(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-243601

(43)公開日 平成9年(1997)9月19日

(51) Int. Cl. ⁶	識別記号	庁内整理番号	FI		技術表示箇所
G 0 1 N 27/6	2		G01N27/6	2	V
C 0 7 D 319/2	4		C 0 7 D319/2	4	
G 0 1 N 21/6	3		G 0 1 N 21/6	3 2	Z
27/64	4		27/6	4 I	В
31/00			31/00		V
		審査請求	未請求 請求項の数1	OL(全 5 頁)	最終頁に続く
(21)出願番号	特願平8-50231		(71)出願人 000004123 日本鋼管株式会社		
(22)出願日	平成8年(1996)3	月7日	東京都千代田区丸の内一丁目1番2号		

(72)発明者 宮澤 邦夫

東京都千代田区丸の内一丁目1番2号 日本

鋼管株式会社内

(72)発明者 中島 章裕

東京都千代田区丸の内一丁目1番2号 日本

鋼管株式会社内

(74)代理人 弁理士 田中 政浩

(54)【発明の名称】排ガス中の微量有機化合物の測定装置

(57)【要約】

【課題】 排ガス中のクロロベンゼン類・クロロフ ェノール類をリアルタイムで測定し、ダイオキシン類を 連続的に求めることができる装置を提供する。

【解決手段】 上記課題は、レーザーイオン化質量分析・ 装置と、一定量の排ガスを該質量分析装置のイオン化室 に導入する排ガス試料導入装置と、該質量分析装置で測 定されたクロロベンゼン類又はクロロフェノール類の質 量スペクトルを予め求めておいたクロロベンゼン類又は クロロフェノール類とダイオキシン類との相関関係から ダイオキシン類の濃度に換算するデータ処理装置とから なる排ガス中のダイオキシン類の間接測定装置によって 解決される。

【特許請求の範囲】

【請求項1】 レーザーイオン化質量分析装置と、一定 量の排ガスを該質量分析装置のイオン化室に導入する排 ガス試料導入装置と、該質量分析装置で測定されたクロ ロベンゼン類又はクロロフェノール類の質量スペクトル を予め求めておいたクロロベンゼン類又はクロロフェノ

ール類とダイオキシン類との相関関係からダイオキシン 類の濃度に換算するデータ処理装置とからなる排ガス中 のダイオキシン類の間接測定装置

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば、一般廃棄 物や産業廃棄物を焼却した燃焼排ガス、あるいは金属精 錬プロセスから排出されるガスなどに含まれるクロロベ ンゼン類を測定することにより、ダイオキシン類の排出 濃度を求める間接的測定装置に関するものである。

[0002]

【従来の技術】一般に、各種の廃棄物を焼却する際に焼 却炉から極めて猛毒のダイオキシン類が発生する。ま た、電気炉などでスクラップを精錬するとき、スクラッ 20 プには塗膜・樹脂ラミネート物が表面に存在するため、 これらが熱分解・重縮合して同様にダイオキシン類が発 生する場合がある。

【0003】これら排ガス中に含まれるダイオキシン類 の濃度は、ダイオキシンおよびその同族体、ならびにジ ベンゾフランおよびその同族体を凡て合わせても、10 0 ng/Nm³程度以下であるため、現在の技術では直 接測定することはほとんど不可能である。一方、大気汚 染学会誌第28巻第5号274頁(1993年)第6図 ン類と高度の相関があることが知られている。そこで、 クロロベンゼン類をガスクロマトグラフ装置により測定 し、相関関係のあるダイオキシン類の濃度をデータ処理 装置により演算して求める技術が特開平5-31279 6号公報に開示されている。

[0004]

【発明が解決しようとする課題】しかしながら、上記技 術は、排ガス中に含まれるクロロベンゼン類をその他の 有機化合物、すなわち夾雑物から分離・検出する際、ガ 程で30分から1時間程度の時間を要する。したがっ て、リアルタイムの連続測定にはならないという問題が あった。

【0005】本発明は、このような問題点を解決するた めになされたもので、排ガス中のクロロベンゼン類・ク ロロフェノール類をリアルタイムで測定し、ダイオキシ ン類を連続的に求めることができる装置を提供すること を目的とする。

