Genomics Data:

Test multiplicity

Introduction to Hypothesis Testing

Why do hypothesis testing?

Hypothesis testing = making decisions with a **finite sample of noisy observations**

E.g. Do patients respond better to treatment A than treatment B?

- Finite sample : cost, ethics, time...
- Noisy observations : patient responses depend on factors outside of treatment

Motivating Example: Coin Tossing

I want to test whether a coin is fair i.e. 50% probability of both heads and tails

I flip the coin 100 times and observe a sequence of heads and tails :

HTTTHHTTHTHTT.....

And I count the number of heads and tails

Heads	Tails
60	40

Do we have enough information to make a conclusion?

The null distribution

- Even if the coin is fair, we expect random sampling differences
- To conclude if the coin is fair or not based on the observed data, we need to specify what we would expect to happen if the coin was fair
- This is called the null distribution, and tells us what the data should look like under the null hypothesis

Null hypothesis : prob(heads) = 0.5 Alternative hypothesis : prob(heads) != 0.5

How to compute a null distribution?

- Analytically: assume a theoretical parametric distribution of the data under the null
 - I.e. the "pen and paper" method
 - Practical, easy to recompute for a range of parameters
 - Requires modelling assumptions, not always simple to compute
- Monte-Carlo Simulation : simulate data under the null hypothesis
 - Intuitive, does not require modelling assumptions
 - Long to compute

Computing the null distribution analytically

- Random variable K = number of heads in n trials
- We assume a fair coin follows a binomial distribution with number of trials n and probability of heads p, i.e. $K \sim Bin(n, p)$

$$P(K = k \mid n, p) = \binom{n}{k} (p)^k (1-p)^{n-k}$$

• Derive the *cumulative distribution function* (probability that the counts were less than a given number)

$$P(K \le k \mid n, p) = \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$$

- Now, for any value of n and p, we can compute the probability that the observed data is **at least** as **extreme** as an observed value k, had the data truly been generated under the null
- In our case, under the null, n = 100, p = 0.5 and k = 60, so we have

$$P(K \ge 60 \mid n = 100, p = 0.5) = 1 - \sum_{i=0}^{60} {100 \choose i} 0.5^{i} (1 - 0.5)^{100 - i} = 0.0284$$

Computing the null distribution analytically

- Idea: repeatedly simulate realisations of data from the null
 - I.e. in R, rbinom(1, size = 100, prob = 0.5)
- Estimate the extremeness of the observed data by computing the proportion
 of simulated values greater than the observed one
- The more realisations we do, the closer we get to the analytical solution

Determining a rejection region

- If our observed value falls in the rejection region, we reject the null
- The rejection region is determined by the significance level of the test
 - I.e. how extreme should the observed data need to be for me to reject the null?

Two-sided test, significance level = 5%

One-sided test, significance level = 5%

5 steps to hypothesis testing

- 1. Test statistic
 - A summary of the data used to make the decision
 - E.g. proportion of heads
- 2. Null hypothesis and distribution
 - Analytically or with simulation
- 3. Rejection region
 - Region of the null distribution for which we consider the test significant
- Observe data
- 5. Decision
 - o Either reject the null, or do not reject the null
 - We cannot prove a null with hypothesis testing!

Types of error

	Null true	Null false
Reject null	False positive (T1 error)	True Positive
Do not reject null	True negative	False negative (T2 error)

There is a tradeoff between false positives and false negatives

- For example, I could make a medical test which gives negative for every patient.
- I would never identify any false positives! Type 1 error rate = 0
- However, I would never identify any true positives either, i.e. power = 0

Pitfalls with p-values: hacking, HARKing

P-hacking

- Torturing the data until a significant p-value is found
- E.g. in the coin example, we could consider different test statistics like number of consecutive heads, or we could take different subsets of the data
- Classical example in regression modelling : specifying multiple models

HARKing

- Hypothesising after the results are known
- Changing the null hypothesis after investigating the data

Multiple Testing Problem

Motivating Example: Russian Roulette

Imagine a gun with 20 chambers, where one is loaded with a bullet

I am going to randomly spin the chamber and pull the trigger

I would like to know the probability that I die if I repeat this process a certain number of times

