PROBABILITY THEORY II

Matthew Joseph, notes by Ramdas Singh

Second Semester

List of Symbols

 Ω , a sample space.

 ω , an element of a sample space.

EX, the expectation of the random variable X.

Var X, the variance of the random variable X.

 $N(\mu, \sigma^2)$, a normal distribution with expectation μ and variance σ^2 .

 $N_n(k)$, the number of paths from (0,0) to (n,k) in a simple random walk.

 $N_n^+(k)$, the number of paths from (0,0) to (n,k) through strictly positive values in a random walk.

 p_k^X , the probability mass function for a random variable X.

Contents

1	RANDOM WALKS AND MISC. RESULTS				
	1.1	The Law of Large Numbers	2		
		Simple Random Walk			
	1.3	Erdös-Renyi Random Graph	7		
2	GEN	NERATING FUNCTIONS	11		
	2.1	Random Walks, with Generating Functions	13		
		Simple Random Walks in Higher Dimensions			
Appendices					
A Appendix					
Ind	dev		21		

Chapter 1

RANDOM WALKS AND MISC. RESULTS

January 3rd.

We first start with some initial statements. Let Ω be a countable state space, and let each $\omega \in \Omega$ have a probability $P(\omega)$ associated with it.

Lemma 1.1. For random variables X, Y such that $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$. Then, $EX \leq EY$.

Proof. This can easily be seen by summing over all terms via the alternate definition of the expectation,

$$EX = \sum_{\omega \in \Omega} X(\omega) P(\omega) \le \sum_{\omega \in \Omega} Y(\omega) P(\omega) = EY. \tag{1.1}$$

We now state Markov's inequality.

Theorem 1.2 (Markov's inequality). If X is a non-negative randm variable, then for a > 0, we have

$$P(X > a) \le \frac{EX}{a}. (1.2)$$

Proof. Define an indicator function $I_a(\omega)$ as 1 if $X(\omega) \geq a$, and 0 if otherwise. We then have

$$I_a(\omega) \le \frac{X(\omega)}{a} \implies P(X \ge a) = EI_a \le \frac{1}{a}EX.$$
 (1.3)

Remark 1.3. A better upper bound here may be found by starting with $I_a(\omega)X(\omega)$ instead of just $X(\omega)$.

If we have $X \sim N(0,1)$, then we can find an upper bound for its probability density function.

$$P(X > a) = \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx \le \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{x}{a} e^{\frac{-x^2}{2}} dx = \frac{e^{\frac{-a^2}{2}}}{\sqrt{2\pi}a}.$$
 (1.4)

Note that X here is a random variable over a continuous state space; the previous lemma and Markov's inequality also work here. We are to show them for the continuous case instead of the discrete one.

Proof. Here, we have $0 \le X(\omega) \le Y(\omega)$ for all ω in our continuous state space Ω . We see that $\{X > x\} \subseteq \{Y > x\} \implies P(X > x) \le P(Y > x)$. Integrating both sides gives us $EX \le EY$.

Theorem 1.4 (Chebyshev's inequality). Let X be a random variable with finite mean $\mu = EX$ and finite variance $\sigma^2 = Var(X)$. Then for a > 0,

$$P(|X - \mu| > a) \le \frac{Var(X)}{a^2}.$$
(1.5)

Proof. Start with the proof of Markov's inequality, replacing the indiciator function with one that's unity when $|X - \mu| \ge a$.

Example 1.5. Suppose X_1, X_2, \ldots, X_n are n independent and identically distributed random variables, with $EX_i = \mu$ and $VarX_i = \sigma^2$. If $S_n = \sum X_i$, we then have

$$P(|S_n - n\mu| > a) \le \frac{\text{Var}S_n}{a^2} = \frac{n\sigma^2}{a^2}.$$
 (1.6)

If we replace a with $n^{\frac{1}{2}+\varepsilon}$, we then have

$$P(|S_n - n\mu| > n^{\frac{1}{2} + \varepsilon}) \le \frac{\sigma^2}{n^{2\varepsilon}} \to 0 \text{ as } n \to \infty.$$
 (1.7)

Proposition 1.6. If Var(X) = 0, then P(X = EX) = 1.

Proof. For all $\varepsilon > 0$, we have

$$P(|X - EX| > \varepsilon) \le \frac{\operatorname{Var} X}{\varepsilon^2} = 0.$$
 (1.8)

Define A_n as $\{|X - EX| > \frac{1}{n}\}$. Taking $P(\bigcup A_n) = \lim_{n \to \infty} P(A_n)$, the proof follows.

1.1 The Law of Large Numbers

We start by stating the weak law of large numbers.

Theorem 1.7 (Weak law of large numbers). Let $\{X_k\}_{k\geq 1}$ be a sequence of independent and identically distributed random variables with $E|X_i| < \infty$. Let $\mu = EX_i$. Then for any a > 0,

$$\lim_{n \to \infty} P\left(\left| \frac{X_1 + X_2 + \dots + X_n}{n} - \mu \right| > a \right) = 0. \tag{1.9}$$

Proof. For now, let us assume that Ω is countable. We begin with the case where the variance of X_i , σ^2 , is finite. Fix a > 0, and let $S_n = X_1 + X_2 + \ldots + X_n$. Then,

$$P\left(\left|\frac{S_n}{n} - \mu\right| > a\right) = P(|S_n - n\mu| > na) \le \frac{\operatorname{Var}S_n}{n^2 a^2} = \frac{n\sigma^2}{n^2 a^2} \to 0 \text{ as } n \to \infty.$$
 (1.10)

We now focus the case when the variance, σ^2 , is infinite. Assume that the expected value, μ , is 0; if it were non-zero, we would then instead work with $X_i - \mu$. Let $\delta > 0$; we shall choose a particular δ later. For each n, define n pairs of random variables, $U_1, V_1, \ldots, U_n, V_n$, as $U_k = X_k, V_k = 0$ if $|X_k| \leq \delta n$, and $U_k = 0, V_k = X_k$ if $|X_k| > \delta n$. X_k can be rewritten as $U_k + V_k$. We then have

$$\{|X_1 + \ldots + X_n| \ge na\} \subseteq \{|U_1 + \ldots + U_n| \ge \frac{na}{2}\} \cup \{|V_1 + \ldots + V_n| \ge \frac{na}{2}\}$$
 (1.11)

$$\implies P(|X_1 + \dots + X_n| \ge na) \le P(|U_1 + \dots + U_n| \ge \frac{na}{2}) + P(|V_1 + \dots + V_n| \ge \frac{na}{2}).$$
 (1.12)

