Capstone Project: Car Accident Severity

1. Introduction/ Business Problem.

1.1. Background:

The global epidemic of road crash fatalities and disabilities is gradually being recognized as a major public health concern. The first step to being informed about global road safety and to developing effective road safety interventions is to have access to facts.

1.1.1. Annual Global Road Crash Statistics

- Approximately 1.35 million people die in road crashes each year, on average 3,700 people lose their lives every day on the roads.
- An additional 20-50 million suffer non-fatal injuries, often resulting in long-term disabilities.
- More than half of all road traffic deaths occur among vulnerable road users pedestrians, cyclists, and motorcyclists.
- Road traffic injuries are the leading cause of death among young people aged 5-29. Young adults aged 15-44 account for more than half of all road deaths. More than 90% of all road fatalities occur in low- and middle-income countries, even though these countries have approximately 60% of the world's vehicles.
- On average, road crashes cost countries 3% of their gross domestic product.
- Road crashes are the single greatest annual cause of death of healthy U.S. citizens traveling abroad.

1.1.2. Annual United States Road Crash Statistics

- More than 38,000 people die every year in crashes on U.S. roadways. The U.S. traffic fatality rate is 12.4 deaths per 100,000 inhabitants.
- An additional 4.4 million are injured seriously enough to require medical attention.
- Road crashes are the leading cause of death in the U.S. for people aged 1-54.
- The economic and societal impact of road crashes costs U.S. citizens \$871 billion.
- Road crashes cost the U.S. more than \$380 million in direct medical costs.
- The U.S. suffers the most road crash deaths of any high-income country, about 50% higher than similar countries in Western Europe, Canada, Australia and Japan.
- Pedestrian and bicyclist fatalities continue to rise in the United States. According to the National Highway Traffic Safety Administration (NHTSA), more pedestrians and cyclists were killed in 2018 than in any year since 1990.

1.2. Target Audience:

1.2.1. The Seattle administration:

• By targeting areas prone to areas to speeding accidents, interventions such as speed bumps, stop signs etc. can be put in place to reduce accidents.

1.2.2. Car Insurance Companies:

 Areas where parked cars are prone to being damaged. Owners in those localities may be asked to pay more premium on their car insurance.

1.2.3. Health-care workers and emergency services in Seattle:

• Having enough data on the crash can predict the severity and therefore take action more quickly potentially saving lives.

1.3. Practical Uses of the Model:

- Speed reduction measures in areas prone to accidents due to speeding
- More accurate calculation of risk premiums by Car Insurance companies
- Proactive actions taken by Health-care by predicting severity of the accident.

1.4. Future Use Case:

 Al in self-driving cars can use such models to assess risk of accidents and change routes or ask the driver to be vigilant during autopilot.

1.5. Data Section.

• The description of the data is discussed and how it will be used to solve the problem raised.

1.5.1. Description of data

The Accident data (provided by seattle.gov: <u>Link</u>) is used to predict the Severity of an accident given certain features (<u>Metadata</u>). The data is for Accidents occurring in the city of Seattle from 2004 to 2020.

Label = y = SEVERITYCODE

Total Number of features: 37

Features selected (X):

Feature	Description	Reason for Selecting
ADDRTYPE	Collision at Alley, Block, Intersection	Gives the likelihood of
		collision at these places
PERSONCOUNT	Number of people involved in the	Gives an indication of
	collision	severity
PEDCOUNT	Number of pedestrians involved in the	Gives an indication of
	accident	severity
PEDCYLCOUNT	Number of cyclists involved in the	Gives an indication of
	accident	severity
VEHCOUNT	Number of vehicles involved in the	Gives an indication of
	accident	severity
INCDTTM	The date and time of the incident	Time of accident: midnight/
		day time
INATTENTIONIND	Whether the person was not paying	Not paying attention can
	attention	result in accident
UNDERINFL	Whether the person was driving under	DUI can cause accidents
	influence	
WEATHER	Weather conditions	Bad weather can cause
		accidents
ROADCOND	Road conditions	Wet roads can cause
		skidding
LIGHTCOND	Light conditions	Light conditions affect
		visibility
PEDROWNOTGRNT	Pedestrian right of way was granted	
	or not	

