

Curso -Engenharia de Computação

Componente Curricular: Estrutura de Dados (PRATICA)

Atividade Avaliativa A2- 2023

Orientações

- Data de Entrega: 26/11/2023 até as 23h59min
- Este trabalho deve ser elaborado EM TIMES DE NO MÍNIMO 02 E MÁXIMO 04 ALUNOS
- Insira o seu Time no Canvas em Pessoas-> ATIV_02
- O Time deverá elaborar o que é pedido e entregar os arquivos via Canvas

IDEIA:

Análise Empírica de Alguns Algoritmos de Ordenação - Este projeto tem como principal objetivo a compreensão e análise dos métodos de ordenação, vistos durante as aulas da disciplina de Estrutura de Dados.

Consiste na **simulação de alguns métodos de ordenação** usando diferentes tipos de estruturas, diferentes tamanhos de vetores.

Atividade Avaliativa 2 – Análise Empírica de Alguns Algoritmos de Ordenação

Projeto:

Os vetores deverão ser ordenados na **ordem DECRESCENTE.** O Time deverá trabalhar com as alterações necessárias nos algoritmos apresentados em sala de aula.

Para cada método serão consideradas estruturas de 5 tamanhos diferentes (<u>no mínimo, se o Time desejar pode inserir</u> mais alguns tamanhos diferentes).

Métodos a serem implementados:

- InsertionSort
- BubleSort
- ShellSort
- MergeSort
- QuickSort
- Um método diferente a ser pesquisado, escolhido e apresentado pelo Time

A ordenação será realizada num vetor de estruturas, de diferentes tamanhos. A estrutura é constituída de 2 campos:

- Um valor inteiro será a chave da ordenação
- Um valor real com valor superior a 100

Os diferentes tamanhos do vetor a ser considerado são:

Tamanhos do Vetor (n)
10 ⁴
5*10 ⁴
10 ⁵
5*10 ⁵
10 ⁶

Para cada Tamanho n serão gerados 10 casos, no MÍNIMO

Os valores, para preenchimento do vetor, deverão ser gerados de duas diferentes formas:

1. Aleatoriamente – chave e número real

Como os casos têm que ser os mesmos para todos os métodos será necessário trabalhar com o conceito de sementes para a geração de números aleatórios

2. Chave em ORDEM CRESCENTE e número real ALEATORIAMENTE

O Time irá gerar **para cada tamanho n do vetor**, 10 casos de valores do tipo **1** e 10 casos de valores do tipo **2.** Os métodos de ordenação, definidos acima, serão executados para **cada caso e cada tamanho**, obtendo o tempo de execução.

A finalidade é realizar uma análise comparativa entre os métodos.

PUC CAMPINAS

Atividade Avaliativa 2 - Análise Empírica de Alguns Algoritmos de Ordenação

Para a obtenção do tempo de execução de cada método, a contagem do tempo deve ser iniciada **imediatamente antes** da execução do Método de Ordenação e **imediatamente encerrada** no término da execução do método

A implementação de alguns métodos necessita de considerações:

- 1. ShellSort regra para obtenção de h:
 - h(i)=1, para i=1
 - h(i)=3h(i-1)+1, para i>1
- 2. QuickSort

Este método terá um estudo/análise extra com o objetivo de avaliar a escolha do pivô. As seguintes escolhas de pivô deverão ser avaliadas:

- Valor da posição do Limite Inferior do sub-vetor
- Valor da posição do Limite Superior do sub-vetor
- Valor da posição do Limite Meio do sub-vetor

ATENÇÃO!!!!!

Para que a análise seja válida, todos os métodos têm que ser testados para o mesmo conjunto de dados e na mesma máquina

Entregas:

- O Time deverá entregar DOIS arquivos:
 - 1. Relatório Arquivo com extensão pdf, contendo:
 - 1. Capa com Nome e RA dos Alunos em Ordem Alfabética
 - 2. Introdução Apresentação do Projeto, definido objetivo do mesmo
 - 3. Apresentação dos Métodos de Ordenação e Análise dos Resultados

PARA CADA MÉTODO O TIME DEVERÁ:

