# APONTAMENTOS DE ANÁLISE MATEMÁTICA I

L.E.S.I. - 2004/2005

Olga Vaz

# **CAPÍTULO I**

# I. Os números reais e suas propriedades

## Análise Matemática

Nesta disciplina estudaremos sobretudo Cálculo Diferencial e Cálculo Integral.

A palavra "cálculo" vem da palavra latina usada nos tempos do Império Romano para significar "pedrinha"; com o passar dos séculos, por volta da Idade Média, "calcular" passou a ser sinónimo de "fazer contas".

Hoje em dia, o Cálculo baseia-se nos conceitos da Matemática Elementar (aritmética, geometria, trigonometria) enriquecidos com o conceito de limite.

| Matemática Elementar                        | Cálculo                                    |  |  |  |  |  |
|---------------------------------------------|--------------------------------------------|--|--|--|--|--|
|                                             |                                            |  |  |  |  |  |
|                                             |                                            |  |  |  |  |  |
| declive de uma recta: $y = mx + b$          | declive de uma curva; $y = f(x)$           |  |  |  |  |  |
|                                             |                                            |  |  |  |  |  |
|                                             |                                            |  |  |  |  |  |
| recta tangente a uma circunferência         | recta tangente a uma curva                 |  |  |  |  |  |
| velocidade média                            | velocidade instantânea                     |  |  |  |  |  |
| aceleração média                            | aceleração instantânea                     |  |  |  |  |  |
| distância percorrida a velocidade constante | distância percorrida a velocidade variável |  |  |  |  |  |
|                                             |                                            |  |  |  |  |  |
| área de uma região limitada por segmentos   | área de uma região limitada por curvas     |  |  |  |  |  |
| de recta                                    |                                            |  |  |  |  |  |
| soma de um número finito de parcelas:       | soma de um número infinito de parcelas:    |  |  |  |  |  |
| $a_1 + a_2 + \cdots + a_n$                  | $a_1 + a_2 + \cdots + a_n + \cdots$        |  |  |  |  |  |
| média de uma colecção finita de números     | média de uma função num intervalo          |  |  |  |  |  |
|                                             |                                            |  |  |  |  |  |
| comprimento de um segmento de recta         | comprimento de um segmento de curva        |  |  |  |  |  |



A Análise é um ramo da Matemática onde se estudam os conjuntos de números reais e complexos e as funções definidas nesses conjuntos.

Embora as suas raízes remontem à Grécia Antiga, com Zenão de Eleia e os famosos paradoxos (~ 450 AC), e Arquimedes com o chamado "método de exaustão" (~ 225 AC), a sua formulação rigorosa data do século XVII com Newton e Leibniz; estuda conceitos tais como limite, continuidade, diferenciabilidade e integrabilidade. Foi depois desenvolvida pela família Bernoulli, tendo atingido o seu estado actual em cerca de um século.



Sir Isaac Newton 1643 – 1727 (Inglaterra)



Gottfried Wilhelm von Leibniz 1646 - 1716 (Alemanha)

Newton e Leibniz desenvolveram separadamente uma formulação rigorosa usando notações diferentes. O desenvolvimento científico e tecnológico que foi possível com esta nova ferramenta foi imenso; hoje em dia é mais usada a notação de Leibniz.

A Análise Matemática trabalha com conceitos muito subtis como limite, infinitésimo e infinito, daí que o seu desenvolvimento fosse lento; muitos matemáticos contribuiram para a compreensão destes conceitos; a sua complexidade é ilustrada por Galileu (1564 – 1642):

...tentamos, com as nossas mentes finitas, discutir o infinito, atribuindo-lhe propriedades que damos aos finitos e limitados; mas eu acho que isso está errado, porque não podemos falar de quantidades infinitas como sendo uma menor ou maior ou igual a outra.

Mas a imaginação humana não tem limites, e os trabalhos de Newton e Leibniz começaram um caminho para o estudo formal de conjuntos infinitos; são de destacar os trabalhos de Cantor e Gödel.



