MN3209

256-STAGE LOW VOLTAGE OPERATION LOW NOISE BBD

■ General description

The MN3209 is a 256-stage low voltage operation (V_{DD} = 5V) low noise BBD that provides a signal delay of up to 12.8ms and is particularly suitable as a device for generation of chorus and vibrato effects of audio equipements in low voltage operation portable stereo, radio cassette recorder and electronic musical instruments, etc.

■ Features

- Variable delay of audio signal: 0.64 ~ 12.8ms.
- Wide supply voltage: 4 ~ 10 V.
- No insertion loss: L; = 0dB typ.
- Wide dynamic range: S/N = 80dB typ.
- Low distortion: THD = 0.4% typ. (V_i = 0.25Vrms).
- Clock frequency range: 10KHz ~ 100KHz.
- N-channel silicon gate process.
- 8-lead dual-in-line plastic package.

Applications

- Sound and echo effects of audio equipment such as radio cassette recorder, car radio, portable radio, portable stereo, echo microphone and pre-taped musical accompaniments, etc.
- Sound effect in electronic musical instruments.
- Variable or fixed delay of analog signals.

■ Block Diagram

Quick Reference Data

ltem	Symbol	Value	Unit
Supply Voltage	V _{DD} , V _{GG}	+5, 14VDD	V
Signal Delay Time	t _D	0.64~12.8	ms
Total Harmonic Distortion	THD	0.4	%
Signal to Noise Ratio	S/N	80	dB

■ Absolute Maximum Ratings (Ta = 25°C)

ltem	Symbol	Rating	Unit
Terminal Voltage	$V_{DD}, V_{GG}, V_{CP}, V_{I}$	− 0.3∼ + 11	V
Output Voltage	Vo	-0.3~+11	V
Operating Temperature	Topr	−20~+60	°C
Storage Temperature	Tstg	−55∼+125	°C

■ Operating Condition (Ta = 25°C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Drain Supply Voltage	V _{DD}		+4	+ 5	+10	V
Gate Supply Voltage	V _{GG}			14 V _{DD}		V
Clock Voltage "H" Level	V _{CPH}			V _{DD}		V
Clock Voltage "L" Level	V _{CPL}		0		+1	V
Clock Frequency	f _{CP}		10		200	kHz
Clock Pulse Width *1	t _{CPW}				0.5T *2	
Clock Rise Time *1	t _{CPr}				500	ns
Clock Fall Time *1	topf	-			500	ns
Clock Input Capacitance	Сср				200	рF
Clock Cross Point *1	V _X		0		0.3V _{CPH}	٧

Electrical Characteristics (Ta = 25°C, $V_{DD} = V_{CPH} = 5V$, $V_{CPL} = 0V$, $V_{GG} = 14/15$ V, $R_L = 100$ kΩ)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Signal Delay Time	t _D		0.64		12.8	ms
Input Siganl Frequency	fi	f _{cp} = 40kHz, Output –3dB down	12			kHz
Input Signal Swing	V _i	THD=2.5%	0.5			Vrms
Insertion Loss	Li	f _{CP} =40kHz, f _i =1kHz	-4	0	4	dB
Total Harmonic Distortion	THD	f_{CP} =40kHz, f_i =1kHz, V_i =0.25Vrms		0.4	2.5	%
Noise Voltage	V _{no}	f _{cp} = 100kHz Weighted by "A" curve			0.12	mVrms
Signal to Noise Ratio	S/N	rep - Tookhiz Weighted by A curve		80		dB

*1 Clock Pulse Waveforms

*2 T = 1/f_{CP} (Clock Period)

■ Terminal Assignments

■ Circuit Diagram

■ Typical Electrical Characteristic Curves

■ Supply Voltage Characteristics

■ Application Circuit

Vibrato and/or Chorus Effect Generation Circuit