Full Bayesian Significance Testing via Neural Networks: Appendix

Zehua Liu¹, Zimeng Li¹, Jingyuan Wang^{1,2,3*}, Yue He⁴

¹School of Computer Science and Engineering, Beihang University, Beijing, China
 ²School of Economics and Management, Beihang University, Beijing, China
 ³Key Laboratory of Data Intelligence and Management (Beihang University),
 Ministry of Industry and Information Technology, Beijing, China
 ⁴Department of Computer Science and Technology, Tsinghua University, Beijing, China

Code

https://github.com/liuzh-buaa/nfbst.

Theoretical Derivation of Variational Inference for Bayesian Neural Networks

In this section, we provide a detailed theoretical derivation for training Bayesian neural networks through variational inference. Further, we provide the specific form of the objective function in the context of the variational family with diagonal Gaussian distributions.

Given a dataset $\mathcal{D} = \{(X^{(1)}, y^{(1)}), \dots, (X^{(n)}, y^{(n)})\}$ of n i.i.d. pairs. For a Bayesian neural network, whose parameters are θ , we first assign a prior distribution as an initial belief $\pi(\theta)$ according to experience. This belief is gradually adjusted to fit data \mathcal{D} by using the Bayesian rule, and the final belief is presented as the posterior distribution $P(\theta|\mathcal{D})$.

$$P(\theta|D) = \frac{P(D|\theta)\pi(\theta)}{P(D)} = \frac{\prod_{i=1}^{n} P(y^{(i)}|X^{(i)}, \theta)}{\int_{\Theta} \prod_{i=1}^{n} P(y^{(i)}|X^{(i)}, \theta) d\theta} \pi(\theta),$$
(1)

However, it is intractable to solve the integral in Eq (1). Through variational inference, we use a tractable distribution to approximate the real but intractable posterior distribution. Formally, variational family $Q=\{q_\vartheta:\vartheta\in\Gamma\}$ is a predefined family of tractable distributions on model parameter space Θ , where ϑ is the parameter of variational distribution and Γ is the range of ϑ . The optimal variational distribution q_{ϑ^*} is chosen from Q such that

$$\vartheta^* = \arg\min_{\vartheta \in \Gamma} \mathrm{KL}(q_{\vartheta}(\theta) || P(\theta|\mathcal{D})). \tag{2}$$

KL divergence describes the "distance" between two distributions. According to its definition, the optimization objective function can be formulated as

$$\arg\min \mathcal{L} = \mathrm{KL}(q_{\vartheta}(\theta) || P(\theta|\mathcal{D})) = \int q_{\vartheta}(\theta) \log \frac{q_{\vartheta}(\theta)}{P(\theta|\mathcal{D})} d\theta.$$

From the Bayesian formula Eq (1), Eq (3) can be simplified

to

$$\mathcal{L} = \int q_{\vartheta}(\theta) \log \left(q_{\vartheta}(\theta) \frac{1}{P(\theta|\mathcal{D})} \right) d\theta$$

$$= \int q_{\vartheta}(\theta) \log \left(q_{\vartheta}(\theta) \frac{P(\mathcal{D})}{P(\mathcal{D}|\theta)\pi(\theta)} \right) d\theta$$

$$= -\int q_{\vartheta}(\theta) \log P(\mathcal{D}|\theta) d\theta + \int q_{\vartheta}(\theta) \log \frac{q_{\vartheta}(\theta)}{\pi(\theta)} d\theta$$

$$+ \int q_{\vartheta}(\theta) \log p(\mathcal{D}) d\theta$$

$$= -\mathbb{E}_{\theta \sim q_{\vartheta}(\theta)} \log P(\mathcal{D}|\theta) + \text{KL}(q_{\vartheta}(\theta)||\pi(\theta)) + \log P(\mathcal{D}) d\theta.$$
(4)

For the first term, if we assume

$$P(y|X,\theta) = N(\hat{y}(X,\theta), \sigma_0^2), \tag{5}$$

we can get

$$\log P(\mathcal{D}|\theta) = \log \prod_{i=1}^{n} P(y^{(i)}|X^{(i)}, \theta)$$

$$= \sum_{i=1}^{n} \log P(y^{(i)}|X^{(i)}, \theta)$$

$$= \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left(-\frac{(y^{(i)} - \hat{y}(X^{(i)}, \theta))^2}{2\sigma_0^2}\right)$$

$$= -\sum \frac{1}{2\sigma_0^2} (y^{(i)} - \hat{y}(X^{(i)}, \theta))^2 - n \log \sqrt{2\pi}\sigma_0.$$
(6)

This is equivalent to Mean Squared Error (MSE) in the regression task within a scaling factor. Then, using Monte Carlo, $\mathbb{E}_{\theta \sim q_{\vartheta}(\theta)} \log P(\mathcal{D}|\theta)$ means the average of MSE under $\theta \sim q_{\vartheta}(\theta)$.

For the second term, we adopt popular diagonal Gaussian distributions as the variational family Q in our experiment. We first consider θ follows a one-dimensional distribution as follows:

$$q_{\vartheta}(\theta) \sim \mathcal{N}(\mu, \sigma^2).$$
 (7)

Correspondingly, we assume

$$\pi(\theta) \sim \mathcal{N}(\mu_{\pi}, \sigma_{\pi}^2).$$
 (8)

^{*}Corresponding author (jywang@buaa.edu.cn) Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Then we get

$$KL (q_{\vartheta}(\theta) || \pi(\theta)) = \int q_{\vartheta}(\theta) \log \frac{q_{\vartheta}(\theta)}{\pi(\theta)} d\theta$$

$$= \int q_{\vartheta}(\theta) \log q_{\vartheta}(\theta) d\theta - \int q_{\vartheta}(\theta) \log \pi(\theta) d\theta$$

$$= \int q_{\vartheta}(\theta) \log \left(\frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(\theta - \mu)^{2}}{2\sigma^{2}})\right) d\theta - \int q_{\vartheta}(\theta) \log \left(\frac{1}{\sqrt{2\pi}\sigma_{\pi}} \exp(-\frac{(\theta - \mu_{\pi})^{2}}{2\sigma_{\pi}^{2}})\right) d\theta$$

$$= -\frac{1}{2} \left(1 + \log(2\pi\sigma^{2})\right) - \left(-\frac{1}{2} \log(2\pi\sigma_{\pi}^{2}) - \frac{\sigma^{2} + (\mu - \mu_{\pi})^{2}}{2\sigma_{\pi}^{2}}\right)$$

$$= \log \frac{\sigma_{\pi}}{\sigma} + \frac{\sigma^{2} + (\mu - \mu_{\pi})^{2}}{2\sigma_{\pi}^{2}} - \frac{1}{2}.$$
(9)

This can also be extended to n-dimensional diagonal Gaussian distributions. That is,

$$\pi(\theta) \sim \mathcal{N}(\mu_{\pi}, \Sigma_{\pi}), q_{\vartheta}(\theta) \sim \mathcal{N}(\mu, \Sigma)$$
 (10)

and

$$\mu_{\pi} = \begin{bmatrix} \mu_{\pi 1} \\ \mu_{\pi 2} \\ \dots \\ \mu_{\pi n} \end{bmatrix}, \Sigma_{\pi} = \begin{bmatrix} \sigma_{\pi 1}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{\pi 2}^{2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \sigma_{\pi n}^{2} \end{bmatrix}, \quad (11)$$

$$\mu = \begin{bmatrix} \mu_{1} \\ \mu_{2} \\ \dots \\ \mu_{n} \end{bmatrix}, \Sigma = \begin{bmatrix} \sigma_{1}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{2}^{2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \sigma_{n}^{2} \end{bmatrix}. \quad (12)$$

Further, $q_{\vartheta}(\theta)$ can be denotes as

$$q_{\vartheta}(\theta) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\{-\frac{1}{2}(\theta - \mu)^T \Sigma^{-1}(\theta - \mu)\}, \quad (13)$$

and $\pi(\theta)$ can be denotes as

$$\pi(\theta) = \frac{1}{\sqrt{(2\pi)^n |\Sigma_{\pi}|}} \exp\{-\frac{1}{2} (\theta - \mu_{\pi})^T \Sigma_{\pi}^{-1} (\theta - \mu_{\pi})\}.$$
 (14)

Then, we can get

$$KL (q_{\vartheta}(\theta) || \pi(\theta)) = \int q_{\vartheta}(\theta) \log \frac{q_{\vartheta}(\theta)}{\pi(\theta)} d\theta$$

$$= \int q_{\vartheta}(\theta) \log q_{\vartheta}(\theta) d\theta - \int q_{\vartheta}(\theta) \log \pi(\theta) d\theta$$

$$= \log \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} - \log \frac{1}{\sqrt{(2\pi)^n |\Sigma_{\pi}|}}$$

$$- \frac{1}{2} \int q_{\vartheta}(\theta) (\theta - \mu)^T \Sigma^{-1} (\theta - \mu) d\theta$$

$$+ \frac{1}{2} \int q_{\vartheta}(\theta) (\theta - \mu_{\pi})^T \Sigma_{\pi}^{-1} (\theta - \mu_{\pi}) d\theta$$

$$= \log \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} - \log \frac{1}{\sqrt{(2\pi)^n |\Sigma_{\pi}|}}$$

$$- \frac{1}{2} \mathbb{E}_{q_{\vartheta}(\theta)} (\theta - \mu)^T \Sigma^{-1} (\theta - \mu)$$

$$+ \frac{1}{2} \mathbb{E}_{q_{\vartheta}(\theta)} (\theta - \mu_{\pi})^T \Sigma_{\pi}^{-1} (\theta - \mu_{\pi})$$
(15)

Proposition 1. Given

$$\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$$
 (16)

where \mathbf{x} is a n dimensional vector, that is $\mathbf{x} \in \mathbb{R}^{n \times 1}$. If we assume A is a $n \times n$ matrix, we have

$$\mathbb{E}(\mathbf{x}^T A \mathbf{x}) = \operatorname{tr}(A\Sigma) + \mu^T A \mu. \tag{17}$$

Proof. The trace of a matrix (denoted as "tr") is defined as the sum of the principle diagonal elements of a matrix, which has the following properties:

$$tr(M_1M_2) = tr(M_2M_1)$$

$$\Rightarrow tr(M_1M_2M_3) = tr(M_2M_3M_1) = tr(M_3M_1M_2),$$
(18)

where M_1, M_2, M_3 are three compatible matrices. Therefore, we have

$$\mathbf{x}^T A \mathbf{x} = \operatorname{tr}(\mathbf{x}^T A \mathbf{x}) = \operatorname{tr}(A \mathbf{x} \mathbf{x}^T). \tag{19}$$

According to the properties of n-dimensional diagonal Gaussian distribution, we have

$$\Sigma = \mathbb{E}\left((\mathbf{x} - \mu)(\mathbf{x} - \mu)^{T}\right)$$

$$= \mathbb{E}\left((\mathbf{x} - \mu)(\mathbf{x}^{T} - \mu^{T})\right)$$

$$= \mathbb{E}\left(\mathbf{x}\mathbf{x}^{T} - \mathbf{x}\mu^{T} - \mu\mathbf{x}^{T} + \mu\mu^{T}\right)$$

$$= \mathbb{E}(\mathbf{x}\mathbf{x}^{T}) - \mathbb{E}(\mathbf{x})\mu^{T} - \mu\mathbb{E}(\mathbf{x}^{T}) + \mu\mu^{T}$$

$$= \mathbb{E}(\mathbf{x}\mathbf{x}^{T}) - \mu\mu^{T}.$$
(20)

Based on Eq (19),

$$\mathbb{E}(\mathbf{x}^{T} A \mathbf{x}) = \mathbb{E}\left(\operatorname{tr}(A \mathbf{x} \mathbf{x}^{T})\right)$$

$$= \operatorname{tr}\left(\mathbb{E}(A \mathbf{x} \mathbf{x}^{T})\right)$$

$$= \operatorname{tr}\left(A \mathbb{E}(\mathbf{x} \mathbf{x}^{T})\right)$$

$$= \operatorname{tr}\left(A(\Sigma + \mu \mu^{T})\right).$$
(21)