[0006]

オン化質量分析装置と、一定量の排ガスを該質量分析装 置のイオン化室に導入する排ガス試料導入装置と、該質 量分析装置で測定されたクロロベンゼン類又はクロロフ ェノール類の質量スペクトルを予め求めておいたクロロ ベンゼン類又はクロロフェノール類とダイオキシン類と の相関関係からダイオキシン類の濃度に換算するデータ 処理装置とからなる排ガス中のダイオキシン類の間接測 定装置によって達成される。

[0007]

10 【発明の実施の形態】排ガス中にダストやミストが含ま れていると測定阻害を惹き起こしたり測定装置を汚した りするので、まず、除塵装置を設けて測定装置に供給す る排ガスからダストやミストを除去する。この除塵装置 には、一般的な除塵フィルターを用いればよいが、クロ ロベンゼン類・クロロフェノール類が吸着しないように 温度管理する必要がある。つまり、全体を恒温槽に入れ る、あるいはヒーターを巻くなどして100~300 ℃、好ましくは120~160℃になるようにするのが 好ましい。

【0008】試料導入装置は除塵された排ガス試料を一 定量づつ質量分析装置のイオン化室に導入するもので、 例えばオリフィスを用いて開閉弁(例えば、パルスバル ブ、パルスノズルと呼ばれているもの)を一定時間開け るようにしたり、シリンジを利用して一定量注入できる ようにする。この排ガス導入量は1気圧換算の排ガス容 積がイオン化室(真空部全体であり、分析部が連設され ている場合にはこれも含む)の容積の1/10¹⁰~1/ 10⁶程度、好ましくは1/10⁹~1/10⁷程度にな る量が適当である。一般的には1回の排ガス導入量が1 に記載されているようにクロロベンゼン類はダイオキシ 30 気圧換算で 0. 01~10μ1程度、好ましくは 0. 1 ~1 µ 1 程度でよい。オリフィスの場合、例えば0.2 ~1. 0mm程度の口径として弁を0. 5~50mse c、好ましくは1~10msec、開けるようにする。 【0009】これにより、微量の排ガス試料が細い開口 を通して超音速で略真空状態にあるイオン化室に入るの で、断熱膨張が起こる。そこで、試料が極めて低い温度 になるため試料分子の回転・振動が抑制され、質量スペ クトルの熱的広幅化を避けることができる。したがっ て、シャープなスペクトル、すなわちピークトップの高 スクロマトグラフ装置を用いているためクロマト分離工 40 いスペクトルになるため質量スペクトルの信号/ノイズ 比が向上して、分析対象化合物を高精度・高感度で検出 できるようになる。

> 【0010】オリフィスの口径を絞って排ガスを連続的 にイオン化室に導入してもよいが、分析精度の点で間欠 方式が優る。

【0011】試料導入装置は排ガス流路に連結させてお けば、測定時にオリフィスの弁やシリンジのピストンを 作動させるだけで排ガス試料をイオン化室に導入するこ とができる。その際、シリンジの場合には三方コックや 【課題を解決するための手段】上記目的は、レーザーイ 50 逆流防止機構などを設けることによって排ガスを排ガス

流路から吸引しイオン化室へ吐出させるようにする。こ の試料導入装置もヒーターなどにより、除塵装置と同様 クロロベンゼン類・クロロフェノール類が吸着しないよ うに温度管理することが好ましい。

【0012】質量分析装置は市販品をそのまま用いれば よく、例えば飛行時間型、タンデム型などいずれも利用 できる。また、通常、レーザーを装着できるようになっ ている。レーザーは測定対象のクロロベンゼン類、クロ ロフェノール類を励起、イオン化しうる波長のものを用 体的には200~320 nm程度のものを用いる。例え ば、モノクロロベンゼンは269.8nm、テトラクロ ロベンゼンは異性体もあるので、288.6~292. 2 nmおよび2 1 3 nmの波長のレーザーでイオン化す る。

