STAT 302: Assignment 2

Ziyang Jin # 34893140

February 2018

Question 1: (a) Let Y denote the sum of the values of flipping the coin B times.

Let X_1 denote the value by flipping the coin 1 time, i.e., drawing ball 1. $X_1 \sim Bin(1,0.5)$. Let X_2 denote the value by flipping the coin 2 times, i.e., drawing ball 2. $X_2 \sim Bin(2,0.5)$. Let X_3 denote the value by flipping the coin 3 times, i.e., drawing ball 3. $X_3 \sim Bin(3,0.5)$. The probability of drawing ball 1, 2, 3 is equal to 1/3.

$$Pr(Y = 0) = \frac{1}{3} \times (Pr(X_1 = 0) + Pr(X_2 = 0) + Pr(X_3 = 0))$$

$$= \frac{1}{3} \times (\binom{1}{0}(\frac{1}{2})^0(\frac{1}{2})^1 + \binom{2}{0}(\frac{1}{2})^0(\frac{1}{2})^2 + \binom{3}{0}(\frac{1}{2})^0(\frac{1}{2})^3)$$

$$= \frac{7}{24}$$

$$Pr(Y = 1) = \frac{1}{3} \times (Pr(X_1 = 1) + Pr(X_2 = 1) + Pr(X_3 = 1))$$

$$= \frac{1}{3} \times (\binom{1}{1}(\frac{1}{2})^1(\frac{1}{2})^0 + \binom{2}{1}(\frac{1}{2})^1(\frac{1}{2})^1 + \binom{3}{1}(\frac{1}{2})^1(\frac{1}{2})^2)$$

$$= \frac{11}{24}$$

(1)

 $Pr(Y = 2) = \frac{1}{3} \times (Pr(X_2 = 2) + Pr(X_3 = 2))$ $= \frac{1}{3} \times (\binom{2}{2}(\frac{1}{2})^2(\frac{1}{2})^0 + \binom{3}{2}(\frac{1}{2})^2(\frac{1}{2})^1)$ $= \frac{5}{24}$

$$Pr(Y = 3) = \frac{1}{3} \times Pr(X_3 = 3)$$
$$= \frac{1}{3} \times \left(\binom{3}{3} (\frac{1}{2})^3 (\frac{1}{2})^0 \right)$$
$$= \frac{1}{24}$$

STAT 302

Therefore, the probability mass function is:

$$p(y) = \begin{cases} 7/24, & y = 0\\ 11/24, & y = 1\\ 5/24, & y = 2\\ 1/24, & y = 3 \end{cases}$$

(b) Expectation:

$$\mathbb{E}(Y) = 0 \times \frac{7}{24} + 1 \times \frac{11}{24} + 2 \times \frac{5}{24} + 3 \times \frac{1}{24} = 1$$

Variance:

$$Var(Y) = (0-1)^2 \times \frac{7}{24} + (1-1)^2 \times \frac{11}{24} + (2-1)^2 \times \frac{5}{24} + (3-1)^2 \times \frac{1}{24} = \frac{2}{3}$$

Standard Deviation:

$$SD(Y) = \sqrt{Var(Y)} = \sqrt{\frac{2}{3}}$$

(c) The 3 experiments are independent.

Let Y_1 denote the result we get from the first experiment. From (b) we know that:

$$\mathbb{E}(Y_1) = 1, \ SD(Y_1) = \sqrt{\frac{2}{3}}$$

Let Y_2 denote the result we get from the second experiment. $Y_2 = 2Y_1$, so

$$\mathbb{E}(Y_2) = 2, \ SD(Y_2) = 2\sqrt{\frac{2}{3}}$$

Let Y_3 denote the result we get from the third experiment. $Y_3 = 3Y_1$, so

$$\mathbb{E}(Y_3) = 3, \ SD(Y_3) = 3\sqrt{\frac{2}{3}}$$

So the expectation and standard deviation for the total sum are:

$$\mathbb{E}(Y_1 + Y_2 + Y_3) = 1 + 2 + 3 = 6$$

$$SD(Y_1 + Y_2 + Y_3) = \sqrt{\frac{2}{3}} + 2\sqrt{\frac{2}{3}} + 3\sqrt{\frac{2}{3}} = 6\sqrt{\frac{2}{3}}$$

Question 2: (a) i. The probability of picking the first type of coin is 7/10. Let X_1 be the number of trials Peter needs to have 3 heads when he picks the first type of coin, then $X_1 \sim NegBin(3, 0.5)$.

