MOORING ANALYSIS USING ORCAFLEX

BY: NUGIE RAMADHAN

BAB 1 INTRODUCTION

Orcaflex Operation System

BAB 2 VESSEL

Vessel Data

Klik Vessel Types

Vessel Types: STRUCTURE

Vessel Types: CONVENTIONS

Vessel Types: Displacement RAO/Motion RAO

Vessel Types: Load RAO

Edit Vessel Typ	e Data														?)
Vessel Types								Draug	phts							
Number:			Nan					Num	ber:				Name			
1 🔷	Vessel Type1		INdfi	ie					1 💠	Draud	aht1		TVUITIC			
	vesser type i									Didds	91121					
Properties of Vess	el Type: Vessel Typ	pe1														
Structure Con	ventions Displa	cement RAOs	Load RA	Os Wave [Orift QTFs	Sum Fregu	ency QTFs	Sea State I	RAOs Sti	ffness, A	dded Ma	ass, Damping	Other Dar	mping Curren	t Load W	iı •
										,		,				
The settings on Conventions p		Wave Load R	RAOs for dra	ught Draug	Jht1											
the RAO tables		RAO origin (m):		Phase ori	gin (m):		_				Selected	direction (d	leg): D	elete direct	ion
	J	X	у	Z	х	у	Z					0,0	0			
The RAO origin origin are relati		-51,700	0,000	6,700		~	~	~						In	sert directi	ion
axes (not the a		0° 45	5° 90°	135°	180°	225° 2	70° 315°		► Wav	رم الم	adir					
specified on th	e Conventions	٠ 43	90	190	100	223 2	70 313		vvav	0 110	Judii	ig .				
page).	×	Periods:	30 🔷													
	CoG		Sur	ge	Sw	ay	Hea	ive		Roll		Pitch		Yaw		^
		Period	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Amp	l. Pi	nase	Ampl.	Phase	Ampl.	Phase	
		(s)	(tef/m)	(deg)	(tef/m)	(deg)	(tef/m)	(deg)	(tef.m/	/m)	(deg)	(tef.m/m)	(deg)	(tef.m/m)	(deg)	
		3,00	8,566	352,0	0,918	239,0	14,684	205,0	2	2,243	242,0	700,44	37,0	11,829	257,0	
		4,00	24,575	246,0	1,020	37,0	27,022	82,0	2	2,651	71,0	1132,4	232,0	46,907	169,0	
		4,50	33,957	280,0	0,306	249,0	40,075	109,0		,122	157,0	1613,2	260,0	46,499	166,0	
		5,00	52,311	63,0	1,020	301,0	70,462	206,0		3,059	315,0	2257,0	57,0	16,010	327,0	
		5,50	48,233	247,0	0,510	195,0	65,262	62,0	1	,835	185,0	3889,7	215,0	35,690	124,0	
		6,00	77,091	118,0	0,306	310,0	89,735	253,0	1	,020	19,0	5097,8	111,0	28,960	34,0	
		6,50	89,837	36,0	0,612	251,0	150,00	166,0		,428	277,0	3701,7	6,0	9,585	292,0	
		7,00	76,479	329,0	0,510	202,0	154,08	103,0		,326	209,0	5392,1	252,0	15,194	138,0	
		7,50	60,775	257,0	0,306	154,0	117,47	41,0		,020	150,0	9742,4	191,0	25,595	86,0	
		8,00	66,995	187,0	0,102	65,0	93,406	315,0),714	89,0	13,8E3	150,0	28,042	49,0	
		8,50	85,860	139,0	0,204	318,0	165,70	242,0),714	33,0	16,8E3	119,0	26,411	16,0	
Check RAO		9,00	104,01	104,0	0,306	285,0	282,36	205,0	(),714	352,0	18,9E3	93,0	23,555	347,0	Y
Import	Multibody (Data											OK	Cancel	N N	lext

Vessel Types: Wave Drift

Vessel Types: Stiffness, Added Mass, & Damping

Stiffness Formula:

Added Mass

Damping

Vessel Types: Current Load

Current Attack Area

Vessel Types: Wind Load

Vessel Types: Drawing

BAB 3 LINE

3 Edit line Data

BAB 4 ENVIRONMENT

ENV: Seabed

ENV: Wave

Tentukan arah

datang gelombang

ENV: Wave Preview

ENV: Current

ENV: Wind

BAB 5 RUN SIMULATION

RUN: SETUP VESSEL CALCULATION

RUN: GENERAL SETTING

RUN: GENERAL SETTING

2 General Setting Dynamics

3 General Setting Stages

RUN: STATIC

Running Static

RUN: DYNAMIC

Running Dynamic

BAB 6 RESULTS

RESULTS STATIC

Klik icon atau tekan F5

RESULTS DYNAMICS

Klik icon atau tekan F5

Grafik Tension Time History

Grafik Bollard contact Time History

End of Slide

TERIMA KASIH

Principal Dimension

PARAMETER	VALUES	UNIT
Capacity	8558	DWT
Length of all (LOA)	111,910	m
Length of perpendicular (LPP)	105,000	m
Breadth	19,000	m
Depth	9,900	m
Draft	7,514	m
Deadweight		

BALLAST DRA	FT	
Displacement	7759	t
Draft	4,510	m
Trim	0,000	deg
KMT	8,390	m
KG	6,700	m
CoG _x	51,700	m
R _{xx}	8,251	m
R _{yy}	30,311	m
R _{zz}	30,311	m
GMT	1,400	m
MTC	80,600	m
WPA	1759,201	m^2
LCF	54,160	m
LCB	53,530	m
KML	173,600	m
BMT	6,110	m
BML	171,310	m

Displacement RAO/Motion RAO from MOSES

+++ MOTION RESPONSE OPERATORS+++

Process = DEFAULT: Units = Degrees, Meters, M-Tons, and MPA Unless Stated

Results are in the Body System

Of Point On Body Adria At X = -51.7 Y = 0.0 Z = 6.7

ENCOUN	ITER	Surge /											
Frequency	Period							/					Ampl.
-(Rad/Sec)-		Ampl.		•		•		•		•	•	•	•
0.2513	25.00	0.994	67	0.000	0	0.971	-23	0.000	0	0.363	-112	0.000	0
0.2968	21.17	0.923	58	0.000		0.943		0.000		0.499	-121	0.000	
0.3423	18.35	0.880	47	0.000	0	0.900	-43	0.000	0	0.648	-132	0.000	0
0.3878	16.20	0.823	35	0.000	0	0.835	-56	0.000	0	0.801	-143	0.000	0
0.4333	14.50	0.750	22	0.000	0	0.746	-69	0.000	0	0.947	-156	0.000	0
0.4788	13.12	0.662	7	0.000	0	0.629	-84	0.001	131	1.071	-171	0.000	0
0.5243	11.98	0.558	-10	0.000	0	0.487	-100	0.001	-58	1.153	173	0.000	0
0.5698	11.03	0.441	-27	0.000	0	0.328	-114	0.000	0	1.167	156	0.000	0
0.6153	10.21	0.317	-45	0.000	0	0.170	-120	0.000	0	1.091	138	0.000	0
0.6608	9.51	0.198	-62	0.000	0	0.079	-70	0.000	0	0.916	120	0.000	0
0.7063	8.90	0.098	-70	0.000	0	0.172	-36	0.000	0	0.669	107	0.000	0
0.7518	8.36	0.045	-39	0.000	0	0.276	-50	0.000	0	0.425	108	0.000	0
0.7974	7.88	0.062	-9	0.000	0	0.333	-73	0.000	0	0.373	135	0.000	0
0.8428	7.45	0.078	-22	0.000	0	0.309	-99	0.000	0	0.565	142	0.000	0
0.8883	7.07	0.072	-47	0.000	0	0.217	-117	0.000	0	0.744	124	0.000	0
0.9337	6.73	0.048	-77	0.000	0	0.160	-112	0.000	0	0.737	99	0.000	0
0.9793	6.42	0.021	-106	0.000	0	0.174	-112	0.000	0	0.563	78	0.000	0
1.0248	6.13	0.004	-126	0.000	0	0.160	-127	0.000	0	0.404	75	0.000	0
1.0704	5.87	0.003	133	0.000	0	0.114	-145	0.000	0	0.374	82	0.000	0
1.1158	5.63	0.008	128	0.000	0	0.072	-156	0.000	0	0.343	74	0.000	0
1.1614	5.41	0.013	108	0.000	0	0.055	-145	0.000	0	0.261	59	0.000	0
1.2069	5.21	0.015	86	0.000	0	0.052	-134	0.000	0	0.182	50	0.000	0
1.2524	5.02	0.015	81	0.000	0	0.045	-138	0.000	0	0.151	58	0.000	0
1.2979	4.84	0.013	91	0.000	0	0.036	-147	0.000	0	0.138	62	0.000	0
1.3434	4.68	0.012	95	0.000	0	0.017	-95	0.000	0	0.103	59	0.000	0
1.3889	4.52	0.015	89	0.000	0	0.023	-119	0.000	0	0.087	64	0.000	0
1.4342	4.38	0.012	96	0.000	0	0.018	-121	0.000	0	0.083	76	0.000	0
1.4798	4.25	0.011	97	0.000	0	0.015	-128	0.000	0	0.064	69	0.000	0
1.5254	4.12	0.011	94	0.000	0	0.014	-116	0.000	0	0.055	65	0.000	0
1.5708	4.00	0.011	99	0.000	0	0.011	-113	0.000	0	0.044	76	0.000	0

