

COMPOSITION ANTI-BACTERIENNE, PLUS
PARTICULIEREMENT CONTRE LES BACTERIES GRAM NEGATIF,
COMPRENANT UN PEPTIDE ET UN AGENT ANTI-BACTERIEN
AVANTAGEUSEMENT HYDROPHOBE

5

La présente invention concerne le domaine des traitements anti-bactériens et plus particulièrement des méthodes et compositions pour traiter les infections par des bactéries gram négatif chez l'homme, l'animal ou les plantes.

Il a été décrit dans l'art antérieur des peptides capables de détruire les bactéries (Park CB, Kim HS, Kim SC. Biochem Biophys Res Commun. 1998 Mar 6;244(1):253-7). Il a également été rapporté dans la demande de brevet internationale PCT No. WO 01/64738 des peptides capables de réagir avec les aminoglycanes et de transporter dans des cellules eucaryotes ou procaryotes des molécules d'intérêt.

La quantité de molécules antibiotiques pénétrant dans la bactérie dépend de sa structure et de mécanismes impliqués dans le transport de substrats. Les bactéries Gram négatif se distinguent structurellement des bactéries Gram positif par la présence de deux membranes constituant l'enveloppe bactérienne. Si toutes les bactéries ont une membrane interne, les bactéries Gram négatif ont une membrane externe unique supplémentaire. Cette membrane externe hydrophobe constitue une barrière semi-perméable qui s'oppose à la pénétration des antibiotiques mais des porines, protéines formant des canaux, permettent l'entrée de petits solutés hydrophiles comme les éléments nutritifs et les antibiotiques de la famille des pénicillines et tétracyclines, mais excluent la pénétration de grosses

BEST AVAILABLE COPY

molécules hydrophiles et les antibiotiques de la famille des macrolides/kétolides.

Une cause importante des échecs thérapeutiques contre les bactéries Gram négatif est l'émergence de souches résistantes. Certaines résistances sont liées à une réduction de la perméabilité des membranes bactériennes (modifications quantitatives/qualitatives de porines). D'autres résistances tiennent à la présence d'une protéine membranaire qui provoque le rejet de l'antibiotique par un mécanisme d'efflux actif. Le développement de nouveaux types de molécules anti-bactériennes ou l'utilisation d'antibiotiques commerciaux non actifs sur les bactéries Gram négatif requiert leur entrée et leur délivrance au travers de membranes bactériennes sélectives.

La présente invention a précisément pour but d'offrir de nouvelles méthodes et compositions permettant de traiter efficacement les infections par les bactéries Gram négatif même lorsque celles-ci ont développé une résistance aux antibiotiques.

Ce but est atteint grâce à l'utilisation de peptides capables de traverser la membrane externe des bactéries Gram négatif et, via cette translocation de la membrane, de délivrer des molécules d'intérêt qui ne peuvent pas sinon pénétrer à l'intérieur des bactéries, du fait de leurs propriétés physico-chimiques.

On entend par pénétration à l'intérieur des bactéries, le fait que les peptides de l'invention facilitent ou permettent la pénétration des molécules d'intérêt dans les bactéries. Les termes pénétration et internalisation seront utilisés comme synonymes ci-après.

Les travaux réalisés dans le cadre de la présente invention ont concerné le Bodipy et la Tétramethylrhodamine qui sont des molécules fluorescentes hydrophobes exclues par la membrane externe des bactéries Gram négatif. Ces traceurs fluorescents ont été choisis afin d'évaluer les propriétés d'internalisation des peptides de l'invention liés chimiquement à des molécules hydrophobes. La translocation des traceurs fluorescents dans la bactérie Gram négatif a été évaluée qualitativement sur *Escherichia coli* et *Pseudomonas aeruginosa*.

La présente invention a donc tout d'abord pour objet une composition anti-bactérienne, plus particulièrement dirigée contre les bactéries Gram négatif, comprenant l'association :

a) d'au moins un peptide de 10 à 25 résidus d'acide aminé comprenant :

i) deux domaines chargés positivement à pH neutre constitués chacun de 3 à 9 résidus d'acide aminé dont les deux tiers au moins sont des acides aminés cationiques,

ii) entre lesdits domaines chargés positivement, un groupe de deux à trois résidus d'acide aminé non cationique,

iii) à l'une et ou l'autre des extrémités N ou C terminales du peptide, un groupe de 0 à 10 et de préférence de 0 à 5 résidus d'acide aminé choisis dans le groupe comprenant des acides aminés non hydrophobes et des acides aminés chargés positivement, mais dans le cas d'un résidu d'acide aminé chargé positivement celui-ci n'est pas directement adjacent aux domaines chargés positivement.

b) d'au moins un composé anti-bactérien.

Ainsi, les peptides de l'invention sont tout particulièrement utiles pour la préparation d'une composition pharmaceutique destinée au traitement d'une infection, plus particulièrement par des bactéries gram-négatif, composition dans laquelle ledit peptide traverse la membrane des bactéries de façon à délivrer à l'intérieur de celles-ci un composé antibactérien auquel il est associé dans ladite composition.

10 Avantageusement, dans les peptides de l'invention ci-dessus, les acides aminés cationiques des deux domaines chargés positivement sont choisis dans le groupe comprenant l'arginine et la lysine.

15 On préfère dans les peptides de l'invention ci-dessus que les acides aminés non cationiques du groupe entre lesdits domaines chargés positivement soient des acides aminés :

20 - non hydrophobes, choisis par exemple dans le groupe comprenant : l'acide glutamique, la serine, la glycine, et la glutamine, ou
- la leucine (acide aminé hydrophobe).

25 L'orientation des séquences d'acide aminé selon l'invention est typiquement de N-terminale vers C-terminale. Cependant, selon un autre mode de réalisation, l'orientation peut être inversée, c'est-à-dire que les séquences d'acide aminés sont orientées de C-terminal vers N-terminal.

30 Des peptides préférés pour les compositions selon l'invention sont choisis dans le groupe comprenant les séquences suivantes (orientation N-terminal vers C-terminal) :

- DPV3 : Arg Lys Lys Arg Arg Arg Glu Ser Arg Lys Lys Arg Arg Arg Glu Ser (SEQ ID NO.1)

- DPV3.10 : Arg Lys Lys Arg Arg Arg Glu Ser Arg Arg Ala Arg Arg Ser Pro Arg His Leu (SEQ ID NO.2)
- DPV6 : Gly Arg Pro Arg Glu Ser Gly Lys Lys Arg Lys Arg Lys Arg Leu Lys Pro (SEQ ID NO.3)
- 5 - DPV7 : Gly Lys Arg Lys Lys Gly Lys Leu Gly Lys Lys Arg Asp Pro (SEQ ID NO.4)
- DPV7b : Gly Lys Arg Lys Lys Gly Lys Leu Gly Lys Lys Arg Pro Arg Ser Arg (SEQ ID NO.5)
- DPV15 : Leu Arg Arg Glu Arg Gln Ser Arg Leu Arg Arg Glu Arg Gln Ser Arg (SEQ ID NO.6)
- 10 - DPV15b : Gly Ala Tyr Asp Leu Arg Arg Arg Glu Arg Gln Ser Arg Leu Arg Arg Glu Arg Gln Ser Arg (SEQ ID NO.7)
- DPV1047 : Val Lys Arg Gly Leu Lys Leu Arg His Val Arg Pro Arg Val Thr Arg Met Asp Val (SEQ ID NO.8)
- 15 - DPV11 : Ala Lys Thr Gly Lys Arg Lys Arg Ser Gly (SEQ ID NO.9)
- DPV1121 : Val Lys Arg Gly Leu Lys Leu Arg Gln Lys Tyr Asn Lys Arg Ala Met Asp Tyr (SEQ ID NO.11)
- 20 Parmi ceux-ci, l'invention concerne tout spécialement les peptides suivants : DPV3, DPV3.10, DPV6, DPV7, DPV7b, DPV15 et DPV15b.
- L'alignement des séquences ci-dessus met en évidence des domaines chargés positivement de séquences suivantes :
- 25 - Arg Lys Lys Arg Arg Arg (SEQ ID NO.13)
- Arg Pro Arg (SEQ ID NO.14)
- Lys Arg Lys Lys Lys Gly Lys (SEQ ID NO.15)
- Arg Arg Glu Arg (SEQ ID NO.16)
- Arg Arg Arg Glu Arg (SEQ ID NO.17)
- 30 - Arg Arg Ala Arg Arg Ser Pro Arg (SEQ ID NO.18)

- Lys Lys Arg Lys Arg Lys Arg Leu Lys (SEQ
ID NO.19)

- Lys Lys Arg (SEQ ID NO.20)
- Lys Lys Arg Pro Arg Ser Arg (SEQ ID NO.21)
- Arg Leu Arg Arg Glu Arg (SEQ ID NO.22)
- Arg Leu Arg Arg Arg Glu Arg (SEQ ID NO.23)

5 De préférence, les domaines de séquences SEQ
ID NO. 13 à 17 sont du côté de l'extrémité N terminale
du peptide, alors que les domaines de séquences SEQ ID
10 NO. 18 à 23 sont du côté de l'extrémité C terminale du
peptide.

