Лекуия 10: Основине теореня дифференциального исписления

(10.1) Теорена о среднем

Творена 10.1: Пуст з. 6-12 - дружуня определённая в област ССК, empegox $[x; x+h] \in G$. Torga, ecu $f \in C([x; x+h])$ u gugogeoperegulpyena B mother us (x; x+h) mo cycye consider $\xi \in (x; x+h)$ m. z. f(x+h) - f(x) = f'(x)h use f(x+h',..., x"+h") - f(x',...,x") = 2; f(x',...,x") h'.

Dokazarenscibo: Bbegin benomozamonsnym spyrkymo F(t)=f(x+th), orpegenennym na smpezke $[0;1]\subset\mathbb{R}$. Заметим, гто $F\in C[0;1]$ м F дифоференцируемс во видтренния точках отрезка [0;1]. Яюэтому по теорене Лагранта существует m. $\theta \in (0;1)$ makas, zmo

 $F(1) - F(0) = F'(\theta) \Leftrightarrow f(x+h) - f(x) = f'(x+\theta h) h$, 29 x+\theta +\text{\$\text{\$f(x;x+h)\$}.}

Enegarbue: Tyañ $f: G \to \mathbb{R}$ gupopehensupyena l obsacom $G \subset \mathbb{R}^m$, a ci gupopeренциал равен нумь в мыбый точке XEG. Тогда f постения в G.

Доказательство: В начале донашен, что утвертдение верно эло функуши, определённый в некоторым шаре В(х, г).

Из рабочива пунь дифференциала в любей тогие В(2,1) емедует, гто $\partial_1 f(\rho) = \dots = \partial_m f(\rho) = 0$ 6 Moder m. p E B(2, r).

Torga, ecu $y \in B(x,r)$, mo a beco ompezoa $[x;y] \subset B(x,r)$, mo no reopene $f(y) - f(x) = f'(\xi) h = 0 \cdot h = 0$

т.е. значения в в побой точке шара совнадают со значениями в его центре г. Pyers meneps morum xo, x, & G. B cury moro, runo G-adracas, manigerae my 15 t - x(t) & G, m.z. x(0) = x0, x(1) = x1.

 $\left(\begin{array}{c} x_0 \end{array}\right)$

Так как в ыткрыть, то существует map $B(x_0; r) \subset G$. B cury respective to one spaceure X(t) range for $f \geq 0$ m.z. $X(t) \subseteq B(x_0, r)$ gue been $0 \leq t \leq S$, a quarum M so respectively.

no goragentiony $f(x(t)) \in f(x_0)$ no [0; S]

Paccuompuu muomecobo $6 = \{ \tau \in [0;1] \mid f(x(t)) = f(x_0) \mid \text{gie } t \in [0;\tau] \} \subset [0;1].$ Mos gokazam, zmo SEG, m.e. 640. Eou TE[0:1), mo naigerce E70, m. τ . τ + ϵ 6 σ . Desi cibuieno no, δ nexotopou mape B(x(t), r) guarenue $f(x) = f(x(t)) = f(x_0)$. δ only respectively that δ the normalization δ only respectively. morga $f(x(t)) = f(x(t)) = f(x_0)$ gus beez $0 \le t \le T + \varepsilon$ Torga sup $\sigma = 1$, a justifi, $f(x(t)) = f(x_0)$ be easy henpeon brown f(x(t)).

Teopeua 10.2: Пуст $f:\mathcal{U}(x) o \mathcal{R}$ — функция, где $\mathcal{U}(x)$ — бирестност mozии $x^{*}(x',...,x^{m}) \in \mathbb{R}^{m}$ Torga, eau b kamgoù mozee $\mathcal{U}(x)$ cywerbyw $\partial_{x}f_{1},...,\partial_{m}f$ u our respepsher b m. x, mo apyrkyux f grapefenyupyeux b m. x.

Доназательство: Бу ограничения общиости можно считах, сто И(2) - это откротогі шар с увигром в т. г. Тогда, если $x+h=(x^1+h^1,...,x^m+h^m)\in\mathcal{U}(x)$ mo θ $\mathcal{U}(x)$ remat he torsko torku $(x^1, x^2 + h^2, ..., x^m + h^m), ..., (x^1, x^2, ..., x^{m-1}, x^m + h^m)$ но и свединающие их отреши.

Так как в И/х) существуют гастыго производите функции в, по при помощи теорент Лагранна по катдой переменной получим

$$f(x+h) - f(x) = f(x^{r_1}h^{r_1}, ..., x^{m_1}h^{m}) - f(x^{r_1}, ..., x^{m}) =$$

$$= f(x^{r_1}h^{r_1}, ..., x^{m_1}h^{m}) - f(x^{r_1}, x^{r_1}h^{r_2}, ..., x^{m_1}h^{m}) +$$

$$f(x^{r_1}, x^{r_1}h^{r_2}, ..., x^{m_1}h^{m}) - f(x^{r_1}, x^{r_2}, x^{r_3}h^{r_3}, ..., x^{r_1}h^{m}) +$$

$$... + f(x^{r_1}, x^{r_2}, ..., x^{r_1}, x^{r_2}h^{r_3}) - f(x^{r_1}, ..., x^{r_m}) =$$

$$= \partial_{r_1} f(x^{r_1} + \theta^{r_1}h^{r_1}, x^{r_2}h^{r_2}, ..., x^{r_m}h^{r_m}) h^{r_1} + \partial_{r_2} f(x^{r_1}, x^{r_2}h^{r_3}, x^{r_2}h^{r_3}, ..., x^{r_m}h^{r_m}) h^{r_2} +$$

... + 2mf (x1,...,xm-1, 2m+ 0mhm) hm

B cury more, some det, ..., Int respeption & m. x, no $f(x+h) - f(x) = \partial_1 f(x)h^1 + \lambda^1 h^1 + ... + \partial_m f(x)h^m + d^m h^m$

rge d'(z;h) → 0 npm h → 0, j=1, ..., m. Takun oбразом, $f(x+h) - f(x) = \partial_1 f(x) h^1 + ... + I_m f(x) h^m + O(h)$ upen $h \to 0$.

Eou b oblacom $G \subset \mathbb{R}^m$ approxyme f under verperobuse vacuum promboguse, no no figure rucas $f \in C^\infty(G;\mathbb{R})$ une $f \in C^\infty(G)$

(10.3) Nacmune monjeogune bnouvero nopagra

Nyero $G \subset \mathbb{R}^m$ obsacmo, prysmyne $f: G \to \mathbb{R}$ uneer b G carmings проуводную 3f. (2). Тогда эта тастная проуводняя мляется друшкущей ді: G > R _ еб гастини прощводную по переменной XI мог будем незпват bumpon commen ryouzbogues on f no repenential x', x'.

$$\mathfrak{J}_{i};f(z):=\frac{\mathfrak{J}}{\mathfrak{J}_{x,i}}\left(\frac{\mathfrak{J}_{f}}{\mathfrak{J}_{z}}\right)(z)\quad uu \qquad \frac{\mathfrak{J}^{\ast}f}{\mathfrak{J}_{x}i\mathfrak{J}_{z}}(z):=\frac{\mathfrak{J}}{\mathfrak{J}_{x,i}}\left(\frac{\mathfrak{J}_{f}}{\mathfrak{J}_{x}}\right)(z).$$

По индупции производная порядка к+1 задайтия $\mathcal{J}_{i\,i_{1}\dots i_{m}}\,f(x):=\,\mathcal{J}_{i}\,(\,\mathcal{J}_{i_{1}\dots i_{m}})f(x).$