· Decimal Conversions

1. To binary

2. To Octal

for fraction: same as binary, just multiply by 8

3. To Hexadecimal

١	L	1983				
l	Ь	123	_	15	(15 11 7) <mark>7</mark>	as well
١	6	7	_	11	+ 4 By 8	421 (multiply by 11)
		٥	_	7	(FB7)	

Binary Conversion

1. To decimal

$$= (13.05)_{10}$$

1x 2-1 = 0.5

2. To Octal

3. To Hexadecimal

```
· Octal Conversion
```

1. To decimal

=

2. To binary

Write each digit's (421) code

001 010 101

3. To Hexadecimal

eq (26.2) 8

010 110 010

```
· Hexadecimal Conversions
 1. To decimal
 eg (IAB)"
    BAI
    = 1x 162 + 10 x 161 + 11 x 16
         = (427)<sub>10</sub>
2. To binary
 eg (IAB) II
   0001 1010 1011
    = (110101011)2
3. To Octal
 eg (IAB),
 S-1: To binary
           IAB
      0001 1010 1011
        (110101011)2
S-2 To Octal (421) code
         110101011
           (653)<sub>8</sub>
```

· Binary Calculations

1. Addition

				1 ,
				eq 1 1 0
0	0	0	0	111000
0	١	ι	0	11 10 101
١	D	1	٥	
١	١	0	١	Carry
				* Note : 1+1 = 0

2. Subtraction

0	٥	o	0	eq	1110	, Nok	(O - =
0	1	l	1	<u></u>	1101		
l	0	0	l		0601		
١	1	0	0				

3. Multiplication

3. division

Subtraction by 2's complement

Case - 1 :
$$M > n$$
 $(m-n)$

z'an + m bbA : e

=: It carry at last digit, discond it

2	68	2	27	.: (1000100) - (00 11011)
5	34 – 0	ર	13 - 1	
ર	17 - 0	2	6 - 1	1010011 = 2'c n
ર	8 – 1	2	3 - 0	
2	4 - 0		1 - 1	m+ n 2's = 1000 100
2	a - 0			1100101
	1 - 0			X 01010

= 0101001

Case
$$-2$$
: $m < n$ $(m-n)$

add m + n 2's

3: Take 2's compliment of the answer

$$eg (43)_{10} - (89)_{10}$$

```
BCO Arithmetic
    They follow (8421) code
         9 = 1001
  eg
        .3
                0011
            write seperate too each digit
       23
  1100 0100 2 1100 0100
        64 = 0110 0100
· BCD Addition
                  11
       25 0010 0101
 eg
          0001 001
      13
       38
            0011
                  1000
             11/1/11/
  eg
      679
             0110 0111
                        1001
      536
             0101 0011 0110
             1100 11011
                         'ו'ו וו'ו
     1215
            4 0110 + 0110 + 0110
            10 0 0 0 0 0 0 1 0 1
            : 1001000010101
                    1215
```

```
· BCD Subtraction
                0011 XXXX
   eg
        38
                0001 0101
                0010 0011
         206.7
     eg
                 0010 6000 0170 . 0111
                 0001 0100
         147.8
                                0111. 1000
                 0006
                        11011
                               1110
                       -0110 -0110 -0110
                                1000 1001
                         0161
                         0101 1000.1001
                            - 58.9
· Gray Code
  Remember X-OR gate for gray code conversion
           0
                 0
           D
                  0
· Binary to gray code
      eq 01001
        D D€1 1€0 0€0 0€1
           01101
```

eg 10110 → / /eo 09/ (e/ /eo . 11101 · Gray code to binary conversion eg 01101 0 1 1 0 1 0 1 0 0 1 eg 10110 **→** 1(011 • Excess - 3 code · Decimal to Excess -3

Note: To cross-check, add 33 to decimal no

= 59

$$30 + 33 = (63)_{10}$$

$$(0110 0011)$$

• ASC II

- Control Characters-0 to 31 and 127
- Special Characters- 32 to 47, 58 to 64, 91 to 96, and 123 to 126
- Numbers Characters- 0 to 9
- Letters Characters 65 to 90 and 97 to 122

· Logic Gates

1. AND gate

A	8	λ = V·Ø
0	0	0
٥	1	٥
١	0	0
1	ı	ı

2. OR Gate

A	В	Y = A + B
0	0	
0	1	0
١	0	i
ı	Ī	1
	·	

3. Not Gate

$$0 \rightarrow 1$$

4. NAND Gate

A	В	y = AB
0	0	1
٥	1	١
1	0	1
1	١	0

5. NOR gate

A	8	y = A+B
0	0	\
0	1	0
1	0	0
1	l	0

6. Ex-or gate

A	В	y = A@B
0	0	0
0	١	1
١	0	ı
١	l	0

7. Ex-NOR gate

A	В	y = AOB
0	0	1
0	1	0
١	0	0
l	ı	1

· NAND gate to all gate

I. NOT

Take A=B

A Y = A · B

So,

3. OR

de -morgan law

So
$$\overline{A \cdot B} = \overline{A} \cdot \overline{A \cdot B} = A + B$$

4. NOR

Tust add NOT gak to OR as NANO