

Report No: CCISE180107201

FCC/IC REPORT

(UNII)

Applicant: Baicells Technologies Co., Ltd.

Address of Applicant: 3F, Hui Yuan Development Building, No.1 Shangdi Information

Industry Base, Haidian Dist., Beijing, China

Equipment Under Test (EUT)

Product Name: LTE-FDD Base Station

Model No.: u4G-AP1000

Trade mark: BaiCells

FCC ID: 2AG32U4GAP1000

Canada IC: 20982-U4GAP1000

FCC CFR Title 47 Part 15 Subpart E Section 15.407

Applicable standards: RSS-247 Issue 2, February 2017

RSS-Gen Issue 4, November 2014

Date of sample receipt: 08 Jan., 2018

Date of Test: 08 Jan., to 23 Jan., 2018

Date of report issued: 23 Jan., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	23 Jan., 2018	Original

Tested by: Date: 23 Jan., 2018

Test Engineer

Reviewed by: Date: 23 Jan., 2018

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	2 VERSION		
3	CON	ITENTS	3
4	TES.	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
F	5.1	CLIENT INFORMATION	5
5	5.2	GENERAL DESCRIPTION OF E.U.T.	
5	5.3	TEST ENVIRONMENT AND MODE	
5	5.4	DESCRIPTION OF SUPPORT UNITS	6
5	5.5	MEASUREMENT UNCERTAINTY	6
5	5.6	RELATED SUBMITTAL(S) / GRANT (S)	6
5	5.7	LABORATORY FACILITY	6
_	5.8	LABORATORY LOCATION	
5	5.9	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS ANDMEASUREMENT DATA	8
6	5.1	ANTENNA REQUIREMENT	8
6	5.2	CONDUCTED EMISSION	9
6	6.3	CONDUCTED OUTPUT POWER	
	5.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
_	6.6	BAND EDGE	
6	6.7	SPURIOUS EMISSION	
	6.7.1		
,	6.7.2		
	8.8	FREQUENCY STABILITY	
7	TES	T SETUP PHOTO	50
8	EUT	CONSTRUCTIONAL DETAILS	52

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (a)	Pass
AC Power Line Conducted Emission	15.207 RSS-GEN Section 8.8	Pass
Conducted Peak Output Power	15.407 (a)(3) RSS-247 Section 6.2.4.1	Pass
6dB Emission Bandwidth	15.407(e) RSS-247 Section 6.2.4.1	Pass
Power Spectral Density	15.407 (a)(3) RSS-247 Section 6.2.4.1	Pass
Band Edge	15.407(b)(4) RSS-247 Section 6.2.4.2	Pass
Spurious Emission	15.205/15.209 15.407(b)(4) RSS-GEN Section 6.13 RSS-247 Section 6.2.4.2	Pass
Frequency Stability	15.407(g)	Pass
Pass: The EUT complies with the essential requirements in the standard.		

5 General Information

5.1 Client Information

Applicant:	Baicells Technologies Co., Ltd.
Address of Applicant:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China
Manufacturer:	Baicells Technologies Co., Ltd.
Address of Manufacture:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China

5.2 General Description of E.U.T.

Product Name:	LTE-FDD Base Station
Model No.:	u4G-AP1000
Operation Frequency:	Downlink: 5725MHz-5825MHz (for Tx frequency band) Uplink: 5150MHz-5250MHz (for Rx frequency band)
Operation mode:	Fixed point-to-point operation
Modulation type:	QPSK, 16-QAM, 64-QAM
Antenna type:	Panel antenna
Antenna gain:	14 dBi
Power supply:	DC 48
AC adapter:	Model: EUV-096S048SV 96W Input: AC100-240V, 50/60Hz, 1.2A
	Output: DC 48V, 2A

Test Frequency List			
10MHz	Bandwidth	20MHz B	andwidth
Test Channel	Frequency	Test Channel	Frequency
Lowest channel	5730 MHz	Lowest channel	5735 MHz
Middle channel	5775 MHz	Middle channel	5775 MHz
Highest channel	5820 MHz	Highest channel	5815 MHz

Report No: CCISE180107201

5.3 Test environment and mode

Operating Environment:		
Temperature:	Normal: 15°C ~ 35°C, Extreme: -30°C ~ +50°C	
Humidity:	20 % ~ 75 % RH	
Atmospheric Pressure:	1008 mbar	
Voltage:	Nominal: 120Vac, Extreme: Low 102Vac, High 138Vac	
Test mode:		
QPSK mode	Keep the EUT communication with simulated station in QPSK mode	
16-QAM mode	Keep the EUT communication with simulated station in 16-QAM mode	
64-QAM mode	Keep the EUT communication with simulated station in 64-QAM mode	
	Troop the Let Commented with emiliated station in et a, in most	

Remark:

- The EUT has been tested under continuous transmitting mode. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes with power adaptor, earphone and Data cable. Just the worst case position (H mode) shown in report.
- Pre-scan all modulation mode (QPSK, 16QAM, 64QAM), and found the QPSK and 64QAM modulation mode are the worst case. So the worst case shown in report.

