Cours d'électronique : Introduction à l'électronique analogique spécialisée

A. Arciniegas V. Gauthier

IUT Ceray-Pontoise, Dep GEII, site de Neuville

Plan du cours

- Avant propos
- Rappels : Généralités sur l'Amplification
- Rappels : Régime Sinusoïdal Permanent et Outils Mathématiques
- Types d'Amplificateurs

Pré-requis

- Utiliser les lois fondamentales et théorèmes généraux de l'électricité;
- Utiliser les concepts fondamentaux sur les diodes et les transistors.

Pré-requis

- Utiliser les lois fondamentales et théorèmes généraux de l'électricité;
- Utiliser les concepts fondamentaux sur les diodes et les transistors.

Contenu et objectifs

- Concevoir une alimentation;
- Étudier les topologies d'amplificateurs à transistors bipolaires ;
- Comprendre la philosophie d'amplification multi-étage;
- Utiliser les techniques de conception pour les étages d'entrée et de sortie des systèmes amplificateurs.

Pré-requis

- Utiliser les lois fondamentales et théorèmes généraux de l'électricité;
- Utiliser les concepts fondamentaux sur les diodes et les transistors.

Contenu et objectifs

- Concevoir une alimentation;
- Étudier les topologies d'amplificateurs à transistors bipolaires ;
- Comprendre la philosophie d'amplification multi-étage;
- Utiliser les techniques de conception pour les étages d'entrée et de sortie des systèmes amplificateurs.

Déroulement du module

- 10,5 heures Cours/TD
- 12 heures TP

Structure générale d'un montage électronique

La plupart des processus physiques peuvent être décomposés de la manière suivante :

Structure générale d'un montage électronique

La plupart des processus physiques peuvent être décomposés de la manière suivante :

un élément de commande de faible puissance,

Commande

Structure générale d'un montage électronique

La plupart des processus physiques peuvent être décomposés de la manière suivante :

- un élément de commande de faible puissance,
- un élément de liaison,

Structure générale d'un montage électronique

La plupart des processus physiques peuvent être décomposés de la manière suivante :

- un élément de commande de faible puissance,
- un élément de liaison,
- un élément récepteur de forte puissance

Structure générale d'un montage électronique

Objectif: rendre compatible les circuits de puissances très différentes.

Structure générale d'un montage électronique

Objectif: rendre compatible les circuits de puissances très différentes.

Solution: utilisation d'un **amplificateur** en tant que dispositif de liaison.

avec :

- P_E : Puissance d'éntrée
- P_S: Puissance de sortie
- $A_p = \frac{P_S}{P_E}$: Amplification en puissance
- $G_p = 10\log_{10}A_p$: Gain en puissance en dB

Structure générale d'un montage électronique

Objectif: rendre compatible les circuits de puissances très différentes.

Solution: utilisation d'un **amplificateur** en tant que dispositif de liaison.

Remarque

Cette augmentation de puissance ne se fait pas spontanément, c'est pourquoi il est nécessaire l'utilisation d'une **alimentation**.

Généralités sur l'Amplification

Du point de vue fonctionnel, un amplificateur peut être assimilé à un ${\it quadripôle}$:

Du point de vue fonctionnel, un amplificateur peut être assimilé à un **quadripôle** :

Remarques

 Par convention, les courants sont toujours orientés entrant dans le quadripôle.

Du point de vue fonctionnel, un amplificateur peut être assimilé à un **quadripôle** :

Remarques

- Par convention, les courants sont toujours orientés entrant dans le quadripôle.
- Les courants et les tensions peuvent être ou non fonction du temps.

Du point de vue fonctionnel, un amplificateur peut être assimilé à un **quadripôle** :

Remarques

- Par convention, les courants sont toujours orientés entrant dans le quadripôle.
- Les courants et les tensions peuvent être ou non fonction du temps.

On distingue deux régimes de fonctionnement :

Du point de vue fonctionnel, un amplificateur peut être assimilé à un **quadripôle** :

Remarques

- Par convention, les courants sont toujours orientés entrant dans le quadripôle.
- Les courants et les tensions peuvent être ou non fonction du temps.

