Álgebra Linear

Cursos 1 Semestre — 16 de Novembro de 2015

\ / A	
\//\	
\mathbf{v}	

Nome:	
Número:	Curso:

Prob.	Α	В	С	D	Classificação
1.					
2.					
3.					

4.	1.0	
5.	0.7	
6.	0.7	
7.	0.8	
Nota Final		

- A prova que vai realizar tem a duração de 45 minutos.
- Não é permitido o uso de dispositivos electrónicos de transmissão ou recepção de dados, nem calculadoras ou computadores.
- As perguntas de escolha múltipla devem ser respondidas no quadro acima, assinalando uma única resposta. As cotações de cada pergunta de escolha múltipla são:

Certa: 0.6 val. Errada: - 0.1 val. Branco: 0.0 val.

 As perguntas que não são de escolha múltipla devem ser respondidas neste caderno de folhas no espaço em branco após o enunciado da respectiva pergunta. Não deve desagrafar o caderno de respostas.

1. Quais dos seguinte	es conjuntos são subespaços	vectoriais de \mathbb{R}^3 ?	[0.6]
III.) $Sp\{(1,0,-1)\}$	x : x + y - 3z = 2. $y : \{(x, y, z) \in \mathbb{R}^3 : x + y = z$. $y : \{(x, y, z) \in \mathbb{R}^3 : x - y + z$. y : x = y + 1 e x = 0.	$z\}.$ $z = 0\}.$	
A) I e III.	B) III.	C) IV.	D) II e III.
2.			[0.6]
III.) Se A é uma maindependentes,IV.) Se A é uma maindependentes,	triz quadrada $n \times n$ e as suas então o sistema $Ax=0$ tertriz de tipo $m \times n$ e as suas então o sistema $Ax=0$ ter	colunas são constituídas por v m apenas a solução nula.	ectores linearmente
A) I, II e III.	eta de afirmações verdadeira B) II e III.	s. C) II, III e IV.	D) II e IV.
	l das funções polinomiais de grau 2 é nulo tem dimensão	grau menor ou igual a 4 con igual a:	m coeficientes reais [0.6]

2

16 Novembro 2015 3

4. Considere o conjunto de vectores de \mathbb{R}^3 $\{v_1,v_2,v_3\}$, onde

$$v_1 = (1, 2, 1), v_2 = (2, 5, 3), v_3 = (-1, -4, c).$$

[0.4]

a) Para que valores de $c \in \mathbb{R}$ são os vectores linearmente independentes?

b) Considere
$$c=-3$$
. Seja $E=\operatorname{Sp}(\{v_1,v_2,v_3\})$ e $F=\{(x,y,z)\in\mathbb{R}^3:x+y=z\}.$ [0.6] Quais as dimensões dos espaços vectoriais $E+F$ e $E\cap F$?

5. a) Qual dos seguintes conjuntos constitui uma base de \mathbb{P}_2 (o espaço vectorial das funções polinomiais de grau menor ou igual a dois e coeficientes reais)?

[0.4]

[0.3]

$$\mathcal{A} = \{1 + t, t + t^2, -1 + t^2\}$$

$$\mathcal{B} = \{1, -1 + t, 1 - 2t + t^2\}$$

b) Calcule as coordenadas de $p(t)=6-5t+2t^2$ na base que considerou na alínea anterior.

6. Indicar uma base do espaço vectorial constituído pelas matrizes quadradas de tipo 2×2 cuja diagonal é nula. [0.7]

7. Sejam \mathcal{B}_1 e \mathcal{B}_2 duas bases de \mathbb{R}^3 e \mathcal{E} a canónica do mesmo espaço. Sabendo que

$$M_{\mathcal{B}_1 \leftarrow \mathcal{E}} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_{\mathcal{B}_1\leftarrow\mathcal{E}} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{e} \quad M_{\mathcal{B}_1\leftarrow\mathcal{B}_2} = \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & -1 \\ 3 & 2 & 0 \end{bmatrix},$$

quais os vectores da base \mathcal{B}_2 ?