Hierarchical Clustering

AW

Lecture Overview

- 1. Recap
- 2. Modifications and R
- 3. Bisecting K-means + Limitations
- 4. Intro to hierarchical clustering
- 5. Agglomerative Clustering
- 6. Min

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple:

Algorithm 1 Basic K-means Algorithm.

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

K-means Optimization — Solutions

Objective function	Proximity measure	Centroid
min Sum of Absolute Errors (SAE)	Manhattan distance	median
min Sum of Squared Errors (SSE)	Euclidean distance	Mean
min Total Cohesion	Cosine similarity	Mean
Min Sum of Mahalanobis Distances (SMD)	Mahalanobis distance (centered)	Mean

Hierarchical Clustering

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on our side
- Sample and use hierarchical clustering to determine initial centroids (we'll see later)
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated data points
 - Add post-processing merge some clusters
- Bisecting K-means (a little later)
 - Not as susceptible to initialization issues

Lecture Overview

1. Recap

2. Modifications and R

3. Bisecting K-means + Limitations

4. Intro to hierarchical clustering

5. Agglomerative Clustering

6. Min

Handling Empty Clusters

- Random initial choice K-means algorithm can yield empty clusters
- For single empty cluster there are strategies to rectify, e.g.
 - Choose the point that contributes most to SSE as a centroid for an empty cluster. Continue K-means
 - Choose a point from the cluster with highest SSE that has the highest SE as a centroid for an empty cluster
- If there are several empty clusters, the above can be repeated several times.

Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
 - Each assignment updates zero or two centroids
 - More expensive
 - Introduces an order dependency
 - Never gets an empty cluster
 - Can use "weights" to change the impact

Pre-processing and Post-processing

- Pre-processing
 - Normalize the data
 - Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE
 - Can use these steps during the clustering process

K-means in R

```
library(cluster)
data(wine, package='rattle')
head(wine) # observe the composition of different wines
wine.stand <- scale(wine[,-1]) #standardize the data = center and divide
by st. dev.
wine.fit <- kmeans(wine.stand, 3)
attributes(wine.fit)
wine.fit$centers # cluster centers
wine.fit$cluster # vector of cluster assignments to data points
wine.fit$size #vector of cluster sizes
wine.fit$tot.withinss # total within-cluster sum of squares
wine.fit$betweenss # between-cluster sum of squares
```

K-means in R

```
clusplot(wine.stand, wine.fit$cluster, main='2D representation of the
Cluster solution', color=TRUE, shade=TRUE, labels=2, lines=0)
#plots data points assigned clusters in coord. Principal componet 1 and
principal component 2
#lines=0 means line connecting cluster centers is not drawn
#color=True means the cluster ellipses are colored with respect to
their density
#shade=True means cluster eleipses are shaded
#label=2 points ids are on the plot
table(wine[,1],wine.fit$cluster)
means_c<-aggregate(scale(wine[,--1]),by=list(wine$Type),FUN=mean)
#compute multidimensional means by wine type
wine.fit$centers; means c
# visually compare cluster centers and means of vine types
```

Lecture Overview

- 1. Recap
- 2. Modifications and R
- 3. Bisecting K-means + Limitations
- 4. Intro to hierarchical clustering
- 5. Agglomerative Clustering
- 6. Min

Bisecting K-means Algorithm

- Bisecting K-means algorithm
 - Variant of K-means that can produce a partitional or a hierarchical clustering

- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
- 3: Select a cluster from the list of clusters Remove it from the list.
- 4: **for** i = 1 to $number_of_iterations$ **do**
- 5: Bisect the selected cluster using basic K-means % do number_of_iterations trial iterations
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

- *K*-means has problems when clusters are of differing
 - Sizes

Original Points

3-means Cluster Centers

- K-means has problems when clusters are of differing
 - Sizes
 - Densities

Original Points

3-means Cluster Centers

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

Original Points

2-means Cluster Centers

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- Possible solution: start with bisecting k means, increasing number of centroids to over 2t > K, and then join subclasses manually

Overcoming Size Difference: Over-clustering

Original Points

Overcoming Size Difference: Over-clustering

Original Points

10-means Clusters

Overcoming Size Difference: Over-clustering

Original Points

Merged 3-means Clusters

Overcoming Density Difference: Over-clustering

Original Points

9-means Clusters

Overcoming Density Difference: Over-clustering

One solution is to use many clusters. Find parts of clusters, but need to put together manually.

