Class 24 DATA1220-55, Fall 2024

Sarah E. Grabinski

2024-10-30

Population Parameters versus Sample Statistics

Table 1: Sample statistics are used to estimate unknowable population parameters

Measure	Sample Statistic	Population Parameter
Mean	\bar{x}	μ
Proportion	\hat{p}	p
Difference in Means	$\bar{x}_1 - \bar{x}_2$	$\mu_1 - \mu_2$
Difference in	$\hat{p}_1 - \hat{p}_2$	$p_1 - p_2$
Proportions	-	-
Standard Deviation	s	σ

- Data is reliable and valid
 - $\blacktriangleright \bar{x}_{\rm observed} \approx \bar{x}_{\rm expected}$ or $\hat{p}_{\rm observed} \approx \hat{p}_{\rm expected}$ when data is reliable
 - $lackbox{} \bar{x}_{
 m observed} pprox \mu \ {
 m or} \ \hat{p}_{
 m observed} pprox p \ {
 m when} \ {
 m data} \ {
 m is} \ {\it valid}$

- Data is reliable and valid
 - $m{ar{x}}_{
 m observed}pproxar{x}_{
 m expected}$ or $\hat{p}_{
 m observed}pprox\hat{p}_{
 m expected}$ when data is reliable
 - igl| $\bar{x}_{
 m observed} pprox \mu$ or $\hat{p}_{
 m observed} pprox p$ when data is \emph{valid}
- Observations are independent and identically distributed

- Data is reliable and valid
 - $m{ar{x}_{
 m observed}}pproxar{x}_{
 m expected}$ or $\hat{p}_{
 m observed}pprox\hat{p}_{
 m expected}$ when data is reliable
 - igl| $ar{x}_{
 m observed} pprox \mu$ or $\hat{p}_{
 m observed} pprox p$ when data is *valid*
- Observations are independent and identically distributed
- Sufficient sample size
 - ▶ $n \ge 30$ for \bar{x} (means)
 - $ightharpoonup n \geq 20$, $n_{x=1} \geq 10$, & $n_{x=0} \geq 10$ for \hat{p} (proportions)

- Data is reliable and valid
 - $m{ar{x}}_{
 m observed} pprox ar{x}_{
 m expected}$ or $\hat{p}_{
 m observed} pprox \hat{p}_{
 m expected}$ when data is reliable
 - igl| $ar{x}_{
 m observed} pprox \mu$ or $\hat{p}_{
 m observed} pprox p$ when data is *valid*
- Observations are independent and identically distributed
- Sufficient sample size
 - $n \ge 30$ for \bar{x} (means)
 - $ightharpoonup n \geq 20$, $n_{x=1} \geq 10$, & $n_{x=0} \geq 10$ for \hat{p} (proportions)
- For means, the observed distribution in the sample approximates a normal distribution (less strict as $n \to \infty$)

The Central Limit Theorem

The distribution of the sample statistic \bar{x} or \hat{p} approximates the normal distribution N (population parameter, standard error) as $n \to \infty$.

The Central Limit Theorem

The distribution of the sample statistic \bar{x} or \hat{p} approximates the normal distribution N (population parameter, standard error) as $n \to \infty$.

- $ightharpoonup \bar{x} \sim N\left(\mu, \frac{\sigma}{n}\right)$
- $ightharpoonup \hat{p} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$

The Central Limit Theorem

The distribution of the sample statistic \bar{x} or \hat{p} approximates the normal distribution N (population parameter, standard error) as $n \to \infty$.

$$ightharpoonup \bar{x} \sim N\left(\mu, \frac{\sigma}{n}\right)$$

$$ightharpoonup \hat{p} \sim N\left(p, \sqrt{rac{p(1-p)}{n}}
ight)$$

The *sampling distribution* is normal with $\mu =$ sample statistic and $\sigma =$ standarderror.

Standard Error of Sample Mean \bar{x}

The standard deviation of the sampling distribution of \bar{x} is the population standard deviation σ divided by the square root of the size of the sample n.

$$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Standard Error of Sample Mean \bar{x}

The standard deviation of the sampling distribution of \bar{x} is the population standard deviation σ divided by the square root of the size of the sample n.

$$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Because we don't have access to the "true" value of σ , we substitute the observed standard deviation in the sample s for inference and hypothesis testing.

$$SE_{\bar{x}} = \frac{s}{\sqrt{n}}$$

Population Distribution of x

The population in this figure has the "true" parameters of mean $\mu=0$ and standard deviation $\sigma=1$.

