

概要はここに書く。(300 400 字程度)

目次

第1章	導入	1
第2章	モデルの説明	3
第 3 章	各モデルにおける結果と考察	6
3.1	X_i を等確率で選び, その中から x が一様に選ばれる場合	6
3.2	X_i を一つ前の X_j によって決まる確率で選び, その中から点 x が一様に選ばれる場合	Ś
3.3	過去の点 x を参照にして次の点を選択する場合 \dots	13
3.4	近距離の点をクラスター化するモデル	20
第 4 章	結論	34
第5章	参 老 文献	35

第1章

導入

私達は普段の身近な生活の中で、サイズが変わるとその中の質や状態が変わってしまうと感じるものを見つけることができる。それは会話とその人数の間の関係にもあるかもしれないし、共同作業を行うときのチームメンバーの人数かもしれない。企業の大きさとその中の人間の従事度も異なるかもしれない。会議にやたら多くの人が参加していても、ほとんどの人はその会議を無意味なものだと見なすことになるだろう。世の中のおよそほとんどのスポーツやゲームなどは、参加する人数が予め決められていることが多い。よく練られたものであれば、この決められた人数より多くても少なくても、本来の楽しみを得ることはできないだろう。麻雀は4人でするから楽しめるのであり、会議は100人ではなかなか進まないものである。

このような現象はこれまで見てきたように大変身近で, 私達にとって実感をもって受け入れられることなので、ほとんどの場合不文律にこの法則は受け入れられていると言って良いだろう。

また、相乗効果という点に着目すれば、一人で何かするよりも、多くの人を交えて行ったほうが効率が上がるといったものも多く存在していることだろう。しかしながら、そこでも多すぎはまた別の問題を産むなどして、多すぎることも効率を下げる要因になることもあるのである。

こういったことを私達は無自覚の内に理解しているので,何かを大人数で共同して行うときには,それをさらにいくつかのグループ,班,部署,そういったより小さい単位に分割する必要を感じる。もちろん,このような現象はよく知られたことであるので,どれほどのシステムサイズであれば最大の効率が導き出せるか,ということは,昔から考えるべきことであり,最適人数に関する調査・研究が行われたり,詳細な研究はなされていなくても各分野での情報が蓄積されたりしている。例えば教育の分野などではグループ学習や少人数授業の有効性が議論されることも多い。

さて、これまでに述べたような系のシステムサイズとその効率の間の関係は、何も人間を要素とした系でなくとも考えることが出来る。例えば、動物の体重と代謝率の間の関係も、同じ現象であるとみなすことができるかもしれない。動物学等の分野で知られている法則として、体重とその他の観測量の間の関係としてアロメトリー則と呼ばれるものがある。その一つが体重と代謝率の間の関係であり、特にこの関係のことを Kleiber 則と呼ぶ。これは様々なスケールの対象について調べられていて、代謝率 E と体重 M の間の関係は $E \sim M^b$ のようにスケールされる。この指数については、データの取り方などによって異なるため、いくつか説があり、指数の大きさは 2/3 とする意見と 3/4 とする意見とがあり、また両辺の対数を取った関係式で右辺の $\log M$ の 2 乗の項を考慮すればよりよくフィッティングできる、といったものもあ

第1章 導入

る。ここで重要視したいのは、指数の大きさがどちらか、ということではなく、その指数は1よりも小さい値をとる、ということである。これまで挙げてきたシステムサイズと効率の関係についてと同じように議論する余地があることが分かる。

この指数が生物種や成長過程における細胞組成の変化が本質的ではなく. その時点でのシステムのサ イズが影響していることの一つの例として、ホヤの群体サイズと代謝率の間の関係も、同様に1乗より小 さい指数でスケールされることが確かめられている。このホヤは無性生殖によって自分と全く同じ個体 を増やして群体を形成し、群体同士のつながりはネットワーク上に張り巡らされた血管のつながりであ る。この群体の構成個数は実験者が物理的に切り離すことによって容易に変更でき、それによってサイ ズごとの代謝率を調べることができる。さらに、このホヤにはある時間周期ごとに一斉に分裂・増殖を行 う"takeover"と呼ばれる現象が見られ、このときすべての個体間の血管つながりが切れ、このときの代謝 率は同じ個体数の群体の代謝率よりも大きくなることが示されている。二つ目の例の場合は、これから増 殖を行うために代謝率が増加したのだと見ることもできるのであるが、一つ目のサイズと代謝率の間の関 係は、そのように簡単に説明されるものではない。 これまでの Kleiber 則の説明としては、体温の維持と表 面積との関係から 2/3 を導くものや, 血管構造が大動脈から毛細血管に至るまでがフラクタル的であるこ とに着目し、血液の流速と代謝率の間の関係を仮定して 3/4 を導くものがあった。しかしはじめの理論で は変温動物や単細胞においてもこの関係が成り立つことのうまい説明ができない。また、二つ目の理論に ついても、より物理的な描像なため説得力はあるが、ホヤの場合、血管構造、特に血管の太さや長さに関し て自己相似的とは言えず、また、その理論の中で仮定される"巨視的プールから微視的構造に向かう流れ" というものも見られないため、この理論では説明することはできない。したがって、引用元の記事の中で は一つの仮説として以下のようなものが提唱されている。

『べき乗のサイズ効果は個体同士の局所的な相互作用によって生じ、takeover 中には個体間の連絡が切れるため、サイズ効果が見られなくなる。同じユニットが局所的な相互作用をもつ系は、自己組織化臨界状態にある可能性があり、臨界状態とは相互作用に効果がべき関数で記載されるものである。ホヤを含め、動物は自己組織化臨界状態にあるのではないか。』

ここまで述べて来たような、人間の作るシステムの中での最適人数の議論や、生物のアロメトリー則などは、統一した一つの理論として書ける可能性がある。このとき、それまで各モデルの中で重要だと思われてきた要素は、統一された理論の中でのある物理量に対応させることによって、どのモデルでも同じように書けるかもしれない。こうしたことを考えていくうちに、より抽象的にこの問題を考えることには何か意義があるのではという思いを抱くようになった。

この論文では、具体的なイメージとしては例の中で挙げられた会議を題材に議論を進めることにした。 会議の進行プロセスを元に確率モデルを作成し、その解析を行って、その結果をまとめた。

第2章

モデルの説明

まずはじめに、作成した確率モデルに関しての説明と、その際追加で説明が必要と思われた場合にはそ の背景についても述べていくことにする。

会議について考える上で、システムサイズは会議に参加する人の人数であるとする。したがって、これから考えていくべき関係はこの人数と会議の"質"、成果との間の関係である。しかしながら、この"質"がどういった量として測れるのかは現段階で不明であるため、モデルを立てた際に得られる一般的な物理量から、質にあたるものを予測していく、というアプローチを取ることにする。

