

4

INSTITUTO FEDERAL

Pará

Redes de Computadores

Ricardo José Cabeça de Souza

ricardo.souza@ifpa.com.br

SUMÁRIO

- O NÚCLEO DA REDE
- COMUNICAÇÃO ENTRE OS MÓDULOS PROCESSADORES
 - Chaveamento(comutação) de circuitos
 - Chaveamento(comutação) de pacotes
 - Chaveamento(comutação) de mensagens
- TAXONOMIA DAS REDES (Classificação)
- CLASSIFICAÇÃO QUANTO A TECNOLOGIA DE TRANSMISSÃO
 - Redes de difusão
 - Redes Anycast
 - Redes de multidifusão
 - Unicast
 - Redes Ponto-a-ponto
- REDES DE ACESSO

O NÚCLEO DA REDE

O NÚCLEO DA REDE

A rede de
 COMUTADORES de pacote e enlaces que interconectam os sistemas finais da Internet

O NÚCLEO DA REDE

COMUTADORES

Sistemas finais: A, B, C,...
Comutadores: I, II, III,...

SUMÁRIO

TAXONOMIA DAS REDES (Classificação)

Taxonomia das redes comutadas

CHAVEAMENTO DE CIRCUITOS

- Um canal entre origem e destino é estabelecido para uso exclusivo desta conexão até que a conexão seja desfeita
- Recursos necessário ao longo do caminho: buffers e taxa de transmissão nos enlaces
- Se caracteriza pela utilização permanente destes recursos durante toda a transmissão
- A comutação de circuitos ocorre na camada física

CHAVEAMENTO DE CIRCUITOS

- Apropriada para sistemas de comunicações que apresentam tráfego constante
- Semelhante sistema telefônico
- Rede estabelece um sistema fim-a-fim

- CHAVEAMENTO DE CIRCUITO FUNCIONAMENTO
 - Três etapas:
 - Estabelecimento do circuito
 - -Define rota e características comunicação
 - Conversação
 - -Troca de informações
 - Desconexão do circuito
 - -Encerramento conexão

CHAVEAMENTO DE CIRCUITO – FUNCIONAMENTO

Fonte: http://slideplayer.com.br/slide/12659616/

- ALOCAÇÃO DE CANAIS POR CHAVEAMENTO DE CIRCUITOS
 - Chaveamento espacial
 - Chaveamento de frequência
 - Chaveamento do tempo

- ALOCAÇÃO DE CANAIS POR CHAVEAMENTO DE CIRCUITOS
 - CHAVEAMENTO ESPACIAL
 - É estabelecido um caminho entre duas estações por meio de enlaces físicos permanentes durante toda a comunicação
 - Ao longo desse caminho, uma sucessão de chaves físicas, cada uma em um nó intermediário, formam um circuito através da interconexão entre suas portas

0.png

ugbfxp0WFHX*KEJUcpASX9U8oPRk9flxKzD20H4rktofa*gx/Aula 00102

- CHAVEAMENTO FREQUÊNCIA

- É estabelecida uma associação entre canais de frequência em cada enlace
- Um nó intermediário, ao receber um sinal de uma onda portadora de determinada frequência, realiza a filtragem e demodulação deste sinal para sua posterior modulação e transmissão na outra frequência associada

(a) Larguras de bandas originais; (b) Larguras de banda aumentam de frequência; (c) Canal multiplexado.

Fonte: http://2.bp.blogspot.com/-y4lH4FwPA2E/UTujyttpwyI/AAAAAAAAAAV8/z6u9orS8AP8/s1600/Sem+t%C3%ADtulo.png

FDMA (Frequency Division Multiple Access)

Each earth stations is Allocated a frequency band when it asks for it.

- ALOCAÇÃO DE CANAIS POR CHAVEAMENTO DE CIRCUITOS
 - CHAVEAMENTO DO TEMPO
 - É estabelecida uma associação de dois canais de tempo em cada enlace
 - Cada nó intermediário associa um canal TDM(Time Division Multiplex) síncrono de uma linha com outro canal TDM síncrono de outra linha, demultiplexando o sinal de um circuito desejado para ser multiplexado e encaminhado para outro nó

- ALOCAÇÃO DE CANAIS POR CHAVEAMENTO DE CIRCUITOS
 - CHAVEAMENTO DO TEMPO

Each earth stations has time slots allocated when required.