We focus on the first term on the right hand side. The U_i 's are independently and identically distributed, so

$$P\left(|U_1 + \ldots + U_n| \ge \frac{na}{2}\right) \le \frac{4E[|U_1 + \ldots + U_n|^2]}{a^2n^2} = \frac{4}{a^2n^2} \left(\operatorname{Var}(U_1 + \ldots + U_n) + (nEU_i)^2\right). \tag{1.13}$$

For the variance, we have

$$Var(U_1 + ... + U_n) = nVarU_i \le nEU_i^2 \le nE[|U_i| |U_i|] \le \delta n^2 E[|U_i|]$$
(1.14)

which transforms the previous equation as

$$P(|U_1 + ... + U_n| \ge \frac{na}{2}) \le \frac{4}{a^2 n^2} (\delta n^2 E[|U_i|] + (nEU_i)^2).$$
 (1.15)

A lemma (to be proven later) states that $E[|U_i|] = E[|X_i|]$ as $n \to \infty$, and $EU_i = EX_i = 0$ too. So,

$$P\left(|U_1 + \ldots + U_n| \ge \frac{na}{2}\right) \le \frac{4}{a^2n^2} \left(\delta n^2 E[|U_i|] + (nEU_i)^2\right) \le \frac{4\delta E[|U_i|]}{a^2} + \frac{4}{a^2} (EU_i)^2. \tag{1.16}$$

For the second term on the right hand side, begin with

$$P(V_{1} + \ldots + V_{n} \neq 0) \leq P(\{V_{1} \neq 0\} \cup \ldots \cup \{V_{n} \neq 0\}) \leq nP(V_{i} \neq 0) = n \sum_{|x| > \delta n} P(X_{i} = x)$$

$$\leq n \sum_{|x| > \delta n} \frac{|x|}{\delta n} P(X_{i} = x) = \frac{1}{\delta} E[|V_{i}|]. \tag{1.17}$$

The rightmost term here tends to 0 as $n \to \infty$. Now choose δ to be $\frac{\varepsilon a^2}{|6E|X_i||}$, and then choose N to be large enough such that for all n > N, both the terms are smaller than $\frac{\varepsilon}{2}$.

January 7th.

We now prove the lemma called upon earlier.

Lemma 1.8. If X is a discrete random variable and takes values y_1, y_2, \ldots, y_k , and $E[|X|] < \infty$, then $\lim_{n\to\infty} E[|X| 1_{|X|\leq n}] = E[|X|]$.

Proof. Notice that the terms on the left hand side and right hand side are $\sum_{y_k:|y_k|\leq n}$ and $\sum_{y_k}|y_k|P(Y=y_k)$. The condition for convergence may now be applied.

The above equation, begin inside absolute braces, must imply that the term $E[X \cdot 1_{|X| \le n}]$ must also absolutely converge to EX.

1.2 Simple Random Walk

Let X_1, X_2, \ldots be independent and identically distributed random variables, with $X_i = 1$ with probability $\frac{1}{2}$ and $X_i = -1$ with probability $\frac{1}{2}$. Now define $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$. The sequence $(S_n)_{n \geq 0}$ is a simple random walk.

Note that $S_0=k_0=0, S_1=k_1,\ldots,S_n=k_n$ can occur if and only if $|k_i-k_{i+1}|=1$ for all $0\leq i\leq n-1$. The sequence $(k_n)_{n\geq 0}$ is a *simple path* of the simple random walk. By the event $\{S_n=k\}$, we are concerned with the event that the random walk visits k at step n. If $(k_n)_{n\geq 0}$ is given we have $X_i=k_i-k_{i-1}$. Because the X_i 's are independent and identically distributed, each event $\{X_1=l_1,X_2=l_2,\ldots,X_n=l_n\}$, where $l_i=\pm 1$, is equally likely with probability $\frac{1}{2^n}$. Thus,

$$P(S_n = k) = \frac{N_n(k)}{2^n}$$
 (1.18)

where $N_n(k)$ is defined as the number of distinct of path that start at 0 and end at k at step n. We also define $N_n^+(k)$ to be the number of distinct paths that end at k at step n and stay above the x-axis up to time n-1. The probability of the corresponding event is

$$P(\{S_1 > 0, S_2 > 0, \dots S_{n-1} > 0, S_n = k\}) = \frac{N_n^+(k)}{2^n}.$$
(1.19)

Lemma 1.9. Suppose a, a', b, b' are integers, with $0 \le a < a'$. Then the number of distinct path from (a,b) to (a',b') depends only on a'-a=n and b'-b=k, and is given by $\binom{n}{n+k}$.

Proof. Notice that we need x+1's and y-1's to appear, satisfying x+y=a'-a and x-y=b'-b. Solving, we get $x=\frac{n+k}{2}$ and $y=\frac{n-k}{2}$. Thus, the number of paths is given by $\binom{n}{n+k}$.

Using this lemma, we find that $N_n(k) = \binom{n}{\frac{n+k}{2}}$. The following convention is now followed; if t is not an integer, then $\binom{n}{t} = 0$.

Lemma 1.10 (The method of images). Suppose a, a', b, b' are integers, with $0 \le a < a'$ and b, b' > 0. Then the number of distinct paths from (a, b) to (a', b') that intersect the x-axis is equal to the number of paths from (a, -b) to (a', b').

Proof. Consider any path $(b = k_0, k_1, \ldots, k_{n-1}, k_n = b')$, from (a, b) to (a', b'), that intersects the x-axis. Let j be the smallest index for which $k_j = 0$. For ease, denote (a, b) by A, (a', b') by A', (a + j, 0) by B, and (a, -b) by A''. Reflect the segment from A to B about the x-axis to obtain a 'mirrored-path' from A'' to B; $(-b = -k_0, -k_1, \ldots, -k_{j-1}, k_j = 0, k_{j+1}, \ldots, k_n = b')$. There is now a one-to-one correspondence between the paths from A to A' that intersect the x-axis, and the paths from A'' to A'.

We can now easily compute $N_n^+(k)$; it simply the number of paths from (1,1) to (n,k) that do not intersect the x-axis.

Theorem 1.11 (Ballot theorem). The number of paths that progress from (0,0) to (n,k) through strictly positive values is given by $N_n^+(k) = \frac{k}{n} N_n(k)$.

