EXAMPLE

Find the area of the region bounded by the parabola $y = x^2$ and the straight lines y = 0, x = 0, and x = b, where b > 0.

EXAMPLE

Find the area of the region bounded by the parabola $y = x^2$ and the straight lines y = 0, x = 0, and x = b, where b > 0.

EXAMPLE

Find the area of the region bounded by the parabola $y = x^2$ and the straight lines y = 0, x = 0, and x = b, where b > 0.

$$S_n = \sum_{i=1}^n \left(\frac{ib}{n}\right)^2 \frac{b}{n}$$

$$= \frac{b^3}{n^3} \sum_{i=1}^n i^2$$

$$= \frac{b^3}{n^3} \frac{n(n+1)(2n+1)}{6}$$

EXAMPLE

Find the area of the region bounded by the parabola $y = x^2$ and the straight lines y = 0, x = 0, and x = b, where b > 0.

$$S_n = \sum_{i=1}^n \left(\frac{ib}{n}\right)^2 \frac{b}{n}$$

$$= \frac{b^3}{n^3} \sum_{i=1}^n i^2$$

$$= \frac{b^3}{n^3} \frac{n(n+1)(2n+1)}{6},$$

Hence, the required area is

$$A = \lim_{n \to \infty} S_n = \lim_{n \to \infty} b^3 \frac{(n+1)(2n+1)}{6n^2} = \frac{b^3}{3}$$
 square units.

Partitions

Let P be a finite set of points arranged in order between a and b on the real line, say

$$P = \{x_0, x_1, x_2, x_3, \ldots, x_{n-1}, x_n\},\$$

where $a = x_0 < x_1 < x_2 < x_3 < \cdots < x_{n-1} < x_n = b$. Such a set P is called a partition of [a, b].

Partitions

Let P be a finite set of points arranged in order between a and b on the real line, say

$$P = \{x_0, x_1, x_2, x_3, \ldots, x_{n-1}, x_n\},\$$

where $a = x_0 < x_1 < x_2 < x_3 < \cdots < x_{n-1} < x_n = b$. Such a set P is called a **partition** of [a, b]. The length of the ith subinterval of P is

$$\Delta x_i = x_i - x_{i-1}, \quad (\text{for } 1 \le i \le n)$$

and we call the greatest of these numbers Δx_i the **norm** of the partition P and denote it ||P||:

$$||P|| = \max_{1 \le i \le n} \Delta x_i.$$

Riemann Sums

Riemann Sums

If A_i is that part of the area under y = f(x) and above the x-axis that lies in the vertical strip between $x = x_{i-1}$ and $x = x_i$, then

$$f(l_i) \Delta x_i \leq A_i \leq f(u_i) \Delta x_i$$
.

Riemann Sums

If A_i is that part of the area under y = f(x)and above the x-axis that lies in the vertical strip between $x = x_{i-1}$ and $x = x_i$, then

$$f(l_i) \Delta x_i \leq A_i \leq f(u_i) \Delta x_i$$
.

The lower (Riemann) sum, L(f, P), and the upper (Riemann) sum, U(f, P), for the function f and the partition P are defined by:

$$L(f, P) = f(l_1) \Delta x_1 + f(l_2) \Delta x_2 + \dots + f(l_n) \Delta x_n = \sum_{i=1}^n f(l_i) \Delta x_i,$$

$$U(f, P) = f(u_1) \Delta x_1 + f(u_2) \Delta x_2 + \dots + f(u_n) \Delta x_n = \sum_{i=1}^{n} f(u_i) \Delta x_i.$$

Riemann Sums

EXAMPLE

A lower Riemann sum and an upper Riemann sum for a decreasing function f.

Riemann Sums

Calculate the lower and upper Riemann sums for the function $f(x) = x^2$ on the interval [0, a] (where a > 0), corresponding to the partition P_n of [0, a] into n subintervals of equal length.

Riemann Sums

Calculate the lower and upper Riemann sums for the function $f(x) = x^2$ on the interval [0, a] (where a > 0), corresponding to the partition P_n of [0, a] into n subintervals of equal length.

Solution Each subinterval of P_n has length $\Delta x = a/n$, and the division points are given by $x_i = ia/n$ for i = 0, 1, 2, ..., n. Since x^2 is increasing on [0, a], its minimum and maximum values over the *i*th subinterval $[x_{i-1}, x_i]$ occur at $l_i = x_{i-1}$ and $u_i = x_i$, respectively.

Riemann Sums

Calculate the lower and upper Riemann sums for the function $f(x) = x^2$ on the interval [0, a] (where a > 0), corresponding to the partition P_n of [0, a] into n subintervals of equal length.

