Chapter 7

AC STEADY STATE ANALYSIS

Learning goals

- By the end of this chapter, the students should be able to:
- Describe the basic characteristics of sinusoidal functions.
- Perform phasor and inverse phasor transformations.
- Draw phasor diagrams.
- Calculate impedance and admittance for basic circuit elements: R, L, C.
- Determine the equivalent impedance of basic circuit elements connected in series and parallel.
- Determine the equivalent admittance of basic circuit elements connected in series and parallel.
- Redraw a circuit in the frequency domain given a circuit with a sinusoidal source.
- Apply our circuit analysis techniques to frequency domain circuits.

- Considering the sine wave $x(t) = X_M \sin \omega t$ where x(t) could represent v(t) or i(t). X_M is the amplitude, maximum value, or peak value; ω is the radian or angular frequency; and ωt is the argument of the sine function. The function repeats itself every 2π radians. This condition is described mathematically as
- $x(\omega t + 2\pi) = x(\omega t)$, or in general for period T, as
- $^{\bullet} x[\omega(t+T)] = x(\omega t)$
- meaning that the function has the same value at time t+T as it does at time t.

Figure 7.1: Plots of a sine wave as a function of both ωt and t.

- The number of cycles per second, called Hertz, is the frequency f, where
- $f = \frac{1}{T}$
- Since $\omega T = 2\pi (Fig. 7.1a)$
- $\bullet \ \omega = \frac{2\pi}{T} = 2\pi f$
- let us consider the following general expression for a sinusoidal function:
- $x(t) = X_M \sin(\omega t + \theta)$
- \bullet is called the phase angle

Figure 7.2: Graphical illustration of $X_M \sin(\omega t + \theta)$ leading $X_M \sin \omega t$ by θ radians.

Because of the presence of the phase angle, any point on the waveform $X_M \sin(\omega t + \theta)$ occurs θ radians earlier in time than the corresponding point on the waveform $X_M \sin \omega t$. Therefore, we say that $X_M \sin \omega t$ lags $X_M \sin(\omega t + \theta)$ by θ radians.

- Adding to the argument integer multiples of either 2π radians or 360° does not change the original function
- The cosine function could be easily used as well, since the two waveforms differ only by a phase angle; that is,
- $\cos \omega t = \sin \left(\omega t + \frac{\pi}{2}\right)$ and $\sin \omega t = \cos \left(\omega t \frac{\pi}{2}\right)$
- Note:
- $-\cos(\omega t) = \cos(\omega t \pm 180^{\circ})$ and
- $-\sin(\omega t) = \sin(\omega t \pm 180^{0})$

Examples

 Determine the frequency and the phase angle between the two voltages

$$v_1(t) = 12\sin(1000t + 60^0)V$$
 and $v_2(t) = -6\cos(1000t + 30^0)V$

Solution

- $f = \frac{\omega}{2\pi} = \frac{1000}{2\pi} = 159.2 \ Hz$
- $v_2(t) = -6\cos(\omega t + 30^0)V = 6\cos(\omega t + 210^0)V = 6\sin(\omega t + 300^0) = 6\sin(\omega t 60^0)$
- Therefore, the phase angle between $v_1(t)$ and $v_2(t) = 60 60 = 120^0$, i.e $v_1(t)$ leads $v_2(t)$ by 120^0 .

Exercise

- 1. Given that $v(t) = 120 \cos(314t + \pi/4) V$, determine the frequency of the voltage in Hertz and the phase angle in degrees.
- 2. Three branch currents in a network are known to be $i_1(t) = 2\sin(377t + 45^0)A$, $i_2\cos(377t + 10^0(t) = 0.5)A$, and $i_3(t) = -0.25\sin(377t + 60^0)A$,

Determine the phase angles by which $i_1(t)$ leads $i_2(t)$ and $i_1(t)$ leads $i_3(t)$.

