UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA MECÁNICA

SEGUNDO INFORME DE LABORATORIO CIENCIA DE LOS MATERIALES I

ENSAYOS DE TRACCIÓN

LIMA - PERÚ MAYO 2018

ENSAYOS DE TRACCIÓN

ENTREGADO: 5 MAYO 2018

	0 MH1 0 2010
INTEGRANTI	ES:
	Fuentes Valdivia Martin, 20174124A
	Huaroto Villavicencio Josué, 20174070I
•	Saldivar Montero Eduardo, 20174013E
PROFESOR:	
	ING. LUIS SOSA, JOSE

Índice general

Ín	dice	de Tab	olas	V
Ín	dice	de Fig	uras	VI
1.	Obj	etivos		1
2.	Ens	ayo de	tracción	2
	2.1.	Definio	ciones	2
		2.1.1.	Longitud entre marcas	2
		2.1.2.	Alargamiento permanente porcentual	2
		2.1.3.	Alargamiento porcentual después de la rotura (A)	3
		2.1.4.	Reducción porcentual de área por estricción (Z)	3
		2.1.5.	Carga máxima (F_m)	3
		2.1.6.	Carga final (F_u)	3
		2.1.7.	Carga en el límite de fluencia (F_e)	3
		2.1.8.	Tensión	3
		2.1.9.	Resistencia a la tracción (R_m)	3
		2.1.10.	Tensión en el límite de fluencia (R_0)	4
		2.1.11.	Tensión correspondiente a un alargamiento permanente prescrito	4
		2.1.12.	Tensión en el límite convencional de elasticidad	4
	2.2	Matani	مامه	1

		2.2.1. Probetas	4
		2.2.2. Vernier digital	6
		2.2.3. Papel milimitrado	6
	2.3.	Máquina de tracción	7
	2.4.	Procedimiento de medida	8
	2.5.	Datos del ensayo	9
		2.5.1. Aluminio	9
		2.5.2. Cobre	10
		2.5.3. Bronce	10
		2.5.4. Acero bajo carbono	11
		2.5.5. Acero medio carbono	11
	2.6.	Curva carga-deformación y curva de ingeniería	12
3.	Cál	culos y resultados	13
	3.1.	Módulo de Young	13
	3.2.	Esfuerzo máximo de rotura	14
	3.3.	Estricción	14
4.	Con	clusiones y recomendaciones	15
5.	Ane	exos	16
	5.1.	Cuestionario	16
	5.2.	Imágenes del laboratorio	18
Bi	bliog	grafía	21

Índice de tablas

2.1.	Datos de tracción del aluminio	9
2.2.	Datos de tracción del cobre	10
2.3.	Datos de tracción del bronce	10
2.4.	Datos de tracción del acero bajo carbono	11
2.5.	Datos de tracción del acero medio carbono	11
3.1.	Módulo de Young	13
3.2.	Esfuerzo máximo de rotura	14
3.3	Medida de estricción	14

Índice de figuras

2.1.	Probetas	5
2.2.	Vernier digital	6
2.3.	Papel milimetrado	6
2.4.	Máquina de tracción	7
2.5.	Lector de la máquina de tracción	8
2.6.	Curvas obtenidas en el laboratorio	12
5.1.	Cuello en la probeta de bronce	18
5.2.	Probeta de aluminio	19
5.3.	Modelo de gráfica	19
5.4.	Esquema de una máquina de tracción	20

Objetivos

- 1. Obtener la curva carga-deformación
- 2. Obtener la curva de ingeniería-esfuerzo-deformación unitarios para cinco materiales metálicos.
- 3. Obtener la curva de tracción, esfuerzos, coeficiente de elasticidad y resilencia, con los datos obtenidos en el ensayo.
- 4. Determinar la resistencia mecánica y el módulo de elasticidad de los mismos. Asimismo construir la curva real y calcular la tenacidad de uno de ellos.

Ensayo de tracción

2.1. Definiciones

2.1.1. Longitud entre marcas

Es la longitud de la parte cilíndrica o prismática del espécimen en cualquier momento del ensayo, sobre la cual se mide el alargamiento.

Longitud inicial entre marcas (L_0)

Es la longitud entre marcas antes de la aplicación de la carga.

Longitud final entre marcas (L_u)

Es la longitud entre marcas después de la rotura del espécimen juntando y ajustando cuidadosamente los dos fragmentos de manera que sus respectivos ejes sean colineales, es decir, que un fragmento sea la continuación del otro.

