ECN 7060, cours 13

William McCausland

2021-12-07

Plan (résultats asymptotique)

- Les résultats asymptotiques reposent sur des conditions de regularité.
- Illustration des violations de ces conditions.
- ► Théorie asymptotique des estimateurs MV.

Un modèle de mélange I

Les X_i sont iid, chaque X_i un mélange de deux gaussiens

$$F(x_i|\theta) = p\Phi\left(\frac{x_i - \mu_1}{\sigma_1}\right) + (1-p)\Phi\left(\frac{x_i - \mu_2}{\sigma_2}\right)$$

- Le vecteur de paramètres est $\theta = (p, \mu_1, \mu_2, \sigma_1, \sigma_2)$.
- Irregularité I : paramètres non-identifiés
 - (label switching)

$$f(X|\theta) = f(X|\theta')$$

οù

$$\theta' = (1 - p, \mu_2, \mu_1, \sigma_2, \sigma_1)$$

ightharpoonup (non-identification sous l'hypothèse p=1)

$$f(X|(1, \mu_1, \mu_2, \sigma_1, \sigma_2))$$

ne dépend pas de μ_2 , σ_2 .

Des mélanges de deux gaussiens

```
x = seq(-3, 3, by=0.001); y = dnorm(x, 0, 1)
y1 = 0.5 * dnorm(x, 0, 1) + 0.5 * dnorm(x, 0, 3/2)
y2 = 0.8 * dnorm(x, -1/4, 1) + 0.2 * dnorm(x, 1, 1)
plot(x, y, type='l'); lines(x, y1, col='green')
lines(x, y2, col='red')
```


La question d'identification (ponctuelle)

ldentification I : (où θ_0 est la vrai valeur)

$$\theta \neq \theta_0 \Rightarrow f(\cdot|\theta) \neq f(\cdot|\theta_0).$$

- ▶ Sinon, θ et θ_0 sont observationnellement équivalent.
- ► Identification II :

$$\theta_1 \neq \theta_2 \Rightarrow f(\cdot|\theta_1) \neq f(\cdot|\theta_2).$$

► La deuxième condition est plus forte. En pratique, elle est souvent la condition à vérifier, mais quelquefois l'identification (ou l'absense) est locale.

Un mélange extrème de deux gaussiens

► Ici, p = 0.01, $\mu_1 = 0$, $\mu_2 = 2$, $\sigma_1 = 1$, $\sigma_2 = 0.01$.

```
y = 0.01*dnorm(x, 2, 0.01) + 0.99*dnorm(x, 0, 1)
plot(x, y, type='1')
```


Un modèle de mélange II

- ightharpoonup Rappel: $\theta = (p, \mu_1, \mu_2, \sigma_1, \sigma_2)$
- ► Irregularité II : la vraisemblance n'est pas bornée

$$\blacktriangleright$$
 $x = (x_1, \dots, x_n)$ est arbitraire. Soit $\bar{x} = n^{-1} \sum x_i$.

Soit
$$\theta(\epsilon) = (p, \mu_1, \mu_2, \sigma_1(\epsilon), \sigma_2) = (n^{-1}, x_1, \overline{x}, \overline{\epsilon}, s)$$

$$f(x_1|\theta(\epsilon)) = n^{-1} \frac{1}{\sqrt{2\pi}\epsilon} + (1 - n^{-1}) \frac{1}{\sqrt{2\pi}s} e^{-(x_1 - \bar{x})/2s^2}$$

$$\blacktriangleright \lim_{\epsilon\downarrow 0} f(x_2,\ldots,x_n|\theta(\epsilon)) \neq 0,$$

▶ alors
$$\lim_{\epsilon \downarrow 0} f(x|\theta(\epsilon)) = \infty$$
.

