# Phase 3- OLAP Queries, and BI Dashboard Phase 4 - Data Mining

## CSI 4142 - Fundamentals of Data Science Winter 2023



Faculté de génie Faculty of Engineering

## School of Electrical Engineering and Computer Science University of Ottawa

Yazan Otoum, Ph.D

**Group #30 : Deliverable #3** 

Ishanveer Gobin 300135454 Andie Samadoulougou 300209487 Kate Sin Yan Chun 300144923

## **Table of Content**

Part A.1. Standard OLAP operations

Part A.2. Explorative operation

Part B. BI dashboard and Information Visualization

### Phase 4 - Data Mining

Part A. Data summarization, data preprocessing and feature selection

Part B. Classification (Supervised Learning)

Part C. Detecting Outliers (Bonus)

### **References**

## Phase 3- OLAP Queries, and BI Dashboard

### Part A.1. Standard OLAP operations

For each part of this section, we created a view for each query to save the data retrieved.

#### Drill down and roll up

#### a) Roll-up data for payment type.

This query is to aggregate the data by payment type, providing a higher-level summary of the data. It counts the number of transactions, the number of fraudulent transactions, the average name\_email\_similarity, the average velocity\_6h, the average velocity\_24h and the average velocity 4w for each payment type.



#### b) Roll-up data for employment status

This query is to aggregate the data by employment\_status, providing a higher-level summary of the data. It counts the number of transactions and the number of fraudulent transactions for each employment status.

```
banking_transactions=# select * from Employment_status_fraud;
 employment status | num transactions | num fraud transactions
 CA
                                 714243
                                                              8625
 CB
                                 133734
                                                               900
 CC
                                  33652
                                                               783
 CD
                                                                94
                                  25876
 CE
                                                                52
                                  22158
 CF
                                  42970
                                                                84
 CG
                                    435
(7 rows)
```

#### c) Drill-down data for customer age group

This query aims to break down the data into more detailed levels by analyzing fraud cases based on age groups. The customer age in the dataset was in bins per decade (e.g, 20-29 is represented as 20). The query counts the number of transactions and the number of fraudulent transactions for each age group.

| banking_trar<br>age_group |        | * from age_group_fraud;<br>  num_fraud_transactions |
|---------------------------|--------|-----------------------------------------------------|
| 10                        | 20452  | † 73                                                |
| 20                        | 240726 | 1181                                                |
| 30                        | 306098 | 2553                                                |
| 40                        | 234165 | 2835                                                |
| 50                        | 137403 | 2766                                                |
| 60                        | 34224  | 1137                                                |
| (6 rows)                  |        |                                                     |

From the age\_group\_fraud view, we selected all where the customer age group was between 20-29 (age\_group = 20).

#### d) Drill-down data for customer income

This query drills down the data to analyze the number of transactions and fraudulent transactions by different income groups (high, medium and low).

### Slice

a) Slice data by payment\_type "AB"

The query selects a single payment type from the transaction dimension and analyzes the data based on customer age and device OS. It counts the number of transactions and the number of fraudulent transactions for each combination of customer age and device os.

|          |     |           | ect * from payment_ | num fraud transactions |
|----------|-----|-----------|---------------------|------------------------|
|          | age | uevice_03 |                     | +                      |
|          | 10  | linux     | 1154                | 5                      |
|          | 10  | macintosh | 740                 | 0                      |
|          | 10  | other     | 2173                | 4                      |
|          | 10  | windows   | 1653                | 9                      |
|          | 10  | x11       | 29                  | 9                      |
|          | 20  | linux     | 24659               | 63                     |
|          | 20  | macintosh | 5705                | 39                     |
|          | 20  | other     | 28942               | 86                     |
|          | 20  | windows   | 22770               | 230                    |
|          | 20  | x11       | 365                 | 6                      |
|          | 30  | linux     | 37296               | 155                    |
|          | 30  | macintosh | 4896                | 60                     |
|          | 30  | other     | 35649               | 177                    |
|          | 30  | windows   | 28416               | 545                    |
|          | 30  | x11       | 425                 | 5                      |
|          | 40  | linux     | 30381               | 149                    |
|          | 40  | macintosh | 4187                | 75                     |
|          | 40  | other     | 27806               | 155                    |
|          | 40  | windows   | 28498               | 603                    |
|          | 40  | x11       | 520                 | 4                      |
|          | 50  | linux     | 20057               | 164                    |
|          | 50  | macintosh | 2232                | 36                     |
|          | 50  | other     | 12284               | 126                    |
|          | 50  | windows   | 23512               | 780                    |
|          | 50  | x11       | 414                 | 9                      |
|          | 60  | linux     | 5172                | 78                     |
|          | 60  | macintosh | 566                 | 24                     |
|          | 60  | other     | 2777                | 45                     |
|          | 60  | windows   | 6154                | 335                    |
|          | 60  | x11       | 130                 | 2                      |
| 30 rows) |     |           |                     |                        |

