Entrega 3: Introducción y Resultados

José Saint Germain joesg998@gmail.com

1 Índice

2	1.	Introducción			
3		1.1.	Motivación	3	
4		1.2.	Estructura del documento	3	
5	2.	Mar	co Teórico	3	
6		2.1.	La Teoría de la Modernización y sus variantes	3	
7		2.2.	Teoría de la Dependencia y el Subdesarrollo	4	
8		2.3.	Datos Empíricos y Nuevas Perspectivas	4	
9	3.	Metodología			
10		3.1.	Algoritmos de predicción	4	
11		3.2.	Métrica de evaluación	5	
12		3.3.	Optimización de hiperparámetros	5	
13		3.4.	Block-time-series cross-validation	5	
14		3.5.	Valores Shapley	5	
15		3.6.	Ingeniería de atributos	6	
16		3.7.	Análisis Exploratorio de Datos	6	
17	4. Resultados y discusión				
18		4.1.	Performance de los modelos	9	
19		4.2.	Análisis de variables	10	
20		4.3.	Discusiones	12	
21	5.	Con	clusiones	12	
22	6.	Ane	XO .	13	
23		6.1.	Código	13	
24		6.2.	Golpes	13	
O.F.		6.3	Gráficos y tablas adicionales	13	

6 1. Introducción

El objetivo de este trabajo es lograr entrenar un modelo de aprendizaje automático que logre predecir de manera aceptable la presencia de golpes de estado durante los años 2020 a 2022 en todos los países del mundo a partir de la utilización de la base de datos provista por la fundación Varieties of Democracy (V-Dem) (Coppedge, Gerring, Knutsen, Lindlberg et al., 2024), así como tener una noción acabada de las variables más importantes que los algoritmos utilizan para la predicción de la variable objetivo.

33 1.1. Motivación

La motivación de este trabajo es dialogar con el artículo recientemente realizado por el Fondo Monetario Internacioni (FMI) Cebotari et al., 2024. En el mismo se aborda el mismo objeto de estudio 35 utilizando diversas metodologías, siendo una de ellas la utilización de algoritmos de aprendizaje 36 automático. En este trabajo se replicó la metodología utilizada en esa sección; comparando los 37 mismos modelos, sus respectivos hiperparámetros y la métrica a maximizar durante su entrenamiento 38 La principal diferencia entre el paper del organismo y este trabajo radica en el origen de los datos. 39 Por un lado, el artículo del FMI utilizan 14 fuentes provenientes de diferentes organismos, de manera de cubrir 5 grupos de variables sobre diferentes ámbitos (Desarrollo y demografía, Inclusión y 42 gobernanza, macroestabilidad, políticas públicas, estabilidad sociopolítica). En cambio, este trabajo 43 utilizará solamente la base de datos v-dem por dos motivos: en primer lugar, para abarcar solamente 44 variables que estén directamente ligadas a la situación política e insitucional de los países, excluyendo en la medida de lo posible atributos ajenos a este ámbito. En segundo lugar, para realizar una 45 comparación con las nutridas y variadas fuentes del artículo citado. De esa manera, podemos tener 46 una noción del poder predictivo de atributos puramente político-institucionales frente a un abanico 47 más diverso de variables. 48

1.2. Estructura del documento

50 - Explicación de la estructura del trabajo (se realizará una vez que esté completado)

1 2. Marco Teórico

El estudio de los golpes de estado, así como los procesos de democratización han sido una preocupación central para la ciencia política moderna durante el siglo xx. Diversas teorías y contrateorías se han desarrollado de manera de aprehender los causales de la democratización de un país así como de su proceso inverso, ya sea una erosión democrática gradual o un golpe de estado autoritario; así como los elementos sociales, culturales e institucionales que pueden evitar o disminuir la probabilidad de que se produzcan estos fenómenos.

58 2.1. La Teoría de la Modernización y sus variantes

El estudio de los golpes de estado y la democratización ganó relevancia a mediados del siglo xx con la teoría de la modernización. Entre los exponentes de esta teoría se encuentra Seymour Martin Lipset quien con su artículo "Some social requisites of democracy: economic developmente and political legitimacy" 1959. Desde un enfoque sociológico, argumenta que el grado de desarrollo económico de una sociedad es una condición necesaria para el nacimiento y consolidación de un régimen democrático, principalmente porque una sociedad dividida entre una masa empobrecida y una élite rica es más propensa a generar una oligarquía (dictadura del estrato superior de la soicedad) o una tiranía (dictadura basada en el estrato inferior).

