Lista de símbolos e notações

pontos no espaço, curvas, superfícies e sólidos A, B... A. B... matrizes e operadores A, B...a, b... unidades A, B...a, b...variáveis ou módulos de vetores $\vec{A}, \vec{B}, \dots \vec{a}, \vec{b}, \dots$ vetores $\hat{A}, \hat{B}, \dots \hat{a}, \hat{b}, \dots$ versores produto escalar entre vetores $\vec{a} \times \vec{b}$ produto vetorial entre vetores daderivada da variável a em ordem a x $\frac{1}{dx}$ *à*, *ä*... derivadas da variável a em ordem ao tempo valor médio da variável a aceleração a vetor aceleração aceleração normal (centrípeta) aceleração tangencial componentes cartesianas da aceleração a_x, a_y, a_z braço do momento de uma força coeficiente aerodinâmico $C_{\rm D}$ cm centímetro ou, como subíndice, centro de massa número de Euler (base dos logaritmos naturais) E_{c} energia cinética $E_{\mathbf{m}}$ energia mecânica $\hat{e}_{\mathrm{n}},\,\hat{e}_{\mathrm{t}}$ versores normal e tangencial \hat{e}_s , \hat{e}_v versores no espaço de fase força $\vec{F}_{\rm c}$, $\vec{F}_{\rm e}$ forças de atrito cinético e estático força elástica $F_{\rm n}, F_{\rm t}$ componentes normal e tangencial da força

- $\vec{F}_{\rm r}$ força de resistência num fluido
- \vec{g} aceleração da gravidade
- H função hamiltoniana
- i número imaginário $\sqrt{-1}$
- \vec{I} impulso
- I_z , I_{cm} momentos de inércia (eixo z ou eixo no centro de massa)
 - \hat{i} , \hat{j} , \hat{k} versores cartesianos segundo os eixos x, y e z
 - J matriz jacobiana
 - J joule (unidade SI de trabalho e energia)
 - k constante elástica
 - kg quilograma (unidade SI de massa)
 - L momento angular
 - l comprimento eficaz de um pêndulo
 - *m* massa
 - m metro (unidade SI de comprimento)
 - \vec{M} momento de um binário
 - $\vec{M}_{\rm O}$ momento de uma força em relação a um ponto O
 - N newton (unidade SI de força)
 - N_R número de Reynolds
 - \vec{p} quantidade de movimento
 - \vec{P} peso
 - \vec{r} vetor posição
 - $r_{\rm g}$ raio de giração
 - R raio de curvatura de uma trajetória
- R, θ, z coordenadas cilíndricas
- $\hat{R}, \hat{e}_{\theta}, \hat{k}$ versores das coordenadas cilíndricas
 - R_n reação normal
 - s posição na trajetória; elongação de uma mola
 - s segundo (unidade SI de tempo)
 - T período, no movimento circular uniforme ou no movimento oscilatório
 - \vec{u} velocidade de fase
 - U energia potencial
 - Ue energia potencial elástica
 - $U_{
 m g}$ energia potencial gravítica
 - V energia potencial por unidade de massa
 - v velocidade
 - \vec{v} vetor velocidade
- v_x, v_y, v_z componentes cartesianas da velocidade

- W trabalho
- x, y, z coordenadas cartesianas
 - $\vec{\alpha}$ aceleração angular
 - Δa aumento da variável a durante um intervalo de tempo
 - $\Delta \vec{r}$ vetor deslocamento
 - Δ s deslocamento ao longo da trajetória
 - η coeficiente de viscosidade
 - θ angulo de rotação dos versores normal e tangencial
 - λ valor próprio de uma matriz ou multiplicador de Lagrange
- $\mu_{\rm e}, \mu_{\rm c}$ coeficientes de atrito estático e cinético
 - π razão entre o comprimento de uma circunferência e o seu diâmetro
 - ρ massa volúmica (densidade)
 - $\vec{\omega}$ velocidade angular
 - Ω frequência angular
 - ° grau (unidade de ângulo)