설비성능분석

설비 성능 평가

에너지 설비의 효율을 분석하고 성능을 설계 값과 비교하여 개선사항을 파악하고 분석합니다.

설비 설계치와 실제 성능 비교

■ 효율/용량/성능 : 냉동기, 냉각탑, 보일러

■ 유량 : 냉수유량, 냉각수유량

■ 온도: 냉수 공급 및 환수온도, 냉각수 공급 및 환수온도

■ 전력사용량 : 펌프, 팬

공조(HVAC) 시스템

공기조화의 목적은 대상 건축물의 기능성과 일체화시켜 임의의 주어진 공간에 온도, 습도, 기류, 청정도 등을 만족시키도록 공기를 조절하는 것입니다.

설비 성능 평가

	냉동기 냉동능력[kcal/h] =
	{냉동기 냉수 입구온도[℃] - 냉동기 냉수 출구온도[℃]} x 냉동기 냉수펌프 유량[㎡/h] x 냉수 비중[kg/㎡] x 냉수 비
	열[kcal/°C]
생동기	냉동기 열원 COP = 냉동기 냉동능력[kcal/h] / {냉동기 전력사용량[kWh] x 최종 용도 기준 전력발열량[kcal/kWh]}
성능평가	냉동기 열원 부하율[%] = {냉동기 냉동능력 합계[kcal/h] / 냉동기 정격용량 합계[kcal/h]} x 100
	냉동기 부하율[%] = {냉동기 냉동능력[kcal/h] / 냉동기 정격용량[kcal/h]} x 100
	에너지 소비량(kWh) = 냉방부하(RT) x 가동시간 x 효율(kW/RT)
	냉각탑 열원 COP = 냉각탑 냉각능력[kcal/h] /{냉각탑 전력사용량[kWh] x 최종 용도 기준 전력발열량[kcal/kWh]}
	순환펌프 능력 분석 - 냉각수 순환 펌프 설계 시에 요구 유량에 10%, 요구 양정에 30% 여유를 주어 펌프를 선정하
LHZLEL	는 것이 일반적임으로 실제 운전 시에 펌프 계에 걸리는 계의 저항은 선정 시 보다 30~40% 낮은 것이 일반적이다.
생각탑	펌프 계의 저항이 낮으면 펌프는 쉽게 토출을 하게 됨으로 실제 운전 시의 유량은 선정 시의 유량 보다 늘 많게 된
성능평가	다. 이런 이유로 펌프 토출량을 조절하기 위한 스로틀 벨브가 펌프 출구단에 두고 양수량을 조절하는 것이다. 따라
	서, 냉각수량을 측정하지 않고 펌프 명판상의 유량을 사용하는 것은 냉각성능이 다르게 나타나는 가장 큰 이유 이다.
	에너지 소비량(kWh) = 냉방부하(RT) x 가동시간 x 효율(kW/RT)

[출처 : BEMS 기기성능평가, VETEC]

설비 성능 평가

<u> </u>	<u> </u>
	보일러 효율[%] = {보일러 능력[kcal/h] / 보일러 가스사용량[m³/h]} x 가스발열량[kcal/m³] x 100
	보일러 능력[kcal/h] = 보일러 스팀량[kg/h] x {증기엔탈피[kcal/kg] - 급수엔탈피[kcal/kg]}
	보일러 부하율[%] = {보일러 능력[kcal/h] / 보일러 용량[kg/h]} x {증기엔탈피[kcal/kg] - 급수엔탈피[kcal/kg]} x 100
보일러	열원 COP = 보일러 난방능력[kcal/h] /{보일러 전력사용량[kWh] x 최종 용도 기준 전력발열량[kcal/kWh]}
	보일러 열원 효율[%] = {보일러 능력 합계[kcal/h] / 보일러 가스사용량 합계[m²/h]} x 가스발열량[kcal/m²] x 100
	보일러 열원 부하율[%] = {보일러 능력 합계[kcal/h] / 보일러 용량 합계[kg/h]} x {증기엔탈피[kcal/kg] - 급수엔탈피
	[kcal/kg]} x 100
	공조기 ATF 분석 (공기반송효율) = 공조기 냉난방능력[kcal/h] / {공조기 전력사용량[kWh] x 최종 용도 기준 전력발
	열량[kcal/kWh]
	공조기 냉난방능력[kcal/h] = {공조기 급기엔탈피[kcal/kg] - 공조기 혼합엔탈피[kcal/kg]} x 공조기 급기풍량[CMH] x
7.7.1	공기비중[kg/m²]
공조기	에너지 소비량(kWh) = 냉방부하(RT) × 가동시간 × 효율(kW/RT)
성능평가	급기온도 추종성
	실내 온습도 추종성
	풍량제어 추종성
	실내환경 분석

