MEE1014 Industrial Engineering and Management B.Tech (Mechanical)

Sivakumar, R SMEC, VIT Chennai

Module-4

Introduction to Work study:

Method study – Time study – stopwatch time study – Work measurement - performance rating- allowances – Ergonomics.(6 Hours)

Expected Outcome

Analyze the existing operations that happen in factories for establishing time standards for different activities.

Work study

Work Study

- To find better ways of doing work
- To reduce the waste
- > Optimum use of Human, Machine and Materials
- > Effective use of industry and equipment

Work Study

- ➤ Work study = Method study + Time study
- ➤ Method study Develop a new and better method of doing the job
- ➤ Time study Perform the specified job at a defined level of performance

Courtesy: youtube.com

Courtesy: printerest.com

Method study

Method Study - Definition

- ➤ Also called as Methods Engineering or Work Design
- As per BS 3138, "Method study is the systematic recording and critical examination of existing and proposed ways of doing work as a means of developing and applying easier and more effective methods and reducing cost"
- ➤ Eliminate unnecessary operations, reduce waste, avoid delays → improvement in productivity

Method Study - Definition

- > Improvement in Productivity is achieved by
 - ✓ Improved plant layout
 - ✓ Improved workplace design
 - ✓ Utilization of equipment, human and materials
 - ✓ Standardization of work procedures
 - ✓ Better working environment

Method Study - Objectives

≻Objectives

- ✓ Present and analyse the facts related to the given circumstances
- ✓ Critical examination of the facts
- ✓ Develop the best possible solution for the given circumstances

Method Study - Steps

Method Study - Recording Techniques

Method Study - Symbols used

Activity	Symbol
Operation	
Transport	
Inspection	
Delay	
Storage	

Method Study - Symbols used

Method Study - Symbols used

Method Study - Outline/Operation Process Chart

- > Record only major activities and inspection
- ➤ Uses only "operations" and "inspections" symbols
- ➤ Used to visualize the entire sequence of operations and inspections occurred in the process
- ➤ Represent graphically the operations and inspections carried out on the material

Method Study - Outline/Operation Process Chart

> Example: Washer Assembly

Method Study - Flow Process Chart

- > Representing sequence of activities in graphical form
- Sequence of activities include operation, inspection, transport, delay and storage represented using process chart symbols
- > Amplification of operation process chart
- > Types:
 - ✓ Material Type Records the events occur to the material
 - ✓ Man Type Records the activities performed by the worker
 - ✓ Equipment Type Records the usage of equipment

Method Study - Flow Process Chart

Benefits

- √ To improve material handling
- ✓ To avoid delays and waiting time
- √ To reduce the distance travelled by material/worker
- ✓ To improve the layout
- ✓ To reduce cycle time

Method Study - Flow Process Chart

Table Flow process chart for flow analysis

CHART NO. 1	SHEET NO.1				SUMMARY							
ACTIVITY: TRA	DITIONAL GERMINAT	ED BROWN RICE			PRESENT	PROPOSE	SAVING					
LOCATION: UBG	ON RATCHATHANI, TH	AILAND	OPERATION	0	5	-	-					
PREPARED DAT	E: 16 JANUARY 2012		TRANSPORTAT	10N 🖒	6	-	-					
APPROVED DAT	ΤΕ: 16 JANUARY 2012		INSPECTION		1	-	-					
OPERATOR:	KANOKWAN SUPAK PAWINYADA BOON		DELAY	\overline{D}	0	-	-					
SUPERVISOR:	CHET SRIMAITREE ASST_PROF.PEERAS/		STORAGE	∇	1	-	-					
DOT ERY BOOK	NATTHAPONG N.		DISTANCE (ME	TER)	47	-	-					
DISTANCE (m)	TIME (sec.)		SYMBOL			DESCRIPTION						
-	N/A		$D \nabla$		Raw materials (after germinat							
10	N/A		$]D\nabla$		Move to drying	g process						
-	N/A		$\exists D \triangle$		Drying process	i						
14	N/A		$D \nabla$		Move to rice m	illing process						
-	N/A		$D \nabla$		Rice milling pr	rocess						
1	N/A		$D\nabla$		Move to packir	ng area						
-	N/A		$D\nabla$		Packing rice to	plastic bag						
3	N/A		$D\nabla$		Move to scale							
-	N/A		\square		Weight the fini							
16	N/A		$D \triangle$		Move to packir	ng station 2						
-	N/A		$D\nabla$		Packing station (wrapping with	2 brand's packagin	g)					
3	N/A	0)	$D\Delta$		Move to storag	e area						
	N/A		\mathbb{D}^{\bullet}		Storage							
47	N/A	5 6 1 0	1		Total							

