Appendix 1

PROPERTY TABLES AND CHARTS (SI UNITS)

Table A-1	Molar mass, gas constant, and	Figure A-14	P-h diagram for refrigerant-134a 1011
	critical-point properties 988	Table A-15	Properties of saturated water 1012
Table A-2	Ideal-gas specific heats of various common gases 989	Table A-16	Properties of saturated refrigerant-134a 1013
Table A-3	Properties of common liquids, solids, and foods 992	Table A-17	Properties of saturated ammonia 1014
Table A-4	Saturated water—Temperature	Table A-18	Properties of saturated propane 1015
	table 994	Table A-19	Properties of liquids 1016
Table A-5	Saturated water—Pressure table 996	Table A-20	Properties of liquid metals 1017
Table A-6	Superheated water 998	Table A-21	Ideal-gas properties of air 1018
Table A-7	Compressed liquid water 1002	Table A-22	Properties of air at 1 atm pressure 1020
Table A-8	Saturated ice-water vapor 1003	Table A-23	Properties of gases at 1 atm
Figure A-9	T-s diagram for water 1004	Iddio A 20	pressure 1021
Figure A-10	Mollier diagram for water 1005	Table A-24	Properties of solid metals 1023
Table A-11	Saturated refrigerant-134a—	Table A-25	Properties of solid non-metals 1026
	Temperature table 1006	Table A-26	Emissivities of surfaces 1027
Table A-12	Saturated refrigerant-134a— Pressure table 1008	Figure A-27	The Moody Chart 1029
Table A-13	Superheated refrigerant-134a 1009	Figure A–28	Nelson-Obert generalized compressibility chart 1030

988 | Fundamentals of Thermal-Fluid Sciences

TABLE A – 1

Molar mass, gas constant, and critical-point properties

			Gas	Critical-p	ooint properties	S
Substance	Formula	Molar mass, <i>M</i> kg/kmol	constant, R kJ/kg · K*	Temperature, K	Pressure, MPa	Volume, m³/kmol
Air	_	28.97	0.2870	132.5	3.77	0.0883
Ammonia	NH_3	17.03	0.4882	405.5	11.28	0.0724
Argon	Ar	39.948	0.2081	151	4.86	0.0749
Benzene	C_6H_6	78.115	0.1064	562	4.92	0.2603
Bromine	Br ₂	159.808	0.0520	584	10.34	0.1355
<i>n</i> -Butane	C_4H_{10}	58.124	0.1430	425.2	3.80	0.2547
Carbon dioxide	CO ₂	44.01	0.1889	304.2	7.39	0.0943
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930
Carbon tetrachloride	CCI ₄	153.82	0.05405	556.4	4.56	0.2759
Chlorine	Cl ₂	70.906	0.1173	417	7.71	0.1242
Chloroform	CHCI ₃	119.38	0.06964	536.6	5.47	0.2403
Dichlorodifluoromethane (R-12)	CCI_2F_2	120.91	0.06876	384.7	4.01	0.2179
Dichlorofluoromethane (R-21)	CHCl ₂ F	102.92	0.08078	451.7	5.17	0.1973
Ethane	C_2H_6	30.070	0.2765	305.5	4.48	0.1480
Ethyl alcohol	C_2H_5OH	46.07	0.1805	516	6.38	0.1673
Ethylene	C_2H_4	28.054	0.2964	282.4	5.12	0.1242
Helium	He	4.003	2.0769	5.3	0.23	0.0578
<i>n</i> -Hexane	C_6H_{14}	86.179	0.09647	507.9	3.03	0.3677
Hydrogen (normal)	H_2	2.016	4.1240	33.3	1.30	0.0649
Krypton	Kr	83.80	0.09921	209.4	5.50	0.0924
Methane	CH ₄	16.043	0.5182	191.1	4.64	0.0993
Methyl alcohol	CH₃OH	32.042	0.2595	513.2	7.95	0.1180
Methyl chloride	CH₃CI	50.488	0.1647	416.3	6.68	0.1430
Neon	Ne	20.183	0.4119	44.5	2.73	0.0417
Nitrogen	N_2	28.013	0.2968	126.2	3.39	0.0899
Nitrous oxide	N_2O	44.013	0.1889	309.7	7.27	0.0961
Oxygen	O_2	31.999	0.2598	154.8	5.08	0.0780
Propane	C_3H_8	44.097	0.1885	370	4.26	0.1998
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO_2	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane (R-11)	CCI ₃ F	137.37	0.06052	471.2	4.38	0.2478
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

^{*}The unit kJ/kg \cdot K is equivalent to kPa \cdot m³/kg \cdot K. The gas constant is calculated from $R = R_u/M$, where $R_u = 8.31447$ kJ/kmol \cdot K and M is the molar mass.

Source: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A-2

Ideal-gas specific heats of various common gases

(a) At 300 K

		Gas constant, R	C_p	$C_{_{ m V}}$	
Gas	Formula	kJ/kg ⋅ K	kJ/kg ⋅ K	kJ/kg ⋅ K	k
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO_2	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C_2H_6	0.2765	1.7662	1.4897	1.186
Ethylene	C_2H_4	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_2	4.1240	14.307	10.183	1.405
Methane	CH₄	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	C ₈ H ₁₈	0.0729	1.7113	1.6385	1.044
Oxygen	02	0.2598	0.918	0.658	1.395
Propane	C_3H_8	0.1885	1.6794	1.4909	1.126
Steam	H_2° 0	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg \cdot K is equivalent to kJ/kg \cdot °C.

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

990 | Fundamentals of Thermal-Fluid Sciences

TABLE A-2

Ideal-gas specific heats of various common gases (Continued)

(b) At various temperatures

Temperature,	$c_p \over ext{kJ/kg} \cdot ext{K}$	$c_{_{\scriptscriptstyle ee}}$ kJ/kg \cdot K	k	c_p kJ/kg · K	$c_{_{\scriptscriptstyle ee}}$ kJ/kg \cdot K	k	<i>c_p</i> kJ/kg ⋅ K	$c_{\scriptscriptstyle ec u}$ kJ/kg \cdot K	k
K		Air		Cart	oon dioxide, C	02	Carbon	monoxide, (CO
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335
		Hydrogen,	H_2		Nitrogen, N	V_2	O)	ygen, O ₂	
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 783, Table A–4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLE A-2

Ideal-gas specific heats of various common gases (Concluded)

(c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$
 (T in K, c_p in kJ/kmol · K)

						Temperature	<u> % e</u>	rror
Substance	Formula	а	b	С	d	range, K	Max.	Avg.
Nitrogen	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273-1800	0.59	0.34
Oxygen	02	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273-1800	1.19	0.28
Air	_	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273-1800	0.72	0.33
Hydrogen Carbon	H_2	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}	273–1800	1.01	0.26
monoxide Carbon	CO	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273–1800	0.89	0.37
dioxide	CO_2	22.26	5.981×10^{-2}	-3.501×10^{-5}	7.469×10^{-9}	273-1800	0.67	0.22
Water vapor	H_2O	32.24	0.1923×10^{-2}	1.055×10^{-5}	-3.595×10^{-9}	273-1800	0.53	0.24
Nitric oxide	NO	29.34	-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273-1500	0.97	0.36
Nitrous oxide Nitrogen	N_2O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273–1500	0.59	0.26
dioxide	NO_2	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273-1500	0.46	0.18
Ammonia	NH_3	27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273-1500	0.91	0.36
Sulfur Sulfur	S_2	27.21	2.218×10^{-2}	-1.628×10^{-5}	3.986×10^{-9}	273–1800	0.99	0.38
dioxide Sulfur	SO_2	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273–1800	0.45	0.24
trioxide	SO_3	16.40	14.58×10^{-2}	-11.20×10^{-5}	32.42×10^{-9}	273-1300	0.29	0.13
Acetylene	C_2H_2	21.8	9.2143×10^{-2}	-6.527×10^{-5}	18.21×10^{-9}	273-1500	1.46	0.59
Benzene		-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273-1500	0.34	0.20
Methanol	CH₄Ö	19.0	9.152×10^{-2}	-1.22×10^{-5}	-8.039×10^{-9}	273-1000	0.18	0.08
Ethanol Hydrogen	$C_2 \vec{H}_6 O$	19.9	20.96×10^{-2}	-10.38×10^{-5}	20.05×10^{-9}	273–1500	0.40	0.22
chloride	HCI	30.33	-0.7620×10^{-2}	1.327×10^{-5}	-4.338×10^{-9}	273-1500	0.22	0.08
Methane	CH₄	19.89	5.024×10^{-2}	1.269×10^{-5}	-11.01×10^{-9}	273-1500	1.33	0.57
Ethane	C ₂ H ₆	6.900	17.27×10^{-2}	-6.406×10^{-5}	7.285×10^{-9}	273-1500	0.83	0.28
Propane	C_3H_8	-4.04	30.48×10^{-2}	-15.72×10^{-5}	31.74×10^{-9}	273-1500	0.40	0.12
<i>n</i> -Butane	C_4H_{10}	3.96	37.15×10^{-2}	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24
<i>i</i> -Butane	C ₄ H ₁₀	-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273-1500	0.25	0.13
<i>n</i> -Pentane	C ₅ H ₁₂	6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273-1500	0.56	0.21
<i>n</i> -Hexane	C ₆ H ₁₄	6.938	55.22×10^{-2}	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20
Ethylene	C_2H_4	3.95	15.64×10^{-2}	-8.344×10^{-5}	17.67×10^{-9}	273-1500	0.54	0.13
Propylene	C ₃ H ₆	3.15	23.83×10^{-2}	-12.18×10^{-5}	24.62×10^{-9}	273–1500	0.73	0.17

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

992 | Fundamentals of Thermal-Fluid Sciences

TABLE A-3

Properties of common liquids, solids, and foods

(a) Liquids

	Boiling	data at 1 atm	Freez	ring data	Liquid properties			
Substance	Normal boiling point, °C	Latent heat of vaporization h_{fg} , kJ/kg	Freezing point, °C	Latent heat of fusion h_{if} , kJ/kg	Temperature, °C	Density $ ho$, kg/m ³	Specific heat c_p , kJ/kg \cdot K	
Ammonia	-33.3	1357	-77.7	322.4	-33.3	682	4.43	
					-20	665	4.52	
					0	639	4.60	
					25	602	4.80	
Argon	-185.9	161.6	-189.3	28	-185.6	1394	1.14	
Benzene	80.2	394	5.5	126	20	879	1.72	
Brine (20% sodium	102.0		17 /		20	1150	2 1 1	
chloride by mass)	103.9		-17.4		20	1150	3.11	
<i>n</i> -Butane	-0.5 -78.4*	385.2	-138.5	80.3	-0.5	601 298	2.31	
Carbon dioxide		230.5 (at 0°C)	-56.6	100	0		0.59	
Ethanol	78.2	838.3	-114.2	109 108	25	783 789	2.46 2.84	
Ethyl alcohol	78.6	855	-156		20			
Ethylene glycol	198.1	800.1	-10.8	181.1	20	1109	2.84	
Glycerine	179.9	974	18.9	200.6	20	1261	2.32	
Helium	-268.9	22.8	— 250.2	— E0 E	-268.9	146.2	22.8	
Hydrogen	-252.8	445.7	-259.2	59.5	-252.8	70.7	10.0	
Isobutane	-11.7 204-293	367.1 251	-160 -24.9	105.7	-11.7 20	593.8 820	2.28 2.00	
Kerosene	356.7	294.7	-24.9 -38.9	— 11.4	20 25	13,560	2.00 0.139	
Mercury			-36.9 -182.2	58.4	-161.5	423	3.49	
Methane	-161.5	510.4	-182.2	58.4	-161.5 -100	423 301	5.49 5.79	
Methanol	64.5	1100	-97.7	99.2	-100 25	787	2.55	
	-195.8	198.6	-97.7 -210	25.3	-195.8	809	2.06	
Nitrogen	-195.6	190.0	-210	23.3	-195.8 -160	596	2.06	
Octane	124.8	306.3	-57.5	180.7	20	703	2.10	
Oil (light)	12 1.0	000.0	07.0	100.7	25	910	1.80	
Oxygen	-183	212.7	-218.8	13.7	-183	1141	1.71	
Petroleum	_	230–384	210.0	1017	20	640	2.0	
Propane	-42.1	427.8	-187.7	80.0	-42.1	581	2.25	
Tropano		127.0	10,.,	00.0	0	529	2.53	
					50	449	3.13	
Refrigerant-134a	-26.1	217.0	-96.6	_	-50	1443	1.23	
			30.0		-26.1	1374	1.27	
					0	1295	1.34	
					25	1207	1.43	
Water	100	2257	0.0	333.7	0	1000	4.22	
					25	997	4.18	
					50	988	4.18	
					75	975	4.19	
					100	958	4.22	

^{*} Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -56.5° C.)

993

Appendix 1

TABLE A-3

Properties of common liquids, solids, and foods (Concluded)

(b) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, $ ho$ kg/m 3	Specific heat, $c_{\scriptscriptstyle p}$ kJ/kg \cdot K	Substance	Density, $ ho$ kg/m ³	Specific heat, c_{ρ} kJ/kg \cdot K
Metals			Nonmetals		
Aluminum			Asphalt	2110	0.920
200 K		0.797	Brick, common	1922	0.79
250 K		0.859	Brick, fireclay (500°C)	2300	0.960
300 K	2,700	0.902	Concrete	2300	0.653
350 K		0.929	Clay	1000	0.920
400 K		0.949	Diamond	2420	0.616
450 K		0.973	Glass, window	2700	0.800
500 K		0.997	Glass, pyrex	2230	0.840
Bronze (76% Cu, 2% Zn,	8,280	0.400	Graphite	2500	0.711
2% AI)			Granite	2700	1.017
Brass, yellow (65% Cu,	8,310	0.400	Gypsum or plaster board	800	1.09
35% Zn)			Ice		
Copper			200 K		1.56
-173°C		0.254	220 K		1.71
-100°C		0.342	240 K		1.86
−50°C		0.367	260 K		2.01
0°C		0.381	273 K	921	2.11
27°C	8,900	0.386	Limestone	1650	0.909
100°C		0.393	Marble	2600	0.880
200°C		0.403	Plywood (Douglas Fir)	545	1.21
Iron	7,840	0.45	Rubber (soft)	1100	1.840
Lead	11,310	0.128	Rubber (hard)	1150	2.009
Magnesium	1,730	1.000	Sand	1520	0.800
Nickel	8,890	0.440	Stone	1500	0.800
Silver	10,470	0.235	Woods, hard (maple, oak, etc.)	721	1.26
Steel, mild	7,830	0.500	Woods, soft (fir, pine, etc.)	513	1.38
Tungsten	19,400	0.130			

(c) Foods

	Water			ic heat, g · K	Latent heat of		Water		Specific kJ/kg		Latent heat of
	content,	Freezing	Above	Below	fusion,		content,	Freezing	Above	Below	fusion,
Food	% (mass)	point, °C	freezing	freezing	kJ/kg	Food	% (mass)	point, °C	freezing	freezing	kJ/kg
Apples	84	-1.1	3.65	1.90	281	Lettuce	95	-0.2	4.02	2.04	317
Bananas	75	-0.8	3.35	1.78	251	Milk, whole	88	-0.6	3.79	1.95	294
Beef round	67	_	3.08	1.68	224	Oranges	87	-0.8	3.75	1.94	291
Broccoli	90	-0.6	3.86	1.97	301	Potatoes	78	-0.6	3.45	1.82	261
Butter	16	_	_	1.04	53	Salmon fish	64	-2.2	2.98	1.65	214
Cheese, swiss	39	-10.0	2.15	1.33	130	Shrimp	83	-2.2	3.62	1.89	277
Cherries	80	-1.8	3.52	1.85	267	Spinach	93	-0.3	3.96	2.01	311
Chicken	74	-2.8	3.32	1.77	247	Strawberries	90	-0.8	3.86	1.97	301
Corn, sweet	74	-0.6	3.32	1.77	247	Tomatoes, ripe	94	-0.5	3.99	2.02	314
Eggs, whole	74	-0.6	3.32	1.77	247	Turkey	64	_	2.98	1.65	214
Ice cream	63	-5.6	2.95	1.63	210	Watermelon	93	-0.4	3.96	2.01	311

Source: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chapter 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

994 | Fundamentals of Thermal-Fluid Sciences

Satura	ted water—	Temperatur	e table									
			fic volume, m³/kg	Internal energy, Enthalpy, kJ/kg kJ/kg) <i>y,</i>		Entropy, kJ/kg · k				
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

TABLE A-4

Saturated water—Temperature table (Continued)

			c volume, ³ /kg	In	<i>ternal en</i> kJ/kg	ergy,		Enthal _l kJ/kg	•		<i>Entropy,</i> kJ/kg · K	,
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	3.9318 3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7066 2.6225 2.5374	5.8579 5.8210 5.7834 5.7450 5.7059
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.7857 1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
355 360 365 370 373.95	17,570 18,666 19,822 21,044 5 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.1373 0.9489	5.1384 5.0537 4.9493 4.8009 4.4070

Source: Tables A–4 through A–8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

996 | Fundamentals of Thermal-Fluid Sciences

ΙЛ	υ		ь.	т	ь.
IΑ	D	L	Е.	ı	1)

Saturate	ed water-	-Pressure t	able									
		,	fic volume, m³/kg		<i>Internal ei</i> kJ/kg			Enthalpy kJ/kg	;		<i>Entropy,</i> kJ/kg · K	
Press., P kPa	Sat. temp., $T_{\rm sat}$ °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	5 99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037		2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578		2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329		2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873		2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732		1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	572.84 583.89 594.32	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.6717 1.7005 1.7274 1.7526 1.7765	5.3200 5.2645 5.2128 5.1645 5.1191	6.9917 6.9650 6.9402 6.9171 6.8955
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	639.54 655.16 669.72	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2743.4 2748.1 2752.4 2756.2 2759.6	1.8205 1.8604 1.8970 1.9308 1.9623	5.0356 4.9603 4.8916 4.8285 4.7699	6.8561 6.8207 6.7886 6.7593 6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837

IARLE A	TABLE A-5											
Saturate	Saturated water—Pressure table (Continued) Specific volume, Internal energy, Enthalpy, Entropy,											
			volume, ³ /kg	In	<i>ternal en</i> kJ/kg	ergy,		Enthalpy kJ/kg	,		Entropy, kJ/kg · K	
Press., <i>P</i> kPa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap.,	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h_{fg}	Sat. vapor,	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
800 850 900 950 1000	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	719.97 731.00 741.55 751.67		2576.0 2577.9 2579.6 2581.3 2582.8	720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2768.3 2770.8 2773.0 2775.2	2.0457 2.0705 2.0941 2.1166 2.1381	4.6160 4.5705	6.6616 6.6409 6.6213 6.6027 6.5850
1100 1200 1300 1400 1500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	796.96 813.10 828.35	1805.7 1790.9 1776.8 1763.4 1750.6	2585.5 2587.8 2589.9 2591.8 2593.4	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4		2.1785 2.2159 2.2508 2.2835 2.3143	4.3735 4.3058 4.2428 4.1840 4.1287	6.5520 6.5217 6.4936 6.4675 6.4430
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12 933.54	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9	2801.9	2.3844 2.4467 2.5029 2.5542 2.6454	4.0033 3.8923 3.7926 3.7016 3.5402	6.3877 6.3390 6.2954 6.2558 6.1856
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378	1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2603.0 2601.7 2597.0 2589.9 2581.0	1087.4 1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2784.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1306.0 1350.9 1393.3 1433.9 1473.0	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2 1491.3	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3 2685.4	3.2077 3.2866 3.3603 3.4299 3.4964	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1511.0 1548.4 1585.5 1622.6 1660.2	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1571.0 1610.3 1649.9 1690.3	1131.3 1067.0 1000.5 931.1 857.4	2581.0 2547.7	3.5606 3.6232 3.6848 3.7461 3.8082	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 598.9 509.0 391.9 140.8	2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1776.8 1826.6 1888.0 2011.1	777.8 689.2 585.5 450.4 161.5	2466.0 2412.1 2338.4 2172.6	3.8720 3.9396 4.0146 4.1071 4.2942 4.4070	1.2343 1.0860 0.9164 0.7005 0.2496 0	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070

