Лабораторная работа 1.4.5 "Изучение колебаний струны"

Учащийся 1 курса ЛФИ Гусаров Николай

Октябрь 2020

1. Цель лабораторной работы

Изучение поперечных стоячих волн на струне; определение собственных частот колебаний струны; исследование зависимости скорости распространения поперечных волн на струне в зависимости от её натяжения.

2. Оборудование

Закрепленная на станине стальная струна, набор грузов, электромагнитные датчики, звуковой генератор, двухканальный осциллограф, частотомер.

3. Теория

Струна – однородная тонкая гибкая упругая нить. Гибкость обусловлена малостью поперечных размеров в сравнении с длиной. Поперечная упругость – способность сопротивляться изменению формы без изменения объема. При вертикальном смещении произвольного элемента струны, возникают силы, действующие на соседние элементы, и в результате вся струна приходит в движение в вертикальной плоскости, т.е. возбуждение «бежит» по струне. Скорость распространения волны:

$$u = \sqrt{\frac{T}{\rho_l}} \tag{1}$$

Стоячая волна может быть получена как сумма двух гармонических бегущих волн с равной амплитудой, двигающихся навстречу. Стоячая волна может быть описана выражением $y(x,t)=2asin\,kx*sin\,\omega t$. Точки струны, где $sin\,kx=0$ в любой момент времени неподвижны – они называются узлами. Остальные точки совершают гарм. колебания в вертикальной плоскости с частотой $\nu=\frac{\omega}{2\pi}=\frac{u}{\lambda}$. Т.к. амплитуда распространяется вдоль струны по закону $y_0(x)=2asin\,kx$, то она максимальна в точках – пучностях, – где sinkx=1. Т.к. точки крепления струны – узлы, то длина струны:

$$L = \frac{\lambda_n}{2}n\tag{2}$$

А потому

$$\nu_n = \frac{u}{\lambda_n} = \frac{n}{2L} \sqrt{\frac{T}{\rho_l}}, n \in N$$
(3)

Наименьшая частота ν_1 называется также основным тоном (или первой гармоникой), а остальные ($\nu_2=2\nu_1,\ \nu_3=3\nu_1,...$) — обертонами (высшими гармониками).

Для эффективной раскачки колебаний используется явление резонанса — вынуждающая частота ν должна совпадать с одной из собственных частот струны ν_n (9)). Когда потери энергии в точности компенсируются энергией, поступающей от вибратора, колебания струны становятся стационарными и на ней можно наблюдать стоячие волны. Если потери энергии за период малы по сравнению с запасом колебательной энергии в струне, то искажение стоячих волн бегущей волной не существенно — наложение бегущей волны малой амплитуды на стоячую визуально приводит к незначительному «размытию» узлов. Для достижения максимального эффекта от вибратора, его следует располагать вблизи узловой точки.

3.1. Экспериментальная установка

4. Визуальное наблюдение стоячих волн

4.1. Теор. оценка для массы груза = 1 кг

По (1) и (3) и из $\rho_l = 568, 4*10^{-6}$ кг/м, а T = mg = 1*10 = 10:

$$u = \sqrt{\frac{T}{\rho_l}} = \sqrt{\frac{10}{568, 4 * 10^{-6}}} = 132, 6 \,\text{m/c}$$
 (4)

$$\nu_1 = \frac{u}{\lambda_1} = \frac{n}{2L} \sqrt{\frac{T}{\rho_l}} = \frac{1}{1} \sqrt{\frac{10}{568, 4 * 10^{-6}}} = 132, 6 \,\Gamma\text{H}$$
 (5)

4.2. Измерение при массе груза $= 1 \ { m Kr}$

Гармоники

n	$ u_n$, Гц
1	132,5
2	264,4
3	396,6
4	529,8
5	664,0

Экспериментальные данные хорошо соотносятся с (5).

5. Регистрация стоячих волн с помощью осциллографа

5.1.
$$L = 50 \text{ cm}, T = 0,482 \text{ kg} * 10 \text{ m/c}^2 = 4,82 \text{ H}$$

Нечетные гармоники

n	ν_n , Гц
1	103,3
3	319,0
5	519,0
7	660,0
9	840,0

Четные гармоники

n	$ u_n$, Гц
2	190,7
4	380,3
6	570,7
8	760,1
10	945,4

5.2.
$$L = 50 \text{ cm}, T = 1 \text{ kg} * 10 \text{ m/c}^2 = 10 \text{ H}$$

Нечетные гармоники

n	$ u_n$, Гц
1	131,8
3	395,7
5	661,3
7	931,8
9	1207,0

Четные гармоники

n	$ u_n$, Гц
2	263,9
4	529,7
6	804,7
8	1069,3
10	1343,2

5.3. $L = 50 \text{ cm}, T = 1,460 \text{ kg} * 10 \text{ m/c}^2 = 14,60 \text{ H}$

