Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Дифференциальные уравнения

Выполнил: студент гр. R32353

Магазенков Е. Н.

Преподаватель: Бабушкин М. В.

Часть І

1 Линейные уравнения 1-ого порядка

Определение 1. Дифференциальное уравнение вида

$$y' = p(x)y + q(x), \tag{1}$$

называют линейным неоднородным дифференциальным уравнением первого порядка (ЛНУ или просто ЛУ).

Определение 2. Дифференциальное уравнение вида

$$y' = p(x)y \tag{2}$$

называют линейным однородным дифференциальным уравнением первого порядка (ЛОУ).

Замечание. Вообще, мы уже неоднократно сталкивались и решали уравнения такого вида. Однако для строгого обоснования наших решений рассмотрим следующую лемму.

Лемма 1 (Общее решение ЛОУ). Пусть в линейном однородном уравнении y' = p(x)y функция $p(x) \in C(a,b)$.

Тогда его общее решение имеет вид

$$y = c \cdot e^{\int p},\tag{3}$$

еде $c\in\mathbb{R}$ — произвольная константа и под $\int p$ понимается какая-то производная функции p(x).

Доказательство. Воспользуемся эквивалентным преобразованием

$$y' = p(x)y \Leftrightarrow dy = p(x)ydx.$$

Рассмотрим несколько возможных случаев:

- 1. y = 0 очевидно решение,
- 2. при y > 0: разделим на y с обеих сторон

$$\frac{dy}{y} = p(x)dx.$$

Проинтегрируем обе части:

$$\int \frac{dy}{y} = \int p(x) dx,$$

$$\ln y = \int p(x) dx,$$

$$y = A \cdot e^{\int p}, \quad \text{где } A > 0.$$

3. при y < 0: аналогично, но появляется минус, который можно засунуть в константу.

$$y = B \cdot e^{\int p}$$
, где $B < 0$.

4. Осталось разобрать случай, когда интегральная кривая проходит через границу y=0. Однако, рассматривая все кривые, видно, что они заданы строго в одной полуплоскости относительно y=0:

$$y = A \cdot e^{\int p} > 0$$
, где $A > 0$, $y = B \cdot e^{\int p} < 0$, где $B < 0$.

Таким образом, действительно, общее решение ЛОУ можно записать в виде $y = c \cdot e^{\int p}$.

Замечание. Теперь мы строго доказали, ранее использовавшиеся факты. Как вывод из этого, мы получаем, что теперь можно каждый раз не решать ЛОУ, а просто пользоваться формулой. Или хотя бы всегда проверять, похоже ли решение на полученное в общем виде.

Замечание. Далее мы будем рассматривать общее решение неоднородного уравнения. Мы используем достаточно интересный метод доказательства: так, мы предоставим какое-то решение, которое мы назовем общим, а далее докажем, что любое другое решение на самом деле задается именно нашим выражением.

Оказывается, что такой метод можно применять и для решения любых уравнений. Достаточно лишь показать, что представленное выражение является решением, а также, что любое другое произвольное решение задается этим выражением.

Лемма 2 (Общее решение ЛНУ). Пусть в линейном уравнении y'=p(x)y+q(x) функции $p(x),\ q(x)\in C\ (a,b).$

Тогда его общее решение имеет вид

$$y = \left(\int q \cdot e^{-\int p} + c\right) \cdot e^{\int p},\tag{4}$$

где $c \in \mathbb{R}$ — произвольная константа и под $\int f$ понимается какая-то производная функции f(x).

Доказательство. • Докажем, что данное данное множество решений включено в общее множество решений исходного уравнения. Проще говоря, проверим, правда ли, что представленное выражение является решением.

Найдем y'(x):

$$y' = q \cdot e^{-\int p} \cdot e^{\int p} + \left(\int q \cdot e^{-\int p} + c \right) \cdot p e^{\int p} = q + \left(\int q \cdot e^{-\int p} + c \right) \cdot p e^{\int p}.$$

Тогда, подставляя в исходное уравнение:

$$q + \left(\int q \cdot e^{-\int p} + c \right) \cdot p e^{\int p} \equiv p \cdot \left(\int q \cdot e^{-\int p} + c \right) \cdot e^{\int p} + q,$$

получаем верное тождество.

