Topologia de redes

Rafael Viana de Carvalho

Topologias de Rede

- A maneira como são conectados fisicamente os computadores em uma rede chama-se topologia.
- A Topologia de rede influenciará em diversos pontos considerados críticos, como flexibilidade, velocidade e segurança.

Tipos de Topologias de Rede

- Classificação:
- Topologia em malha
- Topologia em barramento.
- Topologia em Anel.
- Topologia em Estrela.

Topologia em malha

- Todos os nós estão atados a todos os outros nós, como se estivessem entrelaçados
 - A informação pode fluir por vários caminhos possíveis da origem até o destino
- Vantagens:
 - Maior redundância e confiabilidade
 - Facilidade de diagnóstico
- Desvantagem:
 - Instalação dispendiosa.
- Classificação:
 - Malha completa
 - Malha irregular

Topologia em malha completa

 Cada estação é conectada a todas as outras estações da rede

Exemplo de malha completa

Topologia em malha completa

Vantagens

- Não há compartilhamento do meio físico
- Não há necessidade de decisões por onde enviar a mensagem (roteamento)

Desvantagens

- Grande quatidade de ligações
- Custo

Topologia em malha irregular

- Topologia mais geral possível
- Cada estação pode ser conectada diretamente a um número variável de estações

Topologia em malha irregular

Vantagens

- Arranjo de interconexões pode ser feito de acordo com o tráfego
- Pode escolher por onde enviar mensagem (evita congestionamento)

Desvantagem

- Necessita de roteamento

Topologia barramento

- Todas as estações compartilham um mesmo meio de comunicação (cabo)
- Normalmente Se utiliza de cabo coaxial, que deverá possuir um terminador resistivo em cada ponta (manter a impedância).

Topologia barramento

- Mensagens transferidas sem a participação dos nós intermediários
- Todas as estações "escutam" as mensagens
 - Necessidade de reconhecer o próprio nome (endereço)

Topologia barramento

- O tamanho máximo do trecho da rede está limitado ao limite do cabo
 - Determinado por atenuação do material e das conexões
 - limite imposto pela tempo de transmissão do sinal no meio
- 185 metros no caso do cabo coaxial RGC 58

Características topologia barramento

- Como todas as estações compartilham um mesmo cabo, se a transmissão for em banda base, somente uma transação pode ser efetuada por vez
- Quando mais de uma estação tenta utilizar o cabo, em banda base, há uma colisão de dados (transmissão simultânea)

Vantagens

- Não há necessidade de decisão de roteamento
- Como não há armazenamento intermediário, pode-se obter um melhor desempenho em termos de atraso e vasão

Desvantagens

Necessita de mecanismos de acesso ao meio compartilhado

Performance da topologia barramento

- Quanto mais estações forem conectadas ao cabo, mais lenta será a rede, já que haverá um maior número de colisões.
- Taxa de transmissão é Baixa
- A topologia barramento possui alta instabilidade
- Os terminadores resistivos são conectados às extremidades do cabo e são indispensáveis.
- Caso o cabo se desconecte em algum ponto a rede "sai do ar", pois o cabo perderá a sua correta impedância

Segurança na topologia barramento

 Na transmissão de um pacote de dados do servidor de arquivos para uma determinada estação de trabalho, todas as estações recebem esse pacote (mídia é compartilhada).

Topologia em Anel

- Uma rede em anel consiste de estações conectadas através de um caminho fechado, tradicionalmente representado por um anel
 - Mensagens circulam nó-anó até o destion
 - Tem de reconhecer o próprio nome (endereço) nas mensagens e copiar as que lhe são destinados

Exemplo de anel

Topologia em Anel

- As estações de trabalho formam um laço fechado
- O padrão de rede local mais conhecido de topologia em anel é o Token Ring (IEEE 802.5) da IBM
- Outro padrão muito conhecido é o FDDI (fiber distributed data interface)

Topologia em Anel

Vantagens

- Boa para situações onde o fluxo de informações não é centralizado
- Não há necessidade de roteamento
- Não há armazenamento intermediário
 - Melhor desempenho em termos de atraso e vazão

Desvantagens

- Necessita de mecanismos de acesso ao mei compartilhado
- Confiabilidade da rede depende da confiabiliasw individual dos nós intermediários (funcionam como repetidores)

Topologia em Estrela

 A topologia em estrela é uma topologia ponto a ponto, onde todos os dispositivos da rede encontram-se conectados a um concentrador

Topologia em Estrela

- Decisões de roteamento centralizadas em um nó
- Cada estação é conectada a esse nó central

Características rede em estrela

- Podemos aumentar o tamanho da rede sem a necessidade de pará-la.
 - Na topologia barramento, quando queremos aumentar o tamanho do cabo necessariamente devemos parar a rede, já que este procedimento envolve a remoção do terminador resistivo
- Vantagem
 - Boa para situações onde o fluxo de informações é centralizado
- Desvantagens
 - Dependência de um nó centralizado em fluxo de informação descentralizado
 - Problema de confiabilidade no nó central

Topologia Mista ou Híbrida

- É o conjunto de mais de uma das topologias anteriores, interligadas em uma mesma rede lógica
 - Anel-estrela
 - Barramento-estrela
 - Estrela-anel
 - Árvore de barramentos