- D'autres chemins où la vraisemblance croit sans borne
 - $p \in (0,1)$ arbitraire
 - d'autres choix de μ_2 , σ_2
 - échange d'index
- D'autres modèles de mélange

Une vraisemblance non-bornée

Le modèle de mélange, implications pour la loi a posteriori

- Mettons que la vraisemblance n'est pas bornée.
- Pour certaines lois *a priori*, la densité *a posteriori* est bornée:
 - ► Si $X_i \sim N(\mu, \omega^{-1})$ et $\omega \sim \text{Ga}(\alpha, \beta)$,

$$f(x_i) \propto \omega^{1/2} \exp\left[-\frac{1}{2}\omega(x_i - \mu)^2\right], \quad f(\omega) \propto \omega^{\alpha - 1}e^{-\beta\omega}.$$

- Bornée ou non, si la densité a priori est propre, la densité a posteriori l'est aussi.
- Même si la densité a priori est impropre, la densité a posteriori est souvent propre (mais il faut le vérifier).
- Dans le cas où la densité a posteriori est propre,
 - la région où la densité postérieure est plus grande que le maximum local régulier a souvent une probabilité négligeable, même si la densité postérieure n'est pas bornée.

Un modèle Bernoulli

- $ightharpoonup X_1, \ldots, X_n \sim \operatorname{iid} \operatorname{Bn}(p)$
- $ightharpoonup R = \sum_{i=1}^{n} X_i$ est une statistique suffisante minimale pour p.
- ▶ Si r = 0,
 - $f(x|p) = (1-p)^n$
 - $\hat{p}_{MV}(x) = 0$ (solution de coin),
- ► Irregularité :
 - $\hat{p}_{MV}(x)$ se trouve sur la frontière de $\Theta = [0, 1]$.
 - La dérivée (à droite) de $\log f(x|p)$ n'égale pas à zéro à l'estimation MV :

$$\left. \frac{\partial \log f(x|p)}{\partial p} \right|_{p=0} = \left. \frac{\partial n \log(1-p)}{\partial p} \right|_{p=0} = -n/(1-p)|_{p=0} = -n.$$

- D'autres cas :
 - Modèles avec restrictions sur les paramètres.

Un modèle Bernoulli, continué

Si $p \sim \text{Be}(\alpha, \beta)$, $p|r \sim \text{Be}(\alpha, \beta + n)$ quand r = 0.

Voici la densité pour r=0, n=10, $\alpha=\beta=1/2$:

Un modèle uniform

- $ightharpoonup X_1,\ldots,X_n \sim \mathrm{iid}\ U(0,\theta).$
- $ightharpoonup X_{(1)} = \max_i X_i$ est une statistique suffisante minimale pour θ .
- ► lci,
 - $f(x|\theta) = \theta^{-n} 1_{[x_{(1)},\infty)}(\theta).$
 - $\hat{\theta}_{MV} = X_{(1)}$, la valeur minimale possible de θ
 - Pour $\theta > x_{(1)}$,
 - $\log f(x|\theta) = -n \log \theta$ $\frac{\partial \log f(x|\theta)}{\partial \log f(x|\theta)} = -n \log \theta$

 - $E_{\theta} \left[\frac{\partial \log f(X|\theta)}{\partial \theta} \right] = -\frac{n}{\theta} \neq 0.$
- Irregularités :
 - le support de X_i dépend de θ
 - on ne peut pas prendre la dérivé dans l'intégral

$$\frac{\partial}{\partial \theta} \int_0^\theta f(x_i | \theta) \, dx = 0 \quad \text{mais} \quad \int_0^\theta \frac{\partial}{\partial \theta} f(x_i | \theta) \, dx = \int_0^\theta \frac{-1}{\theta^2} \, dx = -\frac{1}{\theta}.$$

Information de Fisher, deux formes

- ightharpoonup Ici, $X = (X_1, ..., X_n)$, $x = (x_1, ..., x_n)$.
- Deux dérivées de la log vraisemblance, si elles existent :

$$\frac{\partial \log f(x|\theta)}{\partial \theta^{\top}} = \frac{1}{f(x|\theta)} \frac{\partial f(x|\theta)}{\partial \theta^{\top}}$$

$$\frac{\partial^2 \log f(x|\theta)}{\partial \theta \partial \theta^{\top}} = \frac{1}{f(x|\theta)} \frac{\partial^2 f(x|\theta)}{\partial \theta \partial \theta^{\top}} - \frac{1}{f(x|\theta)^2} \frac{\partial f(x|\theta)}{\partial \theta^{\top}} \frac{\partial f(x|\theta)}{\partial \theta}$$
$$= \frac{1}{f(x|\theta)} \frac{\partial^2 f(x|\theta)}{\partial \theta \partial \theta^{\top}} - \frac{\partial \log f(x|\theta)}{\partial \theta^{\top}} \frac{\partial \log f(x|\theta)}{\partial \theta}$$

