

原始圖片經 BGR 轉換成 RGB 後

原始 RGB 圖片的直方圖

經過函數轉化後的圖片

函數轉化後圖片的直方圖

輸入r與s的對照

Table of transformation function to show the mapping from the input gray level rto the output gray level s

r	S
0	-1.32582
0.1	-1.32563
0.2	-1.32545
0.3	-1.32526
0.4	-1.32508
0.5	-1.3249
0.6	-1.32471
0.7	-1.32452
0.8	-1.32434
0.9	-1.32415
1	-1.32397
1.1	-1.32378
1.2	-1.32359
1.3	-1.3234
1.4	-1.32322
1.5	-1.32303
1.6	-1.32284
1.7	-1.32265
1.8	-1.32246
1.9	-1.32228
2	-1.32209
2.1	-1.3219
2.2	-1.32171
2.3	-1.32152

以下為程式碼:

```
import matplotlib.pyplot as plt
import numpy as np
import cv2
import pandas as pd

# 使用 OpenCV 讀取圖檔
img_bgr = cv2.imread('Bird feeding 3 low contrast.tif')

# 因為 opencv 跟 matplot 顯示方法不同 先轉換 BGR 圖片為 RGB 圖片
img_rgb = img_bgr[:, :, ::-1]

plt.imshow(img_rgb)
plt.show()
```

```
plt.hist(img rgb.ravel(), 256, [0, 256]) # 將三維陣列轉換成一維陣列以符合
直方圖邊界為 0-256 計算資料出現的次數
plt.title('origin')
plt.show()
new = (np.arctan((img rgb - 128.0) / 32.0))
plt.imshow(new)
plt.show()
plt.hist(new.ravel(), 256, [0, 256]) # 將三維陣列轉換成一維陣列以符合直方
plt.title('output')
plt.show()
print("Figure of s= T(r)")
x = np.arange(0, 255, 0.1)
y = (np.arctan((x - 128.0)/32.0))
plt.title("Figure of s=T(r)")
plt.xlabel("r")
plt.ylabel("s")
plt.plot(x, y)
plt.show()
df = pd.DataFrame({"r" : x, "s" : y})
df.to_csv("result.csv",index=False) #最後利用 pandas 輸出成 excel
```