- Apresentar o Algoritmo do Método com as alterações necessárias para a Ordenação Decrescente. (no caso do método escolhido pelo Time descrevê-lo com mais detalhes e justificar a escolha). Não escreva código de programa no relatório.
- 2. Apresentar os dados considerando 3 situações:
 - Melhor Caso melhor tempo obtido pelo método para um determinado tamanho de vetor
 - Pior Caso pior tempo obtido pelo método para um determinado tamanho de vetor
 - Tempo Médio tempo médio obtido pelo método para um determinado tamanho de vetor

Para facilitar a apresentação trabalhe com as tabelas abaixo

NOME DO MÉTODO			
Melhor Caso			
Geração Aleatória			
Tamanhos do Vetor (n)	Tempo (unidade de tempo)		
10 ⁴			
5*10 ⁴			
10 ⁵			
5*10 ⁵			
10 ⁶			

NOME DO MÉTODO			
Caso Médio			
Geração Aleatória			
Tamanhos do Vetor (n)	Tempo (unidade de tempo)		
10 ⁴			
5*10 ⁴			
10 ⁵			
5*10 ⁵			
10 ⁶			

NOME DO MÉTODO		
Pior Caso		
Geração Aleatória		
Tamanhos do Vetor (n)	Tempo (unidade de tempo)	
104		
5*10 ⁴		
10 ⁵		
5*10 ⁵		
10 ⁶		

Atividade Avaliativa 2 – Análise Empírica de Alguns Algoritmos de Ordenação

NOME DO MÉTODO			
Melhor Caso			
ivierior caso			
Ordem Inversa (Crescente -> Decrescente)			
Tamanhos do	Tempo		
Vetor (n)	(unidade de tempo)		
10 ⁴			
5*10 ⁴			
10 ⁵			
5*10 ⁵			
10 ⁶			

NOME DO MÉTODO			
Caso Médio			
Ordem Inversa (Crescente -> Decrescente)			
Tamanhos do	Tempo		
Vetor (n)	(unidade de tempo)		
10 ⁴			
5*10 ⁴			
10 ⁵			
5*10 ⁵			
10 ⁶			

NOME DO MÉTODO			
Pior Caso			
Ordem Inversa (Crescente ->Decrescente)			
Tamanhos do	Tempo		
Vetor (n)	(unidade de tempo)		
10 ⁴			
5*10 ⁴			
10 ⁵			
5*10 ⁵			
10 ⁶			

No caso do Quick Sort, realizar uma pré-análise para os três pivôs considerando o
caso médio, avaliando e determinando melhor. e apresente as tabelas acima para
aquele determinado como melhor

QUICK SORT				
CASO MÉDIO				
Tamanhos do Vetor (n)	PIVÔ – LS (TEMPO)	PIVÔ – LI (TEMPO)	PIVÔ – MEIO (TEMPO)	
10 ⁴				
5*10 ⁴				
10 ⁵				
5*10 ⁵				
10 ⁶				

A partir da do pivô que apresenta o melhor desempenho, apresentar as tabelas do melhor, pior e caso médio (item 2) para o Quick Sort, considerando este pivô

4. Para cada método apresentado o Time deverá fazer considerações analisando os resultados. A análise pode ser também realizada com o uso de gráficos da velocidade de crescimento do tempo á medida que n cresce.

4. Conclusão

Análise comparativa de todos os métodos avaliando, discutindo as características do dados, se houver, que levam o método a um melhor desempenho

- 5. Referência Bibliográfica Se forem de sites colocar a data de acesso
- 2. O arquivo contendo o Código Fonte, extensão .c, compatível com o CodeBlocks, com as devidas orientações para que eu possa testá-lo como por exemplo, os valores de semente usados para a geração dos dados aleatórios

Atividade Avaliativa 2 – Análise Empírica de Alguns Algoritmos de Ordenação

Critério de Avaliação

- Todo o conteúdo pedido deve ser entregue e na forma descrita acima. O desrespeito dessa regra acarreta perda de nota
- A professora, durante as aulas de laboratório, acompanhará o desenvolvimento do projeto e o Time será questionado sobre o mesmo. Esse acompanhamento tem caráter avaliativo
- CASO A PROFESSORA CONSIDERE NECESSÁRIO, o Time apresentará o trabalho. Todos os alunos devem estar presentes na apresentação. A falta do aluno acarreta a NÃO ATRIBUIÇÃO DE NOTA PARA O MESMO
- As notas do projeto serão atribuídas de forma comparativa, ou seja, do melhor projeto ao pior
- As notas dentro do Time serão de acordo com o desempenho do aluno durante as aulas de laboratório e das arguições