БГТУ, ФИТ, ПОИТ, 3 семестр

Конструирование программного обеспечения

Синтаксический анализ. Построение МП-автомата

1. Использовать материалы лекции 14.

2. Напоминание.

Формальное определение МП-автомата

$$M = \langle Q, V, Z, \delta, q_0, z_0, F \rangle$$
 Q — множество состояний; V — алфавит входных символов; Z — специальный алфавит магазинных символов; δ (дельта) — функция переходов автомата: $Q \times (V \cup \{\lambda\}) \times Z \to P(Q \times Z^*)$, где $P(Q \times Z^*)$ — множество подмножеств $Q \times Z^*$; $q_0 \in Q$ — начальное состояние автомата; $z_0 \in Z$ — начальное состояние магазина (маркер дна); $F \subseteq Q$ — множество конечных состояний.

3. Напоминание.

Работа автомата $M = \langle Q, V, Z, \delta, q_0, z_0, F \rangle$

- 1) состояние автомата $(q, a\alpha, z\beta)$
- 2) читает символ a, находящийся под головкой (сдвигает ленту);
- 3) не читает ничего (читает λ , не сдвигает ленту);
- 4) из функции δ определяет новое состояние q', если $(q',\gamma) \in \delta(q,a,z)$ или $(q',\gamma) \in \delta(q,\lambda,z)$.
- 5) читает верхний (в стеке) символ z и записывает цепочку γ т.к. $(q',\gamma)\in \delta(q,a,z)$, при этом, если $\gamma=\lambda$, то верхний символ магазина просто удаляется.
- 6) работа автомата заканчивается (q, λ, λ)

4. Напоминание:

на каждом шаге автомата возможны три случая:

- 1) функция $\delta(q,a,z)$ определена осуществляется переход в новое состояние;
- 2) функция $\delta(q, a, z)$ не определена, но определена $\delta(q, \lambda, z)$ осуществляется переход в новое состояние (лента не продвигается);
- 3) функции $\delta(q, a, z)$ и $\delta(q, \lambda, z)$ не определены дальнейшая работа автомата не возможна (цепочка не разобрана).

5. Напоминание:

язык $L(M) = \{\alpha \mid (q_0, \alpha, z_0) \succ^* (q', \lambda, \lambda), q' \in F\}$ допускаемый автоматом M – это множество всех цепочек символов, допускаемых данным автоматом.

МП-автомат называется детерминированным, если из каждой его конфигурации возможно не более одного перехода в следующую конфигурацию. Иначе МП-автомат называется недетерминированным.

6. Для построения МП-автомата необходимо привести контекстно-свободную грамматику к одной из нормальных форм:

нормальной форме Хомского нормальной форме Грейбах.

7. Нормальная форма Хомского:

КС-грамматика $G = \langle T, N, P, S \rangle$ имеет нормальную форму Хомского, если правила P имеют вид:

- 1) $A \rightarrow BC$, где $A, B, C \in N$;
- 2) $A \rightarrow a$, где $A \in N, a \in T$;
- 3) $S \to \lambda$, где $S \in N$ начальный символ, и если такое правило существует, то нетерминал S не должен встречаться в правой части правил.
- **8.** Грамматика в нормальной форме Хомского называется **бинарной**, т.к. один нетерминальный символ может быть заменен на два нетерминальных символа.

В дереве вывода грамматики в нормальной форме Хомского каждая вершина распадается:

- на две другие вершины (в соответствии с первым видом правил $A \to BC$),
- либо содержит **один последующий лист** с терминальным символом (в соответствии со вторым видом правилом вывода $A \rightarrow a$).

Третий вид правил введен для того, чтобы к нормальной форме Хомского можно было преобразовывать грамматики КС-языков, содержащих пустые цепочки символов.

