UGA Algebra Qualifying Exam Questions and Solutions

D. Zack Garza

Tuesday 18th August, 2020

1	Grou	up Theory: General	10
	1.1	Spring 2020 #2	10
	1.2	Spring 2019 #4 🚼	10
		1.2.1 a	10
		1.2.2 b	10
		1.2.3 c	10
	1.3	Spring 2012 #2	11
		1.3.1 a	11
		1.3.2 b	11
	1.4	Spring 2017 #1	11
	1.5	Fall 2016 #1	11
	1.6	Fall 2015 #1	11
	1.7	Spring 2015 #1	
	1.8	Fall 2014 #6	
	1.9	Spring 2013 #3	
	1.10	Fall 2019 Midterm #1	
		Fall 2019 Midterm #4	
		Fall 2019 Midterm #5	
2	Grou	ups: Sylow Theory	12
	2.1	Fall 2019 #1 😽	
	2.2	Fall 2019 Midterm #2	
	2.3	Fall 2013 #2	
		2.3.1 a	
		2.3.2 b	12
		2.3.3 c	13
		2.3.4 d	13
	2.4	Spring 2014 #2	13
		2.4.1 a	13
		2.4.2 b	13
		2.4.3 c	13
		2.4.4 d	13

	2.5	Fall 2014 #2	13
		2.5.1 a	13
		2.5.2 b	13
	2.6	Spring 2016 #3	
		2.6.1 a	
		2.6.2 b	
		2.6.3 c	
	2.7	Spring 2017 #2	
		2.7.1 a	
		2.7.2 b	
		2.7.3 c	
	2.8	Fall 2017 #2	
	2.0	2.8.1 a	
		2.8.2 b	
		2.8.3 c	
		2.8.4 d	
	2.9	Fall 2012 #2	
	2.9	2.9.1 a	
		2.9.2 b	
		2.9.3 c	
	9.10	Fall 2018 #1	
	2.10	2.10.1 a	
	ດ 11	2.10.2 b	
	2.11	"	
		2.11.1 a	
		2.11.2 b	
		2.11.3 c	
		2.11.4 d	10
3	Grou	ips: Group Actions	16
		Fall 2012 #1	
	0.1	3.1.1 a	
		3.1.2 b	
	3.2	Fall 2015 #2	
	3.3	Spring 2016 #5	
	0.0	3.3.1 a	
		3.3.2 b	
	3.4	Fall 2017 #1	
	9.4	3.4.1 a	17
		3.4.2 b	17
	3.5	Fall 2018 #2	17
	5.5	3.5.1 a	$\frac{17}{17}$
		3.5.2 b	$\frac{17}{17}$
		3.5.3 c	17
4	Grov	ıps: Classification	18
7	4.1	Spring 2020 #1	
	T.1	Δγ111 6	10

		4.1.2 a		10
		4.1.3 c		
	4.2	Spring 2019 #3 🐆		18
	4.3	Spring 2012 #3		18
	1.0			
		4.3.1 a		
		4.3.2 a		18
	4.4	Fall 2016 #3		18
	4.5	Spring 2018 #1		18
	1.0			
		4.5.1 a		18
		4.5.2 b		19
		4.5.3 c		19
		4.5.4 d		19
		4.5.4 U	 ٠	19
_	_			4.0
5	Gro	ups: Simple and Solvable		19
	5.1	* Fall 2016 #7		19
		5.1.1 a		19
		5.1.2 a		19
	5.2	Spring 2015 #4		
		5.2.1 a		19
		5.2.2 a		19
		5.2.3 c		20
	5.3	Spring 2014 #1		
	5.4	Fall 2013 #1		20
		5.4.1 a		20
				20
	- 5 - 5			20
	5.5	Spring 2013 #4		
	5.6	Spring 2013 #4		
6	5.6	Fall 2019 Midterm #3		
6	5.6 Con	Fall 2019 Midterm #3	 •	20 20
6	5.6 Con 6.1	Fall 2019 Midterm #3		20 20 20
6	5.6 Con	Fall 2019 Midterm #3	 	20 20 20 20
6	5.6 Con 6.1	Fall 2019 Midterm #3	 	20 20 20 20 21
6	5.6 Con 6.1	Fall 2019 Midterm #3	 	20 20 20 20 21
6	5.6 Con 6.1 6.2	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a	 	20 20 20 21 21
6	5.6 Con 6.1 6.2	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6	 	20 20 20 21 21 21
6	5.6 Con 6.1 6.2	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6 6.3.1 a	 	20 20 20 21 21 21 21
6	5.6 Con 6.1 6.2	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6	 	20 20 20 21 21 21
6	5.6 Con 6.1 6.2	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6 6.3.1 a	 	20 20 20 21 21 21 21
6	5.6 Con 6.1 6.2 6.3	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a		200 200 201 211 211 211 211 211
6	5.6 Con 6.1 6.2	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6 6.3.1 a 6.3.2 b 6.3.3 c Spring 2019 #6		200 200 200 211 211 211 211 211 211
6	5.6 Con 6.1 6.2 6.3	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a		200 200 201 211 211 211 211 211 211
6	5.6 Con 6.1 6.2 6.3	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6 6.3.1 a 6.3.2 b 6.3.3 c Spring 2019 #6		200 200 200 211 211 211 211 211 211
6	5.6 Con 6.1 6.2 6.3	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a		200 200 201 211 211 211 211 211 211
6	5.6 Con 6.1 6.2 6.3	Fall 2019 Midterm #3 nmutative Algebra Spring 2020 #5		200 200 201 211 211 211 211 211 212 212
6	5.6 Con 6.1 6.2 6.3	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6 6.3.1 a 6.3.2 b 6.3.3 c Spring 2019 #6 6.4.1 a 6.4.2 b 6.4.3 c Fall 2018 #7		200 200 211 211 211 211 211 211 212 222
6	5.6 Con 6.1 6.2 6.3	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6 6.3.1 a 6.3.2 b 6.3.3 c Spring 2019 #6 6.4.1 a 6.4.2 b 6.4.3 c Fall 2018 #7 6.5.1 a		200 200 211 211 211 211 211 212 222 222
6	5.6 Con 6.1 6.2 6.3	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6 6.3.1 a 6.3.2 b 6.3.3 c Spring 2019 #6 6.4.1 a 6.4.2 b 6.4.3 c Fall 2018 #7		200 200 211 211 211 211 211 211 212 222
6	5.6 Con 6.1 6.2 6.3	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6 6.3.1 a 6.3.2 b 6.3.3 c Spring 2019 #6 6.4.1 a 6.4.2 b 6.4.3 c Fall 2018 #7 6.5.1 a		200 200 211 211 211 211 211 212 222 222
6	5.6 Con 6.1 6.2 6.3	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6 6.3.1 a 6.3.2 b 6.3.3 c Spring 2019 #6 6.4.1 a 6.4.2 b 6.4.3 c Fall 2018 #7 6.5.1 a 6.5.2 b 6.5.3 c		200 200 201 211 211 211 212 212 222 222
6	5.6 Con 6.1 6.2 6.3 6.4	Fall 2019 Midterm #3 mmutative Algebra Spring 2020 #5 Fall 2019 #3 6.2.1 a 6.2.2 b Fall 2019 #6 6.3.1 a 6.3.2 b 6.3.3 c Spring 2019 #6 6.4.1 a 6.4.2 b 6.4.3 c Fall 2018 #7 6.5.1 a 6.5.2 b		200 200 211 211 211 211 212 212 222 222

6.7	Spring 2018 #8																	
	6.7.1 a																	
	6.7.2 b	 																23
	6.7.3 c	 																23
6.8	Fall 2017 #5	 																23
	6.8.1 a	 																23
	6.8.2 b																	
6.9	Fall 2017 #6																	
0.0	6.9.1 a																	
	6.9.2 b																	
	6.9.3 c																	
	6.9.4 d																	
	6.9.5 e																	
C 10																		
0.10	Spring 2017 #3																	
	6.10.1 a																	
	6.10.2 b																	
6.11	Spring 2017 $\#4$																	
	6.11.1 a																	
	6.11.2 b																	
6.12	Spring 2016 #8																	25
	6.12.1 a	 																25
	6.12.2 b	 																25
6.13	Fall 2015 #3	 																25
	Fall 2015 #4																	25
	Spring 2015 #7																	25
	Fall 2014 #7																	26
	Fall 2014 #8																	26
	Spring 2014 #5																	26
	Spring 2014 #6																	26
0.10	$6.19.1 \text{ a} \dots$																	
	6.19.2 b																	
6 20	Fall 2013 #3																	26
0.20	"																	
	6.20.1 a																	26
0.01	6.20.2 b																	26
6.21	Fall 2013 #4																	26
	6.21.1 a																	27
	6.21.2 b	 	 -	 -	•	 -	 -	 -	 -	 -	 -	-	 -	-	 -	-	-	27
	6.21.3 c																	27
	6.21.4 d																	27
6.22	Spring 2013 #1																	27
	6.22.1 a	 																27
	6.22.2 b	 																27
	6.22.3 c	 																27
6.23	Spring 2013 #2																	28
-	6.23.1 a																	28
	6.23.2 b																	28
	6.23.3 c																	28
	6.23.4 d																	
	U.4U.4 U	 		 •											 •			40

