TRES Tidyverse Tutorial

Raphael, Pratik, Theo and Richèl

2020-07-10

. Contents

2	O	utline	5
3		Abo	ut
4		Sche	dule
5		Poss	ible extras
6		Join	
7	1	Rea	ding files and string manipulation 7
8		1.1	Data import and export with readr
9		1.2	String manipulation with stringr
10		1.3	String interpolation with glue
11		1.4	Strings in ggplot
12	2	Res	haping data tables in the tidyverse, and other things 23
13	_	2.1	The new data frame: tibble
14		2.2	The concept of tidy data
15		2.3	Reshaping with tidyr
16		2.4	Extra: factors and the forcats package
17		2.5	External resources
18	3	Dat	a manipulation with dplyr 43
19		3.1	Introduction
20		3.2	Working with existing variables
21		3.3	Working with observations
22		3.4	Making new variables
23		3.5	Working with multiple tables
24	4	Woi	rking with lists and iteration 73
25		4.1	List columns with tidyr
26		4.2	Iteration with map
27		4.3	More map variants
28		4.4	Combining map variants and tidyverse functions 82
29		4.5	A return to map variants
30		4.6	Other functions for working with lists
31		4.7	Lists of ggplots with patchwork

4 CONTENTS

32	5	ggpl	ot2 and the grammar of graphics	91
33		5.1	$Introduction \dots \dots$	92
34		5.2	But first, the data	93
35		5.3	Geom layers	95
36		5.4	Coordinate-system	106
37		5.5	Facetting	107
38		5.6	The right format for the dataset	110
39		5.7	Plotting as part of a pipeline	111
40		5.8	Customization	112
41		5.9	Combining plots	121
42		5.10	Saving a plot	123
43			High throughput plotting workflow	
44		5.12	Want more?	126
45		5.13	References	127
46	6	App	olications	129
47		6.1^{-}	Goal	130
48				
		6.2	Why is this important?	130
49		$6.2 \\ 6.3$	Why is this important?	
			v -	131
49		6.3	Overview	131 131
49		6.3 6.4	Overview	131 131 131
49 50 51	7	6.3 6.4 6.5 6.6	Overview	131 131 131
49 50 51 52	7	6.3 6.4 6.5 6.6	Overview	131 131 131 131
49 50 51 52	7	6.3 6.4 6.5 6.6 Pro	Overview	131 131 131 131 133 134
49 50 51 52 53 54	7	6.3 6.4 6.5 6.6 Pro	Overview What are regular expressions? Our first test Our first Dutch zip code tests gramming in the tidyverse An exlanation of the problem Flexible selection is easy	131 131 131 131 133 134 136
49 50 51 52 53 54 55	7	6.3 6.4 6.5 6.6 Pro 7.1 7.2	Overview What are regular expressions? Our first test Our first Dutch zip code tests gramming in the tidyverse An exlanation of the problem Flexible selection is easy A first attempt at a flexible function	131 131 131 131 133 134 136 137
49 50 51 52 53 54 55 56	7	6.3 6.4 6.5 6.6 Pro 7.1 7.2 7.3	Overview What are regular expressions? Our first test Our first Dutch zip code tests gramming in the tidyverse An exlanation of the problem Flexible selection is easy A first attempt at a flexible function Flexible filtering in a function	131 131 131 131 133 134 136 137 138
49 50 51 52 53 54 55 56	7	6.3 6.4 6.5 6.6 Pro ; 7.1 7.2 7.3 7.4	Overview What are regular expressions? Our first test Our first Dutch zip code tests gramming in the tidyverse An exlanation of the problem Flexible selection is easy A first attempt at a flexible function	131 131 131 133 134 136 137 138 140

_a Outline

- 62 This is the readable version of the TRES tidyverse tutorial. A convenient PDF
- version can be downloaded by clicking the PDF document icon in the header
- 64 bar

65 About

- The TRES tidyverse tutorial is an online workshop on how to use the tidyverse,
- 67 a set of packages in the R computing language designed at making data handling
- 68 and plotting easier.
- This tutorial will take the form of a one hour per week video stream via Google
- Meet, every Friday morning at 10.00 (Groningen time) starting from the 29th
- ₇₁ of May, 2020 and lasting for a couple of weeks (depending on the number of
- topics we want to cover, but there should be at least 5).
- 73 PhD students from outside our department are welcome to attend.

74 Schedule

Topic	Package	Instructor	Date*
Reading data and string manipulation	readr, stringr, glue	Pratik	29/05/20
Data and reshaping	tibble, tidyr	Raphael	05/06/20
Manipulating data	dplyr	Theo	12/06/20
Working with lists and iteration	purrr	Pratik	19/06/20
Plotting	ggplot2	Raphael	26/06/20
Regular expressions	regex	Richel	03/07/20
Programming with the tidyverse	rlang	Pratik	10/07/20

6 CONTENTS

Possible extras

• Reproducibility and package-making (with e.g. usethis)

• Embedding C++ code with Rcpp

₇₉ Join

- Join the Slack by clicking this link (Slack account required).
- *Tentative dates.

₈₂ Chapter 1

Reading files and stringmanipulation

86 Load the packages for the day.

library(readr)
library(stringr)
library(glue)

1.1 Data import and export with readr

 88 Data in the wild with which ecologists and evolutionary biologists deal is most

often in the form of a text file, usually with the extensions .csv or .txt. Often,

such data has to be written to file from within R. readr contains a number of

functions to help with reading and writing text files.

92 1.1.1 Reading data

- Reading in a csv file with readr is done with the read_csv function, a faster
- 94 alternative to the base R read.csv. Here, read_csv is applied to the mtcars
- 95 example.

```
# get the filepath of the example
some_example = readr_example("mtcars.csv")
  # read the file in
some_example = read_csv(some_example)
head(some_example)
  #> # A tibble: 6 x 11
                                                                                                                           hp drat
                                                              cyl disp
                                  mpq
                                                                                                                                                                                     wt qsec
                                                                                                                                                                                                                                              vs
                                                                                                                                                                                                                                                                           am gear carb
                         <dbl> 
                                                                                                                                                                                                                                                                                                                      <db1>
                                                                                                                        110 3.9
                                                                                                                                                                            2.62 16.5
  #> 1 21
                                                                       6
                                                                                           160
                                                                                                                                                                                                                                                   0
                                                                                                                                                                                                                                                                               1
  #> 2 21
                                                                       6
                                                                                          160
                                                                                                                        110 3.9
                                                                                                                                                                            2.88
                                                                                                                                                                                                    17.0
                                                                                                                                                                                                                                                                               1
                                                                                                                                                                                                                                                                                                                                         4
  #> 3 22.8
                                                                                          108
                                                                                                                          93 3.85 2.32
                                                                                                                                                                                                    18.6
                                                                                                                                                                                                                                                   1
                                                                                                                                                                                                                                                                               1
                                                                                                                                                                                                                                                                                                                                         1
  #> 4 21.4
                                                                       6
                                                                                          258
                                                                                                                        110 3.08 3.22
                                                                                                                                                                                                    19.4
                                                                                                                                                                                                                                                   1
                                                                                                                                                                                                                                                                                0
                                                                                                                                                                                                                                                                                                             3
                                                                                                                                                                                                                                                                                                                                         1
                                                                       8
                                                                                                                                              3.15 3.44
                                                                                                                                                                                                                                                   0
                                                                                                                                                                                                                                                                                0
                                                                                                                                                                                                                                                                                                             3
                                                                                                                                                                                                                                                                                                                                         2
  #> 5 18.7
                                                                                           360
                                                                                                                        175
                                                                                                                                                                                                      17.0
                                                                                                                        105 2.76 3.46 20.2
  #> 6 18.1
                                                                        6
                                                                                           225
                                                                                                                                                                                                                                                   1
                                                                                                                                                                                                                                                                                                                                         1
```

- The read_csv2 function is useful when dealing with files where the separator
- between columns is a semicolon ;, and where the decimal point is represented
- 98 by a comma,.

100

102

- 99 Other variants include:
 - read_tsv for tab-separated files, and
 - read_delim, a general case which allows the separator to be specified manually.

readr import function will attempt to guess the column type from the first N lines in the data. This N can be set using the function argument guess_max.

The n_max argument sets the number of rows to read, while the skip argument sets the number of rows to be skipped before reading data.

- By default, the column names are taken from the first row of the data, but they can be manually specified by passing a character vector to col_names.
- There are some other arguments to the data import functions, but the defaults usually *just work*.

1.1.2 Writing data

117

Writing data uses the write_* family of functions, with implementations for csv, csv2 etc. (represented by the asterisk), mirroring the import functions discussed above. write_* functions offer the append argument, which allow a data frame to be added to an existing file.

116 These functions are not covered here.

1.1.3 Reading and writing lines

Sometimes, there is text output generated in R which needs to be written to file, but is not in the form of a dataframe. A good example is model outputs. It is good practice to save model output as a text file, and add it to version control. Similarly, it may be necessary to import such text, either for display to screen, or to extract data.

This can be done using the readr functions read_lines and write_lines. Consider the model summary from a simple linear model.

```
# get the model
model = lm(mpg ~ wt, data = mtcars)
```

The model summary can be written to file. When writing lines to file, BE AWARE OF THE DIFFERENCES BETWEEN UNIX AND WINODWS line separators. Usually, this causes no trouble.

```
# capture the model summary output
model_output = capture.output(summary(model))
# save it to file
write_lines(x = model_output,
    path = "model_output.txt")
```

This model output can be read back in for display, and each line of the model output is an element in a character vector.

These few functions demonstrate the most common uses of readr, but most other use cases for text data can be handled using different function arguments, including reading data off the web, unzipping compressed files before reading, and specifying the column types to control for type conversion errors.

4 Excel files

Finally, data is often shared or stored by well meaning people in the form of Microsoft Excel sheets. Indeed, Excel (especially when synced regularly to remote storage) is a good way of noting down observational data in the field. The readxl package allows importing from Excel files, including reading in specific sheets.

stringr is the tidyverse package for string manipulation, and exists in an interesting symbiosis with the stringi package. For the most part, stringr is a wrapper around stringi, and is almost always more than sufficient for day-to-day needs.

stringr functions begin with str_.

1.2.1 Putting strings together

Concatenate two strings with str_c, and duplicate strings with str_dup. Flatten a list or vector of strings using str_flatten.

```
# str_c works like paste(), choose a separator
str_c("this string", "this other string", sep = "_")
#> [1] "this string_this other string"

# str_dup works like rep
str_dup("this string", times = 3)
#> [1] "this stringthis stringthis string"

# str_flatten works on lists and vectors
```

str_flatten(string = as.list(letters), collapse = "_")

```
str_flatten(string = letters, collapse = "-")
 \#>[1] "a-b-c-d-e-f-q-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z"
str_flatten is especially useful when displaying the type of an object that
returns a list when class is called on it.
# get the class of a tibble and display it as a single string
class tibble = class(tibble::tibble(a = 1))
str_flatten(string = class_tibble, collapse = ", ")
 #> [1] "tbl_df, tbl, data.frame"
       Detecting strings
1.2.2
Count the frequency of a pattern in a string with str count. Returns an integer.
Detect whether a pattern exists in a string with str detect. Returns a logical
and can be used as a predicate.
Both are vectorised, i.e, automatically applied to a vector of arguments.
 # there should be 5 a-s here
str_count(string = "ababababa", pattern = "a")
#> \[ \( 11 \) 5
 # vectorise over the input string
 # should return a vector of length 2, with integers 5 and 3
str_count(string = c("ababbababa", "banana"), pattern = "a")
 #> [1] 5 3
 # vectorise over the pattern to count both a-s and b-s
str_count(string = "ababababa", pattern = c("a", "b"))
 #> [1] 5 4
Vectorising over both string and pattern works as expected.
 # vectorise over both string and pattern
 # counts a-s in first input, and b-s in the second
str_count(string = c("ababababa", "banana"),
           pattern = c("a", "b"))
 #> \[ \int 1 \] 5 1
 # provide a longer pattern vector to search for both a-s
 # and b-s in both inputs
str_count(string = c("ababababa", "banana"),
          pattern = c("a", "b",
                       "b", "a"))
#> [1] 5 1 4 3
```

the elements.

str_locate locates the search pattern in a string, and returns the start and
 end as a two column matrix.

```
# the behaviour of both str_locate and str_locate_all is
   # to find the first match by default
   str locate(string = "banana", pattern = "ana")
   #>
          start end
   #> [1,]
               2
   # str detect detects a sequence in a string
   str_detect(string = "Bananageddon is coming!",
              pattern = "na")
   #> [1] TRUE
   # str_detect is also vectorised and returns a two-element logical vector
   str_detect(string = "Bananageddon is coming!",
               pattern = c("na", "don"))
   #> [1] TRUE TRUE
   # use any or all to convert a multi-element logical to a single logical
   # here we ask if either of the patterns is detected
   any(str_detect(string = "Bananageddon is coming!",
                   pattern = c("na", "don")))
   #> [1] TRUE
159 Detect whether a string starts or ends with a pattern. Also vectorised. Both
   have a negate argument, which returns the negative, i.e., returns FALSE if the
search pattern is detected.
   # taken straight from the examples, because they suffice
   fruit <- c("apple", "banana", "pear", "pineapple")</pre>
   # str_detect looks at the first character
   str_starts(fruit, "p")
   #> [1] FALSE FALSE TRUE TRUE
   # str ends looks at the last character
   str_ends(fruit, "e")
   #> [1] TRUE FALSE FALSE TRUE
   # an example of negate = TRUE
   str_ends(fruit, "e", negate = TRUE)
   #> [1] FALSE TRUE TRUE FALSE
   str_subset [WHICH IS NOT RELATED TO str_sub] helps with subsetting a
   character vector based on a str_detect predicate. In the example, all elements
   containing "banana" are subset.
   str which has the same logic except that it returns the vector position and not
```

1.2.3 Matching strings

174

175

176

177

178

180

str_match returns all positive matches of the pattern in the string. The return type is a list, with one element per search pattern.

A simple case is shown below where the search pattern is the phrase "banana".

The search pattern can be extended to look for multiple subsets of the search pattern. Consider searching for dates and times.

Here, the search pattern is a regex pattern that looks for a set of four digits (\\d{4}) and a month name (\\w+) seperated by a hyphen. There's much more to be explored in dealing with dates and times in lubridate, another tidyverse package.

The return type is a list, each element is a character matrix where the first column is the string subset matching the full search pattern, and then as many columns as there are parts to the search pattern. The parts of interest in the search pattern are indicated by wrapping them in parentheses. For example, in the case below, wrapping [-.] in parentheses will turn it into a distinct part of the search pattern.

```
pattern = "(\d{4})[-.](\w+)")
                             [,2] [,3]
                             "1970" "somemonth"
#> [1,] "1970-somemonth"
#> [2,] "1990-anothermonth" "1990" "anothermonth"
#> [3,] "2010-thismonth"
                            "2010" "thismonth"
# then with [-.] actively searched for
str_match(string = c("1970-somemonth-01",
                     "1990-anothermonth-01",
                     "2010-thismonth-01"),
          pattern = "(\d{4})([-.])(\w+)")
#>
        [,1]
                             [,2] [,3] [,4]
#> [1,] "1970-somemonth"
                             "1970" "-" "somemonth"
#> [2,] "1990-anothermonth" "1990" "-" "anothermonth"
                            "2010" "-" "thismonth"
#> [3,] "2010-thismonth"
Multiple possible matches are dealt with using str_match_all. An example
case is uncertainty in date-time in raw data, where the date has been entered
as 1970-somemonth-01 or 1970/anothermonth/01.
The return type is a list, with one element per input string. Each element is a
character matrix, where each row is one possible match, and each column after
the first (the full match) corresponds to the parts of the search pattern.
# first with a single date entry
str_match_all(string = c("1970-somemonth-01 or maybe 1990/anothermonth/01"),
              pattern = "(\d{4})[\-\]([a-z]+)")
#> [[1]]
#>
       [,1]
                             [,2] \quad [,3]
                             "1970" "somemonth"
#> [1,] "1970-somemonth"
#> [2,] "1990/anothermonth" "1990" "anothermonth"
# then with multiple date entries
str_match_all(string = c("1970-somemonth-01 or maybe 1990/anothermonth/01",
                          "1990-somemonth-01 or maybe 2001/anothermonth/01"),
              pattern = "(\d{4})[\-\]([a-z]+)")
#> [[1]]
        [,1]
                             [,2]
                                   [,3]
#> [1,] "1970-somemonth"
                            "1970" "somemonth"
#> [2,] "1990/anothermonth" "1990" "anothermonth"
#>
#> [[2]]
       [,1]
                             [,2] [,3]
#>
#> [1,] "1990-somemonth"
                            "1990" "somemonth"
#> [2,] "2001/anothermonth" "2001" "anothermonth"
```

1.2.4 Simpler pattern extraction

```
The full functionality of str_match_* can be boiled down to the most com-
         mon use case, extracting one or more full matches of the search pattern using
191
         str_extract and str_extract_all respectively.
192
         str_extract returns a character vector with the same length as the input string
193
         vector, while str_extract_all returns a list, with a character vector whose
194
         elements are the matches.
         # extracting the first full match using str extract
         str_extract(string = c("1970-somemonth-01 or maybe 1990/anothermonth/01",
                                                                     "1990-somemonth-01 or maybe 2001/anothermonth/01"),
                                        pattern = "(\d{4})[\-\]([a-z]+)")
         #> [1] "1970-somemonth" "1990-somemonth"
         # extracting all full matches using str_extract all
         str_extract_all(string = c("1970-somemonth-01 or maybe 1990/anothermonth/01",
                                                                                "1990-somemonth-01 or maybe 2001/anothermonth/01"),
                                                   pattern = "(\d{4})[\-\]([a-z]+)")
         #> \(\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma
         #> [1] "1970-somemonth"
                                                                                "1990/anothermonth"
         #> [[2]]
         #> [1] "1990-somemonth"
                                                                                "2001/anothermonth"
         1.2.5
                            Breaking strings apart
         str_split, str_sub, In the above date-time example, when reading filenames
         from a path, or when working sequences separated by a known pattern generally,
198
         str_split can help separate elements of interest.
199
        The return type is a list similar to str_match.
         # split on either a hyphen or a forward slash
         str_split(string = c("1970-somemonth-01",
                                                                "1990/anothermonth/01"),
                                   pattern = "[\\-\\/]")
         #> [[1]]
         #> [1] "1970"
                                                           "somemonth" "01"
         #>
         #> [[2]]
         #> \[ \begin{aligned} \text{17} & \begin{aligned} \text{1990} \\ \text{9} \end{aligned} \]
                                                                   "anothermonth" "01"
```

This can be useful in recovering simulation parameters from a filename, but may require some knowledge of regex.

```
# assume a simulation output file
filename = "sim_param1_0.01_param2_0.05_param3_0.01.ext"
```

```
# not quite there
str_split(filename, pattern = "_")
#> [[1]]
                   "param1" "0.01"
#> [1] "sim"
                                         "param2"
                                                    "0.05"
                                                                             "0.01.ext"
                                                                  "param3"
# not really
str_split(filename,
          pattern = "sim_")
#> [[17]
#> [17 ""
#> [2] "param1_0.01_param2_0.05_param3_0.01.ext"
# getting there but still needs work
str_split(filename,
          pattern = "(sim_)|_*param\\d{1}_|(.ext)")
#> [[1]]
                      "0.01" "0.05" "0.01" ""
#> [1] ""
str_split_fixed split the string into as many pieces as specified, and can be
especially useful dealing with filepaths.
# split on either a hyphen or a forward slash
str_split_fixed(string = "dir_level_1/dir_level_2/file.ext",
                 pattern = "/",
                 n = 2)
         [.1]
                       [,2]
#> [1,] "dir_level_1" "dir_level_2/file.ext"
1.2.6 Replacing string elements
str_replace is intended to replace the search pattern, and can be co-opted
into the task of recovering simulation parameters or other data from regularly
named files. str_replace_all works the same way but replaces all matches of
the search pattern.
# replace all unwanted characters from this hypothetical filename with spaces
filename = "sim_param1_0.01_param2_0.05_param3_0.01.ext"
str_replace_all(filename,
                 pattern = "(sim_)|_*param\\d{1}_|(.ext)",
                 replacement = " ")
#> [1] " 0.01 0.05 0.01 "
str_remove is a wrapper around str_replace where the replacement is set to
"". This is not covered here.
Having replaced unwanted characters in the filename with spaces, str trim
```

offers a way to remove leading and trailing whitespaces.

```
# trim whitespaces from this filename after replacing unwanted text
   filename = "sim_param1_0.01_param2_0.05_param3_0.01.ext"
   filename_with_spaces = str_replace_all(filename,
                                            pattern = "(sim_)|_*param\\d{1}_|(.ext)",
                                            replacement = " ")
   filename_without_spaces = str_trim(filename_with_spaces)
   filename_without_spaces
   #> [1] "0.01 0.05 0.01"
   # the result can be split on whitespaces to return useful data
   str split(filename without spaces, " ")
   #> [[17]
   #> [1] "0.01" "0.05" "0.01"
   1.2.7
           Subsetting within strings
  When strings are highly regular, useful data can be extracted from a string using
  str_sub. In the date-time example, the year is always represented by the first
217 four characters.
   # get the year as characters 1 - 4
   str_sub(string = c("1970-somemonth-01",
                       "1990-anothermonth-01",
                       "2010-thismonth-01"),
            start = 1, end = 4)
   #> [1] "1970" "1990" "2010"
218 Similarly, it's possible to extract the last few characters using negative indices.
   # get the day as characters -2 to -1
   str_sub(string = c("1970-somemonth-01",
                       "1990-anothermonth-21",
                       "2010-thismonth-31"),
            start = -2, end = -1)
   Finally, it's also possible to replace characters within a string based on the
   position. This requires using the assignment operator <-.
   # replace all days in these dates to 01
   date times = c("1970-somemonth-25",
                   "1990-anothermonth-21",
                   "2010-thismonth-31")
   # a strictly necessary use of the assignment operator
   str sub(date times,
           start = -2, end = -1) <- "01"
```

```
date_times
#> [1] "1970-somemonth-01" "1990-anothermonth-01" "2010-thismonth-01"
```

1.2.8 Padding and truncating strings

Strings included in filenames or plots are often of unequal lengths, especially when they represent numbers. str_pad can pad strings with suitable characters to maintain equal length filenames, with which it is easier to work.

225 Strings can also be truncated if they are too long.

1.2.9 Stringr aspects not covered here

227 Some stringr functions are not covered here. These include:

```
    str_wrap (of dubious use),
```

- str_interp, str_glue* (better to use glue; see below),
- str sort, str order (used in sorting a character vector),
- str_to_case* (case conversion), and
- str_view* (a graphical view of search pattern matches).
- word, boundary etc. The use of word is covered below.
- stringi, of which stringr is a wrapper, offers a lot more flexibility and control.

1.3 String interpolation with glue

- The idea behind string interpolation is to procedurally generate new complex strings from pre-existing data.
- glue is as simple as the example shown.

243

244

github page.

```
# print that each car name is a car model
cars = rownames(head(mtcars))
glue('The {cars} is a car model')
#> The Mazda RX4 is a car model
#> The Mazda RX4 Wag is a car model
#> The Datsun 710 is a car model
#> The Hornet 4 Drive is a car model
#> The Hornet Sportabout is a car model
#> The Valiant is a car model
This creates and prints a vector of car names stating each is a car model.
The related glue_data is even more useful in printing from a dataframe. In
this example, it can quickly generate command line arguments or filenames.
# use dataframes for now
parameter_combinations = data.frame(param1 = letters[1:5],
                                      param2 = 1:5)
# for command line arguments or to start multiple job scripts on the cluster
glue_data(parameter_combinations,
           'simulation-name {param1} {param2}')
#> simulation-name a 1
#> simulation-name b 2
#> simulation-name c 3
#> simulation-name d 4
#> simulation-name e 5
# for filenames
glue_data(parameter_combinations,
           'sim data param1 {param1} param2 {param2}.ext')
#> sim_data_param1_a_param2_1.ext
#> sim_data_param1_b_param2_2.ext
#> sim_data_param1_c_param2_3.ext
#> sim data param1 d param2 4.ext
#> sim_data_param1_e_param2_5.ext
Finally, the convenient glue_sql and glue_data_sql are used to safely write
SQL queries where variables from data are appropriately quoted. This is not
covered here, but it is good to know it exists.
glue has some more functions — glue_safe, glue_collapse, and glue_col,
but these are infrequently used. Their functionality can be found on the glue
```

$_{\scriptscriptstyle 148}$ 1.4 ${ m Strings~in~ggplot}$

```
ggplot has two geoms (wait for the ggplot tutorial to understand more about geoms) that work with text: geom_text and geom_label. These geoms allow text to be pasted on to the main body of a plot.
```

```
Often, these may overlap when the data are closely spaced. The pack-
age ggrepel offers another geom, geom_text_repel (and the related
geom_label_repel) that help arrange text on a plot so it doesn't over-
lap with other features. This is not perfect, but it works more often than
not.
```

257 More examples can be found on the ggrepl website.

```
Here, the arguments to geom_text_repel are taken both from the mtcars data (position), as well as from the car brands extracted using the stringr::word (labels), which tries to separate strings based on a regular pattern.
```

The details of ggplot are covered in a later tutorial.

This is not a good looking plot, because it breaks other rules of plot design, such as whether this sort of plot should be made at all. Labels and text need to be applied sparingly, for example drawing attention or adding information to outliers.

Chapter 2

- Reshaping data tables in the tidyverse, and other things
- 271 Raphael Scherrer

library(tibble) library(tidyr)

In this chapter we will learn what tidy means in the context of the tidyverse, and how to reshape our data into a tidy format using the tidyr package. But

first, let us take a detour and introduce the tibble.

