#linear_algebra

EXAMPLE 2 The set $\{\sin t, \cos t\}$ is linearly independent in C[0, 1], the space of all continuous functions on $0 \le t \le 1$, because $\sin t$ and $\cos t$ are not multiples of one another as vectors in C[0, 1]. That is, there is no scalar c such that $\cos t = c \cdot \sin t$ for all t in [0, 1]. (Look at the graphs of $\sin t$ and $\cos t$.) However, $\{\sin t \cos t, \sin 2t\}$ is linearly dependent because of the identity: $\sin 2t = 2 \sin t \cos t$, for all t.

DEFINITION

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a **basis** for H if

- (i) \mathcal{B} is a linearly independent set, and
- (ii) the subspace spanned by \mathcal{B} coincides with H; that is,

$$H = \operatorname{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$$

THEOREM 5

The Spanning Set Theorem

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a set in V, and let $H = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

- a. If one of the vectors in S—say, \mathbf{v}_k —is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- b. If $H \neq \{0\}$, some subset of S is a basis for H.

Bases for Nul A and Col A

EXAMPLE 8 Find a basis for Col B, where

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

SOLUTION Each nonpivot column of B is a linear combination of the pivot columns. In fact, $\mathbf{b}_2 = 4\mathbf{b}_1$ and $\mathbf{b}_4 = 2\mathbf{b}_1 - \mathbf{b}_3$. By the Spanning Set Theorem, we may discard \mathbf{b}_2 and \mathbf{b}_4 , and $\{\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_5\}$ will still span Col B. Let

$$S = \{\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_5\} = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}$$

Since $\mathbf{b}_1 \neq 0$ and no vector in S is a linear combination of the vectors that precede it, S is linearly independent (Theorem 4). Thus S is a basis for Col B.

What about a matrix A that is *not* in reduced echelon form? Recall that any linear dependence relationship among the columns of A can be expressed in the form $A\mathbf{x} = \mathbf{0}$, where \mathbf{x} is a column of weights. (If some columns are not involved in a particular dependence relation, then their weights are zero.) When A is row reduced to a matrix B, the columns of B are often totally different from the columns of A. However, the equations $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ have exactly the same set of solutions. If $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ and $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$, then the vector equations

$$x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n = \mathbf{0}$$
 and $x_1\mathbf{b}_1 + \dots + x_n\mathbf{b}_n = \mathbf{0}$

also have the same set of solutions. That is, the columns of A have exactly the same linear dependence relationships as the columns of B.

EXAMPLE 9 It can be shown that the matrix

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}$$

is row equivalent to the matrix B in Example 8. Find a basis for Col A.

SOLUTION In Example 8 we saw that

$$\mathbf{b}_2 = 4\mathbf{b}_1$$
 and $\mathbf{b}_4 = 2\mathbf{b}_1 - \mathbf{b}_3$

so we can expect that

$$a_2 = 4a_1$$
 and $a_4 = 2a_1 - a_3$

Check that this is indeed the case! Thus we may discard \mathbf{a}_2 and \mathbf{a}_4 when selecting a minimal spanning set for Col A. In fact, $\{\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_5\}$ must be linearly independent because any linear dependence relationship among \mathbf{a}_1 , \mathbf{a}_3 , \mathbf{a}_5 would imply a linear dependence relationship among \mathbf{b}_1 , \mathbf{b}_3 , \mathbf{b}_5 . But we know that $\{\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_5\}$ is a linearly independent set. Thus $\{\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_5\}$ is a basis for Col A. The columns we have used for this basis are the pivot columns of A.

Theorem6:

The pivot columns of a matrix A form a basis for Col A.

Warning: The pivot columns of a matrix A are evident when A has been reduced only to *echelon* form. But, be careful to use the *pivot columns of A itself* for the basis of Col A. Row operations can change the column space of a matrix. The columns of an echelon form B of A are often not in the column space of A. For instance, the columns of matrix B in Example 8 all have zeros in their last entries, so they cannot span the column space of matrix A in Example 9.

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} \right\}$$
 Linearly independent but does not span \mathbb{R}^3 A basis for \mathbb{R}^3 Spans \mathbb{R}^3 but is linearly dependent