Paikallisuus hajautetuissa verkkoalgoritmeissa
Juhana Laurinharju
Kandidaatintutkielma HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos
Helsinki, 21. toukokuuta 2013

${\tt HELSINGIN\ YLIOPISTO-HELSINGFORS\ UNIVERSITET-UNIVERSITY\ OF\ HELSINKI}$

Tiedekunta — Fakultet — Faculty		Laitos — Institution — Department				
Matemaattis-luonnontieteellinen		Tietojenkäsittelytieteen laitos				
Tekijä — Författare — Author Juhana Laurinharju						
Työn nimi — Arbetets titel — Title						
Paikallisuus hajautetuissa verkkoalgoritmeissa						
Oppiaine — Läroämne — Subject Tietojenkäsittelytiede						
Työn laji — Arbetets art — Level	Aika — Datum — Mo		Sivumäärä — Sidoantal — Number of pages			
Kandidaatintutkielma Tiivistelmä — Referat — Abstract	21. toukokuuta 2	2013	15			
Tässä työssä esitetään Linia sykliverkon värittämiseen k			algoritmi käyttää n-solmuisen mmunikaatiokierrosta.			
Avainsanat — Nyckelord — Keywords						
Säilytyspaikka — Förvaringsställe — Where deposited						
Muita tietoja — Övriga uppgifter — Additional information						

Sisältö

1	Joh	danto	3
2	Mä	äritelmiä	3
	2.1	Verkko	3
	2.2	Laskennan malli	4
	2.3	Verkon väritys	4
	2.4	Sykli	4
	2.5	Iteroitu logaritmi log*	
	2.6	Näkymä	
	2.7	Naapurustoverkot	
	2.8	Suunnattu verkko	8
3	Syk	liä ei voi 3-värittää alle $\log^* n$ kierroksessa	9
4	Yht	seenveto	14
5	Läh	iteet	15

1 Johdanto

Hajautettu laskenta tarkastelee asetelmaa, jossa verkon solmut ovat tietokoneita jotka voivat kommunikoida keskenään verkon kaaria pitkin. Erityisesti hajautetussa asetelmassa tietokoneet haluavat ratkaista yhteistyössä jonkin kommunikaatioverkkoa koskevan laskennallisen ongelman.

Paikallinen algoritmi on vakioaikainen hajautettu algoritmi. Jokainen solmu saa siis laskettua tällöin oman vastauksensa vakiomäärässä kommunikointikierroksia. Tässä työssä esitellään Linialin [2] klassinen todistus sille, että hajautettu algoritmi käyttää ainakin $\Omega(\log^* n)$ kommunikaatiokierrosta n:n solmun sykliverkon värittämiseen kolmella värillä. Tämä tulos siis näyttää, ettei ole olemassa paikallista algoritmia joka värittäisi syklin kolmella värillä.

Tämä alarajatulos on myös asymptoottisesti tiukka, sillä Colen ja Vishkinin algoritmi [1] värittää n-solmuisen syklin hajautetusti kolmella värillä $\mathcal{O}(\log^* n)$ kierroksessa. Linialin näyttää alarajan deterministiselle algoritmille, mutta Naor [3] on yleistänyt tuloksen myös satunnaisuutta käyttäville hajautetuille algoritmeille.

2 Määritelmiä

2.1 Verkko

Määritelmä 1. Suuntaamaton verkko on pari G = (V, E), missä V on solmujoukko ja E on kaarijoukko. Kaari solmusta $v \in V$ solmuun $u \in V$ on kaksikko $\{v, u\} \in E$. Kaarta voidaan myös merkitä lyhyemmin vu. Jos G on suuntaamaton verkko, niin sen solmujoukkoon voidaan viitata myös merkinnällä V(G) ja kaarijoukkoon merkinnällä E(G).

