Zagadnienia złożoności obliczeniowej

http://zajecia.jakubw.pl/nai

ZŁOŻONOŚĆ - PRZYPOMNIENIE

- Złożoność czasowa
 - liczba "podstawowych operacji", jakie musi wykonać program komputerowy rozwiązujący zadanie
- Złożoność pamięciowa
 - liczba "podstawowych jednostek pamięci", które zajmuje program podczas pracy
- Złożoność jest funkcją wielkości problemu

Złożoność obliczeniową można szacować jako złożoność pesymistyczną (dla najgorszych możliwych danych), lub średnią (dla danych "losowych"). Tak rozumiana złożoność jest cechą algorytmu, a nie problemu; można jednak czasem udowodnić, że dany problem nie może zostać rozwiązany algorytmem o zbyt niskiej złożoności.

ZŁOŻONOŚĆ - PROSTE PRZYKŁADY

Sortowanie *n* obiektów:

- algorytm babelkowy $O(n^2)$
- algorytm szybki O(n log n)
- sprawdzenie wszystkich możliwości O(n!)

Wielkość problemu: n (liczba obiektów).

Sprawdzenie, czy liczba naturalna *n* jest pierwsza:

- algorytm dzielący n przez wszystkie liczby mniejsze od n $O(2^k)$
- znaleziony niedawno algorytm ma złożoność $O(k^{12})$

Uwaga! Wielkość problemu to k = log n (liczba bitów), a nie n.

ZADANIA ŁATWE I TRUDNE

Zadania "łatwe"

- Sortowanie
- Szukanie pierwiastków wielomianów
- Szukanie maksimum funkcji ciągłej i różniczkowalnej
- · Mnożenie macierzy
- Sprawdzenie, czy w grafie istnieje cykl Eulera

• ..

Znamy efektywne algorytmy dające dokładne rozwiązania.

Zadania "trudne"

- Szukanie maksimum funkcji nieciągłej, nieróżniczkowalnej, zaszumionej, zmieniającej się w czasie
- Szukanie najkrótszej postaci danej formuły logicznej
- Rozkładanie liczb na czynniki pierwsze
- Sprawdzenie, czy w grafie istnieje cykl Hamiltona

Znane algorytmy dokładne mają wysoką (np. wykładniczą) złożoność czasową. Musimy szukać metod przybliżonych.

DETERMINISTYCZNA MASZYNA TURINGA (DTM)

Formalnie: $\{Q, \Sigma, \delta, q_0, F\}$, gdzie:

- Q zbiór stanów sterowania maszyny,
- Σ *alfabet* (zbiór symboli) taśmy,
- δ funkcja przejścia:

$$δ$$
: Q × Σ → Q × Σ × {R, L, N}

q₀ - *początkowy stan* sterowania,

F - zbiór *końcowych stanów* sterowania.

DTM - DZIAŁANIE

Działanie maszyny:

- Startujemy z pewnego miejsca na taśmie i ze stanu sterowania \mathbf{q}_0 .
- Czytamy symbol **s** z taśmy.
- Na podstawie tych dwóch danych (stan $\mathbf{q} = \mathbf{q_0}$, symbol \mathbf{s}) za pomocą funkcji $\boldsymbol{\delta}$ obliczamy:
 - nowy stan q',
 - nowy symbol s',
- który zapisujemy na taśmie, oraz jeden z symboli: R, L lub N, odpowiadający kierunkowi przemieszczenia się czytnika na taśmie.
- Operację powtarzamy do momentu, gdy maszyna znajdzie się w stanie sterowania należącym do zbioru F.

NIEDETERMINISTYCZNA MASZYNA TURINGA (NDTM)

Definicja jest analogiczna do DTM, jednak funkcja przejścia δ(q,s) może mieć kilka różnych wartości.

Wynik obliczeń jest pozytywny, jeśli choć jedna z możliwych dróg działania maszyny doprowadzi do sukcesu.

Innymi słowy: NDTM podczas wykonywania "programu" potrafi w magiczny sposób przewidzieć, jakiego dokonać wyboru (np. czy zapisać na taśmie 1, czy 0), by doprowadzić do pozytywnego wyniku (o ile jest to w ogóle możliwe).

KLASA P ORAZ NP

Maszyna Turinga jako ścisły model matematyczny umożliwia precyzyjne definiowanie pojęć związanych ze złożonością obliczeniowa.

