Semantic Analysis and Type checking

- A compiler has to do semantic checks in addition to syntactic checks.
- Semantic checks
 - Static done during compilation
 - Dynamic done during run-time
- *Type checking* is one of these static checking operations.
 - we may not do all type checking at compile-time.
 - Some systems also use dynamic type checking too.

The Compiler So Far

- Lexical analysis
 - Detects inputs with illegal tokens
- Parsing
 - Detects inputs with ill-formed parse trees
- Semantic analysis
 - Last "front end" phase
 - Catches more errors

Why a Separate Semantic Analysis?

- Parsing cannot catch some errors
- Some language constructs are not context-free
 - Example: All used variables must have been declared (i.e. scoping)
 - Example: A method must be invoked with arguments of proper type (i.e. typing)

What Does Semantic Analysis Do?

- Checks of many kinds . . . coolc checks:
 - 1. All identifiers are declared
 - 2. Types
 - 3. Inheritance relationships
 - 4. Classes defined only once
 - 5. Methods in a class defined only once
 - 6. Reserved identifiers are not misused And others ...
- The requirements depend on the language

Scope

- Matching identifier declarations with uses
 - Important static analysis step in most languages
 - Including COOL!

```
fn main() {// Parent scope
let x = 1;{ // `x` in this nested scope shadows `x` in the parent scope.
  let x = "Hello, world";
  assert_eq!(x, 1);
  }
}
```

Scope (Cont.)

• The scope of an identifier is the portion of a program in which that identifier is accessible

- The same identifier may refer to different things in different parts of the program
 - Different scopes for same name don't overlap
- An identifier may have restricted scope

Static vs. Dynamic Scope

- Most languages have static scope
 - Scope depends only on the program text, not runtime behavior
 - Cool has static scope
- A few languages are dynamically scoped
 - Lisp, Perl
 - Lisp has changed to mostly static scoping
 - Scope depends on execution of the program

Static Scope

```
let x: Int <- 0 in
{
     X;
     let x: Int <- 1 in
          X;
     X;
}</pre>
```

Uses of x refer to closest enclosing definition

Dynamic Scope

• A dynamically-scoped variable refers to the closest enclosing binding in the execution of the program

Example

bar(x) = x+a
foo(y) = let a
$$\leftarrow$$
 4 in bar(3);
baz(z) = let a \leftarrow 5 in bar(3)

Scope in Cool

- Cool identifier names are introduced by
 - 1. Class declarations (introduce class names)
 - 2. Method definitions (introduce method names)
 - 3. Let expressions (introduce object id's)
 - 4. Formal parameters (introduce object id's)
 - 5. Attribute definitions in a class (introduce object id's)
 - 6. Case expressions (introduce object id's)

Scope in Cool (Cont.)

- Not all kinds of identifiers follow the most closely nested rule
- For example, class definitions in Cool
 - Cannot be nested
 - > Are globally visible throughout the program
 - ➤ In other words, a class name can be used before it is defined

More More Scope in Cool

- Method and attribute names have complex rules
- A method need not be defined in the class in which it is used, but in some parent class
- Methods may also be redefined (overridden)

SYMBOL TABLE AND SCOPE

- Symbol tables typically need to support multiple declarations of the same identifier within a program.
- We shall implement scopes by setting up a separate symbol table for each scope.

Who Creates Symbol Table??

- Identifiers and attributes are entered by the analysis phases when processing a definition (declaration) of an identifier
- In simple languages with only global variables and implicit declarations:
 - ✓ The scanner can enter an identifier into a symbol table if it is not already there
- In block-structured languages with scopes and explicit declarations:
 - ✓ The parser and/or semantic analyzer enter identifiers and corresponding attributes

USE OF SYMBOL TABLE

- Symbol table information is used by the analysis and synthesis phases
- To verify that used identifiers have been defined(declared)
- To verify that expressions and assignments are semantically correct —type checking
- To generate intermediate or target code

IMPLEMENTATION OF SYMBOL TABLE

- Each entry in the symbol table can be implemented as a record consisting of several fields.
- These fields are dependent on the information to be saved about the name
- But since the information about a name depends on the usage of the name, the entries in the symbol table records will not be uniform.
- Hence to keep the symbol tables records uniform some information are kept outside the symbol table and a pointer to this information is stored in the symbol table record.

SYMBOL TABLE ORGANIZATION

SYMBOL TABLE DATA STRUCTURES

Issues to consider : Operations required

- Insert :Add symbol to symbol table
- Look UP: Find symbol in the symbol table (and get its attributes)
- Insertion is done only once
- Look Up is done many times
- Need Fast Look Up
- The data structure should be designed to allow the compiler to find the record for each name quickly and to store or retrieve data from that record quickly.

