The perceptron algorithm

Christos Dimitrakakis

October 1, 2024

Outline

The Perceptron

Introduction
The algorithm

Gradient methods

Gradients for optimisation

The perceptron as a gradient algorithm

Lab and Assignment

Topic

The Perceptron
Introduction
The algorithm

Gradient methods

Gradients for optimisation
The perceptron as a gradient algorithm

Lab and Assignment

Guessing gender from height

- ▶ Feature space $\mathcal{X} \subset \mathbb{R}$: e.g. height
- ▶ Label space $\mathcal{Y} = \{-1, 1\}$: e.g. gender
- ▶ Can we find some $\beta_1 \in \mathbb{R}$ and a direction $\beta_0 \in \{-1, +1\}$ so as to separate the genders?

Online learning: At time t

- $lackbox{ We choose a separator } \beta_0^t, \beta_1^t$
- ightharpoonup We observe a new datapoint x_t, y_t
- \triangleright We make a mistake at time t if:

$$\beta^t x_t - \beta_0^t \le 0.$$

▶ If we stop making mistakes, then we are classifying everything perfectly.

Can you find a threshold that makes a small number of mistakes?

./src/Perceptron/perceptron_simple.py

Non-separable classes

- ▶ Feature space $\mathcal{X} \subset \mathbb{R}^n$: e.g. height and weight for n=2
- ▶ Label space $\mathcal{Y} = \{-1, 1\}$: e.g. gender
- ► Can we find some line so as to separate the genders?
- -./src/Perceptron/show_class_data_labels.py

More complex example

- Feature space $\mathcal{X} \subset \mathbb{R}^n$: e.g. height and weight for n=2
- ▶ Label space $\mathcal{Y} = \{-1, 1\}$: e.g. gender
- Can we find some line so as to separate the genders?
- -./src/Perceptron/show_class_data_labels.py

Linear separator

$$f(x) = \beta_0 + \beta^{\top} x = \beta_0 + \sum_{i=1}^{n} \beta_i x_i.$$

- ▶ Feature space $\mathcal{X} \subset \mathbb{R}^n$: e.g. height and weight for n=2
- ▶ Label space $\mathcal{Y} = \{-1, 1\}$: e.g. gender
- ► Can we find some line so as to separate the genders?
- -./src/Perceptron/show_class_data_labels.py

Linear separator

$$f(x) = \beta_0 + \beta^{\top} x = \beta_0 + \sum_{i=1}^{n} \beta_i x_i.$$

If we augment x an additional component $x_0 = 1$, we can write

$$f(x) = \beta^{\top} x = \sum_{i=0}^{n} \beta_i x_i.$$

The perceptron algorithm

Input

- ightharpoonup Feature space $X \subset \mathbb{R}^n$.
- ▶ Label space $Y = \{-1, 1\}$.
- ▶ Data (x_t, y_t) , $t \in [T]$, with $x_t \in X$, $y_t \in Y$.

Algorithm

- $V_1 = W_0$.
- ▶ For t = 1, ..., T.
 - $ightharpoonup a_t = \operatorname{sgn}(w_t^\top x_t).$
 - ightharpoonup If $a_t \neq v_t$
 - $W_{t+1} = W_t + V_t X_t$
 - ► Flse
 - $V_{t+1} = W_t$
 - ► EndIf
- Return w_{T+1}

Perceptron examples

Example 1: One-dimensional data

- Done on the board
- Shows how the algorithm works.
- Demonstrates the idea of a margin

Example 2: Two-dimensional data

See in-class programming exercise

Margins and the perceptron theorem

- \triangleright The hyperplane β^* separates the examples
- ightharpoonup The margin ρ is the minimum distance ρ between β^* and any point.

Theorem (Perceptron theorem)

The number of mistakes is bounded by ρ^{-2} , where $||x_t|| \leq 1$, $\rho \leq y_t(x_t^\top \beta^*)$ for some margin ρ and hyperplane β^* with $\|\beta^*\| = 1$.

