

#### EVENT PROBABILITIES

# Why

Since one and only one outcome occurs, given a distribution on outcomes, we define the probability of a set of outcomes as the sum of their probabilities.

### Definition

Suppose p is a distribution on a *finite* set of outcomes  $\Omega$ . Given an event  $E \subset \Omega$ , we define the *event probability* of E under p as the sum of the probabilities of the outcomes in E.

### Notation

It is common to define a function  $P: \mathcal{P}(\Omega) \to \mathbf{R}$  by

$$P(A) = \sum_{a \in A} p(a)$$
 for all  $A \subset \Omega$ 

We call this function P the event probability function (or the probability measure) associated with p. Since it depends on the sample space  $\Omega$  and the distribution p, we occasionally denote this dependence by  $P_{\Omega,p}$  or  $P_p$ .

### Example: a single six-sided die

We model rolling a single die with the set of outcomes  $\Omega = \{1, \dots, 6\}$  as usual. We  $p: \Omega \to \mathbf{R}$  by  $p(\omega) = 1/6$  for  $\omega = 1, \dots, 6$ . In other words, p is the constant function at value 1/6 on  $\Omega$ . Now, we model the event that the number of pips showing is an even number by the set E defined by  $E = \{2, 4, 6\}$ . Given all this modeling, the probability of the event E is

$$\sum_{\omega \in E} p(\omega) = p(2) + p(4) + p(6) = 1/2.$$

# Properties of event probabilities

As a result of the conditions on p,  $\mathbf{P}$  satisfies

1. 
$$\mathbf{P}(A) \geq 0$$
 for all  $A \subset \Omega$ ;

- 2.  $P(\Omega) = 1 \text{ (and } P(\emptyset) = 0);$
- 3.  $\mathbf{P}(A) + \mathbf{P}(B)$  for all  $A, B \subset \Omega$  and  $A \cap B = \emptyset$ . This statement follows from the more general identity

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B)$$

for  $A, B \subset \Omega$ , by using  $\mathbf{P}(\emptyset) = 0$  of (2) above.

These three conditions are sometimes called the *axioms of probability* for finite sets. Do all such **P** satisfying (1)-(3) have a corresponding underlying probability distribution?

In other words, suppose  $f: \mathcal{P}(\Omega) \to \mathbf{R}$  satisfies (1)-(3). Define  $q: \Omega \to \mathbf{R}$  by  $q(\omega) = f(\{\omega\})$ . If f satisfies the axioms, then q is a probability distribution. For this reason we call any function satisfying (i)-(iii) an event probability function (or a *(finite) probability measure)*.

## Other basic consequences

## Probability by cases

Let **P** be a probability event function. Suppose  $A_1, \ldots, A_n$  partition  $\Omega$ . Then for any  $B \subset \Omega$ ,

$$\mathbf{P}(B) = \sum_{i=1}^{n} \mathbf{P}(A_i \cap B).$$

Some authors call this the law of total probability.

## Monotonicity

If  $A \subseteq B$ , then  $\mathbf{P}(A) \leq P(B)$ . This is easy to see by splitting B into  $A \cap B$  and B - A, and applying (1) and (3).

## Subadditivity

For  $A, B \subset \Omega$ ,  $\mathbf{P}(A \cup B) \leq \mathbf{P}(A) + \mathbf{P}(B)$ . This is easy to see from the more general identity in (3) above. This is sometimes referred to as a union bound, in reference to bounding the quantity  $\mathbf{P}(A \cup B)$ .

