Constraint Learning*

Luc De Raedt, Andrea Passerini, Stefano Teso

^{*}senior member track paper in AAAI proceedings

Motivation

- Constraints are ubiquitous in Al
- It can be hard to acquire the model, that is, the right set of constraints
- This tutorial:

Can we learn the constraints from data?

 It is about inductive learning, not about speed-up learning (such as "clause learning" or portfolio's)

Tacle - Learning Constraints in Tabular Data

```
SERIES(T_1[:, 1])
T_1[:,1] = RANK(T_1[:,5])^*
T_1[:,1] = RANK(T_1[:,6])^*
T_1[:,1] = RANK(T_1[:,10])^*
T_1[:, 8] = RANK(T_1[:, 7])
T_1[:, 8] = RANK(T_1[:, 3])^*
T_1[:, 8] = RANK(T_1[:, 4])^*
T_1[:,7] = SUM_{row}(T_1[:,3:6])
T_1[:, 10] = SUMIF(T_3[:, 1], T_1[:, 2], T_3[:, 2])
T_1[:, 11] = MAXIF(T_3[:, 1], T_1[:, 2], T_3[:, 2])
T_2[1,:] = SUM_{col}(T_1[:,3:7])
T_2[2,:] = AVERAGE_{col}(T_1[:,3:7])
T_2[3,:] = MAX_{col}(T_1[:,3:7]),
T_2[4,:] = MIN_{col}(T_1[:,3:7])
T_4[:,2] = SUM_{col}(T_1[:,3:6])
T_4[:,4] = PREV(T_4[:,4]) + T_4[:,2] - T_4[:,3]
T_5[:,2] = LOOKUP(T_5[:,3], T_1[:,2], T_1[:,1])^*
T_5[:,3] = LOOKUP(T_5[:,2],T_1[:,1],T_1[:,2])
```


[Kolb et al. MLJ 17]

ModelSeeker

N. Beldiceanu and H. Simonis

Motivating Example

2	-1	4	-3	6	-5	8	-7	10	-9	12	-11	14	-13	16	-15	18	-17
-8	15	-10	7	-18	9	-4	1	-6	3	-14	13	-12	11	-2	17	-16	5
4	-17	14	-1	12	-13	10	-15	16	-7	18	-5	6	-3	8	-9	2	-11
7	11	-8	15	-16	-18	-1	3	-12	13	-2	9	-10	17	-4	5	-14	6
-3	-13	1	-11	10	16	-15	-17	14	-5	4	-18	2	-9	7	-6	8	12
15	9	-7	13	-14	-12	3	11	-2	17	-8	6	-4	5	-1	18	-10	-16
-17	-5	-15	-18	2	14	-9	-13	7	-11	10	-16	8	-6	3	12	1	4
11	18	5	9	-3	-10	17	12	-4	6	-1	-8	-15	16	13	-14	-7	-2
-13	-6	-17	-5	4	2	-11	-9	8	-16	7	14	1	-12	-18	10	3	15
9	16	11	6	-8	-4	13	5	-1	12	-3	-10	-7	18	17	-2	-15	-14
-5	-12	-13	-16	1	7	-6	-18	15	-14	17	2	3	10	-9	4	-11	8
6	14	9	12	-7	-1	5	16	-3	18	-15	-4	-17	-2	11	-8	13	-10
-18	-10	-12	-14	15	8	-16	-6	17	2	13	3	-11	4	-5	7	-9	1
12	-7	18	10	-17	-15	2	14	-11	-4	9	-1	16	-8	6	-13	5	-3
-14	4	-16	-2	11	17	-18	-10	13	8	-5	15	-9	1	-12	3	-6	7
10	-8	6	-17	-9	-3	12	2	5	-1	16	-7	18	-15	14	-11	4	-13
-16	3	-2	8	13	11	-14	-4	-18	15	-6	17	-5	7	-10	1	-12	9
-2	1	-4	3	-6	5	-8	7	-10	9	-12	11	-14	13	-16	15	-18	17
8	-15	10	-7	18	-9	4	-1	6	-3	14	-13	12	-11	2	-17	16	-5
-4	17	-14	1	-12	13	-10	15	-16	7	-18	5	-6	3	-8	9	-2	11
-7	-11	8	-15	16	18	1	-3	12	-13	2	-9	10	-17	4	-5	14	-6
3	13	-1	11	-10	-16	15	17	-14	5	-4	18	-2	9	-7	6	-8	-12
-15	-9	7	-13	14	12	-3	-11	2	-17	8	-6	4	-5	1	-18	10	16
17	5	15	18	-2	-14	9	13	-7	11	-10	16	-8	6	-3	-12	-1	-4
-11	-18	-5	-9	3	10	-17	-12	4	-6	1	8	15	-16	-13	14	7	2
13	6	17	5	-4	-2	11	9	-8	16	-7	-14	-1	12	18	-10	-3	-15
-9	-16	-11	-6	8	4	-13	-5	1	-12	3	10	7	-18	-17	2	15	14
5	12	13	16	-1	-7	6	18	-15	14	-17	-2	-3	-10	9	-4	11	-8
-6	-14	-9	-12	7	1	-5	-16	3	-18	15	4	17	2	-11	8	-13	10
18	10	12	14	-15	-8	16	6	-17	-2	-13	-3	11	-4	5	-7	9	-1
-12	7	-18	-10	17	15	-2	-14	11	4	-9	1	-16	8	-6	13	-5	3
14	-4	16	2	-11	-17	18	10	-13	-8	5	-15	9	-1	12	-3	6	-7
-10	8	-6	17	9	3	-12	-2	-5	1	-16	7	-18	15	-14	11	-4	13
16	-3	2	-8	-13	-11	14	4	18	-15	6	-17	5	-7	10	-1	12	-9

