Geiger-Muller (GM) Counter-I

Biswaranjan Meher
Integrated M.Sc.
Roll No.-2011050
School of Physical Sciences
National Institute of Science Education and Research, Bhubaneswar
(Dated: April 11, 2023)

A Geiger-Muller counter (also known as a GM counter) is an electronic instrument used for detecting and measuring ionizing radiation. It is widely used in applications such as radiation dosimetry, radiological protection, experimental physics, and the nuclear industry. This experiment is based on familiarizing ourselves with the most basic particle or radiation detectors, the GM counters. We performed the experiment in various steps, determining the operational voltage, efficiency, verification of inverse square law, etc. by measuring different required quantities.

I. OBJECTIVES

- Determination of the operating voltage of GM counter from the GM characteristic curve.
- Verification of the inverse square law for the γ rays as a simple application of the GM counter.
- Determination of the efficiency of GM counter.
- Analyzing the nuclear counting statistics.

II. THEORY

A. GM Counter

The Geiger-Muller (GM) counter is a type of particle detector that measures ionizing radiation. It consists of a gas-filled tube with a central wire electrode and a surrounding electrode, which form the anode and cathode, respectively.

When ionizing radiation enters the tube, it ionizes the gas atoms and creates free electrons and ions. The ionization event creates a potential difference between the electrodes, causing a discharge to occur, which is detected as a pulse of electrical current.

The theory behind the GM counter relies on the principles of ionization and electrical discharge. The ionization of gas atoms by ionizing radiation creates a current pulse, which is proportional to the amount of ionizing radiation entering the tube. The discharge of the current pulse is detected and recorded, allowing for a measurement of the ionizing radiation.

It's important to note that GM counter tubes are designed to be sensitive to a specific type of ionizing radiation, such as α , β , or γ rays. This sensitivity is determined by the type of gas used, the pressure of the gas, and the potential difference between the electrodes.

B. GM Counter Operating characteristics

1. Starting voltage (V_s)

This is the lowest voltage applied to a GM counter at which pulses just appear across the anode resistor and the unit starts counting.

2. Plateau

The section of the GM characteristic curve over which the counting rate is independent of the applied voltage.

3. Plateau threshold voltage (V_1)

The voltage at which the plateau region begins for a particular sensitivity of the measuring circuit.

4. Plateau length

The range of voltage over which the plateau region extends.

5. Upper threshold voltage (V_2)

The higher voltage up to which the plateau region extends, beyond which the count rate increases with an increase in applied voltage.

6. Plateau slope

The small change in counting rate over the plateau region, it is usually expressed in % per volt.

7. Operating voltage

The supply voltage at which the GM counter should preferably be used.

8. Background

It is the counting rate measured in the absence of the radiation source. It is due to cosmic rays and any active sources in the experimental lab.

9. Dead time (T_d)

It is the time interval after the initiation of a discharge resulting in a normal pulse, during which the GM counter is insensitive to further ionizing events.

10. Resolution time (T_R)

It is the minimum time interval between two distinct ionizing events which enables both to be counted independently.

11. Recovery time (T_{re})

It is the minimum time interval between the initiation of a normal-size pulse and the initiation of the next pulse of normal size.

C. Typical GM characteristics

FIG. 1. Typical GM characteristics

FIG. 2. Typical GM pulse output seen on an oscilloscope

III. EXPERIMENTAL SETUP

FIG. 3. Experimental setup

Components required:

- Cs^{137} : Source of γ rays.
- Tl^{204} : Source of β particles.
- GM counting system and detector
- Connecting cables