b) Slice data by housing\_status "BA"

This query slices the data to show the number of transactions and the number of fraudulent transactions for customers with or without other cards where their housing\_status is "BA".

#### Dice

#### a) Dice data by customer age and source

The dice operation selects multiple values from multiple dimensions to create a sub-cube. In this query, we analyze the transactions with payment\_type "AB" and device\_os "windows" based on the customer age and source. The query counts the number of transactions and the number of fraudulent transactions for each combination of customer age and source, considering only transactions with both payment type "AB" and device os "windows".

| banking_transa | ctions=# sel | lect * from payment | _type_dice;            |
|----------------|--------------|---------------------|------------------------|
| customer_age   | source       | num_transactions    | num_fraud_transactions |
|                | +            | +                   | +                      |
| 10             | INTERNET     | 1651                | 9                      |
| 10             | TELEAPP      | 2                   | 0                      |
| 20             | INTERNET     | 22755               | 230                    |
| 20             | TELEAPP      | 15                  | 0                      |
| 30             | INTERNET     | 28393               | 544                    |
| 30             | TELEAPP      | 23                  | 1                      |
| 40             | INTERNET     | 28455               | 602                    |
| 40             | TELEAPP      | 43                  | 1                      |
| 50             | INTERNET     | 23491               | 779                    |
| 50             | TELEAPP      | 21                  | 1                      |
| 60             | INTERNET     | 6142                | 334                    |
| 60             | TELEAPP      | 12                  | 1                      |
| (12 rows)      |              |                     |                        |

#### b) Dice by customer age and proposed credit limit

This query dices the data to show the number of transactions and fraudulent transactions by customer age and proposed credit limit. Specially for transactions made through the "INTERNET" source and with employment status "CA"

| ustomer_age | proposed_credit_group | num_transactions | num_fraud_transactions |
|-------------|-----------------------|------------------|------------------------|
| 10          | <br>  High            | 1294             | 9                      |
| 10          | Low                   | 14798            | 54                     |
| 10          | Medium                | 710              | j 2                    |
| 20          | High                  | 17713            | j 210                  |
| 20          | Low                   | 158026           | 733                    |
| 20          | Medium                | 11850            | j 77                   |
| 30          | High                  | 34920            | 760                    |
| 30          | Low                   | 173643           | 1247                   |
| 30          | Medium                | 22721            | 185                    |
| 40          | High                  | 32680            | 979                    |
| 40          | Low                   | 119256           | 1225                   |
| 40          | Medium                | 17309            | 236                    |
| 50          | High                  | 24566            | 1064                   |
| 50          | Low                   | 55471            | 925                    |
| 50          | Medium                | 10391            | 192                    |
| 60          | High                  | 3793             | 295                    |
| 60          | Low                   | 9548             | 299                    |
| 60          | Medium                | 1528             | j 55                   |

### Combining OLAP operations

#### a) Roll up and Dice on customer income and age

This query creates income and age groups within the applicant dimension and combines them to analyze the data across different income and age segments. The results will provide insights on the number of transactions, the number of fraud transactions and the average values for the different velocities.