998 Fundamentals of Thermal-Fluid Sciences

TABLE	A6											
Superh	eated wate	r										
Т	V	и	h	S	V	и	h	S	V	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	0.01 MF	Pa (45.81°	°C)*	P =	0.05 MP	a (81.32°	C)	P =	0.10 MP	a (99.61	°C)
Sat.†	14.670		2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867		2592.0	8.1741	2 4107	0511.5	0000 4	7.0052	1 (050	2506.2	0075.0	7 2611
100 150	17.196 19.513		2687.5 2783.0	8.4489 8.6893	3.4187 3.8897	2511.5 2585.7	2682.4 2780.2	7.6953 7.9413	1.6959	2506.2 2582.9	2675.8 2776.6	7.3611 7.6148
200	21.826		2879.6	8.9049	4.3562	2660.0	2877.8	8.1592		2658.2	2875.5	7.8356
250	24.136		2977.5	9.1015	4.8206	2735.1	2976.2	8.3568		2733.9	2974.5	
300	26.446		3076.7	9.2827	5.2841	2811.6	3075.8	8.5387		2810.7	3074.5	
400	31.063		3280.0	9.6094	6.2094	2968.9	3279.3	8.8659		2968.3	3278.6	8.5452
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.8362
600	40.296			10.1631	8.0577	3303.1	3706.0	9.4201		3302.8	3705.6	9.0999
700	44.911			10.4056	8.9813	3480.6	3929.7	9.6626		3480.4	3929.4	
800	49.527			10.6312	9.9047	3665.2	4160.4			3665.0	4160.2	
900	54.143			10.8429	10.8280	3856.8		10.1000	5.4137		4398.0	
1000	58.758			11.0429 11.2326	11.7513	4055.2		10.3000		4055.0 4259.8	4642.6	
1100 1200	63.373 67.989			11.2326	12.6745 13.5977	4259.9 4470.8		10.4897 10.6704		4239.8		10.1698
1300	72.604			11.5857	14.5209	4687.3		10.8704		4687.2		10.5304
1000			Pa (120.2)			0.30 MPa				0.40 MPa		
Sat.	0.88578			7.1270	0.60582		2724.9	6.9917		2553.1		
150	0.86376			7.1270	0.63402		2761.2	7.0792		2564.4		
200	1.08049			7.5081	0.71643		2865.9	7.3132		2647.2		7.1723
250	1.19890			7.7100	0.79645		2967.9	7.5180		2726.4	2964.5	7.3804
300	1.31623			7.8941	0.87535		3069.6	7.7037		2805.1	3067.1	7.5677
400	1.54934			8.2236	1.03155	2966.0	3275.5	8.0347	0.77265	2964.9	3273.9	7.9003
500	1.78142			8.5153	1.18672		3486.6	8.3271		3129.8	3485.5	8.1933
600	2.01302			8.7793	1.34139		3704.0	8.5915		3301.0		8.4580
700	2.24434			9.0221	1.49580		3928.2	8.8345		3479.0	3927.6	
800	2.47550			9.2479	1.65004		4159.3	9.0605		3663.9	4158.9	
900 1000	2.70656 2.93755	3856.3		9.4598 9.6599	1.80417 1.95824		4397.3 4642.0	9.2725 9.4726		3855.7 4054.3	4396.9 4641.7	9.1394 9.3396
1100	3.16848			9.8497	2.11226		4893.1	9.4726			4892.9	9.5295
1200	3.39938			10.0304	2.26624		5150.2	9.8431		4470.2		
1300	3.63026				2.42019			10.0157		4686.7		
			a (151.83		P =					0.80 MPa		
Sat.				6.8207	0.31560							6.6616
200	0.42503			7.0610	0.35212			6.9683				6.8177
250	0.47443			7.2725	0.39390		2957.6	7.1833		2715.9		
300	0.52261			7.4614	0.43442		3062.0			2797.5		
350	0.57015	2883.0	3168.1	7.6346	0.47428	2881.6	3166.1	7.5481	0.35442	2878.6	3162.2	7.4107
400	0.61731			7.7956	0.51374		3270.8			2960.2		7.5735
500	0.71095			8.0893	0.59200		3483.4			3126.6		
600	0.80409			8.3544	0.66976		3701.7			3298.7		8.1354
700	0.89696			8.5978	0.74725		3926.4			3477.2	3925.3	
800	0.98966			8.8240	0.82457		4157.9					8.6061
900 1000	1.08227 1.17480			9.0362 9.2364	0.90179 0.97893		4396.2 4641.1			3854.5 4053.3	4395.5 4640.5	
1100	1.17480			9.2364	1.05603			9.1521		4053.3		
1200	1.35972			9.4203	1.13309			9.5229		4256.5		
1300	1.45214			9.7797	1.21012			9.6955		4686.1		

 $^{{}^{\}star}\mathsf{The}$ temperature in parentheses is the saturation temperature at the specified pressure.

 $^{^{\}scriptscriptstyle\dagger}$ Properties of saturated vapor at the specified pressure.

TABLE	A-6											
Superl	neated wat	er (<i>Conti</i>	nued)									
T	V	И	h	S	V	И	h	s	V	И	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	<i>P</i>	= 1.00 M	Pa (179.8	8°C)	Р	= 1.20 MI	Pa (187.96	5°C)	<i>P</i> =	1.40 MPa	a (195.04	4°C)
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8		6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7		6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9		6.7488
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7		6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7		7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5	3261.3	7.3793	0.21782			7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477.0	7.6779	0.25216	3121.8		7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395	3296.3	3697.0	7.9456	0.28597	3295.1		7.8730
700	0.44783	3476.3	3924.1	8.2755	0.37297	3475.3	3922.9	8.1904	0.31951	3474.4		8.1183
800 900	0.49438 0.54083	3661.7 3853.9	4156.1 4394.8	8.5024 8.7150	0.41184 0.45059	3661.0 3853.3	4155.2 4394.0	8.4176 8.6303	0.35288 0.38614	3660.3		8.3458 8.5587
1000	0.54063	4052.7	4640.0	8.9155	0.43039	4052.2	4639.4	8.8310	0.38014			8.7595
1100	0.63354	4257.9	4891.4	9.1057	0.46926	4257.5	4891.0	9.0212	0.41933	4257.0		8.9497
1200	0.63334	4469.0	5148.9	9.1057	0.52792	4468.7	5148.5	9.0212	0.43247	4468.3		9.1308
1300	0.72610	4685.8	5411.9	9.4593	0.60509	4685.5	5411.6	9.3750	0.48338	4685.1		9.3036
1000	0.72010	+000.0	5+11.5	3.4030					0.01000	+000.1	0+11.0	3.0000
	P	= 1.60 M	Pa (201.3	7°C)	Р	= 1.80 MI	Pa (207.1)	L°C)	P =	2.00 MP	a (212.38	3°C)
Sat.	0.12374		2792.8	6.4200	0.11037	2597.3	2795.9	6.3775	0.09959	2599.1		6.3390
225	0.13293	2645.1	2857.8	6.5537	0.11678	2637.0	2847.2	6.4825	0.10381	2628.5		6.4160
250	0.14190	2692.9	2919.9	6.6753	0.12502	2686.7	2911.7	6.6088	0.11150	2680.3		6.5475
300	0.15866	2781.6	3035.4	6.8864	0.14025	2777.4	3029.9	6.8246	0.12551	2773.2		6.7684
350	0.17459	2866.6	3146.0	7.0713	0.15460	2863.6	3141.9	7.0120	0.13860	2860.5		6.9583
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3	3251.6	7.1814	0.15122	2945.9		7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5	3470.4	7.4845	0.17568	3116.9		7.4337
600 700	0.24999 0.27941	3293.9 3473.5	3693.9 3920.5	7.8101 8.0558	0.22200 0.24822	3292.7 3472.6	3692.3 3919.4	7.7543 8.0005	0.19962 0.22326	3291.5 3471.7		7.7043 7.9509
800	0.27941	3659.5	4153.4	8.2834	0.24622	3658.8	4152.4	8.2284	0.24674	3658.0		8.1791
900	0.33780	3852.1	4392.6	8.4965	0.27420	3851.5	4391.9	8.4417	0.27012	3850.9		8.3925
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7	4637.6	8.6427	0.27012	4050.2		8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2	4889.6	8.8331	0.23542	4255.7		8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4467.6	5147.3	9.0143	0.33989	4467.2		8.9654
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.5	5410.6	9.1872	0.36308	4684.2		9.1384
			Pa (223.9			= 3.00 MI				3.50 MPa		
C a t	0.07995					2603.2	2803.2		0.05706	2603.0		
Sat. 225	0.07995	2602.1 2604.8	2801.9 2805.5	6.2558 6.2629	0.06667	2003.2	2003.2	6.1856	0.03706	2003.0	2002.7	6.1244
250	0.08705	2663.3	2880.9	6.4107	0.07063	2644.7	2856.5	6.2893	0.05876	2624.0	2829.7	6.1764
300	0.09894	2762.2	3009.6	6.6459	0.08118	2750.8	2994.3	6.5412	0.06845	2738.8	2978.4	6.4484
350	0.10979	2852.5	3127.0	6.8424	0.09056	2844.4	3116.1	6.7450	0.07680	2836.0		6.6601
400	0.12012	2939.8	3240.1	7.0170	0.09938	2933.6	3231.7	6.9235	0.08456	2927.2	3223.2	6.8428
450	0.13015	3026.2	3351.6	7.1768	0.10789	3021.2	3344.9	7.0856	0.09198	3016.1		7.0074
500	0.13999	3112.8	3462.8	7.3254	0.11620	3108.6	3457.2	7.2359	0.09919	3104.5		7.1593
600	0.15931		3686.8	7.5979	0.13245	3285.5	3682.8	7.5103	0.11325	3282.5		7.4357
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0	3912.2	7.7590	0.12702	3464.7		7.6855
800	0.19722	3656.2	4149.2	8.0744	0.16420	3654.3	4146.9	7.9885	0.14061	3652.5		7.9156
900	0.21597	3849.4	4389.3	8.2882	0.17988	3847.9	4387.5	8.2028	0.15410	3846.4		8.1304
1000	0.23466	4049.0	4635.6	8.4897	0.19549	4047.7	4634.2	8.4045	0.16751	4046.4		8.3324
1100	0.25330		4887.9	8.6804	0.21105	4253.6	4886.7	8.5955	0.18087	4252.5		8.5236
1200	0.27190		5146.0	8.8618	0.22658	4465.3	5145.1	8.7771	0.19420	4464.4		8.7053
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.8	8.9502	0.20750	4681.8	5408.0	8.8786

1000 | Fundamentals of Thermal-Fluid Sciences

TABLE	A6											
Superh	neated wat	er (<i>Conti</i>	nued)									
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg \cdot K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
	<i>P</i>	= 4.0 MF	Pa (250.35	s°С)	Р	= 4.5 MP	a (257.44°	°C)	<i>P</i> =	5.0 MPa	(263.94	°C)
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3		6.0571
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5		6.6483
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6		6.8210
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8		6.9781
600	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3		7.2605
700	0.11098		3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7		7.5136
800	0.12292		4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9		7.7458
900	0.13476 0.14653	3844.8	4383.9	8.0675	0.11972 0.13020	3843.3	4382.1	8.0118	0.10769 0.11715		4380.2	
1000	0.14653		4631.2	8.2698		4043.9	4629.8	8.2144	0.11715	4042.6		8.1648
1100 1200	0.13824		4884.4 5143.2	8.4612 8.6430	0.14064 0.15103	4250.4 4462.6	4883.2 5142.2	8.4060 8.5880	0.12633	4249.3 4461.6		8.3566 8.5388
1300	0.18992		5407.2	8.8164	0.15103	4680.1	5406.5	8.7616	0.13592	4679.3		8.7124
1500	-											
			Pa (275.59				a (285.83°			8.0 MPa		
Sat.	0.03245		2784.6	5.8902	0.027378		2772.6	5.8148	0.023525			5.7450
300	0.03619		2885.6	6.0703	0.029492		2839.9	5.9337	0.024279			5.7937
350	0.04225		3043.9	6.3357	0.035262		3016.9	6.2305	0.029975			6.1321
400	0.04742		3178.3	6.5432	0.039958		3159.2	6.4502	0.034344			6.3658
450	0.05217		3302.9	6.7219	0.044187		3288.3	6.6353	0.038194			6.5579
500 550	0.05667 0.06102	3083.1 3175.2	3423.1 3541.3	6.8826 7.0308	0.048157 0.051966		3411.4 3531.6	6.8000 6.9507	0.041767 0.045172			6.7266 6.8800
600	0.06102	3267.2	3658.8	7.0308	0.051966		3650.6	7.0910	0.043172			7.0221
700	0.00327	3453.0	3894.3	7.1093	0.053003		3888.3	7.3487	0.048403			7.0221
800	0.08165	3643.2	4133.1	7.6582	0.069856		4128.5	7.5836	0.061011			7.5185
900	0.08964	3838.8	4376.6	7.8751	0.076750		4373.0	7.8014	0.067082			7.7372
1000	0.09756	4040.1	4625.4	8.0786	0.083571		4622.5	8.0055	0.073079			7.9419
1100	0.10543		4879.7	8.2709	0.090341		4877.4	8.1982	0.079025			8.1350
1200	0.11326	4459.8	5139.4	8.4534	0.097075	4457.9	5137.4	8.3810	0.084934	4456.1		8.3181
1300	0.12107	4677.7	5404.1	8.6273	0.103781	4676.1	5402.6	8.5551	0.090817	4674.5	5401.0	8.4925
		= 9.0 MF	Pa (303.35	s°С)	P =	= 10.0 MF	Pa (311.00)°C)	P =	12.5 MPa	a (327.81	.°C)
Sat.	0.020489	2558.5	2742.9	5.6791	0.018028	2545.2	2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284		2857.1	5.8738	0.019877		2810.3	5.7596	0.010.50	2000.0	2070	0000
350			2957.3		0.022440			5.9460	0.016138	2624.9	2826.6	5.7130
400	0.029960	2849.2	3118.8	6.2876	0.026436	2833.1	3097.5	6.2141	0.020030	2789.6	3040.0	6.0433
450	0.033524		3258.0	6.4872	0.029782		3242.4	6.4219	0.023019			
500	0.036793		3387.4	6.6603	0.032811		3375.1	6.5995	0.025630	3023.2	3343.6	6.4651
550	0.039885	3153.0	3512.0	6.8164	0.035655	3145.4	3502.0	6.7585	0.028033	3126.1	3476.5	6.6317
600	0.042861	3248.4	3634.1	6.9605	0.038378	3242.0	3625.8	6.9045	0.030306			6.7828
650	0.045755		3755.2	7.0954	0.041018		3748.1	7.0408	0.032491			6.9227
700	0.048589		3876.1	7.2229	0.043597		3870.0	7.1693	0.034612			7.0540
800	0.054132		4119.2	7.4606	0.048629		4114.5	7.4085	0.038724			
900	0.059562		4365.7	7.6802	0.053547		4362.0	7.6290	0.042720			
1000	0.064919		4616.7	7.8855	0.058391		4613.8	7.8349	0.046641			7.7269
1100	0.070224			8.0791	0.063183		4870.3	8.0289	0.050510			7.9220
1200	0.075492			8.2625	0.067938		5131.7	8.2126	0.054342			8.1065
1300	0.080733	40/2.9	5399.5	8.4371	0.072667	40/1.3	5398.0	8.3874	0.058147	4007.3	0094.1	8.2819

TABLE	A6											
Super	heated wate	er (<i>Conclu</i>	ıded)									
T	V	и	h	S	V	И	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
	P =	= 15.0 MP	a (342.16	s°C)	P = 1	17.5 MPa	(354.67	°C)	P =	20.0 MP	a (365.75	5°C)
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350 400	0.011481 0.015671	2520.9 2740.6	2693.1 2975.7	5.4438 5.8819	0.012463	2684.3	2902.4	5 7211	0.009950	2617.0	2916.0	5.5526
450	0.013071	2880.8	3157.9	6.1434	0.012403			6.0212	0.003330		3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385				0.014793			6.1446
550	0.022945	3106.2	3450.4	6.5230	0.019305	3085.8	3423.6	6.4266	0.016571			6.3390
600	0.024921	3209.3	3583.1	6.6796	0.021073	3192.5	3561.3	6.5890	0.018185	3175.3	3539.0	6.5075
650	0.026804	3310.1	3712.1	6.8233	0.022742	3295.8	3693.8	6.7366	0.019695	3281.4	3675.3	6.6593
700	0.028621	3409.8	3839.1	6.9573	0.024342				0.021134			6.7991
800	0.032121	3609.3	4091.1	7.2037	0.027405				0.023870			7.0531
900	0.035503	3811.2	4343.7	7.4288	0.030348				0.026484			7.2829
1000	0.038808	4017.1		7.6378	0.033215				0.029020			
1100	0.042062	4227.7	4858.6	7.8339	0.036029				0.031504			7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806				0.033952 0.036371			7.8802 8.0574
1300	0.048469	4663.3	5390.3	8.1952	0.041556	4639.2	3366.3	6.1213	0.036371	4600.2	3362.7	6.0374
		P = 25	.0 MPa			P = 30.0) MPa			P = 35	.0 MPa	
375	0.001978	1799.9	1849.4		0.001792				0.001701			
400	0.006005	2428.5	2578.7	5.1400	0.002798				0.002105			4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299				0.003434			4.7751
450	0.009176	2721.2	2950.6	5.6759	0.006737				0.004957			5.1946
500	0.011143	2887.3	3165.9	5.9643	0.008691		3084.8		0.006933			5.6331
550	0.012736	3020.8	3339.2 3493.5	6.1816	0.010175				0.008348		3218.0	5.9093 6.1229
600 650	0.014140 0.015430	3140.0 3251.9	3637.7	6.3637 6.5243	0.011445 0.012590				0.009523			
700	0.013430	3359.9	3776.0	6.6702	0.012330				0.010503			6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628				0.013278			6.7409
900	0.021075	3780.2		7.1668	0.017473				0.014904			6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240				0.016450			7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954				0.017942			7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630				0.019398	4406.1	5085.0	7.6034
1300	0.029115	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
		P = 40	.0 MPa			P = 50.0) МРа			P = 60	.0 MPa	
375	0.001641	1677.0	1742.6	3.8290	0.001560	1638.6	1716.6	3.7642	0.001503	1609.7	1699.9	3.7149
400	0.001911		1931.4		0.001731				0.001633			
425	0.002538				0.002009				0.001816			
450	0.003692	2364.2			0.002487				0.002086			
500	0.005623	2681.6	2906.5		0.003890				0.002952			
550	0.006985	2875.1	3154.4		0.005118				0.003955			5.3517
600	0.008089	3026.8	3350.4	6.0170	0.006108				0.004833			5.6527
650 700	0.009053 0.009930	3159.5 3282.0	3521.6 3679.2	6.2078	0.006957 0.007717				0.005591			5.8867 6.0814
800	0.003330	3511.8	3972.6	6.6613	0.007717				0.000203			6.4033
900	0.011321	3733.3	4252.5	6.9107	0.003073				0.007430			6.6725
1000	0.012360	3952.9	4527.3		0.010230				0.009504			
1100	0.015686	4173.7	4801.1		0.012534				0.010439			
1200		4396.9		7.5357	0.013590				0.011339			
1300	0.018239				0.014620				0.012213			
					1				<u> </u>			

