

IN THE CLAIMS

CLAIMS 1-28 (Canceled).

CLAIM 29 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with a surface of the electronic component;

the flexible contact elements flex and wipe the surface of the electronic component when the flexible contacts contact the electronic components;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component; and

at least one of the flexible contact elements includes a protuberance at an end thereof.

CLAIM 30 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, wherein the electronic component is a semiconductor wafer.

CLAIM 31 (Previously Presented) A method according to claim 30, wherein the area is a plurality of integrated circuits on the semiconductor wafer; and the flexible contacts make contact with the plurality of die sites all at once.

CLAIM 32 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, wherein the area of the electronic component is a portion of a surface area of the electronic component.

CLAIM 33 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the electronic component is a printed circuit board ; and

at least one of the flexible contact elements includes a protuberance at an end thereof.

CLAIM 34 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the electronic component is a packaging substrate; and

at least one of the flexible contact elements includes a protuberance at an end thereof.

CLAIM 35 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, wherein the flexible elements are probe elements.

CLAIM 36 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and at least one of the flexible contact elements includes a protuberance at an end thereof.

CLAIM 37 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the flexible elements are wires disposed on the surface of the second substrate, the wires are shaped so that a free end thereof laterally moves when pressed against the area of the electronic component; and

at least one of the flexible contact elements includes a protuberance at an end thereof.

CLAIM 38 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, wherein there are electrical connections between the second substrates and the first substrate.

CLAIM 39 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, wherein the first substrate is a space transformer.

CLAIM 40 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, wherein the electronic component is a semiconductor wafer; and the flexible contact elements of the second substrate contact individual semiconductor dies on the semiconductor wafer.

CLAIM 41 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, wherein the electronic component is a semiconductor wafer; and the flexible contact elements of the second substrate contacts at least one integrated circuit on the semiconductor wafer.

CLAIM 42 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic device towards one another so that the flexible contact elements make contact with the electronic component so that a free end of the flexible contact elements laterally move when pressed against the area of the electronic device, and the second substrate is aligned to the first substrate by a socket which electrically interconnects the first substrate and the second substrate in a substantially fixed position with respect to each other.

CLAIM 43 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component so that a free end of the flexible contact elements laterally move when pressed against the area of the electronic device, and the first substrate with the second substrate mounted thereto is mounted to an electrical testing apparatus.

CLAIM 44 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, wherein the first substrate with the second substrate mounted

thereto is mounted to an electrical testing apparatus by a plurality of electrical connections.

CLAIM 45 (Previously Presented) A probe structure comprising an assembly comprising:

a first substrate having a top surface, a bottom surface, a first plurality of terminals disposed on the top surface, and a second plurality of terminals disposed on the bottom surface;

at least one second substrate having a top surface and a bottom surface;

electrical connections between the at least one second substrate and the first substrate;

a plurality of probe elements disposed on the top surface of the at least one second substrate; and

the probe elements are free-standing flexible conductors shaped so that a free end thereof laterally moves when pressed against a surface.

CLAIM 46 (Previously Presented) A structure according to claim 45, wherein the probe elements are free-standing flexible conductors.

CLAIM 47 (Previously Presented) A structure according to claim 45, wherein protuberances are deposited at ends of the plurality of free-standing flexible conductors.

CLAIM 48 (Previously Presented) A structure according to claim 45, wherein the free-standing flexible conductor further includes a protuberance at an end thereof.

CLAIM 49 (Withdrawn) A structure comprising:

a plurality of first substrates adapted to be mounted to a second substrate; each of the first substrate having two opposite surfaces; free standing flexible conductors extending from one of the two surfaces shaped so that a free end thereof laterally moves when pressed against a surface; terminals on another of the two opposite surfaces; means, within each of the first substrates, for connecting the terminals to the contacts; and the plurality of the first substrates are mounted on to the second substrate.

CLAIM 50 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, further including plurality of groups of said plurality of the flexible electrical contact elements.

CLAIM 51 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, wherein there is at least one second substrate is mounted to said first substrate.

CLAIM 52 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43 or 53 to 59, wherein there are a plurality of said second substrates mounted to said first substrate.

