TD5: Oscillateurs – corrigé

Exercice 1 : CIRCUIT RLC PARALLÈLE

- 1. En régime permanent, condensateur=circuit ouvert et bobine=fil.
 - à $t=0^-$ on a $u=0,\,i_C=0,\,i_L=\frac{E}{R_g}$ et $i_R=\frac{u}{R}=0$;
 - à $t=0^+$ L'intensité dans la bobine est continue donc $\overline{i_L=\frac{E}{R_g}}$ la tension aux bornes de C est continue donc $\overline{u=0}$ donc $\overline{i_R=0}$ et la loi des nœuds donne $\overline{i_C=-i_L}$;
 - lorsque $t \to \infty$ le régime permanent est atteint, la bobine se comporte comme un fil, le condensateur comme un interrupteur ouvert et $i_C = i_R = i_L = 0$ et u = 0.
- 2. La tension u(t) va commencer par être négative $(i_C(0^+) < 0)$ puis va osciller avant de se stabiliser à 0. On obtient l'évolution ci-dessous :

- 3. Lorsqu'on ouvre l'interrupteur le courant dans L va progressivement diminuer en partie pour charger C et en partie en passant dans R. Lorsque le courant dans L s'annule, le condensateur se décharge et le courant devient négatif. L'intensité oscillera jusqu'à ce que toute l'énergie ait été dissipée par la résistance.
 - Si R est très élevée, Q est aussi élevé donc on peut supposer que $Q \propto R$. L'analyse dimensionnelle donne $Q = R\sqrt{\frac{C}{L}}$ (Q doit être sans dimension)
- 4. $u = L \frac{di_L}{dt}$, $i_L = -i_C i_R$, $i_C = C \frac{du}{dt}$ et $i_R = \frac{u}{R}$ donc $\frac{u}{L} = -C \frac{d^2u}{dt^2} \frac{1}{R} \frac{du}{dt}$. Ce qui nous donne l'équation différentielle :

$$\frac{d^2u}{dt^2} + \frac{1}{RC}\frac{du}{dt} + \frac{1}{LC}u = 0 \quad \text{soit} \quad \frac{d^2u}{dt^2} + \frac{\omega_0}{Q}\frac{du}{dt} + \omega_0^2 u = 0$$
 (1)

5. On déduit de l'équation précédente (par identification à celle d'un oscillateur harmonique amorti) :

$$\omega_0 = \frac{1}{\sqrt{LC}} \text{ et } Q = R\sqrt{\frac{C}{L}}$$
 (2)

On retrouve la même expression que dans la question précédente.

- 6. Avec les données fournies, on trouve $\omega_0 \approx 707 \,\mathrm{rad/s}$ et $Q \approx 6$
- 7. Portrait de phase:

Exercice 2 : OSCILLATEUR MÉCANIQUE AMORTI

- 2. Sur les graphiques, on trouve que la période d'une pseudo-oscillation est environ $\overline{T_0 \simeq 0.1 \,\mathrm{s}}$ donc $\omega_0 = \frac{2\pi}{T_0} \simeq 63 \,\mathrm{rad} \,\mathrm{s}^{-1}$. On trouve le facteur de qualité en comptant le nombre d'oscillations avant que l'amplitude ne soit divisée par 20, on trouve $\overline{Q \simeq 5}$.
- 3. On met l'équation différentielle sous la forme canonique : $\ddot{x} + \frac{\omega_0}{Q}\dot{x} + \omega_0^2 x = 0$ et on trouve $\sqrt{\frac{k}{m}}$ et $\sqrt{\frac{k}{m}}$
- 4. Avec $m=1\,\mathrm{g}$ et la valeur de ω_0 trouvée ci-dessus, on trouve $k=m\omega_0^2\simeq 3.9\,\mathrm{N/m}$ et $\gamma=\frac{\sqrt{km}}{Q}\simeq 0.012\,\mathrm{N}\,\mathrm{s}\,\mathrm{m}^{-1}$

Exercice 3: Oscillateur à condensateurs

- 1. On sait que la dimension de RC est un temps, donc la constante de temps recherchée est $\tau = RC$.
- 2. On commence par annoter le circuit avec des tensions et des intensités

