有限元大作业说明报告——基于 matlab 的桁架结构有限元计算

一、问题描述

起重机的垂直和水平部分由铝制成(杨氏模量 E=70GPa, 横截面为 2cm²)。对角桁架构件由钢制成(杨氏模量 E=210GPa, 横截面为 3 cm²)。

如图,结构承受荷载 P=6000 N。假设两个支撑节点固定(即 x 和 y 位移为 0)。

二、理论说明

1. 定义节点和单元:根据实际问题的几何形状和拓扑关系,定义桁架结构的节点和单元。节点是桁架结构的连接点,单元是连接节点的构件。

下图为对单元和节点的具体编号,蓝色字符表示对节点的编号,红色字符代表对单元的编号,顺序为"从左到右,从上到下"。

为了方便后续程序的读取调用,需要用将上述信息录入到 Excel 表格中,并且还需要包含一些关于单元和节点的其他信息,如表 1 中展示的是关于单元的信息,共计 47 个单元,其中有每个单元的起始与终端的节点编号、单元的刚度和单元的截面面积;表 2 中是关于节点的信息,共计 25 个节点,其中每个节点的横纵坐标、荷载和固定情况(表中'1'表示固定,'0'表示自由)

表 1 单元信息

1	1	2	7.00E+10	2.00E-04
2	1	3	7.00E+10	2.00E-04
3	1	4	2.10E+11	3.00E-04
4	2	4	7.00E+10	2.00E-04
5	3	4	7.00E+10	2.00E-04
6	3	5	7.00E+10	2.00E-04
7	3	6	2.10E+11	3.00E-04
8	4	6	7.00E+10	2.00E-04
9	5	6	7.00E+10	2.00E-04
10	5	7	7.00E+10	2.00E-04
11	5	8	2.10E+11	3.00E-04
12	6	8	7.00E+10	2.00E-04
13	7	8	7.00E+10	2.00E-04
14	7	9	7.00E+10	2.00E-04
15	7	10	2.10E+11	3.00E-04
16	8	10	7.00E+10	2.00E-04
17	9	10	7.00E+10	2.00E-04
18	9	11	7.00E+10	2.00E-04
19	9	12	2.10E+11	3.00E-04
20	10	12	7.00E+10	2.00E-04
21	11	12	7.00E+10	2.00E-04
22	11	13	7.00E+10	2.00E-04
23	11	14	2.10E+11	3.00E-04
24	12	14	7.00E+10	2.00E-04
25	13	14	7.00E+10	2.00E-04
26	12	15	7.00E+10	2.00E-04
27	12	16	2.10E+11	3.00E-04
28	14	16	7.00E+10	2.00E-04
29	15	16	7.00E+10	2.00E-04
30	15	17	7.00E+10	2.00E-04
31	15	18	2.10E+11	3.00E-04
32	16	18	7.00E+10	2.00E-04
33	17	18	7.00E+10	2.00E-04
34	17	19	7.00E+10	2.00E-04
				3.00E-04
35	17	20	2.10E+11	
36	18	20	7.00E+10	2.00E-04
37	19	20	7.00E+10	2.00E-04
38	19	21	7.00E+10	2.00E-04
39	19	22	2.10E+11	3.00E-04
40	20	22	7.00E+10	2.00E-04
41	21	22	7.00E+10	2.00E-04
42	21	23	7.00E+10	2.00E-04
43	21	24	2.10E+11	3.00E-04
44	22	24	7.00E+10	2.00E-04
45	23	24	7.00E+10	2.00E-04
46	23	25	2.10E+11	3.00E-04
47	24	25	7.00E+10	2.00E-04
47	۷4	۷	1.UUL 1 IU	2.00L-04

表 2 节点信息

1	0	0	0	0	1	1
2	1	0	0	0	1	1
3	0	2	0	0	0	0
4	1	2	0	0	0	0
5	0	4	0	0	0	0
6	1	4	0	0	0	0
7	0	6	0	0	0	0
8	1	6	0	0	0	0
9	0	8	0	0	0	0
10	1	8	0	0	0	0
11	0	10	0	0	0	0
12	1	10	0	0	0	0
13	0	11	0	0	0	0
14	1	11	0	0	0	0
15	2	10	0	0	0	0
16	2	11	0	0	0	0
17	3	10	0	0	0	0
18	3	11	0	0	0	0
19	4	10	0	0	0	0
20	4	11	0	0	0	0
21	5	10	0	0	0	0
22	5	11	0	0	0	0
23	6	10	0	0	0	0
24	6	11	0	0	0	0
25	7	11	0	-6000	0	0

