Arquitetura e Organização de Sistemas Computadorizados - Cloud

Osmar de Oliveira Braz Junior Márcia Cargnin Martins Giraldi

Objetivos

 Apresentar os conceitos de cloud, suas classificações e as tecnologias relacionadas.

Cloud

Cloud

- Definição
 - □Pela tradução do inglês, cloud é "nuvem"
 - ■Utilização de serviços de:
 - Armazenamento na nuvem
 - Gerenciamento de sistemas na nuvem
 - Mover os aplicativos para a nuvem
 - Computação na nuvem

Cloud - Aplicativos

Cloud - Histórico

- Com o início do WWW (1991),
 - o browser Mosaic (1993) foi criado permitindo que os usuários visualizassem páginas de texto com gráficos;
 - ☐ fomentando os websites corporativos
- Com a confiabilidade e rapidez da internet,
 - □ as empresas ASPs (Application Service Provider ou provedor de serviços de aplicações) surgiram; gerenciando aplicações de negócios

Cloud - Características

- Serviços sob demanda: você usa os serviços conforme sua necessidade
- Amplo acesso à rede: não existe limitação para uso e acesso ao que está armazenado;
- Escalabilidade ilimitada e rápida: a alocação de novos recursos não pode depender de uma pessoa ou mesmo de um sistema;
- Pagamento por uso: os serviços devem ser pagos conforme o uso dos recursos.

Cloud Computing

- Redução de investimentos em infraestrutura
- Menor necessidade de equipes especialistas que não sejam relacionados ao seu negócio
- Flexibilidade de crescimento

Cloud Computing

- É um modelo de computação já amplamente difundido na atualidade, faz a distribuição de serviços de computação (armazenamento e processamento de dados, hospedagem de soluções, e outros tipos recursos de TI) em nuvem.
- Tais serviços podem ser acessados por meio da Internet, geralmente permitindo que o seus utilizadores, as pessoas e corporações, paguem pelo serviço, conforme ele seja demandado.
- Uma nuvem é formada por um ou mais data centers, ou seja, ambientes físicos de missão crítica responsáveis por fornecer recursos computacionais.

Fog Computing

- Também chamada de computação em névoa, tem como objetivo criar uma camada virtual usada no processamento de dados, propõe-se a minimizar o grande volume de acesso que a loT tem exigido com a cloud.
- Faz uso de nós para realizar um processamento intermediário (um pré-processamento) das informações advindas dos dispositivos em campo, os end devices.
 - Esse processamento intermediário leva à diminuição do tráfego de rede, beneficiando a velocidade na troca de informação, propicia a redução da carga computacional exigida a *cloud computing*, e a redução de custos operacionais.
- Os nodes fog geralmente ficam localizados nas bordas das redes locais ou nas bordas das redes metropolitanas, eles são equipamentos físicos, com poder de processamento e armazenamento.

- Modelos de distribuição definem o tipo de acesso a nuvem.
- Para fazer a escolha, será preciso alinhar: o custo envolvido, a capacidade de desempenho, a disponibilidade e, claro, as expectativas.
- Podem ser de três tipos: Pública, Privada e Hibrida.

Nuvem pública

- Com soluções unificadas, é o tipo de cloud computing mais barato atualmente.
- Tudo fica disponível na internet e pode ser compartilhado simultaneamente entre vários usuários.
 Porém, separadamente.
- □ É eles que ficam responsáveis pelo envio de arquivos à nuvem. Já o provedor, cuida do gerenciamento de recursos, manutenção e segurança.
- □ A solução é recomendada para quem quer investir em cloud computing, mas sem gastar muito.

Nuvem Privada

- Como o nome entrega, permite que a empresa possa adquirir a infraestrutura de nuvem e selecione usuários para ter acesso a ela.
- □ Com isso, pode personalizar funções de acordo com as próprias necessidades de negócio.
- □ É muito usada por empresas que precisam trabalhar de acordo com diretrizes de segurança e privacidade de dados, como bancos e órgãos públicos.

