

(12) United States Patent

White et al.

(10) Patent No.:

US 6,628,302 B2

(45) Date of Patent:

*Sep. 30, 2003

(54) INTERACTIVE VIDEO PROGRAMMING METHODS

(75) Inventors: Chris M. White, San Francisco, CA
(US); Timo Bruck, Mountain View, CA
(US)

(73) Assignee: Microsoft Corporation, Redmond, WA (US)

(*) Notice: This patent issued on a continued prosecution application filed under 37 CFR 1.53(d), and is subject to the twenty year

154(a)(2).

Subject to any disclaimer, the term of this patent is extended or adjusted under 35

patent term provisions of 35 U.S.C.

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/201,699

(22) Filed: Nov. 30, 1998

(65) Prior Publication Data

US 2002/0085024 A1 Jul. 4, 2002

(51)	Int. Cl. ⁷	G06F 3/00 ; H04N 7/14
(52)	U.S. Cl.	345/717; 345/744; 725/46;

(56) References Cited

U.S. PATENT DOCUMENTS

4,305,131 A	12/1981	Best 345/716
4,766,581 A	8/1988	Korn et al 369/30.4
4,947,244 A	8/1990	Fenwick et al 725/82
5,319,455 A	6/1994	Hoarty et al 725/34
5,412,415 A	5/1995	Cook et al 725/144
5,461,415 A	10/1995	Wolf et al 725/88

5,517,257 5,526,035			Dunn et al
5,534,941			Lappington et al 725/136 Sie et al 348/564
5,544,354			May et al 707/4
5,550,578			Hoarty et al 725/120
5,554,980	Α	9/1996	Hashimoto et al 340/825.72

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

DE	198 11 910 A	9/1998
ĔΡ	0 720 368	7/1996
EP	0 721 283 A2	7/1996
EP	0 798 899 A	10/1997
EP	0 845 906 A	3/1998
EP	0 852 443 A2	7/1998
EP	0123456 A2	1/2000
wo	WO 92/10040	6/1992
wo	WO 95/15658	6/1995
wo	WO 96/17306	6/1996
wo	WO 96/17467	6/1996
wo	WO 98 43419 A	10/1998
wo	WO 98/44424	10/1998

OTHER PUBLICATIONS

Jones, Michael B., "The Microdoft Interactive TV System: An Experience Report", Jul. 1997, Technical Report MSR-TR-97-18, Microsoft Research, Microsoft Corp.

(List continued on next page.)

Primary Examiner—Crescelle N. dela Torre (74) Attorney, Agent, or Firm—Klarquist Sparkman LLP

(57) ABSTRACT

An entertainment head-end provides broadcast programming, video-on-demand services, and HTML-based interactive programming through a distribution network to client terminals in subscribers' homes. A number of different features are provided, including novel user interfaces, enhanced video-on-demand controls, a variety of interactive services (personalized news, jukebox, games, celebrity chat), and techniques that combine to provide user experiences evocative of conventional television.

