$S_p = Settlement of test plate$

 $S_f = Settlement of footing$

 $\mathbf{B}_p = \mathbf{Size}$ of test plate

 $\mathbf{B}_f = \mathbf{Size} \ \mathbf{of} \ \mathbf{footing}$

The gauge reading has been reached 25 mm Hence the settlement of footing S_f is given by

$$S_f = S_p \left[\frac{B_f(B_p + 0.3)}{B_p(B_f + 0.3)} \right]^2$$

 $S_p = Settlement of test plate$

 $S_f = Settlement of footing$

 $\mathbf{B}_p = \mathbf{Size}$ of test plate

 $\mathbf{B}_f = \mathbf{Size} \ \mathbf{of} \ \mathbf{footing}$

The soil under the plate fails Hence the settlement of footing \mathbf{S}_f is given by

 $S_f = S_p \frac{B_f}{B_p}$

 $S_p = Settlement of test plate$

 $S_f = Settlement of footing$

 $\mathbf{B}_p = \mathbf{Size}$ of test plate

 $\mathbf{B}_f = \mathbf{Size} \ \mathbf{of} \ \mathbf{footing}$

The soil under the plate fails Hence the settlement of footing \mathbf{S}_f is given by

$$S_f = S_p \left[\frac{B_f(B_p + 0.3)}{B_p(B_f + 0.3)} \right]^2$$

 $S_p = Settlement of test plate$

 $S_f = Settlement of footing$

 $\mathbf{B}_p = \mathbf{Size}$ of test plate

 $\mathbf{B}_f = \mathbf{Size} \ \mathbf{of} \ \mathbf{footing}$

The gauge reading has been reached 25 mm Hence the settlement of footing S_f is given by

$$S_f = S_p \frac{B_f}{B_p}$$