Category Theory

Hoyan Mok^1

November 19, 2022

 $^{^1}$ hoyanmok@outlook.com

Preface

Preface.

Contents

Preface			
Co	onte	nts	
1	Categories		
	§ 1	Categories	
	§2	Definitions of Different Categories	
2	Functors		
	$\S 3$	Functors	
	$\S 4$	Contravariant Functors	
	$\S 5$	Diagrams	
	§ 6	Natural transformations	
A	Ap	pendix	
Tn	dex		

Chapter 1

Categories

§1 Categories

Definition 1.1 (Category). A *category* C consists of three ingredients:

- 1. A class obj(C), called the **objects**;
- 2. For any $A, B \in \text{obj}(\mathcal{C})$, a set of **morphisms** Hom(A, B);
- 3. A function $\operatorname{Hom}(A,B) \times \operatorname{Hom}(B,C) \to \operatorname{Hom}(A,C)$, called the **composition**, for any $A,B,C \in \operatorname{obj}(\mathcal{C})$, denoted as $(f,g) \mapsto gf$,

and they follow the following axioms:

- (i) If $(A, B) \neq (A', B')$, then $\operatorname{Hom}(A, B) \cap \operatorname{Hom}(A', B') = \emptyset$;
- (ii) Associativity: the composition is associative, i.e. h(gf) = (hg)f;
- (iii) *Identity*: For any $A \in \text{obj}(\mathcal{C})$, there is an identity morphism $\text{id}_A \in \text{Hom}(A, A)$, such that $f \text{id}_A = f = \text{id}_A f$, for any $B \in \text{obj}(\mathcal{C})$ and $f \in \text{Hom}(A, B)$.

A morphism can be shown by:

$$A \xrightarrow{f} B$$

Examples of categories: Set, Grp, Ab, Top, Ord, Ring, Mod, ... If $obj(\mathcal{C})$ is a set, then \mathcal{C} is called a *small category*. If (X, \leq) is a preorder set, then $\forall x, y \in X$,

$$\operatorname{Hom}(x,y) = \begin{cases} \varnothing & x > y, \\ \{(x,y)\} & x \le y, \end{cases} \tag{1-1}$$

and (y, z)(x, y) = (x, z). With this we can say that X is a category. The morphism (x, y) is also denoted by i_y^x .

Definition 1.2 (Isomorphism). Let C be a category and $A, B \in \operatorname{obj}(C)$, $f \in \operatorname{Hom}(A, B)$. If $\exists g \in \operatorname{Hom}(B, A)$ s.t. $gf = \operatorname{id}_B$ and $fg = \operatorname{id}_A$, then f is called an **isomorphism** from A to B. g is called the **inverse** of f.

Definition 1.3 (Subcategory). We say S a *subcategory* of C, if

- (i) $obj(S) \subseteq obj(C)$;
- (ii) $\forall A, B \in \text{obj}(\mathcal{S}), \text{Hom}_{\mathcal{S}}(A, B) \subseteq \text{Hom}_{\mathcal{C}}(A, B);$
- (iii) $\forall A, B, C \in \text{obj}(\mathcal{S}),$

$$A \xrightarrow{f} B \xrightarrow{g} C$$

then gf is the same in both $\operatorname{Hom}_{\mathcal{S}}(A,C)$ and $\operatorname{Hom}_{\mathcal{C}}(A,C)$,

(iv) $\forall A \in \text{obj}(S)$, $\text{id}_A \in \text{Hom}_S(A, A)$ is the same in $\text{Hom}_{\mathcal{C}}(A, A)$.

Definition 1.4 (Full subcategory). Let S be a subcategory of C. If $\forall A, B \in \text{obj}(S)$, $\text{Hom}_{S}(A, B) = \text{Hom}_{C}(A, B)$, then S is called a *full subcategory* of C.

Definition 1.5 (Generated full subcategory). For any subclass $S \subseteq \operatorname{obj}(\mathcal{C})$, one can find a full subcategory \mathcal{S} of \mathcal{C} s.t. $\operatorname{obj}(\mathcal{S}) = S$, which is called the full subcategory generated by S.