- 2. 定义材料属性和截面属性:根据实际问题的材料和截面要求,定义桁架结构的材料属性和截面属性。材料属性包括弹性模量和泊松比等,截面属性包括截面面积和惯性矩等。
- 3. 组装刚度矩阵:根据节点和单元的几何形状和材料属性,计算每个单元的局部刚度矩阵,然后根据单元和节点的连接关系,将局部刚度矩阵组装成整体刚度矩阵。

根据基础有限元知识,需要求出每一个单元对应的刚度矩阵,其计算公式为:

$$[K^{(e)}] = k_e \begin{bmatrix} c^2 & sc & -c^2 & -sc \\ sc & s^2 & -sc & -s^2 \\ -c^2 & -sc & c^2 & sc \\ -sc & -s^2 & sc & s^2 \end{bmatrix}$$

再将每个单元的刚度矩阵装配到一个总的刚度矩阵之中,其规则为根据每 个单元的起始和终端编号,根据公式,找到装配矩阵的对应位置,将其填入其 中。如若存在单元矩阵重叠的情况,则让其相加。

$$\left[L^{(e)}\right] = \begin{bmatrix} 2i & -1 & 2i & 2j-1 & 2j \end{bmatrix}$$

- 4. 施加边界条件:根据实际问题的边界条件,将边界节点的位移固定为零,或施加位移或力的约束条件。
- 5. 求解位移和反力:使用求解线性方程组的方法,求解位移和反力。可以使用 MATLAB 中的线性方程组求解函数(如'\''运算符)来计算。
- 6. 计算应力和应变: 根据位移和节点的几何形状, 计算节点上的应变, 然后根据材料属性, 计算节点上的应力。

三、结果对比

节点编号	Matlab	结果	Ansys 结:	果
	x 位移(m)	y 位移(m)	x 位移(m)	y 位移(m)
1	0.000000	0.000000	0.000000	0.000000
2	0.000000	0.000000	0.000000	0.000000
3	0.012000	0.005143	0.012000	0.005143
4	0.012000	-0.006000	0.012000	-0.006000
5	0.046286	0.010286	0.046286	0.010286
6	0.046286	-0.012000	0.046286	-0.012000
7	0.102857	0.015429	0.102860	0.015429
8	0.102857	-0.018000	0.102860	-0.018000
9	0.181714	0.020571	0.181710	0.020571
10	0.181714	-0.024000	0.181710	-0.024000
11	0.285429	0.025714	0.285430	0.025714
12	0.282857	-0.030000	0.282860	-0.030000
13	0.345331	0.025714	0.345330	0.025714
14	0.345331	-0.032571	0.345330	-0.032571
15	0.280714	-0.095743	0.280710	-0.095743
16	0.347902	-0.095314	0.347900	-0.095314

17	0.279000	-0.165771	0.279000	-0.165770
18	0.350045	-0.165343	0.350040	-0.165340
19	0.277714	-0.239228	0.277710	-0.239230
20	0.351759	-0.238800	0.351760	-0.238800
21	0.276857	-0.315257	0.276860	-0.315260
22	0.353045	-0.314828	0.353040	-0.314830
23	0.276429	-0.393000	0.276430	-0.393000
24	0.353902	-0.392571	0.353900	-0.392570
25	0.354331	-0.471171	0.354330	0.000000

通过上述表格对比不难看出,对同一问题不同软件的求解,得到的结果几乎一致,上述表格是经过保留 6 位小数的结果,得到的原数据其实有些差别,比如对于 9 号节点的 x 方向位移,Ansys 的结果是 0.181710,Matlab 结果是 0.181714,这是由于软件内部的舍入误差造成的,如果调整两者的舍入位数,可以得到完全一致的结果。得到节点位移之后,带入全部的装配矩阵,可以求解固定节点的支反力,这个结果也可以通过理论力学的知识求得,分别对 1、2 节点取矩,并且列出水平和竖直平衡方程,简单计算可以得到结果。

