### Treść zadań.

#### Zadanie 1

Zrealizuj układ przedstawiony na rysunku. Wyjście układu podłącz do wejścia zegarowego licznika synchronicznego.



Sprawdź, czy układ działa poprawnie. Jeżeli nie to pokaż sytuacje, w których układ działa niepoprawnie. Sprawdź także czy można wtedy coś poprawić.

### Zadanie 2

Zaprojektować na przerzutnikach sr asynchroniczny układ przedstawiony w postaci tablicy przejść/wyjść.

| ab | )  |     |    |    |    |
|----|----|-----|----|----|----|
|    | 00 | 01  | 11 | 10 | LP |
| 0  |    |     | 0  | 3  | 10 |
| 1  | 1  | 1   | 2  | W  | 00 |
| 2  |    | 1   |    |    | 01 |
| 3  | 1  | (0) | 0  | 3  | 00 |
| '  | 10 |     |    |    |    |

# a) Przypisać następujące kody

$$0-00$$
,  $1-01$ ,  $2-11$ ,  $3-10$ 

Sprawdź, czy układ działa poprawnie. Jeżeli nie, to narysuj jego graf pracy. Sprawdź także czy można przy takim kodowaniu coś poprawić.

### b) Przypisać następujące kody

$$0-00$$
,  $1-01$ ,  $2-10$ ,  $3-11$ 

Sprawdź, czy układ działa poprawnie. Jeżeli nie, to narysuj jego graf pracy. Sprawdź także czy można przy takim kodowaniu coś poprawić.

## Zadanie 1

Zbudowaliśmy zadany układ i podłączyliśmy jego wyjście do wejścia zegarowego licznika synchronicznego:



Na postawie układu stworzyliśmy funkcję wyjściową:

$$y = \overline{\overline{\overline{a} + c} + \overline{a + b}} = (\overline{a} + c)(a + b)$$

Siatka Karnaugha:

С

| ab | 0 | 1 | 2 |
|----|---|---|---|
| 00 | 0 | 0 | 3 |
| 01 | 1 | 1 |   |
| 11 | 9 | 1 |   |
| 10 | 0 | 1 | у |

Na postawie zmian na wyjściach licznika doszliśmy do wniosku, że w układzie występuje hazard statyczny w warunkach niedziałania przy zmianie wejść:

 $abc: 000 \rightarrow 100$ 

$$y: 0 \rightarrow 1 \rightarrow 0$$

Hazard jest zauważalny ze względu na zwiększony czas propagacji sygnału a, który musi przejść przez 3 bramki NAND (działające w tym przypadku jak bramki NOT) zanim dojdzie do właściwej bramki NOR. Nie podłączaliśmy 5 aż bramek szeregowo, ponieważ licznik zliczał przekłamania wynikające z hazardu już przy 3 bramkach.

Wykres czasowy:

- a \_\_\_\_\_
- *c* \_\_\_\_\_
- $y \longrightarrow \square$

W pozostałych sytuacjach układ działał poprawnie. Aby poprawić działanie układu dodaliśmy grupę antyhazardową (b+c). Po naszej poprawcę HSn nie występował.

i. Short daying it in

Użyliśmy bramki NAND, ponieważ na naszym stanowisku nie była dostępna 4-wejściowa bramka NOR.

$$y = (\overline{a} + c)(a + b)(b + c) = \overline{(\overline{a} + c)} \overline{(a + b)} \overline{(b + c)} = \overline{a\overline{c}} \overline{a\overline{b}} \overline{b\overline{c}} = \overline{\overline{a\overline{c}}} \overline{\overline{a\overline{b}}} \overline{\overline{b\overline{c}}} \overline{1}$$

Schemat układu:



## Zadanie 2

a)

Siatka przejść:

ab

| $q_1q_2$ | 00 | 01 | 11 | 10 |
|----------|----|----|----|----|
| 00       | 1  | l  | 00 | 10 |
| 01       | 01 | 01 | 11 | 10 |
| 11       | -  | 01 | 11 | -  |
| 10       | 01 | -  | 00 | 10 |

 $Q_1Q_2$ 

 $Q_2$ 

ab

$$s_1 = a\overline{b} + q_2 a$$

$$r_1 = \overline{a} + b\overline{a_2}$$

$$s_{1} = a\overline{b} + q_{2}a$$

$$r_{1} = \overline{a} + b\overline{q_{2}}$$

$$\overline{s_{1}} = a\overline{b} + q_{2}a = a\overline{b}\overline{q_{2}a} = \overline{a}\overline{b}\overline{q_{2}a}$$

$$\overline{r_{1}} = \overline{a} + b\overline{q_{2}} = a\overline{b}\overline{q_{2}} = \overline{a}\overline{1} \cdot \overline{b}\overline{q_{2}}$$

| $q_{1}q_{2}$ | 00 | 01 | 11 | 10 |
|--------------|----|----|----|----|
| 00           | -  | 1  | 0  | 0  |
| 01           | 1  | 1  | 1  | 0  |
| 11           | -  | 1  | 1  | -  |
| 10           | 1  | 1  | 0  | 0  |

$$s_2 = \overline{a}$$
$$r_2 = a\overline{b}$$

$$\overline{s_2} = \frac{a}{a\overline{b}}$$

$$\overline{r_2} = \overline{a\overline{b}}$$

Siatka Karnaugha dla wyjść:

 $q_2$ 

| $q_1$ | 0  | 1  | _  |
|-------|----|----|----|
| 0     | 10 | 00 |    |
| 1     | 00 | 01 | LP |

$$L = \overline{q_1} \, \overline{q_2} = \frac{\overline{\overline{q_1}} \, \overline{q_2}}{\overline{q_1} \, \overline{q_2}} = \overline{q_1 + q_2}$$

$$P = q_1 q_2 = \overline{q_1 q_2} = \overline{q_1} + \overline{q_2}$$

Schemat układu:



Graf pracy:



Podczas laboratorium myśleliśmy, że problemem w układzie jest to, że w stanie pierwszym przy zmianie wejść ab=00 na ab=11 w zależności i od tego czy zmieni się najpierw a czy b układ trafi od stanu 2 lub stanu 0.

Jeżeli:

$$ab: 00 \to 01 \to 11$$

to:

$$S: 1 \rightarrow 1 \rightarrow 2$$

Jeżeli:

$$ab: 00 \rightarrow 10 \rightarrow 11$$

to:

$$S: 1 \rightarrow 3 \rightarrow 0$$

Jednak nie jest błąd układu, tylko jego funkcjonalność zgodna z tablicą przejść.

Po narysowaniu grafu pracy układu zauważyliśmy, że wyścig krytyczny może wystąpić przy zmianie stanu 1 na stan 3 lub stanu 3 na stan 1, ponieważ wtedy zmieniają się dwa bity stanów jednocześnie.

$$S_1 \to S_3$$

$$q_1q_2: 01 \to 10$$

$$S_3 \rightarrow S_1$$

$$q_1q_2: 10 \to 01$$

Jeżeli któryś z bitów adresowych zmieniłby się pierwszy, to układ trafiłby do stanu 0 lub stanu 2.

Nie udało nam się zaobserwować błędów w działaniu układu przy przejściach między stanem 1 i stanem 3 podczas laboratorium. Jeśli jednak pojawiłyby się takie problemy, konieczne byłoby wprowadzenie dodatkowych przejść w siatce przejść, aby układ zawsze działał poprawnie.

Skorygowana tablica przejść z podkreśloną korektą:

| a | b |
|---|---|
| v | ~ |

|       | $q_1q_2$ | 00        | 01 | 11 | 10        |       |
|-------|----------|-----------|----|----|-----------|-------|
| $S_0$ | 00       | <u>01</u> | 1  | 00 | 10        |       |
| $S_1$ | 01       | 01        | 01 | 11 | 10        |       |
| $S_2$ | 11       | <u>01</u> | 01 | 11 | <u>10</u> |       |
| $S_3$ | 10       | 01        |    | 00 | 10        | $Q_1$ |

n 0 lub star funkcje 'nyc' Wtedy nawet w przypadku niechcianej zmiany na stan 0 lub stan 2 układ ostatecznie trafiłby do oczekiwanego stanu. Należałoby odpowiednio zmienić funkcje wejść dla przerzutników typu sr. W naszym przypadku nie musieliśmy wprowadzać żadnych zmian, ponieważ projektując układ w ramach optymalizacji wykorzystaliśmy stany nieokreślone, dobierając grupy dla warunków działania w taki sposób, że skonstruowany układ został już skorygowany.

Siatka przejść:

ab

| $q_1q_2$ | 00 | 01 | 11 | 10 |
|----------|----|----|----|----|
| 00       | 1  | 1  | 00 | 11 |
| 01       | 01 | 01 | 10 | 11 |
| 10       | 1  | 01 | 10 | 1  |
| 11       | 01 |    | 00 | 11 |

 $Q_1Q_2$ 

 $Q_1$ 

ab

| $q_1q_2$ | 00 | 01 | 11 | 10 | _     |
|----------|----|----|----|----|-------|
| 00       | 1  | 1  | 00 | 11 |       |
| 01       | 01 | 01 | 10 | 11 |       |
| 11       | 01 | -  | 00 | 11 |       |
| 10       |    | 01 | 10 | 4  | $Q_1$ |