[출처 : BEMS 기기성능평가, VETEC]

COP(성적계수)

COP는 냉동기, 히트펌프의 성능을 표시하는 무차원 수입니다.

$$ext{COP} = rac{$$
 증발기에서 흡수한 열량[kcal/h]}{압축기에서 방출한 열량[kcal/h]} = $rac{$ 냉동능력}{압축기동력} = $rac{h3-h1}{h4-h3}$

에너지 효율

효율(efficiency)은 에너지 변환 또는 에너지 전달과정이 어느 정도 달성 되었는지를 나타냅니다.

■ 효율(%) = (출력/입력)X100 = (발생한 에너지/공급한 에너지)X100

$$\mathbf{Q} = \mathbf{m} \mathbf{c} \Delta \mathbf{t} = \mathbf{m} \cdot \Delta \mathbf{i}$$

$$\mathbf{Q} = \mathbf{Q} \mathbf{s} \times \mathbf{u} \mathbf{g} \times \mathbf{c} \mathbf{s} + \mathbf{u} \mathbf{s} \times \mathbf{u} \mathbf{s} \mathbf{s}$$

연소효율
$$\eta_{combustion} = \frac{Q}{HV} = \frac{Q + Q}{Q + Q} = \frac{Q + Q}{Q + Q}$$
 연료의 발열량

※ 연료의 연소를 수반하는 장치의 효율은 연료의 발열량(heating value of the fuel)을 기준으로 함

보일러 효율
$$=$$
 $\frac{$ 증기발생량(발생증기엔탈피 $-$ 급수엔탈피) 시간당 연료소모량 \times 연료의 저위발열량

POWER, RT, BHP

일과 열은 에너지의 한 형태로 427kg·m=1kcal 의 관계가 있습니다.

동력(POWER): 단위 시간당 한 일(kg·m/sec), 일률

$$1PS = 75[\frac{kg \cdot m}{s}] = 75[kg \cdot m] \times \frac{1[kcal]}{427[kg \cdot m]} \times \frac{3600[s]}{1[h]} = 632[\frac{kcal}{h}]$$

$$1\text{HP} = 76[\frac{kg \cdot m}{s}] = 76[kg \cdot m] \times \frac{1[kcal]}{427[kg \cdot m]} \times \frac{3600[s]}{1[h]} = 641[\frac{kcal}{h}]$$

$$1kW = 102\left[\frac{kg \cdot m}{s}\right] = 102[kg \cdot m] \times \frac{1[kcal]}{427[kg \cdot m]} \times \frac{3600[s]}{1[h]} = 860\left[\frac{kcal}{h}\right]$$

냉동톤(RT : Refrigeration Ton)

0 °C 물 1 ton을 1일(24시간) 동안에 0 °C 얼음으로 만드는데 필요한 냉각능력

$$1RT = 1000[kg] \times 79.68 \left[\frac{kcal}{kg} \right] \times \frac{1day}{24h} = 3320 \left[\frac{kcal}{h} \right]$$
 물의 응고잠열: $79.68 \left[\frac{kcal}{kg} \right]$

