

CZ2003 Computer Graphics and Visualisation

Experiment 3: Parametric Surfaces and Solids

Name: Ngo Jun Hao Jason

Matriculation Number: XXXXXXXX

Lab Group: XXX

Exercise 2 (may have to pan and zoom to see the shapes)

1. 3D Plane

- defines a parallelogram in 3D space
- any point on the parallelogram can be obtained by adding 2 offsets to a base point
- a base point with known, fixed coordinates:
 - o P1
- offset in first direction:

- offset in second direction:
 - o v(P3 P1)
- any point on the parallelogram:

o
$$P1 + u(P2 - P1) + v(P3 - P1)$$

o
$$u \in [0,1]$$
, $v \in [0,1]$

2. 3D Triangle

- defines a triangle in 3D space
- can be thought of as a set of point obtained via interpolation from a point to a set of points on a line segment (or vice versa)
- any point on line segment, P':

o
$$P1 + u(P2 - P1)$$

• point:

• any point on the triangle, P:

0 P3 +
$$v(P' - P3)$$

= P3 + $v(P1 + u(P2 - P1) - P3)$
= P3 + $v(P1 - P3) + uv(P2 - P1)$

3. Bilinear Surface

- defines a bilinear surface
- can be thought of as a set of points bounded by 2 line segments
 - o each line segment is a set of points, which can be obtained via interpolation from a starting point to an ending point
 - o each point on the surface can be obtained via interpolation from a point (of a relative offset determined by parameter u) on the first line segment to a point (of a relative offset, also determined by parameter u) on the second line segment
- any point on first line segment, P':

o
$$P1 + u(P2 - P1)$$

• any point on second line segment, P":

o
$$P3 + u(P4 - P3)$$

any point on the surface, P:

$$P' + v(P'' - P')$$
= P1 + u(P2 - P1) + v(P3 + u(P4 - P3) - P1 + u(P2 - P1))
= P1 + u(P2 - P1) + v(P3 - P1 + u(P4 - P3 + P2 - P1))
= P1 + u(P2 - P1) + v(P3 - P1) + uv(P4 - P3 + P2 - P1)

4. Sphere

- defines a spherical surface (hollow inside)
- can be thought of as a ring that does rotational sweeping about an axis
- start with a circle on the y-z plane:
 - o $z = r * cos(2\pi*u)$
 - o $y = r * sin(2\pi*u)$
 - o $u \in [0,1]$
- rotate the circle about z-axis by half a revolution:
 - o rotation appears to draw a circle on the x-y plane:
 - $x = r' * cos(\pi * v)$
 - y = r' * sin(π*v)
 - v ∈ [0,1]
 - o during the drawing (rendering) of the sphere, the x and y coordinates change, but z coordinates stay constant
 - $x = (r * sin(2\pi*u)) * cos(\pi*v)$
 - $y = (r * sin(2\pi*u)) * sin(\pi*v)$
 - $z = r * cos(2\pi*u)$
 - $u \in [0,1], v \in [0,1]$

5. Ellipsoid

- defines an ellipsoidal surface (hollow inside)
- can be thought of as a deformed ring that is spun about an axis
 - o essentially a deformed sphere
 - o deformation done using 3 parameters: a, b, and c
- apply semi-axes to sphere:
 - o $x = (r/a * sin(2\pi*u)) * cos(\pi*v)$
 - o $y = (r/b * sin(2\pi*u)) * sin(\pi*v)$
 - o $z = r/c * cos(2\pi * u)$
 - o $u \in [0,1]$, $v \in [0,1]$

6. Cone

- defines a conical surface (hollow inside)
- can be thought of as smaller and smaller rings stacked on top of a base ring

1. 3D Plane

a. resolution 1 1:

- no noticeable change from the original
 - b. resolution 1000 1000:

- takes a few seconds to render, unlike the original which renders almost instantaneously
- panning and zooming feels more laggy
 - c. resolution 100 20:

no noticeable change from the original

2. 3D Triangle

a. resolution 1 1:

no noticeable change from the original
 b. resolution 1000 1000:

- takes a few seconds to render, unlike the original which renders almost instantaneously
- panning and zooming feels more laggy
 - c. resolution 1 500:

• no noticeable change from the original

3. Bilinear Surface

a. resolution 1 1:

- becomes flattened
 - o looks like 2 planes joined together
 - b. resolution 1000 1000:

- takes a few seconds to render, unlike the original which renders almost instantaneously
- panning and zooming feels more laggy
 - c. resolution 69 420:

no noticeable change from the original

4. Sphere

a. resolution 1 1:

- appears that no shape was rendered
 - b. resolution 1000 1000:

- takes a few seconds to render, unlike the original which renders almost instantaneously
- panning and zooming feels more laggy
- no 'shadow' near the z-axis label
 - c. resolution 20 20:

• surface is not smooth, unlike the original

5. Ellipsoid

a. resolution 1 1:

- appears that no shape was rendered
 - b. resolution 1000 1000:

- takes a few seconds to render, unlike the original which renders almost instantaneously
- panning and zooming feels more laggy
- looks very smooth
 - c. resolution 5 30:

• weird shape

6. Cone

a. resolution 1 1:

- appears that no shape was rendered
 b. resolution 1000 1000:
- - takes a few seconds to render, unlike the original which renders almost instantaneously
 - panning and zooming feels more laggy
 - c. resolution 5 5:

- a 3D pentagon
 - o a penta-cone

1. Solid Box

· defines a solid cuboid

2. Solid Sphere

(cut open)

- defines a solid sphere
- can be thought of as a disk that is spun about an axis
- start with a circle on the x-y plane:
 - o $x = r * cos(2\pi * u)$
 - o $y = r * sin(2\pi * u)$
 - o $u \in [0,1]$
- fill the circle with infinitely many concentric circles to form a disk:
 - o $x = (v * r) * cos(2\pi*u)$
 - o $y = (v * r) * sin(2\pi*u)$
 - o $u \in [0,1]$, $v \in [0,1]$
- rotate the disk about x-axis by half a revolution:
 - o rotation appears to draw a circle on the y-z plane:
 - $z = r' * cos(\pi*w)$
 - $y = r' * sin(\pi*w)$
 - W ∈ [0,1]
 - o during the drawing (rendering) of the sphere, the y and z coordinates change, but x coordinates stay constant
 - $x = (v * r) * cos(2\pi*u)$
 - $y = ((v * r) * sin(2\pi*u)) * sin(\pi*w)$
 - $z = ((v * r) * sin(2\pi*u)) * cos(\pi*w)$
 - $u \in [0,1], v \in [0,1], w \in [0,1]$

3. Solid Cylinder

- defines a solid cylinder
- can be thought of as a set of disks of the same radius that are stacked on top (or in front) of each other
- start with a circle on the x-y plane:

o
$$x = r * cos(2\pi * u)$$

o
$$y = r * sin(2\pi * u)$$

o
$$u \in [0,1]$$

• fill the circle with infinitely many concentric circles to form a disk:

o
$$x = (v * r) * cos(2\pi*u)$$

o
$$y = (v * r) * sin(2\pi*u)$$

o
$$u \in [0,1], v \in [0,1]$$

• extend the disk in the z-direction (translational sweeping), from -1 to 1:

o
$$x = (v * r) * cos(2\pi*u)$$

o
$$y = (v * r) * sin(2\pi*u)$$

o
$$z = -1 + 2*w$$

o
$$u \in [0,1]$$
, $v \in [0,1]$, $w \in [0,1]$

4. Solid Cone

- defines a solid cone
- can be thought of as a set of disks, each smaller in radius than the last, that are stacked on top of each other
- same idea as that of a cylinder, but the radius varies with respect to the growth/extension of the disk stack (cylinder)
- start with a cylinder:
 - o $x = (v * r) * cos(2\pi*u)$
 - o $y = (v * r) * sin(2\pi*u)$
 - o z = -1 + 2*w
 - o $u \in [0,1]$, $v \in [0,1]$, $w \in [0,1]$
- let r, the radius of the disks, varies with respect to w, the parameter that is responsible for controlling the growth of the disk stack
 - o $x = (w * v * r) * cos(2\pi*u)$
 - o $y = (w * v * r) * sin(2\pi*u)$
 - o z = -1 + 2*w
 - o $u \in [0,1]$, $v \in [0,1]$, $w \in [0,1]$

cylindrical surface:

- 2 parameters: $u \in [0, 1], v \in [0, 1]$
- x= cos(2πu)
- y= sin(2πu)
- z= 2v − 1

solid cylinder:

- additional parameter: $w \in [0, 1]$
 - o controls growth in radius of circle
- x= w * cos(2πu)
- y= w * sin(2πu)
- z= 2v − 1

Exercise 6

- translational sweeping refer to cones and cylinders
- rotational sweeping refer to spheres and ellipsoid

start with a sine curve:

- unable to get it to render
 - o not sure of the reason (tried changing resolution and domain of u)
- x = u
- $y = \sin(2\pi u)$
- z = 0

translational sweeping in y-directional by v units to get a surface:

- x = u
- $y = \sin(2\pi u) + v$
- z = 0

rotational sweeping about x-axis to get solid:

- rotate by $\pi/2$ instead of π to see cross-section
- x = u
- $y = (\sin(2\pi u) + v) * \cos(\pi/2 * w)$
- $z = \sin(\pi/2 * w)$

• refer to the folder "Created_Shapes"

Exercise 9

• refer to this report