7	Field	s and Galois Theory	28
	7.1	* Fall 2016 #5	28
	7.2	* Fall 2013 #7	28
		7.2.1 a	28
		7.2.2 b	28
	7.3	Fall 2019 #4	28
		7.3.1 a	28
		7.3.2 b	29
		7.3.3 c	29
	7.4	Fall 2019 #7 🐈	29
	7.5	Spring 2019 #2	29
		7.5.1 a	29
		7.5.2 b	29
	7.6	Spring 2019 #8	29
	1.0	7.6.1 a	29
		7.6.2 b	29
		7.6.3 c	30
	7.7	Fall 2018 #3 *	30
	1.1	7.7.1 a	30
		7.7.2 b	30
		7.7.3 c	30
	7.8	Spring 2018 #2	30
	1.0	7.8.1 a	30
		7.8.2 b	30
		7.8.3 c	30
	7.9	Spring 2018 #3	31
	1.9	7.9.1 a	31
		7.9.2 b	31
		7.9.3 c	31
	7 10	Spring 2020 #4	31
	1.10	7.10.1 a	31
		7.10.2 b	31
	7 1 1	7.10.3 c	
	1.11		31
		7.11.1 a	-
	7 10	7.11.2 b	32
	7.12	Fall 2017 #4	32
		7.12.1 a	32
		7.12.2 b	32
		Fall 2017 #3	32
	7.14	Spring 2017 #7	32
		7.14.1 a	32
		7.14.2 b	32
		7.14.3 c	32
	7.15	Spring 2017 #8	33
		7.15.1 a	33
		7.15.2 b	33

7.16	Fall 2016 #4		 																					33
	7.16.1 a		 	 																				33
	7.16.2 b																							33
	7.16.3 c																							33
7 17	Spring 2016 #2																							33
	7.17.1 a																							33
	7.17.2 b																							33
	7.17.3 c																							33
7 18	Spring 2016 #6																							34
	Fall 2015 #5																							34
1.19	7.19.1 a																							$\frac{34}{34}$
	7.19.2 b																							34
- 00	7.19.3 c																							34
7.20	Fall 2015 #6																							34
	7.20.1 a																							34
	7.20.2 b																							34
	7.20.3 c																							34
7.21	Spring 2015 #2		 																					34
	7.21.1 a																							34
	7.21.2 b		 																					35
	7.21.3 c		 																					35
7.22	Spring 2015 #5		 																					35
	7.22.1 a		 																					35
	7.22.2 b		 																					35
7.23	Fall 2014 #1		 																					35
	7.23.1 a																							35
	7.23.2 b																							35
7.24	Fall 2014 #3		 	 																				35
	7.24.1 a																							35
	7.24.2 b																							35
7 25	Spring 2014 #3																							36
1.20	7.25.1 a																							36
	7.25.2 b																							36
7 26	Spring 2014 #4	•	 	 •	•	•	 •	•	 •	•	•	•	 •	•	•	•	•	 •	•	 •	•	•	•	36
1.20	7.26.1 a																							36
	7.26.2 b																							36
	7.26.3 c																							36
7 97	Fall 2013 #5																							36
1.21																								
	7.27.1 a																							36
	7.27.2 b																							36
	7.27.3 c																							36
7.28	Fall 2013 #6																							37
	7.28.1 a																							37
	7.28.2 b																							37
	7.28.3 c																							37
	7.28.4 d																							37
7.29	Spring 2013 $\#7$		 																					37
	7.29.1 a		 																					37

		7.29.2 b	37
		7.29.3 c	37
		7.29.4 d	37
		7.29.5 e	
	7.30	Spring 2013 #8	
		7.30.1 a	
		7.30.2 b	
	7 31	Fall 2012 #3	
		Fall 2012 #4	
		Spring 2012 #1	
	1.55		
		7.33.1 a	
	= 0.4	7.33.2 b	
	7.34	Spring 2012 #4	
		7.34.1 a	
		7.34.2 b	
		Fall 2019 Midterm #6 🏲	
	7.36	Fall 2019 Midterm #7 🚩	
	7.37	Fall 2019 Midterm #8 🔭	39
	7.38	Fall 2019 Midterm #9 $ ightharpoonup$	39
8	Mod		39
	8.1	General Questions	
		8.1.1 Fall 2018 #6 🌟	
		8.1.2 Fall 2019 Final #2 📩	40
		8.1.3 Spring 2018 #6	
		8.1.4 Spring 2018 #7	40
		8.1.5 Fall 2016 #6	41
		8.1.6 Spring 2016 #4	41
		8.1.7 Spring 2015 #8	
		8.1.8 Fall 2012 #6	
		8.1.9 Fall 2019 Final #1 🟲	
	8.2	Torsion and the Structure Theorem	
	٠ . =	8.2.1 * Fall 2019 #5 *	
		8.2.2 * Spring 2019 #5 *	
		8.2.3 * Spring 2020 #6	
		8.2.4 Spring 2012 #5	
		8.2.5 Spring 2017 #5	
		8.2.6 Fall 2019 Final #3	
		"	
		8.2.7 Fall 2019 Final #4	
		8.2.8 Fall 2019 Final #5	
		8.2.9 Fall 2019 Final #6	
		8.2.10 Fall 2019 Final #7	
		8.2.11 Fall 2019 Final #10 $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	44
9	Lina	w Algebra. Diagonalizability	44
9		r Algebra: Diagonalizability Fall 2017 #7	
	9.1	"	
		9.1.1 a	44 41
		uiz n	/1/

		9.1.3 c				 				 														44
		9.1.4 d				 				 														45
	9.2	Spring 20																						
	9.3	Fall 2016																						
	9.4	Spring 20	77 - 1 019 #1	+++		 		 •		 	•	 •					•					•	•	45
	0.1	opring 20)10 ₁ 1	- Y'	• •	 	•	 •	• •	 • •	•	 •	 •	•	•	•	•	• •	•	•	• •	•	•	10
10	Line	ar Algebr	a: Mis	C																				45
		* Spring				 				 														45
		10.1.1 a																						
		10.1.2 b				 				 														45
	10.2	* Spring																						
		10.2.1 a																						
		10.2.2 b																						
	10.3	Fall 2012																						
		Fall 2012																						
		Fall 2012																						
		Fall 2015																						
	10.0	10.6.1 a																						
		10.6.1 a 10.6.2 b																						
	10.7	Fall 2014	L.																					
		Fall 2015																						$\frac{47}{47}$
	10.0	10.8.1 a																						
	10.0	10.8.2 b Fall 2018																						
	10.10)Fall 2018																						
		10.10.1 a																						
	10.11	10.10.2 b																						
	10.11	Fall 2019																						
		10.11.1 a																						
		10.11.2 b																						
		$10.11.3\mathrm{c}$																						
	10.12	2Spring 20																						
		$10.12.1\mathrm{a}$																						
		$10.12.2\mathrm{b}$				 	•			 		 •							•					49
11	1:	Al	C		_1 6	 																		49
11		ar Algebr																						_
	11.1	⋆ Spring																						49
		11.1.1 a																						49
		11.1.2 b																						49
		11.1.3 c		L.																				49
		\star Spring	,	' L																				49
	11.3	* Spring																						50
		11.3.1 a																						50
		11.3.2 b																						50
		11.3.3 c			L.																			50
		Fall 2019		′′	i.																			50
		Fall 2019				 				 														
	11.6	Spring 20	16 #7	7																_				50

11.7 Spring 2020 #7	 51
11.7.1 a	 51
11.7.2 b	 51
11.7.3 c	 51
11.8 Spring 2019 #7 材	 51
11.8.1 a	 51
11.8.2 b	
11.9 Spring 2018 #4	
11.9.1 a	 52
11.9.2 b	
11.10Spring 2017 #6	
11.10.1 a	
11.10.2 b	
11.11Spring 2016 #1	
11.11.1a	
11.11.2b	
11.12Spring 2015 #6	
11.13Fall 2014 #5	
11.14Spring 2013 #5	
11.14.1a	
11.14.2 b	 53

Todo list

Work this problem
Work this problem
Revisit, tricky!
Not the nicest proof! Would be better to replace the ad-hoc computations at the end 3
Revisit
Todo, missing part (c)
Is there a proof without matrices? What if V is infinite dimensional?
How to extend basis?

1 Group Theory: General

1.1 Spring 2020 #2

Let H be a normal subgroup of a finite group G where the order of H and the index of H in G are relatively prime. Prove that no other subgroup of G has the same order as H.

Work this problem.

1.2 Spring 2019 #4 💝

For a finite group G, let c(G) denote the number of conjugacy classes of G.

1.2.1 a

Prove that if two elements of G are chosen uniformly at random, then the probability they commute is precisely

$$\frac{c(G)}{|G|}.$$

1.2.2 b

State the class equation for a finite group.

1.2.3 c

Using the class equation (or otherwise) show that the probability in part (a) is at most

$$\frac{1}{2} + \frac{1}{2[G:Z(G)]}.$$

Here, as usual, Z(G) denotes the center of G.

1.3 Spring 2012 #2

Let G be a finite group and p a prime number such that there is a normal subgroup $H \subseteq G$ with $|H| = p^i > 1$.

1.3.1 a

Show that H is a subgroup of any Sylow p-subgroup of G.

1.3.2 b

Show that G contains a nonzero abelian normal subgroup of order divisible by p.

1.4 Spring 2017 #1

Let G be a finite group and $\pi: G \longrightarrow \operatorname{Sym}(G)$ the Cayley representation.

(Recall that this means that for an element $x \in G$, $\pi(x)$ acts by left translation on G.)

Prove that $\pi(x)$ is an odd permutation \iff the order $|\pi(x)|$ of $\pi(x)$ is even and $|G|/|\pi(x)|$ is odd.

1.5 Fall 2016 #1

Let G be a finite group and $s, t \in G$ be two distinct elements of order 2. Show that subgroup of G generated by s and t is a dihedral group.

Recall that the dihedral groups of order 2m for $m \geq 2$ are of the form

$$D_{2m} = \left\langle \sigma, \tau \mid \sigma^m = 1 = \tau^2, \tau \sigma = \sigma^{-1} \tau \right\rangle.$$

1.6 Fall 2015 #1

Let G be a group containing a subgroup H not equal to G of finite index. Prove that G has a normal subgroup which is contained in every conjugate of H which is of finite index.

1.7 Spring 2015 #1

For a prime p, let G be a finite p-group and let N be a normal subgroup of G of order p. Prove that N is contained in the center of G.

