MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2024. május 7. 9:00

I.

Időtartam: 45 perc

Pótlapok száma	
Tisztázati	
Piszkozati	

OKTATÁSI HIVATAL

Fontos tudnivalók

- 1. A feladatok megoldására 45 percet fordíthat, az idő leteltével a munkát be kell fejeznie.
- 2. A megoldások sorrendje tetszőleges.
- 3. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos!
- 4. **A feladatok végeredményét az erre a célra szolgáló keretbe írja,** a megoldást csak akkor kell részleteznie, ha erre a feladat szövege utasítást ad!
- 5. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül a ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető.
- 6. Minden feladatnak csak egy megoldása értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek!
- 7. Kérjük, hogy a szürkített téglalapokba semmit ne írjon!

1. Az A és B halmazokról tudjuk, hogy $A \cup B = \{1; 2; 3; 4; 5; 6\}$, $A \cap B = \{1; 2\}$ és $A \setminus B = \{3; 4\}$. Adja meg az A és B halmazokat elemeik felsorolásával!

A =	1 pont	
B =	1 pont	

2. Egy derékszögű háromszög egyik befogója 24 cm, átfogója 25 cm hosszú. Hány cm hosszú a másik befogó?

A másik befogó hossza	cm.	2 pont	
-----------------------	-----	--------	--

3. Hány darab négyjegyű, különböző számjegyekből álló (pozitív) páratlan szám alkotható az 1, 2, 3, 4 számjegyekből?

	2 pont	
--	--------	--

4. Egy kozmetikai cég alkalmazottja az alábbi diagramot készítette a 2022-ben és 2023-ban általa értékesített termékek mennyiségéről:

A diagram alapján állapítsa meg, igaz-e az az állítás, hogy az alkalmazott 2023-ban háromszor annyi terméket értékesített, mint 2022-ben! Válaszát indokolja!

1 pont	
1 pont	

5. Adja meg a értékét, ha tudjuk, hogy $a^{\frac{1}{2}} = 4$.

a = 2 pont

6. Egy számtani sorozat nyolcadik tagja 6-tal nagyobb, mint a negyedik tagja. A sorozat hatodik tagja 6. Számítsa ki a sorozat első 6 tagjának az összegét! Megoldását részletezze!

	3 pont	
$S_6 =$	1 pont	

7. Hány csúcsa, hány lapja és hány éle van egy hatszög alapú gúlának?

A csúcsok száma:	1 pont	
A lapok száma:	1 pont	
Az élek száma:	1 pont	

Név:	osztály:
------	----------

8. Egy szám 2-es alapú logaritmusa 6. Mennyi a szám kétszeresének a 2-es alapú logaritmusa?

9. Egy városban a polgármester-választáson a győztes jelöltre a szavazáson résztvevők 55%-a szavazott, így 10 593 szavazatot kapott. Hányan vettek részt ebben a városban a szavazáson?

10. Adott az alábbi (a valós számok halmazán értelmezett) öt függvény. Adja meg közülük azoknak a betűjelét, amelyeknek van zérushelye!

$$f: x \mapsto x^2$$
 $g: x \mapsto 2^x$ $h: x \mapsto 2x + 3$
 $i: x \mapsto |x|$ $j: x \mapsto 5$

Azok a függvények, amelyeknek van zérushelye:	3 pont	
---	--------	--

Név: o	sztály:
--------	---------

11. Balázs magyar irodalomból a következő jegyeket szerezte az első félévben: 1, 5, 5, 5. Számítsa ki Balázs jegyeinek átlagát és szórását!

A jegyek átlaga:	1 pont	
A jegyek szórása:	2 pont	

12. Egy piros, egy fekete és egy fehér szabályos dobókockával egyszerre dobunk. Határozza meg annak a valószínűségét, hogy a dobás eredménye három különböző szám lesz! Megoldását részletezze!

2 pont	
1 pont	

		pontsz	zám
		maximális	elért
	 feladat 	2	
	2. feladat	2	
	3. feladat	2	
	4. feladat	2	
	5. feladat	2	
I/	6. feladat	4	
I. rész	7. feladat	3	
	8. feladat	2	
	9. feladat	2	
	10. feladat	3	
	11. feladat	3	
	12. feladat	3	
	ÖSSZESEN	30	•

dátum	javító tanár

		pontszáma egész számra kerekítve	
		elért	programba beírt
I. rész			
dátum		dátı	ım
javító tanár	_	jegy	/Ző

Megjegyzések:

- 1. Ha a vizsgázó a II. írásbeli összetevő megoldását elkezdte, akkor ez a táblázat és az aláírási rész üresen marad!
- 2. Ha a vizsga az I. összetevő teljesítése közben megszakad, illetve nem folytatódik a II. összetevővel, akkor ez a táblázat és az aláírási rész kitöltendő!

MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2024. május 7. 9:00

II.