A Fancier Symbol Table

- 1. enter_scope() start a new nested scope
- 2. find_symbol(x) finds current x (or null)
- 3. add_symbol(x) add a symbol x to the table
- 4. check_scope(x) true if x defined in current scope
- 5. exit_scope() exit current scope

Scopes - Summary

- Scoping rules match uses of identifiers with their declarations
 - Static scoping is the most common form
- Scoping rules can be implemented using symbol tables
 - In one or more passes over the AST

Class Definitions

- Class names can be used before being defined
- We cannot check class names
 - using a symbol table
 - or even in one pass
- Solution
 - Pass 1: Gather all class names
 - Pass 2: Do the checking
- Semantic analysis requires multiple passes
 - Probably more than two

Types

- What is a type?
 - The notion varies from language to language
- Consensus
 - -A set of values
 - A set of operations on those values
- Classes are one instantiation of the modern notion of type

Types and Operations

- Certain operations are legal for values of each type
 - It doesn't make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!

E.g.

add \$r1, \$r2, \$r3

Type Systems

- A language's type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
 - Enforces intended interpretation of values, because nothing else will!
- Type systems provide a concise formalization of the semantic checking rules

What Can Types do For Us?

Can detect certain kinds of errors

- Memory errors (Rust):
 - ✓ Data races
 - ✓ Dereferencing a null/dangling raw pointer
 - ✓ Reads of undef (uninitialized) memory
 - ✓ Etc.
- Violation of abstraction boundaries:

```
class FileSystem {
    open(x : String) : File {
        ...
        File fdesc = fs.open("foo")
     }
    ...
    } -- f cannot see inside fdesc!
}
```

Type Checking Overview

Three kinds of languages:

- Statically typed: All or almost all checking of types is done as part of compilation (C, Java, Rust, Cool, ChocoPy)
- Dynamically typed: Almost all checking of types is done as part of program execution (Scheme, Python)
- Untyped: No type checking (machine code)

The Type Wars

- Competing views on static vs. dynamic typing
- Static typing proponents say:
 - Static checking catches many Programming errors at compile time
 - Avoids overhead of runtime type checks
- Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping easier in a dynamic type system
- In practice:
 - > most code is written in statically typed languages with an "escape" mechanism
 - Unsafe casts in C, native methods in Java, unsafe modules in Modula-3, unsafe code in Rust
 - > Some dynamically typed languages support "pragmas" or "advice"
 - type declarations

Type Checking in Cool

- Type concepts in COOL
- Notation for type rules
 - Logical rules of inference
- COOL type rules
- General properties of type systems

Cool Types

- The types are:
 - Class names
 - Base classes: object, IO, Int, String, Bool
 - SELF_TYPE
 - Note: there are no base types (as int in C)
- The user declares types for all identifiers
- The compiler infers types for expressions
 - Infers a type for every sub-expression

Type Checking and Type Inference

- Type Checking is the process of verifying fully typed programs
- Type Inference is the process of filling in missing type information
- The two are different, but the terms are often used interchangeably
- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions
 - Context-free grammars
- The appropriate formalism for type checking is logical rules of inference

Why Rules of Inference?

- Inference rules have the form If Hypothesis is true, then Conclusion is true
- Type checking computes via reasoning
 - \triangleright If E_1 and E_2 have certain types, then E_3 has a certain type
- Rules of inference are a compact notation for "If-Then" statements
- Start with a simplified system and gradually add features by type inference
- Building blocks
 - > Symbol /\ is "and", \/ is "or",
 - ➤ Symbol → is "if-then"
 - > x:T is "x has type T"

From English to an Inference Rule

If e_1 has type Int and e_2 has type Int, then $e_1 + e_2$ has type Int

(e_1 has type Int $\land e_2$ has type Int)

(e_1 :Int $\land e_2$:Int)

($e_1 + e_2$: Int)

General inference rule:

 $Hypothesis_1 \land Hypothesis_2 \land ... \land Hypothesis_n \rightarrow Conclusion$

Notation for Inference Rules

General inference rule:

 $Hypothesis_1 \land Hypothesis_2 \land ... \land Hypothesis_n \rightarrow Conclusion$

• By tradition inference rules are written

|-Hypothesis₁...|- Hypothesis_n

|-Conclusion

• |- means "we can prove that..."

