Big Data a.a. 24/25

Prof. Alfredo Pulvirenti

Obiettivi del corso

- Comprendere i concetti fondamentali di Big Data
- Esplorare le tecnologie e gli strumenti principali
- Acquisire competenze pratiche per l'analisi e la gestione di grandi volumi di dati

L'era dei dati

- Prodotti velocemente
- Eterogenei
- Potenzialmente ricchi di informazioni
- Volume, Velocità, Varietà, Veridicità, Valore

Big data: Qualsiasi processo di dati in cui la dimensione dei dati stessi è un problema: conservare, trasmettere, elaborare su scala.

Diversi aspetti dei Big Data

• Concetti spesso confusi perché coinvolgono diversi aspetti

Come interagire con grandi quantità di dati

- Supponiamo di dover analizzare 100 terabyte di dati.
 - Non siamo in grado di memorizzare tutto in una sola macchina
 - Non abbiamo la possibilità di processare questi dati in un tempo ragionevole

Scale-up	Scale-out
Key idea	Key idea
Add more memory, processors	Add more (cheaper) nodes
Advantages	Advantages
√ Less energy consumption	✓ Cheaper
√ Less expense on cooling systems	√ Fault tolerance possible
√ Easier to implement solutions	√ Easy to grow
Disadvantages	Disadvantages
× Price	× More physical space
× No fault tolerance	× Energy costs (electricity and cooling)
× Limited hardware upgrades	× Network equipment required

High Performance Computing Vs Big Data Computing

- HPC possiamo immaginare ad un cluster di macchine indipendenti (nodi) connessi tramite una rete di comunicazione ad alta velocità che hanno accesso ad uno storage centralizzato.
- Ogni nodo ha una CPU multicore e la sua RAM e HD.
- Ogni applicazione che viene eseguita su un nodo accede alla sua RAM (non quella degli altri nodi), parliamo di architettura a memoria distribuita.

Architettura HPC semplificata

HPC

• Se abbiamo diversi computer connessi dobbiamo implementare programmi distribuiti e paralleli.

• I nodi:

- Nodo master si occupa dell'orchestrazione e comunicazione
- Nodi worker si occupano del calcolo
- Un modo classico per interagire con distributed computing è MPI (Message Passing Interface).

Architettura dei Sistemi Big Data

Big data	HPC
Focus on data-intensive jobs	Focus on computation-intensive jobs
Hardware failure common	Surprised by hardware failure
Code: data science, graphs	Code: simulation, optimization
Usually mix CPU/GPU and data	Mix CPU/GPU
Job moved to where the data is located	Data moved to where it will be processed
SIMD model:a data parallelism	SIMD/MIMD ^b model (more general parallelism)
Commodity hardware acceptable	Needs specialized hardware

Applicazioni dei Big Data

- Settori che utilizzano Big Data:
 - Sanità,
 - Finanza,
 - Marketing,
 - Industria, etc.

Alcuni esempi

- Sanità: Analisi predittiva per diagnosi precoci, gestione delle pandemie, personalizzazione delle cure
- Finanza: Rilevamento delle frodi, algoritmi di trading ad alta frequenza, analisi del rischio creditizio
- Marketing: Pubblicità mirata basata su dati comportamentali, personalizzazione dell'esperienza utente, analisi delle tendenze di mercato
- Industria: Manutenzione predittiva, ottimizzazione delle catene di approvvigionamento, automazione basata su Al

Sanità

Teconlogie

- Hadoop e l'ecosistema (HDFS, MapReduce, YARN)
- Apache Spark e il calcolo distribuito
- Strumenti NoSQL (MongoDB, Cassandra, HBase)

Cosa impareremo?

Impareremo a analizzare diversi tipi di dati:

high dimensional

graph

labeled

text

Impareremo a usare diversi modelli di computazione e tecnologie:

MapReduce

Single machine in-memory

Spark

Che problem risolveremo?

Probelmi della vita reale:

Recommender systems

Market Basket Analysis

Spam detection

Duplicate document detection

Impareremo diverse "metodologie":

Linear algebra (SVD, Rec. Sys., Communities)
Optimization (stochastic gradient descent)
Hashing (LSH)

..

Tutto assieme

High dim. data

Locality sensitive hashing

Dimensionality reduction

Graph data

PageRank, HubAuth, Network metrics

Community Detection

Spam Detection

Graph Mining

Online and text data

Web advertising

Text mining

Apps

Recommender systems

Association Rules

Knowledge graph generation

Programma /1

Sistemi di raccomandazione:

- Collaborative filtering,
- Modelli a semantica latente
- Network based inference
- Modelli ibridi

Map-Reduce:

- Concetti, motivazioni e algoritmi:
- conteggio parole documenti, prodotto vettore/matrice; Prodotto matrice/matrice; Join; Group By
- Beyond map-reduce: Spark

Programma /2

Ricerca di similarità su alte dimensioni:

- Shingling
- Min-Hashing
- Locality Sensitive Hashing (LSH)
- Min-LSH
- Applicazioni

Dimensionality reduction:

- PCA
- SVD
- CUR
- Proiezioni random e Teorema di Johnson-Lindenstrauss

Link Analysis:

- PageRank e sue estensioni
- Link spam
- Hub-Authorities
- Metriche per l'analisi di reti
- Applicazioni su Map-Reduce

Programma /3

Web Advertising:

- Algoritmi online
- Adword e sue implementazioni

Graph mining e network analysis:

- Network models
- community detection: overlapping communities
- Applicazioni
- Graph Neural Networks
- Knowledge graph generation

Text mining

- TF.IDF, Bag-Of-Word,
- Entity annotation based on AI
- Applicazioni

https://colab.research.google.com/

Informazioni

Contatti

- Prof. Alfredo Pulvirenti
 - Stanza 35 terzo blocco, Dipartimento di Matematica e Informatica
 - Tel. 095-7383087
 - e-mail: <u>apulvirenti@dmi.unict.it</u>
 - Homepage: http://www.dmi.unict.it/~apulvirenti/
 - Materiale: http://studium.unict.it

Ricevimento

• Mercoledi' 11-13 (in presenza)

Logistica

• Course website:

http://studium.unict.it

- Slide
- Esercizi, soluzioni
- Letture

- Libri
 - Mining of Massive Datasets, Leskovec, Rajaraman, Ullman, Free online: http://www.mmds.org
 - Large-Scale Data Analytics with Python and Spark Isaac Triguero, Mikel Galar
 - Introduction to Data Mining, Tan, Steinbach, Kumar, Pearson Ed.
 - Data Mining: Concepts and Techniques, Han, Kamber, Morgan Kaufmann Ed.

Communicazioni

Studium

- email:
 - apulvirenti@dmi.unict.it

Messaggi sul corso saranno pubblicati su studium

Prerequisiti

Algoritmi

Programmazione dinamica, strutture dati

Basic probability

• Momenti, distribuzioni, MLE, ...

Programmazione

• C++/Java/R ecc. saranno utili

Esame

Scritto: 25%

Progetto: 75% (da consegnare entro 60 giorni dal superamento dello scritto)

Attività laboratoriale svolta in aula 3 punti extra