Série 8 du mardi 8 novembre 2016

Exercice 1 (* A rendre).

Soit $f:[0,\infty[\to\mathbb{R}$ une fonction uniformément continue. Montrer qu'il existe deux constantes α et β telles que pour tout $x\in[0,\infty[$:

$$|f(x)| \le \alpha x + \beta.$$

Indications:

- 1°) Montrer qu'il existe $\delta > 0$ tel que si $x, y \in [0, \infty[, |x y| \le \delta \text{ alors } |f(x) f(y)| \le 1.$
- 2^{o}) Vérifier que $|f(n\delta) f(0)| \leq n, \forall n = 0, 1, \dots$
- 3°) Montrer que $|f(x)| \le 1 + m + |f(0)|$ avec $m = \left[\frac{x}{\delta}\right]$ où [y] dénote la partie entière de $y \in \mathbb{R}$.

Exercice 2.

Soit $a \in \mathbb{R}$ et $f:]a, \infty[\to \mathbb{R}$ une fonction continue. On suppose que

$$\lim_{\substack{x \to a \\ >}} f(x) = \ell_1 \quad \text{et} \quad \lim_{x \to \infty} f(x) = \ell_2.$$

Montrer que f est uniformément continue.

Exercice 3.

Soient a < b et $f : [a, b] \rightarrow [a, b]$ une fonction croissante.

- 1) Montrer que f admet un point fixe.
- 2) Que devient ce résultat si f est supposée décroissante?

Indication: Considérer l'ensemble $E = \{x \in [a,b] : f(x) \le x\}$ et montrer que $E \ne \emptyset$ et que $c = \inf E$ vérifie f(c) = c.

Exercice 4.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique, continue. On pose $g(x) = f(x+\pi) - f(x)$.

- 1.) Montrer qu'il existe $\alpha \in \mathbb{R}$ tq $g(\alpha) = 0$.
- 2.) En déduire que sur l'équateur terrestre, il y a toujours au moins 2 points diamétralement opposés avec la même température.