一口に会議と言っても世の中には様々な種類の会議が存在する。会社やグループの中で行われる会議の中には、すべての部署が一同に会し、その中でそれぞれの進捗状況など、情報を共有するための報告会議や、企画のためのアイデア出しなど、何か与えられた議題に沿ってそれぞれが自由に発言するタイプの会議もある。また、既に決定している内容に関して、それに関連のある人を集めて一度に口頭で説明するタイプの報告会も、一般には会議と呼ばれている。また、会議の進行方法もいくつかあり、会話と同じようにそれぞれの人が思い思いに発言する場合や、ファシリテーターと呼ばれる進行役が質問によってそれぞれの人の意見を引き出したり、意見をまとめたりして、会議の流れをコントロールする場合もある。このモデルで扱うのは、アイデア出しのようにそれぞれが自由に発言し、その意見がつながることによってよりよい案を得ることができる、という種類の会議であり、ファシリテーターのように全体の流れをコントロールできる独立した存在はいないものとする。

以上のような設定を考えた上で、これを確率論として扱うために、会議の中の言葉を抽象的なモデルで表すことにする。まず、「意見」とはまだ会議の中で発言されていない、それぞれの人がもつ考えをあらわすこととする。 すべての意見が a 個の異なる要素に分解でき、それぞれの要素は 1 つの実数値をもっているとすると、ある一つの意見 x というのは、 $\Omega \subset \mathbb{R}^a$ 上の一つの元

$$x = (x_1, x_2, \cdots, x_a) \in \Omega$$

とすることができる。

第2章 モデルの説明

図 2.1 \mathbb{R}^a 上の空間 Ω と、その元である点 x

また、この意見間の距離を定義すればこれらの点を元とする距離空間を定義することができる。距離の 入れ方としてはユークリッド距離

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_a - y_a)^2}$$

を考えることとする。

次に、「参加者」について考える。参加者は会議の中で自分の中にある意見を発言していくのであり、参加者それ自体は意見の集まりである。すなわち意見空間 Ω 上の部分空間 X_i が参加者 i を表すとする。 x_{ik} が人 i のラベル k の意見であるとすると、人 i が s_i 個の意見を持っているとき、

$$X_i = \{x_{i0}, x_{i1}, \cdots, x_{is_i}\}.$$

一般に

$$X_i \cap X_j = \emptyset$$
 when $i \neq j$

である必然性はないが、このモデルでは上式を採用することとする。 したがってモデルの中で扱う意見空間 Ω_0 は、参加者が N 人集まったとき、 X_i の直和集合

$$\Omega_0 = \bigcup_{i=1}^N X_i$$

$$= \sum_{i=1}^N X_i$$
(2.1)

となる。

モデルの作成に際し、会議の進行に関していくつかの仮定をおいて考えていくことにする。これらの仮 定が本質的であるような場合にはまた別のモデル化を考える必要があるが、ひとまず以下の仮定を受け入 れることにして、その上でモデルを作成することにした。 第2章 モデルの説明

仮定:

- 一度に発言できる人は一人まで
- 一人当たりの発言時間は参加人数に依らない

このように仮定すると、会議という過程を、1 つの時間発展するネットワークの生成過程であると見なすことができる。すなわちある参加者に必ず属する点をルールにしたがって各時刻ごとに選択していき、その時意見間の間にも与えられた別のルールによってエッジを結んでいくとする。このようにすると、終了時刻 K が経過した時には、意見間のネットワークと、参加者間のネットワークを得ることができる。このネットワークの特性の中に、会議の質となりうる量があるとして、この描像のもとに意見 x や参加者 X_i の選択に関してのルールを与えていくことにする。

以降の議論では、特に必要のない限り、上で定めた記号と言葉を使い、「会議、意見、参加者」といった言葉は使わないことにする。

点xの選び方としては、

- 1. 集合 X_i を選び、その中から x を選ぶ方法
- 2. 点 x を選び、その点の情報から、 X_i を決める方法

の二つがある。

それぞれの場合について,x と X を選ぶ確率が互いに独立な場合と, そうでない場合にさらに分けて考えることができる。

したがって、考えるべきは

- *X_i* の独立な選び方
- xの独立な選び方
- X_i が選ばれたときの x の選び方
- x が選ばれたときの X_i の選び方

の4つである。

第3章

各モデルにおける結果と考察

この章では、2章で設定したモデル化の方法を用いて、xと X_i の選択に関するルールと、x間のエッジの結び方に関するルールを定め、そのルールに従ったときにはどのようなネットワークの特徴量が得られるかについて、それぞれ見ていくことにする。 3.1節では X_i を等確率で選び、その中からxが一様に選ばれる場合、3.2節では X_i を一つ前の X_j によって決まる確率で選び、その中からxが一様に選ばれる場合を考える。 3.3節では、 X_i に依らず過去の点xを参照にして次の点を選択する場合を考察し、3.4節では 3.3節の場合を拡張し、近距離にある点をクラスター化し、そのクラスターy同士のネットワークを考えたモデルを考察する。 それぞれの場合について、解析的に計算ができるところは計算によって理論値を求め、シミュレーションの結果と対応するかを確かめた。 また、それぞれの場合について、特にシステムサイズ Nとどう関連するのかに重点をおいて考察を行った。

$3.1 X_i$ を等確率で選び、その中から x が一様に選ばれる場合

この設定は、はじめに N 個の集合 X から 1 つの X_i 選択し、点 x はそれぞれの X_i について $\Omega = [0,1]$ に一様に分布しているとする。このとき、 X_i の数 N が変化しても、x についての選び方は同じであるから、x の作るネットワークだけでは、本来考えたい N との間の関係は見ることができない。しかしながら、選ばれた点のネットワークに関する性質を調べるには良い練習となる。

 X_i から k 番目に点が選ばれ、その後時刻 k+1 に X_i から点が選ばれる確率は、 X_i の数 N として

$$p_i(k,j) = p(N) = \frac{1}{N}$$

のように, 直前の履歴に依存せず, 等確率である場合を考えている。

このとき,x は [0,1] の間の値を一様な確率で取るとしていたので, そうして得られた確率変数 x に関して, 確率密度関数 f(x) は

$$f(x) = 1 \quad (0 \le x \le 1)$$
 otherwise 0

であり、累積分布関数 F(x) は

$$F(x) = x \quad (0 \le x \le 1)$$

である。

時間発展によって点が選ばれていくごとに、その点と距離 r より近い位置にある点との間にすべてエッジを張っていくことにする。すなわち、この問題はある閾値 $r(0 < r \le 1)$ を定めた時に、時刻 k で選ばれた点 x_k を中心とする領域 $[x^k-r,x^k+r]$ の中に入るそれまでに出た点の数はいくつか、という問題に帰着される。

すなわち図3.1のような状況を考えていることになる。

図 3.1 [0,1] の数直線上で閾値 r で定められる領域

一様な確率で [0,1] の間の数が選ばれるとき、その確率変数が $[\max(0,x-r),\min(x+r,1)]$ の範囲に入っている確率は、確率密度関数を用いて、

$$p(\max(0, x - r), \min(x + r, 1)) = \int_{\max(0, x - r)}^{\min(x + r, 1)} 1 dx$$
$$= [x]_{\max(0, x - r)}^{\min(x + r, 1)}$$
(3.1)

よって

$$p(x,r) = \begin{cases} x+r & 0 \le x < \min(r, 1-r) \\ p(r) = \min(2r, 1) & \min(r, 1-r) \le x \le \max(1-r, r) \\ 1-x+r & \max(1-r, r) < x \le 1 \end{cases}$$

