APPENDIX A MATLAB BUILT-IN FUNCTIONS

abs, 40 acos, 40 ascii, 64 axis, 51 axis square, 45 beep, 76 besselj, 451 ceil, 40 cho1, 285 clabel, 212 clear, 64 cond, 296, 297 contour, 212, 566 conv. 186 cumtrapz, 510, 511 deconv, 185 det, 253 diag, 338 diff, 560, 561, 562 disp, 61 double, 61 eig, 336 elfun, 40 eps, 112 erf, 544 error, 66 event, 622 exp, 40 eye, 336 factorial, 51, 73n3 fft, 420

fix, 459

floor, 40, 212 fminbnd, 137, 210, 211 fminsearch, 213, 215, 199 format bank, 30 format compact, 28n1 format long, 30, 102 format long e, 30, 300 format long eng, 30 format long q, 30 format loose, 28n1 format short, 30 format short e, 30, 300format short eng, 30 format short q, 30 fplot, 82 fprintf, 62, 63 fzero, 137, 181–183 getframe, 77, 78 gradient, 563, 564 grid, 42 help, 39, 46 help elfun, 40 hist, 353 hold off, 44 hold on, 44 humps, 94, 540 inline, 82 input, 61 interp1, 470 interp2, 475 interp3, 475 inv, 236, 238

isempty, 105 legend, 398, 511 length, 37 LineWidth, 44 linspace, 84 load, 64, 65 log, 39 log10, 371 log2, 150n2 loglog, 51 logspace, 34 lookfor, 46, 55 1u, 282 MarkerEdgeColor, 44 MarkerFaceColor, 44 MarkerSize, 44 max, 41, 262 mean, 57, 352 median, 352 mesh, 76 meshgrid, 212, 566 min, 41, 352 mode, 352 movie, 77-78 nargin, 71–72 norm, 296 ode113, 618 ode15s, 632 ode23, 617 ode23s, 632 ode23t, 632 ode23tb, 632

ode45, 618, 633
odeset, 620
ones, 32
optimset, 182, 183, 189
pause, 76
pchip, 468, 471
peaks, 572
pi, 30
plot, 42
plot3, 44, 608
poly, 184, 185
polyfit, 373, 433, 446
polyval, 373, 433, 446
prod, 41
quiver, 565
rand, 353–356
randn, 353, 356

realmax, 112
realmin, 112
roots, 184–187
round, 40
save, 63
semilogy, $50, 51$
set, 479
sign, 69
sin, 40
size, 237
sort, 41
spline, 468
sqrt, 40
sqrtm, 40
std, 352
stem, 423
subplot, 44

APPENDIX B MATLAB M-FILE FUNCTIONS

M-file Name	Description	Page
bisect	Root location with bisection	151
eulode	Integration of a single ordinary differential equation with Euler's method	586
fzerosimp	Brent's method for root location	180
GaussNaive	Solving linear systems with Gauss elimination without pivoting	258
GaussPivot	Solving linear systems with Gauss elimination with partial pivoting	263
GaussSeide1	Solving linear systems with the Gauss-Seidel method	310
goldmin	Minimum of one-dimensional function with golden-section search	208
incsearch	Root location with an incremental search	144
IterMeth	General algorithm for iterative calculation	105
Lagrange	Interpolation with the Lagrange polynomial	443
linregr	Fitting a straight line with linear regression	372
natspline	Cubic spline with natural end conditions	477
Newtint	Interpolation with the Newton polynomial	440
newtmult	Root location for nonlinear systems of equations	318
newtraph	Root location with the Newton-Raphson method	174
quadadapt	Adaptive quadrature	539
rk4sys	Integration of system of ODEs with 4th-order RK method	602
romberg	Integration of a function with Romberg integration	530
Tab1eLook	Table lookup with linear interpolation	458
trap	Integration of a function with the composite trapezoidal rule	500
trapuneq	Integration of unequispaced data with the trapezoidal rule	509
Tridiag	Solving tridiagonal linear systems	266

APPENDIX C INTRODUCTION TO SIMULINK

Simulink® is a graphical programming environment for modeling, simulating, and analyzing dynamic systems. In short, it allows engineers and scientists to build process models by interconnecting blocks with communication lines. Thus, it provides an easy-to-use computing framework to quickly develop dynamic process models of physical systems. Along with offering a variety of numerical integration options for solving differential equations, Simulink includes built-in features for graphical output which significantly enhance visualization of a system's behavior.

As a historical footnote, back in the Pleistocene days of analog computers (aka the 1950s), you had to design information flow diagrams that showed graphically how multiple ODEs in models were interconnected with themselves and with algebraic relationships. The diagrams also showed flaws in modeling where there was information lacking or structural defects. One of the nice features of Simulink is that it also does that. It's often beneficial to see that aspect separate from numerical methods and then merge the two in MATLAB.

As was done with Chap. 2, most of this appendix has been written as a hands-on exercise. That is, you should read it while sitting in front of your computer. The most efficient way to start learning Simulink is to actually implement it on MATLAB as you proceed through the following material.

So let's get started by setting up a simple Simulink application to solve an initial value problem for a single ODE. A nice candidate is the differential equation we developed for the velocity of the free-falling bungee jumper in Chap. 1,

$$\frac{dv}{dt} = g - \frac{c_d}{m}v^2 \tag{C.1}$$

where v = velocity (m/s), t = time (s), $g = 9.81 \text{ m/s}^2$, $c_d = \text{drag coefficient (kg/m)}$, and m = mass (kg). As in Chap. 1 use $c_d = 0.25 \text{ kg/m}$, m = 68.1 kg, and integrate from 0 to 12 s with an initial condition of v = 0.

To generate the solution with Simulink, first launch MATLAB. You should eventually see the MATLAB window with an entry prompt, \gg , in the Command Window. After changing MATLAB's default directory, open the Simulink Library Browser using one of the following approaches:

- On the MATLAB toolbar, click the Simulink button ().
- At the MATLAB prompt, enter the simulink command.

The Simulink Library Browser window should appear displaying the Simulink block libraries installed on your system. Note, to keep the Library Browser above all other windows on your desktop, in the Library Browser select **View**, **Stay on Top**.

Click on the **New model** command button on the left of the toolbar, and an untitled Simulink model window should appear.

You will build your simulation model in the untitled window by choosing items from the Library Browser and then dragging and dropping them onto the untitled window. First, select the untitled window to activate it (clicking on the title bar is a sure way to do this) and select **Save As** from the File menu. Save the window as **Freefall** in the default directory. This file is saved automatically with an **.slx** extension. As you build your model in this window, it is a good idea to save it frequently. You can do this in three ways: the **Save** button, the **Ctrl+s** keyboard shortcut, and the menu selections, **File, Save.**

We will start by placing an integrator element (for the model's differential equation) in the **Freefall** window. To do this, you need to activate the **Library Browser** and double click on the **Commonly Used Blocks** item.