1.8 Fall 2014 #6

Let G be a group and H, K < G be subgroups of finite index. Show that

$$[G:H\bigcap K]\leq [G:H]\ [G:K].$$

1.9 Spring 2013 #3

Let P be a finite p-group. Prove that every nontrivial normal subgroup of P intersects the center of P nontrivially.

1.10 Fall 2019 Midterm #1

Let G be a group of order p^2q for p,q prime. Show that G has a nontrivial normal subgroup.

1.11 Fall 2019 Midterm #4

Let p be a prime. Show that $S_p = \langle \tau, \sigma \rangle$ where τ is a transposition and σ is a p-cycle.

1.12 Fall 2019 Midterm #5

Let G be a nonabelian group of order p^3 for p prime. Show that Z(G) = [G, G]

2 Groups: Sylow Theory

2.1 Fall 2019 #1 💝

Let G be a finite group with n distinct conjugacy classes. Let $g_1 \cdots g_n$ be representatives of the conjugacy classes of G.

Prove that if $g_ig_j = g_jg_i$ for all i, j then G is abelian.

2.2 Fall 2019 Midterm #2

Let G be a finite group and let P be a sylow p-subgroup for p prime. Show that N(N(P)) = N(P) where N is the normalizer in G.

2.3 Fall 2013 #2

Let G be a group of order 30.

2.3.1 a

Show that G has a subgroup of order 15.

2.3.2 b

Show that every group of order 15 is cyclic.

2.3.3 c

Show that G is isomorphic to some semidirect product $\mathbb{Z}_{15} \rtimes \mathbb{Z}_2$.

2.3.4 d

Exhibit three nonisomorphic groups of order 30 and prove that they are not isomorphic. You are not required to use your answer to (c).

2.4 Spring 2014 #2

Let $G \subset S_9$ be a Sylow-3 subgroup of the symmetric group on 9 letters.

2.4.1 a

Show that G contains a subgroup H isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ by exhibiting an appropriate set of cycles.

2.4.2 b

Show that H is normal in G.

2.4.3 c

Give generators and relations for G as an abstract group, such that all generators have order 3.

Also exhibit elements of S_9 in cycle notation corresponding to these generators.

2.4.4 d

Without appealing to the previous parts of the problem, show that G contains an element of order 9.

2.5 Fall 2014 #2

Let G be a group of order 96.

2.5.1 a

Show that G has either one or three 2-Sylow subgroups.

2.5.2 b

Show that either G has a normal subgroup of order 32, or a normal subgroup of order 16.

2.6 Spring 2016 #3

2.6.1 a

State the three Sylow theorems.

2.6.2 b

Prove that any group of order 1225 is abelian.

2.6.3 c

Write down exactly one representative in each isomorphism class of abelian groups of order 1225.

2.7 Spring 2017 #2

2.7.1 a

How many isomorphism classes of abelian groups of order 56 are there? Give a representative for one of each class.

2.7.2 b

Prove that if G is a group of order 56, then either the Sylow-2 subgroup or the Sylow-7 subgroup is normal.

2.7.3 c

Give two non-isomorphic groups of order 56 where the Sylow-7 subgroup is normal and the Sylow-2 subgroup is *not* normal. Justify that these two groups are not isomorphic.

2.8 Fall 2017 #2

2.8.1 a

Classify the abelian groups of order 36.

For the rest of the problem, assume that G is a non-abelian group of order 36.

You may assume that the only subgroup of order 12 in S_4 is A_4 and that A_4 has no subgroup of order 6.

2.8.2 b

Prove that if the 2-Sylow subgroup of G is normal, G has a normal subgroup N such that G/N is isomorphic to A_4 .

2.8.3 c

Show that if G has a normal subgroup N such that G/N is isomorphic to A_4 and a subgroup H isomorphic to A_4 it must be the direct product of N and H.

2.8.4 d

Show that the dihedral group of order 36 is a non-abelian group of order 36 whose Sylow-2 subgroup is not normal.

2.9 Fall 2012 #2

Let G be a group of order 30.

2.9.1 a

Show that G contains normal subgroups of orders 3, 5, and 15.

2.9.2 b

Give all possible presentations and relations for G.

2.9.3 c

Determine how many groups of order 30 there are up to isomorphism.

2.10 Fall 2018 #1 🦙

Let G be a finite group whose order is divisible by a prime number p. Let P be a normal p-subgroup of G (so $|P| = p^c$ for some c).

2.10.1 a

Show that P is contained in every Sylow p-subgroup of G.

2.10.2 b

Let M be a maximal proper subgroup of G. Show that either $P \subseteq M$ or $|G/M| = p^b$ for some $b \le c$.

2.11 Fall 2019 #2 🦙

Let G be a group of order 105 and let P, Q, R be Sylow 3, 5, 7 subgroups respectively.

2.11.1 a

Prove that at least one of Q and R is normal in G.

2.11.2 b

Prove that G has a cyclic subgroup of order 35.

2.11.3 c

Prove that both Q and R are normal in G.

2.11.4 d

Prove that if P is normal in G then G is cyclic.

3 Groups: Group Actions

3.1 Fall 2012 #1

Let G be a finite group and X a set on which G acts.

3.1.1 a

Let $x \in X$ and $G_x := \{g \in G \mid g \cdot x = x\}$. Show that G_x is a subgroup of G.

3.1.2 b

Let $x \in X$ and $G \cdot x := \{g \cdot x \mid g \in G\}$. Prove that there is a bijection between elements in $G \cdot x$ and the left cosets of G_x in G.

3.2 Fall 2015 #2

Let G be a finite group, H a p-subgroup, and P a sylow p-subgroup for p a prime. Let H act on the left cosets of P in G by left translation.

Prove that this is an orbit under this action of length 1.

Prove that xP is an orbit of length $1 \iff H$ is contained in xPx^{-1} .

3.3 Spring 2016 #5

Let G be a finite group acting on a set X. For $x \in X$, let G_x be the stabilizer of x and $G \cdot x$ be the orbit of x.

3.3.1 a

Prove that there is a bijection between the left cosets G/G_x and $G \cdot x$.

3.3.2 b

Prove that the center of every finite p-group G is nontrivial by considering that action of G on X = G by conjugation.

3.4 Fall 2017 #1

Suppose the group G acts on the set A. Assume this action is faithful (recall that this means that the kernel of the homomorphism from G to $\operatorname{Sym}(A)$ which gives the action is trivial) and transitive (for all a, b in A, there exists g in G such that $g \cdot a = b$.)

3.4.1 a

For $a \in A$, let G_a denote the stabilizer of a in G. Prove that for any $a \in A$,

$$\bigcap_{\sigma \in G} \sigma G_a \sigma^{-1} = \{1\}.$$

3.4.2 b

Suppose that G is abelian. Prove that |G| = |A|. Deduce that every abelian transitive subgroup of S_n has order n.

3.5 Fall 2018 #2 🦙

3.5.1 a

Suppose the group G acts on the set X . Show that the stabilizers of elements in the same orbit are conjugate.

3.5.2 b

Let G be a finite group and let H be a proper subgroup. Show that the union of the conjugates of H is strictly smaller than G, i.e.

$$\bigcup_{g \in G} gHg^{-1} \subsetneq G$$

3.5.3 c

Suppose G is a finite group acting transitively on a set S with at least 2 elements. Show that there is an element of G with no fixed points in S.

4 Groups: Classification

4.1 Spring 2020 #1

4.1.1 a

Show that any group of order 2020 is solvable.

4.1.2 a

Give (without proof) a classification of all abelian groups of order 2020.

4.1.3 c

Describe one nonabelian group of order 2020.

Work this problem

4.2 Spring 2019 #3 😽

How many isomorphism classes are there of groups of order 45?

Describe a representative from each class.

4.3 Spring 2012 #3

Let G be a group of order 70.

4.3.1 a

Show that G is not simple.

4.3.2 a

Exhibit 3 nonisomorphic groups of order 70 and prove that they are not isomorphic.

4.4 Fall 2016 #3

How many groups are there up to isomorphism of order pq where p < q are prime integers?

4.5 Spring 2018 #1 🔭

4.5.1 a

Use the Class Equation (equivalently, the conjugation action of a group on itself) to prove that any p-group (a group whose order is a positive power of a prime integer p) has a nontrivial center.

4.5.2 b

Prove that any group of order p^2 (where p is prime) is abelian.

4.5.3 c

Prove that any group of order $5^2 \cdot 7^2$ is abelian.

4.5.4 d

Write down exactly one representative in each isomorphism class of groups of order $5^2 \cdot 7^2$.

5 Groups: Simple and Solvable

5.1 * Fall 2016 #7

5.1.1 a

Define what it means for a group G to be solvable.

5.1.2 a

Show that every group G of order 36 is solvable.

Hint: you can use that S_4 is solvable.

5.2 Spring 2015 #4

Let N be a positive integer, and let G be a finite group of order N.

5.2.1 a

Let $\operatorname{Sym} G$ be the set of all bijections from $G \longrightarrow G$ viewed as a group under composition. Note that $\operatorname{Sym} G \cong S_N$. Prove that the Cayley map

$$C: G \longrightarrow \operatorname{Sym} G$$
$$g \mapsto (x \mapsto gx)$$

is an injective homomorphism.

5.2.2 a

Let $\Phi: \mathrm{Sym} G \longrightarrow S_N$ be an isomorphism. For $a \in G$ define $\varepsilon(a) \in \{\pm 1\}$ to be the sign of the permutation $\Phi(C(a))$. Suppose that a has order d. Prove that $\varepsilon(a) = -1 \iff d$ is even and N/d is odd.

5.2.3 c

Suppose N > 2 and $n \equiv 2 \mod 4$. Prove that G is not simple.

Hint: use part (b).

5.3 Spring 2014 #1

Let p, n be integers such that p is prime and p does not divide n. Find a real number k = k(p, n) such that for every integer $m \ge k$, every group of order $p^m n$ is not simple.

5.4 Fall 2013 #1

Let p, q be distinct primes.