12 Claims, 3 Drawing Sheets

06/07/2004, EAST Version: 1.4.1

US 6,628,302 B2

Page 2

U.S. PATENT DOCUMENTS 6,154,771 A 11/2000 Rangan et al. 709/217 5,555,244 A 9/1996 Gupta et al. 370/397 6,195,692 B1 5,557,316 A 9/1996 Hoarty et al. 725/114 6,233,736 B1 5/2001 Wolzien 725/110 5,589,945 A 12/1996 Abecassis 386/83 6,349,410 B1 * 2/2002 Lortz 725/110 5,600,368 A 2/1997 Matthews, III 348/143 OTHER PUBLICATIONS 5,619,249 A 4/1997 Billock et al. 725/5 5,648,824 A 7/1997 Dunn et al. 725/88 Ubik S., "Possibilities of Using Protocol Converters for NIR 5,654,748 A 8/1997 Matthews, III 725/14 System Construction", Computer Communications Review, 5,682,511 A 10/1997 Sposato et al. 345/716 U.S. Association for Computing Machinery, New York, vol. 5,687,331 A 11/1997 Volk et al. 345/840 27, No. 2, Apr. 1997, pp. 37-48. 5,721,829 A 2/1998 Dunn et al. 725/87 Namihira D. et al., "A Media Proxy Architecture for an 5,748,499 A 5/1998 Trueblood 702/187 5/1998 Girard et al. 345/721 5,751,282 A NFS-Based VOD Service on the Intranet", IEEE Pacific 5,758,258 A 5/1998 Shoff et al. 725/116 Rim Conference on Communications, Computers and Signal 5,758,259 A 5/1998 Lawler 725/45 Processing, U.S., New York, N.Y.: IEEE, vol. Conf. 6, 1997, 5,781,228 A 7/1998 Sposato 725/32 pp. 97-100 5,790,115 A 8/1998 Pleyer et al. 345/716 Gottfried W.R. Luderer et al., "Distributed Multimedia using 9/1998 Matthews, III 725/41 5,815,145 A CORBA", Global Telecommunications Conference (Globe-5,818,439 A 10/1998 Nagasaka et al. 725/87 com), U.S., New York, IEEE, 1996, pp. 68-72. 5.828,370 A 10/1998 Moeller et al. 345/720 Printout from Amazon.com, Mar. 13, 1999, 3 pages. 5,835,087 A 11/1998 Herz et al. 345/810 Bellovin S. et al., "Network Firewalls", IEEE Communica-5,850,218 A 12/1998 LaJoie et al. 725/45 5,857,190 A 1/1999 Brown 707/10 tions Magazine, vol. 32, No. 9, Sep. 1994, pp. 50-57. Matthews, III 725/32 5,874,985 A 2/1999 Dan A. et al., "Channel Allocation under Batching and VCR 5,886,690 A 3/1999 Pond et al. 345/720 Control in Video-On-Demand Systems", Journal of Parallel 5,959,621 A 9/1999 Nawaz et al. 345/733 and Distributed Computing, vol. 30, No. 2, Nov. 1, 1995, pp. 5,959,697 A 9/1999 Coleman, Jr. 348/700 5,971,849 A 10/1999 Falciglia 463/16 De Jong A. et al., "A VoD Application Implemented in 6,020,912 A 2/2000 De Lang 725/91 Java", Multimedia Tools and Applications, vol. 5, 1997, pp. 6,025,837 A 2/2000 Matthews, III et al. 345/721 6,075,526 A 6/2000 Rothmuller 345/721 161-170. 6,097,441 A 8/2000 Allport 348/552 Kerr G., "A Review of Fully Interactive Video on Demand", 6,104,390 A 8/2000 Sturgeon et al. 345/718 Signal Processing Image Communication, vol. 8, No. 3, Apr. 6,118,450 A 9/2000 Proehl et al. 345/810 1996, pp. 173-190. 6,137,539 A 10/2000 Lownes et al. 348/569 6,141,003 A 10/2000 Chor et al. 345/719 * cited by examiner

Sep. 30, 2003

INTERACTIVE VIDEO PROGRAMMING **METHODS**

RELATED APPLICATION DATA

The subject matter of this application is generally related to that disclosed in the following applications filed contemporaneously herewith:

Proxy for Video on Demand Server Control, application Ser. No. 09/201,484, filed Nov. 30, 1998 (Bruck et al);

Method and System for Presenting Television Programming and Interactive Entertainment, application Ser. No. 09/201,696, filed Nov. 30, 1998 (White et al); now U.S. Pat. No. 6,392,664, issued May 21, 2002, and

Video on Demand Methods and Systems, application Ser. 15 No. 09/201,495, filed Nov. 30, 1998 (White et al).

The subject matter of this application is also generally related to the subject matter of application Ser. No. 09/153, 577, filed Sep. 15, 1998.

The disclosures of these related applications are incorpo- 20 rated by reference.

BACKGROUND AND SUMMARY OF THE INVENTION

The World Wide Web has made available a great deal of "content" to computer users having an internet connection. However, such content is not otherwise available, e.g. to cable television subscribers. Moreover, the content available on the Web is relatively impoverished in production and presentation, as compared with sophisticated television productions familiar to the public.

The present invention seeks to redress various of these failings of the prior art. For example, in one aspect, the invention provides a video entertainment system in which 35 conventional television programming and novel interactive entertainment are presented in an integrated fashion, with the user being able to seamlessly switch from one to the other without a disruptive change in context or in production sophistication. Illustrative interactive entertainment includes 40 channels providing customized news, celebrity chat, games, and jukebox services.

The foregoing and other features and advantages of the present invention will be more readily apparent from the following detailed description, which proceeds with refer- 45 ence to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an interactive video system that can be used in accordance with the present invention. 50

FIG. 2 is a block diagram of the entertainment head-end of FIG. 1.

FIG. 3 is a block diagram of a client terminal of FIG. 1.

FIG. 4 is an illustration of a video-on-demand selection

FIG. 5 is an illustration of a user interface permitting a user to control playback of an on-demand video.

FIG. 6 is an illustration of a screen display on a NEWS viewer channel.

FIG. 7 is an illustration of a screen display on a CELEB-RITY CHAT viewer channel.

DETAILED DESCRIPTION

Referring to FIG. 1, an exemplary interactive video 65 system 10 includes a entertainment head-end 12 and one or more client terminals 14 intercoupled through a network 16.

The network 16 typically comprises coaxial cable or optical fiber 18, extending from the head-end 12 to distribution nodes 20 within various neighborhoods. From the distribution nodes, further cables 22 couple to individual subscriber premises.

As detailed in the companion application entitled Proxy for Video on Demand Server Control, filed herewith, the network can include one or more proxy servers 24. These are computers interposed between the head-end 12 and the client terminals 14 to perform various system control and user interface (UI) functions.