Basic Rules

- These rules give templates describing how to type integers and + expressions
- By filling in the templates, we can produce complete types for expressions
- Example: 1+2

Soundness

- A type system is **sound** if
 - Whenever |-e: T
 - Then e evaluates to a value of type T
- We only want sound rules
 - But some sound rules are better than others

(i is an integer constant) |- i:Object

In Cool, class Int inherits from Object

Soundness and Completeness

• A type-system is **sound** implies that all of type-checked programs are correct (in the other words, all of the incorrect program can't be type checked), i.e. there won't be any *false negative*, but may have false positive

• A type-system is **complete** implies that all of the correct program can be accepted by the type checker, i.e. there won't be any *false positive*, but may have false negative

Type Checking Proofs

- Type checking proves facts e:T
 - Proof is on the structure of the AST e
 - Proof has the shape of the AST
 - One type rule is used for each AST node (subexpressive)
- In the type rule used for a node e
 - The hypotheses are the proofs of types of e's subexpressions
 - The conclusion is the proof of type of e
- Types are computed in a bottom-up pass over the AST

Rules for Constants

Rule for New

- new T produces an object of type T
 - Ignore SELF_TYPE for now . . .

|- new T: T

Two More Rules

|- e₁:Bool |- e₂:T

[While]

|- while e₁ loop e₂ pool: Object

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

Typing Derivations

- The typing reasoning can be expressed as an inverted tree:
 - The root of the tree is the whole expression
 - Each node is an instance of a typing rule
 - Leaves are the rules with no hypotheses

```
|- 2:Int |- 3:Int |- false:Bool |- 1:Int |- 2*3: Int |- not false: Bool |- 1+2*3: Int |- while not false loop 1 + 2 * 3 pool:Object
```

A Problem

• What is the type of a variable reference?

- The local, structural rule does not carry enough information to give a type.
- We need a hypothesis of the form "we are in the scope of a declaration of x with type T")

A Solution: Put more information in the rules!

- A type environment gives types for free variables
- A variable is free in an expression if it is not defined within the expression
- A type environment is a function

O: ObjectIds → Types

E.g.:

- 1. x and y are free in the expression x *y
- 2. x is not free, y is free in let x: Int x + y
- 3. \mathbf{x} and \mathbf{y} are free in the expression $\mathbf{x} + \mathbf{let} \mathbf{x}$: Int in $\mathbf{x} + \mathbf{y}$

Type Environments

• Let O be a type environment function O: ObjectIds → Types

The sentence O|-e:T

is read: Under the type environment O, it is provable that the expression e has the type T

Modified Rules for Constants

$$\begin{array}{c|c} \hline \\ O|\text{- false:Bool} \\ \hline \\ O|\text{- false:Bool} \\ \hline \\ \hline \\ O|\text{- s:String} \\ \hline \\ O|\text{- s:String} \\ \hline \\ O|\text{- e}_1\text{:Int} \\ O|\text{- e}_2\text{:Int} \\ \hline \\ O|\text{- e}_1+e_2\text{:Int} \\ \hline \\ O|\text{- while e}_1 \text{ loop e}_2 \text{ pool:Object} \\ \hline \end{array}$$

New Rules

• And we can write new rules:

$$\frac{\mathbf{O}(\mathbf{x}) = \mathbf{T}}{\mathbf{O} \mid -\mathbf{x} : \mathbf{T}} [\mathbf{Var}]$$

Rules

—— [Var]

 $O \mid -x : T$

Let Rule

$$\frac{O(T_0/x) \mid -e: T_1}{O \mid -let \ x: T_0 \ in \ e: T_1}$$
 [Let-No-Init]

 $O(T_0/x)$ is an new environment obtained from O by assigning T_0 to x

$$O(T_0/x)(x)=T_0$$

 $O(T_0/x)(y)=O(y)$ if x!=y

Note that the let-rule enforces variable scope

Let Example

Consider the Cool expression

```
let \mathbf{x} : \mathbf{T}_0 in (let \mathbf{y} : \mathbf{T}_1 in \mathbf{E}_{\mathbf{x},\mathbf{y}}) + (let \mathbf{x} : \mathbf{T}_2 in \mathbf{F}_{\mathbf{x},\mathbf{y}})
```

- Scope:
 - of y is $E_{x,y}$
 - of outer x is $E_{x,y}$
 - of inner x is $F_{x,y}$
- This is captured precisely in the let-rule

Let Example

let $\mathbf{x} : \mathbf{T}_0$ in (let $\mathbf{y} : \mathbf{T}_1$ in $\mathbf{E}_{\mathbf{x},\mathbf{y}}$) + (let $\mathbf{x} : \mathbf{T}_2$ in $\mathbf{F}_{\mathbf{x},\mathbf{y}}$)