- À $t = 0^-$ les condensateurs sont déchargés, donc $u(0^-) = u_C(0^-) = 0$. Comme $u(0^-) = Ri_1(0^-)$, on en déduit que $i_1(0^-) = 0$. De plus le circuit étant en régime permanent, $i_2(0^-) = i(0^-) = 0$ (condensateurs = interrupteurs ouvert).
- Les tensions étant continues aux bornes des condensateurs, on a $u_C(0^+) = u(0^+) = 0$. En déduit comme précédemment que $i_1(0^+) = 0$. La loi des mailles donne $u_R(0^+) = E$ et donc $i(0^+) = E/R$. Enfin, la loi des nœuds permet d'écrire $i_2(0^+) = i(0^+) = E/R$.
- 3. Pour établir l'équation différentielle, on écrit les relations pour les composants et le circuit. On a
 - $-u_R = Ri \text{ (Ohm)};$
 - $i = C \frac{\mathrm{d}u_C}{\mathrm{d}t}$ (condensateur);
 - $-u = Ri_1 \text{ (Ohm)};$
 - $i_2 = C \frac{\mathrm{d}u}{\mathrm{d}t}$ (condensateur);
 - $-u + u_R + u_C = E$ (mailles);
 - $i = i_1 + i_2$ (nœuds).

Avec ces équations, on arrive finalement à

$$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{3}{RC} \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{(RC)^2} u = 0$$
 (1)

On reconnait l'équation différentielle d'un oscillateur harmonique amorti avec

$$\frac{\omega_0}{Q} = \frac{3}{RC} \quad \text{et} \quad \omega_0^2 = \frac{1}{(RC)^2}$$
 (2)

On trouve alors que $Q = \frac{1}{3} < \frac{1}{2}$ et on en déduit que l'oscillateur est en régime apériodique.

4. Avec la méthode de résolution de l'équation différentielle du cours, on trouve pour le régime apériodique

$$u(t) = Ae^{r_1t} + Be^{r_2t}$$
 avec $r_{1,2} = \frac{\omega_0}{2Q} \left(-1 \pm \sqrt{1 - 4Q^2} \right)$ (3)

En utilisant les conditions initiales, on peut trouver A et B:

$$u(0) = 0 \Leftrightarrow A + B = 0 \Leftrightarrow B = -A \tag{4}$$

et

$$\frac{\mathrm{d}u}{\mathrm{d}t}(0) = \frac{i_2(0)}{C} = \frac{E}{RC} = A(r_1 - r_2) = A\frac{\omega_0}{Q}\sqrt{1 - 4Q^2} \Leftrightarrow A = \frac{QE}{\sqrt{1 - 4Q^2}}$$
 (5)

On a l'allure suivante pour u(t):

Temps

La tension u(t) est nulle à $t=0^+$ mais elle y est croissante car $\frac{du}{dt}=\frac{E}{RC}$. Puis elle tend vers 0 lorsque $t\to\infty$.

Exercice 4 : Interprétation énergétique du facteur de qualité

- 1. C'est presque une question de cours, il faut savoir le faire les yeux fermés! (loi des mailles + lois des composants).
- 2. On calcule le facteur de qualité $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$, On trouve Q = 10. Donc cet oscillateur est en régime pseudo-périodique et la solution de l'équation à la forme indiquée (voir cours)
- 3. A et B sont déterminés à partir des conditions initiales que l'on trouve en étudiant les valeurs des tensions et des intensités à $t=0^-$ et $t=0^+$. On trouve que $u_C(O^-)=E$ et $\frac{\mathrm{d}u_C}{\mathrm{d}t}(0^-)=0$. En utilisant ces conditions initiales, on trouve

$$A = E$$
 et $B = \frac{E}{\omega \tau} \approx \frac{E}{20}$ (1)

