<u>Problema 1</u>. Consideremos las siguientes gramáticas incontextuales G_1 y G_2 . La gramática G_1 está definida por las siguientes producciones:

- 1. $S \longrightarrow 0S1S$.
- $2. S \longrightarrow 1S0S.$
- 3. $S \longrightarrow \lambda$.

Y la gramática G_2 está definida por las producciones siguientes:

- 1. $S \longrightarrow 0$.
- $2. S \longrightarrow S0.$
- $3. S \longrightarrow 1SS.$
- $4. S \longrightarrow SS1.$
- $5. S \longrightarrow S1S.$

Se pide entonces:

- (a) Dar una derivación en G_1 que genere la palabra 1010 y una derivación en G_2 que genere la palabra 10010.
 - (b) Determinar si G_1, G_2 son ambiguas, razonando la respuesta.
 - (c) Describir los lenguajes $L(G_1)$ y $L(G_2)$.
- (d) Aplicando el método visto en clase, construir el autómata con pila equivalente a G_2 .
- (e) Dar un cómputo en el autómata construido en (d) que reconozca la palabra 10010.

Solución:

(a)
$$S \Rightarrow^2 1S0S \Rightarrow^1 10S1S0S \Rightarrow^3 10S1S0 \Rightarrow^3 10S10 \Rightarrow^3 1010$$

$$S \Rightarrow^3 1SS \Rightarrow^4 1SS1S \Rightarrow^1 10S1S \Rightarrow^1 1001S \Rightarrow^1 10010$$

(b) Las gramáticas G_1 y G_2 son ambiguas, porque cada una de las dos palabras consideradas en el apartado (a) tiene dos áboles de derivación. La palabra 1010 tiene los dos siguientes árboles de derivación en G_1 :

Y la palabra 10010 tiene los dos siguientes árboles de derivación en G_2 :

(c) Tenemos que $L(G_1)=\{x\in\{0,1\}^*:n_0(x)=n_1(x)\}$ y $L(G_2)=\{x\in\{0,1\}^*:n_0(x)>n_1(x)\}.$

(d) $M=(K,\Sigma,\Gamma,\Delta,q_0,F)$, donde el conjunto de los estados es $K=\{q_0,f\}$, el vocabulario de la cinta es $\Sigma=\{0,1\}$, el vocabulario de la pila es $\Gamma=\{0,1,S\}$, el estado inicial es q_0 , el único estado aceptador es f y Δ está formado por las siguientes transiciones:

- 1. $((q_0, \lambda, \lambda), (f, S))$.
- 2. $((f, \lambda, S), (f, 0))$.
- 3. $((f, \lambda, S), (f, S0))$.
- 4. $((f, \lambda, S), (f, 1SS))$.
- 5. $((f, \lambda, S), (f, SS1))$.
- 6. $((f, \lambda, S), (f, S1S))$.
- 7. $((f,0,0),(f,\lambda))$.
- 8. $((f, 1, 1), (f, \lambda))$.

(e) Cómputo de M que reconoce la palabra 10010:

estado	cinta	pila	transición
q_0	10010	λ	_
f	10010	S	1
f	10010	1SS	4
f	0010	SS	8
f	0010	0S	2
f	010	S	7
f	010	S1S	6
f	010	01S	2
f	10	1S	7
f	0	S	8
f	0	0	2
f	λ	λ	7

<u>Problema 2</u>. Consideremos la siguiente gramática incontextual G para diseñar una calculadora de dígitos decimales, donde E es el símbolo inicial.

- 1. $E \longrightarrow T$
- $2. E \longrightarrow EOE$
- 3. $T \longrightarrow A$
- $4. \ T \longrightarrow TPA$
- $5. O \longrightarrow +$
- 6. $O \longrightarrow -$
- 7. $P \longrightarrow *$
- 8. $P \longrightarrow /$
- 9. $A \longrightarrow \underline{int}$
- 10. $A \longrightarrow float$

Se pide entonces:

- (a) Demostrar que G es ambigua.
- (b) Escribir una gramática equivalente a G que no sea ambigua.
- (c) Aplicando el método visto en clase, construir el autómata con pila equivalente a la gramática del apartado (b).
- (d) Aplicar las reglas de factorización y recursión a la gramática G para obtener una gramática $\mathrm{LL}(1)$ equivalente.
 - (e) Construir la tabla de análisis de la gramática obtenida en (d).

