THE USAGE OF SPECIAL TECHNIQUES

ZHIQIN LU

In this article, we use an example in the classical book of Chunfang Xu (许莼舫) [1] to show that different methods can be used in plane geometry. I added two new methods for this problem.

Problem. In the quadrilateral ABCD, assume that AD = BC. Assume that E, F are the midpoints of AB and CD, respectively. Prove $\angle AGE = \angle H$.

Solution: (Construction of Isosceles Triangle.) Connect DB and let K be the midpoint of DB. Connect KE, KF. We can prove that $\triangle KEF$ is an isosceles triangle. Thus $\angle H = \angle EFK = \angle FEK = \angle AGE$.

Solution: (Translation Method (1).) We define points K and L such that DFKA and FCBL are parallelograms. Thus AKBL is also a parallelogram. In particular, K, E, L are collinear, and KE = LE.

1

Since $\triangle FKL$ is an isosceles triangle, we must have $\angle AGE = \angle KFL = \angle EFL = \angle EHB$.

Solution: (Translation Method (2).) In this method, we let DCKA be a parallelogram. Let L be the mid poin tof KB. connect EL and LC.

We then can prove that FCLE is a parallelogram. Thus $CL \parallel HE$. This completes the proof.

Solution: (Translation Method (3).) We make rectangles RCNS and UDMV. Using that, we can prove $\triangle ADM \cong \triangle BCN$.

Solution: (Translation Method (4).) We can construct an parallelogram DCLK. Then we can prove $\triangle ADK \cong \triangle BCL$.

Solution: (Rotation Method (1).) In the following graph, if ARBC is a parallelogram, then we can prove $\triangle ADR$ is isosceles.

Solution: (Rotation Method (2).) Making RHBD is a parallelogram. Then we can prove $\triangle DAR$ is isosceles triangle.

Solution: (Flipping Method.) This method might be complicated, but one can flipping $\triangle GAE$ into $\triangle GNE$ and prove that the trapezoids COKG and MHLN are congruent.

Solution: (Z. Lu's Proof Using Menelaus Theorem.) Considering the line HE intersects with

 $\triangle PDC$, we have

$$\frac{PG}{GD} \cdot \frac{DF}{FC} \cdot \frac{CH}{HP} = 1.$$

Since DF = FC, we have

$$\frac{PG}{GD} \cdot \frac{CH}{HP} = 1.$$

Similarly, considering the line HE intersects with $\triangle PAB$, we have

$$\frac{PG}{GA} \cdot \frac{BH}{HP} = 1.$$

Thus we have

$$\frac{CH}{GD} = \frac{BH}{GA}.$$

Assume AD = BC = a. We then have

$$\frac{CH}{GD} = \frac{CH + a}{GD + a}.$$

Thus we have CH = GD which implies PG = HP. Therefore $\triangle PHG$ is isosceles. Thus

$$\angle EHB = \angle PGH = \angle AGE$$
.

Solution: (Z. Lu's Proof Using Vector Algebra.) Let A, B, C, D be represented by $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$, and $\vec{\mathbf{d}}$. Then vectors \vec{GA}, \vec{HE} , and \vec{HB} are

$$\begin{split} \vec{\mathbf{v}}_1 &= \vec{\mathbf{a}} - \vec{\mathbf{d}}, \\ \vec{\mathbf{v}}_2 &= (\vec{\mathbf{a}} - \vec{\mathbf{d}})/2 + (\vec{\mathbf{b}} - \vec{\mathbf{c}})/2, \\ \vec{\mathbf{v}}_3 &= \vec{\mathbf{b}} - \vec{\mathbf{c}}. \end{split}$$

By assumption, $\vec{\mathbf{v}}_1 = \vec{\mathbf{v}}_3$. Thus

$$\cos \angle AGE = \frac{\langle \vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \rangle}{\|\vec{\mathbf{v}}_1\| \cdot \|\vec{\mathbf{v}}_2\|} = \frac{\langle \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3 \rangle}{\|\vec{\mathbf{v}}_3\| \cdot \|\vec{\mathbf{v}}_2\|} = \cos \angle H.$$

Thus $\angle AGE = \angle H$.

Using coordinate geometry and complex numbers, one would get similar proofs as above.

References

[1] 许莼舫, 许莼舫初等几何四种, 中国青年出版社, 1978.

Department of Mathematics, University of California, Irvine, CA 92697 $\it Email\ address:\ {\tt zluQuci.edu}$