ME 233 – Advanced Control II Lecture 18 Minimum Variance Regulator

Richard Conway

UC Berkeley

April 18, 2012

Outline

Introduction

MVR Problem Statement

MVR Solution

Proof, Special Case: $B(q^{-1})$ Anti-Schur

A-causal but BIBO Systems

Proof, General Case

Outline

Introduction

MVR Problem Statement

MVR Solution

Proof, Special Case: $B(q^{-1})$ Anti-Schul

A-causal but BIBO Systems

Proof. General Case

Model Form

We consider a state space model of the form

$$x(k+1) = \hat{A}x(k) + \hat{B}u(k) + \hat{B}_w w(k)$$
$$y(k) = \hat{C}x(k) + v(k)$$

where

- u(k) is the **scalar** control signal
- ightharpoonup y(k) is the **scalar** measurement signal
- w(k) is the input noise (white, zero-mean, $E\{w(k)w^T(k)\} = W$)
- $m{v}(k)$ is the measurement noise (white, zero-mean, $E\{v(k)v^T(k)\}=V$)
- $E\{w(k)v^T(k)\} = 0$

Stationary Kalman Filter V2 (Review)

The optimal state estimator is given by

$$\hat{x}^{o}(k+1) = \hat{A}\hat{x}^{o}(k) + \hat{B}u(k) + \hat{L}\tilde{y}^{o}(k)$$
$$\tilde{y}^{o}(k) = y(k) - \hat{C}\hat{x}^{o}(k)$$

where

$$\hat{L} = \hat{A}M\hat{C}^T[\hat{C}M\hat{C}^T + V]^{-1}$$

$$M = \hat{A}M\hat{A}^T + \hat{B}_wW\hat{B}_w^T - \hat{A}M\hat{C}^T[\hat{C}M\hat{C}^T + V]^{-1}\hat{C}M\hat{A}^T$$

$$\hat{A} - \hat{L}\hat{C} \text{ is Schur}$$

Stationary Kalman Filter V2 (Review)

The optimal state estimator is given by

$$\hat{x}^{o}(k+1) = \hat{A}\hat{x}^{o}(k) + \hat{B}u(k) + \hat{L}\tilde{y}^{o}(k)$$
$$\tilde{y}^{o}(k) = y(k) - \hat{C}\hat{x}^{o}(k)$$

where

$$\hat{L} = \hat{A}M\hat{C}^T[\hat{C}M\hat{C}^T + V]^{-1}$$

$$M = \hat{A}M\hat{A}^T + \hat{B}_wW\hat{B}_w^T - \hat{A}M\hat{C}^T[\hat{C}M\hat{C}^T + V]^{-1}\hat{C}M\hat{A}^T$$

$$\hat{A} - \hat{L}\hat{C} \text{ is Schur}$$

Also, the signal $\tilde{y}^o(k)$ is zero-mean, white, and has covariance $\hat{C}M\hat{C}^T+V.$

Alternate Model Form

Using the Kalman Filter V2, we can write

$$\hat{x}^{o}(k+1) = \hat{A}\hat{x}^{o}(k) + \hat{B}u(k) + \hat{L}\epsilon(k)$$
$$y(k) = \hat{C}\hat{x}^{o}(k) + \epsilon(k)$$

where $\epsilon(k) = \tilde{y}^o(k)$.

Alternate Model Form

Using the Kalman Filter V2, we can write

$$\hat{x}^{o}(k+1) = \hat{A}\hat{x}^{o}(k) + \hat{B}u(k) + \hat{L}\epsilon(k)$$
$$y(k) = \hat{C}\hat{x}^{o}(k) + \epsilon(k)$$

where $\epsilon(k) = \tilde{y}^o(k)$.

As a transfer function, this is

$$Y(z) = [\hat{C}(zI - \hat{A})^{-1}\hat{B}]U(z) + [1 + \hat{C}(zI - \hat{A})^{-1}\hat{L}]E(z)$$

Alternate Model Form

Using the Kalman Filter V2, we can write

$$\hat{x}^{o}(k+1) = \hat{A}\hat{x}^{o}(k) + \hat{B}u(k) + \hat{L}\epsilon(k)$$
$$y(k) = \hat{C}\hat{x}^{o}(k) + \epsilon(k)$$

where $\epsilon(k) = \tilde{y}^o(k)$.

As a transfer function, this is

$$Y(z) = [\hat{C}(zI - \hat{A})^{-1}\hat{B}]U(z) + [1 + \hat{C}(zI - \hat{A})^{-1}\hat{L}]E(z)$$

Recall that
$$1 + \hat{C}(zI - \hat{A})^{-1}\hat{L} = \frac{\det[zI - (\hat{A} - \hat{L}\hat{C})]}{\det[zI - \hat{A}]}$$

Alternate Transfer Function Model

From the previous slide, we have that

$$Y(z) = \frac{\bar{B}(z)}{\bar{A}(z)}U(z) + \frac{\bar{C}(z)}{\bar{A}(z)}E(z)$$

Alternate Transfer Function Model

From the previous slide, we have that

$$Y(z) = \frac{\bar{B}(z)}{\bar{A}(z)}U(z) + \frac{\bar{C}(z)}{\bar{A}(z)}E(z)$$

where

$$\bar{A}(z) = z^n + a_1 z^{n-1} + \dots + a_n$$
 = $\det[zI - \hat{A}]$
 $\bar{C}(z) = z^n + c_1 z^{n-1} + \dots + c_n$ = $\det[zI - (\hat{A} - \hat{L}\hat{C})]$
 $\bar{B}(z) = b_0 z^m + \dots + b_m$

Alternate Transfer Function Model

From the previous slide, we have that

$$Y(z) = \frac{\bar{B}(z)}{\bar{A}(z)}U(z) + \frac{\bar{C}(z)}{\bar{A}(z)}E(z)$$

where

$$\bar{A}(z) = z^n + a_1 z^{n-1} + \dots + a_n$$
 = $\det[zI - \hat{A}]$
 $\bar{C}(z) = z^n + c_1 z^{n-1} + \dots + c_n$ = $\det[zI - (\hat{A} - \hat{L}\hat{C})]$
 $\bar{B}(z) = b_0 z^m + \dots + b_m$

Since $\hat{A} - \hat{L}\hat{C}$ is Schur, the polynomial $\bar{C}(z)$ is Schur

Polynomials in q^{-1}

We now define d = n - m and the polynomials

$$A(z^{-1}) = z^{-n}\bar{A}(z) = 1 + a_1 z^{-1} + \dots + a_n z^{-n}$$

$$C(z^{-1}) = z^{-n}\bar{C}(z) = 1 + c_1 z^{-1} + \dots + c_n z^{-n}$$

$$B(z^{-1}) = z^{-m}\bar{B}(z) = b_0 + b_1 z^{-1} + \dots + b_m z^{-m}$$

Polynomials in q^{-1}

We now define d = n - m and the polynomials

$$A(z^{-1}) = z^{-n}\bar{A}(z) = 1 + a_1 z^{-1} + \dots + a_n z^{-n}$$

$$C(z^{-1}) = z^{-n}\bar{C}(z) = 1 + c_1 z^{-1} + \dots + c_n z^{-n}$$

$$B(z^{-1}) = z^{-m}\bar{B}(z) = b_0 + b_1 z^{-1} + \dots + b_m z^{-m}$$

so that we can write the transfer function from the previous slide as

$$Y(z) = \frac{z^{-d}B(z^{-1})}{A(z^{-1})}U(z) + \frac{C(z^{-1})}{A(z^{-1})}E(z)$$

Polynomials in q^{-1}

We now define d = n - m and the polynomials

$$A(z^{-1}) = z^{-n}\bar{A}(z) = 1 + a_1 z^{-1} + \dots + a_n z^{-n}$$

$$C(z^{-1}) = z^{-n}\bar{C}(z) = 1 + c_1 z^{-1} + \dots + c_n z^{-n}$$

$$B(z^{-1}) = z^{-m}\bar{B}(z) = b_0 + b_1 z^{-1} + \dots + b_m z^{-m}$$

so that we can write the transfer function from the previous slide as

$$Y(z) = \frac{z^{-\mathrm{d}}B(z^{-1})}{A(z^{-1})}U(z) + \frac{C(z^{-1})}{A(z^{-1})}E(z)$$

Note in particular that $C(z^{-1})$ is an anti-Schur polynomial of z^{-1}

ARMAX Plant Model

We have now transformed the original state space plant model to

$$A(q^{-1})y(k) = q^{-d}B(q^{-1})u(k) + C(q^{-1})\epsilon(k)$$

where $C(q^{-1})$ is an anti-Schur polynomial of q^{-1} and $\epsilon(k)$ is zero-mean white noise with covariance $\hat{C}M\hat{C}^T+V$

ARMAX Plant Model

We have now transformed the original state space plant model to

$$A(q^{-1})y(k) = q^{-d}B(q^{-1})u(k) + C(q^{-1})\epsilon(k)$$

where $C(q^{-1})$ is an anti-Schur polynomial of q^{-1} and $\epsilon(k)$ is zero-mean white noise with covariance $\hat{C}M\hat{C}^T+V$

This type of model is called an <u>ARMAX</u> model because it is an ARMA model with an eXogenous input.