5.4.1 a

Let $\bar{q} \in \mathbb{Z}_p$ be the class of $q \mod p$ and let k denote the order of \bar{q} as an element of \mathbb{Z}_p^{\times} .

Prove that no group of order pq^k is simple.

5.4.2 a

Let G be a group of order pq, and prove that G is not simple.

5.5 Spring 2013 #4

Define a *simple group*.

Prove that a group of order 56 can not be simple.

5.6 Fall 2019 Midterm #3

Show that there exist no simple groups of order 148.

6 Commutative Algebra

6.1 Spring 2020 #5 💝

Let R be a ring and $f: M \longrightarrow N$ and $g: N \longrightarrow M$ be R-module homomorphisms such that $g \circ f = \mathrm{id}_M$. Show that $N \cong \mathrm{im} \ f \oplus \ker g$.

6.2 Fall 2019 #3

Let R be a ring with the property that for every $a \in R$, $a^2 = a$.

6.2.1 a

Prove that R has characteristic 2.

6.2.2 b

Prove that R is commutative.

6.3 Fall 2019 #6 💝

Let R be a commutative ring with multiplicative identity. Assume Zorn's Lemma.

6.3.1 a

Show that

$$N = \{ r \in R \mid r^n = 0 \text{ for some } n > 0 \}$$

is an ideal which is contained in any prime ideal.

6.3.2 b

Let r be an element of R not in N. Let S be the collection of all proper ideals of R not containing any positive power of r. Use Zorn's Lemma to prove that there is a prime ideal in S.

6.3.3 c

Suppose that R has exactly one prime ideal P. Prove that every element r of R is either nilpotent or a unit.

6.4 Spring 2019 #6 💝

Let R be a commutative ring with 1.

Recall that $x \in R$ is nilpotent iff xn = 0 for some positive integer n.

6.4.1 a

Show that every proper ideal of R is contained within a maximal ideal.

6.4.2 b

Let J(R) denote the intersection of all maximal ideals of R.

Show that $x \in J(R) \iff 1 + rx$ is a unit for all $r \in R$.

6.4.3 c

Suppose now that R is finite. Show that in this case J(R) consists precisely of the nilpotent elements in R.

6.5 Fall 2018 #7 💝

Let R be a commutative ring.

6.5.1 a

Let $r \in R$. Show that the map

$$r \bullet : R \longrightarrow R$$

 $x \mapsto rx.$

is an R-module endomorphism of R.

6.5.2 b

We say that r is a **zero-divisor** if $r \bullet$ is not injective. Show that if r is a zero-divisor and $r \neq 0$, then the kernel and image of R each consist of zero-divisors.

6.5.3 c

Let $n \geq 2$ be an integer. Show: if R has exactly n zero-divisors, then $\#R \leq n^2$.

6.5.4 d

Show that up to isomorphism there are exactly two commutative rings R with precisely 2 zero-divisors.

You may use without proof the following fact: every ring of order 4 is isomorphic to exactly one of the following:

$$\frac{\mathbb{Z}}{4\mathbb{Z}}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2+t+1)}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2-t)}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2)}.$$

6.6 Spring 2018 #5

Let \$

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $N = \begin{pmatrix} x & u \\ -y & -v \end{pmatrix}$

over a commutative ring R, where b and x are units of R. Prove that

$$MN = \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix} \implies MN = 0.$$

6.7 Spring 2018 #8

Let R = C[0,1] be the ring of continuous real-valued functions on the interval [0,1]. Let I be an ideal of R.

6.7.1 a

Show that if $f \in I$, $a \in [0,1]$ are such that $f(a) \neq 0$, then there exists $g \in I$ such that $g(x) \geq 0$ for all $x \in [0,1]$, and g(x) > 0 for all x in some open neighborhood of a.

6.7.2 b

If $I \neq R$, show that the set $Z(I) = \{x \in [0,1] \mid f(x) = 0 \text{ for all } f \in I\}$ is nonempty.

6.7.3 c

Show that if I is maximal, then there exists $x_0 \in [0,1]$ such that $I = \{f \in R \mid f(x_0) = 0\}$.

6.8 Fall 2017 #5

A ring R is called *simple* if its only two-sided ideals are 0 and R.

6.8.1 a

Suppose R is a commutative ring with 1. Prove R is simple if and only if R is a field.

6.8.2 b

Let k be a field. Show the ring $M_n(k)$, $n \times n$ matrices with entries in k, is a simple ring.

6.9 Fall 2017 #6

For a ring R, let U(R) denote the multiplicative group of units in R. Recall that in an integral domain R, $r \in R$ is called *irreducible* if r is not a unit in R, and the only divisors of r have the form ru with u a unit in R.

We call a non-zero, non-unit $r \in R$ prime in R if $r \mid ab \implies r \mid a$ or $r \mid b$. Consider the ring $R = \{a + b\sqrt{-5} \mid a, b \in Z\}$.

6.9.1 a

Prove R is an integral domain.

6.9.2 b

Show $U(R) = \{\pm 1\}.$

6.9.3 c

Show $3, 2 + \sqrt{-5}$, and $2 - \sqrt{-5}$ are irreducible in R.

6.9.4 d

Show 3 is not prime in R.

6.9.5 e

Conclude R is not a PID.

6.10 Spring 2017 #3

Let R be a commutative ring with 1. Suppose that M is a free R-module with a finite basis X.

6.10.1 a

Let $I \subseteq R$ be a proper ideal. Prove that M/IM is a free R/I-module with basis X', where X' is the image of X under the canonical map $M \longrightarrow M/IM$.

6.10.2 b

Prove that any two bases of M have the same number of elements. You may assume that the result is true when R is a field.

6.11 Spring 2017 #4

6.11.1 a

Let R be an integral domain with quotient field F. Suppose that p(x), a(x), b(x) are monic polynomials in F[x] with p(x) = a(x)b(x) and with $p(x) \in R[x]$, a(x) not in R[x], and both a(x), b(x) not constant.

Prove that R is not a UFD.

(You may assume Gauss' lemma)

6.11.2 b

Prove that $\mathbb{Z}[2\sqrt{2}]$ is not a UFD.

Hint: let
$$p(x) = x^2 - 2$$
.

6.12 Spring 2016 #8

Let R be a simple rng (a nonzero ring which is not assume to have a 1, whose only two-sided ideals are (0) and R) satisfying the following two conditions:

- i. R has no zero divisors, and
- ii. If $x \in R$ with $x \neq 0$ then $2x \neq 0$, where 2x := x + x.

Prove the following:

6.12.1 a

For each $x \in R$ there is one and only one element $y \in R$ such that x = 2y.

6.12.2 b

Suppose $x, y \in R$ such that $x \neq 0$ and 2(xy) = x, then yz = zy for all $z \in R$.

You can get partial credit for (b) by showing it in the case R has a 1.

6.13 Fall 2015 #3

Let R be a rng (a ring without 1) which contains an element u such that for all $y \in R$, there exists an $x \in R$ such that xu = y.

Prove that R contains a maximal left ideal.

Hint: imitate the proof (using Zorn's lemma) in the case where R does have a 1.

6.14 Fall 2015 #4

Let R be a PID and $(a_1) < (a_2) < \cdots$ be an ascending chain of ideals in R. Prove that for some n, we have $(a_j) = (a_n)$ for all $j \ge n$.

6.15 Spring 2015 #7

Let R be a commutative ring, and $S \subset R$ be a nonempty subset that does not contain 0 such that for all $x, y \in S$ we have $xy \in S$. Let \mathcal{I} be the set of all ideals $I \subseteq R$ such that $I \cap S = \emptyset$.

Show that for every ideal $I \in \mathcal{I}$, there is an ideal $J \in \mathcal{I}$ such that $I \subset J$ and J is not properly contained in any other ideal in \mathcal{I} .

Prove that every such ideal J is prime.

6.16 Fall 2014 #7

Give a careful proof that $\mathbb{C}[x,y]$ is not a PID.

6.17 Fall 2014 #8

Let R be a nonzero commutative ring without unit such that R does not contain a proper maximal ideal. Prove that for all $x \in R$, the ideal xR is proper.

You may assume the axiom of choice.

6.18 Spring 2014 #5

Let R be a commutative ring and $a \in R$. Prove that a is not nilpotent \iff there exists a commutative ring S and a ring homomorphism $\varphi : R \longrightarrow S$ such that $\varphi(a)$ is a unit.

Note: by definition, a is nilpotent \iff there is a natural number n such that $a^n = 0$.

6.19 Spring 2014 #6

Let R be a commutative ring with identity and let n be a positive integer.

6.19.1 a

Prove that every surjective R-linear endomorphism $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is injective.

6.19.2 b

Show that an injective R-linear endomorphism of R^n need not be surjective.

6.20 Fall 2013 #3

6.20.1 a

Define *prime ideal*, give an example of a nontrivial ideal in the ring \mathbb{Z} that is not prime, and prove that it is not prime.

6.20.2 b

Define $maximal\ ideal$, give an example of a nontrivial maximal ideal in \mathbb{Z} and prove that it is maximal.

6.21 Fall 2013 #4

Let R be a commutative ring with $1 \neq 0$. Recall that $x \in R$ is nilpotent iff $x^n = 0$ for some positive integer n.

6.21.1 a

Show that the collection of nilpotent elements in R forms an ideal.

6.21.2 b

Show that if x is nilpotent, then x is contained in every prime ideal of R.

6.21.3 c

Suppose $x \in R$ is not nilpotent and let $S = \{x^n \mid n \in \mathbb{N}\}$. There is at least on ideal of R disjoint from S, namely (0).

By Zorn's lemma the set of ideals disjoint from S has a maximal element with respect to inclusion, say I. In other words, I is disjoint from S and if J is any ideal disjoint from S with $I \subseteq J \subseteq R$ then J = I or J = R.

Show that I is a prime ideal.

6.21.4 d

Deduce from (a) and (b) that the set of nilpotent elements of R is the intersection of all prime ideals of R.

