Package 'aridec'

February 8, 2022

1 Columny 6, 2022
Title Arid decomposition database
Version 0.0.0.1
Description This package provides functions to load and analyse the arid decomposition database
Depends R (>= $3.4.3$)
License GPL-3
Encoding UTF-8
LazyData true
Imports yaml, FME, SoilR
RoxygenNote 7.1.1.9000
NeedsCompilation no
Author Carlos Sierra [aut, cre]
Maintainer Carlos Sierra <csierra@bgc-jena.mpg.de></csierra@bgc-jena.mpg.de>

R topics documented:

piome	2
earbon	2
coordinates	3
countries	3
elevation	4
ignin	4
oadEntries	5
MAP	5
MAT	6
material	6
nitrogen	7
onepFit	7
olotEntry	8
eadEntry	8
soilorder	9
species	9
hreeppFit	10
hreepsFit	10
wopfFit	11
woppFit	12
wonsFit	12

2 carbon

Index 14

biome

Creates a data frame with the ecosystem type of the sites

Description

Creates a data frame with the ecosystem type of the sites

Usage

```
biome(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the ecosystem types from the database

Examples

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
biome=biome(database=aridec)</pre>
```

carbon

Creates a data frame with the carbon content in litter samples

Description

Creates a data frame with the carbon content in litter samples

Usage

```
carbon(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the carbon content (

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
C=carbon(database=aridec)</pre>
```

coordinates 3

coordinates

Creates a data frame with the coordinates of the sites

Description

Creates a data frame with the coordinates of the sites

Usage

```
coordinates(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the longitude and latitude of sites from the database

Examples

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
coor=coordinates(database=aridec)</pre>
```

countries

Creates a data frame with the countries of the sites

Description

Creates a data frame with the countries of the sites

Usage

```
countries(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the countries from the database

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
countries=countries(database=aridec)</pre>
```

4 lignin

elevation

Creates a data frame with elevation values of the sites

Description

Creates a data frame with elevation values of the sites

Usage

```
elevation(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the elevation values (mm) from the database

Examples

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
elevation=elevation(database=aridec)</pre>
```

lignin

Creates a data frame with the lignin content in litter samples

Description

Creates a data frame with the lignin content in litter samples

Usage

```
lignin(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the lignin content (

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
lignin=lignin(database=aridec)</pre>
```

loadEntries 5

loadEntries

Load all entries of the aridec dataset

Description

Load all entries of the aridec dataset

Usage

```
loadEntries(path = "~/aridec/data/")
```

Arguments

path

character string with the path where aridec data is stored

Value

R list with all entries

Examples

```
aridec=loadEntries()
```

MAP

Creates a data frame with mean annual precipitation values of the sites

Description

Creates a data frame with mean annual precipitation values of the sites

Usage

```
MAP(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the mean annual precipitation values (mm) from the database

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
MAP=MAP(database=aridec)</pre>
```

6 material

MAT

Creates a data frame with mean annual temperature values of the sites

Description

Creates a data frame with mean annual temperature values of the sites

Usage

```
MAT(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the mean annual temperature values (Celsius degrees) from the database

Examples

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
MAT=MAT(database=aridec)</pre>
```

material

Creates a data frame with the list of litter samples' plant parts

Description

Creates a data frame with the list of litter samples' plant parts

Usage

```
material(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the list of the litter samples' plant parts from the database

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
material=material(database=aridec)</pre>
```

nitrogen 7

nitrogen

Creates a data frame with the nitrogen content of litter samples

Description

Creates a data frame with the nitrogen content of litter samples

Usage

```
nitrogen(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the nitrogen content (

Examples

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
N=nitrogen(database=aridec)</pre>
```

onepFit

Fits a one pool model to a time-series

Description

Fits a one pool model to a time-series

Usage

```
onepFit(timeSeries, initialCarbon)
```

Arguments

timeSeries A tim

A time series of decomposition values over time

 $initial Carbon \quad \ The \ initial \ amount \ of \ carbon \ in \ units \ that \ correspond \ to \ the \ time \ series \ data$

Value

R list with an FME model object, a aridec model object, and the AIC value

```
aridec<-loadEntries(path='~/Documents/GitHub/aridec/data/')
entry=aridec[[20]]
a=onepFit(timeSeries = entry$timeSeries[,1:2],
initialCarbon=100)</pre>
```

8 readEntry

plotEntry

Plot individual entries of the aridec dataset

Description

Plot individual entries of the aridec dataset

Usage

```
plotEntry(entry)
```

Arguments

entry

character string with the name of the entry to be plotted

Value

A plot

Examples

```
aridec<-loadEntries(path='~/Documents/GitHub/aridec/data/')
plotEntry(entry=aridec[["Adair2017"]])</pre>
```

readEntry

Read single entry of the aridec database

Description

Read single entry of the aridec database

Usage

```
readEntry(path, entryName)
```

Arguments

path character string with the path where aridec is stored

entryName character string with the name of the entry in the database

Value

R list with the entry

```
Adair2017=readEntry(path="~/Documents/GitHub/aridec/data/", entryName="Adair2017")
```

soilorder 9

soilorder

Creates a data frame with soil orders of the sites

Description

Creates a data frame with soil orders of the sites

Usage

```
soilorder(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the soil orders from the database

Examples

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
soilorder=soilorder(database=aridec)</pre>
```

species

Creates a data frame with the species list of litter samples

Description

Creates a data frame with the species list of litter samples

Usage

```
species(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the list of species of the litter samples from the database

