Оптимизация транспортного потока при заданных пунктах отправления и назначения всех участников движения

Пехтерев С.И. 610 группа Научный руководитель: д.ф.-м.н. Васенин В.А.

16 мая 2022

Основные определения

- Дорожной сетью назовем тройку G = (V, E, l), где (V, E) ориентированный граф с длинами ребер $l : E \to \mathbb{R}_{>0}$.
- Предположим, что имеется n участников с заданными точками отправления $A_i \in V$ и прибытия $B_i \in V$. Пусть множество P_i есть множество всех простых путей из A_i в B_i . Элемент декартового произведения $P = \prod_{i=1}^n P_i$ назовем комбинацией путей.
- Пусть известно, что при комбинации путей участников $\mathbf{p} = (p_1, \dots, p_n) \in P$ *i*-ый участник затрачивает $T_i(\mathbf{p}) \in \mathbb{R}_{\geq 0}$ времени на свой путь. Функции T_i назовем функциями временных затрат участника *i*.

Некооперативное прокладывание пути

Некооперативным прокладыванием пути в дорожной сети G назовем пятерку $F = (n, G, \{A_i\}_{i=1}^n, \{B_i\}_{i=1}^n, \{T_i\}_{i=1}^n)$. Некооперативное прокладывание пути предполагает, что каждый участник стремится сократить собственные временные затраты выбором пути p_i , несмотря на временные затраты других участников.

Равновесие Нэша: ни одному из участников невыгодно изменение его маршрута.

Парадокс Браеса

Равновесие Нэша может не соответствовать оптимальному решению. Пусть из А в В отправляется 4000 участников, а время проезда по ребру зависит от числа участников (метка на ребре).

Рис.: Оптимальное некооперативное равновесие: 2000 едут по АСВ, остальные по ADB. Затраты каждого $\frac{2000}{100} + 45 = 65.$

Рис.: Добавим ребро CD. Неоптимальное некооперативное равновесие: все едут по АСВВ. Затраты: 80.

Кооперативное прокладывание пути

Введем некоторую функцию $\Phi(\mathbf{p}) = \phi(T_1(\mathbf{p}), \dots, T_n(\mathbf{p}))$, определенную на множестве всех возможных комбинаций путей P и отображающую его во множество действительных чисел. С помощью нее участники могут отслеживать, как влияет изменение их пути на общую картину движения. Такую функцию назовем ϕ ункцией cmoumocmu.

Для заданных некооперативного прокладывания пути F и функции стоимости Φ необходимо найти комбинацию путей \mathbf{p}^* такую, что функция стоимости на ней минимальна, то есть

$$\Phi(\mathbf{p}^*) = \min_{\mathbf{p} \in P} \Phi(\mathbf{p}). \tag{1}$$

Примеры функции затрат

- $\Phi(\mathbf{p}) = \frac{1}{n} \sum_{i=1}^{n} T_i(\mathbf{p})$ средние временные затраты.
- **2** $\Phi(\mathbf{p}) = T_k(\mathbf{p})$ приоритетные временные затраты.
- $\Phi(\mathbf{p}) = \max_{i=1,\dots,n} T_i(\mathbf{p})$ максимальные временные затраты.

Проблемы практической интерпретации

- **1** Как задаются функции $T_i(\mathbf{p})$?

Модель движения

 $Modenь deuжeenus v_i(\mathbf{p},t)$ - положительная ограниченная функция, отделенная от нуля функция, для которой верно

$$\int_{\substack{t_{e,i}^{in}(\mathbf{p})\\t_{e,i}^{e}(\mathbf{p})}}^{t_{e,i}^{out}(\mathbf{p})} v_i(\mathbf{p},t)dt = l_e, e \in p_i, i = 1, \dots, n.$$

 $t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p})$ - неизвестные функции моментов вьезда на ребро e участником i.

Моделирование движения

Теорема

Для заданной модели движения $v_i(\boldsymbol{p},t)$ существует единственный набор функций $t_{e,i}^{in}(\boldsymbol{p}), t_{e,i}^{out}(\boldsymbol{p}), T_i(\boldsymbol{p})$ - моменты перехода между ребрами и время нахождения в пути участником i соответственно, для которых верно

$$T_i(\mathbf{p}) = \sum_{e \in p_i} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p}).$$

Поиск таких функций называется моделированием движения.