Solución:

(a) Para demostrar que G es ambigua, consideremos la palabra $x = \underline{int} + \underline{int} - \underline{int}$. La palabra x tiene entonces los dos siguientes árboles de derivación:

- (b) La gramática G es ambigua, porque en la parte derecha de la producción 2 de G aparece la variable E repetida. Para eliminar entonces la ambigüedad de G reemplazamos una de las dos apariciones de la variable E en la parte derecha de la producción 2 por la variable T (evitando de esta forma la repetición de variables). Obtenemos la siguiente gramática G':
 - 1. $E \longrightarrow T$
 - 2. $E \longrightarrow TOE$
 - $3. T \longrightarrow A$
 - 4. $T \longrightarrow TPA$
 - $5. O \longrightarrow +$
 - 6. $O \longrightarrow -$
 - 7. $P \longrightarrow *$
 - 8. $P \longrightarrow /$
 - 9. $A \longrightarrow \underline{int}$
 - 10. $A \longrightarrow float$

En G', la variable E genera de manera unívoca una suma/resta de términos y la variable T genera también de manera unívoca un producto/división de factores, que pueden ser o bien números enteros (tipo \underline{int}) o bien números decimales (tipo float). Por tanto, G' no es ambigua.

- (c) $M=(K,\Sigma,\Gamma,\Delta,q_0,F)$, donde el conjunto de los estados es $K=\{q_0,f\}$, el vocabulario de la cinta es $\Sigma=\{+,-,*,/,\underline{int},\underline{float}\}$, el vocabulario de la pila es $\Gamma=\{+,-,*,/,\underline{int},\underline{float},E,T,A,O,P\}$, el estado inicial es q_0 , el único estado aceptador es f y Δ está formado por las siguientes transiciones:
 - 1. $((q_0, \lambda, \lambda), (f, S))$.
 - $2. \ ((f,\lambda,E),(f,T)).$
 - 3. $((f, \lambda, E), (f, TOE))$.
 - 4. $((f, \lambda, T), (f, A))$.
 - 5. $((f, \lambda, T), (f, TPA))$.
 - 6. $((f, \lambda, O), (f, +))$.
 - 7. $((f, \lambda, O), (f, -))$.

- 8. $((f, \lambda, P), (f, *))$.
- 9. $((f, \lambda, P), (f, /))$.
- 10. $((f, \lambda, A), (f, \underline{int}))$.
- 11. $((f, \lambda, A), (f, float))$.
- 12. $((f, +, +), (f, \lambda))$.
- 13. $((f, -, -), (f, \lambda))$.
- 14. $((f, *, *), (f, \lambda))$.
- 15. $((f,/,/),(f,\lambda))$.
- 16. $((f, \underline{int}, \underline{int}), (f, \lambda))$.
- 17. $((f, float, float), (f, \lambda))$.
- (d) Aplicando la regla de factorización, reemplazamos las producciones $E \longrightarrow$ T y $E \longrightarrow TOE$ por las producciones $E \longrightarrow TX, X \longrightarrow \lambda$ y $X \longrightarrow OE$. Y aplicando la la regla de recursión, reemplazamos las producciones $T \longrightarrow A$ y $T \longrightarrow TPA$ por las producciones $T \longrightarrow AY, Y \longrightarrow PAY$ e $Y \longrightarrow \lambda$. Por tanto, obtenemos la siguiente gramática G'' equivalente a G':

- 1. $E \longrightarrow TX$
- $2. \ X \longrightarrow \lambda$
- $X \longrightarrow OE$
- 4. $T \longrightarrow AY$
- 5. $Y \longrightarrow PAY$
- 6. $Y \longrightarrow \lambda$
- 7. $O \longrightarrow +$
- 8. $O \longrightarrow -$
- 9. $P \longrightarrow *$
- 10. $P \longrightarrow /$
- 11. $A \longrightarrow \underline{int}$
- 12. $A \longrightarrow float$

(e) La tabla de análisis de G'' es la siguiente:

TABLA	+	_	*	/	$\underline{\mathrm{int}}$	float
E					1	1
X	3	3				
T					4	4
Y	6	6	5	5		
O	7	8				
P			9	10		
A					11	12

Obsérvese que Siguientes (X) = \emptyset . Por tanto, la producción 2 no aparece en la tabla de análisis.

