EM Algorithm

Applied to Probit Regression

Gabriel E. Cabrera-Guzmán[®]

The University of Manchester Alliance Manchester Business School

October 3, 2023

Introduction

1.
$$y_i = \begin{bmatrix} y_i \\ \dots \\ y_n \end{bmatrix}$$
 is a vector of n data points (0's and 1's).

2. Each y is associated with a scalar covariates x_i , from which we construct a design matrix:

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix}$$

3. $\theta = \begin{bmatrix} \theta_1 \\ \dots \\ \theta_n \end{bmatrix}$ is unobserved \rightarrow "missing data".

Introduction (Cont'd)

4. Exists some vector $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$ such that:

$$\theta_i = X_i \beta + \epsilon_i$$
 for $i = 1, ..., n$.

Where $X_i = [1 \ x_i]$ is the ith row of X, and $\epsilon_i \sim N(0,1)$

- 5. Given y, we have a posterior distribution $f_{\beta|y}(\beta|y)$ over β . Then, we need to:
 - Find the value $\hat{\beta}$ of β at which this density is highest
 - Assume initial value $\beta^{(0)}$ for β , say $\beta^{(0)}=\begin{bmatrix}0\\0\end{bmatrix}$. For t=0 to N (iterations) we apply the E Step and M Step

E Step: Compute $Q(\beta|\beta^{(t)})$

It suffices to find only those parts of $Q(\beta|\beta^{(t)})$ that depend on β :

$$\mathbb{E}_X[g(X)] := \int g(x) f_X(x) dx$$

by definition:

$$\begin{split} Q(\beta|\beta^{(t)}) &= \mathbb{E}_{\theta|\beta^{(t)},y}[\ln f_{\theta,\beta|y}(\theta,\beta|y)] \\ &= \mathbb{E}_{\theta|\beta^{(t)},y}[\ln f_{\theta|y}(\theta|y)] + \mathbb{E}_{\theta|\beta^{(t)},y}[\ln f_{\beta|\theta,y}(\beta|\theta,y)] \\ &= \mathbb{E}_{\theta|\beta^{(t)},y}[\ln f_{\beta|\theta,y}(\beta|\theta,y)]. \end{split}$$

Why?

E Step: Compute $Q(\beta|\beta^{(t)})$ (Cont'd)

$$\begin{split} f_{\beta|\theta,y}(\beta|\theta,y) &= f_{\theta|y}(\theta|y) f_{\beta|\theta,y}(\beta|\theta,y) \\ &= f_{\beta|\theta,y}(\beta|\theta,y) \\ &= \dots \\ &= f_{\beta|\theta}(\beta|\theta) \propto f_{\theta|\beta}(\theta|\beta) f_{\beta}(\beta) \end{split}$$

Taking a uniform prior $f_{\beta}(\beta) \propto \text{const}$:

$$f_{\beta|\theta}(\beta|\theta) \propto f_{\theta|\beta}(\theta|\beta)$$

Therefore becomes:

$$\mathbb{E}_{\theta|\beta^{(t)},y}[\operatorname{In}(\operatorname{const})] + \mathbb{E}_{\theta|\beta^{(t)},y}[f_{\theta|\beta}(\theta|\beta)].$$

E Step: Compute $Q(\beta|\beta^{(t)})$ (Cont'd)

Our model specifies that $\theta \sim N_n(X\beta, \mathbf{I})$, so:

$$\label{eq:final_theta} \ln\!f_{\theta|\beta}(\theta|\beta) \propto -\frac{1}{2}(\theta-X\beta)'(\theta-X\beta).$$

Maximizing is equivalent to minimizing an "expected sum of squares":

$$\begin{split} \mathbb{E}_{\theta|\beta^{(t)},y}[(\theta-X\beta)'(\theta-X\beta)] &= \mathbb{E}_{(\cdot)}[\theta'\theta] - 2\mathbb{E}_{(\cdot)}[\beta'X'\theta] + \mathbb{E}[\beta'X'X\beta] \\ &= \mathrm{const} - 2\beta'\mathbb{E}_{(\cdot)}[X'\theta] + \beta'X'X\beta. \end{split}$$

Where $(\cdot) = \theta | \beta^{(t)}, y$ to save some space.

M Step: Set
$$\beta^{t+1} := \underset{\beta}{\operatorname{argmax}} \ Q(\beta|\beta^{(t)})$$

Setting the derivative of (4) with respect to β to 0:

$$\begin{split} -2\beta' \mathbb{E}_{\theta|\beta^{(t)},y}[X'\theta] + \beta' X' X \beta &= 0 \\ (\mathbb{E}_{\theta|\beta^{(t)},y}[X'\theta])' &= \beta' X' X \\ \mathbb{E}_{\theta|\beta^{(t)},y}[X'\theta] &= X' X \beta \\ (X'X)^{-1} \mathbb{E}_{\theta|\beta^{(t)},y}[X'\theta] &=: \beta^{(t+1)} \end{split}$$

Two rules of matrix calculus

For α , $x \in \mathbb{R}^m$, $\mathbf{A} \in \mathbb{R}^{m \times m}$:

$$\frac{\partial x'}{\partial x} = \alpha' \quad \text{and} \quad \frac{\partial x'Ax}{\partial x} = x'(\mathbf{A}' + \mathbf{A})$$

EM Algorithm From Scratch