목차

- 1. KMeans Clustering 클래스 구현
- 2. KSA Clustering 구현
- 3. 데이터셋 Test 결과
 - 3.1. Iris
 - 3.2. Wine
 - 3.3. Glass
 - 3.4. Vowel
 - 3.5. Cloud
- 4. 논문 결과와 비교
- 5. Q/A

1. KMeans Clustering 클래스 구현

```
def init (self. k, tolerance = 1e-04, max iter = 300):
                                                                                                                 self.k = k
                                                                                                                 self.tolerance = tolerance
★ Class로 구현한 KMeans
                                                                                                                 self.max_iter = max_iter
                                                                                                                 self.centroids = None
   KMeans 입력 parameter
                                                                                                                 self.clusters = None
                                                                                                                 self.cluster_labels = None
                                                                                                                 self.evaluation = None
                                                                                                                 self.iter_num = None
✓ k: 클러스터 개수
                                                                                                              def fit(self, dataset)
✓ tolerance = 1e-04 : 종료조건 1
                                                                                                                 X = np.arrav(dataset)
✓ max iter = 300 : 최대 반복 횟수(종료조건 2)
                                                                                                                 # k개의 클러스터에 데이터 랜덤 할당
                                                                                                                  # 각 데이터에 대해 랜덤한 클러스터 선택
                                                                                                                 cluster_labels = np.random.choice(self.k, size=len(X))
                                                                                                                  # 각 클러스터에 속하는 데이터들을 저장할 빈 리스트 생성
                                                                                                                 clusters = [[] for _ in range(self.k)]
                                                                                                                  # 모든 데이터에 대해, 해당하는 클러스터 리스트에 추가
★ KMeans model fit 과정 1
                                                                                                                 for i in range(len(X)):
                                                                                                                    clusters[cluster_labels[i]].append(X[i])
     Dataset을 numpy array구조로 변환
                                                                                                                  # numpy array로 변환
                                                                                                                 clusters = [np.array(cluster) for cluster in clusters]
     k개의 클러스터에 데이터 랜덤 할당
                                                                                                                 centroids = self.Centroids(clusters)
                                                                                                                 distance_sums = self.Distance_sums(clusters, centroids)
     초기 중심점, 평가값 계산
                                                                                                                 evaluation = self.Evaluation(distance_sums)
                                                                                                                 new_centroids = np.zeros(centroids.shape)
                                                                                                                 error = np.ones((self.k, X.shape[1]))
                                                                                                                while np.any(error != self.tolerance) and iter_num < self.max_iter:</pre>
★ KMeans model fit 과정 2
                                                                                                                   iter_num += 1
                                                                                                                   clusters, cluster_labels = self.New_Cluster(X, centroids)
     종료조건이 될 때까지 알고리즘 과정 반복
                                                                                                                   new_centroids = self.Centroids(clusters)
                                                                                                                   error = self.Error(centroids, new centroids)
                                                                                                                   centroids = deepcopy(new_centroids)
                                                                                                                   distance_sums = self.Distance_sums(clusters, centroids)
                                                                                                                   evaluation = self.Evaluation(distance_sums)
                                                                                                               self.centroids = centroids
                                                                                                                self.clusters = clusters
                                                                    ★ 최종 결과값 저장
                                                                                                                self.cluster_labels = cluster_labels
                                                                                                               self.evaluation = evaluation
                                                                                                               self.iter_num = iter_num
```

1. KMeans Clustering 클래스 구현

- ★ Class 안에서 사용되는 함수
- Centroids(self, clusters) : 중심점 계산
- ★ Class 안에서 사용되는 함수
- Distance_sums(self, clusters, centroids) : 각 클러스터에서 데이터 와 중심점과의 거리 계산
- Evaluation(self, distance_sums) : 거리를 모두 합하여 평가값 계산

