Espaces vectoriels normés

 $\alpha 14 - MP^*$

1 Généralités

1.1 Normes

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , E un \mathbb{K} – ev. Une norme est une application $E \longrightarrow \mathbb{R}^+$ souvent notée $\|\cdot\|$ vérifiant les axiomes suivants :

- Séparation : $\forall x \in E, (\|x\| = 0) \Longrightarrow (x = 0)$
- $Homog\acute{e}n\acute{e}it\acute{e}: \forall \lambda \in \mathbb{K}, \forall x \in E, ||\lambda x|| = |\lambda|||x||$
- Inégalité triangulaire (ou sous-additivité) : $\forall (x,y) \in E^2$, $||x+y|| \leq ||x|| + ||y||$

Si E est une \mathbb{K} – algèbre, $\| \|$ est une norme d'algèbre si de plus : $\forall (x,y) \in E^2, \|xy\| \leqslant \|x\| \|y\|$ (sous-multiplicativité). On impose également, en général, que $\|1_E\| = 1$.

1.2 Exemples

1.2.1 Normes associées à un produit scalaire

En général, c'est la vérification de l'inégalité triangulaire qui pose problème. Dans certains cas, on a $||x|| = \sqrt{\varphi(x,x)}$ où φ est un produit scalaire (éventuellement hermitien). Dans ce cas, il est immédiat que $||\cdot||$ est bien une norme.

Exemple: $E = C^1([0,1], \mathbb{R}), ||x|| = \sqrt{f(0)^2 + \int_0^1 f'(t) dt}.$

1.2.2 Normes $\| \cdot \|_p$ sur \mathbb{K}^n

Soit $x = (x_1, \dots x_n) \in \mathbb{K}^n$. On définit, pour $p \in \mathbb{N}^*$: $||x||_p = (\sum_{i=1}^n |x|^p)^{\frac{1}{p}}$, ainsi que $||x||_\infty = \max_{1 \le i \le n} x_i$.

Inégalité de Hölder (hp): si $(x,y) \in (\mathbb{K}^n)^2$, $\forall p,q>0/\frac{1}{p}+\frac{1}{q}=1$, $\sum_{i=1}^n |x_iy_i|\leqslant \|x\|_p\|y\|_q$.

On en déduit que pour tout p, $\| \|_p$ est bien une norme. On a de plus les résultats suivants :

- $\bullet \lim_{p \to +\infty} ||x||_p = ||x||_{\infty}$
- $\|x\|_{\infty} \leqslant 1 \cdot \|x\|_1$ (majoration optimale) ; $\|x\|_{\infty} \leqslant 1 \cdot \|x\|_2$ (optimale) ; $\|x\|_1 \leqslant n\|x\|_{\infty}$ (optimale) ; $\|x\|_2 \leqslant \sqrt{n}\|x\|_2$ (optimale) ; $\|x\|_1 \leqslant \sqrt{n}\|x\|_2$; $\|x\|_2 \leqslant \|x\|_1$.

1.2.3 Normes $\| \cdot \|_p$ sur $C^0(I, \mathbb{K})$

Soit I un segment de \mathbb{R} . On définit pour $f: I \xrightarrow{\mathcal{C}^0} \mathbb{K} : \|f\|_p = (\int_I |f|^p)^{\frac{1}{p}}$, et $\|f\|_{\infty} = \sup_{x \in I} |f(x)|$. On a $\|f\|_p \xrightarrow[p \to +\infty]{} \|f\|_{\infty}$. Les $\| \|_p$ sont encore des normes sur $\mathbb{R}[X]$.

1.3 Normes équivalentes

Soit E un \mathbb{K} – ev, deux normes $\| \| \|$ et $\| \| \| \|$ sont dites équivalentes si

- $\exists \alpha > 0 / \forall x \in E, ||x|| \leq \alpha ||x||'$
- $\exists \beta > 0 / \forall x \in E, ||x||' \leqslant \beta ||x||$

Cela équivaut à : $\alpha ||x|| \le ||x||' \le \alpha' ||x||$. Supposons E muni de deux normes équivalentes N_1 et N_2 . Notons E_1 (resp. E_2) l'espace métrique E muni de la distance associée à N_1 (resp. à N_2).

