Лабораторная работа №1. Установка и конфигурация операционной системы на виртуальную машину

Отчёт

Сергеев Даниил Олегович

Содержание

1	Цель работы	5
2	Задание	6
3	Ход выполнения лабораторной работы 3.1 Создание виртуальной машины	7 7 9
4	Ход выполнения домашнего задания	13
5	Ответы на контрольные вопросы	15
6	Вывод	17
Сг	писок литературы	18

Список иллюстраций

3.1	Окно создания ВМ	7
3.2	Оборудование ВМ	8
3.3	Жёсткий диск	8
3.4	Установка ОС	9
3.5	Выбор основного языка	9
3.6	Выбор языка для раскладки	10
3.7	Выбор второго языка системы	10
3.8	Выбор базового окружения	11
3.9	Настройка сетевого соединения	11
3.10	Ход установки дополнений гостевой ОС	12
4.1	Вывод команды grep (1)	13
4.2	Вывод команды grep (2)	13

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов. [1]

2 Задание

- Установить образ Rocky Linux в Virutal Box.
- Настроить параметры в установщике ОС.
- Подключить и установить образ диска дополнений гостевой ОС.

3 Ход выполнения лабораторной работы

3.1 Создание виртуальной машины

Откроем менеджер виртуальных машин Oracle VirtualBox и нажмем на кнопку создать в графическом интерфейсе. Выберем тип машины Linux, подтип Red Hat (64-bit). Зададим имя, удовлетворяющее соглашению о наименовании.

Рис. 3.1: Окно создания ВМ

Выделим размер основной памяти виртуальной машины до 8192 МБ и 4 процессора.

Рис. 3.2: Оборудование ВМ

Для жёсткого диска выделим 40 ГБ.

Рис. 3.3: Жёсткий диск

3.2 Установка операционной системы

Запустим ОС. Выберем вариант Install Rocky Linux 9.6.

Рис. 3.4: Установка ОС

Поставим язык English в качестве основного в ОС. В качестве дополнительного поставим русский язык. Также добавим русскую раскладку клавиатуры и возможность её переключения через сочетание клавиш Alt+Shift.

Рис. 3.5: Выбор основного языка

Рис. 3.6: Выбор языка для раскладки

Рис. 3.7: Выбор второго языка системы

В разделе выбора программ укажем в качестве базового окружения Server with GUI, а в качестве дополнительного Development Tools. Отключим KDUMP

Рис. 3.8: Выбор базового окружения

Включим сетевое соединение и в качестве имени узла укажем dosergeev.localdomain.

Рис. 3.9: Настройка сетевого соединения

Установим пароль для root, разрешение на ввод пароля для root при использовании SSH. Затем зададим локального пользователя с правами администратора и пароль.

Начнем установку ОС. После её завершения корректно перезагрузим ОС. Подключим образ гостевой ОС и начнем установку. После неё снова перезагрузим

Rocky.

Рис. 3.10: Ход установки дополнений гостевой ОС

4 Ход выполнения домашнего задания

1. Дождемся загрузки графического окружения и откроем терминал. Пропишем команду dmesg и узнаем последовательность загрузки системы.

```
[dosergeev@dosergeev ~]$
[dosergeev@dosergeev ~]$ dmesg | grep -i "linux version"
[ 0.000000] Linux version 5.14.0-570.37.1.el9_6.x86_64 (mockbuild@iadl-prod-build001.bld.equ.rockylinux.org) (
gcc (GCC) 11.5.0 20240719 (Red Hat 11.5.0-5), GNU ld version 2.35.2-63.el9) #1 SMP PREEMPT_DYNAMIC Thu Aug 28 10:
41:66 UTC 2025
[dosergeev@dosergeev ~]$ dmesg | grep -i "mhz"
[ 0.000010] tsc: Detected 3399.988 MHz processor
[ 5.92255cl] el000 0000:00:03.0 eth0: (CFC:33MHz:32-bit) 08:00:27:51:69:b3
[dosergeev@dosergeev ~]$ dmesg | grep -i "cpu0"
[ 0.928771] smpboot: CPU0: AMD Ryzen 5 2600 six-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[dosergeev@dosergeev ~]$ dmesg | grep -i "avail"
[ 0.009764] On node 0, zone DMA: 1 pages in unavailable ranges
[ 0.010900] On node 0, zone DMA: 97 pages in unavailable ranges
[ 0.281335] On node 0, zone Normal: 16 pages in unavailable ranges
[ 0.281335] Memory: 3413140K/3388152K available [6384K kernel code, 5766K rwdata, 13632K rodata, 4048K init,
7384K bss, 588308K reserved, 0K cma-reserved)
[ 0.929232] Performance Events: PMU not available due to virtualization, using software events only.
[ 5.250308] vmwgfx 0000:00:02.0: [drm] Available shader model: Legacy.
[dosergeev@dosergeev ~]$
```

Рис. 4.1: Вывод команды grep (1)

Рис. 4.2: Вывод команды grep (2)

- 2. Получим имформацию о:
- Версии ядра Linux -> 5.14.0-570.37.1.el9_6.x86_64
- Частоте процессора -> 3400 МНz

- Модели процессора -> AMD Ryzen 5 2600
- Объёме доступной ОЗУ -> ~6 GB
- Типе гипервизора -> KVM
- Типе файловой системы корневого раздела -> XFS
- Последовательности монтирования файловых систем -> Корневая система(dm-0/XFS) -> Дополнительная файловая система (sda1/XFS)

5 Ответы на контрольные вопросы

- 1. Команды терминала для:
- получения справки о команде: man, например: man cd
- перемещения по файловой системе: cd, например: cd ~
- просмотра содержимого каталога: ls, например: ls ~/
- определения объёма каталога: du -sh, например: du -sh ~/
- создания/удаления каталогов/файлов: mkdir, rmdir(rm -r), touch, rm, например: mkdir work/rm -r work
- задания определённых прав на файл/каталог: chmod, например: chmod a=rwx passwords.txt
- просмотра истории команд: history
- 2. Учётная запись пользователя хранит в себе имя, пароль, уникальный UID пользователя и GID группы, домашний каталог и командную оболочку пользователя. В качестве команд можно использовать id и whoami.
- 3. Файловая система это способ организации, хранения и управления данными на носителе информации. XFS высокопроизводительная ФС, используется на серверах для работы с большими данными. Ext4 стандартная ФС большинства дистрибутивов Linux, поддерживает журналы, может быть как корневым, так и домшним разделом.
- 4. Чтобы посмотреть подмонтированные файловые системы, можно использовать команды mount или findmnt (более удобная).

5. Чтобы удалить зависший процесс, нужно найти его UID командой ps и завершить командой kill. Если она не помогает то надо его устранить с помощью kill -9.

6 Вывод

В результате выполнения лабораторной работы я приобрел навыки установки операционной системы на виртуальную машину и научился минимально настраивать систему для дальнейшей работы сервисов.

Список литературы

1. Kulyabov, Korolykova. Лабораторная работа №1. Установка и конфигурация операционной системы на виртуальную машину. https://esystem.rudn.ru/pl uginfile.php/2843445/mod_resource/content/7/002-os_install-Rocky9.pdf; RUDN.