Нечетные гармоники

n	$ u_n$, Гц
1	161,2
3	488,3
5	816,1
7	1145,0
9	1472,0

Четные гармоники

n	$ u_n$, Гц
2	325,9
4	652,0
6	977,5
8	1309,1
10	1640,6

5.4.
$$L = 50 \text{ cm}, T = 1,960 \text{ kg} * 10 \text{ m/c}^2 = 19,60 \text{ H}$$

Нечетные гармоники

n	$ u_n$, Гц
1	185,8
3	558,0
5	933,0
7	1303,3
9	1675,0

Четные гармоники

n	$ u_n$, Гц
2	372,2
4	744,9
6	1118,5
8	1490,3
10	1860,9

5.5. Наблюдение фигуры Лиссажу

Настроим установку на наблюдение основной гармоники и выставим на генераторе $\nu = \nu_1/2$. Получим фигуру Лиссажу с одним самопересечением:

Данная фигура появляется на экране при подаче на два канала осциллографа сигналов с отношеним частот 1:2. Кажется, что при этом струна совершает колебания с частотой ν_1 , а генератор выдает частоту ν .

5.6. Определение добротности струны как колебательной системы

 $5.6.1. \; \mathrm{m} = 0.428 \; \mathrm{kr}$

 $\nu_{\rm pes}=103,300\,\Gamma$ ц, $\nu=103,410\,\Gamma$ ц для при амплитуды, составляющей 0,7 от амплитуды в резонансе. Добротность:

$$Q = \frac{\nu_{\text{pe3}}}{\Delta\nu_{\text{pe3}}} = \frac{103,300}{103,410 - 103,300} = 939$$

$5.6.2. \; \mathrm{m} = 1 \; \mathrm{kg}$

 $\nu_{\rm pes}=134,428\,\Gamma$ ц, $\nu=134,342\,\Gamma$ ц для при амплитуды, составляющей 0,7 от амплитуды в резонансе. Добротность:

$$Q = \frac{\nu_{\text{pe3}}}{\Delta\nu_{\text{pe3}}} = \frac{134,428}{134,428 - 134,342} = 1563$$

$5.6.3. \ \mathrm{m} = 1{,}462 \ \mathrm{kr}$

 $u_{\rm pes} = 414,600\,\Gamma$ ц, $u = 414,678\,\Gamma$ ц для при амплитуды, составляющей 0,7 от амплитуды в резонансе. Добротность:

$$Q = \frac{\nu_{\text{pe3}}}{\Delta\nu_{\text{pe3}}} = \frac{414,600}{414,678 - 414,600} = 5315$$

$5.6.4. \, \, \mathrm{m} = 1,960 \, \, \mathrm{kr}$

 $\nu_{\rm pes}=554,100\,\Gamma$ ц, $\nu=554,210\,\Gamma$ ц для при амплитуды, составляющей 0,7 от амплитуды в резонансе. Добротность:

$$Q = \frac{\nu_{\text{pe3}}}{\Delta\nu_{\text{pe3}}} = \frac{554,100}{554,210 - 554,100} = 5037$$

6. Обработка результатов измерений

6.1. Сравнение частот визуального наблюдения и с помощью осциллографа

Частоты различаются на несколько герц из-за разности положения регистрирующего датчика (8).

6.2. Определение скорости волн, бегущих по струне

Из (1), (2), (3):

$$\nu_n(n) = \frac{n}{2L} * u$$

То есть и можно выразить через коэффициент k угла наклона прямой и $L=50\,$ см:

$$u = k * 2L$$

Приняв $\sigma_k=1\,\%$ Погрешность определим так

$$\sigma_u = \frac{2 * \delta_L}{L} + \sigma_k = 2\%$$

T, H	k, c^{-1}	и, м/с	δ_u , M/ c
4,8	92,3	92,3	1,9
10,0	134,7	134,7	2,7
14,6	164,2	164,2	3,3
19,6	186,2	186,2	3,7

6.3. Определение ρ_l

По (1): $T(u) = \rho_l * u^2$ По данным 6.2 рассмотрим $T(u^2)$

T, H	δ_T, H	$u^2 (M/c)^2$	$\delta_{u^2} = 2\sigma_u * u^2, (M/c)^2$
4,8	0,04	8519,3	340,5
10,0	0,04	18144,1	735,6
14,6	0,04	26961,6	1050,1
19,6	0,04	34670,4	1356,4

Зависимость силы натяжения струны от скорости волны в квадрате

Из графика $\rho_l=k=560, 3*10^{-6}\,\mathrm{kr/m}$, что соотносится с данной изначально величиной. $\sigma_{\rho_l}=\sigma_T+2\sigma_u.$ $\Delta_{\rho_l}=28*10^{-6}\,\mathrm{kr/m}$

7. Заключение

Нам удалось изучить поведение поперечных стоячих волн на струне. Определить собственные колебания струны. Также мы исследовали зависимость скорости распространения поперечных волн на струне в зависимости от её натяжения и получили погонную плотность стали, из которой сделана струна с достаточно хорошей точностью:

$$\rho_l = (560, 3 \pm 28, 0) * 10^{-6} \, \mathrm{kg/m}$$