PROPOSAL TA

PERBANDINGAN METODE MACHINE LEARNING UNTUK SENTIMEN ANALISIS REVIEW PENJUALAN PRODUK DI TOKOPEDIA

Disusun Oleh:

Nama : Muhammad Reza Nim : 2019470055

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JAKARTA 2023

PROPOSAL TA

PERBANDINGAN METODE MACHINE LEARNING UNTUK SENTIMEN ANALISIS REVIEW PENJUALAN PRODUK DI TOKOPEDIA

Disusun Oleh:

Nama : Muhammad Reza Nim : 2019470055

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JAKARTA 2023

UNIVERSITAS MUHAMMADIYAH JAKARTA FAKULTAS TEKNIK-PRODI TEKNIK INFORMATIKA

DAFTAR PRESENSI BIMBINGAN TA

PERBANDINGAN METODE MACHINE LEARNING UNTUK SENTIMEN ANALISIS REVIEW PENJUALAN PRODUK DI TOKOPEDIA

Nama : Muhammad Reza Nim : 2019470055

Program Studi : Teknik Informatika

Dosen Pembimbing Utama: Ibu Popy Meilina, S.T., M. Kom

No	Tanggal	Catatan Dosen	Paraf
		Pembimbing	
1	07 – Maret	Pengajuan judul untuk	
	2023	tugas akhir	
2	13 – Maret	1. Judul di terima,	
	2023	yaitu	
		PERBANDINGAN	
		METODE	
		MACHINE	
		LEARNING	
		UNTUK	
		SENTIMEN	
		ANALISIS	
		REVIEW	
		PENJUALAN	
		PRODUK DI	
		TOKOPEDIA	
		2. Revisi di bab 1	
3	16 – Maret	1. Revisi bab 1 terkait	
	2023	identifikasi	
		masalah	
		2. Konsul mengenai	
		tentang mencari	
		data penelitian	
		apakah dibanyak	
		toko atau satu toko	
4	21 – Maret -	 Memperbaiki 	
	2023	penulisan bab 1	

		terkait referensi jurnal agar lebih ringkas lagi 2. Revisi bab 1 sub bab manfaat penelitian
5	30 - Maret - 2023	 Bab 1 sudah tidak ada lagi revisi Melanjutkan ke bab2 untuk sub bab pemodelan dan evaluasi
6	04 – April - 2023	 Menjelaskan proposal bab 2 Tidak ada masalah di bab 2, maka lanjutkan untuk bab 3
7	09 – Mei – 2023	Memperbaiki di bab 3 tidak perlu teori lagi akan tetapi pengerjaan penelitian
8	12- Mei – 2023	Melanjutkan penyelesaian bab 3 tentang sub bab pemodelan, dan evaluasi

Dosen Pembimbing

(Popy Meilina, S.T., M. Kom)

ABSTRACT

ABSTRAK

KATA PENGANTAR

Alhamdulillaahirabbil"aalamiin, puji syukur penyusun panjatkan atas kehadirat Allah SWT yang telah melimpahkan rahmat dan hidayah-Nya, serta tidak lupa shalawat serta salam selalu tercurah kepada junjungan umat, yaitu Nabi Muhammad SAW sebagai suri tauladan umat, sehingga penyusunan tugas akhir yang berjudul "Perbandingan Metode Machine Learning Untuk Sentimen Analisis Review Penjualan Produk Di TOKOPEDIA" sebagai syarat untuk kelulusan jenjang strata satu di Jurusan Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah Jakarta. Dalam penyusunan proposal tugas akhir penyusun banyak memperoleh petunjuk dan bimbingan dari berbagai pihak.

Untuk selanjutnya penyusun mengucapkan banyak terima kasih kepada pihakpihak yang telah membantu dalam penyelesaianTA ini, yaitu:

- 1. Dekan Fakultas Teknik Bapak Irfan Purnawan, S.T., M.Chem.Eng.
- 2. Ketua Program Studi Teknik Informatika Ibu Popy Meilina, S.T., M. Kom
- 3. Dosen pembimbing Ibu Popy Meilina, S.T., M. Kom
- 4. Kedua orang tua penyusun yang selalu memberikan do'a dan motivasi

Jakart	a,	.,	•
	Per	nyusun	

DAFTAR ISI

DAFTAR PRESENSI BIMBIN	GAN TA ii
ABSTRACT	iv
ABSTRAK	v
KATA PENGANTAR	vi
DAFTAR ISI	vii
DAFTAR TABEL	ix
DAFTAR GAMBAR	x
DAFTAR LAMPIRAN	xi
BAB I	
PENDAHULUAN	1
1.1. Latar Belakang Masal	ah1
1.2. Identifikasi Masalah	2
1.3. Perumusan Masalah	2
1.4. Batasan Masalah	3
1.5. Tujuan dan Manfaat F	Penelitian4
1.6. Metodologi Penelitian.	4
BAB II	8
TINJAUAN PUSTAKA	8
2.1. Tokopedia	8
2.2. Analisis Sentimen	8
2.3. Text mining	8
2.4. Text preprocessing	9
2.5. Pemodelan	
2.6. Evaluasi	
BAB III	
METODE PENELITIAN	
3.1. Data penelitian	
3.2. Text preprocessinng	
3.2.1. Casefolding	
3.2.2. Punctuation remo	val20
3.2.3. Stopwords remova	ı l 22
3.2.4. Stemming	

3.2.5.	Pembobotan kata	27
3.3. Pe	modelan	33
3.3.1.	Naives bayes	33
3.3.2.	Decision tree	35
3.3.3.	K-nearest neighbor	37
DAFTAR I	PUSTAKA	44

DAFTAR TABEL

Tabel 3. 1 tabel <i>casefolding</i> 5 data elektronik dan data pakaian	20
Tabel 3. 2 punctuation	21
Tabel 3. 3 tabel stopword removal 4 data elektronik dan data pakaian	
Tabel 3. 4 tabel stemming 4 data elektronik dan data pakaian	25
Tabel 3. 5 tabel pembobotan kata	
Tabel 3. 6 tabel kata dan label untuk naives bayes	33
Tabel 3. 7 tabel kata dan label untuk decision tree	35
Tabel 3. 8 normalisasi	35
Tabel 3. 9 tabel bobot kata untuk k nearest neighbour	37
Tabel 3. 10 tabel bobot kata hasil kalkulasi jarak	38
Tabel 3. 11 tabel confusion matrix evaluasi naives bayes	41
Tabel 3. 12 tabel confusion matrix evaluasi decision tree	42
Tabel 3. 13 tabel confusion matrix evaluasi k nearest neighbor	

DAFTAR GAMBAR

Gambar 3. 1 grafik bar data laptop	. 12
Gambar 3. 2 grafik bar data handphone	
Gambar 3. 3 grafik bar data kaos	. 14
Gambar 3. 4 grafik bar data kemeja	. 15
Gambar 3. 5 grafik bar data laptop	. 16
Gambar 3. 6 grafik bar data handphone	. 17
Gambar 3. 7 grafik data kaos	. 18
Gambar 3. 8 grafik bar data kemeja	. 19

DAFTAR LAMPIRAN

BABI

PENDAHULUAN

1.1. Latar Belakang Masalah

Toko online atau *e-commerce* menurut Moossa Giant dan Samuel Ikate adalah operasi bisnis yang dilakukan secara dunia maya atau *online* (Gian & Ikate, 2021). Pada saat pandemi Covid-19 fenomena belanja secara maya mulai meningkat karena kegiatan masyarakat dibatasi (Ricky et al., 2021).

Pembelian di toko *online* tentu ada penilaian dari konsumen yang sudah membeli barang untuk memberikan opini berupa pengalaman atau evaluasi pelayanan yang sampai ke tangan pembeli (Zhang et al., 2020). Opini menurut Irawan Noor Kabiru Puspita dan Kencana Sari adalah penilaian konsumen terdapat 2 kondisi, yaitu opini *positive* (bagus) atau opini *negative* (kurang bagus) (Kabiru & Sari, 2019).

Ilmu untuk analisa terhadap opini pembelian produk di toko *online* diperlukan untuk memahami mana opini yang bersifat positif atau negatif, maka ilmu untuk hal tersebut adalah *Natural processing*, *Natural processing language* merupakan cabang ilmu kecerdasan buatan yang dapat berinteraksi antara mesin dengan bahasa manusia (Nofiyanti & Oki Nur Haryanto, 2021). *Natural processing language* didalam penerapannya terdapat analisis sentimen (Vicari & Gaspari, 2021). Maka dari itu sangat tepat jika menggunakan analisis opini dari konsumen yang sudah melakukan pembelian untuk menentukan opini positif atau opini negatif berdasarkan kata.

