CS178: Machine Learning and Data Mining

Support Vector Machines

Prof. Alexander Ihler

Machine Learning

Support Vector Machines

Lagrangian and Dual

The Kernel Trick

Linear classifiers

- Which decision boundary is "better"?
 - Both have zero training error (perfect training accuracy)
 - But, one of them seems intuitively better...
- How can we quantify "better", and learn the "best" parameter settings?

One possible answer...

- Maybe we want to maximize our "margin"
- To optimize, relate to model parameters
- Remove "scale invariance"
 - Define class +1 in some region, class –1 in another
 - Make those regions as far apart as possible

Notation change!

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$

$$\downarrow b + w_1 x_1 + w_2 x_2 + \dots$$

We could define such a function:

$$f(x) = w*x' + b$$

$$f(x) > +1$$
 in region $+1$

$$f(x) < -1$$
 in region -1

Passes through zero in center...

"Support vectors" – data points on margin

Computing the margin width

- Vector <u>w</u>=[w₁ w₂ ...] is perpendicular to the boundaries (why?)
- w x + b = 0 & w x' + b = 0 => w (x'-x) = 0 : orthogonal

Computing the margin width

- Vector <u>w</u>=[w₁ w₂ ...] is perpendicular to the boundaries
- Choose \underline{x}^- st $f(\underline{x}^-) = -1$; let \underline{x}^+ be the closest point with $f(\underline{x}^+) = +1$ - $\underline{x}^+ = \underline{x}^- + r * \underline{w}$ (why?)
- Closest two points on the margin also satisfy

$$w \cdot x^{-} + b = -1$$
 $w \cdot x^{+} + b = +1$

Computing the margin width

- Vector $\underline{\mathbf{w}} = [\mathbf{w}_1 \ \mathbf{w}_2 \ ...]$ is perpendicular to the boundaries
- Choose <u>x</u>⁻ st f(<u>x</u>⁻) = -1; let <u>x</u>⁺ be the closest point with f(<u>x</u>⁺) = +1
 <u>x</u>⁺ = <u>x</u>⁻ + r * <u>w</u>
- Closest two points on the margin also satisfy

$$w \cdot x^- + b = -1$$

$$w \cdot x^+ + b = +1$$

$$w \cdot (x^{-} + rw) + b = +1$$

$$\Rightarrow r||w||^{2} + w \cdot x^{-} + b = +1$$

$$\Rightarrow r||w||^{2} - 1 = +1$$

$$\Rightarrow r = \frac{2}{||w||^{2}}$$

$$M = ||x^{+} - x^{-}|| = ||rw||$$
$$= \frac{2}{||w||^{2}} ||w|| = \frac{2}{\sqrt{w^{T}w}}$$

Maximum margin classifier

- Constrained optimization
 - Get all data points correct
 - Maximize the margin

This is an example of a quadratic program: quadratic cost function, linear constraints

$$w^* = \arg\max_{w} \frac{2}{\sqrt{w^T w}}$$

such that "all data on the correct side of the margin"

Primal problem:

$$w^* = \arg\min_{w} \sum_{j} w_j^2$$
s.t.

$$y^{(i)} = +1 \Rightarrow w \cdot x^{(i)} + b \ge +1$$

$$y^{(i)} = -1 \Rightarrow w \cdot x^{(i)} + b \le -1$$

(m constraints)

Maximum margin classifier

- Constrained optimization
 - Get all data points correct
 - Maximize the margin

This is an example of a quadratic program: quadratic cost function, linear constraints

$$w^* = \arg\max_{w} \frac{2}{\sqrt{w^T w}}$$

such that "all data on the correct side of the margin"

Primal problem:

$$w^* = \arg\min_{w} \sum_{j} w_j^2$$
s.t.

$$y^{(i)}(w \cdot x^{(i)} + b) \ge +1$$

(m constraints)

A 1D Example

Suppose we have three data points

$$x = -3, y = -1$$

 $x = -1, y = -1$
 $x = 2, y = 1$

- Many separating perceptrons, T[ax+b]
 - Anything with ax+b = 0 between -1 and 2
- We can write the margin constraints

$$a (-3) + b < -1 => b < 3a - 1$$
 $a (-1) + b < -1 => b < a - 1$
 $a (2) + b > +1 => b > -2a + 1$

