Cálculo Infinitesimal 3 - 2020

Prof. Flavio Dickstein.

Questão 1. Seja $\vec{f}(x,y) = (\cos x \sin y, \sin x \cos y)$.

- (i) Mostre que rot $\vec{f}=0$. (Há um teorema que garante que, neste caso, \vec{f} é um campo gradiente.)
- (ii) Calcule o potencial G de \vec{f} resolvendo as equações

$$\partial_x G(x,y) = \cos x \operatorname{sen} y, \quad \partial_y G(x,y) = \operatorname{sen} x \cos y.$$

(iii) Alternativamente, determine G calculando

$$G(x,y) = \int_{\gamma} \vec{f} \cdot d\vec{l},$$

onde γ é uma curva ligando (0,0) a (x,y). (Escolha a curva mais simples possível.)

(iv) No item anterior, o que acontece se escolhermos outro ponto no lugar de (0,0)?

Questão 2.

- (i) Mostre que $\vec{f}(x,y) = (ye^{xy}, xe^{xy})$ é um campo conservativo e calcule o seu potencial.
- (ii) Considere $\vec{g}(x,y)=(x+ye^{xy},xe^{xy})$. Seja T o triângulo de vértices $A=(0,0),\,B=(1,0),\,C=(0,1)$ percorrido no sentido trigonométrico. Calcule $\int_{\gamma} \vec{g} \cdot d\vec{l}$, o trabalho realizado por \vec{g} . (Simplifique as contas usando o item anterior.)

Questão 3. Considere dois caminhos indo de (-1,0) a (1,0): γ_1 é um segmento de reta e γ_2 é o arco de meia circunferência na parte superior do plano. Mostre que

$$\int_{\gamma_1} \vec{f} \cdot \vec{dl} \neq \int_{\gamma_2} \vec{f} \cdot \vec{dl},$$

onde $\vec{f}(x, y) = (y^2, x^2)$.

Questão 4. Um campo vetorial \vec{f} no plano é dito radial se ele é da forma $\vec{f}(x,y) = g(r)\vec{r}$, onde

$$r = \sqrt{x^2 + y^2}, \quad \vec{r} = \frac{1}{r}(x, y).$$

 $(\vec{r}$ é o vetor unitário que aponta na direção radial.) Suponha que a função **escalar** g(t) tenha uma primitiva G(t). Mostre que a função G(x,y)=G(r) é um potencial de \vec{f} . A conclusão é que **todo campo radial é conservativo**.

Questão 5. Seja

$$\vec{f}(x,y) = \frac{1}{r^2}(-y,x)$$
, onde $r = \sqrt{x^2 + y^2}$.

e seja γ a circunferência unitária, percorrida na sentido trigonométrico.

- (i) Repita a conta feita em sala, mostrando que rot $\vec{f} = 0$.
- (ii) Repita a conta feita em sala, mostrando que $\int_{\gamma} \vec{f} \cdot \vec{dl} = 2\pi.$
- (iii) Mostre que $G_1(x,y) = \arctan \frac{y}{x}$ é um campo potencial de \vec{f} .
- (iv) Mostre que $G_2(x,y) = -\arctan\frac{x}{y}$ também é um campo potencial de \vec{f} .
- (v) Mostre que $G_3(x,y) = \arcsin \frac{y}{r}$ também é um campo potencial de \vec{f} .
- (vi) Mostre que G_1 , G_2 e G_3 diferem de constantes.

Observe que G_3 está definida fora da origem, isto é, se $r \neq 0$. Portanto, G_3 está definida sobre a circunferência unitária e deveríamos concluir que

$$\int_{\gamma} \vec{f} \cdot \vec{dl} = G_3(B) - G_3(A) = 0,$$

pois A = B neste caso. Mas isto contraria o item (i).

Onde está o problema? A resposta é que as afirmativas acima não estão totalmente corretas. Em que regiões do plano G_1 , G_2 e G_3 são potenciais de \vec{f} ?