を得る。

これはグラフにすると、図3.2のようになる。

図 3.2 r=0.25 のとき, それぞれの位置 x において他の点を 1 つ見出す確率 p(x)

k+1 番目に点 x_{k+1} が選ばれたとき,k 番目までに選ばれた点のうち y 個の点が領域 $[\max(0, x-r), \min(x+r,1)]$ の中に存在する確率は,

$${}_kC_yp(r)^yp(r)^{k-y} (3.2)$$

で表せる。ここで注意すべき点は $p(x_k,r)$ は x_k によって変わるものであったからp(x) に対して期待値を取ったものを考えなければならないことである。p(x) はそのようにして得られた期待値であることを意味している。

p(r) を求めると, $0 < r \le 0.5$ のとき

$$p(r) = E(p(x,r)) = \int_0^r x + r dx + \int_r^{1-r} 2r dx + \int_{1-r}^1 1 - x + r dx$$

$$= \left[\frac{x^2}{2} + rx \right]_0^r + \left[2rx \right]_r^{1-r} + \left[x - \frac{x^2}{2} + rx \right]_{1-r}^1$$

$$= -r^2 + 2r \tag{3.3}$$

 $0.5 < r \le 1$ のときも同様にして

$$p(r) = E(p(x,r)) = -r^2 + 2r$$

である。

また、式 (3.2) は

$$P[X = y] = {}_{k}C_{y}p(r)^{y}(1 - p(r))^{k-y}$$

のように書けば明らかなように、確率変数 X に対するパラメータ k,p の二項分布 B(k,p) を表している。 この時、確率変数 X に対する期待値と分散は、

$$E(X) = kp(r)$$
$$V(X) = kp(r)(1 - p(r))$$

である。

時刻kが大きい時、具体的には

$$kp(r) > 5,$$

$$kp(r)(1 - p(r)) > 5$$

をみたす k のとき、二項分布は正規分布に近似できるので、期待値は中央値とほぼ等しくなる。 すなわ 5,y=kp(r) より多くの点を見出す確率 $P[X\leq y]$ は、どんな時刻 k においても 1/2 となる。

すなわち, 時刻の依存性はないため, x_{k+1} のまわりの領域に y 個以上の他の点が存在する場合を 1, 存在しない場合を 0 とすれば, これらの起こる確率は, それぞれ 1/2 であり,k 回目に y 個以上のエッジが張られる確率は,p=1/2 の幾何分布に従う:

$$P[X=k] = \left(\frac{1}{2}\right)^k$$

このときの期待値と分散は

$$E(X) = \frac{1}{p} = 2$$

$$V(X) = \frac{1-p}{p^2} = 2$$

すなわち、これまでのような場合を考えたとすると、平均として 2 回で y 個以上のエッジが張られ、ほとんどの試行は 1 3 回でその値に到達することが分かる。しかし、これは先程述べたような二項分布の正規分布への近似ができない領域であることに注意が必要である。

X_i を一つ前の X_j によって決まる確率で選び, その中から点 x が一様に選ばれる場合

次に考えるのは、 X_i の選び方が、一つ前の X による確率で決定するような場合である。この確率を定めるにあたり、会議として自然と思われる X_i 間に距離が定義でき、その距離にしたがって確率が決まるような問題を考えることとした。このとき距離の計算に用いることができるパラメータの数を b とし、距離として b 次元ユークリッド距離を考えることにする。

すなわち b 個のパラメータを要素とする元からなる空間 X があったとき, 距離関数 $d: X \times X \to \mathbb{R}$ が

$$d(x,y) = \sqrt{\sum_{i=1}^{b} (x_i - y_i)^2} , x, y \in X$$

と書けることを意味する。実際の場合には、各データ同士の相関を考慮に入れたマハラノビス距離などのほうが適当な場合もあるかもしれないが、まずはイメージしやすいということでユークリッド距離を考えた。以下では、記述を簡単にするため、 X_i と X_i の間の距離を d_{ij} と書くことにする。

時刻 k に X_i が選ばれ、その後時刻 k+1 に X_j から点 x_{k+1}^j が選ばれる確率 $p_k(i,j)$ は、距離 d_{ij} の関数として、次のようにできる。

$$p_k(i,j) = \frac{g_k(d_{ij})}{\sum_j g_k(d_{ij})}$$

ここでの関数 g の選び方によって, 距離の大きさがどのように確率に重みを持たせるかということが決定される。一般に g は時刻 k によって変化してもいいので, 添字 k をつけて時刻 k における関数であることを表した。

単純な例として $g_k(d)=const., \ \forall k,d\in\mathbb{R}^1$ とすると, 距離に依らず X_i が選ばれるわけなので,3.1 節の X_i の選び方と同じである。 g(d) は $[0,+\infty]$ で定義される非負の実関数であればよい。

ex)

$$g(d) = \frac{1}{d+1}$$

$$g(d) = e^{-d}$$

$$g(d) = \left\{ \begin{array}{l} c & (0 \leq d \leq 1/c) \\ 1/d & (d > 1/c) \end{array} \right., \ c > 0$$

しかし、ここで注意すべき点として、どの X_i が選ばれたとしても、3.1 で考えたように、どの X_i も [0,1] から一様に点 x を取るから、結局点 x について見たときの試行は同様のことをしており、どの X_i が選ばれるかは本質的な問題にはならないことが分かる。

これまでの設定を用いて数値シミュレーションを行った結果を図 $3.3\sim3.5$ に示す。シミュレーションでは、確率を決める距離の関数 g(d) として

$$g(d) = e^{-d}$$

を採用しx の次元 $a=2,X_i$ の数 N=6 と設定した。

図 3.3 の中の青い丸が X_i の位置を表しており、それぞれの丸の大きさは、一回の試行において選択された頻度を表したものとなっている。円の間に張られた線分とそこに記された数字の組は、1 番目の数字をラベルとしてもつ X_i のあとに 2 番目の数字をラベルとしてもつ X_j が選ばれたことを意味している。図 3.4 で青色の曲線で表されているのは、時刻 k に選ばれた点 x のまわりの r で決まる領域の中に入った、それまでに選択された点の数である。また、このグラフで緑色の直線として表されているものは、3.1 のように計算で求めた値であり、

$$l = (-r^2 + 2r)k$$

であった。このグラフを見て分かるように、理論値と実験値はよく一致していることが分かる。同じようにして偏差についても計算ができており、 $V(l)=\sqrt{(-r^2+2r)(1+r^2-2r)k}$ である。これはグラフにおいて緑色の領域として描かれている。図 3.5 は、時刻 k までに張られたエッジの数の総和を表しており、この中の緑色の曲線も、計算で求めることのできるものであった:

$$L = \frac{1}{2}(-r^2 + 2r)k^2$$

この値もグラフから分かるように、よく理論値と一致していることが分かる。

図 3.3 X_i の選択された頻度と X_i 間ネットワーク

図 3.4 時刻 k とその時張られたエッジの本数 l との間の関係

図 3.5 時刻 k までに張られたエッジの数の総和 L

また, 図 3.4 における直線の傾きは r に依存していたがこの傾きを r に関してプロットすると, 以下の図 3.6 のようになる。

図 3.6 図 3.4 の理論式直線の傾きとr の関係

図 3.3 で,r = 1/3 としていたので、緑の直線の傾きは -1/3(1/3-2) = 5/9 である。

3.3 過去の点 x を参照にして次の点を選択する場合

1 の場合には, X_i を選ぶ確率とそのうえで x が選ばれる確率は独立であるというものであった。しかし、これまで考えたように、単にそのようなモデルを考えただけだと X_i の数 N の効果をうまく反映できないように思える。したがって、次に考えるモデルは前に選ばれた点に近い点が選ばれることにし、そのときその点をもつ X_i が選ばれたとするモデルである。