- **9. Алгоритм** преобразования контекстно-свободной грамматики $G = \langle T, N, P, S \rangle$ к грамматике $G' = \langle T, N', P', S \rangle$ в нормальной форме Хомского:
 - I. преобразовать исходную грамматику к приведенному виду (исключить бесплодные и недостижимые символы, цепные и λ -правила);
 - II. установить N' = N
 - III. построение P'. Правила вида:
 - 1) $A \rightarrow a$, где $A \in N$, $a \in T$ переносятся P' без изменений;
 - 2) $A \rightarrow BC$, где $A, B, C \in N$ переносятся в P' без изменений;
 - 3) $S \rightarrow \lambda$, где $S \in N$ переносятся в P' без изменений;
 - 4) $A \to aB$, где $A, B \in N$, $a \in T$ преобразуются в правила вида $A \to DB$ и $D \to a$ добавляются во множество правил P', нетерминальный символ D добавляется во множество нетерминалов N' грамматики G';
 - 5) правила вида $A \to Ba$, где $A, B \in N$, $a \in T$ преобразуются в правила вида $A \to BD$ и $D \to a$ грамматики P', нетерминальный символ D добавляется в N';
 - 6) правила вида $A \to ab$, где $A \in N$, $a,b \in T$ преобразуются в правила вида $A \to BD$, $B \to a$, $D \to b$ грамматики P', нетерминальные символы B,D добавляется в N';
 - 7) правила вида $A \to X_1 X_2 ... X_k$, где k > 2 и $X_i \in N \cup T$ преобразуются в правила вида $A \to Y_1 Y_2$, $Y_2 \to Y_3 Y_4$, $Y_4 \to Y_5 Y_6$, ..., $Y_1 \to X_1$, $Y_3 \to X_2$, $Y_5 \to X_3$... Правила вида $Y_i \to X_j$ могут потребовать дальнейшего преобразования. Если достигнут вид правил, который указан в определении, то они добавляются в P', а новые нетерминальные символы в N'.

Стартовым символом результирующей грамматики G' является стартовый символ исходной грамматики G.

10. Пример:
$$G = \langle \{a,b\}, \{S,A,B\}, P,S \rangle$$
, где $P = \{S \to bA \mid aB, A \to a \mid aS \mid bAA, B \to b \mid bS \mid aBB \}$

$$P' = \{A \to a, B \to b\}$$
 правила типа 1 (переносятся в P') $S \to bA: S \to CA, C \to b$ правила типа 4 (преобразуются, добавляется новый нетерминал и

переносятся в P')

$$S o aB: S o DB, D o a$$
 правила типа 4 $A o aS: A o ES, E o a$ правила типа 4

$$B o bS : B o FS$$
 , $F o b$ правила типа 4

$$A \to bAA$$
 : $A \to TU$, $T \to b$, $U \to AA$ преобразуются к правилам 2 типа и 4 типа

$$B \rightarrow aBB : B \rightarrow XY, X \rightarrow a, Y \rightarrow BB$$

Множество правил грамматики, приведенной К нормальной форме Хомского G':

$$P' = \{A \rightarrow a, B \rightarrow b, S \rightarrow CA, C \rightarrow b, S \rightarrow DB, D \rightarrow a, A \rightarrow ES, E \rightarrow a, B \rightarrow FS, F \rightarrow b, A \rightarrow TU, T \rightarrow b, U \rightarrow AA, B \rightarrow XY, X \rightarrow a, Y \rightarrow BB\}$$

Множество нетерминальных символов приведенной грамматики G':

$$\{S,A,B,C,D,E,F,T,U,X,Y\}$$

- **11.** *Определение*. Праворекурсивное правило: правило вида $A \to \alpha A$, где $\alpha \in (T \cup N)^*$, $A \in N$
- **12.** *Определение.* Леворекурсивное правило: правило вида $A \to A\alpha$, где $\alpha \in (T \cup N)^*$, $A \in N$
- **13.** Для каждой грамматики $G = \langle T, N, P, S \rangle$, содержащей леворекурсивные правила можно построить грамматику $G' = \langle T, N', P', S \rangle$, не содержащую леворекурсивных правил.

