Phase velocity, Group velocity + Fourier transforms

It The simplest solutions to wave equations (for constant coefs) are plane waves $u(x,+) = e^{i(k \cdot x - w \cdot t)}$

where w(K) is the dispersion relation

example:
$$W = \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial x^2}$$

· W = + 3 sin (cat sin (kax)) for center-difference:

o for 1d Schrödiger equation: $-\frac{\hbar^2}{2m}\frac{\partial^2 h}{\partial t^2} = i\hbar\frac{\partial h}{\partial t} \Rightarrow \frac{\hbar}{2m}k^2 = \omega$

* Is Vp a "useful" velocity?

- a planewave is in Anitely extended in space.

=> can never be said to "leave" or "arrive" anywhere

=> traditional understanding of velocity as "travel time" is questionable

- i.e. planewaves, by themselves, cannot transmit information

* Instead, we want to consider a wave packet ("pulse")

- to understand the speed of which a wavepacket travels (can truly "leave"/"arrive"/ carry info.)

we need to write it as a

superposition of planewaves = Fourier transform

•
$$\hat{f}(k) = \delta(k-k_0) \iff f(x) = \frac{1}{\sqrt{2\pi}} e^{ik_0x}$$

$$\int_{-\infty}^{\infty} e^{\pm i(k-k_0)x} dx = 2\pi \delta(k-k_0)$$

$$f'(x) \longleftrightarrow ik \hat{f}(k)$$

$$f_n(x) \leftarrow -k_s \dot{f}(k)$$

$$e^{-ikx_o} \hat{f}(k) \longleftrightarrow \hat{f}(x-x_o) \qquad \text{also:} \\ f(x)e^{ik_ox} \longleftrightarrow \hat{f}(k-k_o)$$

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(x)|^2 dx \quad unitarity / Parsevals theorem / Planchorel's theorem$$

$$(pf) \int |f(x)|^2 dx = \int dx \int \frac{1}{2\pi} \int dk \hat{f}(k) e^{ikx} \int \frac{1}{\sqrt{2\pi}} \int dk' \hat{f}(k') e^{ikx}$$

$$= \int dk \int dk' \hat{f}(k) \hat{f}(k') \int \frac{1}{2\pi} \int e^{-i(k-k')x} dx = \int dk |\hat{f}(k)|^2$$

$$= \delta(k-k')$$

* "Uncertainty principle":

(loosely) the more "localized" f(x) is in space,
the less "localized" f(k) in in frequency,

+ vice versa

ex:
$$f(x) = S(x-x_0)$$
 (localized at one point x_0)

ex:
$$f(x) = \begin{cases} e^{ik_0x} & |x| < \frac{w}{2} \\ 0 & |x| > \frac{w}{2} \end{cases}$$

$$= \frac{-w_2}{+i(k-k_0)w_2} - i(k-k_0)w_2$$

$$= \frac{-i(k-k_0)w_2}{-e}$$

$$= \sqrt{\frac{2}{\pi}} \frac{\sin[(k-k_0)\frac{W}{2}]}{(k-k_0)}$$

$$Sinc(z) = \frac{Sin(z)}{z}$$

N inverse of f with

narrow in k: consider a wavepacket wide in x,

suppose all Fourier components have $V_p = \frac{\omega}{\kappa} > 0$

I some dispersion relation

$$u(x,t) = \sqrt{2\pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{-(kx-\omega(k)+1)}$$

superposition of planewaves moving >>

* key point: since |f(k)| 20 except new to,

we only need to know w(k) near k.

=> Taylor expand: w(k) = w(ko) + w'(ko) (k-ko)

quantifying dispersion :

o consider pulse duration T= T/4 (width in time)

- pulse contains some range of KS: &k ~ 1

= range of w's DW ~ Dk · dw = v3 Dk = v3

= range of some velocities

after a distance L >> 0,

width in time at $\approx \frac{L}{V_{min}} - \frac{L}{V_{max}} = L a(t)$

 $\frac{dk}{dw} \qquad Slivert V_5 \qquad k's \qquad with fastest V_5$ $\frac{d}{dw} = L \frac{d^2k}{dw^2} \frac{1}{T}$

=> spreads ~ linearly with Ly dik (# (# (# 12)) !) + -

bandwidth

Where does dispersion come from?

in $c^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$, solution e for $w = ck = \frac{dw}{dk} = \frac{w}{k} = c$

= constant (no dispersion)

here, equation is scale-invariant: let $\tilde{x} = sx$ \Rightarrow same $e^2 \frac{\partial^2 u}{\partial \tilde{x}^2} = \frac{\partial^2 u}{\partial \tilde{x}^2}$

=> solution + speed cannot depend on scale (e.g. wavelensth (2T) or frequency w)

X	Dispersion arises when the system/solution
	responds differently at different spatial or time scales
	Sources of dispersion;
	1) Numerical dispersion: discretization of space/time sets ax + at length/time scales
	- solution is very different for
	Kax << 1 do 2 3 continuous equation 2 m/k
	Kax > 1 very discrete (very different from contin.)
	=) speed depends strongly on kex (or west) Vocation Vo
	2) Material dispersion
	real materials respond Fourier real materials
	differently at (convolution instantaneously
	different w theorem)
	c depend on w to stimuli
	ex "o index of reflection (optics) depends on w polarize instantly in response to \(\hat{E}\) Relds Tain bows!

convolutions; dispersion, & instantaneity: - consider solutions in frequency domain with eint. û(x,w) to scalar wave equation: $C^2 \frac{\partial^2 \hat{u}}{\partial x^2} = - \omega^2 \hat{u}$ + suppose C(W) depends on w (material dispersion) on what does equation look like in time domain? let 2(w) = c2(w) : $\hat{\chi}(\omega)$ $\frac{\partial^2 \hat{\Omega}}{\partial x^2} = -\omega^2 \hat{\Omega}$ "Succeptibility " Fourier , $u(x,t) = \lim_{n \to \infty} \hat{u}(x,w)e^{-iwt} dw$ $\chi(t) * \frac{\partial x}{\partial x^2} = \frac{\partial^2 n}{\partial t^2}$ Convolution in = non-instantaneous

Response (124 depent in 124)

in the part explicitly 3th | = IT S & (m) 22 e -int d m = I Jan | It I Kane dt'] e = \frac{1}{\sizm} \int \frac{1}{\delta t'} \fr = S(+'++"-+)