Khôlles d'informatique, Saison 2.

 $\text{Mars} \xrightarrow[\text{programme de colle} \to \text{fin}]{} \text{Avril}$

Résumé

Dans ce document \LaTeX , on donne des preuves incomplètes des questions de cours à connaître :))

Questions de cours :

- Ensembles construits inductivement.
- Théorème d'induction structurelle.
- Utilisation du théorème : Taille d'un ABS.
- Définitions et preuves du chapitre Logique Propositionnelle

FIGURE 1 – La majorité à voté pour le C dans le sondage :

Questions de cours :

Définition inductive d'un ensemble.

Soit E un ensemble non vide. Une définition de $X\subseteq E$ consiste à se donner :

- \odot Un ensemble $B \subseteq E$ non vide d'assertions.
- \circledcirc Un ensemble R de règles : $\forall r_i \in R, \ r_i : E^{n_i} \to E$ avec n_i l'arité de $r_i.$

Théorème du point fixe (inclus dans la question de cours) :

Il existe un plus petit sous-ensemble X de E tel que :

- (B) $B \subset X$: les assertions sont dans X.
- $(I) \ \forall r_i \in R, \ \forall (x_1,...,x_{n_i}) \in X^{n_i} \text{ on a } r_i(x_1,...,x_{n_i}) \in X \text{ avec } n_i \text{ l'arit\'e de } r_i : X \text{ est stable par les r\`egles.}$

Preuve.

Soit \mathcal{F} l'ensemble des parties de E vérifiant (B) et (I).

On considère X l'intersection de tous les éléments de \mathcal{F} :

$$X = \bigcap_{Y \in \mathcal{F}} Y.$$

Puisque $\forall Y \in \mathcal{F}, \ B \subset Y$, on en déduit que $B \subset X$. On a donc vérifié (B).

Soit $r_i \in R$ et $(x_1, ..., x_{n_i}) \in X^{n_i}$.

Remarquons que $\forall Y \in \mathcal{F}, \ x_1, ..., x_{n_i} \in Y$, or les Y sont stables par les règles d'où $\forall Y \in \mathcal{F}, \ r_i(x_1, ..., x_{n_i}) \in Y$.

Puisque X est leur intersection, $r_i(x_1,...,x_{n_i}) \in X$ et X vérifie alors (I).

C'est donc le plus petit ensemble vérifiant (B) et (I) par construction.

Théorème d'induction structurelle.

Soit $X\subseteq E$ défini inductivement (cf question précédente) et $\mathcal P$ un prédicat sur E. Si on a que :

(B) $\mathcal{P}(x)$ est vraie pour tout $x \in B$.

(I) \mathcal{P} est héréditaire : $\forall r_i \in R, \ \forall (x_1,...,x_{n_i}) \in E^{n_i}, \ \mathcal{P}(x_1),...,\mathcal{P}(x_{n_i}) \Longrightarrow \mathcal{P}(r_i(x_1,...,x_{n_i})).$

Alors $\mathcal{P}(x)$ est vraie pour tout $x \in X$.

Preuve.

On suppose (B) et (I), montrons que $\mathcal{P}(x)$ est vraie pour tout $x \in E$.

Soit $Y = \{x \in E \mid P(x)\}$. Alors $B \subset Y$ d'après (B) et Y est stable par R d'après (I).

On a alors $X \subset Y$ donc $\forall x \in X$, $\mathcal{P}(x)$ est vrai.

❖❖ Fin du sujet!❖❖