LINEAR MODELS FOR LONGITUDINAL DATA

Modeling the Variance-Covariance-Correlation

- Models for longitudinal data involve a mean model and a variance-covariance-correlation model
- Reasons to build / test the covariance model:
 - make correct and efficient inferences on the mean model, or
 - because the covariance model is of direct interest
 - Here, we focus primarily on the first motivation
- We have already discussed two broad classes of covariance model
- Unstructured correlation model:
 - different correlation for each pair of times
 - requires balanced data
 - yields a large number of variance-covariance parameters
- Covariance pattern models, e.g.:
 - exchangeable or compound-symmetry

- exponential
- others (later notes and Fitzmaurice et al. Section 7.4)
- Recall that

$$Y_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + \epsilon_{ij}$$

and that the variance-covariance-correlation model applies to the ϵ_{ij} 's (i.e., represents the variance-covariance among the Y_{ij} 's **after** removing effects of whatever is in x_{ij}

ullet Specifically, the v-c-c model will be a model for V_i in

$$\epsilon_i \sim N(0, V_i)$$

ullet We will parameterize this model by $oldsymbol{\gamma}$, writing $V_i = V_i(oldsymbol{\gamma})$

• Examples:

- $-\gamma = (\sigma^2, \rho)'$ in the exchangeable correlation model
- $\gamma = (\nu^2, \tau^2)'$ in the exchangeable correlation model (alternative parameterization)

- $-\gamma = (\delta^2, \alpha)'$ in the exponential correlation model
- $\gamma = (\sigma_{11}, \sigma_{12}, ...)'$ in the unstructured correlation model (all variances and covariances, each representing its own parameter)
- The general linear model for longitudinal data can be written

$$Y = X\beta + \epsilon$$

where

$$\epsilon \sim MVN(0, V)$$

where V is the **variance-covariance** matrix of ϵ and we have concatenated all Y_i 's, X_i 's and ϵ_i 's from all subjects

 \bullet With **correlated data**, V is of the **block diagonal** form:

$$\mathbf{V} = \begin{pmatrix} \mathbf{V_1} & 0 & \dots \\ 0 & \mathbf{V_2} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Estimation of the Variance-Covariance-Correlation Model ML and ReML

- Inference on the mean model parameters β is an extension of general linear model theory (WLS, to be presented later)
- Inference on the **variance-covariance-correlation** model is also such an extension
- Basic approaches to estimation of γ :
 - maximum likelihood for joint estimation of eta and $oldsymbol{\gamma}$
 - restricted maximum likelihood for estimation of γ
 - Software:
 - SAS: proc mixed
 - Stata: xtmixed
 - R: Ime4 package, etc.

- Conceptually, the easiest thing to do is **maximum likelihood**:
 - Recall, the **general linear model** for longitudinal data is

$$Y = X\beta + \epsilon$$

where

$$\epsilon \sim MVN(0, V(\gamma))$$

the log-likelihood is

$$L(\beta, \gamma) = -\frac{1}{2}N\log(2\pi) - \frac{1}{2}\log|V| - \frac{1}{2}(y - X\beta)'V^{-1}(y - X\beta)$$

- This contains (mean model) parameters $oldsymbol{eta}$ and covariance model parameters $oldsymbol{\gamma}$
- Maximize $L(\beta, \gamma)$ with respect to both β and $\gamma \to {\bf joint}$ estimation of β and γ
- This is what SAS proc mixed method=ml does (default is ReML)

- Maximum likelihood (ML) allows LRTs and Wald-type confidence intervals
- ullet However ML is not the best approach to estimation of γ ; ReML is a better approach

ReML for Covariance Parameters

- Recall: When we estimate $\sigma^2 = \text{var}(Y)$ for i.i.d. Y
 - Maximum likelihood estimator is divided by N and is biased:

$$\hat{\sigma}_{MLE}^2 = \frac{\sum_{i=1}^{N} (y_i - \bar{y})^2}{N}$$

- Note: if we had known $\mu=\mathrm{E}(Y)$ instead of replacing μ by \bar{y} , then MLE would have been unbiased
- We need to use $\hat{\sigma}_{unbiased}^2=\frac{\sum_{i=1}^N(y_i-\bar{y})^2}{N-1}$ to obtain unbiased estimator
- Recall: When we do OLS regression for independent observations,

$$Y = X\beta + \epsilon$$

where

$$\epsilon \sim MVN(0, \sigma^2 I_N),$$

– MLE for σ^2 is divided by N and is biased:

$$\hat{\sigma}_{MLE}^2 = \frac{(\boldsymbol{y} - X\hat{\boldsymbol{\beta}})'(\boldsymbol{y} - X\hat{\boldsymbol{\beta}})}{N},$$

we can show that

$$E(\hat{\sigma}_{MLE}^2) = \frac{N - p}{N} \sigma^2$$

where $p = \text{rank}(X) = \text{number of coefficients in } \beta$ (if X is full rank)

- Bias arises because MLE has not taken into account that β is also estimated, and replace β by $\hat{\beta}$ in estimation of σ^2
- Need to divide by ${\cal N}-p$ to obtain unbiased estimator

- ReML Restricted (or Residual/Reduced) Maximum
 Likelihood estimation extends this idea to correct bias by ML
 - Does not include $oldsymbol{eta}$ in likelihood

