ECO208

R and RStudio

Week 5 | October 21, 2022

今日もR三昧

でもその前に回帰分析、 覚えてます?

Let's review

回帰分析 is about:

A: scoring points ##

B: creating charts W

C: relationships 🎇

independent variable 説明変数

dependent variable 目的変数

Pokemon's caught 捕まえたポケモン数

Distance walked 歩いた距離

プラスかマイナス?

仮設検定

帰無仮説 【null hypothesis】

 $H_0=$ 駅までの徒歩分数は家賃に全く影響がないcoefficient回帰係数 $eta_1=0$

対立仮説【alternative hypothesis】

 $H_1= 駅までの徒歩分数は家賃に影響がある$

$$\beta_1 \neq 0$$

まずは回帰式を作ろう

$$Y = a + bX$$

家賃 (万円) = a + b * 駅まで徒歩分数

	A	В	C	D	E	F	G	Н	
L	概要								
2									
3	回帰統計								
ļ	重相関 R	0.34046331							
,	重決定 R2	0.11591527							
)	補正 R2	0.08542959							
7	標準誤差	1.63077684							
3	観測数	31							
)									
0	分散分析表								
1		自由度	変動	分散	測された分散.	有意F			
2	回帰	1	10.1119243	10.1119243	3.80228566	0.06090971			
3	残差	29	77.1235596	2.65943309					
4	合計	30	87.2354839						
5									
6		係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 95.0%	上限 95.0%
7	切片	10.0908723	0.94352867	10.6948231	1.407E-11	8.16113945	12.0206051	8.16113945	12.0206051
8	minutes	-0.1252126	0.06421338	-1.949945	0.06090971	-0.2565437	0.00611855	-0.2565437	0.00611855

家賃 (万円) = 10.09 - 0.125 x 駅まで徒歩分数

すなわち

南柏の駅からの徒歩分数が1分増えるごとに家賃が1250円減る

では「a」(切片)は何?

これは「x」がゼロの時の数値。

すなわち、駅から徒歩分数がゼロの賃貸(ありえますか?)の場合、家賃は10.09万円

How good is this model?

R2, t-statistic, p-value

R-Squared: How well does it fit?

R2 = 1 (perfect fit
$$\stackrel{\ \ \ \ }{\Leftrightarrow}$$
)
R2 = 0 (bad fit $\stackrel{\ \ \ \ }{\Leftrightarrow}$)

ではこの分析のR2乗は?

	A	В	C	D	E	F	G	Н	1
1	概要								
2									
3	回帰統計								
4	重相関 R	0.34046331							
5	重決定 R2	0.11591527	(کنتی)						
6	補正 R2	0.08542959	-						
7	標準誤差	1.63077684							
3	観測数	31							
9									
0	分散分析表								
1		自由度	変動	分散	測された分散.	有意 F			
2	回帰	1	10.1119243	10.1119243	3.80228566	0.06090971			
3	残差	29	77.1235596	2.65943309					
4	合計	30	87.2354839						
5									
6		係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 95.0%	上限 95.0%
7	切片	10.0908723	0.94352867	10.6948231	1.407E-11	8.16113945	12.0206051	8.16113945	12.0206051
8	minutes	-0.1252126	0.06421338	-1.949945	0.06090971	-0.2565437	0.00611855	-0.2565437	0.00611855

「目的変数である家賃は値変動を説明変数である徒歩分数は11.59%しか説明できていない。」

What about the P value?

P値で説明変数(徒歩分数)が目的変数(家賃)に対して関係 があるかどうかを確認する P値が優位水準0.05未満であれば、 「説明変数が目的変数に有意に影響している」と判断ができる。

要するに、この関係性はランダムではないので、帰無仮説 【null hypothesis】をrejectすることができる。

でも...

	Α	В	С	D	E	F	G	Н	
1	概要								
2									
3	回帰統計								
4	重相関 R	0.34046331							
5	重決定 R2	0.11591527							
6	補正 R2	0.08542959							
7	標準誤差	1.63077684							
8	観測数	31							
9									
10	分散分析表								
11		自由度	変動	分散	測された分散	有意 F			
12	回帰	1	10.1119243	10.1119243	3.80228566	0.06090971			
13	残差	29	77.1235596	2.65943309					
14	合計	30	87.2354839						
15									
16		係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 95.0%	上限 95.0%
17	切片	10.0908723	0.94352867	10.6948231	1.407E-11	8.16	12.0206051	8.16113945	12.0206051
18	minutes	-0.1252126	0.06421338	-1.949945	0.06090971	-0.2565437	0.00611855	-0.2565437	0.00611855

うわ! 6.09%!