Result

J	Scheme	Ref	Trans	Constraint
1	scheme(612,34,18,1,18)	284	absolute_value	symmetric_alldifferent([118])*34
2	vector(612)	289	id	global_cardinality([-181-17,0-0,118-17])*1
3	scheme(612,34,18,34,1)	288	id	alldifferent*18
4	repart(612,34,18,17,18)	282	id	alldifferent*306
5	scheme(612,34,18,2,2)	286	id	alldifferent*153
6	scheme(612,34,18,1,18)	284	id	alldifferent*34
7	repart(612,34,18,34,9)		sign	alldifferent*306
8	scheme(612,34,18,17,1)	287	absolute_value	alldifferent*36
	scheme(612,34,18,2,1)			alldifferent*306
	repart(612,34,18,34,9)	283		sum_ctr(0)*306
	repart(612,34,18,34,9)	283	l	sum_cubes_ctr(0)*306
12	scheme(612,34,18,1,18)	284	l	sum_squares_ctr(2109)*34
	repart(612,34,18,34,9)	283		twin*1
	repart(612,34,18,34,9)	283		elements($[i,-i]$)*1
	modulo(612,4)	281		all_differ_from_at_least_k_pos(152)*1
16	first(9,[1,3,5,7,9,11,13,15,17])	280		strictly_increasing*1
	repart(612,34,18,34,9)	283		alldifferent_interval(2)*306
	scheme(612,34,18,2,1)	285	id	alldifferent_interval(2)*306
	repart(612,34,18,34,9)	283	sign	sum_ctr(0)*306
20	scheme(612,34,18,1,18)	284	sign	sum_ctr(0)*34
	repart(612,34,18,34,9)		sign	twin*1
	repart(612,34,18,34,9)		absolute_value	twin*1
	repart(612,34,18,34,9)		sign	elements([i,-i])*1
	repart(612,34,18,34,9)			elements([i,i])*1
	first(9,[1,3,5,7,9,11,13,15,17])			
	first(6,[1,4,7,10,13,16])			strictly_increasing*1
	repart(612,34,18,34,9)		sign	alldifferent_interval(2)*306
28	scheme(612,34,18,34,1)	288	sign	among_seq(3,[-1])*18

Slides N. Beldiceanu and H. Simonis

Layout Synthesis

Building Design

Interior Design

Urban Planning

Preference Elictation

What is the best PC configuration based on constraints and preferences?

Three parts

- learning hard constraints from data (Luc)
 logical formulae
- 2. learning soft constraints (Andrea) probability, preferences and optimisation
- 3. interactive constraint learning (Stefano)

Part I: Learning Hard Constraints

Overview

- What are constraint satisfaction problems?
- What is learning?
- Boolean Concept-Learning for Constraints
- Variations and extensions
 - active learning
 - k-CNF and learning in first order logic
 - Actual system : equation discovery
 - Actual system : ModelSeeker and Tacle

Why hard constraints?

- Used in constraint programming, answer set programming, operations research, SAT and variants...
- Optimisation versions exist (cf. Parts II and III)

What are Constraint Satisfaction Problems?

Map Colouring

Traditional CSP(V,D,C)

- Variables WA, NT, Q, NSW, V, SA, T
- Domains $D_i = \{red, green, blue\}$

- e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}
- Optimisation: sometimes find best solution according to some optimisation criterion CSPo(V,D,C,f)

example + figures [Marriot & Stuckey]

Map Colouring

Solutions are complete and consistent assignments, e.g.,
 WA = red, NT = green, Q = red, NSW = green, V = red,
 SA = blue, T = green

example + figures [Marriot & Stuckey]

Sudoku as a CSP

- 8 | Variables
 - $V = \{A \mid A2, ..., \mid 8, \mid 9\}$
- Domain(V) = $\{1, ..., 9\}$
 - for all variables V
- 27 Alldifferent Constraints
 - alldiff(A1, ..., A9)
 - for each row, collum and block

What is machine learning?

