Lucrare II (141)

3 $(\mathbb{R}^{3}, 9^{\circ}), u = (1,0,1)$ $s \in \text{End}(\mathbb{R}^{3}), simetria ortogonala fata de <math>2\{u_{1}^{3}\}$ a) $s(x) = (x_{1}, -x_{3}, -x_{2}), b) s(x) = (-x_{3}, x_{2}, -x_{1})$ $c) s(x) = (x_{1}, x_{2}, -x_{3}), d) s(x) = (-x_{1}, x_{2}, -x_{3}).$

(4) (R^3, g_0) , M = (1,1,-1). Complemental ortogonal $2\{u_3\}$ este a) $\{x \in R^3 \mid x_1 - x_2 - x_3 = 0\}$; b) $\{x \in R^3 \mid x_1 + x_2 + x_3 = 0\}$; c) $\{x \in R^3 \mid x_1 + x_2 - x_3 = 0\}$; d) $\{x \in R \mid \{x_1 + x_2 = 0\}$.

(5) Q: R³ -> R forma satratica, A = (4 -2 0) matricea asriata. Lignatura lui Q este: (0 1 0) matricea a) (3,0); b) (1,2); c) (1,1); d) (2,1)

(6) (R^3, g_0) , u = (1, -1, 2), $f \in End(R^3)$, $f(x) = \angle x, u > u$ $g_0 = \angle y > produs scalar canonic$ (a) dim Ker f = 2, b) dim Ker f = 1; c) $f \in Aut(R^3)$, d) $f \in Sim(R^3)$

 \mathcal{F} \mathbb{R}^{3} , \mathcal{F} $\mathcal{$

(8) (R^3g^0) , $f \in End(R^3)$, $[f]_{R_0,R_0} = \frac{1}{7} \begin{pmatrix} -3 & -2 & 6 \\ 6 & -3 & 2 \\ 2 & 6 & 3 \end{pmatrix}$ a) $f = R\varphi$, $\cos \varphi = \frac{5}{7}$; b) $f = R\varphi$, $\cos \varphi = -\frac{5}{7}$;

c) $f = \Delta_0 R\varphi$, $\cos \varphi = -\frac{7}{5}$, d) $f = \Delta_0 R\varphi$, $\cos \varphi = \frac{1}{7}$,

unde $R\varphi$ = rotatic de φ 4, φ , φ 4 φ 4. φ = simetrie ortogonala φ 4 φ 4.

g: $\mathbb{R}^3 \longrightarrow \mathbb{R}$, $\varphi(\chi) = \chi_1^2 + 2\chi_1\chi_2$ g: $\mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ forma φ foldra φ 4 φ 4 φ 4 φ 5 φ 6 φ 6 φ 6 φ 7.

(9) $\varphi(\chi, \varphi) = \chi_1 \varphi_1 + 2\chi_1 \varphi_2 + 2\chi_2 \varphi_1$; b) $\varphi(\chi) = \chi_1 \varphi_1 + \chi_2 \varphi_1 + \chi_2 \varphi_2 + \chi_3 \varphi_3$; d) $\varphi(\chi, \varphi) = \chi_1 \varphi_1 + \chi_2 \varphi_1 + \chi_3 \varphi_2 + \chi_3 \varphi_3$; d) $\varphi(\chi, \varphi) = \chi_1 \varphi_1 + \chi_1 \varphi_2 + \chi_2 \varphi_1$.