A 1D Example

Suppose we have three data points

$$x = -3, y = -1$$

 $x = -1, y = -1$
 $x = 2, y = 1$

- Many separating perceptrons, T[ax+b]
 - Anything with ax+b = 0 between -1 and 2
- We can write the margin constraints

$$a (-3) + b < -1 => b < 3a - 1$$
 $a (-1) + b < -1 => b < a - 1$
 $a (2) + b > +1 => b > -2a + 1$

• Ex: a = 1, b = 0

A 1D Example

Suppose we have three data points

$$x = -3, y = -1$$

 $x = -1, y = -1$
 $x = 2, y = 1$

Anything with ax+b = 0 between -1 and 2

We can write the margin constraints

$$a (-3) + b < -1 => b < 3a - 1$$
 $a (-1) + b < -1 => b < a - 1$
 $a (2) + b > +1 => b > -2a + 1$

- Ex: a = 1, b = 0
- Minimize ||a|| => a = .66, b = -.33
 - Two data on the margin; constraints "tight"

Machine Learning

Support Vector Machines

Lagrangian and Dual

The Kernel Trick

Lagrangian optimization

Want to optimize constrained system:

$$\theta = (w,b)$$

$$w^* = \arg\min_{w,b} \sum_{j} w_j^2 \qquad s.t. \qquad 1 - y^{(i)} (w \cdot x^{(i)} + b) \le 0$$

$$\mathsf{g}_{\mathsf{i}}(\theta) \le 0$$

• Introduce Lagrange multipliers lpha (one per constraint)

$$\theta^* = \arg\min_{\theta} \max_{\alpha \geq 0} f(\theta) + \sum_{i} \alpha_i g_i(\theta)$$

- Can optimize θ , α jointly over a simpler constraint set (initialization easy)
- For inner max: $g_i(\theta) < 0 : \alpha_i = 0$

$$g_i(\theta) > 0 : \alpha_i \to +\infty$$

- Any optimum of the original problem is a saddle point of the new
- KKT complementary slackness: $\alpha_i > 0 \implies g_i(\theta) = 0$

Optimization

- Use Lagrange multipliers
 - Enforce inequality constraints

$$w^* = \arg\min_{w} \max_{\alpha \ge 0} \frac{1}{2} \sum_{j} w_j^2 + \sum_{i} \alpha_i (1 - y^{(i)} (w \cdot x^{(i)} + b))$$

Alphas > 0 only on the margin:

"support vectors"

Stationary conditions wrt w:

$$w^* = \sum_{i} \alpha_i y^{(i)} x^{(i)}$$

and since any support vector has y = wx + b,

$$b = \frac{1}{Nsv} \sum_{i \in SV} (y^{(i)} - w \cdot x^{(i)})$$

Dual form

- Use Lagrange multipliers
 - Enforce inequality constraints
 - Use solution w* to write solely in terms of alphas:

$$\max_{\alpha \ge 0} \sum_{i} \left[\alpha_i - \frac{1}{2} \sum_{i} \alpha_i \alpha_j \, y^{(i)} y^{(j)} \left(x^{(i)} \cdot x^{(j)} \right) \right]$$

s.t.
$$\sum_{i} \alpha_{i} y^{(i)} = 0$$
 (since derivative wrt b = 0)

Another quadratic program:

optimize m vars with 1+m (simple) constraints cost function has m² dot products

$$w^* = \sum_{i} \alpha_i y^{(i)} x^{(i)}$$
$$b = \frac{1}{Nsv} \sum_{i \in SV} (y^{(i)} - w \cdot x^{(i)})$$

Maximum margin classifier

- What if the data are not linearly separable?
 - Want a large "margin":

$$\min_{w} \sum_{j} w_{j}^{2}$$

Want low error:

$$\min_{w} \sum_{i} J(y^{(i)}, w \cdot x^{(i)} + b)$$

"Soft margin": introduce slack variables for violated constraints

$$w^* = \arg\min_{w,\epsilon} \sum_{j} w_j^2 + R \sum_{i} \epsilon^{(i)}$$

$$y^{(i)}(w^Tx^{(i)} + b) \ge +1 - \epsilon^{(i)}$$
 (violate margin by ϵ)
$$\epsilon^{(i)} \ge 0$$

Assigns "cost" R proportional to distance from margin Another quadratic program!

