Модификации метода анализа сингулярного спектра для анализа временных рядов: Circulant SSA и Generalized SSA

Погребников Н. В., гр. 21.Б04-мм Голяндина Нина Эдуардовна, д. ф.-м. н., проф.

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

4 курс (бак.) «Производственная практика (Преддипломная практика)» (Семестр 8)

Санкт-Петербург, 2025

Модификации метода **SSA**

Научный руководитель д. ф.-м. н., проф. Голяндина Нина Эдуардовна, кафедра статистического моделирования

Структура презентации

План доклада:

- Введение методы, постановка задачи и цели.
- Критерии сравнения методов
- Оравнение SSA и GSSA
- Ф Сравнение SSA, разложение Фурье и CiSSA
- **5** Сравнение MSSA, 2d-SSA и FSSA
- Итоги и выводы.

2/30Погребников Н. В., гр. 21.Б04-мм Голяндина Нина Модификации метода SSA

В данной работе рассматриваются темы, показанные на слайде

Введение

Пусть $X=(x_1,\ldots,x_N)$ – временной ряд длины N, $x_i\in\mathbb{R}$ – наблюдение в момент времени i.

$$X = X_{Trend} + X_{Periodics} + X_{Noise}$$
, где:

- X_{Trend} тренд, медленно меняющаяся компонента;
- X_{Periodics} сумма периодических компонент;
- X_{Noise} шум, случайная составляющая.

Методы: SSA — метод, позволяющий раскладывать временной ряда в сумму интерпретируемых компонент (Golyandina, Nekrutkin и Zhigljavsky 2001); GSSA — модификация SSA на основе добавления весов (Gu и др. 2024); CiSSA — модификация SSA на основе циркулярной матрицы (Bogalo, Poncela и Senra 2020).

Задача: Описание модификаций в контексте теории **SSA**, сравнение алгоритмов, реализация их на языке R.

3/30Погребников Н. В., гр. 21.Б04-мм Голяндина Нина Модификации метода SSA

Определим понятие временного ряда, методы, которые будем рассматривать, а также поставленные задачи.

Критерии сравнения методов

Пример

$${\sf X}={\sf S}+{\sf X}_{
m Noise}={\sf S}^{(1)}+{\sf S}^{(2)}+{\sf X}_{
m Noise}=\ e^{An}\sin{(2\pi\omega_1n)}+\cos{(2\pi\omega_2n)}+arepsilon_n.\ \omega_1,\omega_2$$
 — частоты; $arepsilon_n\sim {\sf N}(0,\sigma^2)$ — шум; ${\sf S}$ — сигнал. $\hat{\sf S}$ — оценка выделения сигнала методом. $\hat{\sf S}^{(1)},\hat{\sf S}^{(2)}$ — оценки разделения компонент ${\sf S}^{(1)},{\sf S}^{(2)}$.

Критерии сравнения методов:

- Выделение сигнала;
- Разделимость;
- Постановка задачи (для CiSSA частоты предполагаются известными).

4/30Погребников Н. В., гр. 21.Б04-мм Голяндина Нина Модификации метода SSA

Введем определения сигнала, шума, компонент на примере. Также рассмотрим критерии сравнения различных методов

Разделимость

 ${\sf X}_N = {\sf X}_N^{(1)} + {\sf X}_N^{(2)}$. ${\sf M}$ — метод разделения ряда на компоненты с параметрами Θ . $\hat{\sf X}_N^{(1)}$ — оценка ${\sf X}_N^{(1)}$, восстановленная ${\sf M}$.

Определение 1

Ряды $\mathsf{X}_N^{(1)}$ и $\mathsf{X}_N^{(2)}$ точно разделимы методом M , если существует такое Θ , что $\mathrm{MSE}\left(\mathsf{X}_N^{(1)},\hat{\mathsf{X}}_N^{(1)}\right)=0.$

Определение 2

Ряды ${\sf X}_N^{(1)}$ и ${\sf X}_N^{(2)}$ асимптотически разделимы методом ${\sf M}$, если существует последовательность $\Theta(N)$, $N \to \infty$, что ${\sf MSE}\left({\sf X}_N^{(1)},\hat{\sf X}_N^{(1)}\right) \to 0.$

5/30Погребников Н. В., гр. 21.Б04-мм Голяндина Нина Модификации метода SSA

Модификации метода **SSA**

□Разделимость

В контексте теории **SSA** важными понятиями являются точная и асимтпотические разделимости.

