Computabilità e Algoritmi (Computabilità) 1 Luglio 2016

Esercizio 1

Sia A è un insieme ricorsivo e siano $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ funzioni calcolabili. Dimostrare che è calcolabile la funzione $f : \mathbb{N} \to \mathbb{N}$ definita da

$$f(x) = \begin{cases} f_1(x) & \text{if } x \in A \\ f_2(x) & \text{if } x \notin A \end{cases}$$

Il risultato continua a valere se indeboliamo le ipotesi e assumiamo A r.e.? Spiegare come si adatta la dimostrazione, in caso positivo, o fornire un controesempio, in caso negativo.

Esercizio 2

Dimostrare che un insieme A è r.e. se e solo se esiste una funzione $f: \mathbb{N} \to \mathbb{N}$ calcolabile tale che $A = img(f) = \{f(x) : x \in \mathbb{N}\}.$

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : x \in W_x \land \varphi_x(x) > x\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Studiare la ricorsività dell'insieme

$$B = \{ x \in \mathbb{N} : \forall y \in W_x. \exists z \in W_x. (y < z) \land (\varphi_x(y) > \varphi_x(z)) \},$$

ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che esiste un indice $e \in \mathbb{N}$ tale che $W_e = \{e^n : n \in \mathbb{N}\}.$