Klausur am 43.2011

a.) Gesucht: Verbund nohrsch ein Lichkett P(x,y) Die Wahrschetzlichkett, dass x=x; und gleich zeitig y= y. z.B. P(x= "rod", y= "grun") hier: x und y statistisch unabhängte => per Definition P(x,y)= P(x). P(y) => P(x=x;, y=y;)= P(x=x;) · P(y=y;)

d.h.
$$(P(x=uvot^n, y=ug^nu^n)=P(x=uvot^n)\cdot P(y=ug^nu^n))$$

=> $[P(x;iy;i)]$
 (v_i,v_j)
 $(v_i$

b.) bedingte Wohrscheinlichhert
$$P(y|X) = P(y=y; |X=X;)$$

Wkt., closs Y= Ys, wenn bekannt ist; doss x=x;.

Es gilt immer:

$$P(x,y) = P(y|x) \cdot P(x)$$

	1/x,	R	G	· R	\$
	R	0,05	0,05	0,05	0,15
$\ell(x,y)$ =	6	0,1	σ	O	0,05
	Q	0,1	0,05	0	0,05
	٤	0,05	0,05	0,1	0,2

d.) Gesuclif
$$P(x=x; |y=y;)$$

 $P(x,y) = P(y|x) \cdot P(x)$
 $P(x,y) = \frac{P(x,y)}{P(x)}$

$$\frac{A2.2.)}{a.)} \times (k)$$

$$y_{n}(k)$$

$$y_{n}(k)$$

$$y_{n}(k-n)$$

$$T$$

$$Vor (k)$$

$$Y_{n}(k-n)$$

$$Y_{n}(k)$$

$$y_{1}(4) = x(4) \oplus y_{2}(4-1) = x(4) \oplus r(4)$$

 $y_{1}(4) = \overline{x(4)} + y_{2}(4-1)$
(bg;sches OPER

_	×(k)	r(k)	Y1(k)	42(4)
	0	0	O	1
	0	1	1	O
	1	0	1	0
	1	1	0	0
		•	1	

$$q_{1} \left(\begin{array}{c} q_{0} \\ \\ \end{array}\right) = \begin{array}{c} q_{0} \\ \\ \end{array}$$

$$P(r_{-1}) = P(r)$$

$$P(r=0) = P(r=0 | r_n=0) \cdot P(r_n=0) + P(y=0 | r_n=1) \cdot P(r_n=1)$$

=>
$$P(r=0) = q_1 \cdot P(r=0) + (q_0 + q_1) \cdot P(r=1)$$

137 736 3

$$= > P(r=0) + P(r=n) = 1$$

$$\Rightarrow P(r=0) = \frac{1}{1+q_0} \Rightarrow P(r=1) = \frac{q_0}{1+q_0}$$

$$P(i=0) = P(y_1=0, y_2=0) = q_1 \cdot P(r=1) = \frac{q_1 q_0}{1+q_0}$$

$$P(i=1) = q_0 \quad P(r=0) = \frac{q_0}{1+q_0}$$

$$P(i=1) = 0$$

$$P(i=2) = 1 - P(i=0) - P(i=1) - P(i=3)$$

$$= \frac{1 - q_0 \cdot q_1}{1 + q_0}$$

THE LAND THE