Load RAO (linearized wave forces) - 1st order from MOSES

+++ LINEARIZED WAVE FREQUENCY FORCES+++

Process = DEFAULT: Units = Degrees, Meters, M-Tons, and MPA Unless Stated

Results are in the Body System

At Point On Body Adria At X = -51.7 Y = -0.0 Z = 6.7

ENCOUN	N T E R	Surge Fore	ce / Ampl.	-	e / Ampl.		rce / e Ampl.		ent / e Ampl.		ent / Ampl.			/ mpl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/		/
-(Rad/Sec)-	-(Sec)-	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Ph	ase
0.2513	25.00	114	-112	0	0	240	0 -19		0 0	26803	-128		0	0
0.2968	21.17	150	-121	0	0	219	5 -26		0 0	34553	-132		0	161
0.3423	18.35	183	-131	0	0	196	8 -33		0 0	41858	-139		0	142
0.3878	16.20	209	-143	0	0	172	4 -41		0 0	47706	-148		0	109
0.4333	14.50	224	-154	0	0	146	1 -50		0 0	51306	-158		0	74
0.4788	13.12	226	-166	0	0	117	7 -59		0 0	52302	-168		0	29
0.5243	11.98	214	-178	0	0	87	7 -68		0 0	50757	-179		0	-23
0.5698	11.03	190	171	0	0	57	5 -75		0 0	46909	171		1	-64
0.6153	10.21	154	162	0	0	31	4 -70		0 0	40895	160		1	-103
0.6608	9.51	110	156	0	0	19	3 -33		0 0	32851	151		1	-138
0.7063	8.90	70	166	0	0	25	8 -4		0 0	23430	145		1	-172
0.7518	8.36	63	-163	0	0	33	1 -2		0 0	14950	152		1	153
0.7974	7.88	84	-151	0	0	34	8 -9		0 0	12337	179		1	114
0.8428	7.45	101	-155	0	0	30	6 -16		0 0	15241	-166		0	19
0.8883	7.07	101	-163	0	0	23	1 -15		0 0	17620	-169		1	-96
0.9337	6.73	85	-168	0	0	18	9 1		0 0	17063	-176		1	-126
0.9793	6.42	66	-165	0	0	21	6 16		9 49	13696	179		2	179
1.0248	6.13	62	-152	0	0	23	9 16		0 35	10823	-172		1	140
1.0704	5.87	69	-141	0	0	21	6 9		0 30	11530	-155		0	46
1.1158	5.63	68	-134	0	0	17	0 5		0 25	12809	-151		0	-160
1.1614	5.41	64	-129	0	0	15	0 19		0 26	11643	-156		2	-163
1.2069	5.21	64	-128	0	0	16	0 32		0 24	9418	-158		2	174
1.2524	5.02	68	-124	0	0	15	5 33		0 21	8924	-146		1	113
1.2979	4.84	64	-116	0	0	13	4 31		0 18	9430	-137		0	158
1.3434	4.68	61	-111	0	0	14	0 38		0 14	8696	-139		2	-174
1.3889	4.52	63	-114	0	0	13	1 47		0 6	7320	-141		2	164
1.4342	4.38	65	-108	0	0	11	7 46		0 6	7330	-132		1	76
1.4798	4.25	57	-96	0	0	10	6 48		0 6	7390	-122		1	166
1.5254	4.12	58	-95	0	0	11	2 60		0 5	6283	-122		2	-168
1.5708	4.00	67	-90	0	0	9	6 67	1	0 2	6702	-114		1	77

