Étude examen prédoctoral général

Christopher Blier-Wong

TABLE DES MATIÈRES iii

Table des matières

L	Mathématiques financières	1
1	La mesure de l'intérêt 1.1 Les fonctions d'accumulation et de montant 1.2 Le taux d'intérêt effectif 1.3 Intérêt simple 1.4 Intérêt composé 1.5 Valeur actualisée 1.6 Taux effectif d'escompte 1.7 Taux d'intérêt et d'escompte nominaux 1.8 Force d'intérêt et d'escompte 1.9 Intérêt variable	3 4 4 5 5 6 7 8
2	Solutions de problèmes d'intérêt 2.1 Le problème de base	9 9
3	Rentes de base 3.1 Introduction	11 11 11 12
П	Mathématiques actuarielles vie	13
Ш	Distributions de sinistres	15
1	Quantités distributionnelles de base 1.1 Queues des distributions	17 17
2	Caractéristiques des modèles actuariels 2.1 Distributions paramétriques et d'échelle	19 19 20 20 20

3	Dist	tributions continues	23
	3.1	Créer des nouvelles distributions	23
		3.1.1 Multiplication par une constante	23
		3.1.2 Création de distributions en élevant à une puissance	23
		3.1.3 Création de distributions avec exponentiation	24
		3.1.4 Mélange	24
		3.1.5 Modèles à fragilité	24
		3.1.6 Raccordement de distributions connues	25
	3.2	Familles de distributions et leurs liens	25
		3.2.1 Distributions limites	25
	3.3	Théorie des valeurs extrêmes	26
		3.3.1 Distributions à valeur extrêmes (DVE)	26
		3.3.2 Distribution du maximum	27
		3.3.3 Stabilité du maximum des DVE	28
		3.3.4 Théorème Fisher-Tippett	28
4	Dist	tributions discrètes	29
	4.1	Notation et rappels	29
	4.2	Loi Poisson	29
	4.3	Loi binomiale négative	30
	4.4	Loi binomiale	31
	4.5	La classe $(a,b,0)$	31
5		quence et sévérité avec modifications de la couverture	33
		Déductibles	33
		Ratio d'élimination de perte et effet de l'inflation sur les déductibles ordinaires .	34
	5.3	Limites de polices	35
	5.4	Coassurance, déductibles et limites	35
13.7	TI		27
IV	ın	néorie de la crédibilité	37
\/	The	éorie du risque	39
V	1110	eone du risque	39
VI	Pr	ocessus stochastiques	41
			-
VII	Fi	inance	43

Première partie

Mathématiques financières

1 | La mesure de l'intérêt

Voir [Kellison, 2006], chapitre 1

1.1 Les fonctions d'accumulation et de montant

- Le montant initial investi est appelé le capital
- Le montant obtenu après une période de temps est appelé la valeur accumulée
- La différence entre le montant accumulé et le principal est le montant d'intérêt ou intérêt
- t est le temps mesuré depuis le début la date d'investissement
- L'unité de temps est la période de mesure ou période

Définition 1.1.1: La fonction d'accumulation

La fonction d'accumulation a(t) correspond à la valeur accumulée au temps $t \geq 0$ d'un investissement initial de 1.

La fonction d'accumulation possède les propriété suivantes :

- 1. a(0) = 1
- 2. a(t) est généralement croissante
- 3. Si l'intérêt est accumulé en continu, a(t) est continue

Définition 1.1.2 : Fonction de montant

La fonction de montant A(t) correspond à la valeur accumulée au temps $t\geq 0$ d'un investissement initial de k>0. On a

$$A(t) = k \times a(t)$$
 et $A(0) = k$.

Définition 1.1.3 : Montant d'intérêt

Le montant d'intérêt gagné pendant la $n^{\mathrm{i\`eme}}$ période depuis la date d'investissement est

$$I_n = A(n) - A(n-1)$$
 pour $n \ge 1$.

1.2 | Le taux d'intérêt effectif

Définition 1.2.1

Le taux d'intérêt effectif i est le montant d'argent qu'une unité investie au début de la période va gagner pendant la période, où l'intérêt est obtenu à la fin de la période, c.-à-d. i=a(1)-a(0) ou a(1)=1+i.

Le taux d'intérêt i est le ratio du montant d'intérêt gagné pendant la période et du montant de principal investi au début de la période.

Le mot effectif est utilisé lorsque l'intérêt est payé une fois par période.

Les taux d'intérêt peuvent être calculés sur n'importe quelle période d'investissement. Soit i_n , le taux d'intérêt effectif pour la $n^{\text{ième}}$ période depuis la date d'investissement. Alors, on a

$$i_n = \frac{A(n) - A(n-1)}{A(n-1)} = \frac{I_n}{A(n-1)}, \text{ pour } n = 1, 2, \dots$$

1.3 | Intérêt simple

La fonction d'accumulation est linéaire

$$a(t) = a + it$$
 pour $t \ge 0$.

Accumuler de l'intérêt avec ce patron correspond à l'intérêt simple. On a

$$i_n = \frac{i}{1 + i(n-1)},$$

donc un intérêt simple constant implique un taux d'intérêt effectif décroissant.

