

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 897 710 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 24.02.1999 Patentblatt 1999/08

(51) Int. Cl.⁶: **A61K 6/087**

(21) Anmeldenummer: 98115822.3

(22) Anmeldetag: 21.08.1998

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 21.08.1997 DE 19736471

(71) Anmelder: ESPE Dental AG 82229 Seefeld (DE) (72) Erfinder:

 Weinmann, Wolfgang 82211 Herrsching (DE)

 Eckhardt, Gunther 82346 Frieding (DE)

(74) Vertreter:

Freiherr von Wittgenstein, Arved, Dr. et al Patentanwälte Abitz & Partner Postfach 86 01 09 81628 München (DE)

(54) Lichtinduziert kationisch härtende Zusammensetzungen und deren Verwendung

(57) Die Erfindung betrifft mit sichtbarem Licht kationisch h\u00e4rtende Zusammensetzungen, enthaltend:

(a) 0,01 bis 8 Gew.-% mindestens einer Diaryliodoniumverbindung,

(b) 0,01 bis 8 Gew.-% mindestens einer α -Dicarbonylverbindung,

(c) 10,0 bis 99,9 Gew.-% mindestens einer Epoxidgruppen- und/oder Oxetangruppen-enthaltenden Verbindung

(d) 0 bis 85 Gew.-% an Modifikatoren, wie Füllstoffen, Farbstoffen, Pigmenten, Fließverbesserern, Thixotropiemitteln, polymeren Verdickern, oxidierend wirkenden Zusatzstoffen, Stabilisatoren und Verzögerern,

die dadurch gekennzeichnet sind, daß sie zusätzlich

(e) 0,001 bis 5 Gew.-% mindestens eines aromatischen Amins enthalten.

Die Zusammensetzungen besitzen eine geringe Eigenfarbe, härten geruchsarm aus und ergeben nach der Aushärtung Massen mit sehr guten mechanischen Eigenschaften.

mu hation, hime duarhicked

P 0 897 710 A2

Beschreibung

[0001] Die Erfindung betrifft Zusammensetzungen auf der Basis von Epoxidharzen und bzw. oder Oxetanen, die während od r nach der Bestrahlung mit sichtbarem Licht durch kationische Polymerisation aushärten. Insbesondere betrifft die Erfindung Zusammensetzungen mit einer nur geringen Eigenfarbe und deren Verwendung in dentalen Präparaten. [0002] Bekanntermaßen können Zusammensetzungen mit Verbindungen, die Epoxid- und bzw. oder Oxetangruppen enthalten, kationisch aushärten. Die Auslösung der kationischen Polymerisation erfolgt üblicherweise durch LEWISoder BRÖNSTED-Säuren, wobei diese Säuren entweder der kationisch härtbaren Zubereitung zugesetzt oder durch vorgelagerte chemische und insbesondere photochemische Reaktionen erzeugt werden können.

[0003] So sind für epoxidgruppenhaltige Zusammensetzungen eine Reihe von sogenannten Photoinitiatoren bekannt, die unter Einwirkung von Licht des Wellenlängenbereiches von 215 bis 400 nm unter Bildung von BRÖN-STED-Säuren zerfallen. Zu diesen Initiatoren zählen beispielsweise Diazoniumverbindungen (US-A-3 205 157), Sulfoniumverbindungen (US-A-4 173 476) und Iodoniumverbindungen (USA-4 264 703, US-A-4 394 403). Bei den erwähnten Beispielen ist man für die Polymerisation kationisch härtbarer Massen allerdings auf die Verwendung von ultraviolettem Licht angewiesen.

[0004] Es sind auch photolabile Substanzen bekannt, welche durch Bestrahlung mit sichtbarem Licht LEWIS- bzw. BRÖNSTED-Säuren freisetzen, die die Polymerisation der kationisch härtbaren Zubereitungen bewirken können. Bei diesen Photoinitiatoren handelt es sich im allgemeinen um Derivate der Cyclopentadienyl-Eisen-Aren-Komplexe (EP-A-0 094 915, WO 96/03453, EP-A-0 661 324). Diese Photoinitiatoren haben den Nachteil, braune bis schwarze Polymerisate zu ergeben, was in den Fällen dentaler Anwendungen zu ästhetisch unbefriedigenden Ergebnissen führt. Außerdem tritt bei der Aushärtung ein intensiver Geruch nach Isopropylbenzol auf, was in dentalen Anwendungen unerwünscht ist.

[0005] Weiterhin sind Initiatorsysteme bekannt, die im sichtbaren Bereich kationische Polymerisation ermöglichen. Diese enthalten jedoch farbige Sensibilisatoren, beispielsweise Xanthene oder Fluorene, deren chromophore Gruppen erhalten bleiben und die Polymerisate bunt färben (WO-95/14716; Chemical Abstracts, Vol. 121, 1994, Ref. 58043z) und daher nicht zur Verwendung ästhetisch einwandfreier dentaler Massen geeignet sind.

[0006] Gemäß der WO 96/13538 werden im sichtbaren Licht härtbare Epoxidsysteme mit verbesserter Härtungstiefe beschrieben, die aus

- a) einem kationisch polymerisierbaren Epoxidharz,
- b) einem Hydroxylgruppen-enthaltendem Material,
- c) einem Aryliodoniumsalz und