Proof. We have

$$N_n^+(k) = \text{ number of paths from } (1,1) \text{ to } (n,k) - \text{ number of such paths that intersect the } x\text{-axis}$$

$$= N_{n-1}(k-1) - N_{n-1}(k+1)$$

$$= \binom{n-1}{\frac{n+k}{2}-1} - \binom{n-1}{\frac{n+k}{2}} = \frac{k}{n} \binom{n}{\frac{n+k}{2}} = \frac{k}{n} N_n(k). \tag{1.20}$$

Suppose $n = 2\nu$. Define $u_{2\nu}$ to be $P(S_{2\nu} = 0) = \frac{\binom{2\nu}{\nu}}{2^n}$. The question we ask is to compute the probability that the first return to 0, if at all, occurs after step n. It can be found out as

$$P(\text{first return to } 0...) = P(S_1 \neq 0, S_2 \neq 0, \dots, S_{2\nu} \neq 0)$$

$$= P(S_1 > 0, \dots, S_{2\nu} > 0) + P(S_1 < 0, \dots, S_{2\nu} < 0)$$

$$= 2P(S_1 > 0, \dots, S_{2\nu} > 0)$$

$$= 2 \sum_{k \text{ even}, k > 0} P(S_1 > 0, \dots, S_{2\nu-1} > 0, S_{2\nu} = k)$$

$$= \frac{2}{2^{2\nu}} \sum_{k \text{ even}, k > 0} N_{2\nu}^+(k)$$

$$= \frac{2}{2^{2\nu}} \sum_{k \text{ even}, k > 0} N_{2\nu-1}(k-1) - N_{2\nu-1}(k+1)$$

$$= \frac{2}{2^{2\nu}} N_{2\nu-1}(1) = u_{2\nu}.$$

$$(1.21)$$

We state this down as a lemma.

Lemma 1.12 (Basic lemma). For n even, the probability that the first return to 0, if at all, occurs after step n is the same as the probability that the location at step n is 0. For n odd, it is the probability that the location at step n-1 is 0.

We ask another question; for a fixed n, where does the random walk achieve its first maximum upto time n? For this, denote by M_n the index m at which the walk S_0, S_1, \ldots, S_n , over n steps, achieves its maximum for the first time.

For 0 < m < n, $M_n = m$ if and only if $S_m > S_0$, $S_m > S_1, \ldots, S_m > S_{m-1}$ and $S_m \ge S_{m+1}$, $S_m \ge S_{m+2}, \ldots, S_m \ge S_n$. Notice that the first of these two conditions depends only on X_1, X_2, \ldots, X_m , and the second condition depends only on $X_{m+1}, X_{m+2}, \ldots, X_n$. So, $P(M_n = m) = P(S_m > S_0, S_m > S_1, \ldots, S_m > S_{m-1}) \cdot P(S_m \ge S_{m+1}, S_m \ge S_{m+2}, \ldots, S_m \ge S_n)$.

The key idea here is to consider the reversed walk; define a new walk with $X_1' = X_m$, $X_2' = X_{m-1}, \ldots, X_m' = X_1$. Also define $S_k' = X_1' + \ldots + X_k'$. From here, we can deduce that $S_m > S_{m-i}$ is true if and only if $X_m + \ldots + X_{m-i} > 0$ is true, which is true if and only if $S_i' > 0$ is true. So, $P(S_m > S_0, S_m > S_1, \ldots, S_m > S_{m-1}) = P(S_1' > 0, S_2' > 0, \ldots, S_m' > 0)$. If we now define $S_k'' = X_{m+1} + \ldots + X_{m+k}$, we have

$$P(S_m \ge S_{m+1}, \ S_m \ge S_{m+2}, \dots, S_m \ge S_n) = P(X_{m+1} \le 0, \ X_{m+1} + X_{m+2} \le 0, \dots, X_{m+1} + \dots + X_n \le 0)$$

$$= P(S_1'' \le 0, \ S_2'' \le 0, \dots, S_{n-m}'' \le 0)$$

$$= P(S_1'' \ge 0, \ S_2'' \ge 0, \dots, S_{n-m}'' \ge 0)$$

The first of the terms discussed, $P(S_1'>0,\ S_2'>0,\dots,S_m'>0)$, can be computed for $m=2\nu,2\nu+1$; it is simply $\frac{1}{2}u_{2\nu}$. For the latter of these terms, we introduce a new random variable \tilde{X} which has the same distribution as the X_i 's and is independent. Also define \tilde{S}_i to be $\tilde{X}+X_1+\ldots+X_{i-1}$ and \tilde{S}_0 to be 0.

We then have

$$\frac{1}{2}P(S_0 \ge 0, \dots, S_{n-m} \ge 0) = P(\tilde{X} = 1) \cdot P(S_0 \ge 0, \dots, S_{n-m} \ge 0)
= P(\tilde{X} = 1, S_0 \ge 0, S_0 \ge 0, \dots, S_{n-m} \ge 0)
= P(\tilde{S}_1 = 1, \tilde{S}_2 > 0, \dots, \tilde{S}_{n-m+1} > 0)
= P(S_1 > 0, S_2 > 0, \dots, S_{n-m+1} > 0).$$
(1.23)

Thus, we get

$$P(M_n = m) = \frac{1}{2} u_{2k} u_{2\nu - 2k} \tag{1.24}$$

where m is of the form 2k or 2k+1, and n is of the form 2ν , with $1 < k < \nu$.

January 10th.

Plugging in m = 0, we get $P(M_n = 0) = P(S_1 \le 0, ..., S_{2\nu} \le 0) = \frac{1}{2}u_{2\nu}$. For m = n, we have $P(M_n = n) = P(S_1 \le 0, ..., S_{2\nu} \le 0) = \frac{1}{2}u_{2\nu}$. Let us first compute u_{2k} .

$$u_{2k} = P(2k = 0) = \frac{\binom{2k}{k}}{2^{2k}} = \frac{(2k)!}{(k!)^2 2^{2k}}$$
$$\sim \frac{(2k)^{2k + \frac{1}{2}} e^{-2k} \sqrt{2\pi}}{(\sqrt{2\pi}k^{k + \frac{1}{2}} e^{-k})^2 2^{2k}} = \frac{1}{\sqrt{\pi k}}.$$
 (1.25)

For 0 < a < b < 1, we have

$$P(an \le M_n \le bn) = \sum_{m=an}^{bn} P(M_n = m) = \sum_{k=a\nu}^{b\nu} u_{2k} u_{2\nu-2k}$$

$$\sim \sum_{k=a\nu}^{b\nu} \frac{1}{\sqrt{\pi k}} \frac{1}{\sqrt{\pi(\nu - k)}} = \sum_{k=a\nu}^{b\nu} \frac{1}{\nu \sqrt{\pi \frac{k}{\nu}} \sqrt{\pi(1 - \frac{k}{\nu})}}$$

$$\to \frac{1}{\pi} \int_a^b \frac{dx}{\sqrt{x(1-x)}} = \frac{2}{\pi} (\arcsin \sqrt{b} - \arcsin \sqrt{a}). \tag{1.26}$$

In fact, this is the arcsin law for maxima; for $0 \le t \le 1$, we have

$$\lim_{n \to \infty} P\left(\frac{M_n}{n} \le t\right) = \frac{2}{\pi} \arcsin\sqrt{t}. \tag{1.27}$$

If we look at this as a cumulative density funtion, the probability density function becomes $\frac{d}{dt} \frac{2}{\pi} \arcsin \sqrt{t} = \frac{1}{\pi \sqrt{t(1-t)}}$.

