A Brief Tutorial of the R Package vGWAS

Setup

To use the **vGWAS** package, of course, an R environment is required. Visit:

```
http://www.r-project.org
```

and install R for the operating system.

Start R and in the R console, type the following command to install the package:

```
install.packages('vGWAS', repos = 'http://r-forge.r-project.org')
```

If everything works fine, something like the following should show:

```
trying URL ...

Content type ... length ... bytes (... Kb)

opened URL

downloaded ... Kb
```

Now the package is installed in the R library.

Example

In the R console, the command:

```
vignette('vGWAS')
```

opens this PDF document together with the package documentation. An example can be found in the documentation. Type:

```
require(vGWAS)
```

to load the package, then four main functions in the package are ready to use - brown.forsythe.test, vGWAS, plot.vGWAS (S3 method) and vGWAS.heritability. Run the following commands to load the example data:

```
data(pheno)
data(geno)
data(chr)
data(map)
pheno is a numeric vector of the simulated phenotypic values. By running:
hist(pheno, breaks = 30, density = 15, col = 'darkred')
a histogram of the phenotype distribution is produced as Figure 1.
```

PAGE 1 OF 4 AUTHOR: XIA SHEN

Histogram of pheno

Figure 1: Histogram of the simulated phenotype.

The command:

table(chr)

produces:

This shows exactly the number of markers on each of the five simulated chromosomes. Now, the *objects* loaded in R are ready for a vGWA scan, which can be done using the single command:

A progress bar will show to indicate the progress of the scan, such like:

|===

When the scan is finished, all the output statistics will be returned as a *list* into the object vgwa, which belongs to the *class* 'vGWAS'. Any object that has a *structure* belonging to

PAGE 2 OF 4 AUTHOR: XIA SHEN

class 'vGWAS' can be directly passed into S3 method function plot. GWAS. For instance, simply run the following command, we can plot the results in vgwa:

plot(vgwa)

which produces Figure 2. There is a clear peak above the Bonferroni corrected threshold (dashed orange line).

Figure 2: vGWA results of the simulated data.

Regarding the marker that gave the highest score, the heritability explained by the mean and variance can be split and calculated via:

PAGE 3 OF 4 AUTHOR: XIA SHEN

The output can also be stored if assigning the function call to an object.

Remarks

The package source and further development information are on the R-Forge project page: https://r-forge.r-project.org/projects/vgwas/

PAGE 4 OF 4 AUTHOR: XIA SHEN

Package 'vGWAS'

October 13, 2010

Type Package

Title Variance Genome-wide Association
Version 2010.10.12
Date 2010-10-12
Author Xia Shen
Maintainer Xia Shen <xia.shen@lcb.uu.se></xia.shen@lcb.uu.se>
Description The package provides functions for genome-wide association using nonparametric variance test and some other further visualization and calculation.
License GPL
LazyLoad yes
Depends dglm
R topics documented:
vGWAS-package
brown.forsythe.test
geno
map
pheno
plot.vGWAS
vGWAS
vGWAS.heritability
Index 11

2 vGWAS-package

package Variance Genome-wide Association
--

Description

The package provides functions for genome-wide association using nonparametric variance test and some other further visualization and calculation.

Details

brown.forsythe.test 3

Package: vGWAS
Type: Package
Version: 2010.10.12
Date: 2010-10-12

License: GPL LazyLoad: yes Depends: dglm

Author(s)

Xia Shen

Maintainer: Xia Shen <xia.shen@lcb.uu.se>

References

Shen et al. (2010)

See Also

package lawstat for other types of nonparametric variance tests.

```
brown.forsythe.test
```

Brown-Forsythe's Test of Equality of Variances

Description

The function performs the robust Brown-Forsythe test using the group medians. Instead of the ANOVA statistic, the Kruskal-Wallis ANOVA may also be applied using this function.

Usage

```
brown.forsythe.test(y, group, kruskal.test=FALSE)
```

Arguments

y a numeric vector of data values.

group factor of the data.

kruskal.test a logical value specifying whether to use Kruskal-Wallis statistic. The de-

fault option is ${\tt FALSE}, i.e.,$ the usual ANOVA statistic is used in place of Kruskal-

Wallis statistic.

Details

Levene (1960) proposed a test for homogeneity of variances in *k* groups which is based on the ANOVA statistic applied to absolute deviations of observations from the corresponding group mean. The robust Brown-Forsythe version of the Levene-type test substites the group mean by the group median in the classical Levene statistic.

4 chr

Value

A list with the following numeric components.

statistic the value of the test statistic.

p.value the p-value of the test.

method type of test performed.

data.name a character string giving the name of the data.

Acknowledgement

The authors of package lawstat is acknwnledged for their source code under free GPL license.

Note

Modified from the lawstat package.

Author(s)

Xia Shen

References

Brown, M. B. and Forsythe, A.B. (1974). *Robust tests for equality of variances*. Journal of the American Statistical Association, **69**, 364-367.