4. Comme le facteur de qualité est assez grand (Q=10) on peut faire l'approximation $\omega=\omega_0$. On remarque également que $B\ll A$, on peut donc négliger le terme en $\sin(\omega t)$ dans l'expression de $u_C(t)$. On obtient alors

$$u_C(t) \approx Ee^{-\frac{t}{\tau}}\cos(\omega_0 t)$$
 et $i(t) = C\frac{\mathrm{d}u_C}{\mathrm{d}t} = -\omega_0 C Ee^{-\frac{t}{\tau}}\sin(\omega_0 t)$ (2)

- 5. Le graphique montre bien la décroissance de l'énergie totale avec le temps à cause de la dissipation dans la résistance et on voit également les échanges d'énergie entre le condensateur et la bobine.
- 6. L'énergie totale de l'oscillateur est la somme de l'énergie du condensateur et de celle de la bobine. On a donc

$$E_{\text{tot}} = E_C + E_L = \frac{1}{2}Cu_C(t)^2 + \frac{1}{2}Li(t)^2 = \frac{1}{2}CE^2e^{-\frac{2t}{\tau}}\left(\cos(\omega t)^2 + \sin(\omega t)^2\right) = \frac{1}{2}CE^2e^{-\frac{2t}{\tau}}$$
(3)

7. On calcule la variation relative d'énergie du circuit sur une période avec l'expression de $E_{\text{tot}}(t)$ trouvée à la question précédente :

$$\frac{E_{\text{tot}}(t) - E_{\text{tot}}(t+T)}{E_{\text{tot}}(t)} = \frac{e^{-\frac{2t}{\tau}} + e^{-\frac{2(t+T)}{\tau}}}{e^{-\frac{2t}{\tau}}} = 1 - e^{-\frac{2T}{\tau}}$$
(4)

On fait l'approximation que $\frac{2T}{\tau} \ll 1$ (ce qui est un peu discutable vu les valeurs numériques!) et on trouve que

$$\frac{E_{\text{tot}}(t) - E_{\text{tot}}(t+T)}{E_{\text{tot}}(t)} \approx \frac{2T}{\tau} \approx \frac{2T_0}{\tau} = \frac{2\pi}{Q}.$$
 (5)

La variation relative d'énergie sur une période est bien inversement proportionnelle à Q.

Exercice 5: Analogie entre oscillateur mécanique et oscillateur électrique

- 1. L'équation fondamentale de la dynamique donne presque directement $\ddot{x} + \frac{k}{m}x = 0$
- 2. Le circuit étudié est le suivant

Dans ce circuit on a $q=Cu, u=-L\frac{di}{dt}$ et $i=\frac{dq}{dt}$, donc on obtient l'équation différentielle : $\overline{\frac{d^2q}{dt^2}+\frac{1}{LC}q=0}$

3. On peut donc faire l'analogie entre les deux situations : la charge correspond à la position $\overline{q \leftrightarrow x}$ la bobine correspond à l'inertie de l'intensité donc à la masse $\overline{L \leftrightarrow m}$ et l'inverse de la capacité est la raideur du ressort $\overline{\frac{1}{C} \leftrightarrow k}$ dans ces conditions $u = \frac{q}{C} \leftrightarrow k \times x = |F_r|$, la tension correspond à la force exercée par le ressort.

Exercice 6 : Associations d'impédances complexes

Dipôle 1 :
$$Z_{\text{eq}} = \frac{jL\omega}{1 - LC\omega^2}$$
; Dipôle 2 : $Z_{\text{eq}} = j\left(L\omega - \frac{1}{C\omega}\right)$;
Dipôle 3 : $Z_{\text{eq}} = \frac{jLR\omega}{R + jL\omega} + \frac{1}{jC\omega}$; Dipôle 4 : $Z_{\text{eq}} = \frac{jR(LC\omega^2 - 1)}{RC\omega + j(LC\omega^2 - 1)}$

