Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №2 з дисципліни "Схемотехніка аналогової радіоелектронної апаратури - 1 "

Виконав: студент групи ДК-62 Гордієнко Я.О..

Перевірив: доц. Короткий \in В.

Дослідження однонапівперіодного випрямляча

1.1 Побудова однонапівперіодного випрямляча в LTSpice з характеристиками:

$$f = 50 \Gamma$$
ц

Amplitude (v) = 4 B

Форма — Синусоїдальна.

Кремнієвий діод

Конденсатор — 10 мкФ

Резистор навантаження 5КОм

1.2 Отримуємо такі графіки зміни напруги та струму на окремих ділянках схеми

1.3 Амплітуда пульсацій напруги на резистор

резисторі навантаження:

$$\begin{aligned} V_{\text{min}} &= 3.128 \; B \\ V_{\text{max}} &= 4.399 \; B \\ dU &= V_{\text{max}} \text{ - } V_{\text{min}} = \ 1.271 \; B \end{aligned}$$

1.4 Середнє значення струму через

навантаження

Cursor	1 I(R1)				
Horz:	65.296443ms	Vert:	879.93806µA		
Cursor	Cursor 2				
_		_			
Horz:	82.608696ms	Vert:	625.64047µA		
Diff (Cu	Diff (Cursor2 - Cursor1)				
Horz:	17.312253ms	Vert:	-254.2976µA		
Freq:	57.762557Hz	Slope:	-0.0146889		

$$\begin{split} I_{\text{min}} &= 625.640 \ \text{MkA} \\ I_{\text{max}} &= 879.938 \ \text{MkA} \\ Iav &= (I_{\text{max}} + I_{\text{min}})/2 = 752,789 \ \text{MkA} \end{split}$$

1.5 Перевірка формули, що пов'язує амплітуду пульсацій напруги на навантаженні, струм навантаження, ємність конденсатора на виході та частоту сигналу:

$$dU = Iav/(C*f)$$
 Теоретично: Симуляція: $dU = 752.789*10^{-6}/10*10^{-6}*50 = 1.505 \ B$ $dU = 1.271 \ B$

1.7 Форма напруги на резисторі навантаження:

1.8 Амплітуда пульсацій на резисторі навантаження, як видно з графіку, становить: dU = 1.323

Така різниця між розрахованим теоретичним опором пояснюється тим. Що в симуляторі не враховується опір провідників та похибка елементів: як ємності конденсатора, марки діода та опору, адже реальний опір резистора був 4.7 Ком, адже 5 Ком — нестандартний опір. Номінальний набір Еб

1.9 Оскільки опір резистора становив 4.7 Ком — в формулі розрахунку будемо використовувати саме його значення (хоч воно теж відрізняється від реального значення).

$$V_{min} = 3.065 \text{ B}$$

 $V_{max} = 4.388 \text{ B}$

$$Iav = [(3.065+4.388)/2]/4.7*10^6 = 792.872 \text{ MKA}$$

Практичний розрахунок

$$dU = Iav/(C*f)$$

 $dU = 792.872*10^{-6}/10*10^{-6}*50 = 1.585 B$

Реальне значення: dU = 1.323 B

1.10 Порівняння виміряних значень в симуляторі та практичного виконання

Значення	Симулятор	Реальна схема	Похибка
$ m V_{min}$	3.128 B	3.065 B	2 %
V_{max}	4.399 B	4.388 B	0.25 %
I_{min}	625.640 мкА	652.127 мкА	4 %
I _{max}	879.938 мкА	933.617 мкА	6 %

1.11 Порівняння амплітуд пульсацій

Схема	Симулятор	Реальна схема	Похибка
dU	1.271 B	1.323 B	4 %
Iav	752,789 мкА	792.872 мкА	5 %

1.1 Побудова однонапівперіодного випрямляча в LTSpice з характеристиками:

$$f = 50 \Gamma$$
ц

Amplitude (v) = 4 B

Форма — Синусоїдальна.

