Notes on Algebraic Number Theory

LEI Bichang

This is part of the course note for Selected Topics in Algebraic Number Theory online summer school taught by Prof. Xue Hang in 2022.

Some Notations

Let F be a number field, then we denote by r_1 the number of real embeddings, r_2 the number of the pairs of complex embeddings, Cl(F) the class group, h_F the class number, R_F the regulator, w_F the number of roots of unity in F, $\mathfrak{d} = \mathfrak{d}_F$ the different ideal.

Always denote $\sqrt{-1} \in \mathbb{C}$ by i.

1 Adeles and Ideles

Note that the topology on \mathbb{A}_F^{\times} (defined using natrual nbhd of 1 in \mathbb{Q}_p^{\times}) is different from (more precisely, finer than) that on \mathbb{A}_F (defined using natrual nbhd of 0 in \mathbb{Q}_p), but the topology on $\mathbb{A}_F^{\times,1}$ induced from \mathbb{A}_F and \mathbb{A}_F^{\times} coincide.

Theorem 1. The quotient $\mathbb{A}_F^{\times,1}/F^{\times}$ is compact.

Proof. Let I_F be the group of fractional ideals. Observe that we have an epimorphism

$$\mathbb{A}_F^{\times,1} \to I_F, \ (x_v) \mapsto \prod_{\mathfrak{p}} \mathfrak{p}^{v_{\mathfrak{p}}(x_{\mathfrak{p}})},$$

under which $x \in F^{\times}$ is send to the principle fractional ideal $(x) \in I_F$, and thus gives an epimorphism $\mathbb{A}_F^{\times,1}/F^{\times} \to \mathrm{Cl}(F)$. As $\mathrm{Cl}(F)$ is finite, it reduces to show that the kernel of this homomorphism is compact. An element $(x_v) \in \ker$ iff it is mapped to a principle ideal, i.e., $\exists x \in F^{\times}$ s.t. $\forall \mathfrak{p}, x_{\mathfrak{p}} \mathcal{O}_{\mathfrak{p}} = x \mathcal{O}_{\mathfrak{p}}$, or say $x_{\mathfrak{p}} \in x^{-1} \mathcal{O}_{\mathfrak{p}}^{\times}$. Therefore the kernel equals the image of

$$\left(\prod_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}^{\times}\times\prod_{v\mid\infty}F_{v}^{\times}\right)\cap\mathbb{A}_{F}^{\times,1}=\prod_{\mathfrak{p}}\mathcal{O}_{p}^{\times}\times\left(\prod_{v\mid\infty}F_{v}^{\times}\right)^{1}$$

in $\mathbb{A}_F^{\times,1}/F^{\times}$, where $\left(\prod_{v|\infty} F_v^{\times}\right)^1$ denotes the set of element with norm 1. Because two elements in this set cannot differ by an element in $F^{\times} \setminus \mathcal{O}_F^{\times}$, we see that

$$\ker = \left(\prod_{\mathfrak{p}} \mathcal{O}_p^{\times} \times \left(\prod_{v \mid \infty} F_v^{\times} \right)^1 \right) \middle/ \mathcal{O}_F^{\times}.$$

Now it suffices to prove that $\left(\prod_{v|\infty} F_v^{\times}\right)^1/\mathcal{O}_F^{\times}$ is compact. Let v_1, \dots, v_r be the places of real embeddings and $v_{r_1+1}, \dots, v_{r_1+r_2}$ the places of complex ones. The logarithm map

$$\left(\prod_{v \mid \infty} F_v^{\times}\right)^1 \to \mathbb{R}^{r_1 + r_2}, \ x \mapsto (\log|x_{v_1}|, \cdots, \log|x_{v_{r_1}}|, \log|x_{v_{r_1+1}}| \otimes \log|x_{v_{r_1+r_2}}| \otimes |x_{v_{r_1+r_2}}| \otimes |x_{v_1+r_2}| \otimes |x_{v_1+r_2}|$$

is a homomorphism with kernel $T = \{\pm 1\}^{r_1} \times (S^1)^{r_2}$, which is compact and the intersection $T \cap \mathcal{O}_F^{\times} = W_F$, the roots of unity in F. So $T/T \cap \mathcal{O}_F^{\times}$ is compact. Its image is the hypersurface

$$\Sigma: x_1 + \cdots + x_{r_1 + r_2} = 1$$

in $\mathbb{R}^{r_1+r_2}$. Dirichlet units theorem says that the image of \mathcal{O}_F^{\times} in Σ is a lattice of full rank, so the quotient $\Sigma/\mathcal{O}_F^{\times}$ is also compact. Our goal follows.

Remark. This theorem is equivalent to the combination of the finiteness of class group and Dirichlet units theorem.

2 L-functions

2.1 Riemann Zeta Function

Recall that the Riemann zeta function

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \frac{1}{1 - p^{-s}}$$

converges on $\operatorname{Re} s > 1$ and can be extended to a meromorphic function on $\mathbb C$ with s=1 the only simple pole. The functional equation

$$\zeta(s) = 2^s \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s)$$

is satisfied.

