The Proximal Gradient Method

Instructor: Jin Zhang

Department of Mathematics Southern University of Science and Technology

Fall 2023

Contents

- The Composite Model
- 2 The Proximal Gradient Method
- 3 Analysis of the PGM—The Nonconvex Case
- 4 Analysis of the Proximal Gradient Method—The Convex Case
- 5 Analysis of the Proximal Gradient Method—The Strongly Convex Case
- **6** FISTA

1. The Composite Model

The Composite Model

$$\min_{x \in \mathbb{R}^n} \left\{ F(x) \equiv f(x) + g(x) \right\} \tag{1}$$

Standing Assumption (SA):

- (A). $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper closed and convex.
- (B). $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper and closed, dom(f) is convex, $dom(g) \subseteq int(dom(f))$, and f is L_f -smooth over int(dom(f)).
- (C). The optimal set of problem (1) is nonempty and denoted by X^* . The optimal value of the problem is denoted by $F_{\rm opt}$.

Three special cases of the general model (1)

• Smooth unconstrained minimization. If $g \equiv 0$ and $\mathrm{dom}(f) = \mathbb{R}^n$, then (1) reduces to

$$\min_{x \in \mathbb{R}^n} f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is L_f -smooth over \mathbb{R}^n .

• Convex constrained smooth minimization. If $g = \delta_C$, where $C \subset \mathbb{R}^n$ is a nonempty closed and convex set, then (1) amounts to

$$\min_{x \in \mathbb{R}^n} f(x), \quad \text{s.t. } x \in C \qquad \quad \text{or } \min_{x \in C} f(x),$$

where f is L_f -smooth over int(dom(f)) and $C \subset int(dom(f))$.

• l_1 -regularized minimization. If $g(x) = \lambda \|x\|_1$ for some $\lambda > 0$ and $dom(f) = \mathbb{R}^n$, then (1) amounts to

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) + \lambda \left\| x \right\|_1 \right\},\,$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is L_f -smooth over \mathbb{R}^n .

2. The Proximal Gradient Method (PGM)

Motivation:

Solve the Smooth unconstrained model by the gradient method:

$$x^{k+1} = x^{k} - t_{k} \nabla f\left(x^{k}\right)$$

$$= \operatorname*{arg\,min}_{x \in \mathbb{R}^{n}} \left\{ f\left(x^{k}\right) + \left\langle \nabla f\left(x^{k}\right), x - x^{k} \right\rangle + 0 + \frac{1}{2t_{k}} \left\|x - x^{k}\right\|^{2} \right\}$$

 Solve the Convex constrained smooth model by the projected gradient method:

$$\begin{aligned} x^{k+1} &= P_{C}\left(x^{k} - t_{k}\nabla f\left(x^{k}\right)\right) \\ &= \operatorname*{arg\,min}_{x \in C} \left\{f\left(x^{k}\right) + \left\langle\nabla f\left(x^{k}\right), x - x^{k}\right\rangle + \frac{1}{2t_{k}}\left\|x - x^{k}\right\|^{2}\right\} \\ &= \operatorname*{arg\,min}_{x \in \mathbb{R}^{n}} \left\{f\left(x^{k}\right) + \left\langle\nabla f\left(x^{k}\right), x - x^{k}\right\rangle + \delta_{C}(x) + \frac{1}{2t_{k}}\left\|x - x^{k}\right\|^{2}\right\} \end{aligned}$$

It's natural to generalize the above idea to the more general model (1):

$$\begin{split} x^{k+1} &= \underset{x \in \mathbb{R}^n}{\min} \left\{ f\left(x^k\right) + \left\langle \nabla f\left(x^k\right), x - x^k\right\rangle + g(x) + \frac{1}{2t_k} \left\|x - x^k\right\|^2 \right\} \\ &= \underset{x \in \mathbb{R}^n}{\min} \left\{ t_k g(x) + \frac{1}{2} \left\|x - \left(x^k - t_k \nabla f\left(x^k\right)\right)\right\|^2 \right\} \\ &= \underset{t_k g}{\min} \left(x^k - t_k \nabla f\left(x^k\right)\right). \end{split}$$

From now on, we will take the stepsize as $t_k = \frac{1}{L_k}$, leading to the following description.

