Graph Theory & Network Analysis

CIS 600, Spring 2018

January 30, 2018

Graphs - What is a graph?

Graphs - What is a graph?

This is not a graph!

Graphs - What is a graph?

This is not a graph!

▶ It is a visual depiction of a graph.

An undirected graph G = (V, E) is an ordered pair, where V is a set of vertices or nodes and E is a set of edges between nodes.

- An undirected graph G = (V, E) is an ordered pair, where V is a set of vertices or nodes and E is a set of edges between nodes.
- ▶ The edges in E (also E(G)) are defined to be unordered pairs of vertices in V (also V(G)).

- An undirected graph G = (V, E) is an ordered pair, where V is a set of vertices or nodes and E is a set of edges between nodes.
- ▶ The edges in E (also E(G)) are defined to be unordered pairs of vertices in V (also V(G)).
- ▶ A *directed graph* is defined similarly, except that its edges are defined to be *ordered pairs* of vertices in *V*.

- An undirected graph G = (V, E) is an ordered pair, where V is a set of vertices or nodes and E is a set of edges between nodes.
- ▶ The edges in E (also E(G)) are defined to be unordered pairs of vertices in V (also V(G)).
- ▶ A *directed graph* is defined similarly, except that its edges are defined to be *ordered pairs* of vertices in *V*.
- Example:

(from Graph Theory, by Wilson)

▶ A network is much more complicated than a graph.

- A network is much more complicated than a graph.
- ► Could refer to a group of actual human beings, together with their relationships and activities.

- A network is much more complicated than a graph.
- ► Could refer to a group of actual human beings, together with their relationships and activities.
- ▶ Or a system of computers exchanging data over the Internet.

- A network is much more complicated than a graph.
- ► Could refer to a group of actual human beings, together with their relationships and activities.
- Or a system of computers exchanging data over the Internet.
- The Internet Itself!

- A network is much more complicated than a graph.
- ► Could refer to a group of actual human beings, together with their relationships and activities.
- ▶ Or a system of computers exchanging data over the Internet.
- The Internet Itself!
- Social networks such as Facebook and Twitter.

▶ Identify groups or cliques within a network

- Identify groups or cliques within a network
- Identify important/influential individuals in a network

- Identify groups or cliques within a network
- Identify important/influential individuals in a network
- Measure the strength of connections in a network

- Identify groups or cliques within a network
- ▶ Identify important/influential individuals in a network
- ▶ Measure the *strength* of connections in a network
- Describe global properties of a network, e.g. "Small World" phenomenon

- ▶ Identify groups or cliques within a network
- ▶ Identify important/influential individuals in a network
- ▶ Measure the *strength* of connections in a network
- Describe global properties of a network, e.g. "Small World" phenomenon
- Identify anomalies or security threats in a network, e.g. bots and sock puppets

- Identify groups or cliques within a network
- ▶ Identify important/influential individuals in a network
- ▶ Measure the *strength* of connections in a network
- Describe global properties of a network, e.g. "Small World" phenomenon
- Identify anomalies or security threats in a network, e.g. bots and sock puppets
- Cost & efficiency of operating a network, e.g. traffic, distribution

- Identify groups or cliques within a network
- ▶ Identify important/influential individuals in a network
- ▶ Measure the *strength* of connections in a network
- Describe global properties of a network, e.g. "Small World" phenomenon
- Identify anomalies or security threats in a network, e.g. bots and sock puppets
- Cost & efficiency of operating a network, e.g. traffic, distribution
- Network analysis is a huge field in its own right.

Assignment: Graphs & Network Analysis

Assignment: read Chapter 2 of *Networks, Crowds & Markets*, and then implement some network analysis in python. See Blackboard for details.

▶ An edge $\{v, w\}$ is said to *join* nodes v, w. We can denote this edge vw.

