

# TERRO'S REAL ESTATE

Assignment –Terro's real estate agency



Problem Statement (Situation): "Finding out the most relevant features for pricing of a house" Terro's real-estate is an agency that estimates the pricing of houses in a certain locality. The pricing is concluded based on different features / factors of a property. This also helps them in identifying the business value of a property. To do this activity the company employs an "Auditor", who studies various geographic features of a property like pollution level (NOX), crime rate, education facilities (pupil to teacher ratio), connectivity (distance from highway), etc. This helps in determining the price of a property.

The agency has provided a dataset of 506 houses in Boston. Following are the details of the dataset:

#### **Data Dictionary:**

| Attribute  | Description                                        |
|------------|----------------------------------------------------|
| CRIME RATE | CRIME RATE per capita crime rate by town           |
| INDUSTRY   | proportion of non-retail business acres per town   |
|            | (in percentage terms)                              |
| NOX        | nitric oxides concentration (parts per 10 million) |
| AVG_ROOM   | average number of rooms per house                  |
| AGE        | AGE proportion of houses built prior to 1940 (in   |
|            | percentage terms)                                  |
| DISTANCE   | distance from highway (in miles)                   |
| TAX        | full-value property-tax rate per \$10,000          |
| PTRATIO    | pupil-teacher ratio by town                        |
| LSTAT %    | lower status of the population                     |
| AVG_PRICE  | Average value of houses in \$1000's                |

To do the analysis, you are expected to solve these questions:

- 1.Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation.
  - ★ With respect to average distance of 10km with respect to crime rate 5 per capita crime rate in town.
  - ★ Average value of house is 23\$ with respect to average distance of 10km
  - ★ The full value property tax rate is 408 with average house of 23\$
  - ★ Within 10km there is an average of 69% of house build prior to 1910.
  - ★ With respect to distance the lower status population is 13%.
  - ★ For the NOX the range is 0.48 with respect to average price is 22

### **Observation:**

Based on the variable that effect the pricing is based on the different variable if the crime rate per capita by town then the pricing is increased Some other factor like Distance from highway (in miles), Industry and average age of the house build Prior to 1940.

### 2.Plot a histogram of the Average price variable. What do you infer?



A histogram shows how frequently a value falls into a particular bin. The height of each bar represents the number of values in the data set that fall within a particular bin. When the y-axis is labeled as "count" or "number", the numbers along the y-axis tend to be discrete positive integers

As the highest number comes under (21,25) that is 133 and lowest price is (37,41) is 6.

As I can infer from the graph that variable Represent Right-Skewed (Positive Skewness)

### 3. Compute the covariance matrix. Share your observations.

| Column1    | CRIME_RATE   | AGE      | INDUS    | NOX      | DISTANCE    | TAX      | PTRATIO    | AVG_ROOM     | LSTAT    | AVG_PRICE   |
|------------|--------------|----------|----------|----------|-------------|----------|------------|--------------|----------|-------------|
| CRIME_RATE | 8.516147873  |          |          |          |             |          |            |              |          |             |
| AGE        | 0.562915215  | 790.7925 |          |          |             |          |            |              |          |             |
| INDUS      | -0.110215175 | 124.2678 | 46.97143 |          |             |          |            |              |          |             |
| NOX        | 0.000625308  | 2.381212 | 0.605874 | 0.013401 |             |          |            |              |          |             |
| DISTANCE   | -0.229860488 | 111.55   | 35.47971 | 0.61571  | 75.6665313  |          |            |              |          |             |
| TAX        | -8.229322439 | 2397.942 | 831.7133 | 13.0205  | 1333.11674  | 28348.62 |            |              |          |             |
| PTRATIO    | 0.068168906  | 15.90543 | 5.680855 | 0.047304 | 8.74340249  | 167.8208 | 4.6777263  |              |          |             |
| AVG_ROOM   | 0.056117778  | -4.74254 | -1.88423 | -0.02455 | -1.28127739 | -34.5151 | -0.5396945 | 0.492695216  |          |             |
| LSTAT      | -0.882680362 | 120.8384 | 29.52181 | 0.48798  | 30.3253921  | 653.4206 | 5.7713002  | -3.073654967 | 50.89398 |             |
| AVG_PRICE  | 1.16201224   | -97.3962 | -30.4605 | -0.45451 | -30.5008304 | -724.82  | -10.090676 | 4.484565552  | -48.3518 | 84.41955616 |

**Observation:** By using the conditional formatting for this covariance matrix table I come to this infer that. In this table all the positive (+) element form in a diagonal. For all the negative (-) number I had mention red color and for the zero I had mention as no color.