SPEEDING	Whether speeding or not	Speeding causes accidents
COLLISIONTYPE	Collision Type	Type of collision gives
		severity of accident
HITPARKEDCAR	Whether or not the collision involved	Hitting a parked car causes
	hitting a parked car.	property damage

Features dropped:

Feature	Description	Reason for Dropping	
X	Latitude	Can't be modelled in	
		classification	
Υ	Longitude	Can't be modelled in	
		classification	
OBJECTID	ESRI unique identifier	ID not relevant	
INCKEY	Secondary key for the incident	ID not relevant	
COLDETKEY	Identifying key	ID not relevant	
LOCATION	Description of Location	ADDRTYPE captures this	
REPORTNO	Report Number	ID not relevant	
STATUS	Matched/Unmatched	ID not relevant	
INTKEY	Intersection key for collision	ID not relevant	
EXCEPTRSNCODE	Blank	No data	
EXCEPTRSNDESC	Blank	No data	
SEVERITYCODE	Label	Label to be predicted	
SEVERITYDESC	Description of Severity	Label to be predicted	
INCDATE	The date of the incident.	INCDTTM captures this	
SDOT_COLCODE	Collision code	Collision type captures this	
SDOT_COLDESC	A description of the collision	Collision type captures this	
	corresponding to the collision code.		
SDOTCOLNUM	A number given to the collision by	Collision type captures this	
	SDOT.		
SEGLANEKEY	A key for the lane segment in which the	ID not relevant	
	collision occurred.		
CROSSWALKKEY	A key for the crosswalk at which the	ID not relevant	
	collision occurred.		

Features after Feature Engineering:

SL No.	Feature	Description	Reason for Selecting
1	ADDRTYPE	Collision at Alley, Block, Intersection	Gives the likelihood of collision at these places
2	PERSONCOUNT	Number of people involved in the collision	Gives an indication of severity
3	PEDCOUNT	Number of pedestrians involved in the accident	Gives an indication of severity
4	PEDCYLCOUNT	Number of cyclists involved in the accident	Gives an indication of severity
5	VEHCOUNT	Number of vehicles involved in the accident	Gives an indication of severity
6	INATTENTIONIND	Whether the person was not paying attention	Not paying attention can result in accident
7	UNDERINFL	Whether the person was driving under influence	DUI can cause accidents
8	WEATHER	Weather conditions	Bad weather can cause accidents
9	ROADCOND	Road conditions	Wet roads can

			cause skidding
10	LIGHTCOND	Light conditions	Light conditions affect visibility
11	PEDROWNOTGRNT	Pedestrian right of way was granted or not	
12	SPEEDING	Whether speeding or not	Speeding causes accidents
13	COLLISIONTYPE	Collision Type	Type of collision gives severity of accident
14	HITPARKEDCAR	Whether or not the collision involved hitting a parked car.	Hitting a parked car causes property damage
15	Year	Year of accident	Did one year have a lot of accidents
16	Month	Month of Accident	Does month affect number of accidents
17	Day	Day of accident	Day of month
18	Hour	Time of accident	Are accidents caused majorly at night
19	Weekday	What day of the week accident happened	Are accidents caused more on certain days of the week

1.5.2. Exploratory Data Analysis:

- Plotting factors on the map are used to get density of areas where accidents were caused by the features in question:
 - 1. Speeding:
 - 1. Under Influence (DUI)
 - 2. Inattention
 - 3. Hitting a parked car
- The following classifiers are used to get the prediction whether given certain attributes (features), the severity of the accident (label)
 - 1. K Nearest Neighbours
 - 2. Logistic Regression
 - 3. Decision Tree Classifier
 - 4. XGBoost Classifier
 - 5. Random Forest Classifier
 - 6. Support Vector Machine

2. Methodology:

a) Plotting density of accidents sorted by Severity caused by the following features:

Following convention followed in plots:

- Severity value of 1 shown by RED circle
- Severity value of 2 shown by BLUE circle
- Data plotted is for years 2017 2020 for all graphs except for feature: Hitting Parked Car
- Data plotted for Hitting Parked car for the year of 2020.