- d) einer alpha-Dicarbonylverbindung
- bestehen. Die alpha-Dicarbonylverbindung wirkt als Sensibilisator im sichtbaren Bereich, wobei besonders bevorzugt das Campherchinon eingesetzt wird. Bekanntlich zerfällt Campherchinon bei Bestrahlung mit sichtbarem Licht unter Bildung freier Radikale, was seit langer Zeit zur Initiierung des Aushärtevorganges von doppelbindungshaltigen Zubereitungen und bevorzugt von dentalen Präparaten genutzt wird.
 - [0007] Weiterhin sind kombinierte Initiatorsysteme aus Campherchinon und lodoniumverbindungen bekannt, die jedoch nur zur Polymerisation doppelbindungshaltiger oder anderer radikalisch härtender Massen oder zur Polymerisation von Hybrid-Monomermischungen eingesetzt werden (US-A-5 554 676, US-A-4 828 583).
 - [0008] Die Verwendung von Hydroxylgruppen-haltigen Verbindungen führt zwar zu der bereits aus vielen Publikationen bekannten Reaktionsbeschleunigung bei der kationischen Polymerisation von Epoxyverbindungen, initiiert durch lodoniumverbindungen, und ist bereits zur Erzielung flexibilisierter Epoxidmassen beschrieben (US-A-4 256 828; US-
- A-4 231 951; EP-B-0 119 425; DE-A-4 324 322.3), jedoch kann die Verwendung von niedermolekularen Hydroxylgruppen-haltigen Verbindungen in relativ hohen Konzentrationen, wie sie in den Patentbeispielen 1 bis 6, 10 bis 16, 22, 23, 32 und 33 der WO 96/13538 angegeben sind, zu einer unvollständigen Einbindung in das polymere Netzwerk mit den Folgen schlechter mechanischer Eigenschaften und hoher extrahierbarer Anteile führen.
- [0009] Aufgabe der Erfindung ist es, lichtinduziert, kationisch härtende Zusammensetzungen bereitzustellen, die eine geringe Eigenfarbe besitzen, die geruchsarm aushärten und deren Aushärtung zu Massen mit sehr guten mechanischen Eigenschaften, wie hohe Kohäsion, hohe Druckfestigkeit und Biegefestigkeit und geringen extrahierbaren Anteilen führt.
- [0010] Diese Aufgabe wird gelöst durch lichtinduziert, kationisch härtende Zusammensetzungen, enthaltend
- a) 0,01 bis 8 Gew.-%, bevorzugt 0,1 bis 5 Gew.-% mindestens einer Diaryliodoniumverbindung oder eines Gemisches von Diaryliodoniumverbindungen,
 - b) 0,01 bis 8 Gew.'%, bevorzugt 0,1 bis 5 Gew.-% mindestens einer α -Dicarbonylverbindung,

- c) 10.0 bis 99.9 Gew.-% mindestens einer Epoxidgruppen- und/oder Oxetangruppen-enthaltenden Verbindung,
- d) 0 bis 85 Gew.-% an Modifikatoren, wie Füllstoffen, Farbstoffen, Pigmenten, Fließverbesserern, Thixotropiemitteln, polymeren Verdickern, oxidierend wirkenden Zusatzstoffen, Stabilisatoren und Verzögerern, dadurch gekennzeichnet, daß sie zusätzlich
- e) 0,001 bis 5 Gew.-%, bevorzugt 0,01 bis 3 Gew.-% mindestens eines aromatischen Amins,

enthalten.

5

30

- 10 [0011] Es ist überraschend, daß die eingesetzten Amine des Bestandteils e) eine beschleunigende Wirkung auf die lichtinduzierte kationische Polymerisation haben. So ist im Stand der Technik beschrieben (DE-A-195 34 594, WO 96/13538), daß sich Amine verzögernd oder sogar inhibierend auf die Polymerisation auswirken. Völlig überraschend ist zudem, daß ein schon sehr geringer Zusatz, beispielsweise 0,001 Gew.-% in der polymerisierenden Zusammensetzung beschleunigende Wirkung hat.
- 15 [0012] Die Diaryliodoniumverbindungen des Bestandteils a) weisen die folgende Struktur auf:

$$[((R^1)_aAr^1)-I-(Ar^2(R^2)_b)]^+ \Upsilon$$

[0013] Ar 1 und Ar 2 können unabhängig voneinander verschiedene, substituierte oder unsubstituierte, kondensierte oder nichtkondensierte aromatische Systeme mit 4 bis 20 C-Atomen sein, wie beispielsweise Phenyl, Tolyl, Cumyl, Anisyl, Chlorphenyl, Nitrophenyl, Naphtyl, Thienyl, Furanyl und Pyrazolyl, wobei R 1 und R 2 gleich oder verschieden sind und unabhängig voneinander ein H-Atom, einen aliphatischen Rest mit 1 bis 19, vorzugsweise 1 bis 9 C-Atomen, wobei ein oder mehrere C-Atome durch O, C = O,-O(C = O)-, F, Cl, Br, SiR 3 3 und/oder NR 3 2 ersetztsein können, wobei R 3 3 ein aliphatischer Rest mit 1 bis 7 C-Atomen ist, bei dem ein oder mehrere C-Atome durch O, C=O und/oder -O(C=O)-ersetzt sein können, bedeuten und a und b unabhängig voneinander 1 - 5 sein können. Die Aromaten Ar 1 1 und Ar 2 2 können über R 1 1 und/oder R 2 2 miteinander verbunden sein.

[0014] Das Gegenanion Y ist ein wenig nucleophiles Anion der folgenden Struktur

K_xL_v

wobei K ein Element der III., V. oder VI. Hauptgruppe, wie beispielsweise B, Al, P, Sb, As oder I ist und x Zahlenwerte von 1 bis 4 annehmen kann. L bedeutet unabhängig voneinander aromatische, aliphatische, araliphatische oder cycloaliphatische Reste mit 1-25 C-Atomen, bei denen ein oder mehrere C-Atome durch F, Cl, Br oder I ersetzt sein können, und y kann Zahlenwerte von 0 bis 6 annehmen. Bevorzugte Reste L sind Pentafluorphenyl-, Tetrafluorphenyl-, Trifluorphenyl-, Phenyl, 4-Trifluormethylphenyl-, 3,5-Bis(trifluormethyl)phenyl-, 2,4,6-Tris(trifluormethyl)phenyl-, Fluor und lod. Besonders bevorzugte Gegenanionen Y sind PF_6 *, SbF_6 * bzw. $B(C_6F_5)_4$ *. Weitere Diaryliodoniumverbindungen sind beispielsweise auch in der US-A-4 246 703 beschrieben.

