ALBANIAN JOURNAL OF MATHEMATICS Volume 2, Number 4, Pages 277–282 ISSN 1930-1235: (2008)

COMMON FIXED POINT THEOREM IN INTUITIONISTIC FUZZY METRIC SPACES

R. Saadati

Department of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., Tehran, Iran rsaadati@eml.cc

S.M. Vaezpour

Department of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., Tehran, Iran

J. Vahidi

Department of Mathematics, University of Mazandaran, Babolsar, Iran

ABSTRACT. In this paper, a common fixed point theorem for R-weakly commuting maps in intuitionistic fuzzy metric spaces is proved.

1. Introduction and Preliminaries

In this section, using the idea of intuitionistic fuzzy metric spaces introduced by Park [5] we define the new notion of intuitionistic fuzzy metric spaces with the help of the notion of continuous t-representable.

Definition 1.1. A complete lattice is a partially ordered set in which every nonempty subset admits supremum and infimum.

²⁰⁰⁰ Mathematics Subject Classification. 54E40; 54E35; 54H25.

 $Key\ words\ and\ phrases.$ Intuitionistic Fuzzy contractive mapping; Complete intuitionistic fuzzy metric space; Common fixed point theorem; R-weakly commuting maps.

This research is partially supported by Research Center in Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran.

Lemma 1.2. ([2]) Consider the set L^* and operation \leq_{L^*} defined by:

$$L^* = \{(x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \le 1\},\$$

 $(x_1,x_2) \leq_{L^*} (y_1,y_2) \iff x_1 \leq y_1 \text{ and } x_2 \geq y_2, \text{ for every } (x_1,x_2), (y_1,y_2) \in L^*.$ Then (L^*,\leq_{L^*}) is a complete lattice.

Definition 1.3. ([1]) An intuitionistic fuzzy set $\mathcal{A}_{\zeta,\eta}$ in a universe U is an object $\mathcal{A}_{\zeta,\eta} = \{(\zeta_{\mathcal{A}}(u),\eta_{\mathcal{A}}(u))|u\in U\}$, where, for all $u\in U,\ \zeta_{\mathcal{A}}(u)\in [0,1]$ and $\eta_{\mathcal{A}}(u)\in [0,1]$ are called the membership degree and the non-membership degree, respectively, of u in $\mathcal{A}_{\zeta,\eta}$, and furthermore they satisfy $\zeta_{\mathcal{A}}(u)+\eta_{\mathcal{A}}(u)\leq 1$.

We denote its units by $0_{L^*} = (0,1)$ and $1_{L^*} = (1,0)$. Classically, a triangular norm * = T on [0,1] is defined as an increasing, commutative, associative mapping $T: [0,1]^2 \longrightarrow [0,1]$ satisfying T(1,x) = 1 * x = x, for all $x \in [0,1]$. A triangular conorm $S = \diamond$ is defined as an increasing, commutative, associative mapping $S: [0,1]^2 \longrightarrow [0,1]$ satisfying $S(0,x) = 0 \diamond x = x$, for all $x \in [0,1]$. Using the lattice (L^*, \leq_{L^*}) these definitions can be straightforwardly extended.

Definition 1.4. ([2]) A triangular norm (t-norm) on L^* is a mapping $\mathcal{T}:(L^*)^2 \longrightarrow L^*$ satisfying the following conditions:

```
(\forall x \in L^*)(\mathcal{T}(x, 1_{L^*}) = x), \quad \text{(boundary condition)}
(\forall (x, y) \in (L^*)^2)(\mathcal{T}(x, y) = \mathcal{T}(y, x)), \quad \text{(commutativity)}
(\forall (x, y, z) \in (L^*)^3)(\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z)), \quad \text{(associativity)}
(\forall (x, x', y, y') \in (L^*)^4)(x \leq_{L^*} x' \text{ and } y \leq_{L^*} y' \implies \mathcal{T}(x, y) \leq_{L^*} \mathcal{T}(x', y')).
(monotonicity)
```

If $(L^*, \leq_{L^*}, \mathcal{T})$ is an Abelian topological monoid with unit 1_{L^*} then \mathcal{T} is said to be a *continuous t*-norm.