Roll up: The data is aggregated at a higher level by creating income and age groups, which comes from the original dataset.

Slice: The query segments the data by income and age groups which focuses on a specific subset of the data.

| income_group | age_group   | num_transactions | num_fraud_transactions | avg_name_email_similarity | avg_velocity_6h    | avg_velocity_24h   | avg_velocity_4w    |
|--------------|-------------|------------------|------------------------|---------------------------|--------------------|--------------------|--------------------|
| ligh         | Middle-aged | 275571           | 3682                   | 0.4763876936801599        | 5122.975703642318  | 4528.536660803435  | 4709.881286146359  |
| ligh         | 01d         | 89443            | 2636                   | 0.47775108889836204       | 5403.680042935066  | 4696.012237961892  | 4826.415295691649  |
| High         | Young       | 97306            | 702                    | 0.5124472635235728        | 5510.880580955264  | 4716.333902126021  | 4806.6721673904485 |
| _OW          | Middle-aged | 132989           | 767                    | 0.4955922877322936        | 5666.7184220158915 | 4845.492256805441  | 4940.610051511348  |
| _OW          | 01d         | 41162            | 564                    | 0.4936649857466489        | 5963.735745661074  | 5036.081418852088  | 5041.232039287066  |
| _OW          | Young       | 94483            | 267                    | 0.5369209132982579        | 5987.2275927596    | 4962.37116529623   | 4968.3672694067345 |
| Medium       | Middle-aged | 131703           | 939                    | 0.48380959206052226       | 5463.784207862637  | 4726.471905114854  | 4845.502420688189  |
| Medium       | Old         | 41022            | 703                    | 0.484562600390691         | 5733.800154730882  | 4915.3323521790935 | 4947.688415968863  |
| Medium       | Young       | 69389            | 285                    | 0.5234134419070297        | 5787.84850451448   | 4868.736864217662  | 4901.15030030404   |

#### b) Roll-up and Dice

This query creates a view that combines roll-up (customer age groups) and slice (device OS) operations to analyze transaction data. It groups the transactions by applicant age group, employment status and device os and calculates the number of transactions, the number of fraudulent transactions and the average values for name email similarity and the different velocities.

