Unidade 2 – Testes para uma amostra

Teste de Lilliefors

O teste de Lilliefors é um teste de normalidade, que segue o mesmo procedimento do teste de Kolmogorov-Smirnov (KS). Porém, no teste KS precisamos conhecer a média e a variância populacionais.

No teste de Lilliefors, estimamos a média e a variância com base na amostra:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 e $S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$

Dessa forma, utilizaremos a média e o desvio padrão amostrais para encontrarmos a distribuição acumulada téorica (com auxilio da tabela da distribuição normal).

As hipóteses são:

 $\left\{ egin{aligned} H_0 \colon & \text{segue uma distribuição normal} \\ H_1 \colon & \text{não segue uma distribuição normal} \end{aligned}
ight.$

Procedimento:

Especificar F(x): frequência observada teórica acumulada sob H₀. Como esse é um teste de normalidade, utilizaremos a distribuição normal. Entretanto, diferente do Teste de Kolmogorov, que utiliza de valores populacionais, aqui utilizaremos os amostrais. A padronização será feita por:

$$Z_{i} = \frac{(x_{i} - \overline{X})}{S}$$

- b) Distribuir os escores observados S(x) também de forma acumulada e correspondente com cada valor de F(x). S(x) pode ser calculado como k/n, sendo k o numero de observações iguais a x;
- c) Para cada caso da distribuição acumulada, calcular:

$$D = \max\{|F(x) - S(x)|\}$$

d) Mediante tabela específica do teste de Lilliefors, concluir sobre o teste. Rejeitaremos H_0 se o D que calculamos exceder o valor tabelado.

Exemplo:

Execute o teste de Lilliefors nos dados abaixo, considerando um nível de significância de 5%:

 H_0 : é proveniente de uma normal

 H_1 : não é proveniente de uma normal

X	Z	F(x)	S(x)	F(x)-S(x)
29	-1.63	0,0516	0.20	0.1484
33	-0.27	0,3936	0.40	0.0064
35	0.41	0,6591	0.60	0,0591
36	0,75	0,7734	0.80	0.0266
36	0,75	0,7734	1.00	0.2266

D = 0.2266 Pela tabela do Teste de Lilliefors, o valor crítico é 0.337

p =	0.80	0.85	0.90	0.95	0.99
n=4	.300	.319	.352	.381	.417
5	.285	.299	.315	.337	.405
6	.265	.277	.294	.319	.364
7	.247	.258	.276	.300	.348
8	.233	.244	.261	.285	.331
9	.223	.233	.249	.271	.311
10	.215	.224	.239	.258	.294
11	.206	.217	.230	.249	.284
12	.199	.212	.223	.242	.275
13	190	202	214	234	268

Como 0.2266 é menor que 0.337, não existem evidências para que rejeitemos a hipótese nula. Assim não rejeitamos a hipótese de que os dados sejam provenientes de uma população com distribuição aproximada a uma Normal.