קווים כלליים לפתרון תרגיל בית 11 (ואחרון...)

22: 00 תאריך הגשה: יום חמישי, 23/1/2014, עד שעה

:1 שאלה

א. רשמו את פיתוח מקלורן עד סדר רביעי של הפונקציות הבאות:

arcsin x^3 1

 $f^{(3)}(x)=$ דרך אי: חישוב מפורש של הנגזרות מראה כי כל הנגזרות מתאפסות ב- 0 פרט לשלישית, שהיא

$$T_4(x) = \frac{6}{3!}x^3 = x^3$$
, ולכן $f^{(3)}(0) = 6$, ולכן ולכן $\frac{6x^2 + 69x^6 + 6}{(1 - x^6)^{\frac{5}{2}}}$

 $T_1(x^3)=x^3$ עד סדר ראשון ($T_1(x)=x$ לכן אכן, ($T_1(x)=x$), לכן שדר דרך שדר אחד מדכ $T_1(x^3)=x^3$, ולכן אחד מדרך בי: נפתח את מופיעה בפולינום, לכן לכן $\hat{T}_4(x)=x^3$. (כאשר \hat{T} הוא הפולינום המבוקש).

 $. \ln(1 + \sin x)$.2

$$f(0)=0$$
 , $f'(0)=1$, $f''(0)=-1$, מקבלים פורש של הנגזרות והצבת של הנגזרות והצבת 0, מקבלים אייי

$$T_4(x) = x - rac{x^2}{2} + rac{x^3}{6} - rac{x^4}{12}$$
 , ולכן: $f^{(3)}(0) = 1$, $f^{(4)}(0) = -2$

ב. נתון כי
$$f(x) = 1 + 2x + x^2 + 2x^3 + o(x^3)$$
 וכי

$$g(x) = 3 + x + 3x^2 + x^3 + o(x^3)$$
 . חשבו את $g(x) = 3 + x + 3x^2 + x^3 + o(x^3)$

עייי הכפלת הביטויים הנתונים, נקבל כי המקדם של x^3 הוא בי $1\cdot 1 + 2\cdot 3 + 1\cdot 1 + 2\cdot 3 = 14$, (מתקבלים של הביטויים הנתונים, נקבל כי המקדם של

 $\frac{(f \cdot g)^{(3)}(0)}{3!} = 14$ ממכפלות של מחוברים שסכום החזקות שלהם הוא 3), לכן:

$$(f \cdot g)^{(3)}(0) = 14 \cdot 6 = 84$$

<u>: 2 שאלה</u>

 10^{-4} חשבו את $\sqrt{5}$ בדיוק של

נפתח את מסביב ל- 4, נשתמש בנוסחת השארית לפי לגרנזי ונדרוש ש- $|R_n(5)| < 10^{-4}$. ניתן לחשב ולמצוא כי לפתח את

לכל
$$c$$
 ביניים c מכיוון שנקודת הביניים $f^{(n)}(x)=\frac{(-1)^{n+1}\left(1\cdot3\cdot5\cdots(2n-3)\right)}{2^{n}\cdot\frac{2n-1}{2}}$, תהיה תמיד בין 4 ל- 5, יתקיים לכל c

כי (למשל, באינדוקציה) ניתן להראות (למשל, באינדוקציה) ולכן .
$$\left|f^{(n)}(c)\right| \leq \frac{1\cdot 3\cdot 5\cdots (2n-3)}{2^{n-4}} = \frac{1\cdot 3\cdot 5\cdots (2n-3)}{2^{3n-1}}$$

כדי המספיק הסדר המספיק, ולכן (5)| <
$$10^{-4}$$
, כלומר $n \geq 6$, כלומר $\frac{1}{2^n \cdot n!} < 10^{-4}$, ולכן הסדר המספיק כדי ,
$$\frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{(2^{3n-1})n!} \leq \frac{1}{2^n \cdot n!}$$

