



Erik Knudsen, DTU Physics

# Sources and Monitors part 2.



HighNess

**McStas** 

2021

**HighNESS** 

Virtual

McStas School

# HighNess

#### Sources: Source model overview



- Source\_simple.comp
- Source\_div.comp

#### > Pulsed sources:

- ESS\_butterfly.comp
- ESS\_moderator.comp
- Moderator.comp
- SNS\_source.comp (\*)
- SNS\_source\_analytic (\*)
- > ViewModISIS (\*)
- ISIS\_moderator.comp (\*)

#### Reactors :

- Source\_Maxwell\_3.comp
- Source\_gen.comp
- Source\_gen4.comp
- Source\_multi\_surfaces.comp (\*)

- I/O mechanisms:
- MCPL\_input/output.comp
  - Virtual\_input/output.comp
  - Virtual\_mcnp\_ss\_input/output.comp
  - Virtual\_tripoli4\_input/output.comp
  - Vitess\_input/output.comp





# HighNess McStas 2021 **HighNESS** Virtual **McStas** School

#### Sources: Source\_Maxwell\_3

```
COMPONENT source = Source_Maxwell_3 (yheight=0.156, xwidth=0.126,

Lmin=0.1, Lmax=9.0, dist=1.5, focus_xw = 0.025, focus_yh = 0.12,

T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Parameters from the PSI cold source

Initial position and direction: as for Source\_simple







## Sources: Source\_Maxwell\_3



```
COMPONENT source = Source_Maxwell_3(yheight=0.156, xwidth=0.126,

Lmin=0.1, Lmax=9.0, dist=1.5, focus_xw = 0.025, focus_yh = 0.12,

T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Parameters from the PSI cold source

Intensity at a given wavelength drawn from a sum of (up to) 3 normalized Maxwellian distributions:

$$I(\lambda) = \sum I_i M(\lambda, T_i); \qquad M(\lambda, T_i) = 2\alpha^2 exp\left(\frac{-\alpha}{\lambda^2}\right)/\lambda^5;$$

$$\alpha$$

$$= 949.0KAA^2/T_i$$



# HighNess

#### Sources: Source\_Maxwell\_3





, focus\_yh = 0.12, 3=14.84, I3=0.95E11)

h the PSI cold source



# HighNess

#### Sources: Source\_Maxwell\_3



COMPONENT source = Source\_Maxwell
Lmin=0.1, Lmax=9
T1=150.42, I1=3

Just for fun – let's see what happens if we remove the fast peak...







#### Input parameters

HighNessParameters in **boldface** are required; the others are optional.

| McStasn →        |
|------------------|
| DTU &            |
| HighNESS         |
| Virtual          |
| McStas<br>School |

| Name         | Unit         | Description                                                                                              | Default |
|--------------|--------------|----------------------------------------------------------------------------------------------------------|---------|
| size         | m            | Edge of cube shaped source (for backward compatibility)                                                  | 0       |
| yheight      | m            | Height of rectangular source                                                                             | 0       |
| xwidth       | m            | Width of rectangular source                                                                              | 0       |
| Lmin         | AA           | Lower edge of lambda distribution                                                                        |         |
| Lmax         | AA           | Upper edge of lambda distribution                                                                        |         |
| dist         | m            | Distance from source to focusing rectangle; at (0,0,dist)                                                |         |
| focus_xw     | m            | Width of focusing rectangle                                                                              |         |
| focus_yh     | m            | Height of focusing rectangle                                                                             |         |
| T1           | K            | 1st temperature of thermal distribution                                                                  |         |
| T2           | K            | 2nd temperature of thermal distribution                                                                  | 300     |
| T3           | K            | 3nd temperature of                                                                                       | 300     |
| I1           | 1/(cm**2*st) | flux, 1 (in flux units, see above)                                                                       |         |
| I2           | 1/(cm**2*st) | flux, 2 (in flux units, see above)                                                                       | 0       |
| I3           | 1/(cm**2*st) | flux, 3                                                                                                  | 0       |
| target_index | 1            | relative index of component to focus at, e.g. next is $+1$ this is used to compute 'dist' automatically. | +1      |
| lambda0      | AA           | Mean wavelength of neutrons.                                                                             | 0       |
| dlambda      | AA           | Wavelength spread of neutrons.                                                                           | 0       |





