文档类型: 开发文档

实用工程测量软件设计

编号: EMCAS-01

EMACS 测量计算软件开发文档

姓名: 王定敢

学号: 2017301610155

指导老师:梅文胜老师

方向: A 方向

2020年2月-2020年4月

目录

第一章 前言与概述	1
一、 依赖环境	1
(一) 开发环境	1
(二) 外部依赖库	1
二、 软件概览	1
三、 软件特性	1
(一) 功能	1
(二) 软件逻辑	1
第二章 核心算法原理	1
一、 坐标转换模型	1
(一) 二维坐标转换	1
(1) 直接参数转换法	1
(2) 最小二乘转换法(四参数转换模型)	2
(3) 正形变换法	3
(二) 三维坐标转换	5
二、 坐标系转换模型	5
(一)站心坐标系转地心坐标系	5
(二) …	5
(三) 地理坐标与高斯投影换算	5
(四)大地主题解算	5
三、 徕卡 GSI	5
(一) 徕卡 GSI 水准测量文件格式	5
(二) 通用水准测量电子手簿	5
四、 COSA 平面控制网平差	6
五、 CPIII 平差	6
六、 曲线计算(通用)	6
七、 GNSS 单点定位	6
第三章 软件架构	6
第四章 软件规划	6
第五章 参考文献	6
EMACS 测量软件	7
使用手册	7
一、 坐标转换功能	8
二、 GSI 解析与水准测量电子手簿功能	10
(一) GSI 解析	10
(二) 电子手簿功能	12
三、 平面控制网平差功能	14
四、 CPIII 网平差	15
五、 曲线计算	15
六、 GNSS 卫星单点定位	15
七、 状态栏显示	15

第一章 前言与概述

一、依赖环境

(一) 开发环境

编写语言及版本为 python 3.7.0,编写平台为 JetBrains PyCharm 2019.2.3 x64,通过 Inno Setup Compiler 软件来打包可执行文件进行分发。

(二) 外部依赖库

- ◆ 基于 Qt 的 python 开源 GUI 库: PyQt5。
- ◆ numpy 高性能矩阵库。
- ◆ win32com 平台系统库。
- ◆ 1xml 数据存储模型库。
- ◆ pyinstaller 打包库。
- ♦ python 的 docx 库。

二、软件概览

图 1 初始界面

图 2 坐标转换功能

图 3 全屏效果与可移动状态监测栏

图 4 GSI 数据格式解析

三、软件特性

(一) 功能

- ◆二维坐标转换:直接参数转换法;最小二乘转换法;正形变换法。
- ◆ 徕卡的 GSI 水准测量文件解析与结果导出。

(二) 软件逻辑

- ♦ 计算中间过程监测功能;
- ◆ 同一功能按钮如打开文档、导出数据(报告)等复用功能;
- ◆ 异常、提示等弹出窗;
- ◆ 窗体运行日志,记录整个运行的过程与异常错误信息:时间、错误位置、 错误原因等。

第二章 核心算法原理

一、坐标转换模型

(一) 二维坐标转换

(1) 直接参数转换法

已知两套坐标系的两个已知公共点坐标,原始坐标系坐标为 (X_1,Y_1) 、 (X_2,Y_2) ,对应的转换目标坐标为 (x_1,y_1) 、 (x_2,y_2) ,坐标转换的数学模型为:

$$\begin{bmatrix} \Delta X \\ \Delta Y \end{bmatrix} = \begin{bmatrix} X_2 \\ Y_2 \end{bmatrix} - \begin{bmatrix} X_1 \\ Y_1 \end{bmatrix}$$

$$\begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} - \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
(2-1)

$$S = \sqrt{\Delta X^2 + \Delta Y^2}$$
, $s = \sqrt{\Delta x^2 + \Delta y^2}$ (2-2)

$$A = arctg(\Delta Y/\Delta X), \quad \alpha = arctg(\Delta y/\Delta X)$$
 (2-3)

由此得平移参数:

$$\begin{bmatrix} D_x \\ D_y \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \end{bmatrix} - \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \tag{2-4}$$

尺度因子 $^{\alpha}$ 及旋转参数 $^{\theta}$:

$$m=rac{S-s}{S}$$
 , $\theta=A-lpha$ (2-5)

由两对公共点求得转换四个参数之后,即可对其他点批量转换:

$$\begin{bmatrix} \Delta X_i \\ \Delta Y_i \end{bmatrix} = \begin{bmatrix} X_i \\ Y_i \end{bmatrix} - \begin{bmatrix} X_1 \\ Y_1 \end{bmatrix} \tag{2-6}$$

求出增量转换值:

$$\begin{bmatrix} \Delta x_i \\ \Delta y_i \end{bmatrix} = (1+m) \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \Delta X_i \\ \Delta Y_i \end{bmatrix}$$
 (2-7)

计算在新坐标系下的坐标:

$$\begin{bmatrix} x_i \\ y_i \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \end{bmatrix} + \begin{bmatrix} \Delta x_i \\ \Delta y_i \end{bmatrix} - \begin{bmatrix} D_x \\ D_x \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} \Delta x_i \\ \Delta y_i \end{bmatrix}$$
(2-8)

由此即可解算原始坐标在新坐标系下的坐标。

(2) 最小二乘转换法(四参数转换模型)

设原始坐标系坐标为 (X_i,Y_i) ,已知转换目标的固定坐标设为 (x_i,y_i) ,转换值为 (x_i',y_i') ,此时,从原始坐标转换到目标坐标的模型为:

$$\begin{cases} x_i' = \Delta x_0 + x_i m \cos a + Y_i m \sin a \\ y_i' = \Delta y_0 - x_i m \sin a + Y_i m \cos a \end{cases} \tag{2-9}$$

其中 $\Delta x, \Delta y$ 为平移参数,m 为尺度比参数,a 为旋转参数。公共点新坐标系转换坐标与固定坐标之差为:

$$\begin{cases} \Delta x_i = x_i' - x_i = \Delta x_0 + x_i m \cos a + Y_i m \sin a - x_i \\ \Delta y_i = y_i' - y_i = \Delta y_0 - x_i m \sin a + Y_i m \cos a - y_i \end{cases} \tag{2-10}$$

对上式进行简化, 令 $m\cos a = \mu, m\sin a = \delta$, 则有:

$$\begin{cases} \Delta x_i = \Delta x_0 + X_a \mu + Y_i \delta - x_i \\ \Delta y_i = \Delta y_0 + Y_i \mu - X_i \delta - y_i \end{cases} \tag{2-11}$$

根据给定的 n 个公共点,建立误差方程如下:

$$\begin{bmatrix} V_{x_i} \\ V_{y_i} \end{bmatrix} = \begin{bmatrix} 1 & 0 & Y_i & X_i \\ 0 & 1 & -X_i & Y_i \end{bmatrix} \begin{bmatrix} \Delta x_0 \\ \Delta y_0 \\ \delta \\ \mu \end{bmatrix} - \begin{bmatrix} x_i \\ y_i \end{bmatrix} \ (i = 4, 5 \dots n) \tag{2-12}$$

对于该式,由于初值计算可能不太准确,故需要进行迭代计算,给改正数 V 设定一个 阈值,如果结果小于阈值,则跳出,否则需要将改正数加到计算的初值再重新迭代。

计算质量评估,中误差为: $\sigma = \sqrt{\frac{V^T PV}{2n-4}}$,解算的旋转角为: $a = \arctan tg \frac{\delta}{\mu}$,尺度因子

有 $m = \frac{\delta}{\sin a} = \frac{\mu}{\cos a}$, 由此计算任意点的新坐标 (x_i', y_i') :

$$\begin{cases} x_i' = \Delta x_0 + X_a \mu + Y_i \delta \\ y_i' = \Delta y_0 + Y_i \mu - X_i \delta \end{cases}$$
 (2-13)

相似变换特点是不变更旧网的几何形状,将旧网整体平移,旋转尺度缩放配合到新坐标系中,其缺点在公共点有间隙存在,而且间隙可能还比较大,为了克服上述缺点,可以采用正形变换的方法进一步逐步逼近。

(3) 正形变换法

♦ 基本转换模型

$$\begin{cases} x_{j}' = p_{0} + x_{j} p_{1} - y_{j} q_{1} + \left(x_{j}^{2} - y_{j}^{2}\right) p_{2} - 2x_{j} y_{j} q_{2} + \left(x_{j}^{3} - 3x_{j} y_{j}^{2}\right) p_{3} \\ - \left(3x_{j}^{2} y_{j} - y_{j}^{3}\right) q_{3} + \left(x_{j}^{4} - 6x_{j}^{2} y_{j}^{2} + y_{j}^{4}\right) p_{4} + \left(4x_{j} y_{j}^{3} - 4x_{j}^{3} y_{j}\right) q_{4} \\ y_{j}' = q_{0} + y_{j} p_{1} + x_{j} q_{1} + 2x_{j} y_{j} p_{2} + \left(x_{j}^{2} - y_{j}^{2}\right) q_{2} + \left(3x_{j}^{2} y_{j} - y_{j}^{3}\right) p_{3} \\ + \left(x_{j}^{3} - 3x_{j} y_{j}^{2}\right) q_{3} + \left(4x_{j}^{3} y_{j} - 4x_{j} y_{j}^{3}\right) p_{4} + \left(x_{j}^{4} - 6x_{j}^{2} y_{j}^{2} + y_{j}^{4}\right) q_{4} \end{cases}$$

$$(2-14)$$

使用最小二乘法求解,最少需要6对公共点。建立误差方程:

$$\begin{cases} v_{x'} = \Delta p_0 + x_j \Delta p_1 - y_j \Delta q_1 + (x_j^2 - y_j^2) \, p_2 - 2 x_j y_j q_2 + (x_j^3 - 3 x_j y_j^2) \, p_3 \\ - (3 x_j^2 y_j - y_j^3) \, q_3 + (x_j^4 - 6 x_j^2 y_j^2 + y_j^4) \, p_4 + (4 x_j y_j^3 - 4 x_j^3 y_j) q_4 - l_{x_j} \\ v_{y_j'} = \Delta q_0 + y_j \Delta p_1 + x_j \Delta q_1 + 2 x_j y_j \, p_2 + (x_j^2 - y_j^2) q_2 + (3 x_j^2 y_j - y_j^3) \, p_3 \\ + (x_j^3 - 3 x_j y_j^2) q_3 + (4 x_j^3 y_j - 4 x_j y_j^3) \, p_4 + (x_j^4 - 6 x_j^2 y_j^2 + y_j^4) q_4 - l_{y_j} \end{cases} \tag{2-15}$$

其中,常数项为:

$$\begin{cases} l_{x_j} = x_j' \\ l_{y_i} = y_j' \end{cases} \tag{2-16}$$

由此得:

$$\begin{bmatrix} v_i \\ v_x \\ \vdots \\ v_j \\ v_j \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_1 & -y_1 & x_1^2 - y_1^2 & -2x_1y_2 & x_2^3 - 3x_1y_1^2 & y_1^3 - 3x_1^2y_1 & x_1^3 - 6x_1^2y_1^2 + y_1^4 & 4x_1y_1^3 - 4x_1^3y_1 \\ 0 & 1 & y_2 & x_1 & 2x_1y_1 & x_1^2 - y_1^2 & 3x_1^2y_1 - y_1^3 & x_1^3 - 3x_1y_1^2 & 4x_1^3y_1 - 4x_1y_1^3 & x_1^4 - 6x_1^2y_1^2 + y_1^4 \\ \vdots & \vdots \\ 1 & 0 & x_n & -y_n & x_n^2 - y_n^2 & -2x_ny_n & x_n^3 - 3x_ny_n^2 & y_n^3 - 3x_n^2y_n & x_n^4 - \delta x_n^2y_n^2 + y_n^4 & 4x_ny_n^3 - 4x_n^3y_n \\ 0 & 1 & y_n & x_n & 2x_ny_n & x_n^2 - y_n^2 & 3x_n^2y_n - y_n^3 & x_n^3 - 3x_ny_n^2 & 4x_n^3y_n - 4x_ny_n^3 & x_n^4 - 6x_n^2y_n^2 + y_n^4 \end{bmatrix} \times \begin{bmatrix} \Delta_0 \\ \Delta g_1 \\ p_2 \\ q_2 \\ p_3 \\ q_3 \\ p_5 \\ q_5 \end{bmatrix} - \begin{bmatrix} l_x \\ l_x \\ ... \\ l_x \\ l_x \end{bmatrix}$$

(2-17)

其中:

$$\frac{X}{_{10 \times 1}} = \left(\Delta p_0 \ \Delta q_0 \ \Delta p_1 \ \Delta q_1 \ p_2 \ q_2 \ p_3 \ q_3 \ p_4 \ q_4 \right)^{\mathrm{\tiny T}}$$
 (2-18)

$$L = \begin{pmatrix} l_{x_1} & l_{y_1} & \cdots & l_{x_i} & l_{y_i} \end{pmatrix}^T$$
 (2-19)

单位权中误差:
$$\sigma_0 = \sqrt{rac{ ext{V}^{ ext{T}} V}{2n-10}}$$

♦ 结构优化

但当公共点的源坐标与目标坐标之差较大时,为了减小误差方程的自由项,可先取上式等号右边的前三项进行线性变换(等价于 Helmert 变换),选择相隔较远的两个公共点(设为 1 号点和 n 号点)预先解出参数 p_0,q_0,p_1,q_1 的近似值: $(p_0),(q_0),(p_1),(q_1)$,此时,变换公式的矩阵形式为方程的解为:

$$\begin{pmatrix} (x_1') \\ (y_1') \\ (x_n') \\ (y_n') \end{pmatrix} = \begin{pmatrix} 1 & 0 & x_1 & -y_1 \\ 0 & 1 & y_1 & x_1 \\ 1 & 0 & x_n & -y_n \\ 0 & 1 & y_n & x_n \end{pmatrix} \begin{pmatrix} (p_0) \\ (q_0) \\ (p_1) \\ (q_1) \end{pmatrix}$$
 (2-20)

解为:

$$\begin{pmatrix} (p_0) \\ (q_0) \\ (p_1) \\ (q_1) \end{pmatrix} = \begin{pmatrix} 1 & 0 & x_1 & -y_1 \\ 0 & 1 & y_1 & x_1 \\ 1 & 0 & x_n & -y_n \\ 0 & 1 & y_n & x_n \end{pmatrix}^{-1} \begin{pmatrix} (x_1') \\ (y_1') \\ (x_n') \\ (y_n') \end{pmatrix}$$
(2-21)

$$\begin{cases} l_{x_j} = x_j' - (p_0) - x_j(p_1) + y_j(q_1) \\ l_{y_i} = y_j' - (q_0) - y_j(p_1) - x_j(q_1) \end{cases} \tag{2-22}$$

当法方程系数矩阵 B 的前 2 列数据绝对值较小,后 8 列数据绝对值又太大,为了缩小各列数据绝对值的差异,以改善矩阵 B 的结构,可先将源坐标x,y 分别减去一个常数后再计算。源坐标的减常数 x_0,y_0 。可分别取源坐标x,y 的平均值来优化 B 矩阵:

$$x_0 = \frac{1}{n} \sum_{i=1}^{n} x_i, y_0 = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 (2-23)

(二) 三维坐标转换

六参数

七参数

十三参数

- 二、坐标系转换模型
- (一) 站心坐标系转地心坐标系
- (<u>__</u>) ···
- (三) 地理坐标与高斯投影换算
- (四) 大地主题解算
- 三、徕卡 GSI
- (一) 徕卡 GSI 水准测量文件格式
- (二) 通用水准测量电子手簿

根据 QtWightTable 组件设定的表格。

四、 COSA 平面控制网平差

五、 CPIII 平差

六、曲线计算(通用)

七、 GNSS 单点定位

第三章 软件架构

第四章 软件规划

第五章 参考文献

[1] 丁士俊, 张忠明. 凡种不同坐标变换方法问题的研究[J]. 武汉大学测绘学院 2004. 四川测绘 1001-8379(2005)01-0016-04.

[2]

附录

编号: EMCAS-01 文档类型: 使用手册

EMACS 测量软件 使用手册

2020年2月-2020年4月

一、坐标转换功能

打开坐标变换功能:

点击左上角黄色按钮打开文件,导入原始坐标与目标坐标已知数据文件,并选定数据分隔方式,不同的转换可以在此更新导入对应的文件即可:

数据文件格式为 [pointID X Y (Z)], 分隔符支持单个字符长度的非数字字符:

进行坐标转换,有参数则选择:

转换;

导出计算结果:

二、 GSI 解析与水准测量电子手簿功能

(一) GSI 解析

选择对应功能,导入GSI数据格式:

如有测站信息,则输入对应信息:

(二) 电子手簿功能

在表格任意处右键添加组或是删除记录组来进行扩展或删除:

双击对应单元格输入数据即可。

导出报告,点击绿色按钮,导出的报告组如下:

水准测量电子手簿记录表

测自:	+A1	至: 02	日期: 2020	年02月17日
时间:	2020-02-17 08:00	至: 2020-04-1111:00	成像:	
温度:	23°C	云量: 薄	风向风速:	东风 20km/h
天气:	秋-晴	土质: 混凝土	太阳方向:	东斜向

测站编号	下丝	下	方向及			基+K 減	
	后	前丝		标 尺	标尺读数		备
	尺 上丝	尺上丝				領 -	
	后距	前距	-	基本分划	******		注
	石 迎 視距差 d	EU EE	尺号	- 基本分別 ①	辅助分划	2 Σς	
	代理左 0	20		w	(2)	28	
			后	0096547	0096549	-2	
			前	0144553	0144543	10	
A1>01	711.545	568.55	后 - 前	-48006.0	-47994.0	-12	
	0.14	0.14	h Σh	-48.0	-48.0	11.37	
01>02			后	0143847	0143831	16	
			前	0136477	0136480	-3	
	161.475	266.59 5	后 前	7370.0	7351.0	19	測段1
	-0.11	0.03	h Σh	7.3605	-40.6395	16.70 29	
A1>01			后	0136485	0136499	-14	

	I			1	I		
			前	0143834	0143837	-3	
	254.34	177.51	后 - 前	-7349.0	-7338.0	-11	
	0.08	0.11	h Σh	-7.3435	-47.983	20.25 31	
			后	0144567	0144565	2	
			前	0096599	0096601	-2	
01>02	602.05	691.07 5	后 - 前	47968.0	47964.0	4	測段 2
	-0.09	0.02	h Σh	47.966	-0.017	34.07 46	
			后	0096593	0096596	-3	
			前	0144566	0144564	2	
A1>01	690.455	603.94	后 - 前	-47973.0	-47968.0	-5	
	0.09	0.11	h Σh	-47.9705	-47.9875	46.15 35	
01>02			后	0159261	0159253	8	
			前	0149665	0149664	1	
	670.4	767.65	后 - 前	9596.0	9589.0	7	測段3
	-0.1	0.01	h Σh	9.5925	-38.395	61.50 65	
A1>01			后	0149659	0149655	4	

				0149580	0149587		
	951.42		后	995.0	985.0	10	
		987.80	- 前				
		5					
	-0.04	-0.9	h	0.99	0.5825		
			Σh			287.4	
						934	
01>02			后			-3	測段16
				0149579	0149582		
			前			-2	
				0150137	0150139		
	994.36		后	-558.0	-557.0	-1	
		116.81	- 前				
		5					
	0.88	-0.02	h	-0.5575	0.025		
			Σh			289.8	
						297	

电子手簿相关结果

测段信息

* 由于表格太小加入测段说明会拉长不美观,以此代替

[測段 1 信息]

1.测段累积视距差: 0.03m

2.测段高差: -40.6395m

3.测段视距和: 16.7029m

[測段 2 信息] 1.測段累积视距差: 0.02m

2.测段高差: -0.017m

3.测段视距和: 34.0746m

[測段 3 信息] 1.測段累积视距差: 0.01m

2.测段高差: -38.395m

3.测段视距和: 61.5065m

[測段 4 信息]

1.测段累积视距差: 0.05m 2.测段高差: 0.0015m

3.测段视距和: 88.5683m

[測段 5 信息]

1.测段累积视距差: 0.93m 2.测段高差: 1.4505m

3.测段视距和: 91.9801m

[測段 6 信息]

1.测段累积视距差: -0.04m 2.测段高差: 0.035m

3.测段视距和: 114.0368m

[測段 7 信息]

1.测段累积视距差: -0.3m

2.测段高差: -1.3195m 3.测段视距和: 125.989m

[測段 8 信息]

1.测段累积视距差: -0.06m

2.测段高差: 0.028m 3.测段视距和: 132.0537m

[測段 9 信息]

1.测段累积视距差: 0.1m

2.测段高差: 1.317m

3.测段视距和: 139.2932m

[測段 10 信息]

1.测段累积视距差: -0.06m

2.测段高差: 0.019m 3.测段视距和: 149.4907m

[測段 11 信息]

1.测段累积视距差: 0.15m

2.测段高差: 0.8035m 3.测段视距和: 165.8309m

三、平面控制网平差功能

打开文件并导入坐标:

选择参数解算:

导出详细解算报告:

四、CPIII 网平差

五、曲线计算

六、 GNSS 卫星单点定位

七、状态栏显示