ЛАБОРАТОРНАЯ РАБОТА №6 РАЗЛОЖЕНИЕ СИГНАЛОВ

ЦЕЛЬ И ЗАДАЧИ ЛАБОРАТОРНОЙ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕЁ ВЫПОЛНЕНИЯ

Целью выполнения лабораторной работы является формирование практических навыков разложения сигналов с использованием дискретного преобразования Фурье (ДПФ).

Основными задачами выполнения лабораторной работы являются:

- 1) с помощью ДПФ построить АЧХ гармонического сигнала;
- 2) из спектра сигнала определить частоты основных гармоник сигнала и осуществить фильтрацию этих гармоник с помощью фильтров любого типа, подобрав соответствующие параметры фильтров;
- 3) в спектральной плоскости отобразить составляющую сигнала;
- 4) над каждой выделенной составляющей сигнала произвести обратное ДП Φ ;
- 5) построить графики полученных сигналов.

Результатами работы являются:

- коды программ;
- график исходного сигнала;
- графики составляющих исходного сигнала;
- спектр исходного сигнала;
- спектры выделенных составляющих исходного сигнала;
- подготовленный отчет.

ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

На выполнение лабораторной работы отводится 8 академических часов: 6 часов на выполнение и сдачу лабораторной работы и 2 час на подготовку отчета.

Порядок выполнения:

- 1. С помощью ДПФ построить АЧХ гармонического сигнала.
- 2. Из спектра сигнала определить частоты основных гармоник сигнала и осуществить фильтрацию этих гармоник с помощью фильтров любого типа, подобрав соответствующие параметры фильтров.
- 3. Над каждой выделенной составляющей сигнала произвести обратное ДПФ.
- 4. В одном графическом окне отобразить:
- сигнал S;
- AЧX спектра сигнала S;
- спектры выделенных составляющих сигнала *S*;
- 5. Оформить отчет.
- 6. Защитить выполненную работу у преподавателя.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

- 1. Для соответствующих данных: A_1 , A_2 , A_3 , A_4 , ω_1 , ω_2 , ω_3 , ω_4 , φ_1 , φ_2 , φ_3 , φ_4 , значения которых приведены в таблице 1, получить сигнал S, вид которого приведен в таблице 2. Составляющие сигнала S имеют вид: $S_i = A_i \sin(2\pi\omega_i + \varphi_i)$. Построить график сигнала S.
- 2. С использованием ДП Φ , построить АЧХ спектра полученного сигнала S.
- 3. Из спектра сигнала <u>автоматически</u> (например, путем нахождения локальных максимумов спектральной функции) определить частоты основных гармоник сигнала и осуществить фильтрацию этих гармоник с помощью фильтров любого типа, путем подбора соответствующих параметров фильтров. В спектральной

плоскости необходимо отобразить спектр каждой выделенной составляющей сигнала S .

4. Выполнить обратное ДПФ над каждой выделенной составляющей спектра сигнала S . Построить графики полученных сигналов.

ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

Таблица 1

											1 aom	
№	S_1			S_2			S_3			S_4		
112	A_1	ω_1	φ_1	A_2	ω_2	φ_2	A_3	ω_3	φ_3	A_4	ω_4	φ_4
1	1	18	0	0,7	30	-60	0,45	60	40	0,2	120	100
2	2	45	40	1	20	0	5	100	-50	1,5	150	90
3	1,5	60	-80	3	15	30	0,7	90	120	4	120	0
4	3	15	30	4	60	-20	1,4	100	50	0,5	45	-80
5	0,5	90	0	2	75	30	1,7	30	-60	2,5	150	60
6	0,2	120	100	1	18	0	0,7	30	-60	0,45	60	40
7	1	20	0	0,7	90	120	1,5	60	-80	2	45	40
8	3	15	30	1,5	60	-80	4	120	0	0,5	90	0
9	0,2	120	100	1	18	0	0,7	30	-60	0,45	60	40
10	0,5	90	0	2	75	30	1,7	30	-60	2,5	150	60
11	0,45	60	40	0,2	120	100	1	18	0	0,7	30	-60
12	1,5	60	-80	0,7	90	120	1	20	0	2	45	40
13	0,5	90	0	3	15	30	4	120	0	2,5	150	60
14	0,2	120	100	1	18	0	0,7	30	-60	0,45	60	40
15	0,5	90	0	2	75	30	1,7	30	-60	2,5	150	60
16	0,7	30	-60	0,45	60	40	0,2	120	100	1	18	0
17	2	45	40	1,5	60	-80	0,7	90	120	1	20	0
18	2,5	150	60	0,5	90	0	3	15	30	4	120	0
19	0,5	90	0	2	75	30	1,7	30	-60	2,5	150	60
20	1,5	60	-80	3	15	30	0,7	90	120	4	120	0
21	1	18	0	0,7	30	-60	0,45	60	40	0,2	120	100
22	2	45	40	1	20	0	5	100	-50	1,5	150	90
23	1,5	60	-80	3	15	30	0,7	90	120	4	120	0
24	3	15	30	4	60	-20	1,4	100	50	0,5	45	-80
25	0,5	90	0	2	75	30	1,7	30	-60	2,5	150	60
26	0,2	120	100	1	18	0	0,7	30	-60	0,45	60	40

