Credit Risk Analysis

Implementation of Machine Learning Algorithms for strategizing on a credit risk policy.

Learning Algorithms Used-

XGBoost

છ

Neural Networks

Project By-

Parth Ghumare Sakshi Saxena Sumana Akavaram

Executive Summary

		Train			Test1		Test 2			Overall		
	#Accepted	Default Rate	Revenue									
Conservative 0.3	28208	0.037	51.49	6003	0.065	9.68	7289	0.042	12.55	41500	0.042	73.73
Aggressive 0.443	31030	0.063	63.822	0.443	0.099	11.96	8130	0.072	15.80	45764	0.070	91.58

Use Case: We propose 2 strategies, Aggressive and Conservative wherein we take different thresholds to accept customers to propose the trade off between risk and revenue.

- 1. In our conservative strategy, we keep our threshold to accept customers with probability of default under 0.3 and display revenue
- 2. In our aggressive strategy, we keep our threshold to accept customers with probability of default under 0.443 and display revenue

It is observed that with the Aggressive strategy although the revenue is high, risk of defaulting is also higher and hence a company can analyze the risk to revenue tradeoff and decide which strategy to adopt.

Data

- The aim of this project is to use the monthly customer profile data to forecast the likelihood that a customer will default on their credit card balance in the future.
- The target variable is "1" if the customer defaults, else "0".
- A default event occurs if the customer does not make the required payment within 120 days of the date of their most recent statement.

_	Month	# of observations	Default Rate
	2017 / 3	5639	24.24%
	2017 / 4	5659	23.20%
	2017 / 5	5635	24.13%
	2017 / 6	5785	23.56%
	2017 / 7	5921	26.46%
	2017 / 8	5957	25.15%
	2017 / 9	6116	25.31%
	2017 / 10	6292	25.94%
	2017 / 11	6338	26.44%
	2017 / 12	6632	27.43%
	2018 / 1	6921	28.32%
	2018 / 2	7575	27.96%
	2018 / 3	8505	28.46%
	Total	82975	26.08%

Features

Categories	No.of features			
Delinquency Variables	96			
Spend Variables	22			
Payment Variables	3			
Balance Variables	40			
Risk Variables	28			

	Feature	Minimum value	Maximum value	1 percentile	5 percentile	99 percentile	95 percentile	Median value	Mean value	Missing Value
0	P_2	-3.356653e-01	1.009993	0.007486	0.217058	1.005432	0.974097	0.681664	0.648862	1.220850
1	D_45	1.242293e-05	1.568436	0.002673	0.008129	0.991412	0.754665	0.153975	0.237275	0.069901
2	S_3	-3.409995e-01	3.047587	0.004744	0.063045	1.013916	0.618140	0.165817	0.230616	18.415185
3	B_9	1.537601e-07	14.308021	0.000241	0.001172	1.000241	0.650838	0.028686	0.192319	0.000000
4	D_42	-2.559827e-04	4.183892	0.002611	0.007144	1.049500	0.582117	0.117838	0.185634	81.238927
5	D_50	-7.652144e-01	34.889139	0.002456	0.025821	0.982222	0.445565	0.108740	0.170394	57.672793

Sampling

```
In [160]: #test-train-test split

train_start_date = '2017-05'
    train_end_date = '2018-01'

# Define the start and end dates for the test 1 set
    test_start_date = '2017-03'
    test_end_date = '2017-04'

# Define the start and end dates for the test 2 setYear-Month
    test1_start_date = '2018-02'
    test1_end_date = '2018-03'

# Split the data into training and test sets
    train_final_data = final_data[(final_data['Year-Month'] >= train_start_date) & (final_data['Year-Month'] <= train_end_date)]
    test_final_data = final_data[(final_data['Year-Month'] >= test_start_date) & (final_data['Year-Month'] <= test_end_date)]
    test2_final_data = final_data[(final_data['Year-Month'] >= test1_start_date) & (final_data['Year-Month'] <= test1_end_date)]
</pre>
```

	Time Period	# Obs	Default
Train	2017 May - 2018 Jan	55597	25.94%
Test 1	2017 March - 2017 April	11298	23.72%
Test 2	2018 Feb - 2018 March	16080	28.23%

