Isomorphism of memBers	1
Shigeo Hattori	2
bayship.org@gmail.com	
October 22, 2019	3
First version: September, 2019	4
1 Introduction	5
Definition 1.1 (memBer). Take $\forall x$ such that (there exists $\exists S$ such that $x \in S$).	6
Then x is said a memBer.	7
•	8
This article:(1) defines a binary relation that (x,y) as memBers are isomor-	9
phic,(2) proves that the binary relation is an equvalence relation, (3) proves	10
that all homeomorphic topological spaces are isomorphic as memBers,(4) de-	11
fines that a memBer $S1$ is a minor of a memBer $S2$.	12
I expect that readers will realize that the newly defined isomorphisms are	13
somehow more fundamental than ,e.g., homeomorphisms of topological spaces.	14
Because "homeomorphisms" logically resolve to "isomorphisms of memBers"	15
whereas the inverse of it does not hold.	16
2 Notation	17
Definition 2.1. Consider "A and B". It is almost equivalent to " $B \wedge A$ ". But	18
some times they are different. Because the meaning of B may depend on A .	19
v ·	20
" $A_{and} \wedge B$ " \equiv "A holds and B holds where the meaning of B may depend on	21
A".	22
" $A_{else} \lor B$ " \equiv " A holds or B holds where the meaning of B may depend on	23
$\neg A$ ".	24
" $\forall x :\in S$ " \equiv "for all x such that $x \in S$ ".	25
" $\forall x$ as an integer" \equiv "for all x such that x is an integer".	26

3 Deep member	27
Definition 3.1 (Deep member of memBer). This definition uses a style of recursion. Take $\forall (x,y)$ such that *1 holds. Then define *2 $_{and} \land$ *3.	28 29 30
1 $x = y$ else (there exists $\exists z$ such that $x \in z \in \geq 0$ y).	31
$2 \ x$ is a deep member of y .	32
3 $x \in {}^{\geq 0} y$	33
	34
Definition 3.2 (Space of memBer). Take $\forall (x,y)$ such that *1 holds. Then define *2.	35 36
1 $y = \{d \mid d \in \geq 0 x \text{ then } d \text{ is a point } \}.$	37
$2 \ y$ is the space of x .	38
·	39
4 Notations	40
Definition 4.1 (Restriction of binary relation). Take $\forall (L,X,Y,X1,Y1)$ such that *1 holds. Then define (*2 $_{and} \land$ *3 $_{and} \land$ *4).	41 42
1 L is a binary relation on $X * Y$ $_{and} \land \ X1 \subset X$ $_{and} \land \ Y1 \subset Y$.	43
2 $L[X1] := \{ (x, y) \in L \mid x \in X1 \}.$	44
3 $L[,Y1]:=\{(x,y)\in L\mid y\in Y1\}.$	45
4 $L[X1,Y1]:=\{\ (x,y)\in L\ \ x\in X1\ _{and}\land\ y\in Y1\ \}.$	46

5 Isomorphic memBers	47
Definition 5.1 (Isomorphic memBers). Take all $\forall x$. Then (x, x) are said isomorphic.	48 49
Definition 5.2 (Isomorphic memBers by binary relation). This definition uses a style of recursion.	50 51
	52
Take $\forall (x, y, F)$ such that *A holds. Then define (*B1 $_{and} \land$ *B2).	53
A (F is a binary relation $and \wedge *0$) holds.	5 4
	55
0 If there exists $\exists v :\in \{x, y\}$ such that $space(v) = \emptyset$ Then $x = y$ Else *1.	5 6
1 If there exists $\exists v :\in \{x, y\}$ such that v is a point Then $((x, y)$ are points $and \land (x, y) \in F$) Else (*2 $and \land *3$).	57 58
2 $F[space(x), space(y)]$ is a ¹ bijection from*to space(x)*space(y).	5 9
3 There exists $\exists f$ such that (*4 $_{and} \land$ *5 $_{and} \land$ *6).	60
4 f is a bijection from*to $x * y$.	61
5 Take $\forall (m1, m2) \in f$.	62
6 *A holds for $(m1, m2, F)$ in place of (x, y, F)).	63
B1 (x,y) are said isomorphic by F as an isomorphism.	64
B2 Take $\forall (x, y, F)$ such that (x, y) are isomorphic by F . Then (x, y) are said	65
isomorphic.	66

¹To weaken the definition, replace "bijection" with "function" or with "binary relation".