The Proximal Gradient Method

- Initialization: pick $x^0 \in \text{int}(\text{dom} f)$.
- **General Step:** for any $k = 0, 1, 2, \cdots$ execute the following steps:
 - (a). pick $L_k > 0$;
 - (b). set $x^{k+1} = \operatorname{prox}_{\frac{1}{L_k}g} \left(x^k \frac{1}{L_k} \nabla f(x^k) \right)$.

Definitions:

Prox-grad Operator: Suppose that f and g satisfy (A) and (B) of SA and let L>0. Then $T_L^{f,g}:\operatorname{int}(\operatorname{dom} f)\to\mathbb{R}^n$ is the prox-grad operator associated with f,g,L defined by

$$T_L^{f,g}(x) = \operatorname{prox}_{\frac{1}{L}g}\left(x - \frac{1}{L}\nabla f(x)\right) \text{ for any } x \in \operatorname{int}(\operatorname{dom} f).$$

Gradient Mapping: Suppose that f and g satisfy (A) and (B) of SA and let L>0. Then $G_L^{f,g}:\operatorname{int}(\operatorname{dom} f)\to\mathbb{R}^n$ is the gradient mapping associated with f,g,L defined by

$$G_L^{f,g}(x) = L\left(x - T_L^{f,g}(x)\right) \text{ for any } x \in \operatorname{int}(\operatorname{dom} f).$$

3. Analysis of the PGM—The Nonconvex Case 3.1 Sufficient Decrease

Notations

We set $T_L \equiv T_L^{f,g}$ and $G_L \equiv G_L^{f,g}$ when there's no ambiguity.

Lemma: (sufficient decrease lemma).

Suppose that f and g satisfy properties (A) and (B) of SA. Let F=f+g. Then for any $x\in \mathrm{int}(\mathrm{dom} f)$ and $L\in (\frac{L_f}{2},\infty)$ the following inequality holds:

$$F(x) - F(T_L(x)) \ge \frac{L - \frac{L_f}{2}}{L^2} \|G_L(x)\|^2$$
.

Especially,

$$F(x) - F(T_{L_f}(x)) \ge \frac{1}{2L_f} \|G_{L_f}(x)\|^2.$$

4 비 ▷ 4 해 ▷ 4 분 ▷ 4 분 ▷ 및 */ Y, ()

3 Analysis of the PGM—The Nonconvex Case 3.2 The Gradient Mapping

The gradient mapping G_L "measures" the optimality.

Theorem

Let f and g satisfy properties (A) and (B) of SA and let L>0. Then

- (a). $G_L^{f,g_0}(x) = \nabla f(x)$ for any $x \in int(dom f)$, where $g_0(x) \equiv 0$;
- (b). for $x^* \in \operatorname{int}(\operatorname{dom} f)$, it holds that $G_L^{f,g}(x^*) = 0$ if and only if x^* is a stationary point of problem (1).

Corollary (necessary and sufficient optimality condition under convexity).

Let f and g satisfy properties (A) and (B) of SA and let L>0. Suppose that in addition f is convex. Then for $x^*\in \operatorname{dom}(g)$, it holds that $G_L^{f,g}(x^*)=0$ if and only if x^* is an optimal solution of problem (1).

The next result establishes monotonicity properties of $||G_L(x)||$ w.r.t. the parameter L.

Theorem (monotonicity of the gradient mapping)

Suppose that f and g satisfy properties (A) and (B) of SA. Suppose that $L_1 \ge L_2 > 0$. Then for any $x \in \text{int}(\text{dom}f)$,

$$||G_{L_1}(x)|| \ge ||G_{L_2}(x)||, \quad \frac{||G_{L_1}(x)||}{L_1} \le \frac{||G_{L_2}(x)||}{L_2}.$$

Lemma: Lipschitz continuity of the gradient mapping

Suppose that f and g satisfy properties (A) and (B) of SA. Then

- (a). $||G_L(x) G_L(y)|| \le (2L + L_f) ||x y||$ for any $x, y \in \text{int}(\text{dom } f)$.
- (b). $||G_{L_f}(x) G_{L_f}(y)|| \le 3L_f ||x y||$ for any $x, y \in \text{int}(\text{dom } f)$.

