PAGE NO.: DATE: 14/2/25 . e-Theta Notation. It represent average bond of algorithm minning time. 4) little oh notation. g Explain the asymtotic Notation with I'me fin. write, graph example Ox Find the upper bound of F(n) = 3m +8 -) Condn of Big O notation f(n) < c.g(n) where n>no \$ CYO & N7). Assume C=4 F(n) < (.g(n) 3n+8 5 4n 9s true. Teacher's Signature

	Title .	FIGE NO.1	7	DATE: Y /
		F(n) 9 (n) 8n+8 4n		$f(n) = (n^2 + 10)$ Assume $g(n) = 2n^2$ $n^2 + 10 \le 2n^2$? $C = 2$
-	n=1	11 4		n=+10 S 211
	n=5	23 20		$ \begin{array}{ccc} F(n) & g(n) \\ n^2 + 10 & 2n^2 \end{array} $
		29 28 32 32		n=1 11 2.
-		35 36		n=3 19 18 $n=4$ 26 32 $n=5$ 35 50
	:. Bn + 8	= 0(n) For		n=5 35 50
	C= 4 ,	no = 8		n2+10 ≤ 2n2 % true for c=2 4 no=4
-	The G	ndition is satisfic	ed	$n^2 + 10 = O(n^2)$
	Oburio!	+10, find the u	pper 3	F(n) = 5n+50, find the upper bound
<u></u>	$F(n) = n^2$ $Gndn$ $f(n) \leq c$	Big O notation again where n zno		f(n) = 5n+50 : Condn Bigo notation. f(n) \le c.g(n) where n \text{no}
		C, no gre a	nstant	(n) s c.g(n) When are Gretant

	e all value +1 total				PAGE NO.: DATE: / /
	f(n) = 5n + 50 Assume of 5n + 50 ≤ 8m 6n	0	a(n) =100)0	g n Is	g(n) upperbound
	f(n) g(n) 5n+50 3n8n 55 248	100	of +(n) =	5n+50	a taken med al
	n=2 60 16 n=30 200 240		n=1	\$150 55	3(n) 10010910n
	F(n) g(n)		n=2	60 75	69.89
	n=1 55 6 n=10 100 60 n=50 800 800		n=8 n=10	90	90.30
4	sntso Son is true for		U=1000	5050	300
	n=50, & c=6.		5	n+50 51	oologion is false.
	Teacher's Styre	TOTO .			Teacher's Signature

S find the upperbound of function G $f(n) = 2^n + 3n^3$ $f(n) \leq c \cdot g(n)$ $f(n) \leq c \cdot g(n)$ $f(n) \leq c \cdot g(n)$ $f(n) \leq 2^n + 3n^3$	find lower bound of f(n) = (000+5. Consider the Big-1 notation f(n) > c.g(n) where n>no we Assume f(n) = lon2+5 Assumeg(n) = n2.
	$f(n) \ge c_1g(n)$. $10n^2 + 5 \ge n^2$. $f(n) = 1$

Show that the steel of $(n) = n^3 + 8n^2$ is $= O(n^3)$. And the Average bound for upper bound $f(n) \le Ceg(n)$. $f(n) = n^3 + 3n^2 - \therefore assume g(n) = 2n^3$ where $n \ge n0$, $n \ge 1$, $c > 0$.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$n^{3} + 3n^{2}$ 2n ³ $n=1$ 4 2 $n=2$ 20 16 $n=3$ 54 54 $n=4$ 112 128 . $n^{3} + 3n^{2} \le 2n^{3}$ 9s +nue for $n=3$ 4 c=2. For lower bound assume gm = n ³ $f(n)$ g(n) $n^{2} + 3n^{2} - n^{3}$ $n=1$ 4 1 Teacher's Storeture	Soln 2 :- by shr. Gndition for Average bound (Onotation Cygn) & f(n) & co.g(n) where n > no and c & no are Constants. O f(n) & co.g(n) F(n) = n3 + 3n2 Assume g(n) = 2n3 c=2 n8 f(n) & co.g(n) n8 + 3n2 & 2n3 +able Assume Hiofull

