非寿险技术准

概率失真条件下技术准备金评估

基于贝叶斯对数正态模型

刘乐平 高磊 田静

Department of Statistics Tianjin University Of Finance and Economics

2014年8月27日

技术准备金 = 准备金的最优估计 + 风险边际

非寿险技术准 备金评估

刘乐平, 高磊, 田静

准备金评估: 贝叶斯对数 [

模型假设

估计参数的后验:

....

概率失真条件 下的技术准备

选取风险参考变

计算策略:解析与 概和

实证研究

数据来源与先驱

ale vit de H

准备金的最优估计: 研究较为成熟

- 非寿险技术准 备金评估
- 刘乐平,高磊。 田静
- 准备金评估: 贝叶斯对数:
- 模型假设
- 估计参数的后验
- 概率失真条件 下的技术准备 金评估
- 选取风险参考变量 计算策略:解析与 模拟
- 实证研究
- 数据来源与先验参数设定

- 未决赔款的预测均方误差 (Mack,1993))⇒
- 未决赔款的预测分布 (England,1999, 2002, 2006)⇒
- 随机性准备金评估模型 (Wüthrich & Merz,2008; 张连增和段白 鸽,2013)

计算风险边际: 资本成本法

- 非寿险技术准 备金评估
- 刘乐平, 高磊, 田静

准备金评估: 贝叶斯对数: 太精刑

模型假设

估计参数的后验分 布

概率失真条件 下的技术准备

选取风险参考变量 计算策略:解析与 模型

实证研究

数据来源与先验数设定

- Salzmann and Wüthrich(2010)
- 张连增和刘怡(2013)

资本成本法

$$RM = COC \times \frac{\sum_{t \geq 0} SCR(t)}{\left(1 + r_{t+1}\right)^{t+1}}.$$

计算风险边际:资本成本法的不足

非寿险技术准 备金评估

刘乐平, 高磊, 田静

准备金评估: 贝叶斯对数

模型假设

估计参数的后验 布

准备金的最优估

概率失真条件 下的技术准备 全速体

选取风险参考变

模拟

实证研究

数据来源与先验参 数设定

$$\frac{SCR(i)}{BEL(i)} = \frac{SCR(0)}{BEL(0)} \Rightarrow SCR(i) = SCR(0) \times \frac{BEL(i)}{BEL(0)}$$

模型假设 估计参数的后验分 布

选取风险参考变! 计算策略:解析

实证研究

数据来源与先验参数设定

■本文不再把准备金最优估计和风险边际单独考虑,而是在准备金评估中融入风险因素,从而直接得到技术准备金。具体而言,基于贝叶斯对数正态模型,在概率失真条件下,通过选取风险参考变量的方式,将风险因素考虑到准备金的评估中来,最终得到技术准备金估计。

Content

1 准备金评估: 贝叶斯对数正态模型

2 概率失真条件下的技术准备金评估

3 实证研究

Content

非寿险技术准 备金评估

刘尔平, 局磊 田静

准备金评估: 贝叶斯对数: 杰模型

模型假设

估计参数的后验:

布

概率失真条件 下的技术准备

选取风险参考变量 计算策略:解析与

实证研究

数据来源与先验参 数设定

- 1 准备金评估: 贝叶斯对数正态模型
 - 模型假设
 - 估计参数的后验分布
 - ■准备金的最优估计

贝叶斯对数正态模型假设

非寿险技术准 备金评估

対乐平, 高磊, 田静

准备金评估: 贝叶斯对数〕 态模型

模型假设

估计参数的后验分 布

概率失真条件 下的技术准备

选取风险参考变! 计算策略:解析! 概和

实证研究

数据来源与先验参数设定

贝叶斯对数正态模型 (Hertig,1985; Gogol,1993):

■ 累计赔款进展因子减去 1 并对数化 后服从正态分布:

$$f_{i,j} = \log \left(\frac{C_{i,j+1}}{C_{i,j}} - 1 \right) \sim N(\mu_j, \sigma_j^2)$$

