

HOCHSCHULÜBERGREIFENDER STUDIENGANG WIRTSCHAFTSINGENIEURWESEN HAMBURG

Masterarbeit

Optimization of on-demand line-based bus services

vorgelegt von

Alexander Klaus

Matrikelnummer 7169020

Bereich:

1. Gutachter: Prof. Dr. Knut Haase

2. Gutachter: Prof. Dr. Malte Fliedner

vorgelegt am: 27. August 2025

Inhaltsverzeichnis

ΑI	Abbildungsverzeichnis	iv										
Ta	- abellenverzeichnis	٧										
Abkürzungsverzeichnis Symbolverzeichnis												
2	Literaturüberblick 2.1 Forschung auf den Gebieten der zentralen Begriffe 2.1.1 BLEIBT NICHT: generelle relevante Statements 2.1.2 BLEIBT NICHT: auf andere Forschungsaspekte hinweisen, die nicht weiter betrachtet wurden 2.1.3 BLEIBT NICHT: Forschungsergebnisse auf den Gebieten der zentralen Begriffe 2.2 Semi-flexible Systeme - Einordnung des zu betrachtenden Modells 2.3 Offene Forschungsfragen	3 4 4 5 6 13 24										
3		25										
4	Mathematisches Modell 4.1 Zentrale Modellannahmen 4.2 Szenario 1.A) 4.3 Szenario 1.B) 4.4 Szenario 2.C) 4.5 Szenario 3.C)	27 28 29 29 30										
5	Implementierung des Modells 5.1 Grundlagen der Implementierung 5.2 Struktur der Implementierung 5.3 Herausforderungen bei der Umsetzung 5.4 Verifikation & Validierung	32 32 32 33 34										
6 7	6.1 Limitierungen des aktuellen Modells	35 35 35 36										
•	I WAIL OF THEODITCH	J (

Lit	teratı	ır		38												
Α		Anhang A: Literaturrecherche														
	A.1	Search	hstrings	A-												
	A.2	Suche	ergebnisse	A-												
		A.2.1	Suchergebnisse zu line-based urban	A-												
		A.2.2	Suchergebnisse zu on-demand urban	A-:												
		A.2.3	Suchergebnisse von ridepooling-urban	A-6												
В	lmp	Implementierung														
	B.1	Beispi	ieldatensatz	B-1												
	B.2	Code	der implementierten Settings	B-												

Abbildungsverzeichnis

Tabellenverzeichnis

2.1	Forschungsergebnisse zu Line-based — rural	7
2.2	Forschungsergebnisse zu on-demand — rural	8
2.3	Forschungsergebnisse zu ridepooling — rural	11
2.4	Forschungsergebnisse zu nicht BLSP-verwandten Systemen	14
2.5	Forschungsergebnisse zu BLSP-verwandten Systemen	16
A.1	Forschungsergebnisse zu Line-based — urban	-2
A.2	Forschungsergebnisse zu on-demand — urban	-4
A.3	Forschungsergebnisse zu ridepooling — urban	-7
B.1	Haltestellen der Buslinien	-1
B.2	Touren inkl. Startzeiten	-1
B.3	Fiktive Busse inkl. Eigenschaften und Fahrerschichten/-pausen	-2
B.4	Fiktive Nachfragesituation	-2

Abkürzungsverzeichnis

DARP Dial-A-Ride-Problem

VRP Vehicle Routing Problem

 $\boldsymbol{\mathsf{VRPTW}}$ Vehicle Routing Problem with Time Windows

MIP Mixed Integer Programming

MILP Mixed Integer Linear Programming

Symbolverzeichnis

Symbol	Bedeutung
L	Menge aller Buslinien
l	Index einer Tour
l'	Index einer Nachfolgertour
i,j,h	Index einer Haltestelle innerhalb einer Linie
j'	Index einer Nachfolgerhaltestelle
m_l	Letzte Haltestelle der Linie l
s_j^l	Knoten der Haltestelle j auf Linie l
$s_{m_l}^{ec{l}}$	Knoten der letzten Haltestelle der Linie l
D	Depotknoten
$ar{t}_{s_j^l}$	Abfahrtzeit am Knoten s_j^l
$t_{s_j,s_{j^\prime}}^l$	Fahrzeit zwischen Knoten s_j und $s_{j'}$
$K^{'}$	Menge der verfügbaren Busse
k	Index eines Busses
Q_k	Kapazität des Busses k
$d_{s_j^l,s_{j'}^l}$	Nachfrage zwischen zwei Haltestellen einer Linie \boldsymbol{l}
a_k	Zeitpunkt, zu dem der Bus k verfügbar wird
b_k	Zeitpunkt, zu dem der Bus \boldsymbol{k} eine Pause beginnt
c_k	Zeitpunkt, zu dem der Bus k nicht mehr verfügbar ist
p	Länge der Pause eines Fahrers
$V,ar{V}$	Menge aller Knoten im System
$A,ar{A},\hat{A}$	Menge aller zugelassenen Verbindungen im System
x_{ij}	Binäre Entscheidungsvariable - 1, wenn die Verbindung $(i,j) \in A$ bzw. \bar{A}, \hat{A} genutzt wird, sonst 0
x_{ijk}	Binäre Entscheidungsvariable - 1, wenn die Verbindung $(i,j) \in A$ bzw. \bar{A}, \hat{A} mit dem Bus k bedient wird, sonst 0

1 Einleitung

Das Bestreben nach dem effizienten Einsatz von Ressourcen ist wohl so alt wie die Nutzung von Ressourcen selbst. In Großstädten sind Busse teil eines umfassenden öffentlichen Personennahverkehr (ÖPNV)-Netzwerks und ergänzen U-Bahn und/oder Straßenbahnen, um der Nachfrage nach Mobilität ausreichend Kapazität entgegenzubringen. Im ländlicheren Bereich sind Busse für den Transport von Personengruppen hingegen oft die einzige Mobilitätsform, da schlicht keine ausreichend hohe, konstante Nachfrage für U-Bahnen oder Ähnliches besteht.

Noch unsauber:

Während es sich in Großstädten schwer vermeiden lässt einen gewissen Kapazitätspuffer vorhalten zu müssen, um die hohe Nachfrage zu den Stoßzeiten bedienen zu können, stellt sich hier für den ländlichen Bereich die Frage, ob eine möglichst geringe Kapazität nicht noch effizienter genutzt werden kann, um die zur Verfügung stehenden Mittel möglichst effizient zu nutzen.

Während eine feste Struktur aus linienbasierten Systemen in Großstädten sinnvoll ist, um einen geregelten Fluss von Personen und Verkehr zu gewährleisten und planbar zu machen, mangelt es im ländlichen Bereich an der Nachfrage, um ein solch aufwendig zu implementierendes System aufrecht zu erhalten /

Heutzutage sind Menschen daran gewöhnt viele Dinge und Leistungen jederzeit durch das Internet abrufen zu können. Daher kommt der Fähigkeit auf Abruf innerhalb eines kurzen Zeitraums reagieren zu können eine wichtige Rolle zu.

irgendwo einordnen: Betrachtung autonomer Busse in den Settings gar incht mal mehr sooo unwahrscheinlich, da auch Forschung dazu stattfindet - Quellen

1.1 Motivation

- \rightarrow warum ist das Thema relevant?
 - CO₂-Reduktion & Individualmobilität: aktueller Zielkonflikt im ÖPNV
 - Herausforderungen im ländlichen Raum (geringe Auslastung, lange Taktzeiten)
 - Technologischer Fortschritt: Autonome Busse & digitale Nachfrageerfassung ermöglichen neue Konzepte
 - Klassischer Linienverkehr: fixe Zeiten & Routen, hohe Bündelung, geringe Flexibilität
 - Ridepooling: Tür-zu-Tür, aber hohe operative Komplexität, oft ineffizient
 - On-Demand-Linienbusse als Hybridform: planbare, aber flexible Nachfragebedienung

1.2 Zielsetzung der Arbeit

Leitfrage:

1. Wie geeignet ist das von Vléek & Schulz entwickelte Modell zur ressourceneffizienten Planung von On-Demand-Linienbusverkehren unter variierenden betrieblichen Bedingungen?

Dazu wird folgendes gemacht (eventuell auf so auch schon die Beschreibung was in welchem Kapitel gemacht wird, abarbeiten):

PASST NICHT MEHR!!!!

- 2.1 Kontext des zu implementierenden Modells beschrieben
- 2.2 Modell wird eingeordnet
- 3. Mathematischer Modellaufbau wird beschrieben
- 4.
 - 4.1 4.3 Implementierung eines zu veröffentlichenden Optimierungsmodells
 - 4.4 Validierung durch Reproduktion der Ergebnisse (fraglich)
 - 4.5 Ergebnisvergleich & Plausibilität
- 5. Analyse von Anwendbarkeit, Stärken & Schwächen des Modells, Erweiterungen

Das von Schulz & Vléek vorgeschlagene System stellt eine Kombination des klassischen Linienbusverkehrs und Elementen eines, auf Abruf basierenden Ridepooling-Dienstes dar. Das präsentierte mathematische Modell ist im Bereich der OR-Probleme mit der Problemfamilie des Dial-a-Ride Problems und des Vehicle Routing Problems (VRP) verwandt. Eine ausführlichere Einordnung des BLSP erfolgt in Kapitel 2.2. Mit dem, von Schulz & Vléek, vorgeschlagenen System werden Elemente aus unterschiedlichen Systemen, Problemstellungen und Modellen verknüpft. Um ein einheitliches Verständnis zu schaffen, wird in diesem Kapitel die Definition zentraler Begriffe vorgenommen. Im Anschluss ein Überblick zur Forschung auf den Gebieten der zentralen Begriffe in Bezug auf das Verkehrsmittel Bus gegeben, bevor das Modell von Schulz & Vléek in die Menge verwandter Untersuchungen eingeordnet wird.

Die in der Arbeit genutzten zentralen Begriffe werden wie folgt definiert:

Linienbasiert (engl.: line-based) bedeutet für das ÖPNV-System die Einhaltung von festen Routen, festgelegten Haltestellen und Fahrplänen wie es von städtischen Bus-, Straßenbahn- und U-Bahn-Netzen bekannt ist.

Auf Abruf (engl.: on-demand) ist die Eigenschaft eines Systems auf die realisierte Nachfrage der Fahrgäste zu reagieren (vgl. Vansteenwegen et al., 2022, S.3). Dies kann in Echtzeit oder auch vorverarbeitet in einem zuvor abgegrenzten Zeitraum erfolgen. Die Nachfrage wird dann innerhalb eines festgelegten Zeitraums bedient. Zeiträume können sich überschneiden und so zum Beispiel die Form eines rollierenden Horizonts annehmen.

Hier evtl. nochmal Klarstellung, dass on-demand zwar demand-responsive ist, aber nicht andersrum, wie fälschlicherweise von Wang, Quddus et al. (2014) in ihrem Paper behauptet

Ridepooling wird vom Verband der Automobilindustrie (2025) (Achtung online Quelle - Schulz & Vlćek nutzen hier (Vansteenwegen et al., 2022)) als kombinierte Mobilitätsform von ÖPNV und Taxi definiert. Der Ablauf bei dieser besonderen Form des Personenverkehrswerden ist wie folgt: Der Fahrgast wird an seinem individuellen Startpunkt abgeholt. Auf dem Weg zum individuellen Ziel steigen andere Fahrgäste zu und/oder wieder aus. Je nach Zielpunkt werden die Routen so kombiniert, dass benachbarte Ziele mit einem Fahrzeug bedient werden können.

Methodik Bei der systematischen Vorgehensweise wurden die Suchbegriffe in englischer Sprache verwendet, da die meisten Veröffentlichungen heutzutage auf englischer Sprache getätigt werden. Die Suchbegriffe wurden miteinander verknüpft und in sogenannten Searchstrings verwendet. In Anhang XXXXXsind allen verwendeten Veröffentlichungen der Searchstring und die Datenbank zugeordnet auf der sie bzw. durch den sie gefunden wurden. An dieser Stelle sei erwähnt, dass dieselben Veröffentlichungen teilweise mit mehreren Searchstrings gefunden wurden, allerdings nur einem Searchstring zugeordnet wurden. Die Recherche der nachfolgend präsentierten Literatur erfolgte mittels der gebildeten Searchstrings in den wissenschaftlichen Online-Datenbanken Google Schoolar und Scopus. Reihenfolge bei der Recherche: 1. Zuerst wurde die Forschung auf den Gebieten der zentralen Begriffe

gesichtet und geordnet. 2. Anschließend wurde eine Suche nach Veröffentlichungen zu den BLSPverwandten Problemen DARP und VRP mit Review- oder State-of-the-Art Charakter durchgeführt, um einen Aufschlagspunkt für Lesende zu geben, wenn sich intensiver mit den verwandte Problemen beschäftigen werden möchte, da die Probleme zwar für die Einordnung des BLSP relevant, aber selbst nicht Teil des Betrachtungsraums dieser Arbeit sind. 3. Zu relevanten Varianten des DARP und VRP, die mit dem BLSP verwandt sein könnten, wurde eine Suche mit Searchstrings ausschließlich in der Scopus Datenbank durchgeführt. In allen Schritten wurden nur Veröffentlichungen berücksichtigt, die in einer vollständigen PDF-Version mittels des VPN-Zugangs der Universität Hamburg oder der Helmut-Schmidt-Universität zugänglich waren. Für die, in Kapitel 2.1 präsentierte, Literatur wurden die Searchstrings auf der Plattform Scopus im Rahmen der Funktion "TITLE-ABS-KEY()" gesucht. Bei der Recherche von Literatur in Kapitel 2.1 wurde bereits in den Searchstrings unterschieden, ob die Forschung im ländlichen oder städtischen Raum durchgeführt wurde. Umgebungen wie private Bereiche (Universiäts-Campus-Shuttle, etc.) sind nicht Teil des Untersuchungsbereiches. Andere Mobilitätsformen wie zum Beispiel das klassische Taxi oder U-Bahnen werden zur kontextuellen Abgrenzung erwähnt, sind aber kein Teil des Untersuchungsbereiches dieser Arbeit. Die verwandten OR-Probleme des DARP und des VRP inkl. ihrer Varianten werden zur Abgrenzung genutzt, werden aber als bekannt vorausgesetzt. Die, in Kapitel 2.2 genutzte, Literatur zur Einordnung / Abgrenzung des BLSP wurde auf Scopus durch Eingabe der Searchstrings innerhalb der Funktion "TITLE()" gefunden. Die Literatur wurde anhand des Titels und Abstract bewertet und somit für die weitere Analyse und eventuelle spätere Verwendung in dieser Arbeit ausgewählt.

2.1 Forschung auf den Gebieten der zentralen Begriffe

2.1.1 BLEIBT NICHT: generelle relevante Statements

MEINE EIGENEN ERSTEN IDEEN:

Es ist ersichtlich, dass das Thema DRT seit mehr als 20 Jahren eine große Aufmerksamkeit genießt. IN 2003 haben Mageean und Nelson (2003) bereits eine Übersicht erstellt. Reviews von Davison et al. (2014) und Schasché et al. (2022), sowie Vansteenwegen et al. (2022) zeigen die konstante Relevanz des Themas.

line-based sind einfach der backbone in urban areas und sind, wenn nicht asl einziges, dann das teil des zentralen public transport networks um hohe Nachfrage kosteneffizient zu bedienen (hinweis Richtung Forschung zu feeder-networks). werden verwendet als Schulbusse, Schienenersatzverkehr, ...

on-demand häufig als "Feederßu den hoch-volumigen Systemen wie Metro oder Line-based buses

Generell Zielkonflikt von echten on-demand Lösungen in rural areas: geringere Kosten (durch weniger Fahrzeuge) vs. Abdeckung(?) Soll darauf hinführen, dass Schulz & Vlćek weniger Busse nutzen bei Beibehaltung der Flexibilität.

ACHTUNG GPT:

1. On-Demand/DRT ist besonders geeignet für gering verdichtete bzw. ländliche Räume, in denen Linienbusse oft hohe Kosten je Fahrgast aufweisen und die Abdeckung sinkt. Belege: Berrada & Poulhès (2021); Al-Suleiman et al. (2023).3. Flexible, integrierte Bedienformen (geplant + on-demand) sind für ländliche Räume besonders geeignet, weil sie spezielle Zeitfenster/Relaisaufgaben abdecken und die Erreichbarkeit erhöhen.(Porru et al., 2020, S. 2; S. 6). -> Erhöhen ERreichbarkeit, aber zu

welchem Preis und ab welcher Nachfrage? -> hier nochmal die ergebnisse von schasché 2022 angucken

- 3. Ride-Pooling kann die Gesamt-Fahrleistung (km) substanziell senken, sofern Nachfrage, Heterogenität der Nutzerpräferenzen und Preissetzung zusammenpassen; Servicequalität bleibt dabei handhabbar. Beleg: de Ruijter et al. (2023).1. Pooling senkt Systemaufwand und dämpft Fahrzeug-km, wenn Nachfrage ausreichend gebündelt werden kann; Effizienz steigt mit Bevölkerungs-/Anfragedichte.(Zwick et al., 2021).2. Ride-sharing kann erhebliche Effizienzgewinne erzielen, ohne das Servicelevel zu verschlechtern; allerdings bestehen Trade-offs (Privatsphäre, Gesamtreisezeit).(Ruch et al., 2021, S. 4). Smartphone-basierte Buchung erleichtert die Nutzung.(Shaheen & Cohen, 2019, S. 2, 5).* Ride-Pooling-Effizienz & Dichteeffekte: Zwick et al., 2021; Ruch et al., 2021 –» Entscheident für Effizienz von Ridepooling ist die Tripdichte, sonst zuviele vehicles beötigt, um die Nachfrage zu bedienen. ICT trägt zu eienr besseren Nutzbarkeit bei
- 4. Entscheidungsrelevante Attribute für ländliche Nutzer*innen bei Bus-/On-Demand-Alternativen sind u. a. Wartezeit, Verlässlichkeit, Preis und Bedienform. Belege: Bronsvoort et al. (2021); Ceder (2021).
- 5. Systemverfügbarkeit/"Availability" wird primär durch räumliche und zeitliche Abdeckung bestimmt (Haltestellen-Nähe, Headway/Takt); diese Größen sind mess- und steuerbar. Beleg: Eboli et al. (2014).
- 1. Trip-Dichte ist ein zentraler Hebel für Flottengröße und Pooling-Rate bei ride-hailing/-pooling, selbst bei fixen Wartezeit-Zielen (z. B. 90% < 10 min). Beleg: Kaddoura & Schlenther (2021).
- 2. GTFS-basierte Analysen ermöglichen fahrplangetreue Reisezeiten inkl. Umstiegs-/Wartezeiten; ländliche Regionen weisen deutlich schlechtere Erreichbarkeit auf. Belege: Kotavaara et al. (2021, S. 5, S. 9).
- 4. Feeder-Systeme (z. B. Shuttle vs. Fußweg) besitzen kritische Nachfrageschwellen, ab denen sie systemisch vorteilhaft werden; Parameter wie Gehgeschwindigkeit und Dichte sind ausschlaggebend. Beleg: Li & Luo (2025, S. 6–7).4. Feeder-Dienste können formale Netze wirksam ergänzen; die Entscheidung zwischen fixed und demand-responsive hängt vom Kontext und Netzdesign (Transfers, Tarife) ab.(McLeod et al., 2017, S. 4–5; S. 15). -> Feeder
- 7. Netz-Topologie (Ring, Grid, Stern) beeinflusst die Pooling-Effizienz und Backlog-Skalierung. Beleg: Manik & Molkenthin (2020, S. 7).

2.1.2 BLEIBT NICHT: auf andere Forschungsaspekte hinweisen, die nicht weiter betrachtet wurden

- * Pricing/Fares \rightarrow de Ruijter (2023); Bronsvoort (2021); Ceder (2021); Al-Suleiman (2023); Fernández L. (2008). * Pricing / Marktgleichgewicht / Tarife:Estrada (2021); Fielbaum (2023); Hansen & Sener (2023); Hansson (2019); Jin (2016) * Pricing/Ökonomie (Randbezug über DRT-Vergleiche): Mageean & Nelson, 2003.
- * Accessibility/Equity/Inclusion \rightarrow Eboli (2014); Ceder (2021); Berrada & Poulhès (2021); Bronsvoort (2021); de Ruijter (2023); Al-Suleiman (2023); Fernández L. (2008). * Accessibility/Equity (räumlich/zeitlich): Kotavaara et al., 2021; Mageean & Nelson, 2003.
- * Energie/Charging/Emissionen \rightarrow Al-Suleiman (2023); Berrada & Poulhès (2021); Bronsvoort (2021); Ceder (2021); de Ruijter (2023); Eboli (2014); Fernández L. (2008).

- * Simulation/Agent-based / Realtime-Dispatching \rightarrow Bronsvoort (2021); Ceder (2021); de Ruijter (2023); Fernández L. (2008). * Simulation / Realtime-Dispatching / Online-Steuerung:Hansen & Sener (2023); Jin (2016); (teilweise) Estrada (2021) * Realtime/Online-Dispatching & Simulation: Kaddoura & Schlenther, 2021; Liu & Wang, 2022; Li et al., 2024.
- * Shift Scheduling / Crew Rostering \rightarrow Eboli (2014) (Randbezug/Erwähnung); Bronsvoort (2021) (Randbezug). * Shift Scheduling / Personalplanung: Tóth & Krész, 2013
- * KI/ML & Prognose (z. B. Reisezeiten, Nachfrage):Gal (2017); Hansen & Sener (2023); (teilweise) Gorev (2020) * KI/ML/Prognose & RL-Planung: Li et al., 2024; Liu & Wang, 2022 (datengetrieben); Kotavaara et al., 2021 (GTFS-gestützte Analytik).
- * Feeder/Connector-Design & Schwellenwerte: Li & Luo, 2025. * Feeder/Connector & Netzdesign: McLeod et al., 2017
- * Disruption Management / Resilienz (Betriebsstörungen): Jin (2016) * Disruption/Resilienz (Betriebsstörungen): Liu & Wang, 2022.
- * Skaleneffekte & Flottendimensionierung:Fielbaum (2023)
- * Fixed-route mit Request-Stops (Deviations/Connector):Gorev (2020); Estrada (2021)
- * Netz-/Topologieeffekte: Manik & Molkenthin, 2020.
- * Präferenzen & Zahlungsbereitschaft (WTP) für Service-Level:Hansson (2019) * Nutzerakzeptanz / Erwartungsmanagement (rural DRT): Schaschü et al., 2022
- * Smart-Mobility-Integration & Realtime-Information: Porru et al., 2020; Shaheen & Cohen, 2019; McLeod et al., 2017
- * Emissionen/Stau (Policy-Motivation): Shaheen & Cohen, 2019

Anwendungsbereiche & typische Zielkonflikte darstellen (evtl. Grafik dazu anfertigen: Taxi als flexibelstes on-demand, keine festen Routen und krasses Gegenteil ist Linienbus mit festem Fahrplan und Routen)

2.1.3 BLEIBT NICHT: Forschungsergebnisse auf den Gebieten der zentralen Begriffe

An dieser Stelle sei erwähnt, dass in diesem Kapitel zunächst die Breite der Forschung dargestellt wird, bevor in Kapitel 2.2 das Modell von Schulz & Vléek eingeordnet wird.

Aussage darüber, dass viel zu ön-demand rural "mit "line-based rural "gefunden wurde -> zeigt enge verbundenheit der begriffe usw.

Ridepooling: dem zugrundeliegend ist das DARP -> wofür entwickelt (Quelle), dann überführen auf Busse (Quelle) siehe Schulz & Vlćek, **ganze wichtig: reiter et al. 2024** - das beschreiben Schulz & Vlćek als sehr nah dran, aber Schulz & Vlćek berücksichtigen einen vorgegebenen Fahrplan.

Ridepooling: Synonyme Verwendung der Begriffe Ride-sharing, ridepooling usw

2 Literaturüberblick

Tabelle 2.1: Forschungsergebnisse zu Line-based — rural

Paper	Zielsetziing	Region / Land	Betrachtungs- ebene	Fokus / Anwendungsfeld	Methode	Daten	KPI	Zentrale Erkenntnisse
Cirella et al. (2019)	Review: Innovationen für Ältere	ohne Bezug	Region	Ältere	Literatur-Review	 Literatur	! !—	Ältere brauchen Innovationen bei Angebot, Infrastruk- tur und Fahrzeugen; Umsetzungs- und Barrierefreiheits- lücken bestehen.
Das et al. (2012)	Planung ländlicher Feederlinien	Indien	Linie	Feeder	Analytische Nä-	Umfrage	Ø-Wartezeit / Gehzeit	Generalisiert gewichtete Geh-/Warte- und Komfortfaktoren liefern praktikable Linienführungen und Takte für ländliche Feeder.
Guiver et al. (2007)	Bewertung touris- tischer Buswirkun- gen	UK	Region	Tourismus	 Empirie	Umfrage	Modal-Shift / Er- reichbarkeit	Geplante Busse bewirken moderaten Modal-Shift, er- möglichen Zugang ohne Auto und stützen lokale Ökono- mien; Fördermittel bleiben problematisch.
Petersen (2016)	Netzansatz mit Taktfahrplan	 Schweiz	 Netz	Taktfahrplan	Fallstudie / Literatur-Review	Literatur	 	In ländlichen Räumen bieten integrierte Taktfahrplan- Netze verlässliche Anschlüsse und sollten vor DRT als Basisstrategie geprüft werden.
Takamatsu und Taguchi (2020)	Optimierung von Umsteigezeiten	 Japan 	 Netz	 Taktfahrplan 	Matem. Optimie- rungsmodell / Fallstudie	 Realdaten 	Ø-Wartezeit / Umsteigezeit	Optimierte Takte/Anschlüsse verkürzen Wartezeiten deutlich; Tohoku-Fall bestätigt Praxistauglichkeit bei niedriger Angebotsdichte.
Tsigdinos et al. (2024)	Strategie flexibler Busdienste	 Griechenland	 Region		Empirie / Kar- tenbasierte Raumanalyse (GIS)	 Umfrage 	 - -	Befragung+GIS zeigen: Kosten und Zeit dominieren; morgens wird Tür-zu-Tür, nachmittags Haltestellenbe- trieb bevorzugt.
Zhen und Gu (2024)	CA-Design hetero-	ohne Bezug	 Netz	Feeder	Analytische Nä- herung / Matem. Optimierungsmo- dell	synthetisch	Reisezeit / Kosten/Fahrgast- km	Koordinierte Zubringer-/Stammfahrpläne senken Nutzerkosten und verbessern Systemleistung bei heterogener Nachfrage.

