N-MIXTURE MODEL WITH TEMPORAL TREND

Brian M. Brost

25 APR 2015

Model implementation

The file N.mixture.trend.sim.R simulates data according to the model statement presented below, and N.mixture.trend.mcmc.R contains the MCMC algorithm for model fitting.

Model statement

Let y_{it} be the i^{th} count of individuals during time period t, for i = 1, ..., m and t = 1, ..., T, and N_t be the true number of individuals at time t. Assuming the population is closed to mortality, recruitment, immigration, and emigration over the course of the m surveys conducted during any given time period,

$$y_{it} \sim \operatorname{Binom}(N_t, p_{it})$$

$$N_1 \sim \operatorname{Pois}(\lambda_1)$$

$$N_t \sim \operatorname{Pois}(\lambda_t), t = 2, \dots, T$$

$$\log(\lambda_t) = \theta N_{t-1}$$

$$\theta \sim \operatorname{N}(\boldsymbol{\mu}_{\theta}, \sigma^2)$$

$$\lambda_1 \sim \operatorname{Gamma}(r, q)$$

$$\log \operatorname{logit}(p_{it}) \sim \mathbf{W}_{it} \boldsymbol{\alpha}$$

$$\boldsymbol{\alpha} \sim \operatorname{N}(\boldsymbol{\mu}_{\alpha}, \tau^2 \mathbf{I}).$$

Note that an identity link for the model on N_t could also be used, i.e., $N_t \sim \text{Pois}(\theta N_{t-1})$.

Posterior distribution

$$[N_1, N_{\{t>2\}}, \boldsymbol{\alpha}, \lambda_1, \theta | \mathbf{Y}, \mathbf{W}] \propto \prod_{t=1}^{T} \prod_{i=1}^{m} [y_{it} | N_t, p_{it}] [N_1 | \lambda_1] [N_{\{t>2\}} | \theta] [\theta] [\lambda_1] [\boldsymbol{\alpha}]$$

Full conditional distributions

Coefficients describing the effect of covariates on detection probability (α) :

$$[\boldsymbol{\alpha}|\cdot] \propto \prod_{t=1}^{T} \prod_{i=1}^{m} [y_{it}|N_t, p_{it}][\boldsymbol{\alpha}].$$

This full-conditional distribution does not have a known analytical form; therefore, sample \mathbf{p} using Metropolis-Hastings.

The true number of individuals during t = 1 (N_1) :

$$[N_1|\cdot] \propto \prod_{i=1}^{m} [y_{i1}|N_1, p_{i1}][N_1|\lambda_1]$$

$$\propto \prod_{i=1}^{m} \frac{(\lambda_1(1-p_{i1}))^{N_1-y_{i1}}}{(N_1-y_{i1})!} e^{-\lambda_1(1-p_{i1})}.$$

This full-conditional is a little strange because $[N_1 - y_{i1}|\cdot] \propto \text{Pois}(\lambda_1(1-p_{i1}))$, which suggests there is one true abundance per replicate count during t=1. This is in contrast to the case in which only one observation exists per site, i.e., $[N_i - y_i|\cdot] \propto \text{Pois}(\lambda_i(1-p_i))$. Given that $[N_1|\cdot]$ lacks a clear analytical solution, sample N_1 using Metropolis-Hastings.

The true number of individuals during t = 2, ..., T - 1 (N_t) :

$$[N_t|\cdot] \propto \prod_{i=1}^m [y_{it}|N_t, p_{it}][N_t|\theta, N_{t-1}][N_{t+1}|\theta, N_t]$$

This full-conditional lacks an analytical solution; therefore, sample N_t using Metropolis-Hastings. Note, for time periods \tilde{t} in which observations are missing, the posterior predictive distribution for true abundance is:

$$[N_{\tilde{t}}|\cdot] \propto \prod_{i=1}^{m} [N_{\tilde{t}}|\theta, N_{\tilde{t}-1}][N_{\tilde{t}+1}|\theta, N_{\tilde{t}}],$$

where observations for time periods $\tilde{t}-1$ and $\tilde{t}+1$ are available and $N_{\tilde{t}-1}$ and $N_{\tilde{t}+1}$ are estimated as above.

The true number of individuals during $t = T(N_T)$:

$$[N_T|\cdot] \propto \prod_{i=1}^m [y_{iT}|N_T, p_{iT}][N_T|\theta, N_{T-1}]$$

This full-conditional lacks an analytical solution; therefore, sample N_T using Metropolis-Hastings.

Rate of the process model for N_1 (λ_1):

$$\begin{split} [\lambda_{1}|\cdot] & \propto & [N_{1}|\lambda_{1}][\lambda_{1}] \\ & \propto & \frac{\lambda_{1}^{N_{1}}e^{-\lambda_{1}}}{N_{1}!}\lambda_{1}^{r-1}e^{-\lambda_{1}q} \\ & \propto & \lambda_{1}^{N_{1}}e^{-\lambda_{1}}\lambda_{1}^{r-1}e^{-\lambda_{1}q} \\ & \propto & \lambda_{1}^{N_{1}+r-1}e^{-\lambda_{1}(1+q)} \\ & = & \operatorname{Gamma}\left(N_{1}+r,1+q\right). \end{split}$$

Population growth rate (θ) :

$$[\theta|\cdot] \propto [N_t|\theta, N_{t-1}][\theta]$$

This full-conditional lacks an analytical solution; therefore, sample θ using Metropolis-Hastings.