Notes of Advanced Physical Chemistry II

hebrewsnabla

January 10, 2020

Contents

2	Grou	up Theory: the Exploitation of Symmetry					
	12.1	1 The Exploitation of the Symm of a Mol Can Be Used to Significantly Simplify					
		Numerical Calculations					
	12.2	The Symm of Mols Can Be Described by a Set of Symm Elements					
		Identity					
		Rotation					
		Reflection					
		Inversion					
		Rotation Reflection					
		12.2.1 Point Groups of Interest to Chemists					
	12.3	The Symm Operators of a Mol Form a Group					
		12.3.1 Point Group for Some Mols					
		No Symm Axis					
		C_n					
		S_n					
		C_{nv}					
		C_{nh}					
		D_n					
		D_{nd}					
		D_{nh}					
		T_d					
		O_h					
		I_h					
	12.4	Symm Operators Can Be Represented by Matrices					
	12.5	The C_{3v} Point Group Has a 2-D Irreducible Representation					
	12.6	The Most Important Summary of the Properties of a Point Group Is Its Character					
		Table					
		basis					
		class					
		notations					
	12.7	Several Mathematical Relations Involve the Characters of Irreducible Representation					
		notations					
		order					
		character					
		reduce a given reducible repr Γ					
	12.8	Use Symm Arguments to Predict Which Elements in a Secular Det Equals 0					

	12.9 Generating Operators Are Used to Find LCAOs That Are Bases for IrRepr $$
13	Molecular Spectroscopy
	13.1
	13.2 Rotational Transitions Accompany Vibrational Transitions
	13.3
	13.4
	13.5 Overtones Are Observed in Vibrational Spectra
	13.6 Electronic Spectra Contains Electronic, Vibrational and Rotational Info
	13.7 Franck-Condon Principle Predicts the Relative Intensities of Vibronic Transitions
	13.8 The Rotational Spectrum of a Polyatomic Mols Depends Upon the Principal Mo-
	ments of Inertia of the Mol
	13.9 The Vibrations of Polyatomic Mols Are Represented by Normal Coordinates
	13.10Normal Coordinates Belong to Irreducible Representations of Mol Point Groups .
	13.11Selection Rules Are Derived from TD Perturbation Theory
	13.12The Selection Rule in the Rigid-Rotator Approx Is $\Delta J = \pm 1$
	13.13 The Harmonic-Oscillator Selection Rule Is $\Delta \nu = \pm 1$
	13.13 The Harmonic-Oscinator Selection reals $\Delta \nu = \pm 1$
4	Nuclear Magnetic Resonance Spectroscopy
	14.1 Nuclei Have Intrinsic Spin Angular Momenta
	14.2 Magnetic Moments Interact with Magnetic Fields
	14.3
	14.4 The Magnetic Field Acting upon Nuclei in Mols Is Shielded
	14.4 The Magnetic Field Acting upon Nuclei in Mois is Smelded
	14.5 Chemical Shifts Depend upon the Chemical Environment of the Nucleus
	14.6 Spin-Spin Coupling
	14.7 Spin-Spin Coupling Between Chemically Equivalent Protons
	14.8 The $n+1$ Rule
	14.9 2nd-Order Spectra
.5	Lasers, Laser Spectroscopy and Photochemistry
	15.1
	15.2 The Dynamics of Spectroscopic Transitions between the Electronic States
	absorption
	emission
	15.3 Population Inversion, 2-Level System
	15.4 Population Inversion, 3-Level System
	15.5 What is Inside a Laser?
	15.6 He-Ne Laser
	15.7 High-Resolution Laser Spectroscopy
	15.8 The Dynamics of Photochemistry Process
6	The Properties of Gases
7	The Boltzmann Factor and Partition Functions
-	17.1
	17.2 Partition Function
	17.2 Tartition Function 17.3 Thermodynamic Quantities
	17.3.1 Energy
	17.3.2 Work and Heat
	17 / Prossure

	17.4.1 Heat Capacity
	17.4.2 Entropy
	17.5
	17.6 The Partition Function of a System of Independent, Distinguishable Mols 1
	17.7 The Partition Function of a System of Independent, Indistinguishable Mols 1
	17.8
18	Partition Functions and Ideal Gases
	18.1 The Translational PF of Monatomic Ideal Gas
	18.2 The Electronic PF
	18.3
	18.4 The Rotational PF
	Symmetry Number

Introduction

TA: 刘琼 G403

12 Group Theory: the Exploitation of Symmetry

Matrices

 $det(\mathbf{A}) = 0 \implies \mathbf{A}$ is a singular matrix.

