REILLY TYPE INEQUALITY FOR THE FIRST EIGENVALUE OF THE $L_{r;F}$ OPERATOR

YIJUN HE

RESEARCH INSTITUTE OF MATHEMATICS AND APPLIED MATHEMATICS, SHANXI UNIVERSITY, TAIYUAN 030006, P. R. CHINA.

E-MAIL: HEYIJUN@SXU.EDU.CN

ABSTRACT. Given a positive function F on \mathbb{S}^n which satisfies a convexity condition, for $1 \leq r \leq n$, we define for hypersurfaces in \mathbb{R}^{n+1} the r-th anisotropic mean curvature function $H_{r;F}$, a generalization of the usual r-th mean curvature function. We also define $L_{r;F}$ operator, the linearized operator of the r-th anisotropic mean curvature, which is a generalization of the usual L_r operator for hypersurfaces in the Euclidean space \mathbb{R}^{n+1} . The Reilly type inequalities for the first eigenvalue of the $L_{r;F}$ operator have been proved.

1. Introduction

A classical result of Reilly [17] establishes that the first positive eigenvalue λ_1 of the Laplacian operator Δ of a closed (that is, compact and without boundary) hypersurface M immersed into the Euclidean space \mathbb{R}^{n+1} satisfies

$$\lambda_1 \le \frac{n}{\operatorname{vol}(M)} \int_M H^2 dM,$$

where H denotes the mean curvature of M, with equality if and only if M is a round sphere in \mathbb{R}^{n+1} . More generally, Reilly obtained that

$$\lambda_1 \left(\int_M H_r dM \right)^2 \le n \operatorname{vol}(M) \int_M H_{r+1}^2 dM,$$

for every $0 \le r \le n-1$, where H_r stands for the r-th mean curvature of the hypersurface, and equality holds precisely when M is a round sphere (recall that $H_0 = 1$ by definition, and $H_1 = H$).

The first eigenvalue of L_r , the linearized operator of the r-th mean curvature of hypersurfaces in \mathbb{R}^{n+1} , has been studied by do Carmo, Alencar and Rosenberg

Date: December 13, 2011.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C40; Secondary 53C42, 53B25.

Key words and phrases. Wulff shape, r-th anisotropic mean curvature, $L_{r;F}$ operator.

[2], they proved, under the hypothesis $H_{r+1} > 0$, that

$$\lambda_1^{L_r} \int_M H_r \le (n-r)C_n^r \int_M H_{r+1}^2,$$

and equality holds precisely if M is a sphere of \mathbb{R}^{n+1} .

More recently, Veeravalli [20] has extended Reilly's inequalities to the case of hypersurfaces immersed into hyperbolic and spherical spaces. See also [7], [8] and [11] for other extensions of Reilly's inequalities.

In [3], L. J. Alías and J. M. Malacarne proved:

Theorem 1.1. Let $\psi: M \to \mathbb{R}^{n+1}$ be an orientable closed connected hypersurface immersed into the Euclidean space. Assume that L_r is elliptic on M, for some $0 \le r \le n-1$, and let $\lambda_1^{L_r}$ be the first positive eigenvalue of L_r . Then, for every $0 \le s \le n-1$ it follows that

$$(1.1) \lambda_1^{L_r} (\int_M H_s dM)^2 \le c(r) \int_M H_r dM \int_M H_{s+1;F}^2 dV, \ c(r) = (n-r)C_n^r.$$

and equality holds if and only if M is a round sphere in \mathbb{R}^{n+1} .

In this paper, we prove an anisotropic version of Theorem 1.1. First we introduce some notations.

Let

$$\mathbb{S}^n = \{ y \in \mathbb{R}^{n+1} \mid ||y|| = 1 \}$$

be the standard unit sphere in the Euclidean space \mathbb{R}^{n+1} , where $||y||^2 = \sum_{i=1}^{n+1} (y^i)^2$ for $y = (y^1, y^2, \dots, y^{n+1}) \in \mathbb{R}^{n+1}$.

Let $F: \mathbb{S}^n \to \mathbb{R}^+$ be a smooth function which satisfies the following convexity condition:

$$(1.2) (D^2F + FI)_y > 0, \quad \forall y \in \mathbb{S}^n,$$

where D^2F denotes the intrinsic Hessian of F on \mathbb{S}^n and I denotes the identity on $T_y\mathbb{S}^n$, > 0 means that the matrix is positive definite.

