```
In [1]:
        # This Python 3 environment comes with many helpful analytics libr
        aries installed
        # It is defined by the kaggle/python docker image: https://github.
        com/kaggle/docker-python
        # For example, here's several helpful packages to load in
        import numpy as np # linear algebra
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read_
        csv)
        from scipy import stats
        import squarify as \underline{s}\underline{q}
        import matplotlib.pyplot as plt
        from pandas.plotting import scatter_matrix
        import seaborn as sns
        import sklearn
        import warnings
        warnings.filterwarnings("ignore")
        from sklearn.linear_model import LinearRegression
        from sklearn.preprocessing import MinMaxScaler,LabelEncoder
        from sklearn.model_selection import train_test_split,cross_val_sc
        ore, KFold
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive_bayes import GaussianNB, MultinomialNB, Bernoul
        liNB
        from sklearn.svm import LinearSVC, SVC
        from sklearn import metrics
        from sklearn.metrics import confusion_matrix, classification_repo
        rt
        %matplotlib inline
        # Input data files are available in the "../input/" directory.
        # For example, running this (by clicking run or pressing Shift+Ent
        er) will list all files under the input directory
        import os
        for dirname, _, filenames in os.walk('/kaggle/input'):
            for filename in filenames:
                print(os.path.join(dirname, filename))
        # Any results you write to the current directory are saved as outp
        ut.
```

/kaggle/input/top50spotify2019/top50.csv

```
In [2]:
    filename='/kaggle/input/top50spotify2019/top50.csv'
    df=pd.read_csv(filename, encoding='ISO-8859-1')
    df.head()
```

Out[2]:

	Unnamed:	Track.Name	Artist.Name	Genre	Beats.Per.Minute	Energy	Dan
0	1	Señorita	Shawn Mendes	canadian pop	117	55	76
1	2	China	Anuel AA	reggaeton flow	105	81	79

```
boyfriend
                            Ariana
                                          dance
2
   3
               (with Social
                                                     190
                                                                       80
                                                                                40
                            Grande
                                          pop
               House)
               Beautiful
               People
                                                     93
                                                                       65
                                                                                64
3
   4
                            Ed Sheeran
                                          pop
               (feat.
               Khalid)
               Goodbyes
                            Post
               (Feat.
                                          dfw rap
                                                                       65
4
  5
                                                     150
                                                                                58
               Young
                            Malone
               Thug)
```

In [3]:

#Calculates the number of rows and columns
print(df.shape)

(50, 14)

In [4]:

#Renaming the columns
df.rename(columns={'Track.Name':'track_name', 'Artist.Name':'artis
t_name', 'Beats.Per.Minute':'beats_per_minute', 'Loudness..dB..':'L
oudness(dB)', 'Valence.':'Valence', 'Length.':'Length', 'Acousticne
ss..':'Acousticness', 'Speechiness.':'Speechiness'}, inplace=True)
df.head()

Out[4]:

	Unnamed: 0	track_name	artist_name	Genre	beats_per_minute	Energy	Dar
0	1	Señorita	Shawn Mendes	canadian pop	117	55	76
1	2	China	Anuel AA	reggaeton flow	105	81	79
2	3	boyfriend (with Social House)	Ariana Grande	dance pop	190	80	40
3	4	Beautiful People (feat. Khalid)	Ed Sheeran	pop	93	65	64
4	5	Goodbyes (Feat. Young Thug)	Post Malone	dfw rap	150	65	58
4							•

In [5]:

df.isnull().sum()
df.fillna(0)

Out[5]:

	Unnamed:	track_name	artist_name	Genre	beats_per_minute
0	1	Señorita	Shawn Mendes	canadian pop	117
1	2	China	Anuel AA	reggaeton flow	105
2	3	boyfriend (with Social House)	Ariana Grande	dance pop	190
3	4	Beautiful People (feat. Khalid)	Ed Sheeran	рор	93
А	E	Goodbyes (Feat.	Doot Molono	df	150

