Algorytmy optymalizacji dyskretnej Laboratorium 2

Łukasz Machnik nr 268456

Zadanie 1

Opis modelu

- 1. Dane
 - a. Koszty paliwa w poszczególnych firmach dla poszczególnych lotnisk:

	Firma 1	Firma 2	Firma 3
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

Potraktujmy to jako funkcję dwóch zmiennych: c(I, f) gdzie I = numer lotniska, f = numer firmy:

$$c(1, 1) = 10, c(1, 2) = 7, c(1, 3) = 8, c(2, 1) = 10, c(2, 2) = 11, ...$$

b. Maksymalna liczba paliwa jaką może dostarczyć dana firma [galony]:

Firma 1	Firma 2	Firma 3
275 000	550 000	660 000

c. Liczba paliwa potrzebna na każdym z lotnisk [galony]:

Lotnisko 1	Lotnisko 2	Lotnisko 3	Lotnisko 4
110 000	220 000	330 000	440 000

- 2. Zmienne decyzyjne (nieujemne liczby rzeczywiste)
 - a. L_1F_1 = ilość paliwa dostarczonego na lotnisko 1 przez firmę 1
 - b. L₁F₂ = ilość paliwa dostarczonego na lotnisko 1 przez firmę 2
 - c. L₁F₃ = ilość paliwa dostarczonego na lotnisko 1 przez firmę 3
 - d. L_2F_1 = ilość paliwa dostarczonego na lotnisko 2 przez firmę 1
 - e. L₂F₂ = ilość paliwa dostarczonego na lotnisko 2 przez firmę 2
 - f.
 - g. $L_i F_i = ilość$ paliwa dostarczonego na lotnisko *i* przez firmę *j*
- 3. Ograniczenia
 - a. Wymagana ilość paliwa na każdym z lotnisk [galony]:

i.
$$\sum_{i=1}^{3} L_1 F_i = 110\,000$$

ii.
$$\sum_{i=1}^{3} L_2 F_i = 220\ 000$$

iii.
$$\sum_{i=1}^{3} L_3 F_i = 330\ 000$$

iv.
$$\sum_{i=1}^{3} L_4 F_i = 440\ 000$$

b. Maksymalna ilość paliwa którą może dostarczyć każda firma [galony]:

i.
$$\sum_{i=1}^4 L_i F_1 \le 275\,000$$

ii.
$$\sum_{i=1}^{4} L_i F_2 \le 550\ 000$$

iii.
$$\sum_{i=1}^4 L_i F_3 \le 660\ 000$$

- 4. Funkcja celu
 - a. $\min \sum_{l=1}^{3} \sum_{f=1}^{4} L_l F_f * c(l, f)$

Wyniki

Minimalny koszt dostaw paliwa na wszystkie lotniska: 8 525 000 Optymalny rozkład zmiennych decyzyjnych:

	Firma 1	Firma 2	Firma 3
Lotnisko 1	0	110 000	0
Lotnisko 2	165 000	55 000	0
Lotnisko 3	0	0	330 000
Lotnisko 4	110 000	0	330 000
SUMA	275 000	165 000	660 000

Wszystkie firmy dostarczają jakąś część paliwa. Jak widać firmy 1 i 3 osiągnęły swój limit dostaw.

Zadanie 2

Opis modelu

- 1. Dane
 - a. Dany jest graf skierowany G=(N, A) o n=16 wierzchołkach i m=32 krawędziach:

- b. Ograniczenie górne na czas przejścia: *T=30*
- c. Dla każdej krawędzi są dane: koszt i czas przejścia c(i) oraz t(i):

```
(0, 1)
               c=1
                       t=6
(1, 2)
               c=2
                       t=5
               c=3
                       t=4
                       t=3
   5)
               c=5
                       t=2
(3, 7)
               c=6
                       t=1
(3, 4)
                       t=6
(4, 1)
                       t=5
(4, 5)
               c=3
                       t=4
(5, 6)
                       t=3
(5, 8)
(5, 9)
               c=6
                       t=1
(6, 2)
               c=1
                       t=6
(7, 4)
                       t=5
(7, 8)
(7, 10)
                       t=3
(8, 4)
               c=5
                       t=2
(8, 11)
               c=1
                       t=6
(9, 6)
               c=2
                       t=5
(9, 12)
                       t=4
(10, 11)
                       t=3
(10, 14)
               c=5
                       t=2
               c=6
                       t=1
 11, 12)
(11, 14)
               c=2
                       t=5
                       t=4
(12, 8)
               c=3
               c=4
(12, 13)
                       t=3
(12, 15)
(13, 9)
               c=6
(14, 15)
               c=1
                       t=6
(15, 13)
               c=2
                       t=5
```

- 2. Zmienne decyzyjne
 - a. X_i = zmienna binarna określająca czy wybieramy daną ścieżkę
- 3. Ograniczenia
 - a. $\sum_{i=1}^{m} X_i * t(i) \leq T$
 - b. $dla\ b(i) = \sum_{j \in A: j = (i,a)} X_j \sum_{j \in A: j = (a,i)} X_j$
 - c. $(\forall i \in \{2, 3, ..., n-1\})(b(i) = 0)$
 - d. b(1) = 1
 - e. b(n) = -1
- 4. Funkcja celu
 - a. $\min \sum_{i=1}^m X_i * c(i)$

Wyniki

Dla tych danych wybrano ścieżkę 0->1->2->5->9->12->15. Osiągając koszt = 22.

W badanym przypadku nic się nie zmieniło po usunięciu ograniczenia na całkowitoliczbowość oraz ograniczenia maksymalnego czasu.

