

SAR Test Report

Product Name: Mobile Phone

Model No. : TRAVELER, MU9700

FCC ID : YNNTRAV777

Applicant: MONARCH MERCHANT LLC

Address: 14521 DICKENS STREET, STE.1, SHERMAN

OAKS, CALIFORNIA

Date of Receipt: 29. Jul, 2010

Date of Test : 30. Jul, 2010 ~ 03. Aug, 2010

Issued Date : 03. Aug, 2010

Report No. : 107S094R-HP-US-P03V01

Report Version: V1.1

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of Quie Tek Corporation.

Test Report Certification

Issued Date: 03.Aug, 2010

Report No: 107S094R-HP-US-P03V01

QuieTek

Product Name Mobile Phone

Applicant MONARCH MERCHANT LLC

Address 14521 DICKENS STREET, STE.1, SHERMAN OAKS,

CALIFORNIA

Manufacturer MONARCH MERCHANT LLC

Address 14521 DICKENS STREET, STE.1, SHERMAN OAKS,

CALIFORNIA

FCC ID YNNTRAV777

Model No. TRAVELER. MU9700

Trade Name **MONARCH**

EUT Voltage DC 3.7V

FCC Oet65 Supplement C June 2001 Applicable Standard

IEEE Std. 1528-2003, 47CFR § 2.1093

Test Result Max. SAR Measurement (1g)

Head: 0.302 W/kg

Body: 1.370 W/kg

Performed Location SuZhou EMC laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng

Hi-Tech Development Zone., SuZhou, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392

Documented By

(Engineering ADM: Alice Ni)

Tested By

Marlinchen

(Engineering Supervisor: Marlin Chen)

Approved By

(Engineering Manager: Dream Cao)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited by the following accreditation Bodies in compliance with ISO 17025, EN 45001 and Guide 25:

Taiwan R.O.C. : BSMI, NCC, TAF

Germany : TUV Rheinland

Norway : Nemko, DNV USA : FCC, NVLAP

Japan : VCCI

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://tw.quietek.com/modules/myalbum/

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C.

LinKou Testing Laboratory:

Suzhou Testing Laboratory:

TABLE OF CONTENTS

Description Page

1. G	eneral Information	6
1.1. 1.2.		
2. S	AR Measurement System	7
2.1.	DASY5 System Description	7
	1.1. Applications	
	1.2. Area Scans	
	1.3. Zoom Scan (Cube Scan Averaging)	
	1.4. Uncertainty of Inter-/Extrapolation and Averaging	
2.2.		
2. 2.3.	2.1. Isotropic E-Field Probe Specification	
2.3. 2.4.	Boundary Detection Unit and Probe Mounting Device	
2.5.	· · · · · · · · · · · · · · · · · · ·	
2.6.		
2.7.	_ _ _ _	
2.8.	SAM Twin Phantom	
3. Ti	ssue Simulating Liquid	13
3.1.	The composition of the tissue simulating liquid	13
3.2.		
3.3.	Tissue Dielectric Parameters for Head and Body Phantoms	16
4. S	AR Measurement Procedure	17
4.1.	SAR System Validation	17
4.	1.1. Validation Dipoles	17
4.	1.2. Validation Result	18
4.2.	SAR Measurement Procedure	19
5. S	AR Exposure Limits	20
6. Te	est Equipment List	21
7. M	easurement Uncertainty	22
8. C	onducted Power Measurement	23

9. Test Results	24
9.1. SAR Test Results Summary	24
Appendix A. SAR System Validation Data	30
Appendix B. SAR measurement Data	35
Appendix C. Test Setup Photographs & EUT Photographs	82
Appendix D. Probe Calibration Data	87
Appendix E. Dipole Calibration Data	98

1. General Information

1.1. EUT Description

Product Name	Mobile Phone		
FCC ID	YNNTRAV777		
Trade Name	MONARCH		
Model No.	TRAVELER, MU9700		
IMEI 1	355501010013967		
IMEI 2	355501010013968		
Tx Frequency Range	GSM 850: 824~849MHz		
	PCS 1900: 1850~1910MHz		
Rx Frequency Range	GSM 850: 869~894MHz		
	PCS 1900: 1930~1990MHz		
Antenna Type	Internal		
GPRS Class	Class 12		
Type of Modulation	GMSK		
Device Category	Portable		
Peak Antenna Gain	GSM850: -0.23 dBi		
	PCS1900: 0.67 dBi		
	WiFi: 0.21dBi		
Max. Output Power	GSM850: 32.76dBm <sim 1=""></sim>		
(Conducted)	PCS1900: 29.79dBm <sim 1=""></sim>		
	WiFi: 12.52dBm		
Max. Output Power	GSM850: 32.48 - ERP <sim 1=""></sim>		
(Radiated)	PCS1900: 29.88 - EIRP <sim 1=""></sim>		
	WiFi: 12.64dBm - EIRP		

1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.3± 2
Humidity (%RH)	30-70	52

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4		
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)		
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	/	
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm		
Application	High precision dosimetric measurements in an (e.g., very strong gradient fields). Only pr compliance testing for frequencies up to 6 GHz w 30%.	obe which enables	

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	835MHz	835MHz	1900MHz	1900MHz	2450MHz
(% Weight)	Head	Body	Head	Body	Body
Water	40.45	52.4	54.90	40.5	73.2
Salt	1.45	1.40	0.18	0.50	0.04
Sugar	57.6	45.0	0.00	58.0	0.00
HEC	0.40	1.00	0.00	0.50	0.00
Preventol	0.10	0.20	0.00	0.50	0.00
DGBE	0.00	0.00	44.92	0.00	26.7

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Head Tissue Simulant Measurement						
Frequency	Description	Dielectric Parameters		Tissue Temp.		
[MHz]	Description	ε _r	σ [s/m]	[°C]		
	Reference result	42.54	0.91	N/A		
835 MHz	± 5% window	40.41 to 44.67	0.86 to 0.96	IN/A		
	30-Jul-2010	43.00	0.90	21.0		
	,					

Body Tissue Simulant Measurement						
Frequency	Description	Dielectric Parameters		Tissue Temp.		
[MHz]	Description	8 _r	σ [s/m]	[°C]		
	Reference result	55.2	0.97	N/A		
835 MHz	± 5% window	52.44 to 57.96	0.92 to 1.02	IN/A		
	31-Jul-2010	55.36	1.00	21.0		