 $Fonte: https://media.springernature.com/lw785/springer-static/image/chp%3A10.1007\%2F978-1-4419-7671-0_86/MediaObjects/978-1-4419-7671-0_86_Fig22_HTML.gif$

• COMUTAÇÃO DE MENSAGENS

- Não é necessário o estabelecimento de um circuito dedicado entre as duas entidades.
- -Sempre que uma entidade desejar transmitir uma mensagem ela adiciona o endereço de destino a esta mensagem que será então transmitida pela rede, nó a nó.

COMUTAÇÃO DE MENSAGENS

- Mensagem por completo é enviada ao longo de uma rota da fonte ao destino (um HOP por vez)
- Em cada nó a mensagem é armazenada e depois passada adiante
- Designadas por redes do tipo "STORE and FORWARD"

• COMUTAÇÃO DE MENSAGENS

Fonte: http://slideplayer.com.br/1235178/3/images/9/Comuta%C3%A7%C3%A3o+de+mensagens+%282%29.jpg

CHAVEAMENTO DE PACOTES

- Mensagens são quebradas em quadros ou pacotes antes da transmissão
- Comutador possui buffer de saída
- Pacotes (unidade de transferência de informação) são individualmente encaminhados entre nós da rede através de ligações de dados tipicamente compartilhadas por outros nós
- Pacotes podem percorrer caminho único ou caminhos diferentes, sendo reagrupada no destino
- Não existe alocação de canal dedicado

Fonte: http://docente.ifrn.edu.br/filiperaulino/disciplinas/infra-estrutura-de-redes/aulas/Comutacao.pdf

- Entre origem e destino, pacote percorre enlace de comunicação e comutadores de pacotes
 - Roteadores e comutadores de camada de enlace
- Maior parte dos comutadores armazenam e reenviam
- Introduz um atraso de armazenamento e reenvio na entrada de cada enlace

- Atraso é proporcional ao comprimento do pacote em bits
- Pacote com L bits e saída de R bps:
 - Atraso = L / R
- Comutador tem um buffer de saída (fila de saída)
 - Saída provoca atraso de fila
- Como o buffer é finito, quando um pacote chega e encontra o buffer cheio, o pacote é descartado (perda de pacotes)

COMUTAÇÃO DE PACOTES - Atraso

Fonte: http://slideplayer.com.br/1594181/5/images/75/Quatro+fontes+de+atraso+dos+pacotes.jpg

Fonte: http://wiki.sintectus.com/bin/view/GrupoLinux/AdministacaoDeRedesLinux

- -Alocação do enlace é por demanda
- Capacidade do enlace é compartilhada pacote por pacote somente entre usuários que tenham pacotes a transmitir
- Compartilhamento sob demanda é chamado multiplexação estatística

• REDES DE COMUTAÇÃO DE PACOTES

- REDE DE DATAGRAMAS
 - Transmite pacotes com base no endereço de destino de sistemas finais
 - Exemplo: roteadores da Internet

- REDE DE CIRCUITOS VIRTUAIS

- Transmite pacotes com base no número do circuito virtual
- Exemplo: X.25, Frame Relay e ATM

Uma rede de datagramas com quatro comutadores (roteadores)

Fonte: http://2.bp.blogspot.com/-oRnRe8dMRRo/Tim7I5FXIaI/AAAAAAAAAAAAQ/vNml1S8oWYE/s1600/ip_atm-top.gif

PVC Permanent Virtual Circuit

Transferência de dados da origem ao destino em uma rede de circuitos virtuais

VPI/VCI

Fonte: https://technet.microsoft.com/en-us/library/bb962019.async04_big(l=en-us).gif