Метод SSA. Алгоритм

 ${\sf X} = (x_1, \dots, x_N)$ — временной ряд. 1 < L < N — длина окна. **Алгоритм SSA**:

Построение траекторной матрицы:

$$\mathbf{X} = \mathcal{T}_L(\mathsf{X}) = [\mathsf{X}_1 : \ldots : \mathsf{X}_K], \, \mathsf{X}_i = (x_i, \ldots, x_{i+L-1})^T, \\ 1 \le i \le K, \quad K = N - L + 1.$$

- **2** Сингулярное разложение (SVD) траекторной матрицы.
- **3** Группировка элементарных матриц SVD.
- $oldsymbol{4}$ Восстановление временного ряда по матрицам SVD: $\mathsf{X} = ilde{\mathsf{X}}_1 + \dots + ilde{\mathsf{X}}_m.$

6/30Погребников Н. В., гр. 21.Б04-мм Голяндина Нина Модификации метода SSA

Теперь перейдем к базовому алгоритму **SSA**. Он состоит из четырех основных шагов.

Вложенный вариант SSA. EOSSA

$$X = S + X_{Noise} = S^{(1)} + S^{(2)} + X_{Noise}$$

Определение 3 (Golyandina и Shlemov 2015)

Вложенный вариант SSA — двухэтапный метод:

- ① Задается $r.\ \tilde{S}$ сумма первых r слагаемых SVD разложения траекторной матрицы сигнала S с помощью базового SSA.
- ② Применение другого метода к $\tilde{\mathbf{S}}$ для улучшения разделимости: $\tilde{\mathbf{S}} = \tilde{\mathbf{S}}_1 + \tilde{\mathbf{S}}_2$.

SSA EOSSA (Golyandina, Dudnik и Shlemov 2023) является вложенным вариантом **SSA**.

7/30Погребников Н. В., гр. 21.Б04-мм Голяндина Нина Модификации метода SSA

Модификации метода **SSA**

—Вложенный вариант SSA. EOSSA

В теории **SSA** есть такое понятие, как вложенный вариант. Поскольку базовый **SSA** обладает наилучшими аппроксимационными свойствами, то имеет смысл разделять сигнал от шума с помощью него. Затем компоненты сигнала отделять друг от друга иным методом.

Метод GSSA. Алгоритм

$$\mathsf{X}=(x_1,\ldots,x_N)$$
 — временной ряд, параметры L и $\alpha \geq 0$. $oldsymbol{w}^{(a)}=(w_1,w_2,\ldots,w_L)=\left(\left|\sin\left(rac{\pi n}{L+1}
ight)
ight|^{lpha}
ight),\quad n=1,2,\ldots,L.$

Шаг 1 алгорима GSSA:

$$\mathbf{X}^{(\alpha)} = \mathcal{T}_L^{(\alpha)}(\mathsf{X}) = [\mathsf{X}_1^{(\alpha)} : \dots : \mathsf{X}_K^{(\alpha)}],$$

 $\mathsf{X}_i^{(\alpha)} = (w_1 x_{i-1}, \dots, w_L x_{i+L-2})^{\mathrm{T}}, \ 1 \le i \le K.$

Шаги 2-4: аналогичны SSA.

Замечание 1

При $\alpha=0$, **GSSA** — в точности базовый алгоритм **SSA**.

Замечание 2

 $oldsymbol{w}^{(a)}$ называются степенными синусными весами. Они могут иметь другой вид.