We are now interested in \tilde{M}_n , the last time when maximum up to time n is attained. We can just look at the walk backwards again; in this case, we get

$$P(\frac{\tilde{M}_n}{n}) = P\left(\frac{n - \tilde{M}_n}{n} \le t\right) \to \frac{2}{\pi}\arcsin\sqrt{t}.$$
 (1.28)

We now ask the probability that the random walk of $n = 2\nu$ steps last visit 0 at time 2k. We denote by K_n the location of the last return to 0 in a walk of n steps. Now look at

$$\alpha_{2k,2\nu} = P(K_n = 2k) = P(S_{2k} = 0, S_{2k+1} \neq 0, \dots, S_{2\nu} \neq 0)$$

$$= P(S_{2k} = 0) \cdot P(X_{2k+1} \neq 0, \dots, X_{2k+1} + \dots + X_{2\nu} \neq 0)$$

$$= P(S_{2k} = 0) \cdot P(S_1 \neq 0, \dots, S_{2\nu-2k} \neq 0) = u_{2k} u_{2\nu-2k}.$$
(1.29)

We can also state an arcsin law for last visit here; for 0 < t < 1

$$\lim_{n \to \infty} P(K_n \le tn) = \frac{2}{\pi} \arcsin \sqrt{t}. \tag{1.30}$$

If we set the an additional limit that says t tends to 0, replacing t by an arbitrary $\varepsilon > 0$, we have

$$\lim_{n \to \infty} P(K_n = 0) = 0. \tag{1.31}$$

Given enough time, a simple random walk must return to 0.

Denote by f_{2n} the probability that the first return to 0 occurs at time 2n.

$$f_{2n} = P(S_1 \neq 0, \dots, S_{2n-1} \neq 0, S_{2n} = 0)$$

$$= P(S_1 \neq 0, \dots, S_{2n-1} \neq 0) - P(S_1 \neq 0, \dots, S_{2n} \neq 0)$$

$$= P(S_1 \neq 0, \dots, S_{2n-2} \neq 0) - P(S_1 \neq 0, \dots, S_{2n} \neq 0)$$

$$= u_{2n-2} - u_{2n} = \frac{1}{2n-1} u_{2n}.$$
(1.32)

Lemma 1.13. With the usual notation,

$$u_{2n} = f_2 u_{2n-2} + f_4 u_{2n-4} + \ldots + f_{2n} u_0. (1.33)$$

Proof. We have

$$P(S_{2n} = 0) = \sum_{k=1}^{n} P(S_{2n} = 0, \text{ first return at } 2k)$$

$$= \sum_{k=1}^{n} P(\text{first return at } 2k) \cdot P(S_{2n} = 0 \mid \text{first return at } 2k)$$

$$\implies P(S_n = 0) = \sum_{k=1}^{n} f_{2k} u_{2n-2k}.$$
(1.34)

Theorem 1.14. The probability that in the time interval 0 to $n = 2\nu$, the random walk spends 2k amount of time on the positive side and $2\nu - 2k$ amount of time on the negative side is $\alpha_{2k,2\nu}$.

Corollary 1.15. For 0 < t < 1,

$$P(random\ walk\ spends\ less\ than\ tn\ time\ on\ positive\ side) \to \frac{2}{\pi}\arcsin\sqrt{t}.$$
 (1.35)

Proof. This is the proof of the theorem. We introduce $b_{2k,2\nu}$; it is defined as the probability that the random walk of length 2ν and 2k sides above the x-axis. We need to show that $b_{2k,2\nu} = \alpha_{2k,2\nu}$. We have

$$b_{2\nu,2\nu} = P(S_1 \ge 0, S_2 \ge 0, \dots, S_{2\nu} \ge 0) = u_{2\nu},$$
 (1.36)

$$b_{0,2\nu} = P(S_1 \le 0, \dots, S_{2\nu} \le 0) = u_{2\nu}. \tag{1.37}$$

We are left to prove it for $1 \le k \le \nu - 1$. Assume that exactly 2k out of 2ν time are spent above the x-axis, with $1 \le k \le \nu - 1$. Suppose first return to 0 occurs at time $2r < 2\nu$. We deal in cases.

- Case I: 2r time units upto first return are on the positive side. Then, $r \leq k \leq \nu 1$. The time from 2r to 2ν has to be above the x-axis, $2k 2\nu$ time. The number of such paths is $(\frac{1}{2}2^{2r}f_{2r})(2^{2\nu-2r}b_{2k-2r,2\nu-2r})$.
- The 2r time units upto the first return are on the negative side. The nubmer of such paths is $(\frac{1}{2}2^{2r}f_{2r})(2^{2\nu-2r}b_{2k,2\nu-2r})$. Also, $\nu-r\geq k$.

Thus, we have

$$b_{2k,2\nu} = \frac{1}{2} \sum_{r=1}^{k} f_{2r} b_{2k-2r,2\nu-2r} + \frac{1}{2} \sum_{r=1}^{\nu-k} f_{2r} b_{2k,2\nu-2r}.$$
 (1.38)

We now proceed with induction on ν . We have already shown this for $\nu = 1$; assume that this is true for $\nu \leq V - 1$. By induction,

$$b_{2k,2V} = \frac{1}{2} \sum_{r=1}^{k} f_{2r} \alpha_{2k-2r,2V-2r} + \frac{1}{2} \sum_{r=1}^{V-k} f_{2r} \alpha_{2k,2V-2r}$$

$$= \frac{1}{2} u_{2V-2k} \sum_{r=1}^{k} f_{2r} u_{2k-2r} + \frac{1}{2} u_{2k} \sum_{r=1}^{V-k} f_{2r} u_{2V-2k-2r}$$

$$= u_{2k} u_{2\nu-2k} = \alpha_{2k,2\nu}. \tag{1.39}$$

January 17th.

Theorem 1.16 (Weirstrass's polynomial approximation.). Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Then for every $\varepsilon > 0$, there is a polynomial P, dependent on f and ε , such that

$$|f(x) - P(x)| < \varepsilon \text{ for all } x \in [0, 1]. \tag{1.40}$$

Remark 1.17. Any continuous function $f:[0,1] \to \mathbb{R}$ is bounded and uniformly continuous. This fact will be useful in proving the previous theorem.

