

UNIVERSIDAD DE GRANADA

APLICACIONES DE CIENCIA DE DATOS Y TECNOLOGÍAS
INTELIGENTES
MÁSTER CIENCIA DE DATOS E INGENIERÍA DE COMPUTADORES

TÉCNICAS DE SOFT COMPUTING

SISTEMA INTELIGENTE DE LOCALIZACIÓN DE ASEOS

Autor

Ignacio Vellido Expósito ignaciove@correo.ugr.es

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Curso 2020-2021

1. Introducción

A todos alguna vez nos han dado la necesidad de ir al baño estando en la calle, y a nadie le gusta ir a un aseo poco higiénico. Esto además se vuelve un problema serio cuando viajamos de turismo o simplemente cuando nos encontramos en una zona poco conocida. Dada la urgencia de la situación, deámbular sin rumbo es algo que nadie desearía, y más si la persona cuenta con problemas intestinales o de próstata.

De cara a ayudar en la búsqueda de estos lugares de alivio, en las siguientes páginas se propone una aplicación móvil basada en técnicas de soft computing que, a partir de la ubicación, encuentra el baño cercano óptimo siguiendo los criterios de preferencia del usuario.

2. Descripción del sistema

Figura 1: Representación global del sistema inteligente.

Dividimos el núcleo de procesamiento en tres partes:

- 1. Subsistema de entrada: Solicitará y procesará la información tanto cualitativa como cuantitativa.
- 2. **Subsistema central**: Calculará y optimizará las rutas más viables maximizando las preferencias del usuario.
- 3. Subsistema de salida: Devolverá las rutas e información de los aseos de manera amigable al usuario, volviendo a representaciones cualitativas cuando sea apropiado.

2.1. Subsistema de entrada

Los valores de entrada al sistema son los siguientes:

- **Ubicación**: Mediante el geo-localizador del móvil se obtendrá una representación en coordenadas de la posición del usuario.
- Urgencia: Se podrá elegir entre diferentes etiquetas lingüísticas (inmediato, pronto, más adelante).

Junto a un conjunto de parámetros opcionales para limitar y ajustar las preferencias del usuario:

- Criterios de higiene: Se usaran 3 etiquetas lingüísticas (impecable, limpio, sucio).
- **Género**: Para filtrar los resultados de las reviews.
- Criterios adicionales: Otros criterios para discriminar aseos, como discapacidad, con cambiador de bebes, etc.

Los argumentos cualitativos se podrán transformar en numéricos con las siguientes funciones de transferencia:

Figura 2: Los valores del eje x, en el rango [0-100], modelizan el nivel de urgencia del usuario, donde 0 indica máxima prisa y 100 prisa ninguna.

Figura 3: Los valores del eje x, en el rango [0-500], modelizan la distancia máxima (en metros) aceptada por el usuario.

Figura 4: Los valores del eje x, en el rango [0-100], modelizan el porcentaje de higiene de un aseo.

2.2. Subsistema central

A partir del criterio de urgencia podemos elegir un radio de distancia primario y secundario, seleccionando donde la función de transferencia alcanza los valores 1 y 0. De esta forma tendríamos que:

Nivel	Radio Primario	Radio Secundario
Inmediato	50	100
Pronto	150	250
Más adelante	300	400

Esto permite extraer un rango máximo de distancia variable en función de la cantidad y calidad de los baños obtenidos.

Seguidamente, se extrae la información de los baños desde la base de datos (valores de higiene, distancia, ocupación) y se aplica un algoritmo de optimización, asignando a cada elemento una posible puntuación de la siguiente forma:

$$S = h * H \times \frac{e_1}{u * T} \times \frac{e_2}{O} \tag{1}$$

Siendo:

- S la puntuación asignada.
- \blacksquare H el valor de higiene.
- lacktriangle h la importancia de la higiene para el usuario.
- T el tiempo estimado en llegar, calculado a partir de la distancia.
- \blacksquare *u* la urgencia indicada.
- O el nivel probable de ocupación.

• e_1 y e_2 valores constantes.

El nivel de ocupación se estimará con un modelo probabilístico teniendo en cuenta la hora del día, el flujo de personas habitual, y la naturaleza del establecimiento.

El nivel de higiene también se calculará de manera similar, considerando el posible conocimiento ad-hoc que otros usuarios de la aplicación hayan dejado.

2.3. Subsistema de salida

Si el resultado es exitoso la aplicación devuelve, de forma ordenada, las posibles localizaciones con la siguiente información:

- Nombre.
- Información geográfica de la ruta más corta desde la ubicación del usuario hasta el lugar, mostrando la distancia y el tiempo de llegada aproximado.
- Probabilidad de estar ocupado.
- Nivel de higiene esperado, volviendo a transformar los valores numéricos en etiquetas lingüísticas.

Figura 5: Mockup de una posible salida de la aplicación.