Nome: Adeldivo Alves de Sousa Junior

Exercício 1 - Similaridade de Matching em Pacientes

No sistema hospitalar, temos dois pacientes que foram diagnosticados com um conjunto de condições. Cada condição pode ser indicada como 1 (presente) ou 0 (ausente). Calcule a similaridade de Matching para os seguintes pacientes:

a) Condições de Saúde

Paciente 1:
$$A=\begin{bmatrix}1&0&1&1&0&0\\1&1&0&0&0\end{bmatrix}$$
 Paciente 2: $B=\begin{bmatrix}1&1&0&0&0\\1&1&0&0&0\end{bmatrix}$

$$S_{AB} = \frac{4}{6} \approx 0.67$$

b) Tratamentos Realizados

Paciente 1:
$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$
Paciente 2: $B = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$

$$S_{AB} = \frac{5}{6} \approx 0.83$$

c) Medicamentos Prescritos

Paciente 1:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 \end{bmatrix}$$
Paciente 2: $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

$$S_{AB} = \frac{5}{6} \approx 0.83$$

Fórmula de Similaridade de Matching:

$$S_{Matching} = rac{M}{N}$$

Onde Mé o número de características em que A e B são iguais, e Né o número total de características.

Exercício 2 - Similaridade de Jaccard em Diagnósticos

Dado o diagnóstico de duas pacientes, cada uma foi avaliada para diferentes condições de saúde. As condições são representadas como 1 (presente) ou 0 (ausente). Calcule a similaridade de Jaccard.

a) Diagnósticos Cardiovasculares

Paciente 1:
$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$
 Paciente 2: $B = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$

Diagnósticos Cardiovasculares	Paciente A	Paciente B	Par Binário
Diagnóstico 1	1	1	1,1 ∩
Diagnóstico 2	1	0	1,0 ∪
Diagnóstico 3	0	1	0,1 ∪
Diagnóstico 4	0	0	0,0
Diagnóstico 5	1	1	1,1 ∩
Diagnóstico 6	0	0	0,0

$$S_{AB} = \frac{2}{4} = 0.5$$

b) Diagnósticos Neurológicos

Paciente 1:
$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Paciente 2: $B = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$

Diagnósticos Neurológicos	Paciente A	Paciente B	Par Binário
Diagnóstico 1	0	1	0,1 ∪
Diagnóstico 2	1	1	1,1 ∩
Diagnóstico 3	1	0	1,0 ∪
Diagnóstico 4	0	0	0,0
Diagnóstico 5	1	0	1,0 ∪
Diagnóstico 6	1	1	1,1 ∩

$$S_{AB} = \frac{2}{5} = 0.4$$

Ministério da Educação Faculdade de Tecnologia Campus Registro Desenvolvimento de Software Multiplataforma

c) Diagnósticos Respiratórios

Paciente 1:
$$A=\begin{bmatrix}1\\1\\0\end{bmatrix},0,0,1]$$
 Paciente 2: $B=\begin{bmatrix}1\\0\end{bmatrix},0,0,0]$

Diagnósticos Respiratórios	Paciente A	Paciente B	Par Binário
Diagnóstico 1	1	1	1,1 ∩
Diagnóstico 2	1	0	1,0 ∪
Diagnóstico 3	1	1	1,1 ∩
Diagnóstico 4	0	0	0,0
Diagnóstico 5	0	0	0,0
Diagnóstico 6	1	0	1,0 ∪

$$S_{AB} = \frac{2}{4} = 0.5$$

Fórmula de Similaridade de Jaccard:

$$S_{Jaccard} = rac{A \cap B}{A \cup B}$$

Onde $A\cap B$ é o número de características em que ambos A e B são 1, e $A\cup B$ é o número de características onde pelo menos um dos itens tem valor 1.

Exercício 3 - Similaridade de Rogers G Tanimoto em Tratamentos

Em um hospital, dois pacientes passaram por diferentes tratamentos. Use a similaridade de Rogers C Tanimoto para calcular a semelhança entre os tratamentos realizados.

a) Tratamento Oncológico

Paciente 1:
$$A=\left[1,0,1,0,1,1\right]$$

Paciente 2:
$$B = [1, 1, 0, 1, 0, 1]$$

Tratamentos	Paciente A	Paciente B	Par Binário
Tratamento 1	1	1	1,1 (a)
Tratamento 2	0	1	0,1 (c)
Tratamento 3	1	0	1,0 (b)
Tratamento 4	0	1	0,1 (c)
Tratamento 5	1	0	1,0 (b)
Tratamento 6	1	1	1,1 (a)

