环己烷—乙醇恒压气液平衡相图绘制

一 实验目的

- 1. 测定常压下环己烷一乙醇二元系统的气液平衡数据,绘制 101.325 kPa 下的沸点-组成的相图。
 - 2. 掌握阿贝折射仪的原理和使用方法。
 - 3.掌握水银温度计与大气压力计的校正与使用方法。

二 实验原理

液体混合物中各组分在同一温度下具有不同的挥发能力。因而,经过气液间相变达到平衡后,各组分在气、液两相中的浓度是不相同的。根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各相应的纯组分。为了得到预期的分离效果,设计精馏装置必须掌握准确的气液平衡数据,也就是平衡时的气、液两相的组成与温度、压力间的依赖关系。大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸气与液体的各组成。其中,恒压数据应用更广,测定方法也较简便。

恒压测定方法有多种,以循环法最普遍。循环法原理的示意图见图 2-20。

在沸腾器 P 中盛有一定组成的二元溶液,在恒压下加热。液体沸腾后,逸出的蒸气经完全冷凝后流入收集器 R。达一定数量后溢流,经回流管流回到 P。由于气相中的组成与液相中不同,所以随着沸腾过程的进行,P、R两容器中的组成不断改变,直至达到平衡时,气、液两相的组成不再随时间而变化,P、R两容器中的组成也保

图 2-20 循环法原理示意图

持恒定。分别从 R、P 中取样进行分析,即得出平衡温度下气相和液相的组成。

本实验测定的环己烷——乙醇二元气液恒压相图 如图 2-21 所示。图中横坐标表示二元系的组成(以 B 的摩尔分数表示),纵坐标为温度。显然曲线的两个端点 t_A^* 、 t_B^* 即指在恒压下纯 A 与纯 B 的沸点。若溶液原始的组成为 x_0 ,当它沸腾达到气液平衡的温度为 t_1 时,其平衡气液

相组成分别为 y_1 与 x_1 。用不同组成的溶液进行测定,可得一系列 t-x-y 数据,据此画出一张由液相线与气相线组成的完整相图。图 2-21 的特点是当系统组成为 x_e 时,沸腾温度为 t_e ,平衡的气相组成与液相组成相同。因为 t_e 是所有组成中的沸点最低者,所以这类相图称为具有最低恒沸点的气液平衡相图。

分析气液两相组成的方 法很多,有化学方法和物理方

图 2-21 有最低恒沸点的二元气液平衡相图

法。本实验用阿贝折射仪测定溶液的折射率以确定其组成。因为在一定温度下,纯物质具有一定的折射率,所以两种物质互溶形成溶液后,溶液的折射率就与其组成有一定的顺变关系。预先测定一定温度下一系列已知组成的溶液的折射率,得到折射率—组成对照表。以后即可根据待测溶液的折射率,由此表确定其组成。

三 试剂与仪器

试剂:环己烷,乙醇。

仪器:埃立斯 (Ellis) 平衡蒸馏器,可控硅调压器,电压表,阿贝折射仪,超级恒温槽。

埃立斯平衡蒸馏器是由玻璃吹制而成的,它具有气液两相同时循环的结构,如图 2-22 所示。

四 实验步骤

- 1. 将预先配制好的一定组成的环己烷—乙醇溶液缓缓加入蒸馏器中,使液面略低于蛇管喷口,蛇管的大部分浸在溶液之中。
- 2. 调节适当的电压通过加热元件 1 和下保温电热丝对溶液进行加热。同时在冷凝管 9、10 中通以冷却水。

图 2-22 埃立斯平衡蒸馏器

1-加热元件; 2-沸腾室; 3-小孔; 4-毛细管; 5-平衡蛇管; 6,8-温度计套管; 7-蒸馏器内管; 9,10-冷凝管; 11-冷凝液接受管; 12,13-取样口; 14-放料口

3. 加热一定时间后溶液开始沸腾,气、液两相混合物经蛇管口喷于温度计底部;同时可见气相冷凝液滴入接受器 11。为了防止蒸气过早的冷凝,通过可控硅调压器将上保温电热丝加热,要求套管 8 内温度比套管 6 内温度高 0.5~1.5 。控制加热器电压,使冷凝液产生速度为每分钟 60~100 滴。调节下保温电热丝电压,以蒸馏器的器壁上不产生冷凝液滴为宜。

为防止暴沸,在加热升温过程中可借助于双连球通过活塞 14 向蒸馏器内缓慢而间歇地鼓入少量空气,待溶液沸腾后即取下双连球。

- 4. 待套管 6 处的温度约恒定 15 min 后,可认为气、液相间已达平衡,记下温度计 6 读数,即为气、液平衡的温度 $t_{\rm m}$,同时记下温度计露茎部分的长度 n 及辅助温度计读数 $t_{\rm tx}$ 。
- 5. 分别从取样口 12、13 同时取样约 1 mL,稍冷却后测定其折射率。阿贝折射仪的原理与使用方法见本书第五章 § 5-3.1。
- 6. 实验结束,关闭所有加热元件。待溶液冷却后,将溶液放回原来的溶液瓶,关闭冷却水。

