SN: 587623

PHYC30019 Astrophysics Course Summary

Ву

Braden Moore

Master of Science The University of Melbourne

0 Introduction

0.1 Housekeeping

0.1.1 Texts and References

• Maoz - Astrophysics in a Nutshell (free download apparently)

0.1.2 Marking system

- $3 \times 10\%$ workshops Weeks 4, 8 and 11
- 70% exam

0.2 Definitions

0.2.1 Astronomy

- Colects photons
- Some branches (small at current) investigates cosmic rays
- Some investigate gravitational waves
- Measured quantities for photons:
 - 2 anguar dimensions
 - Spectrum
 - Luminosity (distance)
 - Flux (amount)
- Objects investigated:
 - Planets, asteroids, comets (not investigated in class
 - stars, globular clusters, galaxies, gas clouds, clusters of galaxies, superclusters, active galactic nuclei

0.2.2 Astrophysics

- Applies physics and mathematics to understand the universe and its components (formation, structure, evolution, dstribution)
- Uses many branches of physics and maths
- Often things are measured imprecisely (order of magnitude)
- Computational processes are used (some high precision measurements are taken, e.g. for pulsars)
- Types of radiation processes:
 - thermal (emijng a blackbody), synchrotron, bremsstrahlung, Compton, inverse Compton

0.3 Photons

- Can be defined by frequency $c = \lambda \nu$
- Or energy $E = h\nu$
- Or temperature E = kT

Radiation	Wavelength	Frequency (Hz)	Energy/ photon (J)	Temperature (K)
Gamma rays	<0.01nm	>3x10 ¹⁹	>2x10 ⁻¹⁴	<109
X-rays	0.01 -10nm	$3x10^{19} - 3x10^{16}$	2x10 ⁻¹⁴ -2x10 ⁻¹⁷	109-106
Ultraviolet	10-300nm	3x10 ¹⁶ -10 ¹⁵	2x10 ⁻¹⁷ -7x10 ⁻¹⁹	106-5x104
Optical	300-700nm	10 ¹⁵ -4x10 ¹⁴	7x10 ⁻¹⁹ -3x10 ⁻¹⁹	5x104-2x104
Infrared	700nm-1mm	4x10 ¹⁴ -3x10 ¹¹	3x10 ⁻¹⁹ -2x10 ⁻²²	2x10 ⁴ -10
Microwave	1mm-1cm	3x10 ¹¹ -3x10 ¹⁰	2x10 ⁻²² -2x10 ⁻²³	10-1
Radio	1cm-30m	3x10 ¹⁰ -10 ⁷	2x10 ⁻²³ -7x10 ⁻²⁷	1-5x10 ⁻⁴

• Some wavelengths have more attenuation (decay) than others (see figure below)

0.3.1 Characteristic scales

- Cosmological
 - Scale of observable universe (light travelling over fininte universe lifetime) c/H_0
 - $-H_0$ is Hubble constant
- Parsec
 - $-1pc = 3.1 \times 10^{18} cm = 3.3 ly$
 - Defined based on universe size
 - Distance at which 1AU (distance to Sun) substends by an angle of one arcsecond

0.3.2 Copernican Principle

- We are not in a favoured position in the universe.
- Local physics is the same as distant physics
- Thus we rarely use "new" physics; exceptions are dark mater and dark energy

0.3.3 Cosmological Principle

- On average, the universe is homogeneous and isotropic at any time in its evolution
- Local measurements of isotropy and homogeny + Coperican principle imply the Cosmological principle
- Universe is homogenous to about 1% on a scale of 100Mpc
- We need to average over a large area to get this homogeny
- Isotropic = rotational invariant

0.4 Astronomical Observing

Four important dimensions to measure:

0.4.1 Angular resolution

- \bullet Smallest angle on the sky between two sources that telescopes can separate
- Point source produces diffraction pattern with central spot of radius $\theta = 1.22 \lambda/D$
- D =diameter of aperture (known as Airy disk)

0.4.2 Ligth-gathering power

- Larger area = more photons collected
- ILimited by ability to make large glass that doesn't deform

0.5 Integration time

- More sensitive if more pghotons are collected
- Hence, observe for longer
- Try to have minimal noise

0.5.1 Wavelength range

- Different telescopes observe different wavelengths
- Not all photons reach the Earth, so we have outer space telescopes

0.6 The Big Questions

- How did the universe begin and how will it evolve? the behaviour of matter, energy, space and time
- What is the nature of the stuff the universe is made of?
- Physics in extreme physical environments: how does matter behave?
- How did the universe we inhabit form stars, galaxies and planets?
- Are we alone: what do other planetary systems look like? i what is life?