Wave Drift Quadratic Transfer Function (QTF) 2nd order from MOSES

+++ MEAN DRIFT FORCES+++

Process = DEFAULT: Units = Degrees, Meters, M-Tons, and MPA Unless Stated

Reported in the Body System

Body Name = Adria Drift Name = Adria Drift Method = Near Field

Force Factor = 1.0000 Radiation Factor = 1.0000 Coriolis Factor = 0.0000

Mean Drift Force / (Wave Amplitude)**2

ENCOUNTER		T R A	NSLATI	O N	R O T A T I O N				
Frequency	Period	Surge	Sway	Heave	Roll	Pitch	Yaw		
0.2513	25.000	80.5	-0.0	5.0	0.0	1444.5	-5.2		
0.2968	21.168	129.2	-0.0	2.1	0.0	1599.1	-8.9		
0.3423	18.354	192.9	0.0	-0.9	-0.1	1855.7	-14.5		
0.3878	16.201	266.9	0.0	-3.9	-0.1	2176.6	-20.8		
0.4333	14.500	359.4	0.0	-7.1	-0.1	2621.9	-28.8		
0.4788	13.122	509.3	-0.0	-10.5	-0.1	3492.5	-41.9		
0.5243	11.983	761.8	0.0	-14.1	-0.2	5159.1	-65.0		
0.5698	11.027	1090.9	-0.0	-17.2	-0.2	7468.1			
0.6153	10.211	1415.8	-0.0	-19.3	-0.3	9854.9	-125.9		
0.6608	9.508	1823.0	-0.0	-20.7	-0.4	13032.4	-164.9		
0.7063	8.896	2518.3	-0.0	-22.0	-0.6	18596.7	-232.4		
0.7518	8.357	3381.1	-0.0	-22.7	-0.8	25564.3	-319.0		
0.7974	7.880	4255.5	-0.0	-22.8	-1.0	32617.5	-409.3		
0.8428	7.455	5560.4	-0.0	-24.7	-1.3	42870.2	-545.1		
0.8883	7.073	7213.2	-0.0	-28.8	-1.7	55624.7	-720.9		
0.9337	6.729	8985.8	-0.0	-34.7	-2.1	69165.0	-918.3		
0.9793	6.416	11100.6	-0.0	-42.0	-2.7	85399.1	-1162.0		
1.0248	6.131	13311.4	-0.0	-48.2	-3.4	102537.8	-1423.6		
1.0704	5.870	16309.2	-0.0	-55.1	-4.2	125903.7	-1785.2		
1.1158	5.631	19124.9	-0.1	-62.0	-5.1	147739.9	-2141.9		
1.1614	5.410	22865.5	-0.1	-72.0	-6.2	176678.8	-2615.6		
1.2069	5.206	26102.7	-0.1	-80.6	-7.2	201716.5	-3028.1		
1.2524	5.017	29720.5	-0.1	-89.7	-8.3	229726.8	-3487.6		
1.2979	4.841	32582.9	-0.1	-96.8	-9.1	251884.8	-3828.9		
1.3434	4.677	39225.8	-0.1	-114.0	-10.9	303308.7	-4577.8		
1.3889	4.524	43255.3	-0.1	-124.9	-11.7	334460.8	-4949.5		
1.4342	4.381	52170.6	-0.1	-146.9	-13.8	403482.6	-5812.3		
1.4798	4.246	54150.9	-0.1	-151.0	-13.7	418842.0	-5796.2		
1.5254	4.119	59682.9	-0.1	-164.7	-14.6	461670.7	-6164.6		
1.5708	4.000	70372.2	-0.2	-192.0	-16.6	544401.1	-6988.1		