Motivating Example: Russian Roulette

```
What is the probability I die given I play N times?  \mathcal{P}(\text{I die} \mid \text{I play } N \text{ times}) = 1 - \mathcal{P}(\text{I don't die} \mid \text{I play } N \text{ times})   = 1 - \underbrace{\mathcal{P}(\text{I don't die}) \times \mathcal{P}(\text{I don't die}) \times \mathcal{P}(\text{I don't die})}_{N \text{ times}}   = 1 - \mathcal{P}(\text{I don't die})^{N}   = 1 - (1 - \frac{1}{20})^{N}
```


Motivating Example: Russian Roulette

- $\mathcal{P}(I \text{ die } | I \text{ play } 1 \text{ time}) = 1 (1 \frac{1}{20}) = 5\%$
- $\mathcal{P}(\text{I die } | \text{ I play 5 times}) = 1 (1 \frac{1}{20})^5 = 23\%$
- $\mathcal{P}(I \text{ die } | I \text{ play } 20 \text{ times}) = 1 (1 \frac{1}{20})^{20} = 64\%$
- $\mathcal{P}(I \text{ die } | I \text{ play } 100 \text{ times}) = 1 (1 \frac{1}{20})^{100} = 99\%$

Hypothesis testing is scientific roulette!

- In traditional hypothesis testing, significance level is typically 5%
 - This means, given all my testing assumptions are met, I expect 5% of results under the null hypothesis to be called positive (i.e. false positives)
- more tests, more likely to have at least one false positive

Types of error: notation

Null hypothesis Test	True	False	Total
Non-rejected	U	Т	W
Rejected	V	S	R
Total	m0	m-m0	m

Family-Wise Error Rate

- What we just computed is called the Family-Wise Error Rate: the probability that at least one of my positive test results is false - P(V > 0)
- How could we control this quantity i.e. bound it by an upper limit?

Null hypothesis Test	True	False	Total
Non-rejected	U	Т	W
Rejected	V	S	R
Total	m0	m-m0	m

Bonferroni Correction

Idea: divide the significance level by the number of tests N

I.e. for m tests, reject hypothesis if p value < α/N

Example: Let the significance level
$$\alpha = 0.05$$
.

 $N = 1$ $\Rightarrow \alpha = 0.05$ $\Rightarrow \text{FWER} = 1 - (1 - 0.05)^1 = 0.05$
 $N = 10$ $\Rightarrow \alpha = \frac{0.05}{10} = 0.005$ $\Rightarrow \text{FWER} = 1 - (1 - 0.005)^{10} = 0.0489$
 $N = 100$ $\Rightarrow \alpha = \frac{0.05}{100} = 0.0005$ $\Rightarrow \text{FWER} = 1 - (1 - 0.0005)^{100} = 0.0488$

N = 10000 $\Rightarrow \alpha = \frac{0.05}{10000} = 0.000005$ $\Rightarrow \text{FWER} = 1 - (1 - 0.000005)^{10000} = 0.0488$

Bonferroni Correction

Bonferroni Correction

- Strictly controls the FWER
- However, very conservative when N is large
- For example, when N = 10,000, p-values must be smaller than 0.000005 to reject
- Also, every test has the same significance threshold, regardless of level of evidence
- Idea : control the FWER but use sequential threshold which becomes less strict as the p-values get larger

Holm Correction

Idea: relax the significance threshold as the p-values get larger

1. Sort the p-values in ascending order:

$$p_{(1)} \le p_{(2)} \le \dots \le p_{(N)}$$

2. For each i = 1, 2, ..., N, compare the ordered p-value $p_{(i)}$ to the threshold

$$\alpha_{(i)} = \frac{\alpha}{N - i + 1}.$$

- 3. Starting from the smallest p-value $p_{(1)}$:
 - If $p_{(1)} \leq \alpha_{(1)}$, reject $H_{(1)}$ and proceed to $p_{(2)}$.
 - Continue rejecting $H_{(i)}$ as long as $p_{(i)} \leq \alpha_{(i)}$.
 - Stop at the first i where $p_{(i)} > \alpha_{(i)}$; do not reject any remaining hypotheses.

