Lois discrètes du tirage avec remise

Nom	$\mathbf{X}(\Omega)$	$\mathbf{Loi}\;(\mathbf{P}(X=k))$	$\mathbf{E}(X)$	$\mathbf{V}(X)$	Cas d'utilisation
Loi de Bernoulli $X \hookrightarrow \mathcal{B}(1,p)$	{0,1}	$p^{k} (1-p)^{1-k}$ $P(X = 1) = p$ $P(X = 0) = 1 - p$	p	p(1-p)	Expérience aléatoire à <u>deux issues possibles</u> : réussite avec une proba p ou échec avec une proba 1-p (dichotomie)
Loi Binomiale $X \hookrightarrow \mathcal{B}(n, p)$ $(n - \mathcal{B}(n, p) = \mathcal{B}(n, 1 - p)$	$\{0,,n\}$		np	np(1-p)	Nombre de succès obtenus lors d'une succession de n essais indépendants d'une expérience aléatoire à deux issues possibles : réussite avec une proba p ou échec avec une proba 1-p
Loi géométrique $X \hookrightarrow \mathcal{G}(p)$	N*	$p\left(1-p\right)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	Rang d'apparition du premier succès lors d'une succession d'expériences aléatoires indépendantes n'ayant que deux issues possibles : réussite avec une proba p ou échec avec une proba 1-p
Loi de Pascal $X \hookrightarrow \mathcal{P}(r,p)$	$\{r,r+1,\ldots\}$	$C_{k-1}^{r-1} p^r (1-p)^{k-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	Rang d'apparition du r-ième succès lors d'une succession d'expériences aléatoires indépendantes n'ayant que deux issues possibles: réussite avec une proba p ou échec avec une proba 1-p
Loi Binomiale négative $X \hookrightarrow \mathcal{J}(r, p)$	N	$ C_{k+r-1}^k p^r \left(1-p\right)^k $	$r(1-p) \over p$	$\frac{r(1-p)}{p^2}$	Nombre d'échecs précédant le r-ième succès lors d'une succession d'expériences aléatoires indépendantes n'ayant que deux issues possibles: réussite avec une proba p ou échec avec une proba 1-p
Loi multinomiale $N \hookrightarrow \mathcal{M} (n; p_1, p_2,, p_m)$ $N = \begin{pmatrix} N_1 \\ \\ N_m \end{pmatrix}$ $\sum_{i=1}^m p_i = 1$	$\{0,, n\}^m$ ensemble de m – uplets	$P(N = K) = P(N_1 = k_1) = P(N_m = k_m) = \frac{n!}{k_1! k_2! k_m!} p_1^{k_1} p_2^{k_2} p_m^{k_m}$	$ \left(\begin{array}{c} np_1 \\ \dots \\ np_m \end{array}\right) $	$V(N_i) = np_i (1 - p_i)$ et $Cov(N_i, N_j)$ $= np_i p_j$	Succession de <u>n</u> essais identiques et indépendants d'une expérience aléatoire à <u>m</u> issues possibles; l'issue i ayant la probabilité p _i d'être réalisée On s'intéresse au vecteur aléatoire formé par le <u>n</u> ombre de réalisations de chaque issue.

Lois discrètes du tirage sans remise

Nom	$\mathbf{X}(\Omega)$	Loi $(\mathbf{P}(X=k))$	$\mathbf{E}(X)$	$\mathbf{V}(X)$	Cas d'utilisation
Loi hypergéométrique $X \hookrightarrow \mathcal{H}y(N, n, p)$	$ \left\{ \begin{array}{l} \sup \left\{ 0, n - (1 - p) N \right\}, \\ \dots, \inf \left\{ n, pN \right\} \end{array} \right\} $	$\frac{C_{pN}^kC_{(1-p)N}^{n-k}}{C_N^n}$	np	$np(1-p)\frac{(N-n)}{N-1}$	Nombre de succès obtenus lors d'une succession de n tirages aléatoires sans remise (dépendants) avec une dichotomie (p= proba de succès)
Loi de Poisson $X \hookrightarrow \mathcal{P}(\lambda)$ $\lambda > 0$	N	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ	Nombre d'apparitions d'un évènement <u>rare</u> durant un intervalle de temps ou d'espace fixe