Outline

Introduction

MVR Problem Statement

MVR Solution

Proof, Special Case: $B(q^{-1})$ Anti-Schu

A-causal but BIBO Systems

Proof, General Case

Minimum Variance Regulator (MVR) Problem

Given the ARMAX model

$$A(q^{-1})y(k) = q^{-d}B(q^{-1})u(k) + C(q^{-1})\epsilon(k)$$

where

- $lackbox{C}(q^{-1})$ is an anti-Schur polynomial of q^{-1}
- ▶ $B(q^{-1})$ has no zeros on the unit circle
- $ightharpoonup \epsilon(k)$ is zero-mean white noise
- ▶ The plant has no unstable pole-zero cancelations, i.e. the polynomials $A(q^{-1})$ and $B(q^{-1})$ have no common zeros such that $|q^{-1}|<1$

Minimum Variance Regulator (MVR) Problem

Given the ARMAX model

$$A(q^{-1})y(k) = q^{-d}B(q^{-1})u(k) + C(q^{-1})\epsilon(k)$$

where

- $ightharpoonup C(q^{-1})$ is an anti-Schur polynomial of q^{-1}
- ▶ $B(q^{-1})$ has no zeros on the unit circle
- $ightharpoonup \epsilon(k)$ is zero-mean white noise
- ▶ The plant has no unstable pole-zero cancelations, i.e. the polynomials $A(q^{-1})$ and $B(q^{-1})$ have no common zeros such that $|q^{-1}|<1$

find the stabilizing feedback control law that minimizes the output variance $E\{y^2(k)\}$

Outline

Introduction

MVR Problem Statement

MVR Solution

Proof, Special Case: $B(q^{-1})$ Anti-Schul

A-causal but BIBO Systems

Proof, General Case

Factorization of B and \bar{B}

In general, the polynomial $\bar{B}(q)=q^mB(q^{-1})$ has

- $ightharpoonup m_s$ zeros strictly inside the unit circle (stable plant zeros)
- $ightharpoonup m_u$ zeros strictly outside the unit circle (unstable plant zeros)

Factorization of B and \bar{B}

In general, the polynomial $\bar{B}(q)=q^mB(q^{-1})$ has

- $ightharpoonup m_s$ zeros strictly inside the unit circle (stable plant zeros)
- $ightharpoonup m_u$ zeros strictly outside the unit circle (unstable plant zeros)

Perform the factorization

$$B(q^{-1}) = B^{s}(q^{-1})B^{u}(q^{-1})$$

where

- $\bar{B}^s(q) = q^{m_s} B^s(q^{-1})$ has its zeros inside the unit circle (These are the stable plant zeros)
- $\bar{B}^u(q) = q^{m_u} B^u(q^{-1})$ has its zeros outside the unit circle (These are the unstable plant zeros)
- $\bar{B}^u(0) = 1$

Minimum Variance Regulator (MVR) Solution

▶ The optimal control $u_*(k)$ is given by

$$B^{s}(q^{-1})R(q^{-1})u_{*}(k) = -S(q^{-1})y(k)$$

where $R(q^{-1})$ and $S(q^{-1})$ are found by solving the Diophantine equation

$$C(q^{-1})\bar{B}^u(q^{-1}) = A(q^{-1})R(q^{-1}) + q^{-\mathrm{d}}B^u(q^{-1})S(q^{-1})$$

where

$$R(q^{-1}) = 1 + r_1 q^{-1} + \dots + r_{n_r} q^{-n_r}$$

$$S(q^{-1}) = s_0 + s_1 q^{-1} + \dots + s_{n_s} q^{-n_s}$$

and
$$n_r = m_u + d - 1$$
 and $n_s = n - 1$

Minimum Variance Regulator (MVR) Solution

► The optimal cost is

$$E\{y^2(k)\} = E\{\epsilon_f^2(k)\}$$

where $\epsilon_f(k)$ is defined in terms of $\epsilon(k)$ by the ARMA model

$$\bar{B}^u(q^{-1})\epsilon_f(k) = R(q^{-1})\epsilon(k)$$

Constructing the MVR

- 1. Find \hat{L} using a stationary Kalman filter design
- 2. Construct $C(q^{-1})=q^{-n}\det[qI-(\hat{A}-\hat{L}\hat{C})]$
- 3. Factor $B(q^{-1})=B^s(q^{-1})B^u(q^{-1})$ as described previously (don't forget that $\bar{B}^u(0)=1$)
- 4. Solve the Diophantine equation

$$C(q^{-1})\bar{B}^u(q^{-1}) = A(q^{-1})R(q^{-1}) + q^{-\mathrm{d}}B^u(q^{-1})S(q^{-1})$$

5. Form the optimal controller

$$B^{s}(q^{-1})R(q^{-1})u_{*}(k) = -S(q^{-1})y(k)$$

▶ Be careful with $B^u(q^{-1})$, $\bar{B}^u(q)$, and $\bar{B}^u(q^{-1})$

- ▶ Be careful with $B^u(q^{-1})$, $\bar{B}^u(q)$, and $\bar{B}^u(q^{-1})$
 - $lackbox{ }B^u(q^{-1})$ is a Schur polynomial in q^{-1}

- ▶ Be careful with $B^u(q^{-1})$, $\bar{B}^u(q)$, and $\bar{B}^u(q^{-1})$
 - ▶ $B^u(q^{-1})$ is a Schur polynomial in q^{-1}
 - ullet $ar{B}^u(q)$ is an anti-Schur polynomial in q

- ▶ Be careful with $B^u(q^{-1})$, $\bar{B}^u(q)$, and $\bar{B}^u(q^{-1})$
 - $B^u(q^{-1})$ is a Schur polynomial in q^{-1}
 - ullet $ar{B}^u(q)$ is an anti-Schur polynomial in q
 - $\bar{B}^u(q^{-1})$ is an anti-Schur polynomial in q^{-1}

- ▶ Be careful with $B^u(q^{-1})$, $\bar{B}^u(q)$, and $\bar{B}^u(q^{-1})$
 - $B^u(q^{-1})$ is a Schur polynomial in q^{-1}
 - ullet $ar{B}^u(q)$ is an anti-Schur polynomial in q
 - $\bar{B}^u(q^{-1})$ is an anti-Schur polynomial in q^{-1}
- Note that the Diophantine equation involves both $B^u(q^{-1})$ and $\bar{B}^u(q^{-1})$.

- ▶ Be careful with $B^u(q^{-1})$, $\bar{B}^u(q)$, and $\bar{B}^u(q^{-1})$
 - $lackbox{ }B^u(q^{-1})$ is a Schur polynomial in q^{-1}
 - ullet $ar{B}^u(q)$ is an anti-Schur polynomial in q
 - ullet $ar{B}^u(q^{-1})$ is an anti-Schur polynomial in q^{-1}
- Note that the Diophantine equation involves both $B^u(q^{-1})$ and $\bar{B}^u(q^{-1})$.
- ▶ Since $\bar{B}^u(q^{-1})$ is anti-Schur, the operator $\frac{R(q^{-1})}{\bar{B}^u(q^{-1})}$ is BIBO.

