Правник Ю.И.

РАСЧЁТ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ ГАЗОВЫХ РЕДУКТОРОВ БОЛЬШИХ РАСХОДОВ

Приводится вывод формулы расхода газа через редуктор, формул проходных сечений входа и выхода редуктора. Решается проблема колебаний давления выхода. Даётся объяснение зависимости работы редуктора от времени года.

Ключевые слова: расход газа, коэффициент расхода, ход клапана, проходное сечение, колебание давления выхода.

ВВЕДЕНИЕ

Новая конструкция начинается с расчётов. Редукторы – не исключение. Для этого нужны метод решения и формулы расчётов. К сожалению, систематического решения этого вопроса не было найдено. Поэтому в статье делается попытка устранить этот пробел. Здесь приводится вывод формулы расчёта расхода газа, который вместе с давлением выхода в процессе редуцирования поддерживается постоянным, не смотря на убывающее давление входа. Выводятся формулы хода клапана и коэффициента расхода, которые меняются в процессе редуцирования, проходных сечений входа и выхода редуктора и т.д.

РАСЧЁТ РАСХОДА ГАЗА ЧЕРЕЗ РЕДУКТОР

Обычно задаются: давление газа на входе и выходе редуктора $P_{\rm BX}$ и $P_{\rm B}$, температура газа на входе $T_{\rm BX}$ °K и требуемый расход газа G, по которым можно определить геометрические параметры конструкции или подобрать из существующих типов редукторов именно тот, который обеспечивает требуемый режим редуцирования, если знать формулы расчёта. Здесь ex — вход, e — выход.

В расчётах принимается допущение, что зону редуцирования можно рассматривать как сужающееся сопло с переменным проходным сечением, изменение которого обратно пропорционально изменению давления $P_{\rm BX}$ редуктора [1]. Известно, что расход газа G через сужающееся сопло выражается формулой [2]

$$G = \mu m S_r \frac{P_{\text{BX}}}{\sqrt{T_{\text{BX}}}},\tag{1}$$

где μ - коэффициент расход газа и S_r - проходное сечение зоны редуцирования в начальный момент редуцирования неизвестны; давление $P_{\rm BX}$ и температура $T_{\rm BX}$ газа на входе в редуктор (иногда уточняется температура

окружающей среды) задаются; $m = \left(\frac{2}{k+1}\right)^{\frac{k+1}{2(k-1)}} \left(\frac{k}{R}\right)^{1/2}$ — множитель, зависящий от свойств газа, R — газовая постоянная (r-pedyцирование).

Коэффициент расхода через сужающееся сопло можно представить как произведение двух коэффициентов [2]:

$$\mu = \sigma_{\text{KD}} f, \tag{2}$$

из которых первый учитывает потери полного давления в сужающейся части сопла (кр – критический)

$$\sigma_{\rm Kp} = P_r^* / P_{\rm BX}^* \,, \tag{2 a}$$

здесь P_r^* , $P_{\rm BX}^*$ полные давления в зоне редуцирования и на входе, а второй отражает дополнительное сужение струй за пределами выхода газа из сужающегося сопла

$$f = S_T / S_r. \tag{2.6}$$

 S_r и S_T – площади зоны редуцирования на выходе (сопла) и струи газа за пределами среза выхода из зоны редуцирования соответственно.

Из уравнения Д. Бернулли [3], используя (A) [1] имеем

$$P_r^* = P_r + \frac{W_{rM}^2}{2} \rho_r \frac{\kappa - 1}{\kappa} = P_r \left(1 + \frac{\kappa - 1}{2} M_{rM}^2 \right). \tag{3}$$

Т.к. перепад давлений в зоне редуцирования постоянен в процессе редуцирования [1], то и скорость потока будет постоянной, т.е. $W_r = W_{rm}$ и $M_r = M_{rm}$. Напоминаем, что и параметры ω_2 и n_2 в процессе всего времени редуцирования тоже постоянны [1].

Из [1] и (3) коэффициент $\sigma_{\kappa p}$ для докритического редуцирования будет

$$\sigma_{\rm kp} = \omega_2^* \left(1 + \frac{\kappa - 1}{2} M_{r_{\rm M}}^2 \right),$$
 (3 a)

для критического редуцирования аналогично (rм – значение параметров в момент завершения редуцирования)

$$\sigma_{\mathrm{KP}}^{\times} = \pi(\lambda)^* \left(1 + \frac{\kappa - 1}{2} M_{\mathrm{rM}}^2 \right) \tag{3.6}$$

(x - oзначает критический режим, * - noлная величина или критический параметр).