VPI Virtual Path Identification
VCI Virtual Channel Identification

Comparação entre comutações de circuitos e pacotes

ITEM	COMUTAÇÃO DE CIRCUITOS	COMUTAÇÃO DE PACOTES	
Configuração de chamadas	Obrigatória	Não necessária	
Caminho físico dedicado	Sim	Não	
Pacotes seguem o mesmo caminho	Sim	Não	
Pacotes chegam na mesma ordem	Sim	Não	
Reserva da largura de banda	Fixa	Dinâmica	
Largura de banda desperdiçada	Sim	Não	
A falha de um equipamento é fatal	Sim	Não	

Fonte: http://www.teleco.com.br/tutoriais/tutorialvoipconv/pagina_3.asp

Exame Nacional de Desempenho dos Estudantes

uma questão de seu interesse

ricardo.souza@ifpa.edu.br

- Questão 13 ENADE
- Considere as afirmativas abaixo em relação aos tipos de comutação (circuitos, mensagens e pacotes) utilizados em redes.
 - I- Na comutação por circuitos, é necessário o estabelecimento de um caminho fim-a-fim para realizar a comunicação.
 - II- Na comutação de mensagens, não há necessidade de realizar armazenamento temporário nos nós intermediários da rede.
 - III- A comutação de pacotes apresenta a vantagem, em relação a comutação de mensagens, de permitir que várias partes de uma mensagem sejam transmitidas simultaneamente.
 - (A) I, apenas
 - (B) I e II apenas
 - (C) I e III, apenas
 - (D) II e III, apenas
 - (E) I,II e III.

- Ano: 2017 Banca: CCV-UFC Órgão: UFC Prova: CCV-UFC 2017 UFC Engenheiro Teleinformática
- A função de **comutação** em uma rede de comunicação refere-se à alocação dos recursos da rede para a transmissão pelos diversos dispositivos conectados. Sobre **comutação**, classifique cada uma das afirmações abaixo como verdadeira (V) ou falsa (F).
 - () A comunicação via comutação por circuitos pressupõe a existência de um caminho dedicado de comunicação entre duas estações.
 - () A comunicação via comutação por pacotes envolve três fases: estabelecimento da conexão, transferência da informação e encerramento da conexão.
 - () Na comutação por circuitos, o caminho alocado durante a fase de estabelecimento da conexão permanece dedicado àquelas estações até que uma delas (ou ambas) decida desfazer o circuito. Isso significa que, caso o tráfego entre as estações não seja constante e contínuo, a capacidade do meio físico será desperdiçada.
 - () Na comutação de pacotes não é necessário o estabelecimento de um caminho dedicado entre as estações. Ao invés disso, se uma estação deseja transmitir um pacote, ela adiciona o endereço de destino ao mesmo, que será então transmitido pela rede de nó em nó.
 - () Na comutação de pacotes, o aproveitamento das linhas de comunicação é maior, já que os canais podem ser compartilhados por vários pacotes ao longo do tempo. A sequência correta é:

(B)
$$V - V - V - V - V$$

(C)
$$F - V - F - V - V$$

(E)
$$V - V - V - V - F$$

- Ano: 2014 Banca: FCC Órgão: TCE-RS Prova: FCC 2014 TCE-RS Auditor Público
 Externo Técnico em Processamento de Dados Conhecimentos Específicos
- Uma rede de comunicação de dados pode utilizar diferentes tipos de comutação para realizar a transmissão de dados de acordo com os requisitos de funcionalidade estabelecidos para cada rede. Nesse contexto, é correto afirmar:
- a) A comutação de pacotes exige que uma rota seja configurada de ponta a ponta antes de iniciar a comunicação.
- b) Na comutação de circuitos, os dados são transmitidos logo que são recebidos pela interface de rede, o que aumenta o *throughput*.
- c) A comutação de pacotes é mais tolerante a defeitos que a comutação de circuitos.
- d) Na comutação de pacotes pode ocorrer a monopolização do canal de comunicação.
- e) A comutação de circuitos impõem um limite máximo sobre o tamanho do bloco transmitido.

