

2 kg-m/ = 148	25.5 18.5	these were p	$8 \cdot 24, 12, 16, 10, 20$
$(C) \text{ of } MD = \underbrace{\xi f x - \xi f}_{\xi f}$ $= \underbrace{H20}_{\xi g} = 8.4$ $= \underbrace{1150}_{\xi g} = 23$ $= \underbrace{1150}_{\xi g} = 23$	2 13 3L	18.5 14.8 14.8 14.8 14.8	N=10 (quan) N=10

GOO. AP allered who is the large with the state of the st		
(C) of ND = 2f (x-y) = 141 = 4.7 = 3.83 = 3.83 = 3.83 = 3.83 = 3.83 = 3.83 = 3.83 =	= 0.265	80 2690 5 500 2690 1890.5 2067
$0 \text{col} \text{matter means a section by its coefficient } \text{mon about means } = 2 \cdot (n-x)$ $\frac{c_1}{c_1} \text{for } \frac{c_1}{c_2} \text{for } \frac{c_2}{c_3} \text{mon about means } = 2 \cdot (n-x)$ $\frac{c_1}{c_1} \text{for } \frac{c_2}{c_3} \text{mon about means } = 2 \cdot (n-x)$ $\frac{c_1}{c_2} \text{for } \frac{c_2}{c_3} \text{mon about means } = 2 \cdot (n-x)$ $\frac{c_1}{c_3} \text{for } \frac{c_1}{c_3} \text{for } \frac{c_2}{c_3} \text{for } c_2$	367138	30-39 38 29.5-49.5 24.5 801 11.75 211.5 10.67
4) cap on altered Meetin & its leading M? about Near = $\frac{1}{5}$ (w. $\frac{1}{5}$) cap on altered Meetin & $\frac{1}{5}$ (w. $\frac{1}{5}$) cap on altered Meetin & $\frac{1}{5}$ cap		0-9 3 -05-9.5 4.5 18.25 164.25 19.33 - 10-19 9 9.5-19.5 14.5 18.25 164.25 19.33
(a) call . My about Mean = $\frac{1890.5}{24}$ (i.e. $\frac{1}{13}$ $\frac{1}{12}$ $\frac{1}{13}$ $\frac{1}{12}$ $\frac{1}{13}$ $\frac{1}{1$	" 7	x + women of x fr x-x + xxx
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D about ruction = st	of MD = 4.7 = 0.361
Call My alternet Nuclian & its (arthress) Call My about Nuclian & its (arthress) Call My about Nuclian & its (arthress) Call 1 22 Call My about Nuclian = 2f (a-x) San 22 Call My about Nuclian = 2f (a-x) San 22 Call My about Nuclian = 2f (a-x) San 22 Call My about Nuclian = 2f (a-x) Call My about Nuc	33.83	MD= 2+ x-14 - 141
Cap. My always Michigan & its Carphiciant M.D. about Man = $\frac{1}{24} _{x-2}$ $\frac{1}{5} _{x-1}$ $\frac{1}$	-29.5 + 4.333	10+20 = 10+2·8 ×
Call My always Median & its largerish My about way = $\frac{1}{24} _{1-\infty}$ $\frac{1}{24} _{1-\infty}$		× 5 1 13
Call MD alwart Modisin & its Carphiciant MD about Man = $\frac{1890}{5-9}$ Colf of $\frac{1}{2}$ Colfination $\frac{1}{2}$ MD = $\frac{23}{23}$ Colfination $\frac{1}{2}$ MD = $\frac{23}{30}$ Colfination $\frac{1}{2}$ MD = $$	Median = 1+ (x-3) xc	
Cap. My alwant nuclion by its largerising My about near $= 2f$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by alwant $= 24$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by its largerising $= 1890$ Cap. My alwant nuclion by alwant $= 24$ Cap. My alwant nuclion $= 1890$	wadz el	30 50
Cap. M) alward Michigin & its Carlifficient M) about Mean = $2f$ C15 f cf ocas $51-13$ f $1x-13$ $2x$ $5-9$ 6 8 7 6 10 10 $2x$ $5-9$ 6 8 7 6 10 $3x$ $5-9$ 6 8 7 6 $3x$	= 6W &	1 25 11 4
Cap. M) alward neclisin by its coefficient M) about near = $\frac{5}{5}$ cis f of ocasi $\frac{5}{5}$ - $\frac{1}{3}$ $\frac{2}{5}$		10 00 00 00 00 00 00 00 00 00 00 00 00 0
Cap. MD aleant neclisin & its largerisent MD about near = 25	V	CIS F CF 9C 11
	about mean = Ex	cap . MD aleaset recologn & its

23 7 0	=> 502-1002 20 => 502-1002 20 Taking Kuwasarasa du bota Kide. 502-100 502-100 502-100 502-100 502-100 502-100 502-100 23 -5 28 -5 28 -5 28 -5 28 -5 28 -5 28 -5 28 -5 28 -6 -6 -6 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8	$= \frac{1}{2} \sum_{i=1}^{N} - \frac{1}{2} \sum_{i=1}^{N$		Counst be Snother than HD about, 50 > ND The object of the snother than HD about,
3) cal. 50 & wing short not nother	Wing Simplified harm of by - 2.872 = 5.5 = 138.5 - 30.25 = 138.5 - 30.25 = 138.5 - 30.25 = 100	25 - 4 - 25	10	$n = \sqrt{282(m-2)^2}$ $\sqrt{3} = 232 = 33$

Range = L-3 = 60-43 = 17 = \\\ \frac{2}{2} \(\frac{1}{2} \)^2 = 2843 $= \sqrt{\frac{133.16}{55}}$ 2547192 = 51.6 Pa = J13.33 = 3.65/ 05 = 1960 $\overline{\chi} = \xi f \chi$ $= \sqrt{\frac{8968}{50}} = \sqrt{179.36} = 13.39$ 21.0 08 21.881

=) coefficient & variation :- (CV) It is the % variation in the mean. (i.e) $cv = \frac{5D}{\sqrt{3}} \times 100$ The grp which has less cv -> More consistent / more uniform more stable. More ev indicates greates variability/ Less consistency / less uniformity / loss Stalertity. f(x-x) cal. recay, 5D Ee (Sc-14.2)2 627.2 十人 00 125.44 324.48 15 27.04 0-6 9.6 108 9 6-12 12 0.64 225 15 12-18 15 462.4 46.94 210 18-24 10 21 491.52 163.84 27 24-30 363.2 (12 = (A) (X = Efx o = \\\ \(\frac{5}{5} \) = 639 = 363,5 = 86X 14.2 = 1915.2 = 42.56CV = 50 x100 - 0.4591 ×100 = 45.91

$\frac{(v(x) = 50)}{x} \times 100$ $= \frac{15.93}{44} \times 100$ $= \frac{36.30}{5} \times \frac{36.30}{5} = \frac{31.36}{5}$	Stent bat man? Stent bat man? (x-49)=>cv &B 1521 441) 841 116 4920 -44
$\frac{1}{2} = \frac{1}{8} \frac{1}{10} \times $	$\frac{20 + 62}{2} = 49$ $\frac{20 + 62}{2} = 49$ $\frac{31 \cdot 36}{2} = 49$ $31 \cdot $

