Lecture G1 Functional Approximation 1

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

■ 서울과학기술대학교 데이터사이언스학과

- I. Introduction & Motivation
- II. Mechanism of deep learning

I. Introduction & Motivation

About

- Machine Learning (ML)
 - 'ML is a field of computer science that gives computers the ability to learn without explicitly programmed.' - Wikipedia
 - 'Mathematics is to find patterns.' R. Feynman
 - My take is, ML is to let the machine to find mathematical patterns
 - without explicitly programmed
 - 2 but within the boundary of possible patterns programmed by the researcher.
- Deep Learning (DL)
 - 'DL is part of a broader family of ML Methods.' Wikipedia
 - DL uses a cascade of <u>multiple layers</u> of <u>nonlinear processing units</u>, i.e. 'deep' neural networks.

Illustration

"Mathematics is to find patterns." – R. Feynman

Linear regression

Sufficiency of linear regression?

- What if the assumptions are not sufficient to find the pattern?
 - Nonlinearity
 - Price is indeed known to be proportional to square of carat.
 - After the certain level of clarity, it no longer matters.
 - 2 Interaction
 - Clarity matters more when carat is bigger.
 - Weight is negatively correlated to clarity.
 - Weight is positively correlated to carat.

Linear regression vs Deep neural network

II. Mechanism of deep learning

Mechanism anatomy

- . Forward propagation the backbone of the network
- Activation function the essential elements for non-linearity
- Our estimate
 Section the performance criteria of your estimate
- Gradient descent feedback for improvement
- Back propagation how feedback is propagated

1. Forward propagation - the backbone of the network

2. Activation function - the essential elements for non-linearity

- The previous page's output $9 = \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ • Why need activation function?
 - Linear transformation of linear transformation is linear. We need some nonlinearity for trivial forward propagation.
 - Output layer needs to be structured for desirable output. For example, we may want it to be in range of $(-\infty,\infty)$, $[0,\infty)$, [0,1], or so on.
- Activation function is a nonlinear function applied to hidden layers or an output layer.

- For hidden layers
 - ReLU
 - $\begin{array}{l} \bullet \ \, \underbrace{(-\infty,\infty)} \rightarrow \underbrace{[0,\infty)} \\ \bullet \ \, f(x) = x^+ = \underbrace{max(x,0)} \\ \end{array}$

 - Known to be most effective
 - tanh
 - $(-\infty, \infty) \to (-1, 1)$ f(x) = tanh(x)
- Line seves

- For output layer
 - sigmoid
 - $(-\infty, \infty) \to (0, 1]$ $f(x) = \frac{1}{1+e^{-x}}$
 - Maps to probability space
 - softmax
 - \bullet $(-\infty,\infty)^n \to (0,1]^n$
 - $f(x_k) = \frac{exp(x_k)}{\sum_{i=1}^{n} exp(x_i)}$
 - Used for classification problems
 - linear (identity)
 - \bullet $(-\infty,\infty) \to (-\infty,\infty)$
 - f(x) = x
 - Used for regression problems

binary classification

multicolass dussifications

• The previous forward propagation should be modified, for example, as below:

- $\bullet \ \mathbf{h} = tanh(W_1\mathbf{x})$
- $y = identity(W_2h)$
- The forward propagation process should be revised as follows:

$$\mathbf{x} \xrightarrow{} \underbrace{}^{} \underbrace{} \underbrace{}^{} \underbrace{}^{} \underbrace{}^{} \underbrace{}^{} \underbrace{}^{} \underbrace{} \underbrace{}^{} \underbrace{}^{} \underbrace{}^{} \underbrace{}^{} \underbrace{}^{} \underbrace{\phantom{.$$

3. Loss function - the performance evaluation of your estimates

• Assuming, for simplicity of our discussion, that activation functions are all identity (linear) functions.

	Estimate	True value (target)	Error	Squared error (SE)	
	(\hat{y})	y	$(\hat{y} - y)$	$\hat{y} - y$	
Sample 1	10	20	-10	100	
Sample 2	8	3	5	25	
Sample 3	6	1	5	25	

- Loss function measures aggregated error.
- MAD (Mean Average Deviation) • $loss = (\frac{|-10|+|5|+|5|}{2})$

- Though intuitive, not widely used because not differentiable.

- MSE (Mean Squared Error)
 - $loss = \frac{100 + 25 + 25}{2}$
 - Most common for parametric target value.
 - Penalizes large errors severely.
- Cross Entrophy
 - Loss: $E = \sum_k t_k log(y_k)$, where t_k is k-th target and y_k is an k-th estimate.
 - Commonly used for classification problem.

