Machine Learning

(機器學習)

Lecture 06: Beyond Basic Linear Models

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?

Lecture 06: Beyond Basic Linear Models

- Multiclass via Logistic Regression
- Multiclass via Binary Classification
- Quadratic Hypotheses
- Nonlinear Transform
- Price of Nonlinear Transform
- Structured Hypothesis Sets

Multiclass Classification

- $\mathcal{Y} = \{\Box, \Diamond, \triangle, \star\}$ (4-class classification)
- many applications in practice, especially for 'recognition'

next: use tools for $\{\times, \circ\}$ classification to $\{\Box, \Diamond, \triangle, \star\}$ classification

$$\square$$
 or not? $\{\square = 0, \lozenge = \times, \triangle = \times, \star = \times\}$

$$\Diamond$$
 or not? $\{\Box = \times, \Diamond = \circ, \triangle = \times, \star = \times\}$

$$\triangle$$
 or not? $\{\Box = \times, \Diamond = \times, \triangle = \circ, \star = \times\}$

$$\star$$
 or not? $\{\Box = \times, \Diamond = \times, \triangle = \times, \star = \circ\}$

Multiclass Prediction: Combine Binary Classifiers

$$P(\Box | \mathbf{x})$$
? $\{\Box = \circ, \lozenge = \times, \triangle = \times, \star = \times\}$

$$P(\lozenge|\mathbf{x})? \{\Box = \times, \lozenge = \circ, \triangle = \times, \star = \times\}$$

$$P(\triangle|\mathbf{x})? \{\Box = \times, \lozenge = \times, \triangle = \circ, \star = \times\}$$

$$P(\star|\mathbf{x})? \{\Box = \times, \Diamond = \times, \triangle = \times, \star = \circ\}$$

Multiclass Prediction: Combine Soft Classifiers

One-Versus-All (OVA) Decomposition

1 for $k \in \mathcal{Y}$ obtain $\mathbf{w}_{\lceil k \rceil}$ by running logistic regression on

$$\mathcal{D}_{[k]} = \{(\mathbf{x}_n, y_n' = 2 [y_n = k] - 1)\}_{n=1}^N$$

- $\textbf{2} \ \text{return} \ g(\mathbf{x}) = \operatorname{argmax}_{k \in \mathcal{Y}} \left(\mathbf{w}_{[k]}^{\mathcal{T}} \mathbf{x} \right)$
 - pros: efficient,
 can be coupled with any logistic regression-like approaches
 - cons: often unbalanced $\mathcal{D}_{[k]}$ when K large
 - extension: multinomial ('coupled') logistic regression

OVA: a simple multiclass meta-algorithm to keep in your toolbox

Questions?

Source of **Unbalance**: One versus **All**

idea: make binary classification problems more balanced by one versus one

$$\square$$
 or \lozenge ? { $\square = \circ, \lozenge = \times, \triangle = \mathsf{nil}, \star = \mathsf{nil}$ }

$$\square$$
 or \triangle ? $\{\square = \circ, \lozenge = \mathsf{nil}, \triangle = \times, \star = \mathsf{nil}\}$

$$\square$$
 or \star ? $\{\square = \circ, \lozenge = \mathsf{nil}, \triangle = \mathsf{nil}, \star = \times\}$

$$\Diamond$$
 or \triangle ? { \square = nil, \Diamond = \circ , \triangle = \times , \star = nil}

$$\Diamond$$
 or \star ? { $\square = \mathsf{nil}, \Diamond = \circ, \triangle = \mathsf{nil}, \star = \times$ }

$$\triangle$$
 or \star ? $\{\Box = \mathsf{nil}, \Diamond = \mathsf{nil}, \triangle = \circ, \star = \times\}$

Multiclass Prediction: Combine Pairwise Classifiers

 $g(\mathbf{x}) = \text{tournament champion} \left\{ \mathbf{w}_{[k,\ell]}^T \mathbf{x} \right\}$ (voting of classifiers)

