

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное

учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Г «Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по курсу "Анализ алгоритмов" на тему:

«Редакционные расстояния»

Студент	Голикова С. М.		
Группа	<u>ИУ7-55Б</u>		
Оценка (баллы)			
Преподаватели	Волкова Л. Л., Строганов Ю. В.		

СОДЕРЖАНИЕ

BI	ВВЕДЕНИЕ 4				
1	Ана	литич	еский раздел	5	
	1.1	Расст	Расстояние Левенштейна		
		1.1.1	Нерекурсивный алгоритм для определения расстояния		
			Левенштейна (с использованием матрицы расстояний)	6	
	1.2	Расст	ояние Дамерау-Левенштейна	7	
		1.2.1	Рекурсивный алгоритм для определения расстояния Да-		
			мерау-Левенштейна	8	
		1.2.2	Рекурсивный алгоритм для определения расстояния Да-		
			мерау-Левенштейна с кешированием	8	
		1.2.3	Нерекурсивный алгоритм для определения расстояния		
			Дамерау-Левенштейна	8	
2	Кон	структ	горский раздел	9	
	2.1	Алгор	ритм поиска расстояния Левенштейна	9	
	2.2	Алгор	ритмы поиска расстояния Дамерау-Левенштейна	11	
3	Tex	нологи	ческий раздел	16	
	3.1	Требо	ования к программному обеспечению	16	
	3.2	Средо	ства реализации	16	
	3.3	Реали	зации алгоритмов	16	
	3.4	Тести	рование	21	
4	Исс	ледова	тельский раздел	22	
	4.1	Техни	ические характеристики	22	
	4.2	Демог	нстрация работы программы	22	
	4.3	Сравн	нение времени выполнения реализаций алгоритмов	24	
	4.4	Оцені	ка памяти	26	

4.5	Вывод	27
ЗАКЛЮ	ОЧЕНИЕ	29
СПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	30

ВВЕДЕНИЕ

Расстояние Левенштейна — мера, которая определяет, насколько две строки различаются между собой. Фактически данная величина определяет, сколько односимвольных изменений (вставки, удаления, замены) требуется для преобразования одной последовательности символов к другой.

Модификацией расстояния Левенштейна является расстояние Дамерау-Левенштейна, в котором к операциям вставки, удаления и замены добавляется операция транспозиции (перестановки) символов. Данную меру чаще всего используют, когда текст набирается с клавиатуры и возрастает вероятность ошибки перестановки двух соседних симолов.

Расстояния Левенштейна и Дамерау-Левенштейна нашли широкое применение в следующих сферах:

- компьютерная лингвистика (автоматическое исправление ошибок в тексте, обнаружение возможных ошибок в поисковых запросах, расчет изменений в различных версиях текста);
- биоинформатика (сравнение последовательностей генов).

Целью работы является разработка, реализация и исследование алгоритмов нахождения расстояний Левенштейна и Дамерау-Левенштейна.

В рамках выполнения работы необходимо решить следующие задачи:

- изучить расстояния Левенштейна и Дамерау-Левенштейна;
- разработать и реализовать алгоритмы нахождения изученных расстояний;
- провести сравнительный анализ процессорного времени выполнения реализаций данных алгоритмов;
- провести сравнительный анализ максимальной затрачиваемой алгоритмами памяти.

1 Аналитический раздел

В данном разделе будут представлены описания редакционных расстояний Левенштейна и Дамерау-Левенштейна, а также варианты реализации поиска этих расстояний.

1.1 Расстояние Левенштейна

Расстояние Левенштейна [1] – это минимальное количество редакторских операций, необходимых для преобразования одной строки в другую.

Используются следующие редакторские операции:

- I (англ. insert) вставка;
- D (англ. delete) удаление;
- R (англ. replace) замена.

Операциям I, D и R назначают цену (штраф) 1. Также существует обозначение M (англ. match) – совпадение символов. Штраф M составляет 0, т.к. в случае совпадения символов никаких действий не производится.

Задача нахождения расстояния Левенштейна сводится к поиску последовательности действий, минимизирующих суммарный штраф.

