Learning Parameters of Undirected Models

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Difficulties due to Global Normalization
- Likelihood Function
- Maximum Likelihood Parameter Estimation
 - Simple and Conjugate Gradient Ascent
- Conditionally Trained Models
- Parameter Learning with Missing Data
 - Gradient Ascent vs. EM
- Alternative Formulation of Max Likelihood
 - Maximum Entropy subject to Constraints
- Parameter Priors and Regularization

Local vs Global Normalization

BN: Local normalization within each CPD

$$P(X) = \prod_{i=1}^{N} P(X_i \mid pa(X_i))$$

• MN: Global normalization (partition function)

$$P_{\Phi}(X) = \frac{1}{Z} \prod_{i=1}^{m} \phi_i(D_i) \text{ and } Z = \sum_{X_1,..X_n} \prod_{i=1}^{m} \phi_i(D_i)$$

- Global factor Z couples all parameters preventing decomposition
- Significant computational ramifications
 - M.L. parameter estimation has no closed-form soln.
 - Need iterative methods

Issues in Parameter Estimation

- Simple ML parameter estimation (even with complete data) cannot be solved in closed form
- Need iterative methods such as gradient ascent
- Good news:
 - Likelihood function is concave
 - Methods converge with global optimum
- Bad news:
 - Each step in iterative algorithm requires inference
 - Simple parameter estimation expensive/intractable
 - Bayesian estimation is practically infeasible

Discriminative Training

- Common use of MNs is in settings such as image segmentation where we have a particular inference task in mind
- Train the network discriminatively to get good performance for our particular inference task

Likelihood Function

- Basis for all discussion of learning
- How likelihood function can be optimized to find maximum likelihood parameter estimates
- Begin with form of likelihood function for Markov networks, its properties and their computational implications
- Existence of a global partition function couples the different parameters in a Markov network
 - greatly complicating the estimation problem

Example of very simple MN

Markov network A—B—C

- $\phi_1[A, B]$
- Parameterized by potentials $\phi_1(A,B)$, $\phi_2(B,C)$:

$$\phi_2[B,C]$$
 $b^0 \quad c^0 \quad 100$
 $b^0 \quad c^1 \quad 1$
 $b^1 \quad c^0 \quad 1$
 $b^1 \quad c^1 \quad 100$

- Recall Gibbs:

$$P(a,b,c)=(1/Z)$$
 $\phi_1(a,b)\phi_2(b,c)$ where $Z=\sum \phi_1(a,b)\phi_2(b,c)$

$$Z = \sum_{a,b,c} \phi_1(a,b) \phi_2(b,c)$$

- Log-likelihood of instance (a,b,c) is

$$\ln P(a,b,c) = \ln \phi_1(a,b) + \ln \phi_2(b,c) - \ln Z$$

Log-likelihood of data set D with M instances:

$$\ell(\theta:D) = \sum_{m=1}^{M} \left(\ln \phi_1(a[m], b[m]) + \ln \phi_2(b[m], c[m]) - \ln Z(\theta) \right)$$

$$= \sum_{a,b} M[a,b] \ln \phi_1(a,b) + \sum_{b,c} M[b,c] \ln \phi_2(b,c) - M \ln Z(\theta)$$

Parameter
$$oldsymbol{ heta}$$
 consists of all values of factors $oldsymbol{\phi}_{1}$ and $oldsymbol{\phi}_{2}$

Summing over instances $\{a[m],b[m],c[m]\}, m=1,...M$ Then summing over different values of $a \varepsilon \{a^0, a^1\}$ and $b \varepsilon \{b^0, b^1\}$

$$M[a,b]$$
= no. with value (a,b)

- This likelihood has three terms which we analyze

Coupled Likelihood of Simple MN

- Simple Markov network A-B-C
- Log-likelihood of data set \mathcal{D} with M instances:

$$\ell(\theta:D) = \sum_{m=1}^{M} \left(\ln \phi_1(a[m], b[m]) + \ln \phi_2(b[m], c[m]) - \ln Z(\theta) \right)$$

$$= \sum_{a,b} M[a,b] \ln \phi_1(a,b) + \sum_{b,c} M[b,c] \ln \phi_2(b,c) - M \ln Z(\theta)$$

$$M[a,b] = \text{no. with value } (a,b)$$

- This likelihood consists of three terms.
 - First term involves only ϕ_1
 - Second only ϕ_2 . But third involves

$$\ln Z(\theta) = \ln \left[\sum_{a,b,c} \phi_1(a,b) \phi_2(b,c) \right]$$

- Thus $\ln Z(\theta)$ is a function of both ϕ_1 and ϕ_2 . It couples the two potentials in the likelihood function
 - When we change one potential ϕ_1 , $Z(\theta)$ changes, possibly changing the value of ϕ_2 that maximizes $-\ln Z(\theta)$

Log-Likelihood Surface for A-B-C

- Two factors $\phi_1(A,B)$, $\phi_2(B,C)$
 - With binary variables each factor has four values
 - Thus, total of 8 parameters

$$\phi_2[B, C]$$

$$b^0 \quad c^0 \quad 100$$

$$b^0 \quad c^1 \quad 1$$

$$b^1 \quad c^0 \quad 1$$

$$b^1 \quad c^1 \quad 100$$

• We need parameters (values of ϕ_i) that maximize

$$\ell(\theta:D) = \sum_{a,b} M[a,b] \ln \phi_1(a,b) + \sum_{b,c} M[b,c] \ln \phi_2(b,c) - M \ln Z(\theta)$$

- Ex: Log-likelihood surface
 - X-axis: $\phi_1(a^1,b^1)$
 - Y-axis: $\phi_2(b^0,c^1)$
 - Other parameters set to 1
 - Data set has M=100 with $M[a^1,b^1]=40,\ M[b^0,c^1]=40$

- Coupling problem:
 - When ϕ_1 changes, ϕ_2 that maximizes $-\ln Z(\theta)$ also changes

Equivalent Bayesian Network

- Log-likelihood A-B-C wrt two factors $\phi_1(A,B)$, $\phi_2(B,C)$
 - With binary variables we would have 8 parameters
- In this case, parameter coupling is avoidable
 - Since A B C has an equivalent BN:

$$A \rightarrow B \rightarrow C$$

- We can estimate parameters using

$$\boldsymbol{\phi}_1(A,B) = P(A)P(B|A)$$

 $\boldsymbol{\phi}_2(B,C) = P(C|B)$

- In general, cannot convert learned BN parameters into equivalent MN
 - Optimal likelihood achievable by the two representations is not the same

Log-linear form for MN

- Instead of Gibbs, use log-linear framework
 - Joint distribution of n variables $X_1,...X_n$
 - -k features $\mathcal{F}=\{\ f_i(D_i)\ \}_{i=1,...k}$ k depends on no. of values D_i takes
 - where D_i is a sub-graph and f_i maps D_i to \mathcal{R}

$$P(X_1,..X_n;\theta) = \frac{1}{Z(\theta)} \exp\left\{\sum_{i=1}^k \theta_i f_i(D_i)\right\}$$

- Parameters θ_i are weights we put on features
- If we have a sample ξ then its features are $f_i(\xi(D_i))$ which has the shorthand $f_i(\xi)$.
- Representation is general
 - can capture Markov networks with global structure and local structure

Ex: Diamond network & binary features f

$$P(X_1,..X_n;\theta) = \frac{1}{Z(\theta)} \exp\left\{\sum_{i=1}^k \theta_i f_i(D_i)\right\}$$

- Variables: A-B-C-D-
- A feature for every entry in every table
 - $f_i(D_i)$ are sixteen indicator functions defined over clusters, AB,BC,CD,DA

$$f_{a^0b^0}(A,B) = I\left\{A = a^0\right\}I\left\{B = b^0\right\}$$

$$f_{a0,b0} = 1 \text{ if } a = a^0, b = b^0$$

$$0 \text{ otherwise, etc.}$$

With this representation

$$|\theta_{a^0b^0}| = \ln \phi_1(a^0,b^0)$$

Parameters θ are potentials which are weights put on features

Log Likelihood using log-linear form of MN

With log-linear form for probability distribution:

$$P(X_1,..X_n;\theta) = \frac{1}{Z(\theta)} \exp\left\{\sum_{i=1}^k \theta_i f_i(D_i)\right\} \qquad \theta = \{\theta_1,...\theta_k\} \text{ are table entries } f_i \text{ are features over instances of } D_i$$

