

ASSOCIATIVE MEMORY An associative memory is a brain like distributed memory that learns by association. Association takes one form-· In auto-association, a NN is required to store a set of potterns by repeatedly presenting them to network. The network is subsequently presented with a fartial description or distorted version of on original fathern stored in it and the task is to retrieve or recall that particular pattern. · Setero-association differs in way 7 an arbitrary set of input potterns is paired with another arbitrary set of output patterns. * Auto-association uses unsupervised learning. " supervised * Fletero-Let Ock denote a key pattern applied to an associative memory & yk denote a memorised pattern The pattern association performed by the network is described ps -> $x \rightarrow y_k \qquad k=1,2,3,---,q$ where q is no of infut patterns

In outo-associative memory, the input & output spaces have some dimensionality but in hetero-associative memory, it may or may not be the case. YK + OCK YR= OCK OPERATION 2 Phases 1. The associative storage phase: where training happens in accordance with the mapping. 2. The recall / retrieval phase: involves retrieval of a memorised fattern. In auto-associative Let & represent a noisy / distorted version of X; consider response y is paroduced. For perfect recall, y = yj but if it is not then memory is said to me have made an exect in recall. CAPACITY (STORAGE) OF NETWORK

T

STORAGE PHASE $\infty_{k} = \left[\infty_{k1}, \infty_{k2}, ---, \infty_{km} \right]^{T}$ yk = Yk1, yk2, - --, ykm $\forall k = W(k) \propto_{k} \qquad k=1,2,3,---,2$ $y_{ki} = \sum_{i=1}^{m} W_{ij}(k) x_{kj}$ $i=1,2,\ldots,m$ Yki = [Wi1(k) Wi2(k) --- Wim(k)] OCK1 Okm W11 (k) W12 (k) --- W1m (k) Yk1 ∞_{k_1} $w_{21}(k)$ $w_{22}(k)$ _ _ _ $w_{2m}(k)$ YR2 ∞_{k2} Wm1 (k) Wm2 (k) ___ Wmm (k) 5 Ykm W(k) $M = \sum_{k=1}^{q} W(k)$ MR = MR-1 + W(k) 5

·

T T

E S

RECALL PHASE

$$y = \sum_{k=1}^{\infty} y_k x_k^{\mathsf{T}} x_j = \sum_{k=1}^{\infty} (x_k^{\mathsf{T}} x_j) y_k$$

$$Y = (x_i^T x_i) y_i + \sum_{k=1}^{q} (x_k^T x_i) y_k$$

$$E_{k} = \sum_{l=1}^{m} oc_{kl}^{2}$$

$$E_{k} = \infty_{k}^{T} \infty = 1$$
 where $k = 1, 2, 3, ---, 9$

$$Cox(Oc_k, \infty_i) = \frac{x_k^T x_i}{||x_k|| ||x_i||}$$

$$||\mathbf{x}_{\mathbf{k}}|| = (\mathbf{x}_{\mathbf{k}}^{\mathsf{T}} \mathbf{x}_{\mathbf{k}})^{\frac{1}{2}} = \mathbf{E}_{\mathbf{k}}^{\frac{1}{2}}$$

$$\mathcal{L}_{\text{od}}(\alpha_k, \alpha_i) = \alpha_k^{\mathsf{T}} \alpha_j$$

$$V_{i} = \sum_{k=1}^{m} Cos (x_{k}, x_{i}) y_{k}$$

$$k \neq i$$

CONDITION FOR
$$\rightarrow \text{Cox}(x_k, x_j) = 0$$

PERFECT RECALL i.e. x_k and x_j are orthogonal

RADIAL - BASIS FUNCTION NETWORKS (RBF networks)

In RBF networks, we take a completely different sphrooch by viewing the design of a neural network as a curve fitting problem in a high-dimensional space.

Acc. to this new point, learning is equivalent to finding a surface in a multi-dimensional space that provides a best fit to the training date with the criterio for lest fit being measured in some statistical sense.

Correspondingly, generalization is equivolent to the use of this multi-dimensional surface to interpolate the test data. Such a view point is the 9 motivation behind RBF networks.

In the context of a NN, the hid den units provide a set of functions that constitute on arbitrary basis for the input patterns when they are expanded into the fudden space. These are called radial-basis functions.

The construction of a RBF network in its most basic form involves 3 layers.

· INPUT LAYER > Made of source por nodes that connect network to its invironment.

