Complexity Analysis of Algorithms

Jordi Cortadella
Jordi Petit (Python version)
Department of Computer Science

Estimating runtime

What is the runtime of g(n)?

```
def g(n: int):
    for i in range(n):
     f()
```

 $Runtime(g(n)) \approx n \cdot Runtime(f())$

```
def g(n: int):
    for i in range(n):
        for j in range(n):
        f()
```

Runtime $(g(n)) \approx n^2 \cdot \text{Runtime}(f())$

Estimating runtime

What is the runtime of g(n)?

```
def g(n: int):
    for i in range(n):
        for j in range(i + 1):
        f()
```

Runtime
$$(g(n))$$
 \approx $(1+2+3+\cdots+n)\cdot \text{Runtime}(f())$ \approx $\frac{n^2+n}{2}\cdot \text{Runtime}(f())$

Complexity analysis

 A technique to characterize the execution time of an algorithm independently from the machine, the language and the compiler.

Useful for:

- evaluating the variations of execution time with regard to the input data
- comparing algorithms
- We are typically interested in the execution time of large instances of a problem, e.g., when $n \to \infty$, (asymptotic complexity).

Big O

- A method to characterize the execution time of an algorithm:
 - Adding two square matrices is $O(n^2)$
 - Searching in a dictionary is $O(\log n)$
 - Sorting a vector is $O(n \log n)$
 - Solving Towers of Hanoi is $O(2^n)$
 - Multiplying two square matrices is $O(n^3)$
 - **—** ...

• The O notation only uses the dominating terms of the execution time. Constants are disregarded.

Big O: formal definition

• Let T(n) be the execution time of an algorithm when the size of input data is n.

• T(n) is O(f(n)) if there are positive constants c and n_0 such that $T(n) \le c \cdot f(n)$ when $n \ge n_0$.

Big O: example

- Let $T(n) = 3n^2 + 100n + 5$, then $T(n) = O(n^2)$
- Proof:
 - Let c = 4 and $n_0 = 100.05$
 - For n ≥ 100.05, we have that $4n^2 \ge 3n^2 + 100n + 5$

• T(n) is also $O(n^3)$, $O(n^4)$, etc. Typically, the smallest complexity is used.

Big O: examples

T(n)	Complexity
$5n^3 + 200n^2 + 15$	$O(n^3)$
$3n^2 + 2^{300}$	$O(n^2)$
$5\log_2 n + 15\ln n$	$O(\log n)$
$2\log n^3$	$O(\log n)$
$4n + \log n$	O(n)
2^{64}	O(1)
$\log n^{10} + 2\sqrt{n}$	$O(\sqrt{n})$
$2^n + n^{1000}$	$O(2^n)$

Complexity ranking

Function	Common name
n!	factorial
2^n	exponential
$n^d, d > 3$	polynomial
n^3	cubic
n^2	quadratic
$n\sqrt{n}$	
$n \log n$	quasi-linear
$\mid n \mid$	linear
\sqrt{n}	root - n
$\log n$	logarithmic
1	constant

Complexity analysis: examples

Let us assume that f() has complexity O(1)

```
for i in range(n): f()
for i in range(n):
                                                  \rightarrow O(n^2)
  for j in range(n): f()
for i in range(n):
                                             \longrightarrow O(n^2)
  for j in range(i): f()
for i in range(n):
                                                  \rightarrow O(n^3)
  for j in range(n):
    for k in range(n): f()
for i in range(m):
                                                 \rightarrow O(mnp)
  for j in range(n):
    for k in range(p): f()
```

Complexity analysis: examples

11

```
def f(n: int):
   if n > 0:
      DoSomething(n) # O(n)
      f(n // 2)
```

$$T(n) = n + T(n/2)$$

$$T(n) = n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots + 2 + 1$$

$$2 \cdot T(n) = 2n + n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots + 4 + 2$$

$$2 \cdot T(n) - T(n) = T(n) = 2n - 1$$

$$T(n) \text{ is } O(n)$$

```
def f(n: int):
   if n > 0:
     DoSomething(n) # O(n)
     f(n // 2)
   f(n // 2)
```

```
      n

      n/2
      n/2

      n/4
      n/4
      n/4
      n/4

      ...
      ...
      ...
      ...
      ...
      ...
      ...

      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      <
```

13

$$T(n) = n + 2 \cdot T(n/2)$$

$$= n + 2 \cdot \frac{n}{2} + 4 \cdot \frac{n}{4} + 8 \cdot \frac{n}{8} + \cdots$$

$$= \underbrace{n + n + n + \cdots + n}_{\log_2 n} = n \log_2 n$$

T(n) is $O(n \log n)$

```
def f(n: int):
   if n > 0:
      DoSomething(n) # O(n)
      f(n - 1)
```

$$T(n) = n + T(n-1)$$

 $T(n) = n + (n-1) + (n-2) + \dots + 2 + 1$
 $T(n) = \frac{n^2 + n}{2}$

$$T(n)$$
 is $O(n^2)$

14

```
def f(n: int):
   if n > 0:
      DoSomething(n) # O(n)
      f(n - 1)
      f(n - 1)
```

$$T(n) = 1 + 2 \cdot T(n-1)$$

$$= 1 + 2 + 4 \cdot T(n-2)$$

$$= 1 + 2 + 4 + 8 \cdot T(n-3)$$

$$\vdots$$

$$= 1 + 2 + 4 + 8 + \dots + 2^{n-1}$$

$$= \sum_{n=1}^{n-1} 2^{i} = 2^{n} - 1$$

Asymptotic complexity (small values)

Asymptotic complexity (larger values)

Execution time: example

Let us consider that every operation can be executed in 1 ns (10⁻⁹ s).

	Time					
Function	$(n=10^3)$	$(n=10^4)$	$(n=10^5)$			
$\log_2 n$	10 ns	13.3 ns	$16.6 \mathrm{\ ns}$			
\sqrt{n}	$31.6 \mathrm{\ ns}$	100 ns	316 ns			
$\mid n \mid$	$1~\mu \mathrm{s}$	$10~\mu\mathrm{s}$	$100~\mu\mathrm{s}$			
$n \log_2 n$	$10~\mu\mathrm{s}$	$133~\mu\mathrm{s}$	$1.7 \mathrm{\ ms}$			
n^2	$1 \mathrm{ms}$	$100 \mathrm{\ ms}$	10 s			
n^3	$1 \mathrm{s}$	$16.7 \mathrm{min}$	$11.6 \mathrm{days}$			
n^4	$16.7 \mathrm{\ min}$	116 days	$3171 \mathrm{\ yr}$			
2^n	$3.4 \cdot 10^{284} \text{ yr}$	$6.3 \cdot 10^{2993} \text{ yr}$	$3.2 \cdot 10^{30086} \text{ yr}$			

How about "big data"?

Source: Jon Kleinberg and Éva Tardos, Algorithm Design, Addison Wesley 2006.

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

			•				
	n	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

This is often the practical limit for big data

Summary

- Complexity analysis is a technique to analyze and compare algorithms (not programs).
- It helps to have preliminary back-of-the-envelope estimations of runtime (milliseconds, seconds, minutes, days, years?).
- Worst-case analysis is sometimes overly pessimistic.
 Average case is also interesting (not covered in this course).
- In many application domains (e.g., big data) quadratic complexity, $O(n^2)$, is not acceptable.
- Recommendation: avoid last-minute surprises by doing complexity analysis before writing code.