Proof. Start with X_1, X_2, \ldots which are independent and identically distributed Bernoulli random variables, $\operatorname{Ber}(x)$. Let $S_n = X_1 + X_2 + \ldots + X_n$. From the weak law of large numbers, we know that $\frac{S_n}{n}$ is approximately x. We can expect that f(x) will also be approximately $f(\frac{S_n}{n})$. We now have

$$f_n(x) = Ef(\frac{S_n}{n}) = \sum_{j=0}^n f(\frac{j}{n}) P(S_n = j)$$

$$= \sum_{j=0}^n f(\frac{j}{n}) \binom{n}{j} x^j (1-x)^{n-j}.$$
(1.41)

This is now a polynomial; we wish to see how close this is to f. Define A_{δ} to be $\{j: \left| \frac{j}{n} - x \right| \leq \delta \}$

$$|f_n(x) - f(x)| = \left| \sum_{j=0}^n \left(f(\frac{j}{n}) - f(x) \right) \right| P(S_n = j)$$

$$= \left| \sum_{j \in A_\delta} \left(f(\frac{j}{n}) - f(x) \right) + \sum_{j \notin A_\delta} \left(f(\frac{j}{n}) - f(x) \right) \right| P(S_n = j)$$

$$\leq \sum_{j \in A_\delta} \left| f(\frac{j}{n}) - f(x) \right| P(S_n = j) + \sum_{j \notin A_\delta} \left| f(\frac{j}{n}) - f(x) \right| P(S_n = j). \tag{1.42}$$

We have two terms to deal with now. For the first term, choose $\delta>0$ such that $|x-y|<\delta\Longrightarrow |f(x)-f(y)|<\varepsilon$; this δ can be chosen since f is uniformly continuous. Similarly, also choose $M=\sup_{x\in[0,1]}|f(x)|$. M is finite since f is bounded. Thus, we have

$$\sum_{j \in A_{\delta}} \left| f(\frac{j}{n}) \right| P(S_n = j) \le \sum_{j \in A_{\delta}} \varepsilon P(S_n = j) \le \varepsilon \tag{1.43}$$

and

$$\sum_{i \notin A_i} \le 2MP(\left|\frac{S_n}{n} - x\right| > \delta) \le 2M \frac{\operatorname{Var}(S_n)}{n^2 \delta^2} = \frac{2Mnx(1-x)}{n^2 \delta^2}.$$
(1.44)

Combining the two, and choosing n large enough, we have

$$|f_n(x) - f(x)| \le \varepsilon + \frac{2Mx(1-x)}{n\delta^2} \le \varepsilon + \frac{M}{2n\delta^2} \le 2\varepsilon.$$
 (1.45)

1.3 Erdös-Renyi Random Graph

We first discuss the setup; start with n vertices of an empty graph. For any pair of points (i, j), with $i \neq j$, join these vertices with an edge with probability p independently for all such pairs. Such a graph is denoted by $G_{n,p}$.

A collection of three points $S = \{i, j, k\}$ form a triangle if $G_{n,p}$ has the edges $\{i, j\}$, $\{j, k\}$, and $\{i, k\}$. We question the probability that such a graph has no formed triangles. Can we find $p = p_n$ such that

triangles begin to appear at p_n ? Let S be any set of three vertices. Define X_S to be the indicator function; 1 if S forms a triangle, and 0 otherwise. We note that $X_S \sim \text{Ber}(p^3)$. We note that

$$EX_S = p^3$$
, $VarX_S = p^3(1 - p^3) \le p^3$.

Denote by N the number of triangles in the graph $G_{n,p}$. Clearly,

$$N = \sum_{S:|S|=3} X_S, \ EN = \binom{n}{3} p^3 < n^3 p^3, \ \text{Var} N = \sum_S \text{Var} X_S + \sum_S \sum_{T \neq S} \text{Cov}(X_S X_T) \le n^3 p^3 + n^4 p^5$$

ALso, $P(N \ge 1) \le EN < n^3 p^3$. If $p = p_n << \frac{1}{n}$, then $P(N \ge 1) \to 0$ as $n \to \infty$. We discuss this for $p >> \frac{1}{n}$. We have

$$P(N=0) \le P(|N-EN| \ge EN) \le \frac{\text{Var}N}{(EN)^2} \le \frac{(n^3p^3 + n^4p^5)}{\frac{n^6p^6}{100}} \le \frac{100}{n^3p^3} + \frac{100}{n(np)} \to 0.$$
(1.46)

We can state this as a theorem.

Theorem 1.18. Consider G_{n,p_n} . Let E be the event that the graph is triangle free. We then have

$$P(E) \to \begin{cases} 0 & \text{if } \frac{p_n}{\underline{1}} \to \infty, \\ 1 & \text{if } \frac{p_n^p}{\underline{1}} \to 0. \end{cases}$$
 (1.47)

Now suppose that $\frac{np_n}{\rightarrow}C > 0$ as $n \rightarrow \infty$. Then we have

$$N \approx \text{Poisson}\left(\frac{C^3}{6}\right).$$
 (1.48)

January 21st.

Remark 1.19. For this next 'game', we will think of X_i 's as the winnings in game i and μ to be the entrance fees for a game.

Definition 1.20. Suppose that $X_1, X_2, ...$ are independent, but not necessarily identically distributed. Let $S_n = X_1 + ... + X_n$. We say a game with accumulated entrance fees $\{\alpha_n, n \geq 1\}$ is fair if

$$P(\left|\frac{S_n}{\alpha_n} - 1\right| > \varepsilon) \to 0 \tag{1.49}$$

for all $\varepsilon > 0$.

Using this definition of 'fair', we look at an example.

Example 1.21. This is the St. Petersburg's paradox. This is the game; toss a coin repeatedly until the first head is observed. If this head occurs at the k^{th} toss, the amount paid out is $X = 2^k$. Let us find a fair accumulated entrance fees. In this case,

$$EX = \sum_{k=1}^{\infty} \frac{1}{2^k} 2^k = \infty. \tag{1.50}$$

Suppose we play this game n times. We are to find a fair accumulated sum $\{\alpha_n\}$ such that

$$P(|S_n - \alpha_n| > \varepsilon \alpha_n) \to 0. \tag{1.51}$$

To find this, we will define

$$U_j = X_j 1_{\{X_j \le a_n\}},$$

 $V_j = X_j 1_{\{X_j > a_n\}}.$

 a_n shall be determined later. Note that $S_n = X_1 + \ldots + X_n = U_1 + \ldots + U_n + V_1 + \ldots + V_n$. Then,

$$P(|S_n - \alpha_n| > \varepsilon \alpha_n) \le P(|U_1 + \dots + U_n - \alpha_n| > \frac{1}{2}\varepsilon \alpha_n) + P(|V_1 + \dots + V_n| > \frac{1}{2}\varepsilon \alpha_n). \tag{1.52}$$

