Função Exponencial

A função exponencial é toda função real que pode ser expressa pela forma $y = f(x) = b^x$, com b > 0 e $b \ne 1$.

Sendo:

- 1) D = R, ou seja, para todo $x \in \mathbf{R}$ existe a imagem b^x
- 2) Os interceptos da função:
 - Interseção com eixo y:

Fazendo
$$x = 0$$
 temos que $y = b^0 = 1$

Portanto o ponto é (0, 1)

- Interseção com eixo x:

Fazendo y = 0 temos que
$$0 = b^x$$
 (não existe)

Portanto a função exponencial não intercepta o eixo x.

3) Gráfico da função:

Iremos construir os gráficos das funções
$$y = 2^x e y = \left(\frac{1}{2}\right)^x$$
 e observar algumas propriedades:

$$1^{\circ}$$
) caso : $\mathbf{y} = \mathbf{2}^{\mathbf{x}}$

x	y = 2 [×]	Pontos
-3	$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$	$(-3,\frac{1}{8})$
-2	$2^{-2} = \frac{1}{2^2} = \frac{1}{4}$	$(-2,\frac{1}{4})$
-1	$2^{-1} = \frac{1}{2^1} = \frac{1}{2}$	$(-1, \frac{1}{2})$
0	$2^0 = 1$	(0,1)
1	2 ¹ = 2	(1,2)
2	$2^2 = 4$	(2,4)
3	$2^3 = 8$	(3,8)

 2°) caso : $\mathbf{y} = \left(\frac{1}{2}\right)^{x}$

	$y = \left(\frac{1}{2}\right)^x$	
X		Pontos
-3	$\left(\frac{1}{2}\right)^{-3} = (2)^3 = 8$	(-3,8)
-2	$\left(\frac{1}{2}\right)^{-2} = (2)^2 = 4$	(-2,4)
-1	$\left(\frac{1}{2}\right)^{-1} = \left(2\right)^{1} = 2$	(-1,2)
0	$\left(\frac{1}{2}\right)^0 = 1$	(0,1)
1	$\left(\frac{1}{2}\right)^1 = \frac{1}{2}$	$(1,\frac{1}{2})$
2	$\left(\frac{1}{2}\right)^2 = \frac{1}{4}$	(2, $\frac{1}{4}$)
3	$\left(\frac{1}{2}\right)^3 = \frac{1}{8}$	(3, $\frac{1}{8}$)

Observando os gráficos podemos dizer que:

- (A) Ambas funções possuem o mesmo ponto de interseção com o eixo y: (0,1)
- (B) Se b > 1, então a função exponencial é crescente;

Exemplos:
$$y = 2^{x}$$
, $y = 1.5^{x}$, $y = \left(\frac{5}{2}\right)^{x}$

(C)Se 0 < b < 1, então a função exponencial é decrescente;

Exemplos:
$$y = \left(\frac{1}{2}\right)^x$$
, $y = 0.25^x$, $y = \left(\frac{2}{5}\right)^x$

(D)Para todo valor de b > 0 e todo $x \in \mathbf{R}$, o gráfico da função exponencial ($y = b^x$) estará sempre situada acima do eixo x, portanto o conjunto imagem desta função é Im = R^*_+ .

Importante:

Nas aplicações da função exponencial, é muito comum escrever a função assim:

$$f(x) = K.a^{x}$$
, com $K \neq 0$, $b > 0$ e $b \neq 1$

A única diferença existente é o ponto de interseção com o eixo y, onde para x = 0, $y = K.b^0 = K.1 = K$, ou seja (0, K).

Logaritmo e Função Logarítmica

DEFINIÇÃO E PROPRIEDADES

DEFINIÇÃO

$$log_b^a = c \Leftrightarrow b^c = a, com \ a > 0, b > 0 \ e \ b \neq 1$$

Sendo que o número a recebe o nome de logaritmando, b é a base e c é o logaritmo de a na base **b**.

Exemplos: Calcule os seguintes logaritmos: a) log 416

solução: log 416 = x, então: $4^{x} = 16$ $4^{x} = 4^{2}$ (comparando) x = 2Resp.: $log_{4}16 = 2$

b) log₃ 3 solução: log₃ 3= x , então: $3^{x} = 3$ $3^{x} = 3^{1}$ (comparando) x = 1

Resp.: $log_3 3 = 1$

Obs.: De forma geral: $log_b b = 1$ com b > 0 e b \neq 1

c) log 41 solução: log 41= x , então: $4^{x} = 1$ $4^{x} = 4^{0}$ (comparando) x = 0Resp.: $\log_{4}1 = 0$

Obs.: De forma geral: $log_b 1 = 0$ com b > 0 e b \neq 1

d) $\log_{10}0,1$ solução: $log_{10}0,1=x$, então: $10^{x} = 0.1$ $10^{x} = \frac{1}{}$ $10^{x} = 10^{-1}$ (comparando) x = -1Resp.: $\log_{10}0,1 = -1$

PROPRIEDADES DOS LOGARITMOS:

(P1) Logarítmo de um produto : $log_c^{(a.b)} = log_c^a + log_c^b$

(P2) Logarítimo de um quociente : $\log_c^{\left(\frac{a}{b}\right)} = \log_c^a - \log_c^b$

(P3) Logarítmo da potência : $log_c^{a^n} = n.log_c^a$

Obs.: Mudança de base : $log_b^a = \frac{log_c^a}{log_c^b}$

Função Logarítmica

A função logarítmica é toda função de R^*_+ em R, que pode ser expressa pela forma $y = f(x) = \log_b x$ ou $f(x) = \log_b x$, com b > 0 e $b \ne 1$.

