A Large Scale Study of the Small Sample Performance of Random Coefficient Models of Demand

Benjamin S. Skrainka

University of Chicago The Harris School of Public Policy skrainka@uchicago.edu

May 17, 2012

Introduction

Objectives

This talk's objectives:

- Discuss Monte Carlo experiments to characterize properties of Berry, Levinsohn, and Pakes (1995) (BLP) estimator:
 - 'BLP' characteristics IV vs. cost shifter IV
 - ▶ Asymptotics as $J \to \infty$ and $T \to \infty$
 - Finite sample bias
 - Bias of different quadrature methods
- Demonstrate power of modern software engineering tools to answer practical econometric questions, such as behavior of an estimator:
 - ► PADS cluster + parameter sweep
 - ▶ C++ and Eigen for implementing high performance code
 - State of the art BLP implementation
- Generate data from structural model

Overview

Introduction

Estimation Infrastructure

Data Generation

Experiments & Results

Estimation Infrastructure

Overview of Infrastructure

This project depends heavily on modern software engineering and numerical methods:

- Robust and speedy implementation of BLP estimation code
- Robust and speedy implementation of code to generate data
- PADS Cluster
- ▶ Data analysis scripts (R, Python, BASH)

State of the Art BLP Implementation

This study develops what will hopefully become the new reference implementation:

- ▶ Best optimization strategy: MPEC (Su & Judd, 2011)
- ▶ Best quadrature rules: SGI (Skrainka & Judd, 2011)
- ▶ Modern solver: SNOPT (Gill, Murray, & Saunders, 2002)
- Numerically robust:
 - ► C++
 - ► Eigen, a cutting edge template library for linear algebra at least as fast as Intel MKL!
 - Higher precision arithmetic (long double)
 - Analytic derivatives

Rigorous Verification

Your work lacks credibility unless you verify your code:

- Unit test every function
- Write functions which are easy to verify:
 - Do one thing only, but do it well
 - Easier to understand
 - Easier to compose
- ► Check all derivatives against finite difference with a suitable tolerance (usually 1.0e 6 is reasonably good)
- May require writing extra functions like profit function to verify FOC for Bertrand-Nash price equilibrium
- ▶ If you don't test it no matter how simple it is probably wrong!
- In addition, compared results to Dubé, Fox, & Su MATLAB code.

Finding a Global Optimum

Even with MPEC, BLP is a difficult problem to solve reliably:

- Often very flat perhaps even non-convex!
- Used 50 starts per replication:
 - ▶ Some did not converge, especially for larger *T* and *J*
 - Some did not satisfy feasibility conditions, especially for larger T and J, despite generating initial guesses which satisfied constraints
- Restarted every successful start to make sure it converged to the same point
- Performed for both BLP and cost shifter IV

PADS Cluster

PADS cluster provides High Throughput Computing (HTC):

- ► PBS Job Manager facilitates parameter sweeps, an easy technique for parallelizing work which is independent
- Uses scripts to generate data or estimate code for some chunk of runs (1 to 50) per task
- Chunk jobs together for shorter jobs to spread scheduler overhead across more jobs
- ► Could never estimate BLP > 300,000 times on my laptop!

Parallelization

Parameter Sweep provides easy parallelization:

- ► Each job:
 - Estimates one or more synthetic dataset and starting value(s)
 - Short runs are chunked to minimize scheduler overhead
 - Independent of all other jobs
 - Writes results to several output files
- ► A separate program computes bias, RMSE, and other statistics from the output files

Job Times

Distribution of Runtimes for T=50 and J=100 with BLP IV

Dealing with Problems

Common problems running on a cluster include:

- ▶ Jobs which do not complete on time:
 - If several jobs are chunked together, must rerun with a smaller chunk size
 - Common because most starts are quick but there is a long thin tail of slow starts
- Jobs which crash:
 - ▶ Running on a large scale exposes flaws in your code
 - Must find bug in code and fix!
- Node failures and cluster crashes ⇒ must figure out what to rerun
- ▶ Impossible to read 1,000,000 output and error files!

Diagnosing Problems

When you scale an experiment up, you encounter many unexpected problems:

- Must automate verification as much as possible
- Perform some random inspections
- Wrote scripts to perform common tasks:
 - ► Compare optimum from original start and restart run
 - Check residuals when computing price equilibrium
 - ► Check solver exit codes
 - Compute statistics about job time used for an experiment
 - Generate PBS files
- Unix makes it easy to create tools with bash, Python, grep, sed, awk, R, etc.

Data Generation

Data Generation

Data must be generated from a structural model:

- ► Armstrong (2011):
 - ▶ Proves general result that for logit, nested logit, random coefficients, BLP, etc., these models are only identified as $J \to \infty$ with cost shifters.
 - ▶ I.e., BLP is unidentified with BLP instruments in large markets!
 - Corrects Berry, Linton, Pakes (2004)
 - Shows that you must generate data from a structural model or the data will not behave correctly asymptotically
- Note: each firm must produce at least two products to use BLP instruments

Intuition

Intuition comes from logit:

► FOC:
$$0 = s_j + (p_j - c_j) \frac{\partial s_j}{\partial p_j}$$
 or $p_j = c_j - \frac{s_j}{\partial s_j / \partial p_j}$

► This simplifies to: $p_j = c_j + \frac{1}{\alpha_{price} (1 - s_j)}$

- ▶ As $J \to \infty$, $s_i \to 0$ so product characteristics drop out of pricing equation!