 Top_2 is the full subcategory of Top that is generated by the class of all Hausdorff spaces.

Definition 1.6 (Opposite category). Let \mathcal{C} be a category. Then \mathcal{C}^{op} is the category that:

- 1. $obj(\mathcal{C}^{op}) = obj(\mathcal{C});$
- 2. $\forall A, B \in \text{obj}(\mathcal{C}),$

$$\operatorname{Hom}_{\mathcal{C}}(A,B) = \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(B,A). \tag{1-2}$$

§2 Definitions of Different Categories

Chapter 2

Functors

§3 Functors

Definition 3.1 (Functor). Let C and D be categories. A *functor* $F: C \to D$ is a function that satisfies the following axioms:

- (i) $\forall A \in \text{obj}(\mathcal{C}), F(A) \in \text{obj}(\mathcal{D});$
- (ii) $\forall A, B \in \text{obj}(\mathcal{C}), \forall f \in \text{Hom}_{\mathcal{C}}(A, B), F(f) \in \text{Hom}_{\mathcal{D}}(F(A), F(B));$
- (iii) $\forall A, B, C \in \text{obj}(\mathcal{C}),$

$$A \xrightarrow{f} B \xrightarrow{g} C$$

then F(gf) = F(g)F(f).

(iv) $\forall A \in \text{obj}(\mathcal{C}), F(\text{id}_A) = \text{id}_{F(A)}.$

We can restate some definition using functors

Theorem 3.1 (Subcategory, in language of functors). Let C and S be two categories, $S \subseteq C$. If the inclusion $I: S \to C$ is a functor, then S is a subcategory of C.

The *identity functor* from C to itself is $1_C: C \to C$ s.t. $\forall C, D \in C$, $\forall f \in \text{Hom}(C, D)$,

$$1_{\mathcal{C}}(C) = C, \quad 1_{\mathcal{C}}(f) = f. \tag{3-1}$$

Theorem 3.2. Let C and D be two categories. $F: C \to D$ is a functor. $\forall A, B \in \text{obj}(C)$, if $f \in \text{Hom}_{C}(A, B)$ is an isomorphism, then F(f) is an isomorphism.

Definition 3.2 (Hom). Let \mathcal{C} be a category and $A \in \text{obj}(\mathcal{C})$. The *Hom functor* $F_A \colon \mathcal{C} \to \mathsf{Set}$ is defined as

$$F_A(B) = \operatorname{Hom}(A, B),$$

$$F_A(f) \colon \operatorname{Hom}(A, B) \to \operatorname{Hom}(A, C); \ h \mapsto fh.$$
(3-2)

The Hom functor is also denoted by $\operatorname{Hom}(A, -)$. We call the $F_A(f) =: \operatorname{Hom}(A, f)$ the **induced map**, and denote it by f_*

$$f_*h = fh. (3-3)$$

Definition 3.3 (Faithful functor). Let \mathcal{C} and \mathcal{D} be two categories. A **faithful functor** $F \colon \mathcal{C} \to \mathcal{D}$ is a functor that satisfies $\forall A, B \in \text{obj}(\mathcal{C})$,

$$i: \operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{D}}(F(A), F(B)); f \mapsto F(f)$$
 (3-4)

is injective.

Definition 3.4 (Concrete category). Let \mathcal{C} be a category. \mathcal{C} is called a *concrete category* if there exists a faithful functor $F: \mathcal{C} \to \mathsf{Set}$.

§4 Contravariant Functors

Definition 4.1 (Contravariant functor). Let \mathcal{C} and \mathcal{D} be categories. A *contravariant functor* $F: \mathcal{C} \to \mathcal{D}$ is a function that satisfies the following axioms:

- (i) $\forall A \in \text{obj}(\mathcal{C}), F(A) \in \text{obj}(\mathcal{D});$
- (ii) $\forall A, B \in \text{obj}(\mathcal{C}), \forall f \in \text{Hom}_{\mathcal{C}}(A, B), F(f) \in \text{Hom}_{\mathcal{D}}(F(B), F(A));$
- (iii) $\forall A, B, C \in \text{obj}(\mathcal{C}),$

$$A \xrightarrow{f} B \xrightarrow{g} C$$

then F(gf) = F(f)F(g).

