S.I. Unitat 1

Introducció als sistemes microinformàtics

Índex

1. Informàtica i informació

A. Simbologia i codificació

2. Sistemes de numeració

- A. Sistema decimal
- B. Sistema binari
- c. Sistema hexadecimal

3. Representació interna de la informació

- A. Mesura de la informació
- B. Representació de dades alfabètiques i alfanumèriques
- 4. Portes lògiques
- s. Elements funcionals d'un ordinador

Ivens Huertas 2

Índex

1. Informàtica i informació

- A. Simbologia i codificació
- 2. Sistemes de numeració
 - A. Sistema decima
 - Sistema hinari
 - Sistema hexadecimal

3. Representació interna de la informació

- A. Mesura de la informació
- B. Representació de dades alfabètiques i alfanumèriques
- 4. Portes lògiques
- 5. Elements funcionals d'un ordinador

INFORMÀTICA

Informàtica

Informació + Automàtica

1. Informàtica i informació

• ELEMENTS D'UN SISTEMA DE COMUNICACIÓ

7

- Emissor
 - Receptor
 - Mitjà o canal

- Perquè existisca comunicació, emissor i receptor han d'entendre's
- Missatge o dades

Ivens Huertas 5

1. Informàtica i informació

• ELEMENTS D'UN SISTEMA DE COMUNICACIÓ

- Qui seria l'emissor, receptor, mitjà i missatge?
 - Dos amics parlant al carrer
 - Notícia en la ràdio
 - Un ordinador descarregant un arxiu d'Internet

Ivens Huertas

1. Informàtica i informació

- Simbologia i codificació
 - Exemples de codis
 - Abecedari
 - Codi Morse

Ivens Huertas

1. Informàtica i informació

• Simbologia i codificació

1. Informàtica i informació

- Simbologia i codificació
 - Què passa dins de l'ordinador?
 - Impulsos elèctrics
 - 2 estats
 - Codi amb 2 símbols: 0 i 1
 - 0 = absència de corrent
 - 1 = pas de corrent

Codi Binari: símbols 0 i 1

Ivens Huertas

9

Sistemes de codificació

- Sistema decimal
 - 10 dígits (0 fins a 9) → quantitat
 - Posició → magnitud
 - Exemple:

- Informàtica i informació

Sistemes de numeració

- Sistema decimal
- Sistema binari
- Sistema hexadecimal
- Representació interna de la informació
- Portes lògiques
- Elements funcionals d'un ordinador

Ivens Huertas

2. Sistemes de numeració

- Sistema decimal
 - Exemple:

10

12

 $n^0 = 1$

$$5 \times 10^3 + 9 \times 10^2 + 3 \times 10^1 + 9 \times 10^0$$

- Sistema binari
 - Decimal -> 10 dígits -> sistema en base 10
 - Binari -> 2 dígits -> sistema en base 2
 - Als dígits binaris els diem bits
 - Un bit pot prendre el valor de 0 o 1

Ivens Huertas 13

Decimal		Bin	ari	
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

2. Sistemes de numeració

- Sistema binari
 - Comencem a comptar...

14 Ivens Huertas

2. Sistemes de numeració

- Sistema binari
 - Consell:
 - Subíndex -> Base a la qual correspon
 - Exemple:

$$3_{10} = 11_2$$

 $8 = 1000$

$$8_{10} = 1000_2$$

- Sistema binari
 - Fins a quin número podem comptar amb **n** bits:

Max nº decimal representable amb n bits= 2ⁿ − 1

2. Sistemes de numeració

- Sistema binari
 - Exemple: 5 bits

$$2^5 - 1$$

$$32 - 1$$

31

(Podrem comptar des del 0 fins al 31)

Disposarem de 32 números diferents

En la calculadora s'ha d'usar la tecla

Ivens Huertas 17

18

2. Sistemes de numeració

- Sistema binari
 - Exemple: 8 bits

$$2^8 - 1$$

$$256 - 1$$

255

Disposarem de 256 números diferents

(Podrem comptar des del 0 fins al 255)

2. Sistemes de numeració

Sistema binari

- Estructura de pesos
- El bit més a la dreta és el bit menys significatiu
- El bit més a l'esquerra és el bit més significatiu

$$\dots 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$$

- Sistema binari
 - Exercici.

