Домашняя работа по ФЯ

Денисов Никита

3 октября 2021 г.

Мой номер в таблице 8, поэтому во всех заданиях делаю пункт 8.

1. $(ba \mid a)^* \mid (bb \mid b)^*$

Языку, описанному этим APB принадлежат слова ε, a, b — они и будут тремя самыми короткими различными. (1. Бёрем выражение в * 0 раз. 2. В левом выражении выбираем одну a, а правое берём 0 раз. 3. Левое берём ноль раз, а в правом одну b).

Слово abbab не лежит в языке, задаваемым этим APB, так как иначе оно лежало бы либо целиком в левой части: чего не может быть, так как там невозможно получить две b стоящие подряд, либо целиком в правой части: что тоже невозможно, так как там нельзя получить символ a.

Слово bababa лежит в языке: выбираем в левой части первую опцию и повторяем 3 раза.

 $2. \ \{\omega \cdot a \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \neq b\}$

Сначала построим НКА, соответствующий данному языку:

Далее сделаем из него ДКА:

Этот ДКА уже является минимальным: сжать терминалы нельзя, так как например по символу ноль есть переходы как в терминалы, так и в нетерминалы. Аналогично нельзя сжать никакие нетерминалы.

3.
$$S = \{\alpha \cdot 001 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 100 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$$

Регулярная грамматика S будет задаваться следующими правилами:

$$A \rightarrow 001 \quad B \rightarrow 100 \quad C \rightarrow 0 \ | \ 1 \quad P \rightarrow \varepsilon \ | \ CP \quad S \rightarrow PAP \ | \ PBP$$

То есть, A это то, что должно лежать в центре левого множества, B — в центре правого. C — символ алфавита. P — последовательность символов алфавита произвольной длины. S состоит либо из последовательности символов алфавита любой длины, за которой следует A или B, за которыми идёт последовательность произвольной длины из символов алфавита.

4.
$$\{\omega \cdot a^m \mid 1 \leq |\omega|_b \leq m\}$$

Хотим воспользоваться обратной леммой о накачке, то есть: по произвольному n предъявить такое слово w, лежащее в языке, длины хотя бы n, что для любого его разбиения на xyz такого, что $y \neq \varepsilon$ и $|xy| \leq n$ найдётся такое $k \geq 0$, что xy^kz не принадлежит нашему языку.

Собственно, проверяем это: для произвольного n возьмём слово $w'=b^na^n$. Оно лежит в нашем языке (m=n и $w=b^n)$. При этом любое разбиение нашего слова на подходящие по лемме xyz содержит в y какое-то ненулевое количество букв b и только их, так как y непусто и длина xy должна быть не больше n, а первые n символов слова w' равны b. Тогда можем взять k=m+1 и получить слово, которое имеет вид $x(b^{l_y\cdot(m+1)})z$, где $l_y=|y|\geq 1$. Для него верно $|w|_b\geq l_y\cdot(m+1)\geq m+1>m$ и оно заканчивается на a^m (так как и w', а соответственно и z заканчивались на a^m), а значит, оно не лежит в нашем языке. Получили что нужно.

5.
$$(ba \mid a)^* \mid (bb \mid b)^*$$

Сначала построим ε -НКА для $(ba \mid a)^*$:

Теперь построим ε -НКА для $(bb \mid b)^*$ — ясно что этот язык принимает сколько угодно букв b и только их, поэтому автомат тривиален:

Теперь соединяем эти два автомата:

Теперь избавимся от ε -переходов:

Получили НКА без ε -переходов.