· HIPDEN LAYER -> Applies non-linear transformation from imput space to hidden space In most applications, the hidden space is of high dimensionality.

network to activation pattern applied to input layer.

* Themathematical justification for the rational of a nonlinear tronsformation followed by a linear pronsfor-mation is due to COVERIS THEOREM. It states a pottern classification problem cost in a high dimensioned space is more likely to be linear 6 separable than in low dimensional space = # MATHEMATICAL MODEL -Consider a family of surfaces where each naturally divides an input space into 2 regions. Let X denote a set of N potterons 3C1, 3C2, ___, 3C60N each of which is assigned to one to the two classes 1 X1 ste X2.V This binary partition of the points is said to be separable wit family of surfaces if a surface exists that suparates 132 the points in close X1 from those in class X2 For each pattern, & EX, define a vector made up of F13 a set of real valued functions > kaa- $\{\emptyset; (\alpha) \mid i=1,2,\ldots,m_1\}$ and a $\Phi(\alpha) = \left[\Phi_1(\alpha), \Phi_2(\alpha), \dots, \Phi_{m_1}(\alpha) \right]$ Suppose that pattern DC is a rector in mo dimensional infut space. The victor O(00) then mops points in mo No. dem, input space into corresponding points in a new space of dinusion m1

We refer to $\Phi_i(x)$ as hidden function. Correspondingly, the space spanned by the set of hidden functions reffered to as hidden space I feature space.

The bigary partion X2, X2 of X is said to be Q-separable if there exists a m2 dimensional vector W such that >

 $w^{T}\varphi(x) > 0$ $x \in X_1$ $w^{T}\varphi(x) < 0$ $x \in X_2$

Hyperplane /separating surface > wT D(x) = 0 in hidden space.

	Consider a natural class of mappings obtained by using
	a linear combination of to-wise products of the
	fathern vector coordinates. The separating surfaces
	corresponding to such mappings are referred to as
	2th order rational varieties.
	A rational variety of order in a space of dim. m.
	is described by on the degree homogenous eq" in the
	socidinates of input vector or given by >
	$\sum_{i_1i_2i_3\cdots i_k} x_{i_1}x_{i_2}\cdots x_{i_k} = 0$
	0≤11≤12≤ ≤120≤m0
	where x_i is the ith rese component of input vector x_i .
	where of while I have reminerately any we have to
	The rth order product of entries oc; is called a monomial.
	For sorinfut space of dim. mo, there are (mo - r)! monomids
	mo! se!
	The separating surfaces described by above eqn, are >
1.	Hyperplanes (1st order)
✓.	Quadrices (2nd order)
	Hyperspheres. (quadrices with pertain linear constraints
	on coefficients)
	X
	* * * * * * * * * * * * * * * * * * * *
	· · × · ×
	0
-	Linearly separable Spherically separable. Quadrically separable

E.

Let mo denote the dim. of input space, then in the overal fashion, the network represents a map from mo dimensional input space to a single dim. output space given as: S: R^{mo} -> R¹

We con think of this map as a hypersurface graph of which is a subset of 6m.+1) dim. space.

CRmo+1

The training and generalisation phose of the learning process can be viewed as ->

- 1. The training phase constitutes the optimization of a fitting surface [based on from data points presented to network in form of input output patterns.
- 2. The generalisation phase is symonymory with interpolation being bly the data points, with the interpolation being performed along the constrained surface generated by the fitting procedure of the optimum opproximation to the true surface Γ .

		W
	Now we are fraving a multi-variable interpolation	
	Now we are fraving a multi-variable interpolation fixedem in high dim space. It can be stated as ->	
~		12-14
INTERPOLATION PROBLEM	Given a set of N different points {\int_{\int} \in \text{R}^{m_0} \ i=1,2, \ldots \text{N}}	
PROBLEM	given a set of N different points 24, ER 1=1,2, No.	100
	and a corresponding su of thich estimies	
	Solve to for recognition	100
	interpolation condition F(xi) = di where i = 1,2,, N.	
	For strict interpolation, their turpolating surface is constrained to pass through all the training data points	1
	constrained to pass through all the training data points.	
	The RBF technique techniques consist of choosing a function	
	The RBF technique techniques consist of choosing a function that is of form -	
	$F(\infty) = \sum_{i=1}^{N} \omega_i \Phi(i\infty - \infty_i H)$	-
	i=1	
	O(11∞-∞; 11) is set of Narbitrary * RBFs.	1
	DC; ER mo are centers to the RBFs	i
	$T \circ O = O = T \circ O = $	_
	ψ_{11} ψ_{12} ψ_{1N} ψ_{1}	i
	$\Phi_{21} \Phi_{22} - - \Phi_{2N} W_2 d_2$	
	1 1 1 = 1	1
	D' D - Day Why day	
	Um The - Thing I'm	
	h /	_
	$\omega = x$	
2	$\omega = \Phi^{-1}(x)$	
		-