Head Tissue Simulant Measurement						
Frequency	Description	Dielectric Parameters		Tissue Temp.		
[MHz]	Description	ε _r	σ [s/m]	[°C]		
	Reference result	39.9	1.42	N/A		
1900 MHz	± 5% window	37.91 to 41.90	1.35 to 1.49	IN/A		
	30-Jul-2010	39.44	1.42	21.2		

Body Tissue Simulant Measurement						
Frequency	Description	Dielectric Parameters		Tissue Temp.		
[MHz]	Description	8 _r	σ [s/m]	[°C]		
	Reference result	53.3	1.52	N/A		
1900 MHz	± 5% window	50.64 to 55.97	1.44 to 1.60	IN/A		
	31-Jul-2010	52.62	1.58	21.2		

Body Tissue Simulant Measurement					
Frequency	Description	Dielectric Parameters		Tissue Temp.	
[MHz]	Description	ε _r	ஏ [s/m]	[°C]	
	Reference result	52.7	1.95	N/A	
2450 MHz	± 5% window	50.07 to 55.34	1.85 to 2.05	IN/A	
	02-Aug-2010	53.10	2.03	21.2	

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Во	ody
(MHz)	٤ _r	σ (S/m)	٤ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835MHz	165.0	900	3.6
1900MHz	68.0	39.5	3.6
2450MHz	53.5	30.4	3.6

4.1.2. Validation Result

	ormance Check at	835MHz &1900MHz	for Head						
Validation Kit: D835V2-SN 4d094									
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp.					
835 MHz	Reference result ± 10% window	9.70 8.73 to 10.67	6.30 5.67 to 6.93	N/A					
	30-Jul-2010	10.04	6.52	21.0					
Validation K	(it: D1900V2-SN 5d1	 21							
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]					
1900 MHz	Reference result ± 10% window	39.8 35.82 to 43.78	21.1 18.99 to 23.21	N/A					
	30-Jul-2010	40.80	20.76	21.0					
Note: All SAF	R values are normaliz	zed to 1W forward p	ower.						
Stratom Bari	Chock at	025MU~ 94000MU;	- 0 2450MUz for Re	- d.,					
System i en	formance Check at	833WITZ & 1300WI 12	Z & 2430IVII IZ 101 D0	ouy					
	(it: D835V2-SN 4d09								
Frequency	Description	SAR [w/kg]	CAD [w/ka]						
[MHz]	Description	1g	SAR [w/kg] 10g	Tissue Temp [°C]					
[MHz] 835 MHz	Reference result ± 10% window								
	Reference result	1g 9.90	10g 6.53	[°C]					
835 MHz	Reference result ± 10% window	1g 9.90 8.91 to 10.89 10.48	10g 6.53 5.88 to 7.18	[°C]					
835 MHz	Reference result ± 10% window 31-Jul-2010	1g 9.90 8.91 to 10.89 10.48	10g 6.53 5.88 to 7.18	[°C]					
835 MHz Validation K Frequency	Reference result ± 10% window 31-Jul-2010 Xit: D1900V2-SN 5d1	1g 9.90 8.91 to 10.89 10.48	10g 6.53 5.88 to 7.18 6.76 SAR [w/kg]	[°C] N/A 21.0 Tissue Temp					
835 MHz Validation K Frequency [MHz]	Reference result ± 10% window 31-Jul-2010 Xit: D1900V2-SN 5d1 Description Reference result	1g 9.90 8.91 to 10.89 10.48 121 SAR [w/kg] 1g 41.4	10g 6.53 5.88 to 7.18 6.76 SAR [w/kg] 10g 22.3	[°C] N/A 21.0 Tissue Temp [°C]					
835 MHz Validation K Frequency [MHz] 1900 MHz	Reference result ± 10% window 31-Jul-2010 Xit: D1900V2-SN 5d1 Description Reference result ± 10% window	9.90 8.91 to 10.89 10.48 121 SAR [w/kg] 1g 41.4 37.26 to 45.54 39.96	10g 6.53 5.88 to 7.18 6.76 SAR [w/kg] 10g 22.3 20.07 to 24.53	[°C] N/A 21.0 Tissue Temp [°C] N/A					
835 MHz Validation K Frequency [MHz] 1900 MHz	Reference result ± 10% window 31-Jul-2010 (it: D1900V2-SN 5d1 Description Reference result ± 10% window 31-Jul-2010	9.90 8.91 to 10.89 10.48 121 SAR [w/kg] 1g 41.4 37.26 to 45.54 39.96	10g 6.53 5.88 to 7.18 6.76 SAR [w/kg] 10g 22.3 20.07 to 24.53	[°C] N/A 21.0 Tissue Temp [°C] N/A					
835 MHz Validation K Frequency [MHz] 1900 MHz Validation K Frequency	Reference result ± 10% window 31-Jul-2010 Sit: D1900V2-SN 5d1 Description Reference result ± 10% window 31-Jul-2010 Sit: D2450V2-SN 839	1g 9.90 8.91 to 10.89 10.48 121 SAR [w/kg] 1g 41.4 37.26 to 45.54 39.96 SAR [w/kg]	10g 6.53 5.88 to 7.18 6.76 SAR [w/kg] 10g 22.3 20.07 to 24.53 20.40	[°C] N/A 21.0 Tissue Temp [°C] N/A 21.0					
835 MHz Validation K Frequency [MHz] 1900 MHz Validation K Frequency [MHz]	Reference result ± 10% window 31-Jul-2010 Ait: D1900V2-SN 5d1 Description Reference result ± 10% window 31-Jul-2010 Ait: D2450V2-SN 839 Description Reference result	9.90 8.91 to 10.89 10.48 121 SAR [w/kg] 1g 41.4 37.26 to 45.54 39.96 SAR [w/kg] 1g 51.6	10g 6.53 5.88 to 7.18 6.76 SAR [w/kg] 10g 22.3 20.07 to 24.53 20.40 SAR [w/kg] 10g 24.2	[°C] N/A 21.0 Tissue Temp [°C] N/A 21.0 Tissue Tem [°C]					

4.2. SAR Measurement Procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last	Next
				Calibration	Calibration
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	Apr. 2010	only once
Controller	Stäubli	SP1	S-0034	Apr. 2010	only once
Dipole Validation Kits	Speag	D835V2	4d094	Apr. 2010	Apr. 2012
Dipole Validation Kits	Speag	D1900V2	5d121	Apr. 2010	Apr. 2012
Dipole Validation Kits	Speag	D2450V2	839	Apr. 2010	Apr. 2012
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A	N/A
Data	Speag	DAE4	1220	Apr. 2010	Apr. 2011
Acquisition Electronic					
E-Field Probe	Speag	EX3DV4	3710	Apr. 2010	Apr. 2011
SAR Software	Speag	DASY5	V5.2 Build 162	N/A	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A	N/A
Directional Coupler	Agilent	778D	20160	N/A	N/A
Universal Radio	R&S	CMU 200	117088	Jul. 2009	Jul. 2010
Communication Tester					
Vector Network	Agilent	E5071C	MY48367267	Mar. 2010	Mar. 2011
Signal Generator	Agilent	E4438C	MY49070163	Apr. 2010	Apr. 2011
Power Meter	Anritsu	ML2495A	0905006	Jan. 2010	Jan. 2011
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	Jan. 2010	Jan. 2011

7. Measurement Uncertainty

DASY5 Uncertainty								
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±5.5%	N	1	1	1	±5.5%	±5.5%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related		ı		l			•	
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup			•	1	.	•		•
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	. F. O0/	П	475	0.64	0.42	14.00/	.4.00/	∞
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
(meas.)	±2.5 /6	IN	ļ !	0.04	0.43	£1.076	±1.170	~
Liquid Permittivity	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
(target)	13.070	IX.	γ 3	0.0	0.43	11.7 70	±1.470	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)	±2.5 /0	1 4		0.0	0.73	1.5/0	±1.∠/0	
Combined Std. Uncertain	inty					±10.7%	±10.5%	387
Expanded STD Uncertain	inty					±21.5%	±21.0%	

8. Conducted Power Measurement

Mode	Frequency (MHz)	Output Power (dBm)	Path Loss (dB)	Result (dBm)
Maximum Power (S	IM 1)			
	824.2	31.95	0.7	32.65
GSM850	836.6	32.03	0.7	32.73
	848.8	32.06	0.7	32.76
	1850.2	28.79	1.0	29.79
PCS1900	1880.0	28.01	1.0	29.01
	1909.8	27.44	1.0	28.44
	824.2	30.63	0.7	31.33
GPRS850 2slot	836.6	30.54	0.7	31.24
GPRS850 3slot GRPS850 4slot	848.8	30.46	0.7	31.16
	824.2	29.42	0.7	30.12
GPRS850 3slot	836.6	29.35	0.7	30.05
	848.8	29.32	0.7	30.02
	824.2	27.80	0.7	28.50
GRPS850 4slot	836.6	27.64	0.7	28.34
ON 0000 43100	848.8	27.57	0.7	28.27
	1850.2	27.60	1.0	28.60
GPRS1900 2slot	1880.0	27.35	1.0	28.35
	1909.8	27.10	1.0	28.10
	1850.2	26.44	1.0	27.44
GPRS1900 3slot	1880.0	26.38	1.0	27.38
	1909.8	26.15	1.0	27.15
	1850.2	25.39	1.0	26.39
GPRS1900 4slot	1880.0	25.27	1.0	26.27
	1909.8	25.14	1.0	26.14
Maximum Power (S	IM 2)			
GSM850	836.6	32.02	0.7	31.43
PCS1900	1880.0	27.95	1.0	28.95
GPRS850 2slot	836.6	30.47	0.7	31.17
GPRS850 3slot	836.6	29.05	0.7	29.75
GRPS850 4slot	836.6	27.42	0.7	28.12
GPRS1900 2slot	1880.0	27.27	1.0	28.27
GPRS1900 3slot	1880.0	26.32	1.0	27.32
GPRS1900 4slot	1880.0	25.09	1.0	26.09

Note: All SAR testing was done in SIM 1.

9. Test Results

9.1. SAR Test Results Summary

9.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528, and Body SAR was performed with the device 15mm from the phantom. Body SAR was also performed with the headset attached and without.

9.1.2. Body SAR with Headset

Testing without the headset was performed at the position and channels that resulted in the highest body SAR. This testing was performed with GPRS transmitting with 2/3/4 uplink timeslots and with Wi-Fi. This operation mode represents the maximum SAR situation, when downloading data via GPRS and listening to music by headset. SAR without the headset attached was significantly higher than with the headset, and also was verified several times and confirmed, so the final test data shown were the worst case without headset.

In the Body SAR test result table, body-worn means back of device towards phantom, body-front means LCD panel of device towards phantom.

9.1.3. GPRS Operation Mode

This is a multislot class 12 device capable of 4 uplink timeslots. During the head SAR test, the device was transmitting with 1 uplink timeslot; during the body SAR test, it was transmitting with 2/3/4 uplink timeslots. Additionally, this device doesn't support dual transfer mode (DTM).

According to KDB 447498 and KDB 648474, this device doesn't support WiFi and GSM/GPRS simultaneous transmission, and also the output power of Bluetooth is extreme lower, so co-location SAR needn't be evaluated.

9.1.4. Test Result

SAR MEASUREMENT

Ambient Temperature (°C): 24.3 ±2 Relative Humidity (%): 54

Liquid Temperature (°C): 23.5 ±2 Depth of Liquid (cm):>15

Product: Mobile Phone

Test Mode: GSM850 <SIM 1>

TOST WIOGO. OT	Test Mede. Gelvicos solivi iz							
Test Position	Antenna	Freque	ency	Conducted	Power Drift	SAR 1g	Limit	
Head	Position	Channel	MHz	Power (dBm)	(<±0.2)	(W/kg)	(W/kg)	
Left-Cheek	Fixed	128	824.2	32.65	-0.179	0.120	1.6	
Left-Cheek	Fixed	189	836.6	32.73	-0.170	0.166	1.6	
Left-Cheek	Fixed	251	848.8	32.76	0.028	0.195	1.6	
Left-Tilted	Fixed	189	836.6	32.73	-0.132	0.112	1.6	
Right-Cheek	Fixed	128	824.2	32.65	0.142	0.124	1.6	
Right-Cheek	Fixed	189	836.6	32.73	0.172	0.171	1.6	
Right-Cheek	Fixed	251	848.8	32.76	0.180	0.225	1.6	
Right-Tilted	Fixed	189	836.6	32.73	0.150	0.119	1.6	
Test Mode: G	SM850 < SI	M 2>						
Right-Cheek	Fixed	189	836.6	31.43	-0.066	0.217	1.6	

SAR	M = I	1124	RF	MEN	JТ
JAK		4.71	Γ	IVITI	v i

Ambient Temperature (°C): 24.3 ±2 Relative Humidity (%): 54

Liquid Temperature (°C): 23.5 ± 2 Depth of Liquid (cm):>15

Product: Mobile Phone

Test Mode: GSM850 <SIM 1>

Test Position	Antenna	Freque	ency	Conducted	Power Drift	SAR 1g	Limit
Body	Position	Channel	MHz	Power (dBm)	(<±0.2)	(W/kg)	(W/kg)
Body-worn	Fixed	128	824.2	32.65	-0.100	0.236	1.6
Body-worn	Fixed	189	836.6	32.73	-0.137	0.339	1.6
Body-worn	Fixed	251	848.8	32.76	-0.061	0.431	1.6
Body-front	Fixed	189	836.6	32.73	0.097	0.072	1.6
Test Mode: GPR	S850 2slot <	SIM 1>					
Body-worn	Fixed	189	836.6	31.24	-0.082	0.581	1.6
Test Mode: GPR	S850 3slot •	<sim 1=""></sim>					
Body-worn	Fixed	189	836.6	30.05	-0.030	0.981	1.6
Test Mode: GPR	S850 4slot •	<sim 1=""></sim>					
Body-worn	Fixed	128	824.2	28.50	-0.156	0.783	1.6
Body-worn	Fixed	189	836.6	28.34	-0.170	1.370	1.6
Body-worn	Fixed	251	848.8	28.27	-0.063	1.360	1.6
Body-front	Fixed	189	836.6	28.34	-0.078	0.390	1.6
Body-worn (With Headset)	Fixed	189	836.6	28.34	-0.109	1.090	1.6

SAR MEASUREMENT

Ambient Temperature (°C): 23.9 ± 2 Relative Humidity (%): 52

Liquid Temperature (°C): 23.3 ±2 Depth of Liquid (cm):>15

Product: Mobile Phone

Test Mode: PCS1900 <SIM 1>

Test Position	Antenna	Freque	ency	Conducted	Power Drift	SAR 1g	Limit (W/kg)
Head	Position	Channel	MHz	Power (dBm)	(<±0.2)	(W/kg)	
Left-Cheek	Fixed	512	1850.2	29.79	0.112	0.302	1.6
Left-Cheek	Fixed	661	1880.0	29.01	0.117	0.184	1.6
Left-Cheek	Fixed	810	1909.8	28.44	0.125	0.133	1.6
Left-Tilted	Fixed	661	1880.0	29.01	0.016	0.089	1.6
Right-Cheek	Fixed	512	1850.2	29.79	0.005	0.301	1.6
Right-Cheek	Fixed	661	1880.0	29.01	0.155	0.176	1.6
Right-Cheek	Fixed	810	1909.8	28.44	0.192	0.111	1.6
Right-Tilted	Fixed	661	1880.0	29.01	0.038	0.162	1.6
Test Mode: PC	CS1900 < SII	M 2>					
Left-Cheek	Fixed	661	1880.0	28.95	-0.174	0.174	1.6

SAR	MEA	SHR	EM	FNT
\cup	1011	$\omega \omega = 1$		_ 1 1 1

Ambient Temperature (°C): 23.9 ±2 Relative Humidity (%): 52

Liquid Temperature (°C): 23.3 ± 2 Depth of Liquid (cm):>15

Product: Mobile Phone

Test Mode: PCS1900 <SIM 1>

Test Mode: PCS	1900 <sim< th=""><th> ></th><th></th><th>1</th><th></th><th></th><th></th></sim<>	>		1			
Test Position	Antenna	Frequ	ency	Conducted	Power Drift	1880.0	Limit
Body	Position	Channel	MHz	Power (dBm)	(<±0.2)	1000.0	(W/kg)
Body-worn	Fixed	512	1850.2	29.20	-0.160	0.354	1.6
Body-worn	Fixed	661	1880.0	29.12	-0.070	0.215	1.6
Body-worn	Fixed	810	1909.8	29.03	0.060	0.181	1.6
Body-front	Fixed	661	1880.0	29.12	-0.146	0.064	1.6
Test Mode: GPF	RS1900 2slot	: <sim 1=""></sim>					
Body-worn	Fixed	661	1880.0	28.35	0.165	0.460	1.6
Test Mode: GPF	RS1900 3slo	t <sim 1=""></sim>					
Body-worn	Fixed	661	1880.0	27.38	0.047	0.686	1.6
Test Mode: GPF	RS1900 4slo	t <sim 1=""></sim>					
Body-worn	Fixed	512	1850.2	27.79	-0.089	1.220	1.6
Body-worn	Fixed	661	1880.0	27.67	-0.079	0.972	1.6
Body-worn	Fixed	810	1909.8	27.74	0.082	0.759	1.6
Body-front	Fixed	661	1880.0	27.67	0.083	0.142	1.6
Body-worn (with headset)	Fixed	661	1880.0	27.67	-0.016	0.391	1.6

SAR MEASUREMENT

Ambient Temperature (°C): 23.9 ±2 Relative Humidity (%): 52

Liquid Temperature (°C): 23.3 ± 2 Depth of Liquid (cm):>15

Product: Mobile Phone (Wi-Fi)

Test Mode: 802.11b

Test Position Body	Antenna Position	Frequency		Conducted	Power Drift	SAR 1g	Limit
		Channel	MHz	Power (dBm)	(<±0.2)	(W/kg)	(W/kg)
Body-worn	Fixed	1	2412	12.41	-0.146	0.0023	1.6
Body-worn	Fixed	6	2437	12.13	0.189	0.0060	1.6
Body-worn	Fixed	11	2462	12.52	0.190	0.0039	1.6
Body-front	Fixed	6	2437	12.13	-0.127	0.0055	1.6
Test Mode: 802.11g							
Body-worn	Fixed	6	2437	8.82	-0.180	0.0031	1.6
	1			<u>'</u>		1	

Appendix A. SAR System Validation Data

Date/Time: 30-Jul-2010

Test Laboratory: QuieTek Lab System Check Head 835MHz

DUT: Dipole 835 MHz D835V2; Type: D835V2

Communication System: CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:8.3;

Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\epsilon r = 43$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(8.83, 8.83, 8.83); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

• Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/System Check GSM850 Head/Area Scan (8x17x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 2.61 mW/g

Configuration/System Check GSM850 Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 55.2 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 3.83 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.63 mW/g Maximum value of SAR (measured) = 2.71 mW/g

0 dB = 2.71 mW/g

Date/Time: 31-Jul-2010

Test Laboratory: QuieTek Lab System Check Body 835MHz

DUT: Dipole 835 MHz D835V2; Type: D835V2

Communication System: CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:8.3;

Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\epsilon r = 55.4$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/System Check GSM835 Body/Area Scan (8x16x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 2.68 mW/g

Configuration/System Check GSM835 Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 53 V/m; Power Drift = 0.021 dB

