Практика 08.09

- 1. Докажите, что группа $G_n = \langle s_1, \dots, s_{n-1} | s_i^2 = e, (s_i s_{i+1})^3 = e, s_i s_j = s_j s_i$ при $|i-j| \geq 2 \rangle$ при $n \geq 1$ изоморфна симметрической группе S_n , перечислив смежные классы по подгруппе G_{n-1} .
- 2. Докажите, что группа $G = \langle x, y | x^{-1}yx = y^2, y^{-1}xy = x^2 \rangle$ тривиальна.
- 3. Докажите, что группы $\langle x,y|x^3=y^2\rangle$ и $\langle a,b|aba=bab\rangle$ изоморфны.
- 4. Определите, что за группа (какой известной группе изоморфна) $G = \langle a, b | a = (ab)^3, b = (ab)^4 \rangle$.
- 5. Докажите, что $(a, b|a^2, b^3, (ab)^3) \cong A_4$.
- 6. Пусть группа $G = \langle S|R \rangle$ конечна, и все соотношения чётной длины. Докажите, что G чётного порядка.
- 7. Пусть группа G задана как $G = \langle X|R \rangle$. Докажите, что G проста тогда и только тогда, когда группа $\langle X|R,w \rangle$ тривиальна для любого слова $w \neq 1$ в G.
- 8. Пусть $G=\langle X|R\rangle,\ H=\langle Y|S\rangle$ и задан гомоморфизм $\theta:H\to Aut(G)$. Докажите, что $G\rtimes_{\theta}H\cong\langle X\coprod Y|R\cup S\cup\{yxy^{-1}\theta_y(x^{-1})\mid x\in X,y\in Y\}\rangle.$