Para medir el desarrollo económico, Lipset analiza y desgrega cuatro variables: el nivel de riqueza, medido por pbi per cápita y por la cantidad de personas con vehículos de motor, radios, teléfonos y diarios cada mil personas; el grado de industrialización, medido por el porcentaje de trabajadores hombres en la agricultura y el nivel de energía utilizado per cápita (en toneladas de carbón); el nivel de urbanización, medido en índices realizados previamente; así como el nivel educativo de la población, del cual toma principalemnte la tasa de alfabetización. El autor subraya este último factor, exponiendo que si no es una condición suficiente para la democracia, es una condición necesaria.

A su vez, Lipset describe cambios subvaceentes en los diversos estratos sociales producto del desarrollo económico. En primer lugar, se desarrolla una suerte "lucha de clases" por parte de la 75 clase baja, ya que mayores tasas de alfabetización y bienestar económico genera una visión más 76 largoplacista y compleja de la política, desarrollando una ideología secular reformista y gradualista 77 en la clase obrera. En segundo lugar, una clase media fortalecida y ensanchada por el crecimiento 78 económico juega un papel mitigador del conflicto, penalizando extremismos y apoyando movimientos 79 más moderados y democráticos. Por último, en una sociedad en donde las diferencias económicas 80 entre clases sociales se moderan, se atenuan las percepciones negativas de las clases altas hacia las 81 bajas, volviéndolas más tolerantes a compartir el poder y a otorgar derechos al resto de la sociedad. 82 Por último, en una sociedad con mayor riqueza económica se expande la presencia de organizaciones 83 intermedias e instituciones como fuentes de contrapeso al poder. 84

Si bien el desarrollo económico, caracterizado en los párrafos anteriores, se torna una condición 85 mínima para la consolidación democrática, Lipset subrraya dos condiciones suficientes para lograr 86 su estabilidad en el tiempo: la efectividad del sistema político -entendida como la performance del 87 sistema político para resolver problemas- y la legitimidad -es decir, la capcidad de lograr la creencia de que la existencia de instituciones políticas es deseable para el conjunto de la sociedad. Una crisis de 89 legitimidad, por lo tanto, es contemplada como un factor de inestabilidad para un sistema democrático. 90 Este tipo de crisis, según el autor, pueden surgir de determinados cambios en la estructura social: 91 cuando todos los grupos mayoritarios no se aseguran el acceso al sistema político de manera temprana 92 en un período de transición, o cuando el estatus de las instituciones conservadoras es amenazado. 93

En los años 70 y 80, la atención se desplazó hacia las transiciones políticas y la estabilidad institucional.

Samuel P. Huntington, en *Political Order in Changing Societies* Huntington, 1068, argumentó que las sociedades en transición son particularmente vulnerables a la inestabilidad y los golpes de estado.

Huntington sugirió que el ritmo del cambio social y político puede superar la capacidad de las instituciones para adaptarse, creando un vacío de poder y oportunidades para golpes de estado. Esta perspectiva destaca la importancia de variables como la estabilidad política, la cohesión institucional y la capacidad del gobierno.

101 2.2. Teoría de la Dependencia y el Subdesarrollo

- Teorías de la dependencia y el subdesarrollo: Cardoso y Faletto
- Análisis sociales: elites y movimientos sociales (O'donnell y Schmitter)

104 2.3. Datos Empíricos y Nuevas Perspectivas

- Enfques empíricos y cuantitativos: Powell y Thyne; Przeworski.
- Machine learning en la ciencia política. Usos recientes
- Síntesis y cierre del marco teórico / estado del arte

108 3. Metodología

Puesto que buscamos replicar el mismo trabajo realizado por el FMI (Cebotari et al., 2024) con diferentes datos, vamos a replicar las mismas técnicas de optimización de hiperparámetros, así como los mismos algoritmos de entrenamiento y de interpretación de resultados.

112 3.1. Algoritmos de predicción

Los algoritmos que se utilizarán serán Random Forest (Breiman, 2001) y XGBoost (Chen y Guestrin, 2016). Ambos algoritmos son modelos de ensamble basados en múltiples árboles de decisión. Un árbol de decisión individual es un modelo predictivo que divide los datos en subconjuntos cada vez más pequeños basándose en una serie de decisiones binarias sobre las características de los datos. En cada nodo del árbol, se selecciona una característica y un umbral para dividir los datos en dos grupos: aquellos que cumplen la condición y aquellos que no. Este proceso se repite de manera recursiva hasta que se alcanza una condición de parada, ya sea un mínimo de muestras en un nodo o una profundidad máxima del árbol.