1 There is large class of RBFs that is powered by Micchelli's theorem sond considers given forms > 1 Multiguadrise (x) = 522+C2 2. Inverse multiquadrise $\bigcirc (x) = \frac{1}{\sqrt{x^2 + c^2}}$ 3 3. Youssian · Solution to XOR using RBF $\Phi_1(x) = e^{\|x - t_1\|^2}$ $t_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}$ $\Phi_2(\alpha) = e^{-||\alpha - t_2||^2}$ t2= 0 0 100 $\phi_2(x)$ $\Phi_{1}(x)$ ∞ 0.1353 6,0) 0.3678 $(0, \mathbf{1})$ 0.3678 0.3678 (1,0)0.3678 (0,1),(1,0) (1,1) 0.1353 (1,1)1 Supervised learning is illposed hyperspace reconstruction.

3

-0

*	RBF	MLP				
	Single hidden layer Computestional notes	· 1 or more hidden løyer				
	· ·					
•	Computational nodes of 1	MP share a common model.				
	Somputational nodes of MLP share a common model. For RBF, their nodes are quite different from others					
	and serve a different purpose.					
•	The argument of activation function of each hidden					
	unitin RBF network som	puter Eucledian norm whereas				
	activation for of hidden unit	in MLP computes the inner				
	product.					
•	MLPs construct global offer	oximations and RBFs using				
	exponential decaying localise	ed non linear functions				
	construct local approxima	tions.				

=3		//_
-		-
	Learning Strategies in RBF	
	recopying reconseques my IND.	
_ 1.	Tixed centers selected at rondom	
2.	Self organized selection of centers	-
Ξ 3.	Self organized selection of centers Supervised selection of centers	þ
3		
13		
		139
5		
3		
-		
=		

ŧ

E

E

E

E

-

-

With m possible solutions for unit vector of, we find that there are m possible projections of data ->

$$A_{i} = q_{i}^{T} \times = x^{T} q_{i}$$
 : $i = 1, 2, ..., m$

$$A = \begin{bmatrix} A_1 & A_2 & --- & A_m \end{bmatrix}^T$$

$$A = \begin{bmatrix} X^T q_1 & X^T q_2 & --- & X^T q_m \end{bmatrix}$$

$$A = \left[x^{T}q_{1} \quad x^{T}q_{2} \quad \dots \quad x^{T}q_{m} \right]$$

$$A = Q^T X$$

$$X = 00$$

$$X = \sum_{j=1}^{m} a_j q_j$$

$$\hat{\chi} = \sum_{i=1}^{k} A_i q_i$$

	A1	
	A2	
X = [92 9e]	1	
	1	
	a	

l≤m

so,	A ₁		q_1^{T}	
,	102		q_7	
	1	=	1	X
	1		1	
	De		9.	

CMCODER

ENCODER

			WEDER			_	_
	\times_1		91		AI	A1	
	\times_2		Q2T		92	Da2	
	1	\Rightarrow	,	\Rightarrow	1	(
_	1		L		1	. [
	Xm		Q.T		8x	AL	1

Pai	A	DECODER	\hat{X}_1	
A ₂	A 2	: r	$\hat{\chi_2}$	
1	4	=> 22 22 2e =>	1	
(5	,	1	
De.	Que 2		Xe	
-			_	

E

E

E

E

E

3

5

$$y = \sum_{i=1}^{m} w_i x_i$$

$$w_i(n+1) = w_i(n) + \eta_y(n) x_i(n)$$
 : $i=1,2,3,---,m$

$$y(n) = x^{\tau}(n)w(n) = w^{\tau}(n)x(n)$$

$$W(n+1)=W(n)+\mathcal{N}[\times(n)\times^{\mathsf{T}}(n)W(n)-W^{\mathsf{T}}(n)\times^{\mathsf{T}}(n)W(n)]$$