

BALANCING TRAILER POOL NETWORK

Seung-Mi Jeon, Hrishikesh Bhatt, Yi Shiuan Chiang, Harkanwar Chadha, Katherine Lehnen, Rupali Kakadia, Vimala Shravani Dodda, Shoaib Khan jeon139@purdue.edu, bhatt60@purdue.edu, chian130@purdue.edu, chadhah@purdue.edu, lehnen@purdue.edu, rkakadia@purdue.edu, doddav@purdue.edu, khan180@purdue.edu

BUSINESS PROBLEM

Efficient distribution of inventory is a critical challenge in logistics, as improper allocation leads to increased operational costs, unmet demand, and low utilization.

How can logistics companies strategically deploy their trailers to maximize customer benefits and optimize fleet utilization?

Our model uses predictive analytics and mathematical modeling to select priority network locations and trailer allocations using freight demand data, geospatial analysis, and telematics information to determine optimal trailer placements.

METHODOLOGY

- 1. Assign city tiers based on freight market index to estimate revenue and costs at different levels.
- Calculate Profit across varying numbers of demand cities by following the three stages below.
- 3. Determine the optimal number of cities to maximize profit with a correspondingly optimized trailer distribution.

Tier System

DATA AND MODELING

DATA EXPLORATION

STAGE 1: DEMAND ESTIMATION

- **Telematics Data**
 - Asset VIN Exact location
 - Timestamp
 - Motion status
- **Freight Market** Volume indicator for Top 30 US freight markets
 - City/State Daily Index

Forecasted Demand

 $\rho \sum (\ln(Xi) \times wi)$

x = demand on day i

w = weights for day i

Weighted

Geometric

Mean

Date

Day 1

Day 2

Day 3

(D: Freight Market Demand Index)

Weights

0.1

0.2

0.25

0.3

Most locations (~94%) are dealer owned! Own Dealer 93.74% **Num of Locations By States** Wisconsin New York North Carolina

Why Logarithmic?

Applied the natural logarithm(In) to the index

Why Weights?

Insights

Can be extended to multiple locations for

Captured exponential growth or decline

patterns in demand

values for the past five days

Higher importance to recent data

More reliable than simple averages

Reduced outdated influence

data-driven decision

STAGE 2: SELECT NETWORK LOCATIONS

STAGE 3: TRAILER RELOCATION

Objective: Minimize Total Distance Traveled

- *i* : assets (trailers)
- *j* : network locations
- d(ij): Euclidean distance between i and j

Constraints

		Daily Revenue	Daily Parking Cost
1	D > 200	\$80	\$7
2	100 < D =< 200	\$50	\$5
3	D <= 100	\$30	\$3

Assigned Tiers

Each Asset Assigned to Exactly One Location:	$\sum_{j} x_{ij} = 1, \forall i$
Each Network Location Receives Its Full -Allocation:	$\sum_{i} x_{ij} = Allocated_Trailers_{j}, \forall j$
(Optional): Each Trailer Travels a Maximum Distance 't':	$\sum_{j} d_{ij} x_{ij} \leqslant t, \forall i$

OUTPUT

MODEL RESULTS

Profitability Comparison by Number of Select Cities

Maximized at n=4 cities, balancing high-demand metros and manageable relevant costs

• Revenue:

Maximized from n=1 through 5 due to choice of Tier1 demand freight metros

- Transportation cost: Really high at n=1, reduces with more
- distributed demand
- Parking cost:

Remains stable across n=1 to 15

* Amount and number of cities scaled

BUSINESS BENEFITS

• Deploy trailers with maximum efficiency, minimal idle time, and reduced empty miles.

Enhance response times

• Ensure service feasibility for

dynamic freight demand

Optimize Fleet Utilization

Profit Maximizing Distribution

Balance high-demand metros with manageable costs.

Increased

Responsiveness

to Demand

Replicable **Optimization** Model

Scalable and replicable model for application across similar contexts.

FUTURE SCOPE

Dynamic Live Asset Relocation

 Real-time optimization model using demand forecasts and telematics

Seasonal Demand Forecasting

 Leverage historical market data and advanced machine learning models

Customer Order & Subscription

Predict company demand using subscription data and advance customer orders

Optimal Fleet Utilization

- Use only the required trailers Maintain a reserve for
- demand shifts