Lois usuelles continues

Loi	Densité $f(x)$	Fonction de répartition $F(x)$	$\mathbf{E}(X)$ $\mathbf{V}(X)$
Loi uniforme $X \hookrightarrow \mathcal{U}([a,b])$	$\frac{1}{b-a} 1\!\!1_{[a,b]}(x)$	$ \begin{cases} 0 & x \leq a \\ \frac{x-a}{b-a} & x \in [a,b] \\ 1 & x \geqslant b \end{cases} $	$\frac{a+b}{2}$ $\frac{(b-a)^2}{12}$
Loi exponentielle $X \hookrightarrow \mathcal{E}(\lambda) \lambda > 0$ $\mathcal{E}(\lambda) = \gamma(1, \lambda)$	$\lambda e^{-\lambda x} \mathbb{1}_{\{x \geqslant 0\}}$	$\begin{cases} 1 - e^{-\lambda x} & x \geqslant 0\\ 0 & \text{sinon} \end{cases}$	$\frac{1}{\lambda} \text{ex: temps d'attente} \\ \frac{1}{\lambda^2} \text{avant l'arrivée d'un} \\ \frac{1}{\lambda^2} \text{phénomène.}$
Loi de Laplace-Gauss ou loi normale $X \hookrightarrow \mathcal{N}(\mu, \sigma^2)$ $\sigma > 0$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\int_{-\infty}^{x} f(t) dt$ tabulée pour le cas centré réduit	μ la combinaison de v.a. normales suit une σ^2 normale.
Loi Log-normale $X \hookrightarrow L\mathcal{N}(\mu, \sigma^2)$ $(\ln X \hookrightarrow \mathcal{N}(\mu, \sigma^2))$	$\frac{1}{x\sqrt{2\pi\sigma^2}} \exp{-\frac{1}{2\sigma^2} (\ln x - \mu)^2} \mathbb{1}_{\{x>0\}}$	$X = e^{Y} \text{avec}$ $X \hookrightarrow \mathcal{N}(\mu, \sigma^{2})$	$e^{\mu + \frac{\sigma^2}{2}}$ $\left(e^{\sigma^2} - 1\right)\left(e^{2\mu} + \sigma^2\right)$
Loi Gamma $X \hookrightarrow \gamma(a, \lambda)$	$\frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x} 1_{\{x>0\}}$	$1 - e^{-x} \left(1 + x + \frac{x^2}{2} + \dots \right)$	$\frac{\frac{a}{\lambda}}{\frac{a}{\lambda^2}} \gamma\left(1,\lambda\right) = \mathcal{E}\left(\lambda\right)$
Loi Bêta $X \hookrightarrow \beta(a,b)$ $\frac{\gamma(a,1)}{\gamma(b,1)} = \beta(a,b)$	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1} (1-x)^{b-1} \mathbb{1}_{[0,1]}(x)$		$\frac{\frac{a}{a+b}}{\frac{ab}{(a+b)^2(a+b+1)}}$
Loi de Cauchy $X \hookrightarrow \mathcal{C}(\theta)$	$\frac{1}{\pi} \frac{1}{1 + (x - \theta)^2} 1_{\{x \in \mathbb{R}\}}$		

Lois usuelles continues (suite)

Loi	Densité $f(x)$	$\begin{array}{ c c } \mathbf{E}(X) \\ \mathbf{V}(X) \end{array}$	Construction
Loi de khi-deux à n degrés de liberté $X \hookrightarrow \chi^2_{(n)}$	$\frac{1}{2\Gamma(\frac{n}{2})} \left(\frac{x}{2}\right)^{\frac{n}{2}-1} e^{-\frac{x}{2}} 1\!\!1_{\{x \geqslant 0\}}$	n $2n$	C'est la loi de la somme de n variables aléatoires indépendantes normales centrées réduites élevées au carré utilisée souvent pour les variances. $\frac{1}{2}\chi^2_{(n)} = \gamma\left(\frac{n}{2},\frac{1}{2}\right)$
Loi de Student à n degrés de liberté $X \hookrightarrow \mathcal{T}(n)$	$\frac{\Gamma\left(\frac{n+1}{2}\right)n^{-\frac{1}{2}}}{\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{1}{2}\right)\left(1+\left(\frac{x}{\sqrt{n}}\right)^2\right)^{\frac{n}{2}+1}}$	0 car symétrique $rac{n}{n-2}$ $n>2$	C'est la loi du quotient d'une normale centrée réduite et de la racine d'une khideux divisée par son nombre de degrés de liberté; les deux variables aléatoires étant indépendantes $\left(\mathcal{T}\left(n\right) = \frac{N(0,1)}{\sqrt{\chi^2/n}}\right)$ utilisée souvent pour les v.a. réduites
Loi de Fisher-Snédécor à n et m degrés de liberté $X \hookrightarrow \mathcal{F}(n,m)$	$\frac{n^{\frac{n}{2}}m^{\frac{m}{2}}}{B(\frac{n}{2},\frac{m}{2})}\frac{x^{\frac{n}{2}-1}}{(nx+m)^{\frac{(n+m)}{2}}} 1_{\{x>0\}}$	$ \frac{\frac{m}{m-2}}{2\frac{m^2(n+m-2)}{n(m-2)^2(m-4)}} m > 4 $	C'est la loi du quotient de deux khi-deux indépendantes divisées chacune par son nombre de degrés de liberté $\left(\frac{\chi^2/n}{\chi^2/m}\right)$