Sistem Informasi Aplikasi Penilaian Sidang Skripsi Berbasis Web di STMIK Bina Sarana Global

Arni Retno Mariana¹, Agus Budiman², Nina Septiana³

^{1,2}Dosen STMIK Bina Sarana Global, ³Mahasiswa STMIK Bina Sarana Global
Email: ¹arnie@stmikglobal.ac.id, ²agusbudiman@stmikglobal.ac.id, ³ninaseptiana@stmikglobal.ac.id

Abstrak - Bagian Prodi Sekolah Tinggi Manajemen dan Ilmu Komputer (STMIK) Bina Sarana Global yang berlokasi di Jl. Gatot Subroto No. 43-45, Cimone Tangerang, merupakan salah satu bagian yang belum tersistem untuk melakukan penginputan nilai sidang skripsi. Sistem yang berjalan saat ini vaitu dalam penginputan nilai skripsi dan pembuatan berita acara sidang skripsi masih menggunakan Ms.Excel. Kesulitan lain yang dihadapi adalah keterlambatan dosen pembimbing dalam pemberian nilai bimbingan skripsi. Untuk mengatasi masalah tersebut, perlu diupayakan penyelesaiannya, dan menurut penulis, mengembangkan suatu sistem informasi. Pemodelan yang digunakan adalah pemodelan UML yang berisi perancangan dan analisa dari sistem sebelumnya. Dalam pengembangan sistem Informasi penilaian sidang skripsi akan menggunakan Aplikasi berbasis Web guna mengoptimalkan permasalahan pengelolaan informasi terutama untuk penyimpanan data mahasiswa dan nilai sidang skripsi, karena lemahnya pengelolaan sistem informasi data mahasiswa dan nilai sidang skripsi tentunya akan merugikan bagian prodi.

Kata kunci—Sidang Skripsi, UML, Aplikasi Web.

I. PENDAHULUAN

Sistem informasi berbasis komputer kini menjadi suatu hal yang primer bagi kebutuhan pemenuhan kebutuhan informasi. Banyak bidang yang telah memanfaatkan sistem informasi berbasis komputer sebagai sarana untuk mempermudah pekerjaan, mulai dari kalangan pebisnis sampai dengan kalangan akademisi/pendidikan memanfaatkan komputer sebagai alat bantu untuk mempermudah pekerjaan.

Pada era globalisasi sekarang ini, teknologi informasi yang telah berkembang sangat pesat. Akibat perkembangan teknologi yang semakin pesat ini, maka teknologi satu dengan yang lainnya menjadi saling terkait. Perbedaan-perbedaan yang terjadi dalam pengumpulan, pengiriman, penyimpanan, dan pengolahan informasi telah dapat diatasi. Dalam hal ini memungkinkan pengguna dapat memperoleh informasi secara tepat dan akurat.

Bagian Prodi adalah suatu bagian yang memiliki sarana untuk mendapatkan informasi yang berguna bagi proses Mahasiswa mempersiapkan skripsi. Pada saat ini ada penerapan sistem akademik yang sudah canggih yaitu dengan menerapkan suatu sistem komputerisasi, tapi juga ada yang belum menerapkannya, dikarenakan masih ada beberapa pertimbangan. Dengan adanya sistem komputerisasi akan memberikan kemudahan bagi para pengguna didalam pengolahan data dan informasi menjadi efisien. Bagian Prodi Sekolah Tinggi Manajemen dan Ilmu Komputer (STMIK) Bina Sarana Global yang berlokasi di Jl. Gatot Subroto No.

43-45, Cimone Tangerang, merupakan salah satu kampus yang melakukan proses manual untuk penginputan data mahasiswa dan nilai sidang skripsi. Untuk mengatasi masalah tersebut. diupavakan penyelesaiannya, dan menurut penulis, Bagian Prodi Kampus STMIK Bina Sarana Global perlu mengembangkan suatu sistem informasi guna mengoptimalkan pengelolaan informasi terutama untuk permasalahan penyimpanan data mahasiswa dan nilai, karena lemahnya pengelolaan sistem informasi data mahasiswa dan nilai tentunya akan merugikan bagian akademik sebagai akibat dari pengambilan keputusan yang kurang tepat, dan diharapkan dengan adanya sistem informasi akademik tersebut, permasalahan - permasalahan yang terjadi pada bagian Akademik STMIK Bina Sarana Global akan dapat diminimalisirkan.

