Exercice 1 [02650] [Correction]

On note V l'ensemble des matrices à coefficients entiers du type

$$\begin{pmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{pmatrix}$$

et G l'ensemble des $M \in V$ inversibles dans $\mathcal{M}_4(\mathbb{R})$ et dont l'inverse est dans V.

- (a) Quelle est la structure de G?
- (b) Soit $M \in V$. Montrer que $M \in G$ si, et seulement si, $\det M = \pm 1$.
- (c) Donner un groupe standard isomorphe à G muni du produit.

Exercice 2 [02649] [Correction]

Soit (G, .) un groupe fini tel que

$$\forall g \in G, g^2 = e$$

où e est le neutre de G. On suppose G non réduit à $\{e\}$. Montrer qu'il existe $n \in \mathbb{N}^*$ tel que G est isomorphe à $((\mathbb{Z}/2\mathbb{Z})^n, +)$.

Exercice 3 [02648] [Correction]

Soit G un groupe, H un sous-groupe de G, A une partie non vide de G. On pose $AH = \{ah \mid a \in A, h \in H\}$. Montrer que AH = H si, et seulement si, $A \subset H$.

Exercice 4 [02677] [Correction]

Soit $\mathbb K$ un corps, E un espace vectoriel de dimension finie n sur $\mathbb K$ et $\mathbb L$ un sous-corps de $\mathbb K$ tel que $\mathbb K$ est un espace vectoriel de dimension finie p sur $\mathbb L$. Montrer que E est un espace vectoriel de dimension finie q sur $\mathbb L$. Relier n,p,q.

Exercice 5 [02662] [Correction] Soit $K = \mathbb{Q} + \sqrt{2}\mathbb{Q} + \sqrt{3}\mathbb{Q} + \sqrt{6}\mathbb{Q}$.

- (a) Montrer que $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ est une \mathbb{Q} -base du \mathbb{Q} -espace vectoriel K.
- (b) Montrer que K est un sous-corps de \mathbb{R} .

Exercice 6 [02658] [Correction]

- (a) Pour $(a, n) \in \mathbb{Z} \times \mathbb{N}^*$ avec $a \wedge n = 1$, montrer que $a^{\varphi(n)} = 1$ [n].
- (b) Pour p premier et $k \in \{1, \dots, p-1\}$, montrer que p divise $\binom{p}{k}$.
- (c) Soit $(a, n) \in (\mathbb{N}^*)^2$. On suppose que $a^{n-1} = 1$ [n]. On suppose que pour tout x divisant n-1 et différent de n-1, on a $a^x \neq 1$ [n]. Montrer que n est premier.

Exercice 7 [02660] [Correction]

Si p est un nombre premier, quel est le nombre de carrés dans $\mathbb{Z}/p\mathbb{Z}$?

Exercice 8 [03929] [Correction]

- (a) Déterminer l'ensemble des inversibles de l'anneau $\mathbb{Z}/8\mathbb{Z}$. De quelle structure peut-on munir cet ensemble?
- (b) Y a-t-il, à isomorphisme près, d'autres groupes de cardinal 4?

Exercice 9 [04954] [Correction]

Déterminer les z complexes pour lesquels la matrice suivante est diagonalisable

$$M = \begin{pmatrix} 0 & 0 & z \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}.$$

Exercice 10 [04979] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Déterminer les polynômes P pour lesquels la matrice P(A) est nilpotente.

Exercice 11 [04982] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice vérifiant

$$A^3 = A + I_n$$
 et $tr(A) \in \mathbb{O}$.

Montrer que n est un multiple de 3 et calculer det(A).

Exercice 12 [04983] [Correction]

Soient a, b, c trois réels non nuls. Étudier la diagonalisabilité de la matrice réelle

$$M = \begin{pmatrix} 0 & a & c \\ 1/a & 0 & b \\ 1/c & 1/b & 0 \end{pmatrix}.$$

Exercice 13 [04985] [Correction]

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$ n'ayant aucune valeur propre en commun.

- (a) Montrer que $\chi_A(B)$ est une matrice inversible.
- (b) Soit $M \in \mathcal{M}_n(\mathbb{C})$. Montrer qu'il existe une unique matrice $X \in \mathcal{M}_n(\mathbb{C})$ telle que

$$AX - XB = M$$

Exercice 14 [00864] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{C})(n \geq 3)$ vérifiant

$$\operatorname{rg} A = 2, \operatorname{tr} A = 0 \text{ et } A^n \neq O_n.$$

Montrer que A est diagonalisable.

Exercice 15 [02713] [Correction]

Trouver les A de $\mathcal{M}_n(\mathbb{C})$ telles que

$$A^3 - 4A^2 + 4A = 0$$
 et tr $A = 8$.

Exercice 16 [02703] [Correction]

Diagonaliser les matrices de $\mathcal{M}_n(\mathbb{R})$

$$\begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 1 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & \cdots & \cdots & 1 \\ \vdots & 0 & \cdots & 0 & \vdots \\ \vdots & \vdots & & \vdots & \vdots \\ \vdots & 0 & \cdots & 0 & \vdots \\ 1 & \cdots & \cdots & \cdots & 1 \end{pmatrix}.$$

Exercice 17 [02702] [Correction]

Soit $(a_1, \ldots, a_n) \in \mathbb{C}^n$. La matrice $(a_i a_j)_{1 \le i,j \le n}$ est-elle diagonalisable?

Exercice 18 [01948] [Correction]

Trouver les matrices M de $\mathcal{M}_n(\mathbb{R})$ vérifiant

$$\operatorname{tr} M = 0 \text{ et } M^3 - 4M^2 + 4M = O_n.$$

Exercice 19 [02719] [Correction]

Soient f et g deux endomorphismes d'un $\mathbb{C}\text{-espace}$ vectoriel E de dimension finie $n\geq 1$ tels que

$$f \circ g - g \circ f = f$$
.

- (a) Montrer que f est nilpotent.
- (b) On suppose $f^{n-1} \neq 0$. Montrer qu'il existe une base e de E et $\lambda \in \mathbb{C}$ tels que :

$$\operatorname{Mat}_{e} f = \begin{pmatrix} 0 & 1 & & & (0) \\ & \ddots & \ddots & & \\ & & \ddots & 1 \\ & & & \ddots & 1 \\ (0) & & & 0 \end{pmatrix}$$

et

$$\operatorname{Mat}_{e} g = \operatorname{diag}(\lambda, \lambda + 1, \dots, \lambda + n - 1).$$

Exercice 20 [02707] [Correction]

Soient $a, b \in \mathbb{R}$, $b \neq 0$ et $A \in \mathcal{M}_n(\mathbb{R})$ la matrice dont les éléments diagonaux valent a et les autres valent b. A est-elle diagonalisable? Quelles sont les valeurs propres de A? Quel est le polynôme minimal de A? Sous quelles conditions sur a et b, A est-elle inversible? Lorsque c'est le cas trouver l'inverse de A.

Exercice 21 [02696] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. Montrer que AB et BA ont même valeurs propres.

Exercice 22 [02705] [Correction]

Soient a, b deux réels et les matrices

$$A = \begin{pmatrix} a & b & \cdots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix} \text{ et } B = \begin{pmatrix} b & \cdots & b & a \\ \vdots & \ddots & a & b \\ b & \ddots & \ddots & \vdots \\ a & b & \cdots & b \end{pmatrix}.$$

Réduire ces deux matrices.

Exercice 23 [02692] [Correction]

Les matrices

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

sont-elles semblables?

Exercice 24 [02667] [Correction]

Montrer qu'il existe $(a_0, \ldots, a_{n-1}) \in \mathbb{R}^n$ tel que :

$$\forall P \in \mathbb{R}_{n-1}[X], P(X+n) + \sum_{k=0}^{n-1} a_k P(X+k) = 0.$$

Exercice 25 [02706] [Correction]

On pose

$$M(a,b) = \begin{pmatrix} a^2 & ab & ab & b^2 \\ ab & a^2 & b^2 & ab \\ ab & b^2 & a^2 & ab \\ b^2 & ab & ab & a^2 \end{pmatrix}$$

pour tous a, b réels.

- (a) Ces matrices sont-elles simultanément diagonalisables?
- (b) Étudier et représenter graphiquement l'ensemble des $(a,b) \in \mathbb{R}^2$ tel que $M(a,b)^n$ tend vers 0 quand n tend vers ∞ .

Exercice 26 [02700] [Correction]

Soit $E = \mathcal{C}([0;1],\mathbb{R})$. Si $f \in E$ on pose

$$T(f) \colon x \in [0;1] \mapsto \int_0^1 \min(x,t) f(t) dt.$$

- (a) Vérifier que T est un endomorphisme de E.
- (b) Déterminer les valeurs propres et les vecteurs propres de T.

Exercice 27 [02729] [Correction]

Soit la matrice $A \in \mathcal{M}_n(\mathbb{R})$ donnée par $A = (\min(i,j))_{1 \le i,j \le n}$.

- (a) Trouver une matrice triangulaire inférieure unité L et une matrice triangulaire supérieure U telle que A=LU.
- (b) Exprimer A^{-1} à l'aide de

$$N = \begin{pmatrix} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ (0) & & & 0 \end{pmatrix}.$$

(c) Montrer que Sp $A^{-1} \subset [0; 4]$.

Exercice 28 [02718] [Correction]

Soient $A \in \mathbb{R}[X]$ et $B \in \mathbb{R}[X]$ scindé à racines simples de degré n+1. Soit Φ l'endomorphisme de $\mathbb{R}_n[X]$ qui à $P \in \mathbb{R}[X]$ associe le reste de la division euclidienne de AP par B. Déterminer les éléments propres de Φ . L'endomorphisme Φ est-il diagonalisable?

Exercice 29 [03063] [Correction]

Soit E l'espace des fonctions f de classe C^1 de $[0; +\infty[$ vers \mathbb{R} vérifiant f(0)=0. Pour un élément f de E on pose T(f) la fonction définie par

$$T(f)(x) = \int_0^x \frac{f(t)}{t} dt.$$

Montrer que T est un endomorphisme de E et déterminer ses valeurs propres.

Exercice 30 [02697] [Correction]

Soit $(A, B) \in \mathcal{M}_{p,q}(\mathbb{R}) \times \mathcal{M}_{q,p}(\mathbb{R})$. Montrer que

$$X^q \chi_{AB}(X) = X^p \chi_{BA}(X).$$

Indice : Commencer par le cas où

$$A = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Exercice 31 [02714] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$A^3 + A^2 + A = 0.$$

Montrer que la matrice A est de rang pair.

Exercice 32 [03755] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible.

Montrer que A est triangulaire supérieure si, et seulement si, A^k l'est pour tout $k \geq 2$.

Donner un contre-exemple dans le cas où l'on ne suppose plus la matrice ${\cal A}$ inversible.

Exercice 33 [02698] [Correction]

- (a) Si $P \in \mathbb{Z}[X]$ est unitaire de degré n, existe-t-il une matrice $A \in \mathcal{M}_n(\mathbb{Z})$ de polynôme caractéristique P(X)?
- (b) Soient $(\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n$ et le polynôme

$$P = \prod_{i=1}^{n} (X - \lambda_i).$$

On suppose $P \in \mathbb{Z}[X]$. Montrer que pour tout $q \in \mathbb{N}^*$ le polynôme

$$P_q = \prod_{i=1}^n \left(X - \lambda_i^q \right)$$

appartient encore à $\mathbb{Z}[X]$.

(c) Soit P dans $\mathbb{Z}[X]$ unitaire dont les racines complexes sont de modules ≤ 1 . Montrer que les racines non nulles de P sont des racines de l'unité.

Exercice 34 [02722] [Correction]

Soit E un espace vectoriel réel de dimension finie, $f \in \mathcal{L}(E)$ tel que $f^2 = f$. Étudier les éléments propres et la diagonalisabilité de l'endomorphisme $u \mapsto fu - uf$ de $\mathcal{L}(E)$.

Exercice 35 [02726] [Correction]

Soit E un C-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ tel que

$$u^3 = \mathrm{Id}$$
.

Décrire les sous-espaces stables de u.

Même question avec E un \mathbb{R} -espace vectoriel.

Exercice 36 [02681] [Correction]

Soit E un espace vectoriel sur \mathbb{K} et a un élément non nul de \mathbb{K} . Soit $f \in \mathcal{L}(E)$ tel que $f^3 - 3af^2 + a^2f = 0$. Est-il vrai que Ker f et Im f sont supplémentaires?

Exercice 37 [02897] [Correction]

On note $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$ et on pose, pour toute $f \in E$ et tout $x \in \mathbb{R}$,

$$Tf(x) = f(x) + \int_0^x f(t) dt.$$

- (a) L'opérateur T est-il un automorphisme de E?
- (b) Existe-t-il un sous-espace vectoriel de E de dimension finie impaire et stable par T?

Exercice 38 [02699] [Correction]

Soient A et B dans $\mathcal{M}_n(\mathbb{K})(\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C})$.

- (a) Comparer $\operatorname{Sp} B$ et $\operatorname{Sp} {}^{t}B$.
- (b) Soit $C \in \mathcal{M}_n(\mathbb{K})$. Montrer que s'il existe λ pour lequel $AC = \lambda C$, alors $\operatorname{Im} C \subset \operatorname{Ker}(A \lambda I_n)$.
- (c) Soit λ une valeur propre commune à A et B. Montrer qu'il existe $C \in \mathcal{M}_n(\mathbb{K}), C \neq 0$, telle que $AC = CB = \lambda C$.
- (d) On suppose l'existence de $C \in \mathcal{M}_n(\mathbb{K})$ avec rg C = r et AC = CB. Montrer que le PGCD des polynômes caractéristiques de A et B est de degré $\geq r$.
- (e) Étudier la réciproque de d).

Exercice 39 [02708] [Correction]

Soit

$$A = \begin{pmatrix} a & 0 & \cdots & \cdots & \cdots & 0 & b \\ 0 & \ddots & \ddots & & \ddots & \ddots & 0 \\ \vdots & \ddots & a & 0 & b & \ddots & \vdots \\ \vdots & & 0 & a+b & 0 & & \vdots \\ \vdots & & b & 0 & a & \ddots & \vdots \\ 0 & \ddots & \ddots & & \ddots & \ddots & 0 \\ b & 0 & \cdots & \cdots & \cdots & 0 & a \end{pmatrix} \in \mathcal{M}_{2n+1}(\mathbb{C}).$$

Quels sont les $P \in \mathbb{C}[X]$ tels que P(A) = 0?

Exercice 40 [02723] [Correction]

Soient E un espace vectoriel réel de dimension finie et $f \in \mathcal{L}(E)$. On définit $T \in \mathcal{L}(E) \to \mathcal{L}(E)$ par

$$T(g) = f \circ g - g \circ f.$$

Montrer que si f est diagonalisable, alors T est diagonalisable; si f est nilpotente, alors T est nilpotente.

Exercice 41 [02727] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie et $f\in\mathcal{L}(E)$ de polynôme minimal Π_f .

Montrer l'existence de $x \in E$ tel que

$$\{P \in \mathbb{C}[X] \mid P(f)(x) = 0\}$$

soit l'ensemble des multiples de Π_f .