 X_i はそれぞれ s_i 個の点をもっており、モデルの設定時に仮定したとおり、これらの点は異なる X 同士で共有されることはない。はじめに点 x_0 が与えられ、次に時刻 1 では、それぞれの X の中で最もその点に近いものを選び、より近いものをもった X の順に整列する。この X の順番にしたがって、 X_i にそれぞれに割り当てられた確率 P_i で、実際にその点 x が選択されるかどうかが決定する。点が選択されない場合(確率 $1-P_i$)ときは、X の順番で次の順番になっているものについて、同様の試行を繰り返す。もしすべての X について点 x が選択されないときは、時刻 x を一つすすめ、その時刻には x_0 が選ばれたとする。

図 3.7 [0,1] の数直線上で閾値 r で定められる領域

図 3.7 を用いて説明する。中心にある"pre"と名のついた点が参照する一つの点であり、この次の時刻に選ばれる点の選び方は、まずそれぞれの X_i について"pre"に最も近い点を選び、その近さの順に順番を付けることにする。図で青枠内の緑の矢印に示された数字がそれぞれの X_i の順番である。この順番にしたがってそれぞれの X_i に割り当てられた P_i にしたがって実際にその点が選ばれるかどうかが決まる。右下の矢印はそのことを表したフローチャートになっている。すべての X_i について点が選ばれなかった場合、時刻を一つ進め、はじめの点 x_0 を選択する。

参照する点の選び方として、以下のような場合分けを考えた。

1. なし (case 1)

- 2. 一つの点
 - (a) 時刻 0 における点 (case 2)
 - (b) 一つ前の時刻の点 (case 3)
- 3. 二つの点
 - (a) 時刻 0 における点 + 一つ前の時刻の点 (case 4)
 - (b) 二つ前の時刻までの点 (case 5)

3.3.1 過去の点の影響を受けない場合 (case 1)

 X_i が X の配列の中で r+1 ($r=1,2,\cdots,N-1$) 番目に選ばれたとき, X_i まで順番が回ってくる確率は

$$p_{r+1}(i) = \frac{\sum_{J=\langle j_0, \dots, j_{r-1} \rangle_r} \prod_{j \in J} (1 - P_j)}{N-1 C_r}.$$

ここで $J=\langle j_0,j_1,\cdots,j_{r-1}\rangle_r$ は,i を除く N-1 個の要素から r 個選んだときの組み合わせのうちの 1 揃いをあらわすことにする。

また、1 番目にx を選択する権利を得たときに、選択権が回ってくる確率は当然

$$p_1(i) = 1$$

である。

説明のための具体的な例として,N=5, i=1, r=2とすると, X_1 までに 2 つの X が選択権を得ているはずであり、その 2 つの組み合わせは (0,2),(0,3),(0,4),(2,3),(2,4),(3,4) の 6 つの組み合わせがある。上の式では J の一つは (0,2) であり、このとき $j_0=0, j_1=2$ である。この J に関する和をとり、組み合わせの数 $5-1C_2=6$ で割って期待値を求めている。

$$p_{2+1}(1) = \left[(1 - P_0)(1 - P_2) + (1 - P_0)(1 - P_3) + (1 - P_0)(1 - P_4) + (1 - P_2)(1 - P_3) + (1 - P_2)(1 - P_4) + (1 - P_3)(1 - P_4) \right] / 6$$

$$(3.4)$$

 X_i が選択権の順番でr 番目になる確率は等しいのでr に関する平均をとりr をかければr これはr から点が選ばれる確率の期待値となる。

$$p(i) = \frac{\sum_{r=0}^{n} p_r(i) P_i}{n}.$$

このとき得られた確率は X_i によって異なり, 期待値としては毎時刻ごとにそれぞれの X_i がその確率が点が選択されることになり, 単純な確率過程に帰着できる。

3.3.2 1 つ前の点を参照する場合 (case 2, case 3)

それぞれの X_i が, 配列の順番が回ってきたときに同じ確率 p で点を選ぶとしたとき, はじめに与えられた点 x_0 のみを参照にしてその点からの近さのみで次の点を選ぶ場合と, 一つ前の点のみを参照にして次の点を選ぶ場合の二つの場合に関してシミュレーションを行った。このとき, シミュレーション時に変更

できるパラメータとしては, X_i の数 N, X_i あたりにもつ点の数 S, 順番が回ってきたときに点を選択する確率 p がある。

点xとyの間の近さの指標として.a次元ユークリッド距離

$$D(x,y) = d(x,y)$$

$$= \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_a - y_a)^2}$$
(3.5)

を用いることにする。シミュレーションでは、描画の簡単さとイメージのしやすさから a=2 の場合を考えることにした。

以下に作成したプログラムを用いて得られたネットワークの例を示す (図 3.8, 図 3.9)。このとき,K=30, N=6, S=30, p=0.6 としている。図 3.8 は, はじめに与えられた点 x_0 のみを参照にしたときに得られたネットワークのグラフであり、このとき、中心付近の青色の点は x_0 であり、この点とつながっているエッジは薄い灰色で描画されている。それ以外の黒い線分は、選ばれた意見同士のエッジを表しており、ノードに振られた数字はその点が選ばれた時刻 k を示している。

図 $3.8 x_0$ のみを参照にして次の点を選んだ場合 (case 2) のシミュレーション結果の一例

図 3.9 1 つの前の点のみを参照にして次の点を選んだ場合 (case 3) のシミュレーション結果の一例

3.3.3 二つの点を参照して次の点を選択する場合 (case 4, case 5)

次に、過去の二つの選択された点を参照して、その 2 点から近い位置にあるてんを次に選ばれる点の候補とする場合を考えることにする。このとき、2 点からの近さの指標は、うまくこちらで決めてやる必要がある。近さの指標となる一つの例として、二つの点を焦点とした楕円を考えることができる。すなわち 2 つの点からの距離の和が等しい点はすべて同じ距離にあると見なすような近さが考えられる。したがって 2 点 (y,z) からの点 x の近さの指標 D(x,(y,z)) は、通常の a 次元ユークリッド次元を d(x,y) と表すと、

$$D(x, (y, z)) = d(x, y) + d(x, z)$$

のように書けることになる。また、この考えが役に立つのは、それぞれの距離を足すときに適当な正の係数を掛けることによって、2 つの点のどちらへの近さを優先するのかという条件を付け加えることができる点である。すなわち、正の定数 α 、 β を用いて、

$$D(x, (y, z)) = \alpha d(x, y) + \beta d(x, z)$$

のようにも書くことができる。参照する点をさらに増やしたい場合にも、それらの点との間の距離に係数 を掛けて足せばよいので、いくらでも参照点を増やすことは可能である:

$$D(x_{k+1}, (x_1, x_2, \dots, x_k)) = \sum_{i=1}^{k} w_i d(x_{k+1}, x_i) \quad (w_i > 0)$$

