Samlefil for alle data til prøveeksamen

$Filen~1A/Oppgave1AFigur_A.png$

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt Luminositeten øker med en faktor 1.80e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er halvparten av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE B) stjernas luminositet er 10 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE C) kjernen består av helium og er degenerert

STJERNE D) radiusen er 1000 ganger solas radius.

STJERNE E) stjernas overflatetemperatur er 2500K og energien transporteres fra kjernen kun via konveksjon

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 9.436e+06 kg/m3̂ og temperatur 39 millioner K.

Kjernen i stjerne B har massetet
thet 2.869e+06 kg/m3̂ og temperatur 24 millioner K.

Kjernen i stjerne C har massetet
thet 8.572e+06 kg/m3̂ og temperatur 18 millioner K.

Kjernen i stjerne D har massetet
thet 1.580e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne E har massetet
thet 5.301e+06 kg/m3̂ og temperatur 29 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er lengst vekk

Påstand 2: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig større enn den tilsynelatende størrelseklassen i rødt filter

Påstand 3: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig mindre enn den tilsynelatende størrelseklassen i blått filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 3.688e+05 kg/m3̂ og temperatur 31.60 millioner K.

Kjernen i stjerne B har massetet
thet 1.996e+05 kg/m3̂ og temperatur 35.61 millioner K.

Kjernen i stjerne C har massetet
thet $1.888\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 29.82

millioner K.

Kjernen i stjerne D har massetet
thet 3.800e+05 kg/m3̂ og temperatur 21.34 millioner K.

Kjernen i stjerne E har massetet
thet 2.536e+05 kg/m3̂ og temperatur 19.00 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.20 buesekunder i løpet av et millisekund.

48.64

43.23

37.83

32.42

27.02

16.21

10.81

5.40

0.00

0.00

5.40

10.81

16.21

21.62

27.02

32.42

37.83

43.23

48.64

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tromsø som ligger i en avstand av 1400 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 98.28790 km/t.

Filen 3E.txt

Tog1 veier 75600.00000 kg og tog2 veier 100900.00000 kg.

Filen 4A.png

15.30 15.20 Tilsynelatende størrelsklasse m_V 15.10 15.00 14.90 14.80 14.70 14.60 20 5 10 15 25 ò Observasjonstid (dager)

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 476 km/s.

Filen 4E.txt

Massen til gassklumpene er 9700000.00 kg.

Hastigheten til G1 i x-retning er 16800.00 km/s.

Hastigheten til G2 i x-retning er 21900.00 km/s.

Filen 4G.txt

Massen til stjerna er 51.30 solmasser og radien er 3.22 solradier.