【0013】データ処理装置は質量分析装置で測定され たクロロベンゼン類、クロロフェノール類の質量スペク トル強度を予め求めておいたクロロベンゼン類、クロロ フェノール類の濃度とダイオキシン類の濃度との検量線 を利用してダイオキシン類の濃度に換算するものであ る。すわなち、排ガス中のクロロベンゼン類、クロロフ ェノール類の濃度とダイオキシン類の濃度とは燃焼炉の 構造、燃焼原料、燃焼条件等によって一定の相関関係を 示すので、これを利用してダイオキシン類の濃度を求め るのである。クロロベンゼン類はモノクロル体からヘキ サクロル体まで、クロロフェノール類にはモノクロル体 からペンタクロル体まであるがそのいずれもダイオキシ ン類と相関関係を示すのでそのいずれかもしくは2以上 または全部を測定すればよい。通例はモノクロル体、ジ クロル体又はトリクロル体を測定すればよい。

[0014]

【実施例】図1は、排ガス中のクロロベンゼン類・ダイ オキシン類をリアルタイムで連続的に求める本発明の装 置の一実施例を示す構成図である。この連続測定装置 は、フィルターを内蔵する除塵装置21、パルスバルブ を中心とする試料導入装置22、レーザーによるイオン 化機能を備えた質量分析装置23、およびデータ処理装 置24から成る。

【0015】除塵装置はジーエルサイエス(株)製のサン プルフィルター33S6型を用い、全体を恒温槽に入れ 40 係を示す。 て160℃に保持した。試料導入装置のパルスバルブは General Valve社製のModel 9-89 - 900を若干改造してオリフィスを0.6mmとした ものを用いた。この試料導入装置11の概略構造及び質 量分析装置1への装着状態を図2に示す。質量分析装置 1のイオン化室側壁に排ガス試料10を導入するオリフ ィス15が設けられている。オリフィス15にはプラン ジャー14を収容した筒体が連設され、このプランジャ -14はその後方に設けられたバネ12によって常時オ リフィス15を閉止するように付勢されている。筒体の 50 の連続測定への展開も期待できる。

後部外周には電磁石13が設けられ、この電磁石に通電 するとプランジャー14が電磁石に引き寄せられてオリ フィス15が開放される。通電を停止するとバネ12の 力によって再び閉止される。イオン化室の上部にはレー ザー発振装置16が設置されており、オリフィス15か ら出る超音速の分子18をイオン化するためのレーザー ビーム19はオリフィス15から12mmの位置で集光 させた。なお、排ガスライン(煙道)から除塵装置まで の配管、試料導入装置までの配管および試料導入装置の い、色素レーザーなど波長可変型のものが好ましい。具 10 パルスバルブ部分はヒーターにより160℃にした。レ ーザーとしては、Spectron Laser Sys tems社製のSL800パルスNd:YAGレーザ -、SL-4000色素レーザーおよびSL-4000 EM型オートトラッカを使用して、色素レーザーを発振 させた。また、質量分析装置は試作のリフレクトロンタ イプの飛行時間型のものを用いた(イオン飛行距離96 0 mm、浜松フォトエレクトロニクス (株) 製F109 4-32Sイオン検出器、真空度10-6torr以下、 真空室容積約16000cm3)。

> 20 【0016】都市ごみ焼却炉の排ガスライン(集塵器の 上流側)に上記構成の連続測定装置を取り付け、ガス中 のモノクロロベンゼンの測定を行った。パルスバルブは 1sec間隔で2msec開き、ガス試料を質量分析装 置に導入し、バルブの開閉に同期させて、269.8 n mの波長のレーザーを照射してイオン化した。その他の 夾雑物のピークがないクロロベンゼンのみのピークを有 する質量スペクトルがリアルタイムで観測された。

> 【0017】そこで、クロロベンゼンの濃度を調製した ガスを本連続測定装置に同様の条件で導入して、キャリ 30 ブレーションを行った。また、ダイオキシン類との相関 関係を得るために、ごみ焼却炉の操業条件を大幅に振っ た5条件で、本装置による排ガス測定、ならびに米国E PAの5連インピンジャー方式に準拠した排ガス捕集方 法および一般的なダイオキシン類の分析方法(島津化学 ジャーナル第4巻、1992年記載)によるダイオキシ ン類の測定を行った。なお、このときダイオキシン類の 濃度が極めて薄いため、 2 時間のガスサンプリングを行 う必要があるので、本連続測定装置の測定結果も2時間 分の測定値の算術平均値とした。図3に得られた相関関

