Fundamentos de els Sistemas Operativos (FSO)

Departamento de Informática de Sistemas i Computadoras (DISCA) *Universitat Politècnica de València*

Bloc Temàtic 4: Gestió de Memòria Seminari 9

Mapa de memòria d'un procés Linux

Objectius

- Comprendre el concepte de mapa de memòria d'un procés
- Coeixer les característiques del mapa de memòria en procés Linux
- Descriure la tècnica per a mapejar arxius en memòria
- Diferenciar els avantatges i inconvenients de treballar amb biblioteques estàtiques i dinàmiques

Bibliografia

 "Sistemas operativos: una visión aplicada", Capítulo 5, Jesús Carretero 2º Ed, Mac GrawHill

- Introdució
- Mapa de memòria d'un procés en LINUX
- Arxius mapejats en memòria
- Biblioteques d'enllaç dinàmic

Mapa de memòria d'un procés

- El S. O. gestiona el mapa de memòria d'un procés durant la seua vida
- El mapa de memòria és un atribut del procés
- Conté informació sobre les distintes àrees del procés:
 - Codi, dades, pila ...

- Mapa de memòria inicial d'un procés: està molt vinculat amb l'arxiu que conté el codi executable d'aquest procés
- Actualment els SO ofereixen un model de memòria dinàmic mitjançant regions que donen suport a aquestes àrees, de manera que durant l'execució del procés
 - Es poden **crear noves regions** que no obtenen les dades del fitxer executable: pila, arxius projectats, memòria dinàmica
 - Es poden eliminar regions

Format simplificat d'un arxiu executable

- El resultat final de compilar i enllaçar un programa es generar un arxiu executable que continga el codi màquina del programa
- Un executable està estructurat en capçalera i un conjunt de seccions
 - Capçalera: conté informació de control que permet interpretar la resta del contingut del fitxer executable
 - Seccions: Cada executable te un conjunt de seccions

	Despl.	Grandàri
Codi	1000	4000
Dades amb v.i.	5000	1000
Dades sense v.i.		500
T. Símbolos	8000	1000

Típicament apareixen al menys tres seccions:

- Codi (text): conté el codi del programa
- Dades amb valor inicial: emmagatzema el valor inicial de totes les variables a les quals se li ha assignat un valor en el programa
- Dades sense valor inicial: correspon a variables a les quals no se li ha assignat un valor inicial

- Introdució
- Mapa de memòria d'un procés Linux
- Arxius mapejats en memòria
- Biblioteques d'enllaç dinàmic

Mapa de memòria de Linux

- Mapa de memòria Linux en versions de LINUX 2.6.x sobre arquitectura de 32 bits:
 - Espai lògic de 4GB (2³²)
 - 1er Gbyte: Codi + dades inicialitzades que comencen en l'adreça 0x08048000 (format ELF)
 - 3er Gbyte per a pila: la pila creix cap a posicions decreixents i comença en la part alta del 3er GB
 - 4t Gbyte: les adreces més altes es reserven per al S.O.
 - La resta de l'espai pot utilitzar-se per a dades i biblioteques d'enllaç dinàmic

els

de

Mapa de memòria d'un procés Linux

Mapa de memòria esta format per regions

- Una regió té associada una determinada informació
 - codi, dades amb valor inicial, dades sense valor inicial, fitxers projectats, codis biblioteques dinàmiques
- Cada regió és una zona contígua caracteritzada per l'adreça on comença en del mapa i la seua grandària
- Característiques de les regions
 - Suport: on s'emmagatzema la informació de la regió
 - en arxiu: el contingut inicial de la regió està en un fitxer
 - sense suport: la regió no té contingut inicial
 - Tipus de **compartició**:
 - Privada (p): el contingut de la regió només es accessible pel procés
 - Compartida: el contingut de la regió pot ser accessible per diversos processos
 - **Protecció**: Tipus d'accés permés a eixa regió
 - lectura, escriptura i/o execució
 - **Grandària**: fixa o variable

- En executar un programa es crea un mapa de memòria inicial a partir de l'arxiu executable
- Cada secció de l'executable dóna lloc a una regió del mapa inicial
 - Codi (text):
 - regió compartida, lectura i execució, grandària fixa, suport en arxiu executable
 - Dades amb valor inicial: cada procés necessita un còpia pròpia de les variables.
 - regió privada, lectura i escriptura, grandària fixa, suport en arxiu executable
 - Dades sense valor inicial: en alguns llenguatges s'ompli a zero
 - regió privada, lectura i escriptura, grandària fixa, sense suport
 - Pila: Creix cap a adreces baixes. Inicialment només conté els arguments de la crida al programa

regió privada, lectura i escriptura, grandària variable, sense suport.

