Mechanical stiffness

Degrees of freedom (DOF)

2 DOFs

Spring element

Springs association

$$k_{eq} = k_1 + k_2$$

$$k_{eq} = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2}}$$

$$k_{eq} = \sum_{i=1}^{n} k_i$$

$$k_{eq} = \frac{1}{\sum_{i=1}^{n} \frac{1}{k_i}}$$

Example

On Scilab

Determine the equivalent stiffness of the system:

$$K1 = 100 \text{ N/m}$$

$$K2 = 200 \text{ N/m}$$

$$K3 = 300 \text{ N/m}$$

$$K4 = 400 \text{ N/m}$$

$$K5 = 500 \text{ N/m}$$

Solution

```
1 clear; clc;
2 K1 = 100; // N/m
3 K2 = 200; // N/m
4 K3 = 300; // N/m
5 K4 = 400; // N/m
6 K5 = 500; // N/m
7 keq1 = K1+K1; // N/m
8 keq3 = K3+K3; // N/m
9 keq123 = 1/((1/keq1)+(1/K2)+(1/keq3));
10 keq1234 = keq123 + K4; // N/m
11 keq = 1/((1/keq1234)+(1/K5))
```


K1	100
K2	200
K3	300
K4	400
K5	500
keq	246
keq1	200
keq123	85.7
keq1234	486
keq3	600

Torsional stiffness

$$k_{t} = \frac{M_{t}}{\theta} = \frac{GI}{L}$$

S.I. [Nm]

- Hollow shaft:

$$I = \frac{\pi}{32} \left(d_e^4 - d_i^4 \right)$$

$$I = \frac{\pi}{32} \left(d_e^4 - d_i^4 \right) \qquad I = \frac{\pi}{2} \left(r^4 \right) = \frac{\pi}{32} \left(d^4 \right)$$

Example: Determine the torsional stiffness of the hollow shaft, as shown in the Figure below.

On Scilab:


```
1 clear; clc;
2 ri=15; // mm
3 re=25; // mm
4 L=1400; // mm
5 G = 80000; // MPa
6 J = (%pi/2)*(((re).^4)-((ri).^4));
7 k=(G*J/L)/1000; // 10^-3 (mm to m)
8 printf("k = %g Nm\n", k);
```

G	8e+04
J	5.3 4e +05
L	1.4e+03
k	3.05e+04
re	25
ri	15

Elastic systems

$$F_{v} = \frac{EAv}{L}, \qquad k_{vv} = \frac{EA}{L}$$

$$F_{u} = \frac{3EI_{z}u}{L^{3}}, \qquad k_{uu} = \frac{3EI_{z}}{L^{3}}$$

$$F_{w} = \frac{3EI_{x}w}{L^{3}}, \qquad k_{ww} = \frac{3EI_{x}}{L^{3}}$$

$$F_{w} = \frac{3EI_{x}w}{L^{3}}, \qquad k_{ww} = \frac{3EI_{x}}{L^{3}}$$

$$M_{\phi} = \frac{GI_{y}\phi}{L}, \qquad k_{\phi\phi} = \frac{GI_{y}}{L}$$

$$M_{\psi} = \frac{EI_{z}\psi}{L}, \qquad k_{\psi\psi} = \frac{EI_{z}}{L}$$

$$M_{\theta} = \frac{EI_{x}\theta}{L}, \qquad k_{\theta\theta} = \frac{EI_{x}}{L}$$

Example: cantilever beam

$$I = \frac{bh^3}{12} = \frac{0.12 \times 0.01^3}{12} = 1 \times 10^{-8} \text{ m}^4$$

$$m_{viga} = 100 kg$$

 $m_{eff} = 3.12 kg$
 $L = 1m$
 $E = 2.1x20^{11} N / m^2$

$$k = \frac{3EI}{L^3} = \frac{3 \times 2.1 \times 10^{11} \times 10^{-8}}{1^3} = 6300 \text{ N/m}$$

Without mass (m)

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{6300}{100}} = 7.94 \text{ rad/s}$$