On distingue deux régimes de fonctionnement :

• Régime continu

Du point de vue fonctionnel, un amplificateur peut être assimilé à un **quadripôle** :

Remarques

- Par convention, les courants sont toujours orientés entrant dans le quadripôle.
- Les courants et les tensions peuvent être ou non fonction du temps.

On distingue deux régimes de fonctionnement :

- Régime continu
- Régime variable

Régime continu

Définition : Lorsque les grandeurs d'étude sont constantes, donc indépendantes du temps, notations majuscules (U, I, P...).

Régime continu

Définition : Lorsque les grandeurs d'étude sont constantes, donc indépendantes du temps, notations majuscules (U, I, P...).

L'état du fonctionnement de l'amplificateur est alors appelé **état de repos**.

Régime variable

Régime variable

Définition : Lorsque les grandeurs d'étude sont variables en fonction du temps, notations minuscules (u(t), i(t), p(t)...).

De façon générale, nous allons exprimer la valeur d'une grandeur :

valeur instantanée = valeur de repos + variation par rapport au repos

Régime variable

Définition : Lorsque les grandeurs d'étude sont variables en fonction du temps, notations minuscules (u(t), i(t), p(t)...).

De façon générale, nous allons exprimer la valeur d'une grandeur :

valeur instantanée = valeur de repos + variation par rapport au repos

Exemples:

- $V_F(t) = V_F + V_{\Theta}(t)$

Régime variable

Définition : Lorsque les grandeurs d'étude sont variables en fonction du temps, notations minuscules (u(t), i(t), p(t)...).

De façon générale, nous allons exprimer la valeur d'une grandeur :

valeur instantanée = valeur de repos + variation par rapport au repos

Exemples:

- $V_E(t) = V_E + V_{\Theta}(t)$
- $v_{S}(t) = V_{S} + v_{s}(t)$

Par ailleurs, les signaux traités par les systèmes électroniques sont décomposables en une somme pondérée de signaux sinusoïdaux (**Série de Fourier**) :

$$f(t) = F + f_{1m}\sin(\omega t + \varphi_1) + \dots + f_{km}\sin(k\omega t + \varphi_k) + \dots$$

avec:

- F: composante continue;
- $f_{1m}\sin(\omega t + \varphi_1)$: terme fondamental;
- $f_{km}\sin(k\omega t + \varphi_k)$: terme harmonique de rang k;
- et dont sa représentation graphique est appelée spectre du signal.

Régime variable

Définition : Lorsque les grandeurs d'étude sont variables en fonction du temps, notations minuscules (u(t), i(t), p(t)...).

Le régime de fonctionnement pour une entrée sinusoïdale est appelé **régime harmonique**.

De façon générale, nous allons exprimer la valeur d'une grandeur :

valeur instantanée = valeur de repos + variation par rapport au repos

Exemples:

- $v_E(t) = V_E + v_e(t)$
- $v_{S}(t) = V_{S} + v_{s}(t)$

Par ailleurs, les signaux traités par les systèmes électroniques sont décomposables en une somme pondérée de signaux sinusoïdaux (**Série de Fourier**):

$$f(t) = F + f_{1m}\sin(\omega t + \varphi_1) + \dots + f_{km}\sin(k\omega t + \varphi_k) + \dots$$

avec:

- F: composante continue;
- $f_{1m}\sin(\omega t + \varphi_1)$: terme fondamental;
- $f_{km}\sin(k\omega t + \varphi_k)$: terme harmonique de rang k;
- et dont sa représentation graphique est appelée spectre du signal.

Régime Sinusoïdal Permanent et Outils Mathématiques

Définition

Un système est dit « linéaire » si les relations entre les différentes grandeurs sont des relations différentielles à coefficients constants.

Définition

Un système est dit « linéaire » si les relations entre les différentes grandeurs sont des relations différentielles à coefficients constants.

Lois de comportement des composants passifs

Pour rappel, les trois composants peuvent être utilisés avec différentes relations courant/tension :

Définition

Un système est dit « linéaire » si les relations entre les différentes grandeurs sont des relations différentielles à coefficients constants.

Dans un système linéaire, en régime harmonique ou sinusoïdal permanent (RSP), toutes les grandeurs sont sinusoïdales.