Soft margin SVM

- Large margin vs. Slack variables
- $w^* = \arg\min_{w,\epsilon} \sum_j w_j^2 + R \sum_i \epsilon^{(i)}$ s.t.

$$y^{(i)}(w^T x^{(i)} + b) \ge +1 - \epsilon^{(i)}$$
$$\epsilon^{(i)} \ge 0$$

- R large = hard margin
- R smaller
 - A few wrong predictions; boundary farther from rest

Maximum margin classifier

- Soft margin optimization:
 - For any weights w, we can choose ϵ to satisfy constraints

$$w^* = \arg\min_{w,\epsilon} \sum_{j} w_j^2 + R \sum_{i} \epsilon^{(i)}$$
$$y^{(i)}(w^T x^{(i)} + b) > +1 - \epsilon^{(i)}$$

- Write ϵ^* as a function of w (call this J) and optimize directly

J = distance from the "correct" place

$$J_i = \max[0\,,\,1-y^{(i)}(\,w\cdot x^{(i)}+b\,)\,]$$
 (hinge loss)
$$w^* = \arg\min_{w}\frac{1}{R}\sum_{j}w_j^2 + \sum_{i}J_i(y^{(i)}\,,\,w\cdot x^{(i)}+b)$$
 (L2 regularization on the weights)
$$w\cdot x+b\longrightarrow {}^{+1}$$

Dual form

Soft margin dual:

$$\max_{0 \leq \alpha \leq R} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{j} \alpha_{i} \alpha_{j} \ y^{(i)} y^{(j)} \underbrace{x^{(i)} \cdot x^{(j)}}_{\text{of } \mathbf{x}_{i} \text{ and } \mathbf{x}_{j} \text{ (their dot product)}}_{\text{s.t. }} \sum_{i} \alpha_{i} y^{(i)} = 0$$

Support vectors now data on or past margin...

Prediction:

$$\hat{y} = w^* \cdot x + b = \sum_{i} \alpha_i y^{(i)} x^{(i)} \cdot x + b$$

$$w^* = \sum_{i} \alpha_i y^{(i)} x^{(i)}$$

 $b = \dots$ More complicated; can solve e.g. using any $\alpha \in (0,R)$

Support Vectors

The *support vectors* are data points i with non-zero weight α_i :

- ➤ Points with minimum margin (on optimized boundary)
- > Points which violate margin constraint, but are still correctly classified
- > Points which are misclassified

For all other training data, features have no impact on learned weight vector

Support vectors now data on or past margin...

Prediction:

$$\hat{y} = w^* \cdot x + b = \sum_{i} \alpha_i y^{(i)} (x^{(i)} \cdot x) + b$$

$$w^* = \sum_i \alpha_i y^{(i)} x^{(i)}$$

$$b = \dots$$
 More complicated; can solve e.g. using any $\alpha \in (0,R)$

Machine Learning

Support Vector Machines

Lagrangian and Dual

The Kernel Trick

Linear SVMs

- So far, looked at linear SVMs:
 - Expressible as linear weights "w"
 - Linear decision boundary

Dual optimization for a linear SVM:

$$\max_{0 \le \alpha \le R} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$$

s.t.
$$\sum_{i} \alpha_i y^{(i)} = 0$$

- Depend on pairwise dot products:
 - Kij measures "similarity", e.g., 0 if orthogonal $\,K_{ij}=x^{(i)}\cdot x^{(j)}\,$

Adding features

Linear classifier can't learn some functions

1D example:

Adding features

- Recall: feature function Phi(x)
 - Predict using some transformation of original features

$$\hat{y}(x) = \operatorname{sign}[w \cdot \Phi(x) + b]$$

Dual form of SVM optimization is:

$$\max_{0 \le \alpha \le R} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \Phi(x^{(i)}) \Phi(x^{(j)})^{T} \quad \text{s.t. } \sum_{i} \alpha_{i} y^{(i)} = 0$$