- Soit $(x_n) \in E^{\mathbb{N}}$, (x_n) converge au sens de N_1 ssi (x_n) converge au sens de N_2 .
- Sont indépendantes de la norme (N₁ ou N₂) les notions de suite de Cauchy, valeur d'adhérence et complétude : E₁ est complet ssi E₂ est complet. De même, les notions d'ouvert, de fermé, d'intérieur, d'adhérence et de compacité ne dépendent pas de la norme.
- Soit f: A ⊂ E → (E', d'); les notions de continuité, uniforme continuité et caractère lipschitzien ne dépendent pas de la norme (en revanche, la constante de Lipschitz éventuelle en dépend en général).
- De même pour $f: A \subset E' \longrightarrow E$.

2 Continuité des applications linéaires

2.1 Caractérisation des applications linéaires continues

Soit $(E, ||\cdot||)$, $(E', ||\cdot||')$ deux espaces normés, $f \in \mathcal{L}(E, E')$; les propositions suivantes sont équivalentes :

- 1. f est continue
- 2. $\exists k \ge 0$ tel que f soit k lipschitzienne
- 3. $\exists k \ge 0 / \forall x \in E, ||f(x)||' \le k||x||$
- 4. f est uniformément continue
- 5. f est continue en 0
- 6. $f|_{\mathrm{B}(0,1)}$ est bornée

2.2 Norme subordonnée d'une application linéaire continue

Soit $(E, \| \|)$, $(E', \| \|')$ deux espaces normés, $f \in \mathcal{L}(E, E')$ continue. La norme subordonnée de f notée |||f||| est définie par $|||f||| \stackrel{def}{=} \min\{k \geqslant 0/\forall x \in E, \|f(x)\|' \leqslant k\|x\|\}$. C'est la constante de Lipschitz de f. On a encore $|||f||| = \sup\{\frac{\|f(x)\|'}{\|x\|}, x \in E \setminus \{0\}\}$, ainsi que $|||f||| = \sup\{\|f(x)\|', x \in A\}$ avec $A \in \{B(0,1), B'(0,1), B'(0,1) \setminus \{0,1\}\}$. On a toujours : $\|f(x)\|' \le \||f|\| \cdot \|x\|$ est enfin le scalaire k vérifiant $\forall x \in E, \|f(x)\|' \leqslant k\|x\|$ et l'une des trois propriétés : $\forall k' < k, \exists x \in E/\|f(x)\|' > k'\|x\|$; il existe une suite (x_n) sans élément nul telle que $\frac{\|f(x_n)\|'}{\|x_n\|}$ tende vers k; $\exists x \in E \setminus \{0\}/\|f(x)\|' = k\|x\|$.

2.3 Cas d'un espace vectoriel préhilbertien

Soit E un ev préhilbertien, $f \in \mathcal{L}(E)$ supposée continue. On note $\mathbf{B}' = \mathbf{B}'(0,1)$. On a : $|||f||| = \sup_{x,y \in \mathbf{B}'} |(f(x) \mid y)| = |||f^*|||$.

Si E est de dimension finie et $f \in \mathcal{L}(E)$, alors f est continue et $|||f||| = \sqrt{\max \operatorname{Sp}(f^*f)}$. Si $u \in \mathcal{L}(E)$ est autoadjoint, on a $|||u||| = \max\{|\lambda|, \lambda \in \operatorname{Sp}(u)\}$. Si de plus u est positif, $|||u||| = \max \operatorname{Sp}(u)$.

2.4 L'espace vectoriel normé $\mathcal{L}_C(E, E')$

2.4.1 Cas général

Soient (E, || ||) et (E', || ||') deux espaces vectoriels normés. Par définition, $\mathcal{L}_C(E, E')$ est l'ensemble des fonctions linéaires continues $E \longrightarrow E'$. $\mathcal{L}_C(E, E')$ est un sous-espace vectoriel de $\mathcal{L}(E, E')$. $f \longrightarrow |||f|||$ est une norme sur ce sev.

