Elektrický proud v kovech

Elektrický proud jako děj a jako veličina

Elektrický proud – uspořádaný pohyb volných částic s elektrickým nábojem

Podmínky vzniku proudu

- a) existence elektrického pole (vytváří elektrický zdroj napětí)
- b) přítomnost volných částic s elektrickým nábojem (vodiče)
 - o volné elektrony (kovy)
 - o ionty (elektrolyty)
 - o volné elektrony a ionty (plyny)
 - o volné elektrony a díry (polovodiče)

Směr elektrického proudu = směr uspořádaného pohybu kladně nabitých částic (dohodou)

V kovech je tedy směr elektrického proudu opačný než směr pohybu volných elektronů.

- směr proudu:
- směr elektronů: $- \rightarrow +$

Elektrický proud

- a) stejnosměrný směr proudu se s časem nemění
- b) <u>střídavý</u> směr proudu se s časem mění

Elektrický proud

- skalární fyzikální veličina
- náboj Q prošlý vodičem za čas t (Q je součtem kladných i záporných částic)

$$[I] = Cs^{-1} = A$$

$$Q = It$$

$$[Q] = As = C$$

$$Q = It [Q] = As = 0$$

Při proudu 1 A prochází průřezem vodiče za 1 s náboj 1 C.

Účinky elektrického proudu:

- a) tepelné (vodič se zahřívá, žárovka)
- b) chemické (změna složení elektrolytu)
- c) světelné (výboj)
- d) magnetické (magnetické pole v okolí vodičů s proudem)

Jednoduchý elektrický obvod

Elektrický zdroj napětí

- vytváří v obvodu elektrické pole, díky kterému začne obvodem procházet trvalý elektrický proud
- aktivní část elektrického obvodu

Elektrický spotřebič

• elektrická energie se v něm mění v energii jinou (světelnou, mechanickou)

Ampérmetr

- měří elektrický proud, zapojujeme <u>sériově</u> se spotřebičem
- má velmi malý odpor => nikdy se nesmí připojit přímo ke svorkám zdroje napětí

Voltmetr

- měří elektrické napětí, zapojujeme <u>paralelně</u> ke spotřebiči
- má velmi velký odpor => neovlivňuje proudy v obvodu

Elektrický zdroj napětí

Zařízení, mezi jehož dvěma <u>póly</u> (<u>svorkami zdroje</u>) je i po připojení vodiče udržováno elektrické napětí (<u>svorkové napětí</u> *U*).

Zdroj připojíme do elektrického obvodu

- a) vnější část obvodu
 - Elektrony se pohybují od záporné ke kladné svorce.
- b) vnitřní část obvodu (uvnitř zdroje)
 - Aby napětí mezi svorkami nezaniklo, musí uvnitř zdroje působit neelektrostatické síly (vtištěné síly), které odvádějí elektrony zpět na zápornou svorku. Tím se mezi svorkami udržuje svorkové napětí U.

Ke zdroji není připojen spotřebič

- zdrojem neprochází proud
- svorkové napětí je rovno tzv. <u>elektromotorickému napětí zdroje</u> U_e (<u>napětí nezatíženého zdroje</u> neboli <u>napětí naprázdno</u>).

Ke zdroji je připojen spotřebič

- zdrojem prochází proud
- svorkové napětí je menší než elektromotorické napětí $(U < U_e)$ (napětí zatíženého zdroje).

U zatíženého zdroje je vždy svorkové napětí menší než elektromotorické napětí. Elektromotorické napětí je charakteristikou zdroje napětí.

Ohmův zákon pro část elektrického obvodu

Kovy vedou elektrický proud prostřednictvím volných elektronů (elektronová vodivost).

Elektrony v kovovém vodiči

- a) tepelný pohyb (střední kvadratická rychlost 10⁵–10⁶ m.s⁻¹)
- b) unášivá rychlost po připojení ke zdroji napětí $(10^{-4} \text{ m.s}^{-1} = 0.1 \text{ mm.s}^{-1})$

Proud prochází kovovým vodičem → pohybující se elektrony narážejí na ionty mřížky → ionty se rozkmitávají → vodič se zahřívá.

Vodič klade (díky srážkám) elektrickému proudu odpor.

