```
import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.arima.model import ARIMA
import warnings
warnings.filterwarnings('ignore')
# Step 1: Download Stock Data
data = yf.download('RELIANCE.NS', start='2020-01-01', end='2024-01-01')
data = data[['Close']]
data.dropna(inplace=True)
# Step 2: Visualize
data.plot(title='Reliance Industries - Closing Price')
plt.ylabel('Price (INR)')
plt.show()
# Step 3: ADF Test (Check Stationarity)
result = adfuller(data['Close'])
print('ADF Statistic:', result[0])
print('p-value:', result[1])
# Step 4: Differencing (if not stationary)
data['Diff'] = data['Close'].diff()
data.dropna(inplace=True)
# Step 5: Fit ARIMA Model (Order can be tuned via AIC or auto_arima)
model = ARIMA(data['Close'], order=(5,1,0)) # p=5, d=1, q=0 as example
model_fit = model.fit()
print(model_fit.summary())
# Step 6: Forecast Next 30 Days
forecast = model_fit.forecast(steps=30)
# Step 7: Plot Forecast
plt.figure(figsize=(10, 5))
plt.plot(data['Close'], label='Historical')
plt.plot(pd.date_range(start=data.index[-1], periods=31, freq='D')[1:], forecast, label='Forecast', color='red')
plt.title('Reliance Stock Price Forecast (ARIMA)')
plt.xlabel('Date')
plt.ylabel('Price (INR)')
plt.legend()
plt.grid(True)
plt.show()
```


ADF Statistic: -1.7106043970970914

p-value: 0.42565722119683336

SARTMAX	Results

Dep. Variable:	RELIANCE.NS	No. Observations:	991
Model:	ARIMA(5, 1, 0)	Log Likelihood	-4211.024
Date:	Thu, 19 Jun 2025	AIC	8434.048
Time:	09:57:13	BIC	8463.434
Sample:	0	HQIC	8445.222
	- 991		
Covariance Type:	opg		

========	========	========				
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.0241	0.031	0.777	0.437	-0.037	0.085
ar.L2	0.0211	0.028	0.753	0.452	-0.034	0.076
ar.L3	-0.0522	0.027	-1.914	0.056	-0.106	0.001
ar.L4	-0.0382	0.030	-1.282	0.200	-0.097	0.020
ar.L5	0.0526	0.031	1.710	0.087	-0.008	0.113
sigma2	289.7986	8.722	33.226	0.000	272.704	306.893

Ljung-Box (L1) (Q):	0.01	Jarque-Bera (JB):	285.57
Prob(Q):	0.94	Prob(JB):	0.00
Heteroskedasticity (H):	0.50	Skew:	-0.00
<pre>Prob(H) (two-sided):</pre>	0.00	Kurtosis:	5.63

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