- Let ${\mathcal D}$ be a data set of M samples ξ [m] $_{m=1,..M}$
- Log-likelihood (product of indep probabilities)
 - $-\log$ gets rid of exp, converts product to sum:

$$\ell(\theta:D) = \sum_{i} \theta_{i} \left(\sum_{m} f_{i} (\xi[m]) \right) - M \ln Z(\theta)$$

Sufficient statistics (likelihood depends only on this)

$$\frac{1}{M}\ell(\theta:D) = \sum_{i} \theta_{i} \left(E_{D} \left[f_{i}(d_{i}) \right] \right) - \ln Z(\theta)$$

 $E_{\mathcal{D}}[f_i(d_i)]$ is empirical expectation: average in the data set

Properties of Log-Likelihood

Log-likelihood is a sum of two functions

$$\ell(\theta:D) = \sum_{i} \theta_{i} \left(\sum_{m} f_{i} \left(\xi[m] \right) - M \ln Z(\theta) \right)$$
First Term Second Term

- First term is linear in the parameters $\, heta$
 - Increasing parameters increases this term
 - But likelihood has upper-bound of probability 1
- The Second term $\ln Z(\theta)$ balances first term
 - Partition function is defined as $\left| \ln Z(\theta) = \ln \sum \exp \left\{ \sum \theta_i f_i(\xi) \right\} \right|$
 - It is convex as seen next
 - » Its negative is concave

- Sum of linear fn. and concave is concave, So
 - There are no local optima
 - Can use gradient ascent

Proof that $\ln Z(\theta)$ is Convex

A function $f(\vec{x})$ is convex if for every $0 \le \alpha \le 1$

$$f(\alpha \vec{x} + (1 - \alpha)\vec{y}) \le \alpha f(\vec{x}) + (1 - \alpha)f(\vec{y})$$

- In other words, function is bowl-like
 - –Every interpolation between the images of two points is larger than the image of their interpolation
- One way to show that a Function is convex
 - —is to show that its Hessian (matrix of the function's second derivatives) is positive-semi-definite
 - Computing the derivatives of $\ln Z(\theta)$ is discussed next

Derivatives of $\ln Z(\theta)$

• Proposition: Let \mathcal{F} be a set of features. Then

$$\frac{\partial}{\partial \theta_{i}} \ln Z(\theta) = E_{\theta}[f_{i}]$$

$$\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \ln Z(\theta) = Cov_{\theta}[f_{i}; f_{j}]$$

where $E_{\theta}[f_i]$ is shorthand for $E_{P(\chi,\theta)}[f_i]$

Note: Expected value is defined as weighted average. For a Bernoulli variable $x \in \{0,1\}$ with P(1)=p, the distribution is $\mathrm{Bern}(x|p)=p^x(1-p)^{1-x}$ and the expected value is p

• Proof: Since $\ln Z(\theta) = \ln \sum_{\xi} \exp \left\{ \sum_{i} \theta_{i} f_{i}(\xi) \right\}$

Partial derivatives wrt θ_i and θ_j

$$\frac{\partial}{\partial \theta_{i}} \ln Z(\theta) = \frac{1}{Z(\theta)} \sum_{\xi} \frac{\partial}{\partial \theta_{i}} \exp \left\{ \sum_{j} \theta_{j} f_{j}(\xi) \right\} = \frac{1}{Z(\theta)} \sum_{\xi} f_{i}(\xi) \exp \left\{ \sum_{j} \theta_{j} f_{j}(\xi) \right\} = E_{\theta}[f_{i}]$$

$$\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \ln Z(\theta) = \frac{\partial}{\partial \theta_{j}} \left[\frac{1}{Z(\theta)} \sum_{\xi} \frac{\partial}{\partial \theta_{i}} \exp \left\{ \sum_{k} \theta_{k} f_{k}(\xi) \right\} \right] = Cov_{\theta}[f_{i}; f_{j}]$$

- Since covariance matrix of features is positive semi-definite, we have -ln $Z(\theta)$ is a concave function of θ
- Corollary: log-likelihood function is concave