Y de las derivaciones

$$E \Rightarrow^1 TX \Rightarrow^3 TOE \Rightarrow^4 AYOE \Rightarrow^7 AY + E$$
,

$$E \Rightarrow^1 TX \Rightarrow^3 TOE \Rightarrow^4 AYOE \Rightarrow^8 AY - E$$

se deduce que $+,-\in \text{Siguientes}(Y)$ y, por tanto, la producción 6 pertenece a TABLA(Y,+) y a TABLA(Y,-).

<u>Problema 3</u>. La siguiente gramática incontextual G genera una clase de declaraciones de JAVA.

- 1. $S \longrightarrow ES$
- $2. S \longrightarrow E$
- 3. $E \longrightarrow TF$;
- 4. $T \longrightarrow \underline{int}$
- 5. $T \longrightarrow \underline{int}$
- 6. $T \longrightarrow float$
- 7. $T \longrightarrow float []$
- 8. $F \longrightarrow F$, <u>id</u>
- 9. $F \longrightarrow id$

Se pide entonces:

(a) Dar una derivación en G para la palabra

$$\underline{int} \ \underline{id} \ , \ \underline{id} \ ; \ float \ [\] \ \underline{id} \ ;$$

- (b) Siguiendo el método visto en clase, construir el autómata con pila M asociado a G.
 - (c) Dar un cómputo en M que reconozca la palabra

$$\underline{int} \ \underline{id}; float \ [\] \ \underline{id};$$

- (d) Explicar por qué G no es una gramática LL(1).
- (e) Aplicar las reglas de factorización y recursión para a la gramática G.
- (f) Construir la tabla de análisis de la gramática obtenida en (e).

Solución:

- (a) $S \Rightarrow^1 ES \Rightarrow^2 EE \Rightarrow^3 TF; E \Rightarrow^3 TF; TF; \Rightarrow^4 \underline{int}\, F; TF; \Rightarrow^8 \underline{int}\, F, \underline{id}; TF; \Rightarrow^9 \underline{int}\, \underline{id}, \underline{id}; TF; \Rightarrow^7 \underline{int}\, \underline{id}, \underline{id}; \underline{float}\, [\,\,] F; \Rightarrow^9 \underline{int}\, \underline{id}, \underline{id}; \underline{float}\, [\,\,]\, \underline{id};$
- (b) $M = (K, \Sigma, \Gamma, \Delta, q_0, F)$, donde el conjunto de los estados es $K = \{q_0, f\}$, el vocabulario de la cinta es $\Sigma = \{\underline{id}, \underline{int}, \underline{float}, ;, ,, [,]\}$, el vocabulario de la pila es $\Gamma = \Sigma \cup V$ siendo $V = \{S, E, T, F\}$, el estado inicial es q_0 , el único estado aceptador es f y Δ está formado por las siguientes transiciones:
 - 1. $((q_0, \lambda, \lambda), (f, S))$.

- 2. $((f, \lambda, S), (f, ES))$.
- 3. $((f, \lambda, S), (f, E))$.
- 4. $((f, \lambda, E), (f, TF;))$.
- 5. $((f, \lambda, T), (f, \underline{int}))$.
- 6. $((f, \lambda, T), (f, \underline{int}[]))$.
- 7. $((f, \lambda, T), (f, \underline{float}))$.
- 8. $((f, \lambda, T), (f, \underline{float}[]))$.
- 9. $((f, \lambda, F), (f, F, \underline{id}))$.
- 10. $((f, \lambda, F), (f, \underline{id}))$.
- 11. $((f, \underline{id}, \underline{id}), (f, \lambda))$.
- 12. $((f, \underline{int}, \underline{int}), (f, \lambda))$.
- 13. $((f, float, float), (f, \lambda))$.
- 14. $((f, ; , ;), (f, \lambda))$.
- 15. $((f, , , ,), (f, \lambda))$.
- 16. $((f, [, [), (f, \lambda)))$.
- 17. $((f,],]),(f,\lambda)$).
 - (c) Cómputo que reconoce $\underline{int}\ \underline{id};\underline{float}\ [\]\ \underline{id};$

