

Unit's Part B: Veetor Fields and Line Integrals
LEC19 225.2.18

Vector fields

 $\vec{F} = M \vec{i} + N \vec{j}$, M and N are function of X, y.

at each point, \vec{F} a vector that depend on (X, y)

Example: velocity in a fluid \vec{v} force field \vec{f}

Ex:

 $\vec{F} = \lambda \vec{i} + \vec{j} \longrightarrow \lambda$

Мо	Tu	We	Th	Fr	Sa	Su

Memo No.		
Date	1	1

	Da
Another way:	F'= <m,n></m,n>
~	$dr^{2} = cdx, dy >$
$\vec{F}'d\vec{r} = Md$	x + Ndy
∫ _c F'dr	= Sc Mdx + Ndy
Method to en	valuate =) express

xy in terms of a single variable & substitute

from the example before page (= |cF.dr=|c -ydx + xdy (use in terms of t) x=t, $y=t^2$ dx=dt, dy=2tdt $3 = \int_{C} -t^{2}dt + 2t^{2}dt = \int_{0}^{1} t^{2}dt = \frac{1}{3}$ Note IcFidi depends on the trajectory C but nst on parameterization

could do . & X = Smo Gut y = SMO OCEO, TI (NOT practical) in this example

Geometric approach

dr = <dx, dy > = T. ds ? ctagent line) (Note, #= <# dx = 7. 45

Sistance = US

\times	7	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.				
Date	1	1		

	S = 13	[= Sc F. # 7. ds
5 4	c Fidr =	Jc Max + Ndy	=/c f. \$1.ds

Example:

c. circle of radius a act origin.

counterclockwise $\vec{F} = X \hat{i} + \hat{j} \cdot y$ $\vec{F} = \hat{i} + \hat{j} \cdot \hat{j}$

2) Same $\vec{F} = -y \hat{i} + x \hat{i}$

 $\vec{F}(1|\vec{T})$ $\vec{F}\cdot\vec{T}=|\vec{F}|=\alpha$ (radius)

 $\int_{c} a ds = a \int_{c} ds = a \cdot |ergth(c)| = 2\pi a \cdot a$

=27192

or: $\int -y dx + x dy$. $\Rightarrow x = a \cos \theta$, $y = a \sin \theta$ = $\int_0^2 \alpha^2 \sin^2 \theta + \alpha^2 \cos \theta \cdot d\theta = 2\pi \alpha^2$

so sometimes just think in goometrictly geometric