Проблемы практической интерпретации

- \bullet Как задаются функции $T_i(\mathbf{p})$?
- \bullet Как задаются функции $v_i(\mathbf{p},t)$?
- \bullet Как заложено взаимодействие участников в функциях $v_i(\mathbf{p},t)?$

Правила движения

Имеем некоторую информацию о текущем состоянии (скорости, положения на графе, ускорения и тд.) и правилах его изменения:

- Тормозим, если впереди идущий слишком близко к нам.
- Ускоряемся, если впереди идущий достаточно далеко от нас.
- 3 Не превышаем скорость.
- Тормозим перед поворотом.

Значения функции $v_i(\mathbf{p},t)$ могут быть посчитаны применением правил движения в момент моделирования.

Макроскопические модели движения

Все определяется количеством участников на текущем ребре (плотность потока):

$$v_i(\mathbf{p}, t) = \sum_{e \in E} \theta_{e,i}(\mathbf{p}, t) v(n_e(\mathbf{p}, t)), i = 1, \dots, n,$$

где

$$\theta_{e,i}(\mathbf{p},t) = \mathbf{1}_{[t_{e,i}^{in}(\mathbf{p}),t_{e,i}^{out}(\mathbf{p})]}(t), - u$$
ндикатор проезда по ребру

$$n_e(\mathbf{p},t) = \sum_{i=1}^n heta_{e,i}(\mathbf{p},t)$$
 — количество участников на ребре

Примеры макроскопических моделей движения

$$v(k) = \frac{v_{max}}{k}.$$

$$v(k) = v_{max}(1 - \frac{k}{n}).$$

• Некоторая положительная последовательность $\{v(k)\}_{k=1}^n$.

Плюс: Малая сложность моделирования.

Минус: Плохо описывает реальное движение участников.

Поиск оптимальной комбинации путей в макроскопических моделях движения

Теорема

Пусть модель движения $v_i(\mathbf{p},t)$ макроскопическая и функция затрат ϕ - линейная. Тогда задача поиска оптимальной комбинации путей есть задача смешанного целочисленного линейного программирования.

Сведение требует экспоненциального числа переменных.

Микроскопические модели движения

Mикроскопическими называются модели движения, которые не являются макроскопическими. В таких моделях явно исследуется движение каждого автомобиля. В качестве примера рассмотрим движение по бесконечному ребру. Пусть $x_i(t) \in [0, +\infty)$ — координаты участника i. Предположим, что скорости участников ограничены некоторой общей величиной v_{max} . Пусть в момент времени t=0 выполняется $x_1(0) \le x_2(0) \le \cdots \le x_n(0)$.

Модель пропорциональной скорости

Рассмотрим модель, в которой скорость участника пропорциональна расстоянию до впереди идущего участника. Положим $d_i(t)=x_{i+1}(t)-x_i(t),\ i=1,\dots,n-1.$ Без ограничения общности считаем, что $d_i(0)< D,\ i=1,\dots,n-1,$ где D — расстояние, на котором происходит взаимодействие участников. Иначе рассмотрим подпоследовательности участников, для которых выполняется это условие.

Модель движения, задающуюся уравнением

$$v_i(t) = \begin{cases} v_{max}, & i = n, \\ v_{max} \frac{d_i(t)}{D}, & i \neq n, \end{cases}$$
 (2)

назовем моделью пропорциональной скорости.

Модель пропорциональной скорости

Для поиска функций $x_i(t)$ достаточно рассмотреть систему дифференциальных уравнений

$$\dot{d}_i(t) = v_{i+1}(t) - v_i(t).$$

Плюс: Хорошо описывает реальное движение участников. Минус: Решением такой системы является

$$d_{n-k}(\tau) = \sum_{l=0}^{k-1} \left(\frac{d_{n-k+l}(0) - D}{l!} \tau^l e^{-\tau} \right) + D,$$

где $\tau = \frac{v_{max}}{D}t$. Поэтому решение уравнения $d_i(t) = d_0$, необходимое в процессе моделирования может быть вычисленно только приближенно.