Georg Ferdinand Ludwig Philipp Cantor 1845 - 1918 (Alemanha)



Kurt Gödel 1906 - 1978

Para mais informações sobre os trabalhos destes matemáticos, consultar os endereços: http://www-groups.dcs.st-andrews.ac.uk/~history/BiogIndex.html http://www-groups.dcs.st-andrews.ac.uk/~history/HistTopics/The\_rise\_of\_calculus.html http://www-history.mcs.st-and.ac.uk/history/HistTopics/Infinity.html

#### Propriedades dos números reais

Há conjuntos de números já conhecidos desde o ensino secundário, e com designações especiais:

- $\mathbb{N}$ =  $\{1,2,3,...\}$  é o conjunto dos números naturais;
- $\mathbb{Z} = \{0, +1, -1, +2, -2, +3, -3, ...\}$  é o conjunto dos números inteiros;
- $\mathbb{Q} = \{ p/q : p \in \mathbb{Z}, q \in IN \}$  é o conjunto dos números racionais;
- R é o conjunto dos números reais.

Verifica-se a seguinte inclusão natural:  $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$ .

Todos estes conjuntos são representados sobre um eixo, isto é, uma recta onde se marca uma origem — zero — e uma unidade — por exemplo, o número 1 — dando-lhe assim um sentido. Convencionou-se marcar os números negativos à esquerda do zero e os positivos à direita, fazendo corresponder a cada ponto da recta um e um só número real.

NOTA: o conjunto  $\mathbb{C}$  dos números complexos já não pode ser representado sobre uma recta, e vem a inclusão  $\mathbb{R} \subset \mathbb{C}$ ; basta ver que se pode convencionar escrever 3 = 3 + 0i.

## O conjunto Q

Os números racionais podem ser representados na forma de fracção ou na forma decimal; neste caso temos sempre uma dízima finita ou infinita periódica.

**EXEMPLOS:** 

$$\frac{9}{3} = 3$$
;  $\frac{1}{3} = 0.3333 \cdot \cdot \cdot = \frac{3}{10} + \frac{3}{10^2} + \frac{3}{10^3} + \frac{3}{10^4} + \cdot \cdot \cdot$ ;  $\frac{1}{50} = 0.02 = \frac{2}{10^2}$ .

Cada número racional tem mais que uma representação fraccionária:

$$\frac{1}{3} = \frac{2}{6} = \frac{30}{90} = \cdots$$

Notação: usam-se as seguintes notações para as dízimas infinitas periódicas:

$$0.3333\dots = 0.(3) = 0.3 = 0.\overline{3}$$
.

# O conjunto R\Q

Os números racionais não permitem resolver todas as nossas medições; este problema foi reconhecido na Antiguidade pelos Gregos, cerca de 500 AC.

Suponhamos que queremos calcular a medida da diagonal de um quadrado de lado 1. Seja x a medida da diagonal; temos então que  $x^2=2$  e hoje em dia escrevemos  $x=\sqrt{2}$  (note que se trata de um problema de medição de um comprimento). É fácil provar que  $\sqrt{2}$  não é um número racional.

Aos números reais que não são racionais chamamos irracionais; outros exemplos são os já conhecidos  $\pi$ , e (número de Neper). O conjunto dos números irracionais representa-se por  $\mathbb{R}\setminus\mathbb{Q}$ .

Quando representados na forma decimal, os irracionais correspondem a dízimas infinitas não periódicas.

#### **EXEMPLOS:**

$$\pi = 3.14159\cdots$$
;  $\sqrt{2} = 1.414213\cdots$ ;  $\sqrt[4]{2} = 1.189207\cdots$ ;  $123.45678910111213\cdots$ .

Temos então que  $\mathbb{R} = \mathbb{Q} \cup \mathbb{R} \setminus \mathbb{Q}$ .

Os conjuntos  $\mathbb{Q}$  e  $\mathbb{R}$  têm uma propriedade muito importante: a <u>densidade</u>. Isto significa que, entre quaisquer dois elementos de um destes conjuntos, é sempre possível encontar um terceiro elemento desse mesmo conjunto.

#### **EXEMPLOS:**

- é fácil verificar que entre os números racionais  $\frac{1}{3}$  e  $\frac{1}{4}$  podemos encontrar o racional

$$\frac{35}{120}$$
; é também óbvio que entre  $\sqrt{2}$  e 2 está  $\sqrt{3}$ .

Sugestão: verifique que IN e Z não são densos.