- ▶ Be careful with $B^u(q^{-1})$, $\bar{B}^u(q)$, and $\bar{B}^u(q^{-1})$
 - $ightharpoonup B^u(q^{-1})$ is a Schur polynomial in q^{-1}
 - ullet $ar{B}^u(q)$ is an anti-Schur polynomial in q
 - $\bar{B}^u(q^{-1})$ is an anti-Schur polynomial in q^{-1}
- Note that the Diophantine equation involves both $B^u(q^{-1})$ and $\bar{B}^u(q^{-1})$.
- Since $\bar{B}^u(q^{-1})$ is anti-Schur, the operator $\frac{R(q^{-1})}{\bar{B}^u(q^{-1})}$ is BIBO.
 - $\Rightarrow \quad \epsilon_f(k) = rac{R(q^{-1})}{\bar{B}^u(q^{-1})} \epsilon(k)$ has bounded covariance

Special Case: $B(q^{-1})$ is anti-Schur

When $B(q^{-1})$ is anti-Schur, we have

- $B^s(q^{-1}) = B(q^{-1})$
- $B^u(q^{-1}) = \bar{B}^u(q) = \bar{B}^u(q^{-1}) = 1$

Special Case: $B(q^{-1})$ is anti-Schur

When $B(q^{-1})$ is anti-Schur, we have

- $B^s(q^{-1}) = B(q^{-1})$
- $B^{u}(q^{-1}) = \bar{B}^{u}(q) = \bar{B}^{u}(q^{-1}) = 1$
- Expressing $R(q^{-1}) = 1 + r_1 q^{-1} + \dots + r_{n_r} q^{-n_r}$, the optimal cost is

$$E\{y^{2}(k)\} = E\{[R(q^{-1})\epsilon(k)]^{2}\}$$

$$= E\{[\epsilon(k) + r_{1}\epsilon(k-1) + \dots + r_{n_{r}}\epsilon(k-n_{r})]^{2}\}$$

$$= E\{\epsilon^{2}(k)\} + r_{1}^{2}E\{\epsilon^{2}(k-1)\} + \dots + r_{n_{r}}^{2}E\{\epsilon^{2}(k-n_{r})\}$$

$$= (1 + r_{1}^{2} + \dots + r_{n_{r}}^{2})E\{\epsilon^{2}(k)\}$$

Special Case: $B(q^{-1})$ is anti-Schur

When $B(q^{-1})$ is anti-Schur, we have

- $B^s(q^{-1}) = B(q^{-1})$
- $B^u(q^{-1}) = \bar{B}^u(q) = \bar{B}^u(q^{-1}) = 1$
- Expressing $R(q^{-1}) = 1 + r_1 q^{-1} + \dots + r_{n_r} q^{-n_r}$, the optimal cost is

$$E\{y^{2}(k)\} = E\{[R(q^{-1})\epsilon(k)]^{2}\}$$

$$= E\{[\epsilon(k) + r_{1}\epsilon(k-1) + \dots + r_{n_{r}}\epsilon(k-n_{r})]^{2}\}$$

$$= E\{\epsilon^{2}(k)\} + r_{1}^{2}E\{\epsilon^{2}(k-1)\} + \dots + r_{n_{r}}^{2}E\{\epsilon^{2}(k-n_{r})\}$$

$$= (1 + r_{1}^{2} + \dots + r_{n_{r}}^{2})E\{\epsilon^{2}(k)\}$$

Therefore

$$E\{y^2(k)\} = (1 + r_1^2 + \dots + r_{n_r}^2)(\hat{C}M\hat{C}^T + V)$$

Outline

Introduction

MVR Problem Statement

MVR Solution

Proof, Special Case: $B(q^{-1})$ Anti-Schur

A-causal but BIBO Systems

Proof. General Case

The proof will be done in 4 parts:

1. Rewrite the system dynamics in a more convenient form

The proof will be done in 4 parts:

- 1. Rewrite the system dynamics in a more convenient form
- 2. Prove that $E\{z(k-d)\epsilon_f(k)\}=0$, where z(k) is a sequence to be defined in subsequent slides

The proof will be done in 4 parts:

- 1. Rewrite the system dynamics in a more convenient form
- 2. Prove that $E\{z(k-d)\epsilon_f(k)\}=0$, where z(k) is a sequence to be defined in subsequent slides
- 3. Prove optimality of proposed control scheme

The proof will be done in 4 parts:

- 1. Rewrite the system dynamics in a more convenient form
- 2. Prove that $E\{z(k-d)\epsilon_f(k)\}=0$, where z(k) is a sequence to be defined in subsequent slides
- 3. Prove optimality of proposed control scheme
- 4. Verify closed-loop stability

The proof will be done in 4 parts:

- 1. Rewrite the system dynamics in a more convenient form
- 2. Prove that $E\{z(k-d)\epsilon_f(k)\}=0$, where z(k) is a sequence to be defined in subsequent slides
- 3. Prove optimality of proposed control scheme
- 4. Verify closed-loop stability

Comments on the notation in this proof:

- Capital letters always denote polynomials; lower case letters denote sequences (except d and q)
- ▶ Dependency of polynomials on q^{-1} will be omitted e.g. \bar{B}^u will refer to $\bar{B}^u(q^{-1})$
- Dependency of sequences on k will be omitted
 e.g. y will refer to y(k)

The plant dynamics are

$$Ay = q^{-d}Bu + C\epsilon$$

and the Diophantine equation gives

$$[RA]y = [C - q^{-d}S]y$$

The plant dynamics are

$$Ay = q^{-d}Bu + C\epsilon$$

and the Diophantine equation gives

$$[RA]y = [C - q^{-d}S]y$$

Combining these two equations gives

$$R[q^{-d}Bu + C\epsilon] = [C - q^{-d}S]y$$

The plant dynamics are

$$Ay = q^{-d}Bu + C\epsilon$$

and the Diophantine equation gives

$$[RA]y = [C - q^{-d}S]y$$

Combining these two equations gives

$$R[q^{-d}Bu + C\epsilon] = [C - q^{-d}S]y$$

$$\Rightarrow$$
 $Cy - q^{-d}(Sy + BRu) - CR\epsilon = 0$

From the previous slide:

$$Cy - q^{-d}(Sy + BRu) - CR\epsilon = 0$$

▶ Define z(k) in terms of y(k) and u(k) using

$$Cz = Sy + BRu$$

(note that we are not necessarily using the optimal control)

From the previous slide:

$$Cy - q^{-d}(Sy + BRu) - CR\epsilon = 0$$

 $\ \ \, \hbox{ Define } z(k) \hbox{ in terms of } y(k) \hbox{ and } u(k) \hbox{ using }$

$$Cz = Sy + BRu$$

(note that we are not necessarily using the optimal control)

▶ Define $\epsilon_f = R\epsilon$

From the previous slide:

$$Cy - q^{-d}(Sy + BRu) - CR\epsilon = 0$$

▶ Define z(k) in terms of y(k) and u(k) using

$$Cz = Sy + BRu$$

(note that we are not necessarily using the optimal control)

- ▶ Define $\epsilon_f = R\epsilon$
- From the top equation,

$$Cy - q^{-d}Cz - C\epsilon_f = 0$$
 \Rightarrow $C(y - q^{-d}z - \epsilon_f) = 0$

From the previous slide:

$$Cy - q^{-d}(Sy + BRu) - CR\epsilon = 0$$

▶ Define z(k) in terms of y(k) and u(k) using

$$Cz = Sy + BRu$$

(note that we are not necessarily using the optimal control)

- ▶ Define $\epsilon_f = R\epsilon$
- From the top equation,

$$Cy - q^{-d}Cz - C\epsilon_f = 0$$
 \Rightarrow $C(y - q^{-d}z - \epsilon_f) = 0$

Since C is anti-Schur, we have $y-q^{-\mathrm{d}}z-\epsilon_f\longrightarrow 0$

From the previous slide:

$$Cy - q^{-d}(Sy + BRu) - CR\epsilon = 0$$

▶ Define z(k) in terms of y(k) and u(k) using

$$Cz = Sy + BRu$$

(note that we are not necessarily using the optimal control)

- ▶ Define $\epsilon_f = R\epsilon$
- From the top equation,

$$Cy - q^{-d}Cz - C\epsilon_f = 0$$
 \Rightarrow $C(y - q^{-d}z - \epsilon_f) = 0$