Data Processing - One Hot Encoding

```
In [394]: #One hot encoding
               one hot = pd.qet dummies(final data[['D 63', 'D 64']])
               # Combine the one hot encoded data with the original dataframe
               final data = pd.concat([final data, one hot], axis=1)
               # Drop the original categorical columns
               final data.drop(['D 63', 'D 64', 'customer ID'], axis=1, inplace=True)
   In [395]:
               from sklearn.preprocessing import OrdinalEncoder
               for col in['B_30', 'B_38', 'D_114', 'D_116', 'D_117', 'D_120', 'D_126', 'D_66', 'D_68']:
                   col dummies=pd.get_dummies(final_data[col],prefix=col)
                   final_data=pd.concat([final_data,col_dummies],axis=1)
                   final data.drop(col,axis=1,inplace=True)
          S 2
                   P 2
                           D 39
                                             B 2
                                                      R 1
                                                               S 3
                                                                      D 41
                                                                                B_3 ... D_126_1.0 D_66_0.0 D_66_1.0 D_68_0.0 D_68_1.0
  target
                                    B 1
               0.909811 \quad 0.005715 \quad 0.002829 \quad 1.004798 \quad 0.008175 \quad 0.098882 \quad 0.001853 \quad 0.003238 \quad \dots
                                                                                                        0
                                                                                                                 0
                                                                                                                         0
                                                                                                                                  0
      0 2017- 0.873512 0.003067 0.008903 1.004783 0.001023 0.119332 0.004865 0.001811 ...
                                                                                                        0
                                                                                                                 0
                                                                                                                         0
                                                                                                                                  0
      0 2017-
07-12 0.891656 0.000802 0.009997 0.811041 0.003540
2
                                                            NaN 0.009034 0.000626 ...
                                                                                                        0
                                                                                                                 0
                                                                                                                                  0
                                                  0.004654  0.416112  0.003223  0.081001 ...
               0
                                                                                                        0
                                                                                                                 0
                                                                                                                         0
                                                                                                                                  0
```

Feature Selection

```
In [172]: #Feature_Importance
importance = model.feature_importances_
print(importance)

feature_importance_df = pd.DataFrame(list(zip(X_train.columns, importance)), columns=['feature', 'importance'])

# sort the dataframe in descending order of importance
feature_importance_df = feature_importance_df.sort_values(by='importance', ascending=False)

# print the dataframe
print(feature_importance_df)
feature_importance_df.to_csv("Feature_Importance_1.csv")
```

```
df_selected_features = set(feature_importance[feature_importance['importance'] >
0.005]['feature']) | set(feature_importance_df[feature_importance_df['importance']>
0.005]['feature'])
df_selected_features = list(df_selected_features)
df_selected_features
```

Feature Selection

XGBoost - Grid Search

```
In [177]: # Subset X train to include only selected features
          X train selected = X train[df selected features]
          X_test_selected= X_test[df_selected_features]
          X test1 selected= X test1[df selected features]
          # Define the hyperparameter grid
          param grid = {
              'n estimators': [50, 100, 300],
              'learning rate': [0.01, 0.1],
              'subsample': [0.5, 0.8],
              'colsample bytree': [0.5, 1.0],
              'scale pos weight': [1, 5, 10]
          # Create an XGBoost classifier object
          xgb model = xgb.XGBClassifier(random state=52,objective='binary:logistic', eval metric='auc')
          # Create a GridSearchCV object
          grid search = GridSearchCV(estimator=xgb model, param grid=param grid, cv=5, n jobs=-1,scoring='roc auc')
          # Fit the GridSearchCV object to the training data
          grid search.fit(X train selected, y train)
```

XGBoost - Grid Search

- In the first one, X_Axis shows Average AUC, and Y-Axis shows Standard Deviation of AUC. In the second one,
 X-Axis is AUC of train sample and Y-Axis is AUC of Test 2 sample.
- Based on the first scatter plot (Average AUC vs. Standard Deviation of AUC), the ideal model would have a
 high average AUC and a low standard deviation. This would indicate that the model is consistently performing
 well across different samples and is not overly sensitive to the particular split of the data.
- Based on the second scatter plot (AUC of Train vs. AUC of Test 2), the ideal model would have high AUCs for both the train and test 2 samples, indicating that the model is not overfitting to the training data and is able to generalize well to new data.


```
In [56]: import matplotlib.pyplot as plt

ax = stat.plot(kind='bar', y='Bad Rate', color='blue', alpha=0.7, legend=False)
ax.set_xlabel("Score Bins")
ax.set_ylabel("Bad Rate")
ax.set_title("Bad Rate by Score Bins")

# display the chart
plt.show()
```


