Hybrid recommendation systems based on bayesian network

Chenxi He, Shengqian Chen, Wenxue Zhang

March 16, 2016

Canonical weighted sum

Let X_i be a node in a BN, let $Pa(X_i)$ be the parent set of X_i , and Y_k be the $k^{\rm th}$ parent of X_i in the BN. By using a canonical weighted sum, the set of conditional probability distributions stored at node X_i are then represented by means of

$$Pr(x_{ij} \mid pa(X_i)) = \sum_{Y_k \in Pa(X_i)} w(y_{k,l}, x_{i,j})$$

where $w(y_{k,l}, x_{i,j})$ are weights(effects) measuring how this I^{th} value of variable Y_k describes the j^{th} state of node X_i .

$$\sum_{j=1}^{r} \sum_{Y_k \in Pa(X_i)} w(y_{k,l}, x_{i,j}) = 1$$

Related theorems

Theorem 1
$$Pr(x_{a,s} \mid ev) = \sum_{j=1}^{m_{x_a}} \sum_{k=1}^{l_{Y_j}} w(y_{j,k}, x_{a,s}) \cdot Pr(y_{j,k} \mid ev)$$
Theorem 2

if $F_k \notin Pa(I_j)$
 $Pr(f_{k,1} \mid i_{j,1}) = Pr(f_{k,1})$

if $F_k \in Pa(I_j)$
 $Pr(f_{k,1} \mid i_{j,1}) = Pr(f_{k,1}) + \frac{w(f_{k,1},i_{j,1})Pr(f_{k,1}(1-Pr(f_{k,1}))}{Pr(i_{j,1})}$

where $Pr(i_{j,1}) = \sum_{F_k \in Pa(I_j)} w(f_{k,1},i_{j,1})Pr(f_{k,1})$

Algorithm(Now we've completed CB and we'll further develop CF and hybrid part later)

- 1. Content-based propagation:
- $-ev_{cb} == I_j \quad Pr(i_{j,1} \mid ev) = 1$

Compute $Pr(F_k \mid ev)$ using Theorem 2

- -Propagate to items using Theorem1.
- -Propagate to A_{CB} and $U_i \in U_1^-$ using Theorem 1.
- 2. Collaborative propagation
- -For each $U_K \in U_I^+$ set $Pr(U_k = r_{k,j} \mid ev) = 1$.
- -Propagate to A_CF node using Theorem 1.
- 3. Combine content-based and collaborative likelihoods at hybrid node A_H
- 4. Select the predicted rating.

example data

- ▶ features { f₁, f₂, f₃, f₄}
- movies $\{i_1, i_2, i_3, i_4, i_5\}$
- users $\{u_1, u_2, u_3\}$

table1: row:movies; column:features; entry:{0,1}

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right)$$

table2: row:user; column:movies; entry:{0,1-5}

$$\left(\begin{array}{cccccccc}
0 & 3 & 5 & 1 & 4 \\
2 & 2 & 4 & 1 & 0 \\
1 & 5 & 1 & 4 & 4
\end{array}\right)$$

algorithm example

##		movie1	movie2	movie3	movie4	movie5
##	user1	3	3	5	1	3
##	user2	2	2	2	1	1
##	user3	1	1	1	4	3