

Artificial Intelligence as a Catalyst for Environmental Progress Innovative Strategies for Reducing Greenhouse Emissions

B. Ammouri

H. Toumi

S. Toumi

☆: ESAM

in: ammouri-bilel

🕠 : bilelammouri

: Ammouri-Bilel

: 0000-0002-5491-5172

Introduction

Introduction

- Revue de Litterature
- Résultats
- Conclusion

Résultats

Outline

Introduction

•00

- Introduction
 - Problèmatique
- Revue de Litterature
- Résultats
 - Echantillon
 - LIME
 - Metriques d'évaluation
- Conclusion

La lutte contre le changement climatique est un défi mondial crucial nécessitant des solutions urgentes et efficaces.

L'augmentation continue des émissions de dioxyde de carbone (CO2) exige des méthodes avancées pour leur prédiction et leur réduction.

Exploiter l'IA et le machine learning pour la durabilité environnementale représente une avancée technologique significative.

Les modèles de prédiction précis permettent une meilleure prise de décision et une planification stratégique pour la réduction des émissions.

Comment les modèles prédictifs basés sur l'IA peuvent-ils capturer efficacement les dynamiques complexes des émissions de gaz à effet de serre?

Quels modèles de régression en machine learning montrent une précision prédictive supérieure pour les schémas d'émission de gaz à effet de serre?

Comment les connaissances issues des modèles prédictifs avancés peuvent-elles être intégrées dans les politiques et stratégies pour atteindre les objectifs de développement durable?

Outline

- 1 Introduction
 - Problèmatique
- Revue de Litterature
- Résultats
 - Echantillon
 - LIME
 - Metriques d'évaluation
- Conclusion

Évolution des Modèles de Prédiction des Émissions de GES

Causes du Passage d'un Modèle à un Autre

Historique d Econométrie

Introduction

Irving Fisher

George Box

1933

1980-1990

2000

Econometric Society

Série Temporelle

Économétrie semi-paramétrique et non paramétrique

Historique de l'IA

Introduction

1936

Machine Universaille 1950

Machine Calculable inteligente

2010

Machine Learning

Research gap Pipeline

Workflow LIME

1. Régression Linéaire (LR) :

$$Y_i = \alpha_0 + \sum_{i=1}^k \alpha_i x_i$$

2. Arbre de Décision (DT) :

$$T(X) = \{N_i, S_i, \theta_i\}_{i=1}^K$$

3. Forêt Aléatoire (RF) :

Ensemble(X) =
$$\frac{1}{N} \sum_{i=1}^{N} N_i(X)$$

4. AdaBoost :

$$F(X) = \sum_{i=1}^{N} \alpha_i h_i(x)$$

5. LightGBM (LGBM):

$$\mathsf{Ensemble}(X) = \sum_{i=1}^{N} \alpha_i h_i(x)$$

6. XGBoost:

$$\mathsf{Ensemble}(X) = \sum_{i=1}^{N} \left(\mathit{f}_{i}(\mathit{x}) + \gamma_{t} \times \mathit{T}(\mathit{x}, \Theta_{t}) \right)$$

7. CatBoost:

$$\mathsf{Ensemble}(X) = -\frac{\sum L(Y_i, F(X_i))}{\sum (L(Y_i, F(X_i)) + \lambda)}$$

Outline

- - Problèmatique
- Résultats
 - Echantillon
 - LIME
 - Metriques d'évaluation

Echantillon

LIME

LIME

- **Sources Principales d'Émissions de GES** : cumulative_co, cumulative coincluding uc Identifier et cibler les principales sources d'émissions pour des stratégies de réduction efficaces
- **2** Consommation Énergétique : primary_energy_consumption, energy_qrowth_pri L'efficacité énergétique est cruciale pour la réduction des GES
- **1 Impact Global et Individuel** : co_per_capita , $share_alobal_cumulative_co$ Importance de réduire les émissions à la fois au niveau individuel et global
- **Ohangement Climatique**: temperature_hange_rom. sharealobalcoincludingiuc Comprendre comment les émissions de GES affectent le climat

Metriques d'évaluation

Model	MSE	MAE	MAPE	R2
Linear Regression	12.398	1.794	46.123	0.819
Decision Tree	12.913	1.621	34.053	0.812
Random Forest	12.550	1.528	30.373	0.817
AdaBoost	15.874	2.480	158.805	0.769
LGBM	11.466	1.662	27.229	0.833
XGBoost	19.556	2.277	60.644	0.715
CatBoost	11.493	1.592	42.501	0.832

Outline

- Introduction
 - Problèmatique
- Revue de Litterature
- Résultats
 - Echantillon
 - LIME
 - Metriques d'évaluation
- Conclusion

- La sélection des variables joue un rôle crucial dans l'amélioration de la précision des prédictions. L'intégration du modèle explicatif LIME a amélioré l'interprétabilité des décisions prises par les modèles
- L'étude souligne l'importance de l'intelligence artificielle dans la gestion environnementale, offrant des stratégies proactives pour atténuer les impacts du changement climatique et promouvoir un développement durable.
- 3 Pourquoi voulons-nous savoir (Kant)? Pour nous rassurer (Epicure. Freud)? Pour pouvoir agir (Bacon, Descartes, Comte) ? Science, doù prévoyance, prévovance doù action

Merci pour votre attention

