Estadística II Grado en Matemáticas, UAM, 2020-2021

Hoja 4 (Clasificación)

1. Considera el conjunto de datos bidimensionales correspondientes a dos poblaciones π_0 y π_1 :

X_1	X_2	Y
3	7	0
2	4	0
4	7	0
6	9	1
5	7	1
4	8	1

- a) Estima, a partir de estos datos, la función lineal discriminante de Fisher.
- b) Clasifica la observación $\mathbf{x} = (2,7)^{\mathsf{T}}$ utilizando la regla obtenida en el apartado anterior.
- **2.** Sobre los coeficientes de la regresión logística y del probit. En el modelo de regresión logística (logit), con observaciones $\mathbf{x} = (x_1, \dots, x_k)^{\mathsf{T}}$ de dimensión k, se postula que $p(\mathbf{x}) := \mathbf{P}(Y = 1 | \mathbf{x}) = h(\boldsymbol{\beta}^{\mathsf{T}} \cdot \widetilde{\mathbf{x}})$, donde $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)^{\mathsf{T}}$ es el vector de parámetros, $\widetilde{\mathbf{x}} = (1, x_1, \dots, x_k)^{\mathsf{T}}$, y $h(x) = 1/(1 + e^{-x})$.

El modelo probit sigue el mismo planteamiento, salvo que $h(x) = \Phi(x)$, donde Φ es la función de distribución de la normal estándar.

En este ejercicio se analiza el significado de cada parámetro β_j , en ambos modelos, como respuesta a variaciones de la variable regresora j-ésima. Usaremos la siguiente notación: dada una observación $\mathbf{x} = (x_1, \dots, x_k)$, le asociamos $\mathbf{x}^{(j)} = (x_1, \dots, x_j + 1, \dots, x_k)$, en la que la coordenada j ha subido una unidad.

- a) En el modelo logit, halla una fórmula para β_j en función de $p(\mathbf{x})$ y $p(\mathbf{x}^{(j)})$.
- b) Supongamos que $\beta_i = 2$. La observación **x** tiene probabilidad 30 %. ¿Cuánto vale $p(\mathbf{x}^{(j)})$?
- c) Repite las dos cuestiones anteriores en el modelo probit.
- **3.** a) Considera las dos siguientes funciones de densidad, correspondientes a la distribución de una variable X en dos poblaciones π_0 y π_1 :

$$f_0(x) = 1 - |x|$$
, para $|x| \le 1$,
 $f_1(x) = 1 - |x - 1/2|$, para $-1/2 \le x \le 3/2$.

Identifica las regiones R_0 (de clasificación en π_0) y R_1 (de clasificación en π_1) para los casos $p_0 = 50 \%$ y $p_0 = 20 \%$.

- b) Calcula, en el caso $p_0 = p_1$, la probabilidad de mala clasificación.
- c) Repite el apartado a) tomando $p_0=p_1,\ f_0(x)$ como allí, y $f_1(x)=\frac{1}{4}(2-|x-1/2|),$ para $-3/2\leq x\leq 5/2.$

- **4.** Un vector $\mathbb{X} = (X_1, X_2)^{\mathsf{T}}$ se distribuye, en dos poblaciones π_0 y π_1 , como se indica a continuación:
 - En π_0 , las variables X_1 y X_2 son dos normales estándar independientes.
 - En π_1 , el vector \mathbb{X} se distribuye uniformemente en el rectángulo centrado en el origen cuyos lados vertical y horizontal miden 2 y $e\pi$, respectivamente.

Ponemos que las probabilidades a priori de cada población son iguales. Identifica (y dibuja con precisión) las regiones óptimas R_0 y R_1 de clasificación en π_0 y π_1 , respectivamente.

- **5.** Un vector $\mathbb{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ se distribuye, en dos poblaciones π_0 y π_1 (con probabilidades a priori iguales), como se indica a continuación:
 - En la población π_0 , las variables X_1 y X_2 son dos normales independientes tales que $\mathbf{E}(X_1) = \mathbf{E}(X_2) = a$ y $\mathbf{V}(X_1) = \mathbf{V}(X_2) = 1$.
 - En la población π_1 , el vector \mathbb{X} se distribuye como una normal bidimensional de parámetros $\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ y $V = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Se sabe que a es un entero positivo, y que el punto (5/2,0) pertenece a la región R_1 de clasificación en π_1 , mientras que el punto (1,5/2) pertenece a R_0 , la región de clasificación en π_0 .

¿Cuánto vale a? Representa gráficamente R_0 y R_1 .

6. Considera las dos siguientes funciones de densidad, correspondientes a la distribución de un par de variables (X_1, X_2) en dos poblaciones π_0 y π_1 :

$$f_0(x_1, x_2) = e^{-x_1 - x_2}$$
, para $x_1, x_2 > 0$,
 $f_1(x_1, x_2) = \frac{4}{\pi} e^{-(x_1^2 + x_2^2)}$, para $x_1, x_2 > 0$.

