```
x \in A and
                                          x \in B \cap C
                     x \in A and
                                          [x \in B \text{ or } x \in C]
           \Rightarrow
                     [x \in A \text{ and } x \in B] \text{ or } [x \in A \text{ and } x \in C]
                     [x \in A \cap B]
           \Rightarrow
                                              or [x \in A \cap C]
                     x \in (A \cap B) \cup (A \cup C)
           \Rightarrow
           Hence by def. of subsets
           A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)
                                                                           (i)
                            (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)
                                                                                                (ii)
          From (i) and (ii), we have, A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
  (g) De-Morgan's laws
        For any two sets A and B, prove that
   (i) (A \cup B)' = A' \cap B'
Proof: Let x \in (A \cup B)'
                                                     (by definition of complement of set)
           ⇒
                     x \notin A \cup B
                     x ∉ A and
                                          x ∉ B
                     x \in A' and
                                          x \in B'
           ⇒
                                                    (by definition of intersection of sets)
                    x \in A' \cap B'
           \Rightarrow
           ⇒
                     (A \cup B)' \subset (A \cup B)'
                                                                          (i)
          Similarly A' \cap B' \subseteq (A \cup B)
                                                                          (ii)
          Using (i) and (ii), we have (A \cup B)' = A' \cap B'
  (ii) Let x \in (A \cap B)'
                     x \in A \cap B
          \Rightarrow
                     x ∉ A or x ∉ B
          \Rightarrow
                    x \in A' or x \in B'
          ⇒
                    x A' \cup B'
          \Rightarrow
                    (A \cap B)' \subset A' \cup B'
          \Rightarrow
                                                                         (i)
          Let
                    y \in A' \cap B'
                    y \in A \cap B
          ⇒
                    y ∉ A or x ∉ B
          \Rightarrow
          \Rightarrow
                    y \notin A \cap B
                    y \in (A \cap B)'
          \Rightarrow
                    (A' \cap B)' \subseteq A' \cap B'
                                                                         (ii)
          \Rightarrow
         From (i) and (ii) we have proved that
                    (A \cap B)' = A' \cup B'
```

SOLVED EXERCISE 5.2

- 1. If $X = \{1,3,5,7,...,19\}$, $Y = \{0,2,4,6,8,...,20\}$ $Z = \{2,3,5,7,11,13,17,19,23\}$, then find the following.
 - (i) $X \cup (Y \cup Z)$

Solution:

$$Y \cup Z = \{0, 2, 4, 6, 8, ..., 20\} \cup \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

= $\{0, 2, 3, 4, ..., 17, 19, 20, 23\}$
 $X \cup (Y \cup Z) = \{1, 3, 5, 7, ..., 19\} \cup \{0, 2, 3, 4, ..., 17, 19, 20, 23\}$
= $\{0, 1, 2, 3, ..., 30, 33\}$

(ii) $(X \cup Y) \cup Z$

Solution:

$$X \cup Y = \{1, 3, 5, 7, ..., 19\} \cup \{0, 2, 4, 6, 8, ..., 20\}$$

= $\{0, 1, 2, 3, ..., 19, 20\}$
($X \cup Y \cup Z = \{0, 1, 2, 3, ..., 19, 20\} \cup \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$
= $\{0, 1, 2, 3, ..., 20, 23\}$

(iii) $X \cap (Y \cap Z)$

Solution:

$$Y \cap Z = \{0, 2, 4, 6, 8, ..., 20\} \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

= ϕ
 $X \cap (Y \cap Z)$
 $X \cap Y = \{1, 3, 5, 7, ..., 19\} \cap \phi$
= ϕ

(iv) $(X \cap Y) \cap Z$

Solution:

$$X \cap Y = \{1, 3, 5, 7, ..., 19\} \cap \{0, 2, 4, 6, 8, .., 20\}$$

= ϕ
 $(X \cap Y) \cap Z = \phi \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$
= ϕ

(v) $X \cup (Y \cap Z)$

Solution:

$$Y \cap Z = \{0, 2, 4, 6, 8, ..., 20\} \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

= \{2\}
 $X \cup (Y \cap Z) = \{1, 3, 5, 7, ..., 19\} \cup \{2\}$
= \{1, 2, 3, 5, 7, ..., 19\}