8/30Погребников Н. В., гр. 21.Б04-мм Голяндина Нина Модификации метода SSA

Модификации метода **SSA**

└─Mетод GSSA. Алгоритм

Рассмотрим первую модификацию **SSA** – **GSSA**. Данный метод использует технику оконного преобразования (tapering) для минимизации эффекта спекртрального размывания, в следствие чего траекторная матрица домножается на определенные веса. В данном методе задается дополнительный параметр α . Когда α равен нулю, алгоритм превращается в базовый **SSA**, поэтому авторы метода называют его обобщенным **SSA**.

Сравнение SSA и GSSA. Линейные фильтры 1

Определение 4

Пусть $X=(\dots,x_{-1},x_0,x_1,\dots)$ — бесконечный временной ряд. **Линейный конечный фильтр** — оператор Φ , преобразующий X в $Y=(\dots,y_{-1},y_0,y_1,\dots)$ по правилу:

$$y_j = \sum_{i=-r_1}^{r_2} h_i x_{j-i}, \quad j \in \mathbb{Z},$$

где r_1+r_2+1 — ширина фильтра, $h_i\in\mathbb{R}$ — коэффициенты.

Пример. При применении фильтра Φ к $x_j = \cos 2\pi \omega j$, получается ряд $y_j = A_\Phi(\omega) \cos (2\pi \omega j + \phi_\Phi(\omega))$. $\phi_\Phi(\omega)$ — фазово-частотная характеристика (ФЧХ). $A_\Phi(\omega)$ — амплитудно-частотная характеристика (АЧХ).

9/30Погребников Н. В., гр. 21.Б04-мм Голяндина Нина Модификации метода SSA

Модификации метода **SSA**

Cравнение SSA и GSSA. Линейные фильтры 1

Важным понятием в сравнении является линейный конечный фильтр. На примере $x_j = \cos 2\pi \omega j$ можно увидеть, как фильтр преобразовывает косинус. Для нас интереснее всего величина, называемая амплитудно-частотной характеристикой. Фактически, АЧХ влияет на то, как сильно фильтр будет захватывать периодику с той или иной частотой

Сравнение SSA и GSSA. Линейные фильтры 2

$$X=(x_1,\ldots,x_N)$$
, $(\sqrt{\lambda},\,U,\,V)$ – собственная тройка **SSA**. $U=(u_1,\ldots,u_L)$. $\widetilde{X}=\mathcal{T}_L\circ\mathcal{H}(\sqrt{\lambda}UV^T)$.

Запись SSA через линейный фильтр для средних точек:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k u_{k+|j|} / L \right) x_{s-j}, \quad L \le s \le K.$$

Аналогичное представление для GSSA:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k^{(\alpha)} u_{k+|j|}^{(\alpha)} w_k / \sum_{i=1}^L w_i \right) x_{s-j}, \quad L \le s \le K.$$

Замечание 1

Представление через линейные фильтры можно получить и для остальных точек ряда.

10/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Модификации метода **SSA**

 igspace Сравнение SSA и GSSA. Линейные фильтры 2

Работу алгоритмов **SSA** и **GSSA** можно полностью переписать через линейные фильтры. На слайде представлены фильтры для средних точек, однако для остальных оно выглядит аналогично.

Сравнение SSA и GSSA. Пример

 $X = X_{\sin} + X_{\cos} = \sin\left(\frac{2\pi}{12}n\right) + \frac{1}{2}\cos\left(\frac{2\pi}{19}n\right)$. $N = 96 \cdot 2 - 1$, L = 48. Группировка: для X_{\sin} 1-2 SVD, для X_{\cos} 3-4 SVD.

АЧХ для суммы фильтров собственных троек синуса

 $\alpha = 0.5$: шире полоса пропускания фильтра, чем при $\alpha = 0$, но нет волнообразного поведения на краях.

11/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Модификации метода **SSA**

└─Cравнение SSA и GSSA. Пример

Нарисованы две амплитудно-частотных характеристики. Черная показывает, что фильтр для синуса частично пропускает частоту 1/19, что соответствует частоте косинуса. Для синего графика такой проблемы нет.