5.4 Description of Support Units

Test Equipment	Manufacturer	Model No.	Serial No.
/	/	/	/

5.5 Measurement Uncertainty

-		
l	Parameters	Expanded Uncertainty
I	Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
	Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
	Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
	Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2017	02-24-2018
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-22-2017	06-21-2018
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2017	02-24-2018
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	02-25-2017	02-24-2018
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A
Pre-amplifier	HP	8447D	2944A09358	02-25-2017	02-24-2018
Pre-amplifier	CD	PAP-1G18	11804	02-25-2017	02-24-2018
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-25-2017	02-24-2018
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-25-2017	02-24-2018
Spectrum Analyzer	Agilent	N9020A	MY50510123	10-29-2017	10-28- 2018
Signal Generator	Rohde & Schwarz	SMX	835454/016	02-25-2017	02-24- 2018
Signal Generator	R&S	SMR20	1008100050	02-25-2017	02-24-2018
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Cable	ZDECL	Z108-NJ-NJ-81	1608458	02-25-2017	02-24-2018
Cable	MICRO-COAX	MFR64639	K10742-5	02-25-2017	02-24-2018
Cable	SUHNER	SUCOFLEX100	58193/4PE	02-25-2017	02-24-2018
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	10-31-2017	10-30-2018
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	09-24-2017	09-23-2018
Simulated Station	Rohde & Schwarz	CMW500	140493	06-24-2017	06-23-2018

6 Test results andMeasurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirementdoes not apply to carrier currentdevices or to devices operated underthe provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbances ensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The EUT antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 14 dBi.

6.2 Conducted Emission

Took Dogwinsmont	ECC Dark 45 207 and DCC C	NEW Continuo 0 0	
Test Requirement:	FCC Part 15.207 and RSS-GEN Section 8.8		
Test Method:	ANSI C63.4: 2014		
TestFrequencyRange:	150kHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit ((dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logarith	60	50
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). Itprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 		
Test setup:	LISN 40cm	.U.T	
Test Instruments:	Refer to section 5.9 for detail	ls	
Test mode:	Refer to section 5.3 for detail	ls.	
Test results:	Passed		

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

	,	
Test Requirement:	FCC Part 15.407 (a) (3) and RSS-247 Section 6.2.4.1	
Test Method:	ANSI C63.10: 2013 and KDB789033	
Limit:	The maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.	
Test setup:		
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.9 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

Test Channel	Bandwidth (MHz)	Modulation	Ant. Port	Conducted Output power (dBm)	Total Power (dBm)	Limit (dBm)	Result
		ODOK	Ant 0	24.00	07.00		
Laurant	40	QPSK	Ant 1	24.03	27.03	30.00	Dana
Lowest	10	64000	Ant 0	24.38	07.04	30.00	Pass
		64QAM	Ant 1	24.01	27.21		
		ODOK	Ant 0	24.30	07.05		
M: dalla	40	QPSK	Ant 1	25.49	27.95	20.00	Door
Middle	10	C4O A N4	Ant 0	24.65	20.04	30.00	Pass
		64QAM	Ant 1	25.38	28.04		
	10	ODCK	Ant 0	24.79	20.40		Pass
I limboot		QPSK	Ant 1	25.48	28.16	30.00	
Highest		64QAM	Ant 0	25.09	00.00		
			Ant 1	25.28	28.20		
	20	ODOK	Ant 0	24.06	07.00	30.00	Pass
1		QPSK	Ant 1	24.03	27.06		
Lowest			Ant 0	24.02	07.00		
		64QAM	Ant 1	24.02	27.03		
			Ant 0	24.77	00.04		
Middle		QPSK	Ant 1	25.22	28.01		Pass
	20	0.40.414	Ant 0	24.65	o= oo	30.00	
		64QAM	Ant 1	25.28	27.99		
Highest	20	QPSK	Ant 0	25.20	00.00	30.00	_
			Ant 1	25.23	28.23		
			Ant 0	25.15	22.22		Pass
		64QAM	Ant 1	25.27	28.22		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15.407 (e) and RSS-247 Section 6.2.4.1				
Test Method:	ANSI C63.10:2013 and KDB 789033				
Limit:	>500kHz(6dB Bandwidth) N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test Channel	Bandwidth (MHz)	Modulation	Ant. Port	26dB Occupy bandwidth (MHz)	99% Occupy bandwidth (MHz)	6dB Emission Bandwidth (MHz)
		ODCK	Ant 0	9.75	8.93	9.00
Lowest	10	QPSK	Ant 1	9.74	8.95	9.01
Lowest	10	64QAM	Ant 0	9.75	8.94	9.01
		64QAIVI	Ant 1	9.74	8.95	9.00
		QPSK	Ant 0	9.80	8.96	9.00
Middle	10	QFSK	Ant 1	9.80	8.95	9.01
Middle	10	64QAM	Ant 0	9.77	8.95	9.03
		04QAIVI	Ant 1	9.74	8.95	9.01
	10	QPSK	Ant 0	9.78	8.95	9.03
∐ighoot			Ant 1	9.74	8.94	8.99
Highest		64QAM	Ant 0	9.75	8.94	9.02
		04QAIVI	Ant 1	9.67	8.95	9.04
	20	ODSK	Ant 0	19.25	17.87	18.00
Lowest		QPSK	Ant 1	19.28	17.89	18.01
Lowest		64QAM	Ant 0	19.25	17.88	18.00
		04QAIVI	Ant 1	19.24	17.88	18.02
		QPSK	Ant 0	19.39	17.87	18.01
Middle	20	QFSK	Ant 1	19.30	17.81	18.01
Middle	20	64001	Ant 0	19.40	17.85	18.02
		64QAM	Ant 1	19.25	17.91	18.05
	20		Ant 0	19.31	17.85	18.02
High oot			Ant 1	19.30	17.88	18.04
Highest			Ant 0	19.25	17.84	18.00
		64QAM	Ant 1	19.25	17.86	18.03

