CTL Syntax

Assume a set *Atom* of atom propositions.

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi$$
$$\mid \mathbf{AX} \phi \mid \mathbf{EX} \phi \mid \mathbf{AF} \phi \mid \mathbf{EF} \phi \mid \mathbf{AG} \phi \mid \mathbf{EG} \phi$$
$$\mid \mathbf{A}[\phi \cup \phi] \mid \mathbf{E}[\phi \cup \phi]$$

where $p \in Atom$.

Each temporal connective is a pair of a *path quantifier*:

 \mathbf{A} — for all paths

E — there exists a path

and an LTL-like temporal operator X, F, G, U.

Precedence (high-to-low): $(AX, EX, AF, EF, AG, EG, \neg), (\land, \lor), \rightarrow$

CTL Semantics 1: Transition Systems and Paths

(This is the same as for LTL)

Definition (Transition System)

A transition system $\mathcal{M} = \langle S, \rightarrow, L \rangle$ consists of:

$$S$$
 a finite set of states $\rightarrow \subseteq S \times S$ transition relation $L: S \rightarrow \mathcal{P}(Atom)$ a labelling function

such that $\forall s_1 \in S$. $\exists s_2 \in S$. $s_1 \rightarrow s_2$

Definition (Path)

A path π in a transition system $\mathcal{M} = \langle S, \rightarrow, L \rangle$ is an infinite sequence of states $s_0, s_1, ...$ such that $\forall i \geq 0$. $s_i \rightarrow s_{i+1}$.

Paths are written as: $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$

CTL Semantics 2: Satisfaction Relation

Satisfaction relation \mathcal{M} , $s \models \phi$ read as

state s in model ${\cal M}$ satisfies CTL formula ϕ

We often leave \mathcal{M} implicit.

The propositional connectives:

```
\begin{array}{llll} s & \models & \top \\ s & \not\models & \bot \\ s & \models & p & \text{iff} & p \in L(s) \\ s & \models & \neg \phi & \text{iff} & s \not\models \phi \\ s & \models & \phi \land \psi & \text{iff} & s \models \phi \text{ and } s \models \psi \\ s & \models & \phi \lor \psi & \text{iff} & s \models \phi \text{ or } s \models \psi \\ s & \models & \phi \to \psi & \text{iff} & s \models \phi \text{ implies } s \models \psi \end{array}
```

CTL Semantics 2: Satisfaction Relation

The temporal connectives, assuming path $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$,

$$s \models AX \phi$$
 iff $\forall \pi \text{ s.t. } s_0 = s. \ s_1 \models \phi$
 $s \models EX \phi$ iff $\exists \pi \text{ s.t. } s_0 = s. \ s_1 \models \phi$
 $s \models AG \phi$ iff $\forall \pi \text{ s.t. } s_0 = s. \ \forall i. \ s_i \models \phi$
 $s \models EG \phi$ iff $\exists \pi \text{ s.t. } s_0 = s. \ \forall i. \ s_i \models \phi$
 $s \models AF \phi$ iff $\forall \pi \text{ s.t. } s_0 = s. \ \exists i. \ s_i \models \phi$
 $s \models EF \phi$ iff $\exists \pi \text{ s.t. } s_0 = s. \ \exists i. \ s_i \models \phi$
 $s \models A[\phi U \psi]$ iff $\forall \pi \text{ s.t. } s_0 = s.$
 $\exists i. \ s_i \models \psi \text{ and } \forall j < i. \ s_j \models \phi$
 $\exists i. \ s_i \models \psi \text{ and } \forall j < i. \ s_j \models \phi$

Note: The semantics for AX and EX is given differenttly in H&R.

 $AX \phi$

For every next state, ϕ holds.

EX ϕ

There *exists* a next state where ϕ holds.

For all paths, there exists a future state where ϕ holds.

There exists a path with a future state where ϕ holds.

For all paths, for all states along them, ϕ holds.

EG ϕ

There exists a path such that, for all states along it, ϕ holds.

 $A[\phi U \psi]$

For all paths, ψ eventually holds, and ϕ holds at all states earlier.

 $\mathbf{E}[\phi \ \mathbf{U} \ \psi]$

There exists a path where ψ eventually holds, and ϕ holds at all states earlier.

EF ϕ it is possible to get to a state where ϕ is true

- **EF** ϕ *it is possible to get to a state where* ϕ *is true*
- ► AG AF enabled
 A certain process is enabled infinitely often on every computation path

- **EF** ϕ *it is possible to get to a state where* ϕ *is true*
- ► AG AF enabled
 A certain process is enabled infinitely often on every computation path
- ► AG (requested → AF acknowledged) for any state, if a request ocurs, then it will eventually be acknowledged

- **EF** ϕ it is possible to get to a state where ϕ is true
- ► AG AF enabled
 A certain process is enabled infinitely often on every computation path
- ► AG (requested → AF acknowledged) for any state, if a request ocurs, then it will eventually be acknowledged
- ▶ AG $(\phi \to E[\phi \ U \ \psi])$ for any state, if ϕ holds, then there is a future where ψ eventually holds, and ϕ holds for all points in between

- **EF** ϕ *it is possible to get to a state where* ϕ *is true*
- ► AG AF enabled
 A certain process is enabled infinitely often on every computation path
- ► AG (requested → AF acknowledged) for any state, if a request ocurs, then it will eventually be acknowledged
- ▶ AG $(\phi \to E[\phi U \psi])$ for any state, if ϕ holds, then there is a future where ψ eventually holds, and ϕ holds for all points in between
- ▶ AG $(\phi \to \text{EG } \psi)$ for any state, if ϕ holds then there is a future where ψ always holds

- **EF** ϕ *it is possible to get to a state where* ϕ *is true*
- ► AG AF enabled
 A certain process is enabled infinitely often on every computation path
- ► AG (requested → AF acknowledged) for any state, if a request ocurs, then it will eventually be acknowledged
- ▶ AG $(\phi \to E[\phi U \psi])$ for any state, if ϕ holds, then there is a future where ψ eventually holds, and ϕ holds for all points in between
- ▶ AG $(\phi \to \text{EG } \psi)$ for any state, if ϕ holds then there is a future where ψ always holds
- ► EF AG ϕ there exists a possible state in the future, from where ϕ is always true

CTL Equivalences

de Morgan dualities for the temporal connectives:

$$\neg EX \phi \equiv AX \neg \phi$$

$$\neg EF \phi \equiv AG \neg \phi$$

$$\neg EG \phi \equiv AF \neg \phi$$

Also have

$$\begin{array}{lll} \mathbf{A}\mathbf{F} \; \phi & \equiv & \mathbf{A}[\top \; \mathbf{U} \; \phi] \\ \mathbf{E}\mathbf{F} \; \phi & \equiv & \mathbf{E}[\top \; \mathbf{U} \; \phi] \\ \mathbf{A}[\phi \; \mathbf{U} \; \psi] & \equiv & \neg (\mathbf{E}[\neg \psi \; \mathbf{U} \; (\neg \phi \land \neg \psi)] \lor \mathbf{E}\mathbf{G} \; \neg \psi) \end{array}$$

From these, one can show that the sets $\{AU, EU, EX\}$ and $\{EU, EG, EX\}$ are both adequate sets of temporal connectives.