: להשיג את הטעות המבוקשת הוא 5. הפיתוח מסדר 5 של \sqrt{x} מסביב ל- 4 הוא

: ונקבל:
$$x=5$$
 נציב $x=5$ נעיב $x=5$ ($x=5$)

: 3 שאלה

נשתמש בנתונים ונפתח את f מסביב ל- 0 עד סדר ראשון עם שארית ע"פ לגרנז': x^2 נשתמש בנתונים ונפתח את t מסביב ל- 0 עד סדר ראשון עם שארית ע"פ לגרנז': t מסביב ל- 0 עד סדר ראשון עם ארית ע"פ לגרנז': t מסבים t מסבים לכן קיים t כך ש- t מכן t מכן קיים t מכן t

ב. נתון כי f גזירה פעמיים ברציפות בסביבת 2, וכן כי f''(2)=-1 , תהי f''(2)=-1 , ותהי $b_n=\frac{f(a_n)-f(2)}{a_n-2}$, ותהי $a_n\to 2$, ותהי $a_n\to 2$

נפתח את f עד סדר 1 עם שארית מסביב ל- 2 , נקבל: $f''(c)(x-2)^2$ נפתח את f עד סדר 1 עם שארית מסביב ל- 2 , נקבל: $f''(c)(x-2)^2$ נפתח את f עד סדר 1 עם שארית מסביב ל- 2 , נקבל: $f''(c)(x-2)^2$ בין $f''(c)(a_n-2)^2$ בין $f''(c)(a_n-2)^2$ (משר f מין f מין f לכן f מין f נפתח את f עד סדר 1 עד f מין f מין f נפתח את f נפתח

ג. נתון כי f גזירה פעמיים, וכן כי f'(0)=0 , f''(0)=2 , f''(0)=3 . $\lim_{x\to 0}\frac{f(x)-\alpha\sin x-\beta\cos x}{x^2}=L$. בך שיתקיים: f(0)=0 , f(0)=0

אם $\frac{f(x)-\alpha\sin x}{x^2}$ אם $\beta=0$ לכן בהכרח $\beta=0$. לכן בהתאם לשימן של β , לכן בהתאם ליש בלופיטלי אינו סופי אלא $\pm\infty$ בהתאם ליש בלופיטלי ליעד בהתאם ליש בלופיטלי ונקבל $\frac{f'(x)-\alpha\cos x}{2x}$ כמו מקודם, נדרוש שהמונה ישאף ל- 0 אחרת נקבל $\alpha=f'(0)=2$ אינסופי, ומכיוון ש- $\alpha=f'(0)=2$ גזירה, ובפרט רציפה, מתקיים $\alpha=f'(0)=2$ ליעד ש- $\alpha=f'(0)=2$ נשים לב כי לא ידוע ש- $\alpha=f'(0)=2$ את הגבול ליעד את בול ליעד את בפיתוח מקלורן של $\alpha=f'(0)=2$ את הגבול של $\alpha=f'(0)=2$ נשתמש בפיתוח מקלורן של $\alpha=f'(0)=2$ מסדר $\alpha=f'(0)=2$ נשתמש בפיתוח מקלורן של $\alpha=f'(0)=2$ מסדר $\alpha=f'(0)=2$ נשתמש בפיתוח מקלורן של $\alpha=f'(0)=2$ מסדר $\alpha=f'(0)=2$

: ולכן,
$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + o(x^2) = 2x + \frac{3}{2}x^2 + o(x^2)$$

ניתן להשתמש בלופיטל כדי לראות שהמחובר $\frac{f(x)-2\sin x}{x^2} = \frac{2x+\frac{3}{2}x^2-2\sin x + o(x^2)}{x^2} = \frac{3}{2} + \frac{2(x-\sin x)}{x^2} + \frac{o(x^2)}{x^2}$