Penelitian terhadap analisis sentimen di *e-commerce* pada ulasan restoran menggunakan *Naives Bayes* sebagai *machine learning*, peneliti tersebut menggunakan 1000 data, setelah mendapat 1000 data peneliti tersebut melakukan pelabelan, melakukan *preprocessing* dengan menghapus *noise*, selanjutnya melakukan ekstraksi fitur, membagi data menjadi data latih dan data uji, kemudian latih *Naives Bayes* menggunakan data latih, setelah melakukan latih penelitian Reddy melakukan uji dengan data uji menghasilkan akurasi sebesar 77,5% (Reddy & Reddy, 2021). Selain fokus masalah pada ulasan restoran, penelitian dengan *Naives Bayes* dilakukan oleh Apriani, fokus masalah komentar aplikasi Tokopedia

di Googleplay, penelitian tersebut menghasilkan hasil akurasi sebesar 97,13% (Apriani et al., 2019).

Selain dari metode *Naives Bayes*, untuk sentimen analisis dapat menggunakan *decision tree* dengan fokus masalah mengenai ulasan hotel, Apriliani menggunakan ulasan dari tahun 2015 sampai 2018, serta menggunakan data bahasa indonesia, kemudian melakukan *preprocessing* data, peneliti melakukan model *decision* tree, dan juga menggunakan *cross validation* untuk mencari akurasi tertinggi, maka penelitian Apriliani menggunakan 8 Kfold menghasilkan akurasi 88,54% (Apriliani et al., 2020).

Selain dari kedua metode yang sudah disebutkan, analisis sentimen dapat menggunakan *K - Nearest Neighbor*, fokus masalah pada opini mengenai pilkada DKI (Daerah Khusus Ibukota) tahun 2017 di Twitter, penelitian ini menghasilkan akurasi sebesar 67,2% dengan menggunakan nilai K=5 (Deviyanto & Wahyudi, 2018). Selain fokus masalah mengenai opini pilkada, penelitian dilakukan yang Pajri dengan K-*Nearest Neighbor*, fokus masalah di *e-commerce* Tokopedia, menghasilkan akurasi sebesar 88,11% dengan nilai K=1(Pajri et al., 2020).

Berdasarkan beberapa penelitian yang sudah dipaparkan, maka penelitian ini melakukan analisa sentimen di *e-commerce* Tokopedia dengan berbagai *machine learning supervised*.

1.2. Identifikasi Masalah

Berdasarkan permasalahan di latar belakang, banyaknya penelitian terhadap analisis sentimen akan tetapi tidak adanya perbandingan menggunakan beberapa metode *machine learning*, maka diperlukan perbandingan agar dapat mengetahui akurasi dalam mengolah analisis sentimen.

1.3. Perumusan Masalah

Berdasarkan permasalahan diatas, akan dilakukan perumusan atau kajian sebagai berikut:

1. Bagaimana cara mengolah data teks untuk melakukan analisis sentimen, melakukan analisis sentimen dengan menghasilkan

- positif, nilai negatif, dan nilai netral, serta cara melakukan pelabelan sentimen berdasarkan rating bintang 1 sampai 5?
- 2. Bagaimana hasil dan akurasi perbandingan melakukan komparasi *machine learning* untuk analisis sentimen berdasarkan 3 kondisi positif, negatif, netral?

1.4. Batasan Masalah

Proposal tugas akhir ini memiliki batasan agar lebih mengerucut dan tidak melebar, maka diberikan batasan-batasan sebagai berikut:

- 1. Melakukan pengambilan data dengan cara teknik *scraping*, data yang diambil adalah ulasan produk elektronik (laptop, *handphone*), produk pakaian (kemeja, kaos).
- Data Tokopedia kategori elektronik laptop diambil dari 16 Maret April 2023 sebanyak 398 data, kategori *handphone* diambil dari
 April 02 Mei 2023 sebanyak 495 data.
- 3. Data Tokopedia pakaian kategori kaos diambil dari 30 April 03
 Mei 2023 sebanyak 930 data, kategori kemeja diambil dari 30 April 03 Mei 2023 sebanyak 645 data.
- 4. Mengolah data teks yang sudah didapatkan untuk dilakukan pelabelan, yaitu penilaian atau ulasan konsumen berdasarkan rating apakah opini tersebut positif, negatif, dan netral.
- 5. Melakukan pengolahan data dengan case folding, Removal stopwords, stemming, dan juga pembobotan menggunakan Term Frequency Inverse Document
- Melakukan komparasi machine learning decision tree, naives bayes,
 k nearest neighbor untuk sentimen analisis ulasan konsumen
 Tokopedia di fitur ulasan dan review.
- 7. Melakukan evaluasi dari tiga *machine learning*, menggunakan *confusion matrix*, *metrics accuracy*, *metrics recall*, *metrics precision*.

1.5. Tujuan dan Manfaat Penelitian

Proposal tugas akhir ini memiliki tujuan penelitian, manfaat sebagai berikut:

- 1. Melakukan sentimen analisis atau klasifikasi opini konsumen di fitur ulasan *review* pembelian Tokopedia menggunakan algoritma *decision tree, naives bayes, K Nearest Neighbor.*
- 2. Membandingkan tiga *machine learning* algoritma, yaitu *decision tree*, *naives bayes*, *K Nearest Neighbor* yang lebih baik berdasarkan akurasi.
- 3. Manfaat penelitian untuk mengetahui akurasi dari beberapa metode *machine learning* yang dapat digunakan untuk sentimen analisis ulasan *review* pembelian produk di Tokopedia.

1.6. Metodologi Penelitian

1. Data penelitian

Data yang digunakan dalam proposal tugas akhir adalah data teks dari hasil *scrape* dari website Tokopedia yang data didalamnya terdapat konten berupa komentar dan rating berupa bintang 1 s/d 5, sedangkan data yang sudah didapat dari *scrape* dilakukan pelabelan berdasarkan rating bintang 1 s/d 5. Bintang 1-2 diberikan label negatif, bintang 3 diberikan label netral, bintang 4-5 diberikan label positif

2. Pengolahan data

Pada tahap ini dilakukan proses sebagai berikut:

1. Case folding

Merupakan tahap mengolah data teks jika memiliki huruf kapital atau *uppercase* maka diubah menjadi huruf kecil atau *lowercase* (KURNIAWAN & APRILIANI, 2020).

2. Punctuation Removal

Merupakan tahap menghapus tanda baca pada data teks (Merinda Lestandy et al., 2021).

3. Removal stopwords

Merupakan tahap mengolah data teks untuk menghapus kata hubung seperti kata "atau", "dan" karena tersebut merupakan kata yang sering muncul dan tidak memiliki arti apapun (Pradana & Hayaty, 2019) (Deviyanto & Wahyudi, 2018).

4. Stemming

Merupakan tahap untuk mengurangi prefiks sebuah kata menjadi kata dasar (Pradana & Hayaty, 2019).

5. Pembobotan kata

Pada tahap ini setelah pengolahan data melakukan perhitungan kata dengan menggunakan metode *Term Frequency Inverse Document*, *Term Frequency Inverse Document* adalah metode perhitungan kata berdasarkan jumlah dokumen data dengan jumlah frekuensi kata yang muncul di setiap dokumen (Melita et al., 2018). Term Frequency Inverse Document mempunyai fungsi sebagai seleksi fitur untuk pemodelan machine learning klasifikasi (Prayoga et al., 2021).

3. Pemodelan

Dilakukan pemodelan dengan menggunakan *supervised learning*. *Supervised learning* adalah pembelajaran dalam *machine learning* yang membutuhkan label untuk melakukan pelatihan (El Mohadab et al., 2019).

Model yang digunakan, yaitu sebagai berikut:

1. Decision tree

Decision tree merupakan algoritma supervised learning yang bekerja seperti struktur pohon di setiap node atau simpul mewakili dari atribut yang dilatih (Panhalkar & Doye, 2022).

2. Naïve Bayes

Naïve Bayes merupakan algoritma klasifikasi probabilitas berdasarkan label data untuk memprediksi peluang masa depan dengan data sebelumnya (Watrianthos et al., 2019).

3. *K-Nearest-Neighbor*

Merupakan algoritma klasifikasi dengan menggunakan *input* fitur dan *output* fitur dengan melihat dari kelas atau fitur *Neighbor* terdekat (Cunningham & Delany, 2021).