### 4. Create a correlation matrix of all the variables (Use Data analysis tool pack)

| Column1    | CRIME_RATE   | AGE          | INDUS        | NOX          | DISTANCE     | TAX          | PTRATIO      | AVG_ROOM     | LSTAT    | AVG_PRICE |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------|-----------|
| CRIME_RATE | 1            |              |              |              |              |              |              |              |          |           |
| AGE        | 0.006859463  | 1            |              |              |              |              |              |              |          |           |
| INDUS      | -0.005510651 | 0.644778511  | 1            |              |              |              |              |              |          |           |
| NOX        | 0.001850982  | 0.731470104  | 0.763651447  | 1            |              |              |              |              |          |           |
| DISTANCE   | -0.009055049 | 0.456022452  | 0.595129275  | 0.611440563  | 1            |              |              |              |          |           |
| TAX        | -0.016748522 | 0.506455594  | 0.72076018   | 0.6680232    | 0.910228189  | 1            |              |              |          |           |
| PTRATIO    | 0.010800586  | 0.261515012  | 0.383247556  | 0.188932677  | 0.464741179  | 0.460853035  | 1            |              |          |           |
| AVG_ROOM   | 0.02739616   | -0.240264931 | -0.391675853 | -0.302188188 | -0.209846668 | -0.292047833 | -0.355501495 | 1            |          |           |
| LSTAT      | -0.042398321 | 0.602338529  | 0.603799716  | 0.590878921  | 0.488676335  | 0.543993412  | 0.374044317  | -0.613808272 | 1        |           |
| AVG_PRICE  | 0.043337871  | -0.376954565 | -0.48372516  | -0.427320772 | -0.381626231 | -0.468535934 | -0.507786686 | 0.695359947  | -0.73766 | 1         |

### a) Which are the top 3 positively correlated pairs

| positive correlated pairs | Value       |
|---------------------------|-------------|
| Tax and Distance          | 0.910228189 |
| Nox and indus             | 0.763651447 |
| Nox and age               | 0.731470104 |

### b) Which are the top 3 negatively correlated pairs.

| Negative correlated pairs | Value        |
|---------------------------|--------------|
| INDUS AND CRIME RATE      | -0.005510651 |
| DISTANCE AND CRIME RATE   | -0.009055049 |
| TAX AND CRIME_RATE        | -0.016748522 |

# 5. Build an initial regression model with AVG\_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot

| Regression St     | atistics     |                |          |             |            |           |            |          |
|-------------------|--------------|----------------|----------|-------------|------------|-----------|------------|----------|
| Multiple R        | 0.737662726  |                |          |             |            |           |            |          |
| R Square          | 0.544146298  |                |          |             |            |           |            |          |
| Adjusted R Square | 0.543241826  |                |          |             |            |           |            |          |
| Standard Error    | 6.215760405  |                |          |             |            |           |            |          |
| Observations      | 506          |                |          |             |            |           |            |          |
|                   |              |                |          |             |            |           |            |          |
| ANOVA             |              |                |          |             |            |           |            |          |
|                   | df           | SS             | MS       | F           | gnificance | F         |            |          |
| Regression        | 1            | 23243.914      | 23243.91 | 601.6178711 | 5.08E-88   |           |            |          |
| Residual          | 504          | 19472.38142    | 38.63568 |             |            |           |            |          |
| Total             | 505          | 42716.29542    |          |             |            |           |            |          |
|                   |              |                |          | •           |            |           |            |          |
|                   | Coefficients | Standard Error | t Stat   | P-value     | Lower 95%  | Upper 95% | ower 95.09 | pper 95. |
| Intercept         | 34.55384088  | 0.562627355    | 61.41515 | 3.7431E-236 | 33.44846   | 35.65922  | 33.44846   | 35.6592  |
| LSTAT             | -0.95004935  | 0.038733416    | -24.5279 | 5.0811E-88  | -1.02615   | -0.87395  | -1.02615   | -0.8739  |