Review

- Semantic analysis
 - Scope vs. Symbol Table
 - Type systems
 - Let O be a type environment function

O: ObjectIds → Types

The sentence O|-e:T

is read: Under the type environment O, it is provable that the expression e has the type T

• Typing algorithm: depth-first search

Notes

- The type environment gives types to the free identifiers in the current scope
- The type environment is passed down the AST from the root towards the leaves
- Types are computed up the AST from the leaves towards the root

Let with Initialization

Now consider let with initialization:

$$O|-e_0:T_0$$

$$O(T_0/x) |- e_1:T_1$$

$$O|- let x: T_0 \leftarrow e_0 \text{ in } e_1:T_1$$

This rule is weak.

```
class C inherits P \{ \dots \}

...

let x : P \leftarrow new C in ...
```

The previous let rule does not allow this code

Subtyping

- Define a relation $X \le Y$ on classes (types) to say that:
 - An object of type X could be used when one of type Y is acceptable, or equivalently
 - X conforms with Y
 - In Cool this means that X is a subclass of Y
- Define a relation ≤ on classes (reflexive transitive closure)
 - 1. $X \leq X$
 - 2. $X \le Y$ if X inherits from Y
 - 3. $X \le Z$ if $X \le Y$ and $Y \le Z$

Let with Initialization

$$O|-e_0:T_0$$

$$O(T_0/x) |- e_1:T_1$$

$$C|- let x: T_0 \leftarrow e_0 \text{ in } e_1:T_1$$

```
O|-e_0:T
T \le T_0
O(T_0/x) |- e_1:T_1
O|- let x: T_0 \leftarrow e_0 \text{ in } e_1: T_1
class C \text{ inherits } P \{ \dots \}
let x: P \leftarrow new C \text{ in } \dots
```

- Both rules for let are sound
 - Flexible rules that do not constrain programming
 - Restrictive rules that ensure safety of execution
- But more programs type check with the latter

Quiz

```
class A {...}
class B inherits A{...}
```

let $x : A \leftarrow \text{new B in } 1+2$

Draw Type Derivation Tree

Answer

O(A/x)|-1:Int O(A/x)|-2:Int

O(A/x)|-1+2:Int

O|- new B:B

 $B \le A$

O|-let $x : A \leftarrow new B in 1+2: Int$

Expressiveness of Static Type Systems

- A static type system enables a compiler to detect many common programming errors
- The cost is that some correct programs are disallowed
 - Some argue for dynamic type checking instead
 - Others argue for more expressive static type checking
- But more expressive type systems are also more complex
- There usually does not exist a sound and complete type systems for programming languages

Dynamic and Static Types

- The dynamic type of an object is the class C that is used in the "new C" expression that creates the object
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type
- The static type of an expression is a notation that captures all possible dynamic types the expression could take
 - A compile-time notion

Dynamic and Static Types. (Cont.)

- In early type systems the set of static types correspond directly with the dynamic types
- Soundness theorem: for all expressions E

$$dynamic_type(E) = static_type(E)$$

(in **all** executions, **E** evaluates to values of the type inferred by the compiler)

This gets more complicated in advanced type systems

Dynamic and Static Types in COOL

A variable of static type A can hold values of static type B, if $B \le A$

Dynamic and Static Types

Soundness theorem for the Cool type system:

 \forall E. dynamic_type(E) \leq static_type(E)

Why is this Ok?

- For E, compiler uses static_type(E) (call it C)
- All operations that can be used on an object of type \mathbb{C} can also be used on an object of type $\mathbb{C}' \leq \mathbb{C}$
 - Such as fetching the value of an attribute
 - Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with same type !

Let Example

Consider the following Cool class definitions

```
Class A { a() : Int { 0 }; }
Class B inherits A { b() : Int { 1 }; }
```

- An instance of A has method "a"
- An instance of B has methods "a" and "b"
 - A type error occurs if we try to invoke method "b"
 on an instance of A
 - It is OK to invoke method "a" on an instance of B

```
Let mya: A← new B (OK)

Let myb: B← new A (error)

mya.b() (error)

Let myb: B← new B (OK)

myb.a() (OK)
```

Review

- Type systems
 - Let O be a type environment function

O: ObjectIds \rightarrow Types

The sentence O|-e:T

is read: Under the type environment O, it is provable that the expression e has the type T

Soundness theorem for the Cool type system:

 \forall E. dynamic_type(E) \leq static_type(E)

Review

[While]

