DL2 du Module AP21 : "Algèbre Linéaire"

à rendre avant 10 Septembre 2020 à 23h59 envoyé dans l'adresse Mail m.addam@uae.ac.ma

N.B.: Je demande tous les étudiants de rédiger leurs compte-rendus sur des feuilles blanche de type A4, ceci pour la bonne visibilité de vos rédactions respectives

Exercice 1

Soient E_n l'espace vectoriel des polynômes d'indéterminé x à coefficients complexes de fegré strictement inférieur à n et, P et Q deux polynômes de degrés p et q, respectivement où $p \ge 1$ et $q \ge 1$. Supposons que P et Q n'admettent pas de racine commune.

Soient F_q l'ensemble des polynômes de la forme AP avec $A \in E_p$ et F_p l'ensemble des polynômes de la forme BQ avec $B \in E_q$.

- 1. Montrer que $E_{p+q} = F_p \oplus F_q$ est une somme directe de F_p et F_q .
- 2. Déduire qu'il existe un couple unique de polynômes $U \in E_q$ et $V \in E_p$ tel que PU + QV = 1.

Exercice 2

Soit E le \mathbb{R} -espace vectoriel des fonctions numériques indéfiniment dérivables définies sur \mathbb{R} . Soient $t \mapsto f_1(t) = \cos(t) \operatorname{ch}(t)$, $t \mapsto f_2(t) = \sin(t) \operatorname{ch}(t)$, $t \mapsto f_3(t) = \cos(t) \operatorname{sh}(t)$ et $t \mapsto f_4(t) = \sin(t) \operatorname{sh}(t)$ des fonctions dans E.

- 1. Montrer que le système $\{f_1, f_2, f_3, f_4\}$ est libre dans E.
- 2. Soient F le sous-espace vectoriel de E engendré par f_1 , f_2 , f_3 et f_4 et Φ l'endomorphisme de F défini par $\Phi(u) = u'$. Quelle est la dimension de F? Déterminer la matrice M de Φ relativement à la base de F.
- 3. Calculer M^n ; puis déterminer l'expression de Φ^n dans la base $\mathcal{B} = \{f_1, f_2, f_3, f_4\}$.

Exercice 3

Soit E l'espace vectoriel des polynômes d'indéterminé x à coefficients réels de degré inférieurs ou égal à n.

1. Montrer que les polynômes P_k définis par

$$P_0(x) = 1$$
, $P_k(x) = x(x-1)(x-2)\dots(x-k+1)$ pour $1 \le k \le n$,

forment une base de E. Quelle est la dimension de E?

2. Soit Φ l'application $\Phi: P \mapsto \Phi(P)$ définie pour tout $x \in \mathbb{R}$ par

$$\Phi(P)(x) = P(x+1) - P(x).$$

(a) Montrer que Φ est un endomorphisme sur E.

- (b) Déterminer le noyau $Ker(\Phi)$ et l'image $Im(\Phi)$ de Φ .
- (c) Pour $n \geq 1$, soit $\mathcal{B} = \{P_0, P_1, \dots, P_n\}$ la base de E définie précédement. Déterminer la matrice $M = \mathcal{M}_{\mathcal{B}}(\Phi)$ de l'endomorphisme Φ relativement à la base \mathcal{B} dans les cas n = 2, n = 3, n = 4 et puis généraliser l'écriture de la matrice dans le cas n quelconque.

Exercice 4

Soient E l'ensemble des suites $u=(u_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence suivante

$$(\mathcal{P}) : \begin{cases} a u_n + b u_{n-1} + c u_{n-2} = 0 & \text{pour} \quad n \ge 2 \\ a, b, c \in \mathbb{C} & \text{avec} \quad a c \ne 0 \end{cases}$$

où $u_n \in \mathbb{C}$ pour tout $n \in \mathbb{N}$.

- 1. (a) Montrer que E est un espace vectoriel sur \mathbb{C} .
 - (b) Vérifier qu'une suite u satisfaisant (\mathcal{P}) est déterminée par la donnée de ses deux premiers termes u_0 et u_1 .
- 2. Soient p (resp. q) la suite de E correspondant à $p_0 = 1$ et $p_1 = 0$ (resp. $q_0 = 0$ et $q_1 = 1$).
 - (a) Montrer que p et q sont linéairement indépendant. Que peut-on déduire?
 - (b) Montrer que tout élément $u \in E$ s'écrit comme combinaison linéaire unique de la forme $u = u_0 p + u_1 q$.

Exercice 5

Soient E un espace vectoriel, u un endomorphismes de E et Ker(u) le noyau de u.

- 1. Montrer que si u est tel que $Ker(u) = Ker(u^2)$, alors $Ker(u) \cap Im(u) = \{0_E\}$
- 2. **Réciproquement**, montrer que si u est tel que $Ker(u) \cap Im(u) = \{0_E\}$ alors

$$Ker(u) = Ker(u^2).$$

- 3. Montrer que si u est tel que $\text{Im}(u) = \text{Im}(u^2)$, alors E = Ker(u) + Im(u)
- 4. **Réciproquement**, montrer que si u est tel que E = Ker(u) + Im(u) alors

$$\operatorname{Im}(u) = \operatorname{Im}(u^2).$$

Exercice 6

Soient E un espace vectoriel de dimension finie n, u un endomorphismes de E et $\mathrm{Ker}(u)$ le noyau de u.