6	Minors of memBers	67
Def *B.	finition 6.1 (Minors). Take $\forall (x,y)$ such that *A holds. Then it is said as	68 69
A *	*1 $_{and}\wedge$ $^*2.$	70
	1 Take $\forall d$. Then $d \in \geq 0$ $x \Rightarrow d \in \geq 0$ y .	71
	2 Take $\forall (d1, d2, d3)$ such that (take $\forall d \in \{d1, d2, d3\}$, then $d \in \geq 0$ x). Then (*3 \leftarrow *4).	72 73
	3 $((x, d1, d3), (x, d2, d3))$ are isomorphic.	74
	4 $((y, d1, d3), (y, d2, d3))$ are isomorphic.	75
B *	*5 and \wedge *6 .	76
	5 x is a minor of y .	77
	6 $x \leq^{minor} y$.	78
	•	7 9
7	Notations	80
the In o	finition 7.1 (Family). Take $\forall (x, I, X)$ as a family X , the index set I and function x , then x is surjective. other words, $X = \{x_i \mid i \in I\}$. It x is said a family's function.	81 82 83 84 85
	finition 7.2 (Chain). Take $\forall C$ as a chain. Then C is regarded as a family 2 defined (I,C) such that $(*1 \ _{and} \land \ *2 \ _{and} \land \ *3)$.	86 87
1 <i>I</i>	is the index set $and \land I := [min := 1, max := C] \subset N$. ³ Footnote.	88
2 C	C as a family's function is a bijection from*to $I * C$.	89
3 T	Take $\forall (i,j) :\in I * I$. Then $i < j \equiv C_i < C_j$.	90
0		

 $^{^{2}}$ The same name as the chain C. ^{3}N denotes the set of all natural numbers.

8 Depth of memBer	91
Definition 8.1 (Powers of set membership). Take $\forall (C, x, y)$ such that *1. Then define *2 $_{and} \land$ *3.	92 93
1 C is a chain between $C_{min} = x$ and $C_{max} = y$ by set ⁴ membership.	94
2 $power(C) := C - 1.$	95
$3 \ x \in ^{power(C)} y.$	96
For example: let y:= $\{1,\{1\}\}$. Then $1 \in {}^1 y$ and $1 \in {}^2 y$.	97 98 99
Definition 8.2 (Depth of deep membership). Take $\forall (C, x, y)$ such that *1. Then define *2.	100 101
1 C is a longest chain between $C_{min} = x$ and $C_{max} = y$ by set ⁵ membership.	102
$2 \ depth(x,y) := power(C).$	103
For example: let $y:=\{1,\{1\}\}$. Then $depth(1,y)=2$.	104 105 106
Definition 8.3 (Sum of depths of deep membership). Take $\forall C$ such that *1. Then define *2.	107 108
1 C is a chain by deep ⁶ membership.	109
2 $depth(C) := \sum_{i=1}^{ C -1} depth(C_i, C_{i+1}).$	110
· · · · · · · · · · · · · · · · · · ·	111
Proposition 1 (Depth of deep member). Take $\forall (x, y, z)$ such that $z \in y \in \geq 0$ x . Then $depth(z, x) > depth(y, x)$.	112 113
•	114
Proof.	115
• Assume it is false. ⁴ For example, $x \in C_2$. ⁵ For example, $x \in C_2$. ⁶ For example, $C_1 \in C_2$	116