Definition 1.5. ([2]) A continuous t-norm \mathcal{T} on L^* is called continuous t-representable if and only if there exist a continuous t-norm * and a continuous t-conorm \diamond on [0,1] such that, for all $x=(x_1,x_2),y=(y_1,y_2)\in L^*$,

$$\mathcal{T}(x,y) = (x_1 * y_1, x_2 \diamond y_2).$$

For example $\mathcal{T}(a,b) = (a_1b_1, \min(a_2+b_2,1))$ for all $a = (a_1,a_2)$ and $b = (b_1,b_2)$ in L^* is a continuous t-representable.

Definition 1.6. A negator on L^* is any decreasing mapping $\mathcal{N}: L^* \longrightarrow L^*$ satisfying $\mathcal{N}(0_{L^*}) = 1_{L^*}$ and $\mathcal{N}(1_{L^*}) = 0_{L^*}$. If $\mathcal{N}(\mathcal{N}(x)) = x$, for all $x \in L^*$, then \mathcal{N} is called an involutive negator. A negator on [0,1] is a decreasing mapping $N: [0,1] \longrightarrow [0,1]$ satisfying N(0) = 1 and N(1) = 0. N_s denotes the standard negator on [0,1] defined as, for all $x \in [0,1]$, $N_s(x) = 1-x$. We define $(N_s(\lambda), \lambda) = \mathcal{N}_s(\lambda)$.

Definition 1.7. Let M, N are fuzzy sets from $X^2 \times (0, +\infty)$ to [0, 1] such that $M(x, y, t) + N(x, y, t) \leq 1$ for all $x, y \in X$ and t > 0, in which, M is membership degree and N is non-membership degree of an intuitionistic fuzzy set. The triple $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is said to be an *intuitionistic fuzzy metric space* if X is an arbitrary (non-empty) set, \mathcal{T} is a continuous t-representable and $\mathcal{M}_{M,N}$ is a mapping $X^2 \times (0, +\infty) \to L^*$ (an intuitionistic fuzzy set, see Definition 2.4) satisfying the following conditions for every $x, y, z \in X$ and t, s > 0:

- (a) $\mathcal{M}_{M,N}(x,y,t) >_{L^*} 0_{L^*}$;
- (b) $\mathcal{M}_{M,N}(x,y,t) = 1_{L^*}$ if and only if x = y;

- (c) $\mathcal{M}_{M,N}(x,y,t) = \mathcal{M}_{M,N}(y,x,t);$
- (d) $\mathcal{M}_{M,N}(x,y,t+s) \geq_{L^*} \mathcal{T}(\mathcal{M}_{M,N}(x,z,t),\mathcal{M}_{M,N}(z,y,s));$
- (e) $\mathcal{M}_{M,N}(x,y,\cdot):(0,\infty)\longrightarrow L^*$ is continuous.

In this case $\mathcal{M}_{M,N}$ is called an intuitionistic fuzzy metric. Here,

$$\mathcal{M}_{M,N}(x,y,t) = (M(x,y,t), N(x,y,t)).$$

Let $(X, \mathcal{M}_{M,N}, \mathcal{T})$ be an intuitionistic fuzzy metric space. For t > 0, define the open ball B(x, r, t) with center $x \in X$ and radius 0 < r < 1, as

$$B(x, r, t) = \{ y \in X : \mathcal{M}_{M,N}(x, y, t) >_{L^*} (N_s(r), r) = \mathcal{N}_s(r) \}.$$

