Contents

1	$\mathbf{A}\mathbf{n}$	Eigenvalue Approach to Linear Recurrences and Sequences
	1.1	General Eigenvalue Method
	1.2	Fibonacci Sequence
		1.2.1 Introduction
		1.2.2 Matrix Representation of the Fibonacci Sequence
		1.2.3 Application to the Fibonacci Matrix
		1.2.4 Deriving the Closed Form
	1.3	Non-homogeneous Recurrence Equation
		1.3.1 Problem
	1.4	Five-Color Planar Graph Coloring
		1.4.1 Problem
		1.4.2 General Case
2	Eig	envalues of General Tridiagonal Toeplitz Matrices
	2.1	Characteristic Polynomial
	2.2	A Special Case
	2.3	General Tridiagonal Toeplitz Matrices
3	Trig	gonometric Solution to Cubic Equations
	3.1	The Cubic Equation and The Depressed Form
	3.2	Trigonometric Solution
	3.3	Example

1 An Eigenvalue Approach to Linear Recurrences and Sequences

1.1 General Eigenvalue Method

For a Matrix $A \in \mathbb{R}^{2\times 2}$ with two distinct eigenvalues and two corresponding eigenvectors, we know that any vector is a linear combonation of v_1 and v_2 , i.e.

$$\begin{cases} Av_1 = \lambda_1 v_1 \\ Av_2 = \lambda_2 v_2 \end{cases}$$
, and $v = av_1 + bv_2$

Applying A repeatedly to v and using the eigenvalue property gives,

$$Av = a\lambda_1 v_1 + b\lambda_2 v_2,$$

$$A^2v = a\lambda_1^2 v_1 + b\lambda_2^2 v_2,$$

$$\vdots$$

$$\Rightarrow A^n v = a\lambda_1^n v_1 + b\lambda_2^n v_2.$$

1.2 Fibonacci Sequence

1.2.1 Introduction

The Fibonacci Sequence is a one of the most famous sequence in mathematics. It is defined by the recurrence relation:

$$\begin{cases} F_n = F_{n-1} + F_{n-2}, \text{ for } n \ge 2\\ F_0 = F_1 = 1 \end{cases}$$

Each term is the sum of the two preceding terms: 1, 1, 2, 3, 5, 8...

1.2.2 Matrix Representation of the Fibonacci Sequence

Let

$$x_0 = \begin{bmatrix} F_1 \\ F_0 \end{bmatrix}$$
, $x_1 = \begin{bmatrix} F_2 \\ F_1 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

By repeatedly applying the matrix A, we can express each term of the sequence as a power of A acting on x_0 :

$$x_1 = Ax_0,$$

$$x_2 = Ax_1 = A(Ax_0) = A^2x_0$$

$$\Rightarrow x_n = A^nx_0$$

1.2.3 Application to the Fibonacci Matrix

Let us now consider the Fibonacci matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

Its eivenvalues are given by the characteristic polynomial

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda \end{vmatrix} = 0 \Rightarrow \boxed{\lambda^2 - \lambda - 1 = 0}$$

, and a quick computation yields $\lambda = \varphi$ or $-\frac{1}{\varphi}$.

Notice that this is exactly the same as the equation obtained from assuming $F_n = \lambda^n$ in the Fibonacci recurrence:

$$F_n = F_{n-1} + F_{n-2} \Leftrightarrow \lambda^n = \lambda^{n-1} + \lambda^{n-2} \Rightarrow \lambda^2 = \lambda + 1$$

1.2.4 Deriving the Closed Form

We can now express $x_n = A^n x_0$ explicitly in terms of λ_1 and λ_2 . Let us consider

$$F_n = p \cdot \varphi^n + q \cdot (-\frac{1}{\varphi})^n$$

By initial contidion $F_0 = F_1 = 1$,

$$\begin{cases} p+q=1 \\ p\cdot\varphi+q\cdot(-\frac{1}{\varphi})=1 \end{cases} \Rightarrow \begin{cases} p=\frac{1}{\sqrt{5}}\varphi \\ q=-\frac{1}{\sqrt{5}}\frac{1}{\varphi} \end{cases}$$

Thus,

$$F_n = \frac{1}{\sqrt{5}} \left[\varphi^{n+1} - \left(-\frac{1}{\varphi} \right)^{n+1} \right] \quad \Box$$

1.3 Non-homogeneous Recurrence Equation

1.3.1 Problem

Given $a_n = 3a_{n-1} + 2$ and $a_1 = 2$, $a_2 = 8$. Find the general formula for a_n .

Solution

We start by homogeneous linear equation

$$a_n = 3a_{n-1} \Rightarrow x^2 = 3x$$

Quick calculation gives x = 0 or 3, then we assume the general formula plus a displacement r.

$$a_n = p \cdot 3^n + q \cdot 0^n + r$$

By initial condition $a_1 = 2$, $a_2 = 8$

$$\begin{cases} 3p+r=2\\ 9p+r=8 \end{cases} \Rightarrow \begin{cases} p=1\\ r=-1 \end{cases}$$

Thus the general formula for a_n is

$$a_n = 3^n - 1 \quad \square$$

1.4 Five-Color Planar Graph Coloring

1.4.1 Problem

Given a polygon with n sides divided into n regions by drawing lines from the centroid to each vertex, find a general formula for the number of proper colorings of the regions using 5 colors, where adjacent regions must have different colors.