4. Gradient descent - feedback for improvement

- After measuring loss function, the weights must be improved so that loss becomes smaller.
- Let us confine our attention to W_2 , currently $[2\ 1]$, a weight vector for the hidden layer (h). Let us confine further to its first element, currently $W_2(1)=2$.
- How can we find better value for $W_2(1)$?

h_1	W_2	\hat{y} \downarrow	y	Error	SE	MSE(L)
$\begin{bmatrix} 5\\1 \end{bmatrix}, \begin{bmatrix} 4\\2 \end{bmatrix}$	$ \begin{bmatrix} 0 & -1 \\ \hline{1} & -1 \\ \hline{2} & -1 \\ \hline{3} & -1 \\ \hline{4} & -1 \end{bmatrix} $	$ \begin{array}{c} $	13,8	$ \begin{array}{r} -14, -10 \\ -9, -6 \\ -4, -2 \\ 1, 2 \\ 6, 6 \end{array} $	$\frac{(-14)^2, (-10)^2}{(-9)^2, (-6)^2}$ $\frac{(-4)^2, (-2)^2}{1^2, 2^2}$ $6^2, 6^2$	148 58.5 10 2.5

- The current weight $W_2(1)$ should be increased so that L is decreased. The sign of $\frac{\partial L}{\partial W_2(1)}$ is negative. In other words, if $W_2(1)$ is increased, L is decreased.
- This tells us that, the weight is updated in the following way, where α is often called 'learning rate'.

$$\underline{W_2^{new}(1)} \leftarrow \underline{W_2^{old}(1)} - \underline{\alpha} \cdot \frac{\partial L}{\partial W_2(1)} \qquad \qquad \underline{2} \quad \text{with} \qquad \underline{2} \quad \underline{W_2^{old}(1)} = \underline{2} \cdot \underline{W_2^$$

- This updating is to occur <u>simultaneously</u> for all weights.
- If written in a general sense,

$$\mathbf{w} \leftarrow \mathbf{w} - \overset{\downarrow}{\alpha} \cdot \overset{\downarrow}{\nabla_{\mathbf{w}} L}$$

- where $\nabla_{\mathbf{w}}L = (\frac{\partial L}{\partial \mathbf{w}_1}, \frac{\partial L}{\partial \mathbf{w}_2}, \cdots, \frac{\partial L}{\partial \mathbf{w}_n})$ is first-order derivatives of L with respect to all elements of \mathbf{w} . $\nabla_{\mathbf{w}}L$ is geometrically slope. ∇ reads 'nabla'.
- This tells us that both loss function and activation functions must be differentiable. They need to be 1) monotone, 2) continuous, and 3) differentiable.

- Optimizer
 - This process of gradient descent is to optimize the weight of neural network. And the algorithm concerning finding learning rate or step size is called 'optimizer'.
 - Widely used optimizer includes adam, RMSprop, SGD, and so on.
- Weight initialization
 - It is not always guaranteed to find global optimum given a poor choice of initial weight.
 - Thus, the initial weights must be randomized within a wide range to sufficiently cover the possible optimum.

- Batch and Epoch
 - Conducting differentiation involves numerically cost operation, so it is desirable to collect some number of sample and then to do weight updating.
 - The size of this subset of the data for an update once is called batch.
 - One time to go through the whole dataset once is called **epoch**

5. Back propagation - how feedback is propagated

- The weight updating, of course, does not only take place on the last hidden layer, but all weights in front.
- The information is propagated based on 'Chain rule of calculus.'

Summary of deep learning mechanism

- Forward propagation
 - Choose the number of layer
 - Choose the number of nodes in each layer
- Activation function
 - Choose the activation function for <u>hidden</u> layers
 - Choose the activation function for the last layer based on the characteristics of target output.
- Loss function
 - Choose the loss function be ased on the characteristics of target output
- Gradient Descent
 - (Choose the size of batch) 🗸
 - Choose the the number of epochs
 - Choose the optimizer
 - (Choose default learning rate) 🗸
 - (Choose initial weights)
- Back propagation

Implementation

- The above mechanism describes supervised learning, because we assume the possesion of correct target values.
- The input data needs to be scaled between [-1,1] range, so that weights effectively cover the variation of data.
- The design factors of neural network summarized in the previous page are called hyperparameter.
- To find hyperparameter, split train-validataion-test sets appropriately.

"Exceptional people, I have found, either start out being optimistic or learn to be optimistic because they realize that they can't get what they want in life without being optimistic.

- B. Rotella in How Champions Think: In Sports and in Life"