# a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and the Residual plot?

The value of R square percentage variance is 54% then the value is significant for 54% with respect variance Y

### b) Is LSTAT variable significant for the analysis based on your model?

Yes this model is significant to analysis its P-value is 5.0811E-88 and t Stat - 24.5279

### 6. Build a new Regression model including LSTAT and AVG\_ROOM together as Independent variables and AVG\_PRICE as dependent variable

| SUMMARY OUTPUT    |              |                |              |          |                |              |              |              |
|-------------------|--------------|----------------|--------------|----------|----------------|--------------|--------------|--------------|
| Regression S      | tatistics    |                |              |          |                |              |              |              |
| Multiple R        | 0.799100498  |                |              |          |                |              |              |              |
| R Square          | 0.638561606  |                |              |          |                |              |              |              |
| Adjusted R Square | 0.637124475  |                |              |          |                |              |              |              |
| Standard Error    | 5.540257367  |                |              |          |                |              |              |              |
| Observations      | 506          |                |              |          |                |              |              |              |
| ANOVA             |              |                |              |          |                |              |              |              |
|                   | df           | SS             | MS           | F        | Significance F |              |              |              |
| Regression        | 2            | 27276.98621    | 13638.49311  | 444.3309 | 7.0085E-112    |              |              |              |
| Residual          | 503          | 15439.3092     | 30.69445169  |          |                |              |              |              |
| Total             | 505          | 42716.29542    |              |          |                |              |              |              |
|                   | Coefficients | Standard Error | t Stat       | P-value  | Lower 95%      | Upper 95%    | Lower 95.0%  | Upper 95.0%  |
| Intercept         | -1.358272812 | 3.17282778     | -0.428095348 | 0.668765 | -7.591900282   | 4.875354658  | -7.591900282 | 4.875354658  |
| AVG_ROOM          | 5.094787984  | 0.4444655      | 11.46272991  | 3.47E-27 | 4.221550436    | 5.968025533  | 4.221550436  | 5.968025533  |
| LSTAT             | -0.642358334 | 0.043731465    | -14.68869925 | 6.67E-41 | -0.728277167   | -0.556439501 | -0.728277167 | -0.556439501 |

a).value of 20 for L-STAT, then what will be the value of AVG\_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/Undercharging?

#### **REGRESSION EQUATION**

$$Y = -1.358 + (5.094*7) + (-0.642*20) = 21.46$$

As the company is quoting for a value of 30000 USD for this locality by regression equation we get to know that the company is overcharging.

## b) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain

Yes, this model is better than the previous model because in the previous model the adjusted R-square is 54% and this model the adjusted R-square value is 0.63 which is independent variable that explain 63% of the variation in the dependent variable Ideally this model performance well compare to this 5question.model.

7. Build another Regression model with all variables where AVG\_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted R-square, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG\_PRICE.

