A Fast Precise Implementation of 8x8 Discrete Cosine Transform Using the Streaming SIMD Extensions and MMX™ Instructions

Version 1.0

4/99

Order Number: 742474-001

AP-922 Streaming SIMD Extensions—A Fast Precise 8x8 DCT

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel, the Intel logo and Pentium are registered trademarks, and MMX is a trademark of Intel Corporation.

*Third-party brands and names are the property of their respective owners.

Copyright © Intel Corporation 1999

Table of Contents

1	Int	roduction	1					
2	Dis	screte Cosine Transform	1					
	2.1	Algorithmic optimization of DCT	1					
	2.2	Existing SIMD Implementations of DCT	1					
3	Ne	w Precise DCT Implementation Using SIMD Instructions	2					
	3.1	The 8x8 2D DCT: Formulas and Strategy	2					
3.2 The Underlying 1D DCT		The Underlying 1D DCT	3					
	3.3	Computing the 8-element DCTs for rows	5					
	3.4	Computing the 8-element DCTs for columns	6					
4	Ac	curacy: Compliance with IEEE Standard 1180-1990	9					
5	Performance 12							
6	Comparison to Other Fast DCT Algorithms							
7	Co							

References

The following documents are referenced in this application note, and provide background or supporting information for understanding the topics presented in this document.

- 1. N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transform. IEEE Trans. Comput., vol. C-23, pp. 90-93, Jan. 1974.
- 2. K.R. Rao and P. Yip. Discrete Cosine Transform. Algorithms, Advantages, Applications. Academic Press, Inc, London, 1990.
- 3. Z. Wang. Fast algorithms for the discrete W transform and for the discrete Fourier transform. IEEE Trans. Acoust., Speech and Signal Process., vol. ASSP-32, pp. 803-816, Aug. 1984.
- 4. N. Suehiro and M. Hatori. Fast algorithms for the DFT and other sinusoidal transforms. IEEE Trans. Acoust., Speech and Signal Processing, vol. ASSP-34, pp. 642-644, June 1986.
- 5. B.G. Lee. A new algorithm to compute the discrete cosine transform. IEEE Trans. Acoust., Speech and Signal Processing, vol. ASSP-32, no. 6, pp. 1243-1245, Dec. 1984.
- 6. N.I. Cho and S.U. Lee. Fast Algorithm and Implementation of 2-D DCT. IEEE Trans. Circuits and Systems, vol. 38, no. 3, pp. 297-305, Mar 1991.
- 7. E. Feig and S. Winograd. Fast Algorithms for the Discrete Cosine Transform, IEEE Trans. Signal Processing, vol. 40, no. 9, pp. 2174-2193, Sep. 1992.

- 8. C. Loeffler, A. Ligtenberg, and G.S. Moschytz. Practical fast 1-D DCT algorithms with 11 multiplication's. Proc. ICASSP 1989, pp. 988-991, 1989.
- 9. Y. Arai, T. Agui, and M. Nakajima. A fast DCT-SQ scheme for images. Trans. IEICE, vol. E-71, no. 11, pp. 1095-1097, Nov. 1988.
- 10. G. Wallace. The JPEG still picture compression standard. Communications of the ACM, vol. 34, no. 4, pp. 31-44, 1991.
- 11. D. LeGall. MPEG: A video compression standard for multimedia applications. Communications of the ACM, vol. 34, no. 4, pp. 46-58, 1991.
- 12. IEEE Standard Specifications for the Implementations of 8x8 Inverse Discrete Cosine Transform. IEEE Std 1180-1990.
- 13. Intel Architecture Software Developer's Manual. Volume 1: Basic Architecture. Intel Corp., 1997.
- 14. Intel Architecture Optimization Manual. Intel Corp. 1999. Order #730795.
- 15. Using MMXTM Instructions in a Fast iDCT Algorithm for MPEG Decoding. Application Note AP-528.
- 16. Using Streaming SIMD Extensions in a Fast DCT Algorithm for MPEG Encoding. Application Note AP-817.

Revision History

Revision	Revision History	Date
1.0	Original publication of the document	4/99

06.04.99 iv

1 Introduction

The latest generations of 32-bit Intel processors support single instruction, multiple data (SIMD) data processing. Pentium® processors with MMXTM technology and later generations can execute integer SIMD instructions. In addition, Pentium III processors support single-precision floating-point SIMD instructions, as well as other new instructions, collectively referred to as *Streaming SIMD Extensions*.

This application note presents algorithms and code samples of a high-performance implementation of 8x8 Discrete Cosine Transform with precision satisfying IEEE standard 1180-1990. The new algorithm takes approximately 300 clock cycles per transform on processors with MMXTM technology or Pentium III processors.

2 Discrete Cosine Transform

Discrete Cosine Transform (DCT) is widely used in 1D and 2D signal processing. In particular, image processing applications often use the 8x8 2D DCT. There are many algorithms for the direct computation of the 8x8 2D DCT as well as algorithms for 8-element 1D DCTs, which you can use in the row-column method to effectively perform an 8x8 2D DCT [1-9].

2.1 Algorithmic optimization of DCT

Optimization usually focuses on reducing the number of DCT arithmetic operations, especially the number of multiplications. For example, Feig and Winograd proposed one of the fastest 2D 8x8 DCT algorithms [7]. The Loeffler-Ligtenberg-Moschytz (LLM) algorithm [8] and the Arai-Agui-Nakajima (AAN) algorithm [9] are among the fastest known 1D DCTs. Table 1 presents the characteristics of the above DCT algorithms.

Table 1:	Characteristics	of Existing	DCT Algo	rithms
I able I.	Ullai actel istics	OI EXISTING	DO I AIGO	

Algorithm	Operations per	8-element 1D DCT	Operations per 8x8 2D DCT		
	additions	additions multiplications		multiplications	
Feig & Winograd [7]	N/A (direct 2D algorithm)		454	94	
LLM [8]	28	11	448	176	
AAN [9]	29	5	464	144	

All integer DCT implementations encounter serious precision problems. This application note is based on precision requirements for DCTs of 9-bit integer data, set forth in IEEE standard 1180-1990 [12]. Additional recommendations regarding the precision of scaling 2D DCTs (for both forward and inverse transforms) can be found in JPEG and MPEG specifications [10, 11].

2.2 Existing SIMD Implementations of DCT

On the latest Intel processors with the MMX technology [13] or Streaming SIMD extensions [14], DCT code using the new SIMD instructions can run much faster. For example, fast SIMD DCT implementations (based on the 1D AAN algorithm) are described in [15, 16]. However, these implementations are not compliant with IEEE standard 1180-1990.

In SIMD implementations of the DCT, non-arithmetic operations (copying and other auxiliary instructions) have more impact on the overall performance than in scalar implementations. For these reasons, SIMD code of a direct 2D DCT algorithms turns out to be less efficient than the row-column approach.

