Galois Theory: GAL #10

Due on May 6, 2022 at 11:59pm

Prof Matyas Domokos Section 12 & 15

Xianzhi

2023

HW10

Exercise 12.4.12

Exercise 12.4.13

Exercise 15.1.2

Problem 1

Exercise 12.4.12 Prove that $X^4 - 10X^2 + 1$ is irreducible over \mathbb{Q} , but it is reducible in $(\mathbb{Z}/p\mathbb{Z})[X]$ for any prime p.

Soln:

Proof. We claim the minimum polynomial is $M_{\mathbb{Q}}(\sqrt{2}+\sqrt{3})=X^4-10X^2+1$. Observe that

$$(\sqrt{2} + \sqrt{3})^4 - 10(\sqrt{2} + \sqrt{3})^2 + 1 \tag{1}$$

$$= (5 + 2\sqrt{6})^2 - 10(5 + 2\sqrt{6}) + 1 \tag{2}$$

$$=0 (3)$$

Thus, $(\sqrt{2} + \sqrt{3})$ is a root of $X^4 - 10X^2 + 1$. We know $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a degree 4 extension over \mathbb{Q} , so $X^4 - 10X^2 + 1$ is the minimal polynomial over \mathbb{Q} , hence irreducible.

Problem 2

Exercise 12.4.13 Soln:

Problem 3

Exercise 15.1.2 Soln: