Formulae & Statistical Tables

Random Walk

$$X_{t} = X_{t-1} + \varepsilon_{t}$$

Strict Stationarity

$$F(x_{t_1+k}, x_{t_2+k}, ..., x_{t_n+k}) = F(x_{t_1}, x_{t_2}, ..., x_{t_n})$$

White Noise

 $Z_t \sim \text{Normal}(0, \sigma^2)$ independent and identically distributed

Weak Stationarity

 $E(X_t)$ is constant for all t

 $Cov(X_t, X_{t+k})$ depends only on lag k

Independent Increments

 $X_{t+h} - X_t$ is independent of past X_s

Markov Property

$$Pr(X_t \in A \mid X_{s_1} = x_1, X_{s_2} = x_2, ..., X_s = x) = Pr(X_t \in A \mid X_s = x)$$
 for $s_1 < s_2 < ... < s < t$

Poisson Process

$$\begin{aligned} N_t &\sim \operatorname{Poisson}(\lambda t) & \operatorname{Pr}(X_{t+h} = i+1 \mid X_t = i) = \lambda h + o(h) \\ N_0 &= 0 & \operatorname{Pr}(X_{t+h} = i \mid X_t = i) = 1 - \lambda h + o(h) \\ N_s &\leq N_t & \text{when } s < t & \operatorname{P}_{i,j}^{(h)} = 1 - \lambda h + o(h) & \text{if } j = i \\ N_{t_2} - N_{t_1}, \dots, N_{t_n} - N_{t_{n-1}} & \text{are mutually independent} & \operatorname{P}_{i,j}^{(h)} = \lambda h + o(h) & \text{if } j = i + 1 \\ \operatorname{Pr}(N_{t_2+h} - N_{t_1+h} = k) = \operatorname{Pr}(N_{t_2} - N_{t_1} = k) & \operatorname{P}_{i,j}^{(h)} = 0 & \text{otherwise} \\ N_t - N_s &\sim \operatorname{Poisson}(\lambda (t-s)) & \mu_{i,j} = -\lambda & \text{if } j = i \\ \tau &\sim \operatorname{Exponential}(\lambda) & \mu_{i,j} = \lambda & \text{if } j = i + 1 \\ \mu_{i,j} &= 0 & \text{otherwise} \end{aligned}$$

Compound Poisson Process

$$S_{t} = \sum_{i=1}^{N_{t}} X_{i}$$

Markov Property

$$\Pr(Z_{n+1} = j \mid Z_n = i_n, Z_{n-1} = i_{n-1}, ..., Z_0 = i_0) = \Pr(Z_{n+1} = j \mid Z_n = i_n)$$

<u>Transition Matrix</u> (discrete time, time homogeneous, discrete state space)

$$P_{i,j} = \Pr(Z_n = j \mid Z_{n-1} = i)$$

$$\sum_{i} \mathbf{P}_{i,j} = 1$$

<u>Transition Matrix</u> (discrete time, discrete state space)

$$\mathbf{P}_{i,j}^{m,n} = \Pr(X_n = j \mid X_m = i)$$

$$\pi_n = \pi_0 \mathbf{P}^{0,n} = \pi_0 \mathbf{P}^{0,1} \mathbf{P}^{1,2} ... \mathbf{P}^{n-1,n}$$

$$\pi_{\scriptscriptstyle n} = \pi_{\scriptscriptstyle m} \mathbf{P}^{\scriptscriptstyle m,n} = \pi_{\scriptscriptstyle m} \mathbf{P}^{\scriptscriptstyle m,m+1} \mathbf{P}^{\scriptscriptstyle m+1,m+2} ... \mathbf{P}^{\scriptscriptstyle n-1,n}$$

Chapman-Kolmogorov Equation

$$\mathbf{P}_{i,j}^{m,n} = \sum_{k} \mathbf{P}_{i,k}^{m,l} \mathbf{P}_{k,j}^{l,n}$$

n-Step Transition Matrix (discrete time, time homogeneous, discrete state space)

$$P_{i,j}^{(n)} = \Pr(X_{n+m} = j \mid X_m = i)$$

$$\mathbf{P}^{(n)} = \mathbf{P}^n$$

$$\pi_n = \pi_0 P^n$$

Stationary Distribution

$$\pi = \pi P$$

Discrete-Time Markov Chain

$$f_{ii} = \Pr(X_n = i, \text{ for some } n \ge 1 \mid X_0 = i)$$

$$Pr(V = \infty | X_0 = i) = 1$$
 (recurrent state)

$$V \mid X_0 = i \sim \text{Geometric}(1 - f_{ii})$$
 (transient state)

Limiting Distribution

$$\pi_j^{\infty} = \lim_{n \to \infty} \Pr(X_n = j \mid X_0 = i)$$

$$\sum_{j} \pi_{j}^{\infty} = 1$$

$$\pi^{\infty} = \pi^{\infty} P$$
 (stationary distribution)

Markov Jump Process (continuous time, time homogeneous, discrete state space)

$$\Pr(X_{t+s} = j \mid X_s = i) = \Pr(X_t = j \mid X_0 = i)$$

$$\mathbf{P}_{i,j}^{(t+s)} = \sum_{k} \mathbf{P}_{i,k}^{(s)} \mathbf{P}_{k,j}^{(t)}$$

$$\mathbf{P}^{(t+s)} = \mathbf{P}^{(s)}\mathbf{P}^{(t)}$$

$$\mu_{i,j} = \frac{d}{dt} P_{i,j}^{(t)} \mid_{t=0} = \lim_{t \to 0} \frac{P_{i,j}^{(t)} - \delta_{i,j}}{t}$$

$$\mu_{i,i} = -\sum_{i \neq i} \mu_{i,j}$$

Healthy-Sick-Death Model

$$A = \begin{bmatrix} -\mu - \sigma & \sigma & \mu \\ \rho & -\rho - v & -v \\ 0 & 0 & 0 \end{bmatrix} \qquad \mu_{H,S} = \sigma \qquad \mu_{H,D} = \mu \qquad \mu_{S,H} = \rho \qquad \mu_{S,D} = v$$

$$\mu_{H,S} = c$$

$$\mu_{H,D} = \mu$$

$$\mu_{S,H} = \rho$$

$$\mu_{S,D} = 1$$

$$\frac{d}{dt}\mathbf{P}^{(t)} = \mathbf{P}^{(t)}A$$

 $\frac{d}{dt}P^{(t)} = P^{(t)}A$ (forward differential equation)

$$\frac{d}{dt}\mathbf{P}^{(t)} = A\mathbf{P}^{(t)}$$

 $\frac{d}{dt}P^{(t)} = AP^{(t)}$ (backward differential equation)

$$\pi A = 0$$

(stationary distribution)

$$\hat{\mu} = \frac{d}{v}$$
 $\hat{v} = \frac{u}{w}$ $\hat{\sigma} = \frac{s}{v}$ $\hat{\rho} = \frac{r}{w}$

$$\hat{v} = \frac{u}{u}$$

$$\hat{\sigma} = \frac{s}{s}$$

$$\hat{\rho} = \frac{r}{w}$$

$$\hat{\mu}_{km} \pm 1.96 \sqrt{\frac{\hat{\mu}_{km}}{t_k}}$$

Poisson Distribution

$$\Pr(N=n) = \frac{e^{-\lambda} \lambda^n}{n!}$$
 $E(N) = \lambda$ $\operatorname{Var}(N) = \lambda$

$$E(N) = \lambda$$

$$Var(N) = \lambda$$

Exponential Distribution

$$f(x) = \lambda e^{-\lambda x}$$

$$F(x) = 1 - e^{-\lambda x}$$

$$E(X) = \frac{1}{\lambda}$$

$$f(x) = \lambda e^{-\lambda x}$$
 $F(x) = 1 - e^{-\lambda x}$ $E(X) = \frac{1}{\lambda}$ $Var(X) = \frac{1}{\lambda^2}$

Maximum Likelihood Estimate

$$\tilde{\theta} = \hat{\theta}(X_1, ..., X_n)$$

$$\tilde{\theta} \stackrel{a}{\sim} N(\theta, I^{-1})$$

$$I_{i,j} = -E\left(\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log L(\theta; X_1, ..., X_n)\right)$$

Central Limit Theorem

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} \overset{a}{\sim} N(\mu, \sigma^{2})$$

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} \overset{a}{\sim} N(\mu, \Sigma)$$

Slutsky's Theorem

Let
$$\tilde{\theta}_1 \stackrel{a}{\sim} N(\theta_1, \sigma_1^2)$$
 and $\tilde{\theta}_2 \approx c$

$$\tilde{\theta}_1 - \tilde{\theta}_2 \stackrel{a}{\sim} N(\theta_1 - c, \sigma_1^2)$$

$$\tilde{\theta}_1 \cdot \tilde{\theta}_2 \stackrel{a}{\sim} N(c\theta_1, c^2\sigma_1^2)$$

$$\frac{\tilde{\theta}_1}{\tilde{\theta}_2} \sim N\left(\frac{\theta_1}{c}, \frac{\sigma_1^2}{c^2}\right)$$

Confidence Interval

Let
$$\tilde{\theta} \sim N(\theta, \sigma_n^2)$$

$$\hat{\theta} \pm 1.96\sigma_n$$

$$\hat{\theta} \pm 1.96 \hat{\sigma}_n$$

Survival Models

$$F_{x}(t) = \Pr(T_{x} \le t) = {}_{t}q_{x}$$

$$S_x(t) = \Pr(T_x > t) = {}_t p_x$$

$$_{s+t} p_x =_t p_x _s p_{x+t}$$

$$\mu_x = \lim_{dx \to 0^+} \frac{1}{dx} \Pr(T_0 \le x + dx \mid T_0 > x)$$

$$\mu_x dx \approx \Pr(T_0 \le x + dx \mid T_0 > x) = \Pr(T_x \le dx)$$

$$f_x(t) = {}_t p_x \mu_{x+t}$$

$$\frac{d}{dt}_{t} p_{x} = -_{t} p_{x} \mu_{x+t}$$

$$_{t}p_{x}=\exp\left(-\int_{0}^{t}\mu_{x+s}ds\right)$$

$$_{t}q_{x}=\int_{0}^{t}p_{x}\mu_{x+s}ds$$

$$m_{x} = \frac{q_{x}}{\int_{0^{-t}}^{1} p_{x} dt} = \frac{\int_{0^{-t}}^{1} p_{x} \mu_{x+t} dt}{\int_{0^{-t}}^{1} p_{x} dt}$$

$$\Pr(K_x = k) = {}_k p_x \ q_{x+k}$$

$$\stackrel{\circ}{e}_x = \mathrm{E}(T_x) = \int_0^\infty t_{t} p_x \mu_{x+t} dt = \int_0^\infty p_x dt$$

$$e_x = E(K_x) = \sum_{k=0}^{\infty} k_k p_k q_{x+k} = \sum_{k=1}^{\infty} k_k p_k$$

$$\stackrel{\circ}{e}_x \approx \frac{1}{2} + e_x$$

UDD Assumption

$$_{t}q_{x}=t\ q_{x}$$

$$_{t}q_{x+s} = \frac{t q_{x}}{1-s q_{x}}$$

Balducci Assumption

$$_{1-t}q_{x+t}=\left(1-t\right) q_{x}$$

$$_{t}q_{x} = \frac{t q_{x}}{1 - (1 - t) q_{x}}$$

Gompertz' Law

$$\mu_{x} = Bc^{x}$$

$$_{t}p_{x} = \exp\left(-\frac{Bc^{x}\left(c^{t}-1\right)}{\ln c}\right)$$

Makeham's Law

$$\mu_x = A + Bc^x$$

$$_{t}p_{x} = \exp\left(-A \ t - \frac{Bc^{x}(c^{t} - 1)}{\ln c}\right)$$

Binomial Model

$$D_i \sim \text{Bernoulli}(b_{b_i-a_i} q_{x+a_i})$$

$$E_{x} = \sum_{\text{survivors}} (b_{i} - a_{i}) + \sum_{\text{deaths}} (1 - a_{i}) = \sum_{\text{survivors}} (b_{i} - a_{i}) + \sum_{\text{deaths}} (t_{i} - a_{i}) + \sum_{\text{deaths}} (1 - t_{i})$$

$$E_x^C = \sum_{\text{curvivors}} (b_i - a_i) + \sum_{\text{deaths}} (t_i - a_i)$$

$$E_x = E_x^C + \sum_{i=1}^{N} d_i (1 - t_i) \approx E_x^C + \frac{d}{2}$$

$$\hat{q}_x = \frac{d}{E_x} \approx \frac{d}{E_x^C + \frac{d}{2}}$$

$$E(\tilde{q}_x) = q_x$$

$$\operatorname{Var}(\tilde{q}_{x}) \approx \frac{q_{x}(1-q_{x})}{E_{x}}$$

 \tilde{q}_x is approximately normally distributed asymptotically

Poisson Model

$$D \sim \text{Poisson}(E^C \mu)$$

$$\hat{\mu} = \frac{d}{E^C}$$

$$E(\tilde{\mu}) = \mu$$

$$Var(\tilde{\mu}) = \frac{\mu}{E^C}$$

 $\tilde{\mu}$ is normally distributed asymptotically

Trapezium Approximation

$$E_x^C = \int_0^{K+1} P_{x,t} dt \approx \sum_{t=0}^K \frac{P_{x,t} + P_{x,t+1}}{2}$$

$${}^{(1)}E_{x}^{C} \approx \sum_{n=1}^{K} \frac{P_{x,t}^{(1)} + P_{x,t+1}^{(1)}}{2} \qquad \text{where } P_{x,t}^{(1)} \approx \frac{P_{x,t}^{(2)} + P_{x+1,t}^{(2)}}{2} \text{ or } P_{x,t}^{(1)} = P_{x+1,t}^{(3)}$$

$${}^{(2)}E_{x}^{C} \approx \sum_{t=0}^{K} \frac{P_{x,t}^{(2)} + P_{x,t+1}^{(2)}}{2} \qquad \text{where } P_{x,t}^{(2)} \approx \frac{P_{x-1,t}^{(1)} + P_{x,t}^{(1)}}{2} \text{ or } P_{x,t}^{(2)} \approx \frac{P_{x,t}^{(3)} + P_{x+1,t}^{(3)}}{2}$$

$${}^{(3)}E_x^C \approx \sum_{t=0}^K \frac{P_{x,t}^{(3)} + P_{x,t+1}^{(3)}}{2} \qquad \text{where } P_{x,t}^{(3)} = P_{x-1,t}^{(1)} \text{ or } P_{x,t}^{(3)} \approx \frac{P_{x-1,t}^{(2)} + P_{x,t}^{(2)}}{2}$$

Lee-Carter (LC) Model

$$\ln m_{x,t} = a_x + b_x \ k_t + \varepsilon_{x,t}$$

$$\sum_{x} b_{x} = 1$$

$$\sum_{t} k_{t} = 0$$

$$\varepsilon_{rt} \sim \text{Normal}(0, \sigma^2)$$

Random Walk with Drift

$$k_{t} = \mu + k_{t-1} + e_{t}$$

$$e_t \sim \text{Normal}(0, \sigma_k^2)$$

Cairns-Blake-Dowd (CBD) Model

logit
$$q_{x,t} = k_t^{(1)} + k_t^{(2)}(x - \overline{x}) + \varepsilon_{x,t}$$

$$\varepsilon_{x,t} \sim \text{Normal}(0, \sigma^2)$$

Bivariate Random Walk with Drift

$$k_t^{(i)} = \mu^{(i)} + k_{t-1}^{(i)} + e_t^{(i)}$$

$$\begin{bmatrix} e_t^{(1)} \\ e_t^{(2)} \end{bmatrix} \sim \text{Normal}(\mathbf{0}, \Omega)$$

Null Hypothesis

$$z_x = \frac{d_x - E_x \dot{q}_x}{\sqrt{E_x \dot{q}_x \left(1 - \dot{q}_x\right)}}$$
 (binomial model)

$$z_x = \frac{d_x - E_x^C \stackrel{\circ}{\mu}_{x+1/2}}{\sqrt{E_x^C \stackrel{\circ}{\mu}_{x+1/2}}} \quad \text{(Poisson model)}$$

$$Z_x \sim \text{Normal}(0,1)$$
 independent and identically distributed

Chi Square Test

$$\sum_{\text{all ages}} z_x^2$$

Null hypothesis is rejected if it is larger than $\chi_n^2(0.95)$

7

Standardised Deviations Test

$$\sum_{\text{all intervals}} \frac{(A-E)^2}{E}$$

Null hypothesis is rejected if it is larger than $\chi_n^2(0.95)$

Cumulative Deviations Test

$$\frac{\sum_{x} \left(d_{x} - E_{x} \stackrel{\circ}{q}_{x} \right)}{\sqrt{\sum_{x} E_{x} \stackrel{\circ}{q}_{x} \left(1 - \stackrel{\circ}{q}_{x} \right)}}$$
 (binomial model)

$$\frac{\sum_{x} \left(d_{x} - E_{x}^{C} \stackrel{\circ}{\mu}_{x+1/2} \right)}{\sqrt{\sum_{x} E_{x}^{C} \stackrel{\circ}{\mu}_{x+1/2}}}$$
 (Poisson model)

Null hypothesis is rejected if it is larger than 1.96 in absolute value

Signs Test

number of positive z_x 's

Null hypothesis is rejected if $(2n_1 - m)/\sqrt{m}$ is larger than 1.96 in absolute value

Grouping of Signs Test

number of distinct groups of positive z_x 's

Null hypothesis is rejected if $(g - n_1(n_2 + 1)/(n_1 + n_2))/\sqrt{(n_1n_2)^2/(n_1 + n_2)^3}$ is smaller than -1.64

Third Order Smoothness

$$\left| \Delta^3 \stackrel{\circ}{q}_x \right| \cdot 7^3 < \stackrel{\circ}{q}_x$$

Graduation by Reference to Standard Table

$$\overset{\circ}{q}_x = a + bq_x^S$$

$$\mathring{\mu}_x = a + b\mu_x^S$$

$$\overset{\circ}{q}_x = (a+bx)q_x^S$$

$$\stackrel{\circ}{\mu}_{x} = \mu_{x}^{S} + k$$

$$\stackrel{\circ}{\mu}_{x} = \mu_{x+k}^{S}$$

Graduation by Mathematical Formula

$$\dot{\mu}_{x} = Bc^{x}$$

$$\dot{\mu}_{x} = A + Bc^{x}$$

$$\frac{\dot{q}_{x}}{1 - \dot{q}_{x}} = A + Hx + Bc^{x}$$

$$\ln \frac{\dot{q}_{x}}{1 - \dot{q}_{x}} = f(x)$$

Graduation by Cubic Spline

$$\overset{\circ}{q}_{x} = a_{0} + a_{1}x + \sum_{j=1}^{n-2} b_{j} \Phi_{j}(x)$$

$$\Phi_{j}(x) = \phi_{j}(x) - \frac{x_{n} - x_{j}}{x_{n} - x_{n-1}} \phi_{n-1}(x) + \frac{x_{n-1} - x_{j}}{x_{n} - x_{n-1}} \phi_{n}(x)$$

$$\phi_{j}(x) = \begin{cases} (x - x_{j})^{3} & x \ge x_{j} \\ 0 & \text{otherwise} \end{cases}$$

Kaplan-Meier Estimation

$$\hat{\lambda}_{j} = \frac{d_{j}}{n_{j}}$$

$$\hat{F}(t) = 1 - \prod_{i=1}^{j} \left(1 - \hat{\lambda}_{i}\right) \qquad \text{for } t_{j} \le t < t_{j+1}$$

$$\operatorname{Var}(\tilde{F}(t)) \approx \left(1 - \hat{F}(t)\right)^{2} \sum_{i=1}^{j} \frac{d_{i}}{n_{i}(n_{i} - d_{i})} \qquad \text{for } t_{j} \le t < t_{j+1}$$

Nelson-Aalen Estimation

$$\hat{\lambda}_{j} = \frac{d_{j}}{n_{j}}$$

$$\hat{F}(t) = 1 - \exp\left(-\sum_{i=1}^{j} \hat{\lambda}_{i}\right) \qquad \text{for } t_{j} \leq t < t_{j+1}$$

$$\operatorname{Var}(\tilde{\Lambda}_{t}) = \operatorname{Var}\left(\sum_{i=1}^{j} \tilde{\lambda}_{i}\right) \approx \sum_{i=1}^{j} \frac{d_{i}\left(n_{i} - d_{i}\right)}{n_{i}^{3}} \qquad \text{for } t_{j} \leq t < t_{j+1}$$

