1

Random Numbers

Ravula Karthik AI21BTECH11024

1. Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat

Solution: The c code for 1.1 can be obtained from

wget https://github.com/karthik6281/AI1110-Assignments/blob/main/random_numbers/1/exrand.c

wget https://github.com/karthik6281/AI1110—Assignments/blob/main/random_numbers/1/coeffs.h

Execute the following lines

gcc exrand.c -lm ./a.out

1.2 Load the uni.dat file into Python and plot the empirical CDF of *U* using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{1.1}$$

Solution: The python code for 1.2 can be obtained from

wget https://github.com/karthik6281/AI1110-Assignments/blob/main/random_numbers/1/cdf_plot.py

Execute the following lines

1.3 Find a theoretical expression for $F_U(x)$

Solution: The PDF of U is given by

$$p_U(x) = \begin{cases} 1 & x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$
 (1.2)

The CDF of U is given by

$$F_U(x) = \Pr(U \le x) = \int_{-\infty}^{x} p_U(x) dx$$
 (1.3)

Fig. 1.2. The CDF of U

If
$$x < 0$$
,

$$\int_{-\infty}^{x} p_{U}(x) dx = \int_{-\infty}^{x} 0 dx = 0$$
 (1.4)

If $x \in [0, 1]$,

$$\int_{-\infty}^{x} p_U(x) \, dx = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{x} 1 \, dx \quad (1.5)$$

$$= 0 + x \tag{1.6}$$

$$= x \tag{1.7}$$

If x > 1.

$$\int_{-\infty}^{x} p_{U}(x) dx$$

$$= \int_{-\infty}^{0} 0 dx + \int_{0}^{1} 1 dx + \int_{1}^{x} 0 dx \quad (1.8)$$

$$\int_{-\infty}^{x} p_U(x) \, dx = 0 + 1 + 0 \qquad (1.9)$$

$$= 1 \qquad (1.10)$$

Therefore, we obtain the CDF of U as

$$F_U(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$
 (1.11)

1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (1.12)

and its variance as

$$Var[U] = E[U - E[U]]^2$$
 (1.13)

Write a C program to find the mean and variance of U

Solution: The c code for 1.4 can be obtained

wget https://github.com/karthik6281/AI1110-Assignments/blob/main/random numbers /1/1 4.c

wget https://github.com/karthik6281/AI1110-Assignments/blob/main/random numbers /1/coeffs.h

Execute the following lines

$$Mean = 0.500137 \qquad (1.14)$$

Variance =
$$0.083251$$
 (1.15)

1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x)$$
 (1.16)

Solution:

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) \tag{1.17}$$

$$dF_U(x) = dx (1.18)$$

$$\therefore E[U^k] = \int_{-\infty}^{\infty} x^k dx \tag{1.19}$$

$$E[U] = \int_0^1 x dx = \frac{1}{2}$$
 (1.20)

$$E[U^2] = \int_0^1 x^2 dx = \frac{1}{3}$$
 (1.21)

$$\therefore P_X(x) = 0, \forall x \in (1, \infty) \cap (-\infty, 0) \quad (1.22)$$

$$Var(X) = E[U^2] - (E[U])^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$
(1.23)

- 2. Central Limit Theorem
- 2.1 Generate 10⁶ samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.1}$$

using a C program, where U_i , i = 1, 2, ..., 12are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

Solution: The c code for 2.1 can be obtained from

wget https://github.com/karthik6281/ AI1110-Assignments/blob/main/ random numbers/2/2 1.c wget https://github.com/karthik6281/ AI1110-Assignments/blob/main/ random numbers/2/coeffs.h

Execute the following lines

2.2 Load gau.dat in Python and plot the empirical CDF of X using the samples in gau.dat. What properties does a CDF have?

