Обучение глубинных нейронных сетей на основе методов байесовской фильтрации

Сергей Павлов

Институт проблем передачи информации РАН Московский физико-технический институт

2017

Оглавление

- Постановка задачи
- Интерпретация
- Отражение задачи
- Эксперименты

Постановка задачи

- Измеримое пространство (Ω, \mathcal{F}) с фильтрацией $\mathcal{F} := (\mathcal{F}_r)_{r=0,1,2,...\mathcal{T}}, \, \mathcal{T} \in \mathcal{N}_+$
- ullet Случайный процесс(управляющий процесс) $oldsymbol{a}$: $\Omega imes \{0,\dots,T-1\} o A$, где (A,\mathcal{B}) измеримое пространство
- $\mathbf{a} = (a_0, a_1, \dots, a_{T-1}) \in \mathcal{A}$ -допустимое множество значений управлений; задавшись таким значением процесса \mathbf{a} , определим
- Марковский процесс $X_r: (\Omega, \mathcal{F}, P^{\mathbf{a}}) \to (S, \mathcal{S}), X_0 = x_0$ п.н., с

$$\mathsf{P}^{\mathsf{a}}(X_{r+1} \in dy | X_r = x) = P^{\mathsf{a}_r}(x, dy), \quad 0 \le r < T.$$

Пусть $\mathcal{T} \subset \{0,\ldots,T\}$. Зададимся измеримыми функциями

$$f_r: S \times A \rightarrow \mathbb{R}$$

$$g_r: S \to \mathbb{R}$$

Рассмотрим оптимизационную задачу:

$$Y_0^* := \sup_{\mathbf{a} \in \mathcal{A}, au \in \mathcal{T}} E^{\mathbf{a}} \left[\sum_{r=0}^{ au-1} f_r(X_r, a_r) + g_{ au}(X_{ au}) \right].$$

Интерпретируем данную общую задачу в терминах обучения нейронных сетей.

Рассмотрим нейронную сеть, состоящую из T слоёв с номерами $r=0,\ldots,T-1$. $\mathcal{T}=\{T\}$ При этом:

- X_r отвечает за значение нейронов слоя r;
- a_r соответствует паре ($\mathbf{W^r}$, $\mathbf{B^r}$) матрица переходов между слоями r и r+1, и вектор порогов активаций слоя r+1;
- Значения процессов **W** и **B** имеют независимые нормальные распределения:

$$\begin{aligned} & B^{i} \sim \mathcal{N}(b^{i}, \mathbb{I}), \\ & W^{i} \sim \mathcal{N}(w^{i}, \mathbb{I}) \end{aligned}$$

- Обозначим функцию потерь сети $L'(X_{T-1}, Y)$;
- $g_T(X_{T-1}) := -L'(X_{T-1}, Y) = L(X_{T-1}, Y)$
- $f_r = 0, r = 0, \ldots, T-1$

Оптимизационная задача переформулируется таким образом:

$$Y_0^* := \sup_{\mathbf{a} \in \mathcal{A}} E^{\mathbf{a}} \left[L(X_{T-1}, Y) \right]$$

Напомним, что здесь L есть функция потерь сети, взятая с обратным знаком(L < 0).

Обозначим A_r допустимое множество управлений a:

$$\Omega \times \{r, \ldots, T-1\} \to A$$

Определим случайные величины:

$$Y_r^* := \sup_{\mathbf{a} \in \mathcal{A}_r} E^{\mathbf{a}} \left[L(X_{T-1}, Y) | X_r \right], \quad 0 \le r \le T.$$

Зададим функции:

$$h_r^*(x) = \sup_{\mathbf{a} \in \mathcal{A}_r} E^{\mathbf{a}} [L(X_{T-1}, Y) | X_r = x], \quad 0 \le r \le T$$

Решение задачи

В соответствии с принципом Беллмана:

$$Y_r^* = h_r^*(X_r).$$

Если вычислена зависимость $h_{r+1}^*(x'), \forall x'$, то задача поиска зависимости $h_r^*(x)$ сводится к оптимизации по единственному параметру a_r :