The Browser window should show something like

Examine the icon window until you see the Integrator icon.

The block symbol is what will appear in your model window. Notice how the icon has both input and output ports which are used to feed values in and out of the block. The 1/s symbol represents integration in the Laplace domain. Use the mouse to drag an **Integrator** icon onto your **Freefall** window. This icon will be used to integrate the differential

equations. Its input will be the differential equation [the right hand side of Eq. (C.1)] and its output will be the solution (in our example, velocity).

Next you have to build an information flow diagram that describes the differential equation and "feeds" it into the integrator. The first order of business will be to set up constant blocks to assign values to the model parameters. Drag a **Constant** icon from the **Commonly Used Blocks**¹ branch in the **Browser** window to the **Freefall** model window and place it above and to the left of the integrator.

Next, click on the **Constant Label** and change it to g. Then, double click the Constant block and the Constant Block Dialogue box will be opened. Change the default value in the Constant field to 9.81 and click OK.

Now set up Constant blocks for both the drag coefficient (cd = 0.25) and mass (m = 68.1) positioned below the g block. The result should look like

From the Math Operations Library Browser, select a Sum icon and drag it just to the left of the Integrator block. Place the mouse pointer on the output port of the sum block. Notice that the mouse pointer will change to a crosshair shape when it's on the output port. Then drag a connecting line from the output port to the Integrator block's input port. As you drag, the mouse pointer retains its crosshair shape until it is on the input port whereupon it changes to a double-lined crosshair. We have now "wired" the two blocks together with the output of the sum block feeding into the Integrator.

Notice that the sum block has two input ports into which can be fed two quantities that will be added as specified by the two positive signs inside the circular block. Recall that our differential equation consists of the difference between two quantities: $g - (c_d/m)v^2$. We therefore, have to change one of the input ports to a negative. To do this, double click on the Sum Block in order to open the Sum Block Dialogue box. Notice that the List of Signs has two plus signs (++). By changing the second to a minus sign (+-), the value entering the second input port will be subtracted from the first. After closing the Sum Block Dialogue box, the result should look like

¹ All the icons in the **Commonly Used Blocks** group are available in other groups. For example, the **Constant** icon is located in the **Sources** group.

Because the first term in the differential equation is g, wire the output of the g block to the positive input port of the sum block. The system should now look like

In order to construct the second term that will be subtracted from g, we must first square the velocity. This can be done by dragging a Math Functions block from the Math Operations Library Browser and positioning it to the right and below the integrator block. Double click the Math Functions icon to open the Math Functions Dialogue box and use the pull down menu to change the Math Function to square.

Before connecting the Integrator and Square blocks, it would be nice to rotate the latter so its input port is on top. To do this, select the Square block and then hit ctrl-r once. Then, we can wire the output port of the Integrator block to the input port of the square block. Because the output of the Integrator block is the solution of the differential equation, the output of the square block will be v^2 . To make this clearer, double click the arrow connecting the Integrator and Square blocks and a text box will appear. Add the label, v(t), in this text box to indicate that the output of the Integrator block is the velocity. Note that you can label all the connecting wires in this way in order to better document the system diagram. At this point, it should look like

Next, drag a Divide block from the Math Operations Library Browser and position it to the right of the cd and m blocks. Notice that the Divide block has two input ports: one for the dividend (\times) and one for the divisor (\div). Note that these can be switched by double clicking the Divide block to open the Divide Block Dialogue box and switching the order in the "number of inputs:" field. Wire the cd block output port to the \times input port and the m block output port to the \div input port of the Divide block. The output port of the divide block will now carry the ratio, c_d/m .

Drag a Product block from the Math Operations Library Browser and position it to the right of the divide block and just below the sum block. Use ctrl-r to rotate the product block until its output port points upward toward the sum block. Wire the divide block output port to the nearest product input port and the square Math Function block output port to the other product input port. Finally, wire the product output port to the remaining sum input port.

As displayed above, we have now successfully developed a Simulink program to generate the solution to this problem. At this point, we could run the program but we have not yet set up a way to display the output. For the present case, a simple way to do this employs a Scope Block

The Scope block displays signals with respect to simulation time. If the input signal is continuous, the Scope draws a point-to-point plot between major time step values. Drag a Scope block from the **Commonly Used Blocks** browser and position it to the right of the Integrator block. Position the mouse pointer on the Integrator's output wire (for the present case a nice position would be at the corner). Simultaneously hold down the control key and another line across to the Scope block's input port.

We are now ready to generate results. Before doing that, it's a good idea to save the model. Double click on the Scope block. Then click the run button, . If there are any mistakes, you will have to correct them. Once your have successfully made corrections, the program should execute and the scope display should look something like

Note that a Scope window can display multiple y-axes (graphs) with one graph per input port. All of the y-axes have a common time range on the x-axis. By selecting the parameter button on the graph window (ⓐ), you can use scope parameters to change graph features such as figure color and style and axis settings.

BIBLIOGRAPHY

- Anscombe, F. J., "Graphs in Statistical Analysis," *Am. Stat.*, 27(1):17–21, 1973.
- Attaway, S., *MATLAB: A Practical Introduction to Programming and Problem Solving*, Elsevier Science, Burlington, MA, 2009.
- Bogacki, P. and L. F. Shampine, "A 3(2) Pair of Runge-Kutta Formulas," *Appl. Math. Letters*, 2(1989):1–9, 1989.
- Brent, R. P., Algorithms for Minimization Without Derivatives, Prentice Hall, Englewood Cliffs, NJ, 1973.
- Butcher, J. C., "On Runge-Kutta Processes of Higher Order," J. Austral. Math. Soc., 4:179, 1964.
- Carnahan, B., H. A. Luther, and J. O. Wilkes, Applied Numerical Methods, Wiley, New York, 1969.
- Chapra, S. C. and R. P. Canale, *Numerical Methods for Engineers*, 6th ed., McGraw-Hill, New York, 2010.
- Cooley, J. W. and J. W. Tukey, "An Algorithm for the Machine Calculation of Complex Fourier Series," *Math. Comput.*, 19:297–301, 1965.
- Dekker, T. J., "Finding a Zero by Means of Successive Linear Interpolation." In B. Dejon and P. Henrici (editors), *Constructive Aspects of the Fundamental Theorem of Algebra*, Wiley-Interscience, New York, 1969, pp. 37–48.
- Devaney, R. L. Chaos, Fractals, and Dynamics: Computer Experiments in Mathematics, Menlo Park, CA: Addison-Wesley, 1990.
- Dormand, J. R. and P. J. Prince, "A Family of Embedded Runge-Kutta Formulae," *J. Comp. Appl. Math.*, 6:19–26, 1980.
- Draper, N. R. and H. Smith, *Applied Regression Analysis*, 2nd ed., Wiley, New York, 1981.
- Fadeev, D. K. and V. N. Fadeeva, Computational Methods of Linear Algebra, Freeman, San Francisco, CA, 1963.
- Forsythe, G. E., M. A. Malcolm, and C. B. Moler, *Computer Methods for Mathematical Computation*, Prentice Hall, Englewood Cliffs, NJ, 1977.

