Towards Categorical Diffusion

Toposes in Mondovi, Grothendieck Institute, September 2024

Hans Riess

Autonomous Systems Laboratory Duke University Email: <u>hans.riess@duke.edu</u>

X/Twitter: @hansmriess

Website: <u>hansriess.com</u>

Talk Outline

- ► Many views on diffusion
 - Hodge Laplacian
 - Graph/graph connection Laplacian
 - Combinatorial Hodge Laplacian
- ► Network sheaves
 - Global sections
 - Sheaf Laplacian
- Quantale-enriched categories
 - Quantales
 - Q-categories
 - Weighted meets/joints

- ► Categorical network diffusion
 - QCat-categories
 - *QCat*-valued (co)presheaves
 - Weighted global sections
 - Tarski Laplacian
 - Hodge-Tarski Theorem
 - Tarski Fixed Point Theorem
- Applications

Diffusion in physics

- ▶ Diffusion is central concept in thermodynamics. Heat equation, $\partial_t x = \alpha \nabla^2 x$ with Laplacian ∇^2 models change of temperature or concentration in Euclidean space over time
- ▶ Diffusion generalized to *manifolds*. Suppose M is a *m*-dimensional Riemannian manifold. The deRahm complex is the complex

$$\Omega^0(\mathbb{M}) \xrightarrow{d} \Omega^1(\mathbb{M}) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^m(\mathbb{M}) \xrightarrow{d} 0$$

where $\Omega^k(M)$ is the Hilbert space of differential forms and d is the exterior derivate.

- $\Delta = d\partial + \partial d$ where $\partial = d^*$ is the linear adjoint
- $\omega = \alpha + \beta + \gamma$ where $\alpha \in \text{im } d, \beta \in \text{im } \partial, \gamma \in \text{ker } \Delta$

Hodge Theorem. $H_{dR}^k(\mathbb{M}; \mathbb{R}) \cong \ker \Delta_k$

 $\Delta_0 = d^*d$ is the Laplace-Beltrami operator and generalizes the classical Laplacian.

Diffusion in graph theory

- ▶ Suppose $\mathbb{X} = (\mathbb{X}_0, \mathbb{X}_1)$ is an undirected graph with $|\mathbb{X}_0| = n$ and with label function $x : \mathbb{X}_0 \to \mathbb{R}$.
- ► Two nodes $v, w \in \mathbb{X}_0$ are adjacent, written $v \sim w$, if $(v, w) \in \mathbb{X}_1$. Let deg(v) be the number adjacent nodes
- ► The adjacency matrix of a graph is defined

$$A_{v,w} = \begin{cases} 1, & v \sim w \\ 0, & \text{otherwise} \end{cases}$$

▶ Let $(B_k)_{k\geq 0}$ be a random walk on X; B_0 chosen uniformly at random. The transition matrix of this Markov chain is

$$P_{v,w} = \mathbb{P}(B_k = w | B_{k-1} = v) = \begin{cases} \frac{1}{\deg(v)}, & w \sim v \\ 0, & \text{otherwise} \end{cases}$$

- ► The matrix $L = I D^{-1}A$ is the normalized graph Laplacian for random walks; leads to heat equations
 - Continuous time, $\partial_t x = -Lx$
 - Discrete time, $U_k = (\mathbb{E}[x(B_k) | B_0 = v])_{v \in \mathbb{X}_0}$

Duke

Diffusion in discrete geometry

- Vector diffusion map generalizing random walks on graph with vector features (Singer & Wu 2012)
- ▶ Graph connection Laplacian $\mathcal{L}_{con} = I \mathcal{D}^{-1}\mathcal{A}$ where

$$\mathscr{A}[v,w] = \sum_{w \sim v} w_{v,w} O_{v,w} x_w$$

for parallel transport maps $O_{v,w} \in O(d)$.

