Estructures de la Informació. Control parcial

Dept. de Ciències de la Computació E.P.S.E.V.G., 28 de novembre de 2016, 12:30-14:30

IMPORTANT: Resol els problemes en fulls separats.

1. (2 punts. 20 minuts) Eficiència algorísmica

La següent funció permet pintar un arbre de *n* nodes:

```
void pinta arbre (int k, int n, bool hor, int x0, int y0) {
  if (n >= 1) {
    pinta node (x0 + n /2, y0 + n /2);
    if (n != 1) {
       if ( hor ) {
         pinta linia (x0 + n / 2, y0 + n / 2, x0 + n / 4, y0 + n / 2);
         pinta_linia (x0 + n /2, y0 + n /2, x0 + 3* n /4, y0 + n /2);
         pinta_linia (x0 + n / 4, y0 + n / 2, x0 + n / 4, y0 + 3* n / 4);
         pinta linia (x0 + n / 4, y0 + n / 2, x0 + n / 4, y0 + n / 4);
         pinta linia (x0 + 3* n /4, y0 + n /2, x0 + 3* n /4, y0 + 3* n /4);
         pinta linia (x0 + 3* n / 4, y0 + n / 2, x0 + n / 4, y0 + n / 4);
       else {
         // sis crides més a pinta linia (...)
       pinta_arbre (k - 1, (n -1) / 2, not hor, x0, y0);
       pinta_arbre (k - 1, (n -1) / 2, not hor, x0 + n / 2, y0);
       pinta arbre (k - 1, (n - 1) / 2, not hor, x0, y0 + n / 2);
       pinta arbre (k - 1, (n - 1) / 2, not hor, x0 + n / 2, y0 + n / 2);
   }
}
```

El cost de les accions pinta_node i pinta_linia és constant. Quin és el cost asimptòtic temporal de l'acció pinta arbre en funció de *n*? Raona la teva resposta.

Decreixement aritmètic

Teorema. Sigui T(n) el cost d'un algorisme recursiu descrit per la recurrència

$$T(n) = \begin{cases} f(n) & si \ 0 \leq n < n_0 \\ a \cdot T(n-c) + g(n) & si \ n_0 \leq n \end{cases}$$

on n_0 és una constant, $c\! \ge\! 1$, f(n) és una funció arbitrària i $g(n)\! =\! \Theta\!\left(n^k\right)$ amb k constant. Llavors,

$$T(n) = \begin{cases} \Theta(n^k) & sia < 1 \\ \Theta(n^{k+1}) & sia = 1 \\ \Theta(a^{n/c}) & sia > 1 \end{cases}$$

Decreixement geomètric

Teorema. Sigui T(n) el cost d'un algorisme recursiu descrit per la recurrència

$$T\left(n\right) = \begin{cases} f\left(n\right) & si \ 0 \leqslant n < n_{0} \\ a \cdot T\left(n/b\right) + g\left(n\right) & si \ n_{0} \leqslant n \end{cases}$$

on n_0 és una constant, b>1 , f(n) és una funció arbitrària i $g(n)=\Theta(n^k)$ amb k constant. Llavors,

$$T(n) = egin{pmatrix} \Thetaig(n^kig) & si\,a \!<\! b^k \ \Thetaig(n^k\log nig) & si\,a \!=\! b^k \ \Thetaig(n^{\log_b a}ig) & si\,a \!>\! b^k \end{pmatrix}$$

2. (4 punts. 55 minuts) Estructures Lineals

Donada una classe llista d'enters implementada amb nodes doblement encadenats sense element fantasma i circular. Fes el següent:

- a) Escriu la representació d'aquesta classe.
- b) Implementa el mètode duplica_o_esborra, que fa que cada nombre primer aparegui dues vegades i esborra els nombres compostos.

Un *nombre primer* és un nombre enter superior a 1 que només té dos divisors: ell mateix i l'1. Un *nombre compost* és un nombre natural que té més de dos divisors.

Per exemple, si:

```
L = [11, 32, -27, 1, 0, 60, 55, 11, 23, 11]
```

llavors la crida a aquest mètode generaria:

$$L = [11, 11, -27, 1, 0, 23, 23]$$

NOTA: Cal que implementis els mètodes addicionals que utilitzis explícitament.

3. (4 punts. 45 minuts) Diccionaris

Donada aquesta classe dicc implementada com un arbre binari de cerca, la representació de la qual és la següent:

```
template <typename C, typename V>
class dicc {
    ...
    private:
        struct node {
            node *fesq;
            node *fdret;
            C clau;
            V valor;
        };
        node* _arrel;
        ...
};
```

fes un mètode d'aquesta classe que donats dos dicc indiqui si els dos diccionaris tenen exactament les mateixes claus.

NOTA 1: Suposa que el tipus C disposa dels operadors de comparació.

NOTA 2: Cal que implementis els mètodes addicionals que utilitzis explícitament.