1.4 | Intérêt composé

L'intérêt composé assume que le montant accumulé est automatiquement ré-investi.

$$a(t) = (1+i)^t$$
 pour $t \ge 0$.

On a $i_n=i$, qui est indépendant de n. Alors, un taux d'intérêt composé correspond au taux d'intérêt effectif.

1.5 | Valeur actualisée

Le terme 1+i est le facteur d'accumulation, car il accumule la valeur d'un investissement au début de la période à la fin de la période. On doit parfois déterminer le montant à investir pour obtenir 1 à la fin de la période. Pour ce faire, on définit un nouveau symbole

$$v = \frac{1}{1+i}$$

parfois appelé le facteur d'escompte.

- La fonction d'escompte est $a^{-1}(t) = \frac{1}{a(t)}$.
- Pour l'intérêt simple, on a $a^{-1}(t) = \frac{1}{1+it}$.
- Pour l'intérêt composé, on a $a^{-1}(t) = \frac{1}{(1+i)^t} = v^t$.

1.6 | Taux effectif d'escompte

Définition 1.6.1: Le taux effectif d'escompte

Le taux effectif d'escompte d est le ratio du montant d'intérêt gagné pendant la période et du montant investi à la fin de la période.

La principale différence entre le taux d'effectif d'intérêt et le taux effectif d'escompte est

- Intérêt : payé à la fin de la période divisé par la balance au début de la période.
- Escompte : payé au début de la période divisé sur la balance à la fin de la période.

$$d_n = rac{A(n) - A(n-1)}{A(n)} = rac{I_n}{A(n)}, \quad ext{pour un entier} \quad n \geq 1.$$

Définition 1.6.2 : Équivalence

Deux taux d'intérêt ou d'escompte sont dit équivalant si un montant de principal investi pour la même durée à chaque taux d'intérêt produisent la même valeur accumulée.

On utilise le concept d'équivalence pour établir des liens entre les taux d'intérêt.

Si une personne emprunte 1 au taux d'escompte effectif d, le principal initial est 1-d et le montant d'intérêt est d. Alors.

$$i = \frac{d}{1 - d} \Rightarrow d = \frac{i}{1 + i} = iv.$$

Autres relations utiles:

$$d = \frac{i}{1+i} = \frac{1+i}{1+i} - \frac{1}{1+i} = 1-v;$$

$$d = iv = i(1 - d) = i - id \Rightarrow i - d = id.$$

1.7 | Taux d'intérêt et d'escompte nominaux

- On considère les situations où l'intérêt est payé plus fréquemment qu'une fois par période.
 Ces taux sont appelés nominaux.
- Le symbole pour un taux nominal d'intérêt payé m fois par période est $i^{(m)}$, où m est un entier positif.
- Par un taux nominal d'intérêt $i^{(m)}$, on veut dire que l'intérêt est $i^{(m)}/m$ pour chaque $\frac{1}{m}$ période.
- De la définition d'équivalence, on a

$$1 + i = \left(1 + \frac{i^{(m)}}{m}\right)^m \Rightarrow i^{(m)} = m\left[(1+i)^{\frac{1}{m}} - 1\right]$$

- Le symbole pour un taux nominal d'escompte payé m fois par période est $d^{(m)}$, où m est un entier positif.
- De la définition d'équivalence, on a

$$1 - d = \left(1 - \frac{d^{(m)}}{m}\right)^m \Rightarrow d^{(m)} = m\left[1 - v^{\frac{1}{m}}\right]$$

— Une autre relation est

$$\frac{i^{(m)}}{m} - \frac{d^{(m)}}{m} = \frac{i^{(m)}}{m} \frac{d^{(m)}}{m}.$$

1.8 | Force d'intérêt et d'escompte

Mesure de l'intensité dont d'intérêt opère, i.e. le taux d'intérêt instantané. La force d'intérêt au temps t est défini par

$$\delta_t = \frac{A'(t)}{A(t)} = \frac{a'(t)}{a(t)}.$$

Par la dérivée en chaîne, on a aussi

$$\delta_t = \frac{d}{dt} \ln A(t) = \frac{d}{dt} \ln a(t).$$

Autres relations:

$$--\exp\left\{\int_0^t \delta_r dr\right\} = \frac{A(t)}{A(0)} = \frac{a(t)}{a(0)} = a(t);$$

— $\int_0^n A(t)\delta_t dt = \int_0^n A'(t)dt = A(n) - A(0)$. Intuition : l'intérêt est égal à la somme du capital investi au temps t multiplié par la force d'intérêt au temps t.

La force d'escompte est

$$\delta_t' = -\frac{\frac{d}{dt}a^{-1}(t)}{a^{-1}(t)}.$$

On a

$$\delta_t = \delta_t'$$

Par le principe d'équivalence, on a

$$i = e^{\delta} - 1 \Rightarrow \delta = \ln(1+i)$$

Séries de Taylor:

$$- i = e^{\delta} - 1 = \delta + \frac{\delta^2}{2!} + \frac{\delta^3}{3!} + \frac{\delta^4}{4!} + \dots$$

$$-- \delta = \ln(1+i) = i - \frac{i^2}{2!} + \frac{i^3}{3!} - \frac{i^4}{4!} + \dots$$

— Les termes i^k et δ^k sont très petits pour k>2 car i et δ sont très petits.

