

Time schemes at the ocean-atmosphere interface: diagnostics using a mathematically consistent Schwarz iterative method

Olivier Marti¹ Sophie Valcke², Aurore Voldoire³, Eric Blayo⁴, Florian Lemarié⁴, Audrey Monsimer⁵

- 1 Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA / CNRS / UVSQ
- 2 CERFACS, Toulouse
- 3 CNRM, University of Toulouse, Météo-France, CNRS, Toulouse, France
- 4 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000, Grenoble, France
- 5 GRICAD Grenoble PNRIA CNRS

Contact: Olivier Marti - mailto:olivier.marti@lsce.ipsl.fr

Time stepping between ocean and atmosphere is mathematically inconsistent Models are not synchronised with boundary conditions

Our community uses 2 mostly time schemes

Parallel

IPSL-CM6, CNRM-CM6-1, EC-Earth3, MPI-ESM, HadGEM3-GC31, ?

Sequential Atmosphere First

Schwarz iterative procedure during one coupling time step $[t, t+\Delta t]$

- Iterations from k=1 to convergence
- For each iteration, initial state of \mathcal{A} and \mathcal{O} are the solutions at the end of the previous time step $[t-\Delta t, t]$, when interface values of \mathcal{O}_{\circ} and \mathbf{f}_{\circ} have converged.
- * denotes the converged solution

The Schwarz iterative method : a reference solution

Re-synchronize models and boundary conditions

Mathematically consistent

Tremendous computing cost

Reference solution

Schwarz in IPSL-CM

Model

Earth System Model IPSL-CM at low resolution (ocean 2°, atmosphere 96x95x39).

Simplified land surface model (bucket)

Sea-ice model: LIM3 monocategory

6 experiments :

Parallel, Sequential atmosphere first, Sequential ocean first

Coupling time step : $\Delta t = 1$ h, $\Delta t = 4$ h

5 days runs

50 iterations

Diagnosing the relative error on SST

Relative error

4 688 points x 120 steps = 562 643 cases

4 688 points x30 steps = 140 k-cases

2 iterations give a low error in most cases

Error peaks after sun rise and before sunset

Histograms of errors in function of the local time

Number of cases in each error range (% of total for each local time). $\Delta t = 1h$ - Parallel

First conclusions

Current time schemes in state-of-the-art Earth System Model are mathematically inconsistent.

A Schwarz iterative has been implemented in the IPSL coupled model. It is mathematically consistent.

Schwarz iterative method is used as a reference to quantify the error done with the legacy scheme.

This error is quite large.

With a coupling time step $\Delta t = 1$, 2 Schwarz iterations can almost cancel the error.

Sequential atmosphere first has the smaller errors

Marti, O., Nguyen, S., Braconnot, P., Valcke, S., Lemarié, F., and Blayo, E.: A Schwarz iterative method to evaluate ocean–atmosphere coupling schemes: implementation and diagnostics in IPSL-CM6-SW-VLR, Geosci. Model Dev., 14, 2959–2975, https://doi.org/10.5194/gmd-14-2959-2021, 2021.

And for « real » simulations?

Impact on short experiments

Difference between Schwarz and Parallel 2 year runs – 50 members

Daily SST: Parallel, Schwarz 2 iterations, Schwarz 5 iteration, Atmosphere first

Anomaly with the average of all experiments Shading - strong: 80% of experiments, light: 90%

Significant differences in 300 year runs ...

SST: difference Seq. Atmosphere first minus Parallel

Conclusions

Current time schemes in state-of-the-art Earth System Model are mathematically inconsistent.

A Schwarz iterative has been implemented in the IPSL coupled model. It is mathematically consistent.

Schwarz iterative method is used as a reference to quantify the error done with the legacy scheme.

This error is quite large.

With a coupling time step $\Delta t = \text{ of 1 hour, 2 Schwarz iterations can almost cancel the error.}$

Sequential atmosphere first has the smaller errors

The effect on real experiments is also quite large

And now ...?

2 Schwarz iterations doubles the cost: unacceptable

Some ideas?

Use Sequential atmosphere first.

- Increase the time to solution.
- Lot of work to optimize this scheme: memory, load-balancing

Improve the first guess to increase the convergence speed to 1 iteration

• Deep Learning ?

Time steping between ocean and atmosphere is mathematically inconsistent Models are not synchronised

[t, $t+\Delta t$] is the coupling time step. $\langle \bullet \rangle$ is the time average between to times

Schwarz iterative procedure during one coupling time step $[t, t+\Delta t]$

- Iterations from *k*=1 to convergence
- For each iteration, initial state of \mathcal{A} and \mathcal{O} are the solutions at the end of the previous time step $[t-\Delta t, t]$, when interface values of \mathcal{O}_{Ω} and \mathbf{f}_{Ω} have converged.
- * denotes the converged solution

4 experiments

- 2 Years 50 members
 - Small random pertubation of SST in initial state
- Time schemes
 - Parallel
 - Schwarz 5 iterations
 - Schwarz 2 iterations
 - Sequential Atmosphere First