Time Series Analysis & Forecasting

Class 5

Arnab Bose, Ph.D.

MSc Analytics
University of Chicago

Time Series Decomposition

Additive Model

$$y_t = S_t + T_t + E_t$$

 y_t - data at period t

 S_t - seasonal component at period t

 T_t - trend-cycle component at period t

 E_t - error component at period t

Seasonal Model

$$y_t = S_t \times T_t \times E_t$$

STL Decomposition

- 1. Can handle any type of seasonality (not just monthly or daily)
- 2. Useful for business cycles where every cycle may not have the same period
- 3. Seasonal component can change over time
- 4. Robust to outliers- occasional unusual observations do not affect the estimates
- 5. Can handle non-stationary data
- 6. TS repeated patterns
 - Seasonal fixed known period that is associated with calendar (seasonal ARMA models)
 - 2. Cyclic data has ups and downs with no fixed period (ARMA models)

Yule-Walker Equations

Consider AR(2) process

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$$

• Multiply both sides with Y_{t-k} and take expectations to get autocovariance

$$\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2}$$
, for $k = 1, 2, 3, ...$

And dividing by γ_0 we get autocorrelation defined by

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}$$

- The above autocovariance and autocorrelation equations are called the Yule-Walker equations.
- Use sample moments to recursively solve for AR parameter estimates.

ARIMA Point Forecasting

- Expand ARIMA equation with Y_t on the left hand side and all other terms on the right
- Rewrite the equation replacing t with t+l, where l is the forecasting horizon
- On the right hand side of the equation, replace future observations by their forecasts, future errors by zero, and past errors by the corresponding residuals

ARIMA Forecast Updates

ARIMA Process
$$\phi(B)Y_t = \theta(B)e_t$$

 Directly in terms of the difference equation of previous Y's and current and previous white noise error e's

$$Y_{t+l} = \phi_1 Y_{t+l-1} + \dots + \phi_{p+d} Y_{t+l-p-d} - \theta_1 e_{t+l-1} - \dots - \theta_q e_{t+l-q} - e_{t+l}$$

2. Infinite weighted sum of current and previous shocks e's

$$Y_{t+l} = \sum_{j=0}^{\infty} \psi_j e_{t+l-j}$$

3. Infinite weighted sum of previous observations plus current shock e

$$Y_{t+l} = \sum_{j=0}^{\infty} \pi_j Y_{t+l-j} + e_{t+l}$$

Multi-step Forecasting Strategies

	Pros	Cons	Computational time needed
Recursive	Suitable for noise-free time series (e.g. chaotic)	Accumulation of errors	+
Direct	No accumulation of errors	Conditional independence assumption	++++
DirRec	Trade-off between Direct and Recursive	Input set grows linearly with H	++++
MIMO	No conditional independence assumption	Reduced flexibility: same model structure for all the horizons	++
DIRMO	Trade-off between total dependence and total independence of forecasts	One additional parameter to estimate	+++

Table 3: A Summary of the Pros and Cons of the Different Multi-step Forecasting Strategies

Source: S. B. Taieba, G. Bontempia, A. Atiyac, A. Sorjamaa, *A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition*, https://arxiv.org/pdf/1108.3259.pdf, 2011.

Prediction Interval

Take a linear regression

$$y_i = \beta_0 + \beta_t x_i$$

- Distance value = $\frac{1}{n} + \frac{(x_0 \bar{x})^2}{\sum (x_i \bar{x})^2}$ where x_0 is a particular value of x_i
- Assume S to be the residual standard error
- Then $100(1-\alpha)\%$ prediction interval for an individual value of y_i when $x_i=x_0$ is

$$\hat{y_i} \pm t * S * \sqrt{1 + Distance \ value}$$

where t is the t-value at $\alpha/2$ level of significance for n-2 DOF

Forecast Evaluation

Forecast error at time t

$$e_t = y_t - \widehat{y_t}$$

Absolute Deviation

$$|e_t| = |y_t - \widehat{y_t}|$$

• Mean Absolute Deviation

$$MAD = \frac{\sum_{1}^{n} |e_t|}{n}$$

Mean Squared Error

$$MSE = \frac{\sum_{1}^{n} e_{t}^{2}}{n}$$

Forecast Evaluation

Absolute Percentage Error

$$APE = \frac{|e_t|}{y_t} \times 100\%$$

Mean Absolute Percentage Error

$$MAPE = \frac{\sum_{1}^{n} APE}{n}$$

• Symmetric Mean Absolute Percentage Error

$$sMAPE = \frac{1}{n} \sum_{1}^{n} \frac{|e_t|}{y_t + \widehat{y_t}}$$

Textbook Chapters

- Materials covered available in book:
 - MJK: Chapter 2, TSA: Chapters 7, 8, 9
- Web: http://robjhyndman.com/hyndsight/tscvexample/