Однако полоса пропускания шире для синего графика, он будет пропускать больше шума

АЧХ – значение, на которое умножается амплитуда синуса или косинуса с соответствующей частотой

Сравнение SSA и GSSA. Пример продолжение

Таким образом, АЧХ фильтра также зависит от точки, для которой этот фильтр построен.

12/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Модификации метода **SSA**

Cравнение SSA и GSSA. Пример продолжение

Кроме того, можно увидеть, что в разных временных моментах значения фильтра отличаются друг от друга. Причем, чем ближе точка находится интервалу [L,K], тем уже становится полоса пропускания фильтра, а сам фильтр начинает меньше захватывать соседние частоты.

Сравнение SSA и GSSA. Пример продолжение 2

В начальных и конечных значениях ошибки больше.

13/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Модификации метода SSA

— Сравнение SSA и GSSA. Пример продолжение $\frac{1}{2}$

Сравнение SSA и GSSA. Пример продолжение $\frac{1}{2}$

В начальных и конечных значениях ошибки больше

Можно сделать вывод, что разделимость также зависит от точки ряда. В средних точках достигаются наилучшие значения ошибки. Однако это не означает, что нужно брать маленькое L, поскольку чем больше длина окна, тем лучше происходит разделение компонент между собой в целом.

Вывод. Вложенный вариант SSA + GSSA

Таблица 1: $\mathsf{X}_{\sin} + \mathsf{X}_{\cos} + \varepsilon_n$, $\varepsilon_n \sim \mathrm{N}(0, 0.1^2)$, MSE оценок

Метод/Ошибка	X_{\sin}	X_{\cos}	X
SSA	5.68e-03	5.44e-03	7.48e-04
GSSA, $\alpha=0.5$	1.21e-03	1.25e-03	1.04e-03
SSA + GSSA, $\alpha = 0.5$	1.06e-03	1.12e-03	7.15e-04

Получается вложенный вариант SSA.

14/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Модификации метода **SSA**— Вывод. Вложенный вариант SSA + GSSA

— Волучается вложенный вариант SSA

— Получается вложенный вариант SSA

— Получается вложенный вариант SSA.

На основе предыдущих слайдов предлагаю вложенный вариант на основе **GSSA**. На основе таблицы можно сделать вывод, что комбинирование алгоритмов привело к улучшению как в выделении полезного сигнала, так и в разделении компонент между собой.

Метод CiSSA. Алгоритм

 ${\sf X} = (x_1, \dots, x_N)$ — временной ряд. 1 < L < N — длина окна. **Алгоритм CiSSA**:

- **1** Построение траекторной матрицы: как в SSA.
- 2 l=1:L, $U_l=L^{-1/2}(u_{l,1},\dots,u_{l,L}),\ u_{l,j}=\exp\left(-\mathrm{i}2\pi(j-1)\frac{l-1}{L}\right).$ Элементарное разложение: $\omega_k=\frac{k-1}{L},\ k=1:\lfloor\frac{L+1}{2}\rfloor$

$$\begin{split} \mathbf{X}_{\omega_k} &= U_k U_k^H \mathbf{X} + U_{L+2-k} U_{L+2-k}^H \mathbf{X}; \\ \mathbf{X}_{\omega_{\frac{L}{2}+1}} &= U_{\frac{L}{2}+1} U_{\frac{L}{2}+1}^H \mathbf{X}, \text{ если } L \mod 2 = 0, \end{split}$$

Разложение: $\mathbf{X} = \sum\limits_{k=1}^d \mathbf{X}_{\omega_k}, \ d = \lfloor \frac{L+1}{2} \rfloor$ (или $\frac{L}{2}+1$).

3 Группировка по частотам:

$$\bigsqcup_{j=1}^{m} \Omega_j = \bigsqcup_{j=1}^{m} \left[\omega_j^{(l)}, \omega_j^{(r)} \right] = [0, 0.5]. \ \mathbf{X}_{\Omega_j} = \sum_{\omega_k \in \Omega_j} \mathbf{X}_{\omega_k}.$$

Диагональное усреднение: как в SSA.