Solution Each subinterval of P_n has length $\Delta x = a/n$, and the division points are given by $x_i = ia/n$ for i = 0, 1, 2, ..., n. Since x^2 is increasing on [0, a], its minimum and maximum values over the *i*th subinterval $[x_{i-1}, x_i]$ occur at $l_i = x_{i-1}$ and $u_i = x_i$, respectively.

$$L(f, P_n) = \sum_{i=1}^{n} (x_{i-1})^2 \Delta x = \frac{a^3}{n^3} \sum_{i=1}^{n} (i-1)^2$$

$$= \frac{a^3}{n^3} \sum_{j=0}^{n-1} j^2 = \frac{a^3}{n^3} \frac{(n-1)n(2(n-1)+1)}{6} = \frac{(n-1)(2n-1)a^3}{6n^2},$$

$$U(f, P_n) = \sum_{i=1}^{n} (x_i)^2 \Delta x$$

$$= \frac{a^3}{n^3} \sum_{i=1}^{n} i^2 = \frac{a^3}{n^3} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)a^3}{6n^2}.$$

If P_1 and P_2 are two partitions of [a, b] such that every point of P_1 also belongs to P_2 , then we say that P_2 is a **refinement** of P_1 .

If
$$P_2$$
 is a refinement of P_4 , then we have $L(f,P_1) \leq L(f,P_2) \leq U(f,P_2) \leq U(f,P_2)$.

If P_2 is a refinement of P_1 , then we have $L(f,P_1) \leq L(f,P_2) \leq U(f,P_2) \leq U(f,P_2)$.

Also, given any two partitions P, and P2, we can have a common refinement P by combining these partitions.

If P_2 is a refinement of P_1 , then we have $L(f,P_1) \leq L(f,P_2) \leq U(f,P_2) \leq U(f,P_2)$.

Also, given any two partitions P_1 and P_2 , we can have a common refinement P by combining these partitions. So, $L(f,P_1) \leq L(f,P) \leq U(f,P) \leq U(f,P_2)$

If P_2 is a refinement of P_4 , then we have $L(f,P_1) \leq L(f,P_2) \leq U(f,P_2) \leq U(f,P_2)$.

Also, given any two partitions P, and P2, we can have a common refinement P by combining these partitions. So, $L(f,P_1) \leq L(f,P) \leq U(f,P) \leq U(f,P_2)$ Each lower sum is \leq each upper sum!

Therefore, there is at least one number I such that

 $L(f,P) \leq I \leq U(f,P)$

for any partition P.

(By the completeness of reals!)

DEFINITION

The definite integral

Suppose there is exactly one number I such that for every partition P of [a,b] we have

$$L(f, P) \le I \le U(f, P)$$
.

Then we say that the function f is **integrable** on [a, b], and we call I the **definite** integral of f on [a, b]. The definite integral is denoted by the symbol

$$I = \int_a^b f(x) \, dx.$$

The definite integral of f(x) over [a, b] is a number; it is not a function of x.

$$\int_a^b f(x) \, dx = \int_a^b f(t) \, dt.$$

$$\int_{a}^{b} f(x) dx$$

Integral of f from a to b

EXAMPLE

Show that $f(x) = x^2$ is integrable over the interval [0, a], where a > 0, and evaluate $\int_0^a x^2 dx$.

EXAMPLE

Show that $f(x) = x^2$ is integrable over the interval [0, a], where a > 0, and evaluate $\int_0^a x^2 dx$.

Solution

$$\lim_{n \to \infty} L(f, P_n) = \lim_{n \to \infty} \frac{(n-1)(2n-1)a^3}{6n^2} = \frac{a^3}{3},$$

$$\lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} \frac{(n+1)(2n+1)a^3}{6n^2} = \frac{a^3}{3}.$$

EXAMPLE

Show that $f(x) = x^2$ is integrable over the interval [0, a], where a > 0, and evaluate $\int_0^a x^2 dx$.

Solution

$$\lim_{n \to \infty} L(f, P_n) = \lim_{n \to \infty} \frac{(n-1)(2n-1)a^3}{6n^2} = \frac{a^3}{3},$$

$$\lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} \frac{(n+1)(2n+1)a^3}{6n^2} = \frac{a^3}{3}.$$

If $L(f, P_n) \le I \le U(f, P_n)$, we must have $I = a^3/3$. Thus, $f(x) = x^2$ is integrable over [0, a], and

$$\int_0^a f(x) \, dx = \int_0^a x^2 \, dx = \frac{a^3}{3}.$$

 $\int_{a}^{b} f(x) dx \text{ equals area } R_{1} - \text{area } R_{2} + \text{area } R_{3}$

General Riemann Sums

Let $P = \{x_0, x_1, x_2, \dots, x_n\}$, where $a = x_0 < x_1 < x_2 < \dots < x_n = b$, be a partition of [a, b] having norm $\|P\| = \max_{1 \le i \le n} \Delta x_i$. In each subinterval $[x_{i-1}, x_i]$ of P pick a point c_i (called a tag). Let $c = (c_1, c_2, \dots, c_n)$ denote the set of these tags. The sum

$$R(f, P, c) = \sum_{i=1}^{n} f(c_i) \Delta x_i$$

= $f(c_1) \Delta x_1 + f(c_2) \Delta x_2 + f(c_3) \Delta x_3 + \dots + f(c_n) \Delta x_n$

is called the **Riemann sum** of f on [a, b] corresponding to partition P and tags c.