FINCE NO : CASE: / /	PAGE NO.: DATE: / /
n3+3n2= O(n2) for c=2 & no=3	= 10 1 , n , n4 , n5 n , n , n , n , n , n , n , n , n
9 F(n) > 0.9(n) $F(n) = n3 + 3n^2$	n n 2n sn sn
Assume $g(n) = n^3$, $c = 1$ $n^3 + 3n^2 \ge n^3$?	
10ble Hiarell n3+3n2 = -2 (n3)	1/2
Goodition @ notation	Constant function
$(1,g(n) \le f(n) \le (2,g(n))$ for $(1=1, no-3, ce=2)$	ex:- 100 , 2^{10} , 5 , $1 + housand$.
* Decrement function	
value is less than the denominator 10, n, 2n, ny, ns n, n2 2n, 5n, 5n	Constant function is asymptotically greated or bigger than decrement function.
Teacher's Signature	Toacher's Sgreture

	DATE: / /				PAGE NOL:
eg:-	f(n) = 100 $g(n) = 1000$	eq	Logarithm	18 funct	son. loglagn, logn-logla
-)	fin) < c.gin) where n>no and cono one constants.	9			f(n) = log .
	f(n) = 100, (= 1000			Same I	Control of the Contro
	100 ≤ 1 = ?	ex:-	£(n)=1	00 4(n)= 10g n.
	f(n) g(n)	->	f(n) < F(n)=1	c.g(n).	n)= 10g n.
	n=10 10 1 n=100 1			f(n)	/ g(n)
	n=10000 0.01 1	1/4	n=10 n=10 ¹⁰⁰	100	100 2
1	100 S1 % true		U = 10/000	100	1000 -3
	100 = 0 (1) for c= 1 n= 100.		Logarithm	than the	constant function

PROFILE / /	PAGE NO.:
* polynomial function. *g n2, Vn, n10, nk.	Decrement fun < anstant fun < loganithmic fun < polynomial fun < exponential fun.
$f(n) = \log_{1} n, g(n) = \sqrt{n}$ $g(n) = 0 g(n)$ $g(n) = 0$	* Problem
$f(n) \leq C \cdot g(n)$ $f(n) \qquad g(n)$ $\log_{10} n \qquad \sqrt{n}$	asymtotocally increasing order of their growth mate toglogn
n=10 1 3:16 n=100 2 10	(5.5)n.
eg. 27, nl, nn, sn	$(5.5)^n \longrightarrow 5^n \text{decrement fun}$ $(5.5)^n \longrightarrow 5.5 (5.5)^n \text{exponential fun}$ $10n$
exponential function polynomial function f(n) = \(\text{vn} \) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Numerator es greater (55710) Polynomial function: n4, n4.5.
1 f(n) g(n) 5 n 2 n 1 -2 1 -4 4 Teacher's Storehure	onstant function, 100 252 Constant function, 100 252 Isomithmic fun n210gn, logn logn logn

Co.5)", 100 252, toglogn, 10gn (togn) 10, n4.5 (55) co.5)", 100 252), logn (logn) 10, n4.5 (55) logn, 12 logn, n4, n4.5, (5.5)". find Time Complexity: Algo sum (a,n) Sum = 0:	for (i=1; i<=n; i+2) printf (" Computer"); $i=1$, $i+2$, $i+2\times 2$, $i+3\times 2$ $i+k\times 2$ Assume $i+k\times 2=n$ $k=n-1$ $i=1$, $i+2$, $i+3\times 2$ $i+k\times 2$ Assume $i=1$, $i+2$, $i+3\times 2$ $i+k\times 2$ $i=1$, $i+2$, $i+3\times 2$ $i+k\times 2$ Assume $i=1$, $i=1$, $i=1$, $i=1$) $i=1$, $i=1$, $i=1$, $i=1$ $i=1$, $i=1$ $i=1$, $i=1$ $i=1$, $i=1$
Time Complexity = O(n). Teacher's Signature	n-k=1 $k=n+1$ $O(n)$ - Gmplexity. Teacher's Square