1002 | Fundamentals of Thermal-Fluid Sciences

TABLE	A7											
Compr	essed liqui	d water										
T	V	и	h	S	V	и	h	S	V	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	P =	= 5 MPa ((263.94°C	;)	<i>P</i> =	= 10 MPa	(311.00°C	C)	<i>P</i> =	15 MPa	(342.16°	C)
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572	1585.5	1610.3	3.6848
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928	0.18	15.07	0.0004
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	0.2932
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	0.5666
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	0.8234
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	1.0659
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	1.2958
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522	498.50	514.28	1.5148
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	1.7243
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.01	1.9259
180	0.0011240	759.47	765.09	2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	2.1206
200	0.0011531	847.92	853.68	2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	2.3100
220	0.0011868	938.39	944.32	2.5127	0.0011809	934.01	945.82	2.5037	0.0011752	929.81	947.43	2.4951
240	0.0012268	1031.6	1037.7	2.6983	0.0012192	1026.2	1038.3	2.6876	0.0012121	1021.0	1039.2	2.6774
260	0.0012755	1128.5	1134.9	2.8841	0.0012653	1121.6	1134.3	2.8710	0.0012560	1115.1	1134.0	2.8586
280					0.0013226	1221.8	1235.0	3.0565	0.0013096	1213.4	1233.0	3.0410
300					0.0013980	1329.4	1343.3	3.2488	0.0013783	1317.6	1338.3	3.2279
320									0.0014733	1431.9	1454.0	3.4263
340									0.0016311	1567.9	1592.4	3.6555
	P =	20 MPa	(365.75°(2)		P = 30	MPa			P = 50	MPa	
Sat.	0.0020378	1785.8	1826.6	4.0146								
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	
40	0.0009992		185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	
60	0.0010084		267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	
80	0.0010199		350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	
100	0.0010337		434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	
120	0.0010496		517.84	1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	
140	0.0010679		602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	
160	0.0010886		687.05	1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	
180	0.0011122		773.02	2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06	
200	0.0011390	837.49	860.27	2.3027	0.0011304	831.11	865.02	2.2888	0.0011149	819.45	875.19	2.2628
220	0.0011697		949.16	2.4867	0.0011595	918.15	952.93	2.4707	0.0011412	904.39	961.45	
240	0.0012053		1040.2	2.6676	0.0011927		1042.7	2.6491	0.0011708	990.55		2.6156
260	0.0012472		1134.0	2.8469	0.0012314		1134.7	2.8250	0.0012044		1138.4	2.7864
280	0.0012978		1231.5	3.0265	0.0012770		1229.8	3.0001	0.0012430		1229.9	2.9547
300	0.0013611		1334.4	3.2091	0.0013322		1328.9	3.1761	0.0012879		1324.0	3.1218
320	0.0014450	1416.6	1445.5	3.3996	0.0014014		1433.7	3.3558	0.0013409		1421.4	3.2888
340	0.0015693		1571.6	3.6086	0.0014932		1547.1	3.5438	0.0014049		1523.1	3.4575
360	0.0018248		1740.1	3.8787	0.0016276		1675.6	3.7499	0.0014848		1630.7	3.6301
380					0.0018729		1838.2	4.0026	0.0015884		1746.5	3.8102

-32

-34

-36

-38

-40

0.03082 0.001086 3610.9

0.02490 0.001085 4432.4

0.02004 0.001085 5460.1

0.01608 0.001085 6750.5

0.01285 0.001084 8376.7

Saturate	ed ice-wat	er vapor										
			<i>c volume,</i> ³ /kg	In	nternal er kJ/kg			<i>Enthalpy</i> kJ/kg	<i>'</i> ,		Entropy, J/kg · K	
Temp.,	Sat. press.,	Sat. ice,	Sat. vapor,	Sat. ice,	Subl.,	Sat. vapor,	Sat. ice,	Subl.,	Sat. vapor,	Sat. ice,	Subl.,	Sat. vapor,
T °C	$P_{\rm sat}$ kPa	V_i	V_g	U_i	U_{ig}	U_g	h _i	h _{ig}	h_g	S _i	S_{ig}	S_g
0.01	0.61169	0.001091	205.99	-333.40	2707.9	2374.5	-333.40	2833.9	2500.5	-1.2202	10.374	9.154
0	0.61115	0.001091	206.17	-333.43	2707.9	2374.5	-333.43	2833.9	2500.5	-1.2204	10.375	9.154
-2	0.51772	0.001091	241.62	-337.63	2709.4	2371.8	-337.63	2834.5	2496.8	-1.2358	10.453	9.218
-4	0.43748	0.001090	283.84	-341.80	2710.8	2369.0	-341.80	2835.0	2493.2	-1.2513	10.533	9.282
-6	0.36873	0.001090	334.27	-345.94	2712.2	2366.2	-345.93	2835.4	2489.5	-1.2667	10.613	9.347
-8	0.30998	0.001090	394.66	-350.04	2713.5	2363.5	-350.04	2835.8	2485.8	-1.2821	10.695	9.413
-10	0.25990	0.001089	467.17	-354.12	2714.8	2360.7	-354.12	2836.2	2482.1	-1.2976	10.778	9.480
-12	0.21732	0.001089	554.47	-358.17	2716.1	2357.9	-358.17	2836.6	2478.4	-1.3130	10.862	9.549
-14	0.18121	0.001088	659.88	-362.18	2717.3	2355.2	-362.18	2836.9	2474.7	-1.3284	10.947	9.618
-16	0.15068	0.001088	787.51	-366.17	2718.6	2352.4	-366.17	2837.2	2471.0	-1.3439	11.033	9.689
-18	0.12492	0.001088	942.51	-370.13	2719.7	2349.6	-370.13	2837.5	2467.3	-1.3593	11.121	9.761
-20	0.10326	0.001087	1131.3	-374.06	2720.9	2346.8	-374.06	2837.7	2463.6	-1.3748	11.209	9.835
-22	0.08510	0.001087	1362.0	-377.95	2722.0	2344.1	-377.95	2837.9	2459.9	-1.3903	11.300	9.909
-24	0.06991	0.001087	1644.7	-381.82	2723.1	2341.3	-381.82	2838.1	2456.2	-1.4057	11.391	9.985
-26	0.05725	0.001087	1992.2	-385.66	2724.2	2338.5	-385.66	2838.2	2452.5	-1.4212	11.484	10.063
-28	0.04673	0.001086	2421.0	-389.47	2725.2	2335.7	-389.47	2838.3	2448.8	-1.4367	11.578	10.141
-30	0.03802	0.001086	2951.7	-393.25	2726.2	2332.9	-393.25	2838.4	2445.1	-1.4521	11.673	10.221

-397.00 2727.2 2330.2 -397.00 2838.4 2441.4 -1.4676 11.770 10.303

-400.72 2728.1 2327.4 -400.72 2838.5 2437.7 -1.4831 11.869 10.386

 $-404.40 \ \ 2729.0 \ \ 2324.6 \ \ -404.40 \ \ \ 2838.4 \ \ \ 2434.0 \ \ -1.4986 \ \ 11.969 \ \ 10.470$

 -408.07
 2729.9
 2321.8
 -408.07
 2838.4
 2430.3
 -1.5141
 12.071
 10.557

 -411.70
 2730.7
 2319.0
 -411.70
 2838.3
 2426.6
 -1.5296
 12.174
 10.644

FIGURE A-9

T-s diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lexter Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

FIGURE A-10

Mollier diagram for water.

 $Copyright @ 1984. \ From \ NBS/NRC \ Steam \ Tables/1 \ by \ Lester \ Haar, \ John \ S. \ Gallagher, \ and \ George \ S. \ Kell. \ Reproduced \ by \ permission \ of \ Routledge/Taylor \ \& Francis \ Books, \ Inc.$

1006 | Fundamentals of Thermal-Fluid Sciences

TABLE A-11	
Saturated refrigerant 124a	Tomporatura tabla

Satur	ated refrig	erant-134a–	–Temperati	ire table								
		Specific m³/l	,	Inte	ernal ene kJ/kg	rgy,		<i>Enthalpy</i> kJ/kg	; 		Entropy, kJ/kg · K	
Temp <i>T</i> °C	Sat. ., press., <i>P</i> _{sat} kPa	Sat. Iiquid, v _f	Sat. vapor, v_g	Sat. liquid, $u_{\rm f}$	Evap., u _{fg}	Sat. vapor, u_g	Sat. Iiquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, <i>h_g</i>	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
-40 -38 -36 -34 -32	51.25 56.86 62.95 69.56 76.71	0.0007054 0.0007083 0.0007112 0.0007142 0.0007172	0.36081 0.32732 0.29751 0.27090 0.24711	-0.036 2.475 4.992 7.517 10.05	207.40 206.04 204.67 203.29 201.91	207.37 208.51 209.66 210.81 211.96	2.515 5.037	225.86 224.61 223.35 222.09 220.81	225.86 227.12 228.39 229.65 230.91	0.00000 0.01072 0.02138 0.03199 0.04253	0.96866 0.95511 0.94176 0.92859 0.91560	0.96866 0.96584 0.96315 0.96058 0.95813
-30 -28 -26 -24 -22	84.43 92.76 101.73 111.37 121.72	0.0007203 0.0007234 0.0007265 0.0007297 0.0007329	0.22580 0.20666 0.18946 0.17395 0.15995	12.59 15.13 17.69 20.25 22.82	200.52 199.12 197.72 196.30 194.88	213.11 214.25 215.40 216.55 217.70		219.52 218.22 216.92 215.59 214.26	232.17 233.43 234.68 235.92 s237.17	0.05301 0.06344 0.07382 0.08414 0.09441	0.90278 0.89012 0.87762 0.86527 0.85307	0.95579 0.95356 0.95144 0.94941 0.94748
-20 -18 -16 -14 -12	132.82 144.69 157.38 170.93 185.37	0.0007362 0.0007396 0.0007430 0.0007464 0.0007499	0.14729 0.13583 0.12542 0.11597 0.10736	25.39 27.98 30.57 33.17 35.78	193.45 192.01 190.56 189.09 187.62	218.84 219.98 221.13 222.27 223.40	25.49 28.09 30.69 33.30 35.92	212.91 211.55 210.18 208.79 207.38	238.41 239.64 240.87 242.09 243.30	0.10463 0.11481 0.12493 0.13501 0.14504	0.84101 0.82908 0.81729 0.80561 0.79406	0.94564 0.94389 0.94222 0.94063 0.93911
-10 -8 -6 -4 -2	200.74 217.08 234.44 252.85 272.36	0.0007535 0.0007571 0.0007608 0.0007646 0.0007684	0.099516 0.092352 0.085802 0.079804 0.074304	41.03 43.66 46.31	186.14 184.64 183.13 181.61 180.08	224.54 225.67 226.80 227.92 229.04	38.55 41.19 43.84 46.50 49.17	205.96 204.52 203.07 201.60 200.11	244.51 245.72 246.91 248.10 249.28	0.15504 0.16498 0.17489 0.18476 0.19459	0.78263 0.77130 0.76008 0.74896 0.73794	0.93766 0.93629 0.93497 0.93372 0.93253
0 2 4 6 8	293.01 314.84 337.90 362.23 387.88	0.0007723 0.0007763 0.0007804 0.0007845 0.0007887	0.069255 0.064612 0.060338 0.056398 0.052762	54.30 56.99 59.68	178.53 176.97 175.39 173.80 172.19	230.16 231.27 232.38 233.48 234.58	51.86 54.55 57.25 59.97 62.69	198.60 197.07 195.51 193.94 192.35	250.45 251.61 252.77 253.91 255.04	0.20439 0.21415 0.22387 0.23356 0.24323	0.72701 0.71616 0.70540 0.69471 0.68410	0.93139 0.93031 0.92927 0.92828 0.92733
10 12 14 16 18	414.89 443.31 473.19 504.58 537.52	0.0007930 0.0007975 0.0008020 0.0008066 0.0008113	0.049403 0.046295 0.043417 0.040748 0.038271	67.83 70.57 73.32	170.56 168.92 167.26 165.58 163.88	235.67 236.75 237.83 238.90 239.96	65.43 68.18 70.95 73.73 76.52	190.73 189.09 187.42 185.73 184.01	256.16 257.27 258.37 259.46 260.53	0.25286 0.26246 0.27204 0.28159 0.29112	0.67356 0.66308 0.65266 0.64230 0.63198	0.92641 0.92554 0.92470 0.92389 0.92310

TABLE A-11

Saturated refrigerant-134a—Temperature table (Continued)

		Specific volume, m³/kg		Internal energy, kJ/kg			Enthalpy, kJ/kg		;	<i>Entropy,</i> kJ/kg · K		
Temp T°C	Sat. ., press., <i>P</i> _{sat} kPa	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234
22	608.27	0.0008210	0.033828	81.64	160.42	242.06	82.14	180.49	262.64	0.31011	0.61149	0.92160
24	646.18	0.0008261	0.031834	84.44	158.65	243.10	84.98	178.69	263.67	0.31958	0.60130	0.92088
26	685.84	0.0008313	0.029976	87.26	156.87	244.12	87.83	176.85	264.68	0.32903	0.59115	0.92018
28	727.31	0.0008366	0.028242	90.09	155.05	245.14	90.69	174.99	265.68	0.33846	0.58102	0.91948
30	770.64	0.0008421	0.026622	92.93	153.22	246.14	93.58	173.08	266.66	0.34789	0.57091	0.91879
32	815.89	0.0008478	0.025108	95.79	151.35	247.14	96.48	171.14	267.62	0.35730	0.56082	0.91811
34	863.11	0.0008536	0.023691	98.66	149.46	248.12	99.40	169.17	268.57	0.36670	0.55074	0.91743
36	912.35	0.0008595	0.022364	101.55	147.54	249.08	102.33	167.16	269.49	0.37609	0.54066	0.91675
38	963.68	0.0008657	0.021119	104.45	145.58	250.04	105.29	165.10	270.39	0.38548	0.53058	0.91606
40	1017.1	0.0008720	0.019952	107.38	143.60	250.97	108.26	163.00	271.27	0.39486	0.52049	0.91536
42	1072.8	0.0008786	0.018855	110.32	141.58	251.89	111.26	160.86	272.12	0.40425	0.51039	0.91464
44	1130.7	0.0008854	0.017824	113.28	139.52	252.80	114.28	158.67	272.95	0.41363	0.50027	0.91391
46	1191.0	0.0008924	0.016853	116.26	137.42	253.68	117.32	156.43	273.75	0.42302	0.49012	0.91315
48	1253.6	0.0008996	0.015939	119.26	135.29	254.55	120.39	154.14	274.53	0.43242	0.47993	0.91236
52	1386.2	0.0009150	0.014265	125.33	130.88	256.21	126.59	149.39	275.98	0.45126	0.45941	0.91067
56	1529.1	0.0009317	0.012771	131.49	126.28	257.77	132.91	144.38	277.30	0.47018	0.43863	0.90880
60	1682.8	0.0009498	0.011434	137.76	121.46	259.22	139.36	139.10	278.46	0.48920	0.41749	0.90669
65	1891.0	0.0009750	0.009950	145.77	115.05	260.82	147.62	132.02	279.64	0.51320	0.39039	0.90359
70	2118.2	0.0010037	0.008642	154.01	108.14	262.15	156.13	124.32	280.46	0.53755	0.36227	0.89982
75	2365.8	0.0010372	0.007480	162.53	100.60	263.13	164.98	115.85	280.82	0.56241	0.33272	0.89512
80	2635.3	0.0010772	0.006436	171.40	92.23	263.63	174.24	106.35	280.59	0.58800	0.30111	0.88912
85	2928.2	0.0011270	0.005486	180.77	82.67	263.44	184.07	95.44	279.51	0.61473	0.26644	0.88117
90	3246.9	0.0011932	0.004599	190.89	71.29	262.18	194.76	82.35	277.11	0.64336	0.22674	0.87010
95	3594.1	0.0012933	0.003726	202.40	56.47	258.87	207.05	65.21	272.26	0.67578	0.17711	0.85289
100	3975.1	0.0015269	0.002630	218.72	29.19	247.91	224.79	33.58	258.37	0.72217	0.08999	0.81215

Source: Tables A-11 through A-13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40° C (and -40° F).