• There exists $\exists (x, y, z)$ such that it is a counterexample.	117
• Hence $depth(z, x) \leq depth(y, x)$.	118
$\bullet \ \ \text{Hence} \ depth(z,x) \geq depth(z,y,x) > depth(y,x) \geq depth(z,x).$	119
• The assumption is false.	120
	121
Proposition 2 (Depth of memBer). Take $\forall (x,y)$ such that $y \in x$. Then $depth(y) < depth(x)$.	122 123
Proof.	124
• Assume it is false.	125
• There exists $\exists (x,y)$ such that it is a counterexample.	126
• Hence $depth(y)(x)$.	127
• There exists $\exists v :\in y$ such that ($depth(y) = depth(v, y) \ge depth(v, y, x) \le depth(x)$).	128 129 130
• Though $depth(v, y) + 1 = depth(v, y, x)$.	131
• The assumption is false.	132
	133
9 Isomorphic memBers as equivalence relation	134
Definition 9.1. In this section, *Def refers to the definition titled as "Isomorphic memBers by binary relation". And $*1 \equiv *2$, without any explicit proof because it is trivial by *Def. And *3 holds, without any explicit proof because it is trivial by *Def.	135 136 137 138
1 (x_i, y_i) are isomorphic by F_i .	139
2 *Def.A holds for (x_i, y_i, F_i) in place of (x, y, F) .	140
3 Take $\forall (x, y, F)$ such that (*4 $_{and} \land$ (*5 $_{else} \lor$ *6)). Then *7 holds.	141
4 F is a binary relation.	142

5 $(space(x) = \varnothing and \land \ x = y).$	143
6 $((x,y) \text{ are points } and \land (x,y) \in F).$	144
7 (x,y) are isomorphic by F .	145
Proposition 3 (Restriction). Take $\forall (x, y, F1, F2)$ such that (*A1 $_{and} \land$ *A2 $_{and} \land$ *A3) holds. Then *B holds.	146 147
A1 $(F1, F2)$ are binary relations.	148
A2 $F1[space(x)] = F2[space(x)].$	149
A3 Def.A holds for $(x, y, F1)$.	150
B Def.A holds for $(x, y, F2)$.	151
•	152
Proof.	153
• Assume it is false.	154
• There exists $\exists (x, y, F1, F2)$ such that it is a minimum counterexample by $depth(x)$.	155 156
• Let us follow *Def.A for $(x, y, F1)$.	157
• Assume the antecedent of *0 holds.	158
• Hence $space(x) = \emptyset$ and $x = y$.	159
• Then *0 holds for $(x, y, F2)$.	160
• The last assumption is false.	161
• Assume the antecedent of *1 holds.	162
• Hence (x, y) are points $and \land (x, y) \in F1$.	163
• Then *1 holds for $(x, y, F2)$.	164
• The last assumption is false.	165
• Then (*2 $_{and} \land$ *3) holds.	166
• Hence *2 holds for $(x, y, F2)$.	167
• Hence *3 fails for $(x, y, F2)$.	168

• Hence there exists $\exists (m1, m2) \in f$ such that • *Def.A holds for (m1, m2, F1) and \land *Def.A fails for (m1, m2, F2). • Hence (m1, m2, F1, F2) is a counterexample smaller than (x, y, F1, F2). 171 • The first assumption is false. **173 Proposition 4** (Members' isomorphisms as consequent). Take $\forall (x, y, F)$ such 174 that (*A1 $_{and} \land$ *A2). Then (*B1 $_{and} \land$ *B2) holds. 175 **A1** *Def.A holds for (x, y, F) in place of (x, y, F). $\mathbf{A2}$ F is an injection. 177 **B1** Take $\forall m1 :\in \geq 0$ x. Then there exists $\exists m2 :\in \geq 0$ y such that *Def.A holds 178 for (m1, m2, F) in place of (x, y, F). **B2** Take $\forall m2 :\in \geq 0$ y. Then there exists $\exists m1 :\in \geq 0$ x such that *Def.A holds 180 for (m1, m2, F) in place of (x, y, F). Proof of *B1. 182 • Assume it is false. 183 • Then there exists $\exists (x, y, F, m1)$ such that it is a minimum counterexample 184 by depth(m1, x). • It is trivial that $(x \neq m1)$. 186 • Consider the proposition titled as "Depth of deep member". 187 • There exists $\exists x1$ such that $(m1 \in x1 \quad and \land (x,y,F,x1))$ is not a coun- 188 terexample). • Hence *B1 holds for x1 in place of m1. • Hence there exists $2:\in^{\geq 0} y$ such that *Def.A holds for (x1, y2, F). • Let us follow *Def.A for (x1, y2, F). • Assume the antecedent of *0 holds. • Then $space(x1) = \emptyset$ and x1 = y2.

