

planetmath.org

Math for the people, by the people.

Cholesky decomposition

Canonical name CholeskyDecomposition
Date of creation 2013-03-22 12:07:38
Last modified on 2013-03-22 12:07:38
Owner gufotta (12050)
Last modified by gufotta (12050)

Numerical id 16

Author gufotta (12050)
Entry type Definition
Classification msc 62J05
Classification msc 65-00
Classification msc 15-00

Synonym Cholesky factorization Synonym matrix square root

Related topic SquareRootOfPositiveDefiniteMatrix

Defines Cholesky triangle

1 Cholesky Decomposition

A symmetric and positive definite matrix can be efficiently decomposed into a lower and upper triangular matrix. For a matrix of any type, this is achieved by the LU decomposition which factorizes A = LU. If A satisfies the above criteria, one can decompose more efficiently into $A = LL^T$ where L is a lower triangular matrix with positive diagonal elements. L is called the *Cholesky triangle*.

To solve Ax = b, one solves first Ly = b for y, and then $L^Tx = y$ for x.

A variant of the Cholesky decomposition is the form $A=R^TR$, where R is upper triangular.

Cholesky decomposition is often used to solve the normal equations in linear least squares problems; they give $A^TAx = A^Tb$, in which A^TA is symmetric and positive definite.

To derive $A = LL^T$, we simply equate coefficients on both sides of the equation:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & \cdots & l_{n1} \\ 0 & l_{22} & \cdots & l_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & l_{nn} \end{bmatrix}$$

Solving for the unknowns (the nonzero l_{ji} s), for $i=1,\dots,n$ and $j=i-1,\dots,n$, we get:

$$l_{ii} = \sqrt{\left(a_{ii} - \sum_{k=1}^{i-1} l_{ik}^{2}\right)}$$

$$l_{ji} = \left(a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik}\right) / l_{ii}$$

Because A is symmetric and positive definite, the expression under the square root is always positive, and all l_{ij} are real.

References

[1] Originally from The Data Analysis Briefbook (http://rkb.home.cern.ch/rkb/titleA.html)