UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 1. stopnja

Matija Kocbek **REDKEJŠI GRAFI Z VELIKIM KROMATIČNIM ŠTEVILOM**

Delo diplomskega seminarja

Mentor: prof. dr. Riste Škrekovski

Kazalo

1	$\mathbf{U}\mathbf{vod}$	7
2	Grafi brez trikotnikov s poljubno velikim kromatičnim številom	7
	2.1 Tuttejeva konstrukcija	7
	2.2 Konstrukcija Mycielskega	8

Redkejši grafi z velikim kromatičnim številom ${\it Povzetek}$

...

Sparse graphs with high chromatic number $$\operatorname{Abstract}$$

...

Math. Subj. Class. (2020): ..., ... Ključne besede: ..., ... Keywords: ..., ...

1 Uvod

Grafi ponazarjajo relacije med različnimi objekti. Ena od ključnih lastnosti za razumevanje grafa je, koliko so vozlišča v njem šoodvisna". Kot eno izmed glavnih mer šoodvisnosti "vozlišč lahko vzamemo kromatično število grafa.

Definicija 1.1. Naj bo G = (V, E) (neusmerjen) graf. Naj bo K poljubna neprazna množica moči k. Tedaj preslikavi $c: V \to K$ pravimo k-barvanje vozlišč grafa G. Če sta poljubni sosednji vozlišči v G pobarvani z različnimi barvami, tj. če za sosednji u in v velja, da je $c(u) \neq c(v)$, potem pravimo, da je takšno k-barvanje dobro. Kromatično število G je najmanjše število k, za katerega obstaja dobro k-barvanje grafa G. Označimo ga z $\chi(G)$.

Tema tega diplomskega dela so grafi, ki imajo veliko ožino tj. velikost najmanjšega cikla.

Definicija 1.2. Dolžini največjega cikla v grafu G pravimo ožina in jo označimo z qirth(G).

Takšni grafi so lokalno izredno enostavni. Če je ožina grafa g, bo podgraf porojen s poljubnih g-1 vozlišč dejansko gozd, ker ne more imeti ciklov. Pokazali pa bomo, da so lahko takšni grafi globalno zelo kompleksni, če za mero kompleksnosti vzamemo kromatično število. Videli bomo, da ima lahko graf s poljubno veliko ožino prav tako poljubno veliko kromatično število. Razvoj razumevanja takšnih grafov bomo predstavili skozi primere.

2 Grafi brez trikotnikov s poljubno velikim kromatičnim številom

Najmanjši možen cikel v grafu je cikel dolžine tri in takšnim ciklom pravimo trikotniki. Če nas zanima, ali lahko graf s poljubno veliko ožino ima poljubno veliko kromatično število, moramo začeti na prvem koraku in se vprašati, ali lahko ima sploh graf brez trikotnikov poljubno veliko ožino. Pokazali bomo, da lahko, s tem da bomo predstavili nekaj konstrukcij takšnih grafov.

2.1 Tuttejeva konstrukcija

Prvi, ki je pokazal, da obstajajo grafi brez trikotnikov, ki imajo poljubno veliko kromatično število, je bil William Thomas Tutte, ki je pisal pod psevdonimom Blanche Descartes. Podal je sledečo induktivno konstrukcijo.

Indukcijo delamo na kromatičnem številu k. Začnemo z grafom G_1 , ki vsebuje samo eno vozlišče. Denimo sedaj, da poznamo graf G_k , ki ima n vozlišč. Graf G_{k+1} zgradimo tako, da vzamemo množico Y z k(n-1)+1 vozlišči in brez kakršnihkoli povezav med njimi. Za vsak $X \subseteq Y$, ki vsebuje n vozlišč vzamemo kopijo grafa G_k , ki jo označimo z G_X in povežemo to kopijo z X tako, da je vsako vozlišče iz X povezano z natanko enim vozliščem iz G_X . Različnih kopij grafa G_k med seboj ne povezujemo, tj. med nobenima vozliščema iz $G_X inG_{X'}$ ne obstaja povezava, če je $X \neq X'$. S tem smo zgradili G_{k+1} .