2.2 Charaters

A character of a group G is a continuous homomorphism $G \to \mathbb{C}^{\times}$, and trivial character is the character $G \to \{1\}$. The characters of a group G forms a group, denoted by \widehat{G} .

Lemma 2.1. Let G be a finite abelian group.

- 1. There exists an non-canonical isomorphism $G \simeq \widehat{G}$.
- 2. If χ is a non-trivial character, then

$$\sum_{g \in G} \chi(g) = 0.$$

Conversely, if $q \neq 1$, then

$$\sum_{\chi \in \widehat{G}} \chi(g) = 0.$$

Let F be a number field. A **Hecke character** of F is a character of $\mathbb{A}_F^{\times}/F^{\times}$.

Proposition 2.1. Let χ be a character on \mathbb{A}_F^{\times} . Then χ is of the form $\prod_v \chi_v$, where $\chi_v \in \widehat{F_v^{\times}}$ and χ_v 's are unramified (i.e., trivial on $\mathcal{O}_{F_v}^{\times}$) for almost all nonarchimedean places.

So we can go back to character on local fields. Let F be a local field and χ a character of F^{\times} . The character χ is called **unitary**, if $|\chi(F^{\times})| = \{1\}$. We can describe χ explicitly.

 \diamond If $F = \mathbb{R}$, then

$$\chi(x) = \left(\frac{x}{|x|}\right)^{\epsilon} |x|^{s}, \ \epsilon = 0, 1, \ s \in \mathbb{C}.$$

It is unitary iff $s \in i\mathbb{R}$.

 \diamond If $F = \mathbb{C}$, then

$$\chi(x) = \left(\frac{x}{\sqrt{x\overline{x}}}\right)^m (x\overline{x})^s, \ m \in \mathbb{Z}, \ s \in \mathbb{C}.$$

It is unitary iff $s \in i\mathbb{R}$.

 \diamond If F is nonarchimedean, then there exists a minimal integer N s.t. $\chi(1 + \varpi^N \mathcal{O}_F^{\times}) = \{1\}$, whence χ factors through the finite group $\mathcal{O}_F^{\times}/(1 + \varpi^N \mathcal{O}_F^{\times})$, and thus

$$\chi(x) = |x|^s \chi_0(x),$$

where χ_0 is a character of $\mathcal{O}_F^{\times}/(1+\varpi^N\mathcal{O}_F^{\times})$. It is unitary if $s \in i\mathbb{R}$. This integer is called the **conductor** of χ .

From now on, all multiplicative characters of local fields are assumed to be unitary.

2.3 Lift a Dirichlet Charater to a Hecke Charater

3 Fourier Analysis

3.1 Fourier analysis on local fields

Let F be a local field. We only need the Schwartz functions and consider their integrals. The space of Schwartz functions $F \to \mathbb{C}$ is denoted by $\mathcal{S}(F)$. We are familiar with $f \in \mathcal{S}(\mathbb{R})$ and $\mathcal{S}(\mathbb{C})$: f must satisfy

$$\lim_{x\to\infty} x^n \left(\frac{d}{dx}\right)^m = 0, \ \forall m,n.$$

As for a nonarchimedean local field F, $\mathcal{S}(F)$ is defined to be the space of locally constant compactly supported functions. Because the topology of F and \mathbb{C} are "totally incompatible", these are actually all the continuous functions from F to \mathbb{C} with compact supports. Note that every Schwartz function may be written as a finite linear combination of functions $1_{a+\varpi^n\mathcal{O}_F}$, where ϖ is an uniformizer.

Then we fix an additive measure on F.

- \diamond If $F = \mathbb{R}$, then dx := the Lebesgue measure.
- \diamond If $F = \mathbb{C}$, then dx := two-times the Lebesgue measure.
- \diamond If $F/\mathbb{Q}_p < \infty$, then dx satisfies $vol(\mathcal{O}_F) = (N\mathfrak{d})^{-\frac{1}{2}}$.

To define Fourier transformation, one need to fix an additive character ψ on F.

- \diamond If $F = \mathbb{R}$, then $\psi(x) := e^{-2\pi ix}$.
- \diamond If $F = \mathbb{C}$, then $\psi(x) := e^{-2\pi i(x+\overline{x})}$.
- \diamond If $F/\mathbb{Q}_p < \infty$, then $\psi(x) := e^{2\pi i \{ \operatorname{Tr}_{F/\mathbb{Q}_p} x \}}$, where $\{\cdot\} : \mathbb{Q}_p/\mathbb{Z}_p \xrightarrow{\sim} \mathbb{Z}[1/p]/\mathbb{Z} \subset \mathbb{Q}/\mathbb{Z}$.