Définition

Un système est dit « linéaire » si les relations entre les différentes grandeurs sont des relations différentielles à coefficients constants.

Dans un système linéaire, en régime harmonique ou sinusoïdal permanent (RSP), toutes les grandeurs sont sinusoïdales.

Remarques

Les amplificateurs sont constitués d'éléments non linéaires.

Définition

Un système est dit « linéaire » si les relations entre les différentes grandeurs sont des relations différentielles à coefficients constants.

Dans un système linéaire, en régime harmonique ou sinusoïdal permanent (RSP), toutes les grandeurs sont sinusoïdales.

Remarques

- Les amplificateurs sont constitués d'éléments non linéaires.
- Il en résulte, pour une entrée sinusoïdale quelconque, des grandeurs de sortie qui sont seulement périodiques et non sinusoïdales.

Définition

Un système est dit « linéaire » si les relations entre les différentes grandeurs sont des relations différentielles à coefficients constants.

Dans un système linéaire, en régime harmonique ou sinusoïdal permanent (RSP), toutes les grandeurs sont sinusoïdales.

Remarques

- Les amplificateurs sont constitués d'éléments non linéaires.
- Il en résulte, pour une entrée sinusoïdale quelconque, des grandeurs de sortie qui sont seulement périodiques et non sinusoïdales.

On parle alors de **distorsion**. Elle peut être évaluée à partir de la décomposition en Série de Fourier du signal périodique.

Définition

Un système est dit « linéaire » si les relations entre les différentes grandeurs sont des relations différentielles à coefficients constants.

Dans un système linéaire, en régime harmonique ou sinusoïdal permanent (RSP), toutes les grandeurs sont sinusoïdales.

Remarques

- Les amplificateurs sont constitués d'éléments non linéaires.
- Il en résulte, pour une entrée sinusoïdale quelconque, des grandeurs de sortie qui sont seulement périodiques et non sinusoïdales.

On parle alors de **distorsion**. Elle peut être évaluée à partir de la décomposition en Série de Fourier du signal périodique.

Distorsion

On définit la distorsion :

• de l'harmonique k, $d_k = \frac{f_{km}}{f_{1m}}$.

Définition

Un système est dit « linéaire » si les relations entre les différentes grandeurs sont des relations différentielles à coefficients constants.

Dans un système linéaire, en régime harmonique ou sinusoïdal permanent (RSP), toutes les grandeurs sont sinusoïdales.

Remarques

- Les amplificateurs sont constitués d'éléments non linéaires.
- Il en résulte, pour une entrée sinusoïdale quelconque, des grandeurs de sortie qui sont seulement périodiques et non sinusoïdales.

On parle alors de **distorsion**. Elle peut être évaluée à partir de la décomposition en Série de Fourier du signal périodique.

Distorsion

On définit la distorsion :

- de l'harmonique k, $d_k = \frac{f_{km}}{f_{1m}}$.
- totale d'un signal périodique, $d_t = \frac{\sqrt{f_{2m}^2 + f_{3m}^2 + \dots + f_{km}^2 + \dots}}{f_{1m}}$.

Régimes linéaire et non linéaire

Dans un système linéaire, en régime harmonique ou sinusoïdal permanent (RSP), toutes les grandeurs sont sinusoïdales.

Remarques

- Les amplificateurs sont constitués d'éléments non linéaires.
- Il en résulte, pour une entrée sinusoïdale quelconque, des grandeurs de sortie qui sont seulement périodiques et non sinusoïdales.

On parle alors de **distorsion**. Elle peut être évaluée à partir de la décomposition en Série de Fourier du signal périodique.

Distorsion

On définit la distorsion :

- de l'harmonique k, $d_k = \frac{f_{km}}{f_{1m}}$.
- totale d'un signal périodique, $d_t = \frac{\sqrt{f_{2m}^2 + f_{3m}^2 + \ldots + f_{km}^2 + \ldots}}{f_{1m}}$.

Lorsque les amplitudes des signaux d'entrée sont faibles vis à vis de l'état de repos, on peut avec une précision raisonnable, considérer que le système se comporte comme un système linéaire. On parle alors du **régime de petits signaux**.