물의 응고잠열: 79.68
$$\left| rac{kcal}{kg} \right|$$

동력 =
$$\frac{\mathrm{\dot{P}}(N) \times \mathrm{\dot{P}}(m)}{\mathrm{\dot{N}}(S)} = \frac{\mathrm{\dot{P}}(J)}{\mathrm{\dot{N}}(S)}$$

보일러 마력(BHP: Boiler Horse Power)

100℃의 물 15.65kg을 1시간에 같은 온도의 증기로 바꿀 수 있는 상당증발량 능력

$$1BHP = 15.65\left[\frac{kg}{h}\right] \times 539\left[\frac{kcal}{kg}\right] = 8435\left[\frac{kcal}{h}\right]$$
 물의 증발잠열 : 539 $\left[\frac{kcal}{kg}\right]$

물의 증발잠열 : 539
$$\frac{kcal}{kg}$$

엔탈피(Enthalpy)

동력 발생장치, 냉동장치를 해석할 때 상태량의 조합인 u + Pv를 자주 접하게 되며, 이 조합을 간단하고 편리하게 사용하기 위하여 새로운 상태량인 엔탈피(Enthalpy)로 정의됩니다.

■ 정지하고 있는 물질: u(내부에너지)

■ 유동하고 있는 물질 : h(엔탈피) = u + Pv

| 열역학 주요 관심 분야

- ① 물질+에너지가 가/감해졌을때 상태 변화량 예측
 - 냉방시 일사량, 열, 습기 유입에 대해 실내의 온도, 습도 변화량 예측

- ② 상태를 변화시키기 위한 물질+에너지 가감량 예측
 - 난방시 외부 열손실과 침기에 대해 실내를 쾌적한 열환경(일정 온도 및 습도) 상태로 유지하기 위한 물질+에너지 예측

냉동기 COP

냉동기 COP =
$$\frac{ \mbox{ 냉동기 냉동능력}[\frac{kcal}{h}]}{ \mbox{ 냉동기 소비전력}[kW] \times 860[\frac{kcal/h}{kW}]} = \frac{ \mbox{ 냉동기 소비전력}[kW] \times 860[\frac{kcal/h}{kW}]}{ \mbox{ 냉동기 냉동능력}[\frac{kcal}{h}]} = \frac{ \mbox{ 냉동기 냉동능력}}{ \mbox{ 냉동기 전력사용량}} = \frac{ \mbox{ 냉동기 냉동능력}}{ \mbox{ 냉동기 15분 전력사용량} \times 4 \times 860}$$

냉동기 냉동능력
$$\left[\frac{\mathrm{kcal}}{\mathrm{h}}\right]$$
 = 1시간 동안 흡수한 열량
$$= \left(\mathrm{냉} \leftarrow \mathrm{U} - \mathrm{CE} - \mathrm{U} \leftarrow \overset{}{\mathrm{z}} - \mathrm{EE}\right) \left[\mathrm{C}\right] \times \mathrm{U} \leftarrow \mathrm{H} \cdot \mathrm{G} \cdot \left[\frac{\mathrm{m}^3}{\mathrm{h}}\right] \times \mathrm{U} \leftarrow \mathrm{H} \cdot \mathrm{G} \cdot \left[\frac{\mathrm{ke}}{\mathrm{m}^3}\right] \times \mathrm{U} \leftarrow \mathrm{H} \cdot \mathrm{G} \cdot \left[\frac{\mathrm{ke}}{\mathrm{kg}^{\circ}}\right] \times \mathrm{U} \leftarrow \mathrm{U} \cdot \mathrm{G} \cdot \left[\frac{\mathrm{ke}}{\mathrm{kg}^{\circ}}\right] \times \mathrm{U} \leftarrow \mathrm{U} \cdot \mathrm{G} \cdot \left[\frac{\mathrm{ke}}{\mathrm{liter}}\right] \times \frac{60\mathrm{min}}{\mathrm{1h}} \times \frac{1\mathrm{kg}}{\mathrm{1liter}} \times \mathrm{U} \leftarrow \mathrm{U} \cdot \mathrm{G} \cdot \left[\frac{\mathrm{ke}}{\mathrm{kg}^{\circ}}\right] \times \mathrm{U} \cdot \mathrm{G} \cdot \mathrm{$$

