Exercise 4 – Bayesian inference and Data assimilation

Due by: Tuesday, 16 May 2023, 23:59 (CEST)

Problem 1a (20pts) Let f be the pdf of a random variable X. The variance of X is denoted by σ and f is an even function (that is, f(-x) = f(x)). Define another random variable $Z = aX^2 + bX + c$.

- 1. For which value of a, b and c, X and Z are uncorrelated?
- 2. For which value of a, b and c, X and Z are independent?

Problem 1b (25pts) Which of the following statements are true? Prove the true ones and give counterexamples for the false ones. Let X and Z be random variables.

- 1. If X and Z are uncorrelated, then X and Z are independent.
- 2. If X and Z are independent, then X and Z are uncorrelated.
- 3. Suppose var(X) and var(Z) are finite. Then var(X+Z) = var(X) + var(Z) if and only if X and Z are independent.

Problem 2 (30pts) Let X, Y and Z be Bernoulli random variables defined by

$$X = \begin{cases} 0, & \text{w.p. } 1/2 \\ 1, & \text{w.p. } 1/2 \end{cases} \quad Y = \begin{cases} 0, & \text{w.p. } 1/3 \\ 1, & \text{w.p. } 2/3 \end{cases} \quad Z = \begin{cases} 0, & \text{w.p. } 1 \\ 1, & \text{w.p. } 0 \end{cases}$$

- 1. Design appropriate parameters to characterize all possible coupling between X and Y.
- 2. Which coupling maximizes the correlation? Which coupling minimizes the correlation? Do you have an intuitive explanation why these couplings are the ones that maximize (minimize) the correlation?
- 3. Which coupling makes the two random variables uncorrelated?
- 4. Repeat the task for X and Z. Are X and Z independent?

Problem 3 (25pts) Let $X_1 \sim N(\bar{x}_1, \sigma_1)$ and $X_2 \sim (\bar{x}_2, \sigma_2)$ be two Gaussian random variables, and $\pi_{X_1}(x_1)$ and $\pi_{X_2}(x_2)$ are pdf of X_1 and X_2 , respectively.

- Derive an explicit formula for Wasserstein distance between π_{X_1} and π_{X_2} . (See Eq. 2.16 and Example 2.31 in the lecture notes)
- Derive an explicit formula for KL divergence of π_{X_1} from π_{X_2} given by

$$D_{KL}(\pi_{X_1} \| \pi_{X_2}) := \int_{\mathbb{R}} \log \frac{\pi_{X_1}(x)}{\pi_{X_2}(x)} \pi_{X_1}(x) \, \mathrm{d}x$$