CLAIM 53 (Previously Presented) A method according to claim 33 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact

element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 54 (Previously Presented) A method according to claim 34 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 55 (Previously Presented) A method according to claim 36 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 56 (Previously Presented) A method according to claim 37 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 57 (Previously Presented) A method according to claim 42 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 58 (Previously Presented) A method according to claim 43 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact

element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 59 (Previously Presented) A probe assembly according to claim 45 wherein said freestanding flexible conductors are shaped to flex and wipe the area of the electronic component, the freestanding flexible conductors substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component.

CLAIM 60 (Withdrawn) A structure according to claim 49 wherein said freestanding flexible conductors are shaped to flex and wipe the area of the electronic device, the freestanding flexible conductors substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component.

CLAIM 61 (Withdrawn) A method according to any one of claims 53 to 58 wherein the flexible contact elements can be repeatably assembled and disassembled so that said flexible contact element can recontact, reflex and rewipe the area of the electronic device.

CLAIM 62 (Withdrawn) A structure according to any one of claims 59 to 60 wherein the flexible contact elements can be repeatably assembled and disassembled so that said flexible contact element can recontact, reflex and rewipe the area of the electronic device.

CLAIM 63 (Withdrawn) A method according to any one of claims 53 to 58 wherein the rewiped area is an area selected from the group consisting of an area of the same or a different electronic device.

CLAIM 64 (Withdrawn) A structure according to claim 59 wherein the rewiped area is an area selected from the group consisting of an area of the same or a different electronic device.

CLAIM 65 (Withdrawn) A structure according to claim 59, wherein the electronic device is a semiconductor wafer.

CLAIM 66 (Withdrawn) A structure according to claim 59, wherein the area of the electronic device is a portion of a surface area of the electronic device.

CLAIM 67 (Withdrawn) A structure according to claim 59, wherein there are electrical connections between the second substrates and the first substrate.

CLAIM 68 (Withdrawn) A structure according to claim 59, wherein the first substrate is a space transformer.

CLAIM 69 (Withdrawn) A structure according to claim 59, wherein the electronic device is a semiconductor wafer; and the flexible contact elements of the second substrate contact individual semiconductor dies on the semiconductor wafer.

CLAIM 70 (Withdrawn) A structure according to claim 59, wherein the electronic device is a semiconductor wafer; and the flexible contact elements of the second substrate contacts at least one integrated circuit on the semiconductor wafer.

CLAIM 71 (Withdrawn) A structure according to claim 59, wherein the first substrate with the second substrate mounted thereto is mounted to an electrical testing apparatus by a plurality of electrical connections.

CLAIM 72 (Withdrawn) A structure according to claim 59, further including plurality of groups of said plurality of the flexible electrical contact elements.

CLAIM 73 (Withdrawn) A structure according to claim 59, wherein there is a least one of said second substrates mounted to said first substrate.

CLAIM 74 (Withdrawn) A structure according to any one of claims 59 or 60, wherein there are a plurality of said second substrates mounted to said first substrate.

CLAIM 75 (Withdrawn) A structure according to claim 49 wherein said free standing flexible conductors comprise a coating.

CLAIM 76 (Withdrawn) A structure according to claim 75 wherein said coating is selected from the group consisting of Au, Cr, Co, Ni and Pd.

CLAIM 77 (Withdrawn) A structure according to claim 76 wherein said free standing flexible conductor comprises gold, gold alloy, copper, copper alloy, aluminum, nickel, palladium and platinum.

CLAIM 78 (Withdrawn) A structure comprising:

at least one first substrate adapted to be mounted to a second substrate;

said at least one first substrate has two opposite surfaces;

free standing flexible conductors extending from one of the two surfaces shaped so that a free end thereof laterally moves when pressed against a surface;

terminals on another of the two opposite surfaces;

means, within each of the first substrates, for connecting the terminals to the contacts; and

said at least one first substrate is mounted on to the second substrate.

CLAIM 79 (Withdrawn) A structure according to claim 78 wherein said freestanding flexible conductors comprise a coating.

