10

15

20

- A combinatorial library of indolinone compounds, comprising at least ten indolinones that can be formed by reacting oxindoles with aldehydes.
- 2. The combinatorial library of claim 1 wherein said oxindoles are type A oxindoles.
- The combinatorial library of claim 1 wherein said aldehydes are type B aldehydes.
- 4. A method of making an indolinone comprising the steps of
- (a) creating a combinatorial library of indolinones by reacting a series of oxindoles with a series of aldehydes,
 - (b) testing said indolinones in biological assays,
- (c) selecting one or more indolinones with favorable activity; and
- $\begin{tabular}{ll} (d) & synthesizing & one & or & more & of & said & indolinones \\ selected & in & step & (c) \end{tabular}.$
- 5. A 3-[(indole-3-y1)methylene]-2-indolinone compound having a substituent at the 1' position of the indole, where the substituent at the 1' position is selected from the group consisting of,
 - (a) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally

substituted with one or more halogen, aldehyde, or trihalomethyl substituents;

(b) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;

5

- 10

15

2,0

25

CCCD/EE376 --01

- (c) an aldehyde or ketone of formula -CO- R_{12} , where R_{12} is selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (d) a carboxylic acid of formula $-(R_{13})$ n-COOH or ester of formula $-(R_{14})$ m-COO- R_{15} , where R_{13} , R_{14} , and R_{15} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (e) a sulfone of formula $-(SO2)-R_{16}$, where R_{16} is selected from the group consisting of alkyl and a five or six membered heterocyclic ring, where the ring is optionally substituted with an alkyl moiety;
- $(f) ^{\, \cdot } (R^{17})_n (indole-1-y1) \qquad \text{or} \qquad (R_{18})m CHOH (R_{19}) p (indole-1-y1) , \ \ where the indol moiety is optionally substituted with an aldehyde and <math>R_{17}, R_{18}, \ \ and \ \ R_{19}$ are alkyl and $m, \ \ n, \ \ and p \ \ are independently 0 or 1; and$
- (g) taken together with a 2' substituent of the indole ring forms a tricyclic moiety, where each ring in the tricyclic moiety is a five or six membered heterocyclic ring.

 The compound, salt, isomer, metabolite, ester, amide, or prodrug of claim 5, wherein said compound has the formula.

$$R_{4}$$
 R_{5}
 R_{4}
 R_{4}
 R_{5}
 R_{5

where (a) R₁ is selected from the group consisting of,

5

10

- (i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, aldehyde, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring

is optionally substituted with one or more halogen or trihalomethyl substituents;

(iii) an aldehyde or ketone of formula $-CO-R_{12}$, where R_{11} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring,

5

10

15

20

- (iv) a carboxylic acid of formula $-(R_{13})_n$ -COOH or ester of formula $-(R_{14})$ m-COO- R_{15} , where R_{13} , R_{14} , and R_{15} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
- $(v) \quad \text{a sulfone of formula -(SO_2)-R_{16}, where R_{16}}$ is selected from the group consisting of alkyl or a five or six membered heterocyclic ring, where the ring is optionally substituted with an alkyl moiety;
- $(vi) \quad -(R_{17})_{n^{-}}(indole-1-yl) \text{ or } -(R_{18})\,m-CHOH-(R_{9})\,p-(indole-1-yl), where the indol moiety is optionally substituted with an aldehyde and R_{17}, R_{18}, and R_{19} are alkyl and n, m, and p are independently 0 or 1;$
- (vii) taken together with a 2' substituent of the indole ring forms a tricyclic moiety, where each ring in the tricyclic moiety is a five or six membered heterocyclic ring;
- (b) $R_2,\;R_3,\;R_4,\;R_5,\; and\;R_6$ are selected from the group consisting of,
 - (i) hydrogen or alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the

- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) an aldehyde or ketone of formula $-CO-R_{20}$, where R_{20} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{21})$ n-COOH or ester of formula $-(R_{22})$ -COO- R_{23} , where R_{21} , R_{22} , and R_{23} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (v) halogen or an alcohol of formula $(R24)\,m$ -OH or an ether of formula $-(R_{24})_n$ -O- R_{25} , where R_{24} and R25 are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vi) $-NR_{26}R_{27}$, where R_{26} and R_{27} are independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring; or $-NHCOR_{28}$, where R_{28} is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;

1.0

15

20

(vii) $-SO2NR_{29}R_{30}$, where R_{29} and R_{30} are selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;

(viii) any two of R_3 , R_4 , R_5 , or R_6 taken together form a bicyclic or tricyclic hetercyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;