- ▶ An edge $\{v, w\}$ is said to *join* nodes v, w. We can denote this edge vw.
- ▶ The *union* of disjoint graphs G_1 , G_2 is defined to have nodes and edges

$$V(G_1) \cup V(G_2)$$
, and $E(G_1) \cup E(G_2)$

- ▶ An *edge* {*v*, *w*} is said to *join* nodes *v*, *w*. We can denote this edge *vw*.
- ▶ The *union* of disjoint graphs G_1 , G_2 is defined to have nodes and edges

$$V(G_1) \cup V(G_2)$$
, and $E(G_1) \cup E(G_2)$

A graph is connected if it cannot be realized as the union of two graphs.

- ▶ An *edge* {*v*, *w*} is said to *join* nodes *v*, *w*. We can denote this edge *vw*.
- ▶ The *union* of disjoint graphs G_1 , G_2 is defined to have nodes and edges

$$V(G_1) \cup V(G_2)$$
, and $E(G_1) \cup E(G_2)$

- A graph is connected if it cannot be realized as the union of two graphs.
- ▶ The graph G_1 is a *subgraph* of the graph G_2 if

$$V(G_1) \subseteq V(G_2)$$
 and $E(G_1) \subseteq E(G_2)$

- ▶ An *edge* {*v*, *w*} is said to *join* nodes *v*, *w*. We can denote this edge *vw*.
- ▶ The *union* of disjoint graphs G_1 , G_2 is defined to have nodes and edges

$$V(G_1) \cup V(G_2)$$
, and $E(G_1) \cup E(G_2)$

- A graph is connected if it cannot be realized as the union of two graphs.
- ▶ The graph G_1 is a *subgraph* of the graph G_2 if

$$V(G_1) \subseteq V(G_2)$$
 and $E(G_1) \subseteq E(G_2)$

▶ Nodes v, w are adjacent in G if $vw \in E(G)$.

- ▶ An *edge* {*v*, *w*} is said to *join* nodes *v*, *w*. We can denote this edge *vw*.
- ▶ The *union* of disjoint graphs G_1 , G_2 is defined to have nodes and edges

$$V(G_1) \cup V(G_2)$$
, and $E(G_1) \cup E(G_2)$

- A graph is connected if it cannot be realized as the union of two graphs.
- ▶ The graph G_1 is a *subgraph* of the graph G_2 if

$$V(G_1) \subseteq V(G_2)$$
 and $E(G_1) \subseteq E(G_2)$

- ▶ Nodes v, w are adjacent in G if $vw \in E(G)$.
- ▶ Nodes v, w are *incident* with the edge $vw \in E(G)$.

- ▶ An *edge* {*v*, *w*} is said to *join* nodes *v*, *w*. We can denote this edge *vw*.
- ▶ The *union* of disjoint graphs G_1 , G_2 is defined to have nodes and edges

$$V(G_1) \cup V(G_2)$$
, and $E(G_1) \cup E(G_2)$

- A graph is connected if it cannot be realized as the union of two graphs.
- ▶ The graph G_1 is a *subgraph* of the graph G_2 if

$$V(G_1) \subseteq V(G_2)$$
 and $E(G_1) \subseteq E(G_2)$

- ▶ Nodes v, w are adjacent in G if $vw \in E(G)$.
- ▶ Nodes v, w are incident with the edge $vw \in E(G)$.
- ► The degree deg(v) is the number of edges incident with v in G.

Examples

Examples

▶ A node v is *isolated* if deg(v) = 0.

- ▶ A node v is isolated if deg(v) = 0.
- ▶ A node v is an *end-node* of G if deg(v) = 1.

- ▶ A node v is isolated if deg(v) = 0.
- ▶ A node v is an *end-node* of G if deg(v) = 1.
- ► The Handshaking Lemma:

$$\sum_{v \in V(G)} deg(v) = 2 \cdot |E(G)|$$

- ▶ A node v is isolated if deg(v) = 0.
- ▶ A node v is an *end-node* of G if deg(v) = 1.
- ► The Handshaking Lemma:

$$\sum_{v \in V(G)} deg(v) = 2 \cdot |E(G)|$$

► Why?

► The *adjacency matrix A* of a graph *G* is the square matrix with entries

$$A_{ij} = |\{x \in E(G) \mid x \text{ joins } v_i \text{ and } v_j\}|$$

► The *adjacency matrix A* of a graph *G* is the square matrix with entries

$$A_{ij} = |\{x \in E(G) \mid x \text{ joins } v_i \text{ and } v_j\}|$$

▶ The *incidence matrix* M of a graph G is the $|V(G)| \times |E(G)|$ matrix such that

$$M_{ij} = \begin{cases} 1 & \text{if node } i \text{ is incident with edge } j \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

▶ A walk in G is a finite sequence of edges of the form $v_0v_1, v_1v_2, \ldots, v_mv_{m-1}$.

- ▶ A walk in G is a finite sequence of edges of the form $v_0v_1, v_1v_2, \ldots, v_mv_{m-1}$.
- ▶ The node v_0 is called its *initial* vertex, and v_m its *final*.

- ▶ A walk in G is a finite sequence of edges of the form $v_0v_1, v_1v_2, \ldots, v_mv_{m-1}$.
- ▶ The node v_0 is called its *initial* vertex, and v_m its *final*.
- ▶ Such a walk is called a walk from v_0 to v_m .

- ▶ A walk in G is a finite sequence of edges of the form $v_0v_1, v_1v_2, \ldots, v_mv_{m-1}$.
- ▶ The node v_0 is called its *initial* vertex, and v_m its *final*.
- ▶ Such a walk is called a walk from v_0 to v_m .
- ▶ The number of edges in a walk is called its *length*.

- ▶ A walk in G is a finite sequence of edges of the form $v_0v_1, v_1v_2, \ldots, v_mv_{m-1}$.
- ▶ The node v_0 is called its *initial* vertex, and v_m its *final*.
- ▶ Such a walk is called a walk from v_0 to v_m .
- ▶ The number of edges in a walk is called its *length*.
- A trail is a walk with distinct edges.

- ▶ A walk in G is a finite sequence of edges of the form $v_0v_1, v_1v_2, \ldots, v_mv_{m-1}$.
- ▶ The node v_0 is called its *initial* vertex, and v_m its *final*.
- ▶ Such a walk is called a walk from v_0 to v_m .
- ▶ The number of edges in a walk is called its *length*.
- A trail is a walk with distinct edges.
- A path is a trail with distinct nodes, with the possible exception of the initial and final.

- ▶ A walk in G is a finite sequence of edges of the form $v_0v_1, v_1v_2, \ldots, v_mv_{m-1}$.
- ▶ The node v_0 is called its *initial* vertex, and v_m its *final*.
- ▶ Such a walk is called a walk from v_0 to v_m .
- ▶ The number of edges in a walk is called its *length*.
- A trail is a walk with distinct edges.
- A path is a trail with distinct nodes, with the possible exception of the initial and final.
- ▶ A *cycle* is a path having $v_0 = v_m$.

A disconnecting set in G is a subset of E(G) whose removal leaves G disconnected.

- ▶ A disconnecting set in G is a subset of E(G) whose removal leaves G disconnected.
- ► A *cutset* is a minimal disconnecting set.

- A disconnecting set in G is a subset of E(G) whose removal leaves G disconnected.
- A cutset is a minimal disconnecting set.
- ▶ The edge connectivity $\lambda(G)$ is the size of a smallest cutset.

- A disconnecting set in G is a subset of E(G) whose removal leaves G disconnected.
- A cutset is a minimal disconnecting set.
- ▶ The *edge connectivity* $\lambda(G)$ is the size of a smallest cutset.
- A separating set in a connected graph is a subset of V(G) whose removal disconnects G.

- A disconnecting set in G is a subset of E(G) whose removal leaves G disconnected.
- A cutset is a minimal disconnecting set.
- ▶ The *edge connectivity* $\lambda(G)$ is the size of a smallest cutset.
- A separating set in a connected graph is a subset of V(G) whose removal disconnects G.
- ▶ The node connectivity $\kappa(G)$ of a connected graph G that is not the complete graph is the size of a smallest separating set in G.

- A disconnecting set in G is a subset of E(G) whose removal leaves G disconnected.
- ▶ A *cutset* is a minimal disconnecting set.
- ▶ The *edge connectivity* $\lambda(G)$ is the size of a smallest cutset.
- A separating set in a connected graph is a subset of V(G) whose removal disconnects G.
- ▶ The node connectivity $\kappa(G)$ of a connected graph G that is not the complete graph is the size of a smallest separating set in G.
- ▶ *G* is called *k*-connected or *k*-edge connected if $\lambda(G) \ge k$ or $\kappa(G) \ge k$, respectively.

► An *edge weighting* for a graph *G* is a function

$$\omega: E(G) \to \mathbb{R}^+$$

► An *edge weighting* for a graph *G* is a function

$$\omega: E(G) \to \mathbb{R}^+$$

▶ The pair (G, ω) is then called a *weighted graph*.

▶ A *forest* is a graph with no cycles.

- A forest is a graph with no cycles.
- ▶ A *tree* is a connected forest.

- A forest is a graph with no cycles.
- ▶ A *tree* is a connected forest.
- Many equivalent definitions, e.g.

$$|E(G)| = |V(G)| - 1$$

Shortest path - Dijsktra's Algorithm

- Shortest path Dijsktra's Algorithm
- Chinese postman "route inspection problem", Kwan Mei-Ko

- Shortest path Dijsktra's Algorithm
- Chinese postman "route inspection problem", Kwan Mei-Ko
- Traveling Salesman Problem visit all nodes (optimally). NP-Hard, whereas two above are polynomial-time.

- Shortest path Dijsktra's Algorithm
- Chinese postman "route inspection problem", Kwan Mei-Ko
- Traveling Salesman Problem visit all nodes (optimally).
 NP-Hard, whereas two above are polynomial-time.
- Max-Flow, Min-Cut maximize 'flow' between nodes in a directed network.

Centrality - Degree

▶ The node v_i has degree centrality $C_D(v_i)$ defined by

$$C_D(v_i) = \sum_j A_{ij}$$

(where A is the adjacency matrix).

Centrality - Degree

▶ The node v_i has degree centrality $C_D(v_i)$ defined by

$$C_D(v_i) = \sum_j A_{ij}$$

(where A is the adjacency matrix).

▶ The *normalized degree centrality* is defined by

$$C'_D(v_i) = \frac{1}{n-1}C_D(v_i)$$

(where n is the number of nodes).

Node	1	2	3	4	5	6	7	8	9
1	-	1	1	1	0	0	0	0	0
2	1	-	1	0	0	0	0	0	0
	1	1	-	1	0	0	0	0	0
	1	0	1	-	1	1	0	0	0
	0	0	0	1	-	1	1	1	0
	0	0	0	1	1	-	1	1	0
	0	0	0	0	1	1	-	1	1
8	0	0	0	0	1	1	1	-	0
	0	0	0	0	0	0	1	0	-

Node	Degree Centrality	Node	Degree Centrality
1	0.375	6	0.5
2	0.25	7	0.5
3	0.375	8	0.375
4	0.5	9	0.125
5	0.5		

Centrality - Closeness

▶ A nodes *closeness centrality* is a measure of how close it is, along paths, to other nodes.

Centrality - Closeness

- ▶ A nodes *closeness centrality* is a measure of how close it is, along paths, to other nodes.
- ▶ The distance $g(v_i, v_j)$ between v_i, v_j is the length of a shortest path from v_i to v_j .

Centrality - Closeness

- ▶ A nodes *closeness centrality* is a measure of how close it is, along paths, to other nodes.
- ▶ The distance $g(v_i, v_j)$ between v_i, v_j is the length of a shortest path from v_i to v_j .
- ▶ Closeness centrality $C_C(v_i)$ is defined by

$$C_C(v_i) = \frac{n-1}{\sum_{j \neq i} g(v_i, v_j)}$$

Tabl	Table 2.1: Pairwise geodesic distance								
Node	1	2	3	4	5	6	7	8	9
	0	1	1	1	2	2	3	3	4
2	1	0	1	2	3	3	4	4	5
	1	1	0	1	2	2	3	3	4
	1	2	1	0	1	1	2	2	3
	2	3	2	1	0	1	1	1	2
	2	3	2	1	1	0	1	1	2
	3	4	3	2	1	1	0	1	1
8	3	4	3	2	1	1	1	0	2
	4	5	4	3	2	2	1	2	0

$$C_C(3) = \frac{9-1}{1+1+1+2+2+3+3+4} = 8/17 = 0.47,$$

$$C_C(4) = \frac{9-1}{1+2+1+1+1+2+2+3} = 8/13 = 0.62.$$

Node 4 is more central than node 3

Centrality - Betweennes

For indices i, k, the value σ_{ik} is the number of shortest paths from v_i to v_k .