With mass (m)

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{6300}{100}} = 7.94 \text{ rad/s}$$
 $\omega_n = \sqrt{\frac{k}{m_{eq}}} = \sqrt{\frac{6300}{100 + 3.12}} = 7.82 \text{ rad/s}$

Point load stiffness

Equations development

$$M_{max} = R_A x$$
$$R_A = R_B = P/2$$

Applying the double integration method, we have :

$$EI\frac{d^2v}{dx^2} = (P/2)x$$

$$EI\frac{dv}{dx} = \frac{Px^2}{4} + C_I \tag{1}$$

$$EIv = \frac{Px^3}{12} + C_1 x + C_2$$
 (2)

Considering the boundary conditions, we have:

$$\sqrt{\frac{dv}{dx}} = 0 \quad \text{in} \quad x = L/2$$

$$0 = \frac{PL^2}{16} + C_1 \quad \text{From Equation (1)}$$

$$\checkmark$$
 v = 0 in $x = 0$

$$0 = \frac{Px^3}{12} + C_1 \cdot x + C_2$$
 From Equation (2)

Isolating the value of C_1 e C_2 , we have: $C_1 = -\frac{PL^2}{16}$; $C_2 = 0$

Replacing values of C_1 e C_2 in the Equation (2), we have:

$$EIv = \frac{Px^3}{12} - \frac{PL^2}{16}x + 0$$

Knowing that the maximum displacements occur in L/2:

$$EIv = \frac{PL^3}{96} - \frac{PL^3}{32}$$

$$v = \frac{(-P)L^3}{48EI} = > -P = \frac{48EIv}{L^3}$$

$$k = \frac{48EI}{L^3}$$

Example: Determine the stiffness of a bar of length L = 300 mm and E = 210 GPa, with a rectangular cross section (10x5 mm²). Check what happens when the original position of the bar is rotated 90 degrees (cross section = 5x10 mm²).

Solution on Scilab

Nome	Value
E I1	2.1e+05
I1	104
I2	417
L	300
b1	10
b2	5
h1	5
h2	10
k1	38.9
k2	156

Load lifting system

$$k_b = \frac{3EI}{L^3}$$

$$k_r = \frac{EA}{L}$$

$$k_{eq} = \frac{k_b k_r}{k_b + k_r}$$

Example:

Considering E = 210 GPa for the entire lifting system, calculate the equivalent stiffness.

Solution on Scilab

```
clear; clc;
  E = 210000; // MPa
  // beam (bending)
  Lb = 1500; //-mm
  b = 200; - // - mm
6 h = 10; // mm
7 | I = (b*(h^3))/12; // mm^4
  kb = (3*E*I)/(Lb^3); // N/mm
  // cable (traction)
10 | r = 2.5; // mm
11 Lr = 1000; // mm
12 A = {pi*(r^2); // mm^2}
13 | kr = (E*A) / Lr; // N/mm
14 | keq = (kb*kr)/(kb+kr)
15 printf("k = -%g - N/mm\n", keq);
```


19.6
2.1e+05
1.67e+04
1.5e+03
1e+03
200
10
3.11
3.11
4.12e+03
2.5

Stiffness matrix

$$\begin{cases} F_1 = \frac{EA}{L}u_1 \\ F_1 = -\frac{EA}{L}u_2 \end{cases} \begin{cases} F_2 = \frac{EA}{L}u_2 \\ F_2 = -\frac{EA}{L}u_1 \end{cases} \Longrightarrow \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \begin{bmatrix} K_{11} & -K_{12} \\ -K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

 K_{21} is the load from node 2 due to the unit displacement of node 1 ($u_1 = 1$), keeping $u_2 = 0$.