Then we define the Fourier transformation for $f \in \mathcal{S}(F)$ to be

$$\mathcal{F}_{\psi}f(y) := \widehat{f}(y) := \int_{F} f(x)\psi(xy) \,\mathrm{d}x.$$

Under these choices, we have the following properties known for $\mathbb R$ and $\mathbb C$.

Theorem 2. Let $f \in \mathcal{S}(F)$. Then $\widehat{f} \in \mathcal{S}(F)$, and

$$\widehat{\widehat{f}}(x) = f(-x).$$

In particular, if F is nonarchimedean and unramified, then

$$\widehat{1_{\mathcal{O}_F}}=1_{\mathcal{O}_F}.$$

Proof. (An important example of computation!)

WMA: F an nonarchimedean local field with ϖ an uniformizer, $f = 1_{a+\varpi^n \mathcal{O}_F}$

$$\widehat{\mathbf{1}_{a+\varpi^n\mathcal{O}_F}}(y) = \int_{a+\varpi^n\mathcal{O}} \psi(xy) \,\mathrm{d}x = \psi(ay) \int_{\varpi^n\mathcal{O}} \psi(xy) \,\mathrm{d}x = |\varpi|^n \psi(ay) \int_{\mathcal{O}} \psi(\varpi^n xy) \,\mathrm{d}x.$$

Note that $\phi: x \mapsto \psi(\varpi^n xy)$ is an additive character, and

$$\phi|_{\mathcal{O}} = 1 \iff \varpi^n y \in \mathfrak{d}^{-1}$$

(by definition), hence

$$\int_{\mathcal{O}} \phi(x) \, \mathrm{d}x = \begin{cases} \mathrm{vol}(\mathcal{O}), & y \in \varpi^{-n} \mathfrak{d}^{-1}, \\ 0, & y \notin \varpi^{-n} \mathfrak{d}^{-1}. \end{cases}$$

(In the second case, ϕ has conductor smaller than \mathcal{O} and thus factors through a non-trivial character of a finite group.) So

$$\widehat{1_{a+\varpi^n\mathcal{O}}}(y) = |\varpi|^n \psi(ay)(N\mathfrak{d})^{-\frac{1}{2}} 1_{\varpi^{-n}\mathcal{O}}(y).$$

Similarly,

$$\int_{F} \psi(ay) 1_{\varpi^{-n} \mathfrak{d}^{-1}}(y) \psi(xy) \, \mathrm{d}y = \int_{\varpi^{-n} \mathfrak{d}^{-1}} \psi((a+x)y) \, \mathrm{d}y = \mathrm{vol}(\varpi^{-n} \mathfrak{d}^{-1}) \cdot 1_{-a+\varpi^{n} \mathcal{O}}(x),$$

where

$$\operatorname{vol}(\varpi^{-n}\mathfrak{d}^{-1}) = |\varpi|^{-n} \cdot \operatorname{vol}(\mathfrak{d}^{-1}) = |\varpi|^{-n} \cdot \operatorname{vol}(\mathcal{O}) N\mathfrak{d} = |\varpi|^{-n} (N\mathfrak{d})^{\frac{1}{2}}.$$

The result follows.

The multiplicative measure on F^{\times} is chosen as follows.

- \diamond If $F = \mathbb{R}$, then $d^{\times}x := |x|^{-1} dx$.
- \diamond If $F = \mathbb{C}$, then $d^{\times}x := |x|_{\mathbb{C}}^{-1} dx$, where $|x|_{\mathbb{C}} := x\overline{x}$. (Reason?)
- $\diamond \text{ If } F/\mathbb{Q}_p < \infty, \text{ then } \text{vol}(\mathcal{O}_F^{\times}, \mathrm{d}^{\times} x) = 1.$

As an example, integration on local fields can give the factor of L-function at \mathfrak{p} .

Lemma 3.1. Let χ be an unramified character $F^{\times} \to \mathbb{C}^{\times}$. Then

$$\int_{F^{\times}} 1_{\mathcal{O}_F}(x)\chi(x)|x|^s d^{\times}x = (1 - \chi(\mathfrak{p})N\mathfrak{p}^{-s})^{-1}.$$

Proof. Since $\mathcal{O}_F = \bigsqcup_{n>0} \varpi^n \mathcal{O}_F^{\times}$,

$$\int_{F^{\times}} 1_{\mathcal{O}_F}(x)\chi(x)|x|^s \,\mathrm{d}^{\times} x = \sum_{n\geq 0} (\chi(\varpi)^n \cdot 1) \cdot N\mathfrak{p}^{-ns} = \frac{1}{1 - \chi(\mathfrak{p})N\mathfrak{p}^{-s}}.$$

3.2 Fourier analysis on adeles

Let F be a number field.