We consider the map

(1.3)
$$\phi \colon \mathbb{S}^n \to \mathbb{R}^{n+1}, \\ y \to F(y)y + (\operatorname{grad}_{\mathbb{S}^n} F)_y,$$

its image $W_F = \phi(\mathbb{S}^n)$ is a smooth, convex hypersurface in \mathbb{R}^{n+1} called the Wulff shape of F (see [5], [12], [14], [19], [21]). When $F \equiv 1$, the Wulff shape W_F is just \mathbb{S}^n .

Now let $x: M \to \mathbb{R}^{n+1}$ be a smooth immersion of a compact, oriented hypersurface without boundary. Let $N: M \to \mathbb{S}^n$ denote its Gauss map. The map $\nu = \phi \circ N: M \to W_F$ is called the anisotropic Gauss map of x.

Let $S_F = -d\nu$. S_F is called the F-Weingarten operator, and the eigenvalues of S_F are called anisotropic principal curvatures. Let σ_r be the elementary symmetric functions of the anisotropic principal curvatures $\kappa_1, \kappa_2, \dots, \kappa_n$:

$$\sigma_r = \sum_{i_1 < \dots < i_r} \kappa_{i_1} \cdots \kappa_{i_r} \quad (1 \le r \le n).$$

We set $\sigma_0 = 1$. The r-th anisotropic mean curvature $H_{r;F}$ is defined by $H_{r;F} = \sigma_r/C_n^r$, also see Reilly [15]. $H_F = H_{1;F}$ is called the anisotropic mean curvature. When $F \equiv 1$, $H_{r;F}$ is just the r-th mean curvature H_r of hypersurfaces which has been studied by many authors (see [1], [2], [3], [13]). Thus, the r-th anisotropic mean curvature $H_{r;F}$ generalizes the r-th mean curvature H_r of hypersurfaces in the (n+1)-dimensional Euclidean space \mathbb{R}^{n+1} .

Associated to each $H_{r;F}$, we define its linearized operator $L_{r;F}$ (see Section 3), denotes $\lambda_1^{L_{r;F}}$ its first positive eigenvalue.

In section 2, we define a constant μ depends on the function $F: \mathbb{S}^n \to \mathbb{R}^+$. In this paper, we prove the following Reilly type inequality:

Theorem 1.2. Let $X: M \to \mathbb{R}^{n+1}$ be a compact oriented hypersurface without boundary immersed into Euclidean space, and let $F: \mathbb{S}^n \to \mathbb{R}^+$ be a smooth function which satisfies the convexity condition (1.2). If $H_{r;F} > 0$ for some $r = 1, \dots, n$. Then the first eigenvalue $\lambda_1^{L_{r;F}}$ of $L_{r;F}$ satisfies

$$(1.4) \quad \lambda_1^{L_{r;F}} \left(\int_M H_{s-1;F} dV \right)^2 \le \mu c(r) \int_M H_{r;F} dV \int_M H_{s;F}^2 dV, \quad s = 1, 2, \dots, n,$$
where $c(r) = (n-r)C_n^r$.

2. Preliminaries

We define $F^*: \mathbb{R}^{n+1} \to \mathbb{R}$ to be:

(2.1)
$$F^*(y) = \sup \left\{ \frac{\langle y, z \rangle}{F(z)} | z \in \mathbb{R}^{n+1} \setminus \{0\} \right\},$$

then F^* is a Minkowski norm on \mathbb{R}^{n+1} . In fact, as proved in [10], $F^* : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}$ is smooth and we have

Proposition 2.1. (1)
$$F^*(y) > 0$$
, $\forall y \in \mathbb{R}^{n+1} \setminus \{0\}$; (2) $F^*(ty) = tF^*(y)$, $\forall y \in \mathbb{R}^{n+1}$, $t > 0$;

(3) $F^*(y+z) \leq F^*(y) + F^*(z)$, $\forall y, z \in \mathbb{R}^{n+1}$, and the equality holds if and only if y=0, or z=0 or y=kz for some k>0.

