1 Observabilité

1.1 Définition

Le système $\dot{x}(t) = Ax(t)$, y = Cx(t) est complètement observable s'il existe un temps fini $t^* > 0$ tel que la connaissance de y(t) sur $[0t^*]$ est suffisante pour déterminer la valeur de l'état initial x(0)

1.2 Théorème

Un système à temps continu (discret) est complètement observable si et seulement si la matrice d'observabilité: $S^T = [C, CA, CA^2, ..., CA^{n-1}]^T = [C^T, A^TC^T, (A^2)^TC^T, ..., (A^{n-1})^TC^T, ..., (A^{n-1})^TC^T$

1.3 Observateur

Un observateur est un système dynamique qui retourne une estimation de la valeur de l'état quand on le 'nourrit' avec les sorties mesurées.

1.3.1 Observateur trivial (copie)

Pour un système $\dot{x}(t) = Ax(t) + Bu(t)$

L'observateur est $\dot{z}(t) = Az(t) + Bu(t)$

Mais avec cette observateur l'erreur $\varepsilon(t) = z(t) - x(t)$ donc $\dot{\varepsilon}(t) = A\varepsilon(t)$ l'erreur disparait que lorsque le système est stable.

1.3.2 Observateur identité

Pour un système

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$
 (1)

avec u et v connu

L'observateur est $\dot{z}(t) = Az(t) + E[y(t) - Cz(t)] + Bu(t)$ ou E est à choix La dynamique de l'erreur est $\dot{\varepsilon}(t) = \dot{z}(t) - \dot{x}(t) = [A - EC](z(t) - x(t)) = [A - EC]\varepsilon(t)$

- Si z(0) = x(0) alors z(t) = x(t) pour tout t > 0
- Si $z(0) \neq x(0)$ le vecteur d'erreur est gouverné par [A EC]
- On peut placer les valeurs propres de cette matrice, avec le degré de liberté que constitue E

1.3.3 Observateur d'ordre réduit

Un observateur d'ordre réduit peut être construit, pour que l'effort soit sur les variables "inconnues" Pour un système

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$
 (2)

avec (A, C) complètement observable et C(pxn) de rang p Voir les pages 14-16 du polycopier 2_11 Observability

1.4 Contrôleur stabilisant

1.4.1 Théorème

Pour un système

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$
(3)

avec l'observateur identité $\dot{z}(t) = Az(t) + E[y(t) - Cz(t)] + Bu(t)$ et la loi de commande u(t) = Kz(t)Le polynôme caractéristique de ce composite est égal au produit des polynômes caractéristiques de A + BK et de A - EC: $\Delta_{A+BK}(\lambda) \cdot \Delta_{A-EC}(\lambda)$

- \bullet Les matrices K et E peuvent être fixées indépendamment
- Ce théorème s'applique aux systèmes linéaires