• Hence $space(m1) = \emptyset$ and m1 = m1 and $m1 \in \ge 0$ y.

• Hence *B1 holds for $m1$ in place of $m1$.	196
• Hence $(x, y, F, m1)$ is not a counterexample.	197
• Hence the last assumption is false.	198
• Assume the antecedent of *1 holds.	199
• Hence $(x1 \text{ is a point})$ $and \land (m1 \in x1).$	200
• Hence the last assumption is false.	201
• Hence (*2 $_{and} \land$ *3) must hold.	202
• Hence, (*4 $_{and} \wedge$ *5 $_{and} \wedge$ *6) holds.	203
• Hence *B1 holds for $(x, y, F, m1)$ in place of $(x, y, F, m1)$.	204
• Hence $(x, y, F, m1)$ is not a counterexample.	205
• The first assumption is false.	206
	207
Proof of *B2.	208
• Assume it is false.	209
• Then there exists $\exists (x, y, F, m2)$ such that $(x, y, F, m2)$ is a minimum counterexample by $depth(m2, y)$.	210 211
• It is trivial that $(y \neq m2)$.	212
• There exists $\exists y2$ such that $(m2 \in y2 and \land (x,y,F,y2)$ is not a counterexample).	213214
• Hence *B2 should hold for $y2$ in place of $m2$.	215
• Hence there exists $1:\in^{\geq 0} x$ such that *Def.A holds for $(x1,y2,F)$.	216
• Let us follow *Def.A for $(x1, y2, F)$.	217
• Assume the antecedent of *0 holds.	218
• Then $space(x1) = \emptyset$ and $\land x1 = y2$.	219
• Hence $space(m2) = \varnothing$ $and \land m2 = m2$ $and \land m2 \in \ge 0$ x .	220
• Hence *B2 holds for $m2$ in place of $m2$.	221

• Hence $(x, y, F, m2)$ is not a counterexample.	222
• Hence the last assumption is false.	223
• Assume the antecedent of *1 holds.	224
• Hence $(y2 \text{ is a point})$ $and \land (m2 \in y2).$	225
• Hence the last assumption is false.	226
• Hence (*2 $_{and} \wedge$ *3) must hold.	227
• Hence, (*4 $_{and} \wedge$ *5 $_{and} \wedge$ *6) holds.	228
• Hence *B2 holds for $(x, y, F, m2)$ in place of $(x, y, F, m2)$.	229
• Hence $(x, y, F, m2)$ is not a counterexample.	230
• The first assumption is false.	231
	232
Proposition 5 (Symmetric property). Take $\forall B$ such that B is a binary relation Then let B^{-1} denote $\{(b2,b1) \mid (b1,b2) \in B\}$. Take $\forall (x,y,F)$. Then *A1 implies *A2.	 233 234 235
A1 Def.A holds for (x, y, F) .	236
A2 Def.A holds for (y, x, F^{-1}) .	237
	238
Proof.	239
• Assume it is false.	240
• There exists $\exists (x, y, F)$ such that it is a minimum counterexample by $depth(x)$.	7 241 242
• Let us follow *Def.A for (x, y, F) in terms of *A1.	243
• Assume the antecedent of *0 holds for (x, y, F) in terms of *A1.	244
• Hence $space(x) = \emptyset$ and $x = y$.	245
• Hence *0 holds for (x, y, F) in terms of *A2.	246
• Hence the last assumption is false.	247

