

HCAI5DS02 – Data Analytics and Visualization. Lecture – 06 Statistical Modeling

Confidence Interval and Statistical Inference.

Siman Giri

3.3 How to make an Estimation?

Two Main Approaches to Estimation.

Approach.	What it Does?	Example.
Point Estimation	Gives a single best guess for a parameter.	$\hat{p} = \frac{\text{clicks}}{\text{emails}} = 0.06 \blacksquare$
Interval Estimation	Gives a range of plausible values for the parameter (with confidence)	95% CI for p: [0.045, 0.075]

- A point estimate tells you what's most likely.
- An interval tells you how sure you are and what could go wrong.

1.2 Parameters.

- A parameter is a fixed (but usually unknown) numerical characteristic of a population or probability distribution.
 - Think of it as describing the **true model** behind the data.
 - Parameters are often denoted using **Greek letters e.g.** μ , σ , λ , p.
 - Parameters are **not calculated** from data they are **assumed** to exist **in the population**.
- Examples:

Parameter	Meaning	Example
μ	Population Mean	True average purchase amount.
σ^2	Population Variance	Variability in customer spending.
р	Population proportion	True click through rate.
λ	Rate parameter	Avg. visits.

"Why do we need parameters?"

1.2.3 But There's a Catch ...

- Parameters define the underlying behavior of a process or population.
 - Knowing the parameter helps us describe, predict, and make decisions using data.
- But there's a Catch:
 - Most **parameters** are **unknown** in the real world.
 - That's why we use **statistics** to **estimate** them using data.
 - What are statistics?

1.3 Statistic.

- A statistic is a numerical summary calculated from sample data used to estimate a population parameter.
 - Statistics are observable and vary from sample to sample.
 - Denoted by Roman letters (e.g. $\bar{\mathbf{x}}$, \mathbf{s}^2 , $\hat{\mathbf{p}}$).
 - Statistics are our **best guesses** for **unknown parameters**.

Statistic Symbol	Meaning	Estimating Parameter
$\overline{\mathbf{X}}$	Sample Mean	Estimates µ
s ²	Sample Variance	Estimates σ ²
p	Sample proportion	Estimates p
Statistics (What we observe.)	Estimates →	Population (Truth)

• Parameters are to **populations** what statistics are to **samples**.

• We use statistics to estimate parameters — because we rarely have full access to the population.

Sample - 2

2.1 Parameters Estimation: Introduction.

• Key Idea:

- A parameter is a fixed but unknown quantity about the population
 - (e.g. the true average conversion rate.)
- A **statistic** is a value we compute from a sample to estimate that parameter.
- An Estimation is the process of using sample data to infer the value of an unknown population parameter.
- It is a statistical method used when the true value is not directly observable.

2.2 Estimator and Estimate.

• Estimator:

- An estimator is a mathematical rule or formula applied to a sample to compute an estimate of an unknown population parameter.
- The estimator itself is a random variable because it depends on which sample you get.
- We usually denote estimators with a "hat":
 - $\hat{\theta} = Estimator(X_1, X_2, ..., X_n)$
- Common estimators:
 - \overline{X} : estimates the population mean μ
 - **p**: estimates the true proportion **p**
 - s^2 : estimates population variance σ^2

• Estimate:

- An estimate is the numerical value you get when you apply the estimator to a specific data sample.
- It is not random but a fixed number (result) from the estimator applied to your collected sample.
- Example: If $\hat{\mathbf{p}} = \frac{\text{clicks}}{\text{emails}}$, and your sample has 50 clicks out of 1,000:
 - $\hat{p} = \frac{50}{1000} = 0.05 (estimate)$

2.3.3 Towards Sampling Distributions.

- Key Idea:
 - A single estimate ($\hat{p} = 0.6$), may not match the true parameter (p = 0.5),
 - but the average of many estimates will be close to the truth (if the estimator is unbiased).
- Why?
 - Law of Large Numbers:
 - As the number of sample increases, the mean of sampling distribution of converges to the true value.
 - Example:
 - Suppose you simulate 1,000 samples of size 5-coin flips and compute \hat{p} for each. The average of all those \hat{p} values will be very close to 0.5. i.e.
 - $\mathbb{E}[\hat{p}] = p = 0.5$ (if estimator is unbiased)