Since C is anti-Schur, we have $y-q^{-\mathrm{d}}z-\epsilon_f\longrightarrow 0$

$$y(k) = z(k-\mathrm{d}) + \epsilon_f(k)$$

Part 2: $E\{z(k-d)\epsilon_f(k)\}=0$

▶ Since $\epsilon(k) = y(k) - E\{y(k)|y(k-1),y(k-2),\ldots\}$, we use least squares property 1 to see that

$$E\{y(k-\ell)\epsilon(k+p)\}, \qquad \forall \ell > 0, p \ge 0$$

Part 2: $E\{z(k-d)\epsilon_f(k)\}=0$

▶ Since $\epsilon(k) = y(k) - E\{y(k)|y(k-1),y(k-2),\ldots\}$, we use least squares property 1 to see that

$$E\{y(k-\ell)\epsilon(k+p)\}, \quad \forall \ell > 0, p \ge 0$$

$$\epsilon_f(k+d-1) = \epsilon(k+d-1) + r_1\epsilon(k+d-2) + \dots + r_{d-1}\epsilon(k)$$

$$\Rightarrow E\{y(k-\ell)\epsilon_f(k+d-1)\} = 0 \qquad \forall \ell > 0$$

Part 2: $E\{z(k-d)\epsilon_f(k)\} = 0$

▶ Since $\epsilon(k) = y(k) - E\{y(k)|y(k-1),y(k-2),\ldots\}$, we use least squares property 1 to see that

$$E\{y(k-\ell)\epsilon(k+p)\}, \quad \forall \ell > 0, p \ge 0$$

$$\epsilon_f(k+d-1) = \epsilon(k+d-1) + r_1\epsilon(k+d-2) + \dots + r_{d-1}\epsilon(k)$$

$$\Rightarrow E\{y(k-\ell)\epsilon_f(k+d-1)\} = 0 \qquad \forall \ell > 0$$

▶ Since u(k) is a function of y(k), y(k-1), ...

$$E\{u(k-\ell)\epsilon_f(k+d-1)\} = 0 \qquad \forall \ell > 0$$

Part 2: $E\{z(k-d)\epsilon_f(k)\}=0$

▶ Since $\epsilon(k) = y(k) - E\{y(k)|y(k-1),y(k-2),\ldots\}$, we use least squares property 1 to see that

$$E\{y(k-\ell)\epsilon(k+p)\}, \qquad \forall \ell > 0, p \ge 0$$

$$\epsilon_f(k+d-1) = \epsilon(k+d-1) + r_1\epsilon(k+d-2) + \dots + r_{d-1}\epsilon(k)$$

$$\Rightarrow E\{y(k-\ell)\epsilon_f(k+d-1)\} = 0 \quad \forall \ell > 0$$

▶ Since u(k) is a function of y(k), y(k-1), ...

$$E\{u(k-\ell)\epsilon_f(k+d-1)\}=0 \qquad \forall \ell>0$$

Since z(k) is a function of $y(k), y(k-1), \ldots$ and $u(k), u(k-1), \ldots$

$$E\{z(k-\ell)\epsilon_f(k+d-1)\} = 0 \qquad \forall \ell > 0$$

Part 2: $E\{z(k-d)\epsilon_f(k)\}=0$

▶ Since $\epsilon(k) = y(k) - E\{y(k)|y(k-1),y(k-2),\ldots\}$, we use least squares property 1 to see that

$$E\{y(k-\ell)\epsilon(k+p)\}, \quad \forall \ell > 0, p \ge 0$$

•
$$\epsilon_f(k+d-1) = \epsilon(k+d-1) + r_1\epsilon(k+d-2) + \dots + r_{d-1}\epsilon(k)$$

$$\Rightarrow E\{y(k-\ell)\epsilon_f(k+d-1)\} = 0 \qquad \forall \ell > 0$$

▶ Since u(k) is a function of y(k), y(k-1), ...

$$E\{u(k-\ell)\epsilon_f(k+d-1)\} = 0 \qquad \forall \ell > 0$$

Since z(k) is a function of $y(k), y(k-1), \ldots$ and $u(k), u(k-1), \ldots$

$$E\{z(k-\ell)\epsilon_f(k+d-1)\} = 0 \qquad \forall \ell > 0$$

▶ Choosing $\ell = 1$ completes part 2

Recall that

$$y(k) = z(k - d) + \epsilon_f(k)$$
$$E\{z(k - d)\epsilon_f(k)\} = 0$$

Recall that

$$y(k) = z(k - d) + \epsilon_f(k)$$
$$E\{z(k - d)\epsilon_f(k)\} = 0$$

Therefore,

$$E\{y^2(k)\} = E\{z^2(k-d)\} + E\{\epsilon_f^2(k)\}$$

Recall that

$$y(k) = z(k - d) + \epsilon_f(k)$$
$$E\{z(k - d)\epsilon_f(k)\} = 0$$

Therefore,

$$E\{y^{2}(k)\} = E\{z^{2}(k-d)\} + E\{\epsilon_{f}^{2}(k)\}\$$

Notes:

At this point, we have only assumed that u(k) stabilizes the system (so that the relevant covariances are bounded)

Recall that

$$y(k) = z(k - d) + \epsilon_f(k)$$
$$E\{z(k - d)\epsilon_f(k)\} = 0$$

Therefore,

$$E\{y^{2}(k)\} = E\{z^{2}(k-d)\} + E\{\epsilon_{f}^{2}(k)\}\$$

Notes:

- At this point, we have only assumed that u(k) stabilizes the system (so that the relevant covariances are bounded)
- $igsim E\{\epsilon_f^2(k)\}$ does not depend on the choice of the control law

Recall that

$$y(k) = z(k - d) + \epsilon_f(k)$$
$$E\{z(k - d)\epsilon_f(k)\} = 0$$

Therefore,

$$E\{y^{2}(k)\} = E\{z^{2}(k-d)\} + E\{\epsilon_{f}^{2}(k)\}\$$

Notes:

- At this point, we have only assumed that u(k) stabilizes the system (so that the relevant covariances are bounded)
- lacksquare $E\{\epsilon_f^2(k)\}$ does not depend on the choice of the control law
- ightharpoonup \Rightarrow We would like to choose u to minimize $E\{z^2\}$

Recall that

$$y(k) = z(k - d) + \epsilon_f(k)$$
$$E\{z(k - d)\epsilon_f(k)\} = 0$$

Therefore,

$$E\{y^2(k)\} = E\{z^2(k-d)\} + E\{\epsilon_f^2(k)\}$$

Notes:

- lacktriangle At this point, we have only assumed that u(k) stabilizes the system (so that the relevant covariances are bounded)
- $E\{\epsilon_f^2(k)\}$ does not depend on the choice of the control law
- ightharpoonup \Rightarrow We would like to choose u to minimize $E\{z^2\}$
- ▶ If we can make $E\{z^2\}=0$, the control must be optimal

Goal: choose u so that $E\{z^2\}=0$

Goal: choose u so that $E\{z^2\}=0$

▶ If we apply the control signal $u_*(k)$ defined by

$$BRu_* = -Sy$$

Goal: choose u so that $E\{z^2\}=0$

▶ If we apply the control signal $u_*(k)$ defined by

$$BRu_* = -Sy$$

we have

$$Cz = BRu_* + Sy = 0$$

Goal: choose u so that $E\{z^2\}=0$

▶ If we apply the control signal $u_*(k)$ defined by

$$BRu_* = -Sy$$

we have

$$Cz = BRu_* + Sy = 0$$

 $lackbox{ } C(q^{-1})$ is an anti-Schur polynomial $\Rightarrow \ z(k) \longrightarrow 0.$

Goal: choose u so that $E\{z^2\}=0$

▶ If we apply the control signal $u_*(k)$ defined by

$$BRu_* = -Sy$$

we have

$$Cz = BRu_* + Sy = 0$$

- ▶ $C(q^{-1})$ is an anti-Schur polynomial $\Rightarrow z(k) \longrightarrow 0$.
- ▶ For this control signal, $E\{z^2\} = 0$, which means that $u_*(k)$ is optimal, provided that the closed-loop system is stable

