



# EC-310 Microprocessor & Microcontroller based Design

Dr. Ahsan Shahzad

Department of Computer and Software Engineering (DC&SE)

**College of Electrical and Mechanical Engineering (CEME)** 

National University of Science and Technology (NUST)

#### 8086 Pin-outs and Functions

- NMI: Non-maskable interrupt
- Ready: to insert wait states
- INT: Interrupt request
- TEST: Input pin tested by WAIT instruction
  - Mostly used with 8087 co-processor connection
- RESET: FFFF:0000h
- BHE: bus high enable
- INTA: Interrupt acknowledge
- ALE: Address latch enable
- DT/R: Data transmit / rcv



#### 8086 DC Characteristics

Voltage and Current Requirement of input and out pins

| Logic Level | Voltage    | Current     |
|-------------|------------|-------------|
| 0           | 0.8 V max. | ± 10µA max. |
| 1           | 2.0 V min. | ± 10µA max. |

Table: Input Characteristics

| Logic Level | Voltage     | Current       |
|-------------|-------------|---------------|
| 0           | 0.45 V max. | ± 2.0µA max.  |
| 1           | 2.4 V min.  | ± -400µA max. |

Table: Output Characteristics

|      | _ |    |             |    | _ | MAX<br>MODE | (MIN MODE)          |
|------|---|----|-------------|----|---|-------------|---------------------|
| GND  | Д | 1  |             | 40 | Ъ | Ucc         | <b>,</b> ,          |
| AD14 | d | 2  |             | 39 | þ | AD 15       |                     |
| AD13 | d | 3  |             | 38 | þ | A16/S3      |                     |
| AD12 | þ | 4  |             | 37 | Þ | A17/S4      |                     |
| AD11 | d | 5  |             | 36 | Þ | A18/S5      |                     |
| AD10 | d | 6  |             | 35 | Þ | A19/S6      |                     |
| AD 9 | þ | 7  |             | 34 | Þ | BHE/S7      |                     |
| AD 8 | d | 8  |             | 33 | Þ | MN/MX       |                     |
| AD 7 | d | 9  | 0005        | 32 | Þ | RD          |                     |
| AD 6 | d | 10 | 8086<br>CPU | 31 | Þ | RQ/GT0      | (HOLD)              |
| AD 5 | d | 11 |             | 30 | Þ | RQ/GT1      | (HLDA)              |
| AD4  | d | 12 |             | 29 | Þ | LOCK        | (WR)                |
| AD 3 | d | 13 |             | 28 | Þ | S2          | (M/10)              |
| AD 2 | d | 14 |             | 27 | Þ | SI          | $(DT/\overline{R})$ |
| AD1  | d | 15 |             | 26 | Þ | S0          | (DEN)               |
| AD 0 | q | 16 |             | 25 | Þ | QS0         | (ALE)               |
| NMI  | d | 17 |             | 24 | Þ | QS1         | (INTA)              |
| INTR | d | 18 |             | 23 | Þ | TEST        |                     |
| CLK  | d | 19 |             | 22 | Þ | READY       |                     |
| GND  | d | 20 |             | 21 | Þ | RESET       |                     |
|      |   |    |             |    | 4 |             |                     |

| <b>S4</b> | <b>S</b> 3 | Function           |  |
|-----------|------------|--------------------|--|
| 0         | 0          | Extra Segment      |  |
| 0         | 1          | Stack Segment      |  |
| 1         | 0          | Code or no segment |  |
| 1         | 1          | Data segment       |  |

Table: Function of Status bits S3 and S4





Bus Buffering and Latching



Bus Buffering and Latching



## **Bus Timing**



# Project Ideas

- Arduino
- PIC Microcontroller
- ESP
- Adafruit
- NodeMCU
- Raspberry Pi
- Nvidia Jetson











#### Project Ideas

#### PIC Microcontroller based Projects

- Bluetooth Interfacing and sending data to Cell phone
- MircoSD card handling using PIC
- Touch Screen interfacing
- Biomedical Signal Acquisition and conditioning (leads, op-amp)

### Project Ideas

- VIDEO: Arduino Vs Raspberry Pi
- Learn Arduino in 15 mins

- Sample Projects MakerPro
- IOT enabled systems (e.g. sensor->Cloud->System/Device/Actuator)
  - Dot matrix Display, Running Text controlled by Cellphone for Cars
- Sensors: GPS, Biomedical (EEG, PPG, ECG, EMG, Inertial) based systems/applications