MATH50006 Week 1

18/02/2022

0.0.1 Algebra

X an arbitrary set. A family of sets $A \subset 2^X$ is an algebra if: $X \in A - A \in A \implies A^C \in A - A_1, \cdots, A_m \in A \implies \bigcup_{k=1}^m A_k \in A$

 \mathcal{A} is σ -algebra, if last is changed to countable, and we also have countable intersection in the algebra

Intersection of sigma algebras is an algebra

σ - algebra Generated by C

With $C \subset 2^X$, then the set $\sigma(C) := \bigcap_{A:C \subset A} A$ is a sigma algebra generated by C and also the smallest one containing it. **e.g.** $\sigma() = \{X\}, \sigma(\{A\}) = \{A, A^C, X, \}, \sigma(C) = C$ iff C is a $\sigma - algebra$ Borel σ - algebra is defined as $\sigma(\tau)$ for topological space (X, τ)

Measurable Space Defined as a pair (X, A) where A is a $\sigma - algebra$ over X, elements of the algebra are called measurable sets

Measure

A measure on (X, \mathcal{A}) is a function $\mu : \mathcal{A} \to [0, \infty]$ such that: $-\mu(\emptyset) = 0$ - $(\sigma$ - additivity) For all pairwise disjoint sets, $\mu(\cup A_k) = \sum \mu(A_k)$

Measure Space A triple (X, \mathcal{A}, μ)

Examples: The counting measure, the co-countable measure, Dirac Measure with fixed x,

$$\delta_x(A) = \begin{cases} 0 & x \in A \\ 1 & x \notin A \end{cases}$$

Properties of measure - Monotonicity $A \subset B \implies \mu(A) \leq \mu(B)$

- Finite Additivity $\mu(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n \mu(A_k)$
- Increasing Chain $A_k \subset A_{k+1}, \mu(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \mu(A_k)$ proved by taking $B_k = A_{k+1} \setminus A_k$
- Decreasing Chain All $\mu(A_k) < \infty$, $A_k \supset A_{k+1}$, $\mu(\cap_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \mu(A_k)$ proved by taking $B_k = A_1 \setminus A_k$ and use above counter e.g. when not finite: counting measure with sets $A_k = \{k, k+1, \cdots\}$
- Sigma-subadditivity A covered by A_k 's, $\mu(A) \leq \sum_{k=1}^{\infty} \mu(A_k)$ proved by $B_1 = A \cap A_1, B_k = (A \cap A_k) \setminus \bigcup_{i=1}^{k-1} A_i$