Práctica 6. Autovalores, autovectores y SVD

Table of Contents

Valores y vectores propios de una matriz	1
Ejercicio 1. Descomposición de Schur	
Ejercicio 2. Método de las potencias para el valor propio de módulo mayor	
Ejercicio 3. Método de las potencias inversas para el autovalor de módulo menor	
Ejercicio 4. Cociente de Rayleigh aplicado a matrices simétricas.	
Descomposición en valores singulares (SVD). Matriz pseudoinversa.	
Ejercicio 5. Matriz pseudoinversa.	

Valores y vectores propios de una matriz

Valores propios - MATLAB & Simulink - MathWorks ES

Ejercicio 1. Descomposición de Schur.

 Calcular la descomposición (real) de Schur de MATLAB para la siguiente matriz A y usarla para calcular sus autovalores sin usar eig() o eigs(). (Puede ser útil programar una función que calcule autovalores de una matriz 2×2.)

-1.0999524923722e-15 +

• Usar también la función eig() o eigs() de MATLAB para calcular los autovalores y autovectores de A.

```
V = 4 \times 4 complex
                    0i
                           0.58977 +
                                            0i · · ·
     0.58977 +
    -0.29488 - 3.8049e-17i -0.29488 + 3.8049e-17i
    -0.44233 + 0.14744i -0.44233 - 0.14744i
                           0.58977 - 8.3037e-17i
     0.58977 + 8.3037e-17i
D = 4 \times 4 complex
                                             0i · · ·
   4.113e-15 +
                    1i
                                 0 +
          0 +
                   0i 4.113e-15 -
                                             1i
          0 +
                    0i
                                0 +
                                              0i
          0 +
                                  0 +
```

Ejercicio 2. Método de las potencias para el valor propio de módulo mayor.

Escribir una función que calcule el autovalor dominante y un autovector asociado por el método de las potencias.

[vap,vep,iteraciones,residuo] = potencias(A, x, kmax, tol).

vap: autovalor dominante

vep: autovector dominante

iteraciones: número de iteraciones hechas

residuo: norma infinito del residuo (es decir, de A*vep-vap*vep)

A: matriz

x: vector inicial

kmax: máximo número de iteraciones

tol: tolerancia deseada (para la norma infinito del residuo)

• Usar la función para calcular por el método de las potencias, con cuatro cifras significativas, el valor

propio dominante de la matriz
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$
, empezando con $x^{(0)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Ejercicio 3. Método de las potencias inversas para el autovalor de módulo menor.

Crear una nueva función $potencias_inv()$ que calcule el autovalor de módulo estrictamente más pequeñode una matriz A. Evitar calcular A^{-1} explicitamente: se puede calcular el siguiente vector (antes de normalizar) usando $A \times y$ se puede calcular el residuo a partir de $A \times y$ la inversa de la aproximación al autovalor.

• Usarla para calcular, con cuatro cifras significativas, el autovalor de módulo estrictamente más pequeño

de la matriz:
$$A = \begin{pmatrix} 1 & 2 & -2 & 4 \\ 2 & 12 & 3 & 5 \\ 3 & 13 & 0 & 7 \\ 2 & 11 & 2 & 2 \end{pmatrix}$$
, empezando con $x^{(0)} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$.

Ejercicio 4. Cociente de Rayleigh aplicado a matrices simétricas.

Crear nuevas funciones potenciasRay() y potencias_invRay() a partir de las anteriores potencias() y potencias_inv() que calculen el autovalor a partir del cociente de Rayleigh. Para ello es más normalizar los vectores respecto a la norma 2 en vez de respecto a la norma ∞ .

 ullet Calcular con tolerancia $0.5 \cdot 10^{-4}$ los autovalores de módulo máximo y con tolerancia $0.5 \cdot 10^{-8}$ los autovalores de módulo mínimo, así como los autovectores correspondientes de la siguiente matriz simétrica con ambas funciones:

$$A = \begin{pmatrix} 0 & 12 & 16 & -15 \\ 12 & 388 & 309 & 185 \\ 16 & 309 & 312 & 80 \\ -15 & 185 & 80 & -600 \end{pmatrix}$$

Utilizar los siguientes vectores iniciales $x_{a \max}^{(0)} = (0, 1, 1, 1)^t$, $x_{a \min}^{(0)} = (-1, -1, 1, 1)^t$.

```
vapmax =
       690.34
vepmax = 4 \times 1
     0.033042
      0.85964
      0.19629
iteraciones =
   198
residuo =
   5.4089e-05
vapmaxRay =
       690.34
vepmaxRay = 4 \times 1
     0.024776
      0.74983
      0.64458
```

```
0.14718
iteracionesRay =
   195
residuoRay =
   5.0685e-05
vapmin =
     -0.72329
vepmin = 4 \times 1
     0.069681
     -0.11518
    -0.018895
iteraciones =
     6
residuo =
   7.8541e-10
vapminRay =
     -0.72329
vepminRay = 4 \times 1
     -0.99089
    -0.069046
      0.11413
     0.018723
iteracionesRay =
residuoRay =
   7.7168e-10
```

Descomposición en valores singulares (SVD). Matriz pseudoinversa.