Exercice 42 [02690] [Correction]

Soient A et B des matrices complexes carrées d'ordre n. On suppose les matrices $A+2^kB$ nilpotentes pour tout entier k tel que $0 \le k \le n$. Montrer que les matrices A et B sont nilpotentes.

Exercice 43 [02720] [Correction]

Soit $n \in \mathbb{N}^*$, $u \in \mathcal{L}(\mathbb{R}^{2n+1})$. On suppose $u^3 = u$, $\operatorname{tr} u = 0$ et $\operatorname{tr} u^2 = 2n$. On note

$$C(u) = \{ v \in \mathcal{L}(\mathbb{R}^{2n+1}) \mid uv = vu \}.$$

- (a) Calculer la dimension C(u).
- (b) Quels sont les n tels que $C(u) = \mathbb{R}[u]$?

Exercice 44 [02721] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On pose $f_A(M) = AM$, pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$.

- (a) Montrer que si $A^2 = A$ alors f_A est diagonalisable.
- (b) Montrer que f_A est diagonalisable si, et seulement si, A est diagonalisable.

Exercice 45 [03763] [Correction]

Pour $n \geq 2$, on note H un hyperplan de $\mathcal{M}_n(\mathbb{K})$ ne contenant aucune matrice inversible.

- (a) Montrer que H contient toutes les matrices nilpotentes.
- (b) En déduire que tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ rencontre $\mathrm{GL}_n(\mathbb{K})$.

Exercice 46 [00708] [Correction]

Soit $(A, B, C) \in \mathcal{M}_n(\mathbb{R})^3$ tel que

$$C = A + B$$
, $C^2 = 2A + 3B$ et $C^3 = 5A + 6B$.

Les matrices A et B sont-elles diagonalisables?

Exercice 47 [03291] [Correction]

(a) Montrer que, pour $z_1, \ldots, z_n \in \mathbb{C}$ avec $z_1 \neq 0$, on a l'égalité

$$\left| \sum_{k=1}^{n} z_k \right| = \sum_{k=1}^{n} |z_k|$$

si, et seulement si, il existe n-1 réels positifs $\alpha_2, \ldots, \alpha_n$ tels que

$$\forall k \ge 2, z_k = \alpha_k z_1.$$

(b) Déterminer toutes les matrices de $\mathcal{M}_n(\mathbb{C})$ telles que $M^n = I_n$ et $\operatorname{tr} M = n$

Exercice 48 [02735] [Correction]

Calculer

$$\inf \left\{ \int_0^1 t^2 (\ln t - at - b)^2 dt, (a, b) \in \mathbb{R}^2 \right\}.$$

Exercice 49 [01332] [Correction]

Soient $n \in \mathbb{N}^*$, $E = \mathbb{R}_n[X]$ et

$$\langle \cdot, \cdot \rangle \colon (P, Q) \in E^2 \mapsto \langle P, Q \rangle = \int_0^{+\infty} P(t)Q(t)e^{-t} dt.$$

- (a) Justifier la définition de $\langle \cdot, \cdot \rangle$ et montrer qu'il s'agit d'un produit scalaire. On pose $F = \{P \in E, P(0) = 0\}$. On cherche à déterminer d(1, F). On note (P_0, \ldots, P_n) l'orthonormalisée de Schmidt de $(1, X, \ldots, X^n)$.
- (b) Calculer $P_k(0)^2$.
- (c) Déterminer une base de F^{\perp} que l'on exprimera dans la base (P_0, \ldots, P_n) . En déduire $d(1, F^{\perp})$ et d(1, F).

Exercice 50 [01330] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que ${}^tAA = A^tA$. On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0$.

- (a) Montrer que ${}^{t}AA = 0$.
- (b) En déduire que A = 0.

Exercice 51 [02715] [Correction]

Trouver les M de $\mathcal{M}_n(\mathbb{R})$ telles que ${}^tM=M^2$ et que M n'ait aucune valeur propre réelle.

Exercice 52 [02753] [Correction]

Soient E un espace euclidien et $u \in \mathcal{L}(E)$ symétrique à valeurs propres strictement positives.

Montrer que, pour tout $x \in E$,

$$||x||^4 \le \langle u(x), x \rangle \langle u^{-1}(x), x \rangle.$$

Donner une condition nécessaire et suffisante pour qu'il y ait égalité.

Exercice 53 [03748] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que ${}^tA = -A$.

- (a) Montrer que si n est impair alors A n'est pas inversible.
- (b) Montrer que si n est pair, det $A \geq 0$. Sous quelle condition l'inégalité est-elle stricte?

Exercice 54 [02744] [Correction]

Soit $A \in \mathcal{O}_n(\mathbb{R})$. On suppose que 1 n'est pas valeur propre de A.

(a) Étudier la convergence de

$$\frac{1}{p+1}(I_n + A + \dots + A^p)$$

lorsque $p \to +\infty$.

(b) La suite $(A^p)_{p\in\mathbb{N}}$ est-elle convergente?

Exercice 55 [02730] [Correction]

Soit E un espace euclidien. Quels sont les endomorphismes de E tels que pour tout sous-espace vectoriel V de E

$$f(V^{\perp}) \subset (f(V))^{\perp}$$
?

Exercice 56 [03749] [Correction]

Montrer que A antisymétrique réelle d'ordre n est semblable à

$$B = \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix}$$

où C est une matrice inversible d'ordre pair.

Exercice 57 [02731] [Correction]

Soit $n \in \mathbb{N}^*$. On note \mathcal{M} l'espace vectoriel réel $\mathcal{M}_n(\mathbb{R})$. On pose

$$\varphi \colon (A,B) \in \mathcal{M}^2 \mapsto \operatorname{tr}^t AB.$$

- (a) Montrer que φ est un produit scalaire.
- (b) Donner une condition nécessaire et suffisante sur $\Omega \in \mathcal{M}$ pour que $M \mapsto \Omega M$ soit φ -orthogonale.

Exercice 58 [02924] [Correction]

Soient E un espace vectoriel euclidien, $u \in E$ non nul, $g \in O(E)$. On note σ la symétrie orthogonale par rapport à l'hyperplan u^{\perp} . Décrire $g \circ \sigma \circ g^{-1}$.

Exercice 59 [02746] [Correction]

Soit J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1. Quelles sont les A de $O_n(\mathbb{R})$ telles que J+A soit inversible?

Exercice 60 [02740] [Correction]

Dans un espace euclidien E, soit $f \in \mathcal{L}(E)$. Montrer que deux des trois propriétés suivantes entraînent la troisième :

- (i) f est une isométrie vectorielle;
- (ii) $f^2 = -\operatorname{Id}$;
- (iii) f(x) est orthogonal à x pour tout x.

Exercice 61 [02750] [Correction]

Si $M \in \mathcal{S}_n(\mathbb{R})$ vérifie $M^p = I_n$ avec $p \in \mathbb{N}^*$, que vaut M^2 ?

Exercice 62 [03752] [Correction]

Soient A une matrice symétrique réelle à valeurs propres positives et U une matrice orthogonale de même taille.

Comparer tr(AU) et tr(UA) à tr A.

Exercice 63 [02759] [Correction]

On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire canonique. On note $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{S}_n^+(\mathbb{R})$ l'ensemble des matrices symétriques à valeurs propres positives.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que pour tout $U \in \mathcal{O}_n(\mathbb{R})$, $\operatorname{tr}(AU) \leq \operatorname{tr} A$.

- (a) Déterminer le supplémentaire orthogonal de $\mathcal{A}_n(\mathbb{R})$.
- (b) Soit $B \in \mathcal{A}_n(\mathbb{R})$. Montrer que pour tout $x \in \mathbb{R}$, $\exp(xB) \in O_n(\mathbb{R})$.
- (c) Montrer que $A \in \mathcal{S}_n^+(\mathbb{R})$.
- (d) Étudier la réciproque.
- (e) Montrer que pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$ il existe $S \in \mathcal{S}_n^+(\mathbb{R})$ et $U \in \mathcal{O}_n(\mathbb{R})$ telles que M = SU.

Exercice 64 [02751] [Correction]

Montrer que le rang de $A \in \mathcal{M}_n(\mathbb{R})$ est égal au nombre de valeurs propres non nulles (comptées avec leur ordre de multiplicité) de tAA .

Exercice 65 [02716] [Correction]

Résoudre dans $\mathcal{M}_n(\mathbb{R})$ le système

$$\begin{cases} M^2 + M + I_n = 0 \\ {}^t M M = M^t M. \end{cases}$$

Exercice 66 [02749] [Correction]

(Transformation de Cayley)

- (a) Si A est une matrice antisymétrique réelle, que peut-on dire des valeurs propres complexes de A?
- (b) Soit

$$\varphi \colon A \in \mathcal{A}_n(\mathbb{R}) \mapsto (\mathbf{I}_n - A)(\mathbf{I}_n + A)^{-1}.$$

Montrer que φ réalise une bijection de $\mathcal{A}_n(\mathbb{R})$ sur

$$\{\Omega \in GO_n(\mathbb{R}) \mid -1 \notin \operatorname{Sp}(\Omega)\}.$$

Exercice 67 [02748] [Correction]

On note $(\cdot | \cdot)$ le produit scalaire canonique de \mathbb{R}^n . Pour toute famille $u=(u_1,\ldots,u_p)\in (\mathbb{R}^n)^p$ on pose

$$M_u = ((u_i | u_j))_{1 \le i,j \le p}.$$

- (a) Montrer que la famille $(u_1, \ldots u_p)$ est libre si, et seulement si, M_u est inversible.
- (b) On suppose qu'il existe $u=(u_1,\ldots,u_p)$ et $v=(v_1,\ldots,v_p)$ telles que $M_u=M_v.$

Montrer qu'il existe $f \in O(\mathbb{R}^n)$ telle que $f(u_i) = v_i$ pour tout i.

Exercice 68 [02757] [Correction]

Soit J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficient sont égaux à 1. Trouver $P \in \mathcal{O}_n(\mathbb{R})$ et $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telles que ${}^tPJP = D$.

Exercice 69 [03927] [Correction]

Soient $A \in \mathcal{S}_n(\mathbb{R})$ avec $\operatorname{Sp} A \subset \mathbb{R}_+$ et $B \in \mathcal{M}_n(\mathbb{R})$. On suppose

$$AB + BA = 0$$
.

Montrer AB = BA = 0.

Exercice 70 [03751] [Correction] Soit $A \in GL_n(\mathbb{R})$ telle que ${}^tA = A^2$.

- (a) Montrer que $A^3 = I_n$ et que A est orthogonale.
- (b) Soit f l'endomorphisme canoniquement associé à la matrice A. Montrer que le noyau de $f^2 + f + Id$ est de dimension paire et en déduire la forme de la matrice de f dans une base bien choisie.

Exercice 71 [03762] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{R})$ symétrique. On pose

$$B = A^3 + A + I_n.$$

Montrer que A est un polynôme en B.

Exercice 72 [03923] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$A^3 = A^t A$$
.

Montrer que la matrice A est diagonalisable sur \mathbb{C} .

Corrections

Exercice 1 : [énoncé]

- (a) $G \subset GL_4(\mathbb{R})$, G est non vide, stable par passage à l'inverse et par produit car V l'est. Ainsi G est un sous-groupe de $GL_4(\mathbb{R})$ donc un groupe.
- (b) Si $M \in G$ alors $\det M$, $\det M^{-1} \in \mathbb{Z}$ et $\det M \times \det M^{-1} = \det I_4 = 1$ donc $\det M = \pm 1$.

Inversement si det $M=\pm 1$ alors $M^{-1}=\pm^t\mathrm{Com}\,M$ est à coefficients entiers. On peut remarquer que

$$E = \left\{ \begin{pmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$$

est un sous-espace vectoriel de $\mathcal{M}_4(\mathbb{R})$ stable par produit et contenant I_n . L'application $\varphi \colon X \mapsto MX$ y définit un endomorphisme injectif donc bijectif. On en déduit que $M^{-1} = \varphi^{-1}(I_n)$ est élément de E donc de V. Par conséquent, $M \in G$.

(c)

$$\det M = ((a+c)^2 - (b+d)^2)((a-c)^2 + (b-d)^2)$$

donc

$$\det M = \pm 1 \iff \begin{cases} (a+c)^2 - (b+d)^2 = \pm 1\\ (a-c)^2 + (b-d)^2 = \pm 1. \end{cases}$$

La résolution de ce système à coefficients entiers donne à l'ordre près : $a,b,c,d=\pm 1,0,0,0.$

Posons J la matrice obtenue pour a=c=d=0 et b=1. On vérifie $J^4=I_4$. L'application $\varphi\colon U_2\times\mathbb{Z}/4\mathbb{Z}\to G$ définie par $\varphi(\varepsilon,n)=\varepsilon J^n$ est bien définie, c'est un morphisme de groupe, injectif et surjectif. Ainsi G est isomorphe à $U_2\times\mathbb{Z}/4\mathbb{Z}$ ou plus élégamment à $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}$.

Exercice 2 : [énoncé]

Le groupe (G,.) est abélien. En effet, pour tout $x \in G$, on a $x^{-1} = x$ donc, pour $x, y \in G$, $(xy)^{-1} = xy$. Or $(xy)^{-1} = y^{-1}x^{-1} = yx$ donc xy = yx. Pour $\overline{0}, \overline{1} \in \mathbb{Z}/2\mathbb{Z}$ et $x \in G$, posons

$$\overline{0}.x = e \text{ et } \overline{1}.x = x.$$

On vérifie qu'on définit alors un produit extérieur sur G munissant le groupe abélien (G,.) d'une structure de $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel. En effet, pour $(x,y) \in G^2$ et $(\lambda,\mu) \in (\mathbb{Z}/2\mathbb{Z})^2$ on a

$$(\lambda + \mu).x = \lambda.x + \mu.x, \lambda.(x + y) = \lambda.x + \lambda.y, \lambda.(\mu.x) = (\lambda\mu).x \text{ et } \overline{1}.x = x.$$

De plus, cet espace est de dimension finie car $\operatorname{Card} G < +\infty$, il est donc isomorphe à l'espace $((\mathbb{Z}/2\mathbb{Z})^n, +, .)$ pour un certain $n \in \mathbb{N}^*$. En particulier, le groupe (G, .) est isomorphe à $((\mathbb{Z}/2\mathbb{Z})^n, +)$.

Exercice 3: [énoncé]

Supposons AH = H.

$$\forall a \in A, a = ae \in AH = H$$

donc $A \subset H$.

Supposons $A \subset H$. Pour $x \in AH$, x = ah avec $a \in A$, $h \in H$. Or $a, h \in H$ donc $x = ah \in H$.

Ainsi $AH \subset H$.

Inversement, pour $a \in A$ (il en existe car $A \neq \emptyset$) et pour tout $h \in H$, $h = a(a^{-1}h)$ avec $a^{-1}h \in H$ donc $h \in AH$. Ainsi $H \subset AH$ puis =.

Exercice 4: [énoncé]

Il est facile de justifier que E est un \mathbb{L} -espace vectoriel sous réserve de bien connaître la définition des espaces vectoriels et de souligner que qui peut le plus, peut le moins...

Soit $(\vec{e}_1,\ldots,\vec{e}_n)$ une base de \mathbb{K} -espace vectoriel E et $(\lambda_1,\ldots,\lambda_p)$ une base du \mathbb{L} -espace vectoriel \mathbb{K} .

