Определегие систематических и случайных погрешнойстей при измерении удельного сопротивления нихромовой проволоки

Морозов Александр 19.09.2022

1 Аннотация

Цель работы: измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

Оборудование: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

2 Теоритические сведения

В данной работе сопротивление измеряется при помощи данной схемы:

Рис. 1: Используемая схема

Учитывая сопротивления приборов получаем:

$$R_{\rm np} = \frac{V_a}{I_a} = R_{\rm np} \frac{R_V}{R_{\rm np} + R_V}$$

Формулу (2) можно преобразовать:

$$R_{\rm np} = \frac{R_{\rm np}}{1 - \left(\frac{R_{\rm np}}{R_V}\right)} \approx R_{\rm np} \left(1 + \frac{R_{\rm np}}{R_V}\right)$$

В разветленных цепях расчет поправок становится достаточно трудоемким и должен производиться заново при каждом переключении прибора. Таким образом получаем пример систематической ошибки, возникающей из-за упрощения расчетной формулы.

Для более точных результатов в конце используем метод моста постоянного тока (мост Уитстона).

3 Методика измерений

Измерения проводятся при помощи описанной выше цепи. Данные с амперметра и вольтметра заносятся в таблицу Excel, где далее подлежат обработке для построения и анализа графиков.

4 Используемое обородувание

Линейка, штангенциркуль, микрометр, амперметр, вольтметр, мост постоянного тока. Ноутбук с необходимым программным обеспечением для обработки данных, печенье, комплект проводов.

5 Результаты измерений и обработка данных

5.1 Погрешность штангенциркуля и микрометра

Штангенциркуль: $\sigma_{\rm m} = 0.05 \, {\rm мм}$

Микрометр: $\sigma_{\text{м}} = 0.01 \text{ мм}$

5.2 Измерение диаметра проволоки

$N_{\overline{0}}$	1	2	3	4	5	6	7	8	9	10	cp.
$d_{\rm m}$, mm	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
$d_{\scriptscriptstyle \mathrm{M}}$, mm	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36

Таблица 1: Результаты измерения диаметра проволоки

При измерении штангенциркулем случайная погрешность отсутствует, а значит можно учитывать только системную погрешность: $d_{\rm m}=(0.35\pm0.05)\,$ мм.

При измерении микрометром случайная погрешность также отсутствует, а значит можно учитывать только системную погрешность: $d_{\scriptscriptstyle \rm M}=(0.36\pm0.01)\,$ мм.

Площадь поперечного сечения проволоки можно вычислить зная диаметр, используя диаметр найденный с помощью микрометра мы уменьшим погрешность площади. Вычислим площадь и ее погрешность:

$$S_{\mathrm{np}} = \frac{\pi d_{\mathrm{m}}^2}{4} = \frac{3,1415 \cdot (0,355)^2}{4} \approx 0,1 \text{ mm}^2$$

$$\sigma_S = 2 \frac{\sigma_{d_{\rm M}}}{d_{\rm M}} \cdot S = 2 \frac{0.01}{0.355} \cdot 0.1 \approx 5.7 \cdot 10^{-3} \text{ mm}^2$$

Таким образом $S_{\rm np} = (0.1 \pm 5.7 \cdot 10^{-3}) \ {\rm mm}^2 :$ точность 5.7%

5.3 Основные характеристики приборов

	Вольтметр	Миллиамперметр
Система	Магнитоэлектрическая	Электромагнитная
Класс точности	0,5	0,5
Предел измерений x_Π	0,3 B	0,15 A
Число делений шкалы n	150	75
Цена делений x_Π/n	2 мВ/дел	2 мА/дел
Чувствительность n/x_{Π}	500 дел/В	500 дел/А
Абсолютная погрешность Δx_{M}	1,5 мВ	0,75 мА
Внутреннее сопротивление прибора	500 Ом	1 Ом

5.4 Снятие показаний вольтметра и амперметра, обработка полученных данных

Внесем данные измерений для разной длины проволоки: $l_1=(20,0\pm0,1)$ см; $l_2=(30,0\pm0,1)$, см; $l_3=(50,0\pm0,1)$ см. Получаем:

l = 10 cm		l=2	20 см	l = 30 cm		l = 50 cm	
V, мВ	І, мА	V, мВ	І, мА	V, мВ	І, мА	V, мВ	І, мА
71	65.6	132	62.8	196	62.2	316	59.5
76	69.5	140	66.7	220	67.6	360	68.7
81	74.6	160	75.1	250	77.7	480	90.19
86	79.3	180	84.4	280	86.9	540	103.5
95	87.6	200	94.1	310	96.2	620	117.2
92	84.5	170	81.5	250	78.3	416	78.3
100	91.0	210	102.3	280	87.8	460	87.3
113	102.1	250	118.43	310	98.4	540	100.4
123	113.4	280	133.49	380	116.9	620	115.6
134	123.3	302	144.08	480	148.7	1000	190

Таблица 3: Зависимость тока от напряжения при разных длинах проволоки

Построим графики по данным из таблицы: рис. 2.