Ohmův zákon pro část elektrického obvodu

Elektrický proud *I* procházející kovovým vodičem je přímo úměrný elektrickému napětí *U* mezi jeho konci.

$$U = RI$$

R – elektrický odpor (rezistance)

- konstanta úměrnosti
- pro daný vodič je za stálé teploty charakteristický

$$R = \frac{U}{I} \qquad \Longrightarrow \qquad [R] = V.A^{-1} = \Omega \quad \text{(ohm)}$$

<u>Voltampérová charakteristika</u> ocelového a konstantanového drátu (graf závislosti elektrického proudu na napětí)

Pro libovolné napětí U platí: $I_K < I_O \Longrightarrow R_K > R_O$

Odpor konstantanového drátu je větší než odpor ocelového drátu.

Konstantan – slitina mědi a niklu

Elektrická vodivost (konduktance)

$$G = \frac{1}{R}$$
 \Longrightarrow $[G] = \Omega^{-1} = S$ (siemens)

Ohmův zákon pak může mít tvar: $I = \frac{U}{R} = GU$

Dělení vodičů:

- a) lineární platí pro ně Ohmův zákon, voltampérová charakteristika je lineární (přímka)
- b) nelineární neplatí pro ně Ohmův zákon, voltampérová charakteristika není lineární

<u>Rezistor</u> – součástka s předem stanoveným odporem <u>Reostat, potenciometr</u> – součástka, jejíž odpor můžeme plynule měnit

Elektrický odpor

Různé kovové materiály mají různý počet iontů a jiné uspořádání mřížky. Kladou tedy při průchodu elektrického proudu různý odpor.

Závislost odporu na geometrických rozměrech vodiče a na látce

$$R = \rho \frac{l}{S}$$
 délka vodiče obsah příčného řezu

 ρ – měrný elektrický odpor (rezistivita)

- závisí na materiálu vodiče
- $[\rho] = \Omega.m$
- např. měď: $\rho = 0.017 \mu\Omega.m$ konstantan: $\rho = 0.49 \mu\Omega.m$

Měrná elektrická vodivost (konduktivita)

$$\gamma = \frac{1}{\rho} \qquad [\gamma] = S. m^{-1}$$

Závislost odporu na teplotě

$$R = R_1(1 + \alpha \Delta t)$$

$$\Delta t = t - t_1 > 0$$
 odpor při menší teplotě t_1 (počáteční)

odpor při větší teplotě t (konečné)

Elektrický odpor kovových vodičů se s rostoucí teplotou zvyšuje přibližně lineárně (pro nepříliš velké Δt).

Příčina: větší rozkmit iontů mřížky => častější srážky s elektrony

α – <u>teplotní součinitel elektrického odporu</u>

- závisí na materiálu vodiče
- $\left[\alpha\right] = K^{-1}$
- např. měď: $\alpha = 4.10^{-3} K^{-1}$ konstantan: $\alpha = 0.05.10^{-3} K^{-1} => \text{odpor méně závisí na teplotě}$
- materiály s malým α se používají při výrobě technických rezistorů a odporových spirál pro tepelné spotřebiče (vařiče)

Stejný vztah platí i pro měrný elektrický odpor:

$$\rho = \rho_1 (1 + \alpha \Delta t)$$

Ohmův zákon pro uzavřený obvod

Uzavřený elektrický obvod:

a) vnější část (rezistory, spotřebiče, vodiče)

R – vnější odpor obvodu

b) vnitřní část (vodivý prostor mezi svorkami uvnitř zdroje)

 R_i – vnitřní odpor zdroje

Ke zdroji není připojen spotřebič

- zdrojem neprochází proud
- svorkové napětí je rovno tzv. <u>elektromotorickému napětí zdroje</u> U_e (<u>napětí nezatíženého zdroje</u> neboli <u>napětí naprázdno</u>).

Ke zdroji je připojen spotřebič

- zdrojem prochází proud
- svorkové napětí je menší než elektromotorické napětí ($U < U_e$) (napětí zatíženého zdroje).

U zatíženého zdroje je vždy svorkové napětí menší než elektromotorické napětí. Proč tomu tak je?

Ideální zdroj

- $R_i = 0 \Rightarrow zdroj$ neklade proudu žádný odpor
- svorkové napětí by se rovnalo elektromotorickému napětí

Reálný zdroj

- $R_i > 0 \Rightarrow$ zdroj klade proudu odpor
- svorkové napětí je menší než elektromotorické napětí ($U < U_{\rho}$)

Elektromotorické napětí zdroje je rovno součtu napětí na vnější a vnitřní části obvodu:

$$U_e = U + U_i$$

$$U_e = RI + R_iI$$

$$U_e = I(R + R_i)$$

Ohmův zákon pro uzavřený obvod

$$I = \frac{U_e}{R + R_i}$$

Proud v uzavřeném obvodu se rovná podílu elektromotorického napětí zdroje a součtu odporů vnější a vnitřní části obvodu.