Determinar el valor decimal del nombre enter binari 1101101

$$1101101_{2}$$

$$1\times2^{6} + 1\times2^{5} + 0\times2^{4} + 1\times2^{3} + 1\times2^{2} + 0\times2^{1} + 1\times2^{0}$$

$$64 + 32 + 0 + 8 + 4 + 0 + 1$$

$$109_{10}$$

Ivens Huertas

2. Sistemes de numeració

- Sistema binari
 - Conversió decimal-binari
 - Mètode per divisió successiva
 - Anar dividint el nombre decimal entre 2 fins que no es puga continuar (quocient sencer = 0)
 - Les restes generades en cada divisió formen el nombre binari
 - La primera resta és el bit menys significatiu
 - L'última resta és el bit més significatiu

Ivens Huertas 22

2. Sistemes de numeració

- Sistema binari
 - Exemple: convertir el nombre decimal 12 a binari

21

2. Sistemes de numeració

- Sistema binari
 - Exemple: convertir el nombre decimal 22 a binari

101102

Ivens Huertas 23 Ivens Huertas

- Sistema binari
 - decimals a binari usant divisions

a)
$$13 = 1101$$

Ivens Huertas

25

2. Sistemes de numeració

- Sistema binari
 - Aritmètica binària
 - Suma binària
 - Regles bàsiques:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 0$$
 (amb ròssec)

2. Sistemes de numeració

- Sistema binari
 - Exercici: passa a binari els següents nombres decimals

Ivens Huertas

2. Sistemes de numeració

- Sistema binari
 - Exemple.

- Sistema binari
 - Exemple.

Ivens Huertas 29

2. Sistemes de numeració

• Sistema binari

c)
$$111 + 11$$
 = 1010 (7+3=10)

$$d) 110 + 100 = 1010 (6+4=10)$$

- Sistema binari
 - Aritmètica binària
 - Resta binària
 - Regles bàsiques:

2. Sistemes de numeració

$$0 - 0 = 0$$

$$1 - 1 = 0$$

$$0 - 1 = 1$$
 (amb ròssec negatiu)

2. Sistemes de numeració

Sistema binari

Ivens Huertas

Exemple.

- Sistema binari
 - Exemple.

2. Sistemes de numeració

- Sistema binari
 - Aritmètica binària
 - Multiplicació binària
 - Es realitza igual que amb els nombres decimals, però usant bits

Ivens Huertas

33

Ivens Huertas

34

2. Sistemes de numeració

- Sistema binari
 - Exemple.

$$11 \times 01$$

2. Sistemes de numeració

Exemple.

$$11 \times 11$$

- Sistema binari
 - Exercici. Realitza les següents multiplicacions binàries. Comprova el resultat en decimal.

a)
$$111 \times 101 = 100011 \quad (7 \times 5 = 35)$$

b)
$$1011 \times 1001 = 1100011 \quad (11 \times 9 = 99)$$

2. Sistemes de numeració

- Sistema hexadecimal
 - 16 dígits i caràcters alfabètics
 - 10 dígits numèrics + 6 caràcters alfabètics

Ivens Huertas 37 Ivens Huertas 38

2. Sistemes de numeració

- Sistema hexadecimal
 - Conversió binari-hexadecimal
 - Agrupant en blocs de 4 bits, començant per la dreta, i convertint a hexadecimal

Hexadecimal	0	1	2	3	4	5	6	7
Binari	0000	0001	0010	0011	0100	0101	0110	0111
Hexadecimal	8	9	Α	В	С	D	Е	F

2. Sistemes de numeració

- Sistema hexadecimal
 - Exercici. Converteix de binari a hexadecimal els següents números:

a)
$$1011110101_2$$
 = $2F5_{16}$
b) 10001100_2 = $8C_{16}$
c) 10111_2 = 17_{16}
d) 11101_2 = $1D_{16}$
e) 111111011_2 = $1FB_{16}$
f) 100010001_2 = 111_{16}