15/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Модификации метода **SSA**

└─Mетод CiSSA. Алгоритм

Рассмотрим теперь модификацию **SSA** на основе циркулярной матрицы. Алгоритм **CiSSA** также состоит из 4 шагов, однако теперь группировка происходит не по компонентам SVD разложения, а по частотам.

Метод CiSSA. Особенности

- **1** SSA: базис адаптивный (зависит от X, L, N). CiSSA: базис фиксированный (зависит от L, N).
- **2** CiSSA разложения Фурье для K векторов матрицы X с последующим диагональным усреднением слагаемых.
- B CiSSA группировка по диапазонам частот. Алгоритм применим только, когда заранее известны частоты интересующих компонент.

16/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

На слайде представлены ключевые особенности **CiSSA**.

Сравнение SSA, Фурье, CiSSA. Точная разделимость

Фиксируем временной ряд
$$X=X_1+X_2=$$
 $=A_1\cos(2\pi\omega_1 n+\varphi_1)+A_2\cos(2\pi\omega_2 n+\varphi_2).$

Метод	Условия точной разделимости			
SSA	$L\omega_1,L\omega_2,K\omega_1,K\omega_2\in\mathbb{N}$, $\omega_1 eq\omega_2$, $A_1 eq A_2$			
SSA EOSSA	$\omega_1 eq \omega_2$			
Фурье	$N\omega_1,N\omega_2\in\mathbb{N}$, $\omega_1 eq\omega_2$			
CISSA	$L\omega_1, L\omega_2 \in \mathbb{N}, \omega_1 \neq \omega_2$			

Таким образом, условия на разделение косинусов, слабее у методов **CiSSA** и **Фурье**, чем у **SSA**.

17/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

По таблице на слайде видно, что наилучшими условиями точной разделимости для пары гармоник обладает **CiSSA** (за исключением SSA EOSSA).

Сравнение SSA, Фурье, CiSSA. Асимптотическая разделимость

Метод	Гармоники	Экспмод. функции
SSA	✓	\checkmark
SSA EOSSA	\checkmark	\checkmark
Фурье	\checkmark	X
CiSSA	\checkmark	\checkmark

^{✓ —} класс функций асимптотически разделим методом.

18/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Также можно увидеть, какие классы асимптотически разделимы методами.

Пример 1. Гармоничесикие функции

Пример 1: $\mathsf{X} = \mathsf{X}_{\sin} + \mathsf{X}_{\cos} = A_1 \sin(2\pi\omega_1 n) + A_2 \cos(2\pi\omega_2 n)$. Группировка: $\delta = 1/L$, для X_{\sin} 1-2 SVD или $(\omega_1 \pm 2\delta)$; для X_{\cos} 3-4 SVD или $(\omega_2 \pm 2\delta)$;

Метод	Параметры	$\mathrm{MSE}\left(X_{\sin}\right)$	$\mathrm{MSE}\left(X_{\mathrm{cos}}\right)$	$\overline{\mathrm{MSE}\left(X\right)}$
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 \neq A_2$	6.8e-30	1.5e-29	1.8e-29
SSA EOSSA	$L\omega_i\in\mathbb{N}, K\omega_i\in\mathbb{N},\ A_1 eq A_2,\ r=4$	8.2e-30	6.5e-30	5.5e-30
Fourier	$N\omega_i \in \mathbb{N}$	3.4e-28	9.8e-29	4.0e-28
CiSSA	$L\omega_i \in \mathbb{N}, \ A_1 \neq A_2$	1.1e-29	6.5e-30	7.8e-30
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 = A_2$	3.8e-04	3.8e-04	6.0e-29
SSA	$L\omega_i \in \mathbb{N}, \ K\omega_i \notin \mathbb{N}, \ A_1 = A_2$	4.9e-03	3.4e-03	5.9e-29
SSA EOSSA	$L\omega_i \in \mathbb{N}$, $K\omega_i \notin \mathbb{N}$, $A_1 = A_2$, $r = 4$	1.4e-29	2.9e-29	1.1e-29
Fourier	$N\omega_i otin\mathbb{N}$	7.6e-03	3.3e-03	5.6e-03

По таблице видно, что при нарушении условий точной разделимости, результаты значительно ухудшаются. SSA EOSSA исправляет ситуацию для SSA.