Courtesy: Systematic Layout Planning for Germinated Brown Rice Mill under GMP and ISO22000:2005 requirements, IOSR Journal of Engineering, 2(10, 2012

Method Study - Two handed Process Chart

- > Also called as Left-Right Hand Chart
- > Detailed type of flow chart
- ➤ Activities of left hand and right hand of the operator is recorded independently
- > Used for repetitive operations

Method Study - Two handed Process Chart

Symbol	Activity
	Operation: Represents the activities performed by the worker
	Transport: Movement of hand of the operator
	Inspection: Not used
	Delay: Idling time of the hand of the operator
	Storage: Represent the work is held by the hand

Method Study - Two handed Process Chart

Courtesy: Production and Operations Management by Dr.
Panneerselvam

CAT-I: Discussion

CAT-I: Discussion

Winter2021-22 (Total strength: 78 – Attended: 78)

Average (Mean)	19
Max Marks	30
No of Students <15	19
Pass Percentage %	75.6

SHARAN KARTHIK.P - 30

PRIYESH SINGH SENGAR - 30

NAREN AADHITHYA . R - 30

NANDHA RAM S - 30

KALAVADIA AYUSH ANILBHAI - 30

ANVAY MANISH LIMAYE - 30

Method Study - Multiple Activity Chart

- Activities of more than one worker or equipment are recorded
- Common time scale is adapted to show the interrelationship
- Evaluate the Idle time of workers and equipment
- Find out the number of machines can be handled by a worker
- Find out the number of workers required in a team to do the job
- Useful in scheduling/balancing team work
- Symbols used

Idle

Method Study - Multiple Activity Chart

> Types

- ✓ Man Machine Chart
- ✓ Man Multi-machine Chart
- ✓ Multi Man Chart
- ✓ Multi Man Machine Chart

Method Study - Multiple Activity Chart

Method Study – SIMO Chart

- ➤ Simultaneous Motion Cycle Chart
- > Two handed process chart
- Records the Micro motions (Therblings) of both hands
- > Uses common time scale
- Explore the possibility of removing or eliminating the unproductive micro motions and then re-sequencing

Method Study – SIMO Chart

		C. 1	
MICHO	motion	STILL AT	7
MILLO	mouon	Juu	,

Dept Film No	
Analysis Sheet	
Operation: Finish hand fillings	
Charted By	
Date	

S.No.	Left hand description	Therblig	Time	Therblig	Right hand
1.	Searching and lifting	SH,H	0.2		
2.			0.4	U	Opening the vice
3.	Clamping workpiece	PP	0.8		clamping work piece in the vice piece in the vice.
4.			1.0	TL	Take the file
5.	Do the hand filling operation.	U	2.0	U	Do the hand filing Operation.
6.	100 TO THE OWNER OF THE THE THE		2.2	TL	Taking the micrometer
6. 7.	Check the dimension	1	3.0	1	Check the dimension
8.		72-	3.2	U	Open the vice
9.	Remove the work piece	TL	105.398.974	3.4	

Method Study – SIMO Chart

➤ Therblings (18 Motions)

Symbol	Name	Abbreviation
0	Search	Sh
0	Find	F
	Select	ST
N	Grasp	G
1	Hold	Н
\	Transport Loaded	TL
\cup	Transport Empty	TE
9	Position	P

Symbol	Name	Abbreviation
#	Assemble	A
U	Use	U
#	Disassemble	DA
0	Inspect	I
8	Preposition	PP
0	Release Load	RL
6	Unavoidable Delay	UD
ا ا	Avoidable Delay	AD
2	Plan	Pn
گ	Rest	R

Time study

Time Study

- > Also known as Work Measurement
- Important for planning & controlling the operations
- Time study is defined as "The application of techniques designed to establish the time for a qualified worker to carry out a specified job at a defined level of performance."