A Schwartz-Bruhat function is a finite linear combination of functions of the form

$$\prod_{v} f_v : \mathbb{A}_F \to \mathbb{C}, \quad f_v \in \mathcal{S}(F_v), \quad f_v = 1_{\mathcal{O}_{F_v}} \text{ a.e.},$$

and denote the space of Schwartz-Bruhat functions by $\mathcal{S}(\mathbb{A}_F)$. Then define the additive character on \mathbb{A}_F by

$$\psi(x) := \prod_{v} \psi_v(x_v).$$

This is by definition a finite product and thus well-defined.

Lemma 3.2. $\psi|_F = 1$.

Then we need to define and fix measures on \mathbb{A}_F , \mathbb{A}_F^{\times} and $\mathbb{A}_F^{\times,1}$. For \mathbb{A} resp. \mathbb{A}^{\times} , simply multiply the measures on each places yields an additive resp. multiplicative measure, if $\operatorname{vol}(\mathcal{O}_F, \mathrm{d}x) = 1$ resp. $\operatorname{vol}(\mathcal{O}_F^{\times}, \mathrm{d}^{\times}x) = 1$ (which is ture for our choices). So for a Schwartz-Bruhat function $f = \prod_v f_v$,

$$\int_{\mathbb{A}_F} f(x) \, \mathrm{d}x = \prod_v \int_{F_v} f_v(x_v) \, \mathrm{d}x_v, \quad \int_{\mathbb{A}_F^\times} f(x) \, \mathrm{d}^\times x = \prod_v \int_{F_v^\times} f_v(x_v) \, \mathrm{d}^\times x_v.$$

Theorem 3. The volume of the foundamental domain of \mathbb{A}_F/F under the given measure is 1.

For $\mathbb{A}^{\times,1}$, fix an archimedean place u first. Define a continuous homomorphism $\phi: \mathbb{A}_F^{\times} \to \mathbb{A}_F^{\times,1}$ by $\phi(x)_u := x_u/|x|$ and $\phi(x)_v := x_v$ for $v \neq u$. The multiplicative measure $d^{\times}x$ on $\mathbb{A}_F^{\times,1}$ is defined s.t. for a measurable set $U \subset \mathbb{A}_F^{\times,1}$,

$$\operatorname{vol}_{\mathbb{A}^{\times}}(U, \operatorname{d}^{\times} x) := \operatorname{vol}_{\mathbb{A}^{\times, 1}}(U', \operatorname{d}^{\times} x), \text{ where } U' := \{x \in \mathbb{A}_{F}^{\times} : \phi(x) \in U, 0 \leq \log|x| \leq 1\}.$$

For example, let $F=\mathbb{Q}$ and $U=\prod_p\mathbb{Z}_p^{\times}\times\{1\}$, then $U'=\prod_p\mathbb{Z}_p^{\times}\times[1,e]$, so

$$\operatorname{vol}(U) = \int_{1}^{e} \frac{\mathrm{d}x}{x} = 1.$$

Remark. This is the measure defined by the exact sequence

$$1 \to \mathbb{A}_F^{\times,1} \to \mathbb{A}_F^{\times} \to \mathbb{R}_{>0} \to 1.$$

For $U = U^1 \times I$, where $U \subset \mathbb{A}_F^{\times,1}$ and $I \subset \mathbb{R}_{>0}$, $\operatorname{vol}(U) = \operatorname{vol}(U^1) \operatorname{vol}(I)$.

Theorem 4. The volume of the foundamental of $\mathbb{A}_F^{\times,1}/F^{\times}$ is

$$\frac{2^{r_1}(2\pi)^{r_2}h_F R_F}{w_F},$$

Now take $f \in \mathcal{S}(\mathbb{A}_F)$. Define

$$\mathcal{F}_{\psi}f(y) := \widehat{f}(y) := \int_{\mathbb{A}_F} f(x)\psi(xy) \,\mathrm{d}x.$$

In particular,

$$\widehat{\prod_v f_v} = \prod_v \widehat{f_v}.$$

By the lemma above, $\widehat{f} \in \mathcal{S}(\mathbb{A}_F)$.

Theorem 5 (Poisson Summation Formula). Let $f \in \mathcal{S}(\mathbb{A}_F)$, then

$$\sum_{x \in F} f(x) = \sum_{x \in F} \widehat{f}(x).$$

(The summation obviously converges.)

Corollary 3.1. Let $\alpha \in \mathbb{A}_F^{\times}$, then

$$|\alpha| \sum_{x \in F} f(\alpha x) = \sum_{x \in F} \widehat{f}(\alpha^{-1}x). \quad \Box$$

4 Analytic Properties of Hecke L-functions

Let F be a number field, $\chi = \prod_v \chi_v : \mathbb{A}_F^{\times}/F^{\times} \to \mathbb{C}^{\times}$ a Hecke character, S a finite set containing all infinite places and all places v s.t. χ_v is ramified.

Recall that

$$L(s,\chi_v) := (1 - \chi_v(\mathfrak{p})N\mathfrak{p}^{-s})^{-1},$$

and the partial Hecke L-function

$$L^{S}(s,\chi) := \prod_{v \notin S} L(s,\chi_{v}).$$

Lemma 4.1. The Euler product $L^S(s,\chi)$ absolutely converges if Re s>1.

