Топология

Никита Латушкин

6 января 2022 г.

Понятие МП. Изометрия. Подпространство в МП. Примеры

Метрикой на множетсве X называют функцию $\rho(x,y)$, то есть отображение $\rho: X \times X \to R$, которое обладает следующими свойствами:

- 1) $\rho(x,y) \ge 0, \rho(x,y) = 0 \iff x = y$
- 2) $\rho(x,y) = \rho(y,x)$
- 3) $\rho(x,y) \le \rho(x,z) + \rho(y,z) \forall x,y, \in X$

 (X,ρ) - метрическое пространство (МП)

Примеры:

1) Евклидова метрика в \mathbb{R}^n

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

2) Дискретная метрика на прямой R:

$$\delta(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$$

3) B
$$R^n$$

$$\mu(x, y) = \max_{1 \le i \le n} |x_i - y_i|$$

4) Метрика равномерной сходимости на C[0;1] (множество всех непрерывных на [0;1] функций):

$$\mu(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|$$

5) Метрика интегральной сходимости на С[0;1]

$$\sigma_k(f,g) = \sqrt[k]{\int\limits_0^1 |f(x) - g(x)|^k dx}$$

Но мы будем рассматривать только при k=1, то есть

$$\sigma_1(f,g) = \int_0^1 |f(x) - g(x)| dx$$

Пусть даны МП $(X, \rho), x \in X$.

1) **Открытым шаром** с центром в точке х и радиуса ϵ называется множество

$$B(x,\epsilon) = \{ y \in X | \rho(x,y) < \epsilon \}$$

2) Замкнутым шаром с центром в точке х и радиуса ϵ называется множество

$$D(x,\epsilon) = \{ y \in X | \rho(x,y) \le \epsilon \}$$

3) **Сферой** с центром в точке х и радиуса ϵ называется множество $S(x,\epsilon)=\{y\in X|\rho(x,y)=\epsilon\}$

Пусть X и Y – МП с метриками ρ_1 и ρ_2 соответственно. **Изометрией** между X и Y называется биекция $f: X \to Y$ такая, что $\forall x, y, \in X$ имеет место равенство: $\rho_1(x,y) = \rho_2(f(x),f(y))$. Если изометрия между МП существует, то они называются **изометричными**.

Примеры

1) R^k изометрично вкладывается в R^n при $k \leq n$

Пусть $x=(x_1,\ldots,x_k)\in R^k$ Поставим точке х в соответствие точку $x'=(x_1,\ldots,x_k,0,\ldots,0)$ (добавили в координаты (n-k) нулей)

2) (X, δ) изометрично вкладывается в R^n при $|X| \leq n+1$

Точкам пространства X ставим в соответствие вершины правильного n-мерного симплекса со стороной 1

Пусть даны $(X, \rho), A \subset X$. Рассмотрев метрику ρ только на точках множества A, получим метрику на A, которая называется **индуцированной** и обозначается $\rho|_A$. Таким образом получаем МП $(A, \rho|_A)$, которое является **подпространством** МП (X, ρ)

2 Топология МП. Свойства открытых и замкнутых множеств в МП. Примеры

Семейство всех открытых множеств au называется **топологией** МП.

Пусть даны МП $(X, \rho), U \subset X$. Множество U называется **открытым**, если с каждой своей точкой оно содержит какую-то её окрестность.

Обозначение: $U \subset X$

Свойства открытых множеств

- 1) $\emptyset \in \tau$, $X \in \tau$
- 2) Объединение любого числа открытых множеств открыто
- 3) Пересечение любого **конечного** числа открытых множеств открыто

Пусть даны МП $(X, \rho), B \subset X$. Множество В называется **замкнутым**, если его дополнение $X \setminus B$ открыто.

Обозначение: $U \subset X$

 ϕ — семейство всех замкнутых множеств

Свойства замкнутых множеств

- 1) $\emptyset \in \phi, X \in \phi$
- 2) Пересечение любого числа замкнутых множеств замкнуто
- 3) Пересечение любого **конечного** числа замкнутых множеств замкнуто

Пример

В МП (X, ρ) открытый шар — открытое множество, замкнутый шар — замкнутое множество.

3 **Понятие ТП**. Примеры. Метризуемые ТП

Пусть X — некоторое множество, семейство $\tau \subset 2^X$ — называется топологией на X, а элементы τ — открытыми множествами $U \subset X$,если:

- 1) $\emptyset \in \tau$, $X \in \tau$
- 2) Объединение любого числа открытых множеств открыто
- 3) Пересечение любого конечного числа открытых множеств открыто

 (X,τ) - топологическое пространство (ТП)

Пусть даны ТП $(X,\tau),x\in X.$ Окрестностью точки х называется такое открытое множество $\forall U\subset X,x\in U$

На любом множестве X можно задать следующие топологии:

- 1) $\tau^0 = \{ \oslash, X \}$ антидискретная топология. В ней открытыми являются только пустое множество и всё пространство X
- 2) $\tau^* = 2^X$ дискретная топология. В ней открытым является любое подмножество X
- 3) $\tau_F = \{ \oslash, X, X \backslash A | |A| < \infty \}$ топология Зарисского. В ней открытыми являются пустое множество, всё пространство X, и любое множество, полученное выбрасыванием из X конечного числа элементов
- 4) $\tau_C = \{ \oslash, X, X \backslash A | |A| \le \omega \}$. В ней открытыми являются пустое множество, всё пространство X, и любое множество, полученное выбрасыванием из X счётного числа элементов.
- $\mathrm{T}\Pi\left(X,\tau\right)$ называется **метризуемым**, если τ можно задать некоторой метрикой ρ

В таком случае пишут $\tau = \tau_{\rho}$

Примеры

- 1) \forall МП метризуемое ТП
- 2) ТП с дискретной топологией метризуемо дискретной метрикой

4 ФСО. Задание топологии через ФСО. Примеры

Пусть дано ТП X, каждой точке $x \in X$ поставим в соответствие непустое семейство окрестностей этой точки $\nu_x = \{V_t^x|t\in T_x\},\ T_x$ – семейство индексов, которыми занумерованы окрестности (не обязательно целые)

 V_t^x – элементарная (базовая) окрестность точки х

 $u = \{V_t^x | x \in X, t \in T_x\}$ – окрестностная база, или фундаментальная система окрестностей (ФСО)

Аксиомы ФСО

- 1) $\forall x \in X$ семейство непусто, $\forall V_t^x \in \nu_x : x \in V_t^x$
- 2) $\forall V_t^x, V_{t'}^x \exists V_{t''}^x : V_{t''}^x \subset (V_t^x \cap V_{t'}^x)$ для двух любых элементарных окрестностей найдётся третья, которая лежит в их пересечении.
- 3) $y \in V_t^x \iff \exists V_{t'}^y \subset V_t^x$ если точка у лежит в элементарной окрестности точки х, то найдется элементарная окрестность точки у, которая целиком лежит в элементарной окрестности точки х

Если все аксиомы выполняются,то ФСО определена однозначно

Задание топологии через ФСО

Если в пространстве задана ФСО для некоторой топологии τ , то топология определена однозначно и описывается как совокупность всех множеств $U \in X$ таких, что $\forall x \in U$ найдётся элементарная окрестность $V_t^x \subset \nu_x$, для которой выполняется условие $V_t^x \subset U$. Значит для задания топологии достаточно указать некоторую ФСО ν .

5 Сравнение топологий. Роль ФСО. Примеры

Пусть τ_1 и τ_2 — некоторые топологии на пространстве X. Если $\tau_1 \supset \tau_2$, то говорят, что τ_1 сильнее τ_2 , или τ_2 слабее τ_1 и пишут $\tau_1 \geq \tau_2$. Если же $\tau_1 \supset \tau_2$, причём $\tau_1 \neq \tau_2$, то говорят, что τ_1 существенно сильнее τ_2 , или τ_2 существенно слабее τ_1 и пишут $\tau_1 > \tau_2$. Но может оказаться так, что $\tau_1 \not\supset \tau_2$ и $\tau_2 \not\supset \tau_1$. Тогда говорят, что τ_1 и τ_2 несравнимы.

- Понятие базы топологии, 1 аксиомы счёт-6 ности и сепарабельности и их взаимосвязь. Примеры
- 7 Операция замыкания и её свойства. Примеры

Пусть даны ТП $(X, \tau), A \subset X, x \in X$.

Точка х называется близкой или точкой прикосновения, если $\forall U \in \tau(x) : U \cap A \neq \emptyset$

Множество всех точек, близких для А, называется замыканием множества A (обозначение \overline{A})

Свойства операции замыкания

1)
$$\overline{A} \subset X$$

$$2) A \overset{cl}{\subset} F \underset{cl}{\subset} X \Longrightarrow \overline{A} \subset F$$

3)
$$A \subset X \iff \overline{A} = A$$

Пример

$$R, A = (0; 1) \Longrightarrow \overline{A}^R = [0; 1]$$

Внутренность и граница множества. Связь 8 с операцией замыкания. Примеры

Пусть даны ТП (X, τ) , $A \subset X$, $x \in X$.