We first bound the second term on the right hand side. We have

$$P(|V_1 + \ldots + V_n| > \frac{1}{2}\varepsilon\alpha_n) \le P(\bigcup_{i=1}^n \{V_i \ne 0\}) \le nP(V_1 \ne 0) = nP(X_1 > a_n)$$
 (1.53)

$$= \sum_{2^k > a_n} P(X = 2^k) \le \frac{2n}{a_n}.$$
 (1.54)

Thus, we will require that $a_n >> n$. Also,

$$EU_1 = \sum_{k \le \log_2 a_n} 2^k \cdot 2^{-k} = \lfloor \log_2 a_n \rfloor, \quad \text{Var} U_1 \le E[U_1^2] = \sum_{k \le \log_2 a_n} (2^k)^2 \cdot 2^{-k} = 2^{\lfloor \log_2 a_n \rfloor + 1} - 1 < 2a_n.$$
(1.55)

 $\frac{1}{n}(U_1 + \ldots + U_n) \approx EU_j = \lfloor \log_2 a_n \rfloor$, so we should choose

$$\alpha_n = nEU_j = n \lfloor \log_2 a_n \rfloor. \tag{1.56}$$

This gives us

$$P(|U_1 + \ldots + U_n - \alpha_n| > \frac{1}{2}\varepsilon\alpha_n) \le \frac{n(2a_n)}{\frac{1}{4}\varepsilon^2\alpha_n^2}.$$
(1.57)

Thus, we have another condition where we require that $\frac{na_n}{\alpha_n^2} \to 0$. The conditions we require are

$$\frac{n}{a_n} \to 0$$
 and $\frac{na_n}{n^2(\log_2 a_n)^2} \to 0$.

The sequence $\{a_n\}$ defined as $a_n = n \log_2 n$ satisfies these properties. The sequence α_n is thus

$$\alpha_n = n \log_2 a_n = n \log_2 n + n \log_2 \log_2 n.$$
 (1.58)

Chapter 2

GENERATING FUNCTIONS

January 24th.

Definition 2.1. For a sequence $\{a_n\}_{n\geq 0}$, the generating function of $\{a_n\}$ is given as

$$A(s) = \sum_{n=0}^{\infty} a_n s^n \tag{2.1}$$

for some $-s_0 < s < s_0$.

For this probability course, we will be interested in a particular form; for a random variable X that takes values $k = 0, 1, \ldots$, the function we look at is

$$\sum_{k=0}^{\infty} P(X=k)s^k \text{ for } -1 \le s \le 1.$$
 (2.2)

Suppose we have two sequences $\{a_n\}$ and $\{b_n\}$ with generating functions A(s) and B(s), respectively. If we define a new sequence $\{c_n\}$ as

$$c_n = a_0 b_n + a_1 b_{n-1} + \ldots + a_{n-1} b_1 + a_n b_0 \text{ for all } n \ge 0,$$
(2.3)

then the sequence $\{c_n\}$ is termed the *convolution* of the sequences $\{a_n\}$ and $\{b_n\}$, and we shall denote it as

$$\{c_n\} = \{a_n\} * \{b_n\}.$$

Note that this convolution operation is both associative and commutative. We are now interested in finding the generating function of $\{c_n\}$. We have

$$C(s) = \sum_{n=0}^{\infty} c_n s^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) s^n$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^n a_k s^k b_{n-k} s^{n-k} = \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} a_k s^k b_m s^m$$

$$\implies C(s) = \left(\sum_{k=0}^{\infty} a_k s^k\right) \cdot \left(\sum_{m=0}^{\infty} b_m s^m\right) = A(s) \cdot B(s). \tag{2.4}$$

We state this down as a theorem.

Theorem 2.2. $C(s) = A(s) \cdot B(s)$ when $\{c_n\} = \{a_n\} * \{b_n\}$.

Suppose X takes values in $\mathbb{Z}_+ = \{0, 1, \ldots\}$. Denote P(X = k) as p_k . The generating function is, thus,

$$\mathcal{P}(s) = \sum_{k=0}^{\infty} p_k s^k = E[s^X].$$

Also,

$$\mathcal{P}(1) = 1,\tag{2.5}$$

$$\mathcal{P}'(1) = \sum_{k=1}^{\infty} k p_k s^{k-1}|_{s=1} = EX.$$
 (2.6)

Also note that

$$E[X^2] = \sum_{k=0}^{\infty} k^2 p_k = \sum k(k-1)p_k + \sum kp_k = \mathcal{P}''(1) + \mathcal{P}'(1)$$
(2.7)

which gives us the variance of X a

$$Var X = E[X^{2}] - (EX)^{2} = \mathcal{P}''(1) + \mathcal{P}'(1) - (\mathcal{P}'(1))^{2}.$$
(2.8)

The individual probabilities of X = k may also be found as

$$p_k = P(X = k) = \frac{1}{k!} \cdot \frac{d^k}{ds^k} \mathcal{P}(s)|_{s=0}.$$
 (2.9)

Now suppose that X and Y are two independent variables, taking values in \mathbb{Z}_+ . Let Z = X + Y. We ask the probability that Z equals k. We can find this as

$$P(Z=k) = \sum_{m=0}^{k} P(X=m, Y=k-m) = \sum_{m=0}^{k} P(X=m) \cdot P(Y=k-m).$$
 (2.10)

Therefore, denoting $p_k^{(X)}$ to be the probability mass function of X, we have

$$\{p_k^{(Z)}\} = \{p_k^{(X)}\} * \{p_k^{(Y)}\} \implies \mathcal{P}^{(Z)}(s) = \mathcal{P}^{(X)}(s) \cdot \mathcal{P}^{(Y)}(s).$$
 (2.11)

There is an easier way to see the last equation; we could have started with $Es^Z = E[s^X \cdot s^Y] = E[s^X]E[s^Y]$.

If we have $S_n = X_1 + X_2 + \ldots + X_n$, where the X_i 's are independently distributed taking values in \mathbb{Z}_+ , it can be shown that

$$\{p_k^{(S_n)}\} = \{p_k^{(X)}\}^{n*} \tag{2.12}$$

Example 2.3. Let us compute the generating function of $X \sim \text{Bin}(n, p)$. We have

$$\mathcal{P}(s) = \sum_{k=0}^{\infty} P(X=k)s^k = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} s^k = ((1-p) + ps)^n.$$
 (2.13)

This is the generating function of the binomial distribution. Clearly,

$$EX = \mathcal{P}'(1) = np,$$

$$VarX = \mathcal{P}''(1) + \mathcal{P}'(1) - (\mathcal{P}'(1))^2 = n(n-1)p^2 + np - n^2p^2 = np(1-p).$$

Note that using this generating function, we can also show that Bin(n,p) + Bin(m,p) = Bin(m+n,p) when the former terms are independent.

