13. Zig-zag product of graphs

13.1 Introduction

In this lecture, we will study the zig-zag product of graphs and use it to construct fully explicit constant-degree expanders.

13.2 Zig-zag product

Let G_1 be an (n_1, d_1, λ_1) -expander, and let G_2 be a (d_1, d_2, λ_2) -expander. The zig-zag product of G_1 and G_2 , denoted by $G_1 @ G_2$ is a graph on $n_1 d_1$ vertice with degree d_2^2 defined in the following way. Let $(i_i, i_2) \in [d_2] \times [d_2]$, and let v[i] denote the i^{th} neighbor of a vertex v. For a vertex $(u, j) \in G_1 @ G_2$, we obtain the $(i_1, i_2)^{th}$ neighbor as follows: Let $j' = j[i_1]$, and let v = u[j'], and let $v = v[i] = v[i_1]$. Then $v[i] = v[i_2]$.

Let Rot_{G_1} and Rot_{G_2} denote the rotation maps corresponding to the graphs G_1 and G_2 . Let us first calculate the rotation map corresponding to $G_1 \boxtimes G_2$. Let $(v, i) \in G_1 \boxtimes G_2$, and $(j, k) \in [d_2] \times [d_2]$; then $\operatorname{Rot}_{G_1}(\boxtimes)_{G_2}((v, i), (j, k))$ is obtained as follows:

- 1. Let $Rot_{G_2}(i,j) = (i_1,j_1)$.
- 2. Let $Rot_{G_1}(v, i_1) = (w, i_2)$.
- 3. Let $Rot_{G_2}(i_2, k) = (i_3, k_1)$.

Then $\operatorname{Rot}_{G_1 \boxtimes G_2}((v,i),(j,k)) = (w,i_3)$. So, taking a random step from a vertex (v,i) in $G_1 \boxtimes G_2$ corresponds to taking a random step in the graph G_2 in the "cloud" corresponding to v (zig step), then taking a step to the "cloud" w based on the vertex you ended up in the zig step, and then finally taking a random step in the "cloud" corresponding to w (zag step).

Notice that the step going across the cloud from v to w depends on the random zig step. The zig step is a random step in an expander. So, if that is mixed well, then the step going from v to w is indeed like a random step on the larger graph G_1 . We will analyze the random walks on $G_1 \boxtimes G_2$ and prove the following theorem.

Theorem 13.1. Let G_1 be an (n_1, d_1, λ_1) -expander and let G_2 be a (d_1, d_2, λ_2) -expander. Then, $G_1 \circledcirc G_2$ is an $(n_1d_1, d_2^2, f(\lambda_1, \lambda_2))$ -expander where $f(\lambda_1, \lambda_2) \le \lambda_1 + \lambda_2 + \lambda_2^2$ such that $f(\lambda_1, \lambda_2) < 1$ when $\lambda_1, \lambda_2 < 1$.

Before we analyze the zig-zag product, let us first see how to obtain the explicit family of constant-degree expanders using the theorem above.

13.3 Constant-degree expanders using the zig-zag product

Let H be a $(d^4, d, 1/8)$ -expander. Definte the following family of graphs inductively.

Theorem 13.2. For $t \in \mathbb{N}$ consider the following family:

$$G_1 = H^2$$

$$G_t = G_{t-1}^2 \textcircled{z} H$$

The following statements are true for $\{G_t\}$.

- 1. For $t \in \mathbb{N}$, G_t is an $(d^{4t}, d^2, 1/2)$ -expander.
- 2. The time to compute Rot_{G_t} is $poly(|G_t|)$.

To prove (2), let $T(G_t)$ denote the time to compute the rotation map of G_t . For this we need two oracle queries to the rotation maps of G_{t-1} and poly(log $|G_{t-1}|$) to compute using the oracle queries. Therefore, we have the following recurrence.

$$T(G_t) = 2T(G_{t-1}) + \text{poly}(\log |G_{t-1}|).$$

This shows that we need $2^t \operatorname{poly}(\log |G_{t-1}|)$ time to compute the rotation maps which is $\operatorname{poly}(|G_t|)$.

Now to obtain the fully explicit family we are after, we will use the tensor product to make the size of the graph grow faster.

Theorem 13.3. Let H be a $(d^8, d, 1/8)$ -expander. For $t \in \mathbb{N}$, consider the following family:

$$\begin{split} G_1 &= H^2, \\ G_2 &= H \otimes H, \\ G_t &= \left(G_{\lceil \frac{t-1}{2} \rceil} \otimes G_{\lfloor \frac{t-1}{2} \rfloor} \right)^2 \textcircled{2} H. \end{split}$$

The following statements are true for $\{G_t\}$.

- 1. For $t \in \mathbb{N}$, G_t is an $(d^{8t}, d^2, 1/2)$ -expander.
- 2. The time to compute Rot_{G_t} is $poly(log | G_t|)$.

Proof. The proof of (1) is again by induction on t. The graph H^2 is a $(d^8, d^2, 1/2)$ -expander, so the statement is true for G_1 . Similarly, $H \otimes H$ is a $(d^{16}, d^2, 1/2)$ -expander, so the

statement is true for G_2 . Consider G_t for t > 2. Now, $G_{\lceil \frac{t-1}{2} \rceil} \otimes G_{\lfloor \frac{t-1}{2} \rfloor}$ is a $(d^{8(t-1)}, d^4, 1/2)$ -expander. Therefore, $\left(G_{\lceil \frac{t-1}{2} \rceil} \otimes G_{\lfloor \frac{t-1}{2} \rfloor}\right)^2$ is a $(d^{8(t-1)}, d^8, 1/4)$ -expander. Therefore G_t is a (d^{8t}, d^2, λ) -expander where $\lambda \le 1/4 + 1/8 + 1/64 < 1/2$.

Now to prove (2) we again write the recurrence for $T(G_t)$. Now the recurrence can be rewritten as follows:

$$T(G_t) = 2T(G_{(t-1)/2}) + \text{poly}(\log |G_{t-1}|, \log |H|).$$

Solving this we get that $T(G_t) = 2^{\log t} \operatorname{poly}(\log |G_{t-1}|, \log |H|)$. Therefore $\{G_t\}$ is a fully explicit family of expanders.

Now we move to the analysis of zig-zag products.