

Mecânica Clássica

1ª aula Prática

Sumário:

Tratamento de dados

Bibliografia:

Apontamentos de Instrumentação e Análise de dados Experimentais

Sumário

- 1. Medições e erros experimentais
 - 1.1 Directas
 - 1.2 Indirectas
 - 1.3 Combinação e propagação dos erros
- 2. Avaliação de Resultados
 - 2.1 Precisão e Exactidão
- 3. Tratamento de dados experimentais
 - 3.1 Grandeza função de outras, não independentes
 - 3.2 Método dos mínimos desvios quadrados (MMDQ)

Instrumentação e Análise de Dados Experimentais

Ano Lectivo de 2019/20

[2] M.C.Abreu, L.Matias e L.F. Peralta, *Física Experimental Uma introdução*, 1ªed, Editorial Presença, Lisboa, 1994.

(29 exemplares na biblioteca da UA)

Recomendações de leitura:

- Introdução (págs. 17-23)
- Leitura 1 Aquisição, Análise e Tratamento de Dados (págs. 85-98, 107-116, 121-130)
- Tabelas (págs. 275-286)
- [5] N.C. Barford, Experimental measurements: Precision, Error and Truth, 2ªEd, John Wiley & Sons, New York (1985). (1 exemplar na biblioteca da UA)
- [6] G. Almeida, Sistema Internacional de unidades (SI)-Grandezas e Unidades Física, terminologia, símbolos e recomendações, 1ªEd., Plátano Editora, Lisboa (1988).

Exemplo de experiência

1. Objectivo

Medir comprimento de pista de bicicletas

2. Método experimental. Procedimentos

Usando uma bicicleta apetrechada com odómetro (medidor de distância), cada um de três ciclistas pedala entre os traços que marcam início e fim da pista.

Cada ciclista faz 10 ensaios, registando o valor indicado em cada ensaio.

3. Dados

Ver Tabela 1., a seguir.

4. Tratamento de dados

3. *Dados*. *Continuação*

Tabela 1: Comprimento da pista medido com odómetro

Ciclista A	Ciclista B	Ciclista C
$x \pm 0.1$ (m)	x = 0.1 (m)	x = 0.1
600.2	620.0	589.7
593.3	612.4	585.2
582.6	570.0	598.3
584.6	600.8	597.7
586.2	607.2	592.0
590.6	585.8	590.3
591.6	603.8	590.6
587.3	588.6	587.0
593.2	596.4	583.6
592.3	582.2	585.1

erro instrumental ou de leitura

Tabela 2

4. Tratamento de *Dados*

Desvio de cada medida em relação à média

	Ciclista A		Cicl	ista B	Ciclista C		
	x ± 0.1 (m)	$ \begin{pmatrix} d = x - \overline{x} \\ (m) \end{pmatrix} $	x ± 0.1 (m)	$d = x - \overline{x}$ (m)	x ± 0.1 (m)	$d = x - \overline{x}$ (m)	
	600.2	+10.0	620.0	+23.3	589.7	-0.3	
	593.3	+3.1	612.4	+15.7	585.2	-4.8	
	582.6	-7.6	570.0	-26.7	598.3	+8.3	
	584.6	-5.6	600.8	+4.1	597.7	+7.7	
	586.2	-4.0	607.2	+10.5	592.0	+2.0	
	590.6	+0.4	585.8	-10.9	590.3	+0.3	
	591.6	+1.4	603.8	+7.1	590.6	+0.6	
	587.3	-2.9	588.6	-8.1	587.0	-3.0	
	593.2	+3.0	596.4	-0.3	583.6	-6.4	
	592.3	+2.1	582.2	-14.5	585.1	-4.9	
$\overline{\chi} = \frac{\sum_{i=1}^{N} x_i}{N}$	590.2		596.7		590.0		

Se N (número de medições de cada ciclista) for pequeno (digamos, N < 10), o valor experimental (X) do comprimento da pista obtido por cada ciclista é dado pela média (\bar{x}).

