Exercise 4A

- An octagonal die is thrown 500 times and the results are noted. It is assumed that the die is unbiased. A test is to be done to see whether the observed results differ from the expected ones. Write down a null hypothesis and an alternative hypothesis that can be used.
- **2** For 5 degrees of freedom find the critical value of χ^2 which is exceeded with a probability of 5%.
- **3** Find the values of the following from the table on page 137.
 - **a** χ_5^2 (5%)

b χ_8^2 (1%)

- **c** χ^2_{10} (10%)
- With $\nu = 10$ find the value of χ^2 that is exceeded with 0.05 probability.
- **5** With $\nu = 8$ find the value of χ^2 that is exceeded with 0.10 probability.
- The random variable *Y* has a χ^2 distribution with 8 degrees of freedom. Find *y* such that P(Y < y) = 0.99.
- The random variable *X* has a χ^2 distribution with 5 degrees of freedom. Find *x* such that P(X < x) = 0.95.
- **8** The random variable *Y* has a χ^2 distribution with 12 degrees of freedom. Find:
 - **a** *y* such that P(Y < y) = 0.05,
- **b** y such that P(Y < y) = 0.95.

Exercise 4B

1 The following table shows observed values for what is thought to be a discrete uniform distribution.

x	1	2	3	4	5	6	7	8
Frequency of x	12	24	18	20	25	17	21	23

- **a** Calculate the expected frequencies and, using a 5% significance level, conduct a goodness of fit test.
- **b** State your conclusions.
- The following tables show observed values (*O*) and expected values (*E*) for a goodness of fit test of a binomial distribution model. The probability used in calculating the expected values has not been found from the observed values.

O	17	28	32	15	5	3
E	19.69	34.74	27.59	12.98	4.01	0.99

- **a** Conduct the test using a 5% significance level and state your conclusions.
- **b** Suggest how the model might be improved.

3 The following table shows observed values for a distribution which it is thought may be modelled by a Poisson distribution.

x	0	1	2	3	4	5	>5
Frequency of x	12	23	24	24	12	5	0

A possible model is thought to be Po(2). From tables, the expected values are found to be as shown in the following table.

x	0	1	2	3	4	5	>5
Expected frequency of <i>x</i>	13.53	27.07	27.07	18.04	9.02	3.61	1.66

- a Conduct a goodness of fit test at the 5% significance level.
- **b** It is suggested that the model could be improved by estimating the value of λ from the observed results. What effect would this have on the number of constraints placed upon the degrees of freedom?
- 4 A mail order firm receives packets every day through the mail.

They think that their deliveries are uniformly distributed throughout the week. Test this assertion, given that their deliveries over a 4-week period were as follows. Use a 0.05 significance level.

Day	Mon	Tues	Wed	Thurs	Fri	Sat
Frequency	15	23	19	20	14	11

5 Over a period of 50 weeks the number of road accidents reported to a police station were as shown.

Number of accidents	0	1	2	3	4
Number of weeks	15	13	9	13	0

- **a** Find the mean number of accidents per week.
- **b** Using this mean and a 0.10 significance level, test the assertion that these data are from a population with a Poisson distribution.

A marksman fires 6 shots at a target and records the number *r* of bull's-eyes hit. After a series of 100 such trials he analyses his scores, the frequencies being as follows.

r	0	1	2	3	4	5	6
Frequency	0	26	36	20	10	6	2

- **a** Estimate the probability of hitting a bull's-eye.
- **b** Use a test at the 0.05 significance level to see if these results are consistent with the assumption of a binomial distribution.

7 The table below shows the number of employees in thousands at five factories and the number of accidents in 3 years.

Factory	A	В	С	D	Е
Employees (thousands)	4	3	5	1	2
Accidents	22	14	25	8	12

Using a 0.05 significance level, test the hypothesis that the number of accidents per 1000 employees is constant at each factory.

8 In a test to determine the red blood cell count in a patient's blood sample, the number of cells in each of 80 squares is counted with the following results.

Number of cells per square, x	0	1	2	3	4	5	6	7	8
Frequency, f	2	8	15	18	14	13	7	3	0

It is assumed that these will fit a Poisson distribution. Test this assertion at the 0.05 significance level.

A factory has a machine. The number of times it broke down each week was recorded over 100 weeks with the following results.

Number of times broken down	0	1	2	3	4	5
Frequency	50	24	12	9	5	0

It is thought that the distribution is Poisson.

- **a** Give reasons why this assumption might be made.
- **b** Conduct a test at the 0.05 level of significance to see if the assumption is reasonable.

In a lottery there are 505 prizes, and it is assumed that they will be uniformly distributed throughout the numbered tickets. An investigation gave the following:

Ticket	1–1000	1001–	2001–	3001-	4001-	5001-	6001–	7001–	8001-	9001–
number		2000	3000	4000	5000	6000	7000	8000	9000	10000
Frequency	56	49	35	47	63	58	44	52	51	50

Using a suitable test with a 0.05 significance level, and stating your null and alternative hypotheses, see if the assumption is reasonable.