Zaawansowane algorytmy Wstęp 1/2

dr Janusz Dybizbański

Model PRAM (Parallel Random Access Machine)

• p - liczba procesorów,

- p liczba procesorów,
- każdy procesor ma swoją (małą) pamięć lokalną,

- p liczba procesorów,
- każdy procesor ma swoją (małą) pamięć lokalną,
- każdy procesor zna swój unikalny numer identyfikacyjny,

- p liczba procesorów,
- każdy procesor ma swoją (małą) pamięć lokalną,
- każdy procesor zna swój unikalny numer identyfikacyjny,
- każdy procesor zna ogólną liczbę procesorów,

- p liczba procesorów,
- każdy procesor ma swoją (małą) pamięć lokalną,
- każdy procesor zna swój unikalny numer identyfikacyjny,
- każdy procesor zna ogólną liczbę procesorów,
- każdy procesor zna rozmiar danych wejściowych

- p liczba procesorów,
- każdy procesor ma swoją (małą) pamięć lokalną,
- każdy procesor zna swój unikalny numer identyfikacyjny,
- każdy procesor zna ogólną liczbę procesorów,
- każdy procesor zna rozmiar danych wejściowych
- wspólna pamięć (służy między innymi do komunikacji),

- p liczba procesorów,
- każdy procesor ma swoją (małą) pamięć lokalną,
- każdy procesor zna swój unikalny numer identyfikacyjny,
- każdy procesor zna ogólną liczbę procesorów,
- każdy procesor zna rozmiar danych wejściowych
- wspólna pamięć (służy między innymi do komunikacji),
- obliczenia są synchroniczne (wszystkie procesory w tym samym czasie wykonują tą samą instrukcję)

2. Dwa sposoby zapisu algorytmów równoległych

2. Dwa sposoby zapisu algorytmów równoległych

Algorytm 1. Koniunkcja elementów tablicy

wejście:

ullet tablica zmiennych logicznych A[1...p] umieszczona w pamięci globalnej

2. Dwa sposoby zapisu algorytmów równoległych

Algorytm 1. Koniunkcja elementów tablicy

wejście:

ullet tablica zmiennych logicznych A[1...p] umieszczona w pamięci globalnej

wyjście:

• zmienna logiczna C umieszczona w pamięci globalnej taka, że

$$C = \bigwedge_{i=1}^{p} A[i]$$

Z perspektywy jednego procesora

Program dla procesora o identyfikatorze i:

```
1 if i=1 then
2    global_write(true, C)
3 global_read(A[i], a)
4 if not a then
5    global_write(false, C)
```

Z perspektywy jednego procesora

Program dla procesora o identyfikatorze i:

```
1 if i=1 then
2    global_write(true, C)
3 global_read(A[i], a)
4 if not a then
5    global_write(false, C)
```

Dla wszystkich procesorów jednocześnie

```
1 if i=1 then
2    global_write(true, C)
3 for 1 <= i <= p pardo
4    global_read(A[i], a)
5    if not a then
6        global_write(false, C)</pre>
```

Działanie algorytmu								
id	1	2	3	4	5	6	7	8
_A	Т	Т	Т	F	F	Т	F	Т

D .		- 1		
Dzia	ania	2	σorv.	/tmii
DZIA	Iaiiic	а	igoi y	unnu
			<u> </u>	

id	1	2	3	4	5	6	7	8
Α	Т	Т	Т	F	F	Т	F	Т
krok 1	C := T	Ø	Ø	Ø	Ø	Ø	Ø	Ø

712	ranie	\sim	$-\infty$	~~	tη	311
/	аше		נטעו	IV.		
			_	_		

id	1	2	3	4	5	6	7	8
Α	Т	Т	Т	F	F	Т	F	Т
krok 1	C := T	Ø	Ø	Ø	Ø	Ø	Ø	Ø
krok 2	a := T	a := T	a := T	a := F	a := F	a := T	a := F	a := T

Działanie algorytmu									
id	1	2	3	4	5	6	7	8	
A	Т	Т	Т	F	F	Т	F	Т	
krok 1	C := T	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
krok 2	a := T	a := T	a := T	a := F	a := F	a := T	a := F	a := T	
krok 3	nie	nie	nie	tak	tak	nie	tak	nie	

