Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir

Quantum coherent phenomena course seminar - Milan, October 2020

Outline

- Introduction
 - Hadron collisions and strong interactions
 - Renormalization group
 - Jets and IR divergences
- System and Hamiltonian
 - Factorization theorem
 - Kinematics of splitting
 - Recursive factorization
- Reservoir engineering strategies
- **Implementation**
- Full system
- Experimental observability
- Two cavity modes, one mechanical oscillator

Introduction

Entangled states

- Generation and detection of entangled states of macroscopic M.O.
- Reservoir engineering
- Generating highly pure, entangled 2 mode squeezed states via coupling to a cavity mode

Introduction

System representation

QCD from e^+e^- annihilation

Questions for a field theory

- $\textbf{ Can we go to arbitrarily large energies?} \rightarrow \text{divergences arise,} \\ \text{renormalization / factorization needed}$
- ② Can we compute R_0 for every process? \rightarrow IR observables

Renormalization group

- UV divergences are encountered in field theories
- Take a physical quantity G depending on a scale M, a coupling α and some invariants $s_1, ..., s_n$
- Define a "renormalized" coupling $\alpha_{\rm Ren} = \alpha + c_1 \alpha^2 + c_2 \alpha^3 + \dots$

The physical quantity in terms of $\{\alpha, M\}$ and $\{\alpha_{\rm Ren}, \mu\}$

$$G(\alpha, M, s_1 \dots s_n) = \tilde{G}(\alpha_{ren}, \mu, s_1 \dots s_n).$$

Physics must be invariant under change of $\{\alpha_{\rm Ren}, \mu\}$

$$\frac{\partial \alpha(\alpha_{\rm ren}, M/\mu)}{\partial \alpha_{\rm ren}} d\alpha_{\rm ren} + \frac{\partial \alpha(\alpha_{\rm ren}, M/\mu)}{\partial \mu^2} d\mu^2 = 0$$

Renormalization group

• Running coupling given by Renormalization Group Equation (RGE)

$$\mu \frac{d\alpha_s(\mu)}{d\mu} = \beta(\alpha_s(\mu)) = -\sum_{n=0}^{\infty} \beta_n \left(\frac{\alpha_s}{\pi}\right)^{n+1}$$

- Coupling $lpha_s$ evolves with scale μ as given by RGE ightarrow LO behavior driven by eta_0
- $eta_0^{\rm QCD}>0$ \Longrightarrow weakly coupled at large energies, asymptotic freedom
- $\beta_0^{\rm QED} < 0 \implies$ strongly coupled at large energies, UV divergent!

Jets in e^+e^-

Consider α_s corrections to born level amplitude

$$\mathcal{M}_{\mathrm{Born}} = \bar{u}(k)\epsilon^{\mu}\gamma_{\mu}v(k')$$

$$\mathcal{M}_{1} = \mathcal{M}\frac{k_{\alpha}}{k \cdot l} \longrightarrow \text{Real radiation}$$

$$\mathcal{M}_{1} = -\mathcal{M}\frac{k'_{\alpha}}{k' \cdot l} \longrightarrow \text{Virtual contribution}$$

Jets in e^+e^-

Consider α_s corrections to born level amplitude

Sum real and virtual contributions to the Born matrix element, square and integrate with phase space element $d^3I=(I^0)^2dI^0d\cos\theta d\phi$

$$\sigma_{q\overline{q}g} = C_F \frac{\alpha_S}{2\pi} \sigma_{q\overline{q}}^{\text{Born}} \int d\cos\theta \frac{dl^0}{l^0} \frac{4}{(1-\cos\theta)(1+\cos\theta)}$$

Jets in e^+e^-

$$\sigma_{q\overline{q}g} = C_F \frac{\alpha_S}{2\pi} \sigma_{q\overline{q}}^{\text{Born}} \int d\cos\theta \frac{dl^0}{l^0} \frac{4}{(1-\cos\theta)(1+\cos\theta)}$$

- ullet Soft ($I^0
 ightarrow 0$) and collinear ($heta
 ightarrow 0, \pi$) divergences
- No renormalization procedure to apply → divergences coming from long distance effects (fermion masses, hadronization, etc)
- Kinoshita-Lee-Nauemberg theorem (*)

Understand Born cross section as the LO term in a well defined perturbative expansion

Sterman-Weinberg jets

Sterman - Weinberg jets. "In a hadronic event with CM energy E, 2 cones can be found with opening δ containing $(1-\epsilon)$ fraction of E."

