Mock Olympiad #2 Solutions

July 4, 2009

1. (IMO Short list 1988, #22)

Suppose integers x_1, x_2, \ldots, x_p exist. We will show that p = 2 or 6. Note that:

$$LHS = \sum_{i=1}^{p} x_i^2 - \frac{4}{4p+1} \cdot \left(\sum_{i=1}^{p} x_i\right)^2$$

$$= \frac{1}{4p+1} \cdot \sum_{i=1}^{p} x_i^2 + \frac{4}{4p+1} \cdot \left(p \cdot \sum_{i=1}^{p} x_i^2 - \left(\sum_{i=1}^{p} x_i\right)^2\right)$$

$$= \frac{1}{4p+1} \cdot \sum_{i=1}^{p} x_i^2 + \frac{4}{4p+1} \cdot \left(\sum_{1 \le i < j \le p} (x_i - x_j)^2\right).$$

Suppose x_i takes on at least 3 values, with a numbers taking on the minimum value, c numbers taking on the maximum value, and b numbers taking on intermediate values. Then, $\sum_{1 \leq i < j \leq p} (x_i - x_j)^2 \geq ac \cdot 2^2 + ab \cdot 1^2 + bc \cdot 1^2 \geq 4a + b + c \geq p + 3$, and LHS > 1. Therefore, x_i can take on at most 2 different values.

If all the x_i are equal to some value n, then $LHS = \frac{pn^2}{4p+1}$. If p=1, then this has no solutions because 5 is not a square. If p>1, then the factor of p in the numerator can never be canceled out, so there are no solutions in this case either. Assume now that p>2.

Let a numbers take the value A, and b numbers take the value B. Suppose that |A - B| > 1, then

$$LHS \ge \frac{4}{4p+1} \cdot (4ab) \ge \frac{16(p-1)}{4p+1} > 1$$

since p > 1. So we can assume that |A - B| = 1.

Now assume that neither A nor B are equal to 0. Then

$$LHS \ge \frac{(p-1)+4}{4p+1} + \frac{4(p-1)}{4p+1} = \frac{5p-1}{4p+1}$$

which is bigger than 1 since p > 2.

So we can further assume A=0. Then

$$LHS = \frac{b + 4ab}{4p + 1}.$$

If b = 1, then a = p - 1 and $LHS = \frac{4p - 3}{4p + 1} \neq 1$. If $b \in [2, p - 2]$, then $p \geq 4, ab \geq 2p - 4$, and $LHS \geq \frac{8p - 14}{4p + 1} > 1$. If b = p - 1, then a = 1 and $LHS = \frac{5p - 5}{4p + 1}$, which is 1 only if p = 6.

This proves that p must equal 2 or 6. Conversely, if p = 2, we can take $\{x_1, x_2\} = \{1, 2\}$, and if p = 6, we can take $\{x_1, x_2, \dots, x_6\} = \{0, 1, 1, 1, 1, 1\}$.

2. (IMO Short list 2008, C5)

If k = l = 1, the claim is trivial, so we will assume that k + l > 2. Consider a permutation $\{y_1, y_2, \ldots, y_{k+l}\}$ of S. Now look at the k + l k-element subsets

$$A_i = \{y_i, y_{i+1}, \dots, y_{i+k-1}\}, i = \{1, 2, \dots, k+l\}$$

where all indices are taken mod k + l.

Claim 1: At least 2 of the A_i are nice.

Define
$$f(A_i) = \frac{1}{k} \sum_{x_j \in A_i} x_j - \frac{1}{l} \sum_{x_j \in S \setminus A_i} x_j$$
.

Notice that $f(A_1) + f(A_2) + \cdots + f(A_{k+l}) = 0$. (This is because each element x_j appears in A_i for k different values of i, and it appears in $S \setminus A_i$ for k different values of i.) Also,

$$|f(A_{i+1}) - f(A_i)| = \left| \frac{x_{i+k} - x_i}{k} + \frac{x_{i+k} - x_i}{l} \right| \le \frac{1}{k} + \frac{1}{l}.$$

Therefore if A_i and A_{i+1} are of different signs¹, then either $|f(A_i)|$ or $|f(A_{i+1})|$ is at most $\frac{1}{2} \cdot (\frac{1}{k} + \frac{1}{l}) = \frac{k+l}{2kl}$, and therefore one of A_i , A_{i+1} is nice.

Since the sum of the $f(A_i)$ is 0, we must have at least 1 negative and 1 positive sign (unless they're all 0 which is silly). If there exist 2 disjoint sets $\{i, i+1\}, \{j, j+1\}$ such that $f(A_i), f(A_{i+1})$ and $f(A_j), f(A_{j+1})$ are of opposite signs, then by above we have at least two nice sets. Otherwise, exactly one $f(A_i)$ is of a different sign from the rest. Assume wlog that $f(A_1) \geq 0$ and for $i \neq 1$, $f(A_i) < 0$. If A_1 is not nice, than both A_{k+l} and A_2 are nice, so we have found our two nice sets. Otherwise, $f(A_1) \leq \frac{k+l}{2kl}$, and $\sum_{i \neq 1} |f(A_i)| = f(A_1) \leq \frac{k+l}{2kl}$, so every set must be nice. This finishes the proof of Claim 1.