(4)
$$W_F = \{ y \in \mathbb{R}^{n+1} | F^*(y) = 1 \}.$$

We define

(2.2)
$$\bar{g}_{\alpha\beta}(y) = \frac{1}{2} \frac{\partial^2 (F^*)^2}{\partial y^{\alpha} \partial y^{\beta}}(y),$$

and

$$(2.3) g_y(X,Y) = \bar{g}_{\alpha\beta}(y)X^{\alpha}Y^{\beta},$$

where $y \in \mathbb{R}^{n+1} \setminus \{0\}$ and $X = (X^1, X^2, \dots, X^{n+1}), Y = (Y^1, Y^2, \dots, Y^{n+1}) \in T_y \mathbb{R}^{n+1} \cong \mathbb{R}^{n+1}$.

For $u, v \in \mathbb{R}^{n+1}$, $y \in \mathbb{R}^{n+1} \setminus \{0\}$, we write

$$\langle u, v \rangle_y = g_y(u, v), \quad ||u||_y = \sqrt{g_y(u, u)},$$

where $u = (u_1, \dots, u_{n+1}), v = (v_1, \dots, v_{n+1}).$

Define constant λ, Λ, μ by

$$\lambda = \lambda(\mathbb{R}^{n+1}, F) = \inf_{y, u \in \mathbb{R}^{n+1} \setminus \{0\}} \frac{\|u\|_y^2}{\|u\|^2},$$

$$\Lambda = \Lambda(\mathbb{R}^{n+1}, F) = \sup_{y, u \in \mathbb{R}^{n+1} \setminus \{0\}} \frac{\|u\|_y^2}{\|u\|^2}.$$

$$\mu = \mu(\mathbb{R}^{n+1}, F) = \frac{\Lambda}{\lambda}.$$

It is clear that $1 \le \mu < \infty$, and $\mu = 1$ if and only if F^* is an Euclidean norm.

Let $x: M \to \mathbb{R}^{n+1}$ be a compact oriented hypersurface in the Euclidean space \mathbb{R}^{n+1} . Let $\nu: M \to W_F$ denote its anisotropic Gauss map. Then for any $p \in M$, $\nu(p)$ is perpendicular to T_pM with respect to the inner product $g_{\nu(p)}$ and $F^*(\nu(p)) = 1$. Thus, we call $\nu(p)$ an anisotropic unit normal vector of T_pM .

Let $\overline{\nabla}$ be the standard connection on the (n+1)-dimensional Euclidean space \mathbb{R}^{n+1} . For vector fields X, Y on M, we decompose $\overline{\nabla}_X Y$ as the tangent part $\nabla_X Y$ and the anisotropic normal part $\mathrm{II}(X,Y)\nu$ with respect to the inner product g_{ν} . That is:

(2.4)
$$\overline{\nabla}_X Y = \nabla_X Y + \mathrm{II}(X, Y)\nu,$$

where $g_{\nu}(\nabla_X Y, \nu) = 0$.

It is easy to verify that ∇ is a torsion free connection on M and II is a symmetric second order covariant tensor field on M. We call II the anisotropic second fundamental form.

Let $\{e_i\}_{i=1}^n$ be a local frame of M and $\{\omega^i\}_{i=1}^n$ its dual frame. Let $g_{ij} = g_{\nu}(e_i, e_j)$, $\nabla e_i = \omega_i^j \otimes e_j$, $\mathrm{II}(e_i, e_j) = h_{ij}$, $h_i^j = g^{jk}h_{ki}$, where (g^{ij}) is the inverse matrix of (g_{ij}) . Then we have

$$(2.5) dx = \omega^i e_i,$$

$$(2.6) de_i = \omega_i^j e_j + h_{ij} \omega^j \nu,$$

$$(2.7) d\nu = -h_i^j \omega^i e_j.$$

Differentiate (2.5) and using (2.6), we get

$$(2.8) d\omega^i = \omega^j \wedge \omega^i_j,$$

$$(2.9) h_{ij} = h_{ji}.$$

Differentiate (2.6) and using (2.6-2.7), we get

$$(2.10) h_{ijk} = h_{ikj},$$

$$(2.11) d\omega_i^j - \omega_i^k \wedge \omega_k^j = -\frac{1}{2} R_{i\ kl}^{\ j} \omega^k \wedge \omega^l,$$