- Diphenyliodoniumtetrafluoroborat
 Diphenyliodoniumhexafluorophosphat
- Diphenyliodoniumhexafluoroantimonat
 Diphenyliodoniumtetrakis(pentafluorophenyl)borat
- · Bis-(4-methylphenyl)iodoniumhexafluorophosphat
- Bis-(4-methylphenyl)iodoniumhexafluoroantimonat
 Bis-(4-methylphenyl)iodoniumtetrakis(pentafluorophenyl)borat
 - · Phenyl-4-methylphenyliodoniumhexafluorophosphat
 - Phenyl-4-methylphenyliodoniumhexafluoroantimonat
 Phenyl-4-methylphenyliodoniumtetrakis(pentafluorophenyl)borat
- 50 Phenyl-4-methoxyphenyliodoniumhexafluoroantimonat
 - · Phenyl-4-methoxyphenyliodoniumtetrakis(pentafluorophenyl)borat
 - · Phenyl-3-nitrophenyliodoniumhexafluorophenylantimonat
 - Phenyl-3-nitrophenyliodoniumtetrakis(pentafluorophenyl)borat
 - · Bis(4-tert-butylphenyl)iodoniumhexafluoroantimonat
- Bis(4-tert-butylphenyl)iodoniumtetrakis(pentafluorophenyl)borat
 - · Phenyl 4-diphenyliodoniumhexafluoroantimonat
 - Dinaphthyliodoniumhexafluorophosphat
 - Dinaphthyliodoniumhexafluoroantimonat

- · Dinaphthyliodoniumtetrakis(pentafluorophenyl)borat
- Bis(4-dodecylphenyl)iodoniumhexafluoroantimonat
- · Bis(4-dodecylphenyl)iodoniumtetrakis(pentafluorophenyl)borat
- 4-Methylphenyl-4-isopropylphenyliodoniumhexafluoroantimonat
- 4-Methylphenyl-4-isopropylphenyliodoniumtetrakis(pentafluorophenyl)borat

[0016] Unter α-Dicarbonylverbindungen des Bestandteils b) sind Verbindungen folgender Struktur zu verstehen:

10

5

- wobei R⁴ und R⁵ gleich oder verschieden, substituiert oder unsubstituiert, aliphatisch oder aromatisch sein können. R⁴ und R⁵ können zusammen Ringstrukturen bilden, die unsubstituiert oder substituiert mit aliphatischen, cycloaliphatischen, aromatischen, heteroaromatischen oder kondensierten aromatischen Resten sind. Bevorzugte α-Dicarbonylverbindungen sind Campherchinon, Benzil, 2,3-Butandion und 3,3,6,6-Tetramethylcyclohexandion, besonders bevorzugt ist Campherchinon.
- [0017] Unter kationisch h\u00e4rtbaren Verbindungen des Bestandteils sind aliphatische oder aromatische Epoxide (Typ 1), cycloaliphatische Epoxide (Typ 2) oder Oxetane (Typ 3) mit folgenden Strukturen zu verstehen:

25

Typ 2 $\begin{bmatrix}
R^{10} & R^{11} & R^{14} \\
R^{12}_{p} & R^{13}_{q} & R^{15}
\end{bmatrix}$ m

Typ 3

R10

R12

R13

R14

R15

m

n

5 [0018] Es bedeuten:

R10

einen aliphatischen, cycloaliphatischen oder aromatischen Rest mit 0 bis 22, vorzugsweise 0 bis 18 C-Atomen oder eine Kombination dieser Reste, wobei ein oder mehrere C-Atome durch O, C = O, -O(C = O)-, SiR_3 und/oder NR_2 ersetzt sein können und wobei R ein aliphatischer Rest mit 1 bis 7 C-Atomen ist, wobei ein oder mehrere C-Atome durch O, C = O und/oder -O(C = O)-ersetzt sein können,

R¹¹

40

45

einen aliphatischen, cycloaliphatischen oder aromatischen Rest mit 1 bis 18, vorzugsweise 1 bis 15 C-Atomen oder eine Kombination dieser Reste, wobei ein oder mehrere C-Atome durch O, C = O, -O(C = O)-, SiR₃ und/oder NR₂ ersetzt sein können, wobei R ein aliphatischer Rest mit 1 bis 7 C-Atomen ist, bei dem ein oder mehrere C-Atome durch O, C = O und/oder -O(C = O)- ersetzt sein können,

R'4, R'3, R'4, R'

unabhängig voneinander ein H-Atom oder einen aliphatischen Rest mit 1 bis 9, vorzugsweise 1 bis 7 C-Atomen, wobei ein oder mehrere C-Atome durch O, C = O, O(C = O)-, SiR_3 und/oder NR_2 ersetzt sein können, wobei R ein aliphatischer Rest mit 1 bis 7 C-Atomen ist, bei dem ein oder mehrere C-Atome durch O, C = O und/oder O(C = O)- ersetzt sein können,

n

2 bis 7, vorzugsweise 2 bis 5, insbesondere 2 bis 4,

m

55

1 bis 10, vorzugsweise 1 bis 7, insbesondere 1 bis 5,

р

1 bis 5, vorzugsweise 1 bis 4, insbesondere 1 oder 2,

q

[0019] Besonders geeignete Epoxide bzw. Oxetane gemäß Komponente c) sind

- Tetrakis(2,1-ethandiyl-3,4-epoxycyclohexyl)-1,3,5,7-tetramethylcyclotetrasiloxan,
 1,10-Decandiylbis(oxymethylen)bis(3-ethyloxetan).
 - 1,3,5,7,9-Pentakis(2,1-ethandiyl-3,4-epoxycyclohexyl)-1,3,5,7,9-pentamethyl cyclopentasiloxan,
 - Vinylcyclohexenoxid,
 - Vinylcyclohexendioxid,
- 10 3,4-Epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexencarboxylat,
 - Bis(2,3-epoxycyclopentyl)ether
 - · 3,4-Epoxy-6-methylcyclohexylmethyladipat,
 - 3,4-Epoxycyclohexyl-5,5-spiro-3,4-epoxycyclohexanmetadioxan.
 - 1,4 Butandiyl-bisoxymethylenbis(3-ethyloxetan).
 - 3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexancarboxylat,
 - 1,1,3,3-Tetramethyl-1,3-bis(2,1-ethandiyl-3,4-epoxycyclohexyl)disiloxan
 - Bis-(3,4-Epoxycyclohexylmethyl)adipat.

