Informatique Théorique

Informatique Théorique 5

(MAM3-SI3)

20 novembre 2017

1 Gammes

Soit x = abbcc un mot sur l'alphabet $V = \{a,b,c\}$.

- 1. Quelle est la valeur de |x|?
- 2. Donner un mot de V^3 qui n'est pas un facteur de x.
- 3. Donner tous les facteurs de x qui appartiennent à V^3 .
- 4. Donner l'ensemble Pref(x) des préfixes de x.
- 5. Donner l'ensemble Suff(x) des suffixes de x.

2 un peu, beaucoup, passionnément,.....

- 1. Déterminez un mot de longueur 7 sur un alphabet à trois lettres ayant le plus petit nombre possible de facteurs différents.
- 2. Déterminez un mot de longueur 7 sur un alphabet à trois lettres ayant le plus grand nombre possible de facteurs différents.

3 Distributivité

Soit Σ un alphabet et L,M,N trois langages sur cet alphabet. Les égalités suivantes sont-elles vraies ou fausses?

$$L.(M \cup N) = (L.M) \cup (L.N)$$

2.

$$L.(M \cap N) = (L.M) \cap (L.N)$$

4 Langages

- 1. Soient trois langages L_1 , L_2 , L_3 sur l'alphabet $\Sigma = \{a,b\}$ définis par
 - $-L_1 = \{\epsilon, a, b, ab, ba, aba, aaba, abba, abaa\}$
 - $L_2 = \{ w \in \Sigma^* \mid 0 < |w|_b < |w|_a \}$
 - $L_3 = \{ w \in \Sigma^* \mid \exists n, m \in N, n < m \ w = a^n b a^m \}$

Calculer $L_1 \cap L_2$, $L_1 - L_3$.

2. Soient L_1 , L_2 , deux langages. Si ϵ appartient à $L_1.L_2$ que peut on dire de L_1 et L_2 ?

5 Union étoilée

- 1. Montrer qu'il existe des langages L_1 et L_2 sur le même alphabet V, tels que $(L_1 \cup L_2)^* \neq L_1^* \cup L_2^*$.
- 2. De façon similaire, trouver des langages L_1 et L_2 tels que $(L_1.L_2)^* \neq L_1^*.L_2^*$.
- 3. L étant un langage quelconque, L^* est-il toujours un langage infini?
- 4. Avec $L = \{00,01,10,11\}$, montrer que L^* est l'ensemble des mots de longueur paire. Peut-on trouver un langage X tel que X^* soit l'ensemble des mots de longueur impaire?

6 Simplification?

On considère un alphabet A, une lettre a de A et deux langages L et M sur l'alphabet A

- 1. Si $\{a\}.L = \{a\}.M$ alors a-t-on L = M?
- 2. Peut-on avoir $L^* = M^*$ quand $L \neq M$?

7 Echiquiers

On suppose que n est un entier non nul. Soit un échiquier ayant 2^n cases par coté. Un trimino est un morceau d'échiquier de 3 cases non alignées.

- 1. Prouvez que l'on peut recouvrir par des triminos, un échiquier ayant 2^n cases par coté et auquel on a enlevé une case de coin.
- 2. Prouvez que le recouvrement est possible quel que soit l'emplacement de la case que l'on enl ève à l'échiquier. En déduire que $\forall n \in N \ 2^{2n} 1$ est divisible par 3.
- 3. Conclure que la condition de divisibilité est une condition nécessaire mais pas suffisante.

8 Palindromes

- 1. Donnez et prouvez une définition inductive pour l'ensemble des mots binaires palindromes. Est-ce que la définition est libre?
- 2. Donner un exemple de schéma inductif, ne comportant qu'une règle et qui cependant n'est pas libre.

9 Equilibre

Soit M le sous ensemble de $\{a, b\}^*$ constitué des mots ayant autant de a que de b. Soit E l'ensemble défini de manière inductive par

- Base: $B = \{\epsilon\}$
- Règles: $\Omega = \{\omega_a, \omega_d\}$ avec $\omega_a(m) = amb$ et $\omega_d(m) = bma$.
- 1. Le schéma définissant E est-il libre?
- 2. A-t-on $M \subset E$?
- 3. A-t-on $E \subset M$?
- 4. Déterminez et prouvez une définition inductive pour M.
- 5. Donnez une définition non inductive de E.

10

```
Soit LP le langage défini sur l'alphabet \{(, )\} par – Base: B = \{\epsilon\}
```

– Règle: $\Omega = \{\omega\}$ avec $\omega(u,v) = (u)v$.

Montrer par induction structurelle que les mots de LP ont exactement autant de (que de).

11

Donner et prouver une définition inductive pour l'ensemble des mots sur l'alphabet $\Sigma = \{a, b\}$ ne comportant pas deux a consécutifs. Votre schéma est-il libre?

12

Considérons LBP l'ensemble des mots m sur l'alphabet $\Sigma = \{(,)\}$ tels que $|m|_{(} = |m|_{)}$ et dans tout pr éfixe u de m, $|u|_{(} \ge |u|_{)}$.

- 1. Montrez que LBP = LP
- 2. Montrez que le schéma définissant LP est libre

13

LP2est définit inductivement par

- Base: $B = \{\epsilon\}$
- Règles: $\Omega = \{\omega_1, \omega_2\}$ avec $\omega_1(u) = (u)$ et $\omega_2(u,v) = uv$.
- 1. Montrez que LP = LP2.
- 2. Le schéma définissant LP2 est-il libre?

14

Soit A l'alphabet $\{(,)\}$ et soit L le sous ensemble de A^* formé des mots dont tous les préfixes contiennent au moins autant de (que de).

- 1. Donnez une définition inductive de L et prouvez-la.
- 2. Montrez que L n'est pas égal à l'ensemble des mots bien parenthésés. Comment peut-on associer à un mot de L, un mot bien parenthésé?
- 3. Le schéma que vous avez donné à la première question est-il libre ou ambigu?