# HighNess McStas 2021 **HighNESS** Virtual **McStas** School

#### Sources: Source\_gen (Source\_gen4)

```
COMPONENT source = Source_gen(yheight=0.156, xwidth=0.126,

Lmin=0.1, Lmax=9.0, dist=1.5, focus_xw = 0.025, focus_yh = 0.12,

T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Almost the same as Source\_Maxwell\_3: but with optional flux-files as input.

\*\*\*\*



#### MCPL\_input/output





Reads/writes events directly from MCPL-format files:

"T. Kittelmann et. al., "", J. Phys. Comp., 2017



## MCPL\_input/output





Can include an Implicit Translation:

#### MCPL output.comp





## MCPL\_input/output





Can include an Implicit Translation:



MCPL\_input.comp











#### **Pulsed sources:**

```
Simplest case:
         Use a continuous source!
         Model a source with given wavelength and spatial distribution
         and
        _... an infinitely short pulse length. I.e. t = 0 for all neutron rays.
     COMPONENT src = Source simple(
              radius=0.05, lambda0=2.5, dlambda=1.5,
              focus_xw=0.1, focus_yh=0.1, dist=5)
     AT(0,0,0) RELATIVE origin
```







#### **Pulsed sources:**

```
Simplest case:
         Use a continuous source!
         Model a source with given wavelength and spatial distribution
         and
         ... an infinitely short pulse length. I.e. t = 0 for all neutron rays.
        COMPONENT src = Source simple(
                 radius=0.05, lambda0=2.5, dlambda=1.5,
                 focus xw=0.1, focus yh=0.1, dist=5)
        AT(0,0,0) RELATIVE origin
        EXTEND
        용 {
                 t=0;
```







#### **Pulsed sources:**

