Fundamentos de Segurança Informática (FSI)

2021/2022 - LEIC

Manuel Barbosa mbb@fc.up.pt

Aula 14 Criptografia: Parte 1

Criptografia?

- Historicamente:
 - "arte" onde o segredo e o obscurantismo eram princípios fundamentais
 - principalmente utilizada em meios militares/estatais
- Hoje:
 - ciência => área multidisciplinar, princípios rigorosos
 - normas internacionais estabelecidas e públicas => escrutínio
 - <u>utilização generalizada</u> => **todas** as aplicações que usamos hoje em dia

Criptografia!

- É:
 - Uma ferramenta espantosa!
 - Um componente central em muitos mecanismos de segurança
- Não é:
 - A solução para todos os problemas (apenas uma parte da solução)
 - Fiável se não for bem implementada e corretamente utilizada
 - Algo que se possa fazer em modo DIY

Segurança da Informação

- Proteção da segurança da informação:
 - em trânsito: A => B, on-line/síncrono (e.g., HTTPS)
 - em trânsito: A => B, off-line/assíncrono (e.g., email)
 - em repouso: A => A, e.g., disk encryption

Segurança da Informação

- Proteção da segurança da informação:
 - Confidencialidade
 - informação acessível apenas a emissor A e recetor B (ou A)
 - cifras simétricas e assimétricas, acordos de chave
 - Autenticidade (e integridade)
 - recetor B (ou A) tem a certeza de que os dados vieram (sem alteração) de A
 - assinaturas, acordos de chave, MAC
 - Não-repúdio: assinaturas (emissor A não pode negar envio da mensagem)

Criptografia Moderna

- 1. Definições precisas e rigorosas de segurança: modelos matemáticos da realidade
- 2. Quando a segurança de uma construção criptográfica se baseia num pressuposto que não conseguimos provar:
 - A. esse pressuposto deve ser simples e descrito de forma precisa.
 - B. utilizam-se poucos destes pressupostos na criptografia moderna
 - C. são escrutinados por toda a comunidade
- 3. As construções criptográficas devem ser justificadas formalmente:
 - D. prova de que satisfaz definição de acordo com o princípio #1
 - E. possivelmente, assumindo pressupostos enunciados de acordo com o princípio #2

Cifras Simétricas

- E, D: algoritmos (encrypt, decrypt) => públicos e standard!!!
- k: chave secreta (hoje tipicamente 128 bits, porquê?)
- n, m, c: nonce (non-repeating, público), texto-limpo, criptograma

https://crypto.stackexchange.com/questions/13299/is-80-bits-of-key-size-considered-safe-against-brute-force-attacks

Casos de Uso

- Chave usada apenas uma vez (one-time key)
 - exemplo: email cifrado usa chave fresca para cada mensagem
 - nonce não é relevante: pode ser fixado a 0 por exemplo
- Chave usada muitas vezes (many-time key)
 - Exemplo: cifrar disco ou HTTPS/TLS
 - nonce não se pode repetir: número de sequência ou valor aleatório

Exemplo: One-Time Pad (Vernam, 1917)

- Cifrar: $E(k, m) = m \oplus k$
- Decifrar: $D(k,c) = c \oplus k = (m \oplus k) \oplus k = m$

Segurança do One-Time-Pad

- Primeiro resultado formal para uma garantia de segurança (Sh49):
 - OTP garante confidencialidade contra "eavesdroppers"
 - formalmente: distribuição do criptograma totalmente aleatória
- Problema:
 - chave do tamanho do texto limpo!
 - chave usada apenas uma vez!

