Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2019/2020 Corso di Laurea in Ingegneria Fisica ESAME DI ANALISI III A DISTANZA, 17/7/2020 – Prof. I. FRAGALÀ

TEST 1. (8 punti)

Stabilire quali delle seguenti affermazioni sono vere per la successione di funzioni f_n definite per $x \in (0, +\infty)$ da

$$f_n(x) := \frac{1}{n} \frac{\sin(nx)}{x^{3/2}}, \qquad n \ge 1.$$

- (a) $f_1 \notin L^1(0, +\infty)$. FALSO $(f_1(x) = \frac{\sin(x)}{x^{3/2}}$; per $x \to 0$, $f_1 \sim \frac{1}{x^{1/2}}$ integrabile; per $x \ge 1$, $|f_1(x)| \le \frac{1}{x^{3/2}}$ integrabile)
- (b) $f_1 \in L^{\infty}(1, +\infty)$. VERO $(f_1$ è continua sui compatti e nulla asintoticamente all'infinito)
- (c) $f_n \to 0$ puntualmente quasi ovunque su $(0, +\infty)$. VERO $(|f_n(x)| \le \frac{1}{n} \frac{1}{x^{3/2}} \to 0)$
- (d) $f_n \to 0$ in $L^1(0, +\infty)$. VERO (per convergenza dominata, poiché $|f_n(x)| \le g(x)$, con $g(x) = \begin{cases} \frac{1}{x^{1/2}} & \text{if } x \le 1 \\ \frac{1}{x^{3/2}} & \text{if } x \ge 1 \end{cases}$

TEST 2. (8 punti) Stabilire quali delle seguenti affermazioni sono vere per la funzione di variabile complessa

$$f(z) = \frac{e^{1/z}}{1-z} \,.$$

- (e) La parte singolare dello sviluppo in serie di Laurent di f di centro $z_0 = 1$ ha un numero finito di termini. VERO (trattandosi di polo semplice)
- (f) La parte singolare dello sviluppo in serie di Laurent di f di centro $z_0 = 0$ ha un numero finito di termini. FALSO (trattandosi di singolarità essenziale)
- (g) Res(f, 1) = -e VERO (dalla formula per il polo semplice)
- (h) $\operatorname{Res}(f,0)=1$ FALSO (moltiplicando gli sviluppi di $e^{1/z}$ e di $\frac{1}{1-z}$, si ottiene $\operatorname{Res}(f,0)=e-1$)

TEORIA. (5 punti)

(i) Fornire un esempio di una successione di funzioni $f_n \in L^1(\mathbb{R})$ tale che f_n converge nel senso delle distribuzioni, ma non ammette limite in $L^1(\mathbb{R})$.

Ad esempio, la successione $f_n:=n\chi_{[-1/2n,1/2n]}$ non ammette limite in $L^1(\mathbb{R})$ (poiché $f_n\to 0$ q.o., mentre $\int_{\mathbb{R}} f_n=1$), e converge a δ_0 in $\mathcal{D}'(\mathbb{R})$.

(1) Fornire un esempio di una funzione $u \in H^1(-1,1)$ che non appartiene a $H^2(-1,1)$.

Si puó prendere f(x) = |x|, che appartiene a $H^1(-1,1)$, ma non appartiene ad $H^2(-1,1)$, in quanto $f'' = \delta_0$ non appartiene a $L^2(-1,1)$.

ESERCIZIO (10 punti)

(m) Sia $D \subset \mathbb{R}^2$ il disco unitario $\{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 < 1\}$. Scrivere la formulazione debole (o variazionale) del problema di Dirichlet

$$\begin{cases} -\Delta u = 1 & \text{in } D \\ u = 0 & \text{on } \partial D . \end{cases}$$

- (n) Dimostrare che esiste una e una sola soluzione di questo problema.
- (o) Scrivere il problema di minimo risolto da u.
- (p) Mostrare che $u(x) = \frac{1}{4}(1 |x|^2)$.

Soluzione (m) La formulazione debole è la seguente: trovare una funzione $u \in H_0^1(D)$ tale che

$$\int_D \nabla u \cdot \nabla v = \int_D v \qquad \forall v \in H^1_0(D) \,.$$

(n) Esiste una e una sola soluzione grazie al teorema di Lax-Milgram, applicato allo spazio di Hilbert $H_0^1(D)$, munito della norma $\|\nabla u\|_{L^2}$; infatti il problema può essere scritto come

$$b(u,v) = \varphi(v) \qquad \forall v \in H_0^1(D)$$

dove:

- $b(u,v) = \int_D \nabla u \cdot \nabla v$ è una forma bilineare che risulta continua e coerciva: $b(u,v) \leq \|\nabla u\|_{L^2} \|\nabla v\|_{L^2} \text{ e } b(u,u) = \|\nabla u\|_{L^2}^2 \text{ .}$
- $\varphi(v) = \int_D v$ è una forma lineare che risulta continua: $|\varphi(v)| \leq \int_D |v| \leq |D|^{1/2} ||v||_{L^2} \leq |D|^{1/2} C_P ||\nabla v||_{L^2}$
- (o) Il problema di minimo risolto da u è

$$\min\left\{\int_D \left(\frac{1}{2}|\nabla v|^2 - v\right) : v \in H_0^1(D)\right\}$$

(p) La funzione $u(x) = \frac{1}{4}(1-|x|^2)$ è di classe C^2 e chiaramente soddisfa la condizione al contorno u=0 su ∂D . Quindi, per verificare che è una soluzione debole, basta verificare che è soluzione classica. Poiché $u(x) = \frac{1}{4}(1-x_1^2-x_2^2)$, si ha $u_{11} = u_{22} = -1/2$, e quindi $\Delta u = -1$.