• Assume the antecedent of *1 holds for (x, y, F) in terms of *A1.	248
• Hence (x, y) are points $and \land (x, y) \in F$.	249
• Hence (y, x) are points $and \land (y, x) \in F^{-1}$.	25 0
• Hence *1 holds for (x, y, F) in terms of *A2.	251
• Hence the last assumption is false.	252
• Hence (*2 $_{and} \land$ *3) must hold for (x, y, F) in terms of *A1.	253
• Hence $F[space(x), space(y)]$ is a bijection from*to $space(x) * space(y)$.	254
• Hence $F^{-1}[space(y), space(x)]$ is a bijection from*to $space(y) * space(x)$.	255
• Hence *2 holds for (x, y, F) in terms of *A2.	256
• Hence *3 must fail for (x, y, F) in terms of *A2.	257
• At same time, *3 hold for (x, y, F) in terms of *A1.	258
• Hence there exists $\exists (m1, m2) \in f$ such that (Def.A holds for $(m1, m2, F)$ and \land Def.A fails for $(m2, m1, F^{-1})$. item).	259260261262
• Hence $(m1, m2, F)$ is a counterexample.	263
• Consider the proposition titled as "Depth of memBer".	264
• Moreover $depth(m1) < depth(x)$.	265
• It contradicts to the title of (x, y, F) as a minimum counterexample.	266
• Hence the first assumption is false.	267
	268
Proposition 6 (Reflexive property). Take $\forall (x,F)$ such that *A holds. Then *B holds.	269 270
A F is the identity function on $space(x)$.	271
B Def.A holds for (x, x, F) .	272

Proof.	274
• Assume it is false.	275
• There exists $\exists (x, F)$ such that it is a minimum counterexample by $depth(x)$. 2	?7 6
• Let us follow *Def.A for (x, x, F) .	277
• Assume the antecedent of *0 holds.	278
• Then *0 holds.	279
• The last assumption is false.	280
• Assume the antecedent of *1 holds.	281
• Then *1 holds.	282
• The last assumption is false.	283
• It is trivial that *2 holds. Hence *3 must fail.	284
• Let $f1$ be the identity function on x .	285
• Then *3 must fail for $f1$ in place of f .	286
• Though *4 holds.	287
• Hence (*5 $_{and} \wedge$ *6) must fail.	288
• Hence there exists $\exists (m1, m1) :\in f1$ such that *Def.A fails for $(m1, m1, F)$. 2	289
(m1, F[space(m1)]) would be a counterexample smaller than a minimum 2	290 291 292
• Though consider the proposition titled as "Restriction".	293
• Then *Def.A holds for $(m1, m1, F)$.	294
• The first assumption is false.	295
	296

A1 Def.A holds for $(x, y, F1)$.	301
A2 Def.A holds for $(y, z, F2)$.	302
B Def.A holds for $(x, z, F2 \circ F1)$.	303
· · · · · · · · · · · · · · · · · · ·	304
Proof.	305
• Assume it is false.	306
• There exists $\exists (x, y, z, F1, F2)$ such that it is a minimum counterexample by $depth(x)$.	307 308
• Let us follow *Def.A for $(x, y, F1)$ and for $(y, z, F2)$.	309
• Assume the antecedent of *0 holds for $(x, y, F1)$.	310
• Hence $space(x) = \emptyset$ and $x = y$.	311
• Hence the antecedent of *0 holds for $(y, z, F2)$.	312
• Hence $x = y = z$.	313
• Hence *0 holds for $(x, z, F2 \circ F1)$.	314
• The last assumption is false.	315
• Assume the antecedent of *0 holds for $(y, z, F2)$.	316
• Hence $space(y) = \emptyset$ and $y = z$.	317
• Hence the antecedent of *0 holds for $(x, y, F1)$.	318
• The last assumption is false.	319
• Assume the antecedent of *1 holds $(x, y, F1)$.	320
• Hence (x, y) are points $and \land (x, y) \in F1$).	321
\bullet Hence *1 also hold for $(y,z,F2)$ because otherwise *G.A cannot hold for $(y,z,F2).$	322 323
• Hence (y, z) are points $and \land (y, z) \in F2$).	324
• Hence (x, z) are points $and \land (x, z) \in F2 \circ F1$.	325
• Hence *1 holds for $(x, z, F2 \circ F1)$.	326

