Taller de Microcontroladores y Placas de Desarrollo

Profesor: Kalun José Lau Gan Semestre 2023-2 Sesión 2

Preguntas previas.

Agenda:

- Introducción a la familia de microcontroladores PIC18 Q43
- Estructura interna del PIC18F57Q43
- El módulo de desarrollo Microchip Curiosity Nano PIC18F57Q43
- El entorno de desarrollo de MPLAB X IDE v6.15 + XC8 v2.45
- Configuración del reloj del PIC18F57Q43
- Manipulación de E/S en el Curiosity Nano PIC18F57Q43
- Workflow para el desarrollo de aplicaciones con microcontroladores
- El lenguaje XC8 de alto nivel
- Ejemplos prácticos de manipulación de E/S

3

Introducción a los microcontroladores de la familia PIC18 Q43

- Primeros dispositivos PIC18: ej. PIC18F452
- Siguiente generación de PIC18: ej. PIC18F4550
- Actualización de generación de PIC18: Familia K ej. PIC18F45K50
- Familias "Q" de PIC18: Q10, Q40/41, Q43, Q71, Q83/84 ej. PIC18F57Q43

Estructura interna del PIC18F57Q43

- Arquitectura Harvard:
 - Memoria de programa separada de la memoria de datos y con buses independientes
- Cambio en organización de la memoria de datos
- Módulo TimerO mejorado
- ADC mejorado de 12bits
- Módulo generador de voltaje de referencia para el ADC

5

PIC18F57Q43: Diagrama de pines

• Encapsulado TQFP48

Detalles técnicos iniciales

- Voltaje de alimentación del PIC18F57Q43
 - Voltajes menores a -0.5V son perjudiciales
 - Voltaje de operación máximo 5.5V
 - Voltaje de operación mínimo 1.8V

7

Hay dos pines de Vdd y dos pines de Vss, es necesario conectar todos?

Se deben de conectar todos los pines de alimentación para que el microcontrolador pueda obtener mayor capacidad de corriente en caso lo requiera la aplicación.

El Curiosity Nano PIC18F57Q43 de Microchip

- Estructura de la memoria de programa del PIC18F57Q43:
 - 128Kbyte de capacidad (000000H-01FFFFH)
 - Data EEPROM (1Kbyte) se encuentra mapeado en 380000H
 - Bits de configuración están mapeadas en 300000H - 300009H

Address	Device
	PIC18Fx7Q43
00 0000h	
to	l
00 3FFFh	J
00 4000h	1
to	
00 7FFFh	Program Flash
00 8000h	Memory
to	(64 KW) ^[1]
00 FFFFh	l
01 0000h	1
to	l
01 FFFFh	l
02 0000h	Not
to 1F FFFFh	Present ⁽²⁾
20 0000h	
to 20 003Fh	User IDs (32 Words) ⁽³⁾
20 003Fh 20 0040h	
20 0040h to	Reserved
2B FFFFh	Reserved
2C 0000h	
to	Device Information Area (DIA)
2C 00FFh	Device Information Area (DIA)
2C 0100h	
to	Reserved
2F FFFFh	
30 0000h	
to	Configuration Bytes ⁽³⁾
30 0009h	
30 000Ah	
to	Reserved
37 FFFFh	
38 0000h	
to	Data EEPROM (1024 Bytes
38 03FFh	
38 0400h	
to	Reserved
3B FFFFh	
3B FFFFh 3C 0000h	
3B FFFFh 3C 0000h to	Device Configuration Information
3B FFFFh 3C 0000h to 3C 0009h	Device Configuration Information
3B FFFFh 3C 0000h to 3C 0009h 3C 000Ah	
3B FFFFh 3C 0000h to 3C 0009h 3C 000Ah to	Device Configuration Information
38 FFFFh 3C 0000h to 3C 0009h 3C 000Ah to 3F FFFBh	
3B FFFFh 3C 0000h to 3C 0009h 3C 000Ah to 3F FFFBh 3F FFFCh	Reserved
38 FFFFh 3C 0000h to 3C 0009h 3C 0009h to 3FFFFBh 3F FFFCh to	
38 FFFFh 3C 0000h to 3C 0009h 3C 0009h to 5FFFFBh 3F FFFCh to 3F FFFCh	Reserved
38 FFFFh 3C 0000h to 3C 0009h 3C 0009h to 3F FFFBh 3F FFFCh to 3F FFFDh 3F FFFEh	Reserved Revision ID (1 Word) (3.4.7)
38 FFFFh 3C 0000h to 3C 0009h 3C 0009h to 5FFFFBh 3F FFFCh to 3F FFFCh	Reserved

