

No Training Wheels:

Steering Vectors for Bias Correction at Inference Time

Aviral Gupta*

Armaan Sethi*

Ameesh Sethi

- Transformers often learn biases from uneven datasets
- Most bias correction methods require require training or data generation
- We show that we can use steering vectors to fix bias at inference time using just the training data
- This is a training-free, post-hoc method of bias correction

Evaluation Over Various Biased Datasets (Both Vision and Language)

Dataset	Method	Training Required?	Original Dataset	
			Worst	Average
Waterbirds	ERM	-	62.46	89.43
	Full Residual Stream (Waterbirds class)	×	78.19	93.18
	Full Residual Stream (Landbirds class)	× × ×	83.95	92.49
	Best Single Layer (Waterbirds Class)	×	75.9	92.3
	Best Single Layer (Landbirds Class)	×	76.5	94.1
	FFR† (Qraitem et al., 2023)	✓	69.5	84.0
	GDRO† (Sagawa et al., 2019)	✓	91.4	93.5
	ERM	-	47.8	94.9
CelebA	Full Residual Stream (Blond Hair)	×	62.22	93.47
	Best Single Layer (Blond Hair)	×	64.84	94.15
	FFR† (Qraitem et al., 2023)	✓	68.9	85.7
	GDRO† (Sagawa et al., 2019)	✓	88.9	92.9
	ERM	-	74.3	84.5
UTKFace	Full Residual Stream(Male)	×	50.98	74.37
	Full Residual Stream(Female)	×××	47.11	79.16
	Best Single Layer (Male)	×	79.67	88.20
	Best Single Layer (Female)	X	76.50	86.09
	FFR† (Qraitem et al., 2023)	✓	67.4	81.4
	GDRO† (Sagawa et al., 2019)	✓	81.6	85.9
	ERM	-	47.8	94.9
MultiNLI	Full Residual Stream (contradiction-negation)	×	77.67	72.99
	Best Single Layer (contradiction-negation)	×	69.9	79.7
	FFR† (Qraitem et al., 2023)	✓	-	-
	GDRO† (Sagawa et al., 2019)	✓	77.7	81.4

Findings

- Steering Vectors
 Work for
 Classification
 Models as well!!
- Effective for bias mitigation at test-time

What's left?

- Mechanistic
 Understanding
- Better Steering Vectors (fine-grained)
- Extending to other OOD problems

Key Idea: Find a "bias vector" direction and delete this from the model activations

Bias Aligned Group

Calculating Bias
 Vector by subtracting
 bias aligned and
 misaligned groups

$$\mathbf{X}'[l,t] \leftarrow \mathbf{X}[l,t] - \hat{\mathbf{R}}[l,t] \left(\hat{\mathbf{R}}[l,t]^\intercal \mathbf{X}[l,t] \right)$$

Per Token, Per Layer (Full Ablation)

 $\mathbf{x}' \leftarrow \mathbf{x} - \hat{\mathbf{r}}\hat{\mathbf{r}}^\mathsf{T}\mathbf{x}.$

Per Token (Directional Ablation)

2. Orthogonalise Activations to Bias Vector