

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задача 3_1_2 »

С тудент группы	ИКБО-13-21	Черномуров С.А.
Руководитель практики	Ассистент	Асадова Ю.С.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

введение	4
Постановка задачи	5
Метод решения	6
Описание алгоритма	8
Блок-схема алгоритма	11
Код программы	13
Тестирование	16
ЗАКЛЮЧЕНИЕ	17
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)	18

введение

Постановка задачи

Создать объект первого типа, у которого одно целочисленное свойство. Значение данного свойства определяется посредством параметризированного конструктора.

Создать объект второго типа, у которого две целочисленных свойства. Значение данных свойств определяется посредством метода объекта. Реализовать дружественную функцию, которая находит максимальное значение полей объекта первого типа и полей объекта второго типа.

Написать программу:

- 1. Вводит значение для поля объекта первого типа.
- 2. Создает объект первого типа.
- 3. Вводит значения полей для полей объекта второго типа.
- 4. Создает объект второго типа.
- 5. Определяет значения полей объекта второго типа.
- 6. Определяет максимальное значение полей, созданных двух объектов разного типа посредством дружественной функции.
- 7. Выводит полученный результат.

Описание входных данных

Первая строка:

«целое число в десятичном формате»

Вторая строка:

«целое число в десятичном формате» «целое число в десятичном формате»

Описание выходных данных

Первая строка, с первой позиции:

max = «целочисленное значение в десятеричном формате»

Метод решения

Для решение задачи используются:

- Функция max, принадлежит библиотеке algorithm. Используется для выбора максимального из двух чисел.
- Объект ob1 класса Constr. Используется для создания объекта первого типа.
- Объект ob2 класса Meth. Используется для создания объекта второго типа.

• Класс Constr:

- Дружественные функции:
 - Функция сотр:
 - Функционал параметризированная функция, возвращающая значение максимального из трех чисел.
- Свойства поля:
 - Поле:
 - Наименование sv1;
 - Тип целочисленный;
 - Модификатор доступа закрытый.
- Методы:
 - Метод Constr:
 - Функционал параметризированный конструктор, присваивающий переданное в него значение полю sv1.

• Класс Meth:

• Дружественные функции:

- Функция сотр:
 - Функционал параметризированная функция, возвращающая значение максимального из трех чисел.
- Свойства поля:
 - Поле:
 - Наименование sv2;
 - Тип целочисленный;
 - Модификатор доступа закрытый.
 - Поле:
 - Наименование sv3;
 - Тип целочисленный;
 - Модификатор доступа закрытый.
- Методы:
 - Метод Initialize:
 - Функционал параметризированный метод, присваивающий переданные в него значения полям sv2, sv3.

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Функция: сотр

Функционал: Параметризированная функция, возвращающая значение максимального из трех чисел

Параметры: Ссылка на объект ob1 класса Constr, ссылка на объект ob2 класса Meth

Возвращаемое значение: Целочисленный тип данных - максимальное из трех чисел

Алгоритм функции представлен в таблице 1.

Таблица 1. Алгоритм функции сотр

N₂	Предикат	Действия	№ перехода	Комментарий
		Возврат значения		
1		максимального из трех чисел	Ø	
		ob1.sv1, ob2.sv2, ob2.sv3		

Функция: main

Функционал: Основной алгоритм программы

Параметры: Отсутствуют

Возвращаемое значение: Целочисленный тип данных - код возврата

Алгоритм функции представлен в таблице 2.

Таблица 2. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление целочисленных переменных a, b	2	
2		Считывание с клавиатуры значения переменной а	3	
3		Создание объекта ob1 класса Constr путем вызова конструктора с целочисленным параметром а	4	
4		Считывание с клавиатуры значения переменных а, b	5	
5		Создание объекта ob2 класса Meth	6	
6		Вызов метода Initialize объекта ob2 с целочисленными параметрами a, b	7	
7		Вывод на экран "max = ", значение, возвращенное функцией сотр с фактическими параметрами: ссылка на объект ob1 класса Constr, ссылка на объект ob2 класса Meth	Ø	

Конструктор класса: Constr

Модификатор доступа: public

Функционал: Параметризированный конструктор, присваивающий переданное в него значение полю sv1

Параметры: Переменная а целочисленного типа данных

Алгоритм конструктора представлен в таблице 3.

Таблица 3. Алгоритм конструктора класса Constr

N₂	Предикат	Действия	№ перехода	Комментарий
1		Присвоение значения переменной а значению поля sv1 класса Constr	Ø	

Класс объекта: Meth

Модификатор доступа: public

Метод: Initialize

Функционал: Параметризированный метод, присваивающий переданные в него значения полям sv2, sv3

Параметры: Переменные а, b целочисленного типа данных

Возвращаемое значение: Отсутствует

Алгоритм метода представлен в таблице 4.

Таблица 4. Алгоритм метода Initialize класса Meth

N₂	Предикат	Действия	№ перехода	Комментарий
1		Присвоение значения переменной а значению поля sv2 класса Meth	2	
2		Присвоение значения переменной b значению поля sv3 класса Meth	Ø	

Блок-схема алгоритма

Представим описание алгоритмов в графическом виде на рисунках ниже.

Рис. 1. Блок-схема алгоритма.

Рис. 2. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл сотр.срр

```
#include "Constr.h"
#include "Meth.h"
#include <algorithm>
using namespace std;

int comp(Constr &ob1, Meth &ob2){
         return max(ob1.sv1, max (ob2.sv2,ob2.sv3) );
}
```

Файл Constr.cpp

Файл Constr.h

Файл main.cpp

```
#include <iostream>
#include "Constr.h"
#include "Meth.h"
using namespace std;

int main()
{
    int a, b; //объявление переменных
        cin >> a; // ввод числа для первого объекта
        Constr ob1(a); // объявление первого объекта
        cin >> a >> b; // ввод двух чисел для второго объекта
        Meth ob2; // объявление второго объекта
        ob2.Initialize(a, b); // вызов метода второго объекта
        cout << "max = " << comp(ob1, ob2); // вывод максимума из трех чисел return 0;
}</pre>
```

Файл Meth.cpp

Файл Meth.h

```
#ifndef _NAME2_H
#define _NAME2_H
class Constr;
class Meth{
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
-90 90 90	max = 90	max = 90
1 2 3	max = 3	max = 3
0 0 0	max = 0	max = 0
412	max = 4	max = 4
7 9 4	max = 9	max = 9

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL:
- https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).