A incerta de X é dada pelo maior entre os desvios ($\{Max\ d_i\}$) e o erro de leitura. Neste caso:

$$X \pm \Delta X = \bar{x} \pm \{Max \ d_i\}$$

O valor experimental duma grandeza (X) nem sempre é dado pela média (\bar{x}) de medições directas.

Quando se tem um número maior de medidas (digamos, $N \ge 10$), é mais razoável fazer um tratamento estatístico mais sofisticado.

Aumentando o número de medidas

Distribuição normal ou gaussiana

Distribuição normal ou gaussiana

A distribuição de Gauss descreve o comportamento de um grande número de acontecimentos <u>aleatórios</u> com pequenas oscilações à esquerda e à direita do valor esperado.

É simétrica e apresenta uma forma característica de sino, dada por um expressão do tipo

$$P(x) dx = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

σ, o **desvio padrão**, dá informação sobre a dispersão das medidas em torno do valor médio

Amostra

(N pequeno)

Amostra: $\{x_i, \dots, x_N\}$

Média

 \bar{x}

Valor Médio da amostra:

Desvio-padrão

$$\sigma_{N-1}$$

 $\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_1 + \dots + x_N}{N}$

Quando N<10, utiliza-se $\sigma_{\mathit{N-1}}$, que mede

a PRECISÃO da experiência

Desvio-padrão da amostra:

$$\sigma_{N-1} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N-1}}$$

Desvio-padrão da média ≡ Erro-padrão da amostra:

$$\Delta \bar{x} = S_{N-1} \equiv \frac{\sigma_{N-1}}{\sqrt{N}}$$

A MELHOR ESTIMATIVA do "verdadeiro valor" da grandeza que conseguimos numa experiência é *X*:

$$X \pm \Delta X = \bar{x} \pm \Delta \bar{x} = \bar{x} \pm S_{N-1}$$

Mas quem sabe qual é "verdadeiro" valor da grandeza?!

Designemos por V o valor esperado da grandeza.

V também é afetado de uma incerteza, que geralmente é menor que a incerteza experimental obtida nos laboratórios comuns.

Exemplo: carga do eletrão

$$V \pm \Delta V = (1,60217662 \pm 0,00000001) \times 10^{-19} \,\mathrm{C}$$

valor tabelado (que também é experimental!)

$$X \pm \Delta X = (1.6 \pm 0.1) \times 10^{-19} \text{ C}$$

valor experimental obtido num lab de ensino

A qualidade de um resultado experimental $X \pm \Delta X$ é avaliada pela:

 incerteza experimental (pretende-se que ΔX/X seja pequena)

proximidade com o valor esperado
 V (pretende-se que |V - X| seja pequena)

PRECISÃO

EXACTIDÃO ("accuracy")

Mede "espalhamento" das medidas

Mede a diferença entre X e V

Erros aleatórios

Reprodutibilidade

Algarismos significativos

Expressa em percentagem

Erros sistemáticos

Falhas do modelo utilizado

Como se avalia a precisão? Que significa "pequeno $\Delta X/X$ "?

No âmbito dos laboratórios de ensino, tipicamente considera-se que um <u>erro relativo</u> $\Delta X/X \leq 10\%$ (que corresponde a uma <u>precisão</u> \geq 90%) é aceitável.

Exemplo: carga do eletrão

$$X \pm \Delta X = (1.6 \pm 0.1) \times 10^{-19} \text{ C} \Rightarrow \Delta X/X = 6 \%$$

Este resultado tem um precisão aceitável no âmbito dos laboratórios de ensino. Mas não quando comparado com o valor tabelado:

$$V \pm \Delta V = (1,60217662 \pm 0,00000001) \times 10^{-19} \text{ C} \Rightarrow \Delta V/V = 6 \times 10^{-7} \%$$

Como avaliar a exactidão? O que significa "|V - X| pequena"?

Exemplo: relógio de ponteiros

Se não se atrasa nem se adianta, é um relógio de precisão.

Se for um relógio de precisão e estiver regulado para a hora de verão, no inverno nunca indica a hora exata.

Se estiver "parado" (sem pilhas), dá sempre a hora "exata" duas vezes por dia.