1 Blackbody Emission

- We approximate a lot of things as blackbodies
- We assume we can model things by blackbody spectrums

$$u_{\nu} = \frac{8\pi\nu^2}{c^3} \frac{h\nu}{e^{h\nu/kT} - 1} \tag{1}$$

- ullet The blackbody spectrum is the energy density u_{ν}
- Units: $\operatorname{erg} \operatorname{cm}^{-3} \operatorname{Hz}^{-1}$.
- Flow of energy I_{ν} ; derivative of the energy density w.r.t solid angle and multiplying by c
- = energy passing through unit area per unit time

$$I_{\nu} = c \frac{du_{\nu}}{d\Omega} = c \frac{u_{\nu}}{4\pi} \tag{2}$$

$$=\frac{2h\nu^3}{c^2}\frac{1}{e^{h\nu/kT}-1}$$
 (3)

$$=B_{\nu} \tag{4}$$

- Called B_{ν} because blackbody
- ullet Flow of energy in a particular direction inside a BB is the intensity I_{ν}
- Related to outgoing flux by $df_{\nu} = I_{\nu} \cos \theta d\Omega$

Okay, I'll just try to summarize stuff as I go along. Very little on written on the board, at the moment.

- Flux we observe depends on luminosity and distance from star $(f_{\nu} = \frac{L_{\nu}}{4\pi^2})$
- Luminosity given by $L_{\lambda}d\lambda = 4\pi^2 R^2 B_{\lambda}d\lambda$
- Inverse square law:

$$\frac{f_1}{f_2} = \frac{d_2^2}{d_1^2} \tag{5}$$

1.1 Limiting Blackbody Spectra

At low frequencies,

$$h\nu \approx kT$$

$$B_{\nu} \sim \frac{2\nu^2}{c^2}kT$$

At high frequencies,

$$h\nu \approx kT$$

 $B_{\nu} \sim e^{-(h\nu/kT)}$

2 Stars: Observations

2.1 Stellar Attributes

- Distance
- Temperatures
- Luminosity
- Radius
- Mass

2.2 Distance

Parallex, arcsecond, parsec.

The Moon is 30 arcminutes across.

Distance from Earth to Sun = 1AU.

$$d = \frac{1AU}{\tan(\alpha)} \approx \alpha^{-1}AU \tag{6}$$

For small angles (and most stars have very small angles to us) we can use the small angle approximation

$$an \theta = \theta + O(\theta^3) \tag{7}$$

2.3 Temperature

Photon random walks its way out of a star (interacting with electrons). Could take \sim 3 seconds to get out straight, but actually takes thousands of years.

The photosphere is the point where star density is low so a photon can escape without interacting. This is the "surface".

2.3.1 Brightness temperature

Temperature measured at a particular frequency (equivalent temperature for a BB to generate that frequency)

2.3.2 Colour temperature

Planck spectrum is fitted to spectrum.

The colour of a star is the ratio of two different wavebands.

2.3.3 Effective temperature

By using

$$L = 4\pi r^2 \sigma T^4 \tag{8}$$

We can measure luminosity, if we know the radius we can find temperature.

2.4 Magnitudes

Definition of apparent magnitude:

$$m_{\lambda} = -2.5 \log_{10} f_{\lambda} + C \tag{9}$$

Mimics the human eye (which views things logarithmically). Colours are defined as the difference between magnitudes. UBV system = Ultraviolet, Blue, Visual.

$$B - V = m_B - m_V \tag{10}$$

More B = bluer. NOTE: independent of distances (they cancel out b/c logarithic difference).

2.5 Luminosity

Determined after finding distance d and flux f. Usually diefined in a waveband.

$$L = 4\pi d^2 f \tag{11}$$

Integrating over all wavelengths gives bolometric luminosity.

