

FCC TEST REPORT

APPLICANT

Fourier Systems Inc

PRODUCT NAME

Tablet PC

MODEL NAME

ENTAB2, einstein II+, E892

TRADE NAME

einstein

BRAND NAME

einstein

FCC ID

2AAKDEINSX02

STANDARD(S)

: 47 CFR Part 15 Subpart B

TEST DATE

2016-11-04 to 2016-11-14

ISSUE DATE

2016-11-15

SHENZHEN MORLAB COMMUNIC

TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.cn E-mail: service@morlab.cn

Tel: 86-755-36698555 Fax: 86-755-36698525

DIRECTORY

<u>1. TE</u>	CHNICAL INFORMATION	<u>5</u>
1.1.	PPLICANT INFORMATION······	5
1.2. I	QUIPMENT UNDER TEST (EUT) DESCRIPTION	5
2. TE	ST RESULTS	7
2.1.	PPLIED REFERENCE DOCUMENTS	7
3. TE	ST CONDITIONS SETTING	8
3.1. ⁻	EST MODE	8
3.2. ⁻	EST SETUP AND EQUIPMENTS LIST	9
3.2.1.	CONDUCTED EMISSION	9
3.2.2.	RADIATED EMISSION	·· 10
<u>4. 47</u>	CFR PART 15B REQUIREMENTS	···12
	ONDUCTED EMISSION·····	
4.1.1.	REQUIREMENT	12
	TEST DESCRIPTION	
	TEST RESULT	
	ADIATED EMISSION	
	REQUIREMENT	
	TEST DESCRIPTION	
	FREQUENCY RANGE OF MEASUREMENT	
4.2.4.	TEST RESULT ······	·· 16
<u>ANNE</u>	A PHOTOGRAPHS OF TEST SETUP	···19
ANNE	B TEST UNCERTAINTY	···21
ANNE	C TESTING LABORATORY INFORMATION	22

1.	IDENTIFICATION OF THE RESPONSIBLE TESTING LABORATORY22
2.	IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION22
3.	ACCREDITATION CERTIFICATE22
4.	TEST ENVIRONMENT CONDITIONS22

	Change History					
Issue	Date	Reason for change				
1.0	2016-11-15	First edition				

Test Report Declaration

Applicant	Fourier Systems Inc
Applicant Address	16 Hamelacha Street, Rosh Ha'ayin 48091,Israel
Manufacturer	Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.
Manufacturer Address	4/F,6/F South, Skyworth Industrial Park, Shiyan Bao'an District, Shenzhen, Guangdong
Product Name	Tablet PC
Model Name	ENTAB2,einstein II+,E892
Brand Name	einstein
HW Version	V10
SW Version	5.1.1
Test Standards	47 CFR Part 15 Subpart B
Test Result	PASS

Tested by	V . <u></u>	Wu Zhonguen	
		Wu Zhongwen (Test Engineer)	

Xiao Xiong Xiao Xiong (EMC Manager) Reviewed by

Approved by Andy Yeh (Technology Manager)

1. Technical Information

Note: Provided by applicant

1.1. Applicant Information

Company: Fourier Systems Inc

Address: 16 Hamelacha Street, Rosh Ha'ayin 48091, Israel

1.2. Equipment under Test (EUT) Description

EUT Type:	Tablet PC	AE REALE HORLE HO.		
Serial No:	(N/A, marked #1 by test site)			
Hardware Version:	V10	NE TLAN TORL MO. SE ME		
Software Version:	5.1.1	MO SE SLAE SORLY		
Power supply:	Battery	TLAS JORLY MON SE IN TLAS		
	Brand Name:	N/A		
	Model No.:	3377102-2P		
	Serial No.:	(N/A ,marked #1 by test site)		
	Capacity:	6200mAh		
	Rated Voltage:	3.7V		
	Charge Limit:	4.2V		
Ancillary Equipment :	AC Adapter (Charger for Battery)			
	Brand Name:	N/A		
	Model No.:	KSA29B0500200D5		
	Serial No.:	(N/A. marked #1 by test site)		
	Rated Input:	~ 100-240V, 50/60Hz,500mA		
	Rated Output:	= 5.0V, 2.0A		

NOTE:

- The EUT is equipped with a T-Flash slot, a Micro USB port, four extended ports and a HDMI port which can be connected to ancillary equipments.
- The terminal product ENTAB2, einstein II+,E892 have the same hardware, the same power
 adapter and housing. The main differences are that they have different color or brand name or
 model or back cover, but has no influence on the safety, EMC and RF test.

pplicant and/or manufacturer.		

