

1/32

Figure 1A

2/32

Figure 1B

3/32

Figure 1C

4/32

Figure 2A

= Solid support

5/32

Figure 2B

= Solid support

6/32

7/32

8/32

Fig. 5. Zipperbox

Optional reactive group or a Functional Entity comprising a reactive group

```

graph TD
    A((Optional reactive group or a  
Functional Entity comprising a reactive group)) --- B[Optional Linker]
    B --- C[Optional Zipperbox]
    C --- D[Optional Linker]
    D --- E[Polymer]
  
```


9/32

Fig. 6. Reaction types allowing simultaneous reaction and linker cleavage.**Nucleophilic substitution using activation of electrophiles****A. Acylating monomer building blocks - principle****B. Acylation****Amide formation by reaction of amines with activated esters****C. Acylation****Pyrazolone formation by reaction of hydrazines with β -Ketoesters**

10/32

D. AcylationIsoxazolone formation by reaction of hydroxylamines with β -Ketoesters**E. Acylation**Pyrimidine formation by reaction of thioureas with β -Ketoesters**F. Acylation****SUBSTITUTE SHEET (RULE 26)**

11/32

Pyrimidine formation by reaction of ureas with Malonates

G. Acylation
Coumarine or quinolinon formation by a Heck reaction followed by a nucleophilic substitution

H. Acylation
Phthalhydrazide formation by reaction of Hydrazines and Phthalimides

SUBSTITUTE SHEET (RULE 26)

12/32

I. Acylation**Diketopiperazine formation by reaction of Amino Acid Esters****J. Acylation****Hydantoin formation by reaction of Urea and α -substituted Esters**

13/32

X = O, S X' = Hal, OTos, OMs, etc.

**K. Alkylating monomer building blocks - principle
Alkylated compounds by reaction of Sulfonates with Nucleophiles**

Nu = Oxygen-, Nitrogen-, Sulfur- and Carbon Nucleophiles

L. Vinylating monomer building blocks - principle

Z = CN, COOR, COR, NO₂, SO₂R, S(=O)R, SO₂NR₂, F
Nu = Oxygen-, Nitrogen-, Sulfur- and Carbon Nucleophiles

14/32

M. Heteroatom electrophiles
Disulfide formation by reaction of Pyridyl disulfide with mercaptanes

SUBSTITUTE SHEET (RULE 26)

15/32

N. Acylation
Benzodiazepinone formation by reaction of Amino Acid Esters
and Amino Ketones

Addition to carbon-hetero multiple bonds

O. Wittig/Horner-Wittig-Emons reagents
Substituted alkene formation by reaction of Phosphonates with Aldehydes or
Ketones

Ewg = CN, COOR, COR, NO₂, SO₂R, Si=O|R, SO₂NR₂, F etc.

16/32

P. Wittig/Horner-Wittig-Eminons reagents
 Substituted alkene formation by reaction of Phosphonates with Aldehydes or
 Ketones

Ewg = CN, COOR, COR, NO₂, SO₂R, Si=O|R, SO₂NR₂, F etc.
 Ar = aryl, heteraryl

Transition metal catalysed reactions

Q. Transition metal cat. Arylations

SUBSTITUTE SHEET (RULE 26)

17/32

Z = halobaryl, halohearyl, ArOMs, ArOTs, ArOTos or NHR or OH or SH etc.

Z* = Aryl, hetaryl, NR or O or S etc.

M = e.g. BR, BR₂, SnR₂ etc.

R = H, alkyl, aryl, hetaryl, OR, NR₂

M* = e.g. B(OH)R, B(OH)R₂, Sn(OH)R₂ etc.

R. Arylation
Biaryl formation by the reaction of Borates with Aryls or Heteroaryls

X = Halogen, OMs, OTf, OTos, etc.

S. Arylation
Biaryl formation by the reaction of Boronates with Aryls or Heteroaryls

18/32

T. Arylation
Biaryl formation by the reaction of Boronates with Aryls or Heteroaryls

U. Arylation
Arylamine formation by the reaction of amines with activated Aryls or Heteroaryls

19/32

V. Arylation
Arylamine formation by the reaction of amines with hypervalent iodonium salts

X. Arylation
Vinylarene formation by the reaction of alkenes with Aryls or Heteroaryls

$\text{X} = \text{Halogen, OMs, OTl, OTos, etc}$

20/32

Y. Alkylation
Alkylation of arenes/hetarens by the reaction with Alkyl boronates

X = Halogen, OMs, OTf, OTos, etc

Z. Alkylation
Alkylation of arenes/hetarenes by reaction with enolethers

SUBSTITUTE SHEET (RULE 26)

21/32

$X = \text{Halogen, OMs, OTf, OTos, etc}$

SUBSTITUTE SHEET (RULE 26)

22/32

Nucleophilic substitution using activation of nucleophiles

A.A. Condensations

Alkylation of aldehydes with enoethers or enamines

Z = NR, O; X = Halogen, OMs, OTf, OTos, etc

B.B. Alkylation

Alkylation of aliphatic halides or tosylates with enoethers or enamines

X = Halogen, OMs, OTf, OTos, etc

23/32

Cycloadditions

A.C. [2+4] Cycloadditions

AD. [2+4] Cycloadditions

SUBSTITUTE SHEET (RULE 26)

24/32

AE. [3+2] Cycloadditions

AF. [3+2] Cycloadditions

25/32

Figure 7. Pairs of reactive groups X,Y and the resulting bond XY.

Nucleophilic substitution reactions

SUBSTITUTE SHEET (RULE 26)

26/32

Aromatic nucleophilic substitution Transition metal catalysed reactions

SUBSTITUTE SHEET (RULE 26)

27/32

Addition to carbon-carbon multiple bonds

28/32

Cycloaddition to multiple bounds

SUBSTITUTE SHEET (RULE 26)

29/32

Addition to carbon-hetero multiple bonds

SUBSTITUTE SHEET (RULE 26)

30/32

Figure 8. Cleavable Linkers**A. Linker for the formation of Ketones, Aldehydes, Anides and Acids****B. Linker for the formation of Ketones, Anides and Acids****C. Linker for the formation of Aldehydes and Ketones****D. Linker for the formation of Alcohols and Acids****E. Linker for the formation of Amines and Alcohols****F. Linker for the formation of Esters, Thioesters , Amides and Alcohols****SUBSTITUTE SHEET (RULE 26)**

31/32

G. Linker for the formation of Sulfonamides and Alcohols**H. Linker for the formation of Ketones, Amines and Alcohols****I. Linker for the formation of Ketones, Amines, Alcohols and Mercaptanes****J. Linker for the formation of Biaryl and Bihetaryl****K. Linker for the formation of Benzylic, Anilines, Anilins
Alcohols and Phenoles****L. Linker for the formation of Mercaptanes**

32/32

M. Linker for the formation of Glycosides

N. Linker for the formation of Aldehydes and Glyoxylamides

O. Linker for the formation of Aldehydes, Ketones and Aminoalcohols

SUBSTITUTE SHEET (RULE 26)