where

$$h_{ijk}\omega^{k} = dh_{ij} - h_{ik}\omega_{j}^{k} - h_{kj}\omega_{i}^{k},$$

 $R_{ijkl}^{j} = -R_{ilk}^{j} = h_{ik}h_{l}^{j} - h_{il}h_{k}^{j}.$

Differentiate (2.7) and using (2.6), we get

$$(2.12) h_{i \ k}^{\ j} = h_{k \ i}^{\ j},$$

where

$$h_i^{\ j}_{\ k}\omega^k=dh_i^j+h_i^k\omega_k^j-h_k^j\omega_i^k.$$

Note (h_i^j) is the matrix of the F-Weingarten operator $S_F = -d\nu$, its eigenvalues are called the anisotropic principal curvatures, we denote them by $\kappa_1, \dots, \kappa_n$. Let σ_r be the elementary symmetric functions of the anisotropic principal curvatures $\kappa_1, \kappa_2, \dots, \kappa_n$:

$$\sigma_r = \sum_{i_1 < \dots < i_r} \kappa_{i_1} \cdots \kappa_{i_r} \quad (1 \le r \le n).$$

We set $\sigma_0 = 1$. The r-th anisotropic mean curvature $H_{r;F}$ is defined by $H_{r;F} = \sigma_r/C_n^r$.

Using the characteristic polynomial of $S_F = -d\nu$, σ_r is defined by

$$\det(tI - S_F) = \sum_{r=0}^{n} (-1)^r \sigma_r t^{n-r}.$$

So, we have

(2.13)
$$\sigma_r = \frac{1}{r!} \sum_{i_1, \dots, i_r; j_1, \dots, j_r} \delta_{i_1 \dots i_r}^{j_1 \dots j_r} h_{j_1}^{i_1} \dots h_{j_r}^{i_r},$$

where $\delta_{i_1\cdots i_r}^{j_1\cdots j_r}$ is the usual generalized Kronecker symbol, i.e., $\delta_{i_1\cdots i_r}^{j_1\cdots j_r}$ equals +1 (resp. -1) if $i_1\cdots i_r$ are distinct and $(j_1\cdots j_r)$ is an even (resp. odd) permutation of $(i_1\cdots i_r)$ and in other cases it equals zero.

Definition 2.2. Let $f: M \to \mathbb{R}$ be a smooth function. We define the gradient grad f of the function f by

$$(2.14) g_{\nu}(\operatorname{grad} f, X) = X(f),$$

where X is any smooth vector field on M.

Define f_i by $df = f_i \omega^i$, then

$$(2.15) grad f = g^{ij} f_j e_i.$$

We define

$$dV = |e_1, \cdots, e_n, \nu| \,\omega^1 \wedge \cdots \wedge \omega^n,$$

where $|e_1, \dots, e_n, \nu|$ is the determinant of the matrix (e_1, \dots, e_n, ν) . Then dV is a volume form on M.

Definition 2.3. Let X be a smooth vector field on M. We define the divergence $\operatorname{div} X$ by $d\{i(X)dV\} = (\operatorname{div} X)dV$, where

$$(i(X)dV)(Y_1,\cdots,Y_{n-1})\equiv dV(X,Y_1,\cdots,Y_{n-1}), \qquad \forall Y_1,\cdots,Y_{n-1}\in\mathscr{X}(M).$$

Lemma 2.4. Let $X = X^i e_i$, then div $X = X_i^i$, where

$$dX^i + X^j \omega_j^i = X_j^i \omega^j.$$

Proof. By (2.6), (2.7), we get

(2.16)
$$d|e_1, \dots, e_n, \nu| = \omega_i^i |e_1, \dots, e_n, \nu|.$$

From the definition of i(X), we have

$$i(X)dV = \sum_{i} (-1)^{i+1} X^{i} | e_{1}, \cdots, e_{n}, \nu | \omega^{1} \wedge \cdots \wedge \widehat{\omega^{i}} \wedge \cdots \wedge \omega^{n}.$$

So,

$$\begin{split} d\{i(X)dV\} &= \sum_{i} (-1)^{i+1} (dX^i) \wedge |e_1, \cdots, e_n, \nu| \, \omega^1 \wedge \cdots \wedge \widehat{\omega^i} \wedge \cdots \wedge \omega^n \\ &+ \sum_{i} (-1)^{i+1} X^i (d \, |e_1, \cdots, e_n, \nu|) \wedge \omega^1 \wedge \cdots \wedge \widehat{\omega^i} \wedge \cdots \wedge \omega^n \\ &+ \sum_{j < i} (-1)^{i+j} X^i \, |e_1, \cdots, e_n, \nu| \, d\omega^j \wedge \omega^1 \wedge \cdots \wedge \widehat{\omega^j} \wedge \cdots \wedge \widehat{\omega^i} \wedge \cdots \wedge \omega^n \\ &+ \sum_{j > i} (-1)^{i+j+1} X^i \, |e_1, \cdots, e_n, \nu| \, d\omega^j \wedge \omega^1 \wedge \cdots \wedge \widehat{\omega^i} \wedge \cdots \wedge \widehat{\omega^j} \wedge \cdots \wedge \omega^n \\ &= X_i^i dV. \end{split}$$