• Докажем, что произвольное решение задается формулой $y = \left(\int q \cdot e^{-\int p} + c\right) \cdot e^{\int p}$.

Пусть $\varphi \in (\alpha, \beta)$ – решение, не задающееся этой формулой.

Рассмотрим $x_0 \in (\alpha, \beta)$: $\varphi(x_0) = y_0$.

Найдем такое $c \in \mathbb{R}$, что наше решение проходит через точку (x_0, y_0) .

$$\left(\int q \cdot e^{-\int p} + c \right) \cdot e^{\int p} \bigg|_{x=x_0} = y_0,$$

$$c = \left(y_0 \cdot e^{-\int p} - \int q \cdot e^{-\int p} \right) \bigg|_{x=x_0}.$$

Пусть решение с этим c — решение ψ . Тогда мы получили два решения задачи Коши $y=\left(\int q\cdot e^{-\int p}+c\right)\cdot e^{\int p}$ с начальными условиями $y(x_0)=y_0$ на интервале (α,β) . Так как $f(x,y)=p(x)y+q(x)\in C\left(()\,a,b\right)$, то по теореме об единственности решения задачи Коши $\varphi=\psi$, что противоречит предположению о том, что φ не задается решением вида $y=\left(\int q\cdot e^{-\int p}+c\right)\cdot e^{\int p}$.

Таким образом, действительно любое решение можно представить в виде $y = \left(\int q \cdot e^{-\int p} + c \right) \cdot e^{\int p}$.

Объединяя эти два факта, мы получаем, что показанное нами решение действительно является общим решением линейного дифференциального уравнения.

Замечание. В итоге мы имеем формулу для решения ЛУ, в которую можно подставить нужные значения. Однако достаточно тяжело помнить ее наизусть, поэтому нужно иметь какой-то метод, который сможет нас привести к этому решению. Напомним, что любой метод, который будет давать решение вида $y = \left(\int q \cdot e^{-\int p} + c\right) \cdot e^{\int p}$ окажется верным, так как мы уже доказали, что это общее решение.

Предложение (Метод Лагранжа или метод вариации произвольной постоянной). Пусть стоит задача решить линейное уравнение y' = p(x)y + q(x).

Рассмотрим соответствующее однородное уравнение, то есть уравнение y'=p(x)y. Его общее решение мы знаем (либо можем найти): $y=c\cdot e^{\int p}$.

Рассмотрим теперь с не как константу, а как функцию c(x). Подставляя $y = c(x) \cdot e^{\int p}$ в исходное линейное уравнение, получаем:

$$c'(x) \cdot e^{\int p} + \underline{c(x) \cdot pe^{\int p}} = \underline{pc(x) \cdot e^{\int p}} + q,$$

$$c'(x) = q \cdot e^{-\int p}.$$

Это уравнение мы снова можем решить:

$$c(x) = \int q \cdot e^{-\int p} + \tilde{c}.$$

Тогда, возвращаясь κ решению однородного уравнения и подставляя c туда, получаем

$$y = \left(\int q \cdot e^{-\int p} + \tilde{c} \right) \cdot e^{\int p},$$

то есть общее решение линейного уравнения.

2 Уравнения Бернулли и Рикатти

Замечание. Существует огромное количество уравнений первого порядка, которые можно свести к линейному какой-либо заменой. В этом пункте будут разобраны такие уравнения, представленные в XVII веке Якобом Бернулли 1 и Рикатти 2 .

¹Якоб Бернулли (1655–1705, Швейцария)

²Риккати Якопо Франческо (1676-1754, Италия)

Определение 3. Уравнение вида

$$y' = p(x)y + q(x)y^{\alpha}, \tag{5}$$

где $\alpha \neq \{0,1\}$, называется дифференциальным уравнением Бернулли.

Лемма 3. Уравнение Бернулли $y' = p(x)y + q(x)y^{\alpha}$ при $y \neq 0$ заменой $t = y^{1-\alpha}$ сводится к линейному дифференциальному уравнению.