3 New Precise DCT Implementation Using SIMD Instructions

This application note presents a new fast algorithm for computing the 8x8 DCT with precision satisfying IEEE standard 1180-1990. The new algorithm processes 16-bit integer data and imposes the following restrictions on the input data range:

- input data for the forward DCT must have at most 9-bit values
- input data for the inverse DCT must have at most 12-bit values.

Although the number of *arithmetic* operations in the new algorithm is slightly more than that of [15, 16], its *overall performance* approximately the same as [15, 16], and precision is significantly better.

3.1 The 8x8 2D DCT: Formulas and Strategy

We used the forward 8x8 2D DCT defined by this equation:

$$f_{nm} = \frac{1}{4} c_n c_m \sum_{i=0}^{7} \sum_{i=0}^{7} \cos \frac{\pi n (2i+1)}{16} \cos \frac{\pi m (2j+1)}{16} x_{ij}$$
 (1)

and the corresponding inverse 8x8 2D DCT, defined as follows:

$$x_{ij} = \frac{1}{4} \sum_{n=0}^{7} \sum_{n=0}^{7} \cos \frac{\pi n(2i+1)}{16} \cos \frac{\pi n(2j+1)}{16} c_n c_m f_{nm}, \qquad (2)$$

where $c_0 = 1/\sqrt{2}$ and $c_n = 1$ for n = 1...7. (There exist alternative DCT definitions in which the output of forward DCTs is multiplied by certain coefficients; see [7] for more information.)

The new SIMD DCT implementation uses different computations for 1D transforms for rows and columns. The 1D transform for each row is computed directly, in 32-bit precision. On the other hand, each group of 4 columns is transformed in parallel using 16-bit precision (with additional scaling). Although the 32-bit transforms for rows are relatively slow, the above combination of 1D transforms for rows and columns allows us to *avoid the transposition overhead*.

The forward 2D DCT processes columns first, then rows; the inverse 2D DCT applies the 1D transform to rows first. The intermediate results are stored as 16-bit integer array; they are shifted to the left in order to reduce the subsequent computational errors. To increase the performance, we use a scaling algorithm in which intermediate results are multiplied by scaling coefficients during the 1D row transforms. Effectively, this does not require additional arithmetic operations.

3.2 The Underlying 1D DCT

The direct *N*-element 1D DCT is defined by the following equation:

$$y_n = c_n \sum_{k=0}^{N-1} \cos \frac{\pi n (2k+1)}{2N} x_k \tag{3}$$

and the corresponding inverse 1D DCT by this equation:

$$x_{k} = \sum_{n=0}^{N-1} \cos \frac{\pi n (2k+1)}{2N} c_{n} y_{n},$$
(4)

where
$$c_0 = \frac{1}{\sqrt{N}}$$
 and $c_n = \sqrt{\frac{2}{N}}$ for $n = 1 \dots N - 1$.

We use the same notation as in [7] and let $\gamma(k) = \cos(\pi k/16)$, which allows us to represent the matrix of 8-element 1D DCT as follows:

$$C_{8} = \frac{1}{2} \begin{bmatrix} \gamma(4) & \gamma(4) \\ \gamma(1) & \gamma(3) & \gamma(5) & \gamma(7) & -\gamma(7) & -\gamma(5) & -\gamma(3) & -\gamma(1) \\ \gamma(2) & \gamma(6) & -\gamma(6) & -\gamma(2) & -\gamma(2) & -\gamma(6) & \gamma(6) & \gamma(2) \\ \gamma(3) & -\gamma(7) & -\gamma(1) & -\gamma(5) & \gamma(5) & \gamma(1) & \gamma(7) & -\gamma(3) \\ \gamma(4) & -\gamma(4) & -\gamma(4) & \gamma(4) & \gamma(4) & -\gamma(4) & -\gamma(4) & \gamma(4) \\ \gamma(5) & -\gamma(1) & \gamma(7) & \gamma(3) & -\gamma(3) & -\gamma(7) & \gamma(1) & \gamma(5) \\ \gamma(6) & -\gamma(2) & \gamma(2) & -\gamma(6) & -\gamma(6) & \gamma(2) & -\gamma(2) & \gamma(6) \\ \gamma(7) & -\gamma(5) & \gamma(3) & -\gamma(1) & \gamma(1) & -\gamma(3) & \gamma(5) & -\gamma(7) \end{bmatrix}$$
 (5)

The operator C_8 is orthogonal, therefore we can determine the matrix of inverse 1D DCT by transposing the matrix of the forward 1D DCT: $C_8^{-1} = C_8^T$. (Here A^{-1} denotes the inverse of A, and A^T denotes the transpose of A.)

We now factorize the matrix C_8 as follows:

$$C_8 = \frac{1}{2} \cdot P_8 \cdot M_8 \cdot A_8 \tag{6}$$

where

$$A_{8} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \end{bmatrix}$$

$$(7)$$

$$M_{8} = \begin{bmatrix} \gamma(4) & \gamma(4) & \gamma(4) & \gamma(4) \\ \gamma(2) & \gamma(6) & -\gamma(6) & -\gamma(2) \\ \gamma(4) & -\gamma(4) & -\gamma(4) & \gamma(4) \\ \gamma(6) & -\gamma(2) & \gamma(2) & -\gamma(6) \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ &$$

(White spaces in matrices denote zero entries.) The operator P_8 in (6) performs a permutation of elements in the data vector and does not require arithmetic operations. The symmetric properties of the operator A_8 also allow us to reduce the number of arithmetic operations. (All fast 1D DCTs use the factorization (6) or its analogs. Our new algorithm differs only in the subsequent representation of M_8 .)

06.04.99 4

Since C_8 is orthogonal, the inverse DCT matrix is

$$C_8^{-1} = C_8^T = \frac{1}{2} \cdot A_8^T \cdot M_8^T \cdot P_8^T \tag{10}$$

3.3 Computing the 8-element DCTs for rows

Our direct algorithm for computing forward and inverse DCTs for rows is based on factorizations (6) and (10). It performs all arithmetic operations involved in the operators M_8 and M_8^T – namely, 32 multiplications and 24 additions.

To compute the forward DCT, the algorithm uses the following operations:

Operation MMXTM instructions used

Operator A_8 on 16-bit integers PADDSW and PSUBSW

Operator M_8 (16-bit input, 32-bit results) *PMADDWD* and *PADDD*

Rounding and packing the results to 16-bit *PADDD*, *PSRAD* and *PACKSSDW*

packed word format.

To compute the inverse DCT, we use the operator \boldsymbol{M}_8^T (similar to \boldsymbol{M}_8 , it produces 32-bit intermediate results). Then, the operator \boldsymbol{A}_8^T (implemented using the MMXTM instructions *PADDD* and *PSUBD*) acts on the 32-bit data. Finally, the 16-bit output data are obtained by rounding and packing, similar to the forward DCT.