■ 均值向量相互独立,并且有各自的 先验分布:

$$\mu_j \sim N(\gamma_j, \delta_j^2)$$
 $j = 1, \dots, n-1$,

估计参数的后验分布

非寿险技术准 备金评估

刘乐平, 高磊 田静

准备金评估: 贝叶斯对数: 态模型

模型假设

估计参数的后验分 布

坐女 众的思辞社

概率失真条件 下的技术准备 金评估

□
取风应参与交量
计算策略:解析与
模拟

实证研究

数据来源与先验参 数设定 实证结果 ■ 在给定均值参数 μ_1, \ldots, μ_{n-1} 的条件下,可以得到似然函数:

$$L_{D_n}(\mu_1,\cdots,\mu_{n-1}) \varpropto \prod_{i=1}^n \prod_{j=1}^{n-i} \exp \left\{ -\frac{1}{2\sigma_j^2} (f_{ij} - \mu_j)^2 \right\} .$$

■ μ_1, \ldots, μ_{n-1} 的先验分布为正态分布:

$$\mu_j \sim N(\gamma_j, \delta_j^2)$$
 $j = 1, \dots, n-1$

■ 根据贝叶斯公式可以得到 μ_1, \ldots, μ_{n-1} 的后验分布:

$$p(\mu_1, \dots, \mu_{n-1} \mid D_n) \propto \prod_{j=1}^{n-1} \exp \left\{ -\frac{1}{2\delta_j^2} (\mu_j - \gamma_j)^2 \right\} \times \prod_{i=1}^n \prod_{j=1}^{n-i} \exp \left\{ -\frac{1}{2\sigma_j^2} (f_{ij} - \mu_j)^2 \right\}$$

■ 根据贝叶斯公式可以得到 μ_1, \ldots, μ_{n-1} 的后验分布:

$$p(\mu_1, \cdots, \mu_{n-1} \mid D_n) \propto \prod_{j=1}^{n-1} \exp \left\{ -\frac{1}{2\delta_j^2} (\mu_j - \gamma_j)^2 \right\} \times \prod_{i=1}^n \prod_{j=1}^{n-i} \exp \left\{ -\frac{1}{2\sigma_j^2} (f_{ij} - \mu_j)^2 \right\}$$

• 先验分布为正态分布似然函数又是正态分布密度的乘积,满足共轭条件,因此 $p(\mu_1, \ldots, \mu_{n-1})$ 仍然是正态分布,即:

$$\mu_j | D_n \sim N(\gamma_j^{(n)}, (\delta_j^{(n)})^2) \quad j = 1, \dots, n-1,$$

■ 其中后验参数 $r_j^{(n)}$ 和 $(\delta_j^{(n)})^2$ 为:

$$\begin{split} \gamma_{j}^{(n)} &= \frac{\delta_{j}^{2}}{(n-j-1)\delta_{j}^{2} + \sigma_{j}^{2}} \sum_{i=1}^{n-j-1} f_{i,j} + \frac{\sigma_{j}^{2}}{(n-j-1)\delta_{j}^{2} + \sigma_{j}^{2}} \gamma_{j} \, \omega \\ & (\delta_{j}^{(n)})^{2} = (\frac{1}{\delta_{j}^{2}} + \frac{n-j-1}{\sigma_{j}^{2}})^{-1} \, \omega \end{split}$$

数据来源与先验参 数设定 实证结果 ■ 根据模型假设,可得未决增量赔款为:

$$X_{i,j} \mid D_n = C_{i,n+1-i} \times \prod_{l=n+1-i}^{j-2} (\exp\{f_{i,l}\} + 1) \times \exp\{f_{i,j-1}\}$$

■ $f_{i,j}$ 的后验分布为正态分布:

$$f_{i,j} | D_n \sim N(\gamma_j^{(n)}, \sigma_j^2 + (\delta_j^{(n)})^2)$$

■ 利用对数正态分布的期望公式,可以得到未决增量赔款的最优估计:

$$\begin{split} E[X_{i,j} \mid D_n] &= C_{i,n+1-l} \Biggl(\prod_{l=n+1-l}^{l-2} \Biggl(\exp(\gamma_l^{(n)} + \frac{1}{2} \left(\delta_l^{(n)} \right)^2 + \frac{1}{2} \, \sigma_l^2 \,) + 1 \Biggr) \Biggr) \times \\ &\qquad \qquad \exp(\gamma_{j-1}^{(n)} + \frac{1}{2} \left(\delta_{j-1}^{(n)} \right)^2 + \frac{1}{2} \, \sigma_{j-1}^2) \end{split}.$$