(vi) $(X \cup Y) \cap (X \cup Z)$

Solution:

$$X \cup Y = \{1, 3, 5, 7, ..., 19\} \cup \{0, 2, 4, 6, 8, ..., 20\}$$

$$= \{0, 1, 2, 3, ..., 19, 20\}$$

$$X \cup Z = \{1, 3, 5, 7, ..., 19\} \cup \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

$$= \{1, 2, 3, 5, 7, ..., 17, 19, 23\}$$

$$(X \cup Y) \cap (X \cup Z) = \{0, 1, 2, 3, ..., 19, 20\} \cap \{1, 2, 3, 5, 7, ..., 17, 19, 23\}$$

$$= \{1, 2, 3, 5, 7, ..., 19\}$$

(vii) $X \cap (Y \cup Z)$

Solution:

$$Y \cup Z = \{0, 2, 4, 6, 8, ..., 20\} \cup \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

$$= \{0, 2, 3, 4, 5, 6, ..., 19, 20, 23\}$$

$$X \cap (Y \cup Z) = \{1, 3, 5, 7, ..., 19\} \cap \{0, 2, 3, 4, 5, 6, ..., 19, 20\}$$

$$= \{3, 5, 7, ..., 19\} \cap \{0, 2, 4, 6, 8, ..., 20\}$$

$$= \emptyset$$

$$X \cap Z = \{1, 3, 5, 7, ..., 19\} \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

$$= \{3, 5, 7, 11, 13, 17, 19\}$$

(viii) $(X \cap Y) \cup (X \cap Z)$

Solution:

$$X \cap Y = \{1, 3, 5, 7, ..., 19\} \cap \{0, 2, 4, 6, 8, ..., 20\}$$

= \emptyset
 $X \cap Z = \{1, 3, 5, 7, ..., 19\} \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$
= $\{3, 5, 7, 11, 13, 17, 19\}$

- 2. If 4 = {1, 2, 3, 4, 5, 6}, B = {2, 4, 6, 8}, C- {1, 4, 8}.

 Prove the following identities:
 - (i) $A \cap B = B \cap A$

Solution:

(ii) $A \cup B = B \cup A$

Solution:

L.H.S = R.H.S. Hence proved.