The algorithm uses real signed constants $\gamma(k)$, as defined in the operator M_8 ; see (8). The constants are scaled as follows:

$$[\gamma(k) \cdot 2^{15} + 0.5]$$
 or $[-\gamma(k) \cdot 2^{15} + 0.5]$,

where $\lfloor x \rfloor$ denotes the integer part of x. The scaled constants stored in 16-bit integer format in an order suitable for applying the *PMADDWD* instruction (constants for the forward and inverse transform are stored in different order).

Note that the column DCTs (described in the next section) use a scaling algorithm, which requires additional multipliers to be used during the row DCTs. Effectively, the operators M_8 and M_8^T are multiplied by a constant which depends on the row number. By properly modifying the tabulated constants once, we avoid additional arithmetic operations in the row DCT.

In addition to arithmetic operations, DCT requires data reordering. This is because the "natural" data storage order differs from the optimal order for computing the operators A_8 and A_8^T . For data reordering, our algorithm uses the MMX instructions PUNPCKLWD and PUNPCKHWD or, on Pentium® III processors, the PSHUFW instructions.

The auxiliary data reordering operations are the only part of the algorithm that uses new instructions of Pentium III processors (if available).

All the above operations are performed for each row in the data matrix. The total numbers of arithmetic operations are 256 additions and 256 multiplications; these numbers do not include auxiliary operations.

The forward DCT for rows takes 96 MMX instructions; the inverse transform takes 128 MMX instructions for arithmetic operations. In addition, it takes approximately 240 instructions to perform auxiliary operations.

3.4 Computing the 8-element DCTs for columns

To compute the 8-element DCTs for columns, we modified an algorithm published in [2] based on original works [3,4]. Originally, the algorithm [2] used 26 multiplications and 16 additions; we transformed it into a scaling algorithm which uses 26 additions and 8 multiplications. (Additional multiplications are now incorporated in the row DCT).

The DCT for columns uses the following factorization of the operator M_8 :

$$M_{s} = D_{s} \cdot B_{s} \cdot E_{s} \cdot F_{s} \tag{11}$$

where

$$D_8 = \begin{bmatrix} \gamma(4) & 0 & 0 & 0 \\ 0 & 0 & \gamma(2) & 0 \\ 0 & \gamma(4) & 0 & 0 \\ 0 & 0 & 0 & \gamma(2) \\ & & & \gamma(1) & 0 & 0 & 0 \\ & & & 0 & 0 & \gamma(3) & 0 \\ & & & & 0 & \gamma(1) & 0 & 0 \end{bmatrix}$$
(12)

In the original DCT algorithm, all non-zero elements in the matrix D_8 are 1, and all the multiplications by scaling constants are incorporated in the operator B_8 . In our algorithm, on the other hand, the 1D column DCT stage performs only computations corresponding to the operators B_8 , E_8 and F_8 . Multiplications

> 7 06.04.99

(15)

corresponding to D_8 are actually performed during the row-by-row DCT stage. The following multipliers are used:

- rows 0 and 4 are multiplied by $\gamma(4)$,
- rows 1 and 7 are multiplied by $\gamma(1)$,
- rows 2 and 6 are multiplied by $\gamma(2)$,
- rows 3 and 5 are multiplied by $\gamma(3)$.

The new constants (fractions) in the operator B_8 can be interpreted as tangents of the corresponding angles, for example:

$$\frac{\gamma(5)}{\gamma(3)} = \frac{\cos(5\pi/16)}{\cos(3\pi/16)} = \tan(3\pi/16)$$

The inverse 1D DCT operator M_8^T is factorized as

$$M_{8}^{T} = F_{8}^{T} \cdot E_{8}^{T} \cdot B_{8}^{T} \cdot D_{8}^{T} \tag{16}$$

All computations in (11) and (16) are performed with 16-bit precision by using MMX instructions. The algorithm uses scaled real coefficients:

$$ICONST = \left[const \cdot 2^{16} + 0.5 \right] \tag{17}$$

they are stored as 16-bit integers.

To perform multiplications, we use the MMXTM instruction **PMULHW** which computes the higher 16 bits of the signed product. If a real constant *const* is greater than 0.5, the corresponding *ICONST* after scaling (17) would contain 1 in the sign bit, which means ICONST would be a negative integer. To compute products $const \cdot x$ correctly, we use the following expression:

$$const \cdot x = PMULHW(ICONST, x) + x$$

For better accuracy of the forward DCT, the algorithm shifts the input data bits to the left. During the row-by-row transform, the intermediate results are shifted to the right. The data for inverse column DCT are already shifted to the left during the row transform. The results are rounded and shifted back to the right.

The DCT of 8 columns requires 208 additions and 64 multiplications. The algorithm processes 4 columns in parallel. The whole DCT takes 70 MMX instructions for arithmetic operations. In addition, auxiliary operations take 80-100 instructions.

4 Accuracy: Compliance with IEEE Standard 1180-1990

The IEEE Standard 1180-1990 [12] sets accuracy requirements for the 8x8 inverse DCT in terms of permissible differences between the actual transform results and the results computed in double-precision floating-point arithmetic:

- mean absolute difference
- standard deviation (or root-mean-square difference)
- other integral characteristics of differences for a large number of input data matrices.

Compliance tests are performed for a large input data set generated with a random number generator (which is also specified in the standard).

Our original implementation of the inverse DCT already had relatively high accuracy; however, it did not comply with the IEEE standard yet. The mean error is 0.004817, whereas the maximum permissible mean error is 0.0015 (see Table 2).

Table 2: Errors in the original DCT implementation for sample data

-0.0078	-0.0094	-0.0083	-0.0090	-0.0096	-0.0084	-0.0095	-0.0092
-0.0112	-0.0141	-0.0104	-0.0117	-0.0105	-0.0135	-0.0126	-0.0122
0.0113	0.0105	0.0115	0.0101	0.0103	0.0123	0.0139	0.0115
0.0079	0.0100	0.0095	0.0093	0.0105	0.0107	0.0084	0.0097
0.0082	0.0118	0.0108	0.0100	0.0090	0.0100	0.0086	0.0118
0.0079	0.0083	0.0079	0.0071	0.0079	0.0075	0.0089	0.0061
0.0128	0.0108	0.0108	0.0113	0.0094	0.0104	0.0121	0.0116
0.0101	0.0103	0.0091	0.0104	0.0098	0.0084	0.0084	0.0108

As seen from Table 2, the computed transform results are biased (the computed results in the first two rows are less than the corresponding exact results; the computed results in the other rows are greater than the corresponding exact results). This bias is because the column transforms used the MMX instruction **PMULHW**, which effectively computed all products

$$x \cdot const$$
 (18)

by truncating the scaled products as follows:

$$\left| \frac{x \cdot ICONST}{2^{16}} \right| \tag{19}$$

where ICONST denotes the integer constant defined in (17). Therefore, in the original implementation of the algorithm the product (18) was actually replaced by $|x \cdot const|$.

