Solvabilité Basée sur les Risques (SBR), Application de calcul des Provisions Prudentielles et du Capital de Solvabilité Requis en assurance vie et non-vie

Auteur : DIAKITÉ Abdoul Oudouss et ETTADLAOUI Othmane Encadrants : Mme. AKDIM Khadija et Mr. BELFADLI Rachid

Filière : Ingénieur en Finance et Actuariat Faculté des Sciences et Techniques Université Cadi Ayyad

18 juin 2023

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- 9 Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- Capital de Solvabilité Requis
- Conclusion

#### Introduction

Le risque est au centre de toutes les opérations d'assurance. Sa prévention nécessite une mobilisation de moyens techniques particuliers en fonction de leur gravité en cas de survenance. Par ailleurs, dans chaque pays, une autorité est chargée de la réglementation du secteur d'assurance afin d'harmoniser les méthodologies de quantification liées à la couverture de ces risques.

#### Introduction

l'Autorité de Contrôle des Assurances et de la Prévoyance Sociale (ACAPS) a publié une nouvelle réforme de la Solvabilité Basée sur les Risques (SBR) qui repose sur trois piliers :

- Pilier 1 : exigence quantitatives,
- Pilier 2 : exigence qualitatives,
- Pilier 3 : obligations de reporting.

### Introduction





- Introduction
- 2 Contextualisation
- Pilier I : Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion

### Contexte

La Solvabilité Basée sur les Risques (SBR) est une réforme en cours d'élaboration qui est inspirée de la directive européenne Solvabilité II.

Notre projet vient dans ce contexte pour :

- Anticiper l'élaboration d'un outil de calcul de Capital de Solvabilité Requis,
- Faciliter la transition vers la nouvelle norme SBR,
- Automatiser le processus de calcul des exigences quantitatives.

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
  - Marge de risque
- 9 Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion

## Exigences quantitaives : Bilan prudentiel

#### Bilan Prudentiel:

- Basé sur une valorisation économique.
- Évaluation en valeur de marché des actifs
- évaluation du Best Estimate des Provisions Techniques brutes et cédées et d'une marge de risque explicite

## Dispostion du bilan

#### Bilan



\*Provisions Techniques

## Exigences quantitaives : Fonds propres

#### Fonds propres:

- Catégorie 1 : Capital social, Primes d'émission etc.
- Catégorie 2 : Capitaux appelés non versés, Réserve de réconciliation (si positive), etc.

## Exigences quantitaives : Exigence de capital

#### Note

La seule exigence de capital de la norme SBR est le Capital de Solvabilité Requis (CSR). Une section entière est dédiée à cette dernière dans la suite de cette présentation.

- Introduction
- Contextualisation
- Pilier I: Exigences quantitaives
- Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion

### Étape 1 : Transformation des taux monétaires en taux actuariels

$$T_a = \left(1 + \frac{n}{365} * T_m\right)^{\frac{365}{n}} - 1,$$

- T<sub>a</sub>: Le taux actuariel
- $T_m$ : Le taux monétaire
- n : Le nombre de jours entre la date de valeur et la date d'échéance
- $\frac{365}{n}$ : La maturité

### Étape 2 : Interpolation linéaire

$$t_j = t_i + \frac{t_{i+1} - t_i}{n_{i+1} - n_i} \times (j - n_i)$$

- $t_j$ : Taux actuariels de maturité pleine j compris entre les maturités  $n_i$  et  $n_{(i+1)}$
- t<sub>i</sub>: Taux actuariels de maturités n<sub>i</sub>

### Étape 3 : Calcule des taux zéro coupons

Nous avons comme hypothèse que le prix théorique d'une obligation correspond à la somme de ses flux futures actualisés aux taux zéro-coupon de l'échéance de chaque flux

$$R_n = \sqrt[n]{rac{1 + t_n}{1 - t_n imes \sum_{i=1}^{n-1} rac{1}{(1 + R_i)^i}}} - 1$$