Remark 2.5. Recall $\nu = \phi \circ N = DF|_N + F(N)N$, so dV = F(N)dA, where dA is the area form of M induced by the standard Euclidean metric of \mathbb{R}^{n+1} . Thus $\int_M dV$ is just the anisotropic surface energy $\int_M F(N)dA$ which has been studied by many authors (see [5], [9], [12], [14], [21] etc.).

3. $L_{r:F}$ operator for hypersurfaces

We introduce an important operator P_r by

$$P_r = \sigma_r I - \sigma_{r-1} S_F + \dots + (-1)^r S_F^r, \quad r = 0, \dots, n,$$

then

$$P_0 = I$$
, $P_n = 0$, $P_r = \sigma_r I - P_{r-1} S_F$.

Lemma 3.1. The matrix of P_r is given by:

(3.1)
$$(P_r)_i^j = \frac{1}{r!} \delta_{i_1 \cdots i_r i}^{j_1 \cdots j_r j} h_{j_1}^{i_1} \cdots h_{j_r}^{i_r}.$$

Proof. We prove Lemma 3.1 inductively. For r = 0, it is easy to check that (3.1) is true.

We can check directly

(3.2)
$$\delta_{i_{1}\cdots i_{q}}^{j_{1}\cdots j_{q}} = \begin{vmatrix} \delta_{i_{1}}^{j_{1}} & \delta_{i_{1}}^{j_{2}} & \cdots & \delta_{i_{1}}^{j_{q-1}} & \delta_{i_{1}}^{j_{q}} \\ \delta_{i_{2}}^{j_{1}} & \delta_{i_{2}}^{j_{2}} & \cdots & \delta_{i_{2}}^{j_{q-1}} & \delta_{i_{2}}^{j_{q}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \delta_{i_{q-1}}^{j_{1}} & \delta_{i_{q-1}}^{j_{2}} & \cdots & \delta_{i_{q-1}}^{j_{q-1}} & \delta_{i_{q-1}}^{j_{q}} \\ \delta_{i_{q}}^{j_{1}} & \delta_{i_{q}}^{j_{2}} & \cdots & \delta_{i_{q}}^{j_{q-1}} & \delta_{i_{q}}^{j_{q}} \end{vmatrix}$$

Assume that (3.1) is true for r = k, we only need to show that it is also true for r = k + 1. For r = k + 1, Using (2.13) and (3.2), we have

$$RHS \text{ of } (3.1) = \frac{1}{(k+1)!} \sum_{i_1, \dots, i_{k+1}; j_1, \dots, j_{k+1}} \delta_{i_1 \dots i_{k+1}i}^{j_1 \dots j_{k+1}j} h_{i_1}^{j_1} \dots h_{i_{k+1}}^{j_{k+1}}$$

$$= \frac{1}{(k+1)!} \sum \begin{vmatrix} \delta_{i_1}^{j_1} & \delta_{i_2}^{j_2} & \dots & \delta_{i_1}^{j_{k+1}} & \delta_{i_1}^{j} \\ \delta_{i_2}^{j_1} & \delta_{i_2}^{j_2} & \dots & \delta_{i_2}^{j_{k+1}} & \delta_{i_2}^{j} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \delta_{i_k+1}^{j_1} & \delta_{i_k+1}^{j_2} & \dots & \delta_{i_{k+1}}^{j_{k+1}} & \delta_{i_k+1}^{j} \\ \delta_{i_k+1}^{j_1} & \delta_{i_2}^{j_2} & \dots & \delta_{i_{k+1}}^{j_{k+1}} & \delta_{i_k+1}^{j} \end{vmatrix} h_{i_1}^{j_1} \dots h_{i_{k+1}}^{j_{k+1}}$$