Рис. 2: Графики зависимости V(I)

Для каждой длины проволоки l найдем сопротивление и погрешности методом наименьших квадратов по формулам:

 $\sigma_{R_{\rm cp}} = R_{\rm cp} \sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2}$

где V и I – максимальные значения тока и напряжений, $\sigma_V=2$ мВ, а $\sigma_I=0.6$ мА. Рассчитываем сопротивление с учетом погрешности:

l = 10 cm	l=20 cm	l = 30 cm	l = 50 cm
$R_0 = 1{,}124 \text{ Om}$	$R_0 = 2,287 \text{ Om}$	$R_0 = 3,779 \text{ Om}$	$R_0 = 5,466 \text{ Om}$
$R_{\rm cp} = 0.91 \; {\rm Om}$	$R_{\rm cp} = 2{,}79~{\rm Om}$	$R_{\rm cp} = 3{,}77~{\rm Om}$	$R_{\rm cp} = 7.79 \; {\rm Om}$
$R_{\rm np} = 1.05 \; {\rm Om}$	$R_{\rm np} = 2{,}56~{ m O}{ m M}$	$R_{\rm np} = 3,66 \; { m Om}$	$R_{\rm np} = 7,65 \; {\rm Om}$
$\sigma_{R_{\rm cp}} = 0.063 \mathrm{Om}$	$\sigma_{R_{\rm cp}} = 0.054 \; \mathrm{Om}$	$\sigma_{R_{\rm cp}} = 0.081 \; {\rm Om}$	$\sigma_{R_{\rm cp}}=1.03~{ m Om}$

Таблица 4: Экспериментально полученные сопротивления и погрешности

5.5 Нахождение сопротивления с помощью моста

l, см	10	20	30	50
$R_{\rm np}$, Om	1,124	2.287	3.379	5.466

Таблица 5: Сопротивления, полученные с помощью моста

Сравниваем полученные экспериментальным путем результаты с полученными на мосте. Результаты измерений всех трех длин попадают в предел $\pm 2\sigma_R$ из таб.4.

5.6 Вычисление удельного сопроивления проволоки

Посчитаем удельное сопротивления, а также погрешность его вычислений по данным формулам:

$$\rho = R_{\text{np}} \cdot \frac{S_{\text{np}}}{l} = \frac{R_{\text{np}}}{l} \cdot \frac{\pi d^2}{4} \qquad \qquad \sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$$

где $R_{\rm np}$ — сопротивление измеряемого отрезка проволоки, $S_{\rm np}$ — площадь поперечного сечения проволоки, l — его длина, а d — диаметр проволоки.

Занесем полученные результаты в таблицу

l, cm	$\rho, 10^{-6} \text{ Om} \cdot \text{mm}^2/\text{m}$	$\sigma_{\rho}, 10^{-6} \text{ Om} \cdot \text{mm}^2/\text{m}$
10	1,32	0,08
20	1,29	0,08
30	1,19	0,08
50	1,17	0,07

Таблица 6: Удельные сопротивления участков проволоки различной длины

Для наибольшей точности предлагается взять участок с наибольшей длинной, то есть l=50см, тогда $\rho=(1.17\pm0.07)\cdot 10^{-6}$ Ом · мм²/м.

6 Обсуждение результатов

Результаты можно считать вполне достоверными, так как они не выходят за пределы 2σ , однако возможно отклонение от истинного значения вследствие того, что были взяты точки с недостаточно большим диапазоном.

7 Вывод

Основной вклад в погрешность вносит в нашем случае сопротивление $R_{\rm np}$, а также диаметр проволоки - так как в формуле расчета площади поперечного сечения он возводится в квадрат, погрешность при его вычислении получеется 5,7%. Также значительный вклад в погрешность вносят соединительные провода, которых при сборе схемы было использовано достаточное количество. Подводя итоги, при измерении сопротивления проволоки с помощью метода наименьших квадратов все значения попадали в пределы 2σ от значения, полученного при помощи моста.