MODELLING AND SIMULATION PRACTICES Practice 4 - SS 2014 - Daniela Müllerová

What do we do in today's practice?

- 1. Summary of the previous practice
- 2. Two species populations models of predator prey
- 3. Two species populations models with competition
- 4. Two species populations models with cooperation
- 5. Epidemiology models
- 6. Summary

Summary of the previous practice

[Population models]

Population models with age structure

Two species populations models of predator - prey: Lotka - Volterra

Two species populations models of predator - prey

- One population prospers, the other doesn't prosper.
- \square X(t) represents the number of prey in time t.
- Γ Y(t) represents the number of predators in time t.
- \square k_1 represents the relative fertility prey.
- $= k_1 \cdot X(t)$ represents the number of prey that were born during the time interval $\langle t-1\cdots t \rangle$.
- $Arr k_2$ represents the probability that predator will kill prey when prey and predator are meeting.
- $k_2 \cdot X(t) \cdot Y(t)$ represents the number of prey caught by predators during the time interval $\langle t-1\cdots t \rangle$.
- $Arr k_3$ represents the conversion efficiency of the biomass of prey to predator biomass.
- $k_3 \cdot k_2 \cdot X(t) \cdot Y(t)$ represents the number of births of predators during the time interval $(t 1 \cdots t)$.
- $lue{}$ k_4 represents the relative mortality of predators.
- $= k_4 \cdot Y(t)$ represents the decrease in the population of predators during the time interval $\langle t-1\cdots t \rangle$.

$$\frac{dX(t)}{dt} = k_1 \cdot X(t) - k_2 \cdot X(t) \cdot Y(t)$$
$$\frac{dY(t)}{dt} = k_3 \cdot k_2 \cdot X(t) \cdot Y(t) - k_4 \cdot Y(t)$$

Two species populations models of predator - prey with delay

- The population of the prey evolves according to the logistic equation
 - lacktriangledown ho_1 represents fertility prey
 - $lacktriangleq K_1$ represents the capacity of the environment prey
 - τ_1 represents the mean time to achieve fertility for prey
 - $\rho_1 \cdot \tau_1 > \frac{\pi}{2}$ enables the creation oscillations
- The increase in the population of predators is defined by $\frac{\rho_2}{K_1} \cdot X(t)$
 - $\frac{\rho_2}{K_1}$ represents the effect of the interaction and conversion of biomass
 - $f au_2$ represents the mean time to reach reproductive predators
 - $\rho_2 \cdot \tau_2 > \frac{\pi}{2}$ enables the creation oscillations
- The decrease of the population of predators is defined by $\frac{\rho_2}{K_2} \cdot Y(t-\tau_2)$.
 - $lue{}$ K_2 represents the capacity of environmental predators

$$\frac{dX(t)}{dt} = \rho_1 \cdot \left(1 - \frac{X(t - \tau_1)}{K_1}\right) \cdot X(t)$$
$$\frac{dY(t)}{dt} = \rho_2 \cdot \left(\frac{X(t)}{K_1} - \frac{Y(t - \tau_2)}{K_2}\right) \cdot Y(t)$$

Kolmogorov models of predator - prey

- Model Lotka Volterra is not realistic.
 - populations of predators and prey cycles endlessly without stabilization.
 - population of prey in the absence of predator grow exponentially.
- Function A represents the relative rate of reproduction prey population by logistic equation..
 - ρ is the birth rate of the population of prey
 - $lue{\Gamma}$ K₁ is the capacity of the environment prey population
- Function V determines the amount of prey that predator catch per unit of time depending on the condition of the prey population.
 - pis the maximum increase predator.
 - a is the amount of prey that is needed to ability of reproduction the predator with speed $\frac{p}{2}$.
 - c is the coefficient of conversion of biomass c (0; 1).
- Function K indicates the total population growth of predators, which is negative for low levels of prey that is not enough predators to feed.
 - lacksquare and m are positive constant

$$\frac{dX(t)}{dt} = A \cdot X(t) - V \cdot Y(t)$$

$$\frac{dY(t)}{dt} = K \cdot Y(t)$$

$$A = \rho \cdot \left(1 - \frac{X(t)}{K_1}\right)$$

$$V = \frac{p \cdot X(t)}{c \cdot (a + X(t))}$$

$$K = e \cdot V - m$$

Equation of Kolmogorov model

- Both population suffers from mutual contact.
- \square $X_1(t)$ represents the number of individuals in the first population.
- \square $X_2(t)$ represents the number of individuals in the second population.
- ρ_1 represents the relative fertility of the first population.
- ρ_2 represents the relative fertility of the second population.
- K_1 is the capacity of the environment first population.
- \square K_2 is the capacity of the environment second population.
- ${\color{blue} extstyle exts$
- b_{21} represents the mutual competitive impact of a first population at second.