Topic

The Perceptron Introduction The algorithr

Gradient methods

Gradients for optimisation
The perceptron as a gradient algorithm

_ab and Assignmen[.]

The gradient descent method: one dimension

- ▶ Function to minimise $f: \mathbb{R} \to \mathbb{R}$.
- ▶ Derivative $\frac{d}{d\beta}f(\beta)$

Gradient descent algorithm

- lnput: initial value β^0 , learning rate schedule α_t
- ▶ For t = 1, ..., T
- \triangleright Return β^T

Properties

If $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$, it finds a local minimum β^T , i.e. there is $\epsilon > 0$ so that

$$f(\beta^T) < f(\beta), \forall \beta : ||\beta^T - \beta|| < \epsilon.$$

11 / 22

Gradient methods for expected value

Estimate the expected value

$$x_t \sim P$$
 with $\mathbb{E}_P[x_t] = \mu$.

12 / 22

Gradient methods for expected value

Estimate the expected value

$$x_t \sim P$$
 with $\mathbb{E}_P[x_t] = \mu$.

Objective: mean squared error

Here
$$\ell(x,\beta) = (x-\beta)^2$$
.

$$\min_{\beta} \mathbb{E}_{P}[(x_t - \beta)^2].$$

Gradient methods for expected value

Estimate the expected value

$$x_t \sim P$$
 with $\mathbb{E}_P[x_t] = \mu$

Objective: mean squared error

Here
$$\ell(x,\beta) = (x-\beta)^2$$
.

$$\min_{\beta} \mathbb{E}_{P}[(x_t - \beta)^2].$$

Derivative

Idea: at the minimum the derivative should be zero.

$$d/d\beta \, \mathbb{E}_P[(x_t - \beta)^2] = \mathbb{E}_P[d/d\beta(x_t - \beta)^2] = \mathbb{E}_P[-(x_t - \beta)] = \mathbb{E}_P[x_t] - \beta.$$

Setting the derivative to 0, we have $\beta = \mathbb{E}_P[x_t]$. This is a simple solution.

Real-world setting

- The objective function does not result in a simple solution
- ► The distribution P is not known.
- ightharpoonup We can sample $x \sim P$. Christos Dimitrakakis

The gradient method

- ▶ Function to minimise $f: \mathbb{R}^n \to \mathbb{R}$.
- Derivative $\nabla_{\beta} f(\beta) = \left(\frac{\partial f(\beta)}{\partial \beta_1}, \dots, \frac{\partial f(\beta)}{\partial \beta_n}\right)$, where $\frac{\partial f}{\partial \beta_n}$ denotes the partial derivative, i.e. varying one argument and keeping the others fixed.

Gradient descent algorithm

- ▶ Input: initial value β^0 , learning rate schedule α_t
- For $t = 1, \ldots, T$
- \triangleright Return β^T

Properties

▶ If $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$, it finds a local minimum β^T , i.e. there is $\epsilon > 0$ so that

$$f(\beta^T) < f(\beta), \forall \beta : \|\beta^T - \beta\| < \epsilon.$$

Stochastic gradient method

This is the same as the gradient method, but with added noise:

- $ightharpoonup \mathbb{E}[\omega_t] = 0$ is sufficient for convergence.

Example: When the cost is an expectation

In machine learning, the cost is frequently an expectation of some function ℓ ,

$$f(\beta) = \int_X dP(x)\ell(x,\beta)$$

This can be approximated with a sample

$$f(\beta) \approx \frac{1}{T} \sum_{t} \ell(x_t, \beta)$$

The same holds for the gradient:

$$\nabla_{\beta} f(\beta) = \int_{X} dP(x) \nabla_{\beta} \ell(x, \beta) \approx \frac{1}{T} \sum_{t} \nabla_{\beta} \ell(x_{t}, \beta)$$

