Tianxiao He

285 St Nicholas Ave, New York, NY 10027

1 518-428-9860

th2946@columbia.edu

Undergraduate student major in Computer Science in Columbia University, with background in programming and intelligent system and research experience in neuroscience and neural data analysis

Education

Columbia University

Bachelor of Science

Sep 2021 - May 2023

- Major in Computer Science, GPA 3.9
- Graduate level coursework: Artificial Intelligence, Machine Learning, Computational Aspect of Robotics, Deep Learning, Robotics Learning, Computer Vision, Theoretical Neuroscience
- Research Assistant at Paninski lab in Columbia Zuckerman Institute for neural data analysis

Bard College at Simons Rock

Bachelor of Arts

Sep 2018 - May 2021

- Undergraduate level Coursework: Algorithms & Data Structures, Java programming, Database, Web Programming, Linear Algebra, Multivariate Calculus
- ◆ GPA 3.9/4.0, earned Dean's List for 5 semesters, granted SR merit scholarship

Skills

- ◆ Programming languages: Python, Java, C, JavaScript/HTML/CSS, SQL, R
- ◆ Platforms/Framework: Pytorch, Git/Github, Tensorflow, MySQL, Jupiter Notebook, JUnit, MongoDB

Research Experience

Density-based Neural Decoding for Neuropixel Recordings

- Developed a density-based approach for decoding to predict time-varying animal behavior from large-scale electrophysiology data collected by Neuropixel Probes
- Extracted density-based neural representation by incorporating uncertainty about spike assignments in the form of parametric distributions of spike features using highly paralleled MoG algorithms
- Applied the density representation to decode behavior, evaluated the decoder performance, and found it outperform previous decoding method using multi-unit thresholding
- Paper abstract admitted to Cosyne conference for poster presentation

Analyze Nonlinear Embeddings of Behavioral Videos for neural decoding

- Extracted nonlinear behavioral embeddings from animal behavior videos using Variational Autoencoder
- Decoded extracted behavioral embeddings from electrophysiology recording with dilated Temporal
 Convolution Network to leverage the long-range temporal information
- Reconstructed behavioral frames from predicted behavior embeddings using a frame decoder and performed latent space traversal to examine its decoding quality

Autonomous Bin Picking Robot Simulation

- ◆ Implemented perception and planning pipeline for robot grasping and bin picking tasks with Pytorch
- ◆ Trained a U-Net model for image segmentation and performed pose estimation using ICP algorithm
- Implemented grasping for simulated UR5 robot with inverse kinematics and used RRT algorithm for path planning to move the object without collision
- Implemented visual affordance based model to predict grasp locations directly from images and improved performance compared with classical models