Lemma: firm nonexpansivity of $\frac{3}{4L_f}G_{L_f}$

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is convex and L_f -smooth $(L_f > 0)$ over \mathbb{R}^n , and let $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper closed and convex. Then

(a). the gradient mapping G_{L_f} satisfies the relation

$$\langle G_{L_f}(x) - G_{L_f}(y), x - y \rangle \ge \frac{3}{4L_f} \|G_{L_f}(x) - G_{L_f}(y)\|^2$$

for any $x, y \in \mathbb{R}^n$.

(b).
$$\|G_{L_f}(x) - G_{L_f}(y)\| \le \frac{4L_f}{3} \|x - y\|$$
 for any $x, y \in \mathbb{R}^n$.

Lemma: monotonicity of the norm of the gradient mapping with respect to the pro-grad operator

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is convex and L_f -smooth $(L_f > 0)$ over \mathbb{R}^n , and let $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper closed and convex. Then

$$||G_{L_f}(T_{L_f}(x))|| \le ||G_{L_f}(x)||$$
.

3. Analysis of the PGM—The Nonconvex Case

3.3 Convergence Analysis

Stepsize Strategies

- Constant. $L_k = \bar{L} \in \left(\frac{L_f}{2}, \infty\right)$ for all k.
- Backtracking procedure B1.

The procedure requires three parameters (s, γ, η) , where s > 0, $\gamma \in (0, 1)$ and $\eta > 1$.

The choice of L_k is done as follows.

First, L_k is set to be equal to the initial guess s.

Then, while

$$F(x^k) - F\left(T_{L_k}(x^k)\right) < \frac{\gamma}{L_k} \left\| G_{L_k}(x^k) \right\|^2,$$

we set $L_k := \eta L_k$.

• Backtracking procedure B1 (to be continued). In other words, L_k is chosen as $L_k = s\eta^{i_k}$, where i_k is the smallest nonnegative integer for which the condition

$$F(x^k) - F\left(T_{s\eta^{i_k}}(x^k)\right) \ge \frac{\gamma}{s\eta^{i_k}} \left\|G_{s\eta^{i_k}}\right\|^2.$$

is satisfied.

Remark

Under SA,

- 1. the backtracking procedure is finite when $L_k \geq rac{L_f}{2(1-\gamma)}$.
- 2. Compute the finite upper bound on L_k :

$$L_k \le \max\left\{s, \frac{\eta L_f}{2(1-\gamma)}\right\}.$$

Lemma (sufficient decrease of the PGM).

Suppose that SA holds. Let $\left\{x^k\right\}_{k\geq 0}$ be the sequence generated by the proximal gradient method for solving problem (1) with either a constant stepsize defined by $L_k=\bar{L}\in(\frac{L_f}{2},\infty)$ or with a stepsize chosen by the backtracking procedure B1 with parameter (s,γ,η) , where s>0, $\gamma\in(0,1),\ \eta>1$. Then for any $k\geq 0$,

$$F(x^k) - F(x^{k+1}) \ge M \|G_d(x^k)\|^2$$
,

where

$$M = \begin{cases} \frac{\bar{L} - \frac{L_f}{2}}{\left(\bar{L}\right)^2}, & \text{constant stepsize,} \\ \frac{\gamma}{\max\left\{s, \frac{\eta L_f}{2(1-\gamma)}\right\}}, & \text{backtracking,} \end{cases}$$

and

$$d = \begin{cases} \bar{L}, & \text{constant stepsize,} \\ s, & \text{backtracking.} \end{cases}$$

Theorem (convergence of the PGM-nonconvex case.)