- Sistema hexadecimal
 - Conversió hexadecimal-binari
 - Cada dígit hexadecimal serà un grup de 4 bits

Hexadecimal	0	1	2	3	4	5	6	7
Binari	0000	0001	0010	0011	0100	0101	0110	0111
Hexadecimal	8	9	Α	В	С	D	E	F
Binari	1000	1001	1010	1011	1100	1101	1110	1111

Ivens Huertas 41

2. Sistemes de numeració

- Sistema hexadecimal
 - Exercici. Converteix d'hexadecimal a binari els següents números:

a)
$$60_{16}$$
= 1100000_2 b) 91_{16} = 10010001_2 c) $A0_{16}$ = 10100000_2 d) $2D1_{16}$ = 1011010001_2 e) $94B_{16}$ = 100101001011_2 f) $5E8_{16}$ = 10111101000_2

Ivens Huertas 42

2. Sistemes de numeració

- Sistema hexadecimal
 - Conversió hexadecimal-decimal
 - Estructura de pesos

2. Sistemes de numeració

Exercici. Determinar el valor decimal del nombre enter hexadecimal C7A3

$$C 7 A 3_{16}$$

$$12 \times 16^{3} + 7 \times 16^{2} + 10 \times 16^{1} + 3 \times 16^{0}$$

$$49152 + 1792 + 160 + 3$$

$$5 1 1 0 7_{10}$$

- Sistema hexadecimal
 - Conversió decimal-hexadecimal
 - Igual que fèiem amb la conversió binari-decimal, anirem dividint, però aquesta vegada, entre **16**

2. Sistemes de numeració

- Sistema hexadecimal
 - Exemple: convertir el nombre decimal 650 a hexadecimal

Molta cura amb aqueix "10"!

28A₁₆

Ivens Huertas 45

2. Sistemes de numeració

- Sistema hexadecimal
 - Exercici. Converteix de decimal a hexadecimal els següents números:

a)
$$65_{10} = 41_{16}$$

b)
$$74_{10} = 4A_{16}$$

c)
$$211_{10} = D3_{16}$$

d)
$$689_{10} = 2B1_{16}$$

$$e) 999_{10} = 3E7_{16}$$

$$f) 3112_{10} = C28_{16}$$

Ivens Huertas 46

Decimal			Binari			Hexadecimal
0	0	0	0	0	0	0
1	0	0	0	0	1	1
2	0	0	0	1	0	2
3	0	0	0	1	1	3
4	0	0	1	0	0	4
5	0	0	1	0	1	5
6	0	0	1	1	0	6
7	0	0	1	1	1	7
8	0	1	0	0	0	8
9	0	1	0	0	1	9
10	0	1	0	1	0	А
11	0	1	0	1	1	В
12	0	1	1	0	0	С
13	0	1	1	0	1	D
14	0	1	1	1	0	Е
15	0	1	1	1	1	F
16	1	0	0	0	0	10

 En general, per a convertir de qualsevol base a una altra, podem ajudar-nos convertint a decimal o a binari

una base → binari → una altra base

una base → decimal → una altra base

Ivens Huertas 49

3. Representació interna de la informació

- Mesura de la informació
 - **Bit**: Unitat mínima d'emmagatzematge en informàtica. Queda representat per un 0 o un 1
 - Byte: Agrupació de 8 bits
 - L'ordinador sol treballar amb agrupacions de bits múltiples de 2
 - 2, 4, 8, 16, 32, 64, 128,...

Índex

- 1. Informàtica i informació
 - A. Simbologia i codificació
- 2. Sistemes de numeració
 - A Sistema decimal
 - в. Sistema binar
 - c. Sistema hexadecima

3. Representació interna de la informació

- A. Mesura de la informació
- B. Representació de dades alfabètiques i alfanumèriques
- 4. Portes lògiques
- 5. Elements funcionals d'un ordinador

Ivens Huertas 50

3. Representació interna de la informació

- Mesura de la informació
 - Equivalència de mesures en múltiples de bits
 - En informàtica s'utilitza el sistema binari
 - Potències de 2
 - En el Sistema Internacional de Mesures (o sistema mètric)
 - Potències de 10

