Notas del teórico

Medida e Integración - Francisco Martinez Pería 2025

Bustos Jordi

Bustos Jordi jordibustos01@gmail.com

Contenido

6	Clase I - 06/03	
	1.1 Integral de Riemann 1.1.1 Desventajas de la integral de Riemann 1.2 Espacios Medibles	7
10	Clase II - 11/03	
	2.1 La σ-álgebra de Borel2.2 Recta real extendida	
14	Clase III - 13/03	
	3.1 Funciones medibles	
19	Clase IV - 20/03	
	4.1 Parte negativa y positiva	
24	Clase V - 25/03	
	5.1 Medidas	24 25

	CI	ase VI - 27/03 Contenido •	3
	6.1 6.2	Espacio de medida	
35	CI	ase VII - 01/04	
	7.1 7.2	Generación de medida (continuación)	
39	CI	ase VIII - 03/04	
	8.1 8.2	Extensión de la medida	
45	CI	ase IX - 08/04	
46	Pa	arciales	
	10.1 10.2 10.3 10.4	Primer parcial - Primera fecha	46 46 46 46
	10.5	Segundo parcial - Tercera fecha	46

Prefacio

"Considero a cada hombre como un deudor de su profesión, y ya que de ella recibe sustento y provecho, así debe procurar, mediante el estudio, servirle de ayuda y ornato."

Francis Bacon

Este libro recoge las notas tomadas durante el curso de Medida e Integración dictado por Francisco Martinez Pería en el primer cuatrimestre de 2025.

Estas notas se basan principalmente en la cursada del '99 brindada por Jorge Samur y material del libro *The elements of integration and Lebesgue Measure* de Robert G. Bartle.

Clase I - 06/03

1.1 Integral de Riemann

Sea $f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ una función. Una partición P de [a,b] es un conjunto finito $\{x_0,x_1,\cdots,x_n\}$, con $a=x_0< x_1<\cdots< x_n=b$. A P le asignamos una norma $\|P\|=\max\{l(J_k)\}$. $J_k=[x_{k-1},x_k]$ y a cada P le podemos asignar una etiqueta, que es un vector $\xi=(\xi_1,\cdots,\xi_n)$ tal que $\xi_k\in J_k$. Una partición etiquetada es un par (P,ξ) ; y le podemos asignar su suma de Riemann

$$S(P, \, \xi) = \sum_{k=1}^{n} f(\xi_k) l(J_k)$$

Definición 1.1 (Integrable Riemann). Una función $f:[a,b] \to \mathbb{R}$ es integrable Riemann si

$$\exists I \in \mathbb{R} : \forall \epsilon > 0, \, \exists \delta > 0 : |S(P,\,\xi) - I| < \epsilon \,\, \mathrm{si} \,\, (P,\,\xi) \,\, \mathrm{es} \,\, \mathrm{tal} \,\, \mathrm{que} \,\, \|P\| \leq \delta$$

Ejercicio: Probar que si f es integrable Riemann entonces es acotada.

Si f es acotada, dada una partición P del dominio de f, para cada $i \in 1, \dots, n$ definimos:

$$M_i = \sup\{f(x) : x \in J_i\} \text{ v } m_i = \inf\{f(x) : x \in J_i\}$$

Luego definimos la suma superior y la suma inferior asociada a P como:

$$S(f, P) = \sum_{k=1}^{n} M_k l(J_k) \ y \ s(f, P) = \sum_{k=1}^{n} m_k l(J_k)$$

Entonces podemos definir suma superior e inferior de Riemann como

$$\begin{split} & \int_{a}^{b} f(x) \, \mathrm{d}x = \sup \{ S(f, \, P) : P \text{ partición de } [a, \, b] \} \text{ y} \\ & \int_{a}^{b} f(x) \, \mathrm{d}x = \inf \{ s(f, \, P) : P \text{ partición de } [a, \, b] \} \end{split}$$

Proposición 1.2. Dada una función $f : [a, b] \to \mathbb{R}$, f es integrable Riemann \iff es acotada y la suma superior es igual a la inferior.

Observación. f es integrable Riemann si:

- 1. f es continua.
- 2. f es continua salvo finitos puntos en los que existen los límites laterales.
- 3. f es monótona y acotada (en este caso pueden existir numerables discontinuidades).

1.1.1. Desventajas de la integral de Riemann

- Exige que la función oscile poco en intervalos pequeños.
- Hay funciones simples que no son integrables Riemann.
- No se comporta bien con respecto a la convergencia puntual.

Ejemplo. Sea
$$f:[0, 1] \to \mathbb{R}: f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 f no es integrable Riemann.

Demostración. Llamemos $A = [0, 1] \cap \mathbb{Q}$. A es numerable entonces $\exists \sigma : \mathbb{N} \to A$ biyectiva. Para cada $n \in \mathbb{N}$, sea $A_n = \{\sigma(1), \cdots, \sigma(n)\}$, $A_n \subset A_{n+1}$ y $\bigcup_{n=1}^{\infty} A_n = A$. Ahora para cada $n \geq 1$ consideramos: $f_n : [0, 1] \to \mathbb{R}$ dada por

$$f_n(x) = \begin{cases} 1 & x \in A_n \\ 0 & x \in [0, 1] \setminus A_n \end{cases}$$

 f_n es integrable Riemann (queda como ejercicio demostrarlo) ya que es continua salvo en los puntos de A_n y los límites laterales son siempre cero. Veamos ahora que $f_n \to f$. Sea $x \in [0,1]$

1. Si $x \in A$

$$\begin{split} & \Rightarrow x \in A_{n_0} \quad n_0 \in \mathbb{N} \\ & \Rightarrow (\forall n > n_0) \quad x \in A_n \\ & \Rightarrow (\forall n > n_0) \quad f_n(x) = 1 \\ & \Rightarrow f_n(x) \to f(x) = 1 \end{split}$$

$$2. \text{ Si } x \notin A \Rightarrow (\forall n \in \mathbb{N}) \quad x \notin A_n \Rightarrow (\forall n \in \mathbb{N}) \quad f_n(x) = 0 \Rightarrow f_n(x) \rightarrow f(x) = 0.$$

 $f_n \to f$. Si conocieramos $\ell(A)$ y $\ell([0,1] \setminus A)$ podríamos definir $\int f = 1 \times \ell(A) + 0 \times \ell([0,1] \setminus A)$.

1.2 Espacios Medibles

Dado X un conjunto arbitrario no vacío. Sea $\mathcal{P}(X)$ el conjunto de partes de X.

Definición 1.3 (σ -álgebra). Una familia \mathfrak{X} es una σ -álgebra si verifica:

- 1. \emptyset , $X \in \mathfrak{X}$.
- 2. Si $A \in X \Rightarrow A^c \in \mathfrak{X}$.
- 3. Sea $(A_n)_{n\geq 1}$ una sucesión en $\mathfrak{X}\Rightarrow \bigcup_{n=1}^\infty A_n\in \mathfrak{X}.$

Definición 1.4 (Conjunto Medible). Si \mathfrak{X} es una σ -álgebra de subconjuntos de \mathfrak{X} el par (X, \mathfrak{X}) es un espacio medible. A cada $A \in \mathfrak{X}$ lo llamaremos conjunto \mathfrak{X} -medible.

Observación. Si \mathfrak{X} es una σ -álgebra de X y $A_1, \dots, A_n \in \mathfrak{X}$ entonces $\bigcup_{k=1}^n A_k \in \mathfrak{X}$. Idea de la demostración: Sea $(B_m)_{m\geq 1}$ la sucesión en \mathfrak{X} definida por

$$B_{\mathfrak{m}} = \begin{cases} A_{\mathfrak{m}} & 1 \leq \mathfrak{m} \leq \mathfrak{n} \\ \varnothing & \mathfrak{m} > \mathfrak{n} \end{cases}$$

Observación. Si $(A_n)_{n\geq 1}$ es una sucesión de una σ -álgebra $\mathfrak X$ entonces $\bigcap_{n=1}^\infty A_n\in \mathfrak X$.

Demostración.
$$\bigcup_{n\geq 1}A_n^c\in\mathfrak{X}\Rightarrow (\bigcap_{n\geq 1}A_n^c)^c\in\mathfrak{X}\Rightarrow \bigcup_{n\geq 1}A_n\in\mathfrak{X}.$$

Ejemplo (σ-álgebras). Dado X cualquiera no vacío.

- 1. $\mathfrak{X} = \{\emptyset, X\}$ es una σ -álgebra.
- 2. $\mathfrak{X} = \mathcal{P}(X)$ es una σ -álgebra.
- 3. Sea $A \neq \emptyset \subset X$. Luego $\mathfrak{X} = \{\emptyset, A, A^c, X\}$ es una σ -álgebra.
- 4. Supongamos que X no es numerable y sea

$$\mathfrak{X} = \{A \subseteq X : A \text{ es numerable \'o } A^{\mathfrak{c}} \text{ es numerable}\}$$

es una σ -álgebra. Demostración ejercicio y además $\mathfrak{X} \neq \mathcal{P}(X)$.

Lema 1.5. Dado un conjunto X, sean $\mathfrak{X}_1, \mathfrak{X}_2$ dos σ -álgebras de X. Entonces $\mathfrak{X}_1 \cap \mathfrak{X}_2$ es una σ -álgebra de X. Más aún si $(\mathfrak{X}_i)_{i \in I}$ es una familia de σ -álgebras de X entonces $\bigcap_{i \in I} \mathfrak{X}_i$ es una σ -álgebra de X.

Demostración. Queda como ejercicio.

Proposición 1.6 (σ -álgebra generada por A). Dado un conjunto X, sea $A \neq \emptyset \subseteq \mathcal{P}(X) \Rightarrow \exists \sigma$ -álgebra $\sigma(A)$ que verifica:

- 1. $A \subseteq \sigma(A)$.
- 2. \mathfrak{X} es σ -álgebra de X tal que $A \subset X \Rightarrow \sigma(A) \subset \mathfrak{X}$.
- 3. $\sigma(A)$ es la única que verifica ambas propiedades en simultáneo.

Demostración. Sea $\Delta = \{\mathcal{C} \subseteq \mathcal{P}(X) : \mathcal{C} \text{ es } \sigma\text{-\'algebra de } X \text{ y } A \subseteq \mathcal{C}\} \neq \emptyset \text{ pues } \mathcal{P}(X) \in \Delta.$ Llamemos $\mathfrak{X} = \bigcap_{\mathcal{C} \in \Delta} \mathcal{C} = \{B \in \mathcal{P}(X) : B \in \mathcal{C}(\forall \mathcal{C} \in \Delta)\}$. Veamos que \mathfrak{X} es una σ -álgebra de X.

- 1. \varnothing , $X \in \mathcal{C}(\forall \mathcal{C} \in \Delta) \Rightarrow \varnothing$, $X \in \mathfrak{X}$.
- 2. Sea $A \in \mathfrak{X} \Rightarrow (\forall \mathcal{C} \in \Delta) A \in \mathcal{C} \Rightarrow A^c \in \mathcal{C}(\forall \mathcal{C} \in \Delta) \Rightarrow A^c \in \mathfrak{X}$.
- 3. Sea $(A_n)_{n\geq 1}$ una sucesión en $\mathfrak X$ el argumento es análogo a los dos anteriores.
- \underline{x} es una σ -álgebra que verifica ambas condiciones. Supongamos que existe otra \overline{x} σ -álgebra que verifica las dos condiciones, por la propiedad uno y dos podemos deducir que $x \subseteq \overline{x}$ y $\overline{x} \subseteq x$.

Ejemplo. Consideremos $X = \mathbb{R}$ y sea $A = \{(a, b) : a, b \in \mathbb{R}, a \leq b\}$. La σ -álgebra generada por A es la σ -álgebra de Borel \mathcal{B} . A los conjuntos de \mathcal{B} los llamaremos conjuntos Borelianos. Veamos que si $\overline{A} = \{(a, +\infty) : a \in \mathbb{R}\} \Rightarrow \sigma(\overline{A}) = \mathcal{B}$.

Demostración. • Dado $\alpha \in \mathbb{R}$, $(\alpha, +\infty) = \bigcup_{n \geq 1} (\alpha, \alpha + n) \in \mathcal{B} \Rightarrow \overline{A} \subseteq \mathcal{B}$. Luego $\sigma(\overline{A}) \subseteq \mathcal{B}$. Por ser $\sigma(\overline{A})$ la mínima σ -álgebra que contiene a \overline{A} .

■ Dado $\mathfrak{a}, \mathfrak{b} \in \mathbb{R}, \mathfrak{a} < \mathfrak{b}$. Sabemos que $(\mathfrak{a}, \mathfrak{b}] = (\mathfrak{a}, +\infty) \cap (\mathfrak{b}, +\infty)^c \in \sigma(\overline{A})$. Luego $(\mathfrak{a}, \mathfrak{b}) = \bigcup_{n \geq 1} (\mathfrak{a}, \mathfrak{b} - \frac{1}{n}] \in \sigma(\overline{A})$. Por lo que $A \subset \sigma(\overline{A})$. $\mathcal{B} = \sigma(A) \subset \sigma(\overline{A})$. Por ser $\sigma(A)$ la mínima σ -álgebra que contiene a A.

Ejercicio demostrar que la σ -álgebra de Borel está generada también por las siguientes familias:

- 1. $\{(a, b] : a, b \in \mathbb{R}, a < b\}$.
- 2. $\{[a, b) : a, b \in \mathbb{R}, a < b\}$.
- 3. $\{[a, b] : a, b \in \mathbb{R}, a < b\}$.
- 4. $\{[\alpha, +\infty) : \alpha \in \mathbb{R}\}.$
- 5. $\{(-\infty, \alpha) : \alpha \in \mathbb{R}\}.$
- 6. $\{(-\infty, \alpha] : \alpha \in \mathbb{R}\}.$

Luego, se puede ver que $\{a\} = \bigcap_{n>1} [a, a - \frac{1}{n}) \in \mathcal{B}$.

