Оглавление

1 Теория меры			ры	2
	1.1	Интег	рал Лебега	2
			Примеры измеримых по Лебегу множеств	9
			Определение интеграда Лебега	:

Глава 1

Теория меры

1.1. Интеграл Лебега

Определение 1. $E \subset \mathbb{R}^m$, $E \neq \emptyset$. Характеристической функцией множества E называется функция $K_E(x): \mathbb{R}^m \to \mathbb{R}$,

$$K_e(x) = \begin{cases} 1, & x \in E, \\ 0, & x \notin E \end{cases}$$

Определение 2. Простой функцией $f_0: E \to \mathbb{R}$ будем называть функцию, множество значений которой конечно.

Если c_1, \ldots, c_n — все различные значения функции $f_0, \quad E_j = \{ \ x \in E \mid f_0(x) = c_j \ \}$, то $E_j \cap E_k = \emptyset$, $\bigcup E_j = E$. Полагая $\chi_{E_j}(x) = K_{E_j}(x) \big|_E$, имеем соотношение

$$f_0(x) = \sum_{j=1}^{n} c_j \chi_{E_j}(x)$$
(1.1)

Теорема 1. $f:E\to\mathbb{R}$

1. Тогда существует последовательность простых функций, определённых на E таких, что

$$\forall x \in f_n(x) \xrightarrow[n \to \infty]{} f(x)$$

- 2. Если множество E измеримо по Лебегу и функция f измерима, то все функции f_n можно выбрать измеримыми.
- 3. Если $f(x) \ge 0$, $x \in E$, то можно выбрать функции $f_n(x)$, которые при $\forall x$ монотонно возрастают по n.

Доказательство.

1. Пусть $f(x) \ge 0 \quad \forall x$. Положим для $n=1,2,\ldots,\quad i=1,\ldots,n\cdot 2^n$

$$E_{n \ i} = \left\{ x \in E \mid \frac{i-1}{2^n} \le f(x) < \frac{i}{2^n} \right\}$$

$$E_{n \mid 0} = \{ x \in E \mid f(x) \ge n \}$$

Далее пусть $\chi_{E_{n-i}}(x) = K_{E_{n-i}}(x)\big|_E, \qquad i = 0, 1, \dots, n \cdot 2^n,$ и пусть

$$f_n(x) = \sum_{i=1}^{n2^n} \frac{i-1}{2^n} \chi_{E_{n-i}}(x) + n\chi_{E_{n-0}}(x)$$
 (1.2)

Тогда для $x \in \bigcup E_{n}$ имеем

$$|f_n(x) - f(x)| \le \frac{1}{2^n}$$
 (1.3)

Для $\forall x \in E$ возьмём N > f(x), тогда $\forall n > N$ выполнено (1.3) и $f_n(x) \to f(x)$.

- 2. Если f измерима, то множества $E_{n\ i}$ измеримы из (1.2) следует измеримость f_{n} .
- 3. Монотонность f_n также следует из (1.2).
- 4. Для произвольной функции f положим $f = f^+ f^-$ и (1.2) применим к f^+ и f^- .

Замечание. Пусть $E_j \subset E$, не предполагаем условия $E_j \cap E_k = \emptyset$, $E = \bigcup E_j$, числа c_j не обязательно различны,

$$f_1(x) = \sum_{j=1}^{n} c_j \chi_{E_j}(x)$$
 (1.4)

Тогда f_1 — простая функция, которую можно записать в виде (1.1) с какими-то множествами E'_l и числами c'_l .

1.1.1. Примеры измеримых по Лебегу множеств

Примеры.

- 1. Любое элементарное множество A измеримо.
- $2. \mathbb{R}^m$ измеримо.
- 3. Открытые множества измеримы.
- 4. Замкнутые множества измеримы.

Доказательство.

- 1. По определению.
- 2. $\mathbb{R}^m = \bigcup_{n=1}^{\infty} (a_n, b_n)$, где $a_n = (-n, \dots, -n)$, $b_n = (n, \dots, n)$.
- 3. Пусть \mathbb{Q}^m множество всех точек с рациональными координатами в \mathbb{R}^m , $G \subset \mathbb{R}^m$ открыто, $G \neq \emptyset$.

