Dee 3. 2024

X Y
$$\hat{y}$$

input ground predicted

truth label

accuracy = $P(Y = \hat{Y})$

loo examples. So examples label 1

lo example label o

 90% if a classifier predicts everything as 1.

 $P(\hat{y} = | y = 1)$ True positive vate

 $P(\hat{y} = 0| y = 1)$ False negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

 $P(\hat{y} = 0| y = 0)$ True negative vate

Actual predicted 10 +1 100 Actual label 10 TP 0 FN Y 1 F

Precision =
$$\frac{90}{90+10}$$
 = 0.9
Ye call = $\frac{90}{90+0}$ = 1

Lugistic regression R= P[Y=1 | X=x)

Threshold = 0.5

X Y R
$$t=0.5$$
 $t=0$ $t=1$ $t=0.6$ $t=1$

X₁ | 0.8 | | | 0 0

X₂ | 0.6 | | 0 0

X₃ | 0.7 | | | 1 | 1 | 1

X₄ 0 0.4 0 | 0 0

X₅ 0 0.3 0 | 0 0

+	TPR	FPR	TPR		
0					
Ø.\	•	•			
0.2	•	·			
		ı			
\		0			
1 1 0			-	Roc	FPR

ANC = area under curve the higher the better, Auc = 1

Independence
$$\Upsilon \perp A$$

 $P(\Upsilon=1|A=\alpha)=P(\Upsilon=1|A=b)$
Separation $\Upsilon \perp A \mid \Upsilon$
 $P(\Upsilon=1|\Upsilon=1,A=\alpha)=P(\Upsilon=1|\Upsilon=1,A=b)$
Sufficiency $\Upsilon \perp A \mid R$