Importing the required libraries

```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split, GridSearchCV
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.linear_model import LinearRegression
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
```

Reading the dataset

```
In [2]: walmart_data = pd.read_csv('/Users/ashleshad/Downloads/Walmart Sales.csv')
```

In [3]: walmart_data.head(6)

Out[3]:

	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Date	Time	Payment	Rating
0	750-67-8428	Α	Yangon	Member	Female	Health and beauty	74.69	7	1/5/2019	13:08	Ewallet	9.1
1	226-31-3081	Α	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	3/8/2019	10:29	Cash	9.6
2	631-41-3108	Α	Yangon	Normal	Male	Home and lifestyle	46.33	7	3/3/2019	13:23	Credit card	7.4
3	123-19-1176	В	Yangon	Member	Male	Health and beauty	58.22	8	1/27/2019	20:33	Ewallet	8.4
4	373-73-7910	С	Yangon	Normal	Male	Sports and travel	86.31	7	2/8/2019	10:37	Ewallet	5.3
5	699-14-3026	В	Navovitaw	Normal	Male	Electronic accessories	85.39	7	3/25/2019	18:30	Ewallet	4.1

Summary Statistics

In [4]: walmart_data.describe()

Out[4]:

	Unit price	Quantity	Rating		
count	1000.000000	1000.000000	1000.00000		
mean	55.672130	5.510000	6.97270		
std	26.494628	2.923431	1.71858		
min	10.080000	1.000000	4.00000		
25%	32.875000	3.000000	5.50000		
50 %	55.230000	5.000000	7.00000		
75%	77.935000	8.000000	8.50000		
max	99.960000	10.000000	10.00000		

In [5]: walmart_data.skew()

/var/folders/_j/tzw6wdvd1fv_1s_66tcw6my40000gn/T/ipykernel_1194/3942749770.py:1: FutureWarning: The default value of numeric_only in DataFrame.skew is deprecated. In a future version, it will default to False. In ad dition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of num eric_only to silence this warning.

walmart_data.skew()

Out[5]: Unit price 0.007077 Quantity 0.012941 Rating 0.009010

dtype: float64

Checking missing values

```
In [6]: walmart_data.isnull().sum()
Out[6]: Invoice ID
                          0
        Branch
        City
                          0
        Customer type
                          0
        Gender
                          0
        Product line
                          0
        Unit price
                          0
        Quantity
                          0
                          0
        Date
                          0
        Time
        Payment
                          0
        Rating
                          0
        dtype: int64
```

Categorical Columns to Numerical

```
In [7]: label_encoder = LabelEncoder()
walmart_data['Customer type'] = label_encoder.fit_transform(walmart_data['Customer type'])
walmart_data['Gender'] = label_encoder.fit_transform(walmart_data['Gender'])
walmart_data['Product line'] = label_encoder.fit_transform(walmart_data['Product line'])
walmart_data['Payment'] = label_encoder.fit_transform(walmart_data['Payment'])
```

Checking the Data Types

```
In [8]: walmart_data.dtypes
Out[8]: Invoice ID
                           object
        Branch
                           object
        City
                           object
        Customer type
                           int64
        Gender
                           int64
        Product line
                           int64
        Unit price
                          float64
        Quantity
                           int64
                           object
        Date
        Time
                           object
        Payment
                           int64
        Rating
                          float64
        dtype: object
```

Exploratory Data Analysis

```
In [9]: plt.figure(figsize=(6, 3))
    sns.histplot(walmart_data['Rating'], bins=20, kde=True, color='maroon')
    plt.title('Distribution of Ratings')
    plt.xlabel('Rating')
    plt.ylabel('Frequency')
    plt.show()
```


Correlation Heatmap

```
In [10]: plt.figure(figsize=(6, 3))
    corr = walmart_data.corr()
    sns.heatmap(corr, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Correlation Heatmap')
    plt.show()
```

/var/folders/_j/tzw6wdvd1fv_1s_66tcw6my40000gn/T/ipykernel_1194/2436359786.py:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

corr = walmart_data.corr()


```
In [11]: # Convert 'Invoice ID' to string type
    walmart_data['Invoice ID'] = walmart_data['Invoice ID'].astype(str)

# Remove '-' and convert to integer
    walmart_data['Invoice ID'] = walmart_data['Invoice ID'].str.replace('-', '').astype(int)
```

Dropping unnecessary columns

```
In [12]: walmart_data = walmart_data.drop(['Branch', 'Date', 'Time', 'City'], axis=1)
In [13]: walmart_data
```

Out[13]:

	Invoice ID	Customer type	Gender	Product line	Unit price	Quantity	Payment	Rating
0	750678428	0	0	3	74.69	7	2	9.1
1	226313081	1	0	0	15.28	5	0	9.6
2	631413108	1	1	4	46.33	7	1	7.4
3	123191176	0	1	3	58.22	8	2	8.4
4	373737910	1	1	5	86.31	7	2	5.3
995	233675758	1	1	3	40.35	1	2	6.2
996	303962227	1	0	4	97.38	10	2	4.4
997	727021313	0	1	2	31.84	1	0	7.7
998	347562442	1	1	4	65.82	1	0	4.1
999	849093807	0	0	1	88.34	7	0	6.6

1000 rows × 8 columns

Defining Target Variable and dependent features

```
In [14]: X = walmart_data.drop('Rating', axis=1)
y = walmart_data['Rating']
```

Splitting dataset into training and testing

```
In [15]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=44)
```

Applying Machine Learning Algorithms

RANDOM FOREST REGRESSOR MODEL

```
In [16]: RFR = RandomForestRegressor(n_estimators=100, random_state=42)
         RFR.fit(X_train, y_train)
Out[16]:
                   RandomForestRegressor
         RandomForestRegressor(random_state=42)
In [17]: y_pred = RFR.predict(X_test)
In [18]: | mse = mean_squared_error(y_test, y_pred)
In [19]: mse
Out[19]: 3.164777029999999
In [20]: mae = mean_absolute_error(y_test, y_pred)
In [21]: mae
Out[21]: 1.503199999999999
In [22]: | r2 = r2_score(y_test, y_pred)
In [23]: r2
Out[23]: -0.14289053226338222
         LINEAR REGRESSION MODEL
In [24]: LR = LinearRegression()
In [25]: LR.fit(X_train, y_train)
Out [25]:
         ▼ LinearRegression
         LinearRegression()
In [26]: |y_pred = LR.predict(X_test)
In [27]: | lr_mse = mean_squared_error(y_test, y_pred)
In [28]: | lr_mse
Out [28]: 2.878762209157371
In [29]: |lr_mae = mean_absolute_error(y_test, y_pred)
In [30]: | lr_mae
Out[30]: 1.438864703666802
In [31]: lr_r2 = r2_score(y_test, y_pred)
```

Decision Tree Regressor

Out[32]: -0.039602487725202806

In [32]: | lr_r2

```
In [33]: DTR = DecisionTreeRegressor()
```

Summary

LOGISTIC REGRESSION SEEMS TO BE THE BEST AMONGST THE OTHER TWO FOR PREDICTING THE CUSTOMER RATINGS.

In []: