ASSIGNMENT 4

Athar Javed

January 15, 2021

Question:

 $Assume~X,Y,Z,W~and~P~are~matrices~of~orders~(2~x~n),~(3~x~k),\\ (2~x~p),(n~x~3)~and~(p~x~k)~respectively.$

The restriction on n,k and p so that PY+WY will be defined are:

- a. k=3 and p=n.
- b. k is arbitrary and p=2.
- c. p is arbitrary and k=3.
- d. k=2 and p=3.

Sol:

We know that

order of
$$P = (p x k)$$

order of $y = (3 x k)$
order of $W = (n x 3)$

Therefore for PY to exist,

The number of columns in matrix P should be equal to number of rows in matrix Y.

Therefore,

$$k = 3$$

Also number of columns in matrix W = number of rows in matrix Y

Therefor WY will exist

Also,

Order of
$$PY = (p x k)$$

Order of $WY = (n x k)$

Now in order for PY + WY to exist,

The Order of PY must be equal to order of WY

Therefore

$$(p x k) = (n x k)$$

which implies that p=n

Hence for PY + WY to exist,

p=n and k=3