Composants passifs en RSP

En sinusoïdal, et aux limites, les composants et leurs modèles deviennent :

Résistance

Capacité

Inductance

$$Z_L \rightarrow$$

$$Z_C \to$$

$$Z_L \rightarrow$$

$$\omega \rightarrow 0$$

$$Z_R =$$

$$\omega \rightarrow \infty$$
 $Z_R =$

$$Z_C \rightarrow$$

Du point de vue fonctionnel, on peut toujours étudier un circuit à 1 entrée/sortie en utilisant l'approche vue sur les quadripôles :

Du point de vue fonctionnel, on peut toujours étudier un circuit à 1 entrée/sortie en utilisant l'approche vue sur les quadripôles :

et on peut exprimer en **complexe (C)** les propriétés habituelles :

Du point de vue fonctionnel, on peut toujours étudier un circuit à 1 entrée/sortie en utilisant l'approche vue sur les quadripôles :

et on peut exprimer en **complexe (C)** les propriétés habituelles :

• l'impédance d'entrée $Z_{\rm e}(j\omega)$ (et non plus la résistance d'entrée),

Du point de vue fonctionnel, on peut toujours étudier un circuit à 1 entrée/sortie en utilisant l'approche vue sur les quadripôles :

et on peut exprimer en **complexe (C)** les propriétés habituelles :

- l'impédance d'entrée $Z_e(j\omega)$ (et non plus la résistance d'entrée),
- l'impédance de sortie $Z_s(j\omega)$ (et non plus la résistance de sortie),

Du point de vue fonctionnel, on peut toujours étudier un circuit à 1 entrée/sortie en utilisant l'approche vue sur les quadripôles :

et on peut exprimer en **complexe (C)** les propriétés habituelles :

- l'impédance d'entrée $Z_e(j\omega)$ (et non plus la résistance d'entrée),
- l'impédance de sortie $Z_s(j\omega)$ (et non plus la résistance de sortie),
- le gain

Généralités

• On ne parle alors plus de gain complexe mais de Fonction de Transfert

Généralités

- On ne parle alors plus de gain complexe mais de Fonction de Transfert
- Sens physique : c'est une fonction complexe qui définit pour chaque fréquence le gain du montage (proportion de grandeur d'entrée ramenée en sortie).

Généralités

- On ne parle alors plus de gain complexe mais de Fonction de Transfert
- Sens physique: c'est une fonction complexe qui définit pour chaque fréquence le gain du montage (proportion de grandeur d'entrée ramenée en sortie).

Définition

Identique au gain, soit H la fonction de transfert d'un montage dont les tensions d'entrée et de sortie sont respectivement $V_{\rm e}(j\omega)$ et $V_{\rm s}(j\omega)$:

Généralités

- On ne parle alors plus de gain complexe mais de Fonction de Transfert
- Sens physique: c'est une fonction complexe qui définit pour chaque fréquence le gain du montage (proportion de grandeur d'entrée ramenée en sortie).

Définition

Identique au gain, soit H la fonction de transfert d'un montage dont les tensions d'entrée et de sortie sont respectivement $V_{\rm e}(j\omega)$ et $V_{\rm S}(j\omega)$:

$$H(j\omega) = rac{V_{\rm S}(j\omega)}{V_{\rm e}(j\omega)}$$

Fonction de transfert = fonction complexe

En électronique, on considère le module et l'argument de la fonction de transfert, mis sous la forme :

Fonction de transfert = fonction complexe

En électronique, on considère le module et l'argument de la fonction de transfert, mis sous la forme :

• Gain : exprimé en décibels (dB), c'est le module en échelle logarithmique,

$$G_{dB} = 20log_{10}(|H(j\omega)|)$$

Fonction de transfert = fonction complexe

En électronique, on considère le module et l'argument de la fonction de transfert, mis sous la forme :

• Gain : exprimé en décibels (dB), c'est le module en échelle logarithmique,

$$G_{dB} = 20log_{10}(|H(j\omega)|)$$

Phase: en degrés ou radians,

$$\varphi = arg(H(j\omega))$$

Tracé : Diagramme de Bode

Pour représenter la fonction de transfert, on trace :