CLAIM 80 (Withdrawn) A structure according to claim 79 wherein said coating is selected from the group consisting of Au, Cr, Co, Ni and Pd.

CLAIM 81 (Withdrawn) A structure according to claim 80 wherein said free standing flexible conductor comprises gold, gold alloy, copper, copper alloy, aluminum, nickel, palladium and platinum.

CLAIM 82 (Withdrawn) A structure according to claim 78 wherein said freestanding flexible conductors are shaped to flex and wipe the area of the electronic device, the freestanding flexible conductors substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component.

CLAIM 83 (Withdrawn) A structure comprising:

a first substrate adapted to be mounted to a second substrate;

the first substrate having two opposite surfaces;

free standing flexible conductors extending from one of the two surfaces shaped so that a free end thereof laterally moves when pressed against a surface;

terminals on another of the two opposite surfaces;

means, within the first substrate, for connecting the terminals to the contacts; and

the plurality of the first substrates are mounted on to the second substrate.

CLAIM 84 (Withdrawn) A structure according to claim 83 wherein said freestanding flexible conductors comprise a coating.

CLAIM 85 (Withdrawn) A structure according to claim 84 wherein said coating is selected from the group consisting of Au, Cr, Co, Ni and Pd.

CLAIM 86 (Withdrawn) A structure according to claim 85 wherein said free standing flexible conductor comprises gold, gold alloy, copper, copper alloy, aluminum, nickel, palladium and platinum.

CLAIM 87 (Withdrawn) A structure according to claim 83 wherein said freestanding flexible conductors are shaped to flex and wipe the area of the electronic device, the freestanding flexible conductors substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component.

CLAIM 88 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 42, 43, 49 or 53 to 59 wherein the flexible conductors comprise a coating.

CLAIM 89 (Previously Presented) A structure according to claim 88 wherein said coating is selected from the group consisting of Au, Cr, Co, Ni and Pd.

CLAIM 90 (Previously Presented) A structure according to claim 89 wherein said free standing flexible conductor comprises gold, gold alloy, copper, copper alloy, aluminum, nickel, palladium and platinum.

CLAIM 91 (Previously Presented) A method according to claim 42 wherein at least one of the flexible contact elements further include a protuberance at an end thereof.

CLAIM 92 (Previously Presented) A method according to claim 43 wherein at least one of the flexible contact elements further includes a protuberance at an end thereof.

CLAIM 93 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 91 or 92 wherein the protuberance comprises a surface having a portion which is substantially spherical.

CLAIM 94 (Previously Presented) A method according to any one of claims 29, 33, 34, 36, 37, 91 or 92 wherein the protuberance comprises a substantially planar surface.

CLAIM 95 (Previously Presented) A method according to claim 94 wherein the substantially planar surface comprises a projection.

CLAIM 96 (Previously Presented) A method according to claim 95 wherein the projection comprises a shape selected from the group consisting of a hemispherical shape, a rectangular shape and a pyramidal shape.

CLAIM 97 (Previously Presented) A method according to claim 96 wherein the projection provides a region which can wipe on the surface of the electronic component.

CLAIM 98 (Previously Presented) A method according to claim 97 wherein the surface of the electronic component is an electrically conductive pad over which said projection wipes to make good electrical contact therewith.

CLAIM 99 (Previously Presented) A method according to any one of claims 29, 33, 36, 37, 91 to 97 or 98 wherein the flexible contact elements comprise a coating.

CLAIM 100 (Previously Presented) A method according to claim 99 wherein the coating is selected from the group consisting of Au, Cr, Co, Ni and Pd.

CLAIM 101 (Previously Presented) A method according to claim 99 wherein the flexible contact element comprises a material selected from the group consisting of gold, gold alloy, copper, copper alloy, aluminum, nickel, palladium and platinum.

CLAIM 102 (Previously Presented) A method according to claim 100 wherein the flexible contact element comprises a material selected from the group consisting of gold, gold alloy, copper, copper alloy, aluminum, nickel, palladium and platinum.

CLAIM 103 (Currently Amended) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, the substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with a surface of the electronic component;

the flexible contact elements flex and wipe the surface of the electronic component when the flexible contacts contact the electronic components;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component; [[and]]

at least one of said plurality of flexible contact elements includes a protuberance at the end thereof; and

said electronic component is a semiconductor wafer.