2.4 Sampling Distributions.

- The **sampling distribution** of a statistic (**or estimator**) is the **probability distribution** of that statistic computed from all possible **random samples** of a **fixed size n** drawn from a given population.
 - It tells you how the estimator (e.g., sample mean, proportion) would vary if you repeatedly sampled from the same population.
- Example:
 - You have a population with a true parameter (e.g. **true mean** μ).
 - You dray many samples from this population:
 - Sample $1 \to X_1^1, X_2^1, \dots, X_n^1 \to \text{Compute } \overline{X}^1$
 - Sample $2 \to X_1^2, X_2^2, \dots, X_n^2 \to \text{Compute } \overline{X}^2$
 - •
 - Sample $m \to X_1^m, X_2^m, ..., X_n^m \to \text{Compute } \overline{X}^m$
- Now you have collection of means: $\overline{X}^1, \overline{X}^2, ..., \overline{X}^m$
- These form the sampling distribution of the estimator \overline{X} .

1. Before Confidence Interval. {Sampling, Sampling Distribution and Sampling Error.}

1.1 Sampling Error.

- Intuitions behind Sampling Error:
 - We want to use a sample to learn something about a population, but no sample is perfect!
 - Sampling error is the error resulting from using a sample to estimate a population characteristic.
 - If we use a **sample mean** $\bar{\mathbf{x}}$ to **estimate** μ , chances are:
 - that $\bar{\mathbf{x}} \neq \mathbf{\mu}$ (sometimes they might be close, sometimes they might be not)
- These form the sampling distribution of the estimator \overline{X} .
- We consider:
 - How close $\bar{\mathbf{x}}$ to $\boldsymbol{\mu}$?
 - What if we took lots of samples and calculated $\bar{\mathbf{x}}$ each time?
 - Would these values cluster around μ?
 - What would the shape of that distribution look like?

1.1.1 Redefining: Sampling Distributions.

- The sampling distribution is the distribution of a sample statistic like \bar{x}
 - calculated from all possible samples of a given size n.
 - We in **general** focus on **the sampling distribution of the sample mean**.
- In Layman terms:
 - For a variable X, if we repeatedly take sample size n and compute \bar{x} each time,
 - the distribution of those sample means is what the sampling distribution of \bar{x} .
- Formal Definition of Sampling Error:
 - Sampling error is the difference between
 - the sample statistics like the sample mean, (denoted by \bar{x}) and
 - the true population parameter (like population mean, denoted by μ).
 - Mathematically:
 - Sampling Error = $\bar{x} \mu$
 - It arises because we only observe a subset of the population, not the whole.

1.2 Example: Average Delivery Time for a Food Delivery App.

Scenario:

- You are a data analyst at QuickBite, a food delivery company operating in a large metropolitan area.
- Your team is interested in understanding the **average delivery time** (in minutes) across the city. The delivery times vary due to traffic, order volume, and distance. However, collecting the delivery time for **every order** is not feasible due to system constraints. So, you collect a **sample of size n = 2** from recent deliveries.
- Assume, for learning purposes, that you know the entire **population of delivery times** for the last 5 orders from a specific zone:

Order ID	Delivery Time (min)
A	30
В	32
С	35
D	38
E	40

So, the population mean is:

•
$$\mu = \frac{30+32+35+38+40}{5} = 35$$
 minutes.

1.2 Example: Average Delivery Time for a Food Delivery App.

- Now Suppose we take all samples of size n = 2.
 - There are 10 possible combinations (ignoring order),
 - and we can compute their **sample means** and **sample error**:

Sample	Sample Mean (\bar{x})	Sampling Error $\bar{x} - \mu$
A,B	31	- 4.0
A,C	32.5	- 2.5
A,D	34	- 1.0
A,E	35	0.0
В,С	33.5	- 1.5
B,D	35	0.0
B,E	36	+ 1.0
C,D	36.5	+ 1.5
C,E	37.5	+ 2.5
D,E	39	+ 4.0

- The **sampling error** is defined for a single sample as:
 - Sampling Error = $\bar{x} \mu$
 - Every sample will have its own sampling error
 - some positive (overestimate error) and some negative (underestimate error).
- What happens over many Samples?
 - If you take many samples, each with its own sampling error, then:
 - Average sampling error across all possible samples = 0
 - It is good, it means our estimator is unbiased i.e.
 - $\mathbb{E}[\bar{\mathbf{x}}] = \mathbf{\mu}$
 - The expected value or long run average of the sample mean \bar{x} equals the true population mean μ .
- But just knowing the average error is zero, doesn't tell us how big those errors tend to be,
 - or how it varies from sample to sample or how reliable our estimate is.