9

El Curiosity Nano PIC18F57Q43 de Microchip

- Estructura de la memoria de datos del PIC18F57Q43:
 - Memoria del tipo volátil (se borra el contenido en un PoR)
 - A diferencia del PIC18F45K50, la memoria RAM esta mapeada a partir del Bank 5 (500H) y los registros de funciones especiales (SFR) se encuentran entre Bank 0 y Bank 4
 - Tener en cuenta que la RAM de datos es de 8Kbyte

13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0			
1	0	0	1	0	1	0	0	0	0) () () () (2500H		
1	0	0	1	0	1	1	1	1	. 1	. 1	. 1	1 1	1 1	25FFH		
														2400H		
														24FFH		

Los bits de configuración en el PIC18F57Q43

- Son las configuraciones iniciales a realizar en el microcontrolador
- Algunos recursos que se configuran en los bits de configuración:
 - Powerup Timer: Cuando se energiza el microcontrolador, este módulo retrasa la ejecución del CPU con el fin de esperar a que se estabilice la fuente de energía que alimenta al microcontrolador y evitar problemas de funcionamiento en el arranque.
 - Watchdog Timer: Un temporizador que funciona de manera independiente y su función es reiniciar el CPU cuando su cuenta se desborda, por lo que de usarse se tiene que evaluar en qué partes del programa se tiene que hacer un reinicio de cuenta (CLRWDT).
 - Brownout Reset: Mecanismo de protección el cual mantiene en RESET el CPU cuando el voltaje de alimentación cae debajo de un umbral.
 - etc

11

Ejemplo inicial

• Configuration bits:

300000	CONFIG1	FC	-	_	-	
A		4	FEXTOSC	OFF	External Oscillator Selection	Oscillator not enabled
		7	RSTOSC	EXTOSC	Reset Oscillator Selection	EXTOSC operating per FEXTOSC bits (device manufactu
300001	CONFIG2	FF	2	-	2	-
		1	CLKOUTEN	OFF	Clock out Enable bit	CLKOUT function is disabled
		1	PRIWAY	ON	PRLOCKED One-Way Set Enable bit	PRLOCKED bit can be cleared and set only once
		1	CSWEN	ON	Clock Switch Enable bit	Writing to NOSC and NDIV is allowed
		1	FCMEN	ON	Fail-Safe Clock Monitor Enable bit	Fail-Safe Clock Monitor enabled
300002	CONFIG3	3D	-	-	-	•
		1	MCLRE	EXTMCLR	MCLR Enable bit	If LVP = 0, MCLR pin is MCLR; If LVP = 1, RE3 pin f
A		2	PWRTS	PWRT_64	Power-up timer selection bits	PWRT set at 64ms
		1	MVECEN	ON	Multi-vector enable bit	Multi-vector enabled, Vector table used for interru
		1	IVT1WAY	ON	IVTLOCK bit One-way set enable bit	IVTLOCKED bit can be cleared and set only once
		1	LPBOREN	OFF	Low Power BOR Enable bit	Low-Power BOR disabled
A		0	BOREN	OFF	Brown-out Reset Enable bits	Brown-out Reset disabled
300003	CONFIG4	DF	_	-	-	
		3	BORV	VBOR_1P9	Brown-out Reset Voltage Selection bits	Brown-out Reset Voltage (VBOR) set to 1.9V
		1	ZCD	OFF	ZCD Disable bit	ZCD module is disabled. ZCD can be enabled by setti
		1	PPS1WAY	ON	PPSLOCK bit One-Way Set Enable bit	PPSLOCKED bit can be cleared and set only once; PPS
		1	STVREN	ON	Stack Full/Underflow Reset Enable bit	Stack full/underflow will cause Reset
A		0	LVP	OFF	Low Voltage Programming Enable bit	HV on MCLR/VPP must be used for programming
		1	XINST	OFF	Extended Instruction Set Enable bit	Extended Instruction Set and Indexed Addressing Mode
300004	CONFIG5	9F	=	-	-	3 €
		1F	WDTCPS	WDTCPS_31	WDT Period selection bits	Divider ratio 1:65536; software control of WDTPS
A		0	WDTE	OFF	WDT operating mode	WDT Disabled; SWDTEN is ignored
300005	CONFIG6	FF	=	-	-	-
		7	WDTCWS	WDTCWS_7	WDT Window Select bits	window always open (100%); software control; keyed
		7	WINTOOS	SC	WDT input clock selector	Software Control

Ejemplo inicial

• Configuration bits:

External oscillator selection: OFFPowerup Timer: 16ms ó 64ms

• Brownout Reset: OFF

• Low Voltage Programming: OFF

· Watchdog Timer: OFF

13

El módulo Curiosity Nano PIC18F57Q43

- Plataforma de desarrollo que integra programador/depurador y microcontrolador PIC18F57Q43.
- Integra un LED (RF3) y un pulsador (RB4), ambos activos en bajo, el pulsador requiere resistencia pull-up.