1008 | Fundamentals of Thermal-Fluid Sciences

BL		

Satura	ted refrig	erant-134a-	-Pressure t	able								
			<i>volume,</i> /kg	Inte	<i>rnal enei</i> kJ/kg	rgy,	E	E <i>nthalpy,</i> kJ/kg			Entropy, kJ/kg · K	
Press., <i>P</i> kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s_f	Evap., s _{fg}	Sat. vapor, s_g
60 70 80 90 100	-36.95 -33.87 -31.13 -28.65 -26.37	0.0007098 0.0007144 0.0007185 0.0007223 0.0007259	0.31121 0.26929 0.23753 0.21263 0.19254		205.32 203.20 201.30 199.57 197.98	209.12 210.88 212.46 213.88 215.19		218.65		0.01634 0.03267 0.04711 0.06008 0.07188	0.90999 0.89419	0.96441 0.96042 0.95710 0.95427 0.95183
120 140 160 180 200	-22.32 -18.77 -15.60 -12.73 -10.09	0.0007324 0.0007383 0.0007437 0.0007487 0.0007533	0.16212 0.14014 0.12348 0.11041 0.099867	22.40 26.98 31.09 34.83 38.28	195.11 192.57 190.27 188.16 186.21	217.51 219.54 221.35 222.99 224.48	22.49 27.08 31.21 34.97 38.43	212.08 209.90 207.90	236.97 239.16 241.11 242.86 244.46	0.09275 0.11087 0.12693 0.14139 0.15457	0.85503 0.83368 0.81496 0.79826 0.78316	0.94779 0.94456 0.94190 0.93965 0.93773
240 280 320 360 400	-5.38 -1.25 2.46 5.82 8.91	0.0007620 0.0007699 0.0007772 0.0007841 0.0007907	0.083897 0.072352 0.063604 0.056738 0.051201	44.48 49.97 54.92 59.44 63.62	182.67 179.50 176.61 173.94 171.45	227.14 229.46 231.52 233.38 235.07	44.66 50.18 55.16 59.72 63.94	199.54 196.71 194.08	247.28 249.72 251.88 253.81 255.55	0.17794 0.19829 0.21637 0.23270 0.24761	0.75664 0.73381 0.71369 0.69566 0.67929	0.93458 0.93210 0.93006 0.92836 0.92691
450 500 550 600 650	12.46 15.71 18.73 21.55 24.20	0.0007985 0.0008059 0.0008130 0.0008199 0.0008266	0.045619 0.041118 0.037408 0.034295 0.031646	68.45 72.93 77.10 81.02 84.72	168.54 165.82 163.25 160.81 158.48	237.00 238.75 240.35 241.83 243.20	68.81 73.33 77.54 81.51 85.26	183.38 180.90	257.53 259.30 260.92 262.40 263.77	0.26465 0.28023 0.29461 0.30799 0.32051	0.66069 0.64377 0.62821 0.61378 0.60030	0.92535 0.92400 0.92282 0.92177 0.92081
700 750 800 850	26.69 29.06 31.31 33.45	0.0008331 0.0008395 0.0008458 0.0008520	0.029361 0.027371 0.025621 0.024069	88.24 91.59 94.79 97.87	156.24 154.08 152.00 149.98	244.48 245.67 246.79 247.85	88.82 92.22 95.47 98.60	171.82 169.71	265.03 266.20 267.29 268.31	0.33230 0.34345 0.35404 0.36413	0.58763 0.57567 0.56431 0.55349	0.91994 0.91912 0.91835 0.91762
900 950 1000 1200 1400	35.51 37.48 39.37 46.29 52.40	0.0008580 0.0008641 0.0008700 0.0008934 0.0009166	0.022683 0.021438 0.020313 0.016715 0.014107	100.83 103.69 106.45 116.70 125.94	148.01 146.10 144.23 137.11 130.43	248.85 249.79 250.68 253.81 256.37	101.61 104.51 107.32 117.77 127.22	165.64 163.67 156.10	269.26 270.15 270.99 273.87 276.12	0.37377 0.38301 0.39189 0.42441 0.45315	0.54315 0.53323 0.52368 0.48863 0.45734	0.91692 0.91624 0.91558 0.91303 0.91050
1600 1800 2000 2500 3000	57.88 62.87 67.45 77.54 86.16	0.0009400 0.0009639 0.0009886 0.0010566 0.0011406	0.012123 0.010559 0.009288 0.006936 0.005275	134.43 142.33 149.78 166.99 183.04	124.04 117.83 111.73 96.47 80.22	261.51 263.45	135.93 144.07 151.76 169.63 186.46	135.11 128.33 111.16	277.86 279.17 280.09 280.79 279.09	0.47911 0.50294 0.52509 0.57531 0.62118	0.42873 0.40204 0.37675 0.31695 0.25776	0.90784 0.90498 0.90184 0.89226 0.87894

TABLE	IBLE A-13											
Super	heated ref	rigerant-	134a									
T	V	и	h	s	V	И	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m³/kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	P = 0.0	06 MPa (<i>1</i>	$s_{\text{sat}} = -36$.95°C)	P = 0	.10 MPa ($T_{\rm sat} = -26$.37°C)	P = 0.	14 MPa ($T_{\rm sat} = -18$.77°C)
Sat.	0.31121	209.12	227.79	0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16	0.9446
-20	0.33608	220.60	240.76	1.0174	0.19841	219.66	239.50	0.9721				
-10	0.35048	227.55	248.58	1.0477	0.20743	226.75	247.49	1.0030	0.14605	225.91	246.36	
0	0.36476	234.66	256.54	1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	
10	0.37893	241.92		1.1066	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93	
20	0.39302	249.35	272.94		0.23373	248.79 256.44	272.17	1.0918	0.16544	248.22	271.38	
30 40	0.40705 0.42102	256.95 264.71	281.37	1.1036	0.24233 0.25088	264.25	280.68 289.34	1.1203 1.1484	0.17172 0.17794	255.93 263.79	279.97 288.70	
50	0.42102	272.64	298.74		0.25937	272.22	298.16	1.1762	0.17734	271.79	297.57	
60	0.44883	280.73	307.66	1.2463	0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59	
70	0.46269	288.99		1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	
80	0.47651	297.41		1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	
90	0.49032	306.00	335.42		0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57	
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
	P = 0.1	18 MPa (7	$r_{\text{sat}} = -12.$.73°C)	P = 0	.20 MPa ($T_{\rm sat} = -10$.09°C)	P = 0	.24 MPa ($T_{\rm sat} = -5.$	38°C)
Sat.	0.11041	222.99	242.86	0.9397	0.09987	224.48	244.46	0.9377	0.08390	227.14	247.28	0.9346
-10	0.11189	225.02	245.16	0.9484	0.09991	224.55	244.54	0.9380				
0	0.11722	232.48	253.58	0.9798	0.10481	232.09	253.05	0.9698	0.08617	231.29	251.97	0.9519
10	0.12240	240.00	262.04	1.0102	0.10955	239.67	261.58	1.0004	0.09026	238.98	260.65	0.9831
20	0.12748	247.64	270.59	1.0399	0.11418	247.35	270.18	1.0303	0.09423	246.74	269.36	1.0134
30	0.13248	255.41	279.25	1.0690	0.11874	255.14	278.89	1.0595	0.09812	254.61	278.16	
40	0.13741	263.31	288.05	1.0975	0.12322	263.08	287.72	1.0882	0.10193	262.59	287.06	
50	0.14230	271.36	296.98		0.12766	271.15	296.68	1.1163	0.10570	270.71	296.08	
60	0.14715	279.56		1.1532	0.13206	279.37	305.78	1.1441	0.10942	278.97	305.23	
70	0.15196	287.91	315.27		0.13641	287.73 296.25	315.01	1.1714	0.11310	287.36	314.51	
80 90	0.15673 0.16149	296.42 305.07	324.63 334.14	1.2074 1.2339	0.14074	296.25 304.92	324.40 333.93	1.1983	0.11675	295.91	323.93 333.49	
100	0.16149	313.88	343.80	1.2602	0.14504 0.14933	313.74	343.60	1.2249 1.2512	0.12038 0.12398	304.60 313.44	343.20	
100	0.10022	313.00	343.00	1.2002	0.14333	313.74	343.00	1.2312	0.12330	313.44	343.20	1.2330
			$T_{\rm sat} = -1.3$				$(T_{\rm sat} = 2.4)$				$(T_{\rm sat} = 8.9)$	
Sat.	0.07235	229.46	249.72		0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269
0	0.07282	230.44 238.27	250.83	0.9362	0.00000	027.54	250.00	0.0544	0.051500	225.07	250 50	0.0205
10 20	0.07646 0.07997	246.13	268.52	0.9680	0.06609 0.06925	237.54 245.50	258.69 267.66	0.9544	0.051506 0.054213	235.97 244.18		0.9305 0.9628
30	0.07997	254.06		1.0285	0.06923	253.50	276.65	0.9856 1.0157	0.054213	252.36		0.9628
40	0.08538		286.38		0.07231		285.70	1.0157	0.059292		284.30	
50	0.09000	270.27		1.0862	0.07823	269.82	294.85	1.0739	0.053232		293.59	
60	0.09324	278.56	304.67	1.1142	0.08111	278.15	304.11	1.1021	0.064104	277.32		1.0814
70	0.09644	286.99		1.1418	0.08395	286.62	313.48	1.1298	0.066443		312.44	
80	0.09961	295.57	323.46	1.1690	0.08675	295.22	322.98	1.1571	0.068747	294.53		1.1369
90	0.10275	304.29	333.06	1.1958	0.08953	303.97	332.62	1.1840	0.071023	303.32		1.1640
100	0.10587	313.15		1.2222	0.09229	312.86	342.39	1.2105	0.073274	312.26		1.1907
110	0.10897	322.16	352.68		0.09503	321.89	352.30	1.2367	0.075504	321.33		1.2171
120	0.11205	331.32		1.2742	0.09775	331.07	362.35	1.2626	0.077717	330.55		1.2431
130	0.11512	340.63		1.2997	0.10045	340.39	372.54	1.2882	0.079913	339.90		1.2688
140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41	382.24	1.2942

1010 | Fundamentals of Thermal-Fluid Sciences

TABLE	A-13											
Super	heated refri	igerant-1	134a (<i>C</i>	ontinued)								
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg \cdot K	m³/kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m³/kg	kJ/kg	kJ/kg	kJ/kg \cdot K
	P = 0.9	50 MPa ($T_{\rm sat} = 15.$	71°C)	P = 0	.60 MPa ($T_{\rm sat} = 21.5$	55°C)	P = 0	.70 MPa (<i>1</i>	sat = 26.6	9°C)
Sat.	0.041118	238.75	259.30	0.9240	0.034295	241.83	262.40	0.9218	0.029361	244.48	265.03	0.9199
20	0.042115	242.40	263.46	0.9383								
30					0.035984	249.22	270.81	0.9499	0.029966	247.48	268.45	
40					0.037865	257.86	280.58	0.9816	0.031696	256.39	278.57	
50	0.048499				0.039659	266.48	290.28	1.0121	0.033322	265.20	288.53	
60	0.050485			1.0599	0.041389 0.043069	275.15	299.98 309.73	1.0417 1.0705	0.034875	274.01	298.42	
70 80	0.052427 0.054331			1.1162	0.043069	283.89 292.73	319.55	1.0705	0.036373 0.037829	282.87 291.80	308.33 318.28	
90	0.054331			1.1162	0.044710	301.67	329.46	1.1264	0.037829	300.82	328.29	
100		311.50			0.040318	310.73	339.47	1.1536	0.039230	309.95	338.40	
110		320.63			0.049458	319.91	349.59	1.1803	0.042010	319.19	348.60	
120	0.061687			1.2233	0.050997	329.23	359.82	1.2067	0.043358	328.55	358.90	
130	0.063479	339.29	371.03	1.2491	0.052519	338.67	370.18	1.2327	0.044688	338.04	369.32	1.2186
140	0.065256	348.83	381.46	1.2747	0.054027	348.25	380.66	1.2584	0.046004	347.66	379.86	1.2444
150	0.067021	358.51	392.02	1.2999	0.055522	357.96	391.27	1.2838	0.047306	357.41	390.52	
160	0.068775	368.33	402.72	1.3249	0.057006	367.81	402.01	1.3088	0.048597	367.29	401.31	1.2951
	P = 0.8	80 MPa ($T_{\rm sat} = 31.$	31°C)	P = 0	.90 MPa ($T_{\rm sat} = 35.5$	51°C)	P = 1	.00 MPa (<i>T</i>	$\frac{1}{1} = 39.3$	7°C)
Sat.	0.025621				0.022683	248.85	269.26	0.9169	0.020313	250.68		0.9156
40	0.027035				0.023375	253.13	274.17	0.9327	0.020406	251.30	271.71	
50	0.028547			0.9802	0.024809	262.44	284.77	0.9660	0.021796	260.94	282.74	
60	0.029973			1.0110	0.026146	271.60	295.13	0.9976	0.023068	270.32	293.38	
70	0.031340			1.0408	0.027413	280.72	305.39	1.0280	0.024261	279.59	303.85	
80 90	0.032659 0.033941			1.0698	0.028630 0.029806	289.86 299.06	315.63 325.89	1.0574 1.0860	0.025398 0.026492	288.86 298.15	314.25 324.64	
100	0.035193				0.029800	308.34	336.19	1.1140	0.020492	307.51	335.06	
110				1.1530	0.032068	317.70	346.56	1.1414	0.027532	316.94	345.53	
120		327.87			0.033164	327.18	357.02	1.1684	0.029592	326.47	356.06	
130		337.40			0.034241	336.76	367.58	1.1949	0.030581	336.11	366.69	
140	0.039985	347.06	379.05	1.2321	0.035302	346.46	378.23	1.2210	0.031554	345.85	377.40	1.2109
150	0.041143	356.85	389.76	1.2577	0.036349	356.28	389.00	1.2467	0.032512	355.71	388.22	1.2368
160	0.042290	366.76	400.59	1.2830	0.037384	366.23	399.88	1.2721	0.033457	365.70	399.15	1.2623
170	0.043427			1.3080	0.038408	376.31	410.88	1.2972	0.034392	375.81	410.20	
180	0.044554	386.99	422.64	1.3327	0.039423	386.52	422.00	1.3221	0.035317	386.04	421.36	1.3124
	P = 1.2	20 MPa ($T_{\rm sat} = 46.$	29°C)	P = 1	.40 MPa ($T_{\rm sat} = 52.4$	10°C)	P = 1	.60 MPa (<i>T</i>	$\frac{1}{1} = 57.8$	8°C)
Sat.	0.016715				0.014107	256.37	276.12	0.9105	0.012123	258.47	277.86	0.9078
50	0.017201											
60	0.018404		289.64		0.015005	264.46	285.47	0.9389	0.012372	260.89	280.69	
70	0.019502				0.016060	274.62	297.10	0.9733	0.013430	271.76	293.25	
80	0.020529			1.0248	0.017023	284.51	308.34	1.0056	0.014362	282.09	305.07	
90	0.021506 0.022442				0.017923 0.018778	294.28 304.01	319.37 330.30	1.0364	0.015215	292.17	316.52	
100 110	0.022442				0.018778	313.76	341.19	1.0661 1.0949	0.016014 0.016773	302.14 312.07	327.76 338.91	1.0300
120	0.023348			1.1116	0.019397	323.55	352.09	1.1230	0.016773	322.02	350.91	
130		334.77			0.020388	333.41	363.02	1.1504	0.017300	332.00	361.12	
140	0.025000			1.1930	0.021133	343.34	374.01	1.1773	0.018281	342.05	372.26	
150	0.026753			1.2192	0.022636	353.37	385.07	1.2038	0.019545	352.17	383.44	
160				1.2449	0.023355	363.51	396.20	1.2298	0.020194	362.38	394.69	
170	0.028367				0.024061	373.75	407.43	1.2554	0.020830	372.69	406.02	
180	0.029158	385.08	420.07	1.2954	0.024757	384.10	418.76	1.2807	0.021456	383.11	417.44	1.2676

FIGURE A-14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables. Therefore, problems should be solved using all property data either from the tables or from the chart, but not from both.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

1012 | Fundamentals of Thermal-Fluid Sciences

TABLE A-15

Properties of saturated water

Temp.	Saturation Pressure		ensity , kg/m³	Enthalpy of Vaporization	Specit Hea c _p , J/k	it	Condu	rmal ctivity 'm · k		: Viscosity g/m · s		ndtl nber r	Volume Expansion Coefficient eta, 1/K
T, °C	P _{sat} , kPa	Liquid	Vapor	$h_{\rm fg}$, kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid
0.01	0.6113	999.8	0.0048	2501	4217	1854	0.561	0.0171	1.792×10^{-3}	0.922×10^{-5}	13.5		-0.068×10^{-3}
5	0.8721	999.9	0.0068	2490	4205	1857	0.571	0.0173	1.519×10^{-3}	0.934×10^{-5}	11.2	1.00	0.015×10^{-3}
10	1.2276	999.7	0.0094	2478	4194	1862	0.580	0.0176	1.307×10^{-3}	0.946×10^{-5}	9.45	1.00	0.733×10^{-3}
15	1.7051	999.1	0.0128	2466	4185	1863	0.589	0.0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00	0.138×10^{-3}
20	2.339	998.0	0.0173	2454	4182	1867	0.598	0.0182		0.973×10^{-5}	7.01	1.00	0.195×10^{-3}
25	3.169	997.0	0.0231	2442	4180	1870	0.607	0.0186	0.891×10^{-3}	0.987×10^{-5}	6.14	1.00	0.247×10^{-3}
30	4.246	996.0	0.0304	2431	4178	1875	0.615	0.0189	0.798×10^{-3}	1.001×10^{-5}	5.42	1.00	0.294×10^{-3}
35	5.628	994.0	0.0397	2419	4178	1880	0.623	0.0192	0.720×10^{-3}	1.016×10^{-5}	4.83	1.00	0.337×10^{-3}
40	7.384 9.593	992.1	0.0512	2407 2395	4179	1885	0.631	0.0196	0.653×10^{-3}	1.031×10^{-5}	4.32	1.00	0.377×10^{-3}
45 50	9.593 12.35	990.1 988.1	0.0655 0.0831	2395	4180	1892 1900	0.637 0.644	0.0200	0.596×10^{-3} 0.547×10^{-3}	1.046×10^{-5} 1.062×10^{-5}	3.91 3.55	1.00	0.415×10^{-3} 0.451×10^{-3}
		985.1			4181 4183		0.644	0.0204	0.547×10^{-3} 0.504×10^{-3}	1.062×10^{-5} 1.077×10^{-5}	3.25	1.00	0.451×10^{-3} 0.484×10^{-3}
55 60	15.76 19.94	983.3	0.1045 0.1304	2371 2359	4185	1908 1916	0.654	0.0208	0.304×10^{-3} 0.467×10^{-3}	1.077×10^{-5} 1.093×10^{-5}	2.99	1.00	0.484×10^{-3} 0.517×10^{-3}
65	25.03	980.4	0.1504	2339	4187	1916	0.654	0.0212	0.487×10^{-3} 0.433×10^{-3}	1.093×10^{-5} 1.110×10^{-5}	2.99	1.00	0.517×10^{-3} 0.548×10^{-3}
70	31.19	977.5	0.1014	2334	4190	1926	0.663	0.0216	0.404×10^{-3}	1.110×10^{-5} 1.126×10^{-5}	2.75	1.00	0.578×10^{-3}
75	38.58	974.7	0.1963	2321	4193	1948	0.667	0.0221	0.404×10^{-3} 0.378×10^{-3}	1.120×10^{-5} 1.142×10^{-5}	2.38	1.00	0.607×10^{-3}
80	47.39	971.8	0.2421	2309	4197	1962	0.670	0.0223	0.378×10^{-3} 0.355×10^{-3}	1.142×10^{-5} 1.159×10^{-5}	2.22	1.00	0.653×10^{-3}
85	57.83	968.1	0.2535	2296	4201	1977	0.673	0.0235	0.333×10^{-3} 0.333×10^{-3}	1.176×10^{-5}	2.08	1.00	0.670×10^{-3}
90	70.14	965.3	0.4235	2283	4206	1993	0.675	0.0240		1.170×10^{-5} 1.193×10^{-5}	1.96	1.00	0.702×10^{-3}
95	84.55	961.5	0.5045	2270	4212	2010	0.677	0.0246	0.297×10^{-3}	1.210×10^{-5}	1.85	1.00	0.716×10^{-3}
100	101.33	957.9	0.5978	2257	4217	2029	0.679	0.0251		1.227×10^{-5}	1.75	1.00	0.750×10^{-3}
110	143.27	950.6	0.8263	2230	4229	2071	0.682	0.0262		1.261×10^{-5}	1.58	1.00	0.798×10^{-3}
120	198.53	943.4	1.121	2203	4244	2120	0.683	0.0275	0.232×10^{-3}	1.296×10^{-5}	1.44	1.00	0.858×10^{-3}
130	270.1	934.6	1.496	2174	4263	2177	0.684	0.0288	0.213×10^{-3}	1.330×10^{-5}	1.33	1.01	0.913×10^{-3}
140	361.3	921.7	1.965	2145	4286	2244	0.683	0.0301	0.197×10^{-3}	1.365×10^{-5}	1.24	1.02	0.970×10^{-3}
150	475.8	916.6	2.546	2114	4311	2314	0.682	0.0316	0.183×10^{-3}	1.399×10^{-5}	1.16	1.02	1.025×10^{-3}
160	617.8	907.4	3.256	2083	4340	2420	0.680	0.0331	0.170×10^{-3}	1.434×10^{-5}	1.09	1.05	1.145×10^{-3}
170	791.7	897.7	4.119	2050	4370	2490	0.677	0.0347	0.160×10^{-3}	1.468×10^{-5}	1.03	1.05	1.178×10^{-3}
180	1,002.1	887.3	5.153	2015	4410	2590	0.673	0.0364	0.150×10^{-3}	1.502×10^{-5}	0.983	1.07	1.210×10^{-3}
190	1,254.4	876.4	6.388	1979	4460	2710	0.669	0.0382	0.142×10^{-3}	1.537×10^{-5}	0.947	1.09	1.280×10^{-3}
200	1,553.8	864.3	7.852	1941	4500	2840	0.663	0.0401	0.134×10^{-3}	1.571×10^{-5}	0.910	1.11	1.350×10^{-3}
220	2,318	840.3	11.60	1859	4610	3110	0.650	0.0442	0.122×10^{-3}	1.641×10^{-5}	0.865	1.15	1.520×10^{-3}
240	3,344	813.7	16.73	1767	4760	3520	0.632	0.0487	0.111×10^{-3}	1.712×10^{-5}	0.836	1.24	1.720×10^{-3}
260	4,688	783.7	23.69	1663	4970	4070	0.609	0.0540	0.102×10^{-3}	1.788×10^{-5}	0.832	1.35	2.000×10^{-3}
280	6,412	750.8	33.15	1544	5280	4835	0.581	0.0605	0.094×10^{-3}	1.870×10^{-5}	0.854	1.49	2.380×10^{-3}
300	8,581	713.8	46.15	1405	5750	5980	0.548	0.0695	0.086×10^{-3}	1.965×10^{-5}	0.902	1.69	2.950×10^{-3}
320	11,274	667.1	64.57	1239	6540	7900	0.509	0.0836	0.078×10^{-3}	2.084×10^{-5}	1.00	1.97	
340	14,586	610.5	92.62	1028	8240	11,870	0.469	0.110	0.070×10^{-3}	2.255×10^{-5}	1.23	2.43	
360	18,651	528.3		720	14,690	25,800	0.427	0.178	0.060×10^{-3}	2.571×10^{-5}	2.06	3.73	
374.14	22,090	317.0	317.0	0	_	_	_	_	0.043×10^{-3}	4.313×10^{-5}			

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\rho c_\rho = \nu/P$ r. The temperatures 0.01°C, 100°C, and 374.14°C are the triple-, boiling-, and critical-point temperatures of water, respectively. The properties listed above (except the vapor density) can be used at any pressure with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg \cdot °C for specific heat is equivalent to kJ/kg \cdot K, and the unit W/m \cdot °C for thermal conductivity is equivalent to W/m \cdot K.

Source: Viscosity and thermal conductivity data are from J. V. Sengers and J. T. R. Watson, Journal of Physical and Chemical Reference Data 15 (1986), pp. 1291–1322. Other data are obtained from various sources or calculated.

TABLE A-16

Properties of saturated refrigerant-134a

Temp	Saturation Pressure	Ι,	ensity kg/m³	Enthalpy of Vaporizatior	Ë	ecific Heat J/kg · K	Cond	ermal luctivity l/m · K	,	: Viscosity g/m · s	Nu	andtl mber Pr	Volume Expansion Coefficient β , I/K	Surface Tension,
T, °C	<i>P</i> , kPa	Liquid	Vapor	<i>h</i> _{fg} , kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
-40	51.2	1418	2.773	225.9	1254	748.6	0.1101	0.00811	4.878×10^{-4}	2.550×10^{-6}	5.558	0.235	0.00205	0.01760
-35	66.2	1403	3.524	222.7	1264	764.1	0.1084	0.00862	4.509×10^{-4}	3.003×10^{-6}	5.257	0.266	0.00209	0.01682
-30	84.4	1389	4.429	219.5	1273	780.2	0.1066	0.00913	4.178×10^{-4}	3.504×10^{-6}	4.992	0.299	0.00215	0.01604
-25	106.5	1374	5.509	216.3	1283	797.2	0.1047	0.00963	3.882×10^{-4}	4.054×10^{-6}	4.757	0.335	0.00220	0.01527
-20	132.8	1359	6.787	213.0	1294	814.9	0.1028	0.01013	3.614×10^{-4}	4.651×10^{-6}	4.548	0.374	0.00227	0.01451
-15	164.0	1343	8.288	209.5	1306	833.5	0.1009	0.01063	3.371×10^{-4}	5.295×10^{-6}	4.363	0.415	0.00233	0.01376
-10	200.7	1327	10.04	206.0	1318	853.1	0.0989	0.01112	3.150×10^{-4}	5.982×10^{-6}	4.198	0.459	0.00241	0.01302
-5	243.5	1311	12.07	202.4	1330	873.8	0.0968	0.01161	2.947×10^{-4}	6.709×10^{-6}	4.051	0.505	0.00249	0.01229
0	293.0	1295	14.42	198.7	1344	895.6	0.0947	0.01210	2.761×10^{-4}	7.471×10^{-6}	3.919	0.553	0.00258	0.01156
5	349.9	1278	17.12	194.8	1358	918.7	0.0925	0.01259	2.589×10^{-4}	8.264×10^{-6}	3.802	0.603	0.00269	0.01084
10	414.9	1261	20.22	190.8	1374	943.2	0.0903	0.01308	2.430×10^{-4}	9.081×10^{-6}	3.697	0.655	0.00280	0.01014
15	488.7	1244	23.75	186.6	1390	969.4	0.0880	0.01357	2.281×10^{-4}	9.915×10^{-6}	3.604	0.708	0.00293	0.00944
20	572.1	1226	27.77	182.3	1408	997.6	0.0856	0.01406	2.142×10^{-4}	1.075×10^{-5}	3.521	0.763	0.00307	0.00876
25	665.8	1207	32.34	177.8	1427	1028	0.0833	0.01456	2.012×10^{-4}	1.160×10^{-5}	3.448	0.819	0.00324	0.00808
30	770.6	1188	37.53	173.1	1448	1061	0.0808	0.01507	1.888×10^{-4}	1.244×10^{-5}	3.383	0.877	0.00342	0.00742
35	887.5	1168	43.41	168.2	1471	1098	0.0783	0.01558	1.772×10^{-4}	1.327×10^{-5}	3.328	0.935	0.00364	0.00677
40	1017.1	1147	50.08	163.0	1498	1138	0.0757	0.01610	1.660×10^{-4}	1.408×10^{-5}	3.285	0.995	0.00390	0.00613
45	1160.5	1125	57.66	157.6	1529	1184	0.0731	0.01664	1.554×10^{-4}	1.486×10^{-5}	3.253	1.058	0.00420	0.00550
50	1318.6	1102	66.27	151.8	1566	1237	0.0704	0.01720	1.453×10^{-4}	1.562×10^{-5}	3.231	1.123	0.00455	0.00489
55	1492.3	1078	76.11	145.7	1608	1298	0.0676	0.01777	1.355×10^{-4}	1.634×10^{-5}	3.223	1.193	0.00500	0.00429
60	1682.8	1053	87.38	139.1	1659	1372	0.0647	0.01838	1.260×10^{-4}	1.704×10^{-5}	3.229	1.272	0.00554	0.00372
65	1891.0	1026	100.4	132.1	1722	1462	0.0618	0.01902	1.167×10^{-4}	1.771×10^{-5}	3.255	1.362	0.00624	0.00315
70	2118.2	996.2	115.6	124.4	1801	1577	0.0587	0.01972	1.077×10^{-4}	1.839×10^{-5}	3.307	1.471	0.00716	0.00261
75	2365.8	964	133.6	115.9	1907	1731	0.0555	0.02048	9.891×10^{-5}	1.908×10^{-5}	3.400	1.612	0.00843	0.00209
80	2635.2	928.2	155.3	106.4	2056	1948	0.0521	0.02133	9.011×10^{-5}	1.982×10^{-5}	3.558	1.810	0.01031	0.00160
85	2928.2	887.1	182.3	95.4	2287	2281	0.0484	0.02233	8.124×10^{-5}	2.071×10^{-5}	3.837	2.116	0.01336	0.00114
90	3246.9	837.7	217.8	82.2	2701	2865	0.0444	0.02357	7.203×10^{-5}	2.187×10^{-5}	4.385	2.658	0.01911	0.00071
95	3594.1	772.5	269.3	64.9	3675	4144	0.0396	0.02544	6.190×10^{-5}	2.370×10^{-5}	5.746	3.862	0.03343	0.00033
100	3975.1	651.7	376.3	33.9	7959	8785	0.0322	0.02989	4.765×10^{-5}	2.833×10^{-5}	11.77	8.326	0.10047	0.00004

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\rho c_\rho = \nu/\text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg · °C for specific heat is equivalent to kJ/kg · K, and the unit W/m · °C for thermal conductivity is equivalent to W/m · K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: R. Tillner-Roth and H. D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa," J. Phys. Chem, Ref. Data, Vol. 23, No. 5, 1994; M.J. Assael, N. K. Dalaouti, A. A. Griva, and J. H. Dymond, "Viscosity and Thermal Conductivity of Halogenated Methane and Ethane Refrigerants," IJR, Vol. 22, pp. 525–535, 1999; NIST REFPROP 6 program (M. O. McLinden, S. A. Klein, E. W. Lemmon, and A. P. Peskin, Physical and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80303, 1995).

1014 Fundamentals of Thermal-Fluid Sciences

TABLE A-17

Properties of saturated ammonia

Temp.	Saturation Pressure	1	ensity kg/m³	Enthalpy of Vaporization	H	cific eat /kg · K	Cond	ermal uctivity //m · K	Dynamic \ μ, kg/r	,		ndtl mber Pr	Volume Expansion Coefficient β , I/K	Surface Tension,
T, °C	<i>P</i> , kPa	Liquid	Vapor	h_{fg} , kJ/kg	Liqui	d Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
-40	71.66	690.2	0.6435	1389	4414	2242	_	0.01792	2.926×10^{-4}	7.957×10^{-6}	_	0.9955	0.00176	0.03565
-30	119.4	677.8	1.037	1360	4465	2322	_	0.01898	2.630×10^{-4}	8.311×10^{-6}	_	1.017	0.00185	0.03341
-25	151.5	671.5	1.296	1345	4489	2369	0.5968	0.01957	2.492×10^{-4}	8.490×10^{-6}	1.875	1.028	0.00190	0.03229
-20	190.1	665.1	1.603	1329	4514	2420	0.5853	0.02015	2.361×10^{-4}	8.669×10^{-6}	1.821	1.041	0.00194	0.03118
-15	236.2	658.6	1.966	1313	4538	2476	0.5737	0.02075	2.236×10^{-4}	8.851×10^{-6}	1.769	1.056	0.00199	0.03007
-10	290.8	652.1	2.391	1297	4564	2536	0.5621	0.02138	2.117×10^{-4}	9.034×10^{-6}	1.718	1.072	0.00205	0.02896
-5	354.9	645.4	2.886	1280	4589	2601	0.5505	0.02203	2.003×10^{-4}	9.218×10^{-6}	1.670	1.089	0.00210	0.02786
0	429.6	638.6	3.458	1262	4617	2672	0.5390	0.02270	1.896×10^{-4}	9.405×10^{-6}	1.624	1.107	0.00216	0.02676
5	516	631.7	4.116	1244	4645	2749	0.5274	0.02341	1.794×10^{-4}	9.593×10^{-6}	1.580	1.126	0.00223	0.02566
10	615.3	624.6	4.870	1226	4676	2831	0.5158	0.02415	1.697×10^{-4}	9.784×10^{-6}	1.539	1.147	0.00230	0.02457
15	728.8	617.5	5.729	1206	4709	2920	0.5042	0.02492	1.606×10^{-4}	9.978×10^{-6}	1.500	1.169	0.00237	0.02348
20	857.8	610.2	6.705	1186	4745	3016	0.4927	0.02573	1.519×10^{-4}	1.017×10^{-5}	1.463	1.193	0.00245	0.02240
25	1003	602.8	7.809	1166	4784	3120	0.4811	0.02658	1.438×10^{-4}	1.037×10^{-5}	1.430	1.218	0.00254	0.02132
30	1167	595.2	9.055	1144	4828	3232	0.4695	0.02748	1.361×10^{-4}	1.057×10^{-5}	1.399	1.244	0.00264	0.02024
35	1351	587.4	10.46	1122	4877	3354	0.4579	0.02843	1.288×10^{-4}	1.078×10^{-5}	1.372	1.272	0.00275	0.01917
40	1555	579.4	12.03	1099	4932	3486	0.4464	0.02943	1.219×10^{-4}	1.099×10^{-5}	1.347	1.303	0.00287	0.01810
45	1782	571.3	13.8	1075	4993	3631	0.4348	0.03049	1.155×10^{-4}	1.121×10^{-5}	1.327	1.335	0.00301	0.01704
50	2033	562.9	15.78	1051	5063	3790	0.4232	0.03162	1.094×10^{-4}	1.143×10^{-5}	1.310	1.371	0.00316	0.01598
55	2310	554.2	18.00	1025	5143	3967	0.4116	0.03283	1.037×10^{-4}	1.166×10^{-5}	1.297	1.409	0.00334	0.01493
60	2614	545.2	20.48	997.4	5234	4163	0.4001	0.03412	9.846×10^{-5}	1.189×10^{-5}	1.288	1.452	0.00354	0.01389
65	2948	536.0	23.26	968.9	5340	4384	0.3885	0.03550	9.347×10^{-5}	1.213×10^{-5}	1.285	1.499	0.00377	0.01285
70	3312	526.3	26.39	939.0	5463	4634	0.3769	0.03700	8.879×10^{-5}	1.238×10^{-5}	1.287	1.551	0.00404	0.01181
75	3709	516.2	29.90	907.5	5608	4923	0.3653	0.03862	8.440×10^{-5}	1.264×10^{-5}	1.296	1.612	0.00436	0.01079
80	4141	505.7	33.87	874.1	5780	5260	0.3538	0.04038	8.030×10^{-5}	1.292×10^{-5}	1.312	1.683	0.00474	0.00977
85	4609	494.5	38.36	838.6	5988	5659	0.3422	0.04232	7.646×10^{-5}	1.322×10^{-5}	1.338	1.768	0.00521	0.00876
90	5116	482.8	43.48	800.6	6242	6142	0.3306	0.04447	7.284×10^{-5}	1.354×10^{-5}	1.375	1.871	0.00579	0.00776
95	5665	470.2		759.8	6561			0.04687	6.946×10^{-5}	1.389×10^{-5}	1.429	1.999	0.00652	0.00677
100	6257	456.6	56.15	715.5	6972	7503	0.3075	0.04958	6.628×10^{-5}	1.429×10^{-5}	1.503	2.163	0.00749	0.00579

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu l \rho$ and $\alpha = k l \rho c_{\rho} = \nu l$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

 $\textit{Note 2}. \text{ The unit kJ/kg} \cdot ^{\circ}\text{C for specific heat is equivalent to kJ/kg} \cdot \text{K, and the unit W/m} \cdot ^{\circ}\text{C for thermal conductivity is equivalent to W/m} \cdot \text{K.}$

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Tillner-Roth, Harms-Watzenberg, and Baehr, "Eine neue Fundamentalgleichung fur Ammoniak," DKV-Tagungsbericht 20:167–181, 1993; Liley and Desai, "Thermophysical Properties of Refrigerants," ASHRAE, 1993, ISBN 1-1883413-10-9.

TABLE A-18

Properties of saturated propane

Temp.	Saturation Pressure	Den ρ, kş	,	Enthalpy of Vaporization	Spector C_p , J_p		Condi	ermal uctivity /m · K	,	c Viscosity g/m · s	Nun	ndtl nber Pr	Volume Expansion Coefficient β, I/K	Surface Tension,
T, °C	<i>P</i> , kPa	Liquid	Vapor	$h_{\rm fg}$, kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
-120	0.4053	664.7	0.01408	498.3	2003	1115	0.1802	0.00589	6.136×10^{-4}	4.372×10^{-6}	6.820	0.827	0.00153	0.02630
-110	1.157	654.5	0.03776	489.3	2021	1148	0.1738	0.00645	5.054×10^{-4}	4.625×10^{-6}	5.878	0.822	0.00157	0.02486
-100	2.881	644.2	0.08872	480.4	2044	1183	0.1672	0.00705	4.252×10^{-4}	4.881×10^{-6}	5.195	0.819	0.00161	0.02344
-90	6.406	633.8	0.1870	471.5	2070	1221	0.1606	0.00769	3.635×10^{-4}	5.143×10^{-6}	4.686	0.817	0.00166	0.02202
-80	12.97	623.2	0.3602	462.4	2100	1263	0.1539	0.00836	3.149×10^{-4}	5.409×10^{-6}	4.297	0.817	0.00171	0.02062
-70	24.26	612.5	0.6439	453.1	2134	1308	0.1472	0.00908	2.755×10^{-4}	5.680×10^{-6}	3.994	0.818	0.00177	0.01923
-60	42.46	601.5	1.081	443.5	2173	1358	0.1407	0.00985	2.430×10^{-4}	5.956×10^{-6}	3.755	0.821	0.00184	0.01785
-50	70.24	590.3	1.724	433.6	2217	1412	0.1343	0.01067	2.158×10^{-4}	6.239×10^{-6}	3.563	0.825	0.00192	0.01649
-40	110.7	578.8	2.629	423.1	2258	1471	0.1281	0.01155	1.926×10^{-4}	6.529×10^{-6}	3.395	0.831	0.00201	0.01515
-30	167.3	567.0	3.864	412.1	2310	1535	0.1221	0.01250	1.726×10^{-4}	6.827×10^{-6}	3.266	0.839	0.00213	0.01382
-20	243.8	554.7	5.503	400.3	2368	1605	0.1163	0.01351	1.551×10^{-4}	7.136×10^{-6}	3.158	0.848	0.00226	0.01251
-10	344.4	542.0	7.635	387.8	2433	1682	0.1107	0.01459	1.397×10^{-4}	7.457×10^{-6}	3.069	0.860	0.00242	0.01122
0	473.3	528.7	10.36	374.2	2507	1768	0.1054	0.01576	1.259×10^{-4}	7.794×10^{-6}	2.996	0.875	0.00262	0.00996
5	549.8	521.8	11.99	367.0	2547	1814	0.1028	0.01637	1.195×10^{-4}	7.970×10^{-6}	2.964	0.883	0.00273	0.00934
10	635.1	514.7	13.81	359.5	2590	1864	0.1002	0.01701	1.135×10^{-4}	8.151×10^{-6}	2.935	0.893	0.00286	0.00872
15	729.8	507.5	15.85	351.7	2637	1917	0.0977	0.01767	1.077×10^{-4}	8.339×10^{-6}	2.909	0.905	0.00301	0.00811
20	834.4	500.0	18.13	343.4	2688	1974	0.0952	0.01836	1.022×10^{-4}	8.534×10^{-6}	2.886	0.918	0.00318	0.00751
25	949.7	492.2	20.68	334.8	2742	2036	0.0928	0.01908	9.702×10^{-5}	8.738×10^{-6}	2.866	0.933	0.00337	0.00691
30	1076	484.2	23.53	325.8	2802	2104	0.0904	0.01982	9.197×10^{-5}	8.952×10^{-6}	2.850	0.950	0.00358	0.00633
35	1215	475.8	26.72	316.2	2869	2179	0.0881	0.02061	8.710×10^{-5}	9.178×10^{-6}	2.837	0.971	0.00384	0.00575
40	1366	467.1	30.29	306.1	2943	2264	0.0857	0.02142	8.240×10^{-5}	9.417×10^{-6}	2.828	0.995	0.00413	0.00518
45	1530	458.0	34.29	295.3	3026	2361	0.0834	0.02228	7.785×10^{-5}	9.674×10^{-6}	2.824	1.025	0.00448	0.00463
50	1708	448.5	38.79	283.9	3122	2473	0.0811	0.02319	7.343×10^{-5}	9.950×10^{-5}	2.826	1.061	0.00491	0.00408
60	2110	427.5	49.66	258.4	3283	2769	0.0765	0.02517	6.487×10^{-5}	1.058×10^{-5}	2.784	1.164	0.00609	0.00303
70	2580	403.2	64.02	228.0	3595	3241	0.0717	0.02746	5.649×10^{-5}	1.138×10^{-5}	2.834	1.343	0.00811	0.00204
80	3127	373.0	84.28	189.7	4501	4173	0.0663	0.03029	4.790×10^{-5}	1.249×10^{-5}	3.251	1.722	0.01248	0.00114
90	3769	329.1	118.6	133.2	6977	7239	0.0595	0.03441	3.807×10^{-5}	1.448×10^{-5}	4.465	3.047	0.02847	0.00037

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\mu c_\rho = \nu/\text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

 $\textit{Note 2}. \text{ The unit kJ/kg} \cdot ^{\circ}\text{C for specific heat is equivalent to kJ/kg} \cdot ^{K}\text{K, and the unit W/m} \cdot ^{\circ}\text{C for thermal conductivity is equivalent to W/m} \cdot ^{K}\text{K.}$

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Reiner Tillner-Roth, "Fundamental Equations of State," Shaker, Verlag, Aachan, 1998; B. A. Younglove and J. F. Ely, "Thermophysical Properties of Fluids. II Methane, Ethane, Propane, Isobutane, and Normal Butane," J. Phys. Chem. Ref. Data, Vol. 16, No. 4, 1987; G.R. Somayajulu, "A Generalized Equation for Surface Tension from the Triple-Point to the Critical-Point," International Journal of Thermophysics, Vol. 9, No. 4, 1988.