Duas condições, simultaneamente
$$\begin{vmatrix} \Delta X \\ \overline{X} \end{vmatrix} \text{ o mais pequeno possível } V \\ |V-X| < \Delta X \\ X-\Delta X \qquad X \qquad X+\Delta X$$

Para um resultado ser exacto, tem de ser preciso.

Mas pode ser preciso e não ser exacto.

Algarismos Significativos

Determinação do valor de uma grandeza:

Medição direta

Cálculos sobre grandezas medidas.

Valor numérico final

deve exprimir a

imprecisão inerente:

deve conter apenas

algarismos (fisicamente) significativos

Algarismos Significativos: aqueles cujos valores são conhecidos com certeza, mais o primeiro coberto pelo erro.

Exemplo: Ciclista A

Calculadora:
$$\begin{cases} \bar{x} = 590,19 \text{ m} \\ \Delta \bar{x} = S_{N-1} = 1,628462124 \text{ m} \end{cases}$$

Resultado final: $590 \pm 2 \text{ m}$

Contagem de algarismos significativos:

- Da esquerda para a direita
- Começa-se pelo primeiro algarismo não-nulo
- Termina-se no primeiro algarismo afetado pela incerteza
- Zeros à esquerda do símbolo decimal não têm significado físico.
- Zeros à direita do símbolo decimal têm significado físico

Valor	Nº de algarismos significativos	Observações
102 s	3	a) Representação ambigua pois
40 mm	2 ou 1 (?) ^{a)}	o zero pode servir só para posicionar a vírgula (Não deve
4.0 <i>cm</i>	2	ser usada).
4 cm	1	
4×10^{1} mm	1	b) A redução de unidades deve
0.520 s	3	ser feita usando potências de base 10, para garantir que o n.
0.061 <i>s</i>	2	de algarismos significativos não é alterado.
2.48 kg	3 ^{b)}	
$2.48 \times 10^{3} g$	3 ^{b)}	
2480 g	3 ou 4 (?) ^{a)}	
2.480 × 10 ⁻³ kg	4	
50000 m	1 ou 5 (?) a)	
50.0 ×10 ³ km	3	

Arredondamentos

- Ao truncar um número, se o primeiro algarismo desprezado for > 5, o ultimo algarismo significativo que se considera deve ser incrementado de uma unidade e se for <5 não sofre alteração.
- Se o algarismo à direita do último algarismo significativo a reter for = 5 e não existem ou são zero todos os algarismos seguintes, este, aumenta de uma unidade no caso de ser ímpar.
- Nos cálculos intermédios, consideram-se sempre o maior número de algarismo possível para evitar erros de truncatura.

Exemplo:

Se se pretender indicar a área de um disco com 5 algarismos significativos, não se deve usar $\pi = 3,14$.

Exercício

Fazem-se 15 medidas do comprimento de um telemóvel com uma régua graduada em milímetros.

Qual o comprimento do telemóvel?

Erro de leitura: 0,5 mm ⇒ medidas podem ter algarismos significativos até à casa das décimas de mm.

Dados (cm):

15,20	15,20	15,25	15,15	15,35
15,25	15,20	15,25	15,15	15,20
15,10	15,30	15,10	15,25	15,25

Exercício (cont.) Cálculos:
$$\bar{x}=15,2133$$
 cm
$$\sigma=\sigma_{N-1}=6,2396\times 10^{-2} \text{ cm}$$

$$\Delta\bar{x}=S_{N-1}=\frac{\sigma_{N-1}}{\sqrt{N}}=0,01611 \text{ cm}$$

Resultado final: $15,21 \pm 0,02$ cm

Comentários:

Ao repetir a experiência 15 vezes ganhou-se precisão:

1 medida
$$\Delta X = 0.05$$
 cm (erro de leitura)

15 medidas $\Delta X = 0.02$ cm (erro estatístico)

• A dispersão dos valores tabelados ($\sigma = \sigma_{N-1} = 0.06$) é maior do que o erro de leitura de uma só medição e, portanto, existem causas aleatórias que influenciam a medição. Os resultados podem ser melhorados repetindo a experiência.