Peak SAR (extrapolated) = 3.98 W/kg

SAR(1 g) = 2.62 mW/g; SAR(10 g) = 1.69 mW/g Maximum value of SAR (measured) = 2.82 mW/g

0 dB = 2.82 mW/g

Date/Time: 30-Jul-2010

Test Laboratory: QuieTek Lab System Check Head 1900MHz

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle: 1:8.3;

Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 39.4$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.69, 7.69, 7.69); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/System Check PCS1900 Head/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 10.4 mW/g

Configuration/System Check PCS1900 Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 89.1 V/m; Power Drift = 0.057 dB

Peak SAR (extrapolated) = 19.6 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.19 mW/g Maximum value of SAR (measured) = 11.5 mW/g

0 dB = 11.5 mW/g

Date/Time: 31-Jul-2010

Test Laboratory: QuieTek Lab System Check Body 1900MHz

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle: 1:8.3;

Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\epsilon r = 52.6$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/System Check PCS1900 Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 11.3 mW/g

Configuration/System Check PCS1900 Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 84.2 V/m; Power Drift = -0.097 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 9.99 mW/g; SAR(10 g) = 5.1 mW/g Maximum value of SAR (measured) = 11.3 mW/g

0 dB = 11.3 mW/g

Date/Time: 02-Aug-2010

Test Laboratory: QuieTek Lab System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:8.3;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ mho/m; $\epsilon r = 53.1$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

• Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 2450MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 15.6 mW/g

Configuration/Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm, Reference Value = 87.9 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.25 mW/g Maximum value of SAR (measured) = 15.5 mW/g

0 dB = 15.5 mW/g

Appendix B. SAR measurement Data

Date/Time: 30-Jul-2010

Test Laboratory: QuieTek Lab GSM850 High Left-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 848.6 MHz; Medium parameters used: f = 848.6 MHz; $\sigma = 0.89$ mho/m; $\epsilon r = 42.8$; $\rho = 1000$ kg/m3; Phantom section: Left Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.83, 8.83, 8.83); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 High Left-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.211 mW/g

Configuration/GSM850 High Left-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 4.88 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.251 W/kg

SAR(1 g) = 0.195 mW/g; SAR(10 g) = 0.143 mW/g Maximum value of SAR (measured) = 0.212 mW/g

0 dB = 0.212 mW/g

Date/Time: 30-Jul-2010

Test Laboratory: QuieTek Lab
GSM850 Mid Left-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.88$ mho/m; $\epsilon r = 43$; $\rho = 1000$ kg/m3; Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.83, 8.83, 8.83); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 Mid Left-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.178 mW/g

Configuration/GSM850 Mid Left-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 4.54 V/m; Power Drift = -0.170 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.166 mW/g; SAR(10 g) = 0.120 mW/g Maximum value of SAR (measured) = 0.180 mW/g

0 dB = 0.180 mW/g

Test Laboratory: QuieTek Lab
GSM850 Low Left-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 824.2 MHz; Medium parameters used: f = 824.2 MHz; $\sigma = 0.86$ mho/m; $\epsilon r = 43.1$; $\rho = 1000$ kg/m3; Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.83, 8.83, 8.83); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 Low Left-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.134 mW/g

Configuration/GSM850 Low Left-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 3.88 V/m; Power Drift = -0.179 dB

Peak SAR (extrapolated) = 0.153 W/kg

SAR(1 g) = 0.120 mW/g; SAR(10 g) = 0.087 mW/g Maximum value of SAR (measured) = 0.129 mW/g

0 dB = 0.129 mW/g

Test Laboratory: QuieTek Lab

GSM850 Mid Left-Tilt

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.88$ mho/m; $\epsilon r = 43$; $\rho = 1000$ kg/m3; Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.83, 8.83, 8.83); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 Mid Left-Tilt/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.118 mW/g

Configuration/GSM850 Mid Left-Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.29 V/m; Power Drift = -0.132 dB

Peak SAR (extrapolated) = 0.138 W/kg

SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.083 mW/g Maximum value of SAR (measured) = 0.118 mW/g

0 dB = 0.118 mW/g

Test Laboratory: QuieTek Lab GSM850 High Right-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 848.6 MHz; Medium parameters used: f = 848.6 MHz; $\sigma = 0.89$ mho/m; $\epsilon r = 42.8$; $\rho = 1000$ kg/m3; Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.83, 8.83, 8.83); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 High Right-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.243 mW/g

Configuration/GSM850 High Right-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 3.77 V/m; Power Drift = 0.180 dB
Peak SAR (extrapolated) = 0.297 W/kg

SAR(1 g) = 0.225 mW/g; SAR(10 g) = 0.163 mW/g Maximum value of SAR (measured) = 0.254 mW/g

0 dB = 0.254 mW/g

Test Laboratory: QuieTek Lab GSM850 Mid Right-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.88$ mho/m; $\epsilon r = 43$; $\rho = 1000$ kg/m3; Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.83, 8.83, 8.83); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 Mid Right-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.193 mW/g

Configuration/GSM850 Mid Right-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 3.47 V/m; Power Drift = 0.172 dB

Peak SAR (extrapolated) = 0.223 W/kg

SAR(1 g) = 0.171 mW/g; SAR(10 g) = 0.128 mW/g Maximum value of SAR (measured) = 0.185 mW/g

0 dB = 0.185 mW/g

Test Laboratory: QuieTek Lab GSM850 Low Right-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 824.2 MHz; Medium parameters used: f = 824.2 MHz; $\sigma = 0.86$ mho/m; $\epsilon r = 43.1$; $\rho = 1000$ kg/m3; Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.83, 8.83, 8.83); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 Low Right-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.133 mW/g

Configuration/GSM850 Low Right-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 2.87 V/m; Power Drift = 0.142 dB
Peak SAR (extrapolated) = 0.164 W/kg

SAR(1 g) = 0.124 mW/g; SAR(10 g) = 0.091 mW/g Maximum value of SAR (measured) = 0.135 mW/g

0 dB = 0.135 mW/g

Test Laboratory: QuieTek Lab

GSM850 Mid Right-Tilt

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.88$ mho/m; $\epsilon r = 43$; $\rho = 1000$ kg/m3; Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.83, 8.83, 8.83); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 Mid Right-Tilt/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.123 mW/g

Configuration/GSM850 Mid Right-Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.05 V/m; Power Drift = 0.150 dB

Peak SAR (extrapolated) = 0.150 W/kg

SAR(1 g) = 0.119 mW/g; SAR(10 g) = 0.088 mW/g Maximum value of SAR (measured) = 0.127 mW/g