また、別の近さの指標として、ベクトル $\vec{Y} = y - x$ 、 $\vec{Z} = z - x$ として

$$D(x, (y, z)) = |t\vec{Y} + (1 - t)\vec{Z}| \ (0 \le t \le 1)$$

とする方法もある。このとき、右辺の括弧の内部が表すベクトルは、点 y,z を結んだ線分 YZ を (1-t):1 に内分する点のベクトルを示しており、D はその点から x までのユークリッド距離を表すことになる。

シミュレーションでは、はじめに挙げた近さの指標を用いて選択権の順番を決定することにする、図 3.10 と図 3.11 は、それぞれ x_0 の点と一つ前の点を参照にして点を選択する場合と、二つ前までの点を参照にして点を選択する場合のシミュレーションを行ったときに得られた結果の例である。

図 3.10 x_0 と一つ前の点を参照にして次の点を選んだ場合 (case 4) のシミュレーション結果の一例

図 3.11 二つ前までの点を参照にして次の点を選んだ場合 (case 5) のシミュレーション結果の一例

3.3.4 結果と考察

システムサイズと系の特徴量の間の関係を知りたいので, X_i の数 N を変えたときの軌跡の性質を調べた。他の条件を揃えたまま N のみを変化させたとき, 各ステップの平均移動距離を計算し, プロットしたものを図 3.12 に示す (試行は 100 回行った)。このグラフから分かるように,N が増加するほど 1 ステップあたりの平均移動距離は小さくなっていることが分かる。また, 両軸を対数表示にした上で直線でフィッティングしたものを図 3.13 に示すが, 平均ステップ間距離は N に対してベキ的に減少しており, その傾きはおよそ-0.5 であることが分かる。これは N の増大によって, 各点の間の平均距離 r 自体が N に対して 1/2 乗ほどで減少していく効果がそのまま現れたものであると見ることができる。また、この指数の絶対値が 0.5 より大きくなっているのは、計算機の誤差ではなく、領域 Ω の中から一様に選ばれた点を選んだとき、そのまわりの領域の面積の期待値が

$$p(r) = \frac{1}{2}r^4 - \frac{8}{3}r^3 + \pi r^4$$

となることによる。この期待値の計算に関しては、次の 3.4 節で議論されるものである。点の個数は全部 で $M=S\times N$ 個であり、その点同士の平均的な距離を ϕ とすると、M 個の点が占有する領域の面積 S は、

$$S \sim p(\phi)M$$

のように表せることになる。ここで、 ϕ が小さい時には、 ϕ^2 の項の効果は無視できて $p(\phi)\sim\phi^2$ のようにできるが、 $0<\phi<0.5$ の範囲で適当な ϕ を選ぶと、 ϕ^3 や ϕ^4 の項による補正が入るために、 $S\sim\phi^c$

としたときにc < 2となる。したがって ϕ とNの間の関係に帰着させると、

$$\phi \sim N^{-1/c}$$

となって、N は 0.5 より大きい数でスケールされることがわかる。

図 3.12 N を変化させたときのステップ間の平均移動距離

図 3.13 図 3.12 の両対数グラフを直線でフィッティングしたもの

3.4 近距離の点をクラスター化するモデル

3.4.1 モデルの説明

このモデルでは、3.2 で考えたモデルと同様に、点 x をそれまでに選択された点からの近さで選んでゆくようなモデルを考えることにする。

これまで考えてきたモデルとの大きな相違は、点を選択していく過程をは始める前に、すべてのxについて、自分から近い位置にある点同士をエッジで結んでいき、クラスターを形成することである。こうして得られたクラスターyについて、その一つ前に選ばれた点xから最も近い点を含むyから、次の時刻の点が選ばれるとする。このときyの中から点を選ぶ方法は、そのクラスター内に含まれる点の属するそれぞれのXに割り当てられた重みによって決定されるとする。

このモデルの着想を得るにあたって、実際の話し合いの際に、人が多くなることによって人がどのように考えるか、ということに影響を受けている。すなわち、話し合いに参加する人が多いほど、自分の意見と同じ様な意見をもつ人がいるだろう、と思う効果であり、 X_i に割り当てられた重みは、個人の発言力をあらわしていると考えることができる。

シミュレーションにおいてクラスター化を行う際には、自分と他の点との間の距離を測り、これがrより小さいものの間にエッジを張ることにする。このとき、(特にrが小さいときに)効率よく近傍点を探すことができるよう、はじめに全体を長さl(>r)の正方形の領域 (セル) に分割し、それぞれの点がどのセルに属しているかを記録しておく。このようにすると、近傍点を探す際には、自分の属するセルとその周囲8マスを含めた9つのセルの中にある点のみについて調べればよい。このようにしてすべての点について順番に閾値rの内部にある点を選択していく。このとき領域内に入ったすべての点にクラスター番号が与え

られていない時には、通し番号でクラスター番号を割り当てる。 閾値 r で定められる領域内に、より小さ いクラスター番号をもつ点が存在する時には、その中で一番小さいクラスター番号を、接続しているすべ ての点に同じクラスター番号を付与する。 このようにすれば、既に存在するクラスターとの間の融合など を考慮に入れたクラスター化が行える。 また、今回のシミュレーションでは、 X_i の違いによる選択確率の 違いはないものとした。

3.4.2 シミュレーション結果

図 3.14 に,r=0.07, K=20, N=4, S=20 としたときに実際にどのようにクラスターが形成され, 点が選択されていくかの様子を示した図を載せる。グラフで薄いグレーで描かれた線はノード間の距離が r より小さいために張られたエッジであり, これが連結しているひとまとまりがクラスターである。青色の線は, 選ばれた点同士をつなぐ (有向) エッジであり, 振られている番号は時刻 k に張られたエッジであることを表す。

図 3.14 近傍点をクラスター化するモデルのシミュレーション結果の例

このシミュレーションでは、考えるべき問題が二つある。一つはrによって作られるクラスターに関する性質である。もうひとつは、選ばれた点によって作られた軌跡に関するものだである。ただし、それぞれが独立でないために、完全に分けて考えることはできない。

まずは、閾値ァと、点の密度に関係してクラスターがどのように形成されるかについての議論をしてい

くことにする。

図 3.15 は閾値 r を変えたときの, 点の総数に対するクラスターの数の関係を示している。 横軸 r, 縦軸 $\phi = 1 - (クラスターの数)/(点の総数)$ として, 通常の軸でのプロット (上段) と両対数プロット (下段) を取っており, 縦軸の値は 100 回の試行の平均をとったものとなっている。