4	5	Young Thug)	Post Maione	атw гар	150
5	6	I Don't Care (with Justin Bieber)	Ed Sheeran	pop	102
6	7	Ransom	Lil Tecca	trap music	180
7	8	How Do You Sleep?	Sam Smith	рор	111
8	9	Old Town Road - Remix	Lil Nas X	country rap	136
9	10	bad guy	Billie Eilish	electropop	135
10	11	Callaita	Bad Bunny	reggaeton	176
11	12	Loco Contigo (feat. J. Balvin & Tyga)	DJ Snake	dance pop	96
12	13	Someone You Loved	Lewis Capaldi	рор	110
13	14	Otro Trago - Remix	Sech	panamanian pop	176
14	15	Money In The Grave (Drake ft. Rick Ross)	Drake	canadian hip hop	101
15	16	No Guidance (feat. Drake)	Chris Brown	dance pop	93
16	17	LA CANCIÓN	J Balvin	latin	176
17	18	Sunflower - Spider- Man: Into the Spider- Verse	Post Malone	dfw rap	90
18	19	Lalala	Y2K	canadian hip hop	130
19	20	Truth Hurts	Lizzo	escape room	158
20	21	Piece Of Your Heart	MEDUZA	pop house	124
21	22	Panini	Lil Nas X	country rap	154
22	23	No Me Conoce - Remix	Jhay Cortez	reggaeton flow	92
23	24	Soltera - Remix	Lunay	latin	92
24	25	bad guy (with Justin Bieber)	Billie Eilish	electropop	135
25	26	If I Can't Have You	Shawn Mendes	canadian pop	124
26	27	Dance Monkey	Tones and I	australian pop	98
27	28	It's You	Ali Gatie	canadian hip hop	96
28	29	Con Calma	Daddy Yankee	latin	94
29	30	QUE PRETENDES	J Balvin	latin	93
30	31	Takeaway	The Chainsmokers	edm	85
31	32	7 rings	Ariana Grande	dance pop	140
32	33	0.958333333333333333333333333333333333333	Maluma Young Thug	reggaeton atl hip hop	96
34	35	Cole & Travis Scott) Never Really Over	Katy Perry	dance pop	100
35	36	Summer Days (feat. Macklemore & Patrick Stump	Martin Garrix	big room	114
36	37	Otro Trago	Sech	panamanian pop	176
37	38	Antisocial (with Travis Scott)	Ed Sheeran	рор	152
38	39	Sucker	Jonas Brothers	boy band	138
39	40	fuck, i'm lonely (with Anne-Marie) - from "13	Lauv	dance pop	95
40	41	Higher Love	Kygo	edm	104
41	42	You Need To Calm Down	Taylor Swift	dance pop	85
42	43	Shallow	Lady Gaga	dance pop	96
43	44	Talk	Khalid	рор	136
44	45	Con Altura	ROSALÍA	r&b en	98

				espanol	
45	46	One Thing Right	Marshmello	brostep	88
46	47	Te Robaré	Nicky Jam	latin	176
47	48	Happier	Marshmello	brostep	100
48	49	Call You Mine	The Chainsmokers	edm	104
49	50	Cross Me (feat. Chance the Rapper & PnB Rock)	Ed Sheeran	pop	95
4					>

In [6]:

The datatypes of the different attributes of the dataset
print(df.dtypes)

```
int64
Unnamed: 0
track_name
               object
artist_name
               object
Genre
               object
beats_per_minute int64
                int64
Energy
Danceability int64
Loudness(dB) int64
                int64
Liveness
             int64
Valence
Length
                int64
                int64
Acousticness
Speechiness
                int64
                int64
Popularity
dtype: object
```

```
In [7]:
```

```
#Calculating the number of songs of each genre
print(type(df['Genre']))
popular_genre=df.groupby('Genre').size()
print(popular_genre)
genre_list=df['Genre'].values.tolist()
```

```
<class 'pandas.core.series.Series'>
Genre
atl hip hop
australian pop
big room
boy band
               1
brostep
canadian hip hop 3
canadian pop
country rap
dance pop
               8
dfw rap
               2
edm
electropop
               1
escape room
latin
panamanian pop
pop
pop house
roh an aananal
```

```
reggaeton 2
reggaeton flow 2
trap music 1
dtype: int64
```

