

Minimization

K Map Basics

Lecture No. 2

By- CHANDAN SIR

TOPICS TO BE COVERED 01 THEOREM

02 D-MORGAN'S Law

03 K MAP

.

04 Questions

05 DISCUSSION

Revision

Minimized expression will be $Y = A \oplus (A + B)$

$$\overline{A} \cdot B$$

$$Y = A\Theta(A+B)$$

$$= A\Theta(A+B)$$

$$= O + A\ThetaB$$

$$= A\ThetaB.$$

$$Y = A\Theta (A+B)$$

$$Y = \overline{A} \cdot (A+B) + A \cdot (\overline{A+B})$$

$$Y = \overline{A} \cdot (A+B) + A \cdot (\overline{A+B})$$

$$Y = \overline{A} \cdot (A+B) + A \cdot \overline{A} \cdot \overline{B}$$

If the output y = 1 Then correct input is/are-

- В 1010, 0111
- C. 0101, 0101
- D. 1100, 1110
 - (E) (10)00, (10)11

Output y will be-

$$C \oplus D = Q$$

$$A \oplus B$$

D.
$$A \oplus B \oplus C \oplus D$$

1854- George Boole

"An Investigation of Law of Thoughts" <

Ex.a.
$$f(n_1B) = AB + AB$$

BOOLEAN ALGEBRA

Boolean function -> Combination of inputs on which output will depends.

BOOLEAN ALGEBRA

SOP
[Sum of product
Minterm]

POS
[product of sum
[Maxterm]

Decimal	A B C	Min term	Max term	Function
0	000	D. 2. 2.	A+B+c	1
	001	FB C	A+B+c	0
2	010	To B Z	P+B+c	1 -
3	0 1 1	ABC	A+B+c	0
4	100	ABC	A+B+c	0
5	T 0 1	A B C	A+B+E	1
6	1 1 0	AB C	Atetc	0
7	1 1 1	ABC	TA+B+T	1 /

Boolean Function- It is the combination of inputs on which output is depends.

Standard Canonical sop form

$$f(A_1B_1C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= m_0 + m_2 + m_5 + m_7$$

$$= \sum m(0,2,5,7)$$

$$= \sum (0,2,5,7)$$

when each term should contain all the variables.

Standard cononical Pos. form.

= 1 (1,3,4,6)

$$F(A_1B_1C) = (A+B+C) \cdot ($$

A	Q	Minterm	Maxterm	function
0	0	(A B)	A+B	1 /
0	L	Āß	(A + B)	0
1	0	AB	(A+B)	0
L	1	AB	AtB	1

$$\frac{P05}{F(A_1B_1)} = (A_1B_{11})(A_1B_{12}) \cdot (A_1B_{12}) \cdot (A_1B_{11}) \\
= 1 \cdot (A_1B_1) \cdot (A_1B_1) \cdot (A_1B_1) \cdot 1 \\
= (A_1B_1)(A_1B_1)$$

D Bistribution Theorem 3→ (A+B) (A+C)

$$A + BC = (A+B) \cdot (A+C)$$

$$\frac{1}{\Delta x} = \frac{1}{A+B} = \frac{1}{A+B} = \frac{1}{A+B}$$

$$= \frac{1}{A+B}$$

(2) Concensus Theorem

$$Ex$$
 $AB + AC + BC = AC + BC$
 $Redundant = AB$

$$Ex. (\overline{AB}) + \overline{AC} + (BC) = \overline{AB} + BC$$

Redundant

3 Transpose Theorem

$$\rightarrow$$
 (A+B) (A+C)

$$(A+B)(\overline{A}+C) = AC+\overline{AB}$$

$$(A+B)(\overline{A}+\overline{B}) = A\overline{B}+\overline{AB}$$

$$(A+B)(\overline{A}+B) = AB+\overline{AB}$$

Pw

(4) B-Morgan's Law.

Find the minimum number of the NAND gate required to implement the Boolean function given below.

$$f(A, B, C) = A + ABC + ABC$$

Minimize the expression.

$$f(A, B) = A + \overline{AB}$$

Minimize the expression. $f(A, B) = \overline{A} + AB$

$$f(A, B) = \overline{A} + AB$$

Minimize the expression.

$$f(A, B) = \overline{A} \overline{B} + \overline{A}B + AB$$

$$= \overline{A} + \overline{B} + \overline{A} = \overline{A} \overline{A} = \overline{A} = \overline{A} + \overline{A} = \overline{A}$$

Minimize the expression. $f(A, B) = \overline{A} B + \overline{A}B + AB + AB$

$$= \overline{A} + \overline{B} + \overline{B} + \overline{B} + \overline{B} = \overline{A} + \overline{A} = \overline{A} = \overline{A} = \overline{A} + \overline{A} = \overline{A}$$

$$h=1$$

$$\left\{\begin{array}{c} A \\ \overline{A} \\ 0 \end{array}\right\}$$

"h" Variables.

Total different expression = 2 2 256 256

Ex. It me pare, 3, racioples then poor want gitterent winimised

AM = 22 = 256

Minimize the expression. $f(A, B) = \overline{A}B + A\overline{B}$

Latready minimized

Minimize the expression.
$$f(A, B) = AB + \overline{AC} + BC = AB + \overline{AC}$$

