6. 5 正定矩阵

一、惯性定理

二次型的标准形显然不是唯一的,只是标准形中所含项数是确定的(即是二次形的秩),不仅如此,在限定变换为实变换时,标准形中正系数的个数是不变的(从而负系数的个数也不变),也就是有:

定理 6.9 设有二次型 $f(x) = x^T A x$, 它的秩为 r, 有两个可逆线性变换

使

$$f = k_1 y_1^2 + k_2 y_2^2 + \dots + k_r y_r^2 \quad (k_{1-r} \neq 0)$$

及

$$f = \lambda_1 z_1^2 + \lambda_2 z_2^2 + \dots + \lambda_r z_r^2 \ (\ \lambda_{1-r} \neq 0\)$$

则 k_1 , k_2 , \dots , k_r 中正数的个数与 λ_1 , λ_2 , \dots , λ_r 中正数的个数相等.

定理 6. 9 称为惯性定理,证明请学生参考有关文献.

二次型的标准形中正系数的个数称为二次型的**正惯性指数**,负系数的个数称为**负惯性指数**.若二次型f的正惯性指数为p,秩为r,则f的规范形便可确定为

$$f = y_1^2 + y_2^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$
.

课堂提问:实二次型 $f(x) = x^T A x$ 的正、负惯性指数与二次型的矩阵 A 的正、负特征值的个数有什么关系?

例 5. 1 二次型 $f(x_1,x_2,x_3) = x_1^2 + 3x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$,则 f 的正惯性指数为

解
$$f$$
 的矩阵 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$,由
$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -1 & -1 \\ -1 & \lambda - 3 & -1 \\ -1 & -1 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 1)(\lambda - 4),$$

知 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 4, \lambda_3 = 0$. 故 f 的正惯性指数为 2. 故填 2.

例 5. 2 设二次型 $f(x_1, x_2, x_3) = a(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 的正、负惯性指数分别为 1, 2, 则().

(A) a > 1; (B) a < -2; (C) -2 < a < 1; (D) $a = 1 \not\equiv a = -2$.

解
$$f$$
 的矩阵为 $A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$,由

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - a & -1 & -1 \\ -1 & \lambda - a & -1 \\ -1 & -1 & \lambda - a \end{vmatrix} = (\lambda - a - 2)(\lambda - a + 1)^2,$$

知 A 的特征值为 $\lambda_1 = \lambda_2 = a-1$, $\lambda_3 = a+2$.而 f 的正、负惯性指数分别为 1,2,故 a-1<0, a+2>0,即 -2<a<1. 故选(C).

科学技术上用得较多的二次型是正惯性指数为n或负惯性指数为n的n元二次型.

二、正定矩阵(正定二次型)

定义 6. 6 n 阶实对称阵 A 被称为是正定、负定、半正定、半负定或不定,当且仅当它相应的二次型 x^TAx 是正定、负定、半正定、半负定或不定。实对称阵 A 正定、负定、半正定、半负定分别简记为 A>0, A<0, $A\geq0$, $A\leq0$.

课堂提问: 正定与负定, 半正定与半负定有什么关系?

对于具有标准形式的二次型 $f = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$,则有:

- (1) 若 d_1 , d_2 ,…, d_n 全部为正数,则f正定;
- (2) 若 d_1, d_2, \dots, d_n 全部为负值,则f负定;
- (3) 若 d_1 , d_2 , \cdots , d_n 全部大于等于零,且至少有一个等于零,则 f 半正定;

- (4) 若 d_1 , d_2 ,…, d_n 全部小于等于零,且至少有一个等于零,则f半负定;
- (5) 若 d_1, d_2, \dots, d_n 既有取负值的,又有取正值的,则f是不定的.
- **例 5.** 3 设 A 为 $m \times n$ 实矩阵,E 为 n 阶单位矩阵, $B = \lambda E + A^T A$,试证: 当 $\lambda > 0$ 时,B 为 正定矩阵.

证明 因为 $B^T = (\lambda E + A^T A)^T = \lambda E + A^T A = B$, 所以当 λ 为实数时, $B \in n$ 阶实对称矩阵.

因为 $\forall x \neq 0$,恒有 $x^T x > 0$, $(Ax)^T (Ax) \geq 0$,所以 $\forall x \neq 0$,当 $\lambda > 0$ 时,

$$x^{T}Bx = x^{T}(\lambda E + A^{T}A)x = \lambda x^{T}x + x^{T}A^{T}Ax = \lambda x^{T}x + (Ax)^{T}(Ax) > 0$$
.

故当 $\lambda > 0$ 时,B为正定矩阵.

定理 6. 10 n 元实二次型 $f(x) = x^T A x$ 是正定二次型的充要条件是它的标准形中n 个系数全为正,即它的正惯性指数 p = n.

证 设可逆线性变换 x = Cv, 使

$$f = k_1 y_1^2 + k_2 y_2^2 + \dots + k_n y_n^2$$
.

先证充分性. $\forall x \neq 0$,必有 $y = C^{-1}x \neq 0$.若 y = 0,则 x = Cy = 0.若 k_1 , k_2 ,…, k_n 全部为 正数,则

$$f(x) = k_1 y_1^2 + k_2 y_2^2 + \dots + k_n y_n^2 > 0$$
,

即 f(x) 是正定二次型.