Пусть S_1 и S_2 — две строки (длиной M и N соответственно) над некоторым алфавитом. Тогда расстояние Левенштейна можно подсчитать по следующей рекуррентной формуле:

$$D(i,j) = \begin{cases} 0 & \text{i} = 0, \text{j} = 0 \\ i & \text{j} = 0, \text{i} > 0 \\ j & \text{i} = 0, \text{j} > 0 \end{cases} \\ \min \{ & D(i,j-1)+1, \\ D(i-1,j)+1, & \text{i} > 0, \text{j} > 0 \\ D(i-1,j-1)+m(S_1[i],S_2[j]). \\ \} \\ \Phi$$
ункция m определена как:
$$m(a,b) = \begin{cases} 0, & \text{a} = b, \\ 1, & \text{иначе.} \end{cases}$$
 (1.2)

$$m(a,b) = \begin{cases} 0, & a = b, \\ 1, & \text{иначе.} \end{cases}$$
 (1.2)

1.1.1 Нерекурсивный алгоритм для определения расстояния Левенштейна (с использованием матрицы расстояний)

Введем матрицу размером (length(S1) + 1) х ((length(S2) + 1), гдеlength(S) — длина строки S. Значение в ячейке [i,j] равно значению D(S1[1...i], S2[1...j]). Первая строка и первый столбец тривиальны.

Всю таблицу (за исключением первого столбца и первой строки) заполняем в соответствии с формулой 1.3.

$$A[i][j] = min \begin{cases} A[i-1][j] + 1, \\ A[i][j-1] + 1, \\ A[i-1][j-1] + m(S1[i], S2[j]). \end{cases}$$
(1.3)

Функция т определена как:

$$m(S1[i], S2[j]) =$$

$$\begin{cases} 0, & \text{если } S1[i] = S2[j], \\ 1, & \text{иначе.} \end{cases}$$

$$(1.4)$$

В результате расстоянием Левенштейна будет ячейка матрицы с индексами i = length(S1) и j = length(S2).

1.2 Расстояние Дамерау-Левенштейна

Расстояние Дамерау-Левенштейна является модификацией алгоритма Левенштейна и чаще всего используется при наборе текста с клавиатуры, т.к. в этом случае пользователь может допустить опечатку, переставив местами два соседних символа.

К существующим редакторским операциям добавляется еще одна - X (англ. Exchange), штраф за которую также составляет 1. Тогда функция D вычисляется по формуле 1.5.

$$D(i,j) = \begin{cases} 0 & \text{i} = 0, \text{j} = 0 \\ i & \text{j} = 0, \text{i} > 0 \\ j & \text{i} = 0, \text{j} > 0 \end{cases} \\ \min \{ & D(i,j-1)+1, & \text{i} > 0, \text{j} > 0 \\ D(i-1,j)+1, & \text{i} > 0, \text{j} > 0 \end{cases} \\ D(i-1,j-1)+m(a[i],b[j]), & \left[D(i-2,j-2)+1, \text{ ecam } i,j>1; \\ a[i]=b[j-1]; \\ b[j]=a[i-1] \\ \infty, & \text{иначе} \end{cases}$$

1.2.1 Рекурсивный алгоритм для определения расстояния Дамерау-Левенштейна

Рекурсивный вариант напрямую реализует формулу 1.5, вызывая функцию D для величин, равных длине каждой из строк. Сразу можно отметить недостаток данной реализации: одно и то же значение будет подсчитано несколько раз, поэтому будет возникать проблема повторных вычислений.

1.2.2 Рекурсивный алгоритм для определения расстояния Дамерау-Левенштейна с кешированием

В качестве оптимизации предыдущего алгоритма можно подсчитанные значения сохранять в матрицу, в которой строкам і и ј будет соответствовать значение функции D(i,j). Каждый раз при подсчёте D программа будет проверять, было ли уже подсчитано значение для заданных аргументов, и если да, то будет использовать уже готовый вариант.