0 dB = 0.127 mW/g

Test Laboratory: QuieTek Lab
GSM850 Mid Right-Touch <SIM 2>
DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.88$ mho/m; $\epsilon r = 43$; $\rho = 1000$ kg/m3; Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.83, 8.83, 8.83); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 Mid Right-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.231 mW/g

Configuration/GSM850 Mid Right-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 3.69 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 0.296 W/kg

SAR(1 g) = 0.217 mW/g; SAR(10 g) = 0.149 mW/g Maximum value of SAR (measured) = 0.237 mW/g

0 dB = 0.237 mW/g

Test Laboratory: QuieTek Lab GSM850 High Body-Back

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 848.6 MHz; Medium parameters used: f = 848.6 MHz; $\sigma = 1.03$ mho/m; $\epsilon r = 55.2$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM 850 High Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.458 mW/g

Configuration/GSM 850 High Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 9.79 V/m; Power Drift = -0.061 dB

Peak SAR (extrapolated) = 0.564 W/kg

SAR(1 g) = 0.431 mW/g; SAR(10 g) = 0.317 mW/g Maximum value of SAR (measured) = 0.453 mW/g

0 dB = 0.453 mW/g

Test Laboratory: QuieTek Lab GSM850 Mid Body-Back

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 1.02$ mho/m; $\epsilon r = 55.3$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM 850 Mid Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.355 mW/g

Configuration/GSM 850 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 8.65 V/m; Power Drift = -0.137 dB
Peak SAR (extrapolated) = 0.449 W/kg

SAR(1 g) = 0.339 mW/g; SAR(10 g) = 0.250 mW/g Maximum value of SAR (measured) = 0.357 mW/g

0 dB = 0.357 mW/g

Test Laboratory: QuieTek Lab GSM850 Low Body-Back

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 824.2 MHz; Medium parameters used: f = 824.2 MHz; $\sigma = 1$ mho/m; $\epsilon r = 55.5$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM 850 Low Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.250 mW/g

Configuration/GSM 850 Low Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 7.4 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 0.312 W/kg

SAR(1 g) = 0.236 mW/g; SAR(10 g) = 0.175 mW/g Maximum value of SAR (measured) = 0.249 mW/g

0 dB = 0.249 mW/g

Test Laboratory: QuieTek Lab GSM850 Mid Body-Front

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 824.2 MHz; Medium parameters used: f = 824.2 MHz; $\sigma = 1$ mho/m; $\epsilon r = 55.5$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM 850 Mid Body-Front/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.070 mW/g

Configuration/GSM 850 Mid Body-Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 3.52 V/m; Power Drift = 0.097 dB

Peak SAR (extrapolated) = 0.091 W/kg

SAR(1 g) = 0.072 mW/g; SAR(10 g) = 0.054 mW/g Maximum value of SAR (measured) = 0.076 mW/g

0 dB = 0.076 mW/g

Test Laboratory: QuieTek Lab GPRS 850 Mid Body-Back(2up)

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 1.02$ mho/m; $\epsilon r = 55.3$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 850 Mid Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.583 mW/g

Configuration/GPRS 850 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 12.1 V/m; Power Drift = -0.082 dB
Peak SAR (extrapolated) = 0.777 W/kg

SAR(1 g) = 0.581 mW/g; SAR(10 g) = 0.425 mW/g Maximum value of SAR (measured) = 0.612 mW/g

0 dB = 0.612 mW/g

Test Laboratory: QuieTek Lab GPRS 850 Mid Body-Back(3up)

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 1.02$ mho/m; $\epsilon r = 55.3$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 850 Mid Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.01 mW/g

Configuration/GPRS 850 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 15.3 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.981 mW/g; SAR(10 g) = 0.709 mW/g Maximum value of SAR (measured) = 1.04 mW/g

0 dB = 1.04 mW/g

Test Laboratory: QuieTek Lab
GPRS 850 High Body-Back(4up) **DUT: Mobile Phone; Type: MU9700**

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 848.6 MHz; Medium parameters used: f = 848.6 MHz; $\sigma = 1.03$ mho/m; $\epsilon r = 55.2$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 850 High Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.56 mW/g

Configuration/GPRS 850 High Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 17.1 V/m; Power Drift = -0.063 dB
Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 1.36 mW/g; SAR(10 g) = 0.982 mW/g Maximum value of SAR (measured) = 1.44 mW/g

0 dB = 1.44 mW/g

Test Laboratory: QuieTek Lab GPRS 850 Mid Body-Back(4up)

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 1.02$ mho/m; $\epsilon r = 55.3$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 850 Mid Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.4 mW/g

Configuration/GPRS 850 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 18.1 V/m; Power Drift = -0.170 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 1.37 mW/g; SAR(10 g) = 0.981 mW/g Maximum value of SAR (measured) = 1.46 mW/g

0 dB = 1.46 mW/g

Z-axis Plot

Test Laboratory: QuieTek Lab
GPRS 850 Low Body-Back(4up) **DUT: Mobile Phone; Type: MU9700**

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 824.2 MHz; Medium parameters used: f = 824.2 MHz; $\sigma = 1$ mho/m; $\epsilon r = 55.5$; $\rho = 1$

1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

• Probe: EX3DV4 - SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

• Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 850 Low Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.783 mW/g

Configuration/GPRS 850 Low Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 13.5 V/m; Power Drift = -0.156 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.783 mW/g; SAR(10 g) = 0.565 mW/g Maximum value of SAR (measured) = 0.834 mW/g

0 dB = 0.834 mW/g

Test Laboratory: QuieTek Lab GPRS 850 Mid Body-Front(4up)

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 1.02$ mho/m; $\epsilon r = 55.3$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 850 Low Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.415 mW/g

Configuration/GPRS 850 Low Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.76 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 0.510 W/kg

SAR(1 g) = 0.390 mW/g; SAR(10 g) = 0.290 mW/g Maximum value of SAR (measured) = 0.413 mW/g

0 dB = 0.413 mW/g

Test Laboratory: QuieTek Lab

GPRS 850 Mid Body-Back(4up)(With Headset)

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 1.02$ mho/m; $\epsilon r = 55.3$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.95, 8.95, 8.95); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 850 Mid Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.16 mW/g

Configuration/GPRS 850 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 15 V/m; Power Drift = -0.109 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.778 mW/g Maximum value of SAR (measured) = 1.17 mW/g

0 dB = 1.17 mW/g

Test Laboratory: QuieTek Lab PCS1900 High Left-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1909.8 MHz; Medium parameters used: f = 1909.8 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 1.42$ mho/m; ϵ

39.4; ρ = 1000 kg/m3 ;Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.69, 7.69, 7.69); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS 1900 High Left-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.147 mW/g