[0020] Füllstoffe des Bestandteils d) können übliche dentale Füllstoffe, beispielsweise Quarz, gemahlene gegebenenfalls röntgenopake oder reaktive Gläser, Splitterpolymerisate, schwer lösliche Fluoride, wie CaF₂, YF₃ (EP-B- 0 238 025), Kieselgele sowie pyrogene Kieselsäure oder deren Granulate sein.

[0021] Ebenso können ein oder mehrere wasserlösliche anorganische komplexe Fluoride der allgemeinen Formel A_nMF_m , worin A ein ein- oder mehrwertiges Kation, M ein Metall der II., III., IV. oder V. Haupt- oder Nebengruppe, n eine ganze Zahl von 1 bis 3 und m eine ganze Zahl von 3 bis 6 bedeuten (DE-A- 4 445 266), als fluoridabgebende Bestandteile enthalten sein.

[0022] Zum besseren Einbau in die Polymermatrix kann es von Vorteil sein, die Füllstoffe sowie gegebenenfalls die röntgenopaken Zusatzstoffe, wie YF $_3$, zu hydrophobieren. Übliche Hydrophobierungsmittel sind Silane, beispielsweise Glycidyloxypropyltrimethoxysilan. Die maximale Korngröße der anorganischen Füllstoffe beträgt vorzugsweise 20 μ m, insbesondere 12 μ m. Ganz besonders bevorzugt werden Füllstoffe mit einer mittleren Korngröße kleiner als 7 μ m eingesetzt.

[0023] Die oxidierend wirkenden Zusatzstoffe von Bestandteil können organische oder anorganische Feststoffe oder Flüssigkeiten sein. Diese Zusatzstoffe beschleunigen die Initiierung und erhöhen den Polymerisationsgrad. Geeignete oxidierend wirkende Zusatzstoffe sind Hydroperoxide, wie Cumolhydroperoxid, Dialkylperoxide, wie Di-tert-butylperoxid, Diarylperoxide, wie Dibenzoylperoxid, Perester, wie tert.-Butylperbenzoat oder tert.-Butylisononanoat, anorganische Oxidationsmittel, wie Kaliumpersulfat, Natriumperborat, besonders bevorzugt Cumolhydroperoxid bzw. Kaliumpersulfat.

[0024] Unter den aromatischen Aminen des Bestandteils ei sind Verbindungen zu verstehen, die folgende Struktur aufweisen:

$$R^6$$
 N (R^8)

45

wobei R^6 , R^7 und R^8 gleich oder verschieden sind und unabhängig voneinander, ein H-Atom, einen aliphatischen, aromatischen oder araliphatischen Rest mit 1 bis 19, vorzugsweise 1 bis 7 C-Atomen, wobei ein oder mehrere C-Atome durch O, C = O, -O(C = O)-, SiR^9_3 und/oder NR^9_2 ersetzt sein können, wobei R^9 ein aliphatischer Rest mit 1 bis 7 C-Atomen ist, bei dem ein oder mehrere C-Atome durch O, C = O und/oder -O(C = O)- ersetzt sein können, bedeuten und z Zahlenwerte von 1 bis 5 annehmen kann. R^6 und R^7 oder/und R^6 und R^8 können zusammen Ringstrukturen bilden, die unsubstituiert oder substituiert mit aliphatischen, cycloaliphatischen, aromatischen, heteroaromatischen oder kondensierten aromatischen Resten sind.

[0025] Bevorzugte Amine sind Dimethylanilin, Diethylanilin, Ethyl-4-dimethyl-aminobenzoat, 2-Butoxyethyl-4-dimethylaminobenzoat, 2-Ethylhexyl-4-dimethylaminobenzoat, 4-Dimethylaminobenzaldehyd und seine Derivate, wie Benzaldoxime, Azomethine, Benzylidenanilin, Hydrobenzamid, Benzoine, Benzile, Hydrobenzoine, Benzoesäurebenzylester.

[0026] Die erfindungsgemaßen Zusammensetzungen werden durch Zusammenmischen der einzelnen Bestandteile hergestellt. Die Reihenfolge der Zugabe ist nicht kritisch. Vorzugsweise wird die Epoxidgruppen- und/oder Oxetangruppen-haltige Verbindung vorgelegt und in diese die Diaryliodoniumverbindung, die α-Dicarbonylverbindung und das aromatische Amin eingerührt. Anschließend werden der Füllstoff und die anderen Modifizierungsmittel eingeknetet.

[0027] Die erfindungsgemäßen Zusammensetzungen eignen sich zur lichtinduzierten kationischen Polymerisation auf der Grundlage von Epoxidgruppen- und bzw. oder Oxetangruppen enthaltenden Verbindungen. Das Initiatorsystem ist geeignet, gefüllte Zusammensetzungen auszuhärten. Einen besonderen Vorteil bieten die Zusammensetzungen bei der dentalen Anwendung. Die polymerisierbaren Zubereitungen haben überraschend kurze Aushärtungszeiten, wobei diese Aushärtungszeiten durch Art und Konzentration zusätzlicher Aktivatoren, beispielsweise oxidierend wirkender Zusatzstoffe, sehr genau eingestellt werden können.

[0028] Die erfindungsgemäßen Zusammensetzungen eignen sich für das Verkleben, Vergießen und Beschichten von Substraten sowie für Dentalmassen.