for (i=n, iz=1, i=2) printf("computer"); i=n, n-2, n-4, m-k = n-k= 2 complexity= O(n). for (i=1; i<=n; i*2) printf ("computer"). i=1, 1x2, 1x22, 23 2k	1	For $(l=n, 97=1, 8/2)$ printf(" Computer"); $l=n, n, n, n, n = n$ $l=n, n, n, n = n$ Assume $l=1$ $l=n$ Apply log on both side $l=1$
Assume 2k=n Apply log tog on both side		Complexity = (O (logn)
$\log_2 2k = \log_2 n$ $k = \log_2 n$ $ complexity = O(\log n) $ Teachers Square	7	For $(\tilde{i}=3, \tilde{i} < n)$, $\tilde{i}=2$) $a = a + 5$; $\tilde{i}=3, 3^2, 3^{2^2}, 3^{2^3}, \dots, 8^{2^k}$. Assume $3^{2k} = n$ Apply \log_3 on both 8^{i} de. $2^k \log_3 3 = \log_3 n$ Teachers Signature

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Apply log to both side $\log_2 k = \log_2 \log_2 n$ $\log_2 k = \log_2 \log_3 n$ $k = \log_2 \log_3 n$ $\log_2 k = \log_2 \log_3 n$	
k=109210950 /Complexi	
k = 109 109 n	ty= loglogn
[Complexity = ((loglogn)] g) For (= , <=2"; 1++) printf(" T.Y. Computer")	1): 1
8) for (i=n; i7=5, i=v;) complexity = 0 (2n) printf(" T.Y. Gmputer").	
$i=n$, $(n)^{\frac{1}{2}}$, $(n)^{\frac{1}{2^{2}}}$, $(n)^{\frac{1}{2^{3}}}$, $(n)^{\frac{1}{2^{4}}}$ Complexity = $O(\sqrt{n})$	
Assume $(n)^{\frac{1}{2k}} = 5$ Apply log on both side 1) for $(i = n^2; i = 1; i = 1/2)$ Apply log on both side 2 n ² n ² n ² n ²	
$\log(n)^{\frac{1}{2}} = \log 5$	2k
2k	1
Taking log an both sid	e .

			DRAW says
	DATE: /		DATE 2/2 /25
	109n2 = 1092k		Fox (1=3) (2=n) (=13) - 10931093n
	$ \log n^2 \log 2^k$ $k = \log n^2 ^2$	14)	For (j=1; j=1; j=1/2)-10927
			for (k=); k<=n; k=k+4)-logn
	complexity = (O (logn)		a= a+5
	Complexity = Clogn)		AND TO THE PARTY OF
(2)	For (9= 5"; 97=5; = 5/T)	Leile	complexity 0 = (log2n loglogn)
1	prints ("Computer");		- cite ful all languements of
	printf("(omputer")); i= 5n sn1s, 5n1s2, 5n/s35n/s \$ 5 5k = 5	15)	
	# 5 5k = 5		for (j=1; j<=1; j++) - m
	100 2 25 = 100 22 1,32 = 10322 =		a= a+5; - n2
	$\frac{n}{5k} = \frac{k = \log 5n}{(O = \log n)}$		Complexity 0=n2
	n=5k -) (0=10gm)	Un	A COLOR DE COMPANIE DE COLOR D
15)	For (1=2; 1<=27; 1=12).	19	for (1=1; 1<=n; i++)
	i=2, 22, 222, 223, 22k.		For (j=1: j<=n; j=j+i) .
	Assume = 22k =n		a= a+5;
	Apply logs both side 10922 10927		n/n (n+n+n++++)
(00)	109 22k = 109 m.2n k=1092n		$\frac{n(n(n+n+n+n+n+n))}{2}$
(0=100	n) ak log 2 = log 2 n Teacher Com logn		n(1+1+1
	OK-n Teachers School Teachers		2 3 Keenike Synestie