- ► Heat equation is $\partial_t \mathbf{x} = -\mathcal{L}\mathbf{x}$ where $\mathbf{x}(0) = (\mathbb{R}^d)^n$
- ► Useful in learning representation of vector-field data (Battiloro, R., et al. 2024)

Diffusion in computational topology

- ► Let X be a simplicial complex or a regular cell complex
- ► The simplicial chain complex

$$C_0(\mathbb{X}) \stackrel{\partial}{\leftarrow} C_1(\mathbb{X}) \stackrel{\partial}{\leftarrow} \cdots \stackrel{\partial}{\leftarrow} C_k(\mathbb{X}) \stackrel{\partial}{\leftarrow} \cdots$$

where
$$\partial([i_0i_1\cdots i_k])=\sum_{j=0}^k (-1)^j[i_0i_1\cdots \hat{i}_j\cdots i_k]$$
. Let $d=\partial^*$ be the adjoint of the boundary map.

- ► Eckmann (1994) suggested a Hodge theory with $\Delta = \partial d + d\partial$ where Hodge decomposition and Hodge theorem $\ker \Delta \cong H_k(\mathbb{X}; \mathbb{R})$ still hold.
- ► ODE $\dot{\mathbf{x}} = -\Delta \mathbf{x}$ converges to a harmonic homology class for any $\mathbf{x}(0) \in C_k(X)$
- ► This theory is extended to cellular sheaves which generalizes both the combinatorial Hodge Laplacian and the connection Laplacian (Hansen & Ghrist, 2019)

Network Sheaves

Network Sheaf Theory

▶ Let X be a graph (general theory of cellular for regular cell complexes). Let $\mathcal{J}^{op} = (X, \preceq)$ be a partial order given by the transitive closure of incidence relation

$$v \le e \ge w$$
 if $e = (v, w)$ is an edge with boundary $\partial(e) = \{v, w\}$

- ► Suppose & is a data category.
 - A network sheaf on $\mathbb X$ valued in $\mathscr C$ is presheaf: $\underline F: \mathscr F^{\mathrm{op}} \to \mathscr C$
 - A network cosheaf is a copresheaf: $\overline{F}: \mathcal{J} \to \mathscr{C}$
 - The object $F_v := \underline{F}v = \overline{F}v$ is called the *stalk* at v
 - The maps

$$\underline{F}_{e \trianglerighteq v} : F_v \to F_e$$

$$\overline{F}_{v \leq e} : F_e \to F_v$$

are called restriction & corestriction maps

 \blacktriangleright The global sections of \underline{F} is defined as $\lim \underline{F}$ which can be identified as the cone

$$\Gamma(\mathbb{X};\underline{F}) = \left\{ (x_v, x_{v,e})_{v \in V, e \in E} : \underline{F}_{e \succeq v}(x_v) = x_{e,v}, x_{e,v} = x_{e,w}, \quad \forall e = (v, w) \right\}.$$

Remark. \underline{F} is actually a sheaf if we put the Alexandrov topology on \mathcal{I} and if \mathscr{C} is complete. Category of sheaves on Alex(\mathcal{I}) equivalent to [\mathcal{I}^{op} , \mathscr{C}] (Curry 2014).

Network Sheaf Theory

Network Sheaf Theory

$$\mathscr{C} = \mathscr{H}ilb$$

- ▶ Suppose $\mathscr C$ is the category $\mathscr Hilb$ of Hilbert spaces and $\underline F$ is a network sheaf over $\mathbb X$ valued in $\mathscr Hilb$ and suppose $\overline F$ is the network cosheaf where $\overline F_{v \leq e}$ is $\underline F_{e \triangleright v}^*$ (linear adjoint)
- $C^0(\mathbb{X};\underline{F}) = \bigoplus_{v \in \mathbb{X}_0} F_v \text{ and } C^1(\mathbb{X};\underline{F}) = \bigoplus_{e \in \mathbb{X}_1} F_e \text{ are the 0 and 1 -cochains with coboundary map}$ $(d\mathbf{x})_e = \sum_{v} [v:e] \ \underline{F}_{v \leq e}(x_v)$

where $[v:e] = \pm 1$ according to orientation

▶ Then, the sheaf Laplacian is the map $\mathcal{L}: C^0(\mathbb{X};\underline{F}) \to C^0(\mathbb{X};\underline{F})$ defined $\mathcal{L}=d^*d$, or, explicitly

$$(\mathscr{L}\mathbf{x})_{v} = \sum_{w \leq e \succeq v} \left(\overline{F}_{v \leq e} \circ \underline{F}_{e \succeq v} \right) (x_{v}) - \left(\overline{F}_{v \leq e} \circ \underline{F}_{e \succeq w} \right) (x_{w})$$

