Planche nº 26. Matrices (partie I)

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1: (***I)

On pose
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 et $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- 1) Calculer J^2 . En déduire J^n pour $n \in \mathbb{N}^*$.
- 2) Exprimer A en fonction de I_3 et J. En déduire A^n pour $n \in \mathbb{N}$.
- 3) a) A l'aide de 1), déterminer deux réels α et β tels que $A^2 + \alpha A + \beta I_3 = 0$.
 - b) En déduire que A est inversible puis déterminer A^{-1} .
- 4) Application:
 - a) Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ les trois suites définies par

$$u_0 = 1, \ v_0 = 0, \ w_0 = 2 \ \mathrm{et} \ \forall n \in \mathbb{N}, \ \begin{cases} \ u_{n+1} = 2u_n + v_n + w_n \\ v_{n+1} = u_n + 2v_n + w_n \\ w_{n+1} = u_n + v_n + 2w_n \end{cases}.$$

Déterminer u_n , v_n et w_n en fonction de n.

b) Résoudre dans
$$\mathbb{R}^3$$
 le système
$$\begin{cases} 2x+y+z=5\\ x+2y+z=1\\ x+y+2z=-1 \end{cases}$$
 (S).

Exercice nº 2: (**I)

Pour x réel, on pose

$$A(x) = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}.$$

Déterminer $(A(x))^n$ pour x réel et n entier relatif (on calculera d'abord $A(x) \times A(y)$ pour x et y réels donnés).

Exercice no 3: (***)

$$\mathrm{Soit}\; A = \left(\begin{array}{ccccc} 0 & 0 & \dots & 0 & 1 \\ 0 & & \ddots & 1 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 1 & 0 & & 0 \\ 1 & 0 & \dots & \dots & 0 \end{array} \right) \in \mathscr{M}_p(\mathbb{R}).$$

- 1) Pour tout $(i,j) \in [1,n]^2$, exprimer le coefficient $a_{i,j}$ de A situé ligne i, colonne j.
- 2) Calculer A². Que peut-on en déduire?
- 3) Calculer A^n pour n entier relatif.

Exercice no 4: (***)

- 1) Montrer que pour tout $(a,b) \in \mathbb{R}^2$, $\operatorname{ch}(a+b) = \operatorname{ch} a \operatorname{ch} b + \operatorname{sh} a \operatorname{sh} b$ et $\operatorname{sh}(a+b) = \operatorname{sh} a \operatorname{ch} b + \operatorname{ch} a \operatorname{sh} b$.
- 2) Montrer que $\left\{\frac{1}{\sqrt{1-x^2}}\begin{pmatrix} 1 & x \\ x & 1 \end{pmatrix}, x \in]-1,1[\right\}$ est un groupe pour la multiplication des matrices (on posera $x=\operatorname{th}\mathfrak{a}$).

Exercice no 5: (***)

$$\mathrm{Soient}\ I_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \ \mathrm{et}\ J = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \ \mathrm{puis}\ E = \big\{M(x,y) = xI + yJ,\ (x,y) \in \mathbb{R}^2\big\}.$$

- 1) Montrer que (E, +) est un sous-groupe du groupe $(\mathcal{M}_2(\mathbb{R}), +)$.
- 2) Montrer que $(E, +, \times)$ est un anneau commutatif.
- 3) Montrer que pour tout $(x, y, x', y') \in \mathbb{R}^4$, $M(x, y) = M(x', y') \Leftrightarrow x = x'$ et y = y'.

- 4) Quels sont les inversibles de l'anneau $(E, +, \times)$?
- 5) Résoudre dans E les équations suivantes :

a)
$$X^2 = I_2$$
 b) $X^2 = 0$ c) $X^2 = X$.

6) Calculer $(M(x,y))^n$ pour n entier naturel non nul.

Exercice nº 6: (***)

Soit $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \ (n \geqslant 2)$ définie par

$$\forall i \in [\![1,n]\!], \ \alpha_{i,j} = \left\{ \begin{array}{l} i \ \mathrm{si} \ i = j \\ 1 \ \mathrm{si} \ i > j \\ 0 \ \mathrm{si} \ i < j \end{array} \right..$$

Montrer que A est inversible et calculer son inverse.

Exercice nº 7: (***I)

Déterminer l'ensemble des éléments de $\mathcal{M}_n(\mathbb{K})$ qui commutent avec tous les éléments de $\mathcal{M}_n(\mathbb{K})$ (utiliser les matrices élémentaires).

Exercice n° 16: (***I) (Matrice de VANDERMONDE des racines n-ièmes de l'unité).

Soit $\omega = e^{2i\pi/n}$, $(n \geqslant 2)$. Soit $A = (\omega^{(j-1)(k-1)})_{1 \leqslant j,k \leqslant n}$. Montrer que A est inversible et calculer A^{-1} (calculer d'abord $A\overline{A}$).

Exercice no 18: (**I)

On pose $u_0=1,\, v_0=0,\, \mathrm{puis},\, \mathrm{pour}\,\, n\in\mathbb{N},\, u_{n+1}=2u_n+v_n\,\, \mathrm{et}\,\, v_{n+1}=u_n+2v_n.$

- 1) Soit $A=\left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right)$. Pour $n\in\mathbb{N},$ calculer $A^n.$ En déduire \mathfrak{u}_n et ν_n en fonction de n.
- 2) En utilisant deux combinaisons linéaires intéressantes des suites u et v, calculer directement u_n et v_n en fonction de n.