• El mapa de memòria d'un procés és dinàmic. Durant l'execució del procés es poden crear regions com:

Regió de Heap

- Suport de memòria dinàmica (malloc en C)
- Privada, lectura i escriptura, grandària variable, sense suport (inicialitzada a zero)
- Creix cap a adreces més altes

Arxiu projectat

- Quan es mapeja un fitxer es crea una regió associada a l'arxiu projectat
- Grandària variable, suport en arxiu
- Protecció i carácter compartit o privat especificat en la projecció

Memòria compartida

- Regió associada a la zona de memòria compartida (per a la comunicació entre processos)
- Compartida, grandària variable, sense suport (inicialitzada a 0)
- Protecció especificada pel programa

Piles de Fils (thrads)

- Cada pila de fil es correspon amb una regió.
- Aquestes regions consten de les mateixes característiques que les associades a la pila del procés

- Disposem de dues opcions a l'hora de visualitzar el mapa de memòria d'un procés en Linux:
- Llistar l'arxiu maps del procés ubicat en /proc/PID_del_proces
- \$cat /proc/PID/maps
 - » Rang d'adreces lògiques
 - » Permissos
 - » Desplaçament des de l'inici del fitxer executable
 - » Dispositiu
 - » Node-i
 - » Nom del fitxer projectat

- Executar l'ordre del shell \$pmapPID
 - » Adreça lógica base
 - » Grandària
 - » Permissos
 - » Nom fitxer projectat

Nota: Sustituint el PID per la variable \$\$ se fa referència al procés que està en execució. Exemple:

\$ pmap \$\$
\$cat /proc/\$\$/maps

Exemple: ordre \$pmap en arquitectura de 32 bits

```
1608: /bin/bash
            32K r-x-- /lib/tls/i686/cmov/libnss nis-2.11.1.so
00140000
             4K r---- /lib/tls/i686/cmov/libnss nis-2.11.1.so
00148000
             4K rw--- /lib/tls/i686/cmov/libnss nis-2.11.1.so
00149000
             8K r-x-- /lib/tls/i686/cmov/libdl-2.11.1.so
00266000
00268000
             4K r---- /lib/tls/i686/cmov/libdl-2.11.1.so
00269000
             4K rw--- /lib/tls/i686/cmov/libdl-2.11.1.so
00319000 1356K r-x-- /lib/tls/i686/cmov/libc-2.11.1.so
             4K ---- /lib/tls/i686/cmov/libc-2.11.1.so
0046c000
             8K r---- /lib/tls/i686/cmov/libc-2.11.1.so
0046d000
0046f000
            4K rw--- /lib/tls/i686/cmov/libc-2.11.1.so
00470000
            12K rw--- [ anon ]
005b0000
             4K r-x-- [anon]
007f7000
           208K r-x-- /lib/libncurses.so.5.7
0082b000
             4K ---- /lib/libncurses.so.5.7
0082c000
            8K r---- /lib/libncurses.so.5.7
0082e000
             4K rw--- /lib/libncurses.so.5.7
           108K r-x-- /lib/ld-2.11.1.so
00cbc000
             4K r---- /lib/ld-2.11.1.so
00cd7000
            4K rw--- /lib/ld-2.11.1.so
00cd8000
00cf7000
           24K r-x-- /lib/tls/i686/cmov/libnss compat-2.11.1.so
00cfd000
            4K r---- /lib/tls/i686/cmov/libnss compat-2.11.1.so
            4K rw--- /lib/tls/i686/cmov/libnss_compat-2.11.1.so
00cfe000
            40K r-x-- /lib/tls/i686/cmov/libnss_files-2.11.1.so
00f56000
            4K r---- /lib/tls/i686/cmov/libnss files-2.11.1.so
00f60000
00f61000
            4K rw--- /lib/tls/i686/cmov/libnss files-2.11.1.so
            76K r-x-- /lib/tls/i686/cmov/libnsl-2.11.1.so
00fc1000
00fd4000
            4K r---- /lib/tls/i686/cmov/libnsl-2.11.1.so
            4K rw--- /lib/tls/i686/cmov/libnsl-2.11.1.so
00fd5000
```