The proxy server 24 is interposed in a logical TCP/IP control channel 27 between the head-end and clients. While the control signals and the entertainment are physically conveyed on the same cable 18, they are shown separately in FIG. 1 for conceptual clarity.

As shown in FIG. 2, the entertainment head-end 12 includes the components typically associated with a cable television head-end installation, e.g. satellite receivers 26 for receiving satellite broadcasts and producing corresponding baseband analog video signals. Additionally, head-end 12 includes fast digital disk arrays and/or optical storage 28 for storage of MPEG-encoded digital video for on-demand delivery. Head-end 12 also includes one or more interactiveservices servers 30, which output HTML-based programming (e.g. customized news, celebrity chat, interactive jukebox, and interactive games), as further detailed below. In systems not employing proxy servers 24, the head-end additionally includes a control computer 32 that receives and transmits control data relating to system administration (e.g. channel assignment data, billing information, etc.).

The transmission of these various forms of data from the head-end over the network 16 is straightforward. As is familiar to those skilled in the video arts, the analog video is commonly distributed on 6 MHz channels, beginning at 52 MHz and extending upwardly. The digital video can be encoded on a carrier for transmission within one of these conventional broadcast channels, or can be modulated at one> or more other un-used frequencies. Statistical multiplexing is desirably employed to transmit plural channels of digitized video with reduced bandwidth. The HTML-based interactive services and the control data can be transmitted using a conventional protocol (e.g. TCP/IP) and modulated onto a suitable carrier frequency for distribution over the network. Or such data can be transmitted in the vertical blanking interval of analog video broadcasts, as is well known.

After modulation to appropriate distribution frequencies by modulators 34, the various signals from the head-end are combined by an RF combiner 36 for distribution over the network 16.

Each client terminal 14 is an enhanced WebTV terminal that includes a CPU 38, RAM memory 40, non-volatile terminal 55 memory 42, a display screen 44, display driver circuitry 46, a speaker 48 with an associated audio stage 50, a remote control 52, an infrared interface 54, a user interface (UI) 56, a dial-up interface 58, a cable interface 60, and an MPEG decoder 62 (FIG. 3). (The artisan is presumed familiar with WebTV terminals from their many descriptions in the patent and technical literature, and their widespread availability/

The CPU 38 can be any of several microprocessors, e.g. those available from Intel, AMD, Cyrix, Motorola, etc. Alternatively, the CPU can be a custom device that optionally integrates one or more of the other components of terminal 14.

serders er UI

has non-volitile memory

server

4

The RAM memory 40 typically comprises 8 or 16 K of EDO memory, but more or less memory, and/or memory of differing type, can alternatively be used.

The non-volatile memory 42 in the illustrated embodiment includes a ROM, EEPROM, or flash memory in which 5 certain components of the operating system and applications, software are stored. Additionally, the illustrated non-volatile memory 42 includes 4 GB of magnetic disk storage.

Display screen 44 is a CRT of the type conventionally used in consumer televisions, and display driver circuitry 46 serves to provide the excitation signals needed by the CRT, in accordance with input video data provided thereto.

Speaker 48 and audio stage 50 are the audio counterparts to the video display screen and driver circuitry. Desirably, these stages comprise high fidelity speakers and a suitable amplifier, together with audio-synthesis circuitry corresponding to the digital data format by which audio data is transmitted. (For the JUKEBOX service, detailed below, the audio may be transmitted in the MPC3 format, in which case the MPEG decoder 62 may be employed for decoding.)

Remote control 52, and corresponding IR interface 54, are generally conventional, and serve to relay user commands to the terminal in accordance with user manipulation of buttons on the remote control 52.

The dial-up interface 58 in the illustrated embodiment is a modem, coupled to a telephone line. Various different modems and communication links can be used.

The cable interface 60 receives composite data signals from the network 16 and separates them into three general signal types: analog video (typically corresponding to broadcast television programming), digital video (typically corresponding to on-demand video programming), and HTML/control instructions (the former typically corresponding to other interactive services, the latter being instructions exchanged between the client terminal 14 and the head-end 12, a proxy server 24, or a neighborhood node 20). Included in the cable interface 60 is an RF tuner section controlled by the CPU. The illustrated MPEG decoder 62 is an application-specific integrated circuit that converts the MPEG video stream into successive frames of video data.

The user interface 56 in the illustrated embodiment refers to various on-screen visual displays through which—in conjunction with the remote control 52—the user can effect various choices. One of these is switching viewing channels. (As detailed below, switching viewing channels does not necessarily effect a corresponding retuning of the RF tuner portion of the cable interface 60.) Although illustrated separately for clarity, those skilled in the art will understand that the user interface 56 is typically realized as instructions stored in RAM memory 40

The operation of the system is first described with reference to the video-on-demand service. To view an on-demand video, the user first tunes the client terminal 14 to a predetermined channel, the "VIDEO channel."

