6.002 CIRCUITS AND ELECTRONICS

Second-Order Systems

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Second-Order Systems

Our old friend, the inverter, driving another. The parasitic inductance of the wire and the gate-to-source capacitance of the MOSFET are shown

[Review complex algebra appendix for next class]

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Second-Order Systems

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

Now, let's try to speed up our inverter by closing the switch S to lower the effective resistance

Observed Output ~50\Omega

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

15

First, let's analyze the LC network

Node method:

$$i(t) = C \frac{dv}{dt}$$

$$\frac{1}{L} \int_{-\infty}^{t} (v_I - v) dt = C \frac{dv}{dt}$$

$$\frac{1}{L}(v_I - v) = C\frac{d^2v}{dt^2}$$

Recall
$$v_{I} - v = L \frac{di}{dt}$$

$$\frac{1}{L} \int_{-\infty}^{t} (v_{I} - v) dt = i$$

$$LC\frac{d^{2}v}{dt^{2}} + v = v_{I}$$
time.²

v, i state variables

Solving

Recall, the method of homogeneous and particular solutions:

- 1) Find the particular solution.
- Find the homogeneous solution.
 4 steps
- The total solution is the sum of the particular and homogeneous.
 Use initial conditions to solve for the remaining constants.

$$v = v_P(t) + v_H(t)$$

Let's solve

$$LC\frac{d^2v}{dt^2} + v = v_I$$

For input

And for initial conditions

$$v(0) = 0$$
 $i(0) = 0$ [ZSR]

1 Particular solution

$$LC\frac{d^2v_P}{dt^2} + v_P = V_0$$

$$v_P = V_0 \qquad \text{is a solution.}$$

Homogeneous solution

Solution to

$$LC\frac{d^2v_H}{dt^2} + v_H = 0$$

Recall, v_H :

solution to homogeneous equation (drive set to zero)

Four-step method:

$$v_H = Ae^{st}$$
 , A , $s = ?$ so, $LCAs^2e^{st} + Ae^{st} = 0$

$$B s^2 = -\frac{1}{LC} \begin{cases} characteristic \\ equation \end{cases}$$

$$s = \pm j \sqrt{\frac{1}{IC}}$$

$$\bigcirc$$
 Roots $s = \pm j\omega_o$

$$j = \sqrt{-1}$$

$$\omega_o = \sqrt{\frac{I}{LC}}$$

General solution,

*Differential equations are commonly solved by guessing solutions

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

(3) Total solution

$$v(t) = v_P(t) + v_H(t)$$
$$v(t) = V_0 + A_1 e^{j\omega_0 t} + A_2 e^{-j\omega_0 t}$$

Find unknowns from initial conditions.

$$v(0) = 0$$

$$0 = V_0 + A_1 + A_2$$

$$i(0) = 0$$

$$i(t) = C \frac{dv}{dt}$$

$$i(t) = CA_1 j \omega_o e^{j\omega_o t} - CA_2 j \omega_o e^{-j\omega_o t}$$

$$So, \qquad 0 = CA_1 j \omega_o - CA_2 j \omega_o$$

$$or, \qquad A_1 = A_2$$

$$-V_0 = 2A$$

$$A_1 = -\frac{V_0}{2}$$

so,
$$v(t) = V_0 - \frac{V_0}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$$

(3) Total solution

Remember Euler relation

$$e^{jx} = \cos x + j \sin x$$
 (verify using Tay

(verify using Taylor's expansion)

$$\frac{e^{jx} + e^{-jx}}{2} = \cos x$$

$$\mathbf{SO}, \qquad v(t) = V_0 - V_0 \cos \omega_0 t$$

$$i(t) = CV_0 \omega_o \sin \omega_o t$$

where

$$\omega_o = \frac{1}{\sqrt{LC}}$$

The output looks sinusoidal

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Summary of Method

- 1) Write DE for circuit by applying node method.
- (2) Find particular solution v_P by guessing and trial & error.
- $\bigcirc{\hspace{-0.07cm} 3}$ Find homogeneous solution v_H
 - (A) Assume solution of the form Ae^{st} .
 - B Obtain characteristic equation.
 - \bigcirc Solve characteristic equation for roots s_i .
 - \bigcirc Form v_H by summing $A_i e^{s_i t}$ terms.
- $oldsymbol{4}$ Total solution is $v_P + v_H$, solve for remaining constants using initial conditions.

Example

What if we have:

We can obtain the answer directly from the homogeneous solution $(V_0 = 0)$.

Example

$$L = \begin{array}{c|c} \hline i_C \\ \hline \end{array} \begin{array}{c} + \\ C \\ \hline \end{array} \begin{array}{c} v_C(0) = V \\ \hline \end{array}$$

$$i_C(0) = 0$$

We can obtain the answer directly from the homogeneous solution $(V_0 = 0)$.

$$v_C(t) = A_1 e^{j\omega_o t} + A_2 e^{-j\omega_o t}$$

$$v_C(0) = V$$

$$V = A_1 + A_2$$

$$i_C(0) = 0$$

$$0 = CA_1 j\omega_o - CA_2 j\omega_o$$

or
$$A_1 = A_2 = \frac{V}{2}$$

or
$$v_C = \frac{V}{2} \left(e^{j\omega_o t} + e^{-j\omega_o t} \right)$$

$$v_C = V \cos \omega_o t$$

$$i_C = -CV \omega_o \sin \omega_o t$$

Example

Energy

Notice
$$\frac{1}{2}Cv_C^2 + \frac{1}{2}Li_C^2 = \frac{1}{2}CV^2$$

Total energy in the system is a constant, but it sloshes back and forth between the Capacitor and the inductor

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

RLC Circuits

Damped sinusoids with R - remember demo!

See A&L Section 12.2

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].