(iv)
$$\forall A \in \text{obj}(\mathcal{C}), F(\text{id}_A) = \text{id}_{F(A)}.$$

To distinguish functors from contravariant functors, we sometimes call the functors *covariant functors*.

 $-^{\mathrm{op}} \colon \mathcal{C} \to \mathcal{C}^{\mathrm{op}}$ is a contravariant functor.

Definition 4.2 (Contravariant Hom). Let \mathcal{C} be a category and $A \in \operatorname{obj}(\mathcal{C})$. The *contravariant Hom functor* $F_A \colon \mathcal{C} \to \mathsf{Set}$ is defined as

$$F_A(B) = \operatorname{Hom}(B, A),$$

$$F_A(f) \colon \operatorname{Hom}(B, A) \to \operatorname{Hom}(C, A); \ h \mapsto hf.$$
(4-1)

The contravariant Hom functor is also denoted by $\operatorname{Hom}(-, A)$. We call the $F_A(f) =: \operatorname{Hom}(f, A)$ the **induced map**, and denote it by f^*

$$f^*h = hf. (4-2)$$

§5 Diagrams

Definition 5.1 (Diagram). A *diagram* in a category \mathcal{C} is a functor $D: \mathcal{D} \to \mathcal{C}$ where \mathcal{D} is a small category.

We have already seemed drawn diagrams like

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
& & \downarrow^{h} & \downarrow^{g} \\
& & \downarrow^{h'} & \downarrow^{g}
\end{array}$$
(5-1)

where $A, B, C \in D(\text{obj}(\mathcal{D}))$, and each arrow from one to another is a morphism in the image of morphism in \mathcal{D} under D e.g. $\exists D_A, D_B \in \text{obj}(\mathcal{D})$ s.t.

$$f \in D(\operatorname{Hom}_{\mathcal{D}}(D_A, D_B)) \subseteq \operatorname{Hom}_{\mathcal{C}}(A, B).$$
 (5-2)

Definition 5.2 (Path). A *path* in a category C is a functor $P: n + 1 \to C$ where n+1 is considered as a preorder with morphism defined in Eq. (1-1).

Conventionally we denote a path as:

$$P_0 \xrightarrow{f_0} P_1 \xrightarrow{f_1} P_2 \longrightarrow \cdots \longrightarrow P_{n-1} \xrightarrow{f_{n-1}} P_n \quad (5-3)$$

A **simple path** is a path such that $\forall i, j \in n+1, P_i = P_j \rightarrow i = j$. A diagram D **commutes** iff $A, B \in D(\text{obj } \mathcal{D})$, the compositions of morphisms in any two simple paths from A to B are the same.

§6 Natural transformations

Definition 6.1 (Natural transformation). Let C, D be two categories and $F, G: D \to C$ be functors. A **natural transformation** $\alpha: F \to G$ is one-parametre family of morphisms in D:

$$\alpha : \operatorname{obj}(\mathcal{C}) \to \{\operatorname{Hom}(F(A), G(A)) \mid A \in \operatorname{obj}(\mathcal{C})\}; A \mapsto \alpha_A, \quad (6-1)$$

such that $\forall A, B \in \text{obj}(\mathcal{C}), \forall f \in \text{Hom}(A, B)$, the following diagram commutes:

$$F(A) \xrightarrow{\alpha_A} G(A)$$

$$\downarrow^{F(f)} \qquad \downarrow^{G(f)}$$

$$F(B) \xrightarrow{\alpha_B} G(B)$$

$$(6-2)$$

or,

$$\alpha_B F(f) = G(f)\alpha_A. \tag{6-3}$$

All natural transformations between two functors $F,G\colon \mathcal{C}\to\mathcal{D}$ is denoted as $\operatorname{Nat}(F,G)$. However, $\operatorname{Nat}(F,G)$ can only be considered as an object in our metalanguage, since it does not even have to be a class.

A **natural isomorphism** is a natural transformation $\alpha \colon F \to G$ such that $\forall A \in \text{obj}(\mathcal{C}), \ \alpha_A$ is an isomorphism.