Implementation

Generating synthetic data correctly is more difficult than estimating BLP!

- ▶ Must generate from a structural model (Armstrong, 2011)
- ▶ Used same software technologies (C++, Eigen, higher precision arithmetic, C++ Standard Library) as estimation code
- ▶ Used PATH to solve for price equilibrium

Solving for Price Equilibrium

Must solve for Bertrand-Nash Price Equilibrium:

- Used PATH (Ferris, Kanzow, & Munson, 1999) solver
 - ► Hard for large *J* because dense
 - ► Hard to solve because FOCs are highly non-linear
 - ▶ Gaussian root finding is $O(N^3)$ so becomes slow quickly as problem grows
 - BLP demand is often highly non-linear
- Solved for each market individually, exploiting block diagonal structure
- Used multiple starts per market
- Transformed problem by dividing by market shares:
 - Facilitates convergence
 - Solved original problem when transform failed

Experiments & Results

Experiments

The study performs the following experiments:

- Asymptotics
- ► Finite sample bias
- Bias of different quadrature methods

Design

Experiments consist of:

- ▶ The same fixed DGP (β, Σ)
- $T = \{1, 10, 25, 50\}$
- $J = \{12, 24, 48, 100\}$
- ▶ 100 replications (data sets) per experiment
- Point estimates computed using 50 starts and a restart on each optimum
- ► Two instrumentation strategies (BLP, Cost)
- Smaller data sets nested in larger ones
- ▶ An estimation ranges from seconds to more than 24 hours

Computational Cost

Some statistics about these experiments:

- > 85,656 CPU-hours
- ► > 27,969 jobs
- ▶ 16 experiments × 100 replications × 50 starts × 2 restarts × 2 IV types = 320,000 estimations of BLP!

Results: Overview

Bottom line: there is pronounced and persistent finite sample bias:

- Traditional BLP instruments:
 - Biased point estimates and elasticities
 - Bias always in one direction!
 - ► T and J not yet large enough for asymptotics to work
- Cost shifter instruments: better than BLP instruments but finite sample bias still present for most parameters
- ▶ Numerical problems increase with *T* and *J*
- pMC is more biased than SGI quadrature
- Fundamental problem: 'a few, weak instruments'

Results: $\widehat{\theta_{13}}$ – BLP IV

Т	J	Bias	Mean Abs Dev	RMSE	! <i>CI</i> ⁹⁵
1	12	-2	3	5.7	0
1	24	-0.72	1.9	3.2	0
1	48	-0.52	1.9	3	0
1	100	-0.57	1.7	2.3	0
10	12	-1.7	2.6	6	1
10	24	-0.65	2	3.6	0
10	48	-0.64	1.9	3.2	0
10	100	-0.83	2	3.9	0
25	12	-0.62	1.9	3.1	3
25	24	-0.96	2.3	3.7	1
25	48	-1.3	2.8	7.6	0
25	100	-0.95	2.1	3.7	0
50	12	-0.39	1.6	2.7	1
50	24	-1.2	2.5	5.4	1
50	48	-1.2	2.2	5.2	0
50	100	-0.63	1.9	3	0

Results: $\widehat{\theta_{13}}$ – Cost IV

Т	J	Bias	Mean Abs Dev	RMSE	! <i>Cl</i> ⁹⁵
1	12	-0.38	1.1	1.5	1
1	24	-0.05	1	1.3	0
1	48	0.012	0.99	1.2	2
1	100	0.057	0.72	0.88	0
10	12	-0.62	1.3	2	0
10	24	-0.18	0.8	1.3	0
10	48	-0.15	0.62	0.86	0
10	100	-0.027	0.39	0.52	1
25	12	-0.38	1	1.6	0
25	24	-0.3	0.73	0.98	0
25	48	-0.11	0.45	0.63	0
25	100	-0.033	0.25	0.33	0
50	12	-0.081	0.79	1.1	0
50	24	-0.22	0.55	1	0
50	48	-0.026	0.28	0.4	0
50	100	0.003	0.19	0.26	0

M D : .: I DMCE (A

Results: $\widehat{\theta_{21}}$ – BLP IV

Т	J	Bias	Mean Abs Dev	RMSE	! <i>Cl</i> ⁹⁵
1	12	3.1	3.9	7.3	0
1	24	4.8	5.3	10	0
1	48	5.7	6.5	23	0
1	100	2.1	2.7	5.2	0
10	12	3.5	4.1	8.1	0
10	24	2.9	3.3	7.1	1
10	48	4.7	5.1	9.9	0
10	100	1.7	2.2	6.7	0
25	12	3.6	4.1	7	0
25	24	3.3	3.6	7.2	0
25	48	2.9	3.3	7.4	0
25	100	2.2	2.7	6.7	0
50	12	2.5	3	5.6	0
50	24	4.1	4.5	11	0
50	48	1.5	2	3.6	0
50	100	2.7	3.1	7.4	0

