EPFL ENAC TRANSP-OR **Prof. M. Bierlaire** 

Mathematical Modeling of Behavior Fall 2020



### EXERCISE SESSION 4

Exercise 1 In a case study of transportation mode choice, the parameters of the utility functions have been estimated as follows:

$$U_{1n} = 1 - 0.03 \cdot tt_{1n} - 0.06 \cdot c_{1n} + 0.5 \cdot \text{income}_n + \varepsilon_{1n}$$

$$U_{2n} = -0.02 \cdot tt_{2n} - 0.0375 \cdot c_{2n} + 0.5 \cdot \text{university}_n + \varepsilon_{2n}$$
(1)

where  $tt_{in}$  and  $c_{in}$  are the travel time (in minutes) and travel cost (in CHF) for respondent n, with  $i \in \{\text{car}, \text{train}\}$ . Additionally,  $income_n$  takes value 1 if the respondent's monthly income is larger than 6000CHF and 0 otherwise, whereas  $university_n$  takes value 1 if the respondent went to the university and 0 otherwise.  $\varepsilon_{1n}, \varepsilon_{2n} \stackrel{iid}{\sim} \text{EV}(0, 1)$ .

1. Compute the probability to choose each mode for the following individuals:

| Name   | $tt_1$ | $tt_2$ | $c_1$ | $c_2$ | monthly income | university |
|--------|--------|--------|-------|-------|----------------|------------|
| Tim    | 22     | 18     | 2     | 2.1   | 7000           | yes        |
| Janody | 120    | 100    | 10    | 15    | 3000           | yes        |
| Michel | 10     | 50     | 3     | 5     | 10000          | no         |
| Meri   | 25     | 9      | 7     | 2.1   | 5000           | no         |

- 2. Explain what the alternative specific constant in alternative 1 represents.
- 3. Interpret one by one all the parameters.

Exercise 2 In a route choice case study, the utility functions are defined as follows:

$$U_1 = ASC_1 + \beta_{length} \cdot length_1 + \varepsilon_1$$
  

$$U_2 = ASC_2 + \beta_{length} \cdot length_2 + \varepsilon_2$$
(2)

where alternatives 1 and 2 represent different routes,  $ASC_1$ ,  $ASC_2$  and  $\beta_{length}$  are parameters to be estimated and length<sub>i</sub>,  $i \in \{1, 2\}$ , is the length of each route in kilometers.

The estimation results of a binary logit model, where  $ASC_1$  has been normalized to zero, are shown in the first column of the following table. The second column corresponds to the same specification with  $ASC_2$  normalized to zero instead:

|                  | Logit 1 | Logit 2 |
|------------------|---------|---------|
| $ASC_1$          | 0       | X       |
| $ASC_2$          | -2      | 0       |
| $\beta_{length}$ | 10      | X       |

- 1. Replace each x in the table with the value of the corresponding parameter.
- 2. What are the distributions of  $\varepsilon_1$ ,  $\varepsilon_2$  and  $\varepsilon_1 \varepsilon_2$ ?

#### Exercise 3

- 1. Define the Box-Cox transformation.
  - (a) What modeling assumption are you testing when specifying a Box-Cox transformation of the travel cost in a model of transportation mode choice?
  - (b) Let  $\lambda$  be the parameter of the Box-Cox transformation. What particular cases do you obtain when  $\lambda = 1$  or  $\lambda = 0$ ?
- 2. In a model developed for the transportation mode choice in the Netherlands case study, the deterministic parts of the utilities for the car and rail alternatives are specified as:

$$V_{Car,n} = ASC_{CAR} + \beta_{COST} \cdot cost_{car,n} + \beta_{TIME\_CAR} \cdot time_{car,n}$$

$$V_{Rail,n} = ASC_{RAIL} + \beta_{COST} \cdot cost_{rail,n} + \beta_{TIME\_RAIL} \cdot time_{rail,n} + \beta_{FEMALE} \cdot female_n$$
(3)

where  $time_{car,n}$  and  $time_{rail,n}$  are the travel times for car and rail for individual n,  $cost_{car,n}$  and  $cost_{rail,n}$  are the travel costs for the same two alternatives, and  $female_n$  takes value 1 if the individual is a female and 0 otherwise. The estimation results for this model are shown in Figure 1.

In addition to the base model, we also estimate a model with a Box-Cox transformation of the cost variables. A snapshot of the estimation results is presented in Figure 2.

Referring to the figures:

- (a) Comment and interpret the values of the estimates of both models (i.e., analyze the signs of the coefficients), and check if the estimates correspond to your expectations.
- (b) Identify what parameters are significantly different from 0 (or 1 in the case of  $\lambda$ ).

