

Lecture Two Hardware & Software

he University of Dodoma

Instructor: Dr. M.C. Manyilizu

Wearable vs. Ubiquitous

- •Wearable computing:
 - Computers/sensors on people
- Ubiquitous computing
 - Computer/sensors embedded in the environment
- Complimentary

Complimentary Duality

- Wearable: Know more about persons
 - privacy, authentication, and security
 - personalized information
- Ubiquitous: Know more about environment
 - local environment information
 - local environment control
 - resource management

Motivation

- Why do we want/need wearable computers?
 - To communicate
 - to know things you CARE about whenever you can
 - To organize/remember
 - to get a hold of the reality for the BUSY people
 - To get information that we don't know here now
 - I don't know it but I can get it right NOW right HERE
 - As a life style or fashion statement
 - I'm cool because I'm technologically up-to-date

Motivation

- What do we want from a wearable computer?
 - Physical/Hardware Features
 - Application/Software Features

Hardware Features

- light-weight (small)
- durable
- comfortable
- long battery lifetime
- easy to use
- affordable
- cool (invisible, hidden, disappearing)

Application Features

- person-to-person communication
- personal organization/remembrance aid
- context awareness
- effortless usage
 - natural, intuitive

Big Picture

Application
I/O

Communication
Heat Power

I/O Interface

- Visual
- Audio

Visual

- Input
 - computer vision
- Output
 - overlaying things

Example: Eyeglass Display

- Human factors studies
 - health and safety
 - social acceptance

- Concentrating on bi-ocular displays
 - for viewing 2D text and images

Audio

- Input
 - speech recognition
 - background noise separation
 - speaker identity (voice fingerprint)
- Output
 - speech synthesis

Speech Interaction

- n Speech as data
 - n efficient coding
 - n word spotting

- Speech-driven user interfaces
 - large vocabulary recognition (Cambridge University)
 - dialog for interfaces (MIT)

Big Picture

Application
I/O
Communication
Heat Power

Communication Requirement

- Security
 - short range -> low probability of leaking
- Energy
 - low frequency -> low power

Far-field vs. Near-field Communication

- examples
 - radio vs. bluetooth (kind of)
- signal strength
 - 1/d² vs. 1/d³
- carrier requirement for devices size of a watch or credit card
 - gigahertz vs. 0.1 to 1 megahertz

Local Communication Examples

- Transfer data between:
 - wearable and handheld
 - wearable and desktop
 - wearable and environment,

Big Picture

Application
I/O
Communication
Heat Power

Power Requirement

- The traditional bigger ones: 5 W
 - head mount display, 2GB hard disk, 133 MHz Pentium, 20 MB RAM
- The improved smaller ones: 0.7 W
 - MicroOptic[™] eye-glass display, Flash memory (.5 GB), StrongArm microprocessor (.3 W at 115 MIPs)
 - without communication
- Must come with the person wearing the devices

Big Picture

Application
I/O

Communication
Heat Power

Heat Dispensing

- requirement
 - •-15 intolerably cold
 - •15 34 OK
 - •34 39 hot
 - •39 43 pain
 - •43 tissue damage

Big Picture

Application

I/O

Communication

Heat Power

Application Examples: Miniature Head-up Displays

Application Examples: CharmIT Wearable Computer

Wearable Computer Definitions

- Simple definitions
 - Packet or clothing based computing
 - Peripherals distributed around the sensors and actuators of the body, connected wirelessly
 - Runs entire day

Wearable Computer Definitions

- Formal Definitions
 - Rhodes (1997)
 - Portable while operational
 - Enable hands-free or hand-limited use
 - Capable of getting user's attention
 - Always "on"
 - Sense the user's context in order to serve him better
 - Starner (1999)
 - Persists and provides constant access
 - Senses and models context
 - Augments and mediates
 - Interacts seamlessly

Human-Computer Evolution

- Mainframe->mini->PC->wearable
- Initially lose on features
 - Less CPU capacity
 - Lower bus speed
 - · Less disk storage
- BUT Gain on interface
 - Personalization
 - Interactivity

(Starner PhD 1999)

- Each major generation is increasingly smaller, more deeply interactive, arrives when previous is at its strength
- Vast majority of computing will be small, embedded, devices connected to the physical world

Current State of the Industry

Application Areas

- Warehouse picking
- Inspection
- Maintenance
- Repair
- Security
- Military (Land Warrior)

Examples

Symbol Technologies WS series

Fashion

Music Jacket (MIT)

Galvactivator (MIT)

Medical and Fitness Systems

FitSense

Medtronic

Trends

- Computation in the wild
 - Working in hostile or uncontrolled environment
 - Continuous monitoring

Trends

- Personal Server (at Intel)
 - Always with you
 - Uses outside interfaces
 - Represents you to ubiquitous computing world

Trends

- Interactive lifestyle
 - Seamless integration into everyday life
 - Augment the senses and the mind
 - See as you see, hear as you hear

Challenges for the Wearable PC

- Seamless connection
 - across different kinds of network
- Occasional connection
 - in and out of range
- Local communication
 - ad-hoc peripherals

- Modes of interaction
 - n visual and vocal
- n Health and safety
 - n strain on the senses
- n Unobtrusive
 - n socially acceptable

- n Awareness
 - n capturing context
- n Interpretation
 - use of context data
- n Augmentation
 - n personal assistant

Technical

Resources

- Charmed Technologies (www.charmed.com)
- IEEE Wearable Information Systems Technical Committee
- www.cc.gatech.edu/~thad
- www.bradleyrhodes.com
- www.zary.com