El algoritmo Random Forest (bosque aleatorio) busca combinar múltiples árboles de decisión con características disímiles, combinando sus predicciones mediante un promedio (en regresión) o mediante votación (en clasificación). La variedad de árboles se logra mediante una selección aleatoria de un subconjunto de los datos con remplazo, así como seleccionando una proporción aleatoria de atributos del dataset. De esa manera, se reduce la varianza del modelo, se evita el sobreajuste y se mejora la capacidad predictiva.

Por otro lado, XGBoost (Extreme Gradient Boosting) es un algoritmo de boosting que mejora las 127 predicciones combinando múltiples árboles de decisión débiles (de menor capacidad predictiva) 128 de manera secuencial. A diferencia de Random Forest, donde los árboles se entrenan de forma 129 independiente, en el boosting los árboles se entrenan uno tras otro, cada uno tratando de corregir los 130 errores cometidos por los árboles anteriores. Particularmente, XGBoost utiliza la técnica de gradient 131 boosting, donde cada árbol nuevo se ajusta a los residuos (errores) del modelo anterior utilizando el 132 gradiente del error. Adicionalmente, XGBoost incluye algunas mejoras como la regularización y el 133 manejo eficiente de datos faltantes. 134

3.2. Métrica de evaluación

135

144

147

148

149

150

153

Adicionalmente, para la evaluación de performance se utilizará el área bajo la curva ROC (AUC). La curva ROC es construida trazando la tasa de verdaderos positivos (la sensibilidad) frente a la tasa de falsos positivos (especificidad) en diferentes umbrales de decisión. El área total de esta curva es la que se utilizará para evaluar la performance del modelo. Esta métrica toma valores entre 0.5 y 1. Un valor de AUC de 0.5 indica que el modelo no tiene mayor capacidad predictiva que el puro azar, mientras que un valor cercano a 1 indica que el modelo es un excelente predictor. Las ventajas de esta métrica son que es insensible al desbalance de clases y que proporciona una evaluación única del rendimiento del modelo en distintos umbrles de decisión.

3.3. Optimización de hiperparámetros

145 Con respecto al ajuste de hiperparámetros se utilizará la optimización bayesiana. La misma consistirá 146 en 100 iteraciones en donde se buscará el valor óptimo de los siguientes hiperparámetros:

- Random Forest: profundidad máxima de los árboles (max_depth) y la submuestra del ratio de columnas a considerar cuando se construye cada árbol (max_features).
- XGBoost: la tasa de aprendizaje (learning_rate) y el término de regularización L2 en los pesos (reg_lambda).

Adicionalmente el parámetro que establece la cantidad de árboles creados (n_estimators) quedará fijado en 1000.

3.4. Block-time-series cross-validation

Para evitar el data leakage, en cada iteraciónd de la optimización bayesiana se utilizará la validacón 154 cruzada. Sin embargo, como se trabajará con una base de datos de panel, conviene utilizar una versión 155 adaptada: el método block- time-series cross-validation, basado en Burman et al., 1994 y Racine, 156 2000. El método aplicado en este caso consiste en generar 5 pares de entrenamiento y validación: 157 1970 - 2009, 2010 - 2011; 1970 - 2011, 2012 - 2013; 1970 - 2013, 2014 - 2015; 1970 - 2015, 2016 -158 2017; 1970 - 2017, 2018- 2019. Por lo tanto, cada set de entrenamiento consiste en observaciones desde 1970 hasta un añ de corte (2009, 2011, 2013, 2015, 2017) y el set de validación contempla los 160 dos años siguientes del mismo. Una vez realizada la optimización bayesiana, se toman los valores de 161 hiperparámetros que lograron maximizar el AUC y se entrena el modelo con el set de entrenamiento 162 para intentar predecir los golpes de estado entre 2020 y 2022. 163

3.5. Valores Shapley

Para interpretar las variables más importantes en la predicción de golpes de estado, se utilizarán los valores Shapley (Strumbelj y Kononenko, 2010; Lundberg y Lee, 2017). Basado en la teoría de juegos, los valores Shapley consideran todas las posibles coaliciones de características y calculan la contribución promedio de cada característica a través de todas las permutaciones posibles. En

otras palabras, determinan cuánto contribuye cada característica al valor de predicción del modelo, considerando la interacción entre las características y evitando atribuciones injustas o redundantes.