5

10

15

20

- (c) $R_{7},\ R_{8},\ R_{9},$ and R_{10} are independently selected from the group consisting of,
- (i) hydrogen or alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, aldehyde, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) an aldehyde or ketone of formula $-CO-R_{31}$, where R_{31} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{32})\,n$ -COOH or ester of formula $-(R_{33})\,m$ -COO- R_{34} , where R_{32} , R_{33} , and R_{34} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;

10

15

20

25

(vi) -NR₁₇R₁₈, where R₁₇ and R₁₈ are independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring; or -NHCOR₁₉, where R₁₉ is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;

 $(\text{vii}) \ -\text{SO2NR}_{40}R_{41}, \text{ where } R_{40} \text{ and } R_{41} \text{ are selected}$ from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;

(viii) any two of R_7 , R_8 , R_9 , or R_{10} taken together form a bicyclic or tricyclic hetercyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring; and

- (d) R_{11} is hydrogen or alkyl; provided that at least one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , or R_{10} is alkyl or provided that at least four of R_1 , R_2 , R_3 , R_4 , R_5 , or R_6 are not hydrogen.
- 7. An optionally substituted 3-[(tetrahydroindole-2-y1)methylene]-2-indolinone or 3-[(cyclopentano-b-pyrrol-2-y1)methylene]-2-indolinone compound.

8. The indolinone compound of claim 7 of formula XIX or XX,

XIX

ХX

or a pharmaceutically acceptable salt, isomer, metabolite, ester, amide, or prodrug thereof

where (a) R_1 is selected from the group consisting of.

5

10

15

20

- (i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- $\mbox{(iii) ketone of formula $-CO-R_{12}$, where R_{11} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;}$
- (iv) a carboxylic acid of formula $-(R_{13})_n$ -COOH or ester of formula $-(R_{14})_n$ -COO- R_{15} , where R_{13} , R_{14} , and R_{15} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
- (v) a sulfone of formula $-(SO_2) R_{16}$, where R_{16} is selected from the group consisting of alkyl or a five or six membered heterocyclic ring, where the ring is optionally substituted with an alkyl moiety;
- $(vi) \quad -(R_{17})_{n^-}(\text{indole-1-yl}) \text{ or } -(R_{18})_{n^-}\text{CHOH-}(R_{19})p^-\\ (\text{indole-1-yl}), \text{ where } \text{the indolemoiety is optionally}\\ \text{substituted with an aldehyde and } R_{17}, \ R_{18}, \ \text{and } R_{19} \text{ are alkyl}\\ \text{and } n, \ m, \text{ and } p \text{ are independently 0 or 1;}$

- (vii) taken together with a 2' substituent of the indole ring forms a tricyclic moiety, where each ring in the tricyclic moiety is a five or six membered heterocyclic ring;
- (b) R2, R3, R3', R4, R4', R5 R4, R6 and R6 are selected from the group consisting of,
 - (i) hydrogen;

5

10

15

20

25

- (ii) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (iii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- $\label{eq:condition} \begin{tabular}{lll} (iv) & ketone & of formula & -CO-R_{20}, & where & R_{20} & is \\ & selected & from & the group & consisting & of hydrogen, & alkyl, & or \\ & a & five & or & six & membered & heterocyclic & ring; \\ \end{tabular}$
- (v) a carboxylic acid of formula $-(R_{21})_n$ -COOH or ester of formula $-(R_{22})$ -COO- R_{23} , where R_{21} , R_{22} , and R_{23} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;

(vi) halogen;

(vii) an alcohol of formula $(R_{24})_m$ -OH or an ether of formula $-(R_{24})_m$ -O-R₂₅, where R₂₄ and R₂₅ are independently selected from the group consisting of alkyl and a five or

six membered heterocyclic ring and m and n are independently 0 or 1;

- $(viii) \quad -NR_{26}R_{27}, \quad \text{where} \quad R_{26} \quad \text{and} \quad R_{27} \quad \text{are} \\ \text{independently selected from the group consisting of} \\ \text{hydrogen, oxygen, alkyl, and a five or six membered} \\ \text{heterocyclic ring;} \\$
- (ix) -NHCOR₂₈, where R₂₈ is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- $(x) \qquad -\text{SO2NR}_{29}R_{30}, \text{ where } R_{29} \text{ and } R_{30} \text{ are selected} \\ \text{from the group consisting of hydrogen, oxygen, alkyl, and} \\ \text{a five or six membered heterocyclic ring;} \\$
- (xi) any two of R_3 , R_3 , R_4 , R_4 , R_5 , R_5 , R_6 , or R_6 , taken together form a bicyclic or tricyclic hetercyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;
- (c) $R_{7},\ R_{8},\ R_{9},$ and R_{10} are independently selected from the group consisting of,
 - (i) hydrogen;

5

10

15

- (ii) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (iii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring

is optionally substituted with one or more halogen or trihalomethyl substituents;

