Московский Государственный Технический Университет имениН.Э.Баумана

Факультет Информатика и системы управления Кафедра ИУ-5

«Системы обработки информации и управления»

Рубежный контроль по дисциплине

«Методы машинного обучения»

Тема: Методы обработки данных

Студент: Лу Жуньда Группа:ИУ5И-22М

Варианты заданий

номер варианта = 2+15=17

Номер задачи №1: 17

Номер задачи №2: 37

Задача №17.

Для набора данных проведите нормализацию для одного (произвольного)

числового признака с использованием преобразования Йео-Джонсона (Yeo-

Johnson transformation).

Задача №37.

Для набора данных проведите процедуру отбора признаков (feature selection).

Используйте класс SelectPercentile для 5% лучших признаков, и метод,

основанный на взаимной информации.

Дополнительные требования по группам:

Для произвольной колонки данных построить гистограмму.

2

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	quality	kfold
0	8.9	0.480	0.53	4.0	0.101	3.0	10.0	0.99586	3.21	0.59	12.1	7	0
1	9.4	0.685	0.11	2.7	0.077	6.0	31.0	0.99840	3.19	0.70	10.1	6	0
2	10.2	0.230	0.37	2.2	0.057	14.0	36.0	0.99614	3.23	0.49	9.3	4	0
3	7.3	0.730	0.24	1.9	0.108	18.0	102.0	0.99670	3.26	0.59	9.3	5	0
4	8.0	0.620	0.35	2.8	0.086	28.0	52.0	0.99700	3.31	0.62	10.8	5	0

Задача №17: Нормализация с использованием преобразования Йео-Джонсона

Для этого выберем произвольный числовой признак. Пусть это будет колонка fixed acidity

```
from sklearn.preprocessing import PowerTransformer

# Преобразование Йео-Джонсона для колонки 'fixed acidity'
yeo_transformer = PowerTransformer(method='yeo-johnson')
data['fixed acidity Yeo-Johnson'] =
yeo_transformer.fit_transform(data[['fixed acidity']])

# Сравним исходное и преобразованное значение
data[['fixed acidity', 'fixed acidity Yeo-Johnson']].head()
```

	fixed acidity	fixed acidity Yeo-Johnson	
0	8.9	0.501915	11.
1	9.4	0.759714	
2	10.2	1.127136	
3	7.3	-0.516971	
4	8.0	-0.029436	

Задача №37: Отбор признаков с использованием класса SelectPercentile и метода на основе взаимной информации

```
from sklearn.feature_selection import SelectPercentile,
mutual_info_regression

# Отбор признаков
X = data.drop(columns=['quality', 'kfold'])
y = data['quality']
selector = SelectPercentile(mutual_info_regression, percentile=5)
X_selected = selector.fit_transform(X, y)
# Выбранные признаки
selected_features = X.columns[selector.get_support()]
# Вывод выбранных признаков
print(selected_features)
```

```
Index(['alcohol'], dtype='object')
```

Используя класс SelectPercentile и метод на основе взаимной информации, был выбран признак alcohol как один из лучших 5% признаков.

Дополнительное требование: Построение гистограммы

Построим гистограмму для произвольной колонки данных. Пусть это будет колонка alcohol.

```
import matplotlib.pyplot as plt

# Построение гистограммы
plt.hist(data['alcohol'], bins=10, edgecolor='black')
plt.title('Histogram of Alcohol Content')
plt.xlabel('Alcohol')
plt.ylabel('Frequency')
plt.show()
```