II. METODOLOGI PENELITIAN

Metodologi yang digunakan untuk membuat aplikasi ini adalah salah satu model rekayasa perangkat lunak yaitu model air terjun (waterfall) yang juga disebut sebagai model sekuensial linier atau siklus kehidupan klasik (classic life cycle). Waterfall mengusulkan sebuah pendekatan kepada perkembangan perangkat lunak yang sistematik dan sekuensial yang mulai pada tingkat dan kemajuan sistem pada seluruh analisis, desain, kode, pengujian, dan pemeliharaan. Model ini telah diperoleh dari proses engineering lainnya, menawarkan cara pembuatan perangkat lunak secara lebih nyata [1].

Gambar 1. Model Waterfall

Unified Modeling Language (UML) adalah sebuah bahasa pemodelan yang telah menjadi standar dalam industri software untuk visualisasi, merancang, dan mendokumentasikan sistem perangkat lunak [2]. Bahasa Pemodelan UML lebih cocok untuk pembuatan perangkat lunak dalam bahasa pemrograman berorientasi objek (C, Java, VB.NET, PHP), namun demikian tetap dapat digunakan pada bahasa pemrograman prosedural [3]. UML akan digunakan

pada tahap analisa dan desain. Desain yang dihasilkan berupa diagram-diagram UML yang akan diterjemahkan menjadi kode program pada tahap implementasi. UML terdiri atas 13 jenis diagram resmi seperti tertulis dalam tabel 1.1 [4].

No.	Diagram	Kegunaan
1.	Activity	Perilaku prosedural dan parallel
2.	Class	Class, Fitur, dan relasinya
3.	Communication	Interaksi diantara objek. Lebih menekankan ke link
4.	Component	Struktur dan koneksi dari komponen
5.	Composite structure	Dekomposisi sebuah class pada saat runtime
6.	Deployment	Penyebaran / instalasi ke klien
7.	Interaction overview	Gabungan sequence dan activity diagram
8.	Object	Contoh konfigurasi dari contoh-contoh
9.	Package	Struktur hierarki saat kompilasi
10.	Sequence	Interaksi antar objek. Lebih menekankan pada urutan
11.	State machihne	Bagaimana event mengubah sebuah objek selama aktif
12.	Timing	Interaksi antar objek. Lebih menekankan pada waktu
13.	Use case	Bagaimana user berinteraksi dengan sebuah sistem

Tabel 1. Jenis Diagram resmi UML

Sistem adalah kumpulan atau *group* dari sub system atau bagian atau komponen apapun baik fisik yang saling berhubungan satu sama lain dan bekerja sama secara harmonis untuk mencapai satu tujuan tertentu [5].

Sistem informasi adalah suatu sistem yang dibuat oleh manusia yang terdiri dari komponen-komponen dalam organisasi untuk mencapai suatu tujuan yaitu menyajikan informasi [6].

Skripsi adalah istilah yang digunakan di Indonesia untuk mengilustrasikan suatu karya tulis ilmiah berupa paparan tulisan hasil penelitian sarjana S1 yang membahas suatu permasalahan/fenomena dalam bidang ilmu tertentu dengan menggunakan kaidah-kaidah yang berlaku. [7]

Proses penyusunan skripsi berbeda-beda antara satu kampus dengan yang lain. Namun umumnya, proses penyusunan skripsi adalah sebagai berikut:

- · Pengajuan judul skripsi
- Pengajuan proposal skripsi
- Seminar proposal skripsi
- Penelitian

Setelah penulisan dianggap siap dan selesai, mahasiswa mempresentasikan hasil karya ilmiahnya tersebut pada Dosen Penguji (sidang tugas akhir).[7]

Mahasiswa yang hasil ujian skripsinya diterima dengan revisi, melakukan proses revisi sesuai dengan masukan Dosen Penguji. Terdapat juga proses penyusunan skripsi yang cukup ringkas sebagai berikut:

- Pengajuan judul skripsi/meminta topik skripsi dari dosen
- Penelitian dan bimbingan skripsi
- Seminar
- Sidang
- Revisi