Holm vs Bonferroni correction - 100 tests

Holm vs Bonferroni correction - 1,000 tests

Summary on controlling the FWER

- FWER = Probability of at least one false positive result
- This quickly goes to 1 as we increase the number of tests
- Bonferroni controls the FWER by dividing the significance level by the number of tests
- Holm is less conservative as it uses thresholds which increase with the rank of the p-value

Summary on controlling the FWER

- FWER = Probability of at least one false positive result
- This quickly goes to 1 as we increase the number of tests
- Bonferroni controls the FWER by dividing the significance level by the number of tests
- Holm is less conservative as it uses thresholds which increase with the rank of the p-value
- FWER methods are conservative as they control the probability to obtain at least one FP
- Perhaps we don't care about a few FPs as long as they do not dominate our significant results?

False Discovery Rate

False Discovery Rate

FDR = expected proportion of significant results which are false

- E(V/R)
- V/R is called the false discovery proportion (FDP)
- Conceptually this is similar to positive predictive value in epidemiology
- I.e. if I have a positive test, what is the probability that it is true?

	True	False	Total
Non-rejected	U	Т	W
Rejected	V	S	R
Total	m0	m-m0	m

An example of FDR

- Imagine a test which has 100% power at significance level 5%
- It identifies every true positive
- 5% of true negatives will be falsely called positive

Let's say I test 50 variables, 10 of which are true positives

- I identify 10 true positives and 40*0.05 = 2 false positives
- FDP = 2/(10+2) = 16.7%

An example of FDR

Now I test 1000 variables, still with 10 true positives

- I identify 10 true positives and 990 * 0.05 = 50 false positives
- Now FDP = 50/(50+10) = 83%
- My results are becoming a bit worthless...

When we have a lot of true negatives relative to true positives, false positives will dominate our results!

Benjamini-Hochberg

- BH is a method to control the FDR
- Similar to Holm, it uses sequential thresholds on the ranked p-values
 - 1. Sort the p-values in ascending order:

$$p_{(1)} \le p_{(2)} \le \dots \le p_{(N)}$$

2. For each i = 1, 2, ..., N, compute the threshold

$$\alpha_{(i)} = \frac{i}{N}\alpha$$

where α is the desired FDR level.

- 3. Starting from the smallest p-value $p_{(1)}$:
 - If $p_{(1)} \leq \alpha_{(1)}$, reject $H_{(1)}$ and proceed to $p_{(2)}$.
 - Continue rejecting $H_{(i)}$ as long as $p_{(i)} \leq \alpha_{(i)}$.
 - Stop at the first i where $p_{(i)} > \alpha_{(i)}$; reject all null hypotheses $H_{(1)}, \ldots, H_{(i-1)}$ and do not reject the remaining hypotheses.

Benjamini-Yekutieli

- Problem : B-H assumes independent tests
- B-Y fixes this by assuming some dependencies among tests
- This procedure is more conservative than B-H

BY

1. Sort the p-values in ascending order:

$$p_{(1)} \le p_{(2)} \le \dots \le p_{(N)}$$

2. For each i = 1, 2, ..., N, compute the BY threshold:

$$\alpha_{(i)} = \frac{i \,\alpha}{N \sum_{j=1}^{N} 1/j}$$

where α is the desired FDR level.

- 3. Starting from the smallest p-value $p_{(1)}$ (step-up procedure):
 - If $p_{(1)} \leq \alpha_{(1)}$, reject $H_{(1)}$ and proceed to $p_{(2)}$.
 - Continue rejecting $H_{(i)}$ as long as $p_{(i)} \leq \alpha_{(i)}$.
 - Stop at the first i where $p_{(i)} > \alpha_{(i)}$; reject all null hypotheses $H_{(1)}, \ldots, H_{(i-1)}$ and do not reject the remaining hypotheses.

Visualising Multiplicity Corrections

Summary

- When performing multiple statistical tests, corrections are necessary in order to have useful results
- As the number of tests increases, the family wise error rate (probability of at least one false positive) goes quickly to 1
 - o Bonferroni and Holm are methods to control this, they are very conservative
- As the proportion of true negatives in the data increases, the false discovery rate

explodes

- That is, the significant results will be dominated by false positives
- B-H and B-Y control the FDR

Practical Work

Complete all the tasks in PHDS_omics_multiplicity_2025_questions.Rmd