數值分析

Chapter 1 Introduction

授課教師:劉耀先

國立陽明交通大學 機械工程學系 EE464

yhliu@nctu.edu.tw

110學年度第一學期

Outline

Basic of computer programming

- Basic of numerical methods
 - Background (1.1)
 - Representation of numbers on a computers (1.2)
 - Errors in numerical solutions, round-off errors, and truncation errors (1.3)
 - Computers and programming (1.4)

1.1 Background

- Numerical methods are mathematical techniques used for solving mathematical problems that cannot be solved or are difficult to solve analytically
 - Analytical solution: exact answer in the form of mathematical expression
 - Numerical solution: approximate numerical value
- Example: Motion of a block on a surface with friction

$$F = \frac{\mu mg}{\cos\theta + \mu\sin\theta}$$

μ: friction coefficient

 This equation cannot be solved analytically for θ, but an approximate numerical solution can be determined for specified accuracy

Experimental vs. Numerical vs. Analytical

Limitations of Experiment:

- Space, equipment, time, and money
- Lengthy, risky, and incomplete (simultaneous velocity, pressure, and temperature measurement?)
- Fundamental limitations of ground-base experimental facilities (in terms of size, flow rate, temperature limit...etc)

1.2 Representation of numbers on a computer

Decimal and binary representation

Figure 1-2: representation of the numbers 60,724.3125 in the decimal system

Base 10	Base 2			
	2^3	2^2	21	2^0
1	0	0	0	1
2	0	0	1	0
2 3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0

Figure 1-3: representation of numbers in decimal and binary forms

Representation of numbers on a computer

Binary representation of 19.625

Binary representation of 60,724.3125

Floating point representation

- Decimal floating point representation (scientific notation)
- Mantissa and Exponent
 6519.23 = 6.51923×10³
- Storing a number in computer memory
 - Byte = 8 bits
 - Single precision (32 bits = 4 bytes)
 - Double precision (64 bits = 8 bytes)
 - Number stored in computer memory = Sign +
 Exponent + Mantissa

Number stored in computer memory

Figure 1-6: Storing in double precision a number written in binary floating point representation

Figure 1-7: Storing the number 22.5 in double precision

Range of numbers can be represented in double precision

- Since a finite number of bits is used, not every number can be accurately written in binary form
- The smallest positive number in double precision: 2^{-1023} (=1.1×10⁻³⁰⁸)
- The largest positive number in double precision: 2^{1024} (=1.8×10³⁰⁸)
- Underflow: define a number in the gap between zero and the smallest number that can be stored on the computer
- Overflow: define a larger number than the largest positive number that can be expressed in double precision

1.3 Errors in numerical solutions

- Numerical solutions can be very accurate but in general are not exact
- Small error in one step can grow larger to the final result
- Round-off errors: because of the way that digital computers store numbers and execute numerical operations
- **Truncation errors**: introduced by the numerical method that is used for the solution (numerical methods use approximations for solving problems)
- **Total errors**: the difference between the true solution and approximate numerical solution

Round-off errors

- It is because of the way that digital computers store numbers and execute numerical operations
- A number can be shortened either by chopping off, or discarding, the extra digits or by rounding
- Round-off errors are likely to occur when two nearly identical numbers are subtracted from each other
- Example: find the solution of x^2 -100.0001x+0.01=0
- The solutions are 100 and 0.0001

```
format long

a = 1; b = -100.0001; c = 0.01;

R = sqrt(b^2-4*a*c);

x1 = (-b+R)/(2*a)

x2 = (-b-R)/(2*a)
```

 The problem can be solved by changing the solution to a different form

Truncation errors

- Truncation errors occur when the numerical methods used for solving a mathematical problem use an approximate mathematical procedure
- Truncation error is dependent on the specific numerical method or algorithm used to solve a problem
- Example: $\sin(\pi/6)=?$
- Using Taylor's series expansion:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + \dots$$

$$\sin(\frac{\pi}{6}) = \frac{\pi}{6} = 0.5235988$$
 $Error^{Trun} = 0.5 - 0.5235988 = -0.0235988$

$$\sin(\frac{\pi}{6}) = \frac{\pi}{6} - \frac{(\pi/6)^3}{3!} = 0.4996742$$
 $Error^{Trun} = 0.5 - 0.4996742 = 0.0003258$

Total Error

- Numerical solution always includes round-off errors and, depending on the numerical method, can also include truncation errors
- Total Error = Round-off error + Truncation Error
- Definition: True error = True solution Numerical Solution
- True Relative Error = True solution Numerical Solution

 True solution

 Since the true errors cannot, in most cases, be calculated, other means are used for estimating the accuracy of a numerical solution

1.4 Computers and Programming

- Algorithm: a step-by-step procedure for calculating or implementing numerical method
- Example: Calculate the solution of $ax^2+bx+c=0$
- (1) Calculate $D = b^2-4ac$
- (2) if D>0, calculate the two roots
- (3) if D=0, calculate the root and display the message "the equation has a single root."
- (4) if D<0, display the message "the equation has no real roots."