Proof. Let $g \in \Lambda$ have a non-trivial projection on $\mathbb{R}_{\mathbf{H}}$, and let $z \in \Lambda \cap Z$. We have $g^k z g^{-k} = a^k(z)$, where a = r(g). Since the actions of $\mathbb{R}_{\mathbf{L}}$ and K on the center of Heis are trivial, and the action of $\mathbb{R}_{\mathbf{H}}$ is contracting (up to forward or backward iteration), it follows that the sequence $(a^k(z))_{k \in \mathbb{Z}}$ has an accumulation point at 1. As Λ is discrete, the set $\{a^k(z), k \in \mathbb{N}\} \subset \Lambda$ must be finite, which forces z = 1.

Lemma 3.7. ([17, Lemma 5.3]) Let Q be the semi-direct product $Q = \mathbb{R} \ltimes C$ where C is a compact connected Lie group. Then Q is isomorphic to the product $\mathbb{R} \times C$.

The last lemma we will need in this section is Lemma 3.8 below. It is similar to [16, Proposition 5.4], but we present it here in a form that allows for systematic application. The proof however is the same, so to avoid unnecessary lengthening of the paper, we will not rewrite the proof.

Let $Q \ltimes C \subset \mathsf{Aut}(\mathsf{Heis})$ preserving the decomposition $\mathfrak{heis} = \mathfrak{a} \oplus \mathfrak{z}$, and such that C is compact. Define

$$G := (Q \ltimes C) \ltimes N.$$

Let Γ be a discrete subgroup of G. Under some conditions, the proposition below ensures the existence of a nilpotent syndetic hull of Γ , i.e. a connected nilpotent subgroup of G containing Γ as a lattice.

Lemma 3.8. Let Γ be a discrete subgroup of G, whose projection on Q is dense. Then, up to finite index, Γ is a lattice in a connected closed nilpotent subgroup of G.

3.2. **Proof of Theorem 3.1.** We will examine all possible closures of the projection of Γ to $\mathbb{R}_{\mathbf{H}} \times \mathbb{R}_{\mathbf{L}} \simeq \mathbb{R}^2$.

Proposition 3.9. If $\overline{p(\Gamma)} = \mathbb{R}_{\mathbf{H}} \times \mathbb{R}_{\mathbf{L}}$, then Γ does not act properly discontinuously and cocompactly on X.

Proof. By Lemma 3.8, Γ is a cocompact lattice in a connected nilpotent subgroup N of G. We will show that $N \cap \mathsf{Heis} \neq \{1\}$. Our claim is that $\dim N \geq n+2$. Indeed, Γ acts properly and cocompactly on the $K(\pi,1)$ space $N/C \simeq \mathbb{R}^k$, where C is the maximal compact subgroup of N. So its cohomological dimension is equal to $\dim(N/C)$. On the other hand, since Γ also acts properly and cocompactly on $X = \mathbb{R}^{n+2}$, its cohomological dimension must be n+2. This implies that $\dim N/C = n+2$. Now, decompose N as $N = \mathbb{R} \ltimes N_1$, where the \mathbb{R} -factor is generated by a one-parameter subgroup of G with a nontrivial projection on \mathbb{R}_L , and where

$$N_1 := N \cap (\mathbb{R}_{\mathbf{H}} \times K) \ltimes \mathsf{Heis},$$

satisfies dim $N_1 \ge n+1$. We have $p_{\mathbf{H}}(N_1) = \mathbb{R}$, so we further decompose N_1 as $N_1 = \mathbb{R} \ltimes N_0$, where the \mathbb{R} -factor is a one-parameter subgroup s(t) of $(\mathbb{R}_{\mathbf{H}} \times K) \ltimes \mathsf{Heis}$ that has a nontrivial projection on $\mathbb{R}_{\mathbf{H}}$, and

$$N_0 := N_1 \cap (K \ltimes \mathsf{Heis}),$$

with $\dim N_0 \geq n$. Since N_0 is nilpotent, its projection to K is an abelian subgroup of $\mathsf{O}(n)$, whose maximal possible dimension is $\lfloor \frac{n}{2} \rfloor$. Consequently, N_0 must intersect Heis nontrivially. Moreover, N_1 contains the subgroup $s(t) \ltimes (N_0 \cap \mathsf{Heis})$, which is therefore nilpotent. However, since the action of s(t) on $N_0 \cap \mathsf{Heis}$ is semisimple (and unipotent), it must be trivial. This is impossible since s(t) projects non-trivially on $\mathbb{R}_{\mathbf{H}}$, so its real eigenvalues are all different from 1 (the real eigenvalues of its projection to K are all equal to 1).

Proposition 3.10. If $\overline{p(\Gamma)} = \mathbb{R}$, the action of Γ is properly discontinuous and cocompact if and only if Γ is contained in the isometry group.

Proof. We have a short exact sequence $1 \to K \ltimes \mathsf{Heis} \to G \to \mathbb{R}_{\mathbf{L}} \times \mathbb{R}_{\mathbf{H}} \to 1$. Let $\mathbb{R}_{\mathbf{T}} = \{e^{tT}, t \in \mathbb{R}\}$ be a one-parameter subgroup of G such that $p(\mathbb{R}_{\mathbf{T}}) = \overline{p(\Gamma)}$. Then, Γ is contained in $G_1 := \mathbb{R}_{\mathbf{T}} \ltimes (K \ltimes \mathsf{Heis})$.

We will show that this group is, in fact, isomorphic to a group of the form $(\mathbb{R} \times K) \ltimes \mathsf{Heis}$. Write $\mathbf{T} = \lambda + \Phi + \omega$, with $\lambda \in \mathbb{R}H \oplus \mathbb{R}L$, $\Phi \in \mathfrak{k}$, and $\omega \in \mathfrak{heis}$. For any $\Psi \in \mathfrak{k}$, we have

$$[\mathbf{T}, \Psi] = [\Phi, \Psi] + [\omega, \Psi] \in \mathfrak{k} \ltimes \mathfrak{heis}. \tag{2}$$