No entanto há uma grande mas subtil diferença entre  $\mathbb{Q}$  e  $\mathbb{R}$ : só o segundo é <u>completo</u>. A completude de  $\mathbb{R}$  permite-nos resolver equações que são impossíveis em  $\mathbb{Q}$ , como  $x^2 = 2$ ; permite-nos ainda uma operação muito importante em Análise: o cálculo de um limite. Suponhamos que definimos a seguinte sucessão (por recorrência), chamada sucessão de Cauchy:  $x_1 = 1$ ;  $x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}$ .

É uma sucessão de números racionais e é possível demonstrar que é convergente e o seu limite é  $\sqrt{2}$ ; este exemplo mostra que  $\mathbb Q$  não é completo, uma vez que o limite é um irracional.

Consideremos agora a seguinte sucessão de números reais:

Qual será o seu limite? Parece simples admitir que se trata do número real representado pela dízima infinita periódica:  $0.9999\dots = 0.\overline{9}$ . Mas haverá outra forma de representar este número? A resposta é sim. Qual é a representação fraccionária deste número? E de  $0.\overline{3}$ ?

Estas propriedades não serão demonstradas; um estudo mais aprofundados poderá ser encontrado no livro: "Curso de Análise", (Volume 1) de Elon Lages Lima, da Editora: IMPA - 1992.

Deve ser tomado em consideração que, quando se trabalha com uma máquina de calcular (usando o modo numérico), todos os números reais são tratados como dízimas finitas, o que pode levar a resultados inesperados. Devemos pois ter o cuidado de escrever:

$$\frac{1}{3} \approx 0.333$$
;  $\pi \approx 3.1416$ ;  $\sqrt{2} \approx 1.414$ .

## Inequações e valor absoluto

Resolver uma <u>inequação</u> envolvendo uma incógnita *x* significa determinar todos os valores de *x* para os quais a desigualdade é verdadeira, isto é, determinar o conjunto-solução da inequação. Em geral usam-se as propriedades dos números reais para escrever uma desigualdade equivalente à dada, mas mais simples.

EXEMPLO: resolva a inequação na incógnita 
$$t$$
:  $\frac{1}{2t^2 + 2} < \frac{1}{4}$ .

Recordemos que, dado um número real a, define-se módulo ou valor absoluto de a do

seguinte modo: 
$$|a| =$$

$$\begin{cases} a & \text{se} \quad a \ge 0 \\ -a & \text{se} \quad a < 0 \end{cases}.$$

Em geral é útil pensar em lal como sendo a distância de a a 0, medida na recta real.

Uma das propriedades importantes do valor absoluto é a desigualdade triangular:

$$|a + b| \le |a| + |b|$$
 para todos os números  $a \in b$  reais.

Para recordar as propriedades do valor absoluto vejamos os seguintes exemplos:

#### **EXEMPLOS:**

- 1- Resolva a inequação na incógnita  $u: |\mathbf{u} 2| < 1$ ;
- 2- Mostre que  $\left|-3\right|^2 = (-3)^2$ , justificando.

Recorde as definições de <u>supremo</u>, <u>ínfimo</u>, <u>máximo</u> e <u>mínimo</u>, usando os seus livros do ensino secundário ou o livro de Salas, Hille recomendado na bibliografia, para analisar se os conjuntos que se seguem são limitados.

# **EXEMPLOS:**

$$A = \left] -\infty, -13 \right]; \qquad B = \left\{ x \in \mathbb{Q} : x > 0, \ x^2 < 3 \right\}; \qquad C = \left\{ a \in \mathbb{R} : 1.\overline{5} \le a \le \sqrt{20} \right\}$$

#### II. Funções reais de uma variável real

#### Domínio, contra-domínio e gráfico

Os dois principais processos usados em Análise Matemática, <u>diferenciação</u> e <u>integração</u>, são aplicados a funções. Em Matemática, usamos funções para representar a dependência de uma quantidade em relação a outra. Por exemplo, suponhamos que queremos saber como se tem comportado o clima em Braga nos últimos anos, através da temperatura média em cada mês, que nos é dada pela seguinte tabela:

| Temperaturas médias em Braga, nos últimos 30 anos |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Jan                                               | Fev  | Mar  | Abr  | Maio | Jun  | Jul  | Ago  | Set  | Out  | Nov  | Dez  |
| 9°C                                               | 10°C | 12°C | 13°C | 15°C | 18°C | 20°C | 20°C | 20°C | 16°C | 12°C | 10°C |

Um gráfico é uma outra forma de representar a relação entre cada mês e a respectiva temperatura:



Neste caso, temos um conjunto de valores para a variável independente – meses do ano – e um conjunto de valores para a variável dependente – a temperatura.