| Regression St     | tatistics    |                |              |             |                |              |             |             |
|-------------------|--------------|----------------|--------------|-------------|----------------|--------------|-------------|-------------|
| Multiple R        | 0.832978824  |                |              |             |                |              |             |             |
| R Square          | 0.69385372   |                |              |             |                |              |             |             |
| Adjusted R Square | 0.688298647  |                |              |             |                |              |             |             |
| Standard Error    | 5.1347635    |                |              |             |                |              |             |             |
| Observations      | 506          |                |              |             |                |              |             |             |
|                   |              |                |              |             |                |              |             |             |
| ANOVA             |              |                |              |             |                |              |             |             |
|                   | df           | SS             | MS           | F           | Significance F |              |             |             |
| Regression        | 9            | 29638.8605     | 3293.206722  | 124.9045049 | 1.9328E-121    |              |             |             |
| Residual          | 496          | 13077.43492    | 26.3657962   |             |                |              |             |             |
| Total             | 505          | 42716.29542    |              |             |                |              |             |             |
|                   |              |                |              |             |                |              |             |             |
|                   | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%    | Lower 95.0% | Upper 95.0% |
| Intercept         | 29.24131526  | 4.817125596    | 6.070282926  | 2.53978E-09 | 19.77682784    | 38.70580267  | 19.77682784 | 38.7058027  |
| CRIME_RATE        | 0.048725141  | 0.078418647    | 0.621346369  | 0.534657201 | -0.105348544   | 0.202798827  | -0.10534854 | 0.20279883  |
| AGE               | 0.032770689  | 0.013097814    | 2.501996817  | 0.012670437 | 0.00703665     | 0.058504728  | 0.00703665  | 0.05850473  |
| INDUS             | 0.130551399  | 0.063117334    | 2.068392165  | 0.03912086  | 0.006541094    | 0.254561704  | 0.006541094 | 0.2545617   |
| NOX               | -10.3211828  | 3.894036256    | -2.650510195 | 0.008293859 | -17.97202279   | -2.670342809 | -17.9720228 | -2.67034281 |
| DISTANCE          | 0.261093575  | 0.067947067    | 3.842602576  | 0.000137546 | 0.127594012    | 0.394593138  | 0.127594012 | 0.39459314  |
| TAX               | -0.01440119  | 0.003905158    | -3.687736063 | 0.000251247 | -0.022073881   | -0.0067285   | -0.02207388 | -0.0067285  |
| PTRATIO           | -1.074305348 | 0.133601722    | -8.041104061 | 6.58642E-15 | -1.336800438   | -0.811810259 | -1.33680044 | -0.81181026 |
| AVG_ROOM          | 4.125409152  | 0.442758999    | 9.317504929  | 3.89287E-19 | 3.255494742    | 4.995323561  | 3.255494742 | 4.99532356  |
| LSTAT             | -0.603486589 | 0.053081161    | -11.36912937 | 8.91071E-27 | -0.70777824    | -0.499194938 | -0.70777824 | -0.49919494 |

As we know, if the p-value is less than 0.05 then the variable is significance and if the p-value is greater than 0.05 then the variable is insignificance.

So the significance variables are AGE, INDUS, NOX, DISTANCE and TAX and the insignificance variables are CRIME\_RATE, PTRATIO, AVG\_ROOM, LSTAT.

8) Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:

| 11                | U            | C              | U            | L           | 1              | 0            | - 11         | 1            |
|-------------------|--------------|----------------|--------------|-------------|----------------|--------------|--------------|--------------|
| SUMMARY OUTPUT    |              |                |              |             |                |              |              |              |
|                   |              |                |              |             |                |              |              |              |
| Regression S      | tatistics    |                |              |             |                |              |              |              |
| Multiple R        | 0.832835773  |                |              |             |                |              |              |              |
| R Square          | 0.693615426  |                |              |             |                |              |              |              |
| Adjusted R Square | 0.688683682  |                |              |             |                |              |              |              |
| Standard Error    | 5.131591113  |                |              |             |                |              |              |              |
| Observations      | 506          |                |              |             |                |              |              |              |
| ANOVA             |              |                |              |             |                |              |              |              |
|                   | df           | SS             | MS           | F           | Significance F |              |              |              |
| Regression        | 8            | 29628.68142    | 3703.585178  | 140.6430411 | 1.911E-122     |              |              |              |
| Residual          | 497          | 13087.61399    | 26.33322735  |             |                |              |              |              |
| Total             | 505          | 42716.29542    |              |             |                |              |              |              |
|                   | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%    | Lower 95.0%  | Upper 95.0%  |
| Intercept         | 29.42847349  | 4.804728624    | 6.124898157  | 1.84597E-09 | 19.98838959    | 38.8685574   | 19.98838959  | 38.8685574   |
| AGE               | 0.03293496   | 0.013087055    | 2.516605952  |             | 0.007222187    | 0.058647734  | 0.007222187  | 0.058647734  |
| INDUS             | 0.130710007  | 0.063077823    | 2.072202264  | 0.038761669 | 0.006777942    | 0.254642071  | 0.006777942  | 0.254642071  |
| NOX               | -10.27270508 | 3.890849222    | -2.640221837 | 0.008545718 | -17.9172457    | -2.628164466 | -17.9172457  | -2.628164466 |
| DISTANCE          | 0.261506423  | 0.067901841    | 3.851242024  | 0.000132887 | 0.128096375    | 0.394916471  | 0.128096375  | 0.394916471  |
| TAX               | -0.014452345 | 0.003901877    | -3.703946406 | 0.000236072 | -0.022118553   | -0.006786137 | -0.022118553 | -0.006786137 |
| PTRATIO           | -1.071702473 | 0.133453529    | -8.030529271 | 7.08251E-15 | -1.333905109   | -0.809499836 | -1.333905109 | -0.809499836 |
| AVG_ROOM          | 4.125468959  | 0.44248544     | 9.323400461  | 3.68969E-19 | 3.256096304    | 4.994841615  | 3.256096304  | 4.994841615  |
| LSTAT             | -0.605159282 | 0.0529801      | -11.42238841 | 5.41844E-27 | -0.70925186    | -0.501066704 | -0.70925186  | -0.501066704 |

