CS229 Fall 2017

Problem Set #3 Solutions: Deep Learning & Unsupervised Learning

Author: LFhase rimemosa@163.com

A Simple Neural Network

(a) Using Chain Rule, we know that

$$\frac{\partial loss}{\partial w_{1,2}^{[1]}} = \frac{\partial loss}{\partial o} \frac{\partial o}{\partial h_2} \frac{\partial h_2}{\partial w_{1,2}^{[1]}}$$

let g(x) denote the sigmoid function, then we have

$$g'(x) = g(x)(1 - g(x))$$

SO

$$\frac{\partial loss}{\partial w_{1,2}^{[1]}} = \frac{2}{m} \sum_{i=1}^{m} (o^{(i)} - y^{(i)}) o^{(i)} (1 - o^{(i)}) w_2^{[2]} h_2^{(i)} (1 - h_2^{(i)}) x_1^{(i)}$$

where

$$h_2^{(i)} = g(x_1^{(i)}w_{1,2}^{[1]} + x_2^{(i)}w_{2,2}^{[1]} + w_{0,2}^{[1]})$$

(b) let (0.5, 0.5), (3.5, 0.5), (0.5, 3.5) be the three poinst of the triangle. The forward transport in the neural network can be written in matrix form.

$$\begin{bmatrix} -1.5 & 3 & 0 \\ -1.5 & 0 & 3 \\ 9 & -3 & 3 \end{bmatrix} \times \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

and

$$\begin{bmatrix} -1 & -1 & -1 & 2.33 \end{bmatrix} \times \begin{bmatrix} 1 \\ h_1 \\ h_2 \\ h_3 \end{bmatrix}$$

Once the point is in the triangle, the first product will be

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

So the second product will be -0.67 and the final result will be 0. Otherwise, the second product will be larger or equal to 0.33 and the final result will be 1.

1

(c) Using f(x) = x as hidden layer activation function, we can see the neural network as a simple neural network without hidden layer, who only has the convex boundary and can't deal with the problem described in statement.

EM for MAP estimation

(a) Using Chain Rule, we know