SUMÁRIO

CLASSIFICAÇÃO QUANTO A TECNOLOGIA DE TRANSMISSÃO

CLASSIFICAÇÃO QUANTO A TECNOLOGIA DE TRANSMISSÃO

- Redes de difusão
- Redes Anycast
- Redes de multidifusão
- Unicast
- Redes Ponto-a-ponto

REDES DE DIFUSÃO (BROADCAST)

- Tem apenas um canal de comunicação compartilhado por todas as máquinas
- Mensagens curtas chamadas PACOTES
- Campo de endereço identifica destino
- Possibilidade envio todos os destinos
- Podem ser estáticas ou dinâmicas

- TIPOS DE REDES DE DIFUSÃO
- REDES DE DIFUSÃO ESTÁTICA
 - O tempo é dividido em intervalos distintos e um algoritmo de rodízio é executado
 - Desperdiça a capacidade do canal quando uma máquina não tem nada a transmitir
- REDES DE DIFUSÃO DINÂMICA
 - CENTRALIZADO
 - Uma entidade define a prioridade da rede
 - DESCENTRALIZADO
 - Cada máquina decide por si mesma se a transmissão deve ser feita ou não

REDES ANYCAST

 Forma de encaminhamento onde os dados são distribuídos "ao destino mais próximo" ou "melhores" definido pelo roteamento da rede

REDES DE MULTIDIFUSÃO (MULTICAST)

- Tem apenas um canal de comunicação compartilhado por todas as máquinas
- Entrega de informação para múltiplos destinatários simultaneamente usando a estratégia mais eficiente onde as mensagens só passam por um link uma única vez
- Suportam transmissão para um subconjunto das máquinas

UNICAST

- Quando um endereçamento para um pacote é feito a um único destino
- A entrega no unicast é simples, ponto-a-ponto

REDES PONTO-A-PONTO

- Muitas conexões entre pares individuais de máquinas
- Da origem ao destino passando por outras máquinas
- É uma arquitetura de sistemas distribuídos caracterizada pela descentralização das funções na rede, onde cada nodo realiza tanto funções de servidor quanto de cliente

Ponto-a-ponto

Fonte: http://messiasfelix.freevar.com/img/rede-ponto-a-ponto.PNG

REDES PONTO-A-PONTO

- Características:
 - O seu *design* garante que cada usuário contribui com recursos para o sistema.
 - Apesar de que eles podem diferir nos recursos que contribuem, todos os nodos em um sistema peer-to-peer possuem as mesmas capacidades funcionais e responsabilidades

SUMÁRIO

REDES DE ACESSO

REDES DE ACESSO

 Enlace ou enlaces físicos que conectam um sistema final a seu roteador de borda

Roteador de Borda

 Primeiro roteador de um caminho entre um sistema final e qualquer outro sistema final remoto

Fonte: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQ5ex3yMQApspo0XPHiiPxaHDG4VprqPfH4AzYCiTESdUYFzbb42A

REDES DE ACESSO

- Acesso residencial
 - Modem discado
 - Banda Larga
 - DSL (Digital Subscriber Line) Linha Digital de Assinante
 - Híbrido coaxial/fibra
- Acesso Corporativo
- Acesso sem fio

- ACESSO DISCADO
 - Residencial (não + utilizado)

Fonte: https://sites.google.com/site/hdinformaticaltda/_/rsrc/1310707883618/internet-via-wireless/wireless4.JPG

Fonte: http://imagens2.ne10.uol.com.br/blogsne10/mundobit/uploads/2013/05/discadores.jpg

- ACESSO BANDA LARGA
 - DSL(Digital Subscriber Line)

Fonte: https://cdncontribute.geeksforgeeks.org/wp-content/uploads/Capture-86.png

- ACESSO BANDA LARGA
 - DSL(Digital Subscriber Line)

ACESSO À INTERNET POR DSL

- ACESSO BANDA LARGA
 - DSL(Digital Subscriber Line)

Fonte: http://www.laercio.com.br/compartilhamento-de-conexao-de-banda-larga/ricardo.souza@ifpa.edu.br

- ACESSO BANDA LARGA
 - ADSL(Asymmetric Digital Subscriber Line)

