

NWEN 241 More C Fundamentals

Qiang Fu

School of Engineering and Computer Science Victoria University of Wellington

This Lecture

- Data types
- Operators
- Data input/output
- Control constructs

30/03/2015

NWEN 241: Systems Programming

Data Types

- Programming is about describing data and algorithms
- How data is represented in memory?

Data Types

- Programming is about describing data and algorithms
- How data is represented in memory?
- Four basic data types:
 - int (integer quantity)
 - char (single character)
 - float (floating-point number)
 - double (double-precision floating-point number)

Note: There are also qualifiers associated with the types: short / long, and signed / unsigned.

• Data types for Java (any difference?)

30/03/2015 NWEN 241: Systems Programming 3 30/03/2015 NWEN 241: Systems Programming

- Two groups of types
 - Integral types: int and char
 - Can be used to hold integer values
 - Floating types: float and double
 - Can be used to hold real values

30/03/2015

NWEN 241: Systems Programming

5

Data Types

Integral types

30/03/2015

NWEN 241: Systems Programming

Data Types

Integral types

Data Types

- Floating types
 - How floating-point number represented in memory
 - 123.45 = 1111011.01110011 = 0.111101101110011 * 2⁷
 - Mantissa: 111101101110011
 - Exponent: 7
 - Mantissa and exponent are stored separately
 - 123.75 = 1111011.11000000 = 0.111101111000000 * 2^7
 - 123.45 cannot be perfectly expressed in binary notation

30/03/2015 NWEN 241: Systems Programming

30/03/2015 NWE

NWEN 241: Systems Programming

- Floating types
 - How floating-point number represented in memory
 - 123.45 = 1111011.01110011 = 0.111101101110011 * 2⁷
 - Mantissa: 111101101110011
 - Exponent: 7
 - Mantissa and exponent are stored separately
 - 123.75 = 1111011.11000000 = 0.111101111000000 * 2^7
 - 123.45 cannot be perfectly expressed in binary notation
 - float t = 123.45
 - t = 123.449997
 - Use double

30/03/2015

NWEN 241: Systems Programming

9

11

Data Types

- Sizes of different types
 - Use sizeof() to find out
 - The sizes may vary from machine to machine
 - The following rules are always guaranteed:
 - sizeof(char) = 1
 - sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long)
 - sizeof(signed) = sizeof(unsigned) = sizeof(int)
 - sizeof(float) <= sizeof(double) <= sizeof(long double)
 - Does Java have varied sizes between systems?

30/03/2015

NWEN 241: Systems Programming

10

Data Types

- Type casting
 - C does automatic type casting

```
int i = 2;
double d = 2.5;
i = (int)d; /* explicit type casting */
i = d;
```

Data Types

- Type casting
 - C does automatic type casting

- Info losing type casting must be made explicitly in Java

- Constants
 - integer constants
 - floating-point constants
 - character constants
 - string constants
 - enumeration constants (does Java have this?)
- Naming constants
 - Use the const qualifier (Java uses the **final** keyword)

```
const float pi = 3.14; /* declares a "read-only" variable
  */
```

Use the preprocessor (Java does not have this)

30/03/2015

NWEN 241: Systems Programming

13

Data Types

• Problems with micros

30/03/2015

30/03/2015

NWEN 241: Systems Programming

4.4

Data Types

Problems with micros

- Solution: #define SQ(x) ((x) * (x))

Data Types

• Problems with micros

Problems with micros

- Be careful when defining and calling macros

30/03/2015

NWEN 241: Systems Programming

17

Data Types

• More data types later on

30/03/2015

30/03/2015

NWEN 241: Systems Programming

. . .

Built-in Operators

- arithmetic
- relational
- logical
- increment/decrement
- bitwise
- assignment
- others including type casting

Data Input and Output

Functions for data input and output

Data Input and Output

30/03/2015

NWEN 241: Systems Programming

21

Data Input and Output

30/03/2015 NWEN 241: Systems Programming

ems Programming 22

Data Input and Output

```
scanf() / printf()
int i;
float f;
char c;
char s[80];
scanf("%d", &i);
                            /* %d is format information
                              * d is conversion character
scanf("%f", &f);
                            /* &f is f's memory address
                             * input is sent to &f
printf("\nYou typed in \"%f\"\n", f);
                            /* \n starts new line. \" treats "
                             * as an ordinary character
scanf(" %c", &c);
                            /* blank space preceding %c to
                              * ignore \n typed in earlier
scanf("%s", s);
                            // a seq. of nonwhite space char
scanf("%[^\n]", s);
                            // [^\n] means \n is the end of
                            // input. s = &s[0]
30/03/2015
                       NWEN 241: Systems Programming
```