14. Для каждой грамматики $G = \langle T, N, P, S \rangle$, содержащей правокурсивные правила можно построить грамматику $G' = \langle T, N', P', S \rangle$, не содержащую правокурсивных правил.

15. Нормальная форма Грейбах:

контекстно-свободная грамматика $G = \langle T, N, P, S \rangle$ имеет нормальную форму Грейбах, если она не леворекурсивная (не содержит леворекурсивных правил), а правила P имеют вид:

- 1) $A \rightarrow a\alpha$, где $a \in T$, $\alpha \in (N \cup T)^*$;
- 2) $S \to \lambda$, где $S \in N$ начальный символ, и если такое правило существует, то нетерминал S не должен встречаться в правой части правил.

Эта нормальная форма называется по имени Шейлы Грейбах (Sheila Greibach), которая первой описала способ построения таких грамматик.

16. Алгоритм устранения левой рекурсии.

Пусть правила грамматики $G = \langle T, N, P, S \rangle$ имеют вид:

$$A \rightarrow A\alpha_1 | A\alpha_2 | \dots | A\alpha_m | \beta_1 | \beta_2 | \dots | \beta_n$$

где $\alpha_i, \beta_i \in (T \cup N)^*$ и цепочки β_i не начинаются с нетерминала A.

Введем нетерминал B.

Тогда эквивалентные правила без левой рекурсии:

$$A \rightarrow |\beta_1|\beta_2|...|\beta_n|\beta_1B|\beta_2B|...|\beta_nB|$$

$$B \rightarrow |\alpha_1|\alpha_2|...|\alpha_m|\alpha_1B|\alpha_2B|...|\alpha_mB|$$

17. Пример:

пусть правила P грамматики G имеют вид:

$$A \rightarrow A + A \mid x$$

Грамматика G порождает цепочки вида:

$$x, x + x, x + x + x, x + x + x + x, \dots$$

Преобразование. Введем нетерминал A'

$$A \rightarrow x \mid xA'$$

$$A' \rightarrow +A \mid +AA'$$

Приведенная грамматика порождает цепочки вида:

$$x, x + x, x + x + x, x + x + x + x, \dots$$

18. Пример:

пусть правила $\,P\,$ грамматики имеют вид $\,G\,$:

$$E \to E + T \mid T, \quad T \to T \times F \mid F, \quad F \to (E) \mid a$$

$$A \stackrel{F}{A} \stackrel{G}{\alpha_1} \stackrel{G}{\beta_1}$$

Преобразование грамматики:

$$\underbrace{E}_{A} \to \underbrace{E}_{A} + \underbrace{T}_{A} \mid \underbrace{T}_{A} \Rightarrow E \to T \mid TE', \ \underbrace{E'}_{A} \to \underbrace{+}_{A} \underbrace{T}_{A} \mid \underbrace{+}_{A} \underbrace{TE'}_{A}$$

$$T \rightarrow T \times F \mid F \Rightarrow T \rightarrow F \mid FT', T' \rightarrow F \mid \times FT'$$

Правила P' грамматики G':

$$E \rightarrow T \mid TE'$$

$$E' \rightarrow +T \mid +TE'$$

$$T \rightarrow F \mid FT'$$

$$T' \rightarrow \times F \mid \times FT'$$

$$F \rightarrow (E) \mid a$$

19. Построение МП-автомата:

пусть дана контекстно-свободная грамматика $G = \langle T, N, P, S \rangle$

Автомат
$$M = \langle Q, V, Z, \delta, q_0, z_0, F \rangle$$
, где

$$Q = \{q_0\}$$
; $V = T$; $Z = N \cup T \cup z_0$; $F = \{q_0\}$

Для всех $A \in N$ в левой части правил (нетерминалов)

$$\delta^0(q_0,\lambda,A) = (q_0,\alpha^R)$$
 (где α^R - реверс цепочки α) (1)

Для всех $a \in T$ (терминалов)

$$\delta(q_0, a, a) = (q_0, \lambda) \tag{2}$$

Для перехода в конечное состояние

$$z\delta(q_0, \lambda, z_0) = (q_0, \lambda) \tag{3}$$

20. Пример.