Időtartam: 135 perc

Pótlapok száma	
Tisztázati	
Piszkozati	

OKTATÁSI HIVATAL

Név:	osztály:
------	----------

Fontos tudnivalók

- 1. A feladatok megoldására 135 percet fordíthat, az idő leteltével a munkát be kell fejeznie.
- 2. A feladatok megoldási sorrendje tetszőleges.
- 3. A **B** részben kitűzött három feladat közül csak kettőt kell megoldania. A nem választott feladat sorszámát írja be a dolgozat befejezésekor az alábbi négyzetbe! Ha a javító tanár számára *nem derül ki egyértelműen*, hogy melyik feladat értékelését nem kéri, akkor a kitűzött sorrend szerinti legutolsó feladatra nem kap pontot.

- 4. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos!
- 5. A megoldások gondolatmenetét minden esetben írja le, mert a feladatra adható pontszám jelentős része erre jár!
- 6. Ügyeljen arra, hogy a lényegesebb részszámítások is nyomon követhetők legyenek!
- 7. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül a következő műveletek elvégzésére fogadható el: összeadás, kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, (n) kiszámítása, a függvénytáblázatban fel-

lelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek bizonyos statisztikai mutatók kiszámítására (átlag, szórás) abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, azokért nem jár pont.

- 8. A feladatok megoldásánál használt tételek közül az iskolában tanult, névvel ellátott tételeket (pl. Pitagorasz-tétel, magasságtétel) nem kell pontosan megfogalmazva kimondania, elég csak a tétel megnevezését említenie, *de alkalmazhatóságát röviden indokolnia kell*.
- 9. A feladatok végeredményét (a feltett kérdésre adandó választ) szöveges megfogalmazásban is közölje!
- 10. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül a ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető.
- 11. Minden feladatnak csak egy megoldása értékelhető. Több megoldási próbálkozás esetén **egyértelműen jelölje**, hogy melyiket tartja érvényesnek!
- 12. Kérjük, hogy a szürkített téglalapokba semmit ne írjon!

A

13. a) Oldja meg a valós számok halmazán az alábbi egyenletet!

$$18 \cdot (7x + 96) + 19 \cdot (5x - 56) = 1990$$

b) Írja fel az 1896 és az 1956 prímtényezős felbontását, és adja meg az 1896 és az 1956 összes közös (pozitív) osztóját!

a)	4 pont	
b)	5 pont	
Ö.:	9 pont	

- **14.** Egy szabályos tízszög egy oldalának hossza 10 cm.
 - a) Igazolja, hogy a tízszög egy belső szöge 144°-os!
 - b) Számítsa ki a tízszög területét!

Egy szabályos sokszög átlóinak a száma 2015.

c) Hány oldalú a sokszög?

a)	3 pont	
b)	5 pont	
c)	5 pont	
Ö.:	13 pont	

Név:	osztály:	
------	----------	--

- **15.** Egy étteremben az üdítőitalok árát deciliterenként adják meg. Tudjuk, hogy 3 dl almalé és 5 dl baracklé összesen 1010 Ft-ba, 5 dl almalé és 3 dl baracklé pedig 990 Ft-ba kerül.
 - a) Mennyibe kerül egy dl almalé, és mennyibe egy dl baracklé?

Egyik este Anna, Bella és Cili együtt mentek vacsorázni. A vacsorához Anna almalevet, Bella baracklevet, Cili citromos teát rendelt. A pincér sajnos elfelejtette, hogy ki melyik üdítőt rendelte, és véletlenszerűen osztja ki nekik a három italt.

b) Határozza meg annak a valószínűségét, hogy egyikük sem azt az italt kapja, amit rendelt!

Az étterem vezetője év végén összesítette, hogy az év során az egyes asztaloknál mennyit fizettek egy-egy alkalommal a vendégek az üdítőitalokért. Az összesítés után a kapott adatokat az alábbi sodrófadiagramon ábrázolta.

c) Az alábbi kijelentések a fenti diagramon ábrázolt adatokra vonatkoznak. Állapítsa meg minden kijelentésről, hogy igaz, hamis, vagy az adatok alapján ezt nem lehet eldönteni! Tegyen X-et a megfelelő cellába! Válaszait itt nem kell indokolnia.

	Igaz	Hamis	Nem lehet eldönteni
Az adatok terjedelme 7000 Ft.			
A kifizetett összegek átlaga 3500 Ft.			
A kifizetett összegek kb. 25%-a legalább 4000 Ft volt.			
Volt olyan asztal, ahol 2500 Ft-ot fizettek.			

a)	6 pont	
b)	4 pont	
c)	4 pont	
Ö.:	14 pont	

B

A 16–18. feladatok közül tetszése szerint választott kettőt kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe!

- **16.** Péter matematikatanára az érettségire való felkészülés közben az egyik hétvégére szorgalmi feladatként négy függvény ábrázolását tűzte ki a diákoknak. Péter azt tervezi, hogy ezek közül legalább kettőt meg fog csinálni.
 - a) Hányféleképpen választhat ki Péter a négy függvény közül **legalább** kettőt? (Két kiválasztást különbözőnek tekintünk, ha van legalább egy olyan függvény, amelyik az egyik kiválasztásban szerepel, a másikban pedig nem.)