pblanes@pblanes-desktop:~\$ pmap \$\$

```
00fd6000
           8K rw--- [anon]
           780K r-x-- /bin/bash
08048000
            4K r---- /bin/bash
0810b000
           20K rw--- /bin/bash
0810c000
           20K rw--- [ anon ]
08111000
0876e000 1368K rw--- [anon]
          156K r---- /usr/share/locale-langpack/es/LC MESSAGES/bash.mo
b75ef000
b7616000
           252K r---- /usr/lib/locale/es_ES.utf8/LC_CTYPE
b7655000
            4K r---- /usr/lib/locale/es ES.utf8/LC NUMERIC
            4K r---- /usr/lib/locale/es ES.utf8/LC TIME
b7656000
b7657000 1144K r---- /usr/lib/locale/es ES.utf8/LC COLLATE
            8K rw--- [ anon ]
b7775000
b7777000
            4K r---- /usr/lib/locale/es ES.utf8/LC MONETARY
            4K r---- /usr/lib/locale/es ES.utf8/LC MESSAGES/SYS LC MESSAGES
b7778000
b7779000
            4K r---- /usr/lib/locale/es ES.utf8/LC PAPER
            4K r---- /usr/lib/locale/es ES.utf8/LC NAME
b777a000
            4K r---- /usr/lib/locale/es ES.utf8/LC ADDRESS
b777b000
            4K r---- /usr/lib/locale/es_ES.utf8/LC_TELEPHONE
b777c000
            4K r---- /usr/lib/locale/es ES.utf8/LC MEASUREMENT
b777d000
           28K r--s- /usr/lib/gconv/gconv-modules.cache
b777e000
b7785000
            4K r---- /usr/lib/locale/es ES.utf8/LC IDENTIFICATION
            8K rw--- [ anon ]
b7786000
bf95a000
          84K rw--- [ stack ]
      5868K
total
```

Exemple: ordre \$pmap en arquitectura de 64bits

pblanes@shell-sisop:~\$ pmap -d \$\$

```
29916: -bash
Address
              Kbytes Mode Offset
                                Device Mapping
               760 r-x-- 000000000000000 008:00002 bash
000000000400000
0000000006bd000
               40 rw--- 00000000000bd000 008:00002 bash
0000000006c7000
              2616 rw--- 00000000006c7000 000:00000 [anon]
00007fa6e6728000
               00007fa6e6732000
              00007fa6e6932000
               00007fa6e6934000
               40 r-x-- 0000000000000000 008:00002 libnss nis-2.7.so
00007fa6e693e000
              00007fa6e6b3d000
               00007fa6e6b3f000
              88 r-x-- 0000000000000000 008:00002 libnsl-2.7.so
00007fa6e6b55000
              2044 ---- 000000000016000 008:00002 libnsl-2.7.so
00007fa6e6d54000
               8 rw--- 0000000000015000 008:00002 libnsl-2.7.so
00007fa6e6d56000
               8 rw--- 00007fa6e6d56000 000:00000 [ anon ]
00007fa6e6d58000
               32 r-x-- 00000000000000000 008:00002 libnss_compat-2.7.so
00007fa6e6d60000
              2044 ---- 00000000000008000 008:00002 libnss compat-2.7.so
00007fa6e6f5f000
              00007fa6e6f61000
              1376 r-x-- 0000000000000000 008:00002 libc-2.7.so
00007fa6e70b9000
              2048 ---- 000000000158000 008:00002 libc-2.7.so
00007fa6e72b9000
               12 r---- 0000000000158000 008:00002 libc-2.7.so
00007fa6e72bc000
               8 rw--- 000000000015b000 008:00002 libc-2.7.so
00007fa6e72be000
               20 rw--- 00007fa6e72be000 000:00000 [ anon ]
00007fa6e72c3000
               8 r-x-- 0000000000000000 008:00002 libdl-2.7.so
00007fa6e72c5000
              00007fa6e74c5000
```

```
00007fa6e74c7000
                  220 r-x-- 00000000000000000 008:00002 libncurses.so.5.6
00007fa6e74fe000
                  2044 ---- 0000000000037000 008:00002 libncurses.so.5.6
00007fa6e76fd000
                   20 rw--- 000000000036000 008:00002 libncurses.so.5.6
00007fa6e7702000
                   116 r-x-- 0000000000000000 008:00002 ld-2.7.so
00007fa6e77da000
                   60 r---- 0000000000000000 008:00002 bash.mo
00007fa6e77e9000
                   252 r---- 0000000000000000 008:00002 LC CTYPE
00007fa6e7828000
                   900 r---- 0000000000000000 008:00002 LC COLLATE
00007fa6e7909000
                    8 rw--- 00007fa6e7909000 000:00000 [ anon ]
00007fa6e790b000
                    4 r---- 0000000000000000 008:00002 LC NUMERIC
00007fa6e790c000
                    4 r---- 0000000000000000 008:00002 LC TIME
00007fa6e790d000
                    4 r---- 0000000000000000 008:00002 LC MONETARY
00007fa6e790e000
                    4 r---- 00000000000000000 008:00002 SYS LC MESSAGES
00007fa6e790f000
                   4 r---- 0000000000000000 008:00002 LC PAPER
00007fa6e7910000
                    4 r---- 0000000000000000 008:00002 LC NAME
00007fa6e7911000
                    4 r---- 0000000000000000 008:00002 LC ADDRESS
00007fa6e7912000
                    4 r---- 0000000000000000 008:00002 LC TELEPHONE
00007fa6e7913000
                    00007fa6e7914000
                   28 r--s- 0000000000000000 008:00002 gconv-
     modules.cache
00007fa6e791b000
                    4 r---- 000000000000000 008:00002
     LC IDENTIFICATION
00007fa6e791c000
                   12 rw--- 00007fa6e791c000 000:00000 [ anon ]
00007fa6e791f000
                   8 rw--- 000000000001d000 008:00002 ld-2.7.so
00007fff8bc0f000
                  84 rw--- 00007ffffffe9000 000:00000 [ stack ]
00007fff8bd1d000
                   8 r-x-- 00007fff8bd1d000 000:00000 [ anon ]
ffffffff600000
                4 r-x-- 0000000000000000 000:00000 [anon]
                writeable/private: 2864K shared: 28K
mapped: 21168K
gandreu@shell-sisop:~$
```

