Polytope of Matrices with Invariant Row- and Column- Sums

Pramod Mathai *

June 10, 2019

Motivated by Aaronson's [1] description of the role of transition matrices in restricting hidden variable theories (HVTs) of quantum mechanics, we address the following general question:

(i) Given $\mathbf{r}, \mathbf{c} \in \mathbb{R}_+^{n \times 1}$, with $\mathbf{1}^T \mathbf{r} = \mathbf{1}^T \mathbf{c} = \gamma$, how does one construct $\mathbf{S} \in \mathbb{R}_+^{n \times n}$ with row and column sums satisfying $\mathbf{S}\mathbf{1} = \mathbf{r}, \mathbf{S}^T\mathbf{1} = \mathbf{c}$? Here, $\mathbf{1}$ is the vector of all ones and the "+" subscript indicates nonnegative matrix elements. The case $\gamma = 1$ corresponds to requiring that \mathbf{S} be a transition matrix.

 $\mathcal{S}_{(\mathbf{r},\mathbf{c})}$, the set of all solutions to (i), is convex. We explicitly construct $\mathcal{V}_{(\mathbf{r},\mathbf{c})}$, the set of vertices of a polytope $\mathcal{P}_{(\mathbf{r},\mathbf{c})} \subseteq \mathcal{S}_{(\mathbf{r},\mathbf{c})}$.

1 Constructing $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$

Without loss of generality, we assume that the elements of \mathbf{r} and \mathbf{c} are arranged in increasing order: $r_i \leq r_{i+1}$ for $i \in [n-1]$, likewise for \mathbf{c} ([k] denotes the set of positive integers not exceeding k). If one solves for this case, then the rows and columns of \mathbf{P} can always be permuted back to their original order without changing the values of the respective sums.

We define $m_i := \min(r_i, c_i)$ and \mathbf{e}_i as the column vector with 1 in the i^{th} position and zeros in the other (n-1) positions.

The polytope $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$ is then defined as the convex hull of the set

$$\mathcal{V}_{(\mathbf{r},\mathbf{c})} = \mathbf{P}^* \bigcup_{\substack{i,j \in [n],\\i < j}} \mathbf{P}_{(i,j)} \tag{\spadesuit}$$

of, in general, $1 + \frac{n(n-1)}{2}$ distinct matrices where $\mathbf{P}_{(i,j)} = \mathbf{P}^* + m_i \cdot (\mathbf{e}_i \mathbf{e}_j^{\mathrm{T}} + \mathbf{e}_j \mathbf{e}_i^{\mathrm{T}} - \mathbf{e}_i \mathbf{e}_i^{\mathrm{T}} - \mathbf{e}_j \mathbf{e}_j^{\mathrm{T}})$ and \mathbf{P}^* has entries $p_{i,j}^*$ equal to zero except for the following elements:

$$p_{i,i}^* = m_i, \ p_{n,i}^* = c_i - m_i, \ p_{i,n}^* = r_i - m_i \text{ for } i \in [n-1] \text{ and } p_{n,n}^* = r_n + c_n - \gamma + \sum_{i=1}^{n-1} m_i.$$

For example, in the case n=3 with ordering $r_1 \le c_1 \le c_2 \le r_2 \le r_3 \le c_3$, we have $m_1=r_1, m_2=c_2$ and $m_3=r_3$. So every element in the polytope defined by the four matrices

$$\mathbf{P}^* = \begin{bmatrix} r_1 & 0 & 0 \\ 0 & c_2 & r_2 - c_2 \\ c_1 - r_1 & 0 & r_3 + c_3 - \gamma + (r_1 + c_2) \end{bmatrix}, \ \mathbf{P}_{(1,2)} = \begin{bmatrix} 0 & r_1 & 0 \\ r_1 & c_2 - r_1 & r_2 - c_2 \\ c_1 - r_1 & 0 & r_3 + c_3 - \gamma + (r_1 + c_2) \end{bmatrix},$$

$$\mathbf{P}_{(1,3)} = \begin{bmatrix} 0 & 0 & r_1 \\ 0 & c_2 & r_2 - c_2 \\ c_1 & 0 & r_3 + c_3 - \gamma + c_2 \end{bmatrix} \text{ and } \mathbf{P}_{(2,3)} = \begin{bmatrix} r_1 & 0 & 0 \\ 0 & 0 & r_2 \\ c_1 - r_1 & c_2 & r_3 + c_3 - \gamma + r_1 \end{bmatrix}$$

will be a solution to (i). This is generalized for any n and ordering in the following.

^{*}pramod.m@gmail.com

Lemma 1.1. (a) $\mathcal{P}_{(\mathbf{r},\mathbf{c})} \subseteq \mathcal{S}_{(\mathbf{r},\mathbf{c})}$. (b) Upto permutation, $\mathcal{P}_{(\mathbf{r},\mathbf{c})} = \mathcal{S}_{(\mathbf{r},\mathbf{c})}$ for n = 2.