6.22 Spring 2013 #1

Let R be a commutative ring.

6.22.1 a

Define a $maximal\ ideal$ and prove that R has a maximal ideal.

6.22.2 b

Show than an element $r \in R$ is not invertible $\iff r$ is contained in a maximal ideal.

6.22.3 c

Let M be an R-module, and recall that for $0 \neq \mu \in M$, the annihilator of μ is the set

$$\operatorname{Ann}(\mu) = \left\{ r \in R \mid r\mu = 0 \right\}.$$

Suppose that I is an ideal in R which is maximal with respect to the property that there exists an element $\mu \in M$ such that $I = \operatorname{Ann}(\mu)$ for some $\mu \in M$. In other words, $I = \operatorname{Ann}(\mu)$ but there does not exist $\nu \in M$ with $J = \operatorname{Ann}(\nu) \subsetneq R$ such that $I \subsetneq J$.

Prove that I is a prime ideal.

6.23 Spring 2013 #2

6.23.1 a

Define a Euclidean domain.

6.23.2 b

Define a unique factorization domain.

6.23.3 c

Is a Euclidean domain an UFD? Give either a proof or a counterexample with justification.

6.23.4 d

Is a UFD a Euclidean domain? Give either a proof or a counterexample with justification.

7 Fields and Galois Theory

7.1 * Fall 2016 #5

How many monic irreducible polynomials over \mathbb{F}_p of prime degree ℓ are there? Justify your answer.

7.2 * Fall 2013 #7

Let $F = \mathbb{F}_2$ and let \overline{F} denote its algebraic closure.

7.2.1 a

Show that \overline{F} is not a finite extension of F.

7.2.2 b

Suppose that $\alpha \in \overline{F}$ satisfies $\alpha^{17} = 1$ and $\alpha \neq 1$. Show that $F(\alpha)/F$ has degree 8.

7.3 Fall 2019 #4 🦙

Let F be a finite field with q elements.

Let n be a positive integer relatively prime to q and let ω be a primitive nth root of unity in an extension field of F.

Let $E = F[\omega]$ and let k = [E : F].

7.3.1 a

Prove that n divides $q^k - 1$.

7.3.2 b

Let m be the order of q in $\mathbb{Z}/n\mathbb{Z}^{\times}$. Prove that m divides k.

7.3.3 c

Prove that m = k.

Revisit, tricky!

7.4 Fall 2019 #7 🦙

Let ζ_n denote a primitive *n*th root of $1 \in \mathbb{Q}$. You may assume the roots of the minimal polynomial $p_n(x)$ of ζ_n are exactly the primitive *n*th roots of 1.

Show that the field extension $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is Galois and prove its Galois group is $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

How many subfields are there of $\mathbb{Q}(\zeta_{20})$?

7.5 Spring 2019 #2 💝

Let $F = \mathbb{F}_p$, where p is a prime number.

7.5.1 a

Show that if $\pi(x) \in F[x]$ is irreducible of degree d, then $\pi(x)$ divides $x^{p^d} - x$.

7.5.2 b

Show that if $\pi(x) \in F[x]$ is an irreducible polynomial that divides $x^{p^n} - x$, then $\deg \pi(x)$ divides n.

7.6 Spring 2019 #8 🦙

Let $\zeta = e^{2\pi i/8}$.

7.6.1 a

What is the degree of $\mathbb{Q}(\zeta)/\mathbb{Q}$?

7.6.2 b

How many quadratic subfields of $\mathbb{Q}(\zeta)$ are there?

7.7 Fall 2018 #3 🧡

7.6.3 c

What is the degree of $\mathbb{Q}(\zeta, \sqrt[4]{2})$ over \mathbb{Q} ?

7.7 Fall 2018 #3 💝

Let $F \subset K \subset L$ be finite degree field extensions. For each of the following assertions, give a proof or a counterexample.

7.7.1 a

If L/F is Galois, then so is K/F.

7.7.2 b

If L/F is Galois, then so is L/K.

7.7.3 c

If K/F and L/K are both Galois, then so is L/F.

7.8 Spring 2018 #2 🦙

Let $f(x) = x^4 - 4x^2 + 2 \in \mathbb{Q}[x]$.

7.8.1 a

Find the splitting field K of f, and compute $[K : \mathbb{Q}]$.

7.8.2 b

Find the Galois group G of f, both as an explicit group of automorphisms, and as a familiar abstract group to which it is isomorphic.

7.8.3 c

Exhibit explicitly the correspondence between subgroups of G and intermediate fields between \mathbb{Q} and k.

Not the nicest proof! Would be better to replace the ad-hoc computations at the end.

7.9 Spring 2018 #3 *

Let K be a Galois extension of \mathbb{Q} with Galois group G, and let E_1, E_2 be intermediate fields of K which are the splitting fields of irreducible $f_i(x) \in \mathbb{Q}[x]$.

Let
$$E = E_1 E_2 \subset K$$
.

Let
$$H_i = \operatorname{Gal}(K/E_i)$$
 and $H = \operatorname{Gal}(K/E)$.

7.9.1 a

Show that $H = H_1 \cap H_2$.

7.9.2 b

Show that H_1H_2 is a subgroup of G.

7.9.3 c

Show that

$$Gal(K/(E_1 \cap E_2)) = H_1H_2.$$

7.10 Spring 2020 #4

Let
$$f(x) = x^4 - 2 \in \mathbb{Q}[x]$$
.

7.10.1 a

Define what it means for a finite extension field E of a field F to be a Galois extension.

7.10.2 b

Determine the Galois group $Gal(E/\mathbb{Q})$ for the polynomial f(x), and justify your answer carefully.

7.10.3 c

Exhibit a subfield K in (b) such that $\mathbb{Q} \leq K \leq E$ with K not a Galois extension over \mathbb{Q} . Explain.

7.11 Spring 2020 #3

Let E be an extension field of F and $\alpha \in E$ be algebraic of odd degree over F.

7.11.1 a

Show that $F(\alpha) = F(\alpha^2)$.

7.11.2 b

Prove that α^{2020} is algebraic of odd degree over F.

7.12 Fall 2017 #4

7.12.1 a

Let f(x) be an irreducible polynomial of degree 4 in $\mathbb{Q}[x]$ whose splitting field K over \mathbb{Q} has Galois group $G = S_4$.

Let θ be a root of f(x). Prove that $\mathbb{Q}[\theta]$ is an extension of \mathbb{Q} of degree 4 and that there are no intermediate fields between \mathbb{Q} and $\mathbb{Q}[\theta]$.

7.12.2 b

Prove that if K is a Galois extension of \mathbb{Q} of degree 4, then there is an intermediate subfield between K and \mathbb{Q} .

7.13 Fall 2017 #3

Let F be a field. Let f(x) be an irreducible polynomial in F[x] of degree n and let g(x) be any polynomial in F[x]. Let p(x) be an irreducible factor (of degree m) of the polynomial f(g(x)).

Prove that n divides m. Use this to prove that if r is an integer which is not a perfect square, and n is a positive integer then every irreducible factor of $x^{2n} - r$ over $\mathbb{Q}[x]$ has even degree.

7.14 Spring 2017 #7

Let F be a field and let $f(x) \in F[x]$.

7.14.1 a

Define what a splitting field of f(x) over F is.

7.14.2 b

Let F now be a finite field with q elements. Let E/F be a finite extension of degree n > 0. Exhibit an explicit polynomial $g(x) \in F[x]$ such that E/F is a splitting field of g(x) over F. Fully justify your answer.

7.14.3 c

Show that the extension E/F in (b) is a Galois extension.

7.15 Spring 2017 #8

7.15.1 a

Let K denote the splitting field of x^5-2 over \mathbb{Q} . Show that the Galois group of K/\mathbb{Q} is isomorphic to the group of invertible matrices

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$
 where $a \in \mathbb{F}_5^{\times}$ and $b \in \mathbb{F}_5$.

7.15.2 b

Determine all intermediate fields between K and \mathbb{Q} which are Galois over \mathbb{Q} .

7.16 Fall 2016 #4

Set
$$f(x) = x^3 - 5 \in \mathbb{Q}[x]$$
.

7.16.1 a

Find the splitting field K of f(x) over \mathbb{Q} .

7.16.2 b

Find the Galois group G of K over \mathbb{Q} .

7.16.3 c

Exhibit explicitly the correspondence between subgroups of G and intermediate fields between \mathbb{Q} and K.

7.17 Spring 2016 #2

Let
$$K = \mathbb{Q}[\sqrt{2} + \sqrt{5}].$$

7.17.1 a

Find $[K:\mathbb{Q}]$.

7.17.2 b

Show that K/\mathbb{Q} is Galois, and find the Galois group G of K/\mathbb{Q} .

7.17.3 c

Exhibit explicitly the correspondence between subgroups of G and intermediate fields between $\mathbb Q$ and K.

7.18 Spring 2016 #6

Let K be a Galois extension of a field F with [K:F]=2015. Prove that K is an extension by radicals of the field F.

7.19 Fall 2015 #5

Let
$$u = \sqrt{2 + \sqrt{2}}$$
, $v = \sqrt{2 - \sqrt{2}}$, and $E = \mathbb{Q}(u)$.

7.19.1 a

Find (with justification) the minimal polynomial f(x) of u over \mathbb{Q} .

7.19.2 b

Show $v \in E$, and show that E is a splitting field of f(x) over \mathbb{Q} .

7.19.3 c

Determine the Galois group of E over $\mathbb Q$ and determine all of the intermediate fields F such that $\mathbb Q \subset F \subset E$.

7.20 Fall 2015 #6

7.20.1 a

Let G be a finite group. Show that there exists a field extension K/F with Gal(K/F) = G.

You may assume that for any natural number n there is a field extension with Galois group S_n .

7.20.2 b

Let K be a Galois extension of F with |Gal(K/F)| = 12. Prove that there exists an intermediate field E of K/F with [E:F] = 3.