Кремнієвий діод

Конденсатор — 10 мкФ

Резистор навантаження 5КОм

1.2 Отримуємо такі графіки зміни напруги та струму на окремих ділянках схеми

1.3 Амплітуда пульсацій напруги на резистор

резисторі навантаження:

1	1				
- Cursor 1 - V(n002)					
		-,			
Horz:	45.471698ms	Vert:	4.4243933V		
Curso	or 2				
	V(n00	2)			
Horz:	63.679245ms	Vert:	4.0459025V		
Diff (0	Diff (Cursor2 - Cursor1)				
Horz:	18.207547ms	Vert:	-378.49073mV		
Freq:	54.92228Hz	Slope:	-20.7876		

$$\begin{array}{rl} V_{min} & = 4.045 \ B \\ V_{max} & = 4.424 \ B \\ dU = V_{max} \text{ - } V_{min} = 0.379 \ B \end{array}$$

1.4 Середнє значення струму через

навантаження

Curso	Cursor 1 I(R1)				
Horz:	45.471698ms	Vert:	221.21966µA		
Curso	Cursor 2				
	I(R1)	1			
Horz:	63.679245ms	Vert:	202.29513μA		
Diff (C	ursor2 - Cursor1)				
Horz:	18.207547ms	Vert:	-18.924529µA		
Freq:	54.92228Hz	Slope:	-0.00103938		

$$\begin{split} I_{\text{min}} &= 202.295 \text{ MKA} \\ I_{\text{max}} &= 221.219 \text{ MKA} \\ Iav &= (I_{\text{max}} + I_{\text{min}})/2 = 211.757 \text{ MKA} \end{split}$$

1.5 Перевірка формули, що пов'язує амплітуду пульсацій напруги на навантаженні, струм навантаження, ємність конденсатора на виході та частоту сигналу:

$$dU = Iav/(C*f)$$
 Теоретично: Симуляція: $dU = 211.757*10^{-6}/10*10^{-6}*50 = 0.423 \ B$ $dU = 0.379 \ B$

1.7 Форма напруги на резисторі навантаження:

 $1.8 \ A$ мплітуда пульсацій на резисторі навантаження, як видно з графіку, становить: $dU = 0.358 \ R$

Така різниця між розрахованим теоретичним опором пояснюється тим. Що в симуляторі не враховується опір провідників та похибка елементів: як ємності конденсатора, марки діода та опору, адже реальний опір резистора був 22 КОм, адже 20 КОм — нестандартний опір. Номінальний набір Е6.

1.9 Оскільки опір резистора становив 22 Ком — в формулі розрахунку будемо використовувати саме його значення (хоч воно теж відрізняється від реального значення).

$$V_{min} = 4.057 B$$

$$V_{\text{max}} = 4.415 \text{ B}$$

 $Iav = [(4.057+4.415)/2]/22*10^6 = 192.545 \text{ MKA}$

Практичний розрахунок

$$dU = Iav/(C*f)$$

 $dU = 192.545*10^{-6}/10*10^{-6}*50 = 0.385 B$

Реальне значення: dU = 0.358 B

1.10 Порівняння виміряних значень в симуляторі та практичного виконання

3:	начення	Симулятор	Реальна схема	Похибка
	V_{min}	4.045 B	4.057 B	0.29 %
	V_{max}	4.424 B	4.415 B	0.20 %
	I_{min}	202.295 мкА	184.409 мкА	8 %
	I _{max}	221.219 мкА	200.681 мкА	9 %

1.11 Порівняння розрахованих амплітуд пульсацій

Схема	Симулятор	Реальна схема	Похибка
dU	0.379 B	0.358 B	5 %
Iav	211.757 мкА	192.545 мкА	9 %

Дослідження двонапівперіодного випрямляча

- 2.1 Було проведено симуляцію випрямляча на діодному мосту у середовищі LTSpice з наступними параметрами:
- Вхідний сигнал гармонійний біполярний, з амплітудою 5В та частотою 50Гц
- Згладжуюча ємність 10мкФ
- Навантаження резистор 5 кОм
- 2.2 Отримуємо такі графіки зміни напруги та струму на окремих ділянках схеми