British Standard Institute

Time Study - Equipment

Stop watch

Time study Board

1. OPERATOR NAME OR NUMBER	2. E	LEME	NT D	ESCA	IPTIC	N	_		_				9		-							3. F	REFER	ENCE I	NUMBI	R		
OR NUMBER																			ı			4. 1	DATE	OF ST	IDY			
																			ı			20000						
	4																		ı			5. 1	AME	OF AN	IALYS'	T.		
CYCLE	1																		ı			6. 4	PPRO			and Dat		
7.	-	-	_			_	<u> </u>		_	_		_	_		_	_		_	_		_						nal 7.0	
NUMBER	R	1 T	Р	R	2 T	P	R	3 T	P	R	4 T	Р	R	5 T	Р	R	6 T	P	R	7 T	Р	8. F	S	SN ELE	MENT	5	DESCRI	PTION
1																-						A		-				
2			П		П			П	Т					П				\vdash				в						
3			П	2 8								П	1 0									С						
4																						D						
5					\vdash		Т					П			П				Г			Е						
6		8 8		2.0							3 8		-									F						
7				21 17																		G						
8			П		Т							П										н						
9																						1						
10		1		(A 1)		Г																J						
9. TOTAL TIME			_					_	-			_						-				16.	TOTA	BASI (Minut	nel		110	
10. NO. OF OBSVS.	Т																						PF&D	-	-	%	TIN	AE.
11. AVG/SEL						7																		WANC	E			
12. LEVELING FACTOR	Т			ĵ.																		18.	STAN	DARD (Minut	nsJ			
13. NORMAL TIME				6																		19.	STAN	DARD (Hours	,			
14. OCCURRENCE				(2		- 8															- 3	20.	WOR	UNIT	5			
15. BASE TIME	П				. 1,711.6.10.1								j.									21.	UNITS	PER H	IOUR			
22. START TIME				23.	STOP	TIME				24.	LAP	SED T	IME			25.	TYPE	OF T	IMINO	DEV	ICE							
26. REMARKS						_			_	_						_												

Tine study form

Spring Balance

Time Study - Equipment

Pencils and Erasers

Calculator

Measuring Tape

Micrometer

Steel Rule

Time Study - Steps involved

➤ Step-1:

- ✓ Select the work to be studied
- ✓ Record all the necessary information about the job
 - Product
 - Process
 - Operator
 - Working conditions

➤Step-2:

- ✓ Record the method by breaking down the operation into elements and sequence of motions
- ✓ Element is a part of a specified activity made of one or more fundamental motions selected for ease of observation and timing

> Step-3:

- ✓ Record the skill and competence of the operator
- ✓ This is to ensure that qualified worker is permitted to work which is to be timed
- ✓ Qualified worker: Average worker neither very skilled nor unskilled, neither highly experience nor inexperienced
- ✓ Measurement is made at normal level

➤Step-4:

- ✓ Record the time for each element of operation using stopwatch or by any time measuring device
- ✓ Repeat the process for pre-determined number of times
- √The rate of the worker is to be compared with pre-conceived concept of standard rating

≻Step-5:

- ✓ Calculate the basic time (cycle time) by computing the average
- ✓ Calculation has to be performed for each element
- ✓ Normal Time = Basic Time x Performance Rating

➤ Step-6:

- ✓ Determine the allowances to be included
- ✓ With the allowance, calculate the standard time
- ✓ Standard Time = Normal Time x Allowances Factor

Allowances Factor =
$$\frac{100}{100 - Allownace in \%}$$

➤ Performance rating is defined as "the process during which the time study engineer compares the performance of the operator under observation with the observer's own concept of proper (normal) performance.