应力应变结果

单元编号	Matlab 结果		Ansy	/s 结果
	应力(Pa)	应变	应力(Pa)	应变
1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
2	1.8000E+08	2.5714E-03	1.8000E+08	2.5714E-03
3	8.9186E-06	4.2470E-17	4.7631E-05	2.2682E-16
4	-2.1000E+08	-3.0000E-03	-2.1000E+08	-3.0000E-03
5	-5.9501E-06	-8.5001E-17	-3.1815E-05	-4.5450E-16
6	1.8000E+08	2.5714E-03	1.8000E+08	2.5714E-03
7	9.1233E-06	4.3444E-17	4.7722E-05	2.2725E-16
8	-2.1000E+08	-3.0000E-03	-2.1000E+08	-3.0000E-03
9	-6.3144E-06	-9.0206E-17	-3.2058E-05	-4.5797E-16
10	1.8000E+08	2.5714E-03	1.8000E+08	2.5714E-03

11	1.0101E-05	4.8099E-17	4.7176E-05	2.2465E-16
12	-2.1000E+08	-3.0000E-03	-2.1000E+08	-3.0000E-03
13	-6.8001E-06	-9.7145E-17	-3.0115E-05	-4.3021E-16
14	1.8000E+08	2.5714E-03	1.8000E+08	2.5714E-03
15	1.1730E-05	5.5857E-17	4.8815E-05	2.3245E-16
16	-2.1000E+08	-3.0000E-03	-2.1000E+08	-3.0000E-03
17	-7.7716E-06	-1.1102E-16	-2.9143E-05	-4.1633E-16
18	1.8000E+08	2.5714E-03	1.8000E+08	2.5714E-03
19	1.3033E-05	6.2063E-17	4.5172E-05	2.1511E-16
20	-2.1000E+08	-3.0000E-03	-2.1000E+08	-3.0000E-03
21	-1.8000E+08	-2.5714E-03	-1.8000E+08	-2.5714E-03
22	1.4572E-06	2.0817E-17	0.0000E+00	0.0000E+00
23	1.6971E+08	8.0812E-04	1.6971E+08	8.0812E-04
24	-1.8000E+08	-2.5714E-03	-1.8000E+08	-2.5714E-03
25	3.8858E-06	5.5511E-17	0.0000E+00	0.0000E+00
26	-1.5000E+08	-2.1429E-03	-1.5000E+08	-2.1429E-03
27	-2.8284E+07	-1.3469E-04	-2.8284E+07	-1.3469E-04
28	1.8000E+08	2.5714E-03	1.8000E+08	2.5714E-03
29	3.0000E+07	4.2857E-04	3.0000E+07	4.2857E-04
30	-1.2000E+08	-1.7143E-03	-1.2000E+08	-1.7143E-03
31	-2.8284E+07	-1.3469E-04	-2.8284E+07	-1.3469E-04
32	1.5000E+08	2.1429E-03	1.5000E+08	2.1429E-03
33	3.0000E+07	4.2857E-04	3.0000E+07	4.2857E-04
34	-9.0000E+07	-1.2857E-03	-9.0000E+07	-1.2857E-03
35	-2.8284E+07	-1.3469E-04	-2.8284E+07	-1.3469E-04
36	1.2000E+08	1.7143E-03	1.2000E+08	1.7143E-03
37	3.0000E+07	4.2857E-04	3.0000E+07	4.2857E-04
38	-6.0000E+07	-8.5714E-04	-6.0000E+07	-8.5714E-04
39	-2.8284E+07	-1.3469E-04	-2.8284E+07	-1.3469E-04
40	9.0000E+07	1.2857E-03	9.0000E+07	1.2857E-03

41	3.0000E+07	4.2857E-04	3.0000E+07	4.2857E-04
42	-3.0000E+07	-4.2857E-04	-3.0000E+07	-4.2857E-04
43	-2.8284E+07	-1.3469E-04	-2.8284E+07	-1.3469E-04
44	6.0000E+07	8.5714E-04	6.0000E+07	8.5714E-04
45	3.0000E+07	4.2857E-04	3.0000E+07	4.2857E-04
46	-2.8284E+07	-1.3469E-04	-2.8284E+07	-1.3469E-04
47	3.0000E+07	4.2857E-04	3.0000E+07	4.2857E-04

下面分别是 Matlab 位移偏离结果与 Ansys 的仿真结果。

