Alexandre Sawczuk da Silva, Hui Ma, Mengjie Zhang

Evolutionary Computation Research Group

School of Engineering and Computer Science, Victoria University of Wellington

IEEE Congress on Evolutionary Computation, 25-28 May 2015

Introduction

Motivation •00000

> Service-Oriented Architecture (SOA): Organise processes and data in reusable modules for integration into new applications.

Web service

A functionality module that provides operations accessible over the network via a standard communication protocol.

Web Service Composition

The combination of Web services to achieve a more complex task. Fully automated scenario:

New weather by zip code service

A Composition Example with Branching

Certain compositions require alternative paths according to runtime values.

Example: Depending on balance, pay in full or pay in installments.

Composition Dimensions

Motivation

- **I Functional correctness:** Service inputs and outputs must be properly linked (e.g. Four Digit Number $\rightarrow ZipCode$, but not FourDigitNumber \rightarrow City).
- **2 Conditional constraints:** Condition leading to multiple possible execution paths (e.g. if *City* is a *NewZealandCity*, produce WindForecast instead of GeneralForecast).
- 3 Quality of Service (QoS): The overall quality of the composition (e.g. lowest execution time, lowest cost).

Existing Approaches

AI Planning

Build a solution service by service.

Dimensions: Functional correctness, conditional constraints.

Evolutionary Computation (EC)

Improve population of solutions over multiple generations.

Dimensions: Functional correctness, QoS.

Hybrid Approaches

Combine AI planning and EC ideas.

Dimensions: Functional correctness, QoS.

Goal

To propose a Genetic Programming (GP) composition approach that simultaneously considers all dimensions.

- Trees preserve functional correctness.
- 2 Conditions encoded in trees.
- 3 Optimisation performed on QoS.

Candidate Representation

- Tree equivalent to graph composition.
- Parallel, sequential, and conditional represented as non-terminal nodes.
- Candidate services as terminal nodes.

Population Initialisation

An algorithm is used to create a candidate in graph format, and then translate it into a tree representation.

```
Input : I, O1, O2, C, P
    Output: candidate tree T

    if O<sub>2</sub> ≠ ∅ then

         G_1 \leftarrow \text{createGraph}(I \cup C.if, O_1);
         G_2 \leftarrow \text{createGraph}(I \cup C.else, O_2):
         T_1 \leftarrow \text{toTree}(G_1.input):
          T_2 \leftarrow \text{toTree}(G_2.input);
          T_3 \leftarrow \text{new ConditionalNode}(C);
          T_3.leftChild \leftarrow T_1:
          T_3.rightChild \leftarrow T_2:
 9:
          if C \square / then
10:
              T_3.prob \leftarrow P;
              return T3:
11:
12-
         else
              G<sub>4</sub> ← createGraph(I, C,else):
13:
              T_4 \leftarrow \text{toTree}(G_4.input);
14:
              T_3.prob \leftarrow T_4.final.P;
15:
16:
               T \leftarrow \text{new SequenceNode()};
               T.leftChild \leftarrow T_4:
17:
              T.rightChild \leftarrow T_3:
18:
              return T:
20:
         end
21: else
         G \leftarrow \text{createGraph}(I, O_1);
22:
          T \leftarrow toTree(G.input):
24
         return T;
25: end
```


Mutation and Crossover

Mutation: Selects random node and replaces it with equivalent subtree.

Crossover: Swaps any two equivalent terminal nodes.

Fitness Function

Measures the overall quality of a composition candidate (minimising).

$$\mathit{fitness}_i = w_1(1-A_i) + w_2(1-R_i) + w_3 T_i + w_4 C_i$$
 where $\sum_{i=1}^4 w_i = 1$

- Lack of datasets supporting composition with branching.
- Lack of comparable approaches that produce solutions with multiple output possibilities.

Experiments

Decision: Create datasets, execute for conditional compositions and also for each branch separately.

Parameters:

Independent runs	50	Elitism candidates	1
Population size	20	Tournament size	7
Crossover probability	0.9	Fitness weights	0.25 (all)
Mutation probability	0.1		

Creation of Datasets

Modified from WSC2008.

- Can be extended to contain QoS.
- Provides ontology of input and output values.

Tasks requiring branching were created.

	Conditional			
Set (size)	Avg. fitness	Avg. time (s)		
1 (158)	0.601 ± 0.013	1.290 ± 0.100		
2 (558)	0.712 ± 0.009	2.829 ± 0.250		
3 (604)	0.631 ± 0.008	13.285 ± 1.229		
4 (1041)	0.718 ± 0.048	6.146 ± 0.574		
5 (1090)	0.698 ± 0.005	11.759 ± 0.948		
6 (2198)	0.662 ± 0.017	92.392 ± 11.353		
7 (4113)	0.578 ± 0.010	97.344 ± 13.705		
8 (8119)	0.656 ± 0.005	326.387 ± 37.659		

Experiments 000

	Non-conditional					
	If b	ranch	Else branch			
Set (size)	Avg. fitness	Avg. time (s)	Avg. fitness	Avg. time (s)		
1 (158)	0.508 ± 0.000	0.563 ± 0.144	0.588 ± 0.037	0.718 ± 0.079		
2 (558)	0.588 ± 0.084	1.490 ± 0.526	0.694 ± 0.016	1.527 ± 0.194		
3 (604)	0.365 ± 0.000	4.387 ± 0.768	0.788 ± 0.000	7.099 ± 0.906		
4 (1041)	0.689 ± 0.064	4.510 ± 1.177	0.741 ± 0.429	3.568 ± 0.429		
5 (1090)	0.446 ± 0.000	5.726 ± 0.755	0.688 ± 0.011	6.491 ± 0.743		
6 (2198)	0.412 ± 0.063	58.295 ± 12.765	0.645 ± 0.024	52.308 ± 5.785		
7 (4113)	0.363 ± 0.000	44.838 ± 5.926	0.688 ± 0.032	51.725 ± 4.260		
8 (8119)	0.474 ± 0.000	106.119 ± 7.152	0.766 ± 0.002	186.896 ± 20.008		

Conclusions

Novel approach addresses three composition dimensions simultaneously (fully functional, contain branches, quality-optimised).

 Solutions found with similar performance as non-branching technique.

Future work: More than two branches, more complex branching conditions, analysis of convergence behaviour.

Thank you!

Questions?