Esimerkiksi verkko G = (V, E), missä

$$V = \{a, b, c, d\} \text{ ja}$$

$$E = \{\{a, b\}, \{b, c\}, \{c, a\}, \{a, d\}\}$$

$$= \{ab, bc, ca, ad\}$$

näyttää seuraavalta

Määritelmä 2. Kaikilla posiitivisilla kokonaisluvuilla k merkitään:

$$[k] = \{1, \dots, k\}$$

2.2 Laskennan malli

Olkoon G=(V,E) suuntaamaton verkko. Verkon jokaisessa solmussa $v\in V$ on tietokone. Laskenta koostuu kommunikaatiokierroksista. Yhden kommunikaatiokierroksen aikana jokainen solmu voi

- 1. suorittaa mielivaltaista laskentaa,
- 2. lähettää viestin jokaiselle naapurilleen ja
- 3. vastaanottaa naapureiden lähettämät viestit.

Lisäksi jokaiselle solmulle $v \in V$ on annettu yksikäsitteinen tunniste $\mathrm{ID}(v) \in [|V|]$. Laskennan päätyttyä jokaisen solmun tulee tietää oma tulosteensa.

Hajautetun algoritmin aikavaativuutena tarkastellaan kommunikaatiokierrosten lukumäärää. Solmujen suorittama mielivaltainen laskenta jätetään siis aikavaativuusanalyysissä huomiotta. Hajautettua algoritmia ajatellaan ajettavan jossain tietokoneverkossa, jolloin viestien välittäminen tietokoneiden välillä on huomattavan hidasta verrattuna tietokoneen sisäiseen viestinvälitykseen ja laskentaan.

2.3 Verkon väritys

Määritelmä 3. Verkko on $v\ddot{a}ritetty$, jos jokaiseen solmuun $v \in V$ on liitetty jokin $v\ddot{a}ri\ c(v) \in \mathbb{N}$ ja kahdella vierekkäisellä solmulla ei koskaan ole samaa väriä. Tarkemmin, verkon $G = (V, E)\ solmuv\ddot{a}ritys$ on kuvaus $c \colon V \to [k]$ jollain luonnollisella luvulla $k \in \mathbb{N}$. Lisäksi vaaditaan, että jos verkossa on kaari solmusta v solmuun u, eli $vu \in E$, niin $c(v) \neq c(u)$.

Verkon voi värittää k:lla värillä jos löytyy yllä olevan ehdon täyttävä kuvaus $c: V \to [k]$. Tällaista väritystä kutsutaan k-väritykseksi.

Jos verkkoa väritetään hajautetulla algoritmilla, niin jokaisen solmun tulee tietää oma värinsä laskennan päätyttyä.

2.4 Sykli

Määritelmä 4. Verkko on *sykli*, jos se on yhtenäinen ja sen jokaisella solmulla on tasan kaksi naapuria.

Tarkemmin sanoen, n-sykli, missä $n \geq 3$, on verkko $C_n = (V, E)$ jolla

$$V = \{v_1, v_2, \dots, v_n\}$$

$$E = \{v_i v_{i+1} \mid 1 \le i < n\} \cup \{v_n v_1\}$$

Syklin voi aina värittää kolmella värillä.

2.5 Iteroitu logaritmi log*

Määritelmä 5. Iteroitu logaritmi log* kertoo kuinka monta kertaa luvusta täytyy ottaa logaritmi, kunnes lopputulos on korkeintaan yksi. Tarkemmin,

$$\log^* x = \begin{cases} 0, & \text{jos } x \le 1, \\ 1 + \log^*(\log x), & \text{muutoin.} \end{cases}$$

Esimerkiksi

$$\log^* 16 = \log^* 2^{2^2} = 1 + \log^* 2^2$$
$$= 2 + \log^* 2 = 3 + \log^* 1 = 3$$

ja

$$\log^* 65536 = \log^* 2^{2^{2^2}} = 1 + \log^* 16$$
$$= 4,$$

joten $\log^* n$ on arvoltaan pienempi kuin 5 kun $n < 2^{65536}$. Iteroitu logaritmi on siis äärimmäisen hitaasti kasvava funktio.

