

Exercise list 02 - Distributions

Introduction to Statistics / Neuroscience 2023/2024

- Consider the neuro dataset of the boot R package (download it here):
 - 'neuro' is a matrix used for recording the times when a neuron fired in response to a stimulus applied to a human subject.
 - The matrix captures firing times within **windows** of **250 milliseconds** before (**negative** sign) and after (**positive** sign) the stimulus application.
 - ➤ Each row in the matrix represents a replication of the experiment.
 - ➤ It's important to note that the matrix contains many missing values due to varying numbers of firings observed in different replicates.

	V1	√ V2	♦ V3	√ ∨4	♦ V5	♦ V6
1		-203.7	-84.1	18.5		
2		-203.0	-97.8	25.8	134.7	-
3		-249.0	-92.1	27.8	177.1	
4		-231.5	-97.5	27.0	150.3	
5			-130.1	25.8	160.0	
6		-223.1	-70.7	62.1	197.5	
7		-164.8	-12.2	76.8	202.8	
8		-221.6	-81.9	27.5	144.5	
9		-153.7	-17.0	76.1	222.4	
10		-184.7	-47.3	74.4	208.9	
11			-148.8	11.4	137.7	
12		-197.6	-6.4	137.1		
13		-247.8	-35.4	80.9	229.5	
14		-227.0	-104.7	20.2	140.2	
15	-233.6	-115.9	-10.5	70.0	202.6	

4 minutes!

Neuronal firing	More than 4 (including)	Less than 4	Total
Positive (after)	264	60	324
Negative (before)	180	96	276
Total	444	156	600

- ➤ Determine the **conditional probability** of observing a **neuronal firing** after the stimulus (**positive** firing) given that **more than 4** firings occurred in the experiment.
- ➤ Determine the probability of observing a **positive firing**.

Neuronal firing	More than 4 (including)	Less than 4	Total
Positive (after)	264	60	324
Negative (before)	180	96	276
Total	444	156	600

- ➤ Determine the **conditional probability** of observing a **neuronal firing** after the stimulus (**positive** firing) given that **more than 4** firings occurred in the experiment. **264/444**~0.59.
- ➤ Determine the probability of observing a **positive firing**. **324/600~**0.54.

- Consider the *neuro* dataset of the *boot* R package:
 - Consider that a **success** ('Heads') is to **observe a firing**.
 - ➤ What is the **average number** of neuronal firings in a 250ms window?
 - Let's **assume** a distribution for the number of firings. **Suggestions**?

Figure 3.1: Possible outcomes for number of heads in three tosses of a coin.

- Download the distrACTION module.
- Plot the probability mass function for the number of neuronal firings per experiment.
 Assume that it follows a Binomial distribution with p = 4.12/6.
- Find the probability of occurring more than5 firings.
- Find the IQR.
- Find **P(3<=X<=5)**.

2.

3.

10 minutes!

- Download the distrACTION module.
- Plot the probability mass function for the number of neuronal firings per experiment.
 Assume that it follows a Binomial distribution with p = 4.12/6.
- Find the probability of occurring more than
 5 firings. 0.392.
- Find the IQR. 5-3=2.
- Find P(3<=X<=5). 0.814.</p>

MAJOR distrACTION Modules

jamovi library

Manage installed

- Now assume a Normal distribution with mean 170 and standard deviation
 13 for the body height of the patients in the dataset.
- Find the probability of **being taller** than a person of **185 cm**.
- Find the IQR.
- Find P(170<=X<=190).</p>

5 minutes!

- Now assume a Normal distribution with mean 170 and standard deviation
 13 for the body height of the patients in the dataset.
- Find the probability of **being taller** than a person of **185 cm**.
- > Find the IQR. 179-161=18.
- Find P(170<=X<=190). 0.438.</p>