- $\underline{F}_{e \leq v} = \overline{F}_{v \leq e} = I$ implies \mathcal{L} is the graph Laplacian
- $\overline{F}_{v \leq e} \underline{F}_{e \succeq v} = w_{v,w} O_{v,w}$ for $O_{v,w} \in O(d)$, $w_{v,w} > 0$ implies \mathcal{L} is the graph connection Laplacian

Theorem (Ghrist & Hansen 2019; Ghrist & Gould TBD). For any initial condition $\mathbf{x}(0) \in C^0(\mathbb{X}; \underline{F})$, $\dot{\mathbf{x}} = -\mathcal{L}\mathbf{x}$ converges to orthogonal projection onto

$$\{\mathbf{x}: \underline{F}_{e \succeq v}(x_v) = \underline{F}_{e \succeq w}(x_w), \quad \forall e = (v, w)\} \cong \Gamma(X; \underline{F})$$

Duke

Quantales

- ▶ A complete lattice Q is a partially ordered set (Q, \leq) such that the supremum $\bigvee_{s \in S} s$ exists for every subset $S \subseteq Q$.
- ▶ In a complete lattice, the meet (\bigwedge) can be always be written as a join (\bigvee) on downsets
- \blacktriangleright A quantale is a complete lattice with the structure of a monoid $(Q, \otimes, 1)$ such that

$$p \otimes (\bigvee_{q \in S} q) = \bigvee_{q \in S} (p \otimes q)$$
$$(\bigvee_{q \in S} q) \otimes p = \bigvee_{q \in S} (q \otimes p), \forall S \subseteq S \forall p \in Q$$

- ► $[-,-]: Q \times Q \rightarrow Q$ defined by $p \otimes q \leq r$ iff $q \leq [p,r]$ (Adjoint Functor Theorem)
- ► *Q* is unitally bounded if 1 is the terminal object

Assumption. We assume Q is a unitally-bounded commutative quantale.

Quantales Enriched Category Theory Quantales

- ► Facts:
 - If $p \le q$, then $r \otimes q \le r \otimes q$
 - $\bullet \left[p, \bigwedge_{q \in S} q \right] = \bigwedge_{q \in S} [p, q]$
- Examples of quantales:
 - Locales: $p \land (\bigvee_{q \in S} q) = \bigvee_{q \in S} (p \land q)$
 - Boolean algebra: $Q = \{0,1\}$
 - Extended positive reals: $[0,\infty]$ with + under the opposite order \geq
 - Unit interval: Q = [0,1] with a t-norm structure (Hoffman & Reis, 2012)

$$s \otimes t = s \cdot t$$

 $s \otimes t = \max(s + t - 1,0);$
 $s \otimes t = \min(s,t)$

Q-Categories

- ightharpoonup Suppose Q is a quantale. A Q-category $\mathscr C$ is a category enriched in Q
 - Objects: $(\mathscr{C})_0$ is arbitrary
 - Morphisms: $hom_{\mathscr{C}}(x, y) \in Q$
 - Composition Law: $hom_{\mathscr{C}}(y,z) \otimes hom_{\mathscr{C}}(x,y) \leq hom_{\mathscr{C}}(x,z)$
 - Unit Law: $1 \leq \text{hom}_{\mathscr{C}}(x, x)$ (equality if Q is unitary bounded)
- ▶ A Q-funtor between Q-categories $\mathscr C$ and $\mathscr D$ is a function $F:(\mathscr C)_0\to(\mathscr D)_0$ such that