Control Constructs

```
    Loops: for, while and do-while

#include <stdio.h>
                     /* each loop runs 4 times */
int main(void)
\{ int i = 0, x = 0; \}
 for (; i <4; i++) /* starting and ending conditions */
   printf("for loop: x = %d, i = %d\n", x, i);
  while (i < 2*4)
                       /* only given ending condition */
   printf("while loop: x = d, i = dn', x, i);
   i++;
                       /* do at least once */
  \{ x += i;
   printf("do-while loop: x = d, i = dn', x, i);
  } while (i < 3*4); /* ending condition */
 return 0;
30/03/2015
                         NWEN 241: Systems Programming
```

Control Constructs

```
    Blocks

int main(void)
\{ \text{ int i = 0}, x = 0; \}
  for (int i=-4; i < 4; i++) /* Only for C99. i is re-declared. */
  \{x += i;
  while (i < 2*4)
  \{ x += i;
    i++;
  do
  { x += i;
    i++;
  \} while (i < 3*4);
  return 0;
30/03/2015
                             NWEN 241: Systems Programming
                                                                               25
```

Control Constructs

```
    Blocks

int main(void)
                               /* i will be used by the */
{ int i = 0, x = 0;
                               /* while and do-while loops, */
                               /* but not the for loop */
  for (int i=-4; i < 4; i++) /* Only for C99. i is re-declared. */
                               /* only valid within this block. */
  \{ x += i; \}
  while (i < 2*4)
                               /* The 2nd i has no effects */
  \{ x += i;
                               /* in this and next block */
   i++;
  do
  \{ x += i;
   i++;
  } while (i < 3*4);
  return 0;
```

Control Constructs

- Conditionals: if-else and switch
 - Let us write a program to check if a character is an upper-case alphabetic letter

NWEN 241: Systems Programming

Control Constructs

NWEN 241: Systems Programming

30/03/2015

27

26

Control Constructs

Control Constructs

```
Conditionals: if-else and switch
                          /* to test if it is an upper-case alphabetic letter */
int main(void)
{ char i, c;
 printf("\nPlease enter an alphabetic character:\n");
 c = getchar();
 if (isalpha(c))
                          /* true = nonzero, false = zero */
                          /* empty is ok, but ";" must be there */
 else
   return(printf("You did not enter an alphabetic character\n"));
 if (isupper(c) ? 1 : 0)
                                           /* true = 1, false = 0 */
   printf("if-else: it is an upper-case letter\n");
    printf("if-else: it is a lower-case letter\n");
 i = (isupper(c) != 0 ? 'T' : 'F');
                                            /* true = 'T', false = 'F' */
 switch(i) {
 case 'T':
   printf("switch: it is an upper-case letter\n");
   break;
                        /* break must be there, otherwise it will go through */
   printf("switch: it is a lower-case letter\n");
 return 0;
30/03/2015
                             NWEN 241: Systems Programming
```

Control Constructs

```
Conditionals: if-else and switch
int main(void)
                          /* to test if it is an upper-case alphabetic letter */
 char i. c;
 printf("\nPlease enter an alphabetic character:\n");
 c = getchar();
 if (isalpha(c))
                          /* true = nonzero, false = zero */
                          /* empty is ok, but ";" must be there */
   return(printf("You did not enter an alphabetic character\n"));
 if (isupper(c) ? 1 : 0)
                                            /* true = 1, false = 0 */
   printf("if-else: it is an upper-case letter\n");
   printf("if-else: it is a lower-case letter\n");
30/03/2015
                             NWEN 241: Systems Programming
                                                                                 30
```

Control Constructs

- break, continue and goto
 - break: jumps out of the loop
 - continue: stops current iteration and starts next iteration
 - goto jumps to a labelled statement
 - Java support labelled continue and break statement
 - Java does not support goto

30/03/2015 NWEN 241: Systems Programming 32

Control Constructs

- break, continue and goto
 - break: jumps out of the loop
 - continue: stops current iteration and starts next iteration
 - **goto** jumps to a labelled statement
 - Java support labelled **continue** and **break** statement
 - Java does not support goto (goto is bad)

Next Week

- Functions, pointers and arrays
- Next lecture: functions

30/03/2015 NWEN 241: Systems Programming 33 30/03/2015 NWEN 241: Systems Programming 3