Zadanie 3

Opis modelu

- 1. Dane
 - a. Minimalna liczba radiowozów dla każdej dzielnicy i zmiany [minR(d, z)]:

	Zmiana 1	Zmiana 2	Zmiana 3
Dzielnica 1	2	4	3
Dzielnica 2	3	6	5
Dzielnica 3	5	7	6

b. Maksymalna liczba radiowozów dla każdej dzielnicy i zmiany [maxR(d, z)]:

	Zmiana 1	Zmiana 2	Zmiana 3
Dzielnica 1	3	7	5
Dzielnica 2	5	7	10
Dzielnica 3	8	12	10

c. Minimalna łączna liczba radiowozów na każdej zmianie [z(n)]:

Zmiana 1	Zmiana 2	Zmiana 3
10	20	18

d. Minimalna łączna liczba radiowozów w każdej dzielnicy [d(n)]:

Dzielnica 1	Dzielnica 2	Dzielnica 3
10	14	13

- 2. Zmienne decyzyjne
 - a. $X_{ij} = Liczba \ radiowozów \ przydzielonych \ do \ dzielnicy \ i \ na \ zmianie \ j$
- 3. Ograniczenia
 - a. $(\forall (i,j) \in \{1,2,3\}^2)(minR(i,j) \le X_{ij} \le maxR(i,j))$
 - b. $(\forall i \in \{1, 2, 3\})(\sum_{j=1}^{3} X_{ij} \ge z(i))$
 - c. $(\forall j \in \{1, 2, 3\})(\sum_{i=1}^{3} X_{ij} \ge d(i))$
- 4. Funkcja celu
 - a. $\min \sum_{i=1}^{3} \sum_{j=1}^{3} X_{ij}$

Wyniki

Minimalna liczba radiowozów potrzebna do spełnienia wszystkich wymagań to 48:

	Zmiana 1	Zmiana 2	Zmiana 3	Suma
Dzielnica 1	2	5	3	10
Dzielnica 2	3	7	9	19
Dzielnica 3	5	8	6	19
Suma	10	20	18	

Zadanie 4

Opis modelu

- 1. Dane
 - a. Wymiary terenu m x n: m=8, n=8
 - b. Rozmieszczenie kontenerów: $C_{ij} = 1 \Leftrightarrow$ na kwadracie (i, j) znajduje się kontener, 0 w p.p. (założyłem że jest 8 kontenerów):

0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1
1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0

c. Zasięg widzenia kamery: k=2

- 2. Zmienne decyzyjne
 - a. X_{ij} = 1 ⇔ na kwadracie (i, j) znajduje się kamera
 - b. X_{ij} = 0 ⇔ na kwadracie (i, j) nie znajduje się kamera
- 3. Ograniczenia
 - a. $(\forall (i,j) \in \{1..m\} \times \{1..n\})(X_{ij} * C_{ij} = 0)$
 - b. $(\forall (i,j) \in \{1..m\} \times \{1..n\} : C_{ij} = 1)(\sum_{\max(i-k,1)}^{\min(i+k,m)} X_{ij} + \sum_{\max(j-k,1)}^{\min(j+k,n)} X_{ij} \ge 1)$
- 4. Funkcja celu
 - a. $\min \sum_{i=1}^m \sum_{j=i}^n X_{ij}$

Wyniki

Minimalna liczba kamer potrzebna do monitorowania wszystkich kontenerów wynosi 8. Poniżej 'X' oznaczono kontenery a 'C' kamery:

		С	Χ	Χ	
		Χ			
	Χ		С	Х	Χ
Χ					
	С	Χ			
С					

Zadanie 5

Opis modelu

- 1. Dane
 - a. Czas produkcji jednostki [kilograma] towaru na danej maszynie [w minutach] t(i, j):

	Maszyna 1	Maszyna 2	Maszyna 3
Produkt 1	5	10	6
Produkt 2	3	6	4
Produkt 3	4	5	3
Produkt 4	4	2	1

b. Maksymalny tygodniowy popyt na dany towar [kg] p(i):

Produkt 1	Produkt 2	Produkt 3	Produkt 4
400	100	150	500

c. Cena sprzedaży kilograma towaru [\$/kg]:

Produkt 1	Produkt 2	Produkt 3	Produkt 4
9	7	6	5

d. Koszt materiałów za kilogram danego towaru [\$/kg]:

Produkt 1	Produkt 2	Produkt 3	Produkt 4
4	1	1	1

e. Z tego można wyliczyć zysk za sprzedaż kilograma towaru (nie uwzględniający kosztów obsługi maszyn) [\$/kg] e(i):

Produkt 1	Produkt 2	Produkt 3	Produkt 4
5	6	5	4

f. Koszt pracy maszyny [\$/h] c(i):

-			
	Maszyna 1	Maszyna 2	Maszyna 3

2	2	3

- g. Czas dostępności maszyn w tygodniu: T = 60 [h] = 3600 [min]
- 2. Zmienne decyzyjne
 - a. X_i = ilość wytworzonego produktu i [kg]
- 3. Ograniczenia
 - a. $(\forall i \in \{1, 2, 3, 4\})(X_i \le p(i))$

b.
$$(\forall j \in \{1, 2, 3\}) (\sum_{i=1}^{4} X_i * t(i, j) \le T)$$

4. Funkcja celu

a.
$$\max \sum_{i=1}^{4} X_i * e(i) - \sum_{j=1}^{3} \sum_{i=1}^{4} X_i * t(i,j) * \frac{c(j)}{60}$$

Wyniki

Maksymalny możliwy do uzyskania zysk wynosi 3632,50 \$. W tym celu należy produkować następujące ilości towarów:

Produkt 1	Produkt 2	Produkt 3	Produkt 4
125	100	150	500

Jak widać wszystkie produkty są wytwarzane – produkty 2, 3 i 4 osiągnęły swój limit popytu.