Доказательство. Рассмотрим уравнение Бернулли

$$y' = p(x)y + q(x)y^{\alpha}.$$

Поделим обе части уравнения на y^{α} :

$$\frac{y'}{y^{\alpha}} = p(x)y^{1-\alpha} + q(x).$$

Сделаем замену $t = y^{1-\alpha}$, тогда $t' = (1-\alpha)\frac{y'}{y^{\alpha}}$:

$$\frac{1}{1-\alpha}t' = p(x)t + q(x),$$

$$t' = (1 - \alpha) \left(p(x)t + q(x) \right).$$

Получили линейное дифференциальное уравнение.

Определение 4. Уравнение вида

$$y' = p(x)y^{2} + q(x)y + r(x)$$
(6)

называется дифференциальным уравнением Бернулли.

Замечание. Уравнение Бернулли является частным случаем уравнения Рикатти при $r(x) \equiv 0$. Рикатти был знаком с семьей Бернулли, поэтому связь между этими уравнениями неслучайна.

Лемма 4. Пусть φ – какое-то решение уравнения Рикатти $y'=p(x)y^2+q(x)y+r(x)$. Подстановка $y=z+\varphi$ сводит это уравнение к уравнению Бернулли.

$$y' = z' + \varphi'.$$

Так как φ – решение уравнения Рикатти, то

$$\varphi' = p(x)\varphi^2 + q(x)\varphi + r(x).$$

Тогда $y' = z' + p(x)\varphi^2 + q(x)\varphi + r(x)$.

Подставим замену в уравнение Рикатти

$$z' + p(x)\varphi^2 + q(x)\varphi + \underline{r(x)} = p(x)(z + \varphi)^2 + q(x)(z + \varphi) + \underline{r(x)},$$

$$z' = z\underbrace{(2p(x)\varphi + q(x))}_{P(x)} + \underbrace{p(x)}_{Q(x)} z^2,$$

$$z' = P(x)z + Q(x)z^2.$$

Получили уравнение Бернулли для $\alpha = 2$.

3 Уравнение в полных дифференциалах

Определение 5. Пусть существует функция u такая, что du = P(x,y)dx + Q(x,y)dy (то есть $u'_x = P, u'_y = Q$). Тогда уравнение вида

$$P(x,y)dx + Q(x,y)dy = 0 (7)$$

называется уравнением в полных дифференциалах (УПД).

Теорема 1 (Общее решение УПД). Пусть $u \in C^1(G)$, причем $u'_x = P$, $u'_y = Q$. Тогда функция $\varphi(x)$ является общим решением уравнения P(x,y)dx + Q(x,y)dy = 0 на интервале (α,β) в том и только том случае, когда $\varphi \in C^1(\alpha,\beta)$ и φ неявно задается уравнением u(x,y) = c при некотором $c \in \mathbb{R}$.

Доказательство. Необходимость:

Так как φ – решение, то $\varphi \in C^1(\alpha, \beta)$ и

$$P(x, \varphi(x))dx + Q(x, \varphi(x))d(\varphi(x)) \equiv 0,$$

то есть

$$P(x, \varphi(x)) + Q(x, \varphi(x))\varphi'(x) \equiv 0.$$

Заметим, что левая часть есть полная производная функции $u(x, \varphi(x))$.

$$\frac{d}{dx}u(x,\varphi(x)) \equiv 0,$$

$$u(x,\varphi(x)) \equiv c.$$

Таким образом, получаем, что φ действительно неявно задана уравнением u(x,y)=c.

Достаточность:

Так как φ неявно задана уравнением u(x,y)=c, то

$$u(x,\varphi(x)) \equiv c.$$

Тогда

$$\frac{d}{dx}u(x,\varphi(x)) \equiv 0,$$

то есть

$$P(x, \varphi(x)) + Q(x, \varphi(x))\varphi'(x) \equiv 0.$$

Так как $\varphi \in C^1(\alpha, \beta)$, то φ является решением уравнения P(x, y)dx + Q(x, y)dy = 0 по определению решения дифференциального уравнения.

Замечание. Назревает хороший вопрос: откуда эту функцию u взять и почему вообще она существует?

Пусть есть функция $u:u'_x=P,\ u'_y=Q,\ u\in C^2(G).$ Рассмотрим вторые производные:

На основе этого утверждения появляется следующая теорема.