$$= \frac{1}{(k+1)!} \sum (\delta_i^j \delta_{i_1 \dots i_{k+1}}^{j_1 \dots j_{k+1}} - \delta_i^{j_1 \dots j_{k}j} + \dots) h_{i_1}^{j_1} \dots h_{i_{k+1}}^{j_{k+1}}$$

$$= \sigma_{k+1} \delta_i^j - \frac{1}{(k+1)!} \sum \delta_i^{j_{k+1}} \delta_{i_1 \dots i_k i_{k+1}}^{j_1 \dots j_k j} h_{i_1}^{j_1} \dots h_{i_{k+1}}^{j_{k+1}} + \dots$$

$$= \sigma_{k+1} \delta_i^j - \sum (P_k)_{i_k+1}^{i_{k+1}} h_{i_{k+1}}^j$$

$$= (P_{k+1})_i^j.$$

Lemma 3.2. For each r, we have

(a)
$$(P_r)_{ij}^{j} = 0;$$

(b) Trace
$$(P_r) = (n-r)\sigma_r$$
;

(c) Trace
$$(P_rS_F) = (r+1)\sigma_{r+1}$$
;

(d) Trace
$$(P_r S_F^2) = \sigma_1 \sigma_{r+1} - (r+2)\sigma_{r+2}$$
.

Proof. (a). Noting (j, j_r) is skew symmetric in $\delta_{i_1 \cdots i_r i}^{j_1 \cdots j_r j}$ and (j, j_r) is symmetric in $h_{j_1}^{i_1} \cdots h_{j_r j}^{i_r}$ (from (2.12)), we have

$$\sum_{j} (P_r)_{i\ j}^{\ j} = \frac{1}{(r-1)!} \sum_{i_1, \dots, i_r; j_1, \dots, j_r; j} \delta_{i_1 \dots i_r i}^{j_1 \dots j_r j} h_{j_1}^{i_1} \dots h_{j_r \ j}^{i_r} = 0.$$

(b). Using (3.1) and (2.13), we have

Trace
$$(P_r S_F) = \sum_{ij} (P_r)_i^j h_j^i$$

$$= \frac{1}{r!} \sum_{i_1, \dots, i_r; j_1, \dots, j_r; i, j} \delta_{i_1 \dots i_r i}^{j_1 \dots j_r j} h_{j_1}^{i_1} \dots h_{j_r}^{i_r} h_j^i$$

$$= (r+1)\sigma_{r+1}.$$

(c). Using (b) and the definition of P_r , we have

Trace
$$(P_r) = \operatorname{tr}(\sigma_r I) - \operatorname{tr}(P_{r-1} S_F) = n\sigma_r - r\sigma_r = (n-r)\sigma_r$$
.

(d). Using (b) and the definition of P_{r+1} , we have

$$\operatorname{Trace}(P_r S_F^2) = \operatorname{Trace}(\sigma_{r+1} S_F) - \operatorname{Trace}(P_{r+1} S_F) = \sigma_1 \sigma_{r+1} - (r+2)\sigma_{r+2}.$$

Remark 3.3. When F = 1, Lemma 3.2 was a well-known result (for example, see Barbosa-Colares [4], or Reilly [17]).

We define an operator $L_{r:F}: C^{\infty}(M) \to C^{\infty}(M)$ by

(3.3)
$$L_{r;F}(f) = \operatorname{div}(P_r \nabla f).$$

Proposition 3.4. Let $x: M \to \mathbb{R}^{n+1}$ be a compact hypersurface in \mathbb{R}^{n+1} with $H_{r;F} > 0$, then for $1 \le j \le r$,

- (1) each operator $L_{j;F}$ is elliptic;
- (2) each j-mean curvature $H_{j;F}$ is positive.

Proof. See [4], Proposition 3.2, p. 280.