- Gabel, R. A. and R. A. Roberts, *Signals and Linear Systems*, Wiley, New York, 1987.
- Gander, W. and W. Gautschi, Adaptive Quadrature– Revisited, BIT Num. Math., 40:84–101, 2000.
- Gerald, C. F. and P. O. Wheatley, Applied Numerical Analysis, 3rd ed., Addison-Wesley, Reading, MA, 1989.
- Hanselman, D. and B. Littlefield, *Mastering MATLAB 7*, Prentice Hall, Upper Saddle River, NJ, 2005.
- Hayt, W. H. and J. E. Kemmerly, *Engineering Circuit Analysis*, McGraw-Hill, New York, 1986.
- Heideman, M. T., D. H. Johnson, and C. S. Burrus, "Gauss and the History of the Fast Fourier Transform," *IEEE ASSP Mag.*, 1(4):14–21, 1984.
- Hornbeck, R. W., Numerical Methods, Quantum, New York, 1975.
- James, M. L., G. M. Smith, and J. C. Wolford, Applied Numerical Methods for Digital Computations with FORTRAN and CSMP, 3rd ed., Harper & Row, New York, 1985.
- Moler, C. B., Numerical Computing with MATLAB, SIAM, Philadelphia, PA, 2004.
- Moore, H., *MATLAB for Engineers*, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2008.
- Munson, B. R., D. F. Young, T. H. Okiishi, and W. D. Huebsch, Fundamentals of Fluid Mechanics, 6th ed., Wiley, Hoboken, NJ, 2009.
- Ortega, J. M., *Numerical Analysis–A Second Course*, Academic Press, New York, 1972.
- Palm, W. J. III, A Concise Introduction to MATLAB, McGraw-Hill, New York, 2007.
- Ralston, A., "Runge-Kutta Methods with Minimum Error Bounds," *Match. Comp.*, 16:431, 1962.
- Ralston, A. and P. Rabinowitz, A First Course in Numerical Analysis, 2nd ed., McGraw-Hill, New York, 1978.

- Ramirez, R. W., *The FFT, Fundamentals and Concepts*, Prentice Hall, Englewood Cliffs, NJ, 1985.
- Recktenwald, G., *Numerical Methods with MATLAB*, Prentice Hall, Englewood Cliffs, NJ, 2000.
- Scarborough, I. B., *Numerical Mathematical Analysis*, 6th ed., Johns Hopkins Press, Baltimore, MD, 1966.
- Shampine, L. F., Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.
- Van Valkenburg, M. E., *Network Analysis*, Prentice Hall, Englewood Cliffs, NJ, 1974.
- White, F. M., *Fluid Mechanics*. McGraw-Hill, New York, 1999.

A	Areal integral, 492	Bisection method, 146, 147. See also
Absolute error, 101	Arithmetic manipulations of computer	Numerical methods
Absolute tolerance (AbsTol), 618	numbers, 112	bisect function, 151–152
Accuracy, 100–101	adding large and small number, 114	error estimation for, 148–151
Adaptive integration, 487	inner products, 114	preferable to false position, 154-155
Adaptive methods	large computations, 113	Bits, 106
adaptive Runge-Kutta methods,	smearing, 114	Blunders, 130
615–623	Arithmetic mean, 348	Boole's rule, 538
MATLAB application, 634–635	Arrays, 31–32	Boolean variables, 636
multistep methods, 624–628	operations, 39	Boundary-value problems, 577, 647
Pliny's intermittent fountain,	Ascent methods, 213	in engineering and science, 648-651
635–639	ASCII files in MATLAB, 64-65	finite-difference methods, 658-665
Adaptive quadrature, 525, 537. See also	Assignment function, 29	initial-value problem vs., 647, 648
Gauss quadrature; Romberg	arrays, 31–32	MATLAB function, 665-667
integration	character strings, 34–35	ordinary differential equation, 647
example, 540	colon operator, 33	shooting method, 651-658
integral function, 539	linspace functions, 33–34	single ODE, 646
quadadapt function, 537–539	logspace functions, 33–34	Bracketing methods. See also Numerical
Adaptive Runge-Kutta methods, 615.	matrices, 31–32	methods; Roots
See also Runge-Kutta methods	scalars, 29–30	and initial guesses, 141
(RK methods)	vectors, 31–32	incremental search, 143-146
adaptive step-size control, 615–616	Associative equation, 232	Brent's method, 176. See also Secant
events, 621–623	Aug function, 258	methods
MATLAB functions for nonstiff	Augmentation, 234	algorithm, 179-181
systems, 617–621		inverse quadratic interpolation,
solution of ODE, 616	В	177–179
Adaptive step-size control, 615–616	Backslash operator, 394	Brent's root-finding method, 179
Allosteric enzymes, 374	Backward method, 630	Brent's root-location method, 176
Alphanumeric information, 34	Banded matrix, 231, 264	Built-in functions, 39–42
Amplification factor, 585	Base-2. See Binary	Bungee jumper
Amplitude, 406	Base-8. See Octal	with cord, 634-635
Analytical solution, 9	Bias. See Inaccuracy	problem
for heated rod, 650–651	Bilinear function, 474	analysis, 291–292
Angular frequency, 332, 406, 407	Binary, 107	analytical solution to, 7–10
Animation, 77	digits, 106	free-falling, 573
of projectile motion, 77–78	search, 458–459	numerical solution to, 10-12
Anonymous functions, 81–82	bisect function, 151–152	velocity, 87–90
-		607