- 12.1 The Exploitation of the Symm of a Mol Can Be Used to Significantly Simplify Numerical Calculations
- 12.2 The Symm of Mols Can Be Described by a Set of Symm Elements

E	
C_n	Rotation by $360^{\circ}/n$
σ	
i	
S_n	

Table 1: Symmetry elements and operators

Identity

Rotation

σ_h	horizontal
σ_v	vertical
σ_d	diagonal (vertical and bisects the angle between C_2 axis)

Table 2

Reflection

Inversion

Rotation Reflection

$$\hat{S}_n = \hat{\sigma}_h \times \hat{C}_n \tag{12.1}$$

12.2.1 Point Groups of Interest to Chemists

C_{nv}	
C_{nh}	Rotation by $360^{\circ}/n$
D_{nh}	
D_{nv}	
D_{nd}	
T_d	

Table 3: Symmetry elements and operators

The Symm Operators of a Mol Form a Group

A set of operators form a group if they satisfy:

- 1. closed under multiplication 乘法封闭
- 2. associative multiplication 乘法结合律
- 3. only one identity operator 单位元
- 4. everyone has only one inverse 逆元

12.3.1 Point Group for Some Mols

No Symm Axis

 C_1 – nothing C_s – σ

 $C_i - i$

 C_n

 S_n

 C_{nv} – C_n and $n\sigma_v$

 $C_{nh} - C_n$ and σ_h

 $D_n - C_n$ and $nC_2 \perp C_n$ e.g. 一点点交错的 C_3H_6, C_2 在 3 个角平分线处

 $D_{nd} - C_n(\text{also } S_{2n}) \text{ and } nC_2 \perp C_n \text{ and } n\sigma_d$

 D_{nh} – C_n and $nC_2 \perp C_n$ and σ_h

 T_d 主轴是 S_4

 O_h

 I_h

- 12.4 Symm Operators Can Be Represented by Matrices
- 12.5 The C_{3v} Point Group Has a 2-D Irreducible Representation
- 12.6 The Most Important Summary of the Properties of a Point Group Is Its Character Table

basis

class same characters - in a class.
of class = # of irred represtn.

notations

- 1. A:, B:, E:2D, T:3D
- 2. A_1 : symm wrt C_2/σ_v , A_2 : antisymm wrt that.
- 3. A': symm wrt σ_h , A'': antisymm wrt that.
- 4. A_g :, A_u :

12.7 Several Mathematical Relations Involve the Characters of Irreducible Representation

notations

XU G.X.	McQuarrie	
$D^{(\nu)}(R)$		
$\chi^{(\nu)}(R)$	$\chi_j(R)$	
$n_{ u}$	d_{j}	dimension of repr matrix
$a_{ u}$	a_{j}	
$\underline{}$	h	

Table 4

order

$$\sum_{\nu} n_{\nu}^2 = g \tag{12.2}$$

character

$$\sum_{R} D_{il}^{(\nu)} D_{jm}^{*(\mu)} = \frac{g}{n_{\nu}} \delta_{\mu\nu} \delta_{ij} \delta_{lm}$$

$$\tag{12.3}$$

$$\sum_{R} \chi^{(\nu)}(R) \chi^{*(\mu)}(R) = g \delta_{\mu\nu}$$
 (12.4)

$$\sum_{R} \chi^{(\nu)}(R) = 0 \quad (\nu \neq A_1)$$
(12.5)

reduce a given reducible repr Γ $\operatorname{Suppose}$

$$\chi(R) = \sum_{\nu} a_{\nu} \chi^{(\nu)}(R)$$
 (12.6)

thus

$$a_{\nu} = \frac{1}{g} \sum_{R} \chi(R) \chi^{(\nu)}(R)$$
 (12.7)

- 12.8 Use Symm Arguments to Predict Which Elements in a Secular Det Equals 0
- 12.9 Generating Operators Are Used to Find LCAOs That Are Bases for IrRepr

$$\widehat{\mathbf{P}}_{j} = \frac{d_{j}}{h} \sum_{\widehat{\mathbf{R}}} \chi_{j}(\widehat{\mathbf{R}}) \widehat{\mathbf{R}}$$
(12.8)