This is a biased result; in most cases it is less than the exact result. This appears to be the main cause for errors in the original version of the algorithm.

To reduce the errors in the computed product (18), we could simply use the following formula with round-off correction:

$$x \cdot const + 0.5$$
,

However, the direct implementation of this formula with MMX instructions is inefficient. Below we describe a correction of the computed results in the improved version of our algorithm.

Suppose that we use **PMULHW** instructions to compute a sum of two products

$$A \cdot x + B \cdot y$$
.

Without corrections, the actual computed result would be

$$|A \cdot x| + |B \cdot y|$$
.

The natural correction for the above sum is the following:

$$A \cdot x + B \cdot y + 0.5$$
.

If the input data x and y have independent uniform distributions, then

If we just add 1 to computed sums for all data x and y:

$$|A \cdot x| + |B \cdot y| + 1$$
,

this would considerably reduce the mean error of the sums.

Another correction technique is to increase the computed product (19) by setting the lowest bit of the product to 1.

We found an optimal combination of the above techniques by computational experiment. As a result, our algorithm met and even exceeded the precision requirements of IEEE standard 1180-1990. For the same sample data as in Table 2, our improved algorithm computed the DCT with errors shown in Table 3.

Table 3: Errors in the improved DCT implementation

0.0016	-0.0007	0.0008	-0.0004	0.0005	0.0014	0.0016	0.0006
-0.0004	-0.0014	0.0007	-0.0008	0.0019	0.0010	0.0007	-0.0001
-0.0020	0.0001	-0.0003	-0.0007	-0.0011	-0.0007	0.0002	-0.0004
-0.0020	-0.0001	-0.0006	-0.0002	0.0008	-0.0003	-0.0008	0.0002
-0.0003	0.0012	-0.0001	0.0007	0.0002	-0.0001	-0.0005	0.0010
0.0008	0.0013	0.0011	-0.0015	-0.0002	-0.0006	0.0005	-0.0005
-0.0008	-0.0010	0.0001	0.0014	-0.0001	-0.0001	0.0003	0.0002
-0.0005	0.0001	0.0014	0.0019	-0.0008	0.0001	-0.0013	-0.0005

Now the mean error is 0.00039, which is much less than the permissible mean error 0.0015 specified in the standard.

5 Performance

The performance characteristics of the new 8x8 2D DCT algorithm for 16-bit signed integer data are shown in Table 4. The algorithm's implementation with MMX instructions and Streaming SIMD Extensions is 3 to 3.5 times faster than the implementation that does not use SIMD instructions of either type.

Table 4: 8x8 2D DCT Performance (in clock cycles)

Transform type	Integer implementation	MMX TM instructions	MMX TM instructions and Streaming SIMD Extensions
2D DCT 8x8	970	280	250
2D iDCT 8x8	970	320	290

6 Comparison to Other Fast DCT Algorithms

Other existing fast DCT algorithms optimized for the latest generations of Intel processors are based on the 1D AAN algorithm and take about 250 clock cycles per 8x8 2D DCT [15,16]. However, the results of transform algorithms [15, 16] are presented in *transposed* format. Note also that if the user needs an inverse DCT for the algorithms in [15, 16], this would require auxiliary operations on top of the 250 cycles per transform. These auxiliary operations include shifting the inverse DCT input data to the left, as well as scaling the results of the forward DCT. An estimated overhead for these auxiliary operations in transforms defined in (1) and (2) is 50 to 70 clocks.

Thus, the algorithm presented in this application note has approximately the same performance as those in [15, 16]. At the same time, the new algorithm is compliant with the precision requirements of IEEE standard 1180-1990.

Note that on older processors which do not support SIMD instructions the new algorithm is inferior to existing DCT algorithms: the number of additions is 464, and the number of multiplications is 320 per transform.