2.6 Näkymä

Määritelmä 6. Verkon G polku on jono $P=(p_1,\ldots,p_n)$, missä jokainen $p_i \in V(G)$ on verkon G solmu, kahden jonon perättäisen solmun välillä täytyy aina olla kaari ja lisäksi sama solmu ei saa esiintyä jonossa kahdesti. Siis kaikilla $i \in [n-1]$ täytyy olla voimassa ehto $p_i p_{i+1} \in E(G)$. Lisäksi kaikilla $i, j \in [n], i \neq j$ täytyy olla voimassa ehto $p_i \neq p_j$. Polku P on polku solmusta p_1 solmuun p_n .

Yllä olevassa kuvassa on polku (3,4,7,6,8,9) solmusta 3 solmuun 9.

Määritelmä 7. Polun $P = (p_1, \dots, p_n)$ pituus on sen kaarten lukumäärä. Siis polun P pituus on n-1.

Edellisen kuvan polun pituus on 5.

Määritelmä 8. Kahden verkon G solmun $u, v \in V(G)$ välinen etäisyys verkossa G, on lyhimmän solmusta u solmuun v kulkevan polun pituus.

Yllä olevassa kuvassa on lyhin polku solmusta 3 solmuun 9. Solmujen 3 ja 9 välinen etäisyys on 3.

Hajautetussa algoritmissa solmu $v \in V$ saa k:ssa kierroksessa selville oman k-ympäristönsä. Toisaalta solmu ei pysty tässä ajassa saamaan mitään selville solmuista, joiden etäisyys v:stä on yli k.

Solmussa 6 ajetun hajautetun algoritmin näkemä alue nollan, yhden, kahden ja kolmen kierroksen jälkeen.

Hajautettu algoritmi, jonka ajoaika on k kierrosta on siis funktio, jonka lähtöjoukkona on solmujen mahdolliset k-ympäristöt.

Erityisesti syklissä algoritmi, jonka ajoaika on k kierrosta, tekee päätöksensä k:n edeltäjän, k:n seuraajan ja oman tunnisteensa perusteella. Toisin sanoen solmun $v_l \in V(C_n)$ tuloste on funktio arvoilta

$$(ID(v_{l-k}), ID(v_{l-k+1}), \dots, ID(v_{l-1}), ID(v_l), ID(v_{l+1}), \dots, ID(v_{l+k})),$$

Missä yhteen- ja vähennyslaskut suoritetaan modulo n.

Erityisesti jos algoritmi tuottaa 3-värityksen n-syklissä k:ssa kierroksessa, niin täytyy olla olemassa sellainen funktio $f:[n]^{2k+1} \to [3]$, joka tuottaa laillisen 3-värityksen riippumatta siitä miten solmuille on annettu tunnisteet.

2.7 Naapurustoverkot

Määritelmä 9. Naapurustoverkko $B_{t,n}=(V,E)$ on verkko, jonka solmujoukon V muodostaa vektoreiden (x_1,\ldots,x_{2t+1}) joukko, missä x_i :t ovat keskenään erisuuria kokonaislukuja joukosta [n]. Verkossa $B_{t,n}$ solmut muotoa

$$(x_1,\ldots,x_{2t+1})$$
 ja $(y,x_1,x_2,\ldots,x_{2t})$

ovat naapureita, kun $y \neq x_{2t+1}$.

Naapurustoverkon $B_{t,n}$ solmu on siis syklissä ajetun hajautetun algoritmin näkymä t kierroksen jälkeen. Kahden näkymän välillä on naapurustoverkossa kaari, jos ne ovat vierekkäisten solmujen näkymät jossain yksikäsitteisillä tunnisteilla varustetussa n-syklissä.

Määritelmä 10. Solmun $v \in V(G)$ asteluku on sen naapureiden lukumäärä verkossa G. Tarkemmin, solmun $v \in V(G)$ asteluku on

$$|\{e \in E(G) \mid v \in e\}|.$$

Verkossa $B_{t,n}$ on

$$n(n-1)(n-2)\cdots(n-2t)$$

solmua ja sen kaikkien solmujen asteluku on 2(n-2t-1).