2.3 Амплітуда пульсацій напруги на резистор

резисторі навантаження:

$$V_{min} = 3.264 \text{ B}$$

 $V_{max} = 3.790 \text{ B}$

2.4 Середнє значення струму через

навантаження

Curso	r 1		
Horz:	45.486726ms	Vert:	758.18003µA
Curso	_		
	I(R1)		
Horz:	53.362832ms	Vert:	652.80109μA
Diff (C	ursor2 - Cursor1)		
Horz:	7.8761062ms	Vert:	-105.37894µA
Freq:	126.96629Hz	Slope:	-0.0133796

 $I_{min} = 652.801 \text{ MKA}$ $I_{max} = 758.180 \text{ MKA}$ 2.5 Перевірка формули, що пов'язує амплітуду пульсацій напруги на навантаженні, струм навантаження, ємність конденсатора на виході та частоту сигналу:

$$dU = Iav/(2*C*f)$$
 Теоретично: Симуляція: $dU = 705.490*10^{-6}/2*10*10^{-6}*50 = 0.705$ В $dU = 0.526$ В

2.7 Форма напруги на резисторі навантаження:

2.8 Амплітуда пульсацій на резисторі навантаження, як видно з графіку, становить: dU = 0.563 В

Така різниця між розрахованим теоретичним опором пояснюється тим. Що в симуляторі не враховується опір провідників та похибка елементів: як ємності конденсатора, марки діода та опору, адже реальний опір резистора був 4.7 КОм, адже 5 КОм — нестандартний опір. Номінальний набір Е6.

2.9 Оскільки опір резистора становив 4.7 Ком — в формулі розрахунку будемо використовувати саме його значення (хоч воно теж відрізняється від реального значення).

$$V_{min} = 3.183 \text{ B}$$

$$V_{\text{max}} = 3,746 \text{ B}$$

 $Iav = [(3.183+3.746)/2]/4.7*10^6 = 737.127 \text{ MKA}$

Реальне значення: dU = 0.558 B

2.10 Порівняння виміряних значень в симуляторі та практичного виконання

		1	
Значення	Симулятор	Реальна схема	Похибка
V_{min}	3.264 B	3.183 B	2 %
V_{max}	3.790 B	3,746 B	1 %
I_{min}	652.801 мкА	678.510 мкА	3 %
I _{max}	758.180 мкА	797.234 мкА	5 %

2.11 Порівняння розрахованих амплітуд пульсацій

Схема	Симулятор	Реальна схема	Похибка
dU	0.526 B	0.558 B	6 %
Iav	705.490 мкА	737.872 мкА	4 %

- 2.1 Було проведено симуляцію випрямляча на діодному
- мосту у середовищі LTSpice з наступними параметрами:
- Вхідний сигнал гармонійний біполярний, з амплітудою 5В та частотою 50Гц
- Згладжуюча ємність 10мкФ
- Навантаження резистор 5 кОм
- 2.2 Отримуємо такі графіки зміни напруги та струму на окремих ділянках схеми

2.3 Амплітуда пульсацій напруги на резистор

резисторі навантаження:

- Cursor 1 V(n002)-V(n003)					
Horz:	45.752212ms	Vert:	3.8397681V		
Cursor	Cursor 2 V(n002)-V(n003)				
Horz:	53.893805ms	Vert:	3.6936785V		
Diff (Cu	Diff (Cursor2 - Cursor1)				
Horz:	8.1415929ms	Vert:	-146.08961mV		
Freq:	122.82609Hz	Slope:	-17.9436		

$$V_{min} = 3.693 \text{ B}$$

2.4 Середнє значення струму через

навантаження

Cursor 1 I(R1)	
Horz: 45.752212ms	Vert: 191,9884µA
Cursor 2	
I(R1)	
Horz: 53.893805ms	Vert: 184.68393µA
Diff (Cursor2 - Cursor1)	
Horz: 8.1415929ms	Vert: -7.3044686μA
Freq: 122.82609Hz	Slope: -0.000897179

$$I_{min} = 184.683 \text{ MKA}$$

$$\begin{aligned} V_{max} &= 3.839 \; B \\ dU &= V_{max} \; \text{-} \; V_{min} = 0.146 \; B \end{aligned}$$

$$\begin{split} I_{\text{max}} &= 191.988 \text{ MKA} \\ Iav &= (I_{\text{max}} + I_{\text{min}})/2 = 188.335 \text{ MKA} \end{split}$$

