CS 111

Steven Munn

University of California, Santa Barbara sjmunn@cs.ucsb.edu

February 11, 2019

Overview

- Exam Info
- 2 Floating Point Number Representation
- 3 IEEE 754 Properties
- 4 TPU's and Tensorflow
- 5 Eigenfaces

Section 1

Exam Info

General Statistics

$$\mathtt{Mean} = 57.56/69.0 = 83.42\%$$

$$\mathtt{Median} = 60.0/69.0 = 86.96\%$$

$$\sigma = 9.5/69.0 = 13.76\%$$

Question 2(c)

For k = 40, in the temperature problem, how many elements of A are non-zero? Approximately,

$$5 \times 1600 = 8,000$$

Question 4(c and d)

After QR factorization in "economic" mode, $Q^TQ=I$; however, QQ^T is not always the identity matrix.

Section 2

Floating Point Number Representation

Double Precision Floating Point

$$(-1)^{\text{sign}} \left(1 + \sum_{i=1}^{52} b_{52-i} 2^{-i} \right) \times 2^{e-1023}$$

Number One

```
>> fprint(1)
```

input : :

as float64: 1.0000000000000000e+00

as hex : 3ff0000000000000

sign : 0 means +

exponent : 3ff means 1023 - 1023 = 0

$$= 2^0 \times 1 = 1$$

What is?

Number Four

```
input : 4
```

as float64: 4.0000000000000000e+00

as hex : 4010000000000000

sign : 0 means +

exponent : 401 means 1025 - 1023 = 2

Section 3

IEEE 754 Properties

IEEE 754

You can assume that calculations are done in the following order:

- Perform the calculation exactly with all the precision of the 2 floating point numbers
- Round the result to fit into 64 bit float representation.

Example With Two Significant Digits

If you round first,

$$5.6 + 6.6 = 6 + 7 = 13$$

However, if you round in the last step,

$$5.6 + 6.6 = 12.2 = 12$$

Rounding Modes

How do you round 3.35? Why?

Rounding Modes

How do you round 3.35? Why? Round so that the least significant digit is even, 3.4.

Rounding Modes

How do you round 3.35? Why? Round so that the least significant digit is even, 3.4. All other rounding modes will be statistically biased.

Special "Numbers"

$$\frac{x}{0} = \infty$$

$$\frac{-x}{0} = -\infty$$

$$\frac{-x}{0} + \frac{x}{0} = -\infty$$

Special "Numbers"

$$\frac{x}{0} = \infty$$

$$\frac{-x}{0} = -\infty$$

$$\frac{-x}{0} + \frac{x}{0} = \text{NaN}$$

Special "Numbers"

Figure: Not spelled NaN.. but still makes me hungry..

Section 4

TPU's and Tensorflow

Co-processors

Figure 1: A typical configuration of a multicore processor and a coprocessor.

Deepmind's AlphaStar

Alpha Star

The AlphaStar league was run for 14 days, using 16 TPUs for each agent. During training, each agent experienced up to 200 years of real-time StarCraft play.

Alpha Star

Google TPU's

600 agents times 200 years of gameplay.. $120,\!000$ years!

Section 5

Eigenfaces

CS 111

PCA Analysis

PCA Analysis

$$x = \sum_{i} a_{i} \mu_{i}$$

Where $A^T A \mu_i = \lambda \mu_i$

Eigenfaces