Egy (a derékszögű koordináta-rendszerben ábrázolt) lineáris függvény grafikonja átmegy a (12; 7) és a (13; 9) pontokon.

- **b)** Adja meg a lineáris függvény hozzárendelési szabályát $x \mapsto mx + b$ alakban!
- c) Írja fel a (12; 7) középpontú, 15 egység sugarú kör egyenletét, és számítsa ki a kör és az y tengely metszéspontjainak koordinátáit!

a)	5 pont	
b)	4 pont	
c)	8 pont	
Ö.:	17 pont	

A 16–18. feladatok közül tetszése szerint választott kettőt kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe!

17. A szolnoki cukrászdák különleges süteménye a szolnoki habos isler. A habos isler alsó és felső része egy-egy 0,5 centiméter vastagságú, 6 cm átmérőjű henger alakú tésztalap. A két tésztalap között pedig 90 ml henger alakú hab található.

- a) Hány cm³ a két tésztalap együttes térfogata?
- **b)** Hány cm a két tésztalap közötti, habbal kitöltött hengeres rész átmérője, ha a sütemény teljes magassága 5 cm?

Az islereket a készítés utolsó fázisában leöntik csokival. Néha előfordul, hogy a csoki megdermedéskor megreped, az ilyen islert a cukrászdában nem szolgálják fel. Annak a valószínűsége, hogy egy isleren a csokimáz megreped 0,03. Az egyik cukrászdában szerdán 30 islert készítenek.

c) Számítsa ki annak a valószínűségét, hogy ezen a napon egyetlen isleren sem reped meg a csokimáz, és így mindet fel lehet szolgálni!

A cukrászdában szerdánként akciós áron kínálják az islert, a zserbót és a krémest. Az egyik szerda délelőtt az asztaloknál ülő vendégek összesen 20 rendelést adtak le. Volt 1 olyan rendelés, amelyben mindhárom sütemény szerepelt, és 2 olyan, amelyikben egyik sem. A rendelések között 5 olyan volt, amelyben zserbó és krémes is szerepelt, 3 olyan, amelyben zserbó és isler is, és 6 olyan, amelyben isler és krémes is. 9 olyan rendelés volt, amelyben szerepelt zserbó. Tudjuk, hogy ugyanannyi rendelésben szerepelt krémes, mint amennyiben isler.

d) Hány olyan rendelés volt szerda délelőtt, amelyben a három sütemény közül csak a krémes szerepelt?

a)	3 pont	
b)	5 pont	
c)	3 pont	
d)	6 pont	
Ö.:	17 pont	

A 16–18. feladatok közül tetszése szerint választott kettőt kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe!

- **18.** Egy elektromos autó egyik alkatrészéhez tartozó áramköri elem szemléltethető egy olyan hatpontú gráffal, melynek hat éle van, és amelyben öt pont fokszáma ismert: 1, 2, 2, 3, 3.
 - **a)** Adja meg a hatodik csúcs fokszámát, és rajzoljon fel egy olyan gráfot, amely a feltételeknek megfelel!

•

Az elektromos autók által egy feltöltéssel megtehető távolságot az autó hatótávolságának nevezzük. Ádám egy újságcikkben azt olvasta, hogy míg 2011-ben átlagosan csak 95 km volt egy elektromos autó hatótávolsága, addig ez az érték 2023-ra 425 km-re nőtt. Ádám arra kíváncsi, hogy ha a 2011 és 2023 között tapasztalható tendencia folytatódik, akkor melyik évben éri el az elektromos autók átlagos hatótávolsága az 1000 km-t. Ehhez két modellt alkot.

Az egyik esetben úgy számol, hogy évről évre **ugyanannyival** nő az átlagos hatótávolság az előző évihez képest.

b) Ezzel a modellel számolva melyik évben éri el az átlagos hatótávolság az 1000 km-t?

A másik esetben úgy számol, hogy évről évre **ugyanannyiszorosára** nő az átlagos hatótávolság az előző évihez képest.

c) Ezzel a modellel számolva melyik évben éri el az átlagos hatótávolság az 1000 km-t?

a)	4 pont	
b)	6 pont	
c)	7 pont	
Ö.:	17 pont	

¹ https://hvg.hu/cegauto/20231228_nehany_ev_alatt_negyszeresere_nott_a_villanyautok_atlagos_hatotavja

	a feladat	pontszám		
	sorszáma	maximális	elért	összesen
II. A rész	13.	9		
	14.	13		
	15.	14		
II. B rész		17		
		17		
		← nem választott feladat		
	ÖSSZESEN	70		

	pontszám	
	maximális	elért
I. rész	30	
II. rész	70	
Az írásbeli vizsgarész pontszáma	100	

dátum	javító tanár

	pontszáma egész számra kerekítve	
	elért	programba beirt
I. rész		
II. rész		

dátum	dátum
javító tanár	jegyző