Problem 1.

Solution 1.

\overline{n}	$f^{(n)}(x)$	$f^{(n)}(x_0 = \pi/6)$
0	$\frac{1}{\sin(x)+2}$ $\cos(x)$	$\frac{2}{5}$
1		$-\frac{2\sqrt{3}}{25}$
2	$\frac{-\frac{(\sin(x)+2)^2}{(\sin(x)^2+2\sin(x)+1)}}{(\sin(x)+2)^3}$	$\frac{22}{125}$

$$P_0(x) = f^{(0)}(x_0)(x - x_0)^0 = \frac{2}{5}$$

$$P_1(x) = f^{(0)}(x_0)(x - x_0)^0 + f^{(1)}(x_0)(x - x_0)^1 = \frac{2}{5} - \frac{2\sqrt{3}}{25} \left(x - \frac{\pi}{6}\right)$$

$$P_2(x) = f^{(0)}(x_0)(x - x_0)^0 + f^{(1)}(x_0)(x - x_0)^1 + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 = \frac{2}{5} - \frac{2\sqrt{3}}{25} \left(x - \frac{\pi}{6}\right) + \frac{11}{125} \left(x - \frac{\pi}{6}\right)^2.$$

Problem 2.

Solution 2.

$$\begin{array}{c|cccc} n & f^{(n)}(x) & f^{(n)}(x_0 = 0) \\ \hline 0 & \exp(1 + x/2) & \mathrm{e} \\ 1 & 2^{-1} \exp(1 + x/2) & 2^{-1} \mathrm{e} \\ 2 & 2^{-2} \exp(1 + x/2) & 2^{-2} \mathrm{e} \\ 3 & 2^{-3} \exp(1 + x/2) & 2^{-3} \mathrm{e} \\ 4 & 2^{-4} \exp(1 + x/2) & // \end{array}$$

$$P_3(x) = \sum_{k=0}^{3} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = e + \frac{e}{2}x + \frac{e}{2^2 \times 2!}x^2 + \frac{e}{2^3 \times 3!}x^3 = e + \frac{e}{2}x + \frac{e}{8}x^2 + \frac{e}{48}x^3.$$

Actual error at x = 1: $|f(1) - P_3(1)| = |e^{3/2} - (e + \frac{e}{2} + \frac{e}{8} + \frac{e}{48})| \approx 0.00785$.

Error bounds:

$$|R_3(x)| \leq \frac{\max_{\zeta \in [0,1]} 2^{-4} \exp(1+\zeta/2)}{4!} |1-x_0|^4 \stackrel{\zeta=1}{=} \frac{e^{3/2}}{384} \times 1^4 = \frac{e^{3/2}}{384} \approx 0.011671 \text{ for all } x \in \overline{x_0, 1} = [0,1];$$

$$|R_3(x)| \leq \frac{\max_{\zeta \in [-2,0]} 2^{-4} \exp(1+\zeta/2)}{4!} |-2-x_0|^4 \stackrel{\zeta=0}{=} \frac{e}{384} \times 2^4 = \frac{e}{24} \approx 0.113262 \text{ for all } x \in \overline{x_0, -2} = [-2,0].$$

Therefore, $|R_3(x)| \le 0.113262$ for all $x \in [-2, 1]$.

OR [not commended]

$$|R_3(x)| \leq \frac{\max_{\zeta \in [-2,1]} 2^{-4} \exp(1+\zeta/2)}{4!} \max\{|1-x_0|, |-2-x_0|\}^4 \stackrel{\zeta=1}{=} \frac{\mathrm{e}^{3/2}}{384} \times 2^4 = \frac{\mathrm{e}^{3/2}}{24} \approx 0.186737 \text{ for all } x \in [-2,1].$$

Problem 3.

Solution.