Cifras Sequenciais

• Solução para o comprimento da chave, mas ainda one-time

Cifras Sequenciais

- Perigos:
 - Se não houver nonce PRG(k) é sempre igual
 - Em duas cifrações com a mesma chave

$$c_1 = m_1 \oplus PRG(k)$$
 $c_2 = m_2 \oplus PRG(k)$

- Isto é totalmente inseguro! Porquê? $==>c_1\oplus c_2=m_1\oplus m_2$
- Solução:
 - PRG moderno permite usar nonce público (E.g., ChaCha20):

$$c_1 = m_1 \oplus PRG(k, n_1)$$
 $c_2 = m_2 \oplus PRG(k, n_2)$

Cifras de Bloco

- Apesar do nome <u>não são cifras</u> => permitem construir cifras
- Usadas para muitas outras finalidades
- Exemplos:
 - DES (até 2000): bloco de 64 bits, chave de 56 bits
 - AES (desde 2000): bloco de 128 bits, chave de 128, 256, 512 bits

- Propriedade:
 - para k aleatório e secreto
 - E(k,B) parece aleatório
 - mesmo escolhendo B

Cifras de Bloco: Como Funcionam?

• Implementações pequenas e eficientes: iteração de uma transformação

• R(k,P_i) => transformação de round (10 rounds no AES 128, 14 no AES 256)

Cifras de Bloco: AES

- AES (Advanced Encryption Standard)
- Provavelmente o algoritmo criptográfico mais utilizado
- Implementações disponíveis em hardware
- Os processadores mais utilizados (Intel, AMD, ARM) oferecem AES-NI
 - instruções para computar um round de AES
 - instruções para preparar a sequência de chaves para cada round
 - velocidade uma ordem de magnitude melhor que software (e mais seguro, porquê? ==> side channels)

AES: Como funciona

- Estado = matriz 4x4 bytes
- Um round = 4 transformações:
 - AddRoundKey, MixColumn, ShiftRow, ByteSub
- Cada round usa uma chave derivada da chave da cifra => key schedule
- AES é seguro?
 - melhor ataque ~ 2^{|k|} operações

AES: Como funciona

- Estado = matriz 4x4 bytes
- Um round = 4 transformações:
 - AddRoundKey, MixColumn, ShiftRow, ByteSub
- Cada round usa uma chave derivada da chave da cifra => key schedule
- AES é seguro?
 - melhor ataque ~ 2^{|k|} operações

Cifra de Bloco \neq Cifra Segura

- Cifra de Bloco:
 - Bloco controlado por aplicação
 => bloco pseudo-aleatório
 - Como usar esta funcionalidade para cifrar, e.g., um ficheiro?
- Nem todas as maneiras são seguras:
 - Electronic Code Book (inseguro):
 - blocos do ficheiro iguais
 - blocos de criptograma iguais!

Electronic Codebook (ECB) mode encryption

Cifra de Bloco Cifra Segura

- Cifra de Bloco:
 - Bloco controlado por aplicação => bloco pseudo-aleatório
 - Como usar esta funcionalidade para cifrar, e.g., um ficheiro?
- Algumas maneiras são seguras:
 - Cipher Block Chaining Mode (seguro)
 - Porquê? (Estudar criptografia => prova)
 - Intuição: plaintext não é aplicado a AES
 - aplica máscara a cada bloco: criptograma anterior
 - bloco 0: máscara = IV

Cipher Block Chaining (CBC) mode encryption

Cifra de Bloco Cifra Segura

- Cifra de Bloco:
 - Bloco controlado por aplicação => bloco pseudo-aleatório
 - Como usar esta funcionalidade para cifrar, e.g., um ficheiro?
- Algumas maneiras são seguras:
 - Counter Mode (seguro, mais usado)
 - Porquê? (Estudar criptografia => prova)
 - Intuição: cifra sequencial com nonce
 - usa AES para construir PRG
 - contador inicial = nonce

Counter (CTR) mode encryption

Outras cifras simétricas

- Nem todas as cifras simétricas começam no AES
- ChaCha20:
 - cifra sequencial com nonce
 - gerador pseudo-aleatório dedicado
 - estrutura parecida ao counter mode
 - componente central já assume counter e nonce no estado
 - popularidade crescente: eficiência em SW