図 3.15 横軸 r, 縦軸 $\phi = 1 - (クラスターの数)/(点の総数) としたグラフ$

両対数プロットを見て分かるように $_r$ の小さい領域では $_r$ 、ベキで近似することができそうであることが分かる。図 3.16 には $_r$ この両対数グラフの 0 < r < 0.07 の範囲を直線でフィッティングしたものを示す。このときの傾きは $_r$ およそ 1.86 であった。

図 3.16 図 3.15 の 0 < r < 0.07 の範囲をべき乗に近似したもの

また、これは S 字型の曲線 (シグモイド曲線) なので、その代表的な関数系である

$$\phi(r) = 1 - \exp\left[-\left(\frac{r}{\omega}\right)^2\right] \tag{3.6}$$

としてパラメータ ω に関して最小 2 乗法でフィッティングを行った。このときは先ほどの場合とは異なり,r の比較的大きい領域のデータを含んでいてもよい。得られたパラメータの値は $\omega=0.0715$ ほどであり,図 3.16 でべきで近似した場合に比べて,よくフィッティングできている。

図 3.17 図 3.15 をシグモイド曲線 (3.6) に近似したもの

また、(3.6) 式は $\phi=1-(クラスターの数)/(点の総数)$ の形との整合もとれているように思われる。 次に、 X_i の数が変化したときにステップ間の平均移動距離 ϕ がどう変化するかについて見てみることに する。 このとき、点 x の総数 M と X_i の数 N, X_i あたりの点の数 S の間には比例の関係 $(M=N\times S)$ が成り立っており、N を増やすことと S を増やすことはこの場合等価であるから、より細かく値を刻むことのできる S を変化させたときのクラスター数との間の関係について調べた。 横軸を S、縦軸を平均のステップ間距離 ϕ としたグラフを図 S 3.18 に示す。 このときの S は S 6 であり、S 7 で、S 100 回の試行を平均したものとなっている。

図 3.18 S を変化させたときのステップ間の平均距離

3.4.3 解析的な計算

以下に示すのは、これまで調べてきた性質が、解析的な計算によって求められないかと考えて行った試 行である。

まず, 点の分布する範囲は $\Omega = [0,1] \times [0,1]$ であり, この中の面積 S の領域の中に点を見出す確率は S である。

次に、領域内のある点 $\vec{x}=(x,y)$ を中心として半径 $r(0< r \leq 0.5)$ の領域 $B(\vec{x},r)$ 内に点を見出す確率 $p(\vec{x})$ は、境界の影響をうけない領域 $(\Omega'=\{(x,y)|r\leq x\leq 1-r,r\leq y\leq 1-r\})$ では πr^2 であり、境界

の影響を受ける領域 $(\Omega'' = \Omega/\Omega')$ において点を見出す確率は、領域を

$$\Omega_x'' = \{(x,y) | 0 \le x < r, r < y < 1 - r \}$$

$$\Omega_{1-x}'' = \{(x,y) | 1 - r < x \le 1, r < y < 1 - r \}$$

$$\Omega_y'' = \{(x,y) | r < x < 1 - r, 0 \le y < r \}$$

$$\Omega_{1-y}'' = \{(x,y) | r < x < 1 - r, 1 - r < y \le 1 \}$$

$$\Omega_{x,y}'' = \{(x,y) | 0 \le x < r, 0 \le y < r \}$$

$$\Omega_{1-x,y}'' = \{(x,y) | 1 - r < x \le 1, 0 \le y < r \}$$

$$\Omega_{x,1-y}'' = \{(x,y) | 0 \le x < r, 1 - r < y \le 1 \}$$

$$\Omega_{1-x,1-y}'' = \{(x,y) | 1 - r < x \le 1, 1 - r < y \le 1 \}$$

$$\Omega_{1-x,1-y}'' = \{(x,y) | 1 - r < x \le 1, 1 - r < y \le 1 \}$$

のようにあらわして、それぞれ考えることにする(図3.19)。

図 3.19 領域 Ω を分割した各領域

 $\Omega_i''=\{\Omega_x'',\Omega_{1-x}'',\Omega_y'',\Omega_{1-y}''\},$ また $\Omega_{i,j}''=\{\Omega_{x,y}'',\Omega_{1-x,y}'',\Omega_{x,1-y}'',\Omega_{1-x,1-y}''\}$ でまとめて書くことにすると、

$$p(r)_{\Omega_i^{"}} = i\sqrt{r^2 - i^2} + r^2 \left[\pi - \arccos\frac{i}{r}\right]$$

図 3.20 $\vec{x} \in \Omega_x''$ であるときの面積 S の求め方

$$p(r)_{\Omega''_{i,j}} = \frac{1}{2} \left\{ \sqrt{r^2 - i^2} + \min\left(j, \sqrt{r^2 - i^2}\right) \right\} i + \frac{1}{2} \left\{ \sqrt{r^2 - j^2} + \min\left(i, \sqrt{r^2 - j^2}\right) \right\} j + \frac{1}{2} r^2 \left\{ 2\pi - \arccos\frac{i}{r} - \arccos\frac{j}{r} - \min\left(\frac{\pi}{2}, \arccos\frac{i}{r} + \arccos\frac{j}{r}\right) \right\}$$
(3.7)

のようにあらわすことができる。

図 3.21 $\vec{x} \in \Omega_{x,y}''$ のときの面積 S の求め方の一例

確率 p をすべての領域について積分した値は、領域 Ω から一様乱数によって一つの点を選び、その点を中心とした r による範囲に 1 つの点を見出す確率の期待値となる。この確率を p'(r) とし、 $0 \le r \le 0.5$ のときは

$$p'(r) = p'(r)_{\Omega''} + 4p'(r)_{\Omega''_i} + 4p'(r)_{\Omega''_{i,j}}$$

とできる。それぞれの領域について積分を実行する。

$$p'(r)_{\Omega'} = \int_{r}^{1-r} \int_{r}^{1-r} \pi r^{2} dx dy = (1 - 2r)^{2} \pi r^{2}$$

$$p'(r)_{\Omega'_{i}} = p'(r)_{\Omega'_{x}} = \int_{0}^{r} \int_{r}^{1-r} dx dy \ x \sqrt{r^{2} - x^{2}} + r^{2} \left[\pi - \arccos \frac{x}{r} \right]$$

$$= (1 - 2r) \left\{ \frac{r^{3}}{3} + r^{2} \pi \cdot r - r^{2} \cdot r \right\}$$

$$= (1 - 2r)r^{3} \left(\pi - \frac{2}{3} \right)$$
(3.8)

NOTE1:

$$\int_{0}^{r} dx \ x \sqrt{r^{2} - x^{2}}$$

$$[x = r \cos \theta]$$

$$= \int_{\frac{\pi}{2}}^{0} d\theta \ (-r \sin \theta) \ r \cos \theta \ r \sin \theta$$

$$= r^{3} \left[\frac{\sin^{3} \theta}{3} \right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{r^{3}}{3}$$
(3.9)

