Diophantine m-tuples and generalizations

Andrej Dujella

Department of Mathematics University of Zagreb, Croatia e-mail: duje@math.hr

URL: http://web.math.pmf.unizg.hr/~duje/

Diophantus: Find four numbers such that the product of any two of them, increased by 1, is a perfect square:

$$\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$$

Fermat: {1, 3, 8, 120}

$$1 \cdot 3 + 1 = 2^2$$
, $3 \cdot 8 + 1 = 5^2$, $1 \cdot 8 + 1 = 3^2$, $3 \cdot 120 + 1 = 19^2$, $1 \cdot 120 + 1 = 11^2$, $8 \cdot 120 + 1 = 31^2$.

Euler: $\{1, 3, 8, 120, \frac{777480}{8288641}\}$

$$ab + 1 = r^2 \mapsto \{a, b, a + b + 2r, 4r(a + r)(b + r)\}$$

Gibbs (1999):
$$\left\{\frac{11}{192}, \frac{35}{192}, \frac{155}{27}, \frac{512}{27}, \frac{1235}{48}, \frac{180873}{16}\right\}$$

Dujella (2009):
$$\left\{ \frac{27}{35}, -\frac{35}{36}, -\frac{352}{315}, \frac{1007}{1260}, -\frac{5600}{4489}, \frac{72765}{106276} \right\}$$

Definition: A set $\{a_1, a_2, \ldots, a_m\}$ of m non-zero integers (rationals) is called a *(rational)* Diophantine m-tuple if $a_i \cdot a_j + 1$ is a perfect square for all $1 \le i < j \le n$.

Question: How large such sets can be?

Conjecture 1: There does not exist a Diophantine quintuple.

Baker & Davenport (1969):

 $\{1,3,8,d\} \Rightarrow d=120$ (problem raised by Gardner (1967), van Lint (1968))

Arkin, Hoggatt & Strauss (1978): Let

$$ab + 1 = r^2$$
, $ac + 1 = s^2$, $bc + 1 = t^2$

and define

$$d_{+,-} = a + b + c + 2abc \pm 2rst.$$

Then $\{a, b, c, d_{+,-}\}$ is a Diophantine quadruple (if $d_{-} \neq 0$).

Conjecture 2: If $\{a,b,c,d\}$ is a Diophantine quadruple, then $d=d_+$ or $d=d_-$, i.e. all Diophantine quadruples satisfy

$$(a - b - c + d)^2 = 4(ad + 1)(bc + 1).$$

Such quadruples are called regular.

D. & Fuchs (2004): All Diophantine quadruples in $\mathbb{Z}[X]$ are regular.

D. & Jurasić (2010): In $\mathbb{Q}(\sqrt{-3})[X]$, the Diophantine quadruple

$$\left\{\frac{\sqrt{-3}}{2}, -\frac{2\sqrt{-3}}{3}(X^2 - 1), \frac{-3 + \sqrt{-3}}{3}X^2 + \frac{2\sqrt{-3}}{3}, \frac{3 + \sqrt{-3}}{3}X^2 + \frac{2\sqrt{-3}}{3}\right\}$$

is not regular.

D. (1997):
$$\{k-1, k+1, 4k, d\} \Rightarrow d = 16k^3 - 4k$$

D. & Pethő (1998): {1,3} cannot be extended to a Diophantine quintuple

Fujita (2008): $\{k-1, k+1\}$ cannot be extended to a Diophantine quintuple

Bugeaud, D. & Mignotte (2007):

$$\{k-1, k+1, 16k^3 - 4k, d\} \Rightarrow$$

 $d = 4k \text{ or } d = 64k^5 - 48k^3 + 8k$

D. (2004): There does not exist a Diophantine sextuple. There are only finitely many Diophantine quintuples.

$$\max\{a, b, c, d, e\} < 10^{10^{26}}$$

Fujita (2009): If $\{a,b,c,d,e\}$, with a < b < c < d < e, is a Diophantine quintuple, then $\{a,b,c,d\}$ is a regular Diophantine quadruple.

Extending the Diophantine triple $\{a,b,c\}$, a < b < c, to a Diophantine quadruple $\{a,b,c,d\}$:

$$ad + 1 = x^2$$
, $bd + 1 = y^2$, $cd + 1 = z^2$.

System of simultaneous Pellian equations:

$$cx^2 - az^2 = c - a$$
, $cy^2 - bz^2 = c - b$.

Binary recursive sequences:

finitely many equations of the form $v_m = w_n$.

Linear forms in three logarithms:

$$v_m pprox \alpha \beta^m$$
, $w_n pprox \gamma \delta^n \Rightarrow m \log \beta - n \log \delta + \log \frac{\alpha}{\gamma} pprox 0$

Baker's theory gives upper bounds for m, n (logarithmic functions in c).

Simultaneous Diophantine approximations:

 $\frac{x}{z}$ and $\frac{y}{z}$ are good rational approximations to $\sqrt{\frac{a}{c}}$ and $\sqrt{\frac{b}{c}}$, resp.

 $\frac{bsx}{abz}$ and $\frac{aty}{abz}$ are good rational approximations to $\frac{s}{a}\sqrt{\frac{a}{c}}=\sqrt{1+\frac{b}{abc}}$ and $\frac{t}{b}\sqrt{\frac{b}{c}}=\sqrt{1+\frac{a}{abc}}$, resp.

If c is large compared to b (say $c>b^6$), then hypergeometric method gives (very good) upper bounds for x,y,z.

Congruence method (D. & Pethő):

 $v_m \equiv w_n \pmod{c^2}$

If m, n are small (compared with c), then \equiv can be replaced by =, and this (hopefully) leads to a contradiction (if m, n > 2).

Therefore, we obtain lower bounds for m, n (small powers of c, e.g. $c^{0.04}$).

Conclusion: Contradiction for large c.

If $\{k-1,k+1,c\}$ is a Diophantine triple, then $c=c_{\nu}$, where

$$c_1 = 4k$$
, $c_2 = 16k^3 - 4k$, $c_3 = 64k^5 - 48k^3 + 8k$, ...

For c_{ν} , $\nu \geq 3$, gap is large enough for the application of results on simultaneous Diophantine approximations – **Fujita (2008)**.

The case c_1 leads to simultaneous approximations to the numbers $\sqrt{1-\frac{1}{k}}$ and $\sqrt{1+\frac{1}{k}}$ (a result by Rickert (1993)) - **D.** (1997).

For c_2 – Bugeaud, D. & Mignotte (2007):

Improved congruence method:

Combination of congruences mod 4k(k-1) and mod c_2^2 gives $m > 4.9k^{1.5}$ (if m > 2).

Recent results on linear forms in three logarithms:

by Matveev (2000): $k < 3.8 \cdot 10^{10}$;

by Mignotte (2007): $k < 5.4 \cdot 10^8$.

Baker-Davenport reduction method:

Starting with $m \le 3.6 \cdot 10^{16}$, we obtain $m \le 2$.

Bo He, Togbé, Filipin (2009,2012):

$${k, A^2k + 2A, (A+1)^2k + 2(A+1)}$$

extends uniquely to a Diophantine quadruple if $1 \le A \le 22$ or $A \ge 51767$ (using linear forms in two logarithms)

Let $\{a,b,c\}$ be a Diophantine triple. Consider the elliptic curve

E:
$$y^2 = (ax + 1)(bx + 1)(cx + 1)$$
.

Rational points $P=[0,1],\ Q=[1/abc,rst/abc]$ satisfy $x(P\mp Q)=d_{+,-}.$

Conjecture 3: All integer points on E are: $[0,\pm 1]$, $[d_+,\pm(at+rs)(bs+rt)(cr+st)]$, $[d_-,\pm(at-rs)(bs-rt)(cr-st)]$, and also [-1,0] if $1 \in \{a,b,c\}$.

D. (2000): Conjecture is true for elliptic curves

$$E_k$$
: $y^2 = ((k-1)x+1)((k+1)x+1)(4kx+1)$,

under assumption that rank $E_k(\mathbb{Q}) = 1$ (also for two subfamilies of rank 2 and one subfamily of rank 3). Furthermore, it is true for all k, $2 \le k \le 1000$ (extended to $k \le 5000$ by **Najman (2010)**).

The condition rank $E_k(\mathbb{Q}) = 1$ is not unrealistic since rank $E(\mathbb{Q}(k)) = 1$.

D. & Pethő (2000): Conjecture is true for elliptic curves

$$E'_k$$
: $y^2 = (x+1)(3x+1)(c_k x + 1)$,

where $\{1,3,c_k\}$ is a Diophantine triple, i.e.

$$c_k = \frac{1}{6} \left((2 + \sqrt{3})(7 + 4\sqrt{3})^k + (2 - \sqrt{3})(7 - 4\sqrt{3})^k - 4 \right),$$

under assumption that rank $E_k'(\mathbb{Q}) = 2$. Furthermore, it is true for all k, $1 \le k \le 40$, with possible exceptions k = 23 and k = 37 (extended by **Jacobson & Williams (2002)** to $k \le 100$, with the possible exception of k = 37, for which the result holds under the Extended Riemann Hypothesis).

Similar results for other families of Diophantine triples: D. (2001), Fujita (2007, 2008), Najman (2009, 2010).

Definition: Let n be an integer. A set of m positive integers is called a *Diophantine* m-tuple with the property D(n) or simply D(n)-m-tuple (or P_n -set of size m), if the product of any two of them, increased by n, is a perfect square.

$$M_n = \sup\{\#D : D \text{ is a } D(n)\text{-tuple}\}$$

Conjecture 4: There exist a constant C such that $M_n < C$ for all non-zero integers n.

In particular, there does not exist a rational C-tuple.

D. (2004):
$$4 \le M_1 \le 5$$
 (implies directly $4 \le M_4 \le 7$)

Filipin (2008):
$$4 \le M_4 \le 5$$

D. (2004):
$$M_n \le 31$$
 if $|n| \le 400$ $M_n < 15.476 \cdot \log |n|$ if $|n| > 400$

D. & Luca (2005):
$$M_p < 2^{146}$$
 if p is a prime

Brown, Gupta & Singh, Mohanty & Ramasamy (1985):

If $n \equiv 2 \pmod{4}$, then $M_n = 3$.

D. (1993): If $n \not\equiv 2 \pmod{4}$ and $n \not\in S_1 = \{-4, -3, -1, 3, 5, 8, 12, 20\}$, then $M_n \ge 4$.

Conjecture 5: If $n \in S_1$, then $M_n = 3$.

D. & Fuchs (2005): $3 \le M_{-1} \le 4$

Remark: $n \equiv 2 \pmod{4}$ if and only if n is not representable as a difference of the squares of two integers.

D. (1997), Franušić (2004, 2008): Analogous results: strong connection between the existence of D(n)-quadruples and the representability as a difference of two squares also hold for integers in some quadratic fields.

D., Filipin & Fuchs (2007):

There are only finitely many D(-1)-quadruples. If $\{a,b,c,d\}$ is a D(-1)-quadruple, then $\max\{a,b,c,d\}<10^{10^{23}}$.

Conjecture 6: If n is not a perfect square, then there exist only finitely many D(n)-quadruples.

Euler: There exist infinitely many D(1)-quadruples, and therefore infinitely many $D(k^2)$ -quadruples.

DFF implies that the conjecture is true for n = -1 and n = -4 (note that all elements of a D(-4)-quadruple are even).

D. (2000): For any rational q there exist infinitely many rational D(q)-quadruples.

Question: For which rationals q there exist infinitely many rational D(q)-quintuples.

We may restrict our attention to square-free integers q, since by multiplying all elements of a D(q)-m-tuple by r we get a $D(qr^2)$ -m-tuple.

Euler: q = 1

D. (2000):
$$q = -3$$

$$\left\{ \frac{5}{4}, \frac{12}{5}, \frac{133}{5}, \frac{73}{20}, \frac{217}{20} \right\}$$

D. (2002):
$$q = -1$$

$$\left\{10, \frac{25}{8}, \frac{37}{10}, \frac{13}{40}, \frac{533}{40}\right\}$$

D. & Fuchs (2012): For infinitely many square-free integers q for which the elliptic curve

$$qy^2 = x^3 + 86x^2 + 825x$$

has positive rank (conjecturally the set of all such squarefree integers has density $\geq 1/2$).

$$a_i \cdot a_j + 1 = k$$
-th power $k \ge 3$ fixed

Such a set is called a k-th power Diophantine m-tuple.

{2,171,25326} is a third power Diophantine triple

 $\{1352,8539880,9768370\}$ is a fourth power Diophantine triple

 $C(k) = \sup\{\#D : D \text{ is a } k\text{-th power D. tuple}\}$

Bugeaud & D. (2003): $C(3) \le 7$, $C(4) \le 5$, $C(k) \le 4$ for $5 \le k \le 176$, $C(k) \le 3$ for $k \ge 177$

$$a_i \cdot a_j + 1 = \text{perfect power}$$

Such a set is called a Diophantine powerset.

 $D \subset \{1, 2, ..., N\}$ such that ab+1 is a perfect power for all $a \neq b$ in D.

Gyarmati, Sárközy & Stewart (2002): $\#D \le 340 \frac{(\log N)^2}{\log \log N}$

Improvements by Bugeaud-Gyarmati (2004), Dietmann-Elsholtz-Gyarmati-Simonovits (2005), Luca (2005), Gyarmati-Stewart (2007)

Stewart (2008): $\#D \ll (\log N)^{2/3} (\log \log N)^{1/3}$

Luca (2005): abc-conjecture implies that #D is bounded by an absolute constant.

D., Fuchs & Luca (2008):

In $\mathbb{Z}[X]$, $\#D < 8 \cdot 10^5$.

D. & Jurasić (2010):

In $\mathbb{K}[X]$, where \mathbb{K} is a field of characteristic 0, $\#D < 2 \cdot 10^7$.

Let $D_m(N) = \# \{D \subseteq \{1, 2, ..., N\} : D \text{ is a Diophantine-}m\text{-tuple}\}.$

D. (2008):
$$D_2(N) = \frac{6}{\pi^2} N \log N + O(N)$$
; $ab + 1 = r^2 \rightarrow r^2 \equiv 1 \pmod{b}$

$$D_3(N) = \frac{3}{\pi^2} N \log N + O(N);$$
 almost all triples are of form $\{a, b, a+b+2r\}$

$$0.1608\sqrt[3]{N}\log N < D_4(N) < 0.5354\sqrt[3]{N}\log N$$

Martin & Sitar (2010):

 $D_4(N) = C\sqrt[3]{N} \log N + O(\sqrt[3]{N} (\log N)^{2/3 + \sqrt{2}/6} (\log \log N)^{5/12}), \text{ where } C = \frac{2^{4/3}}{3\Gamma(\frac{2}{3})^3} \approx 0.338285$

almost all quadruples are on the form

$${a,b,a+b+2r,4r(a+r)(b+r)};$$

Erdős-Turán inequality - discrepancy between the number of elements of a sequence that lie in a particular interval modulo 1 and the expected number;

equidistribution of solutions of polynomial congruences

Fujita (2010):
$$D_5(N) < 10^{276}$$

a fixed Diophantine triple $\{a,b,c\}$ has at most 4 extensions to Diophantine quintuple $\{a,b,c,d,e\}$ such that $\max\{a,b,c\}< d< e$

$$a_i \cdot a_j + n = \text{perfect power}$$

Bérczes, D., Hajdu & Luca (2011):

The size of such sets cannot be bounded by an absolute constant.

More precisely, let $x \geq e^{e^e}$, and take $K = \left\lfloor \left(\frac{\log\log x}{2\log\log\log x}\right)^{1/3} \right\rfloor$. Then there exists a set $\mathcal{A}_K = \{a_1,\ldots,a_K\}$ with elements all in [1,x], as well as an integer n_K also in [1,x], such that $a_ia_j + n_K = x_{ij}^{k_{ij}}$ for $1 \leq i < j \leq K$ with some integers x_{ij} , where the exponents k_{ij} are the first $\binom{K}{2}$ primes.

Assuming the abc-conjecture, the size of such sets can be bounded by a constant depending only on n (generalization of Luca (2005) for n = 1).