Then, based on Eq (20),

$$\mathbb{E}(\mathbf{x}^T A \mathbf{x}) = \operatorname{tr}(A \Sigma) + \operatorname{tr}(A \mu \mu^T) = \operatorname{tr}(A \Sigma) + \mu^T A \mu. \quad (22)$$

According to Proposition 1, we can simplify Eq (15) as

$$KL (q_{\vartheta}(\theta) || \pi(\theta)) = \log \frac{1}{\sqrt{(2\pi)^{n} |\Sigma|}} - \log \frac{1}{\sqrt{(2\pi)^{n} |\Sigma_{\pi}|}} - \frac{1}{2} \operatorname{tr}(\Sigma^{-1}\Sigma) - (\mu - \mu)^{T} \Sigma^{-1} (\mu - \mu) + \frac{1}{2} \operatorname{tr}(\Sigma_{\pi}^{-1}\Sigma) - (\mu - \mu_{\pi})^{T} \Sigma_{\pi}^{-1} (\mu - \mu_{\pi})$$

$$= \frac{1}{2} \log \frac{|\Sigma_{\pi}|}{|\Sigma|} + \frac{1}{2} \operatorname{tr}(\Sigma_{\pi}^{-1}\Sigma) + \frac{1}{2} (\mu - \mu_{\pi})^{T} \Sigma_{\pi}^{-1} (\mu - \mu_{\pi}) - \frac{1}{2} n$$

$$= \sum_{i=1}^{n} \left(\log \frac{\sigma_{\pi i}}{\sigma_{i}} + \frac{\sigma_{i}^{2} + (\mu_{i} - \mu_{\pi i})^{2}}{2\sigma_{\pi i}^{2}} - \frac{1}{2} \right)$$
(23)

The result is consistent with Eq (9).

In conclusion, we have analyzed the meanings of different terms in the objective function Eq (4). The first term Eq (6) is related to data (such as MSE for regression task). The second term Eq (23) is only related to $\vartheta = (\mu, \sigma)$ further θ like a regularization term. The third term $\log P(\mathcal{D})$ is a constant once the data \mathcal{D} is determined.

Theoretical Proof of the Convergence of Bayesian Evidence

In this section, we provide a detailed proof for the convergence of Bayesian Evidence in linear regression context. It still holds true when extended to nonlinear scenarios and we will provide a rigorous proof in the future work.

Problem Definition

We denote $f_0: \mathcal{X} \to \mathbb{R}$ as the underlying relationship between features and target. Then, we assume that the target variable y is given by

$$y = f_0(\mathbf{x}) + \epsilon, \tag{24}$$

where $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^d$ is a vector of feature variables, $y \in \mathbb{R}$ is the dependent variable and ϵ is the noise variable.

In linear regression context, we assume

$$f_0(\mathbf{x}) = \mathbf{x}\beta = \mathbf{x} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \dots \\ \beta_d \end{bmatrix}, \tag{25}$$

and ϵ is a zero mean Gaussian random variable with variance (inverse precision) σ_0^2

$$p(\epsilon) \sim \mathcal{N}(\epsilon|0, \sigma_0^2).$$
 (26)

Thus we can write

$$p(y|\mathbf{x},\beta) = \mathcal{N}(y|\mathbf{x}\beta,\sigma_0^2). \tag{27}$$

Note that β_i is the coefficient corresponding to the i-th feature. Now consider a dataset of inputs $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ with corresponding target values $\{y_1,\ldots,y_n\}$. To simplify, we group them into the form of matrix, that is $\mathbf{X} \in \mathbb{R}^{n \times d}, \mathbf{y} \in \mathbb{R}^{n \times 1}$. By employing the technique of "block matrices" (or "partitioned matrices"), we denote \mathbf{X} as

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_d \end{bmatrix}, \tag{28}$$

where X_i is the i-th column of X, representing the values of i-th feature of all data. Making the assumption that these data points are drawn independently from the distribution Eq(27), we obtain the following expression for the likelihood function, which is a function of the adjustable parameters β and σ_0^2 , in the form

$$p(\mathbf{y}|\mathbf{X},\beta) = \prod_{i=1}^{n} \mathcal{N}(y_i|\mathbf{x}_i\beta,\sigma_0^2) = \mathcal{N}(\mathbf{y}|\mathbf{X}\beta,\sigma_0^2\mathbf{I}). \quad (29)$$

To test the significance of a feature X_j , the problem is formulated as:

$$H_0: \beta_i = 0, \quad H_1: \beta_i \neq 0.$$
 (30)

Prior Distribution over Model Parameters β

We begin our discussion of the Bayesian treatment of linear regression by introducing a prior probability distribution over the model parameters β . First note that the likelihood function $p(\mathbf{x}|\beta)$ defined by Eq(29) is the exponential of a quadratic function of β . The corresponding conjugate prior is therefore given by a Gaussian distribution of the form

$$\pi(\beta) = \mathcal{N}(\beta|\mu_p, \Sigma_p) \tag{31}$$

having mean μ_p and covariance Σ_p . In our approach, we consider a zero-mean diagonal Gaussian so that

$$\mu_p = \mathbf{0}, \Sigma_p = \begin{bmatrix} \alpha_0^2 & 0 & \cdots & 0 \\ 0 & \alpha_1^2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \alpha_d^2 \end{bmatrix}.$$
(32)

Posterior Distribution over Model Parameters β

Next we compute the posterior distribution. From the Bayes' theorem, we have

$$p(\beta|\mathbf{X}, \mathbf{y}) \propto p(\mathbf{y}|\beta, \mathbf{X})\pi(\beta).$$
 (33)

The posterior distribution is proportional to the product of the likelihood function and the prior. Due to the choice of a conjugate Gaussian prior distribution, the posterior will also be Gaussian. The derivation is as follows:

$$p(\beta|\mathbf{X}, \mathbf{y}) \propto p(\mathbf{y}|\mathbf{X}, \beta)\pi(\beta)$$

$$= \mathcal{N}(\mathbf{y}|\mathbf{X}\beta, \sigma_0^2 \mathbf{I})\mathcal{N}(\beta|\mathbf{0}, \Sigma_p)$$

$$= \frac{1}{\sqrt{(2\pi)^n}\sigma_0^n} \exp\{-\frac{1}{2}(\mathbf{y} - \mathbf{X}\beta)^\top \sigma_0^{-2} \mathbf{I}(\mathbf{y} - \mathbf{X}\beta)\}$$

$$= \frac{1}{\sqrt{(2\pi)^d |\Sigma_p|}} \exp\{-\frac{1}{2}\beta^\top \Sigma_p^{-1}\beta\}$$

$$= c \exp\{-\frac{1}{2\sigma_0^2}(\mathbf{y}^\top - \beta^\top \mathbf{X}^\top)(\mathbf{y} - \mathbf{X}\beta) - \frac{1}{2}\beta^\top \Sigma_p^{-1}\beta\}$$

$$= c \exp\{-\frac{1}{2}\beta^\top (\sigma_0^{-2} \mathbf{X}^\top \mathbf{X} + \Sigma_p^{-1})\beta - \frac{1}{2\sigma_0^2} \mathbf{y}^\top \mathbf{y}$$

$$+ \frac{1}{2\sigma_0^2}(\mathbf{y}^\top \mathbf{X}\beta + \beta^\top \mathbf{X}^\top \mathbf{y})\},$$
(34)

where $c=(\sqrt{(2\pi)^{n+d}|\Sigma_p|}\sigma_0^n)^{-1}$ is a constant. The aim is to simplify Eq(34) in the form of Gaussian distribution. In the end, we obtain

$$p(\beta|\mathbf{X}, \mathbf{y}) = \mathcal{N}(\beta|\mu, \Sigma), \tag{35}$$

where

$$\mu = \sigma_0^{-2} \Sigma \mathbf{X}^{\mathsf{T}} \mathbf{y},\tag{36}$$

$$\Sigma = (\sigma_0^{-2} \mathbf{X}^{\top} \mathbf{X} + \Sigma_p^{-1})^{-1}.$$
 (37)

Property of μ , Σ of β (Optional)

Due to

$$(\mathbf{X}^{\top}\mathbf{X})^{\top} = \mathbf{X}^{\top}\mathbf{X},\tag{38}$$

 $\mathbf{X}^{\top}\mathbf{X}$ is a symmetric matrix. By using the technique of "Eigenvalue Decomposition", we have

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathsf{T}},\tag{39}$$

and

$$\mathbf{Q} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_d \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix},$$

$$(40)$$

where $\lambda_1, \lambda_2, \cdots, \lambda_d$ are eigenvalues and $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_d$ are their corresponding eigenvectors satisfying

$$\lambda_i \mathbf{v}_i = \mathbf{X}^\top \mathbf{X} \mathbf{v}_i \quad i = 1, 2, \cdots, d.$$
 (41)

If we assume a zero-mean isotropic Gaussian governed by a single parameter σ_p so that

$$\Sigma_p = \sigma_p^2 \mathbf{I}.\tag{42}$$

Then, we obtain

$$\begin{split} & \Sigma = (\sigma_0^{-2} \mathbf{Q} \mathbf{D} \mathbf{Q}^{-1} + \sigma_p^{-2} \mathbf{I})^{-1} \\ & = (\sigma_0^{-2} \mathbf{Q} \mathbf{D} \mathbf{Q}^{-1} + \sigma_p^{-2} \mathbf{Q} \mathbf{I} \mathbf{Q}^{-1})^{-1} \\ & = \left(\mathbf{Q} (\sigma_0^{-2} \mathbf{D} + \sigma_p^{-2} \mathbf{I}) \mathbf{Q}^{-1} \right)^{-1} \\ & = \mathbf{Q} (\sigma_0^{-2} \mathbf{D} + \sigma_p^{-2} \mathbf{I})^{-1} \mathbf{Q}^{-1} \\ & = \mathbf{Q} (\sigma_0^{-2} \mathbf{D} + \sigma_p^{-2} \mathbf{I})^{-1} \mathbf{Q}^{\top}. \end{split} \tag{43}$$

We notate

$$\mathbf{M} = (\sigma_0^{-2}\mathbf{D} + \sigma_p^{-2}\mathbf{I})^{-1} = \begin{bmatrix} m_1 & 0 & \cdots & 0 \\ 0 & m_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & m_d \end{bmatrix}$$
(44)

where $m_i = 1/(\sigma_0^{-2}\lambda_i + \sigma_p^{-2})$, then we obtain

$$\Sigma = \mathbf{Q} \mathbf{M} \mathbf{Q}^{\top} = \sum_{i=1}^{d} m_i \mathbf{v}_i \mathbf{v}_i^{\top}.$$
 (45)

$$\mu = \sigma_0^2 \Sigma \mathbf{X}^{\top} \mathbf{y} = \sigma_0^{-2} \sum_{i=1}^d m_i \mathbf{v}_i \mathbf{v}_i^{\top} \mathbf{X}^{\top} \mathbf{y}.$$
 (46)

Posterior Distribution over Model Parameter β_i

From a geometric interpretation of the Gaussian distribution, we can also denote Σ as

$$\Sigma = \begin{bmatrix} \sigma(\beta_1, \beta_1) & \sigma(\beta_1, \beta_2) & \cdots & \sigma(\beta_1, \beta_d) \\ \sigma(\beta_2, \beta_1) & \sigma(\beta_2, \beta_2) & \cdots & \sigma(\beta_2, \beta_d) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma(\beta_d, \beta_1) & \sigma(\beta_d, \beta_2) & \cdots & \sigma(\beta_d, \beta_d) \end{bmatrix}, \quad (47)$$

where $\sigma(\beta_i, \beta_j)$ is the covariance (or variance) of β_i and β_j . And we can also denote μ as

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \dots \\ \mu_d \end{bmatrix}, \tag{48}$$

where μ_i is the mean of β_i . Therefore, the posterior distribution of β_i is

$$p(\beta_i|\mathbf{X}, \mathbf{y}) = \mathcal{N}(\beta_i|\mu_i, \sigma_i^2), \tag{49}$$

where

$$\mu_j = \sigma_0^{-2} \sigma_j^2 \mathbf{X}_j^\top \mathbf{y},\tag{50}$$

$$\mu_j = \sigma_0^{-2} \sigma_j^2 \mathbf{X}_j^{\mathsf{T}} \mathbf{y},$$

$$\sigma_j^2 = \frac{1}{\sigma_0^{-2} \mathbf{X}_j^{\mathsf{T}} \mathbf{X}_j + \alpha_j^{-2}}.$$
(50)

Figure 1: Bayesian evidence calculated based on the distribution of β_i .

