Syntax and Semantics Exercise Session 3

Exercise 1

Consider the NFA N in the state diagram below.

1. Describe N. What are $Q, \Sigma, \delta, q_0, F$?

Solution:

2. Find an accepting computation (sequence of states) of N on the input aabba.

Solution: $q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_4 \xrightarrow{b} q_3 \xrightarrow{\varepsilon} q_4 \xrightarrow{b} q_3 \xrightarrow{a} q_1$

3. Which of the following inputs are accepted?

(a) aabbbba

Solution: Accepted

(b) abbabb

Solution: Rejected

(c) aaabab

Solution: Rejected

(d) abbbaab

Solution: Rejected

(e) abababa

Solution: Rejected

Exercise 2

Construct the state diagram for the NFA $N=(Q,\Sigma,\delta,q_0,F)$ where

Solution:

Which of the following inputs are accepted by this machine?

(a) 0011010

Solution: Rejected

(b) 0001110

Solution: Rejected

(c) 1010111

Solution: Accepted

(d) 1101011

Solution: Accepted

Exercise 3

Construct automata that recognize the following languages:

1. $L_1 = \{w \in \{0, 1\}^* \mid w \text{ has the prefix } 001 \text{ and the suffix } 00\} \cup \{\varepsilon\}$ Solution: 0, 1

Solution: start

3. $L_3 = \{w \in \{0, 1\}^* \mid w = \underbrace{00...0}_{2n} \text{ or } w = \underbrace{11...1}_{3n} \text{ for } n \ge 0 \text{ or } w \text{ contains substring } 101\}$

Solution:

Exercise 4

For each NFA given below, construct an equivalent DFA, where $\Sigma = \{a, b\}$.

 $(1) \qquad \text{start} \longrightarrow 1 \qquad a \qquad (2) \qquad \text{start} \longrightarrow 1 \qquad b$

(5) start \longrightarrow 1 2 (6) start \longrightarrow 1 b, ε

${\bf Solution:}$

Solution:

Only reachable states are shown

Exercise 5

Consider the following automata

1. Construct an automaton that recognizes $L(N_1) \cup L(N_2)$ Solution:

2. Construct an automaton that recognizes $L(N_1) \circ (L(N_2) \cup L(N_2))$ Solution:

3. Construct an automaton that recognizes $(L(N_1) \cup L(N_2)) \circ L(N_2)$ Solution:

4. Construct an automaton that recognizes $(L(N_1) \cup L(N_2)^*) \circ L(N_2)$ Solution:

