GPU Programming in Computer Vision

Ramakrishna Nanjundaiah Sadiq Huq

General Purpose GPU vs CPU

CPU

- Perform very quickly one or two tasks at a time
- Few ALU's
- Poor memory interface for large data sets

GPU

- Perform large number of tasks, relatively quick.
- Dozens or even hunderds of ALU's
- Massive parallel memory interface, typically 10x faster than CPU inteface

Compute Unified Device Architecture

- NVIDIA ALU's are fully programmable
- The type of applications suited for CUDA is limited
- Enables implementation of highly parallel algorithms
- Several hundreds of threads run the same kernel
- Best suited for number crunching
- Flexible choice of language
- Use of double should be avoided as only one 64-bit floating point units for every sixteen 32-bit unit.

What is Optical Flow?

• Given I1 , I2 : $\Omega \to R$, we find a vector field $u : \Omega \to R2$ such that

$$I(x+\delta x,y+,t+\delta t)=I(x,y,t)+\frac{\partial I}{\partial x}\delta x+\frac{\partial I}{\partial y}\delta y+\frac{\partial I}{\partial t}\delta t+H.O.T$$

Reduces to :
$$\frac{\partial I}{\partial x}\delta x + \frac{\partial I}{\partial y}\delta y + \frac{\partial I}{\partial t}\delta t = 0$$

$$I_x U + I_y V = -I_t$$

$$Reduces \ to \ : \frac{\partial I}{\partial x}U + \frac{\partial I}{\partial y}V + \frac{\partial I}{\partial t} = 0 \ (Aperture \ Problem)$$

$$\nabla I^T . \overrightarrow{V} = -I_t$$

Solution Methods

- Horn Schunck Method
- Buxton Buxton Method
- Black Jepson Method
- General Variational Methods

Horn and Schunck Method

- Invloves imposing global constraint of smoothness for solving the aperture problem
- Solves the energy equation:

$$E(u) = \int (ar{arphi} I^T u + I_t)^2 + \lambda \left| ar{arphi} u
ight|^2 dx$$

The Euler – Lagrange equation is solved for the above variation problem

$$I_x I_y + I_y^2 u_2 + I_y I_t - \lambda \Delta u_2 = 0$$

$$I_x^2 u_1 + I_x I_y u_2 + I_x I_t - \lambda \Delta u_1 = 0$$

Horn - Schunck Method: Implementation

The iteration must be repeated once the neighbors are updated

$$u^{k+1} = \overline{u}^k - \frac{I_x(I_x\overline{u}^k + I_y\overline{v}^k + I_t)}{\alpha^2 + I_x^2 + I_y^2}$$

$$v^{k+1} = \overline{v}^k - \frac{I_y(I_x\overline{u}^k + I_y\overline{v}^k + I_t)}{\alpha^2 + I_x^2 + I_y^2}$$

- The system of equations is solved with Gauss Seidel or Jordan method using over-relaxation techniques
- High density of flow vectors but more sensitive to noise

Advanced Penalty Function

• The energy functional is as follows:

$$E(u) = \int \phi_D((\nabla I^T + I_t)^2) + \lambda \phi_r(|\nabla u|^2)$$

$$\phi(\mathbf{s}^2) = \sqrt{\epsilon + \mathbf{s}^2}$$

 Discretization using finite difference scheme leads to sparse LSE that can be solved with SOR

The penalty function yields better robustness against noise

Warping

 Warping methods are capable of dealing with large displacements (coarse to fine strategy)

$$E(u) = \int_{\Omega} \Phi_D((I_2(\mathbf{x} + u(\mathbf{x})) - I_1(\mathbf{x}))^2) + \lambda \Phi_R(|\nabla u|)^2 d\mathbf{x}$$

$$E(du^k) = \int_{\Omega} \Phi_D((\nabla I^k du + I_t^k)^2) + \lambda \Phi_R(|\nabla u^k + \nabla du^k|^2) d\mathbf{x}$$

Warping: Implementation

Solving for the Euler – Lagrange equation

$$0 = \Phi'_{D} \cdot (I_{x}^{k^{2}} du_{1} + I_{x}^{k} I_{y}^{k} du_{2} + I_{x}^{k} I_{t}^{k}) - \lambda \operatorname{div}(\Phi'_{R} \cdot \nabla u_{1}^{k}) - \lambda \operatorname{div}(\Phi'_{R} \cdot \nabla du_{1}^{k})$$

$$0 = \Phi'_{D} \cdot (I_{x}^{k} I_{y}^{k} du_{1} + I_{y}^{k^{2}} du_{2} + I_{y}^{k} I_{t}^{k}) - \lambda \operatorname{div}(\Phi'_{R} \cdot \nabla u_{2}^{k}) - \lambda \operatorname{div}(\Phi'_{R} \cdot \nabla du_{2}^{k})$$

The the results obtained are updated such that:

$$u^{k+1} := u^k + du^k$$

Results and Discussions

Results and Discussions

Live Demo

Results and Discussions

Questions?