

Electromagnetic Induction

The vibrations of the strings in an electric guitar change the magnetic field near a coil of wire called the pickup. In turn, this induces an electric current in the coil, which is then amplified to create the unique sound of an electric guitar.

In this chapter, you will learn how induction produces and changes alternating currents. You will also explore electromagnetic waves and the electromagnetic spectrum.

Why it Matters

Electric guitars have many different types of pickups, but all generate electric current by the process of induction. An understanding of the induction of electromagnetic fields is essential to the good design of an electric guitar.

CHAPTER PREVIEW

- 1 Electricity from Magnetism
 Electromagnetic Induction
 Characteristics of Induced Current
- Characteristics of Induced Current

 2 Generators, Motors, and

Mutual InductanceGenerators and Alternating Current Motors

Mutual Inductance

- 3 AC Circuits and Transformers
 Effective Current
 Transformers
- 4 Electromagnetic Waves
 Propagation of Electromagnetic Waves
 The Electromagnetic Spectrum