Impact of Environmental Factors

on Acute Myocardial Infarction

Gabriela Zemenčíková

June, 2024

 The environmental dataset and census data taken from the Statistical Institute of Catalonia.

- The environmental dataset and census data taken from the Statistical Institute of Catalonia.
- AMI dataset taken from ten main hospitals across Catalonia.

- The environmental dataset and census data taken from the Statistical Institute of Catalonia.
- AMI dataset taken from ten main hospitals across Catalonia.
- 22,812 hospital admissions at the scale of the 948 municipalities in Catalonia stratified by province, sex and age

- The environmental dataset and census data taken from the Statistical Institute of Catalonia.
- AMI dataset taken from ten main hospitals across Catalonia.
- 22,812 hospital admissions at the scale of the 948 municipalities in Catalonia stratified by province, sex and age
- Response variable: Age Standardised Incidence Rate (ASIR)

- The environmental dataset and census data taken from the Statistical Institute of Catalonia.
- AMI dataset taken from ten main hospitals across Catalonia.
- 22,812 hospital admissions at the scale of the 948 municipalities in Catalonia stratified by province, sex and age
- **Response variable:** Age Standardised Incidence Rate (ASIR)
- A total of 5 predictors Humidity, Temperature, Ozone levels, Particulate Matter, Public holidays

SARIMAX

- **S**: Seasonal component that captures periodic patterns at fixed intervals.
- **AR**: Autoregressive part that models the dependency between an observation and a number of lagged observations.
- I: Integrated part representing the differencing of raw observations to make the time series stationary.
- MA: Moving Average component that models the dependency between an observation and a residual error from a moving average model applied to lagged observations.
- X: Exogenous variables that are external factors influencing the time series.

SARIMAX

- **S**: Seasonal component that captures periodic patterns at fixed intervals.
- **AR**: Autoregressive part that models the dependency between an observation and a number of lagged observations.
- I: Integrated part representing the differencing of raw observations to make the time series stationary.
- MA: Moving Average component that models the dependency between an observation and a residual error from a moving average model applied to lagged observations.
- X: Exogenous variables that are external factors influencing the time series.

By incorporating exogenous variables, SARIMAX can model the influence of external factors on ASIR.

• a type of recurrent neural network (RNN) architecture specifically designed to model sequence data while addressing the vanishing gradient problem.

- a type of recurrent neural network (RNN) architecture specifically designed to model sequence data while addressing the vanishing gradient problem.
- The LSTM cell has a memory cell and three gates: input gate, forget gate, and output gate

- a type of recurrent neural network (RNN) architecture specifically designed to model sequence data while addressing the vanishing gradient problem.
- The LSTM cell has a memory cell and three gates: input gate, forget gate, and output gate
- LSTM networks are capable of learning long-term dependencies in sequential data, making them suitable for time series forecasting tasks.

- a type of recurrent neural network (RNN) architecture specifically designed to model sequence data while addressing the vanishing gradient problem.
- The LSTM cell has a memory cell and three gates: input gate, forget gate, and output gate
- LSTM networks are capable of learning long-term dependencies in sequential data, making them suitable for time series forecasting tasks.
- can capture complex patterns and relationships to forecast future ASIR.

Results - SARIMAX

Results - SARIMAX

 Maximum temperature (max_temp): A decrease of 1°C in maximum temperature is associated with a decrease of approximately 0.345 units in the Age-Standardized Incidence Rate (ASIR) of AMI.

Results - SARIMAX

- Maximum temperature (max_temp): A decrease of 1°C in maximum temperature is associated with a decrease of approximately 0.345 units in the Age-Standardized Incidence Rate (ASIR) of AMI.
- Mean PM10 concentration (mean_PM10): An increase of 1 $\mu g/m^3$ in mean PM10 concentration is associated with an increase of approximately 0.146 units in ASIR of AMI.

Diagnostics - SARIMAX

Results - LSTM

Comparison

Table 1: Results

	SARIMAX	LSTM
MAE	0.12	0.15
MSE	0.02	0.03
RMSE	0.15	0.19
MAPE	26.60	14.53

Comparison

Table 1: Results

	SARIMAX	LSTM
MAE	0.12	0.15
MSE	0.02	0.03
RMSE	0.15	0.19
MAPE	26.60	14.53

 SARIMAX outperforms LSTM in terms of both MAE and MSE, making it a more suitable choice for this forecasting task.

Comparison

Table 1: Results

	SARIMAX	LSTM
MAE	0.12	0.15
MSE	0.02	0.03
RMSE	0.15	0.19
MAPE	26.60	14.53

- SARIMAX outperforms LSTM in terms of both MAE and MSE, making it a more suitable choice for this forecasting task.
- However, the LSTM model exhibits substantially lower AIC and BIC values compared to SARIMAX, indicating a potentially better fit to the data and superior long-term forecasting capabilities

Thank you for your attention