| banking_transa | anking_transactions=# select * from age_group_and_employment_status; |           |                  |                        |                           |                    |                   |                    |  |
|----------------|----------------------------------------------------------------------|-----------|------------------|------------------------|---------------------------|--------------------|-------------------|--------------------|--|
| age_group      | employment_status                                                    | device_os | num_transactions | num_fraud_transactions | avg_name_email_similarity | avg_velocity_6h    | avg_velocity_24h  | avg_velocity_4w    |  |
| 112 4 42 4     |                                                                      |           | 400007           |                        |                           |                    | +                 | 4750 5505054000755 |  |
| Middle-aged    |                                                                      | windows   | 103297           | 2674                   | 0.506433924798973         | 5158.367879751904  | 4564.61947155868  | 4763.5685254922755 |  |
| Middle-aged    |                                                                      | windows   | 17329            | 234                    | 0.47843073504783135       | 5640.9159933901765 | 4890.811492004134 | 4991.7200911955515 |  |
|                | cc                                                                   | windows   | 1886             | 44                     | 0.45731546187630034       | 5541.1548723923825 | 4762.238826963038 | 4875.49966927501   |  |
| Middle-aged    | CD                                                                   | windows   | 3052             | 18                     | 0.49079605614248395       | 5678.962398817357  | 4840.241047690078 | 4906.035093501143  |  |
| Middle-aged    | CE                                                                   | windows   | 1893             | 12                     | 0.5344073260030243        | 5557.840157157265  | 4710.865332051689 | 4794.746576357007  |  |
| Middle-aged    | CF                                                                   | windows   | 4352             | 18                     | 0.49609493442018704       | 5508.171214619408  | 4686.233746920689 | 4839.879478681333  |  |
| Middle-aged    | CG                                                                   | windows   | 54               | 1                      | 0.44818600758830945       | 5268.057275964034  | 4679.688657533909 | 4636.62020241122   |  |
| Old            | CA                                                                   | windows   | 41262            | 1923                   | 0.5096812773431435        | 5347.663720510034  | 4708.550834599446 | 4858.065654095939  |  |
| Old            | CB                                                                   | windows   | 7541             | 156                    | 0.4718262278463452        | 5901.779969164384  | 5007.740376090326 | 5060.692835566509  |  |
| Old            | cc                                                                   | windows   | 10067            | 476                    | 0.46446633954656147       | 5692.441318389392  | 4894.543917032721 | 4924.300054992354  |  |
| Old            | CD                                                                   | windows   | 1531             | 19                     | 0.49645262240109994       | 6107.8115193036665 | 5048.739807469836 | 5002.914246051141  |  |
| Old            | CE                                                                   | windows   | 803              | 9                      | 0.5346691154856188        | 5741.539547345206  | 4944.287797768758 | 4931.908415906208  |  |
| Old            | CF                                                                   | windows   | 1806             | 11                     | 0.49742541254457506       | 5775.186440916514  | 4807.49149419145  | 4904.123303525108  |  |
| Old            | CG                                                                   | windows   | 31               | 3                      | 0.4440751743974987        | 5056.855364531509  | 4678.718693765619 | 4635.447466524059  |  |
| Young          | CA                                                                   | windows   | 49365            | 557                    | 0.5445161156857662        | 5591.481715005607  | 4759.27915553064  | 4840.870521719393  |  |
| Young          | CB                                                                   | windows   | 5504             | 34                     | 0.5034222592783223        | 6161.540820779252  | 5126.08520247216  | 5160.983547037545  |  |
| Young          | CC                                                                   | windows   | 416              | 6                      | 0.4880712009132055        | 5993.37234368413   | 4862.830622004122 | 4910.849291165115  |  |
| Young          | CD                                                                   | windows   | 1414             | 6                      | 0.5171032488958148        | 6056.29777795497   | 5009.056010856299 | 4992.068100373701  |  |
| Young          | CE                                                                   | windows   | 3514             | 15                     | 0.5781679208758079        | 5935.663182942863  | 4899.445967214499 | 4854.160171044794  |  |
| Young          | CF                                                                   | windows   | 1279             | 9                      | 0.513302300941851         | 5967.085154068395  | 4890.014923883538 | 4913.15709421935   |  |
| Young          | CG                                                                   | windows   | 25               | 0                      | 0.5277174645001783        | 5702.76411176591   | 4822.630541215627 | 4939.118705724453  |  |
| (21 rows)      |                                                                      |           |                  |                        |                           |                    |                   |                    |  |

### c) Rollup and Slice

This query analyzes the total number of transactions and fraud transactions for each employment\_status and device\_os, where the payment type is 'AC'. First, the slice operation is applied to filter the dataset for the desired payment type 'AC', then we apply the rollup operation to aggregate data at different levels of the employment\_status and device\_os dimensions.

