FUNDAMENTOS DE TEORÍA DE LA COMPUTACIÓN 2025 Trabajo Práctico Nro 4

Las reducciones

Comentario: Ningún ejercicio reviste mayor dificultad.

Ejercicio 1. Considerando la reducción de HP a L_U descripta en clase, responder:

- a. Explicar por qué la función identidad, es decir la función que a toda cadena le asigna la misma cadena, no es una reducción de HP a Lu.
- b. Explicar por qué las MT M₂ generadas en los pares de salida (<M₂>, w), o bien paran aceptando, o bien loopean.
- c. Explicar por qué la función utilizada para reducir HP a Lu también sirve para reducir HP^c a Lu^c.
- d. Explicar por qué la función utilizada para reducir HP a Lu no sirve para reducir Lu a HP.
- e. Explicar por qué la siguiente MT M_f no computa una reducción de HP a L_U : dada una cadena válida (<M>, w), M_f ejecuta M sobre w, si M acepta entonces genera la salida (<M>, w), y si M rechaza entonces genera la cadena 1.

Ejercicio 2. Sabiendo que L∪ ∈ RE y L∪^C ∈ CO-RE:

- a. Probamos en clase que existe una reducción de L_U a L_{Σ^*} . En base a esto, ¿qué se puede afirmar con respecto a la ubicación de L_{Σ^*} en la jerarquía de la computabilidad?
- b. Se prueba que existe una reducción de L_{U}^{C} a L_{\varnothing} . En base a esto, ¿qué se puede afirmar con respecto a la ubicación de L_{\varnothing} en la jerarquía de la computabilidad?

Ejercicio 3. Sea el lenguaje $D_{HP} = \{w_i \mid M_i \text{ para a partir de } w_i\}$ (considerar el orden canónico). Encontrar una reducción de D_{HP} a HP. Comentario: hay que definir la función de reducción y probar su total computabilidad y correctitud.

Ejercicio 4. Sean TAUT y NOSAT los lenguajes de las fórmulas booleanas sin cuantificadores, respectivamente, tautológicas (satisfactibles por todas las asignaciones de valores de verdad), e insatisfactibles (ninguna asignación de valores de verdad las satisface). Encontrar una reducción de TAUT a NOSAT. *Comentario: hay que definir la función de reducción y probar su total computabilidad y correctitud*.

Ejercicio 5. Se prueba que existe una reducción de L_U^C a L_{Σ^*} (y así, como $L_U^C \notin RE$, entonces se cumple que $L_{\Sigma^*} \notin RE$). La reducción es la siguiente. Para toda w: $f((<M_1>, w)) = <M_2>$, tal que M_2 , a partir de su entrada v, ejecuta |v| pasos de M_1 a partir de w, y acepta sii M_1 no acepta. Probar que la función definida es efectivamente una reducción de L_U^C a L_{Σ^*} . Comentario: hay que probar su total computabilidad y correctitud.