Tutorial 3 Solutions: Relations

Defining Binary Relations

Concept(s)

For sets A and B, a binary relation R from A to B is a subset of $A \times B$. We write

$$a R b$$
 or $R(a, b)$ to denote $(a, b) \in R$.

We can also represent a binary relation as a

- Graph: We draw dots for each $a \in A$ and $b \in B$. For each $(a, b) \in R$, we can draw $a \to b$.
- Matrix: We have a grid with rows labelled by elements of S and columns by elements of T. We fill in a cell with row a and column b if $(a, b) \in R$.

Exercise 1. Let $A = \{2, 3, 4, 6\}$, $B = \{1, 2, 3\}$ and $R \subseteq A \times B$ where a R b means that gcd(a, b) = 1.

- a) Write the relation R as a set.
- b) Draw the relation R as a graph.
- c) Write the relation R as a matrix.

Answer(s)

- a) $R = \{(2,1), (2,3), (3,1), (3,2), (4,1), (4,3), (6,1)\}$
- b) Graph representation:

c) Matrix representation:

Concept(s)

A relation on A is a binary relation R from A to A. For the graphical representation, we only draw dots for each $a \in A$ once. When $(a_1, a_2) \in R$, we can draw $a_1 \to a_2$.

Exercise 2. Let $A = \{\{\}, \{1\}, \{2\}, \{1, 2\}\}$ and $R \subseteq A \times A$ where a R b means that $a \subset b$.

- a) Write the relation R as a set.
- b) Draw the relation R as a graph.
- c) Write the relation R as a matrix.

Answer(s)

a)
$$R = \{(\{\}, \{1\}), (\{\}, \{2\}), (\{\}, \{1, 2\}), (\{1\}, \{1, 2\}), (\{2\}, \{1, 2\})\}$$

b) Graph representation:

c) Matrix representation:

	{}	{1}	{2}	$\{1, 2\}$
{}	0	•	•	•
{1}	0	0	0	•
{2}	0	0	0	•
{} {1} {2} {1,2}	0	0	0	0

Operations on Relations

Concept(s)

Let R be a relation from A to B and S be a relation from B to C. We define the

- Converse of R: $R^{\leftarrow} = \{(b, a) \in B \times A : a \ R \ b\}$.
- Composition of R and S: R; $S = \{(a, c) \in A \times C : \text{there exists } b \in B \text{ such that } a \ R \ b \text{ and } bSc\}.$

Exercise 3. Let $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Consider the relation from A to B,

$$R = \{(1, x), (2, y), (3, z), (1, y)\}.$$

Compute $R; R^{\leftarrow}$. What is $R; R^{\leftarrow}$ a subset of?

Answer(s)

We first compute $R^{\leftarrow} = \{(x,1), (y,2), (z,3), (y,1)\}$. Now, we compute $R; R^{\leftarrow}$, where

$$R; R^{\leftarrow} = \{(a,c) \in A \times A : \text{there exists } b \in B \text{ such that } (a,b) \in R \text{ and } (b,c) \in R^{\leftarrow}\}.$$

We now consider each possible pair of (a,c). When a=1, we can get either b=x or b=y such that $(a,b)\in R$. If b=x, then we have c=1 such that $(b,c)\in R^{\leftarrow}$. This means that $(1,1)\in R; R^{\leftarrow}$. If b=y, then we can have c=1 or c=2 such that $(b,c)\in R^{\leftarrow}$. This means that $(1,1),(1,2)\in R; R^{\leftarrow}$. We can continue this method to get all pairs $(a,c)\in R; R^{\leftarrow}$. Hence,

$$R; R^{\leftarrow} = \{(1,1), (1,2), (2,1), (2,2), (3,3)\}.$$

The resulting relation $R; R^{\leftarrow}$ is a subset of $A \times A$.