Convergence of Bayesian Evidence

We denote the whole space of β_i as Ψ such that $\beta_i \in \Psi$. Then, we define the region whose probability greater than $p(\beta_i = 0 | \mathbf{X}, \mathbf{y})$ according to the following formula:

$$\Psi_0 = \{\beta_j : p(\beta_j | \mathbf{X}, \mathbf{y}) > p(\beta_j = 0 | \mathbf{X}, \mathbf{y}\},$$
 (52)

where $p(\beta_j = 0|\mathbf{X}, \mathbf{y})$ should be the maximum of the posterior density under the null hypothesis H_0 (Eq(30)). In our method, we adopt a more flexible valid Bayesian evidence for the null hypothesis provided by (?):

$$Ev(H_0) = 1 - \int_{\Psi_0} p\left(\beta_j | \mathbf{X}, \mathbf{y}\right) d\beta_j$$
 (53)

The geometric interpretation of the electric field (E-field) is illustrated in Figure 1. According to Eq(49), the posterior distribution of β_j , $p(\beta_j|\mathbf{X},\mathbf{y})$, is a Gaussian distribution. Due to symmetry,

$$p(\beta_j = 0|\mathbf{X}, \mathbf{y}) = p(\beta_j = 2\mu_j|\mathbf{X}, \mathbf{y}). \tag{54}$$

Further, when the value of β_i is between 0 and $2\mu_i$, there is $p(\beta_j|\mathbf{X},\mathbf{y}) > p(\beta_j = 0|\mathbf{X},\mathbf{y})$. In other words,

$$\Psi_0 = \begin{cases} [2\mu_j, 0] & \mu_j < 0\\ [0, 2\mu_i] & \mu_i \ge 0 \end{cases}$$
 (55)

Eq(53) can be simplifie

$$Ev(H_0) = \begin{cases} 1 - \int_{2\mu_j}^0 p(\beta_j | \mathbf{X}, \mathbf{y}) d\beta_j & \mu_j < 0 \\ 1 - \int_0^{2\mu_j} p(\beta_j | \mathbf{X}, \mathbf{y}) d\beta_j & \mu_j \ge 0 \end{cases}$$
(56)

If we assume the feature X_j is insignificant, that is $\delta \mathbf{y}/\delta \mathbf{X}_{j} = 0$. This implies that \mathbf{y} does not change with the variation of X_j in the direction of X_j . From the perspective of geometry, \mathbf{X}_j and \mathbf{y} are n-dimensional vectors. It means that \mathbf{y} is orthogonal to \mathbf{X}_j , hence

$$\lim_{n \to \infty} \mathbf{X}_j^{\mathsf{T}} \mathbf{y} = 0. \tag{57}$$

Moreover, when n goes to ∞ , $\mathbf{X}^{\top}\mathbf{X} \to \infty$, hence

$$\lim_{n \to \infty} \sigma_j^2 = \lim_{n \to \infty} \frac{1}{\sigma_0^{-2} \mathbf{X}_j^{\mathsf{T}} \mathbf{X}_j + \alpha_j^{-2}} = 0.$$
 (58)

According to Eq(50)

$$\lim_{n \to \infty} \mu_j = \sigma_0^{-2} (\lim_{n \to \infty} \sigma_j^2) (\lim_{n \to \infty} \mathbf{X}_j^\top \mathbf{y}) = 0,$$
 (59)

and μ_j converges faster than σ_i^2 . Therefore,

$$\lim_{n \to \infty} Ev(H_0) = 1. \tag{60}$$

Experimental Setup

In this section, we introduce the detailed experimental setup, including hardware settings and algorithm parameters. All the experiments are conducted on an Ubuntu machine equipped with 40 Intel(R) Xeon(R) Silver 4210 CPUs @ 2.20GHz with 10 physical cores, and the GPU is NVIDIA GeForce RTX 2080 Ti, armed with 11GB of GDDR6 memory.

For toy example, Dataset 1, Dataset 2, and energy efficiency datasets, we fit fully-connected feed-forward neural networks and Bayesian neural networks using the PyTorch package (v1.8.0). Both neural networks and Bayesian neural networks have the same structure. Specifically, they have three hidden layers with twenty nodes and a relu activation function, the same structure as f_0 in Dataset 1 but different from others. This also shows our approach does not enforce the same structure as f_0 . For MNIST dataset, we fit a convolutional neural network and a Bayesian neural network with the same structure to perform digit classification. That is, it first repeats the convolution layer and the max pooling layer twice, followed by two fully connected layers, with ReLU as the activation function. Table 2 shows the mean squared error (MSE) for regression tasks or test accuracy for classification tasks and all models fit the data well.

For neural networks and Bayesian neural networks, they are trained by the Adam optimizer. Moreover, we use "torch.optim.lr_scheduler.StepLR" to decay the learning rate of each parameter group. We set the maximum epochs of training to 20000 and adopt the early stopping strategy with patience equals 40. That is, we stop training when the monitor metric (MSE for regression or accuracy for classification) does not decrease (or increase) for 40 epochs. For neural networks, we set an L2 regularization term in the loss function to avoid overfitting, which is implemented by setting weight decay in the optimizer. Note for Bayesian neural networks, we don't need to set it. The regularization term is calculated exactly by Eq (23). The descriptions of related parameters are listed as follows:

- optimizer::lr. The learning rate of Adam optimizer.
- optimizer::step_size. The period of learning rate decay.
- optimizer::decay_gamma. The multiplicative factor of learning rate decay.
- optimizer::weight_decay. The weight decay of Adam optimizer, acting as L2 penalty.
- Bayesian neural network:: σ_0 . The variance of the likelihood distribution of y in Eq (6).
- Bayesian neural network::μ_π. The mean of the prior distribution of θ in Eq (8).
- Bayesian neural network:: σ_π. The variance of the prior distribution of θ in Eq (8).

We use the grid search algorithm to choose the optimal ones as parameters. Their specific values are shown in Table 1. In practice, we adopt diagonal Gaussian distribution as our variational family of model parameters and ensemble three Bayesian neural networks to spread the range of model parameters further.

Besides, for our method nFBST, we need to sample through the Bayesian neural network and then approximate the posterior probability density by Kernel Density Estimation (KDE). The sample size we set is one hundred. We use the Gaussian kernel function and choose the best bandwidth from $\{0.01, 0.05, 0.1, 1.0\}$ by GridSearchCV for each sampling through 5-fold cross-validation. The bandwidth here acts as a smoothing parameter, controlling the trade-off between bias and variance in the result. A large bandwidth leads to a very smooth (that is, high-bias) density distribution while a small bandwidth leads to an unsmooth (that is, high-variance) density distribution.

Descriptions of Energy Efficiency Dataset

In the paper, we conduct experiments on the energy efficient dataset, and the descriptions of its features and target are shown in Table 3. When it comes to efficient building design, the computation of the heating load (HL) is required to determine the specifications of the heating equipment needed to maintain comfortable indoor air conditions. Those eight variables have been frequently used in the EPB (Energy Performance of Buildings) literature to study energy-related topics in buildings.

Limitations of Our Approach

In our implementation, we adopt the Kernel Density Estimation (KDE) algorithm as the primary method to estimate the posterior probability density. Unfortunately, the lack of an effective GPU acceleration method restricts the calculation process to the CPU. Consequently, the overall pipeline cannot be completed entirely on the GPU, leading to an increase in the overall computing time. To address this issue and enhance the computational efficiency of our model, we aim to develop a GPU-accelerated version of KDE or explore other feasible alternative methods in future research.

Toy Example to Compare Distribution-based with Point-based Approaches

In the paper, we use a toy example to verify that *n*FBST identifies the global significance more accurately than other testing methods and it can provide more insights on the local or instance-wise significance. Here, we would like to illustrate further why we need significance testing rather than a point estimate by comparing feature importance analysis.

We consider the following data generation process

$$y = 8 + x_0^2 + x_1 x_2 + \cos(x_3) + \exp(x_4 x_5) + 0.1 x_6 + 0 x_7 + \epsilon,$$
 (61)

where $X = [x_0, x_1, \dots, x_7] \sim \mathcal{U}(-1, 1)^8, \epsilon \sim \mathcal{N}(0, 1)$. The variable x_7 has no influence on y. We first trained a neural network f and a Bayesian neural network with the same structure, and both of them fit the data well (MSE is about 1.0, which equals the variance of ϵ). If we adopt partial derivative as the testing statistic, for a specific data instance, we get

$$\frac{\partial f}{\partial x_6} = 0.034 < 0.197 = \frac{\partial f}{\partial x_7}.$$
 (62)

Parameters	Toy Dataset	Dataset 1	Dataset 2	Energy Effieciency	MNIST
optimizer::lr	0.01,0.01	0.01,0.01	0.01,0.01	0.01,0.01	0.001,0.001
optimizer::step_size	50,30	100,100	100,100	100,100	inf,inf
optimizer::decay_gamma	0.5,0.5	0.5,0.5	0.5,0.5	0.1,0.1	\
optimizer::weight_decay	$\setminus, 0.01$	\setminus ,0	\setminus ,0	0.001	\backslash ,0
Bayesian neural network:: σ_0	0.1,\	0.01,\	0.01,\	0.0001,\	0.001,\
Bayesian neural network:: μ_{π}	0,\	0,\	0,\	$0, \setminus$	0,\
Bayesian neural network:: σ_{π}	0.1,\	0.1,\	$0.1, \setminus$	0.001,\	0.01,\

Table 1: The optimal parameters for Bayesian neural network(BNN) and neural network(NN) on different datasets. The former of the tuple is for BNN, and the latter is for NN.

Models	Dataset 1	Dataset 2	Dataset 3	Energy Efficiency	MNIST
Bayesian Neural Network	0.012 (MSE)	0.014 (MSE)	0.010 (MSE)	0.144 (MSE)	99.2% (acc)
Neural Network	0.012 (MSE)	0.014 (MSE)	0.009 (MSE)	0.149 (MSE)	99.3% (acc)

Table 2: Mean Squared Error (MSE) or accuracy (acc) on different datasets

Table 3: Descriptions of variables for residential energy efficiency evaluation.

