Simetrías y cantidades conservadas

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

21 de agosto de 2024

Agenda

- Variables conjugadas y cíclicas
- 2 Ejemplo: Partícula cono invertido
- Sección
- 4 Sección
- Sección
- Sección
- Sección
- Sección
- Sección

• Dado un sistema caracterizado por un Lagrangiano $\mathcal{L}(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_j}$ asociado a la coordenada generalizada q_i . También llamado momento canónico.

- Dado un sistema caracterizado por un Lagrangiano $\mathcal{L}\left(q_{j},\dot{q}_{j},t\right)$, se define el momento conjugado, $p_{j}\left(q_{j},\dot{q}_{j},t\right)\equiv\frac{\partial\mathcal{L}}{\partial\dot{q}_{j}}$ asociado a la coordenada generalizada q_{j} . También llamado momento canónico.
- El p_j no necesariamente es el momento lineal. También puede corresponder al momento angular o a otra cantidad física.

- Dado un sistema caracterizado por un Lagrangiano $\mathcal{L}\left(q_{j},\dot{q}_{j},t\right)$, se define el momento conjugado, $p_{j}\left(q_{j},\dot{q}_{j},t\right)\equiv\frac{\partial\mathcal{L}}{\partial\dot{q}_{j}}$ asociado a la coordenada generalizada q_{j} . También llamado momento canónico.
- El p_j no necesariamente es el momento lineal. También puede corresponder al momento angular o a otra cantidad física.
- Si un Lagrangiano \mathcal{L} de un sistema no contiene explícitamente una coordenada q_i (puede contener \dot{q}_i y t), se dice que q_i es una coordenada cíclica o ignorable.

- Dado un sistema caracterizado por un Lagrangiano $\mathcal{L}(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_j}$ asociado a la coordenada generalizada q_i . También llamado momento canónico.
- El p_j no necesariamente es el momento lineal. También puede corresponder al momento angular o a otra cantidad física.
- Si un Lagrangiano \mathcal{L} de un sistema no contiene explícitamente una coordenada q_i (puede contener \dot{q}_i y t), se dice que q_i es una coordenada cíclica o ignorable.
- Entonces, el momento conjugado p_i asociado a una coordenada cíclica, q_i , es constante. Luego, la cantidad $p_i\left(q_j,\dot{q}_j,t\right)$ es una cantidad conservada, i.e. una primera integral del movimiento.

- Dado un sistema caracterizado por un Lagrangiano $\mathcal{L}(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_j}$ asociado a la coordenada generalizada q_i . También llamado momento canónico.
- El p_j no necesariamente es el momento lineal. También puede corresponder al momento angular o a otra cantidad física.
- Si un Lagrangiano \mathcal{L} de un sistema no contiene explícitamente una coordenada q_i (puede contener \dot{q}_i y t), se dice que q_i es una coordenada cíclica o ignorable.
- Entonces, el momento conjugado p_i asociado a una coordenada cíclica, q_i , es constante. Luego, la cantidad $p_i\left(q_j,\dot{q}_j,t\right)$ es una cantidad conservada, i.e. una primera integral del movimiento.
- Si una coordenada q_i es cíclica, entonces $\frac{\partial \mathcal{L}}{\partial q_i} = 0$, y la ecuación de Lagrange para esa coordenada cíclica q_i es $\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) = \frac{dp_i}{dt} = 0 \Rightarrow p_i = \text{cte.}$

• Consideremos una partícula que se mueve sobre una supreficie cónica

• Consideremos una partícula que se mueve sobre una supreficie cónica

• Su Lagrangeano es $\mathcal{L}(r,\dot{r},\dot{\varphi}) = \frac{1}{2}m\left(\dot{r}^2\csc^2\alpha + r^2\dot{\varphi}^2\right) - mgr\cot\alpha$

• Consideremos una partícula que se mueve sobre una supreficie cónica

- Su Lagrangeano es $\mathcal{L}(r,\dot{r},\dot{\varphi}) = \frac{1}{2}m\left(\dot{r}^2\csc^2\alpha + r^2\dot{\varphi}^2\right) mgr\cot\alpha$
- La coordenada φ es cíclica. El momento conjugado p_{φ} asociado con la coordenada angular φ es constante, $p_{\varphi}=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=mr^2\dot{\varphi}=$ cte .

• Consideremos una partícula que se mueve sobre una supreficie cónica

- Su Lagrangeano es $\mathcal{L}(r,\dot{r},\dot{\varphi})=rac{1}{2}m\left(\dot{r}^2\csc^2\alpha+r^2\dot{\varphi}^2
 ight)-mgr\cot\alpha$
- La coordenada φ es cíclica. El momento conjugado p_{φ} asociado con la coordenada angular φ es constante, $p_{\varphi}=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=mr^2\dot{\varphi}=$ cte .
- El momento angular de la partícula, $\mathbf{L} = \mathbf{r} \times m\mathbf{v} = m \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ x & y & z \\ \dot{x} & \dot{y} & \dot{z} \end{vmatrix}$ La componente z del vector \mathbf{I} es $L_z = m(x\dot{y} - y\dot{x})$

• El momento conjugado p_r asociado a r es $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2\alpha$.

