L'intégral des démos bac

1 Suite croissante convergente

1.1 Énoncé

Soit (u_n) une suite croissante qui converge vers une limite finie l. Alors $\forall_n \in \mathbb{N}, u_n \leq l$.

1.2 Démonstration

Raisonnons par l'absurde:

Supposons que: $\exists_{n_0} \in \mathbb{N}, u_{n_0} > l$.

Alors, comme la suite u_n est croissante: $\forall_n \geq n_0, u_n \geq u_{n_0} > l$.

L'intervalle ouvert]l-1; $u_{n_0}[$ contient l, mais ne peut contenir les u_n que pour $n < n_0$, donc il ne peut pas contenir tous les termes de la suite à partir d'un certain rang.

Cela contredit le fait que $\lim_{n\to+\infty} u_n = l$.

Donc $\forall_n \in \mathbb{N}, u_n \leq l$.

2 Suite croissante non majorée

2.1 Énoncé

Une suite croissante non majorée a pour limite $+\infty$.

2.2 Démonstration

Soit (u_0) une suite croissante non majorée.

Soit *A* un réel quelconque.

Comme la suite n'est pas majorée par A, $\exists_N \in \mathbb{N}$, $u_N > A$

Comme la suite est croissante, $\forall_n \geq N$, $u_n \geq u_N > A$.

Tous les termes de la suite sont donc dans l'intervalle] A; $+\infty$ [à partir d'un certain rang N.

Donc $\forall_A \in \mathbb{R}, \exists_N \in \mathbb{N}, \forall_n \geq N, u_n > A \Leftrightarrow \lim_{n \to +\infty} u_n = +\infty.$

3 Limites des suites géométriques

3.1 Énoncé

$$q > 1 \Rightarrow \lim_{n \to +\infty} q^n = +\infty.$$

3.2 Démonstration

Soit q > 1.

Alors $\exists_a \in \mathbb{R}_+^*$, q = 1 + a.

Soit $\forall_n \in \mathbb{N}, P_n : "q^n \ge 1 + na"$.

INITIALISATION:

Pour n = 0, $q^0 = 1$ et $1 + 0 \times a = 1$, donc $q^0 \ge 1 + 0 \times a$. La récurrence est donc initialisée.

HÉRÉDITÉ:

Supposons que pour un certain n quelconque de \mathbb{N} , P_n soit vraie. Montrons que P_{n+1} est vraie.

HR: $q^n \ge 1 + na$

Mq: $q^{n+1} \ge 1 + a(n+1)$

On a: $q^{n+1} = q \times q^n = q^n(1+a)$

Or, par HR, $q^n \ge 1 + na$

Donc $q^{n+1} \ge (1+a)(1+na) = 1+na+a+na^2 = 1+a(n+1)+na^2$

Or, comme $n \ge 0$ et $a^2 > 0$, $na^2 \ge 0$

Donc $q^{n+1} \ge 1 + a(n+1)$

CONCLUSION:

 P_0 est vraie, $\forall_n \in \mathbb{N}, P_n \Rightarrow P_{n+1}$, donc d'après le principe de récurrence, $\forall_n \in \mathbb{N}, q^n \ge 1 + na$.

Comme a > 0, $\lim_{n \to +\infty} (1 + na) = +\infty$.

Donc d'après le théorème de comparaison, $\lim_{n\to+\infty} q^n = +\infty$.

4 Prérequis (Fonction exponentielle)

Soit f une fonction dérivable sur un intervalle I. Si $\forall_x \in I$, f'(x) = 0, alors f est constante sur I.

5 1ère Démo (Fonction exponentielle)

5.1 Énoncé

Soit f la fonction dérivable sur \mathbb{R} telle que f' = f et f(0) = 1. Alors, $\forall_x \in \mathbb{R}$, $f(x) \times f(-x) = 1$ et $f(x) \neq 0$.

5.2 Démonstration

Soit g la fonction définie sur \mathbb{R} par $g(x) = f(x) \times f(-x)$.

Comme f est dérivable sur \mathbb{R} , il en est de même de la fonction $u: x \to f(-x)$ et, pour $x \in \mathbb{R}$, u'(x) = -f'(x). Donc g est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$:

$$g'(x) = f'(x) \times u(x) + f(x) \times u'(x)$$

$$= f'(x) \times f(-x) - f(x) \times f(-x)$$

$$= f(x) \times f(-x) - f(x) \times f(-x) \quad : f' = f$$

$$= 0$$

Donc g est constante sur \mathbb{R} .

Par ailleurs, $g(0) = f(0)f(-0) = (f(0))^2 = 1$.

Donc $\forall_x \in \mathbb{R}, g(x) = 1 \Leftrightarrow f(x) \times f(-x) = 1$.

De plus, si $\exists x_0 \in \mathbb{R}$, $f(x_0) = 0$, alors $f(x_0) \times f(-x_0) = 0$, ce qui contredit le résultat précédent. Donc $\forall x \in \mathbb{R}$, $f(x) \neq 0$.