O |- while e₁ loop e₂ pool:Object

$$\frac{\mathbf{O}(\mathbf{x}) = \mathbf{T}}{\mathbf{O} \mid -\mathbf{x} : \mathbf{T}}$$
 [Var]

$$O(T_0/x) \mid -e : T_1$$
 [Let-N

O |- let x: T_0 in e : T_1

[Let-No-Init]

$$O|-e_0:T$$
 $T \le T_0$
 $O(T_0/x) \mid -e_1:T_1$

$$O \mid -let x: T_0 \leftarrow e_0 \text{ in } e_1:T_1$$

Let Example

$$O|-e_0:T$$

$$T \le T_0$$

$$O|-e_1:T_1$$
Any error? [Let-Init]
$$O|-let x: T_0 \leftarrow e_0 \text{ in } e_1:T_1$$

Let Example

$$O|-e_0:T$$

$$T_0 \le T$$

$$O(T_0/x) \mid -e_1:T_1$$
Any error? [Let-Init]
$$O \mid -\text{let } x \colon T_0 \leftarrow e_0 \text{ in } e_1 \colon T_1$$

Comments

- The typing rules use very concise notation
- They are very carefully constructed
- Virtually any change in a rule either:
 - Makes the type system unsound
 (bad programs are accepted as well typed)
 - Or, makes the type system less usable, although sound (good programs are rejected)
- But some good programs will be rejected anyway
 - The notion of a good program is undecidable

Example

Is there any type error?

```
class A {a():Int {0}; }
                  class B inherits A {b():Int {1};}
                  class Main {
                     A \times \leftarrow new A;
x has static
                                               Here, x's value has
type A
                                               dynamic type A
                      x \leftarrow \text{new B}; \star
                      y: Int \leftarrow x.b
                                               Here, x's value has
                                                dynamic type B
```

Assignment

More uses of subtyping:

$$O(x)=T_0$$

$$T_1 \le T_0$$

$$O \mid -e_1:T_1$$

$$O \mid -x \leftarrow e_1:T_1$$
[Assign]

Initialized Attributes

- Let $O_C(x) = T$ for all attributes x:T in class C
- Attribute initialization is similar to let, except for the scope of names

$$\begin{array}{c} O_{C}(x) = T_{0} \\ T_{1} \leq T_{0} \\ O_{C} \mid -e_{1} : T_{1} \\ \hline O_{C} \mid -x : T_{0} \leftarrow e_{1}; \end{array} \qquad \begin{array}{c} O_{C}(x) = T_{0} \\ \hline O_{C} \mid -x : T_{0} \end{array} \qquad \begin{array}{c} [Attr-No-Init] \\ \hline O_{C} \mid -x : T_{0} \end{array}$$

If-Then-Else

• Consider:

- The result can be either e_1 or e_2 ,
- The dynamic type is either e₁'s or e₂'s type
- The best we can do statically is the smallest supertype larger than the type of e_1 and e_2
- Consider the class hierarchy

if e₀ then new A else new B fi

- Its type should allow for the dynamic type to be both A or B
 - Smallest supertype is P

Least Upper Bounds

• lub(X,Y), the least upper bound of X and Y, is Z if

$$-X \leq Z \land Y \leq Z$$

Z is an upper bound

$$-X \le Z' \land Y \le Z' \Rightarrow Z \le Z'$$

Z is least among upper bounds

• In COOL, the least upper bound of two types is their least common ancestor in the inheritance tree

[If-Then-Else]

O |- if e_0 then e_1 else e_2 fi: lub(T_1,T_2)

Case

• The rule for case expressions takes a lub over all branches

O|-
$$e_0$$
: T_0
O[T_1/x_1] |- e_1 : T_1 `
.....
O[T_n/x_n] |- e_n : T_n `
O |- case e_0 of
 x_1 : $T_1 \rightarrow e_1$;
.....
 x_n : $T_n \rightarrow e_n$;
esac: $lub(T_1$ `,..., T_n `)

Method Dispatch

• There is a problem with type checking method calls:

O |-
$$e_0$$
: T_0
O |- e_1 : T_1
.....
O |- e_n : T_n
[Dispatch]
O |- e_0 . $f(e_1,...,e_n)$:?