Variable	Description	Number of possible values
x_1	Relative Compactness	12
x_2	Surface Area	12
x_3	Wall Area	7
x_4	Roof Area	4
x_5	Overall Height	2
x_6	Orientation	4
x_7	Glazing Area	4
x_8	Glazing Area Distribution	6
y	Heating Load	586

However, the feature x_6 is more significant than the insignificant feature x_7 actually. Then, we plot the gradient distribution obtained through the Bayesian neural network in the form of histograms (Figure 2). The Bayesian evidence obtained by Grad-nFBST is

$$Ev(H_0(x_6)) = 0.087 < 0.537 = Ev(H_0(x_7)).$$
 (63)

Note Bayesian evidence means the evidence in favor of H_0 . In other words, the closer the Bayesian evidence to one, the more likely to accept H_0 that a feature is insignificant. It is consistent with the data generation process in Eq (61). In figure 2, although the peak where the probability density is greatest for both x_6 and x_7 is not exactly equal to 0, we can intuitively see the difference between them. For x_7 , the second peak of the distribution is close to zero, the probability density of which is quite close to the probability density at the greatest peak. However, the probability density of zero for x_6 shrinks sharply near zero. Therefore, the final testing result of x_7 by Grad-nFBST is low, which means we are more likely to determine it as insignificant. However, the probability at zero for x_6 is obviously lower than the first peak, so we prefer to reject the proposition that x_6 is insignificant. In fact, this is probably not an uncommon situation. Although the performance of the neural network is strong, it still cannot be accurate with all data. That's one of the reasons why we need significance testing rather than a point-estimate method.

More Results of Simulation Experiments

In the paper, we show the comparison of AUC for each feature before and after *n*FBST under different eps. The average AUC of *n*FBST is higher than primary feature importance methods. Here we present more details in Table 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and Figure 3, 4, 5, 6, 7, 8 under different eps on two simulation datasets. The results show that *n*FBST outperforms feature importance methods on almost all features under different conditions.

Figure 2: Gradient distributions obtained from the *n*FBST.

Figure 3: Comparison of AUC for each feature before and after *n*FBST under eps=0.001.

Figure 4: Comparison of AUC for each feature before and after *n*FBST under eps=0.01.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
$\overline{x_0}$	0.678	0.799	0.661	0.737	0.636	0.781	0.648	0.678
x_1	0.668	0.803	0.639	0.751	0.629	0.79	0.646	0.69
x_2	0.653	0.777	0.649	0.689	0.616	0.767	0.6	0.633
x_3	0.643	0.757	0.627	0.692	0.618	0.747	0.62	0.66
x_4	0.607	0.733	0.581	0.674	0.58	0.724	0.576	0.619
x_5	0.658	0.784	0.65	0.738	0.617	0.775	0.62	0.671
x_6	0.663	0.762	0.609	0.719	0.631	0.749	0.626	0.659
x_7	0.609	0.731	0.598	0.687	0.592	0.727	0.593	0.649
x_8	0.606	0.766	0.61	0.689	0.578	0.76	0.602	0.63
x_9	0.595	0.711	0.567	0.669	0.572	0.702	0.564	0.594
x_{10}	0.618	0.746	0.599	0.695	0.586	0.738	0.595	0.622
x_{11}	0.71	0.812	0.679	0.701	0.658	0.797	0.653	0.659
x_{12}	0.686	0.792	0.651	0.728	0.645	0.78	0.667	0.684
x_{13}	0.635	0.781	0.595	0.734	0.589	0.769	0.596	0.636
x_{14}	0.7	0.832	0.661	0.758	0.652	0.813	0.688	0.701
x_{15}	0.662	0.808	0.651	0.718	0.619	0.796	0.596	0.662
x_{16}	0.604	0.72	0.593	0.685	0.58	0.718	0.578	0.622
x_{17}	0.641	0.77	0.592	0.725	0.605	0.76	0.609	0.65
x_{18}	0.619	0.762	0.579	0.705	0.59	0.751	0.606	0.652
x_{19}	0.725	0.815	0.715	0.762	0.678	0.804	0.665	0.693
x_{20}	0.61	0.746	0.595	0.679	0.579	0.737	0.568	0.619
x_{21}	0.628	0.729	0.597	0.675	0.599	0.723	0.569	0.623
x_{22}	0.559	0.681	0.528	0.644	0.541	0.678	0.539	0.584
x_{23}	0.639	0.756	0.598	0.692	0.602	0.743	0.594	0.624
x_{24}	0.632	0.739	0.6	0.696	0.6	0.733	0.607	0.641
x_{25}	0.654	0.79	0.614	0.691	0.613	0.777	0.612	0.665
x_{26}	0.626	0.738	0.607	0.704	0.598	0.729	0.577	0.636
x_{27}	0.597	0.734	0.588	0.678	0.573	0.729	0.556	0.615
x_{28}	0.606	0.733	0.581	0.677	0.578	0.723	0.567	0.604
x_{29}	0.672	0.788	0.657	0.681	0.628	0.776	0.626	0.642
x_{30}	0.614	0.746	0.592	0.694	0.586	0.739	0.563	0.633
x_{31}	0.562	0.695	0.552	0.674	0.552	0.692	0.563	0.61
x_{32}	0.693	0.839	0.653	0.779	0.642	0.822	0.665	0.67
x_{33}	0.705	0.799	0.653	0.719	0.656	0.788	0.655	0.674
x_{34}	0.606	0.741	0.583	0.683	0.587	0.737	0.589	0.636
x_{35}	0.625	0.755	0.614	0.699	0.602	0.753	0.61	0.637
x_{36}	0.575	0.699	0.574	0.663	0.558	0.691	0.563	0.597
x_{37}	0.625	0.781	0.606	0.648	0.586	0.771	0.601	0.623
x_{38}	0.666	0.782	0.617	0.737	0.625	0.773	0.637	0.656
x_{39}	0.674	0.791	0.64	0.723	0.638	0.774	0.624	0.675
x_{40}	0.7	0.818	0.692	0.758	0.652	0.807	0.648	0.672
x_{41}	0.673	0.775	0.655	0.742	0.634	0.766	0.625	0.67
x_{42}	0.578	0.704	0.563	0.67	0.568	0.705	0.564	0.624
x_{43}	0.679	0.807	0.652	0.705	0.615	0.787	0.607	0.629
x_{44}	0.593	0.714	0.562	0.689	0.577	0.714	0.563	0.628
x_{45}	0.658	0.767	0.645	0.714	0.616	0.759	0.624	0.655
x_{46}	0.649	0.774	0.606	0.693	0.604	0.767	0.573	0.628
x_{47}	0.695	0.82	0.684	0.764	0.646	0.813	0.652	0.691
x_{48}	0.569	0.691	0.55	0.649	0.545	0.685	0.534	0.573
x_{49}	0.664	0.797	0.641	0.721	0.621	0.787	0.621	0.649

Table 4: Comparison of AUC for each feature before and after *n*FBST under eps=0.001 on Dataset 1.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.626	0.648	0.562	0.618	0.588	0.645	0.619	0.649
x_1	0.64	0.685	0.62	0.578	0.636	0.665	0.591	0.593
x_2	0.56	0.667	0.589	0.603	0.559	0.679	0.558	0.559
x_3	0.544	0.638	0.552	0.627	0.537	0.625	0.54	0.564
x_4	0.569	0.651	0.53	0.583	0.539	0.638	0.519	0.534
x_5	0.66	0.713	0.684	0.649	0.626	0.704	0.612	0.605
x_6	0.563	0.677	0.529	0.65	0.554	0.664	0.541	0.613
x_7	0.628	0.626	0.557	0.61	0.614	0.615	0.506	0.563
x_8	0.604	0.641	0.562	0.564	0.574	0.647	0.552	0.549
x_9	0.656	0.723	0.673	0.693	0.631	0.737	0.584	0.592
x_{10}	0.509	0.696	0.648	0.632	0.536	0.685	0.582	0.594
x_{11}	0.691	0.775	0.747	0.788	0.688	0.777	0.648	0.652
x_{12}	0.664	0.735	0.658	0.713	0.608	0.752	0.618	0.588
x_{13}	0.6	0.713	0.582	0.615	0.527	0.718	0.541	0.524
x_{14}	0.628	0.67	0.662	0.7	0.605	0.689	0.622	0.621
x_{15}	0.568	0.615	0.574	0.596	0.555	0.598	0.561	0.552
x_{16}	0.568	0.64	0.543	0.619	0.53	0.619	0.526	0.554
x_{17}	0.625	0.702	0.695	0.615	0.661	0.71	0.698	0.714
x_{18}	0.551	0.623	0.555	0.594	0.523	0.597	0.557	0.535
x_{19}	0.544	0.61	0.539	0.607	0.534	0.605	0.535	0.569
$x_{19} \\ x_{20}$	0.589	0.652	0.622	0.646	0.573	0.642	0.569	0.607
$x_{20} \\ x_{21}$	0.583	0.636	0.594	0.569	0.597	0.642	0.527	0.6
$x_{21} \\ x_{22}$	0.71	0.682	0.627	0.627	0.641	0.682	0.634	0.658
x_{23}	0.561	0.671	0.569	0.609	0.531	0.679	0.573	0.579
	0.715	0.747	0.671	0.685	0.677	0.76	0.65	0.603
x_{24}	0.506	0.651	0.538	0.61	0.486	0.70	0.476	0.51
x_{25}	0.629	0.656	0.608	0.619	0.625	0.663	0.515	0.569
x_{26}	0.595	0.030	0.679	0.688	0.613	0.758	0.656	0.671
x_{27}	0.552	0.773	0.552	0.711	0.562	0.75	0.568	0.571
x_{28}	0.332	0.734	0.532	0.711	0.362	0.763	0.508	0.576
x_{29}	0.761	0.774	0.698	0.360 0.761	0.615	0.703	0.616	0.570
x_{30}								
x_{31}	0.571	0.639	0.575	0.561	0.593	0.626	0.517	0.606
x_{32}	0.647	0.776	0.705	0.714	0.633	0.784	0.59	0.625
x_{33}	0.564	0.641	0.539	0.548	0.552	0.638	0.504	0.538
x_{34}	0.656	0.727	0.648	0.645	0.642	0.717	0.59	0.579
x_{35}	0.698	0.75	0.702	0.727	0.632	0.731	0.644	0.64
x_{36}	0.551	0.582	0.558	0.567	0.536	0.555	0.494	0.589
x_{37}	0.716	0.721	0.681	0.694	0.696	0.722	0.587	0.643
x_{38}	0.652	0.693	0.679	0.699	0.641	0.71	0.562	0.599
x_{39}	0.564	0.655	0.555	0.695	0.494	0.654	0.573	0.568
x_{40}	0.552	0.635	0.532	0.626	0.529	0.646	0.511	0.539
x_{41}	0.618	0.669	0.614	0.621	0.604	0.671	0.542	0.571
x_{42}	0.737	0.773	0.636	0.723	0.66	0.756	0.683	0.628
x_{43}	0.737	0.567	0.54	0.572	0.573	0.555	0.56	0.557
x_{44}	0.6	0.64	0.54	0.587	0.562	0.644	0.529	0.547
x_{45}	0.673	0.675	0.68	0.683	0.634	0.662	0.569	0.619
x_{46}	0.632	0.775	0.669	0.67	0.622	0.76	0.64	0.6
x_{47}	0.627	0.652	0.616	0.581	0.584	0.655	0.537	0.572
x_{48}	0.619	0.715	0.648	0.733	0.595	0.707	0.633	0.62
x_{49}	0.574	0.64	0.623	0.617	0.606	0.65	0.569	0.619