688

Butterfly effect, 607	range, 111	Decisions, 65
bvp4c function, 665–667	Computing work with numerical	error function, 66
	integration, 515–518	if structure, 65-66, 69-70
C	Concatenation, 32, 34	if else structure, 69
Calculator mode, 2, 28	Conditionally stable method, 585	if elseif structure, 69
Calculus, 549	Conservation	logical conditions, 66–68
Cartesian coordinates, 492	of charge, 240	switch structure, 70–71
ceil function, 40	of energy, 241	variable argument list, 71–72
Centered finite difference, 123	laws, 223	Default value, 71
Chaos, 604–609	in engineering and science, 12–13	Definite integrals equation, 575
Character Strings, 34–35	Constant of integration, 575–576	Deflation, 336
Characteristic polynomial, 328	Constitutive laws, 551, 552	Degrees of freedom, 349
Chemical reactions, 320–322	Continuity condition, 460	Dependent variable, 5, 573–574
chol function, 285–286	Continuous Fourier series, 411	Derivative, 485, 549, 550
Cholesky decomposition. See also	approximation, 411–412	boundary conditions
Cholesky factorization	Euler's formula, 413	finite-difference methods,
Cholesky factorization, 283	square wave, 412–413	660–662
example, 284	Control codes, 62–63	shooting method with, 654-656
MATLAB function, 285–286	Convergence, 164, 308	for data with errors, 558–559
Circuits, currents and voltages in,	Cooley-Tukey algorithm, 420	mean-value theorem, 119
240–243	Corrector equation, 588	of unequally spaced data, 557–558
Clamped end condition, 467	Correlation coefficient, 364	Descent methods, 213
Classical fourth-order RK method,	Cosine, 406	Descriptive statistics, 348
595–598	function, 407	location measurement, 348–349
Closed integration formulas, 487, 494	Cramer's rule, 249, 250–253, 315	in MATLAB, 352–353
Closed-form solution, 9	Creating and accessing files, 63–65	spread measurement, 349
Coefficient matrix, 251	Cubic interpolation, 439	statistics of sample, 350–351
Colebrook equation, 186	Cubic splines, 453, 462. See also	det function, 253
Colon operator, 33	Linear splines	Determinants, 250–253
Column, 229	derivation, 463–465	evaluation with gauss elimination,
column-sum norm, 294	end conditions, 467–468	263–264
vectors, 230	material on, 455	DFT. See Discrete Fourier transform
Command mode, 2	natural, 466–467	(DFT)
Commutative equation, 231, 232	cumtrapz functions, 510	Diagonal dominance, 308
Companion matrix, 184	Currents in circuits, 240–243	Diagonal matrix, 230
Complete pivoting, 261	Curvature, 550	diff function, 560–562
Composite Simpson's 1/3 rule,	Curve fitting	Differential equations, 7, 573, 574
503–505, 524–525	with sinusoidal functions, 405, 407	Differentiation, 485–487, 549–551
Composite trapezoidal rule, 497–499	alternative formulation, 408	in engineering and science, 551–552
Computer algorithm for iterative calcu-	least-squares fit of sinusoid,	one-dimensional forms of
lations, 104–106	408–411	constitutive laws, 552
Computer applications, 370	plot of sinusoidal function, 406	Direct methods, 213
MATLAB functions, polyfit and	techniques, 343	Dirichlet boundary condition, 654
	through data points, 344	Discrete Fourier transform (DFT), 418
polyval, 373 MATLAB M-file, linregr, 371–372	engineering and science, 343–345	FFT, 419–420
	linear regression, 345	MATLAB function, 420–423
Computer number representation 106	inical regression, 343	of simple sinusoid with MATLAB,
Computer number representation, 106	D	421–422
floating-point representation, 108–111		Discretization errors, 583
integer representation, 107–108	Darcy's law, 552	disp function, 61
precision, 111–112	Data uncertainty, 131	disp fullcuoli, of

Distributed variable problems, 225	precision, 100-101	derivative boundary conditions,
Distributive, 232	roundoff, 106-114	660–662
Dot product. See Inner product of two	total numerical error, 125–130	implementation, 659
vectors	truncation, 114–125	incorporating derivative boundary
Double integral, 512–513	Euclid's definition, 203	conditions, 662–663
to determine average temperature,	Euclidean norm, 293	for nonlinear ODEs, 663–665
513–514	Euler-Cauchy method. See Euler's	First derivative
Dummy variable, 89	method	backward difference approximation,
	Euler's formula, 413	123
E	Euler's method, 10, 13, 577, 581, 582,	centered difference approximation,
Earthquakes, eigenvalues and, 337-339	598, 629-630. See also Runge-Kutta	123
Echo printing, 29	methods (RK methods)	First-order
Eigenvalues, 327, 328	error analysis for, 583-585	approximation, 116
and earthquakes, 337-339	example, 582–583	equation, 574
eig function, 336	fundamental source of error in, 587	method, 585
mass–three spring system, 331	Heun's method, 588-592	splines, 456–457
with MATLAB, 336–337	MATLAB M-file function,	Fitting experimentatal data, 397–399
physical background, 331	586–587	Floating-point operations (flops), 258
physical interpretation of, 332–333	midpoint method, 592-593	Floating-point representation, 108–111
polynomial method, 329–331	solving systems of ODEs with,	floor function, 40
positions and velocities vs.	598–600	flops. See Floating-point operations
time, 327	stability of, 585-586	(flops)
power method, 333–336	eulode function, 586–587	fmin corresponds, 207
Eigenvectors, 226, 329	Events, 621–623	fminbnd function, 210–211
with MATLAB, 336	Explicit Euler method, 630–632	fminsearch function, 213
physical interpretation of, 332–333	Exploratory data analysis, 46–48	fminsearch MATLAB function, 395
Electromotive force (emf), 241	Exponential model, 366	for end structure, 72–73
Element-by-element operations, 39	Extrapolation, 445–447. See also	Forcing functions, 5
Elimination of unknowns, 253–254	Interpolation	Format codes, 62
Ellipsis, 34	"Eyeball" approaches, 358	Forward elimination of unknowns,
Embedded RK methods, 616, 617		255–256
emf. See Electromotive force (emf)	F	Fourier analysis, 345, 405. See also
End conditions, 467–468	Factorial, loops to computing, 73–74	Gauss elimination
Enzyme kinetics, 373–378	False position, 152, 177, 433–435, 470	continuous Fourier series, 411–413
Equilibrium, 213–215	bisection method preferable to,	curve fitting with sinusoidal
error function, 66	154–155	functions, 405–411
Error(s), 100	method, 153–154	DFT, 418–423
absolute, 101	False-position formula, 152	Fourier integral and transform,
accuracy, 100–101	Fast Fourier transform (FFT), 345,	415–418
amplification, 559	419–420	frequency and time domains,
analysis for Euler's method, 583–585	fft function, 420–423	414–415
blunders, 130	Fick's law, 552	power spectrum, 423–424
computer algorithm for iterative	50th percentile. See Median	sunspots, 425–426
calculations, 104–106	Finite difference, 121	Fourier coefficients, 423
data uncertainty, 131	approximations	Fourier integral, 415
•	of derivatives, 124–125	amplitude and phase line spectra, 417
estimation, 627–628 for iterative methods, 103–104		aperiodic signal, 418
model errors, 130–131	of higher derivatives, 125 methods, 658	various phases of sinusoid, 416
	of boundary-value problems,	Fourier series, 415
numerical, 101	• •	continuous, 411–413
percent relative, 102	659–660	Conunuous, +11-415