Hajautettu algoritmi, joka 3-värittää syklin t kierroksessa antaa jokaiselle solmulle värin tarkastelemalla vain sen t-ympäristön tunnisteita. Väritysalgoritmi on siis todellisuudessa funktio $c: V(B_{t,n}) \to [3]$, sillä naapurustoverkossa $B_{t,n}$ on solmuina kaikki mahdolliset n-syklin t-naapurustot.

Nyt c on myös laillinen 3-väritys verkolle $B_{t,n}$, sillä jos c antaa solmuille

$$(x_1,\ldots,x_{2t},x_{2t+1})$$
 ja (y,x_1,\ldots,x_{2t})

saman värin, niin se antaa myös syklissa kahdelle vierekkäiselle solmulle saman värin kun syklissä esiintyy pätkä

$$y, x_1, x_2, \ldots, x_{2t+1}$$
.

Siis jos näytetään, että verkkoa $B_{t,n}$ ei voi 3-värittää, niin ei voi myöskään olla hajautettua algoritmia joka värittäisi n-syklin kolmella värillä t kierroksessa.

2.8 Suunnattu verkko

Suunnatto verkko G=(V,E) on verkko, jossa kaarilla on suunta. Suunnatussa verkossa on kaari solmusta $u\in V$ solmuun $v\in V$ jos $(u,v)\in E$. Suunnatulla kaarella $e=(u,v)\in E$ on $k\ddot{a}rki$

$$head(e) = v$$

ja *häntä*

$$tail(e) = u.$$

TODO: yksi esimerkki jostain leveemmästä suunnatusta verkosta

Määritelmä 11. Verkon G väritysluku $\chi(G)$ on pienin määrä värejä, jolla sen voi värittää.

3 Sykliä ei voi 3-värittää alle $\log^* n$ kierroksessa

Väritysluvun $\chi(B_{t,n})$ alaraja todistetaan käyttäen suunnattujen verkkojen $D_{s,n}$ perhettä. Suunnatut verkot $D_{s,n}$ liittyvät läheisesti naapurustoverkkoihin $B_{t,n}$. Verkon $D_{s,n}$ solmujoukon $V(D_{s,n})$ muodostavat kaikki vektorit muotoa

$$(a_1, a_2, \ldots, a_s),$$

joilla pätee

$$1 \le a_1 < a_2 < \dots < a_s \le n.$$

Solmusta (a_1, \ldots, a_s) lähtee kaari muotoa

$$(a_2,\ldots,a_s,b)$$

oleviin solmuihin, joilla $a_s < b \le n$.

Lemma 12. Naapurustoverkko $B_{t,n}$ pitää sisällään aliverkkona suunnatun verkon $D_{2t+1,n}$.

Todistus. Olkoon

$$\bar{x} = (x_1, \dots, x_{2t+1}) \in V(D_{2t+1,n})$$

verkon $D_{2t+1,n}$ solmu. Koska verkossa $D_{2t+1,n}$ on solmuvektoreilla suuruusjärjestysehto

$$x_1 < x_2 < \cdots < x_{2t+1}$$

niin erityisesti nämä vektorin alkiot ovat keskenään erisuuria, joten vektori \bar{x} on myös verkon $B_{t,n}$ solmu.

Lisäksi jos solmulla \bar{x} on verkossa $D_{2t+1,n}$ naapuri

$$\bar{y} = (x_2, \dots, x_{2t+1}, y) \in V(D_{2t+1,n}),$$

eli verkossa $D_{2t+1,n}$ on suunnattu kaari $(\bar{x},\bar{y}) \in E(D_{2t+1,n})$, niin tällöin myös verkossa $B_{t,n}$ on näiden solmujen välillä kaari. Tämä johtuu siitä, että suunnatun verkon $D_{2t+1,n}$ kaarien suuruusjärjestysehdon nojalla $y > x_1$, joten erityisesti $y \neq x_1$.

Tästä erityisesti seuraa, että jokainen verkon $B_{t,n}$ väritys on myös verkon $D_{2t+1,n}$ väritys.