Liste d'équivalences :

$$\left(1 + \frac{i^{(m)}}{m}\right)^m = 1 + i = v^{-1} = (1 - d)^{-1} = \left(1 - \frac{d^{(p)}}{p}\right)^{-p} = e^{\delta}.$$

Sous l'intérêt simple, la force d'intérêt est $\delta_t=\frac{i}{1+it}$ et la force d'escompte est $\delta_t'=\frac{d}{1-dt}$. On remarque que δ_t est une fonction croissante et δ_t' est une fonction décroissante.

En utilisant l'expansion de Taylor, on a

$$\lim_{m \to \infty} i^{(m)} = \delta$$

et

$$\lim_{m \to \infty} d^{(m)} = \delta'$$

1.9 | Intérêt variable

- Si la force d'intérêt chance, on utilise la relation $a(t)=e^{\int_0^t \delta_r dr}$
- Si le taux effectif d'intérêt change, on utilise la relation

$$a(t) = (1+i_1)(1+i_2)(1+i_3)\dots(1+i_t) = \prod_{k=1}^{t} (1+i_k)$$

— Si le taux effectif d'escompte change, on utilise la relation

$$a^{-1}(t) = (1 - d_1)(1 - d_2)(1 - d_3)\dots(1 - d_t) = \prod_{k=1}^{t} (1 - d_k)$$

— On a aussi

$$a^{-1}(t) = (1+i_1)^{-1}(1+i_2)^{-1}(1+i_3)^{-1}\dots(1+i_t)^{-1} = \prod_{k=1}^{t}(1+i_k)^{-1} = \prod_{k=1}^{t}v_k$$

2 | Solutions de problèmes d'intérêt

Voir [Kellison, 2006], chapitre 2.

2.1 | Le problème de base

Les problèmes d'intérêts sont composés de quatre éléments :

- 1. Le principal investi initialement
- 2. La longueur de la période d'investissement
- 3. Le taux d'intérêt
- 4. La valeur accumulée du principal à la fin de la période d'investissement.

Connaissant trois éléments, le quatrième peut être résoud.

2.2 | Équations de valeur

- Principe fondamental : la valeur temporelle de l'argent.
- Deux valeurs monétaires à différents temps ne peuvent pas être comparés.
- On doit accumuler ou escompter les valeurs à une date de comparaison
- L'équation qui compare deux valeurs monétaires à la même date de comparaison est l'équation de valeur.

3 | Rentes de base

Voir [Kellison, 2006], chapitre 3

3.1 | Introduction

Définition 3.1.1: Rente

- Une rente est une série de paiements fait à intervalles égaux.
- Une rente certaine est une rente dont les paiements sont faits pour une période de temps avec certitude.
- L'intervalle entre les paiements est la période de paiements

3.2 | Rente immédiate

Une rente immédiate paie 1 à la fin de chaque période pour n périodes.

La valeur actualisée d'une rente immédiate (au temps t_1) est notée par $a_{\overline{n}|}$. On a

$$a_{\overline{n}|} = v + v^2 + v^3 + \dots + v^{n-1} + v^n = \frac{1 - v^n}{i}.$$

12 3.3. RENTE DUE

La valeur accumulée d'une rente immédiate (au temps t_2) est notée par $s_{\overline{n}|}$

$$s_{\overline{n}|} = 1 + (1+i) + (1+i)^2 + \dots + (i+1)^{n-1} + (1+i)^n = \frac{(1+i)^n - 1}{i}.$$

Quelques relations

$$-1 = ia_{\overline{n}|} + v^n \qquad -s_{\overline{n}|} = a_{\overline{n}|}(1+i)^n \qquad -\frac{1}{a_{\overline{n}|}} = \frac{1}{s_{\overline{n}|}} + i$$

3.3 | Rente due

Une rente due paie 1 au début de chaque période pour n périodes.

La valeur actualisée d'une rente due (au temps t_1) est notée par $\ddot{a}_{\overline{n}|}$. On a

$$\ddot{a}_{\overline{n}|} = 1 + v + v^2 + \dots + v^{n-2} + v^{n-1} = \frac{1 - v^n}{d}.$$

La valeur accumulée d'une rente due (au temps t_2) est notée par $\ddot{s}_{\overline{n}}$

$$\ddot{s}_{\overline{n}|} = (1+i) + (1+i)^2 + (1+i)^3 + \dots + (i+1)^{n-2} + (i+1)^{n-1} = \frac{(1+i)^n - 1}{d}.$$