Goal: choose u so that $E\{z^2\}=0$

▶ If we apply the control signal $u_*(k)$ defined by

$$BRu_* = -Sy$$

we have

$$Cz = BRu_* + Sy = 0$$

- $\blacktriangleright \ C(q^{-1}) \text{ is an anti-Schur polynomial} \Rightarrow \ z(k) \longrightarrow 0.$
- ▶ For this control signal, $E\{z^2\} = 0$, which means that $u_*(k)$ is optimal, provided that the closed-loop system is stable
- Also note that $E\{y^2\} = E\{\epsilon_f^2\}$, provided that the closed-loop system is stable

Part 4: Closed-loop stability

From the plant dynamics and feedback law, we have

$$\begin{bmatrix} A & -q^{-d}B \\ S & BR \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} C\epsilon \\ 0 \end{bmatrix}$$

Part 4: Closed-loop stability

From the plant dynamics and feedback law, we have

$$\begin{bmatrix} A & -q^{-d}B \\ S & BR \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} C\epsilon \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} y \\ u \end{bmatrix} = \frac{1}{BAR + q^{-d}BS} \begin{bmatrix} BR & q^{-d}B \\ -S & A \end{bmatrix} \begin{bmatrix} C\epsilon \\ 0 \end{bmatrix}$$
$$= \frac{1}{B(AR + q^{-d}S)} \begin{bmatrix} BRC\epsilon \\ -SC\epsilon \end{bmatrix} = \frac{1}{BC} \begin{bmatrix} BRC\epsilon \\ -SC\epsilon \end{bmatrix}$$

Part 4: Closed-loop stability

From the plant dynamics and feedback law, we have

$$\begin{bmatrix} A & -q^{-d}B \\ S & BR \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} C\epsilon \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} y \\ u \end{bmatrix} = \frac{1}{BAR + q^{-d}BS} \begin{bmatrix} BR & q^{-d}B \\ -S & A \end{bmatrix} \begin{bmatrix} C\epsilon \\ 0 \end{bmatrix}$$
$$= \frac{1}{B(AR + q^{-d}S)} \begin{bmatrix} BRC\epsilon \\ -SC\epsilon \end{bmatrix} = \frac{1}{BC} \begin{bmatrix} BRC\epsilon \\ -SC\epsilon \end{bmatrix}$$

Since $C(q^{-1})B(q^{-1})$ is an anti-Schur polynomial of q^{-1} , the closed-loop system is stable

Outline

Introduction

MVR Problem Statement

MVR Solution

Proof, Special Case: $B(q^{-1})$ Anti-Schu

A-causal but BIBO Systems

Proof, General Case

A-causal but BIBO Systems

Recall that the polynomial $B^u(q^{-1})$ is Schur

Recall that the polynomial $B^u(q^{-1})$ is Schur

The AR model $B^u(q^{-1})y(k)=u(k)$ corresponds to the block diagram

$$\underbrace{\frac{u(k)}{B^u(q^{-1})}}_{} \underbrace{\frac{y(k)}{B^u(q^{-1})}}$$

Recall that the polynomial $B^u(q^{-1})$ is Schur

The AR model $B^u(q^{-1})y(k)=u(k)$ corresponds to the block diagram

$$\underbrace{u(k)}_{B^u(q^{-1})}\underbrace{1}_{y(k)}$$

We can interpret the operator $\frac{1}{B^u(q^{-1})}$ in two ways:

Recall that the polynomial $B^u(q^{-1})$ is Schur

The AR model $B^u(q^{-1})y(k)=u(k)$ corresponds to the block diagram

$$\underbrace{\frac{u(k)}{B^u(q^{-1})}} \underbrace{y(k)}$$

We can interpret the operator $\frac{1}{B^u(q^{-1})}$ in two ways:

1. Causal, but unstable

Recall that the polynomial $B^u(q^{-1})$ is Schur

The AR model $B^u(q^{-1})y(k)=u(k)$ corresponds to the block diagram

$$\underbrace{\frac{u(k)}{B^u(q^{-1})}} \underbrace{y(k)}$$

We can interpret the operator $\frac{1}{B^u(q^{-1})}$ in two ways:

- 1. Causal, but unstable
- 2. A-causal, but BIBO

We are considering the AR model $B^u(q^{-1})y(k) = u(k)$ where

$$B^{u}(q^{-1}) = 1 + b_1^{u}q^{-1} + \dots + b_{m_u}^{u}q^{-m_u}$$

We are considering the AR model $B^u(q^{-1})y(k) = u(k)$ where

$$B^{u}(q^{-1}) = 1 + b_{1}^{u}q^{-1} + \dots + b_{m_{u}}^{u}q^{-m_{u}}$$

$$\longrightarrow$$
 $(1 + b_1^u q^{-1} + \dots + b_{m_u}^u q^{-m_u}) y(k) = u(k)$

We are considering the AR model $B^u(q^{-1})y(k) = u(k)$ where

$$B^{u}(q^{-1}) = 1 + b_1^{u}q^{-1} + \dots + b_{m_u}^{u}q^{-m_u}$$

$$\longrightarrow$$
 $(1 + b_1^u q^{-1} + \dots + b_{m_u}^u q^{-m_u}) y(k) = u(k)$

Interpreting the AR model as causal, but unstable corresponds to

$$y(k) = u(k) - [b_1^u q^{-1} + \dots + b_{m_u}^u q^{-m_u}] y(k)$$

= $u(k) - b_1^u y(k-1) - \dots - b_{m_u}^u y(k-m_u)$

We are considering the AR model $B^u(q^{-1})y(k) = u(k)$ where

$$B^{u}(q^{-1}) = 1 + b_1^{u}q^{-1} + \dots + b_{m_u}^{u}q^{-m_u}$$

$$\longrightarrow$$
 $(1 + b_1^u q^{-1} + \dots + b_{m_u}^u q^{-m_u}) y(k) = u(k)$

Interpreting the AR model as causal, but unstable corresponds to

$$y(k) = u(k) - [b_1^u q^{-1} + \dots + b_{m_u}^u q^{-m_u}] y(k)$$

= $u(k) - b_1^u y(k-1) - \dots - b_{m_u}^u y(k-m_u)$

$$\longrightarrow$$
 $y(k)$ is a function of $u(k), u(k-1), u(k-2), \dots$

We are considering the AR model

$$(1 + b_1^u q^{-1} + \dots + b_{m_u}^u q^{-m_u}) y(k) = u(k)$$

We are considering the AR model

$$(1 + b_1^u q^{-1} + \dots + b_{m_u}^u q^{-m_u}) y(k) = u(k)$$

Interpreting the AR model as a-causal, but BIBO corresponds to

$$b_{m_u}^u q^{-m_u} y(k) = u(k) - [1 + b_1^u q^{-1} + \dots + b_{m_u-1}^u q^{-m_u+1}] y(k)$$

We are considering the AR model

$$(1 + b_1^u q^{-1} + \dots + b_{m_u}^u q^{-m_u}) y(k) = u(k)$$

Interpreting the AR model as a-causal, but BIBO corresponds to

$$b_{m_u}^u q^{-m_u} y(k) = u(k) - [1 + b_1^u q^{-1} + \dots + b_{m_u-1}^u q^{-m_u+1}] y(k)$$

$$\Rightarrow b_{m_u}^u y(k) = q^{m_u} u(k) - [q^{m_u} + b_1^u q^{m_u-1} + \dots + b_{m_u-1}^u q] y(k)$$

$$\Rightarrow y(k) = \frac{1}{b_{m_u}} [u(k+m_u) - y(k+m_u) - b_1^u y(k+m_u-1) - \dots - b_{m_u-1}^u y(k+1)]$$