1.2.3 Нерекурсивный алгоритм для определения расстояния Дамерау-Левенштейна

Нерекурсивный алгоритм для определения расстояния Дамерау-Левенштейна с использованием матрицы аналогичен нерекурсивному алгоритму для определения расстояния Левенштейна. Добавляется лишь последнее условие из формулы 1.5.

Вывод

Формулы для определения расстояния Левенштейна и Дамерау-Левенштейна между строками задаются рекуррентно, а следовательно, алгоритмы могут быть реализованы рекурсивно или итерационно.

В данном разделе были рассмотрены идеи итеративной реализации алгоритма для нахождения расстояния Левенштейна, а также идеи рекурсивной, рекурсивной с кешированием и итеративной реализации алгоритма для нахождения расстояния Дамерау-Левенштейна.

2 Конструкторский раздел

В данном разделе будут приведены схемы алгоритмов поиска расстояний Левенштейна и Дамерау-Левенштейна. При разработке этих алгоритмов можно использовать разные подходы к реализации: итеративный, рекурсивный без кеширования, рекурсивный с кешированием.

2.1 Алгоритм поиска расстояния Левенштейна

На рисунке 1 приведена схема нерекурсивного алгоритма поиска расстояния Левенштейна с заполнением матрицы расстояний.

Рисунок 1 – Схема нерекурсивного алгоритма поиска расстояния Левенштейна

2.2 Алгоритмы поиска расстояния Дамерау-Левенштейна

На рисунках 2, 3, 4 приведены схемы следующих алгоритмов:

- итеративного алгоритма поиска расстояния Дамерау-Левенштейна с заполнением матрицы расстояний;
- рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна без кеширования;
- рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна с кешированием.

Рисунок 2 – Схема нерекурсивного алгоритма поиска расстояния Дамерау-Левенштейна

Рисунок 3 — Схема рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна без кеширования

Рисунок 4 — Схема рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна с кешированием

Вывод

Были разработаны схемы алгоритмов, позволяющих находить расстояния Левенштейна и Дамерау-Левенштейна.

3 Технологический раздел

В данном разделе будут приведены требования к программному обеспечению, средства реализации, листинги реализованных алгоритмов и тесты для программы.

3.1 Требования к программному обеспечению

Требования к входным данным:

- на вход подаются две строки;
- буквы верхнего и нижнего регистров считаются различными;
- строки могут быть пустыми.

Требования к выходным данным:

- искомое расстояние должно быть вычислено каждым из рассматриваемых алгоритмов;
- в режиме отладки должна быть выведена матрица расстояний.

3.2 Средства реализации

В качестве языка программирования для реализации лабораторной работы был выбран язык Python [2]. Данный язык предоставляет возможности работы со строками и матрицами.

Для замера процессорного времени использовалась функция библиотеки time process time [3].

3.3 Реализации алгоритмов

В листингах 1-4 представлены реализации рассматриваемых алгоритмов поиска редакционного расстояния.

Листинг 1 – Функция нерекурсивного поиска расстояния Левенштейна

```
def lowenstein_dist_matrix(str1, str2):
      str1 = ' ' + str1
      str2 = ' ' + str2
      n = len(str1)
     m = len(str2)
      matrix = [[0] * m for _ in range(n)]
      for i in range (1, n):
          matrix[i][0] = i
      for j in range (1, m):
10
          matrix[0][j] = j
11
12
      for i in range(1, n):
13
          for j in range (1, m):
14
              insert = matrix[i][j-1] + 1
15
               delete = matrix[i-1][j] + 1
16
               replace = matrix[i-1][j-1] + int(str1[i] != str2[j])
17
18
               matrix[i][j] = min(insert, delete, replace)
19
20
      return matrix[n-1][m-1]
21
```

