

Linked Data Maps

A visual entry point for the exploration of datasets

IESD2015 - Fabio Valsecchi, Matteo Abrate, Clara Bacciu, Maurizio Tesconi, Andrea Marchetti

Motivation

- Users always ask "What is the dataset like?"
- Linked Data sets are difficult to make sense to non-experts of Semantic Web:
 - Content (Data)
 - Structure (Ontologies)
- Visualizing or exploring LD sets is difficult:
 - Volume
 - Complexity

LD visualization tools

Applications like *LODlive*, *RelFinder*, *DBpedia viewer*, *LOD Visualization*, ... feature **some but not all** of the following:

- description of a single instance
- exploration of small groups of instances
- presentation of a **summary of the whole dataset**

None of them follows *Shneiderman's Mantra*.

Visual Information-seeking Mantra

"Overview first, zoom and filter, then details on demand."

Lead a user from an overview of the main features of a dataset to its tiniest details.

- Provide an overview that acts as an entry point of the dataset
- Allow to zoom and filter for focusing on specific parts of the dataset
- Give **details** on single instances

Our approach

- 1. Data Abstraction
- 2. Spatialization Step
- 3. Visualization
- 4. Interaction

Data Abstraction

Compound Network: a structure defined by a graph with an associated forest.

Spatialization step

Gosper
space-filling
curve*

Hexagonal **tiles**

Treemap

^{*[}GosperMap: Using a Gosper Curve for Laying Out Hierarchical Data - Auber, D.]

Use cases

DBpedia*

- **3 billion** RDF triples
- Almost 5 million instances
- A hierarchical ontology composed by 685 classes

LinkedMDB**

- More than 7 million RDF triples
- Almost 700 thousands instances
- A flat ontology comprising 51 classes

^{*[}DBpedia - A crystallization point for the Web of Data - C. Bizer]

^{**[}Linked Movie Data Base - O. Hassanzadeh]

DBpedia (demo)

LinkedMDB

Why a map?

A map can leverage:

- innate **visual perception** abilities
- learned **map-reading** skills

to attain a **high level of efficiency** in communicating features of large scale, complex structures.

Thematic maps

The depth of the classes in their ontology (the darker, the deeper).

Thematic maps

The density of object properties of each class (the darker, the more dense).

Future Works

- **Similarity:** displace similar instances close together (inside the same region)
- "Cities": implement an automatic system for ranking the importance of instances
- Level of detail: as the user zooms in, more content should be shown
- Additional functionalities:
 - Advanced search (SPARQL)
 - Path finding features (à la RelFinder)
 - 0 ...

Thank you!

Take a look at our applications:

STATIONS

http://wafi.iit.cnr.it/lod/dbpedia/atlas

Stanley Kubrick

http://wafi.iit.cnr.it/lod/linkedmdb/atlas

fabio.valsecchi@iit.cnr.it

Spatialization approach

Visualization Pipeline