Now, consider choosing a random permutation $\{y_1, y_2, \ldots, y_{k+l}\}$, and then choosing a random A_i corresponding to this permutation. By Claim 1, this chooses a nice set with probability at least $\frac{2}{k+l}$. On the other hand, this is equivalent to first choosing the shift i and then the permutation $\{y_1, y_2, \ldots, y_{k+l}\}$, but once i is fixed, we will be equally likely to choose any possible set. Therefore, this entire process chooses a set uniformly at random, so it follows that at least $\frac{2}{k+l} \cdot \binom{k+l}{k}$ sets are nice.

3. Ukraine 2008,11.8

Solution 1:

Denote the angles of triangle ABC by a, b, c, and let $\angle A_1BC = \angle A_1AB = x, \angle A_1CB = \angle A_1AC = y$. Then

 $\angle ABA_1 = b - x$, and so $\angle BA_1A = 180 - b$. Similarly, $\angle CA_1A = 180 - c$, and so $\angle BA_1C = 180 - a$. Therefore, if we let H be the orthocenter of triangle ABC, CBA_1H are concyclic.

¹We consider 0 to be of positive sign.

Denote the circle they lie on by S_1 . Do a dilation centered at A with factor $\frac{1}{2}$, and let S_1 transform to S_2 . Then denoting the midpoints of ABC by A', B', C', we know that S_2 contains B', C', and the midpoint of AH, so it must be the nine-point circle. So S_2 passes through B_0, B', C_0 and C' as well. Notice that since S_1 passed through A_1 , A_2 lies on the nine-point circle.

We will prove A_2A_0 , B_2B_0 , C_2C_0 are concurrent using Sine-Ceva's theorem on triangle $A_0B_0C_0$. Let B'' denote the image of B_0 under the dilation centered at A with factor 2. We have

$$\sin \angle A_2 A_0 B_0 = \sin \angle A_2 B' B_0$$
 by concyclicity
$$= \sin \angle A_1 C B''$$
 by dilating around A
$$= \sin \angle A_1 C A$$

$$= \frac{A A_1 \cdot \sin \angle A A_1 C}{A C}$$
 by sine law for $A A_1 C$

$$= \frac{A A_1}{A C} \sin c$$

Similarly, $\sin \angle A_2 A_0 C_0 = \frac{AA_1}{AB} \sin b$. Applying Sine-Ceva to $A_0 B_0 C_0$,

$$\frac{\sin \angle A_2 A_0 B_0 \sin \angle B_2 B_0 C_0 \sin \angle C_2 C_0 A_0}{\sin \angle A_2 A_0 C_0 \sin \angle B_2 B_0 A_0 \sin \angle C_2 C_0 B_0} = 1,$$

so the 3 lines are concurrent and we're done.

Solution 2:

Let A' denote the intersection of AA_2 and BC. The given condition implies that the circumcircle of $\triangle AA_1B$ is tangent to BC at B, and the circumcircle of $\triangle AA_1C$ is tangent to BC at

C. Since A' is on the radical axis of these two circles, it follows that BA' = CA', and hence A' is the midpoint of BC. Also let B' and C' denote the midpoints of AC and AB.

Now, as in the other solution, note that A_2 lies on the nine-point circle, and hence C_0, A_2, B_0, A' , and A_0 are concyclic. Therefore, $\angle C_0 A_0 A_2 = \angle C_0 A' A_2 = \angle C_0 A' A$. By the sine law, $\sin \angle C_0 A' A = A C_0 \cdot \frac{\sin \angle B A A'}{A' C_0}$. Now, $B C_0 C$ is a right triangle with circumcenter A' so $A' C_0 = A' B$, and $\sin \angle C_0 A' A = (A C \cos A) \cdot \frac{\sin \angle B A A'}{A' B} = (A C \cos A) \cdot \frac{\sin \angle A A' B}{A B}$.

Similarly, $\sin \angle B_0 A A' = (AB \cos A) \cdot \frac{\sin \angle A A' C}{AC}$, so $\frac{\sin \angle C_0 A' A}{\sin \angle B_0 A' A} = \frac{AC^2}{AB^2}$. Therefore,

$$\frac{\sin \angle C_0 A_0 A_2}{\sin \angle B_0 A_0 A_2} \cdot \frac{\sin \angle A_0 C_0 C_2}{\sin \angle C_0 B_0 B_2} \cdot \frac{\sin \angle B_0 B_0 B_2}{\sin \angle A_0 C_0 C_2} = \frac{AC^2}{AB^2} \cdot \frac{AB^2}{BC^2} \cdot \frac{BC^2}{AC^2} = 1.$$

The result now follows from Sine Ceva on $\triangle A_0 B_0 C_0$.