[Srinivasan et al.AlJ 96]

Data = Set of Small Graphs

Structure Activity Relationship Prediction

Machine Learning

Given

- a space of possible instances X
- an unknown target function $f: X \to Y$
- a hypothesis space H containing functions $X \rightarrow Y$
- a set of examples $E = \{ (x, f(x)) \mid x \in X \}$
- a loss function $loss(h,E) \rightarrow \mathbb{R}$ (or objective function)

Find $h \in H$ that minimizes loss(h,E)

Classification

Given - Molecular Data Sets

- a space of possible instances X -- Molecular Graphs
- an unknown target function $f: X \to Y -- \{Active, Inactive\}$
- a hypothesis space L containing functions X → Y H= {Active iff structural alert s covers instance x ∈ X|s ∈ X }
- a set of examples $E = \{ (x, f(x)) \mid x \in X \}$
- a loss function $loss(h,E) \rightarrow \mathbb{R} | \{x \in E \mid f(x) \neq h(x)\} |$

Find $h \in H$ that minimizes loss(h,E)

If classes = {positive, negative} then this is concept-learning

Regression

Given - Molecular Data Sets

- a space of possible instances X -- Molecular Graphs
- an unknown target function $f: X \to Y -- \mathbb{R}$
- a hypothesis space H containing functions $X \rightarrow Y$ -- a linear function of some features
- a set of examples $E = \{ (x, f(x)) | x \in X \}$
- a loss function $loss(h,E) \rightarrow \mathbb{R}$

$$\sqrt{\sum_{x \in E} f(x)^2 - h(x)^2}$$

Find $h \in H$ that minimizes loss(h,E)

Learning Preferences

Given

- a space of possible instances X
- an unknown target function $Pref: X \rightarrow Y Y = Reals$
- a hypothesis space H containing functions h: $X \rightarrow Y$
- a set of examples

$$E = \{ (x,y, Pref(x) > Pref(y)) \mid x,y \in X \}$$

• a loss function $loss(h,E) \rightarrow \mathbb{R}$

Find $h \in H$ that minimizes loss(h,E)

Learning Probabilistic Models

Given

- a space of possible instances X
- an unknown target function $P: X \to Y$ Y=[0,1]
- a hypothesis space L containing functions X → Y (graphical models)
- a set of examples $E = \{ (x,) | x \in X \}$ generative
- a loss function loss(h,E) $\rightarrow \mathbb{R}$ $\prod_{e \in E} P(e|h)$

Find $h \in L$ that minimizes loss(h,E)

maximize likelihood

generative

Boolean Concept-Learning

Boolean Concept-Learning

```
X = \{(X_1, ..., X_n) \mid X_i = 0 / 1\}
Y = \{+,-\}
H = \text{boolean formulae}
loss(h,E) = \text{training set error}
= |\{e \mid e \in E, h(e) \neq f(e)\}| / |E|
sometimes required to be 0
```

Simplest setting for learning, compatible with constraint learning and Valiant's PAC-learning

Dimensions

Given

- a space of possible instances X
- an unknown target function $f: X \rightarrow Y$

```
k-CNF?
```

- a hypothesis space \vdash containing functions $X \rightarrow Y$ SMT? etc
- a set of examples $E = \{ (x, f(x)) \mid x \in X \}$ pos and neg? or pos only? or preferences?
- a loss function $loss(h, E) \rightarrow \mathbb{R}$ loss/error=0 required?

Find $h \in H$ that minimizes loss(h,E)

```
ability to ask questions?
```

[Kearns and Vazzirani; Mitchell]

Various Settings and Algorithms

Depending on

- hypotheses space H (Part I)
 monomials vs k-CNF vs k-term DNF vs SMT ...
- loss or objective function (Part II)
 completeness and consistency required
 (error training set =0)? or noise tolerated?
- type of examples (Part II/III)
 positives only ? or positives and negatives ? or preferences ?
- interaction with user (oracle) / active learning (Part III)

Boolean concept-learning

		2	3	4	5		
ex I	0				0	••	+
ex 2	I						+
ex 3	0			0	0		-
ex 4		0	0		0		_
•••							

possible concept: $(X_2 \text{ and } X_4)$

Map Colouring

Solutions are complete and consistent assignments, e.g.,
 WA = red, NT = green, Q = red, NSW = green, V = red,
 SA = blue, T = green

example + figures [Marriot & Stucket]

Why boolean concept-learning? constraint networks

(V_1, V_2, V_3)	$V_1 < V_2$	$V_1 > V_2$	$V_1 = V_2$	V ₁ <v<sub>3</v<sub>	
(1,2,3)	1 /	0	0		
(2,3,1)		0	0	0	
(3,2,1)	/0 /		0	0	
(1,3,2)		0	0		
•••					

Bias

Propositionalization

Assignments

CONACQ example [Bessiere et al.]

Monomials

Given

- a space of possible instances X
- an unknown target function $f: X \to Y$
- a hypothesis space L containing functions $X \to Y$ monomials conjunctions
- a set of examples $E = \{ (x, f(x)) \mid x \in X \}$ pos only
- a loss function $loss(h,E) \rightarrow \mathbb{R}$ error = 0

Find $h \in L$ that minimizes loss(h,E)

Learning monomials

Represent each example by its set of literals

$$\{\neg X_1, X_2, \neg X_3, X_4, \neg X_5\}$$

Compute the intersection of all positive examples

intersection = least general generalization

A cautious algorithm - Find-S algorithm [Mitchell, ML textbook 97]

Makes prudent generalizations

Complaints about Find-S

- Can't tell whether it has learned concept
- Can't tell when training data inconsistent
- Picks a maximally specific h (why?)
- Depending on H, there might be several.