XGBoost - Final Model

```
[53]: #running xgb on hyper parameters
      params = {
          'learning rate': 0.1,
          'n estimators': 100,
          'subsample': 0.8,
          'colsample bytree': 0.5,
          'scale_pos_weight': 1
      # Train the model
      xgb best model = xgb.XGBClassifier(**params)
      xgb best model.fit(X_train_selected, y_train)
      # Evaluate the model
      auc_score = roc_auc_score(y_test, xgb_best_model.predict_proba(X_test_selected)[:, 1])
      print("AUC score on test data:", auc_score)
      auc_score1 = roc_auc_score(y_test1, xgb_best_model.predict_proba(X_test1_selected)[:, 1])
      print("AUC score on test 2 data:", auc_score1)
```

AUC score on test data: 0.9178918613955542 AUC score on test 2 data: 0.9411621654763803

XGBoost - SHAP Analysis

import shap
shap.initjs()
explainer = shap.Explainer(xgb_model)
shap_values = explainer(X_test1)
shap.plots.beeswarm(shap_values)

XGBoost - SHAP Analysis

explainer = shap.Explainer(xgb_model)
shap_values = explainer(X_test1)
shap.plots.waterfall(shap_values[0])

Neural Network - Data Processing

Standardization is the process of scaling the input features to have a mean of 0 and standard deviation of 1. Outlier treatment involves identifying and removing or transforming these extreme values to improve the accuracy and reliability of statistical analysis.

Normalization is a process of transforming a dataset so that its values are on a similar scale, allowing for fair comparisons between different features.

```
X train normalized = sc.transform(X train selected)
 X test normalized = sc.transform(X test selected)
 #convert to pandas DF
 X train normalized = pd.DataFrame(X train normalized,columns=X train selected.columns)
 X test normalized = pd.DataFrame(X test normalized,columns=X test selected.columns)
 #Outlier Treatment
 X train normalized.describe(percentiles=[0.01,0.99]).transpose()
                                                               50%
             count
                                    std
                         mean
                                             min
                                                                                 max
       R 1 55972.0 -5.890299e-17 1.000009
                                        -0.350764 -0.350285 -0.324694 4.174615
                                                                             13.115675
     D_112 55920.0 1.146754e-16 1.000009
                                        -2.338156
                                                                              0.446003
```

D 42 9875.0 -6.997497e-17 1.000051 -0.793189 -0.781205 -0.271615 3.460219

```
#Missing Value Imputation
X_train_normalized.fillna(0,inplace=True)
X_test_normalized.fillna(0,inplace=True)
X_test1_normalized.fillna(0,inplace=True)
```

Neural Network - Grid Search

```
# Define the neural network model
def create model(hidden layers=2, nodes per layer=4, activation='relu', dropout rate=0.5):
    model = Sequential()
    for i in range(hidden layers):
        if i == 0:
            model.add(Dense(nodes per layer, activation=activation, input shape=(X train normalized.shape[1],)))
        else:
            model.add(Dense(nodes per layer, activation=activation))
        if dropout rate > 0:
            model.add(Dropout(dropout rate))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
    return model
# Create a KerasClassifier with default parameters
nn model = KerasClassifier(build fn=create model, epochs=20, batch size=32, verbose=0)
# Define the hyperparameters for the grid search
params = {
    'hidden layers': [2, 4],
    'nodes per layer': [4, 6],
    'activation': ['relu', 'tanh'],
    'dropout rate': [0,0.5],
    'batch size': [100, 10000]
# Perform grid search
grid search = GridSearchCV(nn model, param grid=params, cv=5, scoring='roc auc')
grid_search.fit(X_train_normalized, y train)
```

Neural Network - Grid Search

- In the first one, X_Axis shows Average AUC, and Y-Axis shows Standard Deviation of AUC.In the second one, X-Axis is AUC of train sample and Y-Axis is AUC of Test 2 sample.
- Based on the first scatter plot (Average AUC vs. Standard Deviation of AUC), the ideal model would have a high average AUC and a low standard deviation. This would indicate that the model is consistently performing well across different samples and is not overly sensitive to the particular split of the data.
- Based on the second scatter plot (AUC of Train vs. AUC of Test 2), the ideal model would have high AUCs for both the train
 and test 2 samples, indicating that the model is not overfitting to the training data and is able to generalize well to new data.

