TEC0001 – Teoria da Computação Videoaula 02 Máquina de Turing com Fita Duplamente Infinita

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Fita Duplamente Infinita

- Fita dividida em células, que se estende indefinidamente tanto para a direita quanto para a esquerda.
- Entrada é inserida um símbolo por célula, cabeçote é posicionado no símbolo mais à esquerda da palavra de entrada.
- Processamento, aceitação e rejeição usuais.

Teorema: A classe de Máquinas de Turing com fita duplamente infinita é equivalente à classe das Máquinas de Turing.

Ou seja, dada uma MT M deve-se ter uma MT-DI I_M que reconheça a mesma linguagem de M \mathbf{e} , dada uma MT-DI I deve-se ter uma MT M_I que reconheça a mesma linguagem de I.

Prova:

 \implies Dada $M = \langle Q_M, \Sigma_M, \Gamma_M, \delta_M, q_{0M}, q_{AM}, q_{RM} \rangle$ Máquina de Turing com fita semi-infinita. Constrói-se I_M com fita duplamente infinita que processa da seguinte forma:

- Inicia o processamento fazendo um movimento para a esquerda, insere um símbolo ⊗ ∉ Γ na célula com o branco e retorna à direita, para o símbolo mais à esquerda da palavra de entrada.
- Processa δ_M normalmente. Toda vez que a transição executada for um movimento para a **esquerda**, após a execução do movimento I_M verifica se o símbolo a ser lido é ⊗. Caso o seja, mantém ⊗ e faz um movimento para a direita, simulando o movimento estacionário da célula mais à esquerda da fita semi-infinita.

 \sqsubseteq Dada $I = \langle Q_I, \Sigma_I, \Gamma_I, \delta_I, q_{0I}, q_{AI}, q_{RI} \rangle$ uma Máquina de Turing com fita duplamente infinita, é possível construir M_I , uma Máquina de Turing com fita semi-infinita que simula I. M_I será tal que:

1 Antes de iniciar a simulação de I, M_I desloca todo o conteúdo de sua fita uma célula para a direita, inserindo $⊗ ∉ Γ_I$ na célula mais à esquerda da fita e † ∉ Γ no primeiro branco após a palavra de entrada, posicionando o cabeçote novamente na célula com o primeiro símbolo da entrada.

2 Processa δ_I normalmente. Toda vez que a transição executada for um movimento para...

esquerda após a execução do movimento M_I verifica se o símbolo a ser lido é \otimes . Caso o seja, desloca todo o conteúdo restante da fita para a direita, inserindo um espaço em branco à direita de \otimes , deixando o cabeçote posicionado sobre tal branco.

direita após a execução do movimento M_I verifica se o símbolo a ser lido é \dagger . Caso o seja, imprime \Box , vai para a direita, imprime \dagger e vai para a esquerda.