15 L'alignement des séquences ci-dessus a aussi
mis en évidence des groupes de deux à trois résidus
d'acide aminé non cationique entre les domaines chargés
positivement de séquences suivantes :

Glu Ser, Glu Ser Gly, Leu Gly, Gln Ser

20 Les composés anti-bactériens présents dans
les compositions selon l'invention sont de préférence
choisis parmi ceux présentant des propriétés physico-
chimiques les rendant incapables de traverser la
membrane des bactéries Gram négatif. Tout
25 préférentiellement, il s'agit de composés anti-
bactériens hydrophobes. A titre d'exemples de tels
composés, on peut citer les antibiotiques de la famille
de macrolides, des ketolides comme l'erythromycine, la
clarithromycine, l'azithromycine, la tétracycline.

30 Les composés anti-bactériens peuvent être
aussi des oligonucléotides antisens.

30 L'évaluation des peptides DPV ci-dessus à
montrer leur capacité à traverser les membranes des
bactéries Gram négatif *E. coli* ou *P. aeruginosa* et de
délivrer le Bodipy dans la bactérie, alors que celui-ci

est une molécule hydrophobe normalement exclue par la membrane externe des bactéries Gram négatif qui représente une barrière semi-perméable. De plus, il apparaît que ces peptides ont la capacité de traverser la membrane externe des deux souches de bactéries Gram négatif et de s'accumuler dans le cytoplasme bactérien par un mécanisme non énergie-dépendant et non toxique pour la bactérie.

Les travaux réalisés dans le cadre de l'invention, ont mis en évidence quelques différences d'internalisation entre les deux souches de bactéries *P. aeruginosa* et *E. coli*. Ainsi il semble que le peptide DPV7b soit plus internalisants dans *P. aeruginosa* que dans *E. coli*. Cette différence pourrait s'expliquer par des différences de structures de la membrane externe entre les deux souches de bactéries.

Ces peptides sont donc utiles pour la préparation de compositions pharmaceutiques antibactériennes, plus particulièrement contre les bactéries gram négatif, où ils sont associés à un ou plusieurs agents anti-bactériens.

Les compositions de l'invention sont utiles tant à titre préventif que curatif.

Les compositions selon l'invention comprennent également avantageusement un ou plusieurs véhicules, diluants ou excipients pharmaceutiquement acceptables généralement utilisés avec ce type d'agents.

Les peptides de l'invention peuvent être préparés par synthèse chimique ou par génie génétique dans une cellule procaryote comme une bactérie, dans une cellule eucaryote comme une levure, une cellule CHO (Chinese Hamster Ovary), une cellule NSO (Mouse myeloma cells), chez un animal transgénique, par exemple dans le lait de lapin, de chèvre, de brebis, de vache, etc...

transgéniques ou dans une plante transgénique comme, par exemple, dans des plants de tabac, etc....

L'invention concerne aussi des équivalents fonctionnels des peptides définis ci-dessus, tels que des peptides comprenant des modifications issues de processus post-traductionnels comme la glycosylation ou de modifications chimiques telles que le couplage avec des lipides, sucres, séquences de nucléotides dès lors que ces modifications ne modifient pas l'activité antibactérienne et/ou antifongique desdits peptides conformément aux tests donnés dans la partie expérimentale ci-après. Les équivalents fonctionnels comprennent aussi des peptides dont un ou plusieurs acides aminés sont des acides aminés de conformation D. L'invention couvre également les rétro-peptides et les rétro-inverso-peptides.

L'association des compositions selon l'invention peut être constituée d'un ou plusieurs peptides décrits ci-dessus et d'un ou plusieurs composés anti-bactériens, aussi sauf indication contraire, le singulier employé pour la définition des agents actifs (peptide et composé anti-bactérien) de la composition couvre le pluriel.

La composition selon l'invention peut être réalisée par l'association de peptide(s) et de composé(s) anti-bactérien(s) en mélange ou d'un produit dans lequel un ou plusieurs peptides identiques ou différents sont liées par covalence à un ou plusieurs composés identiques ou différents, éventuellement par l'intermédiaire d'un bras espaceur. De tels produits sont notamment des produits de formule (I) qui seront décrits ci-après.

Dans le cas de l'administration de peptide et de composé anti-bactérien en mélange, ces deux agents actifs de la composition anti-bactérienne de l'invention peuvent être présentés de façon séparée, chacun sous une forme pharmaceutique appropriée, et réunis dans un même emballage. Toutefois, pour faciliter l'administration simultanée des agents actifs, on préfère généralement préparer le médicament sous une seule forme pharmaceutique contenant les deux ingrédients actifs en mélange, ainsi éventuellement qu'un excipient pharmaceutique approprié.

Bien entendu, un produit constitué d'un peptide lié directement ou indirectement à un composé anti-bactérien doit être considéré comme constituant à lui seul une association selon l'invention et qui peut être utilisé comme ingrédient actif unique.

Par exemple, un peptide et un composé anti-bactérien peuvent être combinés en établissant une liaison chimique entre ceux-ci. On peut notamment amidifier une fonction amine du peptide, ou estérifier une ou plusieurs fonctions alcool du peptide, avec un groupement acide présent au niveau d'un composé anti-bactérien ou dérivé de celui-ci. On obtient ainsi un produit d'amidification qui constitue le produit actif de la composition de l'invention. On peut également ajouter à l'une et/ou l'autre des extrémités N et/ou C terminal du peptide un résidu d'acide aminé dont la chaîne latérale permet le couplage avec un composé anti-bactérien, comme par exemple un résidu de cystéine dont le groupe SH est réactif. Des exemples de tels produits sont ceux de formule (I) qui sont décrits ci-dessous.

En effet, l'invention a également pour objet de nouveaux produits où le peptide et le composé anti-

bactérien sont liés l'un à l'autre par covalence, éventuellement par l'intermédiaire d'au moins un bras espaceur.

De tels produits sont notamment ceux qui répondent à la formule (I) suivante :

dans laquelle : A est le reste d'un composé anti-bactérien, P est le reste d'une peptide, tels que définis précédemment, et X représente soit une liaison covalente entre A et P, soit un bras espaceur reliant au moins un reste A à au moins un reste P, m est un nombre entier pouvant aller de 1 à 3, n est un nombre entier pouvant aller de 1 à 3, et p représente zéro ou un nombre entier au plus égal au plus grand des nombres m et n.

On peut en effet, soit greffer un ou plusieurs restes A et/ou P sur un seul bras espaceur, soit greffer un ou plusieurs groupes A-X sur un reste P (et alors m = p et n = 1), soit greffer un ou plusieurs groupes X-P sur un reste A (et alors n = p et m = 1). Lorsque p = zéro, soit un ou plusieurs restes A sont liés directement à un reste P (et n = 1), soit un ou plusieurs restes P sont liés directement à un reste A (et m = 1).

Les produits de formule (I) peuvent être utilisés sous forme de sels, en particulier sous forme de sels de métaux alcalins tels que des sels de sodium ou de potassium ; ces sels sont par exemple ceux des groupements phosphates, s'ils sont présents, des groupements phénoliques (cas de l'acide salicylique), etc. On peut également utiliser les produits de formule (I), le cas échéant, sous forme de sels d'addition (par exemple sous forme de chlorhydrate) lorsque ces produits contiennent un groupement amine.

5 Les liaisons entre le bras espaceur et les restes A et P ou directement entre A et P sont des liaisons covalentes. Ces liaisons covalentes peuvent être formées, comme indiqué précédemment, entre des groupes ester carboxylique, amide carboxylique, ester thiocarboxylique ou amide thiocarboxylique.

10 10 Les restes de composé anti-bactérien (A) et de peptide (P) sont des dérivés de composé anti-bactérien ou de peptide, dont un ou plusieurs groupes chimiques ont été soit supprimés soit modifiés de façon à permettre la formation de liaison covalentes directement entre A et P ou indirectement par l'intermédiaire d'un bras espaceur.

15 15 Il peut s'agir de fonctions acyles de composés anti-bactériens possédant un groupe carboxylique capable de former une liaison avec le bras espaceur ou le peptide, ce dernier possédant une amine primaire ou un groupe hydroxyle apte à former une liaison covalente avec le bras espaceur ou le composé anti-bactérien.

20 20 Les bras espaceurs peuvent être notamment des restes bivalents de composés aliphatiques bifonctionnels, comme des composés ayant à chacune de leurs extrémités des groupes fonctionnels réactifs permettant chacun de former des liaisons covalentes avec A et avec P. Ces composés peuvent être par exemple des composés qui possèdent à la fois un groupe amino et un groupe carboxylique (ou thiocarboxylique), ou encore des composés qui possèdent à la fois un groupe amino et un groupe hydroxyle.

25 30 Dans la formule (I), le groupe X (en faisant abstraction de ses groupes fonctionnels d'extrémité) représente notamment un groupe aliphatique divalent éventuellement interrompu par un ou plusieurs

hétéroatomes - O - ou - S - ou par un ou plusieurs groupements hétéroatomiques - NH - ou - CO - NH -.

Les composés capables de donner, après réaction avec le peptide et le composé anti-bactérien ou leurs dérivés, des produits de formule (I) dans lesquels A et P sont reliés par des bras espaceurs, sont par exemple des acides alpha-, bêta- ou gamma-amino alcanecarboxyliques, en particulier des acides alpha-aminés naturels tels que la glycine, lalanine, la valine ou la leucine, ou encore des peptides, notamment des dipeptides ou des tripeptides. Comme indiqué dans les exemples, il peut s'agir avantageusement d'un résidu de cystéine.