Los valores Shapley proporcionan una forma intuitiva y sólida de interpretar y entender cómo las características individuales afectan las decisiones del modelo, lo que los hace valiosos para explicar modelos de aprendizaje automático complejos.

3.6. Ingeniería de atributos

174

187

196

197

198

199

200

201

202

203

204

205

206

207

212

213

Para dotar de mayor información a los algoritmos a la hora de predecir la variable objetivo, se crearon 175 nuevas variables a partir de las ya existentes. Fundamentalmente, se generaron variables llamadas 177 "lag"que toman el valor que obtuvo cierto país una x cantidad de años atrás. En este caso específico se generaron lags para 1, 5 y 10 años anteriores. De esa manera, los algoritmos tienen algo más de 178 información sobre la tendencia temporal de las variables. Adicionalmente, se agregaron variables 179 binarias que informan sobre la región a la que pertenecen los paises, especulando con que estas 180 variables pueden llegar a tener importancia si una región específica cuenta con muchos golpes de 181 estado en un momento determinado. Finalmente, se excluyeron todos los grupos de variables que 182 provengan de fuentes externas, con el objetivo de tener la certeza de contar con la mayoría de las 183 mismas en caso de querer repetir este experimento en años futuros; así como también se excluyeron 184 variables que no cuentan con información para ningún país en cierto punto de la serie (por ejemplo, 185 las variables históricas, que trabajan con datos anteriores al siglo xx). 186

3.7. Análisis Exploratorio de Datos

Como primera aproximación a la base de datos de Varieties of Democracy o V-Dem (Coppedge, 188 Gerring, Knutsen, Lindberg et al., 2024), pasaremos a explicar la manera en que se construye la misma. 189 Las variables centrales se obtienen a partir de encuestas suministradas a expertos sobre los distintos 190 países. Inicialmente, se busca que cada país cuente con al menos cinco expertos. Actualmente, la 191 institución cuenta con 22 expertos promedio por país y 7,1 expertos por combinación de variable 192 y país. Una vez obtenida las respuestas de los expertos, se pasa al proceso de agregación para así 193 conformar una base de datos donde cada fila corresopnda a un país en un año específico. De esta 194 agregación obtienen diferentes versiones de la misma variable: 195

- Estimador del modelo (Variable sin sufijo): es la medida recomendada para su análisis. Corresponde a obtener la mediana del valor de la variable entre los expertos, reescalado a valores entre -5 a 5.
- Medidas de incertidumbre (*_codelow y *_codehigh): corresponden a un desvío estandar por encima y por debajo del estimador del modelo. Usadas conjuntamente, construyen un intervalo de confianza del 95 %.
- Escala original (*_osp): mediana de la variable, pero sin reescalar. Esta versión también cuenta con sus medidas de incertidumbre correspondientes.
- Media simple (_mean): mediana de la variable, pero sin reescalar.
- Desvío estándar (sd): desvío estándar de la variable.
- Media simple (_mean): media de la variable.
- Cantidades de expertos (_nr): cantidad de expertos que respondieron por país, año y variable.

Podemos mencionar que la base cuenta con 27734 filas y 4607 columnas. Como es una base de datos de panel, se tiene información de 202 países durante 235 años. Las variables cuentan con un tipo de codificación particular que permite identificar el origen de la variable. En primer lugar, el primer prefijo es indicativo de si fue producido por V-Dem o no:

- v2: variables de V-Dem.
- v3: variables pertenecientes a la base V-Dem histórica.
- v2x_: Índices principales e índices componentes. v2x_:
- v2x[indicador de dos letras]: Índices específicos de ciertas áreas (ver más abajo).
- e_: variables no generadas por V-Dem y variables V-Dem en versión ordinal.

217 El nombre de la variable también permite identificar la área temática a la que pertenece:

- 218 ca: Espacio cívico y académico
- ol: Libertad civil
- cs: Sociedad civil
- dd: Democracia directa
- 222 de: Demografía
- 223 dl: Deliberación
- el: Elecciones
- ex: Ejecutivo
- exl: Legitimación
- 227 ju: Poder judicial
- 228 leg: Legislatura
- 229 lg: Legislatura
- me: Medios de comunicación
- pe: Igualdad política
 pe: Igualdad política
- ps: Partidos políticos
- sv: Soberanía
- st: Estado

238

239

240

241

242

243

244 245

246

247

- x: Índice (calculado a partir de variables que también se incluyen en la base de datos)
- zz: Cuestionario posterior a la encuesta
- ws: Encuesta de sociedad digital

