WDE2017 (Multi-paritite Entanglement)

Edward Kim

February 3, 2021

Contents

1	Equivalences of classes of multipartite entangled states.			1
	1.1	SLOC	C-equivalence classes through invariants	2
		1.1.1	Cayley Hyper-determinant	2
		1.1.2	Invariants through homogeneous polynomials	2
		1.1.3	Monogamy of Entanglement	2
		1.1.4	Infinite classes for 4-qubit systems	2
2	Asy	mptot	cic manipulation of pure multipartite entanglement	2
	2.1	Minin	nial reversible entanglement generating set (MREGS)	2
		2.1.1	For tripartite state	2
		2.1.2	Conversion rates from GHZ state from Geometric Com-	
			plexity	2
3	Entanglement Measures			3
	3.1	Geom	etric Measure	3
	3.2	Hierar	rchies of Separability for Mixed States	3
4	Mo	More Invariants		
5	Noi	n-local	dity	
1	Equivalences of classes of multipartite entangle states.			ed
	• Local unitary equivalence of multipartite pure states (Kraus)			
	• Evenuthing Vou Always Wented to Know About LOCC/Dut Wen			
	• Everything You Always Wanted to Know About LOCC(But Wer Afraid to Ask) (Chitambar et al)			

1.1 SLOCC-equivalence classes through invariants

1.1.1 Cayley Hyper-determinant

• Classification of multipartite entangled states by multidimensional determinants (Miyake)

1.1.2 Invariants through homogeneous polynomials

• Classification of multipartite entanglement in all dimensions (Gour, Wallach)

1.1.3 Monogamy of Entanglement

• Distributed Entanglement (Coffman et al.)

1.1.4 Infinite classes for 4-qubit systems

• Four qubits can be entangled in nine different ways. (Verstrate et al.)

2 Asymptotic manipulation of pure multipartite entanglement

2.1 Minimial reversible entanglement generating set (MREGS)

2.1.1 For tripartite state

- Reversibility of Local Transformations of Multiparticle Entanglement (Linden et al.)
- On the structure of a reversible entanglement generating set for three–partite states (Acin et al.)

2.1.2 Conversion rates from GHZ state from Geometric Complexity

- Tripartite entanglement transformations and tensor rank (Chtambar et al.)
- Nondeterministic quantum communication complexity: the cyclic equality game and iterated matrix multiplication (Buhrman)
- Asymptotic entanglement transformation between W and GHZ states (Vrana, Christandl)

3 Entanglement Measures

3.1 Geometric Measure

• Geometric measure of entanglement and applications to bipartite and multipartite quantum states (Wei, Goldbart)

3.2 Hierarchies of Separability for Mixed States

- Complete hierarchies of efficient approximations to problems in entanglement theory (Eisert et al.)
- Distinguishing separable and entangled states (Doherty et al)
- Separability and distillability of multiparticle quantum systems (Dur et al)
- Classification of multi–qubit mixed states: separability and distillability properties (Dur et al)

4 More Invariants

• Algebraic invariants of five qubits (Luque, Thibon)

5 Non-locality

• Extreme quantum entanglement in a superposition of macroscopically distinct states (Mermin)