Листинг 2 – Функция нерекурсивного поиска расстояния Дамерау-

Левенштейна

```
def damerau_lowenstein_dist_matrix(str1, str2):
      str1 = ' ' + str1
      str2 = ' ' + str2
      n = len(str1)
     m = len(str2)
      matrix = [[0] * m for _ in range(n)]
      for i in range (1, n):
          matrix[i][0] = i
      for j in range (1, m):
10
          matrix[0][j] = j
11
12
      for i in range (1, n):
13
          for j in range (1, m):
14
               insert = matrix[i][j-1] + 1
15
               delete = matrix[i-1][j] + 1
16
               replace = matrix [i-1][j-1] + int(str1[i] != str2[j])
               if (i > 1 \text{ and } j > 1) and (str1[i] = str2[j-1] and
18
                  str1[i-1] = str2[j]):
                   xchange = matrix[i-2][j-2] + 1
19
                   matrix[i][j] = min(insert, delete, replace, xchange)
               else:
21
                   matrix[i][j] = min(insert, delete, replace)
22
23
      return matrix[n-1][m-1]
```

Листинг 3 – Функция рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна без кеширования

```
def dam_lowenstein_dist_rec(str1, str2):
      n = len(str1)
      m = len(str2)
      if n = 0 or m = 0:
           \textbf{return} \ \ \textbf{n} \ + \ \textbf{m}
      insert = dam_lowenstein_dist_rec(str1, str2[:-1]) + 1
      delete = dam_lowenstein_dist_rec(str1[:-1], str2) + 1
      replace = dam\_lowenstein\_dist\_rec(str1[:-1], str2[:-1]) + 
10
                                              int(str1[-1] != str2[-1])
11
12
      if (n > 1 \text{ and } m > 1) and \setminus
13
          (str1[-1] = str2[-2] and str1[-2] = str2[-1]):
14
           xchange = dam_lowenstein_dist_rec(str1[:-2], str2[:-2])+1
15
           return min(insert, delete, replace, xchange)
16
      else:
17
           return min(insert, delete, replace)
18
```

Листинг 4 – Функция рекурсивного алгоритма поиска расстояния

Дамерау-Левенштейна с кешированием

```
def dam_lowenstein_dist_rec_optimized(str1, str2):
      def rec(str1, str2, a):
          len1 = len(str1)
          len2 = len(str2)
          if len1 = 0 or len2 = 0:
              a[len1][len2] = len1 + len2
          else:
               if a[len1][len2 - 1] == -1:
                   rec(str1, str2[:-1], a)
               if a[len1 - 1][len2] == -1:
10
                   rec(str1[:-1], str2, a)
11
               if a[len1 - 1][len2 - 1] == -1:
12
                   rec(str1[:-1], str2[:-1], a)
13
14
               if (len1>1 \text{ and } len2>1) \text{ and } (str1[-1] == str2[-2]
15
                                       and str1[-2] = str2[-1]:
16
                   if a[len1-2][len2-2] == -1:
                       rec(str1[:-2], str2[:-2], a)
18
                   a[len1][len2] = min(a[len1][len2-1]+1,
                   a[len1-1][len2]+1, a[len1-2][len2-2]+1,
20
                   a[len1-1][len2-1] + int(str1[-1] != str2[-1])
               else:
22
                   a[len1][len2] = min(a[len1][len2-1] + 1,
23
                   a[len1-1][len2] + 1,
24
                   a[len1-1][len2-1] + int(str1[-1] != str2[-1])
25
          return
26
27
      n = len(str1) + 1
28
     m = len(str2) + 1
29
      matrix = [[-1] * m for _ in range(n)]
      rec(str1, str2, matrix)
31
      return matrix [n-1][m-1]
32
```

3.4 Тестирование

В таблице 1 приведены функциональные тесты для алгоритмов вычисления расстояний Левенштейна и Дамерау—Левенштейна.

В таблице приняты обозначения: РЛ - алгоритм поиска расстояния Левенштейна, РДЛ - алгоритм поиска расстояния Дамерау-Левенштейна.

Таблица 1 – Функциональные тесты

C=nova 1	Строка 2	Ожидаемый результат	
Строка 1		РЛ	РДЛ
		0	0
кот	скат	2	2
осень	очеьн	3	2
сон	сноп	2	2
мир	мира	1	1
мира	мир	1	1
рим	ром	1	1
дождь	длджь	3	2

Все тесты пройдены успешно.