Unicité de la fonction exponentielle

Énoncé

Il existe une unique fonction f définie sur \mathbb{R} telle que f' = f et f(0) = 1. Cette fonction s'appelle la fonction exponentielle, et on la note exp.

6.2 Démonstration

ÉXISTENCE:

L'existence de la fonction exponentielle est admise.

Soit g une autre fonction définie et dérivable sur sur \mathbb{R} telle que g'=g et g(0)=1. D'après la propriété précédente, $\forall x \in \mathbb{R}, f(x) \neq 0$, on peut donc définir la fonction:

$$h(x) = \frac{g(x)}{f(x)}$$

Montrons que $\forall_x \in \mathbb{R}, h(x) = 1$.

La fonction h est dérivable sur \mathbb{R} , donc $\forall_x \in \mathbb{R}$:

$$h'(x) = \frac{g'(x) \times f(x) - g(x) \times f'(x)}{(f(x))^2}$$

$$= \frac{g(x) \times f(x) - g(x) \times f(x)}{(f(x))^2} : f' = f; g' = g$$

$$= 0$$

Donc h est constante sur \mathbb{R} . De plus, $h(0) = \frac{g(0)}{f(0)} = 1$.

Donc $\forall_x \in \mathbb{R}$, $h(x) = 1 \Leftrightarrow \frac{g(x)}{f(x)} = 1 \Leftrightarrow g(x) = f(x)$.

Donc f = g.

1ère Démo (Intégration)

7.1 Énoncé

Soit f une fonction continue et positive sur un intervalle [a;b]. Alors la fonction F définie sur [a;b] par :

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

est dérivable sur [a; b] et, pour tout x de [a;b], F'(x) = f(x).

Plus précisément, F est la primitive de f sur [a;b] qui s'annule en a.

7.2 Démonstration

Conformément au programme de TS, on montre ce théorème uniquement lorsque f est croissante sur [a;b].

Soit f une fonction continue, positive et croissante sur [a;b]. Soit $x_0 \in [a;b]$ et h > 0 tq $x_0 + h \in [a;b]$.

Idée: On va encadrer $\frac{F(x_0+h)-F(x_0)}{h}$ pour calculer sa limite quand $h \to 0$

On a, d'après la relation de Chasles:

$$F(x_0 + h) - F(x_0) = \int_a^{x_0 + h} f(t) dt - \int_a^{x_0} f(t) dt = \int_a^{x_0 + h} f(t) dt + \int_{x_0}^a f(t) dt = \int_{x_0}^{x_0 + h} f(t) dt$$

Remarque: Comme f est croissante sur [a;b], le domaine \mathcal{D} est compris entre les rectangles de base $[x_0;x_0+h]$ et de hauteurs $f(x_0)$ et $f(x_0 + h)$, ce qui va nous permettre d'encadrer $\int_{x_0}^{x_0 + h} f(t) dt$.

Comme f est croissante sur [a;b], on a l'encadrement:

$$(x_0 + h - x_0) \times f(x_0) \le \int_{x_0}^{x_0 + h} f(t) dt \le (x_0 + h - x_0) \times f(x_0 + h)$$

C'est à dire:

$$h \times f(x_0) \le \int_{x_0}^{x_0+h} f(t) \, \mathrm{d}t \le h \times f(x_0+h)$$

D'où, en divisant pas h > 0:

$$f(x_0) \le \frac{\int_{x_0}^{x_0+h} f(t) dt}{h} \le f(x_0+h)$$

Soit encore, puisque $F(x_0 + h) - F(x_0) = \int_{x_0}^{x_0 + h} f(t) dt$:

$$f(x_0) \le \frac{F(x_0 + h) - F(x_0)}{h} \le f(x_0 + h)$$

En procédant de même pour h < 0, on obtient: $f(x_0 + h) \le \frac{F(x_0 + h) - F(x_0)}{h} \le f(x_0)$. Comme f est continue sur [a;b], on a donc en $x_0 \lim_{h \to 0} f(x_0 + h) = f(x_0)$. Donc d'après le théorème des gendarmes, $\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$. Donc F est dérivable sur x_0 avec $F'(x_0) = f(x_0)$. Ceci étant vrai pour tout x_0 de [a;b], F est dérivable sur [a;b] et F'=f.

2ème Démo (Intégration)

Énoncé 8.1

Toute fonction continue sur un intervalle admet des primitives sur cet intervalle.

8.2 Démonstration

On se place dans le cas où f est définie sur l'intervalle **fermé** [a;b].

On admet que, dans ce cas, f admet un minimum m sur [a;b].

La fonction $g: x \mapsto f(x) - m$ est alors continue et positive sur [a; b].

Elle admet donc une primitive G sur [a;b]: $\forall_x \in [a;b]$, G'(x) = f(x) - m.

Soit $\forall_x \in [a;b]$, $F: x \mapsto G(x) + mx$.

Alors *F* est dérivable sur [a;b] et, pour tout $x \in [a;b]$:

$$F'(x) = G'(x) + m = g(x) - m = f(x) - m + m = f(x)$$

Ainsi, f admet F pour primitive sur [a; b].