MATH 8510 GALOIS THEORY

LU JUNYU

1. WEEK 1

Let us agree on some facts from elementary abstract algebra before we dig into Galois theory.

Theorem 1.1. Let F be a commutative ring. Then F[X] is a PID if and only if F is a field.

Hence or therefore $\mathbb{Z}[X]$ is not a PID. Indeed, $\langle 2, X \rangle$ is an example of an ideal that cannot be generated by a single polynomial. K[X,Y] is not a PID as $\langle X,Y \rangle$ is not principal.

Theorem 1.2. An ideal in a PID is prime if and only if it is maximal.

Theorem 1.3 (Gauss's Lemma). A polynomial $f(X) \in \mathbb{Z}[X]$ is irreducible if and only if it is irreducible over $\mathbb{Q}[X]$.

Theorem 1.4 (Eisenstein Criterion). Let $f(X) = a_0 + a_1X + ... + a_nX^n \in \mathbb{Z}[X]$ be a polynomial over integers where $a_n \neq 0$. Suppose that there exists a prime p such that

- (1) $p \nmid a_n$,
- (2) $p \mid a_i \text{ for } i = 0, 1, ..., n-1,$
- (3) $p^2 \nmid a_0$.

Then f(X) is irreducible over $\mathbb{Z}[X]$.

REFERENCES