Tracé: Diagramme de Bode

Pour représenter la fonction de transfert, on trace :

• le gain en décibel en fonction de la pulsation (ou fréquence),

Tracé: Diagramme de Bode

Pour représenter la fonction de transfert, on trace :

- le gain en décibel en fonction de la pulsation (ou fréquence),
- la phase en fonction de la pulsation, sur la même échelle en abscisses

Tracé : Diagramme de Bode

Pour représenter la fonction de transfert, on trace :

- le gain en décibel en fonction de la pulsation (ou fréquence),
- la phase en fonction de la pulsation, sur la même échelle en abscisses

L'axe des abscisses est toujours un axe logarithmique :

Tracé : Diagramme de Bode

Pour représenter la fonction de transfert, on trace :

- le gain en décibel en fonction de la pulsation (ou fréquence),
- la phase en fonction de la pulsation, sur la même échelle en abscisses

L'axe des abscisses est toujours un axe logarithmique :

ullet entre une pulsation ω et 10ω , on parle de décade (subdivision de l'axe).

Tracé : Diagramme de Bode

Pour représenter la fonction de transfert, on trace :

- le gain en décibel en fonction de la pulsation (ou fréquence),
- la phase en fonction de la pulsation, sur la même échelle en abscisses

L'axe des abscisses est toujours un axe logarithmique :

- ullet entre une pulsation ω et 10ω , on parle de décade (subdivision de l'axe).
- il n'y a pas de 0 sur l'axe des abscisses, le DC est à l'infini à gauche.

Remarque

L'étude de la fonction de transfert peut être simple, à condition de :

- savoir retrouver les gains en dB et phases des fonctions de transfert,
- connaître les règles de calcul sur les gains et les phases des fonctions de transfert.

Soit H une fonction de transfert, les phases sont en radians.

Soit H une fonction de transfert, les phases sont en radians.

Opposée d'une fonction de transfert (- H)

$$G_{\mathit{dB}}(-H) = 20 log_{10}(|-H|) = 20 log_{10}(|H|) = G_{\mathit{dB}}(H)$$

Soit H une fonction de transfert, les phases sont en radians.

Opposée d'une fonction de transfert (- H)

$$G_{\mathit{dB}}(-H) = 20 log_{10}(|-H|) = 20 log_{10}(|H|) = G_{\mathit{dB}}(H)$$

$$\varphi(-H) = \arg(-H) = \pi + \arg(H) = \pi + \varphi(H)$$

Soit H une fonction de transfert, les phases sont en radians.

Opposée d'une fonction de transfert (- H)

$$G_{dB}(-H) = 20log_{10}(|-H|) = 20log_{10}(|H|) = G_{dB}(H)$$

$$\varphi(-H) = arg(-H) = \pi + arg(H) = \pi + \varphi(H)$$

Le gain en dB est inchangé, le déphasage est de π .

Soit H une fonction de transfert, les phases sont en radians.

Opposée d'une fonction de transfert (- H)

$$G_{\mathit{dB}}(-H) = 20 log_{10}(|-H|) = 20 log_{10}(|H|) = G_{\mathit{dB}}(H)$$

$$\varphi(-H) = arg(-H) = \pi + arg(H) = \pi + \varphi(H)$$

Le gain en dB est inchangé, le déphasage est de π .

Inversion d'une fonction de transfert (1 / H)

$$G_{dB}\left(\frac{1}{H}\right) = 20log_{10}\left(\left|\frac{1}{H}\right|\right) = 20log_{10}\left(\frac{1}{|H|}\right) = 20log_{10}(|H|^{-1}) = -20log_{10}(|H|) = -G_{dB}(H)$$

Soit H une fonction de transfert, les phases sont en radians.

Opposée d'une fonction de transfert (- H)

$$\mathsf{G}_{\mathit{dB}}(-H) = 20 log_{10}(|-H|) = 20 log_{10}(|H|) = \mathsf{G}_{\mathit{dB}}(H)$$

$$\varphi(-H) = \arg(-H) = \pi + \arg(H) = \pi + \varphi(H)$$

Le gain en dB est inchangé, le déphasage est de π .

