The Modular Structure of an Ontology: Atomic Decomposition

Chiara Del Vescovo¹ Bijan Parsia¹ Uli Sattler¹ Thomas Schneider²

¹School of Computer Science, University of Manchester, UK

²Dept. of Computer Science, University of Bremen, Germany

LogInf, 4 November 2011

Ontologies

... are finite theories in a (description) logic, e.g.

OWL (W3C standard, FOL fragment): expressive DL, featuring

- unary and binary predicates
- constructors for unary predicates
 Booleans, ∃, ∀, counting quantifiers, nominals
- constructors for binary predicates inverse, composition
- axioms: inclusions/equivalences of predicates
- global constraints to ensure decidability

Modules

A module $\mathcal{M}(\Sigma, \mathcal{O}) \subseteq \mathcal{O}$ encapsulates knowledge w.r.t. a signature Σ if $\mathcal{M} \equiv^c_{\Sigma} \mathcal{O}$

```
i.e., for all C \sqsubseteq D with sig(C \sqsubseteq D) \subseteq \Sigma:

\mathcal{O} \models C \sqsubseteq D iff \mathcal{M}(\Sigma, \mathcal{O}) \models C \sqsubseteq D
```

Example: $\mathcal{O} = \text{Mereology.owl}$, $\Sigma = \{\text{Part}, \text{Whole}\}$, $\mathcal{M}(\Sigma, \mathcal{O}) = \{\text{Part}, \text{Whole}\}$

```
\mathcal{M}
\mathsf{Part} \equiv \exists \mathsf{strict\_part\_of}. \mathsf{Whole} \qquad \mathsf{strict\_part\_of} \equiv \mathsf{direct\_part\_of}
\mathsf{Part} \sqsubseteq \forall \mathsf{strict\_part\_of}. \mathsf{Whole} \qquad \mathsf{direct\_part\_of} \equiv \mathsf{direct\_part}^{-1}
\mathsf{Whole} \equiv \exists \mathsf{strict\_part}. \mathsf{Part} \qquad \mathsf{strict\_part} \equiv \mathsf{direct\_part}
\mathsf{Whole} \sqsubseteq \forall \mathsf{strict\_part}. \mathsf{Part} \qquad \mathsf{strict\_part\_of} \equiv \mathsf{strict\_part}^{-1}
```

Modular structure

Modules are great: if you know your (seed) signature . . . and for "module local" tasks such as reuse

Single module extraction does not help if you

- do not know the right seed signature
- want to understand other modules
- want to understand axiom dependency structure

To analyse the modular structure of the ontology:

- significant modules
- significant relations between modules
- ... which reveals logical dependency between axioms

Are all modules significant?

To understand \mathcal{M} , one must understand

- ullet the dependency structure of \mathcal{M}_1
- ullet the dependency structure of \mathcal{M}_2
- ullet nothing else: \mathcal{M}_1 and \mathcal{M}_2 have no further dependencies

Are all modules significant?

To understand \mathcal{M} , one must understand

- ullet the dependency structure of \mathcal{M}_1
- ullet the dependency structure of \mathcal{M}_2
- ullet nothing else: \mathcal{M}_1 and \mathcal{M}_2 have no further dependencies
- $\leadsto \mathcal{M}$ is not significant: it is a fake module
 - \mathcal{M}_1 and \mathcal{M}_2 may be "significant"
 - ullet Knowing that ${\mathcal M}$ is "only" a union is important

Are all modules significant?

Consider a module \mathcal{M} that is not fake.

To understand \mathcal{M} , one has to understand \mathcal{M} as a whole.

ullet all axioms in ${\mathcal M}$ logically interact

in different ways – but interact

"Not fake" implies significant: genuine

Ratio of fake to genuine

Given a set of genuine modules,

- Unions lead to fake modules
- → The space of fake modules is exponential
 - But not every union of genuine modules is a module

The number of all modules can and does grow exponentially in $|\mathcal{O}|$ [D.,P.,S.,S., KR 2010 & WoMO 2010]

Question 1

Is module growth primarily due to trivial combinations? I.e., are most modules fake?

Yes!

Theorem 1

Each genuine module is the smallest module that contains α , for some axiom $\alpha \in \mathcal{O}$.