- Society of Advanced Management

Performance Rating =
$$\frac{Observed\ Performace}{Normal\ Performance} \times 100$$

Used to standardize the time and fix up the target of an element or job

➤ In a welding shop, a direct time study was done on a welding operation. One inexperienced industrial engineer and one experienced industrial engineer conducted the study simultaneously. They agreed precisely on cycle time but their opinion on rating the worker differed. The experienced engineer rated the worker 100% and the other engineer rated the worker 120%. They used a 10% allowance.

Cycle Time (in minutes)	No. of Times observed
20	2
24	1
29	1
32	1

- > From the statements,
- ➤ (a) Determine the standard time using the experienced industrial engineer's worker rating
- ➤ (b) Find the standard time using the worker rating of inexperienced industrial engineer.
- > (c) Comment on the reliability of time study engineers

(a) Rating the worker at 100 per cent by the experienced Industrial engineer

Cycle Time (
$$CT$$
) = $\frac{20 \times 2 + 24 \times 1 + 29 \times 1 + 32 \times 1}{5}$
= 25 minutes.
Normal Time (NT) = $CT \times PR$
= 25 × 100% = 25 minutes
Standard Time (ST) = (NT)/(1 - %A)
= 25/(1 - 0.10) = 27.78 minutes

(b) Rating the worker at 120 per cent by the inexperienced Industrial Engineer

Cycle Time (CT) = 25 minutes

Normal Time (NT) = CT × PR

= 25 × 120% = 30 minutes

Standard Time (ST) = NT/(1 - %A) = 30/(1 - 0.10)

= 33.33 min.

(c) Comment

The results in part (a) and part (b) show differences in normal time and standard time. The task of estimating performance rating of a worker requires certain experience. So, we can rely on the results obtained by the experienced industrial engineer. Rating exercise is an art. So, the consistency in rating skill can be improved by repeatedly seeing rating films and/or by attending short courses on performance rating.

The time study data for drilling three holes in a connecting link rod is given in Table.

Calculate the standard time for drilling of one connecting rod. The job description is :

- (a) Drilling machine pillar type, and drilling machine capacity 25 mm diameter.
- (b) Drill Jig is used for holding the hob on machine.
- (c) Pieces to be drilled are lying in a bin near the machine.
- (d) After drilling, the job is put in another bin lying near the machine.

Use the following information in calculating standard time. 10 connecting rods have been machined. Rating factor 110 per cent.

Part Name : Co	nnectin	n Link	Rod					-	art No	W-020	1.25.11	0	
Machine Name		_		machi	ine			Part No. W-020-25-110					
		ieed 0	mung	maur	me			Deptt, Machine shop					
Operator : Mr. XYZ								Date : 10 April, 2005					
Experience on Job : 5 Years Begin Finish Elapsed Time : Unit Selected													
Begin		Finish				_	_	_	Jnit Sel				
Elements	Speed	Feed	1	2	3	4	5	6	7	8	9	10	Average
Pick-up job from bin			0.06	0.05	0.07	0.05	0.06	0.07	0.05	0.05	0.06	0.05	0.057 min
Tighten drill jig			0.13	0.12	0.10	0.10	0.18*	0.19*	0.10	0.11	0.10	0.10	0.108 min
Drilling three holes			0.40	0.41	0.40	0.38	0.39	0.38	0.59*	0.56*	0.38	0.37	0.390 min
Unclampling of job			0.07	0.07	0.06	0.07	0.08	0.16*	0.06	0.07	0.07	0.07	0.068 min
5. Remove from Jig and placed in a bin			0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.024 min
6.													
7.													
8.													
9.													
10.													
												Total	0.647 mir
Average time for 1 cycle 0.647 min.						٦,	Tools, J	igs and	Fixture	s used,	if any		
Rating		1	10%				╗						
Normal time		().712	min.				(* indicates extreme value, not considered					
Personal allowance —			7 '	in the calculation of average)									
Fatigue allowar	ce	-	_				Π.	Drilling Jig. No					
Other allowano	e	-	_				ן '						
Total allowance		2	5% o	f norr	nal tin	ne	7						
Standard time 0.89 min.		Π,	3b		ken by								

```
Total average cycle time = 0.057 + 0.108 + 0.390 + 0.068 + 0.024 = 0.647 min.
```

Rating factor = 110 percent

Normal time = 0.647 × 1.10 = 0.712 min.