• The last assumption is false.	327
• Assume the antecedent of *1 holds $(y, z, F2)$.	328
• Hence (y, z) are points $and \land (y, z) \in F2$).	329
• Hence the antecedent of *1 also hold for $(x, y, F1)$ because otherwise *G.A cannot hold for $(x, y, F1)$.	330 331
• The last assumption is false.	332
• Hence (*2 $_{and} \land$ *3) holds for $(x, y, F1)$ and for $(y, z, F2)$.	333
• Hence $F1[space(x), space(Y)]$ is a bijection from*to $space(x) * space(y)$.	334
• And $F2[space(y), space(z)]$ is a bijection from*to $space(y) * space(z)$.	335
• Hence $(F2 \circ F1)[space(x), space(z)]$ is a bijection from *to $space(x) * space(z)$)336
• Hence *2 holds for $(x, z, F2 \circ F1)$.	337
• Hence *3 fails for $(x, z, F2 \circ F1)$.	338
• By the way,there exists $(f1, f2)$ such that (3 holds for $(x, y, F1, f1)$ in place of (x, y, F, f) and \wedge 3 holds for $(y, z, F2, f2)$ in place of (x, y, F, f)).	339 340 341 342
• Then *3 fails for $(x, z, F2 \circ F1, f2 \circ f1)$ in place of (x, y, F, f) .	343
● Hence, there exists $\exists (m1, m2, m3)$ such that ($(m1, m2) \in f1$ $_{and} \land$ $(m2, m3) \in f2$ $_{and} \land$ (the antecedent of this proposition accepts $(m1, m2, m3, F1, F2)$ as $(x, y, z, F1, F2)$) $_{and} \land$ $(m1, m2, m3, F1, F2)$ is a counterexample).	344 345 346 347 348 349 350
• Though $(m1, m2, m3, F1, F2)$ is smaller than a minimum counterexample.	352
• The first assumption is false.	353

10 Homeomorphism as Isomorphism	355
Proposition 8 (Members' isomorphisms as antecedent). Take $\forall (x, y, F, f)$ such that (*A1 $_{and} \land$ *A2 $_{and} \land$ *A3). Then *B holds.	356 357
A1 F is an injection.	358
A2 f is a bijection from*to x*y.	359
A3 Take $\forall (m1, m2) :\in f$. Then *Def.A holds for $(m1, m2, F)$.	360
B *Def.A holds for (x, y, F) in place of (x, y, F) .	361
Proof.	362
• Assume B fails.	363
• Hence there exists $\exists (x, y, F)$ such that *Def.A fails for (x, y, F) .	364
• Let us follow *Def.A for (x, y, F) .	365
• (the antecedent of *0 fails $_{and}\wedge$ the antecedent of *1 fails $_{and}\wedge$ (*2 fails $_{else}\vee$ *3 fails)).	366 367
• Hence $(space(x) \neq \emptyset \neq space(y))$ and \land both of (x, y) are not points.	368
• Assume *2 fails.	369
• Hence $F[space(x), space(y)]$ is not a bijection from *to $space(x) * space(y)$.	370
\bullet Consider *A1 which says F is an injection.	371
	372 373
\bullet Consider *A2,*A3 and the proposition titled as "Members' isomorphisms as the consequent".	374 375
• There exists $\exists y2 \in \geq 0$ y such that *Def.A holds for $(p_x, y2, F)$.	376
• There exists $\exists x 1 \in \geq 0$ x such that *Def.A holds for $(x1, p_y, F)$.	377
(*Def.A holds only by the if-then condition of *1) because	378 379 380
• Hence $p_x \in domain(F)$ and $p_y \in image(F)$.	381