[0029] Ein sehr wesentlicher Vorteil der erfindungsgemäßen Zusammensetzungen ist der außerordentlich gute ästhetische Eindruck der ausgehärteten Massen. Die Polymerisate sind zahnfarben einstellbar und dadurch für die dentale Anwendung besonders geeignet. Durch die hohe Transparenz der Polymerisate wird eine außergewöhnliche Härtungstiefe erreicht.

[0030] Die Erfindung wird anhand der folgenden Beispiele weiter erläutert:

Beispiele

20

25

30

35

40

45

50

55

[0031] Durch Mischen der in Tabelle 1 beschriebenen Verbindungen wurden die nicht gefüllten, kationisch härtbaren einkomponentigen Zusammensetzungen gemäß den Beispielen 1 bis 13 hergestellt. Diese Zusammensetzungen stellen die Harzmatrix für daraus hergestellte gefüllte Zusammensetzungen (Composite) gemäß den Beispielen 14 bis 20 dar (Tabelle 2)

rabene i Bestandteile der nicht gefüllten, kationisch härtbaren, einkomponentigen Zusammensetzungen

5

							æ	Beispiele	_					
						Zus:	mmen	setzung	(Zusammensetzung in Gew%)	-%)				
Bestand-	Verbindung	1	2	6	4	5	9	~	8	6	10	11	12	5
iel i		1			3	!				!			T	
(e	Bis (4-Dodecylphenyl)iodoniumhexalluoroantimonat	S		90	2,0	0		2,0		1,2			2,1	2,0
<u>a)</u>	4-Methylphenyl-4-isopropylphenyl-		4,1			1,2	2,0		2,0	1,0	2,1	2,1		
	iodoniumtetrakis(pentafluorophenyl)borat													
(a)	Campherchinon	1,05	1,4	9'0	6'0	0,5	0,4	0,4	8,0	9'0	0,85	0,895 0,89		0',
(e)	Ethyl-4-dimethylaminobenzoat	6'0		9'0		0,3	0,1	0,2		0,2	50'0	0,005	0,005	
(e)	2-Butoxyethyl-4-dimethylaminobenzoat		0,1		0,4				0,2	0,3			0,005. 0,3	0,3
<u> </u>	3,4-Epoxycyclohexylmelhyl-3,4-	80,0	20,0	48,0				97,0	48,5		48,5	30,0	48,5	48,7
	epoxycyclohexancarboxylat													
ତ	Bis-(3,4-Epoxycyclohexylmethyl)adipat	17,0			33,0		48,7			48,3		30,0		
ં	1,3,5,7 Tetrakis-(2,1-ethandiyl-3,4-epoxycyclohexyl)-		46,0	49,0	64,0		48,7			48,4	48,5	27,0	48,5	48
	1,3,5,7-tetramethylcyclotetrasiloxan													
(5)	3,3'-(1,10-Decandiylbis(oxymethylen))bis(3-ethyloxetan)					97,0			48,5					
ଚ	Cumolhydroperoxid / 80 %ig in Cumol		1.1	1,2										
ଚ	K,S,O,						6'0							
6	+ tertButyloerbenzoat													0.5

[0032] Alle Zusammensetzungen gemäß den Beispielen 1 bis 13 härteten bei Bestrahlung mit einer Lampe (Lichtgerät Elipar II, ESPE Dental-Medizin GmbH & Co. KG Deutschland), die sichtbares Licht im Wellenlängenbereich von 400 bis 500 nm erzeugt, innerhalb von 20 Sekunden aus. Die erhaltenen Polymerisate waren transparent und wiesen hohe

Festigkeiten auf.

5

10

15

20

25

35

40

45

50

[0033] Die in Tabelle 2 charakterisierten Komposit-Zusamm insetzung gemäß den Beispielen 14 bis 20 härteten bei Bestrahlung mit der beschriebenen Lampe innerhalb von 40 Sekunden aus.

Tabelle 2

Beispiel-Nr.	Nicht gefüllte Zusam	nmensetzung		Füllstoffe	
	Zusammen- setzung entspre- chend Beispiel Nr.	Gew%	Silbond ^{a)} 800 EST Gew%	Quarz ^{b)} Gew%	Splitterpolymeri sat ^{c)} Gew%
14	6	30		70	
15	7	22	78		
16	11	40		60	
17	12	27	73		
18	12	25		75	
19	12	40			60
20	13	29	· · · · · · · · · · · · · · · · · · ·	71	

- a) Quarzgutmehl, silanisiert, Quarzwerke Frechen
- b) Quarz, mittlere Korngröße 0,9 μm wurde mit 5 % Glycidyloxypropyltrimethoxysilan silanisiert
- c) Das Splitterpolymerisat wurde durch Mahlen und Sieben der ausgeharteten Masse nach Beispiel 7 erhalten.

[0034] Die erhaltenen Polymerisate waren farblos bis zahnfarben.

[0035] Tabelle 3 enthält die Ergebnisse der Ermittlung wesentlicher Eigenschaften, die unter Verwendung der Komposit-Zusammensetzungen gemäß den Beispielen 14 bis 20 erreicht wurden

Tabelle 3

Eigensch	Eigenschaften der ausgehärteten Massen der Bei- spiele 14 bis 20						
Beispiel	Biegefestigkeit ISO 4049	Druckfestigkeit					
14	110 MPa	381 MPa					
15	131 MPa	410 MPa					
16	95 MPa	352 MPa					
17	99 MPa	361 MPa					
18	122 MPa	395 MPa					
19	75 MPa	297 MPa					
20	113 MPa	356 MPa					

[0036] Die Beispiele belegen, daß mit den erfindungsgemäßen Zusammensetzungen ausgehärtete Massen erzielbar sind, sie sich auf Grund der nur geringen Eigenfarbe und der sehr guten mechanischen Eigenschaften für dentale Anwendungen und insbesondere für Füllungsmaterialien und Befestigungszemente hervorragend eignen.