Table 5: Comparison of AUC for each feature before and after nFBST under eps=0.001 on Dataset 2.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.653	0.772	0.646	0.697	0.624	0.755	0.627	0.655
x_1	0.643	0.772	0.624	0.733	0.599	0.762	0.614	0.644
x_2	0.624	0.75	0.615	0.663	0.591	0.742	0.553	0.611
x_3	0.641	0.712	0.61	0.654	0.608	0.707	0.601	0.626
x_4	0.588	0.706	0.572	0.654	0.563	0.695	0.562	0.603
x_5	0.626	0.751	0.625	0.717	0.595	0.735	0.597	0.654
x_6	0.641	0.736	0.582	0.699	0.6	0.726	0.606	0.64
x_7	0.598	0.695	0.594	0.661	0.587	0.695	0.584	0.622
x_8	0.621	0.745	0.606	0.669	0.593	0.748	0.584	0.622
x_9	0.589	0.683	0.563	0.655	0.572	0.68	0.558	0.579
x_{10}	0.604	0.702	0.574	0.653	0.571	0.689	0.581	0.604
x_{11}^{10}	0.678	0.799	0.648	0.717	0.625	0.789	0.63	0.635
x_{12}	0.625	0.769	0.614	0.726	0.596	0.764	0.63	0.642
x_{13}	0.622	0.75	0.562	0.715	0.568	0.743	0.588	0.614
x_{14}	0.674	0.802	0.658	0.744	0.634	0.775	0.65	0.672
x_{15}	0.619	0.76	0.606	0.69	0.596	0.756	0.571	0.621
x_{16}	0.581	0.703	0.588	0.684	0.56	0.7	0.557	0.597
x_{17}	0.608	0.748	0.591	0.707	0.584	0.738	0.598	0.638
x_{18}	0.593	0.728	0.575	0.677	0.57	0.715	0.594	0.64
x_{19}	0.67	0.773	0.672	0.738	0.623	0.766	0.625	0.65
x_{20}	0.576	0.715	0.58	0.657	0.557	0.701	0.56	0.615
x_{21}	0.588	0.694	0.57	0.66	0.559	0.693	0.56	0.59
x_{22}	0.562	0.649	0.543	0.614	0.548	0.647	0.541	0.584
x_{23}	0.616	0.717	0.581	0.672	0.589	0.711	0.576	0.608
x_{24}	0.583	0.691	0.576	0.651	0.558	0.687	0.561	0.605
x_{25}	0.623	0.766	0.603	0.667	0.593	0.758	0.591	0.641
x_{26}	0.597	0.71	0.589	0.67	0.574	0.704	0.582	0.621
x_{27}	0.583	0.686	0.58	0.64	0.568	0.684	0.54	0.594
x_{28}	0.595	0.697	0.566	0.634	0.567	0.692	0.56	0.568
x_{29}	0.638	0.766	0.634	0.675	0.599	0.757	0.613	0.631
x_{30}	0.575	0.703	0.566	0.671	0.56	0.697	0.534	0.612
x_{31}	0.54	0.653	0.548	0.648	0.534	0.652	0.554	0.594
x_{32}	0.665	0.829	0.644	0.791	0.63	0.814	0.658	0.662
x_{33}	0.674	0.75	0.632	0.699	0.623	0.74	0.607	0.619
x_{34}	0.586	0.693	0.553	0.64	0.572	0.689	0.566	0.619
$x_{34} = x_{35}$	0.618	0.744	0.606	0.702	0.595	0.743	0.613	0.633
x_{36}	0.559	0.686	0.562	0.643	0.543	0.668	0.532	0.572
x_{36}	0.601	0.744	0.583	0.636	0.568	0.737	0.583	0.613
x_{37} x_{38}	0.638	0.738	0.583	0.702	0.597	0.73	0.609	0.613
$x_{38} = x_{39}$	0.683	0.764	0.657	0.72	0.643	0.748	0.625	0.663
	0.664	0.785	0.675	0.736	0.635	0.781	0.638	0.654
x_{40}	0.629	0.726	0.624	0.701	0.604	0.717	0.603	0.637
x_{41}	0.564	0.673	0.54	0.643	0.541	0.67	0.539	0.595
$x_{42} \\ x_{43}$	0.504	0.788	0.632	0.702	0.609	0.769	0.599	0.533
$x_{43} \\ x_{44}$	0.59	0.788	0.562	0.702	0.583	0.705	0.541	0.609
$x_{44} \\ x_{45}$	0.621	0.071	0.623	0.676	0.585	0.707	0.604	0.623
	0.615	0.710	0.584	0.645	0.583	0.707	0.562	0.523
x_{46}	0.648	0.72	0.5645	0.731	0.605	0.712	0.502	0.543
x_{47}	0.544	0.773	0.643	0.731	0.603	0.765	0.63	0.565
x_{48}				0.031				0.505
x_{49}	0.644	0.776	0.635	0.700	0.61	0.763	0.594	0.029

Table 6: Comparison of AUC for each feature before and after nFBST under eps=0.01 on Dataset 1.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.588	0.661	0.567	0.646	0.561	0.657	0.584	0.607
x_1	0.635	0.695	0.611	0.657	0.599	0.691	0.568	0.592
x_2	0.568	0.64	0.574	0.638	0.556	0.643	0.565	0.559
x_3	0.553	0.659	0.56	0.627	0.536	0.658	0.538	0.568
x_4	0.563	0.617	0.545	0.58	0.539	0.613	0.529	0.534
x_5	0.666	0.746	0.665	0.695	0.616	0.74	0.594	0.597
x_6	0.607	0.699	0.559	0.662	0.574	0.688	0.593	0.589
x_7	0.561	0.641	0.57	0.615	0.556	0.643	0.548	0.58
x_8	0.635	0.701	0.633	0.661	0.608	0.703	0.629	0.617
x_9	0.658	0.764	0.67	0.706	0.617	0.762	0.623	0.611
x_{10}	0.619	0.683	0.618	0.636	0.591	0.682	0.589	0.587
x_{11}	0.669	0.737	0.667	0.705	0.634	0.738	0.635	0.627
x_{12}	0.691	0.739	0.68	0.693	0.642	0.735	0.619	0.614
x_{13}	0.599	0.682	0.635	0.632	0.567	0.68	0.589	0.572
x_{14}	0.611	0.682	0.624	0.661	0.587	0.675	0.568	0.603
x_{15}	0.562	0.634	0.569	0.613	0.542	0.629	0.54	0.56
x_{16}	0.589	0.678	0.571	0.623	0.558	0.673	0.542	0.575
x_{17}	0.617	0.707	0.625	0.673	0.591	0.704	0.586	0.602
x_{18}	0.547	0.617	0.531	0.589	0.538	0.613	0.513	0.544
x_{19}	0.572	0.637	0.559	0.609	0.562	0.639	0.53	0.576
x_{20}	0.611	0.675	0.604	0.648	0.579	0.677	0.583	0.582
x_{21}	0.557	0.667	0.558	0.583	0.545	0.67	0.532	0.575
x_{22}	0.632	0.682	0.619	0.632	0.603	0.685	0.603	0.628
x_{23}	0.601	0.689	0.604	0.653	0.579	0.691	0.558	0.594
x_{24}	0.743	0.798	0.722	0.719	0.691	0.779	0.662	0.645
x_{25}	0.579	0.656	0.567	0.613	0.558	0.649	0.534	0.572
x_{26}	0.597	0.652	0.578	0.643	0.574	0.659	0.55	0.582
x_{27}	0.639	0.718	0.64	0.675	0.611	0.714	0.59	0.611
x_{28}	0.575	0.729	0.584	0.678	0.557	0.725	0.55	0.604
x_{29}	0.642	0.715	0.621	0.598	0.597	0.702	0.598	0.586
x_{30}	0.705	0.794	0.715	0.738	0.658	0.802	0.641	0.629
x_{31}	0.591	0.684	0.602	0.648	0.577	0.684	0.545	0.59
x_{32}	0.685	0.745	0.686	0.711	0.657	0.746	0.617	0.623
x_{33}	0.593	0.681	0.554	0.562	0.565	0.679	0.536	0.579
x_{34}	0.611	0.704	0.609	0.662	0.586	0.706	0.584	0.586
x_{35}	0.703	0.755	0.719	0.728	0.662	0.757	0.671	0.663
x_{36}	0.544	0.611	0.533	0.576	0.529	0.615	0.511	0.552
x_{37}	0.614	0.721	0.616	0.694	0.581	0.721	0.584	0.606
x_{38}	0.653	0.737	0.653	0.712	0.619	0.74	0.601	0.628
x_{39}	0.631	0.713	0.619	0.678	0.593	0.711	0.601	0.601
x_{40}	0.577	0.66	0.577	0.622	0.556	0.658	0.557	0.575
x_{41}	0.616	0.653	0.594	0.613	0.593	0.646	0.576	0.587
x_{42}	0.667	0.744	0.651	0.711	0.636	0.745	0.608	0.606
x_{43}	0.545	0.599	0.54	0.592	0.527	0.597	0.527	0.564
x_{44}	0.561	0.629	0.533	0.59	0.542	0.626	0.529	0.547
x_{45}	0.64	0.7	0.626	0.642	0.603	0.696	0.573	0.595
x_{46}	0.67	0.804	0.693	0.744	0.634	0.799	0.626	0.623
x_{47}	0.607	0.668	0.613	0.611	0.581	0.66	0.572	0.577
x_{48}	0.637	0.734	0.649	0.708	0.595	0.731	0.598	0.621
x_{49}	0.573	0.661	0.563	0.617	0.565	0.669	0.544	0.585

Table 7: Comparison of AUC for each feature before and after nFBST under eps=0.01 on Dataset 2.

Figure 5: Comparison of AUC for each feature before and after *n*FBST under eps=0.02.

Figure 6: Comparison of AUC for each feature before and after *n*FBST under eps=0.03.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.661	0.774	0.643	0.712	0.623	0.759	0.636	0.653
x_1	0.647	0.78	0.635	0.73	0.615	0.77	0.641	0.664
x_2	0.634	0.765	0.63	0.679	0.6	0.757	0.575	0.614
x_3	0.632	0.716	0.614	0.657	0.612	0.707	0.609	0.637
x_4	0.584	0.708	0.565	0.652	0.556	0.7	0.56	0.597
x_5	0.637	0.761	0.63	0.722	0.597	0.753	0.605	0.654
x_6	0.645	0.741	0.594	0.698	0.615	0.735	0.623	0.651
x_7	0.594	0.7	0.595	0.659	0.584	0.699	0.579	0.626
x_8	0.609	0.752	0.608	0.677	0.581	0.746	0.588	0.612
x_9	0.578	0.686	0.557	0.649	0.559	0.68	0.552	0.577
x_{10}	0.595	0.726	0.58	0.673	0.572	0.715	0.58	0.613
x_{11}^{10}	0.699	0.811	0.666	0.717	0.648	0.803	0.637	0.643
x_{12}	0.646	0.764	0.615	0.72	0.611	0.761	0.635	0.654
x_{13}	0.618	0.754	0.58	0.72	0.575	0.744	0.588	0.622
x_{14}	0.669	0.82	0.656	0.741	0.63	0.799	0.67	0.684
x_{15}	0.626	0.77	0.61	0.701	0.597	0.762	0.579	0.633
x_{16}	0.59	0.702	0.583	0.679	0.567	0.7	0.568	0.604
x_{17}	0.61	0.751	0.586	0.709	0.584	0.744	0.595	0.642
x_{18}	0.591	0.734	0.566	0.691	0.569	0.723	0.591	0.639
x_{19}	0.68	0.787	0.678	0.746	0.637	0.776	0.629	0.655
x_{20}	0.591	0.723	0.58	0.668	0.564	0.712	0.562	0.61
x_{21}	0.6	0.701	0.585	0.657	0.574	0.698	0.562	0.602
x_{22}	0.566	0.666	0.533	0.633	0.546	0.663	0.527	0.579
x_{23}	0.634	0.73	0.592	0.679	0.598	0.72	0.58	0.61
x_{24}	0.596	0.706	0.578	0.666	0.571	0.701	0.573	0.618
x_{25}	0.627	0.777	0.597	0.688	0.593	0.764	0.602	0.646
x_{26}	0.6	0.716	0.597	0.683	0.58	0.71	0.57	0.621
x_{27}	0.586	0.697	0.57	0.65	0.561	0.696	0.546	0.596
x_{28}	0.599	0.711	0.575	0.657	0.572	0.703	0.562	0.586
x_{29}	0.661	0.769	0.632	0.677	0.613	0.762	0.608	0.627
$x_{29} \\ x_{30}$	0.586	0.716	0.573	0.673	0.568	0.711	0.553	0.613
x_{31}	0.541	0.66	0.545	0.653	0.535	0.654	0.556	0.595
x_{32}	0.676	0.83	0.641	0.775	0.631	0.817	0.649	0.656
x_{33}	0.67	0.771	0.631	0.715	0.626	0.763	0.626	0.645
x_{34}	0.585	0.709	0.568	0.651	0.573	0.708	0.578	0.617
x_{35}	0.619	0.739	0.602	0.695	0.593	0.737	0.6	0.622
x_{36}	0.563	0.683	0.567	0.642	0.549	0.669	0.551	0.576
x_{37}	0.594	0.749	0.582	0.634	0.559	0.74	0.575	0.597
$x_{37} = x_{38}$	0.64	0.75	0.598	0.714	0.602	0.743	0.613	0.63
x_{39}	0.667	0.787	0.636	0.727	0.632	0.771	0.614	0.658
	0.673	0.794	0.665	0.741	0.636	0.771	0.631	0.646
x_{40}	0.639	0.738	0.629	0.72	0.612	0.732	0.601	0.647
$x_{41} \\ x_{42}$	0.563	0.738	0.544	0.72	0.546	0.732	0.55	0.603
x_{42}	0.659	0.801	0.631	0.704	0.599	0.786	0.594	0.615
x_{43}	0.583	0.684	0.559	0.704	0.574	0.780	0.556	0.614
x_{44}	0.565	0.064	0.539	0.692	0.574	0.039	0.556	0.63
x_{45}	0.627	0.741	0.589	0.662	0.588	0.737	0.558	0.601
x_{46}	0.627	0.742	0.589	0.002	0.623	0.733	0.538	0.666
x_{47}			0.638	0.736 0.641				
x_{48}	0.559	0.672			0.538	0.668	0.522	0.558
x_{49}	0.647	0.781	0.625	0.709	0.61	0.767	0.595	0.627

