

Komponentenkalibrierung

- Kalibrierung und Stabilitätsanalyse eines Laserscanners
- "Warm-up"-Effekt und Abweichung zu einem Absolutinterferometer

Systemkalibrierung

Kamera & IMU
 Kamera & Laserscanner
 Laserscanner
 absolute

Selbstkalibrierung

 Automatische Kalibrierung von (multiplen) Laserscannern auf Basis ebener Merkmale in strukturierten Umgebungen

Konfigurationsanalyse

Für Ebenen-basierte Laserscanner-Kalibrierung

Untersuchung der Langzeitstabilität, geometrische Kalibrierung und Einfluss von Temperaturänderungen

- Verwendung dreier Velodyne VLP-16 Sensoren für allgemeinere Aussage
 - → Vergleichbare Ergebnisse für alle drei Sensoren
- Temperaturbereich von 0 bis 40°C
- Betrachtung einzelner Laserstrahlen
 - 2º Inkrement der einzelnen Laserstrahlen innerhalb des 30° FoV

Temperaturstabilität

- Messung zu ebenen Wänden mit einer Entfernung von 5 Metern
- Dargestellt für drei repräsentative Laserstrahlen

→ Keine Abhängigkeit von der Temperatur zu identifizieren

Glennie et al. (2016)

45

Geometrische Kalibrierung

- Innere Parameter laut Hersteller:
 - Horizontale & Vertikale Rotationskorrektion
 - Horizontaler & Vertikaler Offset
 - Offset & Maßstabsfehler der Distanzmessung
- Bestimmung auf Basis von Referenzebenen und Ausgleichung
 - Verbesserung um 10-20% auf Basis des RMSE der Widersprüche
 - Kalibrierparameter jedoch zeitlich nicht stabil
- Rauschverhalten der individuellen Laserstrahlen auf Basis der Residuen
 - Verhalten ist nicht einheitlich

hoch korreliert

Glennie et al. (2016)

Langzeitstabilität

- Durchführung der Untersuchungen für einen Zeitraum von 3 Stunden mit Mittelung der Messdaten jede Minute
- → Wertebereich zwischen -2 bis +2 cm
- → Kein signifikanter warm-up Effekt
- Beobachtung eines langfristigen Drifts in der Streckenmessung der individuellen Laserstrahlen (aber keine Korrelation mit Temperatur)

Glennie et al. (2016)

Cattini et al., 2020 – Komponentenkalibrierung

Langzeitstabilität für einen Zeitraum von 12 Stunden

- Vergleich des VLP-16 mit einem Absolutinterferometer
- Referenzfläche mit 72% Reflektivität in 6 m Entfernung
- Konstante Temperatur- und Lichtbedingungen

Cattini et al. (2020)

Cattini et al., 2020 – Komponentenkalibrierung

 Der "warm-up"-Effekt wird als die benötigte Zeit definiert, welche es benötigt, damit die Messwerte innerhalb eines gewissen Toleranzbereiches (untere T₁ und obere T₁ Grenze) bleiben

Cattini et al. (2020)

Cattini et al., 2020 – Komponentenkalibrierung

Langzeitstabilität

- t_{warm-L} nach 30 min und t_{warm-U} nach 42 min erreicht
- Histogramm der Distanzen nach dem warm-up beschreiben Normalverteilung
- Abweichungen zur Referenz im mm nach warm-up für bis zu 21 m

Zhou et al., 2018 – Systemkalibrierung (Kamera & LS)

Bestimmung der 6-DoF Transformationsparameter zwischen Kamera und Laserscanner mittels eines Schachbretts

- Entweder mindestens drei unterschiedliche Ausrichtungen <u>oder</u> eine Ausrichtung mit 3D Linien/Kanten und Ebene
- Geometrische Restriktionen: Kanten L_{ij} & Ebene π_i in Punktwolke und Kamerabild sind pro Pose N identisch:
 - ightharpoonup Kostenfunktion: $\tilde{\mathbf{R}}_L^C = \arg\min_{\mathbf{R}_L^C} \sum_{i=1}^N \sum_{j=1}^4 \left\| \mathbf{R}_L^C \mathbf{d}_{ij}^L \mathbf{d}_{ij}^L \right\|^2 + \left\| \mathbf{R}_L^C \mathbf{n}_i^L \mathbf{n}_i^C \right\|^2$