Clase II - 11/03

2.1 La σ-álgebra de Borel

A \mathbb{R}^n lo pensamos dotado de la distancia euclídea. Si $\mathbf{x}=(x_1,\cdots,x_n)$ e $\mathbf{y}=(y_1,\cdots,y_n)$ son dos puntos de \mathbb{R}^n , la distancia entre ellos es

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Consideramos la topología usual de \mathbb{R}^n notada τ^n al conjunto de todos los abiertos de \mathbb{R}^n .

Definición 2.1. Dados $a=(a_1, \dots, a_n), b=(b_1, \dots, b_n) \in \mathbb{R}^n$ con $a_i < b_i (\forall i=1, \dots, n)$ Definimos el intervalo abierto (a, b) como

$$\begin{split} (\alpha, b) &= \prod_{i=1}^{n} (\alpha_{i}, b_{i}) \\ &= \{ x = (x_{1}, \cdots, x_{n}) \in \mathbb{R}^{n} : \alpha_{i} < x_{i} < b_{i}, \, (\forall i = 1, \cdots, n) \} \end{split}$$

Definición 2.2 (ε -cubo). Dados $x=(x_1,\cdots,x_n)$ y $\varepsilon>0$ el ε -cubo centrado en x es el conjunto definido por

$$C(x, \varepsilon) = \prod_{i=1}^{n} \left(x - \frac{\varepsilon}{2}, x + \frac{\varepsilon}{2}\right)$$

Proposición 2.3. Sea $V \subseteq \mathbb{R}^n$ abierto e $y \in C(x, \varepsilon)$ entonces

- $1. \ (\forall x \in V) \quad (\exists \epsilon > 0) : C(x,\, \epsilon) \subseteq V.$
- 2. $x \in C(y, \varepsilon)$.
- $3. \ C(x,\, \epsilon)\subseteq C(y,\, 2\cdot \epsilon).$

Definición 2.4 (σ -álgebra de Borel de \mathbb{R}^n). Es la σ -álgebra generada por:

$$A = \{(a, b) : a, b \in \mathbb{R}^n : a_i < b_i, i = 1, \dots, n\}$$

Lo notamos \mathcal{B}^n .

Queremos ver que efectivamente $\tau_n \subseteq \mathcal{B}^n$. Consideremos la clase $\beta_n = \{C(q, \frac{1}{m}) : q \in \mathbb{Q}^n, m \in \mathbb{R}^n \}$ \mathbb{N} . β_n es numerable pues el conjunto de índices que enumera a β_n es

$$\underbrace{\mathbb{Q}^n \times \cdots \times \mathbb{Q}^n}_{n \text{ veces}} \times \mathbb{N}$$

que es numerable.

Proposición 2.5. Dado un abierto no vacío $V\subseteq\mathbb{R}^n$ existe una familia $\mathcal{A}_V\subseteq\mathcal{B}_n$ tal que $V = \bigcup_{B \in A_V} B$.

Demostración. Sabemos que \mathbb{Q}^n es denso en \mathbb{R}^n . Como V es abierto y no vacío entonces $V \cap \mathbb{Q}^n \neq \emptyset$. Luego $B(x, \varepsilon) \subseteq V$ y $B(x, \varepsilon) \cap \mathbb{Q}^n \neq \emptyset$. Por lo tanto $B(x, \varepsilon) \subset$ $V \cap \mathbb{Q}^n$.

Para cada $\mathfrak{q}\in V\cap\mathbb{Q}^n$ defino $\mathfrak{m}_\mathfrak{q}=\min\{\mathfrak{m}\in\mathbb{N}:C(\mathfrak{q},\frac{1}{\mathfrak{m}})\}\subseteq V.$ Llamemos $\mathcal{A}_V=$ $\{C(q, \frac{1}{m_q}): q \in V \cap \mathbb{Q}^n\}$ la cual es una familia numerable.

Veamos que $\bigcup_{q \in V \cap \mathbb{Q}^n} C(q, \frac{1}{m_q}) = V$.

- \blacksquare \subseteq es trivial.
- lacksquare Dado $x \in V$, $\exists m \in \mathbb{N} : C(x, \frac{1}{m}) \subseteq V$. Consideremos $C(x, \frac{1}{2m}) \subseteq C(x, \frac{1}{m}) \subseteq V$ que es un abierto no vacío.

Resulta que $C(x, \frac{1}{2m}) \cap \mathbb{Q}^n \neq \varnothing$. Sea $q \in C(x, \frac{1}{2m}) \subseteq V \cap \mathbb{Q}^n$

 $\Rightarrow x \in C(q, \tfrac{1}{2m}), \ \mathrm{en \ particular} \ m_q \leq 2m, \ \mathrm{pues \ como} \ x \in C(q, \tfrac{1}{2m}) \ \mathrm{implica \ que} \\ C(q, \tfrac{1}{2m}) \subseteq C(x, \tfrac{2}{2m}) \subseteq V.$

$$\Rightarrow x \in C(\mathfrak{q}, \, \tfrac{1}{2\mathfrak{m}}) \subseteq C(\mathfrak{q}, \, \tfrac{1}{\mathfrak{m}_\mathfrak{q}}) \mathrel{\dot{.}.} x \in \bigcup_{\mathfrak{q} \in \mathcal{A}_\nu} C(\mathfrak{q}, \tfrac{1}{\mathfrak{m}_\mathfrak{q}}) = \bigcup_{B \in \mathcal{A}_V} B \,\, .$$

Corolario 2.6. La σ -álgebra de Borel de \mathbb{R}^n coincide con la $\sigma(\tau_n)$. En particular:

- \blacksquare Todo abierto de \mathbb{R}^n es un conjunto Boreliano.
- ullet Todo conjunto cerrado de \mathbb{R}^n es un Boreliano por ser complemento de un abierto.
- Por último, todo subconjunto numerable de \mathbb{R}^n es un Boreliano. (Dado $x \in \mathbb{R}^n$, $\{x\}$) $\bigcap_{n>1} C(x,\frac{1}{n})$.

Proposición 2.7. Dado un espacio medible (X, \mathfrak{X}) y sea $X_0 \subseteq \mathfrak{X}$, entonces

- 1. $\mathfrak{X}_0 = \{A \subseteq X_0 : A = E \cap X_0 \text{ para algún } E \in \mathfrak{X}\}\$ es σ -álgebra de X_0 . En particular, si $X_0 \in \mathfrak{X} \Rightarrow \mathfrak{X}_0 = \{A \subseteq X_0 : A \in \mathfrak{X}\}\$, la demostración queda como ejercicio.
- 2. Si \mathcal{A} es una familia en partes de X tal que $\mathfrak{X} = \sigma(\mathcal{A})$ entonces $\mathfrak{X}_0 = \sigma(\mathcal{A}_0)$ donde $\mathcal{A}_0 = \{A_0 \subseteq X_0 : A_0 = A \cap X_0 \text{ para algún } A \in \mathcal{A}\}.$

Demostración. Veamos primero que $\mathcal{A}_0 \subseteq \mathfrak{X}_0$. Si $A_0 \in \mathcal{A}_0 \Rightarrow \exists A \in \mathcal{A} : A_0 = \mathcal{A} \cap X_0$. Como $A \in \mathcal{A} \subseteq \sigma(\mathcal{A}) = \mathfrak{X}$ resulta que $A_0 = A \cap X_0 \in \mathfrak{X}_0$. Entonces $\mathcal{A}_0 \subseteq \mathfrak{X}_0$. Por lo tanto $\sigma(\mathcal{A}_0) \subseteq \mathfrak{X}_0$.

Ahora veamos que $\mathfrak{X}_0 \subseteq \sigma(\mathcal{A}_0)$. Consideramos la clase $\mathcal{G} = \{E \subseteq X : E \cap X_0 \in \sigma(\mathcal{A}_0)\}$ y veamos que $\mathfrak{X} \subseteq \mathcal{G}$. Alcanza con probar que $\mathcal{A} \subseteq \mathcal{G}$. Pues si $A \in \mathcal{A}$, $A \cap X_0 \in \mathcal{A}_0 \subseteq \sigma(\mathcal{A}_0) \Rightarrow A \in \mathcal{G}$. Si probamos que G es una G-álgebra, tendríamos que G y G

Ejemplo. Si $\beta \in B_n$ entonces la σ-álgebra de Borel de β , $B_n(\beta) = \{A \subseteq \beta : A \in B_n\}$ está generado por la familia de conjuntos de la forma $(a,b) \cap \beta$ para $a,b \in \mathbb{R}^n$ con $a_i < b_i \ (\forall i = 1, \dots, n)$.

2.2 Recta real extendida

Definición 2.8 (Recta real extendida). Definimos $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. Con las siguientes convenciones:

- 1. Dado $r \in \mathbb{R}$ tenemos que $-\infty < r < +\infty$.
- 2. $^+_-\infty + ^+_-\infty = ^+_-\infty$ y $^+_-\infty + ^-_+\infty$ no está definido.
- 3. $_{-\infty}^{+} \cdot _{-\infty}^{+} = +\infty$ y $_{-\infty}^{+} \cdot _{+\infty}^{-} = -\infty$ Si $r \in \mathbb{R}$ entonces $r \cdot +\infty = +\infty$ si r > 0 y $r \cdot +\infty = -\infty$. si r < 0.
- 4. $0 \cdot +\infty = 0 = +\infty \cdot 0$.
- 5. Tampoco definimos cocientes entre infinitos o de la forma $\frac{r}{+_{\infty}}$.

Observación. El producto no va a ser continuo en la recta real extendida. Si $a_n = +\infty \cdot \frac{1}{n} (\forall n \in \mathbb{N})$ entonces $\lim_{n \to +\infty} a_n = +\infty$. Pero $+\infty \cdot \lim_{n \to +\infty} \frac{1}{n} = +\infty \cdot 0 = 0$.

Notemos que si $A \subseteq \overline{\mathbb{R}} \Rightarrow \inf(A) \in \overline{\mathbb{R}}$ y $\sup(A) \in \overline{\mathbb{R}}$. Dada una sucesión $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$, sea $\emptyset \neq L = \{x \in \overline{\mathbb{R}} : \exists x_{n_k} \to x\} \subseteq \overline{\mathbb{R}}$.

Definición 2.9. lím $\sup_{n\to\infty} x_n = \sup(L)$ y lím $\inf_{n\to\infty} x_n = \inf(L)$. Ambos pertenecen a L. Además, si para cada $n \in \mathbb{N}$ definimos $\alpha_m = \sup\{x_n : n \ge m\}$ la sucesión α_m es decreciente y lím $\sup_{n\to\infty} x_n = \inf\{\alpha_m\} = \inf_{m\ge 1} (\sup_{n\ge m} \{x_n\})$. Análogamente lím $\inf_{n\to\infty} x_n = \sup\{\alpha_m\} = \sup_{m>1} (\inf_{n\ge m} \{x_n\})$.

13

Proposición 2.10. Propiedades de límite superior e inferior:

- $\limsup_{n\to\infty} (-x_n) = -\liminf_{n\to\infty} x_n$
- $\liminf_{n\to\infty} (-x_n) = -\limsup_{n\to\infty} x_n$

Observación. Si $(x_n)_{n\in\mathbb{N}}$ es una sucesión en \mathbb{R} y $x\in\overline{\mathbb{R}}, x_n\to x\iff \limsup x_n=\liminf x_n=x.$

Veamos como extender \mathcal{B} a $\overline{\mathbb{R}}$.

Definición 2.11 (Borel extendida). Para cada $E \in \mathcal{B}$, sean $E_1 = E \cup \{+\infty\}$, $E_2 = E \cup \{-\infty\}$ y $E_3 = E \cup \{+\infty, -\infty\}$. Consideremos $\overline{\mathcal{B}} = \{E_1, E_2, E_3, E : E \in \mathcal{B}\} = \sigma(\{(\alpha, +\infty] : \alpha \in \mathbb{R}\})$. Probar que $\overline{\mathcal{B}}$ es σ -álgebra de $\overline{\mathbb{R}}$ se deja como ejercicio.

Clase III - 13/03

3.1 Funciones medibles

Proposición 3.1. Sea $f: \mathbb{R}^n \to \mathbb{R}$, f es continua si $f^{-1}(V)$ es abierto de \mathbb{R}^n ($\forall V$ abierto en τ_1).