CLAIM 104 (Currently Amended) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, the substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, the second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, the first substrate comprises a printed circuit board; [[and]]

at least one of said plurality of flexible contact elements includes a protuberance at the end thereof; and

said electronic component is a semiconductor wafer.

CLAIM 105 (Currently Amended) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the second substrate comprises a packaging substrate; [[and]]

at least one of said plurality of flexible contact elements includes a protuberance at the end thereof; and

said electronic component is a semiconductor wafer.

CLAIM 106 (Currently Amended) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the flexible elements are wires disposed on the surface of the second substrate, the wires are shaped so that a free end thereof laterally moves when pressed against the area of the electronic component; [[and]]

at least one of said plurality of flexible contact elements includes a protuberance at the end thereof; and

said electronic component is a semiconductor wafer.

CLAIM 107 (Previously Presented) A method according to any one of claims 103 to 105 or 106, wherein the area is a plurality of integrated circuits on the semiconductor wafer; and the flexible contacts make contact with the plurality of die sites all at once.

CLAIM 108 (Previously Presented) A method according to any one of claims 103 to 105 or 106 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 109 (Previously Presented) A method of probing an electronic component by contacting the electronic device with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with a surface of the electronic component;

the flexible contact elements flex and wipe the surface of the electronic component when the flexible contacts contact the electronic components;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

the electronic component is a semiconductor wafer; and

the flexible contact elements of the second substrate contact individual semiconductor dies on the semiconductor wafer.

CLAIM 110 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the first substrate comprises a printed circuit board; and

the electronic component is a semiconductor wafer; and the flexible contact elements of the second substrate contact individual semiconductor dies on the semiconductor wafer.

CLAIM 111 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the second substrate comprises a packaging substrate; and

the electronic component is a semiconductor wafer; and the flexible contact elements of the second substrate contact individual semiconductor dies on the semiconductor wafer.

CLAIM 112 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the flexible elements are wires disposed on the surface of the second substrate, the wires are shaped so that a free end thereof laterally moves when pressed against the area of the electronic component; and

the electronic component is a semiconductor wafer; and the flexible contact elements of the second substrate contact individual semiconductor dies on the semiconductor wafer.

CLAIM 113 (Previously Presented) A method according to any one of claims 109 to 111 or 112 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 114 (Previously Presented) A method of probing an electronic component by contacting the electronic device with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with a surface of the electronic component;

the flexible contact elements flex and wipe the surface of the electronic component when the flexible contacts contact the electronic components;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component; and

the electronic component is a semiconductor wafer; and the flexible contact elements of the second substrate contacts at least one integrated circuit on the semiconductor wafer.

CLAIM 115 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the first substrate comprises a printed circuit board; and

the electronic component is a semiconductor wafer; and the flexible contact elements of the second substrate contacts at least one integrated circuit on the semiconductor wafer.

CLAIM 116 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the second substrate comprises is a packaging substrate; and

the electronic component is a semiconductor wafer; and the flexible contact elements of the second substrate contacts at least one integrated circuit on the semiconductor wafer.

CLAIM 117 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the flexible elements are wires disposed on the surface of the second substrate, the wires are shaped so that a free end thereof laterally moves when pressed against the area of the electronic component; and

the electronic component is a semiconductor wafer; and the flexible contact elements of the second substrate contacts at least one integrated circuit on the semiconductor wafer.

CLAIM 118 (Previously Presented) A method according to any one of claims 114 to 116 or 117 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 119 (Currently Amended) A method of probing an electronic component by contacting the electronic device with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with a surface of the electronic component;

the flexible contact elements flex and wipe the surface of the electronic component when the flexible contacts contact the electronic components;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component; [[and]]

at least one of said plurality of flexible contact elements includes a protuberance at the end thereof; and

there is at least one second substrate mounted to the first substrate.

CLAIM 120 (Currently Amended) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the first substrate comprises a printed circuit board; [[and]]

at least one of said plurality of flexible contact elements includes a protuberance at the end thereof; and

there is at least one second substrate mounted to the first substrate.