Figure 7.3: A simple RL circuit

- KVL equation for the circuit is
- $L\frac{di(t)}{dt} + Ri(t) = V_M \cos \omega t$
- Since the input forcing function is $V_M \cos \omega t$, we assume that the forced response component of the current i(t) is of the form
- $i(t) = A\cos(\omega t + \emptyset)$
- $i(t) = A\cos(\omega t + \emptyset) =$ $A\cos \emptyset \cos \omega t - A\sin \emptyset \sin \omega t = A_1 \cos \omega t + A_2 \sin \omega t$
- Substituting into the DE

 $L\frac{d}{dt}(A_1\cos\omega t + A_2\sin\omega t) + R(A_1\cos\omega t + A_2\sin\omega t) = V_M\cos\omega t$

Evaluating and equating the coefficients

$$-A_1\omega L + A_2R = 0$$

$$A_1R + A_2\omega L = V_M$$

Solving the above equations simultaneously and substituting in i(t) gives

$$i(t) = \frac{RV_M}{R^2 + \omega^2 L^2} \cos \omega t + \frac{\omega LV_M}{R^2 + \omega^2 L^2} \sin \omega t$$

Which can be written as

- $i(t) = A\cos(\omega t + \emptyset)$
- Where $A\cos \emptyset = \frac{RV_M}{R^2 + \omega^2 L^2}$ and $A\sin \emptyset = -\frac{\omega LV_M}{R^2 + \omega^2 L^2}$
- Thus tan $\emptyset = -\frac{\omega L}{R}$
- $(A\cos \emptyset)^2 + (A\sin \emptyset)^2 = A^2 = \frac{V_M^2}{R^2 + \omega^2 L^2}$
- $A = \frac{V_M}{\sqrt{R^2 + \omega^2 L^2}}$
- Hence the final expression is

$$i(t) = \frac{V_M}{\sqrt{R^2 + \omega^2 L^2}} \cos\left(\omega t - tan^{-1} \frac{\omega L}{R}\right)$$

- The preceding analysis indicates that \emptyset is zero if L=0 and hence i(t) is in phase with v(t). If R=0, $\emptyset = -90^{\circ}$, and the current lags the voltage by 90°. If L and R are both present, the current lags the voltage by some angle between 0° and 90°.
- This example illustrates an important point: solving even a simple one-loop circuit containing one resistor and one inductor is very complicated compared to the solution of a singleloop circuit containing only two resistors. It would be more complicated to solve a more complicated circuit using this procedure.

- Let us determine the current in the RL circuit examined in Figure 7.3.
- We will apply $V_M e^{j\omega t}$
- The forced response will be
- $i(t) = I_M e^{j(\omega t + \emptyset)}$
- Substituting this into the DE, and differentiating, then dividing by the common factor will give.
- $RI_M e^{j\emptyset} + j\omega LI_M e^{j\emptyset} = V_M$
- which is an algebraic equation with complex coefficients.

- This equation can be written as
- $I_M e^{j\emptyset} = \frac{V_M}{R + j\omega L}$
- Converting the right-hand side of the equation to exponential or polar form produces the equation

$$I_M e^{j\emptyset} = \frac{V_M}{\sqrt{R^2 + \omega^2 L^2}} e^{j\left(-tan^{-1}\frac{\omega L}{R}\right)}$$

This shows that

$$I_M = \frac{V_M}{\sqrt{R^2 + \omega^2 L^2}} \qquad and \qquad \emptyset = -tan^{-1} \frac{\omega L}{R}$$

• However, since our actual forcing function was $V_M \cos \omega t$ rather than $V_M e^{j\omega t}$ our actual response is the real part of the complex response:

$$i(t) = A\cos(\omega t + \emptyset) = \frac{V_M}{\sqrt{R^2 + \omega^2 L^2}}\cos\left(\omega t - tan^{-1}\frac{\omega L}{R}\right)$$

Similar to the one obtained previously.

- Again, we consider the RL circuit in Figure 7.3. Let us use phasors to determine the expression for the current.
- The DE is $L\frac{di(t)}{dt} + Ri(t) = V_M \cos \omega t$
- The forcing function can be replaced by a complex forcing function that is written as $Ve^{j\omega t}$ with phasor $V = V_M \angle 0^0$. Similarly, the forced response component of the current i(t) can be replaced by a complex function $Ie^{j\omega t}$ that is written as with phasor $I = I_M \angle \emptyset$

