Features

- Compatible with MCS-51[™] Products
- 2 Kbytes of Reprogrammable Flash Memory Endurance: 1,000 Write/Erase Cycles
 Data Retention: 10 Years
- 2.7 V to 6 V Operating Range
- Fully Static Operation: 0 Hz to 24 MHz
- Two-Level Program Memory Lock
- 128 x 8-Bit Internal RAM
- 15 Programmable VO Lines
- Two 16-Bit Timer/Counters
- Five Interrupt Sources
- Programmable Serial Channel
- Direct LED Drive Outputs
- On-Chip Analog Comparator
- Low Power Idle and Power Down Modes

Description

The AT89C251 is a low-power, high-performance CMOS 8-bit microcomputer with 2 Kbytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel's high density nonvolatile memory technology and is compatible with the industry standard MCS-51TM instruction set and pinout. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C251 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.

The AT89C251 provides the following standard features: 2 Kbytes of Flash, 128 bytes of RAM, 15 I/O lines, two 16-bit timer/counters, a five source two-level interrupt architecture, a full duplex serial port, a precision analog comparator, on-chip oscillator and clock circuitry. In addition, the AT89C251 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing it: RAM, timer/counters, serial port and interrupt system to continue functioning. The Power I lown Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.

Pin Configuration

PDIP/SOIC RST | 1 | 20 | VCC | (RXD) P3.0 | 2 | 19 | P1.7 | (TXI) P3.1 | 3 | 18 | P1.6 | 08C2 | 4 | 17 | P1.5 | 08C1 | 5 | 16 | P1.4 | (IIITG) P3.2 | 6 | 16 | P1.3 | ('NT1) P3.3 | 7 | 14 | P1.2 | ('NT1) P3.5 | 8 | 13 | P1.1 (ANN1) | (T1) P3.5 | 9 | 12 | P1.0 (AIN0) | GNO | 10 | 11 | P3.6 |

8-Bit Microcontroller with 2 Kbytes Flash

AT89C251 Preliminary

*704758796

Block Diagram

02-01-1995 01:42PM FROM FUNDFINDERS CAPITAL Inc.

ATTEREMENT

*704758796

Pin Description

Vcc

Supply voltage.

GND

Ground.

Port 1

Port 1 is an 8-bit bidirectional I/O port. Port pins P1.2 to P1.7 provide internal pullups. P1.0 and P1.1 also serve as the positive input (AIN0) and the negative input (AIN1), respectively, of the on-chip precision analog comparator. The Port 1 output buffers can sink 20 mA and can drive LED displays directly. When is are written to Port 1 pins, they can be used as inputs. When pins P1.2 to P1.7 are used as inputs and are externally pulled low, they will source current (IIL) because of the internal pullups.

02-01-1995 01:43PM FROM FUNDFINDERS CAPITAL Inc.

Port I also receives code data during Flash programming and program verification.

Port 3 pins P3.0 to P3.6 are seven bidirectional I/O pins with internal pullups. P3.7 is hard-wired as an imput to the output of the on-chip comparator and is not accessible as a general purpose I/O pin. The Port 3 output buffers can sink 20 mA. When is are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (III) because of

Port 3 also serves the functions of various special features of the AT89C251 as listed below:

Port Pin	Alternate Functions
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INTT (external interrupt 1)
P3.4	TO (timer 0 external input)
P3.5	T1 (timer 1 external input)

Port 3 also receives some control signals for Plash programming and programming verification.

Reset input. All I/O pins are reset to 1s as soon as RST goes high. Holding the RST pin high for two machine cycles while the oscillator is running resets the device.

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier.

Program Memory Lock Bits

On the chip are two lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below:

Lock Bit Protection Modes

Prog	ram Loc	k Bits	
	LB1	LB2	Protection Type
1	U	IJ	No program lock features.
2	Р	U	Further programming of the Flash is disabled.
3	Р	Ρ	Same as mode 2, also verify is disabled.

Oscillator Characteristics

XTAL,1 and XTAL,2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or caramic resonator may be used. To drive the device from an external clock source, XTAL,2 should be left unconnected while XTAL,1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input so the internal clocking circuitry is through a divide-bytwo filp-flop, but minimum and maximum voltage high and low time specifications must be observed.

Idle Mode

In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

It should be noted that when idle is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle is terminated by reset, the instruction following the one that invokes idle should not be one that writes to a port pin or to external memory.

Power Down Mode

In the power down mode the oscillator is stopped, and the instruction that invokes power down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power down mode is terminated. The only exit from power down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

Figure 1. Oscillator Connections

TO

Notes: C1, C2 = 30 pF \pm 10 pF for Crystals = 40 pF \pm 10 pF for Ceramic Resonators

Figure 2. External Clock Drive Configuration

Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
12	2.7 V to 6.0 V	AT89C251-12PC AT89C251-12SC	20P3 20S	Commercial (0°C to 70°C)
•		AT89C251-12PI AT89C251-12SI	20P3 20\$	Industrial (-40°C to 85°C)
		AT89C251-12PA AT89C251-12SA	20P3 20S	Automotive (-40°C to 125°C)
16	3.0 V to 6.0 V	AT89C251-16PC AT89C251-16SC	20P3 20S	Commercial (0°C to 70°C)
		AT89C251-16PI AT89C251-16SI	20P3 20S	Industrial (-40°C to 85°C)
		AT89C251-16PA AT89C251-16SA	20F3 20S	Automotive (-40°C to 125°C)
20	3.3 V to 6.0 V	AT89C251-20PC AT89C251-20SC	20P3 20S	Commercial (0°C to 70°C)
		AT89C251-20PI AT89C251-20SI	20P3 20S	Industrial (-40°C to 85°C)
24	3.3 V to 6.0 V	AT89C251-24PC AT89C251-24SC	20P3 20S	Commercial (0°C to 70°C)

Ordering Information

	Package Type
20P3	20 Leed, 0.300° Wide, Plastic Dusi Inline Package (PDIP)
208	20 Lead, 0.300° Wide, Plastic Guil Wing Small Outline (SOIC)

AS-20-20-015-3 \$79.