| banking transactions | s=# select *           | from employment statu | us device os transactions ac payment; |
|----------------------|------------------------|-----------------------|---------------------------------------|
| employment_status    | device_os              | total_transactions    | total_fraud_transactions              |
| ii                   |                        | <del></del>           | +                                     |
|                      |                        | 246779                | 4048                                  |
| CB                   | linux                  | 9215                  | 49                                    |
| CD                   | macintosh              | 253                   |                                       |
| CD                   | windows                | 1952                  | 19                                    |
| CF                   | other                  | 4063                  | 7                                     |
| CF                   | linux                  | 6819                  | 9                                     |
| CC                   | macintosh              | 286                   | 19                                    |
| cc                   | linux                  | 3480                  | 49                                    |
| CE                   | windows                | 1071                  | 13                                    |
| CF                   | macintosh              | 278                   | 3                                     |
| CC                   | windows                | 3346                  | 207                                   |
| CG                   | x11                    | 1                     | 0                                     |
| CC                   | other                  | 2057                  | 34                                    |
| CD                   | linux                  | 4222                  | 8                                     |
| СВ                   | other                  | 10112                 | 72                                    |
| CG                   | linux                  | 27                    | ] 1                                   |
| CE                   | other                  | 1584                  | 1                                     |
| CC                   | x11                    | 72                    | ] 3                                   |
| CG                   | macintosh              | 8                     | ] 1                                   |
| СВ                   | x11                    | 150                   | ] 3                                   |
| CG                   | windows                | 22                    | ] 1                                   |
| CF                   | x11                    | 87                    | 0                                     |
| CE                   | linux                  | 1295                  | 1                                     |
| CG                   | other                  | 38                    | ] 1                                   |
| CD                   | x11                    | 56                    | 0                                     |
| CA                   | windows                | 46061                 | 1947                                  |
| CA                   | x11                    | 1124                  | 19                                    |
| CD                   | other                  | 2850                  | 7                                     |
| CE                   | x11                    | 20                    | 0                                     |
| CA                   | linux                  | 63632                 | 526                                   |
| CB                   | macintosh              | 1430                  | 30                                    |
| CF                   | windows                | 1937                  | 7                                     |
| CB                   | windows                | 5041                  | 142                                   |
| CE                   | macintosh<br>macintosh | 462                   | 0<br>  239                            |
| CA<br>CA             | macintosn<br>other     | 9078<br>  64650       | 239<br>  626                          |
| CA<br>CF             | otner                  | 64650<br>  13184      | 626<br>  26                           |
| CB                   |                        |                       | 26<br>  296                           |
| CA                   |                        | 25948<br>184545       | 296<br>  3357                         |
| CC                   |                        | 184545<br>  9241      | 335/<br>  312                         |
| CE                   |                        | 9241<br>  4432        | ] 312<br>  15                         |
| CD                   |                        | 4432<br>  9333        | 15<br>  38                            |
| CG                   |                        | l 9535                |                                       |
| (43 rows)            |                        | 96                    | 4                                     |
| (45 TOWS)            |                        |                       |                                       |

#### d) Drill-Down and Dice

This query is to analyze the average days since request for each employment\_status, housing\_status, and device\_os, for customers who used the source 'INTERNET' and payment\_type ('AB'). First, the Dice operation is applied to filter the dataset based on the desired source and payment\_type. Then, the Drill-Down operation is applied to break down the data into detailed levels of employment\_status, housing\_status, and device\_os.

|                   |                |           | housing_device_avg_days_internet_ab_payment;<br>  avg days since request |
|-------------------|----------------|-----------|--------------------------------------------------------------------------|
| empioyment_status | nousing_scacus | device_os | avg_uays_since_request                                                   |
| CA                | BA             | linux     | 0.2464936169347841                                                       |
| CA                | ВА             | macintosh | 0.09745578389587012                                                      |
| CA                | ВА             | other     | 0.22498819441800327                                                      |
| CA                | ВА             | windows   | 0.11262955312791796                                                      |
| CA                | ВА             | x11       | 0.4773190567520449                                                       |
| CA                | ВВ             | linux     | 0.42748014688907365                                                      |
| CA                | ВВ             | macintosh | 0.4944697970708965                                                       |
| CA                | ВВ             | other     | 0.311367567703699                                                        |
| CA                | ВВ             | windows   | 0.28041484932130406                                                      |
| CA                | ВВ             | x11       | 0.7877697275497146                                                       |
| CA                | BC             | linux     | 0.6575467472279073                                                       |
| CA                | ВС             | macintosh | 0.5090624167882737                                                       |
| CA                | ВС             | other     | 0.468592413788198                                                        |
| CA                | BC             | windows   | 0.43671329901198447                                                      |
| CA                | BC             | x11       | 0.9442157601082662                                                       |
| CA                | BD             | linux     | 0.4721708893109467                                                       |
| CA                | BD             | macintosh | 0.4178353950747432                                                       |
| CA                | BD             | other     | 0.25472400427470443                                                      |
| CA                | BD             | windows   | 0.4770914414042337                                                       |
| CA                | BD             | x11       | 0.6710514836215015                                                       |
| CA                | BE             | linux     | 0.29719815558480545                                                      |
| CA                | BE             | macintosh | 0.23686628959657785                                                      |
| CA                | BE             | other     | 0.2484479317844653                                                       |
| CA                | BE             | windows   | 0.2262581918972045                                                       |
| CA                | BE             | x11       | 0.3416274494596606                                                       |
| CA                | BF             | linux     | 0.1232989046935462                                                       |
| CA                | BF             | macintosh | 0.01638331740059516                                                      |
| CA                | BF             | other     | 0.28319094470331446                                                      |
| CA                | BF             | windows   | 0.49466640093906256                                                      |
| CA                | BF             | x11       | 0.9222999892825455                                                       |

