SIGNATE

Confidential

 AI Quest: 需要予測・在庫最適化

 ガイドコンテンツ

01

当課題特有の注意点について

・当課題の問題設計やデータの性質を正しく把握した上で、分析を行いましょう。

✓ 2ヶ月前までの売上履歴をもとに予測できるよう、モデリングする必要がある

2018年	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
2019年	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月		12月

青: 売上履歴が与えられた期間

赤: 予測対象期間

- ✓ 予測対象は、2019年12月の「一ヶ月あたりの商品売上個数」だが、
 学習用として与えられたデータは、2018年1月~2019年10月までの「一日あたりの売上履歴」である
- ✓ 売上履歴は、「一日の売上数が0個でなかった場合」のみデータが存在するが、 予測対象は、売上数が0個の場合も含まれる

02

前処理コード例

・まずは、配布されたCSVファイルを読み込み、中身を確認しましょう。 pythonのpandasライブラリにおける例を示します。

▼read_csv関数の例

ファイル名をクォーテーションマーク(「'」もしくは「"」) 、で囲う必要があることに注意しましょう。

df = pd.read_csv ('sales_history.csv')

[2] Jupyter Lab(Notebook)環境を使用する場合は、 読み込んだデータを代入した変数名を記入して 実行するだけで、テーブルの中身を見やすい レイアウトで表示することができます。 [1] ライブラリ独自の関数を使用する場合は、 事前にライブラリのインポートを行う必要があります。

・グループごとに値を集計することで、有用な情報を得られる場合があります。 グループ分け処理には、pandasのgroupby()メソッドを使用します。

▼groupby()メソッドの例

他にも、合計値を算出するsum() 値の数を数え上げるcount()などがあります。

gp = A.groupby('曜日').mean().reset_index()

データフレームA

データフレーム gp

	曜日	売上数
0	火	2
1	火 火 水	4
2	水	5
3	水	4
4	水	9
5	土	12
6	土	19
7	土	26

「火」の平均値:

「土」の平均値: 19

	曜日	売上数	
0	火	3	_
1	水	6	
2	土	19	
			

データの可視化: matplotlib.pyplot.bar()

• データをグラフに描画することで、データに対する理解が深まることがあります。 データの可視化に便利なmatplotlibライブラリを使ってみましょう。

▼plt.bar()関数の例

データフレーム名の後ろの「O中に列名を指定することで、 その列に含まれる値の一覧を取得することができます。

plt.bar(gp['曜日'], gp['売上数'])

matplotlib.pyplotモジュールは、慣例的に「plt」という省略名でインポートされます。

データフレーム gp

	曜日	売上数
0	火	3
1	水	6
2	土	19

• テーブル型のデータでは、結合処理を頻繁に利用します。 まずは、単純に2つのテーブルをつなげる処理の例を確認しましょう。

▼concat関数の例

[]が必要なので注意。良く忘れます

dfnew = pd.concat ([A, B],sort=False)

	val1	val2
0	A1	B1
1	A2	B2
2	А3	В3
3	A4	B4

データフレームA データフレームB

	val1	val2
4	A5	B5
5	A6	В6
6	Α7	B7
7	A8	В8

dfnew

val1	val2
A1	B1
A2	B2
А3	ВЗ
A4	B4
A5	B5
A6	В6
A7	В7
A8	В8
	A1 A2 A3 A4 A5 A6 A7

・ 次は「特定の値をヒントとして結合する」場合の例です。

▼merge関数の例

ヒントとなるカラムをオプションで設定

dfnew = pd.merge (A, B, on="id")

データフレームA

データフレームB

	val1	id
0	JP	01
1	US	02
2	CN	03
3	GB	04

	id	val2
0	04	イギリ ス
1	03	中国
2	02	アメリ カ
3	01	日本

カラムidをヒントに結合する

dfnew

	val1	id	val2
0	JP	01	日本
1	US	02	アメリ カ
2	CN	03	中国
3	GB	04	イギリ ス

カラムidで同一の値があるもの同士 が横に結合される

03

特徴量生成・モデリングの方針

予測に有効な特徴量を作成・見つけることが重要です。特に、回帰問題の場合には線形性がある特徴量が重要となります。

xとyの相関が高そう →予測に寄与する変数である可能性

線形回帰モデルを利用する場合

・時系列情報を扱う課題では、過去の実績値が特徴量として、 有効に機能する場合があります。このような特徴量をラグ特徴量といいます。

- ✓ 実績値に周期性があり、 おおむね一週間前と近い値になる傾向がある。
 - → 一週間前の同曜日の実績値が特徴量として有効に機能するのでは?

他にも「外れ値を除外する」ことや、「量的データをカテゴリ化する」といった工夫も考えられます。

・モデルの特性を踏まえて、課題に適したモデルを選択することも重要です。

線形回帰モデル

- ✓ 交互作用(AかつB等の複合的な条件) がモデル内に内包されていない為、特 徴量を作る必要がある
- ✓ 相関が互いに強い説明変数を入れると 係数が不安定(多重共線性)

決定木モデル

- ✓ あくまで学習データを基準に目的変数 の値域が決まる為、学習データの値域 を超えた予測はできない
- ✓ 交互作用がモデル内に内包されている 為、交互作用に関する特徴量を作る必 要がない
- ✓ 多重共線性を考慮しなくてよい

SIGNATE

Find the sign of changing times.