I211E: Mathematical Logic

Nao Hirokawa JAIST

Term 1-1, 2023

https://www.jaist.ac.jp/~hirokawa/lectures/ml/

I211E: Mathematical Logic 1/18

Contents

Aim

to learn how to write mathematical proofs

Contents

- 1 mathematical proofs
- 2 Killer Sudoku
- 3 Tic-Tac-Toe

Schedule			
	propositional logic		predicate logic
4/13	syntax, semantics	5/11	syntax, semantics
4/18	normal forms	5/16	normal forms
4/20	examples	5/18	natural deduction I
4/25	natural deduction I	5/23	natural deduction II
4/27	natural deduction II	5/25	examples, properties
5/2	completeness	5/30	advanced topics
5/9	midterm exam	6/1	summary
		6/6	exam

Evaluation midterm exam (40) + final exam (60)

I211E: Mathematical Logic 2/18

Mathematical Proofs

 I211E: Mathematical Logic
 3/18
 I211E: Mathematical Logic
 4/18

Definition

- $x \in A \cup B$ if $x \in A$ or $x \in B$
- $x \in A \cap B$ if $x \in A$ and $x \in B$
- $\blacksquare A \subseteq B$ if $x \in B$ for all $x \in A$

Proposition

 $A \cup (A \cap B) \subseteq A$

Note: proof is same as derivation of $\vdash \forall x ((x \in A \lor (x \in A \land x \in B)) \rightarrow x \in A)$

Proof.

Let x be an arbitrary element. Suppose $x \in A \cup (A \cap B)$. By the definition of \cup we have $x \in A$ or $x \in A \cap B$. We distinguish two cases. If $x \in A$ then $x \in A$ holds trivially. If $x \in A \cap B$ then by the definition of \cap we have $x \in A$ and $x \in B$. So $x \in A$ holds. In any case the claim holds. \square

I211E: Mathematical Logic 5/18

Definition

- $\mathbf{x} \in \{a_1, \dots, a_n\}$ if $x = a_1$ or ... or $x = a_n$
- $\blacksquare x \in \bigcup_{i \in I} A_i$ if $x \in A_i$ for some $i \in I$

Proposition

$$\mathbb{N} \subseteq \bigcup_{i \in \mathbb{N}} \{i, i+1\}$$

 $\forall x \in \mathbb{N}. \ \exists i \in \mathbb{N}. \ x \in \{i, i+1\}$

Proof.

Let x be an arbitrary element in \mathbb{N} . It is enough to show $x \in \{i, i+1\}$ for some $i \in \mathbb{N}$. Take i = x. Then $x \in \{i, i+1\}$ follows.

7/18

Proposition

if $x, y \in \mathbb{R}$ and x < y then x < z < y for some $z \in \mathbb{R}$

Note: proof is same as derivation of $\vdash \forall x, y \in \mathbb{R}$. $(x < y \rightarrow \exists z \in \mathbb{R}. \ x < z < y)$

Proof.

Let x and y be arbitrary elements in \mathbb{R} . Suppose x < y. We show x < z < y for some z. Take z as follows:

$$z = \frac{x+y}{2}$$

Then x < z < y is verified as follows:

$$z - x = \frac{x+y}{2} - x = \frac{y-x}{2} > 0$$
 $y - z = y - \frac{x+y}{2} = \frac{y-x}{2} > 0$

Here the inequalities are derived from the assumption x < y.

I211E: Mathematical Logic

6/18

Definition

- $\blacksquare x \in \{a_1, \ldots, a_n\}$ if $x = a_1$ or ... or $x = a_n$

Proposition

$$\bigcup_{i \in \mathbb{N}} \{i, i+1\} \subseteq \mathbb{N}$$

$$\forall x \in \bigcup_{i \in \mathbb{N}} \{i, i+1\}. \ x \in \mathbb{N}$$

Proof.

Let x be an arbitrary element in $\bigcup_{i\in\mathbb{N}}\{i,i+1\}$. By definition there exists $i\in\mathbb{N}$ such that $x\in\{i,i+1\}$. Thus, x=i or x=i+1 for some $i\in\mathbb{N}$. We distinguish two cases. If x=i then $x\in\mathbb{N}$ follows from $i\in\mathbb{N}$. If x=i+1 then $x\in\mathbb{N}$ follows from $i\in\mathbb{N}$. In either case, $x\in\mathbb{N}$ is concluded.

Theorem (mathematical induction)

 $(P(0) \land \forall n \in \mathbb{N}. (P(n) \to P(n+1))) \to \forall n \in \mathbb{N}. P(n)$

Proposition

 $n! \geqslant 1$ for all $n \in \mathbb{N}$

 $\forall n \in \mathbb{N}. \ n! \geqslant 1$

Proof (faithful but verbose).

