ILLINOIS TECH

College of Computing

Introduction to Software Security

Yue Duan

- Instructor:
 - Yue Duan, Assistant Professor who just joined this fall
 - https://yueduan.github.io/
 - yduan12@iit.edu
 - PhD in Computer Science from UC Riverside (2019)
 - Postdoctoral training at Cornell University and University of Utah
 - Specialized in Computer Security, software engineering, AI security and blockchain
- TA:
 - Sajad Meisami, second-year PhD student
 - smeisami@hawk.iit.edu
- Course webpage:
 - https://yueduan.github.io/cs527.html

Course overview

- Binary analysis: code search, malware analysis, vulnerability detection, etc.
- Mobile security: Android app analysis, Android framework analysis
- Program testing: most effective way to find bugs
- o IoT security: firmware analysis
- Blockchain security: smart contract analysis

Textbook

- No textbook needed
- Focus on research papers from top venues in computer security

Prerequisite

- Basic knowledge about OS and compiler
- Programming skills
- No prior security knowledge required

Goal

- Learn basic concepts in software security
- Obtain hands-on experience with state-of-the-art analysis techniques
- Develop the ability for analyzing and solving real-world security problems
- Gain interest to conduct further research in this exciting field

- Course format and gradings
 - Paper presentation: 10%
 - Paper review: 10%
 - o Labs: 50%
 - Lab1: Static Analysis on Android Applications (25%)
 - Lab2: Symbolic Execution (25%)
 - Lab3 (optional): Blockchain Smart Contract Analysis (15% bonus)
 - Final exam: 30%
 - Class participation: 5% bonus

- Paper presentation
 - Each student needs to present one paper in the class
 - 10-15 min presentation
 - Hint: google the slides of the paper. You may find it but don't directly use it
 - Lead the discussion
 - 5 10 mins
 - What are the pros and cons?
 - Why the authors do research the way it is?
 - Any thought for improvement?

- Paper review
 - Each student needs to write one review for papers from the reading list
 - At least 300 words
 - Summarize the paper
 - Content: What's this paper about?
 - Motivation: Why do the authors want to conduct this research?
 - Contribution: How is the paper different from its peers?
 - Technique: How do the authors achieve their goal?
 - Evaluation: How is the work evaluated?
 - Read critically:
 - You should not assume that the authors are always correct. Instead, be suspicious
 - Any limitations?

- Labs
 - Students can
 - either form groups (no more than 2 students)
 - or work individually
 - Need to demonstrate your code to the TA and submit a report
 - with well described contributions for each team member (in case of teamwork)
 - o 3 labs
 - lab1: static analysis on Android applications (9/15 10/14)
 - use a static analyzer <u>Soot</u> to:
 - generate control-flow graph of a given Android app
 - collect Android API usage information
 - lab2: symbolic execution (10/14 11/11)
 - use <u>Angr</u> to automatically find a vulnerability in a given binary
 - lab3: smart contract analysis (optional) (11/11 12/02)

- Tentative course schedule
 - **8.23 9.15** introductions to different topics
 - 8.23 start looking for collaborator if you decide to work as a group
 - 9.15 start working on project topics
 - 9.20 10.4 binary analysis
 - 10.6 10.11 mobile security
 - 10.13 10.20 program testing
 - 10.25 10.27 blockchain security
 - 11.1 11.3 lot security
 - 11.1 11.29 paper presentation
 - 12.5 12.10 final exam

• From traditional PCs, mobile devices to IoT devices, software is literally ubiquitous in our everyday life.

- Protecting software is essential for us.
 - Huge impact
 - Malicious software is designed to cause damages
 - Normal software can and will contain vulnerabilities
 - Microsoft Applications: 10 20 defects per 1000 LOC during in-house testing
 - Industry Average: about 15 50 errors per 1000 LOC

- Heartbleed vulnerability
 - In popular OpenSSL library
 - Result in potential private keys leakage

Reference: The Heartbleed Bug, explained https://www.vox.com/2014/6/19/18076318/heartbleed

- Marriott Data Breach 2020
 - On March 31st, 2020, Marriott disclosed a security breach that impacted the data of more than
 5.2 million hotel guests who used their company's loyalty application.

- The DAO attack
 - On 16 June 2016, the attacker managed to retrieve approximately 3.6 million Ether (1 Either = 410 USD) from the DAO fund abusing this loophole.

Binary analysis

C source code (hello.c) Preprocessor Compiler Assembly Code Assembler Object code (hello.o) + libraries Linker Executable (a.out or hello)

Binaries
No source code
Maybe no debug symbol

- Binary analysis
 - Common vulnerabilities
 - Buffer overflow
 - Format string
 - Integer overflow
 - Race condition
 - Dangling pointer
 - etc
 - Malware analysis
 - Defense mechanisms

Vulnerabilities discovered per year (CERT)

- Mobile Security
 - Is your phone secure?
 - Mobile system analysis
 - Are the apps on your phone secure?
 - Mobile app analysis
 - o If no, how to fix?
 - System and app patching

- Program testing
 - Part of binary analysis
 - Dynamic approaches to detect vulnerabilities
 - Fuzzing, symbolic execution, hybrid approaches

- IoT Security
 - smart watch, smart TV, smart router, self-driving car, etc
 - Are they secure?
 - o How are they different from traditional binary and mobile?

- Blockchain security
 - Smart contracts
 - piece of software running on blockchain
 - Attacks and vulnerabilities
 - Anonymity

Question?