# **Formulas**

```
Car utility: ASC_CAR * one + BETA_COST * car_cost_euro + BETA_TIME_CAR * car_time

Rail utility: ASC_RAIL * one + BETA_COST * rail_cost_euro + BETA_TIME_RAIL * rail_time + BETA_FEMALE * gender
```

# **Estimation report**

```
Number of estimated parameters: 5
                              Sample size: 228
                    Excluded observations: 1511
                      Init log likelihood: -158.038
                     Final log likelihood: -115.880
Likelihood ratio test for the init. model: 84.314
           Rho-square for the init. model: 0.267
       Rho-square-bar for the init. model: 0.235
            Akaike Information Criterion: 241.761
           Bayesian Information Criterion: 258.908
                      Final gradient norm: +1.921e-05
                               Diagnostic: CFSQP: Normal termination. Obj: 6.05545e-06 Const: 6.05545e-06
                               Iterations: 12
                     Data processing time: 00:00
                                 Run time: 00:00
                           Nbr of threads: 12
```

## **Estimated parameters**

Click on the headers of the columns to sort the table [Credits]

| Name           | Value  | Std err | t-test | p-value |   | Robust Std err | Robust t-test | p-value |
|----------------|--------|---------|--------|---------|---|----------------|---------------|---------|
| ASC_CAR        | 2.85   | 1.09    | 2.62   | 0.01    |   | 1.02           | 2.80          | 0.01    |
| BETA_COST      | -0.130 | 0.0251  | -5.17  | 0.00    |   | 0.0265         | -4.89         | 0.00    |
| BETA_FEMALE    | 0.675  | 0.330   | 2.05   | 0.04    |   | 0.329          | 2.05          | 0.04    |
| BETA_TIME_CAR  | -2.34  | 0.489   | -4.78  | 0.00    |   | 0.495          | -4.73         | 0.00    |
| BETA_TIME_RAIL | -0.529 | 0.418   | -1.27  | 0.20    | * | 0.414          | -1.28         | 0.20 *  |

Figure 1: Estimation results of the base model

## **Formulas**

```
Car utility: ASC_CAR * one + ( BETA_COST * ( ( car_cost_euro ^ LAMBDA ) - ( 1 ) ) ) / LAMBDA + BETA_TIME_CAR * car_time

Rail utility: ASC_RAIL * one + BETA_COST * ( ( rail_cost_euro ^ LAMBDA ) - ( 1 ) ) / LAMBDA ) + BETA_TIME_RAIL * rail_time + BETA_FEMALE * gender
```

## **Estimation report**

```
Number of estimated parameters: 6
                              Sample size: 228
                    Excluded observations: 1511
                     Init log likelihood: -158.038
                     Final log likelihood: -113.265
Likelihood ratio test for the init. model: 89.546
           Rho-square for the init. model: 0.283
       Rho-square-bar for the init. model: 0.245
             Akaike Information Criterion: 238.530
           Bayesian Information Criterion: 259.106
                      Final gradient norm: +5.939e-05
                               Diagnostic: CFSQP: Normal termination. Obj: 6.05545e-06 Const: 6.05545e-06
                               Iterations: 24
                     Data processing time: 00:00
                                 Run time: 00:00
                           Nbr of threads: 12
```

### **Estimated parameters**

Click on the headers of the columns to sort the table [Credits]

| Name           | Value  | Std err | t-test | p-value |   | Robust Std er | Robust t-test | p-value |
|----------------|--------|---------|--------|---------|---|---------------|---------------|---------|
| ASC_CAR        | 2.64   | 1.09    | 2.41   | 0.02    |   | 1.03          | 2.56          | 0.01    |
| BETA_COST      | -0.544 | 0.266   | -2.05  | 0.04    |   | 0.249         | -2.19         | 0.03    |
| BETA_FEMALE    | 0.735  | 0.338   | 2.18   | 0.03    |   | 0.334         | 2.20          | 0.03    |
| BETA_TIME_CAR  | -2.42  | 0.500   | -4.84  | 0.00    |   | 0.509         | -4.76         | 0.00    |
| BETA_TIME_RAIL | -0.616 | 0.427   | -1.44  | 0.15    | * | 0.423         | -1.46         | 0.15    |
| LAMBDA         | 0.400  | 0.224   | 1.78   | 0.07    | * | 0.211         | 1.90          | 0.06    |

Figure 2: Estimation results of model with a Box-Cox transformation

th / rk / no / jp / mw / mpp