

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB)

Faculty of Engineering

Department of Electrical and Electronic Engineering

Course/Lab Name: EEE4103 Microprocessor and Embedded Systems

Semester: Spring 2024-25 Term: Final Quiz: 01F Total Marks: 10 Time: 20 Minutes

Question Mapping with Course Outcomes:

Item	COs	POIs	K	P	A	Marks	Obtained Marks
Q1-3	CO4	P.a.4.C.3	K4	P1, P3, P7		3×10	
Total: 30							

Student Information:

Student Name:	Solve Sheet	Section:	P		
Student ID #:	Solve Sheet	Date:	21.05.2025	Department:	

1. **Compute** the baud rate for the asynchronous double-speed operating mode when the oscillator frequency, [10] $f_{OSC} = 16$ MHz, and register data is UBRRn = 010110101110. **Compute** the baud error and comment on whether there will be any communication errors. Standard Baud rates are 300, 600, 1200, 2400, 4800, 9600, 14400,19200, 38400, 57600, 115200, 230400, ... bps.

Answer:

$$\begin{aligned} UBRRn &= 010110101110 = 0 \times 2^{11} + 1 \times 2^{10} + 0 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 \\ &= 1024 + 256 + 128 + 32 + 8 + 4 + 2 = 1454 \end{aligned}$$

For the asynchronous double-speed operating mode, $Baud\ Rate = \frac{f_{osc}}{8(UBRRn+1)} = \frac{16\times10^6}{8(1454+1)} = 1375\ bps$

Baud Error Rate,
$$\varepsilon = \frac{Standard\ baud\ rate-calculated\ baud\ rate}{Standard\ baud\ rate} \times 100\% = \frac{1200-1375}{1200} \times 100\% = 14.6\%$$
 This value is >> 2%, therefore, there will be communication errors.

2. For the following program, **show** the output on the serial monitor if the shutter remains open for 20 ms. **Determine** the baud rate and the pin number to which the camera shutter is connected.

```
volatile boolean started;
      volatile unsigned long startTime;
      volatile unsigned long endTime;
      void shutter() {
                            // interrupt service routine named shutter started
        if (started)
             endTime = micros();
             startTime = micros();
      started = !started; } // end of the ISR named shutter
      void setup() {
        Serial.begin(230400);
        Serial.println("Shutter test ...");
        attachInterrupt(digitalPinToInterrupt(5), shutter, CHANGE);
        // end of the setup
      void loop() {
        if (endTime) {
          Serial.print("Shutter open for ");
          Serial.print(endTime - startTime);
          Serial.println(" microseconds.");
                        } // end of if statement
          endTime = 0;
} // end of the Loop
```

Answer:

Shutter test ...

Shutter open for 20000 microseconds.

From this command in the code, Serial.begin(230400); We find the baud rate is 230400 bps

From the command in the code, attachInterrupt(digitalPinToInterrupt(5), shutter, CHANGE);

We find that the pin number is the digital pin 5.

3. **Draw** the timing waveforms for the following data transfer structure using a 10-bit addressing I2C protocol. **Compute** the amount of data being transferred, data transfer rate, and frame rate. The operating frequency is 5 MHz.

Answer:

The timing waveform is given below:

The operating frequency, f = 5 MHz. So, the clock period, T = 1/f = 1/5MHz = 0.2 μ s.

The total time for data transfer of 45 bits = $45 \times 0.2 = 9 \mu s$.

- 9 μs time is required to transfer 45 bits of data
- \therefore 1 μ s time is required to transfer $\frac{45}{9}$ bits of data
- .. 1 s = 106 μ s time is required to transfer $\frac{45 \times 10^6}{9}$ bits of data

That is, 5×10^6 bits of data are transferred per second, or 5 Mbps.

The total amount of bits transferred in one frame = Target address bits + Read/Write bit + Acknowledgment bit + Target address bits + Acknowledgment bit + Data bit + Acknowledgment bit = 7 + 1 + 1 + 8 + 1 + 8 + 1 = 27 bits

The total time for data transfer of 1 frame, i.e., 27 bits = $27 \times 0.2 = 5.4 \mu s$.

- 5.4 μs time is required to transfer 1 frame of data
- \therefore 1 μ s time is required to transfer $\frac{1}{54}$ frame
- \therefore 1 s = 10⁶ μ s time is required to transfer $\frac{1\times10^6}{54}$ frame

That is, $\frac{10^6}{5.4} = 185185$ frames are transferred each second. Therefore, the frame rate is 185.185 kfps.