Table 8: Comparison of AUC for each feature before and after nFBST under eps=0.02 on Dataset 1.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.603	0.674	0.572	0.658	0.569	0.67	0.571	0.605
x_1	0.615	0.689	0.613	0.656	0.591	0.686	0.569	0.596
x_2	0.58	0.648	0.578	0.633	0.569	0.65	0.563	0.562
x_3	0.557	0.673	0.573	0.639	0.541	0.676	0.55	0.582
x_4	0.558	0.625	0.546	0.581	0.539	0.623	0.523	0.542
x_5	0.689	0.749	0.672	0.7	0.634	0.74	0.604	0.606
x_6	0.591	0.697	0.579	0.659	0.564	0.692	0.603	0.599
x_7	0.587	0.653	0.578	0.629	0.575	0.655	0.556	0.592
x_8	0.631	0.693	0.623	0.647	0.598	0.689	0.609	0.608
x_9	0.67	0.759	0.677	0.699	0.633	0.755	0.627	0.624
x_{10}	0.608	0.686	0.619	0.652	0.583	0.684	0.596	0.602
x_{11}	0.663	0.746	0.664	0.709	0.629	0.741	0.64	0.631
x_{12}	0.693	0.743	0.698	0.703	0.651	0.743	0.649	0.646
x_{13}	0.611	0.694	0.635	0.638	0.575	0.693	0.594	0.584
x_{14}	0.615	0.698	0.625	0.675	0.584	0.691	0.575	0.606
x_{15}	0.578	0.635	0.572	0.624	0.555	0.632	0.549	0.571
x_{16}	0.588	0.689	0.589	0.63	0.56	0.684	0.563	0.583
x_{17}	0.619	0.709	0.638	0.674	0.598	0.709	0.61	0.619
x_{18}	0.558	0.633	0.548	0.6	0.542	0.631	0.533	0.549
x_{19}	0.577	0.649	0.567	0.616	0.56	0.651	0.539	0.572
x_{20}	0.602	0.676	0.613	0.644	0.581	0.676	0.581	0.587
x_{21}	0.579	0.68	0.571	0.597	0.56	0.682	0.536	0.573
x_{22}	0.639	0.685	0.62	0.634	0.607	0.687	0.604	0.614
x_{23}	0.608	0.706	0.626	0.677	0.588	0.706	0.578	0.61
x_{24}	0.749	0.795	0.725	0.718	0.701	0.784	0.664	0.646
x_{25}	0.577	0.662	0.566	0.611	0.558	0.655	0.545	0.576
x_{26}	0.61	0.651	0.596	0.642	0.593	0.655	0.561	0.594
x_{27}	0.65	0.727	0.649	0.678	0.616	0.724	0.609	0.619
x_{28}	0.572	0.729	0.581	0.668	0.55	0.727	0.548	0.606
x_{29}	0.646	0.716	0.627	0.605	0.602	0.706	0.59	0.585
x_{30}	0.723	0.81	0.726	0.758	0.667	0.812	0.664	0.646
x_{31}	0.588	0.699	0.601	0.655	0.572	0.693	0.555	0.601
x_{32}	0.689	0.761	0.684	0.72	0.652	0.76	0.615	0.619
x_{33}	0.589	0.687	0.548	0.575	0.56	0.688	0.543	0.583
x_{34}	0.618	0.725	0.622	0.671	0.593	0.725	0.594	0.601
x_{35}	0.706	0.768	0.728	0.748	0.668	0.77	0.678	0.679
x_{36}	0.554	0.606	0.54	0.579	0.539	0.61	0.52	0.563
x_{37}	0.62	0.722	0.635	0.685	0.59	0.719	0.598	0.618
x_{38}	0.673	0.76	0.666	0.719	0.633	0.761	0.612	0.638
x_{39}	0.621	0.724	0.625	0.682	0.594	0.718	0.603	0.615
x_{40}	0.599	0.671	0.588	0.634	0.575	0.668	0.563	0.587
x_{41}	0.614	0.666	0.606	0.623	0.59	0.66	0.578	0.597
x_{42}	0.662	0.742	0.659	0.709	0.631	0.742	0.612	0.609
$x_{42} \\ x_{43}$	0.544	0.617	0.546	0.6	0.533	0.616	0.524	0.563
x_{44}	0.562	0.639	0.542	0.602	0.543	0.639	0.525	0.557
$x_{44} \\ x_{45}$	0.633	0.716	0.629	0.657	0.598	0.707	0.574	0.61
x_{46}	0.68	0.804	0.707	0.744	0.639	0.798	0.625	0.625
$x_{46} \\ x_{47}$	0.609	0.673	0.599	0.615	0.574	0.667	0.561	0.576
x_{48}	0.649	0.746	0.657	0.713	0.607	0.744	0.618	0.633
248	0.584	0.658	0.566	0.617	0.57	0.659	0.54	0.584

Table 9: Comparison of AUC for each feature before and after nFBST under eps=0.02 on Dataset 2.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.671	0.788	0.653	0.729	0.63	0.773	0.64	0.661
x_1	0.654	0.789	0.638	0.74	0.626	0.778	0.644	0.681
x_2	0.643	0.768	0.638	0.686	0.611	0.761	0.587	0.624
x_3	0.635	0.742	0.621	0.683	0.613	0.732	0.615	0.647
x_4	0.591	0.717	0.573	0.664	0.569	0.706	0.567	0.609
x_5	0.639	0.767	0.631	0.727	0.598	0.759	0.612	0.655
x_6	0.649	0.748	0.6	0.706	0.62	0.739	0.622	0.655
x_7	0.601	0.706	0.593	0.67	0.586	0.706	0.578	0.636
x_8	0.601	0.756	0.607	0.683	0.574	0.75	0.599	0.625
x_9	0.582	0.702	0.563	0.66	0.562	0.697	0.56	0.585
x_{10}	0.609	0.731	0.587	0.677	0.578	0.724	0.586	0.612
x_{11}^{10}	0.7	0.814	0.666	0.712	0.649	0.802	0.644	0.649
x_{12}	0.662	0.779	0.631	0.723	0.626	0.77	0.651	0.664
x_{13}	0.63	0.764	0.592	0.724	0.587	0.755	0.593	0.629
x_{14}	0.685	0.825	0.663	0.754	0.645	0.806	0.679	0.687
x_{15}	0.637	0.785	0.624	0.71	0.6	0.776	0.582	0.64
x_{16}	0.59	0.708	0.585	0.677	0.57	0.707	0.571	0.609
x_{17}	0.615	0.758	0.58	0.714	0.581	0.75	0.601	0.639
x_{18}	0.602	0.75	0.575	0.698	0.582	0.738	0.594	0.642
x_{19}	0.698	0.795	0.691	0.748	0.654	0.785	0.639	0.669
x_{20}	0.595	0.73	0.58	0.671	0.566	0.721	0.564	0.603
x_{21}	0.613	0.71	0.587	0.665	0.583	0.705	0.567	0.61
x_{22}	0.557	0.669	0.527	0.634	0.538	0.667	0.53	0.573
x_{23}	0.63	0.739	0.592	0.686	0.598	0.727	0.586	0.619
x_{24}	0.61	0.717	0.587	0.676	0.583	0.714	0.58	0.622
x_{25}	0.644	0.782	0.602	0.686	0.604	0.77	0.605	0.652
x_{26}	0.611	0.723	0.602	0.693	0.586	0.717	0.575	0.627
x_{27}	0.589	0.713	0.577	0.663	0.563	0.71	0.555	0.6
x_{28}	0.607	0.727	0.588	0.676	0.584	0.718	0.567	0.603
$x_{28} \\ x_{29}$	0.667	0.776	0.64	0.675	0.62	0.769	0.618	0.633
x_{30}	0.6	0.728	0.58	0.683	0.573	0.723	0.558	0.616
$x_{30} = x_{31}$	0.544	0.67	0.542	0.654	0.537	0.664	0.556	0.593
x_{32}	0.68	0.837	0.645	0.775	0.631	0.818	0.654	0.66
x_{33}	0.687	0.784	0.642	0.722	0.64	0.777	0.642	0.659
x_{34}	0.597	0.722	0.579	0.666	0.58	0.721	0.579	0.625
$x_{34} = x_{35}$	0.62	0.749	0.598	0.694	0.595	0.746	0.603	0.624
x_{36}	0.566	0.687	0.571	0.649	0.553	0.678	0.559	0.589
x_{37}	0.500	0.763	0.587	0.638	0.568	0.754	0.583	0.602
x_{38}	0.648	0.761	0.605	0.723	0.609	0.755	0.622	0.637
x_{39}	0.668	0.786	0.643	0.723	0.636	0.771	0.622	0.668
x_{40}	0.677	0.700	0.676	0.751	0.636	0.802	0.638	0.654
	0.656	0.753	0.634	0.727	0.618	0.746	0.605	0.648
$x_{41} \\ x_{42}$	0.572	0.688	0.554	0.661	0.558	0.688	0.556	0.616
$x_{42} \\ x_{43}$	0.663	0.799	0.639	0.707	0.604	0.784	0.550	0.619
$x_{43} \\ x_{44}$	0.581	0.694	0.559	0.674	0.571	0.696	0.552	0.616
$x_{44} \\ x_{45}$	0.635	0.054	0.539	0.703	0.601	0.030	0.552	0.639
	0.627	0.751	0.592	0.673	0.589	0.743	0.556	0.603
x_{46}	0.672	0.733	0.392	0.073	0.632	0.743	0.550	0.672
x_{47}	0.672	0.797	0.545	0.741	0.632	0.79	0.526	0.672
x_{48}								
x_{49}	0.66	0.788	0.637	0.721	0.619	0.779	0.611	0.638