- P : Prix d'émission du bon de trésor
- N : Valeur Nominale du bon de trésor

Figure – Courbe des taux zéro-coupon à la date du 30-12-2022 par la méthode Boostrap



- Introduction
- Contextualisation
- Pilier I: Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- Capital de Solvabilité Requis
- Conclusion

### Valorisation de l'actif

| Actif                                                | Valorisation                                     |
|------------------------------------------------------|--------------------------------------------------|
| Actions cotées à la bourse                           | Dernier cours coté                               |
| Titres OPCVM et OPCI                                 | Dernière valeur liquidative                      |
| Titres OPCC et FPCT                                  | Dernière valeur connue                           |
| Titres de créances négociables , obligations et bons | Valeur de marché                                 |
| Immobilisations corporelles                          | Valeur comptable                                 |
| Autres créances                                      | Valeur comptable                                 |
| Immobilisations en non-valeur                        | Valeur nulle                                     |
| Immobilisations incorporelles                        | Valeur nulle                                     |
| Actifs immobiliers hors OPCI                         | Valeur de transaction ( sinon valeur comptable ) |
| Autres actifs                                        | Valeur d'expert (sinon valeur comptable )        |

# Modélisation du prix des actions (RNN)

Figure - Schéma du modèle RNN pour recurrent neural network en anglais



# Modélisation du prix des actions (RNN)

Figure – Courbe de cours prédit par le modèle LSTM et de cours observé de l'indice MASI



- Introduction
- Contextualisation
- 3 Pilier I : Exigences quantitaives
- 4 Construction de la Courbe
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion

### Provisions non-vie hors rentes

$$PT = BE_{eng} + BEFG + MR,$$

- PT : la provision technique.
- $BE_{eng} = BE_{sinistres} + BE_{primes}$ : La meilleure estimation des engagements non-vie
- $BEFG = \sum_t \frac{FG}{(1+r_t)^t}$  : La meilleure estimation des frais de gestion non-vie.

## Meilleure estimation des engagements pour primes

$$BEP = \sum_{t>1} \frac{\overline{FRFP_t}}{(1+r_t)^t} - PFPA \quad ,$$

- PFPA :Le montant des primes futures probabilisé et actualisé,
- PFP : Le montant des primes futures probabilisé.
- FRFP<sub>t</sub>: La somme actualisée des flux de règlements futurs probabilisés nets.

## Meilleure estimation des engagements pour sinistres

#### Valorisation

$$BES = \sum_{t \ge 1} \frac{FRFP_t}{(1+r_t)^t}$$

 $FRFP_t$ : les flux de règlements futurs probabilisés nets de recours relatifs aux sinistres survenus.

### Méthode Chain Ladder

Figure – Forme d'un triangle de règlements cumulés

|            | Années de développement |           |           |           |           |           |           |           |           |           |           |  |  |
|------------|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
| Survenance | 0                       | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | 10        |  |  |
| 2012       | 3 504,00                | 17 838,65 | 29 762,13 | 37 354,13 | 48 113,13 | 54 288,92 | 60 990,92 | 64 953,92 | 67 075,06 | 67 961,14 | 69 073,14 |  |  |
| 2013       | 4 774,24                | 14 225,85 | 24 891,85 | 38 451,85 | 45 605,98 | 54 219,98 | 57 611,98 | 61 752,56 | 62 906,74 | 64 306,33 |           |  |  |
| 2014       | 3 821,92                | 12 489,92 | 28 284,92 | 39 782,63 | 46 485,63 | 51 429,63 | 53 462,05 | 54 797,99 | 55 771,01 |           |           |  |  |
| 2015       | 4 074,00                | 19 021,00 | 35 729,00 | 50 865,00 | 58 417,00 | 62 138,27 | 63 510,56 | 64 673,57 |           |           |           |  |  |
| 2016       | 5 070,00                | 19 512,00 | 41 560,00 | 51 917,00 | 59 168,44 | 66 278,59 | 69 647,56 |           |           |           |           |  |  |
| 2017       | 3 817,00                | 17 940,00 | 27 339,00 | 33 666,67 | 37 893,96 | 41 649,41 |           |           |           |           |           |  |  |
| 2018       | 7 838,00                | 23 756,00 | 34 489,85 | 42 665,27 | 51 181,77 |           |           |           |           |           |           |  |  |
| 2019       | 7 690,00                | 29 440,55 | 43 027,97 | 56 870,69 |           |           |           |           |           |           |           |  |  |
| 2020       | 8 935,00                | 27 985,56 | 42 675,50 |           |           |           |           |           |           |           |           |  |  |
| 2021       | 4 979,97                | 21 154,81 |           |           |           |           |           |           |           |           |           |  |  |
| 2022       | 5 818,64                |           |           |           |           |           |           |           |           |           |           |  |  |

