#01. 작업준비

- 1. 패키지 참조
- 2. 데이터 가져오기

#02. 데이터 전처리

1. 검색 날짜 변수 생성

날짜 입력받기

입력받은 날짜를 datetime 객 체로 생성

- 2. 검색 종료일 구하기
- 3. 검색 기간에 따른 데이터 추출

#03. 데이터 시각화

- 1. 그래프 설정
- 2. x축 레이블 만들기

x축 좌표

x축 텍스트

2. 그래프 그리기

연습문제(2)

#01. 작업준비

1. 패키지 참조

```
from matplotlib import pyplot as plt
from pandas import read_excel
import seaborn as sb
import datetime as dt
import numpy as np
```

2. 데이터 가져오기

```
df = read_excel('https://data.hossam.kr/D01/covid19.xlsx')
df
```

	서울시 기준일	서울 확 진자	서울시 일 일 확진	서울시 사망	전국 확진	전국 일일 확진	전국 사망
0	2023- 05-31	6204277	5987.0	6492	31703511.0	24411.0	34784
1	2023-	6198290	3326.0	6486	31679100.0	13529.0	34767

연습문제(2)_풀이.ipynb

연습문제(2)

#01. 작업준비

1. 패키지 참조

2. 데이터 가져오기

#02. 데이터 전처리

1. 검색 날짜 변수 생성

날짜 입력받기

입력받은 날짜를 datetime 객 체로 생성

2. 검색 종료일 구하기

3. 검색 기간에 따른 데이터 추출

#03. 데이터 시각화

1. 그래프 설정

2. x축 레이블 만들기

x축 좌표

x축 텍스트

2. 그래프 그리기

	서울시 기준일	서울 확 진자	서울시 일 일 확진	서울시 사망	전국 확진	전국 일일 확진	전국 사망
	05-30						
2	2023- 05-29	6194964	1393.0	6485	31665571.0	6868.0	34760
3	2023- 05-28	6194964	1393.0	6485	31665571.0	6868.0	34760
4	2023- 05-27	6191196	4078.0	6485	31647238.0	17796.0	34784
1207	2020- 02-09	10	0.0	0	27.0	0.0	0
1208	2020- 02-08	10	0.0	0	24.0	0.0	0
1209	2020- 02-07	10	0.0	0	24.0	0.0	0
1210	2020- 02-06	11	0.0	0	24.0	0.0	0
1211	2020- 02-05	8	0.0	0	18.0	0.0	0

1212 rows × 7 columns

df.dtypes

#01. 작업준비

- 1. 패키지 참조
- 2. 데이터 가져오기

#02. 데이터 전처리

1. 검색 날짜 변수 생성

날짜 입력받기

입력받은 날짜를 datetime 객 체로 생성

- 2. 검색 종료일 구하기
- 3. 검색 기간에 따른 데이터 추출

#03. 데이터 시각화

- 1. 그래프 설정
- 2. x축 레이블 만들기

x축 좌표

x축 텍스트

2. 그래프 그리기

```
서울시 기준일 datetime64[ns]
서울 확진자 int64
서울시 일일 확진 float64
서울시 사망 int64
전국 확진 float64
전국 일일 확진 float64
전국 시망 int64
dtype: object
```

#02. 데이터 전처리

1. 검색 날짜 변수 생성

날짜 입력받기

```
input_date = input("검색일을 입력하세요(yyyymmdd)")
print(type(input_date))
input_date
```

```
<class 'str'>
```

'20230501'

입력받은 날짜를 datetime 객체로 생성

#01. 작업준비

- 1. 패키지 참조
- 2. 데이터 가져오기

#02. 데이터 전처리

1. 검색 날짜 변수 생성

날짜 입력받기

입력받은 날짜를 datetime 객 체로 생성

- 2. 검색 종료일 구하기
- 3. 검색 기간에 따른 데이터 추출

#03. 데이터 시각화

- 1. 그래프 설정
- 2. x축 레이블 만들기

x축 좌표

x축 텍스트

2. 그래프 그리기

```
start_date = dt.datetime.strptime(input_date, '%Y%m%d')
print(type(start_date))
start_date
```

```
<class 'datetime.datetime'>
```

```
datetime.datetime(2023, 5, 1, 0, 0)
```

2. 검색 종료일 구하기

```
delta = dt.timedelta(days=6)
end_date = start_date + delta
print(type(end_date))
end_date
```

```
<class 'datetime.datetime'>
```

```
datetime.datetime(2023, 5, 7, 0, 0)
```

3. 검색 기간에 따른 데이터 추출

#01. 작업준비

- 1. 패키지 참조
- 2. 데이터 가져오기

#02. 데이터 전처리

1. 검색 날짜 변수 생성

날짜 입력받기

입력받은 날짜를 datetime 객 체로 생성

- 2. 검색 종료일 구하기
- 3. 검색 기간에 따른 데이터 추출

#03. 데이터 시각화

- 1. 그래프 설정
- 2. x축 레이블 만들기

x축 좌표

x축 텍스트

2. 그래프 그리기

query_df = df.query('`서울시 기준일` >= @ start_date and `서울시 기준일` <= target_df = query_df.sort_values('서울시 기준일')
target_df

