Transcriptome assembly

And quality assessment. And annotation

Alexander Tkachenko, 26.10.19

Transcriptome assembly

>30 tools in listed on https://en.wikipedia.org/wiki/List_of_RN A-Seq_bioinformatics_tools#Transcripto me_assemblers

Two main approaches: mapping-first and de novo

StringTie

Alignment-first assembler

Can also de novo assemble separate loci

Trinity

De novo and reference-based assembly of transcriptomes

Trinity workflow

Inchworm greedily constructs contigs

Chrysalis combines contigs

Butterfly build De Bruijn graph, compacts linear paths and reconciles paths with reads

Trinity comparison to other tools

Trinity compares better to other de novo assemblers across multiple parameter sets and tested species

Other Trinity advantages

Regularly maintained (last update - 14.10.2019)

Contains a huge pipeline for all kinds of downstream analyses

Regularly wins in comparisons with other tools

rnaSPAdes

De novo assembler

http://cab.spbu.ru/software/rnaspades/

rnaSPAdes and other assemblers

rna

rnaSPAdes is consistently good but there is no clear winner

10.1093/gigascience/giz100

Graph tips are not necessarily errors

Graph bulges can correspond to different isoforms

Isoforms may look like repeats

RNAseq data has specific chimeric read structures

Isoforms can be resolved with coverage and strand-specific data

Other notable tools

Velvet, Trans-ABySS, IDBA-Tran

More benchmarks and guidelines

Multikmer assembly is generally better

Trinity is the best single kmer assembler

Oases-MK and Trans-ABySS produce the most diverse long transcripts

SOAP is the fastest and most memory-efficient but produces short transcripts

100x coverage is recommended for de novo

10.1186/1471-2105-12-S14-S2

Reducing number of transcripts

TransPS

CD-HIT-EST

Coverage filtering

Assembly quality control

How to check which assembly is the best?

BUSCO

Benchmarking Universal Single-Copy Orthologs

BUSCO for phylogenetics

BUSCO genes can be used to construct sets of orthologous genes for phylogeny

BUSCO-trained gene predictions

Gene annotations trained on BUSCO sets sometimes work better than ab initio

BUSCO for genomics quality control

BUSCO scores are in good concordance with increased quality of genome assemblies

BUSCO datasets

Several reference datasets based on OrthoDB

Datasets

Bacteria sets

Eukaryota sets

Protists sets

Fungi sets

Plants set

OrthoDB

Database of orthologs across multiple species

https://www.orthodb.org/

BUSCO workflow

For transcriptome assessment BUSCO only uses BLAST and HMMER

Fig. 1. BUSCO assessment workflow and relative run-times

BUSCO results example

BUSCO builds a plot with complete (single-copy or duplicated), fragmented and missing gene models

rnaQUAST

Tool for transcriptome assembly assessment

Works for both reference-based and de novo assemblies

http://cab.spbu.ru/software/rnaquast/

rnaQUAST

For reference-based assemblies rnaQUAST aligns transcripts to genome using BLAT or GMAP

It also estimates coverage with STAR alignments

rnaQUAST

For de novo assemblies rnaQUAST runs BUSCO and GeneMarkS-T

rnaQUAST metrics

rnaQUAST reports a lot of basic and alignment metrics

Assembler	ABySS	IDBA	SOAP	SPAdes	Trinity
k-mer size	32	default	31	default	default
rnaQUAST metrics					
Transcripts	107202	38294	69331	48706	51245
Transcripts ≥ 500 bp	17882	17542	16021	17512	21994
Aligned	95884	38198	68591	48027	51112
Uniquely aligned	94681	37288	67878	45091	49846
Unaligned	11318	96	740	679	133
50%-matched	66744	32574	54581	37447	43039
95%-matched	61633	29429	50876	32565	35239
Unannotated	26678	3905	12252	7102	5740
Database coverage	18.5	16.9	17.2	17.6	18.1
50%-assembled isoforms	7061	6777	6241	6887	7020
95%-assembled isoforms	1907	1611	1397	2292	2053
99%-assembled isoforms	432	431	347	754	710
Misassemblies	267	471	26	942	465
Mismatches per transcript	0.50	1.04	0.58	1.13	1.28
REF-EVAL scores					
Nucleotide precision	0.69	0.86	0.84	0.81	0.69
Nucleotide recall	0.76	0.75	0.75	0.79	0.78
Nucleotide F ₁	0.73	0.80	0.79	0.80	0.73
Contig precision	0.095	0.17	0.14	0.14	0.14
Contig recall	0.096	0.063	0.089	0.066	0.068
Contig F_1	0.095	0.092	0.11	0.090	0.092
k-mer recall	0.84	0.34	0.76	0.67	0.90
KC score	0.80	0.31	0.73	0.64	0.86
RSEM-EVAL score (×10 ⁹)	-1.42	-2.31	-1.40	-1.48	-0.98

