Análisis de la dependencia del voto $S\hat{I}$ en el Referendum en función de la edad, para cada municipio de Montevideo

Justificación

Las encuestadoras de opinión han indicado que existe mayor proporción de votos SI en los jóvenes que en los mayores. Surgen entonces las siguientes preguntas: ¿es válida dicha afirmación para todos los municipios? ¿Cómo varía el voto en función de la edad? En esta nota presento una primera aproximación al análisis de la relación entre voto y edad en cada municipio de Montevideo.

Información disponible

Como el voto es secreto la unidad mínima observable es el circuito. ¿Qué sabemos de cada circuito?

- la respuesta, el resultado binario (SÍ-NO)
- su ubicación geográfica
- la edad media de los habilitados para votar

Objetivos

- 1. Realizar un análisis visual de la relación entre porcentaje de voto SI y la edad para cada Municipio
- 2. Construir un modelo de ajuste de la probabilidad de haber votado *SÍ* en función de la edad, para cada municipio de Montevideo
- 3. Comparar entre sí los modelos establecidos

1.- Análisis visual

En las figuras correspondientes a cada Municipio se consideran las siguientes variables:

- en el eje horizontal (x), la edad media de los habilitados de cada circuito
- en el eje vertical (y), el porcentaje de votos $SI(\frac{SI}{SI+NO})$ en cada circuito

Presento primero los gráficos para luego hacer unos comentarios. Se incluyen en la misma página los Municipios CH y E, donde ganó el *NO*.

Fig. 1: Municipio A

Fig. 2: Municipio B

Fig. 3: Municipio C

Fig. 4: Municipio D

Fig. 5: Municipio CH

Fig. 6: Municipio E

Fig. 7: Municipio F

Fig. 8: Municipio G

Comentarios

- Si bien se presenta una nube de resultados con mayor o menor dispersión para cada edad, en todas las figuras se observa que el **voto** *NO* aumenta sensiblemente con la edad, (la nube se orienta del noroeste al sudeste)
- Los Municipios A, F y G presentan la menor dispersión para cualquier edad.
- Estos últimos y el Municipio D, con promedios de edad de los municipios inferiores a 50 años.
- La mayor dispersión en la nube se presenta en el Municipio CH donde hay circuitos de edad media baja con porcentaje de votos SÍ inferior al 20 %. Estos circuitos corresponden a la Serie AXB de la zona Trouville-Villa Biarritz. En constraste, los circuitos del Municipio CH con mayor porcentaje de SÍ entre los jóvenes se encuentran en La Blanqueda.
- Le sigue en dispersión el Municipio E donde existen los circuitos de edad media baja con los peores resultados del *SÍ* en todo Montevideo. Si se consideran los circuitos con valores del *SÍ* inferiores al 26% todos pertenecen a la Serie BCD (Carrasco).
- En el rango 30-70 años no hay cambios sensibles en la dispersión en los municipios exceptuando el CH y el E.

2.- Construcción de un modelo de ajuste de la probabilidad de haber votado SI en función de la edad, para cada municipio de Montevideo

Dos meses después de haberse realizado el Referendum no tiene sentido hablar de modelo de pronóstico. Pero sí es de utilidad establecer un modelo de ajuste de la probabilidad del voto SI con la finalidad de comparar entre si los municipios. En cada circuito se dispone del número de votos SI y NO (codificados como 1 y 0) y se asume que los votantes tienen como edad la edad media del circuito (salvo traslados las edades de los votantes de un circuito es similar). Puesto que el voto en el Referendum es dicotómico SI - NO, es apropiado un modelo de Regresión Logística donde la respuesta es el voto y como variable causal la edad. Para cada municipio la probabilidad de votar SI se expresa en función de la edad del votante como:

$$Prob(S\hat{I}) = \frac{1}{1 + e^{-(a+b \times edad)}}$$

El modelo depende de dos parámetros a y b, que son estimados a partir de la data e y e es la constante matemática $e \cong 2,71828$.

Por ejemplo, para el Municipio A las constantes son: a = 1.70275 y b = -0.01784. Si dispone de una calculadora en su teléfono puede hallar la probabilidad de que una persona de 25 años de dicho municipio votara SÍ. En el Apéndice se incluye un cuadro con los coeficientes a y b para cada municipio.

3.- Comparación entre los modelos establecidos

En la figura 9 se grafican los ocho modelos. En el eje horizontal la edad en el intervalo 20 - 90 y en el vertical la probabilidad de votar SI como porcentaje en el intervalo 30% - 80%.

¹a y b son estimados por el método de máxima verosimilitud

Fig. 9: Comparación de los modelos

Comentarios

- para jóvenes, 20 35 años, los Municipios CH y E (líneas punteadas), se diferencian claramente de los restantes municipios por la baja probabilidad de votar SÍ
- para adultos mayores, 75 en adelante, las probabilidades de votar SI se asemejan para todos los municipios exceptuando el Municipio A
- El Municipio A presenta para todas las edades mayor probabilidad de votar SI
- El Municipio CH presenta para todas las edades mayor probabilidad de votar NO que el Municipio E
- Los Municipios B y G presentan los mayores cambios en la probabilidad de votar SÍ entre jóvenes y adultos mayores

¿A partir de qué edad la probabilidad del voto NO supera al SÍ?

La respuesta se encuentra en el cuadro 1. Se considera la edad en el intervalo [20 : 90] y los municipios ordenados desde el Municipio CH, donde para toda edad la probabilidad del voto NO supera al SI, hasta el Municipio A donde la probabilidad del NO nunca supera al SI. Por ejemplo, para el Municipio E, es a partir de los 43 años que la probabilidad del NO supera al SI.

MUNICIPIO	СН	Е	В	F	D	С	G	A
EDAD	Siempre	43	59	65	67	67	75	Ninguna

Table 1: Edad a partir de la cual la probabilidad del voto NO supera al SÍ

Finalmente:

Como dijimos en la justificación ésta es una primera aproximación al tema. Seguramente se pueden construir modelos más eficientes si se incluyen las subdivisiones en Centros Comunales Zonales, asociando a cada CCZ variables socioeconómicas (nivel educativo, ingreso per cápita, etc.).

Salvador

página web https://salvador-pintos.github.io

Apéndice

En el cuadro 2 se presentan los coeficientes a y b de los modelos hallados para cada uno de los municipios.

Municipios	A	В	С	СН	D	Е	F	G
a	1.70275	1.25830	1.09610	0.08532	1.24362	0.39111	1.35868	1.60346
b	-0.01784	-0.02143	-0.01636	-0.00743	-0.01867	-0.00916	-0.02097	-0.02202

Table 2: Coeficientes a y b de los modelos de Regresión logística