

MMAN2300 Engineering Mechanics 2

Part B: Vibration Analysis

Lab 1

Single DOF spring-mass-damper system in free and forced vibration

Aim

To investigate the dynamics of a lightly damped single DOF springmass-damper system under free and forced vibration

Procedure

- Use the oscilloscope to capture the free response of the vibrating beam
- From the time domain response, use the logarithmic decrement to determine the damping ratio
- Compare your results for 1 cycle and N cycles

Procedure

• Measure
$$\zeta = \frac{\delta}{\sqrt{4\pi^2 + \delta^2}}$$
 $T_d = \frac{2\pi}{\omega_d}$

- You can experimentally obtain ω_d using $\omega_d = \omega_n \sqrt{1-\zeta^2}$
- Analytically you can calculate ω_n using $\omega_n = \sqrt{\frac{k_{eq}}{m_{eq}}}$
- $k_{eq} = \frac{192EI}{L^3}$ is the equivalent stiffness
- $m_{eq} = M + \frac{13}{35} m_{beam}$ is the equivalent mass

Procedure

- Measure the amplitude of vibration for a number of frequencies above and below resonance
- Plot the amplitude for the different frequencies

