DEPARTAMENTO DE FÍSICA LINIVERSIDADE DE AVERO

Modelação de Sistemas Físicos

Ano Académico 2021/2022 - 2º Semestre

EXAME - Resolução Parte Cálculo Computacional-Numérico

 Data: 6 julho 2022
 Duração: 2 horas
 Cotação: 1) 1 + 1 + 1 = 3 valores

 Hora: 15H45
 Disciplina: 41769
 2) 1 + 1 = 2 valores

Salas: 23.3.15 3) 1 + 0.5 + 0.5 = 2 valores 4) 0.5 + 0.5 + 1 + 1 = 3 valores

NOTE:

a) Responda às perguntas na vossa folha de prova, justificando-as,

b) Na vossa folha de prova indique os métodos, os algoritmos, passos, ... usados.

c) Indique claramente o sistema de eixos usado.

d) **Esboce os gráficos**, indicando univocamente os pontos importantes. Se gravar as figuras, salve-as em formato png.

e) **Os ficheiros** devem ser copiados para a caneta de memória do docente presente na sala com **o nome e número do aluno** (para poderem ser consultados quando o docente tiver dúvidas durante a correção).

f) Os ficheiros poderão ser um por alínea e com a impressão dos resultados.

g) Tem de usar o seu computador portátil. Pode (e deve) usar os seus programas, assim como outros programas que tenha obtido.

h) É um teste de consulta, mas não pode aceder à internet, incluindo para consultar documentos do python.

As respostas não podem ser escritas a lápis

Justifique todas as respostas

1. A aceleração da gravidade sentida por um corpo de 1 kg em órbita é $a = \frac{K}{R^2}$, onde K é o produto entre a constante gravitacional universal e a massa do planeta, $K = G \times M_P$, e R a distância ao centro do planeta. Foram feitas medições da aceleração a diferentes altitudes da Lua. Os valores medidos estão registados na tabela:

$R(10^6\text{m})$	$a (\mathrm{m/s^2})$		
1.765	1.617		
2.135	1.081		
2.482	0.7807		
2.900	0.5835		
3.274	0.4591		
3.636	0.3605		
4.057	0.3021		
4.366	0.2502		
4.826	0.2093		
5.257	0.1800		

- a) Trace o gráfico a em função de R, usando os dados da tabela, e faça um ajuste linear. Indique os valores do declive, e o seu erro, a ordenada na origem, e o seu erro, e o coeficiente de determinação r^2 .
- b) Trace o gráfico $\log(a)$ em função de $\log(R)$. Indique os valores do declive, e o seu erro, e do coeficiente de determinação r^2 .
- c) Pelos resultados obtidos nas alíneas anteriores, que conclui acerca da relação entre a aceleração (a) e a distância ao centro da Lua (R). Justifique. Faça um outro gráfico que mostre essa relação.

Resolução resumida,

 $\begin{array}{ll} m=\ -0.35358206134189385 & dm=\ 0.06262224260883127 \\ b=\ 1.8093064233166833 & db=\ 0.22806450902959874 \\ r^{**}2=\ 0.7994000043378735 & \\ Muito mau ajuste. Pelo gráfico e por r^{**}2 muito longe de 1. \end{array}$

$$\begin{array}{lll} m = & -2.0145230375953536 & dm = & 0.01758259429085921 \\ b = & 1.6056343609395043 & db = & 0.02174583481006444 \\ r^{**}2 = & 0.9993909585695621 \end{array}$$

Muito bom ajuste. Pelo gráfico e por r**2 muito perto de 1.

A lei é
$$a = C + D R^m$$

c) A lei:
$$a = b + m R^{-2}$$

 $\begin{array}{ll} m=5.02577942370654 & dm=0.04394752206514691 \\ b=-0.012040160163237883 & db=0.0064536401198820054 \\ r^{**}2=0.9993886550347553 \\ \text{está justificada e \'e} \end{array}$

$$a = b + m x = (0.01 \pm 0.01) + (5.03 \pm 0.05) R^{-(2.01 \pm 0.02)}$$
 m/s²

- **2.** Um volante de badmington é batido à altura de 2.5 m (a partir do chão), com velocidade 230 km/h e a fazer um ângulo de 10° com a horizontal. Considerando que a velocidade terminal é 6.80 m/s,
- a) Faça o gráfico da trajetória (altura em função da distância percorrida na horizontal).
- b) Em ponto cai no chão e quanto demorou?

Note: Considere sempre o peso do volante e a força de resistência do ar.