	서울시 기준일	서울 확진 자	서울시 일 일 확진	서울시 사망	전국 확진	전국 일일 확진	전국 사 망
30	2023- 05-01	6078397	1112.0	6425	31176660.0	5774.0	34487
29	2023- 05-02	6082360	3963.0	6428	31192401.0	15741.0	34497
28	2023- 05-03	6087497	5137.0	6429	31212598.0	20197.0	34505
27	2023- 05-04	6092424	4927.0	6432	31232744.0	20146.0	34512
26	2023- 05-05	6097034	4650.0	6433	31251203.0	18752.0	34518
25	2023- 05-06	6099419	2385.0	6434	31263004.0	11801.0	34521
24	2023- 05-07	6103182	3763.0	6436	31277746.0	14742.0	34527

#03. 데이터 시각화

#01. 작업준비

- 1. 패키지 참조
- 2. 데이터 가져오기

#02. 데이터 전처리

1. 검색 날짜 변수 생성

날짜 입력받기

입력받은 날짜를 datetime 객 체로 생성

- 2. 검색 종료일 구하기
- 3. 검색 기간에 따른 데이터 추출

#03. 데이터 시각화

- 1. 그래프 설정
- 2. x축 레이블 만들기

x축 좌표

x축 텍스트

2. 그래프 그리기

1. 그래프 설정

```
plt.rcParams['font.family'] = 'Malgun Gothic'
#plt.rcParams['font.family'] = 'AppleGothic'
plt.rcParams["font.size"] = 10
plt.rcParams["figure.figsize"] = (12, 8)
plt.rcParams['axes.unicode_minus'] = False
```

2. x축 레이블 만들기

x축 좌표

```
x = list(range(0, len(target_df['서울시 기준일'])))
x
```

```
[0, 1, 2, 3, 4, 5, 6]
```

x축 텍스트

```
xticks = []

for i in target_df['서울시 기준일']:
    xticks.append(i.strftime('%m.%d'))

xticks
```

#01. 작업준비

- 1. 패키지 참조
- 2. 데이터 가져오기

#02. 데이터 전처리

1. 검색 날짜 변수 생성

날짜 입력받기

입력받은 날짜를 datetime 객 체로 생성

- 2. 검색 종료일 구하기
- 3. 검색 기간에 따른 데이터 추출

#03. 데이터 시각화

- 1. 그래프 설정
- 2. x축 레이블 만들기

x축 좌표

x축 텍스트

2. 그래프 그리기

```
['05.01', '05.02', '05.03', '05.04', '05.05', '05.06', '05.07']
```

2. 그래프 그리기

2행 1열의 서브플롯을 만들고 각각의 그래프 영역에 대한 twinx를 생성

```
# 2행1열 서브플롯
fig, (ax1 left, ax2 left) = plt.subplots(2, 1, figsize=(20, 15))
# 각 서브플롯별로 twinx 생성
ax1 right = ax1 left.twinx()
ax2 right = ax2 left.twinx()
# 전체 제목
fig.suptitle('Covid19 확진자 현황', fontsize=28, color='#006600')
# 각 그래프 간의 세로(hspace) 간격 지정
fig.subplots adjust(hspace=0.3)
# 첫 번째 왼쪽 그래프
sb.barplot(data=target df, x=x, y='서울 확진자', color="#3471CB", ax=ax1
ax1 left.grid()
ax1 left.set title('서울시 확진자 추이', fontsize=18)
ax1 left.set ylim(6060000, 6110000)
ax1 left.set xticks(x)
ax1 left.set xticklabels(xticks, fontsize=12, rotation=0)
# 첫 번째 오른쪽 그래프
sb.lineplot(data=target_df, x=x, y='서울시 일일 확진', ax=ax1_right,
```

연습문제(2)_풀이.ipynb

연습문제(2)

#01. 작업준비

- 1. 패키지 참조
- 2. 데이터 가져오기

#02. 데이터 전처리

1. 검색 날짜 변수 생성

날짜 입력받기

입력받은 날짜를 datetime 객 체로 생성

- 2. 검색 종료일 구하기
- 3. 검색 기간에 따른 데이터 추출

#03. 데이터 시각화

- 1. 그래프 설정
- 2. x축 레이블 만들기

x축 좌표

x축 텍스트

2. 그래프 그리기

```
color="#FF8200", linestyle='-', linewidth=3,
           marker="o", markersize=15, markerfacecolor="#FF8200",
           markeredgecolor="#ffffff", markeredgewidth=3)
# 두 번째 왼쪽 그래프
sb.barplot(data=target df, x=x, y='전국 확진', color="#3471CB", ax=ax2 le
ax2 left.grid()
ax2 left.set title('전국 확진자 추이', fontsize=18)
ax2 left.set ylim(31000000, 31300000)
ax2 left.set xticks(x)
ax2 left.set xticklabels(xticks, fontsize=12, rotation=0)
# 두 번째 오른쪽 그래프
sb.lineplot(data=target df, x=x, y='전국 일일 확진', ax=ax2 right,
           color="#FF8200", linestyle='-', linewidth=3,
           marker="o", markersize=10, markerfacecolor="#FF8200",
           markeredgecolor="#ffffff", markeredgewidth=3)
plt.show()
plt.close()
```

^{연습문제(2)}_풀이.ipynb Covid19 확진자 현황

연습문제(2)

#01. 작업준비

- 1. 패키지 참조
- 2. 데이터 가져오기

#02. 데이터 전처리

1. 검색 날짜 변수 생성

날짜 입력받기

입력받은 날짜를 datetime 객 체로 생성

- 2. 검색 종료일 구하기
- 3. 검색 기간에 따른 데이터 추출

#03. 데이터 시각화

- 1. 그래프 설정
- 2. x축 레이블 만들기

x축 좌표

x축 텍스트

2. 그래프 그리기