Solution: The python code for 2.2 can be obtained from

wget https://github.com/karthik6281/ AI1110-Assignments/blob/main/ random numbers/2/2 2.py

Execute the following lines

python3 2 2.py

- $\Phi(x) = P(Z \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left\{-\frac{u^2}{2}\right\} du$ $\lim_{x \to \infty} \Phi(x) = 1$, $\lim_{x \to -\infty} \Phi(x) = 0$ $\Phi(0) = \frac{1}{2}$

- $\Phi(-x) = 1 \Phi(x)$
- 2.3 Load gau.dat in Python and plot the empirical PDF of X using the samples in gau.dat. The PDF of X is defined as

$$p_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x) \tag{2.2}$$

What properties does the PDF have? **Solution:** The python code for 2.3 can be obtained from

Fig. 2.5. The CDF of X

Fig. 2.5. The PDF of X

wget https://github.com/karthik6281/ AI1110-Assignments/blob/main/ random_numbers/2/2_3.py

Execute the following lines

python3 2.3.py

Every PDF is bounded between 0 and 1 and

$$\int_{-\infty}^{\infty} p_X(x) \, \mathrm{d}x = 1 \tag{2.3}$$

In this case, the PDF is symmetric about x = 0 and graph is bell shaped

2.4 Find the mean and variance of *X* by writing a C program

Solution: the c code for 2.4 can be obtained from

wget https://github.com/karthik6281/ AI1110-Assignments/blob/main/ random_numbers/2/2_4.c wget https://github.com/karthik6281/ AI1110-Assignments/blob/main/ random_numbers/2/coeffs.h

execute the following lines

Mean =
$$0.000294$$
 (2.4)

Variance =
$$0.999561$$
 (2.5)

2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty,$$
(2.6)

repeat the above exercise theoretically **Solution:** The mean of X is given by

$$E[X] = \int_{-\infty}^{\infty} \frac{x}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx \qquad (2.7)$$

 $\implies xe^{-\frac{-x^2}{2}}$ is a odd function

$$\therefore E[X] = \int_{-\infty}^{\infty} g(x) dx = 0$$
 (2.8)

Now,

$$E\left[X^{2}\right] = \int_{-\infty}^{\infty} \frac{x^{2}}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) dx \qquad (2.9)$$
$$= 2 \int_{0}^{\infty} \frac{x^{2}}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) dx \qquad (2.10)$$

 $\implies \frac{x^2}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$ is an even function By integration by parts,

$$E\left[X^{2}\right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x \cdot x \exp\left(-\frac{x^{2}}{2}\right) dx$$
(2.11)

$$= \sqrt{\frac{2}{\pi}} \left(x \int x \exp\left(-\frac{x^2}{2}\right) dx \right) \Big|_0^{\infty}$$
$$- \sqrt{\frac{2}{\pi}} \int_0^{\infty} 1 \cdot \int x \exp\left(-\frac{x^2}{2}\right) dx \quad (2.12)$$

Substitute $t = \frac{x^2}{2} \implies dt = xdx$

$$\int x \exp\left(-\frac{x^2}{2}\right) dx = \int \exp(-t) dt \quad (2.13)$$

$$= -\exp(-t) \qquad (2.14)$$

$$= -\exp\left(-\frac{x^2}{2}\right) \quad (2.15)$$

$$\int_0^\infty -\exp\left(-\frac{x^2}{2}\right) \mathrm{d}x \tag{2.16}$$

$$\stackrel{x=t\sqrt{2}}{\longleftrightarrow} \int_{0}^{\infty} -\exp(-t^{2}) dt \sqrt{2}$$
 (2.17)

$$= -\sqrt{2} \int_0^\infty \exp(-t^2) dt$$
 (2.18)

$$=-\sqrt{\frac{\pi}{2}}\tag{2.19}$$

Therefore,

$$E\left[X^{2}\right] = 0 - \sqrt{\frac{2}{\pi}} \left(-\sqrt{\frac{\pi}{2}}\right) \qquad (2.20)$$

$$= 1 \tag{2.21}$$

:. Var
$$[X] = E[X^2] - (E[X])^2$$
 (2.22)

$$=1-0$$
 (2.23)

$$= 1 \tag{2.24}$$

3. From Uniform to Other

3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{3.1}$$

and plot its CDF

Solution: The c code for 3.1 can be obtained from

wget https://github.com/karthik6281/AI1110-Assignments/blob/main/random numbers $/3/3_1.c$

Execute the following lines

The python code for cdf can be obtained from

execute the following lines

Fig. 3.5. The CDF of V

3.6 Find a theoretical expression for $F_V(x)$ **Solution:**

$$F_V(x) = P(V \le x) \tag{3.2}$$

$$= P(-2ln(1-U) \le x) \tag{3.3}$$

$$= P(1 - e^{\frac{-x}{2}} \ge U) \tag{3.4}$$

$$P(U < x) = \int_{0}^{x} dx = x$$
 $0 < x < 1$ (3.5)

$$\therefore P(1 - e^{\frac{-x}{2}} \ge U) = 1 - e^{\frac{-x}{2}}, \forall x \ge 0$$

