Problema de Corte Bidimensional Não Guilhotinado

Hosana Gomes Pinto Lívia de Azevedo da Silva

Problema de Corte Bidimensional Não Guilhotinado

O que é

- Cortar peças menores a partir de uma peça de dimensões maiores de maneira otimizada (Cintra, 1998; Neto, 2005).

 Diversas aplicações industriais, com diferentes objetivos e tipos de produção:

- Nas indústrias de madeira e vidro: Como cortar as peças retangulares dentro da vasta gama de materiais?

Aplicações: Indústrias de móveis

Tabela 1. Detalhamento das peças que compõem a cômoda: espessura, comprimento, largura e quantidade requerida na produção de um produto.

Tipo de peça	Espessura (mm)	Comprimento (mm)	Largura (mm)	Quantidade requerida
Contrafundo	3	710	535	2
Lateral	9	1062	530	2
Fundo das gavetas	12	647	453	6
Lateral gaveta multiuso	20	440	65	2
Tampo e base	25	970	570	2

Figura 1. Peças que compõem o produto final cômoda.

Nas indústrias de papel:
 Como realizar o corte nas bobinas considerando a largura de cada corte?

Na indústria naval:

Como organizar um conjunto de objetos dentro dos contêineres ?

- Na área de composição de jornais:

Como "cortar" o jornal seguindo as dimensões dos anúncios e artigos?

Motivação

- Um corte não otimizado ocasiona em:
 - Desperdício de material
 - Prejuízo financeiro
- Um corte otimizado:
 - Gera melhor aproveitamento da matéria-prima
 - Aumenta a produção, com melhor qualidade e menor custo

Problema de Corte **Bidimensional** Não Guilhotinado

Em uma dimensão

- Problemas unidimensionais: considerando apenas o comprimento;
- Exemplos:
 - Corte de bobinas de papel;

L

Em duas dimensões

- Problemas bidimensionais:
 considerando apenas largura e
 comprimento;
- Exemplos:
 - Corte de chapas de metal;
 - Corte de chapas de madeira;
 - Corte de peças de couro.

Em três dimensões

- Problemas tridimensionais: considerando largura, profundidade e altura.
- Exemplos:
 - Corte de espumas para colchões ou isopor.

Problema de Corte Bidimensional **Não Guilhotinado**

Corte Guilhotinado: definição

 O corte guilhotinado é definido como um corte que, obrigatoriamente e seguindo uma determinada direção(horizontal ou vertical), inicia em um extremidade e termina em outra;

- Em outras palavras, é um corte paralelo ao retângulo de modo que o mesmo é dividido em dois novos retângulos.

Corte Guilhotinado: definição

- O corte guilhotinado pode ser dividido em estágios:
 - Estágio é a direção atual que os cortes guilhotinados são feitos na peça;
 - A passagem de um estágio para outro caracteriza uma mudança de direção do corte.

Corte Guilhotinado: definição

Figura 3.3 - Cortes guilhotinados em dois estágios.

Guilhotinado X Não-Guilhotinado

Fonte: (PARREÑO, 2004)

Fonte: (PARREÑO, 2004)

Guilhotinado X Não-Guilhotinado

Padrão de corte tipo guilhotinado

Fonte: (PARREÑO, 2004)

Padrão de corte tipo nãoguilhotinado

Fonte: (PARREÑO, 2004)

Guilhotinado X Não-Guilhotinado

(a) Non-guillotine pattern and (b) Guillotine pattern.

Contextualização

- Problema presente no dia-a-dia de várias empresas do Norte e Noroeste Fluminense.

- A citar, a situação de uma marmoraria:

Modelagem do problema

- O retângulo grande R = (L, W) possui comprimento L e largura W.
- Os retângulos menores são denominados peças.
- Cada peça i pode ser definida por três atributos i = (li, wi, vi),
 - li = comprimento,
 - wi = largura e
 - vi = valor da peça.

L

Modelagem do problema

 As peças têm orientação fixa e suas bordas são paralelas às do retângulo R.

 R deve ser cortado em xi peças menores, com dimensões correspondentes às peças i.

W

O problema é maximizar ∑i vixi.

L

Modelagem do problema

O problema é diferenciado em 3 tipos:

1. Irrestrito: não há limites mínimo e máximo de quantidade para o corte das peças.

2. Restrito: a quantidade de peças de cada tipo possui um limite superior.

3. Duplamente Restrito: possui tanto o limite superior quanto o inferior.

Modelagem do problema: Soluções

Irrestrito: Sol. Ótima = 268

Restrito: Sol. Ótima = 247

D. Restrito: Sol. Ótima = 220

Exemplo de solução para o problema de corte. Adaptado de Alvarez-Valdes et al. (2007).

Bibliografia

- Stephen C.H. Leung, Defu Zhang. A fast layer-based heuristic for non-guillotine strip packing. Expert Systems with Applications 38 (2011) 13032–13042.
- GAMPERT, Gilberto. Problema de Corte Bidimensional. Programa de Pós-Graduação em Computação Aplicada. Instituto de Ciências Exatas e Geociências, Universidade de Passo Fundo(RS).
- Douglas Alem, Reinaldo Morabito. *O problema combinado de planejamento da produção e corte de estoque sob incertezas: Aplicação em fábricas de móveis de pequeno porte.* Gestão de Produção de São Carlos, v.20,n.1,p. 111-133, 201.

Bibliografia

- Roberto Baldacci, Marco A. Boschetti. *A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem*. European Journal of Operational Research 183 (2007) 1136–1149.
- VELASCO, André Soares. GRASP para o Problema de Corte Bidimensional Guilhotinado e Restrito. Universidade Estadual do Norte Fluminense(UENF), Campos dos Goytacazes, Rio de Janeiro.
- G.F. Cintra, F.K. Miyazawa, Y. Wakabayashi, E.C. Xavier. *Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation*. European Journal of Operational Research 191 (2008) 61–85

Bibliografia

 Gelinton Pablo Mariano, André Renato Sales Amaral. Meta-Heurística Simulated Annealing aplicada ao problema de Corte Bidimensional não-guilhotinado.XLVII Simpósio Brasileiro de Pesquisa Operacional, 2015.