7 Code Examples

```
; These examples contain code fragments for first stage iDCT 8x8
; (for rows) and first stage DCT 8x8 (for columns)
mword
       typedef qword
mptr
       equ
              mword ptr
BITS INV ACC = 4
                                         ; 4 or 5 for IEEE
SHIFT_INV_ROW = 16 - BITS_INV_ACC
SHIFT_INV_COL = 1 + BITS_INV_ACC
RND_INV_ROW = 1024 * (6 - BITS_INV_ACC)
                                       ; 1 << (SHIFT_INV_ROW-1)
RND_INV_COL = 16 * (BITS_INV_ACC - 3)
                                         ; 1 << (SHIFT_INV_COL-1)
RND_INV_CORR = RND_INV_COL - 1
                                         ; correction -1.0 and round
BITS_FRW_ACC = 3
                                         ; 2 or 3 for accuracy
SHIFT_FRW_COL = BITS_FRW_ACC
SHIFT_FRW_ROW = BITS_FRW_ACC + 17
RND_FRW_ROW = 262144 * (BITS_FRW_ACC - 1) ; 1 << (SHIFT_FRW_ROW-1)
             .data
            Align 16
one_corr
            sword 1,
round_inv_row dword RND_INV_ROW,
                                          RND_INV_ROW
round_inv_col sword RND_INV_COL, RND_INV_COL, RND_INV_COL, RND_INV_COL
round_inv_corr sword RND_INV_CORR, RND_INV_CORR, RND_INV_CORR, RND_INV_CORR
round_frw_row dword RND_FRW_ROW,
                                          RND_FRW_ROW
            sword 13036, 13036, 13036, 13036 ; tg * (2<<16) + 0.5
 tg_1_16
            sword 27146, 27146, 27146, 27146 ; tg * (2 << 16) + 0.5
 tg_2_16
            sword -21746, -21746, -21746, -21746 ; tg * (2<<16) + 0.5
 tg_3_16
            sword -19195, -19195, -19195 ; cos * (2<<16) + 0.5
cos_4_16
            sword 23170, 23170, 23170, 23170 ; cos * (2<<15) + 0.5
ocos 4 16
; The first stage iDCT 8x8 - inverse DCTs of rows
;-----
; The 8-point inverse DCT direct algorithm
;-----
; static const short w[32] = {
    FIX(\cos_4_{16}), FIX(\cos_2_{16}), FIX(\cos_4_{16}), FIX(\cos_6_{16}),
    \texttt{FIX}(\texttt{cos\_4\_16})\,,\quad \texttt{FIX}(\texttt{cos\_6\_16})\,,\ -\texttt{FIX}(\texttt{cos\_4\_16})\,,\ -\texttt{FIX}(\texttt{cos\_2\_16})\,,
    FIX(cos_4_16), -FIX(cos_6_16), -FIX(cos_4_16), FIX(cos_2_16),
    FIX(cos_4_16), -FIX(cos_2_16), FIX(cos_4_16), -FIX(cos_6_16),
    FIX(cos_1_16), FIX(cos_3_16), FIX(cos_5_16), FIX(cos_7_16),
    FIX(cos_3_16), -FIX(cos_7_16), -FIX(cos_1_16), -FIX(cos_5_16),
    FIX(cos_5_16), -FIX(cos_1_16), FIX(cos_7_16), FIX(cos_3_16),
    FIX(\cos_7_16), -FIX(\cos_5_16), FIX(\cos_3_16), -FIX(\cos_1_16);
; #define DCT_8_INV_ROW(x, y)
```

```
; {
    int a0, a1, a2, a3, b0, b1, b2, b3;
        = x[0] * w[0] + x[2] * w[1] + x[4] * w[2] + x[6] * w[3];
        = x[0] * w[4] + x[2] * w[5] + x[4] * w[6] + x[6] * w[7];
        = x[0] * w[8] + x[2] * w[9] + x[4] * w[10] + x[6] * w[11];
        = x[0] * w[12] + x[2] * w[13] + x[4] * w[14] + x[6] * w[15];
        = x[1] * w[16] + x[3] * w[17] + x[5] * w[18] + x[7] * w[19];
;
        = x[1] * w[20] + x[3] * w[21] + x[5] * w[22] + x[7] * w[23];
;
        = x[1] * w[24] + x[3] * w[25] + x[5] * w[26] + x[7] * w[27];
        = x[1] * w[28] + x[3] * w[29] + x[5] * w[30] + x[7] * w[31];
    y[0] = SHIFT_ROUND (a0 + b0);
    y[1] = SHIFT_ROUND (a1 + b1);
    y[2] = SHIFT_ROUND (a2 + b2);
    y[3] = SHIFT_ROUND (a3 + b3);
    y[4] = SHIFT_ROUND (a3 - b3);
    y[5] = SHIFT ROUND (a2 - b2);
    y[6] = SHIFT ROUND (al - bl);
    y[7] = SHIFT ROUND (a0 - b0);
;
; }
; In this implementation the outputs of the iDCT-1D are multiplied
    for rows 0.4 - by \cos_4_{16},
    for rows 1,7 - by \cos_1_{16},
    for rows 2,6 - by \cos_2_{16},
    for rows 3,5 - by \cos_3_{16}
; and are shifted to the left for better accuracy
; For the constants used,
    FIX(float const) = (short) (float const * (1<<15) + 0.5)
IF MMX
                                    ; MMX code
; Table for rows 0,4 - constants are multiplied by cos_4_16
              16384, 16384, 16384, -16384 ; movq-> w06 w04 w02 w00
tab i 04 sword
                           8867, -21407 ;
       sword
              21407, 8867,
                                                 w07 w05 w03 w01
              16384, -16384, 16384, 16384;
                                                 w14 w12 w10 w08
       sword
              -8867, 21407, -21407, -8867;
                                                 w15 w13 w11 w09
       sword
              22725, 12873, 19266, -22725 ;
                                                 w22 w20 w18 w16
       sword
                     4520, -4520, -12873 ;
       sword
              19266,
                                                 w23 w21 w19 w17
                     4520, 4520, 19266 ;
                                                 w30 w28 w26 w24
       sword
              12873,
       sword -22725, 19266, -12873, -22725 ;
                                                 w31 w29 w27 w25
; Table for rows 1,7 - constants are multiplied by cos_1_16
tab_i_17 sword
              22725, 22725, 22725, -22725 ; movq-> w06 w04 w02 w00
              29692, 12299, 12299, -29692 ;
       sword
                                                 w07 w05 w03 w01
              22725, -22725, 22725, 22725 ;
       sword
                                                 w14 w12 w10 w08
       sword -12299, 29692, -29692, -12299;
                                                 w15 w13 w11 w09
             31521, 17855, 26722, -31521 ;
                                                 w22 w20 w18 w16
       sword
                    6270, -6270, -17855 ;
             26722,
                                                 w23 w21 w19 w17
       sword
                     6270, 6270, 26722 ;
             17855,
       sword
                                                w30 w28 w26 w24
       sword -31521, 26722, -17855, -31521 ;
                                                 w31 w29 w27 w25
```

```
; Table for rows 2,6 - constants are multiplied by cos_2_16
tab i 26 sword
               21407, 21407, -21407; movq-> w06 w04 w02 w00
        sword
              27969, 11585, 11585, -27969 ;
                                                  w07 w05 w03 w01
        sword 21407, -21407, 21407, 21407;
                                                  w14 w12 w10 w08
        sword -11585, 27969, -27969, -11585;
                                                  w15 w13 w11 w09
        sword 29692, 16819, 25172, -29692 ;
                                                  w22 w20 w18 w16
             25172, 5906, -5906, -16819 ;
                                                  w23 w21 w19 w17
        sword
        sword
             16819,
                      5906,
                            5906, 25172 ;
                                                  w30 w28 w26 w24
        sword -29692, 25172, -16819, -29692 ;
                                                  w31 w29 w27 w25
; Table for rows 3,5 - constants are multiplied by cos_3_16
tab i 35 sword
              19266, 19266, 19266, -19266 ; movg-> w06 w04 w02 w00
              25172, 10426, 10426, -25172 ;
        sword
                                                   w07 w05 w03 w01
             19266, -19266, 19266, 19266 ;
        sword
                                                  w14 w12 w10 w08
        sword -10426, 25172, -25172, -10426 ;
                                                 w15 w13 w11 w09
             26722, 15137, 22654, -26722 ;
                                                 w22 w20 w18 w16
        sword
                                                w23 w21 w19 w17
             22654, 5315, -5315, -15137 ;
        sword