Lemma 13. Verkkojen $B_{t,n}$ ja $D_{2t+1,n}$ väritysluvuille pätee

$$\chi(B_{t,n}) \ge \chi(D_{2t+1,n}).$$

Todistus. Olkoon $c: V(B_{t,n}) \to [k]$ verkon $B_{t,n}$ väritys. Nyt jos

$$(x,y) \in E(D_{2t+1,n})$$

on verkon $D_{2t+1,n}$ kaari, niin äskeisen lemman nojalla solmujen x ja y välillä on kaari myös verkossa $B_{t,n}$. Koska c on verkon $B_{t,n}$ väritys, niin $c(x) \neq c(y)$. Siis c on väritys myös verkolle $D_{2t+1,n}$ ja erityisesti verkon $D_{2t+1,n}$ voi siis myös värittää k:lla värillä.

Määritelmä 14. Suunnatun verkon G kaariverkko DL(G) on verkko, jonka solmuja ovat alkuperäisen verkon G kaaret ja kahden kaariverkon solmun

$$u, v \in V(\mathrm{DL}(G)) = E(G)$$

välillä on kaari, jos head(u) = tail(v).

Tarkemmin ilmaistuna,

$$\begin{split} V(\mathrm{DL}(G)) &= E(G) \\ E(\mathrm{DL}(G)) &= \left\{ (v,u) \in E(G) \times E(G) \mid \mathrm{head}(v) = \mathrm{tail}(u) \right\}. \end{split}$$

Lemma 15. $D_{1,n}$ on n:n solmun täydellinen verkko, jossa kaaret on suunnattu pienemmästä solmusta suurempaan.

Todistus. Verkon $D_{s,n}$ määritelmä s:n arvolla 1 antaa seuraavan verkon:

$$V(D_{1,n}) = \{(k) \mid 1 \le k \le n\}$$

$$E(D_{1,n}) = \{((k), (l)) \mid k < l\}.$$

Tässä verkossa jokaisen kahden solmun välillä on kaari tasan yhteen suuntaan. $\hfill\Box$

Määritelmä 16. Kaksi suunnattua verkkoa G ja H ovat isomorfiset jos niiden solmujoukkojen välillä on olemassa kuvaus $\varphi\colon V(G)\to V(H)$ joka toteuttaa seuraavat ehdot

- 1. φ on bijektio
- 2. $(u, v) \in E(G)$ jos ja vain jos $(\varphi(u), \varphi(v)) \in E(H)$.

Nämä ehdot toteuttavaa kuvausta kutsutaan isomorfismiksi.

Lemma 17. Verkko $D_{s+1,n}$ on verkon $D_{s,n}$ kaariverkko. Tarkemmin,

$$D_{s+1,n} = \mathrm{DL}(D_{s,n}).$$

Todistus. Ideana on samaistaa kaariverkon $DL(D_{s,n})$ kaari

$$((x_1,\ldots,x_s),(x_2,\ldots,x_s,y))$$

verkon $D_{s+1,n}$ solmun (x_1,\ldots,x_s,y) kanssa. Määritellään siis verkkojen välille kuvaus

$$\varphi \colon V(\mathrm{DL}(D_{s,n}) \to V(D_{s+1,n})$$

asettamalla

$$\varphi((x_1,\ldots,x_s),(x_2,\ldots,x_s,y))=(x_1,\ldots,x_s,y).$$

Näytetään, että φ on isomorfismi. Ensinnäkin φ on bijektio, sillä sille löytyy seuraava käänteiskuvaus $\psi\colon D_{s+1,n}\to \mathrm{DL}(D_{s,n})$:

$$\psi(x_1,\ldots,x_n,x_{n+1}) = ((x_1,\ldots,x_n),(x_2,\ldots,x_{n+1})).$$

Kuvaus ψ on kuvauksen φ käänteiskuvaus, sillä

$$(\psi \circ \varphi)((x_1, \dots, x_n), (x_2, \dots, x_n, y)) = \psi(\varphi((x_1, \dots, x_n), (x_2, \dots, x_n, y)))$$