Inversion d'une fonction de transfert (1 / H)

$$G_{dB}\left(\frac{1}{H}\right) = 20log_{10}\left(\left|\frac{1}{H}\right|\right) = 20log_{10}\left(\frac{1}{|H|}\right) = 20log_{10}(|H|^{-1}) = -20log_{10}(|H|) = -G_{dB}(H)$$

$$\varphi\left(\frac{1}{H}\right) = \arg\left(\frac{1}{H}\right) = \arg(1) - \arg(H) = -\arg(H) = -\varphi(H)$$

Soit H une fonction de transfert, les phases sont en radians.

Opposée d'une fonction de transfert (- H)

$$G_{\mathit{dB}}(-H) = 20 log_{10}(|-H|) = 20 log_{10}(|H|) = G_{\mathit{dB}}(H)$$

$$\varphi(-H) = arg(-H) = \pi + arg(H) = \pi + \varphi(H)$$

Le gain en dB est inchangé, le déphasage est de π .

Inversion d'une fonction de transfert (1 / H)

$$G_{dB}\left(\frac{1}{H}\right) = 20log_{10}\left(\left|\frac{1}{H}\right|\right) = 20log_{10}\left(\frac{1}{|H|}\right) = 20log_{10}(|H|^{-1}) = -20log_{10}(|H|) = -G_{dB}(H)$$

$$\varphi\left(\frac{1}{H}\right) = \arg\left(\frac{1}{H}\right) = \arg(1) - \arg(H) = -\arg(H) = -\varphi(H)$$

Le gain en dB et la phase sont opposés.

Soient H_1 et H_2 deux fonctions de transfert, les phases sont en radians.

Soient H_1 et H_2 deux fonctions de transfert, les phases sont en radians.

Produit de deux fonctions de transfert $(H_1 \cdot H_2)$

$$G_{dB}(H_1H_2)$$

Soient H_1 et H_2 deux fonctions de transfert, les phases sont en radians.

Produit de deux fonctions de transfert $(H_1 \cdot H_2)$

$$\begin{split} G_{dB}(H_1H_2) &= 20log_{10}(|H_1H_2|) \\ &= 20log_{10}(|H_1||H_2|) \\ &= 20[log_{10}(|H_1|) + log_{10}(|H_2|)] \\ &= 20log_{10}(|H_1|) + 20log_{10}(|H_2|) \\ &= G_1 + G_2 \end{split}$$

Soient H_1 et H_2 deux fonctions de transfert, les phases sont en radians.

Produit de deux fonctions de transfert $(H_1 \cdot H_2)$

$$\begin{split} G_{dB}(H_1H_2) &= 20log_{10}(|H_1H_2|) \\ &= 20log_{10}(|H_1||H_2|) \\ &= 20[log_{10}(|H_1|) + log_{10}(|H_2|)] \\ &= 20log_{10}(|H_1|) + 20log_{10}(|H_2|) \\ &= G_1 + G_2 \\ \\ \varphi(H_1H_2) &= arg(H_1H_2) \\ &= arg(H_1) + arg(H_2) \\ &= \varphi_1 + \varphi_2 \end{split}$$

Soient H_1 et H_2 deux fonctions de transfert, les phases sont en radians.

Produit de deux fonctions de transfert $(H_1 \cdot H_2)$

$$\begin{split} G_{dB}(H_1H_2) &= 20log_{10}(|H_1H_2|) \\ &= 20log_{10}(|H_1||H_2|) \\ &= 20[log_{10}(|H_1|) + log_{10}(|H_2|)] \\ &= 20log_{10}(|H_1|) + 20log_{10}(|H_2|) \\ &= G_1 + G_2 \\ \\ \varphi(H_1H_2) &= arg(H_1H_2) \\ &= arg(H_1) + arg(H_2) \\ &= \varphi_1 + \varphi_2 \end{split}$$

Les gains en dB et les phases s'additionnent.