Patentansprüche

1. Mit sichtbarem Licht kationisch härtende Zusammensetzung, enthaltend

- (a) 0,01 bis 8 Gew.-% mindestens einer Diaryliodoniumverbindung,
- (b) 0,01 bis 8 Gew.-% mindestens einer α -Dicarbonylverbindung,
- 5 (c) 10,0 bis 99,9 Gew.-% mindestens einer Epoxidgruppen- und/oder Oxetangruppen-enthaltenden Verbindung
 - (d) 0 bis 85 Gew.-% an Modifikatoren, wie Füllstoffen, Farbstoffen, Pigmenten, Fließverbesserern, Thixotropiemitteln, polymeren Verdickern, oxidierend wirkenden Zusatzstoffen, Stabilisatoren und Verzögerern, dadurch gekennzeichnet, daß sie zusätzlich
 - (e) 0,001 bis 5 Gew.-% mindestens eines aromatischen Amins enthält.
 - 2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß sie die Bestandteile
 - (a) in einer Menge von 0,1 bis 5 Gew.-%,
 - (b) in einer Menge von 0,1 bis 5 Gew.-% und
 - (e) in einer Menge von 0,01 bis 3 Gew.-%

20 enthält.

10

15

25

30

35

 Zusammensetzungen gemäß Anspruch 1, dadurch gekennzeichnet, daß die Diaryliodoniumverbindungen des Bestandteils (a) folgende Struktur aufweisen:

$$[((R^1)_aAr^1)-I-(Ar^2(R^2)_b)]^+ \Upsilon$$

wobei bedeuten:

- Ar¹, Ar² unabhängig voneinander verschiedene, substituierte oder unsubstituierte, kondensierte oder nichtkondensierte aromatische Systeme mit 4 bis 20 C-Atomen, vorzugsweise Phenyl, Tolyl, Cumyl, Anisyl,Chlorphenyl, Nitrophenyl, Naphtyl, Thienyl, Furanyl und Pyrazolyl
- R^1 , R^2 unabhängig voneinander ein H-Atom, einen aliphatischen Rest mit 1 bis 19, vorzugsweise 1 bis 9 C-Atomen, wobei ein oder mehrere C-Atome durch O, C = O, -O(C = O)-, F, Cl, Br, SiR 3 3 und/oder NR 3 2 ersetzt sein können, wobei R 3 3 ein aliphatischer Rest mit 1 bis 7 C-Atomen ist, bei dem ein oder mehrere C-Atome durch O, C = O und/oder -O(C = O)- ersetzt sein können, wobei die Aromaten Ar 1 und Ar 2 über R 1 und/oder R 2 miteinander verbunden sein können,
- a und b unabhängig voneinander eine ganze Zahl von 1 bis 5, und ein wenig nukleophiles Anion der Formel

- K ein Element der III., V. oder VII. Hauptgruppe, vorzugsweise B, Al, P, Sb, As oder I
- x eine Zahl von 1 bis 4

worin bedeuten:

- voneinander unabhängige aromatische, aliphatische, araliphatische oder cycloaliphatische Reste mit 1-25 C-Atomen, bei denen ein oder mehrere C-Atome durch F, Cl, Br oder I ersetzt sein können, und eine Zahl von 0 bis 6.
- 4. Zusammensetzung nach Anspruch 3, dadurch gekennzeichnet, daß YPF_6 , SbF_6 oder $B(C_6F_5)_4$ ist.
- 5. Zusammensetzung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die α-Dicarbonylverbindungen des Bestandteils (b) folgende Struktur aufweisen:

55

45

in welcher R⁴ und R⁵ unabhängig voneinander substituiert oder unsubstituiert, aliphatisch oder aromatisch sein können und R⁴ und R⁵ zusammen Ringstrukturen bilden können, die unsubstituiert oder substituiert mit aliphatischen, cycloaliphatischen, aromatischen, heteroaromatischen oder kondensierten aromatischen Resten sind.

- 6. Zusammensetzung nach Anspruch 5, dadurch gekennzeichnet, daß sie als Bestandteil (b) Campherchinon, Benzil, 2,3-Butandion und/oder 3,3,6,6-Tetramethylcyclohexandion, vorzugsweise Campherchinon, enthält.
- 7. Zusammensetzung nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die aromatischen Amine des Bestandteil (e) die folgende Struktur besitzen:

$$R^6$$
 R^7
 (R^8)

in der R^6 , R^7 und R^8 unabhängig voneinander ein H-Atom, einen alíphatischen, aromatischen oder araliphatischen Rest mit 1 bis 19, vorzugsweise 1 bis 7 C-Atomen bedeuten, wobei ein oder mehrere C-Atome durch O, C = O, - O(C = O)-, SiR^9_3 und/oder NR^9_2 ersetzt sein können und R^9 ein aliphatischer Rest mit 1 bis 7 C-Atomen ist, bei dem ein oder mehrere C-Atome durch O, C = O und/oder -O(C = O)-ersetzt sein können, und z Zahlenwerte von 1 bis 5 annehmen kann und R^6 und R^7 oder/und R^6 und R^8 zusammen Ringstrukturen bilden können die unsubstituiert oder mit aliphatischen, cycloaliphatischen, aromatischen, heteroaromatischen oder kondensierten aromatischen Resten substituiert sein können.