Arxiu /proc/PID/maps

 Conté les regions de memòria actualment associades al procés amb identificador PID i els seus permissos d'accés

Mapa de memòria d'un procés en Linux

El format de l'arxiu maps és:

els de

Mapa de memòria d'un procés Linux

Exemple: arxiu maps en arquitectura de 32 bits

pblanes\$ cat /proc/\$\$/maps

00140000-00148000 r-xp 00000000 08:01 266235 00148000-00149000 r--p 00007000 08:01 266235 00149000-0014a000 rw-p 00008000 08:01 266235 00266000-00268000 r-xp 00000000 08:01 266220 00268000-00269000 r--p 00001000 08:01 266220 00269000-0026a000 rw-p 00002000 08:01 266220 00319000-0046c000 r-xp 00000000 08:01 266214 0046c000-0046d000 ---p 00153000 08:01 266214 0046d000-0046f000 r--p 00153000 08:01 266214 0046f000-00470000 rw-p 00155000 08:01 266214 00470000-00473000 rw-p 00000000 00:00 0 005b0000-005b1000 r-xp 00000000 00:00 0 007f7000-0082b000 r-xp 00000000 08:01 261740 0082b000-0082c000 ---p 00034000 08:01 261740 0082c000-0082e000 r--p 00034000 08:01 261740 0082e000-0082f000 rw-p 00036000 08:01 261740 00cbc000-00cd7000 r-xp 00000000 08:01 261663 00cd7000-00cd8000 r--p 0001a000 08:01 261663 00cd8000-00cd9000 rw-p 0001b000 08:01 261663

/lib/tls/i686/cmov/libnss nis-2.11.1.so /lib/tls/i686/cmov/libnss nis-2.11.1.so /lib/tls/i686/cmov/libnss nis-2.11.1.so /lib/tls/i686/cmov/libdl-2.11.1.so /lib/tls/i686/cmov/libdl-2.11.1.so /lib/tls/i686/cmov/libdl-2.11.1.so /lib/tls/i686/cmov/libc-2.11.1.so /lib/tls/i686/cmov/libc-2.11.1.so /lib/tls/i686/cmov/libc-2.11.1.so /lib/tls/i686/cmov/libc-2.11.1.so

[vdso]

/lib/libncurses.so.5.7 /lib/libncurses.so.5.7 /lib/libncurses.so.5.7 /lib/libncurses.so.5.7 /lib/ld-2.11.1.so /lib/ld-2.11.1.so /lib/ld-2.11.1.so