■ 将未决增量赔款的最优估计加总可以得到准备金的最优估计:

$$R_n = \sum_{k>n+1} \sum_{i+j=k} E[X_{i,j} \mid D_n]$$

Content

- 非寿险技术准 备金评估
- 刘尔平, 尚結。 田静

准备金评估 贝叶斯对数

模型假设

估计参数的后验

概率失真条件

下的技术准备 金评估

计算策略:解析与

क्षेत्र क्षेत्र क्षात्र स्ट्राप

数据来源与先验: 数设定

:证结里

- 2 概率失真条件下的技术准备金评估
 - 选取风险参考变量
 - 计算策略:解析与模拟

实证研究

数据来源与先验参 数设定 字证结果

- 概率失真通过引入风险参考变量(reference portfolio)的方式,将风险因素考虑 到准备金的评估中来。
- 我们关心 $X_{i,j}$, 风险参考变量是 Y,指数倾向转换估计风险调整的未决赔款:

$$E^*(X_{i,j}) = \frac{E[\exp(\lambda Y)X_{i,j}]}{E(\exp(\lambda Y))}$$

如果 exp(λY) 和 X_{i,i} 正相关,则:

$$E^*(X_{i,j}) > E(X_{i,j})$$

概率失真: 选取风险参考变量

非寿险技术准 备金评估

刘乐平, 高磊, 田静

模型假设

估计参数的后验: 布

概率失真条件 下的技术准备

选取风险参考变量 计算策略:解析与

实证研究

数据来源与先验参 数设定 实证结果 ■ 根据模型假设,可得未决增量赔款为:

$$X_{i,j} \mid D_n = C_{i,n+1-i} \times \prod_{l=n+1-i}^{j-2} (\exp\{f_{i,l}\} + 1) \times \exp\{f_{i,j-1}\}$$

 X_{ij} 、 f_{ij} 和 μ_{ij} 的关系用贝叶斯图模型来表示

• 选取 f_{ii} 和 μ_i 作为风险参考变量,并利用指数化的方法组合如下:

$$\Lambda = \prod_{j=1}^{n-1} \exp(\alpha \sum_{i=1}^{n} f_{i,j} + \beta \mu_j).$$

概率失真: 选取风险参考变量

非寿险技术准 备金评估

刘乐平, 高磊。 田静

准备金评估: 贝叶斯对数: 态模型

模型假设

估计参数的后验5 布

准备金的最优估计

概率失真条件 下的技术准备 金评估

选取风险参考变量

计算策略:解析与 模拟

实证研究

数据来源与先验参数设定

■ 估计风险调整的未决增量赔款:

$$E^*(X_{i,j}\mid D_n) = \frac{1}{E(\Lambda\mid D_n)} E[\Lambda X_{i,j}\mid D_n]$$

■ Λ 与 X_{ij} 正相关, 所以:

$$E^*[X_{i,j}|D_n] > E[X_{i,j}|D_n]$$

■ 加总求得风险调整准备金,也即技术准备金:

$$R_n^* = \sum_{k \ge n+1} \sum_{i+j=k} E^* [X_{i,j} \mid D_n]$$

选取风险参考变量

计算策略:解析与 模拟

实证研究

数据来源与先验数设定

■ *E**[*X_{ij}*|*D_n*] 的显式解:

$$\begin{split} E^*(X_{i,j} \mid D_n) &= \frac{1}{E(\Lambda \mid D_n)} E[\Lambda X_{i,j} \mid D_n] \cdot \\ &= C_{i,n-i} \Biggl[\prod_{l=n-i}^{j-1} \Biggl\{ \exp\Biggl\{ \gamma_l^{(n)} + \frac{\left(\delta_j^{(n)}\right)^2}{2} + \frac{\sigma_i^2}{2} \Biggr\} \exp\Bigl(\beta + l\alpha) \left(\delta_l^{(n)}\right)^2 + \alpha \sigma_i^2 \Biggr\} + 1 \Biggr\} \Biggr] \quad \times \exp\Biggl\{ \gamma_j^{(n)} + \frac{\left(\delta_j^{(n)}\right)^2}{2} + \frac{\sigma_j^2}{2} \Biggr\} \exp\Bigl(\beta + j\alpha) \left(\delta_j^{(n)}\right)^2 + \alpha \sigma_j^2 \Biggr\} \cdot \end{split}$$

