CS & IT ENGINERING

Theory of Computation (Finite Automata)
Regular Language

Identification Part-2

DPP 12 Discussion

Mallesham Devasane Sir

TOPICS TO BE COVERED

01 Question

02 Discussion

Which of the following language is not regular?

A.
$$L = \{w \mid w \in \{a, b\}^*\} = (a+b)^*$$

B.
$$L = \{xy \mid x, y \in \{a, b\}^*\} - (\alpha + b)^*$$

C.
$$L = \{xy \mid |x| = |y|, x, y \in \{a, b\}^*\} = \left(a + b^2\right)^T$$

D. None of these

Which of the following language is/are regular?

$$L = \{ww^R | w \in \{0, 1\}^*\}. \longrightarrow Set of even trook patindentes$$

L = {Set of all palindrome}.

 $L = \{Number of a's equal to number of b's\}.$

L = {
$$\text{wwp} \mid \text{w, p} \in \{0, 1\}^*$$
} = $\left(0+1\right)^*$

Consider the following given language L.

L = {p q w w r | w, p, q, r \in {a, b}*} $= (a+b)^*$ The regular expression generated by above language is?

A.
$$(a + b)^2 (aa + bb) (a + b)$$

B.
$$[(a + b)^2]^* (aa + bb) (a + b)^*$$

D. None of these

Which of the following regular expression generated by above language?

B.
$$(a + b)^+ (a + b)^+$$

Consider the following language L:

 $L = \{xw \mid | x | = 2, w \in \{a, b\}^*\}$

For the above language L, how many equivalence classes are possible?____.

$$\frac{2}{2},\frac{3}{70}$$

$$\frac{2}{70}$$

$$\frac{3}{2}$$

$$\frac{3}{70}$$

Consider the following languages.

$$L_1 = \{w \times w^R\} \mid w, x \in \{a, b\}^{\dagger}\} \longrightarrow \text{Regular}$$

 $L_2 = \{ w \ w^R x \mid w, x \in \{a, b\}^+ \}$

Which of the following language is regular?

- B. L₂ is regular.
- C. Both L_1 and L_2 are regular.
- D. None of these.

