"This Document needs to be updated."

1 Overall Packet Structure

The structure of the packet (and the data sub-packet) relies on byte positions and known values, rather than delimiters.

Field	Value	Byte Position	Length
Start	0xAA	0	1
Protocol version	0x00	1	1
Length of data (not whole packet)		2	1
Data		3	194
CRC of data (not whole packet)		197	1
End	0x55	198	1

Table 1: Overall packet structure

Important: If the length of data is 0, the packet immediately ends, meaning the data, CRC, and end fields do not exist.

2 Data Sub-Packet

The data sub-packet consists of 32 "chunks" (30 sensors and 2 MAC addresses). Each "chunk" follows one of seven formats.

2.1 Data Formats

Format	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
1	$(1 \ll 7) \mid 7$ -bit int	(neg « 7) 7-bit frac.	-	-	-	-
2	$7~\mathrm{MSb}$	LSB	-	-	-	-
3	${ m Addr}5$	$\mathrm{Addr4}$	${ m Addr}3$	${ m Addr2}$	$\mathrm{Addr}1$	$\mathrm{Addr0}$
4	(1 « 7) (neg « 6) (4-bit int « 2) 2 MSb of frac.	8 LSb of frac.	-	-	-	-
5	$(\mathrm{neg} \ \text{\tt \#}\ 6) \ \ 6\ \mathrm{MSb}$	8 LSb	-	-	-	=
6	$(1 \ \ \%7) \ \ (\text{neg} \ \ \%6) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Middle 8 bits	8 LSb	-	-	-
7	First 8 "chunks"	8 "chunks"	8 "chunks"	Last 8 "chunks"	=	=

Table 2: Data formats

This version of the Waggle protocol does not use standard representations for floating point numbers. Instead, the location of the decimal point is pre-determined (between the integer and fractional components, if applicable).

The most significant bit in byte 0 of formats 1, 4, and 6 means the data is already converted. Formats 2 and 5 contain raw data.

Formats 1, 4, 5, and 6 contain a "negative" bit. If this bit is 1, the value is negative.

2.2 Data "Chunks"

The length in each data "chunk" represents the number of bytes of sensor data. The total "chunk" length is length + 2.

Field	ID	Validity Length	Data
Main MAC address	0x00	(1 « 7) 0x06	Table 4
TMP112	0x01	$(0/1 * 7) \mid 0 \times 02$	Table 5
HTU21D	0x02	$(0/1 * 7) \mid 0 \times 04$	Table 6
GP2Y1010AU0F	0x03	$(0/1 * 7) \mid 0 \times 02$	Table 7
BMP180	0x04	$(0/1 * 7) \mid 0 \times 05$	Table 8
PR103J2	0x05	$(0/1 \text{ ext{ iny 7}} 0\text{x}02$	Table 9
TSL250RD	0x06	$(0/1 * 7) \mid 0 x 0 2$	Table 9
MMA8452Q	0x07	(0/1 iny 7) 0x08	Table 10
SPV1840LR5H-B	0x08	$(0/1 * 7) \mid 0 \times 02$	Table 11
TSYS01	0x09	$(0/1 \text{ iny 7}) \mid 0 \text{x} 02$	Table 12
HMC5883L	0x0A	$(0/1 \text{ iny 7}) \mid 0 \text{x} 06$	Table 13
HIH6130	0x0B	$(0/1 \text{ ext{ iny 7}} 0\text{x}04$	Table 6
APDS-9006-020	0x0C	$(0/1 * 7) \mid 0 \times 02$	Table 9
TSL260RD	0x0D	$(0/1 \text{ iny 7}) \mid 0 \text{x} 02$	Table 9
TSL250RD	0x0E	$(0/1 * 7) \mid 0 \times 02$	Table 9
MLX75305	0x0F	$(0/1 * 7) \mid 0 \times 02$	Table 9
ML8511	0x10	$(0/1 * 7) \mid 0 \times 02$	Table 9
D6T	0x11	$(0/1 \text{ ext{ iny }} 7) \mid 0 \mathrm{x} 22$	Table 14
MLX90614	0x12	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 5
TMP421	0x13	$(0/1 * 7) \mid 0 \times 02$	Table 5
SPV1840LR5H-B	0x14	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 11
Total reducing gases	0x15	$(0/1 \ll 7) \mid 0 \mathrm{x} 02$	Table 15
Ethanol	0x16	$(0/1 * 7) \mid 0 \times 02$	Table 15
Nitrogen dioxide	0x17	$(0/1 \text{ ext{ iny }} 7) \mid 0 \text{ ext{ iny }} 02$	Table 15
Ozone	0x18	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15
Hydrogen sulphide	0x19	$(0/1 \text{ ext{ iny }} 7) \mid 0 \text{ ext{ iny }} 02$	Table 15
Total oxidizing gases	0x1A	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15
Carbon monoxide	0x1B	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15
Sulfur dioxide	0x1C	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15
Sensirion	0x1D	$(0/1 \text{ ext{ iny }} 7) \mid 0\text{x}04$	Table 6
Bosh	0x1E	$(0/1 \ll 7) \mid 0\mathrm{x}03$	Table 16
Intel MAC address	0x1F	$(1 \ \ \ \ 7) \ \ 0x06$	Table 4
Sensor status (health)	0xFE	$(1 \ \ \ \ 7) \ \ 0x04$	Table 17

