Spatio-temporal statistics (MATH4341)

Michaelmas term, 2024

Homework 4: Aerial data modeling

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Exercise 1. (\star) Show that the local characteristics

$$\operatorname{pr}_{1}(x_{1}|x_{2}) = \sqrt{\frac{1}{2\pi}} \exp\left(-\frac{1}{2}(x_{1} - x_{2})^{2}\right)$$
$$\operatorname{pr}_{2}(x_{2}|x_{1}) = \sqrt{\frac{1}{2\pi}} \exp\left(-\frac{1}{2}(x_{2} - x_{1})^{2}\right)$$

do not define a proper joint distribution on $\mathbb{R}^{\{1,2\}}$.

Definition 2. (Pseudo-likelihood) The pseudo likelihood pseudo- $L(Z;\theta)$ of observables Z= $(Z_1,...,Z_n)^{\top}$ given parameters θ is an approximation of the likelihood $L(Z;\theta)$ of observables $Z = (Z_1, ..., Z_n)^{\top}$ given parameters θ which is equal to

pseudo-
$$L(Z; \theta) = \prod_{i} \operatorname{pr}(Z_{i}|Z_{-i}, \theta)$$

where pr $(Z_i|Z_{-i},\theta)$ are the conditionals of the joint pdf/pmf of the sampling distribution pr $(Z|\theta)$ of Z given $Z_{-i} = (Z_1, ..., Z_{i-1}, Z_{i+1}..., Z_n)^{\top}$ and parameter θ .

Definition. (Maximum Pseudo-Likelihood Estimator) The Maximum Pseudo-Likelihood Estimator (MPLE) $\tilde{\theta}$ of θ is the maximizer of the pseudo likelihood function pseudo- $L(Z;\theta)$ where the parameter θ is the argument and the observables $Z = (Z_1, ..., Z_n)^{\top}$ are fixed values.

$$\ddot{\theta} = \underset{\theta}{\operatorname{arg\,max}} \left(\operatorname{pseudo-}L\left(Z;\theta\right) \right)$$

 $\tilde{\theta} = \underset{\theta}{\arg\max} \left(\text{pseudo-}L\left(Z;\theta\right) \right)$ **Exercise 3.** (*) Let $Z \in \mathcal{Z}^{\mathcal{S}}$ where $\mathcal{S} = \{1,...,n\}$ and $\mathcal{Z} = \mathbb{R}$. Consider the model

$$Z = X\beta + B(Z - X\beta) + E$$

where X is a $n \times p$ design matrix $X, \beta \in \mathbb{R}^p$, I - B is an $n \times n$ symmetric positive definite matrix with $[B]_{i,i} = 0$, $E \sim N(0, \sigma^2(I - B))$, and $\sigma^2 > 0$.

Hint The following formulas are provided for your information

•
$$\partial (XY) = (\partial X) Y + X (\partial Y)$$

•
$$\partial (X^{\top}) = (\partial X)^{\top}$$

$$\bullet \ \frac{\partial}{\partial x} (x^{\top} B x) = (B + B^{\top}) x$$

•
$$\frac{\partial}{\partial x} \left((s - Ax)^{\top} W (s - Ax) \right) = -2AW (s - Ax)$$

- 1. This is a multiple choice question, choose any number of correct answers.
 - (a) Z follows a simultaneous autoregressive (SAR) with Gaussian joint distribution with mean $X\beta$ and covariance matrix $\sigma^2 (I B)^{-1}$
 - (b) Ising model
 - (c) Conditional autoregressive (CAR) with Gaussian joint distribution with mean $X\beta$ and covariance matrix $\sigma^2 I$
 - (d) Bernoulli regression
- 2. Show that the minus two log Pseudo-Likelihood is such as

$$-2\log\left(\operatorname{pseudo-}L\left(Z;\beta,\sigma^{2}\right)\right) = n\log\left(\sigma^{2}\right) + \frac{1}{\sigma^{2}}\left(Z - X\beta\right)^{\top}\left(I - B\right)^{2}\left(Z - X\beta\right) + \operatorname{const.}$$

3. Compute the Maximum Pseudo-Likelihood Estimators (MPLE) $\tilde{\beta}$ and $\tilde{\sigma}^2$ of β and σ^2