DEVOIR MAISON n°27

EXERCICE

Dans tout l'exercice, n désigne un entier naturel, $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels et $\mathbb{R}_n[X]$ l'ensemble des polynômes réels de degré inférieur ou égal à n. On identifiera polynômes et fonctions polynomiales associées. Pour tout $k \in \mathbb{N}$, on note $P^{(k)}$ la dérivée k-ème du polynôme P.

Pour tout $n \in \mathbb{N}$, on considère les polynômes définis par :

$$U_n = (X^2 - 1)^n$$
 et $L_n = \frac{1}{2^n n!} U_n^{(n)}$

La famille (L_n) est appelée la famille des polynômes de Legendre.

Pour tout polynôme P, on note $\mathcal{L}(P)$ le polynôme :

$$\mathcal{L}(P) = \left[\left(X^2 - 1 \right) P' \right]'$$

Partie I: Préliminaires

- 1. (a) Calculer L_0, L_1, L_2 et L_3 .
 - (b) Pour tout $n \in \mathbb{N}$, déterminer le degré et le coefficient dominant de L_n .
 - (c) En déduire que la famille $(L_0, ..., L_n)$ est une base de $\mathbb{R}_n[X]$.
- 2. Montrer que L_{2n} (respectivement L_{2n+1}) est une fonction paire (respectivement impaire).
- 3. (a) Montrer que pour tout $n \in \mathbb{N}$: $L_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X-1)^k (X+1)^{n-k}$.
 - (b) En déduire les valeurs de $L_n(-1)$ et de $L_n(1)$.
- 4. (a) Montrer que pour tout $n \in \mathbb{N}$,

$$U'_{n+1} - 2(n+1)XU_n = 0 (1)$$

$$(X^2 - 1)U'_n - 2nXU_n = 0 (2)$$

(b) En dérivant les équations précédentes, montrer que la suite (L_n) vérifie :

$$L'_{n+1} = XL'_n + (n+1)L_n \tag{3}$$

$$\mathcal{L}(L_n) = n(n+1)L_n \tag{4}$$

(c) En déduire que la restriction de \mathscr{L} à $\mathbb{R}_n[X]$ est un endomorphisme que nous noterons \mathscr{L}_n . Exprimer la matrice de \mathscr{L}_n dans la base $(L_0, ..., L_n)$.

Partie II: Etude d'un produit scalaire et d'une base orthogonale

Pour tous $P, Q \in \mathbb{R}[X]$, on pose : $\langle P, Q \rangle = \int_{-1}^{1} P(x)Q(x)dx$.

- 5. Montrer que $\langle ., . \rangle$ est un produit scalaire sur $\mathbb{R}[X]$. On notera $\|.\|$ la norme euclidienne associée.
- 6. Montrer que pour tous $P,Q \in \mathbb{R}[X]$: $\langle \mathcal{L}(P),Q \rangle = \langle P,\mathcal{L}(Q) \rangle$. On dit que \mathcal{L} est un endomorphisme auto-adjoint.
- 7. (a) Montrer que pour tout $m \in \mathbb{N}$, la famille $(L_n)_{n \in [0,m]}$ est une base orthogonale de $\mathbb{R}_m[X]$. On parle alors de famille de polynômes orthogonaux.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $L_{n+1} \in \mathbb{R}_n[X]^{\perp}$.
- 8. Montrer que $||L_n||^2 = \frac{2}{2n+1}$.

Partie III: Deux propriétés supplémentaires

- 9. En considérant un polynôme $Q = \prod_{i=1}^{k} (X a_i)$ de $\mathbb{R}_n[X]$, montrer que L_{n+1} possède n+1 racines réelles distinctes, toutes dans l'intervalle]-1,1[. *Cette propriété est vérifiée par toutes les familles de polynômes orthogonaux.*
- 10. Calculer la distance de X^{n+1} au sous-espace vectoriel $\mathbb{R}_n[X]$.