Table 10: Comparison of AUC for each feature before and after nFBST under eps=0.03 on Dataset 1.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.606	0.684	0.57	0.658	0.573	0.678	0.572	0.598
x_1	0.615	0.698	0.617	0.662	0.592	0.695	0.584	0.605
x_2	0.586	0.659	0.582	0.633	0.569	0.658	0.559	0.564
x_3	0.568	0.682	0.584	0.647	0.55	0.683	0.552	0.588
x_4	0.569	0.632	0.549	0.588	0.548	0.63	0.527	0.552
x_5	0.691	0.756	0.683	0.704	0.645	0.745	0.626	0.624
x_6	0.603	0.706	0.586	0.663	0.575	0.702	0.614	0.618
x_7	0.583	0.66	0.578	0.635	0.567	0.663	0.566	0.588
x_8	0.642	0.704	0.637	0.653	0.609	0.7	0.613	0.615
x_9	0.677	0.771	0.693	0.707	0.639	0.767	0.641	0.634
x_{10}	0.616	0.691	0.617	0.646	0.584	0.688	0.593	0.599
x_{11}	0.661	0.754	0.665	0.714	0.626	0.748	0.644	0.642
x_{12}	0.697	0.76	0.707	0.717	0.651	0.759	0.658	0.657
x_{13}	0.624	0.7	0.643	0.64	0.592	0.697	0.602	0.597
x_{14}	0.612	0.702	0.631	0.682	0.583	0.7	0.575	0.611
x_{15}	0.572	0.64	0.572	0.632	0.551	0.638	0.547	0.568
x_{16}	0.596	0.705	0.594	0.644	0.568	0.702	0.567	0.591
x_{17}	0.617	0.707	0.631	0.67	0.596	0.71	0.606	0.619
x_{18}	0.556	0.63	0.552	0.6	0.538	0.631	0.534	0.553
x_{19}	0.576	0.655	0.576	0.626	0.56	0.657	0.542	0.576
x_{20}	0.61	0.683	0.622	0.656	0.591	0.683	0.585	0.601
x_{21}	0.574	0.68	0.563	0.6	0.549	0.68	0.536	0.567
x_{22}	0.636	0.696	0.621	0.649	0.606	0.697	0.603	0.615
x_{23}	0.61	0.713	0.635	0.684	0.59	0.709	0.581	0.617
x_{24}	0.751	0.8	0.733	0.727	0.704	0.79	0.675	0.652
x_{25}	0.58	0.662	0.57	0.609	0.559	0.658	0.544	0.573
x_{26}	0.62	0.664	0.604	0.647	0.599	0.666	0.566	0.595
x_{27}	0.658	0.734	0.651	0.69	0.621	0.731	0.612	0.621
x_{28}	0.572	0.734	0.583	0.676	0.551	0.733	0.555	0.611
x_{29}	0.647	0.717	0.622	0.6	0.602	0.709	0.595	0.58
x_{30}	0.726	0.816	0.742	0.766	0.681	0.821	0.674	0.66
x_{31}	0.596	0.701	0.6	0.655	0.576	0.697	0.564	0.602
x_{32}	0.695	0.766	0.69	0.717	0.653	0.764	0.62	0.623
x_{33}	0.591	0.693	0.564	0.583	0.568	0.694	0.553	0.596
x_{34}	0.622	0.724	0.622	0.672	0.593	0.722	0.603	0.608
x_{35}	0.714	0.771	0.724	0.745	0.672	0.772	0.676	0.679
x_{36}	0.563	0.613	0.544	0.585	0.543	0.619	0.528	0.569
x_{37}	0.632	0.729	0.643	0.685	0.599	0.726	0.598	0.617
x_{38}	0.682	0.775	0.676	0.726	0.636	0.773	0.612	0.636
x_{39}	0.632	0.721	0.626	0.673	0.6	0.714	0.606	0.613
x_{40}	0.599	0.685	0.598	0.635	0.576	0.683	0.57	0.59
x_{41}	0.617	0.671	0.605	0.624	0.592	0.665	0.578	0.597
x_{42}	0.662	0.751	0.651	0.716	0.625	0.75	0.603	0.609
x_{43}	0.55	0.627	0.546	0.611	0.534	0.629	0.524	0.569
x_{44}	0.56	0.648	0.548	0.603	0.542	0.647	0.534	0.565
x_{45}	0.639	0.723	0.642	0.655	0.609	0.715	0.582	0.613
x_{46}	0.684	0.812	0.714	0.75	0.646	0.806	0.628	0.624
x_{47}	0.613	0.681	0.613	0.618	0.584	0.678	0.565	0.584
x_{48}	0.669	0.757	0.668	0.716	0.621	0.755	0.625	0.634
x_{49}	0.576	0.673	0.567	0.63	0.566	0.671	0.544	0.588

Table 11: Comparison of AUC for each feature before and after *n*FBST under eps=0.03 on Dataset 2.

Figure 7: Comparison of AUC for each feature before and after *n*FBST under eps=0.04.

Figure 8: Comparison of AUC for each feature before and after *n*FBST under eps=0.05.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.675	0.796	0.661	0.736	0.637	0.78	0.645	0.674
x_1	0.663	0.798	0.639	0.749	0.629	0.785	0.647	0.687
x_2	0.65	0.776	0.649	0.693	0.615	0.769	0.592	0.631
x_3	0.641	0.749	0.625	0.69	0.617	0.74	0.614	0.652
x_4	0.599	0.726	0.579	0.672	0.577	0.718	0.573	0.613
x_5	0.646	0.776	0.645	0.736	0.609	0.768	0.614	0.668
x_6	0.657	0.754	0.605	0.716	0.628	0.744	0.624	0.659
x_7	0.611	0.72	0.594	0.679	0.593	0.716	0.588	0.644
x_8	0.605	0.763	0.604	0.685	0.577	0.758	0.599	0.629
x_9	0.59	0.705	0.562	0.666	0.566	0.7	0.559	0.588
x_{10}	0.614	0.741	0.596	0.686	0.582	0.733	0.592	0.619
x_{11}	0.709	0.816	0.675	0.705	0.657	0.802	0.651	0.654
x_{12}	0.674	0.784	0.64	0.721	0.635	0.774	0.66	0.672
x_{13}	0.631	0.773	0.595	0.73	0.589	0.763	0.595	0.635
x_{14}	0.688	0.825	0.655	0.757	0.64	0.806	0.68	0.691
x_{15}	0.647	0.798	0.637	0.716	0.609	0.788	0.594	0.652
x_{16}	0.597	0.717	0.591	0.683	0.576	0.714	0.575	0.615
x_{17}	0.63	0.766	0.588	0.72	0.596	0.755	0.607	0.646
x_{18}	0.617	0.758	0.585	0.702	0.594	0.749	0.608	0.654
x_{19}	0.712	0.801	0.704	0.754	0.664	0.791	0.654	0.679
x_{20}	0.603	0.737	0.589	0.674	0.575	0.726	0.566	0.611
x_{21}	0.623	0.72	0.595	0.669	0.595	0.715	0.57	0.615
x_{22}	0.561	0.676	0.528	0.638	0.541	0.674	0.538	0.578
x_{23}	0.633	0.745	0.595	0.689	0.6	0.733	0.592	0.62
x_{24}	0.622	0.728	0.592	0.686	0.592	0.723	0.592	0.63
x_{25}	0.653	0.79	0.611	0.69	0.612	0.777	0.608	0.659
x_{26}	0.617	0.732	0.604	0.7	0.592	0.725	0.574	0.63
x_{27}	0.593	0.725	0.584	0.668	0.57	0.72	0.555	0.61
x_{28}	0.603	0.734	0.583	0.68	0.578	0.724	0.57	0.605
x_{29}	0.675	0.783	0.652	0.681	0.63	0.774	0.621	0.638
x_{30}	0.61	0.739	0.587	0.689	0.581	0.733	0.556	0.624
x_{31}	0.557	0.682	0.548	0.663	0.546	0.678	0.561	0.602
x_{32}	0.685	0.836	0.65	0.778	0.638	0.819	0.663	0.666
x_{33}	0.695	0.797	0.649	0.723	0.65	0.789	0.651	0.671
x_{34}	0.603	0.73	0.576	0.675	0.583	0.728	0.584	0.629
x_{35}	0.625	0.75	0.608	0.696	0.603	0.749	0.607	0.629
x_{36}	0.569	0.697	0.572	0.663	0.556	0.691	0.561	0.595
x_{37}	0.618	0.774	0.597	0.645	0.578	0.764	0.594	0.611
x_{38}	0.662	0.774	0.614	0.73	0.622	0.766	0.628	0.645
x_{39}	0.67	0.783	0.642	0.722	0.636	0.768	0.623	0.671
x_{40}	0.687	0.814	0.685	0.752	0.646	0.803	0.643	0.663
x_{41}	0.661	0.764	0.646	0.732	0.624	0.757	0.615	0.659
x_{42}	0.575	0.699	0.557	0.668	0.565	0.699	0.561	0.622
x_{43}	0.671	0.801	0.644	0.703	0.611	0.785	0.605	0.626
x_{44}	0.582	0.702	0.56	0.68	0.571	0.703	0.556	0.618
x_{45}	0.645	0.76	0.638	0.707	0.61	0.753	0.616	0.645
x_{46}	0.64	0.764	0.6	0.688	0.598	0.757	0.566	0.617
x_{47}	0.687	0.812	0.67	0.758	0.639	0.806	0.646	0.679
x_{48}	0.569	0.687	0.552	0.652	0.546	0.682	0.532	0.574
x_{49}	0.664	0.793	0.643	0.72	0.623	0.783	0.618	0.643

Table 12: Comparison of AUC for each feature before and after *n*FBST under eps=0.04 on Dataset 1.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.606	0.69	0.577	0.664	0.577	0.684	0.578	0.608
x_1	0.622	0.709	0.63	0.67	0.597	0.708	0.595	0.614
x_2	0.583	0.668	0.586	0.637	0.567	0.669	0.559	0.569
x_3	0.58	0.691	0.595	0.656	0.561	0.69	0.566	0.597
x_4	0.571	0.629	0.545	0.584	0.546	0.626	0.527	0.549
x_5	0.692	0.758	0.688	0.706	0.645	0.748	0.628	0.626
x_6	0.621	0.709	0.598	0.668	0.587	0.705	0.613	0.622
x_7	0.593	0.662	0.582	0.637	0.57	0.665	0.57	0.588
x_8	0.643	0.706	0.644	0.654	0.616	0.699	0.617	0.622
x_9	0.692	0.776	0.697	0.712	0.649	0.773	0.641	0.636
x_{10}	0.613	0.697	0.615	0.646	0.58	0.693	0.588	0.598
x_{11}	0.668	0.761	0.671	0.724	0.633	0.756	0.652	0.654
x_{12}	0.704	0.768	0.714	0.725	0.658	0.768	0.657	0.656
x_{13}	0.623	0.708	0.641	0.646	0.593	0.706	0.598	0.6
x_{14}	0.621	0.713	0.638	0.682	0.591	0.711	0.582	0.612
x_{15}	0.578	0.645	0.578	0.638	0.555	0.647	0.543	0.576
x_{16}	0.598	0.708	0.594	0.648	0.57	0.706	0.567	0.591
x_{17}	0.624	0.713	0.632	0.673	0.595	0.714	0.602	0.614
x_{18}	0.564	0.638	0.558	0.607	0.549	0.638	0.536	0.559
x_{19}	0.586	0.664	0.588	0.635	0.572	0.669	0.55	0.588
x_{20}	0.612	0.69	0.626	0.657	0.591	0.69	0.586	0.604
x_{21}	0.58	0.678	0.565	0.596	0.551	0.675	0.54	0.568
x_{22}	0.634	0.701	0.625	0.651	0.605	0.7	0.608	0.619
x_{23}	0.618	0.721	0.636	0.688	0.594	0.719	0.584	0.619
x_{24}	0.759	0.806	0.748	0.739	0.714	0.795	0.682	0.659
x_{25}	0.587	0.66	0.575	0.608	0.563	0.655	0.543	0.572
x_{26}	0.622	0.672	0.609	0.657	0.598	0.672	0.573	0.596
x_{27}	0.652	0.738	0.652	0.698	0.617	0.736	0.615	0.62
x_{28}	0.573	0.736	0.585	0.674	0.548	0.733	0.56	0.617
x_{29}	0.652	0.719	0.625	0.602	0.605	0.712	0.594	0.583
x_{30}	0.739	0.821	0.745	0.768	0.687	0.827	0.677	0.663
x_{31}	0.607	0.705	0.609	0.661	0.581	0.701	0.57	0.604
x_{32}	0.699	0.772	0.692	0.724	0.655	0.77	0.622	0.623
x_{33}	0.595	0.706	0.576	0.592	0.574	0.708	0.558	0.606
x_{34}	0.629	0.737	0.626	0.675	0.597	0.733	0.602	0.615
x_{35}	0.721	0.779	0.731	0.748	0.677	0.78	0.679	0.681
x_{36}	0.564	0.621	0.544	0.59	0.545	0.626	0.53	0.575
x_{37}	0.633	0.739	0.647	0.691	0.602	0.734	0.609	0.626
x_{38}	0.679	0.783	0.68	0.729	0.639	0.781	0.614	0.64
x_{39}	0.649	0.724	0.633	0.677	0.61	0.719	0.608	0.616
x_{40}	0.601	0.694	0.599	0.644	0.581	0.693	0.574	0.597
x_{41}	0.616	0.678	0.613	0.634	0.591	0.673	0.584	0.602
x_{42}	0.672	0.753	0.655	0.717	0.627	0.752	0.599	0.606
x_{43}	0.562	0.631	0.551	0.622	0.544	0.634	0.533	0.58
x_{44}	0.566	0.656	0.551	0.603	0.549	0.655	0.535	0.564
x_{45}	0.642	0.728	0.648	0.658	0.609	0.722	0.587	0.617
x_{46}	0.689	0.807	0.717	0.744	0.65	0.8	0.632	0.627
x_{47}	0.617	0.695	0.617	0.63	0.588	0.694	0.566	0.591
x_{48}	0.685	0.774	0.682	0.73	0.633	0.771	0.634	0.649
x_{49}	0.577	0.672	0.564	0.629	0.562	0.671	0.55	0.587