Cox Model

$$\begin{split} & \lambda_{i}(t) = \lambda_{0}(t) \exp\left(\vec{\beta} \ \vec{z}_{i}^{\mathrm{T}}\right) = \lambda_{0}(t) \exp\left(\sum_{j=1}^{p} \beta_{j} x_{i,j}\right) \\ & \frac{\lambda_{1}(t)}{\lambda_{2}(t)} = \frac{\lambda_{0}(t) \exp\left(\vec{\beta} \ \vec{z}_{1}^{\mathrm{T}}\right)}{\lambda_{0}(t) \exp\left(\vec{\beta} \ \vec{z}_{2}^{\mathrm{T}}\right)} = \exp\left(\vec{\beta} \ \vec{z}_{1}^{\mathrm{T}} - \vec{\beta} \ \vec{z}_{2}^{\mathrm{T}}\right) = \exp\left(\sum_{j=1}^{p} \beta_{j} \left(x_{1,j} - x_{2,j}\right)\right) \\ & L = \prod_{j=1}^{k} \frac{\exp\left(\vec{\beta} \ \vec{z}_{j}^{\mathrm{T}}\right)}{\sum_{i \in N_{j}} \exp\left(\vec{\beta} \ \vec{z}_{i}^{\mathrm{T}}\right)} \qquad \text{(partial likelihood)} \\ & L = \prod_{j=1}^{k} \frac{\exp\left(\vec{\beta} \ \vec{z}_{i}^{\mathrm{T}}\right)}{\left(\sum_{i \in N_{j}} \exp\left(\vec{\beta} \ \vec{z}_{i}^{\mathrm{T}}\right)\right)^{d_{j}}} \qquad \text{(approximate partial likelihood)} \\ & \vec{s}_{j} = \sum_{l=1}^{d_{j}} \vec{z}_{j,l}^{*} \end{split}$$

Likelihood Ratio Statistic

$$2\lnrac{L_{p+q}\Big|_{ec{eta}_{p+q}=\hat{eta}_{p+q}^{st}}}{L_{p}\Big|_{ec{eta}_{n}=\hat{ar{eta}}_{p}^{st}}}$$

Null hypothesis is rejected if it is larger than $\chi_q^2 (0.95)$

One-layer Feedforward Neural Network

$$y_{j} = f(a_{0,j} + a_{1,j}x)$$

$$z = f(b_{0} + \sum_{j} b_{j}y_{j})$$

$$f(s) = \frac{\exp(s)}{1 + \exp(s)}$$

$$e = 0.5 \sum_{k} \frac{(z_{k} - t_{k})^{2}}{n}$$

Entry is area A under the standard normal curve from $-\infty$ to z(A)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901:
1.3	9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.917
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	,9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.954
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.963
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.970
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.976
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.981
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.985
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.991
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.993
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.998
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.999
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.999
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9993
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.999
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Entry is $\chi^2(A; \nu)$ where $P\{\chi^2(\nu) \le \chi^2(A; \nu)\} = A$

	A									
ν	.005	.010	.025	.050	.100	.900	,950	.975	.990	.995
	0.04393	0.03157	0.03982	0.0 ² 393	0.0158	2.71	3.84	5.02	6.63	7.88
2	0.0100	0.0201	0.0506		0.211	4.61	5.99	7.38	9.21	10.60
3	0.072	0.115	0.216	0.352	0.584	6.25	7.81	9.35	11.34	12.84
4.	0.207	0.297	0.484	0.711	1.064	7.78	9.49	11.14	13.28	14.86
5	0.412	0.554	0.831	1.145	1.61	9.24	11.07	12.83	15.09	16.75
6	0.676	0.872	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	0.989	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.96
9 .	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.73	26.76
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57	40.00
21	8.03		10.28	11.59	13.24	29.62	32.67	35.48	38.93	41.40
22	8.64		10.98	12,34	14.04	30.81	33.92	36.78	40.29	42.80
23	9.26		11.69	13.09	14.85	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	34.38	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	35.56	38.89	41.92	45.64	48.29
2.7	11.81	12.88	14.57	16.15	18.11	36.74	40.11	43.19	46.96	49.64
28	12.46	13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	51.81	55.76	59,34	63.69	66.77
50	27.99		32.36	34.76	37.69	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	85.53	90.53	95.02	100.4	104.2
80	51.17				64.28	96.58	101.9	106.6	112.3	116.3
90	59.20				73.29	107.6	113.1	118.1	124.1	128.3
100	67.33	70.06	74.22	77.93	82.36	118.5	124.3	129.6	135.8	140.2