Tennis project report

Part 1 Algorithm for solving the Tennis environment

The tennis environment involves 2 agents playing against each other. To solve this environment, I used two methods: self-play method and maddpg method. The pseudocodes for the two methods are listed in the following blocks:

Algorithm: self-play with DDPG

- 0: Hyperparameters: Train_every N_learn_updates
- 1: Input: initial policy network (Actor) with parameters θ , Q-function network (Critic) with parameters φ , empty replay buffer D, agent size AS
- 2: Set the target networks' parameters equal to main parameters $\theta_{target} \leftarrow \theta$, $\phi_{target} \leftarrow \phi$
- 3: $episode_count = 0$
- 4: Repeat
- 5: Observe state s and select action $a = \text{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$, a includes action for both agents
- 6: Execute *a* in the environment
- 7: Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 8: **for** both agents **do**
- 9: Store (s,a, r,s',d) in replay buffer D, a is the action taken by this agent, r is the reward received by this agent
- 10. end for
- 11. episode_count += 1
- 12: If s' is terminal, reset environment state.
- 13: **If** episode_count % Train_every_steps == 0 **then**
- 14: **for** N_learn_updates **do**
- 15: Randomly sample a batch of transitions, $B = \{(s,a,r,s',d)\}$ from D
- 16: Compute targets

$$y(r, s', d) = r + \gamma(1 - d)Q_{\phi_{targ}(s', \mu_{\theta_{target}}(s'))}$$

Algorithm: adapted MADDPG

- 0: Hyperparameters: Train_every N_learn_updates
- 1: Input: agent size AS, AS initial policy networks (Actors) with parameters $\theta = \theta_1, ..., \theta_{AS}$, centralized Q-function network (Critic) with parameters ϕ , empty replay buffer D,
- 2: Set the target networks' parameters equal to main parameters $\theta_{target} \leftarrow \theta$, $\phi_{target} \leftarrow \phi$
- 3: $episode_count = 0$
- 4: Repeat
- 5: Observe local state s_{local} , global observation state s_{global} and select action a, $where a_i = \text{clip}(\mu_{\theta_i}(s_i) + \epsilon, a_{Low}, a_{High})$, s_i is the local observation for each agent.
- 6: Execute *a* in the environment
- 7: Observe next local state s_{local}' , next global observation state s_{global}' , reward r, and done signal d to indicate whether s_{local}' is terminal
- 8: Store $(s_{local}, s_{global}, a, r, s_{local}', s_{global}')$ in replay buffer D
- 9: episode_count += 1
- 10: if s_{local}' is terminal, reset environment state
- 11: **If** episode_count % Train_every_steps == 0 **then**
- 12: **for** N_learn_updates **do**
- 13: Randomly sample a batch of transitions, $B = \{(s_{local}, s_{global}, a, r, s_{local}', s_{global}'))\}$ from D
- 14: Compute targets

$$\begin{aligned} &y(r, \mathbf{s_{local}}', \mathbf{s_{global}}', \mathbf{d}) \\ &= r + \gamma (1 - \mathbf{d}) Q_{\phi_{targ}(s'_{global}, \mu_{\theta_{target}}(s_{local}'))} \end{aligned}$$

17: Update Q-function by one step of gradient descent using

$$\nabla_{\Phi} \frac{1}{|B|} \sum_{(s,a,r_{ava},s',d) \in B} (Q_{\Phi}(s,a) - y(r,s',d))^{2}$$

18: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))$$

19: Update target networks with

$$\varphi_{\text{target}} \leftarrow \tau \phi_{target} + (1-\tau)\phi$$

$$\theta_{\text{target}} \leftarrow \tau \theta_{target} + (1 - \tau)\theta$$

20: end for

21: **end if**

22: until environment solved

15: Update Q-function by one step of gradient descent using

$$\nabla_{\Phi} \frac{1}{|B|} \sum_{(s,a,r,s'_{avg},d) \in B} (Q_{\Phi}(s_{global},a) - y(r,s_{local}',s_{global}',d))^{2}$$

16: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s_{global}, \mu_{\theta}(s_{local}))$$

17: Update target networks with

$$\phi_{\text{target}} \leftarrow \tau \phi_{target} + (1 - \tau) \phi$$

$$\theta_{\text{target}} \leftarrow \tau \theta_{target} + (1 - \tau)\theta$$

18: end for

19: **end if**

20: until environment solved

The implementations of self-play method are package <u>self_play</u> and <u>self-play-test</u>. They are implemented based on the same algorithm described above, with a tiny but critical difference which will be discussed in part 3. While implementing the self-play method, I referenced nunesma's reinforcement learning repo.

The implementation of maddpg method is presented in package <u>maddpg agent</u>. While implementing the maddpg method, I referenced the code in udacity's maddpg-lab.

Part 2 Basic neural network design and Hyperparameter selection

Part 2.1: Neural Network architecture

The neural networks for both self-play method and maddpg algorithm are with same hidden layer size.