 We need information about the formal parameters and return type of f

Notes on Dispatch

- In Cool, method and object identifiers live in different name spaces
 - A method foo and an object foo can coexist in the same scope
- In the type rules, this is reflected by a separate mapping M for method signatures

$$M(C,f) = (T_1,...T_n,T)$$

means in class C there is a method f: $f(x_1:T_1,...,x_n:T_n)$: T

- Now we have two environments O and M
- The form of the typing judgment is:

$$O,M|-e:T$$

read as: "with the assumption that the object identifiers have types as given by O and the method identifiers have signatures as given by M, the expression e has type T"

The Method Environment

- The method environment must be added to all rules
- In most cases, M is passed down but not actually used
 - Examples of a rule that does not use M:

$$\begin{array}{c|c} \hline & & & & & & & & & & & & & \\ \hline O,M \mid \text{- false:Bool} & & & & & & & & \\ O,M \mid \text{- }e_1\text{:Int} & & & & & & \\ O,M \mid \text{- }e_2\text{:Int} & & & & & \\ \hline O,M \mid \text{- }e_2\text{:Int} & & & & & \\ \hline O,M \mid \text{- }e_1\text{+}e_2\text{:Int} & & & & \\ \hline O,M \mid \text{- while }e_1 \text{ loop }e_2 \text{ pool:Object} \\ \hline \end{array}$$

Only the dispatch rules use M

Method Dispatch

• Method dispatch:

$$\begin{array}{c|c} O,M \mid -e_0:T_0 \\ O,M \mid -e_1:T_1 \\ & \\ O,M \mid -e_n:T_n \\ M(T_0,f)=(T_1`,...,T_n`,T) \\ T_i \leq T_i` \ for \ all \ 1 \leq i \leq n \\ \hline O,M \mid -e_0.f(e_1,...,e_n):T \end{array}$$
 [Dispatch]

Static Dispatch

- Static dispatch is a variation on normal dispatch
- The method is found in the class explicitly named by the programmer
- The inferred type of the dispatch expression must conform to the specified type

$$\begin{array}{c|c} O,M \mid -e_{0}:T_{0} \\ O,M \mid -e_{1}:T_{1} \\ & \\ O,M \mid -e_{n}:T_{n} \\ M(T,f)=(T_{1}`,...,T_{n}`,T_{n+1}) \\ T_{i} \leq T_{i}` \ for \ all \ 1 \leq i \leq n \\ T_{0} \leq T \end{array}$$

[StaticDispatch]

$$O,M \mid -e_0@T.f(e_1,...,e_n):T_{n+1}$$

Handling the SELF_TYPE

- Recall that type systems have two conflicting goals:
 - Give flexibility to the programmer
 - Prevent valid programs to "go wrong"
 - Milner, 1981: "Well-typed programs do not go wrong"
- An active line of research is in the area of inventing more flexible type systems while preserving soundness

An Example

```
class Stock inherits Count {
class Count {
                                      name() : String { ...};
   i: Int \leftarrow 0;
   inc () : Count {
                                   };
         i \leftarrow i + 1;
                                   class Main {
                                   a : Stock ← (new Stock).inc ();
         self;
                                   ... a.name() ...
                                   };
              Any error?
```

- (new Stock).inc() has dynamic type Stock,
- So it is legitimate to write a : Stock \leftarrow (new Stock).inc ()
- But this is not well-typed: (new Stock).inc() has static type Count
- The type checker "looses" type information
- This makes inheriting inc useless
 - So, we must redefine inc for each of the subclasses, with a specialized return type

SELF_TYPE to the Rescue

- Insight:
 - inc returns "self"
 - Therefore the return value has same type as "self"
 - Which could be Count or any subtype of Count at runtime
 - In the case of (new Stock).inc () the type is Stock
- We introduce the keyword SELF_TYPE to use for the return value of such functions
- SELF_TYPE allows the return type of inc to change when inc is inherited
- Modify the declaration of inc to read

```
inc(): SELF TYPE { ... }
```

The type checker can now prove:

```
O, M |- (new Count).inc() : Count
O, M |- (new Stock).inc() : Stock
```

The program from before is now well typed

Notes About SELF_TYPE

- SELF_TYPE is not a dynamic type. It is a static type
- It helps the type checker to keep better track of types
- It enables the type checker to accept more correct programs
- In short, having SELF_TYPE increases the expressive power of the type system
 - What can be the dynamic type of the object returned by inc?
 - Answer: whatever could be the type of "self" at runtime

```
class A inherits Count { };
class B inherits Count { };
class C inherits Count { };
(inc could be invoked through any of these classes)
```

Answer: Count or any subtype of Count

SELF_TYPE and **Dynamic Types**

• In general, if SELF_TYPE appears textually in the class C as the declared type of E then it denotes the dynamic type of the "self" expression:

$$dynamic_type(E) \le C$$

• Note: The meaning of SELF_TYPE depends on where it appears

 We write SELF_TYPEc to refer to an occurrence of SELF_TYPE in the body of C

$$SELF_TYPE_C \le C$$

Type Checking

• This suggests a typing rule:

- This rule has an important consequence:
 - In type checking it is always safe to replace SELF_TYPEc by C
- This suggests one way to handle SELF_TYPE:
 - Replace all occurrences of SELF_TYPEc by C
- This would be correct but it is like not having SELF_TYPE at all

Operations on SELF_TYPE

- Recall the operations on types
 - $-T_1 \le T_2$, T_1 is a subtype of T_2
 - lub(T_1,T_2) the least-upper bound of T_1 and T_2
- We must extend these operations to handle <u>SELF_TYPE</u>
- Let T and T' be any types, but not SELF_TYPE
- Four cases:
 - 1. $SELF_TYPE_C \le T \text{ if } C \le T$
 - > SELF_TYPE_C can be any subtype of C including C itself
 - > Thus this is the most flexible rule we can allow
 - 2. $SELF_TYPE_C \le SELF_TYPE_C$
 - 3. $T \leq SELF$ TYPE_C always false
 - ➤ Note: SELF_TYPE_C can denote any subtype of C.
 - 4. $T \le T'$ (according to the rules from before)

Extending lub(T,T')

- Let T and T' be any types but SELF_TYPE
- Again there are four cases:
 - 1. lub(SELF_TYPEc, SELF_TYPEc) = SELF_TYPEc
 - 2. $lub(SELF_TYPEc, T) = lub(C, T)$

This is the best we can do because $SELF_TYPEc \le C$

- 3. $lub(T, SELF_TYPEc) = lub(C, T)$
- 4. lub(T, T') defined as before

Where Can SELF_TYPE Appear in COOL?

- The parser checks that SELF_TYPE appears only where a type is expected
- But SELF_TYPE is not allowed everywhere a type can appear:
- 1. class T inherits T' {...}: T, T' cannot be SELF_TYPE
 - Because SELF_TYPE is never a dynamic type
- 2. $m@T(E_1,...,E_n)$ // static dispatch
 - T cannot be SELF_TYPE
- 3. x : T.
 - T can be SELF_TYPE, an attribute whose type is SELF_TYPEc
- 4. let x : T in E
 - T can be SELF_TYPE, x has type SELF_TYPE_C
- 5. new T
 - T can be SELF_TYPE, creates an object of the same type as self
- 6. $m(x : T) : T' \{ \dots \}$ Only T' can be SELF TYPE!

Typing Rules for SELF_TYPE

- Since occurrences of SELF_TYPE depend on the enclosing class, we need to know the class in which an expression occurs.
- We need to carry more context during type checking
- New form of the typing judgment:

$$O,M,C \mid -e : T$$

- A mapping O giving types to object id's
- A mapping M giving types to methods
- The current class C where e occurs

New Rules

• There are two new rules using **SELF_TYPE**

• There are a number of other places where SELF_TYPE is used

Type Checking Rules

- The next step is to design type rules using SELF_TYPE for each language construct
- Most of the rules remain the same except that ≤ and lub are the new ones
- Example:

What's Different?

$$\begin{array}{c|c} O,M,C & | -e_0:T_0 \\ O,M,C & | -e_1:T_1 \\ & \cdots \\ O,M,C & | -e_n:T_n \\ M(T_0,f) = (T_1`,\dots,T_n`,T_{n+1}`) \\ T_i \leq T_i` \ for \ all \ 1 \leq i \leq n \\ T_{n+1}` \neq SELF_TYPE \end{array}$$

$$O,M,C \mid -e_0.f(e_1,...,e_n):T_{n+1}$$

$$O,M,C \mid -e_0.f(e_1,...,e_n):T_0$$

If the return type of the method is **SELF_TYPE** then the type of the dispatch is the type of the dispatch expression

An Example

- (new Stock).inc() has dynamic type Stock,
- (new Stock).inc() has static type Stock,
- So this is well-typed

Static Dispatch

• Revisit the original rule for static dispatch

$$\begin{array}{c} O,M,C|\text{--}e_{0}\text{:}T_{0}\\ O,M,C|\text{--}e_{1}\text{:}T_{1}\\ & \\ O,M,C|\text{--}e_{n}\text{:}T_{n}\\ M(T,f)=(T_{1}\ ,...,T_{n}\ ,T_{n+1}\)\\ T_{i}\leq T_{i}\ \ \text{for all}\ 1\leq i\leq n\\ T_{0}\leq T\\ T_{n=1}\ \neq SELF_TYPE \end{array}$$