En lo que sigue vamos a considerar un espacio medible fijo de la forma (X, \mathfrak{X}) . Notación: Dada una función $f: X \to \mathbb{R}$ para cada $\alpha \in \mathbb{R}$ definimos:

$$\{f > \alpha\} := \{x \in X : f(x) > \alpha\} = f^{-1}((\alpha, +\infty))$$

Definición 3.2 (Función medible). Una función $f: X \to \mathbb{R}$ es \mathfrak{X} -medible (σ -medible) si $\{f > \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$

Lema 3.3. Dada $f: X \to \mathbb{R}$ una función, son equivalentes:

- 1. f es X-medible.
- 2. $\{f \geq \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$
- 3. $\{f \leq \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$
- 4. $\{f < \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$

15

- (1) \iff (3): $\{f < \alpha\} = \{f > \alpha\}^c \in \mathfrak{X}$.
- $(2) \iff (4)$ Análogo.
- (1) \iff (2): Supongamos que f es \mathfrak{X} -medible. Dado $\alpha \in \mathbb{R}$ quiero ver que $\{f \geq \alpha\} \in \mathfrak{X}$.

$$x \in \{f \ge \alpha\} \iff f(x) \ge \alpha > \alpha - \frac{1}{n} \quad (\forall n \in \mathbb{N})$$
$$x \in \{f > \alpha - \frac{1}{n}\} \quad (\forall n \in \mathbb{N})$$
$$\Rightarrow \{f \ge \alpha\} = \bigcap_{n \ge 1} \{f > \alpha - \frac{1}{n}\} \in \mathfrak{X}$$

Para la vuelta supongamos que vale (2). Quiero ver que $\{f>\gamma\}\in\mathfrak{X}.$ Notemos que

$$\{f>\gamma\}=\bigcup_{n\geq 1}\{f\geq \gamma+\frac{1}{n}\}$$

$$x \in \{f > \gamma\} \iff f(x) > \gamma \iff \exists n_x \in \mathbb{N} : f(x) > \gamma + \frac{1}{n_x}$$

Luego $\bigcup_{n\geq 1} \{f \geq \gamma + \frac{1}{n}\} \in \mathfrak{X}.$

Ejemplo. Toda función constante es medible. $f: X \to \mathbb{R}: f(x) = c \quad (\forall x \in X).$

Demostración. Dado $\alpha \in \mathbb{R}$. Tenemos que

$$\{f > \alpha\} = \begin{cases} \varnothing & \alpha \ge c \\ X & \alpha < c \end{cases}$$

Ejemplo. Dado $E \subseteq X$ consideremos la función característica de E. Como $\chi_E : X \to \mathbb{R}$ dada por:

$$\chi_{E}(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

Demostración. Consideremos E = [0, 1]. Dado $\alpha \in \mathbb{R}$. Tenemos que

$$\{\chi_E > \alpha\} = \begin{cases} \varnothing & \alpha \ge 1 \\ E & 0 \le \alpha < 1 \\ X & \alpha < 0 \end{cases}$$

Luego χ_E es medible \iff $E \in \mathfrak{X}$.

Ejemplo. Si $X = \mathbb{R}^n$, $\mathfrak{X} = \mathcal{B} \Rightarrow$ toda función continua es medible con respecto a la σ -álgebra de Borel.

Ejemplo. $X = \mathbb{R}, \mathfrak{X} = \mathcal{B}_n$ y $f : \mathbb{R} \to \mathbb{R}$ es monótona (creciente) entonces es \mathcal{B} -medible.

Ejercicio: $f: X \to \mathbb{R}$ es \mathfrak{X} -medible $\iff f^{-1}(B) \in \mathfrak{X} \quad (\forall B \in \mathcal{B}).$

Lema 3.4. Sean $f, g: X \to \mathbb{R}$ funciones medibles, $c \in \mathbb{R}$ entonces $c \cdot f$, f^2 , f + g, |f|, $f \cdot g$, son \mathfrak{X} -medibles. $f^2 = f(x) \cdot f(x)$.

Demostración. Veamos que f^2 es \mathfrak{X} -medible. Dado $\alpha \in \mathbb{R}$ quiero ver que $\{f^2 > \alpha\} \in \mathfrak{X}$ Si $\alpha < 0 \Rightarrow \{f^2 > \alpha\} = X$.

Si $\alpha \geq 0 \Rightarrow$

$$\{f^2 > \alpha\} = \{x \in X : f(x) \cdot f(x) > \sqrt{\alpha} \cdot \sqrt{\alpha}\}$$
$$\{f > \sqrt{\alpha}\} \cup \{f > \sqrt{\alpha}\} \in \mathfrak{X}$$

 \therefore f² es \mathfrak{X} -medible.

Veamos ahora que f + g es \mathfrak{X} -medible. Dado $\alpha \in \mathbb{R}$ quiero ver que

$$\{f+q>\alpha\}\in\mathfrak{X}$$

Para $x \in X$ tenemos que:

$$(f+g)(x) > \alpha \iff f(x)+g(x) > \alpha \iff f(x) > r \land g(x) > \alpha - r \text{ para algún } r \in \mathbb{Q}$$

Entonces $\{f+g>\alpha\}=\bigcup_{r\in\mathbb{Q}}(\{f>r\}\cap\{g>\alpha-r\})\in\mathfrak{X}$ por ser unión numerable $\therefore f+g$ es \mathfrak{X} -medible.

Por último veamos que f $\cdot g$ es $\mathfrak{X}\text{-medible}.$ Dado $\alpha\in\mathbb{R}$ quiero ver que

$$\{f \cdot g > \alpha\} \in \mathfrak{X}$$

Sabemos que:

$$(f+g)^2$$
 es $\mathfrak{X}\text{-medible} \Rightarrow f^2 + 2 \cdot f \cdot g + g^2$ es $\mathfrak{X}\text{-medible}$

$$f \cdot g = \frac{1}{2} ((f + g)^2 - f^2 - g^2)$$
 es **X**-medible

3.2 Funciones medibles en la recta extendida

Definición 3.5. Dada $f: X \to \overline{R}$ diremos que f es \mathfrak{X} -medible si

$$f^{-1}((\alpha,+\infty])=f^{-1}((\alpha,+\infty))\cup f^{-1}(\{+\infty\})=\{f>\alpha\}\in\mathfrak{X}\quad (\forall\alpha\in\mathbb{R})$$

A la clase de las funciones (a valores en la recta extendida) \mathfrak{X} -medibles la denotaremos por $M(X, \mathfrak{X})$.

Observación. Si $f: X \to \mathbb{R} \Rightarrow f \in M(X, \mathfrak{X})$.

Observación. Si

$$f\in M(X,\,\mathfrak{X})\Rightarrow \{f=+\infty\}=f^{-1}(\{+\infty\})=\bigcap_{\mathfrak{n}\geq 1}\{f>\mathfrak{n}\}\in\mathfrak{X}$$

Además,

$$\{f=-\infty\}=f^{-1}(\{-\infty\})=\bigcap_{n\geq 1}\{f<-n\}\in\mathfrak{X}$$

Lema 3.6. Dada una función $f:X\to\overline{\mathbb{R}}$ consideremos $A_f=\{f=+\infty\},\ B_f=\{f=-\infty\}$ y

$$\hat{f} = \begin{cases} f & x \in X \setminus (A_f \cup B) \\ 0 & x \in A_f \\ 0 & x \in B_f \end{cases}$$

 $\Rightarrow f \in M(X,\, \mathfrak{X}) \iff A_f, B_f \in \mathfrak{X} \,\, \mathrm{y} \,\, \hat{f} \,\, \mathrm{es} \,\, \mathfrak{X}\text{-medible}.$

Demostración. Supongamos primero que $f \in M(X, \mathfrak{X})$. Dado $\alpha \in \mathbb{R}$, ya vimos que $A_f, B_f \in \mathfrak{X}$. Veamos que \hat{f} es \mathfrak{X} -medible.

Quiero ver que $\{\hat{f} > \alpha\} \in \mathfrak{X}$. Si $\alpha \geq 0$ entonces

$$\{\hat{f}>\alpha\}=\{f>\alpha\}-A_f=\{f>\alpha\}\cap A_f^C\in\mathfrak{X}$$

Si $\alpha < 0$ entonces

$$\{\hat{f}<\alpha\}=\{f>\alpha\}\cup\{\hat{f}=0\}=\{f>\alpha\}\cup(A_f\cup B_f)=\{f>\alpha\}\cup B_f\in\mathfrak{X}$$

Luego $\hat{f} \in \mathfrak{X}$. Supongamos ahora que $A_f, B_f \in \mathfrak{X}$ y \hat{f} es \mathfrak{X} -medible. Dado $\alpha \in \mathbb{R}$ tenemos que

$$\{f>\alpha\} = \{\hat{f}>\alpha\} \cup A_f \in \mathfrak{X}$$

Si $\alpha < 0$ entonces

$$\{f>\alpha\}=\{\hat{f}<\alpha\}\setminus B_f=\{\hat{f}<\alpha\}\cap B_f^c\in\mathfrak{X}$$

Corolario 3.7. Si f, $g \in M(X, \mathfrak{X})$ y $c \in \mathbb{R}$. Las funciones $c \cdot f$, f^2 , |f|, $f \cdot g \in M(X, \mathfrak{X})$.

Observación. Dados f, $g \in M(X, \mathfrak{X})$ consideremos los conjuntos

- $\bullet \ E_1 = \{f = +\infty\} \cap \{g = -\infty\} \in \mathfrak{X}.$
- $\mathsf{E}_2 = \{\mathsf{f} = -\infty\} \cap \{\mathsf{g} = +\infty\} \in \mathfrak{X}.$

Notemos que no está definida la suma f + g en $E_1 \cup E_2$. Definimos

$$f+g = \begin{cases} f+g & x \in X \setminus (E_1 \cup E_2) \\ 0 & x \in E_1 \cup E_2 \end{cases}$$

La demostración de que $f+g\in M(X,\mathfrak{X})$ se deja como ejercicio.

Lema 3.8. Dada una sucesión de funciones $(f_n)_{n\geq 1}$ en $M(X,\mathfrak{X})$ sean f,f^*,F,F^* definidas por:

$$f(x) = \inf_{n \geq 1} f_n(x) \quad f^*(x) = \liminf_{n \to \infty} f_n(x)$$

$$F(x) = \sup_{n \geq 1} f_n(x) \quad F^*(x) = \limsup_{n \to \infty} f_n(x)$$

Entonces $f, f^*, F, F^* \in M(X, \mathfrak{X})$.

Demostración. Dado $\alpha \in \mathbb{R}$ tenemos que

$$\{F > \alpha\} = \bigcup_{n \ge 1} \{f_n > \alpha\} \in \mathfrak{X}$$

$$\{f>\alpha\}=\bigcap_{n\geq 1}\{f_n>\alpha\}\in\mathfrak{X}$$

Veamos $F^* \in M(X, \mathfrak{X})$. Para cada $\mathfrak{n} \in \mathbb{N}$ defino $\mathfrak{h}_{\mathfrak{n}} = \sup_{m \geq \mathfrak{n}} f_m \in \mathfrak{X}$. Por ser subsucesión de funciones medibles. Luego

$$F^*=inf_{n\geq 1}(sup_{m\geq n}f_m)\in \mathfrak{X}$$

Análogamente para f*.

Corolario 3.9. Dada $(f_n)_{n\geq 1}: f_n\in M(X,\mathfrak{X}) \quad (\forall n\in\mathbb{N})$. Supongamos que la sucesión converge puntualmente a f entonces $f\in M(X,\mathfrak{X})$.

Demostración. Notemos que $f = \lim \inf f_n = \lim \sup f_n$ y aplicamos el lema anterior.

Clase IV - 20/03

4.1 Parte negativa y positiva

Definición 4.1 (Función truncada). Dada una función $f \in M(X, \mathfrak{X})$, para cada $n \geq 1$ definimos la función truncada a [-n, n] como la $f_n : X \to \mathbb{R}$ dada por

$$f_n(x) = \begin{cases} f(x) & \text{si } f(x) \in [-n, n] \\ n & \text{si } f(x) > n \\ -n & \text{si } f(x) < -n \end{cases}$$

Que converge puntualmente a f.

Notemos que f_n es medible para todo $n \ge 1$. Pues

$$\{f_n > \alpha\} = \begin{cases} X & \text{si } \alpha \le -n \\ \{f < \alpha\} & \text{si } \alpha \in [-n, n] \\ \varnothing & \text{si } \alpha \ge n \end{cases}$$

Veamos una forma alternativa de probar el teorema de la clase anterior. Si $f, g \in M(X, \mathfrak{X})$ entonces $f+g: X \to \mathbb{R} \in M(X, \mathfrak{X})$

Para cada $n \geq 1$ consideramos las funciones truncadas f_n , $g_n : X \to \mathbb{R}$. Tenemos que $f_n + g_n : X \to \mathbb{R}$ es \mathfrak{X} -medible. Queremos ver que la convergencia es puntual $\forall x \in X$.

Si $x \in E_1 = \{f = +\infty, g = -\infty\}$. Para cada $n \ge 1$, $f_n(x) = n$ y $g_n(x) = -n$ entonces $(f_n + g_n)(x) = f_n(x) + g_n(x) = 0$ ($\forall n$). Luego $(f_n + g_n)(x) \to 0 = f(x)$ si $x \in E_1$. Para $x \in E_2$ el desarollo es análogo.

Si $x \in (E_1 \cup E_2)^c$ entonces

- 1. $f(x) \cdot g(x) \in \mathbb{R}$.
- 2. $f(x) \in \mathbb{R} \ y \ g(x) = +-\infty$.
- 3. $f(x) = +-\infty y g(x) \in \mathbb{R}$.
- 4. $f(x) = g(x) = +-\infty$.

 $\mathrm{Luego}\ (f_n+g_n)(x)\to (f+g)(x)\quad \forall x\in (E_1\cup E_2)^c.\ \mathrm{Pues}\ f_n(x)\to f(x)\ y\ g_n(x)\to g(x).$

Definición 4.2. Dada una función $f:X\to\overline{\mathbb{R}}$ definimos la parte positiva $f^+:X\to\overline{\mathbb{R}}$ y la parte negativa $f^-:X\to\overline{\mathbb{R}}$ como

$$f^+(x) = \begin{cases} f(x) & \mathrm{si}\ f(x) \geq 0 \\ 0 & \mathrm{si}\ f(x) < 0 \end{cases}$$

$$f^{-}(x) = \begin{cases} -f(x) & \text{si } f(x) \leq 0 \\ 0 & \text{si } f(x) > 0 \end{cases}$$

Observación. $f = f^+ - f^- y |f| = f^+ + f^-$.

