

Indoor Air Quality (IAQ) modelling, application to COVID-19 transmission

Mariam Grigoryan

From June 7th 2021 to July 30th 2021

Supervised by : Mr Christophe Prud'homme / Mrs Zohra Djatouti

Introduction

- The air quality within and around buildings.
- Responsible for 1.5 million to 2 million deaths in 2000.

Indoor air quality facts 1

COVID-19 consequences.

^{1.} https://www.pinterest.fr/pin/534661787013453107/

Internship host

- Cemosis: Strasbourg Center for Modelling and Simulation.
- ► Cemosis ² created in January 2013 by Christophe Prud'homme.
- Cemosis and Synapse-Concept project 4fastsim-ibat ³.
- Reduce and control energy consumption in buildings.
- Air quality of indoor spaces and its consequences⁴.

^{2.} https://www.cemosis.fr/

https://www.cemosis.fr/projects/4fastsim-ibat/

^{4.} http:

^{//}agrohome.com.br/wp-content/uploads/2020/12/DINAMARCA-Produtividade.pdf

Objectives

- ▶ Proceed the model of the airborne transmission of COVID-19.
- Modelling indoor air quality (IAQ) applied to COVID-19's transmission.
- ► Couple the IAQ model with the zero-equation turbulence model.

I.Indoor Air Quality (IAQ)

Indoor air quality 5

 $^{5. \ \}texttt{https://catalysts.basf.com/products-and-industries/indoor-air-quality}$

Different pollutants

- Principal pollutants of indoor air :
 - Chemical pollutants : volatile organic compounds (VOCs), nitrogen oxides (NOx), carbon monoxide (CO)...
 - Biological contaminants : moulds, pets , pollens \dots
 - Particles and fibers : asbestos, artificial mineral fibers...
- ► Main sources of residential buildings :
 - Mold,
 - Tabacco smoke,
 - Household Products,
 - Carpet,
 - Pet Dander...

Effects of nefarious IAQ

- Major effects on comfort and health,
- ► Simple discomforts :
 - drowsiness
 - eye and skin irritation
 - lost productivity at work.
- Severe pathologies :
 - respiratory allergies,
 - asthma,
 - cancer,
 - poisoning...
- Sick Building Syndrome (SBS).
- Causes and solutions.

Recommendations to enhance IAQ

- Indoor Air Quality top 5 most urgent environmental risks to public health.
- ► Major recommendations :
 - eliminate individual sources of pollution or to reduce their emissions.
 - increase the amount of outdoor air coming indoors.
 - air cleaners collecting pollutants from indoor air.

Modeling IAQ

- ► Three principal categories of models.
- Statistical :
 - estimate the distribution of indoor pollutant exposures,
 - using Monte Carlo techniques to combine the databases.
- ► Mass balance :
 - estimate the impacts of sources, sinks and IAQ control options on pollutant concentrations.
- Computational fluid dynamics (CFD) :
 - room air movement and contaminant transport application.
 - incompressible, inviscid, irrotational fluid.

ARD Equation

The advection-reaction-diffusion equation :

$$\frac{\partial C}{\partial t} = \nabla . (K \nabla C) - \nabla . (\overrightarrow{V} C) + S.$$

ightharpoonup C = concentration of airborne infectious particles (particles/ m^2 t =time(s)

 ∇ = two-dimensional gradient operator

K = isotropic eddy diffusion coefficient (turbulent diffusion)

 \overrightarrow{V} = advection velocity of the air $(m.s^{-1})$

S = sum of sources and sinks of viral particles.

II. COVID-19 transmission

- ▶ The COVID-19 virus since december 2019.
- ▶ Pandemic declared on 11th March 2020.
- Overs 200 million confirmed cases and 4.36 million deaths.
- ▶ 81% moderate symptoms, 14% severe and 5% critical symptoms.
- ▶ 4.45 billion vaccine doses administered.

Transmission's modes

Figure - Transmission and the infection of COVID-19.

. 6

^{6.} https://world-heart-federation.org/resource/covid-19-transmission/

Focus on models

- Data-driven models.
- Exemple of Italy.
- ▶ Importance of strong social-distancing strategies.

Our model

- Based on ADR equation.
- An infectious person talking or breathing with or without a mask S_{inf} .
- ▶ The room contains an air-conditioning unit.
- The airborne particles transported by advection caused by the airflow.
- ▶ The infectious particles are removed due to three factors :
 - the ventilation system (S_{vent}) , biological deactivation of the virus (S_{deact}) ,
 - gravitational settling of the virus (S_{set}) .

$$rac{\partial \textit{C}}{\partial t} +
abla . (ec{\textit{v}}\textit{C}) -
abla . (\textit{K}
abla \textit{C}) = \textit{S}_{\textit{inf}} - \textit{S}_{\textit{vent}} - \textit{S}_{\textit{deact}} - \textit{S}_{\textit{set}}$$

▶ The eddy diffusion coefficient $K(m^2/s)$:

$$K = c_v Q (2c_\epsilon V N^2)^{1/3}$$

Modelling environment and tools

- ▶ Using Feel++ finite library.
- Coefficient Form PDEs described by ⁷

$$d\frac{\partial u}{\partial t} + \nabla \cdot \left(-c\nabla u - \alpha u + \gamma \right) + \beta \cdot \nabla u + \mathsf{a} u = \mathsf{f} \quad \mathsf{in} \quad \Omega$$

- d : damping or mass coefficient
- c : diffusion coefficient
- ightharpoonup lpha : conservative flux convection coefficient
- $ightharpoonup \gamma$: conservative flux source term
- $\triangleright \beta$: convection coefficient
- a : absorption or reaction coefficient
- ▶ *f* : source term

^{7.} https://docs.feelpp.org/toolboxes/0.109/cfpdes/introduction.html

Application

- Assumptions:
 - the advection-diffusion-reaction equation governs the concentration of the virus.
 - particles released with zero initial velocity.
 - only one infectious person in the room.

Figure – Schematic of the modelled room. One infectious person is located at the centre of the room.

Application(folow-up)

▶ Unwraping the loop surface of the airflow to the two-dimensional domain $(\xi, y) \in [0, 2l] \times [0, w]$.

- ► Boundary conditions :
 - C(0, y, t) = C(2I, y, t) at the wall $\xi = 0$.

-
$$\frac{\partial C}{\partial \xi}(0,y,t) = \frac{\partial C}{\partial \xi}(2I,y,t)$$
 at $\xi = 2I$.

-
$$\frac{\partial C}{\partial y}(\xi, 0, t) = \frac{\partial C}{\partial y}(\xi, w, t) = 0$$
 at $y = 0, w$.

References

- Coronavirus disease(COVID-19) updatehttps://www.who.int/bangladesh/emergencies/ coronavirus-disease-(covid-19)-update
- Z. Lau, K. Kaouri, I. Griffiths. Modelling Airborne Transmission of COVID-19 in Indoor Spaces Using an Advection-Diffusion-Reaction Equation. School of Mathematics, Cardiff University and Mathematical Institute, University of Oxford.
- ▶ B. Zhao and X. Li. A simplified system for indoor airflow simulation. Building and Environment © April 2003
- Zohra Djatouti, Christophe Prud'homme, Vincent Chabannes, Romain Hild. 4FastSim-IBat
- https:
 //twitter.com/T_Fiolet/status/1378989583682179075?s=09