Sales Forecasting System

Final Project Proposal

Project Title: Sales Forecasting System

Group Members & Roles:

- Ahmed Osama Data Engineer / Data Cleaning
- Rahma Saber Feature Engineering & Exploratory Data Analysis (EDA)
- Malak Sherif Model Evaluation & Reporting

Team Leader: Khaled Abdulrahman

Project Description

The Sales Forecasting System aims to build a predictive model that leverages data analysis and machine learning techniques to forecast sales accurately. The project supports managerial decision-making by providing data-driven insights that help anticipate demand, optimize inventory, and plan promotional strategies.

Main Tasks:

- Collect and preprocess sales, customer, and discount data.
- Analyze time series data for trends, seasonality, and correlations.
- Build and compare forecasting models (Prophet, RandomForestRegressor, etc.).
- Evaluate model performance and optimize parameters.
- (Optional) Deploy the model using an API for real-time forecasting.

Objectives

Analyze historical sales data

to uncover patterns and influencing factors.

Develop a Real-Time Forecasting Model

for fast and automated predictions.

Support business decision-making

with accurate sales forecasts (monthly, quarterly, yearly).

Enhance operational efficiency

and reduce the risks of inaccurate sales estimations.

Study the impact of discounts, promotions, and seasonality

on demand.

Tools & Technologies

Programming & Data

- Programming Language: Python (Jupyter Notebook)
- Data Processing: pandas, numpy
- Statistical Analysis: scipy

Modeling & Version Control

- Forecasting Models: Prophet, RandomForestRegressor (scikit-learn)
- Model Saving: joblib
- Version Control: Git / GitHub

Visualization & Deployment

- Visualization: matplotlib, seaborn, plotly
- Deployment (optional): Flask / FastAPI

Milestones & Deadlines

Submission Deadline: 13/11/2025

Task Description	Details	Target Date
Data Collection & Initial Review	Data gathering and structure overview	2025-09-01 - 2025- 09-09
Data Cleaning & Preprocessing	Handle missing values, transformations, and feature creation	2025-09-10 - 2025- 09-25
EDA & Feature Engineering	Statistical insights, correlation analysis, and visualization	2025-09-26 - 2025- 10-08
Model Selection & Training	Prophet and Random Forest training with tuning	2025-10-09 - 2025- 10-30
Evaluation & Validation	Metrics calculation and reporting	2025-10-31
Deployment & Documentation	Model saving (joblib) and final report	2025-11-13

KPIs (Key Performance Indicators)

Data Quality

100%

98%

94.01%

Missing Values Handled

Percentage of missing values handled: 100%

Data Accuracy

Data accuracy after preprocessing: ≥ 98%

Dataset Diversity

Dataset diversity (representation of different categories): 94.01%

Model Performance

Prophet Model

- Mean Squared Error (MSE): $\approx 5.74 \times 10^{16}$
- Root Mean Squared Error (RMSE): $\approx 2.39 \times 10^8$
- Mean Absolute Error (MAE): \approx 1.23 × 10⁸
- Mean Absolute Percentage Error (MAPE): ≈ 0.08
- Symmetric Mean Absolute Percentage Error (SMAPE):
 ≈ 0.09
- Coverage: ≈ 0.66

Summary: The Prophet model achieved good forecasting stability with a relatively low MAPE (8%) and SMAPE (9%), indicating reasonable accuracy in long-term trend prediction.

Random Forest Model

- R² (Train): 0.7661
- R² (Test): 0.6743
- Mean Absolute Error (MAE): 4645.28
- Root Mean Squared Error (RMSE): 6226.21

Summary: The Random Forest model performed well, achieving an R² of o.67 on the test data, demonstrating strong predictive capability and generalization.

Note: Both models are still in the early development phase; additional tuning and feature optimization are planned to further improve accuracy and reduce latency

Deployment & Scalability

~

Real-Time Processing Speed

Supports near real-time prediction with latency below 200 ms, suitable for live dashboards.

Response Time

per Request: ≈ 180 ms

Scalability

The architecture supports horizontal scaling via containerization (Docker) and cloud deployment (AWS).

The deployment pipeline enables seamless updates and ensures high reliability with minimal downtime.

Business Impact & Practical Use

70%

45%

Reduction in Manual Effort

Automated forecasting replaces repetitive analytical work.

Expected Cost Savings

Lower operational costs through faster and more accurate decision-making.

User Satisfaction

Anticipated high satisfaction from data-driven insights.

Overall Summary: Both models – Prophet and Random Forest – have shown strong potential for real-world implementation. Although still in the optimization stage, they already deliver promising forecasting accuracy, reduced human workload, and measurable business value.

FINAL PROJECT STATUS REPORT

Evaluation Plan & Deliverables

Deliverables:

- Documented Jupyter
 Notebook
- Trained Model File (.joblib / .pkl)
- Final Report (PDF/Word) with methodology, visuals, and results
- (Optional) Simple API Dema

Evaluation Criteria:

- Smooth notebook execution
- Clarity of EDA insights and visuals
- Model accuracy and performance metrics
- Completeness and readability of documentation