Redes Neurais

Perceptron

Perceptron - Primeira rede neural escrita como algoritmo

-A maneira mais simples de se utilizar uma rede neural para classificar exemplos linerament separáveis, em que pode-se dividir os elementos com apenas um hiperplano de separação.

-Um unico neuronio e um bias

-Foi provado que se os exemplos mostrados no treinamento, pertencerem as classes lineramente separáveis, o algoritmo converge

 Rosenblatt's Perceptron uses the McCulloch-Pitts neuron model

Pesos sinápticos w Entradas X Bias b

$$v = \sum_{i=1}^{m} w_i x_i + b$$

o OBJETIVO do perceptron é classificar corretamente um conjunto de exemplos.

□ An example represented by x_1 , x_2 , ..., x_m is classified as \mathcal{C}_1 if the output y is +1 and as \mathcal{C}_2 if output y is -1. There are two regions separated by a hyperplane:

$$\sum_{i=1}^{m} w_i x_i + b = 0$$

- □ The bias b(n) is treated as a weight associated to an input +1
- □ Weight vector: $\mathbf{w}(n) = [b, w_1(n), w_2(n), \dots, w_m(n)]^T$

$$v(n) = \sum_{i=0}^{m} w_i(n) x_i(n) = \mathbf{w}^{T}(n) \mathbf{x}(n)$$

Upper Saddle River, New Jersey All rights re

Os pesos sinápticos são ajustados em um processo iterativo usando a algoritmo que converge de Perceptron

Como a ilustração mostra, o bias é tratado com o peso associado a entrada +1

Caso o n-ésimo vetor x é classificado pelo vetor w na n-ésima iteração do algoritmo, nenhuma correção é realizada no peso do vetor

- $\mathbf{w}(n+1) = \mathbf{w}(n) \text{ if } \mathbf{w}^T \mathbf{x}(n) > 0 e \mathbf{x}(n) \text{ belongs do class } \mathcal{C}_1$
- $\mathbf{w}(n+1) = \mathbf{w}(n) \text{ if } \mathbf{w}^T \mathbf{x}(n) \leq 0 e \mathbf{x}(n) \text{ belongs do class } \mathcal{C}_2$
- On the contrary, the weight vector is updated.
 - $\mathbf{w}(n+1) = \mathbf{w}(n) \eta(n)\mathbf{x}(n)$ if $\mathbf{w}^T(n)\mathbf{x}(n) > 0$ and $\mathbf{x}(n)$ belongs to class \mathscr{C}_2
 - $\mathbf{w}(n+1) = \mathbf{w}(n) \eta(n)\mathbf{x}(n)$ if $\mathbf{w}^T(n)\mathbf{x}(n) \leq 0$ and $\mathbf{x}(n)$ belongs to class \mathcal{C}_1

 $\eta(n)$ is the learning rate that controls the weight adjustment

A saída do neurônio é calculada usando uma função, nesse caso pode ser a função sinal,

ou seja, se v é maior que 0 saída 1, se menor saída é -1, v é o produto interno

We express the output y(n) in a compact way:

$$y(n) = sgn[\mathbf{w}^{T}(n)\mathbf{x}(n)]$$

Variables and Parameters:

```
\mathbf{x}(n) = (m+1)-by-1 input vector

= [+1, x_1(n), x_2(n), ..., x_m(n)]^T

\mathbf{w}(n) = (m+1)-by-1 weight vector

= [b, w_1(n), w_2(n), ..., w_m(n)]^T

b = \text{bias}

y(n) = \text{actual response (quantized)}

d(n) = \text{desired response}

\eta = \text{learning-rate parameter, a positive constant less than unity}
```

- 1. Initialization. Set $\mathbf{w}(0) = \mathbf{0}$. Then perform the following computations for time-step $n = 1, 2, \dots$
- 2. Activation. At time-step n, activate the perceptron by applying continuous-valued input vector $\mathbf{x}(n)$ and desired response d(n).
- 3. Computation of Actual Response. Compute the actual response of the perceptron as

$$y(n) = \operatorname{sgn}[\mathbf{w}^{T}(n)\mathbf{x}(n)]$$

where $sgn(\cdot)$ is the signum function.

4. Adaptation of Weight Vector. Update the weight vector of the perceptron to obtain

$$w(n+1) = w(n) + \eta[d(n) - y(n)]x(n)$$

where

$$d(n) = \begin{cases} +1 & \text{if } \mathbf{x}(n) \text{ belongs to class } \ell_1 \\ -1 & \text{if } \mathbf{x}(n) \text{ belongs to class } \ell_2 \end{cases}$$

5. Continuation. Increment time step n by one and go back to step 2.

Os pesos são ajustados de acordo com o valor do produto interno w(transpostas)

Caso o produto interno em uma iteração tem um sinal errado os pesos são ajustados para

classificar corretamente o exemplo da iteração n+1

O que acontece é, na figura abaixo o produto interno entre o vetor de entrada e o vetor w

deu positivo, mas o produto interno deveria ser negativo então o ajuste de peso é realizado.

puxando o vetor w, para longe do vetor w, para assim, o produto interno dar negativo.

Para minimizar o erro, devemos utilizar derivadas.

Quando o Erro está do lado direito, a derivada é positiva com relaçã ao peso, então para isso o w deve diminuir para jogar o w para mais perto do erro correto.

Quando o erro está do lado esquerdo, a derivada é negativo com relação ao peso, então o w deve aumentar para jogar o w para mais perto do erro correto.

O algoritmo faz isso automaticamente.

$$E^{2} = (d(n) - y(n))^{2} = (d(n) - \mathbf{w}^{T}(n)\mathbf{x}(n))^{2}$$

Gradiente Descendente:
$$w_i(n+1) = w_i(n) - \eta \frac{dE^2}{dw_i}$$

$$\frac{dE^2}{dw_i} = \frac{d\left(d(n) - y(n)\right)^2}{dw_i(n)} = 2 \times \left(d(n) - \mathbf{w}^T(n)\mathbf{x}(n)\right) \times -x_i$$

Data	хl	x2	x3	Class
E1	0	0	1 .	[-1
E2	1	0	0	1
	·	,		
)
		Su	pervised	

$$f(X) = \begin{cases} 1 & se \quad X \ge 0 \\ -1 & se \quad X < 0 \end{cases}$$

$$W_{0-\text{new}} = W_{0-\text{previous}} + (0.4 * (-2) * (-1)) = 0.5 + 0.8 = 1.3$$

w2 não está pois sua entrada também é 0

$$w_{0-new} = w_{0-previous} + (0,4 * (2) * (-1)) =$$

$$= 1,3 - 0,8 = 0,5$$

w2 nem w3 estão pois suas entradas são 0

Second Epoch

$$X = (-1 * 0,5) + (0 * 1,2) + (0 * -0,5) + (1 * -0,2) = -0,7$$

$$f(-0,7) = -1$$

Second Epoch

$$X = (-1 * 0,5) + (1 * 1,2) + (0 * -0,5) + (0 * -0,2) = 0,7$$

$$f(0,7) = 1$$

Final Network

Não ocorreram erros durante a última época.

Prediction

Data	Х1	X2	x3	Class
E1	1	1	1	ś
E2	1	1	0	ś
E3	0	1	1	Ś

Prediction

Prediction

Data	X1	X2	x 3	Class
E1	1	1	1	1
E2	1	1	0	1
E3	0	1	1	-1