2.1 The new data frame: tibble

The tibble is the recommended class to use to store tabular data in the tidyverse. Consider it as the operational unit of any data science pipeline. For most practical purposes, a tibble is basically a data.frame.

```
# Make a data frame
data.frame(who = c("Pratik", "Theo", "Raph"), chapt = c("1, 4", "3", "2, 5"))
       who chapt
#> 1 Pratik 1, 4
      Theo
#> 2
#> 3
      Raph 2, 5
# Or an equivalent tibble
tibble(who = c("Pratik", "Theo", "Raph"), chapt = c("1, 4", "3", "2, 5"))
#> # A tibble: 3 x 2
    who
          chapt
     <chr> <chr>
#> 1 Pratik 1, 4
#> 2 Theo
          3
#> 3 Raph
           2, 5
```

The difference between tibble and data.frame is in its display and in the way it is subsetted, among others. Most functions working with data.frame will work with tibble and vice versa. Use the as* family of functions to switch back and forth between the two if needed, using e.g. as.data.frame or as_tibble.

In terms of display, the tibble has the advantage of showing the class of each column: chr for character, fct for factor, int for integer, dbl for numeric and lgl for logical, just to name the main atomic classes. This may be more important than you think, because many hard-to-find bugs in R are due to wrong variable types and/or cryptic type conversions. This especially happens with factor and character, which can cause quite some confusion. More about this in the extra section at the end of this chapter!

Note that you can build a tibble by rows rather than by columns with tribble:

```
tribble(
    ~who, ~chapt,
    "Pratik", "1, 4",
    "Theo", "3",
    "Raph", "2, 5"
)

#> # A tibble: 3 x 2
#> who chapt
#> <chr> <chr> #> 1 Pratik 1, 4
#> 2 Theo 3
```

2, 5

#> 3 Raph

```
As a rule of thumb, try to convert your tables to tibbles whenever you can,
   especially when the original table is not a data frame. For example, the prin-
293
   cipal component analysis function prcomp outputs a matrix of coordinates in
   principal component-space.
   # Perform a PCA on mtcars
   pca_scores <- prcomp(mtcars)$x</pre>
   head(pca_scores) # looks like a data frame or a tibble...
                              PC1
                                    PC2
                                          PC3
                                                  PC4
                                                         PC5
                                                                 PC6
                                                                           PC7
                                                                                   PC8
   #> Mazda RX4
                           -79.60
                                   2.13 -2.15 -2.707 -0.702 -0.3149 -0.09870 -0.0779
   #> Mazda RX4 Waq
                           -79.60
                                   2.15 -2.22 -2.178 -0.884 -0.4534 -0.00355 -0.0957
                          -133.89 -5.06 -2.14
                                               0.346
                                                      1.106 1.1730
   #> Datsun 710
                                                                      0.00576
                                                                                0.1362
   #> Hornet 4 Drive
                             8.52 44.99
                                        1.23 0.827
                                                      0.424 -0.0579 -0.02431
                          128.69 30.82 3.34 -0.521 0.737 -0.3329 0.10630 -0.0530
   #> Hornet Sportabout
   #> Valiant
                           -23.22 35.11 -3.26 1.401 0.803 -0.0884
                                                                      0.23895 0.4239
                                    PC10
   #>
                             PC9
                                           PC11
                          -0.200 -0.2901
   #> Mazda RX4
                                          0.106
   #> Mazda RX4 Waq
                          -0.353 -0.1928
                                          0.107
   #> Datsun 710
                          -0.198 0.0763
                                          0.267
   #> Hornet 4 Drive
                           0.356 -0.0906 0.209
   #> Hornet Sportabout 0.153 -0.1886 -0.109
   #> Valiant
                           0.101 -0.0377 0.276
   class(pca_scores) # but is actually a matrix
   #> [1] "matrix"
   # Convert to tibble
   as_tibble(pca_scores)
   #> # A tibble: 32 x 11
   #>
             PC1
                   PC2
                         PC3
                                        PC5
                                                 PC6
                                                          PC7
                                                                  PC8
                                                                          PC9
                                                                                 PC10
                                 PC4
           <dbl> <dbl> <dbl> <dbl>
                               <db1>
                                      <db1>
                                               <db1>
                                                        <db1>
                                                                 <dbl>
                                                                        <db1>
                                                                                 <db1>
   #> 1
         -79.6
                  2.13 -2.15 -2.71
                                     -0.702 -0.315
                                                     -0.0987
                                                              -0.0779 -0.200 -0.290
         -79.6
                  2.15 -2.22 -2.18
                                     -0.884 -0.453
                                                     -0.00355 -0.0957 -0.353 -0.193
   #> 3 −134.
                 -5.06 -2.14
                              0.346
                                      1.11
                                             1.17
                                                      0.00576
                                                               0.136
                                                                       -0.198
                                                                               0.0763
            8.52 45.0
                        1.23
                              0.827
                                      0.424 -0.0579
                                                                        0.356 -0.0906
                                                     -0.0243
                                                               0.221
                 30.8
                        3.34 -0.521
                                                               -0.0530
   #> 5 129.
                                      0.737 -0.333
                                                      0.106
                                                                        0.153 - 0.189
```

This is important because a matrix can contain only one type of values (e.g. only numeric or character), while tibble (and data.frame) allow you to have columns of different types.

#> # ... with 26 more rows, and 1 more variable: PC11 <dbl>

0.803 -0.0884

0.239

0.424

0.101 -0.0377

#> 6 -23.2 35.1 -3.26 1.40

²⁹⁹ So, in the tidyverse we are going to work with tibbles, got it. But what does "tidy" mean exactly?

2.2 The concept of tidy data

When it comes to putting data into tables, there are many ways one could organize a dataset. The *tidy* format is one such format. According to the formal definition, a table is tidy if each column is a variable and each row is an observation. In practice, however, I found that this is not a very operational definition, especially in ecology and evolution where we often record multiple variables per individual. So, let's dig in with an example.

Say we have a dataset of several morphometrics measured on Darwin's finches in the Galapagos islands. Let's first get this dataset.

```
# We first simulate random data
beak_lengths <- rnorm(100, mean = 5, sd = 0.1)
beak_widths <- rnorm(100, mean = 2, sd = 0.1)
body weights <- rgamma(100, shape = 10, rate = 1)
islands <- rep(c("Isabela", "Santa Cruz"), each = 50)
# Assemble into a tibble
data <- tibble(</pre>
  id = 1:100,
 body_weight = body_weights,
 beak_length = beak_lengths,
 beak_width = beak_widths,
  island = islands
# Snapshot
data
#> # A tibble: 100 x 5
        id body_weight beak_length beak_width island
#>
     \langle int \rangle
              <\!db\,l> <\!db\,l> <\!db\,l> <\!chr>
#> 1
                10.8
                              4.94
                                         1.94 Isabela
       1
#> 2
        2
                             5.02
               15.4
                                         2.00 Isabela
        3
               15.0
                             4.92
                                        1.91 Isabela
#> 4
        4
                 8.51
                             5.16
                                         2.02 Isabela
#> 5
        5
                 14.9
                              5.03
                                         1.93 Isabela
#> 6
       6
                8.41
                              4.92
                                         2.18 Isabela
#> # ... with 94 more rows
```

Here, we pretend to have measured beak_length, beak_width and body_weight on 100 birds, 50 of them from Isabela and 50 of them from Santa Cruz. In this tibble, each row is an individual bird. This is probably the way most scientists would record their data in the field. However, a single bird is not an "observation" in the sense used in the tidyverse. Our dataset is not tidy but messy.

The tidy equivalent of this dataset would be:

319

321

322

323

324

```
data <- pivot_longer(</pre>
  data,
  cols = c("body_weight", "beak_length", "beak_width"),
  names_to = "variable"
)
data
#> # A tibble: 300 x 4
        id island variable
                                 va.l.u.e
     \langle int \rangle \langle chr \rangle
                                  <dbl>
         1 Isabela body weight 10.8
         1 Isabela beak length 4.94
         1 Isabela beak width
                                   1.94
         2 Isabela body_weight 15.4
         2 Isabela beak_length 5.02
         2 Isabela beak_width
#> # ... with 294 more rows
```

where each measurement (and not each individual) is now the unit of observation (the rows). The pivot_longer function is the easiest way to get to this format.

It belongs to the tidyr package, which we'll cover in a minute.

As you can see our tibble now has three times as many rows and fewer columns. This format is rather unintuitive and not optimal for display. However, it provides a very standardized and consistent way of organizing data that will be understood (and expected) by pretty much all functions in the tidyverse. This makes the tidyverse tools work well together and reduces the time you would otherwise spend reformatting your data from one tool to the next.

That does not mean that the *messy* format is useless though. There may be use-cases where you need to switch back and forth between formats. For this reason I prefer referring to these formats using their other names: *long* (tidy) versus *wide* (messy). For example, matrix operations work much faster on wide data, and the wide format arguably looks nicer for display. Luckily the tidyr package gives us the tools to reshape our data as needed, as we shall see shortly.

Another common example of wide-or-long dilemma is when dealing with *contingency tables*. This would be our case, for example, if we asked how many observations we have for each morphometric and each island. We use table (from base R) to get the answer:

```
# Make a contingency table
ctg <- with(data, table(island, variable))
ctg
#> variable
#> island beak_length beak_width body_weight
#> Isabela 50 50 50
#> Santa Cruz 50 50 50
```

A variety of statistical tests can be used on contingency tables such as Fisher's

exact test, the chi-square test or the binomial test. Contingency tables are in
the wide format by construction, but they too can be pivoted to the long format,
and the tidyverse manipulation tools will expect you to do so. Actually, tibble
knows that very well and does it by default if you convert your table into a
tibble:

```
# Contingency table is pivoted to the long-format automatically
as_tibble(ctg)
#> # A tibble: 6 x 3
#>
     island
                variable
                                 n
#>
     <chr>
                <chr>
                             <int>
#> 1 Isabela
                beak length
                                50
#> 2 Santa Cruz beak_length
                                50
#> 3 Isabela
                beak width
                                50
#> 4 Santa Cruz beak_width
                                50
#> 5 Isabela
                body weight
                                50
#> 6 Santa Cruz body weight
                                50
```

Summary: Tidy or not tidy

To sum up, the definition of what is tidy and what is not is somewhat subjective. Tables can be in long or wide format, and depending on the complexity of a dataset, there may even be some intermediate states. To be clear, the tidyverse does not only accept long tables, and wide tables may sometimes be the way to go. This is very use-case specific. Have a clear idea of what you want to do with your data (what tidyverse tools you will use), and use that to figure which format makes more sense. And remember, tidyr is here to easily do the switching for you.

2.3 Reshaping with tidyr

The tidyr package implements tools to easily switch between layouts and also perform a few other reshaping operations. Old school R users will be familiar with the reshape and reshape2 packages, of which tidyr is the tidyverse equivalent. Beware that tidyr is about playing with the general layout of the dataset, while operations and transformations of the data are within the scope of the dplyr and purrr packages. All these packages work hand-in-hand really well, and analysis pipelines usually involve all of them. But today, we focus on the first member of this holy trinity, which is often the first one you'll need because you will want to reshape your data before doing other things. So, please hold your non-layout-related questions for the next chapters.

2.3.1 Pivoting

Pivoting a dataset between the long and wide layout is the main purpose of tidyr (check out the package's logo). We already saw the pivot_longer function above. This function converts a table form wide to long format. Similarly, there is a pivot_wider function that does exactly the opposite and takes you back to the wide format:

```
pivot_wider(
  data,
  names from = "variable",
  values_from = "value",
  id_cols = c("id", "island")
#> # A tibble: 100 x 5
        id island body_weight beak_length beak_width
     <int> <chr>
                          <dbl>
                                      <dbl>
                                                  <db1>
#> 1
         1 Isabela
                          10.8
                                       4.94
                                                   1.94
                          15.4
         2 Isabela
                                       5.02
                                                   2.00
#> 3
         3 Isabela
                          15.0
                                       4.92
                                                   1.91
                          8.51
                                       5.16
         4 Isabela
                                                   2.02
#> 5
         5 Isabela
                          14.9
                                       5.03
                                                   1.93
         6 Isabela
                           8.41
                                       4.92
                                                   2.18
#> # ... with 94 more rows
```

The order of the columns is not exactly as it was, but this should not matter in a data analysis pipeline where you should access columns by their names. It is straightforward to change the order of the columns, but this is more within the scope of the dplyr package.

If you are familiar with earlier versions of the tidyverse, pivot_longer and pivot_wider are the respective equivalents of gather and spread, which are now deprecated.

There are a few other reshaping operations from tidyr that are worth knowing.

$_{366}$ 2.3.2 Handling missing values

Say we have some missing measurements in the column "value" of our finch dataset:

```
# We replace 100 random observations by NAs
ii <- sample(nrow(data), 100)
data$value[ii] <- NA
data
#> # A tibble: 300 x 4
#> id island variable value
#> <int> <chr> <chr> <dbl> #> 1 Isabela body_weight 10.8
```

We could get rid of the rows that have missing values using drop_na:

drop_na(data, value)

Else, we could replace the NAs with some user-defined value:

```
replace_na(data, replace = list(value = -999))
#> # A tibble: 300 x 4
      id island variable
                           value
#> <int> <chr> <chr>
                            <db1>
      1 Isabela body_weight 10.8
      1 Isabela beak_length -999
#> 2
      1 Isabela beak_width -999
#> 4
      2 Isabela body_weight -999
      2 Isabela beak_length
#> 5
                            5.02
#> 6 2 Isabela beak width -999
#> # ... with 294 more rows
```

- where the replace argument takes a named list, and the names should refer to
- the columns to apply the replacement to.
- We could also replace NAs with the most recent non-NA values:

fill(data, value)

```
#> # A tibble: 300 x 4

#> id island variable value

#> <int> <chr> <chr> <chr> <chr> 1 Isabela body_weight 10.8

#> 2 1 Isabela beak_length 10.8

#> 3 1 Isabela beak_width 10.8

#> 4 2 Isabela body_weight 10.8

#> 5 2 Isabela beak_length 5.02
```

```
#> 6     2 Isabela beak_width     5.02
#> # ... with 294 more rows
```

Note that most functions in the tidyverse take a tibble as their first argument, and columns to which to apply the functions are usually passed as "objects" rather than character strings. In the above example, we passed the value column as value, not "value". These column-objects are called by the tidyverse functions in the context of the data (the tibble) they belong to.

2.3.3 Splitting and combining cells

The tidyr package offers tools to split and combine columns. This is a nice extension to the string manipulations we saw last week in the stringr tutorial.

Say we want to add the specific dates when we took measurements on our birds (we would normally do this using dplyr but for now we will stick to the old way):

```
# Sample random dates for each observation
data$day <- sample(30, nrow(data), replace = TRUE)</pre>
data$month <- sample(12, nrow(data), replace = TRUE)</pre>
data$year <- sample(2019:2020, nrow(data), replace = TRUE)</pre>
data
#> # A tibble: 300 x 7
        id island variable
                                 value
                                           day month year
     \langle int \rangle \langle chr \rangle \langle chr \rangle \langle dbl \rangle \langle int \rangle \langle int \rangle
         1 Isabela body_weight 10.8
                                            8
                                                    7 2020
         1 Isabela beak_length NA
                                            19
                                                    7 2019
         1 Isabela beak width NA
                                            17
                                                   12 2019
         2 Isabela body weight NA
                                            20
                                                   12 2020
         2 Isabela beak length 5.02
                                            21
                                                   10 2020
         2 Isabela beak width NA
                                            23
                                                    2 2020
#> # ... with 294 more rows
```

We could combine the day, month and year columns into a single date column, with a dash as a separator, using unite:

```
data <- unite(data, day, month, year, col = "date", sep = "-")</pre>
data
#> # A tibble: 300 x 5
        id island variable
                                value date
     \langle int \rangle \langle chr \rangle \langle chr \rangle
                                 <dbl> <chr>
#> 1
        1 Isabela body_weight 10.8 8-7-2020
         1 Isabela beak length NA
         1 Isabela beak_width NA
                                       17-12-2019
         2 Isabela body weight NA
                                       20-12-2020
#> 5
       2 Isabela beak length 5.02 21-10-2020
#> 6
        2 Isabela beak width NA
                                       23-2-2020
```

```
#> # ... with 294 more rows
```

Of course, we can revert back to the previous dataset by splitting the date column with separate.

```
separate(data, date, into = c("day", "month", "year"))
#> # A tibble: 300 x 7
       id island variable
                           value day
                                         month year
#>
    <int> <chr> <chr>
                             <dbl> <chr> <chr> <chr>
#> 1
        1 Isabela body weight 10.8 8
                                               2020
        1 Isabela beak_length NA
                                 19
                                         7
                                               2019
#> 3
       1 Isabela beak width NA
                                  17
                                               2019
                                         12
#> 4
        2 Isabela body_weight NA
                                   20
                                               2020
                                         12
#> 5
        2 Isabela beak_length 5.02 21
                                         10
                                               2020
#> 6
        2 Isabela beak_width NA
                                   23
                                         2
                                               2020
#> # ... with 294 more rows
```

- $\,$ But note that the day, month and year columns are now of class character and
- 390 not integer anymore. This is because they result from the splitting of date,
- which itself was a character column.
- You can also separate a single column into multiple rows using separate_rows:

separate_rows(data, date)

```
#> # A tibble: 900 x 5
       id island variable
                             value date
   \langle int \rangle \langle chr \rangle \langle chr \rangle
                             <dbl> <chr>
#> 2
       1 Isabela body weight 10.8 7
        1 Isabela body weight
#> 3
                              10.8 2020
#> 4
        1 Isabela beak_length NA
                                   19
#> 5
       1 Isabela beak length NA
                                   7
#> 6
       1 Isabela beak_length NA
                                   2019
#> # ... with 894 more rows
```

2.3.4 Expanding tables using combinations

Instead of getting rid of rows with NAs, we may want to add rows with NAs, for example, for combinations of parameters that we did not measure.

```
data <- separate(data, date, into = c("day", "month", "year"))</pre>
to rm <- with(data, island == "Santa Cruz" & year == "2020")
data <- data[!to rm,]</pre>
tail(data)
#> # A tibble: 6 x 7
#>
       id island
                    variable
                              value day month year
#>
   <int> <chr>
                    <chr>
                               <dbl> <chr> <chr> <chr>
#> 1 98 Santa Cruz beak length 4.94 22 12
                                                  2019
#> 2
      98 Santa Cruz beak width 1.90 9
                                           1
                                                 2019
```

```
99 Santa Cruz body_weight 15.0 16
                                               7
                                                      2019
        99 Santa Cruz beak_length NA
                                         26
                                               10
                                                      2019
#> 5
       99 Santa Cruz beak_width 2.04 30
                                               7
                                                      2019
#> 6 100 Santa Cruz beak width NA
                                                      2019
We could generate a tibble with all combinations of island, morphometric and
year using expand_grid:
expand_grid(
  island = c("Isabela", "Santa Cruz"),
  year = c("2019", "2020")
)
#> # A tibble: 4 x 2
   island year
#> <chr>
                <chr>
#> 1 Isabela
                2019
#> 2 Isabela
              2020
#> 3 Santa Cruz 2019
#> 4 Santa Cruz 2020
If we already have a tibble to work from that contains the variables to combine,
we can use expand on that tibble:
expand(data, island, year)
#> # A tibble: 4 x 2
              year
    island
     <chr>
                <chr>
#> 1 Isabela
              2019
#> 2 Isabela 2020
#> 3 Santa Cruz 2019
#> 4 Santa Cruz 2020
As you can see, we get all the combinations of the variables of interest, even
those that are missing. But sometimes you might be interested in variables
that are nested within each other and not crossed. For example, say we have
measured birds at different locations within each island:
nrow_Isabela <- with(data, length(which(island == "Isabela")))</pre>
nrow_SantaCruz <- with(data, length(which(island == "Santa Cruz")))</pre>
sites_Isabela <- sample(c("A", "B"), size = nrow_Isabela, replace = TRUE)</pre>
sites_SantaCruz <- sample(c("C", "D"), size = nrow_SantaCruz, replace = TRUE)
sites <- c(sites Isabela, sites SantaCruz)</pre>
data$site <- sites
data
#> # A tibble: 232 x 8
     id island variable
                              value day month year site
    \langle int \rangle \langle chr \rangle \langle chr \rangle
                              <dbl> <chr> <chr> <chr> <chr> <chr>
#> 2
       1 Isabela beak_length NA 19
                                          7
                                                  2019 B
```

```
#> 3
        1 Isabela beak_width NA
                                    17
                                          12
                                                2019 B
        2 Isabela body_weight NA
                                    20
                                          12
                                                2020 A
        2 Isabela beak_length 5.02 21
                                          10
                                                2020 A
        2 Isabela beak width NA
                                    23
                                          2
                                                2020 A
#> # ... with 226 more rows
```

Of course, if sites A and B are on Isabela, they cannot be on Santa Cruz, where
we have sites C and D instead. It would not make sense to expand assuming
that island and site are crossed, instead, they are nested. We can therefore
expand using the nesting function:

expand(data, nesting(island, site, year))

```
#> # A tibble: 6 x 3
    island site year
     <chr>
                <chr> <chr>
#> 1 Isabela
                      2019
                Α
#> 2 Isabela
               \boldsymbol{A}
                      2020
#> 3 Isabela
             B
                      2019
#> 4 Isabela
             B
                      2020
#> 5 Santa Cruz C
                      2019
#> 6 Santa Cruz D
                      2019
```

But now the missing data for Santa Cruz in 2020 are not accounted for because expand thinks the year is also nested within island. To get back the missing combination, we use crossing, the complement of nesting:

expand(data, crossing(nesting(island, site), year)) # both can be used together

```
#> # A tibble: 8 x 3
     island
                site year
     <chr>
                 <chr> <chr>
#> 1 Isabela
                        2019
                 \boldsymbol{A}
#> 2 Isabela
                 \boldsymbol{A}
                        2020
#> 3 Isabela
                 B
                        2019
#> 4 Isabela
               B
                        2020
#> 5 Santa Cruz C
                        2019
#> 6 Santa Cruz C
                        2020
#> # ... with 2 more rows
```

- Here, we specify that site is nested within island and these two are crossed with year. Easy!
- $_{\mbox{\scriptsize 413}}$ $\,$ But wait a minute. These combinations are all very good, but our measurements
- have disappeared! We can get them back by levelling up to the complete
- 415 function instead of using expand:

tail(complete(data, crossing(nesting(island, site), year)))

```
#> # A tibble: 6 x 8
#> island site year id variable value day month
#> <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr< <chr> <chr< <chr< <chr< <chr< <chr> <chr< <
```

```
#> 1 Santa Cruz D
                     2019
                              95 beak_width NA
                                                    13
                                                          10
#> 2 Santa Cruz D
                      2019
                              98 beak_length 4.94 22
                                                          12
                              99 body_weight 15.0
#> 3 Santa Cruz D
                     2019
                                                          7
                              99 beak length NA
#> 4 Santa Cruz D
                     2019
                                                    26
                                                          10
#> 5 Santa Cruz D
                     2019
                              99 beak width
                                                          7
                                             2.04 30
#> 6 Santa Cruz D
                      2020
                              NA <NA>
                                             NA
                                                    <NA>
                                                         <NA>
# the last row has been added, full of NAs
```

which nicely keeps the rest of the columns in the tibble and just adds the missing combinations.

418 **2.3.5** Nesting

The tidyr package has yet another feature that makes the tidyverse very powerful: the nest function. However, it makes little sense without combining it with the functions in the purrr package, so we will not cover it in this chapter but rather in the purrr chapter.

$\mathbf{2.3.6}$ What else can be tidied up?

2.3.6.1 Model output with broom

Check out the broom package and its tidy function to tidy up messy linear model output, e.g.

```
library(broom)
fit <- lm(mpg ~ cyl, mtcars)</pre>
summary(fit)
#> Ca.1.1.:
#> lm(formula = mpq ~ cyl, data = mtcars)
#>
#> Residuals:
   Min
          10 Median
                           30
                                Max
#> -4.981 -2.119 0.222 1.072 7.519
#> Coefficients:
      Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 37.885
                           2.074 18.27 < 2e-16 ***
                -2.876
                           0.322
                                  -8.92 6.1e-10 ***
#> cyl
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 3.21 on 30 degrees of freedom
#> Multiple R-squared: 0.726,
                                    Adjusted R-squared:
#> F-statistic: 79.6 on 1 and 30 DF, p-value: 6.11e-10
tidy(fit) # returns a tibble
```

```
#> # A tibble: 2 x 5
     term
                 estimate std.error statistic
                                                p.value
                               <dbl>
     <chr>
                    <dbl>
                                         <db1>
                                                   <db1>
                    37.9
                               2.07
#> 1 (Intercept)
                                         18.3 8.37e-18
#> 2 cyl
                               0.322
                     -2.88
                                         -8.92 6.11e-10
```

The broom package is just one package among a series of packages together known as tidymodels that deal with statistical models according to the tidyverse philosophy, and those include machine learning models.

2.3.6.2 Graphs with tidygraph

For some datasets, sometimes there is no trivial and intuitive way to store them into a table. This is the case, for example, for data underlying graphs (as in networks), which contain information about relations between entities. What is the unit of observation in a network? A node? An edge between two nodes? Nodes and edges in a network may each have node- or edge-specific variables mapped to them, and both may be equally valid units of observation. The tidygraph package has tools to store graph-data in a tidyverse-friendly object, consisting of two tibbles: one for node-specific information, the other for edge-specific information. This package goes hand in hand with the ggraph, that makes plotting networks compatible with the grammar of graphics.

$_{\scriptscriptstyle 41}$ 2.3.6.3 Trees with tidytree

Phylogenetic trees are a special type of graphs suffering from the same issue, i.e. of being non-trivial to store in a table. The tidytree package and its companion treeio offer an interface to convert tree-like objects (from most format used by other packages and software) into a tidyverse-friendly format. Again, the point is that the rest of the tidyverse can be used to wrangle or plot this type of data in the same way as one would do with regular tabular data. For plotting a tidytree with the grammar of graphics, see ggtree.

