PROVA SCRITTA DI CALCOLATORI ELETTRONICI <u>DM509</u> DEL <u>15/2/2011</u> (Tempo: 1,5 ore) Corso di Laurea in Ingegneria Elettronica

ESERCIZIO 1:

Si realizzi una rete sequenziale sincrona \mathbf{R} con un ingresso X ed una uscita Z. La rete riconosce come valide espressioni del tipo $E = (01)^* (11)^+ 10 \ b_2 b_1 b_0$ dove $(01)^*$ indica che la sequenza 01 è ripetuta zero, una o più volte, $(11)^+$ indica che la sequenza 11 è ripetuta una o più volte e, infine, b_2 b_1 b_0 è una sequenza di 3 bit arbitrari. Una volta riconosciuta un'espressione valida, la rete restituisce il bit meno significativo della somma degli ultimi tre bit, ossia il bit meno significativo di $(b_2+b_1+b_0)$; per poi riprendere il funzionamento dal principio.

Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
x:	0	0	1	1	1	1	0	0	0	1	0	1	1	0	1	1	1	1	1	1	0	1	1	0
z:	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Dall'istante t=1 all'istante t=9, la rete riceve la prima espressione. In particolare, negli istanti t=1 e t=2 riceve una volta la sequenza 01, successivamente (t=3 e t=4) riceve la sequenza 11, in t=5 e t=6 riceve la sequenza 10 e, infine, in t=7, t=8 e t=9 riceve i bit $b_2 = 0$ $b_1 = 0$ $b_0 = 1$ e restituisce 1 in quanto 0+0+1=01.

A partire dall'istante t=10, la rete riprende il suo funzionamento, in t=10 e t=11 riceve la sequenza 01, in t=12 e t=13 riceve la sequenza 10, illecita in quanto la sequenza 11 deve essere ricevuta almeno una volta, quindi interpreta i bit ricevuti in t=13 e t=14, come i primi bit di una nuova sequenza. A partire da t=15 riceve la sequenza 11 due volte. In t=19 e t=20 riceve la sequenza 10, e infine in t=21, t=22 e t=23, riceve i bit $b_2=1$ $b_1=1$ $b_0=0$ e restituisce 0 in quanto 1+1+0=10.