Proof. If $\mathfrak{p} \cap \mathbb{Z} = p$, then $N\mathfrak{p} \geq p$, and since χ is unitary,

$$|(1 - \chi_v(\mathfrak{p})N\mathfrak{p}^{-s})^{-1}| \le (1 - p^{-\operatorname{Re} s})^{-1}.$$

Since there are at most $n = [F : \mathbb{Q}]$ primes over p,

$$\prod_{v} |(1 - \chi_v(\mathfrak{p})N\mathfrak{p}^{-s})^{-1}| \le \prod_{p} (1 - p^{-\operatorname{Re} s})^{-n}.$$

Take $f \in \mathcal{S}(\mathbb{A}_F)$ s.t. $f_v = 1_{\mathcal{O}}$ for $v \notin S$. Define the zeta integral

$$Z(s, f, \chi) := \int_{\mathbb{A}_{\mathbb{R}}^{\times}} f(x) \chi(x) |x|^{s} d^{\times} x$$

and local zeta integral

$$Z_v(s, f_v, \chi_v) := \int_{F_v^{\times}} f_v(x) \chi_v(x) |x|^s \, \mathrm{d}^{\times} x_v.$$

By definition,

$$Z(s, f, \chi) = \prod_{v} Z_v(s, f_v, \chi_v).$$

For $v \notin S$, we have seen in Lemma 3.1 that

$$L(s, \chi_v) = Z_v(s, f_v, \chi_v),$$

SO

$$Z(s, f, \chi) = L^{S}(s, \chi) \prod_{v \in S} Z_{v}(s, f_{v}, \chi_{v}),$$

and it is absolutely convergent on $\operatorname{Re} s > 1$.

Theorem 6. $Z(s, f, \chi)$ can be extended to a meromorphic function on \mathbb{C} , satisfying

$$Z(s, f, \chi) = Z(1 - s, \hat{f}, \chi^{-1}).$$

Moreover, if there does not exist $\lambda \in i\mathbb{R}$ s.t. $\chi(x) = |x|^{\lambda}$, then $Z(s, f, \chi)$ is entire; otherwise the only poles of $Z(s, f, \chi)$ are $s = 1 - \lambda$ and $s = -\lambda$, which are both simple poles with residue $\widehat{f}(0) \operatorname{vol}(\mathbb{A}_F^{\times, 1}/F^{\times})$ and $-f(0) \operatorname{vol}(\mathbb{A}_F^{\times, 1}/F^{\times})$.

Proof. Because $\{|x|=1\}$ is of measure zero in \mathbb{A}_F^{\times} , we have

$$Z(s, f, \chi) = \int_{\mathbb{A}_F^{\times}} = \int_{\mathbb{A}_F^{\times 1}} + \int_{\mathbb{A}_F^{\times 1}} =: Z^{>1} + Z^{<1}.$$

For all $s \in \mathbb{C}$, the integrand is continuous when |x| > 1, so $Z^{>1}$ converges on \mathbb{C} .

Now we turn to $Z^{<1}$. Let Ω be a foundamental domain of $\mathbb{A}_F^{<1}/F^{\times}$. Assume that s is big enough, then

$$\begin{split} Z^{<1} &= \sum_{\alpha \in F^{\times}} \int_{\alpha\Omega} f(x) \chi(x) |x|^{s} \, \mathrm{d}^{\times} x \\ &= \int_{\Omega} \left(\sum_{\alpha \in F} f(\alpha x) \right) \chi(x) |x|^{s} \, \mathrm{d}^{\times} x \\ &= \int_{\Omega} \left(\sum_{\alpha \in F} f(\alpha x) \right) \chi(x) |x|^{s} \, \mathrm{d}^{\times} x - f(0) \int_{\Omega} \chi(x) |x|^{s} \, \mathrm{d}^{\times} x \\ &= \int_{\Omega} \left(\sum_{\alpha \in F} \widehat{f}(\alpha x^{-1}) \right) \chi(x) |x|^{s-1} \, \mathrm{d}^{\times} x - f(0) \int_{\Omega} \chi(x) |x|^{s} \, \mathrm{d}^{\times} x \\ &= \int_{\Omega} \left(\sum_{\alpha \in F^{\times}} \widehat{f}(\alpha x^{-1}) \right) \chi(x) |x|^{s-1} \, \mathrm{d}^{\times} x + \widehat{f}(0) \int_{\Omega} \chi(x) |x|^{s-1} \, \mathrm{d}^{\times} x - f(0) \int_{\Omega} \chi(x) |x|^{s} \, \mathrm{d}^{\times} x \\ &= \int_{\Omega^{-1}} \left(\sum_{\alpha \in F^{\times}} \widehat{f}(\alpha x) \right) \chi(x^{-1}) |x|^{1-s} \, \mathrm{d}^{\times} x + \widehat{f}(0) \int_{\Omega} \chi(x) |x|^{s-1} \, \mathrm{d}^{\times} x - f(0) \int_{\Omega} \chi(x) |x|^{s} \, \mathrm{d}^{\times} x \\ &= \int_{\mathbb{A}_{F}^{\times}} \widehat{f}(x) \chi(x)^{-1} |x|^{1-s} \, \mathrm{d}^{\times} x + \widehat{f}(0) \int_{\Omega} \chi(x) |x|^{s-1} \, \mathrm{d}^{\times} x - f(0) \int_{\Omega} \chi(x) |x|^{s} \, \mathrm{d}^{\times} x. \end{split}$$

