20. Základní úlohy o elipse

Úloha 1. Následující rovnice jsou "zamaskované" rovnice (rovnoosých) elips; převeďte je do středového (tj. "běžného") tvaru, určete souřadnice středu, délky poloos, excentricitu a souřadnice ohnisek.

- (a) $x^2 + 2x + 4y^2 16y + 13 = 0$
- (b) $16x^2 96x + 5y^2 10y + 69 = 0$

Úloha 2. Napište (středovou) rovnici elipsy, jejíž osy splývají s osami souřadnic a která prochází body $K[2\sqrt{3};\sqrt{6}]$ a L[6;0].

Úloha 3. Elipsa je dána rovnicí $4x^2 + 9y^2 = 36$. Najděte sjejí společné body s přímkou o rovnici (a) 2x + 3y - 6 = 0, (b) x - y - 6 = 0, (c) $2x + 3\sqrt{3}y - 12 = 0$.

* Úloha 4. Dokažte vztah $a^2 = b^2 + e^2$. (Použijte definici elipsy pomocí ohnisek.)

- 1. (a) $\frac{(x+1)^2}{4} + \frac{(y-2)^2}{1} = 1$; střed [-1; 2], hlavní poloosa 2, vedlejší poloosa 1, excentricita $\sqrt{3}$, ohniska $[-1 \sqrt{3}; 2]$ a $[-1 + \sqrt{3}; 2]$ (b) $\frac{(x-3)^2}{5} + \frac{(y-1)^2}{16} = 1$; střed [3; 1], hlavní poloosa 4, vedlejší poloosa $\sqrt{5}$ excentricita $\sqrt{11}$ ohniska $[3:1 + \sqrt{11}]$ a $[3:1 + \sqrt{11}]$
- 4, vedlejší poloosa $\sqrt{5}$, excentricita $\sqrt{11}$, ohniska $[3;1-\sqrt{11}]$ a $[3;1+\sqrt{11}]$ 2. $\frac{x^2}{2c}+\frac{y^2}{c}=1$
- 3. (a) [3;0] a [0;2] (b) nemá průsečíky (c) $[\frac{3}{2};\sqrt{3}]$