i. Speeding

- ® Certain roads have a lot of accidents which occur on them due to speeding (As shown by the circles figure above)
- ® The government of Seattle can introduce proper traffic management in the form of speed restricting interventions (e.g. speed bumps). This can cause reduction in accidents due to speeding.

ii. Driving Under Influence:

® The above map shows, the points where accidents are caused due to DUI. The Seattle government can introduce Police check-ups on vehicles that are entering nodes where one has high density of accidents caused by DUI (shown in black circles). This can reduce potential accidents before they happen.

iii. Inattention:

® The above map shows, the points where accidents are caused due to Inattention. The figure filled with circles represents an accident, it just goes to show that a huge majority of accidents are caused by inattention. Perhaps a product monitoring the attention of drivers can be developed/marketed citing this data.

iv. Hitting Parked Cars

® The above figure shows where accidents in which parked cars were hit. The areas marked by black circles can be used by Insurance companies to tweak their car insurance premiums for individuals living in those areas.

b) Plotting count of accidents based on the following factors:

1. Year:

- 1. The Number of accidents in both the Severity classes have been decreasing over the years.
- 2. The drastic drop in 2020 is due to there being data for part of the year.

2. Months

- 1. October 2020 has the most number of crashes in the year.
- Number of crashed further decreases in the months of November and then December 2020

3. Hours in 24-hour format

 The highest number of accidents by far happen at midnight from 12AM to 1 AM.

4. Day of Week

 The day with the highest number of cases in the day is Friday

c) Using Classification Algorithms to classify label (SEVERITY) with the selected features.

- 1. K Nearest Neighbours
- 2. Logistic Regression
- 3. Decision Tree Classifier
- 4. XGBoost Classifier
- 5. Random Forest Classifier
- 6. Support Vector Machine

The data was first split into the train, test sets and then pre-processed. This was all achieved using the sklearn library.

® RESULTS

The Results of the classification are as follows:

SI No.	Classifier	F1 Score	Jaccard Score
1	K Nearest Neighbours	0.692301	0.72841916
2	Logistic Regression	0.708354	0.75225376
3	Decision Tree Classifier	0.685308	0.68396045
4	XGBoost Classifier	0.727591	0.76296391
5	Random Forest Classifier	0.715156	0.76013869
6	Support Vector Machine	0.714600	0.75934249

- ® The Classifier that performed the best was the XGBoost Gradient Classifier with an accuracy of 76.29%.
- ® The Gradient Boost classifier predicts the Severity of the accident (Injury Collision, Property Damage Only Collision) up to ~76.3% accuracy.

® Feature Importance Analysis:

The result of Feature importance with Collision Type dropped:

The Accuracy of XGBoost is 0.7583, and F1 Score: 0.7094

[0.07443821 0.07192027 0.25724676 0.23176846 0.02890782 0.03441104 0.01322539 0.09828424 0.06546744 0.02278161 0.01066418 0.01878568 0.05245251 0.00642101 0.00306294 0.00153579 0.0039697 0.00465685]

The most important feature was:

- I. Person Count
- II. Address Type
- III. Vehicle Count

The result of Feature Importance with Collision Type included:

The Accuracy of XGBoost is 0.7629, and F1 Score: 0.7275

[0.02028692 0.06733859 0.207039 0.24447267 0.04043719 0.00791223 0.02458902 0.06431133 0.06126108 0.01831033 0.00958071 0.01768854 0.19400577 0.00911685 0.0035155 0.00395693 0.00174351 0.0021102 0.00232353]

The most important features were:

- Collision Type
- Person Count
- Vehicle Count

3. Conclusion:

- The data-set has been used to classify the severity of the accidents based on certain select features.
- The exploratory data analysis shows density of accidents based on geography based on Speeding, Driving-Under-Influence, In-attention and Hitting Parked Cars.
- The frequency of accidents was plotted yearly, monthly, hourly and day-week to generate insights.
- From a machine learning standpoint. The most important features were: Collision Type, Person Count, Vehicle Count and Address Type. The Gradient Boost algorithm performed the best.