Quizz 10 Cálculo Numérico / Análise Numérica

Prof.: Fabrício Murai

Não esqueça de escrever seu nome.

1. Considere a série de pontos a seguir:

x	1	2	3	4	5	6
y	-4.501	83.453	112.953	123.824	170.335	183.008

Suponha que a relação entre x e y seja dada por $y=\beta_1x+\beta_2\log x+\epsilon$. Obtenha os valores de β_1 e β_2 através do método dos quadrados mínimos. (Dica: a função y pode ser vista como uma regressão linear múltipla em x, onde $x_1=x$ e $x_2=\log x$.)

Solução. Conforme a dica, iremos construir uma nova tabela onde $x_1 = x$ e $x_2 = \log x$.

x_1	1	2	3	4	5	6
x_2	0.000	0.693	1.099	1.386	1.609	1.792
y	-4.501	83.453	112.953	123.824	170.335	183.008

Neste caso, sabemos que a regressão linear múltipla pode ser obtida através da solução do sistema

$$\begin{bmatrix} \mathbf{x}_1 \cdot \mathbf{x}_1 & \mathbf{x}_1 \cdot \mathbf{x}_2 \\ \mathbf{x}_2 \cdot \mathbf{x}_1 & \mathbf{x}_2 \cdot \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y} \cdot \mathbf{x}_1 \\ \mathbf{y} \cdot \mathbf{x}_2 \end{bmatrix}$$

onde $\mathbf{a} \cdot \mathbf{b}$ denota o produto interno dos vetores \mathbf{a} e \mathbf{b} . Fazendo as contas, obtemos

$$\begin{bmatrix} 91.000 & 29.025 \\ 29.025 & 9.410 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 2946.28 \\ 955.64 \end{bmatrix}$$

Resolvendo-se o sistema, tem-se que $\beta_1 = -0.964$ e $\beta_2 = 104.531.$