Exponential Functions

$$f(x) = a \cdot b^{x}$$

0 + 0

[Note: If
$$b=1$$
, $f(x) = a (constant)$]

Example

$$() \qquad f(x) = 3^{\times}$$

(3)
$$f(x) = (1/2)^{x}$$

(3)
$$f(y) = 2024 \cdot (8)^{\times}$$

(x) Grophs of exponential functions. $f(x) = a \cdot b^{x}$ Cosel: by and a 70 ٥ Case 2: 671 and a < 6

 $T = 2 \times (1.1)^{\times}$

4 = - 2 x (1.1) x

Cose 3: 0 (b (1) and G70

Linea vs. Exponential Growth.

Simple Interest US. Compound Interest.

(Simple Interest : The interest is only apply to

The principal

Suppose no deposit \$ 100 to a bank with simple interest of 5% yearty.

The principal: P = 100

The interest 104: 1 = 5%

This is a linear Growth

the current amount of money.

Hear 2:

Tear 3:

$$A = 100 \cdot (1.05)^3$$

Tear t:

$$A = 100 (1.05)^{t} (Exponential Growth)$$

Assignment:

(1)
$$Plot$$
 $1 = 3 + (1.02)$

3	Find	the	total c	amount	o f	moni	9	704	
have	il ta	ı İn U	pst	\$ 700	0 (a fler	5	480	S
14.									
<u>(a)</u>	1L	in krest	rak	15	6%	and	7-1	15	G
Single	in krest								
(1)									
(6)	1Li	inkrest	rak	15	6%	and	7-1	15	G
Compound									