⁴⁹ 2.4 Extra: factors and the forcats package

library(forcats)

Categorical variables can be stored in R as character strings in character or factor objects. A factor looks like a character, but it actually is an integer vector, where each integer is mapped to a character label. With this respect it is sort of an enhanced version of character. For example,

```
my_char_vec <- c("Pratik", "Theo", "Raph")
my_char_vec
#> [1] "Pratik" "Theo" "Raph"
```

is a character vector, recognizable to its double quotes, while

457

476

```
my_fact_vec <- factor(my_char_vec) # as.factor would work too</pre>
my_fact_vec
#> [1] Pratik Theo
#> Levels: Pratik Raph Theo
is a factor, of which the labels are displayed. The levels of the factor are the
unique values that appear in the vector. If I added an extra occurrence of my
name:
factor(c(my_char_vec, "Raph"))
#> [1] Pratik Theo
                       Raph
#> Levels: Pratik Raph Theo
we would still have the the same levels. Note that the levels are returned as a
character vector in alphabetical order by the levels function:
levels(my_fact_vec)
#> [1] "Pratik" "Raph"
                            "Theo"
Why does it matter? Well, most operations on categorical variables can be
```

Why does it matter? Well, most operations on categorical variables can be performed on character of factor objects, so it does not matter so much which one you use for your own data. However, some functions in R require you to provide categorical variables in one specific format, and others may even implicitly convert your variables. In ggplot2 for example, character vectors are converted into factors by default. So, it is always good to remember the differences and what type your variables are.

But this is a tidyverse tutorial, so I would like to introduce here the package forcats, which offers tools to manipulate factors. First of all, most tools from stringr will work on factors. The forcats functions expand the string manipulation toolbox with factor-specific utilities. Similar in philosophy to stringr where functions started with str_, in forcats most functions start with fct_.

I see two main ways forcats can come handy in the kind of data most people deal with: playing with the order of the levels of a factor and playing with the levels themselves. We will show here a few examples, but the full breadth of factor manipulations can be found online or in the excellent forcats cheatsheet.

2.4.1 Change the order of the levels

One example use-case where you would want to change the order of the levels of a factor is when plotting. Your categorical variable, for example, may not be plotted in the order you want. If we plot the distribution of each variable across islands, we get

```
# Make the plotting code a function so we can re-use it without copying and pasting my_plot \leftarrow function(data) {
```

```
# We do not cover the ggplot functions in this chapter, this is just to # illustrate our use-case, wait until chapter 5!
```

```
library(ggplot2)
ggplot(data, aes(x = island, y = value, color = island)) +
    geom_violin() +
    geom_jitter(width = 0.1) +
    facet_grid(variable ~ year, scales = "free") +
    theme_bw() +
    scale_color_manual(values = c("forestgreen", "goldenrod"))
}
my plot(data)
```

Remember that data are missing from Santa Cruz in 2020

Here, the islands (horizontal axis) and the variables (the facets) are displayed in alphabetical order. When making a figure you may want to customize these orders in such a way that your message is optimally conveyed by your figure, and this may involve playing with the order of levels.

Use fct_relevel to manually change the order of the levels:

```
data$island <- as.factor(data$island) # turn this column into a factor
data$island <- fct_relevel(data$island, c("Santa Cruz", "Isabela"))
my_plot(data) # order of islands has changed!</pre>
```


Beware that reordering a factor *does not change* the order of the items within
the vector, only the order of the *levels*. So, it does not introduce any mistmatch
between the **island** column and the other columns! It only matters when the
levels are called, for example, in a ggplot. As you can see:

```
data$island[1:10]
#> [1] Isabela Isabela Isabela Isabela Isabela Isabela Isabela Isabela Isabela
#> [10] Isabela
#> Levels: Santa Cruz Isabela
fct_relevel(data$island, c("Isabela", "Santa Cruz"))[1:10] # same thing, different levels
#> [1] Isabela Isabela Isabela Isabela Isabela Isabela Isabela Isabela
#> [10] Isabela
#> Levels: Isabela Santa Cruz
```

Alternatively, use fct_inorder to set the order of the levels to the order in which they appear:

```
data$variable <- as.factor(data$variable)
levels(data$variable)
#> [1] "beak_length" "beak_width" "body_weight"
levels(fct_inorder(data$variable))
#> [1] "body_weight" "beak_length" "beak_width"
```

or fct_rev to reverse the order of the levels:

```
levels(fct_rev(data$island)) # back in the alphabetical order
#> [1] "Isabela" "Santa Cruz"
```

Other variants exist to do more complex reordering, all present in the forcats cheatsheet, for example: * fct_infreq to re-order according to the frequency

```
of each level (how many observation on each island?) * fct_shift to shift
the order of all levels by a certain rank (in a circular way so that the last one
becomes the first one or vice versa) * fct_shuffle if you want your levels in
random order * fct_reorder, which reorders based on an associated variable
(see fct_reorder2 for even more complex relationship between the factor and
the associated variable)
```

505 2.4.2 Change the levels themselves

Changing the levels of a factor will change the labels in the actual vector. It is similar to performing a string substitution in **stringr**. One can change the levels of a factor using fct recode:

or collapse factor levels together using fct_collapse:

```
fct_collapse(my_fact_vec, EU = c("Theo", "Raph"), NonEU = "Pratik")
#> [1] NonEU EU EU
#> Levels: NonEU EU
```

Again, we do not provide an exhaustive list of forcats functions here but the most usual ones, to give a glimpse of many things that one can do with factors. So, if you are dealing with factors, remember that forcats may have handy tools for you. Among others: *fct_anon to "anonymize", i.e. replace the levels by random integers *fct_lump to collapse levels together based on their frequency (e.g. the two most frequent levels together)

16 2.4.3 Dropping levels

If you use factors in your tibble and get rid of one level, for any reason, the factor will usually remember the old levels, which may cause some problems when applying functions to your data.

```
data <- data[data$island == "Santa Cruz",] # keep only one island
unique(data$island) # Isabela is gone from the labels
#> [1] Santa Cruz
#> Levels: Santa Cruz Isabela
levels(data$island) # but not from the levels
#> [1] "Santa Cruz" "Isabela"
```

Use droplevels (from base R) to make sure you get rid of levels that are not in your data anymore:

```
data <- droplevels(data)
levels(data$island)
#> [1] "Santa Cruz"
```

Fortunately, most functions within the tidyverse will not complain about missing levels, and will automatically get rid of those inexistant levels for you. But because factors are such common causes of bugs, keep this in mind!

Note that this is equivalent to doing:

data\$island <- fct_drop(data\$island)</pre>

526 2.4.4 Other things

Among other things you can use in forcats: * fct_count to get the frequency of each level * fct_c to combine factors together

529 2.4.5 Take home message for forcats

Use this package to manipulate your factors. Do you need factors? Or are character vectors enough? That is your call, and may depend on the kind of analyses you want to do and what they require. We saw here that for plotting, having factors can allow you to do quite some tweaking of the display. If you encounter a situation where the order of encoding of your character vector starts to matter, then maybe converting into a factor would make your life easier. And if you do so, remember that lots of tools to perform all kinds of manipulation are available to you with both stringrand forcats.

33 2.5 External resources

540

541

542

543

Find lots of additional info by looking up the following links:

- The readr/tibble/tidyr and forcats cheatsheets.
- This link on the concept of tidy data
- The tibble, tidyr and forcats websites
- The broom, tidymodels, tidygraph and tidytree websites

42CHAPTER 2. RESHAPING DATA TABLES IN THE TIDYVERSE, AND OTHER THINGS

544 Chapter 3

Data manipulation with dplyr

```
# load the tidyverse
library(tidyverse)
```

3.1 Introduction

48 3.1.1 Foreword on dplyr

- dplyr is tasked with performing all sorts of transformations on a dataset.
- The structure of dplyr revolves around a set of functions, the so-called verbs,
- that share a common syntax and logic, and are meant to work with one another
- in chained operations. Chained operations are performed with the pipe operator
- 553 (%>%), that will be introduced in section 3.2.2.
- The basic syntax is verb(data, variable), where data is a data frame and
- variable is the name of one or more columns containing a set of values for each
- observation.
- There are 5 main verbs, which names already hint at what they do: rename(),
- select(), filter(), mutate(), and summarise(). I'm going to introduce each
- of them (and a couple more) through the following sections.

560 3.1.2 Example data

Through this tutorial, we will be using mammal trait data from the Phylacine database. Let's have a peek at what it contains.

```
phylacine <- read_csv("data/phylacine_traits.csv")
phylacine</pre>
```

```
#> # A tibble: 5,831 x 24
     Binomial.1.2 Order.1.2 Family.1.2 Genus.1.2 Species.1.2 Terrestrial Marine
     <chr>
                             <chr> <chr>
                                                  <chr>
                  <chr>
                                                                     <d.h1.> <d.h1.>
#> 1 Abditomys_l~ Rodentia Muridae
                                       Abditomys latidens
                                                                         1
                                                                                0
#> 2 Abeomelomys~ Rodentia Muridae
                                        Abeomelo~ sevia
                                                                         1
#> 3 Abrawayaomy~ Rodentia Cricetidae Abrawaya~ ruschii
                                                                         1
#> 4 Abrocoma be~ Rodentia Abrocomid~ Abrocoma bennettii
                                                                                0
#> 5 Abrocoma bo~ Rodentia Abrocomid~ Abrocoma boliviensis
                                                                                0
#> 6 Abrocoma bu~ Rodentia Abrocomid~ Abrocoma budini
#> # ... with 5,825 more rows, and 17 more variables: Freshwater <dbl>,
       Aerial <dbl>, Life.Habit.Method <chr>, Life.Habit.Source <chr>,
       Mass.q <dbl>, Mass.Method <chr>, Mass.Source <chr>, Mass.Comparison <chr>,
       Mass.Comparison.Source <chr>, Island.Endemicity <chr>,
       IUCN.Status.1.2 <chr>, Added.IUCN.Status.1.2 <chr>, Diet.Plant <dbl>,
       Diet. Vertebrate <dbl>, Diet. Invertebrate <dbl>, Diet. Method <chr>,
       Diet.Source <chr>>
readr automatically loads the data in a tibble, as we have seen in chapter 1
and 2. Calling the tibble gives a nice preview of what it contains. We have data
```

readr automatically loads the data in a tibble, as we have seen in chapter 1 and 2. Calling the tibble gives a nice preview of what it contains. We have data for 5,831 mammal species, and the variables contain information on taxonomy, (broad) habitat, mass, IUCN status, and diet.

⁵⁶⁷ If you remember Section 1.2 on tidy data, you may see that this data isn't exactly tidy. In fact, some columns are in wide (and messy) format, like the "habitat" (terrestrial, marine, etc.) and diet columns.

dplyr actually does not require your data to be strictly tidy. If you feel that your data satisfies the definition "one observation per row, one variable per column", that's probably good enough.

I use a tibble here, but dplyr works equally well on base data frames. In fact, dplyr is built for data.frame objects, and tibbles are data frames. Therefore, tibbles are mortal.

3.2 Working with existing variables

77 3.2.1 Renaming variables with rename()

The variable names in the phylacine dataset are descriptive, but quite unpractical. Typing Binomial.1.2. is cumbersome and subject to typos (in fact, I just made one). binomial would be much simpler to use.

Changing names is straightforward with rename().

```
rename(.data = phylacine, "binomial" = Binomial.1.2)
#> # A tibble: 5,831 x 24
#> binomial Order.1.2 Family.1.2 Genus.1.2 Species.1.2 Terrestrial Marine
#> <chr> <chr> <chr> <chr> <chr> <chr></ch></cr>
```

584

592

```
#> 1 Abditom~ Rodentia Muridae
                                     Abditomys latidens
#> 2 Abeomel~ Rodentia Muridae
                                     Abeomelo~ sevia
#> 3 Abraway~ Rodentia Cricetidae Abrawaya~ ruschii
                                                                               0
#> 4 Abrocom~ Rodentia Abrocomid~ Abrocoma bennettii
#> 5 Abrocom~ Rodentia Abrocomid~ Abrocoma boliviensis
                                                                               0
                                                                       1
#> 6 Abrocom~ Rodentia Abrocomid~ Abrocoma budini
#> # ... with 5,825 more rows, and 17 more variables: Freshwater <dbl>,
#> # Aerial <dbl>, Life.Habit.Method <chr>, Life.Habit.Source <chr>,
        Mass.g <dbl>, Mass.Method <chr>, Mass.Source <chr>, Mass.Comparison <chr>,
       Mass.Comparison.Source <chr>, Island.Endemicity <chr>,
        IUCN.Status.1.2 <chr>, Added.IUCN.Status.1.2 <chr>, Diet.Plant <dbl>,
#> # Diet.Vertebrate <dbl>, Diet.Invertebrate <dbl>, Diet.Method <chr>,
#> #
       Diet.Source <chr>
The first argument is always .data, the data table you want to apply change
to. Note how columns are referred to. Once the data table as been passed as an
argument, there is no need to refer to it directly anymore, dplyr understands
that you're dealing with variables inside that data frame. So drop that data$var,
data[, "var"], and forget the very existence of attach() / detach().
You can refer to variables names either with strings or directly as objects,
whether you're reading or creating them:
rename(
  phylacine,
  # this works
  binomial = Binomial.1.2
rename(
  phylacine,
  # this works too!
  binomial = "Binomial.1.2"
)
rename(
  phylacine,
  # quess what
  "binomial" = "Binomial.1.2"
I have applied similar changes to all variables in the dataset. Here is what the
new names look like:
#> # A tibble: 5,831 x 24
      binomial order family genus species terrestrial marine freshwater aerial
      <chr>
               <chr> <chr> <chr> <chr> <chr>
                                              <dbl> <dbl>
                                                                     <dbl> <dbl>
#> 1 Abditom~ Rode~ Murid~ Abdi~ latide~
                                                      1
                                                             0
                                                                         0
                                                                                 0
#> 2 Abeomel~ Rode~ Murid~ Abeo~ sevia
                                                      1
                                                              0
                                                                         0
                                                                                 0
#> 3 Abraway~ Rode~ Crice~ Abra~ ruschii
                                                      1
                                                              0
                                                                         0
                                                                                 0
```

```
#> 4 Abrocom~ Rode~ Abroc~ Abro~ bennet~
                                                    1
                                                                      0
                                                                             0
#> 5 Abrocom~ Rode~ Abroc~ Abro~ bolivi~
                                                                              0
                                                    1
                                                                      0
                                                           Λ
                                                                      Λ
                                                                             0
#> 6 Abrocom~ Rode~ Abroc~ Abro~ budini
                                                    1
#> # ... with 5,825 more rows, and 15 more variables: life_habit_method <chr>,
       life_habit_source <chr>, mass_g <dbl>, mass_method <chr>,
#> #
       mass_source <chr>, mass_comparison <chr>, mass_comparison_source <chr>,
       island_endemicity <chr>, iucn_status <chr>, added_iucn_status <chr>,
#> #
#> #
       diet_plant <dbl>, diet_vertebrate <dbl>, diet_invertebrate <dbl>,
#> #
       diet_method <chr>, diet_source <chr>
```

3.2.2 The pipe operator %>%

If you have already come across pieces of code using the tidyverse, chances are that you have seen this odd symbol. While the pipe is not strictly-speaking a part of the tidyverse (it comes from its own package, magrittr), it is imported along with each package and widely used in conjunction with its functions. What does it do? Consider the following example with rename():

```
phylacine2 <- readr::read_csv("data/phylacine_traits.csv")</pre>
# regular syntax
rename(phylacine2, "binomial" = "Binomial.1.2")
#> # A tibble: 5,831 x 24
    binomial Order.1.2 Family.1.2 Genus.1.2 Species.1.2 Terrestrial Marine
#>
     <chr>
             <chr> <chr>
                                  <chr> <chr>
                                                               <dbl> <dbl>
#> 1 Abditom~ Rodentia Muridae
                                  Abditomys latidens
                                                                   1
#> 2 Abeomel~ Rodentia Muridae
                                  Abeomelo~ sevia
                                                                   1
#> 3 Abraway~ Rodentia Cricetidae Abrawaya~ ruschii
                                                                   1
#> 4 Abrocom~ Rodentia Abrocomid~ Abrocoma bennettii
                                                                   1
#> 5 Abrocom~ Rodentia Abrocomid~ Abrocoma boliviensis
                                                                   1
#> 6 Abrocom~ Rodentia Abrocomid~ Abrocoma budini
#> # ... with 5,825 more rows, and 17 more variables: Freshwater <dbl>,
      Aerial <dbl>, Life. Habit. Method <chr>, Life. Habit. Source <chr>,
#> #
      Mass.q <dbl>, Mass.Method <chr>, Mass.Source <chr>, Mass.Comparison <chr>,
      Mass.Comparison.Source <chr>, Island.Endemicity <chr>,
      IUCN.Status.1.2 <chr>, Added.IUCN.Status.1.2 <chr>, Diet.Plant <dbl>,
#> #
      Diet. Vertebrate <dbl>, Diet. Invertebrate <dbl>, Diet. Method <chr>,
      Diet.Source <chr>
# alternative syntax with the pipe operator
phylacine2 %>% rename("binomial" = "Binomial.1.2")
#> # A tibble: 5,831 x 24
    binomial Order.1.2 Family.1.2 Genus.1.2 Species.1.2 Terrestrial Marine
     <chr>
             <chr>
                       \langle chr \rangle
                                  <chr> <chr>
                                                               <dbl> <dbl>
#> 1 Abditom~ Rodentia Muridae
                                   Abditomys latidens
                                                                   1
                                                                          0
#> 2 Abeomel~ Rodentia Muridae
                                  Abeomelo~ sevia
                                                                   1
                                                                          0
#> 3 Abraway~ Rodentia Cricetidae Abrawaya~ ruschii
                                                                   1
                                                                          0
#> 4 Abrocom~ Rodentia Abrocomid~ Abrocoma bennettii
```

```
#> 5 Abrocom~ Rodentia Abrocomid~ Abrocoma boliviensis 1 0
#> 6 Abrocom~ Rodentia Abrocomid~ Abrocoma budini 1 0
#> # ... with 5,825 more rows, and 17 more variables: Freshwater <dbl>,
#> # Aerial <dbl>, Life.Habit.Method <chr>, Life.Habit.Source <chr>,
#> # Mass.g <dbl>, Mass.Method <chr>, Mass.Source <chr>, Mass.Comparison.Source <chr>, Island.Endemicity <chr>,
#> # IUCN.Status.1.2 <chr>, Added.IUCN.Status.1.2 <chr>, Diet.Plant <dbl>,
#> # Diet.Vertebrate <dbl>, Diet.Invertebrate <dbl>, Diet.Method <chr>,
#> # Diet.Source <chr>
```

Got it? The pipe takes the object on its left-side and silently feeds it to the first argument of the function on its right-side. It could be read as "take x, then do...". The reason for using the pipe is because it makes code syntax closer to the syntax of a sentence, and therefore, easier and faster for your brain to process (and write!) the code. In particular, the pipe enables easy chains of operations, where you apply something to an object, then apply something else to the outcome, and so on... Through the later sections, you will see some examples of chained operations with dplyr functions, but for that I first need to introduce a couple more verbs.

Using the pipe can be quite unsettling at first, because you are not used to think in this way. But if you push a bit for it, I promise it will make things a lot easier (and it's quite addictive!). To avoid typing the tedious symbols, magrittr installs a shortcut for you in RStudio. Use Ctrl + Shift + M on Windows, and Cmd + Shift + M on MacOS.

Finally I should emphasize that the use of the pipe isn't limited to the tidyverse, but extends to almost all R functions. Remember that by default the piped value is always matched to the first argument of the following function

```
5 %>% rep(3)
#> [1] 5 5 5
"meow" %>% cat()
#> meow
```

If you need to pass the left-hand side to an argument other than the first, you can use the dot place-holder ..

```
"meow" %>% cat("cats", "go")
#> meow cats go
```

Because of its syntax, most base R operators are not compatible with the pipe (but this is very rarely needed). If needed, magrittr introduces alternative functions for operators.

Subsetting operators can be piped, with the dot place-holder.

```
# 5 %>% * 3 # no, won't work
# 5 %>% .* 3 # neither
5 %>% magrittr::multiply_by(3) # yes
```

#> 5 Abrocoma

#> 6 Abrocoma

boliviensis

budini

#> # ... with 5,825 more rows
A range of contiguous variables

158

361.

```
#> [1] 15
# subsetting
list("monkey see", "monkey_do") %>% .[[2]]
#> [1] "monkey_do"
phylacine %>% .$binomial %>% head()
#> [1] "Abditomys_latidens" "Abeomelomys_sevia"
                                                       "Abrawayaomys ruschii"
#> [4] "Abrocoma bennettii"
                             "Abrocoma_boliviensis" "Abrocoma_budini"
Because subsetting in this way is particularly hideous, dplyr delivers a function
to extract values from a single variable. In only works on tables, though.
phylacine %>% pull(binomial) %>% head()
#> [1] "Abditomys latidens"
                              "Abeomelomys_sevia"
                                                       "Abrawayaomys ruschii"
#> [4] "Abrocoma_bennettii"
                               "Abrocoma_boliviensis" "Abrocoma_budini"
3.2.3
       Select variables with select()
To extract a set of variables (i.e. columns), use the conveniently-named
select(). The basic syntax is the same as rename(): pass your data as the
first argument, then call the variables to select, quoted or not.
# Single variable
phylacine %>% select(binomial)
#> # A tibble: 5,831 x 1
    binomial
    <chr>
#>
#> 1 Abditomys_latidens
#> 2 Abeomelomys sevia
#> 3 Abrawayaomys_ruschii
#> 4 Abrocoma_bennettii
#> 5 Abrocoma_boliviensis
#> 6 Abrocoma_budini
#> # ... with 5,825 more rows
# A set of variables
phylacine %>% select(genus, "species", mass_g)
#> # A tibble: 5,831 x 3
    qenus
                 species
                              mass_g
#>
    <chr>
                  <chr>
                              <dbl>
#> 1 Abditomys latidens
                                269
#> 2 Abeomelomys sevia
                                  52
#> 3 Abrawayaomys ruschii
                                 63
#> 4 Abrocoma bennettii
                                 250
```

phylacine %>% select(family:terrestrial)

```
#> # A tibble: 5,831 x 4
\#> family genus species terrestrial \#> <chr> <chr> <chr> <dbl>
#> 1 Muridae
              Abditomys latidens
                                             1
#> 2 Muridae Abeomelomys sevia
                                               1
#> 3 Cricetidae Abrawayaomys ruschii
                                               1
#> 4 Abrocomidae Abrocoma bennettii
                                               1
                          boliviensis
#> 5 Abrocomidae Abrocoma
                                               1
#> 6 Abrocomidae Abrocoma budini
                                               1
#> # ... with 5,825 more rows
```

You can select by variable numbers. This is not recommended, as prone to errors, especially if you change the variable order.

```
phylacine %>% select(2)
```

```
#> # A tibble: 5,831 x 1
#> order
#> <chr>
#> 1 Rodentia
#> 2 Rodentia
#> 4 Rodentia
#> 5 Rodentia
#> 6 Rodentia
#> # ... with 5,825 more rows
```

select() can also be used to exclude variables:

```
phylacine %>% select(-binomial)
```

```
#> # A tibble: 5,831 x 23
#> order family genus species terrestrial marine freshwater aerial
\#> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <
#> 1 Rode~ Murid~ Abdi~ latide~
                                 1 0
                                                   0 0
                                           0
                                                     0
#> 2 Rode~ Murid~ Abeo~ sevia
                                    1
#> 3 Rode~ Crice~ Abra~ ruschii
                                    1
                                           0
                                                     0
#> 4 Rode~ Abroc~ Abro~ bennet~
                                    1
                                           0
                                                     0
                                    1
                                           0
#> 5 Rode~ Abroc~ Abro~ bolivi~
                                                     0
#> 6 Rode~ Abroc~ Abro~ budini
                                    1
                                           0
                                                      0
#> # ... with 5,825 more rows, and 15 more variables: life_habit_method <chr>,
#> # life_habit_source <chr>, mass_g <dbl>, mass_method <chr>,
#> # mass_source <chr>, mass_comparison <chr>, mass_comparison_source <chr>,
#> # island_endemicity <chr>, iucn_status <chr>, added_iucn_status <chr>,
#> # diet_plant <dbl>, diet_vertebrate <dbl>, diet_invertebrate <dbl>,
#> # diet_method <chr>, diet_source <chr>
phylacine %>% select(-(binomial:species))
#> # A tibble: 5,831 x 19
#> terrestrial marine freshwater aerial life_habit_meth~ life_habit_sour~ mass_g
```

```
#>
          <dbl> <dbl>
                            <dbl> <dbl> <chr>
                                                          <chr>
                                                                            <dbl>
             1
                                       0 Reported
                                                          IUCN. 2016. IUC~
                                                                             269
                               0
#> 2
                     0
                                       0 Reported
                                                                             52
              1
                                0
                                                         IUCN. 2016. IUC~
#> 3
                     0
                               0
                                       0 Reported
                                                         IUCN. 2016. IUC~
              1
                                                                             63
                                     0 Reported
#> 4
                    0
                               0
                                                         IUCN. 2016. IUC~
                                                                            250
              1
#> 5
              1
                     0
                                0
                                       0 Reported
                                                         IUCN. 2016. IUC~
                                                                            158
#> 6
              1
                     0
                                0
                                       O Reported
                                                         IUCN. 2016. IUC~
                                                                            361.
#> # ... with 5,825 more rows, and 12 more variables: mass_method <chr>,
      mass_source <chr>, mass_comparison <chr>, mass_comparison_source <chr>,
      island_endemicity <chr>, iucn_status <chr>, added_iucn_status <chr>,
#> #
#> #
      diet plant <dbl>, diet vertebrate <dbl>, diet invertebrate <dbl>,
#> #
      diet_method <chr>, diet_source <chr>
```

select() and rename() are pretty similar, and in fact, select() can also rename variables along the way:

```
phylacine %% select("linnaeus" = binomial)
#> # A tibble: 5,831 x 1
#> linnaeus
#> <chr>
#> 1 Abditomys_latidens
#> 2 Abeomelomys_sevia
#> 3 Abrawayaomys_ruschii
#> 4 Abrocoma_bennettii
#> 5 Abrocoma_boliviensis
#> 6 Abrocoma_budini
#> # ... with 5,825 more rows
```