19/30Погребников Н. В., гр. 21.Б04-мм Голяндина Нин Модификации метода SSA

Длину N ряда сложно подбирать, поэтому будем рассматривать случаи, когда N хорошее и плохое. А L всегда можем изменить, поэтому все L подобраны наилучшим образом. w_1 , w_2 фиксированы

Пример 1. Шум

Пример 1: X = ${\sf X}_{\rm sin} + {\sf X}_{\rm cos} + {\sf X}_{\rm Noise} =$ = $A_1 \sin(2\pi\omega_1 n) + A_2 \cos(2\pi\omega_2 n) + \varepsilon_n$, $\varepsilon_n \sim {\sf N}(0,0.1^2)$ Группировка: $\delta = 1/L$, для ${\sf X}_{\rm sin}$ 1-2 SVD или $(\omega_1 \pm 2\delta)$; для ${\sf X}_{\rm cos}$ 3-4 SVD или $(\omega_2 \pm 2\delta)$;

Метод	Параметры	$\mathrm{MSE}\left(X_{\sin} ight)$	$\mathrm{MSE}\left(X_{\mathrm{cos}}\right)$	MSE (X)
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}$	2.7e-04	3.3e-04	6.0e-04
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}$	2.7e-04	3.3e-04	6.0e-04
Fourier	$N\omega_i\in\mathbb{N}$	1.5e-04	2.1e-04	3.6e-04
CiSSA	$L\omega_i \in \mathbb{N}$	1.6e-04	2.8e-04	4.3e-04
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 = A_2$	2.5e-04	3.3e-04	6.0e-04
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, A_1 = A_2$	4.9e-03	3.4e-03	6.0e-04
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, A_1 = A_2$	2.7e-04	3.4e-04	6.0e-04
Fourier	$N\omega_i otin\mathbb{N}$	2.6e-02	7.3e-02	9.8e-02

Результаты ухудшились.

20/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Шум, очевидно, ухудшил результат, однако наилучшим образом себя показали **CiSSA** и **SSA** EOSSA.

Пример 2. Экспоненциально-модулированные функции

Пример 2:

 $\mathsf{X} = \mathsf{X}_{e\cdot\sin} + \mathsf{X}_{e\cdot\cos} = e^{A_1n}\sin(2\pi\omega_1n) + e^{A_2n}\cos(2\pi\omega_2n).$ Группировка: $\delta = 1/L$, для X_{\sin} 1-2 SVD или $(\omega_1 \pm 2\delta)$; для X_{\cos} 3-4 SVD или $(\omega_2 \pm 2\delta)$;

Метод	Параметры	$\mathrm{MSE}\left(X_{e\cdot\sin} ight)$	$\mathrm{MSE}\left(X_{e\cdot\cos}\right)$	$\overline{\mathrm{MSE}\left(X\right)}$
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}$	5.3e-05	5.3e-05	1.2e-27
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, r = 4$	3.0e-28	4.4e-28	7.4e-29
Fourier	$N\omega_i\in\mathbb{N}$	6.7e-02	1.4e-02	4.9e-02
CiSSA	$L\omega_i \in \mathbb{N}$	3.8e-03	2.6e-02	1.5e-02
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}$	4.8e-04	4.8e-04	1.1e-27
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, r = 4$	2.8e-28	4.2e-28	7.5e-29
Fourier	$N\omega_i otin\mathbb{N}$	3.7e-02	1.1e-01	1.1e-01

При домножении на экспоненты периодик, все результаты ухудшились кроме **SSA EOSSA**. **Фурье** и **CiSSA** значительно ухудшились в точности разделения.

