Physik III (Optik und Wellenmechanik) - physik311

Studiengang - B.Sc. in Physik (PO von 2014)

\overline{Modul}	Physik III (Optik und Wellenmechanik)
Modul-Nr.	physik310

$\overline{Lehr veran staltung}$	Physik III (Optik und Wellenmechanik)
LV-Nr.	physik311

Kategorie	LV-Art	Sprache	SWS	LP	Semester
Pflicht	Vorlesung mit Übungen	deutsch	4+2	7	WS

Teilnahmevoraussetzungen:

Empfohlene Vorkenntnisse: Physik I - II (physik110, physik210)

Studien- und Prüfungsmodalitäten: Voraussetzung zur Teilnahme an der unbenoteten Klausur: erfolgreiche Teilnahme an den Übungen

Dauer der Lehrveranstaltung: 1 Semester

Lernziele der LV: Die dritte Grundvorlesung Experimentalphysik stellt im ersten Teil optische Phänomene in Experimenten und elementarer theoretischer Behandlung als Erweiterung der Elektrizitätslehre dar. Insbesondere die Interferenzphänomene der Wellenlehre bieten eine sehr gute propädeutische Basis, um im zweiten Teil eine Einführung in die mikroskopische Physik mit Hilfe elementarer Wellenfunktionen der Quantenmechanik zu realisieren

Inhalte der LV:

Optik: Strahlenoptik und Matrizenoptik; Abbildungen und Abbildungsfehler; Mikroskop und Teleskop; Wellengleichung und Wellentypen; Brechung und Dispersion; Wellenleiter; Polarisation und Doppelbrechung; Beugung (Kirchhoffsche Theorie der Beugung, Fraunhofer-Beugung, Beugung am Einzelspalt, am Doppelspalt und am Gitter); Kohärenz und Zweistrahl-Interferometer; Vielstrahl-Interferometer; Räumliche und zeitliche Wellenpakete

Wellenmechanik: Teilchenphänomene mit Licht (Schwarzkörperstrahlung, Photo-Effekt, Compton-Effekt, Photon); Materiewellen (Doppelspalt mit Materiewellen, de Broglie Wellenlänge, Wellenfunktion und Schrödingergleichung); Tunnel-Effekt; Teilchen im externen Potenzial; Paul-Falle; Aufbau der Atome (Rutherford-Experiment, Franck-Hertz-Versuch); Spektrum des Wasserstoff-Atoms, Bohrsches Atommodell; Stern-Gerlach-Experiment

Literaturhinweise:

Hecht, Optik (Oldenbourg-Verlag, München 4. Aufl. 2005)

- D. Meschede; Optik, Licht und Laser (Teubner, Wiesbaden 2. überarb. Aufl. 2005)
- W. Demtröder; Experimentalphysik 2: Elektrizität und Optik (Springer, Heidelberg 5. überarb. Aufl. 2009)
- W. Demtröder; Experimentalphysik 3: Atome, Moleküle und Festkörper (Springer, Heidelberg 4. überarb. Aufl. 2010)
- D. Meschede; Gerthsen Physik (Springer, Heidelberg 23. Aufl. 2006)