Relações entre grandezas

Um dado fenómeno pode depender de diversas grandezas — p. ex., o período de oscilação de pêndulo simples depende de 2:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

As grandezas podem estar correlacionadas:

Positivamente

 (as grandezas variam no mesmo sentido)

Gráficos

Seu interesse:

- <u>Visualizar</u> como uma grandeza varia em relação a outra, evidenciando:
 - Se a relação é linear ou não.
 - Se a variação é rápida ou lenta.
 - Se existem descontinuidades
 - Se há grandes oscilações no comportamento dos valores experimentais.
- Determinar aproximadamente valores intermédios (interpolar) ou para além da gama de valores (extrapolar).

Qual a linha (função matemática) que descreve o comportamento dos pontos?

t±∆t (s)	T±ΔT (°C)	T/°C ↑								
2.0±0.6	2.0±0.5	5-						-	┝╶	-
5.0±0.6	2.5±0.5	4-			ě	j	-	-	7-1	
6.6 ± 0.6	3.2±0.5	3-		i	+	- 1				
9.0±0.6	3.4±0.5		-1	- +	- '					
11.0±0.6	3.9±0.3	2 -	1							
13.0±0.6	4.6±0.3	1-								
14.8±0.6	4.8±0.3	0 1	1 2	4	6	8	10	12	14	t/s

Podem considerar-se várias possibilidades...

A função que melhor descreve o comportamento dos pontos experimentais obtém-se ANALITICAMENTE, a partir da lei física que descreve o fenómeno (p. ex., $T=2\pi\sqrt{l/g}$).

Se não se conhecer a lei física, arbitra-se uma função para a relação entre x e y, determinando-se os parâmetros dessa função através de um processo estatístico de AJUSTE (em Inglês, fit).

Situações mais frequentes de ajustes:

- determinar o melhor valor de uma grandeza medida várias vezes
- determinar a constante de proporcionalidade: y = kx
- estabelecer uma relação entre duas grandezas a mais simples é linear, y=mx+b
- determinar os parâmetros de uma relação não-linear (como $y=a+bx^2$ ou $y=ke^{\alpha x}$) fazendo primeiro uma linearização (transformação de variável): y=a+bz, com $z\equiv x^2$ ou $\ln y=\ln k+\alpha x$
- determinação de uma dependência funcional não-linearizável, do tipo

$$y = a + bx + cx^2$$

Quando a relação entre duas ou mais grandezas é linear, o processo de estabelecer uma equação que as relacione designa-se REGRESSÃO LINEAR.

Tendo em atenção os dados experimentais da figura, a relação funcional apresentada é do tipo linear e o bom senso aconselha a que se trace uma reta que minimize a soma dos desvios absolutos dos pontos em relação à reta traçada. Mas, analiticamente, isto é mais complicado do que minimizar a soma dos quadrados dos desvios.

A técnica mais vulgarizada para determinar os parâmetros que melhor adaptam a equação aos valores disponíveis é o **MÉTODO DOS MÍNIMOS QUADRADOS**.

3. Tratamento de dados experimentais Exemplo utilizando o Excel. Está disponível também o Sci.Davis)

O Excel possui funções para cálculos estatísticos que nos permitem obter facilmente os parâmetros da reta de ajuste.

Em português: proj.lin(y,x,verdadeiro,verdadeiro) ou

proj.lin(y,x,1,1)

Em inglês: linest(y,x,true,true) ou linest(y,x,1,1)

Selecionar 6 células (3x2 como na figura).

carregar em

Aparecerá, como na <u>figura abaixo</u>, o menu "function arguments" onde se tem de inserir os argumentos da função.

Para tal tem de se preencher os vários campos, onde "known_y's" e "known_x's" é a identificação da localização na folha de cálculo dos valores que definimos para Y e X respetivamente.

Nos argumentos "const" e "stats" é necessário colocar "true" (ou "verdadeiro" em pt).