690

Fourier transform, 415–418	undetermined coefficients method, 531–533	Hilbert matrix, 295
pair, 417 Fourier's law, 552, 655	Gauss-Newton method, 395	Histogram, 351–352 Homogeneous linear algebraic system,
of heat conduction, 551	Gauss-Seidel method, 226, 305–312,	328
Fourth-order RK method, 600–601	664	Hooke's law, 213, 552, 580
fprintf function, 62	with relaxation, 311–312	humps function, 540
Free-falling bungee jumper problem,	GaussNaive function, 258	Hypothesis testing, 344
573	GaussPivot function, 262-263	Trypodicsis testing, 544
Frequency domain, 414–415	Gear backward differentiation formulas,	
Frequency plane, 415	632	1
Friction factor, 186	General linear least-squares regression,	Identity matrix, 230
Frobenius norm, 294	391–392. See also Nonlinear	IEEE double-precision format, 111
fsolve function, 319–320	regression	if structure, 65–66, 69–70
Function files, 55–57	model, 345	if else structure, 69
Function functions, 81, 82–83	multiple linear regression,	if elseif structure, 69
building and implementing, 84–85	389–391	Ill-conditioned ODEs, 585
Fundamental frequency, 411	polynomial regression, 385–389	Ill-conditioned systems, 249
fval function, 213	with MATLAB, 392–393	Implicit Euler method, 630–632
fzero function, 181–183	QR factorization and backslash	Implicit method, 630
fzerosimp function, 179	operator, 394	Implicit Runge-Kutta formula, 632
	Global optimum, 202	Imprecision, 100
	Global truncation error, 583–584	Inaccuracy, 100
G	Global variables, 58–60	Increment function, 581, 593
Gauss elimination, 225, 249. See also	Golden ratio, 203	Incremental search method, 143–146
Fourier analysis	Golden-section search, 203–208	Indefinite integral equation, 575
determinants and Cramer's rule,	Gradien methods, 213	Indentation, 79–81
250–253	gradient function, 563–564	Independent variables, 5, 573–574
elimination of unknowns, 253–254	Graphical methods, 140–141, 249–250	Indoor air pollution, 297–300
graphical method, 249–250	Graphics, 42–45	Infinite loop, 75
as LU factorization, 276		Initial-value problems, 577, 579, 647
example, 278	Н	Euler's method, 581–593
MATLAB function, 282–283	Harmonics, 411	MATLAB M-file function, rk4sys,
matrix, 277	Heated rod model, 266–269	602–603
with pivoting, 280–282	Hertz (Hz), 332	predator-prey models and chaos,
substitution steps, 279–280	Heun's method, 588	604–609
model of heated rod, 266–269	example, 589–592	RK methods, 593–598
naive Gauss elimination,	without iteration, 595	signum function, 580
254–261	predictor and corrector, 588	solving ODE, 581
pivoting, 261–264	predictor equation, 588	systems of equations, 598–604
solving small numbers of equations,	predictor-corrector approach, 589	Inner product of two vectors, 37
249	High-accuracy differentiation formulas,	input function, 61
tridiagonal systems, 264–266	552	Input-output, 61
Gauss quadrature, 487, 508, 525,	example, 553–555	creating and accessing files, 63–65
530–531. See also Adaptive	Taylor series, 552–553	interactive M-file function, 62–63
quadrature; Romberg integration	Higher-order corrections, 527	Integer representation, 107–108
higher-point formulas, 536–537	Higher-order differential equations,	integral function, 539, 543
three-point Gauss-Legendre formula,	574	integral2 functions, 514
536–537	Higher-order polynomial interpolation,	integral3 functions, 514
two-point Gauss-Legendre formula,	dangers of, 447–449	Integrals, 492
533–536, 543	Higher-point formulas, 536–537	for data with errors, 558–559

Integration 485 487 480 400	Locat squares	normal distribution 251 252
Integration, 485–487, 489–490 in engineering and science, 490–492	Least squares criterion, 360	normal distribution, 351–352 random numbers and simulation,
Newton-Cotes open integration	fit of sinusoid, 408–411	353–358
1 0		
formulas, 512	regression, 343	statistics review, 348
numerical integration to computing	Left division, polynomial regression	wind tunnel experiment, 347
distance, 510–511	implemention with, 394	Linear splines, 455. See also Cubic
trapezoidal rule with unequal	Line spectra, 415	splines
segments, 508	Linear algebraic equations, 223, 227,	first-order splines, 456–457
trapuneq function, 509	248	notation for, 456
trapz and cumtrapz, 510	bungee cords, 228	table lookup, 458–459
with unequal segments, 508	currents and voltages in circuits,	Linear systems, 305. See also Nonlinear
Interactive M-file function, 62–63	240–243	systems
interp1 function, 468, 470	in engineering and science,	chemical reactions, 320–322
options, 472	223–225	convergence and diagonal
trade-offs using, 471–473	free-body diagrams, 228	dominance, 308
Interpolation, 16, 343, 345, 430. See also	linear algebraic equations with	fsolve function, 319–320
Polynomial interpolation	MATLAB, 238–240	Gauss-Seidel method, 306–308
determining polynomial coefficients,	matrix algebra, 229-238	GaussSeidel function, 309
431–432	Linear convergence, 166	linear algebraic equations, 305–306
polyfit functions, 433	Linear interpolation method. See False	relaxation, 309-312
polyval functions, 433	position	Linearization of nonlinear relationships,
Inverse Fourier transform, 417, 418	Linear Lagrange interpolating	366
Inverse interpolation, 444-445. See also	polynomial, 441	comments on linear regression, 370
Interpolation	Linear least-squares regression, 358	fitting data with power equation,
Inverse quadratic interpolation,	"criteria for best" fit, 358-360	368–370
177–179	error quantification of linear	nonlinear regression techniques,
Iterative methods	regression, 362	367–368
linear systems, 305–312	errors estimation for linear	power equation, 366-367
nonlinear systems, 312-322	least-squares fit, 364-366	linregr MATLAB M-file function,
	least-squares fit of straight line, 360	371
1	linear regression, 360–362	linspace functions, 33–34
Jacobi iteration, 307	linear regression with residual errors,	Local optimum, 202
Joule's law, 541	364	Local truncation error, 583-584
	regression data, 363	Local variables, 57, 58
Jumpers motion, 326	residual in linear regression,	Logical conditions, 66–68
	362–363	Logical variables, 636
K	Linear ODE, shooting method for,	logspace functions, 33–34
Kirchhoff's current, 240	652–654	Loop(s), 65, 72
Kirchhoff's voltage rule, 241	Linear regression, 345, 360–362, 370	to computing factorial, 73–74
Knots, 457	computer applications, 370–373	for end structure, 72–73
	descriptive statistics, 348–351	pause command, 76
L	in MATLAB, 352–353	preallocation of memory, 74–75
Lagging phase angle, 407	enzyme kinetics, 373–378	rule, 241
Lagrange interpolating polynomial, 345,	experimental data for force and	vectorization, 74
441. See also Newton interpolating	velocity, 347–348	while structure, 75
polynomial	fluid mechanics, 346–347	while break structure, 75–76
Lagrange function, 443–444	linear least-squares regression,	Lorenz equations, 604, 606
rationale, 442	358–366	Lotka-Volterra equations, 604, 607
Lagrange polynomial, 178	linearization of nonlinear	Lotka-Volterra model, 606
Leading phase angle, 407	relationships, 366–370	Lower triangular matrix, 231
Deading Priase angle, 107	r .,	

