The gap between market needs and education in AI: A viewpoint from Trusting Social

Mai Hai Thanh Lead Data Scientist, Trusting Social

"Advancing Data Science and Technology to Deliver Financial Access for All" 2019-11

Before we begin

- Hard-learned lessons that are often not available in textbooks
- A mixture of data science, machine learning, and soft things
- More or less true for different cases
- This is a sharing session with university lecturers

A typical academic research flow

- Define problem
- Review related work
- Propose a new method/algorithm
- Evaluate performance
- Write and publish papers

- Define problem
- Review related work
- Propose a new method/algorithm
- Evaluate performance
- Deploy on production system

Not much difference at the first glance.

- Define problem: make sure you know
 - What your problem is
 - What the expected outputs are
 - Why you should do it

Most students don't ask Why

Don't spend 6 months working hard and figuring out that you are working on something nobody needs

- Review related work
 - What have been done by your team-mates?
 - What are the strengths and weaknesses of previous methods?

Don't live in an isolated island

- Propose a new method/algorithm
 - Asking teammates and managers to read 10k lines of code is not appropriate in most cases
 - Make sure you can describe clearly what you have done

If the author cannot explain the new method clearly, who can?

- Evaluate performance
 - Make sure you know what metrics are best to measure your success
 - If you cannot measure your success, how can you know that you are doing well?
 - Accuracy, recall, precision, F1, FAR, TAR, AUC... choose one or two metrics that suit best to your need
 - Why is that the most suitable metric? Need to clearly understand the problem. Don't just blindly follow your advisor/supervisor/boss or even a random online tutorial.

ML without data? No way!

- Make sure you know
 - What kind of input data you have
 (text, image, transactional data?)
 Where & How you can get them
 (which sources? who?)
 When you can get them
 (every month/week/day/hour/minute/second?)
 - We will have to adjust the model development process depending on the What/Where/How/When aspects of the data

ML without data? No way!

- Input data is important, both labels and raw data to compute features
 - Garbage in -> garbage out
 - Labeled data is very expensive in many cases
 Examples: loan performance, faked ID
 - Students should also study about data collection

ML without data? No way!

- 20%+ of your time is to clean input data
 - Higher percentage if your data is really big
 - Don't be surprised, don't be sad
 - Be prepared with appropriate skills

The first model

Interviewer: what do you do?
Interviewee: I tried to solve problem X, using a
supermarket's transactional data to predict customer

demand for some special products.

Interviewer: how?

Interviewee: I created a deep neural network with 10 convolutional layers, 10 pooling layers, and 10 fully connected layers. The accuracy is 85%, which makes my supervisor happy.

The first model

A junior AI engineer: I will work hard 3 months and build a sophisticated model that can achieve 90% accuracy. I think 90% is a good target.

Boss: What! Our team could get 91% accuracy with just 10 lines of code.

The first model

- The baseline: your first ML model should be very simple (but not too simple)
 - Can be done quickly, still give a decent accuracy
 - More complex ML models must be compared to the baseline

More complex models often cost more time & money to develop, deploy, and maintain - more dangerous for most companies.

Deep learning and traditional methods

- Neural networks are beautiful
 - Work very well with images and natural language text
 - But usually do not work well with transactional/tabular data around 80%+ of the data most companies have

Random forest, gradient boosted decision trees, SVM,
 logistic regression algorithms are as important as deep neural networks

Deep learning and traditional methods

- Don't be shy to choose the one that works best for you, even though it might not sound sexy
- We should balance students' training time for both deep learning and traditional methods

Just a tiny fraction of AI engineers & data scientists will work for Google's self-driving car team. Most of us will not.

Insights, insights, insights

- If you are working with transactional/tabular data, at least 50% of your time should be used to find insights about the problem and do feature engineering
 - Not just deep learning has limitations
 - Need to understand the problem to have better features and models
 - Better insights can lead to better NN models too
 - ML models should not be 100% black boxes (why? model bias, operational debt, legal requirement...)

Students should seriously practice finding insights

Hyperparameter tuning

- Yes, it is important
- But often takes less than 5% of your "brain" time
- Grid search is useful. More advanced methods (such as Bayesian optimization) are even more useful
- Don't spend too much time for it
- What about AutoML?
 - Anyone can build a model. Tools are available everywhere. Data scientists and AI engineers should retire?
 - Remember the previous slides!

Bias vs. Variance

- Basic but very important
- Never overlook

- Check your code, check again and again
- 80-20 train-test split is not enough. Should always have a completely independent test set.
 - For time series data, should have an out-of-time test set

Big data

- Big data processing mindset, skills, and experience are extremely important
 - Toy project's data is often small. Real-life project's data is often very big
 - Find gold in the forest quickly before starving. Speed of code, speed of experimental iterations, speed of improving the models
 - SQL skills, Spark skills, and fundamental database knowledge are very useful

Most Vietnamese students are not good at big data processing. We should adjust our Al curriculum.

Big data

- But it is not easy to find big data sets to practice, right?
 - No, every data set will be big enough if you put enough constraints on the available resources (set limits for RAM, CPU, processing time,...)
 - The Misfit example
- I cannot practice Spark because I don't have a big data cluster?
 - Set up a cluster of virtual machines on a PC/laptop
 - Spark can be set up easily on a PC/laptop, too

Team work

- Weakness of most Vietnamese students
 - Some students think they are geniuses (but that is not the truth) and don't try to work well with others
 - Even if someone is a genius, he/she cannot do everything
 - Universities should have many team projects, with clear reports about individuals' contributions. Advisors should always remind students to respect their peers.

Purpose

 Ask your students! Why do you want to study & work on data science / ML / AI?

Purpose

- Ask your students! Why do you want to study & work on data science / ML / AI?
 - Good income, but usually you will not become a millionaire
 - However, you will be able to do something meaningful and big
- Wrong expectations lead to low productivity and high turnover rate
 - A waste of time and money for both employers and employees
 - If a student just wants to be rich, he should immediately quit

Is the gap easy to be closed? With your help, YES

Thanks!

Questions?