Penilaian pendidikan adalahyproses pengumpulan dan pengolahan informasivuntuk menentukan pencapaian hasil belajar peserta didik. Berdasarkan pada PP. Nomor 19 tentang Standar Nasional Pendidikan pasal 64 ayat (1) di jelaskan bahwa penilaian hasil belajar oleh pendidikan dilakukan secara berkesinambunganuntuk memantau proses, kemajuan,

dan perbaikan hasil belajar dalam bentuk ulangan harian, ulangan tengah semester.[8]

III. APLIKASI PERANCANGAN

Rancang Bangun Sistem Informasi Aplikasi Penilaian Sidang Skripsi ini menggunakan bahasa pemodelan UML (*Unified Modeling Language*). Mulai dari pembuatan rancangan *Usecase* nya hingga *Deployment Diagram*nya. Secara umum, proses tersebut dimulai dari penentuan arsitektur utama dari sistem yang ingin dirancang dan dibuat diagram alur proses pendaftaran sebagai Prodi (*Prodiistrator/Operator*) dan dilanjutkan alur proses pengajuan dan pendaftaran secara online oleh mahasiswa sebagai *Actor*.

- a. Rancangan Alur Akses *User* ke *Server Web*Perancangan ini, di fungsikan sebagai model koneksi alur akses antar User ke server Web. Prosesnya dimulai dari akses client dengan melakukan *browser* ke *Server web*, yang kemudian *reques*t dari *user/client* tersebut dikirim ke Server database. Setelah itu *Server* menjawab/merespon segera permintaan dari *Client* oleh *Server web* tadi.
 - Dan setelah menerima respon dari server database yang berisi konten/informasi yang terdapat dalam database, kemudian server web langsung menjawab/merespon request dari user/client tadi.
- b. Rancang-Bangun Sistem Kerja Penilaian Skripsi Untuk alur kerja sistem penilaian skripsi juga sama halnya seperti pada Rancangan alur kerja antara *User* ke *Server*, hanya saja pada rancang-bangun ini lebih detail, dan visualisasi terhadap siapa saja yang menggunakan sistem penilaian skripsi ini dan siapa saja yang berperan didalam menjalankan sistem tersebut.

A. Gambaran Sistem

Gambaran sistem secara umum dapat dilihat pada gambar dibawah ini:

Gambar 2. Use Case Diagram

ISSN: 2088 – 1762 Vol. 3 No. 2 / September 2013

Sistem informasi Penilaian skripsi ini terdiri dari 4 (empat) *actor*, yaitu:

- 1. Mahasiswa, orang yang sudah melakukan registrasi dan bisa melakukan pendaftaran skripsi secara *online*.
- Dosen pembimbing, yaitu orang yang melakukan kegiatan bimbingan terhadap mahasiswa.
- 3. Dosen penguji, yaitu orang yang memberikan nilai saat berlangsung sidang skripsi
- 4. Prodi, yaitu orang yang bertugas untuk menginput data serta mengawasi berjalannya kegiatan bimbingan.

B. Pemodelan Data

Class Diagram adalah sebuah spesifikasi yang jika di menghasilkan sebuah instansiasi akan objek merupakan inti dari pengembangan dan desain berorientasi Diagram menggambarkan obiek. Class keadaan (atribut/properti) suatu sistem, sekaligus menawarkan layanan untuk memanipulasi keadaam tersebut (metoda/fungsi).

Class Diagram menggambarkan struktur dan deskripsi Class, Package, dan dan Object beserta hubungan satu sama lain seperti containment, pewarisan, asosiasi, dan lain-lain. Berikut adalah Class Diagram yang dibutuhkan dalam Rancang Bangun Sistem Informasi Penilaian Skripsi berbasis Web Pada STMIK Bina Sarana Global.

Gambar 3. Pemodelan Database

C. Perancangan

Sebuah sequence diagram secara khusus menjabarkan aktifitas sebuah skenario tunggal. Diagram tersebut menunjukkan sejumlah objek contoh dan pesan-pesan yang melewati objek-objek di dalam use case diagram [8]. Sequence diagram memperlihatkan tahap demi tahap apa yang seharusnya terjadi untuk menghasilkan sesuatu di dalam use case. Dari bentuk use case yang telah digambarkan sebelumnya, dapat dibuat sequence diagram yang tampak pada Gambar 4.