. הדרוש. L -ה הו $\frac{3}{2}$ -ל שואף כולו הביטוי לכן לכן , $\frac{o(x^2)}{x^2} \to 0$ וזה ה-0 וזה ה-ס שואף ל- ס, ובנוסף

$$\alpha=2$$
 , $\beta=0$, $L=\frac{3}{2}$: בסה"כ

:4 שאלה

: היעזרו בפיתוחים המתאימים לחישוב הגבולות הבאים

$$. \lim_{x \to 0} \frac{\sin\left(\cos x - e^{-\frac{x^2}{2}}\right)}{x^4} . \aleph$$

$$e^{-\frac{x^2}{2}} = 1 - \frac{x^2}{2} + \frac{\left(\frac{x^2}{2}\right)^2}{2} + o(x^4) = 1 - \frac{x^2}{2} + \frac{x^4}{8} + o(x^4)$$

מכאן .
$$\sin\left(\cos x-e^{-rac{x^2}{x}}
ight)=-rac{x^4}{12}+o(x^4)$$
 : ולכן , $\cos x-e^{-rac{x^2}{2}}=rac{x^4}{4!}-rac{x^4}{8}+o(x^4)=-rac{x^4}{12}+o(x^4)$

$$. \lim_{\chi \to 0} \frac{\sin \left(\cos \chi - e^{-\frac{\chi^2}{2}}\right)}{\chi^4} = \lim_{\chi \to 0} \frac{-\frac{\chi^4}{12} + o(\chi^4)}{\chi^4} = \lim_{\chi \to 0} -\frac{1}{12} + \frac{o(\chi^4)}{\chi^4} = -\frac{1}{12}$$
נקבל:

.
$$\lim_{x\to 0} \frac{\arcsin\left(e^{\sin(x^2)}-1\right)}{\cos(x^2)-1+x^2}$$
 . \pm

 $e^{\sin(x^2)} = 1 + x^2 + o(x^2)$ לכן , $e^{\sin(x^2)} = 1 + x^2 + o(x^2)$, לכן ,

עבור המכנה, מכיוון שאין חזקות. $arcsin(e^{\sin(x^2)}-1)=x^2+o(x^2)$. ומכאן ומכאן ומכאן. $e^{\sin x^2}-1=x^2+o(x^2)$

. ולכן: $\cos x^2 = 1 + o(x^2)$ ולכן: $\cos x = 1 + o(x)$ מתקיים, $\cos x$ מתקיים, אי-זוגיות בפיתוח של

וווית, מכיוון ב- 1 זהותית, מדובר ב- 1 וווו
$$\lim_{x \to 0} \frac{x^2 + o(x^2)}{x^2 + o(x^2)}$$
 לכן יש לחשב. $\cos x^2 - 1 + x^2 = x^2 + o(x^2)$

. ונקבל: x^2 -ם מונה ומכנה ב- x^2 -ם מונה ומכנה ב- x^2 ונקבל: שאין סיבה להניח שהשאריות במונה ובמכנה שואפות באותו

.1 ומאריתמטיקה של גבולות נקבל כי הגבול הוא ,
$$\lim_{x \to 0} \frac{x^2 + o(x^2)}{x^2 + o(x^2)} = \lim_{x \to 0} \frac{1 + \frac{o(x^2)}{x^2}}{1 + \frac{o(x^2)}{x^2}}$$

: 5 שאלה

: יהיו f , g פונקציות קמורות. הוכיחו

.א. $f \cdot g$ קמורה

$$f(x)=x^2$$
 , $g(x)\equiv -1$: לא נכון, דיינ

ב. $f \circ g$ קמורה.

. (ואז
$$f\circ g)(x)=-x^2$$
 (ואז $f(x)=-x$, $g(x)=x^2$: לא נכון, דיינ

. קמורה
$$h(x) = \max\{f(x), g(x)\}$$
 ג

נכון: יהיו $x_1 < x_2$ צייל כי לכל $th(x_1) + (1-t)h(x_2) \ge h(tx_1 + (1-t)x_2)$, $t \in (0,1)$ אם נראה כי $th(x_1) + (1-t)h(x_2) \ge g(tx_1 + (1-t)x_2)$ וגם $th(x_1) + (1-t)h(x_2) \ge f(tx_1 + (1-t)x_2)$

: נסיים, אבל זה מתקיים בהכרח כי $h \geq f,g$ ומכיוון שf,g קמורות, ולכן

$$d$$
 עבור אופן עבור , $th(x_1)+(1-t)h(x_2)\geq tf(x_1)+(1-t)f(x_2)\geq f(tx_1+(1-t)x_2)$

שאלה 6:

f א. הוכיחו כי אם f גזירה פעמיים ברציפות בקטע סגור, אז בקטע זה ניתן לרשום את הוכיחו כהפרש של שתי פונקציות קמורות.