(3.6)

4. Triangular Distribution

4.1 Generate

$$T = U_1 + U_2 (4.1)$$

Solution: The c code for 4.1 can be obtained from

wget https://github.com/karthik6281/ AI1110-Assignments/blob/main/ random numbers/4/4 1.c

execute the following lines

4.2 Find the CDF of T

Solution:

$$p_T(x) = p_{U_1 + U_2}(x) = p_{U_1}(x) * p_{U_2}(x)$$
 (4.2)

$$p_T(x) = \int_{-\infty}^{\infty} p_{U_1}(\tau) p_{U_2}(x - \tau)$$

$$C^1$$
(4.2)

$$p_T(x) = \int_0^1 p_{U_2}(x - \tau) \tag{4.4}$$

$$p_{T}(x) = \begin{cases} 0 & x \le 0\\ \int_{0}^{x} 1 d\tau & 0 < x < 1\\ \int_{x-1}^{1} 1 d\tau & 1 \le x < 2\\ 0 & x > 2 \end{cases}$$
 (4.5)

$$p_T(x) = \begin{cases} 0 & x \le 0 \\ x & 0 < x < 1 \\ 2 - x & 1 \le x < 2 \\ 0 & x > 2 \end{cases}$$
 (4.6)

Expression for CDF can be obtained by integrating $p_T(x)$ w.r.t. X

$$F_T(x) = \begin{cases} 0 & x \le 0\\ \frac{x^2}{2} & 0 < x < 1\\ -\frac{x^2}{2} + 2x - 1 & 1 \le x < 2\\ 1 & x > 2 \end{cases}$$
 (4.7)

4.3 Find the PDF of T

Solution: The PDF of T is given by

$$p_T(t) = \frac{d(F_T(t))}{dt} \tag{4.8}$$

$$\therefore p_T(t) = \begin{cases} 0 & t < 0 \\ t & 0 \le t \le 1 \\ 2 - t & 1 < t < 2 \\ 0 & t \ge 2 \end{cases}$$
 (4.9)

4.4 Find the theoretical expressions for the PDF and CDF of *T*

Solution:

$$P_T(t) = \begin{cases} 0 & t < 0 \\ t & 0 \le t \le 1 \\ 2 - t & 0 < t \le 2 \\ 0 & t > 2 \end{cases}$$
 (4.10)

$$F_T(t) = \begin{cases} 0 & t < 0 \\ \frac{t^2}{2} & 0 \le t \le 1 \\ 2t - \frac{t^2}{2} - 1 & 1 < t \le 2 \\ 1 & t > 2 \end{cases}$$
 (4.11)

Fig. 6. The CDF of T

Fig. 6. The PDF of T

4.5 Verify your results through a plot **Solution:** The codes that plots cdf and pdf can be obtained from

wget https://github.com/karthik6281/ AI1110-Assignments/blob/main/ random_numbers/4/4_cdf.py wget https://github.com/karthik6281/ AI1110-Assignments/blob/main/ random_numbers/4/4_pdf.py

Execute the following lines

python3 4_cdf.py python3 4_pdf.py

5. Maximum Likelihood

5.1 Generate equiprobable $X \in \{-1, 1\}$ Solution: The c code for 5.1 can obtained from wget https://github.com/karthik6281/AI1110— Assignments/blob/main/random_numbers /5/5_1.c

wget https://github.com/karthik6281/AI1110—Assignments/blob/main/random_numbers/5/coeffs.h

execute the following commands

5.2 Generate

$$Y = AX + N \tag{5.1}$$

where A = 5 dB, $X \in \{-1, 1\}$ is Bernoulli and $N \sim \mathcal{N}(0, 1)$

Solution: The c code for 5.2 can obtained from

wget https://github.com/karthik6281/AI1110-Assignments/blob/main/random_numbers/5/5_2.c

wget https://github.com/karthik6281/AI1110— Assignments/blob/main/random_numbers/5/coeffs.h

execute the following commands

5.3 Plot *Y*

Solution: Download the following Python code that plots Fig. 5.3

https://github.com/karthik6281/AI1110— Assignments/blob/main/random_numbers /5/5 3 plot.py