646 And you can mix all of that at once:

```
phylacine %>% select(
 "fam" = family,
 genus: freshwater,
 -terrestrial
)
#> # A tibble: 5,831 x 5
                                     marine freshwater
#> fam
          genus
                         species
#> <chr>
              <chr>
                         < chr >
                                      <dbl>
                                               <dbl>
#> 1 Muridae
             Abditomys latidens
                                        0
                                                    0
#> 2 Muridae Abeomelomys sevia
                                          0
#> 3 Cricetidae Abrawayaomys ruschii
                                         0
                                                    0
#> 4 Abrocomidae Abrocoma bennettii
                                        0
                                                    0
#> 5 Abrocomidae Abrocoma
                                        0
                                                    0
                          boliviensis
#> 6 Abrocomidae Abrocoma
                                         0
                          budini
#> # ... with 5,825 more rows
```

3.2.4 Select variables with helpers

```
The Rstudio team just released dplyr 1.0.0, and along with it, some nice helper functions to ease the selection of a set of variables. I give three examples here, and encourage you to look at the documentation (?select()) to find out more.
```

```
phylacine %>% select(where(is.numeric))
#> # A tibble: 5,831 x 8
   terrestrial marine freshwater aerial mass_g diet_plant diet_vertebrate
        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
                           0 0 269
#> 1
                                               100
           1 0
                                                                0
                           0
                                 0
                                                78
                                                                3
#> 2
           1
                 0
                                     52
#> 3
            1
                 0
                           0
                                 0 63
                                                88
                                                                1
                            0
#> 4
            1
                  0
                                  0
                                     250
                                                100
                                                                0
                 0
                           0
                                 0 158
#> 5
            1
                                               100
                                                                0
            1
                 0
                           0
                                 0 361.
                                               100
#> # ... with 5,825 more rows, and 1 more variable: diet_invertebrate <dbl>
phylacine %>% select(contains("mass") | contains("diet"))
#> # A tibble: 5,831 x 10
  mass q mass method mass source mass comparison mass comparison~ diet plant
     <dbl> <chr> <chr> <chr> <chr> <chr>
#>
                                                                < d.b.1.>
                   Smith, F. ~ \langle NA \rangle
                                            <NA>
#> 1
    269 Reported
                                                                  100
                                           <NA>
#> 2 52 Reported Smith, F. ~ <NA>
                                                                   78
#> 3 63 Reported Smith, F. ~ <NA>
                                                                   88
    250 Reported Smith, F. ~ <NA>
                                             < NA >
                                                                  100
#> 5 158 Reported Smith, F. ~ <NA>
                                             <NA>
                                                                  100
#> 6 361. Assumed is~ Journal of~ Abrocoma ciner~ Journal of Mamm~
                                                                  100
#> # ... with 5,825 more rows, and 4 more variables: diet_vertebrate <dbl>,
     diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
habitats <- c("terrestrial", "marine", "arboreal", "fossorial", "freshwater")
phylacine %>% select(any_of(habitats))
#> # A tibble: 5,831 x 3
   terrestrial marine freshwater
         <dbl> <dbl>
#> 1
           1 0
                            0
#> 2
            1
                   0
                            0
                  0
#> 3
            1
                            0
#> 4
            1
                   0
                            0
            1
#> 5
                   0
                             0
            1
                   0
                             0
#> # ... with 5,825 more rows
```

$_{\scriptscriptstyle 2}$ 3.2.5 Rearranging variable order with relocate()

```
The order of variables seldom matters in dplyr, but due to popular demand, dplyr now has a dedicated verb to rearrange the order of variables. The syntax is identical to rename(), select().
```

```
phylacine %>% relocate(mass_g, .before = binomial)
#> # A tibble: 5,831 x 24
    mass q binomial order family genus species terrestrial marine freshwater
      <dbl> <chr>
                    <chr> <chr> <chr> <chr>
                                                     <dbl> <dbl>
                                                                        <db1>
#>
#> 1
       269 Abditom~ Rode~ Murid~ Abdi~ latide~
                                                         1
                                                                 0
                                                                             0
        52 Abeomel~ Rode~ Murid~ Abeo~ sevia
#> 2
                                                          1
                                                                 0
                                                                             0
#> 3
           Abraway~ Rode~ Crice~ Abra~ ruschii
                                                          1
                                                                             0
       250 Abrocom~ Rode~ Abroc~ Abro~ bennet~
                                                          1
                                                                 0
                                                                             0
#> 4
       158 Abrocom~ Rode~ Abroc~ Abro~ bolivi~
                                                                 0
                                                                             0
       361. Abrocom~ Rode~ Abroc~ Abro~ budini
#> 6
                                                                 0
                                                                             0
                                                          1
\#> \# ... with 5,825 more rows, and 15 more variables: aerial <dbl>,
       life_habit_method <chr>, life_habit_source <chr>, mass_method <chr>,
       mass_source <chr>, mass_comparison <chr>, mass_comparison_source <chr>,
       island_endemicity <chr>, iucn_status <chr>, added_iucn_status <chr>,
#> #
       diet_plant <dbl>, diet_vertebrate <dbl>, diet_invertebrate <dbl>,
       diet_method <chr>, diet_source <chr>
phylacine %>% relocate(starts_with("diet"), .after = species)
#> # A tibble: 5,831 x 24
     binomial order family genus species diet_plant diet_vertebrate
     <chr>
              <chr> <chr> <chr> <chr>
                                              <db1>
                                                              < d.b 1.>
#> 1 Abditom~ Rode~ Murid~ Abdi~ latide~
                                               100
                                                                   0
#> 2 Abeomel~ Rode~ Murid~ Abeo~ sevia
                                                 78
                                                                   3
#> 3 Abraway~ Rode~ Crice~ Abra~ ruschii
                                                 88
                                                                   1
#> 4 Abrocom~ Rode~ Abroc~ Abro~ bennet~
                                                100
                                                                   0
#> 5 Abrocom~ Rode~ Abroc~ Abro~ bolivi~
                                                                   0
                                                100
#> 6 Abrocom~ Rode~ Abroc~ Abro~ budini
                                                100
#> # ... with 5,825 more rows, and 17 more variables: diet invertebrate <dbl>,
      diet method <chr>, diet source <chr>, terrestrial <dbl>, marine <dbl>,
#> #
       freshwater <dbl>, aerial <dbl>, life_habit_method <chr>,
       life_habit_source <chr>, mass_g <dbl>, mass_method <chr>,
#> #
       mass_source <chr>, mass_comparison <chr>, mass_comparison_source <chr>,
#> #
#> #
       island_endemicity <chr>, iucn_status <chr>, added_iucn_status <chr>
```

3.3 Working with observations

$_{\scriptscriptstyle 557}$ 3.3.1 Ordering rows by value - <code>arrange()</code>

```
arrange() sorts rows in the data by ascending value for a given variable. Use the wrapper desc() to sort by descending values instead.
```

```
# Smallest mammals
phylacine %>%
 arrange(mass_g) %>%
 select(binomial, mass_g)
#> # A tibble: 5,831 x 2
   binomial
                       mass_g
    <chr>
                         <db1>
#> 1 Sorex_yukonicus
                          1.6
#> 2 Crocidura_levicula
                           1.8
#> 3 Suncus_remyi
                           1.8
#> 4 Crocidura lusitania
#> 5 Kerivoula_minuta
                          2.1
#> 6 Suncus_etruscus
#> # ... with 5,825 more rows
# Largest mammals
phylacine %>%
 arrange(desc(mass_g)) %>%
 select(binomial, mass_g)
#> # A tibble: 5,831 x 2
#> binomial
                              mass_g
#> <chr>
                               <dbl>
#> 1 Balaenoptera_musculus 190000000
#> 2 Balaena_mysticetus
                           100000000
#> 3 Balaenoptera_physalus
                            70000000
#> 4 Caperea_marginata
                            32000000
#> 5 Megaptera_novaeangliae 30000000
#> 6 Eschrichtius robustus
                            28500000
#> # ... with 5,825 more rows
# Extra variables are used to sort ties in the first variable
phylacine %>%
 arrange(mass_g, desc(binomial)) %>%
 select(binomial, mass_g)
#> # A tibble: 5,831 x 2
#> binomial
                       mass_g
#> <chr>
                         <dbl>
#> 1 Sorex_yukonicus
#> 2 Suncus_remyi
                           1.8
#> 3 Crocidura levicula
                           1.8
#> 4 Crocidura_lusitania
                         2
#> 5 Suncus_etruscus
                          2.1
#> 6 Kerivoula_minuta
                           2.1
#> # ... with 5,825 more rows
```

660 Important: NA values, if present, are always ordered at the end!

661 3.3.2 Subset rows by position - slice()

Use slice() and its variants to extract particular rows.

```
phylacine %>% slice(3) # third row
#> # A tibble: 1 x 24
#> binomial order family genus species terrestrial marine freshwater aerial
#> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <
#> 1 Abraway~ Rode~ Crice~ Abra~ ruschii 1 0 0 0
#> # ... with 15 more variables: life_habit_method <chr>, life_habit_source <chr>,
#> # mass q <dbl>, mass method <chr>, mass source <chr>, mass comparison <chr>,
#> # mass_comparison_source <chr>, island_endemicity <chr>, iucn_status <chr>,
     added_iucn_status <chr>, diet_plant <dbl>, diet_vertebrate <dbl>,
#> # diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
phylacine %>% slice(5, 1, 2) # fifth, first and second row
#> # A tibble: 3 x 24
   binomial order family genus species terrestrial marine freshwater aerial
   <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Abrocom~ Rode~ Abroc~ Abro~ bolivi~
                                         1 0
                                                          0 0
#> 2 Abditom~ Rode~ Murid~ Abdi~ latide~
                                            1
                                                  0
                                                            0
                                            1 0
#> 3 Abeomel~ Rode~ Murid~ Abeo~ sevia
#> # ... with 15 more variables: life_habit_method <chr>, life_habit_source <chr>,
#> # mass_comparison_source <chr>, island_endemicity <chr>, iucn_status <chr>,
#> # added_iucn_status <chr>, diet_plant <dbl>, diet_vertebrate <dbl>,
#> # diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
phylacine %>% slice(rep(3, 2)) # duplicate the third row
#> # A tibble: 2 x 24
   binomial order family genus species terrestrial marine freshwater aerial
          <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
    <chr>
#> 1 Abraway~ Rode~ Crice~ Abra~ ruschii
                                           1 0
                                                          0 0
#> 2 Abraway~ Rode~ Crice~ Abra~ ruschii 1
                                                  0
#> # ... with 15 more variables: life_habit_method <chr>, life_habit_source <chr>,
#> # mass_q <dbl>, mass_method <chr>, mass_source <chr>, mass_comparison <chr>,
#> # mass_comparison_source <chr>, island_endemicity <chr>, iucn_status <chr>,
     added_iucn_status <chr>, diet_plant <dbl>, diet_vertebrate <dbl>,
     diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
phylacine %>% slice(-c(2:5830)) # exclude all but first and last row
#> # A tibble: 2 x 24
   binomial order family genus species terrestrial marine freshwater aerial
   <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
                                         1 0
#> 1 Abditom~ Rode~ Murid~ Abdi~ latide~
                                                          0 0
#> 2 Zyzomys~ Rode~ Murid~ Zyzo~ woodwa~ 1
                                                 0
                                                            0
#> # ... with 15 more variables: life_habit_method <chr>, life_habit_source <chr>,
#> # mass q <dbl>, mass method <chr>, mass source <chr>, mass comparison <chr>,
#> # mass_comparison_source <chr>, island_endemicity <chr>, iucn_status <chr>,
```

```
#> # added_iucn_status <chr>, diet_plant <dbl>, diet_vertebrate <dbl>,
  #> # diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
  phylacine %>% slice_tail(n = 3) # last three rows
  #> # A tibble: 3 x 24
  #> binomial order family genus species terrestrial marine freshwater aerial
  0 0
                                                           0
                                                          0
  #> # ... with 15 more variables: life habit method <chr>, life habit source <chr>,
  \# #> # mass_g <dbl>, mass_method <chr>, mass_source <chr>, mass_comparison <chr>,
  #> # mass_comparison_source <chr>, island_endemicity <chr>, iucn_status <chr>,
  \#> \# added\_iucn\_status <chr>>, diet\_plant <dbl>>, diet\_vertebrate <dbl>>,
  #> # diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
  phylacine %>% slice_max(mass_g) # largest mammal
  #> # A tibble: 1 x 24
  #> binomial order family genus species terrestrial marine freshwater aerial
  #> # ... with 15 more variables: life_habit_method <chr>, life_habit_source <chr>,
  \#> \# mass_g <dbl>, mass_method <chr>, mass_source <chr>, mass_comparison <chr>,
  #> # mass comparison source <chr>, island endemicity <chr>, iucn status <chr>,
  #> # added_iucn_status <chr>, diet_plant <dbl>, diet_vertebrate <dbl>,
  #> # diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
You can also sample random rows in the data:
  phylacine %>% slice sample() # a random row
  #> # A tibble: 1 x 24
  #> binomial order family genus species terrestrial marine freshwater aerial
  #> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <0 0
  #> # ... with 15 more variables: life_habit_method <chr>, life_habit_source <chr>,
  #> # mass_q <dbl>, mass_method <chr>, mass_source <chr>, mass_comparison <chr>,
  #> # mass_comparison_source <chr>, island_endemicity <chr>, iucn_status <chr>,
  \#> \# added\_iucn\_status <chr>>, diet\_plant <dbl>>, diet\_vertebrate <dbl>>,
  #> # diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
  # bootstrap
  phylacine %>% slice sample(n = 5831, replace = TRUE)
  #> # A tibble: 5,831 x 24
  #> binomial order family genus species terrestrial marine freshwater aerial
  0 0
                                                      0
  0
                                                          0
                                                                0
                                                 0
                                                          0
```

```
#> 4 Emballo~ Chir~ Embal~ Emba~ alecto
                                                  0
                                                                     0
                                                                            1
#> 5 Pteralo~ Chir~ Ptero~ Pter~ taki
                                                  0
#> 6 Lasiorh~ Dipr~ Vomba~ Lasi~ latifr~
                                                          0
                                                                            0
                                                  1
                                                                     0
#> # ... with 5,825 more rows, and 15 more variables: life_habit_method <chr>,
     life_habit_source <chr>, mass_g <dbl>, mass_method <chr>,
      mass_source <chr>, mass_comparison <chr>, mass_comparison_source <chr>,
#> #
      island_endemicity <chr>, iucn_status <chr>, added_iucn_status <chr>,
      diet_plant <dbl>, diet_vertebrate <dbl>, diet_invertebrate <dbl>,
#> #
      diet method <chr>, diet source <chr>
#> #
```

$_{\scriptscriptstyle 664}$ 3.3.3 Subsetting rows by value with filter()

- filter() does a similar job as slice(), but extract rows that satisfy a set of conditions. The conditions are supplied much the same way as you would do for an if statement.
- Along with mutate() (next section), this is probably the function you are going to use the most.
- For example, I might want to extract mammals above a given mass:

```
# megafauna
phylacine %>%
 filter(mass_g > 1e5) %>% # 100 kg
  select(binomial, mass_g)
#> # A tibble: 302 x 2
   binomial
                             mass_g
   <chr>
                               <dbl>
#> 1 Ailuropoda melanoleuca
                              108400
#> 2 Alcelaphus_buselaphus
                              171002.
#> 3 Alces_alces
                              356998
#> 4 Archaeoindris_fontoynonti 160000
#> 5 Arctocephalus_forsteri
                              101250
#> 6 Arctocephalus_pusillus
                              178500
#> # ... with 296 more rows
# non-extinct megafauna
phylacine %>%
 filter(mass_g > 1e5, iucn_status != "EP") %>%
 select(binomial, mass_g, iucn_status)
#> # A tibble: 178 x 3
#>
   binomial
                            mass_g iucn_status
   <chr>
                             <dbl> <chr>
#> 1 Ailuropoda_melanoleuca 108400 VU
#> 2 Alcelaphus buselaphus 171002. LC
#> 3 Alces alces
                            356998 LC
#> 4 Arctocephalus_forsteri 101250 LC
```

```
#> 5 Arctocephalus_pusillus 178500 LC
   #> 6 Arctocephalus_townsendi 105000 LC
   #> # ... with 172 more rows
Are there any flying mammals that aren't bats?
   phylacine %>%
     filter(aerial == 1, order != "Chiroptera")
   #> # A tibble: 0 x 24
   #> # ... with 24 variables: binomial <chr>, order <chr>, family <chr>,
   #> # genus <chr>, species <chr>, terrestrial <dbl>, marine <dbl>,
   #> # freshwater <dbl>, aerial <dbl>, life habit method <chr>,
   #> # life_habit_source <chr>, mass_g <dbl>, mass_method <chr>,
   #> # mass_source <chr>, mass_comparison <chr>, mass_comparison_source <chr>,
   #> # island_endemicity <chr>, iucn_status <chr>, added_iucn_status <chr>,
   #> # diet_plant <dbl>, diet_vertebrate <dbl>, diet_invertebrate <dbl>,
   #> # diet_method <chr>, diet_source <chr>
   # no :(
672 Are humans included in the table?
   phylacine %>% filter(binomial == "Homo_sapiens")
   #> # A tibble: 1 x 24
   #> binomial order family genus species terrestrial marine freshwater aerial
   #> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
   #> 1 Homo sa~ Prim~ Homin~ Homo sapiens
                                             1 0
                                                               0 0
   #> # ... with 15 more variables: life_habit_method <chr>, life_habit_source <chr>,
   \#> \# mass_g <dbl>, mass_method <chr>, mass_source <chr>, mass_comparison <chr>,
   #> # mass comparison source <chr>, island endemicity <chr>, iucn status <chr>,
   #> # added iucn status <chr>, diet plant <dbl>, diet vertebrate <dbl>,
   #> # diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
673 filter() can be used to deal with NAs:
   phylacine %>%
     filter(!is.na(mass_comparison))
   #> # A tibble: 754 x 24
   #> binomial order family genus species terrestrial marine freshwater aerial
   \#> < chr> < chr> < chr> < chr> < chr> < dbl> < dbl> < dbl>
                                               1 0
   #> 1 Abrocom~ Rode~ Abroc~ Abro~ budini
                                                                 0
   #> 2 Abrocom~ Rode~ Abroc~ Abro~ famati~
                                                  1
                                                        0
   #> 3 Abrocom~ Rode~ Abroc~ Abro~ shista~
                                                  1
                                                         0
                                                                   0
   #> 4 Abrocom~ Rode~ Abroc~ Abro~ uspall~
                                                  1
                                                         0
                                                                    0
                                                 1 0
0 0
   #> 5 Abrocom~ Rode~ Abroc~ Abro~ vaccar~
                                                                   0
   #> 6 Acerodo~ Chir~ Ptero~ Acer~ humilis
   #> # ... with 748 more rows, and 15 more variables: life_habit_method <chr>,
   #> # life_habit_source <chr>, mass_g <dbl>, mass_method <chr>,
   #> # mass source <chr>, mass comparison <chr>, mass comparison source <chr>,
   #> # island_endemicity <chr>, iucn_status <chr>, added_iucn_status <chr>,
```

```
#> # diet_plant <dbl>, diet_vertebrate <dbl>, diet_invertebrate <dbl>,
#> # diet_method <chr>, diet_source <chr>
```

Tip: dplyr introduces the useful function between() that does exactly what the name implies

```
between(1:5, 2, 4)
#> [1] FALSE TRUE TRUE TRUE FALSE
# Mesofauna
phylacine %>%
  filter(mass_g > 1e3, mass_g < 1e5) \%>%
  select(binomial, mass_g)
#> # A tibble: 1,126 x 2
                            mass_g
   binomial
    <chr>
#>
                             <dbl>
#> 1 Acerodon_jubatus
                              1075
#> 2 Acinonyx_jubatus
                             46700
#> 3 Acratocnus_odontrigonus 22990
#> 4 Acratocnus_ye
                             21310
#> 5 Addax_nasomaculatus
                             70000.
#> 6 Aepyceros_melampus
                             52500.
#> # ... with 1,120 more rows
# same thing
phylacine %>%
  filter(mass_g %>% between(1e3, 1e5)) %>%
  select(binomial, mass_g)
#> # A tibble: 1,148 x 2
   binomial
                             mass_g
#>
    <chr>
                             <dbl>
#> 1 Acerodon_jubatus
                             1075
#> 2 Acinonyx_jubatus
                             46700
#> 3 Acratocnus_odontrigonus 22990
#> 4 Acratocnus_ye
                             21310
#> 5 Addax_nasomaculatus
                             70000.
#> 6 Aepyceros_melampus
                             52500.
#> # ... with 1,142 more rows
```

Note that you can pipe operations inside function arguments as in the last line

above (arguments are expressions, after all!).

78 3.4 Making new variables

3.4.1 Create new variables with mutate()

Very often in data analysis, you will want to create new variables, or edit existing ones. This is done easily through mutate(). For example, consider the diet data:

```
diet <- phylacine %>%
 select(
   binomial,
   contains("diet") & !contains(c("method", "source"))
 )
diet
#> # A tibble: 5,831 x 4
    binomial
                         diet\_plant diet\_vertebrate diet\_invertebrate
    <chr>
                             <db1>
                                            <db l>
#> 1 Abditomys_latidens
                               100
                                                  0
                                                                    0
#> 2 Abeomelomys_sevia
                                 78
                                                  3
                                                                   19
#> 3 Abrawayaomys_ruschii
                                88
                                                 1
                                                                   11
#> 4 Abrocoma_bennettii
                                100
                                                  0
                                                                    0
#> 5 Abrocoma_boliviensis
                                100
                                                  0
                                                                    0
#> 6 Abrocoma budini
                                100
                                                  0
                                                                    0
#> # ... with 5,825 more rows
```

These three variables show the percentage of each category of food that make the diet of that species. They should sum to 100, unless the authors made a typo or other entry error. To assert this, I'm going to create a new variable, total_diet.

```
diet <- diet %>% mutate(
  "total_diet" = diet_vertebrate + diet_invertebrate + diet_plant
)
diet
#> # A tibble: 5,831 x 5
    binomial
                         diet_plant diet_vertebrate diet_invertebrate total_diet
                                                                         <dbl>
   <chr>
                            <dbl>
                                            < db l >
                                                              <dbl>
#> 1 Abditomys_latidens
                               100
                                                 0
                                                                  0
                                                                           100
                                                 3
                                78
                                                                 19
#> 2 Abeomelomys_sevia
                                                                           100
#> 3 Abrawayaomys_ruschii
                                88
                                                1
                                                                 11
                                                                           100
#> 4 Abrocoma bennettii
                                                0
                                                                  0
                               100
                                                                           100
                                                 0
                                                                  0
#> 5 Abrocoma boliviensis
                               100
                                                                           100
#> 6 Abrocoma budini
                               100
                                                 0
                                                                  0
                                                                           100
#> # ... with 5,825 more rows
```

```
all(diet$total_diet == 100)
#> [1] TRUE
# cool and good
```

mutate() adds a variable to the table, and keeps all other variables. Sometimes you may want to just keep the new variable, and drop the other ones. That's the job of mutate()'s twin sibling, transmute(). For example, I want to combine diet_invertebrate and diet_vertebrate together:

```
diet %>%
  transmute(
    "diet_animal" = diet_invertebrate + diet_vertebrate
#> # A tibble: 5,831 x 1
   diet\_animal
         <db1>
#>
              0
#> 2
              22
#> 3
            12
#> 4
              0
#> 5
               0
               0
#> 6
#> # ... with 5,825 more rows
```

You may want to keep some variables and drop others. You could pipe mutate() and select() to do so, or you could just pass the variables to keep to transmute().

```
diet %>%
 transmute(
    "diet_animal" = diet_invertebrate + diet_vertebrate,
    diet_plant
  )
#> # A tibble: 5,831 x 2
   diet\_animal\ diet\_plant
        <db1>
#>
                  <db l>
#> 1
            0
                      100
#> 2
             22
                        78
#> 3
             12
                        88
            0
#> 4
                       100
#> 5
            0
                       100
#> 6
             0
                       100
#> # ... with 5,825 more rows
```

You can also refer to variables you're creating to derive new variables from them as part of the same operation, this is not an issue.

```
diet %>%
  transmute(
   "diet_animal" = diet_invertebrate + diet_vertebrate,
   diet_plant,
   "total_diet" = diet_animal + diet_plant
```

```
)
#> # A tibble: 5,831 x 3
#> diet_animal diet_plant total_diet
         <dbl> <dbl> <dbl>
#> 1
             0
                       100
                                    100
             22
                         78
                                    100
#> 3
             12
                         88
                                    100
#> 4
              0
                        100
                                    100
#> 5
               0
                         100
                                    100
#> 6
               0
                        100
                                    100
#> # ... with 5,825 more rows
Sometimes, you may need to perform an operation based on the row number (I
don't have a good example in mind). tibble has a built-in function to do just
that:
phylacine %>%
  select(binomial) %>%
  tibble::rownames to column(var = "row nb")
#> # A tibble: 5,831 x 2
#> row nb binomial
   <chr> <chr>
          Abditomys_latidens
#> 1 1
#> 2 2
          Abeomelomys_sevia
        Abrocoma_bennettii
Abrocoma_boli
#> 3 3
          Abrawayaomys_ruschii
#> 4 4
#> 5 5
            Abrocoma_boliviensis
#> 6 6
            Abrocoma\_budini
#> # ... with 5,825 more rows
        Summarise observations with summarise()
3.4.2
mutate() applies operations to all observations in a table. By contrast,
summarise() applies operations to groups of observations, and returns, er,
summaries. The default grouping unit is the entire table:
phylacine %>%
  summarise(
    "nb_species" = n(), # counts observations
    "nb terrestrial" = sum(terrestrial),
    "nb marine" = sum(marine),
    "nb_freshwater" = sum(freshwater),
    "nb_aerial" = sum(aerial),
    "mean_mass_g" = mean(mass_g)
  )
#> # A tibble: 1 x 6
   nb_species nb_terrestrial nb_marine nb_freshwater nb_aerial mean_mass_g
```

```
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 156882.
```

Above you can see that bats account for a large portion of mammal species diversity (nb_aerial). How much exactly? Just as with mutate(), you can perform operations on the variables you just created, in the same statement:

```
phylacine %>%
  summarise(
     "nb_species" = n(),
    "nb_aerial" = sum(aerial), # bats
     "prop_aerial" = nb_aerial / nb_species
  )
#> # A tibble: 1 x 3
      nb species nb aerial prop aerial
#>
            \langle int \rangle
                       <dbl>
                                      \langle dbl \rangle
#> 1
             5831
                         1162
                                      0.199
```

705 One fifth!

166 If the british spelling bothers you, summarize() exists and is strictly equivalent.

Here's a simple trick with logical (TRUE / FALSE) variables. Their sum is the count of observations that evaluate to TRUE (because TRUE is taken as 1 and FALSE as 0) and their mean is the proportion of TRUE observations. This can be exploited to count the number of observations that satisfy a condition:

```
phylacine %>%
  summarise(
    "nb_species" = n(),
    "nb_megafauna" = sum(mass_g > 100000),
     "p megafauna" = mean(mass g > 100000)
  )
#> # A tibble: 1 x 3
#>
      nb_species nb_megafauna p_megafauna
           \langle int \rangle
                           \langle int \rangle
                                         <dbl>
             5831
#> 1
                             302
                                        0.0518
```

There are more summaries that just means and counts (see ?summarise() for some helpful functions). In fact, summarise can use any function or expression that evaluates to a single value or a *vector* of values. This includes base R max(), quantiles, etc.

mutate() and transmute() can compute summaries as well, but they will return the summary once for each observation, in a new column.

```
phylacine %>%
  mutate("nb_species" = n()) %>%
  select(binomial, nb_species)
#> # A tibble: 5,831 x 2
```

```
binomial
                          nb_species
#>
     <chr>
                                <int>
#> 1 Abditomys_latidens
                                 5831
#> 2 Abeomelomys_sevia
                                 5831
#> 3 Abrawayaomys ruschii
                                 5831
#> 4 Abrocoma bennettii
                                 5831
#> 5 Abrocoma_boliviensis
                                 5831
#> 6 Abrocoma_budini
                                 5831
#> # ... with 5,825 more rows
```

₇ 3.4.3 Grouping observations by variables

In most cases you don't want to run summary operations on the entire set of observations, but instead on observations that share a common value, i.e. groups.
For example, I want to run the summary displayed above, but for each Order of mammals.

distinct() extracts all the unique values of a variable

```
phylacine %>% distinct(order)
#> # A tibble: 29 x 1
#> order
#> <chr>
#> 1 Rodentia
#> 2 Chiroptera
#> 3 Carnivora
#> 4 Pilosa
```

#> 6 Cetartiodactyla
#> # ... with 23 more rows

#> 5 Diprotodontia

I could work my way with what we have already seen, filtering observations (filter(order == "Rodentia")) and then pipeing the output to summarise(), and do it again for each Order. But that would be tedious.