Propriété : (E, || ||), (E', || ||'), (E'', || ||'') trois ev normés, si $f \in \mathcal{L}_C(E, E')$ et $g \in \mathcal{L}_C(E, E'')$, alors $|||g \circ f||| \le |||f||| \cdot |||g|||$.

2.4.2 L'algèbre normée $\mathcal{L}_C(E)$

Soit E un ev normé, on note $\mathcal{L}_C(E) \stackrel{def}{=} \mathcal{L}_C(E,E)$. C'est une sous-algèbre de $\mathcal{L}(E)$; en outre, munie de ||| ||||, c'est une algèbre normée.

Cas de $\mathfrak{M}_n(\mathbb{K})$: si $M \in \mathfrak{M}_n(\mathbb{K})$, on lui associe $u: X \in \mathbb{K}^n \longmapsto MX$. Alors N(M) = |||u||| est une norme d'algèbre sur $\mathfrak{M}_n(\mathbb{K})$. Si on munit \mathbb{K}^n de $|| ||_1$ (resp. $|| ||_2$, $|| ||_{\infty}$), alors $N_1(M) = \max_{1 \le i \le n} \sum_{i=1}^n |m_{i,j}|$ (resp. $N_2(M) = \sqrt{\max \operatorname{Sp}(^i M M)}$,

$$N_{\infty}(M) = \max_{1 \leq i \leq n} \sum_{i=1}^{n} |m_{i,j}|$$
 est une norme sur $\mathfrak{M}_n(\mathbb{K})$.

2.5 Cas des applications multilinéaires

Soit $(E_1, || ||_1), \ldots, (E_m, || ||_m), (E', || ||')$ (m+1) ev normés. Soit $f: E = \prod_{i=1}^m E_i \longrightarrow E'$ un application m – linéaire. E peut être muni de $x \longmapsto \sum x_i$ ou $x \longmapsto \max x_i$. Les propriétés suivantes sont équivalentes :

- f est continue
- f est continue en $(0, \ldots, 0)$
- il existe k > 0 tel que $\forall x \in E, ||f(x)||' \leq k \prod_{i=1}^{m} ||x_i||_i$.

Par exemple : si E est euclidien orienté, l'application produit mixte $[x_1, \dots x_n] = \det_{\mathcal{B}}(x_1, \dots, x_n)$, où \mathcal{B} est une base orthonormale directe, est continue. Si E est préhilbertien muni de la norme associée à son produit scalaire, $(x, y) \longmapsto (x \mid y) \in \mathbb{K}$ est continue. Si E est un espace vectoriel normé de dimension 3, le produit vectoriel $(x, y) \longmapsto x \land y$ est continue.

3 Espaces vectoriels normés complets

 $(E, \| \|)$ est dit de Banach s'il est complet pour cette norme. Une algèbre de Banach est une algèbre normée complète.

3.1 Exemples et contre-exemples

 $\mathcal{C}^0([0,1],\mathbb{K})$ muni de $\| \|_1$ n'est pas complet ; muni de $\| \|_{\infty}$, il l'est. Soit E,E' deux espaces vectoriels normés ; si E' est complet, alors $\mathcal{L}_C(E,E')$ est de Banach. Si E est complet, alors $\mathcal{L}_C(E)$ est une algèbre de Banach.

3.2 Séries dans les espaces vectoriels normés complets

 $(E, \| \|)$ un ev normé ; on dit que la série $\{u_n\}$ converge si $n \in \mathbb{N} \longrightarrow \sum_{k=0}^n u_k$ admet une limite. On utilisera les mêmes notations que pour les séries réelles (cf. α 6). Si $\{u_n\}$ converge alors $u_n \longrightarrow 0$. On dit que $\{u_n\}$ est absolument convergente si la série réelle $\{\|u_n\|\}$ converge. Si E n'est pas complet, une série absolument convergente peut éventuellement diverger. En revanche si E est complet, alors toute série absolument convergente est convergente.