Could be alleviated with Versionspace Approach

Mitchell's Versionspace

 $G = \{h \mid 1\}$ $h \in H$, 2) h is complete and consistent with all examples, and there is no g that satisfies 1) and 2) and is strictly more general than h}

 $S = \{h \mid 1\}$ $h \in H$, 2) h is complete and consistent with all examples, and there is no s that satisfies 1) and 2) and is strictly more specific than h}

Generality for monomials

 $\{s, m, c\} = s \text{ and } m \text{ and } c$ $S \models G \text{ if and only if } G \subseteq S$ just like item-sets in data mining

Generality

Two difficulties

- I) $x = y \rightarrow x \ge y$ more general many solutions can be found preference for most specific one (Find-S)
- 2) x =y and y =z → x=z
 therefore x = y and y =z and x =z redundant
 equivalent with x = y and y =z
 Consider now Sudoko ...

Many solutions syntactically different, but semantically equivalent

Variations and Extensions

Asking Queries Interactive Learning

Provide the learner with the opportunity to ask questions

Let T be the (unknown) target theory

- Does x satisfy T ? (membership)
- Does T |= X ? (subset)
- Does X |= T? (superset)
- Are T and X logically equivalent? (equivalence)
- ...

The oracle has to provide a counter-example in case the answer is negative [Angluin, MLJournal 88]

How can we use this?

Reconsider learning monomials (cf. [Mitchell], Conacq [Bessiere et al] and Quacq [Bessiere et al.])

Current hypothesis / conjunction

- $\{\neg X_1, X_2, \neg X_3, X_4, \neg X_5\}$
- generate example $\{X_1, X_2, \neg X_3, X_4, \neg X_5\}$
- if positive, delete X₁, if negative, keep
- only n+1 questions needed to converge on unique solution (mistake bound)
- a lot harder when there are redundancies (cf. generality)

Very interesting polynomial time algorithms for learning horn sentences [Angluin et al. MLJ 92] by asking queries

DNF / rule learning

Given

- a space of possible instances X
- an unknown target function $f: X \rightarrow Y$
- a hypothesis space \vdash containing functions $X \rightarrow Y$
- a set of examples $E = \{ (x, f(x)) \mid x \in X \}$ pos pos and neg
- a loss function $loss(h,E) \rightarrow \mathbb{R}$ error need not be 0

Find $h \in H$ that minimizes loss(h,E)

[Fuernkranz, AI Review 99, book 12]

Rule learning

Learning from Positives and Negatives

Learn a formula in Disjunctive Normal Form

Rule learning algorithms (machine learning)

Rule learning is often heuristic

Set-covering algorithm

- repeatedly search for one rule (conjunction) that covers many positives and no negative
- discard covered positive examples and repeat

[Fuernkranz, AI Review 99, book 12]

separate and conquer ... [Fuernkranz]

k-CNF

Given

- a space of possible instances X
- an unknown target function $f: X \rightarrow Y$
- a hypothesis space \vdash containing functions $X \rightarrow Y$ k-CNF
- a set of examples $E = \{ (x, f(x)) \mid x \in X \}$ pos only
- a loss function $loss(h, E) \rightarrow \mathbb{R}$

Find $h \in H$ that minimizes loss(h,E)

Learning k-CNF

Naive Algorithm [Valliant CACM 84]

- Let S be the set of all clauses with k literals
- for each positive example e
 - for all clauses s in S
 - if e does not satisfy s then remove s from S

polynomial (for fixed k) -- PAC-learnable

Suppose k = 3 and three variables A, B, C and target = A v B v C and not A v not B v not C Initial Theory

AvBvC

not A v B v C

A v not B v C

A v B v not C

not A v not B v C

A v not B v not C

not A v B v not C

Suppose k = 3 and three variables A, B, C and

target = $A \vee B \vee C$ and not $A \vee not B \vee not C$

Example A & B & not C

AvBvC

not A v B v C

A v not B v C

A v B v not C

not A v not B v C

A v not B v not C

not A v B v not C

Suppose k = 3 and three variables A, B, C and

target = $A \times B \times C$ and not $A \times not B \times not C$

Example

A & B & not C

AvBvC

not A v B v C

A v not B v C

A v B v not C

not A v not B v C

A v not B v not C

not A v B v not C

Suppose k = 3 and three variables A, B, C and

target = $A \vee B \vee C$ and not $A \vee not B \vee not C$

Example

A & B & C

AvBvC

not A v B v C

A v not B v C

A v B v not C

not A v not B v C

A v not B v not C

not A v B v not C

Suppose k = 3 and three variables A, B, C and

target = $A \lor B \lor C$ and not $A \lor$ not $B \lor$ not C

Example

A & B & C

AvBvC

not A v B v C

A v not B v C

A v B v not C

not A v not B v C

A v not B v not C

not A v B v not C

Formal Frameworks Exist

Probably Approximately Correct learning (PAC)

requires that learner finds with high probability approximately correct hypotheses

So,
$$P(loss_t(h,X) < \varepsilon) > 1-\delta$$

Typically combined with complexity requirements sample complexity: number of examples computational complexity

Valliant proved polynomial PAC-learnability k-CNF (fixed k)

[Valiant 84, Kearns and Vazzirani]