El módulo Curiosity Nano PIC18F57Q43

- Al conectar el Curiosity Nano a la PC con el cable de datos USB-MicroUSB se habilitará un puerto serial para hacer labores de depuración/comunicación
- Dirigirse al Administrador de Dispositivos del Windows (dentro del Panel de Control) para que puedan identificar el puerto serial que se ha habilitado (COMx)
- Software terminal serial puede ser el PuTTY, HyperTerminal, Arduino IDE

15

El módulo Curiosity Nano PIC18F57Q43

- Posee dos terminales de voltaje de alimentación disponibles para el usuario:
 - VBUS: Conexión directa de la alimentación del puerto USB (5V DC)
 - VTG: Alimentación ajustable y controlable a través del MPLAB X

El módulo Curiosity Nano PIC18F57Q43

• No encuentro los pines RB4 y RB6 en el Curiosity Nano...

17

El entorno de desarrollo de MPLAB X IDE

- Entorno de desarrollo integrado proporcionado por Microchip
- Posee herramientas para desarrollar una aplicación con los microcontroladores PIC y AVR, soporta el uso de diferentes lenguajes de programación y diferentes programadores.
- Descargable desde el siguiente link: https://www.microchip.com/mplab/mplab-x-ide

El compilador XC8


```
| Cook | SartPage x | Sapt Mash 2c x | Satgmonosc x | Sartpage x | Sapt Mash 2c x | Satgmonosc x | Sartpage x | Sapt Mash 2c x | Satgmonosc x | Sartpage x | Sapt Mash 2c x | Satgmonosc x | Sartpage x | Sapt Mash 2c x | Satgmonosc x
```

- Compilador que da soporte de lenguaje XC8 PIC Assembler y XC8 de alto nivel
- Separado del MPLAB X IDE
- Descargable desde el siguiente link: https://www.microchip.com/en-us/tools-resources/develop/mplab-xc-compilers/downloads-documentation#XC8

19

Importancia de tener las hojas técnicas de los IC's a usar:

- Las hojas técnicas (datasheet) son proporcionadas por el fabricante del IC's y se detallan todas las funcionalidades, capacidades, configuraciones, limitaciones, etc de dicho dispositivo, es la información mas fiel.
- En nuestro caso tendremos siempre presente la hoja técnica del microcontrolador PIC18F57Q43

Revisión de documentos

- Hoja técnica del PIC18F57Q43
 - https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/PIC18F27-47-57Q43-Data-Sheet-40002147F.pdf
- Hoja técnica del Curiosity Nano PIC18F57Q43
 - http://ww1.microchip.com/downloads/en/DeviceDoc/PIC18F57Q43-Curiosity-Nano-HW-UserGuide-DS40002186B.pdf

21

Importancia de los comentarios en un código fuente

- Cuando uno desarrolla un programa, en cualquier lenguaje de programación, es fundamental colocar comentarios.
- Los comentarios no añaden espacio de memoria luego de la compilación.
- Los comentarios sirven para recordar ideas, configuraciones, procesos, algoritmos, etc que le permitan al programador en un tiempo después ver lo que hizo en dicho momento.
- En MPASM ó XC8 PICASM los comentarios van antecedidos por un punto y coma (;)

Configuración de la fuente de reloj del PIC18F57Q43

- Revisar cap.12 de la hoja técnica
- Fuente de reloj
 - Oscilador secundario sirve para colocar un cristal de 32.768KHz y hacer aplicaciones de reloj en tiempo real con el Timer1.
 - El PLL de este microcontrolador sirve para incrementar la frecuencia de trabajo, hasta 64MHz.
 - Usaremos el oscilador interno HFINTOSC para el CPU en todas nuestras aplicaciones.
 - MFINTOSC no puede derivarse hacia el CPU, solo hacia periféricos.