Quelques relations

$$\begin{array}{llll} -&\ddot{s}_{\overline{n}|} = \ddot{a}_{\overline{n}|}(1+i)^n & -&\ddot{a}_{\overline{n}|} = a_{\overline{n}|}(1+i) & -&\ddot{a}_{\overline{n}|} = 1+a_{\overline{n-1}|}\\ -&\frac{1}{\ddot{a}_{\overline{n}|}} = \frac{1}{\ddot{s}_{\overline{n}|}} + d & -&\ddot{s}_{\overline{n}|} = s_{\overline{n}|}(1+i) & -&\ddot{s}_{\overline{n}|} = s_{\overline{n+1}|} - 1 \end{array}$$

Comparaison des rentes :

Deuxième partie

Mathématiques actuarielles vie

Troisième partie

Distributions de sinistres

1 | Quantités distributionnelles de base

Voir [Klugman et al., 2012], section 3.4

1.1 | Queues des distributions

- Classification basée sur les moments
 - Une manière de classifier des distributions est basé sur le nombre de moments qui existent. Une distribution dont tous les moments existent (la FGM existe) est à queue légère.
- Comparaisons basée sur le comportement de queue limite
 - Pour deux distributions avec la même moyenne, une distribution a une queue plus lourde que l'autre si le ratio des fonctions de survie diverge à l'infini.
- Classification basée sur la fonction de hazard
 - Les distributions avec une fonction de hazard décroissante a une queue lourde
 - Les distributions avec une fonction de hazard croissante a une queue légère
 - Une distribution a une queue plus légère que l'autre si sa fonction de hazard augmente à plus rapidement que l'autre.
 - Rappel:

$$h(x) = \frac{f(x)}{S(x)}, \quad S(x) = \exp\left\{-\int_0^x h(y)dy\right\}$$

- Classification basée sur la fonction d'excès moyen
 - Si la fonction d'excès moyen est croissante en d, la distribution a une queue lourde.
 - Si la fonction d'excès moyen est décroissante en d, la distribution a une queue légère.
 - On peut comparer deux distributions basé sur le taux de croissance ou décroissance de la fonction d'excès moyen.
 - Rappel:

$$e_X(d) = E[X - d|X > d] = \frac{\int_d^\infty S(x)dx}{S(d)}$$

— Distributions d'équilibre et comportement de queue

— Distribution d'équilibre

$$- f_e(x) = \frac{S(x)}{E[X]}, \quad x \ge 0$$

$$- S_e(x) = \frac{\int_x^\infty S(t)dt}{E[X]}, \quad x \ge 0$$

$$- h_e(x) = \frac{f_e(x)}{S_e(x)} = \frac{S(x)}{\int_x^\infty S(t)dt} = \frac{1}{e(x)}$$

— Lire le texte pour le lien entre la fonction de hazard, la fonction d'excès moyen et la lourdeur de la queue

2 | Caractéristiques des modèles actuariels

Voir [Klugman et al., 2012],

Dans ce chapitre, les modèles sont caractérisés par combien d'information est nécessaire pour spécifier le modèle. Le nombre de paramètre donne une indication de la complexité du modèle.

2.1 | Distributions paramétriques et d'échelle

Définition 2.1.1: Distributiob paramétrique

Ensemble de distributions déterminée par une ou plus valeurs appelé(s) paramètre. Le nombre de paramètre est fixe et connu

Définition 2.1.2 : Distribution d'échelle

Si une variable aléatoire est multipliée par une constante positive, et que la nouvelle variable aléatoire est dans le même ensemble de distirbutions, elle est dite une distribution d'échelle.

Définition 2.1.3 : Paramètre d'échelle

Un paramètre d'échelle satisfait deux conditions :

- 1. Lorsqu'une distribution d'échelle est multipliée par une constante, ce paramètre d'échelle est multiplié par la même constante.
- 2. Tous les autres paramètres de la distribution restent inchangés (le paramètre d'échelle absorbe tout le changement d'échelle).

2.2 | Familles de distributions paramétriques

Définition 2.2.1 : Familles de distributions paramétriques

Ensemble de distributions qui sont reliées de manière significative. Exemple : la loi exponentielle est un cas particulier de la loi gamma avec $\alpha=1$. Alors, la loi exponentielle est reliée de manière significative avec la loi gamma.

2.3 | Distribution de mélange fini

Définition 2.3.1 : Mélange k-point

Une distribution est un mélange k-point si

$$F_Y(y) = a_1 F_{X_1}(y) + a_2 F_{X_2}(y) + \dots + a_k F_{X_k}(y)$$

avec $a_1 + a_2 + \cdots + a_k = 1$.

Définition 2.3.2 : Mélange à composante variable

Une distribution mélange k-point où K n'est pas fixé.

$$-F(x) = \sum_{j=1}^{K} a_j F_j(x)$$

$$-\sum_{j=1}^{K} a_j = 1, \quad a_j > 0, j = 1, \dots, K, \quad K = 1, 2, \dots$$

— Le nombre de paramètres est la somme des paramètres de chaque distribution plus (K-1) car le dernier paramètre a_k peut être calculé avec $1-a_1-a_2-\cdots-a_{K-1}$.