(iii)
$$A \cup (B \cup C) = (A \cap B) \cup (A \cap C)$$

Solution:

```
L.H.S. = A \cap (B \cup C)
         = \{1, 2, 3, 4, 5, 6\} \cap (\{2, 4, 6, 8\} \cap \{1, 4, 8\})
         = \{1, 2, 3, 4, 5, 6,\} \cap \{1, 2, 4, 6, 8\}
         = \{1, 2, 3, 4, 5, 6\} (i)
R.HS. = (A \cap B) \cup (A \cup C)
         = (\{1, 2, 3, 4, 5, 6\} \cap \{2, 4, 6, 8\}) \cup (\{1, 2, 3, 4, 5, 6\} \cap \{1, 4, 8\})
         = \{2, 4, 6\} \cup \{1, 4\}
         = \{1, 2, 3, 4, 5, 6\}  (ii)
         From (i) and (ii), we have
L.H.S = R.H.S.
         Hence Proved.
 (iv) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
Solution:
L.H.S. \triangleq A \cup (B \cap C)
         = \{1, 2, 3, 4, 5, 6\} \cup (\{2, 4, 6, 8\} \cap \{1, 4, 8\})
         = \{1, 2, 3, 4, 5, 6,\} \cup \{4, 8\}
         = \{1, 2, 3, 4, 5, 6, 8\} (i)
R.HS. = (A \cup B) \cap (A \cup C)
         = (\{1, 2, 3, 4, 5, 6\} \cup \{2, 4, 6, 8\}) \cap (\{1, 2, 3, 4, 5, 6\} \cap \{1, 4, 8\})
         = \{1, 2, 3, 4, 6, 8\} \cap \{1, 2, 3, 4, 5, 6, 8\}
         = \{1, 2, 3, 4, 5, 6, 8\} (ii)
         From (i) and (ii), we have
L.H.S = R.H.S.
         Hence Proved.
      If U = \{1,2,3,4,5,6,7,8,9,10\} A = \{1,3,5,7,9\}, B = \{2,3,5,7\}, then
3.
       verify the De-Morgan's Laws
         i.e., (A \cap B) = A' \cup B' and
                                                    (A \cup B)' = A' \cap B'
Solution:
L.H.S. = A' \cup B'
         = \cup - (A \cap B)
         = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - (\{1, 3, 5, 7, 9\} \cap \{2, 3, 5, 7\})
         = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - \{3, 5, 7\}
         = \{1, 2, 4, 6, 8, 9, 10\} _____(i)
R.H.S. = A' \cup B'
        = [\cup - A] \cup [\cup - B]
        = (\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - \{1, 3, 5, 7, 9\})
        \cup ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10} - {2, 3, 5, 7})
        = \{2, 4, 6, 8, 10\} \cup \{1, 4, 6, 8, 9, 10\}
        = \{1, 2, 4, 6, 8, 9, 10\} (ii)
        From (i) and (ii), we have
        L.H.S = R.H.S.
```

```
(ii) (A \cup B)' = A' \cap B'
L.H.S. = A' \cup B'
         = \cup - (A \cup B)
         = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - (\{1, 3, 5, 7, 9\} \cap \{2, 3, 5, 7\})
         = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - \{1, 2, 3, 5, 7, 9\}
         = \{4, 6, 8, 9, 10\} (i)
R.H.S. = A' \cap B'
         = [\cup - A] \cap [\cup - B]
         = (\{1, 2, 3, \ldots, 10\} - \{1, 3, 5, 7, 9\}) \cap (\{1, 2, 3, \ldots, 10\} - \{2, 3, 5, 7\})
         = \{2, 4, 6, 8, 10\} \cap \{1, 4, 6, 8, 9, 10\}
         = \{4, 6, 8, 9, 10\} (ii)
         From (i) and (ii), we have
         L.H.S = R.H.S.
      If U = \{1, 2, 3, ..., 20\}, X = \{1, 3, 7, 9, 15, 18, 20\} and
4.
       Y = \{1, 3, 5, ..., 17\}, then show that
   (i) X - Y = X \cap Y'
Solution:
L.H.S. = X \cap Y'
         = \{1, 3, 5, 7, 9, 15, 18, 20\} \cap (\cup - Y)
         = \{1, 2, 5, 7, 9, 15, 18, 20\} \cap (\{1, 2, 3, ..., 20\} - \{1, 3, 5, ..., 17\})
         = \{1, 3, 5, 7, 9, 15, 18, 20\} \cap \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}
         = \{18, 20\} (ii)
         From (i) and (ii), we have
         L.H.S = R.H.S.
         Hence Proved.
  (ii) Y - X = Y \cap X'
Solution:
L.H.S. = Y - X
         = \{1, 3, 5, \dots, 17\} - \{1, 2, 5, 7, 9, 15, 18, 20\}
         = {5, 11, 13, 17} ____(i)
R.H.S. = Y \cap X'
        = Y \cap (\cup - X)
        = \{1, 3, 5, ..., 17\} \cap (\{1, 3, ..., 20\} - \{1, 3, 5, 7, 9, 15, 18, 20\}
        = \{1, 3, 5, ..., 17\} \cap \{2, 4, 5, 6, 8, 10, 11, 12, 13, 14, 16, 19\}
        = \{5, 11, 13, 17\} (ii)
```

Verify the fundamental properties for given sets:

From (i) and (ii), we have

L.H.S = R.H.S. Hence Proved.

(a) A and B are any two subsets of U, then A u B = B u A (commutative law).

A = {1,3,5, 7} and B = {2,3,, 5,7}
then A
$$\cup$$
 B = {1, 3, 5, 7} \cup {2, 3, 5, 7} = {1, 2, 3, 5, 7}
and B \cup A = {2, 3, 5, 7} \cup {1, 3, 5, 7} = {1, 2, 3, 5, 7}
Hence, verified that A \cup B = B \cup A.

(b) Commutative property of intersection

For example

Then
$$A = \{1, 3, 5, 7\}$$
 and $B = [2, 3, 5, 7]$
Then $A \cap B = \{1,3,5,7\} \cap \{2,3,5,7\} = \{3,5,7\}$
and $B \cap A = \{2,3,5,7\} \cap \{1,3,5,7\} = \{3,5,7\}$
Hence, verified that $A \cap B = B \cap A$.