, 1	• ,	•1		
estado	cinta	pila	transición	
q_0	$\underline{int} \ \underline{id}; \underline{float} \ [\] \ \underline{id};$	λ	_	
f	$\underline{int} \ \underline{id}; \underline{float} \ [\] \ \underline{id};$	S	1	
f	$\underline{int} \ \underline{id}; \underline{float} \ [\] \ \underline{id};$	ES	2	
f	$\underline{int} \ \underline{id}; \underline{float} \ [\] \ \underline{id};$	TF; S	4	
f	$\underline{int} \ \underline{id}; \underline{float} \ [\] \ \underline{id};$	$\underline{int}F;S$	5	
f	$\underline{id};\underline{float}[]\underline{id};$	F; S	12	
f	$\underline{id};\underline{float}[]\underline{id};$	$\underline{id}; S$	10	
f	$; \underline{float} [] \underline{id};$;S	11	
f	float[] id;	S	14	
f	\underline{float} [] \underline{id} ;	E	3	
f	$\underline{float}[] \underline{id};$	TF;	4	
f	$\underline{float}[] \underline{id};$	\underline{float} [] F ;	8	
f	[] <u>id</u> ;	$[\]F;$	13	
f] <u>id</u> ;]F;	16	
f	\underline{id} ;	F;	17	
f	\underline{id} ;	\underline{id} ;	10	
f	;	;	11	
f	λ	λ	14	

- (d) La gramática G no es LL(1), porque hay conflictos al construir su tabla de análisis. Por ejemplo, las producciones $1,2 \in \text{TABLA}(S,\underline{int})$, ya que $\underline{int} \in \text{Primeros}(E)$. Además, también tenemos que $1,2 \in \text{TABLA}(S,\underline{float})$, $4,5 \in \text{TABLA}(T,\underline{int})$, $6,7 \in \text{TABLA}(T,float)$ y $8,9 \in \text{TABLA}(F,\underline{id})$.
- (e) Aplicando la regla de factorización, reemplazamos las producciones $S \longrightarrow ES$, $S \longrightarrow E$ por las producciones $S \longrightarrow ES'$, $S' \longrightarrow S$, $S' \longrightarrow \lambda$. Aplicando otra vez la regla de factorización, reemplazamos las producciones $T \longrightarrow \underline{int}$, $T \longrightarrow \underline{int}$ [] por las producciones $T \longrightarrow \underline{int}$ T', $T' \longrightarrow \lambda$, $T' \longrightarrow$ []. Y aplicando de nuevo la regla de factorización, reemplazamos las producciones $T \longrightarrow \underline{float}$, $T \longrightarrow \underline{float}$ [] por las producciones $T \longrightarrow \underline{float}$ T'', $T'' \longrightarrow \lambda$, $T'' \longrightarrow$ []. Por último, aplicando la regla de recursión, reemplazamos las producciones $T \longrightarrow \underline{float}$, $T \longrightarrow \underline{float}$ por las producciones $T \longrightarrow \underline{float}$ T'', $T'' \longrightarrow \lambda$.

Se observa que las variables T' y T'' son equivalentes, ya que generan el mismo lenguaje, el formado por las palabras λ y []. Por tanto, podemos identificar las dos variables, y utilizar únicamente una de ellas, por ejemplo la variable T'. Obtenemos entonces la siguiente gramática G' equivalente a G:

- 1. $S \longrightarrow ES'$
- $2. S' \longrightarrow S$

3.
$$S' \longrightarrow \lambda$$

4.
$$E \longrightarrow TF$$
;

5.
$$T \longrightarrow \underline{int} T'$$

6.
$$T' \longrightarrow \lambda$$

7.
$$T' \longrightarrow []$$

8.
$$T \longrightarrow float T'$$

9.
$$F \longrightarrow \underline{id} F'$$

10.
$$F' \longrightarrow , id F'$$

11.
$$F' \longrightarrow \lambda$$

(f) La tabla de análisis de G' es la siguiente:

TABLA	$\underline{\mathrm{id}}$	$\underline{\mathrm{int}}$	<u>float</u>	;	,	[]
S		1	1				
S'		2	2				
E		4	4				
T		5	8				
T'	6					7	
F	9						
F'				11	10		

Como Siguientes $(S') = \emptyset$, la producción 3 no aparece en la tabla de análisis.

Obsérvese que de la derivación

$$S \Rightarrow^1 ES' \Rightarrow^4 TF; S' \Rightarrow^5 \underline{int} \, T'F; S' \Rightarrow^9 \underline{int} \, T'\underline{id} \, F'; S'$$

se deduce que $\underline{id} \in \text{Siguientes}(T')$ y, por tanto, la producción $6 \in \text{TABLA}(T', \underline{id})$.