13 Molecular Spectroscopy

13.1

	micro	far IR	IR	visible & UV
f/Hz				
$\lambda/\mathrm{m} \ ar{ u}/\mathrm{cm}^{-1}$				
$\bar{ u}/\mathrm{cm}^{-1}$				
$E/\mathrm{J}\mathrm{mol}^{-1}$				
process				

Table 5

13.2 Rotational Transitions Accompany Vibrational Transitions

Vib & rot energy

$$\tilde{E} = G(\nu) + F(J) \tag{13.1}$$

$$= (v+1/2)\tilde{\nu} + \tilde{B}J(J+1) \tag{13.2}$$

selex rule:

$$\Delta v = \pm 1 \quad \Delta J = \pm 1 \tag{13.3}$$

P - left -
$$\Delta J = -1$$
 - wide
R - right - $\Delta J = +1$ - narrow

13.3

$$\tilde{B}_v = \tilde{B}_e - \tilde{\alpha}_e(v + 1/2) \tag{13.4}$$

$$\tilde{B}_0 > \tilde{B}_1 > \cdots \tag{13.5}$$

which makes P-branches wider.

13.4

$$F(J) = \tilde{B}J(J+1) - \tilde{D}J^2(J+1)^2 \tag{13.6}$$

 \tilde{D} :

13.5 Overtones Are Observed in Vibrational Spectra

$$G(v) = \tilde{\nu}_e \left(v + \frac{1}{2} \right) - \tilde{x}_e \tilde{\nu}_e \left(v + \frac{1}{2} \right)^2$$
(13.7)

 \tilde{x}_e : anharmonicity cons.

$$\tilde{v}_{obs} = \tilde{\nu}_e v - \tilde{x}_e \tilde{\nu}_e v(v+1) \tag{13.8}$$

v = 1, 2, ...

13.6 Electronic Spectra Contains Electronic, Vibrational and Rotational Info

$$\tilde{E} = n\tilde{u}_{el} + \tilde{\nu}_e(v + 1/2) - \tilde{x}_e\tilde{\nu}_e(v + 1/2)^2 + \dots (rot)$$
(13.9)

vibronic transitions:

 $0 \rightarrow 0$

$$\tilde{v}_{0,0} = \tilde{T}_e + \frac{1}{2} (\tilde{\nu}'_e - \tilde{\nu}''_e) - \frac{1}{4} (\tilde{x}'_e \tilde{\nu}' - \tilde{x}''_e \tilde{\nu}'')$$
(13.10)

- 13.7 Franck-Condon Principle Predicts the Relative Intensities of Vibronic Transitions
- 13.8 The Rotational Spectrum of a Polyatomic Mols Depends Upon the Principal Moments of Inertia of the Mol

$$\begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{pmatrix} \xrightarrow{\text{diagnalization}} \begin{pmatrix} I_A & & \\ & I_B & \\ & & I_C \end{pmatrix}$$

$$(13.11)$$

top	requisition
sph top	$2C_n, n \geq 3$
prolate symm top	
oblate symm top	
asymm	
	sph top prolate symm top oblate symm top

Table 6

- 13.9 The Vibrations of Polyatomic Mols Are Represented by Normal Coordinates
- 13.10 Normal Coordinates Belong to Irreducible Representations of Mol Point Groups Contribution to $\chi(R)$ per unmoved atom

$\hat{\mathbf{R}}$ contribution per unmoved atom

Table 7

Now we get Γ_{3N} .

Subtract the irreducible representations corresponding to translational (x, y, z) and rotational (R_x, R_y, R_z) degrees of freedom, we get Γ_{vib} .

13.11 Selection Rules Are Derived from TD Perturbation Theory

Consider a mol interacting w/ EM radiation. The EM field

$$\mathbf{E} = \mathbf{E}_0 \cos 2\pi \nu t \tag{13.12}$$

$$\widehat{H}^{(1)} = -\mu \cdot \mathbf{E} = -\mu \mathbf{E}_0 \left(e^{i 2\pi \nu t} + e^{-i 2\pi \nu t} \right) / 2$$
(13.13)

$$\Psi(t) = a_1(t)\Psi_1(t) + a_2(t)\Psi_2(t)$$
(13.14)

$$a_1(t) \widehat{\mathbf{H}}^{(1)} \Psi_1 + a_2(t) \widehat{\mathbf{H}}^{(1)} \Psi_2 = i \hbar \left(\Psi_1 \frac{\mathrm{d}a_1}{\mathrm{d}t} + \Psi_2 \frac{\mathrm{d}a_2}{\mathrm{d}t} \right)$$
 (13.15)

$$a_1(t) \left\langle \psi_2 \left| \widehat{\mathbf{H}}^{(1)} \right| \Psi_1 \right\rangle + a_2(t) \left\langle \psi_2 \left| \widehat{\mathbf{H}}^{(1)} \right| \Psi_2 \right\rangle = \mathrm{i} \, \hbar \left(0 + \frac{\mathrm{d} a_2}{\mathrm{d} t} \, \mathrm{e}^{-\mathrm{i} \, E t / \hbar} \right)$$
(13.16)

