

Universidad Nacional Autónoma de México

Facultad de Ciencias

Criptografía y Seguridad

Tarea 8: Curvas Elípticas

Fecha de entrega: 30/11/2023

Equipo:

Criptonianos

Acosta Arzate Rubén - 317205776

Bernal Marquez Erick - 317042522

Deloya Andrade Ana Valeria - 317277582

Marco Antonio Rivera Silva - 318183583

1. Escoge parámetros a y b adecuados para definir la curva elíptica $E_{17}(a,b)$

Para la curva E_{17} los a, b deben cumplir:

$$4a^3 + 27b^2 \ncong 0 \bmod 17$$

Por lo que tomamos a = 5 y b = 4

$$4(5)^3 + 27(4)^2$$

$$4(125) + 27(16)$$

$$500 + 432 = 932$$

 $932 \bmod 17 \cong 14 \bmod 17$

$$\therefore 4a^3 + 27b^2 \ncong 0 \bmod 17$$

Nuestros parametros son adecuados

$$y^2 = x^3 + 5x + 4 \pmod{17}$$

2. Da todos los puntos de la curva anterior.

Con ayuda del siguiente colab obtuvimos los siguientes puntos

$$\{(0,2), (0,15), (5,1), (5,16), (7,5), (7,12), (9,8), (9,9), (10,0), (10,17), (11,8), (10,9), (14,8), (14,9), (16,7), (16,10)\}$$

3. Cifra un mensaje con dicha curva y dichos puntos.

Nuestra curva es: $E_{17}(a,b) = E_{17}(5,4)$

Además vamos a tener nuestro punto G = (0, 2), y k = 2.

El mensaje a cifrar es $P_m = (0, 15)$ y la llave publica como $P_p = (5, 1)$

Ahora sustituimos en: $\{kG, P_m + kP_p\} = \{2(0, 2), (0, 15) + 2(5, 1)\}$

Con ayuda del siguiente colab obtuvimos que el cifrado es: $\{(9,8),(16,7)\}$

4. Construye el campo finito con 8 elementos. Reporta sus tablas de suma y resta. Utiliza este polinomio: $x^3 + x + 1$.

Sea el campo $GF(2^3)$ cambiamos α como raíz, por lo que tenemos $\alpha^3 + \alpha + 1$, cuyos elementos son: $0, 1, \alpha, \alpha + 1, \alpha^2, \alpha^2 + 1, \alpha^2 + \alpha, \alpha^2 + \alpha + 1$

Teoría: Tarea 7

La tabla de la suma

+	0	1	α	α+1	α^2	α ² +1	α ² +α	α ² +α+1
0	0	1	α	α+1	α^2	α ² +1	α ² +α	α ² +α+1
1	1	0	α+1	α	α ² +1	α^2	α ² +α+1	a²+a
α	α	α + 1	0	1	α ² +α	α ² +α+1	α^2	α ² +1
α+1	α + 1	а	1	0	α ² +α+1	α ² +α	α ² +1	α^2
α^2	α^2	α ² +1	α ² +α	α ² +α+1	0	1	а	α + 1
α ² +1	α ² +1	α^2	α ² +α+1	α ² +α	1	0	α + 1	α
α ² +α	α ² +α	α ² +α+1	α^2	α ² +1	а	α + 1	0	1
α ² +α+1	α ² +α+1	α ² +α	α ² +1	α^2	α+1	α	1	0

Figura 1: Tabla de la suma

La tabla de la resta

-	0	1	а	α+1	α ²	α ² +1	α ² +α	α ² +α+1
0	0	1	а	α+1	α^2	α ² +1	α ² +α	α ² +α+1
1	1	0	α+1	α	α ² +1	α^2	$a^{2}+a+1$	a²+a
α	α	α + 1	0	1	α ² +α	α ² +α+1	α^2	α ² +1
α+1	α + 1	α	1	0	α ² +α+1	α ² +α	α ² +1	α^2
α^2	α^2	α ² +1	α ² +α	α ² +α+1	0	1	α	α+1
α ² +1	α ² +1	α^2	α ² +α+1	α ² +α	1	0	α+1	α
α ² +α	α²+α	α ² +α+1	α^2	α ² +1	α	α + 1	0	1
α ² +α+1	α ² +α+1	α ² +α	α ² +1	α^2	α+1	α	1	0

Figura 2: Tabla de la resta

Como podemos notar ambas tablas son idénticas, esto se debe a la congruencia sobre \mathbb{Z}_2

5. Escoge parámetros a y b adecuados para definir la curva elíptica $E_{2^3}(a,b)$.

Para que la curva $E_{2^3}(a,b)$ sea valida se debe cumplir:

$$4a^3 + 27b^2 \ncong 0 \bmod 2^3$$

Por lo que con $E_{2^3}(3,5)$ tenemos:

$$4(3)^3 + 27(5)^2$$

$$4(27) + 27(25)$$

$$108 + 675$$

 $783 \mod 2^3$

$$783 \bmod 8 = 7$$

 \therefore a=3 y b=5 son validos