Configuration/PCS 1900 High Left-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 3.34 V/m; Power Drift = 0.125 dB

Peak SAR (extrapolated) = 0.210 W/kg

SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.076 mW/g Maximum value of SAR (measured) = 0.145 mW/g

0 dB = 0.145 mW/g

Test Laboratory: QuieTek Lab
PCS1900 Mid Left-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon r = 39.5$;

ρ = 1000 kg/m3 ;Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.69, 7.69, 7.69); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS 1900 Mid Left-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.199 mW/g

Configuration/PCS 1900 Mid Left-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 4.39 V/m; Power Drift = 0.117 dB

Peak SAR (extrapolated) = 0.279 W/kg

SAR(1 g) = 0.184 mW/g; SAR(10 g) = 0.108 mW/g Maximum value of SAR (measured) = 0.202 mW/g

0 dB = 0.202 mW/g

Test Laboratory: QuieTek Lab PCS1900 Low Left-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1850.2 MHz; Medium parameters used: f = 1850.2 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 1.39$ mho/m; ϵ

39.6; ρ = 1000 kg/m3 ;Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.69, 7.69, 7.69); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS 1900 Low Left-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.345 mW/g

Configuration/PCS 1900 Low Left-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 5.22 V/m; Power Drift = 0.112 dB

Peak SAR (extrapolated) = 0.455 W/kg

SAR(1 g) = 0.302 mW/g; SAR(10 g) = 0.182 mW/g Maximum value of SAR (measured) = 0.331 mW/g

0 dB = 0.331 mW/g

Test Laboratory: QuieTek Lab

PCS1900 Mid Left-Tilt

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon r = 39.5$;

ρ = 1000 kg/m3 ;Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.69, 7.69, 7.69); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS 1900 Mid Left-Tilt/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.099 mW/g

Configuration/PCS 1900 Mid Left-Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 7.02 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 0.151 W/kg

SAR(1 g) = 0.089 mW/g; SAR(10 g) = 0.051 mW/g Maximum value of SAR (measured) = 0.099 mW/g

0 dB = 0.099 mW/g

Test Laboratory: QuieTek Lab PCS1900 High Right-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1909.8 MHz; Medium parameters used: f = 1909.8 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 1.42$ mho/m; ϵ

39.4; ρ = 1000 kg/m3 ;Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.69, 7.69, 7.69); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS 1900 High Right-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 0.124 mW/g

Configuration/PCS 1900 High Right-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 3.12 V/m; Power Drift = 0.192 dB

Peak SAR (extrapolated) = 0.186 W/kg

SAR(1 g) = 0.111 mW/g; SAR(10 g) = 0.063 mW/g Maximum value of SAR (measured) = 0.125 mW/g

0 dB = 0.125 mW/g

Test Laboratory: QuieTek Lab PCS1900 Mid Right-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon r = 39.5$;

 ρ = 1000 kg/m3 ;Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.69, 7.69, 7.69); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS 1900 Mid Right-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.196 mW/g

Configuration/PCS 1900 Mid Right-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 3.81 V/m; Power Drift = 0.155 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.176 mW/g; SAR(10 g) = 0.100 mW/g Maximum value of SAR (measured) = 0.196 mW/g

0 dB = 0.196 mW/g

Test Laboratory: QuieTek Lab PCS1900 Low Right-Touch

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1850.2 MHz; Medium parameters used: f = 1850.2 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 1.39$ mho/m; ϵ

39.6; ρ = 1000 kg/m3 ;Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.69, 7.69, 7.69); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS 1900 Low Right-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 0.286 mW/g

Configuration/PCS 1900 Low Right-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 5.03 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 0.554 W/kg

SAR(1 g) = 0.301 mW/g; SAR(10 g) = 0.161 mW/g Maximum value of SAR (measured) = 0.378 mW/g

0 dB = 0.378 mW/g

Test Laboratory: QuieTek Lab
PCS1900 Mid Right-Tilt

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon r = 39.5$;

 ρ = 1000 kg/m3 ;Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.69, 7.69, 7.69); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS 1900 Mid Right-Tilt/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.171 mW/g

Configuration/PCS 1900 Mid Right-Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 5.8 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 0.306 W/kg

SAR(1 g) = 0.162 mW/g; SAR(10 g) = 0.085 mW/g Maximum value of SAR (measured) = 0.179 mW/g

0 dB = 0.179 mW/g

Test Laboratory: QuieTek Lab PCS1900 Mid Left-Touch <SM 2>

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon r = 39.5$;

ρ = 1000 kg/m3 ;Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.69, 7.69, 7.69); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS 1900 Mid Left-Touch/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.197 mW/g

Configuration/PCS 1900 Mid Left-Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 4.36 V/m; Power Drift = -0.174 dB

Peak SAR (extrapolated) = 0.262 W/kg

SAR(1 g) = 0.174 mW/g; SAR(10 g) = 0.109 mW/g Maximum value of SAR (measured) = 0.194 mW/g

0 dB = 0.194 mW/g

Test Laboratory: QuieTek Lab PCS1900 High Body-Back

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1909.8 MHz; Medium parameters used: f = 1909.8 MHz; $\sigma = 1.59$ mho/m; $\epsilon r = 1.59$ mho/m; ϵ

52.6; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS1900 High Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.116 mW/g

Configuration/PCS1900 High Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 4.05 V/m; Power Drift = 0.060 dB

Peak SAR (extrapolated) = 0.312 W/kg

SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.101 mW/g Maximum value of SAR (measured) = 0.194 mW/g

0 dB = 0.194 mW/g

Test Laboratory: QuieTek Lab PCS1900 Mid Body-Back

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon r = 1.55$

52.6; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS1900 Mid Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.244 mW/g

Configuration/PCS1900 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.87 V/m; Power Drift = -0.070 dB

Peak SAR (extrapolated) = 0.384 W/kg

SAR(1 g) = 0.215 mW/g; SAR(10 g) = 0.113 mW/g Maximum value of SAR (measured) = 0.246 mW/g

0 dB = 0.246 mW/g

Test Laboratory: QuieTek Lab PCS1900 Low Body-Back

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1850.2 MHz; Medium parameters used: f = 1850.2 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 1.52$ mho/m; ϵ

52.7; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

• Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS1900 Low Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.375 mW/g

Configuration/PCS1900 Low Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 8.76 V/m; Power Drift = -0.160 dB

Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.354 mW/g; SAR(10 g) = 0.204 mW/g Maximum value of SAR (measured) = 0.331 mW/g

0 dB = 0.331 mW/g

Test Laboratory: QuieTek Lab PCS1900 Mid Body-Front

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon r = 1.55$

52.6; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS1900 Mid Body-Front/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.067 mW/g