Suppose that SA holds and let $\{x^k\}_{k\geq 0}$ be the sequence generated by the proximal gradient method for solving problem (1) either with a constant stepsize defined by $L_k=\bar{L}\in(\frac{L_f}{2},\infty)$ or with a stepsize chosen by the backtracking procedure B1 with parameters (s,γ,η) , where s>0, $\gamma\in(0,1),\ \eta>1$. Then

- (a). the sequence $\{F(x^k)\}_{k\geq 0}$ is nonincreasing. In addition, $F(x^{k+1}) < F(x^k)$ if and only if x^k is not a stationary of problem (1);
- (b). $G_d(x^k) \to 0$ as $k \to \infty$, where

$$d = \begin{cases} \bar{L}, & \text{constant stepsize,} \\ s, & \text{backtracking.} \end{cases}$$

(c).

$$\min_{n=0,\cdots,k} \left\| G_d(x^k) \right\| \le \frac{\sqrt{F(x^0) - F_{\mathsf{opt}}}}{\sqrt{M(k+1)}},$$

where

$$M = \begin{cases} \frac{\bar{L} - \frac{L_f}{2}}{\left(\bar{L}\right)^2}, & \text{constant stepsize,} \\ \frac{\gamma}{\max\left\{s, \frac{\eta L_f}{2(1-\gamma)}\right\}}, & \text{backtracking,} \end{cases}$$

(d). all limit points of the sequence $\{x^k\}_{k\geq 0}$ are stationary points of problem (1).

4. Analysis of the PGM—The Convex Case

4.1 The Fundamental Prox-Grad Inequality

Theorem (fundamental prox-grad inequality).

Suppose that f and g satisfy properties (A) and (B) of SA. For any $x \in \mathbb{R}^n$, $y \in \operatorname{int}(\operatorname{dom} f)$ and L > 0 satisfying

$$f(T_L(y)) \le f(y) + \langle \nabla f(y), T_L(y) - y \rangle + \frac{L}{2} ||T_L(y) - y||^2,$$

it holds that

$$F(x) - F(T_L(y)) \ge \frac{L}{2} \|x - T_L(y)\|^2 - \frac{L}{2} \|x - y\|^2 + l_f(x, y),$$

where

$$l_f(x,y) = f(x) - f(y) - \langle \nabla f(y), x - y \rangle.$$

Remark

Suppose that f and g satisfy properties (A) and (B) of SA. For any $x \in \mathbb{R}^n$, $y \in \operatorname{int}(\operatorname{dom} f)$, the inequality

$$F(x) - F(T_{L_f}(y)) \ge \frac{L_f}{2} ||x - T_{L_f}(y)||^2 - \frac{L_f}{2} ||x - y||^2 + l_f(x, y)$$

holds.

Corollary (sufficient decrease lemma-second version).

Suppose that f and g satisfy properties (A) and (B) of SA. For any $x \in \operatorname{int}(\operatorname{dom} f)$ for which

$$f(T_L(x)) \le f(x) + \langle \nabla f(x), T_L(x) - x \rangle + \frac{L}{2} ||T_L(x) - x||^2,$$

it holds that

$$F(x) - F(T_L(x)) \ge \frac{1}{2L} \|G_L(x)\|^2$$
.

4. Analysis of the PGM—The Convex Case

4.2 Stepsize Strategies

Stepsize Strategies

- Constant. $L_k = L_f$ for all k.
- Backtracking procedure B2.

The procedure requires two parameters (s,η) , where s>0, and $\eta>1$.

Define $L_{-1} = s$.

At iteration $k(k \ge 0)$ the choice of L_k is done as follows.

First, L_k is set to be equal to L_{k-1} .

Then, while

$$f\left(T_{L_k}(x^k)\right) > f(x^k) + \langle \nabla f(x^k), T_{L_k}(x^k) - x^k \rangle + \frac{L_k}{2} \left\| T_{L_k}(x^k) - x^k \right\|^2,$$

we set $L_k := \eta L_k$.

• Backtracking procedure B2 (to be continued). In other words, L_k is chosen as $L_k = L_{k-1}\eta^{i_k}$, where i_k is the smallest nonnegative integer for which the condition

$$\begin{split} f\left(T_{L_{k-1}\eta^{i_k}}(x^k)\right) \leq & f(x^k) + \langle \nabla f(x^k), T_{L_{k-1}\eta^{i_k}}(x^k) - x^k \rangle + \\ & \frac{L_k}{2} \left\|T_{L_{k-1}\eta^{i_k}}(x^k) - x^k\right\|^2 \end{split}$$

is satisfied.