Inductive Logic Programming

Instead of learning propositional formulae, learn first order logic formulae

Usually (definite) clausal logic

Generalizations of many algorithms exist

Rule learning, decision tree learning

Clausal discovery [De Raedt MLJ 97, De Raedt AlJ 94]

- generalizes k-CNF of Valliant to first order case
- enumeration process as for k-CNF with border ...


```
train(utrecht, 8, 8, denbosch) ←
train(maastricht, 8, 10, weert) ←
train(utrecht, 9, 8, denbosch) ←
train(maastricht, 9, 10, weert) ←
train(utrecht, 8, 13, eindhoven) ←
train(utrecht, 8, 43, eindhoven) ←
train(utrecht, 9, 13, eindhoven) ←
train(utrecht, 9, 43, eindhoven) ←
```

```
train(tilburg, 8, 10, tilburg) ←
train(utrecht, 8, 25, denbosch) ←
train(tilburg, 9, 10, tilburg) ←
train(utrecht, 9, 25, denbosch) ←
train(tilburg, 8, 17, eindhoven) ←
train(tilburg, 8, 47, eindhoven) ←
train(tilburg, 9, 17, eindhoven) ←
train(tilburg, 9, 47, eindhoven) ←
```

From1 = From2 :- train(From1, Hour1, Min, To), train(From2, Hour2, Min, To)

Inducing constraints that hold in data points here functional dependencies

[De Raedt 97 MLJ, Flach AlComm 99, Abdennaher CP 00, Lopez et al ICTAI 10, ...]

Learning (k)-CNF

Alternative algorithm using principles

- generality for clauses $S \models G$ if and only if $S \subseteq G$
- clauses are disjunctions; monomials conjunctions
- monotonicity property :
 - if e satisfies clause C then e satisfies C v lit
 - interest in smallest clauses that satisfy all the examples
 - interest in all of them (the others are implied)
- find upper border ... (G set)

Generality for clauses

Direction of generality changes

Most general clause is bottom,

Top is unsatisfiable clause

 $\{s, m, c\} = s \text{ or } m \text{ or } c$ S \delta G if and only if $S \subseteq G$

```
Example:
   H: no constants/one variable
   one interpretation:
   { human(luc), human(lieve), male(luc), female(lieve) }
Find:
    human(X): male(X). \forall X: human(X) \Leftarrow male(X)
    human(X) :- female(X).
    female(X); male(X) :- human(X)
    false :- male(X), female(X).
so this is ako first order 3-CNF
```

Observe:

if e does not satisfy $h_1; ...; h_n := b_1, ..., b_m$

then there is an answer to

$$:-b_1, ..., b_m, not h_1, ..., not h_n$$

therefore consider refinements:

$$h; h_1; ..., h_n := b_1, ..., b_m$$
 and

$$h_1; ..., h_n := b_1, ..., b_m, b$$

in all possible ways (adding a literal)

```
Q := { false :- true }
h := \{\}
while Q is not empty do
    delete c from Q
    if c satisfies all p in P (and h does not entail c)
    then add c to h
    else add all refinements of c to Q
    pruning:
          generate clauses in H at most once;
          remove entailed clauses
```


Equation Discovery

Instead of learning clauses, learn equations [Dzeroski and Todorovski; Langley and Bridewell].

As Valiant's algorithm

- generate and test candidate equations, e.g., ax + byz = c
 - fit parameters using regression
- possibly compute values for additional variables (partial derivatives w.r.t. time, etc.)
- include a grammar to specify "legal equations" (bias)

NPPc is the net production of carbon by terrestrial plants at a site

E is the photosynthetic efficiency at a site after factoring various sources of stress

TI is a temperature stress factor (0 < TI < 1) for cold weather T2 is a temperature stress factor (0 < T2 < 1), nearly Gaussian in form but falling off more quickly at higher temperatures W is a water stress factor (0.5 < W < 1)

topt is the average temperature for the month at which fas_ndvi takes on its maximum value at a site tempc is the average temperature at a site for a given month eet is the estimated evapotranspiration (water loss due to evaporation and transpiration) at a site

PET is the potential evapotranspiration (water loss due to evaporation and transpiration given an unlimited water supply) at a site

pet_tw_m is a component of potential evapotranspiration that takes into account the latitude, time of year, and days in the month

A is a polynomial function of the annual heat index at a site ahi is an annual heat index that takes the time of year into account

fas_ndvi is the relative greenness as measured from space IPAR is the energy intercepted from the sun after factoring in the time of year and days in the month