При $M_{r_{\rm M}}=1$ и $\frac{P_{r_{\rm M}}}{P_{\rm BX}^*}=\left(\frac{2}{\kappa+1}\right)^{\frac{\kappa}{\kappa-1}}=\pi(\lambda)^*$ выражение (3б) превратится в:

$$\sigma_{\mathrm{KP}}^{\times} = \left(\frac{2}{\mathrm{K}+1}\right)^{\frac{1}{\mathrm{K}-1}}.\tag{3 B}$$

Коэффициент f (2 б) возможен лишь в начале редуцирования [1]. Реально же из-за сложности истечения газа в редукторе в зоне редуцирования давление потока $P_{\rm BX}$ резко понижается почти на 50% P_r с одновременным повышением скорости потока от $M_{\rm BX} \leq 0.2$ до $M_{\rm BX} \cong 0.85 \div 1$ на выходе этой зоны. Давление с такой же интенсивностью продолжает понижаться с уменьшением скорости до $M_{\rm B} \approx 0.17$. При этом, поток претерпевает повороты, соударения струй, внезапное сужение на входе и изменение направления струи на выходе зоны редуцирования. Острые кромки углов могут инициировать скачки уплотнения. В процессе редуцирования сами параметры потока газа изменяются, да и сама зона редуцирования увеличивается с падением $P_{\rm BX}$ и имеет круговую форму, что тоже влияет на общую картину. Исходя из этого, коэффициент f в процессе редуцирования вряд ли возможен. Вместе с тем, поток газа в зоне редуцирования характеризуется величинами [1]: ω_2 и n_2 , которые можно использовать вместо коэффициента f.

В свете сказанного, выражение (2) превращается в окончательном виде: для докритического редуцирования с использованием (3 а)

$$\mu = \omega_2 \omega_2^* \left(1 + \frac{\kappa - 1}{2} M_{r_{\rm M}}^2 \right),$$
 (4 a)

для критического с использованием (3 в)

$$\mu^{\times} = n_2 \left(\frac{2}{\kappa + 1}\right)^{\frac{1}{\kappa - 1}}.\tag{4.6}$$

Сравнение этих равенств показывает, что $\mu > \mu^{\times}$. Здесь величина в скобках в докритическом редуцировании больше единицы, в критическом – меньше. Это перевешивает величины перед скобками. По логике эти величины постоянны в процессе всего времени редуцирования.

Площадь проходного сечения зоны редуцирования (узкой части зоны редуцирования — сужающегося сопла) в начальный момент можно найти из условия постоянства расхода газа в процессе редуцирования

$$S_r = S_{rM} \frac{W_{rM}}{W_r} \frac{\rho_{rM}}{\rho_r}.$$

Далее, используя (А) [1], это уравнение приводится к виду

$$S_r = S_{r_{\rm M}} \frac{M_{r_{\rm M}}}{M_r} \left(\frac{P_{r_{\rm M}}}{P_r}\right)^{\frac{\kappa+1}{2\kappa}}.$$
 (5)

При $M_{r_{\rm M}}=M_r$, $P_{\rm B}/P_{r_{\rm M}}=\omega_4$, $P_r/P_{\rm BX}^*=\omega_2^*$ и $\omega_1^*=\omega_2^*\omega_4=\frac{P_{\rm B}}{P_{\rm BX}^*}\frac{P_r}{P_{r_{\rm M}}}$ [1], откуда $\frac{P_{r_{\rm M}}}{P_r}=\frac{1}{\omega_1^*}\frac{P_{\rm B}}{P_{\rm BX}^*}$. Вставив это равенства в (5) получим для докритического редуцирования:

$$S_r = S_{r_{\rm M}} \left(\frac{1}{\omega_1^*}\right)^{\frac{\kappa+1}{2\kappa}} \left(\frac{P_{\rm B}}{P_{\rm BX}^*}\right)^{\frac{\kappa+1}{2\kappa}}.$$
 (6a)

