Power Series

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference your lecture notes and the relevant chapters in a textbook/online resource.

EXPECTED SKILLS:

- Use sigma notation to write the Maclaurin series for a function f(x).
- Use sigma notation to write the Taylor series for a function f(x) about a specified $x = x_0$.
- Find the interval of convergence and the radius of convergence of a power series.
- Find the domain of a function that is expressed as a power series.

PRACTICE PROBLEMS:

For problems 1 & 2, use sigma notation to write the Macluarin series for the given function.

1. $f(x) = \ln(1+x)$

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}$$
; Compare this to Polynomial Approximations of Functions #7.

 $2. \ f(x) = x \cos x$

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k)!}$$

For problems 3 & 4, use sigma notation to write the Taylor series for the given function about $x = x_0$.

1

3. $f(x) = e^{2x}$; $x_0 = \ln 3$

$$\sum_{k=0}^{\infty} \frac{2^k(9)}{k!} (x - \ln 3)^k$$
; Compare this to Polynomial Approximations of Functions #9.

4. $f(x) = \sin x$; $x_0 = \frac{\pi}{2}$

$$\sum_{k=0}^{\infty} (-1)^k \frac{\left(x - \frac{\pi}{2}\right)^{2k}}{(2k)!}$$

For problems 5-13, find the interval of convergence and the radius of convergence R for the power series.

5.
$$x + x^2 + x^3 + x^4 + \dots$$

(-1,1); R = 1. Note that this is the power series from <u>Infinite Series</u> #24.

6.
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$$

(-1,1]; R=1. This is the Maclaurin series for $f(x)=\ln(1+x)$. See problem #1.

7.
$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$

 $(-\infty, +\infty)$; $R = +\infty$. This is the Maclaurin series for $f(x) = e^x$.

8.
$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$$

$$[-1,1]; R = 1.$$

9.
$$\sum_{k=0}^{\infty} \frac{(-5)^k x^k}{\sqrt{k+10}}$$

$$\left[\left(-\frac{1}{5},\frac{1}{5}\right];R=\frac{1}{5};$$
 Detailed Solution: Here

10.
$$\sum_{k=0}^{\infty} [(2k)! (2x+1)^k]$$

$$\left[-\frac{1}{2}, -\frac{1}{2}\right]$$
, or just $\left\{-\frac{1}{2}\right\}$; $R = 0$. In other words, the series converges only when $x = -\frac{1}{2}$.

11.
$$\sum_{k=0}^{\infty} \left[\left(\frac{2}{7} \right)^k (x+4)^{k+1} \right]$$

$$\left(-\frac{15}{2}, -\frac{1}{2}\right); R = \frac{7}{2};$$
 Detailed Solution: Here

12.
$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

 $(-\infty, +\infty)$; $R = +\infty$. This is the Maclaurin series for $f(x) = \sin x$.

13.
$$\sum_{k=2}^{\infty} \frac{(x-3)^k}{k \ln k}$$
[2,4); $R = 1$

For problems 14 - 16, a function is represented as a power series. Find the domain of the function.

14.
$$f(x) = \sum_{k=0}^{\infty} [(-1)^{k+1} (x-2)^k]$$

The domain of f(x) is 1 < x < 3. This is the Taylor series for $f(x) = \frac{1}{1-x}$ about x = 2. See Polynomial Approximations of Functions #8.

15.
$$f(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

The domain of f(x) is all real numbers. This is the Maclaurin series for $f(x) = \cos x$.

16.
$$f(x) = \sum_{k=0}^{\infty} \frac{e^{(k^2)} x^k}{k!}$$

The domain of f(x) is only x = 0.; Detailed Solution: Here