五 数据处理

- 1. 将测定的各气液相折射率,利用环己烷——乙醇系统的折射率-组成对照表(见本书附录,表 7-8)确定气液平衡时的气液相组成。
 - 2. 平衡温度的确定:
 - (1) 温度计示值校正和露茎校正见本书第五章§5-1.2。
 - (2) 气压计读数校正见本书第五章§5-2.3。
- (3) 平衡温度的压力校正:溶液的沸点与外压有关,为了将溶液沸点校正到正常沸点,即外压为101.325 kPa下的气液平衡温度,应将测得的平衡温度进行气压校正。环己烷—乙醇系统的校正公式如下:

$$t_{\sharp} = t + \frac{1}{p_{\star f}} (0.0712 + 0.0234 y_{\sharp f}) (t + 273) (101.325 \times 10^3 - p_{\star f})$$

(2-25)

式中 t_{\parallel} 为校正到外压为 101.325 kPa 下的平衡温度(), t 为外压为 $p_{\star = 0}$ (Pa)时测得的温度, $y_{\star = 0}$ 为用环己烷摩尔分数表示的气相组成。

3. 综合实验所得的各组成的气液平衡数据,绘出 101.325 kPa 下环己烷——乙醇的气液平衡相图。

六 思考题

- 1. 如何才能准确测得溶液的沸点?
- 2. 埃立斯平衡蒸馏器有什么特点?其中蛇管的作用是什么?
- 3. 埃立斯平衡蒸馏器为何要上下保温?为何气相部位(套管 8)

温度应略高于液相部位(套管6)温度?

4.试简述在本实验过程中,埃立斯平衡蒸馏器是如何实现气液两相同时循环的?

实验指导参考

一、教学要点

- 1、循环法的基本原理,通过气液两相的同时循环逐步实现气液两相的平衡。
- 2、Ellis 平衡蒸馏器的结构及其各部分同时的作用,可分析它与Othmer 蒸馏器的异同。
- 3、恒压相图的坐标与点、线、面的意义。若学生尚未在理论课上学过则应较为详细讲解。
 - 4、阿贝折射仪的原理及其正确的使用方法。

二、指导实验注意点

- 1、加入蒸馏器溶液的量应控制在略低于蛇管喷口。
- 2、三组加热均需控制,尤其应注意:在溶液沸腾以前,不能加热上保温电热丝(即不能开变压器 C)。 否则将使气相温度急剧上升而使温度计破裂。
- 3、为确保达到气液平衡,应在测得温度恒定不变 20min 后方可测定 气液的折射率。
- 4、学生应抄下实验室给出的本实验标准数据。然后在完成实验报告 将自测数据与标准数据画在同一张图上,进行比较并分析偏差原因。
 - 5、实验结束后,应将蒸馏器的溶液放回溶液瓶。

三、实验数据

t	$\boldsymbol{\mathcal{X}}$	у
72.26	0.056	0.228
68.40	0.128	0.384
66.48	0.214	0.466
65.66	0.284	0.498

65.52	0.838	0.596
66.24	0.904	0.626
66.94	0.934	0.640
72.44	0.976	0.784
78.30	0.000	0.000
80.74	1.000	1.000
64.77	0.569	0.569

四、思考题解答要点

- 1、温度计应安放在气液充分接触后,达到两相平衡的位置上。
- 2、气液两相同时循环。蛇管中气液两项充分接触达到平衡。
- 3、防止产生精馏现象
- 4、见教材实验部分。

五、进一步讨论

- 1. 为得到标准压力下的相平衡数据,应采用恒压装置以控制外压。有关恒压装置的原理及使用参见本书第五章§5-2.5 和实验 5。
- 2. 使用埃立斯蒸馏器操作时,应注意防止闪蒸现象、精馏现象及暴沸现象。当加热功率过高时,溶液往往会产生完全气化,将原组成溶液瞬间完全变为蒸气,即闪蒸。显然,闪蒸得到的气液组成不是平衡的组成。为此需要调节适当的加热功率,以控制蒸气冷凝液的回流速度。

蒸馏器所得的平衡数据应是溶液一次气化平衡的结果。但若蒸气在上升过程中又遇到气相冷凝液,则又可进行再次气化,这样就形成了多次蒸馏的精馏操作。其结果是得不到蒸馏器应得的平衡数据。为此,在蒸馏器上部必须进行保温,使气相部位温度略高于液相,以防止蒸气过早的冷凝。

由于沸腾时气泡生成困难,暴沸现象常会发生。避免的方法是提供气 泡生成中心或造成溶液局部过热。为此,可在实验中鼓入小气泡或在 加热管的外壁造成粗糙表面以利于形成气穴;或将电热丝直接与溶液 接触,造成局部过热。