实验二 时序电路实验

一、实验目的

- 1. 熟悉并掌握各种触发器的特性和功能测试方法。
- 2. 学会正确使用触发器集成芯片。
- 3. 了解不同触发器之间的相互转换。

二、实验设备与器材

1. 数字电路实验箱 1 个 2. 万用表 1 台

3. 集成电路

74HC004路2输入与非门2片74HC74双D触发器2片74HC103路3输入与非门2片74HC202路4输入与非门2片

三、实验内容及实验步骤

1、 利用 74HC00 中的与非门设计 D 触发器,并验证逻辑功能

参考下面的电路原理图,利用 Logisim 设计带使能端的 D 锁存器,并通过 D 锁存器构建主从式 D 触发器,首先在 Logisim 中验证其功能,导出主从式 D 触发器的电路设计图。

在面包板实验箱中验证主从式 D 触发器的功能。输入端 D 接到面包板的逻辑开关,使能端 C 先接到逻辑开关,主锁存器的输出 Q_m 、从锁存器的输出 Q_m 分别接到 LED 指示灯上,改变输入端 D 的赋值;观察实验结果。其它保持不变,将使能端接到单步脉冲上升沿输出端,改变输入端 D 的赋值;观察实验结果。整理上述实验数据,将结果填入下表中。

С	D	Q	${\rm Q_m}^*$	Q^*
0	0	0	1	0
		1	0	1
0	1	0	1	0
		1	0	1
1	0	0	1	0
		1	0	1
1	1	0	1	0
		1	0	1
上升沿 个	0	0	1	0
		1	1	0
上升沿 个	1	0	0	1
		1	0	1

2、时序电路设计-模10的二进制可逆计数器。

利用 74HC74 中的 D 触发器,设计一个模 10 的二进制可逆计数器。要求带有置数端和清零端,当置数端有效时,在下一个时钟周期后读入 D 输入端的数值。当清零端有效时,D 触发器的状态输出为 0。计数一个计数周期后,输出为 1。将时钟端接单步脉冲源,输出端Q3、Q2、Q1、Q0 分别接逻辑指示灯的输入端和七段数码管的输入端。

系统加电后,逐步单击单次脉冲,观察并列表记录 Q3~Q0 的状态。

检查系统是否能自启动,初值赋予无效状态后,系统能否回到有效状态?输出是否正确?如果有问题,请添加必要的门电路进行修正。

写出设计步骤、画出电路图,并用 logisim 验证结果,并导出电路设计图,观察并记录 计数器输出的状态变化。

(1) 画出状态转移表:

	~	
	0	
4.	51,0	59,1
91	5210	50, D
52	53,0	51,0
53	54,0	52,0
54	55,0	53,0
5-	56,0	54,0
56	57,0	55,0
57	58, 0	56, 0
58	59,0	57,0
		58,0
55	50,1	
*	0	1001
2000	0 601,0	060
. 0001	0,000	0,000,0
0010	8011,0	0001,0
	0,00,0	0010,0
001/	01010	0011,0
9100		0100,0
0101	0110,0	
0110	0111,0	0/01/0
0111	1000,0	0110,0
1000	101,0	0111,0
100)	00001	(000,0

(2) 画卡诺图和求解状态转移方程和输出方程;

Z= XQ3 Q2Q1Q0 + XQ3 Q2Q,Q0

(3) D触发器,特征方程 Q*=D

(4) 画出电路图:

3、时序电路设计-串行二进制数检测器(密码锁)

利用 74HC74,设计一个"1001···"序列检测器,用来检测串行二进制序列,要求每当输入 4 位二进制数为"1001"时,检测器输出为 1,否则输出为 0。输入端接到某个逻辑开关上,输出端分别接到输出指示电平,CP 使用连续脉冲计数,记录各触发器输出状态。

写出设计步骤、画出电路图,并用 logisim 验证结果,检测系统是否能自启动。

(1) 画原始状态转移表:

(2) 化简状态:

(3) 画卡诺图,得到状态方程和输出方程:

- (4) D 触发器, 特征方程 Q*=D
- (5) 画出电路图:

没有无效状态,不用检查自启动...

4、触发器的应用-自循环移位寄存器(选做)

利用 2 片 74HC74,按下图接线,分别通过置位和清零端将四个 D 触发器的初值置为 1000,四个输出 A、B、C、D 分别接到输出指示电平,CP 使用连续脉冲计数,记录各触发器输出状态。

请添加必要的门电路,使得无论触发器的初始值是什么,都能实现电路的自启动,经过一段周期后,输出始终在"1000-0100-0010-0001"之间循环。画出电路图,设置有干扰的初始值,观察并记录计数器输出的状态变化。

自启动,设干扰值1111:

变回 1000

四、实验报告要求

- 1. 整理实验结果。
- 2. 画出触发器相互转换的逻辑电路。

D->JK

JK->D

- 3. 总结置位、复位端的作用。
- 可以用来迫使触发器进入一个与 CLK 信号和 D 输入信号无关的特定状态,方便初始化和测试
- 4. 总结 D 触发器的状态变化与时钟的关系。

CLK=0 或 1 时,Q*保持上一个 Q 值,CLK 上升沿时,Q*=D