One-versus-one (OVO) Decomposition

1 for $(k, \ell) \in \mathcal{Y} \times \mathcal{Y}$ obtain $\mathbf{w}_{[k,\ell]}$ by running linear binary classification on

$$\mathcal{D}_{[k,\ell]} = \{ (\mathbf{x}_n, y_n' = 2 [y_n = k] - 1) : y_n = k \text{ or } y_n = \ell \}$$

- $oldsymbol{2}$ return $g(\mathbf{x}) = ext{tournament champion} \left\{ \mathbf{w}_{[k,\ell]}^{\mathcal{T}} \mathbf{x}
 ight\}$
 - pros: efficient ('smaller' training problems), stable,
 can be coupled with any binary classification approaches
 - cons: use $O(K^2)$ $\mathbf{w}_{[k,\ell]}$ —more space, slower prediction, more training

OVO: another simple multiclass meta-algorithm to keep in your toolbox

Questions?

Linear Hypotheses

up to now: linear hypotheses

- visually: 'line'-like boundary
- mathematically: linear scores $s = \mathbf{w}^T \mathbf{x}$

but limited ...

- theoretically: d_{VC} under control:-)
- practically: on some D,
 large E_{in} for every line :-(

how to break the limit of linear hypotheses

Circular Separable

- \mathcal{D} not linear separable
- but circular separable by a circle of radius √0.6 centered at origin:

$$h_{\text{SEP}}(\mathbf{x}) = \text{sign}\left(-x_1^2 - x_2^2 + 0.6\right)$$

re-derive Circular-PLA, Circular-Regression, blahblah ... all over again? :-)

Circular Separable and Linear Separable

$$h(\mathbf{x}) = \operatorname{sign}\left(\underbrace{0.6}_{\tilde{w}_0} \cdot \underbrace{1}_{z_0} + \underbrace{(-1)}_{\tilde{w}_1} \cdot \underbrace{x_1^2}_{z_1} + \underbrace{(-1)}_{\tilde{w}_2} \cdot \underbrace{x_2^2}_{z_2}\right)$$
$$= \operatorname{sign}\left(\tilde{\mathbf{w}}^T \mathbf{z}\right)$$

- $\{(\mathbf{x}_n, y_n)\}$ circular separable $\Longrightarrow \{(\mathbf{z}_n, y_n)\}$ linear separable
- $\mathbf{x} \in \mathcal{X} \stackrel{\Phi}{\longmapsto} \mathbf{z} \in \mathcal{Z}$: (nonlinear) feature transform Φ

circular separable in $\mathcal{X} \Longrightarrow$ linear separable in \mathcal{Z} vice versa?

Linear Hypotheses in Z-Space

$$(z_0, z_1, z_2) = \mathbf{z} = \mathbf{\Phi}(\mathbf{x}) = (1, x_1^2, x_2^2)$$

$$h(\mathbf{x}) = \tilde{h}(\mathbf{z}) = \operatorname{sign}\left(\tilde{\mathbf{w}}^T \mathbf{\Phi}(\mathbf{x})\right) = \operatorname{sign}\left(\tilde{\mathbf{w}}_0 + \tilde{\mathbf{w}}_1 x_1^2 + \tilde{\mathbf{w}}_2 x_2^2\right)$$

$\tilde{\mathbf{W}} = (\tilde{\mathit{W}}_0, \tilde{\mathit{W}}_1, \tilde{\mathit{W}}_2)$