Instead, I can use group_by() to pool observations by order.

```
phylacine %>%
  group_by(order)
#> # A tibble: 5,831 x 24
```

```
#> # Groups: order [29]
    binomial order family genus species terrestrial marine freshwater aerial
             <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
    <chr>
                                                               <dbl> <dbl>
#> 1 Abditom~ Rode~ Murid~ Abdi~ latide~
                                               1
                                                      0
                                                                   0
                                                                         0
#> 2 Abeomel~ Rode~ Murid~ Abeo~ sevia
                                                 1
                                                        0
                                                                   0
                                                                         0
#> 3 Abraway~ Rode~ Crice~ Abra~ ruschii
                                                 1
                                                        0
                                                                   0
                                                                         0
#> 4 Abrocom~ Rode~ Abroc~ Abro~ bennet~
                                                1
                                                        0
                                                                   0
                                                                         0
#> 5 Abrocom~ Rode~ Abroc~ Abro~ bolivi~
                                                1
                                                        0
                                                                   0
                                                                         0
```

```
#> 6 Abrocom~ Rode~ Abroc~ Abro~ budini
                                                     1
 #> # ... with 5,825 more rows, and 15 more variables: life_habit_method <chr>,
       life_habit_source <chr>, mass_q <dbl>, mass_method <chr>,
       mass_source <chr>, mass_comparison <chr>, mass_comparison_source <chr>,
       island endemicity <chr>, iucn status <chr>, added iucn status <chr>,
        diet_plant <dbl>, diet_vertebrate <dbl>, diet_invertebrate <dbl>,
       diet_method <chr>, diet_source <chr>
At first glance, nothing has changed, apart from an extra line of information in
the output that tells me the observations have been grouped. But now here's
what happen if I run the same summarise() statement on an ungrouped and a
grouped table
phylacine %>%
  summarise(
     "n species" = n(),
     "mean_mass_g" = mean(mass_g)
  )
 #> # A tibble: 1 x 2
    n_species mean_mass_q
         <int> <dbl>
 #>
 #> 1
          5831
                   156882.
phylacine %>%
  group_by(order) %>%
  summarise(
     "n species" = n(),
     "mean_mass_g" = mean(mass_g)
  )
 #> # A tibble: 29 x 3
 #>
    order n_species mean_mass_g
 #>
    \langle chr \rangle
                       \langle int \rangle \langle dbl \rangle
 #> 1 Afrosoricida
                           57
                                     306.
 #> 2 Carnivora
                           313
                                    47905.
#> 3 Cetartiodactyla
                           392 1854811.
 #> 4 Chiroptera
                          1162
                                   49.1
 #> 5 Cinqulata
                            39
                                   235529.
 #> 6 Dasyuromorphia
                             74
                                     748.
 #> # ... with 23 more rows
I get one value for each group.
Observations can be grouped by multiple variables, which will output a summary
for every unique combination of groups.
phylacine %>%
  group by(order, iucn status) %>%
  summarise(
```

```
"n_species" = n()
 )
#> # A tibble: 138 x 3
#> # Groups: order [29]
               iucn_status n_species
   order
    <chr>
                  <chr>
                                  \langle int \rangle
#> 1 Afrosoricida CR
                                       1
#> 2 Afrosoricida DD
                                       4
                                       7
#> 3 Afrosoricida EN
#> 4 Afrosoricida EP
                                      2
#> 5 Afrosoricida LC
                                      32
#> 6 Afrosoricida NT
                                       3
#> # ... with 132 more rows
```

Whenever you call summarise(), the last level of grouping is dropped. Note how in the output table above, observations are still grouped by order, and no longer by IUCN status. If I summarise observations again:

```
phylacine %>%
  group_by(order, iucn_status) %>%
  summarise(
    "n\_species" = n()
  ) %>%
  summarise(
    "n_species_2" = n()
#> # A tibble: 29 x 2
     order n_species_2
     <chr>
                          \langle int \rangle
#> 1 Afrosoricida
                                7
#> 2 Carnivora
#> 3 Cetartiodactyla
                                9
                                8
#> 4 Chiroptera
#> 5 Cinqulata
                                5
                                7
#> 6 Dasyuromorphia
#> # ... with 23 more rows
```

I get the summary across orders, and the table is no longer grouped at all. This is useful to consider if you need to work on summaries across different levels of the data.

For example, I would like to know how the species in each order are distributed between the different levels of threat in the IUCN classification. To get these proportions, I need to first get the count of each number of species in a level of threat inside an order, and divide that by the number of species in that order.

```
phylacine %>%
  group_by(order, iucn_status) %>%
```

```
summarise("n_order_iucn" = n()) %>%
  # grouping by iucn_status silently dropped
  mutate(
    "n_order" = sum(n_order_iucn),
    "p_iucn" = n_order_iucn / n_order
#> # A tibble: 138 x 5
#> # Groups: order [29]
              iucn_status n_order_iucn n_order p_iucn
#> order
    \langle chr \rangle
                   \langle chr \rangle \langle int \rangle \langle dbl \rangle
#> 1 Afrosoricida CR
                                           1 57 0.0175
#> 2 Afrosoricida DD
                                                   57 0.0702
                                          7 57 0.0702
7 57 0.123
2 57 0.0351
32 57 0.561
3 57 0.0526
#> 3 Afrosoricida EN
#> 4 Afrosoricida EP
#> 5 Afrosoricida LC
#> 6 Afrosoricida NT
#> # ... with 132 more rows
```

10.2% of Carnivores are Endangered ("EN").

5 3.4.4 Grouped data and other dplyr verbs

Grouping does not only affect the behaviour of summarise, but under circumstances, other verbs can (and will!) perform operations by groups.

```
# Species with a higher mass than the mammal mean
phylacine %>%
 select("binomial", "mass g") %>%
 filter(mass_g > mean(mass_g, na.rm = TRUE))
#> # A tibble: 234 x 2
   binomial
                              mass_q
#>
   <chr>
                                <dbl>
#> 1 Alcelaphus_buselaphus
                               171002.
#> 2 Alces_alces
                              356998
#> 3 Archaeoindris_fontoynonti 160000
#> 6 Balaena_mysticetus 100000000
#> # ... with 228 more rows
# Species with a higher mass than the mean in their order
phylacine %>%
 group_by(order) %>%
 select("binomial", "mass_g") %>%
 filter(mass_g > mean(mass_g, na.rm = TRUE))
#> # A tibble: 890 x 3
#> # Groups: order [27]
```

```
#>
    order
              binomial
                                   mass_q
#>
    <chr>
               <chr>
                                    <dbl>
#> 1 Chiroptera Acerodon_celebensis
                                     390
#> 2 Chiroptera Acerodon humilis
                                    600.
#> 3 Chiroptera Acerodon jubatus
                                    1075
#> 4 Chiroptera Acerodon_leucotis
                                    513.
#> 5 Chiroptera Acerodon_mackloti
                                     470.
#> 6 Rodentia Aeretes melanopterus
                                     732.
#> # ... with 884 more rows
# Largest mammal
phylacine %>%
 select(binomial, mass_g) %>%
 slice_max(mass_g)
#> # A tibble: 1 x 2
    binomial
                            mass_g
    <chr>
                             <db1>
#> 1 Balaenoptera_musculus 190000000
# Largest species in each order
phylacine %>%
 group_by(order) %>%
 select(binomial, mass_g) %>%
 slice_max(mass_g)
#> # A tibble: 30 x 3
#> # Groups: order [29]
               binomial
    order
                                                       mass_g
                  <chr>
    <chr>
                                                        <dbl>
#> 1 Afrosoricida Plesiorycteropus_madagascariensis
                                                        13220
#> 2 Carnivora Mirounga_leonina
                                                      1600000
#> 3 Cetartiodactyla Balaenoptera_musculus
                                                   190000000
1075
#> 5 Cingulata
                   Glyptodon_clavipes
                                                      2000000
#> 6 Dasyuromorphia Thylacinus_cynocephalus
                                                        30000
#> # ... with 24 more rows
```

To avoid grouped operations, you can simply drop grouping with ungroup().

3.5 Working with multiple tables

$_{50}$ 3.5.1 Binding tables

```
dplyr introduces bind_rows() and bind_cols(), which are equivalent to base R rbind() and cbind(), with a few extra feature. They are faster, and can bind many tables at once, and bind data frames with vectors or lists.
```

bind_rows() has an option to pass a variable specifying which dataset each
 observation originates from.

```
porpoises <- phylacine \%>\%
  filter(family == "Phocoenidae") %>%
  select(binomial, iucn_status)
echidnas <- phylacine %>%
  filter(family == "Tachyglossidae") %>%
  select(binomial, iucn status)
bind_rows(
  "porpoise" = porpoises,
  "echidna" = echidnas,
  .id = "kind"
)
#> # A tibble: 13 x 3
   kind binomial
                                          iucn\_status
             <chr>
#> <chr>
                                          <chr>
#> 1 porpoise Neophocaena_asiaeorientalis VU
#> 2 porpoise Neophocaena_phocaenoides
#> 3 porpoise Phocoena_dioptrica
                                          DD
#> 4 porpoise Phocoena_phocoena
                                         LC
#> 5 porpoise Phocoena_sinus
                                          CR
#> 6 porpoise Phocoena spinipinnis
                                          DD
#> # ... with 7 more rows
```

756 3.5.2 Combining variables of two tables with mutating joins

Mutating joins are tailored to combine tables that share a set of observations but have different variables.

As an example, let's split the phylacine dataset in two smaller datasets, one containing information on diet and one on the dominant habitat.

```
diet <- phylacine %>%
 select(binomial, diet_plant:diet_invertebrate) %>%
 slice(1:5)
diet
#> # A tibble: 5 x 4
#> binomial
                       diet\_plant\ diet\_vertebrate\ diet\_invertebrate
   <chr>
                           <dbl> <dbl> <dbl>
#> 1 Abditomys latidens
                             100
                                             0
                                                               0
#> 2 Abeomelomys sevia
                              78
                                              3
                                                              19
#> 3 Abrawayaomys_ruschii
                             88
                                             1
                                                              11
                                              0
#> 4 Abrocoma bennettii
                             100
                                                               0
#> 5 Abrocoma_boliviensis
                                              0
                              100
                                                               0
```

life_habit <- phylacine %>% select(binomial, terrestrial:aerial) %>%
 slice(1:3, 6:7)

right join(diet, life habit, by = "binomial")

#> # A tibble: 5 x 8

life_habit

765

766

767

```
#> # A tibble: 5 x 5
    binomial
                         terrestrial marine freshwater aerial
    <chr>
                              <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Abditomys latidens
                                  1 0
                                                   0
#> 2 Abeomelomys sevia
                                   1
                                          0
                                                      0
                                                             0
                                   1
#> 3 Abrawayaomys_ruschii
                                          0
                                                     0
                                                             0
#> 4 Abrocoma_budini
                                   1
                                          0
                                                     0
                                                             0
#> 5 Abrocoma_cinerea
                                    1
                                          0
                                                      0
The two datasets each contain 5 species, the first three are shared, and the two
last differ between the two.
intersect(diet$binomial, life_habit$binomial)
#> [1] "Abditomys_latidens" "Abeomelomys_sevia"
                                                     "Abrawayaomys_ruschii"
setdiff(diet$binomial, life_habit$binomial)
#> [1] "Abrocoma_bennettii" "Abrocoma_boliviensis"
To use mutate-joins, both tables need to have a key, a variable that identifies
each observation. Here, that would be binomial, the sepcies names. If
your table doesn't have such a key and the rows between the tables match
one another, remember you can create a row number variable easily with
tibble::column_to_rownames().
inner_join(diet, life_habit, by = "binomial")
#> # A tibble: 3 x 8
     binomial diet_plant diet_vertebrate diet_invertebra~ terrestrial marine
            	ext{<}dbl> 	ext{<}dbl> 	ext{<}dbl> 	ext{<}dbl>
#> 1 Abditom~
                   100
                                    0
                                                     0
                                                                  1
                                                                         0
#> 2 Abeomel~
                     78
                                      3
                                                       19
                                                                   1
                                                                          0
                                     1
                     88
                                                      11
                                                                    1
                                                                          0
#> 3 Abraway~
#> # ... with 2 more variables: freshwater <dbl>, aerial <dbl>
inner_join combined the variables, and dropped the observations that weren't
matched between the two tables. There are three other variations of mutating
joins, differing in what they do with unmatching variables.
left_join(diet, life_habit, by = "binomial")
#> # A tibble: 5 x 8
#> binomial diet_plant diet_vertebrate diet_invertebra~ terrestrial marine
    <chr>
           < db \, l > \qquad < db \, l > \qquad < db \, l >
                                                              <dbl> <dbl>
#> 1 Abditom~
                   100
                                     0
                                                      0
                                                                   1
                                                                          0
#> 2 Abeomel~
                     78
                                      3
                                                      19
                                                                    1
                                                                          0
#> 3 Abraway~
                    88
                                      1
                                                      11
                                                                   1
                                                                         0
#> 4 Abrocom~
                   100
                                     0
                                                      0
                                                                  NA
                                                                        NA
#> 5 Abrocom~
                    100
                                     0
                                                       0
                                                                  NA
                                                                         NA
#> # ... with 2 more variables: freshwater <dbl>, aerial <dbl>
```

```
binomial\ diet\_plant\ diet\_vertebrate\ diet\_invertebra^{\sim}\ terrestrial\ marine
#>
    <chr>
                  <dbl>
                                  <dbl>
                                                   <dbl>
                                                               <dbl> <dbl>
#> 1 Abditom~
                   100
                                                      0
                                    0
                                                                  1
                                                                         0
#> 2 Abeomel~
                    78
                                      3
                                                      19
                                                                  1
                     88
                                     1
                                                                  1
                                                                         0
#> 3 Abraway~
                                                      11
#> 4 Abrocom~
                     NA
                                     NA
                                                      NA
                                                                  1
                                                                         0
#> 5 Abrocom~
                     NA
                                     NA
                                                     NA
                                                                         0
                                                                  1
#> # ... with 2 more variables: freshwater <dbl>, aerial <dbl>
full_join(diet, life_habit, by = "binomial")
#> # A tibble: 7 x 8
   binomial diet_plant diet_vertebrate diet_invertebra~ terrestrial marine
    <chr>
                 <dbl>
                                  <dbl>
                                                              <dbl> <dbl>
                                     0
#> 1 Abditom~
                   100
                                                      0
                                                                         0
#> 2 Abeomel~
                    78
                                      3
                                                      19
                                                                  1
                                                                         0
#> 3 Abraway~
                    88
                                     1
                                                     11
                                                                         0
#> 4 Abrocom~
                   100
                                     0
                                                      0
                                                                 NA
                                                                        NA
#> 5 Abrocom~
                    100
                                     0
                                                      0
                                                                 NA
                                                                        NA
#> 6 Abrocom~
                   NA
                                     NA
                                                     NA
                                                                 1
                                                                         0
#> # ... with 1 more row, and 2 more variables: freshwater <dbl>, aerial <dbl>
semi_join(diet, life_habit, by = "binomial")
#> # A tibble: 3 x 4
#> binomial
                         diet_plant diet_vertebrate diet_invertebrate
#>
   <chr>
                              <dbl>
                                              <dbl>
                                                               <dbl>
#> 1 Abditomys_latidens
                                100
                                                 0
                                                                   0
                                                  3
#> 2 Abeomelomys_sevia
                                 78
                                                                  19
#> 3 Abrawayaomys_ruschii
                                88
                                                  1
                                                                  11
anti_join(diet, life_habit, by = "binomial")
#> # A tibble: 2 x 4
   binomial
                         diet_plant diet_vertebrate diet_invertebrate
#>
   <chr>
                              <dbl>
                                             <dbl>
                                                               <dbl>
#> 1 Abrocoma_bennettii
                                100
                                                0
                                                                   0
                                                  0
#> 2 Abrocoma_boliviensis
                                100
                                                                    0
```

72 3.5.3 Filtering matching observations between two tables with filtering joins

So-called filtering joins return row from the first table that are matched (or not, for anti_join()) in the second.

```
semi_join(diet, life_habit, by = "binomial")
#> # A tibble: 3 x 4
#> binomial
                        diet_plant diet_vertebrate diet_invertebrate
   <chr>
                            <db1>
                                           <db1>
                                                            <dbl>
#> 1 Abditomys latidens
                              100
                                              0
                                                                 0
#> 2 Abeomelomys_sevia
                               78
                                               3
                                                                19
```

<pre>#> 3 Abrawayaomys_ruschii</pre>	88	1	11
<pre>anti_join(diet, life_habit, by = "binomial")</pre>			
#> # A tibble: 2 x 4			
#> binomial	$diet_plant$	$diet_vertebrate$	$diet_invertebrate$
#> <chr></chr>	<db1></db1>	<db1></db1>	<db1></db1>
#> 1 Abrocoma_bennettii	100	0	0
<pre>#> 2 Abrocoma_boliviensis</pre>	100	0	0

776 Chapter 4

Working with lists and iteration

load the tidyverse
library(tidyverse)

4.1 List columns with tidyr

4.1.1 Nesting data

This includes other tibbles, as well as model objects and plots.

It may become necessary to indicate the groups of a tibble in a somewhat more explicit way than simply using dplyr::group_by. tidyr offers the option to create nested tibbles, that is, to store complex objects in the columns of a tibble.

This includes other tibbles, as well as model objects and plots.

NB: Nesting data is done using tidyr::nest, which is different from the similarly named tidyr::nesting.

The example below shows how *Phylacine* data can be converted into a nested tibble.

```
# get phylacine data
data = read_csv("data/phylacine_traits.csv")
data = data %>%
  `colnames<-`(str_to_lower(colnames(.))) %>%
  colnames<- (str_remove(colnames(.), "(.1.2)")) %>%
  `colnames<-`(str_replace_all(colnames(.), "\\.", "_"))</pre>
# nest phylacine by order
nested data = data %>%
  group_by(order) %>%
  nest()
nested_data
#> # A tibble: 29 x 2
#> # Groups: order [29]
    order
                    data
                     t>
#>
   \langle chr \rangle
#> 1 Rodentia
                     <tibble [2,306 x 23]>
#> 2 Chiroptera
                    <tibble [1,162 x 23]>
#> 3 Carnivora
                     <tibble [313 x 23]>
#> 4 Pilosa
                     <tibble [34 x 23]>
#> 5 Diprotodontia <tibble [183 x 23]>
#> 6 Cetartiodactyla <tibble [392 x 23]>
#> # ... with 23 more rows
# get column class
sapply(nested_data, class)
        order
                      data
#> "character"
                    "list"
```

The data is now a nested data frame. The class of each of its columns is respectively, a character (order name) and a list (the data of all mammals in the corresponding order).

While nest can be used without first grouping the tibble, it's just much easier to group first.

4.1.2 Unnesting data

A nested tibble can be converted back into the original, or into a processed form, using tidyr::unnest. The original groups are retained.

801

803

805

#> \[11 \] 183

```
# use unnest to recover the original data frame
unnest(nested_data, cols = "data") %>%
 head()
#> # A tibble: 6 x 24
#> # Groups: order [1]
     order binomial family genus species terrestrial marine freshwater aerial
     <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
                                                                <dbl> <dbl>
#> 1 Rode~ Abditom~ Murid~ Abdi~ latide~
                                                    1 0
                                                                        0
#> 2 Rode~ Abeomel~ Murid~ Abeo~ sevia
                                                     1
                                                             0
                                                                         0
                                                                                0
#> 3 Rode~ Abraway~ Crice~ Abra~ ruschii
                                                     1
                                                             0
                                                                         0
                                                                                0
#> 4 Rode~ Abrocom~ Abroc~ Abro~ bennet~
                                                     1
                                                             0
                                                                         0
#> 5 Rode~ Abrocom~ Abroc~ Abro~ bolivi~
                                                     1
                                                            0
                                                                         0
                                                                                0
#> 6 Rode~ Abrocom~ Abroc~ Abro~ budini
                                                     1
                                                             0
#> # ... with 15 more variables: life_habit_method <chr>, life_habit_source <chr>,
#> # mass_q <dbl>, mass_method <chr>, mass_source <chr>, mass_comparison <chr>,
       mass_comparison_source <chr>, island_endemicity <chr>, iucn_status <chr>,
       added_iucn_status <chr>, diet_plant <dbl>, diet_vertebrate <dbl>,
       diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
# unnesting preserves groups
groups(unnest(nested_data, cols = "data"))
#> [[1]]
#> order
The unnest_longer and unnest_wider variants of unnest are maturing func-
tions, that is, not in their final form. They allow interesting variations on
unnesting — these are shown here but advised against. Unnest the data first,
and then convert it to the form needed.
4.1.3
       Working with list columns
The class of a list column is list, and working with list columns (and lists, and
list-like objects such as vectors) makes iteration necessary, since this is one of
the only ways to operate on lists.
Two examples are shown below when getting the class and number of rows of
the nested tibbles in the list column.
# how many rows in each nested tibble?
for (i in seq along(nested data$data[1:10])) {
  print(nrow(nested data$data[[i]]))
}
#> \[ 17 \, 2306
#> [1] 1162
#> [1] 313
#> [1] 34
```

```
#> [1] 392
#> [1] 460
#> [1] 57
#> [1] 20
#> [1] 465
# what is the class of each element?
lapply(X = nested_data$data[1:3], FUN = class)
#> [[1]]
#> [1] "tbl df"
                     "tbl"
                                  "data.frame"
#>
#> [[2]]
#> [1] "tbl_df"
                    "tbl"
                                  "data.frame"
#> [[3]]
                                  "data.frame"
#> [1] "tbl_df"
                     "tbl"
```

508 Functionals

The second example uses lapply, and this is a *functional*. Functionals are functions that take another function as one of their arguments. Base R functionals include the *apply family of functions: apply, lapply, vapply and so on.

812 4.2 Iteration with map

The tidyverse replaces traditional loop-based iteration with *functionals* from the purrr package.