Here a distinction should be drawn between two types of 55 "channels." The first, termed a "transmission channel," refers to an actual frequency channel (e.g. 52-58 MHz) that is used to relay programming from the head-end 12 to the client terminal 14 over the network 16. The second, termed a "viewer channel," refers to the moniker (e.g. MSNBC, 60 CNN, GAME, CHAT, VIDEO, FAVORITES) by which a user distinguishes different programming. The mapping between viewer and transmission channels is determined by the system (e.g. by the terminal 14, the head-end 12, or a proxy server 24).

The VIDEO channel is a viewer channel—it is the channel to which the viewer switches to receive video on demand

programming. The frequency over which this programming is delivered is not important to the viewer. Different transmission channels may be available for use at different times, depending system resource usage (e.g. other viewers' video-on-demand usage). One day the 108–114 MHz transmission channel might be used to relay on-demand video to a subscriber. The next day, the 114–120 MHz transmission channel might be used instead. Data indicating the assignment of transmission channels-to-viewer channels is periodically relayed as control data among the components of the system 10.

On the VIDEO channel, the user is presented an introductory UI screen 64 of the sort shown in FIG. 4. This screen includes four components: a topical listing of movie categories 66; a feature 68 permitting the user to search a database of available videos by title, actor, director, keywords, etc; a promotion 70 of one of more featured video titles; and other advertising 72. This screen is defined by HTML primitives sent over the network 16, as rendered by the client terminal 14. In the illustrated embodiment, the HTML primitives associated with the video selection screen 64 are sent from the proxy server 24.

The viewer manipulates arrow keys on the remote control 52 to highlight the feature of interest, e.g. a particular topical category. (Highlighting here refers to a visual indicia showing that a particular screen feature, or hyperlink, has been selected for execution. Various forms of highlighting can be used, e.g. a change in color of the feature, a colored box surrounding the feature, etc.) After a desired feature has been selected, a "Go" button on the remote control is pressed, signaling the user's selection to the terminal 14.

If the "KIDS" category was highlighted, the system next presents a screen listing available children's movies (again defined by HTML from the proxy server). Again, the viewer manipulates the remote control to select a particular choice, and then presses "Go." At this point, an optional screen can be presented confirming billing arrangements (if any).

Once a final video selection has been made, a video control panel UI 74 (FIG. 5) is presented on the screen. In the illustrated embodiment, this panel is translucent, permitting the viewer to perceive imagery "behind" the overlaid panel. (That is, the panel is rendered as a change in luminance of the underlying imagery.) The exemplary video control panel 74 of FIG. 5 includes PLAY, STOP, REWIND, FAST FORWARD, and PAUSE buttons 76A-E. (Additionally, the panel can have a textual or graphical indication 78 of the time remaining in the selected video.) The PLAY button is initially highlighted.

While the control panel is being rendered at the client (from HTML primitives stored in the non-volatile memory 42), the head-end queues the selected MPEG video for playback, and the system (either the head-end 12 or a proxy server 24) selects an available transmission channel. Data indicating the selected channel is relayed to the client terminal 14, which tunes the RF tuner in the cable interface 60 without any user action. The viewer channel, in contrast, remains unchanged at the VIDEO channel.

To play the selected video, the user simply presses the "Go" button on the remote control 52, activating the initially-highlighted PLAY button 76A on the control panel 74. A corresponding instruction is sent to the head-end 12, and video delivery commences. The on-screen video control panel 74 disappears.

If, during playback, the user wishes to stop or pause delivery of the on-demand video (e.g. to answer the telephone, or get a snack from the kitchen), a "Menu" button user .
selection
by dbse
search

UI-forter

on the remote control is pressed. The video control panel 74 reappears, this time with the STOP button highlighted. If the user wishes to stop playback, the "Go" button on the remote is pressed. If the user wishes to pause playback, the highlighting on the control panel is moved to the PAUSE button using arrow keys on the remote control, and the "Go" button is then pressed. A corresponding stop or pause instruction is then sent to the head-end 12 from the client terminal 14, interrupting MPEG delivery.

A data record is stored—either at the client, at the ¹⁰ head-end, or at a proxy server—indicating the point of video interruption (e.g. by SMPTE code, disk address, time offset, etc.) so that playback can be resumed from that point (or shortly before that point, to provide context).

When either the STOP or PAUSE button is activated on the panel 74, the panel 74 persists on the screen, but the highlighting is switched back to PLAY. (If the PAUSE button is used to resume playback following a pause instruction, and the user activates the PAUSE button to interrupt the video, the highlighting can remain at the PAUSE button.) This arrangement permits the viewer to resume playback simply by pressing "Go" on the remote, since the button that resumes playback is already highlighted. (The panel similarly persists on-screen if the REWIND or FAST FORWARD buttons is activated, with PLAY next highlighted.)

The screen can be put to various uses while the video is interrupted. Examples include presentation of quizzes and other entertainment to viewers who may still be in the viewing room. An indication of waiting email, or commercial or promotional messages, can similarly be presented.