We are considering the AR model

$$(1 + b_1^u q^{-1} + \dots + b_{m_u}^u q^{-m_u}) y(k) = u(k)$$

Interpreting the AR model as a-causal, but BIBO corresponds to

$$b_{m_u}^u q^{-m_u} y(k) = u(k) - [1 + b_1^u q^{-1} + \dots + b_{m_u-1}^u q^{-m_u+1}] y(k)$$

$$\Rightarrow b_{m_u}^u y(k) = q^{m_u} u(k) - [q^{m_u} + b_1^u q^{m_u-1} + \dots + b_{m_u-1}^u q] y(k)$$

$$\Rightarrow y(k) = \frac{1}{b_{m_u}} [u(k+m_u) - y(k+m_u) - b_1^u y(k+m_u-1) - \dots - b_{m_u-1}^u y(k+1)]$$

$$y(k)$$
 is a function of $u(k+m_u), u(k+m_u+1), u(k+m_u+2), \dots$

Let w(k) be the output of the a-causal, but BIBO ARMAX model

$$B^{u}(q^{-1})w(k) = \bar{B}^{u}(q^{-1})y(k)$$

This corresponds to the block diagram

$$\underbrace{\frac{g(k)}{B^u(q^{-1})}}_{B^u(q^{-1})}\underbrace{\frac{w(k)}{B^u(q^{-1})}}$$

Let w(k) be the output of the a-causal, but BIBO ARMAX model

$$B^u(q^{-1})w(k) = \bar{B}^u(q^{-1})y(k)$$

This corresponds to the block diagram

$$\underbrace{\frac{g(k)}{B^u(q^{-1})}}_{B^u(q^{-1})}\underbrace{\frac{w(k)}{B^u(q^{-1})}}$$

Claim:

$$\left| \frac{\bar{B}^u(e^{-j\omega})}{B^u(e^{-j\omega})} \right| = 1 \qquad \forall \omega \in [0, 2\pi]$$

Let w(k) be the output of the a-causal, but BIBO ARMAX model

$$B^{u}(q^{-1})w(k) = \bar{B}^{u}(q^{-1})y(k)$$

This corresponds to the block diagram

$$\underbrace{\frac{\bar{B}^u(q^{-1})}{\bar{B}^u(q^{-1})}}_{\underline{B}^u(q^{-1})} \xrightarrow{w(k)}$$

Claim:

$$\left| \frac{\bar{B}^{u}(e^{-j\omega})}{B^{u}(e^{-j\omega})} \right| = 1 \qquad \forall \omega \in [0, 2\pi]$$

Proof:

$$\bar{B}^{u}(q) = q^{m_{u}}B^{u}(q^{-1}) \Rightarrow \bar{B}^{u}(q^{-1}) = q^{-m_{u}}B^{u}(q)$$

$$\Rightarrow |\bar{B}^{u}(e^{-j\omega})| = |e^{-j\omega m_{u}}B^{u}(e^{j\omega})| = |B^{u}(e^{j\omega})| = |B^{u}(e^{-j\omega})| \blacksquare$$

The power spectral density of w(k) is

$$\Phi_{WW}(\omega) = \left| \frac{\bar{B}^u(e^{-j\omega})}{B^u(e^{-j\omega})} \right|^2 \Phi_{YY}(\omega) = \Phi_{YY}(\omega)$$

$$\underbrace{\frac{\bar{B}^u(q^{-1})}{\bar{B}^u(q^{-1})}}_{\underline{B}^u(q^{-1})} \xrightarrow{w(k)}$$

The power spectral density of w(k) is

$$\Phi_{WW}(\omega) = \left| \frac{\bar{B}^u(e^{-j\omega})}{B^u(e^{-j\omega})} \right|^2 \Phi_{YY}(\omega) = \Phi_{YY}(\omega)$$

Therefore

$$\Lambda_{WW}(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{WW}(\omega) d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{YY}(\omega) d\omega = \Lambda_{YY}(0)$$

$$\underbrace{\frac{\bar{B}^u(q^{-1})}{\bar{B}^u(q^{-1})}}_{\underline{B}^u(q^{-1})} \underbrace{w(k)}_{\underline{}}$$

The power spectral density of w(k) is

$$\Phi_{WW}(\omega) = \left| \frac{\bar{B}^u(e^{-j\omega})}{B^u(e^{-j\omega})} \right|^2 \Phi_{YY}(\omega) = \Phi_{YY}(\omega)$$

Therefore

$$\Lambda_{WW}(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{WW}(\omega) d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{YY}(\omega) d\omega = \Lambda_{YY}(0)$$

$$E\{w^{2}(k)\} = E\{y^{2}(k)\}$$

Outline

Introduction

MVR Problem Statement

MVR Solution

Proof, Special Case: $B(q^{-1})$ Anti-Schu

A-causal but BIBO Systems

Proof, General Case

The proof will be done in 4 parts:

1. Rewrite the system dynamics in a more convenient form

The proof will be done in 4 parts:

- 1. Rewrite the system dynamics in a more convenient form
- 2. Prove that $E\{z(k-d)\epsilon_f(k)\}=0$, where z(k) is a sequence to be defined in subsequent slides

The proof will be done in 4 parts:

- 1. Rewrite the system dynamics in a more convenient form
- 2. Prove that $E\{z(k-d)\epsilon_f(k)\}=0$, where z(k) is a sequence to be defined in subsequent slides
- 3. Prove optimality of proposed control scheme

The proof will be done in 4 parts:

- 1. Rewrite the system dynamics in a more convenient form
- 2. Prove that $E\{z(k-d)\epsilon_f(k)\}=0$, where z(k) is a sequence to be defined in subsequent slides
- 3. Prove optimality of proposed control scheme
- 4. Verify closed-loop stability

The proof will be done in 4 parts:

- 1. Rewrite the system dynamics in a more convenient form
- 2. Prove that $E\{z(k-d)\epsilon_f(k)\}=0$, where z(k) is a sequence to be defined in subsequent slides
- 3. Prove optimality of proposed control scheme
- 4. Verify closed-loop stability

Comments on the notation in this proof:

- Capital letters always denote polynomials; lower case letters denote sequences (except d and q)
- ▶ Dependency of polynomials on q^{-1} will be omitted e.g. \bar{B}^u will refer to $\bar{B}^u(q^{-1})$
- Dependency of sequences on k will be omitted
 e.g. y will refer to y(k)

The plant dynamics are

$$Ay = q^{-d}Bu + C\epsilon$$

and the Diophantine equation gives

$$[RA]y = [C\bar{B}^u - q^{-d}B^uS]y$$

The plant dynamics are

$$Ay = q^{-d}Bu + C\epsilon$$

and the Diophantine equation gives

$$[RA]y = [C\bar{B}^u - q^{-d}B^uS]y$$

Combining these two equations gives

$$R[q^{-\mathrm{d}}Bu + C\epsilon] = [C\bar{B}^u - q^{-\mathrm{d}}B^uS]y$$

The plant dynamics are

$$Ay = q^{-d}Bu + C\epsilon$$

and the Diophantine equation gives

$$[RA]y = [C\bar{B}^u - q^{-d}B^uS]y$$

Combining these two equations gives

$$R[q^{-d}Bu + C\epsilon] = [C\bar{B}^u - q^{-d}B^uS]y$$

$$\Rightarrow C\bar{B}^{u}y - q^{-d}(B^{u}Sy + BRu) - CR\epsilon = 0$$

The plant dynamics are

$$Ay = q^{-d}Bu + C\epsilon$$

and the Diophantine equation gives

$$[RA]y = [C\bar{B}^u - q^{-d}B^uS]y$$

Combining these two equations gives

$$R[q^{-d}Bu + C\epsilon] = [C\bar{B}^u - q^{-d}B^uS]y$$

$$\Rightarrow C\bar{B}^{u}y - q^{-d}(B^{u}Sy + BRu) - CR\epsilon = 0$$

Factoring B^u out of the term in parentheses yields

$$\Rightarrow C\bar{B}^u y - q^{-d}B^u(Sy + B^sRu) - CR\epsilon = 0$$

From the previous slide:

$$C\bar{B}^{u}y - q^{-d}B^{u}(Sy + B^{s}Ru) - CR\epsilon = 0$$

▶ Define z(k) in terms of y(k) and u(k) using

$$Cz = Sy + B^s Ru$$

(note that we are not necessarily using the optimal control)

From the previous slide:

$$C\bar{B}^{u}y - q^{-d}B^{u}(Sy + B^{s}Ru) - CR\epsilon = 0$$

▶ Define z(k) in terms of y(k) and u(k) using

$$Cz = Sy + B^s Ru$$

(note that we are not necessarily using the optimal control)