Outra forma de representar uma função é dar uma "regra" que relacione as variáveis e os seus domínios.

DEFINIÇÃO: sejam D e C dois conjuntos de números reais; diz-se que f é uma função real de variável real de D em C se, a cada elemento de D faz corresponder um e um só elemento de C, com a notação:

$$f: D \to C$$
  
  $x \mapsto f(x)$ , onde D é o domínio de f e C é o conjunto de chegada.

Ao conjunto  $f(D) = \{ f(x) : x \in D \}$  chamamos <u>contra-domínio</u> ou <u>conjunto de valores</u>  $\underline{de\ f}.\ Tem\text{-se}\ f(D) \subset C\ .$ 

Por vezes, o domínio de uma função não é especificado; nesse caso convenciona-se que o domínio será o maior subconjunto de  $\mathbb R$  para o qual o contra-domínio ainda é um subconjunto de  $\mathbb R$ .

#### **EXEMPLOS:**

Que significa determinar o domínio das funções reais definidas pelas seguintes expressões algébricas:  $g(x) = \frac{1}{(x-3)(x+\sqrt{5})}$  e  $h(x) = \sqrt{2x-\pi}$ ?

Deve ter-se em atenção que o domínio é parte integrante da definição de uma função;

Sempre que possível, convém combinar várias forma de representação de uma função: algébrica, gráfica e numérica.

Em relação aos gráficos há que ter em conta que:

- o gráfico de uma função pode ter aspectos diferentes, dependendo dos eixos;
- funções diferentes podem ter o mesmo aspecto;
- nem todos os gráficos representam uma função.

#### **EXEMPLOS:**



#### Composição de funções

Recorde, usando os manuais, as condições necessárias para realizar operações com funções, tais como adição, multiplicação e divisão.

#### **EXEMPLO:**

Dadas as funções definidas por:  $f(x) = \begin{cases} 1 - x^2 & \text{se } x \le 0 \\ x & \text{se } x > 0 \end{cases}$  e  $g(x) = \begin{cases} -2x & \text{se } x < 1 \\ 1 - x & \text{se } x \ge 1 \end{cases}$ , defina as funções f + g e  $f \times g$ .

$$y = If[x < 0, 1 - x^2, x] = y = If[x < 1, -2x, 1 - x]$$



NOTA: deve ter muita atenção quando interpreta gráficos de funções.

Recorde agora a definição de função composta de duas funções dadas:

# DEFINIÇÃO:

Se o contra-domínio de uma função g está contido no domínio de uma função f, então a composta de f com g é a função cujo domínio é o domínio de g e é dada por  $(f \circ g)(x) = f(g(x))$ .

#### EXEMPLO:

Dadas as funções f e g definidas por  $f(x) = \sqrt{x}$  e  $g(x) = x^2$ , determine os seus domínios e defina as funções  $f \circ g$  e  $g \circ f$ .

#### Funções inversas

Recorde as definições de: função injectiva, sobrejectiva e injectiva, e de função inversa de uma função dada.

## DEFINIÇÕES:

Dada uma função  $f:D \rightarrow C$ ,

- 1- f diz-se <u>injectiva</u> se a pontos diferentes do domínio D corresponderem imagens diferentes do conjunto de chegada C, isto é,  $\forall$  a, b  $\in$  D, a  $\neq$  b  $\Rightarrow$  f(a)  $\neq$  f(b).
- 2- f diz-se <u>sobrejectiva</u> se o conjunto de chegada C coincide com o contra-domínio f(D), isto é,  $\forall b \in C$ ,  $\exists a \in D : f(a) = b$ .
  - 3-f diz-se <u>bijectiva</u> se for simultaneamente <u>injectiva</u> e <u>sobrejectiva</u>.