При $M_{r_{\rm M}}=M_r=1$, $P_{\rm B}/P_{r_{\rm M}}=n_4$, $P_r/P_{\rm BX}^*=n_2^*$ и $n_1^*=n_2^*n_4=\frac{P_{\rm B}}{P_{\rm BX}^*}\frac{P_r}{P_{\rm rM}}$ [1], откуда $\frac{P_{r_{\rm M}}}{P_r}=\frac{1}{n_1^*}\frac{P_{\rm B}}{P_{\rm BX}^*}$ заменив в (5), получим для критического редуцирования:

$$S_r^{\times} = S_{r_{\rm M}} \left(\frac{1}{n_1^*}\right)^{\frac{\kappa+1}{2\kappa}} \left(\frac{P_{\rm B}}{P_{\rm BX}^*}\right)^{\frac{\kappa+1}{2\kappa}}$$
 (6 б)

Если учесть, что $S = \pi d_y^2 / 4 = H\pi d_y$, где d_y – условный проходной диаметр редуктора, то для расчёта соответствующих H с учётом равенств $(6\ a)$ и $(6\ \delta)$ получим: для докритического редуцирования

$$H = H_{\rm M} \left(\frac{1}{\omega_1^*}\right)^{\frac{\kappa+1}{2\kappa}} \left(\frac{P_{\rm B}}{P_{\rm BX}^*}\right)^{\frac{\kappa+1}{2\kappa}}$$
 (7 a)

и для критического редуцирования

$$H^{\times} = H_{\rm M} \left(\frac{1}{n_1^*}\right)^{\frac{\kappa+1}{2\kappa}} \left(\frac{P_{\rm B}}{P_{\rm BX}^*}\right)^{\frac{\kappa+1}{2\kappa}}.$$
 (7 б)

Найденные выражения H и H^{\times} определяют ход клапана в любой момент редуцирования. При равных расходах газа и давления входа $H>H^{\times}$, так как при докритическом редуцировании $P_{\rm B}/P_{\rm BX}^*$ больше чем в критическом. Правда, $\omega_1^*>n_1^*$, но величина в первой скобке (7 а) не делает H меньше H^{\times} . Это объясняет причину незначительного увеличения $P_{\rm B}$ при переходе с критического режима редуцирования в докритический. Величины S_r и H зависят от соотношения $(P_{\rm B}/P_{\rm BX}^*)^{\frac{K+1}{2K}}$, которое к завершению процесса редуцирования становится равным n_1^* или ω_1^* , поэтому согласно 7 а и 7 б к моменту завершения редуцирования они увеличиваются до значений S_{rm} и $H_{\rm M}$.

Далее, заменяя в (1) μ и S_r выражениями (4 а), (4 б) и (7 а), (7 б), найдём для докритического редуцирования расход газа через редуктор

$$G = \left[\omega_2 \omega_2^* \left(1 + \frac{\kappa - 1}{2} M_{\text{rM}}^2\right) \left(\frac{1}{\omega_1^*}\right)^{\frac{\kappa + 1}{2\kappa}} \left(\frac{P_B}{P_{BX}^*}\right)^{\frac{\kappa + 1}{2\kappa}} m \frac{\pi d_y^2}{4} \frac{P_{BX}}{\sqrt{T_{BX}}} q, \tag{8 a}\right]$$

где q — газодинамическая функция безразмерной плотности потока определяется по отношению $P_{\rm B}/P_{\rm Bx}$ из таблиц газодинамических функций [2].

Для критического редуцирования

$$G^{\times} = \left[n_2 \left(\frac{2}{\kappa + 1} \right)^{\frac{1}{\kappa + 1}} \left(\frac{1}{n_1^*} \right)^{\frac{\kappa + 1}{2\kappa}} \left(\frac{P_{\rm B}}{P_{\rm BX}^*} \right)^{\frac{\kappa + 1}{2\kappa}} \right] m \frac{\pi d_y^2}{4} \frac{P_{\rm BX}}{\sqrt{T_{\rm BX}}}. \tag{8.6}$$

Обозначая множители в квадратных скобках через μ_r и μ_r^{\times} , получим:

$$\mu_r = \omega_2 \omega_2^* \left(1 + \frac{\kappa - 1}{2} M_{rM}^2 \right) \left(\frac{1}{\omega_1^*} \right)^{\frac{\kappa + 1}{2\kappa}} \left(\frac{P_B}{P_{PV}^*} \right)^{\frac{\kappa + 1}{2\kappa}}, \tag{9 a}$$

$$\mu_r^{\times} = n_2 \left(\frac{2}{\kappa + 1} \right)^{\frac{1}{\kappa + 1}} \left(\frac{1}{n_1^*} \right)^{\frac{\kappa + 1}{2\kappa}} \left(\frac{P_B}{P_{\text{BV}}^*} \right)^{\frac{\kappa + 1}{2\kappa}}. \tag{9.6}$$

Тогда выражения расхода примут традиционную форму, аналогичную (1). Из уравнений (9 а) и (9 б) следует, что коэффициенты $\mu_r > \mu_r^{\times}$ по мере падения $P_{\text{вх}}^*$ увеличиваются соответственно до μ и μ^{\times} .