Działanie algorytmu								
id	1	2	3	4	5	6	7	8
Α	Т	Т	Т	F	F	Т	F	Т
krok 1	C := T	Ø	Ø	Ø	Ø	Ø	Ø	Ø
krok 2	a := T	a := T	a := T	a := F	a := F	a := T	a := F	a := T
krok 3	nie	nie	nie	tak	tak	nie	tak	nie
krok 4	Ø	Ø	Ø	C := F	C := F	Ø	C := F	Ø

3. Podmodele modelu PRAM

Konflikt - jednoczesny odczyt/zapis z/do pamięci globalnej przez więcej niż jeden procesor

3. Podmodele modelu PRAM

Konflikt - jednoczesny odczyt/zapis z/do pamięci globalnej przez więcej niż jeden procesor

Podział na modele

Concurrent/Exclusive Read Concurrent/Exclusive Write

- EREW PRAM model nie dopuszcza żadnych konfliktów
- CREW PRAM model doupszcza konflikty odczytu
- ERCW PRAM model dopuszcza konflikty zapisu
- CRCW PRAM model doupszcza konflikty odczytu i zapisu.

- EREW PRAM model nie dopuszcza żadnych konfliktów
- CREW PRAM model doupszcza konflikty odczytu
- ERCW PRAM model dopuszcza konflikty zapisu
- CRCW PRAM model doupszcza konflikty odczytu i zapisu.

- EREW PRAM model nie dopuszcza żadnych konfliktów
- CREW PRAM model doupszcza konflikty odczytu
- ERCW PRAM model dopuszcza konflikty zapisu
- CRCW PRAM model doupszcza konflikty odczytu i zapisu.

• common - zezwala na jednoczesny zapis tylko, gdy wszystkie procesory chcą zapisać tę samą wartość

- EREW PRAM model nie dopuszcza żadnych konfliktów
- CREW PRAM model doupszcza konflikty odczytu
- ERCW PRAM model dopuszcza konflikty zapisu
- CRCW PRAM model doupszcza konflikty odczytu i zapisu.

- common zezwala na jednoczesny zapis tylko, gdy wszystkie procesory chcą zapisać tę samą wartość
- arbitrary zapisuje jeden procesor (arbitralnie wybrany)

- EREW PRAM model nie dopuszcza żadnych konfliktów
- CREW PRAM model doupszcza konflikty odczytu
- ERCW PRAM model dopuszcza konflikty zapisu
- CRCW PRAM model doupszcza konflikty odczytu i zapisu.

- common zezwala na jednoczesny zapis tylko, gdy wszystkie procesory chcą zapisać tę samą wartość
- arbitrary zapisuje jeden procesor (arbitralnie wybrany)
- priority zapisuje ten o największym priorytecie (np. najmniejszy identyfikator)

- EREW PRAM model nie dopuszcza żadnych konfliktów
- CREW PRAM model doupszcza konflikty odczytu
- ERCW PRAM model dopuszcza konflikty zapisu
- CRCW PRAM model doupszcza konflikty odczytu i zapisu.

- common zezwala na jednoczesny zapis tylko, gdy wszystkie procesory chcą zapisać tę samą wartość
- arbitrary zapisuje jeden procesor (arbitralnie wybrany)
- priority zapisuje ten o największym priorytecie (np. najmniejszy identyfikator)

W jakim modelu działa Algorytm 1?

- EREW PRAM model nie dopuszcza żadnych konfliktów
- CREW PRAM model doupszcza konflikty odczytu
- ERCW PRAM model dopuszcza konflikty zapisu
- CRCW PRAM model doupszcza konflikty odczytu i zapisu.

- common zezwala na jednoczesny zapis tylko, gdy wszystkie procesory chcą zapisać tę samą wartość
- arbitrary zapisuje jeden procesor (arbitralnie wybrany)
- priority zapisuje ten o największym priorytecie (np. najmniejszy identyfikator)

W jakim modelu działa Algorytm 1?

Algorytm 1 działa w modelu common ERCW PRAM.