. . .

$$i\hbar \frac{\mathrm{d}a_2}{\mathrm{d}t} = e^{-i(E_1 - E_2)t/\hbar} \left\langle \psi_2 \left| \widehat{\mathbf{H}}^{(1)} \right| \psi_1 \right\rangle$$
 (13.17)

$$\frac{\mathrm{d}a_2}{\mathrm{d}t} \approx \dots \tag{13.18}$$

13.12 The Selection Rule in the Rigid-Rotator Approx Is $\Delta J=\pm 1$

$$\langle J', M' | \mu_z | J, M \rangle = \int_0^{2\pi} d\phi \int_0^{\pi} Y_{J'}^{M'*} \mu_z Y_J^M \sin\theta d\theta$$
$$= \dots$$
(13.19)

- 13.13 The Harmonic-Oscillator Selection Rule Is $\Delta \nu = \pm 1$
- 14 Nuclear Magnetic Resonance Spectroscopy
- 14.1 Nuclei Have Intrinsic Spin Angular Momenta
- 14.2 Magnetic Moments Interact with Magnetic Fields
- 14.3
- 14.4 The Magnetic Field Acting upon Nuclei in Mols Is Shielded
- 14.5 Chemical Shifts Depend upon the Chemical Environment of the Nucleus
- 14.6 Spin-Spin Coupling

$$\hat{\mathbf{H}} = -\gamma B_0 (1 - \sigma_1) \hat{\mathbf{I}}_{z_1} - \gamma B_0 (1 - \sigma_2) \hat{\mathbf{I}}_{z_2} + 2\pi J_{12} \hat{\mathbf{I}}_1 \cdot \hat{\mathbf{I}}_2$$
(14.1)

$$\widehat{\mathbf{H}}^{(0)} = -\gamma B_0 (1 - \sigma_1) \hat{\mathbf{I}}_{z1} - \gamma B_0 (1 - \sigma_2) \hat{\mathbf{I}}_{z2} \quad \widehat{\mathbf{H}}^{(1)} 2\pi J_{12} \hat{\mathbf{I}}_1 \cdot \hat{\mathbf{I}}_2$$
(14.2)

$$\psi_1^{(0)} = \alpha(1)\alpha(2)$$
 $\psi_2^{(0)} = \beta(1)\alpha(2)$ (14.3)

$$\psi_3^{(0)} = \alpha(1)\beta(2)$$
 $\psi_4^{(0)} = \beta(1)\beta(2)$ (14.4)

$$E_1^{(0)} = -\gamma B_0 \left(1 - \frac{\sigma_1 + \sigma_2}{2} \right) \qquad \qquad E_2^{(0)} = -\gamma B_0 (\sigma_1 - \sigma_2) \tag{14.5}$$

$$E_3^{(0)} = \gamma B_0(\sigma_1 - \sigma_2) \qquad \qquad E_4^{(0)} = \gamma B_0 \left(1 - \frac{\sigma_1 + \sigma_2}{2} \right) \tag{14.6}$$

perturbed to 1st order

$$E_1 = -\gamma B_0 \left(1 - \frac{\sigma_1 + \sigma_2}{2} \right) + \frac{2\pi J_{12}}{4} \tag{14.7}$$

$$E_2 = -\gamma B_0(\sigma_1 - \sigma_2) - \frac{2\pi J_{12}}{4} \tag{14.8}$$

$$E_3 = \gamma B_0(\sigma_1 - \sigma_2) - \frac{2\pi J_{12}}{4} \tag{14.9}$$

$$E_4 = \gamma B_0 \left(1 - \frac{\sigma_1 + \sigma_2}{2} \right) + \frac{2\pi J_{12}}{4} \tag{14.10}$$

Since

$$\nu_0 = \frac{\gamma B_0}{2\pi} \tag{14.11}$$

$$\nu_{1\to 2} = \nu_0 (1 - \sigma_1) - \frac{J_{12}}{2} \tag{14.12}$$

$$\nu_{1\to 3} = \nu_0 (1 - \sigma_2) - \frac{J_{12}}{2} \tag{14.13}$$

$$\nu_{2 \to 4} = \nu_0 (1 - \sigma_2) + \frac{J_{12}}{2} \tag{14.14}$$

$$\nu_{3\to 4} = \nu_0(1-\sigma_1) + \frac{J_{12}}{2} \tag{14.15}$$

14.7 Spin-Spin Coupling Between Chemically Equivalent Protons

14.8 The n+1 Rule

14.9 2nd-Order Spectra

Only for the case in which

$$J << \nu_0 |\sigma_1 - \sigma_2| \tag{14.16}$$

the n+1 spectra.