= $\psi(x_1, \dots, x_n, y)$
= $((x_1, \dots, x_n), (x_2, \dots, x_n, y))$

ja

$$(\varphi \circ \psi)(x_1, \dots, x_n, x_{n+1}) = \varphi(\psi(x_1, \dots, x_n, x_{n+1}))$$

= $\varphi((x_1, \dots, x_n), (x_2, \dots, x_n, x_{n+1}))$
= $(x_1, \dots, x_n, x_{n+1}).$

Vielä täytyy näyttää, että kuvaus toteuttaa isomorfiaehdon. Olkoon

$$\bar{x}_1 = (x_1, \dots, x_n) \in V(D_{s,n}),$$

 $\bar{x}_2 = (x_2, \dots, x_{n+1}) \in V(D_{s,n}),$
 $\bar{y}_1 = (y_1, \dots, y_n) \in V(D_{s,n})$ ja
 $\bar{y}_2 = (y_2, \dots, y_{n+1}) \in V(D_{s,n})$

verkon $D_{s,n}$ solmuja. Tällöin erityisesti

$$(\bar{x}_1, \bar{x}_2) \in V(\mathrm{DL}(D_{s,n}))$$
 ja $(\bar{y}_1, \bar{y}_2) \in V(\mathrm{DL}(D_{s,n}))$

ovat kaariverkon $\mathrm{DL}(D_{s,n})$ solmuja. Jos $((\bar{x}_1, \bar{x}_2), (\bar{y}_1, \bar{y}_2)) \in E(\mathrm{DL}(D_{s,n}))$ on kaariverkon $\mathrm{DL}(D_{s,n})$ kaari, niin kaariverkon määritelmän nojalla

head
$$((\bar{x}_1, \bar{x}_2)) = \text{tail}((\bar{y}_1, \bar{y}_2))$$
 \Longrightarrow $\bar{x}_2 = \bar{y}_1$ \Longrightarrow $(x_2, \dots, x_{n+1}) = (y_1, \dots, y_n)$ \Longrightarrow $y_1 = x_2, \dots$ ja $y_n = x_{n+1}$.

Koska $\bar{x}_1 \in V(D_{s,n})$ ja $\bar{y}_2 \in V(D_{s,n})$, niin $x_1 < y_1 = x_2$ ja $y_n < y_{n+1}$. Tällöin

$$(\varphi(\bar{x}_1, \bar{x}_2), \varphi(\bar{y}_1, \bar{y}_2)) = ((x_1, \dots, x_{n+1}), (y_1, \dots, y_{n+1}))$$
$$= ((x_1, y_1, y_2, \dots, y_n), (y_1, \dots, y_{n+1})) \in E(D_{s+1,n}).$$

Ollaan siis näytetty ensimmäinen kahdesta implikaatiosta:

$$((\bar{x}_1, \bar{x}_2), (\bar{y}_1, \bar{y}_2)) \in E(DL(D_{s,n})) \implies (\varphi(\bar{x}_1, \bar{x}_2), \varphi(\bar{y}_1, \bar{y}_2)) \in E(D_{s+1,n}).$$

Toisaalta jos

$$\bar{x} = (x_1, \dots, \bar{x}_{n+1}) \in V(D_{s+1,n})$$
 ja
 $\bar{y} = (y_1, \dots, \bar{y}_{n+1}) \in V(D_{s+1,n}).$

ovat verkon $D_{s+1,n}$ solmuja joiden välillä on kaari, eli $(\bar{x}, \bar{y}) \in E(D_{s+1,n})$, niin tällöin

$$x_2 = y_1, \dots$$
 ja $x_{n+1} = y_n$.

