## 캡스톤디자인(2) 진행상황

MOTUS+ER



1 시스템 구조도

2 ROS로봇제어

3 공기질 데이터

4 공간 분할

## 시스템 구조도



## ROS 로봇제어: GPIO 제어



#### 우분투에 ROS 패키지 생성

- 키보드 입력을 처리하는 노드를 포함하는 패키지
- 키보드 입력 노드 실행 결과

```
haneul@haneul-ubuntu:~$ rostopic echo /
/motor_command /rosout /rosout_agg
haneul@haneul-ubuntu:~$ rostopic echo /motor_command
data: "go"
---
data: "back"
```

#### 명령 전송 노드 생성

- KEYBOARD\_CONTROL\_NODE.PY에 키보 드 입력을 받아 라즈베리파이로 명령을 전송 하는 노드를 생성
- 키보드를 누를 때 DATA가 잘 발행되고 있음

```
pi@raspberrypi:~ $    rosrun my_robot_control motor_control_node.py
      [1712228148.983095]: Received command: go
       [1712228150.367679]: Received command: right
       [1712228152.241264]: Received command: back
       [1712228153.191740]: Received command: left
       [1712228153.575360]: Received command: right
       [1712228153.879042]: Received command: right
       [1712228154.329703]: Received command: back
       [1712228155.259791]: Received command: right
       [1712228155.607798]: Received command: back
       [1712228156.094460]: Received command: left
       [1712228156.651752]: Received command: back
       [1712228157.343104]: Received command: right
       1712228157.876764]: Received command: back
       [1712228162.570102]: Received command: go
       [1712228163.058290]: Received command: right
```

#### 라즈베리파이 설정

- 라즈베리파이에 패키지를 만들고 GPIO를 제어하는 로직 을 포함한 MOTOR\_CONTROL\_NODE.PY 노드를 생성
- 우분투 컴퓨터로부터 키보드 입력에 해당하는 ROS 메시지를 수신하여 GPIO 핀 상태를 제어
- DATA 값을 잘 받아오고 있음

## ROS 로봇제어: GPIO 제어



실행 결과

## ROS 로봇제어: URDF



#### URDF 모델에 라이다 연결

URDF 모델에 라이다 연결 완료



#### ROBOT MODEL 오류

- 가제보 시뮬레이션시, 요소들의 문제로 인하여 ROBOT MODEL에 오류가 발생함
- 터틀봇을 기반으로 한 코드를 CAREBUDDY에 맞춰서 수정 해야 함

## 공기질 데이터



```
Python 3.7.3 (/usr/bin/python3)
>>> %Run pms7003b_data.py
 2.5um in 0.1L of air : 13
 5.0um in 0.1L of air : 39
 2.5um in 0.1L of air : 13
 5.0um in 0.1L of air : 39
 5.0um in 0.1L of air : 39
2.5um in 0.1L of air : 13
5.0um in 0.1L of air : 39
 2.5um in 0.1L of air : 13
 5.0um in 0.1L of air : 39
 2.5um in 0.1L of air : 13
 5.0um in 0.1L of air : 39
2.5um in 0.1L of air : 13
5.0um in 0.1L of air : 40
 2.5um in 0.1L of air : 13
 5.0um in 0.1L of air : 40
 2.5um in 0.1L of air : 13
 5.0um in 0.1L of air : 40
 2.5um in 0.1L of air : 13
 5.0um in 0.1L of air : 40
```



| sensor_data |              |  |
|-------------|--------------|--|
| PK          | UniqueID     |  |
|             | date         |  |
|             | location     |  |
|             | temperature  |  |
|             | humidity     |  |
|             | PM2.5(µg/m³) |  |
|             | CO2(ppm)     |  |

#### PMS7003 미세먼지 센서

- 2.5MM(초미세먼지) 10MM(미세먼지)를 측정하는데 사용
- 낮은 전력소비가 특징이며 배터리 구동장치에 최적
- 데이터는 5초마다 측정

#### MH-Z19 CO2센서

- 현재 사용중인 제품이 400PPM이하는 측정이 안되고 있음
- 설명에서는 0~ 2000이 다 나온다고 하는데 나오지 않음
- 다양한 곳에서의 공기 측정 등 해결책 탐색

#### DB 테이블 구조

## 공간 분할

#### 문제점

- 로봇이 네비게이션이 진행되지 않는 상황에서 원하는 공간으로 가게 하는 구현이 불가능
- 시뮬레이션을 통하여 ROS 명령어를 체크할 필요성을 느낌



#### 매핑

가제보와 터틀봇3을 이용한 시뮬 레이션을 통해 TURTLEBOT HOUSE 공간 매핑



#### 저장된 지도로 분할

IPA\_ROOM\_SEGMENTATION 이용하여 매핑한 지도 분할



#### ROOM 정보 출력

액션 클라이언트 서버 파일을 수정하여
SEGMENTATION한 공간의 ID와
해당 공간의 중심 좌표 출력하여
TXT파일로 저장

## WEEK6계획

| CareBuddy WEEK6 계획 |                    |                             |                   |
|--------------------|--------------------|-----------------------------|-------------------|
| 공기질 데이터            | 센서 동작 프로그램 통합      | ROS 통신 구현                   | _                 |
| URDF               | 가제보 ROBOT MODEL 수정 | _                           | _                 |
| 공간 분할              | ROOM ID를 지도에 시각화   | 입력된 ID의<br>ROOM으로의<br>이동 구현 | 공간 분할 TESTCASE 1차 |

# 감사합니다

MOTUS+ER