A la base original obtenida desde la librería de V-Dem, se le realizaron los siguientes filtros: en primer lugar, se removieron todas las variables que no sean las principales, es decir, que no cuenten con sufijo. De esa manera, se busca reducir el tamaño de la base y así poder agregar nuevas columnas mediante ingeniería de atributos. En segundo lugar, se filtraron los años superiores a 1950, para adecuarnos al periodo utilizado en el artiçulo del FMI. De esa manera, la base filtrada cuenta con 12208 filas y 1460 columnas. Por último, se remueven todas las variables de fuentes externas (cuyo agrupador comienza con 'e'), las variables pertenecientes a la base histórica (agrupador 'hist') y las de la encuesta de sistema de partidos políticos; en parte debido a que provienen de fuentes ajenas a V-Dem que pueden comprometer la completitud futura de los datos y en parte porque algunas de estas variables cuentas con alta tasa de nulos.

Realizando un análisis generalizado de los distintos grupos de variables de la base de datos, podemos aprehender ciertos patrones sobre la presencia de nulos: En primer lugar, observamos variables que, anteriormente a un año puntual, no cuentan con información. En este ejemplo caen las variables sobre governanza otorgadas por el banco mundial (e7), las preguntas pertenecientes a la encuesta de sociedad digital (wsmcio), variables referentes a la libertad en medios digitales (wsmdmf), las referentes a la polarización en medios online (wsmomp) y las referentes a clivajes sociales (wsmsc).

En segundo lugar, figuran casos contrarios, en donde a partir de determinado año la cantidad de datos 254 faltantes salta a la totalidad de los casos. En este grupo figuran las variables asociadas a instituciones 255 y eventos políticos (e13), cuya fuente es un artículo de Przeworski de 2013; las variables cuya 256 fuente es la base de datos polity V (e14); las variables sobre educación (aumentan los nulos en 257 algunas variables) (eb1); las variables sobre recursos naturales (eb5), cuya fuente tiene datos hasta 258 2006; las variables sobre infraestructura (eb6); y las relacionadas a conflictos (eb8). En general, esta 259 discontinuidad sucede debido a que la información de estas variables provienen de fuentes externas 260 no gestionadas por V-Dem, las cuales finalizaron su serie en un año puntual. Por último figuran los 261 grupos de variables asociados a la base de datos histórica de v-dem (las que comienzan con hist), lo 262 cual es lógico puesto que esta base busca tomar datos previos a 1900. 263

Consecuentemente, quitaremos del grupo de variables a utilizar aquellas que sean de fuentes externas, ya que de esa manera podemos asegurarnos que contaremos con todas las variables para predecir

golpes de estado en años futuros. También quitamos las variables provenientes de fuentes históricas y de las encuestas de sociedad digital, ya que no cuentan con información para toda la serie.

Haciendo foco en la varaible objetivo, es importante aclarar que en este trabajo no estamos contando 268 la cantidad precisa de golpes de estado sucedidos en un período de tiempo, sino que simplemente 269 relevamos si al menos un golpe de estado sucedió en un país y año determinado. Por lo tanto, si 270 un país sufrió más de un golpe de estado en un año, el mismo será contabilizado una sola vez. 271 Adicionalmente, en este trabajo también se consideran los golpes de estado que no fueron exitosos, 272 es decir, que no lograron derrocar al gobierno en cuestión. De allí se desprende que países como 273 Argentina, que en total ha tenido seis golpes de estado exitosos, figure con el doble de golpes en la 274 figura 1. 275

Para realizar un paneo general de la variable objetivo, es decir, la presencia de golpes de estado a lo largo de los años, generamos un conteo y lo visualizamos en un planisferio. Destacamos que la mayor presencia de golpes se encuentra en el continente africano, en América del Sur y parte del Caribe, Medio Oriente y el Sudeste Asiático, con algunos casos de apenas un golpe en España, Rusia, Ucrania y Corea del Sur; así como dos y tres golpes en Grecia y Portugal, respectivamente.

276

Figura 1: Golpes de estado período (1950-2023) Fuente: Powell y Thyne, 2011

Con mayor precisión, observamos que la región del Sahel se destaca con respecto a sus vecinos africanos. Los países en donde más golpes de estado se han producido son Bolivia (17), Sudán (14), Argentina (13), Ecuador (11), Iraq (11), Siria(11), Guatemala (10) y Tailandia (10).

Desagregando por década se observan algunos cambios, así como la persistencia en algunas regiones.