- Here is how ReML works:
 - Recall that $oldsymbol{Y}$ is the entire vector of responses, and that

$$Y = X\beta + \epsilon$$

$$E(\boldsymbol{Y}) = X\boldsymbol{\beta}$$

$$\epsilon \sim MVN(0, V),$$

which leads to the log-likelihood

$$L(\boldsymbol{\beta}, \boldsymbol{\gamma}) = -\frac{1}{2} \log |V| - \frac{1}{2} (\boldsymbol{y} - X\boldsymbol{\beta})' V^{-1} (\boldsymbol{y} - X\boldsymbol{\beta})$$

– Suppose that we had a matrix K such that $K^{\prime}X=0$ Hence

$$K'\mathbf{Y} = 0 + K'\boldsymbol{\epsilon} \sim MVN(0, K'VK).$$

- Lets use the linear transformed response $K'{m Y}$ and do maximum

likelihood; our new (ReML) log-likelihood is

$$L^*(\boldsymbol{\gamma}) = -\frac{1}{2}\log|K'VK| - \frac{1}{2}\boldsymbol{y}'K(K'VK)^{-1}K'\boldsymbol{y}$$

which does not contain $oldsymbol{eta}$

- ReML makes inferences about γ with $L^*(\gamma)$ and does not involve estimating β at all
- One example for such K':

$$K' = A' = I - X(X'X)^{-1}X'$$

Then

$$A'X = \{I - X(X'X)^{-1}X'\}X$$

= $X - X(X'X)^{-1}X'X$
= 0

- **Problem**: $A' = I X(X'X)^{-1}X'$ is not full rank:
 - A' is $N \times N$, rank(A) = N p
 - This will lead to singular multivariate Gaussian distribution

$$A'Y \sim MVN(0, A'VA)$$

$$\Rightarrow |A'VA| = 0$$

- Solution:
 - * Use K' = B', where BB' = A', $B'B = I_{N-p}$ (decomposition of idempotent and symmetric A)
 - * Then B is full rank with rank(B) = N p, and

$$B'X = B'BB'X = B'A'X = 0$$

- ullet Note: It actually does not matter what you use for K, as long as
 - $\operatorname{rank}(K) = N p$ and
 - E(K'Y) = 0
- More details for ReML derivation in Diggle, Heagerty, Liang and Zeger's book Sec 4.5

• Special case:

When we have independent data with $V = \sigma^2 I_N$, here we show that ReML estimator with K' = B' will be the unbiased estimator for σ^2 :

$$L^{*}(\sigma^{2}) = -\frac{1}{2} \log |\sigma^{2}B'B| - \frac{1}{2} \mathbf{y}' B (\sigma^{2}B'B)^{-1} B' \mathbf{y}$$

$$= -\frac{1}{2} \log \sigma^{2(N-p)} |B'B| - \frac{1}{2\sigma^{2}} \mathbf{y}' B (B'B)^{-1} B' \mathbf{y}$$

$$= -\frac{1}{2} \log \sigma^{2(N-p)} |I| - \frac{1}{2\sigma^{2}} \mathbf{y}' A' \mathbf{y}$$

use the property of $A' {m y} = {m y} - X \hat{{m \beta}}$ and A is symmetric and idempotent, we can solve $\frac{\partial \{L^*(\sigma^2)\}}{\partial \sigma^2} = 0$ to obtain

$$\hat{\sigma}_{ReML}^2 = \frac{(\boldsymbol{y} - X\hat{\boldsymbol{\beta}})'(\boldsymbol{y} - X\hat{\boldsymbol{\beta}})}{N - p}$$

• Solving for ML/ReML:

- Closed analytical solutions are only available in very special cases
- A wide variety of iterative techniques for solving ML/REML equations have been proposed based on various modifications of two basic approaches (not covered here)
 - * Newton-Raphson algorithm
 - * EM algorithm

- Why ReML is a great idea:
 - Some evidence that ReML is more robust to outliers
 - it is **still maximum likelihood**, just not with the same likelihood
 - * all of the **statistical theory** backing up maximum likelihood applies to ReML as well
 - * you can obtain LRTs, Wald tests, and Wald CI's for the covariance parameters, just as with ML
 - Now we do not know

$$E(Y) = X\beta$$

without also estimating β , we **do know** that

$$E(K'\boldsymbol{Y}) = 0$$

regardless of what the true value of β is (a benefit of ReML)!

 ReML is more robust to small samples or complicated mean models than is ML

- Note: ReML still depends on the specified mean model, because K depends on covariates X
 - REML can only be compared across models with same mean model (eg, LRT)
- In particular, here is the practical implication:
 - suppose you had a particular **mean model** in mind, e.g.:

$$E(arm_{ij}) = \beta_0 + \beta_1 wt_{ij} + \beta_2 age_{ij} + \beta_3 sex_i$$

- you want to make sure to estimate the variance / covariance / correlation model correctly
- you remember that the correlation model depends on the mean model
- i.e., the target of estimation and inference is a covariance model for residual variance in Y_i after removing effects of age, weight, sex
- so you would like to be thorough about removing effects of weight,
 age and sex

 you therefore choose a more flexible mean model for purposes of estimating the covariance / correlation
 e.g., you use:

$$\mathrm{E}(\mathtt{arm}_{ij}) = \beta_0 + \beta_1 \mathtt{wt}_{ij} + \beta_2 \mathtt{age}_{ij} + \beta_3 \mathtt{sex}_i + \beta_4 \mathtt{age}_{ij} * \mathtt{wt}_{ij} + \beta_5 \mathtt{age}_{ij}^2$$

to obtain covariance / correlation parameter estimates $\widehat{m{\gamma}}_{ ext{ReML}}$

