Corrigé du devoir maison 12.

Exercice Un problème de mathématiques agricoles

 $\mathbf{1}^{\circ}$) Soit $p \in \mathbb{N}^*$.

$$\det(A_p) = \begin{vmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & \vdots \\ \vdots & & \ddots & & \vdots \\ 1 & \dots & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{vmatrix} = \begin{vmatrix} p-1 & 1 & 1 & \dots & 1 \\ p-1 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & & \vdots \\ p-1 & \dots & \dots & 0 & 1 \\ p-1 & 1 & \dots & 1 & 0 \end{vmatrix} \quad \text{en effectuant } C_1 \leftarrow \sum_{j=1}^p C_j$$

$$= (p-1) \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & \vdots \\ \vdots & & \ddots & & \vdots \\ 1 & \dots & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{vmatrix} \quad \text{par linéarité par rapport à } C_1$$

$$= (p-1) \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & -1 & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & \dots & -1 & 0 \\ 0 & 0 & \dots & 0 & -1 \end{vmatrix} \quad \text{en effectuant } \vdots$$

$$L_p \leftarrow L_p - L_1$$

On reconnaît le déterminant d'une matrice triangulaire supérieure donc

$$\boxed{\det(A_p) = (-1)^{p-1}(p-1)}$$

 2°) Considérons une matrice B du type indiqué.

En multipliant par X_0 , on obtient par exemple, pour la première ligne, une somme de la forme

$$\pm m_2 \pm m_3 \pm \cdots \pm m_{2n+1}$$
,

la masse m_j (pour $j \neq 1$) étant affectée du signe + si le j-ème coefficient de la ligne L_1 de B était +1, du signe - s'il valait -1.

Cela correspond à un partage des 2n poussins numérotés de 2 à 2n + 1 en deux groupes de n poussins si et seulement si il y a exactement n coefficients de L_1 valant 1 et exactement n coefficients de L_1 valant -1.

Et dans ce cas, dire que les masses totales de ces deux groupes de poussins sont égales revient à dire que la somme $\pm m_2 \pm m_3 \pm \cdots \pm m_{2n+1}$ vaut 0.

On peut faire le même raisonnement pour toutes les lignes L_i , cela revient à mettre de côté le poussin numéro i, i.e. à considérer tous les sous-ensembles de 2n poussins possibles.

Ainsi, l'hypothèse de l'énoncé correspond bien au fait que $BX_0 = 0$ pour une certaine matrice B, avec comme contrainte supplémentaire que

chaque ligne de B contient exactement n nombres 1 et n nombres -1.

$$\mathbf{3}^{\circ}$$
) Notons $Y = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$.

Pour tout $i \in \{1, ..., 2n+1\}$, le *i*ème coefficient de la matrice colonne BY est égal à la somme des coefficients de la ligne L_i de la matrice B. Grâce à la contrainte supplémentaire, on en déduit que la matrice Y de $\mathcal{M}_{2n+1}(\mathbb{Z})$ est une solution non nulle du système (S).

 $Y \neq 0$ et $B\overline{Y} = 0$ donc la matrice B n'est pas inversible.

Ainsi, $Ker(B) \neq \{0\}$, soit encore $\dim(Ker(B)) \geq 1$.

4°)
$$M \in \mathcal{M}_{2n}(\mathbb{Z})$$
 et est de la forme $M = \begin{pmatrix} 0 & \pm 1 & \pm 1 & \dots & \pm 1 \\ \pm 1 & 0 & \pm 1 & \ddots & \vdots \\ \vdots & & \ddots & & \vdots \\ \pm 1 & \dots & \dots & 0 & \pm 1 \\ \pm 1 & \pm 1 & \dots & \pm 1 & 0 \end{pmatrix}$.

1 = 1 [2] et -1 = 1 [2] donc $M = A_{2n}$ [2].

En utilisant le prérequis, on en déduit que $det(M) = det(A_{2n})$ [2].

Or, par la question 1, $det(A_{2n}) = (-1)^{2n-1}(2n-1) = 1-2n$ puisque 2n-1 est impair.

Or 1-2n est impair donc $det(A_{2n})=1$ [2]. Donc det(M)=1 [2].

Ce qui signifie que det(M) est un entier impair.

En particulier, il n'est pas nul : $det(M) \neq 0$.

Donc, la matrice M est inversible.

5°) Par le théorème du rang appliqué à $B: 2n+1=\operatorname{rg}(B)+\dim(\operatorname{Ker}(B)).$

Donc, rg(B) = 2n + 1 - dim(Ker(B)). Or $dim(Ker(B)) \ge 1$ par la question 3 donc $rg(B) \le 2n$. On note C_1, \ldots, C_{2n} les 2n premières colonnes de B.

Soit $(\lambda_1, \ldots, \lambda_{2n}) \in \mathbb{R}^{2n}$.

On suppose que : $\sum_{j=1}^{2n} \lambda_j C_j = 0.$

On note C'_1, \ldots, C'_{2n} les colonnes issues de C_1, \ldots, C_{2n} en supprimant le dernier coefficient.

Alors
$$\sum_{j=1}^{2n} \lambda_j C_j' = 0.$$

Or, C_1', \ldots, C_{2n}' sont toutes les colonnes de M. Comme M est inversible, la famille de ses colonnes est libre. Donc $\lambda_1 = \cdots = \lambda_{2n} = 0$.

Ainsi, la sous-famille (C_1, \ldots, C_{2n}) des colonnes de B est libre.

$$rg(B) = rg(C_1, \dots, C_{2n}, C_{2n+1}) \ge rg(C_1, \dots, C_{2n}).$$

Or $\operatorname{rg}(C_1,\ldots,C_{2n})=2n$ par liberté de (C_1,\ldots,C_{2n}) . Ainsi, $\operatorname{rg}(B)\geq 2n$.

Finalement, rg(B) = 2n.

 6°) Par le théorème du rang, on en déduit que $\dim(\operatorname{Ker}(B)) = 1$.

Ainsi, Ker(B) est une droite vectorielle.

Comme $Y \in \text{Ker}(B)$ et $Y \neq 0$, Y est une base de Ker(B).

Finalement, Ker(B) = Vect(Y).

Or $X_0 \in \text{Ker}(B)$ donc $\exists \lambda \in \mathbb{R}, X_0 = \lambda Y$ donc, pour tout $i \in \{1, \dots, 2n + 1\}, m_i = \lambda$.

En particulier, toutes les masses des poussins sont égales