Xử lý ảnh số và video số

Tuần 2: Khái niệm cơ bản về ảnh số và video số

TS. Lý Quốc Ngọc

2. Khái niệm cơ bản về ảnh số và video số

- 2.1. Cơ chế tiếp nhận và hiển thị hình ảnh
- 2.2. Mô hình màu và hàm ảnh
- 2.3. Quan hệ không gian giữa các điểm ảnh
- 2.4. Các đặc trưng cơ bản của ảnh số

Figure 2.1: Perspective projection geometry.

- 2.2.1. Hàm ảnh
- 2.2.2. Mô hình màu RGB
- 2.2.3. Mô hình màu HVS

2.2.1. Hàm ảnh

- Hàm ảnh liên tục
- Giá trị hàm ảnh tương ứng với độ sáng tại các điểm ảnh.
- Ánh trên võng mạc hay TV camera sensor là ảnh hai chiều. Gọi ảnh hai chiều mang thông tin độ sáng là ảnh độ sáng (intensity image).
- Ảnh độ sáng là kết quả của phép chiếu phối cảnh ảnh ba chiều.

2.2.1. Hàm ảnh

2.2.1. Hàm ảnh

- •Hàm ảnh số hóa
- Hàm ảnh đơn phổ là ánh xạ f được xác định:

$$f:[0..M-1]\times[0..N-1]\to[0..L-1]$$

M, N là số điểm ảnh theo chiều ngang, dọc của ảnh. L là số mức xám của ảnh.

2.2.1. Hàm ảnh

Hàm ảnh số hóa

- Hàm ảnh đa phổ là ánh xạ f_{MUL} được xác định:

$$f_{MUL}(x,y) = \{f_1(x,y), f_2(x,y), ..., f_n(x,y)\}$$

 $f_i(x,y)$ là hàm đơn phổ,

2.2.1. Hàm ảnh

Hình 2.2. Brightness levels. (a) 64. (b) 16. (c) 4. (d) 2.

TS. Lý Quốc Ngọc

2.2.1. Hàm ảnh

2.2.2. Hệ màu RGB

Giá trị màu tại điểm ảnh gồm bộ ba giá trị (R,G,B),

R,G,B \in [0..255].

2.2.3. Hệ màu HSV (Hue, Saturation, Value)

Giá trị màu tại điểm ảnh gồm bộ ba giá trị (H,S,V). H ϵ [0..360). S,V ϵ [0..1].

2.2.3. Hệ màu HSV (Hue, Saturation, Value)

 $RGB \rightarrow HSV$

$$\begin{bmatrix} V \\ V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \sqrt{3}/3 & \sqrt{3}/3 & \sqrt{3}/3 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 2/\sqrt{6} & -1/\sqrt{6} & -1/\sqrt{6} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} \quad H = \tan^{-1}(V_2/V_1)$$
$$S = \sqrt{V_1^2 + V_2^2}$$

$$H = \tan^{-1}(V_2/V_1)$$
$$S = \sqrt{V_1^2 + V_2^2}$$

 $HSV \rightarrow RGB$

$$V_1 = S \cos H$$

$$V_2 = S \sin H$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} \sqrt{3}/3 & 0 & 2/\sqrt{6} \\ \sqrt{3}/3 & 1/\sqrt{2} & -1/\sqrt{6} \\ \sqrt{3}/3 & -1/\sqrt{2} & -1/\sqrt{6} \end{bmatrix} \begin{bmatrix} \lor \\ V_1 \\ V_2 \end{bmatrix}$$

2.3. Quan hệ không gian giữa các điểm ảnh

2.3.1. Lân cận điểm ảnh

2.3.2. Khoảng cách giữa các điểm ảnh

2.3. Quan hệ không gian giữa các điểm ảnh

2.3.1. Lân cận điểm ảnh

(a) 4-neighborhood

(b) 8-neighborhood

2.3. Quan hệ không gian giữa các điểm ảnh

2.3.2. Khoảng cách giữa các điểm ảnh

$$d(p,q) = \left(\sum_{i=1}^{n} |p_i - q_i|^r\right)^{1/r},$$

 p_i,q_i Là tọa độ thứ i của điểm p,q