보일러 효율

$$\eta_{\mathcal{B}} = \frac{G(h_2 - h_1)}{G_f \times H_f} \times 100[\%] = \frac{\text{증기량}\left[\frac{kg}{h}\right] \left(\text{발생증기의 엔탈피}\left[\frac{kJ}{h}\right] - \text{급수 엔탈피}\left[\frac{kJ}{h}\right]\right)}{\mathcal{G}_{\mathcal{B}} \mathcal{L} \mathcal{U} \mathcal{F}\left[\frac{N \, m^3}{h}\right] \times \mathcal{G}_{\mathcal{B}} \mathcal{Q} \, \mathcal{H} \mathcal{H} \mathcal{B} \mathcal{G} \mathcal{F}\left[\frac{kJ}{N \, m^3}\right]} \times 100[\%]$$

$$= \frac{\text{증기량}\left[\frac{kg}{h}\right]\left(\text{발생증기의 엔탈피}\left[\frac{kJ}{kg}\right] - \text{급수 온도} \times 4.2\left[\frac{kJ}{kg}\right]\right)}{\mathcal{G} \vec{a} \vec{\Delta} \, \mathcal{U} \vec{\mathcal{F}}\left[\frac{N\,m^3}{h}\right] \times 5000\left[\frac{kJ}{N\,m^3}\right]} \times 100[\%]$$

공조기 효율

공조기 냉방능력
$$\left[\frac{kcal}{h}\right] = \left(\frac{1}{a}\right)$$
 전 한 시 전 $\left[\frac{kcal}{kg}\right] - \frac{1}{a}$ 한 기엔탈피 $\left[\frac{kcal}{kg}\right] \times \frac{1}{a}$ 기 풍 $\left[\frac{m^3}{h}\right] \times \frac{1}{a}$ 지 성 시 전 $\left[\frac{kcal}{m^3}\right] = \frac{3}{a}$ 지 성 비 전 력 $\left[\frac{kcal}{h}\right] = \frac{3}{a}$ 전 기 보 가 전 력 $\left[\frac{kcal}{h}\right] = \frac{3}{a}$ 기 15분 전 력 사 용 $\left[\frac{kcal}{h}\right] = \frac{3}{a}$ 기 15분 전 력 사 용 $\left[\frac{kcal}{h}\right] = \frac{3}{a}$ 기 15분 전 역 사 용 $\left[\frac{kcal}{h}\right] = \frac{3}{a}$ 기 15분 전 역 사 용 $\left[\frac{kcal}{h}\right] \times \frac{1}{a}$ 이 기 15분 전 역 사 용 $\left[\frac{kcal}{h}\right] \times \frac{1}{a}$ 이 기 15분 전 역 사 용 $\left[\frac{kcal}{h}\right] \times \frac{1}{a}$ 이 기 15분 전 역 사 용 $\left[\frac{kcal}{h}\right] \times \frac{1}{a}$

열역학 상태량

상태량

상태량은 물질의 상태를 결정하는 관측 가능한 물질의 특성으로, 모든 열역학 상태량은 서로 연관되어 있으며, 2개의 상태량을 알면 다른 상태량은 열역학 관계식으로부터 유도할 수 있습니다.

상태량	영어	기호	비고
온도	temperature	Т	
압력	pressure	Р	단위면적당 힘
밀도	density	ρ	ρ=질량/체적
비체적	specific volume	v	v=체적/질량, v=1/ρ
비열	specific heat	C _v : constant volume C _p : constant pressure	단위질량을 온도 1도 올 리기 위하여 필요한 열량
내부에너지	internal energy	u	e(energy)=u+ke+pe
엔탈피	enthalpy	h	h=u+Pv
엔트로피	entropy	s	$(ds)_{reversible} = \delta q/T$
건도	quality	×	기체+액체 평형상태 x=(기체질량)/(전체질량) 0 ≤ x ≤ 1