3.3 Exponentielle dans une algèbre de Banach

Soit A une algèbre de Banach. Si $u \in A$, $\{\frac{u^n}{n!}\}_{n \geqslant 0}$ est absolument convergente. On pose alors $\exp u = \sum_{k=0}^{+\infty} \frac{u^n}{n!}$, que l'on pourra encore noter abusivement e^u . Comme $\|1_A\| = 1$, on a de plus $\|e^u\| \le e^{\|u\|}$.

Compléments : On munit $\mathfrak{M}_n(\mathbb{K})$ d'une norme.

- 1. Si $M \in \mathfrak{M}_n(\mathbb{K}), e^{t_M} = {}^t e^M$
- 2. Soit $M \in \mathfrak{M}_n(\mathbb{K})$, $P \in GL_n(\mathbb{K})$, $e^{P^{-1}MP} = P^{-1}e^MP$
- 3. Si M est diagonalisable (resp. triangulaire supérieure), e^M est diagonalisable (resp. triangulaire supérieure)
- 4. Si M est scindée, $\det e^M = e^{\operatorname{tr}(M)}$
- 5. (hp) Si $A, B \in \mathfrak{M}_n(\mathbb{K})$ commutent, alors $e^{A+B} = e^A e^B$

Applications:

- si $A \in \mathfrak{M}_n(\mathbb{R})$, alors $\forall t \in \mathbb{R}, e^{tA} \in SO_n(\mathbb{R})$
- Soit E de dimension finie, $u \in \mathcal{L}(E)$ scindé. Alors il existe $\delta, \nu \in \mathcal{L}(E)$ tels que $u = \delta + \nu, \, \delta \nu = \nu \delta, \, \delta$ diagonalisable et ν nilpotent
- Soit un système différentiel X' = AX avec $X \in \mathfrak{M}_{n,1}(\mathbb{K})$ vecteur inconnu fonction de t vérifiant $X(0) = X_0$ fixé, et $A \in \mathfrak{M}_n(\mathbb{K})$ constante. L'unique solution de ce système est $t \longmapsto e^{tA}X_0$

4 Espaces vectoriels normés de dimension finie

4.1 Équivalence des normes

Dans un espace vectoriel normé de dimension finie, deux normes quelconques sont équivalentes.

4.2 Théorème de Borel-Lebesgue

Soit E un espace vectoriel normé de dimension finie. Une partie de E est compacte ssi elle est fermée bornée.

4.3 Compléments

- 1. Tout ev normé de dimension finie est complet
- 2. Soit E un ev normé, F sev de E de dimension finie, alors F est fermé et complet.

4.4 Continuité des applications linéaires

Soit E un espace vectoriel normé de dimension finie, E' un espace vectoriel normé, $f \in \mathcal{L}(E, E')$. Alors f est continue. On a donc $\mathcal{L}_C(E, E') = \mathcal{L}(E, E')$. De même si $f : \prod_{i=1}^n E_i \longrightarrow E'$: si tous les E_i sont de dimension finie, f est continue.

4.5 Théorème de Bolzano-Weierstrass

Soit E un espace métrique, $A \subset E$, $x \in E$ est un point d'accumulation de A ssi $x \in \overline{A \setminus \{x\}}$. Cela équivaut à : $\forall \varepsilon > 0$, $\exists X/X \neq x$ et $X \in A \cap (B(x, \varepsilon))$; ou encore à : $\exists (x_n) \in A^{\mathbb{N}}$ non stationnaire telle que $x = \lim x_n$; ou enfin à : $\forall \varepsilon > 0$, $B(x, \varepsilon) \cap A$ est de cardinal infini.

Théorème de Bolzano-Weierstrass : Si E est un ev normé de dimension finie et $A \subset E$ de cardinal infini, alors A possède au moins un point d'accumulation.