ДИАМЕТРЫ ВХОДА И ВЫХОДА РЕДУКТОРОВ

При инженерных расчётах обычно задают: G, $(P_{\text{вх}}^*)$ и $(P_{\text{в}})$, температуры $T_{\text{вх}}$ и окружающей среды. В этом случае по выражениям (8 а) и (8 б) можно определить d_y , а далее по уравнению неразрывности можно найти диаметры входа — $D_{\text{вх}}$ и выхода — $D_{\text{в}}$ редуктора в докритическом и критическом режимах редуцирования по следующим формулам:

$$D_{\text{вх}} = d_y \sqrt{\frac{M_r}{M_{\text{вх}}}} \cdot (\omega_2)^{\frac{\kappa+1}{4\kappa}} \text{ и } D_{\text{в}} = d_y \sqrt{\frac{M_r}{M_{\text{в}}}}$$
, (10 а)

$$D_{\text{BX}}^{\times} = d_y \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{4(\kappa-1)}} \frac{1}{\sqrt{M_{\text{B}}}} \text{ if } D_{\text{B}}^{\times} = d_y \frac{1}{\sqrt{M_{\text{B}}}}.$$
 (10 б)

При $\kappa=$ 1,4, $M_{\rm BX}=$ 0,2, $M_r=$ 0,85, $M_{\rm B}=$ 0,17, $\omega_2=$ 0,624, $P_{\rm rM}=P_{\rm B}$ и $M_r=$ 1 получим $D_{\rm BX}=$ 1,7 $d_{\rm V}$, $D_{\rm B}=$ 2,2 $d_{\rm V}$, и $D_{\rm BX}^{\times}=$ 1,7 $d_{\rm V}$, $D_{\rm B}^{\times}=$ 2,4 $d_{\rm V}$.

СПОСОБЫ УСТРАНЕНИЯ КОЛЕБАНИЙ ДАВЛЕНИЯ ВЫХОДА

При эксплуатации мембранных редукторов, имеющих тарельчатый клапан, несвязанный конструктивно со штоком, наблюдаются колебания давления $P_{\rm B}$ (рис.1 а, б, в). Колебания больше обычных проявляются при расходе газа G и давлении $P_{\rm B}$ много ниже расчётных. При этом значение отношения давлений $P_{\rm B}$ / $P_{\rm Bx}$ << $\pi(\lambda)^*$. Исследования показали, что клапан редуктора, конструктивно не связанный со штоком, отделялся от него под действием силы, нарушающей динамическое равновесие. Этой силы не хватало для удержания клапана в новом положении (переставала действовать сила от штока при отрыве от него клапана) и он «шлёпался» снова на шток, повторяя подскоки. При этом давления входа и командное не колебались. Колебания $P_{\rm B}$ — нормальная работа таких редукторов, но на режимах ниже расчётных они более интенсивны, потому что клапан от седла находится на расстоянии меньшем, чем при расчётном и близких к нему режимах редуцирования.

Puc.1. Снимки с осциллограмм регистрации колебаний давлений $P_{\rm B}$ полученных при продувках одного из редукторов: а, б- без доработки редукторов, в – после их доработки

Силой F, вызывающей подскоки клапана, можно считать давление рабочей среды в зоне редуцирования $P_r=P_{\rm BX}n_2$ [1] помноженное на площадь торца клапана $\frac{\pi}{4}D_{\rm K}^2$

$$F = P_{\text{BX}} \left(\frac{2}{\kappa + 1} \right)^{\frac{\kappa}{\kappa - 1}} \frac{\pi}{4} D_{\kappa}^{2},$$

где D_{κ} — диаметр клапана. Сила F может быть уравновешена силой «догрузки» $F=F_{\partial}$, которая прижимает клапан к штоку (рис.2), тогда:

$$F_{\partial} = P_{\text{BX}} \frac{\pi}{4} (D_{\partial}^2 - d_{\partial}^2),$$

где D_{∂} – диаметр поршня догрузки, d_{∂} – диаметр штока догрузки. Отсюда:

$$D_{\partial} = \sqrt{d_{\partial}^2 + \left(\frac{2}{\kappa + 1}\right)^{\frac{\kappa}{\kappa - 1}} D_{\kappa}^2}.$$

На практике диаметр штока d_{∂} догрузки рассчитывается на сжатие, а при больших длинах проверяется и на устойчивость [4].