Exemple: arxiu maps en arquitectura de 64 bits

gandreu\$ cat /proc/\$\$/maps

00400000-004be000 r-xp 00000000 08:02 65607 006bd000-006c7000 rw-p 000bd000 08:02 65607 006c7000-00955000 rw-p 006c7000 00:00 0 7fa6e6728000-7fa6e6732000 r-xp 00000000 08:02 81942 7fa6e6732000-7fa6e6932000 ---p 0000a000 08:02 81942 7fa6e6932000-7fa6e6934000 rw-p 0000a000 08:02 81942 7fa6e6934000-7fa6e693e000 r-xp 00000000 08:02 81944 7fa6e693e000-7fa6e6b3d000 ---p 0000a000 08:02 81944 7fa6e6b3d000-7fa6e6b3f000 rw-p 00009000 08:02 81944 7fa6e6b3f000-7fa6e6b55000 r-xp 00000000 08:02 81939 7fa6e6b55000-7fa6e6d54000 ---p 00016000 08:02 81939 7fa6e6d54000-7fa6e6d56000 rw-p 00015000 08:02 81939 7fa6e6d56000-7fa6e6d58000 rw-p 7fa6e6d56000 00:00 0 7fa6e6d58000-7fa6e6d60000 r-xp 00000000 08:02 81940 7fa6e6d60000-7fa6e6f5f000 ---p 00008000 08:02 81940 7fa6e6f5f000-7fa6e6f61000 rw-p 00007000 08:02 81940 7fa6e6f61000-7fa6e70b9000 r-xp 00000000 08:02 81930 7fa6e70b9000-7fa6e72b9000 ---p 00158000 08:02 81930 7fa6e72b9000-7fa6e72bc000 r--p 00158000 08:02 81930 7fa6e72bc000-7fa6e72be000 rw-p 0015b000 08:02 81930 7fa6e72be000-7fa6e72c3000 rw-p 7fa6e72be000 00:00 0 7fa6e72c3000-7fa6e72c5000 r-xp 00000000 08:02 81936 7fa6e72c5000-7fa6e74c5000 ---p 00002000 08:02 81936 7fa6e74c5000-7fa6e74c7000 rw-p 00002000 08:02 81936 7fa6e74c7000-7fa6e74fe000 r-xp 00000000 08:02 82217 7fa6e74fe000-7fa6e76fd000 ---p 00037000 08:02 82217 7fa6e76fd000-7fa6e7702000 rw-p 00036000 08:02 82217 7fa6e7702000-7fa6e771f000 r-xp 00000000 08:02 81927 7fa6e77da000-7fa6e77e9000 r--p 00000000 08:02 271736

/bin/bash /bin/bash [heap]

/lib/libnss_files-2.7.so /lib/libnss files-2.7.so /lib/libnss files-2.7.so /lib/libnss nis-2.7.so /lib/libnss nis-2.7.so /lib/libnss_nis-2.7.so /lib/libnsl-2.7.so /lib/libnsl-2.7.so /lib/libnsl-2.7.so

/lib/libnss compat-2.7.so /lib/libnss_compat-2.7.so /lib/libnss_compat-2.7.so /lib/libc-2.7.so /lib/libc-2.7.so /lib/libc-2.7.so /lib/libc-2.7.so

/lib/libdl-2.7.so /lib/libdl-2.7.so /lib/libncurses.so.5.6 /lib/libncurses.so.5.6 /lib/libncurses.so.5.6 /lib/ld-2.7.so

/lib/libdl-2.7.so

7fa6e77e9000-7fa6e7828000 r--p 00000000 08:02 439402 7fa6e7828000-7fa6e7909000 r--p 00000000 08:02 439411 7fa6e7909000-7fa6e790b000 rw-p 7fa6e7909000 00:00 0 7fa6e790b000-7fa6e790c000 r--p 00000000 08:02 439403 7fa6e790c000-7fa6e790d000 r--p 00000000 08:02 28628 7fa6e790d000-7fa6e790e000 r--p 00000000 08:02 28629 7fa6e790e000-7fa6e790f000 r--p 00000000 08:02 21591

/usr/lib/locale/es ES.utf8/LC MESSAGES/SYS LC MESSAGES 7fa6e790f000-7fa6e7910000 r--p 00000000 08:02 439406 7fa6e7910000-7fa6e7911000 r--p 00000000 08:02 439410 7fa6e7911000-7fa6e7912000 r--p 00000000 08:02 28631 7fa6e7912000-7fa6e7913000 r--p 00000000 08:02 28633 7fa6e7913000-7fa6e7914000 r--p 00000000 08:02 439407 7fa6e7914000-7fa6e791b000 r--s 00000000 08:02 446759 7fa6e791b000-7fa6e791c000 r--p 00000000 08:02 28635 7fa6e791c000-7fa6e791f000 rw-p 7fa6e791c000 00:00 0 7fa6e791f000-7fa6e7921000 rw-p 0001d000 08:02 81927 7fff8bc0f000-7fff8bc24000 rw-p 7ffffffe9000 00:00 0 7fff8bd1d000-7fff8bd1f000 r-xp 7fff8bd1d000 00:00 0 ffffffff600000-fffffffff601000 r-xp 00000000 00:00 0 gandreu@shell-sisop:~\$