	DATE: 7	PAGE NO.:
*	Recurrence Relation. A Recurrence Relation is a mathematical expression that describe the exercal Cost of the problem in terms of Cost of Solving the smaller Sub problem. It is called as Recurrence Relation. Algo fact (n) -> T(n) If (n==1) return 1 -> 1 unit else	Substitution Method. ex 0 $T(n) = $ $T(n-1)+c$ if $n > 1$ c $n = 1$ $T(n) = T(h-1)+c$ 0 put n as $n-1$
	returns t factor) - nxT(ny) T(n) = S nxT n>1 n=) This is a Recurrence Relation.	T(n-2) = T(n-2-1) + C $T(n-2) = T(n-3) + C$ put $T(n-2)$ in eqn(2) $T(n) = T(n-3) + C + 2C$ $T(n) = T(n-3) + 3C - 3$ $T(n) = T(n-k) + kC - 4$ Assume = $m-k=1$ $k=n-1$

put the value of k in eqn \mathfrak{D} $T(n) = T$ $(n-(n-1))$ $+(n-1)$ \mathfrak{C} $= T(l) + n \cdot \mathfrak{C} - \mathfrak{C}$ $= Q + n \cdot \mathfrak{C}$ $= Q + n \cdot \mathfrak{C}$ $= Q + n \cdot \mathfrak{C}$ $= Q + n \cdot$	T(n) = T(n - (n-1) + T(n - ((n-1)-1)) + T(n-1) + T(n-1-1) + T(n-1-1-1) + T(n-1-1-1) + T(n-1-1-1) + T(n-1-1-1-1) + T(n-1-1-1-1-1-1) + T(n-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Teacher's Signature	Teachar's Signature

Teacher's Signature	Greenettic P series. 3) $T(n) = \begin{cases} 2T(n-1) + n & \text{if } n > 1 \\ & \text{if } n = 1 \end{cases}$ T(n) = $2T(n+1)+n$ Substitute n as n-1 $T(n-1) = 2T(n-1) + (n-1)$ $T(n-1) = 2T(n-2) + (n-1)$ in eqn 0 $T(n) - 2 \left[2T(n-2) + 2(n-1) + n \right]$ $T(n) = 2^{2}T(n-2) + 2(n-1) + n$ $T(n) = 2^{2}T(n-2) + 2(n-1) + n$ $T(n-2) = 2T(n-2-1) + (n-2)$ $T(n-2) = 2T(n-3) + (n-2)$ $T(n) = 2^{2}\left[2T(n-3) + (n-2) \right] + 2(n-1) + n$ $T(n) = 2^{3}T(n-3) + 2^{2}(n-2) + 2(n-1) + n$ $T(n) = 2^{3}T(n-k) + 2^{k-1}(n-(k-1)) + 2^{k-2}(n-(k-1)) + 2^{k-2}$	$GP = A (x^{n-1})$ $T(n) = 2^{n-1} + 2^{n-2} (n - (n-1-1) + 2^{n-3})$ $(n - (n - 1-2) + \dots + n)$ $T(n) = 2^{n-1} + 2^{n-2}(2) + 2^{n-3} \cdot 3 + \dots$ $2^{2} (n-2) + 2(n-1) + n$ $T(n) = 2^{0}(n) + 2^{1}(n-1) + 2^{2}(n-2) + \dots + 2^{n-2}(2) + 2^{n-1}(1) \cdot \dots \cdot G$ $Multiply 2 + 0 \text{ both side}$ $2^{1}(n) = 2^{1} X(n) + 2^{2}(n-1) + 2^{3} (n-2) + \dots$ $2^{n-1}(2) + 2^{n-1}(3) \cdot \dots \cdot G$ $Substract G \text{ from } G$ $2^{1}(n) - T(n) = -n + 2^{1} + 2^{2} + 2^{3} + \dots + 2^{n-1} + 2^{n-1}(n) = 2^{n-1} + 2^{n-1}(n+2)$ $= 2^{n-1} + 2^{n-1}(n+2)$ $= 2^{n-1} + 2^{n-1}(n+2)$ $= 2^{n-1} + 2^{n-1}(n+2)$
---------------------	---	--