Рис. 2. Редуктор с установленной догрузкой

На некоторых редукторах был использован способ перекрытия излишка проходного сечения зоны редуцирования «стаканом» (рис.3). В этом случае условный диаметр в рабочем режиме (d_{yp}) может быть найден из $(8\ 6)$ по формуле:

$$d_{yp} = \sqrt{\frac{4G^* \sqrt{T_{\rm BXP}^*}}{n_2 \left(\frac{2}{{\rm K}+1}\right)^{\frac{1}{{\rm K}+1}} \left(\frac{1}{n_1^*}\right)^{\frac{{\rm K}+1}{2{\rm K}}} \left(\frac{P_{\rm BP}}{P_{\rm BXP}^*}\right)^{\frac{{\rm K}+1}{2{\rm K}}} m\pi P_{\rm BXP}^*}},$$

где индекс «р» означает рабочий режим.

Puc.3. Радиатор с установленным «стаканом»

Разность площадей зоны редуцирования между расчетным режимом работы редуктора $S_r = \pi d_{yr} H_{\text{M}r}$ и рабочим режимом $S_p = \pi d_{yp} H_{\text{M}p}$ даст площадь, перекрываемую «стаканом», $S_r - S_p = S_c$ (где $S_c = \pi d_{\text{CT}} / 4$), откуда диаметр стакана d_{CT} будет:

$$d_{\rm cr} = \sqrt{d_{yr}^2 - d_{yp}^2}.$$

Такие доработки были осуществлены в общей сложности на семи редукторах, догрузка была установлена на четырёх редукторах d_y 32. Они были установлены на углекислоту и азот. «Стаканы» использовались на двух редукторах d_y 100, которые подавали воздух в изделие. Оба способа использовались на редукторах d_y 80, обеспечивающие изделие гелием. Из (рис.1 в) видно, что после указанных доработок редукторов, давление $P_{\rm B}$ значительно уменьшило колебания. Изучение вышеизложенных причин колебания давления на выходе редуктора привело к разработке его новой конструкции [5], которая не имеет этих колебаний.

Кроме того, изложенное позволяет решать возникающие в производстве вопросы, связанные с подбором из имеющихся редукторов, способных обеспечить требуемые режимы редуцирования. Как это решается можно увидеть из примера, приведённого ниже.

Пример: определить, будет ли работоспособен редуктор при расходе воздуха $G=20~\rm kr/c$, давлении входа $P_{\rm Bx}=30.0~\rm M\Pi a$ и выхода $P_{\rm B}=3.0~\rm M\Pi a$, имеющий расчётный режим редуцирования: расход $G=10.8~\rm kr/c$, $P_{\rm Bx}=30.0~\rm M\Pi a$ и $P_{\rm B}=3.0~\rm M\Pi a$, при T=273°K с проходным сечением $d_y=60~\rm mm$, максимальным ходом клапана $H_{\rm M}=15~\rm mm$.

Решение: редуктор работоспособен, если заданные расходы газа обеспечиваются проходным сечением конструкции (т.е. d_y , $H_{\rm M}$) при требуемом режиме редуцирования. Из выражений (8б) определяется d_y , обеспечивающее требуемый расход воздуха, $d_y=82$ мм. Из равенства $H_{\rm M}\pi d_y=\frac{\pi d_y^2}{4}$ следует: $H_{\rm M}=\frac{d_y}{4}=20$ мм (сравните с $d_y=60$ мм, $H_{\rm M}=15$ мм). Совершенно очевидно, что расход G=20 кг/с при указанных $P_{\rm BX}$ и $P_{\rm B}$ не может быть осуществлён. Для обеспечения этого расхода данным редуктором ($d_y=60$ мм) надо давление входа повысить до $P_{\rm BX}=55,64$ МПа из (8 б). Тот же эффект можно получить, подняв давление выхода,

если это позволяет практика. При $P_{\rm B}=6.0\,$ МПа будет $d_{y2}=54.1\,$ мм из (8б) и $H_{\rm M2}=13.5\,$ мм, что вписывается в параметры данного редуктора.