- ★ Class 안에서 사용되는 함수
- New_Cluster(self, X, centroids): 인접 클러스터로 데이터를 재배치하여 새로운 클러스터 해 생성
- Error(self, centroids, new_centroids) : 이전 클러스터 해의 중심점과 새로운 클러스터 해의 중심점의 차이 계산

```
centroids = []
  for cluster in clusters:
     if len(cluster) > 0:
         centroids.append(np.mean(cluster, axis=0))
         # 빈 클러스터일 경우 임의의 값으로 대체하거나 건너뛸 수 있습니다
         # 여기서는 NaN으로 설정합니다
         centroids.append(np.nan)
  centroids = np.arrav(centroids)
  return centroids
def Distance_sums(self, clusters, centroids):
    distance_sums = []
    for i in range(len(clusters)):
       cluster = clusters[i]
       centroid = centroids[i]
       if len(cluster.shape) == 1:
           distance sum = np.sqrt(np.sum((cluster - centroid)**2))
           distance sum = np.sum(np.sqrt(np.sum((cluster - centroid)**2, axis=1)))
       distance_sums.append(distance_sum)
   return distance_sums
def Evaluation(self, distance_sums):
    evaluation = np.sum(distance_sums)
   return evaluation
def New_Cluster(self, X, centroids):
    cluster_labels = np.zeros(len(X))
    new_clusters = [[] for _ in range(len(centroids))]
    for i, data in enumerate(X):
       distances = [np.sqrt(np.sum((data - centroid)**2)) for centroid in centroids]
       closest_centroid_index = np.argmin(distances)
       new_clusters[closest_centroid_index].append(data)
       cluster_labels[i] = closest_centroid_index
   new_clusters = [np.array(cluster) for cluster in new_clusters]
   return new_clusters, cluster_labels
def Error(self, centroids, new centroids):
   k = len(centroids)
   error = np.zeros((k, centroids.shape[1]))
   for i in range(k):
       error[i] = np.sqrt(np.sum((centroids[i] - new_centroids[i])**2))
    return error
```

1. KMeans Clustering 클래스 구현

```
    ★ Class 안에서 사용되는 함수
    get_evaluation(self) : 최종 평가값 반환
    get_clusters(self) : 최종 클러스터 해 반환
    get_cluster_labels(self) : 최종 데이터들의 클러스터 label 반환
    get_centroids(self) : 최종 중심점 반환
    get_iteration_count(self) : 최종 반복횟수 반환
```

- ★ 평가값 계산에 필요한 함수 정의(KMeans와 동일)
- Centroids(clusters): 중심점 계산
- Distance_sums(clusters, centroids): 각 클러스터에서 데이터와 중 심점과의 거리 계산
- Evaluation(distance_sums) : 거리를 모두 합하여 평가값 계산

- ★ 평가값 계산 함수
- evaluate_solution(clusters): clusters 변수를 넣어 Centroids,
 Distance_sums, Evaluation함수를 한 번에 계산하여 평가값 반환

```
def Centroids(clusters):
   centroids = []
    for cluster in clusters:
       if len(cluster) > 0:
           centroids.append(np.mean(cluster, axis=0))
           # 빈 클러스터일 경우 임의의 값으로 대체하거나 건너뛸 수 있습니다.
           # 여기서는 NaN으로 설정합니다.
           centroids.append(np.nan)
   centroids = np.arrav(centroids)
   return centroids
def Distance sums(clusters, centroids):
   distance_sums = []
   for i in range(len(clusters)):
        cluster = clusters[i]
       centroid = centroids[i]
        if len(cluster.shape) == 1:
           distance_sum = np.sqrt(np.sum((cluster - centroid)**2))
       else:
           distance_sum = np.sum(np.sqrt(np.sum((cluster - centroid)**2, axis=1))))
       distance sums, append(distance sum)
   return distance_sums
def Evaluation(distance sums):
   evaluation = np.sum(distance sums)
    return evaluation
```

```
★ 이웃해를 구하는 함수
   neighborhood cluster(clusters)
과정
      cluster 0
                       cluster 1
                                         cluster 2
                                                          cluster 3
                  random_cluster_index = 1
       data 0
                    data 1
                                 data 2
                                              data 3
                                                           data 4
                                         random_data_index = 3
                                                               random data =
       data 0
                    data 1
                                 data 2
                                              data 4
                                                                   data 3
     cluster 0
                       cluster 1
                                        cluster 2
                                                         cluster 3
                              new random cluster index = 1
                                                                      random
data 0
                    data 2
                               data 3
                                                   data 5
                                                             data 6
          data 1
                                         data 4
                                                                        data
```

```
# 이웃해를 구하는 함수
def neighborhood_cluster(clusters):
   non_empty_clusters = []
   empty_clusters = []
   # 빈 클러스터에 대한 처리
   for i in range(len(clusters)):
     if len(clusters[i])==0:
      empty_clusters.append(clusters[i])
      non_empty_clusters.append(clusters[i])
   # 랜덤으로 클러스터 1개 선택
   random_cluster_index = random.randint(0, len(non_empty_clusters)-1)
   # 선택된 클러스터에서 랜덤으로 1개의 데이터 선택
   random_data_index = random.randint(0, len(non_empty_clusters[random_cluster_index]) - 1)
   random_data = non_empty_clusters[random_cluster_index] [random_data_index]
   # 원래 클러스터에서 데이터 삭제
   non_empty_clusters[random_cluster_index] = np.delete(non_empty_clusters[random_cluster_index], random_data_index, 0)
   # 이전에 선택한 클러스터를 제외한 다른 클러스터를 선택하기 위한 처리
   available_clusters = []
   if len(empty_clusters) > D: # 빈 클러스터가 있던 경우
    available_clusters.append(empty_clusters)
     for cluster in non_empty_clusters:
      if cluster is not non_empty_clusters[random_cluster_index]: # 이전에 선택한 클러스터는 제외
        available_clusters.append(cluster)
    for cluster in non_empty_clusters:
      if cluster is not non_empty_clusters[random_cluster_index]: # 이전에 선택한 클러스터는 제외
        available_clusters.append(cluster)
   # 새로 넣을 클러스터를 랜덤으로 선택
   new_random_cluster_index = random.randint(0, len(available_clusters)-1)
  # 새로운 클러스터에 데이터 추가
   available_clusters[new_random_cluster_index] = np.append(available_clusters[new_random_cluster_index], [random_data], axis = 0)
   # 이전 클러스터를 클러스터 리스트에 추가
   available_clusters.append(non_empty_clusters[random_cluster_index])
   # 클러스터 갱신
   clusters = available_clusters
   return clusters
```