1016 | Fundamentals of Thermal-Fluid Sciences

TABLE	A-19							
Propert	ties of liquid	ds						
Temp. <i>T</i> , °C	Density ρ, kg/m³	Specific Heat c_p , J/kg · K	Thermal Conductivity k, W/m · K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ , kg/m \cdot s	Kinematic Viscosity ν, m ² /s	Prandtl Number Pr	Volume Expansion Coeff. β , 1/K
				Methan	e [CH ₄]			
-160 -150 -140 -130 -120 -110 -100 -90	420.2 405.0 388.8 371.1 351.4 328.8 301.0 261.7	3492 3580 3700 3875 4146 4611 5578 8902	0.1863 0.1703 0.1550 0.1402 0.1258 0.1115 0.0967 0.0797	1.270×10^{-7} 1.174×10^{-7} 1.077×10^{-7} 9.749×10^{-8} 8.634×10^{-8} 7.356×10^{-8} 5.761×10^{-8} 3.423×10^{-8}	1.133×10^{-4} 9.169×10^{-5} 7.551×10^{-5} 6.288×10^{-5} 5.257×10^{-5} 4.377×10^{-5} 3.577×10^{-5} 2.761×10^{-5}	2.699×10^{-7} 2.264×10^{-7} 1.942×10^{-7} 1.694×10^{-7} 1.496×10^{-7} 1.331×10^{-7} 1.188×10^{-7} 1.055×10^{-7}	2.126 1.927 1.803 1.738 1.732 1.810 2.063 3.082	0.00352 0.00391 0.00444 0.00520 0.00637 0.00841 0.01282 0.02922
	201.7	0302	0.0737			1.000 // 10	0.002	
20 30 40 50 60 70	788.4 779.1 769.6 760.1 750.4 740.4	2515 2577 2644 2718 2798 2885	0.1987 0.1980 0.1972 0.1965 0.1957 0.1950	$\begin{array}{c} \textit{Methanol} \\ 1.002 \times 10^{-7} \\ 9.862 \times 10^{-8} \\ 9.690 \times 10^{-8} \\ 9.509 \times 10^{-8} \\ 9.320 \times 10^{-8} \\ 9.128 \times 10^{-8} \end{array}$	5.857×10^{-4} 5.088×10^{-4} 4.460×10^{-4} 3.942×10^{-4} 3.510×10^{-4} 3.146×10^{-4}	7.429×10^{-7} 6.531×10^{-7} 5.795×10^{-7} 5.185×10^{-7} 4.677×10^{-7} 4.250×10^{-7}	7.414 6.622 5.980 5.453 5.018 4.655	0.00118 0.00120 0.00123 0.00127 0.00132 0.00137
				Isobutane	e (R600a)			
-100 -75 -50 -25 0 25 50 75 100	683.8 659.3 634.3 608.2 580.6 550.7 517.3 478.5 429.6	1881 1970 2069 2180 2306 2455 2640 2896 3361	0.1383 0.1357 0.1283 0.1181 0.1068 0.0956 0.0851 0.0757 0.0669	1.075×10^{-7} 1.044×10^{-7} 9.773×10^{-8} 8.906×10^{-8} 7.974×10^{-8} 7.069×10^{-8} 6.233×10^{-8} 5.460×10^{-8} 4.634×10^{-8}	9.305×10^{-4} 5.624×10^{-4} 3.769×10^{-4} 2.688×10^{-4} 1.993×10^{-4} 1.510×10^{-4} 1.155×10^{-4} 8.785×10^{-5} 6.483×10^{-5}	$\begin{array}{c} 1.360 \times 10^{-6} \\ 8.531 \times 10^{-7} \\ 5.942 \times 10^{-7} \\ 4.420 \times 10^{-7} \\ 3.432 \times 10^{-7} \\ 2.743 \times 10^{-7} \\ 2.233 \times 10^{-7} \\ 1.836 \times 10^{-7} \\ 1.509 \times 10^{-7} \end{array}$	12.65 8.167 6.079 4.963 4.304 3.880 3.582 3.363 3.256	0.00142 0.00150 0.00161 0.00177 0.00199 0.00232 0.00286 0.00385 0.00628
				Glyc				
0 5 10 15 20 25 30 35 40	1276 1273 1270 1267 1264 1261 1258 1255 1252	2262 2288 2320 2354 2386 2416 2447 2478 2513	0.2820 0.2835 0.2846 0.2856 0.2860 0.2860 0.2860 0.2860 0.2863	9.773×10^{-8} 9.732×10^{-8} 9.662×10^{-8} 9.576×10^{-8} 9.484×10^{-8} 9.388×10^{-8} 9.291×10^{-8} 9.195×10^{-8} 9.101×10^{-8}	10.49 6.730 4.241 2.496 1.519 0.9934 0.6582 0.4347 0.3073	8.219×10^{-3} 5.287×10^{-3} 3.339×10^{-3} 1.970×10^{-3} 1.201×10^{-3} 7.878×10^{-4} 5.232×10^{-4} 3.464×10^{-4} 2.455×10^{-4}	84,101 54,327 34,561 20,570 12,671 8,392 5,631 3,767 2,697	
				Engine Oi	l (unused)			
0 20 40 60 80 100 120 140	899.0 888.1 876.0 863.9 852.0 840.0 828.9 816.8 810.3	1797 1881 1964 2048 2132 2220 2308 2395 2441	0.1469 0.1450 0.1444 0.1404 0.1380 0.1367 0.1347 0.1330 0.1327	9.097×10^{-8} 8.680×10^{-8} 8.391×10^{-8} 7.934×10^{-8} 7.599×10^{-8} 7.330×10^{-8} 7.042×10^{-8} 6.798×10^{-8} 6.708×10^{-8}	3.814 0.8374 0.2177 0.07399 0.03232 0.01718 0.01029 0.006558 0.005344	$\begin{array}{c} 4.242\times10^{-3}\\ 9.429\times10^{-4}\\ 2.485\times10^{-4}\\ 8.565\times10^{-5}\\ 3.794\times10^{-5}\\ 2.046\times10^{-5}\\ 1.241\times10^{-5}\\ 8.029\times10^{-6}\\ 6.595\times10^{-6} \end{array}$	46,636 10,863 2,962 1,080 499.3 279.1 176.3 118.1 98.31	0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

Temp. Density P_{r} Density P_{r} Heat P_{r} Conductivity P_{r} Diffusivity P_{r} Viscosity P_{r} Number P_{r} Density P_{r} Pr P_{r} Density P_{r} Pr P_{r} Density P_{r} Density P_{r} Pr P_{r} Density P_{r}	Volume Expansion Coeff. β , 1/K 0×10^{-4}
Temp. Density P_{r} Density P_{r} Heat P_{r} Conductivity P_{r} Diffusivity P_{r} Viscosity P_{r} Number P_{r} Density P_{r} Pr P_{r} Density P_{r} Pr P_{r} Density P_{r} Pr P_{r} Density P_{r}	Expansion Coeff. β , 1/K 0×10^{-4}
Temp. Density P_{r} Density P_{r} Heat P_{r} Conductivity P_{r} Diffusivity P_{r} Viscosity P_{r} Number P_{r} Density P_{r} Pr P_{r} Density P_{r} Pr P_{r} Density P_{r} Pr P_{r} Density P_{r}	Coeff. β , 1/K 0×10^{-4} 0×10^{-4} 0×10^{-4} 0×10^{-4} 0×10^{-4} 0×10^{-4} 0×10^{-4}
T, °C ρ, kg/m³ c_{ρ} , J/kg · K k, W/m · K α, m²/s μ, kg/m · s ν, m²/s Pr Mercury (Hg) Melting Point: -39 °C 0 13595 140.4 8.18200 4.287 × 10 ⁻⁶ 1.687 × 10 ⁻³ 1.241 × 10 ⁻⁷ 0.0289 1.81 25 13534 139.4 8.51533 4.514 × 10 ⁻⁶ 1.534 × 10 ⁻³ 1.133 × 10 ⁻⁷ 0.0251 1.81 50 13473 138.6 8.83632 4.734 × 10 ⁻⁶ 1.423 × 10 ⁻³ 1.056 × 10 ⁻⁷ 0.0223 1.81	β , 1/K 0×10^{-4}
Mercury (Hg) Melting Point: $-39^{\circ}C$ 0 13595 140.4 8.18200 4.287×10^{-6} 1.687×10^{-3} 1.241×10^{-7} 0.0289 1.81 25 13534 139.4 8.51533 4.514×10^{-6} 1.534×10^{-3} 1.133×10^{-7} 0.0251 1.81 50 13473 138.6 8.83632 4.734×10^{-6} 1.423×10^{-3} 1.056×10^{-7} 0.0223 1.81	0×10^{-4}
25 13534 139.4 8.51533 4.514 \times 10 ⁻⁶ 1.534 \times 10 ⁻³ 1.133 \times 10 ⁻⁷ 0.0251 1.81 50 13473 138.6 8.83632 4.734 \times 10 ⁻⁶ 1.423 \times 10 ⁻³ 1.056 \times 10 ⁻⁷ 0.0223 1.81	0×10^{-4} 0×10^{-4} 0×10^{-4} 0×10^{-4} 0×10^{-4}
25 13534 139.4 8.51533 4.514 \times 10 ⁻⁶ 1.534 \times 10 ⁻³ 1.133 \times 10 ⁻⁷ 0.0251 1.81 50 13473 138.6 8.83632 4.734 \times 10 ⁻⁶ 1.423 \times 10 ⁻³ 1.056 \times 10 ⁻⁷ 0.0223 1.81	0×10^{-4} 0×10^{-4} 0×10^{-4} 0×10^{-4} 0×10^{-4}
	0×10^{-4} 0×10^{-4} 0×10^{-4}
	0×10^{-4} 0×10^{-4}
	0×10^{-4}
	3 X IU '
	9×10^{-4}
	4×10^{-4}
Bismuth (Bi) Melting Point: 271°C	
350 9969 146.0 16.28 1.118×10^{-5} 1.540×10^{-3} 1.545×10^{-7} 0.01381	
400 9908 148.2 16.10 1.096×10^{-5} 1.422×10^{-3} 1.436×10^{-7} 0.01310	
500 9785 152.8 15.74 1.052×10^{-5} 1.188×10^{-3} 1.215×10^{-7} 0.01154	
600 9663 157.3 15.60 1.026×10^{-5} 1.013×10^{-3} 1.048×10^{-7} 0.01022	
700 9540 161.8 15.60 1.010×10^{-5} 8.736×10^{-4} 9.157×10^{-8} 0.00906	
Lead (Pb) Melting Point: 327°C	
400 10506 158 15.97 9.623 \times 10 ⁻⁶ 2.277 \times 10 ⁻³ 2.167 \times 10 ⁻⁷ 0.02252	
450 10449 156 15.74 9.649×10^{-6} 2.065×10^{-3} 1.976×10^{-7} 0.02048	
500 10390 155 15.54 9.651 \times 10 ⁻⁶ 1.884 \times 10 ⁻³ 1.814 \times 10 ⁻⁷ 0.01879	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
650 10206 155 15.07 9.526×10^{-6} 1.505×10^{-3} 1.475×10^{-7} 0.01549	
700 10145 155 14.91 9.483 \times 10 ⁻⁶ 1.379 \times 10 ⁻³ 1.360 \times 10 ⁻⁷ 0.01434	
Sodium (Na) Melting Point: 98°C	
100 927.3 1378 85.84 6.718×10^{-5} 6.892×10^{-4} 7.432×10^{-7} 0.01106	
200 902.5 1349 80.84 6.639×10^{-5} 5.385 $\times 10^{-4}$ 5.967 $\times 10^{-7}$ 0.008987	
300 877.8 1320 75.84 6.544×10^{-5} 3.878×10^{-4} 4.418×10^{-7} 0.006751	
400 853.0 1296 71.20 6.437×10^{-5} 2.720×10^{-4} 3.188×10^{-7} 0.004953	
500 828.5 1284 67.41 6.335×10^{-5} 2.411×10^{-4} 2.909×10^{-7} 0.004593	
600 804.0 1272 63.63 6.220×10^{-5} 2.101×10^{-4} 2.614×10^{-7} 0.004202	
Potassium (K) Melting Point: 64°C	
200 795.2 790.8 43.99 6.995×10^{-5} 3.350×10^{-4} 4.213×10^{-7} 0.006023	
300 771.6 772.8 42.01 7.045×10^{-5} 2.667×10^{-4} 3.456×10^{-7} 0.004906	
400 748.0 754.8 40.03 7.090×10^{-5} 1.984×10^{-4} 2.652×10^{-7} 0.00374 500 723.9 750.0 37.81 6.964×10^{-5} 1.668×10^{-4} 2.304×10^{-7} 0.003309	
600 699.6 750.0 37.81 6.964×10^{-1} 1.088×10^{-2} 2.304×10^{-7} 0.003309	
Sodium-Potassium (%22Na-%78K) Melting Point: — 11°C	
100 847.3 944.4 25.64 3.205 \times 10 ⁻⁵ 5.707 \times 10 ⁻⁴ 6.736 \times 10 ⁻⁷ 0.02102 200 823.2 922.5 26.27 3.459 \times 10 ⁻⁵ 4.587 \times 10 ⁻⁴ 5.572 \times 10 ⁻⁷ 0.01611	
200 823.2 922.5 26.27 3.459×10^{-5} 4.587×10^{-4} 5.572×10^{-7} 0.01611 300 799.1 900.6 26.89 3.736×10^{-5} 3.467×10^{-4} 4.339×10^{-7} 0.01161	
400 775.0 879.0 27.50 4.037×10^{-5} 2.357 $\times 10^{-4}$ 3.041 $\times 10^{-7}$ 0.00753	
775.5 880.1 27.89 4.217×10^{-5} 2.108×10^{-4} 2.805×10^{-7} 0.00665	
600 728.0 881.2 28.28 4.408×10^{-5} 1.859×10^{-4} 2.553×10^{-7} 0.00579	

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

1018 | Fundamentals of Thermal-Fluid Sciences

TABL	E A-21										
Ideal	gas prope	rties of air									
<i>T</i> K	<i>h</i> kJ/kg	P_r	и kJ/kg	V_r	<i>s</i> ° kJ/kg ⋅ K	<i>T</i> K	<i>h</i> kJ/kg	P_r	и kJ/kg	V _r	<i>s</i> ° kJ/kg ⋅ K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310	310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.61803
315	315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.63280
320	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82344
390	390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84856
400	400.98	3.806	286.16	301.6	1.99194	920	955.38	82.05	691.28	32.18	2.87324
410	411.12	4.153	293.43	283.3	2.01699	940	977.92	89.28	708.08	30.22	2.89748
420	421.26	4.522	300.69	266.6	2.04142	960	1000.55	97.00	725.02	28.40	2.92128
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
440	441.61	5.332	315.30	236.8	2.08870	1000	1046.04	114.0	758.94	25.17	2.96770
450	451.80	5.775	322.62	223.6	2.11161	1020	1068.89	123.4	776.10	23.72	2.99034
460	462.02	6.245	329.97	211.4	2.13407	1040	1091.85	133.3	793.36	23.29	3.01260
470	472.24	6.742	337.32	200.1	2.15604	1060	1114.86	143.9	810.62	21.14	3.03449
480	482.49	7.268	344.70	189.5	2.17760	1080	1137.89	155.2	827.88	19.98	3.05608
490	492.74	7.824	352.08	179.7	2.19876	1100	1161.07	167.1	845.33	18.896	3.07732
500	503.02	8.411	359.49	170.6	2.21952	1120	1184.28	179.7	862.79	17.886	3.09825
510	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.15916
540 550 560 570	544.35 555.74 565.17 575.59	11.10 11.86 12.66 13.50	389.34 396.86 404.42 411.97	139.7 133.1 127.0 121.2	2.29906 2.31809 2.33685 2.35531	1200 1220 1240	1277.79 1301.31 1324.93	238.0 254.7 272.3	933.33 951.09 968.95	14.470 13.747 13.069	3.17888 3.19834 3.21751

1440

1460

1480

1500

1520

1540

1560

1580

1563.51

1587.63

1611.79

1635.97

1660.23

1684.51

1708.82

1733.17

506.9

537.1

568.8

601.9

636.5

672.8

710.5

750.0

1150.13

1168.49

1186.95

1205.41

1223.87

1242.43

1260.99

1279.65

1582.6

1630.6

1678.7

1726.8

1775.3

1823.8

1872.4

1921.3

1655

1852

2068

2303

2559

2837

3138

3464

3.295

3.022

2.776

2.555

2.356

2.175

2.012

1.864

3.7354

3.7677

3.7994

3.8303

3.8605

3.8901

3.9191

3.9474

TABLE	A-21										
Ideal-g	gas propertie	es of air (Concluded)								
<i>T</i> K	<i>h</i> kJ/kg	P_r	u kJ/kg	V_r	<i>s</i> ° kJ/kg ⋅ K	T K	<i>h</i> kJ/kg	P_r	и kJ/kg	V_r	<i>s</i> ° kJ/kg ⋅ K
1260	1348.55	290.8	986.90	12.435	3.23638	1600	1757.57	791.2	1298.30	5.804	3.52364
1280	1372.24	310.4	1004.76	11.835	3.25510	1620	1782.00	834.1	1316.96	5.574	3.53879
1300	1395.97	330.9	1022.82	11.275	3.27345	1640	1806.46	878.9	1335.72	5.355	3.55381
1320	1419.76	352.5	1040.88	10.747	3.29160	1660	1830.96	925.6	1354.48	5.147	3.56867
1340	1443.60	375.3	1058.94	10.247	3.30959	1680	1855.50	974.2	1373.24	4.949	3.58335
1360	1467.49	399.1	1077.10	9.780	3.32724	1700	1880.1	1025	1392.7	4.761	3.5979
1380	1491.44	424.2	1095.26	9.337	3.34474	1750	1941.6	1161	1439.8	4.328	3.6336
1400	1515.42	450.5	1113.52	8.919	3.36200	1800	2003.3	1310	1487.2	3.994	3.6684
1420	1539.44	478.0	1131.77	8.526	3.37901	1850		1475	1534.9	3.601	3.7023

