EE281 (Introduction to Electrical Engineering II) and EE285 (Electronics I)

Bipolar Junction Transistor (BJT)

Dr. Melaka Senadeera

Department of Electrical and Electronics Engineering

University of Peradeniya

Peradeniya

Bipolar Junction Transistor(BJT)

- What is a Transistor?
- History
- Types
- Characteristics
- Applications

What is a transistor?

- Semiconductors: ability to change from conductor to insulator
- Can either allow current or prohibit current to flow
- Useful as a switch, but also as an amplifier
- Essential part of many technological advances

What is a transistor?

- Semiconductors: ability to change from conductor to insulator
- Can either allow current or prohibit current to flow
- Useful as a switch, but also as an amplifier
- Essential part of many technological advances

The Transistor is Born

- Bell Labs (1947): Bardeen,
 Brattain, and Shockley
- Originally made of germanium
- Current transistors made of doped silicon

How Transistors Work

- Doping: adding small amounts of other elements to create additional protons or electrons
- P-Type: dopants lack a fourth valence electron (Boron, Aluminum)
- N-Type: dopants have an additional (5th) valence electron (Phosphorus, Arsenic)
- Importance: Current only flows from P to N

Diodes and Bias

- Diode: simple P-N junction.
- Forward Bias: allows current to flow from P to N.
- Reverse Bias: no current allowed to flow from N to P.
- Breakdown Voltage: sufficient N to P voltage of a Zener Diode will allow for current to flow in this direction.

Bipolar Junction Transistor (BJT)

- 3 adjacent regions of doped Si (each connected to a lead):
 - Base. (thin layer,less doped).
 - Collector.
 - Emitter.
- 2 types of BJT:
 - npn.
 - pnp.
- Most common: npn (focus on it).

Developed by Shockley (1949)

npn bipolar junction transistor

pnp bipolar junction transistor

BJT npn Transistor

- 1 thin layer of p-type, sandwiched between 2 layers of n-type.
- N-type of emitter: more heavily doped than collector.
- With $V_C > V_B > V_E$:
 - Base-Emitter junction forward biased, Base-Collector reverse biased.
 - Electrons diffuse from Emitter to Base (from n to p).
 - There's a <u>depletion layer</u> on the Base-Collector junction → no flow of e⁻ allowed.
 - BUT the Base is thin and Emitter region is n⁺ (heavily doped) →
 electrons have enough momentum to cross the Base into the Collector.
 - The small base current I_B controls a large current I_C

$$V_{C} > V_{B} > V_{E}$$

$$I_{E} = I_{C} + I_{B}$$

$$V_{BE} = V_{B} - V_{E}$$

$$V_{CE} = V_{C} - V_{E}$$

$$I_{C} = \beta I_{B}$$

$$V_{CE} = V_{C} - V_{E}$$

BJT characteristics

Current Gain:

- <u>α</u> is the fraction of <u>electrons</u> that <u>diffuse across</u> the narrow Base region
- 1- α is the fraction of electrons that recombine with holes in the Base region to create base current
- The current Gain is expressed in terms of the β (beta) of the transistor (often called h_{fe} by manufacturers).
- β (beta) is Temperature and Voltage dependent.
- It can vary a lot among transistors (common values for signal BJT: 20 - 200).

$$I_{C} = \alpha I_{E}$$

$$I_{B} = (1 - \alpha)I_{E}$$

$$\beta = \frac{I_{C}}{I_{B}} = \frac{\alpha}{1 - \alpha}$$

npn Common Emitter circuit

- Emitter is grounded.
- Base-Emitter starts to conduct with $V_{BE}=0.6V$, I_C flows and it's $I_C=\beta*I_B$.
- Increasing I_B, V_{BE} slowly increases to 0.7V but I_C rises exponentially.
- As I_C rises ,voltage drop across R_C increases and V_{CE} drops toward ground. (transistor in saturation, no more linear relation between I_C and I_B)

Figure 8.9(b) The collector-emitter output characteristics of a BJT

Common Emitter characteristics

Figure 8.9(b) The collector-emitter output characteristics of a BJT

BJT as Switch

- $\bullet \underline{V}_{in}(Low) < 0.7 V$
 - BE junction <u>not</u> forward biased
 - Cutoff region
 - No current flows
 - $\bullet V_{out} = V_{CE} = V_{cc}$
- $\bullet V_{out} = High$

- $\bullet \underline{V}_{in}(High)$
 - ●BE junction <u>forward biased</u> (V_{BE}=0.7V)
 - Saturation region
 - $\bullet V_{CE}$ small (~ 0.2 V for saturated BJT)
 - $\bullet V_{out} = small$
 - $\bullet I = (V V)/R$

BJT as Switch 2

- Basis of digital logic circuits
- Input to transistor gate can be analog or digital
- Building blocks for <u>TTL</u> Transistor Transistor Logic
- Guidelines for designing a transistor switch:
 - $V_C > V_B > V_E$
 - $V_{BF} = 0.7 \text{ V}$
 - I_C independent from I_B (in saturation).
 - Min. I_B estimated from by (I_{Bmin}≈ I_C/β).
 - Input resistance → such that I_B > 5-10 times I_{Bmin} because β varies among components, with temperature and voltage and R_B may change when current flows.
 - Calculate the max I_C and I_B not to overcome device specifications.

BJT as Amplifier

- Common emitter mode
- Linear Active Region
- •Significant current Example:
- Let Gain, $\beta = 100$
- •Assume to be in active region -> V_{BE} =0.7V
- •Find if it's in active region

BJT as Amplifier

$$\frac{V_{BE}}{I_E} = 0.7V$$

$$I_E = I_B + I_C = (\beta + 1)I_B$$

$$I_B = \frac{V_{BB} - V_{BE}}{R_B + R_E * 101} = \frac{5 - 0.7}{402} = 0.0107 mA$$

$$I_C = \beta * I_B = 100 * 0.0107 = 1.07 mA$$

$$\frac{V_{CB}}{I_C} = V_{CC} - I_C * R_C - I_E * R_E - V_{BE} = 10 - (3)(1.07) - (2)(101 * 0.0107) - 0.7 = 10 + 100 =$$

V_{CB}>0 so the BJT is in active region