상태량표

■ Table A-12 : Saturated refrigerant 134a(포화냉매134a-압력기준 냉매표)

TABLE	A-12											
Satural	ted refrig	erant-134a-	Pressure t	able								
		Specific volume, m³/kg		Internal energy; kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · K		
Press., P kPa	Sat. temp., T _{sat} °C		Sat. vapor, v _g	Sat. liquid, u,	Evap.,	Sat. vapor, u _g	Sat. liquid, h,	Evap.,	Sat. vapor, hg	Sat. liquid, s _r	Evap.,	Sat. vapor, s _g
60	-36.95	0.0007098	0.31121	3.798	205.32	209.12	3.841	223.95	227.79	0.01634	0.94807	0.96441
70	-33.87	0.0007144	0.26929	7.680	203.20	210.88	7.730	222.00	229.73	0.03267	0.92775	0.96042
80	-31.13	0.0007185	0.23753	11.15	201.30	212.46	11.21	220.25	231.46	0.04711	0.90999	0.95710
90	-28.65	0.0007223	0.21263	14.31	199.57	213.88	14.37	218.65	233.02	0.06008	0.89419	0.95427
100	-26.37	0.0007259	0.19254	17.21	197.98	215.19	17.28	217.16	234.44	0.07188	0.87995	0.95183

■ Table A-13 : Superheated refrigerant 134a(과열증기냉매134a)

	E A-13											
Super	rheated ref	rigerant-	1.34a									
T	V	u	h	s	V	u	h	s	V	u	h	5
-c	m³/kg	kJ/kg	kJ/kg	kJ/kg - K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · h
	P = 0.0	06 MPa (7	_{set} = -36.	95°C)	$P = 0.10 \text{ MPa} (T_{\text{sel}} = -26.37^{\circ}\text{C})$				$P = 0.14 \text{ MPa} (T_{\text{sel}} = -18.77^{\circ}\text{C})$			
Sat.	0.31121	209.12	227.79	0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16	0.9446
-20	0.33608	220.60	240.76	1.0174	0.19841	219.66	239.50	0.9721				
-10	0.35048	227.55	248.58	1.0477	0.20743	226.75	247.49	1.0030	0.14605	225.91	246.36	0.9724
0	0.36476	234.66	256.54	1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	1.0031
10	0.37893	241.92	264.66	1.1066	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93	1.0331
20	0.39302	249.35	272.94	1.1353	0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38	1.0624
30	0.40705	256.95	281.37	1.1636	0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97	1.0912
40	0.42102	264.71	289.97	1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70	1.1195
50	0.43495	272.64	298.74	1.2191	0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57	1.1474
60	0.44883	280.73	307.66	1.2463	0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59	1.1749
70	0.46269	288.99	316.75	1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	1.2020
80	0.47651	297.41	326.00	1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	1.2288
90	0.49032	306.00	335.42	1.3260	0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57	1.2553
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814

performance_thermodynamic_properties.ipynb

PYroMat 설치

```
[1] !pip install pyromat
```

라이브러리 임포트

```
import numpy as np
import pyromat as pm
```

상태량 구하기

```
[3] N2 = pm.get('ig.N2')
    02 = pm.get('ig.02')
    CO2 = pm.get('ig.CO2')
```

```
N2.h()
    array([1.62779576e-07])
[6] N2.s()
    array([6.83596655])
[7] 02 = pm.get('ig.02')
    T = np.linspace(300.,2000.,101)
    h = 02.h(T)
    h.shape
    (101,)
[8] N2.h(T=496.5, p=3.)
```

```
array([207.43528961])
```

단위 설정

```
[12] N2.s(T=700.,p=50.)
     array([6.58052814])
[13] pm.config
[14] pm.config['unit_temperature'] = 'F'
     N2.s(T=800.33,p=50.)*1.8 # 800.33F == 700K
     array([6.58052814])
```