\overline{n}	$f^{(n)}(x)$	$f^{(n)}(x_0=1)$	$\max_{\zeta \in [0,1]} f^{(n)}(\zeta) $	$\max_{\zeta \in [1,2]} f^{(n)}(\zeta) $
0	$\ln(4-x)$	ln(3)	ln(4)	$\ln(3)$
1	$-(4-x)^{-1}$	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{2}$
2	$-(4-x)^{-2}$	$-\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{4}$
3	$-2(4-x)^{-3}$	$-\frac{2}{27}$	$\frac{2}{27}$	$\frac{f}{4}$
4	$-6(4-x)^{-4}$	$-\frac{2}{27}$	$\frac{2}{27}$	$\frac{3}{8}$
5	$-24(4-x)^{-5}$	$-\frac{28}{81}$	8 /81	$\frac{3}{4}$
6	$-120(4-x)^{-6}$	//	$\frac{40}{243}$	$\frac{15}{8}$

For $x \in [0,1]$, observe that

$$|R_3(x)| \le \frac{\max_{\zeta \in [0,1]} |f^{(4)}(\zeta)|}{4!} |0-1|^4 = \frac{2}{27 \times 4!} \approx 0.0031;$$

whereas

$$|R_2(x)| \le \frac{\max_{\zeta \in [0,1]} |f^{(3)}(\zeta)|}{3!} |0-1|^3 = \frac{2}{27 \times 3!} \approx 0.0123.$$

Hence the minimum order for $x \in [0,1]$ (according to the bounds above) is n=3.

For $x \in [1, 2]$, observe that

$$|R_5(x)| \le \frac{\max_{\zeta \in [1,2]} |f^{(6)}(\zeta)|}{6!} |2-1|^6 = \frac{15}{8 \times 6!} \approx 0.0026;$$

whereas

$$|R_4(x)| \le \frac{\max_{\zeta \in [1,2]} |f^{(5)}(\zeta)|}{5!} |2-1|^5 = \frac{3}{4 \times 5!} \approx 0.0063.$$

Hence the minimum order for $x \in [1,2]$ (according to the bounds above) is n=5.

The minimum required order for $x \in [0,2]$ is therefore n=5, and the Taylor polynomial is

$$P_5(x) = \ln(3) - \frac{1}{3}(x-1) - \frac{1}{9 \times 2!}(x-1)^2 - \frac{2}{27 \times 3!}(x-1)^3 - \frac{2}{27 \times 4!}(x-1)^4 - \frac{8}{81 \times 5!}(x-5)^5.$$

The actual error is $|f(0) - P_5(0)| \approx 0.000178$ at x = 0, $|f(1) - P_5(1)| = 0$ at x = 1, and $|f(2) - P_5(2)| \approx 0.000321$ at x = 2.

Problem 4.

Solution. Precompute the coefficients. Let

$$a_0 = \ln(3) = 1.0986123$$
, $a_1 = -\frac{1}{3} = -0.3333333$, $a_2 = -\frac{1}{9 \times 2!} = -0.0555555$,

$$a_3 = -\frac{2}{27 \times 3!} = -0.0123457, a_4 = -\frac{2}{27 \times 4!} = -0.0030864, a_5 = -\frac{8}{81 \times 5!} = -0.0008230.$$

Let $\hat{x} = x - x_0 (= x - 1)$. Then using Horner's method, we have

$$P_5(x) = (((((a_5\hat{x} + a_4)\hat{x}) + a_3)\hat{x} + a_2)\hat{x} + a_1)\hat{x} + a_0,$$

which requires 5 multiplications and 1+5=6 additions/subtractions.

Problem 5.

Solution. $f(x) = \mathcal{O}(x^3)$.

Let $\delta = 1$. For $0 < x < \delta = 1$, we have $x^4 < x^3$ and $x^6 < x^3$. Therefore,

$$|f(x)| = |5x^4 + \pi x^6 - 2x^3| \le |5x^4| + |\pi x^6| + |2x^3| \le \underbrace{(5 + \pi + 2)}_C x^3 \quad \text{ for all } x \in (0, \delta).$$

Observe that $|f(x)| = |5x^4 + \pi x^6 - 2x^3| = |5x + \pi x^3 - 2|x^3$ and $5x + \pi x^3 - 2$ is monotonically decreasing as $x \downarrow 0$. Therefore, $|5x + \pi x^3 - 2| < \max\{|5 \cdot 1 + \pi \cdot 1^3 - 2|, |5 \cdot 0 + \pi \cdot 0^3 - 2|\} = |5 + \pi - 2| = 3 + \pi$ for all $x \in (0, 1)$. Then letting $\delta = 1$, we have

$$|f(x)| = |5x + \pi x^3 - 2|x^3 \le \underbrace{(3+\pi)}_{C} x^3$$
 for all $x \in (0, \delta)$.

 $[C=3+\pi \text{ is the best (smallest) } C \text{ for } \delta=1.]$