Properties of Relations $R \subseteq A \times A$

Concept(s)

(R) Reflexive For all $a \in A$, we have $(a, a) \in R$

(AR) Antireflexive For all $a \in A$, we have $(a, a) \notin R$

(S) Symmetric For all $a, b \in A$, if $(a, b) \in R$ then $(b, a) \in R$

(AS) Antisymmetric For all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$ then a = b

(T) Transitive For all $a, b, c \in A$, if $(a, b), (b, c) \in R$ then $(a, c) \in R$

Exercise 4. Which of the properties (R), (AR), (S), (AS), (T) does R satisfy? Explain why.

a) $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a > b\}$

b) $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \leq b\}$

c) $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : |a - b| \le 2\}$

Answer(s)

- a) $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a > b\}$
 - (R) No. We see that $1 \ge 1$, so $(1, 1) \notin R$.
 - (AR) Yes. For all $a \in \mathbb{Z}$, $a \not> a$, so $(a, a) \notin R$.
 - (S) No. If $(a, b) \in R$, then a > b, but this implies b < a, so $(b, a) \notin R$.
 - (AS) Yes. Our condition is never fulfilled since a > b and b < a can never happen together. If our condition can never be fulfilled, our statement is true by vacuous truth.
 - (T) Yes. If $(a, b) \in R$ and $(b, c) \in R$, then a > b and b > c, which implies a > c, so $(a, c) \in R$.
- b) $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \leq b\}$
 - (R) Yes. For all $a \in \mathbb{Z}$, $a \leq a$, so $(a, a) \in R$.
 - (AR) No. We see that $1 \le 1$, so $(1,1) \in R$.
 - (S) No. If $(a, b) \in R$ and a < b, then $b \le a$, so $(b, a) \notin R$.
 - (AS) Yes. If $(a, b) \in R$ and $(b, a) \in R$, then $a \le b$ and $b \le a$, which implies a = b.
 - (T) Yes. If $(a,b) \in R$ and $(b,c) \in R$, then $a \le b$ and $b \le c$, which implies $a \le c$, so $(a,c) \in R$.
- c) $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : |a b| \le 2\}$
 - (R) Yes. For all $a \in \mathbb{Z}$, $|a a| = 0 \le 2$, so $(a, a) \in R$.

- (AR) No. We see that $|1-1| = 0 \le 2$, so $(1,1) \in R$.
 - (S) Yes. If $(a, b) \in R$, then $|a b| \le 2$, which implies $|b a| \le 2$, so $(b, a) \in R$.
- (AS) No. For example, $(0,2) \in R$ and $(2,0) \in R$, but $0 \neq 2$.
- (T) No. For example, $(0,2) \in R$ and $(2,4) \in R$, but $(0,4) \notin R$ since |0-4| > 2.

Exercise 5. Let R be a relation on a set A. Prove or disprove the following:

- a) If R is symmetric and transitive, then R is reflexive.
- b) If R is antireflexive and transitive, then R is antisymmetric.

Answer(s)

- a) Consider $R = \{\}$. A relation with no transitions is symmetric and transitive but not reflexive. This means that this statement is not always true.
- b) Let R be antireflexive and transitive. Suppose that R is not antisymmetric. This means there exists $(a,b) \in R$ such that $(b,a) \in R$ and $a \neq b$. By transitivity, we have $(a,a) \in R$, from $(a,b) \in R$ and $(b,a) \in R$. This is a contradiction since R is antireflexive. Therefore, our assumption must be false and R is antisymmetric.

Equivalence Relations

Concept(s)

An equivalence relation R is a relation on A that is (R), (S) and (T).

The equivalence class of $a \in A$ is $[a] = \{b \in A : a R b\}$.

Exercise 6. Let $\Sigma = \{a, b\}$. We define the relation \sim on Σ^* , where $w_1 \sim w_2$ means that w_1 and w_2 have the same number of letters. Explain why \sim is an equivalence relation.

Answer(s)

To prove that \sim is an equivalence relation, we need to show that it is (R), (S) and (T).

- (R) For any $w \in \Sigma^*$, $w \sim w$ because w has the same number of letters as itself.
- (S) For any $w_1, w_2 \in \Sigma^*$, if $w_1 \sim w_2$, then w_1 and w_2 have the same number of letters. This implies that w_2 and w_1 also have the same number of letters, so $w_2 \sim w_1$.
- (T) For any $w_1, w_2, w_3 \in \Sigma^*$, if $w_1 \sim w_2$ and $w_2 \sim w_3$, then w_1 and w_2 have the same number of letters, and so do w_2 and w_3 . This implies that w_1 and w_3 must also have the same number of letters, so $w_1 \sim w_3$.

