0.1 Az \mathbb{R}^n tér

Def: $A \times B = \{(a,b) : a \in A, b \in B\}$ az A és B-beli elemekből álló rendezett párok halmaza. Hasonlóan $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) : a_i \in A_i \forall i\}$ a rendezett n-esek halmaza. Végül $A^n := A \times A \times A \times \cdots \times A$ az n-szeres Descartes-szorzat jelölése.

Megj: (1) A továbbiakban \mathbb{R}^n elemeivel fogunk dolgozni. Ezeket n magasságó vektoroknak fogjuk hívni, jelezve, hogy (általában) oszlopvektorként gondolunk rájuk.

Példa:

$$\begin{pmatrix} e \\ \pi \\ 42 \end{pmatrix} \in \mathbb{R}^3, \underline{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n, \text{ ill. } e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n,$$

utóbbi esetben az 1-es felülről az i-dik helyen áll.

Megj: (2) Ha n világos a szövegkörnyezetből, akkor \mathbb{R}^n elemeit vektoroknak, \mathbb{R} elemeit pedig skalároknak fogjuk nevezni. A vektorok tehát itt és most nem "irányított szakaszok", hanem ennél általánosabb fogalmat takarnak: az irányított szakaszok is tekinthetők vektornak, de egy vektor a mi tárgyalásunkban nem feltétlenül irányított szakasz.

(3) Az n magasságú vektorokkal különféle dolgokat művelhetünk. Például (koordinátánként) összeadhatjuk őket.

Példa:

Ha
$$\underline{x} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
 és $\underline{y} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}$, akkor $\underline{x} + \underline{y} = \begin{pmatrix} x_1 + y_1 \\ \dots \\ x_n + y_n \end{pmatrix}$

Vagy skalárral szorozhatjuk őket. (Ami nem "igazi" művelet...)

Példa:

Ha
$$\underline{x} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
 és $\lambda \in \mathbb{R}$, akkor $\lambda \underline{x} =$, akkor $\underline{x} + \underline{y} = \begin{pmatrix} \lambda x_1 \\ \dots \\ \lambda x_n \end{pmatrix}$

- (4) Az \mathbb{R}^n tér alatt \mathbb{R}^n elemeire és a fenti két műveletre gondolunk.
- (5) \mathbb{R}^2 ill. \mathbb{R}^3 elemei természetes módon megfeleltethetők a sík, ill. a 3 dimenziós tér pontjainka. Ez segíthet abban, hogy valamiféle szemléletes képet kapjunk az n magasságú vektorokról tanultakról.

0.2 Vektorműveletek azonosságai

Állítás: Az \mathbb{R}^n tér vektoraival történő számolásban néhány fontos szabály sokat segít. Tetszőleges $x, y, z \in \mathbb{R}^n$ vektorokra és $\lambda, \mu \in \mathbb{R}$ skalárokra az alábbiak teljesülnek:

- (1) u + v = v + u (az összeadás kommutatív)
- (2) $(\underline{u}+\underline{v})+\underline{w}=\underline{u}+(\underline{v}+\underline{w})$ (az össze
adás asszociatív)
- (3) $\lambda(\underline{u} + \underline{v}) = \lambda \underline{u} + \lambda \underline{v}$ (egyik disztributivitás)
- (4) $(\lambda + \mu)\underline{u} = \lambda\underline{u} + \mu\underline{u}$ (másik disztributivitás)

(5) $(\lambda \mu)\underline{u} = \lambda(\mu \underline{u})$ (másik asszociatívitás)

Biz: Mivel mindkét művelet koordinátánként történik, elég az egyes azonosságokat koordinátánként ellenőrizni. Ezek viszont éppen a valós számokra vonatkozó jól ismert szabályok.

Konvenció: $\underline{v} \in \mathbb{R}^n$ esetén $-\underline{v} := (-1) \cdot v$. Ezzel a vektorok között nem csak az összeadás, hanem a kivonás is értelmezhető: $\underline{u} - \underline{v} := \underline{u} + (-1)\underline{v}$. Ezáltal a kivonás is egyfajta összeadás, tehát az üsszeadásra vonatkozó szabályok értelemszerű változatai a kivonásra is érvényesek.

Ezek szerint a vektorokkal történő számolási szabályok nagyon hasonlók a valós számok esetén megszokott szabályokhoz.

0.3 Altér és lineáris kombináció

Def: $\emptyset \neq V \subseteq \mathbb{R}^n$ az \mathbb{R}^n tér altere (jel: $V \leq \mathbb{R}^n$), ha V zárt a műveletekre: $\underline{x} + \underline{y}, \lambda \underline{x} \in V$ teljesül $\forall \underline{x}, y \in V$ és $\forall \lambda \in \mathbb{R}$ esetén.

Példa: \mathbb{R}^2 -ben tetszőleges origón áthaladó egyenes pontjaihoz tartozó vektorok alteret alkotnak. \mathbb{R}^3 -ban tetszőleges origón áthaladó sík vagy egyenes pontjainak megfelelő vektorok alteret alkotnak.

Kérdés: Mik az \mathbb{R}^n tér alterei, és hogyan lehet ezeket megkapni?

Megf: Ha $V \leq \mathbb{R}^n, \underline{x}_1, \underline{x}_2, \dots, \underline{x}_k \in V$ és $\lambda_1, \dots, \lambda_k \in \mathbb{R}$, akkor $\sum_{i=1}^k \lambda_i \underline{x}_i = \lambda_1 \cdot \underline{x}_1 + \dots + \lambda_k \cdot \underline{x}_k \in V$.

Def: A $\sum_{i=1}^k \lambda_i \underline{x}_i$ kifejezés az $\underline{x}_1, \dots, \underline{x}_k$ lineráis kombinációja.

Triviális lineráis kombináció: $0 \cdot \underline{x}_1 + \cdots + 0 \cdot \underline{x}_k$.

Megf: $(V \leq \mathbb{R}^n) \iff (V \text{ zárt lineráis kombinációra})$, azaz az altér definiálható az \mathbb{R}^n lineráis kombinációra zárt részhalmazként.

Biz: Triviális.

Def: $\langle \underline{x}_1,\dots,\underline{x}_k\rangle$ az $\underline{x}_1,\dots,\underline{x}_k\in\mathbb{R}_n$ lineáris kombinációinak halmaza.

Példa:

 $\langle \binom{1}{2} \rangle$ az origón átmenő 2-meredekségű egyenes.

$$\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle = \mathbb{R}^2$$
, ill. $\langle \underline{e}_1, \underline{e}_2, \dots, \underline{e}_n \rangle = \mathbb{R}^n$ ahol $\underline{e}_i \in \mathbb{R}^n \forall i$.

Konvenció: $\langle \emptyset \rangle := \{\underline{0}\}.$

Állítás: Tetszőleges $\underline{x}_1, \dots, \underline{x}_k \in \mathbb{R}^n$ esetén $\langle \underline{x}_1, \dots, \underline{x}_k \rangle \leq \mathbb{R}^n$.

Biz: Zárt az összeadásra: $(\lambda_1 \underline{x}_1 + \dots + \lambda_k \underline{x}_k) + (\kappa_1 \underline{x}_1 + \dots + \kappa_k \underline{x}_k) = (\lambda_1 + \kappa_1)\underline{x}_1 + \dots + (\lambda_k + \kappa_k)\underline{x}_k \in V$. Skalárral szorzás: $\lambda \cdot (\lambda_1 \underline{x}_1 + \dots + \lambda_1 \underline{x}_k) = \lambda \lambda_1 \underline{x}_1 + \dots + \lambda \lambda_k \underline{x}_k \in V$.

Def: Az $\underline{x}_1, \dots, \underline{x}_k$ által generált altér a $\langle \underline{x}_1, \dots, \underline{x}_k$ halmaz. Ez a legszűkebb olyan altér, ami mindezen vektorokat tartalmazza.

Megf: (1) Alterek metszete altér: $V_i \leq \mathbb{R}^n \forall i \Rightarrow \cap_i V_i \leq \mathbb{R}^n$.

Biz: (1) Műveletzártság: $\underline{x}, \underline{y} \in V_i \forall i, \lambda \in \mathbb{R} \Rightarrow \underline{x} + \underline{y}, \lambda \underline{x} \in V_i \forall i$.

Megf: (2) $\{\underline{0}\} \leq \mathbb{R}^n$.

Biz: (2) $\underline{0} + \underline{0} = \underline{0}$ ill. $\lambda \underline{0} = \underline{0}$, zárt a műveletekre.

Megf: (3) $\mathbb{R}^n \leq \mathbb{R}^n$.

Biz: (3) \mathbb{R}^n zárt a műveletekre.

Def: \mathbb{R}^n triviális alterei: $\{\underline{0}\}, \mathbb{R}^n$.

0.4 Lineáris függetlenség és generálás

Def: Az $\underline{x}_1, \dots, \underline{x}_k \in \mathbb{R}^n$ vektorok a $V \leq \mathbb{R}^n$ altér generátorrendszerét alkotják, ha $\langle \underline{x}_1, \dots, \underline{x}_k \rangle = V$.