Considérons la famille des $(\lambda_j \vec{e_i})_{1 \leq i \leq n, 1 \leq j \leq p}$. Il est facile de justifier que celle-ci est une famille libre et génératrice du \mathbb{L} -espace vectoriel E. Par suite E est de dimension finie q = np.

Exercice 5 : [énoncé]

(a) Il est clair que K est un sous-espace vectoriel de \mathbb{R} et que la famille $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ est \mathbb{Q} -génératrice.

Montrons qu'elle est libre en raisonnant par l'absurde.

Supposons $a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}=0$ avec $a,b,c,d\in\mathbb{Q}$ non tous nuls. Quitte à réduire au même dénominateur, on peut supposer $a,b,c,d\in\mathbb{Z}$ non tous nuls.

Quitte à factoriser, on peut aussi supposer pgcd(a, b, c, d) = 1.

On a
$$(a + b\sqrt{2})^2 = (c\sqrt{3} + d\sqrt{6})^2$$
 donc

$$a^2 + 2ab\sqrt{2} + 2b^2 = 3c^2 + 6cd\sqrt{2} + 6d^2$$
.

Par l'irrationalité de $\sqrt{2}$ on parvient au système

$$\begin{cases} a^2 + 2b^2 = 3c^2 + 6d^2 \\ ab = 3cd. \end{cases}$$

Par suite $3 \mid ab \text{ et } 3 \mid a^2 + 2b^2 \text{ donc } 3 \mid a \text{ et } 3 \mid b.$

Ceci entraîne $3 \mid cd$ et $3 \mid c^2 + 2d^2$ donc $3 \mid c$ et $3 \mid d$.

Ceci contredit pgcd(a, b, c, d) = 1.

Ainsi la famille $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ est \mathbb{Q} -libre et c'est donc une \mathbb{Q} -base de K.

(b) Sans peine, on vérifie que \mathbb{K} est un sous-anneau de \mathbb{R} . Soit $x = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \in \mathbb{K}$ avec $a, b, c, d \in \mathbb{Q}$ non tous nuls.

$$\frac{1}{x} = \frac{1}{(a+b\sqrt{2}) + (c\sqrt{3} + d\sqrt{6})}$$

$$= \frac{a+b\sqrt{2} - (c\sqrt{3} + d\sqrt{6})}{(a^2 + 2b^2 - 3c^2 - 6d^2) + 2(ab - 3cd)\sqrt{2}}$$

$$= \frac{a+b\sqrt{2} - (c\sqrt{3} + d\sqrt{6})}{\alpha + \beta\sqrt{2}}.$$

puis

$$\frac{1}{x} = \frac{(a + b\sqrt{2} - (c\sqrt{3} + d\sqrt{6}))(\alpha - \beta\sqrt{2})}{\alpha^2 - 2\beta^2} \in K$$

et donc K est un sous-corps de \mathbb{R} .

Notons que les quantités conjuguées par lesquelles on a ci-dessus multiplié ne sont pas nuls car x est non nul et la famille $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ est \mathbb{Q} -libre.

Exercice 6: [énoncé]

- (a) L'ensemble des inversibles de $\mathbb{Z}/n\mathbb{Z}$ est un sous-groupe de cardinal $\varphi(n)$.
- (b) $k\binom{p}{k} = p\binom{p-1}{k-1}$ donc $p \mid k\binom{p}{k}$ or $p \wedge k = 1$ donc $p \mid \binom{p}{k}$.
- (c) Posons $d = (n-1) \land \varphi(n)$. $d = (n-1)u + \varphi(n)v$ donc $a^d = 1$ [n]. Or $d \mid n-1$ donc nécessairement d = n-1. Par suite $n-1 \mid \varphi(n)$ puis $\varphi(n) = n-1$ ce qui entraı̂ne que n est premier.

Exercice 7: [énoncé]

Si p=2: il v a deux carrés dans $\mathbb{Z}/2\mathbb{Z}$.

Si $p \geq 3$, considérons l'application $\varphi \colon x \mapsto x^2$ dans $\mathbb{Z}/p\mathbb{Z}$.

Dans le corps $\mathbb{Z}/p\mathbb{Z}$: $\varphi(x) = \varphi(y) \iff x = \pm y$.

Dans $\operatorname{Im} \varphi$, seul 0 possède un seul antécédent, les autres éléments possèdent deux antécédents distincts. Par suite $\operatorname{Card} \mathbb{Z}/p\mathbb{Z} = 1 + 2(\operatorname{Card} \operatorname{Im} \varphi - 1)$ donc il y $\frac{p+1}{2}$ carrés dans $\mathbb{Z}/p\mathbb{Z}$.

Exercice 8: [énoncé]

(a) Les inversibles de $\mathbb{Z}/8\mathbb{Z}$ sont les \overline{k} avec $k \wedge 8 = 1$. Ce sont donc les éléments $\overline{1}, \overline{3}, \overline{5}$ et $\overline{7}$.

L'ensemble des inversibles d'un anneau est un groupe multiplicatif.

(b) Le groupe $(\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}, \times)$ vérifie la propriété $x^2 = 1$ pour tout x élément de celui-ci. Ce groupe n'est donc pas isomorphe au groupe cyclique $(\mathbb{Z}/4\mathbb{Z}, +)$ qui constitue donc un autre exemple de groupe de cardinal 4. En fait le groupe $(\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}, \times)$ est isomorphe à $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$.

Exercice 9: [énoncé]

Le polynôme caractéristique de M est

$$P = X^3 - zX - z.$$

Celui-ci admet trois racines complexes comptées avec multiplicité. Recherchons pour quel z le polynôme P admet une racine multiple.

Les racines multiples d'un polynôme sont les racines communes à celui-ci et à son polynôme dérivé.

On a $P' = 3X^2 - z$. Si x est une racine de P', on a

$$P(x) = -\frac{2}{3}zx - z = 0 \iff x = -\frac{3}{2} \text{ ou } z = 0.$$

Notons que, pour x = -3/2, on obtient $z = 3x^2 = 27/4$.

Ceci conduit à distinguer trois cas :

Cas: z = 0. La matrice M n'est pas diagonalisable car 0 est sa seule valeur propre et ce n'est pas la matrice nulle

Cas: z = 27/4. La matrice M présente une valeur propre double : -3/2. Or

$$\operatorname{rg}\left(M + \frac{3}{2}I_3\right) = \operatorname{rg}\begin{pmatrix} 3/2 & 0 & 27/4\\ 1 & 3/2 & 0\\ 1 & 1 & 3/2 \end{pmatrix} = 2$$

(il y a clairement une matrice inversible de taille 2 incluse dans la matrice dont on calcule le rang qui, par ailleurs, est assurément non inversible).

On en déduit que l'espace propre associé à la valeur propre double est de dimension 1 : la matrice M n'est pas diagonalisable.

Cas: $z \neq 0$ et $z \neq 27/4$. La matrice M est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ car comporte trois valeurs propres distinctes.

Exercice 10: [énoncé]

Une matrice complexe est nilpotente si, et seulement si, 0 est sa seule valeur propre.

La matrice complexe A est trigonalisable semblable à

$$T = \begin{pmatrix} \lambda_1 & (*) \\ \ddots & \\ (0) & \lambda_n \end{pmatrix}$$

avec $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A comptées avec multiplicité. Pour $P \in \mathbb{C}[X]$, la matrice P(A) est semblable à

$$P(T) = \begin{pmatrix} P(\lambda_1) & & (*') \\ & \ddots & \\ (0) & & P(\lambda_n) \end{pmatrix}.$$

Les valeurs propres de P(A) sont donc les $P(\lambda_1), \ldots, P(\lambda_n)$. La matrice P(A) est donc nilpotente si, et seulement si, les valeurs propres $\lambda_1, \ldots, \lambda_n$ sont racines ¹ de P. Les polynômes correspondants sont ceux pouvant s'écrire

$$P(X) = Q(X) \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda) \text{ avec } Q \in \mathbb{C}[X].$$

Exercice 11 : [énoncé]

Le polynôme $P=X^3-X-1$ est annulateur de A et il suffit d'étudier ses variations pour affirmer que celui-ci ne possède qu'une seule racine réelle λ :

[Une figure]

Les deux autres racines de P sont complexes et conjuguées, on les note μ et $\overline{\mu}$.

Notons α, β et γ les multiplicités de λ, μ et $\overline{\mu}$ en tant que valeur propre de la matrice A. La matrice A étant réelle, on sait $\beta = \gamma$. Aussi, la trace de A est la somme de ses valeurs propres complexes comptées avec multiplicité et donc

$$\operatorname{tr}(A) = \alpha \lambda + \beta \mu + \gamma \overline{\mu} = \alpha \lambda + \beta (\mu + \overline{\mu}).$$

La somme et le produit des racines d'un polynôme sont liés à ses coefficients

Les complexes $\lambda, \mu, \overline{\mu}$ étant les trois racines du polynôme $X^3-X-1,$ on peut écrire la factorisation

$$X^{3} - X - 1 = (X - \lambda)(X - \mu)(X - \overline{\mu}). \tag{*}$$

En identifiant les coefficients de X^2 , il vient $\lambda + \mu + \overline{\mu} = 0$. On en déduit

$$\operatorname{tr}(A) = (\alpha - \beta)\lambda.$$
 (\triangle)

On vérifie que la racine λ est irrationnelle.

Par l'absurde, si $\lambda \in \mathbb{Q}$, on peut écrire $\lambda = p/q$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$. Quitte à simplifier cette fraction, on peut supposer que p et q n'ont pas de facteurs premiers en commun p Or l'équation p and p are p and p and p and p are p and p and p and p are p are p and p are p and p are p are p and p are p are p and p are p and p are p and p are p and p are p are p and p are p and p are p are p are p and p are p are p and p are p are p are p are p and p are p ar

Sachant $\operatorname{tr}(A) \in \mathbb{Q}$ et $\lambda \notin \mathbb{Q}$, l'égalité (??) donne $\alpha - \beta = 0$. Ainsi, $\alpha = \beta = \gamma$ puis $n = \alpha + \beta + \gamma = 3\alpha$ est un multiple de 3.

Enfin, le déterminant de A est le produit de ses valeurs propres complexes comptées avec multiplicité et donc

$$\det(A) = \left(\lambda \mu \overline{\mu}\right)^{\alpha} = 1$$

car l'identification des coefficients constants de (??) donne $\lambda \mu \overline{\mu} = 1$.

Exercice 12 : [énoncé]

Le polynôme caractéristique de M est

$$\chi_M = X^3 - 3X - \frac{a^2b^2 + c^2}{abc}.$$

On étudie les variations de χ_M afin de déterminer le nombre de ses racines réelles.

Le polynôme dérivé $\chi_M'=3X^2-3$ s'annule en 1 et -1 ce qui produit le tableau des variations suivant :

^{1.} Non nécessairement comptées avec multiplicité.

^{2.} Le quotient p/q correspond alors au représentant irréductible du nombre rationnel λ .

[Une figure]

avec

$$\chi_M(-1) = -\frac{(ab-c)^2}{abc}$$
 et $\chi_M(1) = -\frac{(ab+c)^2}{abc}$.

Ces deux valeurs ont le même signe et, si elles ne sont pas nulles, le polynôme caractéristique ne s'annule qu'une seule fois. Cela conduit à la distinction de cas qui suit :

Cas: $c \neq \pm ab$. Le polynôme caractéristique ne possède qu'une seule racine réelle λ et la matrice M n'est alors pas diagonalisable. En effet, si elle l'était, elle serait semblable à λI_3 , donc égale à λI_3 ce qui n'est pas le cas.

Cas: c = ab. Le polynôme caractéristique admet une racine 3 $\lambda > 1$ et -1 pour racine double.

L'espace propre associé à la valeur propre simple λ est assurément de dimension 1. Reste à étudier la dimension de l'espace propre associé à la valeur -1.

La dimension de l'espace propre associé à la valeur propre -1 se déduit du calcul du rang de $M + I_3$.

On a

$$\operatorname{rg}(M+I_3) = \operatorname{rg}\begin{pmatrix} 1 & a & ab \\ 1/a & 1 & b \\ 1/ab & 1/b & 1 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} 1 & a & ab \\ 0 & 0 & 0 \\ 1/ab & 1/ab & 1 \end{pmatrix} = 1$$

et donc, par la formule du rang,

$$\dim E_{-1}(M) = \dim \operatorname{Ker}(M + I_3) = 3 - 1 = 2.$$

La matrice M est alors diagonalisable car la somme des dimensions de ses sous-espaces propres est égale à sa taille.

Cas: $c = \pm ab$. L'étude est analogue avec -1 valeur propre double de M. En résumé ⁴, la matrice réelle M est diagonalisable si, et seulement si, $ab = \pm c$.

Exercice 13: [énoncé]

(a) On factorise $\chi_A(B)$ en produit de matrices inversibles. Notons $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A comptées avec multiplicité. Le polynôme caractéristique de A s'écrit alors

$$\chi_A = (X - \lambda_1)(X - \lambda_2) \dots (X - \lambda_n)$$

et donc

$$\chi_A(B) = (B - \lambda_1 \mathbf{I}_n)(B - \lambda_2 \mathbf{I}_n) \dots (B - \lambda_n \mathbf{I}_n)$$

Or les matrices $B - \lambda_i I_n$ sont toutes inversibles car λ_i n'est pas valeur propre de B. Par produit de matrices inversibles, on obtient que $\chi_A(B)$ est inversible.

(b) On établit que $X \mapsto AX - XB$ est un automorphisme de $\mathcal{M}_n(\mathbb{C})$. Considérons l'application $\Phi \colon \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ définie par

$$\Phi(X) = AX - XB$$
 pour tout $X \in \mathcal{M}_n(\mathbb{C})$

On vérifie sans peine que l'application Φ est linéaire et, puisque $\mathcal{M}_n(\mathbb{C})$ est un espace de dimension finie, il suffit de vérifier que le noyau de Φ est réduit à la matrice nulle pour conclure que Φ est un automorphisme.

Soit X une matrice du noyau de Φ . On a AX = XB et on vérifie par récurrence $A^kX = XB^k$ pour tout $k \in \mathbb{N}$ puis P(A)X = XP(B) pour tout polynôme $P \in \mathbb{C}[X]$. En particulier, ceci vaut pour $P = \chi_A$ et, puisque le polynôme caractéristique est annulateur, on obtient $X\chi_A(B) = \mathcal{O}_n$. Or la matrice $\chi_A(B)$ est inversible et donc, en multipliant par son inverse, on obtient $X = \mathcal{O}_n$.

Finalement, le noyau de Φ est réduit à la matrice nulle et Φ est un automorphisme de $\mathcal{M}_n(\mathbb{C})$. Sa bijectivité assure l'existence et l'unicité d'une solution $X \in \mathcal{M}_n(\mathbb{C})$ à l'équation AX - XB = M quelle que soit la matrice M de $\mathcal{M}_n(\mathbb{C})$.

Exercice 14: [énoncé]

dim Ker A = n - 2 donc 0 est valeur propre de A de multiplicité au moins n - 2. Puisque χ_A est scindé, la trace de A est la somme des valeurs propres de A comptées avec multiplicité.

Si 0 est la seule valeur propre de A alors A est semblable à une matrice triangulaire supérieure stricte et alors $A^n = O_n$ ce qui est exclu.