De seguida carregue em "OK".

colocar o cursor na linha de comando e carregar em

Deverá ficar com as células seleccionadas preenchidas:

f_{x} {=LINEST(E2:E11,D2:D11,TRUE,TRUE)}								
D E F G			G	Н	1	J		
X	у							
0.01	0.000441			4.043742	-0.00606			
0.02	0.080404			0.194707	0.012081			
0.03	0.1296			0.98179	0.017685			
0.04	0.160809					J		
0.05	0.2209							
0.06	0.241213							
0.07	0.281416							

m	4.043742	-0.00606	b
Δm	0.194707	0.012081	Δb
R^2	0.98179	0.017685	

$$\Delta m = |m| \sqrt{\frac{\left(\frac{1}{r^2} - 1\right)}{N - 2}}$$

Propagação de erros

G: grandeza que só podemos determinar medindo outras grandezas

$$x, y, z, \dots$$
: $G = f(x, y, z, \dots)$

Exemplo: volume de uma sala

$$V = (comprimento) \times (largura) \times (altura) = c \times l \times a$$

Essas outras grandezas são conhecidas com uma determinada incerteza:

$$x \pm \Delta x, y \pm \Delta y, z \pm \Delta z, ...$$

Estas incertezas vão "propagar-se" até G, ou seja, ΔG depende de Δx , Δy , Δz , ...

Mas de que maneira? Qual é o "peso" de Δx , Δy , Δz , ... em ΔG ?

$$\Delta G = \text{(maneira como } G \text{ depende de } x) \times \Delta x + + \text{(maneira como } G \text{ depende de } y) \times \Delta y + \cdots$$

A "maneira como G depende de x" representa-se por $\frac{\partial G}{\partial x}$, a derivada <u>parcial</u> em ordem a x. Calcula-se aplicando as regras de derivação em ordem a uma determinada variável, mas tratando as outras variáveis como constantes.

Exemplo: volume de uma sala

$$V = c \times l \times a$$

$$\frac{\partial V}{\partial c} = l \times a; \frac{\partial V}{\partial l} = c \times a; \frac{\partial V}{\partial a} = c \times l$$

$$\Delta V = (l \times a)\Delta c + (c \times a)\Delta l + (c \times l)\Delta a$$

Mas, em geral, as derivadas parciais podem ser positivas ou negativas... Que implicações?

$$\Delta G = \left| \frac{\partial G}{\partial x} \right| \Delta x + \left| \frac{\partial G}{\partial y} \right| \Delta y + \left| \frac{\partial G}{\partial z} \right| \Delta x + \cdots$$

LIMITE SUPERIOR DO ERRO

 Se o número de medições for pequeno (no limite, apenas uma medição)

A incerteza de x, y, z, etc. é dada (como já sabemos) por:

- Erro de leitura
- Maior desvio, $\{Max d_i\}$

A incerteza de G é dada pelo limite superior do erro.

Número de medições grande (digamos, $N \ge 10$)

Pode-se usar o limite superior do erro ou usar o erro estatístico ou erro-padrão:

$$\Delta G = \sqrt{\left|\frac{\partial G}{\partial x}\right|^2 \Delta x^2 + \left|\frac{\partial G}{\partial y}\right|^2 \Delta y^2 + \left|\frac{\partial G}{\partial z}\right|^2 \Delta z^2 + \cdots} \quad \text{ERRO-PADRÃO}$$

N.B.: Estamos a usar Δ para indicar quer o erro-padrão, quer o limite superior do erro, quer o erro estimado.

$$G = x \pm y$$

$$\Delta G = \Delta x + \Delta y$$

$$\Delta G = \sqrt{\Delta x^2 + \Delta y^2}$$

$$G = x \cdot y$$
$$G = \frac{x}{y}$$

$$\frac{\Delta G}{|G|} = \frac{\Delta x}{|x|} + \frac{\Delta y}{|y|}$$

$$\frac{\Delta G}{|G|} = \sqrt{\left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta y}{y}\right)^2}$$

$$G = x^n$$

$$\frac{\Delta G}{|G|} = |n| \frac{\Delta x}{|x|}$$

$$\frac{\Delta G}{|G|} = \sqrt{\left(n\frac{\Delta x}{x}\right)^2}$$

$$G = p \ln x$$

$$\Delta G = |p| \frac{\Delta x}{x}$$

$$\frac{\Delta G}{|G|} = \sqrt{\left(p\frac{\Delta x}{x}\right)^2}$$