

UM EECS 270 F21 Introduction to Logic Design

3. Timing and Delay

- Logic circuits are physical structures built from electronic transistors and wires
- The digital abstraction ignores physics and assumes that circuits respond instantaneously
- In real implementations of logic circuits, we must account for propagation delays
 - Change at input of gate requires time to propagate through to output
 - Change at output of one gate requires time to reach input of next gate

- Digital circuits operate in distinctive steps:
 - ⋆ 1) Apply inputs to circuit
 - 2) Wait for outputs to react
 - 3) Sample outputs at circuit
- The speed of this process is determined by a clock pulse signal (often simply called a clock)

- Circuits require a fixed time to respond to their inputs – it's important that circuits generate correct outputs in the alloted time
 - Being late is as bad as being wrong!

How fast can this circuit be "clocked" if each gate has a delay of 5ns?

What if each gate has a delay of 50ps?

$$20 * 50ps = 1ns$$

Timing Diagrams

Causality Arrow

Gate Propagation Delay

 t_{pHL}^{NAND}

gives NAND gate propagation delay from input to output when <u>output</u> is changing from H to L

- Gate delays vary with operating conditions:
 - Operating voltage
 - Temperature
 - Output capacitance
- Therefore, IC designers typically specify:
 - Minimum delay: best case (not very useful!)
 - Maximum delay: worst case
 - Typical delay: "normal" operating conditions
- Often, we'll use t_p = max(t_{pHL}, t_{pLH}) for simplicity

Propagation delay in nanoseconds of 74LS family				
	Typical		Maximum	
Part Number	t_pLH	t _{pHL}	t _{pLH}	t _{pHL}
00, 01	9	10	15	15
02	10	10	15	15
04	9	10	15	15
08, 11	8	10	15	20
14	15	15	22	22
20	9	10	15	15
21	8	10	15	20
27	10	10	15	15
30	8	13	15	20
32	14	14	22	22
86	12	10	23	17

Multiple paths from input to output

 $X \xrightarrow{1 \to 0 \to 1}$

1→0→1

Assume all rising and falling gate delays are 1ns:

g3

$$t_{pLH}^{B\to Z}\,=\,t_{pHL}^{g2}\,+\,t_{pLH}^{g3}\,=\,2ns$$

$$t_{pHL}^{B\to Z} = t_{pHL}^{g0} + t_{pLH}^{g1} + t_{pHL}^{g3} = 3ns$$

 $Z_{0\rightarrow 1\rightarrow 0}$

The overall circuit delay depends on the transition path taken from the inputs to the output

Unit-Delay Timing Simulation

A "Slightly" More Realisitic Delay Model

Delay ∞ Transistor Resistance

A "Slightly" More Realisitic **Delay Model**

= #(4,0.5)

= #(1,2)

Rise/Fall-Delay Timing Simulation

Bi-Stable Circuit & Ring Oscillator

This circuit is bi-stable

This circuit is known as a ring-oscillator

$$t_{period} = t_{pHL}^{g1} + t_{pLH}^{g2} + t_{pHL}^{g3} + t_{pHL}^{g1} + t_{pLH}^{g2} + t_{pLH}^{g3}$$

Assume all gate delays are 1ns:

$$t_{period} = 6ns \qquad f_{osc} = \frac{1}{6ns} = 166MHz$$