

End-to-End Bootstrapping Neural Network for Entity Set Expansion

Lingyong Yan^{1,3}, Xianpei Han^{1,2}, Ben He^{3,1}, Le Sun^{1,2}

¹Chinese Information Processing Laboratory ²State Key Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences ³University of Chinese Academy of Sciences

December 22, 2019

Introduction

End-to-End Bootstrapping NN(BootstrapNet)

Experiments

Conclusions

- Introduction
 - What's entity set expansion (ESE)?
 - How does bootstrapping for ESE work?
 - What are the problems of previous methods?
- End-to-End Bootstrapping NN(BootstrapNet)
- Experiments
- Conclusions

- Entity Set Expansion (ESE)
 - Expanding seeds to new entities belonging to the same category

- Bootstrapping for ESE
 - Iteratively expanding by adding new entities to the seeds

 Previous paradigm—Multi-step Pipeline (Riloff and Jones, 1999; Gupta and Manning, 2014)

S1: Matching patterns via expanded entities

S3: Matching entities via selected patterns

S2: Evaluating and selecting patterns

S4: Evaluating and expanding entities

- Problem 1: Separate multi-step expansion
 - Previous noisy expanded entities are directly used as golden entities, which tends to include more noise.

- Problem 2: Ignoring high-order information
 - Mainly using first-order relations, ignoring high-order relations (which are also important)

```
<China, went to *>
<China, * agreed to>
<China, * funds>
<Thailand, prime minister of *>
<NASA, went to *>
<Britain, prime minister of *>
<Britain, funds *>
<DARPA, * funds>
<DARPA, * is trying to>
```


First-order relations

High-order relations

- Main ideas to solve these problems
 - 1. Tightly coupling expansion steps
 - Previous expansions have different confidence scores to guide next expansions.
 - Expansion results can be used as feedback to improve previous expansion.
 - 2. Capturing both the first- and the higher-order relation information

- And above ideas can be modeled in an end-to-end framework
 - Encoder (capturing first- and the higher-order information)
 - Decoder (tightly expanding by considering long-term dependencies)

Introduction

- End-to-End Bootstrapping NN(BootstrapNet)
 - Encoder
 - Decoder
 - Multi-view learning
- Experiments
- Conclusions

Introduction-BootstrapNet-Experiments-Conclusions

- End-to-End Bootstrapping NN—BootstrapNet
 - Encoder: encoding the first- and high-order entity-pattern relations
 - Decoder: modeling the entity expansion as the expansion generation

- Encoder—BootstrapEncoder
 - Graph Attention Network over entity-pattern bipartite graph

Introduction-BootstrapNet-Experiments-Conclusions

- Decoder—BootstrapDecoder
 - RNN-based model to sequentially generate expansion by considering long-term dependencies

- Multi-view Learning
 - View 1: Sequential expanding process
 - Expansion generation by considering long-term dependencies (via BootstrapNet)
 - View 2: Non-sequential expanding process
 - Classification based on the embeddings (via auxiliary model—BootstrapTeacher)

Introduction

End-to-End Bootstrapping NN(BootstrapNet)

Experiments

Conclusions

- Dataset:
 - CoNLL and OntoNotes (Zupon et al., 2019)

Dataset	# Categories	# Entities	# Patterns	# Links
CoNLL	4	5,522	8,477	13,916
OntoNotes	11	19,984	33,985	67,229

- Main settings:
 - Seed number: 10 seeds/category
 - Iteration number: 20

Overall results

 BootstrapNet can significantly reduce the semantic drift problem in the bootstrapping technique.

Ablation study

 Capturing high-order information and modeling the sequential expanding process are both important in bootstrapping for ESE.

• Performance with different layer

 Bootstrapping methods can benefit from capturing first-order information and further capturing higher-order information.

Introduction

End-to-End Bootstrapping NN(BootstrapNet)

Experiments

Conclusions

- 1. We propose the first end-to-end neural network for bootstrapping for entity set expansion.
- 2. This model can be further used in other IE tasks. For example, we use the < head entity, tail entity> pair as the instance and the context around it as the pattern, this model can be easily for relation extraction/expansion task.
- 3. We design a multi-view learning algorithm to efficiently using sparse supervision signals.

Thanks! Any Question?