6.5 Power Spectral Density

Test Requirement:	FCC Part 15.407 (a) (3) and RSS-247 Section 6.2.4.1				
Test Method:	ANSI C63.10:2013, KDB789033				
Limit:	The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results: Passed					

Measurement Data:

Test Channel	Bandwidth (MHz)	Modulation	Ant. Port	PSD (dBm)	Total PSD (dBm)	Limit (dBm)	Result
		ODCK	Ant 0	12.88	45.70		
Lowoot	10	QPSK	Ant 1	12.54	15.72	20.00	Door
Lowest	10	64001	Ant 0	13.24	15.07	30.00	Pass
		64QAM	Ant 1	12.65	15.97		
		ODSK	Ant 0	13.24	16.60		
Middle	10	QPSK	Ant 1	14.08	16.69	30.00	Door
ivildale	10	640AM	Ant 0	13.49	16.74	30.00	Pass
		64QAM	Ant 1	13.96	16.74		
	10	QPSK	Ant 0	13.64	16.83	30.00	Pass
		QPSK	Ant 1	14.00	10.63		
Highest		64QAM	Ant 0	13.86	16.92		
			Ant 1	13.95	10.92		
	20	20 QPSK 64QAM	Ant 0	9.83	10.06	30.00	Pass
Laurant			Ant 1	9.87	12.86		
Lowest			Ant 0	9.88	40.04		
			Ant 1	9.71	12.81		
		QPSK	Ant 0	10.14	42.00	00.00	Davis
M:ddla	20		Ant 1	10.99	13.60		
Middle	20	C40 AN4	Ant 0	10.28	40.55	30.00	Pass
		64QAM	Ant 1	10.79	13.55		
Highest	00	ODCK	Ant 0	10.56	40.07	30.00	Davis
		QPSK	Ant 1	11.14	13.87		
	20	20 64QAM	Ant 0	10.56	40.70		Pass
			Ant 1	10.99	13.79		

Test plot as follows:

6.6 Band Edge

Test Requirement: FCC Part 15.407 (b)(4) and RSS-247 Section 6.2.4.2 Test Method: ANSI C63.10:2013 and KDB789033 Receiver setup: Detector RBW VBW Remark Quasi-peak Value RMS 1MHz 300kHz Quasi-peak Value RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value Limit: Limit (dBuV/m @3m) Remark 68.20 Peak Value 54.00 Average Value All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasinglinearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 35 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: 1. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=27dBm. 2. E[dBµV/m] = EIRP[dBm] + 95.2=10.2 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Holid M	Test Description	E00 Devi 45 407 (-\/4\	17.0	2		
Detector RBW VBW Remark Quasi-peak 120kHz 300kHz Quasi-peak Value RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value Limit (dBuV/m @3m) Remark 68.20 Peak Value 54.00 Average Value 54.00 Average Value All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz abov	•	FCC Part 15.407 (b)(4) and RSS-247 Section 6.2.4.2					
Quasi-peak 120kHz 300kHz Quasi-peak Value	Test Method:						
Limit: Limit (dBuV/m @3m) Remark 68.20 Peak Value 54.00 Average Value All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasinglinearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz at the band edge. Remark: 1. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. E[dBµV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 3. E[dBµV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-	Receiver setup:						
Limit: Limit (dBuV/m @3m) Remark 68.20 Peak Value 54.00 Average Value All emissions shall be limited to a level of ~27 dBm/MHz at 75 MHz or more above or below the band edge increasinglinearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: 1. E[dBpV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. E[dBpV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBpV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the p	·						
Selection				3MHz	Average Value		
All emissions shall be limited to a level of ~27 dBm/MHz at 75 MHz or more above or below the band edge increasinglinearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: 1. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. E[dBµV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=102.2 dBuV/m, for EIPR[dBm]=27dBm. 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be re-tested one by one using peak, quasi-	Limit:	Limit (dBuV/m @3m) Remark					
All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: 1. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. E[dBµV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=-15.6dBm. 3. E[dBµV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=-17dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=-27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-				Р	eak Value		
or below the band edge increasinglinearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: 1. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. E[dBµV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. 3. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. 5. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-		54.	00	Ave	erage Value		
below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: 1. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. E[dBµV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 3. E[dBµV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-							
linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: 1. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. E[dBµV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 3. E[dBµV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-			•	•			
from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: 1. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. E[dBµV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 3. E[dBµV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-		_					
Remark: 1. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. E[dBµV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 3. E[dBµV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-		-			~		
Remark: 1. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. E[dBµV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 3. E[dBµV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-				age increasing line	ariy to a level of 27		
 E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. E[dBμV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. E[dBμV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. E[dBμV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- 			u euge.				
 E[dBμV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. E[dBμV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. E[dBμV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- 			RP[dBm] + 95 2=68	3.2 dBuV/m for FIF	PR[dBm]=-27dBm		
3. E[dBµV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. 4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-					= =		
4. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. 1. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-							
the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-							
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not 					