- ★ KSA Clustering 함수
- KSA_Clustering 입력 parameter
- ✓ k: 클러스터 개수
- ✓ dataset : 사용할 데이터셋
- ✓ max iter = 300 : 최대 반복 횟수(종료조건 1)
- ✓ initial_temperature = 100 : 초기 온도(T)
- ✓ delta t = 0.01 : 온도 감소량(△T)
- ✓ final_temparature = 1e-04 : 최소 온도(종료조건 2)
- ✓ t = 20000 : 이웃해 탐색 횟수
- ★ KMeans 결과값으로 초기 Setting
- 초기 best solution = kmeans의 최종 클러스터 해
- 초기 best_solution_evaluation = kmeans의 최종 평가값

```
def KSA_Clustering(k, dataset, max_iter = 300, initial_temperature = 100, delta_t = 0.01, final_temperature = 1e-04, t = 2000)
     T = initial_temperature
                             Kmeans 적용
     kmeans = KMeans(k)
     best_solution = kmeans.get_clusters() #초기 clusters는 kmeans의 결과 clusters
     iterations = 0
     best_solution_evaluation = kmeans.get_evaluation() #초기 best_solution은 처음 kmeans를 돌린 평가값
     while T >= final_temperature and iterations <= max_iter:
        # 이웃해 생성
         for i in range(t):
            neighbor_solution = neighborhood_cluster(best_solution)
            neighbor_solution_evaluation = evaluate_solution(neighbor_solution)
            # 좋은 이웃해는 항상 받아들임
            if neighbor_solution_evaluation < best_solution_evaluation:
                best_solution = neighbor_solution
                best_solution_evaluation = neighbor_solution_evaluation
            # 나쁜 해는 확률적으로 받아들임
            elif random.uniform(0, 1) < np.exp((best_solution_evaluation - neighbor_solution_evaluation) / T):
                best_solution = neighbor_solution
                best_solution_evaluation = neighbor_solution_evaluation
        # 온도 감소
        T -= delta_t
        iterations += 1
        evaluations.append(best_solution_evaluation)
     plt.plot(range(0, iterations), evaluations, marker='o', linestyle='-')
     plt.title('Evaluation over Iterations')
     plt.xlabel('Iteration')
     plt.ylabel('Evaluation')
     plt.grid(True)
     plt.show()
     best_centorids = Centroids(best_solution)
     return best_solution, best_solution_evaluation, best_centorids, iterations
   except ValueError as e:
     print("Error occurred:", e)
     print("Retrying the function...")
     continue
```

```
★ SA 과정
• 종료조건(둘 중 하나만 만족해도 종료)
1. T(초기 온도) < final temperature(최소 온도)
2. iterations(반복횟수) > max iter(최대 반복횟수)
1. 이웃해 생성
2. 이웃해 평가
3. [Minimize] 이웃해와 현재해를 비교하여 현재해 갱신
• 이웃해 < 현재해 -> 항상 받아들임
• rand(0, 1) < exp{-(이웃해-현재해) / T} -> 확률적으로 받아들임
• 온도 감소
• 반복 횟수 + 1
• iteration 1번마다 평가값 저장
★ 함수 최종 반환값
• best solution : 최종 클러스터 해
• best solution evaluation : 최종 평가값
• best centroids : 최종 클러스터의 중심점
• iterations : 최종 반복횟수
```

```
def KSA_Clustering(k, dataset, max_iter = 300, initial_temperature = 100, delta_t = 0.01, final_temperature = 1e-04, t = 2000):
 while True:
  trv:
    T = initial temperature
    kmeans = KMeans(k)
     kmeans.fit(dataset)
     best_solution = kmeans.get_clusters() #초기 clusters는 kmeans의 결과 clusters
     iterations = 0
     best_solution_evaluation = kmeans.get_evaluation() # 초기 best_solution은 처음 kmeans를 돌린 평가값
     while T >= final_temperature and iterations <= max_iter:
         # 이웃해 생성
         for i in range(t):
            neighbor_solution = neighborhood_cluster(best_solution)
            neighbor_solution_evaluation = evaluate_solution(neighbor_solution)
            # 좋은 이웃해는 항상 받아들임
            if neighbor_solution_evaluation < best_solution_evaluation:
                best_solution = neighbor_solution
                best_solution_evaluation = neighbor_solution_evaluation
            # 나쁜 해는 확률적으로 받아들임
            elif random.uniform(0, 1) < np.exp((best_solution_evaluation - neighbor_solution_evaluation) / I):
                best_solution = neighbor_solution
                best_solution_evaluation = neighbor_solution_evaluation
         # 온도 감소
         T -= delta_t
         iterations += 1
         evaluations.append(best_solution_evaluation)
     # 시간하
     plt.plot(range(0, iterations), evaluations, marker='o', linestyle='-')
     plt.title('Evaluation over Iterations')
     plt.xlabel('Iteration')
     plt.ylabel('Evaluation')
     plt.grid(True)
     plt.show()
     best_centorids = Centroids(best_solution)
      return best_solution, best_solution_evaluation, best_centorids, iterations
   except ValueError as e:
     print("Error occurred:", e)
     print("Retrying the function...")
     continue
```