2.1.2. Alargamiento permanente porcentual

Es la variación de longitud entre marcas del espécimen de ensayo sometido previamente a una tensión prescrita y después descargada. Esta variación se expresa en % de la longitud inicial entre marcas. El símbolo de este alargamiento se complementa con un índice que indica la tensión prescrita.

2.1.3. Alargamiento porcentual después de la rotura (A)

Es el alargamiento permanente $L_u - L_0$ de la longitud entre marcas después de la rotura expresado en % de la longitud inicial entre marcas L_0 .

2.1.4. Reducción porcentual de área por estricción (Z)

Es la máxima disminución de la sección transversal que se produce durante el ensayo $(S_0 - S_u)$ expresada en % del área de la sección inicial (S_0)

2.1.5. Carga máxima (F_m)

Es la mayor carga soportada por el espécimen durante el ensayo.

2.1.6. Carga final (F_u)

Es la carga que soporta el espécimen en el momento de la rotura.

2.1.7. Carga en el límite de fluencia (F_e)

Es la carga para la cual el alargamiento del espécimen aumenta por primera vez, sin aumento o con disminución de la carga.

2.1.8. Tensión

Es en cualquier instante del ensayo, el cociente entre la carga y el área de la sección inicial del espécimen.

2.1.9. Resistencia a la tracción (R_m)

Es el cociente entre la carga máxima y el área de la sección inicial del espécimen.

2.1.10. Tensión en el límite de fluencia (R_0)

Si durante el ensayo se observa una caída de la carga, la tensión correspondiente el valor más alto de dicha carga se denomina "límite superior de fluencia" y la tensión

el valor más alto de dicha carga se denomina "límite superior de fluencia" y la tensión correspondiente a la menor carga subsiguiente observada se denomina "límite inferior

de fluencia".

2.1.11. Tensión correspondiente a un alargamiento permanen-

te prescrito

Es la tensión a la cual corresponde (después de la suspensión de carga) un alargamiento permanente prescrito, expresado en % de la longitud inicial entre marcas. El valor prescrito es frecuentemente igual a 0.2 %. El símbolo utilizado para esta tensión

está acompañada de un índice que designa el % prescrito de la longitud inicial entre

marcas; por ejemplo: 0.5%.

2.1.12. Tensión en el límite convencional de elasticidad

Es la tensión a la cual corresponde un alargamiento no proporcional, igual a un % prescrito de la longitud inicial entre marcas. Cuando se especifica una carga en el límite convencional debe indicarse el alargamiento no proporcional, por ejemplo,

límite convencional de elasticidad a 0.1 % o 0.2 %. El símbolo utilizado para esta tensión está acompañado de un índice que designa el % prescrito de la longitud

inicial entre marcas; por ejemplo: 0.1%.

2.2. Materiales

2.2.1. Probetas

Aluminio

■ Longitud: 28.76 mm

 \blacksquare Diámetro: 5.94 mm

Cobre

■ Longitud: 25.34 mm

 \blacksquare Diámetro: $6.17 \, mm$

4

Bronce

■ Longitud: 26.47 mm

 \blacksquare Diámetro: $6.34\,mm$

Acero bajo carbono

■ Longitud: 26.49 mm

 \blacksquare Diámetro: $6.26\,mm$

Acero medio carbono

■ Longitud: 28.27 mm

 \blacksquare Diámetro: $6.12\,mm$

Figura 2.1: Probetas usadas en el ensayo de tracción

2.2.2. Vernier digital

Figura 2.2: Vernier digital

2.2.3. Papel milimitrado

Figura 2.3: Papel milimetrado

2.3. Máquina de tracción

Figura 2.4: Máquina de tracción marca Alfred J. AMSLER, Suiza $500\,kg$ - $5000\,kg$

Figura 2.5: Lector de la máquina de tracción

2.4. Procedimiento de medida

- 1. Antes de colocar la probeta en la máquina, es necesario determinar la longitud entre las marcas y el área media de la zona calibrada (diámetro). Ver figura 2.1
- 2. Después de ello, se procede a la colocación de la probeta en las mordazas que ayudarán en la correcta aplicación de la carga en la máquina Amsler.
- 3. Antes de colocar la probeta, se debe verificar la escala a la que se dibujará la gráfica Carga vs Estiramiento, dado que el sistema de dibujo está basado en el funcionamiento de poleas, cuerdas y resortes.
- 4. Se coloca el ensamble probeta mordaza en la máquina y se inicia el estiramiento.
- 5. En la gráfica que se dibuja con el sistema de poleas, se debe verificar que la pluma o lapicero no presente libertad de movimiento independiente al del sistema mencionado.
- 6. Se debe anotar el valor de la carga en el cual la velocidad de la aguja del medidor empieza a disminuir y en el que termina ese paso lento, ya que estos valores corresponderán a los límites inferior y superior de fluencia.