```
Simplest case:
         Use a continuous source!
         Model a source with given wavelength and spatial distribution
         and
                  Or: Use a chopper (see later)
         ... an infinite
                                                        tron rays.
        COMPONENT
                                                 dlambda=1.5,
                 rad
                 focu
                                  focus yh=0.1, dist=5 )
        AT(0,0,0) RELATIVE origin
        EXTEND
        응 {
                 t=0;
```







#### **Pulsed Sources: Moderator**

A flat pulsed source with uniform energy spectrum:

$$x \in U\left[-\frac{xwidth}{2}, \frac{xwidth}{2}\right] y \in U\left[-\frac{yheight}{2}, \frac{yheight}{2}\right]$$

$$|v| = f(\lambda); \lambda \in U[L_{min}L_{max}]$$

Time structure is given by energy dependent probability density function:

$$f_{t} = \frac{1}{\tau} exp\left(-\frac{t}{\tau}\right)$$

$$\tau = \begin{cases} t_{0}; & E < E_{c} \\ \frac{1}{1 + \frac{(E - E_{c})}{\gamma}}; & E \ge Ec \end{cases}$$









- Analytic fits to MCNP-generated files.
- Specialized fits to each beamport.
- Fast and reasonably accurate.







#### Input parameters

Parameters in **boldface** are required; the others are optional.

| Name            | Unit | Description                                                                                                | Default |
|-----------------|------|------------------------------------------------------------------------------------------------------------|---------|
| sector          | str  | Delines the 'sector' of your instrument position. Valid values are "N","S","E" and "W"                     | "N"     |
| beamline        | 1    | Defines the 'beamline number' of your instrument position. Valid values are 110 or 111 depending on sector | 1       |
| yheight         | m    | Defines the moderator height. Valid values are 0.03 m and 0.06 m                                           | 0.03    |
| cold_frac       | 1    | Defines the statistical fraction of events emitted from the cold part of the moderator                     | 0.5     |
| target_index    | 1    | Relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.     | 0       |
| dist            | m    | Distance from origin to focusing rectangle; at (0,0,dist) - alternatively use target_index                 | 0       |
| focus_xw        | m    | Width of focusing rectangle                                                                                | 0       |
| focus_yh        | m    | Height of focusing rectangle                                                                               | 0       |
| c_performance   | 1    | Cold brilliance scalar performance multiplicator c_performance > 0                                         | 1       |
| t_performance   | 1    | Thermal brilliance scalar performance multiplicator t_performance > 0                                      | 1       |
| Lmin            | AA   | Minimum wavelength simulated                                                                               |         |
| Lmax            | AA   | Maximum wavelength simulated                                                                               |         |
| tmax_multiplier | 1    | Defined maximum emission time at moderator, tmax= tmax_multiplier * ESS_PULSE_DURATION.                    | 3       |
| n_pulses        | 1    | Number of pulses simulated. 0 and 1 creates one pulse.                                                     | 1       |
| acc_power       | MW   | Accelerator power in MW                                                                                    | 5       |
| tfocus_dist     | m    | Position of time focusing window along z axis                                                              | 0       |
| tfocus_time     | s    | Time position of time focusing window                                                                      | 0       |
| tfocus_width    | S    | Time width of time focusing window                                                                         | 0       |







tfocus\_width

Time wiath of time focusing window

Pulsed Sources: ESS butterfly "W" - 11 ··· ☑ ☆ Q Search **业** III\ 🗊 🚷 ≡ ① file:///home/erkn/Sandbox/ESS\_buttefly\_source/ESS\_butterfly\_test\_20210503\_200100/index.html Input parai Show BB Parameters in bo sector beamline yheight cold frac target\_index focus\_xw focus yh c\_performance Lmin Lmax tmax\_multiplier n pulses acc\_power tfocus\_dist tfocus\_time







tfocus\_width

Time width of time focusing window

"W" - 11 Mozilla Firefox /home/erkn/Sandbox/ESS\_b\x + Pulsed Sou ① file:///home/erkn/Sandbox/ESS\_buttefly\_source/ESS\_butterfly\_test · · · ☑ ☆ □ Q Search mcrun ESS\_butterfly\_test.instr --no-output-files --trace --ncount=300 --dir=ESS\_butterfly\_test\_20210503\_200100 sector=W beamline= $\bar{1}1$ Scatter Markers Keep rays Next Ray index 39 / 299 Previous Reset view: Input param Show BB Parameters in bold sector beamline yheight cold frac target index focus\_xw focus yh c\_performance 1 Lmin Lmax tmax\_multiplier 1 n pulses acc\_power tfocus\_dist tfocus time







"S" - 6









#### Input parameters Example: N-1









n\_pulses=3

#### Input parameters

Parameters in **boldface** are required; the others are optional.

| Name         | Unit  | Description                                                                                                | Default |
|--------------|-------|------------------------------------------------------------------------------------------------------------|---------|
| sector       | str   | Defines the 'sector' of your instrument position. Valid values are "N","S","E" and "W"                     | "N"     |
| beamline     | 1     | Defines the 'beamline number' of your instrument position. Valid values are 110 or 111 depending on sector | 1       |
| yheigni      | m     | Defines the moderator height. Valid values are 0.03 m and 0.06 m                                           | 0.03    |
| cold_frac    | 1     | Defines the statistical fraction of events emitted from the cold part of the moderator                     | 0.5     |
| target_index | 1     | Relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.     | 0       |
| dist         | m     | Distance from origin to focusing rectangle; at (0,0,dist) - alternatively use target_index                 | 0       |
| focus_xw     | m     | Width of focusing rectangle                                                                                | 0       |
| focus_yh     | m     | Height of focusing rectangle                                                                               | 0       |
| c_performand | e 1   | Cold brilliance scalar performance multiplicator c_performance > 0                                         | 1       |
| t_performane | 9 1   | Thermal brilliance scalar performance multiplicator t_performance > 0                                      | 1       |
| Lmin         | AA    | Minimum wavelength simulated                                                                               |         |
| Lmax         | AA    | Maximum wavelength simulated                                                                               |         |
| ипах_пипирп  |       | Defined maximum emission time at moderator, tmax= tmax_multiplier * ESS_PULSE_DURATION.                    | 3       |
| n_pulses     | 1     | Nur ber of pulses simulated. 0 and 1 creates one pulse.                                                    | 1       |
| acc_perrer   | IVIVV | Accelerator power in MW                                                                                    | 5       |
| tfocus_dist  | m     | Position of time focusing window along z axis                                                              | 0       |
| tfocus_time  | S     | Time position of time focusing window                                                                      | 0       |
| tfocus_width | s     | Time width of time focusing window                                                                         | 0       |







#### n\_pulses=3









#### Pulsed Sources: ViewModISIS

- Samples directly from tallies coming from e.g. MCNP target+moderator calculations.
- Data file supplied for each beam port at ISIS.







#### Pulsed Sources: ViewModISIS









#### Pulsed Sources: SNS\_source

- Samples directly from tallies coming from e.g. MCNP target+moderator calculations.
- Originally from SNS but also used extensively at J-PARC
- Can be used (with the proper input files) to model CSNS, and likely also ISIS.















## Pulsed Sources: SNS\_source\_analytic

- Samples from fits of Padé-functions to tallies from SNS\_source.
- Requires a complex fitting campaign
- + Much faster than SNS\_source
  - + "Cleaner" distributions where statistics are sketchy

Can be used (with the proper input files) to model CSNS-source.







# Monitors (some)

#### **1D**

- $\bullet$  L\_monitor  $\rightarrow I(\lambda)$
- $\rightarrow$  TOF\_monitor  $\rightarrow I(t)$
- $\bullet$  Hdiv\_monitor  $\rightarrow I(div_x)$
- $\bullet$  MeanPolLambda  $\rightarrow \langle P \rangle_{(\lambda)}$
- $\bullet$  E\_monitor  $\rightarrow$  I(E)

#### **2D**

- PSD\_monitor  $\rightarrow I(x, y)$
- PSD\_monitor\_4PI  $\rightarrow I(\theta, \phi)$
- PolLambda\_monitor  $\rightarrow I(P, \lambda)$
- Divergence\_monitor  $\rightarrow I(div_{x}, div_{y})$
- DivPos\_monitor  $\rightarrow I(div_x, x)$

#### nD

Monitor\_nD →

I(X)

or I(X,Y)

or Z(X,Y,Z)

or ...







#### **Monitors: Quick examples**