Ponemos $p_1 = p_0$. Identifica la región R_1 (clasificación en π_1) y dibújala (con cierto detalle).

7. Considera las dos siguientes funciones de densidad, correspondientes a la distribución de un trío de variables (X_1, X_2, X_3) en dos poblaciones π_0 y π_1 :

 $f_0(x_1, x_2, x_3)$ es la función indicadora del cubo unidad (tridimensional),

$$f_1(x_1, x_2, x_3) = 12 x_1^2 x_2 x_3$$
, para $0 < x_1, x_2, x_3 < 1$.

Supongamos que $p_1 = p_0$. Identifica la región R_1 (de clasificación en π_1) y, ups, dibújala.

8. Supongamos que la distribución del vector k-dimensional \mathbb{X} en la población π_0 es normal con vector de medias μ_0 y matriz de covarianzas Σ , mientras que la distribución de \mathbb{X} en π_1 es normal con vector de medias μ_1 y matriz de covarianzas Σ (caso homocedástico). Suponemos que las probabilidades a priori de ambas poblaciones son iguales, $p_0 = p_1 = 1/2$.

Recuerda que, en este caso, las regiones de clasificación vienen dadas por

$$R_1 \longrightarrow (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^{\mathsf{T}} \cdot \boldsymbol{\Sigma}^{-1} \cdot \mathbf{x} \ge \frac{1}{2} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^{\mathsf{T}} \cdot \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_0),$$

$$R_0 \longrightarrow (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^{\mathsf{T}} \cdot \boldsymbol{\Sigma}^{-1} \cdot \mathbf{x} < \frac{1}{2} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^{\mathsf{T}} \cdot \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_0).$$

Analiza la variable aleatoria $Y = (\mu_1 - \mu_0)^{\mathsf{T}} \cdot \Sigma^{-1} \cdot \mathbb{X}$ (en las dos poblaciones) y concluye que la probabilidad de clasificación errónea es $1 - \Phi(\Delta/2)$, donde Φ denota la función de distribución de una normal estándar, y

$$\Delta^2 := (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^{\mathsf{T}} \cdot \Sigma^{-1} \cdot (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0).$$

9. El caso de más de dos poblaciones. Fijamos $m \geq 2$. Supongamos que tenemos las poblaciones π_1, \ldots, π_m , con probabilidades a priori p_1, \ldots, p_m . El vector k-dimensional $\mathbb X$ se distribuye con funciones de densidad $f_1(\mathbf x), \ldots, f_m(\mathbf x)$ en las respectivas poblaciones.

Digamos que una cierta regla de clasificación divide el espacio Ω en regiones R_1, \ldots, R_m .

a) Comprueba que la probabilidad de mala clasificación viene dada por

$$\sum_{i=1}^{m} p_i \left(\sum_{1 \le j \le m, j \ne i} \int_{R_j} f_i(\mathbf{x}) d\mathbf{x} \right).$$

- b) Dada una observación \mathbf{x} , calcula las distintas probabilidades a posteriori $\mathbf{P}(\pi_i|\mathbf{x})$.
- c) Deduce que la regla de clasificación de la observación \mathbf{x} dada por "clasificamos \mathbf{x} como proveniente de π_i si $\mathbf{P}(\pi_i|\mathbf{x})$ es máxima" se traduce en

clasificamos **x** como proveniente de π_i si $p_i f_i(\mathbf{x}) > p_j f_j(\mathbf{x})$ para todo $j \neq i$.

Si hay "empates", se puede clasificar \mathbf{x} en cualquiera de las poblaciones empatadas.

(La regla es equivalente a $\ln(p_i f_i(\mathbf{x})) > \ln(p_j f_j(\mathbf{x}))$ para todo $j \neq i$, siempre que las funciones de densidad no se anulen en \mathbf{x}).

d) Supongamos que cada $f_i(\mathbf{x})$ es una normal con media $\boldsymbol{\mu}_i$ y matriz de covarianzas Σ_i . Comprueba que si definimos, para cada $i=1,\ldots,m$,

$$d_i(\mathbf{x}) = -\frac{1}{2} \ln(|\Sigma_i|) - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^{\mathsf{T}} \cdot \Sigma_i^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu}_i) + \ln(p_i),$$

entonces la regla de clasificación es: "clasificamos \mathbf{x} en π_i si $d_i(\mathbf{x})$ es el mayor de $d_1(\mathbf{x}), \dots, d_m(\mathbf{x})$ ".

e) Escribe la (simplificada) expresión de $d_i(\mathbf{x})$ en el caso en el que $\Sigma_1 = \cdots = \Sigma_m = \Sigma$.