Resolução resumida

a)

Método de Euler

```
g=9.80 # m/s**2
vt=6.80 # m/s
vel0=230*1000/3600 # m/s
ang=10*np.pi/180
x0=0
y0 = 2.5
t[0]=0
vx[0]=vel0*np.cos(ang)
vy[0]=vel0*np.sin(ang)
x[0]=x0
y[0]=y0
for i in range(n):
  t[i+1]=t[i]+dt
  vv=np.sqrt(vx[i]**2+vy[i]**2)
  dres=g/vt**2
  ax[i]=-dres*vx[i]
  ay[i]=-g-dres*vy[i]
  vx[i+1]=vx[i]+ax[i]*dt
  vy[i+1]=vy[i]+ay[i]*dt
  x[i+1]=x[i]+vx[i]*dt
  y[i+1]=y[i]+vy[i]*dt
```


Método de Euler,

δt (s)	Distância na horizontal (m)	Tempo de chegada ao solo (s)	
0.001	13.67873879167	1.394999999999572	
0.0001	13.701736408041649	1.396499999998626	
0.00001	13.703877241222774	1.396590000000682	
Converge para	13.70	1.40	

- 3. Um carro elétrico de potência 283 cv gasta toda a sua energia em 3 horas, num trajeto horizontal.
- a) Se partir com a velocidade de 1 m/s, qual a lei do movimento (espaço percorrido em função do tempo)? Qual a distância percorrida em 3 horas?
- b) Depois de perder toda a energia (sem motor) qual a distância suplementar percorrida pelo carro?
- c) Determine a energia gasta pelo carro, sendo esta energia igual à energia dissipada pela força de resistência do ar e ao rolamento.

Parâmetros: O coeficiente de resistência μ de um piso liso de alcatrão é 0.1, o coeficiente de resistência do ar é $C_{res} = 0.9$, a massa do carro-condutor 1500 kg, e a área frontal do carro é $A = 1.80 \times 1.30$ m².

$$\rho_{ar} = 1.225 \text{ kg/m}^3.$$

Resolução resumida

a)

```
frol=-niu*m*g
for i in range(n):
    t[i+1]=t[i]+dt
    fres=-.5*cres*area*denar*vx[i]**2
    fcic=pot/vx[i]
    ax=(fcic+frol+fres)/m
    vx[i+1]=vx[i]+ax*dt
    x[i+1]=x[i]+vx[i]*dt
```


Nos 1ºs 10 s movimento acelerado

Depois movimento uniforme

Método de Euler,

δt (s)	Distância percorrida (km)		
0.01	512.855		
0.001	512.855		
Converge para	512.855		

b) velocidade ao fim de 3 horas = 47.50755806100221 m/s, com o menor passo

o que constitui a velocidade inicial do regime de movimento sem motor

if vx[i] < 0.0: frol=0 ax=(frol+fres)/m

Método de Euler,	Distância percorrida (m)		
δt (s)			
0.001	634.97		
0.0001	634.97		
Converge para	634.97		

c) Energia = Potência * tempo = 2.248 GJ

4. Um corpo de massa 0.5 kg move-se num oscilador quártico. Se a posição de equilíbrio for a origem do eixo $x_{eq} = 0$ m, o oscilador tem a energia potencial

$$E_p = \frac{1}{2}k \ x^2 + \alpha \ x^3 - \beta \ x^4$$

exerce no corpo a força

$$F_x = -k x - 3 \alpha x^2 + 4 \beta x^3$$

Considere $k = 2 \text{ N/m}, \alpha = -0.1 \text{ J/m}^2 \text{ e } \beta = 0.02 \text{ J/m}^4$

- a) Faça o diagrama de energia desta energia potencial (energia potencial em função da posição). Qual o movimento quando a energia total for menor que 4 J?
- b) Calcule a lei do movimento, quando a posição inicial for 1.5 m e a velocidade inicial 0.5 m/s? Quanto é a energia mecânica?
- c) Entre que limites se efetua o movimento e a frequência e o período do movimento? Apresente os resultados com a precisão de 4 algarismos.
- d) Faça a análise de Fourier da solução encontrada. Apresente o resultado como $\sqrt{a_n^2 + b_n^2}$, sendo a_n e b_n os coeficientes de Fourier.

Resolução resumida

a)

 $E_p \le 4$ J. O corpo oscila entre as posições em que a $E_p = 4$ J. Como a energia potencial não é simétrica à volta da posição de equilíbrio, o movimento oscilatório tem uma posição média (por período) > 0.

b)

c) Limites superior e inferior do movimento calculados usando a interpolação de L ω agrange

Método	δt (s)	Limite superior (m)	Limite inferior (m)	T (s)	ω (rad/s)
EC	0.1	1.5105563	-1.2945257	3.1999999	1.96349540
EC	0.01	1.52786	-1.30550	3.3099999	1.898243
EC	0.001	1.530044	-1.30702	3.32100000	1.89195582
EC	0.0001	1.53026	-1.30718	3.32209	1.89132937
EC	0.00001	1.5302891	-1.30720013	3.322199999	1.89127244
Converge		1.530	-1.307	3.322	1.891

d)

Coeficientes de Fourier, por integração numérica usando a aproximação trapezoidal.

n	$\sqrt{a_n^2+b_n^2}$
0	0.347401
1	1.420658
2	0.062439
3	0.001897
4 e superior	0.000000

c)

δt (s)	Limite superior (m)	Limite inferior (m)	T (s)	f (Hz)	ω (rad/s)
0.1	2.51301	-1.8785	3.6000	0.2778	1.7453
0.01	2.5311	1.88355	3.745	0.267	1.6755
0.001	2.5333	-1.8845	3.7600	0.26596	1.67101
0.0001	2.5336	-1.8846	3.7606	0.26592	1.67079
0.00001	2.5336	-1.8846	3.7607	0.26590	1.67073
Precisão 4 algarismos	2.534	-1.885	3.761	0.2659	1.671

e)