4 D > 4 D > 4 E > 4 E > E 990

Christos Dimitrakakis

14 / 22

Stochastic gradient for mean estimation

If we sample x we approximate the gradient:

$$\frac{d}{d\beta} \mathbb{E}_P[(x-\beta)^2] \approx \frac{1}{T} \sum_{t=1}^T \frac{d}{d\beta} (x_t - \beta)^2 = \frac{1}{T} \sum_{t=1}^T 2(x_t - \beta)$$

Stochastic gradient for mean estimation

▶ If we sample x we approximate the gradient:

$$\frac{d}{d\beta} \mathbb{E}_{P}[(x-\beta)^{2}] \approx \frac{1}{T} \sum_{t=1}^{T} \frac{d}{d\beta} (x_{t}-\beta)^{2} = \frac{1}{T} \sum_{t=1}^{T} 2(x_{t}-\beta)$$

▶ If we update β after each new sample x_t , we obtain:

$$\beta^{t+1} = \beta^t + 2\alpha_t(x_t - \beta^t)$$

Perceptron algorithm as gradient descent

Target error function

$$\mathbb{E}_{\mathbf{P}}^{\beta}[\ell] = \int_{\mathcal{X}} d\mathbf{P}(x) \sum_{\mathbf{y}} \mathbf{P}(\mathbf{y}|\mathbf{x}) \ell(\mathbf{x}, \mathbf{y}, \beta)$$

Minimises the error on the true distribution.

Perceptron algorithm as gradient descent

Target error function

$$\mathbb{E}_{\mathbf{P}}^{\beta}[\ell] = \int_{\mathcal{X}} d\mathbf{P}(x) \sum_{\mathbf{y}} \mathbf{P}(\mathbf{y}|\mathbf{x}) \ell(\mathbf{x}, \mathbf{y}, \beta)$$

Minimises the error on the true distribution.

Empirical error function

$$\mathbb{E}_{\mathbf{D}}^{\beta}[\ell] = \frac{1}{T} \sum_{t=1}^{T} \ell(x_{t}, y_{t}, \beta), \qquad \mathbf{D} = (x_{t}, y_{t})_{t=1}^{T}, \quad x_{t}, y_{t} \sim P.$$

Minimises the error on the empirical distribution.

Christos Dimitrakakis

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}$$
(1)

where the indicator function $\mathbb{I}\{A\}$ is 1 when A is true and 0 otherwise.

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}$$
(1)

where the indicator function $\mathbb{I}\{A\}$ is 1 when A is true and 0 otherwise.

Reminder: The chain rule

Let
$$z = g(y)$$
, $y = f(x)$ so that $z = g(f(x))$. Then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}$$
(1)

where the indicator function $\mathbb{I}\{A\}$ is 1 when A is true and 0 otherwise.

Reminder: The chain rule

Let
$$z = g(y)$$
, $y = f(x)$ so that $z = g(f(x))$. Then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Derivative: Chain rule

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}$$
(1)

where the indicator function $\mathbb{I}\{A\}$ is 1 when A is true and 0 otherwise.

Reminder: The chain rule

Let
$$z = g(y)$$
, $y = f(x)$ so that $z = g(f(x))$. Then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Derivative: Chain rule

- $\triangleright \frac{\partial \beta}{\partial \beta} [y(x_t^\top \beta)] = yx_{t,i}$ (gradient of Perceptron's output)

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}^{\text{margin of error}} \tag{1}$$

where the indicator function $\mathbb{I}\{A\}$ is 1 when A is true and 0 otherwise.

Reminder: The chain rule

Let
$$z = g(y)$$
, $y = f(x)$ so that $z = g(f(x))$. Then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Derivative: Chain rule

- $\triangleright \frac{\partial \beta}{\partial \beta} [y(x_t^\top \beta)] = yx_{t,i}$ (gradient of Perceptron's output)
- ▶ Gradient update: $\beta^{t+1} = \beta^t \nabla_{\beta} \ell(x, y, \beta) = \beta^t + vx_t$

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}^{\text{margin of error}} \tag{1}$$

where the indicator function $\mathbb{I}\{A\}$ is 1 when A is true and 0 otherwise.