(c) If A, B and C are the subsets of U, then $(A \cup B) \cup C = A \cup (B \cup C)$.

(Associative law)

Suppose
$$A = \{1,2,4,8\}; B = \{2,4,6\}$$

And $C = \{3,4,5,6\}$
Then L.H.S. $= (A \cup B) \cup C$
 $= (\{1,2,4,8\} \cup \{2,4,6\}) \cup \{3,4,5,6\}$
 $= \{1,2,4,6,8\} \cup \{3,4,5,6\}$
 $= \{1,2,3,4.5,6,8\}$
and R.H.S. $= A \cup (B \cup C)$
 $= \{42,4,8\} \cup \{2,4,6\} \cup (3,4,5,6\})$
 $= \{1,2,4,8\} \cup \{2,3,4,5,6\}$
 $= \{42,3,4,5,6,8\}$
L.H.S. $= R.H.S$.

Hence, union of Sets is associative.

If A, B and C are the subsets of U, then $(A \cap B) \cap C = A \cap (B \cap C)$ (d) (Associative Law).

Suppose .,
$$A = \{1, 2, 4, 8\}; 5 = \{2, 4, 6\} \text{ and } C = \{3, 4, 5, 6\}$$
 then
$$L.H.S, = (A \cap B) \cap C$$

$$= (\{1, 2, 4, 8\} \cap \{2, 4, 6\}) \cap \{3, 4, 5, 6\}$$

$$= \{2, 4\} \cap \{3, 4, 5, 6\} = \{4\}$$
 and
$$R.H.S. = A \cap (B \cap C)$$

$$= \{1, 2, 4, 8\} \cap (\{2, 4, 6\} \cap \{3, 4, 5, 6\})$$

$$= (1, 2, 4, 8\}; = \{4, 6\} - \{4\}$$

L.H.S. = R.H.S.

Hence, intersection of sets is associative.

Distributive laws

(e) Union is distributive over intersection of sets

If A, B and C are the subsets of universal set U, then $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. **Solution:** Suppose A = $\{1, 2, 4, 8\}$, B = $\{2, 4, 6\}$ and C $\{3, 4, 5, 6\}$ then L.H.S = $A \cup (B \cap C)$ $= \{1,2,4.8\} \cup (\{2,4,6\}) \cap \{3,4,5,6\})$ $= \{1.2.4.8\} \cup \{4.6\} - \{1.2.4.6.8\}$

```
and R.H.S = (A \cup B) \cap (A \cup C)

= (\{1, 2, 4, 8\} \cup \{2, 4, 6\}) \cap (\{1, 2, 4, 8\} \cup \{3, 4, .5, 6\})

= (1,2,4,6,8) \cap \{1,2,3,4,5,6,8\}

= \{1,2,4,6,8\}

L.H.S = R.H.S
```

(f) Intersection is distributive over union of sets

(g) De Morgan's Laws $(A \cap B)' = A' \cup B'$ and $(A \cup B)' = A' \cap B'$

Suppose
$$U = \{1,2,3,4,...,10\}$$

 $A = \{2,4,6,8.10\}$ $\Rightarrow \{1,3,5,7,9\}$
 $B = \{1,2,3,4,5,6\}$ $\Rightarrow B' = \{7,8,9,10\}$
Now consider $A \cap B = \{2,4,6,8,10\} \cap \{1,2,3,4,5,6\}$

Now consider $A \cap B = \{2, 4, 6, 8, 10\} \cap \{1, 2, 3, 4, 5, 6\}$ = $\{2, 4, .6\}$

L.H.S. =
$$(A \cap B)' = U - (A \cap B)$$

= $\{1,2,3,4,...,10\} - \{2,4,6\}$

and R.H.S. =
$$A \cup B'$$

= $\{1,3,5,7,9\} \cup \{7,8,9,10\}$
= $\{1,3,5,7,8,9,10\}$
L.H.S. = R.H.S.

$$(A \cup B)' = A' \cap B'$$

Then

Suppose
$$U = \{1, 2, 3, 4, ..., 10\}$$

 $A = \{2, 4, 6, 8, 10\}$ $\Rightarrow A' = \{-1, 3, 5, 7, 9\}$
 $B = \{1, 2, 3, 4, 5, 6\}$ $\Rightarrow B' = \{7, 8, 9, 10\}$