2. Test Results

2.1. Applied Reference Documents

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart B:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Result
1 %	15.107	Conducted Emission	2016.11.11	PASS
2	15.109	Radiated Emission	2016.11.11	PASS

NOTE: The tests were performed according to the method of measurements prescribed in ANSI C63.4-2014.

3. Test Conditions Setting

3.1. Test Mode

1	The first test mode (Charging)
	The EUT configuration of the emission tests is EUT + Adapter.
	During the measurement, the EUT was connected with the Adapter and kept charging by
	the Adapter, meanwhile, it was kept rated output and working normally.
2	The second test mode (Data Transmitting)
	The EUT configuration of the emission tests is EUT + Battery + PC + T-Flash card.
	During the test, the EUT embedded with a T-Flash card was connected with the PC, the
	EUT was charged by the PC, meanwhile the data was transmitted between the PC and
	the T-Flash Card of the EUT.
3	The third test mode (Camera)
	The EUT configuration of the emission tests is EUT + Battery + Charger + T-Flash Card
	During the test, the camera function was active.
4	The fourth test mode (HDMI)
	The EUT configuration of the emission tests is EUT + Battery + Charger + T-Flash Card +
	HDMI Device.
	During the test, the EUT was charged by the charger, the EUT with a T-Flash card
	embedded was connected with a HDMI Device, the data was transmitted between the
	HDMI Device and the T-Flash Card of the EUT.

3.2. Test Setup and Equipments List

3.2.1. Conducted Emission

A. Test Setup:

The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides $50\Omega/50\mu H$ of coupling impedance for the measuring instrument. A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.

The power strip or extension cord has been investigated to make sure that the LISN integrity in maintain with respect to the impedance characteristics as prescribed in ANSI C63.4-2014 at Clause 4.3.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Due. Date
Receiver	Narda	PMM 9060	001WX11001	2015.11.26	2016.11.25
Receiver	Narda	PMM 9010	595WX11007	2016.01.13	2017.01.12
LISN	Schwarzbeck	NSLK 8127	812744	2016.01.13	2017.01.12
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	2016.01.13	2017.01.12

3.2.2. Radiated Emission

A. Test Setup:

1. For radiated emissions from 30MHz to1GHz

2. For radiated emissions above 1GHz

The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3maway from the Test Antenna, which is mounted on avariable height antenna master tower.

For the test Antenna:

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Due. Date
MXE EMIReceiver	Agilent	N9038A	MY54130016	2016.01.13	2017.01.12
Semi-Anechoic Chamber	Changning	9m*6m*6m	N/A	2016.01.13	2017.01.12
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2016.01.13	2017.01.12
Test Antenna - Horn	Schwarzbeck	BBHA9120C	9120C-384	2016.01.13	2017.01.12

4. 47 CFR Part 15B Requirements

4.1. Conducted Emission

4.1.1. Requirement

According to FCC section 15.107, the radio frequency voltage that is conducted back onto the ACpower line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBμV)				
(MHz)	Quasi-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			

NOTE:

- a) The limit subjects to the Class B digital device.
- b) The lower limit shall apply at the band edges.
- The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

4.1.2. Test Description

See section 3.2.1 of this report.

4.1.3. Test Result

The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. All test modes are considered, refer to recorded points and plots below.

A. Test Plot and Suspicious Points:

NO.	Fre.	Emission Le	vel (dBµV)	Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.15	47.82	19.49	66.00	56.00	ORLA	PASS
2	0.18	53.73	28.69	65.14	55.14	S ME LAF	PASS
3	0.235	49.52	16.34	63.57	53.57	Line	PASS
4	0.26	44.51	4.25	62.86	52.86	Line	PASS
5	0.295	42.88	22.07	61.86	51.86	Jen Bull	PASS
6	0.62	43.43	28.79	56.00	46.00	ORLAN	PASS

