

Supervised Learning: An Overview

Supervised Regression: Linear Regression

Supervised Regression: Linear Regression

Initialize Parameters

Calculate Prediction
$$\hat{y} = mx + c$$

Estimate Error
$$J(m,c) = (\hat{y} - y_{actual})^2$$

$$m = m - \frac{\partial J}{\partial m}$$
 $c = c - \frac{\partial J}{\partial c}$

Dog vs Horse

Regression vs Classification

	tmax
1970-01-01	60.0
1970-01-02	52.0
1970-01-03	52.0
1970-01-04	53.0
1970-01-05	52.0

tmax_tomorrow				
	52.0			
	52.0			
	53.0			
	52.0			
	50.0			

Age	Weight
3	150
4	120
2	90
5	200
2	85

df['New_Label'] = df.Label.map({'horse':1, 'dog': 0})

Horse -> 1 Dog -> 0

Activation Function

$$f(x) = \frac{1}{1 + e^{-x}}$$

Activation Function

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$x \to \infty, f(x) \to 1$$

 $x \to -\infty, f(x) \to 0$

Activation Function: Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$x \to \infty, f(x) \to 1$$

 $x \to -\infty, f(x) \to 0$

2x + 3

Other Activation Functions: ReLU

$$f(x) = max(0, x)$$

$$x < 0, f(x) = 0$$

$$x \ge 0, f(x) = x$$

Other Activation Functions: Tanh

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$x \to \infty, f(x) \to 1$$

 $x \to -\infty, f(x) \to -1$

Supervised Regression

Initialize Parameters

Calculate Prediction $\hat{y} = \sigma(mx + c)$

Estimate Error $J(m,c) = (\hat{y} - y_{actual})^2$

$$m = m - \frac{\partial J}{\partial m}$$
 $c = c - \frac{\partial J}{\partial c}$

When y = 1if $\hat{y} = 1$, loss should be 0 6 if $\widehat{y} \to 0$, loss should be high value 5 4 Loss $Loss = -\log(\widehat{y})$ 2 0 0.0

When y = 0

if $\hat{y} = 0$, loss should be 0

if $\hat{y} \rightarrow 1$, loss should be high value

$$Loss = -\log(1 - \widehat{\mathbf{y}})$$

When y = 0

if $\hat{y} = 0$, loss should be 0

if $\hat{y} \rightarrow 1$, loss should be high value

$$Loss = -\log(1 - \widehat{\mathbf{y}})$$

When
$$\mathbf{y} = \mathbf{1}$$

if $\hat{\mathbf{y}} = \mathbf{1}$, loss should be 0
if $\hat{\mathbf{y}} \to \mathbf{0}$, loss should be high value

When
$$y = 0$$

if $\hat{y} = 0$, loss should be 0
if $\hat{y} \to 1$, loss should be high value

$$Loss = -\log(\widehat{y})$$
$$= -y\log(\widehat{y})$$

$$Loss = -\log(1 - \hat{y})$$

= $-(1 - y)\log(1 - \hat{y})$

$$Loss = -y\log(\widehat{y}) - (1-y)\log(1-\widehat{y})$$

Supervised Regression: Logistic Regression

Initialize Parameters

Calculate Prediction
$$\hat{y} = \sigma(mx + c)$$

Estimate Error J(m,c) = $CrossEntropy(\hat{y}, y_{actual})$

$$m = m - \frac{\partial J}{\partial m}$$
 $c = c - \frac{\partial J}{\partial c}$

tmax 60.0

Initialize Parameters

Calculate Prediction
$$\hat{y} = mx + c$$

Estimate Error
$$J(m,c) = (\hat{y} - y_{actual})^2$$

Update Parameters

$$m = m - \frac{\partial J}{\partial m}$$
 $c = c - \frac{\partial J}{\partial c}$

Initialize Parameters

Calculate Prediction
$$\hat{y} = \sigma(mx + c)$$

Estimate Error

$$J(m,c) = CrossEntropy(\hat{y}, y_{actual})$$

$$m = m - \frac{\partial J}{\partial m}$$
 $c = c - \frac{\partial J}{\partial c}$

tmax

tmax_tomorrow

60.0

52.0

Initialize Parameters

Calculate Prediction $\hat{y} = \theta_0 x + \theta_1$

Estimate Error

$$J(\theta) = (\hat{y} - y_{actual})^2$$

Update Parameters

$$\theta_0 = \theta_0 - \frac{\partial J}{\partial \theta_0}$$
 $\theta_1 = \theta_1 - \frac{\partial J}{\partial \theta_1}$

New_Label

Initialize Parameters

Calculate Prediction
$$\hat{y} = \sigma(\theta_0 x + \theta_1)$$

Estimate Error

$$J(\theta) = CrossEntropy(\hat{y}, y_{actual})$$

$$\theta_0 = \theta_0 - \frac{\partial J}{\partial \theta_0}$$
 $\theta_1 = \theta_1 - \frac{\partial J}{\partial \theta_1}$

Initialize Parameters

Calculate Prediction
$$\hat{y} = \theta_0 x + \theta_1$$

Estimate Error $J(\theta) = (\hat{y} - y_{actual})^2$

Update Parameters

$$\theta_0 = \theta_0 - \frac{\partial J}{\partial \theta_0}$$
 $\theta_1 = \theta_1 - \frac{\partial J}{\partial \theta_1}$

