22. Linear codes

22.1 Introduction

In this lecture, we will prove some properties of linear codes and describe Hamming's code that corrects single-bit errors.

22.2 Linear codes

A vector space L over the finite field \mathbb{F}_q is a subset of \mathbb{F}_q^n endowed with the operations of vector addition (+) and scalar multiplication (·) such that (L, +) is an abelian group, and for any element $\alpha \in \mathbb{F}_q$, $\alpha \cdot v \in L$ for $v \in L$.

Span: The span of a set of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is the set $\{\sum \alpha_i \cdot \mathbf{v}_i \mid \alpha_i \in \mathbb{F}_q\}$.

Linear independence: A set of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_k$ are linearly independent $\sum \alpha_i \cdot \mathbf{v}_i = 0$ implies $\alpha_1 = \alpha_2 = \dots = \alpha_k = 0$.

Basis: The basis of a linear space $L \subseteq \mathbb{F}_q^n$ is a set of linearly independent vectors in L that spans L. The number of elements in the basis is the *dimension* of L, denoted by $\dim(L)$.

Null space: The null space of a vector space L, denoted by L^{\perp} , is the set of vectors \mathbf{w} such that $\langle \mathbf{w}, \mathbf{v} \rangle = 0$.

It can be shown that L^{\perp} is also a linear space.

Proposition 22.1. Let L be k-dimensional subspace of \mathbb{F}_q^n , and let L^{\perp} be its null space. Then, $\dim(L^{\perp}) = n - k$.

Let $L \subseteq \mathbb{F}_q^n$ be a subspace of dimension k and let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be a basis for L. Then we can construct a matrix $G \in \mathbb{F}_q^{k \times n}$ where the i^{th} row of G is the vector \mathbf{v}_i . The matrix G generates the vector space L since $L = \{\mathbf{x}G \mid \mathbf{x} \in \mathbb{F}_q^k\}$. The number of linearly independent rows of a matrix is equal to the number of linearly independent columns of a matrix and this is known as the rank of the matrix G, denoted by $\mathrm{rk}(G)$. In this case $\mathrm{rk}(G) = k$.

An $[n, k, d]_q$ code \mathcal{C} is a linear code is \mathcal{C} is a linear subspace of \mathbb{F}_q^n of dimension k. The matrix $G \in \mathbb{F}_q^{k \times n}$ where the rows form a basis for \mathcal{C} is known as the generator matrix for the code \mathcal{C} (we will refer to \mathcal{C} as both a linear subspace and a code). Therefore $\mathcal{C} = \{\mathbf{x}G \mid \mathbf{x} \in \mathbb{F}_q^k\}$. For the code \mathcal{C} , the null space \mathcal{C}^\perp is known as the dual code of \mathcal{C} . The linear space \mathcal{C}^\perp has dimension n-k and hence is generated by a matrix $H^T \in \mathbb{F}_q^{(n-k) \times n}$. Since H^T generates \mathcal{C}^\perp , we know that for every vector $\mathbf{x} \in \mathcal{C}$, $\mathbf{x}H = 0$. The matrix H is known as the parity-check matrix of the code \mathcal{C} .

For a codeword $\mathbf{x} \in \mathcal{C}$, let $\mathrm{wt}(\mathbf{x})$ denote the number of non-zero entries in the vector. This is known as the Hamming weight of the codeword \mathbf{x} . The minimum distance of a code \mathcal{C} is connected to the parity-check matrix in the following way. First, we show that minimum distance of a linear code is equal to the minimum weight of the code.

Proposition 22.2. The minimum distance of a linear code C is equal to the minimum weight of C.

Proof. Let d be the minimum distance of the code, and let w be the weight of the minimum weight codeword. Let \mathbf{x}, \mathbf{y} be such that $\Delta(\mathbf{x}, \mathbf{y}) = d$. The vector $\mathbf{z} = \mathbf{x} - \mathbf{y}$ is also a codeword, and $\operatorname{wt}(\mathbf{z}) = \Delta(\mathbf{x}, \mathbf{y})$. Therefore, $w \leq d$. Let \mathbf{w} be a codeword such that $\operatorname{wt}(\mathbf{w}) = w$. Therefore, $w = \Delta(\mathbf{w}, \mathbf{0}) \geq d$. Therefore, for any linear code \mathcal{C} , w = d.

Proposition 22.3. The minimum distance of a k-dimensional linear code $C \in \mathbb{F}_q^n$ with parity-check matrix H is equal to the smallest integer r such that there are r linearly dependent rows in H.

Proof. Let d be the minimum distance of C. Then, there exists a codeword \mathbf{x} such that $\operatorname{wt}(\mathbf{x}) = d$. Since $\mathbf{x}H = 0$, there exists d rows $\mathbf{h}_1, \ldots, \mathbf{h}_d$ such that $\sum x_i \mathbf{h}_i = 0$. Similarly, if there exists r linearly dependent rows in H, then this gives a vector \mathbf{x} of weight r such that $\mathbf{x}H = 0$.