## Part A.2. Explorative operation

### Iceberg queries

For the iceberg query, we find the five age groups with the highest number of fraudulent transactions. Here, we can see that the customer age groups 40, 50, 30, 20 and 60 (in descending order) have the most number of fraudulent transactions.

| customer_age | num_fraud_transactions |
|--------------|------------------------|
|              | +                      |
| 40           | 2835                   |
| 50           | 2766                   |
| 30           | 2553                   |
| 20           | 1181                   |
| 60           | 1137                   |
| (5 rows)     |                        |
|              |                        |
|              |                        |

### Windowing queries

For the windowing query, we compared the number of fraudulent transactions with the average fraudulent transactions for each customer age group in the last 6 hours (where velocity\_6h > 0)

| customer_age | num_fraud_transactions | avg_fraud_transactions | fraud_rank |
|--------------|------------------------|------------------------|------------|
| 40           | 2835                   | 1757.50000000000000000 | <br>  1    |
| 50           | 2766                   | 1757.50000000000000000 | 2          |
| 30           | 2553                   | 1757.50000000000000000 | 3          |
| 20           | 1181                   | 1757.50000000000000000 | 4          |
| 60           | 1137                   | 1757.50000000000000000 | 5          |
| 10           | 73                     | 1757.50000000000000000 | 6          |
| (6 rows)     |                        |                        |            |
|              |                        |                        |            |

## (Alternative approach)

| customer_age | num_fraud_transactions | num_transactions | avg_fraud_transactions_by_age | fraud_rank |
|--------------|------------------------|------------------|-------------------------------|------------|
| 40           | 2835                   | 234153           | 0.012107468193873237          | 1          |
| 50           | 2766                   | 137396           | 0.0201315904393141            | 2          |
| 30           | 2553                   | 306081           | 0.008340929361835593          | 3          |
| 20           | 1181                   | 240721           | 0.004906094607450119          | 4          |
| 60           | 1137                   | 34222            | 0.0332242417158553            | 5          |
| 10           | 73                     | 20452            | 0.0035693330725601407         | 6          |
| (6 rows)     |                        |                  |                               |            |

#### Using the Window clause

| customer_age | num_fraud_transactions | previous_age_fraud_transactions | next_age_fraud_transactions |
|--------------|------------------------|---------------------------------|-----------------------------|
| 10           | +<br>  73              |                                 | 1181                        |
| 20           | 1181                   | 73                              | 2553                        |
| 30           | 2553                   | 1181                            | 2835                        |
| 40           | 2835                   | 2553                            | 2766                        |
| 50           | 2766                   | 2835                            | 1137                        |
| 60           | 1137                   | 2766                            |                             |
| (6 rows)     |                        |                                 |                             |

### Part B. BI dashboard and Information Visualization



For the BI dashboard, we used donuts charts, stacked bar charts, line graphs, tables and stacked columns charts to visualize the data.

