Introduction to Machine Learning

Random Forests: Feature Importance

Learning goals

- Understand that the goal of defining variable importance is to enhance interpretability of the random forest
- Know definition of variable importance based on improvement in split criterion
- Know definition of variable importance based on permutations of OOB observations

VARIABLE IMPORTANCE

- Single trees are highly interpretable
- Random forests as ensembles of trees lose this feature
- Contributions of the different features to the model are difficult to evaluate
- Way out: variable importance measures
- Basic idea: by how much would the performance of the random forest decrease if a specific feature were removed or rendered useless?

VARIABLE IMPORTANCE

Measure based on improvement in split criterion

for features x_i , j = 1 to p **do**

for tree base learners $\hat{b}^{[m]}(x)$, m=1 to M do

Find all nodes \mathcal{N} in $\hat{b}^{[m]}(x)$ that use x_j .

Compute improvement in splitting criterion achieved by them.

Add up these improvements.

end for

Add up improvements over all trees to get feature importance of x_j . end for

VARIABLE IMPORTANCE

Measure based on permutations of OOB observations

While growing tree, pass down OOB observations and record predictive accuracy.

Permute OOB observations of *j*-th feature. This destroys the association between the target and the permuted *j*-th feature.

Pass down the permuted OOB observations and evaluate predictive accuracy again.

The decrease of performance induced by permutation is averaged over all trees and is used as a measure for the importance of the j-th variable.

VARIABLE IMPORTANCE BASED ON PERMUTATIONS OF OOB OBSERVATIONS

variable importance for $x_1 = \frac{1}{M} \sum_{m=1}^{M} \Delta R_m^{OOB}$