1900 2127.4

1950 2189.7

2000 2252.1

2050 2314.6

2100 2377.7

2150 2440.3

2200 2503.2

2250 2566.4

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 785–86, table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

8.153 3.39586

7.801 3.41247

7.468 3.42892

7.152 3.44516

6.854 3.46120

6.569 3.47712

6.301 3.49276

6.046 3.50829

1020 | Fundamentals of Thermal-Fluid Sciences

TABLE A-22

Properties of air at 1 atm pressure

Tomp	Donaity	Specific Heat	Thermal	Thermal	Dynamic Viscosity	Kinematic	Prandtl Number
Temp. <i>T</i> , °C	Density $ ho$, kg/m ³	c_p , J/kg · K	Conductivity k, W/m · K	Diffusivity α , m ² /s	Viscosity μ , kg/m \cdot s	Viscosity ν , m ² /s	Pr
1, C	<i>ρ</i> , κg/III*	<i>c_p</i> , 1/kg · K	Α, ΨΥ/ΙΙΙ • Κ	α, 111 / 5	μ , kg/III · S	ν, 111 / 5	
-150	2.866	983	0.01171	4.158×10^{-6}	8.636×10^{-6}	3.013×10^{-6}	0.7246
-100	2.038	966	0.01582	8.036×10^{-6}	1.189×10^{-6}	5.837×10^{-6}	0.7263
-50	1.582	999	0.01979	1.252×10^{-5}	1.474×10^{-5}	9.319×10^{-6}	0.7440
-40	1.514	1002	0.02057	1.356×10^{-5}	1.527×10^{-5}	1.008×10^{-5}	0.7436
-30	1.451	1004	0.02134	1.465×10^{-5}	1.579×10^{-5}	1.087×10^{-5}	0.7425
-20	1.394	1005	0.02211	1.578×10^{-5}	1.630×10^{-5}	1.169×10^{-5}	0.7408
-10	1.341	1006	0.02288	1.696×10^{-5}	1.680×10^{-5}	1.252×10^{-5}	0.7387
0	1.292	1006	0.02364	1.818×10^{-5}	1.729×10^{-5}	1.338×10^{-5}	0.7362
5	1.269	1006	0.02401	1.880×10^{-5}	1.754×10^{-5}	1.382×10^{-5}	0.7350
10	1.246	1006	0.02439	1.944×10^{-5}	1.778×10^{-5}	1.426×10^{-5}	0.7336
15	1.225	1007	0.02476	2.009×10^{-5}	1.802×10^{-5}	1.470×10^{-5}	0.7323
20	1.204	1007	0.02514	2.074×10^{-5}	1.825×10^{-5}	1.516×10^{-5}	0.7309
25	1.184	1007	0.02551	2.141×10^{-5}	1.849×10^{-5}	1.562×10^{-5}	0.7296
30	1.164	1007	0.02588	2.208×10^{-5}	1.872×10^{-5}	1.608×10^{-5}	0.7282
35	1.145	1007	0.02625	2.277×10^{-5}	1.895×10^{-5}	1.655×10^{-5}	0.7268
40	1.127	1007	0.02662	2.346×10^{-5}	1.918×10^{-5}	1.702×10^{-5}	0.7255
45	1.109	1007	0.02699	2.416×10^{-5}	1.941×10^{-5}	1.750×10^{-5}	0.7241
50	1.092	1007	0.02735	2.487×10^{-5}	1.963×10^{-5}	1.798×10^{-5}	0.7228
60	1.059	1007	0.02808	2.632×10^{-5}	2.008×10^{-5}	1.896×10^{-5}	0.7202
70	1.028	1007	0.02881	2.780×10^{-5}	2.052×10^{-5}	1.995×10^{-5}	0.7177
80	0.9994	1008	0.02953	2.931×10^{-5}	2.096×10^{-5}	2.097×10^{-5}	0.7154
90	0.9718	1008	0.03024	3.086×10^{-5}	2.139×10^{-5}	2.201×10^{-5}	0.7132
100	0.9458	1009	0.03095	3.243×10^{-5}	2.181×10^{-5}	2.306×10^{-5}	0.7111
120	0.8977	1011	0.03235	3.565×10^{-5}	2.264×10^{-5}	2.522×10^{-5}	0.7073
140	0.8542	1013	0.03374	3.898×10^{-5}	2.345×10^{-5}	2.745×10^{-5}	0.7041
160	0.8148	1016	0.03511	4.241×10^{-5}	2.420×10^{-5}	2.975×10^{-5}	0.7014
180	0.7788	1019	0.03646	4.593×10^{-5}	2.504×10^{-5}	3.212×10^{-5}	0.6992
200	0.7459	1023	0.03779	4.954×10^{-5}	2.577×10^{-5}	3.455×10^{-5}	0.6974
250	0.6746	1033	0.04104	5.890×10^{-5}	2.760×10^{-5}	4.091×10^{-5}	0.6946
300	0.6158	1044	0.04418	6.871×10^{-5}	2.934×10^{-5}	4.765×10^{-5}	0.6935
350	0.5664	1056	0.04721	7.892×10^{-5}	3.101×10^{-5}	5.475×10^{-5}	0.6937
400	0.5243	1069	0.05015	8.951×10^{-5}	3.261×10^{-5}	6.219×10^{-5}	0.6948
450	0.4880	1081	0.05298	1.004×10^{-4}	3.415×10^{-5}	6.997×10^{-5}	0.6965
500	0.4565	1093	0.05572	1.117×10^{-4}	3.563×10^{-5}	7.806×10^{-5}	0.6986
600	0.4042	1115	0.06093	1.352×10^{-4}	3.846×10^{-5}	9.515×10^{-5}	0.7037
700	0.3627	1135	0.06581	1.598×10^{-4}	4.111×10^{-5}	1.133×10^{-4}	0.7092
800	0.3289	1153	0.07037	1.855×10^{-4}	4.362×10^{-5}	1.326×10^{-4}	0.7149
900	0.3008	1169	0.07465	2.122×10^{-4}	4.600×10^{-5}	1.529×10^{-4}	0.7206
1000	0.2772	1184	0.07868	2.398×10^{-4}	4.826×10^{-5}	1.741×10^{-4}	0.7260
1500	0.1990	1234	0.09599	3.908×10^{-4}	5.817×10^{-5}	2.922×10^{-4}	0.7478
2000	0.1553	1264	0.11113	5.664×10^{-4}	6.630×10^{-5}	4.270×10^{-4}	0.7539

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by P and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 1984; and Thermophysical Properties of Matter. Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.

Carbon Monoxide, CO 1.5297						otm procesure	of gases at 1	Droportica
Temp. Density $\rho_{\rm r}$ kg/m³ $c_{\rm p}$. J/kg · K k , W/m · K k , W/m · K k , $W/m^2/s$ k , $W/m \cdot K$ k , $W/m^2/s$ k , $W/m \cdot K$ k , $W/m^2/s$				-	-		or gases at 1 a	Properties
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Prandt Numbe					the second secon	Donoity	Tomp
### Carbon Dioxide, CO2 ### Carbon Dioxide,	Pr							
-50		ν, 111 7 5	μ, κg/111 · 3			<i>c_p, 37 kg · K</i>	p, kg/III	7, 0
0 1.9635 811 0.01456 9.141 × 10−6 1.375 × 10−5 7.003 × 10−6 50 1.6597 866.6 0.01858 1.291 × 10−5 1.612 × 10−5 9.714 × 10−6 100 1.4373 914.8 0.02257 1.716 × 10−5 1.841 × 10−5 1.281 × 10−5 150 1.2675 957.4 0.02652 2.186 × 10−5 2.063 × 10−5 1.627 × 10−5 200 1.1336 995.2 0.03044 2.698 × 10−5 2.276 × 10−5 2.866 × 10−5 300 0.9358 1060 0.03814 3.847 × 10−5 2.682 × 10−5 2.866 × 10−5 500 0.6937 1156 0.05293 6.600 × 10−5 3.416 × 10−5 3.842 × 10−5 500 0.6937 1156 0.05293 6.600 × 10−4 4.898 × 10−5 4.924 × 10−5 1500 0.4213 1292 0.08491 1.560 × 10−4 4.898 × 10−5 1.162 × 10−4 1500 0.3025 1356 0.10688 2.606 × 10−4 6.106 × 10−5 2.019 × 10−4 1500 0.2359 1387 0.11522 3.521 × 10−4 7.322 × 10−5 3.103 × 10−4 **Carbon Monoxide, CO** **O 1.5297 1081 0.01901 1.149 × 10−5 1.378 × 10−5 1.303 × 10−6 0 1.2497 1048 0.02278 1.739 × 10−5 1.629 × 10−5 1.303 × 10−5 50 1.0563 1039 0.02641 2.407 × 10−5 1.863 × 10−5 1.764 × 10−5 150 0.8067 1049 0.03330 3.936 × 10−5 2.283 × 10−5 2.830 × 10−5 150 0.8067 1049 0.03330 3.936 × 10−5 2.283 × 10−5 2.830 × 10−5 200 0.7214 1060 0.03656 4.782 × 10−5 2.412 × 10−5 3.426 × 10−5 400 0.5956 1085 0.04277 6.619 × 10−5 2.412 × 10−5 3.426 × 10−5 50 0.4415 1135 0.05412 1.079 × 10−4 3.379 × 10−5 1.636 × 10−5 50 0.04115 1135 0.05412 1.079 × 10−4 3.379 × 10−5 1.436 × 10−5 50 0.04115 1135 0.05412 1.079 × 10−4 3.379 × 10−5 1.436 × 10−5 50 0.0415 1135 0.05412 1.079 × 10−4 4.557 × 10−5 1.496 × 10−5 50 0.0415 1135 0.05412 1.079 × 10−4 3.379 × 10−5 1.436 × 10−5 50 0.0415 1135 0.05412 1.079 × 10−6 1.191 × 10−5 1.969 × 10−5 50 0.0415 1135 0.05412 1.079 × 10−6 1.191 × 10−5 1.969 × 10−5 50 0.0415 1135 0.05412 1.079 × 10−6 1.191 × 10−5 1.969 × 10−5 50 0.05240 2443 0.04534 3.543 × 10−5 1.491 × 10−5 1.969 × 10−5 50 0.05240 2443 0.04534 3.543 × 10−5 1.191 × 10−5 1.969 × 10−5 50 0.05240 2443 0.04534 3.543 × 10−5 1.191 × 10−5 1.969 × 10−5 50 0.05240 2443 0.04534 3.543 × 10−5 1.191 × 10−					Carbon D			
Society	0.801							
100	0.766							
150	0.752							
200	0.746							
300	0.744 0.744							
400	0.744							
500	0.745							
$ \begin{array}{c} 1000 \\ 1500 \\ 0.3025 \\ 1356 \\ 0.10688 \\ 0.10688 \\ 2.606 \times 10^{-4} \\ 0.10688 \\ 2.606 \times 10^{-4} \\ 0.106 \times 10^{-5} \\ 0.1068 \times 10^{-6} \\ 0.10688 \\ 2.606 \times 10^{-4} \\ 0.106 \times 10^{-5} \\ 0.1068 \times 10^{-6} \\ 0.1052 \\ 0.2359 \\ 0.2359 \\ 0.1387 \\ 0.11522 \\ 0.11$	0.743							
1500	0.745							
Carbon Monoxide, CO Carbon Monoxide, CO -50 1.5297 1081 0.01901 1.149 × 10 ⁻⁵ 1.378 × 10 ⁻⁵ 9.012 × 10 ⁻⁶ 0 1.2497 1048 0.02278 1.739 × 10 ⁻⁵ 1.629 × 10 ⁻⁵ 1.303 × 10 ⁻⁵ 50 1.0563 1039 0.02641 2.407 × 10 ⁻⁵ 1.863 × 10 ⁻⁵ 1.764 × 10 ⁻⁵ 100 0.9148 1041 0.02992 3.142 × 10 ⁻⁵ 2.080 × 10 ⁻⁵ 2.274 × 10 ⁻⁵ 150 0.8067 1049 0.033330 3.936 × 10 ⁻⁵ 2.283 × 10 ⁻⁵ 2.830 × 10 ⁻⁵ 200 0.7214 1060 0.03656 4.782 × 10 ⁻⁵ 2.812 × 10 ⁻⁵ 3.426 × 10 ⁻⁵ 300 0.5956 1085 0.04277 6.619 × 10 ⁻⁵ 2.812 × 10 ⁻⁵ 4.722 × 10 ⁻⁵ 400 0.5071 1111 0.04860 8.628 × 10 ⁻⁵ 3.111 × 10 ⁻⁵ 6.136 × 10 ⁻⁵ 500 0.4415 1135 0.05412 1.079 × 10 ⁻⁴ 3.379 × 10 ⁻⁵ 7.653 × 10 ⁻⁵ 1000 0.2	0.774							
-50	0.881	3.103×10^{-4}						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				n Monoxide, CO	Carbo			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.784	0.012 × 10-6	1 279 ∨ 10-5	1 1/0 × 10-5	0.01001	1001	1 5207	_50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.764							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.743							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.732							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.719							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.716							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.713	4.722×10^{-5}						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.711	6.136×10^{-5}	3.111×10^{-5}					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.708	7.653×10^{-5}			0.05412	1135	0.4415	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.708	1.700×10^{-4}	4.557×10^{-5}	2.401×10^{-4}	0.07894	1226	0.2681	1000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.773	3.284×10^{-4}	6.321×10^{-5}	4.246×10^{-4}	0.10458	1279	0.1925	1500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.930	6.543×10^{-4}	9.826×10^{-5}	7.034×10^{-4}	0.13833	1309	0.1502	2000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				lethane, CH ₄	N			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.811	9.774×10^{-6}	8.564×10^{-6}	1.204×10^{-5}	0.02367	2243	0.8761	-50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.749	1.436×10^{-5}	1.028×10^{-5}	1.917×10^{-5}	0.03042		0.7158	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.728	1.969×10^{-5}			0.03766	2302	0.6050	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.724							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.728							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.734							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.745							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.750							
1500 0.1103 5701 0.31857 5.068 \times 10 ⁻⁴ 4.434 \times 10 ⁻⁵ 4.022 \times 10 ⁻⁴	0.750							
	0.733							
	0.793 1.038	4.022×10^{-4} 7.395×10^{-4}	4.434×10^{-5} 6.360×10^{-5}	5.068×10^{-4} 7.120×10^{-4}	0.31857	6001	0.1103	2000
Hydrogen, H_2								
	0.656	6.624×10^{-5}						
	0.707	9.329×10^{-5}						
	0.719	1.240×10^{-4}						
	0.719	1.582×10^{-4}						
	0.717	1.957×10^{-4}						
200 0.05193 14482 0.2486 3.306×10^{-4} 1.228×10^{-5} 2.365×10^{-4}	0.715	2.365×10^{-4}	1.228 × 10 ⁻⁵	3.306 × 10 ⁻⁴	0.2486	14482	0.05193	200

1022 | Fundamentals of Thermal-Fluid Sciences

TABLE A	23						
Properties	s of gases at 1	atm pressure (Continued)				
Temp. <i>T</i> , °C	Density $ ho$, kg/m 3	Specific Heat c_p , J/kg \cdot K	Thermal Conductivity <i>k</i> , W/m · K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ , kg/m \cdot s	Kinematic Viscosity ν , m ² /s	Prandtl Number Pr
300 400 500 1000 1500 2000	0.04287 0.03650 0.03178 0.01930 0.01386 0.01081	14481 14540 14653 15577 16553 17400	0.2843 0.3180 0.3509 0.5206 0.6581 0.5480	4.580×10^{-4} 5.992×10^{-4} 7.535×10^{-4} 1.732×10^{-3} 2.869×10^{-3} 2.914×10^{-3}	1.403×10^{-5} 1.570×10^{-5} 1.730×10^{-5} 2.455×10^{-5} 3.099×10^{-5} 3.690×10^{-5}	3.274×10^{-4} 4.302×10^{-4} 5.443×10^{-4} 1.272×10^{-3} 2.237×10^{-3} 3.414×10^{-3}	0.7149 0.7179 0.7224 0.7345 0.7795 1.1717
				Nitrogen, N_2			
-50 0 50 100 150 200 300 400 500 1000 1500	1.5299 1.2498 1.0564 0.9149 0.8068 0.7215 0.5956 0.5072 0.4416 0.2681 0.1925	957.3 1035 1042 1041 1043 1050 1070 1095 1120 1213 1266	0.02001 0.02384 0.02746 0.03090 0.03416 0.03727 0.04309 0.04848 0.05358 0.07938 0.11793	1.366×10^{-5} 1.843×10^{-5} 2.494×10^{-5} 3.244×10^{-5} 4.058×10^{-5} 4.921×10^{-5} 6.758×10^{-5} 8.727×10^{-5} 1.083×10^{-4} 2.440×10^{-4} 4.839×10^{-4}	1.390×10^{-5} 1.640×10^{-5} 1.874×10^{-5} 2.094×10^{-5} 2.300×10^{-5} 2.494×10^{-5} 2.849×10^{-5} 3.166×10^{-5} 3.451×10^{-5} 4.594×10^{-5} 5.562×10^{-5}	$\begin{array}{c} 9.091 \times 10^{-6} \\ 1.312 \times 10^{-5} \\ 1.774 \times 10^{-5} \\ 2.289 \times 10^{-5} \\ 2.851 \times 10^{-5} \\ 3.457 \times 10^{-5} \\ 4.783 \times 10^{-5} \\ 6.242 \times 10^{-5} \\ 7.816 \times 10^{-6} \\ 1.713 \times 10^{-4} \\ 2.889 \times 10^{-4} \end{array}$	0.6655 0.7121 0.7114 0.7056 0.7025 0.7025 0.7078 0.7153 0.7215 0.7022 0.5969
2000	0.1502	1297	0.18590	9.543×10^{-4}	6.426×10^{-5}	4.278×10^{-4}	0.4483
				Oxygen, O_2			
-50 0 50 100 150 200 300 400 500 1000 1500 2000	1.7475 1.4277 1.2068 1.0451 0.9216 0.8242 0.6804 0.5793 0.5044 0.3063 0.2199 0.1716	984.4 928.7 921.7 931.8 947.6 964.7 997.1 1025 1048 1121 1165 1201	0.02067 0.02472 0.02867 0.03254 0.03637 0.04014 0.04751 0.05463 0.06148 0.09198 0.11901 0.14705	1.201×10^{-5} 1.865×10^{-5} 2.577×10^{-5} 3.342×10^{-5} 4.164×10^{-5} 5.048×10^{-5} 7.003×10^{-5} 9.204×10^{-5} 1.163×10^{-4} 2.678×10^{-4} 4.643×10^{-4} 7.139×10^{-4}	$\begin{array}{c} 1.616\times10^{-5}\\ 1.916\times10^{-5}\\ 2.194\times10^{-5}\\ 2.451\times10^{-5}\\ 2.694\times10^{-5}\\ 2.923\times10^{-5}\\ 3.350\times10^{-5}\\ 3.744\times10^{-5}\\ 4.114\times10^{-5}\\ 7.133\times10^{-5}\\ 8.417\times10^{-5}\\ \end{array}$	$\begin{array}{c} 9.246 \times 10^{-6} \\ 1.342 \times 10^{-5} \\ 1.818 \times 10^{-5} \\ 2.346 \times 10^{-5} \\ 2.923 \times 10^{-5} \\ 3.546 \times 10^{-5} \\ 4.923 \times 10^{-5} \\ 4.923 \times 10^{-5} \\ 6.463 \times 10^{-5} \\ 8.156 \times 10^{-5} \\ 1.871 \times 10^{-4} \\ 3.243 \times 10^{-4} \\ 4.907 \times 10^{-4} \end{array}$	0.7694 0.7198 0.7053 0.7019 0.7019 0.7025 0.7030 0.7023 0.7010 0.6986 0.6985 0.6873
-50 0 50 100 150 200 300 400 500 1000 1500 2000	0.9839 0.8038 0.6794 0.5884 0.5189 0.4640 0.3831 0.3262 0.2840 0.1725 0.1238 0.0966	1892 1874 1874 1887 1908 1935 1997 2066 2137 2471 2736 2928	0.01353 0.01673 0.02032 0.02429 0.02861 0.03326 0.04345 0.05467 0.06677 0.13623 0.21301 0.29183	7.271×10^{-6} 1.110×10^{-5} 1.596×10^{-5} 2.187×10^{-5} 2.890×10^{-5} 3.705×10^{-5} 5.680×10^{-5} 8.114×10^{-5} 1.100×10^{-4} 3.196×10^{-4} 6.288×10^{-4} 1.032×10^{-3}	7.187×10^{-6} 8.956×10^{-6} 1.078×10^{-5} 1.265×10^{-5} 1.456×10^{-5} 1.650×10^{-5} 2.045×10^{-5} 2.446×10^{-5} 2.847×10^{-5} 4.762×10^{-5} 6.411×10^{-5} 7.808×10^{-5}	7.305×10^{-6} 1.114×10^{-5} 1.587×10^{-5} 2.150×10^{-5} 2.806×10^{-5} 3.556×10^{-5} 5.340×10^{-5} 7.498×10^{-5} 1.002×10^{-4} 2.761×10^{-4} 8.084×10^{-4}	1.0047 1.0033 0.9944 0.9830 0.9712 0.9599 0.9401 0.9240 0.9108 0.8639 0.8233 0.7833