Since \sim satisfies all three properties, it is an equivalence relation on Σ^* .

Exercise 7. Consider the relation F on $\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ where (a,b)F(c,d) means that ad = bc.

- a) Prove that F is an equivalence relation.
- b) Describe the equivalence class [(1, 2)].

Answer(s)

- a) To prove that F is an equivalence relation, we need to show that it is (R), (S) and (T).
 - (R) For any $(a, b) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$, (a, b)F(a, b) because ab = ba.
 - (S) If (a, b)F(c, d), then ad = bc. We can rearrange our equation to get cb = da so (c, d)F(a, b).
 - (T) If (a,b)F(c,d) and (c,d)F(e,f), then ad=bc and cf=de. Multiplying these equations, we get (ad)(cf)=(bc)(de). Dividing both sides by cd (which is possible since $c,d\in\mathbb{Z}_{>0}$), we get af=be. This means (a,b)F(e,f).

Since F satisfies all three properties, it is an equivalence relation on $\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$.

b) The equivalence class [(1,2)] consists of all pairs $(a,b) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ such that (1,2)F(a,b). This means if 1b=2a then $(a,b) \in [(1,2)]$. Every element is a pair where their second number is double their first. Therefore,

$$[(1,2)] = \{(1,2), (2,4), (3,6), (4,8), \ldots\} = \{(n,2n) : n \in \mathbb{Z}_{>0}\}.$$

Partial Orders

Concept(s)

A partial order \preceq is a relation on A that is (R), (AS) and (T). We call (A, \preceq) a poset.

A Hasse diagram is a graph if $a \leq b$ and $a \neq b$, then there is an edge drawn upward from a to b.

Minimal $a \in A$ such that there is no $a \neq b$ where $b \leq a$

Minimum $a \in A$ such that $a \leq b$ for all $b \in A$

Maximal $a \in A$ such that there is no $a \neq b$ where $a \leq b$

Maximum $a \in A$ such that $b \leq a$ for all $b \in A$

Exercise 8. For the poset $(\{2, 4, 6, 9, 12, 36, 72\}, |)$:

- a) Draw a Hasse diagram.
- b) Find the maximal/minimal elements.
- c) Is there a minimum element? Is there a maximum element?

Answer(s)

a) Hasse diagram:

b) A maximal element is one that points to no other element. Therefore, 72 is our only maximal

- element. A minimal element is an element that no other element points to. Our two minimal elements are 2 and 9.
- c) If every element points to one element, that is our maximum. In this case, we have a maximum at 72. A minimum is an element that points to every other element. There is no such element so there is no minimum.

Exercise 9. Let (A, \preceq) be a poset. Prove that if A has a maximum then the maximum is unique.

Answer(s)

To do so, we can prove that if we have two maximums, then they must be the same. Suppose that a,b are maximum elements. By definition, for all $x \in A$, we have $x \leq a$ and $x \leq b$. This means that $a \leq b$ and $b \leq a$. Since \leq is a partial order, we can use the antisymmetry property to conclude that a = b. This means that a maximum element is unique.

Concept(s)

Let (A, \preceq) be a poset.

- a is an upper bound for B if $b \leq a$ for all $b \in B$
- The least upper bound of B, lub(B), is the minimum of $\{a : a \text{ is an upper bound of } B\}$
- a is a lower bound for B if $a \leq b$ for all $b \in B$
- The greatest lower bound of B, glb(B), is the maximum of $\{a: a \text{ is a lower bound of } B\}$

A lattice is a poset where each pair of elements has a lub and glb.

Exercise 10. For the poset $(\{2, 4, 6, 9, 12, 36, 72\}, |)$:

- a) Find $lub(\{6, 9\})$ and $glb(\{6, 9\})$
- b) Is this poset a lattice?