Aby poprawnie wyznaczyć funkcje należy zamienić miejscami stan 2 i 3, żeby kody stanów ułożone były zgodnie z kodem Graya

ab

$$s_1 = a\overline{b} + \overline{q_1}q_2a$$

$$r_1 = q_1\overline{a} + q_1q_2b$$

$$\overline{s_1} = \overline{a\overline{b}} + \overline{q_1}q_2a = \overline{a\overline{b}} \overline{\overline{q_1}q_2a} = \overline{\overline{a\overline{b}}} \overline{\overline{q_1}q_2a}$$

$$\overline{r_1} = \overline{q_1\overline{a} + q_1q_2b} = \overline{q_1\overline{a}} \overline{q_1q_2b} = \overline{\overline{q_1\overline{a}}} \overline{\overline{q_1q_2b1}}$$

ab

| $q_1q_2$           | 00            | 01 | 11 | 10 |                                                                                                                                                                                                    |
|--------------------|---------------|----|----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00                 | ı             | -  | 0  | 1  | $s_2 = \overline{a} + \overline{b}$ $r_2 = ab$                                                                                                                                                     |
| 01                 | 1             | 1  | 0  | 1  | $\overline{s_2} = \frac{\overline{a} + \overline{b}}{\overline{a} + \overline{b}}$                                                                                                                 |
| 11                 | 1             | ı  | 0  | 1  | $\frac{s_2 = a + b}{\overline{r_2} = ab}$                                                                                                                                                          |
| 10                 | ı             | 1  | 0  | ı  | $Q_2$                                                                                                                                                                                              |
| q <sub>1</sub> 0 1 | 0<br>10<br>01 | 1  | .P |    | $L = \overline{q_1}  \overline{q_2} = \overline{\overline{q_1}  \overline{q_2}} = \overline{q_1 + q_2}$ $P = q_1 \overline{q_2} = \overline{q_1} \overline{\overline{q_2}} = \overline{q_1} + q_2$ |

$$s_2 = \overline{a} + \overline{b}$$
$$r_2 = ab$$

$$\overline{s_2} = \overline{\overline{a} + \overline{b}}$$

$$\overline{r_2} = \overline{ab}$$

$$L = \overline{q_1} \, \overline{q_2} = \underbrace{\frac{\overline{\overline{q_1}} \, \overline{q_2}}{\overline{\overline{q_1}} \, \overline{q_2}}}_{P = q_1 \overline{q_2} = \overline{q_1 + q_2}} = \overline{q_1 + q_2}$$

# Schemat układu:



Tego układu nie zdążyliśmy przetestować na laboratorium. Na podstawie grafu pracy można zauważyć przejścia, w których mógłby wystąpić wyścig krytyczny:

$$S_0 \to S_3$$

 $q_1q_2:00 \to 11$ 

$$S_3 \rightarrow S_0$$

$$S_1 \rightarrow S_2$$

$$S_2 \rightarrow S_1$$

| $S_3 \to S$                       | 0        |           |           |    |           |          |
|-----------------------------------|----------|-----------|-----------|----|-----------|----------|
| q <sub>1</sub> q <sub>2</sub> : ( | 00 → 11  |           |           |    |           |          |
|                                   |          |           |           |    |           |          |
| $S_1 \to S$                       | 2        |           |           |    |           |          |
| $q_{1}q_{2}$ : (                  | 01 → 10  |           |           |    |           |          |
|                                   |          |           |           |    |           | 100      |
| $S_2 \to S$                       | 1        |           |           |    |           |          |
|                                   |          |           |           |    |           | 4.2      |
| $q_1q_2$ : (                      | 01 → 10  |           |           |    |           | cOl      |
| 11 12                             |          | a h       |           |    |           |          |
|                                   |          | ab        |           |    |           |          |
|                                   | $q_1q_2$ | 00        | 01        | 11 | 10        | 11/19    |
| $S_0$                             | 00       |           | <u>01</u> | 00 | 11        |          |
| $S_1$                             | 01       | 01        | 01        | 10 | 11        |          |
| $S_3$                             | 11       | 01        | <u>01</u> | 00 | 11        |          |
| $S_2$                             | 10       | <u></u> C | 01        | 10 | <u>11</u> | $Q_1Q_2$ |

Można zapobiec wyścigom przy przejściach:

$$S_0 \rightarrow S_3$$

$$S_2 \rightarrow S_1$$

Nie można zapobiec wyścigom bez zmiany kodowania przy przejściach:

$$S_3 \rightarrow S_0$$

$$S_1 \rightarrow S_2$$

Tak samo jak w podpunkcie a) nie można już nic poprawić w układzie, jeżeli przy projektowaniu wykorzystało się stany nieokreślone do dobrania najprostszych grup w warunkach działania.

#### Wnioski

Podczas laboratorium zbudowaliśmy, uruchomiliśmy i przetestowaliśmy opisane układy z wyjątkiem układu w podpunkcie b) w zadaniu 2. Działały tak jak opisaliśmy w poszczególnych zadaniach. Czas Jimin continues the state of th propagacji sygnałów może wpływać na działanie układów cyfrowych. Hazardy i wyścigi krytyczne są ważnymi aspektami wpływającymi na stabilność układów. Aby zapobiec hazardowi można