Non-unique Solution

- Since $\ln Z(\theta)$ is convex, $-\ln Z(\theta)$ is concave
- Implies that log-likelihood is unimodal
 - Has no local optima
- However does not imply uniqueness of global optimum
- Multiple parameterizations can result in same distribution
 - A feature for every entry in the table is always redundant, e.g.,

$$f_{a0,b0} = 1$$
 - $f_{a0,b1}$ - $f_{a1,b0}$ - $f_{a1,b1}$

A continuum of parameterizations

Maximum Likelihood Parameter Estimation

- Task: Estimate parameters of a MN with a fixed structure given a fully observable data set \mathcal{D}
- Simplest variant of the problem is maximum likelihood parameter estimation
- Log-likelihood with features $\mathcal{F}=\{f_i, i=1,...k\}$ is

$$\ell(\theta:D) = \sum_{i=1}^{\infty} \theta_i \left(\sum_{m} f_i \left(\xi[m] \right) - M \ln Z(\theta) \right)$$

- Although log-likelihood function
 - is concave, no analytical form for its maximum
 - Can use iterative methods, e.g. gradient ascent

Gradient of Log-likelihood

• Log-likelihood:
$$\left| \ell(\theta : D) = \sum_{i=1}^{n} \theta_i \left(\sum_{m} f_i(\xi[m]) \right) - M \ln Z(\theta) \right|$$

Average log-likelihood:
$$\frac{1}{M}\ell(\theta:D) = \sum_{i} \theta_{i} \left(E_{D}[f_{i}(d_{i})] \right) - \ln Z(\theta)$$

Dividing by no. of samples M

• We have seen that gradient of second term $\ln Z(\theta)$ is

$$\boxed{\frac{\partial}{\partial \theta_{i}} \ln Z(\theta) = \frac{1}{Z(\theta)} \sum_{\xi} \frac{\partial}{\partial \theta_{i}} \exp \left\{ \sum_{j} \theta_{j} f_{j}(\xi) \right\} = \frac{1}{Z(\theta)} \sum_{\xi} f_{i}(\xi) \exp \left\{ \sum_{j} \theta_{j} f_{j}(\xi) \right\} = E_{\theta}[f_{i}]}$$

We can compute gradient of average log-likelihood as

$$\frac{\partial}{\partial \theta_i} \frac{1}{M} \ell(\theta : D) = E_D[f_i(\chi)] - E_{\theta}[f_i]$$
 First term is average value from discovering the expected value from the expected value fro

First term is average value of f_i in expected value from distribution

- Provides a precise characterization of m.l. parameters θ
- Theorem: Let \mathcal{F} be a feature set. Then θ is a m.l. assignment if and only if $|E_D[f_i(\chi)] = E_{\hat{\theta}}[f_i]$ for all i
 - i.e., expected value of each feature relative to P_{θ} matches its empirical expectation in \mathcal{D}

Need for Iterative Method

Although log-likelihood function

$$\ell(\theta:D) = \sum_{i} \theta_{i} \left(\sum_{m} f_{i} (\xi[m]) - M \ln Z(\theta) \right)$$

- is concave, there is no analytical form for the maximum
- Since no closed-form solution
 - Can use iterative methods, e.g. gradient ascent as shown next
- Fortunately, exact form of gradient is known:

$$\frac{\partial}{\partial \theta_i} \frac{1}{M} \ell(\theta : D) = E_D[f_i(\chi)] - E_{\theta}[f_i]$$

Computing the gradient

• Gradient wrt θ_i of log-likelihood $\ell(\theta;\mathcal{D})$ is

$$E_D[f_i(\chi)] - E_{\theta}[f_i]$$

- It is the difference between the feature's
 - 1. empirical expectation in data \mathcal{D} and
 - 2. Its expected value relative to current parameterization
- Computing empirical expectation $E_D[f_i(\chi)]$ is easy
- Ex: for feature

$$f_{a^0b^0}(a,b) = I\{a=a^0\}I\{b=b^0\}$$

All four binary-valued $a \in \{a^0, a^1\}$ etc. Features are indicator fns

it is the empirical frequency in \mathcal{D} of the event a^0, b^0

- At a particular parameterization θ , the expected f_i is simply $P_{\theta}(a^0,b^0)$ since $\left[E_{\theta}[f_i] = \frac{1}{Z(\theta)}\sum_{\xi}f_i(\xi)\exp\left\{\sum_j\theta_jf_j(\xi)\right\}\right]$
- Note: for Bernoulli(x|p), expectation is p

