAB 4 i Yj B D \mathbf{C} \mathbf{A} B Xi 0 0 0 0 0 0 0 \mathbf{A} 0 0 0 0 B 2 0 3 \mathbf{C} 0 B 4 0

ABCB LCS Example (4) i Yj C B D B Xi 0 0 0 0 0 0 0 0 0 0 0 B 2 0 3 \mathbf{C} 0 B 4 0 if (X[i] == Y[j])M[i,j] = M[i-1,j-1] + 1

else M[i,j] = max(M[i-1,j], M[i,j-1])

ABCB LCS Example (5) ₅BDCAB 4 i Yj B D \mathbf{C} \mathbf{A} B Xi 0 0 0 0 0 0 0 0 0 0 0 B 2 0 \mathbf{C} 0 B 4 0

ABCB LCS Example (6) ₅BDCAB i \mathbf{C} Yj \mathbf{D} B Xi A \mathbf{C} B

if
$$(X[i] == Y[j])$$

 $M[i,j] = M[i-1,j-1] + 1$
else $M[i,j] = max(M[i-1,j], M[i,j-1])$

ABCB LCS Example (7) ₅ BDCAB i Yj B \mathbf{C} B Xi 0 0 0 0 0 0 0 \mathbf{A} 0 0 0 0 1 2 0 3 \mathbf{C} 0 B 4 0 if (X[i] == Y[j])M[i,j] = M[i-1,j-1] + 1

else M[i,j] = max(M[i-1,j], M[i,j-1])

ABCB LCS Example (8) BDCAB i Yj B D \mathbf{C} \mathbf{A} B Xi \mathbf{A} \mathbf{C} B

if
$$(X[i] == Y[j])$$

 $M[i,j] = M[i-1,j-1] + 1$
else $M[i,j] = max(M[i-1,j], M[i,j-1])$

LCS Example (10)

ABCB BDCAB

	j	0	1		3	4	5	DUCA
i		Yj	B	D	C	A	В	1
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	\bigcirc	0	1 -	1				
4	В	0						

$$if(X[i] == Y[j])$$

 $M[i,j] = M[i-1,j-1] + 1$
 $else M[i,j] = max(M[i-1,j], M[i,j-1])$

ABCB LCS Example (11) i Yj B B \mathbf{D} Xi \mathbf{A} B B

if
$$(X[i] == Y[j])$$

 $M[i,j] = M[i-1,j-1] + 1$
else $M[i,j] = max(M[i-1,j], M[i,j-1])$

ABCB LCS Example (12) **BDCAB** i Yj B D \mathbf{C} B Xi \mathbf{A} B B

if
$$(X[i] == Y[j])$$

 $M[i,j] = M[i-1,j-1] + 1$
else $M[i,j] = max(M[i-1,j], M[i,j-1])$

LCS Example (13)

ABCB BDCAB

	j	0	1	2	3	4	5	3 DCA
i	•	Yj	B	D	C	A	В	_
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0 、	1	1	2	2	2	
4	B	0	1					

$$if (X[i] == Y[j]) M[i,j] = M[i-1,j-1] + 1 else M[i,j] = max(M[i-1,j], M[i,j-1])$$

ABCB LCS Example (14) i Yj B \mathbf{D} \mathbf{C} B Xi \mathbf{A} B \mathbf{C}

$$if(X[i] == Y[j])$$
 $M[i,j] = M[i-1,j-1] + 1$
 $else M[i,j] = max(M[i-1,j], M[i,j-1])$

ABCB LCS Example (15) **BDCAB** i Yj B D \mathbf{C} B \mathbf{A} Xi \mathbf{A} B \mathbf{C}

Practice!

- X = [G, D, V, E, G, T, A] andY = [G, V, C, E, K, S, T]
- Find the LCS, show the table M
- Can you reconstruct the LCS from M?