             15137,
        sword
                     5315, 5315, 22654 ;
                                                 w30 w28 w26 w24
        sword -26722, 22654, -15137, -26722 ;
                                                 w31 w29 w27 w25
;------
DCT_8_INV_ROW_1 MACRO INP:REQ, OUT:REQ, TABLE:REQ
                 mm0, mptr [INP]
                                    ; 0 ; x3 x2 x1 x0
       mova
                 mm1, mptr [INP+8] ; 1 ; x7 x6 x5 x4
       mova
       movq
                 mm2, mm0
                                      ; 2 ; x3 x2 x1 x0
                 mm3, mptr [TABLE] ; 3 ; w06 w04 w02 w00
       mova
       punpcklwd mm0, mm1
                                           ; x5 x1 x4 x0
                 mm5, mm0
                                ; 5 ; x5 x1 x4 x0
       movq
       punpckldq mm0, mm0
                                           ; x4 x0 x4 x0
                 mm4, mptr [TABLE+8] ; 4 ; w07 w05 w03 w01
       mova
                                        1 ; x7 x3 x6 x2
       punpckhwd mm2, mm1
       pmaddwd
                 mm3, mm0
                                           ; x4*w06+x0*w04 x4*w02+x0*w00
                                    ; 6 ; x7 x3 x6 x2
       movq
                 mm6, mm2
                 mm1, mptr [TABLE+32] ; 1 ; w22 w20 w18 w16
       mova
       punpckldq mm2, mm2
                                           ; x6 x2 x6 x2
       pmaddwd
                 mm4, mm2
                                          ; x6*w07+x2*w05 x6*w03+x2*w01
       punpckhdq mm5, mm5
                                           ; x5 x1 x5 x1
                 mm0, mptr [TABLE+16] ; x4*w14+x0*w12 x4*w10+x0*w08
       pmaddwd
       punpckhdq mm6, mm6
                                           ; x7 x3 x7 x3
       mova
                 mm7, mptr [TABLE+40] ; 7 ; w23 w21 w19 w17
                                           ; x5*w22+x1*w20 x5*w18+x1*w16
       pmaddwd
                 mm1, mm5
                 mm3, mptr round_inv_row ; +rounder
       paddd
                                           ; x7*w23+x3*w21 x7*w19+x3*w17
       pmaddwd
                 mm7, mm6
       pmaddwd
                 mm2, mptr [TABLE+24]
                                          ; x6*w15+x2*w13 x6*w11+x2*w09
                                     ; 4 ; a1=sum(even1) a0=sum(even0)
       paddd
                 mm3, mm4
```

```
mm5, mptr [TABLE+48]
                                         ; x5*w30+x1*w28 x5*w26+x1*w24
       pmaddwd
                                    ; 4 ; a1 a0
       movq
                 mm4, mm3
       pmaddwd
                 mm6, mptr [TABLE+56]
                                         x7*w31+x3*w29 x7*w27+x3*w25
                                    ; 7 ; b1=sum(odd1) b0=sum(odd0)
       paddd
                 mm1, mm7
       paddd
                 mm0, mptr round inv row
                                        ; +rounder
       psubd
                 mm3, mm1
                                          ; a1-b1 a0-b0
                 mm3, SHIFT_INV_ROW
                                         ; y6=a1-b1 y7=a0-b0
       psrad
       paddd
                 mm1, mm4
                                     ; 4 ; a1+b1 a0+b0
       paddd
                 mm0, mm2
                                     ; 2 ; a3=sum(even3) a2=sum(even2)
       psrad
                 mm1, SHIFT_INV_ROW
                                          ; y1=a1+b1 y0=a0+b0
       paddd
                 mm5, mm6
                                    ; 6 ; b3=sum(odd3) b2=sum(odd2)
       movq
                 mm4, mm0
                                    ; 4
                                        ; a3 a2
                 mm0, mm5
       paddd
                                          ; a3+b3 a2+b2
       psubd
                 mm4, mm5
                                   ; 5 ; a3-b3 a2-b2
                 mm0, SHIFT_INV_ROW
                                         y_3=a_3+b_3 y_2=a_2+b_2
       psrad
       psrad
                 mm4, SHIFT_INV_ROW
                                         ; y4=a3-b3 y5=a2-b2
                 mm1, mm0
                                    ; 0 ; y3 y2 y1 y0
       packssdw
       packssdw
                 mm4, mm3
                                    ; 3; y6 y7 y4 y5
       mova
                 mm7, mm4
                                   ; 7 ; y6 y7 y4 y5
                mm4, 16
                                          ; 0 y6 0 y4
       psrld
                mm7, 16
                                         ; y7 0 y5 0
       pslld
                 mptr [OUT], mm1
                                   ; 1 ; save y3 y2 y1 y0
       movq
                 mm7, mm4
                                        4 ; y7 y6 y5 y4
       por
                mptr [OUT+8], mm7 ; 7; save y7 y6 y5 y4
       movq
ENDM
; code for Pentium III
; Table for rows 0,4 - constants are multiplied by cos 4 16
tab i 04 sword
              16384, 21407, 16384,
                                   8867 ; movg-> w05 w04 w01 w00
                     8867, -16384, -21407 ;
                                                 w07 w06 w03 w02
              16384,
       sword
              16384,
                     -8867, 16384, -21407 ;
                                                 w13 w12 w09 w08
       sword
       sword -16384, 21407, 16384, -8867;
                                                 w15 w14 w11 w10
              22725, 19266, 19266, -4520 ;
       sword
                                                 w21 w20 w17 w16
             12873,
                                                 w23 w22 w19 w18
       sword
                     4520, -22725, -12873 ;
             12873, -22725,
                           4520, -12873 ;
                                                 w29 w28 w25 w24
       sword
              4520, 19266, 19266, -22725 ;
                                                w31 w30 w27 w26
       sword
; Table for rows 1,7 - constants are multiplied by cos 1 16
              22725, 29692, 22725, 12299 ; movq-> w05 w04 w01 w00
tab i 17 sword
              22725, 12299, -22725, -29692 ;
       sword
                                                 w07 w06 w03 w02
```

```
22725, -12299, 22725, -29692
        sword
                                                      w13 w12 w09 w08
              -22725, 29692, 22725, -12299 ;
                                                     w15 w14 w11 w10
        sword
               31521, 26722, 26722, -6270 ;
                                                     w21 w20 w17 w16
        sword
               17855,
        sword
                       6270, -31521, -17855 ;
                                                     w23 w22 w19 w18
              17855, -31521,
        sword
                              6270, -17855 ;
                                                     w29 w28 w25 w24
               6270, 26722, 26722, -31521 ;
                                                     w31 w30 w27 w26
        sword
; Table for rows 2,6 - constants are multiplied by cos 2 16
tab i 26 sword
               21407, 27969, 21407, 11585 ; movq-> w05 w04 w01 w00
               21407, 11585, -21407, -27969 ;
                                                     w07 w06 w03 w02
        sword
               21407, -11585, 21407, -27969 ;
                                                     w13 w12 w09 w08
        sword
        sword -21407, 27969, 21407, -11585 ;
                                                     w15 w14 w11 w10