Czas działania = liczba kroków maszyny.

Problem należy do *klasy złożoności czasowej P*, gdy istnieje **DTM** rozwiązująca ten problem **w czasie wielomianowym** względem rozmiaru danych wejściowych.

Problem należy do *klasy złożoności czasowej NP*, gdy istnieje **NDTM** rozwiązująca ten problem **w czasie wielomianowym** względem rozmiaru danych wejściowych.

Intuicja: problem ma złożoność NP, jeśli znając rozwiązanie jesteśmy w stanie sprawdzić w czasie wielomianowym, czy jest ono poprawne.

KLASY P I NP - UWAGI

Uwaga 1: Ten sam problem można zakodować na różne sposoby - jeżeli kodowanie będzie "nieoszczędne", możemy uzyskać wielomianową szybkość działania, kosztem wykładniczej (w stosunku do optymalnej) reprezentacji.

Uwaga 2: (Teza Churcha) Możemy DTM uważać za model dowolnej klasycznej sekwencyjnej maszyny cyfrowej, więc w definicji klasy P możemy napis "DTM" zastąpić słowami "algorytm sekwencyjny".

Uwaga 3: Analogią NDTM w informatyce mógłby być język programowania ze specjalną funkcją, np. *forecast()*, zwracającą wartość 0 lub 1 (zawsze w ten sposób, "żeby było dobrze").

PROBLEMY NP-ZUPEŁNE

Problem P₀ jest *NP-zupelny*, gdy:

- a) P₀ należy do klasy NP,
- b) każdy problem z klasy NP da się sprowadzić w czasie wielomianowym do problemu P₀.

Czyli np. znając rozwiązanie problemu P_0 w czasie wielomianowym na DTM, moglibyśmy w czasie wielomianowym rozwiązać każdy problem z klasy NP. Czyli wówczas byłoby P = NP.

Problem *NP-trudny* spełnia tylko punkt b) powyższej definicji.

(Problemy NP-zupelne mają postać pytania "czy istnieje...", a problemy NP-trudne to zwykle ich optymalizacyjne wersje - "znajdź najmniejszy...")

SAT JEST NP-ZUPEŁNY

Sprawdzenie, czy formuła jest spełnialna (problem SAT), należy do klasy NP.

Zarys dowodu: używamy funkcji *forecast()*, by znaleźć wartościowanie spełniające formułę. W szybki (wielomianowy) sposób sprawdzamy, że rzeczywiście formuła jest spełniona.

Do problemu SAT da się sprowadzić dowolny problem z klasy NP.

Zarys dowodu: każdą maszynę Turinga rozwiązującą konkretny problem z klasy NP (wraz z danymi wejściowymi) można opisać pewną skomplikowaną formułą logiczną, która jest spełnialna wtedy i tylko wtedy, gdy maszyna da wynik pozytywny. Zamiast konstruować maszynę, możemy więc znaleźć odpowiednią formułę i sprawdzić, czy jest spełnialna.

P=NP?

- Istnieje problem "uniwersalny" (SAT), tzn. taki, że jego rozwiązanie w czasie wielomianowym pozwalałoby na rozwiązanie wszystkich problemów z klasy NP w czasie wielomianowym.
- Takich problemów NP-zupełnych jest więcej!
- Nie znamy algorytmu rozwiązującego SAT o złożoności mniejszej, niż wykładnicza. Nie znamy też takiego algorytmu dla żadnego innego problemu NP-zupełnego.
- Problem otwarty:

Czy P = NP ?

KLIKI W GRAFIE

Niech G = (V, E) - dany graf. <u>Klika</u> nazywamy zbiór wierzchołków grafu G połączonych "każdy z każdym".

Czy w danym grafie istnieje klika rzędu k?

Problem istnienia kliki jest NPzupełny

Sprowadzimy 3-SAT do problemu kliki.

Każdy literał a_i kodujemy jako jeden wierzchołek w grafie. Wierzchołki łączymy krawędzią, jeśli odpowiednie dwa literały należą do różnych klauzul i nie są wzajemnie sprzeczne (tzn. nie łączymy zmiennej i jej zaprzeczenia).

Niech k - liczba klauzul. Wtedy klika rzędu k w tak skonstruowanym grafie odpowiada wartościowaniu spełniającemu formułę.