A subset $A \subseteq X$ is called *open* if for each $x \in A$, there exist t > 0 and 0 < r < 1 such that $B(x,r,t) \subseteq A$. Let $\tau_{\mathcal{M}_{M,N}}$ denote the family of all open subset of X. $\tau_{\mathcal{M}_{M,N}}$ is called the *topology induced by intuitionistic fuzzy metric*. A sequence $\{x_n\}$ in an intuitionistic fuzzy metric space $(X, \mathcal{M}_{M,N}, T)$ is called a *Cauchy sequence* if for each $\varepsilon > 0$ and t > 0, there exists $n_0 \in \mathbf{N}$ such that

$$\mathcal{M}_{M,N}(x_n, x_m, t) >_{L^*} \mathcal{N}_s(\varepsilon),$$

and for each $n, m \geq n_0$. The sequence $\{x_n\}$ is said to be *convergent* to $x \in V$ in the intuitionistic fuzzy metric space $(X, \mathcal{M}_{M,N}, \mathcal{T})$ and denoted by $x_n \stackrel{\mathcal{M}_{M,N}}{\longrightarrow} x$ if $\mathcal{M}_{M,N}(x_n, x, t) \longrightarrow 1_{L^*}$ whenever $n \longrightarrow \infty$ for every t > 0. An intuitionistic fuzzy metric space is said to be *complete* if and only if every Cauchy sequence is convergent (see [3, 5]).

Lemma 1.8. ([3]) Let $(X, \mathcal{M}_{M,N}, \mathcal{T})$ be an intuitionistic fuzzy metric space. Then, $\mathcal{M}_{M,N}(x,y,t)$ is nondecreasing with respect to t, for all x,y in X.

Example 1.9. ([7]) Let (X, d) be a metric space. Denote $\mathcal{T}(a, b) = (a_1b_1, \min(a_2 + b_2, 1))$ for all $a = (a_1, a_2)$ and $b = (b_1, b_2)$ in L^* and let M and N be fuzzy sets on $X^2 \times (0, \infty)$ defined as follows:

$$\mathcal{M}_{M,N}(x,y,t)=(M(x,y,t),N(x,y,t))=(\frac{t}{t+md(x,y)},\frac{d(x,y)}{t+d(x,y)}),$$

in which m > 1. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space.

Let \mathcal{T} be a continuous t-norm on L^* in which, for every $\mu \in (0,1)$, there exists $\lambda \in (0,1)$ such that

(1.1)
$$\mathcal{T}^{n-1}(\mathcal{N}_s(\lambda), ..., \mathcal{N}_s(\lambda)) >_{L^*} \mathcal{N}_s(\mu),$$

where \mathcal{N}_s is an standard negation. For more information see [6].

Definition 1.10. Let $(X, \mathcal{M}_{M,N}, \mathcal{T})$ be an intuitionistic fuzzy metric space. $\mathcal{M}_{M,N}$ is said to be continuous on $X \times X \times (0, \infty)$ if

$$\lim_{n \to \infty} \mathcal{M}_{M,N}(x_n, y_n, t_n) = \mathcal{M}_{M,N}(x, y, t)$$

whenever a sequence $\{(x_n, y_n, t_n)\}$ in $X \times X \times (0, \infty)$ converges to a point $(x, y, t) \in X \times X \times (0, \infty)$ i.e., $\lim_n \mathcal{M}_{M,N}(x_n, x, t) = \lim_n \mathcal{M}_{M,N}(y_n, y, t) = 1_{L^*}$ and

$$\lim_{n} \mathcal{M}_{M,N}(x,y,t_n) = \mathcal{M}_{M,N}(x,y,t).$$

Lemma 1.11. Let $(X, \mathcal{M}_{M,N}, \mathcal{T})$ be an intuitionistic fuzzy metric space. Then $\mathcal{M}_{M,N}$ is continuous function on $X \times X \times (0, \infty)$.

Proof. The proof is same as fuzzy metric spaces (see Proposition 1 of [4]).

2. The Main Results

Definition 2.1. Let f and g be maps from an intuitionistic fuzzy metric space $(X, \mathcal{M}_{M,N}, \mathcal{T})$ into itself. The maps f and g are said to be weakly commuting if

$$\mathcal{M}_{M,N}((fog)(x),(gof)(x),t) \geq_{L^*} \mathcal{M}_{M,N}(f(x),g(x),t)$$

for each x in X and t > 0.

