

INVESTIGACIÓN DE OPERACIONES EN INGENIERÍA I

Introducción a la PROGRAMACIÓN LINEAL con Modelos de 2 o más Variables

Método simplex primal para minimización.

Ingeniería de Sistemas

Docente: Ing. Néstor Muñoz Abanto

•Al término de la sesión, el estudiante encuentra la solución algebraica a modelos de programación lineal de dos o más variables, a partir del análisis de un caso y utilizando el método simplex, sigue un procedimiento lógico y muestra la solución óptima.

LOGRO DE LA SESIÓN

Tipo de optimización

Como se ha comentado, el objetivo del método simplex consistirá en optimizar el valor de la función objetivo. Sin embargo se presentan dos opciones: obtener el valor óptimo mayor (maximizar) u obtener el valor óptimo menor (minimizar).

Además existen diferencias en el algoritmo entre el objetivo de maximización y el de minimización en cuanto al criterio de condición de parada para finalizar las iteraciones y a las condiciones de entrada y salida de la base. Así:

- •Objetivo de maximización: Condición de parada: cuando en la fila Z no aparece ningún valor negativo.
 - •Condición de entrada a la base: el menor valor negativo en la fila Z (o el de mayor valor absoluto entre los negativos) indica la variable Xi que entra a la base.
 - •Condición de salida de la base: una vez obtenida la variable entrante, la variable que sale se determina mediante el menor cociente R/CXi de los estrictamente positivos.
- •Objetivo de minimización Condición de parada: cuando en la fila Z no aparece ningún valor positivo.
 - Condición de entrada a la base: el mayor valor positivo en la fila Z indica la variable Xi que entra a la base.
 - Condición de salida de la base: una vez obtenida la variable entrante, la variable que sale se determina mediante el menor cociente R/CXi de los estrictamente negativos.

Ejemplo - Minimizar

Se tiene el siguiente problema:

Función Objetivo

Minimizar: $Z = 3X_1 - 2X_2$

Sujeto a:

$$2X_1 + X_2 \le 18$$

 $2X_1 + 3X_2 \le 42$
 $3X_1 - 2X_2 \le 5$
 $X_1, X_2 \ge 0$

Solución:

Se tiene el siguiente problema:

Función Objetivo

Minimizar: $Z = 3X_1 - 2X_2$

Sujeto a:

$$2X_{1} + X_{2} \le 18$$

$$2X_{1} + 3X_{2} \le 42$$

$$3X_{1} - 2X_{2} \le 5$$

$$X_{1}, X_{2} \ge 0$$

El problema se adecuará al modelo estándar de programación lineal, agregando las variables de holgura, exceso y/o artificiales en cada una de las restricciones:

- •Restricción 1: Tiene signo " \leq " (menor igual) por lo que se agrega la variable de holgura S_1 .
- •Restricción 2: Tiene signo " \leq " (menor igual) por lo que se agrega la variable de holgura S_2 .
- •Restricción 3: Tiene signo " \leq " (menor igual) por lo que se agrega la variable de holgura S_3 .

A continuación se muestra el problema en la forma estándar. Se colocará el coeficiente 0 (cero) donde corresponda para crear nuestra matriz:

Modelación mediante programación lineal

Función Objetivo

Minimizar: $Z = 3X_1 - 2X_2$

Sujeto a:

$$2X_1 + 1X_2 \le 18$$

$$2X_1 + 3X_2 \le 42$$

 $3X_1 - 2X_2 \le 5$

 $X_1, X_2 \ge 0$

Modelación mediante forma algebraica

Función Objetivo

Minimizar: $Z = 3X_1 - 2X_2 + 0S_1 + 0S_2 + 0S_3$

Sujeto a:

$$2X_1 + 1X_2 + 1S_1 + 0S_2 + 0S_3 = 18$$

$$2X_1 + 3X_2 + 0S_1 + 1S_2 + 0S_3 = 42$$

$$3X_1 - 2X_2 + 0S_1 + 0S_2 + 1S_3 = 5$$

 $X_1, X_2, S_1, S_2, S_3 \ge 0$

Modelación mediante forma tabular

Tabla 1	c _j	3	-2	0	0	0	
C _b	Base	X ₁	X ₂	S ₁	S ₂	S ₃	R
0	S ₁	2	1	1	0	0	18
0	S ₂	2	3	0	1	0	42
0	S ₃	3	-2	0	0	1	5
	z	-3	2	0	0	0	0

Como el ejercicios es de **minimización**, elegiremos el **mayor valor positivo** para la variable de entrada: 2. Por lo tanto la variable de entrada sería X_2 . Para la variable de salida dividiremos los valores de la columna R con los de la columna X_2 (siempre y cuando sean positivos). Los resultados en orden serían: 18/1, 42/3 y la última fila no se considera porque su valor correspondiente a X_2 es negativo (-2). Se debe elegir el menor valor de esta división: 42/3=14; por lo tanto la variable de salida se encuentra en la segunda fila: S_2 .

El elemento pivote se encuentra en el cruce de X_2 y S_2 : 3.

Realizamos las reducciones de Gauss-Jordan:

En esta última matriz, todos los valores del vector de costes reducidos son negativos, lo que indica que nos encontramos en el punto óptimo del problema de minimización. El resultado sería:

Tabla 2	c _j	3	-2	0	0	0	
СЬ	Base	X ₁	X ₂	S ₁	S ₂	S ₃	R
0	s ₁	4/3	0	1	-1/3	0	4
-2	X ₂	2/3	1	0	1/3	0	14
0	S ₃	13/3	0	0	2/3	1	33
	z	-13/3	0	0	-2/3	0	-28

Actividad

Desarrolla en equipos los ejercicios vistos en clase, y plantee una solución que permita evidenciar los pasos del método simplex.

sujeta a
$$6x_1 + 4x_2 + s_1 = 24 \text{ (materia prima } M1)$$

$$x_1 + 2x_2 + s_2 = 6 \text{ (materia prima } M2)$$

$$-x_1 + x_2 + s_3 = 1 \text{ (límite de demanda)}$$

$$x_2 + s_4 = 2 \text{ (límite de demanda)}$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$

Función Objetivo

Minimizar: $Z = 2X_1 - 1X_2$

Sujeto a:

$$2X_1 + 3X_2 \le 10$$

$$1X_1 + 1X_2 \le 6$$

$$X_1, X_2 \ge 0$$

Función Objetivo

Minimizar: $Z = -5X_1 - 4X_2$

Sujeto a:

$$2X_1 + 2X_2 \le 14$$

$$6X_1 + 3X_2 \le 36$$

$$5X_1 + 10X_2 \le 60$$

$$X_1, X_2 \ge 0$$

Los pasos del método símplex son los siguientes:

Paso 0. Determinar una solución básica factible de inicio.

Paso 1. Seleccionar una variable de entrada aplicando la condición de optimalidad. Detenerse

si no hay variable de entrada; la última solución es la óptima.

Paso 2. Seleccionar una variable de salida aplicando la condición de factibilidad.

Paso 3. Determinar la nueva solución básica con los cálculos adecuados de Gauss-Jordan.

Ir al paso 1.

- Néstor Muñoz Docente
- nestor.munoz@unc.edu.pe
- 941434300

Universidad Nacional de Cajamarca "Norte de la Universidad Pernana"