$$hom_{\mathscr{C}}(x, y) \leq hom_{\mathscr{D}}(Fx, Fy)$$

for all $x, y \in (\mathscr{C})_0$

- ightharpoonup A Q-adjunction between Q-categories $\mathscr C$ and $\mathscr D$ are Q-functors $F:\mathscr C\to\mathscr D$ and $G:\mathscr D\to\mathscr C$ such that $hom_{\mathcal{O}}(Fx, y) = hom_{\mathcal{C}}(x, Gx)$
- ► Examples:
 - {0,1}-categories are preorders and {0,1}-functors are monotone maps
 - $[0,\infty]$ -categories are Lawvere metric spaces and $[0,\infty]$ -functors are non-expansive mappings. Duke

More examples of Q-categories

- ▶ \underline{Q} is a Q-category with $(\underline{Q})_0 = Q$ and $hom_{\underline{Q}}(p,q) = [p,q]$
- Let S be a set. Then, S is a Q-category with $(S)_0 = S$ and $hom_S(a,b) = \begin{cases} 1, & a = b \\ 0, & a \neq b \end{cases}$
- ▶ Let $\mathscr C$ be a Q-category. Then, $\mathscr C^{op}$ is a Q-category with $(\mathscr C^{op})_0 = (\mathscr C)_0$ and $\hom_{\mathscr C^{op}}(x,y) = \hom_{\mathscr C}(y,x)$
- ▶ Suppose $(\mathscr{C}_i)_{i \in I}$ is a collection of Q-categories. Then, $\prod_{i \in I} \mathscr{C}_i$ is a Q-category with objects

$$\left(\prod_{i\in I}\mathscr{C}_i\right)_0=\prod_{i\in I}(\mathscr{C}_i)_0$$

and morphisms

$$\hom_{\prod_{i\in I}\mathscr{C}_i}\left((x_i)_{i\in I},(y_i)_{i\in I}\right) = \bigwedge_{i\in I}\hom_{\mathscr{C}_i}(x_i,y_i)$$

Q-Categories (continued)

▶ Suppose $\mathscr C$ and $\mathscr D$ are Q-categories. Then, $[\mathscr C,\mathscr D]$ is a Q-category with objects

$$([\mathscr{C},\mathscr{D}])_0 = \{F : \mathscr{C} \to \mathscr{D}\}$$

and morphism

$$hom_{[\mathscr{C},\mathscr{D}]}(F,G) = \bigwedge_{x \in (\mathscr{C})_0} hom_{\mathscr{D}}(Fx,Gx)$$

- ▶ Suppose $\mathscr C$ is a Q-category. Then, $\hat{\mathscr C}:=\left[\mathscr C^{op},\underline Q\right]$ is the category of presheaves.
- ▶ Suppose $\mathscr C$ is a Q-category. Then, $\check{\mathscr C}:=\left[\mathscr C,\underline Q\right]$ is the category of copresheaves.

Weighted meets and joins

Suppose $\mathscr C$ is a Q-category, $\mathscr D$ is a set, and suppose $D:\mathscr D\to\mathscr C$ and $W:\mathscr D\to\underline Q$ are functions.

- The meet of F weighted by W is an object $\bigwedge_{d\in\mathcal{D}}^W Dd \in (\mathscr{C})_0$ with the universal property: $\hom_{\mathscr{C}}(x, \bigwedge_{d\in\mathcal{D}}^W Dd) = \bigwedge_{d\in\mathcal{D}}[Wd, \hom_{\mathscr{C}}(x, Dd)]$
- The join of F weighted by W is an object $\bigvee_{d \in \mathcal{D}}^W Dd \in (\mathscr{C})_0$ with the universal property: $\hom_{\mathscr{C}}(\bigvee_{d \in \mathcal{D}}^W Dd, x) = \bigwedge_{d \in \mathcal{D}}[Wd, \hom_{\mathscr{C}}(Dd, x)]$

Lemma. Right Q-adjoints preserve weighted meets. Left Q-adjoints preserve weighted joins.