815 Why use purrr

A good reason to use purr functionals instead of base R functionals is their consistent and clear naming, which always indicates how they should be used.
This is explained in the examples below. How map is different from for and lapply are best explained in the Advanced R Book.

a 4.2.1 Basic use of map

map works very similarly to lapply, where .x is object on whose elements to apply the function .f.

```
# get the number of rows in data
map(.x = nested_data$data, .f = nrow) %>%
  head()
#> [[1]]
#> [1] 2306
#>
```

829

```
#> [[2]]
#> [1] 1162
#>
#> [[3]]
#> [1] 313
#> [[4]]
#> [1] 34
#>
#> [[5]]
#> [1] 183
#>
#> [[6]]
#> [1] 392
map works on any list-like object, which includes vectors, and always returns a
list. map takes two arguments, the object on which to operate, and the function
to apply to each element.
# get the square root of each integer 1 - 10
some_numbers = 1:3
map(some_numbers, sqrt)
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 1.41
#> [[3]]
#> [1] 1.73
       map variants returning vectors
Though map always returns a list, it has variants named map_* where the suffix
indicates the return type. map_chr, map_dbl, map_int, and map_lgl return
character, double (numeric), integer, and logical vectors.
# use map_dbl to get the mean mass in each order
map_dbl(nested_data$data, function(df){
  mean(df$mass_g)
})
#> [1] 4.86e+02 4.91e+01 4.79e+04 7.86e+05 4.02e+04 1.85e+06 6.68e+03 3.06e+02
#> [9] 1.61e+02 4.06e+01 7.48e+02 1.45e+03 2.36e+05 3.37e+01 1.74e+02 9.58e+05
#> [17] 9.03e+02 4.70e+06 1.13e+03 2.84e+03 2.23e+01 1.12e+06 1.83e+02 5.94e+05
#> [25] 1.22e+04 9.44e+03 1.65e+06 4.45e+01 5.24e+04
```

map_chr will convert the output to a character

#> # A tibble: 10 x 23

```
# here we get the most common IUCN status of each order
   map_chr(nested_data$data, function(df){
     count(df, iucn_status) %>%
      arrange(-n) %>%
       summarise(common status = first(iucn status)) %>%
      pull(common status)
   })
   #> [16] "EP" "LC" "EP" "LC" "LC" "NT" "VU" "LC" "EP" "VU" "CR" "EP" "LC" "LC"
   # map_lgl returns TRUE/FALSE values
   some_numbers = c(NA, 1:3, NA, NaN, Inf, -Inf)
   map_lgl(some_numbers, is.na)
   #> [1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
  4.2.3 map variants returning data frames
map_df returns data frames, and by default binds dataframes by rows, while
map_dfr does this explicitly, and map_dfc does returns a dataframe bound by
833 column.
   # get the first two rows of each dataframe
   map df(nested data$data[1:3], head, n = 2)
   #> # A tibble: 6 x 23
      binomial family genus species terrestrial marine freshwater aerial
      <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
   #> 1 Abditom~ Murid~ Abdi~ latide~
                                          1 0
                                                            0
   #> 2 Abeomel~ Murid~ Abeo~ sevia
                                            1
                                                   0
                                                             0
                                           0
                                                 0
   #> 3 Acerodo~ Ptero~ Acer~ celebe~
                                                             0
   #> 4 Acerodo~ Ptero~ Acer~ humilis
                                           0
                                                  0
                                                            0
   #> 5 Acinony~ Felid~ Acin~ jubatus
                                           1
                                                  0
                                                            0
                                            1
                                                  0
   #> 6 Ailurop~ Ursid~ Ailu~ melano~
   #> # ... with 15 more variables: life_habit_method <chr>, life_habit_source <chr>,
   #> # mass_q <dbl>, mass_method <chr>, mass_source <chr>, mass_comparison <chr>,
   #> # mass_comparison_source <chr>, island_endemicity <chr>, iucn_status <chr>,
         added_iucn_status <chr>, diet_plant <dbl>, diet_vertebrate <dbl>,
         diet_invertebrate <dbl>, diet_method <chr>, diet_source <chr>
  map accepts arguments to the function being mapped, such as in the example
   above, where head() accepts the argument n = 2.
  map_dfr behaves the same as map_df.
   # the same as above but with a pipe
   nested data$data[1:5] %>%
    map dfr(head, n = 2)
```

```
binomial family genus species terrestrial marine freshwater aerial
            <chr> <chr> <chr> <chr> <dbl> <dbl>
                                                     <dbl> <dbl>
#> 1 Abditom~ Murid~ Abdi~ latide~
                                      1 0
                                                          0
#> 2 Abeomel~ Murid~ Abeo~ sevia
                                         1
                                                0
                                                           0
                                         0
#> 3 Acerodo~ Ptero~ Acer~ celebe~
                                                0
                                                           0
#> 4 Acerodo~ Ptero~ Acer~ humilis
                                          0
                                                0
#> 5 Acinony~ Felid~ Acin~ jubatus
                                         1
                                                0
                                                           0
                                                                  0
#> 6 Ailurop~ Ursid~ Ailu~ melano~
                                         1
                                                0
#> # ... with 4 more rows, and 15 more variables: life_habit_method <chr>,
      life_habit_source <chr>, mass_g <dbl>, mass_method <chr>,
#> # mass source <chr>, mass comparison <chr>, mass comparison source <chr>,
      island_endemicity <chr>, iucn_status <chr>, added_iucn_status <chr>,
      diet_plant <dbl>, diet_vertebrate <dbl>, diet_invertebrate <dbl>,
      diet_method <chr>, diet_source <chr>
```

map_dfc binds the resulting 3 data frames of two rows each by column, and automatically repairs the column names, adding a suffix to each duplicate.

⁸³⁹ 4.2.4 Working with list columns using map

The various map versions integrate well with list columns to make synthetic/summary data. In the example, the dplyr::mutate function is used to add three columns to the nested tibble: the number of rows, the mean mileage, and the name of the first car.

In each of these cases, the vectors added are generated using purrr functions.

```
# get the number of rows per dataframe, the mean mileage, and the first car
nested data = nested data %>%
  mutate(
    # use the int return to get the number of rows
   n_rows = map_int(data, nrow),
    # double return for mean mileage
   mean_mass = map_dbl(data, function(df) {mean(df$mass_g)}),
    # character return to get the heaviest member
    first_animal = map_chr(data, function(df) {
      arrange(df, -mass_g) %>%
        .$binomial %>%
        first()}
   )
  )
# examine the output
nested data
#> # A tibble: 29 x 5
```

```
#> # Groups:
             order [29]
#> order
                   data
                                       n_rows mean_mass first_animal
   < chr >
#>
                  t>
                                        \langle int \rangle \langle dbl \rangle \langle chr \rangle
                                                486. Neochoerus_aesopi
                 <tibble [2,306 x 23]> 2306
#> 1 Rodentia
#> 2 Chiroptera
                 <tibble [1,162 x 23]> 1162
                                                 49.1 Acerodon jubatus
                  <tibble [313 x 23]> 313 47905. Mirounga_leonina
#> 3 Carnivora
#> # ... with 23 more rows
4.2.5 Selective mapping using map variants
map_at and map_if work like other *_at and *_if functions. Here, map_if is
used to run a linear model only on those tibbles which have sufficient data. The
predicate is specified by .p.
In this example, the nested tibble is given a new column using dplyr::mutate,
where the data to be added is a mixed list.
# split data by order number and run an lm only if there are more than 100 rows
nested_data = nest(data, data = -order)
nested_data = mutate(nested_data,
             model = map_if(.x = data,
                           # this is the predicate
                           # which elements should be operated on?
                           .p = function(x){
                            nrow(x) > 100
                           # this is the function to use
                           # if the predicate is satisfied
                           .f = function(x){
                            lm(mass_g ~ diet_plant, data = x)
                           }))
# check the data structure
nested_data %>% head()
#> # A tibble: 6 x 3
#> order
                   data
                                       model
#> <chr>
                  < list>
                                       t>
                 <tibble [2,306 x 23]> <lm>
#> 1 Rodentia
#> 2 Chiroptera
                 <tibble [1,162 x 23]> <lm>
```

#> 5 Diprotodontia <tibble [183 x 23]> <lm>

```
#> 6 Cetartiodactyla <tibble [392 x 23]> <lm>
```

Some elements of the column model are tibbles, which have not been operated on because they have fewer than 100 rows (species). The remaining elements are lm objects.

854 4.3 More map variants

map also has variants along the axis of how many elements are operated upon.
map2 operates on two vectors or list-like elements, and returns a single list as
output, while pmap operates on a list of list-like elements. The output has as
many elements as the input lists, which must be of the same length.

4.3.1 Mapping over two inputs with map 2

map2 has the same variants as map, allowing for different return types. Here map2_int returns an integer vector.

map2 doesn't have _at and _if variants.

One use case for map2 is to deal with both a list element and its index, as shown in the example. This may be necessary when the list index is removed in a split or nest. This can also be done with imap, where the index is referred to as .y.

```
function(x, .y){
    glue::glue('{x} : {.y}')
})

#> $a
#> first letter : a
#>
#>
#> $b
#> second letter : b
```

$_{\scriptscriptstyle 7}$ 4.3.2 Mapping over multiple inputs with pmap

pmap instead operates on a list of multiple list-like objects, and also comes with the same return type variants as map. The example shows both aspects of pmap using pmap_chr.

4.4 Combining map variants and tidyverse functions

The example below shows a relatively complex data manipulation pipeline. Such pipelines must either be thought through carefully in advance, or checked for required output on small subsets of data, so as not to consume excessive system resources.

877 In the pipeline:

878

880

882

883

- 1. The tibble becomes a nested dataframe by order (using tidyr::nest),
- 2. If there are enough data points (> 100), a linear model of mass ~ plant diet is fit (using purrr::map_if, and stats::lm),
- 3. The model coefficients are extracted if the model was fit (using purrr::map & dplyr::case_when),
- 4. The model coefficients are converted to data for plotting (using purrr::map, tibble::tibble, & tidyr::pivot_wider),

5. The raw data is plotted along with the model fit, taking the title from the nested data frame (using purrr::pmap & ggplot2::ggplot).

```
nested_data <-
  data %>%
  tidyr::nest(data = -order) %>%
  mutate(data,
         model = map_if(.x = data,
                        # this is the predicate
                        # which elements should be operated on?
                        .p = function(x){
                          nrow(x) > 100
                        },
                        # this is the function to use
                        # if the predicate is satisfied
                        .f = function(x){
                          lm(mass_g ~ diet_plant, data = x)
                        })) %>%
  mutate(m_coef = map(model,
                      # use case when to get model coefficients
                      function(x) {
                        dplyr::case_when(
                          "lm" %in% class(x) ~ {
                            list(coef(x))
                          },
                          TRUE ~ {
                            list(c(NA,NA))
                        )}),
         # work on the two element double vector of coefficients
         m_coef = map(m_coef, function(x){
           tibble(coef = unlist(x),
                  param = c("intercept", "diet_plant")) %>%
             pivot_wider(names_from = "param",
                         values from = "coef")
         }),
         # work on the raw data and the coefficients
         plot = pmap(list(order, data, m_coef), function(ord, x, y){
           # pay no attention to the ggplot for now
```

887 4.5 A return to map variants

Lists are often nested, that is, a list element may itself be a list. It is possible to map a function over elements as a specific depth.

In the example, phylacine is split by order, and then by IUCN status, creating a two-level list, with the second layer operated on.

```
# use map to make a 2 level list
this_list = split(data, data$order) %>%
  map(function(df){ split(df, df$iucn_status) })
# map over the second level to count the number of
# species in each order in each IUCN class
# display only the first element
map_depth(this_list[1], 2, nrow)
#> $Afrosoricida
#> $Afrosoricida$CR
#> [1] 1
#> $Afrosoricida$DD
#> [1] 4
#>
#> $Afrosoricida$EN
#> [1] 7
#> $Afrosoricida$EP
#> [1] 2
#>
#> $Afrosoricida$LC
#> [1] 32
#> $Afrosoricida$NT
#> [1] 3
#> $Afrosoricida$VU
#> [1] 8
```

92 4.5.1 Iteration without a return

map and its variants have a return type, which is either a list or a vector. However, it is often necessary to iterate a function over a list-like object for that function's side effects, such as printing a message to screen, plotting a series of figures, or saving to file.

walk is the function for this task. It has only the variants walk2, iwalk, and pwalk, whose logic is similar to map2, imap, and pmap. In the example, the function applied to each list element is intended to print a message.

```
this_list = split(data, data$order)
iwalk(this_list,
      function(df, .y){
        print(glue::glue('{nrow(df)} species in order {.y}'))
      })
#> 57 species in order Afrosoricida
#> 313 species in order Carnivora
#> 392 species in order Cetartiodactyla
#> 1162 species in order Chiroptera
#> 39 species in order Cingulata
#> 74 species in order Dasyuromorphia
#> 2 species in order Dermoptera
#> 97 species in order Didelphimorphia
#> 183 species in order Diprotodontia
#> 465 species in order Eulipotyphla
#> 5 species in order Hyracoidea
#> 94 species in order Lagomorpha
#> 3 species in order Litopterna
#> 19 species in order Macroscelidea
#> 1 species in order Microbiotheria
#> 7 species in order Monotremata
#> 2 species in order Notoryctemorphia
#> 3 species in order Notoungulata
#> 7 species in order Paucituberculata
#> 24 species in order Peramelemorphia
#> 29 species in order Perissodactyla
#> 9 species in order Pholidota
#> 34 species in order Pilosa
#> 460 species in order Primates
#> 18 species in order Proboscidea
#> 2306 species in order Rodentia
#> 20 species in order Scandentia
#> 5 species in order Sirenia
#> 1 species in order Tubulidentata
```

$_{10}$ 4.5.2 Modify rather than map

When the return type is expected to be the same as the input type, that is, a list returning a list, or a character vector returning the same, modify can help with keeping strictly to those expectations.

In the example, simply adding 2 to each vector element produces an error, because the output is a numeric, or double. modify helps ensure some type safety in this way.

```
vec = as.integer(1:10)

tryCatch(
  expr = {
    # this is what we want you to look at
    modify(vec, function(x) { (x + 2) })
},

# do not pay attention to this
error = function(e) {
    print(toString(e))
    }
)

#> [1] "Error: Can't coerce element 1 from a double to a integer\n"
```

Converting the output to an integer, which was the original input type, serves as a solution.

```
modify(vec, function(x) { as.integer(x + 2) })
#> [1] 3 4 5 6 7 8 9 10 11 12
```

909 A note on invoke

invoke used to be a wrapper around do.call, and can still be found with its family of functions in purrr. It is however retired in favour of functionality already present in map and rlang::exec, the latter of which will be covered in another session.

4.6 Other functions for working with lists

purr has a number of functions to work with lists, especially lists that are not nested list-columns in a tibble.

7 4.6.1 Filtering lists

Lists can be filtered on any predicate using keep, while the special case compact is applied when the empty elements of a list are to be filtered out. discard is the opposite of keep, and keeps only elements not satisfying a condition. Again, the predicate is specified by .p.

```
# a list containing numbers
this_list = list(a = 1, b = -1, c = 2, d = NULL, e = NA)

# remove the empty element
# this must be done before using keep on the list
this_list = compact(this_list)

# use discard to remove the NA
this_list = discard(this_list, .p =is.na)

# keep list elements which are positive
keep(this_list, .p = function(x){ x > 0 })

#> $a
#> [1] 1
#>
#> $c
#> [1] 2
```

head_while is bit of an odd case, which returns all elements of a list-like object in sequence until the first one fails to satisfy a predicate, specified by .p.

```
1:10 %>%
head_while(.p = function(x) x < 5)
#> [1] 1 2 3 4
```

$_{224}$ 4.6.2 Summarising lists

The purr functions every, some, has_element, detect, detect_index, and vec_depth help determine whether a list passes a certain logical test or not.
These are seldom used and are not discussed here.

4.6.3 Reduction and accumulation

reduce helps combine elements along a list using a specific function. Consider the example below where list elements are concatenated into a single vector.

```
this_list = list(a = 1:3, b = 3:4, c = 5:10)
reduce(this_list, c)
#> [1] 1 2 3 3 4 5 6 7 8 9 10
```

This can also be applied to data frames. Consider some random samples of mtcars, each with only 5 cars removed. The objective is to find the cars present in all 10 samples.

The way reduce works in the example below is to take the first element and find its intersection with the second, and to take the result and find its intersection with the third and so on.

accumulate works very similarly, except it retains the intermediate products.
The first element is retained as is. accumulate2 and reduce2 work on two lists,
following the same logic as map2 etc. Both functions can be used in much more
complex ways than demonstrated here.

```
# make a list
this_list = list(a = 1:3, b = 3:6, c = 5:10, d = c(1,2,5,10,12))
# a multiple accumulate can help
accumulate(this_list, union, .dir = "forward")
#> $a
#> [1] 1 2 3
#>
#> #> $b
#> [1] 1 2 3 4 5 6
#>
#> [1] 1 2 3 4 5 6 7 8 9 10
#>
#> $d
#> [1] 1 2 3 4 5 6 7 8 9 10 12
```

4.6.4 Miscellaneous operation

purrr offers a few more functions to work with lists (or list like objects).

prepend works very similarly to append, except it adds to the head of a list.

splice adds multiple objects together in a list. splice will break the existing
list structure of input lists.

flatten has a similar behaviour, and converts a list of vectors or list of lists to a single list-like object. flatten_* options allow the output type to be specified.

```
this_list = list(a = rep("a", 3),
                  b = rep("b", 4))
this_list
#> $a
#> [1] "a" "a" "a"
#>
#> $b
#> [17 "b" "b" "b" "b"
# use flatten chr to get a character vector
flatten_chr(this_list)
#> [1] "a" "a" "a" "b" "b" "b" "b"
transpose shifts the index order in multi-level lists. This is seen in the example,
where the iucn_status goes from being the index of the second level to the index
of the first.
this_list = split(data, data$order) %>%
  map(function(df) {split(df, df$iucn_status)})
# from a list of lists where species are divided by order and then
# iucn_status, this is now a list of lists where species are
# divided by status and then order
transpose(this_list[1])
```

$_{ ext{ iny 1}}$ 4.7 $ext{ iny Lists of ggplots with patchwork}$

The patchwork library helps compose ggplots, which will be properly introduced in the next session. patchwork usually works on lists of ggplots, which can come from a standalone list, or from a list column in a nested dataframe.

The example below shows the latter, with the data data frame from earlier.

```
# use patchwork on list
patchwork::wrap_plots(nested_data$plot[1:5])
```


957 Chapter 5

ggplot2 and the grammar of graphics

960 By Raphael Scherrer, data from Anne-Marie Veenstra-Skirl

In this tutorial we will learn how to make nice graphics using ggplot2, perhaps the most well-known member of the tidyverse. So well-known, in fact, that people often know ggplot2 before they get to know about the tidyverse. We will first learn about the philosophy behind ggplot2 and then follow that recipe to build more complex customized plots through some examples.

5.1 Introduction

5.1.1 What is ggplot2 and why use it?

There are many ways of making graphics in base R. For example, plot is used for scatterplots, hist is used for histograms, boxplot is self-explanatory, and image can be used for heatmaps. However, those functions are often developed by different people with different logics in mind, which can make them inconsistent with each other, e.g. one has to learn what the arguments of each function are and switching from one type of visualization to another may not be very easy. ggplot2 is aimed at solving this problem and making plotting flexible, allowing to build virtually any graph using a common standard, the grammar of graphics (which is what "gg" stands for). By building on a single reference grammar, ggplot2 fits nicely into the tidyverse, and as part of it, it also follows the same rule as tidyr, dplyr or purrr, making the integration between all those packages very smooth.

5.1.2 What is the grammar of graphics?

The grammar of graphics is a system of rules on how to structure plots such that almost any graph can be made through combinations of a limited set of simpler elements, just as you can make any sentence by combining together letters from an alphabet. ggplot2 is the implementation of this philosophy in R, and comes with a limited set of *layers*, that you can pick and combine into an impressive variety of graphics, all based on the same syntax. But what are those elements?

Here is the backbone of a ggplot statement (I will from now on use "ggplot" to refer to an object of class ggplot, the output of the ggplot function and the object that contains our graphic), taken from the book R for Data Science:

```
ggplot(data = <DATA>) +

ggplot(data = <DATA>) +

GEOM_FUNCTION>(

mapping = aes(<MAPPINGS>),

stat = <STAT>,

position = <POSITION>
) +

COORDINATE_FUNCTION> +

FACET_FUNCTION>
```

This pseudocode snippet illustrates a fundamental aspect of ggplot2, which is that plots are built by *successive* commands, each corresponding to a layer, assembled together using the + operator. This might seem less practical than having a whole plot made in a single call to the plot function, but it is this modularity that actually gives ggplot2 its flexibility.

This means that in ggplot2 you will typically need multiple commands to make a plot. All ggplots are made of at least the two following basic ingredients:

- A call to the ggplot function, with the relevant data frame passed to it (this data frame contains our data to plot)
- A geom layer, specifying the type of plot to be shown. Variables from the data are mapped onto the graphical properties of this layer, called aesthetics.

That means that:

1006

1007

1008

1009 1010

1012

1013

1014

1015

1016

1017

1021

1022

1024

1025

library(tidyverse) ggplot(mtcars)

will not show anything. A ggplot object is there, but it has no layers yet.

Plots can then be customized with statistical transformations, re-positioning, changes in coordinate system, facetting, and more. We will now go through the different elements.

Quick plot 5.1.3

Note that the qplot function, which stands for "quick plot", will show a plot 1018 when called on your dataset. It is a wrapper around ggplot2 layers that allows 1019 to quickly get a visualization, just like using plot from base R. However, it is 1020 less flexible than combining your ggplot yourself, so here we will make sure that you understand how the different layers are assembled.

5.2 But first, the data

In this chapter we will use the data from bacterial experiment.csv, forged by Annie for us to use. This dataset resembles Annie's experiment where she created mutator strains of bacteria (that is, bacteria that mutate at a much higher rate than usual) and tracked their growth through time and at different concentrations of an agent supposed to activate the full "mutation potential" of those strains.

```
data <- read_csv("data/bacterial_experiment.csv")</pre>
data
#> # A tibble: 310 x 7
     strain
              assay
                       conc ratio time
                                                cfu OD600
              <chr> <dbl> <dbl> <chr>
                                              <dbl> <dbl>
     \langle chr \rangle
#> 1 strain 1 test 1
                          1 8.58 TO
                                          320000000 0.319
#> 2 strain 1 test 1
                          1
                            8.58 T1
                                         1293846908 0.911
#> 3 strain 1 test 1
                          1
                             6.11 TO
                                          370110830 0.287
#> 4 strain 1 test 1
                          1 6.11 T1
                                         1480443320 0.9
                                          377928804 0.321
#> 5 strain 1 test 1
                          1 11.8 TO
#> 6 strain 1 test 1
                          1 11.8 T1
                                         1511715216 0.914
#> # ... with 304 more rows
```

The different strains of bacteria were grown in two different assays, whose details are irrelevant for the purpose of this tutorial. cfu is the number of colony forming units while OD600 is the optical density at 600nm wavelength; both are estimates of bacterial population density. ratio represents the ratio in mutants between two time points, T0 and T1 (encoded in time).

In this table, the unit of observation is the time point (T0 and T1 are on different rows), therefore the values of ratio, which are attributed to each T0-T1 pair, are duplicated to yield one value per time point. To make our life easier with later plotting and to stay within the *tidy* spirit of the tidyverse (where one table should have one unit of observation), we use the tools we have already learnt to make a ratio-wise table:

```
data2 <- data %>%
 pivot_wider(names_from = "time", values_from = c("cfu",
                                                            "OD600"))
data2
#> # A tibble: 155 x 8
     strain
             assay
                                                cfu\_T1 OD600_T0 OD600_T1
                      conc ratio
                                     cfu_{-}T0
              <chr> <dbl> <dbl>
                                      <dbl>
                                                 <dbl>
                                                          <dbl>
                                                                   <db1>
#> 1 strain 1 test 1
                         1 8.58 320000000 1293846908
                                                          0.319
                                                                   0.911
#> 2 strain 1 test 1
                         1
                            6.11 370110830 1480443320
                                                          0.287
                                                                   0.9
                         1 11.8 377928804 1511715216
                                                                   0.914
#> 3 strain 1 test 1
                                                          0.321
#> 4 strain 1 test 1
                           7.78 369871771 1479487084
                                                          0.299
                                                                   0.92
#> 5 strain 1 test 1
                         5 10.5
                                 380000000 1505539596
                                                                   0.922
                                                          0.295
                         5
                            8.29 322488344 1289953376
#> 6 strain 1 test 1
                                                          0.275
                                                                   0.88
#> # ... with 149 more rows
```

5.3 Geom layers

The geom object is the core visual layer of a plot, and it defines the type of plot being made, e.g. geom_point will add points, geom_line will add lines, etc. There are tons of geoms to pick from, depending on the type of figure you want to make, and new geoms are regularly added in extensions to ggplot2 (links at the end of this chapter).

All geoms have aesthetics, or graphical parameters, that may be specified. Those include x and y coordinates, color, transparency, etc. Some aesthetics are mandatory for some geoms, e.g. geom_point needs x and y coordinates of the points to plot. Other aesthetics are optional, e.g. if color is unspecified, all the points will look black. Some geoms even have no mandatory aesthetics, such as geom_abline, which will plot a diagonal running through the origin and with slope one if its intercept and slope are unspecified.

Aesthetics are specified in two ways: (1) variables from the data can be mapped to them using the aes function, or (2) they can take fixed values.

Some of the main aesthetics to know, besides geom-specific coordinates (e.g. x, y), include: color, fill (color used to fill surfaces), group (used e.g. to plot multiple lines with similar aspect on the same plot), alpha (transparency), size, linetype, shape, and label (for showing text).

Note that in most functions across the tidyverse both US and UK English can be used, e.g. colour is also a valid aesthetics, and dplyr::summarize is equivalent to dplyr::summarise.

5.3.1 Mapping variables to aesthetics

Variables are mapped to aesthetics using the aes function. Here is a basic scatterplot example showing ratio against conc:

We can use the other available aesthetics to show more aspects of the data, or to see patterns a bit more clearly. For example, we can color-code the points

based on their strain, and change their shape based on the type of assay:

```
ggplot(data2) +
  geom_point(mapping = aes(x = conc, y = ratio, color = strain, shape = assay))
          200 -
                                                       assay
                                                           test 1
          150 -
                                                           test 2
       ratio -
                                                       strain
                                                            control
           50
                                                            strain 1
                                                            strain 2
                      20000
                               40000
                                        60000
                              conc
```

 $_{1071}$ Do you want to map several variables to a single aesthetic? Then interaction $_{1072}$ from base R can be used within a ggplot:

```
ggplot(data2) +
  geom_point(
    mapping = aes(x = conc, y = ratio, color = interaction(strain, assay))
)
```


5 5.3.2 Fixed aesthetics

Fixed graphical parameters (i.e. that are not mapped to a variable) should be added as arguments of the geom *outside* the aes command. For example, to make *all* points a little bigger and more transparent, we can use

```
ggplot(data2) +
  geom_point(
    mapping = aes(x = conc, y = ratio, color = strain, shape = assay),
    size = 2, alpha = 0.6
)
```


5.3.3 Statistical transformation

1081

1082

1083

1084

1085

Statistical transformations, or stat functions, can be applied to the data within a geom call. Actually, statistical transformations are *always* applied within a geom call, but most of the time the identity function is used. To illustrate, consider the following plot showing a distribution of ratio for different strains:

```
ggplot(data2) +
  geom_density(aes(x = ratio, fill = strain), alpha = 0.5)
```

1088

1089

1090

1091

1093

1094

1095

1097

Here, the density axis is not part of the original dataset data2; it was computed from the data, for each value of ratio, by using a density-estimation algorithm. This shows that stat_density (and not stat_identity) is the default stat used in geom_density. Every geom comes with its default stat.

Similarly, stat functions can be used in place of geom because every stat has a default geom associated to it. So, we can call:

ratio

which has geom_density as default geom.

It is possible to override the default stat using the stat argument of geom, and conversely, it is possible to change the default geom associated with a given stat. For example, say we want to plot our densities as points. Then,

```
ggplot(data2) +
  stat_density(aes(x = ratio, color = strain), alpha = 0.5, geom = "point")
```


does the job (note that we replaced fill with color because our points do not have a surface to fill).

Note that default geom-stat combinations are usually well thought of (density plots are a good example). Therefore, it is often not necessary to play with stats. It may matter in some specific cases, e.g. when using geom_bar, but we do not cover that here (you can check out the dedicated chapter in R for Data Science for an example).

5.3.4 Position

The position argument of geoms allows to adjust the positioning of the geom's elements. It has a few variants, but the possibilities depend on the geom used. We illustrate those available to geom_bar. By default, geom_bar uses the stat_count statistical transformation, meaning that it will show us the number of observations into each category of a factor, e.g. strain, splitted into categories of another factor, e.g. assay:

1117

1119

1120

1121

1122

1123

1124

1127

1128

1129

If we wanted to visualize proportions instead of numbers, we could use the fill value of the position argument:

```
ggplot(data2) +
geom_bar(aes(x = strain, fill = assay), position = "fill")

1.00
0.75
0.50
0.25
0.00
control strain 1 strain 2
strain
```

Alternatively we could use the dodge option to show the different categories side-by-side:

Those are only two examples of what can be done. Just remember that position exists and look into the documentation of your geom of interest to see what position adjustments are available! (Check out geom_jitter as a nice wrapper around geom_point with a jitter position adjustment, perfect to overlay with boxplots or violin plots.)

5.3.5 Other geoms

The most common geoms you may encounter are:

- geom_point for scatter plots and geom_jitter for the dodged equivalent
- geom_bar for a barplot
- geom_text for a scatter plot of labels
- geom_histogram and geom_density, self-explanatory

1132

1133

1134 1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1149

1151

1152

1153

1154

- geom_boxplot and geom_violin
- geom_line, geom_path (a line never goes backwards along the x-axis, while a path can) and geom_smooth (local regression smoothing)
- geom_segment, geom_hline, geom_vline and geom_abline that may come handy as annotations
- geom_tile for heatmaps

There are litterally tons of geoms and ways to use them. In this tutorial, we emphasize the understanding of the grammar and how to assemble the different ingredients, rather than the ingredients themselves. For this reason, here we are not giving an exhaustive sample of each geom and what they look like. So, keep this list of names in mind as a reminder that whatever plot you want to make, there probably is a geom for it. To explore a gallery of examples, check out the R graph gallery.

5.3.6 Extra on aesthetics

It is possible to use the + operators, not only to add layers but also to modify previous layers. You might wonder why not to write the layer correctly in the first place. This starts making more sense in cases e.g. where a plot can be modified in different ways. For example, consider this plot:

```
ggplot(data2, aes(x = conc, y = ratio)) +
  geom_point()
```


We may want to color-code the points based on strain or assay, or both, thus requiring two plots building on this single one. An important property of ggplot objects is that they can be assigned to variables, e.g.

```
p <- ggplot(data2, aes(x = conc, y = ratio)) +
  geom_point()</pre>
```

Note that we have to call the object p for the plot to be displayed. If we just assign the plot to p, the plot does not show. We can subsequently add differential aesthetics to different copies of p:

```
p + aes(color = strain)
p + aes(color = assay)
```

1161

1163

5.3.7 Plot-wide aesthetics and multiple geoms

In the last example, by adding new aesthetics mapping to the ggplot using the + operator, we did not add these aesthetics *specifically* to the <code>geom_point</code> layer, but to all the geoms present in the plot. Similarly, one can pass aesthetic mappings to the <code>ggplot</code> command directly, not necessarily with the <code>geom</code> statement. This saves some typing when geoms taking the same aesthetics are used, e.g. <code>geom_violin</code> and <code>geom_jitter</code>:

```
ggplot(data2, aes(x = factor(conc), y = ratio)) +
  geom_violin() +
  geom_jitter(width = 0.1)
# x is made categorical here
```


1166

1168

1169

This shows a nice example of multiple geoms combined in a single plot. If, however, the aesthetics used in some geoms are geom-specific, better pass them to their respective geom. For example, if you want to color only the points but not the violins, use:

```
ggplot(data2, aes(x = factor(conc), y = ratio)) +
 geom_violin() +
  geom_jitter(mapping = aes(color = strain), width = 0.2)
```


1171

1177

1178

1180

1181

5.3.8 Multiple geoms with different datasets

Just as aesthetics can vary from geom to geom, so do datasets. In other words, the dataset does not have to be passed to the ggplot command necessarily, and can be passed to a geom instead, for example:

This means that different geoms can be based on different datasets. This allows quite some complexification of the plots and illustrates very well the usefulness of the other packages of the tidyverse. Say, for example, that we want to add to this plot a line going through the means at each value of conc. These mean values are not yet present in our dataset, and we need to come up with a meanwise dataset. dplyr is our friend for this task:

```
data3 <- data2 %>%
  group_by(conc, strain) %>%
  summarize(ratio = mean(ratio))
data3
#> # A tibble: 24 x 3
#> # Groups:
               conc [8]
#>
      conc strain
                     ratio
     <dbl> <chr>
                     <db1>
                      2.21
#> 1
         1 control
#> 2
         1 strain 1 7.09
#> 3
         1 strain 2 9.16
#> 4
         5 control
                      2.50
#> 5
         5 strain 1 7.17
#> 6
         5 strain 2 6.89
#> # ... with 18 more rows
```

Let us now add an extra layer of information based on this latest, summary

84 dataset:

1185

1187

1188

1189

1190

```
ggplot() +
  geom_point(data = data2, mapping = aes(x = conc, y = ratio, color = strain)) +
  geom_line(data = data3, mapping = aes(x = conc, y = ratio, color = strain))
          200 -
          150 -
                                                      strain
       ratio -
                                                          control
                                                          strain 1
                                                          strain 2
           50 -
            0 -
                      20000
               0
                               40000
                                       60000
                              conc
```

Here, we could save some typing by writing:

```
ggplot(data2, mapping = aes(x = conc, y = ratio, color = strain)) +
geom_point() +
geom_line(data = data3)
         200 -
         150 -
                                                      strain
                                                          control
      ratio -
                                                           strain 1
                                                           strain 2
          50 -
           0 -
                     20000
                              40000
                                       60000
                             conc
```

where geom_line inherits the same aesthetic mapping as geom_point. But then, you have to make sure that data3 contains all the aesthetics that the ggplot call expects to see in each of its geoms (here x, y and color).

5.4 Coordinate-system

The default way that the plotting window is organized is an orthogonal space with a horizontal x-axis and a vertical y-axis. Use the coord commands to deviate from this. For example, coord_flip will flip the axes:

```
ggplot(data2, aes(x = factor(conc), y = ratio)) +
  geom_violin() +
  coord_flip()
```


while coord_fixed will fix the aspect ratio between the axes, thus showing them on the same scale. For example, the following plot of the optical density between two time points,

```
ggplot(data2, aes(x = OD600_T0, y = OD600_T1)) +
  geom_point()
```


becomes:

1199

1200

```
ggplot(data2, aes(x = OD600_T0, y = OD600_T1)) +
  geom_point() +
  coord_fixed()
```

1195

1197

5.5. FACETTING 107

1201 1202

1203

1204

1205

1208

1209

when both axes are shown on the same scale.

Other coordinate systems exist, depending on the need, including coord_polar for radial plots or coord_quickmap, tailored at latitude-longitude plotting.

Facetting 5.5

One of the most powerful features of ggplot2 is its easy way of splitting a plot 1206 into multiple subplots, or facets. 1207

There are two functions for facetting: facet_grid and facet_wrap. facet_grid will arrange the plot in rows and columns depending on variables that the user defines: 1210

```
ggplot(data2, aes(x = conc, y = ratio, color = strain)) +
  geom_point() +
  facet_grid(strain ~ assay)
```


1212

1213

Here the tilde (~) symbolizes a formula, a type of expression in R with a left and right-hand side, which here are interpreted as variables to use for rows and columns, respectively. If using only one variable for facetting, use . or nothing on the other side of the tilde.

Note that facets are plotted on the same scale. We can use the scales argument to allow free scales, for example:

```
ggplot(data2, aes(x = conc, y = ratio, color = strain)) +
geom_point() +
facet_grid(strain ~ assay, scales = "free_y")
```


facet_wrap is similar to facet_grid, except that it does not organize the facets in rows and columns but rather as an array of facets that fill the screen by row, like when filling a matrix with numbers:

```
ggplot(data2, aes(x = conc, y = ratio, color = strain)) +
  geom_point() +
  facet_wrap(strain ~ assay)
```

5.5. FACETTING 109

where the position of the variables relative to the \sim becomes irrelevant.

Note that a facetted ggplot is still one ggplot, not a combination of ggplots, which we will cover later.

Custom-labelling the strips of the facets is done with the labeller argument.
The way this is used is a little complicated, but essentially looks like this:

```
ggplot(data2, aes(x = conc, y = ratio, color = strain)) +
  geom_point() +
  facet_grid(strain ~ assay, labeller = labeller(.rows = label_both))
```


Here, the label_both function is applied to the variable facetting by row, which is strain. label_both tells the labeller to label the strips with the name of the variable (strain) followed by its value, separated by a colon. We will not cover labelling in details here, but keep in mind that the labeller argument is what to play with, and that it takes the output of the labeller function as input, which itself takes labelling functions, such as label_both, as arguments. Other labelling functions include label_value, which just shows the value in the strip (that is the default) and label_parsed, which is used for showing mathematical expressions in strip labels (e.g. greek letters, exponents etc.). It is possible to provide custom names too. For more information on customizing facet strip lables, visit this link.

Note: I made a package called ggsim, yet another extension of ggplot2 with a few functions coming handy for simulation data. One of the functions, facettize, is aimed at making your life easier when labelling the strips of your facets (i.e. not going into the nitty gritty of the labeller function), especially when some facets include parsing mathematical expressions. Feel free to install it from GitHub by using:

devtools::install_github("rscherrer/ggsim")

5.6 The right format for the dataset

One question that may come to your mind is: what is the right format of a dataset for use in ggplot, especially since it is part of the tidyverse? The answer is: it depends, and this is where the intergration with other tidyverse tools makes our life easier. If, for example, we want to use a variable for facetting or as an aesthetics, it is important to have this variable as a single column.

For example, in the original data dataset, we could have compared the optical density between the two time point:

```
ggplot(data, aes(x = time, y = OD600)) +
  geom_violin()
```


where time is both an aesthetic (x) and its own column. However, if we want to plot the optical density of time point T1 *versus* that of time point T0, then we need these two time points in separate columns, which is exactly what OD600_T0 and OD600_T1, in the data2 dataset, are (remember we got those using tidyr::pivot_wider):

5.7 Plotting as part of a pipeline

What we just saw means that sometimes reformatting of a dataset is needed (e.g. using pivot_longer or pivot_wider from tidyr) to get this one plot done that requires reshaping. If you do not want to spend space storing a reformatted data frame into a whole new object, just to make a single plot, you can use ggplot as final part of a tidyverse pipeline. For example, starting from the original data:

1274

1276

1280

1287

1289

1291

```
data %>%
  pivot_wider(names_from = "time", values_from = c("cfu", "OD600")) %>%
  ggplot(aes(x = OD600_T0, y = OD600_T1)) +
  geom_point()
```


Notice the use of the pipe %>% to pass the resulting data frame on to the ggplot command. Because ggplot is called with a pipe, its first argument is already passed (it is the data frame coming through the pipe), so we only need to pass the second argument, i.e. the aesthetics mapping, to the ggplot function.

5.8 Customization

Now that we saw everything there is to know about structuring a ggplot, it is time to learn how to polish it (the easiest and most rewarding part!).

5.8.1 Scales

Every aesthetics can be scaled. This includes specifying what values an aesthetics can take (e.g. what colors to pick, or what range of transparencies to use), possible break points along the legend, or legend titles and labels, among others.

Use the scale_* family of functions for that. There are many such functions, because many aesthetics can be modified, but the logic behind their naming is always the same:

```
scale_<AESTHETIC>_<TYPE>
```

where <AESTHETIC> is replaced by the aesthetic you want to scale (e.g. color, size, alpha) and <TYPE> is the type of variable that is mapped to this aesthetic (common types are continuous, discrete and manual). Some scaling functions do not take a <TYPE> but just an <AESTHETIC> in their name, e.g. scale_alpha.

In our example, if we color-code points according to their strain, which is a categorical variable, we can use scale_color_manual (aka scale_colour_manual) to manually pick the colors we want:

```
ggplot(data2, aes(x = conc, y = ratio, color = strain)) +
  geom_point() +
```

```
geom_smooth() + # just to spice up our use of geoms
facet_grid(strain ~ assay) +
scale_color_manual(values = c("forestgreen", "goldenrod", "mediumseagreen"))
```


Alternatively, we could color-code the points based on their number of CFU at time point T1, cfu_T1, which is a continuous variable, using scale_color_continuous. Without scaling:

```
ggplot(data2, aes(x = conc, y = ratio, color = cfu_T1)) +
  geom_point() +
  facet_grid(strain ~ assay)
```


1302 With scaling:

```
ggplot(data2, aes(x = conc, y = ratio, color = cfu_T1)) +
  geom_point() +
  facet_grid(strain ~ assay) +
  scale_color_continuous(type = "viridis")
```


The arguments that are taken by the scale_ function really depend on the use case, e.g. scale_color_manual expects discrete values,

scale_color_continuous expects a type of built-in continuous color gradient, and scale_color_gradient expects a low and high color boundaries (and also a mid-gradient color in the case of scale_color_gradient2). But the logic shown here is similar across many aesthetics, e.g. scale_alpha_continuous and scale_size_continuous work in similar ways, both taking a range argument. So, lots of scaling functions to play with, of which we do not provide an exhaustive list here.

Mandatory aesthetics, such as x and y, also have their scaling functions. If x or y is continuous, one can e.g. use scale_x_log10 to show this axis on a logarithmic scale, without having to log-tansform the data before plotting, e.g.

```
ggplot(data2, aes(x = conc, y = ratio, color = cfu_T1)) +
  geom_point() +
  facet_grid(strain ~ assay) +
  scale_color_continuous(type = "viridis") +
  scale_x_log10()
```


More on re-scaling legend titles and labels further down.

5.8.2 Labels

The functions ggtitle, xlab, ylab and labs allow you to customize the labels shown for each aesthetics (remember that the x- and y-axes are aesthetics too), and for the main title of the plot. On to a full-fledge example:

```
p <- ggplot(data2, aes(x = conc, y = ratio, color = cfu_T1)) +
  geom_point() +</pre>
```

1325

1326

1327

1328

1329

1333

```
facet_grid(strain ~ assay) +
    scale_color_continuous(type = "viridis") +
    scale_x_log10() +
    xlab("Nisin concentration (mmol/mL)") +
    ylab("Mutational ratio") +
    labs(color = parse(text = "'CFU at '~T[1]")) + # plotmath expression
    ggtitle(
        "A very important experiment",
        "So important it deserves a subtitle"
    )
p
```

A very important experiment So important it deserves a subtitle

Note that xlab and ylab are wrappers around labs, meaning that we could have provided labs with $x = \ldots$ and $y = \ldots$ in addition to color = ..., its arguments just need to take the names of the aesthetics. If you want no labels, use e.g. xlab(NULL) or ylab(NULL).

Also notice the use of parse to display mathemetical notations using the plotmath syntax. This is not part of the tidyverse though, so it is a story for another day, feel free to look it up (type ?bquote)!

5.8.3 Themes

You may be already frustrated that all plots have this same grey default ggplot2
background. Of course, it is possible to change this too by playing with the
theme functions. There are other built-in themes than the default grey one,
such as theme_bw or theme_classic:

p + theme_classic()
p + theme_bw()

1338

A very important experiment So important it deserves a subtitle

A very important experiment

1340 1341

1342

1344

The individual elements of the theme, e.g. the background grid or the color of the panel, can be customized using the arguments in the theme function. The theme function can also be used to modify stuff related to the legend or the axes of the plots. For example:

```
p <- p +
   theme_bw() +</pre>
```

```
theme(
   legend.position = "left",
   axis.text.x = element_text(angle = 60, hjust = 1)
)
p
```

A very important experiment So important it deserves a subtitle

Here, legend.position is sort of self-explanatory, but axis.text.x is a bit more subtle. Some elements of the theme, such as the text of the axes, need a series of graphical parameters in order to be modified, and the graphical parameters that can be used depend on the type of object those theme elements are (are they text, rect or line?). We use the element_* family of functions to pass those graphical parameters to our theme elements of interest. Here, we use element_text to transform the text on the x-axis by rotating it by an angle of 60 degrees, and then align each label to the right (hjust stands for "horizontal justification"). Again, lots of combinations are possible. Explore!

5.8.4 Legend

The one thing I Google the most, without a doubt, is "custom legend in ggplot", because I always forget how to choose which legend to show, e.g. if I want to display the color legend but not the alpha legend. So here it is: to hide *all* the legends, use:

```
p + theme(legend.position = "none")
```

1360

1358

1345

1346

1347

1348

1349

1350

1351

1352

1354

A very important experiment So important it deserves a subtitle

And to selectively hide *some* legends, use guides:

p + guides(color = FALSE)

1361

1363

1364

1366

A very important experiment So important it deserves a subtitle

It is also important to remember that ggplot2 will try to combine legends together whenever it can. If the same variable is mapped to two different aesthetics, e.g. shape and color, only one legend will appear:

```
ggplot(data2, aes(x = conc, y = ratio, color = strain, shape = strain)) + <math>geom_point() +
```

```
facet_grid(strain ~ assay) +
scale_x_log10()
```


But this behavior can be controlled. You can use the arguments of the scale_
functions to pass custom titles and labels to the legends. And if the legends
mapping to the same variable have different titles or labels, they will be shown
separately:

```
ggplot(data2, aes(x = conc, y = ratio, color = strain, shape = strain)) +
  geom_point() +
  facet_grid(strain ~ assay) +
  scale_x_log10() +
  scale_color_manual(
    "color legend", values = c("forestgreen", "goldenrod", "mediumseagreen")
) +
  scale_shape_manual(
    "shape legend", values = c(16, 17, 18),
    labels = c("Control", "Strain 1", "Strain 2")
)
```


Note that you can also use this trick to combine different legends together, by giving them the same titles and labels.

5.9 Combining plots

1377

1379

1381

1383

1384

1386

1387

1389

1391

1393

This was more or less what you need to know to be operational when plotting *single* ggplots. But what if the facetting option is not enough, and you want to combine multiple plots into a single figure? ggplot2 itself does not do that, but the good news is, there are many packages that do. Those include patchwork, cowplot, grid, gridExtra, egg or aplot (and probably more).

One term that these packages often use is grob. A grob is a ggplot-like object, such as a ggplot but could also be a single text label in the middle of a plotting window. These packages essentially assemble grobs together.

patchwork is personally my favorite so I will focus on this one here. It has the advantage to automatically align the frames of the different plots across the different subplots (I found that this is not entirely true when combining ggtree objects with other plots, aplot is better for this specific case). It also has an excellent, succinct documentation.

Let us look at an example, where we assign the previous plot to p1 and make a new plot to combine it with, called p2:

```
p1 <- p
p2 <- ggplot(data2, aes(x = strain, y = OD600_T1, color = strain)) +
  geom_violin(draw_quantiles = 0.5) +
  geom_jitter(width = 0.2) +
  theme_classic() +</pre>
```

```
xlab(NULL) +
ylab(parse(text = "'Optial density at 600nm at'~T[1]")) +
theme(legend.position = "none")
p2
```


In patchwork, we would combine both using:

```
library(patchwork)
p1 + p2
```

1396

1397

1398

1399

1394

A very important experin So important it deserves a su

patchwork uses operators such as +, / or | to assemble the plots in various layouts. It looks simple, but a caveat of this approach is that it may become tedious when assembling, e.g. 15 small plots, or plots from a list of unknown length. The programmatic equivalent of the above example is:

 $wrap_plots(p1, \ p2) \ \textit{\# or even more programmatic, } wrap_plots(list(p1, \ p2))$

Nisin concentration (mmol/mL)

More customization can be added to the previous combination of plots, such as layout specifications, e.g. controlling the position and dimension of the different plots, or annotations, e.g. global title, labelling each plot or capturing the legends of all the plots and show it as one global legend). But this is a ggplot2 tutorial and we just want you to know that patchwork and friends exist, so go check them out to know more about what they can do!

5.10 Saving a plot

Last but not least, ggplots have their own saving function: ggsave (it also works on combinations of ggplots made by patchwork or cowplot), which guesses the extension of your figure (e.g. .png or .pdf) from the file name you provide. You can also give it specific width, height and dpi (resolution) parameter values.

5.11 High throughput plotting workflow

As we mentioned in the part about combining plots, sometimes we want to do things many times (in my case I often make 100 times the same figure, just for different replicate simulations). Of course we would not copy and paste many times the same snippet of code, or write 100 times + to assemble some plots (by now we are advanced R users, after all). This is where we can make use, again, of the combination of tidyverse tools, and especially purrr.

Let us make a function that plots the number of CFU against the optical density, facetted by time point (so, that function expects a time point-wise dataset, such as data):

1431

1433

1435

```
plot_this <- function(data) {
    ggplot(data, aes(x = OD600, y = cfu, color = cfu)) +
        geom_point() +
        facet_grid(. ~ time) +
        theme_classic() +
        scale_color_continuous(type = "viridis") +
        theme(legend.position = "none") +
        xlab(parse(text = "'OD at 600nm at'~T[1]")) +
        ylab("CFU")
}</pre>
```

Note that this does not plot anything, it is just a function that will if called on a dataset.

The objective is to apply this function to each strain-assay combination, thus getting *one plot* per combination. We can check that this function works as expected for a single combination using our friend dplyr:

which works because plot_this takes a data frame as first argument.

Now that we are happy with out single-plot function, we tidyr::nest our data frame into all the relevant combinations of strain and assay, and we purrr::map through the resulting list-column to produce many ggplots in one go:

```
newdata <- data %>%
  group_by(assay, strain) %>%
  nest() %>%
  mutate(fig = map(data, plot_this))
newdata
#> # A tibble: 6 x 4
#> # Groups: strain, assay [6]
#> strain assay data fig
```

```
<chr>
               <chr> <chr>>
                                         \langle list \rangle
#> 1 strain 1 test 1 <tibble [72 x 5]> <qq>
#> 2 control test 1 <tibble [48 x 5]> <qq>
#> 3 strain 2 test 1 <tibble [48 x 5]> <qq>
#> 4 strain 2 test 2 <tibble [46 x 5]> <qq>
#> 5 strain 1 test 2 <tibble [48 x 5]> <gg>
#> 6 control test 2 <tibble [48 x 5]> <gg>
```

where the new list-column fig is a list of ggplot objects, that we can check individually: 1437

newdata\$fig[[1]]

Looks purrrfect.

1438

1439

1441

If you ask yourself why going through this hassle whith only two assays and three 1440 strains, just think about a case where you would have hundreds of e.g. simulations, sequences, field sites or study species. 1442

Let us go a bit further. Now we want to combine plots for each strain into one 1443 figure per assay. We also want to give the resulting combined plot a figure file name, and save all the figures. There we go: 1445

```
newdata <- newdata %>%
  select(-data) %>% # just to clean up a bit
  group_by(assay) %>%
  nest() %>%
  mutate(combifig = map(data, ~ wrap_plots(.x$fig)))
newdata
#> # A tibble: 2 x 3
#> # Groups:
              assay [2]
     assay data
                             combifig
     <chr> <chr> list>
                             t>
#> 1 test 1 <tibble [3 x 2]> <patchwrk>
#> 2 test 2 <tibble [3 x 2]> <patchwrk>
```

Note that we use the formula-way of passing functions to map (using ~), which is more succinct than the lambda way (using an anonymous function function(x)

wrap_plots(x)), and where .x is interpreted as an element of the list we iterate through (here the list-column data). Please refer to the purrr documentation for more details.

As we can see, we have created a new list-column combifig, filled with patchwork objects, i.e. combined plots:

newdata\$combifig[[1]]

We could of course further customize the assembly of plots, but we refer the reader to the patchwork documentation for this.

Last step, preparing file names and saving the figures, using old friends from the tidyverse:

```
library(glue)
newdata %>%
  mutate(figname = glue("data/figure_{str_replace(assay, ' ', '_')}.png")) %>%
  mutate(saved = walk2(figname, combifig, ggsave))
#> # A tibble: 2 x 5
#> # Groups:
               assay [2]
     assay data
                                        figname
                             combifig
                                                              saved
                                        <glue>
                             t>
     <chr>
           t>
                                                              <qlue>
#> 1 test 1 <tibble [3 x 2]> <patchwrk> data/figure_test_1.p~ data/figure_test_1.p~
#> 2 test 2 <tibble [3 x 2]> <patchwrk> data/figure test 2.p~ data/figure test 2.p~
```

5.12 Want more?

ggplot2 is undoubtedly one of the largest chunks of the tidyverse. Here we tried to provide a global understanding of how it works, but we could not dig

into all possible functions it has (this would take us days). Hopefully now you are armed with the necessary knowledge to be able to find the missing pieces you need.