微妙~

微妙でもオッケーの判断はあなた次第。 有意水準を上げてもいい。

要するに:

「p値の有意水準を 0.1 だと、説明変数(徒歩分数)が目的変数(家賃)に対して有意に影響していることが言える。」

At 94% level of confidence that relationship is not due to random chance. That relationship actually exists in the housing market.

では、これをRStudioで やってみよう!

Let's get started

Launch R Studio (RStudioを使おう)

Open RStudio, go to File → New Project

Create a new project

Change "W3" to "W4"

Pause: Are we all here?

Create an R script file R Scriptファイルを作成

Rで回帰分析

Load the data

```
# データーを取得
chiba <- read.csv("data/chiba rent.csv")

# データーを表示
head(chiba)

# データーの統計
summary(chiba)
```

データーはGoogle Classroomからダウンロード

attach the data

```
# attach the dataset attach(chiba)

# 散布図 plot(minutes, rent) # x,y
```

散布図に近似直線(回帰直線)を付ける

```
abline(lm(rent~minutes), col="red")
```

*注意! lm(y~x) ではyは目的変数、xは説明変数なので、 plot (x,y) とは逆

式は?

lm 関数を使おう

lm(y~x, data = dataset) #yは目的変数、xは説明変数

回帰分析を実行 lm(rent~minutes)

lm output

```
> lm(rent~minutes)
      Call:
      lm(formula = rent ~ minutes)
      Coefficients:
      (Intercept)
                    minutes
         10.0909
                    -0.1252
家賃(万円) - a + b x 駅まで徒歩分数
```

回帰式

家賃(万円)= 10.0909 - 0.1252 x 駅まで徒歩分数

すなわち

南柏の駅からの徒歩分数が1分増えるごとに家賃が1250円減る

回帰分析の summary()

これだけじゃ足りないので...

```
# 変数に入れる
slr = lm(rent~minutes)

# 回帰分析のsummary結果
summary(slr)
```

summary output

R-Squared: How well does it fit?

R2 = 1 (perfect fit
$$\stackrel{\ \ \ \ }{\Leftrightarrow}$$
)
R2 = 0 (bad fit $\stackrel{\ \ \ \ }{\Leftrightarrow}$)

ではこの分析のR2乗は?

```
> summary(slr)
Call:
lm(formula = rent ~ minutes)
Residuals:
   Min
          10 Median 30 Max
-2.9631 -0.8883 -0.3379 0.4495 2.9134
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
minutes -0.12521 0.06421 -1.95 0.0609.
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 1.631 on 29 degrees of freedom
Multiple R-squared: 0.1159, Adjusted R-squared: 0.08543
F-statistic: 3.802 on 1 and 29 DF, p-value: 0.06091
```

すなわち

「目的変数である家賃は値変動を説明変数である徒歩分数は1 1.59%しか説明できていない。」

P値は?

```
Call:
lm(formula = rent ~ minutes)
Residuals:
   Min
           10 Median 30 Max
-2.9631 -0.8883 -0.3379 0.4495 2.9134
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
minutes -0.12521 0.06421 -1.95 0.0609 <del><</del>
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Residual standard error: 1.631 on 29 degrees of freedom
Multiple R-squared: 0.1159, Adjusted R-squared: 0.08543
F-statistic: 3.802 on 1 and 29 DF, p-value: 0.06091
```

単回帰分析の場合はこの値は変わらない

要するに:

「p値の有意水準を 0.1 で設定すると、説明変数(徒歩分数)が目的変数(家賃)に対して有意に影響していることが言える。」

```
# データーを取得
chiba <- read.csv("data/chiba rent.csv")</pre>
# attach する
attach(chiba)
# 散布図
plot(minutes, rent)
# 散布図に近似直線(回帰直線)を付ける
abline(lm(rent~minutes), col="red")
# 回帰分析を実行
lm(rent~minutes)
# 変数に入れる
result = lm(rent~minutes)
# 回帰分析のsummary結果
summary(result)
```

では、it's group time!