- Nuvem Híbrida
 - □ É um modelo que combina as funcionalidades da nuvem pública e da nuvem privada.
 - □ Isto é, permite que dados e apps sejam compartilhados tanto em ambientes públicos quanto privados.
 - □ Assim, alguns recursos podem ser usados de modo privado e outros publicamente.
 - Ou seja, é possível escolher os melhores deles conforme sua estratégia e necessidade de negócio.

Serviços Cloud

- Os serviços mais comuns são:
 - □ Infraestrutura como Serviço (laaS) Comumente utilizada por gerentes de sistemas na criação de máquinas virtuais, sistemas operacionais, memórias virtuais etc. ...
 - □ Plataforma como Serviço (PaaS)
 - □ Software como Serviço (SaaS)

Serviços Cloud

- lasS
- laaS("infrastructure as a service"): infraestrutura como serviço. Este é o modelo onde os recursos de nuvem computacional são totalmente configuráveis. Você poderá dimensionar servidores, armazenamento, processamento e demais itens de acordo com sua demanda.
 - □ Amazon Web Services e Microsoft Azure
- Neste modelo você tem autonomia total e flexibilidade para aumentar e reduzir recursos, realizar configurações de infraestrutura, configurações de firewall, gerenciamento da rede e diversas configurações.

PaaS Application Developers

laaS

lasS

PaaS

- PaaS("plataform as a service"): infraestrutura como serviço. Como o nome sugere, neste modelo são disponibilizadas plataformas para que possam ser desenvolvidas e implantadas soluções de tecnologia para a nuvem.
 - □ SalesForce, Red Hat OpenShift, Heroku, Windows Azure Cloud, AWS.
- As aplicações já possuem uma finalidade de utilização e você não precisa se preocupar com tudo que está na camada de infraestrutura, uma vez que seu fornecedor de tecnologia em nuvem já cuidou disso pra você.

laaS

SaaS

- SaaS("Software as a Service"): Software como serviço, é o tipo de serviço online mais conhecido e utilizado, por exemplo, por serviços de e-mail.
 - ☐ Google Drive, Dropbox, Office 365, etc.
- Entre as principais características estão:
 - □ o acesso aos dados via web ou aplicativos móveis;
 - □ o gerenciamento centralizado;
 - □ as aplicações seguindo o modelo "um para muitos";
 - possibilidade de realizar integrações e a personalização das ferramentas por meio de APIs (Application Programming Interfaces).

PaaS Application Developers

laaS

On-Premises

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Infrastructure as a Service

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Platform as a Service

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Software as a Service

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

You Manage

Other Manages

HaaS

- HaaS("Hardware as a Service"): Hardware como serviço É um modelo de prestação de serviço para hardware.
- As empresas não necessitam mais adquirirem um hardware e ter que mantê-los atualizados, com a HaaS as empresas contratam o hardware como um serviço e não precisam se preocupar com atualizações e problemas, pagam apenas uma assinatura mensal ou anual para uso do hardware.

CaaS

- CasS("Communication as a Service"): Comunicação como serviço, é uma modalidade de serviço baseada na computação em nuvem que transforma a maneira como as empresas contratam e utilizam serviços de comunicação.
- Em outras palavras: usa a tecnologia para reduzir custos com equipamentos, infraestrutura e redimensionamento de soluções, aumentando a conectividade e modernizando sistemas..

Máquina Virtual

- Cria uma "camada" para compatibilizar diferentes plataformas e um mesmo Hardware.
- Esta camada é chamada de virtualização.
- Software são utilizados para fazer os recursos de hardware parecerem reais.