Neural Network - Final Model

```
# Print the results
print("Best AUC:", grid_search.best_score_)
print("Best parameters:", grid search.best params )
Best AUC: 0.9254176916886298
Best parameters: {'activation': 'relu', 'batch_size': 100, 'dropout_rate': 0, 'hidden_layers': 2, 'nodes_per_layer'
: 6}
#Best Neural Network
# Define the neural network model with the best parameters
model_best_nn = Sequential()
model_best_nn.add(Dense(6, activation='relu', input_shape=(X_train_normalized.shape[1],)))
model best nn.add(Dropout(0))
model best nn.add(Dense(6, activation='relu'))
model best nn.add(Dropout(0))
model_best_nn.add(Dense(1, activation='sigmoid'))
# Compile the model
model best_nn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model on the training data
model_best_nn.fit(X_train_normalized, y_train, batch_size=100, epochs=20, verbose=0)
<keras.callbacks.History at 0x29cfbc730>
# Evaluate the model
y_pred_nn = model_best_nn.predict(X_test_normalized)
# Evaluate the model on the test data
loss, accuracy = model best nn.evaluate(X test normalized, y test)
print(f"Test loss: {loss:.3f}")
print(f"Test accuracy: {accuracy:.3f}")
```

Final Model: XGBoost

XGBoost:

Hyperparameters:

learning_rate: 0.1

n_estimators: 100

subsample: 0.8

colsample_bytree: 0.5

scale_pos_weight: 1

AUC obtained:

Training Sample: 0.929

Test Sample 1: 0.917

Test Sample 2: 0.941

Strategy - Code

```
#def revenue(TH,x,y,TR):
def revenue(TH,x,y):
    df = pd.DataFrame(y)
    df['Prob of 1'] = xgb best model.predict proba(x)[:, 1]
    df['Accepted customers'] = (df['Prob of 1'] < TH).astype(int)</pre>
    df = df[df['Accepted customers'] == 1]
    balance feature = x['B 9']
    spend feature = x['S 3']
    df['B9 Balance'] = balance feature
   df['S3 Spend'] = spend_feature
   df = df.dropna()
    length = len(df['target'])
    RR = nm.mean(df['target'])
    df = df.drop(df[df['target'] == 1].index)
    df = df.reset index(drop=True)
    return(length,RR,(sum(df['B9_Balance'])*0.02) + (sum(df['S3_Spend'])*0.001))
a,b,c = revenue(0.56,X test1 selected,y test1)
print("#Accepted: ",a)
print("Default Rate: ",b)
print("Revenue: ",c)
```

Strategy - Analysis of Revenue

	Train			Test 1			Test 2		
Threshold	#Total Accepted	Default Rate	Revenue	#Total Accepted	Default Rate	Revenue	#Total Accepted	Default Rate	Revenue
0.1	22801	0.009	31.00	4918	0.028	6.55	5803	0.014	7.733
0.2	25925	0.022	41.79	5556	0.048	8.20	6677	0.025	10.48
0.3	28208	0.037	51.49	6003	0.065	9.68	7289	0.042	12.55
0.4	30142	0.054	59.83	6415	0.087	11.33	7878	0.062	14.77
0.5	32228	0.078	68.69	6845	0.113	12.86	8488	0.083	17.51
0.6	34421	0.109	77.12	7279	0.141	14.37	9130	0.112	19.84
0.7	37010	0.148	84.94	7739	0.174	15.50	9889	0.150	22.23
0.8	40071	0.198	91.68	8282	0.211	17.03	10870	0.202	24.65
0.9	43587	0.256	94.988	8817	0.247	18.15	12033	0.266	26.27
1	45736	0.290	95.31	9030	0.263	18.30	13067	0.32	26.75