МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) КАФЕДРА МОЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Машинное обучение»

Тема: Предобработка данных

Студент гр. 8304	 Сергеев А.Д.
Преподаватель	

Санкт-Петербург 2021

Цель работы.

Ознакомиться с методами предобработки данных из библиотеки Scikit Learn.

Ход работы.

Данные были загружены в датафрейм, ненужные аттрибуты исключены. Полученные данные:

Исхо	дные н	аборы данных				
	age			ejection_fraction	platelets	V
0	75.0		582	20		
1	55.0		7861	38	263358.03	
2	65.0		146	20	162000.00	
3	50.0		111	20	210000.00	
4	65.0		160	20	327000.00	
294	62.0		61	38	155000.00	
295	55.0		1820	38	270000.00	
296	45.0		2060	60	742000.00	
297	45.0		2413	38		
298	50.0		196	45	395000.00	
	serum		serum_sodium			
0		1.9	130			
1		1.1	136			
2		1.3	129			
3		1.9	137			
4		2.7	116			
294		1.1	143			
295		1.2	139			
296		0.8	138			
297		1.4	140			
298		1.6	136			
				<u> </u>		

Рисунок 1 - исходные данные в датафрейме

Были построены гистограммы признаков:

Рисунок 2 — гистограммы исходных данных

На основании гистограмм были определены диапазоны и медианы для каждого из признаков:

Название признака	Минимум	Максимум	Медиана
age	40	95	60
creatinine_phosphokinase	23	7861	250
ejection_fraction	14	80	38
platelets	25100	850000	262000
serum_creatinine	0.5	9.4	1.1
serum_sodium	113	148	137

Датафрейм преобразован к двумерному массиву.

Была настроена стандартизация на основе первых 150 наблюдений, после чего все данные были стандартизованы при помощи *StandartScaler*. Были построены гистограммы стандартизованных данных:

Рисунок 3 — гистограммы стандартизованных данных

По внешнему виду гистограммы стандартизованных данных похожи на гистограммы исходных данных. Масштаб оси ординат остался прежним, а масштаб оси абсцисс сильно изменился. В общем можно сказать, что значения на оси абсцисс на всех графиках принадлежат промежутку [-10 .. 10].

Для каждого параметра были высчитаны значения математического ожидания и среднеквадратического отклонения до и после стандартизации:

Название признака	МО до	МО после	СКО до	СКО после
age	60.834	-0.170	11.875	0.954
creatinine_phosphok inase	581.839	-0.021	968.664	0.814
ejection_fraction	30.084	0.011	11.815	0.906
platelets	263358.029	-0.035	97640.548	1.015
serum_creatinine	1.394	-0.109	1.033	0.885
serum_sodium	136.625	0.038	4.405	0.970

Из полученных данных можно сделать вывод о том, что для стандартизации данных была использована формула: $z \approx (x - u) / s$, где x — исходное значение, u — математическое ожидание параметра, s — среднеквадратическое отклонение параметра.

Значения полей *mean_* и *var_* объекта *scaler* подтверждают прдположение:

Название признака	scaler.mean_	scaler.var_
age	62.947	154.997
creatinine_phosphokinase	607.153	1415488.823
ejection_fraction	37.947	170.024
platelets	266746.749	9252860499.079
serum_creatinine	1.521	1.361
serum_sodium	136.453	26.608

Была проведена настройка стандартизации на всех данных. Результаты стали точнее, так как значения математического ожидания приблизились к 0, а среднеквадратичееского отклонения — к 1.

Рисунок 4 — гистограмма приведенных к диапазону данных

По внешнему виду гистограммы приведенных к диапазону данных похожи на гистограммы исходных данных. Масштаб оси ординат остался прежним, а масштаб оси абсцисс изменился, теперь все данные принадлежат отрезку [0, 1].

Таблица, в которой указаны минимальные и максимальные значения для каждого признака, была приведена выше. Значения не изменились.

Данные были трансормированы с помощью *MaxAbsScaler* и *RobustScaler*. Были построены гистограммы:

Рисунок 5 — гистограмма данных, обработанных *MaxAbsScaler*

Рисунок 6 - гистограмма данных, обработанных RobustScaler

Основываясь на документации *MaxAbsScaler* и *RobustScaler*, можно сказать, что первый также приводит данные к диапазону [0, 1], а второй — к интерквартильному диапазону (между 25 и 75 квантилью).

Для того, чтобы привести данные к диапазону [-5, 10] достаточно передать в конструктор *MinMaxScaler* параметр *feature_range*, равный кортежу (-5, 10).

Данные были обработаны QuantileTransformer для получения равномерного распределения:

Рисунок 7 — гистограмма равномерно распределенных данных

По внешнему виду гистограммы равномерно распределенных данных не похожи на гистограммы исходных данных.

Параметр *n_quantiles* представляет из себя количество фрагментов, на которое будет разбита квантильная функция при вычислении. Согласно документации, максимально точное значение дает количество квантилей, равное количеству измерений.

При передаче в конструктор *QuantileTransformer* параметра *output_distribution*, равного "normal", данные будут распределены нормально:

Рисунок 8 — нормально распределенные данные при помощи QuantileTransformer

Такжеданные могут быть обработаны и распределены нормально при использовании *PowerTransformer*.

Рисунок 9 — нормально распределенные данные при помощи PowerTransformer

Была проведене дискретизация данных с использованием KBinsDiscretizer.

Рисунок 10 — дискретизированные данные при помощи KBinsDiscretizer

Количество столбцов в гистограмме определенного признака равно значению параметра n_bins для него. Внешний вид гистограммы похож на внешний вид гистограммы исходных данных с уменьшенным количеством столбцов.

Через параметр *bin_edges_* были получены границы диапазонов для каждого признака:

Название признака	scaler.bin_edges_
age	[40. 55. 65. 95.]
creatinine_phosphokinase	[23. 116.5 250. 582. 7861.]
ejection_fraction	[14. 35. 40. 80.]
platelets	[25100. 153000. 196000. 221000. 237000. 262000. 265000. 285200. 319800. 374600. 850000.]
serum_creatinine	[0.5 1.1 9.4]
serum_sodium	[113. 134. 137. 140. 148.]

Выводы.

В ходе лабораторной работы было успешно произведено ознакомление с методами предобработки данных из библиотеки Scikit Learn.