Теорема 2 (Признак УПД). Пусть $P,Q \in C^1(G)$, причем $P'_y = Q'_x$, где G — односвязная область. Тогда существует функция $u: u'_x = P, u'_y = Q$. Кроме того, все такие функции имеют вид

$$u(\tilde{x}, \tilde{y}) = \int_{\gamma(\tilde{x}, \tilde{y})} P(x, y) dx + Q(x, y) dy + c,$$

еде $c \in \mathbb{R}$, $\gamma(\tilde{x}, \tilde{y})$ — кривая в области G, соединяющая точки (x_0, y_0) и (\tilde{x}, \tilde{y}) .

3амечание. Таким образом, при определенных условиях мы поняли, как можно найти эту функцию u. И далее, решая уравнение u=c, можем найти общее решение УПД.

Однако вычисление данного криволинейного интеграла зачастую является непростой задачей, поэтому рассмотрим другие методы.

Определение 6. Функция u при условии $u'_x = P$, $u'_y = Q$ называется потенциалом поля (P,Q), а поле (P,Q) – потенциальным полем.

Пример 1.

$$e^{-y}dx - (xe^{-y} + 2y) dy = 0.$$

Pemenue. Область определения уравнения есть \mathbb{R}^2 — односвязное множество.

Рассмотрим производные коэффициентов $P = e^{-y}$ и $Q = (xe^{-y} + 2y)$:

$$P_y' = -e^{-y} = Q_x'.$$

Таким образом, по признаку — это уравнение в полных дифференциалах. Не будем вычислять криволинейный интеграл. Но рассмотрим систему

$$\begin{cases} u'_x = e^{-y}, \\ u'_y = -xe^{-y} - 2y \end{cases}.$$

Рассмотрим потенциал в какой-то точке с фиксированной ординатой y_0 :

$$u'_x(x, y_0) = e^{-y_0} \implies u(x, y_0) = \int e^{-y_0} dx = xe^{-y_0} + c(y_0).$$

Подставляя во второе уравнение системы, получаем

$$(xe^{-y} + c(y))'_{y} = -xe^{-y} - 2y,$$

$$\Rightarrow xe^{-y} + c'(y) = \Rightarrow xe^{-y} - 2y,$$

$$c' = -2y,$$

$$c(y) = -y^{2} + A.$$

Таким образом, $u(x,y)=xe^{-y}-y^2+A$, а значит уравнение $xe^{-y}-y^2=C$ задает решение УПД.

Замечание. В примере был показан другой способ решения УПД, избегающий криволинейное интегрирование. Однако данный способ далеко не всегда оказывается возможен. По крайней мере, не всегда можно взять интеграл, чтобы найти $u(x,y_0)$ (при плохой области интеграл по прямой будет достаточно сложен).

Определение 7. Функция $\mu(x,y) \neq 0$ называется интегрирующим множителем уравнения P(x,y)dx + Q(x,y)dy = 0, если при домножении этого уравнения на μ получается уравнение в полных дифференциалах.

$$\mu P(x,y)dx + \mu Q(x,y)dy = 0 -$$
УПД.

Замечание. Если μ — интегрирующий множитель уравнения P(x,y)dx+Q(x,y)dy=0, причем $\mu,P,Q\in C^1(G)$. Тогда $(\mu P)_y'=(\mu Q)_x'$. Расписывая производную получаем уравнение в частных производных

$$\mu'_{y}P + \mu P'_{y} = \mu'_{x}Q + \mu Q'_{x}.$$

Решать его оказывается совсем непросто, однако чисто теоретически это является способом нахождения интегрирующего множества.

Однако стоит помнить, что нам не требуется находить общее решение. Нам достаточно лишь какое-то частное решение. Иногда его можно найти, как в следующем примере.

Пример 2. Рассмотрим линейное уравнение

$$y' = p(x)y + q(x),$$

где $p \neq 0$. Попробуем найти его интегрирующий множитель.

Решение. Перепишем исходное уравнение

$$(p(x)y + q(x)) dx - dy = 0.$$

Заметим, что это уравнение не является уравнением в полным дифференциалах.