再证必要性. 取 $y_0 = (1, 0, \dots, 0)^T$,则 $x_0 = Cy_0 \neq 0$. 若 $x_0 = 0$,则 $y_0 = C^{-1}x_0 = 0$,这与 $y_0 = (1, 0, \dots, 0)^T$ 矛盾. 若 $f(x) = x^T A x$ 是正定二次型,则

$$f(x_0) = k_1 \times 1^2 + k_2 \times 0^2 + \dots + k_n \times 0^2 = k_1 > 0$$
.

同理可证 $k_2 > 0$, $k_3 > 0$, \dots , $k_n > 0$.

推论 n 元实二次型 $f(x) = x^T A x$ 是正定二次型的充要条件是二次型的矩阵 A 的 n 个特征值全为正数.

类似地可证明下述结论:

- (1) n 元实二次型 $f(x) = x^T A x$ 负定 \Leftrightarrow 负惯性指数 = n 或 A 的 n 个特征值全为负数.
- (2) n 元实二次型 $f(x) = x^T A x$ 半正定 \Leftrightarrow 正惯性指数 p = R(A) < n 或 A 的 n 个特征值全大于

等于零,且至少有一个为零.

- (3) n 元实二次型 $f(x) = x^T A x$ 半负定 \Leftrightarrow 负惯性指数 q = R(A) < n 或 A 的 n 个特征值全小于等于零,且至少有一个为零。
 - (4) n 元实二次型 $f(x) = x^T A x$ 不定 $\Leftrightarrow p, q \neq 0$ 或 A 的 n 个特征值中既有正又有负.
 - **例 5. 4** 设A为n阶正定矩阵,E为n阶单位矩阵.证明|A+E|>1.

证明 设A的特征值为 λ_1 , λ_2 ,…, λ_n ,则A+E的特征值为 λ_1+1 , λ_2+1 ,…, λ_n+1 .因为A为正定矩阵,所以A的所有特征值全大于零: $\lambda_i>0$ ($i=1,2,\cdots,n$),因此A+E的所有特征值都大

于1:
$$\lambda_i + 1 > 1 (i = 1, 2, \dots, n)$$
,所以 $|A + E| = \prod_{i=1}^n (\lambda_i + 1) > 1$.

定义 6. 7 设
$$n$$
 阶矩阵 $A=(a_{ij})_{n\times n}$,则 $D_k=\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$ 称为 A 的 k 阶**顺序主子式**.

定理 6. 11 实对称阵 A 为正定矩阵的充分必要条件是 A 的各阶顺序主子式都为正,即

$$a_{11} > 0$$
, $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0$, ..., $\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} > 0$.

实对称阵 A 为负定矩阵的充分必要条件是奇数阶顺序主子式全为负,而偶数阶顺序主子式全为正,即

$$(-1)^r \begin{vmatrix} a_{11} & \cdots & a_{1r} \\ \cdots & \cdots & \cdots \\ a_{r1} & \cdots & a_{rr} \end{vmatrix} > 0 \ (r = 1, 2, \cdots, n) \ .$$

这个定理称为霍尔维茨定理.

证明参见相关文献.

例 5. 5 判别二次型 $f(x_1, x_2, x_3) = 5x_1^2 + x_2^2 + 6x_3^2 + 4x_1x_2 - 8x_1x_3 - 4x_2x_3$ 是否正定.

$$\mathbf{H}$$
 f 的矩阵 $A = \begin{pmatrix} 5 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 6 \end{pmatrix}$ 的各阶顺序主子式:

$$D_1 = 5 > 0$$
, $D_2 = \begin{vmatrix} 5 & 2 \\ 2 & 1 \end{vmatrix} = 1 > 0$, $D_3 = \begin{vmatrix} 5 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 6 \end{vmatrix} = 2 > 0$,

所以二次型 f 是正定的.

例 5. 6 设 $f(x_1, x_2, x_3) = 2x_1^2 + \frac{1}{2}x_2^2 + a(2x_3^2 - x_2x_3)$,问 a 为何值时 f 正定?

解
$$f$$
 正定 \Leftrightarrow 二次型 f 的矩阵 $A=\begin{pmatrix}2&0&0\\0&1/2&-a/2\\0&-a/2&2a\end{pmatrix}$ 的各阶顺序主子式满足:

$$D_1 = 2 > 0$$
, $D_2 = \begin{vmatrix} 2 & 0 \\ 0 & 1/2 \end{vmatrix} = 1 > 0$, $D_3 = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 1/2 & -a/2 \\ 0 & -a/2 & 2a \end{vmatrix} = 2\left(a - \frac{a^2}{4}\right) > 0$,

即0 < a < 4.

总结判定实二次型或实对称阵是否正定的方法:

- (1) 定义法, 若 $\forall x \neq 0 \in \mathbb{R}^n$, 有 $f(x) = x^T A x > 0$, 则f正定(或A正定);
- (2) 用可逆线性变换化二次型 f 为标准形, 当正惯性指数 p = n 时 f 正定 (或 A 正定);
- (3) 求二次型 f 的矩阵 A 的全部特征根,当所有特征值全大于 0 时 f 正定 (或 A 正定);
- (4) 计算二次型 f 的矩阵 A 的各阶顺序主子式, 当它们全大于0 时 f 正定 (或 A 正定).