2.6 Radius

Difficult to measure stellar radi (because they're too far away); often use indirect measurements. Can also use occultation, interferometry and eclipsing binaries. Indirect way:

$$L = 4\pi r^2 \sigma T^4 \tag{12}$$

Only ~ 100 stars with known radii. Betelguese is the only star (apart from the Sun) with a directly measured radius; 0.125 arcsec. Recent data gives mass-radius relationship for low-mass stars as basically linear.

3 Stars: Observation II

3.1 Mass

To first order, the mass of a star tells you what sort of star you are looking at. Mass measurements are often used by binary systems

- Visual binary: two stars resolved implies long orbital timescales, so it takes a long time to get any information
- Astrometric binary: cannot resolve smaller object, so we observe orbital motion of brighter star; a "wobbling" orbit of a bright object implies there is another massive object there (this is how some exoplanets have been discovered)
- Eclipsing binary: orbital plane of binary is in line of sight; we measure parameters of an eclipse (most planets have been discovered using this)
- Spectroscopic binary: absorption or emission lines of both objects are observed in spectrum. Absorption lines will move with respect to each other (cannot resolve both stars, but can deduce the existence of a binary system)

We can investigate the curvature of an object in spacetime to determine mass, however this is a small perturbation so we often use other ways to determine mass.

3.1.1 Key attributes of a binary

The two stars orbit a common centre of mass; bigger object will be closer to the centre of mass.

$$r_1 M_1 = r_2 M_2 (13)$$

Kepler's 3 laws:

- 1. Both orbits are similar ellipses
- 2. Orbiting system conserves angular momentum; travels slower when further away etc.
- 3. When $\tau = \text{period}$, $\omega = \text{angular frequency}$, a = semi-major axis, M = masses, we have the equation:

$$\tau^2 = \frac{(2\pi)^2}{\omega^2} = \frac{a^3}{G(M_1 + M_2)} \tag{14}$$

3.1.2 Mass measurement

Assuming circular orbits (not elliptical),

Centre of mass:
$$r_1M_1 = r_2M_2$$

 $a = r_1 + r_2$
Equation of motion: $M_1\omega^2r_1\frac{GM_1M_2}{a^2}$
 $v_{1obs} = \langle v_1\rangle\sin(i)$
Projected velocities: $v_{2obs} = \langle v_2\rangle\sin(i)$
Final equation: $(M_1 + M_2)\sin^3(i) = \frac{\tau(\langle v_{1obs}\rangle + \langle v_{2obs}\rangle)^3}{2\pi G}$

Note: i = angle between plane of motion and line-of-sight. We get the final equation using Kepler 3.

In a visual binary, if the period is 'short', then the angular radii can be directly measured \Rightarrow the ratio of masses. Kepler's 3rd Law then gives the individual masses.

In a spectroscopic binary, we only measure the projected velocities, and so can only determine the sum of the masses up to a factor of $\sin^3(i)$.

When one of the stars has a much smaller mass, the equations can simplify.

Can use Doppler velocity of star with orbiting planet to measure planet mass (sensitive to a couple of metres, can determine mass of at lightest M_{Jupiter}).

3.1.3 Two monotonic empicial relationships

1. Mass-luminosity relationship:

$$\begin{split} \frac{L}{L_{\odot}} &= 0.35 \left(\frac{M}{M_{\odot}}\right)^{2.62} & M < 0.7 M_{\odot} \\ \frac{L}{L_{\odot}} &= 1.02 \left(\frac{M}{M_{\odot}}\right)^{3.92} & M > 0.7 M_{\odot} \end{split}$$

This implies more massive stars are much more luminous and 'burn' faster.

2. Hertzsprung-Russel Diagram

This is the diagram that pllots luminosity against temperature; see figure below.

3.2 Stellar Spectral Type

Stars can be divided into classes based on characteristics.

Spectral Class	Colour	B-V index	Temperature (K)		Examples
0	Blue-violet	035	28-50,000	ionised He	Naos, Mitaka
В	Blue-white	-0.16	10-28,000	neutral He, some H	Spica, Rigel
Α	White	+0.13	7.5-10,000	strong H, some ionised metals	Sirius, Vega
F	Yellow-white	+0.42	6-7,500	H and ionised Ca & Fe	Canopus
G	Yellow	+0.70	5-6,000	ionised Ca, neutral metals	Sun
K	Orange	+1.2	3.5-5,000	neutral metals	Arcturus
M	Red-orange	+1.2	2.5-3,500	strong TiO bands	Betelguese