Пусть G — грамматика, порождающая слова над алфавитом $\{0,1\}$, в которых одинаковое количество нулей и единиц:

Правила грамматики:

 $S \rightarrow 0S1$

 $S \rightarrow 1S0$

 $S \to \lambda$

Построить автомат, допускающий язык, порожденный грамматикой G.

Множество состояний: $\{q\}$

Множество терминалов: {0,1}

Множество нетерминалов — $\{S\}$

Магазинный алфавит: $\{0,1,S,z\}$

Маркер дна М Π -автомата: z

Множество конечных состояний: $\{q\}$

Начальное состояние МП-автомата: q

Функция переходов δ определена следующим образом:

$$\delta(q, \lambda, S) = \{(q, 0S1), (q, 1S0), (q, \lambda)\}$$
 (пункт 1 построения δ);

$$\delta(q,0,0) = \{(q,\lambda)\}, \ \delta(q,1,1) = \{(q,\lambda)\}$$
 (пункт 2 построения δ)

 $\delta(q,\lambda,z) = (q,\lambda)$ (пункт 3 построения δ)

Пример.

Дана цепочка 0011

Начальная конфигурация МП-автомата:

$$(q, 0011, zS)$$
 в магазин – реверс цепочки правила $S \to 0S1$ (пункт 1)

Последовательность тактов работы построенного автомата:

$$(q,0011,z1S0)$$
 (пункт 2) $(q,011,z1S)$ (пункт 1) $(q,011,z11S0)$ (пункт 2) $(q,11,z11S)$ (пункт 1) $(q,11,z11)$ (пункт 2) $(q,1,z1)$ (пункт 2) (q,λ,z) (пункт 3) цепочка разобрана

21. Пример.

Построить автомат, допускающий язык, порожденный грамматикой G с правилами:

$$S \rightarrow aSbb \mid a$$
.

Преобразуем грамматику к нормальной форме Грейбах:

$$S \rightarrow aSA \mid a,$$

 $A \rightarrow bB,$
 $B \rightarrow b.$

Построить автомат, допускающий язык, порожденный грамматикой G. Автомат будет иметь два состояния:

$$\{q_1, q_2\}$$
, где q_2 — заключительное состояние.

Множество терминалов: $\{a, b\}$

Множество нетерминалов — $\{S, A, B\}$.

z – маркер дна магазина

Магазинный алфавит: $\{a, b, S, A, B, z\}$.

$$\delta(q_1,\lambda,S) = \{(q_1,ASa),(q_1,a)\}$$
 (пункт 1 построения δ); $\delta(q_1,\lambda,A) = \{(q_1,Bb)\}$ (пункт 1 построения δ); $\delta(q_1,\lambda,B) = \{(q_1,b)\}$ (пункт 1 построения δ); $\delta(q_1,a,a) = \{(q_1,\lambda)\}$ (пункт 2 построения δ); $\delta(q_1,b,b) = \{(q_1,\lambda)\}$ (пункт 2 построения δ) $\delta(q_1,\lambda,z) = (q_2,\lambda)$ (пункт 3 построения δ)

Дана цепочка *ааbb*

Начальная конфигурация:

$$(q_1, aabb, zS)$$

Последовательность тактов работы построенного автомата:

 $(q_1, aabb, zASa)$

 (q_1, abb, zAS)

 (q_1, abb, zAa)

 (q_1, bb, zA)

 (q_1, bb, zBb)

 (q_1, b, zB)

 (q_1, b, zb)

 (q_1, λ, z)

 (q_2,λ,z)

цепочка разобрана