- (0.6, −1, −1): circle (o inside)
- (-0.6, +1, +1): circle (∘ outside)
- (0.6, −1, −2): ellipse
- (0.6, −1, +2): hyperbola
- (0.6, +1, +2): constant ∘ :-)

lines in \mathcal{Z} -space

 \iff special quadratic curves in \mathcal{X} -space

General Quadratic Hypothesis Set

a 'bigger'
$$\mathcal{Z}\text{-space}$$
 with $\Phi_2(\mathbf{x})=(1,x_1,x_2,x_1^2,x_1x_2,x_2^2)$

perceptrons in \mathcal{Z} -space \iff quadratic hypotheses in \mathcal{X} -space

$$\mathcal{H}_{\Phi_2} = \left\{ h(\mathbf{x}) \colon h(\mathbf{x}) = \tilde{h}(\Phi_2(\mathbf{x})) \text{ for some linear } \tilde{h} \text{ on } \mathcal{Z} \right\}$$

• can implement all possible quadratic curve boundaries: circle, ellipse, rotated ellipse, hyperbola, parabola, ...

ellipse
$$2(x_1 + x_2 - 3)^2 + (x_1 - x_2 - 4)^2 = 1$$

$$\leftarrow \tilde{\mathbf{w}}^T = [33, -20, -4, 3, 2, 3]$$

include lines and constants as degenerate cases

next: **learn** a good quadratic hypothesis *g*

Questions?

Nonlinear Transform

Good Quadratic Hypothesis

- want: get good perceptron in Z-space
- known: get **good perceptron** in \mathcal{X} -space with data $\{(\mathbf{x}_n, y_n)\}$

todo: get **good perceptron** in \mathcal{Z} -space with data $\{(\mathbf{z}_n = \mathbf{\Phi}_2(\mathbf{x}_n), y_n)\}$

The Nonlinear Transform Steps

- 1 transform original data $\{(\mathbf{x}_n, y_n)\}$ to $\{(\mathbf{z}_n = \Phi(\mathbf{x}_n), y_n)\}$ by Φ
- 2 get a good perceptron $\tilde{\mathbf{w}}$ using $\{(\mathbf{z}_n, y_n)\}$ and your favorite linear classification algorithm \mathcal{A}
- 3 return $g(\mathbf{x}) = \operatorname{sign}\left(\tilde{\mathbf{w}}^{\mathsf{T}}\mathbf{\Phi}(\mathbf{x})\right)$

Nonlinear Model via Nonlinear Φ + Linear Models

two choices:

- feature transformΦ
- linear model A, not just binary classification

Pandora's box :-):

can now freely do quadratic PLA, quadratic regression, cubic regression, ..., polynomial regression

Feature Transform •

not new, not just polynomial:

raw (pixels)

concrete (intensity, symmetry)

the force, too good to be true? :-)

Questions?

Computation/Storage Price

$$Q$$
-th order polynomial transform: $\Phi_Q(\mathbf{x}) = \begin{pmatrix} & 1, & & & \\ & x_1, x_2, \dots, x_d, & & & \\ & x_1^2, x_1 x_2, \dots, x_d^2, & & & \\ & & \dots, & & & \\ & & x_1^Q, x_1^{Q-1} x_2, \dots, x_d^Q \end{pmatrix}$

$$\underbrace{1}_{\widetilde{W}_0} + \underbrace{\widetilde{d}}_{\text{others}}$$
 dimensions

= # ways of \leq Q-combination from d kinds with repetitions

$$= \binom{Q+d}{Q} = \binom{Q+d}{d} = O(Q^d)$$

= efforts needed for computing/storing $\mathbf{z} = \mathbf{\Phi}_{\mathcal{O}}(\mathbf{x})$ and $\tilde{\mathbf{w}}$

 $Q \text{ large} \Longrightarrow \text{difficult to compute/store}$

Model Complexity Price

$$Q$$
-th order polynomial transform: $\Phi_Q(\mathbf{x}) = \begin{pmatrix} & 1, & & & & \\ & x_1, x_2, \dots, x_d, & & & \\ & x_1^2, x_1 x_2, \dots, x_d^2, & & & \\ & & \dots, & & & \\ & & x_1^Q, x_1^{Q-1} x_2, \dots, x_d^Q \end{pmatrix}$

$$\underbrace{\frac{1}{\tilde{w}_0}} + \underbrace{\tilde{d}}_{\text{others}} \text{ dimensions} = O(Q^d)$$

