EE2302 Foundations of Information Engineering

Assignment 10 (Solution)

1. Totally, there are **four** possible Cayley's tables, as shown below:

*	e	а	b	С
e	e	а	b	С
а	а	e	С	b
b	b	С	e	а
С	С	b	а	e

*	e	а	b	С
e	e	а	b	С
а	а	е	С	b
b	b	С	а	е
С	С	b	e	а

*	e	а	b	С
e	e	а	b	С
а	а	b	С	e
b	b	С	e	а
С	С	е	а	b

*	e	а	b	С
e	e	а	b	С
а	а	С	e	b
b	b	e	С	а
С	С	b	а	e

There are **two** distinct groups, since the last three tables are the same.

- In the third table, if we swap the roles of *a* and *b*, then we obtain the second table.
- In the fourth table, if we swap the roles of *a* and *c*, then we obtain the second table.

2. There are four subgroups, namely, $\langle \{0\}, + \rangle$, $\langle \{0,3\}, + \rangle$, $\langle \{0,2,4\}, + \rangle$, \mathbb{Z}_6 , where the operation + is addition modulo 6.

Remark: $\langle \{0,1\}, + \rangle$ is **not** a subgroup because 1 + 1 = 2, which does not belong to $\{0, 1\}$, violating the closure property. Intuitively, a group (or subgroup) must have some kind of symmetry. You should be able to see that $\{0, 3\}$ is somewhat symmetric in

The elements 0 and 3 are marked in bold to highlight the "symmetry". The same applies to $\{0, 2, 4\}$ as follows:

3. a) Multiplication table:

0	e	r	r²	f	rf	r²f
e	е	r	r^2	f	rf	r ² f
r	r	r²	e	rf	r²f	f
r ²	r^2	е	r	r²f	f	rf
f	f	r²f	rf	е	r ²	r
rf	rf	f	r²f	r	е	r ²
r²f	r ² f	rf	f	r^2	r	е

b) No, it is not an Abelian group. It is because the multiplication table is not symmetric across the diagonal, i.e., the operation is not commutative. For example, $r \circ f = rf$ but $f \circ r = r^2 f$, which are not equal.

a) There are eight of them:

1	2	3	1		4	3		2	4
3	4	4	2		2	1		1	3
	e	r		rr			rrr		
2	1	4	2		3	4		1	3
4	3	3	1		1	2		2	4
	f	1	rf		rrf = frr rrr		rrrf	= fr	

- b) The order of rf is 2. It can be seen that rfrf = e
- c) No. It is easy to check that $fr = rrrf \neq rf$.
- d) Ten subgroups: $\{e\}, \{e, rr\}, \{e, f\}, \{e, rrf\}, \{e, rrrf\}, \{e, rr, rrrr\}, \{e, rr, rrf, rrrf\}, \{e, f, rr, rrf\}, \{e, r, rr, rrr, f, rrf, rrrf\}.$