Table 13: Comparison of AUC for each feature before and after *n*FBST under eps=0.04 on Dataset 2.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.678	0.799	0.661	0.737	0.636	0.781	0.648	0.678
x_1	0.668	0.803	0.639	0.751	0.629	0.79	0.646	0.69
x_2	0.653	0.777	0.649	0.689	0.616	0.767	0.6	0.633
x_3	0.643	0.757	0.627	0.692	0.618	0.747	0.62	0.66
x_4	0.607	0.733	0.581	0.674	0.58	0.724	0.576	0.619
x_5	0.658	0.784	0.65	0.738	0.617	0.775	0.62	0.671
x_6	0.663	0.762	0.609	0.719	0.631	0.749	0.626	0.659
x_7	0.609	0.731	0.598	0.687	0.592	0.727	0.593	0.649
x_8	0.606	0.766	0.61	0.689	0.578	0.76	0.602	0.63
x_9	0.595	0.711	0.567	0.669	0.572	0.702	0.564	0.594
x_{10}	0.618	0.746	0.599	0.695	0.586	0.738	0.595	0.622
x_{11}	0.71	0.812	0.679	0.701	0.658	0.797	0.653	0.659
x_{12}	0.686	0.792	0.651	0.728	0.645	0.78	0.667	0.684
x_{13}	0.635	0.781	0.595	0.734	0.589	0.769	0.596	0.636
x_{14}	0.7	0.832	0.661	0.758	0.652	0.813	0.688	0.701
x_{15}	0.662	0.808	0.651	0.718	0.619	0.796	0.596	0.662
x_{16}	0.604	0.72	0.593	0.685	0.58	0.718	0.578	0.622
x_{17}	0.641	0.77	0.592	0.725	0.605	0.76	0.609	0.65
x_{18}	0.619	0.762	0.579	0.705	0.59	0.751	0.606	0.652
x_{19}	0.725	0.815	0.715	0.762	0.678	0.804	0.665	0.693
x_{20}	0.61	0.746	0.595	0.679	0.579	0.737	0.568	0.619
x_{21}	0.628	0.729	0.597	0.675	0.599	0.723	0.569	0.623
x_{22}	0.559	0.681	0.528	0.644	0.541	0.678	0.539	0.584
x_{23}	0.639	0.756	0.598	0.692	0.602	0.743	0.594	0.624
x_{24}	0.632	0.739	0.6	0.696	0.6	0.733	0.607	0.641
x_{25}	0.654	0.79	0.614	0.691	0.613	0.777	0.612	0.665
x_{26}	0.626	0.738	0.607	0.704	0.598	0.729	0.577	0.636
x_{27}	0.597	0.734	0.588	0.678	0.573	0.729	0.556	0.615
x_{28}	0.606	0.733	0.581	0.677	0.578	0.723	0.567	0.604
x_{29}	0.672	0.788	0.657	0.681	0.628	0.776	0.626	0.642
x_{30}	0.614	0.746	0.592	0.694	0.586	0.739	0.563	0.633
x_{31}	0.562	0.695	0.552	0.674	0.552	0.692	0.563	0.61
x_{32}	0.693	0.839	0.653	0.779	0.642	0.822	0.665	0.67
x_{33}	0.705	0.799	0.653	0.719	0.656	0.788	0.655	0.674
x_{34}	0.606	0.741	0.583	0.683	0.587	0.737	0.589	0.636
x_{35}	0.625	0.755	0.614	0.699	0.602	0.753	0.61	0.637
x_{36}	0.575	0.699	0.574	0.663	0.558	0.691	0.563	0.597
x_{37}	0.625	0.781	0.606	0.648	0.586	0.771	0.601	0.623
x_{38}	0.666	0.782	0.617	0.737	0.625	0.773	0.637	0.656
x_{39}	0.674	0.791	0.64	0.723	0.638	0.774	0.624	0.675
x_{40}	0.7	0.818	0.692	0.758	0.652	0.807	0.648	0.672
x_{41}	0.673	0.775	0.655	0.742	0.634	0.766	0.625	0.67
x_{42}	0.578	0.704	0.563	0.67	0.568	0.705	0.564	0.624
x_{43}	0.679	0.807	0.652	0.705	0.615	0.787	0.607	0.629
x_{44}	0.593	0.714	0.562	0.689	0.577	0.714	0.563	0.628
x_{45}	0.658	0.767	0.645	0.714	0.616	0.759	0.624	0.655
x_{46}	0.649	0.774	0.606	0.693	0.604	0.767	0.573	0.628
x_{47}	0.695	0.82	0.684	0.764	0.646	0.813	0.652	0.691
x_{48}	0.569	0.691	0.55	0.649	0.545	0.685	0.534	0.573
x_{49}	0.664	0.797	0.641	0.721	0.621	0.787	0.621	0.649

Table 14: Comparison of AUC for each feature before and after *n*FBST under eps=0.05 on Dataset 1.

Feature	Gradient	Grad- nFBST	DeepLIFT	DeepLIFT- nFBST	LRP	LRP- nFBST	LIME	LIME- nFBST
x_0	0.608	0.704	0.581	0.675	0.58	0.7	0.58	0.611
x_1	0.628	0.711	0.633	0.669	0.603	0.709	0.593	0.613
x_2	0.59	0.677	0.592	0.645	0.571	0.678	0.563	0.57
x_3	0.589	0.7	0.602	0.658	0.568	0.697	0.565	0.602
x_4	0.573	0.632	0.545	0.59	0.548	0.63	0.526	0.554
x_5	0.696	0.761	0.688	0.71	0.648	0.752	0.628	0.625
x_6	0.626	0.714	0.599	0.671	0.591	0.711	0.609	0.625
x_7	0.591	0.666	0.584	0.638	0.571	0.666	0.574	0.599
x_8	0.648	0.709	0.646	0.659	0.62	0.701	0.619	0.623
x_9	0.696	0.779	0.698	0.713	0.65	0.776	0.636	0.635
x_{10}	0.616	0.698	0.616	0.648	0.582	0.694	0.588	0.6
x_{11}	0.678	0.765	0.676	0.727	0.636	0.759	0.655	0.656
x_{12}	0.72	0.777	0.724	0.731	0.671	0.774	0.662	0.661
x_{13}	0.624	0.712	0.642	0.65	0.591	0.707	0.593	0.599
x_{14}	0.623	0.72	0.641	0.684	0.594	0.717	0.585	0.615
x_{15}	0.577	0.647	0.574	0.638	0.551	0.649	0.544	0.577
x_{16}	0.597	0.716	0.598	0.659	0.568	0.714	0.566	0.597
x_{17}	0.629	0.721	0.642	0.681	0.597	0.722	0.607	0.618
x_{18}	0.571	0.641	0.565	0.61	0.558	0.64	0.536	0.563
x_{19}	0.592	0.675	0.593	0.645	0.575	0.678	0.553	0.594
$x_{19} \\ x_{20}$	0.613	0.699	0.625	0.664	0.589	0.699	0.587	0.609
$x_{20} \\ x_{21}$	0.586	0.675	0.57	0.594	0.558	0.673	0.539	0.571
x_{21} x_{22}	0.649	0.712	0.638	0.66	0.618	0.71	0.617	0.629
x_{23}	0.624	0.734	0.639	0.693	0.596	0.731	0.591	0.624
$x_{23} \\ x_{24}$	0.759	0.805	0.746	0.739	0.71	0.795	0.682	0.657
$x_{24} \\ x_{25}$	0.589	0.668	0.578	0.616	0.563	0.663	0.547	0.578
x_{26}	0.621	0.677	0.608	0.661	0.59	0.676	0.574	0.599
$x_{26} \\ x_{27}$	0.656	0.742	0.66	0.703	0.619	0.738	0.623	0.623
x_{28}	0.576	0.741	0.591	0.703	0.552	0.736	0.562	0.623
$x_{28} \\ x_{29}$	0.663	0.72	0.628	0.598	0.611	0.712	0.595	0.584
	0.741	0.72	0.753	0.763	0.692	0.712	0.684	0.67
$x_{30} \\ x_{31}$	0.614	0.708	0.733	0.668	0.585	0.704	0.579	0.612
	0.695	0.771	0.69	0.726	0.585	0.769	0.625	0.612
x_{32}	0.601	0.771	0.582	0.720	0.579	0.703	0.563	0.612
x_{33}	0.634	0.71	0.631	0.678	0.601	0.711	0.503	0.612
x_{34}	0.73	0.786	0.031	0.753	0.687	0.786	0.685	0.688
x_{35}	0.73	0.780	0.74	0.733	0.552	0.634	0.534	0.583
x_{36}	0.643	0.03	0.53	0.697	0.607	0.034	0.534	0.637
x_{37}	0.686	0.747	0.69	0.037	0.645	0.741	0.617	0.646
x_{38}	0.65	0.733	0.637	0.73	0.61	0.719	0.613	0.619
x_{39}	0.61	0.723	0.598	0.642	0.587	0.694	0.576	0.019
x_{40}	0.625	0.686	0.598	0.641	0.594	0.683	0.576	0.601
x_{41}								
x_{42}	0.674	0.762 0.637	0.659	0.725 0.624	0.625	0.76 0.641	0.6	0.609
x_{43}	0.57 0.571	0.658	0.558 0.555	0.624	0.55 0.551	0.641 0.657	0.536 0.533	0.586 0.569
x_{44}			0.555			0.057		
x_{45}	0.654	0.737		0.656	0.616		0.588	0.622
x_{46}	0.69	0.812	0.719	0.75	0.649	0.804	0.637	0.633
x_{47}	0.618	0.693	0.619	0.634	0.587	0.691	0.572	0.595
x_{48}	0.692	0.783	0.695	0.736	0.641	0.779	0.642	0.658
x_{49}	0.579	0.677	0.56	0.633	0.558	0.675	0.547	0.594

Table 15: Comparison of AUC for each feature before and after *n*FBST under eps=0.05 on Dataset 2.