Metody rozpoznawania obrazów i podstawy uczenia maszynowego

Metody klasteryzacji

Paulina Żak

4. Kmeans

Implementacja algorytmu

algorytm przyjmuje zestaw danych do klasteryzacji, ilość klastrów i metodę, którą zostaną wyznaczone dystanse.

Wizualizacja

Zaproponowaną wizualizacją jest wykres punktowy w 2 lub 3 wymiarach.

Po wydzieleniu klastrów została przeprowadzona redukcja wymiarów metodą PCA.

Metoda ta została wybrana, gdyż pozwala na efektywne wykreślenie podziału danych Utrata informacji związana z redukcją przestrzeni cech jest dość znacząca (tylko 33.8% i 21.1% zmienności zostało opisane przez pierwszą i drugą składową) i raczej nie nadawałaby się do analizy, niemniej jednak uważam ją za wystarczającą do analizy wizualnej danych.

Opis wykresu:

Każde z doświadczeń na zbiorze zostało wykreślone jako koło o pewnym kolorze:

- o większym promieniu, gdzie
 - kolor oznacza przypisanie do jednego z klastrów
- o mniejszym promieniu, gdzie
 - kolor oznacza osobę, którą dany obrazek przedstawia

Odległość euklidesowa dla K =15

Wykres punktowy 2d

Wykres punktowy 3d

Odległość Mahalanobisa dla K=15

Wykres punktowy 2d

Wykres punktowy 3d

Różna ilość klastrów Testy Kmeans z miarą euklidesową, gdy **K=2**

K=8

Do sprawdzenia jaka liczba klastrów będzie najbardziej odpowiednia w tym przypadku użyłam metody 'gap statistic'. Poniżej znajduje się wykres optymalności liczby klastrów.

Optymalnym rozwiązaniem jest jak najmniejsza liczba ja spełniająca poniższą nierówność: $Gap(k)\ -Gap(k+1)\ +\ s_{k+1}\geq\ 0$

Jak widać z powyższego wykresu i równania naszą optymalną ilością klastrów jest 5.

5. Klasteryzacja hierarchiczna Wizualizacja grafu z zestawu dolphins.gml

Odległość Euklidesowa zbudowana na podstawie macierzy adiacencji

Korelacja między rzędami macierzy adiacencji Dendrogram

Długość najkrótszej ścieżki pomiędzy wierzchołkami Dendrogram

Zaimplementowane zostało 'random walk' z metryką commutte time

Single-link clustering

Dendrogram

Complete-link clustering

Dendrogram

Average-link clustering

Metody community detection

Wykorzystana została metoda Louvaina

Bibliografia i wykorzystane narzędzia:

https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/https://datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-means-clustering/https://bitbucket.org/taynaud/python-louvain

https://networkx.github.io/

http://seaborn.pydata.org/