HT Homework 0

1 Probability and Statistics

1. (combinatorics)

Let C(N, K) = 1 for K = 0 or K = N, and C(N, K) = C(N - 1, K) + C(N - 1, K - 1) for $N \ge 1$. Prove that $C(N, K) = \frac{N!}{K!(N-K)!}$ for $N \ge 1$ and $0 \le K \le N$.

2. (counting)

What is the probability of getting exactly 4 heads when flipping 10 fair coins?

What is the probability of getting a full house (XXXYY) when randomly drawing 5 cards out of a deck of 52 cards?

3. (conditional probability)

If your friend flipped a fair coin three times, and tell you that one of the tosses resulted in head, what is the probability that all three tosses resulted in heads?

4. (Bayes theorem)

A program selects a random integer X like this: a random bit is first generated uniformly. If the bit is 0, X is drawn uniformly from $\{0,1,\ldots,7\}$; otherwise, X is drawn uniformly from $\{0,-1,-2,-3\}$. If we get an X from the program with |X|=1, what is the probability that X is negative?

5. (union/intersection)

If
$$P(A) = 0.3$$
 and $P(B) = 0.4$,

what is the maximum possible value of $P(A \cap B)$?

what is the minimum possible value of $P(A \cap B)$?

what is the maximum possible value of $P(A \cup B)$?

what is the minimum possible value of $P(A \cup B)$?

6. (mean/variance)

Let mean $\bar{X} = \frac{1}{N} \sum_{n=1}^{N} X_n$ and variance $\sigma_X^2 = \frac{1}{N-1} \sum_{n=1}^{N} (X_n - \bar{X})^2$.

Prove that

$$\sigma_X^2 = \frac{N}{N-1} \left(\frac{1}{N} \sum_{n=1}^N X_n^2 - \bar{X}^2 \right).$$

7. (Gaussian distribution)

If X_1 and X_2 are independent random variables, where $p(X_1)$ is Gaussian with mean 2 and variance 1, $p(X_2)$ is Gaussian with mean -3 and variance 4. Let $Z = X_1 + X_2$. Prove p(Z) is Gaussian, and determine its mean and variance.

2 Linear Algebra

- 1. (rank) What is the rank of $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 2 \end{pmatrix}$?
- 2. (inverse) What is the inverse of $\begin{pmatrix} 0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{pmatrix}$?
- 3. (eigenvalues/eigenvectors) What are the eigenvalues and eigenvectors of $\begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$?
- 4. (singular value decomposition)
- 5. (PD/PSD)
- 6. (inner product)
- 7. (distance)

3 Calculus