Generative Adversarial Nets

Changzhi Sun

East China Normal University changzhisun@stu.ecnu.edu.cn

December 15, 2016

Outline

- Introduction
- Adversarial Nets
- Theoretical Results
- 4 Experiments
- 5 Advantages and Disadvantages
- 6 Conclusions and Future Work

Introduction

- deep learning successes in discriminative models
 - map a high-dimensional, rich sensory input to a class label
 - backpropagation, dropout, piecewise linear units
 - well-behaved gradient
- deep generative models (less of an impact)
 - approximating many intractable probabilistic computations
 - difficulty of leveraging the benefits of piecewise linear units
- adversarial nets can sidesteps these difficulties

Introduction

- a generative model G
 - captures the data distribution
- a discriminative model D
 - estimates the probability that a sample came from the training data rather than G
- train objective
 - G: maximize the probability of D making a mistake
 - D: classification objective
- minimax two-player game
- **1** unique solution exists $(G = P_{data}, D = \frac{1}{2})$
- G and D are multilayer perceptrons
 - without Markov chains
 - without unrolled approximate inference network
 - either training or generation of samples

Related Work

- parametric specification of a probability distribution function
 - deep Boltzmann machine
 - intractable likelihood functions (numerous approximations to the likelihood gradient)
- generative machines
 - do not explicitly represent the likelihood
 - generate samples from the desired distribution
 - Generative stochastic networks
 - extends generative machine by eliminating the Markov chains
- using a discriminative criterion to train a generative model
 - intractable for deep generative models
 - ratios of probabilities can't be approximated using variational approximations that lower bound the probability
 - Noise-contrastive estimation (NCE)
 - informal competition mechanism

Related Work

- parametric specification of a probability distribution function
- generative machines
- using a discriminative criterion to train a generative model
- predictability minimization (two neural networks)
 - training criterion is different
 - the nature of the competition is different
 - the specification of the learning process is different
 - optimization problem and minimax game
 - terminates at a saddle point
- adversarial examples

Adversarial Nets

Def

- p_g : generators distribution (over data \mathbf{x})
- $p_z(z)$: a prior on input noise variables
- $G(\mathbf{z}; \theta_g)$: mapping to data space
- $D(\mathbf{x}; \theta_d)$: the prob \mathbf{x} came from the data rather than p_g

Train Objective

- D: maximize the prob of samples
- ② G: minimize $log(1 D(G(\mathbf{z})))$
- value function

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

Adversarial Nets

Adversarial Nets

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Theoretical Results

- Given enough capacity and training time
- **2** Global Optimality of $p_g = p_{data}$
- Convergence of Algorithm 1

Global Optimality of $p_g = p_{data}$

Proposition 1. For G fixed, the optimal discriminator D is

$$D_G^*(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}$$
(2)

Global Optimality of $p_g = p_{data}$

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the quantity V(G,D)

$$V(G, D) = \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) d\boldsymbol{x} + \int_{z} p_{\boldsymbol{z}}(\boldsymbol{z}) \log(1 - D(g(\boldsymbol{z}))) d\boldsymbol{z}$$
$$= \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) + p_{g}(\boldsymbol{x}) \log(1 - D(\boldsymbol{x})) d\boldsymbol{x}$$
(3)

For any $(a,b) \in \mathbb{R}^2 \setminus \{0,0\}$, the function $y \to a \log(y) + b \log(1-y)$ achieves its maximum in [0,1] at $\frac{a}{a+b}$. The discriminator does not need to be defined outside of $Supp(p_{\text{data}}) \cup Supp(p_g)$, concluding the proof.

Note that the training objective for D can be interpreted as maximizing the log-likelihood for estimating the conditional probability P(Y=y|x), where Y indicates whether x comes from p_{data} (with y=1) or from p_g (with y=0). The minimax game in Eq. 1 can now be reformulated as:

$$C(G) = \max_{D} V(G, D)$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\log (1 - D_{G}^{*}(G(\boldsymbol{z})))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{g}}} [\log (1 - D_{G}^{*}(\boldsymbol{x}))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_{\boldsymbol{g}}(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{g}}} \left[\log \frac{p_{\boldsymbol{g}}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{\boldsymbol{g}}(\boldsymbol{x})} \right]$$

$$(4)$$

Global Optimality of $p_g = p_{data}$

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if $p_q = p_{data}$. At that point, C(G) achieves the value $-\log 4$.

Proof. For $p_g = p_{\text{data}}$, $D_G^*(x) = \frac{1}{2}$, (consider Eq. 2). Hence, by inspecting Eq. 4 at $D_G^*(x) = \frac{1}{2}$, we find $C(G) = \log \frac{1}{2} + \log \frac{1}{2} = -\log 4$. To see that this is the best possible value of C(G), reached only for $p_g = p_{\text{data}}$, observe that

$$\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[-\log 2 \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[-\log 2 \right] = -\log 4$$

and that by subtracting this expression from $C(G) = V(D_G^*, G)$, we obtain:

$$C(G) = -\log(4) + KL\left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_g}{2} \right.\right) + KL\left(p_g \left\| \frac{p_{\text{data}} + p_g}{2} \right.\right) \tag{5}$$

where KL is the Kullback–Leibler divergence. We recognize in the previous expression the Jensen–Shannon divergence between the model's distribution and the data generating process:

$$C(G) = -\log(4) + 2 \cdot JSD\left(p_{\text{data}} \| p_g\right) \tag{6}$$

Since the Jensen–Shannon divergence between two distributions is always non-negative, and zero iff they are equal, we have shown that $C^* = -\log(4)$ is the global minimum of C(G) and that the only solution is $p_g = p_{\text{data}}$, i.e., the generative model perfectly replicating the data distribution. \square

Convergence of Algorithm 1

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator is allowed to reach its optimum given G, and p_g is updated so as to improve the criterion

$$\mathbb{E}_{\boldsymbol{x} \sim p_{data}}[\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g}[\log(1 - D_G^*(\boldsymbol{x}))]$$

then p_g converges to p_{data}

Proof. Consider $V(G,D)=U(p_g,D)$ as a function of p_g as done in the above criterion. Note that $U(p_g,D)$ is convex in p_g . The subderivatives of a supremum of convex functions include the derivative of the function at the point where the maximum is attained. In other words, if $f(x)=\sup_{\alpha\in\mathcal{A}}f_\alpha(x)$ and $f_\alpha(x)$ is convex in x for every α , then $\partial f_\beta(x)\in\partial f$ if $\beta=\arg\sup_{\alpha\in\mathcal{A}}f_\alpha(x)$. This is equivalent to computing a gradient descent update for p_g at the optimal D given the corresponding G. $\sup_D U(p_g,D)$ is convex in p_g with a unique global optima as proven in Thm 1, therefore with sufficiently small updates of p_g,p_g converges to p_x , concluding the proof. \Box

Setup

- datasets: MNIST, Toronto Face Database, CIFAR-10
- activation: a mixture of rectifier linear and sigmoid
- dropout on D

Evaulation

- Parzen window-based log-likelihood estimates
 - the exact likelihood is not tractable
 - somewhat high variance and does not perform well in high dimensional spaces
- no better than existing methods, competitive
- highlight the potential of the adversarial framework

Model	MNIST	TFD
DBN [3]	138 ± 2	1909 ± 66
Stacked CAE [3]	121 ± 1.6	2110 ± 50
Deep GSN [5]	214 ± 1.1	1890 ± 29
Adversarial nets	225 ± 2	2057 ± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we computed the standard error across folds of the dataset, with a different σ chosen using the validation set of each fold. On TFD, σ was cross validated on each fold and mean log-likelihood on each fold were computed. For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

Advantages and Disadvantages

Disadvantages

- no explicit representation of $p_g(\mathbf{x})$
- D must be synchronized well with G during training
 - avoid "the Helvetica scenario"

Advantages

- Markov chains are never needed
- no inference during learning
- a wide variety of functions can be incorporated into the model
- gain some statistical advantage
- represent very sharp, even degenerate distributions

Summary

	Deep directed graphical models	Deep undirected graphical models	Generative autoencoders	Adversarial models
Training	Inference needed during training.	Inference needed during training. MCMC needed to approximate partition function gradient.	Enforced tradeoff between mixing and power of reconstruction generation	Synchronizing the discriminator with the generator. Helvetica.
Inference	Learned approximate inference	Variational inference	MCMC-based inference	Learned approximate inference
Sampling	No difficulties	Requires Markov chain	Requires Markov chain	No difficulties
Evaluating $p(x)$	Intractable, may be approximated with AIS	Intractable, may be approximated with AIS	Not explicitly represented, may be approximated with Parzen density estimation	Not explicitly represented, may be approximated with Parzen density estimation
Model design	Models need to be designed to work with the desired inference scheme — some inference schemes support similar model families as GANs	Careful design needed to ensure multiple properties	Any differentiable function is theoretically permitted	Any differentiable function is theoretically permitted

Table 2: Challenges in generative modeling: a summary of the difficulties encountered by different approaches to deep generative modeling for each of the major operations involving a model.

Conclusions and Future Work

- **1** conditional generative model $p(\mathbf{x}|\mathbf{c})$
- learned approximate inference
- **3** approximately model all conditionals $p(\mathbf{x}_S|\mathbf{x}_{-S})$
- semi-supervised learning
- efficiency improvements
- these research directions could prove useful

Thanks Q&A