- Zusammensetzung nach Anspruch 7, dadurch gekennzeichnet, daß sie als Bestandteil (c) Dimethylanilin, Diethylanilin, Ethyl-4-dimethyl-aminobenzoat, 2-Butoxyethyl-4-dimethylaminobenzoat, 2-Ethylhexyl-4-dimethylaminobenzoat, 4-Dimethylaminobenzaldehyd, Benzaldoxime, Azomethine, Benzylidenanilin, Hydrobenzamid, Benzoine, Benzile, Hydrobenzoine und/oder Benzoesäurebenzylester, vorzugsweise Ethyl-4-dimethyl-aminobenzoat, 2-Butoxyethyl-4-dimethylaminobenzoat, 2-Ethylhexyl-4-dimethylaminobenzoat enthält.
- Zusammensetzung nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß die Epoxidgruppen und/oder Oxetangruppen-enthaltenden Verbindungen des Bestandteils (c) folgende Struktur aufweisen:

Typ 1 Typ 2 Typ 3

$$\begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{12} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{13}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} = \begin{bmatrix}
R^{10} & R^{14} \\
R^{13} & R^{14}
\end{bmatrix}_{m} =$$

wobei bedeuten:

5

10

20

25

30

35

40

45

5	R ¹⁰	einen aliphatischen, cycloaliphatischen oder aromatischen Rest mit 0 bis 22, vorzugsweise 0 bis 18 C-Atomen oder eine Kombination dieser Reste, wobei ein oder mehrere C-Atome durch O, C = O, $-O(C = O)$ -, SiR ₃ und/oder NR ₂ ersetzt sein können und wobei R ein aliphatischer Rest mit 1 bis 7 C-Atomen ist, wobei ein oder mehrere C-Atome durch O, C = O und/oder $-O(C = O)$ - ersetzt sein können,
10	R ¹¹	einen aliphatischen, cycloaliphatischen oder aromatischen Rest mit 1 bis 18, vorzugsweise 1 bis 15 C-Atomen oder eine Kombination dieser Reste, wobei ein oder mehrere C-Atome durch O, C = O, -O(C = O)-, SiR ₃ und/oder NR ₂ ersetzt sein können, wobei R ein aliphatischer Rest mit 1 bis 7 C-Atomen ist, bei dem ein oder mehrere C-Atome durch O, C = O und/oder -O(C = O)- ersetzt sein können,
	R ¹² , R ¹³ , R ¹⁴ , R ¹⁵	unabhängig voneinander ein H-Atom oder einen aliphatischen Rest mit 1 bis 9, vorzugsweise 1 bis 7 C-Atomen, wobei ein oder mehrere C-Atome durch O, C = O, -O(C = O)-, SiR ₃ und/oder NR ₂ ersetzt sein können, wobei R ein aliphatischer Rest mit 1 bis 7 C-Atomen ist, bei dem ein oder mehrere C-Atome durch O, C = O und/oder -O(C = O)- ersetzt sein können,
15	n .	2 bis 7, vorzugsweise 2 bis 5, insbesondere 2 bis 4,
	m	1 bis 10, vorzugsweise 1 bis 7, insbesondere 1 bis 5,
	р	1 bis 5, vorzugsweise 1 bis 4, insbesondere 1 oder 2,
	q	1 bis 5, vorzugsweise 1 bis 4, insbesondere 1 oder 2.

- Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, daß sie als Komponente (c) 1,3,5,7-Tetrakis-(2,1-ethandiyl-3,4-epoxycyclohexyl)-1,3,5,7-tetramethylcyclotetrasiloxan, 1,10-Decandiylbis(oxymethylen)bis(3-ethyloxetan), 1,3,5,7,9-Pentakis(2,1-ethandiyl-3,4-epoxycyclohexyl)-1,3,5,7,9-pentamethylcyclopentasiloxan, Vinylcyclohexenoxid, Vinylcyclohexendioxid, 3,4-Epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexencarboxylat, Bis (2,3-epoxycyclopentyl) ether; 3,4-Epoxy-6-methylcyclohexylmethyladipat, 3,4-Epoxycyclohexyl-5,5-spiro-3,4-epoxy (cyclohexanmetadioxan), 1,4 Butandiylbis(oxymethylen) bis (3-ethyloxetan), 3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylmethyl)adipat enthält.
- 11. Zusammensetzung nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß sie als oxidierend wirkende Zusatzstoffe des Bestandteils (d) Cumolhydroperoxid, Di-tert.-butylperoxid, Diarylperoxide, Dibenzoylperoxid, tert.-Butylperbenzoat, tert.-Butylisononanoat, Kaliumpersulfat und/oder Natriumperborat enthält.
 - 12. Zusammensetzung nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß sie als Füllstoffe des Bestandteils (d) Quarz, gemahlene gegebenenfalls röntgenopake oder reaktive Gläser, Splitterpolymerisate, schwer lösliche Fluoride, wie CaF₂, YF₃, Kieselgele und/oder pyrogene Kieselsäure oder deren Granulate enthält.

35

45

50

- 13. Verwendung der Zusammensetzungen nach den Ansprüchen 1 bis 12 für das Verkleben, Vergießen und Beschichten von Substraten.
- 14. Verwendung der Zusammensetzungen nach den Ansprüchen 1 bis 12 in Dentalmassen, insbesondere zur Herstellung von Zahnfüllungsmaterialien, Bondingmaterialien, Füllungs- und Befestigungszementen, Provisorienkunststoffen, Verblendmaterialien, Versiegelungsmaterialien, Prothesenzähnen, Kunststoffen zur Anfertigung von totalen oder partiellen Prothesen.

TET :

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 897 710 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(88) Veröffentlichungstag A3: 06.09.2000 Patentbiatt 2000/36

(51) Int. Cl.⁷: **A61K 6/087**, C08G 59/68, C08G 65/18

(43) Veröffentlichungstag A2:24.02.1999 Patentblatt 1999/08

(21) Anmeidenummer: 98115822.3

(22) Anmeldetag: 21.08.1998

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 21.08.1997 DE 19736471

(71) Anmelder: ESPE Dental AG 82229 Seefeld (DE) (72) Erfinder:

- Weinmann, Wolfgang 82205 Gilching (DE)
- Eckhardt, Gunther 82346 Frieding (DE)
- (74) Vertreter:

Freiherr von Wittgenstein, Arved, Dr. et al Patentanwälte Abitz & Partner Postfach 86 01 09 81628 München (DE)