In [8]:

```
#Calculating the number of songs by each of the artists
print(df.groupby('artist_name').size())
popular_artist=df.groupby('artist_name').size()
print(popular_artist)
artist_list=df['artist_name'].values.tolist()
```

artist_name Ali Gatie Anuel AA Ariana Grande Bad Bunny Billie Eilish 2 Chris Brown 1 DJ Snake Daddy Yankee 1 Drake Ed Sheeran J Balvin Jhay Cortez1Jonas Brothers1Katy Perry1 Khalid Kygo Lady Gaga 1 Lauv 1 Lewis Capaldi 1 Lil Nas X 2 Lil Tecca 1 Lizzo Lunay MEDUZA 1
Maluma 1
Marshmello 2 Martin Garrix 1
Nicky Jam 1
Post Malone 2 ROSALÍA 1 Sam Smith Sech Shawn Mendes Taylor Swift 1 The Chainsmokers 2 Tones and I 1 Y2K Young Thug 1 dtype: int64 artist_name Ali Gatie 1 Anuel AA 1 Ariana Grande 2 Bad Bunny Billie Eilish 2

```
Chris Brown
DJ Snake
Daddy Yankee
Drake
Ed Sheeran
J Balvin
Jhay Cortez 1
Jonas Brothers 1
Katy Perry 1
Khalid
Kygo
Lady Gaga 1
Lauv 1
Lewis Capaldi 1
Lil Nas X 2
Lil Tecca
Lizzo
Lunay
Lunay
MEDUZA 1
Maluma 1
Marshmello 2
Martin Garrix 1
Nicky Jam 1
Post Malone 2
ROSALÍA 1
Sam Smith 1
Sech
Shawn Mendes 2
Taylor Swift 1
The Chainsmokers 2
Tones and I 1
Y2K
Young Thug
dtype: int64
```

In [9]:

df.isnull().sum()
df.fillna(0)

Out[9]:

	Unnamed:	track_name	artist_name	Genre	beats_per_minute
0	1	Señorita	Shawn Mendes	canadian pop	117
1	2	China	Anuel AA	reggaeton flow	105
2	3	boyfriend (with Social House)	Ariana Grande	dance pop	190
3	4	Beautiful People (feat. Khalid)	Ed Sheeran	рор	93
4	5	Goodbyes (Feat. Young Thug)	Post Malone	dfw rap	150
5	6	I Don't Care (with Justin Bieber)	Ed Sheeran	рор	102
6	7	Ransom	Lil Tecca	trap music	180
7	8	How Do You Sleep?	Sam Smith	рор	111
8	9	Old Town Road - Remix	Lil Nas X	country rap	136
9	10	bad guy	Billie Eilish	electropop	135
10	11	Callaita	Bad Bunny	reggaeton	176
11	12	Loco Contigo (feat. J.	DJ Snake	dance pop	96