Mesura de la informació

Unidades de información (del byte)								
Sistema Internacional (de	ISO/IEC 80000-13 (I	binario)						
Múltiplo (símbolo)	SI	Múltiplo (símbolo)	ISO/IEC					
kilobyte (kB)	10 ³	kibibyte (KiB)	2 ¹⁰					
megabyte (MB)	10 ⁶	mebibyte (MiB)	2 ²⁰					
gigabyte (GB)	10 ⁹	gibibyte (GiB)	2 ³⁰					
terabyte (TB)	10 ¹²	tebibyte (TiB)	2 ⁴⁰					
petabyte (PB)	10 ¹⁵	pebibyte (PiB)	2 ⁵⁰					
exabyte (EB)	10 ¹⁸	exbibyte (EiB)	2 ⁶⁰					
zettabyte (ZB)	10 ²¹	zebibyte (ZiB)	2 ⁷⁰					
vottabyte (YB)	10 ²⁴	vohihyte (YiB)	280					

Ivens Huertas 53

Cada escaló:

- Sistema Binari = 1024
- Sistema Internacional = 1000

3. Representació interna de la informació

- Exercici. Expressa en gigabits i en megabytess les següents quantitats, tant pel Sistema Internacional de mesures com amb el sistema binari:
 - 3 TB
 - 2 ZB
 - 7 PB
 - Quants MB i GB, segons el Sistema Internacional de mesures i segons el sistema binari, són 10.000.000.000 bits?

3. Representació interna de la informació

- Múltiples de byte :
 - kilobyte, megabyte, gigabyte,...
- Capacitat d'una línia de transmissió de dades
 - Múltiples de bit :
 - kilobit, megabit, gigabit,...

Ivens Huertas 55

- Representació de dades alfabètiques i alfanumèriques
- Les computadores
 - Només treballen amb números
 - Caràcters = Assignació d'un número a cada caràcter
- Universalització d'uns pocs codis d'entrada/eixida
 - ASCII
 - Unicode
 - BCD
 - EBCDIC
 - ...

Ivens Huertas 57

3. Representació interna de la informació

- Representació de dades alfabètiques i alfanumèriques
- ASCII

(American Standard Code for Information Interchange)

- Codi de caràcters basat en l'alfabet llatí, tal com s'usa en l'anglès modern i en altres llengües occidentals
- Cada caràcter = 7 bits
- Caràcters anglesos més corrents
 - Problema:
 - Caràcters especials i caràcters específics d'altres llengües

Ivens Huertas 58

3. Representació interna de la informació

- ASCII
 - Reserva els primers 32 codis (numerats del 0 al 31 en decimal) i el 127 per a caràcters de control
 - Exemples:
 - El caràcter 9 representa la tabulació horitzontal
 - El caràcter 10 representa la funció "nova línia" (LF, line feed), que fa que una impressora avance el paper

3. Representació interna de la informació

- ASCII
 - Els codis del 32 al 126 es coneixen com a caràcters imprimibles
 - Lletres (a, b, c, ... A, B, C,...)
 - Dígits (0, 1, ..., 9)
 - Signes de puntuació (!, ?, . ,...)
 - Símbols (\$, %, &,...)

Taula ASCII	00	NULL	(carácter nulo)
Iaula ASCII	01	SOH	(inicio encabezado)
	02	STX	(inicio texto)
	03	ETX	(fin de texto)
	04	EOT	(fin transmisión)
	05	ENQ	(consulta)
	06	ACK	(reconocimiento)
	07	BEL	(timbre)
	08	BS	(retroceso)
	09	HT	(tab horizontal)
	10	LF	(nueva línea)
	11	VT	(tab vertical)
	12	FF	(nueva página)
	13	CR	(retorno de carro)
	14	SO	(desplaza afuera)
C \ - 1	15	SI	(desplaza adentro)
Caràcters	16	DLE	(esc.vínculo datos)
de control	17	DC1	(control disp. 1)
	18	DC2	(control disp. 2)
	19	DC3	(control disp. 3)
	20	DC4	(control disp. 4)
	21	NAK	(conf. negativa)
	22	SYN	(inactividad sínc)
	23	ETB	(fin bloque trans)
	24	CAN	(cancelar)
	25	EM	(fin del medio)
	26	SUB	(sustitución)
	27	ESC	(escape)
	28	FS	(sep. archivos)
	29	GS	(sep. grupos)
	30	RS	(sep. registros)
	31	US	(sep. unidades)
	127	DEL	(suprimir)
			·