1.3 Standard Error (SE).

Defintion:

- Standard Error is the standard deviation of a sampling distribution.
- It measures the typical amount that a sample statistic like the sample mean
 - differs from the true population parameter due to random sampling.
- For the sample mean:
 - Standard Error of the Mean = $SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$
- What if σ is unknown?
 - In practice, we rarely know the population standard deviation.
 - So, we estimate it from the sample:
 - $SE_{\bar{X}} \approx \frac{s}{\sqrt{n}}$
 - where s is the sample standard deviation.

• Interpretation

- SE tells us how much we expect the sample mean to vary from sample to sample.
- A smaller SE means the sample mean is more stable and likely closer to the population mean.
- As n increases, SE decreases → larger samples are more precise.

2. Introduction to Confidence Interval.

2.1 Need for Confidence Interval.

- Recall the Point Estimate:
 - A point estimate is a single value estimate of a population parameter.
 - We say that a **statistic** is an unbiased estimator
 - if the mean of its distribution is equal to the population parameter.
 - Otherwise, it is a biased estimator.
 - Point estimates are useful, but they only give us so much information.
 - The variability of an estimate is also important!!!
- Why Confidence Intervals?
 - When we take a sample from a population, we often compute a sample statistic (like the sample mean \bar{x}) to estimate the population parameter (like the true mean μ).
 - But because samples vary, we want to capture the range in which μ likely falls:
 - A **confidence interval (CI)** gives us such a range, using:
 - The point estimate: $\bar{\mathbf{x}}$
 - Sampling variability: quantified using **standard error (S.E)**
 - Confidence Level: determines how wide the interval is via a critical value.

2.2 Confidence Interval.

- A confidence interval gives a range of values
 - that is **likely to contain** the **true population parameter (like the mean μ)**
 - with a certain level of confidence (e.g. 95%).
 - General Formula (for the population mean μ):
 - Confidence Interval = $\bar{\mathbf{x}} \pm \mathbf{z}^* \cdot SE$
 - Here:
 - \bar{x} : sample mean
 - z*: critical value from the standard normal distribution(e.g. 1.96 for 95% confidence)
 - SE: standard error of the sample mean.

2.2.1 Critical Value

- Formal Definition:
 - A **critical value** is a value from a **probability distribution** (**usually the standard normal distribution**) such that:
 - The area between the critical values corresponds to the confidence level e.g. 95%.
 - The area beyond the critical values (in the tails) corresponds to the significance level e.g. 5% total or 2.5% in each tail.
 - In confidence intervals:
 - Suppose we want a 95% confidence interval for the population mean:

2.2.2 Margin of Error(ME).

- The margin of error is the maximum likely difference between the sample statistic and the population parameter at a given confidence level.
 - Margin of Error = $z^* \cdot SE$
 - So:
 - Confidence Interval = $\bar{x} \pm Margin of Error$
- Example:
 - Suppose:
 - $\bar{x} = 70 \& SE = 2$
 - For confidence level $95\% \rightarrow z^* = 1.96$
 - Then:
 - $ME = 1.96 \cdot 2 = 3.92$
 - $CI = 70 \pm 3.92 = (66.08, 73.92)$
 - Interpretation: We are 95% confident that the true population mean μ lies between 66.08 and 73.92.

2.3 Example Case Study – 1.

Scenario:

- **QuickNet**, a broadband internet service provider, is analyzing customer retention. The marketing team wants to assess how well current retention strategies are working, and to forecast future churn.
- They conducted a survey of 800 customers from last quarter and found that 68 customers canceled their subscription.
- The executive team asks:
 - "What is the range in which the true churn rate likely lies?"
 - "How confident are we in this estimate?"
- The first Question we should be asking is:
 - What distribution Models this scenario?
 - What is the Best Estimator?