Computing the expected count

Second term in the gradient is

$$\left| E_{\theta}[f_i] = \frac{1}{Z(\theta)} \sum_{\xi} f_i(\xi) \exp\left\{ \sum_{j} \theta_j f_j(\xi) \right\} \right|$$

- We need to compute the different probabilities of the form $P_{\theta^t}(a,b)$
 - Since expectation is a probability-weighted average
- Computing probability requires running inference over the network

Iterative solution for MRF parameters θ

$$P(\chi) = \frac{1}{Z(\theta)} \exp \left[-\sum_{i=1}^{k} \theta_i f_i(D_i) \right]$$

$$\ell(\theta : \mathcal{D}) = \sum_{i} \theta_{i} \left(\sum_{m} f_{i} (\xi[m]) \right) - M \ln Z(\theta)$$

Run inference (compute $Z(\theta)$ &

$$Z(\theta) = \sum_{\xi} \exp\left\{\sum_{i} \theta_{i} f_{i}(\xi)\right\}$$

$$\left| Z(\theta) = \sum_{\xi} \exp \left\{ \sum_{i} \theta_{i} f_{i}(\xi) \right\} \right| \left| E_{\theta}[f_{i}] = \frac{1}{Z(\theta)} \sum_{\xi} f_{i}(\xi) \exp \left\{ \sum_{j} \theta_{j} f_{j}(\xi) \right\} \right|$$

Expected count wrt current parameters

Compute gradient of ℓ

$$\left| \frac{\partial}{\partial \theta_i} \ell(\theta; D) = E_D[f_i(\chi)] - E_{\theta}[f_i] \right|_{\nabla \ell(\theta)} = \frac{d}{d\theta} \ell(\theta) = 0$$

$$\nabla \ell(\theta) = \frac{d}{d\theta} \, \ell(\theta) = \left[\begin{array}{cc} \frac{\partial \ell \left(\theta \right)}{\partial \theta_1} & \dots & \frac{\partial \ell \left(\theta \right)}{\partial \theta_k} \end{array} \right.$$

Update
$$oldsymbol{ heta}$$

$$\left|oldsymbol{ heta}^{t+1} \leftarrow oldsymbol{ heta}^t + \eta
abla \ell \Big(oldsymbol{ heta}^t; D\Big)
ight.$$

No **Optimum** Reached?

Yes

Stop

$$\left|oldsymbol{ heta}^{t+1} - oldsymbol{ heta}^t \leq \delta
ight|$$

Difficulty with Iterative method

- Gradient ascent over parameter space
- Good news:
 - likelihood function is concave
 - Guaranteed to converge to global optimum
- Bad news:
 - each step needs inference
 - Simple parameter estimation is intractable
 - Bayesian parameter estimation even harder
 - Integration done using MCMC

Use of Second Order Solution

- Computational cost of parameter estimation is very high
 - Gradient ascent is not efficient
- Much faster convergence using second order methods based on Hessian

Intuition for Second-Order Solution

- Newton's method
 - finds zeroes of a function using derivatives
- More efficient than simple gradient descent
- Quasi Newton's method
 - uses an approximation to the gradient
- Since we are solving for derivative of $l(\theta, \mathcal{D})$
 - need second derivative (Hessian)

Newton in one-dim.

$$f'(x_n) = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{f(x_n) - 0}{x_n - x_{n+1}}.$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Derivation of Hessian of the Log-Likelihood