2 Literaturüberblick

Tabelle 2.2: Forschungsergebnisse zu on-demand — rural

Paper	Zielsetzung	Region /	Betrachtungs- ebene	Fokus / Anwendungsfeld	Methode	Daten	KPI	Zentrale Erkenntnisse
Bauchinger et al. (2021)	Konnektivität verbessern	 Europa	Region	Feeder, Multimo-	Fallstudie, Empirie	 Mix		Komplementäre Dienste (DRT, multimodal) verbessern Erreichbarkeit und ÖPNV-Anbindung in ländlich-urbanen Regionen.
Brake et al. (2004)	DRT-Markt prüfen	UK	Region	Inklusion	Fallstudie	Realdaten	i	Britische DRT-Erfahrungen fördern soziale Inklusion und Intermodalität; Umsetzung wird durch Finanzierungs- und Betriebsfra- gen begrenzt.
Calabrò et al. (2023)	DRT- Bedingungen vergleichen	 Italien	Region	Kleinstädte	Simulation	synthetisch		ABM zeigt: DRT ist FRT in Kleinstädten überlegen, wenn Umwege, Warte- und Gehzeiten minimiert und Teilfahrten gebündelt werden.
Coutinho et al. (2020)	Linienersatz bewerten	 Niederlande	Linie	Linienersatz	Empirie	 Realdaten	CO_2	Im Mokumflex-Pilotprojekt sanken Fahrgast- km, Kosten und Emissionen pro Fahrgast deutlich, jedoch ging die Nachfrage stark zurück.
	DRT-Effekte bewerten	 Italien 	 - Region - 	 Pilotstudie 	Empirie, Simu- lation	 Mix 		DRT steigerte Erreichbarkeit und senkte Warte- und Fahrzeiten im suburbanen Paler- mo; wirtschaftliche und rechtliche Rahmenbe- dingungen bleiben kritisch.
Daduna (2020)	Entwicklung skizzieren	ohne Be- zug	 - Region - 	Autonom/Digital	Literatur- Review	 Literatur		Autonome Fahrzeuge und Digitalisierung können Kostenstrukturen ländlicher ÖPNV- Angebote grundlegend verändern, ersetzen Linienverkehr jedoch nicht vollständig.
Daniels und Mulley (2012)	Barrieren identifizieren	 - Australien -	 - Region - 	Implementierung	 Empirie 	 - Umfrage -	 	Fünf Barrierefelder (Regulierung, Finanzierung, Betrieb, Einstellungen, Information) hemmen FTS-Einführung in Niedrigdichtegebieten.
Dytckov et al. (2022)	Ruralen DRT bewerten	Dänemark	Region	Studierende	Simulation	I 	Ø-Wartezeit, Auslastung	Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Galarza Montene- gro et al. (2021)	Service opti-	ohne Be-	Linie	 Feeder	Matem. Opti- mierungsmo- dell	 		Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Galarza Montene- gro et al. (2024)	Feeder- Service opti- mieren	ohne Be- zug	Linie	 Feeder	Matem. Opti- mierungsmo- dell	 	Ø-Wartezeit, Kosten/Fahrgast- km	Ansatz verbessert Erreichbarkeit und Service- grad gegenüber Status quo.
Guo, Guan et al. (2023)	Fahrplan/Zute optimieren	 	 Netz 	 Studierende	Matem. Opti- mierungsmo- dell, Empirie		Auslastung, Er- reichbarkeit	Ansatz verbessert Erreichbarkeit und Service- grad gegenüber Status quo.
Jiang et al. (2025)	 Fahrplan/Zute optimieren	i bhng Be- zug	 Netz 	 Studierende 	Simulation, Matem. Opti- mierungsmo- dell	 Realdaten 	Reisezeit, Flottengröße	Optimierung/Szenarien senken Warte- und Reisezeiten im ländlichen DRT deutlich.
	 	 	 		 	 	 	Fortsetzung auf der nächsten Seite

Konzept

bewerten

Knierim und DRT-

 ${\bf Schl\"{u}ter}$

Lu, Macie-

(2021)

Land

Deutschland Linie

jewski et al. (2023)	Ruralen DRT bewerten	 Deutschland	l Linie	 Studierende 	Simulation, Empirie	Realdaten	Kosten/Fahrgast- km	Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Martí, Jordán, De la Prieta et al. (2023)	Ruralen DRT bewerten	 Schweiz	 Region 	Flexible Busse	 Matem. Opti- mierungsmo- dell	 	 Auslastung	Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Julian (2024)	Ruralen DRT	 Spanien	l Netz	 Schule	 	 		Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Mulley und Nelson (2009)	Ruralen DRT bewerten	UK	Region	Flexible Busse	Kartenbasierte Raumanalyse (GIS)	_	Auslastung, Er- reichbarkeit	Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
(2012)	bewerten	USA	Linie	Flexible Busse	 	 	Auslastung	Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Papanikolaou und Basbas (2021)	Konzept	ohne Be-	Region		Analytische Näherung	 		Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Poltimäe et al. (2022)		ohne Be- zug	Region	' Hlevible Bucce	Literatur- Review	Literatur	_	Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Schlüter et al. (2021)	DRT planen	 Deutschland	l Netz	Autonom	 	l —	 Auslastung	Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Sieber et al. (2020)	Ruralen DRT bewerten	Schweiz	Netz	Autonom	Simulation	_	\Distaction	Ansatz verbessert Erreichbarkeit und Service- grad gegenüber Status quo.
Torrisi et al. (2025)	DRT- Konzept bewerten	Italien	Region	Flexible Busse	 	_		Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Velaga et al. (2012)	bewerten	UK	Netz	HIAVIDIA KIICCA	Literatur- Review	Literatur	 	Ansatz verbessert Erreichbarkeit und Service- grad gegenüber Status quo.
Viergutz und Schmidt (2019)	DRT- Konzept bewerten	Deutschland	 Netz		Literatur- Review	Literatur	$_{ m I}^{ m Auslastung}$	Studie zeigt Potenziale und Grenzen von DRT im ländlichen Kontext.
Wang, Quddus et al. (2014)	Konzent	ohne Be-	Linie	 Flexible Busse	 	 	\Distaction	Ansatz verbessert Erreichbarkeit und Service-
do et al.	DRT- Konzept bewerten	 Frankreich	 Netz	 Flexible Busse 	 	 	Auslastung, Er- reichbarkeit	Optimierung/Szenarien senken Warte- und Reisezeiten im ländlichen DRT deutlich.
	+				+			

Methode

Empirie

Zentrale

Erkenntnisse

grad gegenüber Status quo.

Ansatz verbessert Erreichbarkeit und Service-

Fortsetzung auf der nächsten Seite

KPI

Auslastung

Flottengröße,

Daten

Mix

Fokus /

 $\ ^{|}Studierende$

Anwendungsfeld

Betrachtungs-

ebene

Fortsetzung von Tabelle 2.2.

Paper	Zielsetzung	Region / Land	Betrachtungs- ebene	Fokus / Anwendungsfeld	Methode	Daten	KPI	Zentrale Erkenntnisse
White (2016)	Rollen ver- gleichen	UK	Region	Kostenvergleich	Literatur- Review	Literatur	Kosten/Fahrgast- km, Auslastung	Konventionelle Interurban-Linien sind oft kosteneffizienter; DRT weist häufig hohe Kosten je Fahrt auf und eignet sich eher für Zielgruppen-/Mindestbedienung.

2 Literaturüberblick

Paper	Zielsetzung	Region /	Betrachtungs- ebene	Fokus / Anwendungsfeld	Methode	Daten	KPI	Zentrale Erkenntnisse
Elting und Ehmke (2021)	Ridepooling- Konzept bewerten	ohne Be-	 	 Flexible Busse	Matem. Opti- mierungsmo- dell, Literatur- Review	 Literatur	 	Studie zeigt Potenziale und Grenzen von Ridepooling im ländlichen Kontext.
Heinitz (2022)	Rurales Ri- depooling bewerten	 Deutschland	Linie	 Flexible Busse	Simulation, Kartenbasierte Raumanalyse (GIS)	 synthetisch	 - Auslastung -	Pooling und Optimierung senken Warte- und Reisezeiten sowie Fahrzeug-km im ländlichen Raum.
Liu, Quilliot et al. (2024)	Autonomen DRT planen	 Frankreich	 Linie 	 Autonom	Matem. Opti- mierungsmo- dell		 	Studie zeigt Potenziale und Grenzen von Ridepooling im ländlichen Kontext.
Patricio et al. (2025)		ohne Be-	 Netz	Flexible Busse	Simulation		Kosten/Fahrgast-	Pooling und Optimierung senken Warte- und Reisezeiten sowie Fahrzeug-km im ländlichen Raum.
Schaefer et al. (2022)	Rurales Ri- depooling bewerten	Schweiz	 Netz 	 Flexible Busse	 	 	 	Studie zeigt Potenziale und Grenzen von Ridepooling im ländlichen Kontext.
Si et al. (2024)	Pooling/Zuteil optimieren	lung USA	 Linie		Matem. Opti- mierungsmo- dell	 	 Auslastung	Studie zeigt Potenziale und Grenzen von Ridepooling im ländlichen Kontext.
Sörensen et al. (2021)	Rurales Ri- depooling bewerten	Deutschland	Netz	Flexible Busse	 	 	 	Studie zeigt Potenziale und Grenzen von Ridepooling im ländlichen Kontext.
Truden et al. (2021)	sern	Österreich	 	 First/Last-Mile	Simulation, Matem. Opti- mierungsmo- dell	 synthetisch	Kosten/Fahrgast-km, Auslastung	Studie zeigt Potenziale und Grenzen von Ridepooling im ländlichen Kontext.
Yu et al. (2021)	Fahrplan/Zute optimieren	USA	Linie	Flexible Busse	Literatur- Review	Literatur	Auslastung	Studie zeigt Potenziale und Grenzen von Ridepooling im ländlichen Kontext.
Zhou et al. (2025)	Pooling/Zuteiloptimieren	luodugae Be- zug 	Linie	Pooling	Matem. Opti- mierungsmo- dell	Realdaten	Ø-Wartezeit, Kosten/Fahrgast- km	Pooling und Optimierung senken Warte- und Reisezeiten sowie Fahrzeug-km im ländlichen Raum.
Kuehnel	Ridepooling- Konzept bewerten		Region	Pooling	Simulation, Literatur- Review	Literatur	 	Studie zeigt Potenziale und Grenzen von Ridepooling im ländlichen Kontext.

Tabelle 2.3: Forschungsergebnisse zu ridepooling — rural

Nachdem die Forschungsgebiete der zentralen Begriffe nun beleuchtet wurden, werden im Folgenden Kapitel Arbeiten aufgezeigt, die mit dem von Schulz & Vléek vorgestellten Modell verwandt sind, um das Modell von Schulz & Vléek einzuordnen und abzugrenzen.

Es ist zwar nicht Teil des Untersuchungsgebietes dieser Arbeit, da Schulz & Vléek einen fest vorgegebenen Fahrplan für ihr Modell nutzen, aber es sei an dieser Stelle auf die Forschung im Bereich für die Vorhersage der Ankunftszeiten, etc. mit Quelle1, Quelle 2 usw. verwiesen

DAS HIER IST ÜBERLEITUNG MIT DEM "REINEN"DARP UND VRP ZU DEN SEMI-FLEXIBLEN SYSTEMEN Das, in dieser Arbeit zu testende, Modell von Schulz & Vléek kombiniert Elemente eines klassischen Linienbus-Services mit der Flexibilität die Routen anhand der gestellten Nachfrage zu optimieren. Die Problemstellung von Schulz & Vléek ist mit denen des Diala-Ride Problems (DARP) und des Vehicle Routing Problems (VRP) verwandt, lässt sich aber nicht klar einer der beiden Problemfamilien zuordnen ???. Das DARP wird bereits seit Jahrzenten untersucht (Psaraftis, 1980), die Forschung zu diesem Problem ist dementsprechend sehr umfassend. Den wohl aktuellsten Überblick zum DARP und seinen Vairanten geben Molenbruch et al. (2017) und Ho et al. (2018).

Auch das VRP ist ein seit Jahrzehnten erforschtes Problem (Orloff, 1974). Das VRP allein ist ein so breit und intensiv erforschtes Problem, dass es dazu über 150 Review-Paper für spezifische Varianten oder Aspekte gibt. Es wird mit dem Searchstring XXXX (siehe Anhang XXX) auf die Literatur dieser Reviews und damit indirekt auf die einzelnen Veröffentlichungen ??? verwiesen. Reviews des Problems haben unter anderem Braekers et al. (2016) und Vidal et al. (2020) gegeben.

Irgendwie noch erwähnen, dass auch die CVRP Variante ein breit erforschtes Thema ist, daher nicht tiefer im Detail betrachtet

Überleitung: Da Mdoell von Schulz & Vléek semiflexibel und nicht so richtig ein reines DARP pder VRP wird anschließend auf die verwandten Problemstellungen verwiesen und eingeordnet.

2.2 Semi-flexible Systeme - Einordnung des zu betrachtenden Modells

GLIEDERUNG DIESES ABSCHNITTS:

- 1. Systeme die zwar semi-flexible aber nicht mit BLSP verwandt sind
- 2. Verwandte Systeme

DIE TABELLE ZU DEN NICHT VERWANDTEN SYSTEMEN EVTL. NICHT AUF EXTRA SEITE

2 Literaturüberblick

Tabelle 2.4: Forschungsergebnisse zu nicht BLSP-verwandten Systemen

Paper	Zielsetzung	Semi-Flexible Mechanik	Bedienmodus	Stopps	Raumbezug	Nachfrage- berücksichtigun	Unterscheidung g _{zum} BLSP	Zentrale Erkenntnisse
Abdelwahed et al. (2023)	Komfort und Emissionen balancieren	 	 	 	1	1	 	Dynamische Netze verbessern Komfort- Emissions-Trade-off
(Edward) Kim et al. (2019)		Zonen-Flex-	Headway-basiert	flexibel	Zone	stochastisch/un	 reine First/Last- sicher Mile 	Ansätze reduzieren Wartezeiten und Betriebskosten bei moderater Flotte deutlich.
Kim und Roche (2021)	Planung/Dime	Zonen-Flex- nsionierung Route	Headway-basiert	flexibel	Zone	stationär	reine First/Last- Mile	Ansätze reduzieren Wartezeiten und Betriebskosten bei moderater Flotte deutlich.
Kim und Schonfeld (2012)	Konzept evaluieren	Zonen-Flex- Route	Headway-basiert	teils-fix	Zone	mehrperiodig	Zonen/Korridor- basiert	Ansätze reduzieren Wartezeiten und Betriebskosten bei moderater Flotte deutlich.
Lu, Yu et al. (2016)	Verbesserung der Erreich- barkeit	Flex-Feeder	Headway-basiert	teils-fix	$_{\parallel}^{\parallel}$ Feeder \rightarrow Hub	ctationar		Ansätze reduzieren Wartezeiten und Betriebskosten bei moderater Flotte deutlich.
Mehran et al. (2020)	Verbesserung der Service- qualität	Variabler Ser-	 bedarfsorientiert	 fix	Netz	mehrperiodig	Zonen/Korridor- basiert	Ansätze reduzieren Wartezeiten und Betriebskosten bei moderater Flotte deutlich.
Mishra und Mehran (2023)	 Planung/Dime	Zonen-Flex- nsionierung Route	 fester Takt	 fix 	Zone	stochastisch/un	reine First/Last- sicher Mile	Ansätze reduzieren Wartezeiten und Betriebskosten bei moderater Flotte deutlich.
Mishra und Mehran (2024)	Konzept evaluieren	Flex-Feeder	Headway-basiert	teils-fix	$_{\parallel}^{\parallel}$ Feeder \rightarrow Hub	mehrneriodia		Ansätze reduzieren Wartezeiten und Be-
Ng und Mah- massani (2023)	Konzept evaluieren	Zonen-Flex- Route	 bedarfsorientiert	teils-fix	Zone	stationär	Zonen/Korridor- basiert	Semi-flexible Varianten zeigen Vorteile gegenüber starren Konzepten in ausgewählten Szenarien.
Qiu et al. (2015)	Konzept evaluieren	Zonen-Flex- Route	 bedarfsorientiert	teils-fix	Netz	stochastisch/un	Zonen/Korridor- sicher basiert	Semi-flexible Varianten zeigen Vorteile ge- genüber starren Konzepten in ausgewählten Szenarien.
Sadrani et al. (2022)	Minimierung der Wartezeit	Korridor- Checkpoints	hybrid	teils-fix	Korridor	stochastisch/un	Zonen/Korridor- sicher basiert	Ansätze reduzieren Wartezeiten und Betriebskosten bei moderater Flotte deutlich.
Stiglic et al. (2018)	•	Ride-Sharing- Kopplung	bedarfsorientiert	teils-fix	Netz	stationar	Zonen/Korridor- basiert	Erreichbarkeit und Servicequalität steigen gegenüber rein festen Linien merklich an.
Wang, Yu et al. (2021)		Zonen-Flex- Route	 bedarfsorientiert	flexibel	Zone		reine First/Last- Mile	Semi-flexible Varianten zeigen Vorteile gegenüber starren Konzepten in ausgewählten Szenarien.
Zheng et al. (2018)		Korridor- Checkpoints	bedarfsorientiert	teils-fix	Netz	stochastisch/un	Zonen/Korridor- sicher basiert	Ansätze reduzieren Wartezeiten und Betriebskosten bei moderater Flotte deutlich.

Irgendwie Aussage darüber, dass in der Forschung oft gesagt wird, dass durch autonome vehicle erst so richtig ermöglichen demand responsive zu agiere, um fixed-schedule abzulösen (sieh)

Modell von Schulz & Vlćek ist Kombination aus Linienverkehr & on-demand, daher: semi-flexible Systeme -> HIER EVENTUELL mehrere Quellen die Felxibilitt definieren?

EINORDNUNG unter anderem ÜBER EINEN TABELARISCHEN VERGLEICH IN HINBLICK AUF OPTIMIERUNGSZIELE, aber auch Text: Textlich beschreiben welche aspekte für die abgrenzung des BLSP wichtig sind und dann auf tabelle verweisen, das diese aspekte dahingehen gegenübergestellt sind.

Anmerkung, dass die nachfolgend genutzten Veröffentlichungen lediglich einen Auszug aus der Forschung darstellen und als die, dem BLSP noch am nahe kommenden beispielhaften Problemvarianten des DARP bzw. des VRP genutzt werden.

Tabelle 2.5: Forschungsergebnisse zu BLSP-verwandten Systemen

Paper	Optimierungsziel	Nachfrage- dynamik	N	etz	we	rk		N	ebe	nb	edi	ngı	ıng	en				i ngs odik	ر ا	Daten- grundlage	Zentrale Erkenntnisse
		чунаник	Feste Stopsequenz	Fahrplansegmente	Multi-Linien/Netz	Transfers modelliert	Pickup/Delivery	Kapazität	Max. Mitfahrzeit	Feste Abfahrtszeiten	Routen-/Schichtdauer	Fahrer/Schichten	Pausen/Ruhezeiten	Heterogene Flotte	Multi-Depot	Exakt	Metaheuristik	Dekomposition		grundlage	
Bakas et al. (2016)	min Waiting time	Statisch	-	-	X	X	x	x	x	X	x	-	-	-	-	-	X	: –		Synthetische Daten	Flexibler Dienst senkt Wartezeit und Umwege gegenüber Linie bei geringer Nachfrage.
Marinelli und Gallo (2024)	min Reisezeit + Wartezeit	Statisch + dynamisch	-	-	X	-	X	X	X	X	x	-	-	X	-	X	: -	-	Ş	Synthetische	Urban: Minibus-Kreisrouten senken Fahrzeit bis zu 33%. Mehr Anfragen bedient.
Melis, Queiroz et al. (2024)	min Mitfahrzeit	Statisch	-	-	X	X	-	x	x	X	-	-	-	-	-	-	X	. –	Ş	Synthetische	Integration erhöht Bedienquote. Fahrzeiten kürzer bei schneller, dichter Metro.
Melis und Sörensen (2022)	min Kosten / Di- stanz	Statisch	-	-	-	-	X	X	x	X	x	-	-	-	-	-	X	: -	ç	Synthetische	Bedarfsbusse mit kleinen Fahrzeugen senken Fahrzeiten. Feste Linien nur bei hoher Nachfrage überlegen.
Pei et al. (2019)	min Kosten (Nut- zer+Betreiber)	Dynamisch	X	: -	-	-	-	X	-	X	-	-	-	-	-	X	-	-	I	Realdaten	Bei niedriger Nachfrage und langen Takten sinken Fahrtzeiten um $>10\%$
Charikar und Rag- havachari (1998)	min Strecke	Statisch	-	-	-	-	x	x	-	-	-	-	-	-	-	-	-	-		Theorie (kei- ne Daten)	Bei Kapazitätsgrenzen verkürzen erlaubte Zwischenumstiege die Gesamtroute deutlich.
Maalouf et al. (2014)	multiobj	Dynamisch	-	-	-	-	X	X	-	X	-	-	-	-	-	-	-	_	Ş	Synthetische	Bei dynamischer Nachfrage hält Algorithmus Wunsch-Ankunftszeiten ein.
Madsen et al. (1995)	multiobj	Statisch	-	-	-	-	X	X	-	X	-	X	X	-	-	-	-	_	Ι	Realdaten	In dynamischer Umgebung liefert die Heuristik schnelle, gute Lösungen bei praktischer Anwendung.
Tang und Armellini (2021)	min Fahrzeu- ge+Strecke	Statisch	-	-	-	-	x	x	x	X	-	-	-	-	-	-	X	: -	Š	Synthetische	Reisezeiten nahezu optimal, Rechenzeit dabei gering. Geeignet für dynamische Nachfrage.
Tellez et al. (2018)	min Kosten	Statisch	-	-	-	-	x	X	x	X	X	-	-	x	X	-	X	<u> </u>	Ş	Synthetische	En-route-Umrüstung spart bis 2.5% Gesamtkosten. Wirtschaftlich bis $+20\%$ Aufpreis gegenüber Standardfahrzeugen.
Wong und Bell (2006)	min Gesamtkosten	Statisch	-	-	-	-	x	x	x	X	x	-	-	-	-	-	Х	. –	٤	Synthetische	Bei größerer Wartezeitspanne sinken Kosten durch weniger Taxis. Erreichte Verbesserungen eher gering.

Fortsetzung auf der nächsten Seite

Ľ	
ch	
ch.	
en	
ab,	
ab, ge	
n:	
11.	
27%.	
rn	
ge-	
9	
hrt-	
5	
i-	
ns-	
r,	
,	
Seite	

Paper	Optimierungsziel	Nachfrage- dynamik	Netzwerk	Nebenbedingungen	mernogik	Daten-	Zentrale Erkenntnisse
		dynamik	Feste Stopsequenz Fahrplansegmente Multi-Linien/Netz Transfers modelliert Dicham/Delivery	rickup/Denvery Kapazität Max. Mitfahrzeit Feste Abfahrtszeiten Routen-/Schichtdauer Fahrer/Schichten Pausen/Ruhezeiten Heterogene Flotte Multi-Depot	Exakt Metaheuristik Dekomposition	grundlage	
Amor et al. (2019)	min Kosten	Statisch	- x x x x	x x x x x x -	X X -	Realdaten	Kombination von line-based und DRT senkt Kosten und Wartezeiten. Zufriedenheit steigt insgesamt.
Häll et al. (2009)	min Kosten	Statisch	x x x	x x x x x	- X –	Synthetische	Kleine Modellinstanzen sind exakt lösbar. Integration von DRT senkt Kosten für Kommunen. Nutzerkomfort wird eher weniger berücksichtigt.
Hassan et al. (2021)	min Kosten	Statisch	- x x x x	x x x x x x x	X X -	Synthetische	Neue Richtungs- und Symmetrie- Constraints senken Rechenzeit erheblich.
Posada et al. (2017)	min Kosten	Statisch	- x x x x	x x - x x - x x -	X X -	Realdaten	Modell mit Fahrplänen und heterogenen Fahrzeugen bildet die Realität besser ab, aber beide MOdelle liefern gleichwertige Lösungen.
Saathoff (2025)	min Wartezeit	Statisch	X X X	X X X X X	X X -	Synthetische	Heuristik mit SA liefert gute Lösungen: Wartezeit ca. 3 Minuten. MIP gut für kleine Instanzen.
Schenekember et al. (2025)	rg min Kosten	Statisch	- x x x x	x x x x x x x	- X -	Realdaten	Gegenüber 0% Integration senkt volle Busintegration Betriebskosten \emptyset um 27% .
Lauerbach et al. (2025)	min Wendungen	Statisch	x - x - x	x x x x		Theorie (keine Daten)	Ohne Berücksichtigung von Zeitfenstern ist das liDARP polynomial lösbar.
Reiter et al. (2024)	multiobj	Statisch	x - x - x	x x x x	X	Synthetische	1. kundenfokussiert: weniger Distanz gespart. 2. umweltfokussiert: akzeptierte Anfragen niedriger.
Cordeau und Laporte (2003)	min Kosten	Dynamisch	- X X	x x x x x x x	x x cg	Synthetische	Breitere Zeitfenster senken Kosten, Fahrtdauer und Wartezeiten. Rechenzeit ist praxistauglich.
Kim und Haghani (2011)	min Kosten	Dynamisch	- x x - x	x x x x x x - x x	X X -	Realdaten	Bei großer Datenmenge: Heuristiken schneller als exakte Methode bei ähnli- cher Qualität.
Luo und Schonfeld (2007)	min Kosten	Dynamisch	- x x x x	x x x x - x	X X CG	Realdaten	Mit Heuristik sinkt Fahrzeugbedarf & Produktivität steigt. Bei engen Zeitfenstern wird Vorteil von Heuristik kleiner, bleibt aber effizient.