```
COMPONENT my_L_monitor = L_monitor(xwidth=0.2, yheight=0.2, nL=20, filename="Output.L", Lmin=2, Lmax=10)
```







## In a histogram sense

 $\square$ Imagine a histogram, e.g.  $\mathbf{I}(\lambda)$ 



In bin i, N events each carrying a fractional intensity  $p_j$  so that

 $\Box$ The RMS variance over that set becomes our statistical error bar  $\boldsymbol{E}$ 













# From "Virtual experiments - the ultimate aim of neutron ray-tracing simulations", K. Lefmann et al., Journal of Neutron Research 16, 97-111 (2008) Let n be the number of neutron rays reaching the detector, and let the rays have (different)

Let n be the number of neutron rays reaching the detector, and let the rays have (different) weights,  $w_i$ . The simulated intensity is then given by

$$I = \sum_{i=1}^{n} w_i. \tag{1}$$

The estimate of the error on this number is calculated in the McStas manual [1], and the standard deviation is approximated by

$$\sigma^2(I) = \sum_{i=1}^n w_i^2. \tag{2}$$

In real experiments,  $w_i = 1$ , whence we reach I = n and  $\sigma(I) = \sqrt{I}$  as expected (for counts exceeding 10). Let the virtual time be denoted by t. The simulated counts during this time becomes

$$C = tI, \tag{3}$$







#### From "Virtual experiments - the ultimate aim of neutron ray-tracing simulations", K. Lefmann et al., Journal of Neutron Research 16, 97-111 (2008)

$$\sigma^2(C) = t^2 \sigma^2(I). \tag{4}$$

However, to simulate a realistic counting statistics, we must fulfill

$$\sigma_{\rm VE}(C_{\rm VE}) = \sqrt{C_{\rm VE}}.\tag{5}$$

This is obtained by adding to (3) a Gaussian noise  $E(\Sigma)$  of mean value zero and standard deviation  $\Sigma$ :

$$C_{\rm VE} = tI + E(\Sigma). \tag{6}$$

The standard deviation for the VE becomes

and its error bar estimate is

$$\sigma_{VE}^2(C) = t^2 \sigma^2(I) + \Sigma^2. \tag{7}$$

Now, the requirement (5) allows us to determine  $\Sigma$ :

$$\Sigma^2 = tI - t^2 \sigma^2(I). \tag{8}$$

Since  $\Sigma^2$  must remain positive, we reach an upper limit on t

$$t_{\text{max}} = \frac{I}{\sigma^2(I)}.$$
 (9)







## Sketch of an algorithm...

- 1. On a given McStas histogram
- 2. For the non-zero bins, calculate

$$t_{\max} = \frac{I}{\sigma^2(I)}.$$

The smallest  $t_{\max}$  defines the "maximal counting time" allowed by your statistics

3. Preferably a "background" should be added - use a "known experimental value" or an estimate...







#### Monitor\_nD

A general monitor for 0D/1D/2D records

The all-in-one, swiss-army-knife of monitors

Monitor\_nD can have almost any shape, and record

any requested standard quantities









# HighNess Monitor\_nD

A general monitor for 0D/1D/2D records

**Examples** 







#### Monitor\_nD

... or monitor just about anything:

```
COMPONENT MyMon = Monitor_nD(xwidth = 0.1, yheight = 0.1,
    user1=age, username1="Age of the Captain [years]",
    options="user1, auto")
```

\*\*\*







#### **Exercise 2:**

Head over to the github site and continue the exercise we started before:

https://github.com/McStasMcXtrace/Schools/tree/master/ISIS April 2021/Tuesday
April 13th/2 Component Basics/Exercise/