If the stop in playback is brief, the system 10 maintains the assignment of the transmission channel to that video on demand client 14, despite the interruption in video delivery. However, if the interruption period exceeds a threshold value (e.g. ten minutes), the system returns the assigned transmission channel back to the system's pool of available transmission channels. The channel may then be assigned to another use. If the user thereafter resumes playback by pressing "Go" on the remote (PLAY was already highlighted), the system responds by dynamically assigning a new transmission channel, retuning the client's RF tuner and the head-end's modulator accordingly, and resuming playback from (or just before) the point of interruption.

A similar sequence occurs if the user changes to another viewer channel during playback of an on-demand video (e.g. changing to MSNBC to check a sports score). The system interrupts delivery of the on-demand video (e.g. in response to an instruction or notification sent by the client), and a record indicating the point of MPEG interruption is stored. If the user returns to the VIDEO viewer channel within a predetermined period (e.g. 24 hours), the system resumes transmission of the video from the point of interruption. (No user action, e.g. pressing PLAY, is required—no video control panel is presented in this scenario.) Again, the resumed transmission may occur over a different transmission channel, but this detail is transparent to the user.

The illustrated system includes an electronic program guide that can be selectively displayed on-screen to facilitate 60 viewer program selection. Electronic program guides are familiar to those skilled in the art, so are not belabored here. Exemplary program guides are shown, e.g., in U.S. Pat. Nos. 5,815,145, 5,758,258, 5,585,838, 5,654,748, 5,526,036, 5,907,323 and 5,874,985 (the disclosures of which are 65 incorporated by reference). Desirably, when an on-demand video is selected, the title of the video appears in the

electronic program guide, in association with the VIDEO viewer channel. Additionally, an indication of the time-remaining in the selected video can also be displayed, e.g. as a numeric hour:minute representation, or as a block that extends in a gridded program guide for a distance corresponding to the remaining time. (Data specifying the selected video title and the remaining time is stored in one or more of the components of system 10 and can be inserted into the program guide as appropriate.)

This listing of an on-demand video amidst broadcast television programming in an electronic program guide contributes to user perception of on-demand video as just another channel. It is desirable to present all video services in this television-like paradigm so as to present a seamless, familiar experience to new users.

Providing a television-like interaction for on-demand video is one thing; extending that experience to HTML-based video services is another. In the following discussion, several different HTML-based services are described. Various techniques are employed in such services to contribute to a television-like experience.

One technique is to make the screen look like a television screen. Computer displays typically have an image area bounded by straight edges. Since the edge of the CRT tube is typically not straight but is slightly curved, there is commonly a thin black margin at some or all of the edges of computer monitors. The display does not extend into this marginal area lest it render another part of the image off-screen. Television displays, in contrast, are not so concerned with rendering accuracy. Instead, the emphasis is on providing the largest apparent image size. Accordingly, the screen is typically overscanned—with at least certain scan line ends extending beyond the visible portion of the screen. Accordingly, one technique to yield a more television-like experience when displaying HTML-rendered graphics is to deliberately overscan the screen.

A related technique is to avoid displays that are larger than the viewing screen. Many "pages" on the world wide web require "scrolling" to view portions extending off the bottom of the screen. While this is a familiar operation for websurfers, it is wholly foreign to television viewers and is desirably avoided.

Another technique for enhancing the television-like appearance of HTML graphics is to employ production techniques and values evocative of television programming. For example, fades, dissolves, and wipes are video transition effects that viewers routinely encounter in television programming. However, they are used rarely—if at all—in HTML productions. Their use in the interactive services detailed below contributes to a television-like experience.

Yet another integrating technique is to list the interactives services (e.g. GAMES, CELEBRITY CHAT, JUKEBOX, NEWS) in the system's electronic program guide simply as additional channels, amidst the other channels familiar to viewers (e.g. network broadcast channels and cable channels).

By techniques such as these, viewers encounter interactive video entertainment and conventional television programming in a seamless, familiar context. This is important because, as will be evident from the following discussion, interactive video entertainment itself can be quite different from conventional TV.

Interactive entertainment encompasses a wide range of content. Some forms have antecedents in other contexts or media. Other forms are wholly new. A few examples will serve to illustrate the wide range of possibilities.

n-demond HTML

interactive

channels

deministration (

e-Program

selection selection video reviews, her selection has purchase.

A first exemplary interactive video service is a jukebox. When a user first switches to the JUKEBOX viewer channel, a user interface akin to the video selection UL-74 is presented on-screen. However, instead of permitting selection of movies, it permits selection of music (e.g. by genre, artist₂, 5 title, etc.). Selected music can then be played through the terminal's audio speakers 48 using similar procedures and playback UI as detailed earlier for playback of on-demand video. As before, if the user switches away from the JUKE-BOX viewer channel, playback of the selected audio is interrupted and a pointer is stored indicating the point at which the selection should be resumed.