DETONATE

DE novo TranscriptOme rNa-seq
Assembly with or without the Truth
Evaluation

http://deweylab.biostat.wisc.edu/detonat e/vignette.html

RSEM-EVAL

Used for assessment of de novo assemblies

Score is probability of assembly A given reads D

 $score_{RSEM-EVAL}(A) = log P(A, D)$

RSEM-EVAL for Rpl24 transcript

Trinity demonstrates the best result

RSEM-EVAL for multi-isoform genes

RSEM-EVAL is better at picking up truth than metagenome assessment tools

Score Assembly	RSEM-EVAL	GENOVO	ALE	
Truth	-43720	-19557	-116316	
Long only	-44403	-18199	-88905	
Short only	-104963	-68997	-52090	

RSEM-EVAL for *Xenopus* transcriptome

Trinity shows the best results

Transrate

Tool for de novo transcriptome assembly control

Transrate

Several ways how contigs can be wrong and how mistakes can be detected

Transrate workflow

Transrate metrics

Score component	Description		
$s(C_{nuc})$	The proportion of nucleotides in the mapped reads that are the same as those in the assembled contig		
$s(C_{cov})$	The proportion of nucleotides in the contig that have have no supporting read data		
$s(C_{ord})$	The extent to which the order of the bases in contig are correct by analyzing the pairing information in the mapped reads		
$s(C_{seg})$	The probability that the coverage depth of the transcript is univariate		

Transrate metrics correlations

Transrate and data parameters

Assembly scores do not depend on number of read pairs and duplication of reads, but depend on quality of reads

Assemblers comparison

Assemblers' rankings depend on the organism

Assembly and QC take-home points

Selecting assembler and parameters is a non-trivial matter

Best choice is to try everything available and compare results (possibly with downsampling to uses resources more efficiently)

Annotation

"Annotation"

BLAST results against a relatively close annotated genome

Annotation "dark matter"

A lot of genes can not be assigned to any functional class

Protein prediction

Some pipelines require protein sequences for annotation

ORFs in transcripts can be predicted with several tools

TransDecoder

Identifies coding regions within transcripts

GeneMarkS-T

Ab initio finding of proteins in eukaryotic transcripts

Protein families annotations

Resource	Version	Families	Web address	Comments
PFAM	30.0	16 306	http://pfam.xfam.org/	
TIGRFAM	15.0	4488	http://www.jcvi.org/cgi-bin/ tigrfams/index.cgi	
PANTHER	11.0	13 096	http://pantherdb.org	
SMART	7.1	1312	http://smart.embl-heidelberg.de/	License necessary
EggNOG	4.5	190 648 (37 127 plants)	http://eggnogdb.embl.de/#/app/home	
INTERPROSCAN	58.0	>40 000 integrated entries	https://www.ebi.ac.uk/ interpro/search/sequence-search	Meta engine including all other resources except EggNOG but not necessarily the most recent version at all times
CDD	3.15	52 411 (11 474 from CDD curation)	http://www.ncbi.nlm.nih.gov/cdd/	Uses RPS-BLAST and includes partly older versions of PFAM, SMART and TIGRFAM

Specialized protein groups annotations

Table 4. Tools and Web sites useful in annotating large protein families

Resource	Function	Web address
CoGe	Compares genomes, find synteny	https://genomevolution.org
PlantTFDB	Plant Transcription Factor families	http://planttfdb.cbi.pku.edu.cn/
Potsdam plntfdb	Plant Transcription Factor families	http://plntfdb.bio.uni-potsdam.de/v3.0/
P450 Database	P450 protein families	http://drnelson.uthsc.edu/CytochromeP450.html
CAZy	Enzymes acting on carbohydrates	http://www.cazy.org/
Aramemnon ^a	Plant membrane proteins	http://aramemnon.uni-koeln.de/
Merops Database	Peptidases	http://merops.sanger.ac.uk
PLAZA	Generalist Plant Family database	http://bioinformatics.psb.ugent.be/plaza
reenPhylDB Generalist Plant Family database		www.greenphyl.org/

Note. Also lists a comprehensive set of tools for transmembrane domains, subcellular localization and lipid modifications.

10.1093/bib/bbw135

SignalP

Predicts signal peptides using neural networks

TMHMM

Predicts transmembrane domains

BLAST2GO

Readily available annotation pipeline

Commercial

Trinotate

Annotation pipeline accompanying Trinity

Protein prediction with TransDecoder, annotation with Uniprot, Pfam, eggNOG

Automated Higher Order Biological Analysis

Annotation flowchart

Annotation take-home points

Annotation relies on homology and finding protein domains and protein families annotations

Annotations can be supplemented with finding additional features like signal proteins, transmembrane domains and phosphorylation sites

Annotation can be automated

Annotation should quality checked

Questions, suggestions?