	(a) FAUX.	Le cube (XERN) O EX; E1, 1=1,2,-n } en
		dinunion n posside 2° sources et
		slubenet 2n contraintes: 10 << 2"
		(pour n ? 2).
	(b) vrai	Ex. 1) min x tel que x 20.
		· · · · · · · · · · · · · · · · · · ·
		Sd. optimolus = { (0,y) y ∈ R}
		2) min xty (el que xty 21 x,y
	(c) VRAi.	(a point (1,2,6)
		· sutirfait touter les contraintes (il apportient au polyédre)
		· sèrre 3 contraintes lin. ind.:
		$dt \left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right) \neq 0.$

1.2. Forme standard:

$$f.q.$$
 $5x, + 3x_2 + x_3 = 10,$
 $4x_1 + x_2 + x_4 = 5,$
 $x_1 + 2x_2 + x_5 = 8,$
 $x_1, x_2, x_3, x_4, x_5 \ge 0.$

(b) Base =
$$\{2, 4, 5\}$$
, Sol = $\left(0, \frac{10}{3}, 0, \frac{5}{3}, \frac{4}{3}\right)$

valuer optimels
$$2' = -\frac{10}{3}$$
 (pour le problème original: $f = \frac{10}{3}$).

(Boxsus)
$$A_{B} = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} + A_{B} = \begin{pmatrix} 1/3 & 0 & 0 \\ -1/3 & 1 & 0 \\ -2/3 & 0 & 1 \end{pmatrix}$$

 $n_{11}n_{2}$ $n_{11}n_{2}$

$$x_1 + 3x_2 + x_3 = 40$$

 $2x_1 + x_2 + x_4 = 30$

x; 20, 4;

ENTRE

16/4/2-0-6/4/3-30-6/ 14 (0) min $a_{j}\rho$ (((6,+ 6,+ 6, t, ≥ b t t ≥ -b, (€) (, ≥ 161). tutzitz t_22-a-b f t_2 2 -2+a+b, (=) t_22|2-a-b| t_323-3a-b f t_32-3+3a+b. (=) t_22|3-3a-b| On a 5 variables et 6 contraintes. (b) 5 variables =0 5 contraintes actives en un sommet. => fur les 6 contraintes, 5 vont être actives.

On remanque que si t_= 5 et t_= -b => b=-b=0 la droite passe par le point (0,0). =D On passe au voiro par deux points. Il y n donc trois choites conspordant à des sommets: alles parsont par deux des trois points. On vérifie que le neilleure est | y=x | càd b=0 & a=1.

2.1. min cTx t.g. Ax=b, x 20 (AERmxn CER", bER").

(a) Dual: max big tel que Aig & C.

(b) Dualité faible: $\forall x \in \{x \in \mathbb{R}^r \mid A \neq b_1 \neq z_0\}$, $\forall y \in \{y \notin \mathbb{R}^r \mid A^{t}y \leq c^{t}\}$, on a $b^{t}y \leq c^{t}x$.

Preuve: On a

by = $(Ax)^T y = x^T A^T y \leq x^T c = c^T x$.

Comme $x \geq 0$ Ax = b A = b

0

.

2.2. min n2+x3

1 - q. $3x_1 + 2x_2 + x_3 = 23$. $-x_1 - 2x_2 + 3x_3 = 22$. $x_1, x_2, x_3 = 20$.

(a) Dual: max 34, + 24z

 $\frac{1}{4}$

(b) En modificult 3x, +2x2 + x3 2 3+E, sul l'objectif

oln dual dange: (3+8) y +242. Ainsi, la solution (0.1,0.3)

rette adminishe et dore, par le drabté faible:

 $x_1 + x_3$ \geq $(3+\epsilon)(0,1) + 2.0.3 = 0.9 + 0.1 E.$

V x admitible de primel.

(c) On fact of spiration simple: $\forall x \text{ sol-admissible du primal}:$ $(3x_1 + 2x_2 + x_3) = 3 \cdot 0.1 \} \text{ consider duals}$ $(-x_1 - 2x_2 + 3x_3) = 2 \cdot 0.3 \} \text{ optimales}$

ctx = x2+x3 2 0.x, -0.4.x2+ x3 2 0.9

Comp. X2 20

2.2. (a) $x_i = 20$ sixon.

max 300 x, + 400 Yz + 500 Yz + 600 Xy

t-g. 200x, + 300x2 + 400 x3+ 500 x4 ≤ 800.

(b) Relotation lineare.

Max 300x, + 400K2+500 x3 +600 x4

t-q. 200 x,+ 300 x2 + 400 x3 + 500 x4 & 800,

0 { Xi { 1 i=1,2,5,4,

les variables en ordre de profit: 300 3 400 7 500 600 500 x, x, x, x, x, x, x,

=1 $x^{4} = (1, 1, \frac{3}{4}, 0).$