Точка х называется внутренней, если $\exists U \in \tau(x) : U \subset A$

Множество всех точек, внутренних для А, называется его внутренностью. (обозначение intA)

Свойства операции внутренности

1)
$$intA \subset X$$

1)
$$intA \subset X$$

2) $X \supset U \subset A \Longrightarrow U \subset intA$

3)
$$A \underset{op}{\subset} X \iff intA = A$$

4) Вычислительная формула $int A = X \setminus (\overline{X \setminus A})$

Пусть даны ТП $(X, \tau), A \subset X, x \in X$. Точка х называется **граничной**, если $\forall U \in \tau(x)$

$$\begin{cases} U \cap A \neq \emptyset \\ U \cap (X \backslash A) \neq \emptyset \end{cases}$$

Множество всех граничных точек называется его **границей**. (обозначение ∂A)

Свойства границы

- 1) $\partial A \subset X$
- 2) $\partial A = \overline{A} \cap \overline{X \setminus A}$
- 3) $\overline{A} = (intA) \cup \partial A$, $intA \cup \partial A = \emptyset$

Примеры

R, A = [0; 1] $int_R A = (a; b)$ $\partial_R A = \{a; b\}$

9 Понятие подпространства в ТП. Индуцированная топология и её свойства. Примеры. "Теория относительности"

Пусть даны ТП $(X, \tau), A \subset X$ $\tau|_A = \{U \cap A | U \in \tau\}$ — является топологией на A (**индуцированной**) ТП $(A, \tau|_A)$ — топологическое подпространство (ТПП) в ТПX

Теорема

Пусть даны ТП $(X,\tau),A\subset X,$ ФСО $\nu=\{V^x_t|x\in X,t\in T_x\},$ β – база, тогда:

- 1) $\phi|_A = \{F \cap A | F \subset X\}$ семейство всех замкнутых множеств в А
- 2) $\nu|_A = \{V_t^a | a \in A, t \in T_a\}$ ФСО в А
- 3) $\beta|_A \ V \cap A|V \in \beta$ база в А

Следствие

- 1) X с первой аксиомой счётности \Longrightarrow A с первой аксиомой счётности
- 2) X со счётной базой \Longrightarrow A со счётной базой
- 3) X метризуемо и сепарабельно \Longrightarrow A сепарабельно

Теория относительности

Пусть даны ТП $(X, \tau), B \subset A \subset X$

1)
$$B \subset X \Longrightarrow B \subset A$$

1')
$$B \subset X \Longrightarrow B \subset A$$

Пусть даны ТП
$$(X, \tau)$$
, $B \in A$

1) $B \subset X \Longrightarrow B \subset A$

1') $B \subset X \Longrightarrow B \subset A$

2) $B \subset A \subset X \Longrightarrow B \subset X$

2') $B \subset A \subset X \Longrightarrow B \subset X$

3) $U \subset X, F \subset X \Longrightarrow$

$$2') \ B \subset A \subset X \Longrightarrow B \subset X$$

3)
$$U \subset X, F \subset X \Longrightarrow$$

$$\begin{cases} (U \backslash F) \underset{op}{\subset} X \\ (F \backslash U) \underset{cl}{\subset} X \end{cases}$$

Примеры

1)
$$(X, \tau) = R, A = Z$$

 $\tau^1|_Z = \tau^*$

2)
$$(R^2, \overset{\infty}{\tau}), A = L$$
 – прямая $\overset{\infty}{\tau}|_L = \tau^1 \ , \ L \not\perp OX$ $\overset{\infty}{\tau}|_L = \tau^* \ , \ L \perp OX$

Непрерывное отображение и его свойства. 10

Примеры

Пусть даны ТП (X, τ) и (Y, τ') и $f: X \to Y$.

f непрерывно в точке х $\iff \forall V \in \tau'(f(x)) \; \exists U \in \tau(x) : f(U) \subset V$

Теорема (критерии непрерывности)

Для $f:X \to Y$ эквивалентны условия

- 1) f^{-1} непрерывно
- 2) $f^{-1}(V) \underset{op}{\subset} X \ \forall V \underset{op}{\subset} Y$ 3) $f^{-1}(B) \underset{cl}{\subset} X \ \forall B \underset{cl}{\subset} Y$

Свойства неперывных отображений

Пусть даны ТП $(X, \tau), (Y, \tau'), (Z, \tau'')$

- 1) f,g непрерывны $\Longrightarrow g \circ f$
- 2) f непрерывно $\Longrightarrow f|_A:A\to Y$ непрерывно

Понятие гомеоморфизма. Примеры 11

Пусть даны ТП $(X, \tau), (Y, \tau')$ и $f: X \to Y$.

- f гомеоморфизм, если
- 1) f биекция
- 2) f и f^{-1} непрерывны

При этом X и Y гомеоморфны (обозначение $X \approx Y$)

- 12 Аксиомы отделимости и их иерархия. Критерии регулярности и нормальности. Примеры
- 13 Произведение ТП. Проектирование. Непрерывность отображения в произведение. Примеры
- 14 Понятие компактности. Примеры. Свойства компактности. Критерий компактности метризуемого ТП
- 15 Непрерывные отображения компактного ТП. Случай гомеоморфизма
- 16 Понятие полного МП. Вполне ограниченные множества в МП. Критерий компактности в МП
- 17 Понятие связности. Примеры. Основные свойства связности
- 18 Линейная связность и её свойства. Примеры
- 19 Связная компонента в ТП и её свойства. Примеры