CS1005-Discrete Structures

Saturday, November 05, 2022 (Solution)

Course Instructors

Dr. Muhammad Ahmad

Dr. Muhammad Fayyaz, Sumaira Mustafa

	Time: 1 Hou Marks: 50
1 otal	iviains. Su
Cianatur	e of Invigilator

Signature

DO NOT OPEN THE QUESTION BOOK OR START UNTIL INSTRUCTED.

Section

Instructions:

Roll No

- 1. Verify at the start of the exam that you have a total of XXX questions printed on XXX pages including this title page.
- 2. Attempt all questions on the question-book and in the given order.
- 3. The exam is closed books, closed notes. Please see that the area in your threshold is free of any material classified as 'useful in the paper' or else there may a charge of cheating.
- 4. Read the questions carefully for clarity of context and understanding of the meaning and make assumptions wherever required, for neither the invigilator will address your queries, nor the teacher/examiner will come to the examination hall for any assistance.
- 5. Fit in all your answers in the provided space. You may use extra space on the last page if required. If you do so, clearly mark the question/part number on that page to avoid confusion.
- 6. Use only your own stationery and calculator. If you do not have your own calculator, use manual calculations.
- 7. Use only permanent ink-pens. Only the questions attempted with permanent ink-pens will be considered. Any part of the paper done in lead pencil cannot be claimed for checking/rechecking.

	Q-1	Q-2	Q-3	Q-4	Q-5	Q-6	Total
Total Marks	9	9	8	8	8	8	50
Marks Obtained							

Vetted By:		_Vetter Signature: _	
University Answer Sheet Required:	No	Yes	

Department of Computer Science

Chiniot-Faisalabad Campus

Question #1: [9 Points]:

The probability of a car repair being on time is 0.40. The probability of a car repair being satisfactory is 0.50. The probability that a car repair is neither satisfactory nor on time is 0.25. What is the probability of a repair being satisfactory and on time?

Solution:

Overtion 7:-
$$P(A) = 0.40$$
, $P(B) = 0.50$, $P(A \cup B)^{\circ} = 0.25$.

$$P(A \cup B) = 1 - P(A \cup B)^{\circ} = 1 - 0.25 = 0.75$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

$$P(A \cap B) = 0.40 + 0.50 + 0.75 = 0.15$$

$$P(A \cap B) = 0.90 - 0.75 = 0.15$$

Question # 2: [9 points]:

Question # 2: We have a bag containing 4 yellow, 5 green and 6 orange candies. We draw two candies without replacement. Find the probability of getting both candies green.

Solution:

Example 1: We have a bag containing 4 yellow, 5 green and 6 orange candies. We draw two candies without replacement. Find the probability of getting both candies green.

Solution: Clearly n(S) = 4 + 5 + 6 = 15

Let A be the event of drawing a green candy first.

Then
$$P(A) = 5/15$$

Now since we are not replacing back, thus, number of green candies left in bag now is 4 and total number of candies is 14.

Let B be the vent of drawing a green candy again.

Then
$$P(B|A) = 4/14$$
.

Thus the probability of getting both candies green = P(A & B)

$$= P(A) * P(B|A)$$

$$= 5/15 * 4/14$$

$$= 1/3 * 2/7 = 2/21$$

Department of Computer Science

Chiniot-Faisalabad Campus

Question # 3: [8 points]:

Define R={ $(x,y) \in ZxZ: x-y$ is divisible by 3}. Prove that this relation has partial order relation.

Solution:

Reflexive:

Let $a \in \mathbb{Z}$, a-a=0/3=0, so $(a,a) \in \mathbb{R}$ is reflexive.

Symmetric:

Let $a,b \in Z$ such that $(a,b) \in R$. So, a-b is divisible by 3.

a-b=3k [for some integer k]

if $(a.b) \in R$ then, $(b,a) \in R$.

b-a=-3k=> -(a-b)=3(-k) [-(a-b)=> -a+b=>b-a]

which is divisible by 3. So $(b,a) \in R$. So it is symmetric.

Transitive:

Let a,b ,c \in Z such that (a,b) \in R and (b,c) \in R

if $(a.b) \in R$ and $(b,c) \in R$ then, $(a,c) \in R$.

So, a-b and b-c are divisible by 3.

- ⇒ a-b=3k & b-c=3s [for some integer k & s]
- \Rightarrow a-c= (a-b) +(b-c)
- \Rightarrow = 3k + 3s = 3(k+s)
- \Rightarrow a-c=3t

which is divisible by 3. So it has transitive property as well. It is not a partial order relation.

Question #4: [8 Points]

Given $A = \{2,3,4,5,6\}$ and $B = \{4,16,23,46\}$, $a \in A$, $b \in B$, find the set of all ordered pairs of A and B.

Define a relation R = $\{(a,b) \mid a \in A, b \in B \text{ and } (a,b) \in AxB \mid a^2 < b\}$?

Define a relation $S = \{(a,b) \mid a \in A, b \in B \text{ and } (a,b) \in AxB \mid a^2/b\}$?