Overcoming Shapes: Over-clustering

Original Points

10-means Clusters

Lecture Overview

- 1. Recap
- 2. Modifications and R
- 3. Bisecting K-means + Limitations
- 4. Intro to hierarchical clustering
- 5. Agglomerative Clustering
- 6. Min

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

- Two main types of hierarchical clustering:
 - 1. Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - 2. Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Lecture Overview

- 1. Recap
- 2. Modifications and R
- 3. Bisecting K-means + Limitations
- 4. Intro to hierarchical clustering
- 5. Agglomerative Clustering
- 6. Min

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward:
 - Compute the proximity matrix
 Let each data point be a cluster

2. Repeat

- i. Merge the two closest clusters
- ii. Update the proximity matrix

Until only a single cluster remains

Agglomerative Clustering -continued

- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

 Start with clusters of individual points and a proximity matrix computed w.r.t. a predefined measure (distance or similarity)

Proximity Matrix

Intermediate Situation

 After some merging steps, we have some clusters

Proximity Matrix

Intermediate Situation

 We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

C5

Proximity Matrix

After Merging

 The question is "How do we update the proximity matrix?"

Proximity Matrix

How to Define Inter-Cluster Similarity?

	p 1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids

- Proximity Matrix
- Other methods driven by an objective function
 - Ward's Method uses squared error

Lecture Overview

- 1. Recap
- 2. Modifications and R
- 3. Bisecting K-means + Limitations
- 4. Intro to hierarchical clustering
- 5. Agglomerative Clustering
- 6. Min

Cluster Similarity – Min

Find shortest edge (line) between members of different clusters

	p1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
p2 p3						_
<u>p4</u> <u>p5</u>						
•						

Proximity Matrix

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_				I 4	
11	1.00	0.90	0.10	0.65 0.60 0.40 1.00 0.80	0.20
12	0.90	1.00	0.70	0.60	0.50
B	0.10	0.70	1.00	0.40	0.30
I 4	0.65	0.60	0.40	1.00	0.80
1 5	0.20	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

		12			
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
\mathbb{Z}	0.90	1.00	0.70	0.60	0.50
\mathbb{I}_{3}	0.10	0.70	1.00	0.40	0.30
I 4	0 . 65	0.60	0.40	1.00	0.80
I 5	0.20	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	l1	12	13	14	15
I1	1.00	1.00	0.70	0.65	0.50
12	1.00	1.00	0.70	0.65	0.50
13	0.70	0.70	1.00	0.40	0.30
14	0.65	0.65	0.40	1.00	0.80
15	0.50	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	I1	12	13	14	15
I1	1.00	1.00	0.70	0.65	0.50
12	1.00	1.00	0.70	0.65	0.50
13	0.70	0.70	1.00	0.40	0.30
14				1.00	0.80
15	0.50	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	I1	12	13	14	15
I1	1.00	1.00	0.70	0.65	0.50
12	1.00	1.00	0.70	0.65	0.50
13	0.70	0.70	1.00	0.40	0.30
14	0.65	0.65	0.40	1.00	0.80
15	0.50	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_		12			
11	1.00	1.00	0.70	0.65	0.65 0.65 0.40 1.00
\mathbb{Z}	1.00	1.00	0.70	0.65	0.65
\mathbb{I}_{3}	0.70	0.70	1.00	0.40	0.40
I 4	0.65	0.65	0.40	1.00	1.00
I 5	0.65	0.65	0.40	1.00	1.00

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_	1	12	ß	I 4	I 5
1	1.00	1.00	0.70	0.65	0.65 0.65 0.40 1.00
12	1.00	1.00	0.70	0.65	0 . 65
ß	0.70	0.70	1.00	0.40	0.40
I 4	0.65	0.65	0.40	1.00	1.00
I 5	0.65	0.65	0.40	1.00	1.00

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

11	12	I3	1 4	1 5
1.00	1.00	1.00	0.65	0 . 65
1.00	1.00	1.00	0.65	0 . 65
1.00	1.00	1.00	0.65	0 . 65
0.65	0.65	0.65	1.00	1.00
0.65	0.65	0.65	1.00	1.00

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

ユ	12	I3	I 4	I 5
1.00	1.00	1.00	0.65	0 . 65
1.00	1.00	1.00	0.65	0.65
1.00	1.00	1.00	0.65	0.65
0.65	0.65	0.65	1.00	1.00
0.65	0.65	0.65	1.00	1.00

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	П	12	I3	I 4	<u>15</u>
\mathbb{I}	1.00	1.00	1.00	1.00	1.00
\mathbb{I}_2	1.00	1.00	1.00	1.00	1.00
\mathbb{I}_3	1.00	1.00	1.00	1.00	1.00
I 4	1.00	1.00	1.00	1.00	1.00
I 5	1.00	1.00 1.00 1.00 1.00	1.00	1.00	1.00

Strength of MIN

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN

Original Points

Two Clusters

Sensitive to noise and outliers

Reading

• TSKK sec's. 7.2.2, 7.31, 7.3.2

Hierarchical Clustering