# Étape 1 : Vérification des hypothèse

- Hypothèse Nº1 : Indépendence,
- Hypothèse Nº2 : Linéarité.

# Etape 2 : Calcul des règlements cumulés futurs

|            | Années de développement |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         |                |       |       |       |       |       |  |
|------------|-------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|----------------|-------|-------|-------|-------|-------|--|
| Survenance | 0                       | 1     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3         | 4       | 5              | 6     | 7     | 8     | 9     | 10    |  |
| 2012       | 3504                    | 17839 | 29762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37354     | 48113   | 54289          | 60991 | 64954 | 67075 | 67961 | 69073 |  |
| 2013       | 4774                    | 14226 | 24892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38452     | 45606   | 54220          | 57612 | 61753 | 62907 | 64306 | 65359 |  |
| 2014       | 3822                    | 12490 | 28285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39783     | 46486   | 51430          | 53462 | 54798 | 55771 | 56752 | 57680 |  |
| 2015       | 4074                    | 19021 | $\hat{f}_j = \frac{\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{$ |           | 59417   | 62138          | 63511 | 64674 | 66187 | 67351 | 68453 |  |
| 2016       | 5070                    | 19512 | 41300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{i,j}$ | 59168   | 66279          | 69648 | 72782 | 74486 | 75796 | 77036 |  |
| 2017       | 3817                    | 17940 | 27339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33667     | 37894   | 41649          | 44086 | 46070 | 47148 | 47977 | 48762 |  |
| 2018       | 7838                    | 23756 | 34490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42665     | 51182 🔫 | <b>→</b> 57123 | 60464 | 63185 | 64664 | 65801 | 66878 |  |
| 2019       | 7690                    | 29441 | 43028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56871     | 66937   | 74707          | 79077 | 82636 | 84570 | 86057 | 87465 |  |
| 2020       | 8935                    | 27986 | 42675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56599     | 66617   | 74350          | 78699 | 82241 | 84166 | 85646 | 87047 |  |
| 2021       | 4980                    | 21155 | 35731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47389     | 55778   | 62252          | 65893 | 68859 | 70471 | 71710 | 72883 |  |
| 2022       | 5819                    | 21710 | 36670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48634     | 57242   | 63887          | 67624 | 70667 | 72321 | 73593 | 74797 |  |