Two elements stiffness matrix

Two elements stiffness matrix

Global stiffness matrix

$$\begin{cases} F_A \\ F_B \\ F_C \end{cases} = \begin{bmatrix} k_a & -k_a & 0 \\ -k_a & k_a + k_b & -k_b \\ 0 & -k_b & k_b \end{bmatrix} \cdot \begin{cases} U_A \\ U_B \\ U_C \end{cases}$$

Solution

$$\begin{cases}
F_A \\
F_B \\
F_C
\end{cases} =
\begin{bmatrix}
k_a & -k_a & 0 \\
-k_a & k_a + k_b & -k_b \\
0 & -k_b & k_b
\end{bmatrix} \cdot
\begin{cases}
U_A \\
U_B \\
U_C
\end{cases}$$

$$\{F_A\} = [k_a] \cdot \{U_A\} + [-k_a \quad 0] \cdot \begin{cases} U_B \\ U_C \end{cases}$$

$$e$$

$$\begin{cases} F_B \\ F_C \end{cases} = \begin{bmatrix} -k_a \\ 0 \end{bmatrix} \cdot \{U_A\} + \begin{bmatrix} k_a + k_b & -k_b \\ k_b & -k_b \end{bmatrix} \cdot \begin{bmatrix} U_B \\ U_C \end{cases}$$

$$U_A = 0$$

Example

$$\left\{ \begin{matrix} R_1^{(1)} \\ R_2^{(1)} \end{matrix} \right\} = k^{(1)} \left[\begin{matrix} 1 & -1 \\ -1 & 1 \end{matrix} \right] \left\{ \begin{matrix} u_1^{(1)} \\ u_2^{(1)} \end{matrix} \right\}$$

$$\left\{ \begin{array}{l} R_1^{(2)} \\ R_2^{(2)} \end{array} \right\} = k^{(2)} \left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right] \left\{ \begin{array}{l} u_1^{(2)} \\ u_2^{(2)} \end{array} \right\}$$

$$\left\{ \begin{array}{l} R_1^{(3)} \\ R_2^{(3)} \end{array} \right\} = k^{(3)} \left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right] \left\{ \begin{array}{l} u_1^{(3)} \\ u_2^{(3)} \end{array} \right\}$$

Solution

$$\begin{bmatrix} k_1 & -k_1 & 0 & 0 \\ -k_1 & k_1 + k_2 + k_3 - k_2 & -k_3 \\ 0 & -k_2 & k_2 & 0 \\ 0 & -k_3 & 0 & k_3 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ P \\ F_3 \\ F_4 \end{Bmatrix}$$

$$u_1 = u_3 = u_4 = 0,$$

$$\begin{bmatrix} k_1 & -k_1 & 0 & 0 \\ -k_1 & k_1 + k_2 + k_3 & -k_2 & -k_3 \\ 0 & -k_2 & k_2 & 0 \\ 0 & -k_3 & 0 & k_3 \end{bmatrix} \begin{bmatrix} 0 \\ u_2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} F_1 \\ P \\ F_3 \\ F_4 \end{bmatrix}$$

$$(k_1 + k_2 + k_3)u_2 = P$$

$$-k_1u_2 = F_1;$$
 $-k_2u_2 = F_3;$ $-k_3u_2 = F_4$

Example 2

 $K_1 = 200 \text{ Kgf/mm}$ $K_2 = 100 \text{ Kgf/mm}$ $K_3 = 150 \text{ Kgf/mm}$ $K_4 = 300 \text{ Kgf/mm}$ $K_5 = 400 \text{ Kgf/mm}$ $K_6 = 500 \text{ Kgf/mm}$

 $F_B = 400 \text{ Kgf}$

 $F_C = 300 \text{ Kgf}$

 $F_D = 500 \text{ Kgf}$

Stiffness matrix of each (n) element

(1):
$$[K]^1 = \begin{bmatrix} 200 & -200 \\ -200 & 200 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$$

(3):
$$[K]^3 = \begin{bmatrix} 150 & -150 \\ -150 & 150 \end{bmatrix} \begin{bmatrix} B \\ C \end{bmatrix}$$