CLAIM 121 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and second substrate comprises a packaging substrate; [[and]]

at least one of said plurality of flexible contact elements includes a protuberance at the end thereof; and

there is at least one second substrate mounted to the first substrate.

CLAIM 122 (Currently Amended) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the flexible elements are wires disposed on the surface of the second substrate, the wires are shaped so that a free end thereof laterally moves when pressed against the area of the electronic component; [[and]]

at least one of said plurality of flexible contact elements includes a protuberance at the end thereof; and

there is at least one second substrate mounted to the first substrate.

CLAIM 123 (Previously Presented) A method according to any one of claims 119 to 121 or 122 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 124 (Previously Presented) A method of probing an electronic component by contacting the electronic device with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

urging the first substrate and the electronic device towards one another so that the flexible contact elements make contact with a surface of the electronic component;

the flexible contact elements flex and wipe the surface of the electronic component when the flexible contacts contact the electronic components;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component; and

there are a plurality of the second substrates mounted to the first substrate.

CLAIM 125 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the first substrate comprises a printed circuit board; and

there are a plurality of the second substrates mounted to the first substrate.

CLAIM 126 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the second substrate comprises a packaging substrate; and

there are a plurality of the second substrates mounted to the first substrate.

CLAIM 127 (Previously Presented) A method of probing an electronic component by contacting the electronic component with a plurality of flexible contact elements, the method comprising the steps of:

providing a first substrate corresponding to an area of the electronic component to be probed, said substrate having a front surface;

mounting and connecting a second substrate to the front surface of the first substrate, said second substrate having a plurality of flexible contact elements bonded to and extending from a surface thereof;

the flexible contact elements substantially compliantly respond when the flexible contact elements are withdrawn from contacting the electronic component;

urging the first substrate and the electronic component towards one another so that the flexible contact elements make contact with the electronic component, and the flexible elements are wires disposed on the surface of the second substrate, the wires are shaped so that a free end thereof laterally moves when pressed against the area of the electronic component; and

there are a plurality of the second substrates mounted to the first substrate.

CLAIM 128 (Previously Presented) A method according to any one of claims 124 to 126 or 127 where each of said plurality of flexible contact elements flex and wipe the area of the electronic component when said flexible contacts contact the electronic component; the flexible contact element substantially compliantly respond when the flexible contact element are withdrawn from contacting the electronic component.

CLAIM 129 (Previously Presented) A method according to any one of claims 103 to 127 or 128 wherein at least one of the flexible contact elements further include a protuberance at an end thereof.

CLAIM 130 (Previously Presented) A method according to claim 129, wherein the protuberance comprises a surface having a portion which is substantially spherical.

CLAIM 131 (Previously Presented) A method according to claim 129 wherein the protuberance comprises a substantially planar surface.

CLAIM 132 (Previously Presented) A method according to claim 131 wherein the substantially planar surface comprises a projection.

CLAIM 133 (Previously Presented) A method according to claim 132 wherein said projection comprises a shape selected from the group consisting of a hemispherical shape, a rectangular shape and a pyramidal shape.

CLAIM 134 (Previously Presented) A method according to claim 133 wherein said projection provides a region which can wipe on the surface of the electronic component.

CLAIM 135 (Previously Presented) A method according to claim 134 wherein the surface is an electrically conductive pad over which said projection wipes to make good electrical contact therewith.

CLAIM 136 (Previously Presented) A method according to any one of claims 103 to 135 or 136 wherein the flexible contact elements comprise a coating.

CLAIM 137 (Previously Presented) A method according to claim 136 wherein the coating is selected from the group consisting of Au, Cr, Co, Ni and Pd.

CLAIM 138 (Previously Presented) A method according to claim 136 wherein the flexible contact element comprises a material selected from the group consisting of gold, gold alloy, copper, copper alloy, aluminum, nickel, palladium and platinum.

CLAIM 139 (Previously Presented) A method according to claim 137 wherein the flexible contact element comprises a material selected from the group consisting of gold, gold alloy, copper, copper alloy, aluminum, nickel, palladium and platinum.