Zhou et al., 2018 – Systemkalibrierung (Kamera & LS)

 Erfassung von 32 Posen mit jeweiligen Punktwolken (Velodyne VLP-16) und Kamerabildern

Extended Kalman Filter (EKF) für die Bestimmung der 6-DoF Transformationsparameter zwischen Kamera und IMU inklusive Berücksichtigung der zeitlichen Komponente in Echtzeit

- Keine besondere Hardware neben einem Kalibrier-Schachbrett wie z.B. Drehtisch oder referenzierender Sensor (z.B. LS, LT)
- Geometrischer Zusammenhang zwischen Kamera- (C), IMU- (I) und globalen- (G) Koordinatensystem ist gesucht
 - 6-DoF Parameter zwischen C und I
 - Wissen über bekannte Landmarken im globalen System

Mirzaei and Roumeliotis (2008)

Methodisches Vorgehen:

- 1. Prozessierung der Bilddaten → initiale Schätzung der Kamerapose über Schachbrett-Features (Ecken, Kanten, etc.)
- 2. Näherungswerte für IMU-Pose (z.B. aus CAD-Modell)
- Sequentielle Schätzung mit zusätzlichen Messwerten von Kamera und IMU in einem EKF
 - Zustandsvektor

- b. Prädiktion mit Beschleunigungen und Drehraten (100 Hz)
- Filterung mit Punktbeobachtungen (Bildkoordinaten) für einzelne Features (3,75 Hz)

Mirzaei and Roumeliotis (2008)

Mirzaei and Roumeliotis, 2008 – Systemkalibrierung (Kamera & IMU)

- Initialisierung der Offsets (Drehwinkel- & Beschleunigungssensor) über statische Erfassung für 80 Sekunden
 - statische Restriktion: keine Änderung der Position und Orientierung
- Nichtlineare Bewegung der Plattform mit ständiger Sicht auf das Schachbrett mit einer Entfernung von 0,5 bis 2,5 Meter in allen Translationen und Orientierungen für 50 Sekunden

	$x \pm 3\sigma$ (cm)	y $\pm 3\sigma$ (cm)	$z\pm3\sigma$ (cm)		
Initial	2 ± 9	-6 ± 9	10 ± 9		
EKF	7.93 ± 0.76	-5.49 ± 0.38	12.09 ± 0.35		
BLS	7.43 ± 0.15	-5.19 ± 0.13	12.12 ± 0.10		
	roll±3σ (°)	pitch $\pm 3\sigma$ (°)	yaw±3σ (°)		
Initial	-90 ± 6	0 ± 6	-90 ± 6		
EKF	-88.69 ± 0.07	0.40 ± 0.08	-90.89 ± 0.08		
BLS	-88.71 ± 0.02	0.38 ± 0.04	-90.93 ± 0.05		

Mirzaei and Roumeliotis (2008)

"Automatische" Kalibrierung zwischen mehreren Laserscannern

- Erfassung und Verwendung natürlicher ebener Oberflächen in der Umgebung von mehreren unterschiedlichen Posen → geometrische Restriktionen
- Unsicherheit der 6-DoF Kalibrierparameter hängt von der geometrischen Struktur der natürlichen Umgebung/Merkmale ab

$$\boldsymbol{n}_h = \boldsymbol{R}\boldsymbol{n}_t$$
$$d_h = \boldsymbol{T}\boldsymbol{n}_t + d_t$$

- Mindestens drei Ebenen müssen pro Pose erfasst werden
- Näherungswerte R⁰, T⁰ müssen für das Fitting der Punktwolken bekannt sein
- Check der Datensätze hinsichtlich Beobachtbarkeit
 - Räumliche Verteilung der Ebenen geeignet?
 - Sind genügend Ebenen erfasst?
- Geometrische Restriktionen anbringen

