

ВВЕДЕНИЕ

Несовершенный остеогенез, также известный как болезнь «хрустального человека» - является наследственным генетическим заболеванием соединительной ткани, причина которой связано либо с дефектом строения коллагена, то есть либо нарушение его первичной структуры или недостаточное его количество, вызвано мутацией в генах COL1A и COL1A2, которые выявляются в 90 % случаев, но 10% вызвано другими редкими мутациями (подробнее в разделе генетика). Также, за последние 10 лет выявлены другие причины возникновения заболевания, не связанные с коллагеном I типа (однако эти причины встречаются крайне редко).

ГЕНЕТИЧЕСКИЕ ОСНОВЫ НЕСОВЕРШЕННОГО ОСТЕОГЕНЕЗА

В 1979 году Sillence и др. (1979г.) была предложена классификация несовершенного остеогенеза основываясь на клинических, рентгенологических данных 180 пациентов которые были обследованы в Австралии. Пациенты были разделены в 4 группы, 1 тип несовершенного остеогенеза характеризуется средней степенью тяжести заболевания, с голубыми склерами, с аутосомно-доминантным типом наследования. 2 тип перинатально-летальный тип, подразделен на субтипы 2-А,-В и -С на основе рентгенологических данных [Sillence et al., 1984], при данном типе наблюдаются тяжелые деформации и укорочения конечностей, часто наблюдается летальный вследствие респираторных осложнений. 3 тип прогрессивно деформирующий, характеризуется значительными деформациями костей, тяжелым сколиозом. 4 тип – с аутосомнодоминантным наследования. характеризуется нормальными склерами. Генетическим дефектом в 90% случаях заболевания являются мутации в двух генах коллагена первого типа – α 1 цепи (COL1A1) и α 2 цепи (COL1A2), которые обычно передаются от родителей к детям, изучены более 1,500 доминантных мутаций приводящие к данной патологии. Однако, у некоторых пациентов не наблюдалось генетических дефектов в COL1A1 и COL1A2 генах наследственного И не отмечалось характера.

Так какие гены поражены, вследствие которых возникает заболевание??

В 2006 году впервые выявлена мутация в гене (CRTAP) ответственный за аутосомно-рецессивный тип несовершенного остеогенеза (т.е. не прослеживается наследственный характер заболевания, возник впервые в семье), в результате которого возникает тяжелое течение заболевания. В дальнейшем и до настоящего времени выявлено дополнительно 14 мутаций. Таким образом, общее количество мутаций ответственные за проявление заболевания несовершенного остеогенеза

17 и это еще не все выявленные мутации, по мнению ученых их гораздо больше. Это значит только одно, что мы в целом не знаем полностью природу возникновения несовершенного остеогенеза. С каждым выявленным геном, изучается его роль в развитии заболевания, которое расширяет знания о работе регуляции костной ткани. Полученные данные позволяют разработать некоторые фармакологические препараты. Необходимы дальнейшие исследования и анализы для понятия природы заболевания, что бы в будущем получилось разработать терапию которая была эффективна и безопасна. Все эти данные в будущем могут стать хорошей базой информации для разработки клеточной и генной терапии, но к сожалению данный вид терапии еще находится на очень ранних стадиях развития.

1	COL1A1
2	COL1A2
3	CRTAP
4	LEPRE
5	FRBP10
6	SERPINF1
7	SERPINH1
8	PLOD2
9	PLS3
10	PPIB
11	SP7
12	ТМЕМЗ8В
13	WNT1
14	CREP3L1
15	IFITM5
16	BMP1
17	TAPT1

Первичная диагностика несовершенного остеогенеза основывается, прежде всего, на клинических проявлениях. Но сложно диагностировать легкие и средние по тяжести формы заболевания у новорожденных и маленьких детей. Диагностика требует консультации таких специалистов, как генетик, ортопед, эндокринолог и др. Лабораторные исследования помогут ИСКЛЮЧИТЬ наличие других заболеваний, предоставят информацию для дальнейшего медикаментозного лечения и, иногда, подтвердят диагноз путем выявления генных мутаций. Процесс диагностики сложен и должен включать в себя следующие этапы (следующие этапы в других

1. Формирование полной медицинской семейной истории. истории, оценки Учитывая что несовершенный остеогенез ГЕНЕТИЧЕСКОЕ наследственное заболевание, которое возникает в следствие мутации в гене - ответственный за синтез коллагена I типа, необходимо иметь информацию о самой генетике, как происходит наследование заболевания.

Что такое гены?

Гены это единицы которые несут в себе наследственную информацию – ДНК, контролирующая развитие определенного признака или свойств в организме. Каждый ребенок получает две копии каждого гена от каждого из родителя. Иногда происходит нарушение структуры генов вследствие мутации (причины которых не известно до настоящего времени), который приводит к нарушению передачи информации и тем самым, приводит к нарушению исполнения функции клеток,

нарушается их нормальная работа. Разберем какие гены бывают и как они наследуются.