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by ρ and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

Properties of solid me	etals										
	Melting		Proper	ties at 300) K		Propertie	s at Vario k(W/n	us Tempe $1 \cdot K)/c_p($		
Composition	Point, K	$ ho$ kg/m 3	c_p J/kg \cdot K	<i>k</i> W/m ⋅ K	$_{ m m^2/s}^{ m a}$	100	200	400	600	800	1000
Aluminum: Pure	933	2702	903	237	97.1	302 482	237 798	240 949	231 1033	218 1146	
Alloy 2024-T6 (4.5% Cu, 1.5% Mg,	775	2770	875	177	73.0	65	163	186	186		
0.6% Mn) Alloy 195, Cast (4.5% Cu)		2790	883	168	68.2	473	787	925 174	1042 185		
Beryllium	1550	1850	1825	200	59.2	990 203	301 1114	161 2191	126 2604	106 2823	90.8 3018
Bismuth	545	9780	122	7.86	6.59	16.5 112	9.69 120	7.04 127	200.	2020	0010
Boron	2573	2500	1107	27.0	9.76	190 128	55.5 600	16.8 1463	10.6 1892	9.6 2160	50 9.85 2338
Cadmium	594	8650	231	96.8	48.4	203 198	99.3 222	94.7 242	00.7	71.0	0. 65.4
Chromium	2118 1769	7160 8862	449 421	93.7 99.2	29.1 26.6	159 192 167	111 384 122	90.9 484 85.4	80.7 542 67.4	71.3 581 58.2	616 2 52.1
Copper:	1250	0022	205	401	117	236	379	450	503	550	628
Pure Commercial bronze	1358 1293	8933 8800	385 420	401 52	117 14	482 252	413 356 42	393 397 52	379 417 59	366 433	352 451
(90% Cu, 10% AI) Phosphor gear bronze	1104	8780	355	54	17		785 41	160 65	545 74		
(89% Cu, 11% Sn) Cartridge brass (70% Cu, 30% Zn)	1188	8530	380	110	33.9	75	95 360	137 395	 149 425		
Constantan (55% Cu, 45% Ni)	1493	8920	384	23	6.71	17 237	19 362	333	423		
Germanium	1211	5360	322	59.9	34.7	232 190	96.8 290	43.2 337	27.3 348	19.8 357	375
Gold	1336 2720	19,300 22,500	129 130	317 147	127 50.3	327 109 172	323 124 153	311 131 144	298 135 138	284 140 132	270 145 126
Iron:	2720	22,500	130	147	50.5	90	122	133	138	144	153
Pure	1810	7870	447	80.2	23.1	134 216	94.0 384	69.5 490	54.7 574	43.3 680	32.8 975
Armco (99.75% pure)		7870	447	72.7	20.7	95.6 215	80.6 384	65.7 490	53.1 574	42.2 680	2 32.3 975
Carbon steels: Plain carbon (Mn ≤ 1 Si $\leq 0.1\%$)	%	7854	434	60.5	17.7			56.7 487	48.0 559	39.2	2 30.0 1169
AISI 1010		7832	434	63.9	18.8		487	58.7 559	48.8 685	39.2 1168	
Carbon-silicon (Mn ≤ 1 0.1% $<$ Si \leq 0.6%)	%	7817	446	51.9	14.9			49.8 501	44.0 582	37.4 699	29.3 971

1024 | Fundamentals of Thermal-Fluid Sciences

TABLE A-24	
Duamantias of solid mostals (Continues	, \

Properties of solid me	etals <i>(Con</i>	tinued)									
	Melting		Proper	ties at 300	0 K		Propertie	es at Vario k(W/r	<i>us Tempe</i> n · K)/ <i>c_p</i> (.		(K),
Composition	Point,	$\frac{\rho}{ ho}$ kg/m ³	<i>c_p</i> J/kg⋅K	<i>k</i> W/m ⋅ K	$ m \alpha \times 10^6$ m ² /s	100	200	400	600	800	1000
Carbon-manganese-s (1% < Mn < 1.65% 0.1% < Si < 0.6%)	, 0	8131	434	41.0	11.6			42.2 487	39.7 559	35.0 685	27.6 1090
Chromium (low) steels: $\frac{1}{2}$ Cr- $\frac{1}{4}$ Mo-Si (0.18% 0.65% Cr, 0.23% Mo		7822	444	37.7	10.9			38.2	36.7	33.3	26.9
0.6% Si) 1 $Cr - \frac{1}{2} Mo$ (0.16% C, 1% Cr, 0.54% Mo,		7858	442	42.3	12.2			492 42.0	575 39.1	688 34.5	969 27.4
0.39% Si) 1 Cr–V (0.2% C, 1.02% Cr,		7836	443	48.9	14.1			492 46.8	575 42.1	688 36.3	969 28.2
0.15% V)								492	575	688	969
Stainless steels: AISI 302		8055	480	15.1	3.91			17.3 512	20.0 559	22.8 585	25.4 606
AISI 304	1670	7900	477	14.9	3.95	9.2 272	12.6 402	16.6 515	19.8 557	22.6 582	25.4 611
AISI 316		8238	468	13.4	3.48			15.2 504	18.3 550	21.3 576	24.2 602
AISI 347		7978	480	14.2	3.71			15.8 513	18.9 559	21.9 585	24.7 606
Lead	601	11,340	129	35.3	24.1	39.7 118	36.7 125	34.0 132	31.4 142		
Magnesium	923	1740	1024	156	87.6	169 649	159 934	153 1074	149 1170	146 1267	
Molybdenum	2894	10,240	251	138	53.7	179 141	143 224	134 261	126 275	118 285	112 295
Nickel: Pure	1728	8900	444	90.7	23.0 232	164 383	107 485	80.2 592	65.6 530	67.6 562	71.8
Nichrome (80% Ni, 20% Cr)	1672	8400	420	12	3.4	300	400	14 480	16 525	21 545	
Inconel X-750 (73% Ni, 15% Cr,	1665	8510	439	11.7	3.1	8.7	10.3	13.5	17.0	20.5	24.0
6.7% Fe)	0741	9570	265	F2 7	22.6	 EE 2	372	473	510	546	626
Niobium	2741	8570	265	53.7	23.6	55.2 188	52.6 249	55.2 274	58.2 283	61.3 292	301
Palladium Platinum:	1827	12,020	244	71.8	24.5	76.5 168	71.6 227	73.6 251	79.7 261	86.9 271	94.2 281
Pure	2045	21,450	133	71.6	25.1	77.5 100	72.6 125	71.8 136	73.2 141	75.6 146	78.7 152
Alloy 60Pt-40Rh (60% Pt, 40% Rh)	1800	16,630	162	47	17.4			52 —	59	65 —	69 —
Rhenium	3453	21,100	136	47.9	16.7	58.9 97	51.0 127	46.1 139	44.2 145	44.1 151	44.6 156
Rhodium	2236	12,450	243	150	49.6	186 147	154 220	146 253	136 274	127 293	121 311

TABLE A-24

Properties of solid metals (Concluded)

	Melting		Proper	ties at 300) K	ı	Propertie		<i>us Tempe</i> n ⋅ K)/ <i>c</i> _n (.		K),
Composition	Point, K	$ ho$ kg/m 3	c_p J/kg · K	<i>k</i> W/m ⋅ K	$lpha imes 10^6$ m ² /s	100	200	400	600	800	1000
Silicon	1685	2330	712	148	89.2	884 259	264 556	98.9 790	61.9 867	42.4 913	31.2 946
Silver	1235	10,500	235	429	174	444 187	430 225	425 239	412 250	396 262	379 277
Tantalum	3269	16,600	140	57.5	24.7	59.2 110	57.5 133	57.8 144	58.6 146	59.4 149	60.2 152
Thorium	2023	11,700	118	54.0	39.1	59.8 99	54.6 112	54.5 124	55.8 134	56.9 145	56.9 156
Tin	505	7310	227	66.6	40.1	85.2 188	73.3 215	62.2 243			
Titanium	1953	4500	522	21.9	9.32	30.5 300	24.5 465	20.4 551	19.4 591	19.7 633	20.7 675
Tungsten	3660	19,300	132	174	68.3	208 87	186 122	159 137	137 142	125 146	118 148
Uranium	1406	19,070	116	27.6	12.5	21.7 94	25.1 108	29.6 125	34.0 146	38.8 176	43.9 180
Vanadium	2192	6100	489	30.7	10.3	35.8 258	31.3 430	31.3 515	33.3 540	35.7 563	38.2 597
Zinc	693	7140	389	116	41.8	117 297	118 367	111 402	103 436		
Zirconium	2125	6570	278	22.7	12.4	33.2 205	25.2 264	21.6 300	20.7 332	21.6 342	23.7 362

From Frank P. Incropera and David P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed., 1990. This material is used by permission of John Wiley & Sons, Inc.

1026 Fundamentals of Thermal-Fluid Sciences

TABLE A-25

Properties of solid non-metals

	Melting		Prope	erties at 300) K		Prope	erties at Vario k (W/m ·	ous Temperat K)/c _p (J/kg·ł		
O	Point,	ρ	<i>c_p</i>		$\alpha \times 10^{\circ}$		000	400	600	000	1000
Composition	K 2323	кg/m 3970		KW/m · K	m ² /s	100	200	400	600	800	1000
Aluminum oxide, sapphire Aluminum oxide,	2323	3970	765 765	46 36.0	11.9	450 — 133	82 — 55	32.4 940 26.4	18.9 1110 15.8	13.0 1180 10.4	10.5 1225 7.85
polycrystalline Beryllium oxide	2725	3000	1030	272	88.0	_	_	940 196 1350	1110 111 1690	1180 70 1865	1225 47 1975
Boron	2573	2500	1105	27.6	9.99	190	52.5	18.7 1490	11.3 1880	8.1 2135	6.3 2350
Boron fiber epoxy (30% vol.) composite k , \parallel to fibers k , \perp to fibers	590 e	2080		2.29 0.59		2.10 0.37	2.23 0.49	2.28	1000		2000
c_p			1122	0.55		364	757	1431			
Amorphous	1500	1950	_	1.60	_	0.67 —	1.18 —	1.89 —	21.9 —	2.37 —	2.53 —
Diamond, type IIa insulator	_	3500	509	2300	:	10,000 21	4000 194	1540 853			
Graphite, pyrolytic k , II to layers k , \perp to layers c_p	2273	2210	709	1950 5.70		4970 16.8 136	3230 9.23 411	1390 4.09 992	892 2.68 1406	667 2.01 1650	534 1.60 1793
Graphite fiber epoxy (25% vol.) composite	450	1400	, 00			100	,11	332	1.00	1000	1,00
k , heat flow II to fibe k , heat flow \perp to fibe c_p			0. 935	11.1 87	0.46	5.7 0.68 337	8.7 1.1 642	13.0 1216			
Pyroceram, Corning 9606	1623	2600	808	3.98	1.89	5.25	4.78	3.64 908	3.28 1038	3.08 1122	2.96 1197
Silicon carbide	3100	3160	675	490 2	230			880	1050	1135	87 1195
Silicon dioxide, crystalline (quartz) k, to c-axis k, ⊥ to c-axis	1883	2650		10.4 6.21		39 20.8	16.4 9.5	7.6 4.70	5.0 3.4	4.2 3.1	
c_p Silicon dioxide,	1883	2220	745 745	1.38	0.834	_	1.14	885 1.51	1075 1.75	1250 2.17	2.87
polycrystalline (fused silica)	2000		, 10	1.00	0.00-	_	_	905	1040	1105	1155
Silicon nitride	2173	2400	691	16.0	9.65	_	— 578	13.9 778	11.3 937	9.88 1063	
Sulfur	392	2070	708	0.206	0.141	0.165 403					
Thorium dioxide	3573	9110	235	13	6.1			10.2 255	6.6 274	4.7 285	3.68 295
Titanium dioxide, polycrystalline	2133	4157	710	8.4	2.8			7.01 805	5.02 880	8.94 910	3.46 930

	nı		Α	
TA	КI		Δ.	7/1
	יט	7	п —	74

Emissivities of surfaces

(a) Metals

	Temperature,	Emissivity,		Temperature,	Emissivity,
Material	K	ε	Material	K	ε
Aluminum			Magnesium, polished	300-500	0.07-0.13
Polished	300–900	0.04–0.06	Mercury	300–400	0.09–0.12
Commercial sheet	400	0.09	Molybdenum		
Heavily oxidized	400–800	0.20–0.33	Polished	300–2000	0.05-0.21
Anodized	300	0.8	Oxidized	600–800	0.80–0.82
Bismuth, bright	350	0.34	Nickel	500 1000	0.07.0.17
Brass	F00 6F0	0.00.004	Polished	500–1200	0.07-0.17
Highly polished	500–650	0.03–0.04	Oxidized	450–1000	0.37-0.57
Polished	350	0.09	Platinum, polished	500–1500	0.06-0.18
Dull plate	300–600	0.22	Silver, polished	300–1000	0.02–0.07
Oxidized	450–800	0.6 0.08–0.40	Stainless steel Polished	200 1000	0 17 0 20
Chromium, polished Copper	300–1400	0.06-0.40	Lightly oxidized	300–1000 600–1000	0.17–0.30 0.30–0.40
Highly polished	300	0.02	Highly oxidized	600–1000	0.30-0.40
Polished	300–500	0.02	Steel	000-1000	0.70-0.80
Commercial sheet	300–300	0.15	Polished sheet	300–500	0.08-0.14
Oxidized	600–1000	0.5–0.8	Commercial sheet	500–300	0.20-0.32
Black oxidized	300	0.78	Heavily oxidized	300	0.81
Gold	000	0.70	Tin, polished	300	0.05
Highly polished	300-1000	0.03-0.06	Tungsten		
Bright foil	300	0.07	Polished	300-2500	0.03-0.29
Iron			Filament	3500	0.39
Highly polished	300-500	0.05-0.07	Zinc		
Case iron	300	0.44	Polished	300-800	0.02-0.05
Wrought iron	300-500	0.28	Oxidized	300	0.25
Rusted	300	0.61			
Oxidized	500-900	0.64-0.78			
Lead					
Polished	300–500	0.06-0.08			
Unoxidized, rough	300	0.43			
Oxidized	300	0.63	1		

1028 | Fundamentals of Thermal-Fluid Sciences

TABLE A-26

Emissivities of surfaces (Concluded)

(b) Nonmetals

Material	Temperature, K	Emissivity, $arepsilon$	Material	Temperature, K	Emissivity, $arepsilon$
Alumina	800–1400	0.65-0.45	Paper, white	300	0.90
Aluminum oxide	600–1500	0.69–0.41	Plaster, white	300	0.93
Asbestos	300	0.96	Porcelain, glazed	300	0.92
Asphalt pavement	300	0.85–0.93	Quartz, rough, fused	300	0.93
Brick			Rubber		
Common	300	0.93–0.96	Hard	300	0.93
Fireclay	1200	0.75	Soft	300	0.86
Carbon filament	2000	0.53	Sand	300	0.90
Cloth	300	0.75–0.90	Silicon carbide	600–1500	0.87–0.85
Concrete	300	0.88–0.94	Skin, human	300	0.95
Glass			Snow	273	0.80–0.90
Window	300	0.90–0.95	Soil, earth	300	0.93–0.96
Pyrex	300–1200	0.82–0.62	Soot	300–500	0.95
Pyroceram	300–1500	0.85–0.57	Teflon	300–500	0.85–0.92
Ice	273	0.95–0.99	Water, deep	273–373	0.95–0.96
Magnesium oxide	400–800	0.69–0.55	Wood		
Masonry	300	0.80	Beech	300	0.94
Paints			Oak	300	0.90
Aluminum	300	0.40-0.50			
Black, lacquer, shiny	300	0.88			
Oils, all colors	300	0.92-0.96			
Red primer	300	0.93			
White acrylic	300	0.90			
White enamel	300	0.90			

Relative roughness, ϵ/D

FIGURE A-27

The Moody chart for the friction factor for fully developed flow in circular pipes for use in the head loss relation $h_L = f \frac{L}{D} \frac{V^2}{2g}$. Friction factors in the turbulent flow are evaluated from the Colebrook equation $\frac{1}{\sqrt{f}} = -2 \log_{10} \left(\frac{\epsilon/D}{3.7} + \frac{1}{2} \right)$

1030 | Fundamentals of Thermal-Fluid Sciences

FIGURE A-28

Nelson-Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.