# Data Structures and Algorithms

#### **AVL Search Tree**



By Ravi Kant Sahu

Asst. Professor,

Lovely Professional University, Punjab



#### Balanced and Unbalanced BST



#### **AVL Search Tree**

Skewed Binary Search Tree:

Worst case time complexity is O(n).

• Adelson-Velskii and Landis introduced height balanced tree in 1962.

Balance factor of a node =
 height(left sub-tree) - height(right sub-tree)

#### AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees.
- An AVL tree has balance factor calculated at every node
  - > For every node, heights of left and right sub-tree can differ by no more than 1
  - > Balance Factor of a node is -1, 0 or 1 in AVL.

## Node Heights



height of node = hbalance factor =  $h_{left}$ - $h_{right}$ 

## Node Heights after Insert 7



#### **Basic Concepts**

#### LR and RL Rotation

- Find Out the first Node from the bottom which has BF other than 1, 0, -1, call it A and its descendent towards the newly inserted node as B.
- LR Rotation: If newly inserted node is in the right subtree of left subtree of A.
  - Apply RR rotation on B
  - Then Apply LL rotation on A
- RL Rotation: If newly inserted node is in the left subtree of right subtree of A.
  - Apply LL rotation on B
  - Then Apply RR rotation on A

# Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
  - only nodes on the path from insertion point to root node have possibly changed in height
  - So after the Insert, go back up to the root node by node, updating heights
  - If a new balance factor (the difference h<sub>left</sub>h<sub>right</sub>) is 2 or –2, adjust tree by rotation around the node

# Single Rotation in an AVL Tree



#### **Insertions** in AVL Trees

Let the node that needs rebalancing be  $\alpha$ .

#### There are 4 cases:

Outside Cases (require single rotation):

- 1. Insertion into left subtree of left child of  $\alpha$ .
- 2. Insertion into right subtree of right child of  $\alpha$ .

Inside Cases (require double rotation):

- 3. Insertion into right subtree of left child of  $\alpha$ .
- 4. Insertion into left subtree of right child of  $\alpha$ .

The rebalancing is performed through four separate rotation algorithms.







# Single right rotation



# Outside Case Completed



AVL property has been restored!













### Double rotation: first rotation



# Double rotation : second rotation



# Double rotation : second rotation

#### right rotation complete



#### Exercise

• Construct an AVL Search Tree by inserting the following elements:

- 50, 20, 80, 10, 30, 5, 15, 17, 19, 14, 16, 18
- F, C, E, T, J, Z, D, B, A, Y

## **Implementation**



No need to keep the height; just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed a rotation (single or double) you won't need to go back up the tree

#### **Insertion** in AVL Trees

- Insert at the leaf (as for all BST)
  - only nodes on the path from insertion point to root node have possibly changed in height
  - So after the Insert, go back up to the root node by node, updating heights
  - If a new balance factor (the difference h<sub>left</sub>h<sub>right</sub>) is 2 or –2, adjust tree by rotation around the node

# Example of Insertions in an AVL Tree



Insert 5, 40

# Example of Insertions in an AVL Tree





# Single rotation (outside case)



## Double rotation (inside case)



#### Pros and Cons of AVL Trees

#### Arguments for AVL trees:

- Search is O(log N) since AVL trees are always balanced.
- Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than a constant factor to the speed of insertion.

#### Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for balance factor.
- 2. Asymptotically faster but rebalancing costs time.
- 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).