Вывод

Был произведен выбор средств реализации, реализованы и протестированы алгоритмы поиска расстояний: Левенштейна – итерационный, Дамерау-Левенштейна – итерационный и рекурсивный (с кешем и без).

4 Исследовательский раздел

В данном разделе будет приведена демонстрация работы программы, а также произведен сравнительный анализ алгоритмов на основе времени их работы и затрачиваемой памяти.

4.1 Технические характеристики

Технические характеристики устройства, на котором выполнялось тестирование:

- операционная система Windows 10.
- память 8 ГБ.
- процессор Intel® CoreTM i5-6260U @ 1.80ГГц.

Замеры времени выполнения реализаций алгоритмов проводились на ноутбуке, включенном в сеть электропитания. Во время тестирования ноутбук был нагружен только встроенными приложениями окружения, а также непосредственно разработанным приложением.

4.2 Демонстрация работы программы

На рисунке 5 представлен пример работы программы. Пользователь вводит две строки, в результате работы программы на экран выводятся искомые расстояния и матрицы расстояний для всех случаев, кроме рекурсивного без кеша.

```
Введите строку 1: осень
Введите строку 2: очеьн
Левенштейн, итерационный
Матрица расстояний:
[0, 1, 2, 3, 4, 5]
[1, 0, 1, 2, 3, 4]
[2, 1, 1, 2, 3, 4]
[3, 2, 2, 1, 2, 3]
[4, 3, 3, 2, 2, 2]
[5, 4, 4, 3, 2, 3]
Ответ: 3
Дамерау-Левенштейн, итерационный
Матрица расстояний:
[0, 1, 2, 3, 4, 5]
[1, 0, 1, 2, 3, 4]
[2, 1, 1, 2, 3, 4]
[3, 2, 2, 1, 2, 3]
Ответ: 2
Дамерау-Левенштейн, рекурсивный без кеша
Ответ: 2
Дамерау-Левенштейн, рекурсивный с кешем
Матрица расстояний:
[0, 1, 2, 3, 4, 5]
[1, 0, 1, 2, 3, 4]
[2, 1, 1, 2, 3, 4]
[3, 2, 2, 1, 2, 3]
[4, 3, 3, 2, 2, 2]
Ответ: 2
```

Рисунок 5 – Пример работы программы

4.3 Сравнение времени выполнения реализаций алгоритмов

Сравнение времени выполнения реализаций алгоритмов производилось на строках длиной от 0 до 10 с шагом 1 для всех реализаций и на строках длиной от 0 до 200 с шагом 10 для реализаций, использующих матрицы расстояний.

Так как замеры времени имеют некоторую погрешность, они производились 20 раз для каждой реализации алгоритма и длины строки, а затем вычислялось среднее время работы реализации с текущей длиной строки.

На рисунке 6 приведены результаты сравнения времени работы всех реализаций в секундах. Как видно на графике, реализации, использующие матрицы расстояний, работают значительно быстрее рекурсивной реализации без кеширования. Это обусловлено отсутвием в первых вызова функций для вычисления значений, которые уже были подсчитаны ранее.

Рисунок 6 – Сравнение времени работы реализаций алгоритмов

Сравним отдельно реализации, использующие матрицы расстояний.

На рисунке 7 приведено сравнение времени выполнения реализаций итерационного алгоритма поиска расстояния Левенштейна, итерационного и рекурсивного с кешированием алгоритмов поика расстояния Дамерау-Левенштейна. Время их работы растет соизмеримо, что обусловлено их схожестью в отсутствии вызова функций для вычисления значений, которые уже были подсчитаны ранее. Однако рекурсивная реализация с кешированием все же работает дольше, так как в ней тратится время на рекурсивный вызов.

Рисунок 7 – Сравнение времени работы реализациий алгоритмов, использующих матрицы растояний

4.4 Оценка памяти

Пусть m, n - длины строк S1 и S2 соответственно.

Затраты памяти для итеративного алгоритма поиска расстояния Левенштейна с матрицей расстояний:

- $2 \cdot sizeof(string_pointer)$ (ссылки на строки S1, S2);
- $2 \cdot sizeof(int)$ (длины строк);
- $((m+1)\cdot(n+1))\cdot sizeof(int)$ (матрица);
- $3 \cdot sizeof(int)$ (вспомогательные переменные).

Результат: $((m+1)\cdot (n+1)+5)\cdot size of(int) + 2\cdot size of(string_pointer)$

Затраты памяти для итеративного алгоритма поиска расстояния Дамерау-Левенштейна с матрицей расстояний:

- $2 \cdot sizeof(string_pointer)$ (ссылки на строки S1, S2);
- $2 \cdot sizeof(int)$ (длины строк);
- $((m+1)\cdot(n+1))\cdot size of(int)$ (матрица);

• $4 \cdot sizeof(int)$ (вспомогательные переменные).

Результат:
$$((m+1)\cdot (n+1)+6)\cdot size of(int) + 2\cdot size of(string_pointer)$$

Максимальная глубина стека вызовов при рекурсивной реализации равна сумме длин входящих строк. Ниже приведены оценки памяти для каждого вызова рекурсивной функции и итоговая затрачиваемая память с учетом максимальной глубины стека.

Затраты памяти для рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна (для каждого вызова):

- $2 \cdot sizeof(string_pointer)$ (ссылки на строки S1, S2);
- $2 \cdot sizeof(int)$ (длины строк);
- $4 \cdot sizeof(int)$ (вспомогательные переменные).

Результат:
$$(m+n) \cdot (6 \cdot sizeof(int) + 2 \cdot sizeof(string pointer))$$

Затраты памяти для рекурсивного алгоритма поиска расстояния Дамерау-Левенштейна с использованием кеша (для каждого вызова):

- $2 \cdot sizeof(string\ pointer)$ (ссылки на строки S1, S2);
- $2 \cdot sizeof(int)$ (длины строк);
- $((m+1)\cdot (n+1))\cdot sizeof(int)$ (матрица).

Результат: $(m+n) \cdot (((m+1)\cdot(n+1)+6) \cdot size of(int) + 2 \cdot size of(string pointer))$

4.5 Вывод

Рекурсивная реализация алгоритма поиска расстояния Дамерау-Левенштейна без кеширования работает значительно дольше реализаций алгоритмов, в которых используется матрица расстояний.

Рекурсивный алгоритм с кешированием сравним с итерационными алгоритмами, однако его реализация все равно несколько дольше нерекурсивных аналогов.

Итерационные реализации алгоритмов Левенштейна и Дамерау-Левенштейна сопоставимы по времени. Реализация алгоритма Дамерау-Левенштейна незначительно дольше реализации Левенштейна, т.к. в первом случае имеет место дополнительная проверка на перестановку соседних символов.

По расходу памяти нерекурсивные алгоритмы проигрывают рекурсивному алгоритму без кеша на больших длинах строк: в первом случае максимальный размер используемой памяти растет пропорционально произведению длин строк, в то время как во втором — пропорционально сумме длин строк.

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были решены следующие задачи:

- изучены расстояния Левенштейна и Дамерау-Левенштейна;
- разработаны и реализованы алгоритм поиска расстояния Левенштейна с заполнением матрицы, алгоритмы поиска расстояния Дамерау-Левенштейна с заполнением матрицы, с использованием рекурсии (с кешем и без);
- проведен сравнительный анализ процессорного времени выполнения реализаций рассматриваемых алгоритмов;
- проведен сравнительный анализ максимальной затрачиваемой алгоритмами памяти.

Поставленная цель была достигнута: были разработаны, реализованы и исследованы алгоритмы нахождения расстояний Левенштейна и Дамерау-Левенштейна.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Левенштейн В. И. Двоичные коды с исправлением выпадений, вставок и замещений символов. М.: Доклады АН СССР, 1965. Т. 163. С. 845–848.
- 2. Лутц Марк. Изучаем Python, том 1, 5-е изд. Пер. с англ. СПб.: ООО "Диалектика", 2019. с. 832.
- 3. time Time access and conversions [Электронный ресурс]. Режим доступа: https://docs.python.org/3/library/time.html (дата обращения: 15.09.2022).