Les agents espaceurs peuvent également être des acides hydroxy-carboxyliques tels que les acides lactique, glycolique, les acides aldoniques (gluconique, mannonique, galactonique, ribonique, arabinonique, xylonique et érythronique) et les lactones ou dilactones correspondantes (par exemple lactide, glycolide, delta-glucolonactone, delta-valéronactone), ou encore les acides aldariques.

Les groupes fonctionnels éventuellement présents sur le bras espaceur et non impliqués dans la liaison avec A ou P peuvent être utilisés pour greffer d'autres restes A et/ou P de façon à obtenir des composés de formule (I) pour lesquels m et/ou n sont supérieurs à 1. C'est le cas par exemple des groupes hydroxyles des hydroxyacides, du second groupe carboxylique des acides aminés diacides carboxyliques, du second groupe amino des aminoacides diaminés, du groupe hydroxyle des acides aminés hydroxylés, etc.

Le bras espaceur peut avantageusement constitué une molécule de liaison apte à permettre la libération retardée de l'un et/ou l'autre des restes A

ou P, notamment en les protégeant d'une dégradation après administration. Le bras espaceur peut aussi constitué une molécule de vectorisation permettant de cibler un organe ou tissu particulier pour la délivrance des restes de composé anti-bactérien.

Pour préparer les composés de formule (I), on utilise les méthodes classiques de la synthèse organique. Par exemple, pour préparer des amides ou des esters, on peut faire réagir un composé carboxylique sous la forme d'un halogénure d'acide carboxylique (ou thiocarboxylique), ou sous la forme d'un anhydride mixte, ou sous la forme d'un ester activé, par exemple un ester de p-nitrophényle. On peut également activer l'acide à l'aide d'un agent de couplage tel que le dicyclohexylcarbodiimide.

Comme les composés de formule (I) comprennent des restes de peptide, on peut les préparer en utilisant en particulier les méthodes connues dans la chimie des peptides.

Bien entendu, lorsque les composés dont dérivent A, P ou X de la formule (I), comprennent plusieurs fonctions susceptibles de réagir, il convient d'opérer soit en utilisant les réactifs en proportions stoechiométriques (selon le nombre de produits précurseurs de A et/ou de P que l'on veut faire réagir), soit en protégeant temporairement les fonctions réactives dont on ne souhaite pas qu'elles réagissent. On utilise pour cela les méthodes de protection temporaire desdites fonctions réactives. Ces méthodes de protection temporaire sont bien connues, notamment celles qui ont été développées lors des recherches concernant la synthèse des peptides. Par exemple, les groupements -NH₂ peuvent être protégés par des groupements carbobenzoxy, phtaloyle, t-butoxycarbonyle,

trifluoroacétyle, toluènesulfonyle ; les groupements carboxyliques peuvent être protégés sous la forme d'esters benzyliques, d'esters de tétrahydropyranyle ou d'esters de t-butyle ; les alcools peuvent être protégés sous la forme d'esters (par exemple acétates), sous la forme d'éthers de tétrahydropyranyle, d'éthers benzyliques ou d'éthers de trityle, ou encore sous la forme d'acétals (y compris sous la forme d'acétonides dans le cas des glycols vicinaux). Les réactions de protection et de déprotection éventuelle de divers groupes chimiques sont connues et décrites dans la littérature.

Les réactions de phosphatation ou de déphosphatation de l'alcool primaire des nucléotides ou nucléosides peuvent être mises en œuvre en utilisant les enzymes naturelles (par exemple phosphatasées, phosphokinases).

Les compositions anti-bactériennes de l'invention, et notamment celles comprenant un composé de formule (I), peuvent être administrées par l'un quelconque des modes d'administration acceptés pour les agents thérapeutiques et bien entendu par voie orale, sublinguale, nasale, pulmonaire, rectale ou parentérale (par exemple intravasculaire, intramusculaire, transcutanée, intra-articulaire). On peut aussi citer l'administration systémique, topique ou encore centrale, par exemple par voie chirurgicale intracrânienne ou encore l'administration intra-oculaire. On peut citer aussi l'implantation sous-cutanée d'implants biodégradable.

A cet effet, elles peuvent être présentées sous toute forme permettant l'administration par :

5 - voie orale (en particulier sous la forme de gélules, de solutions ou émulsions buvables, de poudres, de gels, de granulés, de tablettes ou de comprimés), de comprimés, gélules, capsules molles, y compris les formulations à libération différée ou prolongée, pilules, poudres, granules, élixirs, teintures, suspensions, sirops et émulsions. Cette forme de présentation est plus particulièrement adaptée au passage de la barrière intestinale et à l'utilisation la plus commune des composés anti-bactériens et/ou antifongiques.

10 15 20 25 - voie parentérale, généralement par injection intramusculaire ou intraveineuse par perfusion. Les compositions injectables peuvent être préparées sous des formes classiques, soit en suspension ou solution liquide soit sous forme solide convenant à une dissolution extemporanée dans un liquide adéquat, y compris les formulations à libération différée ou prolongée comme l'inclusion des peptides dans des micro ou nano particules biodégradables de formulation lipidique ou de formulation de dextran ou encore de PLGA ou équivalents. Cette forme de présentation est plus particulièrement adaptée au passage de la barrière hémato-encéphalique et à l'utilisation hospitalière des composés anti-bactériens et/ou antifongiques.

30 Une possibilité pour l'administration parentérale utilise l'implantation d'un système à libération lente ou libération prolongée qui assure le maintien d'un niveau constant de dose.

Une autre possibilité consiste à fixer par adsorption ou autre les peptides de l'invention sur un support, comme un cathéter, une prothèse ou une colle biologique.

- voie nasale (par exemple des solutions à administrer sous forme de gouttes ou de pulvérisations),
- voie pulmonaire (solutions en flacon pressurisé pour aérosols),
- 5 - voie rectale (suppositoires),
- voie cutanée (par exemple crèmes, onguents ou dispositifs transdermiques, encore appelés timbres ou patches),
- voie transmuqueuse comme par exemple par voie sublinguale (solutions en flacon pressurisé, ou comprimés à délitement buccal).

10 Ces formes pharmaceutiques sont préparées de façon usuelle et peuvent contenir des excipients et véhicules classiques appropriés.

15

D'autres préparations topiques habituelles comprennent les crèmes, les onguents, les lotions, les gels et les sprays aérosols. Ces derniers sont plus particulièrement adaptés pour le traitement des infections broncho-pulmonaires bactériennes et/ou fongiques.

20

25 Les compositions de l'invention peuvent aussi être utilisées dans le domaine cosmétique, à titre essentiellement préventif, et consistant alors en crèmes, vernis à ongle, produits d'hygiène des organes génitaux, pâtes de dentifrices, solutions d'hygiène bucales ou à inclure dans des micro-particules à diffusion lente, en phase aqueuse, incluses par exemple dans des couches-culottes, des coton-tiges, des pansements, des cotons à démaquiller, des serviettes hygiéniques ou encore des litières pour animaux.

30

En fonction du mode d'administration, les composés peuvent être sous forme solide, semi-solide ou liquide.

Pour les compositions solides, tels que comprimés, pilules, poudres ou granulés à l'état libre ou inclus dans des gélules, l'association peut être combinée avec :

5 - des diluants, par exemple le lactose, le dextrose, le sucrose, le mannitol, le sorbitol, la cellulose et/ou la glycine ;

10 - des lubrifiants, par exemple la silice, le talc, l'acide stéarique, son sel de magnésium ou de calcium et/ou le polyéthylèneglycol ;

15 - des liants, par exemple le silicate de magnésium et d'aluminium, la pâte d'amidon, la gélatine, la gomme adragante, la méthylcellulose, la carboxyméthylcellulose sodique et/ou la polyvinylpyrrolidone ; le cas échéant,

- des désintégrants, par exemple l'amidon, l'agar, l'acide alginique ou son sel de sodium, ou des mélanges effervescents ; et/ou

20 - des absorbants, colorants, aromatisants et édulcorants. Les excipients peuvent être par exemple du mannitol, lactose, amidon, stéarate de magnésium, saccharine sodique, talc, cellulose, glucose, sucrose, carbonate de magnésium et analogues de qualité pharmaceutique.

25 Pour les compositions semi-solides, telles que suppositoires, l'excipient peut, par exemple, être une émulsion ou suspension grasse, ou à base de polyalkylèneglycol, tel que le polypropylène-glycol.

30 Les compositions liquides, en particulier injectables ou à inclure dans une capsule molle, peuvent être préparées par exemple par dissolution, dispersion, etc. du principe actif dans un solvant pharmaceutiquement pur tel que, par exemple, l'eau, le

sérum physiologique, le dextrose aqueux, le glycérol, l'éthanol, une huile et analogues.

Les compositions selon l'invention peuvent également être administrés sous la forme de systèmes de libération du type liposomes, tels que sous la forme de petites vésicules unilamellaires, de grandes vésicules unilamellaires et de vésicules multilamellaires. Les liposomes peuvent être formés à partir d'une diversité de phospholipides, contenant du cholestérol, de la stéarylamine ou des phosphatidylcholines. Dans une forme d'exécution, un film de composants liquides peut être hydraté avec une solution aqueuse du médicament pour former une couche lipidique encapsulant le médicament.