Definition 2.2. Let f and g be maps from an intuitionistic fuzzy metric space $(X, \mathcal{M}_{M,N}, \mathcal{T})$ into itself. The maps f and g are said to be R-weakly commuting if there exists some positive real number R such that

$$\mathcal{M}_{M,N}((fog)(x), (gof)(x), t) \ge_{L^*} \mathcal{M}_{M,N}(f(x), g(x), t/R)$$

for each x in X and t > 0.

Weak commutativity implies R-weak commutativity in intuitionistic fuzzy metric space. However, R-weak commutativity implies weak commutativity only when $R \leq 1$.

Example 2.3. Let $X = \mathbf{R}$. Let $\mathcal{T}(a,b) = (a_1b_1, \min(a_2 + b_2, 1))$ for all $a = (a_1, a_2), b = (b_1, b_2) \in L^*$ and let $\mathcal{M}_{M,N}$ be the intuitionistic fuzzy set on $X \times X \times [0, +\infty[$ defined as follows:

$$\mathcal{M}_{M,N}(x,y,t) = \left(\left(\exp\left(\frac{|x-y|}{t}\right) \right)^{-1}, \frac{\exp\left(\frac{|x-y|}{t}\right) - 1}{\exp\left(\frac{|x-y|}{t}\right)} \right),$$

for all $t \in \mathbf{R}^+$. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space. Define f(x) = 2x - 1 and $g(x) = x^2$. Then,

$$\begin{split} &\mathcal{M}_{M,N}((fog)(x),(gof)(x),t) - \left((\exp(2\frac{|x-1|^2}{t}))^{-1}, \frac{\exp(2\frac{|x-1|^2}{t})-1}{\exp(2\frac{|x-1|^2}{t})} \right) \\ & \left((\exp(\frac{|x-1|^2}{t/2}))^{-1}, \frac{\exp(\frac{|x-1|^2}{t/2})-1}{\exp(\frac{|x-1|^2}{t/2})} \right) = \mathcal{M}_{M,N}(f(x),g(x),t/2) \\ &<_{L^*} \left((\exp(\frac{|x-1|^2}{t}))^{-1}, \frac{\exp(\frac{|x-1|^2}{t/2})-1}{\exp(\frac{|x-1|^2}{t})} \right) = \mathcal{M}_{M,N}(f(x),g(x),t) \end{split}$$

Therefore, for R=2, f and g are R-weakly commuting. But f and g are not weakly commuting since exponential function is strictly increasing.

Theorem 2.4. Let $(X, \mathcal{M}_{M,N}, \mathcal{T})$ be a complete intuitionistic fuzzy metric space and let f and g be R-weakly commuting self-mappings of X satisfying the following conditions:

- (a) $f(X) \subseteq g(X)$;
- (b) f or g is continuous;
- (c) $\mathcal{M}_{M,N}(f(x), f(y), t) \geq_{L^*} \mathcal{C}(\mathcal{M}_{M,N}(g(x), g(y), t))$, where $\mathcal{C}: L^* \longrightarrow L^*$ is a continuous function such that $\mathcal{C}(a) >_{L^*} a$ for each $a \in L^* \setminus \{0_{L^*}, 1_{L^*}\}$. Then f and g have a unique common fixed point.