7.20.3 c

With K/F as in (b), does an intermediate field L necessarily exist satisfying [L:F]=2? Give a proof or counterexample.

7.21 Spring 2015 #2

Let \mathbb{F} be a finite field.

7.21.1 a

Give (with proof) the decomposition of the additive group $(\mathbb{F}, +)$ into a direct sum of cyclic groups.

7.21.2 b

The *exponent* of a finite group is the least common multiple of the orders of its elements. Prove that a finite abelian group has an element of order equal to its exponent.

7.21.3 c

Prove that the multiplicative group $(\mathbb{F}^{\times}, \cdot)$ is cyclic.

7.22 Spring 2015 #5

Let $f(x) = x^4 - 5 \in \mathbb{Q}[x]$.

7.22.1 a

Compute the Galois group of f over \mathbb{Q} .

7.22.2 b

Compute the Galois group of f over $\mathbb{Q}(\sqrt{5})$.

7.23 Fall 2014 #1

Let $f \in \mathbb{Q}[x]$ be an irreducible polynomial and L a finite Galois extension of \mathbb{Q} . Let $f(x) = g_1(x)g_2(x)\cdots g_r(x)$ be a factorization of f into irreducibles in L[x].

7.23.1 a

Prove that each of the factors $g_i(x)$ has the same degree.

7.23.2 b

Give an example showing that if L is not Galois over \mathbb{Q} , the conclusion of part (a) need not hold.

7.24 Fall 2014 #3

Consider the polynomial $f(x) = x^4 - 7 \in \mathbb{Q}[x]$ and let E/\mathbb{Q} be the splitting field of f.

7.24.1 a

What is the structure of the Galois group of E/\mathbb{Q} ?

7.24.2 b

Give an explicit description of all of the intermediate subfields $\mathbb{Q} \subset K \subset E$ in the form $K = \mathbb{Q}(\alpha), \mathbb{Q}(\alpha, \beta), \cdots$ where α, β , etc are complex numbers. Describe the corresponding subgroups of the Galois group.

7.25 Spring 2014 #3

Let $F \subset C$ be a field extension with C algebraically closed.

7.25.1 a

Prove that the intermediate field $C_{\text{alg}} \subset C$ consisting of elements algebraic over F is algebraically closed

7.25.2 b

Prove that if $F \longrightarrow E$ is an algebraic extension, there exists a homomorphism $E \longrightarrow C$ that is the identity on F.

7.26 Spring 2014 #4

Let $E \subset \mathbb{C}$ denote the splitting field over \mathbb{Q} of the polynomial $x^3 - 11$.

7.26.1 a

Prove that if n is a squarefree positive integer, then $\sqrt{n} \notin E$.

Hint: you can describe all quadratic extensions of \mathbb{Q} contained in E.

7.26.2 b

Find the Galois group of $(x^3 - 11)(x^2 - 2)$ over \mathbb{Q} .

7.26.3 c

Prove that the minimal polynomial of $11^{1/3} + 2^{1/2}$ over \mathbb{Q} has degree 6.

7.27 Fall 2013 #5

Let L/K be a finite extension of fields.

7.27.1 a

Define what it means for L/K to be separable.

7.27.2 b

Show that if K is a finite field, then L/K is always separable.

7.27.3 c

Give an example of a finite extension L/K that is not separable.

7.28 Fall 2013 #6

Let K be the splitting field of $x^4 - 2$ over \mathbb{Q} and set $G = \operatorname{Gal}(K/\mathbb{Q})$.

7.28.1 a

Show that K/\mathbb{Q} contains both $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt[4]{2})$ and has degree 8 over $\mathbb{Q}/$

7.28.2 b

Let $N = \operatorname{Gal}(K/\mathbb{Q}(i))$ and $H = \operatorname{Gal}(K/\mathbb{Q}(\sqrt[4]{2}))$. Show that N is normal in G and NH = G.

Hint: what field is fixed by NH?

7.28.3 c

Show that $Gal(K/\mathbb{Q})$ is generated by elements σ, τ , of orders 4 and 2 respectively, with $\tau \sigma \tau^{-1} = \sigma^{-1}$.

Equivalently, show it is the dihedral group of order 8.

7.28.4 d

How many distinct quartic subfields of K are there? Justify your answer.

7.29 Spring 2013 #7

Let $f(x) = g(x)h(x) \in \mathbb{Q}[x]$ and $E, B, C/\mathbb{Q}$ be the splitting fields of f, g, h respectively.

7.29.1 a

Prove that Gal(E/B) and Gal(E/C) are normal subgroups of $Gal(E/\mathbb{Q})$.

7.29.2 b

Prove that $Gal(E/B) \bigcap Gal(E/C) = \{1\}.$

7.29.3 c

If $B \cap C = \mathbb{Q}$, show that $Gal(E/B)Gal(E/C) = Gal(E/\mathbb{Q})$.

7.29.4 d

Under the hypothesis of (c), show that $\operatorname{Gal}(E/\mathbb{Q}) \cong \operatorname{Gal}(E/B) \times \operatorname{Gal}(E/C)$.

7.29.5 e

Use (d) to describe $Gal(\mathbb{Q}[\alpha]/\mathbb{Q})$ where $\alpha = \sqrt{2} + \sqrt{3}$.

7.30 Spring 2013 #8

Let F be the field with 2 elements and K a splitting field of $f(x) = x^6 + x^3 + 1$ over F. You may assume that f is irreducible over F.

7.30.1 a

Show that if r is a root of f in K, then $r^9 = 1$ but $r^3 \neq 1$.

7.30.2 b

Find $\operatorname{Gal}(K/F)$ and express each intermediate field between F and K as $F(\beta)$ for an appropriate $\beta \in K$.

7.31 Fall 2012 #3

Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5. Assume that f has all but two roots in \mathbb{R} . Compute the Galois group of f(x) over \mathbb{Q} and justify your answer.

7.32 Fall 2012 #4

Let $f(x) \in \mathbb{Q}[x]$ be a polynomial and K be a splitting field of f over \mathbb{Q} . Assume that $[K : \mathbb{Q}] = 1225$ and show that f(x) is solvable by radicals.

7.33 Spring 2012 #1

Suppose that $F \subset E$ are fields such that E/F is Galois and |Gal(E/F)| = 14.

7.33.1 a

Show that there exists a unique intermediate field K with $F \subset K \subset E$ such that [K : F] = 2.

7.33.2 b

Assume that there are at least two distinct intermediate subfields $F \subset L_1, L_2 \subset E$ with $[L_i : F] = 7$. Prove that Gal(E/F) is nonabelian.

7.34 Spring 2012 #4

Let $f(x) = x^7 - 3 \in \mathbb{Q}[x]$ and E/\mathbb{Q} be a splitting field of f with $\alpha \in E$ a root of f.

7.34.1 a

Show that E contains a primitive 7th root of unity.

7.34.2 b

Show that $E \neq \mathbb{Q}(\alpha)$.

7.35 Fall 2019 Midterm #6

Compute the Galois group of $f(x) = x^3 - 3x - 3 \in \mathbb{Q}[x]/\mathbb{Q}$.

7.36 Fall 2019 Midterm #7

Show that a field k of characteristic $p \neq 0$ is perfect \iff for every $x \in k$ there exists a $y \in k$ such that $y^p = x$.

7.37 Fall 2019 Midterm #8

Let k be a field of characteristic $p \neq 0$ and $f \in k[x]$ irreducible. Show that $f(x) = g(x^{p^d})$ where $g(x) \in k[x]$ is irreducible and separable.

Conclude that every root of f has the same multiplicity p^d in the splitting field of f over k.

7.38 Fall 2019 Midterm #9

Let $n \geq 3$ and ζ_n be a primitive *n*th root of unity. Show that $[\mathbb{Q}(\zeta_n + \zeta_n^{-1}) : \mathbb{Q}] = \varphi(n)/2$ for φ the totient function. 10.

Let L/K be a finite normal extension.

- Show that if L/K is cyclic and E/K is normal with L/E/K then L/E and E/K are cyclic.
- Show that if L/K is cyclic then there exists exactly one extension E/K of degree n with L/E/K for each divisor n of [L:K].

8 Modules

8.1 General Questions

8.1.1 Fall 2018 #6 처

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if there is no R-module P with $N \subsetneq P \subsetneq M$.

- **a** Show that an R-submodule N of M is maximal $\iff M/N$ is a simple R-module: i.e., M/N is nonzero and has no proper, nonzero R-submodules.
- **b** Let M be a \mathbb{Z} -module. Show that a \mathbb{Z} -submodule N of M is maximal $\iff \#M/N$ is a prime number.

c Let M be the \mathbb{Z} -module of all roots of unity in \mathbb{C} under multiplication. Show that there is no maximal \mathbb{Z} -submodule of M.

8.1.2 Fall 2019 Final #2

Consider the \mathbb{Z} -submodule N of \mathbb{Z}^3 spanned by $f_1 = [-1, 0, 1], f_2 = [2, -3, 1], f_3 = [0, 3, 1], f_4 = [3, 1, 5]$. Find a basis for N and describe \mathbb{Z}^3/N .

8.1.3 Spring 2018 #6

Let

$$M = \{(w, x, y, z) \in \mathbb{Z}^4 \mid w + x + y + z \in 2\mathbb{Z}\},\$$

and

$$N = \{(w, x, y, z) \in \mathbb{Z}^4 \mid 4 \mid (w - x), 4 \mid (x - y), 4 \mid (y - z)\}.$$

- **a** Show that N is a \mathbb{Z} -submodule of M.
- **b** Find vectors $u_1, u_2, u_3, u_4 \in \mathbb{Z}^4$ and integers d_1, d_2, d_3, d_4 such that

$$\{u_1, u_2, u_3, u_4\}$$

is a free basis for M, and

$$\{d_1u_1, d_2u_2, d_3u_3, d_4u_4\}$$

is a free basis for N .

c Use the previous part to describe M/N as a direct sum of cyclic \mathbb{Z} -modules.