Pokažimo, da je $\chi(G_k) = k$ in da G_k ne vsebuje trikotnikov.

Trditev 2.1. Graf G_k iz Tuttejeve konstrukcije ne vsebuje trikotnikov in velja $\chi(G_k) = k$.

Dokaz. Dokazujemo z indukcijo. Graf z enim vozliščem ima kromatično število 1 in je brez trikotnikov, torej je baza indukcije izpoljnena. Denimo, da trditev za G_k in pokažimo, da velja za G_{k+1} .

Najprej s protislovjem pokažimo, da je $\chi(G_{k+1}) \geq k+1$. Denimo nasprotno, da je $\chi(G_{k+1}) \leq k$. Tedaj obstaja c, ki je pravilno k-barvanje grafa g_{k+1} . Recimo, da G_k ima n vozlišč. Tedaj po konstrukciji velja, da ima množica Y iz konstrukcije k(n-1)+1 vozlišč, ki so pobarvana pravilno z večjemu k različnimi barvami. Zato mora obstajati vsaj ena barva b, s katero je pobarvanih vsaj n vozlišč iz Y. Vzemimo poljubnih n vozlišč iz Y pobarvanih s b in označimo to množico z X. Ker je po indukcijski predpostavki $\chi(G_k) \geq k$, bo c pobarval G_X , ki je kopija G_k z natanko k barvami, saj je c pravilno barvanje. Ker je vsako vozlišče v K povezano z natanko enim v K in ker je K pravilno barvanje, je K različna barva od vseh K barv, s katerimi smo pobarvali K Torej je K pobarval K vsaj K barvami, kar pa je protislovje.

Prav tako je $\chi(G_{k+1}) \leq k+1$. Po indukcijski predpostavki lahko namreč vsako kopijo G_k pobarvamo s k barvami, saj različne kopije niso med seboj povezane. Tedaj lahko vzamemo poljubno novo barvo, ki je nismo uporabili za kopije G_k in z njo pobarvamo Y, saj elementi Y nimajo med seboj povezav. S tem smo dokazali želeno, saj smo dobili pravilno (k+1)-barvanje grafa, in je res $\chi(G_{k+1}) = k+1$.

Denimo, da v G_{k+1} obstaja trikotnik. V trikotniku so vsa vozlišča paroma povezana, zato lahko v njem leži kvečjemu eno vozlišče iz Y, saj med vozlišči v Y ni povezav. Prav tako preostali dve vozlišči morata ležati v isti kopiji G_k , saj nimamo povezav med različnimi kopijami. To pa pomeni, da imamo vozlišče v Y, ki je povezano z dvema različnima vozliščema iz iste kopije G_k , kar pa je v protislovju s konstrukcijo. Torej G_{k+1} res ne vsebuje trikotnikov.

Opomba 2.2. Če definiramo G_k le za $k \geq 3$ in za G_3 vzamemo cikel dolžine sedem, ob zgornji trditvi velja celo, da je $girth(G_k) \geq 6$ za vsak $k \geq 3$.

Tuttejeva konstrukcija torej res dokazuje, da lahko imajo grafi brez trikotnikov poljubno veliko kromatično število. Vendar so grafi v Tuttejevi konstrukciji izredno veliki in je v resnici kromatično število precej majhno v razmerju s številom vozlišč. Iz tega aspekta je bolj zanimiva konstrukcija Mycielskega.

2.2 Konstrukcija Mycielskega

Jan Mycielski je leta 1955 podal konstrukcijo, ki iz začetnega grafa zn vozlišči zgradi graf z2n+1 vozlišči, ki ima večje kromatično število kot začetni graf, hkrati pa nima trikotnikov, če jih začetni graf nima. Konstrukcija je podana na naslednji način.

Denimo, da imamo graf G na n vozliščih v_1, \ldots, v_n . Potem definiramo M(G) kot graf z 2n + 1 vozlišči $a_1, \ldots, a_n, b_1, \ldots, b_n, c$. Za vse i, j, za katere obstaja povezava $v_i v_j$ v G, tvorimo povezave $a_i a_j, a_i b_j$ in $a_j b_i$ v M(G). Ob tem za vsak i med 1 in n tvorimo povezavo $b_i c$ v M(G). Takšnemu grafu M(G) pravimo graf Mycielskega grafa G.