Actor network:

Layer	Layer type	Input	Output size	Activation function	Parameter Initialization
		size			
1	Fully	State	fc1_units =	Relu	Uniform distribution
	connected	size	128		$\left[-\frac{1}{\sqrt{state\ size}}, \frac{1}{\sqrt{state\ size}}\right]$
2	Fully	128	fc2_units =	Relu	Uniform distribution
	connected		256		$\left[-\frac{1}{\sqrt{128}}, \frac{1}{\sqrt{128}}\right]$
3	Fully	256	Action size	tanh	Uniformly sampled within
	connected				$[-3 \times 10^{-3}, 3 \times 10^{-3}]$

Critic network:

Layer	Layer type	Input size	Output size	Activation function	Parameter Initialization
1	Fully connected	State size (local state size for self-play; Global state for maddpg)	fc1_units =128	Relu	Uniform distribution $\left[-\frac{1}{\sqrt{state\ size}}, \frac{1}{\sqrt{state\ size}}\right]$
2	Batch normalize	128	128	/	/
3	Fully connected	size (action for 1 agent if self-play, action for all agents if maddpg)	fc2_units 256	Relu	Uniform distribution $\left[-\frac{1}{\sqrt{128 + action size}}, \frac{1}{\sqrt{128 + action size}}\right]$
4	Fully connected	256	Action size	/	Uniformly sampled within $[-3 \times 10^{-3}, 3 \times 10^{-3}]$

The model is almost the same as the one I have for my <u>Reacher project</u>. The only difference is that <u>no batchnorm layer</u> is added for the actor model here.

Part 2.2 General Hyperparameters

Hyperparameter	Value	Usage	Reason for choosing
Buffer size	51 1		Referenced <u>nunesma's</u> github.
Batch size	128	Size of each sample from the replay buffer	Default value of the DDPG implementation of Udacity drlnd
Gamma	0.95	Discount factor	Referenced gcolmen's GitHub
Tau	10^{-3}	Coefficient for soft target updates	Value suggested by section 7, <u>DDPG Paper</u>
LR_ACTOR	10^{-4}	Learning rate for the actor network	Referenced gcolmen's GitHub
LR_CRITIC	10^{-3}	Learning rate for the critic network	Referenced gcolmen's GitHub
WEIGHT_DECAY	0	Weight decay for critic network	Suggested by this discussion (require Udacity account to access)
TRAIN_EVERY	20	The agent(s) will learn every TRAIN_EVERY timesteps	Suggested by Udacity benchmark implementation
N_LEARN_UPDATES	10	The agent(s) will update N_LEARN_UPDATES each learning process	Suggested by Udacity benchmark implementation
Theta	0.15	Parameter for Ounoise	Referenced <u>nunesma's</u> <u>github.</u>
Sigma	0.2	Parameter for Ounoise	Referenced <u>nunesma's</u> github.

These Hyperparameters are shared between the self-play method and maddpg method. The hyperparameters almost remain unchanged with respect to the one I have for my <u>Reacher project</u>.

Part 3 Algorithm comparison and important things to note

Part 3.1 Basic performance of self-play and maddpg

The self-play method solves the environment much faster than the maddpg method.

Figure 3.1-1: the score plot of the self-play method. The environment is solved within 238 episodes with self-play.

Figure 3.1-2: the score plot of the maddpg method. The environment is solved within 1225 episodes with maddpg.

Part 3.2 Performance of OUNoise and gaussian noise for self-play exploration

The OUNoise performs much better for the agents to explore the Tennis environment.

Figure 3.2-1: the score plot of the self-play method with OUNoise. The environment is solved within 238 episodes.

Figure 3.2-2: the score plot of the self-play method with gaussian noise. The environment is solved within more than 700 episodes.

Part 3.3 difference between "self_play" and "self-play-test" and the batch normalization problem

The only difference between self-play and self-play-test is that their ddpg agents use different ways to take actions.

Self-play:

```
def act(self, state, add_noise=True):
    """Returns actions for given state as per current policy."""
    state = torch.from_numpy(state).float().to(device)
    self.actor_local.eval()
    with torch.no_grad():
        action = self.actor_local(state).cpu().data.numpy()
    self.actor_local.train()
    if add_noise:
        action += self.noise.sample() * self.noise_coef#self.sigma * np.random.randn(self.action_size);
    return np.clip(action, -1, 1)
```

Self-play-test:

```
def act(self, state, add_noise=True):
    """Returns actions for given state as per current policy."""
    state = torch.from numpy(state).float().to(device)
    self.actor_local.eval()
   with torch.no_grad():
        action = self.actor_local(state).cpu().data.numpy()
    self.actor_local.train()
    if add_noise:
        action += self.noise.sample() * self.noise coef#self.sigma * np.random.randn(self.action size)
    actions = []
   with torch.no_grad():
        for local state in state:
            actions.append(self.actor_local(local_state).cpu().data.numpy())
    if add noise:
        actions += self.noise.sample() * self.noise_coef
    return np.clip(actions, -1, 1)
```

The input state here is a pytorch tensor with size 2×24 (i.e. the local observation for both agents are stacked together). The "self-play" package directly use the state as input to the actor network and get action for both agents together. The "self-play-test" package uses one local observation (i.e. a 1×24 tensor) at a time.

This does not seem to be a big difference, but the "self-play-test" agent will fail in solving the Tennis environment if a batch-normalization layer is included in the actor network. The reason I believe that causes this phenomenon is discussed in "batchnorm problem.ipynb" I wrote.

The same issue occurs when using my maddpg implementation. If I use the batch-normalization layer in my actor model, the agent will fail in solving the environment.

```
def forward(self, state):
    """Build an actor (policy) network that maps states -> actions."""
    #x = F.relu(self.batchnorm_1(self.fc1(state)))
    if state.dim() != 1:
        x = F.relu(self.batchnorm_1(self.fc1(state)))
        #x = F.relu(self.fc1(state))
    else:
        x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return F.tanh(self.fc3(x))
```


Figure 3.3-1: the result for adding batch normalization layer in actor network for maddpg. The maddpg agent cannot solve the environment.

Part 4 Future improvement discussion

For this project, I paid much emphasis on finding out the problem with respect to the batch normalization layer. For future improvements, it may be a good choice for me to try the <u>paramnoise method</u>, which adds noise in neural-network parameters. Also, implementing other actorcritic algorithms may also be a good idea.