Fo	rn	أمر	n
$\Gamma \cup$		ЩЭ	

Formeln						
Lineare Regression	Regularisierung	Convolutional Neuronal Networks	Entscheidungsbäume	Reinforcement Learning		
Linearer Zusammenhang zwischen den Eingabevariablen x und der Ausgabevariable y wird modelliert. $ \begin{aligned} & \textbf{Hypothesenfunktion:} \\ & h_{\theta(x)} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n \\ & \textbf{Kostenfunktion (MSE):} \\ & J(\theta) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2 \\ & \textbf{Ziel:} \\ & \text{Finde Parameter θ um J zu minimieren } \\ & \text{min $J(\theta)$} \\ & \textbf{Multivariat:} \\ & \text{Mehrere Features x_1, x_2, \ldots, x_n} \\ & \textbf{Polynom-Regression:} \\ & h_{\theta(x)} = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \ldots \end{aligned} $	Kostenfunktion mit L2-Regularisierung: $J(\theta) = \frac{1}{2n} \sum \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2 + \lambda \sum_{j=1}^d \theta_j^2$ Effekt von λ : • $\lambda = 0 \to \text{kein Penalty}$ • großes $\lambda \to \text{starke Bestrafung, Underfitting}$ Bias-Term θ_0 wird oft nicht regularisiert	Hauptidee: Extraktion lokaler Merkmale durch Faltungsoperationen. Faltungsschicht (Convolution Layer): wendet Filter (Kerne) an: $z = W * x + b$ Pooling-Schicht: Reduktion der Dimensionalität (z.B. Max-Pooling oder Average-Pooling) Aktivierung: Typisch: ReLU $f(x) = \max(0, x)$ Architektur-Beispiel: Input \rightarrow Conv \rightarrow ReLU \rightarrow Pool \rightarrow Dense \rightarrow Output Parameteranzahl: Abhängig von Filtergröße und Anzahl Vorteile: • Translation-Invarianz • Weniger Parameter als vollständig verbundene Netze	Grundidee: Baumstruktur zur schrittweisen Entscheidung basierend auf Features. Split-Kriterien: • Entropie: $H(S) = -\sum p_i \log_2(p_i)$ • Informationsgewinn • Gini-Index: $\operatorname{Gini}(S) = 1 - \sum p_i^2$ Vorteile: • Interpretierbar • Keine Skalierung notwendig Nachteile: • Overfitting bei tiefen Bäumen • Instabil bei kleinen Datenänderungen Pruning (Beschneiden): Reduziert Komplexität und Overfitting Ensemble-Methoden: • Random Forests: viele Bäume, Voting • Boosting (z.B. AdaBoost): sequentielle Optimierung	Grundidee: Ein Agent lernt durch Interaktion mit einer Umgebung, um Belohnungen zu maximieren. Zentrale Begriffe: • Agent, Environment • Zustand s , Aktion a , Belohnung r , Politik $\pi(a s)$ • Ziel: Maximiere erwarteten kumulierten Reward Belohnungsformel: $R_t = \sum_{\{\infty\}}^{\{\infty\}} \gamma^k r_{\{t+k+1\}}$ mit Diskontfaktor $\gamma \in$		
Gradient Descent	Support Vector Machines			[0,1]		
$\begin{array}{l} \textbf{Update-Regel:} \\ \theta_j \coloneqq \theta_j - \alpha \ \frac{\partial}{\partial \theta_j} J(\theta) \\ \textbf{Für lineare Regression:} \\ \theta_j \coloneqq \theta_j + \alpha_1^k \sum_{i=1}^n \left(y^{(i)} - h_\theta(x^{(i)}) \right) \cdot x_j^{(i)} \\ \textbf{Lernrate } \alpha \colon \\ \textbf{Zu groß} \to \textbf{Divergenz,} \\ \textbf{zu klein} \to \textbf{langsame Konvergenz} \\ \hline \\ \textbf{Logistische Regression} \\ \hline \\ \textbf{Sigmoidfunktion:} \\ g(z) = \frac{1}{1+e^{-z}} \\ \textbf{Hypothese:} \\ h_\theta(x) = g(\theta^T x) = \frac{1}{1+e^{-\theta^T x}} \\ \textbf{Klassifikation:} \\ h_\theta(x) \geq 0.5 \to \textbf{Klasse 1} \\ h_\theta(x) < 0.5 \to \textbf{Klasse 0} \\ \hline \\ \textbf{Entscheidungsgrenze:} \\ \theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0 \\ \textbf{Nicht-linearität:} \\ h_\theta(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 +) \\ \end{array}$	Ziel: $m \underset{\{w,b\}}{\in} (1)\{2\} \ w ^2 + C \sum xi_i)$ Nebenbedingungen: $y^{\{(i)\}} (w^T x^{\{(i)\}} + b) ge1 - xi_i \text{ mit } xi_i ge0$ C kontrolliert Trade-off: großes $C \to \text{weniger Fehler}$, kleines $C \to \text{größerer Margin}$ Kernel-Trick: $z.B. K(x,x') = e^{\{-\gamma \ x-x' ^2\}} \text{ (RBF-Kernel)}$ Neuronale Netzwerke Feedforward: $z^{\{(l+1)\}} = \theta^{\{(l)\}} a^{\{(l)\}} a^{\{(l)\}} a^{\{(l+1)\}} = g(z^{\{(l+1)\}})$ Backpropagation: $\delta^{\{(L)\}} = a^{\{(L)\}} - y \delta^{\{(l)\}} = (\theta^{\{(l)\}})^T \delta^{\{(l+1)\}} . * g'(z^{\{(l)\}})$ Gradientenabstieg: $\theta^{\{(l)\}} := \theta^{\{(l)\}} - \alpha \delta^{\{(l)\}} a^{\{(l-1)\}}$ Aktivierungsfunktionen: Sigmoid, Tanh, ReLU, Leaky ReLU, Softmax	Modell Evaluation Konfusionsmatrix: TP = True Positive - Patienten, die krank sind und als krank klassifiziert wurden FP = False Positive - (Patienten, die gesund sind, aber als krank klassifiziert wurden TN = True Negative - (Patienten, die gesund sind und als gesund klassifiziert wurden FN = False Negative - Patienten, die krank sind, aber als gesund klassifiziert wurden Metriken: Accuracy = TP + TN / FP + FN / TP + FP / TP + FN / TP	Pricipal Component Analysis (PCA) Ziel: Reduktion der Dimensionalität bei maximalem Erhalt der Varianz. Schritte: 1. Zentrieren der Daten 2. Kovarianzmatrix berechnen 3. Eigenvektoren & -werte berechnen 4. Hauptkomponenten auswählen (größte Eigenwerte) 5. Projektion der Daten auf neue Achsen Mathematisch: Gegeben Datenmatrix X , berechne $C = 1$ } $\{n$ } X^TX Finde Eigenvektoren v mit $Cv = \lambda v$ Eigenschaften: • Unüberwachtes Verfahren • Hauptachsen sind orthogonal • Keine Label nötig Anwendungen: • Visualisierung • Vorverarbeitung für ML • Rauschreduktion	Q-Learning: $Q(s,a) := Q(s,a) + \alpha \left[r + \gamma \max_{\{a'\}} Q(s',a') - Q(s,a) \right]$ Strategien: • Exploration vs. Exploitation • var ε -greedy Policy Anwendungen: • Spiele (z.B. AlphaGo) • Robotik • Empfehlungssysteme		