Jesús Urtasun Elizari

Sterman-Weinberg jets

Sterman - Weinberg jets. "In a hadronic event with CM energy E, 2 cones can be found with opening δ containing $(1-\epsilon)$ fraction of E."

Born + Virtual + Real (a) + Real (b) =
$$\sigma_0 - \sigma_0 \frac{4\alpha_s C_F}{2\pi} \int_{\epsilon E}^{E} \frac{dl^0}{l^0} \int_{\theta=\delta}^{\pi-\delta} \frac{d\cos\theta}{1-\cos^2\theta}$$

= $\sigma_0 \left(1 - \frac{4\alpha_s C_F}{2\pi} \log\epsilon \log\delta^2\right)$

When all contributions summed, the cross section is no longer singular (*) Computed in terms of partons, but representing hadronic final state

Jets as IR finite final state (*)

Collinear factorization

Collinear factorization

QCD from e^+e^- annihilation

- When computing partonic cross section, collinear partons can be emitted from incoming/outgoing parton
- ullet σ dominated by collinear decay of parton with small virtuality

Factorization theorem \longrightarrow Factor out tree level amplitude and splitting

$$|M_{n+1}|^2 d\Phi_{n+1} \Rightarrow |M_n|^2 d\Phi_n \quad \frac{\alpha_S}{2\pi} \; \frac{dt}{t} \; P_{q,qg}(z) \; dz \; \frac{d\phi}{2\pi}. \label{eq:mass_eq}$$

Collinear factorization

QCD from e^+e^- annihilation

- Kinematics of splitting (t, z, ϕ)
 - t has dimensions of energy (virtuality, p_{\perp} , angular variable)
 - z represents the fraction of momentum of radiated parton
 - ϕ represents azimuth of the k, l plane
- Factorization holds for small angles. Applied recursively

16 / 22

Formal representation of a shower

Approximated description of a hadronic final state. Model a given hard scattering with arbitrary number of enhanced radiations

$$S_i(t, E) = \frac{t, E}{i}$$

- Enseble of all possible showers from a parton i at scale t
- ullet Sudakov form factor $\Delta_i(t,t_0)$ such that $\Delta_i(t_0,t_0)=1$
- Shower $S_i(t,E)$ such that $S_i^{\mathrm{inc}} = \sum_{\mathcal{F}} S_i(t,E) = 1$

Formal representation of a shower

Ensemble of all possible radiations as the sum of no radiation, with radiation and shower from radiated partons

Ansatz for Sudakov

$$\Delta_i(t,t') = \exp\left\{-\int_{t'}^t rac{dt''}{t''} \int dz \sum_{il} P_{i,jl}(z) rac{lpha_s(t')}{2\pi}
ight\}$$

18 / 22

• Therefore $\partial \Delta(t,t')/\partial t \propto \Delta(t,t')$ \longrightarrow apply shower recursively

Jesús Urtasun Elizari QCD and Monte Carlo Milan, October 2020

Shower algorithm

Generate hard process with probability proportional to its parton level cross section. For each final state colored parton:

- lacktriangle Set scale t to Q, hard scale of the process
- ② Generate random number 0 < r < 1
- 3 Solve $r = \Delta_i(t, t')$ for t'
- ullet i) if $t' < t_0$, no further branching and stop shower
- **3** ii) if $t' \geq t_0$, one branching into partons j, l with energies $E_j = zE_i$ and $E_l = (1-z)E_i$, z following the $P_{i,jl}(z)$ distribution and ϕ uniform in the interval $[0,2\pi]$
- **o** For each branched partons set t = t' and start from (2)

Initial state radiation

ISR already important in QED \longrightarrow Used to determine the Z peak at LEP

- ullet QCD coupling much larger \longrightarrow QCD ISR even more important
- Specially large for small momentum transfer
- Same as final state partons always manifest as jets, initial state ones always lead to ISR

Initial state radiation

$$\mathcal{S}_{i}(m,x,t,E) = \frac{t_{o}E}{i}$$
 m, t, xE

- Lines between t_1 and t_2 (consecutive radiations) are spacelike (*)
- Difference in Sudakov factors and Splitting functions start at NLO

Ordering variables

HERWIG

- Ordering variable $t = E^2 \theta^2 / 2$
- Order of transverse momentum as "angular ordering"
- IR cut-off needed

PYTHIA

- There is not angular ordering
- More natural kinematics
- ullet Unphysical increase of number of partons \longrightarrow solve by imposing veto to branchings that violate angular ordering