Paper	Optimierungsziel	Nachfrage- dynamik	Netzwerk	Nebenbedingungen	Lösungs- methodik	Daten- grundlage	Zentrale Erkenntnisse
		аупалик	Feste Stopsequenz Fahrplansegmente Multi-Linien/Netz Transfers modelliert Pickup/Delivery	Kapazität Max. Mitfahrzeit Feste Abfahrtszeiten Routen-/Schichtdauer Fahrer/Schichten Pausen/Ruhezeiten Heterogene Flotte Multi-Depot	Exakt Metaheuristik Dekomposition	grundiage	
Melis und Sörensen (2022)	min Kosten	Dynamisch	x x x - x	x x x x x x	X	Synthetische	Bei stochastischer Nachfrage sinkt Fahrzeit im urbanen DRT. Bei hoher urbanen Nachfrage ist line-based effizienter.
Pfeiffer und Schulz (2022b)	multiobj	Dynamisch	- X X	x x x - x x	X X -	Synthetisch	Hohe Nachfrage + wenig Fahrzeuge: Auslastung steigt, Kundenzufriedenheit sinkt. ALNS-Lösung schneller & besser als exakte MIP.
Pfeiffer und Schulz (2022a)	multiobj	Dynamisch	- x x	x x x - x x x x	X X -	Synthetisch	Neue Schranke verbessert die Bewertung der Lösungsgüte. ALNS-Rechenzeit deut- lich kürzer als MIP.
Xiang et al. (2006)	min Kosten	Dynamisch	- x x - x	x - x x x x	x x cg	Realdaten	Enge Zeitfenster: steigende Rechenzeiten, Lösungen nahe der Bounds. Heuristik- Lösung robust innerhalb Stunden auf PC für Instanzen mit 2000 Anfragen.
Zidi et al. (2011)	multiobj	Dynamisch	- X X	x x x - x - x -	X X -	Synthetische	MOSA: schnelle Lösungen, besserer Fahrtzeitqualität als Tabu Search. MOSA vs. GA: ähnliche Fahrtzeiten, oft kürzere Routen.
Belhaiza (2017)	min Fahrtzeit	Statisch	x	x x x x	- X -	synthetische	Hybrid-VNS senkt Fahrzeugbedarf und Gesamtdauer gegenüber Benchmarks: Min Gesamtdauer reduziert Wartezeiten/Stopp gegenüber reiner Fahrzeit-Minimierung.
Belhaiza et al. (2023)	multiobj	Statisch	X	x x x x	- X -	Realdaten	Berücksichtigung mehrerer Zeitfenster verbessert Routen und erhöht Kundenzu- friedenheit.
Ben Abdel- krim et al. (2023)	min Kosten	Statisch	x	x - x	X	Realdaten	Modell minimiert Transportkosten, Zeitfenster der Patienten eingehalten, aber Fahrzeuge warten oft lange vor Zeitfenstet: ineffizienter Patiententransport.
Deleplanque und Quilliot (2013)	min Kosten	Statisch	X X	x x x x	<u>-</u> -	synthetische	Transfers senken Kosten deutlich, mehr Fahrzeuge senken Nutzen der Transfers: kleiner Fuhrpark profitiert stärker.
Gschwind und Irnich (2015)	min Kosten	Statisch	x	x x x	X - CG	Benchmarks	Integration v. dynam. Zeitfenstern stärkt Schranken & beschleunigt exakte Lösungen.

2
Literaturüberblick

Paper	Optimierungsziel	Nachfrage- dynamik	Netzwei	·k	Neb	enbe	ding	unge	en			ings- iodik	Daten- grundlage	Zentrale Erkenntnisse
		цупалік	Feste Stopsequenz Fahrplansegmente Multi-Linien/Netz	Transfers modelliert Pickup/Delivery	Kapazität Max. Mitfahrzeit	Feste Abfahrtszeiten	Routen-/Schichtdauer Fahrer/Schichten	Pausen/Ruhezeiten	Heterogene Flotte	nodad-namm	Exakt Metabouristik	Dekomposition	grundlage	
Häme (2011)	multiobj	Statisch		- X	хх	X		-		-	х -	-	synthetische	Enge Zeitfenster: Algorithmus liefert schnell exakte Lösungen für kleine Instanzen.
Jaw et al. (1986)	multiobj	Statisch		- X	хх	x		-		-		-	Realdaten	Simulation: Produktivität sinkt, Leer- laufzeiten und Fahrzeugbedarf erhöht. Vergleich Realität: bessere Produktivität und Servicequalität.
Madsen et al. (1995)	multiobj	Statisch		- X	Х -	x		-		-		-	Realdaten	Heuristik plant 300 Anfragen mit 24 Fahrzeugen in <10 Sekunden, dynamisch erweiterbar.
Psaraftis (1983)	min Gesamtdauer	Statisch		- X	Х -	X		-		-	х -	-	Synthetische	Exakter Algorithmus für Single-Vehicle DARPTW mit <10 Kunden.
Urra et al. (2015)	multiobj	Statisch		- X	хх	X		-		-	- X	- 1	synthetische	Hyperheuristik verbessert Fahrzeiten mit stabiler Qualität.
Yi und Tian (2005)	min Distanz	Dynamisch		- X	Х -	x		-		•		_	theoretische Analyse	Kleine Entfernungen: Algorithmusleistung bleibt stabil & erfüllt viele Anfragen. Unendliche Kapazität: Effizienz steigt, da mehr Anfragen bedient.
Yi, Xu et al. (2006)	max bediente Anfragen	Dynamisch		- X	х -	x		-		-		-	theoretische Analyse	Räume mit großer Distanzvielfalt: Effizienz sinkt stark. Greedy-Algorithm. erreicht nur schwache Güte.
Yi, Song et al. (2009)	max bediente Anfragen	Dynamisch		- X	Х -	x		-		•		-	theoretische Analyse	Kunden akzeptieren unterschiedlich lange Wartezeiten: Greedy in gleichmäßigem Raum moderat effizient.
Anuar et al. (2021)	min erwartete Kosten	Stochastisch			Х -	X		-	- >	ζ.	ХХ	- 1	Realdaten	Berücksichtigung v. stochastischem Verkehr: Distanz, Zeit & Kosten steigen.
Banerjee et al. (2023)	min Kosten	Statisch			х -	-		-	х -	-	Х -		synthetische	Heuristiken für große, heterogene Flotten liefern robuste / nahezu optimale Lösungen.
Bernardo et al. (2023)	min erwartete Kosten	Stochastisch			Х -	X		-			х -	_	Realdaten	Mean-Variance-Modell verhindert Routenfehler vollständig.
Birtolo et al. (2025)	_	Statisch			Х -	X		-	- >	ζ			Realdaten	Standardlast: Lieferzeit bleibt stabil, +50% Volumen: Verzögerungen steigen.

+	
e	
;	
r-	
er-	
n-	
bri-	
re	
ıg	
tark	
ır	
-	
n,	
,	
'eite	

Paper	Optimierungsziel	Nachfrage-	Netzwerk						leb	en	bed	lin	gur	nge	en				ngs- odik	Daten-	Zentrale Erkenntnisse
		dynamik	Feste Stopsequenz	Fahrplansegmente	Multi-Linien/Netz	Transfers modelliert	Pickup/Delivery	Kanazität	Max Mitfahrzeit	Fort Alfahamiton	reste Abianrtszeiten Denten /Schiebtdenen	Kouten-/Schichtdauer	Fahrer/Schichten	Pausen/Ruhezeiten	Heterogene Flotte	Multi-Depot	Exakt	Metaheuristik	Dekomposition	grundlage	
Amiri et al. (2023)	multiobj	Statisch	-	-	-	-	-	X			κ .	-	-	-	X	-	-	X	_	Realdaten + synthetisch	Gemischte Flotte spart Kosten und Emissionen.
Fadda et al. (2023)	min Kosten	Statisch	-	-	-	-	-	X			κ .	-	-	-	X	x	-	X	-	Realdaten + synthetisch	Matheuristik löst maritime HVRP effizienter als exakte Methoden.
Fernando et al. (2022)	min Kosten	Statisch	-	-	-	-	-	Х	-			-	-	-	x	x	-	x	-	Realdaten	Multiple Depots senken Gesamtkosten im Retail. Hybridverfahren (Heuristik + Metaheuristik) liefert bessere, schnellere Lösungen als Einzelmethoden.
Kritikos und Ioannou (2013)	min Kosten	Statisch	-	-	-	-	-	X	- 1	. 2	Κ.	-	-	-	X	X	-	X	-	Synthetische	Überladungen über Strafkosten modelliert. Heuristik liefert 2–10% niedrigere Gesamtkosten als etablierte Verfahren.
Mancini (2016)	min Kosten	Statisch	-	-	-	-	-	X	. -	. 2	ΧΣ	X	-	-	X	x	-	X	-	Realdaten	Mehrperiodenansatz verbessert Ressourcennutzung. ALNS-Verfahren liefert Verbesserungen, auch bei komplexen Instanzen.
Alinaghian et al. (2022)	min Emissionen	Zeitabhängig	-	-	-	-	-	Х	. -	. 2	χ.	-	-	-	X	X	-	X	_	Synthetische	Heterogene Flotte senkt Gesamtkosten deutlich gegenüber homogener Flotte.
Azadeh und Farrokhi-Asl (2019)	min Kosten	Zeitabhängig	-	-	-	-	-	Х	- 1	. 2	χ.	-	-	-	X	X	-	X	_	Realdaten	Mit externer Flotte sinken Kosten. Hybrides, genetisches Verfahren liefert bessere Lösungen als Standard-GA.
Bettinelli et al. (2011)	min Kosten	Statisch	-	-	-	-	-	X	- 1	.]	Κ.	-	-	-	X	X	X	-	CG	Synthetische	Mehr Fahrzeugtypen erschweren Lösung stärker als zusätzliche Depots.
Dao-Tuan und Nguyen- Thi-Ngoc (2018)	multiobj	Stochastisch	-	-	-	-	-	X		. 2	Κ.	-	-	-	X	x	-	X	-	Synthetisch	Gemischte Flotte: Emissionen sinken stark bei minimal längeren Routen.
Erdeş und Kesen (2024)	min Kosten	Zeitabhängig	-	-	-	-	-	X		. 2	κ.	-	-	-	-	X	-	-	_	Realdaten	Halb-offene Routen senken Kosten.
Bernardino et al. (2025)	min Kosten	Zeitabhängig	-	-	-	-	-	X	-			-	-	-	X	X	-	X	_	Realdaten	Rolling-Horizon-Verfahren bedient mehr Aufträge bei großen Instanzen.
Cinar et al. (2015)	min Emissionen	Statisch	-	-	-	-	-	X		. 2	ΧΣ	ĸ	-	-	X	-	-	X	_	Synthetische	Optimierung auf Treibstoff senkt Emissionen um bis zu 10% ohne Mehrkosten, auch bei großen Instanzen.

Paper

Optimierungsziel Nachfragedynamik Netzwerk

Paper	Optimierungsziel	dynamik	Feste Stopsequenz	Fahrplansegmente	Multi-Linien/Netz	Transfers modelliert	Pickup/Delivery	Kapazität	Max. Mitfahrzeit	Feste Abfahrtszeiten	Routen-/Schichtdauer	Fahrer/Schichten	Pausen/Ruhezeiten	Heterogene Flotte	Multi-Depot		stik	Dekomposition pp	grundlage	Zentrale Erkenntnisse
Huang, Qin et al. (2024)	min Kosten	Statisch	-	-	-	-	X	x	-	x	-	-	-	-	-	X	: -	DD	Realdaten	Gem. Optimierung von Routen & Personal spart ca. 20% der Kosten.
Nguyen et al. (2022)	min Kosten	Statisch	-	-	-	-	-	X	-	X	-	-	-	X	X	-	X	-	Realdaten	ALNS-Verfahren halbiert unbediente Kunden vs. klassische Heuristiken.
Anityasari et al. (2025)	min Kosten	Zeitabhängig	-	-	-	-	-	X	-	-	-	-	-	-	-	-	-	-	Realdaten	Periodische Planung reduziert Gesamtdistanz, verursacht, aber höhere Kosten.
Rahimi- Vahed et al. (2015)	min Kosten	Zeitabhängig	-	-	-	-	-	X	-	-	-	-	-	-	X	-	X	_	Synthetische	Modularheuristik senkt Flottengröße effizient gegnüber Tabu-Search.
Rothenbäche (2019)	r min Strecke	Zeitabhängig	-	-	-	-	-	X	-	X	-	-	-	-	-	X	: -	CG	Synthetische	Flexible Pläne senken Kosten, aber erhöhen Rechenzeit.
Agra et al. (2013)	min Kosten	Stochastisch	-	-	-	-	-	X	-	X	-	-	-	-	-	X	: -	-	Golden	Robuste Modelle erhöhen Lösungskosten etwas, aber sichern Pünktlichkeit.
Arenas- Vasco et al. (2024)	min Kosten	Zeitabhängig	-	-	-	-	-	x	-	-	-	-	-	x	X	Х	: -	-	Synthetische	Wachsender Kundenzahl: three-index- formulation robuster, four-index- formulation scheitert häufiger.
Babaee Tirkolaee et al. (2019)	min Kosten	Statisch	-	-	-	-	-	\mathbf{x}	-	x	-	-	-	X	-	X	X	-	Solomon	SA liefert nahezu optimale Lösungen schneller als CPLEX.
Barrero et al. (2021)	min Kosten	Statisch	-	-	-	-	-	X	-	X	-	-	-	X	-	-	X	-	Solomon	Große INsanzen: GRASP / VND liefert schneller, bessere Lösungen
Bräysy et al. (2009)	min Kosten	Statisch	-	-	-	-	-	X	-	X	-	-	-	X	-	-	X	-	Solomon	Metaheuristik skaliert sehr gut und löst effizient bei <1.000 Kunden
Carpaneto et al. (1989)	min Kosten	Statisch	x	X	X	-	-	-	-	X	-	-	-	-	X	X	: -	_	Synthetische	Standort der Depots kaum Einfluss hat.
Chau et al. (2024)	min Kosten	Statisch	x	x	x	-	-	-	-	x	-	-	-	-	-	X	: -	_	Synthetische	Multi-Port-Stationen vermeiden Zusatz- busse, aber erhöht Rechenaufwand für optimale Lösung.
Gintner et al. (2005)	min Kosten	Statisch	x	X	X	-	-	-	-	X	-	-	-	x	X	-	-	CG	Realdaten	Depotgruppen senken Kosten und Rechenzeit. Lösungen besser als bei Ein-Depot-Ansatz.
																				Fortsetzung auf der nächsten Seite

Nebenbedingungen

Lösungsmethodik Datengrundlage

Zentrale Erkenntnisse

Paper	Optimierungsziel	Nachfrage- dynamik	Netzwerk	Nebenbedingungen	methodik	Oaten- rundlage	Zentrale Erkenntnisse
		цупанік	Feste Stopsequenz Fahrplansegmente Multi-Linien/Netz Transfers modelliert	Pickup/Delivery Kapazität Max. Mitfahrzeit Feste Abfahrtszeiten Routen-/Schichtdauer Fahrer/Schichten Pausen/Ruhezeiten Heterogene Flotte Multi-Depot	Exakt Metaheuristik Dekomposition	rundiage	
Gkiotsalitis et al. (2023)	min Kosten	Statisch	x x x -	x x x	X - — Sy	ynthetische	Mit Ladefenstern steigt Komplexität. Ohne Ladefenster sinken Kosten. Flexible Nutzung reduziert Wartezeiten.
Guo, Wang et al. (2024)	multiobj	Statisch		- x - x x -	- X — Re	Realdaten	Optimierung des Energieverbrauchs reduziert Emissionen stärker als Zeitverluste steigen. Neue Heuristik verbessert Lösungsgüte und Rechenzeit.
Huisman et al. (2004)	min Kosten	Dynamisch	x x x -	x	— Re	tealdaten	Rescheduling reduziert Verspätungen, mit nur wenigen zusätzlichen Fahrzeu- gen. Mehr-Szenarien-Ansatz robuster als Ein-Szenario: weniger Verspätungen & geringere Kosten.

Hier dann Part mit Aussagen darüber wie sich Verwandschaft zum BLSP definiert und wie sich abgrenzt ????

ANTWORTEN VON GPT: 1. Wodurch definiert sich die Verwandtschaft zum BLSP? Ein Beitrag ist "BLSP-verwandt", wenn er wesentliche Strukturmerkmale teilt:

- Linienbasiert Fahrplan: Es existieren vorgegebene Linien, Haltestellen und Zeitpunkte; nicht Tür-zu-Tür.
- On-Demand auf Linienebene: Es werden nur Fahrten/Segmente mit positiver, vorab bekannter Nachfrage bedient (Trips/Stopsegmente ohne Nachfrage werden ausgelassen).
- Die Planung tour-/fahrplanzeitlich strukturiert (Startzeiten/"Fahrplansegmente").
- Zielgröße "Flotteneinsatz": Primäres Optimierungsziel ist die Minimierung der benötigten Busse (und implizit Fahrpersonal), nicht z. B. reine Fahrgastzeitminimierung.
- ÖPNV-Personenverkehr statt Güter-VRP/DARP-Varianten; BLSP liegt zwischen klassischem Linienverkehr und Ridepooling, bei beibehaltetem Fahrplan (Abgrenzung zum line-based DARP ohne Fahrplan).

Je mehr dieser Merkmale erfüllt sind, desto "näher" am BLSP. Fehlen Linien/Fahrplan (klassisches VRP/DARP) oder handelt es sich um Güterlogistik, ist die Verwandtschaft nur entfernt.

- 2. Hauptaspekte zur Einordnung (a) und Abgrenzung (b)
 - Bedienparadigma: Linienbasiert (fixe Reihenfolge) vs. semi-flexibel (Segmente überspringbar) vs. voll flexibel (Ridepooling). BLSP = linienbasiert & semi-flexibel.
 - Fahrplanbindung: Zeitplan ist gegeben (BLSP), im Gegensatz zu line-based DARP ohne Fahrplan.
 - Nachfragewissen & On-Demand-Regel: Vorab bekannt/angemeldet -> nur nachgefragte Teile werden gefahren.
 - Netz-Scope: Einzellinie vs. Mehrere Linien mit möglichen Wechseln/Übergängen: Transfers explizit modelliert oder nicht. (BLSP betrachtet mehrere Linien: Transfers werden v. a. in verwandter Literatur diskutiert.)
 - Zielgrößen: v. a. min #Busse (BLSP) alternative/ergänzende Ziele wären Wartezeit, Anschlussverluste, Fahrgastzeit, Emissionen.
 - Restriktionen: Kapazität, Schichten/Pausen (ggf. vorgegeben), Zeitfenster/Fahrplansegmente.
 - Ressourcen/Flotte: Homogen/heterogen ggf. autonome Busse (kein Fahrpersonalmodell).
 - Depotstruktur & Energie: Ein- oder Mehrdepot; (Nicht-)Berücksichtigung von Laden/Tanken. (BLSP: 1 Depot Laden/Tanken nicht modelliert.)
 - Rechenansatz & Komplexität: Netzwerkfluss-Formulierung (Setting 1), IP-Modell mit Rücksprungkanten (Setting 2/3), NP-schwer bei Kapazitätsbindung klare "easy/hard"-Grenzen.

2.3 Offene Forschungsfragen

- welche offenen Punkte aus anderen Papern greifen Schulz & Vléek eventuell auf? -> angeblich systematische szenarien zur wirkung uaf flottenbedarf aus Vansteenwegen et al. (2022) + Einfluss von Fahrerpausen
- Kapazitätsfragen, Depotstruktur, Echtzeitfähigkeit
- kombination von on-demand und line-based nochmal evtl. aufgreifen nachdem entsprechend mit searchstring bewiesen oder nicht bewiesen ist, dass es diese kombination so noch nicht extensiv gibt
- Zukunftsperspektiven: adaptive Fahrpläne, Realtime-Demand
- Bewertung der Robustheit und Praktikabilität in Realanwendungen
 - \rightarrow Enden mit Rechtfertigung dafür, dass es sich lohnt die Kombination, die Vl
ćek und Schulz gemacht haben, weiter zu untersuchen
- -> Aussage on-demand senkt kosten in rural areas, aber ...

3 Problemstellung

Das zu lösende Optimierungsproblem von Schulz & Vléek beschäftigt sich mit der Einsatzplanung von Bussen in einem, auf Abruf operierenden, linienbasierten System mehrerer Buslinien.

Grundsätzlich kann eine Buslinie mehrmals im zu betrachtenden Zeitraum bedient bzw. gestartet werden. Daher wird im weiteren Verlauf jede einzigartige Kombination aus Buslinie und Startzeit der Buslinie als Tour $l \in L = \{1, \ldots, n\}$ bezeichnet. Das linienbasierte System wird durch ein Graphenmodell mit Knoten und Kanten aufgebaut. Jede Buslinie besteht aus einer Anzahl von Haltestellen (Knoten) s_1, \ldots, s_m . Hier sei erwähnt, dass sich die Zusammensetzung und Reihenfolge der Haltestellen je Buslinie mit unterschiedlicher Startzeit durch die einzelnen Touren hinweg nicht verändert. Deshalb kann die Notation der Tour mit in die Notation der Haltestellen aufgenommen werden und es ergibt sich für jede Tour eine Abfolge von Haltestellen $s_1^l, \ldots, s_{m_l}^l$. Jeder Haltestelle wird eine Zeit $\bar{t}_{s_j^l}$ zugewiesen, zu der der Bus dort hält, es gilt: $\bar{t}_{s_j^l}, l \in L, j = 1, \ldots, m_l$. In der Realität sind die einzuhaltenden Zeiten durch einen zuvor aufgestellten Fahrplan gegeben. Für ein höheres Maß an Flexibilität bei der Implementierung des Modells werden die Zeiten der einzelnen Haltestellen in dieser Arbeit ausgehend von der Startzeit der jeweiligen Tour und der gewählten Fahrgeschwindigkeit der Busse berechnet. Eine detaillierte Beschreibung der Berechnung folgt in Kapitel XXXXXXX.

Schulz & Vléek argumentieren, dass die Zeiten für Ein- und Ausstieg in Relation zur Fahrzeit zur vernachlässigen sind. Daher können die Busse die Haltestellen im Vorbeifahren bedienen. Für die Fahrtzeit zwischen zwei beliebigen Haltestellen im System $t_{s_j^l,s_j^{l'}}$ muss gelten $t_{s_j^l,s_j^{l'}}>0$, $l,l'\in L$, $j=1,\ldots,m_l$, $j'=1,\ldots,m_l$, da die beiden Haltestellen sonst identisch sind. In der Problemstellung von Schulz & Vléek haben alle Busse ein einzelnes Depot D als Start- und Endpunkt der Schicht bzw. dem Betrachtungszeitraum. Die Verbindung vom Depot zu jeder Haltestelle im System muss möglich sein. Für die Fahrzeiten zwischen dem Depot und einer beliebigen Haltestelle der Tour l gilt entsprechend $t_{D,s_j^l}>0$ und $t_{s_j^l,D}>0$, $l\in L$, $j=1,\ldots,m_l$. Allgemein gilt die Dreiecksungleichung für alle Fahrtzeiten. Für die im Modell verwendeten Busse $k\in K=\{1,\ldots,|K|\}$ wird eine Kapazität Q_k festgelegt, die angibt wie hoch die zulässige ganzzahlige Anzahl der, gleichzeitig im Bus transportierbaren, Fahrgäste ist. Die Nachfrage zwischen zwei Haltestellen wird durch $d_{s_j^l,s_j^{l'}}$ mit $l\in L$, sowie $j,j'=1,\ldots,m_l$ und j'>j berücksichtigt.

Dimensionen der Problemstellung - 9 Szenarien

Schulz & Vléek stellen für die systematische Untersuchung der Problemstellung 2 Dimensionen vor, die die Problemstellung wie folgt untergliedern:

Operative Komplexität

- 1. **Uneingeschränkter autonomer Betrieb**: Es werden homogene, autonome Busse mit unendlicher Kapazität eingesetzt.
- 2. Kapazitätsbeschränkung im autonomen Betrieb: Die Busse sind weiterhin autonom, allerdings nun heterogen, durch die Berücksichtigung der individuellen Kapazitätsgrenze Q_k .

3. Fahrer- und Kapazitätsbeschränkung: Es werden Fahrer für die Busse eingesetzt. Die Busse sind somit nicht mehr autonom. Für die Fahrer werden Arbeits- und Pausenzeiten berücksichtigt. Durch die feste Zuweisung von Fahrer zu Bus ergibt sich der Zeitpunkt a_k , zu dem der Bus $k \in K$ verfügbar wird, dem Arbeitszeitbeginn des Fahrers. Folglich ergibt sich auch der Zeitpunkt b_k , zu dem der Fahrer seine Pause mit der Länge p beginnt und der Zeitpunkt c_k , zu dem der Fahrer seine Schicht beendet und ab dem der Bus nicht mehr verfügbar ist.

Strategien zur Nachfragebedienung

- A) Bedienung des gesamten Netzes: Ohne Betrachtung der Nachfrage werden alle Touren vollständig bedient.
- B) Bedienung der nachgefragten Touren: Es werden jene Touren vollständig bedient für die eine (Teil-)Nachfrage besteht.
- C) Bedienung der nachgefragten Haltestellen: Es werden nur die Teile der jeweiligen Touren bedient, für deren Haltestellen zu Beginn des Betrachtungszeitraums eine Nachfrage besteht.

