Leon Schwarzer und Emile Hansmaennel

Theodor-Fliedner-Gymnasium

December 15, 2017

Was ist ein Fusionsreaktor?

000

Ein Kernfusionsreaktor oder Fusionsreaktor ist eine technische Anlage, in der die Kernfusion von Deuterium und Tritium als thermonukleare Reaktion kontrolliert abläuft.

Wikipedia - Kernfusionsreaktor

Warum nutzen wir keine Fusionsreaktoren?

Zu viel Energie rein \rightarrow zu wenig Energie raus

Arten von Fusionsreaktoren

Stellatoren \rightarrow USA

Tokamaks \rightarrow Sowiet-Union

« « « < 1f86ah34d9afc179cf1e3e7ah31510a838c1a793</pre>

00

>>>> solve

Tokamaks erzeugen die Verdrillung des Feldes durch Induzieren eines elektrischen Stroms im Plasma, Stellaratoren bewerkstelligen dies durch eine besondere, komplizierte Formung ihrer Magnetspulen

00

Stellatoren

Tokamaks

Was passiert bei der Kernfusion?

Kernfusion von Deuterium und Tritium als thermonukleare Reaktion:

Was passiert bei der Kernfusion?

Kernfusion von Deuterium und Tritium als thermonukleare Reaktion:

Ein **Deuterium**- und ein **Tritium**-Atomkern verschmelzen zu einem **Heliumkern** unter Freisetzung eines **schnellen Neutrons**.

Deuterium-Tritium-Reaktion

- Atomkerne verschmelzen zu einem neuem Kern
- Energie wird freigesetzt
- Atomkerne kommen sich sehr nahe (2,5 Femtometer)
- $\bullet \ \, \mathsf{Masse Vorher} > \mathsf{Masse Nachher} \to \mathsf{Differenz wird zu \ Energie}$

$$D + T \rightarrow {}^{4}H + n + \underbrace{17,6 \; MeV}_{Gewonnene \; Energie}$$

$$E = mc^2$$

Wo sind wir zurzeit???

Die drei entscheidenden Größen (**Temperatur** T, **Teilchendichte** n_e und **Energieeinschlusszeit** τ_E) wurden in den letzten 50 Jahren erheblich vergrößert und das **Tripelprodukt** $T \cdot n_e \cdot \tau_E$ etwa um den Faktor 10.000 verbessert.

- Wikipedia Kernfusionsreaktor/ Kernfusion
- ITER.org