Análisis Exploratorio

Mariela Sued, Jemina García y Ana M. Bianco

08 abril 2020

Aprender de los datos:

- * La idea es visualizar en forma rápida las principales características del conjunto de datos, analizando posibles relaciones o conexiones entre ciertas variables.
 - La relevancia que tiene hacer un análisis gráfico previo es fundamental, pero no siempre es determinante. Si bien una gráfica facilita la visualización de relaciones entre variables, esto no lo confirma.

Visualizaciones interesantes

- visiten: (https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6)
- y también (https://www.gapminder.org/tools/#\$chart-type=bubbles)

Borramos todo y establecemos el directorio de trabajo

```
rm(list=ls())
setwd("C:/Users/Ana/Dropbox/Ciencias_de Datos_Fundamentos/optativa_2020/Clase_1
#setwd("~/Dropbox/Ciencias_de Datos_Fundamentos/optativa_2020/Clase_1")
```

Datos

Carguemos los datos del Titanic que están en formato CSV (comma separated values)

```
titanico<- read.csv("datos_titanic.csv",header=T)
head(titanico)</pre>
```

```
PassengerId Survived Pclass
## 1
                               3
## 2
                               3
## 3
## 4
## 5
## 6
##
                                                            Sex Age SibSp
                                                    Name
## 1
                                 Braund, Mr. Owen Harris
                                                           male 22
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female
## 3
                                 Heikkinen, Miss. Laina female
            Futrelle, Mrs. Jacques Heath (Lily May Peel) female
## 4
                                Allen, Mr. William Henry
                                                           male 35
## 5
                                        Moran, Mr. James
                                                         male NA
## 6
##
    Parch
                     Ticket
                               Fare Cabin Embarked
## 1
                  A/5 21171 7.2500
## 2
                  PC 17599 71.2833
                                      C85
## 3
        0 STON/02. 3101282 7.9250
                   113803 53.1000 C123
## 4
                   373450 8.0500
## 5
                    330877 8.4583
## 6
```

attach(titanico)

Tipos de Variables

Primero comenzamos a trabajar con las variables en forma individual.

Debemos identificar el tipo de variable con la que vamos a trabajar ya que dependiendo del tipo de variables que tengamos, se determina que análisis o tratamiento a aplicar.

Los tipos de datos pueden ser: numérico, entero, caracter, factor y lógico

Variables Categóricas

```
class(Sex)
```

```
## [1] "factor"
```

Es importante que la clase de las variables categóricas sean factor. Sino deberíamos cambiarlo

El comando *table* aplicado a una variable categórica cuenta la frecuencia de cada categoría

```
table(Sex)
```

```
## Sex
## female male
## 314 577
```

barplot realiza un diagrama de barras de una variable categórica, para la que hemos calculado antes la tabla de frecuencia con table

Variables Categóricas

```
counts.sexo <- table(Sex)
barplot(counts.sexo,col="blue",density=8)</pre>
```


Variables Categóricas

Pclass

```
Pclass<-as.factor(Pclass)
counts.clase<- table(Pclass)
counts.clase</pre>
```

```
## 216 184 491
pie(counts.clase, col=c("blue", "green", "red"),
    main="Grafico de Torta de Clases")
```

Grafico de Torta de Clases

Más de una Variable Categórica

```
counts<- table(Sex,Pclass)
counts</pre>
```

```
## Pclass
## Sex 1 2 3
## female 94 76 144
## male 122 108 347
```

```
barplot(counts,col= c( " blue " , "red "),main="Sexo vs. Clase",
    legend = rownames( counts ) )
```


Más de una Variable Categórica

De otro modo

```
counts<- table(Pclass,Sex)
counts</pre>
```

```
## Sex
## Pclass female male
## 1 94 122
## 2 76 108
## 3 144 347
```

```
barplot(counts,col= c( " blue " , "red ", "green"),legend = rownames( counts ) )
```


Carguemos los datos de iris

```
data(iris)
#Inspecciono los primeros y los ultimos casos.
head(iris)
```

```
##
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
            5.1
                       3.5
                                   1.4
                                             0.2 setosa
## 2
            4.9
                       3.0
                                   1.4
                                             0.2 setosa
## 3
            4.7
                       3.2
                                  1.3
                                             0.2 setosa
## 4
            4.6
                      3.1
                                1.5
                                             0.2 setosa
## 5
            5.0
                      3.6
                                  1.4
                                             0.2 setosa
## 6
          5.4
                       3.9
                                  1.7
                                             0.4 setosa
```

```
attach(iris)
```

Variables numéricas

Al tratar una variable cuantitativa podríamos calcularle cualquiera de las medidas tales como promedio, desvío standard, etc.

Si la variables tiene observaciones faltantes las funciones no se van a ejecutar hay que decirle a la función que las omita.

```
range(Sepal.Length)

## [1] 4.3 7.9

mean(Sepal.Length)

## [1] 5.843333

summary(Sepal.Length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.300 5.100 5.800 5.843 6.400 7.900
```

#promedio omitiendo los valores missings.