21/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Пример 2. Экспоненциально-модулированные функции

При нарушении условий точной разделимости, **CiSSA** уже не показывает наилучших результатов (как в SSA EOSSA). Однако, базовый **SSA** справляется даже при неудачном подборе параметров лучше, чем **CiSSA**, причем отделяется шум от силнала с машинной точностью.

Пример 2. Шум

Пример 2:
$$X = X_{e \cdot \sin} + X_{e \cdot \cos} + X_{\text{Noise}} =$$

= $e^{A_1 n} \sin(2\pi w_1 n) + e^{A_2 n} \cos(2\pi w_2 n) + \varepsilon_n$, $\varepsilon_n \sim N(0, 0.1^2)$

Метод	Параметры	$\mathrm{MSE}\left(X_{e\cdot\sin} ight)$	$\mathrm{MSE}\left(X_{e\cdot\cos}\right)$	$\mathrm{MSE}\left(X\right)$
SSA	$Lw \in \mathbb{N}, Kw \in \mathbb{N}$	3.1e-04	3.6e-04	5.6e-04
SSA EOSSA	$Lw \in \mathbb{N}, Kw \in \mathbb{N}$	2.2e-04	3.4e-04	5.6e-04
Fourier	$Nw \in \mathbb{N}$	1.5e-02	7.2e-02	7.2e-02
CiSSA	$Lw \in \mathbb{N}$	5.2e-03	3.4e-02	3.3e-02
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}$	7.7e-04	8.7e-04	5.6e-04
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, r = 4$	5.8e-04	5.6e-04	7.1e-04
Fourier	$N\omega_i\notin\mathbb{N}$	4.2e-02	3.3e-01	3.5e-01

Результаты ухудшились.

22/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

При добавлении шума к предыдущему примеру результаты остаются примерне те же по рангам, однако SSA при плохом и хорошем подборе параметров показывают хорошие результаты.

Применения CiSSA

Когнитивная нагрузка (Yedukondalu и др. 2025)

- Разложили сигналы ЭЭГ (наборы MAT, STEW) с помощью CiSSA на частотно-временные компоненты для отслеживания мозговой активности.
- Создали новые признаки из компонент.
- Классифицировали когнитивную нагрузку (низкая/высокая или лёгкая/средняя/высокая) с KNN, SVM.

Таяние ледников (Dey и др. 2023)

- Рассматривается таяние ледников. Цель работы отделить долгосрочную тенденцию от сезонных сигналов.
- Применили CiSSA (L=10) к стратиграфии кернов для разделения долгосрочных трендов и сезонных сигналов (пыль, соль).

23/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Модификации метода SSA

Когнитивная нагрузка (Yedukondallu и др. 2025)
- Разложива ситвали ЭЗГ (неборы МАТ, STEW) с помощью
СISSA на частольно-примение компонеты для отслеживае из моготовой зательно-примение компонеты.
- Спарате монь презами из компонеть.
- Классифицировале колькительную катрулку (ваз ная/высокая или вітель (горания (васмая) с Клик, SVM.
Тавине лединова (Осу и др. 2023)
- Ресситрываеть лажее лединов. Цель доботы – отделять долого, рочую тенденцко от сезонных ситалов.
- Применями SSA (Д. 101) к статратерый и прозодил разделения долого, рочных тряндов в сезонных ситалов (пыль, соль).

Теперь рассмотрим работы, в которых применялся алгоритм **CiSSA**. Фактически, в каждой из работ можно заменить **CiSSA** на **SSA** с автоматической группировкой по частотам.

Сравнение SSA, Фурье, CiSSA. Выводы

По полученным результатам, можно следующие выводы:

- **1** CiSSA показывает себя лучше Фурье;
- На разделение периодических компонент для базового SSA накладываются более строгие ограничения относительно CiSSA. В остальных случаях SSA работает лучше;
- 3 SSA EOSSA исправляет недостатки базового SSA.
- 4 Имеет смысл вложенный вариант с CiSSA.

24/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ник Модификации метода SSA

Модификации метода **SSA**

-Сравнение SSA, Фурье, CiSSA. Выводы

На слайде можно увидеть выводы.