Measurement Data (worst case):

vicasai cilicili	Data (wors	t casej.									
Bandwidth=10MHz - QPSK											
Test channel: Lowest channel,											
	Detector: Peak										
Fraguency	Read	Antenna	Cable	Preamp	Level	Limit	Over				
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization			
(IVITZ)	(dBuV/m)	(dB)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)				
5725.00	52.36	34.65	11.62	40.54	58.09	68.20	-10.11	Horizontal			
5725.00	53.14	34.65	11.62	40.54	58.87	68.20	-9.33	Vertical			
			Det	ector: Avera	ge						
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over				
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization			
(1711 12)	(dBuV/m)	(dB)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)				
5725.00	42.63	34.65	11.62	40.54	48.36	54.00	-5.64	Horizontal			
5725.00	42.69	34.65	11.62	40.54	48.42	54.00	-5.58	Vertical			
1											
			Test char	nnel: Highest	channel						
				etector: Peal	(
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over				
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization			
` ,	(dBuV/m)	(dB)	(dB)	(dB)	` ,	(dBuV/m)	(dB)				
5850.00	52.36	34.62	11.74	40.69	58.03	68.20	-10.17	Horizontal			
5850.00	52.78	34.62	11.74	40.69	58.45	68.20	-9.75	Vertical			
Detector: Average											
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over				
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization			
(1711 12)	(dBuV/m)	(dB)	(dB)	(dB)	(aba v/III)	(dBuV/m)	(dB)				
5850.00	42.58	34.62	11.74	40.69	48.25	54.00	-5.75	Horizontal			
5850.00	42.96	34.62	11.74	40.69	48.63	54.00	-5.37	Vertical			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

			Bandwid	dth=20MHz -	- QPSK			
			Test char	nnel: Lowest	channel,			
			D	etector: Peal	<			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	52.01	34.65	11.62	40.54	57.74	68.20	-10.46	Horizontal
5725.00	51.98	34.65	11.62	40.54	57.71	68.20	-10.49	Vertical
			Det	tector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	41.69	34.65	11.62	40.54	47.42	54.00	-6.58	Horizontal
5725.00	42.03	34.65	11.62	40.54	47.76	54.00	-6.24	Vertical
				nnel: Highest etector: Peal				
	Danel	A 4			Ì	Lineit	0	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	52.32	11.74	11.75	40.69	35.12	68.20	-33.08	Horizontal
5850.00	51.98	11.74	11.75	40.69	34.78	68.20	-33.42	Vertical
			Det	tector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	42.12	34.62	11.74	40.69	47.79	54.00	-6.21	Horizontal
5850.00	42.30	34.62	11.74	40.69	47.97	54.00	-6.03	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band								
	Test Requirement:	FCC Pa	art 15.407	(b)(4) a	and RS	SS-247 Section	on 6.2	.4.2	
	Test Method:	ANSI C	63.10:201	3 and h	KDB78	39033			
	Test Frequency Range:	5.35 GI	Hz to 5.46	GHz					
	Test site:	Measur	ement Dis	tance:	3m				
	Receiver setup:	Freq	uency	Dete	ctor	RBW	VE	3W	Remark
		Λ boy/	e 1GHz	Pea	ak	1MHz	3N	1Hz	Peak Value
		Above	e IGHZ	RM	1S	1MHz	3N	1Hz	Average Value
	Limit:	F	requency		Limi	t (dBuV/m @	3m)		Remark
		ΔΗ	ove 1GHz	,		74.00			Peak Value
						54.00			Average Value
	Test Procedure:	the too too to to the the second to to the second to the s	e groundate determine e EUT was tenna, which wer. e antenna e ground to the horizon ake the me reach susse and the eters and the etest-received Barrhe emission e limitspecthe EUT we 10dB me etermine e todB me etest-received the EUT we we 10dB me etest-received the etest-received th	ta 3 methe possible set 3 ichwas height o deterrital and easurent spected enthe arimum eiver syndwidth on level ified, the vouldbe nargin v	eter ca ition of meters mount is vari- is vari- nent. emiss neent. emiss neent. emiss neent. of the en tes repor- vould l	mber. The ta f the highest s away from the ded on the top ed from one ne maximum al polarization sion, the EUT was tuned from was set to Pe Maximum Hole EUT in peak ting could be ted. Otherwis pere-tested o	ble waradiat the into of a was a being m 0 de a k D	as rota ion. erferel variable to fou of the he ante arrang hts fro egrees etect Fi de. e was bed and emiss one u	1.5 meters above ted 360 degrees nce-receiving le-height antenna in meters above field strength, enna are set to led to its worst in 1 meter to 4 is to 360 degrees lunction and lodB lower than it the peak values ions that did not sing peak, quasi-orted in a data
	Test setup:		150cm	AE E	UT	3m Ground Reference Plane	rn Antenna Pre- P	Antenna	Tower
	Test Instruments:	Refer to	section 5	.9 for d	letails				
	Test mode:	Refer to	section 5	3 for d	letails	<u> </u>			
	Test results:	Passed							