4. Evaluasi

Evaluasi dilakukan dengan, menggunakan 4 metode, anatara lain sebagai berikut:

1. Akurasi

Menghitung akurasi skor berdasarkan hasil prediksi dari data *testing*, dengan memperhatikan *true positive, true negative, false positive, false negative* (Romli et al., 2021). Berikut cara menghitung skor akurasi sebagai berikut:

$$acc = \frac{TP + FN}{TP + TN + FP + FN}$$

2. Recall

Merupakan perhitungan dari hasil prediksi menggunakan data uji untuk menghasilkan skor nilai salah perhitungan *recall* dilakukan sebagi berikut:(Pintoko & Lhaksmana, 2018) (Romli et al., 2021).

$$recall = \frac{TP}{TP + FN}$$

3. Precision

Merupakan perhitungan dari hasil prediksi menggunakan data uji untuk mengukur prediksi nilai positif dari berapa banyak *true* positive dengan false positive dilakukan sebagai berikut: (Yun, 2021) (Romli et al., 2021).

$$precision = \frac{TP}{TP + FP}$$

4. Confusion matrix

Merupakan hasil dari evaluasi pemodelan *machine learning* yang berbentuk kotak, terdapat 2 kolom dan 2 baris yang didalamnya ada *false negative, true negative, true negative, false*

positive. Berikut merupakan contoh confusion matrix: (Yun, 2021).

[True Positive False Negative] False Negative True Negative]

BAB II

TINJAUAN PUSTAKA

2.1. Tokopedia

Tokopedia adalah *e-commerce* dengan pengguna terbanyak berjumlah 153,46 juta (Handayani, 2021). Tokopedia didalamnya ada berbagai macam produk yang dijual mulai dari elektronik, pakaian, kosmetik. Oleh karena itu dengan jumlah pengguna yang banyak, serta menjual berbagai macam produk, Tokopedia memberikan fitur untuk memberikan pengalaman atau opini kepada konsumen yang sudah membeli barang di Tokopedia, didalam fitur tersebut ada berbagai macam penilaian dari konsumen yang sudah membeli ada yang penilaian secara positif, penilaian secara negatif, penilaian secara positif (Apriani et al., 2019).

2.2. Analisis Sentimen

Analisis Sentimen merupakan opini yang bersifat positif, negatif berasal dari data teks (Septiani & Sibaroni, 2019). Sentimen analisis pada dasarnya adalah melakukan klasifikasi untuk memahami sudut pandang, interaksi, dan emosi dari data teks (Ramadhan & Ramadhan, 2022).

Sentimen analisis melakukan pengelompokkan atau pelabelan dari sentimen yang ada di teks apakah sentimen tersebut bernilai positif atau negatif (Zamzami et al., 2021). Menurut Mayur Wankhade sentimen analisis terdapat beberapa level, yaitu aspect level, phrase level, sentence level, document level (Wankhade et al., 2022).

2.3. Text mining

Text mining adalah kegiatan menambang data unstructured yang datanya berbeda dengan data berbentuk tabel atau structured, akan tetapi datanya berbentuk teks serta didapatkan di dokument, media sosial, serta text mining mengekstra informasi dari data teks (Hassani et al., 2020).

2.4. Text preprocessing

Text preprocessing adalah tahap persiapan agar data dapat dilakukan pemodelan (Cahyaningtyas et al., 2021). Penelitian Firdaus dan peneltian Filcha menjelaskan Text preprocessing merupakan pembersihan data, seperti menghilangkan tanda baca, menghapus kata ganti agar data teks menjadi kata dasar (Firdaus et al., 2022) (Filcha & Hayaty, 2019). Berikut tahap text preprocessing sebagai berikut:

1. Case Folding

Tahap *case folding* adalah transformasi data teks yang mempunyai huruf kapital menjadi huruf kecil (Pravina et al., 2019).

2. Punctuation Removal

Merupakan tahap menghapus tanda baca di data teks, seperti (.) (,) (?), dan (angka) (Dyo fatra et al., 2020).

3. Removal stopwords

Removal stopwords menurut penelitian Wasim Bourequat merupakan teknik menghilangkan kata yang tidak berarti (Bourequat & Mourad, 2021). Contoh kata hubung:

"dan" "atau"

4. Stemming

Stemming menurut penelitian Asvarizal Filcha merupakan teknik transformasi kata menjadi kata dasar sebenarnya (Filcha & Hayaty, 2019). Contoh stemming sebagai berikut:

"menyapu" -> sapu

5. Pembobotan kata

Pembobotan kata menurut penelitian Jeremy Andre Septian dan penelitian Faizal Nur Rozi term inverse document matrix merupakan tahapan menghitung frekuensi kalimat yang dipecah menjadi kata untuk melihat jumlah frekuensi kata dari masing-masing dokumen atau disebut dengan term frequency, hasil dari frekuensi kata kemudian menghitung jumlah dokumen dan jumlah frekuensi kata di masing-masing dokumen disebut dengan inverse document matrix, kemudian dilakukan perhitungan berdasarkan kata yang berada di dokumen (term

frekuensi) dikalikan dengan *inverse document matrix* (Septian et al., 2019) (Rozi & Sulistyawati, 2019).

2.5. Pemodelan

Pemodelan menurut penelitian Sebastian Raschka adalah kata hipotesis dan model sering digunakan secara sinonim dalam bidang pembelajaran mesin (Raschka, 2018). Pemodelan pada tahap ini setelah memproses data teks menggunakan pemodelan *supervised learning*, sebagai berikut:

1. Decision tree

Decision tree menurut penelitian Apriliani dan penelitian Chee Sun Lee merupakan algoritma supervised learning yang mempunyai struktur seperti pohon, yang mempunyai simpul untuk atribut pengujian, setiap cabang mewakili hasil pengujian, dan daun mewakili kelas (Apriliani et al., 2020) (Lee et al., 2022).

2. Naives bayes

Naïve bayes algoritma yang seringkali digunakan dalam sentimen analisis karena pembelajaran dari fitur untuk pengujian data untuk menghasilkan kemungkinan atau probabilitas (Watrianthos et al., 2019).

3. *K-Nearest-Neighbor*

K-Nearest-Neighbor menurut penelitian Kang, Seokho adalah *machine learning* untuk prediksi berdasarkan label dari nilai k tetangga atau *neighbor* terdekat (Kang, 2021). Dalam penerapan *text mining* atau klasifikasi menggunakan data teks dengan *K-nearest-neighbor* harus menentukan nilai k dari bobot kata *term frequency inverse document* dikalkulasi untuk melihat kemiripan antar dokumen (Dwiki et al., 2021).

2.6. Evaluasi

Evaluasi adalah tahap untuk mengukur keakuratan model, untuk model klasifikasi memiliki metode presisi, *recall*, akurasi (Fidan, 2020). Untuk menghitung metode *precision*, *recall*, *accuration* harus memperhatikan tp (*true positive*), fn (*false negative*), fp (*false positive*), tn (*true negative*). Berikut cara menghitung keempat metode:

1. Recall

Merupakan rasio data yang bernilai relevan dari data uji yang diambil (Bahassine et al., 2020).

$$recall = \frac{TP}{TP + FN}$$

2. Precision

Menurut penelitian Hongwon Yun untuk mengukur hasil dari data uji seberapa banyak sampel yang meghasilkan menjadi *true positive* (Yun, 2021).

$$precision = \frac{TP}{TP + FP}$$

3. Accuracy

Menurut penelitian Hongwon Yun diperoleh dari dengan cara membagi jumlah yang diprediksi dengan data uji dengan menambah jumlah hasil *true positive dan true negative* (Yun, 2021).

$$acc = \frac{TP + FN}{TP + TN + FP + FN}$$

4. Confusion matrix

Merupakan hasil dari evaluasi dengan model yang diuji menggunakan data *testing* menghasilkan output berupa baris dan kolom yang didalamnya ada *true negative*, *true positive*, *false positive*, *false negative* (Hasnain et al., 2020).

BAB III

METODE PENELITIAN

3.1. Data penelitian

Data yang diambil dari ulasan pelanggan Tokopedia menggunakan teknik *scraping* menghasilkan 893 data kategori elektronik (laptop *handphone*), berikut data kategori elektronik dapat dilihat pada gambar 3.1, gambar 3.2.