Observación. Si (X,\mathfrak{X}) es un espacio medible $f \in M(X,\mathfrak{X}) \iff f^+, f^- \in M^+(X,\mathfrak{X}) = \{f \in M(X,\mathfrak{X}) : f \geq 0\}$ Notemos que $f^+ = \sup(\{f,0\})$ y $f^- = \sup(\{-f,0\})$. Utilizando el teorema anterior vemos que si $f^+, f^- \in M(X,\mathfrak{X})$ entonces $f = f^+ + (-f^-) \in M(X,\mathfrak{X})$.

Observación. Si $B_f = \{f = +\infty\},\$

$$f^+ = \chi_{B_f^c} \cdot \frac{1}{2} \cdot (f + |f|)$$

$$f^- = \chi_{A_f^c} \cdot \frac{1}{2} \cdot (|f| - f)$$

Teorema 4.3. Si $f \in M^+(X, \mathfrak{X})$ entonces $\exists (\varphi_n)_{n \geq 1} \in M^+(X, \mathfrak{X})$ tal que

- 1. $\phi_n \leq \phi_{n+1} \quad \forall n \geq 1$.
- $2. \ f(x) = \lim_{n \to \infty} \varphi_n(x) \quad \forall x \in X.$
- 3. Para cada $n \ge 1$ se tiene que $\varphi_n : X \to \mathbb{R}$ toma una cantidad finita de valores.

Luego fijado el $n \in \mathbb{N}$ tenemos los intervalos

$$[0,\frac{1}{2}),[\frac{1}{2^n},\frac{2}{2^n}),\cdots,[\frac{2^{n-1}}{2^n},\frac{2^n}{2^n}),[\frac{2^n}{2^n},\frac{2^n+1}{2^n}),\cdots,[\frac{n\cdot 2^n-1}{2^n},\frac{n\cdot 2^n}{2^n}),[n,+\infty]$$

Para cada $k=0,\cdots,n\cdot 2^n-1$ definimos el conjunto

$$\begin{split} E_{k,n} &= f^{-1}([\frac{k}{2^n},\frac{k+1}{2^n})) \in \mathfrak{X} \\ &= \{x \in X : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n}\} \end{split}$$

Sea

$$E_{n\cdot 2^n,n}=f^{-1}([n,+\infty])=\{x\in X:f(x)\geq n\}\in\mathfrak{X}$$

Notemos que $E_{k,n} \in \mathfrak{X} \quad \forall k, \bigcup_{k=0}^{n\cdot 2^n} E_{k,n} = f^{-1}([0,+\infty]) = X$ son disjuntos dos a dos. Luego definimos $\varphi_n(x) = \sum_{k=0}^{n\cdot 2^n} \frac{k}{2^n} \cdot \chi_{E_{n,k}} = \frac{k}{2^n}$ si $x \in E_{k,n}$, cada x pertenece a un único $E_{k,n}$ por

Entonces $\varphi_n \in M^+(X, \mathfrak{X})$.

construcción.

Veamos que $\phi_n \le \phi_{n+1}$, dado $x \in X$ supongamos que f(x) < n entonces $\exists ! k = 0, \dots, n \cdot 2^n - 1 : x \in E_{k,n}$ (pues en el nivel n, son disjuntos).

Queda como ejercicio probar que $E_{k,n}=E_{2k,n+1}\cup E_{2k+1,n+1}.$ Luego

$$\varphi_n(x) = \frac{k}{2^n}$$

$$\varphi_{n+1}(x) = \begin{cases} \frac{2k}{2^{n+1}} = \frac{k}{2^n} & \text{si } x \in E_{2k,n+1} \\ \frac{2k+1}{2^{n+1}} = \frac{k}{2^n} + \frac{1}{2^{n+1}} & \text{si } x \in E_{2k+1,n+1} \end{cases}$$

 $\therefore \varphi_n(x) \leq \varphi_{n+1}(x).$

Por otro lado si $f(x) > n \Rightarrow x \in E_{n \cdot 2^n, n}$ entonces $\phi_n(x) = n$.

Como ahora descomponemos $[n,+\infty]$ en $[n,n+1]\cup[n+1,+\infty]$ para φ_{n+1} lo tenemos como

$$\bigcup_{k=0}^{2^{n+1}-1} \left[\frac{n \cdot 2^{n+1} + k}{2^{n+1}}, \frac{n \cdot 2^{n+1+k+1}}{2^{n+1}} \right) \cup [n+1, +\infty]$$

Si $x \in [n+1,+\infty]$ ya está pues $\varphi_{n+1}(x) = n+1 \ge n = \varphi_n(x)$.

Luego $\exists ! k = 0, \dots, n \cdot 2^{n+1} : x \in E_{n \cdot 2^{n+1} + k, n+1}$ y en ese caso $\phi_{n+1}(x) = \frac{n \cdot 2^{n+1} + k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \ge n = \phi_n(x)$. Por lo tanto $\phi_n \le \phi_{n+1}$.

Por úlitmo veamos que $f(x) = \lim_{n \to +\infty} \phi_n(x) \quad \forall x \in X.$

$$1. \ f(x) = +\infty \ \mathrm{luego} \ \forall n \geq 1 \quad \varphi_n(x) = n \to +\infty.$$

$$\begin{array}{ll} \text{2. } f(x) \in [0,+\infty). \text{ Consideremos } n_0 \in \mathbb{N} : f(x) < n_0 \text{ luego } \forall n \geq n_0 \quad \exists k = 0, \cdots, n \cdot 2^n - 1 : \\ x \in E_{k,n}. \text{ Entonces } \varphi_n(x) = \frac{k}{2^n} \leq f(x) \leq \frac{k+1}{2^n} \iff 0 \leq f(x) - \varphi_n(x) \leq \frac{1}{2^n}. \end{array}$$

$$\therefore \varphi_n(x) \to f(x).$$

Observación. Si f está acotada (superiormente) entonces $\phi_n \rightrightarrows f$.

4.2 Funciones medibles entre espacios medibles

Definición 4.4. Dados espacios medibles (X, \mathfrak{X}) y (Y, \mathfrak{Y}) una función $f: X \to Y$ es $(\mathfrak{X}, \mathfrak{Y})$ medible si $f^{-1}(E) \in \mathfrak{X} \quad \forall E \in \mathfrak{Y}$.

Ejemplo. Si (X, \mathfrak{X}) es un espacio medible:

- 1. $f: X \to \mathbb{R}$ es \mathfrak{X} -medible \iff f es $(\mathfrak{X}, \mathcal{B})$ -medible.
- 2. $f: X \to \overline{\mathbb{R}}$ es \mathfrak{X} -medible \iff f es $(\mathfrak{X}, \overline{\mathcal{B}})$ -medible.
- 3. $f: X \to \mathbb{R}^n$, sean $f_j: X \to \mathbb{R}$ las componentes de f entonces f es $(\mathfrak{X}, \mathcal{B})$ -medible si y sólo si f_j lo es $\forall j$.

Proposición 4.5. Dados un espacio medible (X, \mathfrak{X}) y un conjunto Y, sea $f: X \to Y$ una función. Si $A \subseteq P(Y): f^{-1}(A) \in \mathfrak{X} \quad \forall A \in A$ entonces f es $(\mathfrak{X}, \sigma(A))$ -medible.

Demostración. Sea $Z = \{E \subseteq Y : f^{-1}(E) \in \mathfrak{X}\} \supseteq \mathcal{A}$. Es fácil ver que Z es σ -álgebra entonces $\sigma(\mathcal{A}) \subseteq Z$. Es decir que $f^{-1}(E) \in \mathfrak{X} \quad \forall E \in \sigma(\mathcal{A})$. Luego f es $(\mathfrak{X}, \sigma(\mathcal{A}))$ -medible.

Proposición 4.6. Sea (X, \mathfrak{X}) , (Y, \mathfrak{Y}) , (Z, \mathfrak{Z}) espacios medibles y $f: X \to Y$ y $g: Y \to Z$ funciones $(\mathfrak{X}, \mathfrak{Y})$ -medible y $(\mathfrak{Y}, \mathfrak{Z})$ -medible respectivamente. Entonces $g \circ f: X \to Z$ es $(\mathfrak{X}, \mathfrak{Z})$ -medible.

Demostración. Fijado $E \in \mathfrak{Z}$ tenemos que $(g \circ f)^{-1}(E) = f^{-1}(g^{-1}(E)) \in \mathfrak{X}$ pues f y g son medibles.

Clase V - 25/03

5.1 Medidas

5.1.1. Motivación

Sea $\phi: X \to [0, +\infty]$ con $Im(\phi) = \{y_1, \dots, y_m\}$. Si $\phi^{-1}(y_i) \in \mathfrak{X}$ y conocemos $\mu(\phi^{-1}(y_i)) \in [0, +\infty]$ (la medida de cada conjunto) podemos definir

$$\int \varphi \,\mathrm{d}\mu = \sum_{i=1}^m y_i \cdot \mu(\varphi^{-1}(y_i))$$

Si $f: X \to [0, +\infty]$ es \mathfrak{X} -medible, \exists una sucesión $(\varphi_n)_{n \geq 1}$ con funciones así tal que $\varphi_n \to f$. Entonces podremos definir

$$\int f \,\mathrm{d}\mu = \lim_{n\to\infty} \int \varphi_n \,\mathrm{d}\mu$$

Dado un espacio medible (X, \mathfrak{X}) , vamos a considerar ciertas funciones $\mu : \mathfrak{X} \to [0, +\infty]$: el valor $\mu(E)$ para cada $E \in \mathfrak{X}$ esté motivado por las nociones de longitud, área, volumen, probabilidad, masa, etc.

5.1.2. Series de términos no negativos

Proposición 5.1. Sea $(a_n)_{n\geq 1}\subset [0,+\infty]\Rightarrow \mathrm{la}$ serie $\sum_{n=1}^\infty a_n$ converge en $[0,+\infty]$ y $\lim_{n\to\infty}\sum_{i=1}^n a_i=\sum_{i=1}^\infty a_i$ Además:

- 1. Si $(I_n)_{n\geq 1}$ es una sucesión creciente de subconjuntos finitos de \mathbb{N} $(I_n\subseteq I_{n+1}\quad \forall n\geq 1)$ entonces $\bigcup_{n\geq 1}I_n=\mathbb{N}\Rightarrow \sum_{n\geq 1}\alpha_n=\sup\{\sum_{m\in I_n}\alpha_m:n\geq 1\}.$
- 2. Si $\sigma: \mathbb{N} \to \mathbb{N}$ es una permutación de \mathbb{N} entonces $\sum_{n>1} a_{\sigma(n)} = \sum_{n>1} a_n$.
- 3. Dado un conjunto numerable I, sea $(a_i)_{i\in I}$ una sucesión en $[0,+\infty]$ y $f:\mathbb{N}\to I$ es una biyección, consideremos la sucesión $(b_n)_{n\geq 1}=(a_{f(n)})_{n\geq 1}$, entonces podemos definir a

$$\sum_{i\in I}\alpha_i=\sum_{n\geq 1}b_{f(n)}$$

Esto está bien definido pues si $g:\mathbb{N}\to I$ es otra biyección tal que $c_{\mathfrak{n}}=\mathfrak{a}_{g(\mathfrak{n})}$

$$\begin{split} \sum_{n\geq 1} c_n &= \sum_{n\geq 1} \alpha_{g(n)} \\ \sum_{n\geq 1} \alpha_{\sigma(f(n))} &= \sum_{n\geq 1} b_{\sigma(n)} = \sum_{n\geq 1} b_n \end{split}$$

En particular si $I = \mathbb{N} \times \mathbb{N}$ y $(\mathfrak{a}_{n,m})_{n,m \in \mathbb{N}}$ es una sucesión en $[0,+\infty]$ podemos definir

$$\begin{split} \sum_{(n,m)\in\mathbb{N}\times\mathbb{N}} \alpha_{n,m} &= \sum_{n\geq 1} (\sum_{m\geq 1} \alpha_{n,m}) \\ &= \sum_{m\geq 1} (\sum_{n\geq 1} \alpha_{n,m}) \end{split}$$

5.1.3. Definición de medida

Definición 5.2 (Medida). Dado un espacio medible (X, \mathfrak{X}) , una medida en X es una función $\mu: \mathfrak{X} \to [0, +\infty]$ tal que:

- 1. $\mu(\varnothing) = 0$.
- 2. (σ -aditividad) Si $(E_n)_{n\geq 1}$ es una sucesión en \mathfrak{X} , dos a dos disjuntos \Rightarrow

$$\mu(\bigcup_{n\geq 1}E_n)=\sum_{n\geq 1}\mu(E_n)$$

Observación. Si $A_1, \dots A_n \in \mathfrak{X}$ son conjuntos dos a dos disjuntos entonces

$$\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$$

Esto se deduce de la propiedad de σ -aditividad, pues construimos la sucesión $(E_n)_{n\geq 1}$ como $A_1,\,A_2,\,\cdots,\,A_n,\,\varnothing,\,\varnothing,\,\cdots$.

Definición 5.3 (Medida finita). Una medida es finita si $\mu(E) < +\infty \quad \forall E \in \mathfrak{X}$.

Definición 5.4 (Medida σ -finita). Una medida es σ -finita si $\exists (E_n)_{n\geq 1}\subseteq \mathfrak{X}$ tal que: $X=\bigcup_{n\geq 1}E_n$ y $\mu(E_n)<+\infty$ $\forall n\geq 1$.

Ejemplo. Si $X \neq \emptyset$, $\mathfrak{X} = P(X)$ y tomamos $\mu : P(X) \to [0, +\infty]$ tal que $\mu(E) = 0 \quad \forall E \in P(X)$ y también es medida si la definimos como

$$\mu(E) = \begin{cases} 0 & \text{si } E = \emptyset \\ +\infty & \text{si } E \neq \emptyset \end{cases}$$

Luego no es finita, ni σ -finita.