Y de la derivación

$$S \Rightarrow^1 ES' \Rightarrow^4 TF; S' \Rightarrow^9 Tid F'; S'$$

 $\underline{\text{Problema 4}}.$ La siguiente gramática incontextual G genera una clase de instrucciones de Java.

- 1. $S \longrightarrow \{L\}$
- $2. S \longrightarrow \underline{id} = E$
- 3. $L \longrightarrow S$; L
- $4. L \longrightarrow S$
- 5. $E \longrightarrow E + T$
- 6. $E \longrightarrow E T$
- 7. $E \longrightarrow T$
- 8. $T \longrightarrow id$
- 9. $T \longrightarrow int$
- 10. $T \longrightarrow float$

Se pide entonces:

(a) Dar una derivación en G para la palabra

$$\{\underline{id} = \underline{id} + \underline{int}; \{\underline{id} = \underline{int} - float; \underline{id} = \underline{id}\}\}$$

- (b) Siguiendo el método visto en clase, construir el autómata con pila M asociado a G.
 - (c) Dar un cómputo en M que reconozca la palabra

$$\{\underline{id} = \underline{id} + \underline{int}; \underline{id} = float\}$$

- (d) Explicar por qué G no es una gramática LL(1).
- (e) Aplicar las reglas de factorización y recursión a la gramática G.
- (f) Construir la tabla de análisis de la gramática obtenida en (e).

Solución:

(a) $S \Rightarrow^1 \{L\} \Rightarrow^3 \{S; L\} \Rightarrow^4 \{S; S\} \Rightarrow^1 \{S; \{L\}\} \Rightarrow^3 \{S; \{S; L\}\} \Rightarrow^2 \{\underline{id} = E; \{S; L\}\} \Rightarrow^5 \{\underline{id} = E + T; \{S; L\}\} \Rightarrow^7 \{\underline{id} = T + T; \{S; L\}\} \Rightarrow^8 \{\underline{id} = \underline{id} + T; \{S; L\}\} \Rightarrow^9 \{\underline{id} = \underline{id} + \underline{int}; \{S; L\}\} \Rightarrow^7 \{\underline{id} = \underline{id} + \underline{int}; \{\underline{id} = E; L\}\} \Rightarrow^6 \{\underline{id} = \underline{id} + \underline{int}; \{\underline{id} = E - T; L\}\} \Rightarrow^7 \{\underline{id} = \underline{id} + \underline{int}; \{\underline{id} = T - T; L\}\} \Rightarrow^8 \{\underline{id} = \underline{id} + \underline{int}; \{\underline{id} = \underline{id} - T; L\}\} \Rightarrow^1 \{\underline{id} = \underline{id} + \underline{int}; \{\underline{id} = \underline{id} - \underline{float}; L\}\} \Rightarrow^4 \{\underline{id} = \underline{id} + \underline{int}; \{\underline{id} = \underline{id} - \underline{float}; \underline{id} = E\}\} \Rightarrow^7 \{\underline{id} = \underline{id} + \underline{int}; \{\underline{id} = \underline{id} - float; \underline{id} = E\}\} \Rightarrow^7 \{\underline{id} = \underline{id} + \underline{int}; \{\underline{id} = \underline{id} - float; \underline{id} = \underline{id} + float; \underline{id} = float; \underline{id} = float; \underline{id} + float; \underline{id} = float; \underline{id} = float; \underline{id} + float; \underline{id} = float; \underline{id} + float; \underline{i$