Remark (upper and lower bounds on L_k)

Under SA, the constants L_k that the backtracking procedure B2 produces satisfy the following bounds for all $k \geq 0$:

$$s \le L_k \le \max\{\eta L_f, s\},$$

which can be rewritten as $\beta L_f \leq L_k \leq \alpha L_f$, where

$$\alpha = \begin{cases} 1, & \text{constant,} \\ \max\left\{\eta, \frac{s}{L_f}\right\}, & \text{backtracking,} \end{cases} \quad \beta = \begin{cases} 1, & \text{constant,} \\ \frac{s}{L_f}, & \text{backtracking.} \end{cases}$$

Remark (monotonicity of the proximal gradient method)

Under SA and either of two stepsize rules, for any $k \geq 0$, we obtain the inequality

$$F(x^k) - F(x^{k+1}) \ge \frac{L_k}{2} \|x^k - x^{k+1}\|^2$$
.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 Q ()

4. Analysis of the PGM—The Convex Case

4.3 Convergence Analysis

Theorem $(O(\frac{1}{k})$ rate of convergence of proximal gradient).

Suppose that SA holds and that in addition f is convex. Let $\{x^k\}_{k\geq 0}$ be the sequence generated by the proximal gradient method for solving problem (1) with either a constant stepsize rule in which $L_k\equiv L_f$ for all $k\geq 0$ or the backtracking procedure B2. Then for any $x^*\in X^*$ and $k\geq 0$,

$$F(x^k) - F_{\mathsf{opt}} \le \frac{\alpha L_f \left\| x^0 - x^* \right\|^2}{2k},$$

where $\alpha=1$ in the constant stepsize setting and $\alpha=\max\left\{\eta,\frac{s}{L_f}\right\}$ if the backtracking rule is employed.

Definition (Fejér monotonicity)

A sequence $\{x^k\}_{k\geq 0}\subseteq \mathbb{R}^n$ is called Fejér monotone with respect to a set $S\subseteq \mathbb{R}^n$ if

$$\left\|x^{k+1} - y\right\| \le \left\|x^k - y\right\| \text{ for all } k \ge 0 \text{ and } y \in S.$$

Theorem (convergence under Fejér monotonicity)

Let $\{x^k\}_{k\geq 0}\subseteq \mathbb{R}^n$ be a sequence, and let S be a set satisfying $D\subseteq S$, where D is the set comprising all the limit points of $\{x^k\}_{k\geq 0}$. If $\{x^k\}_{k\geq 0}$ is Fejér monotone with respect to S, then it converges to a point in D.

Theorem (Fejér monotonicity of the sequence generated by the proximal gradient method).

Suppose that SA holds and that in addition f is convex. Let $\{x^k\}_{k\geq 0}$ be the sequence generated by the proximal gradient method for solving problem (1) with either a constant stepsize rule in which $L_k\equiv L_f$ for all $k\geq 0$ or the backtracking procedure B2. Then for any $x^*\in X^*$ and $k\geq 0$,

$$||x^{k+1} - x^*|| \le ||x^k - x^*||.$$

Theorem (convergence of the sequence generated by the proximal gradient method).

Suppose that SA holds and that in addition f is convex. Let $\{x^k\}_{k\geq 0}$ be the sequence generated by the proximal gradient method for solving problem (1) with either a constant stepsize rule in which $L_k \equiv L_f$ for all $k\geq 0$ or the backtracking procedure B2. Then the sequence $\{x^k\}_{k\geq 0}$ converges to an optimal solution of problem (1).

Theorem $\left(O(\frac{1}{k})\right)$ rate of convergence of the minimal norm of the gradient mapping).

Suppose that SA holds and that in addition f is convex. Let $\{x^k\}_{k\geq 0}$ be the sequence generated by the proximal gradient method for solving problem (1) with either a constant stepsize rule in which $L_k\equiv L_f$ for all $k\geq 0$ or the backtracking procedure B2. Then for any $x^*\in X^*$ and $k\geq 1$,

$$\min_{n=0,1,\dots,k} \|G_{\alpha L_f}(x^n)\| \le \frac{2\alpha^{1.5} L_f \|x^0 - x^*\|}{\sqrt{\beta}k},$$

where $\alpha=\beta=1$ in the constant stepsize setting and $\alpha=\max\left\{\eta,\frac{s}{L_f}\right\},\beta=\frac{s}{L_f}$ if the backtracking rule is employed.