/usr/lib/locale/es ES.utf8/LC CTYPE /usr/lib/locale/es ES.utf8/LC COLLATE

/usr/lib/locale/es ES.utf8/LC NUMERIC /usr/lib/locale/es_ES.utf8/LC_TIME /usr/lib/locale/es ES.utf8/LC MONETARY

/usr/lib/locale/es_ES.utf8/LC_PAPER /usr/lib/locale/es ES.utf8/LC NAME /usr/lib/locale/es ES.utf8/LC ADDRESS /usr/lib/locale/es ES.utf8/LC TELEPHONE /usr/lib/locale/es ES.utf8/LC MEASUREMENT /usr/lib/gconv/gconv-modules.cache /usr/lib/locale/es_ES.utf8/LC_IDENTIFICATION

/lib/ld-2.7.so [stack] [vdso] [vsyscall]

/usr/share/locale-langpack/es/LC_MESSAGES/bash.mo

Pág. 16

Còpia en escriure "Copy-on-Write"

- Tècnica de LINUX per a fa eficientment la còpia de pàgines de memòria, amb estalvi de memòria i de temps
- En crear un procés, pare i fill comparteixen les pàgines de dades i de pila en memòria
 - Totes les pàgines compartides es marquen com "read-only"
 - Si s'intenta accedir a una pàgina marcada com "read-only" per a modificar-la, la MMU produeix una fallada en l'accés, aleshores:
 - El s.o. fa una còpia d'aquesta pàgina amb permissos d'escriptura per al procés que hi vol escriure
 - » Si hi ha més de dos processos, la resta continua sense poder escriure
 - » Si només queda un procés utilitzant la pàgina podrà fer escriptures, modificant prèviament el bit en el seu descriptor
 - Es reinicia de nou la instrucció que va produir la fallada
- Avantatge: Linux evita copiar les pàgines de memòria que no s'utilitzen estalviant la memòria corresponent i el temps de copiar-les

Crida fork() "Copy-on-Write"

- En crear un procés, pare i fill comparteixen pàgina de dades i pila en memòria
 - Totes les pàgines que comparteixen se marquen como "read-only"
 - Si s'intenta accedir a una pàgina marcada com a "read-only" per a modificar-la la MMU produeix una fallada en l'accés, aleshores:

Crida fork() "Copy-on-Write"

- Al crear un procés, pare i fill comparteixen pàgina de dades i pila en memòria
 - Totes les pàgines que comparteixen se marquen como "read-only"

Mapa de memòria d'un procés Linux

 Si s'intenta accedir a una pàgina marcada com a "read-only" per a modificar-la la MMU produeix una fallada en l'accés, aleshores:

- Introdució
- Mapa de memòria d'un procés Linux
- Arxius mapejats en memòria
- Bibliotecas d'enllaç dinàmic

Arxius mapejats o projectats en memòria

 El contingut de l'arxiu o part d'aquest s'inclou en el mapa de memòria del procés

```
mmap() en POSIX
CreateFileMapping() en Win32
```

- Avantatges:
 - Millora el temps de accés al contingut de l'arxiu. S'hi accedeix si fóra una estructura de dades en memòria
 - S'eviten còpies intermitges de la informació. El S.O. transfereix directament la informació entre la regió de memòria i l'arxiu
- NO requereix instruccions d'E/S (read, write) per a accedir a l'arxiu

```
S'accedeix al contingut amb instruccions i variables pròpies dels programes:

for (i=0; i<bstat.st_size; i++)

if (*p++==caracter) comptador++;
```

P és un punter al carácter de l'arxiu

^{*}p és el contingut d'un punter a carácter i per tant un carácter

Arxius mapejats en memòria

mmap: crida al sistema POSIX que mapeja arxius en memòria

```
caddr_t mmap(caddr_t direc, size_t longitud,
  int protec, int indicador, int fd, offt_t despl)
```

