

Problem Statement

 Old and neglected neighborhoods can quickly transform into a popular and trendy neighborhood

 This causes high real estate demand and sharp increase in the real estate prices.

 If detected early, these areas can be a good real estate investment opportunity. The property will see the highest rise in housing price compared to other neighborhoods in the same city.

Data Sources

 Some factors that can affect housing prices in neighborhood are crime rate and increase newly built and renovated buildings.

- building permits
 - City of Chicago Data Portal
- crime rate
 - o <u>City of Chicago Website</u>

- historical housing prices
 - o Zillow

Goal

 Build a model that predicts housing prices three years in advance for each zip code.

Approach 1:

 Univariate time series forecasting using ARIMA. Used historical housing prices since 2006

Approach 2:

 multivariate time series forecasting using arima models. Used Crime rate and construction count as exogenous variables

Housing Price Over Time

- The gap between the least and most expensive housing prices has increased over time.
- Some zip codes has seen increase in real estate value while some lost value over time.

Housing Price Over Time

Construction and Renovation Permits Data

- The median construction count dropped during the housing market crises but slowly increased afterwards.
- In each year there are few zip codes that are outliers and have much more construction counts compared to other zip codes.

Crime

Crime rate has decreased in Chicago over time.

 Zip codes 60653 saw the highest increase in housing value over this time period and we can see that the crime rate has decreased for this zip code.

 Zip code 60603 has seen a decrease in housing value over the last 5 years.
Crime rate has increased in this zip code over this time period.

Checking for Stationarity

- Estimate the number of differences required to make a given time series for a zip code stationary.
- Used max diff term recommended by python ndiffs function with
 - Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests
 - o Dickey–Fuller test

ACF and PACF plots for 60608 zip code after two times differencing

Auto-ARIMA

- Used Auto-ARIMA to find the best model for each zip code instead of manually finding the model parameters.
- Model parameters
 - o p: number of lagged observation considered in the model
 - o d: degree of differencing
 - o q: the order of moving average
- Auto-ARIMA steps:
 - Conducts differencing tests (i.e., Kwiatkowski–Phillips–Schmidt–Shin, Augmented Dickey-Fuller or Phillips–Perron) to determine the order of differencing, d,
 - Fits models within ranges of defined start_p, max_p, start_q, max_q ranges.
 - Finds the best model by that provides the least Akaike Information Criterion value

Model 1 - Housing Price Prediction

Zip Code 60608

forecast actual_price

SARIMAX Results

Dep. Variable: y			Observations	:	132				
Model:			RIMAX(0, 2,	0.05	3	Likelihood		-1145.805	
Date:		Fr:	i, 25 Jun 2	021	AIC			2293.609	
Time:			11:52	:33	BIC			2296.477	
Sample:				0	HQIC			2294.774	
			-	132					
Covariance	e Type:			opg					
		e===== oef	std err		====== Z	P> z	[0.025	0.975]	
sigma2	2.609e	+06	3.16e+05		8.248	0.000	1.99e+06	3.23e+06	
Ljung-Box	(L1) (Q)	 :			3.61	Jarque-Bera	(JB):		0.53
Prob(Q):					0.06	Prob(JB):			0.77
Heteroske	dasticity	(H):			0.64	Skew:			0.16
Prob(H) (two-sided):			0.15	Kurtosis:			3.03

Model 1 - Housing Price Prediction

Zip Code 60612

forecast actual_price

date

2019-12-31 338748.0 285758.0

Dep. Vari	able:		y No.	Observations:		132	
Model:	SA	ARIMAX(0, 2,	0) Log	Likelihood		-1218.981	
Date:	Fr	i, 25 Jun 20	21 AIC			2439.961	
Time:		09:26:	23 BIC			2442.829	
Sample:		- 1	0 HQIC 32			2441.127	
Covarianc	e Type:	0	pg				
	coef	std err	z	P> z	[0.025	0.975]	
sigma2	8.043e+06	7.98e+05	10.081	0.000	6.48e+06	9.61e+06	
Ljung-Box	(L1) (Q):		79.15	Jarque-Bera	(JB):		5.9
Prob(Q):			0.00	Prob(JB):			0.0
	dasticity (H):		0.22	Skew:			-0.1
Prob(H) (two-sided):		0.00	Kurtosis:			4.0

Crime and Construction Count Analysis

• Correlation plot for various zip codes

 Scatter plot showing price vs. construction count and price vs. narcotics relationships

Autocorrelation Function Plots

• ACF Plots for housing price, crime, and construction count

Building Construction Count Prediction

Zip code 60608

Heteroskedasticity (H):

Prob(H) (two-sided):

SARIMAX Results

			SAR	IMAX Results 			
Dep. Variab Model: Date: Time: Sample:	SARI	 MAX(0, 1, 1		y 1, 2, 3], 12) , 25 Jun 2021 11:58:08 0 - 132	Log Like AIC BIC HQIC		132 -447.628 905.257 919.152 910.899
Covariance	Type:			opg			
	coef	std err	z	P> z	[0.025	0.975]	
ma.L1 ma.S.L12 ma.S.L24 ma.S.L36 sigma2	-0.8944 -0.6851 -0.2460 0.1930 96.5617	0.070 0.136 0.109 0.090 13.125	-12.736 -5.024 -2.264 2.155 7.357	0.000 0.000 0.024 0.031 0.000	-1.032 -0.952 -0.459 0.017 70.837	-0.757 -0.418 -0.033 0.368 122.287	
Ljung-Box (Prob(Q):	L1) (Q):		0.00 0.97	Jarque-Bera Prob(JB):	(JB):	138.48	

Skew:

Kurtosis:

0.28

0.77

8.05

Crime Prediction

Zip code 60608

SARIMAX Results

Dep. Variable:	у	No. Observations:	132
Model:	SARIMAX(1, 1, 1)x(0, 1, 1, 12)	Log Likelihood	-622.478
Date:	Fri, 25 Jun 2021	AIC	1254.955
Time:	12:59:37	BIC	1268.851
Sample:	0	HQIC	1260.598
	- 132		
Covariance Type:	opg		

Covariance Type:

	coef	std err	z	P> z	[0.025	0.975]
intercept	0.3481	0.233	1.491	0.136	-0.109	0.806
ar.L1	0.2187	0.116	1.886	0.059	-0.009	0.446
ma.L1	-0.8538	0.069	-12.328	0.000	-0.989	-0.718
ma.S.L12	-0.8175	0.153	-5.341	0.000	-1.117	-0.517
sigma2	1819.6517	278.096	6.543	0.000	1274.593	2364.716

Ljung-Box (L1) (Q):	0.00	Jarque-Bera (JB):	2.61
Prob(Q):	0.97	Prob(JB):	0.27
Heteroskedasticity (H):	0.74	Skew:	0.36
Prob(H) (two-sided):	0.34	Kurtosis:	2.87

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Model 2 - Housing Price Prediction

Zip code 60608

forecast actual_price

Model 2 - Housing Price Prediction

Zip code 60612

forecast actual_price

date			
2019-12-31	224710.572487	285758.0	

Comparing model 2 and model 1 performances

Models performance for all zip codes:

	RMSE	MAE	squared
Model 1	45169	37834	0.87
Model 2	37290	30369	0.91

Model 2 has a better performance compare to model 1

Results

Home buyer can decide based on the model results as well as other factors such as the

- budget,
- type of real estate (house, condo,..)
- number of schools in the area,...

to make a more informed decision

http://www.aag.com/

Improvements

- Trying different exogenous variables:
 - Zip code specific data such as demographics and population over time
 - Adding other type of data (economy, GDP...)