Matemática Discreta

Vaira, Stella - Fedonczuk, Miguel Colliard, David - Cottonaro, Mariana

Lic en Sistemas de Información - FCyT - UADER

2022

Anillos.

El anillo de los entero módulo n.

Definción

Sea $n \in \mathbb{Z}^+$, n > 1. Para $a, b \in \mathbb{Z}$, decimos que a es congruente con b módulo n, y escribimos:

$$a \equiv b \; (mod \; n)$$

si n|(a-b)o equivalentemente a=b+kn para algún $k\in\mathbb{Z}$

Ejemplos:

FCyT - UADER

a) $10 \equiv 1 \pmod{3}$ porque 3|(10-1), es decir 10 = 3(3) + 1.

Matemática Discreta

También serán equivalentes con $1 \pmod{3}$ todo entero que al ser dividido por 3 da como resto 1.

b) $30 \equiv 5 \pmod{25}$ porque $25 \mid (30 - 5)$, es decir 30 = 25(1) + 5. También serán equivalentes con $5 \pmod{25}$ todo entero que al ser dividido por 25 da como resto 5.

c) $29 \equiv -1 \pmod{5}$ porque 5|(29 - (-1)), es decir 29 = 5(6) + (-1). ¿Puedes concluir en términos del resto, de la misma forma que en los puntos anteriores?

Lic. en Sistemas de Información

La congruencia módulo n es una relación de equivalencia sobre \mathbb{Z}

Para $n \geq 2$ esta relación de equivalencia induce una partición sobre \mathbb{Z} . La conguencia módulo n divide a \mathbb{Z} en n clases de equivalencias. Por ejemplo, si n=6:

La congruencia módulo n es una relación de equivalencia sobre \mathbb{Z}

Para $n \geq 2$ esta relación de equivalencia induce una partición sobre \mathbb{Z} . La conguencia módulo n divide a \mathbb{Z} en n clases de equivalencias:

$$[0] = \{..., -2n, -n, 0, n, 2n, ...\} = \{nx + 0/x \in \mathbb{Z}\}\$$

$$[1] = \{..., -2n+1, -n+1, 1, n+1, 2n+1, ...\} = \{nx+1/x \in \mathbb{Z}\}$$

$$[2] = \{..., -2n+2, -n+2, 2, n+2, 2n+2, ...\} = \{nx+2/x \in \mathbb{Z}\}$$

$$[n-1] = \{..., -2n + (n-1), -n + (n-1), n-1, n+(n-1), 2n + (n-1), ...\}$$
$$[n-1] = \{nx + (n-1)/x \in \mathbb{Z}\}$$

Por el algoritmo de la división: $\forall t \in \mathbb{Z} \ t = qn + r \text{ con } 0 \leq r < n$

Por lo que t pertenece a la clase [r]o la clase de tes la misma que la clase de $r\ ([t]=[r])$

$$\mathbb{Z}_n = \{[0], [1], [2], ..., [n-1]\}$$

si consideramos que a es un elemento de \mathbb{Z}_n , y no hay ambigüedad en la notación, podemos escribir:

$$\mathbb{Z}_n = \{0, 1, 2, ..., (n-1)\}$$

En este conjunto se definen las operaciones binarias cerradas, adición y multiplicación:

$$\forall [a], [b] \in Z$$
:

$$[a] + [b] = [a+b]$$
 $[a] \cdot [b] = [a][b] = [ab]$

$$[a] + [b] = [a + b]$$
 $[a] \cdot [b] = [a][b] = [ab]$

Por ejemplo, en \mathbb{Z}_7 :

$$[2] + [6] = [2+6] = [8] = [1] y [2][6] = [2(6)] = [12] = [5]$$

En términos de módulo diremos que:

Si
$$a \equiv b \pmod{n}$$
 y $c \equiv d \pmod{n}$, entonces

$$a + c \equiv b + d \pmod{n}$$
 y $ac \equiv bd \pmod{n}$

FCyT - UADER

Matemática Discreta

Para $n \in \mathbb{Z}^+$, n > 1:

 \mathbb{Z}_n es un anillo conmutativo con elemento unidad igual a [1] en las operaciones binarias cerradas definidas antes.