- you then **fix** the covariance / correlation model and parameter estimates at $\widehat{\gamma}_{\rm ReML}$ and do more careful modelling of the mean
- Such a protocol is analogous to estimating σ^2 with the "biggest" model in OLS, and then keeping the same $\hat{\sigma}^2$ for tests, model reduction, and model evaluation
- SAS proc mixed have many options for variance-covariance-correlation models using ReML

Fitting Variance-Covariance-Correlation Models SAS Examples

- Example: Nepalese children: arm circumference data
- Important points:
 - Inferences on the covariance model are for a given mean model
 - Different mean models may produce different covariance model estimates, tests and interpretations
 - In general, in the absence of sample size constraints, it is best to use the most / more flexible mean models
- For now, lets use the following mean model:

$$E(arm_{ij}) = \beta_0 + \beta_1 wt_{ij} + \beta_2 age_{ij} + \beta_3 sex_i + \beta_4 wt_{ij} age_{ij} + \beta_5 age_{ij}^2$$

even though it may be richer than necessary

Exchangeable Correlation Model

Here is how we would set this up in SAS proc mixed

```
data temp;
    set nepal;
    wtage = wt*(age-36);
    age2=(age-36)*(age-36);
    age4=age/4;
run;

proc mixed data=temp dfbw ;
    title2 "1st run" ;
    class id;
    model arm = wt age sex wtage age2 / s ;
    repeated / subject=id type=cs r;
    run;
```

- Here:
 - the class statement identifies categorical variables
 - the model statement is where you state the **mean model**

- the repeated statement tells SAS that observations with the same value of id (which must be given in the class statement) are repeated measures on the same subject
- the type=cs option tells SAS to fit a compound symmetry correlation model
 - * recall: compound symmetry = exchangeable
 - * Equivalent to replace repeated / subject=id type=cs r;
 by random intercept/ subject=id;
- the / s option says to print the estimated $oldsymbol{eta}$ coefficients
- the / r option says to print out the fitted covariance matrix for the first subject (i.e., V_1) (R_i matrix in SAS is our V_i)
- dfbw selects an option on how to compute the degrees-of-freedom for $oldsymbol{\beta}$ inferences
- Some output:

The Mixed Procedure

Model Information

Data Set	WORK.TEMP
Dependent Variable	arm
Covariance Structure	Compound Symmetry
Subject Effect	id
Estimation Method	REML
Residual Variance Method	Profile
Fixed Effects SE Method	Model-Based
Degrees of Freedom Method	Between-Within

Class Level Information

	Class	Levels	Values			
<snip></snip>	id	197	1 2 3 4 5 6 14 15 16 17			
			197 198 199	200		
			Dimensions			
		Covariance	Parameters		2	

Columns in X	6
Columns in Z	0
Subjects	197
Max Obs Per Subject	5
Number of Observations Read	1000
Number of Observations Used	877
Number of Observations Not Used	123

Estimated R Matrix for id 1

Row	Col1	Col2	Col3	Col4
1	0.4541	0.3308	0.3308	0.3308
2	0.3308	0.4541	0.3308	0.3308
3	0.3308	0.3308	0.4541	0.3308
4	0.3308	0.3308	0.3308	0.4541

Covariance Parameter Estimates

Cov Parm	Subject	Estimate	
CS	id	0.3308	
Residual		0.1233	

Fit Statistics

-2 Res Log Likelihood 1199.0

Solution for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	5.1785	0.4368	195	11.86	<.0001
wt	0.7023	0.02324	676	30.23	<.0001
age	0.01703	0.009782	676	1.74	0.0821
sex	0.2847	0.08615	195	3.30	0.0011
wtage	-0.00781	0.000929	676	-8.41	<.0001
age2	0.001207	0.000145	676	8.32	<.0001

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
wt	1	676	913.61	<.0001
age	1	676	3.03	0.0821
sex	1	195	10.92	0.0011
wtage	1	676	70.67	<.0001
age2	1	676	69.30	<.0001

- Interpretation of $\hat{\beta}_1 = 0.7023$ is the same as in an ordinary linear regression model:
 - difference in mean response for each unit difference in weight (weight slope) among persons with age of 36 (because age is centralized at 36)

Recall, in exchangeable correlation model:

$$\epsilon_{ij} = U_i + Z_{ij}$$

• The variance parameter estimates are

between-subject variance =
$$\widehat{\text{var}}(U_i) = \hat{\nu}^2 = 0.3308$$
 and within-subject variance = $\widehat{\text{var}}(Z_{ij}) = \hat{\tau}^2 = 0.1233$

• The estimated **total variance** (for ϵ_{ij}) is therefore

total variance =
$$\hat{\sigma}^2 = \hat{\nu}^2 + \hat{\tau}^2 = .3308 + .1233 = 0.4541$$

and the within-subject correlation coefficient is

$$\hat{\rho} = \frac{.3308}{.3308 + .1233} = 0.728$$

• Printout of R (which is our V_1 here) is helpful for interpretation

- Note: In Stata, we can use xtmixed to obtain the same results xtmixed arm wt age sex wtage age2 || id:, nocons residual(exc) var reml nolog
 - | id: nocons specifies the random effect portion. If we omit nocons option, Stata will add a random intercept.
 - residual(exc) specifies residual correlation structure to be exchangeable
 - var option request Stata to report variances rather than standard deviations