- number of free parameters $\tilde{w}_i = \tilde{d} + 1 \approx d_{VC}(\mathcal{H}_{\Phi_O})$
- $d_{\text{VC}}(\mathcal{H}_{\Phi_{\mathcal{Q}}}) \leq \tilde{d} + 1$, why? any $\tilde{d} + 2$ inputs not shattered in \mathcal{Z}

 \Longrightarrow any $\tilde{d}+2$ inputs not shattered in \mathcal{X}

 $Q \text{ large} \Longrightarrow \text{large } d_{VC}$

Generalization Issue

which one do you prefer? :-)

- Φ₁ 'visually' preferred
- Φ_4 : $E_{in}(g) = 0$ but overkill

 Φ_1 (original **x**)

- 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
- 2 can we make $E_{in}(g)$ small enough?

trade-off:	$\tilde{d}(Q)$	1	2
	higher	:-(:-D
	lower	:-D	:-(

how to pick Q? visually, maybe?

Danger of Visual Choices

first of all, can you really 'visualize' when $\mathcal{X} = \mathbb{R}^{10}$? (well, I can't :-))

Visualize $\mathcal{X} = \mathbb{R}^2$

- full Φ_2 : $\mathbf{z} = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2), d_{VC} = 6$
- or $z = (1, x_1^2, x_2^2), d_{VC} = 3$, after visualizing?
- or better $\mathbf{z} = (1, x_1^2 + x_2^2)$, $d_{VC} = 2$?
- or even better $\mathbf{z} = (\text{sign}(0.6 x_1^2 x_2^2))$?
- —careful about your brain's 'model complexity'

for VC-safety, Φ shall be decided without 'peeking' data

Questions?

Polynomial Transform Revisited

$$\Phi_0(\mathbf{x}) = (1), \Phi_1(\mathbf{x}) = (\Phi_0(\mathbf{x}), \quad x_1, x_2, \dots, x_d)$$

$$\Phi_2(\mathbf{x}) = (\Phi_1(\mathbf{x}), \quad x_1^2, x_1 x_2, \dots, x_d^2)$$

$$\Phi_3(\mathbf{x}) = (\Phi_2(\mathbf{x}), \quad x_1^3, x_1^2 x_2, \dots, x_d^3)$$

$$\dots$$

$$\Phi_Q(\mathbf{x}) = (\Phi_{Q-1}(\mathbf{x}), \quad x_1^Q, x_1^{Q-1} x_2, \dots, x_d^Q)$$

structure: nested \mathcal{H}_i

Structured Hypothesis Sets Structured Hypothesis Sets

Let
$$g_i = \operatorname{argmin}_{h \in \mathcal{H}_i} E_{in}(h)$$
:

use \mathcal{H}_{1126} won't be good! :-(

31/34

Hsuan-Tien Lin (NTU CSIE) Machine Learning

Linear Model First

- tempting sin: use \mathcal{H}_{1126} , low $E_{in}(g_{1126})$ to fool your boss —really? :-(a dangerous path of no return
- safe route: \mathcal{H}_1 first
 - if E_{in}(g₁) good enough, live happily thereafter :-)
 - otherwise, move right of the curve with nothing lost except 'wasted' computation

linear model first: simple, efficient, safe, and workable!

Questions?

Summary

1 How Can Machines Learn?

Lecture 05: Linear Models

Lecture 06: Beyond Basic Linear Models

- Multiclass via Logistic Regression
 predict with maximum estimated P(k|x)
- Multiclass via Binary Classification predict the tournament champion
- Quadratic Hypotheses
 linear hypotheses on quadratic-transformed data
- Nonlinear Transform $\text{happy linear modeling after } \mathcal{Z} = \Phi(\mathcal{X})$
- Price of Nonlinear Transform computation/storage/[model complexity]
- Structured Hypothesis Sets linear/simpler model first
- next: dark side of the force :-)