Solution:

$$\mathbf{AxB} = \{(2,4), (2,16), (2,23), (2,46), (3,4), (3,16), (3,23), (3,46), (4,4), (4,16), (4,23), (4,46), (5,4), (5,16), (5,23), (5,46), (6,4), (6,16), (6,23), (6,46)\}$$

Define a relation $R = \{(a,b) \mid a \in A, b \in B \text{ and } (a,b) \in AxB \mid a^2 < b\}$?

As $2^2 < 16,23$ and 46, $3^2 < 16,23$ and 46, $4^2 < 23$ and 46. We have the set of ordered pairs such that $a^2 < b$ is:

$$R = \{(2, 16), (2, 23), (2,46), (3, 16), (3, 23), (3,46), (4, 23), (4,46), (5,46), (6,46)\}$$

Define a relation $S = \{(a,b) \mid a \in A, b \in B \text{ and } (a,b) \in AxB \mid a^2/b\}$? $S = \{(2,4), (4,4), (4,16), (6,4)\}$

Department of Computer Science

Chiniot-Faisalabad Campus

Question # 5: [5+3=8]

a) Consider the set $A=\{1,2,3\}$ with the relations $R=\{(1,1),(1,3),(2,1),(2,2),(3,1)\}$ and $S=\{(1,2),(2,1),(2,2),(3,3)\}$. Calculate the composition $R\circ S$ in matrix form. Finally convert the matrix into listing method (e.g. order pair).

Solution.

The relations R and S are represented by the following matrices:

$$M_R = egin{bmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 0 & 0 \end{bmatrix}, \;\; M_S = egin{bmatrix} 0 & 1 & 0 \ 1 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$

To find the composition of relations $R \circ S$, we multiply the matrices M_S and M_R :

$$M_{R\circ S} = M_S imes M_R = egin{bmatrix} 0 & 1 & 0 \ 1 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} imes egin{bmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 0 & 0 \end{bmatrix} = egin{bmatrix} 0+1+0 & 0+1+0 & 0+0+0 \ 1+1+0 & 0+1+0 & 1+0+0 \ 0+0+1 & 0+0+0 & 0+0+0 \end{bmatrix} = egin{bmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \ 1 & 0 & 0 \end{bmatrix}.$$

We used here the Boolean algebra when making the addition and multiplication operations.

Hence, the composition of relations $R \circ S$ is given by

$$R \circ S = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,1)\}.$$

b) Let say we have two sets A and B A={1,2,3} and B={0,1,2,4}, there are multiple ways to represent a relation. Let say we want to represent a relation R which consist of all order pairs (x,y) where xεA and yεB and x≤y. Show all representaitons of given relation R.

Department of Computer Science

Chiniot-Faisalabad Campus

Question # 6: [5+3=8 Points]

a) Let R be the relation on the set of ordered pairs of positive integers such that $((a,b), (c,d)) \in R$ if and only if ad=bc. Show that R is an equivalence relation.

```
    A is the set of ordered pairs of positive integers.
        A = {(1, 1), (1, 2), (1, 3), ...}
        R = {((a, b), (c, d)) | ad = bc}
        (i) Reflexivity:
            Original - ∀a∈A ((a, a)∈R)
            New - ∀(a,b)∈A (((a, b), (a, b))∈R)
            ((a, b), (a, b))∈R means ab = ba which is true.
            Therefore, R is reflexive.
        (ii) Symmetry:
            Original - ∀a,b∈A ((a, b)∈R → (b, a)∈R)
            New - ∀(a, b), (c, d)∈A (((a, b), (c, d))∈R → ((c, d), (a, b))∈R)
            ((a, b), (c, d))∈R means ad = bc ≡ da = cb ≡ cb = da
            Therefore, ((c, d), (a, b))∈R
            Hence, R is symmetric.
```

```
(iii) Transitivity:
Original - \forall a,b,c \in A (((a, b) \in R \land (b,c) \in R) \rightarrow (a, c) \in R)
New - \forall (a,b),(c,d),(e,f) \in A (((a, b), (c, d)) \in R \land ((c, d), (e, f)) \in R)

((a, b), (c, d)) \in R means ad = bc \longrightarrow multiply 3 and 4

((c, d), (e, f)) \in R means cf = de \longrightarrow af = \frac{be}{s}. \frac{se}{s} = \frac{be}{s}

From 1 a = \frac{bc}{d} From 2 f = \frac{de}{c} af = be ((a, b), (e, f)) \in R

Hence, R is an equivalence relation.
```

b) Answer the following by considering congruence relation where notation is $a \equiv b \pmod{m}$ (Yes/Not)?

Question	Yes/Not	Reason why or why not?
15 ≡ 3 (mod 12)	Yes	15-3 is divisible by 12
10 ≡ -2 (mod 12)	Yes	10-(-2) is divisible by 12
10 ≡ 2 (mod 6)	No	10-2 is not divisible by 6
2 ≡ -3 (mod 15)	No	2-(-3) is not divisible by 15
39 ≡ 3 (mod 9)	Yes	39-3 is divisible by 9
39 ≡ 12 (mod 9)	Yes	39-12 is divisible by 9