Einfluss der räumlichen Verteilung der Ebenen

Num	1	2	3	4	5	6	7	8	9	10
α (deg)	90	70	110	50	100	60	20	60	10	70
β (deg)	90	80	120	90	120	100	90	60	90	110
γ (deg)	90	90	120	110	130	130	90	60	90	150
Num	16	17	18	19	20	21	22	23	24	25
α (deg)	40	40	70	40	30	30	10	20	10	10
β (deg)	80	50	110	40	30	30	30	20	20	10
γ (deg)	50	70	170	70	50	30	30	20	20	10

$$m{A}_t = \left[m{n}_{t_1} \ m{n}_{t_2} \ \cdots \ m{n}_{t_m}
ight]^T$$
 $m{D}_t = m{A}_t^T m{A}_t, m{F}_T = m{D}_t^{-1}$
 $m{RDOP} = \sqrt{tr(m{F}_R)}$
 $m{TDOP} = \sqrt{tr(m{F}_T)}$

Shi et al. (2021)

Einfluss der Anzahl an Ebenen

Konfigurationsanalyse für Ebenen-basierte Kalibrierung eines Profillaserscanners für genaue, zuverlässige/robuste und sensitive Schätzung mit geringen Korrelationen

 Verwendung eines dauerhaft installierten Kalibrierfelds (5 m x 20 m) aus Mauerscheiben mit Sichtbetonoberflächen mit hoher Planarität

 Bestimmung von Referenzwerten für Normalen der Ebenenanordnung

$$\begin{bmatrix} x_l, y_l, z_l \end{bmatrix}_{TLS} \cdot \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix} - d_n \stackrel{!}{=} 0$$

Georeferenzierte Punkte des MSS müssen Ebenengleichung erfüllen

$$\underbrace{\begin{bmatrix} \begin{bmatrix} t_e \\ t_n \\ t_h \end{bmatrix} + \mathbf{R}_b^n(\phi, \theta, \psi) \cdot \begin{pmatrix} \mathbf{R}_s^b(\alpha, \beta, \gamma) & \begin{bmatrix} 0 \\ (d_s + d_0) \cdot \sin b_s \\ (d_s + d_0) \cdot \cos b_s \end{bmatrix} + \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} \end{pmatrix} \end{bmatrix}^T}_{[x_l, y_l, z_l]_{MLS}^T} \cdot \begin{bmatrix} \bar{n}_x \\ \bar{n}_y \\ \bar{n}_z \end{bmatrix} - 1 \stackrel{!}{=} 0$$

 Ausgleichung der Kalibrierparameter nach MdkQ im Gauß-Helmert Modell

- Anordnung der Ebenen hat signifikanten Einfluss auf die Qualität der Kalibrierparameter
- Realer Kalibrierprozesses wird für zwei Konfigurationen simuliert
- → Einfluss wenn Kalibrierparameter von wahren Werten abweichen

>5

Schätzung und Langzeitstabilität der 6-DoF Kalibrierparameter

Block	Datum	GPS-Zeit	Durchläufe
1	31.07.2019	13:40 - 13:55	14
2	05.08.2019	09:05 - 09:25	21
3	05.08.2019	10:30 - 10:50	31
4	05.08.2019	11:45 - 12:10	32

Parameter	Δx	Δy	Δz	α	β	γ	d_0
Mittelwert	-0,5559 m	0,0452 m	$0,2994 \mathrm{\ m}$	$0,\!1420^{\circ}$	-29,9620°	$0,0058^{\circ}$	-0,05 mm
Zielgenauigkeit (σ)	1,0 mm	1,0 mm	1,5 mm	0,0050°	0,0050°	0,0050°	0,1 mm
1 Durchlauf $(\hat{\sigma})$ 15 Durchläufe $(\bar{\sigma}_{15})$	0,9 mm 0,2 mm	1,1 mm 0,3 mm	4,5 mm 1,2 mm	0,0012° 0,0003°	0,0188° 0,0049°	0,0166° 0,0043°	0,08 mm 0,02 mm