General Riemann Sums

General Riemann Sums

$$L(f, P) \leq R(f, P, c) \leq U(f, P).$$

$$\inf_{\substack{f \text{ is integrable} \\ \text{on } [a_1b]}} f \text{ is integrable}$$

$$\lim_{\substack{n(P) \to \infty \\ \|P\| \to 0}} R(f, P, c) = \int_a^b f(x) \, dx.$$

THEOREM

If f is continuous on [a, b], then f is integrable on [a, b].

THEOREM

If f is continuous on [a, b], then f is integrable on [a, b].

EXAMPLE

Express the limit $\lim_{n\to\infty}\sum_{i=1}^n\frac{2}{n}\left(1+\frac{2i-1}{n}\right)^{1/3}$ as a definite integral.

Let f and g be integrable on an interval containing the points a, b, and c. Then

$$\int_{a}^{a} f(x) \, dx = 0.$$

(b) Reversing the limits of integration changes the sign of the integral.

$$\int_b^a f(x) \, dx = -\int_a^b f(x) \, dx.$$

(c) An integral depends linearly on the integrand. If A and B are constants, then

$$\int_a^b \left(Af(x) + Bg(x) \right) dx = A \int_a^b f(x) \, dx + B \int_a^b g(x) \, dx.$$

Let f and g be integrable on an interval containing the points a, b, and c. Then

$$\int_{a}^{a} f(x) \, dx = 0.$$

(b) Reversing the limits of integration changes the sign of the integral.

$$\int_b^a f(x) \, dx = -\int_a^b f(x) \, dx.$$

(c) An integral depends linearly on the integrand. If A and B are constants, then

$$\int_a^b \left(Af(x) + Bg(x) \right) dx = A \int_a^b f(x) \, dx + B \int_a^b g(x) \, dx.$$

(d) An integral depends additively on the interval of integration.

$$\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx.$$

Additivity for definite integrals:

$$\int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \int_a^c f(x) \, dx$$

(e) If $a \le b$ and $f(x) \le g(x)$ for $a \le x \le b$, then

$$\int_a^b f(x) \, dx \le \int_a^b g(x) \, dx.$$

(f) The triangle inequality for sums extends to definite integrals. If $a \le b$, then

$$\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx.$$

(g) The integral of an odd function over an interval symmetric about zero is zero. If f is an odd function (i.e., f(-x) = -f(x)), then

(h) The integral of an even function over an interval symmetric about zero is twice the integral over the positive half of the interval. If f is an even function (i.e., f(-x) = f(x)), then

$$\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx.$$

area R_1 + area R_2 = 2 area R_2

EXAMPLE

Evaluate

(a)
$$\int_{-2}^{2} (2+5x) dx$$
, (b) $\int_{0}^{3} (2+x) dx$, and (c) $\int_{-3}^{3} \sqrt{9-x^2} dx$.

A Mean-Value Theorem for Integrals

THEOREM The Mean-Value Theorem for integrals

If f is continuous on [a, b], then there exists a point c in [a, b] such that

$$\int_a^b f(x) \, dx = (b-a)f(c).$$

DEFINITION

Average value of a function

If f is integrable on [a, b], then the average value or mean value of f on [a, b], denoted by \bar{f} , is

$$\bar{f} = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

EXAMPLE

Find the average value of f(x) = 2x on the interval [1, 5].

Piecewise continuous functions

Let $c_0 < c_1 < c_2 < \cdots < c_n$ be a finite set of points on the real line. A function f defined on $[c_0, c_n]$ except possibly at some of the points c_i , $(0 \le i \le n)$, is called **piecewise continuous** on that interval if for each i $(1 \le i \le n)$ there exists a function F_i continuous on the *closed* interval $[c_{i-1}, c_i]$ such that

$$f(x) = F_i(x)$$
 on the *open* interval (c_{i-1}, c_i) .

In this case,

Piecewise continuous functions

Let $c_0 < c_1 < c_2 < \cdots < c_n$ be a finite set of points on the real line. A function f defined on $[c_0, c_n]$ except possibly at some of the points c_i , $(0 \le i \le n)$, is called **piecewise continuous** on that interval if for each i $(1 \le i \le n)$ there exists a function F_i continuous on the *closed* interval $[c_{i-1}, c_i]$ such that

$$f(x) = F_i(x)$$
 on the *open* interval (c_{i-1}, c_i) .

In this case,

$$\int_{c_0}^{c_n} f(x) \, dx = \sum_{i=1}^n \int_{c_{i-1}}^{c_i} F_i(x) \, dx.$$

EXAMPLE Find
$$\int_0^3 f(x) \, dx$$
, where $f(x) = \begin{cases} \sqrt{1 - x^2} & \text{if } 0 \le x \le 1 \\ 2 & \text{if } 1 < x \le 2 \\ x - 2 & \text{if } 2 < x \le 3. \end{cases}$