La región del Sahel y varias naciones circundantes fueron persistentemente afectadas por golpes
de estado desde los años 60. En América del Sur, en cambio, la presencia casi total de situaciones
golpistas en la región se fue acotando a partir de los años 80 hasta finalmente desaparecer en el siglo
xxi. Para observar con más detalle y discriminado por años y países se puede ver la figura 5.

Figura 2: Conteo de golpes por década Fuente: Powell y Thyne, 2011

4. Resultados y discusión

4.1. Performance de los modelos

En primer lugar, se ralizó la optimización bayesiana de ambos modelos según lo indicado en la metodología. En el caso de XGBoost se pudo realizar las 100 iteraciones sin mayores inconvenientes, tomando los valores óptimos de hiperparámetros para el entrenamiento final. Con respecto a Random Forest, en cambio, se alcanzaron 53 iteraciones, debido a que cada iteración consumía una gran cantidad de tiempo (en promedio una hora) y no se observaban mejoras significativas en el AUC. De las iteraciones generadas, se tomó los hiperparámetros del segundo mejor AUC, puesto que la diferencia con el ganador en el score era insignificante, pero el tiempo de cómputo era menos de la mitad.

Una vez seleccionado los mejores hiperparámetros, se procede a entrenar los modelos en el conjunto de entrenamiento final, el cual abarca los registros desde 1950 hasta 2019; así como a evaluar el desempeño del mismo en los años 2020, 2021 y 2022 para emular el trabajo realizado por el FMI.

Es importante destacar que existen dos enfoques para evaluar el modelo en los años de testeo: por un lado se pueden evaluar todos los años en su conjunto utilizando como datos de entrenamiento los registros hasta el año anterior del primer año de validación. Una opción alternativa es ir entrenando el modelo hasta el año anterior al de validación para cada año individualmente, de manera de poder utilizar todos los años anteriores y no perder performance. Para este trabajo utilizamos el primer enfoque, es decir que entrenamos los modelos hasta 2019 y los evaluamos en todos los años de evaluación a la vez, de manera de aprehender de manera geenral la importancia de cada variable en la predicción de la variable objetivo.

En el cuadro 1 observamos el desempeño de los modelos en los años de testeo. Por un lado figura el AUC individual de cada año por separado y por el otro observamos el AUC acumulada es decir, evaluando en ese año junto con los anteriores.

	XGBoost		Random Forest	
Año	AUC	AUC	AUC	AUC
		acumulada		acumulada
2020	1.000000	1.000000	1.000000	1.000000
2021	0.750000	0.785714	0.830443	0.855718
2022	0.666667	0.750000	0.666667	0.799051

Cuadro 1: Área bajo la curva ROC por año puntual y acumulado (XGBoost y Random Forest)

Lo primero que podemos observar es que ambos modelos logran una performance perfecta para el

año 2020, lo cual resulta esperable ya que cuentan con información del año inmediatamente anterior. También esperable, la performance decae en los años siguientes, lo cual impacta en el valor del AUC acmulada. Lo más destacable es que Random Forest logra una mejor performance que XGBoost en el resto de años, alcanzando un AUC de casi 0.8 y 0.75, respectivamente. Con esta información, se tomó la decisión de continuar el análisis de resultados con Random Forest. Focalizando solamente en Random Forest, y puesto que los casos negativos (527 en los tres años de evaluación) fueron predichos de manera perfecta, podemos aprovechar para visualizar los casos positivos que son apenas diez casos, tantos los verdaderos positivos como los falsos negativos (Cuadro

positivos que son apenas diez casos, tantos los verdaderos positivos como los falsos negativos (Cuadro 2). En primer lugar, podemos notar que la predicción perfecta en el año 2020 se debe a que el modelo logró predecir correctamente el único golpe de ese año en Malí, en la región del Sahel. Después, en el año 2021 esta performance disminuye, al no lograr predecir los golpes de nuevo en Mali y en Niger, aunque si predice golpes en Sudán, Guinea y Chad. A simple vista, no parece haber datos geográficos o históricos que permitan establecer por qué logra predecir algunos golpes y en otros no, en especial porque son países relativamente similares, de pocos años de independencia y dentro de la misma región. Adicionalmente, en este año también logró predecir el golpe de estado en Burma/Myanmar, una nación ubicada en una región alejada de África, en el sudeste asiático.