Answer(s)

- a) Our Hasse diagram will help us find the lub between 6 and 9. We need the smallest number that both 6 and 9 point to. From our diagram, this is 36 so $lub(\{6,9\}) = 36$. The greatest lower bound is the biggest number that points to both 6 and 9, but from our diagram, there are no numbers that point to both so $glb(\{6,9\})$ does not exist.
- b) This poset is not a lattice. For a poset to be a lattice, every pair of elements must have both a least upper bound and a greatest lower bound within the set. We've shown that the pair $\{6,9\}$ does not have a greatest lower bound in the set, so this poset is not a lattice.

Exercise 11. For the poset $(Pow(\{a,b,c\}),\subseteq)$:

- a) Prove that \subseteq is a partial order.
- b) Draw a Hasse diagram.
- c) Find the maximal/minimal elements.
- d) Is there a minimum element? Is there a maximum element?
- e) Find $lub(\{\{a\}, \{b, c\}\})$ and $glb(\{\{a\}, \{b, c\}\})$, if they exist.

f) Is this poset a lattice?

Answer(s)

- a) To prove that \subseteq is a partial order, we need to show it is (R), (AS), (T).
 - (R) For any set $X, X \subseteq X$, so \subseteq is reflexive.
 - (AS) If $X \subseteq Y$ and $Y \subseteq X$, then X = Y, so \subseteq is antisymmetric.
 - (T) Suppose that $X \subseteq Y$ and $Y \subseteq Z$. Let $x \in X$. Since $X \subseteq Y$, we find that $x \in Y$. Since $Y \subseteq Z$, we also have $x \in Z$. By definition, we can conclude that $X \subseteq Z$. Therefore, if $X \subseteq Y$ and $Y \subseteq Z$, then $X \subseteq Z$, so \subseteq is transitive.

Therefore, \subseteq is a partial order.

b) Hasse diagram:

- c) Maximal element: $\{a, b, c\}$ Minimal element: $\{\}$
- d) Minimum element: $\{\}$ Maximum element: $\{a, b, c\}$
- e) lub $(\{\{a\}, \{b, c\}\}) = \{a, b, c\}$ glb $(\{\{a\}, \{b, c\}\}) = \{\}$
- f) Yes, this poset is a lattice. For any $X, Y \in Pow(\{a, b, c\})$, $lub(\{X, Y\}) = X \cup Y$ and $glb(\{X, Y\}) = X \cap Y$. Since the intersection and union are from elements of $\{a, b, c\}$, they must exist in $Pow(\{a, b, c\})$. We must prove this is true.

To prove something is a lub, you must first prove it is an upper bound and then show it is the minimum upper bound. We can use a similar method for glb.

Proof that $lub({X,Y}) = X \cup Y$.

Since $X\subseteq X\cup Y$ and $Y\subseteq X\cup Y$, we find that $X\cup Y$ is an upper bound of X and Y. Suppose that Z is an upper bound of X and Y too. Suppose that $z\in X\cup Y$. We have two cases: either $z\in X$ or $z\in Y$. When $z\in X$, we have $z\in Z$ as $X\subseteq Z$ by definition of being an upper bound. Similarly, when $z\in Y$, we have $z\in Z$. This means that $z\in Z$ in all cases. We conclude that $X\cup Y\subseteq Z$ for any upper bound Z. This shows that $X\cup Y$ is the minimum upper bound so U by U and U by U is the minimum upper bound so U by U

Proof that $glb({X, Y}) = X \cap Y$.

Since $X \cap Y \subseteq X$ and $X \cap Y \subseteq Y$, we find that $X \cap Y$ is a lower bound of X and Y. Suppose

that Z is a lower bound of X and Y too. Suppose that $z \in Z$. By definition of being a lower bound, $Z \subseteq X$ and $Z \subseteq Y$ so we have $z \in X$ and $z \in Y$. This means that $z \in X \cap Y$ and so $Z \subseteq X \cap Y$ for any lower bound Z. This shows that $X \cap Y$ is the maximum lower bound so $glb(\{X,Y\}) = X \cap Y$.

Concept(s)

A total order is a partial order that has Linearity: For all a, b, either $a \le b$ or $b \le a$.