4. DIVERGENCE THEOREM AND MINKOWSKI INTEGRAL FORMULA

Lemma 4.1.
$$\operatorname{div}(P_r(x^T)) = c(r)(H_{r:F} + H_{r+1:F}\langle x, \nu \rangle_{\nu}).$$

Proof. We have

$$(4.1) x = a^i e_i + \langle x, \nu \rangle_{\nu} \nu,$$

where $a^i = \langle x, e_j \rangle_{\nu} g^{ij}$. Differentiate it, we get

$$dx = (da^{i})e_{i} + a^{i}de_{i} + d\langle x, \nu \rangle_{\nu}\nu + \langle x, \nu \rangle_{\nu}d\nu = \omega^{i}e_{i}.$$

Compare the coefficients of e_i , we have

$$da^{i} + a^{j}\omega_{j}^{i} - \langle x, \nu \rangle_{\nu} h_{j}^{i}\omega^{j} = \omega^{i}.$$

So,

$$a_j^i = \delta_j^i + s_j^i \langle x, \nu \rangle_{\nu}.$$

From Lemma 3.2, we compute

$$\operatorname{div}(P_r(x^T)) = ((P_r)_i^j a^i)_j$$

$$= (P_r)_i^j a_j^i + (P_r)_{ij}^i a^i$$

$$= \operatorname{Trace}(P_r) + \operatorname{Trace}(P_r S_F) \langle x, \nu \rangle_{\nu}$$

$$= c(r) (H_{r:F} + H_{r+1:F} \langle x, \nu \rangle_{\nu}).$$

Since M is compact without boundary, we have the following divergence theorem:

Lemma 4.2. (Divergence Theorem) $\int_M (\text{div}X) dV = 0$.

Since $\operatorname{div}(fX) = f\operatorname{div}X + \langle \nabla f, X \rangle_{\nu}$, we have

Lemma 4.3.
$$\int_M (f \operatorname{div} X) dV + \int_M \langle \nabla f, X \rangle_{\nu} dV = 0.$$

From Lemma 4.1 and the Divergence Theorem, we have the following Minkowski integral formula (see [9]):

Theorem 4.4. (Minkowski integral formula)

$$\int_{M} (H_r + H_{r+1}\langle x, \nu \rangle_{\nu}) dV = 0.$$

5. Proof of Theorem 1.2

We first prove the following lemma:

Lemma 5.1. Let $X: M \to \mathbb{R}^{n+1}$ be a compact oriented hypersurface without boundary immersed into Euclidean space, and let $F: \mathbb{S}^n \to \mathbb{R}^+$ be a smooth function which satisfies the convexity condition (1.2). If $H_{r;F} > 0$ and

$$\int_{M} x dV = 0,$$

then

(5.2)
$$\lambda_1^{L_{r,F}} \int_M ||x||_{\nu}^2 dV \le \mu c(r) \int_M H_{r,F} dV.$$

Proof. From

(5.3)
$$\lambda_1^{L_{r;F}} = \inf_{\int_M f dV = 0} \frac{-\int_M f L_{r;F}(f) dV}{\int_M f^2 dV},$$

writing $x = (x_1, \dots, x_{n+1}), e_i = (e_{i1}, \dots, e_{i,n+1})$ we have

$$\nabla x_{\alpha} = g^{ij} e_{i\alpha} e_j, \qquad \alpha = 1, \dots, n+1.$$

Now, we choose e_1, \dots, e_n be orthonormal eigenvectors of S_F corresponding, respectively, to the eigenvalues $\kappa_1, \dots, \kappa_n$. Represent by S_i the restriction of the transformation S_F to the subspace normal to e_i , and by $\sigma_r(S_i)$ the r-symmetric function associated to S_i . Then, we have

(5.4)
$$\lambda_{1}^{L_{r,F}} \int_{M} x_{\alpha}^{2} dV \leq -\int_{M} x_{\alpha} L_{r,F}(x_{\alpha}) dV \\ = \int_{M} \langle P_{r}(\nabla x_{\alpha}), \nabla x_{\alpha} \rangle_{\nu} dV \\ = \int_{M} \sum_{i} \sigma_{r}(S_{i}) e_{i\alpha}^{2} dV.$$

Making summation over α from 1 to n+1, we get(by Proposition 3.4, $\sigma_r(S_i)$ is positive):

$$\begin{array}{rcl} \frac{1}{\Lambda}\lambda_1^{L_{r;F}}\int_M\|x\|_\nu^2dV & \leq & \lambda_1^{L_{r;F}}\int_M\|x\|^2dV \\ & \leq & \int_M\sum_i\sigma_r(S_i)\|e_i\|^2dV \\ & \leq & \frac{1}{\lambda}\int_M\sum_i\sigma_r(S_i)dV \\ & = & \frac{c(r)}{\lambda}\int_MH_{r;F}dV. \end{array}$$

