МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федерально автономное образовательное учреждение высшего образования «Севастопольский государственный университет» кафедра Информационных систем

Куркчи Ариф Эрнестович

Институт информационных технологий и управления в технических системах курс 4 группа ИС/б-41-о 09.03.02 Информационные системы и технологии (уровень бакалавриата)

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Моделирование процессов и систем» на тему «Исследование процесса моделирования на языке GPSS»

Отметка о зачете		
		(дата)
Руководитель практикума		
доцент		Безуглая А. Е.
 (должность)	(подпись)	(инициалы, фамилия)

1 ЦЕЛЬ РАБОТЫ

Исследование технологии дискретно-событийного имитационного моделирования. Изучение базовых блоков языка GPSS и получение практических навыков программирования имитационных моделей.

2 ВАРИАНТ ЗАДАНИЯ

Задача 1

Процесс прохождения заявок, поступление которых подчиняется равномерному закону с интервалом X1+/-X2 единицы времени, а обработка – равномерному закону со средним временем X3+/-X4 единицы. Требуется получить статистические данные об очереди заявок, ожидающих обслуживание в приборе. Залача 7

В условиях задачи 1 заявки поступают на обработку с ограниченным числом мест в очереди, равным S1. Если очередь заполнена, то заявки покидают систему. Задача 9

В условиях задачи 1 каждая заявка проходит С-циклов обработки на приборе со временем X23+/-X24.

3 ХОД РАБОТЫ

3.1 Задача 1

Код модели GPSS:

GENERATE 100,50
QUEUE QCPU
SEIZE CPU
DEPART QCPU
ADVANCE 70,20
RELEASE CPU
TERMINATE 1
START 40

Сводные результаты моделирования на GPSS представлены в таблице 3.1, модель в системе AnyLogic представлена на рисунке 3.3. Графики зависимости среднего времени нахождения заявки в системе и util—коэффициента от времени на рисунках 3.1 и 3.2.

Таблица 3.1 — Результаты моделирования

t	\overline{t}	util
20	71,559	0,675
40	75,447	0,693
60	73,569	0,665
80	74,997	0,68
100	74,2	0,678
120	73,686	0,686
140	73,916	0,687
160	73,279	0,691
180	73,867	0,695
200	74,01	0,692

Рисунок 3.1 – График среднего времени нахождения заявки в системе

Рисунок 3.2 – График util-коэффициента

Рисунок 3.3 – Модель в системе AnyLogic

3.2 Задача 7

Код модели GPSS:

MEMORY STORAGE 10
GENERATE 100,50
GATE NU MEMORY,TER
QUEUE QCPU
ENTER MEMORY,1
SEIZE CPU
DEPART QCPU
LEAVE MEMORY,1
ADVANCE 90,50
RELEASE CPU

TER TERMINATE 1

START 1000

Сводные результаты моделирования на GPSS представлены в таблице 3.2, модель в системе AnyLogic представлена на рисунке 3.6. Графики зависимости среднего времени нахождения заявки в системе и util—коэффициента от времени на рисунках 3.4 и 3.5.

Таблица 3.2 – Результаты моделирования

t	$ar{t}$	util
20	123,233	0,865
40	202,51	0,916
60	169,382	0,868

80	159,542	0,89
100	149,459	0,889
120	146,769	0,892
140	141,45	0,882
160	136,487	0,882
180	136,791	0,885
200	136,894	0,882

Рисунок 3.4 – График среднего времени нахождения заявки в системе

Рисунок 3.5 – График util-коэффициента

Рисунок 3.6 – Модель в системе AnyLogic

3.3 Задача 9

Код модели GPSS:

GENERATE 100,50

ASSIGN 1,10

CYCLE QUEUE QCPU
SEIZE CPU
DEPART QCPU
ADVANCE 33,13
RELEASE CPU

LOOP 1,CYCLE

TERMINATE 1 START 100

Сводные результаты моделирования на GPSS представлены в таблице 3.3, модель в системе AnyLogic представлена на рисунке 3.6. Графики зависимости среднего времени нахождения заявки в системе и util—коэффициента от времени на рисунках 3.4 и 3.5.

Таблица 3.3 – Результаты моделирования

t	\overline{t}	util
1	89,953	0,836
2	265,539	0,941
3	520,338	0,969
4	710,208	0,977
5	877,596	0,982
6	1041,252	0,985

7	1243,021	0,987
8	1271,51	0,988
9	1468,856	0,989
10	1660,293	0,99

Рисунок 3.7 – График среднего времени нахождения заявки в системе

Рисунок 3.8 – График util-коэффициента

Рисунок 3.9 – Модель в системе AnyLogic

ВЫВОДЫ

В ходе лабораторной работы были исследованы технологии дискретнособытийного имитационного моделирования. Изучены базовые блоки языка GPSS и получены практические навыки программирования имитационных моделей. Для исследуемых задач построена имитационная модель в системе AnyLogic.