## Etape 3 : Triangle des règlements décumulés

|            | Années de développement |       |       |       |       |      |      |      |      |      |      |  |
|------------|-------------------------|-------|-------|-------|-------|------|------|------|------|------|------|--|
| _          | 0                       | 1     | 2     | 3     | 4     | 5    | 6    | 7    | 8    | 9    | 10   |  |
| Survenance |                         | _     |       |       |       |      |      |      |      |      |      |  |
| 2012       | 3504                    | 14335 | 11923 | 7592  | 10759 | 6176 | 6702 | 3963 | 2121 | 886  | 1112 |  |
| 2013       | 4774                    | 9452  | 10666 | 13560 | 7154  | 8614 | 3392 | 4141 | 1154 | 1400 | 1052 |  |
| 201/       | 3822                    | 8668  | 15795 | 11498 | 6703  | 4944 | 2032 | 1336 | 973  | 981  | 929  |  |
| 201        | Décum                   | nuler | 16708 | 15136 | 7552  | 3721 | 1372 | 1163 | 1514 | 1164 | 1102 |  |
| 2016       | 3070                    | 14442 | 22048 | 10357 | 7251  | 7110 | 3369 | 3135 | 1704 | 1310 | 1240 |  |
| 2017       | 3817                    | 14123 | 9399  | 6328  | 4227  | 3755 | 2436 | 1984 | 1078 | 829  | 785  |  |
| 2018       | 7838                    | 15918 | 10734 | 8175  | 8517  | 5941 | 3341 | 2721 | 1479 | 1137 | 1077 |  |
| 2019       | 7690                    | 21751 | 13587 | 13843 | 10066 | 7770 | 4370 | 3559 | 1934 | 1487 | 1408 |  |
| 2020       | 8935                    | 19051 | 14690 | 13924 | 10018 | 7732 | 4349 | 3542 | 1925 | 1480 | 1401 |  |
| 2021       | 4980                    | 16175 | 14577 | 11658 | 8388  | 6474 | 3641 | 2966 | 1612 | 1239 | 1173 |  |
| 2022       | 5819                    | 15892 | 14959 | 11964 | 8608  | 6644 | 3737 | 3044 | 1654 | 1272 | 1204 |  |

# Etape 4 : Calcul des flux de règlements futurs

|            | Années de développement |       |       |        |       |      |      |      |      |      |      |
|------------|-------------------------|-------|-------|--------|-------|------|------|------|------|------|------|
|            |                         |       |       |        |       |      |      |      |      |      |      |
| Survenance | 0                       | 1     | 2     | 3      | 4     | 5    | 6    | 7    | 8    | 9    | 10   |
| 2012       | 3504                    | 14335 | 11923 | 7592   | 10759 | 6176 | 6702 | 3963 | 2121 | 886  | 1112 |
| 2013       | 4774                    | 9452  | 10666 | 13560  | 7154  | 8614 | 3392 | 4141 | 1154 | 1400 | 1052 |
| 2014       | 3822                    | 8668  | 1579  |        |       | 4944 | 2032 | 1336 | 973  | 981  | 929  |
| 2015       | 4074                    | 14947 | 1670  | lux fu | turs  | 3721 | 1372 | 1163 | 1514 | 1164 | 1102 |
| 2016       | 5070                    | 14442 | 22048 | 10357  | 7251  | 7110 | 3369 | 3135 | 1704 | 1310 | 1240 |
| 2017       | 3817                    | 14123 | 9399  | 6328   | 4227  | 3755 | 2436 | 1984 | 1078 | 829  | 785  |
| 2018       | 7838                    | 15918 | 10734 | 8175   | 8517  | 5941 | 3341 | 2721 | 1479 | 1137 | 1077 |
| 2019       | 7690                    | 21751 | 13587 | 13843  | 10066 | 7770 | 4370 | 3559 | 1934 | 1487 | 1408 |
| 2020       | 8935                    | 19051 | 14690 | 13924  | 10018 | 7732 | 4349 | 3542 | 1925 | 1480 | 1401 |
| 2021       | 4980                    | 16175 | 14577 | 11658  | 8388  | 6474 | 3641 | 2966 | 1612 | 1239 | 1173 |
| 2022       | 5819                    | 15892 | 14959 | 11964  | 8608  | 6644 | 3737 | 3044 | 1654 | 1272 | 1204 |

- Introduction
- Contextualisation
- Pilier I: Exigences quantitaives
- Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion

## Provisions vie, décès ou capitalisation

$$PT = BE_{eng} + BEFG + MR$$
,

- PT : la provision technique.
- ullet  $BE_{eng}=BEGP+BDF$ : La meilleure estimation des engagements vie.
- $BEFG = \sum_{t=1}^{N} \frac{FG_t}{(1+r_t)^t}$ : La meilleure estimation des frais de gestion vie.