Al ser \mathbb{Z}_n un anillo finito, podemos expresar las operaciones entre los elementos por medio de dos tablas. Por ejemplo:

\mathbf{Z}_5	+	0	1	2	3	4
	0	0	1	2	3	4
	1	1	2	3	4	0
	2	2	3	4	0	1
	3	3	4	0	1	2
	4	4	0	1	2	3

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Para \mathbb{Z}_5 : Identificar las unidades, sus respectivos inversos multiplicativos. ¿Tiene divisores propios de cero? ¿Cuáles son?

\mathbf{Z}_5	+	0	1	2	3	_ 4
	0	0	1	2	3	4
	1	1	2	3	4	0
	2	2	3	4	0	1
	3	3	4	0	1	2
	4	4	0	1	2	3

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Para \mathbb{Z}_6 : Identificar las unidades, sus respectivos inversos multiplicativos. ¿Tiene divisores propios de cero? ¿Cuáles son?

\mathbf{Z}_6	+	0	1	2	3	4	5
	0	0	1	2	3	4	5
	1	1	2	3	4	5	0
	2	2	3	4	5	0	1
	3	3	4	5	0	1	2
	4	4	5	0	1	2	3
	5	5	0	1	2	3	4

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
2 3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

 \mathbb{Z}_n es un cuerpo si y sólo si n es primo.

 \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_5 , \mathbb{Z}_7 , \cdots son cuerpo; y \mathbb{Z}_6 , \mathbb{Z}_9 , \mathbb{Z}_{200} , por ejemplo, no lo son.

Teorema

En \mathbb{Z}_n , [a] es una unidad si y sólo si mcd(a, n) = 1

En \mathbb{Z}_{15} :

- [1], [2], [4], [7], [8], [11], [13], [14] son unidades.
- [3], [5] son divisores propios de cero porque [3][5] = [15] = [0]
- [6], [10] son divisores propios de cero porque [6][10] = [60] = [0]
- [9], [10] son divisores propios de cero porque [9][10] = [90] = [0]
- [12], [5] son divisores propios de cero porque [12][5] = [60] = [0]

Lic. en Sistemas de Información

Hallar el inverso multiplicativo de [25] en \mathbb{Z}_{72}

$$[25]^{-1}$$
 es tal que $[25]^{-1}[25] \equiv 1 \pmod{72}$

Si
$$[25]^{-1} = x$$
, buscamos que $25x = 72y + 1$, con $y \in \mathbb{Z}$

De esta manera debemos resolver la ecuación diofántica: 25x - 72y = 1.

Resolvermos aplicando el algorítmo de Euclides:

$$\begin{bmatrix} 72 & | \underline{25} \\ 22 & 2 \end{bmatrix} & 22 = 72 + (-2)25 \end{bmatrix} \begin{bmatrix} 25 & | \underline{22} \\ 3 & 1 \end{bmatrix} & 3 = 25 + (-1)22 \end{bmatrix} \begin{bmatrix} 22 & | \underline{3} \\ 1 & 7 \end{bmatrix} = 22 + (-7)3$$

Mediante una sustitución hacia atrás se obtiene que

$$1 = (-23)25 + (8)72$$
 entonces $1 \equiv (-23)25 \pmod{72}$

$$[25]^{-1} = [49]$$
 en \mathbb{Z}_{72}

Ya sabemos cómo identificar si un elemento es, o no, una unidad. Ahora nos preguntamos:

¿Cuántas unidades tiene el anillo \mathbb{Z}_n ?

Para calcular dicho número utilizamos la función $\varphi(n)$ Sea la factorización de n como producto de primos distintos:

$$n = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$$

$$\varphi(n) = n \left(\frac{p_1 - 1}{p_1}\right) \left(\frac{p_2 - 1}{p_2}\right) \dots \left(\frac{p_r - 1}{p_r}\right)$$

En \mathbb{Z}_n , existen $\varphi(n)$ unidades y $n-1-\varphi(n)$ divisores propios de cero.

Por ejemplo para $n = 7875 = 3^25^37$, \mathbb{Z}_{7875} tiene:

$$\varphi(7875) = 7875\frac{2}{3}\frac{4}{5}\frac{6}{7} = 3600$$
 unidades, y 4274 divisores propios de cero.

C.Aux: 7875 - 1 - 3600 = 4274

FCyT - UADER — Matemática Discreta

13/13