Gambar 3. 1 grafik bar data laptop

Pada gambar 3.1, dapat diketahui bahwa data laptop menghasilkan masingmasing rating, yatu:

- 1. rating 5 berjumlah 65 data
- 2. rating 4 berjumlah 170 data
- 3. rating 3 berjumlah 74 data
- 4. rating 2 berjumlah 20 data
- 5. rating 1 berjumlah 70 data

Gambar 3. 2 grafik bar data handphone

Pada gambar 3.2, dapat diketahui bahwa data *handphone* menghasilkan masing-masing rating, yatu:

- 1. rating 5 berjumlah 142 data
- 2. rating 4 berjumlah 123 data
- 3. rating 3 berjumlah 89 data
- 4. rating 2 berjumlah 32 data
- 5. rating 1 berjumlah 110 data

Data kategori pakaian terdiri dari kemeja, kaos menghasilkan 1575 Data, berikut data kategori pakaian yang tediri dari kemeja, dan kaos pada gambar 3.3, dan gambar 3.4:

Gambar 3. 3 grafik bar data kaos

Pada gambar 3.3, dapat diketahui bahwa data kaos menghasilkan masing-masing rating, yatu:

- 1. rating 5 berjumlah 250 data
- 2. rating 4 berjumlah 245 data
- 3. rating 3 berjumlah 190 data
- 4. rating 2 berjumlah 84 data
- 5. rating 1 berjumlah 161 data

Gambar 3. 4 grafik bar data kemeja

Pada gambar 3.4 dapat diketahui bahwa data kemeja menghasilkan masingmasing rating, yatu:

- 1. rating 5 berjumlah 200 data
- 2. rating 4 berjumlah 154 data
- 3. rating 3 berjumlah 145 data
- 4. rating 2 berjumlah 46 data
- 5. rating 1 berjumlah 100 data

Setelah dilakukan pengambilan data maka dilakukan pelabelan, untuk rentang rating 1-2 diberikan label negatif, rating 3 diberikan label netral, rating 4-5 diberikan label positif, hasil dari pelabelan data dapat dilihat pada gambar.

Gambar 3. 5 grafik bar data laptop

Pada gambar 3.5 dapat diketahui bahwa data laptop menghasilkan 3 kelas atau label diantaranya sebagai berikut:

- 1. Total data laptop label positif 235 data
- 2. Total data laptop label netral 74 data
- 3. Total data laptop label negatif 90 data

Gambar 3. 6 grafik bar data handphone

Pada gambar 3.6, dapat diketahui bahwa data tersebut menghasilkan 3 kelas atau label diantaranya sebagai berikut:

- 1. Total data handphone label positif 262 data
- 2. Total data handphone label netral 89 data
- 3. Total data *handphone* label negatif 142 data

Pada gambar 3.7, dapat diketahui bahwa data kaos menghasilkan 3 kelas atau label diantaranya sebagai berikut:

- 1. Total data kaos label positif 495 data
- 2. Total data kaos label netral 190 data
- 3. Total data kaos label negatif 245 data

Gambar 3. 8 grafik bar data kemeja

Pada gambar 3.8, dapat diketahui bahwa data kemeja menghasilkan 3 kelas atau label diantaranya sebagai berikut:

- 1. Total data kaos label positif 345 data
- 2. Total data kaos label netral 145 data
- 3. Total data kaos label negatif 146 data

Setelah dilakukan pelabelan, maka tahap selanjutnya persiapan data teks adalah *text preprocessing* sebelum menuju ke tahap pemodelan.

3.2. Text preprocessinng

Tahap *preprocessing text* adalah tahap untuk menyiapkan data teks sebelum dilakukan pelatihan ke pemodelan *machine learning*, berikut tahapan *preprocessing* yang dilakukan pada penelitian ini:

3.2.1. Casefolding

Casefolding merupakan tahap untuk transformasi data teks menjadi huruf kecil. Berikut beberapa data hasil casefolding dari data elektronik dan data pakaian:

Tabel 3. 1 tabel casefolding 5 data elektronik dan data pakaian

Data	Komentar (ulasan)	Casefolding	
Data	terkecoh banget sama	terkecoh banget sama variannya	
hp	variannya ternyata yang	ternyata yang di klik 9a. bukan 9c.	
	di klik 9a. bukan 9c.	semoga awet deh ya hpnya. thx	
	semoga awet deh ya	seller	
	hpnya. thx seller		
Data	terima kasih gan barang	terima kasih gan barang sudah	
laptop	sudah mendarat dengan	mendarat dengan selamat 👍 👍	
	selamat 👍 👍 ada	ada beberapa dent yang seperti nya	
	beberapa dent yang	bekas jatuh dan juga ada keyboard	
	seperti nya bekas jatuh	yang coak seperti kena rokok.	
	dan juga ada keyboard		
	yang coak seperti kena		
	rokok.		
Data	Kiriman cepat sampai.	kiriman cepat sampai. bahan kain	
kaos	Bahan kain agak tebal.	agak tebal. ukurannya kurang lebar	
	Ukurannya kurang lebar	dikit, berasa bukan 52. thanks	
	dikit, berasa bukan 52.		
	Thanks		
Data	pengiriman lama,	pengiriman lama, pesanan tidak	
kemeja	pesanan tidak sesuai dgn	sesuai dgn apa yg dipesan. kecewa	
	apa yg dipesan. kecewa	sama barang yg dtng tdk sesuai	
	sama barang yg dtng tdk	pdhal produk terkenal.	
	sesuai pdhal produk		
	terkenal.		

3.2.2.Punctuation removal

Punctuation removal merupakan tahapan untuk menghapus tanda baca dan nomor karena agar tidak memperbanyak bobot kata pada tahap pembobotan kata, berikut beberapa data yang dilakukan punctuation removal:

Tabel 3. 2 punctuation

Data	Komentar (ulasan)	Casefolding	Punctuation removal
Data	terkecoh banget	terkecoh	terkecoh banget sama
hp	sama variannya	banget	variannya ternyata yang di
	ternyata yang di	sama	klik a bukan c semoga
	klik 9a. bukan 9c.	variannya	awet deh ya hpnya thx
	semoga awet deh	ternyata	seller
	ya hpnya. thx seller	yang di klik	
		9a. bukan	
		9c. semoga	
		awet deh ya	
		hpnya. thx	
		seller	
Data	terima kasih gan	terima	terima kasih gan barang
laptop	barang sudah	kasih gan	sudah mendarat dengan
	mendarat dengan	barang	selamat ada beberapa
	selamat 🚹 🚹 ada	sudah	dent yang seperti nya
	beberapa dent yang	mendarat	bekas jatuh dan juga ada
	seperti nya bekas	dengan	keyboard yang coak
	jatuh dan juga ada	selamat	seperti kena rokok
	keyboard yang	₫ da ada	
	coak seperti kena	beberapa	
	rokok.	dent yang	
		seperti nya	
		bekas jatuh	
		dan juga	
		ada	
		keyboard	
		yang coak	
		seperti kena	
		rokok.	

Data	Kiriman cepat	kiriman	kiriman cepat sampai
kaos	sampai. Bahan	cepat	bahan kain agak tebal
	kain agak tebal.	sampai.	ukurannya kurang lebar
	Ukurannya kurang	bahan kain	dikit berasa bukan
	lebar dikit, berasa	agak tebal.	thanks
	bukan 52. Thanks	ukurannya	
		kurang	
		lebar dikit,	
		berasa	
		bukan 52.	
		thanks	
Data	pengiriman lama,	pengiriman	pengiriman lama pesanan
kemeja	pesanan tidak	lama,	tidak sesuai dgn apa yg
	sesuai dgn apa yg	pesanan	dipesan kecewa sama
	dipesan. kecewa	tidak sesuai	barang yg dtng tdk sesuai
	sama barang yg	dgn apa yg	pdhal produk terkenal
	dtng tdk sesuai	dipesan.	
	pdhal produk	kecewa	
	terkenal.	sama	
		barang yg	
		dtng tdk	
		sesuai	
		pdhal	
		produk	
		terkenal.	

3.2.3. Stopwords removal

Stopwords removal merupakan tahapan untuk menghilangkan kata hubung, berikut merupakan data elektronik, data pakaian yang dilakukan stopwords removal:

Tabel 3. 3 tabel stopword removal 4 data elektronik dan data pakaian

Data	Komentar	Casefolding	Punctuation	Stopwords removal
	(ulasan)		removal	
Data	terkecoh	terkecoh	terkecoh	terkecoh banget
hp	banget	banget	banget	variannya klik a c
	sama	sama	sama	semoga awet deh
	variannya	variannya	variannya	ya hpnya thx seller
	ternyata	ternyata	ternyata	
	yang di	yang di klik	yang di klik	
	klik 9a.	9a. bukan	a bukan c	
	bukan 9c.	9c. semoga	semoga	
	semoga	awet deh ya	awet deh ya	
	awet deh	hpnya. thx	hpnya thx	
	ya hpnya.	seller	seller	
	thx seller			
Data	terima	terima	terima kasih	terima kasih gan
laptop	kasih gan	kasih gan	gan barang	barang mendarat
	barang	barang	sudah	selamat dent nya
	sudah	sudah	mendarat	bekas jatuh
	mendarat	mendarat	dengan	keyboard coak
	dengan	dengan	selamat	kena rokok
	selamat	selamat	ada	
	d da ada	👍 👍 ada	beberapa	
	beberapa	beberapa	dent yang	
	dent yang	dent yang	seperti nya	
	seperti nya	seperti nya	bekas jatuh	
	bekas jatuh	bekas jatuh	dan juga	
	dan juga	dan juga	ada	
	ada	ada	keyboard	
	keyboard	keyboard	yang coak	
	yang coak	yang coak	seperti kena	
	seperti		rokok	