By mathematical induction on n we show $n! \ge 1$.

- Consider the base case n = 0. We have n! = 1. Thus, $n! \ge 1$.
- To show the inductive step, assume $n! \ge 1$. We show $(n+1)! \ge 1$. Using the assumption (the I.H.) we obtain:

$$(n+1)! = (n+1) \cdot n! \ge (n+1) \cdot 1 = n+1 \ge 1$$

Hence, the claim holds.

I211E: Mathematical Logic 9/18

Killer Sudoku (Encoding in Linear Arithmetic)

Theorem (mathematical induction)

 $(P(0) \land \forall n \in \mathbb{N}. (P(n) \to P(n+1))) \to \forall n \in \mathbb{N}. P(n)$

Proposition

 $n! \geqslant 1$ for all $n \in \mathbb{N}$

 $\forall n \in \mathbb{N}. \ n! \geqslant 1$

Proof (conventional style).

We show $n! \geqslant 1$ by induction on n.

- If n = 0 then $n! = 1 \ge 1$.
- \blacksquare If n>0 then

$$(n+1)! = (n+1) \cdot n! \ge (n+1) \cdot 1 = n+1 \ge 1$$

where the first inequality is due to the I.H.

I211E: Mathematical Logic

I211E: Mathematical Logic

10/18

Homework: 4×4 Killer Sudoku

1 Encode the Killer Sudoku problem into a linear integer arithmetic constraint:

$$1 \leqslant x_{11} \land x_{11} \leqslant 4 \land \cdots$$
$$\land \neg (x_{11} \doteq x_{12}) \land \neg (x_{12} \doteq x_{13}) \land \neg (x_{11} \doteq x_{14}) \land \cdots$$
$$\land \cdots$$

$$\wedge x_{11} + x_{12} \doteq 3 \wedge \cdots$$

2 Complete killer.smt2 to solve the constraint by SMT solver (Z3).

11/18

Tic-Tac-Toe (QBF Encoding)

Tic-Tac-Toe

first player of 2×2 Tic-Tac-Toe has winning strategy!

- 1 ∃ 1st move (1st player wins or
- 2 ∀ 2nd move (2nd player does not win and
- \exists 3rd move first player wins))
- Q. how to formalize and prove it?
- A. QBF!

I211E: Mathematical Logic

14/18

Quantified Boolean Formulas (QBF)

13/18

Syntax of QBF

I211E: Mathematical Logic

$$\phi ::= p \mid \top \mid \bot \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \phi \rightarrow \phi \mid \phi \leftrightarrow \phi \mid \forall x \phi \mid \exists x \phi$$

Semantics of QBF

same as propositional case but

Example: $\forall x \exists y (x \leftrightarrow \neg y)$ is valid but $\forall x \forall y (x \leftrightarrow \neg y)$ is invalid

QBF Encoding of 2×2 Tic-Tac-Toe (1/2)

let X^i denote the i-th state:

$$X^i = \left(\begin{array}{cc|c} x_1^i & x_2^i & x_5^i & x_6^i \\ x_3^i & x_4^i & x_7^i & x_8^i \end{array}\right) \qquad \begin{array}{|c|c|c|c|} \hline \times & \\ \hline \bigcirc & \hline \end{array} = \left(\begin{array}{cc|c} \mathsf{F} & \mathsf{F} & \mathsf{T} & \mathsf{F} \\ \mathsf{F} & \mathsf{T} & \mathsf{F} & \mathsf{F} \end{array}\right)$$

construct formulas:

 $\mathsf{valid}(X) \iff X \text{ is valid state}$

$$\operatorname{win}(X) \iff$$
 some player wins at X

$$\mathsf{win}\left(\begin{array}{|c|c|c|c} \hline \times & \times \\ \hline & \bigcirc \\ \end{array}\right) \approx \top$$

$$\mathsf{next}(X,Y) \iff Y \text{ is next state of } X$$

QBF Encoding of 2×2 Tic-Tac-Toe (2/2)

first player has winning strategy ←⇒

1 \exists 1st move (1st player wins or

$$\exists X^1$$
. $\mathsf{valid}(X^1) \land \mathsf{next}(X^0, X^1) \land (\mathsf{win}(X^1) \lor \cdots$

2 \forall 2nd move (2nd player does not win and

$$\cdots \lor \forall X^2$$
. $\mathsf{valid}(X^2) \land \mathsf{next}(X^1, X^2) \land (\neg \mathsf{win}(X^2) \land \cdots$

 \exists 3rd move first player wins))

$$\cdots \land \exists X^3$$
. valid $(X^3) \land \mathsf{next}(X^2, X^3) \land \mathsf{win}(X^3))$

Note: modern QBF solvers can verify it, even for 4×4 Tic-Tac-Toe

I211E: Mathematical Logic

17/18