The probability of picking the first type of coin is 3/10. Let X_2 be the number of trials Peter needs to have 3 heads when he picks the first type of coin, then $X_2 \sim NegBin(3, 0.7)$.

Let X denote the number of trials Peter needs to get 3 heads after he randomly picks a coin. Then the probability mass function is:

$$p(x) = 0.7 \cdot p(x_1) + 0.3 \cdot p(x_2) = \frac{7}{10} \binom{x-1}{2} 0.5^3 0.5^{x-3} + \frac{3}{10} \binom{x-1}{2} 0.7^3 0.3^{x-3}$$

Therefore,

$$p(x) = 0.7 \binom{x-1}{2} (0.5^x + 0.7^2 \cdot 0.3^{x-2}), \ x = 3, 4, 5, \dots$$

STAT 302 Assignment 2

ii. The expectation is:

$$\mathbb{E}(X) = \sum_{x} x \cdot p(x) = 0.7 \ \mathbb{E}(X_1) + 0.3 \ \mathbb{E}(X_2) = 0.7 \times \frac{3}{0.5} + 0.3 \times \frac{3}{0.7} = \frac{192}{35} = 5.486$$

The variance is:

$$Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 = 0.7 \ \mathbb{E}(X_1^2) + 0.3 \ \mathbb{E}(X_2^2) - [\mathbb{E}(X)]^2$$

(1) Let's compute $\mathbb{E}(X_1^2)$

$$\mathbb{E}(X_1^2) = \sum_{x} x^2 \binom{x-1}{2} 0.5^x = 3 \sum_{x} x \binom{x}{3} 0.5^x$$

let y = x + 1, we have

$$\mathbb{E}(X_1^2) = 3\sum_{y} (y-1) \binom{y-1}{3} 0.5^{y-1} = 6\left[\sum_{y} y \binom{y-1}{3} 0.5^y - \sum \binom{y-1}{3} 0.5^y\right]$$

suppose we have $Y_1 \sim NegBin(4, 0.5)$

$$\mathbb{E}(X_1^2) = 6[\mathbb{E}(Y_1) - 1] = 6(\frac{4}{0.5} - 1) = 42$$

(2) Let's compute $\mathbb{E}(X_2^2)$

$$\mathbb{E}(X_2^2) = \sum_{x} x^2 \binom{x-1}{2} 0.7^3 \ 0.3^{x-3} = \frac{30}{7} \sum_{x} x \binom{x}{3} 0.7^4 \ 0.3^{x-3}$$

let y = x + 1, we have

$$\mathbb{E}(X_2^2) = \frac{30}{7} \sum_y (y-1) \binom{y-1}{3} 0.7^4 \ 0.3^{y-4} = \frac{30}{7} (\sum_y y \binom{y-1}{3} 0.7^4 \ 0.3^{y-4} - \sum_y \binom{y-1}{3} 0.7^4 \ 0.3^{y-4})$$

suppose we have $Y_2 \sim NegBin(4, 0.7)$

$$\mathbb{E}(X_2^2) = \frac{30}{7} [\mathbb{E}(Y_2) - 1] = \frac{30}{7} (\frac{4}{0.7} - 1) = \frac{990}{49}$$

(3) Finally, we compute the variance:

$$Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 = 0.7 \times 42 + 0.3 \times \frac{990}{49} - (\frac{192}{35})^2 = \frac{6576}{1225} = 5.368$$

(b) Let Y denote the number of tosses needed to obtain 3 heads. $Y \sim NegBin(3, p)$. Let X_1 denote the event that Peter picks the first type of coin. $Pr(X_1) = 0.7$, p = 0.5. Let X_2 denote the event that Peter picks the second type of coin. $Pr(X_2) = 0.3$, p = 0.7.

$$Pr(Y = 6 | X_1) = {5 \choose 2} 0.5^3 (1 - 0.5)^{6-3} = \frac{5}{32} = 0.15625$$

$$Pr(Y = 6 | X_2) = {5 \choose 2} 0.7^3 (1 - 0.7)^{6-3} = \frac{9261}{100000} = 0.09261$$