692

Mantissa, 110

LU factorization, 225, 275	Mathematical model, 2, 5	numerical differentiation with,
Cholesky factorization, 283-286	analytical solution to bungee jumper	560–564
with Gauss elimination, 278	problem, 7–10	piecewise interpolation in, 468
Gauss elimination as, 276-283	numerical solution to bungee jumper	interp1 function, 470-473
LU function, 282–283	problem, 10–12	spline function, 468–470
MATLAB left division, 286	real drag, 17–19	polyfit functions, 373, 433
<i>n</i> -dimensional systems, 275	Mathematical operations, 36–39	polyval functions, 373, 433
two-step strategy, 276	MATLAB	power spectrum with, 424
Lumped drag coefficient, 7	assignment function, 29-35	programming mode, 3
Lumped variable problems, 224	bisect function, 151–152	quadadapt function, 537–539
	built-in functions, 674-675	rand function, 354–356
	bvp4c function, 665–667	randn function, 356-358
M	chol function, 285–286	resources, 46
M-files, 54, 143, 637	Cholesky factorization with,	rk4sys, 602–603
bisect function, 151–152	285–286	roots function, 184–186
eulode function, 586–587	cumtrapz functions, 510	software environment, 2
function files, 55–57	descriptive statistics in, 352–353	for stiffness, 632–634
GaussNaive, 258	DFT of simple sinusoid with,	trap, 499–501
GaussPivot, 262–263	421–422	trap function, 499–501
GaussSeidel, 309	eig function, 336	trapuneq function, 509
global variables, 58–60	eigenvalues, 336–337	trapz functions, 510
to implementing Lagrange	eigenvectors, 336–337	Tridiag function, 266
interpolation, 443	environment, 28–29	use of built-in functions, 39–42
to implementing Newton	eulode, 586–587	variables, 57
interpolation, 440	exploratory data analysis, 46–48	workspace, 57
•	fft function, 420–423	Matrix, 31–32, 229
to implementing Romberg	fminsearch, 395	algebra, 225, 229
integration, 530	fsolve function, 319–320	condition number, 294–296
Lagrange function, 443–444	fzero function, 181–183	in MATLAB, 296–297
linregr M-file function, 371–372	GaussNaive, 258	form, 409
Newtint function, 440	GaussPivot, 262–263	
newtraph function, 173–174	GaussFivol, 202–203 GaussSeidel, 309	linear algebraic equations in matrix form, 237–238
passing functions to, 81		
anonymous functions, 81–82	graphics, 42–45	matrix algebra, 229–238
building and implementing	to implement Gauss-Seidel method,	multiplication, 231–232
function function, 84–85	310	norms, 293–294
function functions, 82–83	integral function, 539	notation, 229–231
passing parameters, 85–87	integral2 and integral3 functions, 514	operating rules, 231
quadadapt function, 537–539	Lagrange function, 443–444	higher-dimensional matrices,
rk4sys, 602–603	left division, 286	233
script files, 54–55	linear algebraic equations with,	MATLAB matrix manipulations,
subfunctions, 60–61	238–240	234–237
trap function, 499–501	linregr function, 371–372	visual depiction, 232
trapuneq function, 509	LU factorization, 282–283	Matrix inverse, 226, 288
Tridiag function, 266	M-file functions, 676	bungee jumper problem analysis,
variable scope, 57–58	mathematical operations, 36–39	291–292
Machine epsilon, 110	matrix manipulations, 234–237	calculating inverse, 288–289
Machine precision. See Machine epsilon	multidimensional interpolation in,	error analysis and system condition,
Maclaurin series expansion, 103	475	292
Main function, 61	Newtint function, 440	matrix condition number,

newtraph function, 173-174

294-296

methods, 292-293	MATLAB M-file, 258	with MATLAB, 395-396
vector and matrix norms,	operation counting, 258–261	techniques, 367
293–294	Natural cubic splines, 466-467	Nonlinear relationships, linearization
example, 289–290	Nearest neighbor interpolation, 470	of, 366
indoor air pollution, 297-300	Nesting, 79–81	comments on linear regression, 370
norms and condition number in	Neumann boundary condition, 654	fitting data with power equation,
MATLAB, 296-297	Newtint function, 440-441	368–370
stimulus-response computations,	Newton interpolating polynomial, 433.	nonlinear regression techniques,
290–291	See also Lagrange interpolating	367–368
max function, 262	polynomial	power equation, 366-367
Maximum likelihood principle, 363	form of, 437–439	Nonlinear simultaneous equations, 226
Mean value, 406	linear interpolation, 433–435	Nonlinear systems, 312. See also Linear
Measurement errors, 131	Newtint function, 440-441	systems
Median, 348	quadratic interpolation, 435-437	Newton-Raphson method, 314-319
Michaelis-Menten equation, 373–374	Newton linear-interpolation formula,	simultaneous nonlinear equations,
Midpoint method, 592–593, 595	433	312–313
Midtest loop, 75	Newton-Cotes	successive substitution, 313-314
Minimax criterion, 359	closed integration formulas, 507	Nonperiodic function, 416
Minimum potential energy, 213–215	formulas, 486, 492-494, 512, 525,	Nonstiff systems, MATLAB functions
Minors, 251	541–542	for, 617
Mixed partial derivative, 560	integration formulas, 593	MATLAB to solving system of
Mode, 348	open integration formulas, 512	ODEs, 618-620
Model errors, 130–131	Newton-Raphson bungee jumper	ode23 function, 617
Modified secant method, 175–176	problem, 173–174	odeset to control integration options,
Multidimensional interpolation, 473.	Newton-Raphson method, 169, 170, 314	620–621
See also Piecewise interpolation;	MATLAB M-file, 173-174, 318-319	predator-prey model, 619, 620
Polynomial interpolation	multivariable Taylor series, 314-315	Norm, 293
bilinear interpolation, 473-475	near-zero slope, 171	in MATLAB, 296-297
in MATLAB, 475	for nonlinear system, 315–318	Normal distribution, 351–352
Multidimensional optimization,	poor convergence, 172	Normalization, 256
211–213	slowly converging function, 170-171	"Not-a-knot" end condition, 467
Multimodal cases, 202	Newton's interpolating polynomial, 345	Number system, 106
Multiple integrals, 512	Newton's second law, 12, 228, 326, 405,	Numerical differentiation, 16, 121, 487,
double integral, 512-514	551, 573	549–551
MATLAB functions: integral2 and	Newton's viscosity law, 552	backward difference approximation
integral3 functions, 514	newtraph function, 173-174	of first derivative, 123
Multiple linear regression, 345, 389–391	Non-self-starting Heun method, 624 example, 626–627	centered difference approximation of first derivative, 123
	fundamental difference, 624, 625	derivatives
Multistep methods, 581, 624 error estimation, 627–628	Nongradient methods, 213	and integrals for data with errors,
non-self-starting Heun method,	Nonhomogeneous system, 328	558–559
624–627	Nonlinear algebraic equation, 183	partial, 559–560
024-027	Nonlinear ODEs	of unequally spaced data,
	finite-difference methods for,	557–558
N	663–665	diff function, 560-562
Naive Gauss elimination, 254, 261	shooting method for, 656-658	in engineering and science, 551-552
back substitution, 256	Nonlinear regression, 345, 395. See also	error analysis, 126-129
example, 257	General linear least-squares	finite-difference approximations
forward elimination of unknowns,	regression	of derivatives, 124–125
255-256	fitting experimentatal data, 397-399	of higher derivatives, 125

