

								1										
1,2	2.3		The	,	Thre	e ·	- 7	S										
•	H	ien	arc	hu				div	idiv	9	a	Su	sten	7	into	N	odu	les
				0						4		0				٤		103
6	M	- d.,	100	+				-11				0.		1-0				
	1-10) acu	uur '	ity			W	en-	de	THE	d	(1)	1000	rles	•			
0	Ke	egul	ari	ty	. –	->	V	nito	m	ity	0	MOI	19	M	odu	ules		
8	(.	2		TH	F	7	1G	ITA	-1	А	RC-	TRA	cT	an				
	11) .			_	1	(0.				103							
4.				,					,									
(h	e	ami	MM		ot	Tu	rfor	ma	tio	2	D	•						
			D) =	(0	92	V	bit	S			(N	di,	stinā	t	stat	es)	
	e. a		bino		(D=	- lo	000) -	_ !	L	bite	(;	C	Only	2110		
		1	المنا	" 3		inc	- 10.00	4	-10					C		حود		
			01 (, O		INC	OI W	וסכן וכ	77 \ .									
(, 4	4,4		By	tes	ا ر	Vip	Hes		and		All	+	hat	70	25			
		8	bit	· 2		1	by	te.	=		15t	P	oss	ibil	itie	s.		
		4	bit	ts:		1	ทำไ	oble	=					bili				
												T						
0	0	1		0		1			1									
(One			ade			_	•	1	hì	pple							
	One Two			ade			,	» →	1	hì L		te						

64-bit architecture processor 1 word = 64 bits. 210 = 1 Filo = 103 220 = 1 million = 106 $2^{30} \simeq 16$ billion = 10^9 \$1.5 LOGIC GATES SI.G. BENEATH THE DIGITAL ABSTRACTION (e.g.) ov => 0 (sv => 1)What about 2.6 V? 4.99 V ? 1.6.1 Supply Voltage. Vpp =5V, 3.3V, 2.5V, ... got lower. 1,6,2 Logic Levels. The mapping of continuous to discrete value is defined by logic levels.

Logic family	V	PD	VIL	VIH	Vol	Vom	
TTL	5 (5.29	5-4.75)	0.8	2.0	0.4	2.4	
CIMOS	5 (4.5		1,75	3,15	0,33	3,84	
LVTTL	3,3 (3	-3.6)	0,8	2.0	0.4	2.4	
LVCMOS	3,3 (3-3.67	0,9	1,8	0.36	2.7	
		1			/		
Сомр	atibilit	y of	Logic	Fount	lies		
			Rece	eiver			
Driver	TL	CMos		LVTTL	LV	CMOS	
	OK	No		MAYBE		AYBE	
CMoS	OK	645		MATBE	M	AYBE	
LVTTL	OK	No		ok		ok	
LVCMOS	0(<	No		ok		ok.	