Initialize Parameters

Calculate Prediction
$$\hat{y} = \sigma(\theta_0 x + \theta_1)$$

Estimate Error

$$J(\theta) = CrossEntropy(\hat{y}, y_{actual})$$

$$\theta_0 = \theta_0 - \frac{\partial J}{\partial \theta_0}$$
 $\theta_1 = \theta_1 - \frac{\partial J}{\partial \theta_1}$

tmax

tmax_tomorrow

60.0

52.0

Initialize Parameters

Calculate Prediction
$$\hat{y} = \theta_0 x + \theta_1$$

Estimate Error

$$J(\theta) = (\widehat{y} - y_{actual})^2$$

Update Parameters

$$\theta_0 = \theta_0 - \frac{\partial J}{\partial \theta_0}$$
 $\theta_1 = \theta_1 - \frac{\partial J}{\partial \theta_1}$

Weight

New_Label

150

1

Initialize Parameters

Calculate Prediction
$$\hat{y} = \sigma(\theta_0 x + \theta_1)$$

$$J(\theta) = CrossEntropy(\hat{y}, y_{actual})$$

$$\theta_0 = \theta_0 - \frac{\partial J}{\partial \theta_0}$$
 $\theta_1 = \theta_1 - \frac{\partial J}{\partial \theta_1}$

Steps to modeling Machine Learning Problems

- Data: Pick your features
- Model:
 - Pick your Model
 - Pick your Loss
- Let the optimizer handle the rest

-125 **0** $^{\circ}\Theta_{1}$ -2.5 $\theta_0^{0.0}$

Initialize Parameters

Calculate Prediction $\hat{y} = \sigma(\theta_0 x + \theta_1)$

Estimate Error $J(\theta) = CrossEntropy(\hat{y}, y_{actual})$

$$\theta_0 = \theta_0 - \frac{\partial J}{\partial \theta_0}$$
 $\theta_1 = \theta_1 - \frac{\partial J}{\partial \theta_1}$

$\partial \theta_0$ -125 **Π** $^{\circ}\!\Theta_{1}$ -2.5 $\theta_{o}^{o.o}$

Initialize Parameters

Calculate Prediction
$$\hat{y} = \sigma(\theta_0 x + \theta_1)$$

Estimate Error $J(\theta) = CrossEntropy(\hat{y}, y_{actual})$

Calculate
$$\frac{\partial J}{\partial \theta_0}$$

$\overline{\partial \theta_1}$ $\partial \theta_0$ 125 01 01 $^{\circ}\!\Theta_{1}$ -2.5 $\theta_{o}^{o.o}$ 2.5

Initialize Parameters

Calculate Prediction
$$\hat{y} = \sigma(\theta_0 x + \theta_1)$$

Estimate Error $J(\theta) = CrossEntropy(\hat{y}, y_{actual})$

Calculate
$$\frac{\partial J}{\partial \theta_0}$$
, Calculate $\frac{\partial J}{\partial \theta_1}$

$\partial \theta_1$ $\partial \theta_0$ 125 H $^{\circ}\Theta_{1}$ -2.5 $\theta_{o}^{o.o}$

Initialize Parameters

Calculate Prediction $\hat{y} = \sigma(\theta_0 x + \theta_1)$

Estimate Error $J(\theta) = CrossEntropy(\hat{y}, y_{actual})$

Calculate
$$\frac{\partial J}{\partial \theta_0}$$
, Calculate $\frac{\partial J}{\partial \theta_1}$

$$\theta_0 = \theta_0 - \frac{\partial J}{\partial \theta_0}, \qquad \theta_1 = \theta_1 - \frac{\partial J}{\partial \theta_1}$$

$\overline{\partial \theta_1}$ $\partial \theta_0$ -125 **0** $^{\circ}\Theta_{1}$ -2.5 $\theta_{o}^{o.o}$

Initialize Parameters

Calculate Prediction
$$\hat{y} = \sigma(\theta_0 x + \theta_1)$$

Estimate Error $J(\theta) = CrossEntropy(\hat{y}, y_{actual})$

$$\theta_0 = \theta_0 - \frac{\partial J}{\partial \theta_0}$$
 $\theta_1 = \theta_1 - \frac{\partial J}{\partial \theta_1}$

Support Vector Machines 2.5

Support Vector Machines 0.0 2.5

Support Vector Machines

Support Vector Machines Support Vectors -0.5 0.5 1.0 2.5

Support Vector Machines (a) (b) Feature Space with $\mathcal{O}(x) = (x, x^2)$ (a) Original 1D Space

Support Vector Machines

Decision Trees

Has_Tail	Number_of_Legs	Has_Fur	Lives_in_Water	Can_Fly	Lays_Eggs	ls_Mammal
True	4	True	False	False	False	True
True	4	True	False	False	False	True
False	8	False	False	False	True	False
False	0	False	False	False	True	False
False	2	False	False	True	True	False
True	2	True	False	False	False	True
True	4	False	False	False	False	True
False	0	False	True	False	True	False
False	2	False	False	False	True	False
True	4	False	False	False	False	True

Animal Cat Dog Spider Snake Parrot Kangaroo Elephant Fish Chicken Cow

Decision Trees

Has_Tail	Number_of_Legs	Has_Fur	Lives_in_Water	Can_Fly	Lays_Eggs	ls_Mammal
						1/2
True	4	True	False	False	False	True
True	4	True	False	False	False	True
False	8	False	False	False	True	False
False	0	False	False	False	True	False
False	2	False	False	True	True	False
True	2	True	False	False	False	True
True	4	False	False	False	False	True
False	0	False	True	False	True	False
False	2	False	False	False	True	False
True	4	False	False	False	False	True

Animal Cat Dog Spider Snake **Parrot** Kangaroo Elephant Fish Chicken Cow