3.1. Iris

- ★ iris 데이터셋 적용 parameter
- \checkmark k = 3
- ✓ dataset = iris
- \checkmark max_iter = 300
- ✓ initial_temperature = 1
- ✓ delta_t = 0.05
- ✓ final_temparature = 1e-04
- \checkmark t = 1500
- ★ 결과
- Final Evaluation = 97.22212765100771
- Total Iterations: 20

3.2. Wine

- ★ wine 데이터셋 적용 parameter
- \checkmark k = 3
- ✓ dataset = wine
- ✓ max_iter = 300
- ✓ initial_temperature = 6
- ✓ delta_t = 1
- ✓ final_temparature = 1e-04
- \checkmark t = 1780
- ★ 결과
- Final Evaluation = 16510.196677408763
- Total Iterations: 6

3.3. Glass

- ★ glass 데이터셋 적용 parameter
- \checkmark k = 6
- ✓ dataset = glass
- \checkmark max_iter = 300
- ✓ initial_temperature = 1
- \checkmark delta_t = 0.03
- ✓ final_temparature = 1e-04
- \checkmark t = 2140
- ★ 결과
- Final Evaluation = 213.41597074463465
- Total Iterations: 34

3.4. Vowel

- ★ vowel 데이터셋 적용 parameter
- \checkmark k = 6
- ✓ dataset = vowel
- ✓ max_iter = 300
- ✓ initial_temperature = 100
- \checkmark delta_t = 10
- ✓ final_temparature = 1e-04
- \checkmark t = 8710
- ★ 결과
- Final Evaluation = 150590.9570138252
- Total Iterations: 10

3.4. Vowel

- ★ vowel 데이터셋 적용 parameter
- \checkmark k = 6
- √ dataset = vowel
- \checkmark max_iter = 300
- ✓ initial_temperature = 100
- \checkmark delta t = 1
- ✓ final_temparature = 1e-04
- \checkmark t = 8710
- ★ 결과
- Final Evaluation = 149332.31430808967
- Total Iterations: 100

3.5. Cloud

- ★ cloud 데이터셋 적용 parameter
- \checkmark k = 10
- ✓ dataset = cloud
- \checkmark max_iter = 800
- ✓ initial_temperature = 15
- ✓ delta_t = 0.025
- ✓ final_temparature = 1e-04
- \checkmark t = 250
- ★ 결과
- Final Evaluation = 63157.336553888475
- Total Iterations: 600

4. 논문 결과와 비교

★ best 기준

	논문 K-means best	논문 SA best	논문 KSA best	Custom KSA
IRIS	97.3259	97.2221	97.2221	97.2221
WINE	16555.7	16530.5	16530.5	16510.2
GLASS	215.678	221.69	214.727	213.416
VOWEL	149384	149407	149405	150591 149332(delta_t 감소)
CLOUD	66194.641	62889.885	62937.95	63157.34

Q/A