Ejemplo. Sea (X, \mathfrak{X}) un espacio medible y fijemos $x_0 \in X \neq \emptyset$. Sea $\mu : \mathfrak{X} \to [0, +\infty]$ tal que

$$\mu(E) = \begin{cases} 0 & \text{si } x_0 \notin E \\ 1 & \text{si } x_0 \in E \end{cases}$$

Es la medida puntual con masa uno y la notamos δ_{x_0} (δ de Dirac). Es una medida finita y es σ -aditiva pues si construimos una sucesión E_n de conjuntos disjuntos dos a dos $\mu(\bigcup_{n>1}E_n)=\sum_{n>1}\mu(E_n)=1$. Pues un único conjunto E_n puede contener a x_0 .

Ejemplo. Sea $X = \mathbb{N}$, $\mathfrak{X} = P(\mathbb{N})$ y la medida de conteo $\mu : P(\mathbb{N}) \to [0, +\infty]$ tal que

$$\mu(E) = \begin{cases} +\infty & \text{si E es infinito} \\ \operatorname{card}(E) & \text{si $E = \{x_1, x_2, \cdots, x_n\}$} \end{cases}$$

Ejercicio, ver que es σ -aditiva. Es σ -finita, pero no es finita pues $\mathbb{N}=\bigcup_{n\geq 1}\{n\}$ y $\mu(\{n\})=1.$

Ejemplo. Sea (X, \mathfrak{X}) un espacio medible, X con infinitos elementos, sea $(x_n)_{n\geq 1}$ una sucesión en X con $x_n \neq x_m \quad \forall n \neq m \ y \ (a_n)_{n\geq 1}$ otra sucesión en $[0,+\infty]$. Definimos $\mu: \mathfrak{X} \to [0,+\infty]$ como

$$\mu(E) = \sum_{n \in \mathbb{N} : x_n \in E} \alpha_n$$
$$E \in \mathfrak{X}$$

Queda como ejercicio ver que es medida. Si $\mathfrak X$ contiene a los conjuntos unitarios $\{x_n\}$ con $n \in \mathbb N$ entonces μ es σ -finita pues $X = (\bigcup_{n \geq 1} \{x_n\}) \cup (X - \bigcup_{n \geq 1} \{x_n\})$ ambos medibles, luego $\mu(\{x_n\}) = \mathfrak a_n$ y $\mu(X - \bigcup_{n \geq 1} \{x_n\}) = \mathfrak 0$. Además es σ -finita $\iff \sum_{n \geq 1} \mathfrak a_n < +\infty$

Ejemplo (Medida de Lebesgue). Si $X = \mathbb{R}$ y $\mathfrak{X} = \mathcal{B}$, más adelante probaremos que \exists ! medida $\lambda : \mathcal{B} \to [0, +\infty]$ tal que: $\lambda((\mathfrak{a}, \mathfrak{b})) = \mathfrak{b} - \mathfrak{a}$ con $\mathfrak{a}, \mathfrak{b} \in \mathbb{R}$ y $\mathfrak{a} < \mathfrak{b}$. Es σ-finita pues $\mathbb{R} = \bigcup_{n \geq 1} (-n, n)$ y $\lambda((-n, n)) = 2n < +\infty$, pero no es finita pues $\lambda(\mathbb{R}) = +\infty$. Notemos que λ puede extenderse a una σ-álgebra de \mathbb{R} más grande que \mathcal{B} , pero no puede extenderse a $P(\mathbb{R})$.

Ejemplo (Medida n-dimensional de Lebesgue). Sea $X = \mathbb{R}^n$ y $\mathfrak{X} = \mathcal{B}_n$, tenemos que \exists ! medida $\lambda : \mathcal{B}_n \to [0, +\infty]$ tal que:

$$\lambda_n(\prod_{i=1}^n(\alpha_i,b_i)) = \prod_{i=1}^n(b_i-\alpha_i) \quad \forall \alpha_i,b_i \in \mathbb{R} \ \mathrm{y} \ \alpha_i < b_i$$

Ejemplo (Medida de Borel - Stieltjes generada por f). Si $X = \mathbb{R}$, $\mathfrak{X} = \mathcal{B}$, fijemos $f : \mathbb{R} \to \mathbb{R}$ monótona no decreciente y continua. Probaremos que existe una única medida $\lambda_f : \mathcal{B} \to [0, +\infty]$:

$$\lambda_f((\alpha,b)) = f(b) - f(\alpha) \quad \forall \alpha,b \in \mathbb{R} \ \mathrm{y} \ \alpha < b$$

El ejemplo anterior es un caso particular de esta medida con f(x) = x.

Lema 5.5. Dado un espacio medible (X, \mathfrak{X}) y una medida $\mu: X \to [0, +\infty]$. Si F, $E \in \mathfrak{X}$ y $E \subseteq F \Rightarrow \mu(E) \le \mu(F)$. Si además $\mu(E) < +\infty \Rightarrow \mu(F - E) = \mu(F) - \mu(E)$.

Demostración. Como $E \subseteq F$ entonces $F = E \cup (F - E)$, además $F - E = F \cap E^c \in \mathfrak{X}$ y $E \cap (F - E) = \emptyset$. Entonces $\mu(F) = \mu(E) + \mu(F - E) \ge \mu(E)$. Si $\mu(E) < +\infty$ entonces $\mu(F)$, $\mu(F - E)$ son o ambos finitos o ambos infinitos, luego $\mu(F - E) = \mu(F) - \mu(E)$. \square

Corolario 5.6. μ es finito $\iff \mu(X) < +\infty$.

Lema 5.7. Si $(A_n)_{n>1}$ es una sucesión cualquiera en \mathfrak{X} entonces

$$\mu(\bigcup_{n\geq 1}A_n)\leq \sum_{n\geq 1}\mu(A_n)$$

Demostración. Definamos

$$F_1 := A_1, F_2 := A_2 - A_1, \cdots$$

$$F_n := A_n - \bigcup_{i=1}^{n-1} A_i = A_n - (\bigcup_{k=1}^{n-1} F_k) \quad \forall n \ge 2$$

Resulta que es una sucesión en $\mathfrak X$ de conjuntos disjuntos dos a dos ya que si $\mathfrak n>\mathfrak m\Rightarrow F_\mathfrak m\cap F_\mathfrak n=(A_\mathfrak m-\bigcup_{k=1}^{\mathfrak n-1}F_k)\cap F_\mathfrak n=\varnothing.$ Luego,

$$\begin{split} \bigcup_{n\geq 1} A_n &= \bigcup_{n\geq 1} F_n, \ \mathrm{y} \\ \mu(\bigcup_{n\geq 1} A_n) &= \mu(\bigcup_{n\geq 1} F_n) = \sum_{n\geq 1} \mu(F_n) \leq \sum_{n\geq 1} \mu(A_n) \end{split}$$

Lema 5.8. Sea μ una medida sobre \mathfrak{X} :

- 1. Si $(E_n)_{n\geq 1}$ es una sucesión en $\mathfrak X$ creciente $\Rightarrow \mu(\bigcup_{n\geq 1}E_n)=\lim_{n\to\infty}\mu(E_n)$.
- 2. Si $(F_n)_{n\geq 1}$ es una sucesión decreciente y $\mu(F_1)<+\infty \Rightarrow$

$$\mu(\bigcap_{n\geq 1}F_n)=\lim_{n\to\infty}\mu(F_n)$$

Ejemplo
$$\{x\}=\bigcap_{n\geq 1}(x-\frac{1}{n},x+\frac{1}{n})\ \mathrm{y}\ \mu(\{x\})=\frac{2}{n}\to 0\ \mathrm{si}\ \mu=\lambda.$$

Demostración. Veamos el primer caso.

 $\forall n \in \mathbb{N} \text{ sea } A_n = E_n - E_{n-1}, \text{ con } E_0 = \emptyset \text{ y } (A_n)_{n \geq 1} \text{ es una sucesión en } \mathfrak{X} \text{ tal que } A_i \cap A_j = \emptyset \quad \text{si } i \neq j. \text{ Entonces}$

$$\bigcup_{i=1}^n A_i = E_n, \text{ y además } \bigcup_{n \geq 1} A_n = \bigcup_{n \geq 1} E_n$$

Por lo que

$$\begin{split} \mu(\bigcup_{n\geq 1} E_n) &= \mu(\bigcup_{n\geq 1} A_n) = \sum_{n\geq 1} \mu(A_n) \\ &= \lim_{n\to +\infty} \sum_{i=1}^n \mu(A_i) = \lim_{n\to +\infty} \mu(\bigcup_{i=1}^n A_i) = \lim_{n\to +\infty} \mu(E_n) \end{split}$$

Para el segundo caso si $\mu(F_1) < +\infty$ y $\forall n \in \mathbb{N}$ definimos $E_n = F_1 - F_n \Rightarrow (E_n)_{n \geq 1}$ es una sucesión creciente en \mathfrak{X} tal que

$$\bigcup_{n\geq 1} E_n = \bigcup_{n\geq 1} F_1 \cap F_n^c = F_1 \cap (\bigcup_{n\geq 1} F_n^c) = F_1 \cap (\bigcap_{n\geq 1} F_n)^c = F_1 - \bigcap_{n\geq 1} F_n$$

$$\begin{split} \mu(F_1) - \mu(\cap_{n \geq 1} F_n) &= \mu(F_1 - \cap_{n \geq 1} F_n) = \mu(\bigcup_{n \geq 1} E_n) =^* \lim_{n \to +\infty} \mu(F_1 - F_n) \\ &= \lim_{n \to +\infty} \mu(F_1) - \mu(F_n) = \mu(F_1) - \lim_{n \to +\infty} \mu(F_n) \end{split}$$

*Por el lema anterior ∴

$$\lim_{n\to+\infty}\mu(F_n)=\mu(\cap_{n\geq 1}F_n)$$

Notemos que en el segundo caso la condición $\mu(F_1) < +\infty$ se puede reemplazar por $\mu(F_{n_0}) < +\infty$ para algún $n_0 \ge 1$, pero no puede omitirse. Por ejemplo si $X = \mathbb{R}$ y $\mathfrak{X} = \mathcal{B}$ y $\mu = \lambda$ la medida de Lebesgue, entonces llamemos $F_n = (n, +\infty)$ en este caso $\mu(F_n) = +\infty$ y $\mu(\bigcap_{n \ge 1} F_n) = \varnothing$. Aplicando estas propiedades para la medida de Lebesgue λ podemos probar que si I es un intervalo de \mathbb{R} (a,b): $a,b \in \overline{\mathbb{R}}$ y a < b o [a,b], [a,b].

$$\lambda(I) = \begin{cases} l(I) & \text{si I es acotado} \\ +\infty & \text{si I es no acotado} \end{cases}$$

Clase VI - 27/03

6.1 Espacio de medida

Definición 6.1 (Espacio de medida). Un espacio de medida es una terna (X, \mathfrak{X}, μ) , donde X es un conjunto, \mathfrak{X} es una σ -álgebra de subconjuntos de X y μ es una medida en \mathfrak{X} .

Un espacio de probabilidad es un espacio de medida tal que $\mu(X) = 1$. En este caso a X se lo llama espacio muestral, a \mathfrak{X} se lo llama colección de eventos y una función $f: X \to \mathbb{R}$, \mathfrak{X} -medible se la llama variable aleatoria.

Definición 6.2. Dado un espacio de medida (X, \mathfrak{X}, μ) , sea P(x) una "propiedad" que se puede predicar de sobre los elementos $X \in \mathfrak{X}$. Diremos que P(x) vale μ -casi todo punto $(\mu$ -c.t.p) si $\exists N \in \mathfrak{X}$ con $\mu(N) = 0 : P(x)$ vale $\forall x \in N^c$.

Ejemplo. $f, g: X \to \mathbb{R}$ dos funciones diremos que f = g μ -c.t.p si $\exists N \in \mathfrak{X}$ con $\mu(N) = 0$: f(x) = g(x) $\forall x \in N^c$. Por ejemplo si $(X, \mathfrak{X}, \mu) = (\mathbb{R}, \mathcal{B}, \lambda)$, las funciones $f = X_{\mathbb{Q}}$, g = 0 son λ -c.t.p iguales ya que f(x) = g(x) = 0 $\forall x \in \mathbb{Q}^c$ y $\lambda(\mathbb{Q}) = 0$.

Ejemplo. Sea $(f_n)_{n\geq 1}$ una sucesión de funciones $f_n:X\to\mathbb{R}$ diremos que $f_n\to f$ $\mu\text{-c.t.p}$ si $\exists N\in\mathfrak{X}$ con $\mu(N)=0$ tal que $f_n(x)\to f(x)$ $\forall x\in N^c$.

Definición 6.3 (Carga). Dado un espacio medible (X, \mathfrak{X}, μ) , una carga en \mathfrak{X} es una función $\nu : \mathfrak{X} \to \mathbb{R}$:

- 1. $\mathbf{v}(\emptyset) = \mathbf{0}$.
- 2. Si $(E_n)_{n\geq 1}$ es una sucesión en $\mathfrak X$ disjuntos dos a dos entonces $\nu(\bigcup E_n)=\sum \nu(E_n)$.

Admitimos solo valores reales en la imagen para evitar situaciones del tipo $\infty + (-\infty)$. Luego $\sum_{n\geq 1} \nu(E_n)$ converge pues si definimos $\sigma: \mathbb{N} \to \mathbb{N}$ una permutación de los naturales entonces

$$\begin{split} &\sum_{n\geq 1} \nu(E_{\sigma(n)}) = \nu(\bigcup_{n\geq 1} E_{\sigma(n)}) \\ &= \nu(\bigcup_{n\geq 1} E_n) = \sum_{n\geq 1} \nu(E_n) \end{split}$$

 \therefore converge incondicionalmente \rightarrow converge absolutamente.