Sinon A possède alors une autre valeur propre, puis deux car la somme des valeurs propres est nulle. Par suite la somme des dimensions des sous-espaces propres de A est au moins n et donc A est diagonalisable.

Exercice 15 : [énoncé]

Si A est solution alors $P = X(X-2)^2$ est annulateur de A et les valeurs propres de A figurent parmi $\{0,2\}$. Par la trace, on peut alors affirmer que 2 est valeur propre de multiplicité 4.

Par le lemme de décomposition des noyaux, $Ker(A - 2Id)^2$ et Ker A sont supplémentaires.

^{3.} En fait, la racine λ est simplement égale à 2.

^{4.} En revanche, la matrice M est toujours diagonalisable si on la considère comme une matrice complexe.

Par multiplicité des valeurs propres, leurs dimensions respectives sont 4 et n-4. Ainsi A est semblable à

$$\begin{pmatrix} 2I_4 + M & 0\\ 0 & O_{n-4} \end{pmatrix}$$

avec $M \in \mathcal{M}_4(\mathbb{C})$ vérifiant $M^2 = 0$.

En raisonnant sur le rang, on montre que M est semblable à

La réciproque est immédiate.

Exercice 16: [énoncé]

Étudions la première matrice que nous noterons A.

Celle-ci est de rang 2 et on peut facilement déterminer une base de son noyau. En posant le système $AX = \lambda X$ avec $\lambda \neq 0$, on obtient une solution non nulle sous réserve que

$$\lambda^2 - \lambda - (n-1) = 0.$$

En notant λ_1 et λ_2 les deux racines de cette équation, on obtient $A=PDP^{-1}$ avec

$$P = \begin{pmatrix} 1 & (0) & 1 & 1 \\ & \ddots & & \vdots & \vdots \\ (0) & & 1 & \vdots & \vdots \\ -1 & \cdots & -1 & 1 & 1 \\ 0 & 0 & 0 & \lambda_1 & \lambda_2 \end{pmatrix} \text{ et } D = \text{diag}(0, \dots, 0, \lambda_1, \lambda_2).$$

En reprenant la même démarche avec la seconde matrice que nous noterons B, on obtient $B = PDP^{-1}$ avec

$$P = \begin{pmatrix} 1 & 0 & \cdots & 0 & \lambda_1 & \lambda_2 \\ 0 & 1 & & (0) & 2 & 2 \\ \vdots & & \ddots & & \vdots & \vdots \\ \vdots & (0) & & 1 & \vdots & \vdots \\ 0 & -1 & \cdots & -1 & 2 & 2 \\ -1 & 0 & \cdots & 0 & \lambda_1 & \lambda_2 \end{pmatrix} \text{ et } D = \text{diag}(0, \dots, 0, \lambda_1, \lambda_2)$$

où λ_1, λ_2 sont les deux racines de

$$\lambda^2 - 2\lambda - 2(n-2) = 0.$$

Exercice 17: [énoncé]

En posant $M = (a_i a_j)_{1 \le i,j \le n}$, on vérifie $M^2 = \lambda M$ avec $\lambda = \sum_{k=1}^n a_k^2$. Si $\lambda \ne 0$ alors M annule un polynôme scindé simple, elle est donc diagonalisable. Si $\lambda = 0$ alors $M^2 = 0$ et donc M est diagonalisable si, et seulement si, M = 0 ce qui revient à $(a_1, \ldots, a_n) = 0$.

Notons que la matrice M est symétrique mais pas nécessairement réelle : le théorème spectral ne s'applique pas.

Exercice 18: [énoncé]

Le polynôme

$$X^3 - 4X^2 + 4X = X(X-2)^2$$

est annulateur de M.

On en déduit $\operatorname{Sp} M \subset \{0,2\}$ et M trigonalisable (car M annule un polynôme scindé).

Par suite $\operatorname{tr} M$ est la somme des valeurs propres de M comptées avec multiplicité et puisque $\operatorname{tr} M=0$, seule 0 est valeur propre de M.

On en déduit que la matrice $M-2I_n$ est inversible et puisque

$$M(M - 2I_n)^2 = O_n$$

on obtient

$$M = O_n$$
.

Exercice 19: [énoncé]

- (a) On vérifie $f^k \circ g g \circ f^k = kf^k$. Si pour tout $k \in \mathbb{N}, f^k \neq 0$ alors l'endomorphisme $h \mapsto h \circ g - g \circ h$ admet une infinité de valeurs propres.
 - Ceci étant impossible en dimension finie, on peut affirmer que f est nilpotent.
- (b) $f^n = 0$ (car dim E = n) et $f^{n-1} \neq 0$. Pour $x \notin \operatorname{Ker} f^{n-1}$ et $e' = (f^{n-1}(x), \dots, f(x), x)$, on montre classiquement que e' est une base de E dans laquelle la matrice de f est telle que voulue. $f(g(f^{n-1}(x)) = 0 \operatorname{donc} g(f^{n-1}(x)) = \lambda f^{n-1}(x)$ pour un certain $\lambda \in \mathbb{R}$ Aussi $f^k(g(f^{n-1-k}(x))) = (\lambda + k)f^{n-1}(x)$ et donc la matrice de g dans e' et triangulaire supérieure avec sur la diagonale $\lambda, \lambda + 1, \dots, \lambda + n 1$. Ainsi

$$\operatorname{Sp}(g) = \{\lambda, \dots, \lambda + n - 1\}.$$

Soit y vecteur propre associé à la valeur propre $\lambda + n - 1$. Si $y \in \operatorname{Ker} f^{n-1}$ alors puisque $\operatorname{Ker} f^{n-1}$ est stable par g, $\lambda + n - 1$ est valeur propre de l'endomorphisme induit par g sur $\operatorname{Ker} f^{n-1}$. Cela n'étant par le cas $y \notin \operatorname{Ker} f^{n-1}$. On vérifie alors facilement que la famille $e = (f^{n-1}(y), \dots, f(y), y)$ résout notre problème.

Exercice 20 : [énoncé]

A est symétrique donc diagonalisable.

$$\chi_A = (X - (a + (n-1)b)(X - (a-b))^{n-1}.$$

$$Sp(A) = \{a + (n-1)b, a-b\} \text{ (si } n \ge 2\}.$$

$$\pi_A = (X - (a + (n-1)b))(X - (a-b))$$

A est inversible si, et seulement si, $0 \notin \operatorname{Sp}(A)$ i.e. $a + (n-1)b \neq 0$ et $a \neq b$.

$$\begin{pmatrix} a & & & (b) \\ & \ddots & \\ (b) & & a \end{pmatrix} \begin{pmatrix} x & & & (y) \\ & \ddots & \\ (y) & & x \end{pmatrix} = \begin{pmatrix} \alpha & & & (\beta) \\ & \ddots & \\ (\beta) & & \alpha \end{pmatrix}$$

avec

$$\begin{cases} \alpha = ax + (n-1)by \\ \beta = ay + bx + (n-2)by. \end{cases}$$

Il suffit alors de résoudre le système

$$\begin{cases} ax + (n-1)by = 1\\ bx + (a + (n-2)b)y = 0 \end{cases}$$

pour expliciter A^{-1} .

Exercice 21 : [énoncé]

Il est classique d'établir $\chi_{AB} = \chi_{BA}$ en commençant par établir le résultat pour A inversible et le prolongeant par un argument de continuité et de densité.

Exercice 22: [énoncé]

 $A = PDP^{-1}$ avec $D = \text{diag}(a + (n-1)b, a - b, \dots, a - b)$ et

$$P = \begin{pmatrix} 1 & 1 & & & (0) \\ \vdots & -1 & \ddots & & \\ \vdots & & \ddots & 1 \\ 1 & (0) & & -1 \end{pmatrix}$$

 $B = Q\Delta Q^{-1}$ avec

Si n est impair : $\Delta = \operatorname{diag}(a + (n-1)b, b-a, \dots, b-a, a-b, \dots, a-b)$ et

$$Q = \begin{pmatrix} 1 & 1 & & & (0) & 1 & & & (0) \\ \vdots & & \ddots & & & & \ddots & \\ \vdots & (0) & & 1 & (0) & & 1 \\ \vdots & 0 & \cdots & 0 & -2 & \cdots & -2 \\ \vdots & (0) & & -1 & (0) & & 1 \\ \vdots & & \ddots & & & \ddots & \\ 1 & -1 & & (0) & 1 & & (0) \end{pmatrix}$$

Si *n* pair : $\Delta = \text{diag}(a + (n-1)b, b - a, ..., b - a, a - b, ..., a - b)$ et

Exercice 23: [énoncé]

La colonne $^t(1 \ 1 \ 1)$ est vecteur propre associé à la valeur propre 6. Les deux matrices ont le même polynôme caractéristique et celui-ci a pour racines

6,
$$\frac{-3 + i\sqrt{3}}{2}$$
 et $\frac{-3 - i\sqrt{3}}{2}$.

Ces deux matrices sont semblables à

$$\operatorname{diag}\left(6, \frac{-3 + i\sqrt{3}}{2}, \frac{-3 - i\sqrt{3}}{2}\right)$$

et donc a fortiori semblables entre elles dans $\mathcal{M}_n(\mathbb{C})$, mais aussi, et c'est assez classique, dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 24: [énoncé]

Considérons $T: P(X) \mapsto P(X+1)$. T est un endomorphisme de $\mathbb{R}_{n-1}[X]$ qui est annulé par son polynôme caractéristique de la forme

$$\chi_T = X^n + \sum_{k=0}^{n-1} a_k X^k.$$

Cela fournit directement la propriété voulue.

Exercice 25 : [énoncé]

(a) $M(a,b) = PD(a,b)P^{-1}$ avec $D(a,b) = \text{diag}((a+b)^2, (a-b)^2, a^2 - b^2, a^2 - b^2)$

$$P = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \\ 1 & 1 & -1 & 0 \end{pmatrix}.$$

(b) $M(a,b)^n \to 0$ si, et seulement si, |a+b| < 1, |a-b| < 1 et $|a^2-b^2| < 1$. Or $a^2-b^2=(a+b)(a-b)$ donc la dernière condition l'est automatiquement si les deux premières le sont.

L'étude graphique est alors simple.

Exercice 26: [énoncé]

(a) On peut écrire

$$T(f)(x) = \int_0^x tf(t) dt + x \int_x^1 f(t) dt.$$

L'application T(f) apparaît alors comme continue (et même dérivable). Ainsi, l'application T opère de E dans E, elle de surcroît évidemment linéaire.

(b) Soient $\lambda \in \mathbb{R}$ et $f \in E$ vérifiant

$$T(f) = \lambda f$$
.

Cas $\lambda = 0$ On a T(f) = 0 donc

$$\int_0^x tf(t) dt + x \int_x^1 f(t) dt = 0.$$

En dérivant, on obtient

$$xf(x) - xf(x) + \int_{x}^{1} f(t) dt = \int_{x}^{1} f(t) dt = 0.$$

En dérivant à nouveau, on obtient f=0. Ainsi 0 n'est pas valeur propre de T. Cas $\lambda \neq 0$

On a $T(f) = \lambda f$

$$\int_0^x tf(t) dt + x \int_x^1 f(t) dt = \lambda f.$$

En particulier, on peut affirmer que f(0) = 0 car T(f)(0) = 0. Le premier membre de l'équation $T(f) = \lambda f$ est dérivable donc la fonction f est également dérivable et, en dérivant, on obtient la relation

$$\int_{T}^{1} f(t) \, \mathrm{d}t = \lambda f'(x).$$

En particulier f'(1) = 0.

Le premier membre de cette nouvelle équation étant dérivable, la fonction f est deux fois dérivable et on obtient en dérivant l'équation différentielle

$$\lambda f''(x) + f(x) = 0.$$

Sous cas $\lambda < 0$

Sachant f(0) = 0, la résolution de l'équation différentielle donne

$$f(x) = A \operatorname{sh}\left(\frac{x}{\sqrt{|\lambda|}}\right).$$

La condition f'(1) = 0 entraı̂ne toujours f = 0 et donc un tel λ n'est pas valeur propre de T.

Sous cas $\lambda > 0$

Sachant f(0) = 0, on obtient par résolution de l'équation différentielle

$$f(x) = A \sin\left(\frac{x}{\sqrt{\lambda}}\right).$$

La condition f'(1) = 0 n'entraînera pas f = 0 que si

$$\cos\left(\frac{1}{\sqrt{\lambda}}\right) = 0$$

c'est-à-dire si, et seulement si,

$$\lambda = \frac{4}{\left((2k+1)\pi\right)^2} \text{ avec } k \in \mathbb{N}^*.$$

Notons qu'alors il est possible de remonter les précédents calculs et d'affirmer que

 $f \colon x \mapsto \sin\left(\frac{(2k+1)\pi x}{2}\right)$

est vecteur propre associé à la valeur propre $\lambda = 4/((2k+1)\pi)^2$.

Exercice 27 : [énoncé]

(a)

$$L = \begin{pmatrix} 1 & & (0) \\ \vdots & \ddots & \\ 1 & \cdots & 1 \end{pmatrix} \text{ et } U = \begin{pmatrix} 1 & \cdots & 1 \\ & \ddots & \vdots \\ (0) & & 1 \end{pmatrix} = {}^{t}L.$$

(b) $U = I + N + \dots + N^{n-1}$, (I - N)U = I donc $U^{-1} = I - N$, $L^{-1} = {}^t(U^{-1}) = I - {}^tN$ donc $A^{-1} = U^{-1}L^{-1} = I - N - {}^tN + N^tN$.

(c)

$$A^{-1} = \begin{pmatrix} 2 & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & 2 & 1 \\ (0) & & 1 & 1 \end{pmatrix}.$$

Posons χ_n le polynôme caractéristique de $A^{-1} \in M_n(\mathbb{R})$.

On a $\chi_{n+2}(\lambda) = (2-\lambda)\chi_{n+1}(\lambda) - \chi_n(\lambda)$ avec $\chi_0(\lambda) = 1$ et $\chi_1(\lambda) = 1 - \lambda$. En écrivant $\lambda = 2 + 2\cos\theta$ avec $\theta \in [0; \pi]$ et en posant $f_n(\theta) = \chi_n(2 + 2\cos\theta)$ on a la relation :

 $f_{n+2}(\theta) + 2\cos\theta f_{n+1}(\theta) + f_n(\theta) = 0$, $f_0(\theta) = 1$ et $f_1(\theta) = 2\cos\theta - 1$. La résolution de cette récurrence linéaire d'ordre 2 donne

$$f_n(\theta) = \frac{\cos(n + \frac{1}{2})\theta}{\cos\frac{\theta}{2}}.$$

Ainsi, χ_n admet n racines dans [0;4] et puisque ce polynôme est de degré n il n'y en a pas ailleurs : $\operatorname{Sp} A^{-1} \subset [0;4]$.