Exercice 7 : CIRCUIT RLC PARALLÈLE EN RÉGIME FORCÉ

1. L'impédance complexe équivalente à RLC en parallèle est : $Z_{\rm eq} = \frac{R}{1+jR(C\omega-1/(L\omega))}$, on peut faire apparaître la pulsation propre $\omega_0 = \frac{1}{\sqrt{LC}}$ et le facteur de qualité $Q = R\sqrt{\frac{C}{L}}$ on obtient : $Z_{\rm eq} = \frac{R}{1+jQ(\omega/\omega_0-\omega_0/\omega)}$. On trouve alors

$$\underline{i} = \frac{\underline{e}}{Z_{\text{eq}}} = \frac{\underline{e}}{R} \left(1 + jQ \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \right)$$
 (1)

2. L'amplitude de l'intensité vaut

$$|\underline{i}| = \frac{|\underline{e}|}{R} \times \sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}$$
 (2)

- 3. Le déphasage ϕ entre la tension \underline{e} et l'intensité \underline{i} vaut $\phi = \arg(\underline{i}) \arg(\underline{e}) = \arctan\left(Q\left(\frac{\omega}{\omega_0} \frac{\omega_0}{\omega}\right)\right)$
- 4. On a

$$i(t) = \frac{E_0}{R} \times \sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2} \cos(\omega t + \phi)$$
 (3)

MPSI – Physique-chimie

Exercice 8 : DÉTERMINER LES PARAMÈTRES D'UN OSCILLATEUR

- 1. Sur le graphique de la phase, on trouve que la pulsation propre est d'environ $\overline{\omega_0 \simeq 63 \,\mathrm{rad}\,\mathrm{s}^{-1}}$ et sur le graph de l'amplitude on trouve $\overline{\Delta\omega} \approx 12 \,\mathrm{rad/s}$ ce qui nous donne $\overline{Q} = \omega/\Delta\omega \approx 5$
- 2. On peut prendre par exemple $L=1\,\mathrm{H},\,C=250\,\mathrm{\mu F}$ et $R=12\,\Omega$
- 3. C'est la même question que dans l'exercice 2, avec les même valeurs numériques. La constante de raideur du ressort doit être $k \simeq 4 \, \mathrm{N \, m^{-1}}$

Exercice 9 : ÉQUIVALENCE DE COMPOSANTS

L'impédance équivalente au premier dipôle est $Z_1=\frac{R_1}{1+jR_1C_1\omega}$, l'impédance équivalente au second dipôle est $Z_2=R_2+\frac{1}{iC_2\omega}$. En égalant les deux et en identifiant les parties réelles et imaginaires, on trouve :

$$R_2 = \frac{R_1}{1 + (R_1 C_1 \omega)^2}$$
 et $C_2 = C_1 \left(1 + \frac{1}{(R_1 C_1 \omega)^2} \right)$ (1)

Exercice 10 : IMPÉDANCE COMPLEXE D'UN CIRCUIT

1. C_1 et L_1 sont associés en parallèle, puis en série avec L et R. On obtient l'impédance équivalente :

$$\underline{Z} = R + jL\omega + \frac{jL_1\omega}{1 - L_1C_1\omega^2} \tag{1}$$

Après calculs, on trouve la forme demandée avec

$$\omega_1^2 = \frac{1}{L_1 C_1} + \frac{1}{L C_1} \quad \text{et} \quad \omega_2^2 = \frac{1}{L 1 C_1}$$
 (2)

2. Avec l'impédance équivalente trouvée, on trouve

$$I_m = \frac{E_m}{\sqrt{R^2 + X^2}}$$
 et $\varphi = -\arctan\left(\frac{X}{R}\right)$ (3)

3. On peut remarquer que le circuit forme un pont diviseur de tension et on a

$$\underline{u} = \frac{Z_1}{\underline{Z}}\underline{e} \tag{4}$$

avec Z_1 l'impédance équivalent à L_1 et C_1 en parallèle. on trouve finbalement

$$U_{m} = \frac{L\omega E_{m}}{\sqrt{R^{2}(1 - L_{1}C_{1}\omega^{2})^{2} + (L\omega(1 - L_{1}C_{1}\omega^{2}) + L_{1}\omega)^{2}}} \quad \text{et} \quad \tan(\varphi) = \frac{R(1 - L_{1}C_{1}\omega^{2})}{L_{1}\omega + L\omega(1 - L_{1}C_{1}\omega^{2})}$$
(5)

2022-2023