Feature Hashing for Scalable Machine Learning

Nick Pentreath

About

- About me
 - @MLnick
 - Principal Engineer at IBM working on machine learning & Apache Spark
 - Apache Spark PMC
 - Author of Machine Learning with Spark

Agenda

- Intro to feature hashing
- HashingTF in Spark ML
- FeatureHasher in Spark ML
- Experiments
- Future Work

Intro to Feature Hashing

Encoding Features

- Most ML algorithms operate on numeric feature vectors
- Features are often categorical – even numerical features (e.g. binning continuous features)

$$[2.1 \quad 3.2 \quad -0.2 \quad 0.7]$$

Encoding Features

- "one-hot" encoding is popular for categorical features
- "bag of words" is counts more generally)

High Dimensional Features

- Many domains have very high dense feature dimension (e.g. images, video)
- Here we're concerned with sparse feature domains, e.g. online ads, ecommerce, social networks, video sharing, text & NLP
- Model sizes can be very large even for simple models

The "Hashing Trick"

 Use a hash function to map feature values to indices in the feature vector

Feature Hashing: Pros

- Fast & Simple
- Preserves sparsity
- Memory efficient
 - Limits feature vector size
 - No need to store mapping feature name -> index
- Online learning
- Easy handling of missing data
- Feature engineering

Feature Hashing: Cons

- No inverse mapping => cannot go from feature indices back to feature names
 - Interpretability & feature importances
 - But similar issues with other dim reduction techniques (e.g. random projections, PCA, SVD)
- Hash collisions ...
 - Impact on accuracy of feature collisions
 - Can use signed hash functions to alleviate part of it

HashingTF in Spark ML

HashingTF Transformer

- Transforms text (sentences) -> term frequency vectors (aka "bag of words")
- Uses the "hashing trick" to compute the feature indices
- Feature value is term frequency (token count)
- Optional parameter to only return binary token occurrence vector

HashingTF Transformer

```
val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("terms")
val hashingTf = new HashingTF().setInputCol("terms").setOutputCol("features")
val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTf))
val model = pipeline.fit(df)
```


Hacking HashingTF

- HashingTF can be used for categorical features...
- ... but doesn't fit neatly into Pipelines

label	i1	12	i3	14	15	16	i7	18	19
0	1	1	5	0	1382	4	15	2	181
0	2	0	44	1	102	8	2	2	4
0	2	0	1	14	767	89	4	2	245
0	NULL	893	NULL	NULL	4392	NULL	0	0	0
0	3	-1	NULL	0	2	0	3	0	0

FeatureHasher in Spark ML

FeatureHasher

- Flexible, scalable feature encoding using hashing trick
- Support multiple input columns (numeric or string, i.e. categorical)
- One-shot feature encoder
- Core logic similar to HashingTF

FeatureHasher

```
def hashFeatures = udf { row: Row =>
  val map = new OpenHashMap[Int, Double]()
  $(inputCols).foreach { case field =>
   val (rawIdx, value) = if (realFields(field)) {
      val value = row.getDouble(row.fieldIndex(field))
      val hash = hashFunc(field)
      (hash, value)
   } else {
      val value = row.getString(row.fieldIndex(field))
      val fieldName = s"$field=$value"
      val hash = hashFunc(fieldName)
      (hash, 1.0)
    val idx = Utils.nonNegativeMod(rawIdx, $(numFeatures))
    map.changeValue(idx, value, v => v + value)
    (idx, value)
  Vectors.sparse($(numFeatures), map.toSeq)
```

- Operates on entire Row
- Determining feature index
 - Numeric: feature name
 - String:"feature=value"
- String encoding => effectively "one hot"

FeatureHasher

city	country doubles ints hashedFeatures								
Boston	US	2.5	5	(262144,[104522,110123,199626,221251],[1.0,2.5,1.0,5.0])					
New York	US	3.5	12	(262144,[104522,110123,174054,221251],[1.0,3.5,1.0,2.0])					
Cape Town	n ZA	11.2	13	(262144,[24936,110123,166603,221251],[1.0,1.2,1.0,3.0])					

Experiments

Text Classification

Kaggle Email Spam Dataset

Text Classification

Adding regularization (regParam=0.01)

Ad Click Prediction

- Criteo Display Advertising Challenge
 - 45m examples, 34m features, 0.000003% sparsity
- Outbrain Click Prediction
 - 80m examples, 15m features, 0.000007% sparsity
- Criteo Terabyte Log Data
 - 7 day subset
 - 1.5b examples, 300m feature, 0.0000003% sparsity

Data

Illustrative characteristics - Criteo DAC

Challenges

Typical one-hot encoding pipeline failed consistently

label	i1	12	i3	14	i 5	16	17	i8	19
++	+	+		+		++	+		
0	1	1	5	0	1382	4	15	2	181
0	2	0	44	1	102	8	2	2	4
0	2	0	1	14	767	89	4	2	245
0	NULL	893	NULL	NULL	4392	NULL	0	0	0
0	3	-1	NULL	0	2	0	3	0	0

Results

Compare AUC for different # hash bits

Results

- Criteo 1T logs 7 day subset
- Can train model on 1.5b examples
- 300m original features for this subset
- 2²⁴ hashed features (16m)
- Impossible with current Spark ML (OOM, 2Gb broadcast limit)

Summary & Future Work

Summary

- Feature hashing is a fast, efficient, flexible tool for feature encoding
- Can scale to high-dimensional sparse data, without giving up much accuracy
- Supports multi-column "one-shot" encoding
- Avoids common issues with Spark ML Pipelines using StringIndexer & OneHotEncoder at scale

Future Directions

- Include in Spark ML
 - Watch <u>SPARK-13969</u> for details
 - Comments welcome!
- Signed hash functions
- Internal feature crossing & namespaces (ala Vowpal Wabbit)
- DictVectorizer-like transformer => one-pass feature encoder for multiple numeric & categorical columns (with inverse mapping)

References

- Hash Kernels
- Feature Hashing for Large Scale Multitask Learning
- Vowpal Wabbit
- Scikit-learn

Thank You.

@Mlnick spark.tc