Aquests caràcters s'afigen als

	32	espacio	64	@	96	,
	33	!	65	Α	97	а
	34	"	66	В	98	b
	35	#	67	С	99	С
	36	\$	68	D	100	d
	37	%	69	E	101	е
	38	&	70	F	102	f
	39	'	71	G	103	g
	40	(72	Н	104	h
	41)	73	- 1	105	i
	42	*	74	J	106	j
	43	+	75	K	107	k
	44	,	76	L	108	- 1
	45	-	77	M	109	m
	46		78	N	110	n
Caràcters	47	1	79	0	111	0
imprimibles	48	0	80	Р	112	р
mpimibles	49	1	81	Q	113	q
	50	2	82	R	114	r
	51	3	83	S	115	s
	52	4	84	Т	116	t
	53	5	85	U	117	u
	54	6	86	V	118	V
	55	7	87	W	119	w
	56	8	88	Χ	120	X
	57	9	89	Υ	121	У
	58	:	90	Z	122	Z
	59	;	91	[123	{
	60	<	92	Ī	124	Ì
	61	=	93	1	125	}
	62	>	94	۸	126	~
	63	?	95	_		

3. Representació interna de la informació

- ASCII estès
 - ASCII no contemplava ni caràcters especials ni específics d'altres llengües
 - Exemples:
 - Ç, ñ, accents, dièresis, ...
 - ©, ±, ½, ...
 - ASCII estès s'estén a 8 bits -> 256 caràcters diferents
 - Existeix un codi ASCII estès per a cada país (només la part estesa, l'estàndard és comuna)

Ivens Huertas

Taula ASCII estesa

Ó \perp Ô Ò Õ Û Ù 1/2 É de la taula ASCII estàndard Æ ô Ö nbsp

3. Representació interna de la informació

- ASCII estès
 - Exercici: codifica en ASCII estès la paraula "Tiza"

i Z a

Cura: hem d'utilitzar els 8 bits per a cada caràcter, encara que tinguem zeros a l'esquerra

ASCII estès

Exercici: desxifra el següent missatge codificat en ASCII estès: 0101000001101001011000110111111

En ser ASCII estès, agrupem de 8 en 8 bits

01010000011010010110001101101111

01010000 01101001 01100011 01101111

80 105 99 111

Pico

Ivens Huertas 65

3. Representació interna de la informació

- Unicode
 - Codi estàndard internacional que s'utilitza en la majoria dels sistemes operatius
 - Sol utilitzar 16 o 32 bits
 - Moltes més possibilitats comparat amb ASCII, que utilitzava fins a 8 bits
 - Pot processar la informació que abasta la major part dels idiomes del món

Ivens Huertas

3. Representació interna de la informació

- Unicode
 - És compatible amb la majoria de:
 - Sistemes operatius actuals
 - Navegadors d'Internet
 - Permet que una aplicació s'oriente a diversos idiomes sense necessitat de tornar-la a dissenyar
 - ASCII tenia una taula específica per a cada país

3. Representació interna de la informació

66

- Unicode
 - Inclou tots els caràcters d'ús comú en l'actualitat
 - L'última versió = 145.000 caràcters
 - Alfabets
 - Sistemes ideogràfics
 - Col·leccions de símbols (matemàtics, tècnics, musicals,...)
 - I la xifra creix en cada versió!

Ivens Huertas 67 Ivens Huertas 68

Exercicis

1. Tenim un fitxer de text codificat en ASCII estès. Desxifra com és el text que contenia si la seqüència de bits és la següent:

0100 0111 0110 0001 0111 0100 0110 1111

2. Codifica en ASCII estès expressat en binari el següent text:

Hola.