A topological sort of (A, \leq) is a total order \leq where if $a \leq b$, then $a \leq b$.

Exercise 12. For the poset $(Pow(\{a,b,c\}),\subseteq)$, find a topological sort.

Answer(s)

A topological sort for the poset $(Pow(\{a,b,c\}),\subseteq)$ is

$$\{\} \le \{a\} \le \{b\} \le \{c\} \le \{a,b\} \le \{a,c\} \le \{b,c\} \le \{a,b,c\}.$$

The intuition is that if $X \subseteq Y$, then we have $|X| \le |Y|$. Therefore, we can order our sets by size to get our topological sort. As you can see, if $X \subseteq Y$, X will appear before or at the same position as Y in our total order.

Note that this is not the only possible topological sort. For example, we could swap the positions of $\{b\}$ and $\{c\}$, or $\{a,b\}$ and $\{a,c\}$, and still have a valid topological sort.

Extra Practice Problems

Note(s)

These practice questions are designed to help deepen your understanding. No answers will be provided, as the goal is to encourage independent problem-solving and reinforce key concepts.

- 1. Let $A = \{1, 2, 3, 4\}$. Define the relation R on A by a R b if and only if a + b is even. Write R as a set of ordered pairs and draw its directed graph.
- 2. Draw graphs for relations on $\{1, 2, 3\}$ that have the following properties:
 - a) Symmetric and antisymmetric and reflexive.
 - b) Reflexive, but neither transitive nor symmetric.
 - c) Transitive and reflexive, but not symmetric.
- 3. Which of the properties (R), (AR), (S), (AS), (T) does R satisfy? Prove your answers.
 - a) Let $\Sigma = \{1, 2, 3\}$. Define R over Σ^* where $n_1 R n_2$ means that n_1 and n_2 have a common digit.
 - b) Consider the relation \sim on \mathbb{Z} where $a \sim b$ means that $3 \mid a$ and $3 \mid b$ OR $3 \nmid a$ and $3 \nmid b$.
 - c) The relation on \mathbb{Z} , $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a =_{(2)} b\}$.
- 4. How many reflexive relations on A are there if |A| = n?
- 5. Let $A = \{a, b, c, d\}$ and R be the relation $\{(a, b), (b, c), (c, d), (d, a)\}$. Compute R; R and $R \leftarrow R$; R.
- 6. If you take the converse of the relation <, what other familiar relation does it become? What if you take the converse of =?
- 7. A relation \sim on $\mathbb Z$ is defined by $a \sim b$ when a-b is either divisible by 3 or 5. Show that \sim is not an equivalence relation.
- 8. Let $V = \{u, v, w, x, y, z\}$. The following diagram shows direct flights between the 6 cities:

Define the relation \sim on V where $a \sim b$ means that it is possible to fly from a to b with an even number of flights (including 0 flights).

- a) Prove that \sim is an equivalence relation.
- b) Partition the set *V* into equivalence classes.
- 9. Let $\Sigma = \{a, b, c, d\}$. Define the relation A on Σ^* where $w_1 A w_2$ means that w_1 is an anagram of w_2 .
 - a) Prove that A is an equivalence relation.
 - b) List out all elements of [bad].
- 10. List all partitions of $\{a, b, c\}$.

- 11. With respect to the partial order \mid on the set $\mathbb{Z}_{>0},$ find
 - a) $lub({4,6})$
 - b) $lub({3,4,5,6})$
 - c) $glb(\{12, 16, 18, 24\})$
 - d) glb({737, 2345})
- 12. Consider the set $A = \{B \subseteq \{1, 2, 3, 4\} : |B| \neq 2\}$ with the partial order \subseteq .
- 13. Let $A = \{1, 2, 3, 4\}$ be a poset defined with \leq . Consider the lexicographic order \leq_{lex} (check the lectures) on $A \times A$.
 - Prove that \leq_{lex} is a partial order.
 - Draw a Hasse diagram.
 - Find the maximal/minimal elements.
 - Is there a maximum element? Is there a minimum element?
 - Is this poset a lattice?