		Balvin & Tyga)			
12	13	Someone You Loved	Lewis Capaldi	рор	110
13	14	Otro Trago - Remix	Sech	panamanian pop	176
14	15	Money In The Grave (Drake ft. Rick Ross)	Drake	canadian hip hop	101
15	16	No Guidance (feat. Drake)	Chris Brown	dance pop	93
16	17	LA CANCIÓN	J Balvin	latin	176
17	18	Sunflower - Spider- Man: Into the Spider- Verse	Post Malone	dfw rap	90
18	19	Lalala	Y2K	canadian hip hop	130
19	20	Truth Hurts	Lizzo	escape room	158
20	21	Piece Of Your Heart	MEDUZA	pop house	124
21	22	Panini	Lil Nas X	country rap	154
22	23	No Me Conoce - Remix	Jhay Cortez	reggaeton flow	92
23	24	Soltera - Remix	Lunay	latin	92
24	25	bad guy (with Justin	Billie Eilish	electropop	135
25	26	Bieber) If I Can't Have You	Shawn Mendes	canadian	124
26	27	Dance Monkey	Tones and I	pop	98
				pop	
27	28	It's You	Ali Gatie Daddy	hip hop	96
28	29	Con Calma	Yankee	latin	94
29	30	QUE PRETENDES	J Balvin	latin	93
30	31	Takeaway	The Chainsmokers	edm	85
31	32	7 rings	Ariana Grande	dance pop	140
32	33	0.958333333333333	Maluma	reggaeton	96
33	34	The London (feat. J. Cole & Travis Scott)	Young Thug	atl hip hop	98
34	35	Never Really Over	Katy Perry	dance pop	100
35	36	Summer Days (feat. Macklemore & Patrick Stump	Martin Garrix	big room	114
36	37	Otro Trago	Sech	panamanian pop	176
37	38	Antisocial (with Travis Scott)	Ed Sheeran	рор	152
38	39	Sucker	Jonas Brothers	boy band	138
39	40	fuck, i'm lonely (with Anne-Marie) - from "13	Lauv	dance pop	95
40	41	Higher Love	Kygo	edm	104
41	42	You Need To Calm Down	Taylor Swift	dance pop	85
42	43	Shallow	Lady Gaga	dance pop	96
43	44	Talk	Khalid	рор	136
44	45	Con Altura	ROSALÍA	r&b en espanol	98
45	46	One Thing Right	Marshmello	brostep	88
46	47	Te Robaré	Nicky Jam	latin	176
47	48	Happier	Marshmello	brostep	100
48	49	Call You Mine	The Chainsmokers	edm	104
49	50	Cross Me (feat. Chance the Rapper & PnB Rock)	Ed Sheeran	pop	95

```
In [10]:
    pd.set_option('precision', 3)
    df.describe()
```

Out[10]:

	Unnamed: 0	beats_per_minute	Energy	Danceability	Loudness(dB)	Liveness
count	50.000	50.000	50.000	50.00	50.000	50.000
mean	25.500	120.060	64.060	71.38	-5.660	14.660
std	14.577	30.898	14.232	11.93	2.056	11.118
min	1.000	85.000	32.000	29.00	-11.000	5.000
25%	13.250	96.000	55.250	67.00	-6.750	8.000
50%	25.500	104.500	66.500	73.50	-6.000	11.000
75%	37.750	137.500	74.750	79.75	-4.000	15.750
max	50.000	190.000	88.000	90.00	-2.000	58.000
4)	

```
#Finding out the skew for each attribute
skew=df.skew()
print(skew)
# Removing the skew by using the boxcox transformations
transform=np.asarray(df[['Liveness']].values)
df_transform = stats.boxcox(transform)[0]
# Plotting a histogram to show the difference
plt.hist(df['Liveness'],bins=10) #original data
plt.show()
plt.hist(df_transform,bins=10) #corrected skew data
plt.show()
```

Unnamed: 0 0.000 beats_per_minute 0.855 -0.453 Energy Danceability -1.380 Loudness(dB) -0.832 Liveness 2.204 Valence -0.046 Length 0.749 Acousticness 1.135 Speechiness 1.378 Popularity -1.503 dtype: float64

20 - 15 - 10 - 10 20 30 40 50 60


```
In [12]:
    transform1=np.asarray(df[['Popularity']].values)
    df_transform1 = stats.boxcox(transform1)[0]
    # Plotting a histogram to show the difference
    # plt.hist(df['Popularity'],bins=10) original data
    # plt.show()
    # plt.hist(df_transform1,bins=10) #corrected skew data
    # plt.show()
    sns.distplot(df['Popularity'],bins=10,kde=True,kde_kws={"color":
        "k", "lw": 2, "label": "KDE"},color='yellow')
    plt.show()
    sns.distplot(df_transform1,bins=10,kde=True,kde_kws={"color": "k"
        , "lw": 2, "label": "KDE"},color='black') #corrected skew data
    plt.show()
```



```
In [13]:
    pd.set_option('display.width', 100)
    pd.set_option('precision', 3)
```