רמז: השתמשו בכך שהנגזרת השניה רציפה בקטע הסגור.

 $|f''(x)| \leq M$ כך ש- $|f''(x)| \leq M$ בקטע (כלומר $|f''(x)| \leq M$ כך ש- $|f''(x)| \leq M$ כך פונקציה $|f(x)| + Mx^2$ ברור כי $|f(x)| + Mx^2$ פונקציה קמורה, נראה כי גם $|f(x)| + Mx^2$ פונקציה הגזירה פעמיים ברציפות, ולכן נוכל לבדוק קמירות ע"י הנגזרת השניה, שמקיימת $|f(x)| + Mx^2$ ברור כי $|f(x)| + Mx^2$ (כלומר או אכן פונקציה קמורה. $|f(x)| + Mx^2$) ברור כי $|f(x)| + Mx^2$ ברוך כי $|f(x)| + Mx^$

. $\lim_{x o \infty} f(x) = \infty$ ב. תהי f פונקציה זוגית, קמורה ושאינה קבועה. הוכיחו כי

(זהירות! לא נתון כי f גזירה, אפילו לא פעם אחת!)

לא, נסתכל להניח כי $f(x_1) < f(x_2)$ כי אם לא, נסתכל $f(x_1) \neq f(x_2)$ כי אם לא, נסתכל $f(x_1) \neq f(x_2)$ כי אם לא, נסתכל לכן קיימים $f(-x_2) < f(-x_1)$ (כי $f(-x_2) < f(-x_1)$ והם מקיימים לא, נסתכל יוגית).

מלמת השיפועים, לכל x>x>0 מתקיים : $\frac{f(x_2)-f(x_1)}{x_2-x_1} \geq \frac{f(x_2)-f(x_1)}{x_2-x_1}$ מלמת השיפועים, לכל $x>x>x_2$ מתקיים : $\frac{f(x_2)-f(x_1)}{x_2-x_1} \geq \frac{f(x_2)-f(x_1)}{x_2-x_1}$ מלמת השיפועים, לכל $x>x>x_2$ מתקיים : $\frac{f(x_1)-f(x_1)}{x_2-x_1} \geq \frac{f(x_2)-f(x_1)}{x_2-x_1}$ אגף ימין שואף ל- $\frac{f(x_1)-f(x_1)}{x_2-x_1} \geq \frac{f(x_2)-f(x_1)}{x_2-x_1}$ אגף ימין שואף ל- $\frac{f(x_1)-f(x_1)}{x_2-x_1} \geq \frac{f(x_2)-f(x_1)}{x_2-x_1}$ אגף ימין שואף ל- $\frac{f(x_1)-f(x_1)}{x_2-x_1} \geq \frac{f(x_2)-f(x_1)}{x_2-x_1}$

<u>:7 שאלה</u>

. הפונקציה את ושרטטו $f(x) = \left((x-7)(x+4)\right)^{\frac{1}{2}}$ הפונקציה חקרו את הפונקציה

תחום הגדרה : x = -4 , x = 7 , שורשים : x = -4 , x = 7 , שורשים , $x \ge 7$, $x \le -4$. אין אסימפטוטות אנכיות או אופקיות, נקודות מינימום , $x = -\frac{3}{2}$. אם הפונקציה מקבלת 0, הפונקציה קעורה בכל תחום ההגדרה שלה, אסימפטוטות משופעות : $x = -\frac{3}{2}$.

 $x \to -\infty$ כאשר $-x - \frac{3}{2}, x \to \infty$ כאשר