- (iv) ketone of formula -CO-R₁₁, where R₃₁ is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (v) a carboxylic acid of formula $-(R_{32})_n$ -COOH or ester of formula $-(R_{33})_n$ -COO- R_{34} , where R_{32} , R_{33} , and R_{34} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
 - (vi) halogen;

5

10

15

20

- (vii) an alcohol of formula $(R_{15})_m$ -OH or an ether of formula $-(R_{35})_n$ -O-R₃₆, where R_{35} and R_{36} are independently chosen from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (ix) -NHCOR,,, where R,, is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- $(x) \qquad -SO2NR_{40}R_{41}, \text{ where } R_{40} \text{ and } R_{41} \text{ are selected} \\$ from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- $(\text{xi}) \quad \text{any two of } R_{\text{0}}, \ R_{\text{0}}, \ R_{\text{10}} \ \text{taken together}$ form a bicyclic or tricyclic hetercyclic moiety fused to

the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring; and

(d) R₁₁ is hydrogen or alkyl

5

10

15

20

- 9. An indolinone compound having a substituent at the 5 position of the oxindole ring, where the substituent at the 5 position of the oxindole ring is selected from the group consisting of
 - (a) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
 - (b) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
 - (c) a ketone of formula -CO- R_{10} , where R_{10} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
 - (d) a carboxylic acid of formula $-(R_{11})$ n-COOH or ester of formula $-(R_{12})$ -COO- R_{13} , where R_{11} , R_{12} , and R_{13} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
 - (e) halogen;

- (f) an alcohol of formula (R_{14}) m-OH or an ether of formula $-(R_{14})$ n-O-R₁₅, where R_{14} and R_{15} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (g) $-NR_{16}R_{17}$, where R_{16} and R_{17} are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;

15

- (h) -NHCOR₁₈, where R_{18} is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (i) $-SO2NR_{19}R_{20}$, where R_{19} and R_{20} are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (j) any two of R_4 , R_5 , R_6 , or R_7 taken together form a bicyclic or tricyclic hetercyclic moiety fused to the six membered ring of the oxindole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring.
- 10. The compound of claim 9 of the following formula.

227/111 Patent

where (a) R_{S} is selected from the group consisting of,

 (i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;

(ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;

(iii) a ketone of formula -CO- R_{10} , where R_{10} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;

(iv) a carboxylic acid of formula - (R_{11}) n-COOH or ester of formula - (R_{12}) -COO- R_{13} , where R_{11} , R_{12} , and R_{13} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;

(v) halogen;

(vi) an alcohol of formula $(R_{14})m$ -OH or an ether of formula $-(R_{14})m$ -O-R₁₅, where R_{14} and R_{15} are independently

15

20

10

227/111 Patent

selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;

(vii) $-NR_{16}R_{17}$, where R_{16} and R_{17} are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;

5

10

15

20

- (viii) -NHCOR₁₈, where R_{18} is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- $(ix) \quad -SO_2NR_{19}R_{20}, \text{ where } R_{19} \text{ and } R_{20} \text{ are selected}$ from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (x) any two of R_4 , R_5 , R_6 , or R_7 taken together form a bicyclic or tricyclic hetercyclic moiety fused to the six membered ring of the oxindole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;
- (b) R_i is selected from the group consisting of a five, six, eight, nine, and ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more substituents selected from the group consisting of
- (i) hydrogen and alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;

227/111 Patent

- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- $\mbox{(iii)} \ \ a \ \mbox{ketone of formula -CO-R$_{21}$, where R_{21}$ is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;}$
- (iv) a carboxylic acid of formula $-(R_{22})$ n-COOH or ester of formula $-(R_{23})$ -COO- R_{24} , where R_{22} , R_{23} , and R_{24} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
 - (v) halogen;

5

10

15

20

- (vi) an alcohol of formula $(R_{25})m-OH$ or an ether of formula $-(R_{25})n-O-R_{26}$, where R_{25} and R_{26} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vii) $-NR_{27}R_{28}$, where R_{27} and R_{28} are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (viii) -NHCOR₂₉, where R_{29} is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
 - (ix) $-SO_2NR_{30}R_{31}$, where R_{30} and R_{31} are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;

255 227/111 Patent

(c) $R_4,\ R_5,\ and\ R_7$ are independently selected from the group consisting of,

- (i) hydrogen and alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) a ketone of formula $-CO-R_{32}$, where R_{32} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{33})\,n$ -COOH or ester of formula $-(R_{34})\,-$ COO- R_{39} where $R_{31}\,R_{34}$ and R_{35} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
 - (v) halogen;

5

10

15

20

- (vi) an alcohol of formula (R_{36}) m-OH or an ether of formula $-(R_{36})$ n-O- R_{37} , where R_{36} and R_{37} , are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vii) $-NR_{38}R_{39}$, where R_{38} and R_{39} are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;