Added mass & Damping matrices from MOSES

```
$ MATRICES
$ Dimensions are Meters
                        and M-Tons
                                         25.0000
Frequency
             0.2513
                            Period
Added Mass
 5.31290E-02 -4.45677E-06 -4.91690E-02 1.55577E-04 8.96847E+00 2.88300E-04
-1.15822E-05 8.90914E-01 -1.93894E-05 -3.56361E-01 -1.87042E-03 -4.56011E+00
-1.87390E-02 -1.40868E-05 2.87602E+00 1.30904E-04 -8.83921E+00 3.38300E-03
 1.55577E-04 -3.56361E-01 1.30904E-04 1.26467E+01 2.74101E-02 -1.87266E+01
 8.96847E+00 -1.87042E-03 -8.83921E+00 -1.25700E-02 2.47278E+03 -6.51453E-02
 2.88300E-04 -4.56011E+00 3.38300E-03 -1.81773E+01 4.54653E-02 9.15332E+02
 3.25778E-04 1.20127E-08 -3.30988E-03 1.13394E-06 6.04531E-02 2.41375E-06
-9.76128E-08 1.02889E-03 -3.17768E-06 -1.19097E-03 3.60740E-06 -2.94474E-03
 1.40303E-04 2.20450E-07 2.50631E-01 1.94035E-05 -4.54861E-01 5.28570E-04
 1.13394E-06 -1.19097E-03 1.94035E-05 2.10030E-03 1.99213E-03 -1.02163E-03
 6.04531E-02 3.60740E-06 -4.54861E-01 -2.79862E-03 -2.60874E+00 -4.78248E-02
 2.41375E-06 -2.94474E-03 5.28570E-04 8.96607E-03 1.35685E-02 -1.03695E-02
             0.2968
Frequency
                            Period
                                         21.1680
Added Mass
 5.56997E-02 -3.92826E-06 -4.70875E-02 1.64880E-04 9.41491E+00 2.77952E-04
-1.19641E-05 9.22430E-01 -1.44736E-05 -3.74016E-01 -1.82140E-03 -4.65040E+00
-1.86290E-02 -1.51514E-05 2.69360E+00 1.05937E-04 -8.61064E+00 2.86538E-03
 1.64880E-04 -3.74016E-01 1.05937E-04 1.26902E+01 2.78555E-02 -1.89310E+01
 9.41491E+00 -1.82140E-03 -8.61064E+00 -8.58611E-03 2.59191E+03 -1.50698E-02
 2.77952E-04 -4.65040E+00 2.86538E-03 -1.83110E+01 3.04105E-02 9.30388E+02
Damping
 9.39229E-04 4.45867E-08 -4.78972E-03 3.24659E-06 1.73124E-01 5.31763E-06
 -2.73092E-07 3.27135E-03 -4.02029E-06 -3.66574E-03 -4.92542E-07 -9.31890E-03
 2.75379E-04 4.75598E-07 3.55283E-01 2.69575E-05 -6.63062E-01 7.38075E-04
 3.24659E-06 -3.66574E-03 2.69575E-05 6.45138E-03 3.22914E-03 -4.48060E-03
 1.73124E-01 -4.92542E-07 -6.63062E-01 -3.77882E-03 1.69486E+01 -6.73185E-02
 5.31763E-06 -9.31890E-03 7.38075E-04 2.59747E-02 2.01184E-02 5.53214E-03
             0.3423
                            Period
                                         18.3540
Frequency
Added Mass
 5.82161E-02 -3.18132E-06 -4.43517E-02 1.74368E-04 9.84321E+00 2.64774E-04
-1.23575E-05 9.63141E-01 -9.39457E-06 -3.95734E-01 -1.87907E-03 -4.76629E+00
-1.86200E-02 -1.41525E-05 2.47200E+00 9.90397E-05 -8.30670E+00 2.30151E-03
 1.74368E-04 -3.95734E-01 9.90397E-05 1.27423E+01 2.82694E-02 -1.92083E+01
 9.84321E+00 -1.87907E-03 -8.30670E+00 -5.58164E-03 2.70997E+03 3.83191E-02
 2.64774E-04 -4.76629E+00 2.30151E-03 -1.85184E+01 1.55523E-02 9.50384E+02
Damping
 2.19848E-03 1.40267E-07 -6.35294E-03 7.71755E-06 4.02196E-01 1.07991E-05
 -6.35760E-07 8.77807E-03 -4.50215E-06 -9.43529E-03 1.89855E-06 -2.49064E-02
 4.64004E-04 6.66442E-07 4.60124E-01 3.53162E-05 -8.96230E-01 9.28227E-04
 7.71755E-06 -9.43529E-03 3.53162E-05 1.64359E-02 5.14583E-03 -1.61504E-02
 4.02196E-01 1.89855E-06 -8.96230E-01 -4.75363E-03 6.42170E+01 -8.44028E-02
 1.07991E-05 -2.49064E-02 9.28227E-04 6.10699E-02 2.85522E-02 1.70540E-01
```