Solution

For Triangle A_3 and Square A_4

For Pentagon A_5

Recurrence Formula

Now we've obtained the recurrence formula with initial conditions $a_3 = 60$, $a_4 = 260$

$$a_{n+2} = 3a_{n+1} + 4a_n$$

Solving the equation yields

$$a_n = 4^n + 4(-1)^n$$

1.4.2 General Case

Given a polygon with n sides divided into n regions by drawing lines from the centroid to each vertex, the general formula for the number of proper colorings of the regions using k colors is

$$(k-1)^n + (-1)^n(k-1)$$

2 Eigenvalues of General Tridiagonal Toeplitz Matrices

Consider the $n \times n$ general tridiagonal Toeplitz matrix:

$$T_n = \begin{pmatrix} b & c & 0 & \dots & 0 \\ a & b & c & \dots & 0 \\ 0 & a & b & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & c \\ 0 & 0 & 0 & a & b \end{pmatrix},$$

where $a, b, c \in \mathbb{R}$.

2.1 Characteristic Polynomial

The characteristic polynomial is defined as

$$p_n(\lambda) := \det(\lambda I - T_n),$$

It satisfies the recurrence relation

$$\begin{cases} p_{n+2}(\lambda) = (\lambda - b)p_{n+1}(\lambda) - ac \, p_n(\lambda) \\ p_0 = 1, \, p_1 = \lambda - b \end{cases}$$

2.2 A Special Case

Let a = c = 1, b = 0. We have an adjacency matrix corresponding to Path P_n

$$A(P_n) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix},$$

Let p_n denote the characteristic polynomial of A_n . The recurrence formula is given by

$$\begin{cases} p_{n+2} = \lambda p_{n+1} - p_n & \text{Ansatz } r^n = p_n \\ p_0 = 1, \ p_1 = \lambda \end{cases} \quad r^2 = \lambda r - 1$$

Solving $r^2 = \lambda r - 1$ gives

$$r = \frac{\lambda \pm \sqrt{\lambda^2 - 4}}{2}$$

Observe that $|\lambda| \leq 2$ Let

$$\lambda = 2\cos\theta \Rightarrow r = \cos\theta \pm i\sin\theta = e^{\pm i\theta}$$

Therefore,

$$p_n(\lambda) = \alpha e^{in\theta} + \beta e^{-in\theta}$$

By initial condition $p_0 = 1$, $p_1 = \lambda$

$$\begin{cases} \alpha + \beta = 1 \\ \alpha e^{i\theta} + \beta e^{-i\theta} = \lambda = 2\cos\theta \end{cases}$$

A quick calculation yields

$$\alpha = \frac{e^{i\theta}}{2i\sin\theta}, \ \beta = \frac{-e^{-i\theta}}{2i\sin\theta}$$

Now $\lambda = 2\cos\theta$ and

$$p_n(\lambda) = \frac{e^{i\theta}}{2i\sin\theta} \cdot e^{in\theta} + \frac{-e^{-i\theta}}{2i\sin\theta} \cdot e^{-in\theta}$$
$$= \frac{e^{i(n+1)\theta} - e^{-i(n+1)\theta}}{2i\sin\theta}$$
$$= \frac{\sin((n+1)\theta)}{\sin\theta}$$

$$p_n(\lambda) = 0 \Leftrightarrow \sin((n+1)\theta) = 0 \text{ and } \sin(\theta) \neq 0$$

$$(n+1)\theta = k\pi, \ k = 1, 2, 3...$$

$$\Rightarrow \theta_k = \frac{k\pi}{n+1}$$

Therefore,

$$\lambda_k = 2\cos\theta_k = 2\cos\left(\frac{k\pi}{n+1}\right)$$

2.3 General Tridiagonal Toeplitz Matrices

3 Trigonometric Solution to Cubic Equations

3.1 The Cubic Equation and The Depressed Form

A general cubic equation is given by:

$$ax^3 + bx^2 + cx + d = 0, \quad a \neq 0.$$

Depressed Cubic Form:

$$t^3 + pt + q = 0$$

Any cubic equation may be reduced to the depressed cubic form by a simple change of variable

$$x = t - \frac{b}{3a}$$

The roots therefore are:

$$x_i = t_i - \frac{b}{3a}$$

3.2 Trigonometric Solution

Recall the cosine triple-angle formula:

$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$$

This can be rearranged to:

$$4\cos^3\theta - 3\cos\theta - \cos 3\theta = 0$$

Let
$$x = 2\sqrt{-\frac{p}{3}}\cos\theta$$
. We have

$$4\cos^3\theta - 3\cos\theta - \frac{3q}{2p}\sqrt{-\frac{3}{p}} = 0$$

where

$$\cos 3\theta = \frac{3q}{2p}\sqrt{-\frac{3}{p}}$$

Thus,

$$\theta = \frac{1}{3} \left(\cos^{-1} \left(\frac{3q}{2p} \sqrt{-\frac{3}{p}} \right) + 2k\pi \right), k = 0, 1, 2$$

Therefore,

$$x_k = 2\sqrt{-\frac{p}{3}}\cos\left(\frac{1}{3}\cos^{-1}\left(\frac{3q}{2p}\sqrt{-\frac{3}{p}}\right) + \frac{2k\pi}{3}\right), k = 0, 1, 2$$

3.3 Example

Find the roots of

$$x^3 - 3x - 2 = 0$$

Let $x = 2\cos\theta$

$$x^3 - 3x - 2$$
$$= 8\cos^3\theta - 6\cos\theta - 2$$

Thus,

$$\cos(3\theta) = 1 \Rightarrow \theta = \frac{k\pi}{3}, \ k = 0, 1, 2$$

Therefore,

$$x_k = 2\cos(\frac{k\pi}{3}), \ k = 0, 1, 2$$