Math 532 Notes

Jake Bailey

February 3, 2020

Contents

1	Lec	ture 1 $<\!2020\text{-}01\text{-}15\;Wed\!>$
	1.1	Topological Spaces
	1.2	Class Outline
	1.3	Back to Topology
	1.4	Topologies on \mathbb{R}
	1.5	Example
2	Mo	${ m re~on~topological~spaces}~<2020 ext{-}01 ext{-}17~{\it Fri}>$
	2.1	Example
	0.0	
	2.2	Bases
	2.2	Bases

1 Lecture 1 < 2020-01-15 Wed>

Basic introductions to the course. Office hours M 2-3 (Math 220), TW 2-3 (Math 219), and by appointment. Book is Topology by Munkres.

1.1 Topological Spaces

What are open sets in \mathbb{R} ? We know they can be intervals, like (1,2) or (a,b). \mathbb{R} itself is another example, as well as its complement, \emptyset .

Question 1.1. What questions does Topology answer. Which does it ask?

Question 1.2. What is the origin of the name "Point-Set Topology"?

The set of all open intervals defines the "standard topology" on \mathbb{R} . We'll also be concerned with homeomorphisms (Donuts + Coffee mugs). Much of "Point-Set Topology" is motivated by necessity from real analysis.

Metrics induce a topology. A reasonable question in topology is "how close is this space to being metrizable?"

Summary 1.1. We'll cover fundamental Point-Set Topology as well as som algebraic topology in this course. We begin with open sets in \mathbb{R} .

1.2 Class Outline

- Basics of Topology
- Waht is a topology
- Continuous functions
- Building new topologies
 - Product, Subspace, Metric, Quotient T's
- Connectedness
- Compactness
- Separation Axioms
- Metrizability
- Tychonoff's Theorem
- Topics in Algebraic Topology
 - Homotopy
 - Fundamental Groups
 - Boraz-Luanne?

1.3 Back to Topology

Definition 1.1. Given a set X, a topology on X is a collection T of subsets of X with the following properties:

1. $\emptyset, X \in T$

- 2. If $X_{\alpha} \in T, \forall \alpha \in J$, then $\bigcup_{\alpha \in J} X_{\alpha} \in T$. (*J* arbitrary indices).
- 3. If J is finite, then $\cap_{\alpha \in J} X_{\alpha} \in T$.

Topologies are collections of sets that

- 1. Contain the empty set and the whole space
- 2. Are closed under arbitrary unions
- 3. Are closed under finite intersections

Question 1.3. Where/how does an infinite intersection break a topology? Why are finite intersections the only kind allowed?

Summary 1.2. A topology is a collection of sets with three key properties

1.4 Topologies on \mathbb{R}

- 1. The standard topology, T_{std} .
- 2. The lower limit topology, \mathbb{R}_l
 - (a) Basis of elements as [a, b)
- 3. Any set X has two topologies
 - (a) The discrete topology, $T=2^X$
 - (b) The indiscrete topology, $T = \{\emptyset, X\}$

Question 1.4. Are there sets for which the discrete and indiscrete topologies are equivalent?

1.5 Example

Take $X = \{1, 2, 3\}$. Then, the following are topologies on X: $T = \{\{1\}, \{1, 2\}, X, \emptyset\}$, $T = \{\{2\}, \{1, 2\}, \{2, 3\}, X, \emptyset\}$. The following is not: $T = \{\{1\}, \{3\}, X, \emptyset\}$.

Summary 1.3. Topologies can be formed on all sets, even ones we wouldn't categorize with others, e.g. \mathbb{R} vs \mathbb{N} , etc.

2 More on topological spaces $\langle 2020-01-17 \ Fri \rangle$

Definition 2.1. Suppose that T, T' are two topologies on X. If $T \subseteq T'$, we say that T' is finer than T, and that T is coarser than T'. We say that T and T' are comparable if either is contained in the other.

Definition 2.2. If X is a set, a basis for a topology on X is a collection B of subsets such that

- 1. $\forall x \in X, \exists b \in B \text{ such that } x \in b.$
- 2. If $b_1, b_2 \in B$, then $\exists b_3 \in B \text{ such that } b_3 \subseteq b_1 \cap b_2$.

Question 2.1. Is the standard topology in \mathbb{R} comparable with the lower limit topology?

Definition 2.3. A set X along with a topology is called a {topological space}.

Definition 2.4. If (X,T) is a topological space, than a set $Y \subseteq X$ is open iff $Y \in T$. $Z \subseteq X$ is closed iff $Z \setminus X$ is open. (Open means a set is a member of the topology).

2.1 Example

 $(R, 2^R)$.

All sets in \mathbb{R} are open, and they're also closed.

 $(\mathbb{R}, \{\emptyset, \mathbb{R}\}).$

Open sets are only \emptyset , \mathbb{R} . These are also the only closed sets.

 (\mathbb{R}, T_{std})

(0,5) is open. $\mathbb{R} \setminus (0,5)$ is closed.

Recall that T_{std} is generated by the collection of open intervals (a, b) in \mathbb{R} .

Question 2.2. Do bases have to be minimal and/or orthonormal? Does that question even make sense?

Question 2.3. Can we characterize topologies where open sets are also closed?

2.2 Bases

The topology generated by a basis B is defined as: U is open in X if $\forall x \in U, \exists b \in B \text{ such that } x \in b \subseteq U.$

To check is a set U is open,

- 1. Pick $x \in U$
- 2. Find $b \in B$ such that $x \in b \subseteq U$.

2.2.1 Example

Is $U = (0, 5) \cup (15, 20)$ open in \mathbb{R}_{std} ? Yes.

Proof. Let
$$x \in U$$
. Then $x \in (0,5)$ or $x \in (15,20)$. Case 1: $x \in (0,5)$. $(0,5) \in B$, and $(0,5) \subseteq (0,5)$. Case 2 is equivalent.

Checking for openness is a *pointwise* operation.

2.3 Generating Topologies from Bases

Theorem 2.1. Given a set X and a basis B, the collection of sets T generated by B as described above is a topology.

#+BEGIN_{proof}
We look to show 3 properties:

- 1. $\emptyset, X \in T$
- 2. T is closed under unions
- 3. T is closed under finite intersections
- 1. $\emptyset \in T$ is vacuously true. For $X \in T$, Choose U = X. Then, $\exists b \in B$ such that $x \in b$. Satisfies clause 1.
- 2. Let $U_{\alpha} \in T$. For any $x \in \cup U_{\alpha}$, $\exists b \in B$ such that $x \in b, b \subseteq U_{\alpha}$, since $\exists \alpha'$ such that $x \in \cup U_{\alpha'}$, and $U_{\alpha'}$ is open.
- 3. For finite intersections: induction. Prove T is closed under pairwise intersections, then assume n intersections, prove n+1. Similar to unions, since $x \in U = U_1 \cap U_2$ implies $x \in U_1$ and $x \in U_2$, so $\exists b \in B$ such that $x \in n$, and $b \subseteq U_1$ and $b \subseteq U_2$.

Lemma 2.1. Let X be a set. Let B be a basis for a topology on X. Then T equals the collection of all unions of elements of B.

Proof by subsetting both ways.

Lemma 2.2. Let (X,T) be a topological space. Suppose C is a collection of open sets of X such that $\forall U \subseteq X$, U open, and $\forall x \in U$, $\exists c \in C$ such that $x \in c \subseteq U$. Then C is a basis for a topology on X.