During playback, rather than let the display screen 44 sit idle, it is desirably used in conjunction with the selected music. It may, for example, present a music video to accompany the selected audio recording. Or it may present information related to the selection, e.g. artist biography, critic reviews, listings of other recordings of the same selection by different artists, the artist's upcoming concern schedule, etc. It may also allow the user to purchase the music, whether on CD or otherwise. (All such options can be hot-linked to other screens of HTML data, as is conventional on the world wide web.)

Desirably, the system monitors the user's musical selections, and automatically compiles a profile of the user's preferences (e.g. by genre, artist, etc.). Alternatively, the user can explicitly define his or her preferences. (As with other data stored in distributed system 10, the user's jukebox preferences can be stored in the client terminal, at a proxy server, or at the head-end, or distributed therebetween.) When the user thereafter returns to the JUKEBOX viewer-channel, a selection menu configured to focus on these preferences can be presented. (The focused selection menu also includes the option of returning to the general, allencompassing music selection screen.)

A second exemplary interactive service is NEWS. This viewer channel delivers personalized news information in a television-like format. The channel is organized like CNN Headline News, with a small number of news categories that are continuously cycled-through several times an hour. Categories can include, e.g., headlines, sports, weather, traffic, and financial. The presentations in each category can be static (e.g. text articles), but more typically include streaming video excerpts.

An exemplary presentation of NEWS is shown in FIG. 6. 45 In addition to showing part of the current Headline category, the screen 80 gives the user the option of switching immediately to any other category (sports, weather, or stocks in the illustrated screen). Again, such selection is made by the user with arrow keys on the remote control, by moving 50 highlighting to the desired choice and pressing the "Go" button.

As with the JUKEBOX channel, the NEWS channel allows the viewer to define and store personal news preferences (e.g. a selected ticker of stock prices, Chicago Cubs news, weather for Chicago, etc.). If local client disk storage permits, all news is downloaded and stored, in a FIFO basis, in disk storage allocated thereto. This locally-stored news is then filtered in accordance with the viewer's preferences for display. This arrangement allows the user to change preferences and apply the new preferences to recently downloaded news.

As in the earlier-described embodiments, state data indicating the status of the NEWS channel can be stored whenever the user switches to another viewer channel, so that the NEWS channel can resume at the point of interruption. A third illustrated interactive channel is CELEBRITY CHAT. This viewer channel presents different celebrities with which participants can chat in a moderated dialog. The celebrities are scheduled at specific times, much like conventional TV talks shows.

In the illustrated arrangement, viewers compose typed questions on a keyboard optionally provided with the client terminal, and send them e-mail fashion to a moderator of the CELEBRITY CHAT channel. The moderator (human or automated) selects questions of widespread appeal and poses them to the celebrity. The posed questions, and the celebrity's responses, are distributed to all viewers of the CELEBRITY CHAT channel over the cable network. (By this arrangement, the dial-up telephone link is activated only briefly—when the user-composed question is emailed to the moderator—saving dial-up charges.)

A user interface 82 associated with the CELEBRITY CHAT channel is shown in FIG. 7. In this embodiment, the chat is presented in typed form. (In other embodiments, of course, streaming audio/video can be employed to present the moderator and the celebrity in their dialog. This can be supplemented by other textual or multi-media presentations related to the celebrity, e.g. music video, movie clips, biographical data, etc.) At the bottom of the screen is an Ask Question feature 84 that can be activated (as before, with arrow keys and the "Go" button on the remote control) to permit entry of the e-mail question in a box 86. After typing the question, the user hits Return on the keyboard. This terminates entry of the question, and activates the dial-up connection through which the question is transmitted to the moderator. After the question has been transmitted, the dial-up link is automatically terminated. If the viewer's question is selected by the moderator, it will eventually appear in the typed transcript of the interview-together with the celebrity's response.

Due to the involvement of other viewers in the CELEB-RITY CHAT channel, it is difficult to suspend the state of the channel if the viewer switches to another channel and later returns. In the illustrated embodiment, a viewer returning to the CELEBRITY CHAT channel sees only the last screenful of question-and-answer dialog.

A fourth interactive channel is GAMES. A viewer tuning to this channel is presented with a menu of game options—typically topically arranged. Some games are single player. Other games involve a community of players who are participating in the game. The latter are typically scheduled at prearranged times like television programs (e.g. Dungeons and Dragons, 9:00 p.m. every evening).

Contests and tournaments can be conducted on the GAMES channel, with sponsors awarding prizes (e.g. a free month of WebTV) to high-scorers—either of a single session or over a given period (e.g. a month).

Some games may require execution of software applets on the client terminals, rather than just the rendering of HTML primitives. Such software can be downloaded to the terminal as necessary, or just in advance of scheduled multi-player games. Since some games require relatively large blocks of instructions or data on relatively short notice (depending on the turn of events in the game), same is desirably downloaded in anticipation of likely use, rather than when needed.