According to the PMF obtained in (a),

$$Pr(Y = 6) = 0.7 {5 \choose 2} (0.5^6 + 0.7^2 \cdot 0.3^4) = \frac{68579}{100000} = 0.137158$$

The question is asking about $Pr(X_1 | Y = 6)$. According to Bayes' Theorem:

$$Pr(X_1 \mid Y = 6) = \frac{Pr(Y = 6 \mid X_1)Pr(X_1)}{Pr(Y = 6)} = \frac{0.15625 \times 0.7}{0.137158} = \frac{109375}{137158} = 0.797438$$

(c) Let Y denote the number of trials until the first head is obtained. $Y \sim Geom(p)$. Let W denote the event that is takes at most 4 tosses to obtain the first head. Then we have Pr(W) = Pr(Y = 1) + Pr(Y = 2) + Pr(Y = 3) + Pr(Y = 4). Let X_1 denote the event that Peter picks the first type of coin. $Pr(X_1) = 0.7$, p = 0.5.

$$Pr(W|X_1) = (1 - 0.5)^{1 - 1} \cdot 0.5 + (1 - 0.5)^{2 - 1} \cdot 0.5 + (1 - 0.5)^{3 - 1} \cdot 0.5 + (1 - 0.5)^{4 - 1} \cdot 0.5 = \frac{15}{16} = 0.9375$$

So the probability that Peter correctly identifiers a randomly chosen coin is:

$$Pr(W \cap X_1) = Pr(W|X_1)Pr(X_1) = 0.9375 \times 0.7 = 0.65625$$

Question 3: (a) A is a Hypergeometric random variable with parameters N = 20, n = 10, m = 12. So $A \sim Hypergeom(20, 10, 12)$.

$$Pr(5 \le A \le 7) = Pr(A = 5) + Pr(A = 6) + Pr(A = 7)$$

$$= \frac{\binom{12}{5}\binom{8}{5}}{\binom{20}{10}} + \frac{\binom{12}{6}\binom{8}{4}}{\binom{20}{10}} + \frac{\binom{12}{7}\binom{8}{3}}{\binom{20}{10}} = \frac{153384}{184756} = 0.8301976661$$

B is a Binomial random variable with parameters n = 10, p = 12/20 = 0.6. So $B \sim Bin(10, 0.6)$.

$$Pr(5 \le B \le 7) = Pr(B = 5) + Pr(B = 6) + Pr(B = 7)$$
$$= {10 \choose 5} 0.6^5 \ 0.4^5 + {10 \choose 6} 0.6^6 \ 0.4^4 + {10 \choose 7} 0.6^7 \ 0.4^3 = 0.6664716288$$

A's sampling scheme seems better because there is no "strengthen" of repeated opinion in the final result, so A's scheme can possibly represent a larger number of students than B does.

(b) A is a Hypergeometric random variable with parameters N = 20000, n = 1000, $m = 20000 \times 60\% = 12000$.

So $A \sim Hypergeom(20000, 1000, 12000)$.

$$\mathbb{E}(A) = \frac{nm}{N} = \frac{1000 \times 12000}{20000} = 600$$

B is a Binomial random variable with parameters n = 1000, p = 60% = 0.6. So $B \sim Bin(1000, 0.6)$.

$$\mathbb{E}(B) = np = 1000 \times 0.6 = 600$$

(c) $Pr(\mathbb{E}(A) - 15 \le A \le \mathbb{E}(A) + 15) = \sum_{k=585}^{615} \frac{\binom{12000}{k} \binom{8000}{n-k}}{\binom{20000}{1000}} = 1$

= phyper(615, 12000, 8000, 1000) - phyper(584, 12000, 8000, 1000) = 0.695355

$$Pr(\mathbb{E}(B) - 15 \le B \le \mathbb{E}(B) + 15) = \sum_{k=585}^{615} {1000 \choose k} 0.6^k 0.4^{1000-k}$$

= pbinom(615, size=1000, prob=0.6) - pbinom(584, size=1000, prob=0.6) = 0.6829448 $\text{Diff}_a = 0.8301976661 - 0.6664716288 = 0.1637260373$

STAT 302 Assignment 2

$$\mathtt{Diff}_c = 0.695355 - 0.6829448 = 0.0124102$$

There difference in probabilities found in (c) is significantly smaller than the difference in probabilities found in (a). Therefore, I do not prefer one sampling scheme to the other. When the sample space gets bigger and bigger, the resulting probabilities chosen between binomial and hypergeometric gets closer and closer. If the sample space is large enough, the difference in resulting probabilities becomes insignificant.