We used " $\chi(\alpha x) = \chi(x)$ for $\alpha \in F^{\times}$ ", Poisson summation, " $\mathrm{d}^{\times} x$ is invariant under $x \mapsto x^{-1}$ ", and " Ω^{-1} is a foundamental domain of $\mathbb{A}_F^{>1}/F^{\times}$ " in the above calculation. The integral over $\mathbb{A}_F^{>1}$ is again convergent on \mathbb{C} , so we look at the rest two integrals.

 \mathbb{C} , so we look at the rest two integrals. Write $\Omega = \Omega^1 \times (0,1)$, where Ω^1 is a foundamental domain of $\mathbb{A}_F^{\times,1}/F^{\times}$. Then if χ is non-trivial on $\mathbb{A}_F^{\times,1}$, both integrals vanish (as in Theorem 2). Otherwise χ factors through $\mathbb{A}_F^{\times,1}/\mathbb{A}_F^{\times,1} \simeq \mathbb{R}_{>0} \to \mathbb{C}^{\times}$, hence $\chi(x) = |x|^{\lambda}$ for some $\lambda \in i\mathbb{R}$, and

$$\widehat{f}(0) \int_{\Omega} \chi(x) |x|^{s-1} \,\mathrm{d}^{\times} x - f(0) \int_{\Omega} \chi(x) |x|^{s} \,\mathrm{d}^{\times} x = \frac{\widehat{f}(0) \operatorname{vol}(\mathbb{A}_{F}^{\times,1}/F^{\times})}{s+\lambda-1} - \frac{f(0) \operatorname{vol}(\mathbb{A}_{F}^{\times,1}/F^{\times})}{s+\lambda}.$$

The theorem is easy to deduce from the expression.

Our next target is $Z_v(s, f, \chi_v) = \int_{F_v^{\times}} f_v(x) \chi_v(x) |x|^s d^{\times} x_v$.

Lemma 4.2. $Z_v(s, f, \chi_v)$ converges on Re s > 0.

Proof. Consider only the nonarchimedean case.

Take ϵ small enough s.t. $f_v(x) = f_v(0)$ for $|x| < \epsilon$. Write

$$Z_v(s, f_v, \chi_v) = \int_{|x| > \epsilon} + \int_{|x| < \epsilon}.$$

Similarly, the first integral converges on \mathbb{C} . For the second one, $\{|x| < \epsilon\} = \bigcup_{n \geq N} \varpi^n \mathcal{O}_{F_v}^{\times}$ for an integer N. Thus we see that

$$\int_{|x|<\epsilon} |\chi_v(x)|x|^s |\,\mathrm{d}^\times x = \sum_{n>N} \int_{\varpi^n \mathcal{O}_{F_v}^\times} |\varpi|^{-n\operatorname{Re} s} \,\mathrm{d}^\times x$$

converges when $\operatorname{Re} s > 0$.

Theorem 7. (1) $Z_v(s, f, \chi_v)$ can be extended to a meromorphic function on \mathbb{C} which is holomorphic on $\operatorname{Re} s > 0$.

(2) There exists a meromorphic function $\gamma_v(s, \chi_v, \psi_v)$, called **local** γ -factor, irrelevant to f_v , s.t. for any $f_v \in \mathcal{S}(F_v)$,

$$Z_v(1-s, \hat{f}_v, \chi_v^{-1}) = \gamma_v(s, \chi_v, \psi_v) Z_v(s, f_v, \chi_v).$$

Proof. Firstly, both sides of the equation converge on $0 < \text{Re}\, s < 1$.

