Module 9 - Exercise

Text to Image Synthesis using DCGAN

AI VIET NAM
Nguyen Quoc Thai

Objective

Text to Image Synthesis using DCGAN

Outline

- > Introduction
- > DCGAN
- > Text to Image Synthesis using DCGAN

Introduction

Text to Image

This small bird has a pink breast and crown, and black primaries and secondaries

Introduction

Text to Image

The flower has petals that are bright pinkish purple with while stigma

Introduction

The milestones of text-to-image models and large models

2015.11 AlignDraw First TTI model using deep learning.

2016.5 GAN-CLS

First TTI model that achieves visually plausible result using GAN.

2021.2 DALLE

First TTI model using autoregressive Transformer, with strong ability in generating zero-shot images.

2021.10 VO-Diffusion

First TTI model using Diffusion method, based on VQ-VAE.

2022.06 PARTI

A scaled-up, large autoregressive Transformer TTI model, with VQ-GAN structure for image processing, demonstrating toptier results in TTI generation.

2022.08 Stable Diffusion

An open-source latent diffusion model, widely used for content creation in research and commercial products, leveraging the capabilities of large models like BERT and CLIP.

2017.6 Transformer First model using pure-

attention architecture, opening up opportunities for large vision/language models.

2018.10 BERT

A pretrained Transformer renowned for remarkable text encoding capability, widely employed as a text encoder in TTI models.

2021.2 CLIP

First languagevision model that learns the modality between language and image features.

2021.6 VQ-GAN

A model that merges the efficiency of GAN with the expressive power of Transformer based on VQ-VAE, extensively employed as an image encoder and decoder for TTI models. 2022.10 ChatGPT

A conversational large language model for dialogue system and question-answering, which could be potentially integrated with TTI models to leverage its strong prompt generating ability.

Outline

- > Introduction
- > DCGAN
- > Text to Image Synthesis using DCGAN

GAN (Generative Adversarial Networks)

GAN (Generative Adversarial Networks)

Deep Convolution GAN (DCGAN)

Outline

- > Introduction
- > DCGAN
- > Text to Image Synthesis using DCGAN

The flower has petals that are bright pinkish purple with while stigma

Approach

GANs with Join Distributions

GANs with Join Distributions

GANs with Join Distributions

The flower has petals that are bright pinkish purple with while stigma

GANs with Join Distributions

GANs with Join Distributions

Matching-aware Discriminator (GAN-CLS)

Generator – Pixel-wise Matching Loss

Generator – Feature Matching Loss

Summary

Thanks!

Any questions?