$$\frac{dX_1(t)}{dt} = \rho_1 \cdot \left(1 - \frac{X_1(t)}{K_1} - b_{12} \cdot \frac{X_2(t)}{K_1}\right) \cdot X_1(t)$$

$$\frac{dX_2(t)}{dt} = \rho_2 \cdot \left(1 - \frac{X_2(t)}{K_2} - b_{21} \cdot \frac{X_1(t)}{K_2}\right) \cdot X_2(t)$$

$$\frac{dX_{1}(t)}{dt} = \rho_{1} \cdot \left(1 - \frac{X_{1}(t)}{K_{1}} - b_{12} \cdot \frac{X_{2}(t)}{K_{1}}\right) \cdot X_{1}(t)$$

$$\frac{dX_{2}(t)}{dt} = \rho_{2} \cdot \left(1 - \frac{X_{2}(t)}{K_{2}} - b_{21} \cdot \frac{X_{1}(t)}{K_{2}}\right) \cdot X_{2}(t)$$

species 2 becomes extinct and species 1 increases until it reaches carrying capacity \boldsymbol{K}_1

$$\frac{K_2}{b_{21}} < K_1 \text{ and } \frac{K_1}{b_{12}} > K_2$$

species 1 becomes extinct and species 2 increases until it reaches carrying capacity K_1K_2

$$\frac{K_2}{b_{21}} > K_1$$
 and $\frac{K_1}{b_{12}} < K_2$

the outcome depends on the initial number of individuals of the two species

$$\frac{K_2}{b_{21}} < K_1$$
 and $\frac{K_1}{b_{12}} < K_2$

Coexist of both species

$$\frac{K_2}{b_{21}} > K_1 \text{ and } \frac{K_1}{b_{12}} > K_2$$

- Mutually beneficial interaction of two different populations..
- \square $X_1(t)$ represents the number of individuals in the first population.
- \square $X_2(t)$ represents the number of individuals in the second population.
- ρ_2 represents the relative fertility of the second population.
- $lue{K}_1$ is the capacity of the environment first population.
- \square K_2 is the capacity of the environment second population.
- ${\color{blue} \square}$ b_{12} represent the mutually beneficial effect of the first population on the second.
- b_{21} represent the mutually beneficial effect of the second population on the first.

$$\begin{split} \frac{dX_{1}\left(t\right)}{dt} &= \rho_{1} \cdot \left(1 - \frac{X_{1}(t)}{K_{1}} + b_{12} \cdot \frac{X_{2}(t)}{K_{1}}\right) \cdot X_{1}(t) \\ \frac{dX_{2}\left(t\right)}{dt} &= \rho_{2} \cdot \left(1 - \frac{X_{2}(t)}{K_{2}} + b_{21} \cdot \frac{X_{1}(t)}{K_{2}}\right) \cdot X_{2}(t) \end{split}$$

Epidemiology models - SIR

- A simple model for many infectious diseases, including measles, mumps and rubella
- \Box S(t) represents the number of individuals susceptible to infection.
- \square I(t) represents the number of infected individuals. Individuals who show signs of illness and spreads disease further.
- R(t) represents the number of individuals in a period of isolation or resistant individuals. Individuals who were previously infected, but now they can not spread the disease.
- r determines the average rate of spread of infection, that means adequate number of contacts (which are sufficient for the transmission of infection) of individual with other.
- \square a determines the speed of isolation and treatment of infected individuals.
- \square N is the total number of individuals in the population.
- $\frac{r \cdot I(t)}{N}$ presents the average number of contacts a one susceptible individual with infectious individuals per unit time.
- $\frac{r \cdot I(t)}{N} \cdot S(t)$ presents the number of new infected cases per unit of time.
- $\frac{r}{a} \cdot S(0)$ is the basic reproductive number
 - $\frac{r}{a} \cdot S(0) > 1$: increasing the number of infected and the disease has spread.
 - $\frac{r}{a} \cdot S(0) < 1$: the disease is disappearing.

$$\frac{dS(t)}{dt} = -r \cdot S(t) \cdot I(t)$$

$$\frac{dI(t)}{dt} = r \cdot S(t) \cdot I(t) - a \cdot I(t)$$

$$\frac{dR(t)}{dt} = a \cdot I(t)$$

$$S(t) + I(t) + R(t) = N$$

Summary of today's practice

[Population models]

Two species populations models of predator – prey: Lotka- Volterra with delay, Kolmogorov model

Two species populations models with competition

Two species populations models with cooperation

Epidemiology models.

[What is next?]

Next week we will continue with compartment models.