Documentación de MATLAB, valores singulares.

Ejercicio 5. Matriz pseudoinversa.

Considerar el siguiente sistema lineal sobredeterminado $A\mathbf{x} = \mathbf{b}$. Obtener la factorización SVD de la matriz A y utilizarla para los siguientes apartados.

$$\begin{cases} 6x_1 + 2x_2 - x_3 - x_4 = 0 \\ 2x_1 + 4x_2 + x_3 = 7 \\ -x_1 + x_2 + 4x_3 - x_4 = -1 \\ -x_1 - x_3 + 3x_4 = 2 \\ 3x_1 + x_3 = -2 \end{cases}$$

(a) Obtener los valores singulares de A. Compararlos con los obtenidos por la definición de valores singulares.

```
U = 5 \times 5
            -0.808663318192405 0.108759875979472
                                                                                                                                                                                                                                                                                         0.062033929042216 \quad -0.844688552485145 \quad 0.441135535365021 \quad 0.186229311005836 
            -0.360896362715506 \\ -0.490999030252554 \\ -0.544407569902205 \\ -0.526735990409657
                   0.255494897640060 \quad 0.092746898959185 \quad 0.562247247914377 \quad -0.756790431311867 
             -0.383003397003534 \\ \phantom{-}0.158083850225090 \\ \phantom{-}0.035156325493804 \\ \phantom{-}0.302578790392918 \\ \phantom{-}0.30257891919 \\ \phantom{-}0.30257891919 \\ \phantom{-}0.302578919 \\ \phantom{-}0.30257819 \\ \phantom{-}0.30257819 \\ \phantom{-}0
S = 5 \times 4
                  7.758235971482002
                                                                                                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0
                                                                                                                          0
                                                                                                                                             5.069506229441524
                                                                                                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0
                                                                                                                            0
                                                                                                                                                                                                                                                             0
                                                                                                                                                                                                                                                                            3.390306425183840
                                                                                                                                                                                                                                                                                                                                                                                                 0 2.369747569639747
```

```
V = 4 \times 4
  -0.868940986505888
                       0.440366749989493
                                            0.219241405886203 -0.054331329993912
  -0.223000085237284
                      -0.720431798076028
                                            0.618150238287114
                                                                 0.221673790085089
  -0.364607772314956
                      -0.519693186478284 -0.538533501451110 -0.554041363176415
   0.249546982193462
                       0.130284848515394
                                            0.528966120527045 -0.800591659499413
valores singulares SVD = 4 \times 1
   7.758235971482002
   5.069506229441524
   3.390306425183840
   2.369747569639747
valores_singulares_def = 4 \times 1
   2.369747569639746
   3.390306425183841
   5.069506229441526
   7.758235971482000
```

0

0

(b) Comparar la matriz pseudoinversa obtenidaa partir de la descomposición SVD con la que da la función pinv() de MATLAB.

0

0

```
pseudoinv = 4 \times 5
  0.124809710760356 -0.056065219133082 -0.025358544988382
                                                               0.033150388590658 · · ·
  0.101975002003045
                     0.216108484897044 -0.068383943594263
                                                               0.011197019469594
  -0.078589455973079 -0.029935501962984 0.276920919798093
                                                               0.066110487941671
  -0.006790321288358 -0.013800977485778
                                         0.068784552519830
                                                               0.353998077077157
pinvA = 4 \times 5
  0.124809710760356 -0.056065219133082 -0.025358544988382
                                                               0.033150388590658 • • •
  0.101975002003045
                      0.216108484897044 -0.068383943594263
                                                               0.011197019469594
  -0.078589455973079 -0.029935501962984
                                           0.276920919798093
                                                               0.066110487941671
  -0.006790321288358 -0.013800977485778
                                           0.068784552519830
                                                               0.353998077077157
```

(c) A partir de la pseudoinversa, obtener la solución de residuo mínimo del sistema Ax = b.

```
x = 4×1
-0.432477365595706
1.670238762919638
-0.488151991026360
0.343702427690089
```

Funciones internas

Documento preparado por I. Parada, 20 de marzo de 2024