Measurement Data (worst case):

<i>l</i> ieasuremen	t Data (wors	t case):						
			Bandwid	dth=10MHz -	- QPSK			
			Test char	nel: Lowest	channel,			
			D	etector: Peal	k			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	48.32	35.37	11.19	40.18	54.70	74.00	-19.30	Horizontal
5350.00	48.96	35.37	11.19	40.18	55.34	74.00	-18.66	Vertical
			Det	ector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	35.69	35.37	11.19	40.18	42.07	54.00	-11.93	Horizontal
5350.00	35.74	35.37	11.19	40.18	42.12	54.00	-11.88	Vertical
			Test char	nnel: Highest	channel			
				etector: Peal				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	48.63	34.90	11.32	40.23	54.62	74.00	-19.38	Horizontal
5460.00	48.52	34.90	11.32	40.23	54.51	74.00	-19.49	Vertical
			Det	ector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	35.63	34.90	11.32	40.23	41.62	54.00	-12.38	Horizontal
5460.00	35.41	34.90	11.32	40.23	41.40	54.00	-12.60	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

			Bandwid	dth=20MHz -	- QPSK			
			Test char	nnel: Lowest	channel,			
			D	etector: Peal	<			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	48.21	35.37	11.19	40.18	54.59	74.00	-19.41	Horizontal
5350.00	48.74	35.37	11.19	40.18	55.12	74.00	-18.88	Vertical
			Det	tector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	35.33	35.37	11.19	40.18	41.71	54.00	-12.29	Horizontal
5350.00	35.47	35.37	11.19	40.18	41.85	54.00	-12.15	Vertical
				nnel: Highest				
				etector: Peal	(I
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	48.56	34.90	11.32	40.23	54.55	74.00	-19.45	Horizontal
5460.00	48.74	34.90	11.32	40.23	54.73	74.00	-19.27	Vertical
			Det	tector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	35.66	34.90	11.32	40.23	41.65	54.00	-12.35	Horizontal
5460.00	35.72	34.90	11.32	40.23	41.71	54.00	-12.29	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part 15.209 RSS-GEN Secti	-	. , . ,		.2.4.2		
Test Method:	ANSI C63.10:20	13 and K	DB78	9033			
TestFrequencyRange:	30MHz to 40GH	z					
Test site:	Measurement D	istance: 3	m				
Receiver setup:	Frequency	Detecto	or	RBW	VB	sW	Remark
·	30MHz-1GHz	Quasi-pe	eak	100kHz	300	kHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz	3M	Hz	Peak Value
Limit:	Frequency		Lir	mit (dBuV/m @	3m)		Remark
	30MHz-88M	lHz		40.0			luasi-peak Value
	88MHz-216N	ИHz		43.5		C	luasi-peak Value
	216MHz-960I	MHz		46.0		C	luasi-peak Value
	960MHz-1G	Hz		54.0		C	luasi-peak Value
	Frequency	y		Limit (dBm/MH:	z)		Remark
	Above 1GH	J-7		68.20			Peak Value
	Above 1GI	12		54.00			Average Value
	Remark:						
				.2=68.2 dBuV/r			
Test Procedure:	/1.5m(abov was rotated radiation. 2. The EUT wantenna, was tower. 3. The antenna ground to describe horizontal ameasurement and thenthe and the rotate maximum results. 5. The test-results Specified Base limits pecified EUT would 10dB marg	re 1GHz) at 360 degrees set 3 me hichwas me hichwas me hichwas me hichwas me hichwas me hichwas eading. The second width we hichwas eading to be reported to be reported in would be second to the hichward to the hickward to	neters to neters nount the mal polar was sturned the with Moof the esting ed. Othere-t	e the groundar odetermine the saway from the saway from the ed on the top ed from one reaximum valuarizations of the ed from 0 deg was set to Peak aximum Hold EUT in peak could be stop therwise the ed from 6 degrees from 10 degrees from 1	t a 3 mm e position e position e inter to e of the ene ante was armes from rees to ak Detect Mode mode mode remission one us	eter cation of ference ariable- o four refield senna ar ranged 1 me 360 d ect Funda 10 d the pass 10 d the pass that ing pear	te-receiving theight antenna meters above the strength. Both re set to make the did to its worst case efter to 4 meters egrees to find the meters above the strength and did by the set to make the strength and the set to make the set to did not have ak, quasi-peak or

