Méthodes Statistiques

Corrigé de l'exercice 56

On a noté à 200 reprises le nombre N de particules β émises par un échantillon de potassium radioactif pendant une durée d'une minute. On a obtenu les résultats suivants :

Nombre de particules	0	1	2	3	4	5	6
Nombre d'observations	8	36	45	50	30	25	6

On fait l'hypothèse que N suit une loi de Poisson de paramètre inconnu λ . On rappelle que pour une loi de Poisson, on a

$$P(N = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

56-1) Donner une estimation de λ .

Le cours de probabilités nous apprend que l'espérance d'une variable N qui suit une loi de Poisson de paramètre λ est $E(N) = \lambda$.

Comme on sait que la moyenne empirique est un estimateur de l'espérance, on va l'utiliser pour estimer le paramètre λ . On calcule la moyenne du nombre de particules pondéré par les effectifs observés :

$$\bar{N} = \frac{1}{200}(0 \times 8 + 1 \times 36 + 2 \times 45 + 3 \times 50 + 4 \times 30 + 5 \times 25 + 6 \times 6) = 2.785$$

56-2) Au moyen d'un test du χ^2 , vérifier si l'hypothèse d'ajustement à une loi de Poisson est acceptable au seuil $\alpha=5\%$?

Calculons les probabilités théoriques P(N=k) pour k variant de 0 à 6 et les effectifs théoriques correspondants en multipliant la probabilité par 200 :

Nombre de particules	0	1	2	3	4	5	6
Probabilité	0.062	0.172	0.239	0.222	0.155	0.086	0.064
Effectif théorique	12.40	34.40	47.80	44.40	31.00	17.20	12.80

Remarque : la probabilité pour k=6 est en fait $P(N\geq 6)$ pour assurer que la somme totale vaut 1.

On fait l'hypothèse nulle qu'il y a adéquation de la distribution observée avec la distribution théorique de Poisson de paramètre 2.785.

La statistique du test du χ^2 est

$$Y = \sum_{i=1}^{n} \frac{(O_i - C_i)^2}{C_i}.$$

où les O_i sont les valeurs observées et les C_i sont les valeurs calculées (ou valeurs théoriques). On sait que, sous l'hypothèse H_0 , la variable aléatoire Y suit une loi du χ^2 à $\nu=n-1=6$

degrés de liberté. On calcule la valeur de Y comme ceci :

Nombre de particules	0	1	2	3	4	5	6
O_i	8	36	45	50	30	25	6
C_i	12.4	34.4	47.8	44.4	31.0	17.2	12.8
$(O_i - C_i)^2$	19.36	2.56	7.84	31.36	1.00	60.84	46.24
$\frac{(O_i - C_i)^2}{C_i}$	1.56	0.07	0.16	0.71	0.03	3.54	3.61

En sommant la dernière ligne, on trouve Y = 9.688.

On cherche dans la table de la loi du χ^2 , le quantile u_c pour la probabilité $1-\alpha=95\%$ à 6 degrés de liberté. On trouve $u_c = 12.592$.

Comme $Y < u_c$, on accepte l'hypothèse H_0 .