■ Em computação, virtualização é a simulação de uma plataforma de hardware, sistema operacional, dispositivo de armazenamento ou recursos de rede. (Wikipédia, 2014)

Aplicações

Sistema Operacional

Hardware Virtual

Aplicações

Sistema Operacional

Hardware Virtual

Software de Virtualização

Sistema Operacional

Hardware Real

■ Tipo I

Um software de virtualização se comunica diretamente com o hardware. Também chamado de **nativo** ou **bare-metal**. As máquinas virtuais rodam diretamente sobre ele.

Tipos II

O software de virtualização roda sobre um sistema operacional(hosted). A máquina virtual(guest) roda sobre esta camada de software.

- Workspaces virtuais
 - Uma abstração de um ambiente de execução que pode ser dinamicamente disponibilizado para clientes autorizados por protocolos bem definidos
 - □ Cotas de recursos(Ex.: CPU, memória compartilhada)
 - □ Configuração de software(Ex.: SO, serviços prestados)
- Implementação de máquinas virtuais(VMs):
 - □ Abstração de maquinas físicas
 - ☐ Hypervisor intercepta e emula instruções de VMs, e permite gerenciamento de VMs
 - □ VirtualBox, VMWare, Xen, etc..
- Fornece API de infraestrutura
 - Plugins para hardware/estrutura de suporte

Vantagens das VMs

- Rodar SOs onde o hardware físico não permite,
- □ Facilidade para criar novas máquinas, backup de máquinas, etc...
- Teste de software utilizando máquinas com instalações limpas de SO e software,
- Emular mais máquinas que as fisicamente disponíveis,
- □ Compartilhar o tempo em um host,
- Problemas de debug(suspender e retornar uma máquina com problema),
- □ Facilidade de migração de máquinas virtuais,
- □ Rodar sistemas legados.

Aplicações práticas da Nuvem

É possível adotar a cloud computing por diversos motivos.

Para que fique claro, para você, como usar a computação em nuvem na prática, separei alguns exemplos.

Com os recursos dessa tecnologia, você pode criar, implantar e até dimensionar apps rapidamente e em qualquer plataforma.

E mais: trabalhar com os requisitos de conformidade, desempenho e segurança que quiser.

🛮 💌 🖼 🖫 📧 🐷 👩 🗑 👰 😭 🖼 🖫 🗷 🥌 🗸 📵 📝 ti

 Quando você envia os seus dados para um servidor em nuvem, pode acessá-lo de qualquer local e dispositivo.

Uma forma bem mais econômica de armazenar e proteger arquivos importantes.

3. Transmitir áudio e vídeo

 Você pode se conectar com o seu público-alvo em qualquer dispositivo, quando e onde quiser. Basta ter acesso à internet.

E não para por aí: em escala global.

4. Testar e criar aplicativos

- Infraestruturas de nuvem permitem uma redução de custo e de tempo no desenvolvimento de aplicativos.
- Isso porque podem ser ampliadas ou reduzidas quando você quiser.

SOFTWARE TESTING

5. Analisar os dados

A computação em nuvem também serve como uma plataforma para que sua equipe possa unificar e analisar dados estratégicos em um só lugar.

6. Inserir inteligência artificial

 Quando você usa modelos inteligentes, pode envolver clientes e dar insights importantes a partir dos dados que tiver em mãos.

Os 3 melhores serviços de armazenamento na nuvem

Se, na vida pessoal, serviços de armazenamento em nuvem como Google Drive e Dropbox são uma mão na roda, nos negócios, eles podem facilitar tudo.

Conheça os principais provedores de cloud, na

minha opinião:

Amazon AWS

Amazon AWS

- A Amazon Web Services é a pioneira na oferta de serviços de cloud computing para empresas.
- Tudo começou quando lançou serviços específicos de armazenamento em 2006.
- Logo em seguida, evoluiu para o Elastic Cloud: oferta de máquinas virtuais.
- Hoje, possui a maior oferta de serviços do mercado.
- Tem foco no cliente, ajudando empresas a escalarem e crescerem, e forte rede de parceiros e suporte.