Año	País	¿Hubo golpe?	Predicción	Resultado
2020	Mali	Sí	Sí	Verdadero positivo
2021	Burma/Myanmar	Sí	Sí	Verdadero positivo
2021	Sudan	Sí	Sí	Verdadero positivo
2021	Guinea	Sí	Sí	Verdadero positivo
2021	Chad	Sí	Sí	Verdadero positivo
2022	Burkina Faso	Sí	Sí	Verdadero positivo
2021	Mali	Sí	No	Falso negativo
2021	Niger	Sí	No	Falso negativo
2022	Guinea-Bissau	Sí	No	Falso negativo
2022	Sao Tome and Principe	Sí	No	Falso negativo

Cuadro 2: Falsos negativos y verdaderos positivos (Random Forest)

Finalmente, el año 2022 expone la peor performance del modelo: si bien logra predecir un golpe de estado en Burkina Faso, falla al predecir golpes en Guinea-Bissau y Sao Tome y Principe, todos países en la misma región del continente africano. De manera general, podemos asociar esta baja en la performance a que el modelo deja de contar con información del año inmediatamente anterior al del conjunto de evaluación.

4.2. Análisis de variables

A continuación, pasaremos a evaluar la relevancia de las distintas variables del dataset para la predicción del modelo. De esa manera, podremos extraer elementos para determinar o reforzar los posibles causales de un golpe de estado en un territorio determinado. En primer lugar, utilizaremos la importancia de las variables según Random Forest, la cual se puede observar en la figura 3 (los nombres de las variables fueron traducidas y resumidas del libro de códigos de la base de datos para una vista amigable. Se puede verificar el nombre codificado y original de las variables en la tabla 3).

Las barras indican el porcentaje de importancia de las 10 variables con mayor peso. En total, estas diez variables representan alrededor del 50 % de la importancia. En general, todas las variables están relacionadas con la forma de gobierno, con la influencia de las fuerzas armadas en el mismo o con la misma variable objetivo en años anteriores. Entre el segundo y el cuarto lugar figuran variables que reflejan muy evidentemente una relación con la presencia de golpes de estado, como tener la legislatura cerrada o abortada o que el ejecutivo no sea más electo. El dato más interesante a destacar es que la variable con mayor importancia es la cantidad de días desde que comenzó el régimen. Se puede inferir de esto último que un régimen joven es más inestable y, por lo tanto, propensa a sufrir un nuevo cambio de régien mediante un golpe.

Figura 3: Importancia de las variables para predicción 2020-2022 (Random Forest)

Ahora incorporaremos los Shapley Values para identificar variables importantes a la hora de predecir la presencia de golpes de Estado, como se expone en la figura 4. En el eje Y figuran las primeras 11 variables con mayor valor de Shapley y en el eje X figura el valor Shapley, visualizando la distribución de los casos en forma de violín y los outliers como puntos. Finalmente, el color de los violines y de los puntos indica el valor de la variable en cuestión.

Figura 4: Shapley values para predicción 2020-2022 (Random Forest)

Si bien en este gráfico algunas variables figuran también en el gráfico de la importancia de las variables, podemos destacar algunas diferencias. Primero, figura la enseñanza de valores políticos en la escuela, en cuyo valores nulos tienen alto valor Shapley. También destacan los datos nulos en el poder relativo entre miembros electos y no electos a nivel regional, en su misma versión hace 10 años (lag 10) y en la presencia de violencia durante el período electoral.

Para comprender qué significan estos datos nulos, es de utilidad recurrir al libro de códigds de la base de datos. Por ejemplo, un valor faltante en el poder relativo entre oficiales electos y no electos significa que todos o casi todos de los funcionarios electos son subordinados de algún otro poder que no surgió de las urnas (a nivel regional).

Otros temas a tratar en los resultados en la próxima entrega: - Valores Shapley en cada año individual y/o en cada país - Análisis histórico de las variables destacadas

4.3. Discusiones

- Vinculación de resultados con estado del arte y marco teórico
- Comparación de performance y de variables importantes con el artículo del FMI
- Limitaciones

367

71 5. Conclusiones

- Resumen de los hallazgos principales
- Conclusiones generales y su relación con los objetivos del trabajo

- Recomendaciones para futuros trabajos

375 **6.** Anexo

76 **6.1. Código**

- La totalidad del código y entregas en latex y PDF se encuentran en un repositorio abierto de Github
- de José Saint Germain (Acceso al repositorio). En el mismo se describe la secuencia de códigos a
- correr para la obtención de datos, la ingeniería de atributos, la optimización bayesiana, la corrida
- final, el análisis exploratorio de datos y el análisis de resultados de los algoritmos.

381 **6.2.** Golpes

- Breve descripción de los 10 golpes que se buscaron predecir. Su contexto histórico, político y social.