				s_per_minute	Energy	Dance
ability Loud						
				-0.263	0.132	
0.053						
beats_per_min	nute	-0.2	63	1.000	0.012	
-0.092	0.014	-0	.033			
Energy			32	0.012	1.000	
-0.049	0.635	0	.013			
Danceability		0.0	53	-0.092	-0.049	
1.000	0.009	-0.	261			
Loudness(dB)		-0.0	14	0.014	0.635	
0.009	1.000	0.	114			
Liveness		0.1	02	-0.033	0.013	
-0.261	0.114	1	.000			
Valence		0.1	13	-0.048	0.467	
0.155	0.317	-0.	187			
Length		0.0	45	-0.198	0.189	
-0.079	0.165	0	.202			
Acousticness		0.0	58	-0.010	-0.211	
-0.128	-0.040	0	.204			
Speechiness		-0.2	32	0.392	-0.035	
0.104						
Popularity		-0.2	21	0.217	-0.044	
-0.141	0.072	0	.012			
Danielanite		nce	Length	Acousticness	Speech	iness
Popularity		110	0.045	0.050		0.000
	Ø.	113	0.045	0.058	_	0.232
-0.221		0.40	0 100	0.010		0 000
beats_per_mir 0.217						
Energy -0.044	0.	467	0.189	-0.211	-	0.035
Danceability -0.141	0.	155	-0.079	-0.128		0.104
Loudness(dB) 0.072	0.	317	0.165	-0.040	-	0.063
Liveness	-0.	187	0.202	0.204	-	0.137
0.012 Valence	1.	000	-0.081	-0.053	_	0.095
-0.265						
Length	-0.	081	1.000	-0.005		0.020
-0.122						
Acousticness	-0.	053	-0.005	1.000		0.017
0.036						
Speechiness	-0.	095	0.020	0.017		1.000
	-0.	265	-0.122	0.036		0.165
1.000						

```
In [14]:
    # Bar graph to see the number of songs of each genre
    fig, ax=plt.subplots(figsize=(30,12))
    length=np.arange(len(popular_genre))
    plt.bar(length,popular_genre,color='green',edgecolor='black',alph
    a=0.7)
```

```
plt.xticks(length,genre_list)
plt.title('Most popular genre',fontsize=18)
plt.xlabel('Genre',fontsize=16)
plt.ylabel('Number of songs',fontsize=16)
plt.show()
```



```
In [15]:
# heatmap of the correlation
plt.figure(figsize=(10,10))
plt.title('Correlation heatmap')
sns.heatmap(correlation, annot=True, vmin=-1, vmax=1, cmap="GnBu_r", c
enter=1)
```

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd774913710>


```
In [16]:
    fig, ax=plt.subplots(figsize=(12,12))
    length=np.arange(len(popular_artist))
    plt.barh(length,popular_artist,color='red',edgecolor='black',alph
```

```
a=0.7)
plt.yticks(length,artist_list)
plt.title('Most popular artists',fontsize=18)
plt.ylabel('Artists',fontsize=16)
plt.xlabel('Number of songs',fontsize=16)
plt.show()
```



```
In [17]:
    # Analysing the relationship between energy and loudness
    fig=plt.subplots(figsize=(10,10))
    sns.regplot(x='Energy',y='Loudness(dB)',data=df,color='black')
```

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd770ea8438>


```
30 40 50 60 70 80 90
Energy
```

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd770f47b38>


```
In [20]:
    df.plot(kind='box', subplots=True)
    plt.gcf().set_size_inches(30,30)
    plt.show()
```



```
In [21]:
    plt.figure(figsize=(14,8))
    sq.plot(sizes=df.Genre.value_counts(), label=df["Genre"].unique
    (), alpha=.8 )
    plt.axis('off')
    plt.show()
```



```
In [22]:
    #Pie charts
    labels = df.artist_name.value_counts().index
    sizes = df.artist_name.value_counts().values
    colors = ['red', 'yellowgreen', 'lightcoral', 'lightskyblue','cya
    n', 'green', 'black','yellow']
    plt.figure(figsize = (10,10))
    plt.pie(sizes, labels=labels, colors=colors)
    autopct=('%1.1f%%')
    plt.axis('equal')
    plt.show()
```



```
In [23]:
#Linear regression, first create test and train dataset
x=df.loc[:,['Energy','Danceability','Length','Loudness(dB)','Acou
sticness']].values
y=df.loc[:,'Popularity'].values
```