Configuration/PCS1900 Mid Body-Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 4.46 V/m; Power Drift = -0.146 dB

Peak SAR (extrapolated) = 0.105 W/kg

SAR(1 g) = 0.064 mW/g; SAR(10 g) = 0.038 mW/g Maximum value of SAR (measured) = 0.070 mW/g

0 dB = 0.070 mW/g

Test Laboratory: QuieTek Lab
GPRS1900 Mid Body-Back(2UP) **DUT: Mobile Phone; Type: MU9700**

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon r =$

52.6; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 1900 Mid Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 0.504 mW/g

Configuration/GPRS 1900 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 9.47 V/m; Power Drift = 0.165 dB

Peak SAR (extrapolated) = 0.761 W/kg

SAR(1 g) = 0.460 mW/g; SAR(10 g) = 0.277 mW/g Maximum value of SAR (measured) = 0.496 mW/g

0 dB = 0.496 mW/g

Test Laboratory: QuieTek Lab
GPRS1900 Mid Body-Back(3UP) **DUT: Mobile Phone; Type: MU9700**

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon r =$

52.6; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

• Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 1900 Mid Body-Front/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 0.716 mW/g

Configuration/GPRS 1900 Mid Body-Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 12.2 V/m; Power Drift = 0.047 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.686 mW/g; SAR(10 g) = 0.407 mW/g Maximum value of SAR (measured) = 0.741 mW/g

0 dB = 0.741 mW/g

Test Laboratory: QuieTek Lab
GPRS1900 High Body-Back(4UP) **DUT: Mobile Phone; Type: MU9700**

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1909.8 MHz; Medium parameters used: f = 1909.8 MHz; $\sigma = 1.59$ mho/m; $\epsilon r = 1.59$ mho/m; ϵ

52.6; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

• Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 1900 Mid Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 0.788 mW/g

Configuration/GPRS 1900 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 11.1 V/m; Power Drift = 0.082 dB
Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.759 mW/g; SAR(10 g) = 0.454 mW/g Maximum value of SAR (measured) = 0.818 mW/g

0 dB = 0.818 mW/g

Test Laboratory: QuieTek Lab
GPRS1900 Mid Body-Back(4UP) **DUT: Mobile Phone; Type: MU9700**

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon r =$

52.6; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 1900 Mid Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 1.02 mW/g

Configuration/GPRS 1900 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 13.5 V/m; Power Drift = -0.079 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.972 mW/g; SAR(10 g) = 0.576 mW/g Maximum value of SAR (measured) = 1.04 mW/g

0 dB = 1.04 mW/g

Test Laboratory: QuieTek Lab
GPRS1900 Low Body-Back(4UP)
DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1850.2 MHz; Medium parameters used: f = 1850.2 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 1.52$ mho/m; ϵ

52.7; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

• Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 1900 Mid Body-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 1.14 mW/g

Configuration/GPRS 1900 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 16.6 V/m; Power Drift = -0.089 dB

Peak SAR (extrapolated) = 2.08 W/kg

SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.707 mW/g Maximum value of SAR (measured) = 1.32 mW/g

0 dB = 1.32 mW/g

Z-Axis Plot

Test Laboratory: QuieTek Lab
GPRS1900 Mid Body-Front(4UP)
DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon r = 1.55$

52.6; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 1900 Mid Body-Front/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 0.146 mW/g

Configuration/GPRS 1900 Mid Body-Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.84 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 0.238 W/kg

SAR(1 g) = 0.142 mW/g; SAR(10 g) = 0.083 mW/g Maximum value of SAR (measured) = 0.155 mW/g

0 dB = 0.155 mW/g

Test Laboratory: QuieTek Lab

GPRS1900 Mid Body-Back(4Up) (With Headset)

DUT: Mobile Phone; Type: MU9700

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon r = 1.55$

52.6; ρ = 1000 kg/m3 ;Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.71, 7.71, 7.71); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS 1900 Mid Body-Back/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 0.421 mW/g

Configuration/GPRS 1900 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 7.62 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.661 W/kg

SAR(1 g) = 0.391 mW/g; SAR(10 g) = 0.219 mW/g Maximum value of SAR (measured) = 0.433 mW/g

0 dB = 0.433 mW/g

Test Laboratory: QuieTek Lab

802.11b High-Back

DUT: Mobile Phone; Type: MU9700

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1;

Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.04$ mho/m; $\epsilon r = 53$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b High-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00542 mW/g

Configuration/802.11b High-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 0.805 V/m; Power Drift = 0.190 dB
Peak SAR (extrapolated) = 0.011 W/kg

SAR(1 g) = 0.00394 mW/g; SAR(10 g) = 0.00308 mW/g Maximum value of SAR (measured) = 0.00556 mW/g

0 dB = 0.00556 mW/g

Test Laboratory: QuieTek Lab

802.11b Mid-Back

DUT: Mobile Phone; Type: MU9700

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1;

Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 2.01$ mho/m; $\epsilon r = 53.1$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Mid-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00482 mW/g

Configuration/802.11b Mid-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 0.887 V/m; Power Drift = 0.189 dB
Peak SAR (extrapolated) = 0.00838 W/kg

SAR(1 g) = 0.00595 mW/g; SAR(10 g) = 0.00464 mW/g Maximum value of SAR (measured) = 0.00721 mW/g

0 dB = 0.00721 mW/g

Test Laboratory: QuieTek Lab

802.11b Low-Back

DUT: Mobile Phone; Type: MU9700

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1;

Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.98$ mho/m; $\epsilon r = 53.2$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Low-Back/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00646 mW/g

Configuration/802.11b Low-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 1.09 V/m; Power Drift = -0.146 dB

Peak SAR (extrapolated) = 0.00443 W/kg

SAR(1 g) = 0.0023 \text{ mW/g}; SAR(10 g) = 0.00145 \text{ mW/g} Maximum value of SAR (measured) = 0.00354 mW/g

0 dB = 0.00354 mW/g

Test Laboratory: QuieTek Lab

802.11b Mid-Front

DUT: Mobile Phone; Type: MU9700

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1;

Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 2.01$ mho/m; $\epsilon r = 53.1$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Mid-Front/Area Scan (9x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00315 mW/g

Configuration/802.11b Mid-Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 1.04 V/m; Power Drift = -0.127 dB

Peak SAR (extrapolated) = 0.016 W/kg

SAR(1 g) = 0.00547 mW/g; SAR(10 g) = 0.00474 mW/g Maximum value of SAR (measured) = 0.016 mW/g

0 dB = 0.016 mW/g