Trditev 2.3. Če graf G nima trikotnikov, potem nima trikotnikov niti njegov graf $Mycielskega\ M(G)$.

Dokaz. Naj bo G brez trikotnikov. Dokazujemo s protislovjem. Denimo, da ima M(G) nek trikotnik. Vsa vozlišča znotraj trikotnika so med seboj povezana. Ker v M(G) ni povezav med b_i in b_j za nobena i in j, je lahko v ciklu kvečjemu eno vozlišče oblike b_i . To pomeni, da mora biti vsaj eno vozlišče oblike a_i v trikotniku. Ker c ni povezan z nobenim vozliščem te oblike, c ne more biti v trikotniku. Torej imamo v trikotniku a_j in a_k za neka različna j in k. Če bi imeli v trikotniku še vozlišče a_i za nek i različen od j in k, bi to pomenilo, da imamo trikotnik v G, saj je podgraf M(G) porojen z vozlišči a_1, \ldots, a_n izomorfen G po konstrukciji, kar je protislovje. Torej je v trikotniku še vozlišče b_i za nek i. To pa po konstrukciji M(G) pomeni, da imamo v G povezave $v_i v_k$, $v_i v_j$ in $v_j v_k$, kar je trikotnik. Ker G po predpostavki nima trikotnikov, smo prišli do protislovja.

Trditev 2.4. Velja $\chi(M(G)) = \chi(G) + 1$.

Dokaz. Pokažimo najprej, da je $\chi(M(G)) \geq \chi(G) + 1$. Dokazujemo s protislovjem. Denimo, da je $\chi(M(G)) \leq \chi(G) = k$. Tedaj obstaja pravilno k-barvanje M(G), recimo mu f. Brez škode za splošnost je f(c) = k. Zaradi pravilnosti f, ni nobeno vozlišče oblike b_i pobarvano s k. Barvanje f porodi pravilno k-barvanje grafa G, recimo mu g, podano z $g(v_i) = f(a_i)$. Če je kakšno vozlišče v_i v G pobarvano s k, lahko spremenimo barvo v $f(b_i)$ in je barvanje grafa G še vedno pravilno. Namreč, če imamo povezavo $v_i v_i$ v G, imamo tudi povezavo $b_i a_i$ v M(G), kar pomeni, da je $f(b_i) \neq f(a_i) = g(a_i)$ zaradi pravilnosti barvanja f. Torej tudi v spremenjenem barvanju nimamo nobenih sosedov z enako barvo, torej je to pravilno barvanje G. Vsa vozlišča v G, ki so bila pobarvana s k, smo na novo pobarvali z neko barvo iz $\{1,\ldots,k-1\}$, ker je $f(b_i)\neq k$ za vse i. To pa pomeni, da smo našli pravilno (k-1)barvanje G, kar je v protislovju z $\chi(G) = k$. Dokažimo še $\chi(M(G)) \leq \chi(G) + 1$. Naj bo $k = \chi(G)$ in naj bo g pravilno k-barvanje grafa G. Definiramo potem f kot (k+1)-barvanje grafa M(G). Naj bo $f(a_i) = f(b_i) = g(v_i)$ za vse i. Naj bo f(c) = k + 1. Pokažimo, da je f pravilno barvanje. Ker je $f(b_i) \neq k + 1$ za vse i, c nima enake barve z nobenim sosedom. Če pa imamo v M(G) povezavo oblike $a_i a_j$ ali pa $a_i b_j$ za neka različna i in j, vemo, da imamo v G povezavo $v_i v_j$. Ker je $f(a_i) = g(v_i) \neq g(v_i) = f(a_i) = f(b_i)$, pri čemer smo upoštevali pravilnost g, vemo, da niti sosedi oblike a_i in a_j ali a_i in b_j ne bodo imeli enake barve. Torej je f res pravilno (k+1)-barvanje M(G) in je res $\chi(M(G)) = \chi(G) + 1$.

Slovar strokovnih izrazov