In [24]:
 # Creating a test and training dataset
 X_train, X_test, y_train, y_test = train_test_split(x, y, test_si
 ze=0.30)

```
In [25]:
    # Linear regression
    regressor = LinearRegression()
    regressor.fit(X_train, y_train)
    print(regressor.intercept_)
    print(regressor.coef_)
```

```
In [26]:
#Displaying the difference between the actual and the predicted
    y_pred = regressor.predict(X_test)
    df_output = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
    print(df_output)
```

```
Actual Predicted
0
       83
              82.689
       91
1
              85.180
2
       88
            85.640
       92
              90.095
3
4
       90
            84.711
5
       92
            81.696
       87
             87.345
6
       93
7
            82.403
       89
            85.668
8
9
       86
             85.569
10
       94
            86.368
       91
11
            81.529
            86.257
12
       89
13
       90
            88.237
14
       87
            82.670
```

Mean Absolute Error: 4.442246487057812 Mean Squared Error: 31.890021234522354 Root Mean Squared Error: 5.647125041516467

```
In [28]:
    plt.figure(figsize=(10,10))
    plt.plot(y_pred,y_test,color='black',linestyle='dashed',marker=
    '*',markerfacecolor='red',markersize=10)
    plt.title('Error analysis')
    plt.xlabel('Predicted values')
    plt.ylabel('Test values')
```

Out[28]:

Text(0, 0.5, 'Test values')


```
# Cross validation score
x=df.loc[:,['Energy','Danceability']].values
y=df.loc[:,'Popularity'].values
regressor=LinearRegression()
mse=cross_val_score(regressor,X_train,y_train,scoring='neg_mean_s
quared_error',cv=5)
mse_mean=np.mean(mse)
print(mse_mean)
diff=metrics.mean_squared_error(y_test, y_pred)-abs(mse_mean)
print(diff)
```

-32.650937347082944 -0.7609161125605901

```
In [30]:
    x=df.loc[:,['artist_name']].values
    y=df.loc[:,'Genre'].values
```

```
In [31]:
# Label encoding of features
    x.shape
    encoder=LabelEncoder()
    x = encoder.fit_transform(x)
    x=pd.DataFrame(x)
    x
```

Out[31]:

	0
0	32
1	1
2	2
3	9
4	28
5	9
6	20
7	30
8	19
9	4

```
10
    3
11
    6
12
    18
13
    31
14
    8
15
    5
16
    10
17
    28
18
    36
19
    21
20
    23
21
    19
22
    11
23
    22
24
    4
25
    32
26
    35
27
    0
28
    7
29
    10
30
    34
31
    2
32
    24
33
    37
34
    13
35
    26
36
    31
37
    9
38
    12
39
    17
40
    15
41
    33
42
    16
43
    14
44
    29
45
    25
46
    27
47
    25
48
    34
49
    9
```

```
In [32]:
# Label Encoding of target
Encoder_y=LabelEncoder()
Y = Encoder_y.fit_transform(y)
Y=pd.DataFrame(Y)
Y
```

Out[32]:

	0
0	6
1	19
2	8
3	15
4	9
E	1 5

```
Э
    ΙJ
6
    20
7
    15
8
    7
9
    11
10
    18
11
    8
12
    15
13
    14
    5
14
15
    8
    13
16
17
18
19
    12
20
    16
    7
21
    19
22
23
    13
24
    11
25
    6
26
27
    5
28
    13
29
    13
30
    10
31
    8
32
    18
    0
33
34
    8
35
36
    14
37
    15
38
    3
39
    8
40
    10
41
    8
    8
42
43
    15
44
    17
45
    4
46
    13
47
48
   10
49
    15
```

```
In [33]:
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =
    0.3, random_state = 1)

#Scaling
    from sklearn.preprocessing import StandardScaler
    sc=StandardScaler()
    sc.fit(x_train)
    x_train=sc.transform(x_train)
    x_test=sc.transform(x_test)
```

```
In [34]:
         # KNN Classification
         # sorted(sklearn.neighbors.VALID_METRICS['brute'])
         knn = KNeighborsClassifier(n_neighbors = 17)
         knn.fit(x_train,y_train)
         y_pred=knn.predict(x_test)
In [35]:
         error=[]
         for i in range(1,30):
             knn=KNeighborsClassifier(n_neighbors=i)
             knn.fit(X_train,y_train)
             pred_i=knn.predict(X_test)
             error.append(np.mean(pred_i!=y_test))
In [36]:
         plt.figure(figsize=(10,10))
         plt.plot(range(1,30),error,color='black',marker='o',markerfacecol
         or='cyan', markersize=10)
         plt.title('Error Rate K value')
         plt.xlabel('K Value')
         plt.ylabel('Mean error')
Out[36]:
         Text(0, 0.5, 'Mean error')
```



```
In [37]:
    x=df.loc[:,['Energy','Length','Danceability','beats_per_minute',
    'Acousticness']].values
    y=df.loc[:,'Popularity'].values
```