IV. OBSERVATIONS AND CALCULATIONS

Table 1: GM characteristics curve

	GM Characteristic plot										
S. No.	S. No. EHT (V)		$\begin{array}{c} \textbf{Background} \\ \textbf{Count} \\ (N_b) \end{array}$	$egin{array}{c} \mathbf{Corrected} \\ \mathbf{Count} \\ (N_c) \end{array}$							
1	320	0	0	0							
2	323	3233	32	3201							
3	350	4762	29	4733							
4	380	5062	33	5029							
5	410	5281	38	5243							
6	440	5339	38	5301							
7 470		5365	44	5321							
8 500		5412	38	5374							
9	530	5450	37	5413							
10	560	5600	40	5560							
11	590	5651	35	5616							
12	620	5742	36	5706							
13	650	10120	105	10015							
14	680	10208	74	10134							

Plot 1: GM characteristics curve for γ source

FIG. 4. GM characteristics for γ source

From the above plot, we get:

- $V_1 = 350 \text{ V}$
- $V_2 = 620 \text{ V}$
- Plateau length = $V_2 V_1 = 270 \text{ V}$
- Operating voltage:

$$V_o = \frac{V_1 + V_2}{2} = 485V$$

Error:

$$\frac{\delta V_o}{V_o} = \sqrt{\left(\frac{\delta V_1}{V_1}\right)^2 + \left(\frac{\delta V_2}{V_2}\right)^2} = 0.00328$$

$$\delta V_o = 1.591V$$

• Plateau slope:

$$S = \frac{(N_2 - N_1) \times 100}{N_1(V_2 - V_1)} \times 100 = 7.61\%$$

Table 2: Inverse square law

	Inverse square law									
S.No.	\mathbf{d}	Counts	Corrected Rate (\mathbf{C}	$1/d^2$				
5.110.	(cm)	Counts	Count (N)	(per s)	$R.d^2$	$(in 1/m^2)$				
1	2	11777	11710.6	195.18	780.72	2500				
2	2.5	9525	9458.6	157.64	985.25	1600				
3	3	7793	7726.6	128.78	1159.02	1111				
4	3.5	6241	6174.6	102.91	1260.6475	816				
5	4	5107	5040.6	84.01	1344.16	625				
6	4.5	4276	4209.6	70.16	1420.74	494				
7	5	3602	3535.6	58.93	1473.25	400				
8	5.5	3103	3036.6	50.61	1530.9525	331				
9	6	2669	2602.6	43.38	1561.68	278				
10	6.5	2198	2131.6	35.53	1501.1425	237				
11	7	1978	1911.6	31.86	1561.14	204				
12	7.5	1712	1645.6	27.43	1542.9375	178				
13	8	1515	1448.6	24.14	1544.96	156				

Plot 2: Net counts vs distance

FIG. 5. Plot of net counts vs distance (d) (in cm)

From Table 2 and FIG. 5, we get:

- $C_{mean} = 0.1359m^2/s$
- Net counts vary inversely with the distance.

- Now, we need to see whether there is a linearly inverse relation or some power relation, for which we need to plot net count rate vs $1/d^2$. Refer to FIG. (6), we got a curve which when linearly fitted gave some parameters mentioned in FIG.(7).
- Next, we see whether there is some logarithmic relation or not for which we plotted log(R) vs log(d). Refer to FIG.8.

FIG. 6. Plot of net count rate (R) vs $1/d^2$

Equation	y = a + b*x
Plot	R
Weight	No Weighting
Intercept	25.27578 ± 5.05724
Slope	0.07637 ± 0.0053
Residual Sum of Squares	1763.36833
Pearson's r	0.97454
R-Square (COD)	0.94972
Adj. R-Square	0.94515

FIG. 7. Parameters obtained for FIG.6

Efficiency of GM Counter:

- For γ source:
 - Diameter of the detector window, d=0.03m
 - Distance between the detector and the source, D=0.1M
 - Activity, A = 71.5 kBq
 - Net count rate, $N = 7.208s^{-1}$

$$-R = A \frac{d^2}{16D^2} = 402.1875s^{-1}$$

– Efficiency,
$$E=\frac{N}{R}\times 100=1.792\%$$

FIG. 8. Plot of log(R) vs log(d)