Reminder: The chain rule

Let
$$z = g(y)$$
, $y = f(x)$ so that $z = g(f(x))$. Then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Derivative: Chain rule

- $\triangleright \frac{\partial \beta}{\partial \beta} [y(x_t^\top \beta)] = yx_{t,i}$ (gradient of Perceptron's output)
- ▶ Gradient update: $\beta^{t+1} = \beta^t \nabla_{\beta} \ell(x, y, \beta) = \beta^t + vx_t$

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}^{\text{margin of error}} \tag{1}$$

where the indicator function $\mathbb{I}\{A\}$ is 1 when A is true and 0 otherwise.

Reminder: The chain rule

Let
$$z = g(y)$$
, $y = f(x)$ so that $z = g(f(x))$. Then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Derivative: Chain rule

- $\triangleright \frac{\partial \beta}{\partial \beta} [y(x_t^\top \beta)] = yx_{t,i}$ (gradient of Perceptron's output)
- ▶ Gradient update: $\beta^{t+1} = \beta^t \nabla_{\beta} \ell(x, y, \beta) = \beta^t + yx_t$

The classification error cost function is **not** differentiable :(

Margins and confidences

We can think of the output of the network as a measure of confidence

Margins and confidences

We can think of the output of the network as a measure of confidence

By applying the logit function, we can bound a real number x to [0,1]:

$$f(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

Logistic regression

Output as a measure of confidence, given the parameter β

$$P_{\beta}(y=1|x) = \frac{1}{1 + \exp(-x_t^{\top}\beta)}$$

The original output $x_t^{\top} \beta$ is now passed through the logit function.

Christos Dimitrakakis

Logistic regression

Output as a measure of confidence, given the parameter β

$$P_{\beta}(y=1|x) = \frac{1}{1 + \exp(-x_t^{\top}\beta)}$$

The original output $x_t^{\top} \beta$ is now passed through the logit function.

Negative Log likelihood

$$\nabla_{\beta}\ell(x_{t}, y_{t}, \beta) = \frac{1}{1 + \exp(-yx_{t}^{\top}\beta)} \nabla_{\beta}[1 + \exp(-yx_{t}^{\top}\beta)]$$

$$= \frac{1}{1 + \exp(-yx_{t}^{\top}\beta)} \exp(-yx_{t}^{\top}\beta)[\nabla_{\beta}(-y_{t}x_{t}^{\top}\beta)]$$

$$= -\frac{1}{1 + \exp(x_{t}^{\top}\beta)} (x_{t,i})_{i=1}^{n} e$$

$$\blacktriangleright \mathbb{E}_{P}(\ell) = \int_{Y} dP(x) \sum_{y \in Y} P(y|x) P_{\beta}(y_t + x_t)$$

 $\ell(x_t, y_t, \beta) = -\ln P_{\beta}(y_t|x_t) = \ln(1 + \exp(-y_t x_t^{\top}\beta))$

<ロ > 4回 > 4回 > 4 重 > 4 重 > 重 の g @

Topic

The Perceptron

Introduction
The algorithm

Gradient methods

Gradients for optimisation

The perceptron as a gradient algorithm

Lab and Assignment

20 / 22

Lab demonstration

- ► How to use kNN and LogisticRegression with sklearn (and perhaps statsmodels, time permitting)
- ▶ Use an example where there is no default 'class' label

Assignment

- In the class data, find one categorical variable of interest that we want to predict.
- 2. Formulate the appropriate classification problem.
- 3. Perform model selection through train/validate or crossvalidation to find the best model (kNN or perceptron) and hyperparameters (k for the kNN)
- 4. Discuss anything of interest in the data such as: feature scaling/selection, missing data, outliers.
- 5. We cannot independently measure the quality of the model, as we have no test set. What can we do?