CIFAR-10

Dohyun Kim
dhkim1028@korea.ac.kr
Data Intelligence Lab, Korea University
2020.04.20.

Class Lab – 기초 과제 일정

- 1. XOR (~4/05)
- 2. MNIST (~4/19)
- 3. CIFAR-10 (~5/03)

 The database contains 60,000 training images, 10,000 validation images, and 10,000 testing images with 10 classes.

- Shape of each data: [28, 28]

- Range : 0.0 to 1.0

Mini-Batch

- Batch gradient descent (batch size = n)
- Mini-batch gradient Descent (1 < batch size < n)</p>
- Stochastic gradient descent (batch size = 1)

Weight Initialization

(1) Xavier Normal Initialization

$$W \sim N(0, Var(W))$$

$$Var(W) = \sqrt{rac{2}{n_{in} + n_{out}}}$$

(2) He Normal Initialization

$$W \sim N(0, Var(W))$$

$$Var(W) = \sqrt{rac{2}{n_{in}}}$$

Activation Function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Leaky ReLU $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Early Stopping

Parameter Norm Penalties

Weight decay:
$$E_t = \frac{1}{N_t} \sum_{n \in D_t} E_n + \frac{\Lambda}{2} \frac{||w||^2}{\text{L2-norm}}$$

$$w^{t+1} = w^t - \epsilon (\frac{1}{N_t} \sum \nabla E_n + \lambda w^t)$$
 Weight restriction:
$$||w||^2 < c$$

Learning Rate Decay

We should choose proper learning rate to find global optimum.

Choosing Proper Learning Rate

We should choose proper learning rate to find global optimum.

Learning Rate Scheduling (Learning Rate Decay)

Learning Rate Scheduling (Learning Rate Decay)

We use step decay method in training ResNet32.

Assignment #3 : CIFAR-10

Assignment #3: CIFAR-10

Introduction

- CIFAR-10 : Canadian Institute For Advanced Research
- This is a collection of images that are commonly used to train machine learning and computer vision algorithms.
- The database is also widely used for training and testing in the field of machine learning.
- The database contains 50,000 32*32 training images, 10,000 validation images, and 10,000 testing images with 10 classes.

Assignment #3: CIFAR-10

- Shape of each data: [3, 32, 32]

- Range : 0 to 255

- You can see the image of each data. (available in the assignment code)

Standardization

- Standardize the input data.

$$\mu = rac{1}{m} \sum_{i=1}^{m} x^{(i)}$$
 $x := x - \mu$
 $\sigma^2 = rac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)^2$

Unstandardized

Standardized

- We use standardization to apply gradient descent algorithm easily.

Standardization

$$\mu = rac{1}{m} \sum_{i=1}^m x^{(i)}$$
 $x := x - \mu$
 $\sigma^2 = rac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu)^2$

Data Augmentation

1) Flip augmentation

Data Augmentation

2) Crop augmentation

Convolutional Neural Network

[1. LeNet-5¹]

[6, 14, 14] [16, 10, 10]

[16, 10, 10]

- Deeper network does not gives higher accuracy, Due to Gradient Vanishing and degradation.

[Residual Learning]

[Shortcut Connection with different shape]

[Shortcut Connection with different shape]

[Downsampling method : zero padding and pooling]

Code review

[Objective]

Your model should classifiy of the images into 10 classes.

[Classes]

[Code structure]

- CIFAR10_configuration.py
- CIFAR10_evaluation.py
- CIFAR10_train.py
- LeNet5_model.py
- MLP_model.py
- ResNet_model.py

[CIFAR10_train.py]

[MLP_model.py]

```
import torch.nn as nn
class MLP model(nn.Module):
       super().__init__()
                              TODO : MLP 모델 생성 (구조는 실험해 보면서 결과가 좋은 것으로 사용할 것)
                                                  END OF YOUR CODE
   def forward(self, x):
                               TODO : forward path 수행, 결과를 x에 저장
                                                  END OF YOUR CODE
       return x
```

[LeNet5_model.py]

```
mport torch.nn as nn
:lass LeNet5_model(nn.Module):
      super(). init ()
                               TODO : LeNet5 모델 생성
  def forward(self, x):
                               TODO : forward path 수행, 결과를 x에 저장
                                                    END OF YOUR CODE
      return x
```

[ResNet32_model.py]

You should find correct number or variable for X1~X10.

```
def forward(self, x):
    x = self.conv1(x)
    x = self.bn1(x)
    x = self.relu(x)
    x = self.layers_2n(x)
    x = self.layers_4n(x)
    x = self.layers_6n(x)
    x = self.pool(x)
    x = x.view(x.size(0), -1)
    x = self.fc_out(x)
    return x
```

```
lass ResNet(nn.Module):
  def __init__(self, num_layers, block, num_classes=10):
      super().__init__()
      self.num_layers = num_layers
      self.bn1 = nn.BatchNorm2d(16)
      self.relu = nn.ReLU(inplace=True)
      self.layers_2n = self.get_layers(block, 16, 16, stride=1)
      self.layers_4n = self.get_layers(block, 16, 32, stride=2)
      self.layers_6n = self.get_layers(block, 32, 64, stride=2)
      self.pool = nn.AvgPool2d(8, stride=1)
      self.fc out = nn.Linear(64, num classes)
      for m in self.modules():
          if isinstance(m, nn.Conv2d):
             nn.init.kaiming normal (m.weight, mode='fan out', nonlinearity='relu')
          if isinstance(m, nn.BatchNorm2d):
             nn.init.constant (m.weight, 1)
             nn.init.constant (m.bias, 0)
  def get_layers(self, block, in_channels, out_channels, stride):
      if stride == 2:
          down sample = True
          down sample = False
      layers_list = nn.ModuleList([block(in_channels, out_channels, stride, down_sample)])
      for _ in range(self.num_layers - 1):
          layers_list.append(block(out_channels, out_channels))
      return nn.Sequential(*layers list)
```