Ce modèle est appelé semi-paramétrique car sa complexité est entre un modèle paramétrique et non-paramétrique

2.4 | Distributions dépendantes des données

- Une distribution dépendante des données est au moins aussi compliqué que les données ou l'information produites par ces données.
- Le nombre de paramètres augmente lorsque le nombre de données augmente

- Exemple : un modèle empirique est une distribution discrète basée sur la taille échantillonnale n qui assigne une probabilité $\frac{1}{n}$ à chaque point
- Exemple : modèle de lissage à noyau

3 | Distributions continues

3.1 | Créer des nouvelles distributions

3.1.1 | Multiplication par une constante

Théorème 3.1.1

Soit X, une variable aléatoire continue. Soit $Y = \theta X$ avec $\theta > 0$. Alors,

$$F_Y(y) = F_X\left(\frac{y}{\theta}\right)$$
 et $f_Y(y) = \frac{1}{\theta}f_X\left(\frac{y}{\theta}\right)$

Le paramètre θ est un paramètre d'échelle pour la variable aléatoire Y.

3.1.2 | Création de distributions en élevant à une puissance

Théorème 3.1.2

Soit X, une variable aléatoire continue et $F_X(0)=0$. Soit $Y=X^{1/\tau}$. Alors,

—
$$\sin \tau > 0$$
, on a

$$F_Y(y) = F_X(y^{\tau})$$
 et $f_Y(y) = \tau y^{\tau - 1} f_X(y^{\tau}), \quad y > 0;$

— si $\tau < 0$, on a

$$F_Y(y) = 1 - F_X(y^{\tau})$$
 et $f_Y(y) = -\tau y^{\tau - 1} f_X(y^{\tau}), \quad y > 0.$

- Lorsqu'on prend une distribution avec puissance $\tau > 0$, elle est appelée transformée.
- Lorsqu'on prend une distribution avec puissance $\tau = -1$, elle est appelée inverse.

— Lorsqu'on prend une distribution avec puissance $\tau < 0, \tau \neq -1$, elle est appelée inversetransformée.

3.1.3 | Création de distributions avec exponentiation

Théorème 3.1.3

Soit X, une variable aléatoire continue et $f_X(x)>0$ sur le domaine de x. Soit $Y=e^X$. Alors, pour y>0, on a

$$F_Y(y) = F_X(\ln y)$$
 et $f_Y(y) = \frac{1}{y} f_X(\ln y)$.

3.1.4 | Mélange

Théorème 3.1.4

Soit X, une variable aléatoire avec fonction de densité $f_{X|\Lambda}(x|\lambda)$ et fonction de répartition $F_{X|\Lambda}(x|\lambda)$, où λ est un paramètre de X. La fonction de densité inconditionnelle de X est

$$f_X(x) = \int f_{X|\Lambda}(x|\lambda) f_{\Lambda}(\lambda) d\lambda$$

et la fonction de répartition est

$$F_X(x) = \int F_{X|\Lambda}(x|\lambda) f_{\Lambda}(\lambda) d\lambda.$$

Autres résultats :

$$- E\left[X^{k}\right] = E_{\Lambda}\left[E\left(X^{k}|\Lambda\right)\right]$$

$$- Var(X) = E\left[Var(X|\Lambda)\right] + Var\left(E\left[X|\Lambda\right]\right)$$

Les modèles de mélange tendent à créer des distributions à queue lourde. En particulier, si la fonction de hasard de $f_{X|\Lambda}$ est décroissante pour tout λ , la fonction de hasard sera aussi décroissante.

3.1.5 | Modèles à fragilité

Mise en place:

— Soit une variable aléatoire de fragilité $\Lambda > 0$

- Soit une fonction de hasard conditionnelle $h_{X|\Lambda}(x|\lambda) = \lambda a(x)$, où a(x) est une fonction connue.
- La fragilité quantifie l'incertitude de la fonction de hasard.

La fonction de survie conditionnelle de $X|\Lambda$ est

$$S_{X|\Lambda}(x|\lambda) = \exp\left\{-\int_0^x h_{X|\Lambda}(t|\lambda)dt\right\} = e^{-\lambda A(x)},$$

où $A(x)=\int_0^x a(t)dt.$ Alors, la fonction de survie inconditionnelle est donnée par

$$S_X(x) = E\left[e^{-\Lambda A(x)}\right] = M_{\Lambda}(-A(x))$$

3.1.6 | Raccordement de distributions connues

Si plusieurs processus séparés sont responsables pour générer les pertes

Définition 3.1.5

Une distribution de raccordement à k composantes a une fonction de densité qui peut être exprimé sous la forme

$$f_X(x) = \begin{cases} a_1 f_1(x), & c_0 \le x \le c_1 \\ a_2 f_2(x), & c_1 \le x \le c_2 \\ \vdots & \vdots \\ a_k f_k(x), & c_{k-1} \le x \le c_k \end{cases}$$

Pour $j=1,2,\ldots,k$, chaque a_j soit être positif, f_j doit être une fonction de densité avec toute sa masse sur (c_{j-1},c_j) et $a_1+a_2+\cdots+a_k=1$.