- Using the complex forcing function, we find that the differential equation becomes
- $L\frac{d}{dt}(Ie^{j\omega t}) + RIe^{j\omega t} = Ve^{j\omega t}$
- The common factor can be eliminated, leaving the phasors; that is,
- $j\omega LI + RI = V$
- Thus $I = \frac{V}{R + j\omega L} = I_M \angle \emptyset = \frac{V_M}{\sqrt{R^2 + \omega^2 L^2}} \angle tan^{-1} \frac{\omega L}{R}$
- Therefore, $i(t) = \frac{V_M}{\sqrt{R^2 + \omega^2 L^2}} \cos\left(\omega t tan^{-1} \frac{\omega L}{R}\right)$

- We define relations between phasors after the $e^{j\omega t}$ term has been eliminated as "phasor, or frequency domain, analysis."
- The phasors are then simply transformed back to the time domain to yield the solution of the original set of differential equations.
- In addition, we note that the solution of sinusoidal steady-state circuits would be relatively simple if we could write the phasor equation directly from the circuit description.

Time Domain	Frequency Domain
$A\cos(\omega t \pm \theta)$	$A \angle \pm \theta$
$A\sin(\omega t \pm \theta)$	$A \angle \pm \theta - 90^{0}$

Table 8.1: Phasor Representation

Exercise

- 1. Convert the following voltage functions to phasors
- $v_1(t) = 12\cos(377t 425^0)V$
- $v_2(t) = 18\sin(2513t + 4.2^0)V$
- 2. Convert the following Phasors to the time domain if the frequency is 400 Hz.
- $V_1 = 10 \angle 20^0$
- $V_2 = 12 \angle -60^0$

Phasor Relationships for Circuit Elements

Resistor

Figure 7.4: Voltage-current relationships for a resistor.

Resistor

v(t) = Ri(t)

Applying the complex voltage $V_M e^{j(\omega t + \theta_v)}$ results in the complex current $I_M e^{j(\omega t + \theta_i)}$ and therefore

- $V_M e^{j(\omega t + \theta_v)} = RI_M e^{j(\omega t + \theta_i)}$
- $V_M e^{j\theta_v} = RI_M e^{j\theta_i}$

In phasor form

- $\mathbf{V} = RI$
- Where $V = V_M e^{j\theta_v} = V_M \angle \theta_v$ and $I = I_M e^{j\theta_i} = I_M \angle \theta_i$.
- Where $\theta_v = \theta_i$. Thus current and voltage for this circuit are in phase.

Resistor

Exercise

The current in a 4Ω resistor is known to be $I = 12\angle 60^0 A$.

Express the voltage across the resistor as a time function if the frequency of the current is 4 kHz.

Inductor

Figure 7.5: Voltage—current relationships for an inductor.

Inductor

- $v(t) = L \frac{di(t)}{dt}$
- $V_M e^{j(\omega t + \theta_v)} = L \frac{d}{dt} I_M e^{j(\omega t + \theta_i)}$
- $V_M e^{j\theta_v} = j\omega L I_M e^{j\theta_i}$
- In phasor notation
- $V = j\omega LI$
- Since the imaginary operator $j=1e^{j90^0}=1\angle 90^0=\sqrt{-1}$
- $V_M e^{j\theta_v} = \omega L I_M e^{j(\theta_i + 90^0)}$

Inductor

• Therefore, the voltage and current are 90° out of phase, and in particular the voltage leads the current by 90° or the current lags the voltage by 90°. The phasor diagram and the sinusoidal waveforms for the inductor circuit are shown in Figs. 8.5c and d, respectively.

Example

• The voltage $v(t) = 12\cos(377t + 20^0)V$ is applied to a 20-mH inductor as shown in Fig. 7.7a. Find the resultant current.

Capacitor

Figure 7.6: Voltage-current relationships for a capacitor.

Capacitor

- $i(t) = C \frac{dv(t)}{dt}$
- $I_M e^{j(\omega t + \theta_i)} = C \frac{d}{dt} V_M e^{j(\omega t + \theta_v)}$
- Which reduces to
- $I_M e^{j\theta_i} = j\omega C V_M e^{j\theta_v}$
- In phasor notation this becomes
- $I = j\omega CV$
- And $I_M e^{j\theta_i} = \omega C V_M e^{j(\theta_v + 90^0)}$
- Note that the voltage and current are 90° out of phase.
 In particular, the current leads the voltage by 90°

Exercise

- 1. The voltage $v(t) = 100 \cos(314t + 15^0)V$ is applied to a 100 µF capacitor as shown in Fig. 7.6a. Find the current.
- 2. The current in a 150- μ F capacitor is $I = 3.6 \angle -145^0 A$. If the frequency of the current is 60 Hz, determine the voltage across the capacitor.