$$\begin{split} \frac{\partial}{\partial \theta_{i}} \ln Z(\theta) &= \frac{1}{Z(\theta)} \sum_{\xi} \frac{\partial}{\partial \theta_{i}} \exp \left\{ \sum_{j} \theta_{j} f_{j}(\xi) \right\} = \frac{1}{Z(\theta)} \sum_{\xi} f_{i}(\xi) \exp \left\{ \sum_{j} \theta_{j} f_{j}(\xi) \right\} = E_{\theta}[f_{i}] \\ \frac{\partial^{2}}{\partial \theta_{i}} \partial \theta_{j} \ln Z(\theta) &= \frac{\partial}{\partial \theta_{j}} \left[\frac{1}{Z(\theta)} \sum_{\xi} \frac{\partial}{\partial \theta_{i}} \exp \left\{ \sum_{k} \theta_{k} f_{k}(\xi) \right\} \right] \\ &= -\frac{1}{Z(\theta)^{2}} \left(\frac{\partial}{\partial \theta_{j}} Z(\theta) \right) \sum_{\xi} f_{i}(\xi) \exp \left\{ \sum_{k} \theta_{k} f_{k}(\xi) \right\} + \frac{1}{Z(\theta)} \sum_{\xi} f_{i}(\xi) f_{j}(\xi) \exp \left\{ \sum_{k} \theta_{k} f_{k}(\xi) \right\} \\ &= -\frac{1}{Z(\theta)^{2}} Z(\theta) E_{\theta}[f_{j}] \sum_{\xi} f_{i}(\xi) \tilde{P}(\xi; \theta) + \frac{1}{Z(\theta)} \sum_{\xi} f_{i}(\xi) f_{j}(\xi) \tilde{P}(\xi; \theta) \\ &= -E_{\theta}[f_{j}] \sum_{\xi} f_{i}(\xi) P(\xi; \theta) + \sum_{\xi} f_{i}(\xi) f_{j}(\xi) P(\xi; \theta) \\ &= E_{\theta}[f_{i}f_{j}] - E_{\theta}[f_{i}] E_{\theta}[f_{j}] \\ &= Cov_{\theta}[f_{i}; f_{j}] \end{split}$$

$$\left| \frac{\partial}{\partial \theta_i \, \partial \theta_j} \ell(\theta, D) = -M \, Cov_{\theta} (f_i, f_j) \right|$$

Computation of Hessian

Log-likelihood has the form

$$\ell(\theta:D) = \sum_{i=1}^{\infty} \theta_i \left(\sum_{m} f_i(\xi[m]) - M \ln Z(\theta) \right)$$

Solution 1: Hessian

$$\frac{\partial}{\partial \theta_i \partial \theta_j} \ell(\theta, D) = -M \operatorname{Cov}_{\theta}(f_i, f_j)$$

- Requires joint expectation of two features, often computationally infeasible
- Solution 2: Commonly used
 - L-BFGS (a quasi-Newton algorithm)
 - uses gradient ascent line search to avoid computing the Hessian

L-BFGS Algorithm

- Limited-memory BFGS
- Approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
- Popular algorithm for ML parameter estimation
 - Algorithm of choice for log-linear models and CRFs
- Uses an estimation of the inverse Hessian to steer through variable space

Choosing η : Line Search

- We can choose η in several different ways
- Popular approach: set η to a small constant
- Another approach is called line search:
- Evaluate $f(x-\eta\nabla_x f(x))$ for several values of η and choose the one that results in smallest objective function value

Line Search (with ascent)

 In Gradient Ascent, we increase f by moving in the direction of the gradient

$$oldsymbol{ heta}^{t+1} \leftarrow oldsymbol{ heta}^t + \eta
abla fig(oldsymbol{ heta}^tig)$$

- In Line Search: step size η adaptively chosen
 - Choose direction to ascend and continue in direction until we start to descend
 - Define "line" in direction of gradient

$$g\left(\eta
ight) = ec{oldsymbol{ heta}}^t + \eta
abla f\left(oldsymbol{ heta}^t
ight)$$

• Note that this is a linear function of η and hence it is a "line"

Line Search: determining n

- Given $g(\eta) = \vec{\theta}^t + \eta \nabla f(\theta^t)$
- Find three points $\eta_1 < \eta_2 < \eta_3$ so that $f(g(\eta_2))$ is larger than at both $f(g(\eta_1))$ and $f(g(\eta_3))$
 - We say that $\eta_1 < \eta_2 < \eta_3$ bracket a maximum
- If we find an η 'so that we can find a new

tighter bracket $\,\eta_{\,1} \! < \eta_{\,2}$

- To find η ' use binary search Choose $\eta' = (\eta_1 + \eta_3)/2$

- Method ensures that new bracket is half of the old one
 - Note: Other methods are:
 - Brent's method uses a quadratic function instead of linear
 - Conjugate gradient descent converges faster than line search