שאלה 1

 $A \cap B = \{1\}$ א. יהיו A, B קבוצות. נתון ש- $A \cap B = \{1\}$ את הטענות הבאות:

. אם $A \setminus B$ שקולה ל- A, אז A היא אינסופית.

. אינסופית B אינסופית $A \setminus B$ היא אינסופית.

 $S\subseteq T$ אז $P(S\setminus T)=\{\varnothing\}$ או הוכח שאם S,T אז הייו ב. יהיו

שאלה 2

a-גנדי ל- x*x הוכח כי אם $a,x\in G$ ויהיו ויהיו $a,x\in G$ נגדי ל- a*x=x*a אז a*x=x*a

: באופן הבא בינרית Δ באופן הבא בינרים מגדירים מגדירים מגדירים באופן הבא בינרית ב. על קבוצת המספרים השלמים ב. $a\Delta b=(a+4)(b+4)-4$, $a,b\in {\bf Z}$

בדוק אלו מהתכונות שבהגדרת החבורה מקיימת פעולה זו. נמק טענותיך.

שאלה 3

f(1)=3 וכי f(2n)=n מתקיים f(2n)=n וכי $f:\mathbb{N}\to\mathbb{N}$ וכי .

.א. הוכח ש- f היא פונקציה על, אך אינה פונקציה חד-חד-ערכית. (8)

(N ב. מצא פונקציה $f\circ g=I$ כך ש- $g: \mathbf{N} o \mathbf{N}$ (פונקצית הזהות של (8)).

 $g \circ f = I$ -כך ש- $g : \mathbb{N} \to \mathbb{N}$ כך ש- (9 נקי) ג. הוכח כי לא קיימת פונקציה

שאלה 4

יהיו g ו- g איזומטריות של המישור ותהי g נקודה במישור. נתון כי g היא נקודת שבת של יהיו $f \circ g$. $f \circ g$

 $g \circ f$ ושל א. הוכח כי A נקודת שבת של g ושל 10)

 $g \circ f$ שיקוף אז גם $g \circ f$ שיקוף אז גם שיקוף אז גם אומרת מגמת משולשים ואם $g \circ f$ שיקוף אז גם ב. הוכח שאם

שאלה 5

לפניך מערכת אקסיומות שמושגי היסוד בה הם: "נקודה", "ישר" (כקבוצה של נקודות), והיחס "ינמצאת על".

- נמצאת עליו ואין P נמצאת עליו ואין קיים לפחות אחד אשר א ולכל נקודה פאינה על אינה על פחות פאינה על . ℓ נמצאת עליו ואין לו נקודה משותפת עם
 - ℓ קיימת נקודה שלא נמצאת על .3
 - (6 נקי) א. הוכח כי המערכת חסרת סתירה.
 - (6 נקי) ב. הוכח כי המערכת אינה קטגורית.
 - (6 נקי) ג. הוכח כי המערכת היא בלתי תלויה.
 - (7 נקי) ד. הוכח כי במערכת מתקיים המשפט הבא: ״קיימות לפחות ארבע נקודות שונות״.

שאלה 6

(12 נקי) א. תהי $A = \{10, \frac{1}{20}, 30\}$ את הקבוצה הנוצרת מ- $A = \{10, \frac{1}{20}, 30\}$ א. תהי

. נמק תשובתך . $\frac{1}{100} \in A^*$: הוכח את הפרך את הטענה הבאה

: מתקיים חוכח באינדוקציה שלכל מספר טבעי באינדוקציה מחכח באינדוקציה הוכח באינדוקציה שלכל מספר טבעי

$$\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} < 1$$

סוף