23

Configuración de la fuente de reloj del PIC18F57Q43

Para obtener 4MHz al CPLLy periféricos a partir del oscilador interno:

Configuración de la fuente de reloj del PIC18F57Q43

Registros implicados en la configuración del reloj:

A configurar:
-FRQ
-NOSC/COSC
-NDIV/CDIV

2.6	Register Summary - Oscillator Module													
Address	Name	Bit Pos.	7	6	5	4	3	2	1	0				
0xAC	ACTCON	7:0	ACTEN	ACTUD			ACTLOCK		ACTORS					
0xAD	OSCCON1	7:0			NOSC[2:0]	7	NDIV[3:0]							
0xAE	OSCCON2	7:0			COSC[2:0] CDIV[3:0]									
0xAF	OSCCON3	7:0	CSWHOLD	SOSCPWR		ORDY	NOSCR							
0xB0	OSCTUNE	7:0					TUN	[5:0]						
0xB1	OSCFRQ	7:0			FRQ[3:0]									
0xB2	OSCSTAT	7:0	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR		PLLR				
0xB3	OSCEN	7:0	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN		PLLEN				

25

Configuración de la fuente de reloj del PIC18F57Q43

- En resumen para XC8:
 - OSCCON1 = 0x60
 - OSCFRQ = 0x02
 - OSCEN = 0x40

29

Manipulación de E/S en el Curiosity Nano PIC18F57Q43

- Revisar 19.0 en la hoja técnica
- Por defecto los puertos están como entradas analógicas.
- Se tienen los siguientes registros para manipular los puertos:
 - TRISx Para configurar el sentido del puerto (entrada ó salida), cero para salida y uno para entrada.
 - ANSELx Para configurar el puerto en analógico o digital, uno para analógico y cero para digital.
 - PORTx Para leer el puertoLATx Para escribir el puerto
 - WPUx Para habilitar las resistencias de pullup: 1 activado, 0 desactivado
 - SLRCON Para configurar la velocidad de respuesta en el puerto configurado como salida.

LED y pulsador integrado en el Curiosity

Nano PIC18F57Q43

- El LED en RF3 es activo en bajo
- El pulsador en RB4 es activo en bajo y no posee resistencia de pull-up

33

Workflow para el desarrollo de aplicaciones con microcontroladores:

- 1. Análisis de los requerimientos de la aplicación (prestaciones, consumo energético, puertos de E/S, funcionalidades, expandibilidad, actualizaciones a futuro, etc).
- 2. Desarrollo del hardware
 - a) Prototipado en físico usando protoboard
 - b) Prototipado en simulador (Proteus)
- 3. Desarrollo del algoritmo en diagrama de flujo
- 4. Codificación del algoritmo en un lenguaje de programación (XC8)
- 5. Pruebas en físico como en simulación
- 6. Elaboración de PCB (Autodesk Eagle)
- 7. Elaboración de carcasa (Autodesk Fusion 360)

Procedimiento para usar el MPLAB X

- 1. Crear un proyecto (seleccionar Standalone Project)
- 2. Seleccionar el dispositivo microcontrolador (PIC18F57Q43)
- 3. Seleccionar la herramienta (XC8)
- 4. Crear el archivo header (*.h) e incluirle los bits de configuración (Window / Target Memory Views / Configuration Bits), dicho archivo debe de estar en la carpeta "Header Files"
- 5. Crear el archivo fuente (*.c) e incluir el archivo header dentro del cuerpo, dicho archivo debe de estar en la carpeta "Source Files"
- 6. Para compilar: 🚡
- 7. El archivo generado de la compilación tiene extensión *.hex ó *.elf
- 8. Para grabar en el Curiosity Nano:

35

Ejercicios prácticos de manipulación de E/S

- Negador lógico de un bit
- Parpadeo de un LED con period de 500ms
- Contador autoincremental con visualizacón en display de siete segmentos
- Visualizador de la palabra "UPAO" en un display de siete segmentos a razón de una letra a la vez y periodo de cambio 250ms

37

Negador lógico de un bit

Se empleará el botón y LED integrados del módulo de desarrollo

Curiosity Nano PIC18F57Q43

```
3. Algoritmo en diagrama de flujo

INICIO

OSCENA = OX 60

CONFIG

OSCENA = OX 60

OSCENA = OX
```

```
4. Código fuente en XC8
     #define _XTAL_FREQ 4000000UL
     void configuro(void) {
         OSCCON1 = 0x60;
OSCFRQ = 0x02;
         OSCEN = 0x40;
         TRISFbits.TRISF3 = 0;
         ANSELFbits.ANSELF3 = 0;
         TRISBbits.TRISB4 = 1;
12
13
         ANSELBbits.ANSELB4 = 0;
         WPUBbits.WPUB4 = 1;
15
   void main(void) {
         configuro();
             if(PORTBbits.RB4 == 0){
                  LATFbits.LATF3 = 1;
                  LATFbits.LATF3 = 0;
```

Fin de la sesión

• Realizar los ejercicios propuestos pendientes siguiendo el workflow