- 44. (2010eko apirila #2) bitak(E(1..q)) eta biratuta(F(1..r), (f₁, f₂, ..., f_r), G(1..r), (g₁, g₂, ..., g_r), H(1..r), (h₁, h₂, ..., h_r), Q(1..r), pos) predikatuak eta A(1..n), B(1..n), C(1..n) eta zeroak eta batekoak bakarrik dituen D(1..n) bektoreak emanda, C(i) 0 bada A(i) \rightarrow B(i) \rightarrow C(i) \rightarrow A(i) biraketa eta C(i) 1 bada A(i) \rightarrow C(i) \rightarrow B(i) \rightarrow A(i) biraketa burutzen duen programa. -- #
 - a) bitak(E(1..r)) $\equiv \forall k (1 \le k \le r \rightarrow E(k) = 0 \lor E(k) = 1)$
 - b) biratuta(F(1..r), (f₁, f₂, ..., f_r), G(1..r), (g₁, g₂, ..., g_r), H(1..r), (h₁, h₂, ..., h_r), Q(1..r), pos) = {(0 \le pos \le r) \lambda bitak(Q(1..r)) \lambda $\forall k$ ((1 \le k \le pos \lambda Q(k) = 0) \rightarrow (F(k) = h_k \lambda G(k) = f_k \lambda H(k) = g_k)) \lambda $\forall k$ ((1 \le k \le pos \lambda Q(k) = 1) \rightarrow (F(k) = g_k \lambda G(k) = h_k \lambda H(k) = f_k))}

b) atala egiteko beste aukera bat:

biratuta(F(1..r), (f₁, f₂, ..., f_r), G(1..r), (g₁, g₂, ..., g_r), H(1..r), (h₁, h₂, ..., h_r), Q(1..r), pos)
$$\equiv$$
 { $(0 \le pos \le r) \land$ bitak(Q(1..r)) \land $\forall k$ (1 $\le k \le pos \rightarrow$ (Q(k) = 0 \rightarrow (F(k) = h_k \land G(k) = f_k \land H(k) = g_k)) \land (Q(k) = 1 \rightarrow (F(k) = g_k \land G(k) = h_k \land H(k) = f_k))) }

- c) Asertzioak ematerakoan egokiena edo naturalena den ordena jarraituko da eta ez zenbakizko ordena:
 - (1) {Hasierako baldintza} \equiv { $n \ge 1 \land \forall k \ (1 \le k \le n \to (A(k) = a_k \land B(k) = b_k \land C(k) = c_k)) \land bitak(D(1..n))}$

Hasierako baldintzak honako hau dio: A, B, C eta D bektoreek gutxienez elementu bat izango dute, A, B eta C tauletako hasierako balioak *a*, b eta c minuskulen bidez eta dagozkien azpiindizeak erabiliz adieraziko dira eta gainera D bektoreko posizio bakoitzean 0 edo 1 dago.

- (2) {Tarteko asertzioa} \equiv {(1) \land i = 0}
- (10) {Bukaerako baldintza} = {biratuta(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, C(1..n), $(c_1, c_2, ..., c_n)$, D(1..n), $(c_1, c_2, ..., c_n)$

Bukaerako baldintzaren bidez tauletan egin beharreko aldaketa denak egin direla adierazten da, hau da, taulak n posizioraino zeharkatu dira eta egin beharreko biraketak burutu dira.

(3) {Inbariantea} = {(0 \le i \le n) \wedge \text{ biratuta}(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), C(1..n), (c_1, c_2, ..., c_n), D(1..n), i)}

Inbariantearen bidez i posizioraino egin beharreko aldaketa denak eginda daudela adierazten da.

(4) {Tarteko asertzioa} \equiv { $(0 \le i \le n-1) \land biratuta(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), C(1..n), (c_1, c_2, ..., c_n), D(1..n), i)}$

While-an sartu garenez badakigu i ez dela n-ren berdina izango.

(5) {Tarteko asertzioa} = {($1 \le i \le n$) \land biratuta(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, C(1..n), $(c_1, c_2, ..., c_n)$, D(1..n), i - 1)}

i aldagaiaren balioa handitu egin da eta ondorioz i aldagaiaren eremuaren goiko eta beheko muga ere handitu egin dira. Orain aldaketak i-1 posizioraino daude eginda eta ez i posizioraino.

(6) {Tarteko asertzioa} = {(1 \le i \le n) \land \text{biratuta}(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), C(1..n), (c_1, c_2, ..., c_n), D(1..n), i - 1) \land \text{D(i)} = 0}

If aginduko *then* bidetik sartu garenez, D(i) posizioan 0 balioa daukagula badakigu.

(7) {Tarteko asertzioa} = {(1 \le i \le n) \wedge \text{biratuta}(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), C(1..n), (c_1, c_2, ..., c_n), D(1..n), i - 1) \wedge D(i) = 0 \wedge \text{lag} = C(i) = c_i}}

Tras ejecutarse la asignación lag := C(i); esleipena burutu ondoren, lag aldagaian eta C(i) posizioan balio bera daukagu eta balio hori gainera posizio horretako hasierako balioa da, c_i . Une honetan aldaketak i-1 posizioraino daude eginda, i posizioan erdizka gaude, aldaketak egiten hasita baina bukatzeke eta horregatik *biratu* predikatuan i-1 ipini behar da.

C(i): = B(i); esleipena burutu ondoren C(i) posizioan eta B(i) posizioan balio bera dugu eta gaitera balio hori B(i) posizioko hasierako balioa da, b_i . Orain lag aldagaian ez daukagu C(i) posizioan dagoen balio bera, C(i) posizioko hasierako balioa dago, hau da, c_i . Une honetan aldaketak i-1 posizioraino daude eginda, i posizioan erdizka gaude, aldaketak egiten ari gara baina bukatzeke dago eta horregatik *biratu* predikatuan i-1 ipini behar da.

B(i): = A(i); esleipena burutu ondoren B(i) posizioan eta A(i) posizioan balio bera daukagu, A(i) posizioko hasierako balioa, a_i . Orain lag aldagaian ez daukagu C(i) posizioan dagoen balio bera, C(i) posizioko hasierako balioa dago, hau da, c_i . Bestalde C(i) posizioan ez dago B(i) posizioko balio bera, B(i) posizioko hasierako balioa dago, hau da, b_i Une honetan aldaketak i-1 posizioraino daude eginda, i posizioan erdizka gaude, aldaketak egiten ari gara baina bukatzeke dago eta horregatik *biratu* predikatuan i-1 ipini behar da.

$$(11) E = n - i$$

Inbariantea betetzen den puntuan gauden bakoitzean E espresioak while-a bukatzeko zenbat buelta falta diren adierazten digu. Beraz, "i aldagaiak hartuko duen azkeneko balioa" ken "i" izango da. Azken batean E espresioak n eta i-ren arteko distantzia adierazten du. Horrela, i-ren balioa handitzen denean distantzia txikitu egiten da eta gelditzen den buelta-kopurua ere txikiagoa izango da.

Asertzio batetik bestera zer aldatzen den hobeto ikusteko, aldaketak kolorez ipini dira.