Packaging Information

Absolute Maximum Ratings*

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TO

D.C. Characteristics

 $T_A = -40^{\circ}\text{C}$ to 85°C, $V_{CC} = 2.7 \text{ V}$ to 6.0 V (unless otherwise noted)

Symbol	Parameter	Condition	Min	Mex	Units
VIL	Input Low Voltage		-0.5	0.2 Vcc-0.1	٧
V#H	Input High Voltage	(Except XTAL1, RST)	0.2 Vcc+0.9	Vcc+0.5	٧
ViH1	Input High Voltage	(XTAL1, RST)	0.7 Vcc	Vcc+0.5	٧
Vol	Output Low Voltage ⁽¹⁾ (Ports 1, 3)	loL = 20 mA, Vcc = 5 V loL = 10 mA, Vcc = 2.7 V		0.45	٧
	Output High Voltage	lon = -80 μA, Vcc = 5 V ± 10%	2.4		٧
Vон	(Ports 1, 3)	юн = -30 µА	0.75 V _{CC}		7
		юн = -12 µА	0.9 Vcc		٧
Ir	Logical 0 Input Current (Ports 1, 2, 3)	V _{IN} = 0.45 V		-50	μA
hr.	Logical 1 to 0 Transition Current (Ports 1, 2, 3)	V _M = 2 V		-750	Aμ
lu	input Leakage Current (Port P1.0, P1.1)	0 < VIN < VCC		±10	μА
Vos	Comparator Input Offset Voltage	Vcc = 5 V		20	mV
VcM	Comparator Input Common Mode Voltage		0	Vcc	٧
ARST	Reset Pulldown Resistor		40	200	KΩ
Cio	Pin Capackance	Test Freq. = 1 MHz, TA = 25°C		10	ρF
	Power Supply Current	Active Mode, 12 MHz, Vcc = 6 V/3 V		20/5.5	mA
lcc -	rower acppry current	Idle Mode, 12 MHz, Vcc = 6 V/3 V		5/1	mA
	Power Down Mode (2)	Vcc = 6 V		100	μА
	POWER DOWN MODE.	Vcc = 3 V		20	μА

Notes: 1. Under steady state (non-transient) conditions, Iot, must be externally limited as follows:

Maximum lot, per port pin: 20 mA
Maximum total IOL for all output pins: 80 mA
If IOL exceeds the test condition, VOL may caused the

related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

2. Minimum VCC for Power Down is 2 V.

External Clock Drive Waveforms

External Clock Drive

Symbol	Parameter	Min	Max	Units
1/topol	Oscillator Frequency	0	24	MHz
tcLaL	Clock Period	41.6		78
tonex	High Time	15		ns
toLax	Low Time	15		ns
toloh	Rise Time		20	ne
tchcl	Fall Time		20	ns .

TO

Serial Port Timing: Shift Register Mode Test Conditions

(Vcc = 5.0 V ± 20%; Load Capacitance = 80 pF)

		12 M	tz Osa	Variable	Oscillator	
Symbol	Parameter	Min	Max	Min	Max	Units
DATAT	Serial Port Clock Cycle Time	1.0		12tc.ca.		μв
tovxH '	Output Data Setup to Clock Rising Edge	700		10tcLCL-133		ns
ранох	Output Data Hold After Clock Rising Edge	50		21cLcL-33		ns
DOHDX	Input Data Hold After Clock Rising Edge	0		0		ns
ранол	Clock Rising Edge to Input Data Valid		700		10tCLCL-133	ns

Shift Register Mode Timing Waveforms

AC Testing Input/Output Waveforms (1)

Float Waveforms (1)

Note: 1. AC Inputs during testing are driven at V_{CC} - 0.5 V for a logic 1 and 0.45 V for a logic 0. Timing measurements are made at V_H min. for a logic 1 and V_H max. for a logic 0.

Note: 1. For timing purposes, a port pin is no longer floating why a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded Voly/Vol, level occurs.

Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
12	2.7 V to 6.0 V	AT89C251-12PC AT89C251-12SC	20P3 20S	Commercial (0°C to 70°C)
,		AT89C251-12P! AT89C251-12SI	20P3 20S	Industrial (-40°C to 85°C)
		AT89C251-12PA AT89C251-12SA	20P3 20S	Automotive (-40°C to 125°C)
16	3.0 V to 6.0 V	AT89C251-16PC AT89C251-16SC	20P3 20\$	Commercial (0°C to 70°C)
		AT89C251-16PI AT89C251-16SI	20P3 20S	Industrial (~40°C to 85°C)
		AT89C251-16PA AT89C251-16SA	20P3 20\$	Automotive (-40°C to 125°C)
20	3.3 V to 6.0 V	AT89C251-20PC AT89C251-20SC	20P3 20S	Commercial (0°C to 70°C)
		AT89C251-20PI AT89C251-20SI	20P3 20S	Industrial (-40°C to 85°C)
24	3.3 V to 6.0 V	AT89C251-24PC AT89C251-24SC	20P3 20S	Commercial (0°C to 70°C)

TOTAL P.10