3.2 | Familles de distributions et leurs liens

Connaître les familles de distribution beta transformée et gamma inverse/transformée.

3.2.1 | Distributions limites

On peut parfois comparer les familles des distributions basé sur des cas particuliers des familles. Dans d'autres situations, on doit étudier les distributions quand des paramètres tendent vers 0 ou l'infini.

Exemples:

— La distribution gamma est un cas limite de la distribution beta transformée avec $\theta \to \infty, \alpha \to \infty$ et $\frac{\theta}{\alpha^{1/\gamma}} \to \xi$, une constante.

3.3 | Théorie des valeurs extrêmes

3.3.1 | Distributions à valeur extrêmes (DVE)

Définition 3.3.1: La distribution Gumbel

La distribution Gumbel standard a la fonction de répartition

$$F(x) = G_0(x) = \exp\left[-\exp(-x)\right], \quad -\infty < x < \infty.$$

Avec les paramètres de location et d'échelle, on a

$$F(x) = G_{0,\mu,\theta}(x) = \exp\left[-\exp\left(-\frac{x-\mu}{\theta}\right)\right], \quad -\infty < x < \infty, \theta > 0.$$

Définition 3.3.2 : La distribution de Fréchet

La distribution de Fréchet standard a la fonction de répartition

$$F(x) = G_{1,\alpha}(x) = \exp(-x^{-\alpha}), \quad x \ge 0, \alpha > 0,$$

où α est un paramètre de forme.

Avec les paramètres de location et d'échelle, on a

$$F(x) = G_{1,\alpha,\mu,\theta}(x) = \exp\left[-\left(\frac{x-\mu}{\theta}\right)^{-\alpha}\right], x \ge \mu, \alpha, \theta > 0.$$

On note que le support de la distribution de Fréchet est pour x supérieur au paramètre de location.

Définition 3.3.3 : La distribution Weibull

La distribution de Weibull standard a la fonction de répartition

$$F(x) = G_{2,\alpha}(x) = \exp\left[-(-x)^{-\alpha}\right], \quad x \le 0, \alpha < 0.$$

Avec les paramètres de location et d'échelle, on a

$$F(x) = G_{2,\alpha,\mu,\theta}(x) = \exp\left[-\left(-\frac{x-\mu}{\theta}\right)^{-\alpha}\right], \quad x \leq \mu, \alpha < 0.$$

On note:

- Cette distribution n'est pas la même que la distribution Weibull couramment utilisée en actuariat
- Cette distribution a un support pour x inférieur au paramètre de location μ
 - Pour cette raison, cette distribution n'est pas utilisée en actuariat.

Définition 3.3.4 : La distribution de valeurs extrêmes généralisée

La distribution de valeurs extrêmes généralisée incorpore les trois distributions à valeur extrême comme cas particuliers. L'expression de la fonction de répartition est

$$F(x) = \exp\left[-\left(1 + \frac{x}{\alpha}\right)^{-\alpha}\right]$$

ou (notation équivalente)

$$F(x) = \exp\left[-\left(1 + \gamma x\right)^{-\frac{1}{\gamma}}\right]$$

- Pour $\gamma \to 0$, on obtient la distribution Gumbel
- Pour $\gamma > 0$, on obtient la distribution Fréchet
- Pour $\gamma < 0$, on obtient la distribution Weibull

3.3.2 | Distribution du maximum

Soit M_n , la variable aléatoire qui correspond à la valeur maximale de n observations d'une variable aléatoire. Si on a n observations d'une variable aléatoire iid, la fonction de répartition du maximum est

$$F_n(x) = \Pr(M_n \le x) = \Pr(X_1 \le x, X_2 \le x, \dots, X_n \le x) \stackrel{\text{ind}}{=} \prod_{i=1}^n \Pr(X_i \le x) = [F_X(x)]^n$$
.

Les deux premiers moments sont

$$E[M_n] = \int_0^\infty [1 - F_X^n] dx;$$
$$E[M_n^2] = 2 \int_0^\infty x[1 - F_X^n] dx.$$

Si le nombre n est inconnu, N est une variable aléatoire. On a

$$\begin{split} F_{M_N}(x) &= \Pr(M_N \leq x) \\ &= \sum_{n=0}^{\infty} \Pr(M_N \leq x | N=n) \Pr(N=n) \\ &= \sum_{n=0}^{\infty} F_X(x)^n \Pr(N=n) \\ &= P_N \left[F_X(x) \right]. \end{split}$$

3.3.3 | Stabilité du maximum des DVE

On peut montrer que la distribution du maximum des DVE, après normalisation du paramètre de location ou d'échelle, est la même DVE.