Proof. (a) The convexity of $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$ makes it sufficient to show that matrices in $\mathcal{V}_{(\mathbf{r},\mathbf{c})}$ are solutions to (i). The construction (�) makes it clear that any $\mathbf{P}_{(i,j)}$ has the same row and columns sums as \mathbf{P}^* and has nonnegative off-diagonal terms. So it suffices to verify that \mathbf{P}^* satisfies (i) and that $p_{i+1,i+1}^* \geq p_{i,i}^*$ for $i \in [n-1]$; the latter inequality ensures that the diagonal elements of every $\mathbf{P}_{(i,j)}$ are nonnegative. We verify these properties of \mathbf{P}^* in order (n > 1 is assumed):

- Verifying row sums: Denote $\mathbf{P}_{i,.}^*$ to be the i^{th} row of \mathbf{P}^* . For $i \in [n-1]$, $\mathbf{P}_{i,.}^* \mathbf{1} = m_i + r_i m_i = r_i$. $\mathbf{P}_{n,.}^* \mathbf{1} = \sum_{i=1}^{n-1} (c_i m_i) + p_{n,n}^* = r_n + (\sum_{i=1}^n c_i) \gamma = r_n$.
- Verifying column sums: Analogous to verifying row sums.
- Verifying Nonnegativity of off-diagonal terms: Follows from the definition of \mathbf{P}^* in (\clubsuit) .
- Verifying $p_{i+1,i+1}^* \ge p_{i,i}^*$ for $i \in [n-2]$ with n > 2: Without loss of generality, let $m_{i+1} = r_{i+1}$. We have $p_{i+1,i+1}^* = m_{i+1} = r_{i+1} \ge r_i \ge \min(r_i, c_i) = m_i = p_{i,i}^*$ where the first inequality is assumed in (\clubsuit) .
- Verifying $p_{n,n}^* \geq p_{n-1,n-1}^* = m_{n-1}$ for $n \geq 2$: n = 2: Requiring $p_{2,2}^* \geq m_1$ is equivalent to requiring that $r_2 + c_2 \geq \gamma$, which is satisfied since $\gamma = \frac{r_2 + c_2}{2} + \frac{r_1 + c_1}{2}$ and the orderings $r_1 \leq r_2$ and $c_1 \leq c_2$ are assumed in (\clubsuit) . n > 2: Requiring $p_{n,n}^* \geq m_{n-1}$ is equivalent to requiring $r_n + c_n + \sum_{i=1}^{n-2} m_i \geq \gamma$. By the inequality of arithmetic and geometric means, the left hand side is minimized when each of the n terms is equal to, say, M. The orderings $r_i \leq r_{i+1}$ and $c_i \leq c_{i+1}$ then imply that $r_i = c_i = M$ for $i \in [n]$. Since $\sum_{i=1}^n r_i = \gamma$, it follows that $nM = \gamma$.

(b) $\mathcal{V}_{(\mathbf{r},\mathbf{c})}$ contains two elements \mathbf{P}^* and $\mathbf{P}_{(1,2)}$. For any $\mathbf{S} \in \mathcal{S}_{(\mathbf{r},\mathbf{c})}$, construct $\mathbf{S}' = \mathbf{P_R} \mathbf{S} \mathbf{P_C}$ where $\mathbf{P_R}$ and $\mathbf{P_C}$ are permutation matrices which are chosen to ensure that the row and column sums of \mathbf{S}' are in ascending order, as required in (\diamondsuit) . Assuming $m_1 > 0$, $\mathbf{S}' = \phi \mathbf{P}^* + (1 - \phi) \mathbf{P}_{(1,2)}$ where $0 \le \phi = \frac{s'_{11}}{m_1} \le 1$ and s'_{11} is the (1,1) entry of \mathbf{S}' . The case $m_1 = 0$ is trivial.

2 Regarding $S_{(\mathbf{r},\mathbf{c})} \setminus \mathcal{P}_{(\mathbf{r},\mathbf{c})}$

- For n > 2, $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$ does not, in general, contain *all* solutions to (i) since its construction shows that any $\mathbf{P} \in \mathcal{P}_{(\mathbf{r},\mathbf{c})}$ has a symmetric principal minor of order n-1 (this does not matter for the $n \leq 2$). But, can one extend the above procedure to construct *any* matrix $\mathbf{S} \in \mathcal{S}_{(\mathbf{r},\mathbf{c})}$?
- Define the diameter of a bounded convex set of matrices as the maximum of $\|\mathbf{M}_i \mathbf{M}_j\|_{\infty}$, for any two matrices \mathbf{M}_i and \mathbf{M}_j in the set. Does $\mathcal{S}_{(\mathbf{r},\mathbf{c})}$ have a larger diameter than $\mathcal{P}_{(\mathbf{r},\mathbf{c})}$?
- \mathbf{P}^* has at most 2n-1 nonzero entries and any solution in $\mathcal{S}_{(\mathbf{r},\mathbf{c})}$ must in general have at least as many. Does $\mathcal{S}_{(\mathbf{r},\mathbf{c})} \setminus \mathcal{P}_{(\mathbf{r},\mathbf{c})}$ contain matrices of equal sparsity?

References

[1] S. Aaronson, "Quantum computing and hidden variables", *Physical Review A*, vol. 71, no. 3, Mar. 2005. DOI: 10.1103/physreva.71.032325. [Online]. Available: https://doi.org/10.1103/physreva.71.032325.