Theorem $(O(\frac{1}{k})$ rate of convergence of the norm of the gradient mapping under the constant stepsize rule).

Suppose that SA holds and that in addition f is convex and L_f -smooth over \mathbb{R}^n . Let $\{x^k\}_{k\geq 0}$ be the sequence generated by the proximal gradient method for solving problem (1) with a constant stepsize rule in which $L_k\equiv L_f$ for all $k\geq 0$. Then for any $x^*\in X^*$ and $k\geq 0$,

(a).

$$\left\| G_{L_f}(x^{k+1}) \right\| \le \left\| G_{L_f}(x^k) \right\|;$$

(b).

$$\|G_{L_f}(x^k)\| \le \frac{2L_f \|x^0 - x^*\|}{k+1}.$$

5. Analysis of the PGM—The Strongly Convex Case

Theorem (linear rate of convergence of the proximal gradient method—strongly convex case).

Suppose that SA holds and that in addition f is σ -convex. Let $\{x^k\}_{k\geq 0}$ be the sequence generated by the proximal gradient method for solving problem (1) with either a constant stepsize rule in which $L_k\equiv L_f$ for all $k\geq 0$ or the backtracking procedure B2, and let x^* be the unique minimum of problem (1). Then for any $k\geq 0$,

(a).
$$||x^{k+1} - x^*||^2 \le \left(1 - \frac{\sigma}{\alpha L_f}\right) ||x^k - x^*||^2$$
; no strong:just Fejer

(b).
$$||x^{k+1} - x^*||^2 \le \left(1 - \frac{\sigma}{\alpha L_f}\right)^k ||x^0 - x^*||^2$$
; monotone

(c).
$$F(x^{k+1}) - F_{\text{opt}} \le \frac{\alpha L_f}{2} \left(1 - \frac{\sigma}{\alpha L_f} \right)^{k+1} \|x^0 - x^*\|^2$$
,

where $\alpha=1$ in the constant stepsize setting and $\alpha=\max\left\{\eta,\frac{s}{L_f}\right\}$ if the backtracking rule is employed.

6. FISTA

6.1 The Method

The Composite Model

$$\min_{x \in \mathbb{R}^n} \left\{ F(x) \equiv f(x) + g(x) \right\} \tag{2}$$

Assumption 2:

- (A). $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper closed and convex.
- (B). $f: \mathbb{R}^n \to \mathbb{R}$ is L_f -smooth and convex.
- (C). The optimal set of problem (1) is nonempty and denoted by X^* . The optimal value of the problem is denoted by $F_{\rm opt}$.

Fast proximal gradient method
Fast iterative shrinkage-thresholding algorithm (FISTA)

FISTA

- Input: (f, g, x^0) , where f and g satisfy properties (A) and (B) in Assumption 2 and $x^0 \in \mathbb{R}^n$.
- Initialization: set $y^0 = x^0$ and $t_0 = 1$.
- **General Step:** for any $k = 0, 1, 2, \cdots$ execute the following steps:
 - (a). pick $L_k > 0$;
 - (b). set $x^{k+1} = \operatorname{prox}_{\frac{1}{L_k}g} \left(y^k \frac{1}{L_k} \nabla f(y^k) \right);$
 - (c). set $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$;
 - (d). compute $y^{k+1} = x^{k+1} + \frac{t_k-1}{t_{k+1}} (x^{k+1} x^k)$.

Stepsize Strategies

- Constant. $L_k = L_f$ for all k.
- Backtracking procedure B3.

The procedure requires two parameters (s, η) , where s > 0 and $\eta > 1$. Define $L_{-1} = s$. At iteration $k(k \ge 0)$ the choice of L_k is done as follows:

First, L_k is set to be equal to L_{k-1} .

Then, while

$$f(T_{L_k}(y^k)) > f(y^k) + \langle \nabla f(y^k), T_{L_k}(y^k) - y^k \rangle + \frac{L_k}{2} \|T_{L_k}(y^k) - y^k\|^2,$$

we set $L_k := \eta L_k$.