Daraus ergeben sich insgesamt 9 Szenarien 1.A) - 3.C). Ziel in jedem der 9 Szenarien ist es die Anzahl der benötigten Busse zu minimieren. Auf diese Weise soll aufgezeigt werden, welcher Einfluss auf die minimale Anzahl der Busse besteht, wenn anstelle vollständiger Touren ausschließlich nachgefragte Haltestellen einer Tour l bedient werden müssen. Weitere zukünftige Analysemöglichkeiten werden in Kapitel 6 beschrieben.

4 Mathematisches Modell

CHECKEN, OB ICH HIER SAGEN MUSS, DASS DIESER TEIL SEHR NAH AN DEM PAPAER VON Schulz & Vléek IST ???

Ausgewählt aus den, von Schulz & Vléek aufgestellten, 9 Szenarien werden im nachfolgend die mathematischen Modellformulierungen dieser Szenarien aufgestellt:

WÄRE ES NICHT EIGENTLICH GUT FÜR EINEN VERGLECIH AM ENDE DAS SZENARIO 3.A) ZU BETRACHTEN, UM DEN ON-DEMAND EFFEKT BESSER DARSTELLEN ZU KÖNNEN?

Szenario 1.A (uneingeschränkter, autonomer Betrieb & Bedienung des gesamten Netzes) wurde ausgewählt, um ein grundlegendes Konstrukt aufzubauen, welches möglich uneingeschränkt ist und somit als Basis für die anderen Szenarien zu sehen ist.

Szenario 1.B (uneingeschränkter, autonomer Betrieb & Bedienung der nachgefragten Touren) wurde ausgewählt, um ... zu validieren, dass das modell auch für andere Sets korrekt funktioniert?

Szenario 2.C (Kapazitätsbeschränkung im autonomen Betrieb & Bedienung der nachgefragten Haltestellen) wurde ausgewählt, um einen Zwischenstand der Komplexität abzubilden, der die Berücksichtigung von Nachfrage und Möglichkeit der reinen Bedienung nachgefragter Haltestellen erlaubt.

Szenario 3.C (Fahrer- und Kapazitätsbeschränkung & Bedienung der nachgefragten Haltestellen) wurde ausgewählt, um einen möglichst realitätsnahen Anwendungsfall abzubilden.

4.1 Zentrale Modellannahmen

Schulz & Vlćek stellen folgende vereinfachenden Annahmen auf:

- Es wird ein gemeinsames Depot für alle Busse angenommen
- Die Arbeits- und Pausenzeiten der Fahrer entsprechen den gesetzlichen Regelungen
- Die feste Planung einer festgelegten Pausenzeit für die Fahrer steht im Einklang mit geltendem Recht
- Die Zuteilung von Fahrer zu Bus erfolgt im Vorfeld des Betrachtungszeitraums und wird als gegeben angenommen. Der Bus ist somit im Rahmen der Fähigkeiten des Fahrers zwischen Beginn und Schichtende des Fahrers verfügbar
- Die Busse müssen während des Betrachtungszeitraums nicht tanken/aufgeladen werden, da sie für den gesamten Betrachtungszeitraum als ausreichend betankt/aufgeladen angenommen werden
- Die Busse sind bis auf die Kapazität homogen

Für alle Settings ist die Menge aller relevanter Knoten V, sowie die Menge A aller Verbindungen bzw. Kanten zwischen den Knoten aufzustellen.

4.2 Szenario 1.A)

Zunächst wird von Schulz & Vléek der Fall betrachtet, in dem alle Touren (Buslinien zu unterschiedlichen Startzeiten) vollständig bedient werden müssen. Zur Erinnerung: In diesem Setting werden homogene autonome Busse eingesetzt, deren Eigenschaften keinen Einfluss auf die Lösung haben. Die Busse werden in der Modellformulierung nicht erwähnt, sind aber die Instanz, die die Verbindungen nutzt und die Knoten bedient Die Menge aller relevanter Knoten ergibt sich in diesem ersten Szenario daher aus dem Depot, sowie allen Start- und Endknoten einer Linie:

$$V = \{D, s_1^1, \dots, s_1^n, s_{m_1}^1, \dots, s_m^n\}$$

Um alle Möglichkeiten für das Lösen des Problems zu erhalten, erlauben Schulz & Vléek Verbindungen zwischen Touren. Diese werden durch die Fahrtzeit zwischen der letzten Haltestelle von Tour l und der ersten Haltestelle von Nachfolgertour l' mit $t_{s_{m_l}^l,s_1^{l'}}$ beschrieben. Eine Verbindung von zwei Touren darf in einer möglichen Lösung des Problems nur dann bestehen, wenn folgende Gleichung erfüllt ist:

$$\bar{t}_{s_{m_l}^l} + t_{s_{m_l}^l, s_1^{l'}} \le \bar{t}_{s_1^{l'}} \tag{4.1}$$

Mit Gleichung 4.1 beschreiben Schulz & Vléek, dass der zeitliche Abstand zwischen der letzten Haltestelle einer Tour $s_{m_l}^l$ und der ersten Haltestelle der Nachfolgertour $s_1^{l'}$ groß genug sein muss, um die Fahrtzeit zwischen den Haltestellen abdecken zu können.

Folglich ergibt sich für das erste Setting:

$$A = \{(D, s_1^1), \dots, (D, s_1^n), (s_{m_1}^1, D), \dots, (s_{m_n}^n, D), (s_1^1, s_{m_1}^1), \dots, (s_1^n, s_{m_n}^n)\} \cup \{(s_{m_l}^l, s_1^{l'}) : \bar{t}_{s_{m_l}^l} + t_{s_{m_l}^l, s_1^{l'}} \leq \bar{t}_{s_1^{l'}}\}$$

Schulz & Vléek verwenden in der folgenden Modellformulierung des Szenarios 1.A) die binäre Entscheidungsvariable x_{ij} , deren Wert 1 ist, wenn die Verbindung $(i,j) \in A$ von i nach j genutzt wird und sonst 0.

$$\min \sum_{j:(D,j)\in A} x_{Dj} \tag{4.2}$$

unter den Nebenbedingungen:

$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = 0 \qquad \forall i \in V$$

$$(4.3)$$

$$x_{s_1^l,s_{m_l}^l} = 1 \qquad \qquad \forall l \in L \tag{4.4}$$

$$x_{ij} \ge 0 \qquad \forall (i,j) \in A \qquad (4.5)$$

Der Wert der Zielfunktion 4.2 gibt die Anzahl der Busse die das Depot verlassen wieder und ist zu minimieren. Die Nebenbedingung 4.3 stellt sicher, dass die Flusserhaltung für jeden Knoten gilt, d.h. die Anzahl der eingehenden Verbindungen ist gleich der Anzahl der ausgehenden Verbindungen. Nebenbedingung 4.4 stellt sicher, dass jede Tour bedient wird. Nebenbedingung 4.5 ist die Nichtnegativitätsbedingung der Entscheidungsvariable.

HIER NOCH CHECKEN OB KLASSIFIZIERUNG ALS EINE BESTIMMTE ART VON MODELL WIE BEI Schulz & Vléek

4.3 Szenario 1.B)

In diesem Szenario lassen Schulz & Vlćek jene Touren vollständig bedienen, für die mindestens an einer Haltestelle eine Nachfrage bekannt ist.

HIER EVTL. GRAFIK ZUR VISUALISIERUNG

Die Menge aller relevanter Knoten ändert sich zu

$$\bar{V} = \{D, s_1^1, \dots, s_{m_1}^1, s_1^n, \dots, s_{m_n}^n\},\$$

sodass nun alle Haltestellen im System, sowie das Depot aufgenommen sind. Auch die Menge der relevanten Verbindungen ändert sich und ergibt sich zu:

$$\bar{A} = \{(D, s_1^1), \dots, (D, s_{m_n}^n), (s_1^1, D), \dots, (s_{m_n}^n, D), (s_1^1, s_{m_1}^1), \dots, (s_1^n, s_{m_n}^n)\} \cup \{(s_i^l, s_j^{l'}) : \bar{t}_{s_i^l} + t_{s_i^l, s_j^{l'}} \le \bar{t}_{s_j^{l'}}\},$$

mit $i = 1, ... m_l \text{ und } j = 1, ... m_{l'}$.

HIER DIE THEMATIK MIT ÜBERLAPPENDEN CUSTOMER TRIPS ERKLÄREN

4.4 Szenario 2.C)

In diesem Szenario berücksichtigen Schulz & Vléek eine Kapazitätsbeschränkung für die Busse. Die Busse sind somit als heterogen zu betrachten. Außerdem lassen Schulz & Vléek nur noch die einzelnen Haltestellen bedienen, die zu Beginn des Betrachtungszeitraums nachgefragt sind.

Dementsprechend ändert sich die Menge aller relevanter Verbindungen zu:

$$\begin{split} \hat{A} = & \{(D, s_1^1), \dots, (D, s_{m_n}^n), (s_1^1, D), \dots, (s_{m_n}^n, D)\} \cup \{(s_i^l, s_j^{l'}) : i = 1, \dots m_l, j = 1, \dots m_{l'}, \bar{t}_{s_i^l} + t_{s_i^l, s_j^{l'}} \leq \bar{t}_{s_j^{l'}}\} \\ \cup & \{(s_i^l, s_j^l) : i, j = 1, \dots, m_l, \ i > j, \ \exists k < j < i : d_{s_k^l, s_i^l} > 0, \ \exists k > j : d_{s_j^l, s_k^l} > 0\} \end{split}$$

Mittels Set erlauben Schulz & Vlćek, im Gegenteil zu Set Ā, dass ein Bus, im Falle von verschachtelten Kundenfahrten zu einer vorigen Haltestelle der gleichen Tour "zurückfahren" kann, um die dortige Nachfrage zu bedienen. Diese Fähigkeit von Set wird in Nebenbedingung 4.10 ausgestaltet und nach der Modellformulierung weiter erläutert. Für eine genauere Erklärung wird auf Schulz & Vlćek verwiesen. Nach wie vor gilt für den Wert der binären Entscheidungsvariable x_{ijk} : 1, wenn die Verbindung

 $(i,j) \in \hat{A}$ zwischen i und j genutzt wird und sonst 0. Die Modellformulierung für das Szenario 2.C) ist wie folgt:

$$\min \sum_{k=1}^{K} \sum_{j:(D,j)\in\hat{A}} x_{Djk} \tag{4.6}$$

unter den Nebenbedingungen:

$$\sum_{j:(i,j)\in\hat{A}} x_{ijk} - \sum_{j:(j,i)\in\hat{A}} x_{jik} = 0 \qquad \forall i \in V, k \in K$$

$$(4.7)$$

$$\sum_{k=1}^{K} x_{ijk} = 1 \qquad \forall i, j \in V : (i, j) \in \hat{A} \land d_{ij} > 0$$
 (4.8)

$$\sum_{j:(D,j)\in\hat{A}} x_{Djk} \le 1 \qquad \forall k \in K$$

$$x_{s_i^l s_j^{l'} k} \le 1 - x_{s_h^l s_{h'}^l k} \qquad \forall l, l' \in L, k \in K, i = \{1, \dots, m_l\}, \ j = \{1, \dots, m_{l'}\},$$

$$x_{s_i^l s_i^{l'} k} \le 1 - x_{s_h^l s_h^l k}$$
 $\forall l, l' \in L, k \in K, i = \{1, \dots, m_l\}, \ j = \{1, \dots, m_{l'}\},$

$$(s_i^l, s_j^{l'}) \in \hat{A}, h, h' \in \{1, \dots, m_l\} : h \le i < h' \land d_{s_h^l, s_{h'}^l} > 0 \land \bar{t}_{s_{h'}^l} + t_{s_{h'}^l, s_i^{l'}} > \bar{t}_{s_i^{l'}}$$

$$(4.10)$$

$$\sum_{j,j'=1,\dots,m_l:s_i^l \le s_i^l < s_{i'}^l} d_{s_j^l,s_{j'}^l} \cdot x_{s_j^l s_{j'}^l k} \le Q_k \qquad \forall l \in L, \ i \in \{1,\dots,m_l\}, \ k \in K$$

$$(4.11)$$

$$x_{ijk} \in \{0, 1\} \qquad \forall (i, j) \in \hat{A}, \ k \in K \tag{4.12}$$

Die Zielfunktion 4.6 wurde im Vergleich zu den vorigen Szenarien 1.A) und 1.B) mit den neuen Sets angepasst und verwendet die, um den Index der Busse ergänzte, Entscheidungsvariable x_{ijk} . Der Zielfunktionswert (Anzahl der Busse, die das Depot verlassen) ist, für ein optimales Ergebnis, weiterhin zu minimieren. Nebenbedingung 4.7 stellt wie zuvor in den Kapiteln 4.2 und 4.3 die Flusserhaltung für jeden Knoten sicher. Nebenbedingung 4.8 sorgt dafür, dass alle nachgefragten Verbindungen bedient werden. Nebenbedingung 4.9 beschränkt das Verlassen des Depots von jedem Bus auf ein einziges Mal. Nebenbedingung 4.10 stellt die Bedingungen für das "Zurückfahren" eines Busses für den Fall von sich überschneidenden Kundenfahrten auf. Dabei wird für jedes Wechseln eines Busses auf eine andere Tour sichergestellt, dass dies nur vom letzten Teil der Überlappung aus geschieht. Sollte versucht werden von einer anderen, als dieser Haltestelle zu wechseln, wird die Summe auf der rechten Seite der Gleichung null und die Entscheidungsvariable auf der linken Seite gezwungen, den Wert null anzunehmen. Nebenbedingung 4.11 stellt die Einhaltung der Kapazitätsbeschränkung für jeden Bus je Buslinie sicher, indem für jede Haltestelle s_i^l die Summe aller Fahrgäste, die von Haltestelle s_j^l zu Haltestelle $s_{i'}^l$ transportiert werden, gebildet wird und die Kapazität des Busses Q_k nicht überschritten werden darf. Nebenbedingung 4.12 ist die Nichtnegativitätsbedingung der Entscheidungsvariable.

4.5 Szenario 3.C)

In diesem Szenario wird das in Kapitel 4.4 beschriebene Modell von Schulz & Vléek durch die Berücksichtigung der Schicht- und Pausenzeiten der Busfahrer erweitert. Die Fahrzeiten zwischen zwei Haltestellen $t_{s_i^l,s_i^{l'}}$ mit $l,l'\in L, i=\{1,...,m_l\}, j=\{1,...,m_{l'}\},$ sowie zwischen dem Depot und den Haltestellen t_{D,s_l^i} , $t_{s_l^i,D}$ mit $l \in L, i,j = \{1,...,m_l\}$, als auch die Zeiten zu denen jede Haltestellen auf den unterschiedlichen Touren bedient werden muss $\bar{t}_{s_i^l}$ mit $l \in L, i = \{1, ..., m_l\}$ sind bekannt. Daher können laut Schulz & Vléek genau die Entscheidungsvariablen der Bus-spezifischen, mit den Schicht- und Pausenzeiten der Fahrer unvereinbaren, Verbindungen im Vorfeld des Lösens auf 0 gesetzt werden:

(i)
$$x_{Ds_{\cdot}^{l}k} = 0$$
 if $\bar{t}_{s_{\cdot}^{l}} - t_{Ds_{\cdot}^{l}} < a_{k}$,

(ii)
$$x_{s_i^lDk} = 0$$
 if $\bar{t}_{s_i^l} + t_{s_i^lD} > c_k$,

$$\text{(iii)} \ \ x_{s_i^l s_j^l k} = 0 \quad \text{ if } \quad b_k < \overline{t}_{s_i^l} < b_k + p \vee (\overline{t}_{s_i^l} < b_k \wedge b_k + p < \overline{t}_{s_i^{l'}}),$$

$$\text{(iv)} \ \ x_{s_i^l s_j^{l'} k} = 0 \quad \text{ if } \quad b_k < \bar{t}_{s_i^l} < b_k + p \vee \bar{t}_{s_j^{l'}} < b_k + p \vee (\bar{t}_{s_j^{l'}} - \bar{t}_{s_i^l} - t_{s_i^l s_j^{l'}} < p \wedge \bar{t}_{s_i^l} < b_k \wedge \bar{t}_{s_j^{l'}} > b_k + p)$$

Durch (i) stellen Schulz & Vléek sicher, dass kein Bus das Depot vor dem Schichtbeginn a_k verlassen kann. Mit (ii) sorgen Schulz & Vléek dafür, dass kein Bus eine Tour bedienen kann, die nach dem Schichtende enden würde. Durch (iii) stellen Schulz & Vléek sicher, dass a) kein Bus an einer Haltestelle während einer Pause sein darf und b) keine Fahrt zwischen zwei Haltestellen vor der Pause beginnen und nach der Pause enden darf. (iv) spiegelt (iii) für den Fall wieder, dass es sich bei der Fahrt um einen Wechsel zwischen Buslinien handelt. Dabei lassen Schulz & Vléek die Fahrt nur mit dem Zusatz zu (iii) stattfinden, wenn die Zeitspanne zwischen den beiden Haltestellen groß genug ist, um die Fahrtzeit und die Pausenzeit zu beinhalten.

5 Implementierung des Modells

5.1 Grundlagen der Implementierung

Das Modell von Schulz & Vléek wurde in der Programmiersprache Julia in der Entwicklungsumgebung Visual Studio Code implementiert. Dabei wurde der Code mittels Jupyter Notebooks (.pynb-Dateien) direkt ausführbar gestaltet, sodass zunächst jedes Szenario einzeln aufgebaut und getestet werden konnte. Die Analysen wurden mit einem Apple Macbook Pro mit M1 Pro Prozessor und 16 Gigabyte Arbeitsspeicher ausgeführt. Zum Lösen des Modells wurde der HiGHS Solver verwendet.

Das, dem Modell zugrundeliegende, Graphenmodell (siehe Kapitel 3), sowie die Nachfrage nach Fahrten von und nach einzelnen Haltestellen dieses Netzwerks, wird in der Implementierung mittels eines Testdatensatzes aufgebaut.

Der generierte Datensatz besteht aus folgenden Tabellen (siehe Anhang B.1 für die Daten):

Tabelle B.1 beinhaltet die unterschiedlichen Buslinien inklusive aller sich auf der jeweiligen Linie befindlichen Haltestellen. Für jede Haltestelle sind die Koordinaten (in X- und Y-Richtung), sowie die einzuhaltende Abfahrtzeit festgelegt.

Tabelle B.2 legt fest zu welchen unterschiedlichen Startzeiten die einzelnen Touren je Buslinie vom Depot aus gestartet werden.

Tabelle B.3 legt die Parameter der fiktiven, in dem Betrachtungszeitfenster zur Verfügung stehenden Busse fest. Je Bus sind die Kapazität, sowie die, dem Bus zugeteilten, Schicht- und Pausenzeiten des Busfahrers festgelegt.

Tabelle B.4 stellt eine fiktive Nachfragesituation zu Beginn eines Betrachtungszeitraums dar. Die hier simuliert Nachfragesituation umfasst insgesamt 18 ggf. anpassen, wenn Datensatz nochmal größer wird angemeldete Kundenfahrten.

5.2 Struktur der Implementierung

Die in Kapitel 4 beschriebenen Szenarien wurden jeweils in eigenen Jupyter Notebooks umgesetzt, sodass der Code unmittelbar ausgeführt werden konnte. Die Notebooks sind alle gleich strukturiert aufgebaut: 1. Begonnen wird mit der Einbindung aller relevanter Bibliotheken. 2. Anschließend werden alle, für das Szenario relevante, Eingangsdaten in Form von CSV-Dateien geladen und in pandas Dataframes geschrieben. 3. Alle relevanten Eingabeparameter werden gesetzt. 4. Die Strukturen des Graphenmodells, die Knoten und Kanten, werden aufgebaut. 5. Die szenario-spezifischen Sets A bzw. \bar{A} oder \hat{A} und V bzw. \bar{V} oder \hat{V} werden aufgebaut. 6. Die szenario-spezifische Modelldefinition wird vorgenommen. 7. Das Model wird gelöst und die Parameter-bezogenen Ergebnisse, sowie der Lösungsstatus, der Zielfunktionswert NOCH ANDERE???, die erreichte GAP und Laufzeit ????

werden ausgegeben. 8. Zur grafischen Darstellung wird am Ende ein 3D-Plot ausgegeben, der die gefahrenen Touren im Zeitverlauf darstellt. HIE IRGENDWIE NOCH UNSICHER, OB DAS ALLES IST UND SO BLEIBEN SOLL

Relevante Klassen/Methoden (z.B. für Pfadgenerierung, Kapazitätsprüfung) ????

EVENTUELL ALS GRAFIKEN: Ablaufdiagramm für Code-Struktur und Organigramm für Klassenstruktur

ÜBERALL NOCHMAL DIE VERWIESE AUF DEN ANHANG CHECKEN

5.3 Herausforderungen bei der Umsetzung

Die Übertragung der kompakten, mathematischen Modellformulierung in experimentierfähigen Code war gut durchführbar, brachte allerdings einige Herausforderungen mit sich auf die an dieser Stelle eingegangen wird.

Aufbau der Sets und Indexstrukturen Die wohl größte Herausforderung bei der Übertragung der mathematischen Modellformulierung in experimentierfähgien Code stellte der Aufbau der Sets A, \bar{A}, \hat{A} dar. Die Sets, mit den zu zulässigen, nutzbaren Verbindungen, bilden die Grundlage des Optimierungsproblems und sind daher entscheidend korrekt aufzubauen.

- 1. Aufbau der Sets und Indexstrukturen
 - Herausforderung: die im Paper abstrakt beschriebenen Mengen (A, \bar{A}, \hat{A}) korrekt in Datenstrukturen zu überführen.
 - Schwierigkeit: sicherzustellen, dass die Verbindungen und Knoten konsistent erzeugt werden und den Modellbedingungen entsprechen.
 - Besonders XXXX, da die Sets die Grundlage für alle Nebenbedingungen bilden.
- 2. Zeitabhängige Modellierung
 - Herausforderung: die korrekte Abbildung von Fahrzeiten.
 - Innerhalb einer Linie mussten kumulierte Teilfahrzeiten gebildet werden. Für Verbindungen zwischen Linien war eine Distanz-basierte Fahrzeitberechnung erforderlich.
 - Die saubere Trennung dieser Logiken war essenziell, um das Modell konsistent aufzubauen.
- 3. Interpretation überlappender Kundenfahrten (Szenario 2.C)
 - Theoretische Herausforderung: zu verstehen, wie Rücksprünge innerhalb einer Tour modelllogisch zulässig sind, ohne Kapazitätsbeschränkungen zu verletzen.
 - Praktisch war die Umsetzung durch die klare Bauanleitung der Modellformeln jedoch relativ direkt (Übersetzung in If-Bedingungen).
 - Damit zeigt sich eine Diskrepanz zwischen "Verstehen der Modelllogik" und "Implementierung der Modellformulierung".
- 4. Verifikation der Implementierung

- ohne Reale Daten schwierig -> ausformulieren
- Zwar konnten die Modellgleichungen nahezu 1:1 in JuMP übertragen werden.
- Die Unsicherheit lag jedoch im Aufbau der Sets und deren Interaktion mit den Constraints: Ist die Implementierung tatsächlich identisch zum mathematischen Modell?
- Die Verifikation war eine strukturelle Herausforderung, die sich nicht allein durch das Lösen des Modells (Gap=0.0) beantworten ließ, sondern zusätzlich durch Plausibilitätschecks der Ergebnisse.

5. Skalierbarkeit und Effizienz

- Auch wenn keine großen Instanzen getestet wurden, ist die Skalierbarkeit ein offensichtlicher Knackpunkt für die Weiterentwicklung.
- In der aktuellen Form mit Jupyter Notebooks wäre die Umsetzung bei steigenden Instanzgrößen vermutlich nicht effizient genug, sodass eine funktional modulare Implementierung nötig wäre.

5.4 Verifikation & Validierung

Bei der durchgeführten Implementierung handelt es sich um einen quasi Proof of Concept anhand eines Testdatensatzes, der speziell für dieses Modell erstellt wurde. Daher ist die Implementierung noch mit einem weiteren realitätsnäheren Datensatz zu validieren. Es wird erwartet, dass der größere Anteil des Aufwands für dieses Vorhaben in der Vorverarbeitung der dann zur Verfügung stehenden Daten liegen wird, gefolgt von der Verarbeitung der Daten zu nutzbaren Strukturen.

- Tourenanzahl, Busanzahl, Tourverläufe: Vergleich Paper vs. eigene Lösung
- Abweichungen und deren mögliche Ursachen (z.B. Rundungsfehler, alternative Pfade)
- Validierung der eigenen Implementierung
 - Da MIP Modell mit Gap 0.0 erreicht wurde, ist die Implementierung als validiert anzusehen. ????

Nach der Betrachtung der vorgenommenen Implementierung wird im folgenden Kapitel das Modell selbst diskutiert.

6 Diskussion & Erweiterungsmöglichkeiten des Modells

6.1 Limitierungen des aktuellen Modells

Durch die von Schulz & Vléek dargelegten Annahmen ergeben sich bereits erste Limitierungen des Modells.

Die Annahme, dass der Bus sich mit einer durchschnittlichen Geschwindigkeit bewegt, birgt die erste Einschränkung, da sich je nach Topologie unter Umständen unterschiedliche Geschwindigkeiten und damit Fahrtzeiten zwischen den Stops ergeben.

Auch wird der Einfluss von verkehrsbedingten Verzögerungen nicht mit berücksichtigt. Dies ist durch eine Fallstudie zu untersuchen.

Das von Schulz & Vléek aufgestellt Modell betrachtet die Nachfrage zu Beginn des Betrachtungszeitraums als statisch. Die Länge des Betrachtungszeitraums ist entscheidend für die Eignung als on-demand Modell. Wird ein ganzer Tag im Voraus geplant bringt dies wenig Flexibilität, wohingegen durch einen Planungshorizont von, zum Beispiel, 90 Minuten viel besser auf Nachfrageänderungen reagiert werden kann.