 $(\mbox{viii}) \quad \mbox{-NHCOR}_{40}, \mbox{ where } R_{40} \mbox{ is selected from the} \\ \mbox{group consisting of alkyl, and a five or six membered} \\ \mbox{heterocyclic ring, where the ring is optionally} \\ \mbox{substituted with alkyl, halogen, carboxylate, or ester;} \\ \mbox{}$

 $\mbox{(ix)} \quad -SO_2NR_{41}R_{42}, \mbox{ where } R_{41} \mbox{ and } R_{42} \mbox{ are selected} \\ \mbox{from the group consisting of hydrogen, alkyl, and a five} \\ \mbox{or six membered heterocyclic ring; and} \\$

(d) R_2 is hydrogen or alkyl.

11. A compound having formula XXI, wherein:

XXI

- (a) A is a five or six membered ring comprised of atoms selected from the group consisting of oxygen, carbon, sulfer and nitrogen;
 - (b) m is zero, 1, or 2;
 - (c) R_1 is hydrogen, C_1 - C_6 alkyl or C_2 - C_6 alkanoyl;

15

5

10

- $\mbox{(1) a C_1-C_6$ alkyl group substituted by 1, 2 or 3} \label{eq:c1}$ hydroxy groups;
- (2) SO₃R₄ in which R₄ is hydrogen or C₁-C₆ alkyl unsubstituted or substituted by 1, 2 or 3 hydroxy groups;
- (3) SO_2NHR_5 in which R_5 is as R_4 defined above or a $-(CH_2)_n-N(C_1-C_6$ alkyl)₂ group in which n is 2 or 3;
- (4) COOR, in which R_6 is $C_1\text{-}C_6$ alkyl unsubstituted or substituted by phenyl or by 1, 2 or 3 hydroxy groups or phenyl;
- (5) CONHR, in which R, is hydrogen, phenyl or C₁-C₆ alkyl substituted by 1, 2 or 3 hydroxy groups or by phenyl;
- (6) NHSO₂R₆ in which R₈ is C_1 -C₆ alkyl or phenyl unsubstituted or substituted by halogen or by C_1 -C₄ alkyl;
- $(7)\ N\left(R_9\right)_2,\ NHR_9\ \text{or OR, wherein R, is C_2-C_6 alkyl}$ substituted by 1, 2 or 3 hydroxy groups;
- (8) NHCOR₁₀, OOCR₁₀ or CH_2OOCR_{10} in which R_{10} is C_1 C_6 alkyl substituted by 1, 2 or 3 hydroxy groups;
- $(9) \, \rm NHCONH_2 \, ; \qquad NH-C \, (NH_2) = NH \, ; \qquad C \, (NH_2) = NH \, ;$ $CH_2 NHC \, (NH_2) = NH \, ; \quad CH_2 NH_2 \, ; \quad OPO \, (OH)_2 \, ; \quad CH_2 OPO \, (OH)_2 \, ; \quad PO \, (OH)_2 \, ; \quad or \, \, a$

5

10

15

20

25

wherein X is selected from the group consisting of CH_2 , SO_2 , CO, or $NHCO(CH_2)_p$ in which p is 1,2, or 3 and Z is CH_2 , o or $N-R_{11}$ in which R_{11} is hydrogen or is as R, defined above.

- 12. A method of making an indolinone compound of any one of claims 5-11 comprising the steps of reaching an appropriate aldehyde and oxindol and separating the indolinone from the aldehyde and oxindol reactants.
- 13. A pharmaceutical composition comprising (i) a pharmaceutically acceptable carrier or excipient and (ii) a compound according to any one of claims 5-11.

10

15

- 14. A method for treating a disease related to unregulated tyrosine kinase signal transduction, the method comprising the step of administering to a subject in need thereof a therapeutically effective amount of a compound according to any one of claims 5-11.
- 15. A method for regulating tyrosine kinase signal transduction comprising administering to a subject a therapeutically effective amount of a compound according to any one of claims 5-11.
- 16. A method of preventing or treating an abnormal condition in an organism, where the abnormal condition is associated with an aberration in a signal transduction pathway characterized by an interaction between a protein kinase and a natural binding partner, where the method comprises the following steps:
- (a) administering a compound of any one of claims 511 to an organism; and

227/111 Patent

- (b) promoting or disrupting the abnormal interaction.
- 17. A method of preventing or treating an abnormal condition in an organism, where the abnormal condition is associated with an aberration in a signal transduction pathway characterized by an interaction between a protein kinase and a natural binding partner, where the method comprises the following steps:
- (a) administering a compound of any one of claims 5-11 to an organism; and
- $\begin{tabular}{lll} (b) & promoting & or & disrupting & the & abnormal \\ interaction. \end{tabular}$

5