FPAR_FAS is the fraction of energy intercepted from the sun that is absorbed photosynthetically after factoring in vegetation type

monthly_solar is the average radiation incoming for a given month at a site

SOL_CONV is 0.0864 times the nun

Ecological Modeling

```
\begin{split} NPPc &= \max(0, E \cdot IPAR) \\ E &= 0.312 \cdot T1^{1.36} \cdot T2^{0.728} \cdot W^0 \\ T1 &= 3.65 - 0.992 \cdot topt + 0.137 \cdot topt^2 - 0.00679 \cdot topt^3 + 0.000111 \cdot topt^4 \\ T2 &= 0.818/((1 + \exp(0.0521 \cdot (TDIFF - 10))) \cdot (1 + \exp(0 \cdot (-TDIFF - 10)))) \\ TDIFF &= topt - tempc \\ W &= 0.5 + 0.5 \cdot eet/PET \\ PET &= 1.6 \cdot (10 \cdot \max(tempc, 0)/ahi)^A \cdot pet\_tw\_m \\ A &= 0.000000675 \cdot ahi^3 - 0.0000771 \cdot ahi^2 + 0.01792 \cdot ahi + 0.49239 \\ IPAR &= FPAR\_FAS \cdot monthly\_solar \cdot SOL\_CONV \cdot 0.5 \\ FPAR\_FAS &= \min((SR\_FAS - 1.08)/srdiff, 0.95) \\ SR\_FAS &= (1 + fas\_ndvi/750)/(1 - fas\_ndvi/750) \\ SOL\_CONV &= 0.0864 \cdot days\_per\_month \end{split}
```

Using equation discovery to revise an Earth ecosystem model of the carbon net production

Ljupčo Todorovski ^{a,*}, Sašo Džeroski ^a, Pat Langley ^b, Christopher Potter ^c

ModelSeeker

N. Beldiceanu and H. Simonis

Motivating Example

2	-1	4	-3	6	-5	8	-7	10	-9	12	-11	14	-13	16	-15	18	
-8	15	-10	7	-18	9	-4	1	-6	3	-14	13	-12	11	-2	17	-16	5
4	-17	14	-1	12	-13	10	-15	16	-7	18	-5	6	-3	8	-9	2	-11
7	11	-8	15	-16	-18	-1	3	-12	13	-2	9	-10	17	-4	5	-14	6
-3	-13	1	-11	10	16	-15	-17	14	-5	4	-18	2	-9	7	-6	8	12
15	9	-7	13	-14	-12	3	11	-2	17	-8	6	-4	5	-1	18	-10	-16
-17	-5	-15	-18	2	14	-9	-13	7	-11	10	-16	8	-6	3	12	1	4
11	18	5	9	-3	-10	17	12	-4	6	-1	-8	-15	16	13	-14	-7	-2
-13	-6	-17	-5	4	2	-11	-9	8	-16	7	14	1	-12	-18	10	3	15
9	16	11	6	-8	-4	13	5	-1	12	-3	-10	-7	18	17	-2	-15	-14
-5	-12	-13	-16	1	7	-6	-18	15	-14	17	2	3	10	-9	4	-11	8
6	14	9	12	-7	-1	5	16	-3	18	-15	-4	-17	-2	11	-8	13	-10
-18	-10	-12	-14	15	8	-16	-6	17	2	13	3	-11	4	-5	7	-9	1
12	-7	18	10	-17	-15	2	14	-11	-4	9	-1	16	-8	6	-13	5	-3
-14	4	-16	-2	11	17	-18	-10	13	8	-5	15	-9	1	-12	3	-6	7
10	-8	6	-17	-9	-3	12	2	5	-1	16	-7	18	-15	14	-11	4	-13
-16	3	-2	8	13	11	-14	-4	-18	15	-6	17	-5	7	-10	1	-12	9
-2	1	-4	3	-6	5	-8	7	-10	9	-12	11	-14	13	-16	15	-18	17
8	-15	10	-7	18	-9	4	-1	6	-3	14	-13	12	-11	2	-17	16	-5
-4	17	-14	1	-12	13	-10	15	-16	7	-18	5	-6	3	-8	9	-2	11
-7	-11	8	-15	16	18	1	-3	12	-13	2	-9	10	-17	4	-5	14	-6
3	13	-1	11	-10	-16	15	17	-14	5	-4	18	-2	9	-7	6	-8	-12
-15	-9	7	-13	14	12	-3	-11	2	-17	8	-6	4	-5	1	-18	10	16
17	5	15	18	-2	-14	9	13	-7	11	-10	16	-8	6	-3	-12	-1	-4
-11	-18	-5	-9	3	10	-17	-12	4	-6	1	8	15	-16	-13	14	7	2
13	6	17	5	-4	-2	11	9	-8	16	-7	-14	-1	12	18	-10	-3	-15
-9	-16	-11	-6	8	4	-13	-5	1	-12	3	10	7	-18	-17	2	15	14
5	12	13	16	-1	-7	6	18	-15	14	-17	-2	-3	-10	9	-4	11	-8
-6	-14	-9	-12	7	1	-5	-16	3	-18	15	4	17	2	-11	8	-13	10
18	10	12	14	-15	-8	16	6	-17	-2	-13	-3	11	-4	5	-7	9	-1
-12	7	-18	-10	17	15	-2	-14	11	4	-9	1	-16	8	-6	13	-5	3
14	-4	16	2	-11	-17	18	10	-13	-8	5	-15	9	-1	12	-3	6	-7
-10	8	-6	17	9	3	-12	-2	-5	1	-16	7	-18	15	-14	11	-4	13
16	-3	2	-8	-13	-11	14	4	18	-15	6	-17	5	-7	10	-1	12	-9