Exercice 28: [énoncé]

On écrit

$$B = \alpha(X - x_0) \dots (X - x_n).$$

Si $P \in \mathbb{R}_n[X]$ est vecteur propre de Φ associé à la valeur propre λ alors $B \mid (A - \lambda)P$. Pour des raisons de degré, B et $A - \lambda$ ne peuvent être premiers

entre eux, ces polynômes ont donc une racine commune. Ainsi il existe $i \in \{0, \ldots, n\}$ tel que $\lambda = A(x_i)$. Inversement pour $\lambda = A(x_i)$, $P = \prod_{j=0, j\neq i}^{n} (X - x_j)$, $\Phi(P) = \lambda P$ avec $P \neq 0$. Ainsi,

$$\operatorname{Sp} \Phi = \{ A(x_i) \mid i \in [0; n] \}.$$

Précisons le sous-espace propre associé à la valeur propre $\lambda = A(x_i)$. Quitte à réindexer, on peut supposer que $\lambda = A(x_0)$.

S'il existe d'autres x_i tels que $\lambda = A(x_i)$ on réindexe encore les x_1, \ldots, x_n de sorte que $\lambda = A(x_0) = \ldots = A(x_p)$ et $\lambda \neq A(x_{p+1}), \ldots, A(x_n)$. Ainsi x_0, \ldots, x_p sont racines de $A - \lambda$ alors que x_{p+1}, \ldots, x_n ne le sont pas.

Pour $P \in \mathbb{R}_n[X]$, on a $\Phi(P) = \lambda P$ si, et seulement si, $B \mid (A - \lambda)P$. Or $A - \lambda = (X - x_0) \dots (X - x_p)\tilde{A}$ avec x_{p+1}, \dots, x_n non racines de \tilde{A} . Puisque $(X - x_{p+1}) \dots (X - x_n) \wedge \tilde{A} = 1$,

$$B \mid (A - \lambda)P \iff (X - x_{p+1}) \dots (X - x_n) \mid P$$

Ainsi

$$E_{\lambda}(\Phi) = \{ (X - x_{p+1}) \dots (X - x_n)Q \mid Q \in \mathbb{R}_p[X] \}.$$

La somme des dimensions des sous-espaces propres étant égale à la dimension de l'espace, Φ est diagonalisable.

Exercice 29 : [énoncé]

Puisque f est de classe \mathcal{C}^1 et que f(0) = 0, on peut écrire

$$f(t) =_{t\to 0} f'(0)t + o(t).$$

Ainsi la fonction $\varphi \colon t \mapsto f(t)/t$ peut être prolongée par continuité en 0 et donc l'intégrale définissant T(f)(x) a un sens en tant qu'intégrale d'une fonction continue. De plus, la fonction T(f) apparaît alors comme la primitive s'annulant en 0 de cette fonction continue φ , c'est donc une fonction élément de E. Enfin, la linéarité de l'application T étant immédiate, on peut affirmer que T est un endomorphisme de E.

Soient $\lambda \in \mathbb{R}$.

Si $T(f) = \lambda f$ alors pour tout $x \in [0; +\infty[$,

$$T(f)(x) = \lambda f(x).$$

En dérivant cette relation, on obtient pour tout $x \in [0; +\infty[$

$$f(x) = \lambda x f'(x)$$
.

Si $\lambda = 0$ alors f est la fonction nulle et λ n'est pas valeur propre.

Si $\lambda \neq 0$, f est solution de l'équation différentielle $\lambda xy' = y$.

Cette dernière est une équation différentielle linéaire d'ordre 1 homogène dont la solution générale sur $]0;+\infty[$ est

$$y(x) = Cx^{1/\lambda}$$
.

Ainsi, il existe $C \in \mathbb{R}$ tel que pour tout x > 0,

$$f(x) = Cx^{1/\lambda}$$
.

Or pour qu'une telle fonction puisse être prolongée en une fonction de classe C^1 sur $[0; +\infty[$, il faut C=0 ou $1/\lambda \ge 1$. Ainsi les valeurs propres de T sont les éléments de l'intervalle [0; 1].

Inversement, soient $\lambda \in]0;1]$ et la fonction $f_{\lambda} \colon x \mapsto x^{1/\lambda}$ prolongée par continuité en 0.

La fonction f_{λ} est de classe C^1 sur $[0; +\infty[$, s'annule en 0 et vérifie $T(f_{\lambda}) = \lambda f_{\lambda}$ sans être la fonction nulle.

Finalement, les valeurs propres de T sont exactement les éléments de l'intervalle $]0\,;1].$

Exercice 30: [énoncé]

Dans le cas où

$$A = J_r = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

la propriété est immédiate en écrivant

$$B = \begin{pmatrix} C & D \\ E & F \end{pmatrix}$$

avec C bloc carré de taille r.

Dans le cas général, on peut écrire $A = QJ_rP$ avec $r = \operatorname{rg} A$ et P,Q inversibles.

$$X^q \chi_{AB}(X) = X^q \chi_{Q^{-1}ABQ}(X) = X^q \chi_{J_r PBQ}(X)$$

donc

$$X^{q}\chi_{AB}(X) = X^{p}\chi_{PBQJ_{r}}(X) = X^{p}\chi_{BQJ_{r}P}(X) = X^{p}\chi_{BA}(X).$$

Exercice 31: [énoncé]

Le polynôme

$$X^{3} + X^{2} + X = X(X - j)(X - j^{2})$$

annule la matrice A. Ce polynôme étant scindé à racines simples dans \mathbb{C} , la matrice A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$. De plus

$$\operatorname{Sp} A \subset \left\{0, j, j^2\right\}.$$

Puisque la matrice A est réelle, les valeurs propres j et j^2 ont même multiplicité $p \in \mathbb{N}$. La diagonalisation complexe de A comporte alors p nombres j et p nombres j^2 sur la diagonale, les éventuels autres coefficients diagonaux étant nuls. La matrice A est alors de même rang que cette matrice diagonale, c'est-à-dire 2p.

Exercice 32 : [énoncé]

L'implication directe est immédiate : elle découle de la stabilité par produit de l'espace des matrices triangulaires supérieures. Inversement, supposons A^k triangulaire supérieure pour tout $k \geq 2$. Introduisons le polynôme caractéristique de A

$$P(X) = a_n X^n + \dots + a_1 X + \det(A).$$

Puisque celui-ci est annulateur de A, on peut écrire

$$a_n A^n + \dots + a_1 A + \det(A) I_n = O_n.$$

En multipliant la relation par A et en réorganisant

$$A = \frac{-1}{\det A}(a_1 A^2 + \dots + a_n A^{n+1})$$

et la matrice A est donc triangulaire supérieure.

Pour

$$A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

nous obtenons un contre-exemple où $A^k = O_2$ pour tout $k \geq 2$.

Exercice 33: [énoncé]

(a) Oui, un tel polynôme existe, il suffit de se référer aux matrices compagnons! Pour $a_0, a_1, \ldots, a_{n-1} \in \mathbb{K}$, la matrice compagnon associée est

$$M = \begin{pmatrix} 0 & (0) & -a_0 \\ 1 & \ddots & -a_1 \\ & \ddots & 0 & \vdots \\ (0) & 1 & -a_{n-1} \end{pmatrix}.$$

Son polynôme caractéristique est

$$\chi_M(X) = \begin{vmatrix} X & & (0) & a_0 \\ -1 & \ddots & & a_1 \\ & \ddots & X & \vdots \\ (0) & & -1 & X + a_{n-1} \end{vmatrix}.$$

Il peut se calculer par la succession d'opérations élémentaires

 $L_i \leftarrow L_i + XL_{i+1}$ avec i allant de n-1 à 1 dans cet ordre.

On obtient alors

$$\chi_M(X) = \begin{vmatrix} 0 & (0) & \alpha \\ -1 & \ddots & \vdots \\ & \ddots & 0 & (a_{n-2} + a_{n-1}X + X^2) \\ (0) & -1 & X + a_{n-1}X \end{vmatrix}$$

avec

$$\alpha = (a_0 + a_1 X + \dots + a_{n-1} X^{n-1} + X^n)$$

En développant selon la première ligne, on obtient

$$\chi_M(X) = a_0 + a_1 X + \dots + a_{n-1} X^{n-1} + X^n.$$

Ainsi, pour $P \in \mathbb{Z}[X]$ unitaire de degré n, on peut construire une matrice à coefficients entiers dont le polynôme caractéristique est $(-1)^n P(X)$.

(b) Il existe une matrice A dont le polynôme caractéristique est P. Puisque toute matrice complexe est trigonalisable, la matrice A est en particulier semblable dans $\mathcal{M}_n(\mathbb{C})$ à une matrice triangulaire de la forme

$$\begin{pmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

La matrice A^q est alors semblable à la matrice

$$egin{pmatrix} \lambda_1^q & & *' \ & \ddots & \ 0 & & \lambda_n^q \end{pmatrix}$$
 .

Le polynôme caractéristique de A^q est alors P_q . Or A^q est une matrice à coefficients entiers et donc son polynôme caractéristique P_q est aussi à coefficients entiers.

(c) Compte tenu des relations entre les coefficients et les racines d'un polynôme scindé, on peut majorer les coefficients de P et affirmer que, pour un degré fixé, il n'y a qu'un nombre fini de polynômes P possibles car les coefficients de P sont entiers et borné. Considérons un tel polynôme. L'application $q \in \mathbb{N}^* \mapsto P_q$ n'est pas injective compte tenu à cause de l'argument de cardinalité précédent. Il existe donc q < r tel que $P_q = P_r$. Ainsi, il existe une permutation σ de \mathbb{N}_n vérifiant :

$$\forall i \in \mathbb{N}_n, \lambda_i^q = \lambda_{\sigma(i)}^r$$

À l'aide d'une décomposition en cycles de σ , on peut affirmer qu'il existe une puissance de σ égale à l'identité et donc conclure que pour tout $i \in \mathbb{N}_n$ il existe q' > q tel que $\lambda_i^q = \lambda_i^{q'}$. On peut alors affirmer que λ_i est nul ou bien racine de l'unité.

Exercice 34: [énoncé]

Posons ϕ l'endomorphisme de $\mathcal{L}(E)$ étudié. On observe que $\phi^3 = \phi$. Par annulation d'un polynôme scindé simple, on peut affirmer que ϕ est diagonalisable de seules valeurs propres possibles 0, 1 et -1.

En introduisant une base adaptée à la projection f, la matrice de cet

endomorphisme est
$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

En notant $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ la matrice de u dans cette base, on obtient :

$$\phi(u) = 0 \iff B = 0 \text{ et } C = 0.$$

$$\phi(u) = u \iff A = 0, C = 0 \text{ et } D = 0.$$

$$\phi(u) = -u \iff A = 0, B = 0 \text{ et } D = 0$$

Exercice 35 : [énoncé]

 $\mathrm{Cas}\ \mathbb{K}=\mathbb{C}$

u annule un polynôme scindé simple, l'endomorphisme u est donc diagonalisable. Tout sous-espace vectoriel possédant une base de vecteurs propres est stable et inversement.

Cas $\mathbb{K} = \mathbb{R}$

Par le lemme de décomposition des noyaux, on a

$$E = \operatorname{Ker}(u - \operatorname{Id}) \oplus \operatorname{Ker}(u^2 + u + \operatorname{Id}).$$

Si F est un sous-espace vectoriel stable alors posons

$$F_1 = F \cap \operatorname{Ker}(u - \operatorname{Id})$$

 $_{
m et}$

$$F_2 = F \cap \operatorname{Ker}(u^2 + u + \operatorname{Id}).$$

Montrons $F = F_1 \oplus F_2$.

Tout $x \in F$ peut s'écrire x = a + b avec $a \in \operatorname{Ker}(u - \operatorname{Id})$ et $b \in \operatorname{Ker}(u^2 + u + \operatorname{Id})$. Puisque $u(x) = a + u(b) \in F$ et $u^2(x) = a + u^2(b) \in F$, on a $a = \frac{1}{3} \left(x + u(x) + u^2(x) \right) \in F$ puis $b = x - a \in F$. Ainsi $a \in F_1$, $b \in F_2$ et on a donc $F \subset F_1 + F_2$. Il est alors immédiat qu'on peut alors conclure $F = F_1 \oplus F_2$. Puisque $F_2 \subset \operatorname{Ker}(u^2 + u + \operatorname{Id})$, pour $x \in F_2$ non nul (x, u(x)) est libre et $\operatorname{Vect}(x, u(x))$ est stable par u. Cela permet d'établir que F_2 est la somme directe de sous-espaces vectoriels de la forme $\operatorname{Vect}(x, u(x))$ avec $x \neq 0$, $x \in \operatorname{Ker}(u^2 + u + \operatorname{Id})$. Quant à F_1 , il n'y a pas de condition à souligner puisque tout sous-espace vectoriel de $\operatorname{Ker}(u - \operatorname{Id})$ est stable par u.

Exercice 36: [énoncé]

 $P=X(X^2-3aX+a^2)$ est annulateur de f donc par le théorème de décomposition des noyaux, $E=\operatorname{Ker} f\oplus \operatorname{Ker} (f^2-3af+a^2\operatorname{Id})$ car X et $X^2-3aX+a^2$ sont premiers entre eux. Or a étant non nul, on montre élémentairement $\operatorname{Ker} (f^2-3af+a^2\operatorname{Id})\subset \operatorname{Im} f$ tandis que l'inclusion réciproque provient de ce que $(f^2-3af+a^2\operatorname{Id})\circ f=0$. Il est donc vrai que $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont supplémentaires.

Exercice 37: [énoncé]

- (a) L'application T est évidemment linéaire et est à valeurs dans E. Soit $g \in E$. Montrons que l'équation Tf = g admet une solution unique. Unicité : Si Tf = g alors $x \mapsto \int_0^x f(t) \, \mathrm{d}t$ est solution sur $\mathbb R$ de l'équation différentielle linéaire y' + y = g vérifiant y(0) = 0. Par le théorème de Cauchy ceci détermine $x \mapsto \int_0^x f(t) \, \mathrm{d}t$ de façon unique et donc f aussi. Existence : La dérivée de la fonction solution y' + y = g vérifiant y(0) = 0 est solution.
- (b) Soit F un sous-espace vectoriel de dimension finie stable par T. Notons I l'endomorphisme de E défini par $I(f)\colon x\mapsto \int_0^x f(t)\,\mathrm{d}t$. Puisque F est stable par T, F est aussi stable par I. L'endomorphisme induit par I sur le sous-espace vectoriel de dimension finie F admet un polynôme minimal $\pi=X^n+a_{n-1}X^{n-1}+\cdots+a_0$. On a alors pour tout $f\in F$ l'égalité $y+a_{n-1}y'+\cdots+a_ny^{(n)}=0$ en notant $y=I^n(f)$. De plus, on a les conditions initiales $y(0)=\ldots=y^{(n-1)}(0)=0$ ce qui donne y=0 puis f=0. Ainsi $F=\{0\}$. Finalement, l'espace nul est le seul espace de dimension finie stable par T. Quel intérêt au « impaire » ?