▶ Define $\bar{\epsilon}_f$ and w by

$$B^u \bar{\epsilon}_f = R\epsilon \qquad \qquad B^u w = \bar{B}^u y$$

We interpret these relationships as a-causal, but BIBO

From the previous slide:

$$C\bar{B}^{u}y - q^{-d}B^{u}(Sy + B^{s}Ru) - CR\epsilon = 0$$

▶ Define z(k) in terms of y(k) and u(k) using

$$Cz = Sy + B^s Ru$$

(note that we are not necessarily using the optimal control)

▶ Define $\bar{\epsilon}_f$ and w by

$$B^u \bar{\epsilon}_f = R\epsilon \qquad \qquad B^u w = \bar{B}^u y$$

We interpret these relationships as a-causal, but BIBO

From the top equation,

$$CB^{u}w - q^{-d}CB^{u}z - CB^{u}\bar{\epsilon}_{f} = 0$$

$$\Rightarrow CB^{u}(w - q^{-d}z - \bar{\epsilon}_{f}) = 0$$

So far, we know that

$$CB^{u}(w - q^{-d}z - \bar{\epsilon}_{f}) = 0$$

lacksquare Since C is anti-Schur, we have $B^u(w-q^{-\mathrm{d}}z-\bar{\epsilon}_f)\longrightarrow 0$

So far, we know that

$$CB^{u}(w - q^{-d}z - \bar{\epsilon}_{f}) = 0$$

- lacksquare Since C is anti-Schur, we have $B^u(w-q^{-\mathrm{d}}z-ar\epsilon_f)\longrightarrow 0$
- ▶ If we regard $\frac{1}{B^u(q^{-1})}$ as a-causal but BIBO, we have $w-q^{-\mathrm{d}}z-\bar{\epsilon}_f\longrightarrow 0$

So far, we know that

$$CB^{u}(w - q^{-d}z - \bar{\epsilon}_{f}) = 0$$

- lacksquare Since C is anti-Schur, we have $B^u(w-q^{-\mathrm{d}}z-ar\epsilon_f)\longrightarrow 0$
- ▶ If we regard $\frac{1}{B^u(q^{-1})}$ as a-causal but BIBO, we have $w-q^{-\mathrm{d}}z-\bar{\epsilon}_f\longrightarrow 0$
- We have now obtained

$$w(k) = z(k - d) + \bar{\epsilon}_f(k)$$

So far, we know that

$$CB^{u}(w - q^{-d}z - \bar{\epsilon}_f) = 0$$

- lacktriangle Since C is anti-Schur, we have $B^u(w-q^{-\mathrm{d}}z-ar\epsilon_f)\longrightarrow 0$
- If we regard $\frac{1}{B^u(q^{-1})}$ as a-causal but BIBO, we have $w-q^{-{\rm d}}z-\bar\epsilon_f\longrightarrow 0$
- We have now obtained

$$w(k) = z(k - d) + \bar{\epsilon}_f(k)$$

Also note that, because $w(k) = \frac{\bar{B}^u(q^{-1})}{B^u(q^{-1})}y(k)$

$$E\{w^{2}(k)\} = E\{y^{2}(k)\}$$

Part 2: $E\{z(k-d)\bar{\epsilon}_f(k)\}=0$

▶ Since $\epsilon(k) = y(k) - E\{y(k)|y(k-1),y(k-2),\ldots\}$, we use least squares property 1 to see that

$$E\{y(k-\ell)\epsilon(k+p)\}, \quad \forall \ell > 0, p \ge 0$$

▶ Since $\epsilon(k) = y(k) - E\{y(k)|y(k-1),y(k-2),\ldots\}$, we use least squares property 1 to see that

$$E\{y(k-\ell)\epsilon(k+p)\}, \quad \forall \ell > 0, p \ge 0$$

▶ Defining $\epsilon_r = R\epsilon$, we have

$$\epsilon_r(k+n_r) = \epsilon(k+n_r) + r_1\epsilon(k+n_r-1) + \dots + r_{n_r}\epsilon(k)$$

$$\Rightarrow E\{y(k-\ell)\epsilon_r(k+n_r+p)\} = 0 \quad \forall \ell > 0, p \ge 0$$

▶ Since $\epsilon(k)=y(k)-E\{y(k)|y(k-1),y(k-2),\ldots\}$, we use least squares property 1 to see that

$$E\{y(k-\ell)\epsilon(k+p)\}, \quad \forall \ell > 0, p \ge 0$$

▶ Defining $\epsilon_r = R\epsilon$, we have

$$\epsilon_r(k+n_r) = \epsilon(k+n_r) + r_1\epsilon(k+n_r-1) + \dots + r_{n_r}\epsilon(k)$$

$$\Rightarrow E\{y(k-\ell)\epsilon_r(k+n_r+p)\} = 0 \qquad \forall \ell > 0, p \ge 0$$

▶ Regarding the relationship $B^u \bar{\epsilon}_f = \epsilon_r$ as a-causal but BIBO, and noting that $n_r = m_u + d - 1$, we see that $\bar{\epsilon}_f(k + d - 1)$ is a function of $\epsilon_r(k + n_r)$, $\epsilon_r(k + n_r + 1)$, \cdots , which implies

▶ Since $\epsilon(k) = y(k) - E\{y(k)|y(k-1),y(k-2),\ldots\}$, we use least squares property 1 to see that

$$E\{y(k-\ell)\epsilon(k+p)\}, \quad \forall \ell > 0, p \ge 0$$

▶ Defining $\epsilon_r = R\epsilon$, we have

$$\epsilon_r(k+n_r) = \epsilon(k+n_r) + r_1\epsilon(k+n_r-1) + \dots + r_{n_r}\epsilon(k)$$

$$\Rightarrow E\{y(k-\ell)\epsilon_r(k+n_r+p)\} = 0 \qquad \forall \ell > 0, p \ge 0$$

▶ Regarding the relationship $B^u \bar{\epsilon}_f = \epsilon_r$ as a-causal but BIBO, and noting that $n_r = m_u + d - 1$, we see that $\bar{\epsilon}_f(k + d - 1)$ is a function of $\epsilon_r(k + n_r)$, $\epsilon_r(k + n_r + 1)$, · · · , which implies

$$E\{y(k-\ell)\bar{\epsilon}_f(k+d-1)\} = 0 \qquad \forall \ell > 0$$

▶ Since u(k) is a function of $y(k), y(k-1), \ldots$

$$E\{u(k-\ell)\bar{\epsilon}_f(k+d-1)\}=0 \quad \forall \ell>0$$

▶ Since u(k) is a function of $y(k), y(k-1), \ldots$

$$E\{u(k-\ell)\bar{\epsilon}_f(k+d-1)\}=0 \qquad \forall \ell>0$$

▶ Since z(k) is a function of $y(k), y(k-1), \ldots$ and $u(k), u(k-1), \ldots$

$$E\{z(k-\ell)\bar{\epsilon}_f(k+d-1)\}=0 \qquad \forall \ell > 0$$

▶ Since u(k) is a function of $y(k), y(k-1), \ldots$

$$E\{u(k-\ell)\bar{\epsilon}_f(k+d-1)\}=0 \quad \forall \ell>0$$

▶ Since z(k) is a function of $y(k), y(k-1), \ldots$ and $u(k), u(k-1), \ldots$

$$E\{z(k-\ell)\bar{\epsilon}_f(k+d-1)\} = 0 \qquad \forall \ell > 0$$

▶ Choosing $\ell = 1$ yields

$$E\{z(k-d)\bar{\epsilon}_f(k)\} = 0$$

So far, we know

$$w(k) = z(k - d) + \bar{\epsilon}_f(k)$$

$$E\{z(k - d)\bar{\epsilon}_f(k)\} = 0$$

$$E\{y^2(k)\} = E\{w^2(k)\}$$

So far, we know

$$w(k) = z(k - d) + \bar{\epsilon}_f(k)$$
$$E\{z(k - d)\bar{\epsilon}_f(k)\} = 0$$
$$E\{y^2(k)\} = E\{w^2(k)\}$$

$$\Rightarrow E\{y^2(k)\} = E\{z^2(k-d)\} + E\{\bar{\epsilon}_f^2(k)\}$$

So far, we know

$$w(k) = z(k - d) + \bar{\epsilon}_f(k)$$
$$E\{z(k - d)\bar{\epsilon}_f(k)\} = 0$$
$$E\{y^2(k)\} = E\{w^2(k)\}$$

$$\Rightarrow E\{y^2(k)\} = E\{z^2(k-d)\} + E\{\bar{\epsilon}_f^2(k)\}$$

Notes:

ightharpoonup At this point, we have only assumed that u(k) stabilizes the system (so that the relevant covariances are bounded)