               29692, 25172, 25172, -5906 ;
                                                     w21 w20 w17 w16
        sword
               16819,
        sword
                       5906, -29692, -16819 ;
                                                     w23 w22 w19 w18
              16819, -29692,
                                                     w29 w28 w25 w24
        sword
                              5906, -16819 ;
               5906, 25172, 25172, -29692 ;
        sword
                                                     w31 w30 w27 w26
; Table for rows 3,5 - constants are multiplied by cos 3 16
              19266, 251/2, 19200, 10120
19266, 10426, -19266, -25172 ; w07 w06 w03 w0∠
10266 -25172 ; w13 w12 w09 w08
tab i 35 sword
              19266, 25172, 19266, 10426 ; movq-> w05 w04 w01 w00
        sword
        sword
        sword -19266, 25172, 19266, -10426 ;
                                                     w15 w14 w11 w10
               26722, 22654, 22654, -5315 ;
                                                     w21 w20 w17 w16
        sword
                                                   w21 w20 w17 w10 w23 w22 w19 w18
        sword
              15137, 5315, -26722, -15137 ;
              15137, -26722,
                              5315, -15137 ;
                                                     w29 w28 w25 w24
        sword
               5315, 22654, 22654, -26722 ;
                                                     w31 w30 w27 w26
        sword
;-----
DCT 8 INV ROW 1 MACRO INP:REQ, OUT:REQ, TABLE:REQ
                 mm0, mptr [INP]
                                       ; 0 ; x3 x2 x1 x0
        movq
                  mm1, mptr [INP+8]
                                       ; 1 ; x7 x6 x5 x4
        movq
                  mm2, mm0
                                        ; 2 ; x3 x2 x1 x0
        movq
                  mm3, mptr [TABLE] ; 3 ; w05 w04 w01 w00 mm0, mm0, 10001000b ; x2 x0 x2 x0
        mova
        pshufw
        mova
                  mm4, mptr [TABLE+8] ; 4 ; w07 w06 w03 w02
        mova
                  mm5, mm1
                                        ; 5 ; x7 x6 x5 x4
                  mm3, mm0
                                              ; x2*w05+x0*w04 x2*w01+x0*w00
        pmaddwd
                  mm6, mptr [TABLE+32] ; 6 ; w21 w20 w17 w16
        mova
                  mm1, mm1, 10001000b
                                             ; x6 x4 x6 x4
        pshufw
        pmaddwd
                  mm4, mm1
                                              ; x6*w07+x4*w06 x6*w03+x4*w02
                  mm7, mptr [TABLE+40] ; 7 ; w23 w22 w19 w18
        movq
        pshufw
                  mm2, mm2, 11011101b
                                             ; x3 x1 x3 x1
                  mm6, mm2
                                             ; x3*w21+x1*w20 x3*w17+x1*w16
        pmaddwd
                  mm5, mm5, 11011101b
                                             ; x7 x5 x7 x5
        pshufw
                                             ; x7*w23+x5*w22 x7*w19+x5*w18
        pmaddwd
                  mm7, mm5
                  mm3, mptr round_inv_row
        paddd
                                            ; +rounder
                  mm0, mptr [TABLE+16] ; x2*w13+x0*w12 x2 w02.112 ; a1=sum(even1) a0=sum(even0)
        pmaddwd
        paddd
```

```
; x6*w15+x4*w14 x6*w11+x4*w10
       pmaddwd
                mm1, mptr [TABLE+24]
                                   ; 4 ; a1 a0
       movq
                mm4, mm3
       pmaddwd
                mm2, mptr [TABLE+48]
                                        x3*w29+x1*w28 x3*w25+x1*w24
       paddd
                mm6, mm7
                                   ; 7 ; b1=sum(odd1) b0=sum(odd0)
                                        x7*w31+x5*w30 x7*w27+x5*w26
       pmaddwd
                mm5, mptr [TABLE+56]
       paddd
                mm3, mm6
                                        ; a1+b1 a0+b0
       paddd
                mm0, mptr round inv row
                                       ; +rounder
                mm3, SHIFT INV ROW
                                        ; y1=a1+b1 y0=a0+b0
       psrad
       paddd
                mm0, mm1
                                      1 ; a3=sum(even3) a2=sum(even2)
                                      6 ; a1-b1 a0-b0
       psubd
                mm4, mm6
       mova
                mm7, mm0
                                      ; a3 a2
       paddd
                mm2, mm5
                                      5 ; b3=sum(odd3) b2=sum(odd2)
       paddd
                mm0, mm2
                                        ; a3+b3 a2+b2
       psrad
                mm4, SHIFT INV ROW
                                        ; y6=a1-b1 y7=a0-b0
                                     2 ; a3-b3 a2-b2
       psubd
                mm7, mm2
                mm0, SHIFT_INV_ROW
       psrad
                                        ; y3=a3+b3 y2=a2+b2
                mm7, SHIFT_INV_ROW
                                        ; y4=a3-b3 y5=a2-b2
       psrad
       packssdw
                mm3, mm0
                                      0 ; y3 y2 y1 y0
       packssdw
                mm7, mm4
                                      4 ; y6 y7 y4 y5
       mova
                mptr [OUT], mm3
                                      3 ; save y3 y2 y1 y0
       pshufw
                mm7, mm7, 10110001b
                                        ; y7 y6 y5 y4
                mptr [OUT+8], mm7
       movq
                                   ; 7; save y7 y6 y5 y4
ENDM
; The first stage DCT 8x8 - forward DCTs of columns
; The outputs are multiplied
    for rows 0,4 - on \cos_4_{16},
    for rows 1,7 - on \cos_1_16,
    for rows 2,6 - on cos_2_16,
    for rows 3,5 - on \cos_3_{16}
; and are shifted to the left for rise of accuracy
; The 8-point scaled forward DCT algorithm (26a8m)
;-----
; #define DCT 8 FRW COL(x, y)
;
    short t0, t1, t2, t3, t4, t5, t6, t7;
```

```
short tp03, tm03, tp12, tm12, tp65, tm65;
    short tp465, tm465, tp765, tm765;
;
    t0 = LEFT SHIFT (x[0] + x[7]);
    t1 = LEFT_SHIFT (x[1] + x[6]);
    t2 = LEFT SHIFT (x[2] + x[5]);
    t3 = LEFT SHIFT (x[3] + x[4]);
;
    t4 = LEFT SHIFT (x[3] - x[4]);
;
    t5 = LEFT SHIFT (x[2] - x[5]);
;
    t6 = LEFT_SHIFT ( x[1] - x[6] );
;
    t7 = LEFT\_SHIFT (x[0] - x[7]);
    tp03 = t0 + t3;
    tm03 = t0 - t3;
;
    tp12 = t1 + t2;
;
    tm12 = t1 - t2;
;
    y[0] = tp03 + tp12;
;
    y[4] = tp03 - tp12;
;
    y[2] = tm03
                          + tm12 * tq 2 16;
    y[6] = tm03 * tg 2 16 - tm12;
;
    tp65 = (t6 + t5) * cos_4_16;
;
    tm65 = (t6 - t5) * cos_4_16;
    tp765 = t7 + tp65;
;
    tm765 = t7 - tp65;
;
    tp465 = t4 + tm65;
;
    tm465 = t4 - tm65;
                           + tp465 * tg_1_16;
;
    y[1] = tp765
    y[7] = tp765 * tg_1_16 - tp465;
;
    y[5] = tm765 * tg_3_16 + tm465;
                           - tm465 * tg_3_16;
;
    y[3] = tm765
; }
DCT_8_FRW_COL_4 MACRO INP:REQ, OUT:REQ
LOCAL
        x0, x1, x2, x3, x4, x5, x6, x7
LOCAL
        y0, y1, y2, y3, y4, y5, y6, y7
                   [INP + 0*16]
x0
        equ
                   [INP + 1*16]
x1
        equ
                   [INP + 2*16]
x2
        equ
x3
        equ
                   [INP + 3*16]
                   [INP + 4*16]
x4
        equ
                   [INP + 5*16]
x5
        equ
                   [INP + 6*16]
хб
        equ
                   [INP + 7*16]
x7
        equ
У0
        equ
                   [OUT + 0*16]