Lasers, Laser Spectroscopy and Photochemistry 15

15.1

The Dynamics of Spectroscopic Transitions between the Electronic States 15.2 absorption

$$-\frac{\mathrm{d}N_1(t)}{\mathrm{d}t} = B_{12}\rho_{\nu}(\nu_{12})N_1(t) \tag{15.1}$$

emission

- 15.3 Population Inversion, 2-Level System
- Population Inversion, 3-Level System
- 15.5 What is Inside a Laser?
- 15.6 He-Ne Laser
- High-Resolution Laser Spectroscopy

Hyperfine structure

15.8 The Dynamics of Photochemistry Process

def: quantum yield

$$\Phi = \frac{\text{# mols undergoing reaction}}{\text{# photons absorbed}}$$
 (15.2)

The Properties of Gases 16

17 The Boltzmann Factor and Partition Functions

17.1

17.2 Partition Function

$$Q = \tag{17.1}$$

$$Q =$$

$$p_j = \frac{e^{-E_j \beta}}{Q}$$

$$(17.1)$$

- 17.3 Thermodynamic Quantities
- 17.3.1 Energy
- 17.3.2 Work and Heat
- 17.4 Pressure
- 17.4.1 Heat Capacity
- 17.4.2 Entropy

17.5

17.6 The Partition Function of a System of Independent, Distinguishable Mols

$$Q(N, V, T) = \sum_{i,j,k,\dots} e^{-\beta(\varepsilon_i + \varepsilon_j + \varepsilon_k)} = \sum_i e^{-\beta\varepsilon_i} \sum_j e^{-\beta\varepsilon_j} \dots$$
 (17.3)

The Partition Function of a System of Independent, Indistinguishable Mols

$$Q(N, V, T) = \frac{q(V, T)^N}{N!}$$
(17.4)

17.8

$$\langle \varepsilon \rangle = \sum_{j} \frac{\varepsilon_{j} e^{-\beta \varepsilon_{j}}}{q} \tag{17.5}$$

$$\varepsilon = \varepsilon_i^{trans} + \varepsilon_i^{rot} + \varepsilon_k^{vib} + \varepsilon_l^{elec} \tag{17.6}$$

$$\varepsilon = \varepsilon_i^{trans} + \varepsilon_j^{rot} + \varepsilon_k^{vib} + \varepsilon_l^{elec}$$

$$\pi_{ijkl} = \frac{e^{-\beta \varepsilon_i^{trans}} e^{-\beta \varepsilon_j^{rot}} e^{-\beta \varepsilon_k^{vib}} e^{-\beta \varepsilon_l^{elec}}}{q_{trans} q_{rot} q_{vib} q_{elec}}$$
(17.6)

- Partition Functions and Ideal Gases 18
- The Translational PF of Monatomic Ideal Gas

$$q_{\rm trans} = \left(\frac{2\pi m k_{\rm B} T}{h^2}\right)^{3/2} T \tag{18.1}$$

- 18.2 The Electronic PF
- 18.3
- The Rotational PF

$$q_{\text{rot}} = \sum_{J=0} (2J+1) e^{-J(J+1)\Theta_{\text{rot}}/T}$$
 (18.2)

where

$$\Theta_{rot} = \frac{\hbar^2}{2Ik_{\rm B}} \tag{18.3}$$

At low $\Theta_{\rm rot}$

$$q_{\rm rot} = \dots = \frac{T}{\Theta_{\rm rot}} \tag{18.4}$$

Symmetry Number

$$q_{\rm rot} = \frac{T}{\sigma \Theta_{\rm rot}} \tag{18.5}$$

Spherical top

$$q_{\rm rot} = \frac{\sqrt{\pi}}{\sigma} \left(\frac{T}{\Theta_{\rm rot}}\right)^{3/2} \tag{18.6}$$