Proof. Suppose $R:\mathscr{C}\to\mathscr{C}'$ and consider the diagram $D:\mathscr{D}\to(\mathscr{C})_0$ with weight $W:\mathscr{D}\to Q$. Then,

$$\begin{aligned} \operatorname{hom}_{\mathscr{C}'} & \left(x, R \bigwedge_{d \in \mathscr{D}}^{W} Dd \right) = & \operatorname{hom}_{\mathscr{C}} \left(Lx, \bigwedge_{d \in \mathscr{D}}^{W} Dd \right) \\ & = & \bigwedge_{d \in \mathscr{D}} \left[Wd, \operatorname{hom}_{\mathscr{C}} (Lx, Dd) \right] \\ & = & \bigwedge_{d \in \mathscr{D}} \left[Wd, \operatorname{hom}_{\mathscr{C}'} (x, RDd) \right] \\ & = & \operatorname{hom}_{\mathscr{C}'} \left(x, \bigwedge_{d \in \mathscr{D}}^{W} RDd \right) \end{aligned}$$

Duke

QCat-enriched categories

- A *QCat*-category consists of
 - a collection $(\mathscr{C})_0$
 - for each pair $X, Y \in (\mathcal{C})_0$ a Q-category $\operatorname{Hom}_{\mathcal{C}}(X, Y)$
 - For every triple $X, Y, Z \in (\mathcal{C})_0$, a Q-functor $\circ_{X,Y,Z} : \operatorname{Hom}_{\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(X,Z)$
- ▶ A pseudofunctor $F: \mathscr{C} \to \mathscr{D}$ between $Q\mathscr{C}at$ -categories is a function $F: (\mathscr{C})_0 \to (\mathscr{D})_0$ and a Q-functor $F_{X,Y}: \operatorname{Hom}_{\mathscr{C}}(X,Y) \to \operatorname{Hom}_{\mathscr{D}}(FX,FY)$ satisfying the compatibility conditions
 - \bullet $F_{X,X}(id_X) \cong id_{FX}$
 - $\bullet \ F_{Y,Z}(g) \circ F_{X,Y}(f) \cong F_{X,Z}(g \circ f)$
- \blacktriangleright Example: $\begin{cal}{l} Q \end{cal} at the category where objects are <math>\begin{cal}{l} Q \end{cal} Categories and where hom objects are <math>\begin{cal}{l} Q \end{cal} Categories and where hom objects are <math>\begin{cal}{l} Q \end{cal} Categories and where hom objects are <math>\begin{cal}{l} Q \end{cal} Categories and where hom objects are <math>\begin{cal}{l} Q \end{cal} Categories and where hom objects are <math>\begin{cal}{l} Q \end{cal} Categories and where hom objects are <math>\begin{cal}{l} Q \end{cal} Categories and where hom objects are <math>\begin{cal}{l} Q \end{cal} Categories and where hom objects are <math>\begin{cal}{l} Q \end{cal} Categories and where hom objects are <math>\begin{cal}{l} Q \end{cal} Categories and (\begin{cal}{l} Q$

$$\operatorname{Hom}_{\mathscr{OCat}}(\mathscr{C},\mathscr{D}) = [\mathscr{C},\mathscr{D}]$$

▶ Suppose $\mathscr C$ and $\mathscr D$ are $\mathscr Q\mathscr C$ at-categories and $F:\mathscr C\to\mathscr D,W:\mathscr C\to \mathscr Q\mathscr C$ are pseudofunctors. Then, the limit of F weighted by W is an object $\lim^W F\in(\mathscr D)_0$ such that the following is an isomorphism

$$\operatorname{Hom}_{\mathscr{D}}(X, \lim^W F) \cong [\mathscr{C}, \underline{\mathscr{QCat}}] \Big(W, \operatorname{Hom}(X, F-) \Big)$$

