Hemolysis Identification Using Capsules Network

DEPARTMENT OF INFORMATION ENGINEERING

Master of Science in Communication Technologies and Multimedia

Supervisor:

Prof. Alberto Signoroni

Candidate: Muktar Dereje Aman

Candidate number: 714584

714304

- Introduction
- Problem Statement
- Proposed Method
- Results
- Conclusion

- Introduction
- 2 Problem Statement
- Proposed Method
- 4 Results
- Conclusion

Introduction: bacteria culturing

- Clinical Microbiology is concerned with the prevention, diagnosis and treatment of pathogenic diseases.
- A microbiological culture is a technique of growing microbial organisms that is useful for pathogens identification..
- Blood agar: Is a mixture of nutrient agar and 5% sheep blood:
 - Is used for isolation and cultivation of many types of pathogenic bacteria.

Introduction: hemolysis

- Some bacteria species produce exoenzymes that lyse red blood cells and degrade haemoglobin; these are called hemolytic.
- There are three different types of hemolysis on the agar plate: Alpha, Beta and Gamma.
 - **1** Alpha(α) hemolysis
 - Is a partial hemolysis.
 - Produces olive green discoloration.
 - **2** Beta(β) hemolysis
 - Is a complete breakdown of the red blood.
 - Produces a lightened(yellowish) and halo around the colony.
 - \odot Gamma(γ) hemolysis
 - No hemolysis.
 - Looks uniform and has shiny white growth.

Automated system for Clinical microbiology

- Introduction
- 2 Problem Statement
- Proposed Method
- Results
- Conclusion

Problem Statement

- It is challenging for the clinical microbiologist to quickly identify the hemolysis.
- It can be difficult for a microbiologist to clearly see hemolysis effects looking at digital images.
- The objective of this thesis is to design and evaluate an image analysis method for the detection and classification of hemolysis effects.

- Introduction
- Problem Statement
- Proposed Method
- Results
- Conclusion

Proposed Approach

- A deep learning solution, based on convolutional capsule network is used for classification of three types of images of hemolysis.
- The system should help the microbiologist to accurately classify hemolysis images.

Proposed Method

- Capsule network(Caps Net) are an improvement on convolutional neural network(CNNs).
 - Solve problems of CNN which losses information regarding order and feature orientation.
 - Your brain can easily recognize this is the same object.
 - CNNs can not effectively handle rotations and other spatial transforms.

• Capsule network is more robust to the change in transformation and how the image is positioned.

Proposed Method

- Capsules are groups of neurons.
- Each capsule represent the presence and the instantiation parameter of multi-dimensional entity of the type that the capsule detects.
- If a capsule detects an object, the capsule outputs two things:
 - The probability that an object of that type is present.
 - Instantiation parameters including the precise pose.

Capsule networks specifically implement an inverse rendering process.

July 17, 2019

Proposed Method: CapsNet architecture Encoder

- A convolution layer is applied to extract primary feature maps.
- Primary caps layer.
 - This layer is used to divide feature maps into capsules.
- HemolysisCaps layer.
 - The 3 higher level capsule(of 16D) represent the 3 final "Hemolysis/class entities"
- Loss function
 - The max normal loss which allows to do classification

Proposed Method: CapsNet architecture Decoder

- Decoder structure to reconstruct an image from the HemolysisCap layer representation.
 - Reconstruction layer consists of only a few fully connected layers.
 - Minimize the loss generated between initial image and the original image.
 - This method acts like regularizer that easily cut back the over-fitting within the model.

- Introduction
- 2 Problem Statement
- Proposed Method
- Results
- Conclusion

Dataset Description

 Hemolysis images are actually photos of back lit images and top lit images.

Dataset Description

The dataset distributed as follow

Classes	Training data	validation data	Test data
ALPHA	200	56	56
BETA	200	56	56
GAMMA	200	56	56
Total	600	168	168

Training Accuracy

- It is clear that the accuracy is increasing and loss reducing per epoch.
- The training accuracy nearly 90%.

Prediction results

- β hemolysis is predicted better than the γ and α hemolysis.
- The percentage of β correctly predicted is 89.29%.
- α correctly predicted is 85.71%.
- γ correctly predicted is 82.14%.

• Predicted α

- Olive green discoloration is the key feature of α hemolysis.
- \bullet makes them easily to identify as α in the prediction.

• Predicted β

- If there is a yellowish halo around the colony and transparency
- The capsule network can easily identified as β hemolysis.

\bullet Predicted γ

- γ hemolysis has shiny white growth,looks uniform and red (the color of the blood agar substrate).
- This features is used to identify them from the other correctly.

Wrongly predicted

- β hemolysis wrongly classified as γ hemolysis due to some bright halo colored colonies.
- α hemolysis wrongly classified as β hemolysis due to some bright shiny inside the colonies.
- γ hemolysis wrongly classified as α hemolysis due some discoloration.
- Back lit images are quite noisy.

- Introduction
- 2 Problem Statement
- Proposed Method
- Results
- Conclusion

Conclusion

- Hemolysis identification using capsule network, which would help the microbiologists to classify the three different types of hemolysis faster.
- Can be used as an automated tool to assist doctors in disease control.
- Prediction accuracy of Hemolysis Identification Using Capsules Network with 85.7%.
- In the future work, more in depth analysis will be performed to optimize the architecture: number of convolutional layer, dimension of capsules in primary and Hemolysis capsule layers.

