Learning of Artificial Neural Networks

Sudong Lee

sudonglee@ulsan.ac.kr

https://dais.ulsan.ac.kr/

Goal

"Understand how to learn an artificial neural network using training data."

Contents

- Forward propagation
- Cost evaluation
- Backpropagation

Operation of Multilayer Perceptron

"The MLP operation consists of ① Forward Propagation, ② Cost Evaluation, and ③ Backpropagation."

Forward Propagation

Forward Propagation

"Input data propagate to the output layer through forward propagation. This is called inference."

Feedforward Network

"Input data propagate forward with recursive aggregation and activation."

How Neural Networks work? Neurons:

Input layer

$$\boldsymbol{x}^T = [x_1, x_2, \dots, x_p].$$

Input layer → Hidden layer

$$h_j^{(1)} = f\left(\sum_{i=1}^n w_{i,j}^{(1)} x_i + b_j^{(1)}\right)$$
 where $f(\cdot)$ is an activation function.

■ Hidden layer → Hidden layer

$$h_j^{l+1} = f\left(\sum_{i=1}^{k_l} w_{i,j}^{(l+1)} h_i^{(l)} + b_j^{(l+1)}\right)$$
 for $l = 1, ..., L$.

Hidden layer → Output layer

$$y_j = f\left(\sum_{i=1}^{k_L} w_{i,j}^{(L+1)} h_i^{(L)} + b_j^{(L+1)}\right).$$

Matrix Formulation of Forward Propagation

"Matrix formulation simply represents the operations of forward propagation."

1 Forward Propagation

•
$$\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_p \end{bmatrix}^T$$
 $(1 \times p)$

•
$$X = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$$
. $(p \times n)$

•
$$X^T = [x_{i,j}]$$
 for $i = 1, ..., n; j = 1, ..., p$. $(n \times p)$

•
$$H^T = [h_{i,j}]$$
 for $i = 1, ..., n; j = 1, ..., k$. $(n \times k)$

•
$$\mathbf{W}^{(l+1)} = [w_{i,j}^{(l+1)}]$$
 for $i = 1, ..., k_l; j = 1, ..., k_{l+1}$. $(k_l \times k_{l+1})$

•
$$\mathbf{H}^{(l+1)^T} = f(\mathbf{H}^{(l)^T} \mathbf{W})$$
. $(n \times k_{l+1})$

Determination of Layers

"The input layer is given, the hidden layers are user-defined, and the output layer depends on the task."

1 Forward Propagation Input Layer Hidden Layer(s) **Output Layer** Given **User-defined** (# of layers and neurons,

Task	# of Output Neurons	Activation Function of Output Neurons
Regression	Equal to # of <i>y</i> 's.	Linear
Classification	Equal to # of classes (one if binary)	Softmax

activation function type, ...)

One-hot Encoding and Softmax for Multi-class Classification

"Input data propagate to the output layer through forward propagation. This is called inference."

Softmax Activation Function

"Softmax transforms a vector of real numbers into a probability distribution, where each output is between 0 and 1, and the sum of all output values equals 1."

Definition. Softmax function

$$\sigma(x_j) = \frac{e^{x_j}}{\sum_{x_j \in x} e^{x_j}}$$

(ex)
$$\mathbf{x} = [x_1, x_2, x_3] = [2.0, 1.0, 0.1]$$

$$\sigma(x_1) = \frac{e^{2.0}}{e^{2.0} + e^{1.0} + e^{0.1}} \approx 0.66, \ \sigma(x_2) = \frac{e^{1.0}}{e^{2.0} + e^{1.0} + e^{0.1}} \approx 0.24, \ \sigma(x_3) = \frac{e^{0.1}}{e^{2.0} + e^{1.0} + e^{0.1}} \approx 0.10$$

$$\sigma(\mathbf{x}) = [\sigma(x_1), \sigma(x_2), \sigma(x_3)]$$

$$y_c = \arg\max\sigma(\mathbf{x}) = \arg\max[0.66, 0.24, 0.10] = 1 \text{ ('Apple')}$$

"Errors are computed by comparing the actual and predicted values."

"How can I give the best feedback to the network for further improvement?"

"The actual and predicted target values are compared by a pre-defined loss function."

- Loss function' vs 'Cost function' *
 - A loss function, ℓ , computes the distance between the actual y and \hat{y} .
 - A cost function, \mathcal{L} , averages the losses over an entire training data.
- Different types of loss functions
 - Numerical (for regression)
 - Squared error loss: $\ell(y, \hat{y}) = (y \hat{y})^2$
 - Mean squared error (MSE): $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - Categorical (classification):
 - Binary Cross entropy loss: $\ell(y, \hat{y}) = -[y \log \hat{y} + (1 y) \log(1 \hat{y})]$
 - Binary cross entropy error: $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log \hat{y}_i + (1 y_i) \log (1 \hat{y}_i)]$

Cross Entropy

"Cross entropy measures the difference between the predicted and actual probability distribution for the output."