Sampling Distribution for \bar{x}

The *sampling distribution* is the distribution of sample statistics \bar{x} from samples with size n taken from the population $x \sim N(0,1)$, were you to sample infinite times.

Theoretical Sampling Distribution of Sample Statistic x bar x bar ~ N(0, SE) 2.0 Probability Density This represents the "true" underlying distribution of x bar for the variable x ~ N(0, 1).

Side-By-Side

Theoretical Normal Distribution of Variable x

This represents the "true" underlying distribution of the variable x.

Theoretical Sampling Distribution of Sample Statistic x_bar

This represents the "true" underlying distribution of x_bar for the variable $x \sim N(0, 1)$.

Distribution of \bar{x} versus x

Observed values of x are more variable than observed values of \bar{x} .

The distribution of x_bar is narrower than the distribution of x.

The "true" distribution in your population is normal with mean $\mu=0$ and standard deviation $\sigma=1$ $(x\sim N(0,1))$

- The "true" distribution in your population is normal with mean $\mu=0$ and standard deviation $\sigma=1$ $(x\sim N(0,1))$
- ▶ Take repeated samples of n=50 from the population $x \sim N(0,1)$.

- The "true" distribution in your population is normal with mean $\mu=0$ and standard deviation $\sigma=1$ $(x\sim N(0,1))$
- Take repeated samples of n=50 from the population $x \sim N(0,1)$.
- ightharpoonup Calculate \bar{x}_i for each sample of size n.

- The "true" distribution in your population is normal with mean $\mu=0$ and standard deviation $\sigma=1$ $(x\sim N(0,1))$
- ▶ Take repeated samples of n=50 from the population $x \sim N(0,1)$.
- ightharpoonup Calculate \bar{x}_i for each sample of size n.
- Compare the observed distribution of \bar{x}_i to the expected distribution $\bar{x} \sim N\left(0, \frac{1}{\sqrt{n}}\right)$.

Observed Distributions of x in Samples

Observed Sample Means

Sample ID	x_bar	S
1	-0.047	0.981
2	0.178	0.835
3	0.024	0.870
4	-0.094	0.907
5	-0.184	1.148
6	0.154	0.942
7	0.015	0.967

Observed Distributions vs Expected Distribution

Observed Distribution in Sample vs Theoretical Population Distribution

Observed Distributions vs Expected Distribution

Standard Error of Sample Proportion \hat{p}

The standard deviation of the sampling distribution of \hat{p} for sample size n is...

$$SE_{\bar{x}} = \sqrt{\frac{p(1-p)}{n}}$$

Standard Error of Sample Proportion \hat{p}

The standard deviation of the sampling distribution of \hat{p} for sample size n is...

$$SE_{\bar{x}} = \sqrt{\frac{p(1-p)}{n}}$$

Because we don't have access to the "true" value of p, we substitute the observed statistic in the sample \hat{p} for inference and hypothesis testing.

$$SE_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

▶ The "true" distribution in your population is p = 0.5

- lacktriangle The "true" distribution in your population is p=0.5
- lacktriangle Take repeated samples of n=50 from the population p=0.5

- ▶ The "true" distribution in your population is p=0.5
- lacktriangleright Take repeated samples of n=50 from the population p=0.5
- lackbox Calculate \hat{p}_i for each sample of size n.

- ▶ The "true" distribution in your population is p = 0.5
- lacktriangle Take repeated samples of n=50 from the population p=0.5
- lackbox Calculate \hat{p}_i for each sample of size n.
- Compare the observed distribution of \hat{p}_i to the expected distribution $\hat{p} \sim N\left(0.5, \sqrt{\frac{0.5(1-0.5)}{n}}\right)$.

Observed Distributions of \hat{p} in Samples

Observed Sample Proportions

Sample ID	p_hat	SE
1	0.533	0.091
2	0.667	0.086
3	0.400	0.089
4	0.500	0.091
5	0.433	0.090
6	0.600	0.089
7	0.667	0.086

Observed Distributions vs Expected Distribution

