STA 471 – Regression Analysis Homework #1

September 14th, 2023

Richard McCormick RLM443 1. Suppose that you are asked to fit a model to the data (X_i, Y_i) , i = 1, 2, ..., n. If the model is $Y = \beta_1 X + \epsilon$, derive the least squares estimate of β_1 .

n. If the model is
$$Y = \beta_1 X + \varepsilon$$
, derive the least squares estimate of β_1 .

$$\frac{2}{2}(Y_i - \beta_1 X_i)^2 = \frac{2}{2}(X_i - (\beta_1 X_i)(-X_i))$$

$$= \frac{2}{2}(X_i Y_i) - (\beta_1 X_i)^2$$

$$= \frac{2}{2}(X_i$$

2. Show that the point (\bar{X}, \bar{Y}) lies on the fitted line $\hat{Y} = \beta_0 + \beta_1 X$.

$$y = b_0 + b_1 \times f_0 = y - b_1 \times f_0$$

$$y = b_0 + b_1 \times f_0$$

$$y = b_0 + b_1 \times f_0$$

$$y = y - b_1 \times f_0$$

3. For the data given in problem F on page 99, consider the model Y = β_0 + $\beta_1 X + \epsilon$ and answer the following questions (without the use of a statistical computer package):

a) Determine the equation of the fitted line.						ext
X 4.7 5.0 Y 3 3	5.2 5.2 4 5	5.9 4.7 10 2	5.9 5.2 9 3	5.3 5.9 7 6	5.6 5. 6 4	0
$\leq \chi = 63.$	6 EX	² = 33				
$\leq 1 \times 7 = 2.1$	0 ×	=5.3	٤	y = 69.	67 }	7=5.17
	EXY	<u>=</u> 339.	1 2 x	y=10.	5	
Bo = Y - P	SX		B,	y=10.5 S×y S×x		
5 _{xx} = £ ₁ x _i ² = 339.18	(&×i)	<	5 _{xy} = 8	1(xi•Yi	() - {	Xi· & Yi
= 339.18	1 - 13.62		/ 	339.1-	63.6	·62
5xx = 2.1						
ニ フ	B. 3	×7 = ×× 7 - F	10.5 Z.1 S.o.X	= 5 = 5.17	- 2 - ('	5,5,3)

b) Construct a scatter plot of Y versus X and draw the fitted line on the plot.

c) Find out how much of the variation in Y is explained by the fitted line.

$$5xx = 2.1$$
 $5xy = 10.5$
 $55.29 = \frac{5xy^2}{5xx} = \frac{(10.5)^2}{2.1} = 52.5$
 $755 = 5yy = \hat{\xi}_1 y_1^2 - \frac{(y_1)^2}{x} = 390 - \frac{(y_2)^2}{12} = 69.6$
 75.3% of variation
is explained by the fitted line.

a)
$$SS_{reg} = S^2_{XY} / S_{XX}$$

$$55_{leg} = \hat{\mathcal{L}}(Y_i - \bar{Y})^2$$

$$S_{xy} = 2(x_i - \overline{x})(y_i - \overline{y})$$

 $S_{xx} = 2(x_i - \overline{x})^2$

$$\frac{\mathcal{E}(\times i - \times)}{\mathcal{E}(\times i - \overline{\times})^2}$$

4. For the simple linear regression mode
$$Y = \beta_0 + \beta_1 X + \epsilon$$
, show:

a) $SS_{reg} = S^2_{xy} / S_{xx}$

$$S = \sum_{i=1}^{2} (Y_i - \overline{Y})^2 \qquad S_{xy} = \sum_{i=1}^{2} (X_i - \overline{X})(Y_i - \overline{Y})$$

$$= \sum_{i=1}^{2} (Y_i - \overline{Y})^2 (X_i - \overline{X})^2$$

$$= \sum_{i=1}^{2} (Y_i - \overline{Y})^2 (X_i - \overline{X})^2$$

$$= \sum_{i=1}^{2} (X_i - \overline{X})^2 (X_i - \overline{X})^2$$

b)
$$R^2 = r^2_{XY}$$

$$R^{2} = \frac{55}{T55} = \frac{\cancel{5} \times \cancel{4}}{\cancel{5} \times \cancel{4}} \circ \left(\frac{\cancel{5} \times \cancel{4}}{\cancel{5} \times \cancel{4}}\right)$$

$$\Rightarrow \int \frac{5_{xy}}{5_{yy}} = V_{xy}^{2}$$

$$\sqrt{\frac{5\times y^2}{5\times y}} = \frac{5\times y}{\sqrt{5}\times y} = \sqrt{x}y$$