2003-2004 学年第二学期高等数学期中测试及数学竞赛试卷(2003级)

一、填空题(12×4分)

1. 设
$$\vec{a} = (3,-1,-2)$$
, $\vec{b} = (1,2,-1)$,则 $(-2\vec{a})\cdot(3\vec{b}) = _____$, $\vec{a}\times(2\vec{b}) = _____$ 。

2. 过原点且与两直线
$$x+1=\frac{y+2}{2}=z-1$$
 和 $\begin{cases} x=1\\ y=-1+t \ \text{平行的平面方程} \end{cases}$ $z=2+t$

是____。

3.
$$x^2 + y^2 + z^2 = a^2 与 x + z = a$$
 的交线在 xOy 面上的投影曲线方程是_____。

4. 曲线
$$\begin{cases} \frac{x^2}{4} + y^2 = 1 \\ y$$
 轴一周的旋转曲面的方程是_____。

5. 设
$$U = \ln(x^2 + y^2 + z^2)$$
,则梯度 $gradU =$ ________。

7. 曲面
$$2xy + z - e^z = 3$$
 在点 $M(1,2,0)$ 处的切平面方程为_____。

8.
$$\int_{0}^{2} dx \int_{-\infty}^{2} e^{-y^{2}} dy = \underline{\qquad}_{\circ}$$

9.
$$\int_0^2 dx \int_0^{\sqrt{2x-x^2}} f(x^2+y^2) dy$$
 的极坐标形式为________。

11. 设
$$L: y = -\sqrt{1-x^2}$$
,则 $\int_L (x^2 + y^2) ds =$ ______。

12. 设
$$\Sigma$$
 为 $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ 在第一卦限的部分,则 $\iint_{\Sigma} \left(z + 2x + \frac{4y}{3}\right) dS = \underline{\hspace{1cm}}$

二、计算题 (4×8分)

2. 设
$$D$$
由 $xy = 1$, $y = x$, $x = 2$ 所围,求 $\iint_D \frac{x^2}{y^2} dx dy$ 。

4. 计算
$$\iint_{\Omega} (x+z) dv$$
, Ω 为 $z = \sqrt{1-x^2-y^2}$ 与 $z = \sqrt{x^2+y^2}$ 所围立体域。

三、求内接于半径为R的球且有最大体积的长方体的体积。(10分)

四、(任选做一题, 10分)

1. 求
$$\sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2}$$
 的和函数及 $\sum_{n=2}^{\infty} (-1)^n \frac{n^2-n}{2^n}$ 的和;

2.
$$S: x^2 + y^2 + z^2 = 4(z \ge 0)$$
外侧,求 $\iint_S yzdzdx + 2dxdy$ 。

五、竞赛加题 (5×10分)

1. 设 $x_1 = 10$, $x_{n+1} = \sqrt{6 + x_n}$, 证明 $\lim_{n \to \infty} x_n$ 存在,并求出极限的值。

2. 设 f(x) 具二阶连续导数, f(a)=0 , $g(x)=\begin{cases} \frac{f(x)}{x-a}, & x \neq a \\ f'(a), & x=a \end{cases}$, 求 g'(x), 并证明 g'(x) 在 x=a 处 连续。

3. 证明: $e < a < b < e^2$ 时, $\ln^2 b - \ln^2 a > \frac{4}{e^2} (b - a)$ 。

4. 计算: 1)
$$\int \frac{2 \ln x + 1}{x^3 (\ln x)^2} dx$$
;

2)
$$f(x)$$
连续, $\int_0^x tf(x-t)dt = 1-\cos x$, 求 $\int_0^{\frac{\pi}{2}} f(x)dx$ 。

5. 已知
$$f(x) = \begin{cases} x, & 0 \le x \le 2 \\ 2x - 2, & 2 < x < + \infty \end{cases}$$
, $S(t)$ 是由 $y = f(x)$, $y = 0$, $x = t(t > 0)$ 三条曲线所围的图形的面积,求 $S(t)$ 的表达式及 $S'(t)$ 。

参考答案

—,

- 1. 第一空 -18 ; 第二空 (10,2,14)
- $2. \quad x y + z = 0$
- 3. $\begin{cases} 2x^2 2ax + y^2 = 0 \\ z = 0 \end{cases}$
- $4. \quad \frac{x^2 + z^2}{4} + y^2 = 1$
- 5. $\frac{2}{x^2 + y^2 + z^2}(x, y, z)$
- 6. $-\frac{1}{xz} \left(\frac{y}{x}\right)^{\frac{1}{z}} dx + \frac{1}{yz} \left(\frac{y}{x}\right)^{\frac{1}{z}} dy \frac{1}{z^2} \left(\frac{y}{x}\right)^{\frac{1}{z}} \ln \frac{y}{x} dz$
- 7. 2x + y 4 = 0
- 8. $\frac{1}{2}(1-e^{-4})$
- 9. $\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(r^2) \cdot r \, dr$
- 10. $\frac{4}{5}\pi$
- 11. π
- 12. $4\sqrt{61}$

_,

- 1. $\frac{\partial z}{\partial x} = yg' + yf'_1 + \frac{1}{y}f'_2$, $\frac{\partial^2 z}{\partial x \partial y} = g' + xyg'' + f'_1 + xyf''_{11} \frac{x}{y}f''_{12} \frac{1}{y^2}f'_2 + \frac{x}{y}f''_{21} \frac{x}{y^3}f''_{22}$
- 2. $\frac{9}{4}$
- 3. $\frac{10}{9}\sqrt{2}$
- 4. $\frac{\pi}{8}$

三、长方体的长、宽、高都为 $\frac{2}{3}\sqrt{3}R$ 时,有最大体积 $\frac{8}{9}\sqrt{3}R^3$

四、

1.
$$S(x) = \frac{2}{(1+x)^3}, -1 < x < 1; \sum_{n=2}^{\infty} (-1)^n \frac{n^2 - n}{2^n} = \frac{1}{4} S(\frac{1}{2}) = \frac{4}{27}$$

12π 提示: 高斯公式

五、

1.
$$\{x_n\}$$
单调有界, $\lim_{n\to\infty} x_n = 3$

2.
$$g'(x) = \begin{cases} \frac{(x-a)f'(x)-f(x)}{(x-a)^2}, & x \neq a \\ \frac{f''(a)}{2}, & x = a \end{cases}$$

3. 提示:由拉格朗日中值定理, $\ln^2 b - \ln^2 a = \frac{2 \ln \xi}{\xi} (b - a)$,

只需证明
$$\frac{2\ln x}{x} > \frac{4}{e^2}, e < x < e^2$$

4. 1)
$$-\frac{1}{x^2 \ln x} + C$$
 提示:考虑 $\int \frac{2x \ln x + x}{(x^2 \ln x)^2} dx$

5.
$$S(t) = \begin{cases} \frac{1}{2}t^2, & 0 < t \le 2 \\ t^2 - 2t + 2, & t > 2 \end{cases}$$
;

$$S'(t) = \begin{cases} t, & 0 < t \le 2 \\ 2t - 2, & t > 2 \end{cases}$$