Normal Distribution

STAT 330 - Iowa State University

Outline

In this lecture, students will learn about the Normal Distribution. They will be introduced to the Standard Normal Table (z-table) that will be used to find probabilities for a Normal random variable

Normal Distribution

Normal Distribution

Setup: The normal distribution is commonly used to model a wide variety of variables (weight, height, temperature. voltage, etc) due to its "bell-shaped" and symmetric shape.

If a random variable X follows a *normal distribution*,

$$X \sim N(\mu, \sigma^2)$$

where μ is the mean, and $\sigma^2>0$ is the variance

• Probability Density Function (pdf)

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 for $-\infty < x < \infty$

- Expected Value: $\mathbb{E}(X) = \mu$
- Variance: $Var(X) = \sigma^2$

Normal PDF

Figure 1: PDFs for normal distribution with various μ and σ^2

 μ determines the location of the peak in the x-axis, σ^2 determines the "width" of the bell shape.

Normal CDF

Cumulative Distribution Function (cdf)

$$F_X(t) = \int_{-\infty}^t f(x)dx$$
 (no closed form)

- \rightarrow The normal cdf does not have a closed form expression.
- \rightarrow Use cdf table (z-table) of standard normal distribution $N(\mu=0,\sigma^2=1)$ to obtain probabilities.
- \rightarrow We need to *standardize* any normal random variable, X, into standard normal random variable, Z.

Standardization of Normal Distribution

Let $X \sim N(\mu, \sigma^2)$. Then,

- 1. $Z = \frac{X \mu}{\sigma}$ is a standard normal random variable
- 2. $Z \sim N(0,1)$ (normal distribution with $\mu = 0$, $\sigma^2 = 1$)

Standardization

Example 1: Suppose $X \sim N(20, 100)$. What is the probability that X is less than 23.5?

To find this probability, we usually ...

- Integrate the PDF (too difficult)
- Plug into CDF (no closed form for CDF of X)

Instead we standardize X, and obtain probabilities using the standard normal cdf table (z-table)

- The standardized R.V is $Z = \frac{X-\mu}{\sigma} = \frac{X-20}{\sqrt{100}} \sim N(0,1)$
- The standardized observation is $z = \frac{x-\mu}{\sigma} = \frac{23.5-20}{\sqrt{100}} = 0.35$
- $\mathbb{P}(X < 23.5) = \mathbb{P}(Z < 0.35)$ (obtain this from z-table)

Standard Normal Distribution

Standard Normal Distribution

Suppose a random variable, X, follows a $N(\mu, \sigma^2)$ distribution.

Then, $Z = \frac{X - \mu}{\sigma}$ follows a standard normal distribution

$$Z \sim N(0,1)$$

• Probability Density Function (pdf)

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
 for $-\infty < z < \infty$

• Expected Value:

$$\mathbb{E}(Z) = E\left(\frac{X - \mu}{\sigma}\right) = \frac{\mathbb{E}(X) - \mu}{\sigma} = \frac{\mu - \mu}{\sigma} = 0$$

• Variance:

$$Var(Z) = Var\left(\frac{X - \mu}{\sigma}\right) = Var\left(\frac{X}{\sigma}\right) = \frac{1}{\sigma^2}Var(X) = \frac{\sigma^2}{\sigma^2} = 1$$

Standard Normal CDF

• Cumulative Distribution Function (cdf)

$$F_Z(t) = \int_{-\infty}^t f(z)dz = \Phi(t)$$
 (no closed form)

- $\rightarrow\,$ Just like the normal cdf, the standard normal cdf does not have a closed form expression.
- ightarrow The cdf of N(0,1) random variable is denoted by $\Phi(t)$ (or more commonly $\Phi(z)$)
- \rightarrow The values of the cdf, $\Phi(z)$, are found in the standard normal table (*z*-table)

Z-table (Standard Normal Table)

Z-table

- Z-Table gives proportion of normal curve less than a particular z score
 - Gives left-hand area (dark blue shaded region)
 - This is same as the *percentile* value for z
 - Can be referred to as areas, proportions, or percentiles.

• Denoted P(Z< z)

Proportion of area less than z=0.35 Denoted as "P(Z<0.35)"

How to read the Z-table

- z values range from -3.99 to 3.99 on the z-table
- Row ones and tenths place for z
- Column hundredths place for z
- P(Z < z) found <u>inside</u> z-table

	Second decimal place in z								
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06		
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	199	0.5239		
0.1	0.5398	0.5438	0,5478	חבה	obability u.6331	596	0.5636		
0.2	0.5793	0.5832	hand	areal P.		87 ود.ر	0.6026		
0.3	0.6179	o. Le	rt-IIu.	P(Z < Z)	u.6331	0.6368	0.6406		
0.4	0.6554	0.6	J40	0,6664	0.6700	0.6736	0.6772		

How to read the Z-table

- Look up z = 0.35 in the margins on z-table
 Percentile /left-hand area is corresponding
- Percentile/left-hand area is corresponding value inside z-table

	Second decimal place in z						
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.519	9 0.5239
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.559	6 0.5636
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.598	7 0.6026
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.636	0.6406
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.673	6 0.6772
	P(7 < 0.35)						

Examples

Z-table Practice

Suppose $Z \sim N(0,1)$

1.
$$\mathbb{P}(Z < 1)$$

2.
$$\mathbb{P}(Z > -2.31)$$

Z-table Practice

Suppose $Z \sim N(0,1)$

3.
$$\mathbb{P}(0 < Z < 1)$$

4. $\mathbb{P}(|Z| > 2)$

Normal Distribution Example

Suppose $X \sim N(1,2)$, and we want to find $\mathbb{P}(1 < X < 2)$.

Normal Distribution Example

Recap

Students should now be familiar with the Normal distribution. They should be able to use the z-table to find probabilities for a Normal random variable.