AMS 161 Fall 2020

T	• •	100	• •
Intal	nointei		nointe
IULAI	points:	TOO	DUILLE

Name:	
Number:	

AMS 161–F20, HW Assignment 2

Due Date: Friday 09/18/2020 You MUST show all your work in order to get full credits

Question:	1	2	3	4	5	6	7	Total
Points:	20	18	12	12	16	10	12	100
Score:								

In this assignment, you will **modify the provided codes** in this file on the Jupyter notebook. You may download the file and work on it using Anaconda Distribution (local host) or CoCalc.

In order to be accepted, you **MUST** submit the two following files:

a. A single PDF file showing all your supporting work with the name:

Number-FirstName-LastName-AMS161-HW2.pdf

b. A file on Jupyter notebook including all coding assignments with the name:

Number-FirstName-LastName-AMS161-HW2.ipynb

In this HW, "Hand" stands for solving by hand and "Jupy" stands for solving by Jupyter Notebook.

1. Understanding Evaluating Definite Integrals

The **Evaluation Theorem** says that:

If f is continuous on the interval [a, b], then

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

where F is any antiderivative of f, that is F' = f.

- (a) (Hand) Explain the importance of the Evaluation Theorem. (2)
- (b) (Hand) Evaluate the following integrals using the Evaluation Theorem.

i.
$$\int_0^2 \left(x^4 - \frac{3}{4}x^2 + \frac{2}{3}x - 1 \right) dx \tag{2}$$

ii.
$$\int_0^1 x \left(\sqrt[3]{x} + \sqrt[4]{x}\right) dx \tag{2}$$

iii.
$$\int_0^{\pi/3} \frac{\sin \theta + \sin \theta \tan^2 \theta}{\sec^2 \theta} d\theta \tag{2}$$

iv.
$$\int_0^2 |2x - 1| \, dx$$
 (4)

$$v. \int_0^{3\pi/2} |\sin x| \, dx \tag{4}$$

vi.
$$\int_{1}^{8} (f^{-1}(x^{-1}) + f'(x)) dx,$$
 (4)

where $f(x) = 8x^{-3}$ and f^{-1} denotes the inverse function of f.

2. Indefinite Integral/General Antiderivative

(a) (Jupy & Hand) Verify by differentiation that the formula is correct.

i.
$$\int \cos^3 x \, dx = \sin x - \frac{1}{3} \sin^3 x + C$$
 (2)

ii.
$$\int x \cos x \, dx = x \sin x + \cos x + C \tag{2}$$

(b) (Jupy & Hand) Find the general indefinite integral.

i.
$$\int v(v^2+2) \ dv \tag{3}$$

ii.
$$\int \frac{\sin x}{1 - \sin^2 x} \, dx \tag{3}$$

(c) (Jupy & Hand) Find the general indefinite integral. Illustrate by graphing several members of the family on the same screen.

i.
$$\int \left(\cos x + \frac{1}{2}x\right) dx \tag{4}$$

ii.
$$\int \left(e^x - 2x^2\right) dx \tag{4}$$

3. (Hand) Applications of Definite Integrals

(a) The area of the region that lies to the right of the y-axis and to the left of the parabola $x = 2y - y^2$ (the shaded region in the figure) is given by the integral $\int_0^2 (2y - y^2) \, dy$. (Turn your head clockwise and think of the region as lying below the curve $x = 2y - y^2$ from y = 0 to y = 2). Find the area of the region.

(b) The boundaries of the shaded region are the y-axis, the line y = 1, and the curve $y = \sqrt[4]{x}$. Find the area of this region by writing x as a function of y and integrating with respect to y (as in part (a)).

(c) The marginal cost of manufacturing x yards of a certain fabric is

$$C'(x) = 3 - 0.01x + 0.000006x^2$$

(4)

(in dollars per yard). Find the increase in cost if the production level is raised from 2000 yards to 4000 yards.

4. (Hand) Visualizing Antiderivative

Assume that f' is given by the graph in the below figure. Suppose f is continuous and that f(3) = 0.

(a) Find
$$f(0), f(2), f(3), f(4), f(6), \text{ and } f(7).$$
 (6)

(b) Sketch a graph of
$$f$$
. (4)

(c) Find
$$\int_0^7 f'(x) dx$$
 in two different ways. (2)

5. (Hand) Understanding the Fundamental Theorem of Calculus

(a) Find the derivative of the following funcions.

i.
$$g(x) = \int_1^x \frac{1}{t^3 + 1} dt$$
 (2)

ii.
$$h(y) = \int_2^{1/y} \arctan t \, dt$$
 (2)

iii.
$$g(x) = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$
 (3)

iv.
$$g(x) = \int_1^x \cos^2(t) dt + \int_1^{x^2} \frac{\sin^2(\sqrt{t})}{2\sqrt{t}} dt$$
, where x is positive. (3)

(b) (Hand) The error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

is used in probability, statistics, and engineering.

i. Show that
$$\int_{a}^{b} e^{-t^2} dt = \frac{1}{2} \sqrt{\pi} [\text{erf}(b) - \text{erf}(a)].$$
 (2)

ii. Show that the function $y = e^{x^2} \operatorname{erf}(x)$ satisfies the differential equation (4)

$$y' = 2xy + 2/\sqrt{\pi}.$$

6. The sine integral function¹

$$\operatorname{Si}(x) = \int_0^x \frac{\sin t}{t} \, dt$$

is important in electrical engineering. [The integrand $f(t) = \sin t/t$ is not defined when t = 0, but we know that its limit is 1 when $t \to 0$. So we define f(0) = 1 and this makes f a continuous function everywhere.]

- (a) (Jupy) Draw the graph of Si. (Just run the code in Jupyter Notebook.) (2)
- (b) (Hand & Jupy) At what values of x does this function have local maximum values? (2) Find this local maximum value in Jupyter Notebook.
- (c) (Hand) Find the coordinates of the first inflection point to the right of the origin. (2)

(2)

(2)

(6)

(2)

- (d) (Hand) Does this function have horizontal asymptotes?
- (e) (Hand & Jupy) Solve the following equation correct to one decimal place:

$$\int_0^x \frac{\sin t}{t} = 1.$$

7. (Hand & Jupy) Let

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ 2 - x & \text{if } 1 < x \le 2 \\ 0 & \text{if } x > 2 \end{cases}$$

and

$$g(x) = \int_0^x f(t) \ dt.$$

- (a) (Hand) Find an expression for g(x) similar to the one for f(x).
- (b) (Jupy) Sketch the graphs of f and g. If your code runs successfully, you will get the following graph. (4)

(c) (Hand) Where is f differentiable? Where is g differentiable?

¹See more about trigonometric integral functions here.