1

(a).

If $||\mathbf{x}||_0 = k$, without loss of generality, assume the first k components are nonzero, it is obvious that $\log ||\mathbf{x}||_0 \leq \log n$. Now we show $H(\mathbf{x}) \leq \log ||\mathbf{x}||_0$.

 $H(\boldsymbol{x}) = -\sum_{i=1}^n x_i \log x_i = \sum_{i=1}^k x_i \log \frac{1}{x_i}$ because the components of \boldsymbol{x} from k+1 to n are zero and we treat $0\log 0 = 0$. Then $H(\boldsymbol{x}) = \sum_{i=1}^k x_i \log \frac{1}{x_i} + \sum_{i=k+1}^n x_i \log 1$ by adding some terms which are equal to zero. Then by $\sum_{i=1}^n x_i = 1$ and the concavity of $\log x$ we get $H(\boldsymbol{x}) \leq \log(\sum_{i=1}^k \frac{x_i}{x_i} + 0) = \log k$. Thus $H(\boldsymbol{x}) \leq \log||\boldsymbol{x}||_0 \leq \log n$.

(b).

Firstly \bar{x} is the maximum of H(x) because $H(\bar{x}) = \log n$ and $H(x) \leq \log n$ as we have shown in part (a). Now we prove the uniqueness.

Define $C = \{ \boldsymbol{x} \in \Delta_{n-1} : \boldsymbol{x} > 0 \}$. The Hessian Matrix of $H(\boldsymbol{x})$ is just $diag\{-\frac{1}{x_1}, -\frac{1}{x_2}, \dots, -\frac{1}{x_n}\}$, which is negative definite on C. This means that $H(\boldsymbol{x})$ is strictly concave on C, the maximum of $H(\boldsymbol{x})$ on C must be unique. For $\boldsymbol{x} \in \Delta_{n-1} \setminus C$, at least one component of \boldsymbol{x} is zero, which means that $||\boldsymbol{x}||_0$ defined in part(a) is smaller than n. So $H(\boldsymbol{x}) \leq \log||\boldsymbol{x}||_0 < \log n$, which means that $H(\boldsymbol{x})$ will not acquire its maximum on $\boldsymbol{x} \in \Delta_{n-1} \setminus C$. So $\bar{\boldsymbol{x}}$ is the unique maximum of $H(\boldsymbol{x})$ on Δ_{n-1} .

2

(a).

By convexity of f we have $f(\frac{s(u-\mu)+u(\mu-s)}{u-s}) \leq \frac{u-\mu}{u-s}f(s) + \frac{\mu-s}{u-s}f(u)$, which is equivalent to $f(\mu) \leq \frac{u-\mu}{u-s}f(s) + \frac{\mu-s}{u-s}f(u)$, then by transformation we can get $\frac{f(\mu)-f(s)}{\mu-s} \leq \frac{f(u)-f(\mu)}{u-\mu}$.

(b).

Take

$$\beta = \sup_{a < s < \mu} \frac{f(\mu) - f(s)}{\mu - s}$$

and it is obvious that $\beta > -\infty$. As we have shown in $\operatorname{part}(a)$, $\frac{f(\mu) - f(s)}{\mu - s} \leq \frac{f(u) - f(\mu)}{u - \mu}$, so $\beta < +\infty$. Now we show that inequality (\star) holds for $x \in (a, b)$. When $x = \mu$, (\star) is just $f(\mu) \geq f(\mu)$.

When $x \in (a, \mu)$, since $\beta = \sup_{a < s < \mu} \frac{f(\mu) - f(s)}{\mu - s}$, $\beta \ge \frac{f(\mu) - f(x)}{\mu - x}$, which is equivalent to $f(x) \ge f(\mu) + \beta(x - \mu)$. When $x \in (\mu, b)$, from part(a) we know $\frac{f(\mu) - f(s)}{\mu - s} \le \frac{f(x) - f(\mu)}{x - \mu}$. Since $\beta = \sup_{a < s < \mu} \frac{f(\mu) - f(s)}{\mu - s}$, $\frac{f(x) - f(\mu)}{x - \mu} \ge \beta$, which is equivalent to $f(x) \ge f(\mu) + \beta(x - \mu)$. So (\star) holds for $x \in (a, b)$.

(c).

From part(b) we have shown $f(x) \ge f(\mu) + \beta(x - \mu), \forall x \in (a, b)$. Since X is a random variable taking values in $(a, b), f(X) \ge f(\mu) + \beta(X - \mu)$. Then we take expectations for this inequality and get $\mathbb{E}f(X) \ge f(\mu) + \beta(\mathbb{E}X - \mu)$, but $\mathbb{E}X$ is just μ , so we get $\mathbb{E}f(X) \ge f(\mathbb{E}X)$.

3

It is convex.

Let $f_1(x_1, x_2) = ||\mathbf{A}\mathbf{x} + \mathbf{b}||^3$, $f_2(x_1, x_2) = \log(1 + e^{3x_1 + 2x_2})$. Then by letting $f(x_1, x_2) = \max(f_1, f_2)$, we know that S is the 2-sublevel set for f.

First we show that both f_1 and f_2 are convex functions. For f_1 , notice that $||\mathbf{A}\mathbf{x} + \mathbf{b}||$ is just an affine composition for the norm function, since norm functions are convex, it must be convex. Then notice that $y = x^3$ is convex and increasing on $(0, +\infty)$, f_1 is a scalar composition of $y = x^3$ on $(0, +\infty)$ with $||\mathbf{A}\mathbf{x} + \mathbf{b}||$ on \mathbb{R}^2 , it must be convex. For f_2 , it is easy to show $\log(1 + e^y)$ is convex because as a univariate function its second derivative is $\frac{e^y}{(1+e^y)^2}$, which is larger than 0. Then f_2 is just an affine composition of $\log(1 + e^y)$ and $y = 3x_1 + 2x_2$, f_2 is also convex.

Now we have convex functions f_1 and f_2 , notice that f is just a pointwise maximum of f_1 and f_2 , it must be convex. Then S is a sublevel set of a convex function f, it is convex.

4

(a).

It is a convex optimization problem.

The objective function is just $(x_1 - x_2)^2 + (x_1 + x_2)$. It is an affine composition of $y_1^2 + y_2$ with $y_1 = x_1 - x_2$ and $y_2 = x_1 + x_2$, since $y_1^2 + y_2$ is convex, it is also convex.

The inequality constraint function is just $(x_1+x_2)^2+e^{x_1+x_2}$, which is also an affine composition of y^2+e^y with $y=x_1+x_2$. Since y^2+e^y is convex, it is also convex.

The equality constraint function is clearly an affine function.

The requirements for convex optimizations are all satisfied, thus it is a convex optimization problem.

(b).

It is not a convex optimization problem.

Clearly the equality constraint function $6x_1^2 - 7x_2 = 0$ is not an affine function, so it is not a convex optimization problem.