Measurement Data (worst case):

Below 1GHz:

Remark: Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Above 1GHz:

Above 1GHZ:			Randwid	dth=10MHz -	- OPSK			
				nel: Lowest				
				etector: Peal				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11460.00	44.25	41.50	16.83	40.75	61.83	68.20	-6.37	Horizontal
11460.00	43.25	41.50	16.83	40.75	60.83	68.20	-7.37	Vertical
			Det	ector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m) 28.63	Antenna Factor (dB) 41.50	Cable Loss (dB) 16.83	Preamp Factor (dB) 40.75	Level (dBuV/m) 46.21	Limit Line (dBuV/m) 54.00	Over Limit (dB) -7.79	Polarization Horizontal
11460.00	28.74	41.50	16.83	40.75	46.32	54.00	-7.68	Vertical
			Test cha	nnel: Middle	channel			
				etector: Peal	<			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11550.00	43.69	41.38	16.90	40.91	61.06	68.20	-7.14	Horizontal
11550.00	43.71	41.38	16.90	40.91	61.08	68.20	-7.12	Vertical
				ector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11550.00	29.41	41.38	16.90	40.91	46.78	54.00	-7.22	Horizontal
11550.00	29.44	41.38	16.90	40.91	46.81	54.00	-7.19	Vertical
				nnel: Highest				
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	etector: Peal Preamp Factor	Level (dBuV/m)	Limit Line	Over Limit	Polarization
` ,	(dBuV/m)	(dB)	(dB)	(dB)	,	(dBuV/m)	(dB)	11
11640.00	44.32	41.26	16.97	41.06	61.49	68.20	-6.71	Horizontal
11640.00	43.20	41.26	16.97	41.06	60.37	68.20	-7.83	Vertical
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	ector: Average Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11640.00	29.41	41.26	16.97	41.06	46.58	54.00	-7.42	Horizontal
11640.00	29.74	41.26	16.97	41.06	46.91	54.00	-7.09	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

			Bandwid	dth=20MHz -	- QPSK			
				nel: Lowest				
				etector: Peal				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11470.00	43.52	41.50	16.83	40.75	61.10	68.20	-7.10	Horizontal
11470.00	43.76	41.50	16.83	40.75	61.34	68.20	-6.86	Vertical
			Det	ector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11470.00	29.79	41.50	16.83	40.75	47.37	54.00	-6.63	Horizontal
11470.00	30.02	41.50	16.83	40.75	47.60	54.00	-6.40	Vertical
			Tost cha	nnel: Middle	channel			
				etector: Peal				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11550.00	43.52	41.38	16.90	40.91	60.89	68.20	-7.31	Horizontal
11550.00	43.85	41.38	16.90	40.91	61.22	68.20	-6.98	Vertical
			Det	ector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11550.00	29.41	41.38	16.90	40.91	46.78	54.00	-7.22	Horizontal
11550.00	29.87	41.38	16.90	40.91	47.24	54.00	-6.76	Vertical
				nel: Highest				
	David	Λ		etector: Peal	(Lie-9	0	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11630.00	43.41	41.26	16.97	41.06	60.58	68.20	-7.62	Horizontal
11630.00	44.32	41.26	16.97	41.06	61.49	68.20	-6.71	Vertical
			Det	ector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11630.00	29.23	41.26	16.97	41.06	46.40	54.00	-7.60	Horizontal
11630.00	29.74	41.26	16.97	41.06	46.91	54.00	-7.09	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.
Test results:	Passed

Measurement Data (the worst channel):

Voltage vs. Frequency Stability:

<u>Voltage vs. Frequency</u>	Stability:		
Ref	erence Frequency: Lowes	st channel=5730MHz(10MHz fo	or QPSK)
Test	conditions	F(NALL=)	Man Davistica (ana)
Temp(°C)	Voltage(AC/60Hz)	Frequency(MHz)	Max. Deviation (ppm)
	102V	5729.997412	0.45
20	120V	5729.993621	1.11
	138V	5729.994197	1.01
Ref	erence Frequency: Lowes	st channel=5735MHz(20MHz fo	or QPSK)
Test	conditions	Facerra and (NALLE)	Man Davistica (ana)
Temp(°C)	Voltage(AC/60Hz)	Frequency(MHz)	Max. Deviation (ppm)
	102V	5734.996841	0.55
20	120V	5734.993624	1.11
	138V	5734.995476	0.79
		t channel=5730MHz(10MHz fo	r 64QAM)
Test	conditions	Frequency(MHz)	Max. Deviation (ppm)
Temp(°C)	Voltage(AC/60Hz)	1 requericy(ivii iz)	Max. Deviation (ppin)
	102V	5729.998541	0.25
20	120V	5729.993654	1.11
	138V	5729.996854	0.55
Refe	erence Frequency: Lowest	t channel=5735MHz(20MHz fo	r 64QAM)
Test	conditions	Frequency(MHz)	Max. Deviation (ppm)
Temp(°C)	Voltage(AC/60Hz)	1 Tequelley(IVII IZ)	iviax. Deviation (ppin)
	102V	5734.996785	0.56
20	120V	5734.994752	0.92
	138V	5734.998542	0.25

