ネットワークレポート(3144 吉髙僚眞)

目的

- インターネット層における、IPプロトコルを使ったIPルーティングについて理解し、どのようにIPパケットを伝送しているかを理解する。
- ubuntu(Linux)の基本的なネットワーク設定について理解する。
- Wiresharkを用いてパケットキャプチャを行い、IPパケット、MACフレームの構造について理解する。
- NATやNAPT(IPマスカレード)の目的と用途について理解する。

実験1: ネットワークインターフェース(NIC)とIPアドレス、ネットワーク ルーティング

動作確認

[exp1-1]

2025-07-04 report1.md

[exp1-2]

ネットワーク図

intnetA 192.168.100.0/24

ルーティングテーブル

[exp1-1]

ネットワーク	ネクストホップ	
192.168.10.0/24	直接接続	

ネットワーク	ネクストホップ
192.168.100.0/24	直接接続
192.168.20.0/24	192.168.100.20

[exp1-1]

ネットワーク	ネクストホップ
192.168.20.0/24	直接接続
192.168.100.0/24	直接接続
192.168.10.0/24	192.168.100.10

NAPT, IPマスカレード

動作確認

[exp1-1]

[exp1-2]

ネットワーク図

intnetA 192.168.100.0/24

[exp1-1]

ネットワーク	ネクストホップ	メトリック
192.168.10.0/24	直接接続	0
192.168.100.0/24	直接接続	0
192.168.20.0/24	192.168.100.20	1
10.0.4.0/24	192.168.100.20	1

[exp1-2]

ネットワーク	ネクストホップ	メトリック
192.168.20.0/24	直接接続	0
192.168.100.0/24	直接接続	0
192.168.10.0/24	192.168.100.10	1
10.0.4.0/24	直接接続	0

実験2 Wiresharkを使ってパケットキャプチャする

ネットワーク間

1. ICMPパケット一つ(往復分)を詳細を観察し、ICMPパケットの構造をレポートにまとめる

要求

```
# Frame 1: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface empose, id 0

# Ethernet II, Src: PesCompug 84:08:27 (80:90:27:84:08:07), Dest: PesCompus 17:37 (90:90:27:84:08:07), Dest: PesCompus 17:37 (90:90:27:84:08:07)

| Dest: De
```

フィールド	値
-------	---

ICMP ヘッダ

Ethernet ヘッダ	
宛先 MAC	08:00:27:aa:f7:3f
送信元 MAC	08:00:27:84:b8:a7
EtherType	IPv4 (0x0800)
IP ヘッダ	
送信元 IP	192.168.100.10
宛先 IP	192.168.20.1
Total Length	84
Identification	4569(0x11d9)
Flags	Don't fragment (0x4000)
Frag Offset	0
TTL	64 (0x40)
Protocol	ICMP (0x01)
Header Checksum	0x2f74

フィールド	値
Туре	8
Code	0
Checksum	0x6600
Identifier (BE)	5
Identifier (BE)	1280
Sequence Number (LE)	1
Sequence Number (LE)	256

応答

フィールド	値
Ethernet ヘッダ	
宛先 MAC	08:00:27:84:b8:a7
送信元 MAC	08:00:27:aa:f7:3f
EtherType	IPv4(0x0800)
IPv4 ヘッダ	

フィールド	値
送信元 IP	192.168.20.1
宛先 IP	192.168.100.10
Total Length	84
Identification	37202(0x9152)
Flags	0x0000
Fragment offset	0
TTL	64(0x40)
Protocol	ICMP(0x01)
Header Checksum	0x6e00
ICMP ヘッダ	
Туре	0
Code	0
Checksum	0x6e00
Identifier (BE)	5
Identifier (BE)	1280
Sequence Number (LE)	1
Sequence Number (LE)	256

ICMPヘッダの構造

- ICMPパケットは、L1のイーサネットヘッダ、L2のIPヘッダ、L3のICMPヘッダからなる。
- ICMPヘッダの構造
 - Type
 - o Code
 - o Checksum
 - Identifier(BE)
 - Identifier(LE)
 - Sequence number(BE)
 - Sequence(LE)
 - Timestamp
 - Data

のような要素からなる。

• 要求と応答でTypeが異なっていることからその部分にはエコー要求の場合は8,エコー応答の場合は0が入ることがわかる。

外部との通信

1. キャプチャするNICの位置によって、ICMPパケット(IPフレーム)の内容がどのように変わっているか確認し、ex1-2で何が行われているか(実験1でex1-2に対してどのような設定を行ったのかを考えて)考察する。

要求

enp0s8

enp0s9

考察

この実験ではexp1-2でIPマスカレードする設定を追加したため、exp1-1のパケットがexp1-2でアドレス変換されているはずである。enp0s8で見ると、192.168.100.10から172.16.15.26に送られているが、enp0s9で見ると、10.0.4.15から172.16.15.26に送られている。そのため、正しくIPアドレスが変換されていると考えられる。

今回の実験で理解できたこと、できなかったこと

- インターネット層における、IPプロトコルを使ったIPルーティングについて理解し、どのようにIPパケットを伝送しているかは理解できたと思う。
- Linuxのネットワーク設定の方法については理解できた。
- Wiresharkを用いてパケットキャプチャを行う方法、IPパケット、MACフレームの構造について理解できた。
- NATやNAPT(IPマスカレード)の目的と用途について理解できた。