计算策略:解析与

$$E^*(X_{i,j} \mid D_n) = \frac{1}{E(\Lambda \mid D_n)} E[\Lambda X_{i,j} \mid D_n]$$

$$X_{i,j} \mid D_n = C_{i,n+1-i} \times \prod_{l=n+1-i}^{j-2} (\exp\{f_{i,l}\} + 1) \times \exp\{f_{i,j-1}\}$$

$$\Lambda = \prod_{i=1}^{n-1} \exp(\alpha \sum_{i=1}^{n} f_{i,j} + \beta \mu_j).$$

Content

非寿险技术准 备金评估

刘尔平, 局磊 田静

准备金评估: 贝叶斯对数: 太精刑

模型假设

估计参数的后验:

布

概率失真条件

金评估

计算策略:解析与

空证研究

数据来源与先验: 数设定

Lord de mi

3 实证研究

- 数据来源与先验参数设定
- 实证结果

模型假设 估计参数的后验分 布

概率失真条件 下的技术准备

选取风险参考变量 计算策略:解析与

空证研究

数据来源与先射 数设定

实证结果

■ 数据来源于 Wüthrich, Embrechts 和 Tsanakas(2011):

13109 14457 16075 15682 16551 15439 14629 17585 17419 16665 15471 15103 14540 14590 13967 12930	20355 22038 22672 23464 23796 21645 26288 25941 253745 23745 23745 23393 22642 22336 21515 20111	21337 22627 23753 24465 24626 24826 27623 27066 26909 25117 26809 23571 23440 22603 0	22043 23114 24052 25052 25573 25317 23599 27761 27611 26378 27691 24127 24029 0	22401 23238 24206 25529 26046 26139 24992 28335 28043 27729 26971 28061 24210 0	22658 23312 24757 25708 261154 25434 28638 28477 27861 27396 29183 0	22997 23440 24786 25752 26283 26175 25476 28715 28721 29830 0 0 0 0	23158 23490 24807 25770 26481 26205 25549 28759 28878 29844 0 0 0	23492 23964 24823 25835 26701 26764 29525 28948 0 0 0 0 0	23664 23976 24888 26075 26718 26818 25709 30302 0 0 0 0 0	23699 24048 24986 26082 26724 26836 0 0 0 0 0 0	23904 24111 25401 26146 26728 26959 0 0 0 0 0 0	23960 24252 25681 26150 26735 0 0 0 0 0 0 0 0	23992 24538 25705 26167 0 0 0 0 0 0 0 0 0	23994 24540 25732 0 0 0 0 0 0 0 0 0 0 0	24001 24550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		0	0	0	0	0	0	0		0	0	0	0	0	0	0

先验参数设定

ļ÷

非寿险技术准 备金评估

刘乐平, 高磊 田静

准备金评估: 贝叶斯对数: 杰模型

模型假设

估计参数的后验》 布

概率失真条件 下的技术准备

选取风险参考变量 计算策略:解析与 概扣

实证研究

数据来源与先验参 数设定

双议定 牢证结果 ■ 参照 Wüthrich,Embrechts and Tsanakas(2011) 设定先验参数 σ_j^2 、 δ_j^2 和 γ_j :