Equation	y = a + b*x
Plot	log(R)
Weight	No Weighting
Intercept	2.8246 ± 0.03652
Slope	-1.54737 ± 0.05305
Residual Sum of Squares	0.01339
Pearson's r	-0.9936
R-Square (COD)	0.98724
Adj. R-Square	0.98608

FIG. 9. Parameters obtained for FIG.8

- For β source:
 - Diameter of the detector window, d=0.03m
 - Distance between the detector and the source, D=2cm
 - Activity, A = 7.85 kBq
 - Net count rate, $N = 40.82s^{-1}$
 - At D=2cm, $R = A \frac{d^2}{16D^2} = 1103.90625s^{-1}$
 - Efficiency at D=2cm, $E=\frac{N}{R}\times 100=3.698\%$

Nuclear Counting statistics:

We now attempt to analyze the distribution in which the counts are measured by the GM counter using a statistical approach.

The various useful parameters are:

• Mean,
$$\bar{N} = \frac{1}{n} \sum_{i=1}^{n} N_i$$

• Variance,
$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (N_i - \bar{N})^2$$

• Standard deviation,
$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (N_i - \bar{N})^2}$$

Table 3: Background count statistics

Background statistics									
Backg	ground	Background							
(in	10 s)	(in 100 s)							
S. No.	Counts	S. No.	Counts						
1	14	1	117						
2	6	2	127						
3	12	3	134						
4	11	4	104						
5	13	5	130						
6	11	6	114						
7	11	7	125						
8	8 9		132						
9	10	9	121						
10	11	10	114						

FIG. 10. Statistical plot for background counts for 10 seconds $\bar{N}=10.8$ $\sigma=2.201$

FIG. 11. Statistical plot for background counts for 100 s $\bar{N}=121.8$ $\sigma=9.543$

Table 4: Nuclear counting statistics for β source

Statistical analysis with β source									
S. No.	Counts Ni	S. No.	$egin{array}{c} ext{Counts} \ ext{Ni} \end{array}$						
1	2115	26	2100						
2	2090	27	2106						
3	2086	28	2171						
4	2169	29	2087						
5	2178	30	2078						
6	2088	31	2155						
7	2058	32	2013						
8	2112	33	2101						
9	2121	34	2148						
10	2096	35	2109						
11	2170	36	2135						
12	2102	37	2200						
13	2129	38	2119						
14	2155	39	2109						
15	2161	40	2101						
16	2176	41	2068						
17	2178	42	2142						
18	2119	43	2110						
19	2079	44	2134						
20	2076	45	2013						
21	2040	46	2116						
22	2048	47	2148						
23	2078	48	2102						
24	2101	49	2096						
25	2101	50	2083						

From Table 4 when the β source was kept at a distance of 3cm from the detector, we get:

- Mean, $\bar{N} = 2111.4$
- Standard deviation, $\sigma = 41.56$

FIG. 12. Histogram of counts with beta source

FIG. 13. Histogram of $(N_i - N)/\sigma$ with beta source

V. RESULTS

• The operating voltage of the GM counter:

$$V_o = (485 \pm 1.591)V$$

• Efficiency of GM counter:

- For γ source: $E_{\gamma} = 1.792\%$

– For β source: $E_{\beta} = 3.698\%$

- \bullet Nuclear counting statistics:
 - Background(10s): Mean=10.8 & Std. dev. = 2.201
 - Background(100s): Mean=121.8 & Std. dev. = 9.543

VI. CONCLUSIONS AND DISCUSSIONS

- We got a good knowledge of the GM counter, it's working, and its basic applications.
- First, we calculated the operating voltage of the GM counter from the characteristics curve and got an idea of how it really works.
- We got different values of efficiency of the GM counter for γ and β sources. This could be due to its different responses to different kinds of radiation or sources. The other possible reason could be different background conditions while taking the data.
- We also verified the inverse square law upto some extent as in our case, we got the relation to be $\approx d^{-1.547}$, and not d^{-2} .
- While analyzing the counting statistics, we got a Gaussian distribution for larger number of measurements.