$$O,M,C \mid -e_0@T.f(e_1,...,e_n):T_{n+1}$$

$$\begin{aligned} O,M,C|&-e_0:T_0\\ O,M,C|&-e_1:T_1\\ &\cdots\\ O,M,C|&-e_n:T_n\\ M(T,f)&=(T_1`,\dots,T_n`,SELF_TYPE)\\ T_i&\leq T_i` \text{ for all }1\leq i\leq n\\ T_0&\leq T \end{aligned}$$

$$O,M,C \mid -e_0@T.f(e_1,...,e_n):T_0$$

Attributes and Methods

$$\begin{array}{lll} O_{C}(x) = T_{0} & T_{1} \leq T_{0} \\ O_{C}, M, C \mid -e_{1} : T_{1} & O_{C}(x) = T_{0} \\ \hline O_{C}, M, C \mid -x : T_{0} \leftarrow e_{1}; & O_{C}, M, C \mid -x : T_{0}; \end{array}$$

$$\begin{array}{ll} (Attr-No-Init) \\ O_{C}, M, C \mid -x : T_{0}; \end{array}$$

$$M(C,f) = (T_1,...,T_n,T_0)$$
 $T_0 \neq SELF_TYPE$ $T_0' \leq T_0$
 $O_C[SELF_TYPE_C/self][T_1/x_1]...[T_n/x_n], M, C | - e: T_0'$

[Method]

$$O_{C},M,C \mid -f(x_{1}:T_{1},...,x_{n}:T_{n}):T_{0} \{ e \}$$

$$M(C,f) = (T_1,...,T_n, SELF_TYPE) \quad T_0' \leq SLEF_TYPE_C$$

$$O_C[SELF_TYPE_C/self][T_1/x_1]...[T_n/x_n], M, C \mid -e: T_0'$$

[Method]

$$O_C,M,C \mid f(x_1:T_1,...,x_n:T_n): SELF_TYPE \{ e \}$$

Summary of SELF_TYPE

- The extended ≤ and lub operations can do a lot of the work. Implement them to handle SELF_TYPE
- SELF_TYPE can be used only in a few places. Be sure it isn't used anywhere else.
- A use of SELF_TYPE always refers to any subtype in the current class
 - The exception is the type checking of dispatch.
 - SELF_TYPE as the return type in an invoked method might have nothing to do with the current class

Why Cover SELF_TYPE?

- SELF_TYPE is a research idea
 - It adds more expressiveness to the type system
- SELF_TYPE is itself not so important
- Rather, SELF_TYPE is meant to illustrate that type checking can be quite subtle
- In practice, there should be a balance between the complexity of the type system and its expressiveness

Type Systems

- The rules in these lecture were COOL-specific
 - Other languages have very different rules
- General themes
 - Type rules are defined on the structure of expressions
 - Types of variables are modeled by an environment
- Types are a play between flexibility and safety

One-Pass Type Checking

- COOL type checking can be implemented in a single traversal over the AST
- Type environment is passed down the tree
 - From parent to child
- Types are passed up the tree
 - From child to parent

```
O,M,C |- e_1:Int
O,M,C |- e_2:Int
— [Add]
O,M,C |- e_1+e_2:Int
```

```
TypeCheck(Environment, n) // node n denotes the expression e1 + e2
{
    T1 = TypeCheck(Environment, n.leftchild);
    T2 = TypeCheck(Environment, n.rightchild);
    Check T1 == T2 == Int;
    return Int;
}
```

Error Recovery

- As with parsing, it is important to recover from type errors
- Detecting where errors occur is easier than in parsing
 - There is no reason to skip over portions of code
- The Problem:
 - What type is assigned to an expression with no legitimate type?
 - This type will influence the typing of the enclosing expression

Error Recovery Attempt

Assign type Object to ill-typed expressions

let y : Int
$$\leftarrow$$
 x + 2 in y + 3

- Since x is undeclared its type is Object
- But now we have Object + Int
- This will generate another typing error
- We then say that Object + Int = Object
- Then the initializer's type will not be Int
 - \Rightarrow a workable solution but with cascading errors

Better Error Recovery

- We can introduce a new type called No_type for use with illtyped expressions
- Define No_type ≤ C for all types C
- Every operation is defined for No_type
 - With a No_type result
- Only one typing error for:

let y : Int
$$\leftarrow$$
 x + 2 in y + 3

Notes

• A "real" compiler would use something like

- However, there are some implementation issues
 - The class hierarchy is not a tree anymore

Quiz

```
Write the typing derivation for
   i: Int;
   x: Int;
   i \leftarrow 2;
   x \leftarrow 1;
   while \sim i< 0 loop{
          i \leftarrow i - 1;
          let y: Int \leftarrow 2 in x \leftarrow x * y;
```