Proud v obvodu tedy závisí na:

- U_e a R_i parametry zdroje
- *R* parametr obvodu

$$R+R_i$$
 celkový odpor obvodu $U=RI$ svorkové napětí zdroje při průchodu proudu I (= napětí na vnější části obvodu = napětí zatíženého zdroje) $U_i=R_iI$ napětí na vnitřní části obvodu (= úbytek napětí na zdroji)

$$U = U_e - U_i$$
 $U = U_e - R_i I$ => $U < U_e$ pro $I \neq 0$ (zatížený zdroj)
 $U = U_e$ pro $I = 0$ (nezatížený zdroj)

Spojení nakrátko (zkrat)

- odpor vnější části je téměř nulový (např. při spojení svorek zdroje drátem)
- proud v obvodu dosahuje maximální hodnoty

$$R \to 0$$
 => $I = \frac{U_e}{R + R_i}$
 $\underline{zkratový proud}$: $I_{max} = \frac{U_e}{R_i}$ => R_i malé => I_{max} velké

• zkratový proud poškozuje zdroj i spotřebič => <u>pojistky, jističe</u> (přeruší obvod, je-li proud větší než povolená hodnota)

Spojování rezistorů

- a) <u>Sériové zapojení</u> (za sebou)
 - všemi rezistory prochází stejný proud *I*
 - celkové napětí na soustavě rezistorů se rovná součtu napětí na jednotlivých rezistorech (rozdělí se)

celkový odpor – je vždy větší než odpor libovolného rezistoru

Platí: $U: U_1: U_2: U_3 = R: R_1: R_2: R_3 =>$ na rezistoru s větším odporem je vyšší napětí

- b) Paralelní zapojení (vedle sebe)
 - na všech rezistorech je stejné napětí *U*
 - celkový proud se rovná součtu proudů procházejících jednotlivými rezistory (rozdělí se)

celkový odpor – je

vždy menší než odpor libovolného rezistoru

Platí: $I: I_1: I_2: I_3 = \frac{1}{R}: \frac{1}{R_1}: \frac{1}{R_2}: \frac{1}{R_3} =$ na rezistoru s větším odporem je nižší proud

Elektrická práce a výkon v obvodu stejnosměrného proudu

Vnější část obvodu

Elektrické síly přenášejí náboj Q mezi svorkami zdroje a konají práci:

$$W = QU$$

$$I = \frac{Q}{t}$$

$$U - \text{svorkov\'e nap\'et\'i}$$

$$Q = It$$

$$W = UIt = RI^2t = \frac{U^2}{R}t \qquad \qquad U = RI \qquad \qquad I = \frac{U}{R}$$

Práce elektrického proudu se projeví zvětšením vnitřní energie vodiče (zahřátím vodiče). Pohybující se volné elektrony narážejí na ionty mřížky a více je rozkmitávají. Nedochází-li současně k jiným přeměnám elektrické energie (např. na mechanickou), platí:

$$W = Q_J = UIt = RI^2t = \frac{U^2}{R}t$$
Joulovo teplo

<u>Výkon elektrického proudu</u> ve spotřebiči o odporu R = příkon spotřebiče:

$$P = \frac{W}{t} = UI = RI^2 = \frac{U^2}{R}$$

Vnitřní část obvodu

Uvnitř zdroje konají neelektrické síly práci:

$$W_Z = QU_e$$
 $Q = It$
 U_e – elektromotorické napětí

$$W_Z = U_e I t = (R + R_i) I^2 t = \frac{U_e^2}{R + R_i} t$$
 $U_e = I(R + R_i)$ $I = \frac{U_e}{R + R_i}$

 R_i – vnitřní odpor zdroje

Výkon zdroje:
$$P_Z = \frac{w_Z}{t} = U_e I = (R + R_i)I^2 = \frac{U_e^2}{R + R_i}$$

Výkon zdroje je energie, kterou zdroj dodá do obvodu za 1 sekundu.

<u>Účinnost elektrického obvodu (účinnost zdroje)</u>

$$\eta = \frac{P}{P_Z} = \frac{W}{W_Z} = \frac{U}{U_e} = \frac{R}{R + R_i}$$

Účinnost zdroje je tím větší, čím menší je jeho vnitřní odpor R_i v porovnání s odporem spotřebiče R.

Např.:
$$R_i \ll R \Rightarrow \eta = 100 \%$$

 $R_i = R \Rightarrow \eta = 50 \%$