Spectrogram Analysis of Thai Speech I

Sound Analysis

- frequency-domain
 - -Fourier transform (discrete-time)

Speech is non-stationary and time-varying signal. So, analyzing speech by lumping all time points together is not very useful.

Time-varying characteristic

If we find the Fourier transform of the whole signal, we will see the frequency-domain characteristics of the whole signal.

However, do we expect the characteristics of the speech signal in each box to be the same?

Sound Analysis

Short-time Fourier Analysis

$$X_n(e^{j\omega}) = \sum_{m=-\infty}^{+\infty} w[n-m]x[m]e^{-j\omega m}$$

Spectrogram

Time vs. Frequency Resolution

- use short time window
 - can capture abrupt acoustic events
 - but Fourier Transform of a short window is long in frequency domain
 - $X[k]W[k] \leftrightarrow X(e^{j\omega}) *W(e^{j\omega})$
 - So, we lose frequency resolution
- use long time window
 - several short acoustic events got mixed in to the same frame
 - a long time window has good frequency resolution

Window Length: Revisited

Window Length: Revisited

Window Length: Revisited

Wide-band / Narrow-band Spectrogram

Wide-band

- good time resolution
- can see pitch structure
- can see abrupt acoustic event

Narrow-band

- good frequency resolution
- can see harmonic structure
- fine frequency discrimination

Praat: Sound Analysis Tool

http://www.praat.org

Praat: Sound Analysis Tool

Praat Functionalities

Speech analysis:

spectral analysis (spectrograms)
pitch analysis
formant analysis
intensity analysis
jitter, shimmer, voice breaks
cochleagram
excitation pattern

Speech synthesis:

from pitch, formant, and intensity articulatory synthesis

Listening experiments:

identification and discrimination tests

Labelling and segmentation:

label intervals and time points on multiple tiers use phonetic alphabet use sound files up to 2 gigabytes (3 hours)

Speech manipulation:

change pitch and duration contours Filtering

Learning algorithms:

feedforward neural networks discrete and stochastic Optimality Theory **Statistics**:

multidimensional scaling principal component analysis discriminant analysis

Graphics:

high quality for your articles and thesis produce Encapsulated PostScript files integrated mathematical and phonetic symbols

Programmability:

easy programmable scripting language communicate with other programs (the **sendpraat** source code) create hypertext manuals with sound I/O

Classes of Sounds

- classify by degree of constriction
 - Consonant
 - obstruction in the path of air flow
 - complete closure
 - narrow constriction
 - abrupt change in vocal tract configuration
 - abrupt change in the signal
 - Semivowel
 - between vowel and consonant
 - non-abrupt change / slightly constricted
 - Vowel
 - relatively no obstruction of the air flow
 - smooth gradual change in the signal

Vowels

- pressure in the vocal tract and subglottal pressure are different enough for outward airflow
- the vocal folds are slack enough to vibrate
- no obstruction in the vocal tract
- different position of the tongue → different vowels
- rounding of the lips

Vowel Spectrum

Picture from Stevens 1999

Tongue Position

move in 2-D

 results in deviation of F1 and F2 from the neutral position

Vowel Charts

Picture from Stevens 1999

Average Values for Basic American English Vowels

Male Female

Vowel	F1 (Hz)	F2 (Hz)
i	270	2290
e	460	1890
X	660	1720
a	730	1090
0	450	1050
u	300	870

Vowel	F1 (Hz)	F2 (Hz)
i	310	2790
e	560	2320
X	860	2050
a	850	1220
0	600	1200
u	370	950

After Stevens 1999

Tense-Lax

- lax → smaller degree of constriction
- lax → shorter in duration
- F1, F2 move away from the corners closer to the neutral position
- examples of tense-lax vowel pair
 - beet (b-ii-t^) vs. bit (b-i-t^)
 - bait (b-ee-t[^]) vs. bet (b-e-t[^])
 - คาด (kh-aa-t^-2) vs. คัด (kh-a-t^-3)
 - —ฐิค (r-uu-t^-2) ∨ร. ฐิค (r-u-t^-3)

beet vs. bit

Pictures from Stevens 1999

bait vs. bet

Pictures from Stevens 1999

Diphthongs

- combination of 2 single vowels
- smooth movement in formant frequencies from one vowel to the other

Dipthongs

Thai Vowels

ໂຄະ

โอ

เอาะ

ออ

เออะ

เออ

@

Single Vowels

a	9 %	C
aa	อา	O
i	ิ้อ	0
ii	(D	@
V	୯ ଚ	
VV	₹ 0	q
U	o,	
uu	ರಿ	
e	ໂອຈ	
ee	ខេ	
X	แอะ	
XX	แอ	

Dipthongs

ia	เอียร
iia	เอีย
va	เอูอร
vva	เอื้อ
ua	อัวะ
uua	อัว

Consonants

- classified based on "manner of articulation"
 - fricative consonants (eg. /f/ han)
 - stop consonants (eg. /b/ <u>una</u>, <u>ban</u>)
 - affricates (eg. /c/ nll, January)
 - nasal consonants (eg. /m/ <u>m</u>, <u>m</u>an)

Consonants

Fricatives

f	<u> ฝ</u> น, <u>พ</u> ืน
S	<u>ส</u> าย, <u>ศิ</u> ลา,รัก <u>ษ</u> า, <u>ซ่</u> อน

Affricates

ch ชอบ, เ<u>พ</u>อ

Stops

p	<u>ป</u> าก
t	เ <u>ต้</u> น, กุ <u>ฏิ</u>
c	<u>ข</u> ะ
k	<u>ก่</u> อน
ph	<u>พ</u> บ, <u>ภ</u> ัย, <u>ผ่</u> าน
th	<u>ทิ้</u> ง, <u>ธ</u> ง, เ <u>ฒ่</u> า, ฐาน,
	มณ <u>โพ</u>
kh	<u>ค</u> น, เ <u>ข</u> ิน, <u>ฆ่</u> า
b	<u>บ</u> อก
d	<u>ด้</u> าน, ชฏา

Nasals

m	<u>"1</u>
n	<u>น</u> าน, เ <u>ณ</u> ร
ng	เ <u>งิ</u> น

Fricative Consonants

- Narrow constriction at some point along the vocal tract
- generate turbulence noise in the vicinity of the constriction

(radiation characteristic does not depend on the vocal tract shape, so it can be included into the source)

Labial Fricatives

- constriction at the lips
- virtually no tube in front of the turbulence noise
- output signal is approximately the turbulence noise
- usually weaker than other fricatives
- Thai Labial fricatives sounds
 - /f/ in fan, ฟาง

Voiced-unvoiced fricative

- The vocal folds are vibrating (slack), while the air flow through the narrow constriction is maintained → "voiced"
- The vocal folds are not vibrating (strict), while the air flow is maintain → "unvoiced" or "voiceless"

voiced labial fricative → van voiceless labial fricative → fan, พื้น

Alveolar Fricatives

 constriction between the tongue blade and the roof of the mouth

voiced alveolar fricative $\rightarrow \underline{z}$ ip voiceless alveolar fricative $\rightarrow \underline{s}$ ip, $\underline{\alpha}$ 114

Palatal Fricatives

- Point of constriction is a few mm. posterior to the alveolar ridge
- The tongue blade is shaped in such a way as to produce a long and narrow channel behind the point of maximum constriction.

voiced palatal fricative → <u>Gigi</u> voiceless palatal fricative → <u>sh</u>y

Dental Fricatives

placing tongue between upper and lower teeth

voiced dental fricative → that voiceless dental fricative → thief

Experiments

- Waveform of Fricatives
- Spectrograms of

$$-s-ii-z^{-0}$$

$$- f-ii-z^{-0}$$

Thai Fricatives

f	<u>ฝ</u> น, <u>พื</u> น
S	<u>ส</u> าย, <u>ศิ</u> ลา,รัก <u>ษ</u> า, <u>ซ่</u> อน

Stop Consonants

- make complete closure in the oral cavity while maintaining the air flow from the lungs
- pressure behind the closure increases
- promptly release the closure (might generate the turbulence noise at the just-released closure → release burst)
- during the beginning of the closure phrase,
 - vocal folds vibrate → voiced
 - vocal folds do not vibrate → voiceless

Place of Articulation

- closure can be made at:
 - labial → Labial stop consonant
 - alveolar ridge+tongue tip → Alveolar stop consonant
 - hard palate+tongue body → Velar stop consonant
- The spectral shape of the release burst for labial and alveolar can be explained in the same way as the spectral shape of the fricative consonant.
 - labial fricative → labial stop release burst
 - alveolar fricative → alveolar stop release burst
- For Velar, the portion of the vocal tract in front of the closure gives mid-freq. resonance.

Aspiration

- After the release of the closure of a voiceless stop, if the glottis is widely spread, the air flow rush through the glottis will cause turbulence noise at the glottis.
- spread glottis → aspirated stop consonant
- otherwise → unaspirated stop consonant

Stop Consonants

voiced labial stop \rightarrow /b/ in <u>b</u>us, เบา voiceless unaspirated labial stop \rightarrow /p/ in spin, ปีน voiceless aspirated labial stop \rightarrow /ph/ in <u>p</u>en, พาน

voiced alveolar stop \rightarrow /d/ in den, in voiceless unaspirated alveolar stop \rightarrow /t/ in star, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alv

voiced velar stop \rightarrow /g/ in \underline{g} un, \underline{m} 1
voiceless unaspirated velar stop \rightarrow /k/ in scar
voiceless aspirated velar stop \rightarrow /kh/ in \underline{k} eep, \underline{m} 11

Labial Stop Consonants

Alveolar Stop Consonants

Alveolar Stop Consonants

z-ii-z^ kh-ii-z^

Burst Spectra

Picture from Suchato 2004

Affricates

- make complete closure like stop consonants
- release the closure and generate the turbulence noise like fricatives

voiceless palatoalveolar affricate →/ch/ in church, ฐาน voiced palatoalveolar affricate → /c/ in judge , จิก