Duke

QCat-valued (co)presheaves

- ▶ We consider a pair consisting of a presheaf $\underline{F}: \mathcal{J}^{op} \to \underline{QCat}$ and copresheaf $\overline{F}: \mathcal{J} \to \underline{QCat}$
 - \bullet <u>F</u> and \overline{F} map nodes/edges to <u>Q</u>-categories
 - We assume that $\underline{F}v = \overline{F}v = F_v$ and $\underline{F}e = \overline{F}e = F_e$ for all nodes $v \in \mathbb{X}_0$ & edges $e \in \mathbb{X}_1$
 - $\underline{F}_{e \leq v}$ is a Q-functor between Q-categories F_v and F_e
 - $\overline{F}_{v \leq e}$ is a Q-functor between Q-categories F_e and F_v
- ► We also consider the data of a weighting $W: X_0 \times X_0 \to Q$
- ▶ Parallel transport defined for a path $\operatorname{tr}_{\gamma}: F_{v_1} \to F_{v_{\ell}}(\operatorname{Bodnar} \ \operatorname{et} \ \operatorname{al}, 2022)$

Consider a path $\gamma = v_1 \le e_1 \ge v_2 \le e_2 \ge \cdots \le e_{\ell-1} \ge v_\ell$ in \mathbb{X} . Then, $\operatorname{tr}_{\gamma}$ is defined

$$\operatorname{tr}_{\gamma} := \overline{F}_{v_{\ell} \leq e_{\ell-1}} \underline{F}_{e_{\ell-1} \succeq v_{\ell-1}} \cdots \overline{F}_{v_{3} \leq e_{2}} \underline{F}_{e_{1} \succeq v_{2}} \overline{F}_{v_{2} \leq e_{1}} \underline{F}_{e_{1} \succeq v_{1}}$$

Weighted Global Sections

- Let * be the 1-object Q-category
- For e = (v, w) let $\Delta(e)$ be the Q-category with objects $(\Delta(e))_0 = \{v, w\}$ and $\text{hom}_{\Delta(e)}(v, w) = W(v, w)$, $\text{hom}_{\Delta(e)}(w, v) = W(w, v)$
- ▶ Define $\tilde{W}: \mathcal{J}^{op} \to \mathcal{QC}at$ by sending nodes $v \in (\mathcal{J})_0$ to * and edges $e \in (\mathcal{J})_0$ to $\Delta(e)$ with $(\Delta(e))_0 = \partial(e)$ and let $\tilde{W}(e \trianglerighteq v)$ be the functor * $\to \Delta(e)$ which picks out the object v.
- \blacktriangleright Let $\Gamma^W(\mathbb{X};\underline{F}):=\lim^W\!\!\underline{F}$ which is a Q-category, a subcategory of $\prod_{j\in(\mathcal{J})_0}\!\!\underline{F}j$

Weighted global sections (continued)

▶ Define W-global sections to be elements $(x_v)_{v \in \mathbb{X}_0} \in \prod_{v \in \mathbb{X}_0} F_v$ such that for every e = (v, w) we have

$$W(v, w) \leq \text{hom}_{F_e} \left(\underline{F}_{e \succeq v}(x_v), \underline{F}_{e \succeq w}(x_w) \right)$$

$$W(w, v) \leq \text{hom}_{F_e} (\underline{F}_{e \succeq w}(x_w), \underline{F}_{e \succeq v}(x_v))$$

► Remark: if W(u, v) = 1 for all $(u, v) \in X_0^2$, then

$$\hom_{F_e}\left(\underline{F}_{e \succeq v}(x_v), \underline{F}_{e \succeq w}(x_w)\right) = \hom_{F_e}\left(\underline{F}_{e \succeq w}(x_w), \underline{F}_{e \succeq v}(x_v)\right) = 1$$

which implies $\underline{F}_{e \succeq v}(x_v) = \underline{F}_{e \preceq w}(x_w)$.