Gambar 4. Squence Diagram

Pada Gambar merupakan Sequence Diagram Penilaiannya yang menggambarkan proses penilaiaan oleh pembimbing dan penguji dimana Prodi memiliki penuh. Prosesnya dimulai dengan dosen kontrol pembimbing atau penguji mencari data mahasiswa dengan menginput data id mahasiswa dan nama mahasiswa, lalu memberikan penilaian dari hasil sidang. Dalam sistem ini Prodi juga memiliki akses penuh dalam perubahan atau penambahan nilai, hal ini untuk menjaga jika dosen mengalami halangan atau sistem down.

D. Implementasi dan Pengujian

Setelah melakukan analisis dan perancangan terhadap aplikasi penilaian sidang skripsi, tahapan selanjutnya adalah implementasi dan pengujian. Pada tahapan implementasi terdapat dua cakupan yaitu spesifikasi kebutuhan sistem yang meliputi *hardware* dan *software*, implementasi yang meliputi proses pengkodean, disain antarmuka dan hal-hal yang berhubungan dengan pengujian aplikasi.

Berikut spesifikasi kebutuhan *hardware* dan *software* yang dibutuhkan dalam sistem ini:

Perangkat keras yang dibutuhkan *server* berdasarkan kebutuhan minimal yang harus terpenuhi antara lain :

- a. Menggunakan minimal prosessor Intel Pentium Core 2 duo.
- b. Menggunakan RAM minimal 1 GB.
- c. Tersedianya Hard Drive 250GB untuk media penyimpanan.
- d. *Mouse*, *Keyboard*, dan *Monitor* sebagai peralatan antarmuka.

Untuk pengembangan perangkat lunak ini digunakan dreamweaver 4 Bahasa pemograman PHP dreamweaver 4 dipilih sebagai perangkat pengembangan interface karena menyediakan fasilitas yang dapat melakukan proses multitasking pada sistem operasi Windows. Sedangkan MySQL digunakan sebagai pengembang dalam pembuatan database karena pembuatan tabel dilakukan dengan cara New Table. Dan untuk web server menggunakan xammp 1.7.7 sedangkan untuk web browser menggunakan mozilla firefox. Adapun perangkat lunak yang digunakan sistem dibagi menjadi dua spesifikasi, yaitu sebagai berikut:

Spesifikasi minimum perangkat lunak (software) untuk komputer terdiri dari :

- 1. Windows Seven dan Microsoft Office 2007 sebagai sistem operasi dan program tambahan dalam pembuatan draft.
- 2. Program PHP *dreamweaver* 4 untuk membuat sistem informasi penilaian skripsi berbasis web pada STMIK Bina Sarana Global.

JURNAL SISFOTEK GLOBAL

- 3. Microsoft MySQL sebagai database untuk menyimpan data.
- 4. Xammp 1.7.7 sebagai web server.
- 5. Mozilla firefox sebagai browser.

Halaman Utama SISTEM INFORMASI PENILAIAN SKRIPSI Login Harms - Login Please Bit out the following form with your login credentials: Fields with * are required. Username * Password * Login Copyrige 8 2814 Al Rigins Reserved.

Gambar. 5. Tampilan Halaman Utama

Form Login digunakan untuk membedakan hak akses pengguna. Melalui form Login ini pengguna yang boleh masuk sistem adalah pengguna yang memiliki Username dan Password.

Halaman Menu Utama Admin dan Prodi

Gambar. 6. Halaman Menu Admin atau Prodi

Halaman menu utama admin dan prodi berfungsi untuk memasukan nama ataupun biodata dosen pembimbing maupun dosen penguji.

Halaman Utama Mahasiswa

Gambar 7. Halaman Utama Mahasiswa

ISSN: 2088 – 1762 Vol. 3 No. 2 / September 2013

Halaman pengajuan ini terdapat dalam halaman mahasiswa,pengajuan ini berfungsi untuk pengajuan judul skripsi secara *online*. Terdapat 3 judul skripsi yang akan diajukan, setelah diisi oleh mahasiswa, tahap selanjutnya adalah menunggu persetujuan dari kaprodi masing masing Prodi.

Halaman Utama Penguji

Gambar. 4.4. Halaman Utama Dosen Penguji

Halaman ini berfungsi untuk menginformasikan mahasiswa yang sudah siap untuk meengikuti sidang skripsi.

Halaman bimbingan

Gambar. 8. Halaman Utama Bimbingan Mahasiswa

Halaman utama bimbingan ini dapat diakses oleh mahasiswa dan dosen pembimbingnya, halaman ini berfungsi untuk bimbingan secara online atau mengirimkan pesan kepada dosen peembimbing ataupun sebaliknya.

ISSN: 2088 – 1762 Vol. 3 No. 2 / September 2013

Halaman Nilai Bimbingan

Gambar 9. Halaman Utama Hasil Nilai Bimbingan

Halaman nilai bimbingan ini dapat diakses oleh dosen pembimbing, berfungsi untuk mengisi nilai bimbingan secara online terhadap mahasiswa yang dibimbingnya. Sehingga dengan cara seperti ini akan lebih memudahkan prodi.

IV. KESIMPULAN

- 1. Berdasarkan hasil penelitian prosedur yang digunakan dalam penginputan komponen nilai skripsi mahasiswa adalah dengan mengumpulkan data mahasiswa yang mengajukan skripsi, menentukan dosen pembimbing dan penguji kemudian memasukan nilai yang sudah diberikan oleh dosen pembimbing dan dosen penguji lalu merekapnya menjadi laporan dan membuatkan berita acara sidang skripsi yang akan diberikan kepada mahasiswa yang sudah melakukan sidang skripsi. Semua proses pengolahan data sudah dilakukan secara komputerisasi yaitu menggunakan Ms.Excel dengan penyimpanan file yang terpisah sehingga belum memiliki database yang terintegrasi.
- 2. Kendala kendala yang sering terjadi dalam penginputan nilai sidang skripsi yaitu keterlambatan dosen pembimbing dalam memberikan nilai bimbingan sehingga membuat Prodi kesulitan dalam merekap nilai sidang skripsi. Dan belum adanya database yang terintegrasi, karna pengelolaan data dan penyimpanan file masih terpisah. Dari segi waktu membutuhkan waktu yang lama untuk menginput nilai, membuat berita acara sidang skripsi hingga pelaporannya.
- 3. Berdasarkan hasil penelitian yang telah dilakukan oleh perancang dan user di bagian Prodi bahwa solusi pemecahan terhadap kendala - kendala yaitu dengan membuat sistem informasi aplikasi penilaian sidang skripsi berbasis web. Dengan adanya sistem permasalahan yang ada dapat diminimalisir. Dari segi waktu penginputan nilai lebih cepat, karena dosen pembimbing dan dosen penguji yang akan menginputkan langsung nilai ke dalam sistem, ketika nilai sudah masuk ke dalam sistem, sistem akan membuat berita acara sidang dan laporan secara otomatis. Karena sistem ini berbasis web, keunggulannya adalah tidak ada lagi permasalahan dalam waktu penginputan, karena dapat diakses kapan saja dan dimana saja. Dan penyimpanan data sudah menggunakan satu database sehingga tidak terpisah – pisah dan keamanan data lebih tinggi.

V. SARAN

Berdasarkan hasil fase awal hingga akhir perancangan Sistem Informasi Penilaian Skripsi berbasis web ini, penulis sangat berharap agar semua ini dapat berguna bagi banyak pihak terutama pihak bagian administrasi akademik dan kemahasiswaan, dosen dan mahasiswa pada STMIK Bina Sarana Global. Ada beberapa saran atas hasil akhir yang di peroleh yaitu:

Selanjutnya untuk tahap yang akan datang sistem informasi ini, juga akan di kembangkan menjadi aplikasi web yang berbasis WAP sehingga bisa diakses melalui handphone yang telah *support* dengan *wap*. Untuk konfirmasi jadwal dan nilai akan dikembangkan menggunakan *smsgetway*.

DAFTAR PUSTAKA

- [1] H. M. Jogiyanto, *Analisis dan desain Sistem Informasi*, Jakarta: Kawan Pustaka, 2005.
- [2] B. Wahyudi, Konsep Sistem Informasi dari BIT sampai ke DATABASE, Yogyakarta: ANDI, 2008.
- [3] H. M. Deitel , JavaTM How to Program, Sixth Edition, New Jersey: Prentice Hall, 2004.
- [4] S. Cahyo, Panduan Praktis Pemrograman DataBase MySQL dan Java, perintah AT (Hayes AT Command), Surakarta, 2006.
- [5] H. Kurniawan, Aplikasi Penjualan dengan Program Java Netbeans, Xampp, dan iReport, Jakarta: PT. Elex Media Komputindo, 2011.