Für eine größere Nähe zum DARP wäre zu untersuchen, inwieweit sich Live-Anfragen die zu einer bereits geplanten Tour hinzufügen lassen.

Die Betrachtung der Betriebskosten wurde in diesem Modell außen vor gelassen und bringt somit den Anspruch weiterer Forschung mit sich. Zu untersuchen wäre so Beispielsweise eine mehrstufige Optimierung, bei der die Grundlage das Modell von Schulz & Vléek biilden würde und darum herum noch die Gesamtkosten des Systems versucht werden zu minimieren.

Schulz & Vléek betrachten das Problem rein aus der Sicht des Betreibers, der versucht so wenig Ressourcen wie möglich einzusetzen, um der Nachfrage gerecht zu werden. Dadurch wird, abhängig von der Topologie des Netzwerks, in diesem Fall jedoch im ländlichen Bereich durch Landstraßen als passend empfunden, der Benzinverbrauch durch eine Reduzierung an gefahrenen Kilometern reduzieren. (CHECK; OB DAS SO IST, EVTL: BEI MEINEM MODELL DURCH AUSGABE DER GESAMTKILOMETER) Interessant wäre daher eine Variante dieses Modells, bei der die Kundensicht auch ein Gewicht hat. So ließe sich die, für die Fahrgäste relevante, Zeit, die sie im Fahrzeug verbringen, betrachten.

6.2 Praxisrelevanz & Umsetzung

Die Ergebnisse der vorgenommenen Implementierung zeigen, dass sich eine Reduktion der Anzahl an benötigten Bussen vornehmen lässt. Dies bildeten den maßgeblichen Indikator für weitere Forschung und Einschränkung des Lösungsraums durch das Näherbringen des Modells an die Realität. **umformulieren** Ebenso

Die Berücksichtigung von Arbeits- und Pausenzeiten der Fahrer im Modell macht das Modell definitiv realitätsnäher und bereiter um in die Realität überführt zu werden. Die Möglichkeit Überstunden oder Notfälle die eine Abweichung von Schicht- bzw. Pausenplan verursachen würden, werden noch nicht berücksichtigt, könnten allerdings zu Beginn jedes Planungszeitraums berücksichtigt werden, wenn die definierten Rechenzeiträume, durch das erneute Einlesen von Eingangsdaten nicht zu lang werden.

Auch die Berücksichtigung von Kapazitäten ist für eine Umsetzung in der Realität unabdingbar.

- Welche Erkenntnisse sind direkt anwendbar?
- Welche Modellannahmen müssen für reale Implementierung angepasst werden?
- Bewertung der Lösung hinsichtlich Kosten, Fahrgastkomfort, Nachhaltigkeit

6.3 Mögliche Erweiterungen

- Liniennetz überschneidet sich nicht, daher auch keine Linien übergreifenden Touren möglich
- unterscheidlich abzufahrende Stops (Linienzusammensetzung) je Tour
- Mehrere Depots: Flexibilität bei der Tourenplanung, bessere Abdeckung
- Depotzuordnung optimieren
- Zeitfensterbasierte oder dynamische Nachfrage
- Realtime-Routing mit Rolling Horizon
 - -dynamische Änderungen der Fahrzeiten zwischen den Stops sie Abstract von Lian et al. $\left(2023\right)$
- Erweiterung um Ladezeiten, Servicelevel-Bedingungen
- größerer Datensatz

7 Fazit & Ausblick

- 6.1 Wichtigste Erkenntnisse Implementierung gelungen / Modell nachvollziehbar repliziert Validierung zeigt Übereinstimmungen und Grenzen Modell zeigt Potenzial bei Ressourceneinsparung und Flexibilisierung
- 6.2 Bewertung der Zielerreichung Rückblick auf Ziele aus Kapitel 1.3 Welche Ziele wurden vollständig erreicht? Wo gab es Einschränkungen?
- 6.3 Zukunftsperspektiven Technische Weiterentwicklung des Modells Einsatz in kommunalen Verkehrsprojekten Integration in Planungssoftware / Fahrplangenerierungssysteme

Literatur

- (Edward) Kim, M., J. Levy und P. Schonfeld (Dez. 2019). "Optimal zone sizes and headways for flexible-route bus services". In: *Transportation Research Part B: Methodological* 130, S. 67–81. DOI: 10.1016/j.trb.2019.10.006. URL: https://linkinghub.elsevier.com/retrieve/pii/S019126151831155X (besucht am 09.08.2025).
- Abdelwahed, A., P. L. Van Den Berg, T. Brandt und W. Ketter (Juni 2023). "Balancing convenience and sustainability in public transport through dynamic transit bus networks". In: *Transportation Research Part C: Emerging Technologies* 151, S. 104100. DOI: 10.1016/j.trc.2023.104100. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X2300089X (besucht am 07.08.2025).
- Abe, R. (Aug. 2019). "Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems". In: *Transportation Research Part A: Policy and Practice* 126, S. 94–113. DOI: 10.1016/j.tra.2019.06.003. URL: https://linkinghub.elsevier.com/retrieve/pii/S0965856418312795 (besucht am 12.08.2025).
- Agatz, N. A., A. L. Erera, M. W. Savelsbergh und X. Wang (Nov. 2011). "Dynamic ride-sharing: A simulation study in metro Atlanta". In: *Transportation Research Part B: Methodological* 45.9, S. 1450–1464. DOI: 10.1016/j.trb.2011.05.017. URL: https://linkinghub.elsevier.com/retrieve/pii/S0191261511000671 (besucht am 14.08.2025).
- Agra, A., M. Christiansen, R. Figueiredo, L. M. Hvattum, M. Poss und C. Requejo (März 2013). "The robust vehicle routing problem with time windows". In: *Computers & Operations Research* 40.3, S. 856–866. DOI: 10.1016/j.cor.2012.10.002. URL: https://linkinghub.elsevier.com/retrieve/pii/S0305054812002134 (besucht am 19.08.2025).
- Alinaghian, M., M. Jamshidian und E. B. Tirkolaee (2. Nov. 2022). "The time-dependent multi-depot fleet size and mix green vehicle routing problem: improved adaptive large neighbourhood search". In: Optimization 71.11. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/02331934.2021.2010078, S. 3165–3193. DOI: 10.1080/02331934.2021.2010078. URL: https://doi.org/10.1080/02331934.2021.2010078 (besucht am 19.08.2025).
- Alonso-González, M. J., O. Cats, N. van Oort, S. Hoogendoorn-Lanser und S. Hoogendoorn (1. Aug. 2021). "What are the determinants of the willingness to share rides in pooled on-demand services?" In: *Transportation* 48.4, S. 1733–1765. DOI: 10.1007/s11116-020-10110-2. URL: https://doi.org/10.1007/s11116-020-10110-2 (besucht am 14.08.2025).
- Alonso-González, M. J., T. Liu, O. Cats, N. Van Oort und S. Hoogendoorn (Dez. 2018). "The Potential of Demand-Responsive Transport as a Complement to Public Transport: An Assessment Framework and an Empirical Evaluation". In: *Transportation Research Record: Journal of the Transportation Research Board* 2672.8, S. 879–889. DOI: 10.1177/0361198118790842. URL: https://journals.sagepub.com/doi/10.1177/0361198118790842 (besucht am 12.08.2025).
- Alonso-González, M. J., N. Van Oort, O. Cats, S. Hoogendoorn-Lanser und S. Hoogendoorn (Juni 2020). "Value of time and reliability for urban pooled on-demand services". In: *Transportation Research Part C: Emerging Technologies* 115. Publisher: Elsevier BV, S. 102621. DOI: 10.1016/j.trc.2020.102621. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X1931589X (besucht am 05.08.2025).

- Alonso-Mora, J., S. Samaranayake, A. Wallar, E. Frazzoli und D. Rus (17. Jan. 2017). "On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment". In: *Proceedings of the National Academy of Sciences* 114.3, S. 462–467. DOI: 10.1073/pnas.1611675114. URL: https://pnas.org/doi/full/10.1073/pnas.1611675114 (besucht am 14.08.2025).
- Amiri, A., S. H. Amin und H. Zolfagharinia (März 2023). "A bi-objective green vehicle routing problem with a mixed fleet of conventional and electric trucks: Considering charging power and density of stations". In: *Expert Systems with Applications* 213, S. 119228. DOI: 10.1016/j.eswa.2022.119228. URL: https://linkinghub.elsevier.com/retrieve/pii/S0957417422022461 (besucht am 19.08.2025).
- Amor, F. B., T. Loukil und I. Boujelben (Juni 2019). "The new formulation for the Integrated Diala-Ride Problem with Timetabled fixed route service". In: 2019 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA). 2019 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA). ISSN: 2166-7373, S. 1–6. DOI: 10.1109/LOGISTIQUA.2019.8907255. URL: https://ieeexplore.ieee.org/document/8907255/ (besucht am 16.08.2025).
- Anityasari, M., H. C. Rinardi und I. D. A. A. Warmadewanthi (1. März 2025). "Analysing medical waste transportation using periodic vehicle routing problem for Surabaya public health facilities". In: Journal of Material Cycles and Waste Management 27.2, S. 830–847. DOI: 10.1007/s10163-024-02124-0. URL: https://doi.org/10.1007/s10163-024-02124-0 (besucht am 19.08.2025).
- Anuar, W. K., L. S. Lee, H.-V. Seow und S. Pickl (Jan. 2021). "A Multi-Depot Vehicle Routing Problem with Stochastic Road Capacity and Reduced Two-Stage Stochastic Integer Linear Programming Models for Rollout Algorithm". In: *Mathematics* 9.13. Publisher: Multidisciplinary Digital Publishing Institute, S. 1572. DOI: 10.3390/math9131572. URL: https://www.mdpi.com/2227-7390/9/13/1572 (besucht am 19.08.2025).
- Arenas-Vasco, A., J. C. Rivera und M. G. Baldoquín (3. Okt. 2024). "Effect of formulations over a Periodic Capacitated Vehicle Routing Problem with multiple depots, heterogeneous fleet, and hard time-windows". In: *PLOS ONE* 19.10. Publisher: Public Library of Science, e0311303. DOI: 10.1371/journal.pone.0311303. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311303 (besucht am 19.08.2025).
- Asatryan, H., D. Gaul, H. Gottschalk, K. Klamroth und M. Stiglmayr (20. Nov. 2023). *Ridepooling and public bus services: A comparative case-study*. DOI: 10.48550/arXiv.2302.01709. arXiv: 2302.01709 [cs]. URL: http://arxiv.org/abs/2302.01709 (besucht am 14.08.2025).
- Azadeh, A. und H. Farrokhi-Asl (4. März 2019). "The close-open mixed multi depot vehicle routing problem considering internal and external fleet of vehicles". In: *Transportation Letters* 11.2. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/19427867.2016.1274468, S. 78–92. DOI: 10.1080/19427867.2016.1274468. URL: https://doi.org/10.1080/19427867.2016.1274468 (besucht am 19.08.2025).
- Babaee Tirkolaee, E., P. Abbasian, M. Soltani und S. A. Ghaffarian (1. Jan. 2019). "Developing an applied algorithm for multi-trip vehicle routing problem with time windows in urban waste collection: A case study". In: Waste Management & Research 37.1. Publisher: SAGE Publications Ltd STM, S. 4–13. DOI: 10.1177/0734242X18807001. URL: https://doi.org/10.1177/0734242X18807001 (besucht am 19.08.2025).
- Bakas, I., R. Drakoulis, N. Floudas, P. Lytrivis und A. Amditis (2016). "A Flexible Transportation Service for the Optimization of a Fixed-route Public Transport Network". In: *Transportation Research Procedia* 14, S. 1689–1698. DOI: 10.1016/j.trpro.2016.05.134. URL: https://linkinghub.elsevier.com/retrieve/pii/S2352146516301351 (besucht am 07.08.2025).
- Banerjee, S., S. Atta und G. Sen (Dez. 2023). "Single Depot Heterogeneous Capacitated Vehicle Routing Problem with Simultaneous Delivery and PickUp for Disaster Management Systems". In: 2023

- IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). 2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), S. 1758–1762. DOI: 10.1109/IEEM58616.2023.10406762. URL: https://ieeexplore.ieee.org/document/10406762/ (besucht am 19.08.2025).
- Barrero, L., F. Robledo, P. Romero und R. Viera (2021). "A GRASP/VND Heuristic for the Heterogeneous Fleet Vehicle Routing Problem with Time Windows". In: *Variable Neighborhood Search*. Hrsg. von N. Mladenovic, A. Sleptchenko, A. Sifaleras und M. Omar. Cham: Springer International Publishing, S. 152–165. DOI: 10.1007/978-3-030-69625-2_12.
- Basu, R., A. Araldo, A. P. Akkinepally, B. H. Nahmias Biran, K. Basak, R. Seshadri, N. Deshmukh, N. Kumar, C. L. Azevedo und M. Ben-Akiva (Dez. 2018). "Automated Mobility-on-Demand vs. Mass Transit: A Multi-Modal Activity-Driven Agent-Based Simulation Approach". In: *Transportation Research Record: Journal of the Transportation Research Board* 2672.8, S. 608–618. DOI: 10.1177/0361198118758630. URL: https://journals.sagepub.com/doi/10.1177/0361198118758630 (besucht am 14.08.2025).
- Bauchinger, L., A. Reichenberger, B. Goodwin-Hawkins, J. Kobal, M. Hrabar und T. Oedl-Wieser (Jan. 2021). "Developing Sustainable and Flexible Rural—Urban Connectivity through Complementary Mobility Services". In: Sustainability 13.3. Number: 3 Publisher: Multidisciplinary Digital Publishing Institute, S. 1280. DOI: 10.3390/su13031280. URL: https://www.mdpi.com/2071-1050/13/3/1280 (besucht am 31.07.2025).
- Belhaiza, S. (Nov. 2017). "A data driven hybrid heuristic for the dial-a-ride problem with time windows". In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI). 2017 IEEE Symposium Series on Computational Intelligence (SSCI), S. 1–8. DOI: 10.1109/SSCI.2017.8285366. URL: https://ieeexplore.ieee.org/document/8285366/ (besucht am 19.08.2025).
- Belhaiza, S., R. M'Hallah und M. Al-Qarni (Dez. 2023). "A data-driven game theoretic multi-objective hybrid algorithm for the Dial-A-Ride Problem with multiple time windows". In: *Transportation Research Part A: Policy and Practice* 178, S. 103862. DOI: 10.1016/j.tra.2023.103862. URL: https://linkinghub.elsevier.com/retrieve/pii/S0965856423002823 (besucht am 19.08.2025).
- Ben Abdelkrim, O. k., F. Maliki und M. Souier (Sep. 2023). "Mathematical Model for Dial a Ride Problem with Time Windows, Case: Hemodialysis Patients Transportation". In: 2023 International Conference on Decision Aid Sciences and Applications (DASA). 2023 International Conference on Decision Aid Sciences and Applications (DASA), S. 525–529. DOI: 10.1109/DASA59624.2023. 10286680. URL: https://ieeexplore.ieee.org/document/10286680/ (besucht am 19.08.2025).
- Bernardino, R., J. Janela, C. Martins, M. C. Mourão, L. S. Pinto und F. Rodrigues (2025). "A Multi-Trip Vehicle Routing Problem With Release Dates and Interrelated Periods". In: *Networks* 85.2. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.22258, S. 189–204. DOI: 10.1002/net.22258. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/net.22258 (besucht am 19.08.2025).
- Bernardo, M., B. Du und A. Bezerra Matias (16. März 2023). "Achieving robustness in the capacitated vehicle routing problem with stochastic demands". In: *Transportation Letters* 15.3. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/19427867.2022.2049547, S. 254–268. DOI: 10.1080/19427867.2022.2049547. URL: https://doi.org/10.1080/19427867.2022.2049547 (besucht am 19.08.2025).
- Bettinelli, A., A. Ceselli und G. Righini (Aug. 2011). "A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows". In: *Transportation Research Part C: Emerging Technologies* 19.5, S. 723–740. DOI: 10.1016/j.trc.2010.07.008. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X10001178 (besucht am 19.08.2025).
- Birtolo, C., E. Occhionero und F. Torre (2025). "Capacity Vehicle Routing Problem with Time Windows: Simulation Tool for Footprint Network Design". In: *Intelligent Transport Systems*. Hrsg. von

- A. Kocian, P. Milazzo, A. L. Henriques Martins, M. Nanni und L. Pappalardo. Cham: Springer Nature Switzerland, S. 83–97. DOI: 10.1007/978-3-031-86370-7 6.
- Bischoff, J., M. Maciejewski und K. Nagel (Okt. 2017). "City-wide shared taxis: A simulation study in Berlin". In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). ISSN: 2153-0017, S. 275-280. DOI: 10.1109/ITSC.2017.8317926. URL: https://ieeexplore.ieee.org/document/8317926/ (besucht am 14.08.2025).
- Braekers, K., K. Ramaekers und I. Van Nieuwenhuyse (Sep. 2016). "The vehicle routing problem: State of the art classification and review". In: *Computers & Industrial Engineering* 99, S. 300–313. DOI: 10.1016/j.cie.2015.12.007. URL: https://linkinghub.elsevier.com/retrieve/pii/S0360835215004775 (besucht am 16.08.2025).
- Brake, J., J. D. Nelson und S. Wright (Dez. 2004). "Demand responsive transport: towards the emergence of a new market segment". In: *Journal of Transport Geography* 12.4, S. 323–337. DOI: 10.1016/j.jtrangeo.2004.08.011. URL: https://linkinghub.elsevier.com/retrieve/pii/S0966692304000651 (besucht am 07.08.2025).
- Bräysy, O., P. P. Porkka, W. Dullaert, P. P. Repoussis und C. D. Tarantilis (Mai 2009). "A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows". In: *Expert Systems with Applications* 36.4, S. 8460–8475. DOI: 10.1016/j.eswa.2008.10.040. URL: https://linkinghub.elsevier.com/retrieve/pii/S0957417408007628 (besucht am 19.08.2025).
- Calabrò, G., M. L. Pira, N. Giuffrida, G. Inturri, M. Ignaccolo und G. H. D. A. Correia (2023). "Designing demand responsive transport services in small-sized cities using an agent-based model". In: *Transportation Research Procedia* 69, S. 759–766. DOI: 10.1016/j.trpro.2023.02.233. URL: https://linkinghub.elsevier.com/retrieve/pii/S2352146523002466 (besucht am 09.08.2025).
- Carpaneto, G., M. Dell'amico, M. Fischetti und P. Toth (1989). "A branch and bound algorithm for the multiple depot vehicle scheduling problem". In: *Networks* 19.5. _eprint: https://onlinelibrary.wiley.com/doi/pdf/1 S. 531-548. DOI: 10.1002/net.3230190505. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230190505 (besucht am 19.08.2025).
- Charikar, M. und B. Raghavachari (Nov. 1998). "The finite capacity dial-a-ride problem". In: *Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)*. 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280). ISSN: 0272-5428, S. 458-467. DOI: 10.1109/SFCS.1998.743496. URL: https://ieeexplore.ieee.org/document/743496/ (besucht am 19.08.2025).
- Charisis, A., C. Iliopoulou und K. Kepaptsoglou (1. Dez. 2018). "DRT route design for the first/last mile problem: model and application to Athens, Greece". In: *Public Transport* 10.3, S. 499–527. DOI: 10.1007/s12469-018-0188-0. URL: https://doi.org/10.1007/s12469-018-0188-0 (besucht am 12.08.2025).
- Chau, M. L. Y., D. Koutsompina und K. Gkiotsalitis (Jan. 2024). "The Electric Vehicle Scheduling Problem for Buses in Networks with Multi-Port Charging Stations". In: Sustainability 16.3. Publisher: Multidisciplinary Digital Publishing Institute, S. 1305. DOI: 10.3390/su16031305. URL: https://www.mdpi.com/2071-1050/16/3/1305 (besucht am 19.08.2025).
- Chen, X., H. Zheng, Z. Wang und X. Chen (1. Aug. 2021). "Exploring impacts of on-demand ride-splitting on mobility via real-world ridesourcing data and questionnaires". In: *Transportation* 48.4, S. 1541–1561. DOI: 10.1007/s11116-018-9916-1. URL: https://doi.org/10.1007/s11116-018-9916-1 (besucht am 12.08.2025).
- Cinar, D., K. Gakis und P. M. Pardalos (1. Aug. 2015). "Reduction of CO2 Emissions in Cumulative Multi-Trip Vehicle Routing Problems with Limited Duration". In: *Environmental Modeling & As-*

- sessment 20.4, S. 273–284. DOI: 10.1007/s10666-014-9434-2. URL: https://doi.org/10.1007/s10666-014-9434-2 (besucht am 19.08.2025).
- Cirella, G., M. Bak, A. Kozlak, B. Pawłowska und P. Borkowski (März 2019). "Transport innovations for elderly people". In: *Research in Transportation Business & Management* 30. Publisher: Elsevier BV, S. 100381. DOI: 10.1016/j.rtbm.2019.100381. URL: https://linkinghub.elsevier.com/retrieve/pii/S2210539519300823 (besucht am 05.08.2025).
- Cordeau, J.-F. und G. Laporte (Juli 2003). "A tabu search heuristic for the static multi-vehicle diala-ride problem". In: *Transportation Research Part B: Methodological* 37.6, S. 579–594. DOI: 10. 1016/S0191-2615(02)00045-0. URL: https://linkinghub.elsevier.com/retrieve/pii/S0191261502000450 (besucht am 19.08.2025).
- Coutinho, F. M., N. van Oort, Z. Christoforou, M. J. Alonso-González, O. Cats und S. Hoogendoorn (1. Nov. 2020). "Impacts of replacing a fixed public transport line by a demand responsive transport system: Case study of a rural area in Amsterdam". In: Research in Transportation Economics. Thredbo 16 conference 83, S. 100910. DOI: 10.1016/j.retrec.2020.100910. URL: https://www.sciencedirect.com/science/article/pii/S0739885920301086 (besucht am 31.07.2025).
- D'Orso, G., V. Torrisi, P. Leonardi, M. Migliore, M. Ignaccolo und R. D'Angelo (2025). "Transforming travel experience in low density areas: evidence from a DRT pilot study and simulation model". In: *Transportation Research Procedia* 90, S. 895–902. DOI: 10.1016/j.trpro.2025.06.041. URL: https://linkinghub.elsevier.com/retrieve/pii/S2352146525005502 (besucht am 09.08.2025).
- Daduna, J. R. (2020). "Evolution of Public Transport in Rural Areas New Technologies and Digitization". In: *Design, User Experience, and Usability. Case Studies in Public and Personal Interactive Systems.* Hrsg. von A. Marcus und E. Rosenzweig. Cham: Springer International Publishing, S. 82–99. DOI: 10.1007/978-3-030-49757-6_6.
- Daniels, R. und C. Mulley (1. März 2012). "Flexible Transport Services: Overcoming Barriers to Implementation in Low-Density Urban Areas". In: *Urban Policy and Research* 30.1. Publisher: Routledge _eprint: https://doi.org/10.1080/08111146.2012.660872, S. 59–76. DOI: 10.1080/08111146.2012.660872. URL: https://doi.org/10.1080/08111146.2012.660872 (besucht am 12.08.2025).
- Dao-Tuan, A. und A. Nguyen-Thi-Ngoc (Nov. 2018). "A multi-criteria optimization model for emission-concerned multi-depot vehicle routing problem with heterogeneous fleet". In: 2018 International Conference on Applied Smart Systems (ICASS). 2018 International Conference on Applied Smart Systems (ICASS), S. 1–7. DOI: 10.1109/ICASS.2018.8651943. URL: https://ieeexplore.ieee.org/document/8651943/ (besucht am 19.08.2025).
- Das, S. S., B. Maitra und M. Boltze (Okt. 2012). "Planning of Fixed-Route Fixed-Schedule Feeder Service to Bus Stops in Rural India". In: *Journal of Transportation Engineering* 138.10. Publisher: American Society of Civil Engineers (ASCE), S. 1274–1281. DOI: 10.1061/(asce)te.1943-5436. 0000419. URL: https://ascelibrary.org/doi/10.1061/%28ASCE%29TE.1943-5436.0000419 (besucht am 31.07.2025).
- Davison, L., M. Enoch, T. Ryley, M. Quddus und C. Wang (Jan. 2014). "A survey of Demand Responsive Transport in Great Britain". In: *Transport Policy* 31, S. 47–54. DOI: 10.1016/j.tranpol. 2013.11.004. URL: https://linkinghub.elsevier.com/retrieve/pii/S0967070X13001704 (besucht am 07.08.2025).
- Deleplanque, S. und A. Quilliot (2013). "Dial-a-Ride Problem with time windows, transshipments, and dynamic transfer points". In: *IFAC Proceedings Volumes* 46.9, S. 1256–1261. DOI: 10.3182/20130619-3-RU-3018.00435. URL: https://linkinghub.elsevier.com/retrieve/pii/S1474667016344640 (besucht am 19.08.2025).
- Diana, M., L. Quadrifoglio und C. Pronello (Aug. 2009). "A methodology for comparing distances traveled by performance-equivalent fixed-route and demand responsive transit services". In: *Trans*-