Nyt

$$\bar{x}_1 = (x_1, \dots, x_n),$$

 $\bar{x}_2 = (x_2, \dots, x_{n+1}),$
 $\bar{y}_1 = (y_1, \dots, y_n)$ ja
 $\bar{y}_2 = (y_2, \dots, y_{n+1})$

ovat verkon $D_{s,n}$ solmuja joilla pätee

$$(\bar{x}_1, \bar{x}_2) \in E(D_{s,n}) \implies (\bar{x}_1, \bar{x}_2) \in V(\mathrm{DL}(D_{s,n}))$$
 ja
 $(\bar{y}_1, \bar{y}_2) \in E(D_{s,n}) \implies (\bar{y}_1, \bar{y}_2) \in V(\mathrm{DL}(D_{s,n})).$

Koska $\bar{x}_2 = \bar{y}_1$, niin kaariverkossa $DL(D_{s,n})$ on kaari

$$((\bar{x}_1, \bar{x}_2), (\bar{y}_1, \bar{y}_2)) \in E(DL(D_{s,n})).$$

Koska

$$(\bar{x}_1, \bar{x}_2) = \varphi^{-1}(\bar{x})$$
 ja
 $(\bar{y}_1, \bar{y}_2) = \varphi^{-1}(\bar{y})$

niin väite on todistettu. Ollaan siis näytetty, että jos $(\bar{x}, \bar{y}) \in E(D_{s+1,n})$ on verkon $D_{s+1,n}$ kaari, niin sen solmujen alkukuvien välillä on myös kaari. Tarkemmin sanottuna

$$(\bar{x}, \bar{y}) \in E(D_{s+1,n}) \implies (\varphi^{-1}(\bar{x}), \varphi^{-1}(\bar{y})) \in E(DL(D_{s,n})).$$

Ollaan siis näytetty, että löytyy bijektio $\varphi \colon V(\mathrm{DL}(D_{s,n})) \to D_{s+1,n}$ joka toteuttaa isomorfiaehdon, joten verkot $\mathrm{DL}(D_{s,n})$ ja $D_{s+1,n}$ ovat isomorfisina olennaisesti sama verkko.

Verkkojen $D_{s,n}$ välillä on nyt siis tarkkaan tunnettu yhteys, kun s:n arvot vaihtelevat. Lisäksi verkko $D_{1,n}$ on rakenteeltaan yksinkertainen täydellinen verkko.

Lemma 18.

$$\chi(D_{1,n})=n.$$

Todistus. Koska täydellisessä verkossa on kaari verkon jokaisen solmuparin välillä, täytyy sen jokaisella solmulla olla eri väri kuin millään muulla solmulla. Siispä verkon $D_{1,n}$ värittämiseen tarvitaan n väriä.

Seuraavan lemman avulla saadaan yhteys verkkojen $D_{s,n}$ ja $D_{s+1,n}$ värityslukujen välille.

Lemma 19. Olkoon G kaariverkko. Tällöin

$$\chi(\mathrm{DL}(G)) \ge \log \chi(G)$$
.

Todistus. Olkoon $\Psi: DL(G) \to [k]$ kaariverkon DL(G) k-väritys. Koska verkko DL(G) on verkon G kaariverkko, niin kuvaus Ψ antaa jokaiselle verkon G kaarelle värin. Jos $u, v \in E(G)$ ovat verkon G perättäisiä kaaria, eli head(u) = tail(v), niin Ψ antaa niille eri värit, $\Psi(u) \neq \Psi(v)$.

Muodostetaan verkolle G väritys $c: G \to \mathcal{P}([k])$ joka värittää $G:n \ 2^k$ värillä. Olkoon $x \in V(G)$ verkon G solmu. Määritellään x:n väri seuraavasti:

$$c(x) = \{ \Psi(u) \mid tail(u) = x \}.$$

Solmun x väri on siis joukko, jossa on kaikkien solmusta x lähtevien kaarten värit värityksessä Ψ . Jotta c olisi laillinen väritys, se ei saa antaa samaa väriä kahdelle naapurisolmulle. Olkoon $u=(x,y)\in E(G)$ verkon G kaari ja siis $y\in V(G)$ solmun x naapuri. Nyt tail(u)=x, joten u:n väri kuuluu x:n värijoukkoon. Tarkemmin ilmaistuna, $\Psi(u)\in c(x)$.