- (b) $M = (K, \Sigma, \Gamma, \Delta, q_0, F)$, donde el conjunto de los estados es $K = \{q_0, f\}$, el vocabulario de la cinta es $\Sigma = \{\underline{id}, \underline{int}, \underline{float}, +, -, ;, \{,\}, =\}$, el vocabulario de la pila es $\Gamma = \Sigma \cup V$ siendo $V = \{S, L, E, T, \}$, el estado inicial es q_0 , el único estado aceptador es f y Δ está formado por las siguientes transiciones:
 - 1. $((q_0, \lambda, \lambda), (f, S))$.
 - 2. $((f, \lambda, S), (f, \{L\})).$
 - 3. $((f, \lambda, S), (f, \underline{id} = E)).$
 - 4. $((f, \lambda, L), (f, S; L))$.
 - 5. $((f, \lambda, L), (f, S))$.
 - 6. $((f, \lambda, E), (f, E + T))$.
 - 7. $((f, \lambda, E), (f, E T))$.
 - 8. $((f, \lambda, E), (f, T))$.
 - 9. $((f, \lambda, T), (f, \underline{id}))$.
 - 10. $((f, \lambda, T), (f, \underline{int}))$.
 - 11. $((f, \lambda, T), (f, float))$.
 - 12. $((f, \{, \{), (f, \lambda)).$
 - 13. $((f, \}, \}), (f, \lambda)$).
 - 14. $((f, =, =), (f, \lambda))$.
 - 15. $((f, \underline{id}, \underline{id}), (f, \lambda)).$
 - 16. $((f, \underline{int}, \underline{int}), (f, \lambda))$.
 - 17. $((f, float, float), (f, \lambda))$.
 - 18. $((f, ; , ;), (f, \lambda))$.
 - 19. $((f, +, +), (f, \lambda))$.
 - 20. $((f, -, -), (f, \lambda))$.
 - (c) Cómputo que reconoce $\{\underline{id} = \underline{id} + \underline{int}; \underline{id} = float\}$

estado	cinta	pila	transición
q_0	$\{\underline{id} = \underline{id} + \underline{int}; \underline{id} = float\}$	λ	_
f	$\{\underline{id} = \underline{id} + \underline{int}; \underline{id} = \overline{float}\}$	S	1
f	$\{\underline{id} = \underline{id} + \underline{int}; \underline{id} = \overline{float}\}$	$\{L\}$	2
f	$\underline{id} = \underline{id} + \underline{int}; \underline{id} = \overline{float}$	L }	12
f	$\underline{id} = \underline{id} + \underline{int}; \underline{id} = \overline{float}$	$S; L$ }	4
f	$\underline{id} = \underline{id} + \underline{int}; \underline{id} = \underline{float}$	$\underline{id} = E; L\}$	3
f	$= \underline{id} + \underline{int}; \underline{id} = \underline{float} $	=E;L	15
f	$\underline{id} + \underline{int}; \underline{id} = \underline{float}$	$E; L$ }	14
f	$\underline{id} + \underline{int}; \underline{id} = \underline{float}$	E+T;L	6
f	$\underline{id} + \underline{int}; \underline{id} = \underline{float}$	$T+T;L\}$	8
f	$\underline{id} + \underline{int}; \underline{id} = \underline{float}$	$\underline{id} + T; L$ }	9
f	$+\underline{int}; \underline{id} = \underline{float}$	$+T;L$ }	15
f	$\underline{int}; \underline{id} = \underline{float}$	$T; L\}$	19
f	$\underline{int}; \underline{id} = \underline{float}$	$\underline{int}; L\}$	10
f	$; \underline{id} = \underline{float} \}$	$;L\}$	16
f	$\underline{id} = \underline{float}$	$L\}$	18
f	$\underline{id} = \underline{float}$	$S\}$	5
f	$\underline{id} = \underline{float}$	$\underline{id} = E$ }	3
f	= float	=E	15
f	$\underline{float}\}$	$E\}$	14
f	\underline{float} }	T }	8
f	$\underline{float}\}$	$\underline{float}\}$	11
f	}	}	17
f	λ	λ	13

- (d) La gramática G no es LL(1), porque hay conflictos al construir su tabla de análisis. Por ejemplo, las producciones $3,4\in \mathrm{TABLA}(L,\{))$, ya que $\{\in \mathrm{Primeros}(S)=\mathrm{Primeros}(S;L)\}$.
- (e) Aplicando la regla de factorización, reemplazamos las producciones $L\longrightarrow S; L, L\longrightarrow S$ por las producciones $L\longrightarrow SL', L'\longrightarrow ; L, L'\longrightarrow \lambda$. Aplicando la regla de recursión, reemplazamos las producciones $E\longrightarrow E+T, E\longrightarrow E-T,$ $E\longrightarrow T$ por las producciones $E\longrightarrow TE', E'\longrightarrow +TE', E'\longrightarrow -TE',$ $E'\longrightarrow \lambda$.