3.3.4 | Théorème Fisher-Tippett

4 | Distributions discrètes

4.1 | Notation et rappels

-
$$p_k = \Pr(N = k), \quad k = 0, 1, 2, \dots$$

-
$$P(z) = P_N(z) = E[z^N] = \sum_{k=0}^{\infty} p_k z^k.$$

$$- p_m = \frac{1}{m!} \frac{d^m}{dz^m} P(z) \bigg|_{z=0}$$

4.2 | Loi Poisson

$$-p_k = \frac{e^{-\lambda}\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

$$- P(z) = e^{\lambda(z-1)}, \quad \lambda > 0.$$

$$-E[N] = \lambda$$

$$-- Var(N) = \lambda$$

— Équidispersion (moyenne = variance)

Théorème 4.2.1

Soit N_1, N_2, \ldots, N_n , des v.a. Poisson avec paramètres $\lambda_1, \lambda_2, \ldots, \lambda_n$. Alors, $N = N_1 + N_2 + \cdots + N_n$ est Poisson avec paramètre $\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_n$.

Preuve: produit des fgp.

Théorème 4.2.2

Supposons que le nombre d'évènements N est Poisson avec moyenne λ . De plus, supposons que chaque évènement peut être classifié en m types avec probabilité p_1, p_2, \ldots, p_m indépendant des autres évènements. Alors, le nombre d'évènements N_1, N_2, \ldots, N_m correspondent au types d'évènements $1, 2, \ldots, m$ respectivement sont des distributions Poisson mutuellement indépendants avec moyennes $\lambda p_1, \lambda p_2, \ldots, \lambda p_m$.

- Idée de la preuve :
 - Pour N fixé, la distribution conjointe de (N_1, N_2, \dots, N_m) est multinomiale. La fonction de densité multivariée correspond au produit de Poissons.
 - La marginale de N_i est Poisson.
 - Le cas 1 égal le produit des cas 2, donc ils sont mutuellement indépendants.
- Utile pour ajouter ou retirer une couverture d'assurance (λ ne change pas)
- Utile pour déductibles ou franchises : les risques en haut de la franchise sont Poisson.

4.3 | Loi binomiale négative

$$-p_k = \binom{k+r-1}{k} \left(\frac{1}{1+\beta}\right)^r \left(\frac{\beta}{1+\beta}\right)^k, \quad k = 0, 1, 2, \dots, r > 0, \beta > 0.$$

-
$$P(z) = [1 - \beta(z - 1)]^{-r}$$

- $-E[N] = r\beta$
- $Var(n) = r\beta(1+\beta)$
- Surdispersion (variance > moyenne)
- On peut retrouver la binomiale négative avec une loi mélange (Poisson + gamma)
- La loi Poisson est un cas limite de la binomiale négative ($r \to \infty, \beta \to 0, r\beta$ demeure constant).

Un cas particulier est la géométrique (r = 1)

- Sans mémoire
- Cas exponentiel: Given that a claim exceeds a certain level d, the expected amount of the claim in excess of d is constant and so does not depend on d.
- Cas géométrique : Given that there are at least m claims, the probability distribution of the number of claims in excess of m does not depend on m.
- Si r > 1, on considère que la distribution a une queue légère.
- Si r < 1, on considère que la distribution a une queue lourde.

4.4 | Loi binomiale

-
$$P(z) = [1 + q(z - 1)]^m$$
, $0 < q < 1$
- $p_k = {m \choose k} q^k (1 - q)^{m-k}$, $k = 0, 1, 2, ..., m$.

$$--E[N] = mq$$

$$-Var(N) = mq(1-q)$$

— Sousdispersion (moyenne > variance)

4.5 | La classe (a, b, 0)

Définition 4.5.1 : La classe (a, b, 0)

Une v.a. est membre de la classe (a, b, 0) s'il existe des constantes a et b tels que

$$\frac{p_k}{p_{k-1}} = a + \frac{b}{k}, \quad k = 1, 2, 3, \dots$$

Distribution	a	b	p_0
Poisson	0	λ	$e^{-\lambda}$
Binomiale	$-\frac{q}{1-q}$	$(m+1)\frac{q}{1-q}$	$(1-q)^m$
Binomiale négative	$\frac{\beta}{1+\beta}$	$(r-1)\frac{\beta}{1+\beta}$	$(1+\beta)^{-r}$
Géométrique	$\frac{\beta'}{1+\beta}$	0	$(1+\beta)^{-1}$

Outil diagnostique pour déterminer la loi à utiliser : en utilisant la relation

$$k\frac{p_k}{p_{k-1}} = ak + b,$$

faire un graphique de

$$k\frac{\hat{p}_k}{\hat{p}_{k-1}} = k\frac{n_k}{n_{k-1}}.$$

- Si la droite est plate, on a $a = 0 \Rightarrow$ Poisson
- Si la droite est négative, on a $a < 0 \Rightarrow$ Binomiale
- Si la droite est positive, on a $a > 0 \Rightarrow$ Binomiale négative.