- portation Planning and Technology 32.4, S. 377-399. DOI: 10.1080/03081060903119618. URL: http://www.tandfonline.com/doi/abs/10.1080/03081060903119618 (besucht am 09.08.2025).
- Dytckov, S., J. A. Persson, F. Lorig und P. Davidsson (Jan. 2022). "Potential Benefits of Demand Responsive Transport in Rural Areas: A Simulation Study in Lolland, Denmark". In: *Sustainability* 14.6. Publisher: Multidisciplinary Digital Publishing Institute, S. 3252. DOI: 10.3390/su14063252. URL: https://www.mdpi.com/2071-1050/14/6/3252 (besucht am 09.08.2025).
- Elting, S. und J. F. Ehmke (2021). "Potential of Shared Taxi Services in Rural Areas A Case Study". In: *Transportation Research Procedia* 52, S. 661–668. DOI: 10.1016/j.trpro.2021.01.079. URL: https://linkinghub.elsevier.com/retrieve/pii/S2352146521001253 (besucht am 14.08.2025).
- Engelhardt, R., F. Dandl und K. Bogenberger (29. Juli 2020). Speed-up Heuristic for an On-Demand Ride-Pooling Algorithm. DOI: 10.48550/arXiv.2007.14877. arXiv: 2007.14877 [eess]. URL: http://arxiv.org/abs/2007.14877 (besucht am 14.08.2025).
- Engelhardt, R., H. S. Mahmassani und K. Bogenberger (10. Aug. 2023). Predictive Vehicle Repositioning for On-Demand Ride-Pooling Services. DOI: 10.48550/arXiv.2308.05507. arXiv: 2308.05507 [eess]. URL: http://arxiv.org/abs/2308.05507 (besucht am 14.08.2025).
- Erdeş, H. und S. E. Kesen (2024). "Multi-depot Electric Vehicle Routing Problem with Half-Open Routes and Rotations: A Mathematical Formulation". In: Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments. Hrsg. von M. Thürer, R. Riedel, G. von Cieminski und D. Romero. Cham: Springer Nature Switzerland, S. 274–290. DOI: 10.1007/978-3-031-71645-4_19.
- Fadda, P., S. Mancini, P. Serra und G. Fancello (Jan. 2023). "The Heterogeneous Fleet Vehicle Routing Problem with Draft Limits". In: *Computers & Operations Research* 149, S. 106024. DOI: 10.1016/j.cor.2022.106024. URL: https://linkinghub.elsevier.com/retrieve/pii/S0305054822002544 (besucht am 19.08.2025).
- Fagnant, D. J. und K. M. Kockelman (1. Jan. 2018). "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas". In: *Transportation* 45.1, S. 143–158. DOI: 10.1007/s11116-016-9729-z. URL: https://doi.org/10.1007/s11116-016-9729-z (besucht am 14.08.2025).
- Fehn, F., R. Engelhardt, M. Margreiter und K. Bogenberger (1. Okt. 2023). Ride-Parcel-Pooling: Integrating On-Demand Passenger Transportation and City Logistics.
- Fernando, W. M., A. Thibbotuwawa, H. N. Perera und R. Chandima Ratnayake (Dez. 2022). "Applying a Capacitated Heterogeneous Fleet Vehicle Routing Problem with Multiple Depots Model to Optimize a Retail Chain Distribution Network". In: 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), S. 0588–0592. DOI: 10.1109/IEEM55944.2022.9989636. URL: https://ieeexplore.ieee.org/document/9989636 (besucht am 19.08.2025).
- Fielbaum, A., A. Tirachini und J. Alonso-Mora (Dez. 2024). "Improving public transportation via line-based integration of on-demand ridepooling". In: *Transportation Research Part A: Policy and Practice* 190, S. 104289. DOI: 10.1016/j.tra.2024.104289. URL: https://linkinghub.elsevier.com/retrieve/pii/S0965856424003379 (besucht am 09.08.2025).
- Filippi, C., G. Guastaroba, L. Peirano und M. G. Speranza (2024). Exploiting the Flexibility of Modular Buses in an Urban Transit System. DOI: 10.2139/ssrn.4902459. URL: https://www.ssrn.com/abstract=4902459 (besucht am 07.08.2025).
- Gal, A., A. Mandelbaum, F. Schnitzler, A. Senderovich und M. Weidlich (März 2017). "Traveling time prediction in scheduled transportation with journey segments". In: *Information Systems* 64, S. 266–

- 280. DOI: 10.1016/j.is.2015.12.001. URL: https://linkinghub.elsevier.com/retrieve/pii/S0306437915002112 (besucht am 07.08.2025).
- Galarza Montenegro, B. D., K. Sörensen und P. Vansteenwegen (Juni 2021). "A large neighborhood search algorithm to optimize a demand-responsive feeder service". In: *Transportation Research Part C: Emerging Technologies* 127, S. 103102. DOI: 10.1016/j.trc.2021.103102. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X21001236 (besucht am 09.08.2025).
- (2024). "A demand-responsive feeder service with a maximum headway at mandatory stops". In: Networks 83.1. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.22185, S. 100-130.
 DOI: 10.1002/net.22185. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/net.22185 (besucht am 09.08.2025).
- Garus, A., A. Mourtzouchou, J. Suarez, G. Fontaras und B. Ciuffo (2024). "Exploring Sustainable Urban Transportation: Insights from Shared Mobility Services and Their Environmental Impact". In: *Smart Cities* 7.3. Publisher: Multidisciplinary Digital Publishing Institute (MDPI), S. 1199–1220. DOI: 10.3390/smartcities7030051.
- Gintner, V., N. Kliewer und L. Suhl (1. Aug. 2005). "Solving large multiple-depot multiple-vehicle-type bus scheduling problems in practice". In: *OR Spectrum* 27.4, S. 507–523. DOI: 10.1007/s00291-005-0207-9. URL: https://doi.org/10.1007/s00291-005-0207-9 (besucht am 19.08.2025).
- Giuffrida, N., M. Le Pira, G. Inturri und M. Ignaccolo (März 2021). "Addressing the public transport ridership/coverage dilemma in small cities: A spatial approach". In: Case Studies on Transport Policy 9.1, S. 12–21. DOI: 10.1016/j.cstp.2020.06.008. URL: https://linkinghub.elsevier.com/retrieve/pii/S2213624X20300638 (besucht am 09.08.2025).
- Gkiotsalitis, K., C. Iliopoulou und K. Kepaptsoglou (Apr. 2023). "An exact approach for the multi-depot electric bus scheduling problem with time windows". In: *European Journal of Operational Research* 306.1, S. 189–206. DOI: 10.1016/j.ejor.2022.07.017. URL: https://linkinghub.elsevier.com/retrieve/pii/S0377221722005707 (besucht am 19.08.2025).
- Gschwind, T. und S. Irnich (Mai 2015). "Effective Handling of Dynamic Time Windows and Its Application to Solving the Dial-a-Ride Problem". In: *Transportation Science* 49.2, S. 335–354. DOI: 10.1287/trsc.2014.0531. URL: https://pubsonline.informs.org/doi/10.1287/trsc.2014.0531 (besucht am 19.08.2025).
- Guiver, J., L. Lumsdon, R. Weston und M. Ferguson (Juli 2007). "Do buses help meet tourism objectives? The contribution and potential of scheduled buses in rural destination areas". In: *Transport Policy* 14.4. Publisher: Elsevier BV, S. 275–282. DOI: 10.1016/j.tranpol.2007.02.006. URL: https://linkinghub.elsevier.com/retrieve/pii/S0967070X07000157 (besucht am 05.08.2025).
- Guo, H., J. Wang, J. Sun und X. Mao (11. Mai 2024). "Multi-objective green vehicle scheduling problem considering time window and emission factors in ship block transportation". In: *Scientific Reports* 14.1. Publisher: Nature Publishing Group, S. 10796. DOI: 10.1038/s41598-024-61578-2. URL: https://www.nature.com/articles/s41598-024-61578-2 (besucht am 19.08.2025).
- Guo, R., W. Guan, M. Vallati und W. Zhang (Sep. 2023). "Modular Autonomous Electric Vehicle Scheduling for Customized On-Demand Bus Services". In: *IEEE Transactions on Intelligent Transportation Systems* 24.9, S. 10055–10066. DOI: 10.1109/TITS.2023.3271690. URL: https://ieeexplore.ieee.org/document/10122470/ (besucht am 12.08.2025).
- Häll, C. H., H. Andersson, J. T. Lundgren und P. Värbrand (1. Mai 2009). "The Integrated Diala-Ride Problem". In: *Public Transport* 1.1, S. 39–54. DOI: 10.1007/s12469-008-0006-1. URL: https://doi.org/10.1007/s12469-008-0006-1 (besucht am 17.08.2025).
- Häme, L. (Feb. 2011). "An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows". In: European Journal of Operational Research 209.1, S. 11–22. DOI:

- 10.1016/j.ejor.2010.08.021. URL: https://linkinghub.elsevier.com/retrieve/pii/S0377221710005588 (besucht am 19.08.2025).
- Hassan, S., I. Ali und M. N. Fors (7. März 2021). "The Integrated Dial-A-Ride-Problem: Fixed Route Selection". In: *Proceedings of the International Conference on Industrial Engineering and Operations Management*. 11th Annual International Conference on Industrial Engineering and Operations Management. Singapore, Singapore: IEOM Society International. DOI: 10.46254/AN11.20210510. URL: https://index.ieomsociety.org/index.cfm/article/view/ID/882 (besucht am 19.08.2025).
- Hatzenbühler, J., O. Cats und E. Jenelius (1. Apr. 2022). "Network design for line-based autonomous bus services". In: *Transportation* 49.2, S. 467–502. DOI: 10.1007/s11116-021-10183-7. URL: https://doi.org/10.1007/s11116-021-10183-7 (besucht am 07.08.2025).
- Hazan, J., N. Lang, A. Wegscheider und B. Fassenot (o. D.). "On-Demand Transit Can Unlock Urban Mobility". In: ().
- Heinitz, F. (2022). "Flexible Integrated Transport Systems' Potential to Unleash Net Benefits in Rural Areas". In: CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure. Hrsg. von C. Ha-Minh, A. M. Tang, T. Q. Bui, X. H. Vu und D. V. K. Huynh. Singapore: Springer Nature, S. 1623–1632. DOI: 10.1007/978-981-16-7160-9_164.
- Ho, S. C., W. Szeto, Y.-H. Kuo, J. M. Leung, M. Petering und T. W. Tou (Mai 2018). "A survey of dial-a-ride problems: Literature review and recent developments". In: *Transportation Research Part B: Methodological* 111, S. 395–421. DOI: 10.1016/j.trb.2018.02.001. URL: https://linkinghub.elsevier.com/retrieve/pii/S0191261517304484 (besucht am 16.08.2025).
- Huang, A., Z. Dou, L. Qi und L. Wang (Dez. 2020). "Flexible Route Optimization for Demand-Responsive Public Transit Service". In: *Journal of Transportation Engineering, Part A: Systems* 146.12, S. 04020132. DOI: 10.1061/JTEPBS.0000448. URL: https://ascelibrary.org/doi/10.1061/JTEPBS.0000448 (besucht am 12.08.2025).
- Huang, N., H. Qin, Y. Du und L. Wang (Nov. 2024). "An exact algorithm for the multi-trip vehicle routing problem with time windows and multi-skilled manpower". In: *European Journal of Operational Research* 319.1, S. 31–49. DOI: 10.1016/j.ejor.2024.06.025. URL: https://linkinghub.elsevier.com/retrieve/pii/S0377221724004739 (besucht am 19.08.2025).
- Huisman, D., R. Freling und A. P. M. Wagelmans (Nov. 2004). "A Robust Solution Approach to the Dynamic Vehicle Scheduling Problem". In: *Transportation Science* 38.4. Publisher: INFORMS, S. 447–458. DOI: 10.1287/trsc.1030.0069. URL: https://pubsonline.informs.org/doi/10.1287/trsc.1030.0069 (besucht am 19.08.2025).
- Inturri, G., N. Giuffrida, M. Ignaccolo, M. Le Pira, A. Pluchino, A. Rapisarda und R. D'Angelo (März 2021). "Taxi vs. demand responsive shared transport systems: An agent-based simulation approach". In: *Transport Policy* 103, S. 116–126. DOI: 10.1016/j.tranpol.2021.01.002. URL: https://linkinghub.elsevier.com/retrieve/pii/S0967070X21000081 (besucht am 12.08.2025).
- Jäger, B., C. Brickwedde und M. Lienkamp (Dez. 2018). "Multi-Agent Simulation of a Demand-Responsive Transit System Operated by Autonomous Vehicles". In: *Transportation Research Record: Journal of the Transportation Research Board* 2672.8, S. 764–774. DOI: 10.1177/0361198118786644. URL: https://journals.sagepub.com/doi/10.1177/0361198118786644 (besucht am 12.08.2025).
- Jaw, J.-J., A. R. Odoni, H. N. Psaraftis und N. H. Wilson (Juni 1986). "A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows". In: *Transportation Research Part B: Methodological* 20.3, S. 243–257. DOI: 10.1016/0191-2615(86) 90020-2. URL: https://linkinghub.elsevier.com/retrieve/pii/0191261586900202 (besucht am 19.08.2025).
- Jiang, X., S. Long, Y. Liu, F. Meng und X. Luan (Juni 2025). "Integrated Optimization of Vehicle Scheduling and Passenger Assignment of Demand-Responsive Transit and Conventional Buses under Urban Rail Transit Disruptions". In: Journal of Transportation Engineering, Part A: Systems 151.6,

- S. 04025037. DOI: 10.1061/JTEPBS.TEENG-8863. URL: https://ascelibrary.org/doi/10.1061/JTEPBS.TEENG-8863 (besucht am 12.08.2025).
- Jiménez, F. und A. Román (Jan. 2016). "Urban bus fleet-to-route assignment for pollutant emissions minimization". In: *Transportation Research Part E: Logistics and Transportation Review* 85, S. 120–131. DOI: 10.1016/j.tre.2015.11.003. URL: https://linkinghub.elsevier.com/retrieve/pii/S1366554515002069 (besucht am 07.08.2025).
- Jung, J., R. Jayakrishnan und J. Y. Park (2016). "Dynamic Shared-Taxi Dispatch Algorithm with Hybrid-Simulated Annealing". In: Computer-Aided Civil and Infrastructure Engineering 31.4. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12157, S. 275–291. DOI: 10.1111/mice.12157. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12157 (besucht am 14.08.2025).
- Kim, M. E. und P. Schonfeld (1. März 2012). "Conventional, Flexible, and Variable-Type Bus Services". In: *Journal of Transportation Engineering* 138, S. 1–11. DOI: 10.1061/(ASCE) TE.1943-5436. 0000326.
- Kim, M. (und A. Roche (17. Feb. 2021). "Optimal service zone and headways for flexible-route bus services for multiple periods". In: *Transportation Planning and Technology* 44.2, S. 194–207. DOI: 10.1080/03081060.2020.1868086. URL: https://www.tandfonline.com/doi/full/10.1080/03081060.2020.1868086 (besucht am 09.08.2025).
- Kim, M. (und P. Schonfeld (Sep. 2013). "Integrating bus services with mixed fleets". In: *Transportation Research Part B: Methodological* 55, S. 227–244. DOI: 10.1016/j.trb.2013.06.013. URL: https://linkinghub.elsevier.com/retrieve/pii/S0191261513001124 (besucht am 09.08.2025).
- Kim, T. W., M. Chae und J. W. Yu (Jan. 2025). "Optimization and Implementation Framework for Connected Demand Responsive Transit (DRT) Considering Punctuality". In: Sustainability 17.3. Publisher: Multidisciplinary Digital Publishing Institute, S. 1079. DOI: 10.3390/su17031079. URL: https://www.mdpi.com/2071-1050/17/3/1079 (besucht am 12.08.2025).
- Kim, T. und A. Haghani (1. Jan. 2011). "Model and Algorithm considering Time-Varying Travel Times to Solve Static Multidepot Dial-a-Ride Problem". In: *Transportation Research Record* 2218.1. Publisher: SAGE Publications Inc, S. 68–77. DOI: 10.3141/2218-08. URL: https://doi.org/10.3141/2218-08 (besucht am 19.08.2025).
- Knierim, L. und J. C. Schlüter (Okt. 2021). "The attitude of potentially less mobile people towards demand responsive transport in a rural area in central Germany". In: *Journal of Transport Geography* 96, S. 103202. DOI: 10.1016/j.jtrangeo.2021.103202. URL: https://linkinghub.elsevier.com/retrieve/pii/S0966692321002556 (besucht am 09.08.2025).
- König, A., T. Bonus und J. Grippenkoven (Okt. 2018). "Analyzing Urban Residents' Appraisal of Ridepooling Service Attributes with Conjoint Analysis". In: Sustainability 10.10. Publisher: Multi-disciplinary Digital Publishing Institute, S. 3711. DOI: 10.3390/su10103711. URL: https://www.mdpi.com/2071-1050/10/10/3711 (besucht am 14.08.2025).
- Kritikos, M. N. und G. Ioannou (Juli 2013). "The heterogeneous fleet vehicle routing problem with overloads and time windows". In: *International Journal of Production Economics* 144.1, S. 68–75. DOI: 10.1016/j.ijpe.2013.01.020. URL: https://linkinghub.elsevier.com/retrieve/pii/S0925527313000388 (besucht am 19.08.2025).
- Lauerbach, A., K. Reiter und M. Schmidt (2025). "The Complexity of Counting Turns in the Line-Based Dial-a-Ride Problem". In: *SOFSEM 2025: Theory and Practice of Computer Science*. Hrsg. von R. Královič und V. Kůrková. Cham: Springer Nature Switzerland, S. 85–98. DOI: 10.1007/978–3–031–82697–9_7.
- Leich, G. und J. Bischoff (2019). "Should autonomous shared taxis replace buses? A simulation study". In: *Transportation Research Procedia* 41, S. 450–460. DOI: 10.1016/j.trpro.2019.09.076.

- URL: https://linkinghub.elsevier.com/retrieve/pii/S2352146519304934 (besucht am 09.08.2025).
- Li, H. und S. Kim (2024). "Efficient Route Planning for Real-Time Demand-Responsive Transit". In: Computers, Materials & Continua 79.1. Publisher: Tech Science Press, S. 473–492. DOI: 10. 32604/cmc.2024.048402. URL: https://www.techscience.com/cmc/v79n1/56309 (besucht am 07.08.2025).
- Lian, Y., F. Lucas und K. Sörensen (1. Sep. 2023). "The on-demand bus routing problem with real-time traffic information". In: *Multimodal Transportation* 2.3, S. 100093. DOI: 10.1016/j.multra.2023. 100093. URL: https://www.sciencedirect.com/science/article/pii/S2772586323000254 (besucht am 22.07.2025).
- Liang, X., G. H. D. A. Correia, K. An und B. Van Arem (März 2020). "Automated taxis' dial-a-ride problem with ride-sharing considering congestion-based dynamic travel times". In: *Transportation Research Part C: Emerging Technologies* 112, S. 260–281. DOI: 10.1016/j.trc.2020.01.024. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X19304048 (besucht am 14.08.2025).
- Liu, C., A. Quilliot, H. Toussaint und D. Feillet (Apr. 2024). "A filtering system to solve the large-scale shared autonomous vehicles Dial-a-Ride Problem". In: *Transportation Research Part C: Emerging Technologies* 161, S. 104551. DOI: 10.1016/j.trc.2024.104551. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X2400072X (besucht am 14.08.2025).
- Liu, T. und A. (Ceder (Apr. 2015). "Analysis of a new public-transport-service concept: Customized bus in China". In: *Transport Policy* 39, S. 63–76. DOI: 10.1016/j.tranpol.2015.02.004. URL: https://linkinghub.elsevier.com/retrieve/pii/S0967070X15000256 (besucht am 12.08.2025).
- Liu, X., Y. Sun, R. Wang, W. Tan, F. Chen, X. Yan und Y. Wang (Okt. 2025). "Quantifying the potential benefits of buspooling: Case study and sensitivity analysis". In: *Research in Transportation Business & Management* 62, S. 101457. DOI: 10.1016/j.rtbm.2025.101457. URL: https://linkinghub.elsevier.com/retrieve/pii/S2210539525001725 (besucht am 09.08.2025).
- Liyanage, S. und H. Dia (Jan. 2020). "An Agent-Based Simulation Approach for Evaluating the Performance of On-Demand Bus Services". In: *Sustainability* 12.10. Number: 10 Publisher: Multidisciplinary Digital Publishing Institute, S. 4117. DOI: 10.3390/su12104117. URL: https://www.mdpi.com/2071-1050/12/10/4117 (besucht am 05.08.2025).
- Lobel, I. und S. Martin (Feb. 2025). "Detours in Shared Rides". In: *Management Science* 71.2, S. 1716–1736. DOI: 10.1287/mnsc.2020.03125. URL: https://pubsonline.informs.org/doi/10.1287/mnsc.2020.03125 (besucht am 14.08.2025).
- Lu, C., M. Maciejewski, H. Wu und K. Nagel (Dez. 2023). "Demand-responsive transport for students in rural areas: A case study in Vulkaneifel, Germany". In: *Transportation Research Part A: Policy and Practice* 178. Publisher: Elsevier BV, S. 103837. DOI: 10.1016/j.tra.2023.103837. URL: https://linkinghub.elsevier.com/retrieve/pii/S0965856423002574 (besucht am 05.08.2025).
- Lu, X., J. Yu, X. Yang, S. Pan und N. Zou (2016). "Flexible feeder transit route design to enhance service accessibility in urban area". In: *Journal of Advanced Transportation* 50.4. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/atr.1357, S. 507–521. DOI: 10.1002/atr.1357. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/atr.1357 (besucht am 07.08.2025).
- Luo, Y. und P. Schonfeld (Aug. 2007). "A rejected-reinsertion heuristic for the static Dial-A-Ride Problem". In: *Transportation Research Part B: Methodological* 41.7, S. 736–755. DOI: 10.1016/j. trb.2007.02.003. URL: https://linkinghub.elsevier.com/retrieve/pii/S019126150700015X (besucht am 19.08.2025).

- Maalouf, M., C. A. MacKenzie, S. Radakrishnan und M. Court (Nov. 2014). "A new fuzzy logic approach to capacitated dynamic Dial-a-Ride problem". In: Fuzzy Sets and Systems 255, S. 30–40. DOI: 10.1016/j.fss.2014.03.010. URL: https://linkinghub.elsevier.com/retrieve/pii/S0165011414001316 (besucht am 19.08.2025).
- Madsen, O. B. G., H. F. Ravn und J. M. Rygaard (1. Dez. 1995). "A heuristic algorithm for a dial-a-ride problem with time windows, multiple capacities, and multiple objectives". In: *Annals of Operations Research* 60.1, S. 193–208. DOI: 10.1007/BF02031946. URL: https://doi.org/10.1007/BF02031946 (besucht am 19.08.2025).
- Mageean, J. und J. D. Nelson (Dez. 2003). "The evaluation of demand responsive transport services in Europe". In: *Journal of Transport Geography* 11.4, S. 255–270. DOI: 10.1016/S0966-6923(03) 00026-7. URL: https://linkinghub.elsevier.com/retrieve/pii/S0966692303000267 (besucht am 07.08.2025).
- Mancini, S. (Sep. 2016). "A real-life Multi Depot Multi Period Vehicle Routing Problem with a Heterogeneous Fleet: Formulation and Adaptive Large Neighborhood Search based Matheuristic". In: Transportation Research Part C: Emerging Technologies 70, S. 100–112. DOI: 10.1016/j.trc. 2015.06.016. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X15002314 (besucht am 19.08.2025).
- Marinelli, M. und M. Gallo (2024). "An integrated bus transit service for demand-responsive urban public transport". In: *Transportation Research Procedia* 78, S. 327–334. DOI: 10.1016/j.trpro. 2024.02.042. URL: https://linkinghub.elsevier.com/retrieve/pii/S2352146524000954 (besucht am 12.08.2025).
- Martí, P., J. Jordán, F. De la Prieta und V. Julian (Jan. 2023). "Optimization of Rural Demand-Responsive Transportation through Transfer Point Allocation". In: *Electronics* 12.22. Publisher: Multidisciplinary Digital Publishing Institute, S. 4684. DOI: 10.3390/electronics12224684. URL: https://www.mdpi.com/2079-9292/12/22/4684 (besucht am 12.08.2025).
- Martí, P., J. Jordán und V. Julian (2024). "A flexible approach for demand-responsive public transport in rural areas". In: *Computer Science and Information Systems* 21.1. Publisher: National Library of Serbia, S. 245–267. DOI: 10.2298/csis230115074m. URL: https://doiserbia.nb.rs/Article.aspx?ID=1820-02142300074M (besucht am 31.07.2025).
- Mehran, B., Y. Yang und S. Mishra (1. März 2020). "Analytical models for comparing operational costs of regular bus and semi-flexible transit services". In: *Public Transport* 12.1, S. 147–169. DOI: 10.1007/s12469-019-00222-z. URL: https://doi.org/10.1007/s12469-019-00222-z (besucht am 09.08.2025).
- Melis, L., M. Queiroz und K. Sörensen (1. Apr. 2024). "The integrated on-demand bus routing problem: Combining on-demand buses with a high-frequency fixed line public transport network". In: Computers & Operations Research 164, S. 106554. DOI: 10.1016/j.cor.2024.106554. URL: https://www.sciencedirect.com/science/article/pii/S0305054824000261 (besucht am 22.07.2025).
- Melis, L. und K. Sörensen (2022). "The static on-demand bus routing problem: large neighborhood search for a dial-a-ride problem with bus station assignment". In: *International Transactions in Operational Research* 29.3. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.13058, S. 1417–1453. DOI: 10.1111/itor.13058. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.13058 (besucht am 22.07.2025).
- Melo, S., R. Gomes, R. Abbasi und A. Arantes (Jan. 2024). "Demand-Responsive Transport for Urban Mobility: Integrating Mobile Data Analytics to Enhance Public Transportation Systems". In: *Sustainability* 16.11. Publisher: Multidisciplinary Digital Publishing Institute, S. 4367. DOI: 10.3390/su16114367. URL: https://www.mdpi.com/2071-1050/16/11/4367 (besucht am 12.08.2025).