Exercice 38: [énoncé]

- (a) $\operatorname{Sp} B = \operatorname{Sp}^t B \operatorname{car} \chi_B = \chi_{tB}$.
- (b) Pour tout $X \in \mathcal{M}_{n,1}(\mathbb{K})$, $A(CX) = \lambda(CX)$ donc $CX \in \text{Ker}(A \lambda I_n)$.
- (c) Soit X et Y des vecteurs propres de A et tB associé à la valeur propre λ . La matrice $C = X^tY$ est solution.
- (d) On peut écrire $C=QJ_rP$ avec P,Q inversibles. La relation AC=CB donne $Q^{-1}AQJ_r=J_rPBP^{-1}$. En écrivant les matrices $Q^{-1}AQ$ et PBP^{-1} par blocs, l'égalité $Q^{-1}AQJ_r=J_rPBP^{-1}$ impose une décomposition en blocs triangulaire puis permet d'observer que $\chi_A=\chi_{Q^{-1}AQ}$ et $\chi_B=\chi_{PBP^{-1}}$ ont un facteur commun de degré $\geq r$, à savoir le polynôme caractéristique du bloc commun en position (1,1).
- (e) La réciproque est assurément fausse en toute généralité. Pour r=n, deux matrices ayant même polynôme caractéristique ne sont pas nécessairement semblables.

Exercice 39 : [énoncé]

 $A = PDP^{-1}$ avec $D = \operatorname{diag}(a+b,\ldots,a+b,a-b,\ldots,a-b)$ et

$$P = \begin{pmatrix} 1 & & (0) & 0 & 1 & & (0) \\ & \ddots & & \vdots & & \ddots & \\ & & 1 & 0 & (0) & & 1 \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ (0) & & 1 & 0 & (0) & & -1 \\ & & \ddots & & \vdots & & \ddots & \\ 1 & & (0) & 0 & -1 & & (0) \end{pmatrix}.$$

Par suite

$$\pi_A = (X - (a+b))(X - (a-b))$$

et les polynômes annulateurs de A sont les multiples de π_A .

Exercice 40 : [énoncé]

Supposons f diagonalisable et soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de vecteurs propres de f.

Pour $1 \le i, j \le n$, on pose $g_{i,j}$ l'endomorphisme de E déterminé par

$$g_{i,i}(e_k) = \delta_{i,k}e_i$$
.

La famille $(g_{i,j})$ est une base de $\mathcal{L}(E)$ et on observe

$$T(g_{i,j}) = (\lambda_i - \lambda_j)g_{i,j}$$

donc T est diagonalisable.

Supposons f nilpotente, c'est-à-dire qu'il existe $n \in \mathbb{N}^*$ pour lequel $f^n = 0$. Puisque $T^p(g)$ est combinaison linéaire de termes de la forme $f^k \circ g \circ f^{p-k}$, il est assuré que $T^{2n} = 0$ et donc que T est nilpotente.

Exercice 41: [énoncé]

On peut écrire

$$\Pi_f = \prod_{\lambda \in \operatorname{Sp}(f)} (X - \lambda)^{\alpha_{\lambda}}$$

et

$$E = \bigoplus_{\lambda \in \operatorname{Sp}(f)} \operatorname{Ker}(f - \lambda \operatorname{Id})^{\alpha_{\lambda}}$$

décomposition en somme de sous-espaces vectoriels stables par f. Pour chaque $\lambda \in \operatorname{Sp}(f)$,

$$\operatorname{Ker}(f - \lambda \operatorname{Id})^{\alpha_{\lambda} - 1} \neq \operatorname{Ker}(f - \lambda \operatorname{Id})^{\alpha_{\lambda}}$$

par minimalité de Π_f et donc il existe $x_{\lambda} \in \text{Ker}(f - \lambda \text{Id})^{\alpha_{\lambda}} \setminus \text{Ker}(f - \lambda \text{Id})^{\alpha_{\lambda}-1}$. On peut alors établir que la famille $((f - \lambda \text{Id})^k(x_{\lambda}))_{0 \le k \le \alpha_{\lambda}-1}$ est libre.

Considérons maintenant $x = \sum_{\lambda \in \operatorname{Sp}(f)} x_{\lambda}$.

Pour $P \in \mathbb{C}[X]$, $P(f)(x) = \sum_{\lambda \in \operatorname{Sp}(f)} P(f)(x_{\lambda})$ avec $P(f)(x_{\lambda}) \in \operatorname{Ker}(f - \lambda \operatorname{Id})^{\alpha_{\lambda}}$ par stabilité.

Par décomposition en somme directe,

$$P(f)(x) = 0 \iff \forall \lambda \in \operatorname{Sp}(f), P(f)(x_{\lambda}) = 0.$$

Par division euclidienne $P = (X - \lambda)^{\alpha_{\lambda}}Q + R$ avec $\deg R < \alpha_{\lambda}$ de sorte qu'on puisse écrire $R = \sum_{k=0}^{\alpha_{\lambda}-1} a_k (X - \lambda)^k$. On alors

$$P(f)(x_{\lambda}) = 0 \iff \forall 0 \le k < \alpha_{\lambda}, a_k = 0.$$

Ainsi

$$P(f)(x) = 0 \iff \forall \lambda \in \operatorname{Sp}(f), (X - \lambda)^{\alpha_{\lambda}} \mid P.$$

Enfin puisque les termes $(X - \lambda)^{\alpha_{\lambda}}$ sont premiers entre eux, on peut conclure

$$P(f)(x) = 0 \iff \Pi_f \mid P.$$

Exercice 42: [énoncé]

Rappelons qu'une matrice M carrée de taille n qui est nilpotente vérifie $M^n = O_n$ (l'ordre de nilpotence est au plus égal à la taille de la matrice). On a

$$\forall k \in \{0, \dots, n\}, (A + 2^k B)^n = O_n.$$

Considérons alors la matrice

$$(A+XB)^n \in \mathcal{M}_n(\mathbb{K}[X]).$$

Celle-ci est à coefficients polynomiaux de degrés inférieurs à n. Puisque $1, 2, \ldots, 2^n$ sont n+1 racines distinctes de ces coefficients, ceux-ci sont tous nuls. On en déduit

$$A^n = O_n$$

car les coefficients constants sont nuls, et

$$B^n = O_n$$

car les coefficients des termes X^n sont aussi nuls.

Exercice 43: [énoncé]

(a) Puisque $u^3 = u$, par annulation d'un polynôme scindé simple, on peut affirmer que u est diagonalisable de valeurs propres possibles 0, 1, -1. Par les égalités $\operatorname{tr} u = 0$ et $\operatorname{tr} u^2 = 2n$ on peut affirmer qu'il existe une base de \mathbb{R}^{2n+1} dans laquelle la matrice de u est de la forme

$$A = \begin{pmatrix} I_n & 0 & 0 \\ 0 & -I_n & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Les matrices commutant avec A étant celle de la forme

$$\begin{pmatrix}
M & 0 & 0 \\
0 & N & 0 \\
0 & 0 & \alpha
\end{pmatrix}$$

avec $M, N \in \mathcal{M}_n(\mathbb{R})$, on peut affirmer

$$\dim C(u) = 2n^2 + 1.$$

(b) $\Pi_u = X^3 - X$ donc dim $\mathbb{R}[u] = 3$ et par suite $C(u) = \mathbb{R}[u]$ si, et seulement si, n = 1.

Exercice 44: [énoncé]

- (a) Si $A^2 = A$ alors $f_A^2 = f_A$. f_A est une projection donc diagonalisable.
- (b) Pour tout $P \in \mathbb{R}[X]$, on observe $P(f_A): M \mapsto P(A)M$ de sorte que

$$P(f_A) = 0 \iff P(A) = 0.$$

Tout endomorphisme étant diagonalisable si, et seulement si, il annule un polynôme scindé simple, on peut conclure.

Exercice 45: [énoncé]

(a) Puisque H est un hyperplan et que $I_n \notin H$, on a

$$H \oplus \operatorname{Vect}(I_n) = \mathcal{M}_n(\mathbb{K}).$$

Soit A une matrice nilpotente. On peut l'écrire $A=B+\lambda I_n$ avec $B\in H$. La matrice B n'étant pas inversible, il existe une colonne X non nulle telle que BX=O et alors $AX=\lambda X$. Le scalaire λ est une valeur propre de la matrice A. Or les seules valeurs propres d'une matrice nilpotente sont nulles. On en déduit $\lambda=0$ puis $A=B\in H$.

(b) Les matrices élémentaires $E_{i,j}$ avec $i \neq j$ sont nilpotentes car de carrées nulles; elles sont donc toutes éléments de H et par combinaison linéaire la matrice

$$M = \begin{pmatrix} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & (0) & \ddots & 1 \\ 1 & & & 0 \end{pmatrix}$$

appartient à H. Cependant celle-ci est notoirement inversible.

Exercice 46: [énoncé]

On remarque

$$C^3 - C^2 = 3A + 3B = 3C.$$

La matrice C annule donc le polynôme

$$X^3 - X^2 - 3X.$$

On vérifie aisément que ce polynôme est scindé à racines simples et on peut donc affirmer que C est diagonalisable. Or

$$A = C^3 - 2C^2$$
 et $B = C + 2C^2 - C^3$

donc A et B sont diagonalisables.

Exercice 47: [énoncé]

(a) L'implication (\iff) est immédiate (\implies) Par récurrence sur $n \ge 2$. Cas n = 2

Soient $z_1, z_2 \in \mathbb{C}^*$ tels que

$$|z_1 + z_2| = |z_1| + |z_2|$$
.

En posant $u = z_2/z_1$, on a alors (car $z_1 \neq 0$)

$$|1+u|=1+|u|$$
.

En écrivant $u=a+\mathrm{i} b$ avec $a,b\in\mathbb{R}$ et en élevant au carré l'identité précédente, on obtient

$$(1+a)^2 + b^2 = 1 + 2\sqrt{a^2 + b^2} + a^2 + b^2$$

et cette identité est vérifiée si, et seulement si, $a \in \mathbb{R}_+$ et b = 0 ce qui permet d'écrire $z_2 = \alpha_2 z_1$ avec $\alpha_2 = a \in \mathbb{R}_+$.

Supposons la propriété établie au rang $n \geq 2$.

Soient $z_1, \ldots, z_n, z_{n+1} \in \mathbb{C}$ avec $z_1 \neq 0$ tels que

$$\left| \sum_{k=1}^{n+1} z_k \right| = \sum_{k=1}^{n+1} |z_k| \,.$$

Par l'inégalité triangulaire

$$\left| \sum_{k=1}^{n+1} z_k \right| \le \left| \sum_{k=1}^n z_k \right| + |z_{n+1}| \le \sum_{k=1}^{n+1} |z_k|$$

et puisque les termes extrémaux sont égaux on a

$$\left| \sum_{k=1}^{n} z_k \right| = \sum_{k=1}^{n} |z_k|$$

donc par hypothèse de récurrence on peut écrire pour tout $k \geq 2$

$$z_k = \alpha_k z_1 \text{ avec } \alpha_k > 0.$$

On en déduit

$$\sum_{k=1}^{n} z_k = (1 + \alpha_2 + \dots + \alpha_n) z_1 \neq 0$$

et puisque

$$\left| \sum_{k=1}^{n} z_k + z_{n+1} \right| = \left| \sum_{k=1}^{n} z_k \right| + |z_{n+1}|$$

l'étude du cas n=2 permet d'écrire

$$z_{n+1} = a \sum_{k=1}^{n} z_k = \alpha_{n+1} z_1 \text{ avec } \alpha_{n+1} \in \mathbb{R}_+.$$

Récurrence établie.

(b) Si $M \in \mathcal{M}_n(\mathbb{C})$ vérifie $M^n = I_n$ et trM = n alors cette matrice est diagonalisable (car annule le polynôme scindé à racines simples $X^n - 1$) et ses valeurs propres $\lambda_1, \ldots, \lambda_n$ vérifient

$$\lambda_1 + \dots + \lambda_n = n.$$

Or les valeurs propres vérifient aussi

$$\forall 1 \leq k \leq n, \lambda_k^n = 1$$

et elles sont donc de module 1. Nous sommes donc dans la situation où

$$|\lambda_1 + \dots + \lambda_n| = |\lambda_1| + \dots + |\lambda_n|.$$

Puisque $\lambda_1 \neq 0$, on peut écrire $\lambda_k = \alpha_k \lambda_1$ pour tout $k \geq 2$ avec $\alpha_k \geq 0$. Or tous les λ_k sont de module 1 donc les α_k sont égaux à 1 et par suite

$$\lambda_1 = \ldots = \lambda_n$$
.

Enfin puisque la somme des valeurs propres vaut n, on peut conclure

$$\lambda_1 = \ldots = \lambda_n = 1$$

et finalement $M = I_n$ car la matrice M est semblable à I_n . La réciproque est immédiate.

Exercice 48: [énoncé]

En introduisant l'espace E des fonctions réelles f continues sur]0;1] telles que $t\mapsto (tf(t))^2$ soit intégrable et en munissant cet espace du produit scalaire

$$(f|g) = \int_0^1 t^2 f(t)g(t) dt$$

la quantité cherchée est : $m=d(f,F)^2$ avec $f\colon t\mapsto \ln t$ et $F=\mathrm{Vect}(f_0,f_1)$ où $f_0(t)=1$ et $f_1(t)=t$.

 $m = ||f - p(f)||^2$ avec p la projection orthogonale sur F.

p(f)(t) = a + bt avec $(p(f)|f_0) = (f|f_0)$ et $(p(f)|f_1) = (f|f_1)$. La résolution du système ainsi obtenu donne a = 5/3 et b = -19/12.

 $m = ||f - p(f)||^2 = (f - p(f)|f) = 1/432.$

Exercice 49: [énoncé]

(a) Pour $P, Q \in E$, la fonction $t \mapsto P(t)Q(t)e^{-t}$ est définie et continue par morceaux sur $[0; +\infty[$ et vérifie

$$t^2 P(t) Q(t) e^{-t} \xrightarrow[t \to +\infty]{} 0.$$

On peut donc affirmer que cette fonction est intégrable sur $[0; +\infty[$ ce qui assure la bonne définition de $\langle \cdot, \cdot \rangle$.

On vérifie aisément que $\langle \,\cdot\,,\,\cdot\,\rangle$ est une forme bilinéaire symétrique positive. Si $\langle P,P\rangle=0$ alors par nullité de l'intégrale d'une fonction continue positive

$$\forall t \in [0; +\infty[, P(t)]^2 e^{-t} = 0.$$

On en déduit que le polynôme P admet une infinité de racines et donc P=0.