# Meilleure estimation des garanties probabilisées

$$BEGP = \sum_{t=0}^{t=N} rac{\left(Dec_t - Enc_t
ight)}{\left(1 + r_t
ight)^t} \quad ,$$

- Enct :Les encaissements à la date t.
- Dect : Les décaissements à la date t.

### Bénéfices discrétionnaires futurs

$$BDF = PPB + \overline{TPB} \times (ST + SF) \times 1_{(ST + SF) > 0}$$

- PPB : la provision pour participation aux bénéfices.
- (ST + SF): Somme des soldes techniques et financière.
- *TPB* : Le taux de participation au bénéfice moyen.

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- 8 Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion

# Marge de risque

$$MR = \alpha \times \sum_{i \ge 0} \frac{CSR_i}{(1 + r_{i+1})^{i+1}}$$
,

- ullet  $\alpha$  : le taux du coût du capital.
- $CSR_i = \frac{BE_{eng_i}}{BE_{eng_0}} \times CSR_0$

### Rentes découlants des opérations non-vie

La meilleure estimation des engagements et La meilleure estimation des frais de gestion sont déterminée de la même façon que les opérations d'assurance vie, décès ou capitalisation

$$BE_{eng} = BEGP = \sum_{t=0}^{t=N} \frac{(D_t - E_t)}{(1 + r_t)^t}$$

$$BEFG = \sum_{t=1}^{N} \frac{FG_t}{(1+r_t)^t}$$

### Contents

- Introduction
- Contextualisation
- Pilier I: Exigences quantitaives
- 4 Construction de la Courbe
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- 8 Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion

### Part des cessionnaires dans les provisions prudentielles

#### Définition

La cession est une opération par laquelle un assureur transfère une partie de son risque à un réassureur en échange d'une partie de prime, pour réduire son exposition au risque.

$$PC = BEC - Adj$$

- PC: Part des cessionnaires.
- BEC : Meilleure estimation des engagements cédés.
- Adj : Ajustement pour défaut de contrepartie.

# Meilleure estimation des engagements cédès

### Opérations vie, décès ou capitalisation et rentes non-vie :

$$BEC = TC \times BE_{eng}$$

- BEC : Meilleure estimation des engagements cédès.
- TC : Taux de cession.
- $BE_{eng}$ : Meilleure estimation des engagements vie.

# Meilleure estimation des engagements cédès

### Opérations vie, décès ou capitalisation et rentes non-vie :

$$BEC = TC \times BE_{eng}$$

- BEC : Meilleure estimation des engagements cédès.
- TC : Taux de cession.
- $BE_{eng}$ : Meilleure estimation des engagements vie.

# Meilleure estimation des engagements cédès

#### Opérations non-vie hors rentes :

$$BEC = TCS \times BES + TCP \times BEP$$

- BEC : Meilleure estimation des engagements cédès.
- *TCS* : Taux de cession pour sinistres.
- TCP : Taux de cession pour primes.
- BES: meilleure estimation des engagements pour sinistres.
- BEP: Meilleure estimation des engagements pour primes.

# Ajustement pour défaut de contrepartie

#### Valorisation

$$Adj = \sum_{i>0} \frac{Adj_i}{(1+r_i)^i} \quad ,$$

avec:

$$Adj_i = rac{1}{2} imes ext{max} (BEC - DEV + SDR; 0) imes PD imes (1 - PD)^{i-1}$$

- *Adj* : Ajustement pour défaut de contrepartie.
- DEV : Dépôt en espèces et en valeurs.
- SDR : Solde de réassurance.
- PD : Probabilité de défaut de réassureur.