Proof. Let x_0 be an arbitrary point in X. By (a), choose a point x_1 in X such that $f(x_0) = g(x_1)$. In general choose x_{n+1} such that $f(x_n) = g(x_{n+1})$. Then for t > 0

$$\mathcal{M}_{M,N}(f(x_n), f(x_{n+1}), t) \geq_{L^*} \mathcal{C}(\mathcal{M}_{M,N}(g(x_n), g(x_{n+1}), t))$$

$$= \mathcal{C}(\mathcal{M}_{M,N}(f(x_{n-1}), f(x_n), t))$$

$$>_{L^*} \mathcal{M}_{M,N}(f(x_{n-1}), f(x_n), t)$$

Thus $\{\mathcal{M}_{M,N}(f(x_n), f(x_{n+1}), t); n \geq 0\}$ is increasing sequence in L^* . Therefore, tends to a limit $a \leq_{L^*} 1_{L^*}$. We claim that $a = 1_{L^*}$. For if $a <_{L^*} 1_{L^*}$ on making $n \longrightarrow \infty$ in the above inequality we get $a \geq_{L^*} \mathcal{C}(a) >_{L^*} a$, a contradiction. Hence $a = 1_{L^*}$, i.e.,

$$\lim_{n} \mathcal{M}_{M,N}(f(x_n), f(x_{n+1}), t) = 1_{L^*}.$$

If we define

(2.1)
$$c_n(t) = \mathcal{M}_{M,N}(f(x_n), f(x_{n+1}), t)$$

then $\lim_{n\to\infty} c_n(t) = 1_{L^*}$. Now, we prove that $\{f(x_n)\}$ is a Cauchy sequence in f(X). Suppose that $\{f(x_n)\}$ is not a Cauchy sequence in f(X). For convenience, let $y_n = fx_n$ for $n = 1, 2, 3, \cdots$. Then there is an $\epsilon \in L^* \setminus \{0_{L^*}, 1_{L^*}\}$ such that for each integer k, there exist integers m(k) and n(k) with $m(k) > n(k) \ge k$ such that

(2.2)
$$d_k(t) = \mathcal{M}_{M,N}(y_{n(k)}, y_{m(k)}, t) \leq_{L^*} \mathcal{N}_s(\epsilon) \text{ for } k = 1, 2, \cdots.$$

We may assume that

(2.3)
$$\mathcal{M}_{M,N}(y_{n(k)}, y_{m(k)-1}, t) >_{L^*} \mathcal{N}_s(\epsilon),$$

by choosing m(k) be the smallest number exceeding n(k) for which (2.2) holds. Using (2.1), we have

$$\mathcal{N}_{s}(\epsilon) \geq_{L^{*}} d_{k}(t)
\geq_{L^{*}} \mathcal{T}(\mathcal{M}_{M,N}(y_{n(k)}, y_{m(k)-1}, t/2), \mathcal{M}_{M,N}(y_{m(k)-1}, y_{m(k)}, t/2))
\geq_{L^{*}} \mathcal{T}(c_{k}(t/2), \mathcal{N}_{s}(\epsilon))$$

Hence, $d_k(t) \longrightarrow \mathcal{N}_s(\epsilon)$ for every t > 0 as $k \longrightarrow \infty$.

$$d_{k}(t) = \mathcal{M}_{M,N}(y_{n(k)}, y_{m(k)}, t)$$

$$\geq_{L^{*}} \mathcal{T}^{2}(\mathcal{M}_{M,N}(y_{n(k)}, y_{n(k)+1}, t/3), \mathcal{M}_{M,N}(y_{n(k)+1}, y_{m(k)+1}, t/3), \mathcal{M}_{M,N}(y_{m(k)+1}, y_{m(k)}, t/3))$$

$$\geq_{L^{*}} \mathcal{T}^{2}(c_{k}(t/3), \mathcal{C}(\mathcal{M}_{M,N}(y_{n(k)}, y_{m(k)}, t/3)), c_{k}(t/3))$$

$$\mathcal{T}^{2}(c_{k}(t/3), \mathcal{C}(d_{k}(t/3)), c_{k}(t/3)).$$

Thus, as $k \longrightarrow \infty$ in the above inequality we have

$$\mathcal{N}_s(\epsilon) \geq_{L^*} \mathcal{C}(\mathcal{N}_s(\epsilon)) >_{L^*} \mathcal{N}_s(\epsilon)$$

which is a contradiction. Thus, $\{f(x_n)\}_n$ is Cauchy and by the completeness of X, $\{f(x_n)\}_n$ converges to z in X. Also $\{g(x_n)\}_n$ converges to z in X. Let us suppose that the mapping f is continuous. Then $\lim_n (f \circ f)(x_n) = f(z)$ and $\lim_n (f \circ g)(x_n) = f(z)$. Further we have since f and g are R-weakly commuting

$$\mathcal{M}_{M,N}((fog)(x_n), (gof)(x_n), t) >_{L^*} \mathcal{M}_{M,N}(f(x_n), g(x_n), t/R).$$