```
aridec<-loadEntries(path='~/Repos/aridec/data/')
species=species(database=aridec)</pre>
```

10 threepsFit

threeppFit

Fits a three pool model with parallel structure to a time series

Description

Fits a three pool model with parallel structure to a time series

Usage

```
threeppFit(timeSeries, initialCarbon, inipars = c(1, 0.5, 0.5, 0.5, 0.5))
```

Arguments

timeSeries A time series of respiration values

initialCarbon The initial amount of carbon in units that correspond to the time series data inipars vector of parameter values for the initial search of the optimization algorithm

Value

R list with an FME model object, a SoilR model object, and the AIC value

Examples

```
\label{localization} $$ \operatorname{aridec}_{\operatorname{loadEntries}(\operatorname{path}='^{\operatorname{locuments/GitHub/aridec/data/'})} $$ \operatorname{a=threeppFit}(\operatorname{timeSeries} = \operatorname{entry}\operatorname{timeSeries}[,c(1,2)], $$ \operatorname{initialCarbon}=100, $$ \operatorname{inipars} = c(0.05, 0.01, 0.001, 0.1, 0.1)) $$
```

threepsFit

Fits a three pool model with series structure to a time series

Description

Fits a three pool model with series structure to a time series

Usage

```
threepsFit(
   timeSeries,
   initialCarbon,
   inipars = c(1, 0.5, 0.5, 0.5, 0.5, 0.5))
```

Arguments

timeSeries A time series of respiration values

initialCarbon The initial amount of carbon in units that correspond to the time series data inipars vector of parameter values for the initial search of the optimization algorithm

twopfFit 11

Value

R list with an FME model object, a SoilR model object, and the AIC value

Examples

```
aridec<-loadEntries(path='~/Documents/GitHub/aridec/data/')
entry=aridec[["20"]]
a=threepsFit(timeSeries = entry$timeSeries[,c(1,2)],
initialCarbon=100,
inipars=c(0.9,0.01, 0.000001, 0.01, 0.01, 0.01, 0.1))</pre>
```

twopfFit

Fits a two pool model with feedback structure to a time series

Description

Fits a two pool model with feedback structure to a time series

Usage

```
twopfFit(timeSeries, initialCarbon, inipars = c(1, 0.5, 0.5, 0.5, 0.3))
```

Arguments

timeSeries A time series of respiration values

initialCarbon The initial amount of carbon in units that correspond to the time series data

inipars vector of parameter values for the initial search of the optimization algorithm

Value

R list with an FME model object, a SoilR model object, and the AIC value

```
aridec<-loadEntries(path='~/Documents/GitHub/aridec/data/')
entry=aridec[["20"]]
b=twopfFit(timeSeries = entry$timeSeries[,c(1,2)],
initialCarbon=100,
inipars=c(0.005, 0.00001, 0.1, 0.01, 0.01))</pre>
```

12 twopsFit

+	_	_	_	:	+
two	U	U	Г	т	ι

Fits a two pool model with parallel structure to a time series

Description

Fits a two pool model with parallel structure to a time series

Usage

```
twoppFit(timeSeries, initialCarbon, inipars = c(1, 0.5, 0.5))
```

Arguments

timeSeries A time series of decomposition values

initialCarbon The initial amount of carbon in units that correspond to the time series data inipars vector of parameter values for the initial search of the optimization algorithm

Value

R list with an FME model object, a SoilR model object, and the AIC value

Examples

```
aridec<-loadEntries(path='~/Documents/GitHub/aridec/data/')
entry=aridec[["20"]]
a=twoppFit(timeSeries = entry$timeSeries[,c(1,2)],
initialCarbon=100,
inipars=c(0.01, 0.001, 0.1))</pre>
```

twopsFit

Fits a two pool model with series structure to a time series

Description

Fits a two pool model with series structure to a time series

Usage

```
twopsFit(timeSeries, initialCarbon, inipars = c(1, 0.5, 0.5, 0.3))
```

Arguments

timeSeries A time series of decomposition values

initialCarbon The initial amount of carbon in units that correspond to the time series data inipars vector of parameter values for the initial search of the optimization algorithm

twopsFit 13

Value

R list with an FME model object, a SoilR model object, and the AIC value

```
aridec<-loadEntries(path='~/Documents/GitHub/aridec/data/')
entry=aridec[["20"]]
b=twopsFit(timeSeries = entry$timeSeries[,c(1,2)],
initialCarbon=100,
inipars=c(0.005, 0.00001, 0.1, 0.01))</pre>
```

Index

```
biome, 2
carbon, 2
coordinates, 3
countries, 3
elevation, 4
lignin, 4
loadEntries, 5
MAP, 5
MAT, 6
material, 6
{\tt nitrogen}, \color{red} 7
{\tt onepFit}, \textcolor{red}{7}
{\tt plotEntry}, \color{red} 8
{\sf readEntry}, {\color{read}8}
soilorder, 9
species, 9
{\tt threeppFit}, {\color{red} 10}
threepsFit, 10
{\tt twopfFit}, {\tt 11}
{\tt twoppFit}, \textcolor{red}{12}
twopsFit, 12
```