Korrelationsuntersuchung bei den 6-DoF Kalibrierparametern

Möglichst unabhängige Bestimmung der Transformationsparameter

→ Verwendung mehrere unterschiedlicher Standpunkte um

geometrische Konfiguration zu variieren

Korrelationsuntersuchung bei den 6-DoF Kalibrierparametern

Korrelationsuntersuchung bei den 6-DoF Kalibrierparametern

- Möglichst unabhängige Bestimmung der Transformationsparameter
- → Verwendung mehrere unterschiedlicher Standpunkte um geometrische Konfiguration zu variieren
 - Kurze Distanzen für Translationen
 - Lange Zielweiten für Orientierungen
 - Gespiegelte Aufstellungen für etwaige Distanzoffsets
 - Verwendung originärer Messelemente

Ernst (2021)

Korrelationsuntersuchung bei den 6-DoF Kalibrierparametern

- Möglichst unabhängige Bestimmung der Transformationsparameter
- Verwendung mehrere unterschiedlicher Standpunkte um geometrische Konfiguration zu variieren

Verwendung von Position 1

Verwendung von Position 1 bis 5

- Okunsky, M. V., and N. V. Nesterova. "Velodyne LIDAR method for sensor data decoding." IOP Conference Series: Materials Science and Engineering. Vol. 516. No. 1. IOP Publishing, 2019.
- Glennie, C. L.; Kusari, A. und Facchin, A. (2016): CALIBRATION AND STABILITY ANALYSIS OF THE VLP-16 LASER SCANNER. In: ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-3/W4, 55–60.
- On Chan, T.; Lichti, D. D.; Roesler, G.; Cosandier, D. und Al-Durgham, K. (2019): RANGE SCALE-FACTOR CALIBRATION OF THE VELODYNE VLP-16 LIDAR SYSTEM FOR POSITION TRACKING APPLICATIONS. In: The 11th International Conference on Mobile Mapping Technology (MMT 2019), 1–6.
- Cattini, S.; Rovati, L.; Di Cecilia, L. und Ferrari, L. (2020): Comparison of the VLP-16 LiDAR system with an absolute interferometer. In: I2MTC 2020, IEEE. Piscataway, NJ, USA, 1–6.
- Ouyang, C.; Shi, S.; You, Z.; Zhao, K. Extrinsic Parameter Calibration Method for a Visual/Inertial Integrated System with a Predefined Mechanical Interface. Sensors 2019, 19, 3086.
- F. M. Mirzaei and S. I. Roumeliotis, "A Kalman Filter-Based Algorithm for IMU-Camera Calibration: Observability Analysis and Performance Evaluation," in IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1143-1156, Oct. 2008.
- Cui, J., Niu, J., Ouyang, Z., He, Y., & Liu, D. (2020). ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems. arXiv preprint arXiv:2011.08516.
- Voges, R. (2020): Bounded-error visual-LiDAR odometry on mobile robots under consideration of spatiotemporal uncertainties. Ph.D. Thesis. Institutionelles Repositorium der Leibniz Universität Hannover.
- Zhou, L.; Li, Z. und Kaess, M. (2018): Automatic Extrinsic Calibration of a Camera and a 3D LiDAR Using Line and Plane Correspondences. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 5562–5569.
- Shi, B., Yu, P., Yang, M., Wang, C., Bai, Y., & Yang, F. (2021). Extrinsic Calibration of Dual LiDARs Based on Plane Features and Uncertainty Analysis. IEEE Sensors Journal, 21(9), 11117-11130.
- Heinz, E. (2021): Beiträge zur Kalibrierung und Evaluierung von Multisensorsystemen für kinematisches Laserscanning. Ph.D. Thesis. Bonn.
- Ernst, D. (2021): Development of a quality model for the uncertainty judgement of a kinematic TLS-based multi-sensor system. Master Thesis (unpublished). Leibniz Universität Hannover. Geodätisches Institut.
- Ernst, D., Vogel, S., Neumann, I. und Alkhatib, H. (2022): Analyse unterschiedlicher Positionskombinationen zur intrinsischen und extrinsischen Kalibrierung eines Velodyne VLP-16. In: AVN (Allgemeine Vermessungs-Nachrichten). Akzeptiert.