【0018】この図から、上述のように、リアルタイム でクロロベンゼン類の測定値が得られれば、直ぐにダイ オキシン類の濃度を求められることは明らかである。 [0019]

【発明の効果】以上のように、本発明によると、クロロ ベンゼン類・ダイオキシン類をリアルタイムで連続的に 測定する方法を提供できるので、例えば、有害物質発生 を抑制するような燃焼制御を可能とする効果がある。

【0020】また、本装置は排ガス中の他の有機化合物

30

【図面の簡単な説明】

【図1】 本発明の装置の構成を示す図である。

【図2】 実施例の装置において試料導入装置を質量分 析装置に取り付けた状態を示す説明図である。

【図3】 実施例の装置を用いて測定されたクロロベン ゼンとダイオキシンの関係を示すグラフである。

【符号の説明】

- 質量分析装置
- 10 試料ガス
- 11 試料導入装置(全体)
- 12 バネ
- 13 電磁石

- 14 プランジャー
- 15 オリフィス
- 16 レーザー発振装置
- 17 レンズ
- 18 超音速分子ビーム
- 19 レーザービーム
- 21 除塵装置
- 22 試料導入装置
- 23 質量分析装置(レーザーイオン化機能付)

6

- 10 24 データ処理装置
 - 25 煙道(排ガスライン)

[図1]

[図3]

【図2】

【手続補正書】

【提出日】平成8年4月18日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0015

【補正方法】変更

【補正内容】

【0015】除塵装置はジーエルサイエス(株)製のサン プルフィルター33S6型を用い、全体を恒温槽に入れ て160℃に保持した。試料導入装置のパルスバルブは General Valve社製のModel 9-89 <u>-900を若干改造してオリ</u>フィスを0.6mmとした ものを用いた。この試料導入装置11の概略構造及び質 50 ら出る超音速の分子18をイオン化するためのレーザー

量分析装置1への装着状態を図2に示す。質量分析装置 40 1のイオン化室側壁に排ガス試料10を導入するオリフ ィス15が設けられている。オリフィス15にはプラン ジャー14を収容した筒体が連設され、このプランジャ -14はその後方に設けられたバネ12によって常時オ

後部外周には電磁石13が設けられ、この電磁石に通電 するとプランジャー14が電磁石に引き寄せられてオリ フィス15が開放される。通電を停止するとバネ12の 力によって再び閉止される。イオン化室の上部にはレー

リフィス15を閉止するように付勢されている。 筒体の

ザー発振装置16が設置されており、オリフィス15か

ビーム19はオリフィス15から12mmの位置で集光 させた。なお、排ガスライン(煙道)から除塵装置までの 配管、試料導入装置までの配管および試料導入装置のパ ルスバルブ部分はヒーターにより160℃にした。レー ザーとしては、Spectron Laser Sys tems社製のSL800パルスNd:YAGレーザ -、SL-4000色素レーザーおよびSL-4000 EM型オートトラッカを使用して、色素レーザーを発振 させた。また、質量分析装置は試作のリフレクトロンタ 0 mm、浜松フォトエレクトロニクス(株)製F1094 - 32 Sイオン検出器、真空度10-6torr以下、真 空室容積約16000cm3)。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0017

【補正方法】変更

【補正内容】

【0017】そこで、クロロベンゼンの濃度を調製した ガスを本連続測定装置に同様の条件で導入して、キャリ ブレーションを行った。また、ダイオキシン類との相関 関係を得るために、ごみ焼却炉の操業条件を大幅に振っ た5条件で、本装置による排ガス測定、ならびに米国 E PAの5連インピンジャー方式に準拠した排ガス捕集方 法および一般的なダイオキシン類の分析方法(島津科学 イプの飛行時間型のものを用いた(イオン飛行距離96 10 ジャーナル第4巻, 1992年記載)によるダイオキシ ン類の測定を行った。なお、このときダイオキシン類の 濃度が極めて薄いため、2時間のガスサンプリングを行 う必要があるので、本連続測定装置の測定結果も2時間 分の測定値の算術平均値とした。図3に得られた相関関 係を示す。

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 1 J 49/10

H 0 1 J 49/10