If the selected game is of the single-player variety, then state data memorializing the status of the game can be stored if the viewer turns to another channel. When the viewer thereafter returns to the GAMES channel, the game can be resumed at the point of interruption. (Again, due to the involvement of other participants in multi-player games, it is

celebrity

games

modifiable

generally impractical to try and permit the viewer to resume an interrupted multi-player game at the point of interruption.)

A further feature of the illustrated client terminal is to automatically record favorite broadcast television programs? 5 The client monitors the user's viewing habits to determine favorite shows (e.g. StarTrek Voyager, Wednesdays, 6:00 p.m., viewer channel FOX). Thereafter, if the terminal is not activated by the user to watch one of these favorites, the terminal notices the event and automatically copies the program onto disk, to the extent storage space permits. 10 (MPEG compression—either software-based, or employing a dedicated MPEG compressor ASIC—is typically employed.) This stored program is then listed by title and length in the electronic program guide, as available for viewing on the FAVORITES channel. If the viewer switches to this channel, the recorded program is played back automatically. The playback UI of FIG. 5 is selectively presented (e.g. by pressing the Menu button on the remote control) to allow the viewer to control playback. If several favorite programs have been stored, the viewer is first presented with a menu screen on the FAVORITES channel by which the 20 desired program can be selected.

Recorded programs are not deleted after viewing. However, their storage space may be overwritten by other recordings. Recorded programs that have not been viewed are overwritten as needed, oldest first. Viewed programs are 25 overwritten before non-viewed programs. (Programming implementing a variety of more complex rules and policies is typically provided to govern which recorded programs are deleted to provide storage for new programs.)

Video storage at the client terminal also permits a viewer 30 to take a break from broadcast programming without missing anything (as would otherwise occur). When a viewer wants to take a break, a Delay Program button is selected from an Options menu that is controllably presented on the screen in response to a button on the remote control. When the Delay Program button is activated, the then-tuned program is routed to the MPEG compressor and copied to disk. When the viewer thereafter returns, the viewer activates a Resume Program button on the Options menu. Copying of the incoming broadcast continues, but simultaneous playback of the earlier recorded portion commences and is 40 displayed on the screen. The disk thus acts as a circular

Yet another feature of the illustrated embodiment is an arrangement by which the system can suggest programming. that may be enjoyed by different users. The system compiles 45 profiles of each user's viewing habits (e.g. Viewer A's favorite shows appear to be (a) 60 Minutes, (b) StarTrek Voyager, and (c) Drama and Greg; the profile includes Pless-frequently viewed programs as well). Each such profile is correlated with other viewers' profiles to find affinity groupings of users with similar profiles. Viewing suggestions can then be made based on the system's determination of other programming that is popular among other members of the group. For example, from an analysis of the profiles of viewers most closely correlated with Viewer A, the system may note that a significant number also watches Third Rock From the Sun. System records may show that Viewer A has never watched this program and the system may thus propose (either in response to a viewer's query or autonomously) that Viewer A may enjoy Third Rock From

Desirably, the profiles are based on more than a single favorite program for each viewer. Although a single favorite program could serve as the basis for affinity grouping, this is generally too clumsy a metric (e.g. many viewers of Seinfeld have otherwise divergent viewing preferences).

The profiles need not be based on favorite programming alone. Many other factors can be considered in forming affinity groupings, e.g. time-of-day viewing habits, zip code, game/chat/interactive news/jukebox preferences/habits, etc.

From the foregoing it will be recognized that the illustrated system redresses many shortcomings of the prior art, and provides a great number of features not previously available.

Having described and illustrated the principles of our invention with reference to a preferred embodiment and various alternatives, it should be apparent that the invention is not limited to the detailed arrangements.

For example, while the disclosure particularly considered use of visual user-interfaces, many of the principles detailed above can be applied equally-well to user interfaces employing other techniques, e.g. gesture-interfaces, audio interfaces, tactile interfaces, etc.

Similarly, while the detailed embodiment employed certain UI conventions (e.g. the video control panel disappears after PLAY is activated), other embodiments can employ other UI conventions (e.g. the control panel persists, or is minimized, or becomes more transparent, etc.)

Several references were made to HTML. This term is meant to include not just Hypertext Markup Language per se, but also to encompass other graphical and/or video representation systems by which primitives can be combined to yield desired static or moving displays.

The illustrated embodiment employed a wired link to the interactive network, but other distribution arrangements (e.g. direct satellite broadcast, with telephone return channel) can likewise by used. Similarly, the dial-up link is not exclusive; other arrangements (e.g. MetroCOM, etc.) can be used, depending on the needs of the particular application.

Moreover, even a "wired" link to the interactive network needn't be of the sort particularly illustrated. With enhanced compression techniques and delivery technologies, other arrangements-including plain old telephone service-can alternatively be employed.

To provide a comprehensive disclosure without unduly lengthening this specification, applicants incorporate by reference the disclosure of U.S. Pat. No. 5,648,824, which discloses additional details related to video-on-demand systems and related user interfaces.

While the foregoing discussion has detailed a complete system, it employs many inventive concepts—each of which is believed patentable apart from the system as a whole.