We need to show that $\frac{Z_v(1-s,\widehat{f_v},\chi_v^{-1})}{Z_v(s,f_v,\chi_v)}$ is irrelevant to f_v ; i.e.,

$$Z_{v}(1-s,\widehat{f_{v}},\chi_{v}^{-1})Z_{v}(s,g_{v},\chi_{v}) = Z_{v}(1-s,\widehat{g_{v}},\chi_{v}^{-1})Z_{v}(s,f_{v},\chi_{v}), \ \forall g_{v} \in \mathcal{S}(F_{v}).$$

Assume that $d^{\times}x_v = |x|^{-1} dx$, then the LHS

$$= \int_{F_v^{\times}} \left(\int_F f_v(y) \psi_v(xy) \, \mathrm{d}y \right) \chi_v(x)^{-1} |x|^{1-s} \, \mathrm{d}^{\times} x \int_{F_v^{\times}} g_v(x) \chi_v(x) |x|^s \, \mathrm{d}^{\times} x \right)$$

$$= \int_{F_v^{\times}} \int_{F_v^{\times}} \int_{F_v^{\times}} f_v(y) g_v(z) \psi_v(xy) \chi_v(zx^{-1}) |x|^{1-s} |z|^s \, \mathrm{d}^{\times} x \, \mathrm{d}y \, \mathrm{d}^{\times} z$$

$$= \iiint f_v(y) g_v(z) \psi_v(xy) \chi_v(zx^{-1}) |x|^{1-s} |z|^s \cdot |y| \, \mathrm{d}^{\times} x \, \mathrm{d}^{\times} y \, \mathrm{d}^{\times} z$$

$$= \iiint f_v(y) g_v(z) \psi_v(x) \chi_v(zyx^{-1}) |x|^{1-s} |zy|^s \, \mathrm{d}^{\times} x \, \mathrm{d}^{\times} y \, \mathrm{d}^{\times} z \qquad (x \mapsto y^{-1} x).$$

Hence LHS = RHS.

So γ_v is well-defined on $0 < \operatorname{Re} s < 1$. If γ_v can be a meromorphic function on \mathbb{C} , then the equation gives the analytic continuation of Z_v on $\operatorname{Re} s < 1$. (The formula of γ -factor is only computed for archimedean place in this proof.)

(1) $F_v = \mathbb{R}$. Note that

$$Z_v(s, f_v, \chi_v | \cdot |^t) = Z_v(s + t, f_v, \chi_v),$$

so we only need to compute for χ_v trivial or $\chi_v = \text{sgn character}$. The result is

$$\gamma_{v}(s, \chi_{v}, \psi_{v}) = \begin{cases} \frac{\pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right)}{\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)}, & \chi = 1, \\ i \frac{\pi^{-\frac{(1-s)+1}{2}} \Gamma\left(\frac{(1-s)+1}{2}\right)}{\pi^{-\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right)}, & \chi = \operatorname{sgn}. \end{cases}$$

For example, when $\chi_v = 1$, we take $f_v(x) = e^{-\pi x^2}$, then $\hat{f}_v = f_v$, and

$$Z_v(s, f_v, 1) = \int_{\mathbb{R}^\times} e^{-\pi x^2} |x|^{s-1} dx$$
$$= 2 \int_0^{+\infty} e^{-\pi x^2} x^{s-1} dx$$
$$= \pi^{-\frac{s}{2}} \int_0^{+\infty} y^{\frac{s}{2} - 1} e^{-y} dy$$
$$= \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right),$$

therefore

$$\gamma_v(s, \chi_v, \psi_v) = \frac{Z_v(1 - s, f_v, 1)}{Z_v(s, f_v, 1)} = \frac{\pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right)}{\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)}, \, \chi = 1.$$

(2)
$$F_v = \mathbb{C}$$
. For $\chi_v(x) = \left(\frac{x}{\sqrt{x\overline{x}}}\right)^n$, $n \in \mathbb{Z}$, using

$$f_v(x) = \begin{cases} \overline{x}^n e^{-2x\overline{x}}, & n \ge 0, \\ x^{-n} e^{-2x\overline{x}}, & n < 0, \end{cases}$$

we obtain

$$\gamma_v(s, \chi^v, \psi_v) = i^{|n|} \frac{(2\pi)^{-\left(1-s+\frac{|n|}{2}\right)} \Gamma\left(1-s+\frac{|n|}{2}\right)}{(2\pi)^{-\left(-s+\frac{|n|}{2}\right)} \Gamma\left(s+\frac{|n|}{2}\right)}.$$

(3) v is nonarchimedean. We show that γ_v is defined on Re s > 1. Let U be a sufficiently small open compact nbhd of -1 in F_v s.t. χ_v is trivial on -U, and put $f_v := \widehat{1_U}$. Then

$$Z_v(t, \widehat{f}_v, \chi_v^{-1}) = \int_{F_v^\times} 1_U(-x)\chi(x^{-1})|x|^t d^\times x = \text{vol}(U) \neq 0$$

and is irrelevant to t. Therefore γ_v^{-1} can be defined on Re s>0. Similar for Re s<1.

Finaly, we obtain the analytic continuation of Hecke L-functions and the main theorem of functional equations.

Theorem 8. Let S be a finite set of places s.t. $\forall v \notin S$, v is archimedean with χ_v unramified, and $\mathfrak{d}_v = \mathcal{O}_{F_v}$. Then the partial Hecke L-function can be extended to a meromorphic function on \mathbb{C} , satisfying

$$L^{S}(s,\chi) = \left(\prod_{v \in S} \gamma_{v}(s,\chi_{v},\psi_{v})\right) L^{S}(1-s,\chi^{-1}).$$

Moreover, if there does not exist $\lambda \in i\mathbb{R}$ s.t. $\chi(x) = |x|^{\lambda}$, then $L^{S}(s,\chi)$ is entire; otherwise only $s = 1 - \lambda$ and $s = -\lambda$ have the possibility to be poles.