(5):
$$[K]^5 = \begin{bmatrix} 400 & -400 \\ -400 & 400 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix}$$

$$[B] C$$

$$(2): [K]^{2} = \begin{bmatrix} 100 & -100 \\ -100 & 100 \end{bmatrix} \begin{bmatrix} B \\ C \end{bmatrix}$$

$$[B] D$$

$$(4): [K]^{4} = \begin{bmatrix} 300 & -300 \\ -300 & 300 \end{bmatrix} \begin{bmatrix} B \\ D \end{bmatrix}$$

$$[D] E$$

$$(6): [K]^{6} = \begin{bmatrix} 500 & -500 \\ -500 & 500 \end{bmatrix} \begin{bmatrix} D \\ E \end{bmatrix}$$

Global stiffness matrix

$$\begin{split} F_A &= 200 \cdot U_A - 200 \cdot U_B + 0 \cdot U_C + 0 \cdot U_D + 0 \cdot U_E \\ F_B &= -200 \cdot U_A + 750 \cdot U_B - 250 \cdot U_C - 300 \cdot U_D + 0 \cdot U_E \\ F_C &= 0 \cdot U_A - 250 \cdot U_B + 650 \cdot U_C - 400 \cdot U_D + 0 \cdot U_E \\ F_D &= 0 \cdot U_A - 300 \cdot U_B - 400 \cdot U_C + 1200 \cdot U_D - 500 \cdot U_E \\ F_E &= 0 \cdot U_A + 0 \cdot U_B + 0 \cdot U_C - 500 \cdot U_D + 500 \cdot U_E \end{split}$$

$$\begin{cases}
F_{B} \\
F_{C} \\
F_{D}
\end{cases} =
\begin{bmatrix}
750 & -250 & -300 \\
-250 & 650 & -400 \\
-300 & -400 & 1200
\end{bmatrix}
\cdot
\begin{cases}
U_{B} \\
U_{C} \\
U_{D}
\end{cases}
\begin{bmatrix}
B
\end{bmatrix}$$

$$\det [K]_{\Delta} = [750 \times 650 \times 1200 + (-250) \cdot (-400) \cdot (-300) + (-250) \cdot (-400) \cdot (-300)] - \\ -[(-300) \cdot (650) \cdot (-300) + (750) \cdot (-400) \cdot (-400) + (-250) \cdot (-250) \cdot (1200)]$$

$$\det [K]_{A} = 271.500.000$$

$$[K]_{\Delta}^{-1} = \frac{1}{271.500.000} \begin{bmatrix} 620000 & 420000 & 295000 \\ 420000 & 810000 & 375000 \\ 295000 & 375000 & 425000 \end{bmatrix} = \begin{bmatrix} 0,0022836 & 0,0015470 & 0,0010866 \\ 0,0015470 & 0,0029834 & 0,0013812 \\ 0,0010866 & 0,0013812 & 0,0015653 \end{bmatrix}$$

$$F_B = +400 \text{ kgf}$$
 ; $F_C = +300 \text{ kgf}$; $F_D = +500 \text{ kgf}$

$$\{U\} = \begin{cases} U_B \\ U_C \\ U_D \end{cases} = \begin{bmatrix} 0,0022836 & 0,0015470 & 0,0010866 \\ 0,0015470 & 0,0029834 & 0,0013812 \\ 0,0010866 & 0,0013812 & 0,0015653 \end{bmatrix} \cdot \begin{cases} 400 \\ 300 \\ 500 \end{cases}$$

$$\begin{array}{lll} U_{B} = 0,0022836 \times 400 + 0,0015470 \times 300 + 0,0010866 \times 500 & \Rightarrow & \boxed{U_{B} = 1,92084 \text{ mm}} \\ \\ U_{C} = 0,0015470 \times 400 + 0,0029834 \times 300 + 0,0013812 \times 500 & \Rightarrow & \boxed{U_{C} = 2,20442 \text{ mm}} \\ \\ U_{D} = 0,0010866 \times 400 + 0,0013812 \times 300 + 0,0015653 \times 500 & \Rightarrow & \boxed{U_{D} = 1,63165 \text{ mm}} \\ \end{array}$$