Array 사용

```
[15] import numpy as np
     T = np.arange(300., 1000., 100.)
     N2.h(T)
     array([129.15974148, 187.49542387, 246.24154332, 305.50230768,
            365.37227009, 425.93101813, 487.23786287])
[16] T = np.array([500., 550., 600.])
     p = 40.5
     N2.s(T,p)
```

```
[17] import matplotlib.pyplot as plt

T = np.linspace(300.,5000.,201)
air = pm.get('ig.air')
plt.plot(T, air.cp(T))
plt.show()
```


냉동기 COP 분석

냉동사이클

물체의 상태(고체, 기체, 액체)는 열의 출입에 의하여 그 상태가 변화되며, 냉동기는 그 내부에서 상태가 변화하면서 주위의 열을 흡수하는 냉매에 의하여 냉각작용을 합니다.

performance_refrigeration_cycle.ipynb

```
[1]
     !pip install pyromat
    # Consider an ideal refrigeration cycle that uses R134a as the working fluid.
     # The temperature of the refrigerant in the evaporator is -20C, and in the condenser it is 40C.
     # The refrigerant is circulated at the rate of 0.03 kg/s.
     # Determine the COP and the capacity of the plant in rate of refrigeration.
     import pyromat as pm
     pm.config["unit_pressure"] = "kPa"
     pm.config["def p"] = 100
[3]
    mp_R134a = pm.get("mp.C2H2F4")
    m dot = 0.03 \#kg/s \leftarrow given
    T1 = -20 + 273.15 \# K < --given
    T3 = 40 + 273.15 \# K < --given
    h1 = mp_R134a.hs(T=T1)[1]
    s1 = mp_R134a.ss(T=T1)[1]
```

 $p_g = mp_R134a.ps(T=T3)$

Saturated Saturated vapor

m_dot : 질량유량(mass flow) hs: enthalpy of saturated vapor ss: entropy of saturated vapor

```
[4] print(f"Enthalpy after evaporator: {round(float(h1),1)} kJ/kg")
print(f"Entropy after evaporator: {round(float(s1),4)} kJ/kg")
print(f"Vapour pressure: {round(float(p_g),1)} kPa")
```

Enthalpy after evaporator: 386.6 kJ/kg Entropy after evaporator: 1.7413 kJ/kg

Vapour pressure: 1017.2 kPa

 $T_-h(h,p)$: temperature from enthalpy $T_-d(d,p)$: temperature from density and pressure $T_-s(s,p)$: temperature from entropy and pressure $p_-s(s,T)$: pressure from entropy and temperature $p_-d(d,T)$: pressure from density and tempera

```
[5] s2 = s1
    T2 = mp_R134a.T_s(s=s2, p=p_g)
    h2 = mp_R134a.h(T=T2, p=p_g)
    print(f"Enthalpy after compressor: {round(float(h2),1)} kJ/kg")
    print(f"Temperature after compressor: {round(float(T2),1)} K")
    w_c = h2 - h1
    print(f"Work done by compressor: {round(float(w_c),1)} kJ/kg")
```

Saturated liquid Q_H Q_H W_{in} Saturated vapor

Enthalpy after compressor: 429.0 kJ/kg Temperature after compressor: 321.8 K Work done by compressor: 42.5 kJ/kg

beta = q L/w c

```
[6] s2 = s1
    T2 = mp_R134a.T_s(s=s2, p=p_g)
    h2 = mp_R134a.h(T=T2, p=p_g)
    print(f"Enthalpy after compressor: {round(float(h2),1)} kJ/kg")
    print(f"Temperature after compressor: {round(float(T2),1)} K")
    w_c = h2-h1
    print(f"Work done by compressor: {round(float(w_c),1)} kJ/kg")
```



```
[7] h3 = mp_R134a.hs(p=p_g)[0] Work done by constant s3 = mp_R134a.ss(p=p_g)[0] Heat added by the Coefficient of period s3 = h4 = h3 Refrigeration capacity s3 = h4 = h3 Refrigeration s4 = h4 = h4 Print(T'Heat added by the evaporator: {round(float(q_L),1)} kJ/kg")
```

print(f"Coefficient of performance: {round(float(beta),3)}")

print(f"Refrigeration capacity is: {q_L*m_dot} kW")