$$h_r^*(x) = \sup_{a_r} \int P^{a_r}(x, dy) h_{r+1}^*(y)$$

Алгоритм обучения для фиксированного Ү

- Значения X_0 и $Y_0(X_0)$ берутся из тренировочного набора данных;
- На шаге $i \in [1, \dots, T-1]$ оптимизационная задача решается перебором по следующей схеме:
 - Сгенерировать $\{X_{T-i-1}^j\}_{j=0}^N$ из гиперкуба $[0,1]^{dim(X_{T-i-1})}$;
 - Для каждого из X_{T-i-1}^j генерировать по M значений параметров $\mathbf{w}_{ik}^{\mathsf{T}-i-1}, \mathbf{b}_{ik}^{\mathsf{T}-i-1}, \ k \in \{1,\dots,M\}$ из гиперкуба с базой [-2,2];
 - $oldsymbol{\mathsf{w}}$ Для каждой пары параметров $oldsymbol{\mathsf{w}}_{jk}^{\mathsf{T}-i-1}, oldsymbol{\mathsf{b}}_{jk}^{\mathsf{T}-i-1}$ получить K реализаций случайных величин: $B_{jkl}^{\mathsf{T}-i-1}, W_{jkl}^{\mathsf{T}-i-1}, l=1,\ldots,K$

0

$$h_{T-i-1,jk}^{*,emp}(X_{T-i-1}^{j}) := \frac{1}{K} \sum_{l=1}^{K} h_{T-i}^{*}(\sigma(X_{T-i-1}^{j}W_{jkl}^{T-i-1} + B_{jkl}^{T-i-1}))$$

• Выбрать пару параметров $(w_j^{*,T-i-1},b_j^{*,T-i-1})=(w_{jk^*}^{T-i-1},b_{jk^*}^{T-i-1}),$ $k^*:=\operatorname{argmax}_k h_{T-i-1,jk}^*(X_{T-i-1}^j);$

ullet Построить регрессионную модель M_{T-i-1}^Y зависимости $(w_j^{*,T-i-1},b_j^{*,T-i-1})$ от значения X_{T-i-1}^j ;

Результат обучения: $M^Y = (M_0^Y, \dots, M_{T-2}^Y)$

Вычисление прогноза

Имея обучение $M^Y = (M_0^Y, \dots, M_{T-2}^Y)$ для фиксировнного Y, опишем процесс построение прогноза сети.

При вычислении прогноза будем полагать случайные величины $\mathbf{W^i}, \mathbf{B^i}$ равными своим мат.ожиданиям $\mathbf{w^i}(\mathbf{X_{i-1}}), \mathbf{b^i}(\mathbf{X_{i-1}});$

Чтобы сделать прогноз по заданному входу X_0 необходимо произвести цепочку вычислений:

$$\overline{X_0} := X_0 \xrightarrow{M_0^Y} \mathbf{w^0}, \mathbf{b^0} \to \overline{X}_1 := \sigma(\overline{X_0}\mathbf{w^0} + \mathbf{b^0})$$

$$\xrightarrow{M_1^Y} \mathbf{w^1}, \mathbf{b^1} \to \overline{X}_2 \dots, \overline{X}_{T-1}$$

В зависимости от задачи(регрессия/классификация) прогнозом объявляется \overline{X}_{T-1} или $\sigma(\overline{X}_{T-1})$.

Объединение обучений для различных Ү

Перейдём к задаче бинарной классификации(0/1).
$$\{(X_r,Y(X_r))\}_{r=1}^Q \text{ - обучающая выборка; } Y(X_r) \in \{0,1\}$$
 Обучение для $1:M^+=(M_0^+,\dots,M_{T-2}^+)$ Обучение для $0:M^-=(M_0^-,\dots,M_{T-2}^-)$ Цель: Получить обучение $M^*=(M_0^*,\dots,M_{T-2}^*)$, отражающее зависимость $Y(X_{in})$

Подход 1

Подход 2

Эксперименты

 ${\it N}=15, {\it M}=15, {\it K}=5$, архитектура сети: $[{\it X},5,5,5,5,5,1]$. Данные:

- "diabetes"
- "breast-cancer"
- "fourclass"
- "german.numer"
- "heart
- "liver-disorders"

Результаты

Набор данных	Среднее(о/с)	Дисперсия(о/с)	Среднее(#1)	Дисперсия(#1)	Среднее(#2)		' '	Размер тест. выб
1	0,72	0,0006	0,69	0,003	0,54	0,014	400	368
2	0,96	0,0001	0,87	0,004	0,7	0,04	350	333
3	0,93	0,005	0,69	0,004	0,58	0,02	550	312
4	0,73	0,006	0,68	0,009	0,51	0,02	900	100
5	0,78	0,003	0,67	0,01	0,52	0,02	170	100
6	0,68	0,004	0,63	0,01	0,58	0,02	100	45

Эксперименты

Спасибо за внимание!!

