B.E. Mechanical Engineering - Third Year - Second Semester Examination - 2018

Subject: MACHINE DESIGN III

Time: Three hours

Full Marks: 100

Different parts of the same question should be answered together.

COL	Q. 1	Answer any two from (a) to (e) in this block					
[20]	30.50	(a) State the reasons for adopting involute curve for gear tooth profile. What is full depth involute					
		gear tooth system? Explain hunting tooth. Explain pitting and scoring of gears.					
		(b) State and explain the factors that are considered for deciding the type of gear.					
		(c) A pair of worm gears is designated as 2/54/10/5. Find the centre distance, speed reduction,					
.		dimensions of the worm and wheel.					
CO2	Q. 2	Answer any two from (a) to (c) in this block					
[20]		(a) A pair of spur gears with 20° full-depth involute teeth is to be designed based on Lewis					
		equation. The velocity factor is to be used to account for dynamic load. The pinion shaft is					
		connected to a 8 kW, 1440 rpm electric motor. The starting torque of the motor can be taken as					
		120% of the rated torque. The speed reduction is 4:1. The material for the pinion and the gear is					
		plain carbon steel 40C8 (S _{ut} =600 N/mm ²). The factor of safety can be taken as 1.4. Design the					
		gears. Lewis form factor Y (z: no of teeth) for 200 full-depth involute system can be taken from					
		the following table.					

Z	Y	z	Y	z	Y
15	0,289	27	0.348	55	0.415
16	0.295	28	0.352	60	9.421
17	0.302	29	0.355	65	0.425
18	0.308	30	0.358	70	0.429
19	0.314	32	0.364	75	0.433
20	0.320	3.3	0.367	80	0.436
21	0.326	35	0.373	90	0.442
32	0.330	37	0.380	100	0.446
23	0.333	39	0.386	150	0.458
24	0,337	40	0.389	200	0.463
25	0.340	45	0.399	300	0.471
26	0.344	50	0.408	Rack	0.484

- (b) A pair of bevel gears, with 20^{0} pressure angle, consists of a 20 teeth pinion meshing with a 30 teeth gear. The module is 4 mm, while the face width is 20 mm. The material for the pinion and gear is steel 50C4 (S_{ut} =750 N/mm²). The gear teeth are lapped and ground (class-3) for which maximum expected error between two meshing teeth is 0.0125 mm and the surface hardness is 400 BHN. The pinion rotates at 600 rpm and receives 3 kW power from the electric motor. The starting torque of the motor is 120% of the rated torque. Determine the factor of safety against pitting failure.
- (c) A pair of parallel helical gears consists of a 20 teeth pinion meshing with a 120 teeth gear. The pinion rotates at 720 rpm. The normal pressure angle is 200, the helix angle is 250. The face width is 40 mm and the normal module is 4 mm. The pinion as well as gear is made of steel 40C8 (S_{ut}=600 N/mm²) and heat treated to a surface hardness of 310 BHN. The service factor and the factor of safety are 1.5 and 2 respectively. Assume that the velocity factor accounts for the dynamic load. Calculate the power transmitting capacity of gears.

Page 2	of 4					W - W - Z - W - D - D - D - D - D - D - D - D - D	Ex	/ME/T/:	324/2018	3
CO3	Q. 3	Answer any two from	n (a) to (c) in this b	lock					10:	x 2
[20]		(a) A steel disk (E = 1	$210 \text{ kN/mm}^2, v = 0.$	28) of unifo						of
		75 mm and 400 mm is								
1		(b) Prove that for uni								
		angular velocity ω, it								σ),
		where $C = a$ constant,								
		(c) A steel disk ($\sigma_y =$								
		and outer radii of 100 allowance of 1 part in								
		stresses in the disk du								
		what would be the ind				2.00	3		· · · · · ·	
CO4	Q. 4	Answer any two from				3				x 2
[20]		(a) State the advantage								
		drive. Explain the fail		ide the powe	r rating	g of roller	chain.	State the	lubricat	ion
		methods for chain dri		ad asserting	acmonit	of mollin	a alama	n+ haaniv		
		(b) Derive Stribeck's (c) Explain the basic p	equation for static ic	ection of a b	capacii earing :	y or rollin from the r	ng eleme	nt bearn urer's c	igs. atalogue	
CO5	Q. 5	Answer any one from			-ca mg	mont the r	Harraract	arer 5 ce		20
[20]	2.3	(a) A single-row deep			a 30 s	seconds w	ork cycl	e consis		20000
		parts as given in Table								
		kN respectively. Calc	ulate the life of the b	earing in ho	urs. Th	e load fac	tors are	given in	Table B	
						/			1	
					Fal	Fr≤e	FalF	m7 e		
				Falco	\overline{X}	Y	X	Y	e	
		ε		0.025	1	0	0.56	2.0	0.22	
				0.040	1	0	0.56	1.8	0.24	
			Part I Part II	2			3-2-0x30xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	803,592,603		
		l B	10 20	0.070	1	0	0.56	1.6	0.27	
		Duration (s)	10 20	0.130	1	0	0.56	1.4	0.31	
		Radial load (kN)	45 15							
		Axial load (kN)	12.5 6.25	0.250	1	0	0.56	1.2	0.37	
		Speed (r.p.nr.)	720 1440	0.500	1	0	0.56	1.0	0.44	
		Tat	ble A			Tal	ole B			
		(b) It is required to	decien a chain driv	io to connec	ot o 12	LW 14	20 50000	alectric	motor t	
		centrifugal pump run								100
	ı	and 4 mm reduction	5 (2) (1 MINO 프라이어스 10 (1 MINO MINO MINO MINO MINO MINO MINO MINO							
		furnished in Tables 1				800 mm/s t			1970 DEC 1966	- 22
		dimensions, determin	e the pitch circle di	ameters of c	lriving	and drive	n sprocl			
la		chain links and the co	rrect centre distance	between the	axes o	f sprocke	is.			
50										
1	1	- W								- 1

Table 1	Dimensions and breaking loads of roller chains				
ISO chain number	Pitch þ (mm)	Roller diameter ay (mm)	Width b , (mm)	Transverse pitch bt (mm)	Breaking load for single strand chain (kN)
06 B	9.525	6.35	5.72	10.24	10.7
08 B	12.70	8.51	7.75	13.92	18.2
10 B	15.875	10.16	9.65	16.59	22.7
12 B	19.05	12.07	11.68	19.46	29.5
16 B	25.40	15.88	17.02	31.88	65.0
20 B	31.75	19.05	19.56	36.45	98.1
24 B	38.10	25.40	25.40	48.36	108.9
28 B	44.45	27.94	30.99	59.56	131.5
32 B	50.80	29.21	30.99	58.55	172.4
40 B	63.50	39.37	38.10	72,29	272.2

Table 2 Power rating for simple roller chain

Pinion speed	Power (kW)						
(r.p.m.)	06 B	08 B	10 B	12 B	16 B		
50	0.14	0.34	0.64	1.07	2.59		
100	0.25	0.64	1.18	2.01	4.83		
200	0.47	1.18	2.19	3.75	8.94		
300	0.61	1.70	3.15	5.43	13.06		
500	1.09	2.72	5.01	8.53	20.57		
700	1.48	3.66	6.71	11.63	27.73		
1000	2.03	5.09	8.97	15.65	34.89		
1400	2.73	6.81	11.67	18.15	38.47		
1800	3.44	8.10	13.03	19.85	. Annua		
2000	3.80	8.67	13.49	20.57			

Table 3	Service factor (Ks)				
	4	Type of driven load			
	Type of input power	Smooth	Moderate shock	Heavy shock	
(i) I.C. l	Engine with hydraulic drive	1.0	1.2	1.4	
(ii) Elect	tric motor	1.0	1.3	1.5	
(iii) LC.	Engine with mechanical drive	1.2	1.4	1.7	

Table 4. Tooth correction factor	(/2)	factor (A	orrection factor	1	Tooth	\$.	able	. 1
----------------------------------	------	-----------	------------------	---	-------	-----	------	-----

Number of teeth on the driving sprocket	K ₂
15	0.85
16	0.92
17	1.00
18	1.05
19	1.11
20	1.18
21	1.26
22	1.29
23	1.35
24	1.41
25	1.46
30	1.73