2.5 Перевірка формули, що пов'язує амплітуду пульсацій напруги на навантаженні, струм навантаження, ємність конденсатора на виході та частоту сигналу:

$$dU = Iav/(2*C*f)$$

Теоретично:

 $dU = 188.335*10^{-6}/2*10*10^{-6}*50 = 0.188 B$

Симуляція:

dU = 0.146 B

2.8Амплітуда пульсацій на резисторі навантаження, як видно з графіку, становить: dU = 0.142 В

Така різниця між розрахованим теоретичним опором пояснюється тим. Що в симуляторі не враховується опір провідників та похибка елементів: як ємності конденсатора, марки діода та опору, адже реальний опір резистора був 22 КОм, адже 20 КОм — нестандартний опір. Номінальний набір Е6.

2.9 Оскільки опір резистора становив 22 Ком — в формулі розрахунку будемо використовувати саме його значення (хоч воно теж відрізняється від реального значення).

 $V_{\text{min}} = 3.667B$

 $V_{\text{max}} = 3,809 \text{ B}$

 $Iav = [(3.667+3.809)/2]/22*10^6 = 157.636 \text{ MKA}$

Практичний розрахунок

dU = Iav/(2*C*f)

 $dU = 157.636*10^{-6}/2*10*10^{-6}*50 = 0.157 B$

Реальне значення:

dU = 0.147 B

2.10 Порівняння виміряних значень в симуляторі та практичного виконання

Значення	Симулятор	Реальна схема	Похибка
$ m V_{min}$	3.693 B	3.670 B	0.6 %
V_{max}	3.839 B	3,817 B	0.5 %
I_{min}	184.683 мкА	166.818мкА	9 %
I _{max}	191.988 мкА	173.5 мкА	9 %

2.11 Порівняння розрахованих амплітуд пульсацій

Схема	Симулятор	Реальна схема	Похибка
dU	0.146 B	0.147 B	0.6 %
Iav	188.335 мкА	157.636 мкА	16 %

Дослідження подвоювача напруги.

- 3.1 Схему подвоювача напруги на послідовних каскадах з діоду та конденсатору склали та симулювали у середовищі LTSpice.
- Використали наступні параметри:
- Ємність конденсаторів: 10 мкФ
- Діоди кремнієві
- Вхідний сигнал гармонійний,
- з амплітудою 5В, частотою 1 кГц
- 3.2 Форма сигналу на виході

3.3 Сигнал на виході встановлюється на рівні 8.8В через 12 мс після ввімкнення живлення. Рівень напруги у 8.8 В пояснюється падінням на діодах, що використані у схемі.

3.5 Складена схема на макетній платі показує очікуваний результат: напругу на виході на рівні 8.9B

Напруга на виході не просідає, адже опір осцилографа дуже високий

Дослідження обмежувача напруги

- 4.1 Схему обмежувача напруги на діоді склали у середовищі LTSpice та провели симуляцію.
- 4.2 Як можемо бачити, при вхідній напрузі у 0.3 В та частоті 50 Гц на виході маємо не спотворений вхідний сигнал

Симулятор:

4.3 Для амплітуди вхідного синусоїдального сигналу рівного 1.5 В сигнал на виході схеми не буде виходить за межі -0.6 В ... 0.6 В: Симулятор:

4.4 Решта напруги виділяється на резисторі, адже при перевищенні напруги відкриття діода, залишок напруги буде проходити по вхідному контуру.

Висновки

Було проведено дослідження деяких широко застосованих схем на напівпровідникових діодах — випрямлячів, подвоювача, обмежувача. Поведінки схем було вивчено при різних умовах роботи — різних навантаженнях, амплітудах вхідних сигналів, тощо. Отримані в лабораторії дані продубльовані даними симуляцій, які виявили деякі похибки вимірювань.