Run the code by executing

5.4 Guess how to estimate *X* from *Y* **Solution:**

$X = \begin{cases} 1 & Y > 0 \\ -1 & Y < 0 \end{cases}$ (5.2)

5.5 Find

$$P_{e|0} = \Pr(\hat{X} = -1|X = 1)$$
 (5.3)

and

$$P_{e|1} = \Pr(\hat{X} = 1|X = -1)$$
 (5.4)

Fig. 5.3. Plot of *Y*

Solution: $\hat{X} = -1 \implies Y < 0$ Given X = +1, $Y < 0 \implies A + N < 0$ $\implies N < -A$

$$\Pr(\hat{X} = -1|X = 1) = \Pr(N < -A)$$
 (5.5)

$$= 1 - \Pr(N > -A)$$
 (5.6)

$$= 1 - Q(-A) \tag{5.7}$$

$$= Q(A) \tag{5.8}$$

Similarly
$$\hat{X} = 1 \implies Y > 0$$

Given $X = -1$, $Y > 0 \implies -A + N > 0$
 $\implies N > A$

$$\Pr(\hat{X} = 1|X = -1) = \Pr(N > A)$$
 (5.9)
= $Q(A)$ (5.10)

5.6 Find P_e assuming that X has equiprobable symbols

Solution:

$$P_e = \Pr(X = -1) P_{e|0} + \Pr(X = 1) P_{e|1}$$
 (5.11)

From question, $Pr(X = -1) = Pr(X = 1) = \frac{1}{2}$

$$P_e = 2 \cdot (\frac{1}{2}Q(A)) \tag{5.12}$$

$$= Q(A) \tag{5.13}$$

5.7 Verify by plotting the theoretical P_e with respect to A from 0 to 10 dB

Solution:
$$\hat{X} = 1 \implies Y > 0$$

then, $X = -1$, $Y > 0 \implies -A + N > 0$
 $\implies N > A$

$$P_{e|0} = \Pr(N > A) = Q(A)$$
 (5.14)

Fig. 5.7. Plot of P_e

Fig. 5.7. Plot of P_e

similarly;

$$Pr(N < -A) = Q(A)$$
 (5.15)

The python code for 5.7 can be obtained from

wget https://github.com/karthik6281/AI1110-Assignments/blob/main/random_numbers /5/5_7.py

Execute the following commands

5.8 Now, consider a threshold δ while estimating X from Y. Find the value of δ that minimizes the theoretical P_e

Solution: To estimate X from Y, we now consider the following:

$$X = \begin{cases} 1, & Y > \delta \\ -1, & Y < \delta \end{cases} \tag{5.16}$$

Therefore, $\hat{X} = -1 \implies Y < \delta$ then, X = 1, $Y > 0 \implies A + N < \delta \implies N < \delta - A$

$$P_{e|0} = \Pr\left(N < \delta - A\right) \tag{5.17}$$

$$= \int_{-\infty}^{\delta - A} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$
 (5.18)

$$= \int_{A-\delta}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \tag{5.19}$$

$$= Q_N(A - \delta) \tag{5.20}$$

Similarly

$$P_{e|1} = Q_N(A + \delta) \tag{5.21}$$

$$P_e = \frac{1}{2}(Q_N(A - \delta) + Q_N(A + \delta))$$
 (5.22)

To minimise P_e , we differentiate w.r.t δ :

$$0 = \frac{d}{d\delta} \left(\frac{1}{2} (Q_N(A - \delta) + Q_N(A + \delta)) \right)$$

$$= \frac{1}{2} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{(\delta - A)^2}{2}} - \frac{1}{\sqrt{2\pi}} e^{-\frac{(A + \delta)^2}{2}} \right)$$
(5.24)

From which we obtain

$$\implies \delta = A = -A \implies \delta = 0 \tag{5.25}$$

5.9 Repeat the above exercise when

$$p_X(-1) = p (5.26)$$

Solution:

$$P_e = p_X(1)P_{e|0} + p_X(-1)P_{e|1}$$
 (5.27)

$$= (1 - p)Q(A - \delta) + pQ(A + \delta)$$
 (5.28)