Enthalpy after compressor: 429.0 kJ/kg Temperature after compressor: 321.8 K Work done by compressor: 42.5 kJ/kg

Heat added by the evaporator: 130.1 kJ/kg Coefficient of performance: 3.063 Refrigeration capacity is: [3.90431487] kW

23

```
[8] # The system can also be used as a heat pump,
# in which case it is desired to maintain a
# space at a temperature T_3 above that of the ambient T_1.

q_H = h2 -h3
print(f"Heat ejected by the condenser: {round(float(q_H),1)} kJ/kg")

beta = q_H/w_c
```

print(f"Coefficient of performance: {round(float(beta),3)}")

Heat ejected by the condenser: 172.6 kJ/kg

Coefficient of performance: 4.063

열효율분석

랭킨사이클

열을 일로 변환하는 사이클이며 물의 매개로 상변화를 통한 사이클로 증기사이클이라고도 합니다.

performance_rankine_cycle.ipynb

[1] !pip install pyromat

```
# Determine the efficiency of a Rankine cycle using steam
# as the working fluid in which the condenser pressure is 10 kPa.
# The boiler pressure is 2 MPa.
# The steam leaves the boiler as saturated vapor.
# Initiate PyroMat and configure its units:
import pyromat as pm
pm.config["unit_pressure"] = "kPa"
pm.config["def_p"] = 100
```

```
# To solve this problem we consider a control surface around
# the pump, the boiler, the turbine, and the condenser.
# First, consider the pump:
# saturated liquid, thus x = 0
p1 = 10
T1 = mp_water.Ts(p=p1)[0]
s1 = mp_water.ss(p=p1)[0]
p2 = 2000
s2= s1
v = 1/mp_water.ds(p=p1)[0]
w_p = v*(p2-p1)
print(f"Work required by pump: {round(float(w_p),1)} kJ/kg")
h1 = mp_water.hs(p=p1)[0]
h2 = h1+wp
T2 = mp_water.T_h(p=p2,h=h2)
print(f"h2 = {round(float(h2),1)} kJ/kg")
```


Work required by pump: 2.0 kJ/kg h2 = 193.8 kJ/kg

```
[5]
    # Next, lets consider the boiler:
    # steam leaves the boiler as saturated vapor, thus x = 1
    p3 = p2
    T3 = mp\_water.Ts(p=p3)
    h3 = mp_water.hs(p=p3)[1]
    s3dash = mp_water.ss(p=p3)[0]
     T3dash = T3
    s3 = mp_water.ss(p=p3)[1]
    q_H = h3-h2
    print(f"Heat input by boiler: {round(float(q_H),1)} kJ/kg")
```


Heat input by boiler: 2604.5 kJ/kg

```
# Now. we consider the turbine:
[6]
    p4 = p1
    s4 = s3
    T4, x = mp_{water.T_s(s=s4,p=p4, quality=True)}
    h4 = mp_water.h(p=p4,x=x)
    w_t = h3-h4
    print(f"Quality of low pressure steam: {round(float(x),4)}")
    print(f"Work generated by turbine: {round(float(w_t),1)} kJ/kg")
    Quality of low pressure steam: 0.7587
    Work generated by turbine: 791.7 kJ/kg
    # Finally, we consider the condenser:
    a L = h4-h1
    print(f"Heat rejected by the condenser: {round(float(q_L),1)} kJ/kg")
    Heat rejected by the condenser: 1814.8 kJ/kg
```



```
# We can now calculate the thermal efficiency with $$\text{#eta_{th}=\text{#frac{w_{net}}{q_H}$$}
eta_th = (w_t-w_p)/q_H*100
print(f"Thermal efficiency is: {round(float(eta_th),1)}%")
```

Thermal efficiency is: 30.3%

THANK YOU

kgpark88@gmail.com