Les compositions selon l'invention peuvent être stérilisées et/ou contenir des adjuvants et substances auxiliaires non toxiques tels que des agents de conservation, de stabilisation, de mouillage ou d'émulsification, des agents favorisant la dissolution, des sels pour régler la pression osmotique et/ou des tampons. En outre, elles peuvent également contenir d'autres substances présentant un intérêt thérapeutique. Les compositions sont préparées, respectivement, par des procédés classiques de mélange, granulation ou enrobage et elles contiennent d'environ 0,1 à 75%, de préférence d'environ 1 à 50 %, de principe actif.

Les peptides et agents anti-bactériens de l'association de la composition selon l'invention peuvent également couplés avec des polymères solubles tels que des supports de médicament ciblables. De tels polymères peuvent comprendre la polyvinylpyrrolidone, le copolymère pyrane, le polyhydroxypropyl-méthacrylamide-phénol, le polyhydroxy-éthyl-aspanamide-phénol ou le poly(oxyde d'éthylène)-polylysine substitué par des résidus palmitoyle, le

dextran. En outre, les composés selon la présente invention peuvent être couplés à une classe de polymères biodégradables utiles pour réaliser une libération maîtrisée d'un médicament, par exemple, le poly(acide lactique), la poly(epsilon-caprolactone), le poly(acide hydroxybutyrique), les polyorthoesters, les polyacétals, les polydihydropyranes, les polycyanoacrylates et les copolymères d'hydrogel séquencés réticulés ou amphipatiques.

La posologie pour l'administration des compositions selon l'invention est choisie en fonction de nombreux facteurs y compris le type, l'espèce, l'âge, le poids, le sexe et l'état médical du sujet, la gravité de l'état à traiter, la voie d'administration ; l'état des fonctions rénale et hépatique du sujet et la nature du composé particulier, ou sel, employé. Un médecin ou vétérinaire normalement expérimenté déterminera facilement, et prescrira, la quantité efficace pour prévenir, contrarier ou stopper le progrès de l'état médical à traiter.

Une composition selon l'invention peut contenir de 0,1 à 99%, de préférence 1 à 70% de principe actif.

A titre d'exemples, les posologies orales des compositions selon l'invention seront comprises entre environ 0,5 et 1 mg/jour par voie orale et, de préférence fournies sous la forme de comprimés contenant 0,5, 1, 2,5, 5, 10, 15, 25, 50, 100, 250, 500 et 1.000 mg de principe actif. Les concentrations plasmatiques efficaces seront obtenues à partir d'une posologie allant de 0,002 mg à 50 mg par kg de poids corporel et par jour.

Les compositions de l'invention peuvent être administrés sous la forme de doses quotidiennes uniques, ou en deux, trois ou quatre doses par jour.

5 D'autres avantages et caractéristiques de l'invention apparaîtront des exemples qui suivent, donnés à titre illustratif, et dans lesquels il sera fait référence aux dessins en annexe où :

10 La figure 1 représente la formule du Bodipy® FL N-(2-aminoethyl) maléimide.

La figure 2 représente la formule du Tetramethylrhodamine-6-maléimide.

La figure 3 représente l'internalisation des conjugués DPV-Bodipy dans *E. coli*.

15 La figure 4 représente l'immuno-marquage de la membrane externe après internalisation du conjugué DPV3-bodipy.

La figure 5 représente l'internalisation des conjugués DPV-Bodipy dans *P. aeruginosa*.

20 La figure 6 donne des images de microscopie confocal de *P. aeruginosa*.

La figure 7 représente l'internalisation du conjugué DPV3-TMR dans *E. coli*.

25 I - Matériels et Méthodes.

I.1) Traceurs fluorescents.

- Le Bodipy® FLN-(2-aminoethyl) maleimide (Bodipy) (Molecular Probes Cat# B-10250), dont la formule moléculaire est $C_{20}H_{21}BF_2N_4O_3$, Le poids moléculaire est de 414,22 Da, l'absorbance de 504nm et l'émission de 510nm (fluorescence verte), et la formule développée est donnée à la figure 1.

- Tetramethylrhodamine-6-maleimide (TMR) (Molecular Probes Cat# T-6028), dont la formule

moléculaire est $C_{28}H_{23}N_3O_5$, le poids moléculaire est de 481,51 Da, l'absorbance de 541nm et l'émission 567nm (fluorescence rouge) et la formule développée est donnée à la figure 2.

5 Ces deux molécules fluorescentes contiennent un groupe réactif maléimide permettant le couplage chimique sur la fonction thiol de la cystéine du peptide.

I.2) Les vecteurs peptidiques (DPVs).

10 Les peptides de séquences ci-dessous ont été utilisés :

- DPV3 : Arg Lys Lys Arg Arg Arg Glu Ser Arg Lys Lys Arg Arg Glu Ser (SEQ ID NO.1) avec un résidu Cys (Cystéine) à son extrémité C terminale,

15 - DPV3.10 : Arg Lys Lys Arg Arg Arg Glu Ser Arg Arg Ala Arg Arg Ser Pro Arg His Leu (SEQ ID NO.2) avec un résidu Cys à son extrémité C terminale,

- DPV6 : Gly Arg Pro Arg Glu Ser Gly Lys Lys Arg Lys Arg Lys Arg Leu Lys Pro (SEQ ID NO.3) avec un résidu Cys à son extrémité C terminale,

20 - DPV7 : Gly Lys Arg Lys Lys Lys Gly Lys Leu Gly Lys Lys Arg Asp Pro (SEQ ID NO.4) avec un résidu Cys à son extrémité C terminale,

25 - DPV7b : Gly Lys Arg Lys Lys Lys Gly Lys Leu Gly Lys Lys Arg Pro Arg Ser Arg (SEQ ID NO.5) avec un résidu Cys à son extrémité C terminale,

- DPV15 : Leu Arg Arg Glu Arg Gln Ser Arg Leu Arg Arg Glu Arg Gln Ser Arg (SEQ ID NO.6) avec un résidu Cys à son extrémité C terminale,

30 - DPV15b : Gly Ala Tyr Asp Leu Arg Arg Arg Glu Arg Gln Ser Arg Leu Arg Arg Arg Glu Arg Gln Ser Arg (SEQ ID NO.7) avec un résidu Cys à son extrémité N terminale,

- DPV1047 : Val Lys Arg Gly Leu Lys Leu Arg His Val Arg Pro Arg Val Thr Arg Met Asp Val (SEQ ID NO.8) avec un résidu Cys à son extrémité N terminale,

5 - DPV11 : Ala Lys Thr Gly Lys Arg Lys Arg Ser Gly (SEQ ID NO.9) avec un résidu Cys à son extrémité C terminale,

- DPV12 : Gln Gly Lys Ser Lys Arg Glu Lys Lys Asp Arg Val Phe (SEQ ID NO.10) avec un résidu Cys à son extrémité C terminale,

10 - DPV1121 : Val Lys Arg Gly Leu Lys Leu Arg Gln Lys Tyr Asn Lys Arg Ala Met Asp Tyr (SEQ ID NO.11) avec un résidu Cys à son extrémité N terminale,

15 - DPV19 : Asn Pro Gly Val Ser Thr Val Val Leu Gly Ala Tyr Asp Leu Arg Arg Arg Glu Arg Gln Ser Arg (SEQ ID NO.12) avec un résidu Cys à son extrémité N terminale.

Les synthèses peptidiques ont été réalisées selon les techniques connues de l'homme de métier. Les peptides sont solubles dans l'eau.

20 Les peptides possèdent un résidu Cystéine en position N- ou C- terminale afin de permettre la conjugaison au traceur fluorescent.

I.3) Les produits contrôles.

25 Bodipy et TMR sont couplés chimiquement à un résidu cystéine et servent de témoin négatif d'internalisation.

I.4) Méthode de couplage chimique.

30 Les solutions de Bodipy ou TMR sont préparées à une concentration finale de 50mM en Diméthylformamide (DMF). Les solutions de DPVs sont préparées à une concentration finale de 10mM en DMF. 200 µl de la solution de Bodipy ou TMR sont mélangés à 700 µl de la solution de DPV. Après une incubation de 2 heures à température ambiante, à l'obscurité, 2ml d'H₂O

5

et 8ml de dichlorométhane (DCM) sont ajoutés. La solution est mélangée au vortex et centrifugée 2 minutes à 3000g. La phase aqueuse est prélevée et conservée. Quatre extractions successives au DCM sont réalisées. Les phases aqueuses sont rassemblées dans un flacon de verre et placées 1 heure à -80°C avant d'être lyophilisées au minimum 18 heures. La poudre obtenue est stockée sous argon à -20°C à l'abri de la lumière.

10

Les conjugués DPV~Bodipy et DPV~TMR sont conservés dilués à 3mM dans H₂O à -20°C, à l'abri de la lumière.

15

I.6) Analyse HPLC des conjugués.

- Pour les conjugués Bodipy :

Colonne Luna 100Å 3μ C18 100x4.6 mm

Solvant A: 0.1% TFA dans de l' H₂O

Solvant B: 0.1% TFA dans de l'acetonitrile

(CAN)

20

Gradient: 5% B à 60% en 10 min, 60% B à 90% en 1 min, 90% B pendant 3 min, 5% B pendant 2 min

Flux: 1.2 ml/min; volume injecté: 10 μl; la concentration de l'échantillon injecté est de 1 mg/ml en 0.1% TFA

Détecteur: DAD: 214nm, 300 nm.