Модель снижения скорости

Предположим, что существует некоторая величина c_n , которая отвечает за последовательное снижение скорости участников относительно их порядка:

$$v_{n-k} = v_{max} - c_n k, \ k = 0, \dots, n-1.$$

Плюс: Малая сложность моделирования.

Минус: Не использует расстояние до впереди идущей машины.

Равновесие для микроскопических моделей

Возможность сведения микроскопических моделей к задаче MILP зависит от свойств модели. Поэтому в работе реализованы итерационные алгоритмы моделирования движения:

- поиск неподвижной точки;
- алгоритм последовательного добавления участников.

Некооперативная игра. Равновесие Нэша

- Некооперативной игрой в нормальной форме назовем тройку $\Gamma = (n, \{S_i\}_{i=1}^n, \{H_i\}_{i=1}^n)$, где $n \in \mathbb{N}$ количество участников игры, S_i множество стратегий участника $i \in 1, \ldots, n$, H_i функция выигрыша участника i, определенная на множестве ситуаций $S = \prod_{i=1}^n S_i$ и отображающая его во множество действительных чисел.
- Равновесием Нэша некооперативной игры в нормальной форме $\Gamma = (n, \{S_i\}_{i=1}^n, \{H_i\}_{i=1}^n)$ назовем стратегию $\mathbf{s}^* = (s_1^*, \dots, s_n^*) \in S$ такую, что ни одному игроку i невыгодно изменение своей стратегии с s_i^* на любую другую $s \in S_i$:

$$H_i(\mathbf{s}^*) \ge H_i((s_1^*, \dots, s_{i-1}^*, s, s_{i+1}^*, \dots, s_n^*)), \ \forall s \in S_i, \ i = 1, \dots, n.$$

Кооперативное равновесие

• Кооперативным равновесием некооперативного прокладывания пути F и функции стоимости $\Phi(\mathbf{p})$ назовем комбинацию путей $\widetilde{\mathbf{p}} \in P$, которая является равновесием Нэша некооперативной игры $\widetilde{\Gamma} = (n, \{P_i\}_{i=1}^n, \{-\Phi\}_{i=1}^n)$. Множество всех кооперативных равновесий обозначим \widetilde{P}

Утверждение

Множество кооперативных равновесий \widetilde{P} не пусто, причем оптимальная комбинация путей является таким равновесием, то есть $\mathbf{p}^* \in \widetilde{P}$.

Алгоритм поиска кооперативного равновесия

Считаем, что мы умеем решать задачу

$$\Phi(\mathbf{p}) \to \min_{p_i \in P_i}$$

Алгоритмы поиска кооперативного равновесия:

- Поиск неподвижной точки: последовательно решаем задачу оптимизации по каждому из путей, пока это возможно.
- Алгоритм последовательного добавления участников: будем добавлять в нашу задачу по одному участнику и сводить их к неподвижной точке.

Одинаковый приоритет участников

Рис.: Пример лучшего случая распределения путей участников в модели снижения скорости с средним временем прибытия T=1063.

Рис.: Пример худшего случая распределения путей участников в модели снижения скорости с средним временем прибытия T=1576.

Поиск путей для приоритетных участников

Рис.: Оптимальное кооперативное равновесие в модели снижения скорости с средним временем прибытия T=778.34

Рис.: Неоптимальное кооперативное равновесие в модели снижения скорости с средним временем прибытия T=950.37

Выводы

- Предложено описание общего принципа взаимодействия участников, заключающегося в задании некоторой модели движения.
- Разработан и реализован алгоритм моделирования движения в соответствии с заданной моделью движения.
- Выделили класс моделей, для которого доказали возможность сведения к задаче смешанного целочисленного линейного программирования
- Разработаны и реализованы алгоритмы поиска корпоративного равновесия
- Разработоно ПО для моделирвоания, поиска оптимального пути и оптимальной комбинации путей в произвольной модели движения.