- 1. Montrer que $\operatorname{Ker}(u^{k-1}) \subset \operatorname{Ker}(u^k)$ et $\operatorname{Im}(u^k) \subset \operatorname{Im}(u^{k-1})$ pour tout k > 0.
- 2. Montrer qu'il existe un entier $p \ge 1$ tel que, pour tout $k \ge p$, on a

$$\operatorname{Ker}(u^k) \subset \operatorname{Ker}(u^p), \quad \operatorname{Im}(u^k) \subset \operatorname{Im}(u^p) \quad \text{et} \quad \operatorname{Ker}(u^p) \cap \operatorname{Im}(u^p) = \{0_E\}.$$

Exercice 7

Soit E un K-espace vectoriel de dimension finie n et soient E_1 et E_2 deux sous-espaces vectoriels de E.

- 1. Montrer que l'application $f: E_1 \times E_2 \to E$, $(x,y) \mapsto f(x,y) = x+y$ est linéaire; et déterminer son noyau.
- 2. Établir un isomorphisme entre $E_1 \cap E_2$ et Ker(f).
- 3. Déterminer une base de $E_1 \times E_2$.
- 4. Montrer que si E est un \mathbb{K} -espace vectoriel de dimension finie et f est une application linéaire de E dans F, alors $\dim(E) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f))$.
- 5. Établir que $\dim(E_1 + E_2) = \dim(E_1) + \dim(E_2) \dim(E_1 \cap E_2)$.

Exercice 8

Soit $\mathbb{C}_n[X]$ l'ensemble des polynômes de $\mathbb{C}[X]$ de degré inférieur ou égal à $n, n \in \mathbb{N}$.

- 1. Montrer que $\mathbb{C}_n[X]$ est un sous-espace vectoriel de $\mathbb{C}[X]$.
- 2. On donne n+1 polynômes A_0, \ldots, A_n tels que $d^o A_p = p$ pour $p = 0, 1, \ldots, n$. Montrer que ces polynômes constituent une base de $\mathbb{C}_n[X]$.
- 3. Soit B un polynôme non nul de degré $k \leq n$ et soit F l'ensemble des polynômes de $\mathbb{C}_n[X]$ de la forme B.Q où $Q \in \mathbb{C}_n[X]$. Montrer que F est un sous-espace vectoriel de $\mathbb{C}_n[X]$ de dimension n-k+1.
- 4. Montrer que si G est le sous-espace vectoriel $G = \{P \in \mathbb{C}_n[X] \mid d^oP \leq k\} \ (k \geq 1)$, alors $\mathbb{C}_n[X] = F \oplus G$.

Exercice 9

Soient l'espace vectoriel $E = \mathbb{R}^3$, u l'endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique $\mathcal{B} = \{e_1, e_2, e_3\}$ est

$$A = \left(\begin{array}{ccc} 15 & -11 & 5\\ 20 & -15 & 8\\ 8 & -7 & 6 \end{array}\right)$$

- 1. (a) Déterminer l'expression de u dans la base canonique $\mathcal{B} = \{e_1, e_2, e_3\}$.
 - (b) Soit $X = x e_1 + y e_2 + z e_3$ un vecteur de \mathbb{R}^3 . Calculer f(X) en fonction de x, y et z, puis déterminer Ker(u), Im(u) et le rang r = rg(u) de u. Que peut-on déduire?
 - (c) Montrer que les vecteurs $f_1 = 2e_1 + 3e_2 + e_3$, $f_2 = 3e_1 + 4e_2 + e_3$ et $f_3 = e_1 + 2e_2 + 2e_3$ forment une base de \mathbb{R}^3 .
 - (d) Calculer la matrice B de u par rapport à la nouvelle base $\mathcal{B}' = \{f_1, f_2, f_3\}.$
- 2. (a) Montrer que les noyaux $\operatorname{Ker}(u-\operatorname{id}_E)$, $\operatorname{Ker}(u-2\operatorname{id}_E)$ et $\operatorname{Ker}(u-3\operatorname{id}_E)$ sont des droites vectorielles engendrées par $f_1=2\,e_1+3\,e_2+e_3$, $f_2=3\,e_1+4\,e_2+e_3$ et $f_3=e_1+2\,e_2+2\,e_3$, respectivement.
 - (b) En déduire que $\mathbb{R}^3 = \operatorname{Ker}(u \mathrm{id}_E) \oplus \operatorname{Ker}(u 2\mathrm{id}_E) \oplus \operatorname{Ker}(u 3\mathrm{id}_E)$.
 - (c) Déterminer la matrice de passage Q de la base \mathcal{B} à la base \mathcal{B}' .
 - (d) Déterminer $P = Q^T$, calculer P^{-1} , puis montrer que $P^{-1}AP = B$. Conclure

Exercice 10

1. Résoudre sur le corps des réels le système suivant

$$(\mathcal{P}_1) : \begin{cases} 2x + y - z = 3 \\ x - y + 3z = 8 \\ x + 2y - z = -3 \end{cases}$$

2. Le système suivant admet-il des solutions

$$(\mathcal{P}_2) : \begin{cases} 2x + y - z = 3 \\ x - y + 3z = 8 \\ x + 2y - z = -3 \\ x + y + 2z = -1 \end{cases}$$

3. On considère le système (\mathcal{P}_2) , les coefficients étant cette fois supposés être dans le corps $\mathbb{Z}/5\mathbb{Z}$. Résoudre le système dans ce corps.