• Backtracking procedure B3 (to be continued). In other words, L_k is chosen as $L_k = L_{k-1}\eta^{i_k}$, where i_k is the smallest nonnegative integer for which the condition

$$\begin{split} f\left(T_{L_{k-1}\eta^{i_k}}(y^k)\right) \leq & f(y^k) + \langle \nabla f(y^k), T_{L_{k-1}\eta^{i_k}}(y^k) - y^k \rangle \\ & + \frac{L_k}{2} \left\|T_{L_{k-1}\eta^{i_k}}(y^k) - y^k \right\|^2 \end{split}$$

is satisfied.

Remark (upper and lower bounds on L_k)

Under Assumption 2, the constants L_k that the backtracking procedure B3 produces satisfy the following bounds for all $k \ge 0$:

$$s \le L_k \le \max\{\eta L_f, s\},\$$

which can be rewritten as $\beta L_f \leq L_k \leq \alpha L_f$, where

$$\alpha = \begin{cases} 1, & \text{constant,} \\ \max\left\{\eta, \frac{s}{L_f}\right\}, & \text{backtracking,} \end{cases} \quad \beta = \begin{cases} 1, & \text{constant,} \\ \frac{s}{L_f}, & \text{backtracking.} \end{cases}$$

Lemma

Let $\{t_k\}_{k\geq 0}$ be the sequence defined by

$$t_0 = 1, t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}, \quad k \ge 0.$$

Then $t_k \geq \frac{k+2}{2}$ for all $k \geq 0$.

6. FISTA

6.2 Convergence Analysis of FISTA

Theorem $(O(\frac{1}{k^2}))$ rate of convergence of FISTA).

Suppose that Assumption 2 holds. Let $\{x^k\}_{k\geq 0}$ be the sequence generated by FISTA for solving problem (1) with either a constant stepsize rule in which $L_k\equiv L_f$ for all $k\geq 0$ or the backtracking procedure B3. Then for any $x^*\in X^*$ and $k\geq 0$,

$$F(x^k) - F_{\mathsf{opt}} \le \frac{2\alpha L_f \|x^0 - x^*\|^2}{(k+1)^2},$$

where $\alpha=1$ in the constant stepsize setting and $\alpha=\max\left\{\eta,\frac{s}{L_f}\right\}$ if the backtracking rule is employed.

Remark (alternative choice for t_k).

A close inspection of the proof of Theorem $(O(\frac{1}{k^2}))$ rate of convergence of FISTA) reveals that the result is correct if $\{t_k\}_{k\geq 0}$ is any sequence satisfying the following two properties for any $k\geq 0$:

- (a). $t_k \ge \frac{k+2}{2}$;
- (b). $t_{k+1}^2 t_{k+1} \le t_k^2$.

The choice $t_k = \frac{k+2}{2}$ also satisfies these two properties. The validity of (a) is obvious; to show (b), note that

$$t_{k+1}^2 - t_{k+1} = t_{k+1}(t_{k+1} - 1) = \frac{k+3}{2} \cdot \frac{k+1}{2} = \frac{k^2 + 4k + 3}{4}$$
$$\leq \frac{k^2 + 4k + 4}{4} = \frac{(k+2)^2}{4} = t_k^2.$$

Remark

Note that FISTA has an $O(\frac{1}{k^2})$ rate of convergence in function values, while the proximal gradient method has an $O(\frac{1}{k})$ rate of convergence. This improvement was achieved despite the fact that the dominant computational steps at each iteration of both methods are essentially the same: one gradient evaluation and one prox computation.

6. FISTA

6.3 Examples

Example (l_1 -regularized minimization)

Consider the following model:

$$\min_{x \in \mathbb{R}^n} f(x) + \lambda \|x\|_1,$$

where $\lambda > 0$ and $f : \mathbb{R}^n \to \mathbb{R}$ is assumed to be convex and L_f -smooth.