Types d'Amplificateurs

Types d'amplificateurs

Les amplificateurs sont classés en fonction de :

Types d'amplificateurs

Les amplificateurs sont classés en fonction de :

• l'utilisation : amplificateur de tension, de courant, de puissance ;

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation:

• Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation:

- **Préamplificateur** : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation:

- Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Suivant la courbe de réponse :

Continu : système passe-bas ;

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation:

- Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Suivant la courbe de réponse :

- Continu: système passe-bas;
- Sélectif: système bande très étroite;

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation:

- Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Suivant la courbe de réponse :

- Continu : système passe-bas ;
- Sélectif: système bande très étroite;
- Large bande : cas des amplificateurs audiofréquences et vidéofréquences.

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation:

- Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Suivant la courbe de réponse :

- Continu : système passe-bas ;
- Sélectif: système bande très étroite;
- Large bande : cas des amplificateurs audiofréquences et vidéofréquences.

Domaines de fréquences

V.L.F: très basses fréquences jusqu'à 30 kHz;

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation:

- Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Suivant la courbe de réponse :

- Continu : système passe-bas ;
- Sélectif: système bande très étroite;
- Large bande : cas des amplificateurs audiofréquences et vidéofréquences.

- V.L.F: très basses fréquences jusqu'à 30 kHz;
- L.F: basses fréquences jusqu'à 300 kHz;

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation:

- Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Suivant la courbe de réponse :

- Continu : système passe-bas ;
- Sélectif: système bande très étroite;
- Large bande : cas des amplificateurs audiofréquences et vidéofréquences.

- V.L.F: très basses fréquences jusqu'à 30 kHz;
- L.F: basses fréquences jusqu'à 300 kHz;
- M.F: moyennes fréquences jusqu'à 3 MHz;

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation:

- Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Suivant la courbe de réponse :

- Continu : système passe-bas ;
- Sélectif: système bande très étroite;
- Large bande : cas des amplificateurs audiofréquences et vidéofréquences.

- V.L.F: très basses fréquences jusqu'à 30 kHz;
- L.F: basses fréquences jusqu'à 300 kHz;
- M.F: moyennes fréquences jusqu'à 3 MHz;
- H.F: hautes fréquences jusqu'à 30 MHz;

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation :

- Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Suivant la courbe de réponse :

- Continu : système passe-bas ;
- Sélectif: système bande très étroite;
- Large bande : cas des amplificateurs audiofréquences et vidéofréquences.

- V.L.F: très basses fréquences jusqu'à 30 kHz;
- L.F: basses fréquences jusqu'à 300 kHz;
- M.F: moyennes fréquences jusqu'à 3 MHz;
- H.F: hautes fréquences jusqu'à 30 MHz;
- V.H.F: très hautes fréquences jusqu'à 300 MHz;

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation:

- Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Suivant la courbe de réponse :

- Continu : système passe-bas ;
- Sélectif: système bande très étroite;
- Large bande : cas des amplificateurs audiofréquences et vidéofréquences.

- V.L.F: très basses fréquences jusqu'à 30 kHz;
- L.F: basses fréquences jusqu'à 300 kHz;
- M.F: moyennes fréquences jusqu'à 3 MHz;
- H.F: hautes fréquences jusqu'à 30 MHz;
- V.H.F: très hautes fréquences jusqu'à 300 MHz;
- U.H.F: ultra hautes fréquences jusqu'à 3 GHz;

Les amplificateurs sont classés en fonction de :

- l'utilisation : amplificateur de tension, de courant, de puissance ;
- la courbe de réponse : passe-bas, passe-haut, passe-bande, réjecteur de bande.

Classifications

Suivant l'utilisation :

- Préamplificateur : amplificateur de tension ou de courant, travaille en régime linéaire ;
- Amplificateur de puissance : travaille en régime de grands signaux.

Suivant la courbe de réponse :

- Continu : système passe-bas ;
- Sélectif : système bande très étroite ;
- Large bande : cas des amplificateurs audiofréquences et vidéofréquences.

- V.L.F: très basses fréquences jusqu'à 30 kHz;
- L.F: basses fréquences jusqu'à 300 kHz;
- M.F: moyennes fréquences jusqu'à 3 MHz;
- H.F: hautes fréquences jusqu'à 30 MHz;
- V.H.F: très hautes fréquences jusqu'à 300 MHz;
- U.H.F: ultra hautes fréquences jusqu'à 3 GHz;
- Hyperfréquences : au-délà de 3 GHz ;