$[\]frac{\partial}{\partial t} \int \overline{\rho}^{(d)} \left\{ \left(1 + \overline{m}^{(H_2O)} \right) \left(\overline{K} + \overline{\Phi}_s \right) + c_p^{(d)} T + \sum_{\ell \in \mathcal{L}_{H_2O}} \overline{m}^{(\ell)} c_p^{(\ell)} \left(\overline{T} - T_{00} \right) + \overline{m}^{(wv)} L_{s,00} + \overline{m}^{(liq)} L_{f,00} \right\} dz$ $-\Delta \widecheck{\mathcal{I}}_{L(T)} - \Delta \widehat{\mathcal{I}}_{L(T)} = -\sum_{\ell \in \mathcal{L}_{H_2O}} \overline{F}_{net}^{(\ell)} \left[c_p^{(\ell)} \left(\widetilde{\overline{T}}_s - T_{00} \right) + \widetilde{\overline{K}}_s \right] + \overline{F}_{net}^{(wv)} L_{s,00} + \overline{F}_{net}^{(liq)} L_{f,00} + \overline{F}_{net}^{(turb,rad)}.$