Allowances = 25 percent of normal time = 0.712 × 25/100 = 0.178 min.

Standard time for drilling of 1 connecting rod = Normal time + allowances = 0.712 + 0.178 = 0.890 min.

> Different systems of Performance Rating

- ✓ Westinghouse System of Rating
- ✓ Synthetic Rating
- ✓ Objective Rating
- ✓ Skill and Effort Rating
- ✓ Physiological Evaluation of Performance Level

Westinghouse System of Rating

- > The factors considered are
 - **√**Skill
 - **✓** Effort
 - ✓ Condition
 - ✓ Consistency

Westinghouse System of Rating

➤ Westinghouse Performance rating table

Factor → Grade ↓	Skill (1)	Effort (2)	Conditions (3)	Consistency (4)
Super (1)/Excessive(2)/ Ideal(3)/Perfect(4)	$A_1 = +0.15$ $A_2 = +0.13$	$A_1 = +0.13$ $A_2 = +0.12$	A = +0.06	A = +0.04
Excellent	$B_1 = +0.11$ $B_2 = +0.08$	$B_1 = +0.10$ $B_2 = +0.08$	B = +0.04	B = +0.03
Good	$C_1 = +0.06$ $C_2 = +0.03$	$C_1 = +0.05$ $C_2 = +0.02$	C = 0.02	C = 0.01
Average	D = 0.00	D = 0.00	D = 0.00	D = 0.00
Fair	$E_1 = -0.04 E_2 = -0.10$	$E_1 = -0.04$ $E_2 = -0.08$	E = -0.03	E = -0.02
Poor	$F_1 = -0.16$ $F_2 = -0.22$	$F_1 = -0.12$ $F_2 = -0.17$	F = -0.07	F = -0.04

Westinghouse System of Rating

- ➤ To find the Westinghouse rating, the actuals are compared and suited with one of the ratings in each of the factors listed in the table and then summed up
- \triangleright Rating factor = 1 \pm Westinghouse Rating
- Normal time = Observed time x Rating factor
- > Standard Time = Normal Time x Allowances Factor

Allowances Factor
$$=\frac{100}{100 - Allownace in \%}$$

- Most controversial part of the time study
- ➤ Purpose of allowance is to add enough time to the basic time of the production to enable the average worker to meet the standard while performing at a normal pace

Basic Time + Allowance = Standard Time

- Types of Allowances
 - ✓ Relaxation Allowance
 - ✓ Interference Allowance
 - ✓ Process Allowance
 - ✓ Contingency Allowance
 - ✓ Special Allowance

Relaxation Allowance

- ➤ Considered for manual work, irrespective of the nature of the job
- Expressed in % of Basic Time

> Compensating Rest Allowance:

- ✓ Provided to recover from physiological effects of carrying out specified conditions and to attend the personal needs
- ✓ The amount of allowance depends on the nature of job

> Fatigue Allowance:

✓Intended to compensate for the physiological and psychological effects of carrying out specified work under specified conditions

> Personal Need Allowance:

✓ Provided to cater for personal needs

Interference Allowance

- Provided when the operator is working on more machines
- Applicable for machine or process controlled jobs
- ➤ Interference may occur due to settings, positioning, etc. of the machine which may influence the skill and effort of the operator.
- ightharpoonup Machine controlled element ightharpoonup Not always added in calculating the standard time
- ➤ This allowance varies in proportion based on the number of machines allotted to the operator

Process Allowance

Prominent when the operator works on more machines and becomes idle

> Example:

- ✓ Idle after loading the job in an automated machine
- ✓ Idle after welding operation to allow the component to cool

Process Allowance Chart					
5% of the normal time	Automated Machine				
10% of the Normal Time	Power operated Machine				
15% of the Normal Time	Similar type of work load				
20% of the Normal Time	Short cycle load (0.2 min)				
25% of the Normal time	Heavy work load (30 kg)				

Contingency Allowance

- Provided for small unavoidable delays and for occasional minor extra work
- ➤ Expressed in % of Basic Time
- Less than 5% of Basic time is the recommended value

Special Allowance

- Provided for some special conditions
- > Examples:
 - ✓ Start-up, Shut down and Tooling
 - ✓ Setup and Change over
 - ✓ Learning, Training and Implementation

Ergonomics

End of Module-4

Synthetic Rating

- > Records the actual time of performance for the element
- Performace times for such elements have been standardized called as "Predetermined Motion Time Standard (PMTS) Values
- > PMTS values for the elements can be noted from the table

Rating Factor
$$= \frac{PMTS \ value for \ the \ element \ in \ minutes}{Average \ Actual \ Time \ for \ the \ same \ element \ in \ minutes}$$

- ➤ Average rating factor is then calculated based on the rating factor calculated for the elements having PMTS values
- Normal Time = Actual Time x Average Rating

Objective Rating

- > Base Time Calculation:
- ➤ The pace of the operator is rated against an objective pace standard
- ➤ Objective pace standard is same for all the jobs irrespective of the job difficulty and its limiting effect on pace

Base Time = Rated Pace x Observed Time

- Normal Time Calculation:
- > Taking into account the Job difficult factor or job complexity, normal time is calculated

Normal Time = Base Time x Job Difficult Factor

Objective Rating

> Job Difficult Factor

SI. No.	Description	Ref. Letter	Conditions	Percent Adjustment
1	Amount of body	A	Finger used loosely	0
	used	В	Wrist and Fingers	1
		C	Elbow, wrist and fingers	2
	ľ	D	Arm, etc.	5
		E_1	Trunk, etc.	8
		E ₂	List with leg from floor	10
2 Food pedals	Food pedals	F	No pedals or one pedal with fulcrum under foot	0
		G	Pedal or pedals with fulcrum outside the foot	5
3	Bi-manualness	H ₁	Hands help each other or alternate	0
		H ₂	Hands work simultaneously doing the same work	18

Objective Rating

> Job Difficult Factor

Sł. No.	Description	Ref. Letter	Conditions	Percent Adjustment
4	Eye hand	I	Rough work, mainly feet	2
	coordination	} J	Moderate vision	2
	}	K	Constant but not closed	4
	}	L	Watchful, fairly close	7
_	}	M	Within 1/64"	10
5	Handling	N	Can be handled roughly	0
	requirements	0	Only groll control	2
		Р	Must be controlled but may be squeezed	3
	1	Q	Handle carefully	4
		R	Fragile	5
6	Weight		Identified by the actual weight for resistance	

Skill and Effort Rating

- ➤ Also known as Bedaux System
- Calculate the work rate or speed of the worker's movement and how fast he is performing the motions
- ➤ Both the movement and the skill of the worker need not to be considered
- Standard Minute, called as Unit B is used which is composed of work component and relaxation component

Skill and Effort Rating

- > Steps involved:
- Divide the operation into smallest measureable elements
- > Note down the time taken for each element
- Calculate the average time after performing sufficient observations
- Consider Relaxation factor

Light work	1.10 to 1.20			
Medium work	1.20 to 1.35			
Heavy work	1.35 to 1.50			
Very heavy work	1.50 to 3.00			

Skill and Effort Rating

Calculate B value using

No. of B's per work element = [Observed time x Speed of the work x Relaxation allowance] (60 x 60)

> This is for human effort

Physiological Evaluation of Performance Level

- ➤ Based on the relation between the physical work and the amount of oxygen consumed
- Find out the changes in heartbeat for various physical works
- Most reliable measure of muscular activity
- This method is not currently used