Table 3: Data sub-packet structure (each row is a "chunk")

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5		
Address 5	Address 4	Address 3	Address 2	Address 1	Address 0		
Format 3							

Table 4: MAC address

Byte 0	Byte 1				
Temperature					
Form	nat 1				

Table 5: Sensor data

Byte 0	Byte 1	Byte 2	Byte 3
Tempe	erature	Hum	idity
Format 1		Form	nat 1

Table 6: Sensor data

Byte 0	Byte 1				
Dust					
Form	Format 2				

Table 7: Sensor data

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
Tempe	erature	Atm	ospheric pre	ssure
Form	nat 1		Format 6	

Table 8: Sensor data

Byte 0	Byte 1				
Light					
Forn	nat 2				

Table 9: Sensor data

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Accelera	ation X	Acceler	ation Y	Acceler	ation Z	RN	MS
Form	nat 1	Format 1 Format 1		Forn	nat 1		

Table 10: Sensor data

Table 11: Sensor data

Byte 0	Byte 1				
Temperature					
Form	nat 2				

Table 12: Sensor data

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Magn	agnetic X Magnetic Y		Magnetic Z		
Form	Format 4		Format 4		nat 4

Table 13: Sensor data

Byte 0	Byte 1	•••	Byte 32	Byte 33
Temperature		Temperature	Temperature	
Format 1		Format 1	Format 1	

Table 14: Sensor data

Byte 0	Byte 1		
Gas concentration			
Form	at 2		

Table 15: Sensor data

Byte 0	Byte 1	Byte 2		
Atmospheric pressure				
Format 6				

Table 16: Sensor data

Byte 0	Byte 1	Byte 2	Byte 3	
Health status (1 bit per "chunk")				
Format 7				

Table 17: Sensor status (health)

3 Sensor Data Units: Raw and Processed

Field	ID	Validity Length	Data	Units
Main MAC address	0x00	(1 « 7) 0x06	Table 4	MAC Address: Raw 6 Bytes
TMP112	0x01	$(0/1 * 7) \mid 0 \times 02$	Table 5	Temperature: °C
HTU21D	0x02	$(0/1 * 7) \mid 0 \times 04$	Table 6	Temperature: °C
GP2Y1010AU0F	0x03	$(0/1 \text{ ext{ iny }} 7) 0 \text{ ext{ iny }} 02$	Table 7	Dust: Raw
BMP180	0x04	$(0/1 \ll 7) \mid 0\mathrm{x}05$	Table 8	Temperature: °C, Pressure: hPa
PR103J2	0x05	$(0/1 \ll 7) \mid 0 \mathrm{x} 02$	Table 9	UNITSHERE
TSL250RD	0x06	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 9	UNITSHERE
MMA8452Q	0x07	$(0/1 \text{ ext{ iny }} 7) 0\text{x}08$	Table 10	UNITSHERE
SPV1840LR5H-B	0x08	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 11	UNITSHERE
TSYS01	0x09	$(0/1 \ll 7) \mid 0 \mathrm{x} 02$	Table 12	UNITSHERE
HMC5883L	0x0A	$(0/1 \text{ ext{ iny }} 7) 0\text{x}06$	Table 13	UNITSHERE
HIH6130	0x0B	$(0/1 * 7) \mid 0 \times 04$	Table 6	UNITSHERE
APDS-9006-020	0x0C	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 9	UNITSHERE
TSL260RD	0x0D	$(0/1 \ll 7) \mid 0 \mathrm{x} 02$	Table 9	UNITSHERE
TSL250RD	0x0E	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 9	UNITSHERE
MLX75305	0x0F	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 9	UNITSHERE
ML8511	0x10	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 9	UNITSHERE
D6T	0x11	$(0/1 \text{ ext{ iny }} 7) \mid 0 \text{x} 22$	Table 14	UNITSHERE
MLX90614	0x12	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 5	UNITSHERE
TMP421	0x13	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 5	UNITSHERE
SPV1840LR5H-B	0x14	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 11	UNITSHERE
Total reducing gases	0x15	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15	UNITSHERE
Ethanol	0x16	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15	UNITSHERE
Nitrogen dioxide	0x17	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15	UNITSHERE
Ozone	0x18	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15	UNITSHERE
Hydrogen sulphide	0x19	$(0/1 \text{ ext{ iny }} 7) \mid 0 \text{ ext{ iny }} 02$	Table 15	UNITSHERE
Total oxidizing gases	0x1A	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15	UNITSHERE
Carbon monoxide	0x1B	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15	UNITSHERE
Sulfur dioxide	0x1C	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15	UNITSHERE
Sensition	0x1D	$(0/1 \text{ ext{ iny }} 7) 0\text{x}04$	Table 6	UNITSHERE
Bosh	0x1E	(0/1 * 7) 0x03	Table 16	UNITSHERE
Intel MAC address	0x1F	$(1 \ \ \ \ 7) \ \ 0 \times 06$	Table 4	UNITSHERE
Sensor status (health)	0xFE	$(1 \ \ \ \ 7) \ \ 0x04$	Table 17	UNITSHERE

Table 18: Data sub-packet structure (each row is a "chunk")