- Another way to fit this model is to request a **random intercept**. The two models should be equivalent.
- SAS code:

```
proc mixed data=temp dfbw ;
    title2 "2nd run" ;
    class id;
    model arm = wt age sex wtage age2 / s ;
    random intercept / subject=id g;
    run;
```

- the random intercept statement requests that there be a random intercept (U_i) at each subject defined by id.
- the / g option requests printout of $\widehat{\mathrm{var}}(U_i)$ (what SAS calls the G matrix)
- Relevant output (all very similar to what was obtained with the repeated ...type=cs statement)

Estimated G Matrix

Row	Effect	<pre>group(id)</pre>	Col1
1	Intercept	1	0.3308

Covariance Parameter Estimates

Cov Parm	Subject	Estimate
Intercept	id	0.3308
Residual		0.1233

Fit Statistics

-2 Res Log Likelihood 1199.0

 Note: In Stata, we can run the same model using xtmixed arm wt age sex wtage age2 || id:, residual(ind) var reml nolog

Exponential Correlation Model in SAS

- proc mixed is extremely flexible
- To fit the exponential correlation model, recall that (in this example),

$$\rho_{jk} = \alpha^{|t_j - t_k|}$$

where $t_j, j = 1, ..., 5$ indicates **age** in units of four-months.

• The data for the first subject are:

	id	obsno	arm	age	sex
1.	1	1	14.3	41	1
2.	1	2	13.5	45	1
3.	1	3	14.5	49	1
4.	1	4	14.1	53	1
5.	1	5	•	57	1

 We need a variable that captures age in "time units" of four months (age/4)

- Then, SAS needs to know what that **time variable** is in order to fit the exponential correlation model
- Recalling that we created age4 earlier in a data step, we specify:

```
proc mixed data=temp dfbw ;
    title2 "3rd run" ;
    class id;
    model arm = wt age sex wtage age2 / s ;
    repeated / subject=id type=sp(pow)(age4) r;
    run;
```

- the option type=sp(pow)(age4) says to use the power correlation model with age4 as the time variable
 - This option does not require time to be in equal units
- An advantage to using SAS proc mixed (unlike some options in Stata) is that the time correlation structure allows for unequally-spaced times

• Output

The Mixed Procedure

Model Information

Data Set	WORK.TEMP
Dependent Variable	arm
Covariance Structure	Spatial Power

<snip>

Estimated R Matrix for id 1

Row	Col1	Col2	Col3	Col4
1	0.4606	0.3497	0.2655	0.2016
2	0.3497	0.4606	0.3497	0.2655
3	0.2655	0.3497	0.4606	0.3497
4	0.2016	0.2655	0.3497	0.4606

Covariance Parameter Estimates

Cov Parm	Subject	Estimate	
SP(POW)	id	0.7592	
Residual		0.4606	

Fit Statistics

-2 Res Log Likelihood 1279.0

Solution for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	4.2463	0.5062	195	8.39	<.0001
wt	0.7136	0.02387	676	29.90	<.0001
age	0.03918	0.01124	676	3.49	0.0005
sex	0.2673	0.07971	195	3.35	0.0010
wtage	-0.01027	0.001102	676	-9.32	<.0001
age2	0.001626	0.000183	676	8.87	<.0001

ullet Recall, exponential correlation: $\epsilon_{ij}=W_{ij}$, and

$$W_{i1} \sim N(0, \delta^2)$$

$$W_{ij} = \alpha W_{i,j-1} + E_{ij}, \quad j = 2, 3, \dots$$

where $E_{ij} \sim N\{(0, \delta^2(1 - \alpha^2))\}$

ullet The total variance estimate (of ϵ_{ij}) is

$$\widehat{\operatorname{var}}(W_{ij}) = \widehat{\sigma}^2 = \widehat{\delta}^2 = 0.4606$$

• The within-subject correlation estimate for two observations separated by 4 months is

$$\hat{\alpha} = 0.7592$$

• Can check that in R matrix $0.3497 = 0.4606 \times 0.7592$

- Note: In Stata, we can run the same model using xtmixed arm wt age sex wtage age2 || id:, nocons res(ar 1, t(age)) var reml nolog
 - However, t(age) must be integer here, and thus we cannot use age4 as time variable.
 - The reported $\hat{\alpha}=.9334534$ in Stata is for two observations separated by 1 month, and $\hat{\alpha}^4=.7592$ is for 4-month interval.

- There are many other correlation functions (as a function of lag u) available in proc mixed, for example
 - Gaussian:

$$\rho(u) = \alpha^{u^2} \quad (0 \le \alpha < 1)$$

– Linear:

$$\rho(u) = \left\{ \begin{array}{ll} 1 - \alpha |u|, & \alpha |u| \leq 1 \\ 0, & \text{o.w.} \end{array} \right.$$

making this a very flexible modeling environment

Unstructured Variance-Covariance Model in SAS

- Suppose that we did not want to make any assumptions about the variance or covariance or correlation of the repeated observations on an individual
- Then, we might fit an **unstructured** variance-covariance model
- To do this, we need a **finite number** of unique time points and relatively **good balance** among them, because:
 - variance of each time point will be estimated separately
 - correlation between each pair of two time points will be estimated separately