Result

J	Scheme	Ref	Trans	Constraint
1	scheme(612,34,18,1,18)	284	absolute_value	symmetric_alldifferent([118])*34
2	vector(612)	289	id	global_cardinality([-181-17,0-0,118-17])*1
3	scheme(612,34,18,34,1)	288	id	alldifferent*18
4	repart(612,34,18,17,18)	282	id	alldifferent*306
5	scheme(612,34,18,2,2)	286	id	alldifferent*153
6	scheme(612,34,18,1,18)	284	id	alldifferent*34
	repart(612,34,18,34,9)		sign	alldifferent*306
8	scheme(612,34,18,17,1)	287	absolute_value	alldifferent*36
9	scheme(612,34,18,2,1)	285	absolute_value	alldifferent*306
10	repart(612,34,18,34,9)	283	id	sum_ctr(0)*306
	repart(612,34,18,34,9)	283		sum_cubes_ctr(0)*306
12	scheme(612,34,18,1,18)	284	id	sum_squares_ctr(2109)*34
	repart(612,34,18,34,9)	283	id	twin*1
14	repart(612,34,18,34,9)	283	id	elements([i,-i])*1
	modulo(612,4)	281		all_differ_from_at_least_k_pos(152)*1
16	first(9,[1,3,5,7,9,11,13,15,17])	280	id	strictly_increasing*1
17	repart(612,34,18,34,9)	283	id	alldifferent_interval(2)*306
18	scheme(612,34,18,2,1)	285	id	alldifferent_interval(2)*306
19	repart(612,34,18,34,9)	283	sign	sum_ctr(0)*306
20	scheme(612,34,18,1,18)	284	sign	sum_ctr(0)*34
21	repart(612,34,18,34,9)		sign	twin*1
22	repart(612,34,18,34,9)	283	absolute_value	twin*1
23	repart(612,34,18,34,9)		sign	elements($[i,-i]$)*1
24	repart(612,34,18,34,9)	283	absolute_value	elements($[i,i]$)*1
25	first(9,[1,3,5,7,9,11,13,15,17])	280	absolute_value	strictly_increasing*1
26	first(6,[1,4,7,10,13,16])	279	absolute_value	strictly_increasing*1
27	repart(612,34,18,34,9)	283	sign	alldifferent_interval(2)*306
28	scheme(612,34,18,34,1)	288	sign	among_seq(3,[-1])*18

Slides N. Beldiceanu and H. Simonis

Key Points

Learning constraint models from positive examples

Start with **vector** of values

Group into regular pattern

Find constraint pattern that apply to group elements

Using **Constraint Seeker** for Global Constraint Catalog

Works for highly structured problems

Slides N. Beldiceanu and H. Simonis

Structured groups of variables passed to

a conjunction of identical constraints

16^{1}	3^2	2^3	13^{4}
5^{5}	10^{6}	11^{7}	88
9^{9}	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

16^{1}	3^{2}	2^3	13^{4}
5^{5}	10^{6}	11^{7}	88
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16^{1}	3^2	2^3	13^{4}
5^{5}	10^{6}	11^{7}	88
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

Structured groups of variables passed to

a conjunction of identical constraints

16^{1}	3^2	2^3	13^{4}		
5^{5}	10^{6}	11^{7}	88		
9^{9}	6^{10}	7^{11}	12^{12}		
4^{13}	15^{14}	14^{15}	1^{16}		
sum ctr(34)*4					

16^{1}	3^2	2^3	13^{4}		
5^{5}	10^{6}	11^{7}	88		
$-$ 9 9	6^{10}	7^{11}	12^{12}		
4^{13}	15^{14}	14^{15}	1^{16}		
sum_ctr(34)*4					

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

10	3^2	2^{3}	13^{4}
5^5	10^{6}	11^{7}	88
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

strictly_decreasing*2

 $sum_ctr(34)*2$

Slides N. Beldiceanu and H. Simonis

Structured groups of variables passed to

a conjunction of identical constraints

16^{1}	3^2	2^3	13^{4}
5^5	10^{6}	11^{7}	88
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

16^{1}	3^2	2^3	13^{4}
5^5	10^{6}	11^{7}	88
\overline{a}_{9}	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16^{1}	3^2	2^3	13^{4}
5^{5}	10^{6}	11^{7}	88
9^9	6^{10}		12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

Structured groups of variables passed to

a conjunction of identical constraints

16^{1}	3^2	2^3	13^{4}
5^5	10^{6}	11^{7}	88
9^9	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sum_ctr(34)*4
Surprise

16^{1}	3^2	2^3	13^{4}
5^5	10^{6}	11^{7}	88
$^{-6}$	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sum_squares_ctr(358)*2

surprise

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16^{1}	3^2	2^3	13^{4}
5^5	10^{6}	11^{7}	88
9^9	6^{10}		12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sum_squares_ctr(390)*2

surprise

Slides N. Beldiceanu and H. Simonis

Structured groups of variables passed to

a conjunction of identical constraints

16^{1}	3^2	2^3	13^{4}
5^{5}	10^{6}	11^{7}	88
9^9	6^{10}		12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

16^{1}	3^2	2^3	13^{4}
5^{5}	10^{6}	11^{7}	88
9^{9}	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16^{1}	3^2	2^3	13^{4}
5^{5}	10^{6}	11^{7}	88
9_{9}	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}

