Улучшение робастности динамической системы в продольном канале управления с применением обратной динамики Полное название

Выполнил: Пащенко Алексей Евгеньевич, студент группы: М1О-403Б-18

Руководитель: Иргалеев Ильяс Хусвинович, канд. техн. наук, доц. каф. 106

Московский авиационный институт

Министерство науки и высшего образования РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕВЫСШЕГО ОБРАЗОВАНИЯ

"МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(национальный исследовательский университет)"

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

На тему: "Улучшение робастности динамической системы в продольном канале управления с применением обратной динамики"

Выполнил: Пащенко Алексей Евгеньевич,

Студент группы М1О-403Б-18

Руководитель: Иргалеев Ильяс Хусаинович, канд. техн. наук, доц. каф. 106

Задачи дипломной работы

Задачи

- Расчет ЛТХ, ВПХ, а также характеристик манёвренности
- Синтез системы автоматического управления
- Рассмотреть один из основных способов улучшения робастности динамической системы с применением обратной динамики при помощи PI-котроллера.

Объект исследования

В расчёт ЛТХ входит

- Расчёт области установившихся горизонтальных полётов
- Расчёт траектории полёта
- Расчёт транспортных возможностей самолёта

Расчёт области возможных полётов

Основные ограничения

- ullet Ограничение по $M_{min\ P}$
- ullet Ограничение по M_{max} $_P$

Дополнительные ограничения

- ullet Ограничение по C_y доп
- ullet Ограничение по $M_{\text{пред}}$
- ullet Ограничение по q_{max}

Результаты расчётов M_{C_y} доп и $M_{min\ P}$, $\overline{M_{max\ P}}$, $M_{\text{наев}}$

3.0

— Рп, Н — Рр, Н

Результаты расчётов $q_{ ext{ iny min}}$ и $q_{ ext{ iny min}}$

Результаты расчётов $M_{V_{_{V}}}$

Расчёт области возможных полётов

Определение области

- $M_{min} = \max\{M_{min\ p},\ M_{C_y\ Aon}\}$
- $M_{max} = \\ \min\{M_{max\ P},\ M_{\rm npeg},\ M_{q_{max}}\}$

Определение теоретического и практического потолка

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}^{*}$

 $H_{\rm T} = 19,8 \; {
m KM}$

 $H_{\mathsf{np}} = 19,5$ км

Максимальные значения часового и километрового расходов

Расчёт траектории полёта

Траектория

Траеткорию полёта принято разделять на три этапа

- Набор высоты
- Крейсерский полёт
- Снижение

Результаты расчётов

$$L=L_{
m Ha6}+L_{
m Kp}+L_{
m Cnyck}=278,04\
m km+7610\
m km+314,16\
m km}=8202,2\
m km$$
 $T=T_{
m Ha6}+T_{
m Kp}+T_{
m Cnyck}=20,06\
m muh+403\
m muh+42\
m muh=465,4\
m muh}$ $m_T=m_{T_{
m Ha6}}+m_{T_{
m Kp}}+m_{T_{
m Cnyck}}=7225\
m kr+50234\
m kr+757\
m kr}=58216\
m kr$

Расчёт траектории полёта

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт ведётся для трёх режимов

- Полет с максимальной коммерческой нагрузкой
- Полёт с максимальным запасом топлива
- Полёт без коммерческой нагрузки ($m_{
 m qH}=0$) с максимальным запасом топлива

Диаграмма транспортных возможностей самолёта

Расчет взлетно-посадочных характеристик самолета

Результаты расчётов

$V_{\text{отр}}$, м/с	<i>L</i> _p , м	<i>L</i> _{вд} , м	$V_{\rm кас}$, м/с	<i>L</i> _{проб} , м	<i>L</i> _{пд} , м
88,85	1125,37	1392	64,58	576	1200,78

Расчёт характеристик монёвренности

Задачи раздела

Задачи

Расчёт:

- ullet Нормальной перегрузки на вираже $n_{y_{\mathtt{вир}}}$
- Угловой скорости на вираже $\omega_{\text{вир}}$
- Времени выполнение виража $t_{вир}$
- \bullet Радиуса на вираже $r_{вир}$