 \rightarrow The family of genuine modules is linear in $|\mathcal{O}|$. Most modules are fake!

Proof exploits properties of modules

- uniqueness, monotonicity, self-containedness, ...
- which are satisfied by all locality-based modules

Relations between modules

Genuine modules may overlap.

This exposes significant logical dependency between axioms:

Axioms in $\mathcal{M}_1 \setminus \mathcal{M}_2$ depend on axioms in $\mathcal{M}_1 \cap \mathcal{M}_2$

Relations between modules

Genuine modules may overlap.

This exposes significant logical dependency between axioms:

Axioms in $\mathcal{M}_1 \setminus \mathcal{M}_2$ depend on axioms in $\mathcal{M}_1 \cap \mathcal{M}_2$

Atoms

An atom is a maximal set $\mathfrak{a}\subseteq\mathcal{O}$ such that, for every module \mathcal{M} , either $\mathfrak{a}\subseteq\mathcal{M}$ or $\mathfrak{a}\cap\mathcal{M}=\emptyset$.

- \bullet The smallest module for an axiom α contains the whole atom to which α belongs.
- Axioms in an atom are logically interdependent.
- Any two atoms are disjoint.
- → The family of atoms is a partition of the ontology.
 - Each module is a disjoint union of atoms.

Proposition

There is a 1-1 correspondence btwn genuine modules and atoms.

Atomic Decomposition

Dependence between atoms:

- $\mathfrak{a} \succeq \mathfrak{c}$ if, for each \mathcal{M} : $\mathfrak{a} \subseteq \mathcal{M}$ implies $\mathfrak{c} \subseteq \mathcal{M}$
- Axioms in a logically depend on axioms in c

Theorem 2

The relation \succeq is reflexive, antisymmetric, and transitive.

→ A Hasse diagram exposes 2 logical dependencies: amongst axioms in atoms, between atoms

42 axioms 1952 modules

42 axioms 1952 modules

42 axioms 1952 modules

Feasibility

Question 2

Can we

- compute all genuine modules
- compute all atoms
- compute their dependencies

without computing all modules?!

Yes!

Remember:

Theorem 1

Each genuine module is the smallest module that contains α , for some axiom $\alpha \in \mathcal{O}$.

- Extract $\mathcal{M}(\operatorname{sig}(\alpha), \mathcal{O})$ (\leq linearly many module extractions)
- Atomic decomposition induced by the comparison of only the genuine modules (quadratic procedure)

In Reality?

We have decomposed 181 OWL ontologies from NCBO BioPortal

Decomposability:

Average	nr. axioms per atom	1.73
"	max. nr. axioms per atom	86
"	nr. axioms per genuine module	66
"	max. nr. axioms per genuine mod.	143

Summary

- The atomic decomposition (AD) is a linear representation of the potentially exponential set of all modules.
- AD can be computed using a linear number of module extractions.
- AD exposes 2 types of logical dependencies between axioms.

Future work

- Dependency between atoms and sets of atoms
- Labels for atoms different labels for different tasks
- Applications
 - Topicality for ontology comprehension
 - Fast module extraction
 - All module count
 - . . .

Future work

- Dependency between atoms and sets of atoms
- Labels for atoms different labels for different tasks
- Applications
 - Topicality for ontology comprehension
 - Fast module extraction
 - All module count
 - ...

Thank you.

Decomposability issues

Ontology \mathcal{O} (ID in BioPortal)	#0	#max Atom	#Eq.	#Disj. axs.
Nanoparticle Ontology (1083)	16, 267	6, 425	42	6, 106
Breast Tissue Cell Lines Ontology (1438)		2,201	0	7
IMGT Ontology (1491)	1,112	729	38	594
SNP Ontology (1058)	3,481	598	30	210
Amino Acid Ontology (1054)	477	445	8	190
Comparative Data Analysis (1128)	804	434	8	190
Family Health History (1126)	1,091	378	0	1
Neural Electromagnetic Ontologies (1321)	2,286	259	21	0
Computer-based Patient Record Ontology (1059)	1,454	238	18	20
Basic Formal Ontology (1332)	95	89	13	41
Ontology of Medically-related Social Entities (1565)		100	17	41
Ontology for General Medical Science (1414)		102	17	41
Cancer Research and Mgmt Acgt Master (1130)	5,435	3,796	16	42