(b) Pour $k \ge 1$ ou k = 0, on peut affirmer que les polynômes P_k et P_k' sont orthogonaux car

$$P'_k \in \operatorname{Vect}(P_1, \dots, P_{k-1}).$$

Par une intégration par parties

$$0 = \int_0^{+\infty} P_k'(t) P_k(t) e^{-t} dt = \frac{1}{2} \left[P_k(t)^2 e^{-t} \right]_0^{+\infty} + \frac{1}{2} \int_0^{+\infty} P_k(t)^2 e^{-t} dt.$$

On en déduit

$$P_k(0)^2 = ||P_k||^2 = 1.$$

(c) F est un hyperplan (car noyau de la forme linéaire non nulle $P \mapsto P(0)$). Son orthogonal est donc une droite vectorielle. Soit Q un vecteur directeur de celle-ci. On peut écrire

$$Q = \sum_{k=0}^{n} \langle P_k, Q \rangle P_k.$$

Or

$$\langle P_k, Q \rangle = \langle P_k - P_k(0), Q \rangle + P_k(0) \langle 1, Q \rangle.$$

Puisque le polynôme $P_k - P_k(0)$ est élément de F, il est orthogonal à Q et l'on obtient

$$\langle P_k, Q \rangle = P_k(0)\langle 1, Q \rangle$$

ce qui permet d'écrire

$$Q = \lambda \sum_{k=0}^{n} P_k(0) P_k \text{ avec } \lambda = \langle 1, Q \rangle \neq 0.$$

On en déduit

$$d(1,F) = \frac{|\langle 1,Q \rangle|}{\|Q\|} = \frac{1}{\sqrt{\sum_{k=0}^{n} P_k(0)^2}} = \frac{1}{\sqrt{n+1}}.$$

Enfin par Pythagore

$$||1||^2 = d(1,F)^2 + d(1,F^{\perp})^2$$

et l'on obtient

$$d(1, F^{\perp}) = \sqrt{\frac{n}{n+1}}.$$

Exercice 50 : [énoncé]

- (a) Puisque A et tA commutent, on a $({}^tAA)^p = ({}^tA)^pA^p = 0$ et donc tAA est nilpotente.
 - D'autre part, la matrice tAA est symétrique réelle donc diagonalisable. Étant nilpotente, sa seule valeur propre possible est 0 et donc tAA est nulle car semblable à la matrice nulle.
- (b) En exploitant le produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$ on a

$$||A||^2 = (AA \models) \operatorname{tr}(^t AA) = 0$$

et donc A=0

Exercice 51 : [énoncé]

Soit M solution. $M^4 = {}^t(M^2) = M$ donc $X^4 - X$ est annulateur de M et puisque 0 et 1 ne sont pas valeurs propres de M, $X^3 - 1$ puis $X^2 + X + 1$ sont annulateurs de M.

Ainsi, on peut affirmer $M^3 = {}^t M M = I$ (ainsi $M \in \mathcal{O}_n(\mathbb{R})$) et $M^2 + M + I = 0$. Pour $X \neq 0$, $P = \mathrm{Vect}(X, M X)$ est un plan (car il n'y a pas de valeurs propres réelles) stable par M (car $M^2 = -M - I$). La restriction de M à ce plan est un automorphisme orthogonal sans valeur propre, c'est donc une rotation et celle-ci est d'angle $\pm 2\pi/3$ car $M^3 = I_n$. De plus ce plan est aussi stable par $M^2 = {}^tM$ donc P^{\perp} est stable par M ce qui permet de reprendre le raisonnement à partir d'un $X' \in P^{\perp} \setminus \{0\}$. Au final, M est orthogonalement semblable à une matrice diagonale par blocs et aux blocs diagonaux égaux à

$$\begin{pmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}$$
 ou $\begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}$.

La réciproque est immédiate.

Exercice 52: [énoncé]

Puisque les valeurs propres de u sont strictement positives, on montre par orthodiagonalisation

$$\forall x \in E \setminus \{0_E\}, \langle u(x), x \rangle > 0.$$

Soit $x \in E$.

Si $x = 0_E$, l'inégalité demandée est évidente et c'est même une égalité. Si $x \neq 0_E$, considérons $\lambda \in \mathbb{R}$. On a

$$\langle u(x + \lambda u^{-1}(x)), x + \lambda u^{-1}(x) \rangle \ge 0$$

donc en développant

$$\lambda^2 \langle x, u^{-1}(x) \rangle + 2\lambda \langle x, x \rangle + \langle u(x), x \rangle \ge 0.$$

Or $\langle x, u^{-1}(x) \rangle = \langle u(u^{-1}(x)), u^{-1}(x) \rangle > 0$, par suite, le discriminant

$$\Delta = 4 \|x\|^4 - 4\langle u(x), x \rangle \langle u^{-1}(x), x \rangle$$

est négatif ou nul car sinon le trinôme en λ précédent posséderait deux racines et ne serait donc pas de signe constant.

On en déduit l'inégalité proposée.

De plus, il y a égalité si, et seulement si, il existe $\lambda \in \mathbb{R}$ vérifiant $x + \lambda u^{-1}(x) = 0_E$ i.e. si, et seulement si, x est vecteur propre de u.

Exercice 53: [énoncé]

- (a) ${}^{t}A = -A$ donne det $A = (-1)^{n}$ det A donc det A = 0 si n est impair.
- (b) Si λ est valeur propre réelle de A alors on peut écrire $AX = \lambda X$ pour une certaine colonne X non nulle. On a alors ${}^tXAX = \lambda^tXX$ mais aussi

 $^tXAX=-^t(AX)X=-\lambda^tXX$. On en déduit que la seule valeur propre réelle de A possible est la valeur nulle.

Par l'absurde, si det A<0 alors le théorème des valeurs intermédiaires assure que le polynôme caractéristique de A s'annule ailleurs qu'en 0. C'est contraire à l'affirmation qui précède.

Ainsi det A > 0 avec inégalité stricte si, et seulement si, A est inversible.

Exercice 54: [énoncé]

(a) Posons

$$U_p = \frac{1}{p+1}(I_n + A + \dots + A^p).$$

On a

$$(I-A)U_p = \frac{1}{p+1}(I_n - A^{p+1}) \to 0$$

car pour la norme euclidienne

$$\forall M \in \mathcal{O}_n(\mathbb{R}), ||M|| = \sqrt{n}.$$

Puisque $1 \notin \operatorname{Sp} A$, $U_p \to 0$.

(b) Par l'absurde si A^p converge vers B alors pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $A^{p+1}X = AA^pX$ donne à la limite BX = ABX. Or $1 \notin \operatorname{Sp} A$ donc BX = 0 et puisque ceci vaut pour tout X, B = 0. Or $||A^p|| = \sqrt{n} \not \to 0$. Absurde.

La suite $(A^p)_{p\in\mathbb{N}}$ est divergente.

Exercice 55 : [énoncé]

Un tel endomorphisme conserve l'orthogonalité. Pour tout x,y vérifiant $\|x\| = \|y\|$, on a x+y et x-y orthogonaux donc f(x)+f(y) et f(x)-f(y) aussi. Par suite $\|f(x)\| = \|f(y)\|$. Ainsi un tel endomorphisme transforme une base orthonormée (e_1,\ldots,e_n) en une famille orthogonale aux vecteurs isométriques. Par suite $f=\lambda g$ avec $g\in \mathrm{O}(E)$.

La réciproque est immédiate.

Exercice 56: [énoncé]

Soit $Y \in \operatorname{Ker} A \cap \operatorname{Im} A$. On peut écrire Y = AX pour une certaine colonne X. On a

$${}^tYY = {}^t(AX)Y = -{}^tXAY = 0$$

et donc Y = 0. En sus,

$$\operatorname{rg} A + \dim \operatorname{Ker} A = n$$

et donc les espaces $\operatorname{Im} A$ et $\operatorname{Ker} A$ sont supplémentaires. Puisque l'espace $\operatorname{Im} A$ est évidemment stable, on obtient que la matrice A est semblable à une matrice de la forme

$$\begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix}$$
.

Le rang de la matrice A est égale par similitude au rang de la matrice C mais aussi par construction à la taille de C. On en déduit que la matrice C est inversible (On peut aussi établir que les espaces $\operatorname{Im} A$ et $\operatorname{Ker} A$ sont orthogonaux et, en considérant des bases orthonormées, observer que la matrice A est orthogonalement semblable à B avec un bloc C antisymétrique). Enfin, si λ est valeur propre réelle de A de vecteur propre $X \neq 0$ on a

$${}^{t}XAX = \lambda X$$
 et ${}^{t}XAX = -{}^{t}(AX)X = -\lambda {}^{t}XX$.

On en déduit que seule 0 peut être valeur propre réelle de A. La matrice C n'a donc pas d'autre valeur propre que 0, or elle est inversible, elle n'admet donc pas de valeur propre. Elle est alors nécessairement de taille paire.

Exercice 57: [énoncé]

- (a) On reconnaît le produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$.
- (b) Posons $f: M \mapsto \Omega M$. $(f(M)|f(N)) = \operatorname{tr}({}^tM^t\Omega\Omega N)$. f est φ -orthogonale si, et seulement si, pour tout $M, N \in \mathcal{M}$, $(M|{}^t\Omega\Omega N) = (M|N)$ i.e. pour tout $N \in \mathcal{M}$, ${}^t\Omega\Omega N = N$ i.e. ${}^t\Omega\Omega = I_n$. Ainsi f est φ -orthogonale si, et seulement si, Ω l'est.

Exercice 58 : [énoncé]

On a

$$(g \circ \sigma \circ g^{-1})(g(u)) = -g(u)$$

et pour $g(v)\perp g(u)$,

$$(q \circ \sigma \circ q^{-1})(q(v)) = q(v).$$

Ainsi $g \circ \sigma \circ g^{-1}$ est la réflexion par rapport à $g(u)^{\perp}$.

Exercice 59: [énoncé]

J+A n'est pas inversible si, et seulement si, il existe une colonne non nulle vérifiant AX=-JX.

On a alors ${}^tAJX = -X$ et donc $-1 \in \operatorname{Sp}({}^tAJ) = \operatorname{Sp}(JA)$ avec une réciproque immédiate.

Le polynôme caractéristique de JA étant

$$X^{n-1}(X - \sum_{i,j} a_{i,j})$$

on obtient le critère

$$J+A$$
 est inversible si, et seulement si, $\sum_{i,j} a_{i,j} \neq -1$.

Exercice 60: [énoncé]

Supposons (i) et (ii).

Pour $x \in E$, on a

$$(f(x)|x) = -(f(x)|f^{2}(x)) = -(x|f(x))$$

et donc

$$(f(x)|x) = 0.$$

Supposons (ii) et (iii)

Le vecteur x + f(x) et son image par f sont orthogonaux donc

$$(x + f(x) | f(x + f(x))) = (x + f(x) | f(x) - x) = 0$$

puis $\left\|f(x)\right\|^2=\left\|x\right\|^2.$ Ainsi f est une isométrie.

Supposons (i) et (iii)

Pour tous vecteurs x et y

$$(f^{2}(x) + x | f(y)) = (f(x) | y) + (x | f(y)).$$

Or

$$(f(x+y)|x+y) = (f(x)|y) + (f(y)|x) = 0$$

donc

$$(f^2(x) + x | f(y)) = 0.$$

Puisque f est surjective, $f^2(x) + x = 0_E$.

Exercice 61: [énoncé]

M est diagonalisable et ses valeurs propres sont racines de $X^p - 1$, elles ne peuvent donc qu'être 1 ou -1. Par suite $M^2 = I_n$.

Exercice 62 : [énoncé]

Si A est diagonale égale à diag $(\lambda_1, \ldots, \lambda_n)$ avec $\lambda_i \in \mathbb{R}_+$ alors

$$\operatorname{tr}(AU) = \sum_{i=1}^{n} \lambda_i u_{i,i}.$$

Or les coefficients d'une matrice orthogonale appartiennent à $[-1\,;1]$ donc

$$\operatorname{tr}(AU) \le \sum_{i=1}^{n} \lambda_i = \operatorname{tr}(A).$$

Plus généralement, si A est symétrique réelle à valeurs propres positives, on peut écrire $A = {}^tVDV$ avec V orthogonale et $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ où $\lambda_i \in \mathbb{R}_+$. On a alors

$$\operatorname{tr}(AU) = \operatorname{tr}({}^{t}VDVU) = \operatorname{tr}(DW)$$

avec $W = VU^tV$ orthogonale. On a alors

$$\operatorname{tr}(AU) \le \operatorname{tr} D = \operatorname{tr} A.$$

L'étude de tr(UA) est analogue.

Exercice 63: [énoncé]

Le produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$ est donné par

$$(A \mid B) = \operatorname{tr}(^t A B).$$

(a) L'espace solution est $\mathcal{S}_n(\mathbb{R})$. En effet, les espaces $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont orthogonaux car pour $(A, B) \in \mathcal{S}_n(\mathbb{R}) \times \mathcal{A}_n(\mathbb{R})$ on a

$$(A|B) = \operatorname{tr}({}^{t}AB) = \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

 $_{
m et}$

$$(A|B) = (B|A) = \operatorname{tr}({}^{t}BA) = -\operatorname{tr}(BA)$$

donc (A|B) = 0.

Les espaces étant orthogonaux, ils sont donc en somme directe. Puisque de plus on peut écrire n'importe quelle matrice $M \in \mathcal{M}_n(\mathbb{R})$ sous la forme M = A + B avec

$$A = \frac{M + {}^{t}M}{2} \in \mathcal{S}_{n}(\mathbb{R}) \text{ et } B = \frac{M - {}^{t}M}{2} \in \mathcal{A}_{n}(\mathbb{R})$$

les espaces $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont supplémentaires orthogonaux et donc chacun est l'orthogonale de l'autre.

car ces espaces sont évidemment orthogonaux et supplémentaires.

(b) On a

$$^{t}\exp(xB)\exp(xB) = \exp(^{t}(xB))\exp(xB) = \exp(-xB)\exp(xB).$$

Or -xB et xB commutent donc

$$^{t}\exp(xB)\exp(xB) = \exp(-xB + xB) = \exp(0) = I_{n}.$$

(c) La fonction dérivable $f: x \mapsto \operatorname{tr}(A\exp(xB))$ admet un maximum en 0 donc f'(0) = 0 ce qui donne $\operatorname{tr}(AB) = 0$ pour tout $B \in \mathcal{A}_n(\mathbb{R})$. Ainsi A est une matrice symétrique car dans l'orthogonal de l'espace des matrices antisymétrique.

Par le théorème spectrale, on peut écrire $A = {}^{t}PDP$ avec

 $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \text{ et } P \in \mathcal{O}_n(\mathbb{R}).$

Posons $V = \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_n)$ avec $\varepsilon_i = \pm 1$ et $\varepsilon_i \lambda_i = |\lambda_i|$.

Considérons alors $U = {}^{t}PVP \in \mathcal{O}_{n}(\mathbb{R})$.

$$\operatorname{tr}(AU) = \operatorname{tr}(A^t P V P) = \operatorname{tr}(P A^t P V) = \operatorname{tr}(DV) = |\lambda_1| + \dots + |\lambda_n|$$

 $_{
m et}$

$$\operatorname{tr}(A) = \lambda_1 + \dots + \lambda_n.$$

La propriété $\operatorname{tr}(AU) \leq \operatorname{tr} A$ entraı̂ne $\lambda_i \geq 0$ pour tout i. La matrice A est alors symétrique positive.

(d) Supposons $A \in \mathcal{S}_n^+(\mathbb{R})$. On peut écrire $A = {}^tPDP$ avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, $\lambda_i \geq 0$ et $P \in \mathcal{O}_n(\mathbb{R})$. Pour tout $U \in \mathcal{O}_n(\mathbb{R})$, $\operatorname{tr}(AU) = \operatorname{tr}(DV)$ avec $V = (v_{i,j}) = {}^tPUP \in \mathcal{O}_n(\mathbb{R})$.

On a alors

$$\operatorname{tr}(DV) = \sum_{i=1}^{n} \lambda_{i} v_{i,i} \le \sum_{i=1}^{n} \lambda_{i} = \operatorname{tr}(A)$$

 $\operatorname{car} v_{i,i} \leq 1.$

(e) L'application réelle $f: V \to \operatorname{tr}(MV)$ est continue sur le compact $O_n(\mathbb{R})$, elle y admet donc un maximum en un certain $U \in O_n(\mathbb{R})$. On a alors pour tout $V \in O_n(\mathbb{R})$,

$$\operatorname{tr}(MV) \le \operatorname{tr}(MU).$$

Posons alors A = MU. Pour tout $W \in O_n(\mathbb{R})$,

$$\operatorname{tr}(AW) \le \operatorname{tr} A$$

donc $A \in \mathcal{S}_n^+(\mathbb{R})$ et ainsi $M = AU^{-1}$ avec $A \in \mathcal{S}_n^+(\mathbb{R})$ et $U^{-1} \in \mathcal{O}_n(\mathbb{R})$.