По полученным результатам, можно следующие выводы

- 10 полученным разультатым, можно следующие выводы:

 Ф CISSA позавывает себя лучие Фурме;

 Ф На разделение периодических компонит для базового SSA
 макадывызотся более строте потранечения отвестатьно
 CISSA. В остальных случаях SSA работает лучше;

 Ф ЗSA EOSSA исправляет недостатиля базового SSA.

 Ф Имеет с мысла вызоженный в ареант с CISSA.

Последующие действия. FSSA

FSSA – метод разложения функциональных временных рядов, совмещающий подходы функционального PCA, **SSA**.

Вход:

- $\{y_t(s)\}_{t=1}^N$, $y_t(s) \in \mathcal{L}^2([0,1])$.
- ullet Длина окна L, базис.

Сравним с 2d-SSA, MSSA.

25/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

 Модификации метода SSA
 FSSA — метод разложения функциональных временых рядов, совме щьющей в подходы функциональных временых рядов, совмещьющей подходы функциональных временых радов, совмещьющей подходы функциональных временых радов, совмещьющей подходы функциональных временых радов, совмещьющей подходы функциональных временых радов.

Алгоритм может быть сравним с **2d-SSA**, **MSSA**.

Результаты данного исследования:

- Выявлены сильные и слабые стороны методов;
- Предложены собственные вложенные модификации;
- Методы реализованы на языке R.

Последующие действия:

- Рассмотрение FSSA;
- Реализация вложенного варианта с CiSSA.

26/30Погребников Н. В., гр. 21.Б04-мм Голяндина Нин Модификации метода SSA

Спасибо за внимание!

Список литературы І

- Bogalo, Juan, Pilar Poncela и Eva Senra (2020). «Circulant singular spectrum analysis: A new automated procedure for signal extraction». B: Signal Processing 177. ISSN: 0165-1684. DOI: 10.1016/j.sigpro.2020.107750. URL: http://www.sciencedirect.com/science/article/pii/S0165168420303264.
- Dey, Rahul и др. (2023). «Application of visual stratigraphy from line-scan images to constrain chronology and melt features of a firn core from coastal Antarctica». В: Journal of Glaciology 69.273, с. 179—190. DOI: 10.1017/jog.2022.59.
- Golyandina, Nina, Pavel Dudnik μ Alex Shlemov (2023).
 «Intelligent Identification of Trend Components in Singular Spectrum Analysis». B: Algorithms 16.7, c. 353. DOI: 10.3390/a16070353. URL: https://doi.org/10.3390/a16070353.

28/30Погребников Н. В., гр. 21.Б04-мм Голяндина Ниг Модификации метода SSA

Список литературы II

- Golyandina, Nina, Vladimir Nekrutkin и Anatoly Zhigljavsky (2001). Analysis of Time Series Structure: SSA and Related Techniques. Chapman и Hall/CRC. URL: https://www.academia.edu/34626051/Analysis_of_Time_Series_Structure_-_SSA_and_Related_Techniques.
- Golyandina, Nina μ Alex Shlemov (2015). «Variations of singular spectrum analysis for separability improvement: non-orthogonal decompositions of time series». B: Statistics and Its Interface 8.3, c. 277—294. ISSN: 1938-7997. DOI: 10.4310/sii.2015.v8.n3.a3. URL: http://dx.doi.org/10.4310/SII.2015.v8.n3.a3.

Список литературы III

- Gu, Jialiang и др. (2024). «Generalized singular spectrum analysis for the decomposition and analysis of non-stationary signals». В: Journal of the Franklin Institute Accepted/In Press. ISSN: 0016-0032. DOI: 10.1016/j.jfranklin.2024.106696. URL:
- https://doi.org/10.1016/j.jfranklin.2024.106696.

 Yedukondalu, Jammisetty и др. (янв. 2025). «Cognitive load detection through EEG lead wise feature optimization and ensemble classification». В: Scientific Reports 15. DOI: 10.1038/s41598-024-84429-6.