2.3.1 What Distribution Models This Scenario?

- The parameter we are interested in is the population churn rate, denoted: p=true proportion of customers who churn
 - Which distribution models this scenario:
 - The event churn is binary: A customer either churns (1) or does not churn (0).
- Model: Binomial Distribution:
 - $X \sim Binomial(n = 800, p)$
 - where:
 - X: number of churned customers; n = 800: number of customers sampled;
 - p: probability that a customer churns (what we want to estimate).
- Best Estimator:
 - The sample proportion \hat{p} is the unbiased estimator of the population proportion p:
 - $\hat{p} = \frac{x}{n} = \frac{68}{800} = 0.085$
 - So, 0.085 or 8.5% is our point estimate of the churn rate.
 - "If this sample is representative, then we estimate that around 8.5% of all QuickNet customers are likely to churn."
 - This number is **not just a description** of the sample it's a **statistical estimate** of the **overall churn rate** for the full customer base, based on the evidence you collected.
 - It's your **best guess for p.**
 - But it's still an estimate so we add a confidence interval to express uncertainty around it.

2.3.2 Why Use a Normal Approximation?

- Working directly with binomial probabilities (e.g., computing the confidence interval) is difficult, especially for large n.
 - So, we approximate the sampling distribution of \hat{p} with a normal distribution,
 - using the Central Limit Theorem (CLT).
 - Conditions to **Use Normal Approximation**:
 - $n \hat{p} \ge 10$
 - $n(1 \hat{p}) \ge 10$
 - Check:
 - $n \hat{p} = 800 \cdot 0.085 = 68 \ge 10$
 - $n(1-\widehat{p}) = 800 \cdot 0.915 = 732 \ge 10$
 - These conditions are satisfied, so we can model the sampling distribution of \hat{p} as:
 - $\widehat{\mathbf{p}} \sim \mathcal{N}\left(\mathbf{p}, \frac{\mathbf{p}(1-\mathbf{p})}{\mathbf{p}}\right)$
 - Since **p** is unknown, we approximate the standard error using \hat{p} :
 - $SE_{\widehat{p}} \approx \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$

2.3.3 Step – by – Step Calculation.

• Step 1: Standard Error (SE):

•
$$SE_{\widehat{p}} = \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} = \sqrt{\frac{0.085 \cdot 0.915}{800}} \approx 0.00986$$

- Step 2: Critical Value:
 - At 95% confidence, the critical z value:

•
$$z^* = 1.96$$

- Step 3: Margin of Error (ME):
 - $ME = z^* \cdot SE = 1.96 \cdot 0.00986 \approx 0.0193$
- Step 4: Confidence Interval:
 - $\hat{p} \pm ME = 0.085 \pm 0.0193 \Rightarrow (0.0657, 0.1043)$
- Business Interpretation:
 - We are 95% confident that the true customer churn rate lies between 6.6% and 10.4%.

2.4 Example Case Study – 2.

Context:

- **HelpPro Inc.** tracks customer service performance closely. One **key performance indicator (KPI)** is **average call duration**, because:
 - Longer calls → more cost per ticket
 - Shorter calls → more efficiency, but may hurt customer satisfaction
- Their internal target is 15 minutes per call.
- The support manager wants to estimate the true average duration based on recent performance, and see if they're still meeting that target.

• Business Question:

- "Is the average customer support call duration longer than our target of 15 minutes?"
- Data Collection:
 - Sample size: **n** = **100 customer support calls**
 - Sample mean: $\bar{\mathbf{x}} = \mathbf{16.2}$ minutes
 - Known population standard deviation: $\sigma = 4.8$ minutes
 - Confidence level: 95%

2.4.1 Step – by – Step Calculation.

- We will use the z distribution, because the population standard deviation is known and n is large.
 - Step 1: Compute the Standard Error:

• SE =
$$\frac{\sigma}{\sqrt{n}} = \frac{4.8}{\sqrt{100}} = \frac{4.8}{10} = 0.48$$

- Step 2: Determine the critical value:
 - At 95% confidence, from the **standard normal distribution**,

•
$$z^* = 1.96$$

• Step 3: Compute the Margin of Error:

•
$$ME = z^* \cdot SE = 1.96 \cdot 0.48 = 0.9408$$

- Step 4: Compute the Confidence Interval:
 - $\bar{x} \pm ME = 16.2 \pm 0.9408 \Rightarrow (15.26, 17.14)$
- Business Interpretation:
 - We are 95% confident that the true average support call duration lies between 15.26 and 17.14 minutes.