- 7. Finalizado el paso de la zona de fluencia, la probeta entrará en la zona plástica, periodo en el que se forma un "cuello" en la zona del espécimen en el que se encontró la menor resistencia a la tracción (normalmente se hallaría en el centro; sin embargo, los defectos en el maquinado de la pieza pueden influir en la ubicación de dicho cuello). En algunos casos, como el del bronce, no se forma cuello.
- 8. Después de la ruptura de la probeta, en el medidor se habrá indicado la carga máxima, la cual corresponde al punto de carga de rotura.
- 9. Finalizado el proceso de tracción, se procede a retirar los restos de la probeta y, ayudándose de un soporte, se realizan las medidas de:
 - La nueva longitud entre marcas.
 - La longitud del cuello formado ¹.
 - El diámetro de la zona en la cual se fracturó la pieza.
- 10. Se realiza el mismo procedimiento para las demás piezas a evaluar.

2.5. Datos del ensayo

2.5.1. Aluminio

Longitud inicial	28.76mm
Diámetro inicial	5.94mm
Carga de rotura	300kgf
Longitud final	37.27mm
Diámetro del cuello	2.33mm

Tabla 2.1: Datos de tracción del aluminio

¹Ver figura 5.2

2.5.2. Cobre

Longitud inicial	25.34mm
Diámetro inicial	6.17mm
Carga	670kgf
Longitud final	39.63mm
Diámetro del cuello	2.44mm

Tabla 2.2: Datos de tracción del cobre

2.5.3. Bronce

Longitud inicial	26.47mm
Diámetro inicial	6.34mm
Carga de rotura	1390kgf
Longitud final	34.78mm
Diámetro del cuello	4.62mm

Tabla 2.3: Datos de tracción del bronce Ver figura 5.1 para la longitud del cuello

2.5.4. Acero bajo carbono

Longitud inicial	26.49mm	
Diámetro inicial	6.26mm	
Carga de rotura	1335	
Longitud final	36.06mm	
Diámetro del cuello	3.66mm	

Tabla 2.4: Datos de tracción del acero bajo carbono

2.5.5. Acero medio carbono

Longitud inicial	28.27mm
Diámetro inicial	6.12mm
Carga de rotura	1850kgf
Longitud final	35.72mm
Diámetro del cuello	3.98mm

Tabla 2.5: Datos de tracción del acero medio carbono

2.6. Curva carga-deformación y curva de ingeniería

Figura 2.6: Curvas obtenidas en el laboratorio

Cálculos y resultados

3.1. Módulo de Young

Usando la siguiente ecuación:

$$E = \frac{\sigma}{\varepsilon}$$

$$E = \frac{F x l_0}{A x \Delta l}$$
(3.1)

- Esfuerzo: σ
- Deformación unitaria: ε

Material (probeta)	F	A	l	Δl	E
Aluminio	300	27.71	28.76	8.51	36.588
Cobre	670	29.9	25.34	14.29	39.735
Bronce	1390	31.57	26.47	8.31	140.247
Acero bajo carbono	1335	30.78	26.49	9.57	120.055
Acero medio carbono	1850	29.42	28.27	7.45	238.615

Tabla 3.1: Módulo de Young

3.2. Esfuerzo máximo de rotura

Probeta	EMR
Aluminio	10.83
Cobre	22.41
Bronce	44.03
Acero bajo carbono	43.37
Acero medio carbono	62.88

Tabla 3.2: Esfuerzo máximo de rotura

3.3. Estricción

$$\Psi = \frac{A_0 - A}{A_0} \times 100 \tag{3.2}$$

Probeta	A_0	A	Ψ
Aluminio	27.71	4.26	84.62
Cobre	29.9	4.67	84.38
Bronce	31.57	16.76	46.91
Acero bajo carbono	30.78	10.52	65.82
Acero medio carbono	29.42	12.44	57.71