Solució problema 1

Càlcul del cost temporal de l'acció pinta arbre():

Aquesta acció és una acció recursiva l'equació de la recurrència de la qual és la següent:

$$T(n) = \begin{cases} ctt & si \ 0 \le n < 1 \\ a \cdot T(n/b) + \Theta(n^k) & si \ 1 \le n \end{cases}$$

on a=4 ja que hi ha quatre crides recursives dins la mateixa acció; b=2 ja que la disminució de les dades és per la meitat; k=0 ja que els cost de les altres operacions que hi ha dins d'aquesta acció són constants. Per tant, l'equació de la recurrència és:

$$T(n) = \begin{cases} ctt & si \ 0 \le n < 1 \\ 4 \cdot T(n/2) + \Theta(n^0) & si \ 1 \le n \end{cases}$$

Per resoldre el cost de pinta_arbre() es pot usar el teorema mestre de decreixement geomètric (ja que l'equació de recurrència s'adapta correctament a aquest teorema mestre).

Llavors es compleix que $a > b^k$ (4 > 2°) i, per tant, el cost temporal de pinta_arbre () és:

$$\Theta(n^{\log_b a}) = \Theta(n^{\log_2 4}) = \Theta(n^2)$$

Solució problema 2

```
a)
struct node {
 int info;
 node *seg;
 node *ant;
node * head;
               // apunta al primer element de la llista
b)
// mètode privat de classe
bool llista::es_primer(int n) throw() {
 unsigned int \overline{i} = 0;
 bool trobat = n < 2;</pre>
 while (i*i <= n and not trobat) {</pre>
   if (n % i == 0) trobat = true;
    else ++i;
  return not trobat;
// mètode privat de classe
bool llista::es compost(int n) throw() {
 return n>3 and not es_primer(n);
}
// mètode privat
void llista::esborra(node &*n) throw() {
  if (n != head) {
   node *aux = n;
    n->ant->seg = n->seg;
    n->seg->ant = n->ant;
    n = n->seq;
    delete aux;
  }
  else {
    if ( head->seg == head) {
     delete n;
      _head = NULL;
      n = NULL;
    else {
      node *aux = n;
      n->ant->seg = n->seg;
     n->seg->ant = n->ant;
      n = n->seg;
      delete aux;
      head = n;
    }
  }
}
```

```
void llista::duplica o esborra() throw(error) {
 node *fi = (_head != NULL) ? _head->ant : NULL;
 node *n = head;
 while (n != NULL and n != fi) {
   if (es primer(n->info)) {
     duplica(n);
     n = n->seg;
   else if (es compost(n->info)) {
     esborra(n);
   }
   else {
    n = n->seg;
  // tractament del primer element de la llista
 if (n != NULL) {
   if (es primer(n->info)) {
     duplica(n);
   else if (es_compost(n->info)) {
    esborra(n);
   }
 }
}
// mètode privat de classe
void llista::duplica(node* n) throw(error) {
 // inserim el node duplicat abans de n
 node *nou = new node;
 nou->info = n->info;
 nou->ant = n->ant;
 nou->seg = n;
 n->ant->seg = nou;
 // esborrem la resta de nodes que tenen la mateixa info que n
 node *p = n->seq;
 while (p != nou) {
   if (p->info == n->info) {
    esborra(p);
   }
   else {
    p = p->seg;
   }
 }
}
```

Solució problema 3

```
template <typename C, typename V>
bool dicc<C, V>::mateixes claus (const dicc &d) const throw(error) {
  return mateixes claus( arrel, d. arrel) and mida() == d.mida();
template <typename C, typename V>
bool dicc<C, V>::mateixes claus (node *p, node* q) const throw(error) {
  bool res = (p == NULL) and (q == NULL);
  if (p != NULL) {
    res = conte(p->clau, q) and mateixes claus(p->fesq, q) and
          mateixes claus(p->fdret, q);
  return res;
template <typename C, typename V>
bool dicc<C,V>::conte (const C &clau, node *on) const throw(error) {
  bool res = false;
  if (on != NULL) {
    if (clau == on->clau) {
     res = true;
    else if (clau > on->clau) {
     res = conte(clau, on->fdret);
    else {
     res = conte(clau, on->fesq);
  return res;
// Per tal de fer aquesta solució més eficient, es podria afegir un atribut
// _mida en la representació de la classe que s'incrementés cada cop que inserim // un nou parell <clau, valor> en el diccionari (i es decrementés quan se
// n'esborri un). D'aquesta manera el nombre d'elements del diccionari estaria
// calculat en tot moment.
template <typename C, typename V>
bool dicc<C, V>::mida () const throw(error) {
  return mida( arrel);
}
template <typename C, typename V>
bool dicc<C, V>::mida (node *n) throw(error) {
  int res = 0;
  if (n != NULL) {
    res = mida(n->fesq) + mida(n->fdret) + 1;
  return res;
```