Medidas de Resumen Comunes

Nombre del comando	Explicación
summary(data)	Resumen estadístico
min(data)	Mínimo
max(data)	Máximo
range(data)	Rango
mean(data)	Media aritmética
median(data)	Mediana
length(data)	Tamaño
sd(data)	Desviación típica
var(data), cov(data)	Varianza
cor(data)	Correlación
sort(data)	Ordenar
table(data)	Tabla de frecuencias absolutas

Medidas de Resumen Comunes

Un poco de matrices en R

Una matriz es una estructura bidimensional con dos dimensiones: filas y columnas. Podríamos crear una matriz de la siguiente forma indicando número de filas y de columnas.

```
A<- matrix(1:10, nrow = 2, ncol = 5)

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1 3 5 7 9

## [2,] 2 4 6 8 10
```

o bien

##

```
B<- matrix(1:8, nrow = 4, ncol = 2)
B
```

```
## [1,] 1 5
## [2,] 2 6
## [3,] 3 7
## [4,] 4 8
```

[,1] [,2]

Dimensión e indexación

Para conocer la dimension de una matriz tenemod el comando dim()

```
dim(A)
```

```
## [1] 2 5
```

Para referirnos a una posición de una matriz, indicamos fila y columna:

```
A[1,5]
```

```
## [1] 9
```

```
A[2,] # da la fila 2 de A
```

```
## [1] 2 4 6 8 10
```

```
A[,3] # da la columna 3 de A
```

```
## [1] 5 6
```

Comandos cbind y rbind

Muchas veces creamos matrices pegando vectores por fila o por columna.

```
x<- 1:4; y<- 11:14
A<- cbind(x,y) # pego por columnas
B<-rbind(x,y) #pego por filas
A; dim(A)
## x y
## [1,] 1 11
## [2,] 2 12
## [3,] 3 13
## [4,] 4 14
## [1] 4 2
B; dim(B)
## [,1] [,2] [,3] [,4]
## x 1 2 3 4
## y 11 12 13 14
## [1] 2 4
```

Medidas de Resumen

Podemos calcular estas funciones también sobre un conjunto de variables

La siguiente matriz contiene las variables Sepal.Length Sepal.Width Petal.Length Petal.Width

```
SUB<-cbind( Sepal.Length, Sepal.Width, Petal.Length, Petal.Width )
# o bien
SUB<-iris[,-5]</pre>
```

Por ejemplo, puedo calular la media

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.84333 3.057333 3.758000 1.199333
```

2 indica que debe aplicar mean por columna

El histograma es el más conocido de los gráficos para resumir un conjunto de datos cuantitativos o numéricos.

- Para construir un histograma es necesario previamente construir una tabla de frecuencias: dividimos el rango de los n datos en intervalos o clases, que son excluyentes y exhaustivas.
- ▶ Contamos la cantidad de datos en cada intervalo o clase i, es decir la frecuencia, f_i y calculamos la frecuencia relativa: $fr_i = f_i/n$
- Graficamos el histograma en un par de ejes coordenados representando en las abscisas los intervalos y sobre cada uno de ellos un rectángulo cuya área es la frecuencia relativa de dicho intervalo.

hist(Sepal.Length)


```
par(mfrow=c(1,2))
hist(Sepal.Length,main="Histograma de frecuecias")
hist(Sepal.Length,freq=F,main="Histograma de densidad")
```



```
par(mfrow=c(1,1))
```


Para guardar los gráficos por líneas de comandos

Histograma con la curva de densidad superpuesta

Histograma con la curva de densidad superpuesta

```
hist(Sepal.Length,nclass=15,freq=F,
    main="Histograma de Densidad de Sepal.Length")
lines(grilla,funn,col="blue",lwd=2)
```


Los cuartiles y la mediana dividen a la muestra en cuatro partes igualmente pobladas: 25% de la muestra en cada una de ellas.

Entre Q1 y Q2 se halla el 50% central de los datos y el rango de estos es IQR=Q3-Q1.

Observemos que porcentaje de datos hay a la izquierda de Q1 a la derecha de Q3 entre Q1 y Q3, Q1 y el máximo entre el mínimo y Q3.

Resultan muy útiles para describir la muestra las siguientes medidas

- Mínimo
- Q1 cuartil inferior
- Q2 mediana
- Q3 cuartil superior
- Máximo

Nombre del comando	Explicación
quantile(data, 0.25)	Cuantil Q1
quantile(data, 0.75)	Cuantil Q3
IQR(data)	Rango intercuartil

Figure: boxplot

Figure: boxplot

boxplot(Sepal.Length)

El ~ indica que variable clasifica

Diagrama de dispersión de Sepal.Length vs. Sepal.Width

plot(Sepal.Length, Sepal.Width)

Podemos personalizarlo poniendo labels en cada eje, título y elija un caracter para los puntos.


```
plot(Sepal.Length,Sepal.Width,xlab =" longitud", ylab =" ancho",
    main =" Plot de longitud vs. ancho",pch=16,type="n")
#solo graficamos la caja
points(Sepal.Length[Sepal.Length<=6],Sepal.Width[Sepal.Length<=6],
    pch=20,col="magenta")
points(Sepal.Length[Sepal.Length>6],Sepal.Width[Sepal.Length>6],
    pch=20,col="green")
```


Ahora personalizando el gráfico

```
par(bg="lightgray", mar=c(4,2,3.5, 4))
#c(bottom, left, top, right) defalut es c(5, 4, 4, 2) + 0.1.
plot(Sepal.Length, Sepal.Width, type="n", xlim=c(4,8),
     vlim=c(1,6),xlab="", ylab="",xaxt="n", yaxt="n")
#solo graficamos la caja
points(Sepal.Length, Sepal.Width, pch=20, col="magenta")
#solo graficamos los puntos con el simbolo deseado
#Ahora nos encargamos de los ejes
axis(1,c(4,6,8),cex=2)
mtext("Sepal.Length", side=1, cex=0.8, line=3)
axis(4,cex=0.8,col="blue",labels=FALSE)
mtext(c(1,3,5),side=4,at=c(1,3,5),col="blue",line=0.3)
mtext("Sepal.Width", side=4, cex=0.8, line=2.5, col="blue")
#t.i.t.u.l.o
title("Diagrama Personalizado de Sepal.Length
      vs. Sepal.Width", cex.main=0.8)
```


Diagrama de dispersión para todas las variables de SUB.

pairs(SUB,col="magenta")