·				_
je	σ_j^2 φ	δ_{j}^{2}	$\gamma_j \circ$	ø
1₽	0.0081 ₽	0.0392₽	-0.6700 ₽	ø
2₽	0.1296 ₽	0.0392₽	-3.0000 ₽	ø
3₽	0.3600 ₽	0.0392₽	-3.6900 ₽	ø
4₽	0.8100 ₽	0.0392₽	-4.3600 ₽	ø
5₽	1.3456 ₽	0.0392₽	-4.8200 ₽	ø
6₽	1.6641 ↔	0.0392₽	-5.4700 ₽	e
7₽	1.6900 ↔	0.0392₽	-5.9000 ₽	ø
8₽	1.7161 ↔	0.0392₽	-6.1000 ₽	ø
9₽	1.7956 ₽	0.0392₽	-6.2000 ₽	ø
10₽	1.9600 ₽	0.0392₽	-6.3000 ₽	ø
11∉	2.2500 ₽	0.0392₽	-6.4000 ₽	ø
120	2.2500 ₽	0.0392₽	-6.5500 ₽	ø
13₽	1.6900 ↔	0.0392₽	-7.0000 ₽	ø
14₽	0.6400 ₽	0.0392₽	-7.5000 ₽	ø
15₽	0.0576 ₽	0.0392₽	-7.9700 ₽	ø
16₽	0.0016 ₽	0.0392₽	-9.0000 ₽	ę

后验分布参数的估计

非寿险技术准 备金评估

刘乐平, 高磊。 田静

准备金评估 贝叶斯对数 态模型

模型假设

估计多数的后验》 布

概率失真条件 下的技术准备 全评估

达取风应参与变量 计算策略:解析与 排扣

实证研究

数据来源与先验参 数设定 • 均值向量 μ_1, \dots, μ_{17-1} 的后验分布,后验参数 $r_j^{(n)}$ 和 $(\delta_j^{(n)})^2$ 为::

	•	
jo	$\left(\delta_{j}^{(n)}\right)^{2}$	γ _j ⁽ⁿ⁾ φ
1₽	0.00050 ₽	-0.6707 ₽ +
2₽	0.00708 ₽	-2.9995 ₽ ₽
3₽	0.01553 ₽	-3.6884 ₽ ₽
4₽	0.02406 ₽	-4.3603 € €
5₽	0.02905 ₽	-4.8195 € €
6₽	0.03114 ₽	-5.4710 ₽ ₽
7₽	0.03182 ₽	-5.9625 € €
8₽	0.03252 ₽	-5.9294 ₽ ₽
9₽	0.03337 ₽	-6.1301 ₽ ₽
10₽	0.03439 ₽	-6.3914 ↔ ↔
11₽	0.03549 ₽	-6.3463 ₽ ₽
12₽	0.03606 ₽	-6.5498 ₽ ₽
13₽	0.03588 ₽	-6.9442 € €
14₽	0.03312 ₽	-7.6638 ₽ ₽
15₽	0.01660 ₽	-7.9715 ↔ ↔
16₽	0.00154 ₽	-10.0433 ₽ ₽

风险参考变量组合 Λ 与 $X_{i,j}$ 具有正相关性

非寿险技术准 备金评估

刘乐平,高磊。 田静

准备金评估: 贝叶斯对数

模型假设

估计参数的后验 布

准备金的最优估计

概率失真条件 下的技术准备 金评估

选取风险参考变量 计算策略:解析与

实证研究

数据来源与先验 数设定

■ Λ 与 X_{17,2} 、 X_{17,3} 的散点图:

准备金最优估计、技术准备金估计与风险边际

■ 准备金最优估计、技术准备金估计与风险边际: 两种计算策略下的比较:

事故年。	模拟	方法↩	解析方法。		
i o	准备金最优估计。	技术准备金估计。	准备金最优估计。	技术准备金估计	-, -
20	1.0696₽	1.0720₽	1.0690₽	1.0712₽	٦,
3₽	10.3386₽	10.5888₽	10.3385₽	10.5528₽	١,
4₽	27.5863₽	28.8791₽	27.7217₽	28.9162₽	١,
5€	91.5382₽	98.1890₽	89.4839₽	95.7352₽	١,
6₽	209.1481₽	224.6551₽	211.5775₽	229.3020₽	-
7.0	347.8654₽	379.3841₽	344.3879₽	374.5576₽	١,
8₽	548.8229₽	586.1291₽	545.1965₽	592.6011₽	١,
9.	683.4801₽	750.4740₽	680.8829₽	738.9505₽	-
10₽	900.2457₽	987.0672₽	896.7386₽	971.5642₽	١,
11₽	1003.6628₽	1095.5805₽	998.0010₽	1079.8564₽	١.
12₽	1355.8946₽	1458.9285₽	1356.8279₽	1465.6157₽	٦,
13₽	1547.9239₽	1664.8716₽	1532.2108₽	1648.6493₽	٦,
14₽	2000.5922₽	2129.4081₽	2016.0093₽	2155.2549₽	١,
15₽	2626.1309₽	2791.8311₽	2635.7285₽	2788.4603₽	٦,
16₽	3512.6318₽	3647.9741₽	3542.8645₽	3698.0609₽	-
17₽	9771.7957₽	9905.0930₽	9782.5654₽	9934.1434	-
总计。	24638.7269₽	25760.1251₽	24671.6038₽	25813.2918₽	-
风险边际。	1121	.3982≠	1141	.6880₽	-

两种风险因素单独考虑时的结果

非寿险技术准 备金评估

刘乐平, 高磊 田静

准备金评估 贝叶斯对数 态模型

估计参数的后验分布

概率失真条件 下的技术准备 金评估

选取风险参考变量 计算策略:解析与 模拟

实证研究

数设定

■ 分别考虑过程风险和参数风险时得到的技术准备金:

1					
ē.		准备金最优估计划₽	技术准备金估计₽	风险边际。	4:
α = 0.02(参数风险、i	β=1↓ 过程风险)↓	24638.7269&	25760.1251₽	1121.3982₽	4
α = 0 (参数风	β=1↓ 险)↓	24638.7269₽	25151.9097₽	513.1828₽	÷
α = 0.02 (过程风	β = 0 ↔	24638.7269₽	25230.5797₽	591.8528₽	+
(过程风	险) 🕫				

模型假设 估计参数的后验分 布

概率失真条件 下的技术准备 金评估

选取风险参考变量 计算策略:解析与 模拟

实证研究 数据来源与先

数据来源与先验 数设定 **实证结果**

- 在概率失真条件下,将风险因素——过程风险和参数风险融入到准备金评估中来,可以直接得到技术准备金,毋需再分别计算准备金的最优估计和风险边际。
- 在贝叶斯对数正态模型下,利用随机模拟方法得到的技术准备金与解析推导结果非常接近;在一般的贝叶斯准备金评估模型下,尤其是多重积分运算不易求出显式解时,随机模拟方法更有优势。
- 准备金评估中的两种风险因素 —-过程风险和参数风险可以分别考虑,从而得到不同风险因素下的技术准备金估计值,因此结果更为丰富。
- 对于过程风险和参数风险前系数的设定,本文没有进行深入分析,未来研究将在 这个方向上做进一步深入的工作。

- Wüthrich M V, Merz M. Stochastic claims reserving methods in insurance[M]. John Wiley & Sons, 2008.
 - England P. Solvency II: reserving risk, risk margins and technical provisions[C]. Casualty Loss Reserve Seminar, Las Vegas, 2011-09-15.
- SALZMANN R W, Wüthrich M V. Cost-of-capital margin for a general insurance liability runoff[J]. ASTIN Bulletin-Actuarial Studies in non Life Insurance, 2010, 40(2): 415.
- Wüthrich M V, Embrechts P, Tsanakas A. Risk margin for a non-life insurance run-off[J]. Stat Risk Model, 2011, 28(4): 299-317.
- Wang S S. Normalized exponential tilting: pricing and measuring multivariate risks[J]. North American Actuarial Journal, 2007, 11(3): 89-99.
- 张连增, 刘怡. 欧盟保险偿付能力监管标准 II 框架下的技术准备金估计 [J]. 南京 审计学院学报, 2013, 10(2).

非寿险技术准 备金评估

田静

准备金评估: 贝叶斯对数〕 太精刑

模型假设

估计参数的后验

布

概率失真条件 下的技术准备

金评估

计算策略:解析与

के भा भा के

数据来源与先验? 数设定

证结果

谢谢大家!

A/Q?