	kena	seperti kena		
	rokok.	rokok.		
Data	Kiriman kiriman		kiriman	kiriman cepat
kaos	cepat	cepat	cepat	bahan kain tebal
	sampai.	sampai.	sampai	ukurannya lebar
	Bahan kain	bahan kain	bahan kain	dikit berasa thanks
	agak tebal.	agak tebal.	agak tebal	
	Ukurannya	ukurannya	ukurannya	
	kurang	kurang	kurang	
	lebar dikit,	lebar dikit,	lebar dikit	
	berasa	berasa	berasa	
	bukan 52.	bukan 52.	bukan	
	Thanks	thanks	thanks	
Data	pengiriman	pengiriman	pengiriman	pengiriman
kemeja	lama, lama,		lama	pesanan sesuai dgn
	pesanan	pesanan	pesanan	dipesan kecewa
	tidak	tidak sesuai	tidak sesuai	barang dtng tdk
	sesuai dgn	dgn apa yg	dgn apa yg	sesuai pdhal
	apa yg	dipesan.	dipesan	produk terkenal
	dipesan.	kecewa	kecewa	
	kecewa	sama	sama	
	sama	barang yg	barang yg	
	barang yg	dtng tdk	dtng tdk	
	dtng tdk	sesuai	sesuai pdhal	
	sesuai	pdhal	produk	
	pdhal	produk	terkenal	
	produk	terkenal.		
	terkenal.			

3.2.4. Stemming

Stemming merupakan tahapan transformasi teks data kata menjadi ke bentuk dasar, berikut merupakan beberapa data elektronik, data pakaian yang dilakukan *stemming*:

Tabel 3. 4 tabel stemming 4 data elektronik dan data pakaian.

Data	Komentar	Casefoldin	Punctuatio	Stopwords	Stemmin
	(ulasan)	g	n removal	removal	g
Data	terkecoh	terkecoh	terkecoh	terkecoh	kecoh
hp	banget	banget	banget	banget	banget
	sama	sama	sama	variannya	varian
	variannya	variannya	variannya	klik a c	klik a c
	ternyata	ternyata	ternyata	semoga	moga
	yang di	yang di	yang di klik	awet deh	awet deh
	klik 9a.	klik 9a.	a bukan c	ya hpnya	ya hpnya
	bukan 9c.	bukan 9c.	semoga	thx seller	thx seller
	semoga	semoga	awet deh ya		
	awet deh	awet deh	hpnya thx		
	ya hpnya.	ya hpnya.	seller		
	thx seller	thx seller			
Data	terima	terima	terima	terima	terima
laptop	kasih gan	kasih gan	kasih gan	kasih gan	kasih gan
	barang	barang	barang	barang	barang
	sudah	sudah	sudah	mendarat	darat
	mendarat	mendarat	mendarat	selamat	selamat
	dengan	dengan	dengan	dent nya	dent nya
	selamat	selamat	selamat	bekas	bekas
	₫ ada	d da ada	ada	jatuh	jatuh
	beberapa	beberapa	beberapa	keyboard	keyboard
	dent yang	dent yang	dent yang	coak kena	coak
	seperti nya	seperti nya	seperti nya	rokok	kena
	bekas	bekas jatuh	bekas jatuh		rokok

	jatuh dan	dan juga	dan juga		
	juga ada	ada	ada		
	keyboard	keyboard	keyboard		
	yang coak	yang coak	yang coak		
	seperti	seperti	seperti		
	kena	kena	kena rokok		
	rokok.	rokok.			
Data	Kiriman	kiriman	kiriman	kiriman	kirim
kaos	cepat	cepat	cepat	cepat	cepat
	sampai.	sampai.	sampai	bahan kain	bahan
	Bahan	bahan kain	bahan kain	tebal	kain
	kain agak	agak tebal.	agak tebal	ukurannya	tebal
	tebal.	ukurannya	ukurannya	lebar dikit	ukur
	Ukuranny	kurang	kurang	berasa	lebar
	a kurang	lebar dikit,	lebar dikit	thanks	dikit asa
	lebar dikit,	berasa	berasa		thanks
	berasa	bukan 52.	bukan		
	bukan 52.	thanks	thanks		
	Thanks				
Data	pengirima	pengiriman	pengiriman	pengirima	kirim
kemej	n lama,	lama,	lama	n pesanan	pesan
a	pesanan	pesanan	pesanan	sesuai dgn	sesuai
	tidak	tidak sesuai	tidak sesuai	dipesan	dgn pes
	sesuai dgn	dgn apa yg	dgn apa yg	kecewa	kecewa
	apa yg	dipesan.	dipesan	barang	barang
	dipesan.	kecewa	kecewa	dtng tdk	dtng tdk
	kecewa	sama	sama	sesuai	sesuai
	sama	barang yg	barang yg	pdhal	pdhal
	barang yg	dtng tdk	dtng tdk	produk	produk
	dtng tdk	sesuai	sesuai	terkenal	kenal
	sesuai	pdhal	pdhal		
	pdhal				
	I	<u> </u>	1	1	

1	produk	produk	produk	
	terkenal.	terkenal.	terkenal	

3.2.5. Pembobotan kata

Pada tahap ini melakukan pembobotan kata dilakukan setelah *casefolding,* punctuation removal, stopwords removal, stemming. Pembobotan kata dilakukan untuk pemodelan machine learning, cara kerja tahap ini memecah kalimat data teks menjadi per kata atau term, mengitung kemunculan term disetiap dokumen, menghitung inverse document frequency dengan rumus komputasi sebagai berikut:

n = jumlah data

df = Total kemunculan frekuensi kata di setiap dokumen

tf = kemunculan frekuensi kata di setiap dokumen

$$TFIDF_{(term)} = tf_{(document)} * IDF$$

 $IDF_{(term)} = log10(n/df)$

Berikut meerupakan perhitungan *term frequency inverse document* kata "sesuai":

$$IDF_{(sesuai)} = log10(4/1) = 0,6020599913279624$$

 $TFIDF_{(sesuai\ D4)} = 2*0,6020599913279624 = 1,2041199826559248$
 $TFIDF_{(sesuai\ D2)} = 0*0,6020599913279624 = 0$
 $TFIDF_{(sesuai\ D2)} = 0*0,6020599913279624 = 0$
 $TFIDF_{(sesuai\ D3)} = 0*0,6020599913279624 = 0$

Tabel 3. 5 tabel pembobotan kata

Term	tf				df	n/	idf	tfidf			
	D	D	D	D		df		D1	D2	D3	D4
	1	2	3	4							
sesuai	0	0	0	2	1	4	0,602059	0	0	0	1,20
							9913279				4119
							624				9826

											5592
											48
klik	1	0	0	0	1	4	0,602059	0,602059	0	0	0
							9913279	9913279			
							624	624			
deh	1	0	0	0	1	4	0,602059	0,602059	0	0	0
							9913279	9913279			
							624	624			
bange	1	0	0	0	1	4	0,602059	0,602059	0	0	0
t							9913279	9913279			
							624	624			
kirim	0	0	1	1	2	2	0,301029			0,301	0,30
							9956639			02999	1029
							812			56639	9956
										812	6398
											12
kain	0	0	1	0	1	4	0,602059			0,602	
							9913279			05999	
							624			13279	
										624	
terima	0	1	0	0	1	4	0,602059		0,602		
							9913279		05999		
							624		13279		
									624		
bahan	0	0	1	0	1	4	0,602059			0,602	
							9913279			05999	
							624			13279	
										624	
ya	1	0	0	0	1	4	0,602059	0,602059			
							9913279	9913279			
							624	624			

111 17	_	_	1		1	Ι 4	0.602050	Ι	I	0.602	1
dikit	0	0	1	0	1	4	0,602059			0,602	
							9913279			05999	
							624			13279	
										624	
varian	1	0	0	0	1	4	0,602059	0,602059			
							9913279	9913279			
							624	624			
baran	0	1	0	1	2	2	0,301029		0,301		0,30
g							9956639		02999		1029
							812		56639		9956
									812		6398
											12
dgn	0	0	0	1	1	4	0,602059				0,60
							9913279				2059
							624				9913
											2796
											24
darat	0	1	0	0	1	4	0,602059		0,602		
							9913279		05999		
							624		13279		
									624		
lebar	0	0	1	0	1	4	0,602059			0,602	
							9913279			05999	
							624			13279	
										624	
kecew	0	0	0	1	1	4	0,602059			0.602	
a							9913279			05999	
							624			13279	
										624	
dent	0	1	0	0	1	4	0,602059		0,602		
							9913279		05999		
							624				