5 | Fréquence et sévérité avec modifications de la couverture

- Par perte (Per-loss) : Y^L
- Par paiement (Per-payment) : Y^P
- $Y^P = Y^L | Y^L > 0.$

5.1 | Déductibles

Définition 5.1.1 : Déductible ordinaire

Un déductible ordinaire transforme la variable en excès-moyen ou en variable translatée. On a

$$Y^P = \begin{cases} \text{ind\'efini}, & X \leq d, \\ X - d, & X > d \end{cases}$$

$$Y^L = \begin{cases} 0, & X \leq d, \\ X - d, & X > d \end{cases}$$

Relations:

	Y^P	Y^L
densité	$\frac{f_X(y+d)}{S_X(d)}$	$f_X(y+d)$
survie	$\frac{S_X(y+d)}{S_X(d)}$	$S_X(y+d)$
répartition	$\frac{F_X(y+d) - F_X(d)}{S_X(d)}$	$F_X(y+d) - F_X(d)$
hasard	$\frac{f_X(y+d)}{S_X(y+d)} = h_{X(y+d)}$	indéfinie à 0, donc indéfinie
moyenne	$\frac{E[X] - E[X \wedge d]}{S(d)}$	$E[X] - E[X \wedge d]$

Définition 5.1.2 : Déductible franchise

Un déductible franchise paie le montant au complet si la franchise est atteinte. On a

$$Y^P = \begin{cases} \text{ind\'efini}, & X \leq d, \\ X, & X > d \end{cases}$$

$$Y^L = \begin{cases} 0, & X \le d, \\ X, & X > d \end{cases}$$

5.2 | Ratio d'élimination de perte et effet de l'inflation sur les déductibles ordinaires

Définition 5.2.1: Ratio d'élimination de pertes

Le ratio d'élimination de pertes est le ratio de la décroissance en paiement espéré avec un déductible ordinaire versus un paiement espéré sans déductible :

$$\frac{E[X \wedge d]}{E[X]}$$

Théorème 5.2.2

Pour un déductible ordinaire d après inflation uniforme de 1+r, l'espérance du coût par perte est

$$(1+r)\left\{E[X]-E\left[X\wedge\frac{d}{1+r}\right]\right\}$$

Si $F\left(\frac{d}{1+r}\right) < 1$, l'espérance du coût par paiement est

$$\frac{(1+r)\left\{E[X] - E\left[X \wedge \frac{d}{1+r}\right]\right\}}{S\left(\frac{d}{1+r}\right)}.$$

Savoir le prouver.

5.3 | Limites de polices

Définition 5.3.1

Une police avec limite u paie la perte complète si la perte est inférieure à u, et u si la perte est supérieure à u. On a

$$Y = \begin{cases} Y, & y < u \\ u, & y \ge u. \end{cases}$$

Quelques résultats :

$$-F_Y(y) = \begin{cases} F_X(y), & y < u \\ 1, & y \ge u. \end{cases}$$

$$-F_Y(y) = \begin{cases} f_X(y), & y < u \\ 1 - F_X(u), & y = u. \end{cases}$$

— Pour une limite de police u, après inflation uniforme 1+r, le coût espéré est

$$(1+r)E\left[X\wedge\frac{u}{1+r}\right]$$

5.4 | Coassurance, déductibles et limites

Dans le cas où la compagnie paie une portion α de la perte, la variable aléatoire est $Y=\alpha X$. La variable aléatoire qui incorpore les quatre modifications du chapitre est

$$Y^{L} = \begin{cases} 0, & X < \frac{d}{1+r} \\ \alpha \left[(1+r)X - d \right], & \frac{d}{1+r} \le X < \frac{u}{1+r} \\ \alpha (u-d), & X \ge \frac{u}{1+r} \end{cases}$$

On note que les quantités sont appliqués dans un ordre particulier : la coassurance est appliquée en dernier.

Théorème 5.4.1: Quelques moments pour les modifications

Le premier moment par perte est

$$E[Y^{L}] = \alpha(1+r)\left\{E\left[X \wedge \frac{u}{1+r}\right] - E\left[X \wedge \frac{d}{1+r}\right]\right\}$$

et le premier moment par paiement est

$$E[Y^P] = \frac{E[Y^L]}{1 - F_X(\frac{d}{1+r})}.$$

Le deuxième moment par perte est

$$E\left[\left(Y^L\right)^2\right] = \alpha^2(1+r)^2\left\{E\left[\left(X\wedge u^*\right)^2\right] - E\left[\left(X\wedge d^*\right)^2\right] - 2d^*E\left[X\wedge u^*\right] + 2d^*E\left[X\wedge d^*\right]\right\},$$

οù

$$u^* = \frac{u}{1+r}$$
 et $d^* = \frac{d}{1+r}$.

Pour par-paiement, on a

$$E\left[\left(Y^{L}\right)^{2}\right] = \frac{E\left[\left(Y^{L}\right)^{2}\right]}{1 - F_{X}\left(d^{*}\right)}.$$

Preuve : facile, manipuler les mins et max et prendre l'espérance. À connaître.

Quatrième partie

Théorie de la crédibilité

Cinquième partie

Théorie du risque

Sixième partie

Processus stochastiques

Septième partie

Finance

BIBLIOGRAPHIE 45

Bibliographie

[Kellison, 2006] Kellison, S. G. (2006). The theory of interest.

[Klugman et al., 2012] Klugman, S. A., Panjer, H. H., and Willmot, G. E. (2012). Loss models: from data to decisions, volume 715. John Wiley & Sons.