In view of the many different embodiments to which the above-described inventive concepts may be applied, it should be recognized that the detailed embodiments are illustrative only and should not be taken as limiting the scope of our invention. Rather, we claim as our invention all such modifications as come within the scope and spirit of the following claims, and equivalents thereto.

We claim:

1. A method of presenting video entertainment compris-

receiving a composite signal comprising plural channels modulated onto separate carrier frequencies;

on certain of said channels receiving television programs; on at least one of said channels, receiving HTML-based content including video news excerpts and textual news excerpts customized in response to transmitted control instructions;

storing the HTML-based content in a local storage device; automatically cycling through and presenting on-screen a selected subset of the HTML-based content stored in the local storage device;

receiving an indication at an on-screen selected icon, the indication representing a news selection;

11

in response to the indication, altering the selected subset of HTML-based content taken from the local storage device and presented on-screen; and

interrupting said customized news excerpts in response to a user switching to a channel receiving television 5 programs, and continuing the customized news excerpts where interrupted upon a timely return to the channel presenting customized news excerpts;

wherein the received television programs, the received HTML-based customized news excerpts and the transmitted control instructions are conveyed on a same bi-directional conveyance.

2. The method of claim 1 which includes receiving a user indication representing a news category to be viewed immediately, and interrupting said cycling to immediately present news items in said identified category.

3. The method of claim 1 in which in response to the indication, a control signal is returned to an interactive server and additional HTML-based content is received, stored in the local storage device, and presented on-screen.

4. The method of claim 1, including listing the channel presenting HTML-based content in an electronic program guide of available programming.

5. A method of presenting video entertainment compris-

receiving a composite signal comprising plural viewing 25 channels modulated onto separate carrier frequencies;

on certain of said channels, presenting television programs;

on at least one of said channels, presenting a subset of hyper-text language based video news received on the composite signal and stored in a local storage device, said presented subset of news personalized in accordance with stored user news preferences;

altering the subset of news presented from the local storage device, in response to receiving a content selection indication from a user interface; and

interrupting said personalized news presentation in response to channel switching, and continuing the personalized news presentation where interrupted upon a timely return to the viewing channel presenting the personalized news presentation;

wherein the news received on the composite signal is based on a user preference control instruction transmitted on a same cable as the composite signal is received.

6. The method of claim 5, including listing the plural viewing channels in an electronic program guide.

7. The method of claim 5, further comprising: using a remote control viewing channel switching device, browsing through the electronic program guide; and switching to the viewing channel presenting the news presentation.

8. The method of claim 7, including using the remote control viewing channel switching device to switch categories of news while remaining on the viewing channel presenting the personalized news presentation.

9. A method for presenting video entertainment, the method comprising:

receiving a cable signal comprising plural channels of programming content modulated onto carrier frequencies:

allowing a user to select amongst the plural channels of programming content comprising analog video based programming content and at least one hyper-text based video programming content; and 12

displaying a selected customized channel of programming content wherein a full set of the hyper-text based video programming content is downloaded to a local video storage device and a subset of the locally stored content is automatically selected and displayed in a cycle customized according to the users preferences; and

interrupting said customized channel in response to the user switching channels, and continuing the display of the customized cycle at the point of interruption upon a return to the customized channel.

10. A head-end sending the cable signal received in claim

11. A method of presenting video entertainment, the method comprising:

receiving a signal comprising plural viewing channels of programming content modulated onto separate carrier frequencies;

on at least certain of said viewing channels, presenting television programs;

on at least one of said viewing channels, receiving news content and storing in a local memory and presenting a portion of the stored news personalized in accordance with stored user news preferences;

receiving input from a remote control device selecting a customized news icon presented in an on-screen graphical user interface;

sending an indication that the icon was selected; and

receiving on the viewing channel personalized in accordance with stored news preferences, content further customized in response to the sent indication wherein the indication is sent on and the signal is received on, a same transfer medium; and

interrupting said channel presenting personalized news in response to receiving a channel switch indication, and continuing the personalized news presentation from the point of interruption upon receiving a timely indication of a channel switch indication for the channel presenting the personalized news.

12. A method of presenting video entertainment compris-

presenting customized dynamic news received on one of plural viewing channels modulated onto separate transmission channels on a network, wherein said plural viewing channels include broadcast television programming;

receiving an input indication from a remote control used in conjunction with an on-screen graphical user interface, the input indication comprising a request to alter the content of the viewing channel presenting customized dynamic news;

sending an output indication on the network;

receiving a set of video news segments on the viewing channel presenting customized dynamic news and storing the set in a local storage device, and presenting from the local storage device, news content altered in response to the output indication wherein the output indication is sent on, and the plural viewing channels are received on, the same network; and

interrupting said viewing channel presenting customized dynamic news in response receiving a channel switch indication, and continuing the customized dynamic news presentation from the point of interruption in response to receiving a channel switch indication for the channel presenting customized dynamic news.

* * * * *