The proximal gradient method (or iterative shrinkage-thresholding algorithm (ISTA)) with constant stepsize $\frac{1}{L_f}$:

$$x^{k+1} = \mathcal{T}_{\frac{\lambda}{L_f}} \left(x^k - \frac{1}{L_f} \nabla f(x^k) \right).$$

Recall that $\mathcal{T}_{\alpha}: \mathbb{R}^n \to \mathbb{R}^n_+$ is the soft thresholding operator associated with $\alpha>0$ defined by

$$\mathcal{T}_{\alpha}(x) \equiv ([|x_i| - \alpha]_+ \mathrm{sgn}(x))_{i=1}^n \, ._{\text{the second of } i=1}^n \, ._{\text{the secon$$

The fast proximal gradient method (or fast iterative shrinkage-thresholding algorithm (FISTA)) with constant stepsize $\frac{1}{L_f}$:

(a). set
$$x^{k+1} = \mathcal{T}_{\frac{\lambda}{L_f}}\left(y^k - \frac{1}{L_f}\nabla f(y^k)\right);$$

(b). set
$$t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$$
;

(c). compute
$$y^{k+1} = x^{k+1} + \frac{t_k - 1}{t_{k+1}} (x^{k+1} - x^k)$$
.

Example (l_1 -regularized least squares).

Consider

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1,$$

where $\lambda>0$ and $A\in\mathbb{R}^{m\times n},b\in\mathbb{R}^m$. Note that the function $\frac{1}{2}\|Ax-b\|_{2,2}$ is L-smooth with

$$L = \left\| A^T A \right\|_2^2 = \lambda_{\max}(A^T A).$$

The update step of ISTA:

$$x^{k+1} = \mathcal{T}_{\frac{\lambda}{L_k}} \left(x^k - \frac{1}{L_k} A^T (Ax^k - b) \right)$$

The update step of FISTA:

(a). set
$$x^{k+1} = \mathcal{T}_{\frac{\lambda}{L_k}} \left(y^k - \frac{1}{L_k} A^T (A y^k - b) \right);$$

(b). set
$$t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$$
;

(c). compute
$$y^{k+1} = x^{k+1} + \frac{t_k - 1}{t_{k+1}} (x^{k+1} - x^k)$$
.

Instance performance:

Let

- \bullet $\lambda = 1$,
- $A \in \mathbb{R}^{100 \times 110}$ where the components of A were independently generated using a standard normal distribution.
- The "true" vector is $x_{\text{true}} = e_3 e_7$.
- $b = Ax_{\mathsf{true}}$.

Let the initial vector x=e. The distances to optimality in terms of function values of the sequences generated by the two methods as a function of the iteration index are plotted:

the vectors that were obtained by 200 iterations of ISTA and FISTA:

6. FISTA

6.4 Monotone version of FISTA

- Input: (f,g,x^0) , where f and g satisfy properties (A) and (B) in Assumption 2 and $x^0 \in \mathbb{R}^n$.
- Initialization: set $y^0 = x^0$ and $t_0 = 1$.
- General Step: for any $k=0,1,2,\cdots$ execute the following steps:
 - (a). pick $L_k > 0$;
 - (b). set $z^k = \operatorname{prox}_{\frac{1}{L_k}g} \left(y^k \frac{1}{L_k} \nabla f(y^k) \right);$
 - (c). choose $x^{k+1} \in \mathbb{R}^n$ such that $F(x^{k+1}) \leq \min\{F(z^k), F(x^k)\}$
 - (d). set $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$;
 - (e). compute $y^{k+1} = x^{k+1} + \frac{t_k}{t_{k+1}} \left(z^k x^{k+1} \right) + \frac{t_k 1}{t_{k+1}} \left(x^{k+1} x^k \right)$.

Theorem $(O(\frac{1}{k^2}))$ rate of convergence of MFISTA).

Suppose that Assumption 2 holds. Let $\{x^k\}_{k\geq 0}$ be the sequence generated by MFISTA for solving problem (1) with either a constant stepsize rule in which $L_k\equiv L_f$ for all $k\geq 0$ or the backtracking procedure B3. Then for any $x^*\in X^*$ and $k\geq 0$,

$$F(x^k) - F_{\mathsf{opt}} \le \frac{2\alpha L_f \|x^0 - x^*\|^2}{(k+1)^2},$$

where $\alpha=1$ in the constant stepsize setting and $\alpha=\max\left\{\eta,\frac{s}{L_f}\right\}$ if the backtracking rule is employed.