CLAIM AMENDMENTS

1. (Currently Amended)

An image forming method comprising the steps of:

developing an electrostatic latent image formed on an image carrying member to form a toner image with toner particles comprising a resin prepared by a poly addition or polycondensation reaction, of the toner particles having

an average circularity of 0.94 - 0.99,

an average equivalent circle diameter of 2.6 - 7.4 $\mu m,$ and

a slope of a circularity compared to an equivalent circle diameter from -0.050 to -0.010;

transferring the formed toner image on a transfer material;

fixing the formed toner image on a transfer material after the transferring;

collecting non-transferred toner remaining on the image carrying member for reuse; and

passing the collected non-transferred toner through a toner intermediate chamber, wherein the toner intermediate chamber is provided with a cylindrical or conical structure oriented in a vertical direction which separates paper dust

or toner granules toward the bottom of said toner intermediate chamber by utilizing spiraling flow of gas. ; and

reusing the collected non-transferred toner.

2-4. (Canceled)

5. (Previously Presented)

The image forming method of claim 1, wherein the resin is polyester, amorphous polyester, polyurethane, epoxy or polyol.

6. (Previously Presented)

The image forming method of claim 1, wherein the resin is amorphous polyester resin.

7. (Original)

The image forming method of claim 6, wherein the amorphous polyester resin is urethane modified polyester resin.

8. (Original)

The image forming method of claim 1, wherein the average circularity is from 0.95 to 0.98.

9. (Original)

The image forming method of claim 1, wherein the average equivalent circle diameter is 3.4 - $6.6~\mu m$.

10. (Original)

The image forming method of claim 1, wherein the slope of circularity against an equivalent circle diameter is -0.040 to -0.020.

11. (Previously Presented)

The image forming method of claim 1, wherein the average circularity is 0.95 - 0.98; and the average equivalent circle diameter is 3.4 - 6.6 μm .

12. (Canceled)

13. (Original)

The image forming method of claim 11, wherein the slope of circularity to an equivalent circle diameter is -0.040 to -0.020.

14-17 (Canceled)

18. (Original)

The image forming method of claim 1, wherein the toner contains a releasing agent.

19-20 (Canceled)

21. (Currently Amended)

An image forming method comprising the steps of:

developing an electrostatic latent image formed on an image carrying member to form a toner image with toner having an average circularity of 0.94 - 0.99, an average equivalent circle diameter of 2.6 - 7.4 µm of toner particles; a slope of a circularity compared to an equivalent circle diameter of the toner particles is from - 0.050 to -0.010, the toner comprises a resin and the resin is polyester, amorphous polyester, polyurethane, epoxy or polyol;

transferring the formed toner image on a transfer material;

fixing the formed toner image on a transfer material
after the transferring;

collecting non-transferred toner remaining on the image carrying member for reuse; and

passing the collected non-transferred toner through a toner intermediate chamber. with a gas; and

reusing the collected non-transferred toner.

22. (Previously Presented)

The image forming method of claim 21, wherein the toner comprises a resin and the resin is amorphous polyester resin.

23. (Previously Presented)

The image forming method of claim 21, wherein the average circularity is from 0.95 to 0.98.

24. (Previously Presented)

The image forming method of claim 21, wherein the average equivalent circle diameter is 3.4 - 6.6 μm .

25. (Previously Presented)

The image forming method of claim 21, wherein the slope of circularity against an equivalent circle diameter is -0.040 to -0.020.

26. (Previously Presented)

The image forming method of claim 21 wherein the average circularity is from 0.95 to 0.98, and the average equivalent circle diameter is 3.4 - 6.6 μm .

27. (New)

The image forming method of Claim 18, wherein

the releasing agent has a melting point in a range of $40\text{--}150\,^{\circ}\text{C}$.