#### The visualization included:

- 1. Count of fraud bool by customer age (in bins)
- 2. Count of fraud bool by device os
- 3. Sum of velocity 24h by employment status
- 4. Sum of velocity 6h by housing status
- 5. Count of fraud\_bool by housing\_status and employment status

- 6. Sum of name email similarity by customer age
- 7. Table that shows the count of fraud\_bool and average of name\_email\_similarity for each customer age (in bins)
- 8. Average of name\_email\_similarity by customer\_age
- 9. Sum of name\_email\_similarity by income and customer\_age
- 10. Average of name email similarity by device os and fraud bool
- 11. Average of income and Average of credit\_risk\_score by customer\_age

From this visualization, we can see that, for example, the average of name\_email\_similarity is higher for the customer age bin of 10 with a score of 0.57.



We can also see that the sum of velocity\_24h is higher for customers with employment status "CA" which consists of 72.42% of the dataset.



## Phase 4 - Data Mining

### Part A. Data summarization, data preprocessing and feature selection

In order to effectively exploit the information contained within our dataset, we undertook a series of preprocessing steps to refine the raw data, address data quality issues, and conduct data summarization.

Regarding data summarization, we computed descriptive metrics encompassing both statistical measures and visualization techniques. These statistical measures included the mean, the mode, the standard deviation, the range, and the median.

Histograms were employed to visualize the distribution of each numerical attribute and identify anomalies like outliers within the data. Bar plots were also utilized to display the frequency distribution of categorical attributes, enabling the identification of prevalent categories and potential imbalances in the dataset. Additionally, pair plots were constructed for the attributes income, customer\_age, credit\_risk\_score, intended\_balcon\_amount, and proposed\_credit\_limit, offering a rapid overview of their interrelationships and facilitating the exploration of patterns or correlations that may reveal trends and potential factors related to banking fraud.

Throughout the data preprocessing phase, we applied data cleaning and data transformation techniques. In terms of data cleaning, we pruned the dataset for missing values, null values, duplicate entries, and inconsistent data. Fortunately, our dataset was devoid of such issues. Subsequently, we conducted data transformation, converting certain attributes from int64 to boolean data types for more accurate representation within our system. We then engaged in feature engineering, merging the "phone\_mobile\_valid" and "home\_phone\_valid" columns to eliminate redundancy. Following this, we visually represented each column to identify outliers, assessing their relevance and determining whether to remove them. We also performed one-hot encoding for categorical attributes utilizing the OneHotEncoder package from the sklearn library. Numerical data was then normalized to ensure equal importance for each attribute during the learning process.

For feature selection, we initially removed several columns deemed irrelevant based on our exploration of visual representations executed in prior steps. We then employed sklearn packages, including ExtraTreesClassifier, SelectFromModel, and LinearSVC, to perform feature selection on the remaining attributes. These packages utilized tree-based and L1-based feature selection techniques.

Given the high quality nature of our dataset, we encountered minimal data quality issues. One such issue involved the data type of certain columns containing binary values (1 or 0), which were initially stored as int64 instead of boolean. As mentioned previously, we resolved this issue by converting the data type to boolean for the relevant columns. Additionally, the

'prev\_address\_months\_count' column exhibited missing data (value = -1) in more than 71% of the dataset; consequently, we opted to remove these rows. We also merged the 'phone\_mobile\_valid' and 'phone\_home\_valid' columns into a single 'phone\_valid' column using the OR operator. Finally, in relation to outliers present in the 'customer\_age' and 'velocity\_6h' columns, we decided to retain only the records where the customer age was less than 70 and the velocity value was below 13,000.

### Part B. Classification (Supervised Learning)

Based on our first run:

#### Tree based feature selection

| Classification Model        | Accuracy | Precision                 | Recall                    | Time       |
|-----------------------------|----------|---------------------------|---------------------------|------------|
| Decision Trees              | 0.9769   | False: 0.99<br>True: 0.05 | False: 0.99<br>True: 0.06 | 16 seconds |
| Gradient Boosting           | 0.9887   | False: 0.99<br>True:0.47  | False: 1.00<br>True: 0.02 | 6m 29s     |
| Random Forest<br>Algorithms | 0.9888   | False: 0.99<br>True: 0.55 | False: 1.00<br>True: 0.00 | 3m 5s      |