NOTE2: $x = \cos t \ (0 < t < \pi)$ とすると

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\sin t < 0$$

 $t = \arccos x \ \text{\it c}$ $\delta b \ \delta$,

$$\frac{\mathrm{d}}{\mathrm{d}x}\arccos x = \frac{1}{\frac{\mathrm{d}}{\mathrm{d}t}\cos t} = -\frac{1}{\sin t}$$

$$= -\frac{1}{\sqrt{\sin^2 t}} = -\frac{1}{\sqrt{1-\cos^2 t}}$$

$$= -\frac{1}{\sqrt{1-x^2}}$$
(3.10)

したがって.

$$\int \arccos x dx = x \arccos x + \int \frac{x}{\sqrt{1 - x^2}} dx$$
$$= x \arccos x - \sqrt{1 - x^2} + C$$
(3.11)

(C は積分定数)

今の場合,

$$\int_0^r \arccos \frac{x}{r} dx = \int_0^1 \arccos t \cdot r dt$$

$$= r \left[t \arccos t - \sqrt{1 - t^2} \right]_0^1$$

$$= r (1 \arccos 1 - \sqrt{1 - 1} - 0 \arccos 0 + \sqrt{1 - 0})$$

$$= r$$
(3.12)

 $p'(r)_{\Omega''_{i,i}}$ を以下のように分解してそれぞれ計算する。

$$p'(r)_{\Omega_{i,j}^{"}} = p'(r)_{\Omega_{x,y}^{"}}$$

$$= p'(r)_{\Omega_{x,y}^{"}1} + p'(r)_{\Omega_{x,y}^{"}2}$$

$$= p'(r)_{\Omega_{x,y}^{"}1^{'}} - p'(r)_{\Omega_{x,y}^{"}1^{"}} + p'(r)_{\Omega_{x,y}^{"}2}$$
(3.13)

$$p'(r)_{\Omega''_{x,y}1'} = \int_0^r \int_0^r dx dy \ x \sqrt{r^2 - x^2} + y \sqrt{r^2 - y^2} + \frac{1}{2} r^2 \left(2\pi - 2 \arccos \frac{x}{r} - 2 \arccos \frac{y}{r} \right)$$

$$= r \int_0^r dx \ \left\{ x \sqrt{r^2 - x^2} - r^2 \arccos \frac{x}{r} \right\} + r \int_0^r dx \ \left\{ x \sqrt{r^2 - x^2} - r^2 \arccos \frac{x}{r} \right\} + \pi r^2 \cdot r^2$$

$$= r \left(\frac{r^3}{3} - r^3 \right) + r \left(\frac{r^3}{3} - r^3 \right) + \pi r^4$$

$$= \left(\pi - \frac{4}{3} \right) r^4$$
(3.14)

$$p'(r)_{\Omega_{x,y}^{"}1^{"}} = \int_{0}^{r} \int_{0}^{\sqrt{r^{2}-x^{2}}} dxdy \left[x\sqrt{r^{2}-x^{2}} + y\sqrt{r^{2}-y^{2}} + r^{2} \left(\pi - \arccos \frac{x}{r} - \arccos \frac{y}{r} \right) \right]$$

$$= \int_{0}^{r} dx \left[\left\{ x\sqrt{r^{2}-x^{2}} + r^{2}\pi - r^{2} \arccos \frac{x}{r} \right\} \sqrt{r^{2}-x^{2}} + \int_{0}^{\sqrt{r^{2}-x^{2}}} dy \ y\sqrt{r^{2}-y^{2}} - r^{2} \arccos \frac{y}{r} \right]$$

$$= \int_{0}^{r} dx \left[x(r^{2}-x^{2}) + r^{2}\pi\sqrt{r^{2}-x^{2}} - r^{2} \arccos \frac{x}{r}\sqrt{r^{2}-x^{2}} + \frac{1}{3}r^{3} - \frac{1}{3}x^{3} - r^{2}\frac{\pi}{2}\sqrt{r^{2}-x^{2}} + r^{2} \arccos \frac{x}{r}\sqrt{r^{2}-x^{2}} + r^{2}x - r^{3} \right]$$

$$= \int_{0}^{r} dx \left[-\frac{4}{3}x^{3} + 2r^{2}x - \frac{2}{3}r^{3} + \frac{\pi}{2}r^{2}\sqrt{r^{2}-x^{2}} \right]$$

$$= \left[-\frac{4}{3}\frac{x^{4}}{4} + r^{2}x^{2} - \frac{2}{3}r^{3}x \right]_{0}^{r} + \frac{\pi}{2}r^{2} \cdot \frac{1}{4}\pi r^{2}$$

$$= -\frac{r^{4}}{3} + r^{4} - \frac{2}{3}r^{4} + \frac{\pi^{2}}{8}r^{4}$$

$$= \frac{\pi^{2}}{8}r^{4}$$
(3.15)

NOTE1: $y=r\cos\theta$ とおく。y の積分領域 $[0,\sqrt{r^2-x^2}]$ は θ の範囲としては $[\pi/2,\theta'=\arcsin(x/r)]$ となる。

$$\int_{0}^{\sqrt{r^{2}-x^{2}}} dy \ y \sqrt{r^{2}-y^{2}} = \int_{\frac{\pi}{2}}^{\theta'} -r^{3} \sin^{2}\theta \cos\theta d\theta$$

$$= r^{3} \left[\frac{\sin^{3}\theta}{3} \right]_{\theta'}^{\frac{\pi}{2}}$$

$$= \frac{r^{3}}{3} - r^{3} \frac{\left(\frac{x}{r}\right)^{3}}{3}$$

$$= \frac{r^{3}}{3} - \frac{x^{3}}{3}$$
(3.16)

NOTE2: t = x/r とおいて積分する。

$$r^{2} \int_{0}^{\sqrt{r^{2}-x^{2}}} dy \ \arccos \frac{y}{r} = r^{2} \int_{0}^{\frac{\sqrt{r^{2}-x^{2}}}{r}} r dt \ \arccos t$$

$$= r^{3} \left[t \arccos t - \sqrt{1-t^{2}} \right]_{0}^{\frac{\sqrt{r^{2}-x^{2}}}{r}}$$

$$= r^{3} \left[\frac{\sqrt{r^{2}-x^{2}}}{r} \left(\frac{\pi}{2} - \arcsin \frac{x}{r} \right) - \frac{x}{r} + 1 \right]$$

$$= r^{2} \frac{\pi}{2} \sqrt{r^{2}-x^{2}} - r^{2} \sqrt{r^{2}-x^{2}} \arccos \frac{x}{r} - r^{2}x + r^{3}$$
(3.17)