- Meshkani, S. M., S. Farazmand, N. Bouguila und Z. Patterson (Nov. 2024). "Innovative On-Demand Transit for First-Mile Trips: A Cutting-Edge Approach". In: *Transportation Research Record: Journal of the Transportation Research Board* 2678.11, S. 122–136. DOI: 10.1177/03611981241239970. URL: https://journals.sagepub.com/doi/10.1177/03611981241239970 (besucht am 09.08.2025).
- Mishra, S. und B. Mehran (2023). "Optimal Design of Integrated Semi-Flexible Transit Services in Low-Demand Conditions". In: *IEEE Access* 11, S. 30591–30608. DOI: 10.1109/ACCESS.2023. 3260727. URL: https://ieeexplore.ieee.org/document/10078395/ (besucht am 09.08.2025).
- (Mai 2024). "Cost analysis of different vehicle technologies for semi-flexible transit operations". In: Transportation Research Part D: Transport and Environment 130, S. 104159. DOI: 10.1016/j.trd. 2024.104159. URL: https://linkinghub.elsevier.com/retrieve/pii/S1361920924001160 (besucht am 09.08.2025).
- Molenbruch, Y., K. Braekers und A. Caris (1. Dez. 2017). "Typology and literature review for dialaride problems". In: *Annals of Operations Research* 259.1, S. 295–325. DOI: 10.1007/s10479-017-2525-0. URL: https://doi.org/10.1007/s10479-017-2525-0 (besucht am 14.08.2025).
- Mortazavi, A., M. Ghasri und T. Ray (Feb. 2024). "Integrated Demand Responsive transport in Low-Demand Areas: A case study of Canberra, Australia". In: *Transportation Research Part D: Transport and Environment* 127, S. 104036. DOI: 10.1016/j.trd.2023.104036. URL: https://linkinghub.elsevier.com/retrieve/pii/S1361920923004339 (besucht am 09.08.2025).
- Mulley, C. und J. D. Nelson (Jan. 2009). "Flexible transport services: A new market opportunity for public transport". In: *Research in Transportation Economics* 25.1. Publisher: Elsevier BV, S. 39–45. DOI: 10.1016/j.retrec.2009.08.008. URL: https://linkinghub.elsevier.com/retrieve/pii/S0739885909000353 (besucht am 05.08.2025).
- Ng, M. T. M. und H. S. Mahmassani (1. Jan. 2023). "Autonomous Minibus Service With Semi-on-Demand Routes in Grid Networks". In: *Transportation Research Record* 2677.1. Publisher: SAGE Publications Inc, S. 178–200. DOI: 10.1177/03611981221098660. URL: https://doi.org/10.1177/03611981221098660 (besucht am 09.08.2025).
- Nguyen, V. S., Q. D. Pham, T. H. Nguyen und Q. T. Bui (Okt. 2022). "Modeling and solving a multi-trip multi-distribution center vehicle routing problem with lower-bound capacity constraints". In: Computers & Industrial Engineering 172, S. 108597. DOI: 10.1016/j.cie.2022.108597. URL: https://linkinghub.elsevier.com/retrieve/pii/S0360835222005927 (besucht am 19.08.2025).
- Nourbakhsh, S. M. und Y. Ouyang (Jan. 2012). "A structured flexible transit system for low demand areas". In: *Transportation Research Part B: Methodological* 46.1, S. 204–216. DOI: 10.1016/j.trb. 2011.07.014. URL: https://linkinghub.elsevier.com/retrieve/pii/S0191261511001147 (besucht am 07.08.2025).
- Orloff, C. S. (Jan. 1974). "A fundamental problem in vehicle routing". In: *Networks* 4.1, S. 35–64. DOI: 10.1002/net.3230040105. URL: https://onlinelibrary.wiley.com/doi/10.1002/net.3230040105 (besucht am 16.08.2025).
- Pal, A. und K. Kant (Mai 2016). "Smartporter: A Combined Perishable Food and People Transport Architecture in Smart Urban Areas". In: 2016 IEEE International Conference on Smart Computing (SMARTCOMP). 2016 IEEE International Conference on Smart Computing (SMARTCOMP), S. 1–8. DOI: 10.1109/SMARTCOMP. 2016.7501716. URL: https://ieeexplore.ieee.org/document/7501716/ (besucht am 07.08.2025).
- Papanikolaou, A. und S. Basbas (21. Apr. 2021). "Analytical models for comparing Demand Responsive Transport with bus services in low demand interurban areas". In: *Transportation Letters* 13.4, S. 255–262. DOI: 10.1080/19427867.2020.1716474. URL: https://www.tandfonline.com/doi/full/10.1080/19427867.2020.1716474 (besucht am 09.08.2025).

- Patricio, A. S., G. D. Santos und A. P. Antunes (1. Juni 2025). "Assessing the introduction of regional driverless demand-responsive transit services through agent-based modeling and simulation". In: *Transportation* 52.3, S. 1091–1118. DOI: 10.1007/s11116-023-10450-9. URL: https://doi.org/10.1007/s11116-023-10450-9 (besucht am 14.08.2025).
- Pei, M., P. Lin und J. Ou (1. Apr. 2019). "Real-Time Optimal Scheduling Model for Transit System with Flexible Bus Line Length". In: *Transportation Research Record* 2673.4. Publisher: SAGE Publications Inc, S. 800–810. DOI: 10.1177/0361198119837502. URL: https://doi.org/10.1177/0361198119837502 (besucht am 07.08.2025).
- Petersen, T. (1. Nov. 2016). "Watching the Swiss: A network approach to rural and exurban public transport". In: *Transport Policy* 52, S. 175–185. DOI: 10.1016/j.tranpol.2016.07.012. URL: https://www.sciencedirect.com/science/article/pii/S0967070X16301469 (besucht am 31.07.2025).
- Pfeiffer, C. und A. Schulz (2022a). "A New Lower Bound for the Static Dial-a-Ride Problem with Ride and Waiting Time Minimization". In: *Dynamics in Logistics*. Hrsg. von M. Freitag, A. Kinra, H. Kotzab und N. Megow. Cham: Springer International Publishing, S. 231–243. DOI: 10.1007/978–3-031-05359-7_19.
- (1. März 2022b). "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization". In: *OR Spectrum* 44.1, S. 87–119. DOI: 10.1007/s00291-021-00656-7. URL: https://doi.org/10.1007/s00291-021-00656-7 (besucht am 16.08.2025).
- Poltimäe, H., M. Rehema, J. Raun und A. Poom (6. Apr. 2022). "In search of sustainable and inclusive mobility solutions for rural areas". In: *European Transport Research Review* 14.1, S. 13. DOI: 10. 1186/s12544-022-00536-3. URL: https://doi.org/10.1186/s12544-022-00536-3 (besucht am 14.08.2025).
- Posada, M., H. Andersson und C. H. Häll (1. Juli 2017). "The integrated dial-a-ride problem with timetabled fixed route service". In: *Public Transport* 9.1, S. 217–241. DOI: 10.1007/s12469-016-0128-9. URL: https://doi.org/10.1007/s12469-016-0128-9 (besucht am 14.08.2025).
- Psaraftis, H. N. (1980). "A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem". In: *Transportation Science* 14.2. Publisher: INFORMS, S. 130–154. URL: https://www.jstor.org/stable/25767975 (besucht am 16.08.2025).
- (1983). "EXACT ALGORITHM FOR THE SINGLE VEHICLE MANY-TO-MANY DIAL-A-RIDE PROBLEM WITH TIME WINDOWS." In: *Transportation Science* 17.3, S. 351–357. DOI: 10.1287/trsc.17.3.351. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020804649&doi=10.1287%2ftrsc.17.3.351&partnerID=40&md5=2fb2fd079223f8ed3dc501f25a43cb06.
- Qiu, F., J. Shen, X. Zhang und C. An (Okt. 2015). "Demi-flexible operating policies to promote the performance of public transit in low-demand areas". In: *Transportation Research Part A: Policy and Practice* 80. Publisher: Elsevier BV, S. 215–230. DOI: 10.1016/j.tra.2015.08.003. URL: https://linkinghub.elsevier.com/retrieve/pii/S0965856415002232 (besucht am 05.08.2025).
- Queiroz, M., F. Lucas und K. Sörensen (Sep. 2024). "Instance generation tool for on-demand transportation problems". In: *European Journal of Operational Research* 317.3, S. 696–717. DOI: 10. 1016/j.ejor.2024.03.006. URL: https://linkinghub.elsevier.com/retrieve/pii/S0377221724001802 (besucht am 12.08.2025).
- Rahimi-Vahed, A., T. Gabriel Crainic, M. Gendreau und W. Rei (Jan. 2015). "Fleet-sizing for multidepot and periodic vehicle routing problems using a modular heuristic algorithm". In: Computers & Operations Research 53, S. 9–23. DOI: 10.1016/j.cor.2014.07.004. URL: https://linkinghub.elsevier.com/retrieve/pii/S0305054814001865 (besucht am 19.08.2025).
- Rashvand, N., S. S. Hosseini, M. Azarbayjani und H. Tabkhi (4. März 2024). Real-Time Bus Arrival Prediction: A Deep Learning Approach for Enhanced Urban Mobility. DOI: 10.48550/arXiv.

- 2303.15495. arXiv: 2303.15495[cs]. URL: http://arxiv.org/abs/2303.15495 (besucht am 07.08.2025).
- Reiter, K., M. Schmidt und M. Stiglmayr (13. Sep. 2024). The Line-Based Dial-a-Ride Problem. DOI: 10.48550/arXiv.2409.08860. arXiv: 2409.08860 [math]. URL: http://arxiv.org/abs/2409.08860 (besucht am 14.08.2025).
- Rosca, C.-M., A. Stancu, C.-F. Neculaiu und I.-A. Gortoescu (Jan. 2024). "Designing and Implementing a Public Urban Transport Scheduling System Based on Artificial Intelligence for Smart Cities". In: *Applied Sciences* 14.19. Number: 19 Publisher: Multidisciplinary Digital Publishing Institute, S. 8861. DOI: 10.3390/app14198861. URL: https://www.mdpi.com/2076-3417/14/19/8861 (besucht am 07.08.2025).
- Rothenbächer, A.-K. (Mai 2019). "Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with Flexible Schedule Structures". In: *Transportation Science* 53.3. Publisher: INFORMS, S. 850–866. DOI: 10.1287/trsc.2018.0855. URL: https://pubsonline.informs.org/doi/10.1287/trsc.2018.0855 (besucht am 19.08.2025).
- Saathoff, L. A. (2025). "Practice-Oriented Solution Methods for the Integrated Dial-a-Ride Problem". In: *Operations Research Proceedings 2023*. Hrsg. von G. Voigt, M. Fliedner, K. Haase, W. Brüggemann, K. Hoberg und J. Meissner. Cham: Springer Nature Switzerland, S. 573–580. DOI: 10.1007/978-3-031-58405-3_73.
- Sadrani, M., A. Tirachini und C. Antoniou (Mai 2022). "Vehicle dispatching plan for minimizing passenger waiting time in a corridor with buses of different sizes: Model formulation and solution approaches". In: European Journal of Operational Research 299.1, S. 263–282. DOI: 10.1016/j.ejor. 2021.07.054. URL: https://linkinghub.elsevier.com/retrieve/pii/S0377221721006640 (besucht am 12.08.2025).
- Schaefer, C., A. Stelter, S. Holl-Supra, S. Weber und B. Niehaves (Dez. 2022). "The Acceptance and Use Behavior of Shared Mobility Services in a Rural Municipality". In: *Smart Cities* 5.4. Publisher: Multidisciplinary Digital Publishing Institute, S. 1229–1240. DOI: 10.3390/smartcities5040062. URL: https://www.mdpi.com/2624-6511/5/4/62 (besucht am 12.08.2025).
- Schasché, S. E., R. G. Sposato und N. Hampl (Sep. 2022). "The dilemma of demand-responsive transport services in rural areas: Conflicting expectations and weak user acceptance". In: *Transport Policy* 126, S. 43–54. DOI: 10.1016/j.tranpol.2022.06.015. URL: https://linkinghub.elsevier.com/retrieve/pii/S0967070X22001809 (besucht am 09.08.2025).
- Schatzmann, T., F. Zwick und K. W. Axhausen (Sep. 2023). "Investigating the preferences for the use of urban ridepooling". In: Artwork Size: 8 p. Medium: application/pdf Publisher: ETH Zurich, 8 p. DOI: 10.3929/ETHZ-B-000634108. URL: http://hdl.handle.net/20.500.11850/634108 (besucht am 14.08.2025).
- Schenekemberg, C. M., A. A. Chaves, T. A. Guimarães und L. C. Coelho (1. Aug. 2025). "Hybrid metaheuristic for the dial-a-ride problem with private fleet and common carrier integrated with public transportation". In: *Annals of Operations Research* 351.1, S. 809–847. DOI: 10.1007/s10479-024-06136-9. URL: https://doi.org/10.1007/s10479-024-06136-9 (besucht am 19.08.2025).
- Schlüter, J., A. Bossert, P. Rössy und M. Kersting (Juni 2021). "Impact assessment of autonomous demand responsive transport as a link between urban and rural areas". In: Research in Transportation Business & Management 39, S. 100613. DOI: 10.1016/j.rtbm.2020.100613. URL: https://linkinghub.elsevier.com/retrieve/pii/S2210539520301504 (besucht am 09.08.2025).
- Shen, Y., H. Zhang und J. Zhao (Juli 2018). "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore". In: *Transportation Research Part A: Policy and Practice* 113, S. 125–136. DOI: 10.1016/j.tra.2018.04.004. URL: https://linkinghub.elsevier.com/retrieve/pii/S096585641730681X (besucht am 09.08.2025).

- Shinoda, K., I. Noda, M. Ohta, Y. Kumada und H. Nakashima (2004). "Is Dial-a-Ride Bus Reasonable in Large Scale Towns? Evaluation of Usability of Dial-a-Ride Systems by Simulation". In: *Multi-Agent for Mass User Support*. Hrsg. von K. Kurumatani, S.-H. Chen und A. Ohuchi. Berlin, Heidelberg: Springer, S. 105–119. DOI: 10.1007/978-3-540-24666-4_7.
- Si, J., F. He, X. Lin und X. Tang (Juni 2024). "Vehicle dispatching and routing of on-demand intercity ride-pooling services: A multi-agent hierarchical reinforcement learning approach". In: *Transportation Research Part E: Logistics and Transportation Review* 186, S. 103551. DOI: 10.1016/j.tre. 2024.103551. URL: https://linkinghub.elsevier.com/retrieve/pii/S136655452400142X (besucht am 12.08.2025).
- Sieber, L., C. Ruch, S. Hörl, K. Axhausen und E. Frazzoli (Apr. 2020). "Improved public transportation in rural areas with self-driving cars: A study on the operation of Swiss train lines". In: *Transportation Research Part A: Policy and Practice* 134. Publisher: Elsevier BV, S. 35–51. DOI: 10.1016/j.tra. 2020.01.020. URL: https://linkinghub.elsevier.com/retrieve/pii/S0965856418314083 (besucht am 31.07.2025).
- Sörensen, L., A. Bossert, J.-P. Jokinen und J. Schlüter (Jan. 2021). "How much flexibility does rural public transport need? Implications from a fully flexible DRT system". In: *Transport Policy* 100, S. 5–20. DOI: 10.1016/j.tranpol.2020.09.005. URL: https://linkinghub.elsevier.com/retrieve/pii/S0967070X19309709 (besucht am 14.08.2025).
- Soza-Parra, J., R. Kucharski und O. Cats (3. Mai 2024). "The shareability potential of ride-pooling under alternative spatial demand patterns". In: *Transportmetrica A: Transport Science* 20.2. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/23249935.2022.2140022, S. 2140022. DOI: 10.1080/23249935.2022.2140022. URL: https://doi.org/10.1080/23249935.2022.2140022 (besucht am 14.08.2025).
- Stiglic, M., N. Agatz, M. Savelsbergh und M. Gradisar (Dez. 2015). "The benefits of meeting points in ride-sharing systems". In: *Transportation Research Part B: Methodological* 82, S. 36–53. DOI: 10.1016/j.trb.2015.07.025. URL: https://linkinghub.elsevier.com/retrieve/pii/S0191261515002088 (besucht am 14.08.2025).
- (Feb. 2018). "Enhancing urban mobility: Integrating ride-sharing and public transit". In: Computers & Operations Research 90, S. 12-21. DOI: 10.1016/j.cor.2017.08.016. URL: https://linkinghub.elsevier.com/retrieve/pii/S0305054817302228 (besucht am 14.08.2025).
- Sun, X. und Y. Zu (Jan. 2025). "Research on Fleet Size of Demand Response Shuttle Bus Based on Minimum Cost Method". In: *Applied Sciences* 15.10. Publisher: Multidisciplinary Digital Publishing Institute, S. 5350. DOI: 10.3390/app15105350. URL: https://www.mdpi.com/2076-3417/15/10/5350 (besucht am 12.08.2025).
- Takamatsu, M. und A. Taguchi (Sep. 2020). "Bus Timetable Design to Ensure Smooth Transfers in Areas with Low-Frequency Public Transportation Services". In: *Transportation Science* 54.5. Publisher: INFORMS, S. 1238–1250. DOI: 10.1287/trsc.2019.0918. URL: https://pubsonline.informs.org/doi/abs/10.1287/trsc.2019.0918 (besucht am 31.07.2025).
- Tang, J., Y. Yang, W. Hao, F. Liu und Y. Wang (Apr. 2021). "A Data-Driven Timetable Optimization of Urban Bus Line Based on Multi-Objective Genetic Algorithm". In: *IEEE Transactions on Intelligent Transportation Systems* 22.4, S. 2417–2429. DOI: 10.1109/TITS.2020.3025031. URL: https://ieeexplore.ieee.org/document/9208784/ (besucht am 07.08.2025).
- Tang, Q. und M. G. Armellini (Juni 2021). "An ant colony algorithm with penalties for the dial-a-ride problem with time windows and capacity restriction". In: 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), S. 1–6. DOI: 10.1109/MT-ITS49943.2021.9529319. URL: https://ieeexplore.ieee.org/document/9529319/ (besucht am 19.08.2025).

- Tellez, O., S. Vercraene, F. Lehuédé, O. Péton und T. Monteiro (Juni 2018). "The fleet size and mix dial-a-ride problem with reconfigurable vehicle capacity". In: *Transportation Research Part C: Emerging Technologies* 91, S. 99–123. DOI: 10.1016/j.trc.2018.03.020. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X18303851 (besucht am 16.08.2025).
- Tian, Q., Y. H. Lin und D. Z. W. Wang (1. Okt. 2021). "Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty". In: *Transportation* 48.5, S. 2735–2763. DOI: 10.1007/s11116-020-10146-4. URL: https://doi.org/10.1007/s11116-020-10146-4 (besucht am 07.08.2025).
- Torrisi, V., P. Leonardi, A. Barbagallo und M. Ignaccolo (2025). "An evaluation of the key features for designing a sustainable demand responsive transport service (DRTS) in urban and suburban contexts". In: INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING. Heraklion, Greece, S. 090014. DOI: 10.1063/5.0247520. URL: https://pubs.aip.org/aip/acp/article-lookup/doi/10.1063/5.0247520 (besucht am 09.08.2025).
- Truden, C., M. Ruthmair und M. J. Kollingbaum (2021). "Analysis of Schedules for Rural First and Last Mile Microtransit Services". In: *Computational Logistics*. Hrsg. von M. Mes, E. Lalla-Ruiz und S. Voß. Cham: Springer International Publishing, S. 332–346. DOI: 10.1007/978-3-030-87672-2_22.
- Tsigdinos, S., C. Karolemeas, M. Siti, K. Papadaki, K. Athanasopoulos und P. G. Tzouras (Dez. 2024). "Route Planning for Flexible Bus Services in Regional Cities and Rural Areas: Combining User Preferences with Spatial Analysis". In: Future Transportation 4.4. Publisher: Multidisciplinary Digital Publishing Institute, S. 1476–1500. DOI: 10.3390/futuretransp4040071. URL: https://www.mdpi.com/2673-7590/4/4/71 (besucht am 09.08.2025).
- Urra, E., C. Cubillos und D. Cabrera-Paniagua (2015). "A Hyperheuristic for the Dial-a-Ride Problem with Time Windows". In: *Mathematical Problems in Engineering* 2015.1. _eprint: https://onlinelibrary.wiley.com/ S. 707056. DOI: 10.1155/2015/707056. URL: https://onlinelibrary.wiley.com/doi/abs/10.1155/2015/707056 (besucht am 19.08.2025).
- Vansteenwegen, P., L. Melis, D. Aktaş, B. D. G. Montenegro, F. Sartori Vieira und K. Sörensen (1. Apr. 2022). "A survey on demand-responsive public bus systems". In: *Transportation Research Part C: Emerging Technologies* 137, S. 103573. DOI: 10.1016/j.trc.2022.103573. URL: https://www.sciencedirect.com/science/article/pii/S0968090X22000195 (besucht am 22.07.2025).
- Velaga, N., J. Nelson, S. Wright und J. Farrington (März 2012). "The Potential Role of Flexible Transport Services in Enhancing Rural Public Transport Provision". In: *Journal of Public Transportation* 15.1. Publisher: University of South Florida Libraries, S. 111–131. DOI: 10.5038/2375–0901.15.1.7. URL: http://scholarcommons.usf.edu/jpt/vol15/iss1/7/ (besucht am 31.07.2025).
- Verband der Automobilindustrie (2025). Ridepooling Eine Lösung für den ländlichen Raum. URL: https://www.vda.de/de/themen/digitalisierung/mobility-as-a-service/ridepooling (besucht am 31.07.2025).
- Vidal, T., G. Laporte und P. Matl (Okt. 2020). "A concise guide to existing and emerging vehicle routing problem variants". In: *European Journal of Operational Research* 286.2, S. 401–416. DOI: 10.1016/j.ejor.2019.10.010. URL: https://linkinghub.elsevier.com/retrieve/pii/S0377221719308422 (besucht am 17.08.2025).
- Viergutz, K. und C. Schmidt (2019). "Demand responsive vs. conventional public transportation: A MATSim study about the rural town of Colditz, Germany". In: *Procedia Computer Science* 151. Publisher: Elsevier BV, S. 69–76. DOI: 10.1016/j.procs.2019.04.013. URL: https://linkinghub.elsevier.com/retrieve/pii/S1877050919304740 (besucht am 05.08.2025).

- Vosooghi, R., J. Puchinger, M. Jankovic und A. Vouillon (Okt. 2019). "Shared autonomous vehicle simulation and service design". In: *Transportation Research Part C: Emerging Technologies* 107, S. 15–33. DOI: 10.1016/j.trc.2019.08.006. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X19304449 (besucht am 14.08.2025).
- Wallar, A., M. Van Der Zee, J. Alonso-Mora und D. Rus (Okt. 2018). "Vehicle Rebalancing for Mobility-on-Demand Systems with Ride-Sharing". In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). ISSN: 2153-0866, S. 4539-4546. DOI: 10.1109/IROS.2018.8593743. URL: https://ieeexplore.ieee.org/document/8593743/ (besucht am 14.08.2025).
- Wang, C., M. Quddus, M. Enoch, T. Ryley und L. Davison (1. Mai 2014). "Multilevel modelling of Demand Responsive Transport (DRT) trips in Greater Manchester based on area-wide socio-economic data". In: *Transportation* 41.3, S. 589–610. DOI: 10.1007/s11116-013-9506-1. URL: https://doi.org/10.1007/s11116-013-9506-1 (besucht am 09.08.2025).
- Wang, D., A. Araldo und M. El Yacoubi (Sep. 2025). "Planning Demand-Responsive Transit to reduce inequality of accessibility". In: *Transportation Research Part A: Policy and Practice* 199, S. 104544. DOI: 10.1016/j.tra.2025.104544. URL: https://linkinghub.elsevier.com/retrieve/pii/S0965856425001727 (besucht am 07.08.2025).
- Wang, Z., J. Yu, W. Hao und J. Xiang (Apr. 2021). "Joint Optimization of Running Route and Scheduling for the Mixed Demand Responsive Feeder Transit With Time-Dependent Travel Times". In: *IEEE Transactions on Intelligent Transportation Systems* 22.4, S. 2498–2509. DOI: 10.1109/TITS.2020.3041743. URL: https://ieeexplore.ieee.org/document/9290397/ (besucht am 12.08.2025).
- Wei, J., K. Long, J. Gu, Q. Ju und P. Zhu (Jan. 2020). "Optimizing Bus Line Based on Metro-Bus Integration". In: *Sustainability* 12.4. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute, S. 1493. DOI: 10.3390/su12041493. URL: https://www.mdpi.com/2071-1050/12/4/1493 (besucht am 07.08.2025).
- Wen, J., Y. X. Chen, N. Nassir und J. Zhao (Dez. 2018). "Transit-oriented autonomous vehicle operation with integrated demand-supply interaction". In: *Transportation Research Part C: Emerging Technologies* 97, S. 216–234. DOI: 10.1016/j.trc.2018.10.018. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X18300378 (besucht am 14.08.2025).
- White, P. (7. Okt. 2016). "The Roles of 'Conventional' and Demand-Responsive Bus Services". In: Paratransit: Shaping the Flexible Transport Future. Bd. 8. Emerald Group Publishing Limited, S. 0. DOI: 10.1108/S2044-994120160000008015. URL: https://doi.org/10.1108/S2044-994120160000008015 (besucht am 31.07.2025).
- Wong, K. I. und M. G. H. Bell (2006). "Solution of the Dial-a-Ride Problem with multi-dimensional capacity constraints". In: *International Transactions in Operational Research* 13.3. _eprint: https://onlinelibrary.wilays5.2006.00544.x, S. 195–208. DOI: 10.1111/j.1475-3995.2006.00544.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2006.00544.x (besucht am 19.08.2025).
- Xiang, Z., C. Chu und H. Chen (Okt. 2006). "A fast heuristic for solving a large-scale static dial-a-ride problem under complex constraints". In: European Journal of Operational Research 174.2, S. 1117—1139. DOI: 10.1016/j.ejor.2004.09.060. URL: https://linkinghub.elsevier.com/retrieve/pii/S0377221705003346 (besucht am 19.08.2025).
- Yan, X., J. Levine und X. Zhao (Aug. 2019). "Integrating ridesourcing services with public transit: An evaluation of traveler responses combining revealed and stated preference data". In: *Transportation Research Part C: Emerging Technologies* 105, S. 683-696. DOI: 10.1016/j.trc.2018.07.029. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X18310398 (besucht am 12.08.2025).