### L1- based feature selection

| Classification Model        | Accuracy | Precision                 | Recall                    | Time   |
|-----------------------------|----------|---------------------------|---------------------------|--------|
| Decision Trees              | 0.9775   | False: 0.99<br>True: 0.07 | False: 0.99<br>True: 0.08 | 15s    |
| Gradient Boosting           | 0.9887   | False: 0.99<br>True: 0.47 | False: 1.00<br>True: 0.02 | 6m 14s |
| Random Forest<br>Algorithms | 0.9888   | False: 0.99<br>True: 0.55 | False: 1.00<br>True: 0.00 | 3m 26s |

### A - Comparison of the results of the three learning algorithms:

#### (i) Accuracy:

Both Gradient Boosting and Random Forest Algorithms have very similar accuracies of around 0.9887 and 0.9888, respectively for both feature selection algorithms, which are slightly higher than the Decision Trees accuracy of 0.9769 (Tree-based) and 0.9775 (L1-based).

#### (ii) Precision:

For the False class, all models show similar precision values of approximately 0.99. However, when considering the True class, Random Forest Algorithms exhibit the highest precision (0.55) followed by Gradient Boosting (0.47) for both feature selection algorithms. Decision Trees have the lowest precision for the True class (0.05 for Tree-based and 0.07 for L1-based).

#### (iii) Recall:

For the False class, all models have similar recall values, close to 1.00. For the True class, Decision Trees have the highest recall (0.08 for L1-based and 0.06 for Tree-based), while Gradient Boosting and Random Forest Algorithms have lower recall values (0.02 and 0.00, respectively).

#### (iv) Time to construct the models:

From our experiment, we found out that the Decision Tree model is the fastest to construct, taking around 15 to 16 seconds. However, the Gradient Boosting has the longest construction time of over 6 minutes. As for the Random Forest Algorithm, its construction takes around 3 to 4 minutes.

### B - Summary of actionable knowledge nuggets

Our team applied various data processing, data summarization, and feature selection techniques to the banking fraud dataset and trained multiple models with different algorithms. Based on the results obtained, we discovered several actionable knowledge nuggets that can help us better understand and mitigate potential banking fraud cases.

- Significance of certain features: The feature selection process highlighted key attributes, such as income, customer\_age, credit\_risk\_score, intended\_balcon\_amount, and proposed credit limit, which played a crucial role in detecting potential fraud.
- Algorithm performance: The Gradient Boosting and Random Forest Algorithms
  achieved similar and better accuracies compared to Decision Trees. However, the recall
  for True cases was relatively low in all models, which can be an area for improvement in
  future iterations.
- Model construction time: Decision Trees were the fastest, but the trade-off was lower accuracy compared to Gradient Boosting and Random Forest Algorithms. Considering the critical nature of fraud detection, investing time in more accurate models might be worthwhile.
- Data quality: The high quality of the dataset allowed for minimal data cleaning, which positively impacted the overall model performance.

Regarding the fact that the recall for True cases was relatively low in all models, this could indicate that the models struggle to correctly identify positive instances in the dataset, which might be due to class imbalance or other issues. To address this, we believe that using techniques such as oversampling, undersampling, or using different performance metrics could be useful.

Overall, the insights obtained from the models can be used to develop more robust and accurate fraud detection systems. The choice of the algorithm should be made considering the trade-off between accuracy, recall, and model construction time. Additionally, it is crucial to focus on improving the recall of True cases to better capture actual fraud instances.

### Part C. Detecting Outliers (Bonus)

We decided to detect the outliers using the One-class SVM algorithm available in the OneClassSVM package from the Sklearn library.

We noticed that the time it takes to run is considerable given the size of our dataset but we think the output should be correct.

### References

https://www.postgresql.org/docs/current/tutorial-window.html

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-window-clause.html

https://hevodata.com/learn/data-summarization-in-data-mining/#intro

https://scikit-learn.org/stable/modules/generated/sklearn.model\_selection.train\_test\_split.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

https://scikit-learn.org/stable/modules/feature\_selection.html

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

 $\underline{https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html$ 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion matrix.html

https://chat.openai.com/chat

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html