Proof. Take $f = \prod_v f_v$ s.t. $f_v = 1_{\mathcal{O}_{F_v}}$, $\forall v \notin S$. For $v \notin S$, the additional condition $\mathfrak{d}_v = \mathcal{O}_{F_v}$ implies that (by Lemma 3.1)

$$\widehat{f}_v(x) = (N\mathfrak{d})^{-\frac{1}{2}} 1_{\mathcal{O}}(x) = 1_{\mathcal{O}}(x),$$

and the functional equation follows.

It is left to show the property about poles. Suppose that $\chi(x) = |x|^{\lambda}$ with $\lambda \in i\mathbb{R}$ and $s = s_0$ is a pole of L^S other than $-\lambda$ or $1 - \lambda$. Consider the equation

$$Z(s, f, \chi) = L^{S}(s, \chi) \prod_{v \in S} Z_{v}(s, f_{v}, \chi_{v}).$$

By Theorem 6, LHS is holomorphic at $s = s_0$.

We choose an f s.t. for all $v \in S$, f_v supports in a sufficiently small nbhd U_v of $1 \in F_v$. With a similar argument in the previous proof, one sees that $Z_v(s_0, f_v, \chi_v) \neq 0$. Therefore the RHS has a pole at $s = s_0$, which is a contradiction.

4.1 Exercise

Let $F = \mathbb{Q}$, $\chi = 1$ the trivial character. Repeat the calculation before to prove the analytic continuation and functional equation of Riemann zeta function, and compute its residue at s = 1.

Proof. The Riemann zeta function is

$$\zeta(s) = \prod_{s} (1 - p^{-s})^{-1}.$$

Let $S = {\infty}$. The local unramified L-functions are

$$L(s, 1_p) = (1 - p^{-s})^{-1},$$

so $\zeta(s) = L^S(s, \chi)$.

Let $f \in \mathcal{S}(\mathbb{A}_{\mathbb{Q}})$ be defined by $f_p = 1_{\mathbb{Z}_p}$ and $f_{\infty}(x) = e^{-\pi x^2}$. The zeta integral is

$$Z(s, f, 1) = \int_{\mathbb{A}_{\mathbb{Q}}^{\times}} f(x)|x|^{s} d^{\times}x$$

9

and the local zeta integral at infinity is

$$Z_{\infty}(s, f_{\infty}, 1) = \int_{\mathbb{R}^{\times}} e^{-\pi x^2} |x|^s d^{\times} x.$$

We have

$$Z(s, f, 1) = \zeta(s) Z_{\infty}(s, f_{\infty}, 1).$$

(TBC.....)

5 Dedekind Zeta Functions and Dirichlet L-functions

5.1 Dedekind Zeta Functions and the Analytic Class Number Formula

Let F be a number field, χ the trivial character, S the set of all archimedean places. The **Dedekind zeta** function of F is defined to be

$$\zeta_F(s) := L^S(s,\chi) = \prod_{\mathfrak{p}} (1 - N\mathfrak{p}^{-s})^{-1}.$$

In this subsection, we will compute the local γ -factors at ramified places to deduce the functional equation of Dedekind zeta functions and the analytic class number formula.

Theorem 9. The Dedekind zeta function $\zeta_F(s)$ can be extended to a meromorphic function on \mathbb{C} with only poles at s=0 and s=1.

1. (Analytic class number formula.) $\zeta_F(s)$ has a simple pole at s=1 with residue

$$\operatorname{res}_1 \zeta_F = \frac{2^{r_1} (2\pi)^{r_2} h_F R_F}{\sqrt{|\operatorname{disc} F|} w_F},$$

and is of order $r_1 + r_2 - 1$ at s = 0 with

$$\lim_{s \to 0} s^{r_1 + r_2 - 1} \zeta_F(s) = -\frac{h_F R_F}{w_F}$$

2. Define the completed Dedekind zeta function

$$\Lambda(s) := |\operatorname{disc} F|^{\frac{s}{2}} \left(\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \right)^{r_1} \left(2(2\pi)^{-s} \Gamma(s) \right)^{r_2} \zeta_F(s).$$

Then

$$\Lambda_F(s) = \Lambda_F(1-s).$$

5.2 Dirichlet *L*-functions

Let $F = \mathbb{Q}$, χ a Dirichlet character with conductor N, $S = \{p : p|N\} \cup \{\infty\}$. Lifting χ to a Hecke character, we obtain the classic Dirichlet L-function

$$L(s,\chi) = \prod_{p \mid N} (1 - \chi(p)p^{-s})^{-1} = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.$$