6.2 Generación de medida

Motivación: ¿Cómo podemos construir una medida con ciertas propiedades cuando no sabemos como definirla sobre todos los conjuntos de la σ -álgebra?

Consideremos la clase 2) formada por los intervalos de la forma

- 1. (a, b] con $a, b \in \mathbb{R}$, a < b.
- 2. $(-\infty, b]$ con $b \in \mathbb{R}$.
- 3. (c, ∞) con $c \in \mathbb{R}$.
- $4. (-\infty, \infty).$
- $5. \varnothing.$

Luego definimos $\ell: \mathfrak{Y} \to [0, +\infty]$ dada por:

- 1. $\ell((a, b]) = b a$.
- 2. $\ell((-\infty, b]) = +\infty$.
- 3. $\ell((\mathbf{c}, \infty)) = +\infty$.
- 4. $\ell((-\infty,\infty)) = +\infty$.
- 5. $\ell(\varnothing) = 0$.

Sabemos que $\sigma(\mathfrak{Y}) = \mathcal{B}$, la σ -álgebra de Borel de \mathbb{R} , pero no sabemos como extender la definición de ℓ a todos los conjuntos de \mathcal{B} .

La clase de 2) tiene estructura de semiálgebra.

Definición 6.4 (Semiálgebra). Una colección de subconjuntos \mathcal{A} de X es una semiálgebra si:

- 1. \varnothing , $X \in \mathcal{A}$.
- 2. Si $A_1, \dots, A_n \in \mathcal{A} \Rightarrow \bigcap_{i=1}^n A_i \in \mathcal{A}$.
- 3. Si $A \in \mathcal{A} \Rightarrow A^c = \bigcup_{k=1}^n S_k$ para $S_1, \dots, S_n \in \mathcal{A}$ dos a dos disjuntos.

Se deja como ejercicio verificar que efectivamente \mathfrak{Y} es una semiálgebra con la definición de semiálgebra de \mathbb{R} .

Lema 6.5. La función $\ell: \mathfrak{Y} \to [0, +\infty]$ es finitamente aditivia, i.e, si $I_1, \cdots, I_n \in \mathfrak{Y}$ son conjuntos dos a dos disjuntos y $\bigcup_{i=1}^n I_i \in \mathfrak{Y} \Rightarrow \ell(\bigcup_{i=1}^n I_n) = \sum_{i=1}^n \ell(I_i)$.

Demostración. Supongamos $I_1, \dots, I_n \in \mathfrak{Y}$, no vacíos, cuya unión también pertenece a \mathfrak{Y} . Si alguno es no acotado, la unión también y será $\ell(\bigcup_{i=1}^n I_i) = +\infty = \sum_{i=1}^n \ell(I_i)$. Supongamos ahora que cada $I_k = (\mathfrak{a}_k, \mathfrak{b}_k]$ con $\mathfrak{a}_k, \mathfrak{b}_k \in \mathbb{R}$, $\mathfrak{a}_k < \mathfrak{b}_k$. Luego $\bigcup_{i=1}^n I_i$ es de la forma $(\mathfrak{a}, \mathfrak{b}]$ con $\mathfrak{a} = \min(\mathfrak{a}_1, \dots, \mathfrak{a}_n)$ y $\mathfrak{b} = \max(\mathfrak{b}_1, \dots, \mathfrak{b}_n)$. Sin pérdida de generalidad supongamos que $\mathfrak{a}_1 < \mathfrak{a}_2 < \dots < \mathfrak{a}_n$, si no es así reordenamos los intervalos.

De esto se sigue que $a_1 = a < b_1 = a_2 < b_2 = a_3 < \cdots b_{n-1} = a_n < b_n = b$, pues no puede haber huecos, ya que dijimos que la unión pertenece a \mathfrak{Y} . Claramente $\ell(\bigcup_{i=1}^n I_i) = b - a = \ell((a, b])$ y, finalmente

$$\begin{split} \sum_{k=1}^{n} \ell(I_k) &= \sum_{k=1}^{n} (b_k - a_k) \\ &= (b_1 - a_1) + (b_2 - a_2) + \dots + (b_n - a_n) \\ &= -a_1 + (b_1 - a_2) + (b_2 - a_3) + \dots + (b_{n-1} - a_n) + b_n \\ &= b_n - a_1 = b - a \end{split}$$

$$\therefore \ell(\bigcup_{i=1}^n I_i) = \sum_{i=1}^n \ell(I_i).$$

De acuerdo con el lema anterior podríamos extender la función ℓ a una clase más grande de subconjuntos de \mathbb{R} .

Sea $\mathcal{F}=\{A\subseteq\mathbb{R}:A=\bigcup_{i=1}^nI_i,\ \mathrm{para\ ciertos}\ n\in\mathbb{N},\ I_1,\cdots,I_n\in\mathfrak{Y}\ \mathrm{dos\ a\ dos\ disjuntos}\},$ defimos $\ell:\mathcal{F}\to[0,+\infty]\ \mathrm{como}\ \ell(A)=\sum_{i=1}^n\ell(I_i)\ \mathrm{si}\ A=\bigcup_{i=1}^nI_i\ \mathrm{con\ las\ mismas\ condiciones\ que\ pedimos}.$

Observación. Queda ver que ℓ está bien definida, i.e, no depende de la forma en que se escriba A como unión de intervalos.

Definición 6.6 (Álgebra). Dado un conjunto X, una clase $A \in P(X)$ es un álgebra si:

- 1. $\varnothing, X \in \mathcal{A}$.
- 2. Si $E \in \mathcal{A} \to E^c \in \mathcal{A}$.
- 3. Si $E_1, \dots, E_n \in \mathcal{A} \to \bigcup_{i=1}^n E_i \in \mathcal{A}$.

Lema 6.7. Dada una semiálgebra $\mathcal{S} \subseteq P(X)$ la clase $\mathcal{A} = \{A \subseteq X : A = \bigcup_{i=1}^n S_i, S_j \in \mathcal{S} \ \forall j=1, \cdots, n, \text{ dos a dos disjuntos} \}$ es un álgebra de subcojuntos de X. Además \mathcal{A} es la menor álgebra que contiene a \mathcal{S} y se la llama álgebra generada por \mathcal{S} .

Demostración. Veamos que \mathcal{A} es cerrada bajo la intersección finita. Sean $S_1,\ \cdots,\ S_n\in\mathcal{S}$ dos a dos disjuntos y $F_1,\ \cdots,\ F_m\in\mathcal{S}$ dos a dos disjuntos. Llamemos $S=\bigcup_{i=1}^n S_i \ \mathrm{y} \ F=\bigcup_{j=1}^m F_j \in \mathcal{A}.$

$$S \cap F = \bigcup_{i=1}^{n} S_i \cap \bigcup_{j=1}^{m} F_j$$
$$= \bigcup_{i=1}^{n} (S_i \cap \bigcup_{j=1}^{m} F_j)$$
$$= \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} (S_i \cap F_j)$$

Luego $\forall (i,\,j) \in \{1,\,\,\cdots,\,\,n\} \times \{1,\,\,\cdots,\,\,m\},\,\,\mathrm{sea}\,\,S_{ij} = S_i \cap F_j \in \mathcal{S}.\,\,\mathrm{Adem\'{a}s}\,\,S_{ij} \cap S_{kl} = \varnothing$ si $(i, j) \neq (k, l)$. Luego $S \cap F \in \mathcal{A}$ pues $S \cap F$ es unión finita de elementos de \mathcal{S} dos a dos disjuntos.

Ahora veamos que se cumplen las propiedades de álgebra:

- 1. Se cumple pues S es semiálgebra.
- 2. Dado $A \in \mathcal{A}$, sean $S_1, \, \cdots, \, S_n \in \mathcal{S}$ tal que $A = \bigcup_{i=1}^n S_i$, dos a dos disjuntos. Entonces $A^c = \bigcap_{i=1}^n S_i^c \Rightarrow \forall i=1, \cdots, n \text{ como } S_i \in \mathcal{S} \text{ y } \mathcal{S} \text{ es una semiálgebra}$ $\exists B_1^i, \ B_2^i, \ \cdots, \ B_n^i \in \mathcal{S} \ \mathrm{dos} \ \mathrm{a} \ \mathrm{dos} \ \mathrm{disjuntos} \ \mathrm{tal} \ \mathrm{que} \ S_i^c = \bigcup_{j=1}^n B_j^i \in \mathcal{A} \Rightarrow \bigcap_{i=1}^n S_i^c \in \mathcal{A}$ \mathcal{A} , pues ya probamos que la intersección finita es cerrada.
- 3. Queda como ejercicio.

Clase VII - 01/04

Generación de medida (continuación) 7.1

Habíamos visto que $\ell: \mathfrak{Y} \to [0, +\infty]$ es condicionalmente finitamente aditiva. Es decir que si $I_1, \dots, I_n \in \mathfrak{Y}$ son conjuntos dos a dos disjuntos tal que $\bigcup_{i=1}^n I_i \in \mathfrak{Y} \Rightarrow \ell(\bigcup_{k=1}^n I_k) = \sum_{k=1}^n \ell(I_k)$. Queda como ejercicio ver que:

- 1. Si I, $J \in \mathfrak{Y}$ y $I \subseteq J$ entonces $\ell(I) \leq \ell(J)$.
- 2. ℓ también es condicionalmente subaditiva i.e si $I_1, \dots, I_n \in \mathfrak{Y} : \bigcup_{i=1}^n I_k \in \mathfrak{Y}$ entonces $\ell(\bigcup_{k=1}^n I_k) \le \sum_{k=1}^n \ell(I_k)$

Veamos que $\ell: \mathfrak{Y} \to [0, +\infty]$ es condicionalmente σ -aditiva i.e si $(I_n)_{n>1} \subseteq \mathfrak{Y}$ es una sucesión de conjuntos dos a dos disjuntos tal que $\bigcup_{n\geq 1} I_n \in \mathfrak{Y}$ entonces $\ell(\bigcup_{n\geq 1} I_n) = \sum_{n\geq 1} \ell(I_n)$. Hay que considerar varios casos según la forma de $I := \bigcup_{n>1} I_n$.

El primer caso es cuando I = (a, b] con $a, b \in \mathbb{R}$ y a < b. Sin pérdida de generalidad $\mathrm{supongamos}\;\mathrm{que}\;I_n\neq\varnothing\quad\forall n\in\mathbb{N}\;\mathrm{y},\;\mathrm{como}\;I_n\subseteq I,\;I_n=(\alpha_n,b_n]\;\mathrm{con}\;\alpha\leq\alpha_n< b_n\leq b.$

Primero veamos que $\sum_{n\geq 1} \ell(I_n) \leq \ell(I)$, fijemos $m \in \mathbb{N}$ y supongamos que I_1, \dots, I_m son tales que $a_1 < a_2 < \cdots < a_m$, si no es así los reordenamos (son finitos).

Como son dos a dos disjuntos y son subconjuntos de I con

$$a \le a_1 < b_1 \le a_2 < b_2 \le a_3 < \cdots \le a_m < b_m \le b$$

Luego,

$$\begin{split} \sum_{n=1}^{m} \ell(I_n) &= \sum_{n=1}^{m} (b_n - \alpha_n) \\ &= -\alpha_1 + (b_1 - \alpha_2) + (b_2 - \alpha_3) + \dots + (b_{m-1} - \alpha_m) + b_m \\ &\leq b_n - \alpha_1 \leq b - \alpha = \ell(I) \end{split}$$

Pues cada $(b_1-a_2), (b_2-a_3), \cdots, (b_{m-1}-a_m)$ son negativos. Por lo tanto la suma parcial $\sum_{n=1}^m \ell(I_n) \leq \ell(I) \quad \forall m \in \mathbb{N}$. Entonces $\sum_{n\geq 1} \ell(I_n) \leq \ell(I)$. Veamos ahora que $b-a=\ell(I) \leq \sum_{n\geq 1} \ell(I_n)$. Basta probar que dado $a < a' < b \Rightarrow b-a' \leq a' \leq b$ $\sum_{n>1} I_n$.

Fijemos un $\mathfrak{a}' \in (\mathfrak{a}, \mathfrak{b}]$ y sea $\varepsilon > 0$, para cada $\mathfrak{j} \in \mathbb{N}$ sea $\varepsilon_{\mathfrak{j}} = \frac{\varepsilon}{2 \cdot \mathfrak{j}}$.

Definamos $U_j=(a_j,\,b_j+\epsilon_j)$ y notemos que $[a',\,b]\subseteq(a,\,b]=\bigcup_{n\geq 1}I_n\subseteq\bigcup_{n\geq 1}U_n$.

Por el Teorema de Heine-Borel [a', b] es compacto y entonces $\exists m \geq 1 : [a', b] = \bigcup_{i=1}^{m} U_i$.

Consideremos $I'_{i} = (a_{i}, b_{j} + \varepsilon_{j}] \in \mathfrak{Y} \quad \forall j = 1, \dots, m.$

Luego $(a', b] \subseteq \bigcup_{j=1}^m I'_j \Rightarrow b - a' = \ell((a', b]) \le \ell(\bigcup_{j=1}^m I'_j)$

Si $I_j' \cap (\alpha', b] = \emptyset$ entonces lo podemos descartar para que $\bigcup_{j=1}^m I_j'$ sea conexa y, por lo tanto, pertenezca a \mathfrak{Y} .