Structured groups of variables passed to

a conjunction of identical constraints

16^{1}	3^2	2^3	13^{4}
5^5	10^{6}	11^{7}	88
6	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}
-1	10	1-1	1

sum_ctr(34)*4

surprise

16^{1}	3^2	2^3	13^{4}			
5^{5}	10^{6}	11^{7}	88			
9^9	6^{10}	7^{11}	12^{12}			
4^{13}	15^{14}	14^{15}	1^{16}			
sum_	sum_squares_ctr(748)*2					

surprise

sample

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16^{1}	3^2	2^3	13^{4}
5^{5}	10^{6}	11^{7}	88
6	6^{10}	7^{11}	12^{12}
4^{13}	15^{14}	14^{15}	1^{16}
11 1:00			4.400.00

alldifferent_interval(2)*8

Slides N. Beldiceanu and H. Simonis

Analysis

Clever enumeration of partitions (generate and test)

Per partition:

• clever generation of conjunction of constraints that holds

Multiple examples

remove constraints that do not hold

Nicely deals with generality / redundancy

- relations amongst global constraints builtin catalogue
- permutation -> alldifferent

Tacle - Learning Constraints in Tabular Data

```
SERIES(T_1[:,1])
T_1[:,1] = RANK(T_1[:,5])^*
T_1[:,1] = RANK(T_1[:,6])^*
T_1[:,1] = RANK(T_1[:,10])^*
T_1[:, 8] = RANK(T_1[:, 7])
T_1[:, 8] = RANK(T_1[:, 3])^*
T_1[:, 8] = RANK(T_1[:, 4])^*
T_1[:,7] = SUM_{row}(T_1[:,3:6])
T_1[:, 10] = SUMIF(T_3[:, 1], T_1[:, 2], T_3[:, 2])
T_1[:, 11] = MAXIF(T_3[:, 1], T_1[:, 2], T_3[:, 2])
T_2[1,:] = SUM_{col}(T_1[:,3:7])
T_2[2,:] = AVERAGE_{col}(T_1[:,3:7])
T_2[3,:] = MAX_{col}(T_1[:,3:7]),
T_2[4,:] = MIN_{col}(T_1[:,3:7])
T_4[:,2] = SUM_{col}(T_1[:,3:6])
T_4[:,4] = PREV(T_4[:,4]) + T_4[:,2] - T_4[:,3]
T_5[:,2] = LOOKUP(T_5[:,3],T_1[:,2],T_1[:,1])^*
T_5[:,3] = LOOKUP(T_5[:,2],T_1[:,1],T_1[:,2])
```


[Kolb et al. MLJ 17]

also type information also CP solver to find constraints

Take Away

Essential components of a learner

- Traversing / enumerating the hypothesis space H
 - use of an operator (refinement operator)
 - naively (generate and test)
 - avoid generating the same constraint twice
 - consider generating partitions
 - pruning the space by generality
 - can be hard (cf. transitivity of =)

D. Angluin, M. Frazier, and L. Pitt. **Learning conjunctions of Horn clauses.**9:147–162, 1992.

🚺 D. Angluin.

Queries and concept-learning.

2:319-342, 1987.

Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Nina Narodytska, Claude-Guy Quimper, Toby Walsh, et al.

Constraint acquisition via partial queries.

In *IJCAI*, volume 13, pages 475–481, 2013.

Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O'Sullivan.

Acquiring constraint networks using a sat-based version space algorithm.

In *PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE*, volume 21, page 1565. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

Nicolas Beldiceanu and Helmut Simonis.

A model seeker: Extracting global constraint models from positive examples.

In *Principles and practice of constraint programming*, pages 141–157. Springer, 2012.

L. De Raedt and S. Džeroski.

First-Order jk-Clausal Theories are PAC-Learnable.

Artificial Intelligence, 70(1-2):375-392, 1994.

L. De Raedt and L. Dehaspe.

Machine Learning, 26(2-3):99-146, 1997.

Luc De Raedt.

Logical and Relational Learning.

Springer, 2008.

🔋 Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrač.

Foundations of rule learning.

Springer Science & Business Media, 2012.

Johannes Fürnkranz and Eyke Hüllermeier.

Preference learning: An introduction.

In *Preference learning*, pages 1–17. Springer, 2010.

Johannes Fürnkranz.

Separate-and-conquer rule learning.

Artificial Intelligence Review, 13(1):3-54, 1999.

Samuel Kolb, Sergey Paramonov, Tias Guns, and Luc De Raedt.

Learning constraints in spreadsheets and tabular data.

Machine Learning, 106(9-10):1441-1468, 2017.

M. Kearns and U. Vazirani.

An Introduction to Computational Learning Theory. 1994.

T. M. Mitchell.

Machine Learning.

McGraw-Hill, 1997.

Kim Marriott and Peter J Stuckey.

Programming with constraints: an introduction.

MIT press, 1998.

Ljupčo Todorovski, Sašo Džeroski, Pat Langley, and Christopher Potter.

Using equation discovery to revise an earth ecosystem model of the carbon net production.

Ecological Modelling, 170(2):141–154, 2003.

L. Valiant.

A theory of the learnable.

Communications of the ACM, 27:1134–1142, 1984.

Thank you