### a) Interpret the output of this model

From the model we can interpret the regression statistics output as we can observe from the table Multiple

| Multiple R        | 0.8  |
|-------------------|------|
| R square          | 0.69 |
| Adjusted R square | 0.68 |
| Standard Error    | 5.13 |

From the ANOVA regression significant is negative valued so all the category value are less than 0.05.

b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?

As we can infer from this table that the adjusted R square from the previous table negative And the for this model the adjusted R Square is positive .

### c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?

|           | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%    | Upper 95%    | Lower 95.0%  | Upper 95.0% |
|-----------|--------------|----------------|--------------|-------------|--------------|--------------|--------------|-------------|
| NOX       | -10.27270508 | 3.890849222    | -2.640221837 | 0.008545718 | -17.9172457  | -2.628164466 | -17.9172457  | -2.628164   |
| PTRATIO   | -1.071702473 | 0.133453529    | -8.030529271 | 7.08251E-15 | -1.333905109 | -0.809499836 | -1.333905109 | -0.8095     |
| LSTAT     | -0.605159282 | 0.0529801      | -11.42238841 | 5.41844E-27 | -0.70925186  | -0.501066704 | -0.70925186  | -0.501067   |
| TAX       | -0.014452345 | 0.003901877    | -3.703946406 | 0.000236072 | -0.022118553 | -0.006786137 | -0.022118553 | -0.006786   |
| AGE       | 0.03293496   | 0.013087055    | 2.516605952  | 0.012162875 | 0.007222187  | 0.058647734  | 0.007222187  | 0.0586477   |
| INDUS     | 0.130710007  | 0.063077823    | 2.072202264  | 0.038761669 | 0.006777942  | 0.254642071  | 0.006777942  | 0.2546421   |
| DISTANCE  | 0.261506423  | 0.067901841    | 3.851242024  | 0.000132887 | 0.128096375  | 0.394916471  | 0.128096375  | 0.3949165   |
| AVG_ROOM  | 4.125468959  | 0.44248544     | 9.323400461  | 3.68969E-19 | 3.256096304  | 4.994841615  | 3.256096304  | 4.9948416   |
| Intercept | 29.42847349  | 4.804728624    | 6.124898157  | 1.84597E-09 | 19.98838959  | 38.8685574   | 19.98838959  | 38.868557   |

After we sort the coefficient in ascending order the coefficients respect to average price of NOX decrease so if the nitric oxide decrease then the locality in town will increase

d)Write the regression equation from this model.

Regression Equation

B0+(B1\*X1)+(B2\*X2)+(B3\*X3)+(B4\*X4)+(B5\*X5)+(B6\*X6)+(B7\*X7)+(B8\*X8)