

ME457 FINAL SUBMISSION

Team Oiler

Benjamin Aziel, Sohaib Bhatti, Kyle Deolall, Ariel Tamayev

CHAPTERS 5-6

- Implemented trim
- Implemented autopilot design using loop closure

IMPLEMENTING TRIM

- Implemented trim control
 - Travels at a constant speed V_a^st
 - Climbing at a constant flight path angle γ^*
 - In constant orbit of radius R^*
- Employed both PID control and full state control

IMPLEMENTING AUTOPILOT

PID Control

- Employed PID control for course angle, airspeed, and altitude
 - Used gains recommended by textbook

State Control

- Employed state control using provided LQR values to find gains
 - Ultimately decided on using PID control instead, for the ease of coding it

COMMANDED AIRSPEED

Square reference with a delayed start, an amplitude of 20, and a DC offset of 10

COMMANDED AIRSPEED

Sinusoidal reference with a delayed start, an amplitude of 12, and a DC offset of 10

COMMANDED COURSE ANGLE

Square reference with a delayed start and an amplitude of 10 degrees

CHAPTERS 7-8

- Made significant progress with Kalman filter state tracking
- Needs some debugging, but overall implementation is 75% of the way there

INDI RESEARCH

- Did some quick research about INDI controllers and various implementations
- See drone_indi.pdf for a quick writeup