Ministério da Educação Faculdade de Tecnologia Campus Registro

Desenvolvimento de Software Multiplataforma

$$a = 2$$

$$b = 2$$

$$c = 2$$

$$d = 0$$

$$S_{AB} = \frac{a+d}{a+2(b+c)+d} = \frac{2}{2+2(2+2)} = \frac{2}{10} = 0.2$$

b) Tratamento Cardiovascular

Paciente 1: A = [1, 1, 0, 0, 1, 0]

Paciente 2: B = [1, 0, 1, 0, 1, 1]

Tratamentos	Paciente A	Paciente B	Par Binário
Tratamento 1	1	1	1,1 (a)
Tratamento 2	1	0	1,0 (b)
Tratamento 3	0	1	0,1 (c)
Tratamento 4	0	0	0,0 (d)
Tratamento 5	1	1	1,1 (a)
Tratamento 6	0	1	0,1 (c)

$$a = 2$$

$$b = 1$$

$$c = 2$$

$$d = 1$$

$$S_{AB} = \frac{a+d}{a+2(b+c)+d} = \frac{2+1}{2+2(1+2)+1} = \frac{3}{2+6+1} = \frac{3}{9} \approx 0.33$$

Ministério da Educação

Faculdade de Tecnologia Campus Registro

Desenvolvimento de Software Multiplataforma

c) Tratamento Respiratório

Paciente 1: A = [0, 1, 1, 0, 0, 1]

Paciente 2: B = [0, 1, 0, 0, 1, 1]

Tratamentos	Paciente A	Paciente B	Par Binário
Tratamento 1	0	0	0,0 (d)
Tratamento 2	1	1	1,1 (a)
Tratamento 3	1	0	1,0 (b)
Tratamento 4	0	0	0,0 (d)
Tratamento 5	0	1	0,1 (c)
Tratamento 6	1	1	1,1 (a)

$$a = 2$$

$$b = 1$$

$$c = 1$$

$$d = 2$$

$$S_{AB} = \frac{a+d}{a+2(b+c)+d} = \frac{2+2}{2+2(1+1)+2} = \frac{4}{2+4+2} = \frac{4}{8} = 0.5$$

Fórmula de Similaridade de Rogers C Tanimoto

$$S_{RogersTanimoto} = rac{a+d}{a+d+2(b+c)}$$

Onde a é o número de características onde A=1 e B=1, d é o número de características onde A=0 e B=0, b é onde A=1 e B=0, e c é onde A=0 e B=1.

Exercício 4 - Similaridade de Jaccard em Procedimentos Cirúrgicos

Dois pacientes passaram por diferentes procedimentos cirúrgicos. Use a similaridade de Jaccard para calcular a semelhança entre as cirurgias realizadas.

a) Cirurgias Ortopédicas

Paciente 1:
$$A=\begin{bmatrix}1,0,0\\1\\0,1\end{bmatrix}$$
 Paciente 2: $B=\begin{bmatrix}0,1,0\\1\\1,1,0\end{bmatrix}$

Cirurgias Ortopédicas	Paciente A	Paciente B	Par Binário
Cirurgia 1	1	0	1,0 ∪
Cirurgia 2	0	1	0,1 ∪
Cirurgia 3	0	0	0,0
Cirurgia 4	1	1	1,1 ∩
Cirurgia 5	0	1	0,1 ∪
Cirurgia 6	1	0	1,0 ∪

$$S_{AB} = \frac{1}{5} = 0.2$$

b) Cirurgias Neurológicas

Paciente 1:
$$A=\begin{bmatrix}1&1&0&1&0&0\end{bmatrix}$$
 Paciente 2: $B=\begin{bmatrix}1&0&1&1&0&0\end{bmatrix}$

Cirurgias Neurológicas	Paciente A	Paciente B	Par Binário
Cirurgia 1	1	1	1,1 ∩
Cirurgia 2	1	0	1,0 ∪
Cirurgia 3	0	1	0,1 ∪
Cirurgia 4	1	1	1,1 ∩
Cirurgia 5	0	0	0,0
Cirurgia 6	0	0	0,0

$$S_{AB} = \frac{2}{4} = 0.5$$

Ministério da Educação Faculdade de Tecnologia Campus Registro Desenvolvimento de Software Multiplataforma

c) Cirurgias Gastrointestinais**

Paciente 1:
$$A=\begin{bmatrix}1\\1\\0\\0\\1\end{bmatrix}$$
, $0,0,0$, 1]
Paciente 2: $B=\begin{bmatrix}1\\0\\0\\1\end{bmatrix}$

Cirurgias Gastrointestinais	Paciente A	Paciente B	Par Binário
Cirurgia 1	1	1	1,1 ∩
Cirurgia 2	1	0	1,0 ∪
Cirurgia 3	0	0	0,0
Cirurgia 4	0	1	0,1 ∪
Cirurgia 5	0	0	0,0
Cirurgia 6	1	1	1,1 ∩

$$S_{AB} = \frac{2}{4} = 0.5$$