Для любой точки $M \in G \cap \mathbb{Q}^m$ обозначим через I(M) максимальный промежуток (a(M),b(M)) со следующими свойствами:

- $a(M) = (a_1(M), \dots, a_m(M));$
- $b(M) = (b_1(M), \dots, b_m(M));$
- если $M = (M_1, \dots, M_m)$, то $a_i(M) = M_i \delta(M)$;
- $b_j = M_j + \delta(M);$
- $(a(M), b(M)) \subset G$.

Тогда

$$G = \bigcup_{M \in G \cap \mathbb{Q}^m} \bigl(a(M), b(M)\bigr)$$

4. Если $F \subset \mathbb{R}^m$ замкнуто, то $F = \mathbb{R}^m \setminus (\mathbb{R}^m \setminus F)$, множество $\mathbb{R}^m \setminus F$ открыто.

1.1.2. Определение интеграла Лебега

Определение 3. Пусть E, E_j измеримы, $E = \bigcup E_j$, $c_{j_0} = 0$, если т $E_{j_0} = +\infty$. Положим

$$I_E\left(\sum_{j=1}^n c_j \chi_{E_j}\right) := \sum_{j=1}^n c_j \,\mathrm{m}\, E_j \tag{1.5}$$

В этой формуле считаем, что $0 \cdot +\infty = 0$.

Свойства. f_1 — простая функция, записанная в виде (1.4).

1. $a \le f_1(x) \le b$, $m E < +\infty$

$$\implies a \text{ m } E \leq I_E(f_1) \leq b \text{ m } E$$

- 2. Если $f_1(x) \leq g_1(x)$, $x \in E$, то $I_E(f_1) \leq I_E(g_1)$.
- 3. Если $c \in \mathbb{R}$, то $I_E(cf_1) = cI_E(f_1)$.
- 4. Если m E = 0, то $I_E(f_1) = 0$.
- 5. $F_1 \cap F_2 = \emptyset$, $F_1 \cup F_2 = E$

$$I_{F_1}(f_1) + I_{F_2}(f_1) = I_E(f_1)$$
 (1.6)

Доказательство (5). Пусть $f_1(x) = \sum c_j \chi_{E_j}$, пусть $E'_j = E_j \cap F_1$, $E''_j = F_j \cap F_2$. Тогда т $E'_j +$ тели $E''_j =$ тели тели

$$I_{F_1}(f_1) = \sum c_j \operatorname{m} E'_j, \qquad I_{F_2}(f_1) = \sum c_j \operatorname{m} E''_j, \qquad I_E(f) = \sum c_j \operatorname{m} E_j$$

Отсюда следует свойство (1.6).

Определение 4. Пусть $E \subset \mathbb{R}^m$ — измеримо, $E \neq \emptyset$, $f: E \to \mathbb{R} \cup \{+\infty\}$, $f(x) \geq 0 \quad \forall x \in E$, f измерима.

Через B(f) обозначим множество всех простых функций $f_0: E \to \mathbb{R}$, удовлетворяющих условиям:

- $f_0(x) \ge 0$;
- f_0 измерима;
- $f_0(x) \le f(x) \quad \forall x \in E$.

Интегралом Лебега назовём следующую величину

$$\int_{E} f \, \mathrm{d} \, \mathrm{m} := \sup \left\{ \left. I_{E}(f_{0}) \mid f_{0} \in \mathsf{B}(f) \right. \right\} \tag{1.7}$$

Определение 5. Если $\int\limits_E f \, \mathrm{d} \, \mathrm{m} < +\infty,$ то функцию f называют $\mathit{суммируе}\mathit{мой}$ на множестве E.

Обозначение. $f \in \mathcal{L}(E)$

Определение 6. Если $f: E \to \mathbb{R} \cup \{-\infty, +\infty\}$ может принимать значения разных знаков, считаем $f = f^+ - f^-$ и называем f суммируемой, если $f^+ \in \mathcal{L}(E)$ и $f^- \in \mathcal{L}(E)$. Тогда полагаем

$$\int_{E} f \, \mathrm{d} \, \mathrm{m} := \int_{E} f^{+} \, \mathrm{d} \, \mathrm{m} - \int_{E} f^{-} \, \mathrm{d} \, \mathrm{m}$$

$$\tag{1.8}$$

Теорема 2. $f \in \mathcal{L}(E)$, $A \in \mathfrak{M}$, $A \subset E$, $\varphi(A) = \int f \, \mathrm{d} \, \mathrm{m}$.