- Yeon, C., A. Cho, S. Kim, Y. Lee und S. Lee (2. Mai 2025). "Real-time dynamic route generation algorithm of DRT with deep Q-learning". In: *Proceedings of the Institution of Civil Engineers Municipal Engineer* 178, S. 1–14. DOI: 10.1680/jmuen.24.00082.
- Yi, F., Y. Song, C. Xin und K. W. K. Walter Ivan (Sep. 2009). "Online Dial-A-Ride Problem with Unequal-Length Time-Windows". In: 2009 International Conference on Management and Service Science. 2009 International Conference on Management and Service Science, S. 1–5. DOI: 10.1109/ICMSS.2009.5303885. URL: https://ieeexplore.ieee.org/document/5303885/ (besucht am 19.08.2025).
- Yi, F. und L. Tian (2005). "On the Online Dial-A-Ride Problem with Time-Windows". In: Algorithmic Applications in Management. Hrsg. von N. Megiddo, Y. Xu und B. Zhu. Berlin, Heidelberg: Springer, S. 85–94. DOI: 10.1007/11496199_11.
- Yi, F., Y. Xu und C. Xin (2006). "Online Dial-A-Ride Problem with Time-Windows Under a Restricted Information Model". In: *Algorithmic Aspects in Information and Management*. Hrsg. von S.-W. Cheng und C. K. Poon. Berlin, Heidelberg: Springer, S. 22–31. DOI: 10.1007/11775096_4.
- Yi, Y., Z. Bian und B. Wang (Okt. 2025). "Real-time re-optimization for generalized ridesharing feeder service with mixed scheduled and on-demand riders". In: *Journal of Transport Geography* 128, S. 104329. DOI: 10.1016/j.jtrangeo.2025.104329. URL: https://linkinghub.elsevier.com/retrieve/pii/S0966692325002200 (besucht am 07.08.2025).
- Yu, X., H. Miao, A. Bayram, M. Yu und X. Chen (2021). "Optimal routing of multimodal mobility systems with ride-sharing". In: *International Transactions in Operational Research* 28.3. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12870, S. 1164–1189. DOI: 10.1111/itor. 12870. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12870 (besucht am 14.08.2025).
- Zhang, W., J. Liu, K. Wang und L. Wang (Jan. 2024). "Routing and charging optimization for electric bus operations". In: *Transportation Research Part E: Logistics and Transportation Review* 181, S. 103372. DOI: 10.1016/j.tre.2023.103372. URL: https://linkinghub.elsevier.com/retrieve/pii/S1366554523003605 (besucht am 12.08.2025).
- Zhen, L. und W. Gu (Nov. 2024). "Feeder bus service design under spatially heterogeneous demand". In: *Transportation Research Part A: Policy and Practice* 189, S. 104214. DOI: 10.1016/j.tra. 2024.104214. URL: https://linkinghub.elsevier.com/retrieve/pii/S0965856424002623 (besucht am 07.08.2025).
- Zheng, Y., W. Li und F. Qiu (Juli 2018). "A slack arrival strategy to promote flex-route transit services". In: *Transportation Research Part C: Emerging Technologies* 92. Publisher: Elsevier BV, S. 442–455. DOI: 10.1016/j.trc.2018.05.015. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X18306788 (besucht am 05.08.2025).
- Zhou, Y., S. Deng, Q. Zhao und Y. Chen (Juni 2025). "Bus-Pooling: Demand-Driven Flexible Scheduling for Intercity Transit". In: *Journal of Transportation Engineering, Part A: Systems* 151.6, S. 04025035. DOI: 10.1061/JTEPBS.TEENG-8957. URL: https://ascelibrary.org/doi/10.1061/JTEPBS.TEENG-8957 (besucht am 09.08.2025).
- Zidi, I., K. Zidi, K. Mesghouni und K. Ghedira (Jan. 2011). "A Multi-Agent System based on the Multi-Objective Simulated Annealing Algorithm for the Static Dial a Ride Problem". In: *IFAC Proceedings Volumes* 44.1, S. 2172–2177. DOI: 10.3182/20110828-6-IT-1002.02639. URL: https://linkinghub.elsevier.com/retrieve/pii/S1474667016439340 (besucht am 19.08.2025).
- Zwick, F. und K. W. Axhausen (Mai 2020). "Analysis of ridepooling strategies with MATSim". In: Artwork Size: 15 p. Medium: application/pdf Publisher: ETH Zurich, 15 p. DOI: 10.3929/ETHZ-B-000420103. URL: http://hdl.handle.net/20.500.11850/420103 (besucht am 14.08.2025).
- Zwick, F. und K. W. Axhausen (Apr. 2022). "Ride-pooling demand prediction: A spatiotemporal assessment in Germany". In: *Journal of Transport Geography* 100, S. 103307. DOI: 10.1016/j.

jtrangeo.2022.103307. URL: https://linkinghub.elsevier.com/retrieve/pii/S0966692322000308 (besucht am 14.08.2025).

Zwick, F., N. Kuehnel, R. Moeckel und K. W. Axhausen (2021). "Ride-Pooling Efficiency in Large, Medium-Sized and Small Towns -Simulation Assessment in the Munich Metropolitan Region". In: *Procedia Computer Science* 184, S. 662–667. DOI: 10.1016/j.procs.2021.03.083. URL: https://linkinghub.elsevier.com/retrieve/pii/S1877050921007195 (besucht am 14.08.2025).

A Anhang A: Literaturrecherche

A.1 Searchstrings

Bei Optimierungsproblemen: DARAUF ACHTEN, DASS DIE JAHRESZAHLEN MIT ANGEGEBEN SIND - DADURCH ERWÄHEN WELCHEN BEI GOOGLE UND WELCHE BEI SCOPUS GENUTZT WURDE

A.2 Suchergebnisse

A.2.1 Suchergebnisse zu line-based urban

A Anhang A: Literaturrecherche

Tabelle A.1: Forschungsergebnisse zu Line-based — urban

Paper		Region /	Betrachtungs- ebene	Fokus / Anwendungsfeld	Methode	Daten	KPI	Zentrale Erkenntnisse
Fielbaum et al. (2024)	Integration Ride- pooling	 	Linie	Ridepooling	Matem. Optimie- rungsmodell / Simulation	 - -	Reisezeit / Fahrzeug-km	zeigt Vorteile einer Ridepooling-Kopplung mit Linien; senkt Betriebskosten; senkt Emissionen.
Filippi et al. (2024)	Linienoptimierung	I Italy	Linie	Modularbus	Matem. Optimie- rungsmodell	I 	Reisezeit / Auslas- tung	nutzt modulare Kopplung für flexible Kapazität; verkürzt Reisezeiten und verbessert Auslastung.
Gal et al. (2017)	Reisezeitprognose	ohne Bezug	Linie	Taktfahrplan	Empirie	Realdaten	Reisezeit / Progno- següte	liefert praxistaugliche Prognosen der Reisezeiten im Linienverkehr (gute Prognosegüten).
Hatzenbühler et al. (2022)	Netzdesign	ohne Bezug	Netz	Autonom	Matem. Optimie- rungsmodell / Simulation	<u> </u>	Ø-Wartezeit / Reisezeit	ı zeigt, wie autonome Busnetz-Designs Nutzer- und Be- ı treiberkosten senken können.
Jiménez und Román (2016)	Flottenzuordnung	Spain	Linie	Emissionen	Matem. Optimie- rungsmodell	Mix	CO ₂ / Fahrzeug- km	weist nach, dass optimierte Flottenzuordnung Emissionen im Liniennetz deutlich reduzieren kann.
Kim und Schonfeld (2013)	Integration ge-	USA	Linie	Flotten	Matem. Optimie- rungsmodell	 	Kosten/Fahrgast- km / Auslastung	kombinierte feste und flexible Dienste mit gemischten Flotten senken Kosten und erhöhen Auslastung.
Rashvand et al. (2024)	Ankunftsprognose	USA	Linie	KI	Empirie	Realdaten	Prognosegüte / Pünktlichkeit	Deep-Learning-Ansätze liefern robuste Ankunftsprogno- sen und verbessern die wahrgenommene Pünktlichkeit.
Rosca et al. (2024)	 Fahrplanoptimierun	gRomania	Linie	Flotten	Empirie / Simu-	 - 	Pünktlichkeit / Kosten/Fahrgast- km	KI-gestützte Planung verbessert Pünktlichkeit und senkt Planungskosten in urbanen Netzen.
Tang, Yang et al. (2021)	Fahrplanoptimierun	gChina	Linie	Taktfahrplan	Matem. Optimie- rungsmodell	Realdaten	Ø-Wartezeit / Reisezeit	zweckmäßige MOEA-Fahrpläne verkürzen Warte- und Reisezeiten auf städtischen Linien.
Tian et al. (2021)	Flottenoptimierung	China	Linie	Autonom	Matem. Optimie- rungsmodell	I — I	Kosten/Fahrgast- km / Flottengröße	autonome Flotten mit Unsicherheiten können Betreiberkosten senken und Leistung stabilisieren.
Wei et al. (2020)	Integration Metro-Bus	China	Netz	Integration	Matem. Optimie- rungsmodell / Fallstudie	Realdaten	Ø-Wartezeit / Reisezeit	koordinierte Metro-Bus-Planung senkt Nutzerzeiten und verbessert Gesamtleistung.

A.2.2 Suchergebnisse zu on-demand urban

A Anhang A: Literaturrecherche

 ${\bf Tabelle~A.2:}~ {\bf Forschungsergebnisse~zu~on\text{-}demand--urban}$

		Land	ebene	Anwendungsfeld	$^{\mid}\mathbf{Methode}$	$_{\parallel}^{\mid} \mathbf{Daten}$	KPI	Zentrale Erkenntnisse
Abe (700)	Autonomen DRT planen	UK	Netz	Autonom	Matem. Opti- mierungsmo- dell	 	Kosten/Fahrgast- km, Erreichbar- keit	Optimierung/Szenarien senken Warte- und Reisezeiten im urbanen DRT deutlich.
González, Liu et al	Konzent	ohne Be-	Linie	Flexible Busse	Matem. Opti- mierungsmo- dell, Empirie	 	Auslastung	Ansatz verbessert Erreichbarkeit und Service- grad gegenüber Status quo.
charisis et al. (2018)	First/Last- Mile verbes- sern	Deutschland	Linie	 First/Last-Mile	 	 	Auslastung, Erreichbarkeit	Optimierung/Szenarien senken Warte- und Reisezeiten im urbanen DRT deutlich.
Diana et al. (2009)	DRT- Konzept bewerten	Frankreich	Linie	 Flexible Busse	Matem. Opti- mierungsmo- dell	 	Auslastung	Ansatz verbessert Erreichbarkeit und Service- grad gegenüber Status quo.
Giuffrida et	DRT- Konzept bewerten	 	Region	 	Matem. Op- timierungs- modell, Kar- tenbasierte Raumanalyse (GIS)	 	 	 - Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
Hazan et al. I	DRT bewer-	ohne Be-	Region	 Flexible Busse	Matem. Opti- mierungsmo- dell	 	Kosten/Fahrgast- km, Auslastung	Ansatz verbessert Erreichbarkeit und Service- grad gegenüber Status quo.
et al (2020)		ohne Be-	Linie	 Flexible Busse	Simulation, Matem. Opti- mierungsmo- dell	 	 Auslastung	 Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
(2021)	DRT per Simulation prüfen	Italien	Netz	 Flexible Busse	Simulation	 	 Auslastung	Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
	Autonomen DRT planen	ohne Be-	Region	 Autonom	Matem. Opti- mierungsmo- dell	 	 Auslastung	Optimierung/Szenarien senken Warte- und Reisezeiten im urbanen DRT deutlich.
et al (2025)	DRT- Konzept bewerten	Schweiz	Region	 Flexible Busse	Matem. Opti- mierungsmo- dell	 	Auslastung	Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
Li und Kim	DRT- Konzept bewerten	Korea	Linie	 Flexible Busse	 	 	Auslastung	Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
Dia (2020)	DRT per Simulation prüfen	 Australien	Region	 Flexible Busse	Simulation	 	Auslastung, CO ₂	Optimierung/Szenarien senken Warte- und Reisezeiten im urbanen DRT deutlich.
Melo et al. (2024)	First/Last- Mile verbes- sern	Schweiz	Netz	 First/Last-Mile	 	 	Auslastung	Ansatz verbessert Erreichbarkeit und Service- grad gegenüber Status quo.
		 		1	I I	1	1	Fortsetzung auf der nächsten Seite

A-5

A Anhang A: Literaturrecherche

Paper	Zielsetzung	Region / Land	Betrachtungs- ebene	Fokus / Anwendungsfeld	Methode	Daten	KPI	Zentrale Erkenntnisse
Meshkani et al. (2024)	Mile verbes-	ohne Be-	Region	 First/Last-Mile	Matem. Opti- mierungsmo- dell	 	Auslastung	Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
Mortazavi et al. (2024)	DRT- Konzept bewerten	 Australien	 Netz	 Flexible Busse	Matem. Opti- mierungsmo- dell, Fallstudie	 	Reisezeit, Kosten/Fahrgast-	Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
Pal und Kant (2016)		ohne Be-	 Netz	Flexible Busse	Kartenbasierte Raumanalyse (GIS)	 - 	 	Optimierung/Szenarien senken Warte- und Reisezeiten im urbanen DRT deutlich.
Queiroz et al. (2024)	DRT- Konzept bewerten	 Frankreich	Linie	 Flexible Busse	Matem. Opti- mierungsmo- dell	 	Auslastung	Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
Shinoda et al. (2004)	DRT per Simulation prüfen	UK	Linie	Flexible Busse	Simulation, Matem. Opti- mierungsmo- dell	 	 - 	Ansatz verbessert Erreichbarkeit und Service- grad gegenüber Status quo.
Sun und Zu (2025)	DRT- Konzept bewerten	China	 Region	 Flexible Busse	Matem. Opti- mierungsmo- dell	 	Flottengröße, Kosten/Fahrgast- km	Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
Torrisi et al. (2025)	Urbanen DRT bewer- ten	Italien	Region	Flexible Busse	Matem. Opti- mierungsmo- dell	 - 	Auslastung	Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
Yan et al. (2019)	Urbanen DRT bewer- ten	USA	Netz	 First/Last-Mile	Matem. Opti- mierungsmo- dell	 	Auslastung	Ansatz verbessert Erreichbarkeit und Service- grad gegenüber Status quo.
Yeon et al. (2025)	DRT- Konzept bewerten	Korea	Linie	 - Flexible Busse -	Matem. Op- timierungs- modell, Kar- tenbasierte Raumanalyse (GIS)	 	 - Auslastung - -	 Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
Yi, Bian et al. (2025)	Feeder- Service opti- mieren	USA	Linie	Feeder	Matem. Opti- mierungsmo- dell	 	Auslastung	Studie zeigt Potenziale und Grenzen von DRT im urbanen Kontext.
Zhang et al. (2024)	Fahrplan/Zute optimieren	eilung China	Linie	Flexible Busse	Matem. Opti- mierungsmo- dell	_	Auslastung	Ansatz verbessert Erreichbarkeit und Servicegrad gegenüber Status quo.

A.2.3 Suchergebnisse von ridepooling-urban

A Anhang A: Literaturrecherche

Tabelle A.3: Forschungsergebnisse zu ridepooling — urban

Paper	Zielsetzung	Region / Land	Betrachtungs- ebene	Fokus / Anwendungsfeld	Methode	Daten	KPI	Zentrale Erkenntnisse
Agatz et al. (2011)	Ridepooling simulieren	Niederlande	 Netz 	 Feeder 	Simulation, Matem. Optimierungsmodell	 	Kosten/Fahrgast-km, Auslastung	Pooling und Optimierung reduzieren Warte- /Reisezeiten und Fahrzeug-km im urbanen Kontext deutlich.
Alonso- González, Van Oort et al. (2020)	Urbanes Ridepooling bewerten	m Niederlande	Region	 Flexible Busse	Matem. Opti- mierungsmo- dell		 Kosten/Fahrgast- km, Auslastung	 Zielkonflikt zwischen Servicequalität und Bündelungsgrad wird sichtbar.
Alonso- González, Cats et al. (2021)	simulieren	zug	Region	Pooling	Simulation		Kosten/Fahrgast- km, Auslastung	Ridepooling erhöht Abdeckung und Auslastung gegenüber Solo-DRT.
Alonso-Mora et al. (2017)	Fahrplan/Zute optimieren		Netz	Studierende	Literatur- Review	Literatur	Auslastung	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Asatryan et al. (2023)	Pooling/Zuteil optimieren	ung Deutschland	Haltestelle	Pooling	Simulation	synthetisch	Auslastung	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Basu et al. (2018)	Ridepooling simulieren	ohne Be- zug	Region	Flexible Busse	Matem. Opti- mierungsmo- dell	 	Auslastung	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Bischoff et al. (2017)	Ridepooling simulieren	Deutschland	 Netz 	 Pooling 	Simulation, Matem. Optimierungsmodell	 	Reisezeit	Pooling und Optimierung reduzieren Warte- /Reisezeiten und Fahrzeug-km im urbanen Kontext deutlich.
	Ridepooling- Konzept bewerten	ohne Be- zug	Region	 Flexible Busse	 Empirie		Fahrzeug-km, Kosten/Fahrgast- km	Ridepooling erhöht Abdeckung und Auslas- tung gegenüber Solo-DRT.
Engelhardt, Dandl et al. (2020)	Pooling/Zuteil optimieren	ung Deutschland	Region	Pooling	Matem. Opti- mierungsmo- dell	 	 Auslastung	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Engelhardt, Mahmassani et al. (2023)	Pooling/Zuteil optimieren	ung Deutschland	Region	Pooling	 	 	$^{ }_{ }$ Auslastung	Ridepooling erhöht Abdeckung und Auslas- tung gegenüber Solo-DRT.
Fagnant und Kockelman (2018)	Autonomen DRT planen	USA	 Netz	 First/Last-Mile	Simulation	 	 Auslastung	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Fehn et al. (2023)	Pooling/Zuteil optimieren	ung Deutschland	Region	 Pooling	Kartenbasierte Raumanalyse (GIS)	 	Flottengröße, Auslastung	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Fielbaum et al. (2024)	Pooling/Zuteil optimieren	ung Niederlande	Linie	Pooling	Matem. Opti- mierungsmo- dell	 		Ridepooling erhöht Abdeckung und Auslas- tung gegenüber Solo-DRT.
	1		l	1	1	T T	 	Fortsetzung auf der nächsten Seite

Fortsetzung von Tabelle A.3.

Paper	Zielsetzung	,	Betrachtungs- ebene	Fokus / Anwendungsfeld	Methode	Daten	KPI	Zentrale Erkenntnisse
Garus et al. (2024)	Urbanes Ridepooling bewerten	Italien	 Region	 Flexible Busse	Matem. Opti- mierungsmo- dell	 - 	 	 Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Jung et al. (2016)	Fahrplan/Zute		 	 Flexible Busse	Simulation, Matem. Optimierungsmodell	 	Ø-Wartezeit, Auslastung	Ridepooling erhöht Abdeckung und Auslastung gegenüber Solo-DRT.
König et al. (2018)	Pooling/Zuteil optimieren	ung Deutschland	Netz	Pooling	<u> </u>	<u> </u>	$^{\mid}_{\mid}\mathrm{CO}_{2}$	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Leich und Di-	Konzept	ohne Be- zug	 Region	Autonom	Simulation, Matem. Opti- mierungsmo- dell	Literatur	 	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Liang et al. (2020)	Ridepooling- Konzept bewerten	Niederlande	 Netz	First/Last-Mile	Matem. Optimierungsmodell	 - 	Reisezeit	 Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Liu, Quilliot et al. (2024)	DRT planen	Frankreich	Linie	 Autonom	Matem. Opti- mierungsmo- dell	 	 	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Liu, Sun et al. (2025)	Pooling/Zuteil optimieren	ung China	 Netz 	Pooling	Fallstudie	<u> </u> 	Auslastung	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Liu und Ceder (2015)	Ridepooling- Konzept bewerten	China	 Netz	 Flexible Busse	Matem. Opti- mierungsmo- dell	 	Auslastung	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Lobel und Martin (2025)	Pooling/Zuteil optimieren	ung _A	 Netz	Pooling	Matem. Opti- mierungsmo- dell	i 	<u> </u>	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Schatzmann et al. (2023)	Pooling/Zuteil optimieren	lung Deutschland	Netz	Pooling	Matem. Opti- mierungsmo- dell, Empirie	Mix	 - 	
Shen et al. (2018)	First/Last- Mile verbes- sern	USA	 Netz 	 First/Last-Mile	Simulation, Matem. Optimierungsmodell	 	 Auslastung	 Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Soza-Parra et al. (2024)	Pooling/Zuteil optimieren	ung UK	Region	Pooling	Kartenbasierte Raumanalyse (GIS)	 	 Auslastung	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Stiglic et al. (2015)	Ridepooling- Konzept bewerten	Niederlande	 Netz 	Pooling	Matem. Opti- mierungsmo- dell	 - 	 - 	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Stiglic et al. (2018)	Urbanes Ridepooling bewerten	Niederlande	Netz	Studierende	Matem. Optimierungsmodell	 	 	Ridepooling erhöht Abdeckung und Auslastung gegenüber Solo-DRT.

Fortsetzung von Tabelle A.3.

1 0. vecesaring	ton indent							
Paper	Zielsetzung	Region / Land	Betrachtungs- ebene	Fokus / Anwendungsfeld	Methode	Daten	KPI	Zentrale Erkenntnisse
Vosooghi et al. (2019)	Autonomen DRT planen	 Frankreich	 	 Autonom	Simulation, Matem. Optimierungsmodell	 	 - Auslastung - 	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Wallar et al. (2018)	Urbanes Ridepooling bewerten	ohne Be-	 Linie 	 Flexible Busse	Matem. Opti- mierungsmo- dell	 	 Auslastung 	Zielkonflikt zwischen Servicequalität und Bündelungsgrad wird sichtbar.
Wen et al. (2018)	Autonomen DRT planen	USA	 Netz 	Autonom	Simulation, Matem. Opti- mierungsmo- dell	 	$^{ }_{ }$ Auslastung	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Zwick, Kuehnel et al. (2021)	Ridepooling- Konzept bewerten	Deutschland	Region	Pooling	Simulation, Literatur- Review	Literatur	 - 	Studie zeigt Potenziale und Grenzen urbanen Ridepoolings.
Zwick und Axhausen (2020)	Pooling/Zutei optimieren	lung Schweiz	 Netz 	Pooling	Matem. Opti- mierungsmo- dell	synthetisch	 	Ridepooling erhöht Abdeckung und Auslastung gegenüber Solo-DRT.
Zwick und Axhausen (2022)	Pooling/Zutei optimieren	lung Deutschland	l Region	Pooling	Simulation, Kartenbasierte Raumanalyse (GIS)	_	Flottengröße, Fahrzeug-km	Pooling und Optimierung reduzieren Warte-/Reisezeiten und Fahrzeug-km im urbanen Kontext deutlich.

B Implementierung

B.1 Beispieldatensatz

Tabelle B.1: Haltestellen der Buslinien

bus-line-id	stop-ids	stop-x	stop-y
1	1	2.2	36.8
1	2	4.4	40.1
1	3	12.5	42.7
1	4	20.2	44.0
2	1	40.9	48.2
2	2	46.2	40.7
2	3	56.6	38.2
3	1	44.6	15.2
3	2	52.0	20.4
3	3	48.2	32.6
3	4	42.9	38.5
3	5	36.8	46.7
3	6	28.7	44.3
4	1	26.2	7.8
4	2	34.4	6.1
5	1	23.9	16.5
5	2	16.0	12.1
5	3	10.4	10.2
5	4	7.8	22.3
5	5	9.6	30.8

Tabelle B.2: Touren inkl. Startzeiten

Tour-ID	Buslinien-ID	Startzeit
1	1	20.0
2	1	40.0
3	1	60.0
1	2	20.0
2	2	35.0
3	2	50.0
1	3	16.0
2	3	32.0
3	3	48.0
1	4	20.0
2	4	32.0
3	4	44.0
4	4	56.0
1	5	20.0
2	5	32.0
3	5	46.0
4	5	58.0

B.2 Code der implementierten Settings

Siehe digitaler Anhang auf dem abgegebenen USB-Stick.

Tabelle B.3: Fiktive Busse inkl. Eigenschaften und Fahrerschichten/-pausen

Bus-ID	Kapazität	Schichtbeginn	Start P-1	Ende P-1	Start P-2	Ende P-2	Schichtende
1	10	0	0	0	30	40	70
2	10	5	35	40	50	55	75
3	10	10	10	10	40	50	80
4	10	10	55	60	75	80	90
5	10	0	20	30	50	60	90
6	10	0	0	0	45	55	75
7	10	0	25	35	55	65	90
8	10	30	45	55	75	85	100
9	10	0	20	30	50	55	100
10	10	10	30	35	60	65	100

Tabelle B.4: Fiktive Nachfragesituation

ID	Tour-id	Buslinie	Start	Ende	Menge
1	1	1	1	4	1
2	1	1	2	3	2
3	1	1	2	4	1
4	2	1	3	4	1
5	2	1	1	3	2
6	1	2	1	2	4
7	3	2	1	3	1
8	1	3	1	6	2
9	1	3	2	5	1
10	2	3	1	2	1
11	2	3	4	6	4
12	2	4	1	2	1
13	4	4	1	2	2
15	1	5	3	5	1
16	3	5	2	4	1
17	3	5	2	3	1
18	3	5	1	4	3

Versicherung über die Selbstständigkeit

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Masterarbeit ohne fremde Hilfe selbst-
ständig verfasst habe. Ich habe keine anderen als die angegebenen Hilfsmittel – insbesondere keine im
Quellverzeichnis nicht benannten Internet-Quellen – benutzt. Ich habe die Arbeit vorher nicht in einem
anderen Prüfungsverfahren eingereicht. Die schriftliche Fassung entspricht der auf dem elektronischen
Speichermedium.

Hamburg, den 25. August 2025	
Ort, Datum	Unterschrift