25

- Pour les conjugués TMR :

Colonne Luna 100Å 3μ C18 100x4.6 mm

Solvant A : 0.1% TFA dans de l' H₂O

Solvant B : 0.1% TFA dans de l'acetonitrile

(CAN)

30

Gradient : 5% B à 60% en 10 min, 60% B à 90% en 1 min, 90% B pendant 3 min, 5% B pendant 2 min

Flux : 1.2 ml/min; volume injecté: 20 μl; la concentration de l'échantillon injecté est de 1 mg/ml en 0.1% TFA

Détecteur: DAD: 220 nm.

I.7) Souches bactériennes.

- *Escherichia coli* ATCC 25922
- *Pseudomonas aeruginosa* ATCC 27853

5 I.8) Protocole d'internalisation.

I.8.a) Evaluation de la pénétration des conjugués dans la bactérie à 37°C.

Les bactéries en phase exponentielle de culture sont centrifugées et lavées 3 fois avec le tampon phosphate de sodium 10mM, pH7.4 (tampon NAPB). La concentration bactérienne est ajustée à 1×10^6 ufc/ml (Unités Formant Colonies) dans le tampon NAPB. 50 µl de la suspension bactérienne sont déposés sur lame de poly-L-Lysine. Après une incubation de 30 minutes à 37°C en chambre humide, les bactéries immobilisées sur la lame sont rincées 3 fois avec le tampon NAPB. 50 µl de solution de conjugué DPV~Bodipy ou DPV~TMR ou produit contrôle sont déposés sur les bactéries. Après une incubation de 30 minutes à 37°C en chambre humide et à l'abri de la lumière, les lames sont rincées 3 fois avec le tampon NAPB. Les bactéries peuvent être fixées sur la lame par une incubation de 20 minutes à 37°C à l'abri de la lumière. Une goutte de PBS/Glycérol 50% est déposée sur la lame et recouverte d'une lamelle de verre. Après scellage de la lamelle sur la lame, la fluorescence des bactéries est observée sous microscope optique à épifluorescence Leica (objectif 40X ou 63X à immersion). Les images sont prises avec la caméra numérique Nikon coolpix au zoom maximal et avec l'adaptateur 0.63 X. Une analyse plus détaillée est réalisée au microscope confocal Bio-rad MRC 600 (BIO-RAD Microscience Ltd., Hemel Hempstead, England), équipé d'un microscope optique inversé et d'un objectif à immersion X100. Les bactéries sont visualisées par leur fluorescence après

excitation par un laser Krypton/Argon. Plusieurs coupes de bactéries de 0.1 - 0.2µm sont réalisées.

I.8.b) Evaluation de la pénétration des conjugués dans la bactérie à +4°C.

5 La méthode décrite précédemment (I.8.a) a été modifiée comme suit. Les bactéries immobilisées sur lame de poly-L-Lysine et rincées 3 fois avec le tampon NAPB sont incubées pendant 24 heures à +4°C avant l'addition des conjugués DPV fluorescents pré-incubés à 10 +4°C. Toutes les étapes suivantes sont réalisées à +4°C avec des solutions froides.

I.9) Immuno-marquage de la membrane externe des bactéries : immunofluorescence indirecte.

15 Les bactéries immobilisées sur lame de poly-L-Lysine sont rincées 3 fois avec du tampon NAPB et incubées 30 minutes à température du laboratoire avec une solution NAPB/SAB 0.05% (Sérum albumine bovine). Les bactéries sont incubées 30 min à la température du laboratoire avec l'anticorps monoclonal de souris anti-endotoxine (Biovalley Cat# C55157; batch# 212529) dilué dans NAPB/SAB 0.05% , lavées plusieurs fois avec NAPB/SAB 0.05% puis incubées 30 minutes à la température du laboratoire, à l'abri de la lumière, avec un deuxième anticorps : anticorps polyclonal de lapin anti-souris conjugué à la tétraméthyl rhodamine (TRITC) (Jackson ImmunoResearch Cat# 315-026-003, batch# 47511) ou à la fluorescéine (FITC) ((Jackson ImmunoResearch Cat# 715-095-150, batch# 51038). Après plusieurs lavages avec le tampon NAPB, une goutte de PBS/Glycérol 50% est déposée 20 sur la lame et recouverte d'une lamelle de verre. Après scellage de la lamelle sur la lame, la fluorescence des bactéries est observée au microscope confocal comme il 25 est décrit précédemment (§ I.8.a).

30

I.10) Evaluation de l'activité antibactérienne des conjugués.

5 Les concentrations minimales inhibitrices (CMI) sont déterminées par la méthode de microdilution en milieu liquide (NCCLS M7A5) pour l'ensemble des espèces bactériennes en plaque de polystyrène 96 puits.

10 Une colonie isolée de la bactérie *E. coli* ATCC 25922 ou *P. Aeruginosa* ATCC 27853 est mise en suspension dans 3 à 5ml de milieu de culture Mueller-Hinton (MH) et incubée à 37°C pendant une nuit sous agitation. A partir de cette culture de nuit, une culture en phase exponentielle de croissance de la souche est réalisée; le milieu MH estensemencé au 1/50^e avec la culture de nuit et incubé 2 heures à 37°C sous agitation. La concentration bactérienne est ajustée à 1x10⁶ ufc/ml (Unités Formant Colonies) dans le milieu MH.

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

II - Résultats.

II.1) Internalisation des conjugués DPV-Bodipy dans la bactérie Gram-négatif.

30 II.1.a) Evaluation qualitative de l'internalisation des conjugués DPV-Bodipy.

- Evaluation qualitative dans la bactérie *E. coli*.

La figure 3 représente l'internalisation des conjugués DPV~Bodipy dans *E. coli*.

Les bactéries immobilisées sur lame de poly-L-Lysine sont incubées avec 1 μ M de conjugué DPV~Bodipy pendant 30 minutes à 37°C. Les images de microscopie (microscope optique à épifluorescence, objectif X 63 à immersion) montrent la pénétration du conjugué DPV~Bodipy dans les bactéries vivantes. A: DPV3, B: DPV3.10; C: DPV6; D: DPV7; E: DPV7b; F: DPV15; G: DPV15b; H: DPV1047; I: DPV11; J: DPV12; K: DPV1121; L: DPV19.

Les bactéries *E. coli* sont incubées 30 minutes à 37°C avec 1 μ M de conjugué DPV~Bodipy comme il est décrit dans le paragraphe I.8.a. L'internalisation des conjugués DPV~Bodipy fluorescents dans les bactéries non fixées est visualisée sous microscope à épifluorescence. Aucune fluorescence n'est détectée avec le conjugué contrôle Cys~Bodipy. Comme il est montré sur la figure 3, plusieurs conjugués DPV~Bodipy traversent les membranes bactériennes de la bactérie *E. coli* pour s'accumuler dans le cytoplasme bactérien. Les peptides DPV3.10 (Fig. 3B), DPV3 (Fig. 3A), DPV6 (Fig. 3C) et DPV15 (Fig. 3F) sont fortement pénétrant et internalisant de molécules hydrophobes. Avec les peptides DPV11 et DPV12 (Fig. 3I et 3J), nous obtenons des niveaux de fluorescence hétérogènes dans une même population bactérienne. Les propriétés d'internalisation de ces peptides sont plus faibles. Le peptide DPV19 ne pénètre pas dans les bactéries. (Fig. 3L).

Un profil identique d'internalisation des conjugués DPV~Bodipy est observé après fixation des bactéries.

La figure 4 représente l'immuno-marquage de la membrane externe après internalisation du conjugué DPV3~bodipy.

Les bactéries *E. coli* immobilisées sur lame de poly-L-Lysine sont incubées avec 3 μ M du conjugué DPV3~Bodipy à 37°C pendant 30 minutes. Après internalisation, la membrane externe des bactéries vivantes est détectée par immuno-marquage en utilisant un anticorps monoclonal de souris anti-endotoxine et un anticorps polyclonal de lapin anti-Ig G de souris couplé au TRITC. La localisation du conjugué DPV3~Bodipy (fluorescence verte) et l'immuno-marquage de la membrane externe (fluorescence rouge) sont observés au microscope confocal. A : Taille originale de l'image ; B et D : Deux agrandissements de bactéries de l'image A.

Afin de confirmer la localisation des conjugués DPV~Bodipy dans le cytoplasme bactérien, les bactéries *E. coli* sont incubées avec 3 μ M du conjugué DPV3~Bodipy comme il est décrit dans le paragraphe I.8 et la membrane externe des bactéries vivantes est visualisée par immuno-marquage spécifique comme il est décrit dans le paragraphe I.9. L'endotoxine est un constituant spécifique de la membrane externe des bactéries Gram-négatif. La fluorescence des bactéries est visualisée au microscope confocal (Figure 4). L'internalisation du Bodipy est visualisée par une fluorescence verte et la membrane externe est identifiée par une fluorescence rouge. L'analyse de ces images montre clairement que le peptide DPV3 traverse les membranes externe et interne de la bactérie Gram-négatif *E. coli* et permet l'accumulation du Bodipy dans le cytoplasme bactérien.