Тогда φ счётно-аддитивна на \mathfrak{M} , суженном на E.

Доказательство. Требуется установить равенство

$$\varphi(A) = \sum_{n=1}^{\infty} \varphi(A_n), \quad \text{если } A_n \subset E, \quad A_n \cap A_k = \emptyset$$
 (1.9)

Из (1.8) следует, что достаточно установить (1.9) для $f(x) \ge 0$, $x \in E$.

1. Пусть $f(x) = \chi_F(x)$, $F \subset E$, тогда

$$\varphi(A) = \int \chi_F(x) dm = I_E(\chi_{F \cap A}) = m(F \cap A)$$

$$\varphi(A_n) = I_E(\chi_{F \cap A_n}) = \mathrm{m}(F \cap A_n)$$

В силу счётной аддитивности меры Лебега имеем $\mathrm{m}(F\cap A)=\sum \mathrm{m}(F\cap A_n)$, откуда следует (1.9).

2. $f(x) = \sum_{j=1}^{N} c_j \chi_{F_j}(x)$.

$$\varphi(A) = \int_{A} \sum_{j=1}^{N} c_j \chi_{F_j} dm = I_A \left(\sum c_j \chi_{F_j} \right) = \sum c_j m(F_j \cap A)$$

$$\varphi(A_n) = I_{A_n} \left(\sum c_j \chi_{F_j} \right) = \sum c_j \operatorname{m}(F_j \cap A_n)$$

Отсюда следует (1.9).

3. $0 \le f(x) \le +\infty$, f измерима. Пусть $f_0 \in B(f)$. Тогда, по пункту 2,

$$I_A(f_0) = \int_A f_0 d \mathbf{m} = \sum_{n=1}^{\infty} \int_{A_n} f_0 d \mathbf{m} \le \sum \varphi(A_n)$$

$$\implies \varphi(A) = \sup \{ I_A(f_0) \mid f_0 \in \mathsf{B}(f) \} \le \sum_{n=1}^{\infty} \varphi(A_n)$$

Поскольку $f \in \mathcal{L}(E)$, то $\varphi(A) < +\infty$, $\varphi(A_n) < +\infty$.

Возьмём $\forall N$ и зафиксируем $\varepsilon > 0$.

Выберем f_1, \dots, f_N — простые функции, $f_j \in \mathtt{B}(f)$, удовлетворяющие условию

$$I_{A_j}(f_j) > \int_{A_j} d \operatorname{d} \operatorname{m} - \frac{\varepsilon}{N}, \quad j = 1, \dots, N$$

Определим функцию $f_0: E \to \mathbb{R}$:

$$f_0(x) = \begin{cases} f_j(x), & j \ge 2, & x \in A, \\ f_1(x), & x \in E \setminus \bigcup_{n=2}^N A_n \end{cases}$$

Тогда $f_0 \in \mathsf{B}(f), \quad \bigcup_{n=1}^N A_n \subset A$ и по пункту 2

$$\varphi(A) \ge \varphi\Big(\bigcup_{n=1}^{N} A_n\Big) \ge I_{\bigcup A_n}(f_0) = \sum_{n=1}^{N} I_{A_n}(f_0) = \sum_{n=1}^{N} I_{A_n}(f_n) > \sum \Big(\varphi(A_n) - \frac{\varepsilon}{N}\Big) = \sum \varphi(A_n) - \varepsilon$$

В силу произвольности N и $\varepsilon > 0$

$$\implies \varphi(A) \ge \sum_{n=1}^{\infty} \varphi(A_n)$$

Поскольку из свойства 4 следует, что $\int\limits_E f \,\mathrm{d}\,\mathrm{m} = 0$, если $\mathrm{m}\,E = 0$, то из теоремы получаем важное следствие.

Следствие. Пусть
$$f_1,f_2\in \mathscr{L}(E),\quad \mathrm{m}\,\{\,x\in E\mid f_1(x)\neq f_2(x)\,\}=0.$$
 Тогда
$$\int\limits_E f_1\,\mathrm{d}\,\mathrm{m}=\int\limits_E f_2\,\mathrm{d}\,\mathrm{m}$$