8.1.4 Spring 2018 #7

Let R be a PID and M be an R-module. Let p be a prime element of R. The module M is called $\langle p \rangle$ -primary if for every $m \in M$ there exists k > 0 such that $p^k m = 0$.

- **a** Suppose M is $\langle p \rangle$ -primary. Show that if $m \in M$ and $t \in R$, $t \notin \langle p \rangle$, then there exists $a \in R$ such that atm = m.
- **b** A submodule S of M is said to be *pure* if $S \cap rM = rS$ for all $r \in R$. Show that if M is $\langle p \rangle$ -primary, then S is pure if and only if $S \cap p^k M = p^k S$ for all $k \geq 0$.

8.1.5 Fall 2016 #6

Let R be a ring and $f: M \longrightarrow N$ and $g: N \longrightarrow M$ be R-module homomorphisms such that $g \circ f = \mathrm{id}_M$. Show that $N \cong \mathrm{im} \ f \oplus \ker g$.

8.1.6 Spring 2016 #4

Let R be a ring with the following commutative diagram of R-modules, where each row represents a short exact sequence of R-modules:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

Prove that if α and γ are isomorphisms then β is an isomorphism.

8.1.7 Spring 2015 #8

Let R be a PID and M a finitely generated R-module.

a Prove that there are R-submodules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

such that for all $0 \le i \le n-1$, the module M_{i+1}/M_i is cyclic.

b Is the integer n in part (a) uniquely determined by M? Prove your answer.

8.1.8 Fall 2012 #6

Let R be a ring and M an R-module. Recall that M is Noetherian iff any strictly increasing chain of submodule $M_1 \subsetneq M_2 \subsetneq \cdots$ is finite. Call a proper submodule $M' \subsetneq M$ intersection-decomposable if it can not be written as the intersection of two proper submodules $M' = M_1 \cap M_2$ with $M_i \subsetneq M$.

Prove that for every Noetherian module M, any proper submodule $N \subseteq M$ can be written as a finite intersection $N = N_1 \cap \cdots \cap N_k$ of intersection-indecomposable modules.

8.1.9 Fall 2019 Final #1

Let A be an abelian group, and show A is a \mathbb{Z} -module in a unique way.

8.2 Torsion and the Structure Theorem

8.2.1 * Fall 2019 #5

Let R be a ring and M an R-module.

Recall that the set of torsion elements in M is defined by

$$\operatorname{Tor}(M) = \{ m \in M \mid \exists r \in R, \ r \neq 0, \ rm = 0 \}.$$

- **a** Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- **b** Give an example where Tor(M) is not a submodule of M.
- **c** If R has zero-divisors, prove that every non-zero R-module has non-zero torsion elements.

8.2.2 * Spring 2019 #5 *

Let R be an integral domain. Recall that if M is an R-module, the rank of M is defined to be the maximum number of R-linearly independent elements of M.

- **a** Prove that for any R-module M, the rank of Tor(M) is 0.
- **b** Prove that the rank of M is equal to the rank of M/Tor(M).
- **c** Suppose that M is a non-principal ideal of R.

Prove that M is torsion-free of rank 1 but not free.

8.2.3 * Spring 2020 #6 *

Let R be a ring with unity.

- **a** Give a definition for a free module over R.
- **b** Define what it means for an R-module to be torsion free.
- ${f c}$ Prove that if F is a free module, then any short exact sequence of R-modules of the following form splits:

$$0 \longrightarrow N \longrightarrow M \longrightarrow F \longrightarrow 0.$$

d Let R be a PID. Show that any finitely generated R-module M can be expressed as a direct sum of a torsion module and a free module.

You may assume that a finitely generated torsionfree module over a PID is free.

8.2.4 Spring 2012 #5

Let M be a finitely generated module over a PID R.

- **a** M_t be the set of torsion elements of M, and show that M_t is a submodule of M.
- **b** Show that M/M_t is torsion free.
- **c** Prove that $M \cong M_t \oplus F$ where F is a free module.

8.2.5 Spring 2017 #5

Let R be an integral domain and let M be a nonzero torsion R-module.

- **a** Prove that if M is finitely generated then the annihilator in R of M is nonzero.
- **b** Give an example of a non-finitely generated torsion R-module whose annihilator is (0), and justify your answer.

8.2.6 Fall 2019 Final #3

Let R = k[x] for k a field and let M be the R-module given by

$$M = \frac{k[x]}{(x-1)^3} \oplus \frac{k[x]}{(x^2+1)^2} \oplus \frac{k[x]}{(x-1)(x^2+1)^4} \oplus \frac{k[x]}{(x+2)(x^2+1)^2}.$$

Describe the elementary divisors and invariant factors of M.

8.2.7 Fall 2019 Final #4

Let I = (2, x) be an ideal in $R = \mathbb{Z}[x]$, and show that I is not a direct sum of nontrivial cyclic R-modules.

8.2.8 Fall 2019 Final #5

Let R be a PID.

- a Classify irreducible R-modules up to isomorphism.
- **b** Classify indecomposable *R*-modules up to isomorphism.

8.2.9 Fall 2019 Final #6

Let V be a finite-dimensional k-vector space and $T: V \longrightarrow V$ a non-invertible k-linear map. Show that there exists a k-linear map $S: V \longrightarrow V$ with $T \circ S = 0$ but $S \circ T \neq 0$.

8.2.10 Fall 2019 Final #7

Let $A \in M_n(\mathbb{C})$ with $A^2 = A$. Show that A is similar to a diagonal matrix, and exhibit an explicit diagonal matrix similar to A.

8.2.11 Fall 2019 Final #10

Show that the eigenvalues of a Hermitian matrix A are real and that $A = PDP^{-1}$ where P is an invertible matrix with orthogonal columns.

9 Linear Algebra: Diagonalizability

9.1 Fall 2017 #7

Let F be a field and let V and W be vector spaces over F .

Make V and W into F[x]-modules via linear operators T on V and S on W by defining $X \cdot v = T(v)$ for all $v \in V$ and $X \cdot w = S(w)$ for all $w \in W$.

Denote the resulting F[x]-modules by V_T and W_S respectively.

9.1.1 a

Show that an F[x]-module homomorphism from V_T to W_S consists of an F-linear transformation $R: V \longrightarrow W$ such that RT = SR.

9.1.2 b

Show that $VT \cong WS$ as F[x]-modules \iff there is an F-linear isomorphism $P: V \longrightarrow W$ such that $T = P^{-1}SP$.

9.1.3 c

Recall that a module M is simple if $M \neq 0$ and any proper submodule of M must be zero. Suppose that V has dimension 2. Give an example of F, T with V_T simple.

9.1.4 d

Assume F is algebraically closed. Prove that if V has dimension 2, then any V_T is not simple.

9.2 Spring 2015 #3

Let F be a field and V a finite dimensional F-vector space, and let $A, B : V \longrightarrow V$ be commuting F-linear maps. Suppose there is a basis \mathcal{B}_1 with respect to which A is diagonalizable and a basis \mathcal{B}_2 with respect to which B is diagonalizable.

Prove that there is a basis \mathcal{B}_3 with respect to which A and B are both diagonalizable.

9.3 Fall 2016 #2

Let A, B be two $n \times n$ matrices with the property that AB = BA. Suppose that A and B are diagonalizable. Prove that A and B are simultaneously diagonalizable.

9.4 Spring 2019 #1 🦙

Let A be a square matrix over the complex numbers. Suppose that A is nonsingular and that A^{2019} is diagonalizable over \mathbb{C} .

Show that A is also diagonalizable over \mathbb{C} .

10 Linear Algebra: Misc

10.1 * Spring 2012 #6

Let k be a field and let the group $G = GL(m, k) \times GL(n, k)$ acts on the set of $m \times n$ matrices $M_{m,n}(k)$ as follows:

$$(A,B) \cdot X = AXB^{-1}$$

where $(A, B) \in G$ and $X \in M_{m,n}(k)$.

10.1.1 a

State what it means for a group to act on a set. Prove that the above definition yields a group action.

10.1.2 b

Exhibit with justification a subset S of $M_{m,n}(k)$ which contains precisely one element of each orbit under this action.

10.2 * Spring 2014 #7

Let $G = GL(3, \mathbb{Q}[x])$ be the group of invertible 3×3 matrices over $\mathbb{Q}[x]$. For each $f \in \mathbb{Q}[x]$, let S_f be the set of 3×3 matrices A over $\mathbb{Q}[x]$ such that $\det(A) = cf(x)$ for some nonzero constant $c \in \mathbb{Q}$.

10.2.1 a

Show that for $(P,Q) \in G \times G$ and $A \in S_f$, the formula

$$(P,Q) \cdot A := PAQ^{-1}$$

gives a well defined map $G \times G \times S_f \longrightarrow S_f$ and show that this map gives a group action of $G \times G$ on S_f .

10.2.2 b

For $f(x) = x^3(x^2 + 1)^2$, give one representative from each orbit of the group action in (a), and justify your assertion.

10.3 Fall 2012 #7

Let k be a field of characteristic zero and $A, B \in M_n(k)$ be two square $n \times n$ matrices over k such that AB - BA = A. Prove that det A = 0.

Moreover, when the characteristic of k is 2, find a counterexample to this statement.

10.4 Fall 2012 #8

Prove that any nondegenerate matrix $X \in M_n(\mathbb{R})$ can be written as X = UT where U is orthogonal and T is upper triangular.

10.5 Fall 2012 #5

Let U be an infinite-dimensional vector space over a field $k, f: U \longrightarrow U$ a linear map, and $\{u_1, \dots, u_m\} \subset U$ vectors such that U is generated by $\{u_1, \dots, u_m, f^d(u_1), \dots, f^d(u_m)\}$ for some $d \in \mathbb{N}$.