Luego por ser condicionalmente subaditiva tenemos que

$$\begin{split} b - \alpha' &\leq \ell(\bigcup_{j=1}^m I_j') \leq \sum_{j=1}^m \ell(I_j') \\ &= \sum_{j=1}^m b_j + \epsilon_j - \alpha_j = \sum_{j=1}^m b_j - \alpha_j + \sum_{j=1}^m \epsilon_j \\ &\leq \sum_{n \geq 1} \ell(I_n) + \epsilon \cdot \sum_{j=1}^m \frac{1}{2 \cdot j} \leq \sum_{n \geq 1} \ell(I_n) + \epsilon \end{split}$$

Como $\epsilon>0$ era arbitrario resulta que $b-\alpha'\leq \sum_{n>1}\ell(I_n).$

Si tomamos $a' = a + \frac{1}{n} \Rightarrow b - a = \lim_{n \to +\infty} b - (a + \frac{1}{n}) \le \sum_{n \ge 1} \ell(I_n)$

El caso dos es cuando $I = (-\infty, b]$ con $b \in \mathbb{R}$.

Sabemos que $\ell(I) = +\infty$. Veamos que $\sum_{n>1} \ell(I_n) = +\infty$.

Si algún $I_{\mathfrak{n}_0}$ tiene $\ell(I_{\mathfrak{n}_0}) = +\infty$ ya está.

 $\mathrm{Supongamos}\;\mathrm{que}\;\ell(\mathrm{I}_n)<+\infty\quad\forall n\geq 1,\,\mathrm{luego}\;\mathrm{I}_n=(a_n,\,b_n],\,a_n,\,b_n\in\mathbb{R},\,a_n< b_n\quad\forall n\in\mathbb{N}.$

Fijemos $k \in \mathbb{N} : b > -k$. Luego $[-k, b] \subseteq \bigcup_{n \ge 1} I_n = I \subseteq \bigcup_{n \ge 1} (a_n, b_n + \frac{1}{2^n})$.

Como [k,b] es compacto por Teorema de Heine-Borel tenemos que $\exists m \in \mathbb{N} : [-k,b] \subseteq \bigcup_{n=1}^m (a_n,b_n+\frac{1}{2^n}) \in \mathfrak{Y}$.

Por el mismo argumento de antes (si hay más de una componente conexa se la descarta)

$$\begin{split} b-(-k) &= \ell([-k,\,b]) \\ &\leq \ell(\bigcup_{n=1}^m (\alpha_n,\,b_n+\frac{1}{2^n})) \leq \sum_{n=1}^m \ell((\alpha_n,\,b_n+\frac{1}{2^n})) \\ &= \sum_{n=1}^m (b_n+\frac{1}{2^n}-\alpha_n) = \sum_{n=1}^m (b_n-\alpha_n) + \sum_{n=1}^m \frac{1}{2^n} \\ &\leq \sum_{n\geq 1} \ell(I_n) + 1 \end{split}$$

Luego $\sum_{n\geq 1}\ell(I_n)\geq b+k-1\quad \forall k\in\mathbb{N}:b>-k$: tenemos que $\sum_{n\geq 1}\ell(I_n)=+\infty$. El tercer caso es cuando $(\mathfrak{a},+\infty)$ con $\mathfrak{a}\in\mathbb{R}$ y el cuarto es cuando $I=\mathbb{R}$, ambos quedan como ejercicio.

7.2 Extensión de ℓ al álgebra

Recordemos que $\mathcal{F} = \{A \subseteq \mathbb{R} : A = \bigcup_{i=1}^m I_i \text{ con } I_1, \ \cdots, \ I_m \in \mathfrak{Y} \text{ dos a dos disjuntos} \}$ y extendamos la función ℓ a $\ell : \mathcal{F} \to [0, +\infty]$ como $\ell(A) = \sum_{n=1}^m \ell(I_n)$ si $A \in \mathcal{F}$.

Proposición 7.1. ℓ está bien definida.

Demostración. Supongamos que $A = \bigcup_{k=1}^{m_1} I_k^1 = \bigcup_{j=1}^{m_2} I_j^2$ con los I_k^1 , $I_j^2 \in \mathfrak{Y}$ dos a dos disjuntos. Fijado el $k=1, \cdots, m_1, I_k^1 = \bigcup_{j=1}^{m_2} I_k^1 \cap I_j^2$ con $I_k^1 \cap I_j^2 \in \mathfrak{Y}$ por ser \mathfrak{Y} semiálgebra y dos a dos disjuntos. Como ℓ es condicionalmente finita aditiva en \mathfrak{Y} se tiene que $\ell(I_k^1) = \sum_{j=1}^{m_2} \ell(I_k^1 \cap I_j^2)$.

Análogamente, fijado el $j=1,\cdots,\,m_2$ se tiene que $\ell(I_j^2)=\sum_{k=1}^{m_1}\ell(I_k^1\cap I_j^2)$. Luego

$$\begin{split} \sum_{k=1}^{m_1} \ell(I_k^1) &= \sum_{k=1}^{m_1} \sum_{j=1}^{m_2} \ell(I_k^1 \cap I_j^2) \\ &= \sum_{j=1}^{m_2} \sum_{k=1}^{m_1} \ell(I_k^1 \cap I_j^2) \\ &= \sum_{j=1}^{m_2} \ell(I_j^2) \end{split}$$

∴ está bien definida.

Definición 7.2. $\mathcal{A} \subseteq P(X)$ un álgebra. Una medida sobre \mathcal{A} es una función $\mu : \mathcal{A} \to [0, +\infty]$ tal que:

- 1. $\mu(\emptyset) = 0$.
- 2. Si $(E_n)_{n\geq 1}\subseteq \mathcal{A}$ es una sucesión de conjuntos dos a dos disjuntos tal que $\bigcup_{n\geq 1}E_n\in \mathcal{A}$ enotnces $\mu(\bigcup_{n>1}E_n)=\sum_{n>1}\mu(E_n)$.

Lema 7.3. La función $\ell: \mathcal{F} \to [0, +\infty]$ es una medida sobre el álgebra \mathcal{F} .

Demostración. Bosquejo de la demostración: $\ell(\emptyset) = 0$ es trivial. Para ver que ℓ es condicionalmente σ -aditiva en \mathcal{F} , podemos seguir la siguiente estrategia:

- 1. Probar que ℓ es finitamente aditiva en \mathcal{F} .
- 2. Probar que si E, $F \in \mathcal{F}$ y $E \subseteq F$ entonces $\ell(E) \leq \ell(F)$.
- 3. Probar que ℓ es finitamente subaditiva.
- 4. Sea $(E_n)_{n\geq 1}\subseteq \mathcal{F}$ una sucesión de conjuntos dos a dos disjuntos tales que $E=\bigcup_{n\geq 1}E_n\in\mathfrak{Y}$. Veamos que $\ell(E)=\sum_{n\geq 1}\ell(E_n)$. Para cada $n\in\mathbb{N},\ E_n=\bigcup_{k=1}^{m_n}I_k^n$ con $I_k^n\in\mathfrak{Y}$ dos a dos disjuntos. Luego, $\{I_k^n:n\in\mathbb{N},\ k=1,\ \cdots,\ m_n\}$ es una colección en \mathfrak{Y} de conjuntos dos a dos disjuntos y además podemos enumerarlos en una sucesión tal que $E_i'=I_i^1$ si $i=1,\cdots,\ m_1,\ E_i'=I_{i-m_1}^2$ si $i=m_1+1,\cdots,\ m_1+m_2$ y así sucesivamente.

Luego $\bigcup_{n\geq 1}E'_n=\bigcup_{n\geq 1}\bigcup_{j=1}^{m_n}I^n_j=\bigcup_{n\geq 1}E_n=E\in\mathfrak{Y}$ como ℓ es condicionalmente σ -aditiva en \mathfrak{Y} resulta que

$$\begin{split} \ell(\mathsf{E}) &= \sum_{n \geq 1} \ell(\mathsf{E}'_n) \\ &= \sum_{n \geq 1} \sum_{k=1}^{m_n} \ell(\mathsf{I}^n_k) \\ &= \sum_{n \geq 1} \ell(\mathsf{E}_n) \end{split}$$

5. Deducir la σ -aditividad condicional si $E = \bigcup_{n \geq 1} E_n \in \mathcal{F}, \ \text{con } I_1, \ \cdots, \ I_n \ \text{dos a}$ dos disjuntos y $m \geq 2$. De nuevo $E_n = \bigcup_{k=1}^{m_n} I_k^n \ \text{con } I_k^n \in \mathfrak{Y} \ \text{dos a dos disjuntos}.$ $I_i = I_i \cap E = I_i \cap \bigcup_{n \geq 1} E_n = \bigcup_{n \geq 1} (I_i \cap E_n) = \bigcup_{n \geq 1} \bigcup_{k=1}^{m_n} I_i \cap I_k^n.$ Luego $\ell(I_i) = \sum_{n \geq 1} \sum_{k=1}^{m_n} \ell(I_i \cap I_k^n)...$

Clase VIII - 03/04

8.1 Extensión de la medida

Veremos que si $\mu : \mathcal{A} \to [0, +\infty]$ es una medida sobre un álgebra \mathcal{A} entonces \exists una σ -álgebra \mathcal{A}^* tal que $\mathcal{A} \subseteq \mathcal{A}^*$ y $\exists \mu^* : \mathcal{A}^* \to [0, +\infty]$ con $\mu^*(\mathsf{E}) = \mu(\mathsf{E}) \quad \forall \mathsf{E} \in \mathcal{A}$.

Definición 8.1 (Medida exterior). Dado un conjunto X, una medida exterior en X es una función $\Gamma: \mathcal{P}(X) \to [0, +\infty]$ tal que:

- 1. $\Gamma(\emptyset) = 0$.
- 2. $\Gamma(A) \leq \Gamma(B)$ si $A \subseteq B$.
- 3. Es σ -subaditiva i.e $(E_n)_{n\geq 1}$ es una sucesión en $\mathcal{P}(X)$ entonces

$$\Gamma\left(\bigcup_{n\geq 1}\mathsf{E}_n\right)\leq \sum_{n\geq 1}\Gamma(\mathsf{E}_n)$$

Teorema 8.2. Dado un conjunto X, $A \subseteq \mathcal{P}(X)$ un álgebra y μ una medida en A entonces si definimos $\mu^* : \mathcal{P}(X) \to [0, +\infty]$ como

$$\mu^*(A) = \inf \left\{ \sum_{n \geq 1} \mu(E_n) : A \subseteq \bigcup_{n \geq 1} E_n, E_i \in \mathcal{A}, \forall i \right\}$$

- 1. μ^* es una medida exterior.
- 2. $\mu^*(E) = \mu(E) \quad \forall E \in \mathcal{A}$

Demostración. Notemos que $A \in \mathcal{P}(X)$ y la sucesión $(E_n)_{n\geq 1}$ en \mathcal{A} dada por $E_1 = X$, $E_n = \varnothing \quad \forall n \geq 2$ verifica que $\bigcup_{n\geq 1} E_n = X \supset A$ y entonces $\mu^*(A)$ está bien definida. Veamos (2), supongamos que $A \in \mathcal{A}$ y $E_1 = A$, $E_n = \varnothing \quad \forall n \geq 2$. Entonces $\mu^*(A) \leq \sum_{n\geq 1} \mu(E_n) = \mu(A)$ por ser el ínfimo. Por otra parte, si $(E_n)_{n\geq 1}$ es una sucesión cualquiera en \mathcal{A} tal que $A \subseteq \bigcup_{n\geq 1} E_n \Rightarrow (A \cap E_n)_{n\geq 1}$ también es una sucesión en \mathcal{A} tal que $A = \bigcup_{n\geq 1} A \cap E_n \in \mathcal{A}$.

Notemos que $\mu(A \cap E_i) \le \mu(E_i)$ y luego, por la σ -subaditividad condicional de μ resulta que:

$$\begin{split} \mu(A) &= \bigcup_{n \geq 1} A \cap E_n \leq \sum_{n \geq 1} \mu(A \cap E_n) \\ &\leq \sum_{n \geq 1} \mu(E_n) \end{split}$$

Por lo tanto $\mu^*(A) \ge \mu(A)$: $\mu^*(A) = \mu(A)$. Queda como ejercicio ver que efectivamente es monótona con la inclusión.