- mmap crea una nova regió en el mapa de memòria del procés que la invoca. Es pot especificar si és privada o compartida i el tipus de protecció
 - direc: indica l'adreça del mapa on es vol que es projecte el fitxer. Si es fica un 0 la decisió la pren el sistema. mmap sempre torna l'adreça de projecció utilitzada
 - fd: descriptor del fitxer que es vol projectar (prèviament obert)
 - despl i longitud estableixen quina zona del fitxer es projecta, des de despl fins despl+longitut-1
 - protec: PROT_READ, PROT_WRITE, PROT_EXEC i combinacions
 - indicador: MAP_SHARED, MAP_PRIVATE

munmap: elimina una projecció prèvia o part d'aquesta

Arxius mapejats en memòria

exemple1.c: programa que mapeja un arxiu en memòria i compta el nombre de vegades que apareix un determinat carácter. El nom de l'arxiu i el carácter es passen com a arguments en la línea d'ordres

\$exemple1 c exemple1.

Arxiu a mapejar i on es busca el carácter "c"

```
#include <sys/types.h>
                                                  #include <sys/stat.h>
int main(int argc, char *argv[] ) {
                                                  #include <sys/mman.h>
    int i,fd,comptador;
                                                  #include <fcntl.h>
    char *p,*org;
                                                  #include <stdio.h>
    struct stat bstat;
                                                  #include <unistd.h>
    char caracter;
    caracter= argv[1][0];
    fd=open(argv[2], O RDONLY); /* Obri fitxer */
   fstat(fd, &bstat); /* Averigua long. fitxer */
    /* Es projecta el fitxer */
    org=mmap((caddr_t) 0, bstat.st_size, PROT_READ,MAP_SHARED, fd, 0);
    close(fd); /* Es tanca el fitxer */
    /* Bucle d'accés */
    p=org;
    comptador=0;
  for (i=0; i<bstat.st size; i++)</pre>
    if (*p++==caracter) comptador++;
    /* S'elimina la projecció */
   munmap(org, bstat.st_size);
    printf("%d\n", comptador);
}
```

Mapa de memòria del procés "exemple1"

Abans de projectar arxiu

una vegada projectat l'arxiu

```
pblanes$ pmap 21914:
21914
        ./exemple1 c exemple1.c
08048000
            4K r-x-- /home/naomac/fso/exemple1
08049000
            4K rw--- /home/naomac/fso/exemple1
            4K rw--- [ anon ]
b7de1000
           1316K r-x-- /lib/tls/i686/cmov/libc-2.7.so
b7de2000
           4K r---- /lib/tls/i686/cmov/libc-2.7.so
b7f2b000
b7f2c000
            8K rw--- /lib/tls/i686/cmov/libc-2.7.so
b7f2e000
           12K rw---
                       [anon]
b7f42000
           12K rw---
                     [anon]
b7f45000
           4K r-x-- [anon]
b7f46000
           104K r-x-- /lib/ld-2.7.so
b7f60000
            8K rw--- /lib/ld-2.7.so
bf986000
           84K rw--- [ stack ]
       1564K
total
```

```
pblanes$ pmap 21914
21914: ./exemple1 c exemple1.c
08048000
            4K r-x-- /home/naomac/fso/exemple1
           4K rw--- /home/naomac/fso/exemple1
08049000
b7de1000 4K rw--- [anon]
b7de2000
          1316K r-x-- /lib/tls/i686/cmov/libc-2.7.so
b7f2b000
           4K r---- /lib/tls/i686/cmov/libc-2.7.so
b7f2c000
           8K rw--- /lib/tls/i686/cmov/libc-2.7.so
b7f2e000
           12K rw--- [ anon ]
           4K r--s- /home/naomac/fso/exemple1.c
b7f41000
b7t42000
           12K rw--- | anon |
b7f45000
          4K r-x-- [anon]
          104K r-x-- /lib/ld-2.7.so
b7f46000
b7f60000
           8K rw--- /lib/ld-2.7.so
bf986000
           84K rw--- [ stack ]
total 1568K
```

arxiu mapejat exemple1.c

Arxius mapejats en memòria

"mapejar.c": programa que mostra el mapa de memòria del procés abans i després de mapejar en memòria l'arxiu que se li passa com a argument