2.5 Why not Go for 99% Confidence?

- Higher confidence sounds better ... but there's a trade off:
 - So, when estimating the **population mean** μ , the **confidence interval** becomes:

• $\bar{\mathbf{x}} \pm \mathbf{z}^* \cdot \mathbf{SE}$ where $\mathbf{SE} = \frac{\sigma}{\sqrt{n}}$

• The **z*** **values** correspond **directly to the SD ranges**:

Table: Trade - Off: Confidence vs. Precision.

Confidence Level	Critical Value z*	Approx SD Range	Margin of Error	CI Interval width
68%	1.00	±1 SE	Very Small	Very narrow
90%	1.645	±1.6 SE	Smaller	Narrower
95%	1.96	±2 SE	Medium	Moderate
99%	2.576	±2.6 SE	Big	Moderately Big
99.7%	3	±3 SE	Larger	Wider

As we increase the confidence level, the margin of error (ME) also increases.

- Summary:
 - Higher confidence \rightarrow Higher margin of error \rightarrow Wider interval
 - Lower confidence \rightarrow Lower margin of error \rightarrow Narrower interval
- The trade off:
 - Do you want to be surer (95 to 99%) or do you want to be more precise (narrower range)?

2.5.1 Why not Always Choose 99%?

- More confidence = more uncertainty range
- Wider intervals may be less useful for decision-making
- Less actionable in business when precision matters (e.g., budgeting, planning)
- May require **larger sample sizes** to keep ME small at higher confidence
 - Example: HelpPro Call Duration (Sample Mean = 16. 2, σ = 4. 8, n = 100)

Confidence	Margin of Error	Confidence Interval
95%	±0.94	(15.26, 17.14) minutes
99%	±1.24	(14.96, 17.44) minutes

- At 99%, the interval includes the 15-min threshold
 - harder to make confident decisions about exceeding the target
- Higher confidence isn't always better.
 - Balance confidence with the need for precision and actionability.

3. When you do not Know Population σ ?

3.1 Example Case Study.

- Scenario: Estimating Average Delivery Time.
 - A logistics analyst wants to estimate the average delivery time for packages sent last week.
 - They take a random sample of n = 12 delivery times:
 - $\bar{x} = 42.5$ minutes, s = 5.4 minutes
 - Target: Estimate the true average delivery time μ with 95% confidence.
- Let's Build a Confidence Interval:
 - Recall the formula for CI when σ is known:
 - $\bar{\mathbf{x}} \pm \mathbf{z}^* \cdot \frac{\sigma}{\sqrt{n}}$
 - But do we know σ ?
 - No, we only have the sample standard deviation s = 5.4
 - Also, our sample is small: n = 12
- This means we can not use the **z distribution**, **why?**

3.1.1Problem with Plugging s into a Z-Based CI.

- If you plug **s** into the **z distribution formula**:
 - $\bar{\mathbf{x}} \pm \mathbf{z}^* \cdot \frac{\mathbf{s}}{\sqrt{\mathbf{n}}}$
- You are:
 - Using a noisy estimate of the standard deviation.
 - This **estimation** use n 1 in its calculation,
 - thus reflects the noise and additional variability (Bessel's correction).
 - If we apply the z based critical value, which assumes knowledge of true σ .
- Thus, if we do not adjust the critical value to account for that uncertainty,
 - we may underestimate the total uncertainty.
- That's why we switch to the **t-distribution**, which adjusts **for this extra uncertainty**.