So far, we know

$$w(k) = z(k - d) + \bar{\epsilon}_f(k)$$
$$E\{z(k - d)\bar{\epsilon}_f(k)\} = 0$$
$$E\{y^2(k)\} = E\{w^2(k)\}$$

$$\Rightarrow E\{y^2(k)\} = E\{z^2(k-d)\} + E\{\bar{\epsilon}_f^2(k)\}$$

Notes:

- ightharpoonup At this point, we have only assumed that u(k) stabilizes the system (so that the relevant covariances are bounded)
- \blacktriangleright The value of $E\{\bar{\epsilon}_f^2(k)\}$ does not depend on the control law

So far, we know

$$w(k) = z(k - d) + \bar{\epsilon}_f(k)$$
$$E\{z(k - d)\bar{\epsilon}_f(k)\} = 0$$
$$E\{y^2(k)\} = E\{w^2(k)\}$$

$$\Rightarrow E\{y^2(k)\} = E\{z^2(k-d)\} + E\{\bar{\epsilon}_f^2(k)\}$$

Notes:

- At this point, we have only assumed that u(k) stabilizes the system (so that the relevant covariances are bounded)
- lacktriangle The value of $E\{ar{\epsilon}_f^2(k)\}$ does not depend on the control law
- ightharpoonup \Rightarrow We would like to choose u to minimize $E\{z^2\}$

So far, we know

$$w(k) = z(k - d) + \bar{\epsilon}_f(k)$$
$$E\{z(k - d)\bar{\epsilon}_f(k)\} = 0$$
$$E\{y^2(k)\} = E\{w^2(k)\}$$

$$\Rightarrow E\{y^2(k)\} = E\{z^2(k-d)\} + E\{\bar{\epsilon}_f^2(k)\}$$

Notes:

- At this point, we have only assumed that u(k) stabilizes the system (so that the relevant covariances are bounded)
- ▶ The value of $E\{\bar{\epsilon}_f^2(k)\}$ does not depend on the control law
- ightharpoonup \Rightarrow We would like to choose u to minimize $E\{z^2\}$
- ▶ If we can make $E\{z^2\}=0$, the control must be optimal

Goal: choose u so that $E\{z^2\}=0$

Goal: choose u so that $E\{z^2\}=0$

▶ If we apply the control signal $u_*(k)$ defined by

$$B^s R u_* = -S y$$

Goal: choose u so that $E\{z^2\}=0$

▶ If we apply the control signal $u_*(k)$ defined by

$$B^s R u_* = -S y$$

we have

$$Cz = B^s R u_* + Sy = 0$$

Goal: choose u so that $E\{z^2\}=0$

▶ If we apply the control signal $u_*(k)$ defined by

$$B^s R u_* = -S y$$

we have

$$Cz = B^s R u_* + Sy = 0$$

 $ightharpoonup C(q^{-1})$ is an anti-Schur polynomial $\Rightarrow z(k) \longrightarrow 0$.

Goal: choose u so that $E\{z^2\}=0$

▶ If we apply the control signal $u_*(k)$ defined by

$$B^s R u_* = -S y$$

we have

$$Cz = B^s R u_* + Sy = 0$$

- ▶ $C(q^{-1})$ is an anti-Schur polynomial $\Rightarrow z(k) \longrightarrow 0$.
- ▶ For this control signal, $E\{z^2\} = 0$, which means that $u_*(k)$ is optimal, provided that the closed-loop system is stable.

Goal: choose u so that $E\{z^2\}=0$

▶ If we apply the control signal $u_*(k)$ defined by

$$B^s R u_* = -S y$$

we have

$$Cz = B^s R u_* + Sy = 0$$

- $\blacktriangleright \ C(q^{-1}) \text{ is an anti-Schur polynomial} \Rightarrow \ z(k) \longrightarrow 0.$
- For this control signal, $E\{z^2\}=0$, which means that $u_*(k)$ is optimal, provided that the closed-loop system is stable.
- Also note that $E\{y^2\} = E\{\bar{\epsilon}_f^2\}$, provided that the closed-loop system is stable

▶ Provided that the closed-loop system is stable, we have $E\{y^2\} = E\{\bar{\epsilon}_f^2\} \text{ where } \bar{\epsilon}_f \text{ is generated by the BIBO a-causal ARMA model } B^u\bar{\epsilon}_f = R\epsilon$

- Provided that the closed-loop system is stable, we have $E\{y^2\}=E\{\bar{\epsilon}_f^2\} \text{ where } \bar{\epsilon}_f \text{ is generated by the BIBO a-causal ARMA model } B^u\bar{\epsilon}_f=R\epsilon$
- We can instead express the optimal cost in terms of a BIBO causal ARMA model as

$$E\{y^2\} = E\{\epsilon_f^2\}$$
 where ϵ_f is the output of $\bar{B}^u \epsilon_f = R \epsilon$

- ▶ Provided that the closed-loop system is stable, we have $E\{y^2\}=E\{\bar{\epsilon}_f^2\} \text{ where } \bar{\epsilon}_f \text{ is generated by the BIBO a-causal ARMA model } B^u\bar{\epsilon}_f=R\epsilon$
- We can instead express the optimal cost in terms of a BIBO causal ARMA model as

$$E\{y^2\} = E\{\epsilon_f^2\}$$
 where ϵ_f is the output of $\bar{B}^u \epsilon_f = R\epsilon$

(Remember that \bar{B}^u refers to $\bar{B}^u(q^{-1})$)

▶ To see this, note that since ϵ_f is the output of the a-causal but BIBO ARMA model $B^u \bar{\epsilon}_f = \bar{B}^u \epsilon_f$ and the operator $\left(\frac{\bar{B}^u}{B^u}\right)$ is an a-causal all-pass filter, we have that $E\{\epsilon_f^2\} = E\{\bar{\epsilon}_f^2\}$

Part 4: Closed-loop stability

From the plant dynamics and feedback law, we have

$$\begin{bmatrix} A & -q^{-d}B \\ S & B^sR \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} C\epsilon \\ 0 \end{bmatrix}$$

Part 4: Closed-loop stability

From the plant dynamics and feedback law, we have

$$\begin{bmatrix} A & -q^{-d}B \\ S & B^sR \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} C\epsilon \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} y \\ u \end{bmatrix} = \frac{1}{B^s A R + q^{-d} B S} \begin{bmatrix} B^s R & q^{-d} B \\ -S & A \end{bmatrix} \begin{bmatrix} C\epsilon \\ 0 \end{bmatrix}$$
$$= \frac{1}{B^s (A R + q^{-d} B^u S)} \begin{bmatrix} B^s R C\epsilon \\ -S C\epsilon \end{bmatrix} = \frac{1}{C \bar{B}^u B^s} \begin{bmatrix} B^s R C\epsilon \\ -S C\epsilon \end{bmatrix}$$

Part 4: Closed-loop stability

From the plant dynamics and feedback law, we have

$$\begin{bmatrix} A & -q^{-d}B \\ S & B^sR \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} C\epsilon \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} y \\ u \end{bmatrix} = \frac{1}{B^s A R + q^{-d} B S} \begin{bmatrix} B^s R & q^{-d} B \\ -S & A \end{bmatrix} \begin{bmatrix} C\epsilon \\ 0 \end{bmatrix}$$
$$= \frac{1}{B^s (A R + q^{-d} B^u S)} \begin{bmatrix} B^s R C\epsilon \\ -S C\epsilon \end{bmatrix} = \frac{1}{C \bar{B}^u B^s} \begin{bmatrix} B^s R C\epsilon \\ -S C\epsilon \end{bmatrix}$$

Since $C(q^{-1})\bar{B}^u(q^{-1})B^s(q^{-1})$ is an anti-Schur polynomial of q^{-1} , the closed-loop system is stable