Espérance des deux côtés, si on peut passer l'espérance après les dérivées :

$$E_{\theta} \left[\frac{\partial^2 \log f(X|\theta)}{\partial \theta \partial \theta^{\top}} \right] = -E_{\theta} \left[\frac{\partial \log f(X|\theta)}{\partial \theta^{\top}} \frac{\partial \log f(X|\theta)}{\partial \theta} \right] \equiv -I_n(\theta)$$

► Attention : existence des dérivées, changement de l'ordre.

Une remarque

Si l'espérance du score est nulle,

$$E_{ heta}\left[rac{\partial \log f(X| heta)}{\partial heta^{ op}}
ight]=0,$$

alors

$$E_{\theta} \left[\frac{\partial \log f(X|\theta)}{\partial \theta^{\top}} \frac{\partial \log f(X|\theta)}{\partial \theta} \right] = \operatorname{Var} \left[\frac{\partial \log f(X|\theta)}{\partial \theta^{\top}} \right]$$

Information de Fisher pour une observation

La même démarche pour $f(x_i|\theta)$ au lieu de $f(x|\theta)$ donne

$$E_{\theta} \left[\frac{\partial^2 \log f(X_i | \theta)}{\partial \theta \partial \theta^{\top}} \right] = -E_{\theta} \left[\frac{\partial \log f(X_i | \theta)}{\partial \theta^{\top}} \frac{\partial \log f(X_i | \theta)}{\partial \theta} \right] \equiv -I(\theta)$$

Additivité de l'information de Fisher

On considère ici les modèles où les X_i sont iid et on peut échanger l'ordre de l'espérance et le gradient.

- ▶ Si les X_i sont indépendantes, les $\partial \log f(X_i|\theta)/\partial \theta$ le sont aussi.
- ➤ Si on peut changer l'ordre de l'espérance et le gradient, ils ont une expérance de 0.
- Alors

$$I_n(\theta) = E_{\theta} \left[\sum_{i=1}^n \frac{\partial \log f(X_i|\theta)}{\partial \theta^{\top}} \sum_{i=1}^n \frac{\partial \log f(X_i|\theta)}{\partial \theta} \right]$$
$$= \sum_{i=1}^n E_{\theta} \left[\frac{\partial \log f(X_i|\theta)}{\partial \theta^{\top}} \frac{\partial \log f(X_i|\theta)}{\partial \theta} \right]$$
$$= nI(\theta).$$

Exemple gaussien

Supposons que $y = X\beta + u$, $u \sim N(0, \sigma^2 I_n)$, la matrice X des covariables est $n \times K$, le paramètre β est $K \times 1$ et le paramètre scalaire σ^2 est connu. Alors

$$\mathcal{L}(\beta; y) = \frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (y - X\beta)^\top (y - X\beta)$$

$$= \frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (y^\top y - 2\beta^\top X^\top y + \beta^\top X^\top X\beta)^\top$$

$$\frac{\partial \mathcal{L}(\beta; y)}{\partial \beta^\top} = -\frac{1}{\sigma^2} (X^\top X\beta - X^\top y) = \frac{1}{\sigma^2} X^\top u.$$

Puisque E[u] = 0,

$$E\left[\frac{\partial \mathcal{L}(\beta; y)}{\partial \beta^{\top}}\right] = 0.$$

La matrice hessienne ne dépend pas de β :

$$\frac{\partial^2 \mathcal{L}(\beta; y)}{\partial \beta^\top \partial \beta} = -\frac{1}{\sigma^2} X^\top X.$$