Veamos (1), sea $(A_n)_{n\geq 1}\subset \mathcal{P}(X)$. Si $\exists n_0\in\mathbb{N}: \mu(A_{n_0})=+\infty$, es trivial. Supongamos que $\mu^*(A_n)<+\infty\quad \forall n\geq 1$. Dado $\epsilon>0$, para cada $n\in\mathbb{N}$, por definición de μ^* , existe una sucesión $(E_{n,k})_{k\geq 1}\subset \mathcal{A}$ tal que $A_n\subseteq \bigcup_{n\geq 1}E_{n,k}$

$$\begin{split} &\Rightarrow \sum_{k\geq 1} \mu(E_{n,k}) \leq \mu^*(A_n) + \frac{\epsilon}{2^n} \\ &\Rightarrow \{E_{n,k}: (n,k) \in \mathbb{N} \times \mathbb{N}\} \subseteq \mathcal{A} \text{ verifica que:} \\ &\bigcup_{(n,k) \in \mathbb{N} \times \mathbb{N}} E_{n,k} = \bigcup_{n\geq 1} \bigcup_{k\geq 1} E_{n,k} \supseteq \bigcup_{n\geq 1} A_n \\ &\Rightarrow \mu^* \left(\bigcup_{n\geq} A_n\right) \leq \sum_{(n,k) \in \mathbb{N} \times \mathbb{N}} \mu(E_{n,k}) \\ &= \sum_{n\geq 1} \sum_{k\geq 1} \mu(E_{n,k}) \leq \sum_{n\geq 1} \mu^*(A_n) + \frac{\epsilon}{2^n} \\ &= \sum_{n\geq 1} \mu^*(A_n) + \epsilon \end{split}$$

Ejemplo. La medida $\ell : \mathcal{F} \to [0, +\infty]$ sobre el álgebra \mathcal{F} , consideremos la medida exterior $\ell^* : \mathcal{P}(\mathbb{R}) \to [0, +\infty]$. Notemos que si $A \subseteq \mathbb{R} \Rightarrow$

$$\ell^*(A) = \inf \left\{ \sum_{n \geq 1} (b_n - \alpha_n) = \sum_{n \geq 1} \ell(I_n) : A \subseteq \bigcup_{n \geq 1} (\alpha_n, b_n] = \bigcup_{n \geq 1} I_n : \alpha_n < b_n \right\}$$

Tomamos los de la semiálgebra pues los elementos del álgebra pueden ser definidos como unión de I_k disjuntos dos a dos y entonces ℓ^* tiene las siguientes propiedades:

1. Si $B \subset \mathbb{R}$ es numerable $\Rightarrow \ell^*(B) = 0$. El recíproco no es cierto.

2. Si $A \subseteq \mathbb{R} \Rightarrow \exists E \in \mathcal{B} : A \subseteq E \text{ y } \ell^*(A) = \ell^*(E)$. Esto no implica que $\ell^*(E - A) = 0$. En efecto si $\ell^*(A) = +\infty \Rightarrow E = \mathbb{R}$, si $\ell^*(A) < +\infty$, para cada $n \in \mathbb{N}$ existe una sucesión $I_{n,k} = (\mathfrak{a}_k^n, \mathfrak{b}_k^n] \quad \forall k \geq 1 : A \subseteq \bigcup_{k \geq 1} I_{n,k} \text{ y } \sum_{k \geq 1} \mathfrak{b}_k^n - \mathfrak{a}_k^n \leq \ell^*(A) + 1/n$, por definición de ínfimo.

Sea $E_n := \bigcup_{k>1} I_{n,k} \in \mathcal{B}$ tal que

$$\begin{split} \ell^*(\mathsf{E}_n) &\leq \sum_{n\geq 1} \ell^*(I_{n,k}) = \sum_{k\geq 1} \ell(I_{n,k}) \\ &\sum_{k>1} b_k^n - \alpha_k^n \leq \ell^*(A) + \frac{1}{n} \end{split}$$

Sea $E:=\bigcap_{n\geq 1}E_n\in\mathcal{B}$. Como $A\subseteq E\Rightarrow \ell^*(A)\leq \ell^*(E),$ pero $\ell^*(E)\leq \ell^*(E_n)\leq \ell^*(A)+1/n \quad \forall n\geq 1.$

$$\therefore \ell^*(A) = \ell^*(E).$$

Observación. Consideremos $E \subseteq \mathbb{R}$ cualquiera y para cada intervalo $I \in \mathfrak{Y}$ tomemos la medida exterior $\ell^*(E \cap I)$ y como medida interior de $E \cap I$, $\ell_* := \ell(I) - \ell^*(I \setminus E)$. Podríamos decir que E es medible con respecto a ℓ^* si

$$\begin{split} \ell^*(E \cap I) &= \ell_*(E \cap I) \quad \forall I \in \mathfrak{Y} \\ \Rightarrow \ell^*(E \cap I) + \ell^*(I \setminus E) &= \ell(I) = \ell^*(I) \quad \forall I \in \mathfrak{Y} \\ E &= (E \cap I) \cup (E \setminus I) \text{ v } (E \cap I) \cap (I \setminus E) = \varnothing \end{split}$$

8.2 Medida exterior

Definición 8.3. Dado un conjunto X, sea Γ una medida exterior sobre X, diremos que $E \subseteq X$ es Γ -medible si

$$\Gamma(A) = \Gamma(A \cap E) + \Gamma(A \cap E^c) \quad \forall A \subset X$$

A la colección de los conjuntos Γ -medibles la llamaremos $\mathfrak{X}(\Gamma)$.

Observación. Como Γ es una medida exterior, alcanza con ver que

$$\Gamma(A) > \Gamma(A \cap E) + \Gamma(A \cap E^c) \quad \forall A \subset X$$

También alcanza con considerar A con $\Gamma(A) < +\infty$.

Observación. E es Γ-medible si Γ resulta aditiva con respecto a la partición $A = (A \cap E) \cup (A \cap E^c)$ con $(A \cap E) \cap (A \cap E^c) = \emptyset$ $\forall A \subset X$

Teorema 8.4 (Carathéodory). Dado un conjunto X, sea Γ una medida exterior en $X \Rightarrow \mathfrak{X}(\Gamma)$ es σ -álgebra sobre X y Γ resulta σ -aditiva sobre $\mathfrak{X}(\Gamma)$ i.e $(X,\mathfrak{X}(\Gamma),\Gamma|_{\mathfrak{X}(\Gamma)})$ es un espacio de medida.

Notemos que $X, \varnothing \in \mathfrak{X}(\Gamma)$, pues dado $A \subset X$

$$\Gamma(A \cap \varnothing) + \Gamma(A \setminus \varnothing) = \Gamma(\varnothing) + \Gamma(A) = \Gamma(A)$$

$$\Gamma(A \cap X) + \Gamma(A \setminus X) = \Gamma(A) + \Gamma(\varnothing) = \Gamma(A)$$

$$\Rightarrow \varnothing, X \in \mathfrak{X}(\Gamma)$$

Veamos que Γ es cerrada por complementación, si $E \in \mathfrak{X}(\Gamma)$, dado $A \subset X$

$$\Gamma(A \cap E^{c}) + \Gamma(A \setminus E^{c}) = \Gamma(A \setminus E) + \Gamma(A \cap E) = \Gamma(A)$$

$$E^{c} = X \setminus E \in \mathfrak{X}(\Gamma)$$

Dados $E, F \in \mathfrak{X}(\Gamma)$, veamos que $E \cap F \in \mathfrak{X}(\Gamma)$ i.e $\Gamma(A) = \Gamma(A \cap (E \cap F)) + \Gamma(A \setminus (E \cap F))$, $\forall A \subseteq X$. Fijado el $A \subseteq X$, sea

$$B = A \setminus (E \cap F) = A \cap (E \cap F)^{c}$$

$$A \cap (E^{c} \cup F^{c}) = (A \cap E^{c}) \cup (A \cap F^{c})$$

$$= (A \setminus E) \cup (A \setminus F)$$

Notemos que

$$B \cap F = A \setminus (E \cap F) = (A \cap F) \setminus E$$
$$B \setminus F = A \setminus (E \cup F) \cup (A \setminus F) = A \setminus F$$

Como $F \in \mathfrak{X}(\Gamma) \Rightarrow$

$$\Gamma(B) = \Gamma(A \setminus (E \cap F)) = \Gamma(B \cap F) + \Gamma(B \setminus F)$$

$$= \Gamma((A \cap F) \setminus E) + \Gamma(A \setminus F)$$

$$\Rightarrow \Gamma(A \cap (E \cap F)) + \Gamma(A \setminus (E \cap F))$$

$$= \Gamma(A \cap (E \cap F)) + \Gamma((A \cap F) \setminus E) + \Gamma(A \setminus F)$$

$$= \Gamma(A \cap F) + \Gamma(A \setminus F) = \Gamma(A)$$

En el último paso utilizamos que tanto E como F pertenecen a $\mathfrak{X}(\Gamma)$. Por lo tanto si E, F $\in \mathfrak{X}(\Gamma) \Rightarrow E \cap F \in \mathfrak{X}(\Gamma)$, además $E \cup F = (E^c)^c \cup (F^c)^c = (E^c \cap F^c)^c \in \mathfrak{X}(\Gamma)$. Luego por inducción, si $E_1, \dots, E_n \in \mathfrak{X}(\Gamma) \Rightarrow \bigcup_{k=1}^n E_k \in \mathfrak{X}(\Gamma) \Rightarrow \mathfrak{X}(\Gamma)$ es un álgebra en X. Dados $E_1, E_2 \in \mathfrak{X}(\Gamma) : E_1 \cap E_2 = \emptyset$ veamos que

$$\Gamma(A \cap (E_1 \cup E_2)) = \Gamma(A \cap E_1) + \Gamma(A \cap E_2) \quad \forall A \subset X$$

Fijemos el $A \subset X \Rightarrow$

$$\begin{split} &\Gamma(A\cap(E_1\cup E_2)) = \Gamma(A\cap(E_1\cup E_2)\cap E_1) + \Gamma(A\cap(E_1\cup E_2)\cap E_1^c) \\ &= \Gamma(A\cap E_1) + \Gamma((A\cap E_2)\setminus E_1) \\ &= \Gamma(A\cap E_1) + \Gamma(A\cap E_2) \end{split}$$

Así que por inducción si $E_1, \dots, E_n \in \mathfrak{X}(\Gamma)$ disjuntos dos a dos entonces

$$\Gamma\left(A\cap\bigcup_{k=1}^{n}\mathsf{E}_{k}\right)=\sum_{k=1}^{n}\Gamma(A\cap\mathsf{E}_{k})\quad\forall A\subset\mathsf{X}$$

43

Ahora veamos que si $(E_n)_{n\geq 1}\subset \mathfrak{X}(\Gamma)$ son disjuntos dos a dos entonces $\bigcup_{m\geq 1}F_m=\bigcup_{k=1}^mE_k\in\mathfrak{X}(\Gamma)$. Luego $(F_m)_{m\geq 1}$ es una sucesión creciente en $\mathfrak{X}(\Gamma)$. Como Γ es monótona tenemos que $\forall A\subset X$ $\exists \lim_{n\to+\infty}\Gamma(A\cap F_m)$ y $\lim_{n\to+\infty}\Gamma(A\setminus F_m)<+\infty$. Quiero ver que para cada $A\subset X$

$$\Gamma(A) = \Gamma\left(A \cap \left(\bigcup_{n \geq 1} E_n\right)\right) + \Gamma\left(A \setminus \left(\bigcup_{n \geq 1} E_n\right)\right)$$

Sabemos que para cada $m \ge 1$

$$\begin{split} &\Gamma(A\cap F_m)+\Gamma(A\setminus F_m)=\Gamma(A),\\ &\Gamma\left(A\cap\bigcup_{k=1}^m E_k\right)+\Gamma(A\setminus F_m)=\left(\sum_{k=1}^m \Gamma(A\cap E_k)\right)+\Gamma(A\setminus F_m). \end{split}$$

Como $F_{\mathfrak{m}}\subseteq\bigcup_{n\geq 1}E_{n}\Rightarrow A\setminus\bigcup_{n\geq 1}E_{n}\subset A\setminus F_{\mathfrak{m}}$ y

$$\Gamma\left(A\setminus\left(\bigcup_{n\geq 1}E_n\right)\right)\leq \Gamma(A\setminus F_m)$$

Luego,

$$\begin{split} \Gamma(A) &= \lim_{n \to +\infty} \Gamma(A \cap F_m) + \lim_{n \to +\infty} \Gamma(A \setminus F_m) \\ &\geq \lim_{n \to +\infty} \sum_{k=1}^n \Gamma(A \cap E_k) + \Gamma\left(A \setminus \bigcup_{k \geq 1} E_k\right) \\ &= \sum_{n \geq 1} \Gamma(A \cap E_n) + \Gamma\left(A \setminus \bigcup_{n \geq 1} E_n\right) * \\ &\geq \Gamma\left(\bigcup_{n \geq 1} (A \cap E_n)\right) + \Gamma\left(A \setminus \bigcup_{n \geq 1} E_n\right) \\ &= \Gamma\left(A \cap \bigcup_{n \geq 1} E_n\right) + \Gamma\left(A \setminus \bigcup_{n \geq 1} E_n\right) \\ &\therefore \bigcup_{n \geq 1} E_n \in \mathfrak{X}(\Gamma) \end{split}$$

Además si en * consideramos $A = \bigcup_{n>1} E_n \Rightarrow$

$$\begin{split} \Gamma(A) &= \Gamma\left(\bigcup_{n \geq 1} E_n\right) \geq \sum_{n \geq 1} \Gamma(A \cap E_n) + \Gamma(A \setminus A) \\ &= \sum_{n \geq 1} \Gamma(E_n) \ ** \end{split}$$

Y la otra desigualdad sale de la σ-subaditividad de Γ . Para terminar de probar que $\mathfrak{X}(\Gamma)$ es σ-álgebra tomemos $(A_n)_{n>1} \subseteq \mathfrak{X}(\Gamma)$ y quiero ver que

$$\bigcup_{n\geq 1}A_n\in\mathfrak{X}(\Gamma)$$

Consideremos:

$$\begin{split} E_1 &= A_1 \in \mathfrak{X}(\Gamma) \\ E_n &= A_n \setminus \left(\bigcup_{i=1}^{n-1} A_i\right) \in \mathfrak{X}(\Gamma) \quad \forall n \geq 2 \end{split}$$

 $(E_n)_{n\geq 1}$ es una sucesión de conjuntos dos a dos disjuntos tales que

$$\bigcup_{n\geq 1}A_n=\bigcup_{n\geq 1}E_n$$

Entonces por lo que probamos recién $\bigcup_{n\geq 1}A_n\in\mathfrak{X}(\Gamma)$:: $\mathfrak{X}(\Gamma)$ es σ -álgebra y por ** $\Gamma|_{\mathfrak{X}(\Gamma)}$ es σ -aditiva.

Clase IX - 08/04

Parciales

- 10.1 Primer parcial Primera fecha
- 10.2 Primer parcial Segunda fecha
- 10.3 Segundo parcial Primera fecha
- 10.4 Segundo parcial Segunda fecha
- 10.5 Segundo parcial Tercera fecha

Bibliografía

[1] Robert G. Bartle. The elements of integration and Lebesgue. John Wiley and Sons, 1995.