T(n) = $\begin{cases} 2\tau \left(\frac{n}{2}\right) + n & \text{if nz} \\ \frac{1}{2} + n & \text{if nz} \\ 1$	$T(n) = 28T \binom{n}{23} + 3n - 3$ $T(n) = 2^{kT} \binom{n}{2^{k}} + kn - 3$ $T(n) = n + n + n + n + n + n + n + n + n + n$
Teacher's Signature	Toacher's Signature

HWT(n)= { 2T(vn)+1 if 172 if 0 < n < 2	Barrus	T(n) = n 1/10gn 2 + nloglogn
Substitute n as $n^{\frac{1}{2}}$ $T(n^{\frac{1}{2}}) = (n)^{\frac{1}{4}} + (n^{\frac{1}{4}}) + n^{\frac{1}{2}}$ put the value of $T(n)^{\frac{1}{2}}$ in eqn $T(n) = (n)^{\frac{1}{2}} \left[n^{\frac{1}{4}} + (n^{\frac{1}{4}}) + n^{\frac{1}{2}} \right] + n$ $T(n) = n^{\frac{3}{4}} \left[n^{\frac{1}{8}} + (n^{\frac{1}{4}}) + n^{\frac{1}{4}} \right] + 2n$ $T(n) = n^{\frac{3}{4}} \left[n^{\frac{1}{8}} + (n^{\frac{1}{8}}) + n^{\frac{1}{4}} \right] + 2n$		- (n) 1-1/10gn. 2 + nlog log n (n) 2 + nlog log n n/10g n - n 2 + nlog log n. 2 + nlog log n.
T(n)= n = T(n =) +3n - (3)		O (n log logn)
Tin)= $n^{2k-1/2k} + (n^{\frac{1}{2k}}) + kn$	8)	$T(n) = \begin{cases} 2 T \sqrt{n} + 1 & \text{if } n \neq 2 \\ 2 & n = 2 \end{cases}$
2F 9n - 109 5		$T(n) = 2T(\sqrt{n}) + 1$ $T(\sqrt{n}) = 2T(n^{22}) + 1$ $T(\sqrt{n}) = 2T(n^{22}) + 1$
2k = logn Apply log k = loglogn		put in egn() T(n) = 2(2T(n22)+1)+1 $T(n) = 2^2T(n22)+2+1$ $T(n) = 2^2T(n22)+2+1$
Teacher's Signature		Teacher's Signature

	PAGE NO.)	1	PAGE NO.: DODE: / /
	$T(n) = T\left(\frac{n}{2k}\right) + (n+cn+cn-k)$		case 1:- Pf a 76k then T(n) = a (n 1096a)
-	= T (n) + km		case2: if a=bt then
	Assume $n = 1$ $2^{k} = n$		a7 P7-1 then T(n)= 0 (n 103 ba log n)
	Apply log k = logn		b) P=-1 then T(n)= 0 (n logba loglogn) c) PX=1 then T(n)= 0 (n logba)
	$T(n) = 1 + logn \cdot C \cdot D$ $T(n) = 1 + (nlogn)$		Case3:- if a < b * then
63/2	(nlogn		T(n) = O(nk login)
	Master theorem T(n) = aT(n) +0 (nklegh)		b) PF P<0 then T(n) = O (nk).
	a>1, b>1, k>0 and p 9s a realno.		The state of the s
	Teacher's Signature		That char's Styreshore