3.2 The t-Distribution.

- aka t student distribution:
 - The t-distribution (also called Student's t-distribution) is a
 - family of continuous probability distributions used when estimating population parameters
 - When do we use it?
 - We are estimating the population mean μ
 - The population standard deviation σ is unknown
 - You have to use the sample standard deviation s
 - And your sample size is small i. e. (n < 30)
 - The t-distribution adjusts for the added uncertainty introduced by using s instead of σ .
 - t statistic Formula:

•
$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

3.2.1 Characteristics of t – distribution.

• Mean:

- The mean of the **t-distribution** is **0**.
- This is analogous to the standard normal distribution (z distribution), which also has a mean of 0.

• Symmetry:

• The t-distribution is symmetric around its mean, similar to the normal distribution.

• Variance:

• The variance of the **t-distribution** is **greater than 1** for small **sample sizes** but approaches **1** as the **sample**

size increases.

3.2.2 Characteristics of t – distribution.

- The **shape** of the t-distribution depends on the **degrees of freedom (df)**, which are typically calculated as:
 - df = n 1
 - where:
 - n = sample size
 - subtracting 1 accounts for the estimation of the sample mean \bar{x}
- Why it Matters?
 - Lower df(small samples) → heavier tails
 - Reflects greater uncertainty
 - More probability in the extremes
 - Higher df (larger samples)→ t curve approaches normāl.15
 - More stable estimates
 - Less uncertainty

t-Distribution vs. Standard Normal Distribution

3.2.3 Characteristics of t – distribution.

- Asymptotic Behavior:
 - As the degrees of freedom increase, the t-distribution approaches the standard normal distribution.
 - This means that for large sample sizes, the t-distribution and z-distribution are nearly indistinguishable.

3.3 General Guideline: When to Use z vs. t Distribution.

Use the **Z** – distribution:

- When:
 - The population standard deviation σ is known.
 - Applies regardless of sample size n
 - Formula:

•
$$\bar{\mathbf{x}} \pm \mathbf{z}^* \cdot \frac{\sigma}{\sqrt{n}}$$

Use the t –distribution:

- When:
 - The population standard deviation σ is unknown (which is common).
 - You use the sample standard deviation *s* instead
 - Formula:

• $\bar{\mathbf{x}} \pm \mathbf{t}^* \cdot \frac{\mathbf{s}}{\sqrt{\mathbf{n}}}$ (with df = n - 1)

7/27/2025

3.3.1 How sample size affects your choice.

Sample Size n	Recommendation	Why?
Small n < 30	Use t - distribution	More accurate, t – distribution has heavier tails to account for greater uncertainty.
Large n ≥ 30	Z distribution is a reasonable approximation	t – distribution $\approx z$ – distribution as n increases by CLT.
	Still safer to use t - distribution	Technically more correct, even for large n and is always more accurate , because it properly accounts for the uncertainty in estimating variability using s.

Optional: Degree of Freedom – Intuition.

- Think of degrees of freedom as the number of values in a calculation that are free to vary.
- Example:
 - For any distribution with unknown population mean μ , and sample mean of 5, what could be the missing sample value below:

i	$\mathbf{x_i}$	$\mathbf{x_i} - \bar{\mathbf{x}}$
1	6	6-5 =2
2	4	4-5 = -1
3	?	

Constrained imposed by sample mean:

Sum of Deviations from the mean: By definition, the sum of the deviations of each observation from the mean must equal zero:

$$\sum (\mathbf{x_i} - \bar{\mathbf{x}}) = \mathbf{0}$$

Because of this constrained there is only one possible choice for our third observation i.e.

$$(x_1-\bar{x}) + (x_2-\bar{x}) + (x_3-\bar{x}) = 0$$

Rearrange the above algebraically:

$$x_1 + x_2 + x_3 - 3\bar{x} = 0$$

 $x_1 + x_2 + x_3 = 3\bar{x}$

Let's find x_3 :

$$6 + 4 + x_3 = 3 \overline{x}$$

 $6 + 4 + x_3 = 3 \times 5$

How many values of x_3 can satisfy the above equation?

Therefore in this condition third observation is not independent, once we know the mean and two observation. Thus for this example:

n = 3, we have (3 - 1) = 2 degrees of freedom

Thank You