83 6.3. Gráficos y tablas adicionales

Figura 5: Conteo de golpes por año y región (Powell y Thyne, 2011)

Variable	Descripción
coup_lag_1	¿golpes de estado en el último año?
v2expathhs	¿Cómo llega el jefe de estado al gob?
v2regdur	Días desde comienzo del régimen
v2regoppgroupsact_5	FFA se movilizan contra el régimen?
v2elrgpwr_lag_5	Poder relativo entre miembros electos y no electos a nivel regional (lag 5)
v2edpoledprim_lag_5	¿Se enseña en la primaria contenidos con valores políticos? (lag 5)
v2elpeace	Violencia durante período electoral
v2x_ex_military	Influencia de las FFAA sobre el Poder Ejecutivo
v2x_ex_military_lag_1	Influencia de las FFAA sobre el Poder Ejecutivo (lag 1)
v2elrgpwr_lag_10	Poder relativo entre miembros electos y no electos a nivel regional (lag 10)
v2x_hosinter	¿El ejecutivo no es más electo?
v2regendtypems_0_lag_1	¿El régimen terminó por un golpe de estado? (lag 1)
v2xlg_leginter	¿Legislatura cerrada o abortada?
v2regendtype_lag_1	Proceso más importante para terminar con un régimen (lag 1)
coup_lag_1	¿Golpes de estado en el último año?

Cuadro 3: Nombre original de variables y su descripción

Referencias 384

388

389

390

398

399

- Huntington, S. P. (1068). Political order in changing societies. Yale university press. 385
- Lipset, S. M. (1959). Some social requisites of democracy: Economic development and political 386 legitimacy. American political science review, 53(1), 69-105. 387
 - Burman, P., Chow, E., & Nolan, D. (1994). A Cross-Validatory Method for Dependent Data. Biometrika, 81(2), 351-358. Consultado el 1 de mayo de 2024, desde http://www.jstor.org/stable/ 2336965
- Racine, J. (2000). Consistent cross-validatory model-selection for dependent data: hv-block cross-391 validation. Journal of Econometrics, 99(1), 39-61. https://doi.org/https://doi.org/10.1016/ 392 \$0304-4076(00)00030-0 393
- Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi.org/http://doi.org/10. 394 1023/A:1010933404324 395
- Strumbelj, E., & Kononenko, I. (2010). An Efficient Explanation of Individual Classifications using 396 Game Theory. The Journal of Machine Learning Research, 11, 1-18. 397
 - Powell, J. M., & Thyne, C. L. (2011). Global Instances of Coups from 1950 to 2010: A New Dataset. Journal of Peace Research, 48(2), 249-259.
- Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 400 22nd interntional conference on knowledge discovery and data mining, 785-794. https: 401 //doi.org/https://doi.org/10.48550/arXiv.1603.02754 402
- Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions 403 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan & R. 404 Garnett, Eds.). 30. https://proceedings.neurips.cc/paper_files/paper/2017/file/ 405 8a20a8621978632d76c43dfd28b67767-Paper.pdf 406
- Cebotari, A., Chueca-Montuenga, E., Diallo, Y., Ma, Y., Turk, R., Xin, W., & Zavarce, H. (2024). 407 Political Fragility: Coups d'État and Their Drivers. IMF Working Paper 24/34. https: 408 //doi.org/https://doi.org/10.23696/mcwt-fr58 409
- Coppedge, M., Gerring, J., Knutsen, C. H., Lindberg, S. I., Teorell, J., Marquardt, K. L., Medzihorsky, 410 J., Pemstein, D., Fox, L., Gastaldi, L., Pernes, J., Rydén, O., von Römer, J., Tzelgov, E., 411 Wang, Y.-t., & Wilson, S. (2024). "V-Dem Methodology v14" Varieties of Democracy (V-Dem) 412 Project (Report). https://v-dem.net/data/reference-documents/ 413
- Coppedge, M., Gerring, J., Knutsen, C. H., Lindlberg, S. I., Teorell, J., Altman, D., Angiolillo, F., 414 Bernhard, M., Borella, C., Cornell, A., Fish, S. M., Fox, L., Gastaldi, L., Gjerløw, H., 415 Glynn, A., God, A. G., Grahn, S., Hicken, A., Kinzelbach, K., ... Ziblatt, D. (2024). V-Dem 416 Dataset v14* Varieties of Democracy (V-Dem) Project (Report). https://doi.org/https: 417

//doi.org/10.23696/mcwt-fr58 418