Natural transformations can compose, and for any functor, there exists an identity natural isomorphism.

You can define the contravariant version of natrual transformation too.

Theorem 6.1 (Yoneda lemma). Let C be a category and $F: C \to \mathsf{Set}$ be a functor. Then, $\forall A \in \mathsf{obj}(C)$, $\mathsf{Nat}(\mathsf{Hom}_{C}(A, -), G)$ is a set C, and there exists a bijection

$$y: \operatorname{Nat}(\operatorname{Hom}_{\mathcal{C}}(A, -), G) \to F(A)$$
 (6-4)

s.t.

$$y(\tau) = \tau_A(1_A). \tag{6-5}$$

Proof. $\tau \in \text{Nat}(\text{Hom}_{\mathcal{C}}(A, -), G)$ means $\forall A, B \in \text{obj}(\mathcal{C})$, the diagram

$$\operatorname{Hom}_{\mathcal{C}}(A,B) \xrightarrow{\tau_B} F(B)
\downarrow_{\varphi_*} \qquad \qquad \downarrow_{F(\varphi)}
\operatorname{Hom}_{\mathcal{C}}(A,C) \xrightarrow{\tau_C} F(C)$$
(6-6)

¹Why?

commutes. Setting B = A we have

$$\operatorname{Hom}_{\mathcal{C}}(A, A) \xrightarrow{\tau_{A}} F(A)$$

$$\downarrow^{\varphi_{*}} \qquad \qquad \downarrow^{F(\varphi)}$$

$$\operatorname{Hom}_{\mathcal{C}}(A, C) \xrightarrow{\tau_{C}} F(C)$$

$$(6-7)$$

which gives

$$F(\varphi)\tau_A(1_A) = \tau_C \varphi_*(1_A) = \tau_C(\varphi). \tag{6-8}$$

Injectivity Now assuming there exists another natural transformation σ : $\operatorname{Hom}_{\mathcal{C}}(A,-) \to G$ such that $\sigma_A(1_A) = \tau_A(1_A)$, we have $\forall C \in \operatorname{obj}(\mathcal{C})$,

$$\sigma_C(\varphi) = F(\varphi)\sigma_A(1_A) = F(\varphi)\tau_A(1_A) = \tau_C(\varphi), \tag{6-9}$$

i.e. $y(\tau) = y(\sigma) \to \tau = \sigma$, or in plain words, y is an injection.

Surjectivity $\forall a \in F(A)$, find a morphism τ_A : $\operatorname{Hom}_{\mathcal{C}}(A,A) \to F(A)$ s.t. $\tau_A(1_A) = a$ (this is always possible e.g. we can set τ_A to be the constant function $\operatorname{Hom}_{\mathcal{C}}(A,A) \ni f \mapsto a$). Then, $\forall C \in \operatorname{obj}(\mathcal{C})$, $\forall \varphi \in \operatorname{Hom}_{\mathcal{C}}(A,C)$, define morphism as $\tau_C(\varphi) = F(\varphi)(a)$.

We have not yet proved that τ is natural, so we check if $\psi \in \operatorname{Hom}_{\mathcal{C}}(B,C), \forall \vartheta \in \operatorname{Hom}_{\mathcal{C}}(A,B)$:

$$\tau_C \psi_*(\vartheta) = F(\psi_* \vartheta)(a) = F(\psi \vartheta)(a) = F(\psi)F(\vartheta)(a) = F(\psi)\tau_B(\vartheta).$$
(6-10)

$\begin{array}{c} \mathbf{Appendix} \ \mathbf{A} \\ \mathbf{Appendix} \end{array}$

Index

category, 1	induced map, $5, 6$	
commutes, 7	inverse, 2	
composition, 1	isomorphism, 2	
concrete category, 5		
contravariant functor, 6	morphisms, 1	
contravariant Hom functor, 6		
covariant functors, 6	natural isomorphism, 8	
diagram, 7	natural transformation, 7	
faithful functor, 5	objects, 1	
ll subcategory, 2 nctor, 4	path, 7	
Hom functor, 5	simple path, 7 small category, 2	
identity functor, 5	subcategory, 2	