Запишем уравнение для нахождения интегрирующего множителя.

$$\mu'_{y}(p(x)y + q(x)) + \mu p(x) = -\mu'_{x}.$$

Будем искать интегрирующий множитель в виде $\mu=\mu(x)$. Тогда первое слагаемое слева обнулится

$$\mu p(x) = -\mu'_x,$$

$$\mu = Ce^{-\int p}.$$

Так как нам нужно лишь какое-то решение, то рассмотрим любое C, например C=1.

Таким образом, $\mu = e^{-\int p}$ – интегрирующий множитель.

Умножим на μ исходное уравнение

$$y'e^{-\int p} = p(x)ye^{-\int p} + q(x)e^{-\int p},$$

$$y'e^{-\int p} - p(x)ye^{-\int p} = q(x)e^{-\int p}$$
.

Заметим, что в левой части стоит производная произведения $\left(ye^{-\int p}\right)$

$$\left(ye^{-\int p}\right) = q(x)e^{-\int p},$$

$$ye^{-\int p} = \int q(x)e^{-\int p} + A,$$

$$y = \left(\int q(x)e^{-\int p} + A\right)e^{\int p}.$$

Таким образом, получили общее решение линейного уравнения, а значит решение привело к верному ответу.

Замечание. Таким образом, мы получили еще один способ нахождения решения линейного уравнения, которым можно пользоваться на практике. Нужно запомнить интегрирующий множитель $\mu=e^{-\int p}$, а также свертывание в производную произведения.

Часть II

Уравнения, не разрешимые относительно произодной

4 Уравнение, разрешимое относительно производной

Пример 3. Уравнение $(y')^3 - 2yx = 0$ очевидно является разрешимым относительно производной: $y' = \sqrt[3]{2yx}$.

Пример 4. *Рассмотрим уравнение* (y' - 2x)(y' + 2x) = 0.

Рассмотрим отдельно решения уравнений y'=2x и y'=-2x. Хочется сказать, что вместе эти решения дадут общее решение исходного. Однако это не так! Очевидно, что решениями являются параболы с ветвями вниз и вверх соответственно. Тогда можно посмотреть на кривую, содержащую левую ветвь одной из парабол и правую другой (Puc. 1). Это также интегральная кривая, так как она очевидно гладкая. Оказывается, что только в точке с абсциссой x=0 возможны такие интегральные кривые, так как иначе гладкость не соблюдается.

Puc. 1

5 Метод введения параметра

Определение 8. Функция $f: D \to \mathbb{R}$ задана параметрически соотношениями $x = \varphi(t), y = \psi(t)$, где $t \in I$, если $\varphi(I) = D$ и $\forall t \in I$ $f(\varphi(t)) = \psi(t)$.

Замечание. Заметим, что определение можно переписать немного по-другому. Функция $f:D\to\mathbb{R}$ задана параметрически соотношениями $x=\varphi(t),y=\psi(t),$ где $t\in I,$ если $\varphi(I)=D$ и множество $[(\varphi(t),\psi(t)):t\in I]$ является графиком функции f.

Нетрудно понять, что эти определения эквивалентны.

Пример 5. $3a\partial a\partial u M \phi y u \kappa u u o f(x) = 1, x \in [-1,1]$ параметрически.

 $Hanpumep, egin{cases} x=\cos t, \ y=1 \end{cases} t \in \mathbb{R}.$ Очевидно, что это задание удовлетворя-ет определению.

Предложение. Рассмотрим уравнение F(x,y')=0 от двух переменных x и y'. Пусть оно задает некоторую кривую $\gamma=\{(x,y)\,|F(x,y')=0\}$ плоскости xOy'.

Возьмем функцию φ такую, что эта кривая является графиком функции φ' .

Тогда $F(x, \varphi'(x)) \equiv 0$.

Идея нахождения решения такого уравнения (в котором нельзя выразить y') заключается в том, чтобы задать функцию γ параметрически

и найти у также параметрически.

Пусть $\varphi \in C^1(\alpha, \beta), \ \varphi' \neq 0, \ \psi \in C(\alpha, \beta), \ причем эти функции задают параметрически наше уравнение <math>F(\varphi(t), \psi(t)) \equiv 0.$

Тогда функция, задаваемая параметрически

$$\begin{cases} x = \varphi(t), \\ y = g(t) = \int \psi(t)\varphi'(t)dt + c, \end{cases} \quad t \in (\alpha, \beta)$$

является решением уравнения F(x, y') = 0.