VII. SOURCES OF ERRORS

- Handling of the GM counter: due to its fragile nature as it contains inert gases.
- Systemic or Instrumental errors associated with the detector.
- Measurement or human errors.
- Errors due to various radiation present in the background.

VIII. REFERENCES

- NISER Lab Manual
- https://en.wikipedia.org/wiki/Geiger_ counter
- https://www.studyandscore. com/studymaterial-detail/ geiger-muller-counter-construction-principle-workin

			Table - 1 : GM Characteristic plot						
			S. No.	EHT (volts)	Counts (N)		Corrected Count (Nc)		
			1		0				
			2	323	3233	32	3201		
			3	350	4762	29	4733		
			4	380	5062	33	5029		
			5	410	5281	38	5243		
			6	440	5339	38	5301		
			7		5365	44	5321		
			8		5412	38	5374		
			9		5450	37	5413		
			10	560	5600	40	5560		
			11		5651	35	5616		
			12	620	5742	36	5706		
			13		10120	105	10015		
			14		10208	74	10134		
						-			
Backe	ground			Table - 2 : Data for Ir	verse square lav	v experiment			
No.	Counts	S.No.	d (in cm)	Counts		Rate R (per sec	C = R.d^2	1/d^2 (in 1/m^2	
1	61	1			11710.6	195.18	780.72	2500	
2		2			9458.6	157.64	985.25	1600	
3		3			7726.6	128.78	1159.02	111	
4		4			6174.6	102.91	1260.6475	816	
5		5			5040.6	84.01	1344.16	625	
verage Count	66.4	6			4209.6	70.16	1420.74	494	
te(counts/sec		7			3535.6	58.93	1473.25	400	
ne(counts/sec	1.100000007	8			3036.6	50.61	1530.9525	331	
		9			2602.6	43.38	1561.68	278	
		10			2131.6	35.53	1501.1425	237	
		11			1911.6	31.86	1561.14	204	
		12			1645.6	27.43	1542.9375	178	
		13			1448.6	24.14	1542.9375	156	
		13		1515	1440.0	24.14	1544.90	150	
				Table - 3 : Statistical A	nalveie				
			Background (in 10 sec		Background (in	100 eec)			
			S. No.	Counts	S. No.	Counts		~ ~	
			3. NO.		3. NO.	117	_	3 (
			2					x 6	
								3,	
			3		3		6	7)	
			4		4		-0	Y	
			5		5	130			
			6		6		~		
			7		7	125	~		
			8	9		132			
			9		9	121	\sim		

FIG. 14. Signed data

S. No. Counts Ni S. No. Counts Ni								Eff	iciency		
	1	2115	26	6 2100		Gamma	Source	Beta Source (Ac	= 10 kBq; May 2016	Backg	round
	2	2090	27	2106		S. No.	Counts	S. No.	Counts	S. No.	Counts
	3	2086	28	2171		1	867	1	3958	1	11
	4	2169	29	2087		2	831	2	4188	2	10
	5	2178	30	2078		3	836	3	4298	3	11
	6	2088	31	2155		4	828	4	4294	4	11
	7	2058	32	2013		5	797	5	4229	5	10
	8	2112	33	2101				,			
	9	2121	34	2148							
	10	2096	35	2109							
	11	2170	36	2135				b			
	12	2102	37	2200			△				
	13	2129	38	2119			(4				
	14	2155	39	2109							
	15	2161	40	2101			y				
	16	2176	41	2068		Responsi	0				
	17	2178	42	2142		1	J.				
	18	2119	43	2110		9	,				
	19	2079	44	2134		Q ^r					
	20	2076	45	2013		100					
	21	2040	46	2116		/\&					
	22	2048	47	2148	(13					
	23	2078	48	2102	/						
	24	2101	49	2096		\checkmark					
	25	2101	50	2083							

FIG. 15. Signed data