- We can illustrate this with the Nepal data, using the order of the observations as the time variable (Why wouldn't age work?)
- Note: With missing data in the middle of a series, this creates a problem because, if observation 3 is missing, then observation 4 becomes 3 and observation 5 becomes 4. So, missing data should be minimal
- Here is the SAS code, which assumes the data are already sorted by time:

```
proc mixed data=temp dfbw ;
   title2 "4th run" ;
   class id;
   model arm = wt age sex wtage age2 / s ;
   repeated / subject=id type=un r rcorr;
   run;
```

- The option type=un says to use an unstructured v-c-c model
- the r and rcorr options request the first subject's estimated V_1 matrix in variance-covariance and in correlation form

• And some output

The Mixed Procedure

Model Information

∠	-	t nt Variable nce Structure	ar	ORK.TEMP rm nstructured	
<snip></snip>		Ι	Dimensions		
(anin)		Covariance F Columns in X			15 6
<snip></snip>		Estimated R		for id 1	
	Row	Col1	Col2	Co13	Col4
	1	0.4920	0.3387	0.3104	0.3347
	2	0.3387	0.4622	0.3182	0.3538
	3	0.3104	0.3182	0.3958	0.3223
	4	0.3347	0.3538	0.3223	0.4115

Estimated R Correlation Matrix for id 1

Row	Col1	Col2	Col3	Col4
1	1.0000	0.7104	0.7033	0.7440
2	0.7104	1.0000	0.7439	0.8113
3	0.7033	0.7439	1.0000	0.7985
4	0.7440	0.8113	0.7985	1.0000

Covariance Parameter Estimates

Cov Parm	Subject	Estimate
UN(1,1)	id	0.4920
UN(2,1)	id	0.3387
UN(2,2)	id	0.4622
UN(3,1)	id	0.3104
UN(3,2)	id	0.3182

UN(3,3)	id	0.3958
UN(4,1) UN(4,2) UN(4,3) UN(4,4)	id id id id	0.3347 0.3538 0.3223 0.4115
UN(5,1) UN(5,2) UN(5,3) UN(5,4) UN(5,5)	id id id id id	0.3631 0.3837 0.3324 0.3892 0.5837

Fit Statistics

-2 Res Log Likelihood 1152.5

<snip>

Solution for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	5.0128	0.4494	195	11.15	<.0001
wt	0.7234	0.02319	195	31.20	<.0001
age	0.01535	0.009957	195	1.54	0.1249
sex	0.2802	0.08557	195	3.27	0.0013
wtage	-0.00795	0.000954	195	-8.33	<.0001
age2	0.001216	0.000150	195	8.11	<.0001

• Note: In Stata, we can use following code to fit unstructured model

[.] xtmixed arm wt age sex wtage age2 || id:, nocons res(uns, t(obs)) var reml

Expanded Covariance Pattern Models

Exponential plus Measurement Error Variance-Covariance Model

- We have examined some simple covariance pattern models.
 Hybrid covariance pattern models can be obtained by combining or expanding upon these
- The **exponential plus measurement error** variance-covariance model is given by:

$$\epsilon_{ij} = W_{ij} + Z_{ij}$$

where:

- W_{ij} 's follow an **exponential correlation** model with autocorrelation parameter α

$$W_{ij} = \alpha W_{i,j-1} + E_{ij} ,$$

$$var(W_{ij}) = \delta^2$$

- Z_{ij} s are all independent of each other and of the W_{ij} 's and

$$var(Z_{ij}) = \tau^2$$

- In this model:
 - W_{ij} 's represent smooth, unobserved time-varying processes contributing to the response variable (Y_{ij}) .
 - Smooth in the sense that W_{ij} and W_{ik} very close together in time are nearly perfectly correlated.
 - Z_{ij} is random noise (**measurement error**) specific to each observation (time point)
- This gives rise to the total variance (for ϵ_{ij}):

$$var(\epsilon_{ij}) = \sigma^2 = \delta^2 + \tau^2$$

and correlation model

$$\operatorname{corr}(\epsilon_{ij}, \epsilon_{ik}) = \frac{\operatorname{cov}(W_{ij} + Z_{ij}, W_{ik} + Z_{ik})}{\operatorname{var}(\epsilon_{ij})}$$

$$= \frac{\operatorname{cov}(W_{ij}, W_{ik})}{\operatorname{var}(\epsilon_{ij})}$$

$$= \frac{\operatorname{corr}(W_{ij}, W_{ik}) \operatorname{var}(W_{ij})}{\operatorname{var}(\epsilon_{ij})}$$

$$= \alpha^{|t_{ij} - t_{ik}|} \frac{\delta^2}{\delta^2 + \tau^2}$$

- At home: check correlation, write the variance-covariance matrix

 Note how the measurement error puts extra τ^2 on the diagonal of V_i
- ullet Note: Even as time lag tends to zero 0, $\mathrm{corr}(\epsilon_{ij},\epsilon_{ik})$ will not tend to 1

- The extra noise Z_{ij} due to measurement error is sometimes called a "nugget" or a "local" error because it is "local" in time
- To fit this model in SAS, we would specify proc mixed just as for the exponential correlation model, with the following change:

repeated / subject=id type=sp(pow)(age4) local r;

- where local requests the measurement error (nugget) term

Exchangeable plus Exponential Variance-Covariance Model

• This model is given by

$$\epsilon_{ij} = U_i + W_{ij}$$

where:

- U_i is constant for all observations on a subject, $var(U_i) = \nu^2$
- W_{ij} s follow an exponential correlation model with autocorrelation parameter α and ${\rm var}(W_{ij})=\delta^2$, i.e.,

$$W_{ij} = \alpha W_{i,j-1} + E_{ij}$$

- U_i independent of W_{ij} 's
- ullet U_i represents time-invariant factors specific to subject i that affect the outcome Y_{ij}

- At home: Compute the correlation $corr(\epsilon_{ij}, \epsilon_{ik})$ for this model Note how the exchangeable model puts extra ν^2 in every cell of V_i
- How is this model different from the "exponential plus measurement error" correlation model?