- Strübing, T. und Neumann, I. (2013): Positions- und Orientierungsschätzung von LIDAR-Sensoren auf Multisensorplattformen. . In: Zeitschrift für Geodäsie, Geoinformation und Landmanagement. Strübing, Thorsten; Neumann, Ingo. 138 3, 210–221.
- Schön, S.; Brenner, C.; Alkhatib, H.; Coenen, M.; Dbouk, H.; Garcia-Fernandez, N.; Fischer, C.; Heipke, C.; Lohmann, K.; Neumann, I.; Nguyen, U.; Paffenholz, J.-A.; Peters, T.; Rottensteiner, F.; Schachtschneider, J.; Sester, M.; Sun, L.; Vogel, S.; Voges, R. und Wagner, B. (2018): Integrity and Collaboration in Dynamic Sensor Networks. In: Sensors. Schön, Steffen; Brenner, Claus; Alkhatib, Hamza; Coenen, Max; Dbouk, Hani; Garcia-Fernandez, Nicolas; Fischer, Colin; Heipke, Christian; Lohmann, Katja; Neumann, Ingo; Nguyen, Uyen; Paffenholz, Jens-André; Peters, Torben; Rottensteiner, Franz; Schachtschneider, Julia; Sester, Monika; Sun, Ligang; Vogel, Sören; Voges, Raphael; Wagner, Bernardo. 18 7, 21.
- Keller, F. und Sternberg, H. (2013): Multi-Sensor Platform for Indoor Mobile Mapping: System Calibration and Using a Total Station for Indoor Applications. In: Remote Sensing. Keller, Friedrich; Sternberg, Harald. 5 11, 5805–5824.
- Hartmann, J.; Gösseln, I. von; Schild, N.; Dorndorf, A.; Paffenholz, J.-A. und Neumann, I. (2019): OPTIMISATION OF THE CALIBRATION PROCESS OF A K-TLS BASED MULTI-SENSOR-SYSTEM BY GENETIC ALGORITHMS. . In: ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Hartmann, J.; Gösseln, I. von; Schild, N.; Dorndorf, A.; Paffenholz, J.-A.; Neumann, I. XLII-2/W13, pp. 1655–1662.
- Vogel, S. (2020): Kalman Filtering with State Constraints Applied to Multi-sensor Systems and Georeferencing. Ph.D. Thesis. München. DGK. Reihe C. 856.
- Heinz, E. (2021): Beiträge zur Kalibrierung und Evaluierung von Multisensorsystemen für kinematisches Laserscanning. Ph.D. Thesis. Bonn.
- Pandey, G.; Mcbride, J. R.; Savarese, S. und Eustice, R. M. (2012): Automatic Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual Information. . In: Proceedings of the AAAI National Conference on Artificial Intelligence, 2053–2059.
- Schneider, D.; Maas, H.-G. (2007): Integrated Bundle Adjustment of Terrestrial Laser Scanner Data and Image Data with Variance Component Estimation. The Photogrammetric Journal of Finland, Volume 20/2007, pp. 5 - 15.
- Stenz, U.; Hartmann, J.; Paffenholz, J.-A.; Neumann, I. High-Precision 3D Object Capturing with Static and Kinematic Terrestrial Laser Scanning in Industrial Applications—Approaches of Quality Assessment. Remote Sens. 2020, 12, 290.
- Voges, R. (2020): Bounded-error visual-LiDAR odometry on mobile robots under consideration of spatiotemporal uncertainties. Ph.D. Thesis. Institutionelles Repositorium der Leibniz Universität Hannover.
- Zhou, L.; Li, Z. und Kaess, M. (2018): Automatic Extrinsic Calibration of a Camera and a 3D LiDAR Using Line and Plane Correspondences. . In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 5562–5569.