Theorem. The objects of $\Gamma^W(X;\underline{F})$ are W-global sections. Furthermore,

$$\hom_{\Gamma(\mathbb{X};\underline{F})}((x_{v})_{v\in\mathbb{X}_{0}},(y_{v})_{v\in\mathbb{X}_{0}}) = \bigwedge_{v\in\mathbb{X}_{0}} \hom_{F_{v}}(x_{v},y_{v})$$

Tarski Laplacian

Definition. Given the data

$$\frac{F: \mathcal{J}^{op} \to \mathcal{QCat}}{\overline{F}: \mathcal{J} \to \mathcal{QCat}} \quad W: \mathbb{X}_0 \times \mathbb{X}_0 \to \mathcal{Q},$$

the Tarski Laplacian is the map $\mathcal{L}: \prod_{v \in \mathbb{X}_0} F_v \to \prod_{v \in \mathbb{X}_0} F_v$ given by

$$(\mathcal{Z}\mathbf{x})_{v} = \bigwedge^{W(v,-)} \overline{F}_{v \leq e} \underline{F}_{e \succeq w}(x_{w})$$

$$v \leq e \succeq w$$

where $\mathbf{x} = (x_v)_{v \in \mathbb{X}_0}$.

Theorem. \mathcal{L} is a functor of Q-categories.

Proof. Need to show
$$\lim_{v \in \mathbb{X}_0} (\mathbf{x}, \mathbf{y}) \leq \lim_{v \in \mathbb{X}_0} (\mathcal{L}(\mathbf{x}), \mathcal{L}(\mathbf{y})).$$

Use that \underline{F} and \overline{F} are Q-functors and need a lemma about weighted limits.

Interlude

Analogy between adjoint linear maps and adjoint functors

▶ Suppose $\mathscr C$ and $\mathscr D$ are Q-categories. Recall, $L\dashv R$ is an adjuction when $\hom_{\mathscr D}(Lx,y)=\hom_{\mathscr C}(x,Ry) \text{ for all } x\in (\mathscr C)_0, y\in (\mathscr D)_0$

▶ Suppose V and W are \mathbb{R} -vector spaces. Then, $L:V\to W$ has a linear adjoint when $\langle Lx,y\rangle=\langle x,L^*y\rangle$ for all $x\in V,y\in W$

Computing Global Sections

Definition. Suppose $q \in Q$. Let $S_q(\mathcal{L})$ denote the subcategory of $\prod_{v \in \mathbb{X}_0} F_v$ spanned by $\mathbf{x} = (x_v)_{v \in \mathbb{X}_0}$ such that

$$\hom_{\prod_{v \in \mathbb{X}_0} F_v}(\mathbf{x}, \mathcal{L}\mathbf{x}) \succeq q$$

Lemma. Suppose $\underline{F}_{e \succeq v} \dashv \overline{F}_{v \succeq e}$ for every incidence $v \unlhd e$ in \mathcal{J}^{op} . Then, $\vec{x} \in S_q(\mathcal{L})$ if and only if $\hom_{F_e}(\underline{F}_{e \succeq v}(x_v), \underline{F}_{e \succeq w}(x_w)) \succeq q \otimes W(v, w)$ for every $e = (v, w) \in X_1$

Proof. We have

$$\begin{split} \hom_{\prod_{v \in \mathbb{X}_{0}} F_{v}} (\vec{x}, \mathcal{L}\vec{x}) &= \bigwedge_{v \in \mathbb{X}_{0}} \hom_{F_{v}} (x_{v}, \mathcal{L}(\vec{x})_{v}) \\ &= \bigwedge_{v \in \mathbb{X}_{0}} \hom_{F_{v}} \Big(x_{v}, \bigwedge_{v \leq e \succeq w}^{W(v, -)} \overline{F}_{v \leq e} \underline{F}_{e \succeq w} (x_{w}) \Big) \\ &= \bigwedge_{v \in \mathbb{X}_{0}} \bigwedge_{v \leq e \succeq w} \Big[W(v, w), \hom_{F_{v}} \Big(x_{v}, \overline{F}_{v \leq e} \underline{F}_{e \succeq w} (x_{w}) \Big) \Big] \end{split}$$

Computing Global Sections

Proof (continued).

