

Computational Neuroscience

Saeed Reza Kheradpisheh

s_kheradpisheh@sbu.ac.ir

Department of Computer Science, Shahid Beheshti University

Neurons and Synapses

Brain and Neurons

Neurons Structural Diversity

Neurons Basic Structure

Dendrites Cell body

Collect electrical signals Integrates incoming signals and generates outgoing signal to axon

Axon

Passes electrical signals to dendrites of another cell or to an effector cell

Functions of the Neuron

- Transmit information from one point in the body to another.
- Process the information in various ways.
- The neuron has a specialized structure for carrying out these functions:
 - Cell Body (soma): Input, process
 - Dendrites: Input, process
 - Axon: Transmit
 - Terminal Buttons: Output

Neural Potentials (voltages)

- Resting Potential:
 - A steady charge maintained between action potentials.
 - Value about −70 to −90 mV.
- Action Potential:
 - A rapid change in potential that moves from the base of the axon to its terminals.
 - Also called the neural impulse or spike.

How Neurons Work?

- Activity at the neurons dendrites or cell body initiates an action potential at the base of the axon.
- Action potential races down the axon to the terminal buttons.
- Terminal buttons release a neurotransmitter substance into the synapses.

Neurons Membrane Structure

Neurons in Action

Two Types of Neurons

Excitatory:

- Cause an excitatory electrical change in the postsynaptic potential (EPSP).
- Release of neurotransmitter tends to depolarize the receiving neuron, making it more likely to fire an action potential.
- Open the membrane channels for Sodium (Na^+) and Calcium (Ca^{2+}) ions.

Inhibitory:

- Cause an inhibitory postsynaptic potential (IPSP).
- Release of neurotransmitter tends to hyperpolarize the receiving neuron, making it less likely to fire an action potential.
- Open the membrane channels for Chloride (CI^-) and Potassium (K^+) ions.

How Axon Works?

Synapse

The synapse is a connection between a terminal button of one neuron (pre-synaptic neuron) and a dendrite (or the cell body) of another neuron (post-synaptic neuron).

- Terminal button
- Vesicles containing neurotransmitter
- Synaptic gap
- Receptor proteins (in membrane of receiving neuron)

Action at the Synapse

- Arrival of action potential at the terminal button causes vesicles to move toward synaptic gap.
- Those reaching the cleft burst open, dumping neurotransmitter into the cleft.
- Neurotransmitter locks onto receptor proteins, activating them.
- Resting potential of receiving neuron changes temporarily.
- Neurotransmitter is removed from receptor proteins, terminating the action.

Action at the Synapse

Synaptic Plasticity

Synaptic Plasticity

Neurons and Synapses in Action