694

ode45 function, 618, 620, 637, 655

Numerical differentiation (Continued)	Ohm's law, 241, 541, 552	Partial pivoting, 261
free-falling bungee jumper, 548	One-dimensional optimization, 202–211	Passed function, 82
gradient function, 563-564	fminbnd function, 210–211	Passing functions
high-accuracy differentiation	golden-section search, 203–208	anonymous functions, 81–82
formulas, 552–555	parabolic interpolation, 209–210	building and implementing function
with MATLAB, 560	One-point iteration. See Simple	function, 84–85
Richardson extrapolation, 555–557	fixed-point iteration	function functions, 82–83
roundoff errors in, 127-129	One-step methods, 581	to M-files, 81
truncation errors in, 127–129	Open integration formulas, 487, 494	Passing parameters, 85
visualizations of vector fields,	Open methods, 143, 164	approach for, 86-87
565–567	Operation counting, 258–261	Pause command, 76
Numerical errors, 101	Optimization, 16, 136, 199	pchip. See Piecewise cubic Hermite
control, 129-130	elevation as function of time, 199	interpolation (pchip)
Numerical integration, 16	equilibrium and minimum potential	PDE. See Partial differential equation
formulas	energy, 213–215	(PDE)
computing work with, 515-518	mathematical perspective, 199	Per-step truncation error estimation, 628
free-falling bungee jumper,	multidimensional, 202, 211-213	Percent relative error, 102
488–489	one-dimensional, 202-211	Periodic function, 405
higher-order Newton-Cotes	optimum analytically by root	Permutation matrix, 233
formulas, 507–508	location, 200–201	Phase angle, 407, 407
multiple integrals, 512-514	single variable function, 200	Phase shift, 407
Newton-Cotes formulas, 492–494	Optimum analytically by root location,	Phase-plane plots, 605, 609
open methods, 512	200–201	Phasor, 413
Simpson's rules, 501–507	optimset function, 182-183	Piecewise cubic Hermite interpolation
trapezoidal rule, 494–501	Ordinary differential equations (ODE),	(pchip), 468, 471
of functions	16, 573, 574, 647	Piecewise cubic spline interpolation, 470
adaptive quadrature, 537–540	dependent variable, 573-574	Piecewise interpolation. See also Multi-
Gauss quadrature, 530–537	first-order ODEs, 574, 576	dimensional interpolation; Polyno-
Romberg integration, 525–530	initial-value problem, 577	mial interpolation
root-mean-square current,	Runge-Kutta techniques, 577	heat transfer, 476–480
540–543	shooting method	interp1 function, 470–473
Numerical methods, 1, 2, 9, 13, 104,	for linear ODE, 652–654	in MATLAB, 468
136. See also Bisection method	for nonlinear ODEs, 656–658	spline function, 468–470
conservation laws in engineering and	solution, 575	Pipe friction, 186–190
science, 12–13	Ordinary frequency, 407	Pivot equation, 256
devices and types of balances, 14	Oscillations, 447–449	Pivoting, 261–264
real drag, 17–19	Overdetermined systems, 238	determinant evaluation with gauss
Nyquist frequency, 419	Overflow error, 109	elimination, 263–264
Try quist frequency, Try	Overrelaxation, 309	LU factorization with, 280–282
0	O verreiaxación, 505	MATLAB M-file, 262–263
Octal, 107		Pliny's intermittent fountain, 635–639
ODE. See Ordinary differential	P	plot3 function, 608
equations (ODE)	Parabola. See Second-order polynomial	Point-slope method. <i>See</i> Euler's method
ode113 function, 618		polyfit functions, 433
	Parabolic interpolation, 209–210	polynomial regression implemention
ode15s function, 632	Parameters, 5, 6	with, 394
ode23 function, 617, 620–621	passing, 85–87	Polynomial interpolation, 430. <i>See also</i>
ode23s function, 632	Partial derivatives, 550, 559–560	
ode23t function, 632	Partial differential equation (PDE),	Multidimensional interpolation
ode23tb function, 632	574. See also Ordinary differential	examples, 431

equations (ODE)