[ResNet32_model.py]

You should find correct number or variable for X1~X10.

```
class IdentityPadding(nn.Module):
    def __init__(self, in_channels, out_channels, stride):
        super().__init__()
        self.pooling = nn.MaxPool2d(kernel_size=1, stride=stride)
        self.add_channels = out_channels - in_channels

def forward(self, x):
    x = F.pad(x, [0, 0, 0, 0, 0, self.add_channels])
    x = self.pooling(x)
    return x
```

```
class ResidualBlock(nn.Module):
   def __init__(self, in_channels, out_channels, stride=1, down sample=False):
       super().__init__()
       self.conv1 = nn.Conv2d(in channels, out channels
                                ernel size=X1, stride=X2
                                   ding=X3, bias=False)
       self.bn1 = nn.BatchNorm2d(out channels)
       self.relu = nn.ReLU(inplace=True)
       self.conv2 = nn.Conv2d(out_channels, out_channels
                                     g=X6, bias=False)
       self.bn2 = nn.BatchNorm2d(out channels)
       self.stride = stride
       if down_sample:
           self.down_sample = IdentityPadding(in_channels, out_channels, stride)
           self.down_sample = None
   def forward(self, x):
       shortcut = x
       x = self.conv1(x)
       x = self.bn1(x)
       x = self.relu(x)
       x = self.conv2(x)
       x = self.bn2(x)
       if self.down_sample is not None:
           shortcut = self.down_sample(shortcut)
       x += shortcut
       x = self.relu(x)
       return x
```

	Model	GPU(O/X)	Batch_size	Activation function	Weight initialization	Optimizer	Learning rate	Momentum	Weight decay	LR decay	training time (m)	Early stopping epoch	Accuracy
Setting #1	MLP				_						_		
Setting #2	Lenet5												
Setting #3	ResNet32		128	ReLU	He_normal	SGD	0.1	0.9	0	0			
	Validat	tion dataset a	ccuracy plot										
	Setting	g #1		Se	etting #2			Setting #3					
결과 정리]													
결과 정리]													

Fill in these cells.

							aluatior					↓	
	Model	GPU(O/X)	Batch_size	Activation function	Weight initialization	Optimizer	Learning rate	Momentum	Weight decay	LR decay	training time (m)	Early stopping epoch	Accurac
Setting #1	MLP												
Setting #2	Lenet5		128	ReLU	He manual	SGD	0.1	0.9					
etting #3	ResNet32		128	ReLU	He_normal	SGD	0.1	0.9	0	0			
	Validat	tion dataset a	ccuracy plot										
	Setting	g #1		Se	etting #2			Setting #3					
과 정리]													
과 정리]													
과 정리]													

Plot an accuracy plot of the validation dataset for each setting.

	Model	GPU(O/X)	Batch size	Activation function	Weight initialization	Optimizer	Learning rate	Momentum	Weight decay	LR decay	training time (m)	Early stopping epoch	Accuracy
Setting #1	MLP		_				3			,			
Setting #2	Lenet5												
Setting #3	ResNet32		128	ReLU	He_normal	SGD	0.1	0.9	0	0			
	Validat	tion dataset a	ccuracy plot										
	Setting	g #1		Se	etting #2			Setting #3			↓		
		5 —		-									
N. 저희													
과 정리]													
과 정리]													
과 정리]													

	CIFAR-10 Evaluation Report												
	Model	GPU(O/X)	Batch_size	Activation function	Weight initialization	Optimizer	Learning rate	Momentum	Weight decay	LR decay	training time (m)	Early stopping epoch	Accuracy
Setting #1	MLP												
Setting #2	Lenet5												
Setting #3	ResNet32		128	ReLU	He_normal	SGD	0.1	0.9	0	0			
	Valida	tion dataset a	ccuracy plot	i									

Setting #1 Setting #2 Setting #3

Summarize the report of each experimental setting.

[결과 정리]

Assignment #3 : CIFAR-10

Objective

Your model should classifiy of the images into 10 classes.

Requirements

1. Implement multi-layer perceptron with Pytorch or Tensorflow.

(Basic Pytorch code is provided)

(Find the best hyperparameters condition)

2. Implement LeNet5 model.

(Find the best hyperparameters condition)

- 3. Find the correct X1~X10 values in ResNet32 model and complete the code.
- 4. Implement with 3 settings stated in the evaluation report, and report the result of each settings.
- 5. You should attach the plot of the validation dataset accuracy plot. (implemented in pytorch code)
- 6. You should report the experimental results.

(all kinds of additional experiments are recommended)

[Validation dataset accuracy plot]

• Evaluation Criteria

Simplicity	How concisely did you write the code?
Performance	How well did the results of the code perform?
Brevity and Clarity	How concisely and clearly did you explain the results?

Assignment #3 : CIFAR-10

- Due to : ~ 5.3(Sun)
- Submission: Online submission on blackboard
- Your submission should contain
 - 1) The whole code of your implementation
 - 2) The evaluation report
- You must implement the components yourself!
- File name : StudentID_Name.zip

Q&A

조교 김도현: dhkim1028@korea.ac.kr