$\label{eq:Aufgabe 1. Sei one of the control of th$

Zunächst einmal ist E[X] als Zufallsvariable die Abbildung auf irgendeine konstante Zahl. Das Urbild davon ist also ganz Ω . Somit ist E[X] \mathscr{A} -messbar. Weiterhin gilt $\int_{\Omega} E[X] \mathrm{d}P = E[X] \int_{\Omega} \mathrm{d}P = E[X] \cdot 1 = \int_{\Omega} X \mathrm{d}P$, sodass $E[X|\mathscr{A}] = E[X]$ gilt.

Aufgabe 2. Zeigen Sie die folgenden Aussagen

i) Ist $(X_i)_{i\in I}$ gleichgradig integrierbar und $(\mathscr{F}_j)_{j\in J}$ eine Familie von Unter- σ -Algebren von \mathscr{A} . Dann ist die Familie $(E[X_i,\mathscr{F}_j])_{i\in I,j\in J}$ gleichgradig integrierbar.

Nach Lemma 24 gilt, wenn (X_i) gleichgradig integrierbar ist, äquivalent $\sup_{i\in I} E[|X_i|] < \infty$ und $\lim_{\delta\to 0} \sup_{A:P(A)<\varepsilon} \sup_{i\in I} E[|X_i|\mathbbm{1}_A] = 0$. Man kann auch sagen, dass für alle $\varepsilon > 0$ ein $\delta > 0$ existiert, sodass für alle $i\in I$ und alle $A\in \mathscr{A}$ mit $P(A)\leq \delta$ gilt $E[|X_i|\mathbbm{1}_A]<\varepsilon$. Wir schreiben kurz $Y_{ij}=E[X_i\mid \mathscr{F}_j]$. Sei nun $k=\sup_{i\in I} E[|X_i|]/\delta$. Mit der Markov-Ungleichung kriegen wir nun

$$P(|Y_{ij}| > k) \le \frac{E[|Y_{ij}|]}{k}.$$

Für alle $i \in I$ und $j \in J$ gilt mit der Jensen'schen Ungleichung des bedingten Erwartungswertes, dass $|Y_{ij}| \leq E[|X_i| \mid \mathscr{F}_j]$, also

$$\leq \frac{E[|X_i|]}{k}$$
.

Da, wie erwähnt, (X_i) beschränkt in L^1 ist, gilt

$$\leq \sup_{i \in I} \frac{E[|X_i|]}{k}$$

und nach der Wahl des δ schließlich

$$\leq \delta$$
.

Damit folgt, wie oben erklärt, $E[|Y_{ij}|\mathbbm{1}_{|Y_{ij}|>k}] \leq E[|X_i|\mathbbm{1}_{|Y_{ij}|>k}] < \varepsilon$, also ist $(E[X_i, \mathscr{F}_j])_{ij}$ gleichgradig integrierbar.

ii) Ist $X \in L^1(\Omega, \mathcal{A}, P)$, dann ist $(E[X|\mathscr{F}_j])_{j \in J}$ gleichgradig integrierbar.

Nach Beispiel 23.i ist, wenn $X \in L^1(\Omega, \mathcal{A}, P)$ ist, die Folge (X) gleichgradig integrierbar, sodass $(E[X|\mathscr{F}_j])_{j\in J}$ nach Teilaufgabe (i) gleichgradig integrierbar ist.