Proof of Theorem. Let $\int_M x dV = C$, constant vector in \mathbb{R}^{n+1} , then

$$\tilde{x} = x - \frac{1}{vol(M)}C$$

satisfies $\int_M \tilde{x} dV = 0$. Because the qualities of are the same for x and \tilde{x} , so holds for x is equivalent to that holds for \tilde{x} , so without loss of generality, we can assume that

$$\int_{M} x dV = 0.$$

Multiplying two sides of (5.2) by $\int_M H_{s:F}^2 dV$, we get

$$(5.5) \hspace{1cm} \lambda_{1}^{L_{r;F}} \int_{M} \|x\|_{\nu}^{2} dV \cdot \int_{M} H_{s;F}^{2} dV \leq \mu \cdot c(r) \int_{M} H_{r;F} dV \cdot \int_{M} H_{s;F}^{2} dV$$

Using Schwartz inequality and Minkowski formula, we have

$$\begin{array}{lll} \lambda_{1}^{L_{r;F}} \int_{M} \|x\|_{\nu}^{2} dV \cdot \int_{M} H_{s;F}^{2} dV & \geq & \lambda_{1}^{L_{r;F}} (\int_{M} \|x\|_{\nu} \cdot |H_{s;F}| dV)^{2} \\ & \geq & \lambda_{1}^{L_{r;F}} (\int_{M} \langle x, H_{s;F} \nu \rangle_{\nu} dV)^{2} \\ & = & \lambda_{1}^{L_{r;F}} (\int_{M} H_{s;F} \langle x, \nu \rangle_{\nu} dV)^{2} \\ & = & \lambda_{1}^{L_{r;F}} (\int_{M} H_{s-1;F} dV)^{2}. \end{array}$$

References

- 1. H. Alencar, M. do Carmo, and F. Marques, Upper bounds for the first eigenvalue of the operator L_r and some applications, Illinois J. Math. **45**(2001), 851-863.
- H. Alencar, M. do Carmo and H. Rosenberg, On the First Eigenvalue of the Linearized Operator of the r-th Mean Curvature of a Hypersurface, Annals of Global Analysis and Geometry, 11(1993), 387-395.
- L. J. Alías and J. M. Malacarne, On the first eigenvalue of the linearized operator of the higher order mean curvature for closed hypersurfaces in space forms, Illinois J. Math., 48(2004), 219-240.
- 4. J. L. M. Barbosa and A. G. Colares, Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. Geom., 15(1997), 277-297.

- 5. U. Clarenz, The Wulff-shape minimizes an anisotropic Willmore functional, Interfaces and Free Boundaries, 6(2004), 351-359.
- L. Gårding, An inequality for hyperbolic polynomials, J. Math. Mech., 8(1959), 957-965.
- J.-F. Grosjean, A Reilly inequality for some natural elliptic operators on hypersurfaces, Differential Geom. Appl. 13(2000), 267-276.
- 8. J.-F. Grosjean, Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds, Pacific J. Math. **206**(2002), 93-112.
- 9. Y. J. He and H. Li, Integral formula of Minkowski type and new characterization of the Wulff shape, Acta Math. Sinica., 24(2008), 697-704.
- Y. J. He, H. Li, H. Ma and J. Q. Ge, Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures, Indiana University Mathematics Journal, 58 (2009), 853-868.
- 11. E. Heintze, Extrinsic upper bounds for λ_1 , Math. Ann. 280 (1988), 389-402.
- 12. M. Koiso and B. Palmer, Geometry and stablity of surfaces with constant anisotropic mean curvature, Indiana Univ. Math. J., **54**(2005), No.6, 1817-1852.
- 13. H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann., **305**(1996), 665-672.
- 14. B. Palmer, Stability of the Wulff shape, Proc. Amer. Math. Soc., 126(1998), 3661-3667.
- 15. R. Reilly, The relative differential geometry of nonparametric hypersurfaces, Duke Math. J., 43(1976), 705-721.
- R. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., 26(1977), 459-472.
- 17. R. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. **52**(1977), 525-533.
- 18. Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
- 19. J. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc., 84(1978), 568-588.
- 20. A. R. Veeravalli, On the first Laplacian eigenvalue and the center of gravity of compact hypersurfaces, Comment. Math. Helv. **76** (2001), 155-160.
- 21. S. Winklmann, A note on the stability of the Wulff shape, Arch. Math., 87(2006), 272-279.