Unit 3: Coordinate geometry

Subunit 3.3: Intersection of lines and curves

Topical Question No: 1

A line has equation $y = 3x + k$ and a curve has equation $y = x^2 + kx + 6$, where k is a constant.		
Find the set of values of k for which the line and curve have two distinct points of intersection	n. [5]	
	••••••	
	, 	

A curve has equation $y = x^2 + 2cx + 4$ and a straight line has equation $y = 4x + c$, where c is a constant				
Find the set of values of c for which the curve and line intersect at two distinct points.	[5]			

6

The circle with equation $(x + 1)^2 + (y - 2)^2 = 85$ and the straight line with equation y = 3x - 20 are shown in the diagram. The line intersects the circle at A and B, and the centre of the circle is at C.

[4]

(a) Find, by calculation, the coordinates of A and B.

(b)	Find an equation of the circle which has its centre at C and for which the line with equation $y = 3x - 20$ is a tangent to the circle. [4]

A line has equation $y = 3x - 2k$ and a curve has equation $y = x^2 - kx + 2$, where k is a constant.		
Show that the line and the curve meet for all values of k .	[4]	

7	The	straight line $y = x + 5$ meets the curve $2x^2 + 3y^2 = k$ at a single point P.	
	(a)	Find the value of the constant k .	[4
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			•••••
			••••
			••••
	(1.)	F' 14 - 1' - CD	
	(b)	Find the coordinates of P .	[2
			••••

A curve has equation $y = 5 + 3x - 2x^2$ and a straight line has equation $y = kx + 13$, where k is a constant.		
Find the set of values of k for which the curve and the line do not meet.	[4]	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	

1)	Given that the line is a tangent to the curve, express m in terms of c .	[3
		••••
		•••••
		•••••
		•••••
))	Given instead that $m = -4$, find the set of values of c for which the line intersects the curve two distinct points.	
D)		
D)		
))	two distinct points.	
))	two distinct points.	
)	two distinct points.	
))	two distinct points.	
D)	two distinct points.	

The equation of a line is y = mx + c, where m and c are constants, and the equation of a curve is

Find the set of values of m for which the line with equation $y = mx + 1$ and the curve with equ $y = 3x^2 + 2x + 4$ intersect at two distinct points.		

Points A and B have coordinates (8, 3) and (p, q) respect bisector of AB is $y = -2x + 4$.	ively. The equation of the perpendicular
Find the values of p and q .	[4]

A line with equation $y = mx - 6$ is a tangent to the curve with equation $y = x^2 - 4x + 3$.				
Find the possible values of the constant m , and the corresponding coordinates of the points at which the line touches the curve.				
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			

Given that the curve and the line intersect at the points with x-coordinates 0 and $\frac{3}{4}$, find the value of k and a. [4]
Given instead that $a = -\frac{7}{2}$, find the values of k for which the line is a tangent to the curve. [5]

The line with equation $y = kx - k$, where k is a positive constant, is a tangent to the curve with equation $y = -\frac{1}{2x}$.
Find, in either order, the value of k and the coordinates of the point where the tangent meets the curve [5]

A c	Firele has equation $(x-1)^2 + (y+4)^2 = 40$. A line with equation $y = x - 9$ intersects the circle at ants A and B.
(a)	Find the coordinates of the two points of intersection. [4]
(b)	Find an equation of the circle with diameter AB . [3]