27	1	20	0	0,7	90	120	1,5	60	-80	2	45	40
28	3	15	30	1,5	60	-80	4	120	0	0,5	90	0
29	0,2	120	100	1	18	0	0,7	30	-60	0,45	60	40
30	0,5	90	0	2	75	30	1,7	30	-60	2,5	150	60

Таблица 2

No	S
1	$S = (S_1 + S_2 + S_3) * S_4$
2	$S = S_1 * (S_2 + S_3) * S_4$
3	$S = S_1 * (S_2 + S_3 + S_4)$
4	$S = S_1 * S_2 * (S_3 + S_4)$
5	$S = S_1 * S_3 * (S_2 + S_4)$
6	$S = S_1 * S_2 * S_3 * S_4$
7	$S = (S_1 + S_2 + S_3) * S_4$
8	$S = S_1 * (S_2 + S_3) * S_4$
9	$S = S_1 * (S_2 + S_3 + S_4)$
10	$S = S_1 * S_2 * (S_3 + S_4)$
11	$S = S_1 * S_3 * (S_2 + S_4)$
12	$S = S_1 * S_2 * S_3 * S_4$
13	$S = (S_1 + S_2 + S_3) * S_4$
14	$S = S_1 * (S_2 + S_3) * S_4$
15	$S = S_1 * (S_2 + S_3 + S_4)$
16	$S = S_1 * S_2 * (S_3 + S_4)$
17	$S = S_1 * S_3 * (S_2 + S_4)$

18	$S = S_1 * S_2 * S_3 * S_4$
19	$S = (S_1 + S_2 + S_3) * S_4$
20	$S = S_1 * (S_2 + S_3) * S_4$
21	$S = S_1 * (S_2 + S_3 + S_4)$
22	$S = S_1 * S_2 * (S_3 + S_4)$
23	$S = S_1 * S_3 * (S_2 + S_4)$
24	$S = S_1 * S_2 * S_3 * S_4$
25	$S = (S_1 + S_2 + S_3) * S_4$
26	$S = S_1 * (S_2 + S_3) * S_4$
27	$S = S_1 * (S_2 + S_3 + S_4)$
28	$S = S_1 * S_2 * (S_3 + S_4)$
29	$S = S_1 * S_3 * (S_2 + S_4)$
30	$S = S_1 * S_2 * S_3 * S_4$

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Дайте определение прямого дискретного преобразования Фурье.
- 2. Опишите алгоритм обратного дискретного преобразования Фурье.
- 3. Раскройте алгоритм прямого преобразования Фурье.
- 4. Выполните анализ и интерпретируйте результаты выполненных лабораторных исследований.

ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

Номер варианта студенту выдается преподавателем. Отчет на защиту предоставляется в печатном виде.

Структура отчета (на отдельном листе(-ах)):

- 1) Постановка задачи.
- 2) Код программы.
- 3) Визуальное представление результатов. В одном графическом окне отобразить:
 - сигнал S;
 - AЧX спектра сигнала S;
 - спектры выделенных составляющих сигнала S ;
 - полученные сигналы.
 - 4) Выводы.