Доминантный тип наследования:

90% случаев несовершенного остеогенеза передается по данному типу наследования. Когда ген с доминантной (от лат. dominans «господствующий») мутацией, данная мутация начинает подавлять здоровый ген. При доминантных генетических дефектах возникает 2 сценария:

- 1. Доминатный ген в с мутацией кодирует клетки, но клетки образуют коллаген с дефектами (в следствие мутации в гене – неправильная информация). Здоровый ген неся в себе правильную информацию кодирует клетки ДЛЯ образования коллагена нормального качества. В итоге, организме наблюдается нарушение качество коллагена, что наблюдается при II, III и IV типе несовершенного остеогенеза.
- 2. Иногда мутация в доминантном гене, приводит к тому что клетки не в состоянии производства коллагена, но здоровый ген продолжает свою

функцию в производстве коллагена. Тем самым, в организме имеется коллаген нормального качество, однако недостаточного количества, что и наблюдается при I типе несовершенного остеогенеза.

Репессивный тип наследования

В 10% случаях несовершенный остеогенез наблюдаются рецессивные мутации. Обе копии гена должны быть с мутациями у человека, чтобы иметь генетическое заболевание, т.е. родители могут не иметь симптомов генетического заболевания (потому что они имеют только один дефектный ген), но они являются носителями заболевания. С каждой беременностью, существует 25-процентная что ребенок получит вероятность τογο, измененных гена, по одному от каждого родителя. В этом случае, ребенок будет иметь генетическое нарушение. Существует 50-процентная вероятность, что ребенок получит только один измененный ген, в этом случае он или она будет носителем (как и его родители), без симптомов заболевания.

Таким образом, можно выделить 3 пути развития заболевания у ребенка

1. Прямое унаследование от родителя Человек с несовершенным остеогенезом имеет два гена, которые ответственны за синтез коллагена 1 типа, один из которых мутированный – несет мутацию, а второй нормальный. Каждый

раз, при зачатие ребенка, каждый из родителей передает один из двух генов своему будущему ребенку. Поэтому, имеется 50% риск передачи гена с мутацией ребенку. Даже если у ребенка будет та же мутация вызывающая НО как у родителя, симптомы и проявления заболевания у ребенка могут быть менее тяжелыми или могут быть более тяжелыми чем у родителя. Если в родитель с несовершенным остеогенезом передал здоровый ген, то данный ребенок будет здоровым и он не сможет передавать болезнь по своей линии (потому что что у него нет мутации) 2. Спонтанная доминантная мутация Около 25 % детей с несовершенным остеогенезом родились в семьях без отягощенного наследственного анамнеза по данному заболеванию. Это происходит за счет «новых», «спонтанных» доминантных мутаций. Учитывая, что у ребенка имеется доминантная мутация, он заболевания или она может 50% случаях передать своим 3. Мозаишизм Во многих семьях, без отягощенного семейного анамнеза, рождается ребенок с несовершенным есть ЛИ риск рождение И второго больного Если один из детей в семье болеет с Н.О., риск развития заболевания у другого ребенка в данной семье варьирует от 0% до 50%, в зависимости от доли родительских гамет, которые имеют мутацию в мозаичном паттерне (Мозаичный паттерн или Мозаицизм – означает что, человек у которого есть мутация вызывающая НО, но эта мутация находится не во всех клетках, а в определенных).

Если оба родителя болеют несовершенным остеогенезом

В таких случаях существует 75% риска, что ребенок унаследует одну или два мутированных гена, т.е. 25% что ребенок унаследует мутированный ген матери с несовершенным остеогенезом (и здоровый ген отца), 25% что ребенок унаследует мутированный ген отца с несовершенным остеогенезом (и здоровый ген матери) и 25% что ребенок унаследует оба мутированных гена родителей.

Также, важно запомнить, что наличие одной и той же мутации в семейной линии (напр. у бабушки, у матери и у ребенка одна мутация), не вызывает заболевание в одинаковой степени проявлений. Напр. в клинике наблюдается семья, заболевание имеется в трех поколениях, однако у бабушки не было не одного клинически диагностированного перелома, но есть голубые склеры и низкий рост, у матери около 20 переломов, которые начались в возрасте 1 года, а у ребенка уже 7 переломов к 5 месяцам жизни. Также имеются много примеров, когда у ребенка с клиническими проявлениями характерная для III типа, выявлена мутация которая ранее описана у ребенка с I типов несовершенного остеоегенеза. Это значит, что генетика и клинические проявления не всегда коррелируют одинаково.

Данная информация была подготовлена врачом педиатром, сотрудником ФГБНУ «Научного центра здоровья детей» Яхяевой Гузал Тахировной.

Для более детальной информации пожалуйста обращайтесь:

ФГБНУ «Научный центр здоровья детей» г. Москва, Ломоносовский проспект 2, стр. 1, 119991 Тел: 8 (926) 109-64-42

8 (916) 764-78-44

e-mail: guzall 2404@mail.ru