Per a compilar: \$gcc mapejar.c -o mapejar

Per a executar: **\$mapejar mapejar.c**

```
#include <sys/types.h>
                                                        #include <sys/mman.h>
#int main (int argc,char *argv[])
                                                        #include <sys/stat.h>
                                                        #include <unistd.h>
{
    int fd;
                                                        #include <fcntl.h>
    void *mapeo;
                                                        #include <stdlib.h>
    struct stat stadbuf;
                                                        #include <stdio.h>
     char path maps[80];
                                                        void error (char * mensaje)
    //Abrir l'arxiu a ser mapeado
                                                            perror(mensaje);
    if (argc!=2) {
    puts("Usar: mapejar NombreArchivo\n");
                                                            exit(EXIT FAILURE);
    exit(EXIT FAILURE) ;
                                                       void construye orden(char ordre[80])
                                                         //Construeix ordre per a mostrar MAPA
if ((fd=open(argv[1], 0 RDONLY))<0)</pre>
                                                          sprintf(ordre, "cat /proc/%d/maps", getpid());
    error("Fallo en la apertura (open)\n");
    //Obtener la longitud de l'arxiu a mapejar
    fstat(fd, &stadbuf);
    //fstat vuelca su informacion en estadobuf
   //MOSTRAR MAPA
    printf(" MAPA MEMORIA PROCES /proc/%d/maps \n", getpid());
                                                                                            continua ...
    construye orden(path maps);
    system(path maps);//Crida al sistema executar ordre
```

Arxius mapejats en memòria

Continuació de "mapejar.c...."

```
//Mapejar l'arxiu de entrada
   if ((mapeo=mmap(0,stadbuf.st size,PROT READ,MAP SHARED,fd,0))== MAP FAILED)
   error("Fallo al mapejar (open)");
   close(fd); //cierro fitxer
 //MOSTRAR MAPA
  printf ("\n\n FITXER MAPEJAT EN MEMORIA\n");
  system(path maps);//Crida al sistema per a executar ordre
  munmap(mapeo,stadbuf.st size); //Elimine mapeig
 printf ("\n\n ELIMINAT EL MAPEIG DEL FITXER EN MEMORIA\n");
 system(path_maps);
 exit(EXIT SUCCESS);
}/***Fin de main**/
```

Es fa una crida per a executar l'ordre "cat /proc/%d/maps" creada i mostrar l'arxiu maps d'aquest procés

- Introducció
- Mapa de memòria en Linux
- Arxius mapejats en memòria
- Biblioteques d'enllaç dinàmic

• Biblioteques o llibreries

Biblioteques d'enllaç dinàmic

- Son arxius binaris que contenen codi de funcions o subprogrames
- Hi ha dues formes d'enllaçar-les al programa:
 - Amb enllaç estàtic: l'executable inclou tot el codi
 - Arxiu executable = Codi del programa + codi de funcions i libreries
 - arxius amb extensió .lib de Win32, .a de UNIX/LINUX
 - Enllaç dinàmic: l'arxiu executable conté les referències a les rutines de biblioteca que utilitza i a l'àrea de memòria on s'emmagatzemaran
 - La seua càrrega en memòria es fa en invocar-les mitjançant el mapeig de les llibreries en memòria. Aquest treball el fa un programa carregador de les llibreries mitjançant la crida *dlopen*
 - Són els arxius .dll de Win32 o .lib de UNIX/LINUX

Biblioteques d'enllaç dinàmic

Enllaç estàtic

- Desavantatges
 - Executables grans
 - El codi de les funcions de la biblioteca està repetit en molts executables
 - Hi ha múltiples còpies del codi de les funcions de biblioteca en la memòria
 - Actualitzar la biblioteca implica tornar a montar
- Avantatges
 - L'executable conté tot el codi que cal per a la seua execució

Enllaç dinàmic

- Avantatges
 - Executables més curts, estalvi d'espai en el disc i en la memòria
 - Codi de les rutines de biblioteca només en el fitxer de biblioteca
 - Els processos poden compartir codi de biblioteca
 - Actualització automàtica de les biblioteques: Ús de les versions
- Desavantatges
 - L'enllaç es resol en temps d'execució, i això pot ocasionar retards en l'execució

Biblioteques d'enllaç dinàmic

- Programa exemple1
 - Executable generat amb enllaç estàtic de la llibreria math

```
pblanes$ gcc exemple1.c -static -o exemple1 -lm
pblanes$ ls -I
total 660
-rwxr-xr-x 1 pblanes disca-upvnet 670227 2011-10-20 15:54 exemple1
-rw-r--r- 1 pblanes disca-upvnet 905 2011-10-20 13:30 exemple1.c
```

Executable generat amb enllaç dinàmic de la llibreria math

```
pblanes$ gcc exemple1.c -o exemple1 -lm
pblanes$ ls -l
total 16
-rwxr-xr-x 1 pblanes disca-upvnet 10301 2011-10-20 15:56 exemple1
-rw-r--r 1 pblanes disca-upvnet 905 2011-10-20 13:30 exemple1.c
```