On letting $n \to \infty$ in the above inequality we get $\lim_n (gof)(x_n) = f(z)$, by Lemma 1.11. We now prove that z = f(z). Suppose $z \neq f(z)$ then $\mathcal{M}_{M,N}(z, f(z), t) <_{L^*} 1_{L^*}$. By (c)

$$\mathcal{M}_{M,N}(f(x_n),(f\circ f)(x_n),t) \geq_{L^*} \mathcal{C}(\mathcal{M}_{M,N}(g(x_n),(g\circ f)(x_n),t)).$$

On making $n \to \infty$ in the above inequality we get

$$\mathcal{M}_{M,N}(z, f(z), t) \ge_{L^*} \mathcal{C}(\mathcal{M}_{M,N}(z, f(z), t)) >_{L^*} \mathcal{M}(z, f(z), t),$$

a contradiction. Therefore, z = f(z). Since $f(X) \subseteq g(X)$ we can find z_1 in X such that $z = f(z) = g(z_1)$. Now,

$$\mathcal{M}((fof)(x_n), f(z_1), t) \ge_{L^*} \mathcal{C}(\mathcal{M}_{M,N}((gof)(x_n), g(z_1), t)).$$

Taking limit as $n \to \infty$ we get

$$\mathcal{M}_{M,N}(f(z), f(z_1), t) \ge_{L^*} \mathcal{C}(\mathcal{M}_{M,N}(f(z), g(z_1), t)) = 1_{L^*}$$

since $C(1_{L^*}) = 1_{L^*}$, which implies that $f(z) = f(z_1)$, i.e., $z = f(z) = f(z_1) = g(z_1)$. Also for any t > 0,

$$\mathcal{M}_{M,N}(f(z),g(z),t) = \mathcal{M}((fog)(z_1),(gof)(z_1),t) \geq_{L^*} \mathcal{M}_{M,N}(f(z_1),g(z_1),t/R) = 1_{L^*}$$

which again implies that f(z) = g(z). Thus z is a common fixed point of f and g.

Now to prove uniqueness let if possible $z' \neq z$ be another common fixed point of f and g. Then there exists t > 0 such that $\mathcal{M}(z, z', t) <_L 1_{\mathcal{L}}$, and

$$\mathcal{M}_{M,N}(z, z', t) = \mathcal{M}_{M,N}(f(z), f(z'), t)$$

$$\geq_{L^*} \mathcal{C}(\mathcal{M}_{M,N}(g(z), g(z'), t)) = \mathcal{C}(\mathcal{M}_{M,N}(z, z', t))$$

$$>_{L^*} \mathcal{M}_{M,N}(z, z', t)$$

which is contradiction. Therefore, z=z', i.e., z is a unique common fixed point of f and g.

ACKNOWLEDGMENTS

The authors would like to thank referee for giving useful comments and suggestions for the improvement of this paper.

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [2] G. Deschrijver and E. E. Kerre. On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Syst 23 (2003), 227–235.
- [3] S. B. Hosseini, D. ORegan, R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian J. Fuzzy Syst, 4 (2007) 53–64.
- [4] J. Rodríguez López and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Syst, 147 (2004) 273–283.
- [5] J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039– 1046.
- [6] R. Saadati, A. Razani, and H. Adibi, A Common fixed point theorem in L-fuzzy metric spaces Chaos, Solitons and Fractals, 33 (2007) 358–363.
- [7] R. Saadati and J.H. Park, Intuitionistic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006), 86–90.