- ullet This model is fitted in SAS by casting U_i as a **random intercept**
- Returning to the Nepal example, the proc mixed code is

```
proc mixed data=temp dfbw covtest;
   title2 "5th run";
   class id;
   model arm = wt age sex wtage age2 / s;
   random intercept / subject=id g;
   repeated / subject=id type=sp(pow)(age4) r;
   run;
```

random statement specified variables to be included as predictors

with coefficients that vary from subject to subject.

- The most common such variable is the intercept
- May also include random slope (coming later)
- repeated statement specifies the v-c-c model for the residual process not accounted for by the random terms

• Result

Model Information

Data Set	WORK.TEMP
Dependent Variable	arm
Covariance Structures	Variance Components,
	Spatial Power
Subject Effects	id, id
Estimation Method	REML
Residual Variance Method	Profile
Fixed Effects SE Method	Model-Based
Degrees of Freedom Method	Between-Within

<snip>

Dimensions

Covariance Parameters	3
Columns in X	6
Columns in Z Per Subject	1
Subjects	197
Max Obs Per Subject	5
Number of Observations Read	1000
Number of Observations Used	877
Number of Observations Not Used	123

Estimated R Matrix for id 1

Row	Col1	Col2	Col3	Col4
1	0.1316	0.01743	0.002309	0.000306
2	0.01743	0.1316	0.01743	0.002309
3	0.002309	0.01743	0.1316	0.01743
4	0.000306	0.002309	0.01743	0.1316

Estimated G Matrix

Row	Effect	<pre>group(id)</pre>	Col1
1	Intercept	1	0.3243

Covariance Parameter Estimates

			Standard	Z	
Cov Parm	Subject	Estimate	Error	Value	Pr Z
Intercept	id	0.3243	0.03979	8.15	<.0001
SP(POW)	id	0.1324	0.06196	2.14	0.0326
Residual		0.1316	0.009083	14.49	<.0001

Fit Statistics

-2 Res Log Likelihood 1193.9

Solution for Fixed Effects

Effect	Estimate	Standard Error	DF	t Value	Pr > t
Intercept	5.0550	0.4486	195	11.27	<.0001
wt	0.7069	0.02347	676	30.12	<.0001
age	0.01905	0.01006	676	1.89	0.0587
sex	0.2825	0.08634	195	3.27	0.0013
wtage	-0.00809	0.000958	676	-8.44	<.0001
age2	0.001258	0.000151	676	8.36	<.0001

• The estimated random effects variance is

$$\widehat{\operatorname{var}}(U_i) = \widehat{\nu}^2 = 0.3243$$

• The estimated autoregressive variance is

$$\widehat{\operatorname{var}}(W_{ij}) = \widehat{\delta}^2 = 0.1316$$

• The within-subject correlation for two observations separated by 4 months is

$$\widehat{\text{corr}}(W_{ij}, W_{i,j-1}) = \widehat{\alpha} = 0.1324$$

• The total variance estimate is therefore

$$\hat{\sigma}^2 = \widehat{\text{var}}(\epsilon_{ij}) = \widehat{\text{var}}(U_i) + \widehat{\text{var}}(W_{ij}) = 0.3243 + 0.1316 = 0.4559$$

- This will also allow us to **test for positive autocorrelation** in the exponential part of the model, having removed the correlation due to subject-to-subject variability (U_i)
 - Next we will see how such tests are constructed
- Note: In Stata, we can use following code to fit this hybrid model

xtmixed arm wt age sex wtage age2 || id:, res(ar 1, t(age))
 var reml nolog

- Final note on such hybrid v-c-c models: Empirical features of correlation in longitudinal data are reflected in these models:
 - correlation decreases with time lag separating observations: captured by the exponential correlation part of the model
 - even observations close together in time do not have correlation one: captured by the measurement error term Z_{ij}
 - even observations far apart in time are positively correlated: captured by including a random intercept term U_i for each subject

ReML Likelihood-based Tests and CIs for Covariance Parameters

• **Example:** Nepalese children: Suppose we wanted to compare the "exponential plus exchangeable" model to the "exchangeable only" covariance model

I.e., in the "exponential plus exchangeable" model, we wish to test

$$H_0: \alpha = 0$$
 vs. $H_A: \alpha \neq 0$

 We generally make such comparisons under one of the more flexible mean models

Here, we continue with the following mean model:

$$E(arm_{ij}) = \beta_0 + \beta_1 wt_{ij} + \beta_2 age_{ij} + \beta_3 sex_i + \beta_4 wt_{ij} age_{ij} + \beta_5 age_{ij}^2$$

- In the foregoing example, we saw the SAS proc mixed code for "exchangeable plus exponential" model.
- For simple exchangeable only model, we would remove the line: repeated / subject=id type=sp(pow)(age4) r;
 and rerun the model

