Key Terms

- Partition
- Integrable
- Least Upper Bound Property
- supremum
- infrimum
- \bullet sequence
- convergence
- \bullet neighborhood
- cauchy sequence
- accumulation points
- Bolzano Weiestrass Theorem
- Sequential Limit Theorem
- \bullet sub-sequence
- monotone
- increasing
- decreasing
- limits
- continuity
- uniform continuity
- open
- \bullet closed
- compact
- Heine Borel Theorem
- Extreme Value Theorem
- Bolzano's Theormem
- connected

- Intermediate Value Theorem
- differentiable
- Chain Rule
- relative maximum
- Rolle's Theorem
- Mean Value Theorem
- Cauchy Mean Value Theorem
- L'Hospital's Rule
- partition
- integrable

Sample Problems

- 1. Let the sequence (a_n) converge to A and $(b_n a_n)$ converge to 0. Using the ϵ and N argument show that (b_n) converges to A.
- 2. Using ϵN argument prove that the sequence $(\frac{n}{2n+1})_{n=1}^{\infty}$ converges and find its limit.
- 3. Define what it means for the sequence $\{a_n\}_{n=1}^{\infty}$ to converge to a real number A.
- 4. Suppose f: $[a,b] \to \mathbb{R}$ is a bounded function.
 - Define what it means for P to be a partition of [a,b]
 - Define a Lower Sum L(P,f)
 - Define a Upper Sum U(P,f)
 - Define the lower integral of f
 - Define the upper integral of f
 - Define what it means for a function to be integrable
- 5. State the following theorems
 - Mean Value Theorem
 - Extreme Value Theorem
 - Intermediate Value Theorem
 - Rolle's Theorem
- 6. Give an example of an open cover of the set [1,5) that has no finite subcover
- 7. Define f: $\mathbb{R} \to \mathbb{R}$ by $f(x) = x^2 5$. Use $\epsilon \delta$ definition to prove that $\lim_{x \to 1} f(x) = -4$

- 8. State one of the Theorems that gives a necessary and sufficient condition for f to be Riemann integrable on the interval [a,b].
- 9. Suppose $E \subset \mathbb{R}$ is nonempty and that $E \cap [0,1] =$
 - Is it possible that the $\sup E = 0$
 - Is it possible that the $\sup E = 1$
- 10. Suppose f:[0,2] $\to \mathbb{R}$ is defined by f(x) = 1 x^2
 - Explain how you can be sure that $f \in \mathbf{R}[0,2]$
 - For P the partition of [0,2] given by $P = \{0,0.5,1,2\}$ compute L(P,f)
- 11. Give the definitions of the following words
 - differentiable
 - uniformly continuous
 - continuous
 - closed open
 - compact
- 12. Prove that $g(x) = x^3 + x 1$ has at least one root which lies in the open interval (0, 1).
- 13. Prove that if f: $[a, b] \to \mathbb{R}$ is continuous, then f is Riemann integrable on [a,b].
- 14. Prove that every Convergent Sequence is Cauchy
- 15. Answer these questions regarding to compact sets:
 - State the Heine Borel Theorem
 - $\{-1, 0, 1\}$: Is it compact?
 - $\{0\} \cup (1,4]$ Is it compact?
 - $\{\frac{1}{n}: n \in \mathbb{N}\}$ Is it compact?
- 16. The following Statement is false. Explain why. There is a function $f \in \mathbf{R}(x)$ on [-1,1] and a partition P of [-1,1] such that L(P,f) = 1 and U(P,f) = 2 and $\int_{-1}^{1} f(x)dx = 3$
- 17. State True (T) or False (F) for the following:
 - If A is a non-empty and compact set of real numbers then A contains inf A and sup A.
 - If $f:(2,10) \to \mathbb{R}$ is uniformly continuous, then it is bounded
 - If A and B are compact sets of real numbers then so is $A \cup B$

- If A and B are open sets of real numbers then so is $A \cup B$
- Every monotone sequence of real numbers converges.
- 18. Define a function $f: \mathbb{R} \to \mathbb{R}$

$$\begin{cases} 0 & if x \in \mathbb{Q} \\ x^2 & if x \notin \mathbb{Q} \end{cases}$$

- (a) Is f continuous at x = 0? Justify your answer. (Justification based on definition will receive the most points)
- (b) Is f differentiable at x = 0? Justify your answer.