NO. Fre.		Emission Le	Emission Level (dBµV)		dΒμV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.155	57.97	46.67	65.86	55.86	ORLA	PASS
2	0.195	50.11	26.04	64.71	54.71	e me	PASS
3	0.23	48.37	21.37	63.71	53.71	NauMoki	PASS
4	0.27	43.64	21.47	62.57	52.57	Neutral	PASS
5	0.285	41.67	19.66	62.14	52.14	OR M	PASS
6	0.62	42.75	33.96	56.00	46.00	ORLAN	PASS

Test Result: PASS

4.2. Radiated Emission

4.2.1. Requirement

According to FCC section 15.109(a), the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Field Strength Limita	ation at 3m Measurement Dist
range (MHz)	(μV/m)	(dBµV/m)
30.0 - 88.0	100	20log 100
88.0 - 216.0	150	20log 150
216.0 - 960.0	200	20log 200
Above 960.0	500	20log 500

As shown in FCC section 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

Note:

- 1) The tighter limit shall apply at the boundary between two frequency range.
- 2) Limitation expressed in dBμV/m is calculated by 20log Emission Level(μV/m).
- 3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of Ld1 = Ld2 * (d2/d1)^{2.}

Example:

F.S Limit at 30m distance is $30\mu\text{V/m}$, then F.S Limitation at 3m distance is adjusted as Ld1 = L1 = $30\mu\text{V/m}$ * $(10)^2$ = 100 * $30\mu\text{V/m}$

4.2.2. Test Description

See section 3.2.2 of this report.

4.2.3. Frequency range of measurement

According to 15.33(b)(1), the frequency range of radiated measurement for the EUT is listed in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measure- ment range (MHz)
Below 1.705	30. 1000. 2000. 5000. 5th harmonic of the highest frequency or 40 GHz, whichever is lower.

4.2.4. Test Result

The maximum radiated emission is searched using PK, QP and AV detectors; the emission levels more than the limits, and that have narrow margins from the limits will be re-measured with AV and QP detectors. Both the vertical and the horizontal polarizations of the Test Antenna are considered to perform the tests. All test modes are considered, refer to recorded points and plots below.

The amplitude of emissions(6GHz-12.5GHz) which are attenuated more than 20 dB below the permissible value need not be reported.

Note: All radiated emission tests were performed in X, Y, Z axis direction, and only the worst axis test condition was recorded in this test report.

A. Test Plots and Suspicious Points:

No.	Fre.	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
9	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	LAB	ORL
10	35.820	N.A.	20.59	N.A.	N.A.	40.00	N.A.	V	PASS
2	160.950	N.A.	18.93	N.A.	N.A.	43.50	N.A.	V	PASS
3	473.290	N.A.	29.21	N.A.	N.A.	46.00	N.A.	V	PASS
4	1510.400	39.99	N.A.	33.21	74.00	N.A.	54.00	V	PASS
5	2826.560	45.71	N.A.	39.58	74.00	N.A.	54.00	V	PASS
6	5276.480	46.26	N.A.	40.08	74.00	N.A.	54.00	V	PASS

No.	Fre.	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	2LAB	OPL
10	50.370	N.A.	12.50	N.A.	N.A.	40.00	N.A.	Н	PASS
2	268.620	N.A.	26.93	N.A.	N.A.	46.00	N.A.	Н	PASS
3	647.890	N.A.	27.83	N.A.	N.A.	46.00	N.A.	ΑĤ	PASS
4	1378.133	40.52	N.A.	34.70	74.00	N.A.	54.00	Н	PASS
5	2318.933	44.53	N.A.	38.02	74.00	N.A.	54.00	H	PASS
6	4558.400	46.52	N.A.	40.31	74.00	N.A.	54.00	H	PASS

Test Result: PASS

Annex A Photographs of Test Setup

1. Conducted emission main's port side view

2. Conducted emission main's port side view

3. Radiated emission (30MHz-1GHz)

4. Radiated emission (Above 1GHz)

Annex B Test Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Uncertainty of Conducted Emission:	±1.8dB
Uncertainty of Radiated Emission:	±3.1dB

Annex C <u>Testing Laboratory Information</u>

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
Responsible Test Lab Manager:	Mr. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
10, 15	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Accreditation Certificate

Accredited Testing Laboratory: The FCC registration number is 695796.

(Shenzhen Morlab Communications Technology Co., Ltd.)

4. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 - 60
Atmospheric Pressure (kPa):	86 - 106