Now consider
$$A \cup B = \{2, 4, 6, 8, 10\} \cup \{1, 2, 3, 4, 5, 6\}$$

 $\cdot = \{1, 2, 3, 4, 5, 6, 8, 10\}$

L.H.S. =
$$(A \cup B)' = U - (A \cup B)$$

= $\{1,2,3,4,..., 10\} - \{1,2,3,4,5,6,8,10\}$
= $\{7,9\}$

and R.H.S A' = B' =
$$\{1,3,5,7,9\} \cap \{7,8,9,10\}$$

Venn Diagram:

British mathematician John Venn (1834 - 1923) introduced rectangle for a universal set U and its subsets A and B as closed figures inside this rectangle.

Use Venn diagrams to represent:

(a) Union and intersection of sets

(Regions shown by horizontal line segments in figures 1 to 6.)

(b) Complement of a set

U - A = A' is shown by horizontal line segments.

Use Venn diagram to verify:

(a) Commutative law for union and intersection of sets.

 $A \cup B$ is shown by horizontal line segments,

 $B \cup A$ is shown by vertical line segments.

The regions shown in both cases are equal.

Thus $A \cup B = B \cup A$.,

ВОА

 $A \cap B$ is shown by horizontal line segments. $B \cap A$ is shown by vertical line segments. The regions shown in both cases are equal.

Thus $A \cap B = B \cap A$.

(b) De Morgan's laws

Fig. 1: A' is shown by horizontal line segments Fig. 2: B' is shown by vertical line segments

Fig. 3: $A' \cap B'$ is shown by squares

Fig. 4: $(A \cup B)'$ is shown by slanting line segments

Regions shown in Fig. 3 and Fig. 4 are equal.

Thus $(A \cup B)' = A' \cap B'$

 $(A \cap B)' = A' \cup B'$

Fig. 5 $A' \cup B'$ is shown by squares, horizontal and vertical line segments.

Fig.6 U – $(A \cap B) = (A \cap B)$ is shown by squares, horizontal

Regions shown in Fig. 5 and Fig. 6 are equal.

Thus $(A \cap B)' = A' \cup B'$

(c) Associative law:

Fig. 1 $(A \cup B) \cup C$ is shown in the above figure,

Fig. 2 $A \cup (5 \cup C)$ is shown in the above figure.

Regions shown in fig. 1 and fig. 2 by different ways are equal.

Thus $(A \cup B) \cup C = A \cup (B \cup C)$

Fig. 3

Fig. 4

 $(A \cap B) \cap C$ is shown in figure 3 by double $A \cap (B \cap C)$ is shown in figure 4 by double crossing line segments Regions shown in Fig. 3 and fig. 4 are equal. Thus $(A \cap B)' \cap C' = A \cap (B \cap C)$

(d) Distributive law:

Fig. 1: $A \cup (B \cap C)$ is shown by horizontal line segments in the above figure.

Fig. 3: $A \cup C$ is shown by vertical line segments in Fig. 3,

Fig. 2: A u B is shown by horizontal line segments in the above figure.

Fig. 4: $(A \cup B) \cap (A \cup C)$ is shown by double crossing line segments in Fig. 4.

Regions shown in Fig. 1 and Fig. 4 are equal.

Thus
$$A \cup (B \cap C) = (A \cup B') \cap (A \cup C)$$

Fig. 5:B \cup C is shown by vertical line segments in Fig. 5.

Fig. 6: $A \cap (B \cup C)$ is shown in Fig. 6 by vertical line segments.

Fig. 7: $(A \cap B) \cup (A \cap C)$ is shown in Fig. 7 by slanting line segments.

Regions displayed in Fig. 6 and Fig, 7 are equal.

Thus $A \cap (A \cup C) = (A \cap B) \cup (A \cap C)$

SOLVED EXERCISE 5.3

(i)
$$A - B = A \cap B'$$

L.H.S. = $A - B$
= $\{1, 3, 5, 7, 9\} - \{1, 4, 7, 10\}$
= $\{3, 5, 9\}$ _____(i)
R.H.S. = $A \cap B'$