Trudne Tematy w Najprostszy Sposób

Damian Kurpiewski, Krzysztof Skowronek

O projekcie

Autorzy: Damian Kurpiewski, Krzysztof Skowronek

Założenia: wybrać tematy z dziedziny informatyki sprawiające największe trudności uczniom i przedstawić je w jak najprostszy sposób

Przygotowane tematy: wstęp do algorytmiki, zmienne, funkcje, globalność i lokalność, rekurencja

Przeznaczenie: szkoła, od II do III (dawniej IV) etapu edukacyjnego

Ewaluacja: na lekcjach, konsultacje podczas warsztatów

Motywacja

Nowa podstawa programowa: algorytmika, myślenie komputacyjne i programowanie już od najmłodszych lat

Tematy są **trudne** - zarówno dla uczniów, jak i nauczycieli

Brak dobrych i kompletnych materiałów dla nauczycieli

Każdy może z nich skorzystać - nawet bez doświadczenia informatycznego

Założenia lekcji

Uczmy **myślenia i rozwiązywania problemów**, nie konkretnego narzędzia

Wykorzystanie Blockly - narzędzia do programowania wizualnego, w celu obniżenia progu wejściowego

Informatyka to **nie tylko komputer** - bez niego też można jej uczyć

Uczniowie najpierw muszą zrozumieć temat, zanim usiądą do komputerów

Celem nauczyciela jest skutecznie **przekazywać** wiedzę, nie ją prezentować

Struktura tematu

Wprowadzenie teoretyczne do tematu

Ćwiczenie bez komputera

Wprowadzenie (niezbędne informacje) na temat używanego narzędzia

Ćwiczenie praktyczne z komputerem

Lekcja ewaluacyjna - sprawdzenie informacji

Przygotowane materiały

Konspekty lekcji

Prezentacje - zarówno na pożytek lekcji, jak i dla nauczyciela

Materiały dodatkowe do druku, np. do ćwiczeń

Wskazówki i sugestie od autorów

Cel

Przygotować wszystko co się da dla nauczyciela i przedstawić to w jak najbardziej łopatologiczny sposób

Przygotowane tak, by początkujący nauczyciel mógł je wykorzystać, a zaawansowany dostosować

Uzasadnienie formy

Computer Science Unplugged - projekt Grupy Badawczej Edukacji Informatycznej, Uniwersytet Canterbury w Nowej Zelandii

Komputery są skutecznymi maszynami rozpraszającymi

Gdy uczeń już dostanie zadanie to zabiera się za jego rozwiązanie - często przestaje wtedy słuchać nauczyciela

Lekcje bez komputera można przeprowadzić nawet w gorzej wyposażonych placówkach

Skupienie się na rozwiązywaniu problemów i myśleniu komputacyjnym sprawia, że wiedza zdobyta przez uczniów jest bardziej uniwersalna

Opracowywane materiały są niezależne od szkoły, czy środowiska

Przygotowane są tak, by trafić do uczniów zarówno mniej jak i bardziej zaawansowanych

Nie wymagają żadnych szczególnych sprzętów i oprogramowania - wystarczy rzutnik i komputery z dostępem do Internetu

Nie wymagają od uczniów znajomości żadnego konkretnego języka programowania - ćwiczenia implementacyjne przygotowane są w oparciu o Blockly

Ze względu na swoją formę i intuicyjność, Blockly nie wymaga poświęcenia dodatkowego czasu na naukę wystarczy 5 min na wprowadzenie do środowiska

Uniwersalność

Kolejność tematów

Wprowadzenie do algorytmów

Wprowadzenie do zmiennych

Wprowadzenie do funkcji

Globalność i lokalność zmiennych

Wprowadzenie do rekurencji

Wprowadzenie do algorytmów

Algorytmy

Temat podstawowy - bez niego nie można ruszyć dalej

Każdy program realizuje jakiś algorytm - liniowy, warunkowy, iteracyjny...