Some things, however, are missing from ggplot2. Fortunately, there are many of 1464 extensions building on ggplot2 that respect the same grammar. Some of them 1465 implement new geoms (e.g. such as ggridges for ridge-density plots, ggradar 1466 for radial plots, or gghalves for mixes of geoms), others combine plots together 1467 (examples cited above), offer more complex themes (e.g. ggnewscale for multiple scales of the same type to coexist, or ggdark for a dark background), deal 1469 with complicated objects that are not trivial to fit in data frames (e.g. ggtree for tree-like objects or ggraph for networks), or provide shortcuts to quickly pro-1471 duce publication-ready figures for common plot layouts and their corresponding statistical analyses (e.g. ggpubr, ggrapid or GGally). There are even packages 1473 for animated graphics (gganimate), interactive plot building (esquisse) or 3D 1474 surface plotting (rayshader). See the links below! 1475

5.13 References

1477

1478

1479

1481

1482

1483

- The ggplot2 website where you can find links to other resources
- The ggplot2 cheatsheet
- The dedicated chapter in R for Data Science
- A non-exhaustive list of extensions at this link
- The R graph gallery for inspiration
 - Hadley's article explaining the grammar of graphics
- The patchwork documentation
 - The ggtree and ggraph packages

Chapter 6

1515

* Applications

```
>KU215420.1|Felinecoronavirus|Feliscatus|Belgium|2013|Envelope
    ATGATGTTTCCTAGGGCATTTACTATCATAGATGACCATGGTATGGTTGTTAGTGTCTTC
    >KP143511.1|Felinecoronavirus|Feliscatus|UnitedKingdom|2013|Envelope
1489
    {\tt ATGATGTTTCCTAGGGCATTTACTATCATAGACGACCATGGTATGGTTGTTAGTGTCTTC}
    >sp|PODTC2|SPIKE_SARS2 Spike glycoprotein OS=Severe acute respiratory syndrome coronavirus 2 OX=2
    MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFS
1492
    >sp|PODTC5|VME1_SARS2 Membrane protein OS=Severe acute respiratory syndrome coronavirus 2 OX=2697
    MADSNGTITVEELKKLLEQWNLVIGFLFLTWICLLQFAYANRNRFLYIIKLIFLWLLWPV
1494
1495
    # Not just R
1497
1498
     * egrep
1499
     * sed
1500
     * ls
1501
    # Dialects
1503
    Different flavors!
1505
1506
     * POSIX
1507
     * perl
1509
    # Many in R
1510
1511
     * `egrep`
1512
     * `gsub`
1513
     * `std::string `
1514
```

```
1516
     # Regular expressions and testthat
1517
     are_fasta_filenames <- function() { # ... pattern = ".*\.(fas|fasta|FAS|FASTA)$"
1518
     # ... }
1519
     is_xml_opening_tag <- function() { # ... pattern = "<[A-Za-z_]*" # ... }
1520
     is_xml_closing_tag <- function() { # ... pattern = "</[A-Za-z_]*>" # ... }
1521
     is_ns_mcmc <- function() { # ... pattern = ".beast.gss.NS." # ... }
1522
     is_dna_seq <- fucntion() { # ... pattern = "[acgt]*")[1, 1] # ... }
1523
     \label{eq:time_str_to_n_sec} $$ time_str_to_n_sec <- function() { $\#$ ... pattern = "((.)-)?(..):(..):(..)" $\#$ ... } $$
1524
     is_on_peregrine_worker_node <- function() { pattern = "pg-node[0-9]{3}" }
1525
     is relevant title <-function() { pattern = "(evolutio|immunolo|speciation)" }
1526
     is_jar_path <- function() { pattern = "(.*/)?(launcher|beast) \.jar$") }
1527
     get_mhcnuggets_version <- function() { pattern = "Version: (.*)" }
1528
     get\_pureseqtm\_version.R <- function() { pattern = "v[[:digit:]] \. [[:digit:]] {1,2}"}
1529
1530
     create\_covid\_fig <- function() { pattern = "..\|.\/(.)_SARS2" }
1531
     collect_run_times <- function() { pattern = "State.*: (CANCELLED|COMPLETED|RUNNING)"
1532
1533
     collect_run_times <- function() { pattern = "Used CPU time .:.((.-)?..:...)" }
1534
     thesis synthesis create figures <- function() { pattern = "^.*\.(R|Rmd|java|cpp|h)$"
    } "'
1536
```

6.1 Goal

1537

1539

1541

1538 In this chapter, you will learn:

- How to express your ideas as a regular expression
- Verify that you indeed did so

6.2 Why is this important?

Knowing the basics of regular expressions, prevents you having to hand-craft functions to detect patterns in any text.

Being able to verify your own assumptions allows you to speed up any development of any code. It is estimated that 80-90% of all the time, we are debugging our code. Being good at testing, is the way to become faster.

6.3. OVERVIEW 131

6.3 Overview

In this chapter, we will first start by writing and testing code to detect a Dutch zip code.

After this, we will learn some more complex expressions, so you understand most when searching the internet.

¹⁵⁵² 6.4 What are regular expressions?

A regular expression 'is a sequence of characters that define a search pattern'.

Such a pattern may be a zip code, a date, or any other text of which you can

say: 'this is not just text, it is a [something]'.

For example, take a Dutch zip code: 9747 AG. Dutch zip code have four digits, a space and then two uppercase alphabet characters.

$_{558}$ 6.5 Our first test

The testthat package is the Tidyverse package to write tests.

```
library(testthat)
```

1560 All test functions start with expect_, for example:

```
expect_true("cat" != "dog")
expect_equal(1 + 1, 2)
```

6.6 Our first Dutch zip code tests

We will be writing the function is_dutch_zip_code to determine if a piece of text matches a Dutch zip code.

First, as is good practice, we will be writing the tests:

```
expect_true(is_dutch_zip_code("1234 AA"))
expect_true(!is_dutch_zip_code("1234AA"))
expect_true(!is_dutch_zip_code(" 1234 AA"))
expect_true(!is_dutch_zip_code(" 1234 AA"))
expect_true(!is_dutch_zip_code("1234 AA "))
expect_true(!is_dutch_zip_code("1234 aa"))
expect_true(!is_dutch_zip_code("nonsense"))
```

Chapter 7

Programming in the tidyverse

Every use case is ridiculous until it happens to you.

```
1575 Load the packages for the day.
library(tidyverse)
library(rlang)

1576 A function to look at errors.

try_this <- function(ex) {
   tryCatch(
       expr = {
       ex
   },
   error = function(e) {</pre>
```

```
print(glue::glue(as.character(e), "\n"))
 )
}
```

7.1 An exlanation of the problem

What the issue is 7.1.1

#> # A tibble: 1 x 1 $mean_mass$

<dbl> *#> 1 156882*.

#>

```
Get some data from Phylacine, and attempt to select or filter.
    # read in phylacine data
    data = read_csv("data/phylacine_traits.csv")
    # regular filtering
    small_mammals = data %>%
      filter(Mass.g < 1000)
    # filtering on a string
    small_mammals_too = data %>%
      filter("Mass.g" < 1000)</pre>
    Examine small_mammals and small_mammals_too to check whether they are
    as expected.
    # count rows
    map_int(list(sm_1 = small_mammals, sm2 = small_mammals_too),
            nrow)
    #> sm_1 sm2
    #> 4381
    The difference in the number of rows is because dplyr::filter could not un-
    derstand the string "Mass.g" as a variable in the dataframe.
1583
    This is because the tidyverse, through its tidyselect package, makes a dis-
1584
    tinction between "Mass.g", and Mass.g.
    A better explanation of (some of) the theory behind this can be found here:
    Programming with dplyr.
1587
    The same issue arises with functions such as dplyr::summarise and
    dplyr::group_by.
    # summarise using an unquoted variable
    summarise(data,
               mean_mass = mean(Mass.g))
```

```
# this will print a warning
   summarise(data,
             mean mass = mean("Mass.g"))
    #> Warning in mean.default("Mass.g"): argument is not numeric or logical: returning
    #> # A tibble: 1 x 1
    #> mean mass
            <db1>
    #>
    #> 1
              NA
   7.1.2 Why the issue is a problem
   Consider an analysis pipeline as follows.
1591
   data %>% select variables %>% summarise by groups
   data %>%
      select(Mass.g, Diet.Plant, Order.1.2) %>%
      group_by(Order.1.2) %>%
      summarise_all(.funs = mean) %>%
     head()
    #> # A tibble: 6 x 3
    #> Order.1.2 Mass.g Diet.Plant
    #> <chr>
                           < db l >
                                      <db1>
   #> 1 Afrosoricida 306.
#> 2 Carnivora 47905.
                                        0.947
                                      14.1
    #> 3 Cetartiodactyla 1854811.
                                       76.2
    #> 4 Chiroptera 49.1
                                      27.3
    #> 5 Cinqulata
                        235529.
                                       43.0
    #> 6 Dasyuromorphia
                            748.
                                        1.09
   Now consider that this analysis pipeline is repeated many times in your docu-
   ment. Consider also that a well intentioned person has renamed the dataframe
1594
   columns.
1595
   data <- data %>%
      `colnames<-`(str_replace_all(colnames(data), "\\.", "_") %>%
                     str_to_lower %>%
                     str_remove("_1_2"))
   The group-summarise code above will no longer work.
   try_this(ex =
        data %>%
          select(Mass.g, Diet.Plant, Order.1.2) %>%
          group by (Order.1.2) %>%
          summarise_all(.funs = mean) %>%
```

```
head()
)
#> Error: Can't subset columns that don't exist.
#> x Column `Mass.g` doesn't exist.
```

This illustrates the problem in part: when the columns to be operated upon are unknown to the programmer, much of basic tidyverse code cannot be generalised to be used with any dataframe.

7.1.3 Passing variables as strings is (also) an issue

The variables to be operated on could be given as strings, perhaps as the argument to a function, or as a global variable. This way, a single global vector could contain the grouping variables for all further summarise procedures.

This runs into the problem identified earlier.

In the case of a standard filter %>% group %>% summarise pipeline, the function's operations are evident. It must filter a dataframe based on a/some column(s), and then summarise by groups. The filter to be applied, the variables to group by, and the variables to be summarised should be passed as function arguments — just how this is to be done is not immediately obvious.

7.2 Flexible selection is easy

 $_{1611}$ Selection often precedes data operations, but is not part of the pipeline dealt $_{1612}$ with further.

This is because dplyr::select appears to work on both quoted and unquoted variables, but in general some useful select helpers such as dplyr::all_of should be used. These straightforward helper functions significantly expand

select's flexibility and ease of use, and are not covered here. See the select help for more information. 1617

A first attempt at a flexible function

The attempt below to write such a function, which gives the mean and confidence intervals of groups is likely to fail. 1620

```
# define a ci function
ci \leftarrow function(x, ci = 95) {
  qnorm(1 - (1 - ci / 100)/2) * sd(x, na.rm = TRUE) / sqrt(length(x))
custom_summary <- function(data, filters, grouping_vars, summary_vars) {</pre>
  data %>%
    filter(filters) %>%
    group_by(grouping_vars) %>%
    summarise(mean = mean(summary_vars),
              ci = ci(summary_vars))
}
```

7.3.1Failure of the first attempt

1624

```
# this is going to fail, so look at the error message
try_this(ex = custom_summary(data,
                   filters = list(mass_g > 1000),
                   grouping_vars = list(order, family),
                   summary_vars = list(diet_plant))
         )
#> Error: Problem with `filter()` input `..1`.
#> x object 'mass_g' not found
#> i Input `..1` is `filters`.
```

This function initially failed because filter could not find mass_g in the dataframe. This is because mass_g is treated as an independent R object, while 1623 the function should instead treat it as a variable in a dataframe.

The difference between so-called data and environment variables is explained 1625 better at the rlang and tidyeval websites and tutorials linked at the end of 1626 this chapter. It is this difference that prevents filter from correctly interpreting 1627 mass_g. 1628

7.3.2 Passing arguments as strings doesn't help

The example below tries to get filter to work. What could be tried? One option is to attempt passing the filtering process as a string argument, i.e., "mass_g > 1000".

While this doesn't work, it is on the right track, which is that the filters argument needs some extra work beyond changing the type.

7.3.3 None of the other arguments will be successful

filter was the first failure, after which it stopped further evaluation, but none of the steps of the custom function would have worked, for the same reason filter would not have worked: all the arguments need some work before they can be passed to their respective functions.

7.4 Flexible filtering in a function

The first thing to try is to change how filter uses the argument passed to it. Here, the argument filters is passed as a character vector, and is set by default to filter out mammals with masses below 1 kg.

The argument could be passed as a list, but the rlang::parse_exprs function works on vectors, not lists. The conversion between them is trivial for single level lists with atomic types (purrr::as_vector).

A brief detour: Expressions in R

A full explanation of R works under the hood would take a very long time. A working knowledge of how this working can be exploited is usually sufficient to use most of R's functionality.

R expressions are one such. They represent a promise of R code, but without being evaluated. Any string can be parsed (interpreted) as an R expression.

What does rlang::parse_exprs do? It interprets a string as an R command.
This expression can then be evaluated later. Consider the following, where a is assigned the numeric value 3.

1657

1658

1659

1661

1662

1663

1665

1667

```
# a is assigned
a = 3
# parsed but not evaluated
rlang::parse_expr("a + 3")
\#> a + 3
# evaluated
rlang::parse_expr("a + 3") %>% eval
#> [17 6]
Here, a + 3 was converted to an expression in the second command, and only
evaluated in the third.
Unquoting with !!!
R expressions underlie R code. Their evaluation can be forced inside another
function using the special operators !! and !!!, for single and multiple R
expressions respectively.
        Flexible filtering using expressions
7.4.1
Consider the case where mammals below 1 kg body mass are to be excluded.
The dplyr code would look like this:
filter(data, mass_g > 1000)
This fixes both the variable to be filtered by, as well as the cut-off value. This
can be made flexible for a custom function that allows any kind of filtering.
custom_summary = function(data,
                            filters = c("mass_g > 1000")) {
  # THIS IS THE IMPORTANT BIT
  filters = rlang::parse_exprs(filters)
  data %>%
    filter(!!!filters)
Try this function with single and multiple filters.
# mammals above a kilo
custom_summary(data,
                filters = c("mass_g > 1000")) %>%
  select(binomial, mass_g) %>%
  head()
#> # A tibble: 6 x 2
```

```
#>
    binomial
                            mass_g
    <chr>
                             <dbl>
                             1075
#> 1 Acerodon_jubatus
#> 2 Acinonyx_jubatus
                            46700
#> 3 Acratocnus odontrigonus 22990
#> 4 Acratocnus ye
                            21310
#> 5 Addax_nasomaculatus
                            70000.
#> 6 Aepyceros_melampus
                            52500.
# mammals between 250 and 500 g and which are mostly carnivorous
custom summary(data,
              filters = c("between(mass_g, 250, 500)",
                          "diet plant < 10")) %>%
 select(binomial, mass_g, diet_plant) %>%
 head()
#> # A tibble: 6 x 3
                           mass_g diet_plant
   binomial
                                   <db1>
   <chr>
#>
                            <db1>
#> 1 Chrysospalax_trevelyani 426.
#> 2 Cyclopes_didactylus 330.
#> 3 Desmana_moschata
                             383
                                           0
#> 4 Dologale_dybowskii
                              350
                                           0
#> 5 Hydromys_chrysogaster
                              480.
                                           0
#> 6 Hyosciurus_heinrichi
                              296
                                           0
```

The function filter correctly processes the string passed to filter the data.

7.5 Flexible grouping in a function

Just as the exact filtering approach can be controlled from a single string vector in the example above, the grouping variables can also be stored and passed as arguments using the ... (dots) argument. Dots are a convenient way of referring to all unnamed arguments of a function. Here, they are used to accept the grouping variables.

7.5.1 Using ... and 'forwarding'

7.5.2 Passing grouping variables as strings

In the previous example, the grouping variables were passed as unquoted variables, then enquoted and parsed, after which they were applied. An alternative way of passing arguments to a function is as a string vector, i.e, grouping_vars = c("var_a", "var_b).

This can be done by interpreting the string vector as R symbols using rlang::syms. It could also be done by treating them as a full expression using the previously covered rlang::parse_exprs. However, both methods must use an unquoting-splice (!!!), i.e., force the evaluation of a list of R expressions.

7.5.3 Using rlang::syms

1678

1684

1686

```
head()

#> # A tibble: 6 x 3

#> # Groups: order [2]

#> order family mean_mass

#> <chr> <chr> <chr> < chr> < chr> < chr> < chr> < 1 Afrosoricida Tenrecidae 13220

#> 2 Carnivora Ailuridae 4900

#> 3 Carnivora Canidae 10502.

#> 4 Carnivora Eupleridae 5853.

#> 5 Carnivora Felidae 52801.

#> 6 Carnivora Herpestidae 2334.
```

1688 7.5.4 Using rlang::parse_exprs

```
custom_summary = function(data,
                          filters = c("mass_g > 1000"),
                          grouping_vars) {
  # deal with groups
  grouping_vars = rlang::parse_exprs(grouping_vars)
  data %>%
    filter(!!!rlang::parse_exprs(filters)) %>%
    # this is the important bit
    group_by(!!!grouping_vars)
}
custom summary(data,
               filters = c("mass_g > 1000"),
               grouping_vars = c("family", "iucn_status")
              ) %>%
  summarise(mean_mass = mean(mass_g)) %>%
 head()
#> # A tibble: 6 x 3
#> # Groups: family [5]
\#> family iucn_status mean_mass \#> <chr> <chr> <dbl>
#> 1 Ailuridae EN
                                  4900
#> 2 Anomaluridae DD
                                  1770
#> 3 Antilocapridae EP
                                40503.
#> 4 Antilocapridae LC

#> 5 Antidae LC
                                46083.
                                 1060
#> 5 Aotidae LC
#> 6 Aplodontiidae LC
                                  1004
```

7.6 Flexible summarising in a function

Summarising using string expressions has been around in the tidyverse for a very long time, and summarise_at is a function most users are familiar with, along with its variants summarise_if, summarise_all

$_{\scriptscriptstyle{593}}$ 7.6.1 $_{ m Using}$ <code>dplyr::summarise_at</code>

Simply pass a string vector to the .vars argument of summarise_at, while passing a list, named or otherwise, of functions to the .funs argument.

```
custom_summary = function(data,
                        filters = c("mass_g > 1000"),
                        grouping_vars,
                        summary_vars,
                        summary_funs) {
  # deal with groups
  grouping_vars = rlang::parse_exprs(grouping_vars)
 data %>%
   filter(!!!parse_exprs(filters)) %>%
   group_by(!!!grouping_vars) %>%
   # important bit
   summarise_at(.vars = summary_vars,
                .funs = summary_funs)
}
custom_summary(data,
              grouping_vars = c("order", "family"),
              summary_vars = "mass_g",
              summary_funs = list(this_is_a_mean = mean, sd))
#> # A tibble: 113 x 4
#> # Groups: order [24]
               family
#> order
                           this\_is\_a\_mean fn1
#> <chr>
                                   <dbl> <dbl>
                <chr>
                                           NA
#> 1 Afrosoricida Tenrecidae
                                    13220
#> 2 Carnivora Ailuridae
                                   4900
                                             NA
#> 3 Carnivora Canidae
                                   10502. 11618.
#> 4 Carnivora Eupleridae
                                    5853 . 6234 .
#> 5 Carnivora Felidae
                                   52801. 88201.
#> 6 Carnivora Herpestidae
                                    2334. 937.
#> # ... with 107 more rows
```

7.6.2 Using the across argument for summary variables

dplyr 1.0.0 had summarise_* superseded by the across argument to summarise. This works somewhat differently. The example below shows how the mean of a trait of mammal groups can be found.

This example makes use of embracing using {{ }}, where the double curly braces indicate a promise, i.e., an expectation that such a variable will exist in the function environment.

```
custom_summary = function(data,
                         filters = c("mass_g > 1000"),
                         grouping_vars,
                         summary_vars) {
  # deal with groups
  grouping_vars = parse_exprs(grouping_vars)
  data %>%
   filter(!!!parse_exprs(filters)) %>%
   group_by(!!!grouping_vars) %>%
    # important bit
    summarise(across({{ summary_vars }},
             ~ mean(.)))
}
custom_summary(data,
              grouping_vars = c("order", "family"),
              summary_vars = c(mass_g, diet_plant)) %>%
 head()
#> # A tibble: 6 x 4
#> # Groups: order [2]
#>
   order
                family
                            mass q diet plant
#>
   \langle chr \rangle
                 <chr>
                            < db l >
                                       <db1>
#> 1 Afrosoricida Tenrecidae 13220
                                        4
#> 2 Carnivora Ailuridae 4900
                                        80
#> 3 Carnivora Canidae 10502.
                                      15.0
#> 4 Carnivora Eupleridae 5853.
                                       2.67
#> 5 Carnivora Felidae
                             52801.
                                        0.348
#> 6 Carnivora Herpestidae 2334.
                                        9.86
```

across also accepts multiple functions just as summarise_ did. This works as follows.

```
# mean and sd
data %>%
  group_by(order, family) %>%
```

```
summarise(across(c(mass_g, diet_plant),
                      list(~ mean(.),
                            ~ sd(.))
              ) %>%
  head()
#> # A tibble: 6 x 6
#> # Groups: order [2]
              family
                              #> order
     < chr >
                   < chr >
                                                                   0
                                                                                   0
#> 1 Afrosoricida Chrysochloridae 60.7 86.6
#> 2 Afrosoricida Tenrecidae 449. 2197. 1.5

#> 3 Carnivora Ailuridae 4900 NA 80

#> 4 Carnivora Canidae 10268. 11568. 16.0

#> 5 Carnivora Eupleridae 3777. 5364. 4.6

#> 6 Carnivora Felidae 52801. 88201. 0.348
                                                                                   6.83
                                                                                  NA
                                                                                  18.0
                                                                                   6.72
                                                                                   2.36
```

7.6.3 Summarise multiple variables using ...

1706

1710

Here, the unquoted and unnamed variables passed to the function are captured by ... and enquos-ed, i.e, their evaluation is delayed. Then the variables are forcibly evaluated within the mean function, and this expression is captured using expr. Since there are multiple variables to summarise, these expressions are stored as a list.

```
custom_summary = function(data,
                          grouping_vars,
                          filters,
                           ...) {
  # deal with groups
  grouping_vars = rlang::parse_exprs(grouping_vars)
  # deal with summary variables
  summary_vars = rlang::enquos(...)
  # apply the summary function to the variables
  summary_vars <- purrr::map(summary_vars, function(var) {</pre>
    rlang::expr(mean(!!var, na.rm = TRUE))
  })
  data %>%
    filter(!!!rlang::parse_exprs(filters)) %>%
    group_by(!!!grouping_vars) %>%
    # important bit
    summarise(!!!summary_vars)
```

```
}
custom_summary(data,
               grouping_vars = c("order", "family"),
               filters = "mass_g > 10",
               mass_g, diet_plant) %>%
 head()
#> # A tibble: 6 x 4
#> # Groups: order [2]
   order
               family
                               `mean(mass_g, na.rm = T~ `mean(diet_plant, na.rm = ~
   <chr>
#>
                <chr>
                                                  <dbl>
                                                                              <db1>
#> 1 Afrosorici~ Chrysochlori~
                                                   60.7
                                                                              0
#> 2 Afrosorici~ Tenrecidae
                                                  597.
                                                                              2
#> 3 Carnivora Ailuridae
                                                                             80
                                                 4900
#> 4 Carnivora Canidae
                                                                             16.0
                                                10268.
#> 5 Carnivora Eupleridae
                                                 3777.
                                                                              4.6
#> 6 Carnivora
               Felidae
                                                52801.
                                                                              0.348
```

expr and enquo

1711

expr and enquo are essentially the same, defusing/quoting (delaying evaluation)
of R code. expr works on expressions supplied by the primary user, while enquo
works on arguments passed to a function. When in doubt, ask whether the
expression to be quoted has entered the function environment as an argument.
If yes, use enquo, and if not expr. The plural forms enquos and exprs exist for
multiple arguments.

7.6.3.1 Correct the names of summary variables

The example above returns summary variables that are not assigned a name.

The enquos function can assign the name from the variable names, so

mean(mass_g) is returned as mass_g. Since it is useful to add a tag to make

clear what the summary variable is (mean, variance etc.) an extra glue step is

added to assign informative names to the summary variables.

```
summary_vars <- purrr::map(summary_vars, function(var) {</pre>
    rlang::expr(mean(!!var, na.rm = TRUE))
  })
  # add a prefix to the summary variables
  names(summary_vars) <- glue::glue('mean_{names(summary_vars)}')</pre>
  data %>%
    filter(!!!rlang::parse_exprs(filters)) %>%
    group_by(!!!grouping_vars) %>%
    # important bit
    summarise(!!!summary_vars)
}
custom_summary(data,
                grouping_vars = c("order", "family"),
                filters = "mass_g > 10",
                mass_g, diet_plant) %>%
  head()
#> # A tibble: 6 x 4
#> # Groups: order [2]
                family
#> order
                                    mean_mass_g mean_diet_plant
#> <chr>
                   <chr>
                                < db \, l > < db \, l >
#> 1 Afrosoricida Chrysochloridae 60.7
#> 2 Afrosoricida Tenrecidae
                                          597.
                                                             2
#> 2 Afrosoricida Tenreciade

#> 3 Carnivora Ailuridae 4900

#> 4 Carnivora Canidae 10268.

#> 5 Carnivora Eupleridae 3777.

#> 6 Carnivora Felidae 52801.
                                                            80
                                                           16.0
                                                            4.6
                                                             0.348
```

7.6.4 Summarise with multiple functions

1724

The final step is to pass multiple summary functions to the summary variables.

Unlike the earlier example using summarise(across(vars, funs)), the goal here is to apply one function to each variable.

This is done by passing the functions and the variables on which they should operate as strings, and using string interpolation via glue to construct a coherent R expression. This expression is then named and evaluated.

```
# deal with groups
  grouping_vars = parse_exprs(grouping_vars)
  # deal with summary variables
  # summary_vars = # enquos(..., .named = TRUE)
  # apply the summary function to the variables
  summary_exprs <- parse_exprs(glue::glue('{functions}({summary_vars}, na.rm = TRUE)')</pre>
  # add a prefix to the summary variables
  names(summary exprs) <- glue::glue('{functions} {summary vars}')</pre>
  data %>%
    filter(!!!parse_exprs(filters)) %>%
    group_by(!!!grouping_vars) %>%
    # important bit
    summarise(!!!summary_exprs)
}
custom_summary(data,
             grouping_vars = c("order", "family"),
             filters = "mass g > 10",
             functions = c("mean", "var"),
             summary_vars = c("mass_g", "diet_plant")) %>%
  head()
60.7
                                                0
                                               61.8
                                               NA
                                             325.
                                               45.2
                                                5.57
```

7.7 Further resources

1732

- dplyr: https://dplyr.tidyverse.org/index.html
- Tidy evaluation: Superseded and archived, but still useful https: //tidyeval.tidyverse.org/
 - rlang: https://rlang.r-lib.org/