Toisaalta jos $\Psi(u) \in c(y)$, niin tällöin löytyy kaari $v \in E(G)$, joka lähtee solmusta y, eli tail(v) = y ja lisäksi jolle Ψ antaa saman värin kuin u:lle, eli $\Psi(x) = \Psi(y)$. Tämä ei kuitenkaan ole mahdollista, sillä head(u) = y = tail(v), jolloin Ψ ei olisikaan laillinen verkon DL(G) väritys. Siis c antaa vierekkäisille solmuille aina toisistaan eroavan värin, joten se täyttää väritysehdon.

TODO: Tämä on vähän wall of text, voisi keventää jotenkin

Väritys c antaa verkon G solmuille väriksi jonkin osajoukon värityksen Ψ väreistä. Koska k:n alkion joukolla on yhteensä 2^k osajoukkoa, niin c värittää verkon G korkeintaan 2^k värillä.

Ollaan siis näytetty, että jos verkon G kaariverkon $\mathrm{DL}(G)$ voi värittää k:lla värillä, niin G:n voi värittää 2^k värillä. Toisin sanoen

$$\chi(G) \le 2^{\chi(\mathrm{DL}(G))} \Longrightarrow \log \chi(G) < \chi(\mathrm{DL}(G))$$

Aikaisemmista lemmoista saadaan nyt lopulta verkkojen $D_{s,n}$ väritysluvulle $\chi(D_{s,n})$ alaraja.

Korollaari 20.

$$\chi(D_{s+1,n}) \ge \log \chi(D_{s,n}).$$

Erityisesti, koska $\chi(D_{1,n})=n$, niin edellisestä korollaarista seuraa, että

$$\chi(D_{s,n}) \ge \log^{(s)} \chi(D_{1,n}) \implies
\chi(D_{s,n}) \ge \log^{(s)} n$$

TODO: esittele notaatio $\log^{(n)}$

Lause 21. Hajautettu algoritmi ei voi värittää n:n solmun sykliä kolmella värillä alle $\log^* n$ kierroksessa.

Todistus. Hajautettu algoritmi voi värittää n-syklin kolmella värillä t kierroksessa jos verkon $B_{t,n}$ voi värittää kolmella värillä. Yhdistämällä edellisten lemmojen tulokset saadaan seuraava yhtälö:

$$3 \ge \chi(B_{t,n}) \ge D_{2t+1,n} \ge \log^{(2t)} n.$$

Josta voidaan edelleen päätellä seuraavaa:

$$\log^{(2t)} n \le 3 \implies \log^{(2t+1)} n \le 2 \implies \log^{(2t+2)} n < 1.$$

Luku $\log^* n$ on pienin määrä toistokertoja, jolla luvusta n saadaan logaritmeja ottamalla korkeintaan 1. Äskeisen nojalla 2(t+1) toistokertaa varmasti riittää tähän, joten

$$\log^* n \le 2(t+1) \implies \frac{1}{2} \log^* n - 1 \le t.$$

Ollaan siis näytetty, että hajautettu algoritmi joka värittää n-syklin kolmella värillä käyttää siihen aikaa vähintään $\frac{1}{2}\log^* n - 1$ kierrosta.

4 Yhteenveto

Hajautettu algoritmi vaatii siis vähintään $\Omega(\log^* n)$ kierrosta n-syklin värittämiseen kolmella värillä. Tämä alaraja on myös asymptoottisesti tiukka, sillä Colen ja Vishkinin algoritmi värittää n-syklin kolmellä värillä ajassa $\mathcal{O}(\log^* n)$.

5 Lähteet

- [1] Cole, Richard ja Vishkin, Uzi: Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control, 70(1):32–53, 1986.
- [2] Linial, Nathan: Locality in Distributed Graph Algorithms. SIAM Journal on Computing, 21(1):193–201, 1992.
- [3] Naor, Moni: A Lower Bound on Probabilistic Algorithms for Distributive Ring Coloring. SIAM Journal on Discrete Math, 4(3):409–412, 1991.