- Best statistical test: Likelihood ratio test (LRT) for nested models (actually, ReLRT for residual likelihood ratio test)
 - Recall, in LRT: $-2\{ln(L_{reduce}) ln(L)\} \sim \chi^2_{DF}$
 - where L is likelihood of with all the parameters unrestricted
 - $-L_{reduce}$ is likelihood of reduced model
 - DF = number of parameters lost in reduced model
- In this example,
 - Exponential plus exchangeable:

Fit Statistics

-2 Res Log Likelihood

1193.9

- -2ln(L) under random intercept, plus exponential correlation model is 1193.9
- Exchangeable model (from earlier):

-2 Res Log Likelihood

1199.0

 $-2ln(L_{reduce})$ under random intercept only model is 1199.0

– Difference on 1 DF (1 parameter less in exchangeable model): $\chi^2 = 5.1, \mbox{ which gives}$

$$P$$
-value = $\Pr(\chi_1^2 \ge 5.1) \approx 0.02$

- Conclusion: The exponential autocorrelation α among the residuals ϵ_{ij} on the same subject is significantly greater than zero, even after accounting for a subject-level random intercept
- Careful! When using any software package, make sure that the log-likelihood is multiplied by 2! Otherwise, you must multiply the difference by 2 to get the χ^2 value
- **Another caution:** Do not use LRTs to compare mean models when using ReML to estimate the model.
 - If must use LRT (and not \mathcal{F} -tests) to compare mean models: Estimate model with ML

- Alternative test: Wald Test
 - When the model is estimated, the score equations are solved:

$$rac{\partial L^*(oldsymbol{eta},oldsymbol{\gamma})}{\partial (oldsymbol{eta},oldsymbol{\gamma})} = 0 \quad ext{yields} \quad (\widehat{oldsymbol{eta}},\widehat{oldsymbol{\gamma}})$$

– A by-product is the **observed information**:

$$\mathcal{I}_O = -rac{\partial^2 L^*(oldsymbol{eta},oldsymbol{\gamma})}{\partial (oldsymbol{eta},oldsymbol{\gamma})\partial (oldsymbol{eta},oldsymbol{\gamma})}|_{(\widehat{oldsymbol{eta}},\widehat{oldsymbol{\gamma}})}$$

- The inverse of \mathcal{I}_o is an estimate of $\operatorname{var}(\widehat{\boldsymbol{\beta}},\widehat{\boldsymbol{\gamma}})$, which can be used to get standard errors for components of the variance parameter $\boldsymbol{\gamma}$
- Tests based on these standard errors are called Wald tests
- These are obtained with the covtest option in proc mixed

- **Example:** In the "exponential plus exchangeable" model, we may want to test whether $\alpha=0$:
 - We fit the model and obtain $\widehat{\alpha}$
 - Then

$$\widehat{\operatorname{se}}(\widehat{\alpha}) = \sqrt{(\mathcal{I}_o^{-1})_{\alpha,\alpha}}$$

- Then a Z-test can be constructed:

$$Z = \frac{\widehat{\alpha}}{\widehat{\operatorname{se}}(\widehat{\alpha})}$$

and squared to obtain χ^2

• This produces:

Covariance Parameter Estimates

Cov Parm	Subject	Estimate	Standard Error	Z Value	Pr Z
Intercept	id	0.3243	0.03979	8.15	<.0001
SP(POW)	id	0.1324	0.06196	2.14	0.0326
Residual		0.1316	0.009083	14.49	<.0001

- Note that $\chi^2 = 2.14^2 = 4.58$
 - not that much different to 5.1 in LRT
- This can also be used for **approximate** confidence intervals for covariance parameters:

A 95% CI for α is

$$\widehat{\alpha} \pm 1.96 \times \widehat{\text{se}}(\widehat{\alpha})$$

which is

$$.1324 \pm 1.96 * .06196 = [0.011, 0.254]$$

• Note:

- These tests are **approximate**. They require adequate sample sizes
- SAS PROC MIXED uses observed information \mathcal{I}_{O}
- Other packages may use expected information:

$$\mathcal{I}_E = -\mathrm{E}\left\{rac{\partial^2 L^*(oldsymbol{eta},oldsymbol{\gamma})}{\partial(oldsymbol{eta},oldsymbol{\gamma})\partial(oldsymbol{eta},oldsymbol{\gamma})}
ight\}|_{(\widehat{oldsymbol{eta}},\widehat{oldsymbol{\gamma}})},$$

 Usually LRTs are more powerful than Wald tests, but more work to produce

Problem: Some Covariance Parameter Tests are Naturally One-sided

• **Example:** Exchangeable correlation model

$$corr(\epsilon_{ij}, \epsilon_{ik}) = \rho$$

which can be motivated by the random effects model

$$\epsilon_{ij} = U_i + Z_{ij}$$

Obviously $var(U_i) = \nu^2 \ge 0$ and so

$$\rho = \frac{\operatorname{var}(U_i)}{\operatorname{var}(U_i) + \operatorname{var}(Z_{ij})} \ge 0$$

• Note: More generally, you could allow $\rho < 0$ (but not due to RE model)

• Under the **random effects model**, a significance test for the exchangeable correlation ρ would be for a **one-sided** alternative:

$$H_0: \rho = 0$$
 vs. $H_A: \rho > 0$

or

$$H_0: \nu^2 = 0$$
 vs. $H_A: \nu^2 > 0$

• **Example:** Exponential plus exchangeable:

$$\epsilon_{ij} = U_i + W_{ij}$$

where

$$W_{ij} = \alpha W_{i,j-1} + Z_{ij}$$

(if time lags are all in 1-unit intervals)

Here, if time is **continuous**, $corr\{W_i(t), W_i(t+u)\} = \alpha^u$ we cannot have $\alpha < 0$, so we would again want to test

$$H_0: \alpha = 0$$
 vs. $H_A: \alpha > 0$

• **Problem:** LRT chi-square tests are set up for two-sided alternatives:

$$H_0: \alpha = 0$$
 vs. $H_A: \alpha \neq 0$

- The null hypothesis value of the parameter is on the **boundary** of the parameter space (see Self and Liang, 1987)
- The theoretical distribution of the LRT chi-square statistic X^2 comes from the square of a ${\cal Z}$
- Negative Z would correspond to $\widehat{\alpha}<0$, positive Z to $\widehat{\alpha}>0$
- As we cannot have $\widehat{\alpha}<0$, under the null hypothesis, X^2 will only be greater than some critical value **half as often** as we expect
- **Solution**: you can (and should!) **divide your** *P*-value**s by 2** for one-sided covariance parameter hypothesis tests

ullet In the LRT for the exponential correlation lpha, we would then have

$$P$$
-value = $\frac{1}{2} \Pr\left(\chi^2 \ge 5.1\right) \approx \frac{1}{2} 0.02 = 0.01$

• Note: This does not change computation of Wald-based confidence intervals (bad CI!).

Selecting and Evaluating Covariance Models

- How does one choose among a set of candidate covariance models? How does one evaluate whether they fit the data well?
- If using maximum likelihood or restricted maximum likelihood estimation:
 - Perform LRTs for comparing nested models
 Example: Nepal data comparing the exponential plus exchangeable to the exchangeable only models
 - Akaike's Information Criterion (AIC), Bayesian information criterion (BIC) (or other information criteria).
 - Will not discuss here. With either AIC or BIC, if two models, non-nested, have the same number of parameters, can just compare the likelihood values

- Examine empirical ACF (auto-correlation function) to help select candidate models
 - must assume that $var(\epsilon_{ij})$ is approximately constant and that $corr(\epsilon_{ij}, \epsilon_{ij})$ depends only on the lag $|t_{ij} t_{ik}|$, at least approximately
- A more powerful technique is to use empirical and fitted model variograms.
 - not covered here, interested students can read Diggle, Heagerty,
 Liang and Zeger's book

Examining and Interpreting ACF

- Considering the acf:
 - If acf declines strongly with lag, then: "exponential" component
 - If acf does not appear to $\to 0$ as lag $\to \infty$, then: "exchangeable" component
 - If acf does not appear to $\to 1$ as lag $\to 0$, then: "measurement error" component
- **Example:** Nepal data: Generate ACF in an **exploratory mode**, using OLS to generate residuals:

```
# read data
data=read.csv("nepal.csv")
data$obs=rep(1:5,200)

## Compute residuals, removing effects by OLS
data$wtage=data$wt*(data$age-36)
data$age2=(data$age-36)^2
fit<-lm(arm~wt+age+sex+wtage+age2,data)</pre>
```

```
data$armrs=rep(NA,dim(data)[1])
data$armrs[!(is.na(data$arm) | is.na(data$wt) |
    is.na(data$age) | is.na(data$sex))]=residuals(fit)
## Autocorrelation function and correlogram
# extract all pairs within each subject
data$id=as.factor(data$id)
id.list=levels(data$id)
data.pairs=list()
for(i in 1:length(id.list))
    subject.i=data[data$id==id.list[i],]
    data.pairs.i=gtools::combinations(dim(subject.i)[1], 2,repeats=FALSE)
        #index of all possible pairs
    data.pairs.add=data.frame(id=rep(i,dim(data.pairs.i)[1]),
        obs1=subject.i$obs[data.pairs.i[,1]],obs2=subject.i$obs[data.pairs.i[,2]]
        armrs1=subject.i$armrs[data.pairs.i[,1]],
        armrs2=subject.i$armrs[data.pairs.i[,2]])
        # all pairs within subject i
```

```
data.pairs=rbind(data.pairs,data.pairs.add)
data.pairs$lag=abs(data.pairs$obs2-data.pairs$obs1)
# remove missing observations
# otherwise N in TL calculation will include missing observations
data.pairs=data.pairs[!(is.na(data.pairs$armrs1) | is.na(data.pairs$armrs2)),]
# Autocorrelation function and tolerance limit
lag.list=1:4
ACF=TL=rep(NA,length(lag.list))
for(lag in 1:length(lag.list))
    subset=data.pairs[which(data.pairs$lag==lag.list[lag]),4:5]
    ACF[lag]=cor(subset,use="pairwise.complete.obs")[1,2]
    TL[lag]=1.96/sqrt(dim(subset)[1])
# correlogram
plot(lag.list,ACF,"l",xlab="Time lag",xlim=c(1,4),ylim=c(0,1))
lines(lag.list,TL,lty=2)
legend("topright",c("Autocorrelation function","95% tolerance limit"),lty=1:2)
```


From this:

- clearly, there is an "exchangeable" component in the model
- "exponential" component might not be that important (even though it was significant in the test)