La gramática G^{\prime} obtenida con estas transformaciones tiene las siguientes reglas:

- 1. $S \longrightarrow \{L\}$
- 2. $S \longrightarrow \underline{id} = E$
- 3. $L \longrightarrow SL'$

4.
$$L' \longrightarrow ; L$$

5.
$$L' \longrightarrow \lambda$$

6.
$$E \longrightarrow TE'$$

7.
$$E' \longrightarrow +TE'$$

8.
$$E' \longrightarrow -TE'$$

9.
$$E' \longrightarrow \lambda$$

10.
$$T \longrightarrow id$$

11.
$$T \longrightarrow \underline{int}$$

12.
$$T \longrightarrow float$$

(f) La tabla de análisis de G' es la siguiente:

TABLA	{	}	$\underline{\mathrm{id}}$	$\underline{\mathrm{int}}$	float	=	;	+	_
S	1		2						
L	3		3						
L'		5					4		
E			6	6	6				
E'		9					9	7	8
T			10	11	12				

Obsérvese que de la derivación

$$S \Rightarrow^1 \{L\} \Rightarrow^3 \{SL'\}$$

se deduce que $\{\in \text{ Siguientes}(L') \text{ y, por tanto, la producción } 5 \in \text{TABLA}(L', \}).$

Similarmente, de la derivación

$$S \Rightarrow^1 \{L\} \Rightarrow^3 \{SL'\} \Rightarrow^5 \{S\} \Rightarrow^2 \{\underline{id} = E\} \Rightarrow^6 \{\underline{id} = TE'\}$$

se deduce que $\{\in \text{ Siguientes}(E') \text{ y, por tanto, la producción } 9 \in \text{ TABLA}(E', \}).$

Finalmente, de la derivación

$$S \Rightarrow^1 \{L\} \Rightarrow^3 \{SL'\} \Rightarrow^4 \{S;L\} \Rightarrow^2 \{\underline{id} = E;L\} \Rightarrow^6 \{\underline{id} = TE';L\}$$

se deduce que ; \in Siguientes(E') y, por tanto, la producción 9 pertenece a TABLA(E',;) .

Y los únicos siguientes de L' y de E' son los indicados, de manera que las producciones 5 y 9 sólo aparecen en los lugares de la tabla que se han comentado.

Problema 5. Una combinación para enteros sin signo en el lenguaje LISP es ó bien un entero sin signo ó bien una expresión que representa la aplicación de un operador a una serie de argumentos numéricos, que tiene el siguiente formato:

```
(Operador Operando<sub>1</sub> ... Operando<sub>n</sub>)
```

donde n>0, los operadores son +,-,* y /, y los operandos son combinaciones para enteros sin signo. Las siguientes expresiones son ejemplos de combinaciones:

```
(+12),

(+123),

(+12(+12)),

(+1(+11)(+12)),

(+(-(*410)(+(*219)1))(/84)3).
```

Representamos por \underline{int} a la categoría sintáctica de los números enteros sin signo. La siguiente gramática incontextual G genera entonces el lenguaje de las combinaciones de LISP.

- 1. $C \longrightarrow (OA)$.
- 2. $C \longrightarrow \underline{int}$.
- $3. O \longrightarrow +.$
- $4. O \longrightarrow -.$
- 5. $O \longrightarrow *$.
- 6. $O \longrightarrow /$.
- 7. $A \longrightarrow AC$.
- 8. $A \longrightarrow C$.

donde C es la variable inicial.

Se pide entonces:

- (a) Dar una derivación en G que genere la palabra (+ int (-int int) (* int int int)).
- (b) Aplicando el método visto en clase, construir el autómata con pila M asociado a G.
- (c) Dar un cómputo en el autómata construido en (b) que reconozca la palabra (+int (-int int)).
 - (d) Transformar la gramática G en una gramática $\mathrm{LL}(1)$ equivalente.
 - (e) Construir la tabla de análisis de la gramática obtenida en (d).

Solución:

(a) $C \Rightarrow^1 (OA) \Rightarrow^3 (+A) \Rightarrow^7 (+AC) \Rightarrow^7 (+ACC) \Rightarrow^8 (+CCC) \Rightarrow^2 (+\underline{int}(CC) \Rightarrow^1 (+\underline{int}(OA)C) \Rightarrow^4 (+\underline{int}(-A)C) \Rightarrow^{7,8} (+\underline{int}(-CC)C) \Rightarrow^2 (+\underline{int}(-\underline{int}\underline{int})C) \Rightarrow^1 (+\underline{int}(-\underline{int}\underline{int})(OA)) \Rightarrow^5 (+\underline{int}(-\underline{int}\underline{int})(*A)) \Rightarrow^{7,8} (+\underline{int}(-\underline{int}\underline{int})(*CCC)) \Rightarrow^2 (tres veces) (+\underline{int}(-\underline{int}\underline{int})(*\underline{int}\underline{int})).$