extrapolation, 445-447

inverse interpolation, 444–445	polynomial. See Second-order	Secant methods, 174–176
Lagrange interpolating polynomial,	polynomial	simple fixed-point iteration, 165–169
441–444	splines, 459–462	roots function, 184–186
Newton interpolating polynomial,	Quadrature, 489	round function, 40
433–441	_	Roundoff errors, 3, 106, 583. See also
oscillations, 447–449	R	Truncation errors
Polynomial(s), 183–186	Ralston's method, 595	arithmetic manipulations of computer
MATLAB function, 184–186	Random numbers, 353	numbers, 112–114
method, 328, 329–331	generation, 345	computer number representation,
regression, 345, 385–389	rand function, 354–356	106–112
implementation, 394	randn function, 356–358	in numerical differentiation,
with MATLAB, 392–393	Range, 111, 349	127–129
polyval functions, 433	Rate equations, 573	Row, 229
Positional notation, 107	Regression, 16	row-sum norm, 294
Posttest loop, 76	Relative tolerance (RelTol), 618	vectors, 229
Potential energy, 213	Relaxation, 309–310	Runge-Kutta methods (RK methods),
Power equation, 366	Gauss-Seidel method with, 311–312	577, 578, 581, 587, 593. See also
fitting data with, 368–370	RelTol. See Relative tolerance (RelTol)	Adaptive Runge-Kutta methods;
Power method, 333–334	Residual, 358	Euler's method
for highest eigenvalue, 334–336	Reverse-wrap-around order,	classical fourth-order, 595–598
Power spectrum, 423	421, 423	increment function, 593
with MATLAB, 424	Reynolds number, 17	rk4sys function, 602–603
Preallocation of memory, 74–75	Richardson extrapolation, 524, 525–526,	second-order, 594–595
Precision, 100–101, 111–112	555–557	systems of equations, 600–601,
Predator-prey equations, 618	example, 526–527	603–604 types of 504
-	higher-order corrections, 527	types of, 594
models and chaos, 604–609	RK methods. See Runge-Kutta methods	Runge's function, 447, 468
Predictor equation, 588	(RK methods)	comparison, 448–449, 469–470
Predictor-corrector approach, 589 Pretest loop, 75	RK-Fehlberg methods, 617	S
Primary function, 61	rk4sys function, 602–603, 605	
Problem solving, 1	Romberg integration, 487, 508, 524,	S-shape, 374 Saturation growth rate equation 367
real drag, 17–19	525, 528. See also Adaptive quadratura: Gauss quadratura	Saturation-growth-rate equation, 367 Scalars, 29–30
Programming with MATLAB	ture; Gauss quadrature	
bungee jumper velocity, 87–90	algorithm, 527–530 M-file to implement, 530	Script files, 54–55 Secant methods, 174–176. <i>See also</i>
input-output, 61–65	Richardson extrapolation, 525–527	Brent's method
M-files, 54	Roots, 135, 164, 165, 184–186	Second finite divided difference, 437
nesting and indentation, 79–81	bisection method, 146–152	Second forward finite difference, 437
passing functions to M-files, 81–87	Brent's method, 176–181	Second-order equation, 574
structured programming, 65–78	in engineering and science, 139–140	Second-order polynomial, 435
Propagated truncation error, 583–584	false position, 152–155	Second-order Runge-Kutta methods,
Proportionality, 291	graphical methods, 140–141	594–595
110portionality, 251	greenhouse gases and rainwater,	Sequential search, 458
	156–159	Shooting method, 651
Q	MATLAB function, 181–183	with derivative boundary conditions,
QR factorization, 394	Newton-Raphson method, 169–174	654–656
quadadapt function, 537–539	pipe friction, 186–190	for linear ODE, 652–654
Quadratic Quadratic	polynomials, 183–186	for nonlinear ODEs, 656–658
convergence, 170	root-location techniques, 224	trial-and-error approach, 651
1 4 10 405 407	540 542	Ci

root-mean-square current, 540-543

Sigmoid, 374

interpolation, 435-437

Signed magnitude method, 107	MATLAB application, 634-635	Total numerical error, 125
Signum function, 580	MATLAB functions for, 632-634	control of numerical errors,
Simple fixed-point iteration, 165–169,	Pliny's intermittent fountain,	129–130
313–314	635–639	error analysis of numerical differen-
Simpson's rules, 501, 529	stiff solution of single ODE, 629	tiation, 126-129
Simpson's 1/3 rule, 486, 501–502,	Stimulus-response computations,	trade-off between roundoff and
535, 541	290–291	truncation error, 126
composite Simpson's 1/3 rule,	Stokes drag, 17	Transient variable, 12
503–505	Stopping criterion, 103	Transpose, 233, 234, 283
single application, 502–503	String functions, 35	Transposition matrix, 233
Simpson's 3/8 rule, 486, 505–507,	Structured programming, 65	trap function, 499–501
535	animation, 77–78	Trapezoidal rule, 486, 494, 495, 529,
Simulation, 353–358	decisions, 65–72	531, 541, 592, 593
MATLAB function, 353–358	loops, 72–76	composite trapezoidal rule, 497–499
Simulink [®] , 677–684	Subfunctions, 60–61	error of, 495
Simultaneous equations, determin-	Subtractive cancellation, 113	integral evaluation by, 532
ing polynomial coefficients with,	Successive overrelaxation (SOR), 309	MATLAB M-file function, trap,
431–432	Successive substitution. See Simple	499–501
single-line if structure, 66		single application of, 495–497
Singular value decomposition, 394	fixed-point iteration	with unequal segments, 508
Sinusoid, 405	sum function, 40	trapuneq function, 509
	Sunspots, 425–426	
least-squares fit of, 408–411	Superposition, 291	trapz functions, 510
sinusoidal functions, 405	Swamee-Jain equation, 187, 189	Trend analysis, 344
curve fitting with, 405–411	Switch structure, 70–71	Trial and error technique, 135, 651
Smearing, 114	Symmetric matrix, 230	Tridiag function, 266
SOR. See Successive overrelaxation	Systems of equations, 598	Tridiagonal matrices, 225, 231
(SOR)	Euler's method, 598–600	Tridiagonal systems, 264
Spectral norm, 294	Runge-Kutta methods, 600–604	MATLAB M-file, 266
Splines, 453		solution of, 265
cubic, 462–468	_	Truncation errors, 3, 114, 583–584.
drafting technique, 455	Т	See also Roundoff errors
functions, 453	Table lookup, 458–459	numerical differentiation, 121–125
heat transfer, 476-480	Taylor series, 114–118, 552–553	in numerical differentiation, 127–129
to higher-order interpolating	to estimating truncation errors,	remainder for Taylor series
polynomials, 454	120–121	expansion, 119–120
interpolation, 345	expansion, 118, 314, 584	Taylor series, 114–118
linear, 455–459	remainder for, 119-120	Taylor series to estimating, 120-121
in MATLAB, 468–470	Taylor theorem, 114, 117	Two-dimensional interpolation, 473
quadratic, 459–462	Terminal velocity, 9	implementing by first applying
spline function, 468–470	Thermocline, 476	one-dimensional linear
Square matrices, 230	Third-order polynomial, 462	interpolation, 474
Standard deviation, 349	Three-point Gauss-Legendre formula,	Two-point Gauss-Legendre formula,
Steady-state calculation, 12	536–537	533–536, 543
Stefan-Boltzmann law, 59	Time domain, 414–415	weighting factors and function
Step halving approach, 616	Time plane, 415	arguments, 536
Stiff system, 628	Time series, 405	2s complement technique, 108
Stiffness, 628	Time-consuming evaluation, 208	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Euler's method, 629–630	Time-variable, 12	U
explicit and implicit Euler method,	Top-down design, 79	Uncertainty. See Imprecision
630–632	Torricelli's law, 635–636	Unconditionally stable approach, 630

Unconditionally stable approach, 630

Underdetermined systems, 238
Underrelaxation, 309
Undetermined coefficients method, 531–533
Unequally spaced data, derivatives of, 557–558
Unimodal, 204
Upper triangular matrix, 230, 280
Upper triangular system, 256

van der Pol equation, 632–633 Vandermonde matrices, 432 Variable argument list, 71–72
Variable scope, 57–58
Variance, 349
Vectorization, 74
Vectors, 31–32, 293–294
vector fields, visualizations of, 565–567
vector-matrix multiplication, 38
Visualization
two-dimensional function, 212
vector fields, 565–567
Voltage rules, 240, 241

Voltages in circuits, 240-243

Volume integral, 492

W

while structure, 75 while... break structure, 75–76 Wolf sunspot number, 425 Word, 106

xmin function, 213

Z

Zeros of equation, 135 zero-order approximation, 115