				1	1				12270	<u> </u>	
									13279		
									624		
keybo	0	1	0	0	1	4	0,602059		0,602		
ard							9913279		05999		
							624		13279		
									624		
tebal	0	0	1	0	1	4	0,602059			0,602	
							9913279			05999	
							624			13279	
										624	
hpnya	1	0	0	0	1	4	0,602059	0,602059			
							9913279	9913279			
							624	624			
seller	1	0	0	0	1	4	0,602059	0.602059			
							9913279	9913279			
							624	624			
jatuh	0	1	0	0	1	4	0,602059		0,602		
							9913279		05999		
							624		13279		
									624		
kasih	0	1	0	0	1	4	0,602059		0,602		
							9913279		05999		
							624		13279		
									624		
gan	0	1	0	0	1	4	0,602059		0,602		
							9913279		05999		
							624		13279		
									624		
awet	1	0	0	0	1	4	0,602059	0,602059			
							9913279	9913279			
							624	624			

kenal	0	Λ	0	1	1	1	0.602050	<u> </u>	0.602	
Kenai	0	0	0	1	1	4	0,602059		0,602	
							9913279		05999	
							624		13279	
									624	
thx	1	0	0	0	1	4	0,602059	0,602059		
							9913279	9913279		
							624	624		
produ	0	0	0	1	1	4	0,602059			0,60
k							9913279			2059
							624			9913
										2796
										24
cepat	0	0	1	0	1	4	0,602059		0,602	
							9913279		05999	
							624		13279	
									624	
coak	0	1	0	0	1	4	0,602059	0,602059		
							9913279	9913279		
							624	624		
tdk	0	0	0	1	1	4	0,602059	02.		0,60
tuk							9913279			2059
							624			9913
							024			2796
										24
.1 1	0	0	1	0	1	4	0.602050		0.602	24
thanks	0	0	1	0	1	4	0,602059		0,602	
							9913279		05999	
							624		13279	
									624	
asa	0	0	1	0	1	4	0,602059		0,602	
							9913279		05999	
							624		13279	
									624	
	<u> </u>		<u> </u>	1	J	l	1			

		1			1		0.602050		0.602	T	
rokok	0	1	0	0	1	4	0,602059		0,602		
							9913279		05999		
							624		13279		
									624		
kecoh	1	0	0	0	1	4	0,602059	0,602059			
							9913279	9913279			
							624	624			
selam	0	1	0	0	1	4	0,602059		0,602		
at							9913279		05999		
							624		13279		
									624		
pesan	0	0	0	1	1	4	0,602059				0,60
							9913279				2059
							624				9913
											2796
											24
kena	0	1	0	0	1	4	0,602059		0,602		
							9913279		05999		
							624		13279		
									624		
nya	0	1	0	0	1	4	0,602059		0,602		
							9913279		05999		
							624		13279		
									624		
ukur	0	0	1	0	1	4	0,602059			0,602	
							9913279			05999	
							624			13279	
										624	
moga	1	0	0	0	1	4	0,602059	0,602059			
							9913279	9913279			
							624	624			
<u> </u>	<u> </u>	<u> </u>	l	<u> </u>	<u> </u>	l	1	l	<u>I</u>	l .	

bekas	0	1	0	0	1	4	0,602059	0,602	
							9913279	05999	
							624	13279	
								624	
dtng	0	0	0	1	1	4	0,602059		0,60
							9913279		2059
							624		9913
									2796
									24
pdhal	0	0	0	1	1	4	0,602059		0,60
							9913279		2059
							624		9913
									2796
									24
pes	0	0	0	1	1	4	0,602059		0,60
							9913279		2059
							624		9913
									2796
									24

3.3. Pemodelan

Pada tahap pemodelan merupakan tahap untuk melatih data menggunakan *machine learning* pada penelitian ini menggunakan *decision tree, naives bayes, k-neareast neighbor*.

3.3.1. Naives bayes

Pada tahap ini menggunakan *machine learninng naives*, berikut melakukan perhitungan *navies bayes*:

Tabel 3. 6 tabel kata dan label untuk naives bayes

Kata	Term	frequency	Label
	inverse do	ocument	

lebar	0,6020599913279624	netral
awet	0,6020599913279624	positif
selamat	0,6020599913279624	positif
sesuai	1,2041199826559248	negatif

Berikut menghitung label positif:

$$p(awet|positif) = \frac{0,6020599913279624}{2}$$
$$= 0,3010299956639812$$
$$p(selamat|positif) = \frac{0,6020599913279624}{2}$$
$$= 0,3010299956639812$$

Berikut menghitung label netral:

$$p(lebar|netral) = \frac{0,6020599913279624}{1}$$
$$= 0,6020599913279624$$

Berikut menghitung label negatif:

$$p(sesuai|negatif) = \frac{1,2041199826559248}{1}$$
$$= 1,2041199826559248$$

Melakukan proses klasifikasi "selamat awet", berikut perhitungannya:

$$p(N|positif) = 0,3010299956639812 * 0,3010299956639812$$

= 0,09061905828945654
 $p(N|netral) = 0 * 0 = 0$
 $p(N|negatif) = 0 * 0 = 0$

Pada tabel 3.6 merupakan tabel *term inverse document frequncy* yang diambil hanya 4 data saja, serta diberikan label netral, positif, negatif. Hasil probbilitas yang sudah didapatkan klasifikasi dari "selamat awet"

berlabel positif, karena probalitias positif lebih besar daripada label netral maupun label negatif.

3.3.2. Decision tree

Pada tahap pembelajaran mesin *decision tree* atau pohon keputusan, dilakukan perhitungan menggunakan pembobotan kata pada tabel 3.7 sebagai berikut:

Kata	Term frequency	Label
	inverse document	
lebar	0,6020599913279624	netral
awet	0,6020599913279624	positif
selamat	0,6020599913279624	positif
sesuai	1.2041199826559248	negatif

Tabel 3. 7 tabel kata dan label untuk decision tree

Karena *term frequency inverse document* adalah tipe data numerikal maka dilakukan normalisasi dengan cara mencari rata-rata:

$$rata - rata\ tfidf_{(lebardanawet)} = \frac{0,6020599913279624 + 0,6020599913279624}{2}$$

$$= 0,6020599913279624$$

$$rata - rata\ tfidf_{(awet\ dan\ selamat)} = \frac{0.6020599913279624 + 1.2041199826559248}{2}$$

$$= 0,90309000000000000$$

Tabel 3. 8 normalisasi

Kata	Term frequency	normalisasi	Label
	inverse document		
lebar	0,6020599913279624	0,6020599913279624	netral
awet	0,6020599913279624		positif
selamat	0,6020599913279624	0,9030900000000001	positif
sesuai	1,2041199826559248		negatif

Perhitungan normalisasi dilakukan, maka selanjutnya menghitung gini impurity:

Probabilitas (gini) < 0,6020599913279624: 0 positif, 0 netral, 0 negatif:

Gini impurity < 0,6020599913279624 =

$$1 - (0/0)^2 - (0/0)^2 - (0/0)^2$$
$$= 0$$

Probabilitas (gini) > 0,6020599913279624: 0 positif, 0 netral, 1 negatif:

Gini impurity > 0,6020599913279624 =

$$1 - (0/1)^2 - (0/1)^2 - (1/1)^2 = 0$$

Total gini impurity = (0/1) * 0 + (1/1) * 0 = 0

Probabilitas (gini) < 0,903090000000001: 2 positif, 1 netral, 0 negatif:

 $Gini\ impurity < 0.9030900000000001 =$

$$1 - (2/3)^2 - (1/3)^2 - (0/3)^2 = 0,444$$

Probabilitas (gini) > 0,903090000000001: 0 positif, 0 netral, 1 negatif:

Gini impurity > 0,903090000000001=

$$1 - (0/1)^2 - (0/1)^2 - (1/1)^2 = 0$$

Total *gini impurity* = (3/4) * 0.44 + (1/4) * 0 = 0.33

Gini impurity term frequency inverse document <0,6020599913279624 lebih kecil, berikut pohon keputusan pada gambar 3.1.