Exemple gaussien, continué

lci, la variance du score est moins l'espérance de la matrice hessienne :

$$\operatorname{Var}\left[\frac{\partial \mathcal{L}(\beta; y)}{\partial \beta^{\top}}\right] = E\left[\frac{\partial \mathcal{L}(\beta; y)}{\partial \beta^{\top}}\frac{\partial \mathcal{L}(\beta; y)}{\partial \beta}\right]$$
$$= \frac{1}{\sigma^{4}}E[X^{\top}uu^{\top}X] = \frac{1}{\sigma^{2}}X^{\top}X$$

Dans un contexte bayésien où $\beta \sim N(\bar{\beta}, \bar{H}^{-1})$,

$$\beta|y,X\sim N(\bar{\bar{\beta}},\bar{\bar{H}}^{-1}),$$

où
$$\bar{\bar{H}} = \bar{H} + \sigma^{-2} X^\top X$$
, $\bar{\bar{\beta}} = \bar{H} \bar{\beta} + \sigma^{-2} X^\top X b$ et $b = (X^\top X)^{-1} X^\top y$.

Gradient de la log vraisemblance

- ► Soit $I(\theta; x) \equiv \sum_{i=1}^{n} \log f(x_i | \theta)$.
- Soit $\hat{\theta}$ l'estimateur MV, θ_0 la vraie valeur du paramètre.
- lacktriangle Expansion Taylor du gradient à $\hat{ heta}$ (où $\lim_{ heta o heta_0} h(heta) = 0_{K imes K}$)

$$\frac{\partial I(\hat{\theta};x)}{\partial \theta^{\top}} = \frac{\partial I(\theta_0;x)}{\partial \theta^{\top}} + \frac{\partial^2 I(\theta_0;x)}{\partial \theta \partial \theta^{\top}} (\hat{\theta} - \theta_0) + h(\hat{\theta})(\hat{\theta} - \theta_0).$$

► Alors si le gradient à gauche est nulle,

$$(\hat{\theta} - \theta_0) = -\left[\frac{\partial^2 I(\theta_0; x)}{\partial \theta \partial \theta^\top} + h(\hat{\theta})\right]^{-1} \frac{\partial I(\theta_0; x)}{\partial \theta^\top}$$

- ► Notes : on a besoin de
 - l'existence d'un maximum intérieur de la vraisemblance
 - l'existence des dérivées jusqu'au deuxième ordre
 - la non-singularité de la matrice hessienne

Continuous mapping theorem

▶ Si $g(\cdot)$ est continu, X, X_1, X_2, \ldots des vecteurs aléatoires,

$$X_n \to_p X \Rightarrow g(X_n) \to_p g(X),$$

 $X_n \to_{ps} X \Rightarrow g(X_n) \to_{ps} g(X),$
 $X_n \to_d X \Rightarrow g(X_n) \to_d g(X).$

Notes

- Le théorème de Slutsky est un cas spécial parce que $X_n \rightarrow_p c \Rightarrow X_n \rightarrow_d c$.
- Slutsky: si $X_n \rightarrow_d X$ et $Y_n \rightarrow_p c$, $X_n + Y_n \rightarrow_d X + c$, $X_n Y_n \rightarrow_d c X$, $X_n / Y_n \rightarrow_d X / c$ si c > 0.
- On peut relacher la continuité : g peut avoir un ensemble D de points de discontinuité avec $P(X \in D) = 0$.

Pour préparer une analyse asymptotique

Pour préparer une analyse asymptotique, on peut écrire

$$(\hat{\theta} - \theta_0) = \left[-\frac{1}{n} \frac{\partial^2 I(\theta_0; x)}{\partial \theta \partial \theta^\top} + \frac{1}{n} h_n(\hat{\theta}) \right]^{-1} \left[\frac{1}{n} \frac{\partial I(\theta_0; x)}{\partial \theta^\top} \right].$$

$$\sqrt{n}(\hat{\theta} - \theta_0) = \left[-\frac{1}{n} \frac{\partial^2 l(\theta_0; x)}{\partial \theta \partial \theta^{\top}} + \frac{1}{n} h_n(\hat{\theta}) \right]^{-1} \left[\sqrt{n} \frac{1}{n} \frac{\partial l(\theta_0; x)}{\partial \theta^{\top}} \right].$$

