Comenzado en	Friday, 23 de June de 2023, 21:00
Estado	Terminados
Finalizado en	Friday, 23 de June de 2023, 22:59
Tiempo	1 hora 59 mins
empleado	
Calificación	80.00 de un total de 100.00

Correcta

Puntúa 10.00 sobre 10.00

La figura muestra un circuito RC, completamente descargado. La resistencia tiene un valor de $1.40G\Omega$. Una fuente de voltaje de 24 V se conecta al circuito. El capacitor es de placas paralelas con dieléctrico entre sus placas. Si $K_1=10.0$, $K_2=5.00$, $K_3=12.0$, a=5.00cm, b=9.00 cm y c=2.00 cm.

Determine:

a. La capacitancia del capacitor.

1.70

✓ x10⁻¹¹ F (5 pts.)

b. Si en t = 0 segundos el interruptor S se cierra, la carga máxima almacenada en el capacitor es

408

✓ pC (5 pts.)

Correcta

Puntúa 20.00 sobre 20.00

Una esfera conductora cargada se encuentra aislada y posee un potencial $V_o=900~V$, el potencial en el infinito es $V(\infty)=0V$. Se sabe que el radio de la esfera es R=0.25~m.

Determinar:

a) El potencial eléctrico en el centro de la esfera es

900

✓ V (5 pts.)

b) La carga distribuida en la esfera conductora es

25

✓ nC (10 pts.)

c) El potencial eléctrico respecto al infinito a una distancia d sobre la superficie de la esfera conductora si $D=1.0\ m$ y $d=0.25\ m$ es

450

✓ V (5 pts.)

Correcta

Puntúa 10.00 sobre 10.00

A través de una batería están conectados tres resistores, como muestra la figura.

 $\label{eq:Quevalores} \mbox{\dot{c} Qu\'e valores de \textbf{R} y \textbf{Vfem} producen las corrientes indicadas?}$

a) El valor de **Vfem** es

120

✓ volts

b) el valor de ${\bf R}$ es

40

✓ ohms

Parcialmente correcta

Puntúa 10.00 sobre 20.00

La bombilla mostrada en el circuito posee una **resistencia interna de 2000** Ω y se enciende exclusivamente cuando el voltaje aplicado a ella es de **3.00V** y permanece encendida hasta que el voltaje disminuye a **1.80V**, para ello cuenta con un circuito controlador RC, formado por una resistencia **R1=1000** Ω y un capacitor totalmente descargado **C1=4700** μ **F**.

Para lo anterior determine:

a) Si en t=0 se cierra el interruptor a la **posición 1**, ¿Qué valor de corriente circula por R1?

6

✓ x10⁻³ A (5 pts)

b) El tiempo que debe permanecer el interruptor en la posición 1 para que el capacitor alcance el voltaje necesario que encienda la bombilla al cambiarlo a la **posición 2**.

3.26

x s (10 pts)

c) Si ahora se cambia el interruptor a la posición 2,¿cuánto tiempo permanecerá encendido el bombillo antes de apagarse?

7.20

✓ s (5 pts)

Parcialmente correcta

Puntúa 10.00 sobre 20.00

Una carga positiva de $4.50~\mu C$ está fija en x=0~m. Una partícula de masa **6.00 g** y carga $+3.00~\mu C$ se dispara con una velocidad inicial de $v_o=66.0~m/s$ directamente hacia la carga fija desde una distancia de $d_i=4.20~cm$ de ésta.

a) La diferencia de potencial ${\it V}_{AB}$ es

4.36

✓ MV

b) ¿Cuán cerca llega la carga móvil a la carga fija antes de detenerse y comenzar a alejarse de la carga fija?

190

× mm

Correcta

Puntúa 20.00 sobre 20.00

Dado el siguiente circuito:

a) La corriente $i_1\,$ es

4.16

✓ A

b) La corriente $i_2\,$ es

1.55

✓ A

c) La corriente $i_3 \>$ es

0.0353

✓ A

d) El voltaje entre los nodos **a** y **b** (V_{ab}) es

0.0706

✓ ∨

→ Primer examen Parcial F2

Ir a...

\$