Gambar 3.1 decision tree

Pada gambar 3.1 dapat dilihat sesudah mencari nilai *gini impurity* maka dibuat *plot* pohon keputusan, karena *term frequency inverse document* sebagai pembatas adalah < 0,6020599913279624 maka jika benar:

- 1. label positif ada 2
- 2. label netral ada 2
- 3. label negatif tidak ada

jika bernilai salah:

- 1. label positif tidak ada
- 2. label positif tidak ada
- 3. label negatif ada 1

3.3.3. K-nearest neighbor

Pada tahap pembelajaran mesin *k-nearest neighbor*. *K-nearest neighbor* bekerja berdasarkan label dari nilai K tetangga terdekat. Berikut perhitungan *k-nearest neighbor*:

Tabel 3. 9 tabel bobot kata untuk k nearest neighbour

Term	tf			df	n/	idf	tfidf				
	D	D	D	D		df		D1	D2	D3	D4
	1	2	3	4							

lebar	0	0	1	0	1	4	0,602059			0,602	
							9913279			05999	
							624			13279	
										624	
awet	1	0	0	0	1	4	0,602059	0,602059			
							9913279	9913279			
							624	624			
selam	0	1	0	0	1	4	0,602059		0,602		
at							9913279		05999		
							624		13279		
									624		
sesuai	0	0	0	2	1	4	0,602059	0	0	0	1,20
							9913279				4119
							624				9826
											5592
											48

Mencari kueri "lebar sesuai" menghasilkan kelas, menghitung similiaritas menggunakan *cosine similiarity*:

$$\begin{aligned} Query_{(lebar)} &= 0,6020599913279624 \\ Query_{(sesuai)} &= 1,2041199826559248 \\ CosSim(q,d_j) &= \frac{\overrightarrow{d_j} \overrightarrow{q}}{\left[\overrightarrow{d_j} \right] \left[\overrightarrow{q} \right]} = \frac{\sum_{i=1}^t (w_{ij} * w_{iq})}{\sqrt{\sum_{i=1}^t w_{ij}^2 \cdot \sum_{i=1}^t w_{iq}^2}} \end{aligned}$$

Tabel 3. 10 tabel bobot kata hasil kalkulasi jarak

Term		1	Wij*wiq		Wij^2				Wiq^2
	D1	D	D3	D4	D1	D2	D3	D4	Q
		2							
lebar	0	0	0,602	0			0,3624		0,3624
			05999				762331		762331
							578261		578261

			13279				602922		602922
			624				361358		361358
							1376		1376
awet	0	0	0	0	0,36				
					2476				
					2331				
					5782				
					6160				
					2922				
					3613				
					5813				
					76				
selam	0	0	0	0		0,36			
at						2476			
						2331			
						5782			
						6160			
						2922			
						3613			
						5813			
						76			
sesuai	0	0	0	1,449	0	0	0	1,4499	1,4499
				90493				049326	049326
				26313				313046	313046
				04641				411689	411689
				16894				445432	445432
				45432				5504	5504
				5504					
Total			0,602	1,449	0,36	0,36	0,3624	1,4499	1,8123
			05999	90493	2476	2476	762331	049326	811657
			13279	26313	2331	2331	578261	313046	891308
			624	04641	5782	5782	602922	411689	014611

		16894	6160	6160	361358	445432	806790
		45432	2922	2922	1376	5504	688
		5504	3613	3613			
			5813	5813			
			76	76			

$$CosSim(d3, q_{lebar})$$

$$= \frac{0,6020599913279624}{\sqrt{0,6020599913279624 + 1,81238116578913}}$$

$$= \frac{0,6020599913279624}{1,34394195}$$

$$= 0,44798065223573263$$

$$CosSim(d4, q_{sesuai})$$

$$= \frac{1,44990493263130464116894454325504}{\sqrt{1,44990493263130464116894454325504}}$$

$$= \frac{1,44990493263130464116894454325504}{\sqrt{1,44990493263130464116894454325504}}$$

Diurutkan dengan nilai terbesar, maka Dokumen 4 mempunyai nilai paling besar dibanding dokumen 3, kemudian dilakukan perankingan:

= 0.8027466551039498

1.8061799739838873

$$D4 = 0,8027466551039498$$
$$D3 = 0,44798065223573263$$

Ambil nilai K = 1

D4 = kelas atau labelnya adalah negatif

Kesimpulan bahwa kueri "lebar sesuai" menghasilkan kelas negatif.

3.2. Evaluasi

Pada tahap ini melakukan evaluasi dari tahap pemodelan, berikut perhitungan evaluasi

Evaluasi naives bayes
 Dari hasil prediksi sebagai berikut:

Menghasilkan true positive (TP) 1, false negative (FP) 0, false positive (FP) 0, true negative (TN) 0

$$recall = \frac{1}{1+0} = 1$$

$$precision = \frac{1}{1+0} = 1$$

$$acc = \frac{1+0}{1+0+0+0} = 1$$

Tabel 3. 11 tabel confusion matrix evaluasi naives bayes

Kelas	Prediksi	Prediksi	Prediksi
	positif	netral	negatif
Kelas	1	0	0
Asli:			
positif			
Kelas	0	0	0
Asli:			
netral			
Kelas	0	0	0
Asli:			
negatif			

2. Evaluasi decision tree

Dari hasil prediksi sebagai berikut:

Menghasilkan true positive (TP) 1, false negative (FP) 0, false positive (FP) 0, true negative (TN) 0

$$acc = \frac{1+0}{1+0+0+0} = 1$$

$$precision = \frac{1}{1+0} = 1$$

$$recall = \frac{1}{1+0} = 1$$

T-1-12 12 4-1-1	<i>c</i> .			, ,
Tabel 3. 12 tabel	confusion	<i>matrix</i> eval	luasi <i>a</i>	lecision tree

Kelas	Prediksi	Prediksi	Prediksi
	positif	netral	negatif
Kelas	2	0	0
Asli:			
positif			
Kelas	0	0	0
Asli:			
netral			
Kelas	0	0	2
Asli:			
negatif			

3. Evaluasi k nearest neighbor

Dari hasil prediksi sebagai berikut:

Menghasilkan true positive (TP) 1, false negative (FP) 0, false positive (FP) 0, true negative (TN) 0

$$acc = \frac{1+0}{1+0+0+0} = 1$$

$$precision = \frac{1}{1+0} = 1$$

$$recall = \frac{1}{1+0} = 1$$

Tabel 3. 13 tabel confusion matrix evaluasi k nearest neighbor

Kelas	Prediksi	Prediksi	Prediksi
	positif	netral	negatif
Kelas	2	0	0
Asli:			
positif			
Kelas	0	0	0
Asli:			

netral			
Kelas	0	0	2
Asli:			
negatif			

DAFTAR PUSTAKA

- Apriani, R., Gustian, D., Program, S., Sistem, I., Putra, U. N., Indonesia, S., Raya, J., Kaler, C., 21, N., & Sukabumi, K. (2019). ANALISIS SENTIMEN DENGAN NAÏVE BAYES TERHADAP KOMENTAR APLIKASI TOKOPEDIA. *Jurnal Rekayasa Teknologi Nusa Putra*, 6(1), 54–62. https://doi.org/10.52005/REKAYASA.V6I1.86
- Apriliani, D., Abidin, T., Sutanta, E., Hamzah, A., & Somantri, O. (2020).

 Sentiment analysis for assessment of hotel services review using feature selection approach based-on decision tree. *International Journal of Advanced Computer Science and Applications*, 11(4), 240–245.

 https://doi.org/10.14569/IJACSA.2020.0110432
- Bahassine, S., Madani, A., Al-Sarem, M., & Kissi, M. (2020). Feature selection using an improved Chi-square for Arabic text classification. *Journal of King Saud University Computer and Information Sciences*, *32*(2), 225–231. https://doi.org/10.1016/j.jksuci.2018.05.010
- Bourequat, W., & Mourad, H. (2021). Sentiment Analysis Approach for Analyzing iPhone Release using Support Vector Machine. *International Journal of Advances in Data and Information Systems*, 2(1), 36–44. https://doi.org/10.25008/ijadis.v2i1.1216
- Cahyaningtyas, C., Nataliani, Y., & Widiasari, I. R. (2021). Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE. *AITI*, *18*(2), 173–184. https://doi.org/10.24246/AITI.V18I2.173-184
- Cunningham, P., & Delany, S. J. (2021). K-Nearest Neighbour Classifiers-A Tutorial. In *ACM Computing Surveys* (Vol. 54, Issue 6). Association for Computing Machinery. https://doi.org/10.1145/3459665
- Deviyanto, A., & Wahyudi, M. D. R. (2018). PENERAPAN ANALISIS SENTIMEN PADA PENGGUNA TWITTER MENGGUNAKAN METODE K-NEAREST NEIGHBOR. *JISKA (Jurnal Informatika Sunan Kalijaga)*, *3*(1), 1. https://doi.org/10.14421/jiska.2018.31-01
- Dwiki, A., Putra, A., & Juanita, S. (2021). Analisis Sentimen pada Ulasan

- pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN. *JATISI* (*Jurnal Teknik Informatika Dan Sistem Informasi*), 8(2), 636–646. https://doi.org/10.35957/JATISI.V8I2.962
- Dyo fatra, A. H., Hayatin, N. H., & Aditya, C. S. K. (2020). Analisa Sentimen Tweet Berbahasa Indonesia Dengan Menggunakan Metode Lexicon Pada Topik Perpindahan Ibu Kota Indonesia. *Jurnal Repositor*, 2(7), 977. https://doi.org/10.22219/repositor.v2i7.937
- El Mohadab, M., Bouikhalene, B., & Safi, S. (2019). Predicting rank for scientific research papers using supervised learning. *Applied Computing and Informatics*, 15(2), 182–190. https://doi.org/10.1016/j.aci.2018.02.002
- Fidan, H. (2020). Grey Relational Classification of Consumers' Textual Evaluations in E-Commerce. *Journal of Theoretical and Applied Electronic Commerce Research*, *15*(1), 48–65. https://doi.org/10.4067/S0718-18762020000100105
- Filcha, A., & Hayaty, M. (2019). Implementasi Algoritma Rabin-Karp untuk Pendeteksi Plagiarisme pada Dokumen Tugas Mahasiswa. *JUITA: Jurnal Informatika*, 7(1), 25. https://doi.org/10.30595/juita.v7i1.4063
- Firdaus, M. F. El, Nurfaizah, N., & Sarmini, S. (2022). Analisis Sentimen

 Tokopedia Pada Ulasan di Google Playstore Menggunakan Algoritma Naïve

 Bayes Classifier dan K-Nearest Neighbor. *JURIKOM (Jurnal Riset Komputer)*, *9*(5), 1329–1336. https://doi.org/10.30865/JURIKOM.V9I5.4774
- Gian, M., & Ikate, S. (2021). Development of Electronic Business From the Historical Point of View of an E-Commerce Concept. *Journal Dimensie Management and Public Sector*, 2(2), 19–24. https://doi.org/10.48173/jdmps.v2i2.91
- Handayani, R. N. (2021). Optimasi Algoritma Support Vector Machine untuk
 Analisis Sentimen pada Ulasan Produk Tokopedia Menggunakan PSO.
 Media Informatika, 20(2), 97–108.
 https://doi.org/10.37595/MEDIAINFO.V20I2.59
- Hasnain, M., Pasha, M. F., Ghani, I., Imran, M., Alzahrani, M. Y., & Budiarto, R. (2020). Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking. *IEEE Access*, 8, 90847–90861.

- https://doi.org/10.1109/ACCESS.2020.2994222
- Hassani, H., Beneki, C., Unger, S., Mazinani, M. T., & Yeganegi, M. R. (2020). Text mining in big data analytics. *Big Data and Cognitive Computing*, 4(1), 1–34. https://doi.org/10.3390/bdcc4010001
- Kabiru, I. N., & Sari, P. K. (2019). Analisa Konten Media Sosial E-commerce Pada Instagram Menggunakan Metode Sentiment Analysis Dan Lda-based Topic Modeling (studi Kasus: Shopee Indonesia). *EProceedings of Management*, 6(1).
- Kang, S. (2021). K-nearest neighbor learning with graph neural networks. *Mathematics*, *9*(8). https://doi.org/10.3390/math9080830
- KURNIAWAN, R., & APRILIANI, A. (2020). ANALISIS SENTIMEN

 MASYARAKAT TERHADAP VIRUS CORONA BERDASARKAN OPINI

 DARI TWITTER BERBASIS WEB SCRAPER. *Jurnal INSTEK*(*Informatika Sains Dan Teknologi*), 5(1), 67.

 https://doi.org/10.24252/instek.v5i1.13686
- Lee, C. S., Cheang, P. Y. S., & Moslehpour, M. (2022). Predictive Analytics in Business Analytics: Decision Tree. *Advances in Decision Sciences*, 26(1), 1–29. https://doi.org/10.47654/V26Y2022I1P1-30
- Merinda Lestandy, Abdurrahim Abdurrahim, & Lailis Syafa'ah. (2021). Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes. *Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi)*, 5(4), 802–808. https://doi.org/10.29207/resti.v5i4.3308
- Nofiyanti, E., & Oki Nur Haryanto, E. M. (2021). Analisis Sentimen terhadap Penanggulangan Bencana di Indonesia. *Jurnal Ilmiah SINUS*, *19*(2), 17. https://doi.org/10.30646/sinus.v19i2.563
- Pajri, D., Umaidah, Y., & Padilah, T. N. (2020). K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia. *Jurnal Teknik Informatika Dan Sistem Informasi*, 6(2). https://doi.org/10.28932/jutisi.v6i2.2658
- Panhalkar, A. R., & Doye, D. D. (2022). Optimization of decision trees using modified African buffalo algorithm. *Journal of King Saud University Computer and Information Sciences*, 34(8), 4763–4772.

- https://doi.org/10.1016/j.jksuci.2021.01.011
- Pintoko, B. M., & Lhaksmana, K. M. (2018). Analisis Sentimen Jasa Transportasi Online Pada Twitter Menggunakan Metode NaÃ-ve Bayes Classifier. *EProceedings of Engineering*, 5(3). https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/7447
- Pradana, A. W., & Hayaty, M. (2019). The Effect of Stemming and Removal of Stopwords on the Accuracy of Sentiment Analysis on Indonesian-language Texts. *Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control*, 375–380. https://doi.org/10.22219/kinetik.v4i4.912
- Pravina, A. M., Cholissodin, I., & Adikara, P. P. (2019). Analisis Sentimen

 Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan

 Algoritme Support Vector Machine (SVM). *Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer*, 3(3), 2789–2797. http://jptiik.ub.ac.id
- Ramadhan, N. G., & Ramadhan, T. I. (2022). Analysis Sentiment Based on IMDB Aspects from Movie Reviews using SVM. *Sinkron*, 7(1), 39–45. https://doi.org/10.33395/sinkron.v7i1.11204
- Raschka, S. (2018). *Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning*. https://arxiv.org/abs/1811.12808v3
- Reddy, K. N., & Reddy, D. B. I. (2021). Restaurant Review Classification Using Naives Bayes Model. *Journal of University of Shanghai for Science and Technology*, 23(08), 646–656. https://doi.org/10.51201/JUSST/21/08443
- Ricky, R. D. M., Kawung, E., & Goni, S. Y. V. (2021). Dampak Aplikasi Belanja Online (Online Shop) di Masa Pandemi Covid-19 Terhadap Minat Belanja Masyarakat di Kelurahan Girian Weru Ii Kecamatan Girian Kota Bitung Provinsi Sulawesi Utara. *Jurnal Ilmiah*, *1*(ilmiah).
- Romli, I., Prameswari R, S., & Kamalia, A. Z. (2021). Sentiment Analysis about Large-Scale Social Restrictions in Social Media Twitter Using Algoritm K-Nearest Neighbor. *Jurnal Online Informatika*, 6(1), 96. https://doi.org/10.15575/join.v6i1.670

- Rozi, F. N., & Sulistyawati, D. H. (2019). KLASIFIKASI BERITA HOAX PILPRES MENGGUNAKAN METODE MODIFIED K-NEAREST NEIGHBOR DAN PEMBOBOTAN MENGGUNAKAN TF-IDF. *KONVERGENSI*, *15*(1). https://doi.org/10.30996/KONV.V15I1.2828
- Septian, J. A., Fachrudin, T. M., & Nugroho, A. (2019). Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor. *INSYST: Journal of Intelligent System and Computation*, *1*(1), 43–49.

 https://doi.org/10.52985/INSYST.V1I1.36
- Septiani, L., & Sibaroni, Y. (2019). Sentiment Analysis Terhadap Tweet Bernada Sarkasme Berbahasa Indonesia. *Jurnal Linguistik Komputasional*, 2(2), 62–67. https://doi.org/10.26418/JLK.V2I2.23
- Vicari, M., & Gaspari, M. (2021). Analysis of news sentiments using natural language processing and deep learning. *AI and Society*, *36*(3), 931–937. https://doi.org/10.1007/s00146-020-01111-x
- Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. *Artificial Intelligence Review*, *55*(7), 5731–5780. https://doi.org/10.1007/s10462-022-10144-1
- Watrianthos, R., Suryadi, S., Irmayani, D., Nasution, M., & Simanjorang, E. F. S. (2019). Sentiment Analysis Of Traveloka App Using Naïve Bayes Classifier Method. *INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH*, 8, 7. www.ijstr.org
- Yun, H. (2021). Prediction model of algal blooms using logistic regression and confusion matrix. *International Journal of Electrical and Computer Engineering*, 11(3), 2407–2413. https://doi.org/10.11591/ijece.v11i3.pp2407-2413
- Zamzami, F. N., Adiwijaya, A., & P, M. D. (2021). Analisis Sentimen Terhadap Review Film Menggunakan Metode Modified Balanced Random Forest dan Mutual Information. *JURNAL MEDIA INFORMATIKA BUDIDARMA*, *5*(2), 415. https://doi.org/10.30865/mib.v5i2.2844
- Zhang, S., Zhang, D., Zhong, H., & Wang, G. (2020). A multiclassification model of sentiment for e-commerce reviews. *IEEE Access*, 8, 189513–189526.

https://doi.org/10.1109/ACCESS.2020.3031588