"본 강의 동영상 및 자료는 대한민국 저작권법을 준수합니다. 본 강의 동영상 및 자료는 상명대학교 재학생들의 수업목적으로 제작·배포되는 것이므로, 수업목적으로 내려받은 강의 동영상 및 자료는 수업목적 이외에 다른 용도로 사용할 수 없으며, 다른 장소 및 타인에게 복제, 전송하여 공유할 수 없습니다. 이를 위반해서 발생하는 모든 법적 책임은 행위 주체인 본인에게 있습니다."

Example of a depth-first search on digraph

(1) Types of edges

An example on digraph → DFS tree

(1) Types of edges

- Four types of edges in DFS tree
 - Tree edge
 - Edges in the DFS tree
 - Forward edge
 - To a non-child descendant
 - Backward edge
 - To an ancestor
 - Cross edge
 - To neither descendant nor ancestor

- (1) Types of edges
 - Relation with pre and post
 - For an edge <u, v>

]]	Tree/Forward
u	V	V	u	
]]	Backward
V	u	u	V	
]	[]	Cross
\mathbf{v}	V	u	u	

- Definitions (1)
 - Cycle
 - A circular path in a directed graph
 - $-u \rightarrow v \rightarrow w \rightarrow \rightarrow u$
 - Cycles in this graph?
 - Acyclic graph
 - A graph without a cycle

- Definitions (2)
 - Source
 - A vertex that has only out-edges
 - Sink
 - A vertex that has only in-edges

- Definitions (3)
 - Topological order
 - Order the vertices one after the other in such a way that each edge goes from an earlier vertex to a later vertex
 - Linearization
 - How many linearizations in this graph?

- Properties
 - A directed graph has a cycle if and only if its depthfirst search reveals a back edge
 - In a dag, every edge leads to a vertex with a lower post number
 - Every dag has at least one source and at least one sink

All about graph

Туре	Purpose	Operations	Performance
DFS	Traverse all vertices	Visiting all vertices & visiting all edges	O(n) + O(m)
SCC			
ВСС			
BFS			
Dijkstra			
Floyd			
Kruskal (Greedy)			
Prim (Greedy)			
MultiStage (Dynamic)			

다음 중 DFS에 대한 설명 중 올바른 것을 모두 고르시오.

- (a) DFS의 결과로 만들어지는 Depth-first spanning tree 는 항상 binary tree가 되지는 않는다.
- (b) Depth-first spanning tree의 depth는 graph의 vertex의 수에 비례한다.
- (c) Depth-first spanning tree의 depth는 graph의 edge의 수에 비례한다.
- (d) Depth-first spanning tree에서 root node에 더 가까운 vertex는 graph에서 root node에 해당하는 vertex에 더 가깝게 위치한다.
- (e) 모든 그래프에 대해서 하나의 depth-first spanning tree가 존재한다.