- Impedance is defined as the ratio of the phasor voltage V to the phasor current I:
- $Z = \frac{V}{I}$

Figure 7.7: General impedance relationship.

$$Z = \frac{V_M \angle \theta_v}{I_M \angle \theta_i} = \frac{V_M}{I_M} \angle \theta_v - \theta_i = Z \angle \theta_z$$

- Since Z is the ratio of V to I, the units of Z are ohms. Thus, impedance in an ac circuit is analogous to resistance in a dc circuit.
- In rectangular form, impedance is expressed as
- $Z(\omega) = R(\omega) + jX(\omega)$
- Where $R(\omega)$ is the real, or resistive, component and $X(\omega)$ is the imaginary, or reactive, component. In general, we simply refer to R as the resistance and X as the reactance.
- The above equations indicate that $Z\langle\theta_z=R+jX\rangle$

- Thus $Z = \sqrt{R^2 + X^2}$ and $\theta_Z = \tan^{-1} \frac{X}{R}$
- Where $R = Z\cos\theta_z$ and $X = Z\sin\theta_z$.
- For the individual passive elements the impedance is as shown in Table 8.2.

Passive	Impedance
Element	
R	Z = R
L	$Z = j\omega L = jX_L = \omega L \angle 90^0$, $X_L = \omega L$
C	$Z = \frac{1}{j\omega C} = jX_C = -\frac{1}{\omega C} \angle 90^0, X_C = -\frac{1}{\omega C}$

Table 8.2: Passive Element Impedance

- KCL and KVL are both valid in the frequency domain.
- Impedances can be combined using the same rules that we established for resistor combinations.

$$Z_S = Z_1 + Z_2 + \cdots Z_n$$
 and $\frac{1}{Z_p} = \frac{1}{Z_1} + \frac{1}{Z_2} + \cdots + \frac{1}{Z_n}$

- Determine the equivalent impedance of the network shown in Fig. 7.8 if the frequency is f=60 Hz. Then compute the current i(t) if the voltage source is $v(t) = 50 \cos(\omega t + 30^{\circ})V$
- Finally, calculate the equivalent impedance if the frequency is f=400 Hz.

Figure 7.8: Series ac circuit.

• Find the current i(t) in the network if $v(t) = 120 \sin(377t + 60^{\circ})V$

 Another quantity that is very useful in the analysis of ac circuits is the two-terminal input admittance, which is the reciprocal of impedance; that is,

$$Y = \frac{1}{Z} = \frac{I}{V}$$

 The units of Y are siemens, and this quantity is analogous to conductance in resistive dc circuits. Since Z is a complex number, Y is also a complex number.

•
$$Y = Y_M \langle \boldsymbol{\theta}_y \rangle$$

which is written in rectangular form as

$$Y = G + jB$$

- From the expression
- $G = \frac{R}{R^2 + X^2}$ and $B = -\frac{X}{R^2 + X^2}$
- and in a similar manner, we can show that
- $R = \frac{G}{G^2 + B^2}, \qquad X = \frac{-B}{G^2 + B^2}$
- The admittance of the individual passive elements are
- $Y_R = \frac{1}{R} = G$, $Y_L = \frac{1}{j\omega L} = -\frac{1}{\omega L} \angle 90^0$, $Y_C = j\omega C = \omega C \angle 90^0$

- The rules for combining admittances are the same as those for combining conductances;
- $Y_p = Y_1 + Y_2 + \cdots Y_n \qquad and$

$$\frac{1}{Y_S} = \frac{1}{Y_1} + \frac{1}{Y_2} + \dots + \frac{1}{Y_n}$$

• Calculate the equivalent admittance Y_p for the network in Fig. 7.9 and use it to determine the current I if $V_s = 60 \langle 45^0 V$.