(b) $M=(K,\Sigma,\Gamma,\Delta,q_0,F)$, donde el conjunto de los estados es $K=\{q_0,f\}$, el vocabulario de la cinta es $\Sigma=\{\underline{int},(,),+,-,*,/\}$, el vocabulario de la pila es $\Gamma=\Sigma\cup V$ siendo $V=\{C,O,A\}$, el estado inicial es q_0 , el único estado aceptador es f y Δ está formada por las siguientes transiciones:

- 1. $((q_0, \lambda, \lambda), (f, C))$.
- 2. $((f, \lambda, C), (f, (OA)))$.
- 3. $((f, \lambda, C), (f, \underline{int}))$.
- 4. $((f, \lambda, O), (f, +))$.
- 5. $((f, \lambda, O), (f, -))$.
- 6. $((f, \lambda, O), (f, *))$.
- 7. $((f, \lambda, O), (f, /))$.
- 8. $((f, \lambda, A), (f, AC))$.
- 9. $((f, \lambda, A), (f, C))$.
- 10. $((f, \underline{int}, \underline{int}), (f, \lambda))$.
- 11. $((f, (, (), (f, \lambda)))$.
- 12. $((f,),),(f,\lambda)$.
- 13. $((f, +, +), (f, \lambda))$.
- 14. $((f, -, -), (f, \lambda))$.
- 15. $((f, *, *), (f, \lambda))$.
- 16. $((f,/,/),(f,\lambda))$.
 - (c) Cómputo que reconoce (+ int (- int int)):

estado	cinta	pila	transición
		_	transition
q_0	$(+ \underline{int} (- \underline{int} \underline{int}))$	λ	
f	$(+\underline{int}(-\underline{int}\underline{int}))$	C	1
f	$(+\underline{int}(-\underline{int}\underline{int}))$	(OA)	2
f	$+ \underline{int} (-\underline{int} \underline{int}))$	OA)	11
f	$+ \underline{int} (-\underline{int} \underline{int}))$	+A)	4
f	$\underline{int} (-\underline{int} \underline{int}))$	A)	13
f	$\underline{int} (-\underline{int} \underline{int}))$	AC)	8
f	$\underline{int} (-\underline{int} \underline{int}))$	CC)	9
f	$\underline{int} (-\underline{int} \underline{int}))$	$\underline{int}(C)$	3
f	$(-\underline{int}\underline{int}))$	C)	10
f	$(-\underline{int}\underline{int}))$	(OA))	2
f	$-\underline{int}\ \underline{int}))$	OA))	11
f	$-\underline{int}\ \underline{int}))$	-A))	5
f	$\underline{int} \ \underline{int}))$	A))	14
f	$\underline{int} \ \underline{int}))$	AC))	8
f	$\underline{int} \ \underline{int}))$	CC))	9
f	$\underline{int} \ \underline{int}))$	$\underline{int} \ C)$	3
f	$\underline{int}))$	C))	10
f	$\underline{int}))$	$\underline{int}))$	3
f))))	10
f))	12
f	λ	λ	12

(d) Aplicando la regla de recursión, reemplazamos las producciones $A\longrightarrow AC$ y $A\longrightarrow C$ por las producciones $A\longrightarrow CD$, $D\longrightarrow CD$ y $D\longrightarrow \lambda$. Obtenemos entonces la siguiente gramática LL(1) G' equivalente a G:

- 1. $C \longrightarrow (OA)$.
- $2. \ C \longrightarrow \underline{int}.$
- $3. O \longrightarrow +.$
- 4. $O \longrightarrow -$.
- 5. $O \longrightarrow *$.
- 6. $O \longrightarrow /$.
- 7. $A \longrightarrow CD$.
- 8. $D \longrightarrow CD$.
- 9. $D \longrightarrow \lambda$.

(e) La tabla de análisis de G' es la siguiente:

	<u>t</u>	()	+	-	*	/
C	2	1					
O				3	4	5	6
A	7	7					
D	8	8	9				

Obsérvese que de la derivación

$$C \Rightarrow^1 (OA) \Rightarrow^7 (OCD)$$

se deduce que) \in Siguientes(D) y, por tanto, la producción $9 \in TABLA(D,)$.