Temperature vs. Frequency Stability

		Lowest channel=5730MHz(10	VIHZ for QPSK)
Test con	ditions	Francisco (MIII-)	May Davieties (nom)
Voltage(AC/60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-30	5729.995475	0.79
	-20	5729.991457	1.49
	-10	5729.995583	0.77
	0	5729.996574	0.60
120V	10	5729.993595	1.12
	20	5729.992692	1.28
	30	5729.995742	0.74
	40	5729.991548	1.48
	50	5729.992467	1.31
Ref	erence Frequency:	Lowest channel=5735MHz(20)	MHz for QPSK)
Test conditions		F	Man Desiration (comm)
Voltage(AC/60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-30	5734.992564	1.30
	-20	5734.995748	0.74
	-10	5734.994573	0.95
	0	5734.991984	1.40
120V	10	5734.993251	1.18
	20	5734.994575	0.95
	30	5734.992364	1.33
			0.80
	40	1 57,34,995,388	
Defe	40 50	5734.995388 5734.993687	1.10
	50 erence Frequency: I	5734.993687 _owest channel=5730MHz(10M	1.10 1Hz for 64QAM)
Test con	50 erence Frequency: I ditions	5734.993687	1.10
	50 erence Frequency: I ditions Temp(°ℂ)	5734.993687 Lowest channel=5730MHz(10M	1.10 MHz for 64QAM) Max. Deviation (ppm)
Test con	50 erence Frequency: I ditions Temp(°C) -30	5734.993687 -owest channel=5730MHz(10M - Frequency(MHz) 5729.993657	1.10 Max. Deviation (ppm) 1.11
Test con	50 erence Frequency: I ditions Temp(°C) -30 -20	5734.993687 -owest channel=5730MHz(10M - Frequency(MHz) 5729.993657 5729.992455	1.10 MHz for 64QAM) Max. Deviation (ppm) 1.11 1.32
Test con	Frence Frequency: Iditions Temp(°C) -30 -20 -10	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.992455 5729.993665	1.10 MHz for 64QAM) Max. Deviation (ppm) 1.11 1.32 1.11
Test con Voltage(AC/60Hz)	Frence Frequency: Iditions Temp(°C) -30 -20 -10 0	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.992455 5729.993665 5729.994526	1.10 MHz for 64QAM) Max. Deviation (ppm) 1.11 1.32 1.11 0.96
Test con	Frence Frequency: Iditions Temp(°C) -30 -20 -10 0 10	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.992455 5729.993665 5729.994526 5729.992368	1.10 MHz for 64QAM) Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33
Test con Voltage(AC/60Hz)	50 Prence Frequency: I ditions Temp(°C) -30 -20 -10 0 10 20	5734.993687 -owest channel=5730MHz(10M - Frequency(MHz) 5729.993657 5729.992455 5729.993665 5729.994526 5729.992368 5729.994578	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95
Test con Voltage(AC/60Hz)	50 Prence Frequency: I ditions Temp(°C) -30 -20 -10 0 10 20 30	5734.993687 -owest channel=5730MHz(10N - Frequency(MHz) 5729.993657 5729.992455 5729.993665 5729.994526 5729.992368 5729.994578 5729.995842	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73
Test con Voltage(AC/60Hz)	50 Prence Frequency: I ditions Temp(°C) -30 -20 -10 0 10 20 30 40	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.993655 5729.993665 5729.994526 5729.994578 5729.995842 5729.993381	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16
Test con Voltage(AC/60Hz)	50 Prence Frequency: Iditions Temp(°C) -30 -20 -10 0 10 20 30 40 50	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.993655 5729.99365 5729.994526 5729.992368 5729.992368 5729.995842 5729.993381 5729.993475	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14
Test con Voltage(AC/60Hz) 120V	50 Prence Frequency: I ditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 Prence Frequency: I	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.993655 5729.99365 5729.994526 5729.994578 5729.995842 5729.99381 5729.993475 Lowest channel=5735MHz(20M	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14
Test con Voltage(AC/60Hz) 120V Refe Test con	rence Frequency: Iditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 rence Frequency: I	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.993655 5729.99365 5729.994526 5729.992368 5729.992368 5729.995842 5729.993381 5729.993475	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14
Test con Voltage(AC/60Hz) 120V	erence Frequency: Iditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 erence Frequency: Iditions Temp(°C)	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.993655 5729.99365 5729.994526 5729.994578 5729.994578 5729.995842 5729.99381 5729.993475 Lowest channel=5735MHz(20M Frequency(MHz)	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14 MHz for 64QAM) Max. Deviation (ppm)
Test con Voltage(AC/60Hz) 120V Refe Test con	Frence Frequency: Iditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 Frence Frequency: Iditions Temp(°C) -30	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.993655 5729.993655 5729.994526 5729.994578 5729.994578 5729.995842 5729.99381 5729.99381 5729.993475 Lowest channel=5735MHz(20M Frequency(MHz) 5734.993224	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14 MHz for 64QAM) Max. Deviation (ppm) 1.18
Test con Voltage(AC/60Hz) 120V Refe Test con	50 Prence Frequency: I ditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 Prence Frequency: I ditions Temp(°C) -30 -20	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.993655 5729.993665 5729.994526 5729.994578 5729.994578 5729.995842 5729.99381 5729.993475 Lowest channel=5735MHz(20M Frequency(MHz) 5734.993224 5734.996328	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14 Max. Deviation (ppm) Max. Deviation (ppm) 1.18 0.64
Test con Voltage(AC/60Hz) 120V Refe Test con	50 Prence Frequency: Iditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 Prence Frequency: Iditions Temp(°C) -30 -20 -10	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.993655 5729.993665 5729.994526 5729.994578 5729.994578 5729.99381 5729.99381 5729.993475 Lowest channel=5735MHz(20M Frequency(MHz) 5734.993224 5734.996328 5734.992389	1.10 MHz for 64QAM) Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14 MHz for 64QAM) Max. Deviation (ppm) 1.18 0.64 1.33
Test con Voltage(AC/60Hz) 120V Refe Test con Voltage(AC/60Hz)	50 erence Frequency: I ditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 erence Frequency: I ditions Temp(°C) -30 -20 -10 0	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.993655 5729.993665 5729.994526 5729.994578 5729.994578 5729.994578 5729.99381 5729.99381 5729.993475 Lowest channel=5735MHz(20M Frequency(MHz) 5734.993224 5734.996328 5734.992586	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14 MHz for 64QAM) Max. Deviation (ppm) 1.18 0.64 1.33 1.29
Test con Voltage(AC/60Hz) 120V Refe Test con	50 Prence Frequency: I ditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 Prence Frequency: I ditions Temp(°C) -30 -20 -10 0 10	5734.993687 -owest channel=5730MHz(10M - Frequency(MHz) 5729.993657 5729.993655 5729.993655 5729.994526 5729.994578 5729.994578 5729.995842 5729.99381 5729.99381 5729.993475 -owest channel=5735MHz(20M - Frequency(MHz) 5734.993224 5734.996328 5734.992389 5734.992586 5734.991784	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14 MHz for 64QAM) Max. Deviation (ppm) 1.18 0.64 1.33 1.29 1.43
Test con Voltage(AC/60Hz) 120V Refe Test con Voltage(AC/60Hz)	50 Prence Frequency: Iditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 Prence Frequency: Iditions Temp(°C) -30 -20 -10 0 10 20 20	5734.993687 Lowest channel=5730MHz(10M Frequency(MHz) 5729.993657 5729.993655 5729.993655 5729.994526 5729.994578 5729.994578 5729.995842 5729.99381 5729.99381 5729.993475 Lowest channel=5735MHz(20M Frequency(MHz) 5734.993224 5734.993289 5734.992586 5734.991784 5734.993695	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14 MHz for 64QAM) Max. Deviation (ppm) 1.18 0.64 1.33 1.29 1.43 1.10
Test con Voltage(AC/60Hz) 120V Refe Test con Voltage(AC/60Hz)	50 Prence Frequency: I ditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 Prence Frequency: I ditions Temp(°C) -30 -20 -10 0 10	5734.993687 -owest channel=5730MHz(10M - Frequency(MHz) 5729.993657 5729.993655 5729.993655 5729.994526 5729.994578 5729.994578 5729.995842 5729.99381 5729.99381 5729.993475 -owest channel=5735MHz(20M - Frequency(MHz) 5734.993224 5734.996328 5734.992389 5734.992586 5734.991784	1.10 Max. Deviation (ppm) 1.11 1.32 1.11 0.96 1.33 0.95 0.73 1.16 1.14 MHz for 64QAM) Max. Deviation (ppm) 1.18 0.64 1.33 1.29 1.43