Prove that U can be written as a direct sum $U \cong V \oplus W$ such that

- 1. V has a basis consisting of some vector $v_1, \dots, v_n, f^d(v_1), \dots, f^d(v_n)$ for some $d \in \mathbb{N}$, and
- $2.\ W$ is finite-dimensional.

Moreover, prove that for any other decomposition $U \cong V' \oplus W'$, one has $W' \cong W$.

10.6 Fall 2015 #7

10.6.1 a

Show that two 3×3 matrices over \mathbb{C} are similar \iff their characteristic polynomials are equal and their minimal polynomials are equal.

10.6.2 b

Does the conclusion in (a) hold for 4×4 matrices? Justify your answer with a proof or counterexample.

10.7 Fall 2014 #4

Let F be a field and T an $n \times n$ matrix with entries in F. Let I be the ideal consisting of all polynomials $f \in F[x]$ such that f(T) = 0.

Show that the following statements are equivalent about a polynomial $g \in I$:

- a. g is irreducible.
- b. If $k \in F[x]$ is nonzero and of degree strictly less than g, then k[T] is an invertible matrix.

10.8 Fall 2015 #8

Let V be a vector space over a field F and V^{\vee} its dual. A symmetric bilinear form (\cdot, \cdot) on V is a map $V \times V \longrightarrow F$ satisfying

$$(av_1 + bv_2, w) = a(v_1, w) + b(v_2, w)$$
 and $(v_1, v_2) = (v_2, v_1)$

for all $a, b \in F$ and $v_1, v_2 \in V$. The form is nondegenerate if the only element $w \in V$ satisfying (v, w) = 0 for all $v \in V$ is w = 0.

Suppose (\cdot, \cdot) is a nondegenerate symmetric bilinear form on V. If W is a subspace of V, define

$$W \perp := \{ v \in V \mid (v, w) = 0 \text{ for all } w \in W \}.$$

10.8.1 a

Show that if X, Y are subspaces of V with $Y \subset X$, then $X \perp \subseteq Y \perp$.

10.8.2 b

Define an injective linear map

$$\psi: Y \perp /X \perp \hookrightarrow (X/Y)^{\vee}$$

which is an isomorphism if V is finite dimensional.

10.9 Fall 2018 #4 🐪

Let V be a finite dimensional vector space over a field (the field is not necessarily algebraically closed).

Let $\varphi:V\longrightarrow V$ be a linear transformation. Prove that there exists a decomposition of V as $V=U\oplus W$, where U and W are φ -invariant subspaces of V, $\varphi|_U$ is nilpotent, and $\varphi|_W$ is nonsingular.

Revisit.

10.10 Fall 2018 #5 💝

Let A be an $n \times n$ matrix.

10.10.1 a

Suppose that v is a column vector such that the set $\{v, Av, ..., A^{n-1}v\}$ is linearly independent. Show that any matrix B that commutes with A is a polynomial in A.

10.10.2 b

Show that there exists a column vector v such that the set $\{v, Av, ..., A^{n-1}v\}$ is linearly independent \iff the characteristic polynomial of A equals the minimal polynomial of A.

10.11 Fall 2019 #8

Let $\{e_1, \cdots, e_n\}$ be a basis of a real vector space V and let

$$\Lambda \coloneqq \left\{ \sum r_i e_i \mid r_i \in \mathbb{Z} \right\}$$

Let \cdot be a non-degenerate $(v \cdot w = 0 \text{ for all } w \in V \iff v = 0)$ symmetric bilinear form on V such that the Gram matrix $M = (e_i \cdot e_j)$ has integer entries.

Define the dual of Λ to be

$$\Lambda^{\vee} := \{ v \in V \mid v \cdot x \in \mathbb{Z} \text{ for all } x \in \Lambda \}.$$

10.11.1 a

Show that $\Lambda \subset \Lambda^{\vee}$.

10.11.2 b

Prove that $\det M \neq 0$ and that the rows of M^{-1} span Λ^{\vee} .

10.11.3 c

Prove that $\det M = |\Lambda^{\vee}/\Lambda|$.

Todo, missing part (c).

10.12 Spring 2013 #6

Let V be a finite dimensional vector space over a field F and let $T: V \longrightarrow V$ be a linear operator with characteristic polynomial $f(x) \in F[x]$.

10.12.1 a

Show that f(x) is irreducible in $F[x] \iff$ there are no proper nonzero subspaces W < V with $T(W) \subseteq W$.

10.12.2 b

If f(x) is irreducible in F[x] and the characteristic of F is 0, show that T is diagonalizable when we extend the field to its algebraic closure.

Is there a proof without matrices? What if V is infinite dimensional?

How to extend basis?

11 Linear Algebra: Canonical Forms

11.1 ★ Spring 2012 #8

Let V be a finite-dimensional vector space over a field k and $T:V\longrightarrow V$ a linear transformation.

11.1.1 a

Provide a definition for the minimal polynomial in k[x] for T.

11.1.2 b

Define the *characteristic polynomial* for T.

11.1.3 c

Prove the Cayley-Hamilton theorem: the linear transformation T satisfies its characteristic polynomial.

11.2 * Spring 2020 #8

Let $T: V \longrightarrow V$ be a linear transformation where V is a finite-dimensional vector space over \mathbb{C} . Prove the Cayley-Hamilton theorem: if p(x) is the characteristic polynomial of T, then p(T) = 0. You may use canonical forms.

11.3 ★ Spring 2012 #7

Consider the following matrix as a linear transformation from $V := \mathbb{C}^5$ to itself:

$$A = \left(\begin{array}{ccccc} -1 & 1 & 0 & 0 & 0 \\ -4 & 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{array}\right).$$

11.3.1 a

Find the invariant factors of A.

11.3.2 b

Express V in terms of a direct sum of indecomposable $\mathbb{C}[x]$ -modules.

11.3.3 c

Find the Jordan canonical form of A.

11.4 Fall 2019 Final #8

Exhibit the rational canonical form for

- A ∈ M₆(Q) with minimal polynomial (x 1)(x² + 1)².
 A ∈ M₁₀(Q) with minimal polynomial (x² + 1)²(x³ + 1).

11.5 Fall 2019 Final #9

Exhibit the rational and Jordan canonical forms for the following matrix $A \in M_4(\mathbb{C})$:

$$A = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -2 & -2 & 0 & 1 \\ -2 & 0 & -1 & -2 \end{array}\right).$$

11.6 Spring 2016 #7

Let $D = \mathbb{Q}[x]$ and let M be a $\mathbb{Q}[x]$ -module such that

$$M \cong \frac{\mathbb{Q}[x]}{(x-1)^3} \oplus \frac{\mathbb{Q}[x]}{(x^2+1)^3} \oplus \frac{\mathbb{Q}[x]}{(x-1)(x^2+1)^5} \oplus \frac{\mathbb{Q}[x]}{(x+2)(x^2+1)^2}.$$

Determine the elementary divisors and invariant factors of M.

11.7 Spring 2020 #7

Let

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 6 & 1 \\ -16 & -16 & -2 \end{bmatrix} \in M_3(\mathbf{C}).$$

11.7.1 a

Find the Jordan canonical form J of A.

11.7.2 b

Find an invertible matrix P such that $P^{-1}AP = J$. You should not need to compute P^{-1} .

11.7.3 c

Write down the minimal polynomial of A.

11.8 Spring 2019 #7 🦙

Let p be a prime number. Let A be a $p \times p$ matrix over a field F with 1 in all entries except 0 on the main diagonal.

Determine the Jordan canonical form (JCF) of A

11.8.1 a

When $F = \mathbb{Q}$,

11.8.2 b

When $F = \mathbb{F}_p$.

Hint: In both cases, all eigenvalues lie in the ground field. In each case find a matrix P such that $P^{-1}AP$ is in JCF.

11.9 Spring 2018 #4

Let

$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 1 & -3 \\ 1 & 2 & -4 \end{bmatrix} \in M_3(\mathbb{C})$$

11.9.1 a

Find the Jordan canonical form J of A.

11.9.2 b

Find an invertible matrix P such that $P^{-1}AP = J$.

You should not need to compute P^{-1} .

11.10 Spring 2017 #6

Let A be an $n \times n$ matrix with all entries equal to 0 except for the n-1 entries just above the diagonal being equal to 2.

11.10.1 a

What is the Jordan canonical form of A, viewed as a matrix in $M_n(\mathbb{C})$?

11.10.2 b

Find a nonzero matrix $P \in M_n(\mathbb{C})$ such that $P^{-1}AP$ is in Jordan canonical form.

11.11 Spring 2016 #1

Let

$$A = \begin{pmatrix} -3 & 3 & -2 \\ -7 & 6 & -3 \\ 1 & -1 & 2 \end{pmatrix} \in M_3(\mathbb{C}).$$

11.11.1 a

Find the Jordan canonical form J of A.

11.11.2 b

Find an invertible matrix P such that $P^{-1}AP = J$. You do not need to compute P^{-1} .

11.12 Spring 2015 #6

Let F be a field and n a positive integer, and consider

$$A = \begin{bmatrix} 1 & \dots & 1 \\ & \ddots & \\ 1 & \dots & 1 \end{bmatrix} \in M_n(F).$$

Show that A has a Jordan normal form over F and find it.

Hint: treat the cases $n \cdot 1 \neq 0$ in F and $n \cdot 1 = 0$ in F separately.

11.13 Fall 2014 #5

Let T be a 5×5 complex matrix with characteristic polynomial $\chi(x) = (x-3)^5$ and minimal polynomial $m(x) = (x-3)^2$. Determine all possible Jordan forms of T.

11.14 Spring 2013 #5

Let $T: V \longrightarrow V$ be a linear map from a 5-dimensional \mathbb{C} -vector space to itself and suppose f(T) = 0 where $f(x) = x^2 + 2x + 1$.

11.14.1 a

Show that there does not exist any vector $v \in V$ such that Tv = v, but there does exist a vector $w \in V$ such that $T^2w = w$.

11.14.2 b

Give all of the possible Jordan canonical forms of T.