- 4 ロ ト 4 昼 ト 4 種 ト - 種 - り Q (C)

#### Contents

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- Capital de Solvabilité Requis
- Conclusion

# Capital de Solvabilité Requis

#### **Définition**

le CSR correspond au capital dont a besoin une entreprise d'assurance ou de réassurance pour faire face à tous les risques qui peuvent survenir dans le futur et limiter la probabilité de ruine.

$$CSR = CSRB + CSRO + Adj_{As} + Adj_{ID}$$

- CSRB : Capital de solvabilité requis de base.
- CSRO : Exigence de capital relative au risque opérationnel.
- $Adj_{As}$ : Ajustement à tenir compte les pertes par les assurés.
- Adj<sub>ID</sub> : Ajustement à tenir compte les pertes par les impôts différés.

## Capital de Solvabilité Requis



# Capital de solvabilité requis

#### Démarches

- Application d'un choc sur chaque composante de chaque risque.
- Réestimation des différentes meilleures estimations après choc.
- Le CSR correspond à la perte en meilleur estimation pour chaque risque.

## Capital de Solvabilité Requis



# Exigence de capital relative au risque de souscription vie

#### **Valorisation**

$$CSR_{SV} = \sqrt{CSR_{mort}^2 + CSR_{Cat}^2 + CSR_F^2}$$

### Exigence de capital relative au risque de frais

$$CSR_F = BE_F(Choc) - BE_F$$

Le choc a été appliqué sur la table de mortalité par un augmentation de 14 % Et une majoration annuelle de 1,5 %

# Exigence de capital relative au risque de souscription vie

### Exigence de capital pour risque de mortalité

$$CSR_{mort} = BE_{eng}(Choc) - BE_{eng}$$

Le choc a été appliqué sur la table de mortalité par un augmentation de 30 %

### Exigence de capital relative au risque de catastrophe

$$CSR_{Cat} = BE_{eng}(Choc) - BE_{eng}$$

Le choc a été appliqué sur la table de mortalité par un augmentation de 0,2 %

51 / 61

# Exigence de capital relative au risque de souscription non vie

#### Valorisation

$$CSR_{SNV} = \sqrt{CSR_P^2 + CSR_{Pr}^2 + CSR_{cat}^2}$$

### Exigence de capital relative au risque de catastrophe non-vie

$$CSR_{Cat} = \sqrt{\sum_{i} CSR_{i}^{2}}$$
 ,

 $i \in \{\text{Les sous-risques de catastrophe non-vie}\}\$ 

## Exigence de capital relative au risque de souscription non vie

### Exigence de capital relative au sous-risque de primes

$$CSR_P = X_P\% \times \sigma_P \times BEP$$

Les valeurs de  $X_P\%$  et  $\sigma_P$  sont précisés par l'ACAPS (pas d'information jusqu'à ce moment)

### Exigence de capital relative au sous-risque de provisions

$$CSR_{Pr} = X_{Pr}\% \times \sigma_{Pr} \times BEP_{eng}$$

Les valeurs de  $X_{Pr}\%$  et  $\sigma_{Pr}$  sont précisés par l'ACAPS (pas d'information jusqu'à ce moment

◆ロト ◆個ト ◆注ト ◆注ト 注 りへぐ

### Les paramètres



# Courbe des taux zéro-coupon



# Meilleur estimation des engagements non-vie



# Meilleur estimation des engagements vie



#### Part des cessionnaires



# Marge de risque



### Contents

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion

#### Conclusion

L'assurance est une opération de garantie de risque en échange d'une prime, ce qui rend le secteur de l'assurance très exposé aux risques. Il incombe aux autorités de réglementer ce domaine. Dans ce contexte, l'ACAPS a adopté le projet SBR pour améliorer la réglementation prudentielle au Maroc. Notre travail consistait à développer une fiche technique des formules et à préparer un outil informatique capable d'effectuer tous les calculs du pilier 1 de la SBR.