Entropy

• Definition. *Entropy*

For a random variable X with possible values in the set \mathcal{X} and a probability distribution p,

the entropy H(X) is defined as:

'information', 'surprise', or 'uncertainty'

$$H(X) = E\left[\log\frac{1}{x}\right]$$

For a discrete random variable X,

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log(x)$$

• Entropy measures the *unpredictability* or *information content* associated with a random variable's possible values.

Cross-Entropy

"Cross-entropy measures the difference between the predicted and actual probability distribution for the output."

Cross-Entropy

• Definition. Cross-Entropy

The cross-entropy of the distribution q relative to a distribution p over a given set is defined as follows:

$$H(p,q) = -E_p[\log q]$$

For a discrete random variable X,

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \log(q(x))$$

- Binary cross-entropy loss: $\ell(y, \hat{y}) = -[y \log \hat{y} + (1 y) \log(1 \hat{y})]$
- Categorical cross-entropy loss: $\ell(y, \hat{y}) = -\sum_{j=1}^{C} y_j \log \hat{y}_j$ where C is the number of classes.

MSE vs. Cross-Entropy

"Cross entropy yields more exponential gradient difference than MSE does."

Backpropagation

"How can I give the best feedback to the network for further improvement?"

Backpropagation

"Computes the gradient of the loss function w.r.t. the parameters and updates them to minimize the cost."

Error Correction Using Gradients

"Gradients can provide the direction of error correction at each training iteration."

Error correction

- Error-correction learning, used with supervised learning, compares the predicted output to the desired output value and uses that error to direct the training.
- In the training of ANNs, the cost function represents the current error.

Gradient

• Definition, *Gradient*

In vector calculus, the gradient of a scalar-valued differentiable function f of multiple variables is the **vector field** (or vector-valued function) ∇f whose value at a point p gives the direction and rate of the **fastest increase**.

Recall: Gradient Descent Algorithm

"The algorithm finds the values for the model parameters that minimize the cost function."

Gradient Descent Algorithm

- 1. Calculate the gradient $\nabla_t = \frac{\partial \mathcal{L}}{\partial w}\Big|_{w=w_t}$ where w_t is the value for w at iteration t.
- 2. Update w_t with ∇_t and a learning rate η :

$$w_{t+1} = w_t - \eta \nabla_{\mathbf{t}}$$

3. Calculate V_{t+1} .

Stop if the stopping criteria are met. (i.e., $V_{t+1} < \delta$)

Otherwise, repeat step 1.

Derivation of the Gradients Using Chain Rule

"How can we compute the gradients of loss w.r.t. the parameters, w and b?"

- "Loss as a function of w and b."
 - $\ell(y, \hat{y}) = \ell(y, NN(x; \mathbf{w}, \mathbf{b}))$: must be very complex.
 - But if we think of it simply, $y = f\left(g\left(f\left(g\left(...f\left(g(x; \boldsymbol{w}, \boldsymbol{b})\right)\right)\right)\right)\right)$.
- Chain rule
 - The chain rule is a formula to compute the derivative of a composite function.

•
$$[f(g(x))]' = f'(g(x))g'(x) \Rightarrow \frac{df}{dx} = \frac{df}{dg}\frac{dg}{dx}$$

Understanding of Backpropagation

Computational graph: grocery shopping

Understanding of Backpropagation

Understanding of Backpropagation

Computational Graph of MLP

•
$$net_j = \sum_i (w_{ij}out_i + b_j)$$

•
$$out_j = f(net_j)$$

•
$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial out_j} \frac{\partial out_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ij}}$$

Computational Graph of MLP: Output Layer

•
$$net_j = \sum_i w_{ij} out_i + b_j$$

•
$$out_j = f(net_j)$$

•
$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial out_j} \frac{\partial out_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ij}}$$

$$\Rightarrow \frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial out_j} \frac{\partial out_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ij}} = \left(out_j - target_j\right) \times f'(net_j) \times out_i$$

Computational Graph of MLP: Hidden Layer

•
$$net_j = \sum_i w_{ij} out_i + b_j$$

•
$$out_j = f(net_j)$$

•
$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial out_j} \frac{\partial out_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ij}}$$

Computational Graph of MLP: Hidden Layer

•
$$net_j = \sum_i w_{ij} out_i + b_j$$

•
$$out_j = f(net_j)$$

•
$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial out_j} \frac{\partial out_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ij}}$$

$$\delta_k = \frac{\partial E}{\partial out_k} \frac{\partial out_k}{\partial net_k}$$

$$\Rightarrow \frac{\partial E}{\partial w_{ij}} = \delta_j out_j$$

where
$$\delta_j = \begin{cases} (out_j - t_j)f'(net_j), & \text{for an output unit } j \\ \sum_k w_{jk} \delta_k, & \text{for a hidden unit } j \end{cases}$$

Takeaways

Operation of Multilayer Perceptron

"The MLP operation consists of ① Forward Propagation, ② Cost Evaluation, and ③ Backpropagation."

Thank you! 🙂

