MATH-302 Final	Created by Pierre-O. Parisé 2022/15/12, Fall 2022
Last name:	
First name:	

Instructions:

- Make sure to write your complete name on your copy.
- You must answer all the questions below and write your answers directly on the questionnaire.
- You have 120 minutes (2 hours) to complete the exam.
- When you are done (or at the end of the 120min period), return your copy.
- No devices such as a smart phone, cell phone, laptop, or tablet can be used during the exam.
- Turn off your cellphone during the exam.
- You may use a digital calculator (no graphical calculators or symbolic calculators will be allowed).
- You are not allowed to use the lecture notes or the textbook.
- You may bring one 2-sided cheat sheet of handwriting notes.
- You must show ALL your work to have full credit. An answer without justification is worth no point.

T C .			
Your Signature	ı•		

May the Force be with you!

Pierre-Olivier Parisé

(20 pts)

Find the solution of the following ODE using the power series method.

$$(1+x^2)y'' + xy' + y = 0$$
, $y(0) = 2$, $y'(0) = -1$.

Give only the first five coefficients of the power series solution.

Answer the following questions.

(a) (10 points) Find the Laplace transform of $f(t) = te^t \cos(2t)$.

(b) (10 points) Find the inverse Laplace transform of $F(s) = \frac{1}{(s-2)(s+3)}$.

Answer the following questions.

(a) (10 points) Find the Laplace transform of the function

$$f(t) = \begin{cases} t - 1 & 0 \le t < 1 \\ t + 1 & 1 \le t. \end{cases}$$

(b) (10 points) Find the inverse Laplace transform of the function $F(s) = \frac{e^{-s}}{(s+1)^2}$.

Question 4 \longrightarrow (20	pts)
	_0		,

Find the solution to the following IVP using the Laplace transform:

$$y'' - 4y' - 5y = 0$$
, $y(0) = 1$, $y'(0) = 0$.

(a) (5 points) Denote by F(s) the Laplace transform of f(t). Show that if $h(t) = \int_0^t x f(x) dx$, then $L(h(t)) = -\frac{F'(s)}{s}$.

(b) (5 points) Find the solution of the following integral equation:

$$y(t) = 1 + \int_0^t y(x) dx.$$

	QUESTION	6
--	----------	---

(10 pts)

Answer the following statements with **True** or **False**. Write your answer on the horizontal line at the end of each statement. Justify your answer in the white space underneath each statement.

(a) (/ 2) The radius of convergence of the power series solution $\sum_{n=0}^{\infty} a_n(x-3)^n$ of the ODE $(16+x^2)y'' + xy' + y = 0$ is 5.

(a) _____

(b) (-/2) If f(t) = t and $g(t) = t^2$, then $L(f(t)g(t)) = \frac{2}{s^5}$.

(b) _____

(c) (/ 2) If f(t) = 0 for t < 2, f(t) = 2 for $1 \le t < 3$ and $1 \le t < 3$ and $1 \le t < 3$, then $1 \le t < 3$, then $1 \le t < 3$ and $1 \le t < 3$.

(c) _____

(d) (/ 2) If $f(t) = t^2$ and $g(t) = t^2$, then $f(t) * g(t) = \frac{t^5}{30}$.

(d) _____

(e) (/ 2) The number x = 0 is a singular point of the ODE $(x^2 + x)y'' + xy' + y = 0$.

(e) _____

DO NOT WRITE ON THIS PAGE.

For officials use only:

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	10	10	100
Score:							