

Quantitative Stock Selection based on Multi-Factor Model

迟贺元

Group Member.

Stu. ID	Name
1610006	迟贺元
1611980	郝若馨
1612428	张翰文
1612435	胡濒午

Section One

The Process of Multi-Factor Model

Capital Asset Pricing Model

$$E(R_i) = R_f + \beta_{iM} \cdot E(R_M - R_f)$$

where

$$\beta_{iM} = Cov(R_i, R_M) / Cov(R_M)$$

Capital Asset Pricing Model

Fama-French
Three-Factor
Model

Arbitrage Pricing Theory

Multi-Factor Model

Fama-French Three-Factor Model

High [book-to-market ratio] Minus Low

Fama-French **Three-Factor**

Model

Arbitrage Pricing Theory

$$R_j = a_j + b_{j1}F_1 + b_{j2}F_2 + \dots + b_{jn}F_n + \epsilon_j$$

Capital Asset Pricing Model

Fama-French
Three-Factor
Model

Arbitrage Pricing Theory

Multi-Facto Model

Arbitrage Pricing Theory

Factor

$$E(R_M - R_f)$$
, HML, SMB, P/E , P/S ...

Fitting

OLS, LASSO, Machine Learning ...

 $R_j = a_j + b_{j1}F_1 + b_{j2}F_2 + \dots + b_{jn}F_n + \epsilon_j$

Capital Asset Pricing Mode

Fama-French
Three-Factor

Arbitrage Pricing Theory

Multi-Factor Model

Arbitrage Pricing Theory

Factor

$$E(R_M - R_f)$$
, HML , SMB , P/E , P/S ...

Fitting

OLS, LASSO, Machine Learning ...

$$R_j = a_j + b_{j1}F_1 + b_{j2}F_2 + \dots + b_{jn}F_n + \epsilon_j$$

Capital Asset Pricing Mode

Fama-French Three-Factor

Model

Arbitrage
Pricing Theory

Multi-Factor Model

Section Two

Data

Sample Selection

- Stock Pool:
 - A-share Market
- Period:
 - 2006-01-01 2019-03-01
- Rules:
 - Drop ST/PT stocks
 - Drop stocks that have been listed for less than 3 years
 - Drop stocks that cannot be bought or sold due to suspension of trading, etc.

Factor Calculation

Num	Factor Equation
F_1	Net Profit for the past 12 months/ Gross Operating Income for the past 12 months
F_2	Current Assets - Current Liabilities/Total Assets
F_3	Free Cash Flow of Enterprises/Total capital stock
F_4	year-on-year growth rate of BPS
F_5	90% mark of the past month's return.
F_6	standard deviation of return over the past month
F_7	return over the past six months
F_8	maximum/minimum of price over the past three months
F_9	standard deviation of volume over the past year
•••	•••
F_{94}	average turnover over the past month

Section Three

Factor Test

Factor Test

$$\begin{bmatrix} r_{ti} \\ \vdots \\ r_{tn} \end{bmatrix} = \begin{bmatrix} \beta_{t11} & I_{t1u} & \cdots & I_{t1v} & m_{t1m} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \beta_{tn1} & I_{tnu} & \cdots & I_{tnv} & m_{tnm} \end{bmatrix} \cdot \begin{bmatrix} f_{ti} \\ \vdots \\ f_{tn} \end{bmatrix} + \begin{bmatrix} \mu_{ti} \\ \vdots \\ \mu_{tn} \end{bmatrix}$$

Factor Test

Value	F38	F129
$\mu_{ T }$	3.54	3.56
T > 2 Ratio	68.60%	64.80%
T > 0 Ratio	61.60%	25.20%
μ_{IC}	5.29%	-7.46%
$\mu_{ IC }$	12.00%	11.10%
σ_{IC}	14.10%	11.90%
IC > 0 Ratio	66.00%	33.30%
IC > 0.02 Ratio	88.70%	87.40%
IR	37.21%	-62.70%

Factor Test

F38's |T| Frequency Distribution

F129's |T| Frequency Distribution

Factor Test

F38's |T| Time Series

F129's |*T*| Time Series

Factor Test

F38's f_i Frequency Distribution

F129's f_i Frequency Distribution

Factor Test

F38's f_i Time Series

F129's f_i Time Series

Factor Test

F38's |*IC*| Time Series

F129's |*IC*| Time Series

Factor Test

F38 & F129's Stratified Backtracking Accumulated Returns

Section Four

Traditional Multi-Factor Model

Fitting using Ordinary Least Squares

Portfolio

Portfolio	Normal	Bootstrap
Accumulated Return	18.7%	45.9%
Abnormal Return	28.1%	55.3%
Alpha	0.179	0.465
Beta	0.101	0.223
Sharp Ratio	1.066	2.278
Maximum Drawdown	8.23%	7.40%
Average Volatility	1.156%	1.134%

Fitting using Least Absolute Shrinkage and Selection Operator

Portfolio

Portfolio	Normal	Bootstrap
Accumulated Return	55.0%	2.70%
Abnormal Return	64.4%	12.1%
Alpha	0.541	0.019
Beta	0.095	0.108
Sharp Ratio	2.077	0.265
Maximum Drawdown	8.15%	6.00%
Average Volatility	1.468%	0.905%

Section Five

Multi-Factor Model based on Machine Learning

Fitting using Multi-Layer Perception

Fitting using Multi-Layer Perception

ReLU

Softmax

Dropout

Fitting using Multi-Layer Perception

Py

Multi-Factor Model based on Machine Learning

Fitting using Multi-Layer Perception

Portfolio		
Accumulated Return	42.8%	
Abnormal Return	52.2%	
Alpha	0.412	
Beta	0.063	
Sharp Ratio	3.262	
Maximum Drawdown	4.48%	
Average Volatility	0.670%	

Section Six

Model Comparation

Fitting using Random Forest

Portfolio	OLS	LASSO	MLP
Accumulated Return	45.9%	55.0%	42.8%
Abnormal Return	55.3%	64.4%	52.2%
Alpha	0.465	0.541	0.412
Beta	0.223	0.095	0.063
Sharp Ratio	2.278	2.077	3.262
Maximum Drawdown	7.40%	8.15%	4.48%
Average Volatility	1.134%	1.468%	0.670%

Thank You.

- Allen Chi
- 130 024 94017
- allenk.chi@gmail.com