Centrality - Betweennes

- ▶ For indices i, k, the value σ_{ik} is the number of shortest paths from v_i to v_k .
- ▶ The value $\sigma_{ik}(v_j)$ is the number of shortest paths from v_i to v_k which pass through v_j .

Centrality - Betweennes

- ▶ For indices i, k, the value σ_{ik} is the number of shortest paths from v_i to v_k .
- ▶ The value $\sigma_{ik}(v_j)$ is the number of shortest paths from v_i to v_k which pass through v_i .
- ▶ The betweenness centrality $C_B(v_j)$ of v_j is then

$$C_B(v_j) = \sum_{i,k \neq j,i < k} \frac{\sigma_{ik}(v_j)}{\sigma_{ik}}$$

Table 2.2: $\sigma_{st}(4)/\sigma_{st}$								
	s = 1	s = 2	s = 3					
t = 5	1/1	2/2	1/1					
t = 6	1/1	2/2	1/1					
t = 7	2/2	4/4	2/2					
t = 8	2/2	4/4	2/2					
t = 9	2/2	4/4	2/2					

What's the betweenness centrality for node 5?

▶ The eigenvector centrality $C_E(v_i)$ of node v_i is a recursive concept.

- ▶ The eigenvector centrality $C_E(v_i)$ of node v_i is a recursive concept.
- Supposing that we have the values, they should satisfy

$$C_E(v_i) \propto \sum_j A_{ij} C_E(v_j)$$

- ▶ The eigenvector centrality $C_E(v_i)$ of node v_i is a recursive concept.
- Supposing that we have the values, they should satisfy

$$C_E(v_i) \propto \sum_j A_{ij} C_E(v_j)$$

This is the eigenvalue problem

$$AC_E = \lambda C_E$$

- ▶ The eigenvector centrality $C_E(v_i)$ of node v_i is a recursive concept.
- Supposing that we have the values, they should satisfy

$$C_E(v_i) \propto \sum_j A_{ij} C_E(v_j)$$

► This is the eigenvalue problem

$$AC_E = \lambda C_E$$

Can be solved by the power method

- ▶ The eigenvector centrality $C_E(v_i)$ of node v_i is a recursive concept.
- Supposing that we have the values, they should satisfy

$$C_E(v_i) \propto \sum_j A_{ij} C_E(v_j)$$

► This is the eigenvalue problem

$$AC_E = \lambda C_E$$

- Can be solved by the power method
- ▶ By iteration, naively, without linear algebra

- ▶ The eigenvector centrality $C_E(v_i)$ of node v_i is a recursive concept.
- Supposing that we have the values, they should satisfy

$$C_E(v_i) \propto \sum_j A_{ij} C_E(v_j)$$

► This is the eigenvalue problem

$$AC_E = \lambda C_E$$

- Can be solved by the power method
- ▶ By iteration, naively, without linear algebra
- Let's use numpy.

Node	1	2	3	4	5	6	7	8	9
	-	1	1	1	0	0	0	0	0
	1	-	1	0	0	0	0	0	0
	1	1	-	1	0	0	0	0	0
	1	0	1	-	1	1	0	0	0
	0	0	0	1	-	1	1	1	0
	0	0	0	1	1	-	1	1	0
	0	0	0	0	1	1	-	1	1
	0	0	0	0	1	1	1	-	0
	0	0	0	0	0	0	1	0	-

Node	Eigenvector Centrality	Node	Eigenvector Centrality
1	0.195751798216	6	0.468084576647
2	0.111686197298	7	0.409977787365
3	0.195751798216	8	0.384018975728
4	0.37874977785	9	0.116955395176
5	0.468084576647		