Notice that permuting the rows of G does not change the linear space generated by G. Similarly, permuting the columns of G does not change the linear space generated by G since we are merely changing the coordinate names. Also, taking linear combinations of the rows of G does not change the space generated by G; we are merely changing the basis of the linear space. Thus we can convert the generator matrix G of linear code C to a form $[I_k \mid A]$ where I_k is the $k \times k$ identity matrix, and $A \in \mathbb{F}_q^{k \times n - k}$. Since H^T generates C^{\perp} , we know that $H^T G^T = 0$. Therefore, we can express H^T as the matrix $[-A^T \mid I_{n-k}]$. We conclude the discussion above with the following proposition.

Proposition 22.4. Let $C \subseteq \mathbb{F}_q^n$ be a k-dimensional linear space. Then the following holds:

- The generator matrix $G \in \mathbb{F}_q^{k \times n}$ can be expressed as $[I_k \mid A]$, where $A \in \mathbb{F}_q^{k \times n k}$.
- The generator matrix $H^T \in \mathbb{F}_q^{n-k \times n}$ of \mathcal{C}^{\perp} can be expressed as $[-A^T \mid I_{n-k}]$.

When we have a generator matrix of the form $[I_k \mid A]$, then we can think of the encoding as sending the message symbols appended by the parity-check bits.

22.3 Hamming code

We will now see Hamming's construction of an error correcting code that can correct a single bit error. These are linear codes with minimum distance 3. For the rest of this discussion we will work over \mathbb{F}_2 .

We want to construct an $[n, k, 3]_2$ code with parity check matrix $H \in \mathbb{F}_2^{n \times (n-k)}$. For any codeword \mathbf{x} with $\operatorname{wt}(\mathbf{x}) = 1$, $\mathbf{x}H \neq 0$. This means that every row \mathbf{h}_i of H is non-zero. Similarly, for every \mathbf{x} with $\operatorname{wt}(\mathbf{x}) = 2$, $\mathbf{x}H \neq 0$. This implies that $\mathbf{h}_i \neq \mathbf{h}_j$ for $i \neq j$.

Let l = n - k. Hamming code is described by the parity check matrix H where each row is a binary string of length l. Since we want each row to be non-zero there are $2^l - 1$ many rows. From the discussion in the last paragraph we know that this code has distance at least 3. Thus we have the following theorem.

Theorem 22.5. For every l, there is a $[2^{l}-1, 2^{l}-l-1, 3]_2$ code.

22.3.1 Hamming $[7, 4, 3]_2$ code

The least for which we have Hamming code is l = 3, and for this value of l we have the $[7, 4, 3]_2$ Hamming code. Let's describe the parity check matrix and the generator matrix for this code. Recall that H consists of all strings of length l except the all 0 string. Therefore,

$$H = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \text{ and } H^T = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Now, I can permute the columns of H^T to obtain the following matrix in the form $[-A^T \mid I_{n-k}]$.

$$H^T = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Since $G = [I_k \mid A]$, we can obtain the generator matrix for the $[7,4,3]_2$ code as below.

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

22.3.2 Decoding the Hamming code

Suppose \mathbf{y} is a received message that we want to decode where $\mathbf{y} = \mathbf{x} + \mathbf{e}_i$. The word $\mathbf{x} \in \mathcal{C}$. Then, $(\mathbf{x} + \mathbf{e}_i)H = 0$, and this implies that $\mathbf{e}_i H = 0$. If H is arranged such that the i^{th} row is i written in binary, then $\mathbf{e}_i H$ gives you the location of the error (in binary).

22.3.3 Hamming's bound

Notice that to encode a k bit message to correct one bit of error, we needed $O(\log k)$ many parity check bits. Is this really necessary?

Theorem 22.6. Let C be an $[n, k, 3]_2$ code. Then $k \le n - \log_2(n+1)$.

Proof. For any two codewords $\mathbf{x}, \mathbf{y} \in \mathcal{C}$, we have $B(\mathbf{x}, 1) \cap B(\mathbf{y}, 1) = \emptyset$. Also $|\bigcup_{\mathbf{x} \in \mathcal{C}} B(\mathbf{x}, 1)| \leq 2^n$. Since the balls are disjoint, $|\bigcup_{\mathbf{x} \in \mathcal{C}} B(\mathbf{x}, 1)| = \sum_{\mathbf{x} \in \mathcal{C}} |B(\mathbf{x}, 1)| = 2^k (n+1)$. Therefore, $2^k (n+1) \leq 2^n$, and the bound follows from that.

The same argument for packing balls of radius $\lfloor (d-1)/2 \rfloor$ in $\{0,1\}^n$ can be used to prove the following more general form of the bound.

Theorem 22.7. If an $[n, k, d]_2$ code exists, then

$$2^k \operatorname{Vol}\left(\left\lfloor \frac{d-1}{2} \right\rfloor, n\right) \le 2^n.$$