

Multisizer 4e data: C:\cell_counter_results\Felix\JF_PBR_day29_T7_03.#m4

Preference file: C:\Multisizer4e\SOP\Default.prf

File ID: JF_PBR_day29_T7

Comment: 50uL sample

Run number: 817

Electrolyte: BCI ISOTON II

Dispersant: None

Aperture: $30 \, \mu m$ Kd: 44.324

Aperture current: 600 µA Preamp gain: 4

Size bins: 400 from 0.6 µm to 18 µm, log diameter

Total count: 2412 (Coincidence corrected)

Count > 0.6 µm: 2451 Coincidence corrected: 2464

Coincidence correction: 0.5%

Control mode: Volumetric, 50 µL Elapsed time: 13.94 seconds Acquired: 11:33 26 Mar 2019

Electrolyte volume: 10 mL Analytic volume: 50 µL Sample: 0.05 mL

Multisizer 4e data: C:\cell_counter_results\Felix\JF_PBR_day29_T7_02.#m4

Preference file: C:\Multisizer4e\SOP\Default.prf

File ID: JF_PBR_day29_T7

Comment: 50uL sample

Run number: 816

Electrolyte: BCI ISOTON II

Dispersant: None

Aperture: 30 µm Kd: 44.324

Aperture current: 600 µA Preamp gain: 4

Size bins: 400 from 0.6 µm to 18 µm, log diameter

Total count: 3651 (Coincidence corrected)

Count > 0.6 µm: 3697 Coincidence corrected: 3729

Coincidence correction: 0.9%

Control mode: Volumetric, 50 µL Elapsed time: 13.79 seconds Acquired: 11:33 26 Mar 2019

Electrolyte volume: 10 mL Analytic volume: 50 µL Sample: 0.05 mL

Multisizer 4e data: C:\cell_counter_results\Felix\JF_PBR_day29_T7_01.#m4

Preference file: C:\Multisizer4e\SOP\Default.prf

File ID: JF_PBR_day29_T7

Comment: 50uL sample

Run number: 815

Electrolyte: BCI ISOTON II

Dispersant: None

Aperture: $30 \, \mu m$ Kd: 44.324

Aperture current: 600 µA Preamp gain: 4

Size bins: 400 from 0.6 µm to 18 µm, log diameter

Total count: 8037 (Coincidence corrected)

Count > 0.6 µm: 8084 Coincidence corrected: 8276

Coincidence correction: 2.4%

Control mode: Volumetric, 50 µL Elapsed time: 13.48 seconds Acquired: 11:32 26 Mar 2019

Electrolyte volume: 10 mL Analytic volume: 50 µL Sample: 0.05 mL

Number Statistics (Arithmetic) JF_PBR_day29_T7_03.#m4

Calculations from 0.600 µm to 18.00 µm

Number: 2412

Mean: 1.125 μm 95% Conf. Limits: 1.089-1.160 μm

Median: 0.735 μm S.D.: 0.88 μm

Mode: 0.603 μm

 d_{10} : 0.620 μm d_{50} : 0.735 μm d_{90} : 2.741 μm

Number Statistics (Arithmetic) JF_PBR_day29_T7_02.#m4

Calculations from 0.600 µm to 18.00 µm

Number: 3651

Mean: 1.158 μm 95% Conf. Limits: 1.128-1.188 μm

Median: 0.749 μm S.D.: 0.92 μm

Mode: $0.623 \, \mu \text{m}$

 d_{10} : 0.624 μm d_{50} : 0.749 μm d_{90} : 2.824 μm

Number Statistics (Arithmetic) JF_PBR_day29_T7_01.#m4

Calculations from 0.600 μm to 18.00 μm

Number: 8037

Mean: 1.030 μm 95% Conf. Limits: 1.013-1.048 μm

Median: $0.718 \mu m$ S.D.: $0.80 \mu m$

Mode: 0.608 μm

 d_{10} : 0.616 μm d_{50} : 0.718 μm d_{90} : 2.576 μm