                   [OUT + 1*16]
у1
        equ
                   [OUT + 2*16]
у2
        equ
                   [OUT + 3*16]
у3
        equ
                   [OUT + 4*16]
у4
        equ
у5
                   [OUT + 5*16]
        equ
        equ
                   [OUT + 6*16]
уб
                   [OUT + 7*16]
у7
        equ
```

```
movq
           mm0, x1
                                    ; 0
                                          ; x1
movq
           mm1, x6
                                    ; 1
                                          ; x6
movq
           mm2, mm0
                                    ; 2
                                          ; x1
           mm3, x2
                                    ; 3
mova
                                          ; x2
           mm0, mm1
                                          ; t1 = x[1] + x[6]
paddsw
movq
           mm4, x5
                                    ; 4
                                          ; x5
psllw
           mm0, SHIFT_FRW_COL
                                          ; t1
           mm5, x0
                                    ; 5
movq
                                          ; x0
           mm4, mm3
                                          ; t2 = x[2] + x[5]
paddsw
paddsw
           mm5, x7
                                          ; t0 = x[0] + x[7]
psllw
           mm4, SHIFT_FRW_COL
                                          ; t2
           mm6, mm0
movq
                                    ; 6 ; t1
                                       1; t6 = x[1] - x[6]
psubsw
           mm2, mm1
movq
           mm1, mptr tg_2_16
                                    ; 1
                                          ; tg 2 16
           mm0, mm4
                                          ; tm12 = t1 - t2
psubsw
           mm7, x3
                                    ; 7
movq
                                          ; x3
pmulhw
           mm1, mm0
                                          ; tm12*tg_2_16
           mm7, x4
                                          ; t3 = x[3] + x[4]
paddsw
           mm5, SHIFT_FRW_COL
psllw
                                          ; t0
           mm6, mm4
paddsw
                                       4 ; tp12 = t1 + t2
psllw
           mm7, SHIFT_FRW_COL
                                          ; t3
           mm4, mm5
movq
                                    ; 4
                                          ; t0
psubsw
           mm5, mm7
                                          ; tm03 = t0 - t3
paddsw
           mm1, mm5
                                          y^2 = tm03 + tm12*tg_2_16
                                        7 : tp03 = t0 + t3
paddsw
           mm4, mm7
por
           mm1, mptr one_corr
                                          ; correction y2 + 0.5
psllw
           mm2, SHIFT_FRW_COL+1
                                          ; t6
pmulhw
           mm5, mptr tg_2_16
                                          ; tm03*tg_2_16
                                    ; 7
movq
           mm7, mm4
                                          ; tp03
                                          ; t5 = x[2] - x[5]
           mm3, x5
waduag
           mm4, mm6
                                          ; y4 = tp03 - tp12
psubsw
movq
           y2,
                mm1
                                        1 ; save y2
paddsw
           mm7, mm6
                                        6 ; y0 = tp03 + tp12
movq
           mm1, x3
                                    ; 1
                                          ; x3
psllw
           mm3, SHIFT_FRW_COL+1
                                          ; t5
           mm1, x4
                                          ; t4 = x[3] - x[4]
psubsw
movq
           mm6, mm2
                                    ; 6
                                          ; t6
mova
           y4,
                mm4
                                       4 ; save y4
paddsw
           mm2, mm3
                                          ; t6 + t5
                                          ; tp65 = (t6 + t5)*cos_4_16
pmulhw
           mm2, mptr ocos_4_16
```

```
3; t6 - t5
psubsw
           mm6, mm3
                                   ;
                                          ; tm65 = (t6 - t5)*cos_4_16
pmulhw
           mm6, mptr ocos_4_16
psubsw
           mm5, mm0
                                       0 ; y6 = tm03*tg_2_16 - tm12
                                          ; correction y6 + 0.5
por
           mm5, mptr one corr
           mm1, SHIFT FRW COL
psllw
                                          ; t4
                                          ; correction tp65 +0.5
por
           mm2, mptr one corr
movq
           mm4, mm1
                                   ; 4
                                          ; t4
           mm3, x0
                                   ; 3
movq
                                          ; x0
           mm1, mm6
                                          ; tp465 = t4 + tm65
paddsw
                                          ; t7 = x[0] - x[7]
psubsw
           mm3, x7
                                       6 : tm465 = t4 - tm65
psubsw
           mm4, mm6
movq
           mm0, mptr tg_1_16
                                   ; 0
                                         ; tq 1 16
           mm3, SHIFT FRW COL
psllw
                                          ; t7
           mm6, mptr tg_3_16
mova
                                   ; 6
                                        ; tg 3 16
                                          ; tp465*tg_1_16
           mm0, mm1
pmulhw
           y0,
                mm7
                                       7 ; save y0
movq
           mm6, mm4
pmulhw
                                          ; tm465*tg_3_16
           y6, mm5
movq
                                       5 ; save y6
           mm7, mm3
                                   ; 7
movq
                                         ; t7
           mm5, mptr tg_3_16
                                   ; 5
mova
                                       ; tg_3_16
           mm7, mm2
                                          ; tm765 = t7 - tp65
psubsw
paddsw
           mm3, mm2
                                       2 ; tp765 = t7 + tp65
           mm5, mm7
                                          ; tm765*tq 3 16
pmulhw
paddsw
           mm0, mm3
                                          ; y1 = tp765 + tp465*tg_1_16
paddsw
           mm6, mm4
                                          ; tm465*tg_3_16
                                         ; tp765*tg_1_16
pmulhw
           mm3, mptr tg_1_16
por
           mm0, mptr one_corr
                                          ; correction y1 + 0.5
paddsw
           mm5, mm7
                                          ; tm765*tg_3_16
                                       6 ; y3 = tm765 - tm465*tg_3_16
           mm7, mm6
psubsw
                                   ;
mova
           y1,
                mm0
                                       0; save y1
           mm5, mm4
                                       4 : y5 = tm765*tq 3 16 + tm465
paddsw
           у3,
                mm7
movq
                                       7 ; save y3
                                       1 ; y7 = tp765*tg_1_16 - tp465
psubsw
           mm3, mm1
movq
           y5,
                mm5
                                       5 ; save y5
movq
           y7,
                mm3
                                       3 ; save y7
```

ENDM