Modem ADSL

ACESSO BANDA LARGA

Resumo das tecnologias DSL

Tecnologia	Velocidade de Downstream	Velocidade de Upstream	Distância (pés)	Pares Trançados	Código de Linha
ADSL	1,5 a 6,1 Mbps	16 a 640 kbps	12.000	1	DMT
ADSL Lite	1,5 Mbps	500 kbps	18.000	1	DMT
HDSL	1,5 a 2 Mbps	1,5 a 2 Mbps	12.000	2	2B1Q
SDSL	768 kbps	768 kbps	12.000	1	2B1Q
VDSL	25 a 55 Mbps	3,2 Mbps	3.000 a 10.000	1	DMT

ADSL – Asymmetric Digital Subscriber Line

HDSL - High-bit-rate Digital Subscriber Line

SDSL - Symmetric Digital Subscriber Line

VDSL - Very High-bit-rate Digital Subscriber Line

ACESSO REDE HÍBRIDA COAXIAL-FIBRA

UMA REDE DE ACESSO HÍBRIDA FIBRA-COAXIAL

ACESSO REDE HÍBRIDA COAXIAL-FIBRA

Rede HFC (Hybrid fiber-coaxial)

ACESSO REDE HÍBRIDA COAXIAL-FIBRA

Fonte: https://slideplayer.com.br/slide/4872293/16/images/71/Rede+HFC+-+H%C3%ADbrida%2C+Fibra+e+Coaxial+-.jpg

ACESSO CORPORATIVO

- DSL (Digital Subscriber Line) Linha Digital de Assinante
- -HÍBRIDO
- -RÁDIO

ACESSO CORPORATIVO - DSL

Fonte: http://www.cascaweb.com.br/wp-content/uploads/2014/12/rede-router-diagrama.jpg

ACESSO REDE HÍBRIDA COAXIAL-FIBRA

Fonte: http://slideplayer.com.br/9537296/30/images/43/ACESSO+REDE+H%C3%8DBRIDA+COAXIAL-FIBRA.jpg

ACESSO CORPORATIVO POR RÁDIO

Fonte: https://www.invoop.com/uploads/announcements/58b30a44b56b3.gif

ACESSO CORPORATIVO POR RÁDIO

Fonte: http://2.bp.blogspot.com/_1RK1SdVOwCU/TK-t66zJhJI/AAAAAAAAAABs/r4s3KX_JywM/s1600/wirele10.gif

Referências

- FOROUZAN, Behrouz A. Comunicação de dados e redes de computadores. 4. ed. São Paulo: McGraw-Hill, 2008.
- KUROSE, Jim F. ROSS, Keith W. Redes de Computadores e a Internet. Uma nova abordagem. 3. ed. São Paulo: Addison Wesley, 2006.
- TANENBAUM, Andrew S. **Redes de computadores**. 3. Ed. Rio de Janeiro: Campus, 1997.
- COMER, Douglas E. Internetworking with TCP/IP. Principal, Protocolos, and Architecture. 2.ed. New Jersey: Prantice Hall, 1991. v.1.
- OPPENHEIMER, Priscilla. **Projeto de Redes Top-down**. Rio de Janeiro: Campus, 1999.
- GASPARINNI, Anteu Fabiano L., BARELLA, Francisco Rogério.
 TCP/IP Solução para conectividade. São Paulo: Editora Érica Ltda., 1993.

Referências

- SPURGEON, Charles E. **Ethernet: o guia definitivo**. Rio de Janeiro: Campus, 2000.
- SOARES, Luiz Fernando G. Redes de Computadores: das LANs, MANs e WANs às redes ATM. Rio de Janeiro: Campus, 1995.
- CARVALHO, Tereza Cristina Melo de Brito (Org.). Arquitetura de Redes de Computadores OSI e TCP/IP. 2. Ed. rev. ampl. São Paulo: Makron Books do Brasil, Brisa; Rio de Janeiro: Embratel; Brasília, DF: SGA, 1997.
- COMER, Douglas E. Interligação em rede com TCP/IP. 2. Ed. Rio de Janeiro: Campus, 1998. v.1.
- ARNETT, Matthen Flint. Desvendando o TCP/IP. Rio de Janeiro: Campus, 1997. 543 p.
- ALVES, Luiz. **Comunicação de dados**. 2. Ed. rev. ampl. São paulo: Makron Books do Brasil, 1994.