Analyse I – Série 4

Exercice 1. (Raisonnement par récurrence)

Démontrer par récurrence que pour tout $n \in \mathbb{N}^*$

i)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 (progression arithmétique);

ii)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 (somme de carrés d'entiers);

$$iii)$$
 $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$ (somme des inverses des produits de deux entiers successifs);

$$iv$$
) $\sum_{k=1}^{n} k^3 = \left(\frac{1}{2}n(n+1)\right)^2$ (somme de cubes d'entiers).

v) Calculer
$$S = \sum_{k=0}^{1000} (k+1)(3k+2)$$
.

vi) Calculer
$$T = \sum_{k=1}^{476} (k^2 - (k-1)^2).$$

Exercice 2. (Raisonnement par récurrence)

Soit pour $n \in \mathbb{N}$ les nombres de Fermat $F_n := 2^{(2^n)} + 1$. Démontrer, pour $n \in \mathbb{N}^*$, la relation de récurrence

$$F_n = \prod_{k=0}^{n-1} F_k + 2 \ .$$

Exercice 3. (Encore une somme)

Trouver une expression pour $\sum_{k=0}^{n} (a+kd)$ pour tout couple $a,d \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, et la démontrer par récurrence.

Exercice 4. (Binôme de Newton)

Soit $k, n \in \mathbb{N}$, avec $0 \le k \le n$. On définit le coefficient binomial C_n^k par

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!} .$$

i) Vérifier que pour tout $n \ge k \ge 1$:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} .$$

ii) Montrer que pour tous les nombres x, y et tout $n \in \mathbb{N}^*$ on a la formule du binôme de Newton

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} .$$

iii) En déduire que

$$2^n = \sum_{k=0}^n \binom{n}{k}.$$

Exercice 5. (Nombres de Fibonacci)

Les nombres de Fibonacci sont définis comme suit:

$$f_1 = f_2 = 1,$$
 $f_{n+2} = f_n + f_{n+1}.$

Vérifier par récurrence la propriété des coefficients binomiaux

$$\sum_{k=0}^{n} \binom{n-k}{k} = f_{n+1}.$$

(par convention on suppose que $\binom{p}{q} = 0$ si q > p). Astuce: Utiliser propriété i) de l'Exercice 4.

Exercice 6. (Infimum, supremum)

Soit
$$a_n = \frac{5n}{2n+1}$$
, $n \in \mathbb{N}$. Calculer

i) inf a_n ii) sup a_n

Exercice 7. (Infimum, supremum)

Déterminer si la suite (a_n) est monotone; trouver, s'il existe, le supremum et l'infimum et décider s'il s'agit d'un maximum ou d'un minimum.

$$i) \ a_n = n^2 - 4n + 1, \ n \in \mathbb{N}$$

$$ii)$$
 $a_n = \frac{n}{3n-1}, n \in \mathbb{N}^*$

2

$$ii)$$
 $a_n = \frac{n}{3n-1}, n \in \mathbb{N}^*$ $iii)$ $a_n = \frac{n}{3n-1}, n \in \mathbb{N}$

Exercice 8. (Propriétés algébriques de la limite)

Soit $a_n = \frac{3n}{n+2}$, $n \in \mathbb{N}$. Calculer

$$i$$
) $\lim_{n\to\infty} a_n$

$$ii$$
) $\lim_{n\to\infty} \frac{1}{a_n}$

$$i)$$
 $\lim_{n\to\infty} a_n$ $ii)$ $\lim_{n\to\infty} \frac{1}{a_n}$ $iii)$ $\lim_{n\to\infty} \left(\frac{a_n}{3} + \frac{3}{a_n}\right)$