To minimise P_e , we differentiate w.r.t δ :

$$0 = p \frac{1}{\sqrt{2\pi}} e^{-\frac{(\delta - A)^2}{2}} - (1 - p) \frac{1}{\sqrt{2\pi}} e^{-\frac{(A + \delta)^2}{2}}$$
 (5.29)

Taking In on both sides we have:

$$\ln p - \frac{(\delta - A)^2}{2} = \ln 1 - p + \frac{(\delta + A)^2}{2} \quad (5.30)$$

$$\implies \delta = \frac{1}{2A} \ln \frac{1-p}{p} \tag{5.31}$$

(5.16) 5.10 Repeat the above exercise using the MAP criterion

Solution: Taking Pr(X = -1) = p, and Pr(X = 1) = (1 - p).

$$p_Y(y) = p \times p_{(-A+N)}(y) + (1-p) \times p_{(A+N)}(y)$$
 (5.32)

where $p_Y(y)$ is the pdf of Y. Now, $p_{(-A+N)}$ is just the pdf of a shifted normal distribution, and therefore:

$$p_Y(y) = p \frac{e^{-\frac{(y+A)^2}{2}}}{\sqrt{2\pi}} + (1-p) \frac{e^{-\frac{(y-A)^2}{2}}}{\sqrt{2\pi}}$$
 (5.33)

finding $p_{X|Y}(x|y)$. We already know that

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x) \times p_X(x)}{p_Y(y)}$$
 (5.34)

X = 1:

$$p_{X|Y}(1|y) = \frac{p_{Y|X}(y|1) \times p_X(1)}{p_Y(y)}$$
 (5.35)

$$= \frac{(1-p)\frac{e^{-\frac{(y-A)^2}{2}}}{\sqrt{2\pi}}}{p\frac{e^{-\frac{(y+A)^2}{2}}}{\sqrt{2\pi}} + (1-p)\frac{e^{-\frac{(y-A)^2}{2}}}{\sqrt{2\pi}}}$$
(5.36)

$$= \frac{(1-p)e^{2yA}}{p+(1-p)e^{2yA}}$$
 (5.37)

Similarly,X = -1:

$$p_{X|Y}(-1|y) = \frac{p}{p + (1-p)e^{2yA}}$$
 (5.38)

Therefore, when $p_{X|Y}(1|y) > p_{X|Y}(-1|y)$, we have:

$$\frac{(1-p)e^{2yA}}{p+(1-p)e^{2yA}} > \frac{p}{p+(1-p)e^{2yA}}$$
 (5.39)

$$e^{2yA} > \frac{p}{(1-p)} \tag{5.40}$$

$$y > \frac{1}{2A} \ln \frac{p}{(1-p)}$$
 (5.41)

Therefore, when Eq. (5.41), we can assert that X = 1, and X = -1 otherwise. Now, consider when $p = \frac{1}{2}$. We have:

$$y > \frac{1}{2A} \ln \frac{p}{(1-p)}$$
 (5.42)

$$= \frac{1}{2A} \ln 1 \tag{5.43}$$

$$=0 (5.44)$$

Therefore, when y > 0, we choose X = 1, and we choose X = -1 otherwise.

Fig. 6.1. CDF of *V*

6. Gaussian to Other

6.1 Let $X_1 \sim \mathcal{N}(0,1)$ and $X_2 \sim \mathcal{N}(0,1)$. Plot the CDF and PDF of

$$V = X_1^2 + X_2^2 \tag{6.1}$$

Solution: The c code to generate data can be obtained from

wget https://github.com/karthik6281/AI1110-Assignments/blob/main/random_numbers/6/6_1.c

wget https://github.com/karthik6281/AI1110— Assignments/blob/main/random_numbers /6/coeffs.h

Execute the following commands

The codes that plot cdf and pdf can be obtained from

wget https://github.com/karthik6281/AI1110—Assignments/blob/main/random_numbers/6/6_1_cdf.c

wget https://github.com/karthik6281/AI1110— Assignments/blob/main/random_numbers /6/6 1 pdf.c