. .

```
In [38]:
         # Creating a test and training dataset
         X_train, X_test, y_train, y_test = train_test_split(x, y, test_si
         ze=0.30)
In [39]:
         gnb = GaussianNB()
         gnb.fit(X_train, y_train)
         y_pred=gnb.predict(X_test)
         df_output = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
         print(df_output)
             Actual Predicted
         0
                78
                          83
         1
                 82
                            88
         2
                 84
                            92
         3
                93
                            88
         4
                 87
                            91
         5
                91
                            88
         6
                 89
                            89
         7
                 91
                            87
         8
                 90
                            91
         9
                            86
                 89
         10
                 92
                            91
         11
                 90
                            88
         12
                 91
                            91
         13
                 70
                            88
         14
                 89
                             88
In [40]:
         # Testing the accuracy of Naive Bayes
         scores=cross_val_score(gnb, X_train, y_train, scoring='accuracy', cv=
         3).mean()*100
         print(scores)
         14.48165869218501
In [41]:
         sns.jointplot(x=y_test, y=y_pred, kind="kde", color="r")
Out[41]:
         <seaborn.axisgrid.JointGrid at 0x7fd7644af048>
        95.0
        92.5
        90.0
```

87.5

85.0

82.5

```
80.0 - 65 70 75 80 85 90 95 100
```

```
In [42]:
         x=df.loc[:,['Energy','Length','Danceability','beats_per_minute',
         'Acousticness']].values
         y=df.loc[:,'Popularity'].values
In [43]:
         X_train, X_test, y_train, y_test = train_test_split(x, y, test_si
         ze=0.30)
In [44]:
         # Linear SVM model
         LinSVC = LinearSVC(penalty='12', loss='squared_hinge', dual=True)
         LinSVC.fit(X_train, y_train)
         y_pred=gnb.predict(X_test)
         df_output = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
         print(df_output)
             Actual Predicted
         0
                 89
                             86
                 95
                             95
         2
                 91
                             91
         3
                 94
                             94
                 88
                             91
         5
                 82
                             88
         6
                 91
                             83
                 89
                             88
         8
                 88
                             91
         9
                 92
                             91
         10
                 89
                             89
         11
                 92
                             92
                             82
         12
                 82
         13
                 89
                             88
         14
                 89
                             91
In [45]:
         # Testing the accuracy
         scores=cross_val_score(LinSVC, X_train, y_train, scoring='accuracy',
         cv=3).mean()*100
         print(scores)
         8.465608465608465
```

```
In [46]:
     sns.jointplot(x=y_test, y=y_pred, kind="reg", color="b");
```


In []:

This Notebook has been released under the Apache 2.0 open source license.

Did you find this Notebook useful? Show your appreciation with an upvote

Data

Data Sources

▼ Top 50 Spotify Songs - 2019

■ top50.csv

14 columns

Top 50 Spotify Songs - 2019

Top 50 songs listened in 2019 on spotify Last Updated: 6 months ago (Version 1)

About this Dataset

- Check the data extracted by year: https://www.kaggle.com/leonardopena/top-spotify-songsfrom-20102019-by-year
- And by country: https://www.kaggle.com/leonardopena/top-50-spotify-songs-by-each-country

Context