Example 2.4. We look at $X \sim \text{Poisson}(\lambda)$. We have

$$\mathcal{P}(s) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} s^k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!} = e^{-\lambda + \lambda s}.$$
 (2.14)

For this, we can als verify $EX = \text{Var}X = \lambda$. We can also show that $\text{Poisson}(\lambda) + \text{Poisson}(\mu) = \text{Poisson}(\lambda + \mu)$ when the former terms are independent.

Example 2.5. We look at $X \sim \text{Geo}(p)$. Denote 1-p as q. The generating function is given as

$$\mathcal{P}(s) = \sum_{k=0}^{\infty} p q^k s^k = \frac{p}{1 - qs}.$$
 (2.15)

As an extension, let X_k denote the number of failures between the $(k-1)^{\text{th}}$ and k^{th} successes. If we denote $S_r = X_1 + X_2 + \ldots + X_r$, we find that $S_r \sim \text{NB}(p,r)$. From direct computation, we know that

$$P(S_r = k) = {r+k-1 \choose k} q^k p^r \text{ for } k = 0, 1, \dots$$

Let us compute this in another way; S_r is the sum of independent geomtric random variables with parameter p. We have

$$\mathcal{P}^{(S_r)}(s) = \left(\frac{p}{1 - qs}\right)^r = p^r (1 - qs)^{-r} = p^r \sum_{k=0}^{\infty} {r \choose k} (-qs)^k$$
 (2.16)

which tells us that

$$P(S_r = k) = p^r \binom{-r}{k} (-q)^k. \tag{2.17}$$

2.1 Random Walks, with Generating Functions

Here, we consider the paths that have a right step with probability p and a left step with probability q=1-p. We first look at the waiting time for the first gain, that is, the event $\{S_1 \leq 0, S_2 \leq 0, \ldots, S_{n-1} \leq 0, S_n = 1\}$ (Event (*)). Denote the probability of this event by ϕ_n , and its generating function by $\Phi(s)$. Note that $\phi_0 = 0$ and $\phi_1 = p$ lead to trivial cases. We focus on n > 1.

We must have $S_1 = -1$ (Event (1)). Denote, by $\nu < n$, the first return to 0 (Event (2)). ν only depends on $X_0, X_1, \ldots, X_{\nu}$. We need another $n - \nu$ steps to reach 1; this depends on $X_{\nu+1}, X_{\nu+2}, \ldots, X_n$ (Event (3)). For some n > 1, Event (*) occurs if and only Event (1) \cap Event (2) \cap Event (3) occurs for some $\nu < n$. The point here is that the three events are independent. For some fixed $\nu < n$,

$$P(\text{Event }(1)) = q, \ P(\text{Event }(2)) = \phi_{\nu-1}, \ P(\text{Event }(3)) = \phi_{n-\nu}.$$
 (2.18)

Thus,

$$\phi_n = \sum_{\nu=2}^{n-1} q \phi_{\nu-1} \phi_{n-\nu}. \tag{2.19}$$

We have

$$\Phi(s) - ps = \sum_{n=2}^{\infty} \phi_n s^n = q \sum_{n=2}^{\infty} (\phi_1 \phi_{n-2} + \dots + \phi_{n-2} \phi_1) s^n = qs \sum_{n=1}^{\infty} \phi_n^{2*} s^n = qs (\Phi(s))^2$$
 (2.20)

$$\implies \Phi(s) - ps = qs(\Phi(s))^2. \tag{2.21}$$

This is a standard quadratic; solving gives us

$$\Phi(s) = \frac{1 \pm \sqrt{1 - 4pqs^2}}{2qs}.$$
(2.22)

The solution with the '+' is rejected; if it was valid, then plugging in s < 1 would give us $\Phi(s) > 1$, which is impossible. We expand this using the binomial theorem,

$$\Phi(s) = \frac{1}{2qs} \left(1 - \sum_{k=0}^{\infty} {1 \choose k} (-4pqs^2)^k \right) = \sum_{k=1}^{\infty} {1 \choose k} \frac{(-1)^{k-1} (4pq)^k}{2q} s^{2k-1}$$
 (2.23)

which tells us that

$$\phi_{2k-1} = \frac{(-1)^{k-1}}{2q} {1 \choose k} (4pq)^k, \ \phi_{2k} = 0.$$
 (2.24)

Thus,

$$\Phi(1) = \sum \phi_n = \frac{1 - \sqrt{1 - 4pq}}{2q} = \frac{1 - |p - q|}{2q} = \begin{cases} \frac{p}{q} & \text{if } p < q, \\ 1 & \text{if } p \ge q. \end{cases}$$

This gives the probability that, at some point of the random walk, the displacement 1 is reached. Similarly, for displacement S_n , we have

$$P(S_n \le 0 \ \forall n) = \begin{cases} \frac{q-p}{p} & \text{if } p < q, \\ 0 & \text{if } p \ge q. \end{cases}$$

January 28th.

Recall that we used u_k denote the probability that the random walk returns to zero at step k. For unequal left-right step probabilities,

$$u_k = P(S_k = 0) = \begin{cases} 0 & \text{if } k \text{ is odd,} \\ {2k \choose k} p^n q^n & \text{if } k = 2n. \end{cases}$$

Thus, the generating function for this is

$$U(s) = \sum_{n=0}^{\infty} u_{2n} s^{2n} = \sum_{n=0}^{\infty} {2n \choose n} (pqs^2)^n = \sum_{n=0}^{\infty} {-\frac{1}{2} \choose n} (-4pqs^2)^n = \frac{1}{\sqrt{1 - 4pqs^2}}.$$
 (2.25)

Denote, by f_{2n} , the probability that the first return to zero occurs at step 2n, for some $n \ge 1$. In fact, it consists of subevents; if $X_1 = 1$, denote it by f_{2n}^+ and if $X_1 = -1$, denote it by f_{2n}^- . If we also recall the definition of our ϕ_n ,

$$f_{2n}^{-} = P(X_1 = -1, S_2 < 0, S_3 < 0, \dots, S_{2n-1} < 0, S_{2n} = 0) = q\phi_{2n-1}.$$
 (2.26)

The generating function of $\{f_{2n}^-\}$ will be given as

$$F^{-}(s) = \sum_{n=1}^{\infty} f_{2n}^{-} s^{2n} = q \sum_{n=1}^{\infty} \phi_{2n-1} s^{2n} = q s \sum_{n=1}^{\infty} \phi_{2n-1} s^{2n-1} = q s \Phi(s) = \frac{1}{2} (1 - \sqrt{1 - 4pqs^2}). \tag{2.27}$$

It can be shown that f_{2n}^+ is just f_{2n}^- with the probabilities reversed (check!). The generating function of $\{f_{2n}^+\}$ is given as

$$F^{+}(s) = \sum_{n=0}^{\infty} f_{2n}^{+} s^{2n} = \frac{1}{2} (1 - \sqrt{1 - 4pqs^{2}}). \tag{2.28}$$

Adding both of these, we get

$$F(s) = F^{+}(s) + F^{-}(s) = 1 - \sqrt{1 - 4pqs^{2}} = 1 - \sum_{n=0}^{\infty} {1 \choose n} (-4pqs^{2})^{n}$$
 (2.29)

$$\implies f_{2n} = (-1)^{n+1} \binom{\frac{1}{2}}{n} (4pq)^n. \tag{2.30}$$

F(1) gives us the probability that walk eventually returns to zero,

$$F(1) = \sum_{n=0}^{\infty} f_{2n} = 1 - \sqrt{1 - 4pq} = 1 - |p - q|.$$
 (2.31)

F'(1) gives us the expected time of return to zero,

$$F'(s) = -\frac{1}{2}(1 - 4pqs^2)^{-\frac{1}{2}}(-8pqs). \tag{2.32}$$

If $p = q = \frac{1}{2}$, then

$$F'(1) = \lim_{s \to 1^{-}} F'(s) = \infty.$$

The basic lemma can be proved using the generating functions.

2.2 Simple Random Walks in Higher Dimensions

Consider the walk in the dimension d. A walker starts at the origin in the lattice \mathbb{Z}^d . The random variables X_1, X_2, \ldots are independent and identically distributed with probabilities

$$P(X_i = -e_d) + \ldots + P(X_i = -e_2) + P(X_i = -e_1) + P(X_i = e_1) = P(X_i = e_2) + \ldots + P(X_i = e_d) = \frac{1}{2d}$$

for all valid *i*. The random walk here is defined as $S_n = X_1 + \ldots + X_n$. We ask the probability that S_n returns to the origin. Denote by u_{2n} the probability that $S_{2n} = 0$, and denote by f_{2n} the probability that the first return to the origin occurs at time 2n. By conditioning,

$$u_{2n} = \sum_{k=0}^{n} f_{2k} u_{2n-2k}.$$
 (2.33)

If U(s) and F(s) are the appropriate generating functions, then we can show that

$$U(s) - 1 = F(s)U(s) \implies U(s) = \frac{1}{1 - F(s)}.$$
 (2.34)

Both U(s) and F(s) are covergent for |s| < 1. For each N,

$$\sum_{n=0}^{N} u_{2n} \le \lim_{s \to 1^{-}} U(s) \le \sum_{n=0}^{\infty} u_{2n}.$$
(2.35)

Lemma 2.6. A random walk on \mathbb{Z}^d return to the origin with probability 1 if and only if $\sum u_{2n} = \infty$.

Proof. Suppose F(1) < 1. Then, $\lim s \to 1^- U(s) < \infty$ and, consequently, $\sum_{n=0}^{\infty} u_{2n} < \infty$. The converse can be proved by reversing the steps.

The lemma tells us that to see the probability that the random walk returns to the origin, we only need to compute $\sum_{n=0}^{\infty} u_{2n}$.

For d=2, we need the number of e_i jumps to be equal to the number of $-e_i$ jumps for i=1,2. We have

$$u_{2n} = \frac{1}{4^{2n}} \sum_{j=0}^{n} {2n \choose j} {2n-j \choose j} {2n-2j \choose n-j} {n-j \choose n-j} = \frac{1}{4^{2n}} {2n \choose n} \sum_{j=0}^{n} {n \choose j}^2 = \frac{1}{4^{2n}} {2n \choose n}^2$$
$$\sim \frac{2}{2\pi} \frac{n^{4n+1}}{n^{4n+2}} = \frac{1}{\pi n}. \tag{2.36}$$

Since this is any asymptotic relationship, $u_{2n} \ge \frac{(1-\varepsilon)}{\pi n}$ for large n. Thus, we can show $\sum u_{2n} = \infty$. For d=3,

$$u_{2n} = \frac{1}{6^{2n}} \sum_{j,k=0;j+k \le n}^{n} \frac{(2n)!}{j!j!k!k!(n-j-k)!(n-j-k)!} = \frac{1}{6^{2n}} \sum_{j,k=0lj+k \le n}^{\infty} \frac{(2n)!}{(j!)^2(k!)^2((n-j-k)!)^2}$$

$$= \frac{1}{2^{2n}} \binom{2n}{n} \sum_{j,k:j+k \le n} \left(\frac{n!}{j!k!(n-j-k)!} \frac{1}{3^n} \right)^2.$$

$$(2.37)$$

 $\frac{1}{2^{2n}}\binom{2n}{n}$ behaves asymptotically as $\frac{1}{\sqrt{\pi n}}$. For the rest of the term,

$$\sum_{j,k;j+k \le n} \left(\frac{n!}{j!k!(n-j-k)!} \frac{1}{3^n} \right)^2 \le t_n \sum_{j,k;j+k \le n} \frac{n!}{j!k!(n-j-k)!} \frac{1}{3^n}$$
 (2.38)

where $t_n = \max_{j,k;j+k \le n} \frac{n!}{j!k!(n-j-k)!}$. The maximum is attained roughly when $j,k \approx \frac{n}{3}$. Also, the summation behaving as the upper bound is just unity. Thus,

$$\sum_{j,k;j+k \le n} \left(\frac{n!}{j!k!(n-j-k)!} \frac{1}{3^n} \right)^2 \le t_n \approx \frac{n!}{((\frac{n}{3})!)^3 3^n} \sim \frac{C}{n}$$
 (2.39)

for some constant C. Therefore,

$$u_{2n} \le \frac{C^*}{n^{\frac{3}{2}}} \implies \sum u_{2n} < \infty \implies F(1) < 1. \tag{2.40}$$

Theorem 2.7 (Polya). A random walk in 1 or 2 dimensions will always return to the origin with probability 1. A random walk in more than 2 dimensions has a positive probability of never returning to the origin.

Appendices

Chapter A

Appendix

Extra content goes here.

Appendix

Index

arcsin law for last visit, 5 arcsin law for maxima, 5

Ballot theorem, 4 Basic lemma, 4

Chebyshev's inequality, 1 convolution, 11

generating function, 11

Markov's inequality, 1

method of images, 3

Polya, 16

reversed walk, 4

 $\begin{array}{l} \text{simple path, 3} \\ \text{simple random walk, 3} \end{array}$

Weak law of large numbers, 2 Weirstrass's polynomial approximation, 7