Run the code by executing

Fig. 6.1. PDF of *V*

6.2 If

$$F_V(x) = \begin{cases} 1 - e^{-\alpha x} & x \ge 0\\ 0 & x < 0, \end{cases}$$
 (6.2)

find α

Solution: Let $R \ge 0, \Theta \in [0, 2\pi]$

$$X_1 = R\cos\Theta \tag{6.3}$$

$$X_2 = R\sin\Theta \tag{6.4}$$

such that $V = X_1^2 + X_2^2 = R^2$

The Jacobian matrix transforming R, Θ to X_1, X_2 is defined as

$$\vec{J} = \begin{pmatrix} \frac{\partial X_1}{\partial R} & \frac{\partial X_1}{\partial \Theta} \\ \frac{\partial X_2}{\partial R} & \frac{\partial X_2}{\partial \Theta} \end{pmatrix} \tag{6.5}$$

$$= \begin{pmatrix} \cos \Theta & -R \sin \Theta \\ \sin \Theta & R \cos \Theta \end{pmatrix} \tag{6.6}$$

$$\implies |\vec{J}| = R\cos^2\Theta + R\sin^2\Theta = R \qquad (6.7)$$

Then

$$p_{R,\Theta}(r,\theta) = p_{X_1,X_2}(x_1,x_2) |\vec{J}|$$
 (6.8)

$$= \frac{R}{2\pi} \exp\left(-\frac{X_1^2 + X_2^2}{2}\right) \tag{6.9}$$

$$= \frac{R}{2\pi} \exp\left(-\frac{R^2}{2}\right) \tag{6.10}$$

we can find,

$$p_R(r) = \int_0^{2\pi} p_{R,\Theta}(r,\theta) d\theta \qquad (6.11)$$

$$= R \exp\left(-\frac{R^2}{2}\right) \tag{6.12}$$

We can find cdf by

$$F_R(r) = \Pr\left(R \le r\right) \tag{6.13}$$

$$= \int_0^r p_R(r) \mathrm{d}r \tag{6.14}$$

$$= \int_0^r r \exp\left(-\frac{r^2}{2}\right) dr \tag{6.15}$$

$$= -\exp\left(-\frac{r^2}{2}\right)\Big|_0^r \tag{6.16}$$

$$= 1 - \exp\left(-\frac{r^2}{2}\right) \quad \text{for } r \ge 0 \qquad (6.17)$$

But we need to find $F_V(x)$ which can be written as

$$F_V(x) = F_R(\sqrt{x}) \tag{6.18}$$

$$= 1 - \exp\left(-\frac{x}{2}\right) \quad \text{for } x \ge 0 \qquad (6.19)$$

And the PDF of V is given by

$$p_V(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_V(x) \tag{6.20}$$

$$= \frac{1}{2} \exp\left(-\frac{x}{2}\right) \tag{6.21}$$

Therefore,

$$F_V(x) = \begin{cases} 1 - \exp\left(-\frac{x}{2}\right) & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (6.22)

$$p_V(x) = \begin{cases} \frac{1}{2} \exp\left(-\frac{x}{2}\right) & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (6.23)

$$\therefore \alpha = \frac{1}{2} \tag{6.24}$$

6.3 Plot the CDF and PDF of

$$A = \sqrt{V} \tag{6.25}$$

Solution: The c code to generate

wget https://github.com/karthik6281/AI1110— Assignments/blob/main/random_numbers /6/6_3.c

executing the following

The codes for cdf and pdf can be obtained from

Fig. 6.3. CDF of *A*

Fig. 6.3. PDF of *A*

wget https://github.com/karthik6281/AI1110-Assignments/blob/main/random numbers /6/6 3 cdf.py wget https://github.com/karthik6281/AI1110-Assignments/blob/main/random numbers /6/6_3_cdf.py

execute the following

The CDF of *A* for x > 0:

$$F_A(x) = F_V(x^2)$$
 (6.26)
= $1 - \exp\left(-\frac{x^2}{2}\right)$ (6.27)

Pdf of *A* for x > 0:

$$p_A(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_A(x) \tag{6.28}$$

$$= x \exp\left(-\frac{x^2}{2}\right) \tag{6.29}$$

Therefore,

$$F_A(x) = \begin{cases} 1 - \exp\left(-\frac{x^2}{2}\right) & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$p_A(x) = \begin{cases} x \exp\left(-\frac{x^2}{2}\right) & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$(6.30)$$

$$p_A(x) = \begin{cases} x \exp\left(-\frac{x^2}{2}\right) & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (6.31)