Quiz 4

Name: Time: Feb 18, 2016

Instructions: Please write down the correct answer for each question in the following box.

1	2	3	4	5	6	7	Total Score

- 1. Recall that regular languages are closed under union. Based on this observation which of the following is necessarily true?
 - (A) If L_1 and L_2 are regular then $L_1 \cup L_2$ is regular.
 - (B) If $L_1 \cup L_2$ is regular then L_1 and L_2 is regular.
 - (C) $L_1 \cup L_2$ is regular.
 - (D) All of the above.
- 2. Recall that regular languages are closed under complementation. Based on this observation, we have three statements: (1) If L is regular then \overline{L} is regular; (2) If \overline{L} is regular then L is regular; (3) $L \cup \overline{L}$ is regular. Which of the following is necessarily true about these three statements?
 - (A) (1)(2) is true, but (3) is false.
 - (B) (2) is true, but (1)(3) are false.
 - (C) (3) is true, but (1)(2) are false.
 - (D) (1)(2)(3) are all true.
- 3. Consider the following alternate proof that regular languages are closed under Kleene closure that uses other closure properties. "Since regular languages are closed under concatenation, if L is regular then so is L^i for any i. Next, since regular languages are closed under union, it follows that $L^* = \bigcup_{i \geq 0} L^i$ is regular, if L is regular."
 - (A) The proof is correct.
 - (B) The proof is incorrect because closure under concatenation does not imply that if L is regular then so is L^i for any i.
 - (C) The proof is incorrect because closure under union does not imply that if each L^i is regular then $\bigcup_{i>0} L^i$ is regular.
 - (D) The proof is incorrect because $L^* \neq \bigcup_{i>0} L^i$.
- 4. Let $h: \{0,1\}^* \to \{a\}^*$ be a homomorphism defined as follows: h(0) = a and $h(1) = \epsilon$. Let $L_{0n1n} = \{0^n1^n \mid n \ge 0\}$. Taking $A \subset B$ to mean A is a proper subset of B, which of the following is true?
 - (A) $h^{-1}(h(L_{0n1n})) = L_{0n1n}$
 - (B) $h^{-1}(h(L_{0n1n})) \subset L_{0n1n}$
 - (C) $L_{0n1n} \subset h^{-1}(h(L_{0n1n}))$
 - (D) $h^{-1}(h(L_{0n1n})) \cap L_{0n1n} = \emptyset$
- 5. For $n \ge 0$, let $K_n = \{a^i b^k \mid i \ge n, \ 0 < k < n\}$. Which of the following is true?

- (A) K_n is regular for all values of n
- (B) K_n is not regular for any value of n
- (C) There is an N_0 such that K_n is regular for all $n \leq N_0$ but not regular for $n > N_0$
- (D) The regularity of K_n depends on the value of n and cannot be described in a simple manner.
- 6. Consider the following proof showing that $L = \mathbf{L}(0^*1^*)$ does not satisfy the pumping lemma. Let p be the pumping length. Consider the string $w = 001^p \in L$. Consider a x = 0, y = 01 and $z = 1^{p-1}$. Now observe that $xy^2z = 001011^{p-1} \notin L$. Hence, L does not satisfy the pumping lemma.
 - (A) This proof demonstrates that L does not satisfy the pumping lemma.
 - (B) This proof only shows that one particular w cannot be pumped. That is not enough to show that L does not satisfy the pumping lemma.
 - (C) This proof only shows that a specific division of w into x, y, and z cannot be pumped. That is not enough to prove that L does not satisfy the pumping lemma.
 - (D) This proof only shows that a specific value of the pumping length p is not correct. That is not enough to show that L does not satisfy the pumping lemma.
- 7. Let $L \subseteq \Sigma^*$ be a language such that L satisfies the pumping lemma. What can we say about L?
 - (A) L is regular.
 - (B) L is not regular.
 - (C) L may or may not be regular.
 - (D) $\Sigma^* \setminus L$ is regular.