Results: $\widehat{\theta_{21}}$ – Cost IV

-	Т	J	Bias	Mean Abs Dev	RMSE	! <i>CI</i> ⁹⁵
	1	12	7.4	8.2	13	0
	1	24	8.4	8.8	14	0
	1	48	7.2	8.1	13	0
	1	100	6.2	7.1	12	1
	10	12	8.0	1.8	2.7	0
	10	24	4	4.9	11	1
	10	48	2.9	3.8	6.6	0
	10	100	5.9	6.8	11	0
	25	12	1.5	2.3	3.4	0
	25	24	3.6	4.4	7.7	0
	25	48	3.7	4.6	7	1
	25	100	6.2	7	11	0
	50	12	0.97	2	3.1	0
	50	24	3.9	4.6	12	0
	50	48	3.6	4.2	6.3	1
	50	100	5.9	6.6	12	0

M D : .: I DMCE C O

Results: Elasticities - BLP IV

ı	J	Bias	Mean Abs Dev	Med Abs Dev	RMSE
1	12	-0.77	2.2	0.94	4.9
1	24	-0.095	1.5	0.77	3.3
1	48	-0.082	1.6	0.91	2.7
1	100	-0.39	1.5	0.98	2.5
10	12	-0.5	1.7	0.81	3.3
10	24	-0.57	1.7	0.83	3.3
10	48	-0.16	1.5	0.97	2.2
10	100	-0.53	1.7	0.93	3.3
25	12	-0.3	1.4	0.94	2.7
25	24	-0.72	1.8	1.1	3
25	48	-0.87	2.2	1.1	4.9
25	100	-0.61	1.7	0.97	2.7
50	12	-0.43	1.5	0.94	2.6
50	24	-0.77	1.9	0.91	3.8
50	48	-0.97	1.9	1.1	4
50	100	-0.56	1.8	<□ > <□ > 1 <u>1</u> > < <u>1</u>	2.9 ∽ ۹

M - - - - A I - - D -

DMCE

Results: Elasticities - Cost IV

	Т	J	Bias	Mean Abs Dev	Med Abs Dev	RMSE
-	1	12	0.059	0.86	0.52	1.4
	1	24	0.17	0.83	0.55	1.3
	1	48	0.11	0.85	0.6	1.3
	1	100	-0.59	1.3	0.43	60
	10	12	-0.098	0.69	0.48	1
	10	24	-0.095	0.52	0.33	0.82
	10	48	-0.15	0.48	0.28	4.2
	10	100	-0.072	0.3	0.19	0.54
	25	12	-0.23	0.56	0.38	0.83
	25	24	-0.22	0.48	0.34	0.69
	25	48	-0.062	0.3	0.19	0.45
	25	100	-0.16	0.3	0.13	0.68
	50	12	-0.27	0.54	0.32	0.92
	50	24	-0.32	0.46	0.22	1
	50	48	-0.1	0.2	0.12	0.33
	50	100	-0.15	0.24	<□ → < □ 0.098	4 € ▶ 0.57 % ٩ €

DMCE

Results: Solver Convergence

SNOPT has increasing difficulty finding an optimum as the number of markets and products increase:

- ▶ Most common problem: cannot find a feasible point
- Other problems:
 - ► Hits iteration limit
 - ► Not enough real storage
 - Singular basis

Results: pMC vs SGI

	В	ias	Mean Abs Dev		RMSE	
	SGI pMC		SGI	рМС	SGI	рМС
$\overline{\theta_{11}}$	0.96	12.34	2.29	13.25	4.00	28.92
$ heta_{12}$	0.02	-0.13	0.52	0.38	0.94	0.48
$ heta_{13}$	-0.28	-0.38	1.47	1.21	3.01	1.51
$ heta_{21}$	22.57	128.22	23.01	128.24	81.76	253.87
θ_{22}	0.02	-0.04	0.12	0.16	0.19	0.20
θ_{23}	0.08	0.64	0.36	0.75	0.75	0.90

Table: Comparison of bias in point estimates : SGI vs. pMC for T=2 markets and J=24 products with 165 nodes.

Note: pMC also shows BLP is biased if you compute p-values!

Next Steps

This infrastructure can be used to solve several related problems:

- Use bootstrap to compute p-values for bias
- ▶ Rerun experiments in Skrainka & Judd (2011) on a larger scale and compute bias for different rules
- Bootstrap BLP to study where asymptotic GMM standard errors are valid
- Evaluate other estimation approaches such as Empirical Likelihood (Conlon, 2010)

Conclusion

Developed infrastructure to test BLP estimator:

- Characterize estimator's bias for a range of markets and number of products
- Computed bias for BLP and Cost IV
- Demonstrated power of modern HTC + Monte Carlo experiments to answer questions where (econometric) theory has failed to produce an answer.
- ▶ Shown that these resources are easily accessible to economists