Ich błędne (lub niepełne) zrozumienie będzie powodować **znaczące problemy** w dalszej nauce

Same w sobie nie sprawiają dużych problemów, jednak ich prawidłowe wykorzystanie w praktyce już tak

Algorytmy: trudności

Algorytmy zaczynają sprawiać większe trudności, gdy zaczynamy łączyć ze sobą różne instrukcje

Prawidłowa konstrukcja warunków (w instrukcji warunkowej, pętli) nie jest często trywialna

Należy pamiętać konkretne słowa kluczowe i zapisy

Prześledzenie przebiegu złożonego algorytmu jest czasochłonne i problematyczne w reprezentacji

Algorytmy: budowa tematu

Krótkie, teoretyczne wprowadzenie do tematu. Dyskusja na temat różnych algorytmów z życia wziętych

Ćwiczenia praktyczne z wykorzystaniem środowiska Blockly i gry Labirynt

Konstrukcja i implementacja złożonego algorytmu rozwiązującego problem znalezienia wyjścia z labiryntu

Lekcja ewaluacyjna Implementacja własnego algorytmu wyjścia z labiryntu przy specjalnych założeniach

Wprowadzenie do zmiennych

Zmienne

Temat niezbędny do dalszej nauki programowania

Każdy (choć trochę zaawansowany) program wymaga wykorzystania zmiennych

Ich błędne (lub niepełne) zrozumienie może powodować znaczące problemy w dalszej nauce

Z pozoru proste, mogą uczniom przysparzać wiele problemów

Zmienne: trudności

Zmienna w matematyce, a zmienna w programowaniu to dwa różne twory

Prześledzenie, jak zmienia się wartość zmiennej bywa trudne

Należy pamiętać, że wartość zmiennej jest intepretowana w danym momencie działania programu

Typy danych są zazwyczaj pobieżnie przedstawiane i wymykają się intuicji

Zmienne - przykładowe błędy

Odwrócony zapis:

$$a + 1 = a$$

❖Brak przypisania wartości:

$$a+1$$

Problem ze zrozumieniem działania licznika pętli

Zmienne: propozycja

Aby lepiej zrozumieć działanie zmiennych, należy lepiej zrozumieć działanie komputera

Pokażmy uczniom jak komputer/program operuje na zmiennych - na bardzo uproszczonym modelu

Prezentujemy istotę mechanizmu, a nie sytuację w komputerze, komputer nie działa na systemie dziesiętnym

Przeanalizujmy działania programów **krok po kroku** - pokazując, jak zmienia się zawartość pamięci programu

Zmienne: budowa tematu

Krótkie, teoretyczne wprowadzenie do tematu. Ćwiczenia praktyczne, bez komputera, o uproszczonej konstrukcji: jedno pudełko = jedna zmienna

Dalszy ciąg ćwiczeń bez komputera. Wykorzystanie uproszczonego modelu pamięci komputera do zasymulowania działania wybranych programów

Ćwiczenia praktyczne z wykorzystaniem środowiska programowania wizualnego Blockly

Lekcja ewaluacyjna Dwa ćwiczenia: zrozumienie kodu i własna implementacja

Podsumowanie

Podsumowanie

Projekt powstał jako odpowiedź na problem dostępności materiałów oraz uczenia szczególnie trudnych tematów z dziedziny informatyki

Wstępne doświadczenia (szkolenia i spotkania z nauczycielami) wskazują, że problem rzeczywiście istnieje, a nasza propozycja jest pozytywnie odbierana

Pierwsze doświadczenia praktyczne z uczniami pokazują, że pomysł ma potencjał, a podejście jest skuteczne

Przygotowywane materiały, a w szczególności niektóre z proponowanych ćwiczeń, mają charakter uniwersalny i mogą zostać zastosowane zarówno na różnych poziomach edukacyjnych, jak i także na innych przedmiotach

https://blackbat13.gitbook.io/informatykatrudne-tematy-w-najprostszy-sposob