Simple example

Let events be "grades in a class"

$$w_1 = \text{Gets an A}$$
 $P(A) = \frac{1}{2}$
 $w_2 = \text{Gets a}$ $P(B) = \mu$
 $w_3 = \text{Gets a}$ $P(C) = 2\mu$
 $w_4 = \text{Gets a}$ $P(D) = \frac{1}{2} - 3\mu$
(Note $0 \le \mu \le 1/6$)

Assume we want to estimate μ from data. In a given class there were

a	A's
b	B's
С	C's
d	D's

Α	В	С	D
14	6	9	10

What's the maximum likelihood estimate of μ given a,b,c,d?

Maximize likelihood

P(A) =
$$\frac{1}{2}$$
 P(B) = μ P(C) = 2μ P(D) = $\frac{1}{2}$ - 3μ
P($a,b,c,d \mid \mu$) = K($\frac{1}{2}$) $a(\mu)^b(2\mu)^c(\frac{1}{2}$ - $3\mu)^d$
log P($a,b,c,d \mid \mu$) = log K + $a\log \frac{1}{2}$ + $b\log \mu$ + $d\log 2\mu$ + $d\log (\frac{1}{2}$ - $3\mu)$
FOR MAX LIKE μ , SET $\frac{\partial \text{Log P}}{\partial \mu}$ = 0
 $\frac{\partial \text{Log P}}{\partial \mu}$ = $\frac{b}{\mu}$ + $\frac{2c}{2\mu}$ - $\frac{3d}{1/2 - 3\mu}$ = 0

Gives max like
$$\mu = \frac{b+c}{6(b+c+d)}$$

Α	В	С	D
14	6	9	10

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max. like estimate of μ now?

Hidden

Grade

REMEMBER

 $P(A) = \frac{1}{2}$

 $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$

Observable

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max. like estimate of μ now?

We can answer this question circularly:

MAXIMIZATION

If we know the expected values of \emph{a} and \emph{b} we could compute the maximum likelihood value of μ

$$\mu = \frac{b+c}{6(b+c+d)}$$

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max. like estimate of μ now?

We can answer this question circularly:

EXPECTATION

If we know the value of μ we could compute the expected value of a and b

Since the ratio a:b should be the same as the ratio $1\!\!/_2$: μ

$$a = \frac{\frac{1}{2}}{\frac{1}{2} + \mu} h \qquad b = \frac{\mu}{\frac{1}{2} + \mu} h$$

MAXIMIZATION

If we know the expected values of \emph{a} and \emph{b} we could compute the maximum likelihood value of μ

$$\mu = \frac{b+c}{6(b+c+d)}$$

EM for our example

REMEMBER

 $P(A) = \frac{1}{2}$

 $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$

We begin with a guess for μ

We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of μ and a and b.

Define $\mu(t)$ the estimate of μ on the t'th iteration b(t) the estimate of b on t'th iteration

 $\mu(0)$ = initial guess

$$b(t) = \frac{\mu(t)h}{\frac{1}{2} + \mu(t)} = E[b \mid \mu(t)]$$

$$\mu(t+1) = \frac{b(t)+c}{6(b(t)+c+d)}$$

= max like est of μ given b(t)