(d) [Optional bonus question] Proof:

$$\lim_{N \to \infty} \frac{\binom{m}{x} \binom{N-m}{n-x}}{\binom{N}{n}} = \lim_{N \to \infty} \frac{\frac{m!}{x!(m-x)!} \cdot \frac{(N-m)!}{(n-x)!(N-m-(n-x))!}}{\frac{N!}{n!(N-n)!}}$$

$$= \lim_{N \to \infty} \frac{n!}{x!(n-x)!} \cdot \frac{m!(N-m)!(N-n)!}{(m-x)!(N-m-(n-x))!N!}$$

$$= \frac{n!}{x!(n-x)!} \lim_{N \to \infty} \frac{(m-x+1)...m \cdot (N-m-(n-x)+1)...(N-m)}{(N-n+1)...N}$$

$$= \frac{n!}{x!(n-x)!} (\frac{m}{N})^x (\frac{N-m}{N})^{n-x}$$

$$= \binom{n}{x} p^x (1-p)^{n-x}$$
(2)

line 1 just expand the combinations.

line 2 rearranges the division and pulls out $\frac{n!}{x!(n-x)!}$

line 3 cancels same items in m! with (m-x)!, (N-m)! with (N-m-(n-x))!, N! with (N-n)!.

line 4, notice that there are x items in (m-x+1)...m, and there are (n-x) items in (N-m-(n-x)+1)...(N-m), and there are n items in (N-n+1)...N, also n=x+n-x. So when we take the limit, we can replace all items in (m-x+1)...m with m^x , (N-m-(n-x)+1)...(N-m) with $(N-m)^{n-x}$, (N-n+1)...N with N^xN^{n-x} because they are asymptotically equivalent when taking the limit. Therefore we get the result in line 4.

line 5, notice that expression in line 4 is just the expanded form of line 5, after replacing $\frac{m}{N}$ with p.

Q.E.D.

- Question 4: You are part of a field team in the Strait of Georgia tasked with surveying the nesting habits of a colony of Pelagic Cormorants (*Phalacrocorax pelagicus*), an iconic and precipitously declining species native to coastal British Columbia. Your supervisor wants to ensure the team is big enough to monitor all cormorant pairs in the colony at least 90% of the time. Each member of the field team can reliably observe 5 cormorant pairs simultaneously.
 - (a) The expected number of cormorant pairs at the colony at any one time is known to be 20. How big should the field team be to ensure that at least 90% of the time all pairs can be observed? (*Hint*: use R or an online applet to calculate the appropriate probabilities.)
 - (b) Due to budget considerations, your supervisor was only able to recruit 3 people for the field team (yourself and two others). Unfortunately, when you arrive at the colony of study, you find that the colony is twice the size as anticipated. with twice the average number of cormorant pairs present at any one time. What is the probability that your team of 3 can observe all the cormorant pairs at any one time? (Your supervisor is busy with other tasks so can't help with the observations....)

Question 5: Suppose the amount of energy (in kilocalories), E, provided by the sun to a random arbutus tree on a winter day in Victoria follows a random variable characterized by the following probability density function:

$$f(x) = \begin{cases} cx \sin(x) & \text{if } 0 \le x \le \pi \\ 0 & \text{otherwise} \end{cases}$$

where c is a fixed constant.

- (a) Find the value of c that makes f(x) an honest PDF.
- (b) Find the cumulative distribution function of E.
- (c) Suppose we would like to study how much energy arbutus trees around James Bay in Victoria are absorbing. We start sampling trees at random in James Bay and recording their energy intake from the sun. How likely is it that we have to sample more than 10 trees to find the first with an energy intake exceeding 3 kilocalories?