Példa: $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ az \mathbb{R}^n generátorrendszere, hisz minden \mathbb{R}^n -beli vektor előáll az egységvektorok lineáris kombinációjaként, azaz $\langle \underline{e}_1, \dots, \underline{e}_n \rangle = \mathbb{R}^n$

Ha \mathbb{R}^2 -ben két vektor nem párhuzamos, akkor generátorrendszert alkotnak, hiszen bármely vektor előállítható a lineáris kombinációjukból. (Ehhez a két vektrort az origóval összekötő egyenesekre kell a "másik" vektorral párhuzamosan vetíteni az előállítandó vektort.)

Hasonlóan, ha \mathbb{R}^3 -ban három vektor nem esik ugyanarra az origón átmenő síkra, akkor ez a három vektor generátorrendszert alkot.

Def: Az $\underline{x}_1, \dots, \underline{x}_k \in \mathbb{R}^n$ vektorok lineárisan függetlenek, ha a nullvektor csak a triviális lineáris kombinációjuk állítja elő: $\lambda_1 \underline{x}_1 + \dots + \lambda_k \underline{x}_k = \underline{0} \Rightarrow \lambda_1 = \dots = \lambda_k = 0$.

Ha a fenti vektorok nem lineárisan függetlenek, akkor lineárisan összefüggők.

Példa: $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ lineárisan független \mathbb{R}^n -ben, hisz ha $\lambda_1\underline{e}_1 + \dots \lambda_n\underline{e}_n = \underline{0}$ akkor az *i*-dik koordináta 0 volta miatt $\lambda_i = 0$, tehát a lineáris kombináció triviális.

Ha \mathbb{R}^2 -ben két vektro akkor lineárisan összefüggő, ha párhuzamosak. Tehát ha nem párhuzamosak, akkor lineárisan függetlenek.

Ha \mathbb{R}^3 -ban pedig az igaz, hogy ha három vektor nem esik ugyanarra az origón átmenő síkra, akkor ez a három vektor lineárisan független rendszert alkot.

Megj: A lineáris függetlenség (akárcsak a lineráis összefüggő tulajdonság) vektorok egy halmazára és nem az egyes vektorokra vonatkozik. Hasonló igaz a generátorrendszerre. Az, hogy egy konkrét \underline{v} vektor benne van egy lineárisan független (lineárisan összefüggő vagy generátor-) rendszerben lényegében semmi információt nem ad \underline{v} -ről.

Lemma: $\{\underline{x}_1, \dots, \underline{x}_k\}$ lineárisan független vektorrendszer \iff egyik \underline{x}_i sem áll elő a többi lineáris kombinációjaként.

Biz: Tegyük fel, hogy $\{\underline{x}_1,\dots,\underline{x}_k\}$ **nem** lineárisan független, azaz $\lambda_1\underline{x}_1+\dots+\lambda_k\underline{x}_k=\underline{0}$ és $\lambda_i\neq 0$. Ekkor \underline{x}_i előállítható a többiből: $\underline{x}_i=\frac{-1}{\lambda_i}\cdot(\lambda_1\underline{x}_1+\dots+\lambda_{i-1}\underline{x}_{i-1}+\lambda_{i+1}\underline{x}_{i+1}+\dots\lambda_k\underline{x}_k)$. Most tegyük fel, hogy valamelyik \underline{x}_i előáll a többi lineáris kombinációjaként: $\underline{x}_i=\lambda_1\underline{x}_1+\dots+\lambda_{i-1}\underline{x}_{i-1}+\lambda_{i+1}\underline{x}_{i+1}+\dots\lambda_k\underline{x}_k$.

Ekkor $\{\underline{x}_1,\ldots,\underline{x}_k\}$ nem lineárisan független, hiszen a nullvektor megkapható nemtriviális lineáris kombinációként: $\underline{0} = \lambda_1\underline{x}_1 + \cdots + \lambda_{i-1}\underline{x}_{i-1} + (-1) \cdot \underline{x}_i + \lambda_{i+1}\underline{x}_{i+1} + \ldots \lambda_k\underline{x}_k$.

0.5 Független- és generáló halmazok

Állítás: Tegyük fel, hogy $\underline{v} \in \mathbb{R}^n, \underline{v} \notin G$ és $\langle G \cup \{\underline{v}\} \rangle = V \leq \mathbb{R}^n$. Ekkor $(\langle G \rangle = V) \iff (\underline{v} \in \langle G \rangle)$.

 \mathbf{Megj} : A fenti állítás tulajdonképpen azt mondja ki, hogy egy V altér generátorrendszeréből pontosan akkor tudunk egy elemet elvenni úgy, hogy a maradék vektorok tobábbra is generátorrendszert alkossanak, ha a kihagyott elem előáll a maradék elemek lineáris kombinációjaként.