$$\begin{split} p'(r)_{\Omega_{x,y}^{\prime\prime}2} &= \int_{0}^{r} \mathrm{d}x \mathrm{d}y \; \frac{1}{2} x \sqrt{r^{2} - x^{2}} + \frac{1}{2} y \sqrt{r^{2} - y^{2}} + xy + \frac{1}{2} r^{2} \left(2\pi - \arccos \frac{x}{r} - \arccos \frac{y}{r} - \frac{\pi}{2} \right) \\ &= \int_{0}^{r} \mathrm{d}x \int_{0}^{\sqrt{r^{2} - x^{2}}} \mathrm{d}y \; \frac{1}{2} x \sqrt{r^{2} - x^{2}} + \frac{1}{2} y \sqrt{r^{2} - y^{2}} + xy + \frac{1}{2} r^{2} \left(2\pi - \arccos \frac{x}{r} - \arccos \frac{y}{r} - \frac{\pi}{2} \right) \\ &= \int_{0}^{r} \mathrm{d}x \left[\left\{ \frac{1}{2} x \sqrt{r^{2} - x^{2}} + \frac{3}{4} \pi r^{2} - \frac{1}{2} r^{2} \arccos \frac{x}{r} \right\} \sqrt{r^{2} - x^{2}} \right. \\ &\quad + \int_{0}^{\sqrt{r^{2} - x^{2}}} \mathrm{d}y \; \frac{1}{2} y \sqrt{r^{2} - y^{2}} + xy - \frac{1}{2} r^{2} \arccos \frac{y}{r} \right] \\ &= \int_{0}^{r} \mathrm{d}x \left[\frac{1}{2} x r^{2} - \frac{x^{3}}{2} + \frac{3}{4} \pi r^{2} \sqrt{r^{2} - x^{2}} - \frac{1}{2} r^{2} \arccos \frac{x}{r} \sqrt{r^{2} - x^{2}} \right. \\ &\quad + \frac{r^{3}}{6} - \frac{x^{3}}{6} + \frac{1}{2} x r^{2} - \frac{x^{3}}{2} - \frac{\pi}{4} r^{2} \sqrt{r^{2} - x^{2}} + \frac{1}{2} r^{2} \arccos \frac{x}{r} \sqrt{r^{2} - x^{2}} + \frac{1}{2} r^{2} x - \frac{r^{3}}{2} \right] \\ &= \int_{0}^{r} \mathrm{d}x \left[-\frac{7}{6} x^{3} - \frac{r^{3}}{3} + \frac{3}{2} r^{2} x + \frac{\pi}{2} r^{2} \sqrt{r^{2} - x^{2}} \right] \\ &= -\frac{7}{24} r^{4} - \frac{r^{4}}{3} + \frac{3}{4} r^{4} + \frac{\pi}{2} r^{2} \cdot \frac{\pi}{4} r^{2} \\ &= \left(-\frac{7}{24} - \frac{1}{3} + \frac{3}{4} + \frac{\pi^{2}}{8} \right) r^{4} \\ &= \left(\frac{\pi^{2}}{8} + \frac{1}{8} \right) r^{4} \end{split} \tag{3.18}$$

$$p'(r)_{\Omega_{i,j}^{"}} = p'(r)_{\Omega_{x,y}^{"}}$$

$$= p'(r)_{\Omega_{x,y}^{"}1} + p'(r)_{\Omega_{x,y}^{"}2}$$

$$= p'(r)_{\Omega_{x,y}^{"}1^{"}} - p'(r)_{\Omega_{x,y}^{"}1^{"}} + p'(r)_{\Omega_{x,y}^{"}2}$$

$$= \left(\pi - \frac{4}{3}\right)r^4 - \frac{\pi^2}{8}r^4 + \left(\frac{\pi^2}{8} + \frac{1}{8}\right)r^4$$

$$= \left(\pi - \frac{29}{24}\right)r^4$$
(3.19)

これまでの結果をすべて合わせると,

$$p'(r) = p'(r)_{\Omega''} + 4p'(r)_{\Omega''_i} + 4p'(r)_{\Omega''_{i,j}}$$

$$= (1 - 2r)^2 \pi r^2 + (1 - 2r)r^3 \left(4\pi - \frac{8}{3}\right) + \left(4\pi - \frac{29}{6}\right) r^4$$

$$= \pi r^2 - 4\pi r^3 + 4\pi r^4 + 4\pi r^3 - \frac{8}{3}r^3 - 8\pi r^4 + \frac{16}{3}r^4 + 4\pi r^4 - \frac{29}{6}r^4$$

$$= \frac{1}{2}r^4 - \frac{8}{3}r^3 + \pi r^2$$
(3.20)

を得る。

図 3.22 に r を 0.01 から 0.5 まで変えたとき, 領域 Ω 上に選ばれた 1 つの点からいくつのエッジが結ばれるか, すなわちその点の次数の期待値を求め, この試行を 100 回繰り返して平均をとったときのグラフを示す。このときの値はグラフでは青色の曲線であらわされている。一方, 先程までの議論の結果として, Ω 上にとった 1 つの点のまわりの r による範囲に他の点が存在する確率の期待値は式 (3.20) から,

$$p'(r) = \frac{1}{2}r^4 - \frac{8}{3}r^3 + \pi r^2$$

で表すことができた。よって,一番はじめのモデルで数直線上で考えたときと同じように,次数の期待値は二項分布 B(k,p'(r)) で表すことができるから, Ω 全体にある点の個数を M とすると,ある r' における 平均次数は p'(r')(M-1) で表せる。グラフ上では緑色の曲線で示された部分がそれである。このときの 分散 σ^2 は,p'(r')(1-p'(r'))M である。この分散は 1 回の試行に関するものであったので,さらに 100 回の試行を行った今回の偏差 σ' は $\sigma/\sqrt{100}$ である。この範囲を示したものが,グラフの中の半透明の緑で表された範囲である。このグラフから,解析的に計算した結果が,実際に測った量とよく一致していることが分かる。

図 3.22 r とクラスターの平均次数 l の関係

次に、各ステップ間の平均移動距離 ϕ を計算し、それが N によってどのように変化するかを図 3.23 に 示した。 このとき X_i のもつ点の数 S=20、クラスタ化閾値 r=0.07 とした。

図 3.23 ステップ間距離の平均値 ϕ と N の間の関係

このグラフを見て分かるように,l は N の関数として見たとき下に凸な関数となっている。このようなグラフとなるのは、 先程まで考えたように N が増えると点の密度が大きくなり、 同じ r でもクラスターの

融合が進むので、結果的にクラスター間の距離は離れることになるということ、それから点の密度が小さいときには、クラスターは形成されにくいが、かわりに各点間の距離は広がるために各ステップ間の距離も大きくなる、と説明できる。

ここまで考えてきた各ステップ間の距離というのは、はじめに設定としてイメージしていた会議を思い浮かべると、意見間の差異を表すことになる。この値が小さいということは、選択された意見の間につながりが見られること、妥当な思考の過程によって次の意見が提出されたことを意味していると見ても良いかもしれない。逆にこの値が大きい時には、意見と意見の間の関連が小さいということを意味しており、それゆえ選択された意見間は、およそつながりがなさそうな意見になっていると言うことができる。つまり突拍子もない意見が提出されている、ということであり、生産的な会議になっているとは考えにくい。

第4章

結論

会議の状態から着想を得て作成した確率モデルに、 X_i や点 x を結んでいくルールを与え、その時間発展により得られるネットワークを考えてきた。ここでは X_i の数 $N_{\rm W}$ システムサイズと思って議論していたため、はじめに考えた二つのモデルはこの要素を含んでいないために、システムサイズの変化によって系の状態が変化する、というような枠組みには入らない。一方で、後半に考えた二つのモデルは、 X_i の効果は主に領域 Ω 内に分布する点 x の個数を変えることと関係があった。

第5章

参考文献