Théorème central limite, loi de grand nombres pour le gradient

$$\sqrt{n} \frac{1}{n} \frac{\partial I(\theta_0; X)}{\partial \theta^{\top}} = \sqrt{n} \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(X_i | \theta_0)}{\partial \theta^{\top}}$$

▶ Pour la vraie valeur θ_0 , les termes sont iid, avec

$$E_{\theta_0}\left[rac{\partial \log f(X_i| heta_0)}{\partial heta^{ op}}
ight] = 0, \qquad \mathrm{Var}_{\theta_0}\left[rac{\partial \log f(X_i| heta_0)}{\partial heta^{ op}}
ight] = I(heta_0).$$

Par une loi de grand nombres,

$$\frac{1}{n}\frac{\partial I(\theta_0;x)}{\partial \theta^{\top}} \to_{p} 0.$$

Par un théorème central limite,

$$\sqrt{n} \frac{1}{n} \frac{\partial I(\theta_0; x)}{\partial \theta^{\top}} \rightarrow_d N(0, I(\theta_0)).$$

Notes sur le gradient

On a besoin de

- l'existence des dérivées, échange d'ordre (intégral, dérivée),
- une variance fini,
- ► *X_i* indépendents, identiquement distribués.

Loi de grand nombres pour la matrice hessienne et son inverse

$$\frac{1}{n} \frac{\partial^2 I(\theta_0; X)}{\partial \theta \partial \theta^\top} = \frac{1}{n} \sum_{i=1}^n \frac{\partial^2 \log f(X_i | \theta_0)}{\partial \theta \partial \theta^\top} \rightarrow_p I(\theta_0)$$

► Par le théorème « continuous mapping, »

$$\left[\frac{1}{n}\frac{\partial^2 I(\theta_0;x)}{\partial \theta \partial \theta^{\top}}\right]^{-1} \to_{\rho} I(\theta_0)^{-1}.$$

Combinaison des résultats

ightharpoonup Convergence de $(\hat{\theta} - \theta)$ en probabilité :

$$(\hat{\theta} - \theta_0) \approx \left[-\frac{1}{n} \frac{\partial^2 l(\theta_0; x)}{\partial \theta \partial \theta^{\top}} \right]^{-1} \left[\frac{1}{n} \frac{\partial l(\theta_0; x)}{\partial \theta^{\top}} \right] \rightarrow_{\rho} 0.$$

Convergence de $\sqrt{n}(\hat{\theta} - \theta)$ en loi :

$$\sqrt{n}(\hat{\theta}-\theta_0) \approx \left[-\frac{1}{n}\frac{\partial^2 I(\theta_0;x)}{\partial \theta \partial \theta^{\top}}\right]^{-1} \left[\sqrt{n}\frac{1}{n}\frac{\partial I(\theta_0;x)}{\partial \theta^{\top}}\right] \to_d N(0,I(\theta_0)^{-1}).$$

Premarquez que $I(\theta_0)^{-1}$ est la borne inférieure Cramer-Rao. Sous les conditions de régularité, $\hat{\theta}_{MV}$ est un estimateur asymptotiquement efficace de θ_0 .

Distribution asymptotique de la statistique test LRT

lacktriangle Développement quadratique de $I(\theta|x)$ autour de θ_0 , évalué à $\hat{\theta}$:

$$I(\theta_0|x) = I(\hat{\theta}|x) + \frac{1}{2}(\hat{\theta} - \theta_0)^{\top} \frac{\partial^2 I(\tilde{\theta};x)}{\partial \theta \partial \theta^{\top}} (\hat{\theta} - \theta_0) + \dots$$

▶ Sous l'hypothèse nulle H_0 : $\theta = \theta_0$,

$$-2\log \lambda(x) = -2(I(\theta_0|x) - I(\hat{\theta}|x))$$
$$\to_d (\hat{\theta} - \theta_0)^{\top} \frac{\partial^2 I(\hat{\theta}; x)}{\partial \theta \partial \theta^{\top}} (\hat{\theta} - \theta_0) \to_d \chi_k^2.$$