- Evaluation qualitative dans la bactérie *P. aeruginosa*.

La figure 5 représente l'internalisation des conjugués DPV~Bodipy dans *P.aeruginosa*.

Les bactéries immobilisées sur lame sont incubées avec $1\mu\text{M}$ de conjugué DPV~Bodipy pendant 30 minutes à 37°C . Les images de microscopie (microscope optique à épifluorescence, objectif X 63 à immersion) montrent la pénétration du conjugué DPV~Bodipy dans les bactéries vivantes. A: DPV3, B: DPV3.10; C: DPV6; D: DPV7; E: DPV7b; F: DPV15; G: DPV15b; H: DPV1047; I: DPV11; J: DPV12; K: DPV1121; L: DPV19.

La figure 6 donne des images de microscopie confocal de *P. aeruginosa*.

Les bactéries sont immobilisées sur lame de poly-L-Lysine et incubées avec $3\mu\text{M}$ de conjugué DPV3~Bodipy (A) ou de conjugué DPV7~Bodipy (B) à 37°C pendant 30 min puis fixées sur la lame. Les bactéries sont observées au microscope confocal. Un agrandissement de l'image originale des bactéries est présenté.

Une même évaluation qualitative est réalisée sur *P. aeruginosa*. La figure 5 montre l'internalisation des conjugués dans les bactéries après 30 minutes d'incubation. Les propriétés d'internalisation des DPV sont identiques à celles observées pour *E. coli* excepté pour les peptides DPV7b et DPV6 qui semblent être plus internalisants chez *P. aeruginosa*. L'observation au microscope confocal (Figure 6) des bactéries incubées avec les peptides DPV3 ou DPV7b montre que ces peptides ont la capacité de traverser la membrane externe et permettre l'accumulation du Bodipy dans le cytoplasme bactérien.

II.1.b) Classification des DPVs.

Comme il est montré sur les figures 3 et 5, le niveau d'accumulation des conjugués DPV~Bodipy dans le cytoplasme bactérien est variable selon le DPV et

selon la souche de bactérie. De façon générale, l'internalisation des DPV est quasiment identique pour les deux souches de bactéries étudiées. Les peptides DPV peuvent être classés en trois groupes majeurs :

5

- DPV3, DPV3.10 : internalisation élevée
- DPV6, DPV7, DPV7b, DPV15 : internalisation moyenne
- DPV15b, DPV1047, DPV1121 : internalisation faible

10

Les peptides DPV3.10, DPV3, DPV6, DPV7 et DPV7b ont précédemment été décrits comme des peptides à localisation cytoplasmique dans les cellules eucaryotes (demande de brevet internationale PCT publiée sous le No. WO 01/64738) quand ils sont couplés chimiquement à la protéine peroxydase ou à des IgG. À l'opposé, les peptides DPV15, DPV15b, DPV1047 et DPV1121 ont été décrits comme des peptides à localisation nucléaire. Il est important de noter que le niveau d'internalisation des DPV « nucléaires » est plus faible que celui des DPV « cytoplasmiques ». Les peptides ayant un tropisme cytoplasmique sont les plus internalisants dans la bactérie.

15

20

25

Comme l'indique le tableau 1 ci-après, les peptides DPV19, DPV11 et DPV12 n'ont pas de propriété d'internalisation dans la cellule eucaryote. La même propriété est observée avec les cellules procaryotes, comme les bactéries Gram-négatif.

30

Tableau 1 : Evaluation qualitative de l'intégration des conjugués DPV-Bodipy dans la bactérie Gram-négatif.

Tableau 1

	<i>E. coli</i>	<i>P. aeruginosa</i>
DPV3~Bodipy	+++	+++

DPV3.10~Bodipy	++++	++++
DPV6~Bodipy	++	+++
DPV7~Bodipy	++	++
DPV7b~Bodipy	+	+++
DPV15~Bodipy	++	++
DPV15b~Bodipy	+	+
DPV1047~Bodipy	+	+
DPV1121~Bodipy	+	+
DPV19~Bodipy	-	-
DPV11~Bodipy	+/-	+/-
DPV12~Bodipy	-	-

II.1.c) Etude de l'effet de la poly-L-Lysine (support des bactéries) sur l'internalisation.

Afin de confirmer les résultats précédents et d'évaluer une éventuelle interférence de la poly-L-Lysine avec l'intégration des conjugués, les bactéries *E. coli* sont incubées avec les conjugués DPV~Bodipy pendant 30 minutes à 37°C puis lavées de façon extensive avec le tampon NAPB avant d'être immobilisées et fixées ou non sur lame de poly-L-Lysine. La localisation des conjugués est visualisée au microscope optique à épifluorescence ou confocal. Les propriétés d'intégration des différents DPV ne diffèrent pas des résultats obtenus précédemment. La Poly-L-Lysine n'a pas d'effet sur la capacité du DPV à traverser les membranes bactériennes et à pénétrer dans la bactérie.

II.1.d) Influence de la température sur le niveau d'internalisation.

Afin d'expliquer le mécanisme d'intégration précédemment observé, la capacité des

DPV à internaliser à +4°C a été analysée. Les bactéries *E. coli* en phase exponentielle de croissance sont immobilisées sur lame de poly-L-Lysine puis incubées pendant 24 heures à +4°C afin d'abolir le métabolisme énergétique de la bactérie. Les bactéries sont ensuite incubées avec 3µM de DPV7~Bodipy ou Cyst~Bodipy (contrôle) pendant 30 minutes à +4°C comme il est décrit dans le paragraphe I.8.b) et lavées de manière extensive avant d'être visualisées au microscope optique à épifluorescence et confocal. Pour comparer les niveaux d'internalisation à 37°C et à +4°C, la même expérience est conduite à 37°C comme il est décrit dans le paragraphe I.8.a.

Le niveau d'internalisation du DPV7 dans la bactérie est identique quelque soit la température de l'expérience. Il semble donc que l'internalisation du conjugué DPV7~Bodipy dans *E. coli* n'est pas un mécanisme énergie-dépendant. Le phénomène est probablement une translocation passive au travers des membranes bactériennes.

II.2) Internalisation du conjugué DPV3~TMR dans *E. coli*.

Nous avons montré que certains peptides DPV peuvent traverser la membrane externe des bactéries Gram-négatif et pénétrer dans la bactérie pour internaliser un composé hydrophobe comme le Bodipy qui est normalement exclu par cette membrane externe.

Afin de valider les résultats obtenus précédemment et exclure une quelconque influence du traceur fluorescent Bodipy sur l'internalisation, des expériences identiques ont été menées avec un deuxième traceur fluorescent hydrophobe, le TMR. Le TMR diffère du Bodipy par des propriétés physico-chimiques comme sa structure ou la présence d'une charge positive (Fig. 2).

La figure 7 représente l'internalisation du conjugué DPV3-TMR dans *E. coli*.

Les bactéries *E. coli* sont immobilisées sur lame de poly-L-Lysine et incubées avec 1 μ M du conjugué DPV3-TMR à 37°C pendant 30 min. Après internalisation, la membrane externe des bactéries vivantes est détectée par immuno-marquage en utilisant un anticorps monoclonal de souris anti-endotoxine et un anticorps polyclonal de lapin anti-Ig G de souris couplé au FITC. La localisation du conjugué DPV3-TMR (fluorescence rouge) et l'immuno-marquage de la membrane externe (fluorescence verte) sont observés au microscope confocal. A : Taille originale de l'image ; B et D : Deux agrandissements de bactéries de l'image A.

L'internalisation du conjugué DPV3 TMR est évaluée sur des bactéries *E. coli* immobilisées sur lame de poly-L-Lysine ou en suspension. Les bactéries sont incubées avec 1 μ M de conjugué DPV3-TMR ou le contrôle Cyst-TMR pendant 30 minutes à 37°C, puis fixées ou non sur lame avant d'être visualisées au microscope optique à épifluorescence. Quelque soit le protocole d'internalisation utilisé, aucune fluorescence n'est détectée avec le conjugué contrôle tandis que le DPV3-TMR est visualisé par la fluorescence rouge de la bactérie.

Afin de confirmer l'internalisation du conjugué DPV3-TMR, les bactéries sont immobilisées sur lame de poly-L-Lysine et incubées avec 1 μ M de conjugué à 37°C pendant 30 minutes. L'immuno-marquage de la membrane externe est réalisé en utilisant l'anticorps monoclonal de souris anti-endotoxine et un anticorps polyclonal de lapin anti-IgG de souris couplé au FITC. La localisation du conjugué DPV3-TMR est observée au microscope confocal (Figure 7). Le conjugué DPV3-TMR

traverse la membrane externe, pénètre dans la bactérie et s'accumule dans le cytoplasme. Ce résultat est identique à ceux obtenus avec le traceur fluorescent Bodipy.

5 II.3) Activité anti-bactérienne des conjugués DPV.

Afin de déterminer que l'internalisation des conjugués DPV n'induit pas la mort des bactéries, les 12 conjugués DPV-Bodipy et le conjugué DPV3-TMR sont testés pour leur activité anti-bactérienne comme il est décrit dans le paragraphe I.10) Aucun des conjugués testés n'a montré une activité anti-bactérienne sur *E. coli* aux concentrations utilisées dans les expériences d'internalisation. Cette expérience montre que l'internalisation des conjugués n'affecte pas la viabilité bactérienne. Le mécanisme d'internalisation dans la bactérie n'est pas toxique.

20 III - Internalisation d'un conjugué DPV-Antibiotique (exemple : DPV-Erythromycine)

III.1) Synthèse d'un conjugué DPV-Antibiotique

25 III.1.a) Activation de l'Erythromycine par un cross linker hétérobifonctionnel

Une solution de maleimidocaproic acid (MIC) (2,8 équivalents) et de dicyclohexylcarbodiimide (DCC) (2,8 équivalents) dans de la diméthylformamide (DMF) est agitée la nuit à 0°C sous argon et à l'abri de la lumière. Le précipité formé (dicyclohexylurée) est éliminé par filtration, lavé avec de la DMF puis filtré à nouveau. Une solution d'antibiotique (1,0 équivalent) et de pyridine (5,0 équivalents) dans de la DMF est agitée jusqu'à dissolution complète. On additionne sur

cette solution le filtrat obtenu ci-dessus ; le mélange est agité 1 heure à température ambiante.

La solution est reprise dans de l'eau distillée, lavée 4 fois avec du dichlorométhane (DCM). Les phases organiques obtenues sont rassemblées et lavées successivement avec de l'acide chlorhydrique (HCl) 0,1 N, deux fois avec du carbonate de disodium (Na_2CO_3), trois fois avec de l'eau (H_2O). Après séchage sur du sulfate de magnésium (MgSO_4) et concentration, le brut réactionnel est purifié par chromatographie flash sur silice (éluant CH_2Cl_2 / MeOH).

III.1.b) Couplage de l'Erythromycine activée avec un peptide pénétrant DPV

Un peptide pénétrant (1,0 équivalent) dans une solution tampon de phosphate de sodium ($\text{NaH}_2\text{PO}_4/\text{Na}_2\text{HPO}_4$) à 10 mM et pH 7,1 est agité cinq minutes à température ambiante sous argon et à l'abri de la lumière. Puis, l'antibiotique activé (1,5 à 2,0 équivalents), dissous dans le minimum de DMF, est ajouté. La solution est agitée jusqu'à transformation complète du peptide (suivi HPLC). De l'eau distillée est ensuite ajoutée et la phase aqueuse est extraite trois fois avec le même volume de dichlorométhane afin d'éliminer l'excès d'antibiotique activé. La phase aqueuse est ensuite lyophilisée et le solide obtenu est purifié par HPLC préparative. Le conjugué antibiotique-peptide pénétrant est ainsi isolé avec des rendements compris entre 45 et 100% et des puretés supérieures à 90%.

III.2) Evaluation de l'activité antimicrobienne des conjugués DPV-Erythromycine.

Les concentrations minimales inhibitrices (CMI) de conjugués sont déterminées par la méthode de microdilution en milieu liquide selon les normes NCCLS-

M7A5 (National Committee for Clinical Laboratory Standards - Document M7A5) pour l'ensemble des espèces bactériennes en plaque de polystyrène 96 puits.

Protocol :

5 Une colonie isolée d'une bactérie (par exemple *E. coli* ou *P. Aeruginosa*) est mise en suspension dans 3 à 5ml de milieu de culture Mueller-Hinton (MH) et incubée à 37°C pendant une nuit sous agitation. A partir de cette culture de nuit, une culture en phase exponentielle de croissance de la souche est réalisée; le milieu MH estensemencé au 1/50^e avec la culture de nuit et incubé 2 heures à 37°C sous agitation. La concentration bactérienne est ajustée à 1×10^6 ufc/ml (Unités Formant Colonies) dans le milieu MH.

10 15 50 µl d'inoculum bactérien sont distribués par puits contenant un volume égal de la solution de conjugué diluée de demi en demi dans le milieu de culture adéquat (512 à 0,5 µg/ml). Les cultures sont incubées à 37°C en air ambiant pendant 16 à 20 heures.

20 25 La CMI exprimée en µg/ml (Unités Internationales) est la première concentration ne présentant pas de croissance bactérienne. La détermination de la concentration minimale bactéricide (CMB) est réalisée après lecture des plaques de CMI. La CMB est la plus faible concentration de conjugué qui inhibe toute croissance bactérienne sur la gélose de repiquage (<0,1% de survivants).

IV - Evaluation de l'activité antibactérienne de l'association d'un peptide DPV et de l'érythromycine A par la méthode dite de l'échiquier

IV-1) Matériels et Méthodes

Peptides choisis : DPV3 et DPV3.10

Composé antibactérien : Erythromycine (Sigma
E0774)

Souches bactériennes : E. coli ATCC 25922 et
P. aeruginosa ATCC 27853.

5 Cette méthode est réalisée en microplaques de polystyrène 96 puits dans le milieu de culture Mueller-Hinton (MH) et consiste à exposer une suspension bactérienne à différentes concentrations de peptide DPV et d'érythromycine, employés seuls ou en association.

10 Les concentrations finales choisies d'érythromycine et de peptide s'échelonnent respectivement de 256 à 4 μ g/ml et de 256 à 2 μ g/ml. Les gammes de dilutions sont préparées selon une progression géométrique de raison 2

15 25µl des solutions de produits en milieu MH
dont la concentration est quatre fois plus élevée que la
concentration finale désirée ou 25µl de milieu MH (pour
les rangées 0) sont distribués dans les puits selon le
schéma ci-dessous (tableau 2), afin d'obtenir un volume
final de 50µl par puits:
20

Tableau 2 : distribution des solutions de produit en milieu MH (les puits marqués X n'ont pas été utilisés)

Tableau 2

	8									X	X
	4									X	MH

Une colonie isolée de la bactérie *E. coli* ATCC 25922 ou *P. aeruginosa* ATCC 27853 est mise en suspension dans 3 à 5ml de milieu de culture MH et incubée à 37°C pendant une nuit sous agitation. A partir de cette culture de nuit, une culture en phase exponentielle de croissance de la souche est réalisée ; le milieu MH estensemencé au 1/50è avec la culture de nuit et incubé 2 heures à 37°C sous agitation. La concentration bactérienne est ajustée à 5×10^5 - 10^6 ufc/ml (Unités Formant Colonies) dans le milieu MH. 50 µl d'inoculum bactérien sont distribués par puits contenant un volume égal de la solution de peptide et/ou d'érythromycine. La CMI du peptide et de l'érythromycine est déterminée comme la concentration la plus faible qui provoque l'absence de croissance des bactéries (absence de turbidité) après 18 heures de culture dans une étuve à 37°C. La CMI est exprimée en µg/ml (mg/l). Pour chaque rangée de puits, les premiers puits contenant l'association du peptide DPV et de l'érythromycine et ne présentant aucune croissance visible sont notés afin de calculer pour chacun l'indice de fraction de la concentration inhibitrice (FIC) en utilisant la formule suivante :

FIC = (CMI du peptide avec l'érythromycine/CMI du peptide seul) + (CMI de l'érythromycine avec le peptide/CMI de l'érythromycine seule)

Cet indice permet de quantifier l'association. Un indice inférieur ou égal à 0,5 indique une synergie, un indice supérieur à 2 un antagonisme. Un effet d'addition est indiqué par une FIC comprise

entre 0,5 et 1, et un effet d'indifférence, par une FIC dont les valeurs sont comprises entre 1 et 2.

IV.2) Résultats

Les bactéries Gram-négatif telles que *E. coli* et *P. aeruginosa* sont résistantes aux antibiotiques de la famille des macrolides tel que l'érythromycine du fait de la non-pénétration de ces antibiotiques au travers de la membrane externe de la bactérie. Afin d'évaluer les propriétés internalisantes des peptides DPVs mises en évidence précédemment et leur capacité à faciliter la pénétration d'un antibiotique de la famille des macrolides, l'activité antibactérienne de l'érythromycine sur les bactéries *E. coli* et *P. aeruginosa* a été évaluée en association avec le peptide DPV3 ou DPV3.10 selon la méthode dite de l'échiquier.

L'effet synergique de l'association des peptides DPV3 et 3.10 avec l'érythromycine est montré tableaux 3 et 4. En présence du DPV3, un effet synergique avec l'érythromycine est observé uniquement sur *E. coli* ce qui montre que ce peptide permet l'entrée de l'érythromycine dans *E. coli*. L'association DPV3.10 avec l'érythromycine est synergique sur les deux souches bactériennes. Le peptide DPV3.10 à la concentration non toxique de 32 μ g/ml permet la pénétration (l'internalisation) de l'érythromycine.