$$\operatorname{hom}_{\prod_{v \in \mathbb{X}_{0}} F_{v}}(\vec{x}, \mathcal{L}\vec{x}) = \bigwedge_{v \in \mathbb{X}_{0}} \bigwedge_{v \leq e \succeq w} \left[W(v, w), \operatorname{hom}_{F_{v}}(x_{v}, \overline{F}_{v \leq e} \underline{F}_{e \succeq w}(x_{w})) \right] \\
= \bigwedge_{v \in \mathbb{X}_{0}} \bigwedge_{v \leq e \succeq w} \left[W(v, w), \operatorname{hom}_{F_{e}}(\underline{F}_{e \succeq w}(x_{v}), \underline{F}_{e \succeq w}(x_{w})) \right] \\
\succeq q$$

if and only if

$$\left[W(v,w), \hom_{F_e}\left(\underline{F}_{e \succeq v}(x_v), \underline{F}_{e \succeq w}(x_w)\right)\right] \succeq q \text{ for all } e = (v,w) \in \mathbb{X}_1$$

if and only if

$$\hom_{F_v} \left(\underline{F}_{e \succeq w}(x_v), \underline{F}_{e \succeq w}(x_w) \right) \succeq q \otimes W(v, w) \text{ for all } e = (v, w) \in \mathbb{X}_1. \square$$

Hodge-Tarski Theorem

Theorem. Given the data

$$\begin{array}{c} \underline{F} \colon \mathscr{J}^{op} \to \underline{Q\mathscr{C}at} \\ \overline{F} \colon \mathscr{J} \to \underline{Q\mathscr{C}at} \end{array}, \\ W \colon \mathbb{X}_0 \times \mathbb{X}_0 \to Q \\ \text{suppose} \ \underline{F}_{e \rhd v} \dashv \overline{F}_{v \trianglerighteq e} \ \text{for every incidence} \ v \unlhd e \ \text{in} \ \mathscr{J}^{op}. \ \text{Then,} \ \Gamma^W(\mathbb{X};\underline{F}) \cong S_1(\mathscr{L}). \end{array}$$

► Compare to the Hodge Theorem:

$$H^0_{dR}(\mathbb{M};\mathbb{R}) \cong \ker \Delta_0$$

▶ Compare to the Hodge Theorem for network sheaves ($\mathscr{C} = \mathcal{H}ilb$):

$$\Gamma(X;\underline{F}) \cong \ker \Delta_0$$

Tarski Fixed Point Theorem

Theorem. Suppose \mathscr{C} is a Q-category and $\mathscr{L}:\mathscr{C}\to\mathscr{C}$ is a Q-functor. Suppose \mathscr{C} has all weighted joins. Then, for every $q\in Q$, the category $S_q(\mathscr{L})$ generated by $x\in (\mathscr{C})_0$ such that $\hom_{\mathscr{C}}(x,\mathscr{L}x)\geq q$ has all weighted meets and joins.

► Work in progress to prove similar result for categories enriched in an arbitrary cosmos cosmos = bicomplete closed symmetric monoidal

Corollary. Suppose $F_v \in (Q\mathcal{C}at)_0$ has all weighted meets and joins for all $v \in \mathbb{X}_0$. Then, $\Gamma^W(\mathbb{X};\underline{F}) \cong S_1(\mathcal{L})$ has all weighted meets and joins.

Applications

Logic, engineering, & economics

- \blacktriangleright Applications with $F_v = [\mathscr{C}^{op}, Q]$ for \mathscr{C} a discrete Q-category
 - \bullet $Q = \{0,1\}$, network multi-modal logic (R. & Ghrist, 2022)
 - $Q = [-\infty, \infty]$, synchronization of max-plus linear systems (R., Zavlanos, 2023)
 - Q = [0,1], distributed fuzzy formal concept analysis (Ghrist & Lopez, TBD)
- ► Other applications
 - Q-valued preference relations
 - network preference dynamics (R., Ghrist, Henselman-Petrusek, Bell, Zavlanos, 2024)

Thank You

Any questions?

Hans Riess

Autonomous Systems Laboratory Duke University Email: <u>hans.riess@duke.edu</u>

X/Twitter: @hansmriess

Website: <u>hansriess.com</u>