Exercice 64: [énoncé]

Par comparaison de noyau, il est facile d'obtenir : $\operatorname{rg} A = \operatorname{rg}^t A A$.

La matrice tAA étant symétrique réelle, elle est diagonalisable et donc son rang est égal au nombre de ses valeurs propres non nulles comptées avec multiplicité.

Exercice 65 : [énoncé]

Soit M solution, M est diagonalisable sur $\mathbb C$ avec pour valeurs propres j et j^2 . Puisque tr M est réel, les valeurs propres j et j^2 ont même multiplicité. Par suite n est pair, n=2p.

Nous allons montrer, en raisonnant par récurrence sur p qu'il existe une matrice orthogonale P tel que

$$PMP^{-1} = \begin{pmatrix} J & & (0) \\ & \ddots & \\ & & J \end{pmatrix}$$

avec

$$J = R_{2\pi/3} = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}$$
 ou $J = R_{-2\pi/3}$.

Pour n = 2: $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$${}^{t}MM = M^{t}M \iff \begin{cases} ab + cd = ac + db \\ b^{2} = c^{2}. \end{cases}$$

Si b=c alors M est symétrique donc diagonalisable sur $\mathbb R$ ce qui n'est pas le cas. Il reste b=-c et donc a=d.

Ainsi $M = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ et la relation $M^2 + M + I = 0$ donne

$$\begin{cases} a^2 - b^2 + a + 1 = 0 \\ 2ab + b = 0 \end{cases}$$

puis

$$\begin{cases} a = -1/2 \\ b = \pm \sqrt{3}/2 \end{cases}$$

ce qui permet de conclure (car le cas b = 0 est à exclure).

Supposons la propriété établie au rang n=2p et étudions le rang n=2p+2. Soit M une matrice solution.

La matrice $S={}^tM+M$ est symétrique et donc il existe $X\neq 0$ tel que $SX=\lambda X$. On observe alors que l'espace $F=\mathrm{Vect}(X,MX)$ est stable par M et par tM . Par suite F^\perp est aussi stable par M et tM . On peut alors appliquer l'étude menée pour n=2 à l'action de M sur F et l'hypothèse de récurrence à celle sur F^\perp . Cela établit la récurrence. Il ne reste plus qu'à souligner que les matrices ainsi obtenues sont bien solutions.

Exercice 66: [énoncé]

(a) Soit λ une valeur propre complexe de A et $X \in \mathcal{M}_{n,1}(\mathbb{C})$ une colonne propre associée.

D'une part ${}^t\overline{X}AX = \lambda {}^t\overline{X}X$, d'autre part ${}^t\overline{X}AX = {}^t\overline{A}XX = -\overline{\lambda}{}^t\overline{X}X$. Puisque ${}^t\overline{X}X \in \mathbb{R}_+^*$, on obtient $\overline{\lambda} = -\lambda$ donc $\lambda \in i\mathbb{R}$.

(b) Pour tout $A \in \mathcal{A}_n(\mathbb{R})$, $\Omega = \varphi(A)$ est bien définie car $-1 \notin \operatorname{Sp} A$. ${}^t\Omega\Omega = (\operatorname{I}_n - A)^{-1}(\operatorname{I}_n + A)(\operatorname{I}_n - A)(\operatorname{I}_n + A)^{-1}$ or $\operatorname{I}_n + A$ et $\operatorname{I}_n - A$ commutent donc ${}^t\Omega\Omega = \operatorname{I}_n$.

De plus, si $\Omega X = -X$ alors $(I_n - A)X = -(I_n + A)X$ (car $I_n - A$ et $(I_n + A)^{-1}$ commutent) et donc X = 0.

Ainsi l'application $\varphi \colon \mathcal{A}_n(\mathbb{R}) \to \left\{ \Omega \in \mathcal{O}_n(\mathbb{R}) \mid -1 \notin \operatorname{Sp}(\Omega) \right\}$ est bien définie. Si $\varphi(A) = \varphi(B)$ alors $(I_n - A)(I_n + B) = (I_n + A)(I_n - B)$. En développant et en simplifiant on obtient A = B et donc l'application φ est injective. Enfin soit $\Omega \in \mathcal{O}_n(\mathbb{R})$ tel que $-1 \notin \operatorname{Sp}(\Omega)$.

Posons $A = (\Omega + I_n)^{-1}(I_n - \Omega)$ qui est bien définie car $-1 \notin \operatorname{Sp} \Omega$.

On a ${}^{t}A = (I_{n} - \Omega^{-1})(\Omega^{-1} + I_{n})^{-1} = (\Omega - I_{n})\Omega^{-1}\Omega(I_{n} + \Omega)^{-1} = (\Omega - I_{n})(I_{n} + \Omega)^{-1} = -A$ et $\varphi(A) = \Omega$.

Finalement φ est bijective.

Exercice 67: [énoncé]

(a) Notons C_1, \ldots, C_p les colonnes de M_u . Si (u_1, \ldots, u_p) est liée alors il existe $\lambda_1, \ldots, \lambda_p$ non tous nuls vérifiant

$$\lambda_1 u_1 + \dots + \lambda_p u_p = 0_E.$$

On a alors

$$\forall 1 \le i \le p, (\lambda_1 u_1 + \dots + \lambda_p u_p | u_i) = 0$$

et donc

$$\lambda_1 C_1 + \dots + \lambda_n C_n = 0.$$

La matrice M_u n'est alors pas inversible.

Inversement, supposons la matrice ${\cal M}_u$ non inversible.

Il existe $\lambda_1, \dots, \lambda_p$ non tous nuls vérifiant

$$\lambda_1 C_1 + \dots + \lambda_p C_p = 0$$

et donc

$$\forall 1 \le i \le p, (\lambda_1 u_1 + \dots + \lambda_p u_p | u_i) = 0.$$

Ainsi

$$\lambda_1 u_1 + \dots + \lambda_p u_p \in \text{Vect}(u_1, \dots, u_p)^{\perp}$$

or

$$\lambda_1 u_1 + \dots + \lambda_p u_p \in \text{Vect}(u_1, \dots, u_p)$$

donc

$$\lambda_1 u_1 + \dots + \lambda_n u_n = 0_E$$

et la famille (u_1, \ldots, u_p) est liée.

(b) Posons $r = \operatorname{rg}(u_1, \ldots, u_p)$ et quitte à permuter les vecteurs (u_1, \ldots, u_p) , supposons que les r premiers vecteurs de la famille u sont indépendants. On permute de la même façon les vecteurs (v_1, \ldots, v_p) et ainsi l'hypothèse $M_u = M_v$ est conservée. Par l'étude qui précède, on peut affirmer que les r premiers vecteurs de la famille v sont indépendants et que les autres en sont combinaisons linéaires.

Considérons alors l'application linéaire $h\colon \mathrm{Vect}(u_1,\ldots,u_r)\to \mathrm{Vect}(v_1,\ldots,v_r)$ déterminée par

$$\forall 1 \le k \le r, h(u_k) = v_k.$$

Pour tout $x = \lambda_1 u_1 + \dots + \lambda_r u_r$, on a par construction $h(x) = \lambda_1 v_1 + \dots + \lambda_r v_r$.

Or

$$||x||^2 = \sum_{i,j=1}^r \lambda_i \lambda_j (u_i | u_j) \text{ et } ||h(x)||^2 = \sum_{i,j=1}^r \lambda_i \lambda_j (v_i | v_j)$$

et puisque $(u_i | u_i) = (v_i | v_i)$, on obtient

$$||x||^2 = ||h(x)||^2$$
.

L'application h conserve donc la norme

Pour tout $k \in \{r+1,\ldots,p\}$, u_k est combinaison linéaire des u_1,\ldots,u_r ce qui permet d'écrire

$$u_k = \lambda_1 u_1 + \dots + \lambda_r u_r.$$

On a alors pour tout $i \in \{1, ..., r\}$,

$$(u_k - (\lambda_1 u_1 + \dots + \lambda_r u_r) | u_i) = 0$$

et donc

$$(v_k - (\lambda_1 v_1 + \dots + \lambda_r v_r) | v_i) = 0.$$

On en déduit $v_k = \lambda_1 v_1 + \dots + \lambda_p v_r$ puis $v_k = h(u_k)$.

Enfin, on prolonge h en un automorphisme orthogonal solution défini sur \mathbb{R}^n en introduisant une application linéaire transformant une base orthonormée de $\mathrm{Vect}(u_1,\ldots,u_r)^{\perp}$ en une base orthonormée de $\mathrm{Vect}(v_1,\ldots,v_r)^{\perp}$

Exercice 68: [énoncé]

$$Sp(J) = \{0, n\}, E_0(J): x_1 + \dots + x_n = 0 \text{ et } E_n(J): x_1 = \dots = x_n.$$
 Les matrices

$$D = \operatorname{diag}(n, 0, \dots, 0)$$

 $_{
m et}$

$$P = \begin{pmatrix} 1/\sqrt{n} & 1/\sqrt{2} & 1/\sqrt{6} & & 1/\sqrt{n^2 - n} \\ \vdots & -1/\sqrt{2} & 1/\sqrt{6} & \ddots & \vdots \\ \vdots & & -2/\sqrt{6} & \ddots & \vdots \\ 1/\sqrt{n} & (0) & & -(n-1)/\sqrt{n^2 - n} \end{pmatrix}$$

convienment.

Les colonnes d'indices 2 à n de la matrice P sont formées de coefficients de $a, \ldots a, b, 0, \ldots, 0$ de somme nulle et de somme de carrés égale à 1.

Exercice 69: [énoncé]

 $\operatorname{Cas} A$ diagonale:

On écrit $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ avec $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_+$. On a

$$AB + BA = ((\lambda_i + \lambda_j)b_{i,j})_{1 \le i,j \le n}$$

et donc

$$\forall 1 \le i, j \le n, (\lambda_i + \lambda_j)b_{i,j} = 0.$$

Si $\lambda_i \neq 0$ alors $\lambda_i + \lambda_j > 0$ et donc $b_{i,j} = 0$ puis $\lambda_i b_{i,j} = 0$.

Sinon, on a encore $\lambda_i b_{i,j} = 0$.

Ainsi AB = 0 puis aussi BA = 0.

Cas général :

Par le théorème spectral, on peut écrire $A = PDP^{-1}$ avec D diagonale à coefficients diagonaux positifs et $P \in O_n(\mathbb{R})$.

La relation AB + BA = 0 donne alors DM + MD = 0 avec $M = P^{-1}BP$. Comme au dessus, on obtient DM = 0 puis

$$AB = PDP^{-1}PMP^{-1} = 0.$$

Exercice 70 : [énoncé]

- (a) ${}^tA = A^2$ donne aussi $A = {}^t(A^2) = ({}^tA)^2 = A^4$. Or A est inversible donc $A^3 = I_n$. Enfin ${}^tAA = A^3 = I_n$ et donc A est orthogonale.
- (b) L'endomorphisme induit par f sur le noyau de $f^2 + f + \mathrm{Id}$ est représentable par une matrice $M \in \mathcal{M}_p(\mathbb{R})$ vérifiant $M^2 + M + \mathrm{I}_p = \mathrm{O}_p$. Cette matrice est diagonalisable dans $\mathcal{M}_p(\mathbb{C})$ avec les deux valeurs propres complexes j et $j^2 = \overline{j}$. Celles-ci ont même multiplicité m et donc $p = \dim \mathrm{Ker}(f^2 + f + \mathrm{Id}) = 2m$ est un entier pair. De plus M est alors semblable dans $\mathcal{M}_p(\mathbb{C})$ à une matrice diagonale avec des blocs diagonaux diag (j,j^2) . Or la matrice de rotation

$$\Omega = \begin{pmatrix} \cos(2\pi/3) & -\sin(2\pi/3) \\ \sin(2\pi/3) & \cos(2\pi/3) \end{pmatrix}$$

est aussi semblable à la matrice diag (j, j^2) dans $\mathcal{M}_2(\mathbb{C})$.

En raisonnant par blocs, on obtient que la matrice M est semblable dans $\mathcal{M}_p(\mathbb{C})$ à une matrice diagonale par blocs de blocs diagonaux Ω . Or ces deux matrices sont réelles et il est « bien connu » que deux matrices réelles semblables sur $\mathcal{M}_p(\mathbb{C})$ le sont aussi sur $\mathcal{M}_p(\mathbb{R})$.

Enfin, par le lemme de décomposition des noyaux

$$\mathbb{R}^n = \operatorname{Ker}(f - \operatorname{Id}) \oplus \operatorname{Ker}(f^2 + f + \operatorname{Id})$$

et dans une base adaptée à cette décomposition, on obtient que f peut être représenté par une matrice de la forme

$$diag(1,\ldots,1,\Omega,\ldots,\Omega)$$

Exercice 71 : [énoncé]

La matrice A est diagonalisable semblable à

$$D = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Posons $C = D^3 + D + I_n$. En montrant que D est un polynôme en C i.e. D = P(C) on vérifie par similitude que A est un polynôme en B à savoir A = P(B). On a

$$C = \operatorname{diag}(\mu_1, \dots, \mu_n) \text{ avec } \mu_i = \lambda_i^3 + \lambda_i + 1.$$

On vérifie aisément que la fonction $x \mapsto x^3 + x + 1$ est injective sur \mathbb{R} . Ainsi les μ_i égaux correspondent aux λ_i égaux et inversement ce qui permet de considérer un polynôme interpolateur construit de sorte que

$$\forall 1 \leq i \leq n, P(\mu_i) = \lambda_i.$$

On vérifie alors P(C) = D et l'on conclut.

Exercice 72 : [énoncé]

On a

$$A^7 = A^4 \times (A^t A) = A^{5t} A$$

puis

$$A^{7} = A^{3}(^{t}A)^{2} = A(^{t}A)^{3} = A^{t}(A^{t}A) = A^{2t}A = A^{4}.$$

Ainsi $X^7 - X^4 = X^4(X^3 - 1)$ annule A.

Ce polynôme n'est pas à racines simples, mais en montrant

$$\operatorname{Ker} A^4 = \operatorname{Ker} A$$

on pourra affirmer que le polynôme $X(X^3 - 1)$ annule aussi A et, ce dernier étant scindé à racines simples sur \mathbb{C} , cela sera décisif pour conclure. Evidemment $\operatorname{Ker} A \subset \operatorname{Ker} A^4$. Inversement, soit $X \in \operatorname{Ker} A^4$. On a

$$A^t A A X = A^4 X = 0$$

donc

$$\left\| {}^{t}AAX \right\|^{2} = {}^{t}X^{t}AA^{t}AAX = 0$$

et par conséquent ${}^tAAX = 0$. Alors

$$||AX||^2 = {}^tX^tAAX = 0$$

et donc AX=0. Ainsi Ker $A^4\subset \operatorname{Ker} A$ puis l'égalité.