СЕЗОННАЯ РАБОТА РЕДУКТОРОВ

Было замечено, что работа редукторов зависит от сезона года. Можно предположить, что это связано с сезонным изменением температуры. Газ, используемый в работе, хранится вне помещений и принимает температуру, равную температуре окружающей среды, которая в нашей зоне меняется в среднем в пределах $t = -20 \dots + 20$ °C (или $T = 253 \dots 293$ °K). Отношение температур равно

$$\tau = T_{\text{BY3}}^* / T_{\text{BYJ}}^* = 253/293 = 0.8635.$$

Расстояние клапана от седла при равных расходах зимой меньше, чем летом. Из выражения (1) имеем:

$$G_{\rm JI} = \mu m S P_{\rm BXJI}^* / \sqrt{T_{\rm BXJI}^*} = \mu m \pi D H_{\rm JI} P_{\rm BX}^* / \sqrt{T_{\rm BXJI}^*},$$

$$G_{\rm JI} = \mu m D H_{\rm JI} P_{\rm BXI}^* / \sqrt{T_{\rm BXJI}^*}.$$

Сравнение их:

$$H_3/H_{\pi} = \sqrt{T_{\text{RY3}}^*}/\sqrt{T_{\text{RY}\pi}^*} = \sqrt{\tau} = 0.9292.$$

Плотность газа зимой увеличивается. Из уравнения состояния газа зимой $P_{\text{BX3}}^*/\rho_{\text{BX3}}^*=RT_{\text{BX3}}^*$, летом $P_{\text{BXЛ}}^*/\rho_{\text{BXЛ}}^*=RT_{\text{BXЛ}}^*$.

Сравнения их:

$$\rho_{\text{BXJ}}^*/\rho_{\text{BXJ}}^* = T_{\text{BXJ}}^*/T_{\text{BXJ}}^* = 1/\tau = 1.158.$$

Для зоны редуцирования это соотношение идентично.

Скорость газа (звуковая) в зоне редуцирования при критическом режиме зимой

$$W_{
m p3} = \sqrt{kRT_{
m BX3}^*}$$
 и летом $W_{
m p\pi} = \sqrt{kRT_{
m BXA}^*}$

Их соотношение равно:

$$W_{\rm p3} / W_{\rm p,\pi} = \sqrt{T_{\rm BX3}^*} / \sqrt{T_{\rm BX,\pi}^*} = \sqrt{\tau} = 0.9292.$$

Таким образом, если уменьшение расстояния клапана от седла увеличивает вероятность влияния вибрации клапана на колебания давления выхода, то увеличение плотности улучшает условия передачи колебаний в газе, а уменьшение скорости потока дополняет картину тем, что увеличивает продолжительность передачи этих колебаний.

Изложенные результаты исследований и предлагаемые расчёты могут быть использованы при проектировании систем газообеспечения теплоэнергетических установок, в ЖКХ, авиа- и машиностроении, химической промышленности ит.д.

Источники

- 1. Правник Ю.И. Газовая динамика процесса редуцирования в газовых редукторах больших расходов. Казань: «Вестник КГЭУ», 2012, №2(13). С.12-22.
- 2. Абрамович Г.Н. Прикладная газовая динамика, М.: Наука, 1976. 888 с.
- 3. Самойлович Г.С. Гидродинамика. М.: Машиностроение, 1980. 290 с.
- 4. Яковлев К.П. Краткий физико-технический справочник. Т.2. М.: ФИЗМАТГИЗ, 1960. 412 с.
- 5. Садыков Р.А., Правник Ю.И., Давлетбаева Ф.И. Редуктор. Патент на изобретение РФ№2344461 от 20.07.2007.

References

- 1. Pravnik YU.I. Gazovaya dinamika processa reducirovaniya v gazovy'h reduktorah bol'shih rashodov. Kazan': «Vestnik KGE`U», 2012, №2(13). S.12-22.
- 2. Abramovich G.N. Prikladnaya gazovaya dinamika, M.: Nauka, 1976. 888 s.
- 3. Samoylovich G.S. Gidrodinamika. M.: Mashinostroenie, 1980. 290 s.
- 4. YAkovlev K.P. Kratkiy fiziko-tehnicheskiy spravochnik. T.2. M.: FIZMATGIZ, 1960. 412 s.
- 5. Sady'kov R.A., Pravnik YU.I., Davletbaeva F.I. Reduktor. Patent na izobretenie RF№2344461 ot 20.07.2007.

Зарегистрирована 19.09.2012.