(54) Lichtinduziert kationisch härtende Zusammensetzungen und deren Verwendung

- (57) Die Erfindung betrifft mit sichtbarem Licht kationisch härtende Zusammensetzungen, enthaltend:
 - (a) 0,01 bis 8 Gew.-% mindestens einer Diaryliodoniumverbindung,
 - (b) 0,01 bis 8 Gew.-% mindestens einer α -Dicarbonylverbindung,
 - (c) 10,0 bis 99,9 Gew.-% mindestens einer Epoxidgruppen- und/oder Oxetangruppen-enthaltenden Verbindung
 - (d) 0 bis 85 Gew.-% an Modifikatoren, wie Füllstoffen, Farbstoffen, Pigmenten, Fließverbesserern, Thixotropiemitteln, polymeren Verdickern, oxidierend wirkenden Zusatzstoffen, Stabilisatoren und Verzögerern,

die dadurch gekennzeichnet sind, daß sie zusätzlich

(e) 0,001 bis 5 Gew.-% mindestens eines aromatischen Amins enthalten.

Die Zusammensetzungen besitzen eine geringe Eigenfarbe, härten geruchsarm aus und ergeben nach der Aushärtung Massen mit sehr guten mechanischen Eigenschaften.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeidung EP 98 11 5822

Raile Saile

	EINSCHLÄGIG	E DOKUMENTE		
Kategorie	Kennzeichnung des Doku der maßgeblic	ments mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CL6)
Ε	22. Oktober 1998 (* Seite 1, Zeile 20 * Seite 3, Zeile 1: * Seite 8, Zeile 3: * Seite 13, Zeile 2:	NESOTA MINING & MFG) 1998-10-22) 6 - Seite 3, Zeile 7 * 7 - Seite 7, Zeile 4 * - Seite 12, Zeile 9 * 22 - Seite 14, Zeile 23	1,10,12-14	A61K6/087 C08G59/68 C08G65/18
X,D Y	9. Mai 1996 (1996-0 * Seite 3, Zeile 3 * Seite 10, Zeile 1 * Seite 14, Zeile 4	- Seite 6, Zeile 17 * 12 - Seite 13, Zeile 3 * 1 - Seite 15, Zeile 5 * 17 - Seite 19, Zeile 16	1-10,12, 14 1,11	·
Y	29. Mai 1997 (1997-	l - Seite 8, Zeile 29 *	1,11	RECHERCHIERTE SACHGEBIETE (Int.CL6) A61K C08G
A	EP 0 728 790 A (HER 28. August 1996 (19 * Seite 3, Zeile 5 * Seite 9, Zeile 29	996-08-28) - Zeile 10 *	1-14	0000
	26. März 1997 (1997	3 - Seite 3, Zeile 38 * - Zeile 10 * 3 - Zeile 52 *	1-14	
Der vor	liegende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
	Recharchenort	Abschlußdatum der Recherche	<u>' </u>	Pruter
	DEN HAAG	13. Juli 2000	Cous	sins-Van Steen, G
X : von t Y : von t ande A : techn O : nicht	TEGORIE DER GENANNTEN DOKT besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kaleg hologischer Hintergrund schriftliche Offenbarung schriftliche Offenbarung	tet E : âlteres Patentdok nach dem Anmeldung mit einer D : in der Anmeldung porie L : aus anderen Grür	nunde liegende T sument, das jedoc decatum veröffen dangeführtes Dol nden angeführtes	heorien oder Grundsätze h erst am oder licht worden ist rument Dokument

EPO FORM 1503 03.82 (P04C03)

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeidung

EP 98 11 5822

	EINSCHLÄGIG	SE DOKUMENTE		
Kategorie	Kennzeichnung des Dok der maßgebli	uments mit Angabe, soweit erforderlich, chen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CL6)
A,D	BI, YUBAI ET AL: Initiating System Promoted Cationic MACROMOLECULES (19 1994, XP000457200	for Free Radical Polymerization" 994), 27(14), 3683-93 ,		·
				·
				RECHERCHIERTE SACHGEBIETE (Int.CL6)
·				
Der vorli	egende Recherchenbericht wu	rde für alle Patentansprüche enstellt		
	Recherchenort	Abschlußdatum der Recherche	T	Pruter
	EN HAAG	13. Juli 2000	Cous	ins-Van Steen, G
X : von be Y : von be andere A : techno O : nichts	EGORIE DER GENANNTEN DOKI sconderer Bedeutung allen betracht sconderer Bedeutung in Verbindung in Veröffentlichung derselben Kates slogischer Hintergrund chriftliche Offenbarung tensiteratur	E : älteres Patentdoku tet nach dem Anmeldung mit einer D : in der Anmeldung	unde liegende Thument, das jedoch edatum veröffentlik angeführtes Doku den angeführtes D	eonen oder Grundsätze erst am oder cht worden ist ment oleument

EPO FORM 1503 03.82 (POJC03)

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 98 11 5822

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

13-07-2000

	Recherchenber Innes Patentdol		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO	9847046	Α	22-10-1998	US	6025406 A	15-02-2000
	•			AU	6444398 A	11-11-1998
				BR	9807973 A	08-03-2000
				CN	1252138 T	03-05-2000
				EΡ	0968459 A	05-01-2000
				NO	994954 A	11-10-1999
				US	6043295 A	28-03-2000
WO	9613538	Α	09-05-1996	AU	3971895 A	23-05-1996
				E₽	0789721 A	20-08-1997
				JP	10508067 T	04-08-1998
				US	5856373 A	05-01-1999
WO	9718792	Α	29-05-1997	AU	7439696 A	11-06-1997
				EP	0873107 A	28-10-1998
				JP	2000500486 T	18-01-2000
EP	0728790	Α	28-08-1996	DE	19506222 A	29-08-1996
				DE	59605086 D	08-06-2000
				JP	2880446 B	12-04-1999
				JP	8245783 A	24-09-1996
				US	5750590 A	12-05-1998
EP	0764691	Α	26-03-1997	DE	19534668 A	20-03-1997

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr. 12/82