• Hence the last assumption is false.	382
• Hence *3 must fail.	383
• Hence *3 fails for f in place of f .	384
\bullet Though by (*A2 $_{and}\wedge$ *A3), (*4 $_{and}\wedge$ *5 $_{and}\wedge$ *6) holds.	385
• Hence the first assumption is false.	386
	□ 387
Definition 10.1 (Pair). Take $\forall \{x, y\}$. ⁷ Then $(x, y) := \{\{x\}, \{x, y\}\}$.	388 389
Proposition 9 (Topological space). Take $\forall ((X1,T1),(X2,T2))$ such that holds. Then *B1 \Rightarrow *B2.	*A 390 391
A Take $i \in \{1, 2\}$. Then (X_i, T_i) is a topological space.	392
B1 $((X1,T1),(X2,T2))$ are homeomorphic.	393
B2 There exists $\exists F$ such that $((X1,T1),(X2,T2))$ are isomorphic by F .	394
	395
Proof. B1 implies *C.	396 397 398
C There exists $\exists (G, g)$ such that (*C1 $_{and} \land \dots _{and} \land \text{ *C4}$).	399 400
C1 G is a bijection from $X1$ to $X2$.	401
C2 G is a homeormorphism for *B1.	402
C3 g is a bijection from $T1$ to $T2$.	403
C4 Take $\forall (t1, t2) :\in g$. Then $(G \text{ takes } t1 \text{ to } t2)$.	404
	405
Consider the previous proposition titled as Members' isomorphisms as anteced and refer it as *P.	lent 406 407
Then *P accepts arguments as (*D1 $_{and} \land{and} \land *D6$).	407

 $^7{\rm By}$ Kazimierz Kuratowski.

```
409
D1 *P accepts (X1, X2, G, G) in place of (x, y, F, f).
                                                                                      410
D2 *P accepts (\{X1\}, \{X2\}, G, \{(X1, X2)\}) in place of (x, y, F, f).
                                                                                      411
D3 Take \forall (t1, t2) :\in g. Then *P accepts (t1, t2, G, G) in place of (x, y, F, f).
                                                                                      412
D4 *P accepts (T1, T2, G, g) in place of (x, y, F, f).
                                                                                      413
D5 *P accepts (
                                                                                      414
      {X1, T1},
                                                                                      415
      {X2, T2},
                                                                                      416
      G,
                                                                                      417
      \{(X1, X2), (T1, T2)\}
                                                                                      418
     ) in place of (x, y, F, f).
                                                                                      419
D6 *P accepts (
      \{\{X1\}, \{X1, T1\}\},\
      \{\{X2\}, \{X2, T2\}\},\
      \{(\{X1\}, \{X2\}), (\{X1, T1\}, \{X2, T2\})\}
                                                                                      424
      ) in place of (x, y, F, f).
Hence *P implies (*E1 _{and} \land ..... _{and} \land *E6).
Finally, *E6 implies this proposition.
                                                                                      428
E1 (X1, X2) are isomorphic by G.
                                                                                      430
E2 (\{X1\}, \{X2\}) are isomorphic by G.
                                                                                      431
E3 Take \forall (t1, t2) :\in g. Then (t1, t2) are isomorphic by G.
E4 (T1, T2) are isomorphic by G.
E5 \{X1, T1\}, \{X2, T2\}) are isomorphic by G.
E6 (\{\{X1\}, \{X1, T1\}\}, \{\{X2\}, \{X2, T2\}\}) are isomorphic by G.
                                                                                      435
```

11 Restriction of memBer by space	438
Definition 11.1. This definition uses a style of recursion. Take $\forall (S, X, NULL)$ such that (*A1 $_{and} \land$ *A2 $_{and} \land$ *A3) ⁸ holds. Then define *B.	439 440 441
A1 X is a ⁹ space.	442
$\mathbf{A2} \; NULL \; \text{is not a set.}$	443
A3 $NULL \notin \geq 0$ (S, X) .	444
В	445
1 If $space(S) \subset X$ Then $S[X] := S$ Else *2.	446
2 If S is not a set Then $S[X] := NULL$ Else *3.	447
$3 \ S[X] := \{s[X] \mid s \in S \ _{and} \land \ s[X] \neq NULL\}.$	448
•	449
12 Deep space	450
Definition 12.1. Take $\forall (S1, S2)$ such that (*1 $_{and} \land$ *2 $_{and} \land$ *3). Then define *4.	451 452
1 $S2 \subset \{m \mid m \in \geq 0 \ S1\}.$	453
2 Take $\forall (p,C)$ such that $(p:\in space(S1) \ _{and} \land \ C$ is a chain from $S1$ down to p by set member ship).	454 455 456
3 Then $C \cap S2 \neq \emptyset$	457
4 $S2$ is a deep space of $S1$.	458

^{8*}A3 says that $\neg (NULL \in \ge^0 S)$.

⁹That is, x is a set of points.

References 459