PRODE NO. 1	PROENCH:
$On(n)=27(n)+n^2$ 10=2, b=2, k=2, p=0.	T(n) = 0 (nlogb9) $T(n) = 0 (nlog2^{2})$
2 2 ² 2 4	T(n) = 0 (n)
then $P \ge 0$. $T(n) = O(n^{k} \log^{p} n)$ $T(n) = O(n^{2} \log^{0} n)$ $T(n) = O(n^{2})$	$\frac{7(n) = 3T(n) + n^{2}/logn)}{3(1-3)}$ $\frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{1}{3}$ $\frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{1}$
$ \frac{1}{7(n)} = \frac{47(\frac{1}{3})}{1} + n = n^{2} $ $ \frac{7(n)}{7(n)} = \frac{27(\frac{n}{3})}{1} + 1 = n $ $ \frac{7(n)}{7(n)} = \frac{27(\frac{n}{3})}{1} + \frac{10gn}{1} = \frac{n\log n}{1} $ $ \frac{7(n)}{7(n)} = \frac{47(\frac{n}{3})}{1} + \frac{n^{2}\log^{2}n}{1} = \frac{n^{2}\log^{3}}{1} $	3 < 4 0.003 then $P < 0$. $T(n) = Q(n^2)$ $T(n) = Q(n^2)$.
(a) $-r(n) = 2T(n) + n \log 4n$. $-r(n) = 2T(n) + n \log 4n$.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	DATE I	PAGE NO.: DATE: / /
(3)	T(n) = (\forall n) + 10gn	7(n)= 2T(\(\frac{1}{2}\))+ logn
-	a=1, b=1, k0, p=1	anvert the expression in Master thin
	anvert the expression in Master thm	7(n) = 2T (n 2) + logn.
	1(0) = T(n''-) + 1000.	Assume = n = 2m.
	Accurac	Body log M = logn.
	(2m) 1/2 = 2m/2	100 (n) = 8 (m).
	T (2m)= T (2m/e) + logem	$T(2^m) = 2T(2^{m/2}) + m$
	T(00) -(m/2)	Assume T (2m) = S (m)
	$T(2^{m}) = T(2^{m/2}) + m$ $T(2^{m}) = S(m)$	S(m) = 2 5 (m/2) + M
		Apply master theorem
	S(m) = S(m) + m	a=2, b=2, k=1, P=0
	a=1, b=2, k=1, P=0.	a bk
	a bk	2 = 21 C 10018, PH 1
	1 01	(ase 2a) T(n) = 0 (n log be log pt n) T(n) = 0 (m log 22 log m)
-	1 < 2	T(n) = @ (m 32 logm)
	then p=0	T(n) = 0 (m log1)
100	Tonze a (nkloofn)	T(n) = O (logn loglogn)
	= 0 (m 100%)	(5) T(n) = VTT (VT)+n
	((1) = @ (m)	
	T(n) = 0 (logn) Teacher's Signature	Teachor's Signature

DATE: / / 5(m)=0 (m^{10g2} (ogm) 20 (logm) 1(0m) = 0 (loglogn) 2m convert expression, in master than T(n)= VnT (n2)+n T(n)= (n) = T (n=)+n. Assume n= 2m T(2m) = 2m log logn T(n) = nlog logn. Apply log m= logn. T(2m) = 2m/2 T (2m/2) + 2m Divide on to both side T(n) = () (nloglogn) T(2m) = T(2m12) +1 2m 2m/2 16) T(n)= T(m)+1. Assume T(pm) - S(m) convert expression in Master thm 200 T(n) = T (nt)+1 s(m) = 3 (m)+1 Assume = n = 2m Apply log m=logm. Apply master theorem a=1, b=2, k=0, p=0 T(2m)= T(2m12) +1. T(2m)=s(m) a bk s(m) = s (m) +1. 1 = 20. (ase 20) Tin= (n10860 100 Pt) Apply Master thm.

a= 1, b=2, k=0, p=0

	PAGE NO.:	PAGE NO.:
	a bk 1 20 1 ± 21 (ase 3 a) p = 0 (n k log Pn) 1997	Here $a=2$, $b=2$, $k=0$, $p=0$. $a > b < 0$ $a > b < $
	T(n) = @ (nlogn)	> 0 (10gm)
14)	$T(n) = 2T(m) + 1$ $T(n) = 2T(n^{1/2}) + 1$ Assume $n = 2m$ $m = logn$. $T(2m) = 2T(2^{m/2}) + 1$	
	Assume $T(2m) = S(m)$ T(2m) = 2S(m) + 1 Teacher's Signature	Taucher's Signature