Расчёт характеристик манёвренности

Графики

$$\dot{x} = Ax + Bu
y = Cx + Du$$

$$\dot{x} = \begin{bmatrix} \dot{V}_x \\ \dot{V}_y \\ \dot{\omega}_z \\ \dot{\theta} \end{bmatrix}, u = \delta_{\vartheta}$$
(1)

$$A = \begin{bmatrix} -0.0110 & 0.0433 & 1.7295 & -7.1876 \\ -0.0691 & -0.6975 & -7.0678 & -54.8976 \\ 0.00011 & 0.00116 & -0.35407 & 0.0911 \\ 0 & 0 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} -0.4412 \\ -12.388 \\ -0.58446 \\ 0 \end{bmatrix}$$

Коэффициенты

$$m_{\theta} = 0.0911$$

 $m_{V_x} = 0.00011$
 $m_{V_y} = 0.0016$
 $m_{\omega_z} = -0.35407$
 $m_{\delta_3} = -0.58446$

$$\delta_{\mathsf{a}} = -rac{1}{m_{\delta_{\mathsf{a}}}}(m_{\omega_{\mathsf{z}}}\omega_{\mathsf{z}} + m_{V_{\mathsf{y}}}V_{\mathsf{y}} + m_{V_{\mathsf{x}}}V_{\mathsf{x}} - \dot{\omega}_{\mathsf{z}})$$

Робастность системы

№ э.	σ_e^2 , cm ²	$\sigma_c^2 \text{ cm}^2$	n_e cm ²
1	0.103	13.54	0.0254
2	0.125	15.14	0.037
3	0.131	12.74	0.047

Робастность системы

№ э.	Нули	Полюса	ξ	ω_c , 1/c
1	-2	-	1.0	0.5
	-1.9392	-0.7537		$1.59 \cdot 10^{-4}$
2	-0.7473	-0.0161	1.0	$1.64 \cdot 10^{-2}$
	-0.0164	0		$7.47 \cdot 10^{-1}$
	0			1.94
	-1.8207	0.8255		0
3	-0.8033	-0.0177	1.0	$1.85 \cdot 10^{-2}$
	-0.0185	0		$8.03 \cdot 10^{-1}$
	0			1.82

Параметры РІ-контроллера

Задача РІ-контроллера

PI-котроллер в теории должен уменьшать

РІ-короллер

$$y(t) = K_p + \frac{1}{p}K_i,$$

где $K_p=2$, $K_i=5$. Коэффициенты PI-котроллера были выбраны с условием того, что система должна оставаться устойчева.

Улучшение робасности с применением РІ-контроллера

Улучшение робасности с применением PI-контроллера

Робастность системы

№ э.	σ_e^2 , cm ²	$\sigma_c^2 \text{ cm}^2$	$n_e \text{ cm}^2$
1	0.0886	5.913	0.01611
2	0.0952	6.01	0.01591
3	0.0943	6.004	0.01712

Робастность системы

№ э.	Полюса	Нули	ξ	ω_c , 1/c
1	-3.0000 + 1.0000i	-2.5	0.95	3.16
	-3.0000 - 1.0000 <i>i</i>			
2	-2.8660 + 1.1287i	-0.0161	1.0	0
	-2.8660 - 1.1287 <i>i</i>	-0.7537	1.0	$1.61 \cdot 10^{-2}$
	-0.7547 + 0.0000i	-2.5000	1.0	$7.51 \cdot 10^{-2}$
	0	0.0000	0.93	3.08
	-0.0161 + 0.0000i		0.93	
3	-2.5975 + 1.3096i	-0.0177	1	0
	-2.5975 - 1.3096 <i>i</i>	-0.8255	1	$1.77 \cdot 10^{-2}$
	-0.8292 + 0.0000i	-2.5000	1	$8.29 \cdot 10^{-1}$
	0	0	0.893	2.91
	-0.0177 + 0.0000i			

Переходные процессы

Благодарность

Спасибо за внимание