Microsoft Azure

- Oferece máquinas virtuais completas para ajudar empresas a se organizarem e enfrentarem desafios, mas é a mais simples das três.
- Criada em 2010, conta com serviços diferenciados e amplo marketplace.
- Tem grande proximidade com a comunidade open-source e posição de vanguarda na cloud híbrida.

Google Cloud

- Lançada em 2008, passou a ter oferta da Google Compute Engine em 2013.
- Como tem o Google por trás, tem uma forte foco no desenvolvimento de soluções inovadoras.
- Hoje, é considerado o mais completo software para armazenar dados. Pode se adaptar à necessidade de qualquer empresa.

- 1) Classifique como V/F e identifique a alternativa exceção
- V() Cloud computing começou com a ideia em 1993, através da ideia de visualização de gráficos em tempo real.
- ∨ () A confiabilidade e a rapidez da internet proporcionou um encaminhamento para a utilização da tecnologia CLOUD.
- F() As empresas ASPs surgiram para prover dados com a utilização da tecnologia CLOUD. serviços
- V() Para gerenciar aplicações de negócio, utilizando a internet e a tecnologia CLOUD, surgiram provedores de serviços de aplicações.

- 2) Identifique a alternativa exceção, conforme a característica de cloud computing
- F () Escalabilidade ilimitada e rápida: não existe limitação para uso e acesso ao que está armazenado.amplo acesso à rede
- F () Amplo acesso à rede: você usa os serviços conforme sua necessidade. serviços sob demanda
- F () Serviços sob demanda: a alocação de novos recursos não pode depender de uma pessoa ou mesmo de um sistema. escalabilidade ilimitada e rápida
- V () Pagamento por uso: os serviços devem ser pagos conforme o uso dos recurso.

- 3) Identifique a alternativa exceção, referente aos benefícios do cloud computing
- V() Redução de investimento em infraestrutura.
- F() Maior necessidade de equipes especialistas.
- V () Flexibilidade de crescimento.
- () Menor necessidade de equipes especialistas que não sejam relacionados ao negócio.

- 4) Identifique a alternativa exceção
- V () A maioria dos serviços de cloud computing se divide em três categorias: IaaS, PaaS e SaaS.
- F () laaS refere-se aos serviços de software. INFRAESTRUTURA
- F () PaaS refere-se aos serviços de infraestrutura PLATAFORMA
- F () SaaS refere-se aos serviços de plataforma. SOFTWARE

5) (2018/FGV) O modelo de computação em nuvem, no qual um provedor de serviços fornece acesso de usuário a recursos de computação sob demanda, como servidores, armazenamento e rede, para que organizações utilizem seus próprios aplicativos e plataformas sobre estes recursos computacionais, é denominado:

- (X) laaS
- () PaaS
- () DaaS
- () SaaS

Atividade

- Pesquise 1 tipo de serviço oferecido através da Cloud Computing.
- Crie uma apresentação de até 10 minutos apresentando o serviço e suas funcionalidades.
 - Objetivo
 - □ Tipo de serviço: Iaas, Paas, Saas. Descreva o porque da escolha.
 - □ Tipo de acesso. Descreva o porque da escolha.
 - □ Principais funcionalidades
 - Características
 - Fornecedor
 - Limitações
 - Custo \$
 - Outras que definir como importante.

Conclusão

- Conhecemos um pouco da cloud computing e suas características e funcionamento.
- A cloud computing veio para ficar e nos cerca no dia a dia.
- Suas tecnologias continuam a evoluir, portanto o estudo não para aqui.

Referências

- WEBER, Raul Fernando. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre: Bookman, 2012. E-book. Disponível em: https://integrada.minhabiblioteca.com.br/books/9788540701434
- STALLINGS, William. Arquitetura e organização de computadores. 8.ed.
 São Paulo: Pearson, 2010. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/459/epub/0
- HOGLUND, Greg. Como quebrar códigos: a arte de explorar (e proteger) software. São Paulo: Pearson, 2006. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/179934/epub/0