Замечание. Проверим, что функция действительно является решением.

Во-первых, проверим, что такое задание действительно является функцией, то есть каждому x соответствует ровно один y. Так как $\varphi' \neq 0$, то φ строго возрастает и тогда φ – биекция. Рассматривая обратную $t = \varphi^{-1}(x)$, получаем $y = g \circ \varphi^{-1}$.

Во-вторых, проверим непрерывность и дифференцируемость решения. Так как $g \in C^1(\alpha, \beta)$ и $\varphi^{-1} \in C^1(\varphi(\alpha), \varphi(\beta))$, то их композиция также непрерывно дифференцируема.

В-третьих, проверим, что функция обращает наше уравнение в тождество.

$$F(x, y')|_{y=g\circ\varphi^{-1}(x)} = F\left(x, \left(g\circ\varphi^{-1}\right)'(x)\right).$$

Так как $\left(g\circ\varphi^{-1}\right)'(x)=g'(\varphi^{-1}(x))\left(\varphi^{-1}\right)'(x)=(\psi(t)\varphi'(t))_{t=\varphi'(x)}\cdot\frac{1}{\varphi'(\varphi^{-1}(x))}=\psi(\varphi^{-1}(x)),$ то получаем

$$F\left(x,\left(g\circ\varphi^{-1}\right)'(x)\right)=F\left(x,\psi(\varphi^{-1}(x))\right)=F(\varphi(t),\psi(t))\equiv0.$$

Таким образом, наша функция действительно действительно обращает выражение в нуль. А значит, эта функция является решением уравнения F(x, y') = 0.

Пример 6.

$$e^{y'} + y' = x.$$

Решение. Параметризуем множество, задаваемое этим уравнением

$$\{(x,y'): e^{y'} + y' = x\}.$$

Пусть y' = t. Тогда $x = e^t + t$.

Замечание (Основное соотношение метода введение параметра).

$$dy = y_x' dx.$$

Подставляя наши функции получаем

$$dy = t \cdot d(e^{t} + t),$$

$$dy = t \cdot (e^{t} + 1),$$

$$y = \int t \cdot (e^{t} + 1) dt + c.$$

В итоге мы пришли к той же самой формуле, что и доказали ранее. А значит подстановки подходят.

Тогда следующая функция является решением

$$\begin{cases} x = e^t + t, \\ y = te^t - e^t + \frac{1}{2}t^2 + c \end{cases} \quad c \in \mathbb{R}, t \in \mathbb{R}.$$

Предложение (Общий случай метода введения параметра). Пусть есть уравнение F(x,y,y')=0, задающее какую-то поверхность $\sigma=((x,y,y')\,|F(x,y,y')=0)$

Пусть
$$\begin{cases} x = \varphi(u, v), \\ y = \psi(u, v), & -\textit{параметризация } \sigma. \\ y' = \chi(u, v) \end{cases}$$

Подставим эту параметризацию в основное соотношение $dy = y'_x dx$.

$$\psi_u'du + \psi_v'dv = \chi(u,v) \left(\varphi_u'du + \varphi_v'dv\right).$$

Пример 7.

$$xy' - y - \frac{y'}{2} \ln \frac{y'}{2} = 0.$$

Решение. Введем параметризацию

$$\begin{cases} x = u, \\ y' = v, \\ y = uv - \frac{v}{2} \ln v. \end{cases}$$

Тогда подставляя в основное соотношение, получаем

$$v du + \left(u - \frac{1}{2} \ln \frac{v}{2} - \frac{1}{2}\right) dv = v du,$$

$$\left(u - \frac{1}{2} \ln \frac{v}{2} - \frac{1}{2}\right) dv = 0,$$

При $\left(u-\frac{1}{2}\ln\frac{v}{2}-\frac{1}{2}\right)=0$, получаем $v=2e^{2u-1}$. Тогда $y=e^{2x-1}$. При dv=0, получаем $y=cx-\frac{c}{2}\ln\frac{c}{2}$.

Замечание. Важно помнить, что это могут быть не все решения уравнения!!! Такой случай уже был рассмотрен в примере 4.