Logo:

- 1) $D = R^*_+$, ou seja todo $x \in R^*_+$ existe a imagem $log_b x$.
- 2) Os interceptos da função:
 - Interseção com eixo y:

Fazendo x = 0 temos que y = $log_b 0$ (não existe), pois x = 0 $\notin D = R^*_+$

- Interseção com eixo x :

Fazendo y = 0 temos que 0 =
$$\log_b x \Leftrightarrow b^0 = x \Leftrightarrow 1 = x$$

Portanto, o ponto de interseção com o eixo x é (1,0).

3) Gráfico da função:

Iremos construir os gráficos das funções $y = log_2x e y = log_{1/2}x e$ observar algumas propriedades:

1° caso:
$$y = log_2x$$
, com $D = R^*_+$.

Lembrando que:
$$log_b b^n = n$$
, com $b > 0$ e $b \ne 1$

X	y = log₂x	Pontos
$\frac{1}{8}$	Sabendo que $\frac{1}{8} = \frac{1}{2^3} = 2^{-3}$ então y = $\log_2 2^{-3} = -3$	$(\frac{1}{8}, -3)$
$\frac{1}{4}$	Sabendo que $\frac{1}{2^2} = \frac{1}{4} = 2^{-2}$ então y = $\log_2 2^{-2} = -2$	$(\frac{1}{4}, -2)$
$\frac{1}{2}$	Sabendo que $\frac{1}{2^2} = \frac{1}{4} = 2^{-1}$ então y = $\log_2 2^{-1} = -1$	$(\frac{1}{2}, -1)$
1	Sabendo que 1 = 2^0 então y = $\log_2 2^0$ = 0	(1,0)
2	Sabendo que $2 = 2^1$ então $y = log_2 2^1 = 1$	(2,1)
4	Sabendo que $4 = 2^2$ então $y = log_2 2^2 = 2$	(4,2)
8	Sabendo que $8 = 2^3$ então $y = log_2 2^3 = 3$	(8,3)

 2° caso: $y = log_{1/2}x$, com $D = R^{*}$.

x	y = log _{1/2} x	Pontos
$\frac{1}{8}$	Sabendo que $\frac{1}{8} = \frac{1}{2^3} = \left(\frac{1}{2}\right)^3$ então $y = \log_{\frac{1}{2}}^{(\frac{1}{2})^3} = 3$	$(\frac{1}{8},3)$
$\frac{1}{4}$	Sabendo que $\frac{1}{4} = \frac{1}{2^2} = \left(\frac{1}{2}\right)^2$ então $y = \log_{\frac{1}{2}}^{(\frac{1}{2})^2} = 2$	$(\frac{1}{4},2)$
$\frac{1}{2}$	Sabendo que $\frac{1}{2} = \left(\frac{1}{2}\right)^1$ então $y = \log_{\frac{1}{2}}^{\left(\frac{1}{2}\right)^1} = 1$	$(\frac{1}{2},1)$
1	Sabendo que $1 = \left(\frac{1}{2}\right)^0$ então $y = \log_{1/2}^{(1/2)^0} = 0$	(1,0)
2	Sabendo que $2 = \left(\frac{1}{2}\right)^{-1}$ então $y = \log_{1/2}^{\left(\frac{1}{2}\right)^{-1}} = -1$	(2,-1)
4	Sabendo que $4 = \left(\frac{1}{2}\right)^{-2}$ então $y = \log_{1/2}^{(1/2)^2} = -2$	(4,-2)
8	Sabendo que $8 = \left(\frac{1}{2}\right)^{-3}$ então $y = \log_{\frac{1}{2}}^{(\frac{1}{2})^{-3}} = -3$	(8,-3)

Observando os gráficos podemos dizer que:

- (A) Ambas as funções possuem o mesmo ponto de interseção com o eixo x, (1,0).
- (B) Se b > 1, então a função logarítmica é crescente; Exemplos: $y = log_2x$, $y = log_{1,5}x$, $y = log_{5/2}x$
- (C) Se 0 < b < 1, então a função logarítmica é decrescente; Exemplos: $y = log_{1/2}x$, $y = log_{0,3}x$, $y = log_{2/5}x$
- (D) Para todo valor de $\mathbf{b} > \mathbf{0}$ e $\mathbf{b} \neq \mathbf{1}$ e todo $\mathbf{x} \in \mathbf{R}$, o gráfico da função logarítmica (y = log_bx), estará sempre situada a direita do eixo y.
- (E) O conjunto imagem da função logarítmica é Im = R.