Figure 7.9: Example parallel circuit

$$Y_{R} = \frac{1}{Z_{R}} = \frac{1}{2}S$$

$$Y_{L} = \frac{1}{Z_{L}} = -\frac{j}{4}S$$
Thus $Y_{p} = \frac{1}{2} - j\frac{1}{4}S$

$$Hence I = Y_{p}V_{s}$$

$$= \left(\frac{1}{2} - j\frac{1}{4}\right)(60 \angle 40^{0})$$

$$= 33.5\langle 18.43^{0} A$$

Phasor Diagrams

- Impedance and admittance are functions of frequency, and therefore their values change as the frequency changes.
- These changes in Z and Y have a resultant effect on the current–voltage relationships in a network. This impact of changes in frequency on circuit parameters can be easily seen via a phasor diagram

Phasor Diagrams-Example

Figure 7.11: Example parallel circuit

Phasor diagrams-example

- At the upper node in the circuit KCL is
- $I_S = I_R + I_L + I_C = \frac{V}{R} + \frac{V}{j\omega L} + \frac{V}{1/j\omega L}$
- Since $V = V_M \angle 0^0$, then $I_S = \frac{V_M \angle 0^0}{R} + \frac{V_M \angle -90^0}{\omega L} + V_M \omega C \angle 90^0$
- Note that I_S is in phase with ${\bf V}$ when ${\bf I}_C={\bf I}_L$ or, in other words, when $\omega L=\frac{1}{\omega C}$. Hence, the node voltage ${\bf V}$ is in phase with the current source when $\omega=\frac{1}{\sqrt{LC}}$
- This can also be seen from the KCL equation

$$I = \left[\frac{1}{R} + j\left(\omega C - \frac{1}{\omega L}\right)\right]V$$

Phasor diagrams-Example

Figure 7.12: Phasor diagrams for the circuit in Fig. 7.11.

Basic Analysis Using Kirchhoff's Laws

 We wish to calculate all the voltages and currents in the circuit shown in Fig. 7.14a.

Figure 7.14 (a) Example ac circuit, (b) phasor diagram for the currents (plots are not drawn to scale).

Basic Analysis Using Kirchhoff's Laws

Solution

$$Z_{eq} = 4 + \frac{(j6)(8-j4)}{j6+8-j4} = 8.24 + j4.94 = 9.61 ∠30.940 Ω$$

$$I_1 = \frac{V_S}{Z_{eq}} = \frac{24\langle 60^0 \rangle}{9.61\langle 30.94^0 \rangle} = 2.5 \angle 29.06^0 A$$

- V₁ can be determined using KVL:
- $V_1 = V_S 4I_1 = 16.26 \angle 78.43^0 A$ (This can also be determined by voltage division)

$$I_2 = \frac{V_1}{i6} = 2.71 \angle -11.58^0 A$$

Basic Analysis Using Kirchhoff's Laws

- $I_3 = \frac{V_1}{8-j4} = 1.82 \angle 105^0 A$
- $(I_2 \text{ and } I_3 \text{ can also be determined by current division.})$
- $V_2 = I_3(-j4) = 7.28 \angle 15^0 V$
- The phasor diagram for the currents I_1 , I_2 and I_3 and is shown in Fig. 7.14b and is an illustration of KCL.

Analysis Techniques-Nodal

Figure 7.15 Circuits for node analysis

Analysis Techniques-Nodal

- The KCL equation for the supernode that includes the voltage source is.
- and the associated KVL constraint equation is
- $V_2 V_1 = 6 \angle 0^0$
- Therefore, $V_1 = V_2 6$. Substituting this into the first equation and solving gives
- $V_2 = \left[\frac{5}{2} j\frac{3}{2}\right]V$
- Therefore $I_0 = \left[\frac{5}{2} j\frac{3}{2}\right]A$

Analysis Techniques-Loop

Analysis Techniques-Loop

- The three loop equations are
- $I_1 = -2\langle 0^0 \rangle$
- $I_1(1+j) + I_2(2) + I_3(1-j) = 6 \angle 0^0$
- $I_2(1-j) + I_3(2-j) = 0$
- Solving the above equations gives
- $I_3 = \left(-\frac{5}{2} + j\frac{3}{2}\right)A$
- And finally $I_0 = -I_3 = \left[\frac{5}{2} j\frac{3}{2}\right]A$

Analysis Techniques-Superposition

Exercise

 Use Thevenin's and Norton's analysis techniques to obtain a similar result.