EVONIK SUSTAINABILITY CHALLENGE 2025

Recycling of PET Waste to High-Purity BHET via Glycolysis

Two-Page Interim Report

By Team Name: ChemiEvolve

Members:

Bhavishya Gupta (BTech 3rd Year Chemical Engineering)

Suyash Jindal (BTech 3rd Year Chemical Engineering)

Abhijit Dalai (BTech 3rd Year Chemical Engineering)

1. Block Diagram of the Proposed Process:

2. Preliminary Process Description:

1. Feed Composition & Pre-Treatment:

- o **Input**: PET waste (80–85% PET) with impurities.
- Pre-treatment: Washing and drying to remove water and contaminants.

2. Depolymerization via Glycolysis:

Process: Glycolysis of PET using sodium alkoxide as a catalyst.

- \circ **Reaction:** PET + Ethylene Glycol \rightarrow Bis(2-hydroxyethyl) terephthalate (BHET).
- o **Temperature & Pressure**: Optimized for efficient breakdown.

3. Separation & Purification

- Filtration of unreacted solids.
- Crystallization of BHET to achieve high purity.

4. Product Output

o Target: 30,000 tons per annum (30 kta) of high-purity BHET.

3. Plan of Activities (Until 7th March 2025):

Date	Activity
5th - 10th	Refine process flow, reaction conditions, and catalyst selection. Begin in-
Feb	depth literature research for optimizing glycolysis conditions.
11th - 17th	Develop and set up detailed Aspen/Hysys simulations to model the PET
Feb	depolymerization process and identify bottlenecks.
18th - 24th	Analyze simulation results, optimize separation techniques, and validate
Feb	process efficiency in terms of energy consumption and product purity.
25th Feb -	Conduct a detailed economic feasibility study , including cost
2nd Mar	estimation for raw materials, energy consumption, and operational
	expenses.
3rd - 5th	Compare alternative process routes and evaluate equipment options to
Mar	enhance efficiency and reduce costs.
6th - 7th	Finalize and submit the 10-page interim report , including process
Mar	diagrams, economic insights, and key findings.

4. Economic Viability & Considerations:

- Cost Benchmarking: BHET production cost must be ≤ 70-80% of PET sales price to be economically viable for repolymerization.
- Plant Location: India, selected based on raw material availability, labor costs, and logistics advantages.
- **Key Cost Factors**: Raw material procurement, catalyst consumption, energy usage, and efficiency of the purification steps.