Visualizing Near-Earth Asteroids in 3D Using NASA's NeoWs API and Three.js

Visualising Near-Earth Asteroids in 3D

Leveraging NASA's NeoWs API and Three.js for Interactive Exploration

Presented by: Rajesh

Date: October 2025

A technical deep-dive into building a visually compelling and data-accurate simulation using modern web technologies.

Project Overview: Bringing Celestial Data to Life

Our primary objective was to transform raw astronomical data into an engaging, real-time 3D experience.

Core Goal

Simulate realistic asteroid flybys around Earth using live data streams from NASA.

Key Technology

Three.js for high-performance 3D rendering in the browser (WebGL).

Data Source

NASA NeoWs API provides up-to-theminute asteroid observational data.

The result is an interactive, educational web application that offers a visually realistic model of our local space environment.

The Technical Stack: Building the Simulation

Foundation for the 3D environment, handling scene graph, complex lighting, and material shaders for realistic textures.

JavaScript Logic

Manages data parsing, physics calculations, animation loops, and user interaction handlers, ensuring a smooth experience.

NASA NeoWs API

The core data feed. Provides live, validated metrics including velocity, trajectory, and close-approach details for Near-Earth Objects.

High-Resolution Textures

Detailed maps for the Earth, Moon, Sun, and space background (e.g., star fields) to enhance visual fidelity and immersion.

Simulation Dynamics: Key Visual Features

We focused on achieving both scientific accuracy and intuitive visual communication.

→ Celestial System

Accurate Earth-Moon-Sun model, including Earth's axial tilt and orbital plane representation.

→ Asteroid Realism

Irregular geometry and complex physics applied to simulate realistic, tumbling trajectories for each object.

\rightarrow Size Toggle

A crucial toggle between **Realistic** (near-invisible) and **Exaggerated** (visualized) asteroid sizing for clarity.

\rightarrow Focused Views

Click-to-focus camera control and hover tooltips for rapid identification and inspection of individual asteroids.

API Integration and Data Processing

The application dynamically fetches and processes relevant data points to populate the 3D scene in real-time.

Data Query

Fetches the list of all Near-Earth Asteroids that are predicted to approach Earth within the current day.

Trajectory & Speed

Parses Name, **Velocity (km/s)**, and precise predicted **Miss Distance (km)** from Earth.

Physical Properties

Extracts the estimated mean **Diameter (metres)** to accurately render the object's scale.

Risk Assessment

Automatically calculates a visual Danger Level (Low, Medium, High) based on size and proximity.

Enhancing Interactivity and Alert Systems

- Seamless user experience is achieved through sophisticated camera work and contextual data overlays.
- Proximity Alert: Asteroids making a very close approach glow with a distinct red pulse for immediate visual warning.
- Heads-Up Display (HUD): Provides non-intrusive feedback on the current focused object and the selected visualisation mode (realistic/exaggerated).
- Detailed Inspection: A simple click action triggers a smooth camera transition and opens a detailed pop-up panel with all parsed API data.

Smooth, intentional camera transitions are crucial; they guide the user's eye and reduce motion sickness in 3D environments.

Conclusion and Future Scope

The project successfully demonstrates the powerful synthesis of astronomical data, Three.js, and web development expertise.

Current Impact

The application provides a novel, engaging platform for **STEM education**, public awareness regarding near-Earth objects, and data-driven research.

Planned Upgrades

(F)

Integration of visible active and defunct satellite constellations into the orbit model.

Impact Simulation

Hypothetical impact scenarios based on current trajectory and atmospheric entry physics.

Historical Tracking

Ability to browse and simulate close-approaches from past years.