Tabla 3.3: Medida de estricción

Conclusiones y recomendaciones

- 1. Se concluye que los aceros con mayor concentración de carbono son más resistentes a un esfuerzo axial de tracción, pero son más frágiles.
- 2. Se determinó que el estaño aumenta la fuerza elástica del bronce.
- 3. Al culminar el ensayo se pudo concluir mediante las gráficas que las probetas tenían una pequeña recuperación elástica.
- 4. Para una mejor medida del diámetro final se deberá marcar la probeta en los extremos.
- 5. En las medidas finales es recomendable que dos personas hagan las medidas, ya que uno sujetará la probeta rota y el otro medirá con el vernier electrónico.
- 6. El grafico de tracción permite calcular las deformaciones producidas en un material.
- 7. El área bajo la curva de tracción es indicativa de la tenacidad del material.

Anexos

5.1. Cuestionario

1. De acuerdo a la Norma ITINTEC 341.002, ¿Cómo se define en el ensayo de tracción para el acero, el alargamiento porcentual después de la rotura?

Es el alargamiento permanente $L_u - L_0$ de la longitud entre marcas después de la rotura expresado en % de la longitud inicial entre marcas L_0 . Expresado matemáticamente como:

Alargamiento porcentual =
$$\frac{L_u - L_0}{L_0} \times 100 \%$$

2. De acuerdo a la Norma ITINTEC 341.002, ¿Cómo se define en el ensayo de tracción para el acero, el alargamiento porcentual después de la rotura?

Es el cociente entre la carga máxima F_m y el área de la sección inicial del espécimen.

3. ¿Cuál es la máxima carga que puede ser aplicada en la Máquina Amsler de Ensayo de Tracción?

De acuerdo al medidor, la carga máxima que se puede aplicar es de $3000 \, kgf$.

4. ¿Cómo influye la temperatura en los valores de máximo esfuerzo de rotura, elongación y tenacidad de un material metálico?

Al incrementarse la temperatura se produce generación de nuevos sistemas de deslizamiento y la operación de otros mecanismos de deformación como el deslizamiento de bordes de grano a altas temperaturas, que disminuyen el endurecimiento por deformación, por lo cual podemos deducir que existe una relación inversa entre la temperatura y las propiedades mecánicas mencionadas en la pregunta.

5. ¿Cuál de los materiales ensayados presenta el mayor porcentaje de estricción? Indicar el valor

La probeta de aluminio es la que tiene mayor estricción, con un porcentaje de 84.62.

6. ¿Cuál de los materiales ensayados presenta el menor porcentaje de elongación? Indicar el valor.

La probeta de acero bajo carbono es la que tiene menor elongación, con un porcentaje de 26.35.

7. Observando los valores de carga obtenidos durante los ensayos ¿Qué resorte habría recomendado utilizar para el ensayo de tracción del aluminio?, ¿por qué?

Un tipo especial de resorte de tracción es el llamado "resorte de tracción de barras" o "resorte de barra de enganche". Estos resortes son ensambles en los que el resorte principal se comprime mientras que las barras se extienden bajo la aplicación de una carga. Son capaces de soportar cargas mucho mayores que la fuerza de cierre de los resortes de compresión y son excelentes para situaciones potenciales de sobrecarga.

5.2. Imágenes del laboratorio

Figura 5.1: Cuello en la probeta de bronce

Figura 5.2: Probeta de aluminio

Figura 5.3: Modelo de gráfica obtenida por la máquina de tracción

Figura 5.4: Esquema de una máquina de tracción

Bibliografía

- [1] Keyser, Carl. "Técnicas de Laboratorio para prueba de Materiales". Limusa-Wiley.
- [2] Zolotorevski, V. "Pruebas Mecánicas y Propiedades de los Metales". *Editorial MIR*.
- [3] Lasheras. "Tecnología de los Materiales Industriales".
- [4] Dieter. "Metalurgia mecánica".
- [5] Apraiz, J. "Tratamiento Térmico de los Aceros".
- [6] Smith, William F. y Ph.D. Hashemi, Javad "Ciencia e ingeniería de materiales". Madrid: McGraw-Hill, Interamericana de España. 570, (2004).
- [7] Callister, William D. y Rethwisch, David G. "Introducción a la ingeniería de los materiales". *Barcelona Reverté.*, 960, (2007).
- [8] Askeland, Donald R., Pradeep P. Phulé y Wright, Wendelin J. "Ciencia e ingeniería de los materiales". México, D.F. Internacional Thomson Editores. 6^{ta} edición, 1004, (2012).
- [9] Normas ASTM.
- [10] Normas NTP.