Tableau 3 : Détermination des CMIs et FICs de l'érythromycine en association avec le DPV3

Tableau 3

Bactéries	CMI (μ g/ml)				Index FIC	Synergie
	Erythromycine seule	DPV3 seul	Erythromycine associée à DPV3*			
<i>E. coli</i>	256	256	64 (64)		0.5	Oui
<i>P.</i>	256	256	64 (64)		0.75	Non

<i>aeruginosa</i>					
			4 (128)	0.52	Non

* les valeurs entre parenthèses sont les concentrations ($\mu\text{g/ml}$) de DPV3 ajouté

Tableau 4 : Détermination des CMIs et FICs de l'érythromycine en présence de peptide DPV3.10

5

Tableau 4

Bactéries	CMI ($\mu\text{g/ml}$)			Index FIC	Synergie
	Erythromycine seule	DPV3 seul	Erythromycine associée à DPV3*		
<i>E. coli</i>	256	128	64 (32)	0.5	Oui
<i>P. aeruginosa</i>	256	256	64 (32)	0.375	Oui

* les valeurs entre parenthèses sont les concentrations ($\mu\text{g/ml}$) de DPV3.10 ajouté

REVENDICATIONS

1- Composition anti-bactérienne, plus particulièrement dirigée contre les bactéries gram négatif, comprenant l'association :

- 5 a) d'au moins un peptide de 10 à 25 résidus d'acide aminé comprenant :
- 10 i) deux domaines chargés positivement à pH neutre constitué de 3 à 9 résidus d'acide aminé dont les deux tiers au moins sont des acides aminés cationiques,
- 15 ii) entre lesdits domaines chargés positivement, un groupe de deux à trois résidus d'acide aminé non cationique,
- 20 iii) à l'une et ou l'autre des extrémités N ou C terminale du peptide, un groupe de 0 à 10 et de préférence de 0 à 5 résidus d'acide aminé choisis dans le groupe comprenant des acides aminés non hydrophobes et des acides aminés chargés positivement, mais dans le cas d'un résidu d'acide aminé chargé positivement celui-ci n'est pas directement adjacent aux domaines chargés positivement.
- 25 b) d'au moins un composé anti-bactérien.

2- Composition selon la revendication 1, caractérisée en ce que (i) les acides aminés cationiques des deux domaines chargés positivement sont choisis dans le groupe comprenant l'arginine et la lysine, et en ce que (ii) les acides aminés non cationiques du groupe entre lesdits domaines chargés positivement sont des acides aminés :

- 30 - non hydrophobes, choisis par exemple dans le groupe comprenant : l'acide glutamique, la serine, la glycine, et la glutamine, ou
- la leucine

5 3- Composition selon l'une des revendications 1 ou 2, caractérisée en ce que le peptide est choisi dans le groupe comprenant les séquences suivantes : SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5, SEQ ID NO.6, SEQ ID NO.7, SEQ ID NO.8, SEQ ID NO.9, SEQ ID NO.11.

10 4- Composition selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le peptide est choisi dans le groupe comprenant les séquences suivantes : SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5, SEQ ID NO.6, SEQ ID NO.7.

15 5- Composition selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le composé anti-bactérien est choisi parmi ceux présentant des propriétés physico-chimiques le rendant incapables de traverser la membrane des bactéries gram négatif.

20 6- Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que le composé anti-bactérien est hydrophobe.

25 7- Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que le composé anti-bactérien est de nature chimique non peptidique.

30 8- Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que le composé anti-bactérien est choisi dans le groupe comprenant les composés suivants : les antibiotiques de la famille de macrolides, des ketolides comme

l'erythromycine, la clarithromycine, l'azithromycine, la télithromycine.

9- Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend l'association de peptide(s) et de composé(s) anti-bactérien(s) soit sous la forme d'un mélange, soit d'un produit dans lequel un ou plusieurs peptides identiques ou différents sont liées par covalence à un ou plusieurs composés anti-bactériens identiques ou différents, éventuellement par l'intermédiaire d'un bras espaceur.

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

11- Un produit de formule (I) suivante :
(A-)_m(X)_p(-P)_n (I)
comme défini dans la revendication 9.

12- Utilisation d'un peptide de formule (I)
comme défini dans l'une quelconque des revendications 1
à 4, pour la préparation d'une composition

pharmaceutiques anti-bactérienne, plus particulièrement contre les bactéries gram négatif, dans laquelle ledit peptide est associé à au moins un composé anti-bactérien comme défini dans l'une des revendications 1 ou 5 à 8.

5

13) Utilisation d'un peptide de formule (I) comme défini dans l'une quelconque des revendications 1 à 4, pour la préparation d'une composition pharmaceutiques anti-bactérienne, plus particulièrement contre les bactéries gram négatif, composition dans laquelle ledit peptide traverse la membrane des bactéries de façon à délivrer à l'intérieur de celles-ci un composé antibactérien, comme défini dans l'une des revendications 1 ou 5 à 8, auquel il est associé dans ladite composition.

10

15

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

1/4
LISTAGE DE SEQUENCES

<110> DIATOS

<120> COMPOSITION ANTI-BACTERIENNE, PLUS PARTICULIEREMENT CONTRE LES BACTERIES GRAM NEGATIF, COMPRENNANT UN PEPTIDE ET UN AGENT ANTI-BACTERIEN AVANTAGEUSEMENT HYDROPHOBE

<130> 33356/PCT

<140> PCT/FR04/xxx

<141> 2004-08-13

<150> FR03/09962 et EP 03292030.8

<151> 2003-08-14

<160> 23

<170> PatentIn version 3.1

<210> 1

<211> 16

<212> PRT

<213> Homo sapiens

<400> 1

Arg Lys Lys Arg Arg Arg Glu Ser Arg Lys Lys Arg Arg Arg Glu Ser
1 5 10 15

<210> 2

<211> 18

<212> PRT

<213> Homo sapiens

<400> 2

Arg Lys Lys Arg Arg Arg Glu Ser Arg Arg Ala Arg Arg Ser Pro Arg
1 5 10 15

His Leu

<210> 3

<211> 17

<212> PRT

<213> Homo sapiens

<400> 3

Gly Arg Pro Arg Glu Ser Gly Lys Lys Arg Lys Arg Lys Arg Leu Lys
1 5 10 15

Pro

<210> 4

<211> 15

<212> PRT

<213> Homo sapiens

<400> 4

Gly Lys Arg Lys Lys Lys Gly Lys Leu Gly Lys Lys Arg Asp Pro

1 5 2/4 10

15

<210> 5
<211> 17
<212> PRT
<213> Homo sapiens
<400> 5

Gly Lys Arg Lys Lys Lys Gly Lys Leu Gly Lys Lys Arg Pro Arg Ser
1 5 10 15

Arg

<210> 6
<211> 16
<212> PRT
<213> Homo sapiens
<400> 6

Leu Arg Arg Glu Arg Gln Ser Arg Leu Arg Arg Glu Arg Gln Ser Arg
1 5 10 15

<210> 7
<211> 22
<212> PRT
<213> Homo sapiens
<400> 7

Gly Ala Tyr Asp Leu Arg Arg Glu Arg Gln Ser Arg Leu Arg Arg
1 5 10 15

Arg Glu Arg Gln Ser Arg
20

<210> 8
<211> 19
<212> PRT
<213> Homo sapiens
<400> 8

Val Lys Arg Gly Leu Lys Leu Arg His Val Arg Pro Arg Val Thr Arg
1 5 10 15

Met Asp Val

<210> 9
<211> 10
<212> PRT
<213> Homo sapiens
<400> 9

Ala Lys Thr Gly Lys Arg Lys Arg Ser Gly
1 5 10

<210> 10
<211> 13
<212> PRT
<213> Homo sapiens
<400> 10

Gln Gly Lys Ser Lys Arg Glu Lys Lys Asp Arg Val Phe

1 5 10 3/4

<210> 11
<211> 18
<212> PRT
<213> Homo sapiens
<400> 11

Val Lys Arg Gly Leu Lys Leu Arg Gln Lys Tyr Asn Lys Arg Ala Met
1 5 10 15

Asp Tyr

<210> 12
<211> 22
<212> PRT
<213> Homo sapiens
<400> 12

Asn Pro Gly Val Ser Thr Val Val Leu Gly Ala Tyr Asp Leu Arg Arg
1 5 10 15

Arg Glu Arg Gln Ser Arg
20

<210> 13
<211> 6
<212> PRT
<213> Homo sapiens
<400> 13

Arg Lys Lys Arg Arg Arg
1 5

<210> 14
<211> 3
<212> PRT
<213> Homo sapiens
<400> 14

Arg Pro Arg
1

<210> 15
<211> 7
<212> PRT
<213> Homo sapiens
<400> 15

Lys Arg Lys Lys Lys Gly Lys
1 5

<210> 16
<211> 4
<212> PRT
<213> Homo sapiens
<400> 16

Arg Arg Glu Arg
1

<210> 17

<211> 5
<212> PRT
<213> Homo sapiens
<400> 17

Arg Arg Arg Glu Arg
1 5

<210> 18
<211> 8
<212> PRT
<213> Homo sapiens
<400> 18

Arg Arg Ala Arg Arg Ser Pro Arg
1 5

<210> 19
<211> 9
<212> PRT
<213> Homo sapiens
<400> 19

Lys Lys Arg Lys Arg Lys Arg Leu Lys
1 5

<210> 20
<211> 3
<212> PRT
<213> Homo sapiens
<400> 20

Lys Lys Arg
1

<210> 21
<211> 7
<212> PRT
<213> Homo sapiens
<400> 21

Lys Lys Arg Pro Arg Ser Arg
1 5

<210> 22
<211> 6
<212> PRT
<213> Homo sapiens
<400> 22

Arg Leu Arg Arg Glu Arg
1 5

<210> 23
<211> 7
<212> PRT
<213> Homo sapiens
<400> 23

Arg Leu Arg Arg Arg Glu Arg
1 5

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.