Levene, H. (1960). *Robust Tests for Equality of Variances*, in Contributions to Probability and Statistics, ed. I. Olkin, Palo Alto, CA: Stanford Univ. Press.

Examples

```
## Not run:
data(pheno)
data(geno)
brown.forsythe.test(pheno, geno[,911])
## End(Not run)
```

chr

Chromosome Indices for The Markers of The Simulated Data

Description

Chromosome indices for the markers of the simulated data

Usage

```
data(chr)
```

geno 5

Format

A numeric vector of chromosome indices for the 20K simulated markers.

Examples

```
data(chr)
table(chr)
```

geno

The Marker Genotypes of The Simulated Data

Description

The marker genotypes of the simulated data

Usage

```
data(geno)
```

Format

A character matrix of size (number of individuals) times (number of markers in the genome).

Details

Note that there is only one column for each marker.

Examples

```
data(geno)
```

map

Map Positions for The Markers of The Simulated Data

Description

Map positions for the markers of the simulated data

Usage

```
data(chr)
```

Format

A numeric vector of chromosomal map positions of the 20K simulated markers.

6 plot.vGWAS

Examples

```
data(map)
```

pheno

Phenotypic Values for The Markers of The Simulated Data

Description

Phenotypic values for the markers of the simulated data

Usage

```
data (pheno)
```

Format

A numeric vector of the phenotypic values of 93 simulated individuals.

Examples

```
data(pheno)
hist(pheno, breaks = 30)
```

plot.vGWAS

Variance GWA Manhattan Plot

Description

The function plots the variance GWA result for the giving scan object.

Usage

plot.vGWAS 7

Arguments

```
a result object from vGWAS scan. It can be any list or data.frame that con-
Х
                 tains chromosome, marker.map, and p. value, with class = 'vGWAS'.
                 See vGWAS.
sig.threshold
                 a numeric value giving the significance threshold for -log (pvalues, 10).
                 If NULL, Bonferroni correction will be used.
                 a numeric value giving the lower limit of the -\log (pvalues, 10) to plot.
low.log.p
                 point character. See par.
pch
                 size of points. See par.
cex
col.manhattan
                 two colors as a vector for the Manhattan plot.
col.sig.threshold
                 one color for the significance threshold.
                 not used.
```

Value

a plot for viewing vGWAS result.

Author(s)

Xia Shen

References

Shen et al. (2010)

See Also

```
vGWAS-package, vGWAS
```

Examples

vGWAS

vGWAS

Variance Genome-wide Association

Description

Genome-wide association for using nonparametric variance test

Usage

```
vGWAS(phenotype, geno.matrix, kruskal.test = FALSE,
    marker.map = NULL, chr.index = NULL)
```

Arguments

phenotype a numeric or logical vector of the phenotyic values. See Examples.

geno.matrix a matrix or data.frame with individuals as rows and markers as columns. The marker genotypes for each marker are coded as one column. See Examples.

kruskal.test a logical value specifying whether to use Kruskal-Wallis statistic. The default option is FALSE, i.e., the usual ANOVA statistic is used in place of Kruskal-Wallis statistic.

marker.map a numeric vector giving the marker map positions for each chromosome. See Examples.

chr.index a numeric vector giving the chromosome index for each marker. See Examples.

Value

a data.frame containing columns of marker names, chromosome indices, marker.map positions, test statistic values, and p.value for each position.

Author(s)

Xia Shen

References

Shen et al. (2010)

See Also

```
vGWAS-package
```

vGWAS.heritability 9

Examples

vGWAS.heritability Calculating Heritability for A Single Marker

Description

The function calculates and reports the heritability for a single marker by fitting a double generalized linear model. It gives both the heritability from the mean and variance parts of model.

Usage

```
vGWAS.heritability(phenotype, marker.genotype, only.print = TRUE)
```

Arguments

```
phenotype a numeric vector of the phenotyic values. See Examples.

marker.genotype
a numeric or character or factor vector of the genotypes of a single marker. See Examples.

only.print a logical value. If FALSE, the heritability values will be returned for storage.
```

Details

The Value will only be available if only .print = FALSE.

10 vGWAS.heritability

Value

```
heritability.mean
the heritability from the mean part of model.
heritability.disp
the heritability from the variance part of model.
```

Author(s)

Xia Shen

References

Shen et al. (2010)

See Also

```
vGWAS-package, vGWAS, plot.vGWAS
```

Examples

Index

```
*Topic GWAS
    vGWAS-package, 1
*Topic datasets
    pheno, 5
*Topic htest
    brown.forsythe.test, 2
\verb|brown.forsythe.test|, 2
chr, 3
geno, 4
map, 4
par, 5
pheno, 5
plot.vGWAS, 5, 8
vGWAS, 5, 6, 6, 8
vGWAS-package, 6-8
{\tt vGWAS-package}, 1
vGWAS.heritability, 8
```