

DierckxSpline: An R Package For Minimal Knot Splines

Sundar Dorai-Raj Spencer Graves

July 29, 2007

Agenda

- Splines in R
- **FITPACK Routines**
- Univariate Splines
 - Smoothing splines
 - Least square splines
 - Free knot splines
- The DierckxSpline package for R
- Examples
- Software Status and Extensions

Splines in R

- Many algorithms have been improved since Dierckx
 - Better free knot selection algorithms
 - Applications for functional data analysis
- Purpose of the package is to make available Dierckx FITPACK functions
 - Univariate splines
 - Free knot splines
 - Bivariate splines
- R lacks a comprehensive spline package
 - spline
 - smooth.spline
 - Several packages
 - splines Spline package for B-splines
 - fda Functional Data Analysis
 - ssr Spline Smoothing Regression
 - No splines package for free knots or constrained splines

Dierckx FITPACK

■ The FITPACK library is available in Fortran from NETLIB

http://www.netlib.org/dierckx

- Includes
 - Code to accompany Curve and Surface Fitting with Splines

Dierckx, P. (1993). *Curve and Surface Fitting with Splines*. Oxford Science Publications, New York.

- Examples and data
- Currently R package interfaces with approximately half of the provided functions
- Not to be confused with commercial FITPACK library http://www.netlib.org/fitpack

Smoothing Splines

Given

• Data: $(x_r, y_r), r = 1, ..., m$

• Constraints: $a \le x_r \le x_{r+1} \le b$

Weights: w_r

Goal

• Determine spline s(x) on [a, b]

• Degree: k

• Knots: $a = \lambda_0, \lambda_1, ..., \lambda_q, \lambda_{q+1} = b$

Unconstrained minimization

Minimize
$$\tilde{\eta} := \sum_{i=1}^{g} \left(s^{(k)} (\lambda_i +) - s^{(k)} (\lambda_i -) \right)^2$$

Subject to
$$\delta := \sum_{i=1}^{m} (w_r (y_r - s(x_r)))^2 < S$$

- where *S* is some user-specified smoothing parameter
- Increase $S \rightarrow$ increase smoothing

```
ss <- list()
s <- c(0, 10, 100, 1000)
for(i in seq(s)) {
   ss[[i]] <- curfit(x, y,
        s = s[i], method = "ss")
}</pre>
```


Vertical lines are knot placements

Comparison To smooth.spline

■ R has smooth.spline which is a competing function for smoothing splines

```
## example from ?smooth.spline
## This example has duplicate points, so avoid cv = TRUE
cars.spl.0 <- smooth.spline(cars$speed, cars$dist)
cars.spl.1 <- smooth.spline(cars$speed, cars$dist, df = 10)
cars.spl.2 <- curfit(cars$speed, cars$dist, s = 5e3)</pre>
```

data(cars) & smoothing splines

smooth.spline uses cross
validation or equivalent
degrees of freedom to
determine the amount of
smoothing

curfit constrains the model deviance

Least Squares Splines With Fixed Knots

Fixed knots

•
$$a = \lambda_0, \lambda_1, \ldots, \lambda_g, \lambda_{g+1} = b$$

Minimize

$$\delta = \sum_{r=1}^{m} (w_r (y_r - s(x_r)))^2$$

$$= \sum_{r=1}^{m} \left(w_r y_r - \sum_{i=-k}^{g} c_i w_r N_{i,k+1}(x_r) \right)^2,$$

where $N_{i,k+1}$ are B-splines of degree k and c_i are the B-spline coefficients of s(x)

Knots are user-determined

- There is no known R equivalent
- R function spline places a knot at each observation

```
n <- c(5, 10, 15, 25)
ls <- list()
for(i in seq(n)) {
   kn <- seq(0, 24, len = n[i])
   ls[[i]] <- curfit(x, y,
        method = "ls", knots = kn)
}</pre>
```


Vertical lines are knot placements

Least Squares Splines with Variable Knots

■ Titanium data (de Boors and Rice, 1968)

- Dierckx (1993) for optimizing number of knots
- We use optim to minimize the residual sums of squares

Selecting An Appropriate Number Of Knots

Algorithm described by Dierckx (1993)

- Supply starting value of $\lambda_1^0 = (a+b)/2$ for the first knot, where $a = \min(x)$ and $b = \max(x)$
- Determine λ by minimizing a penalized RSS with user-defined ε and $g = length(\lambda)$

$$\xi(\mathbf{\lambda}) = RSS(\mathbf{\lambda}) + \varepsilon \frac{(b-a)RSS(\mathbf{\lambda}^0)}{(g+1)^2} \sum_{j=0}^{g} (\lambda_{j+1} - \lambda_j)^{-1}$$

• For j = 0, 1, 2, ..., g, determine the region between knots with the largest RSS

$$RSS_{j} = \frac{1}{m - m_{j}} \sum_{i=q_{i}+1}^{q_{j}+m_{j}} (w_{i}(y_{i} - s_{g}(x_{i})))^{2},$$

where

$$\lambda_{j} \le X_{q_{j}+1} < X_{q_{j}+2} < \dots < X_{q_{j}+m_{j}} \le \lambda_{j+1}$$

• Add a new knot at the midpoint of λ_i and λ_{i+1} where RSS_i is maximized

Stopping criteria

$$T_g = \frac{\sqrt{m-1} \sum_{i=2}^{m} r_i r_{i-1}}{\sum_{j=1}^{m} r_j^2}$$

• Number of optimal knots g is determined by the first $T_g < 0$

The DierckxSpline Package

Package Functions

- Includes interfaces for computing univariate splines
- FORTRAN for modeling bivariate

Examples and data included

- Data
 - De Boor and Rice (1968) titanium
 - Dierckx (1980) volumetric moisture content
 - Soudan and Dierckx (1979) knee flexion-extension during walking
 - Additional data extracted from FITPACK
- demo(DierckxSpline)
 - Includes examples with data discussed
- vignette (DierckxSpline)
 - Provides more details on the spline fitting and algorithms
 - Includes relevant sections from DierckxSpline (1993)

Example #1 – Smoothing With Periodic Splines

Quintic periodic smoothing spline

Penalty: 90

Periodic: s(a) == s(b)

Example #2 – Differentiation With Free Knot Splines

■ Obtain analytical spline derivatives with deriv function

• Derivatives available from 0 (fitted spline value) to *k* (spline order)

data(titanium) r <- curfit.free.knot(titanium\$x2, titanium\$y, g = 10, eps = 5e-4) xyplot(r, show.knots = TRUE)</pre>

```
dr <- sapply(0:3, deriv,
  expr = r, at = titanium$x2)</pre>
```


Spline Derivatives For Titanium Data

Example #3 – Splines With Convexity Constraints

- Volumetric moisture content data (Dierckx 1980)
 - Force convex constraints for all data points

Example #4 – Profile Likelihood

■ Profiling the likelihood provides confidence intervals on knot placement

```
data(titanium)
r <- curfit.free.knot(titanium$x2,
    titanium$y, g = 10, eps = 5e-4)

pro <- confint(profile(r))
xyplot(pro)</pre>
```

	knots	2.50%	97.50%
1	37.58	32.35	41.42
2	43.98	42.00	45.80
3	47.37	45.54	49.17
4	50.19	48.26	52.36
*5	59.23	50.19	70.38

Lower bound for knot 5 is not achievable

Software Status And Extensions

- Available for download from CRAN after JSM 2007
 - Contact the author for bug reports and coding help
- Create interfaces for remaining FITPACK routines
- Enhanced plotting for 3d splines with lattice