For example, quadratic (polynomial) features:

$$\Phi(x) = (1 \sqrt{2}x_1 \sqrt{2}x_2 \cdots x_1^2 x_2^2 \cdots \sqrt{2}x_1x_2 \sqrt{2}x_1x_3 \cdots)$$

- Ignore root-2 scaling for now...
- Expands "x" to length O(n²)

Implicit features

• Need $\Phi(x^{(i)})\Phi(x^{(j)})^T$

$$\Phi(x) = (1 \sqrt{2}x_1 \sqrt{2}x_2 \cdots x_1^2 x_2^2 \cdots \sqrt{2}x_1x_2 \sqrt{2}x_1x_3 \cdots)$$

$$\Phi(a) = (1 \sqrt{2}a_1 \sqrt{2}a_2 \cdots a_1^2 a_2^2 \cdots \sqrt{2}a_1a_2 \sqrt{2}a_1a_3 \cdots)$$

$$\Phi(b) = (1 \sqrt{2}b_1 \sqrt{2}b_2 \cdots b_1^2 b_2^2 \cdots \sqrt{2}b_1b_2 \sqrt{2}b_1b_3 \cdots)$$

$$\Phi(a)^T \Phi(b) = 1 + \sum_j 2a_j b_j + \sum_j a_j^2 b_j^2 + \sum_j \sum_{k>j} 2a_j a_k b_j b_k + \dots$$

$$= (1 + \sum_{j} a_j b_j)^2$$

=K(a,b)

Can evaluate dot product in only O(n) computations!

Mercer Kernels

• If K(x,x') satisfies Mercer's condition:

$$\int_{a} \int_{b} K(a,b) g(a) g(b) da db \ge 0$$

For all datasets X:

$$g^T \cdot K \cdot g \ge 0$$

- Then, $K(a,b) = \Phi(a) \cdot \Phi(b)$ for some $\Phi(x)$
- Notably, Phi may be hard to calculate
 - May even be infinite dimensional!
 - Only matters that K(x,x') is easy to compute:
 - Computation always stays O(m²)

Some commonly used kernel functions & their shape:

• Polynomial
$$K(a,b) = (1 + \sum_j a_j b_j)^d$$

- Some commonly used kernel functions & their shape:
- Polynomial $K(a,b) = (1 + \sum_j a_j b_j)^d$

Radial Basis Functions

$$K(a,b) = \exp(-(a-b)^2/2\sigma^2)$$

- Some commonly used kernel functions & their shape:
- Polynomial $K(a,b) = (1 + \sum_{j} a_j b_j)^d$
- Radial Basis Functions

$$K(a,b) = \exp(-(a-b)^2/2\sigma^2)$$

Saturating, sigmoid-like:

$$K(a,b) = \tanh(ca^T b + h)$$

- Some commonly used kernel functions & their shape:
- Polynomial $K(a,b) = (1 + \sum_{j} a_j b_j)^d$
- Radial Basis Functions

$$K(a,b) = \exp(-(a-b)^2/2\sigma^2)$$

Saturating, sigmoid-like:

$$K(a,b) = \tanh(ca^T b + h)$$

- Many for special data types:
 - String similarity for text, genetics

In practice, may not even be Mercer kernels…

Support Vectors for Kernel SVMs

Support vectors (green) for data separable by radial basis function kernels, and non-linear margin boundaries

How Many Support Vectors?

Only need to evaluate kernel at support vectors, not all training data.

But there may still be a lot of support vectors.

Kernel SVMs

Linear SVMs

- Can represent classifier using (w,b) = n+1 parameters
- Or, represent using support vectors, x⁽ⁱ⁾

Kernelized?

- K(x,x') may correspond to high (infinite?) dimensional Phi(x)
- Typically more efficient to remember the SVs
- "Instance based" save data, rather than parameters

Contrast:

- Linear SVM: identify features with linear relationship to target
- Kernel SVM: identify similarity measure between data
 (Sometimes one may be easier; sometimes the other!)

Summary

- Support vector machines
- "Large margin" for separable data
 - Primal QP: maximize margin subject to linear constraints
 - Lagrangian optimization simplifies constraints
 - Dual QP: m variables; involves m² dot product
- "Soft margin" for non-separable data
 - Primal form: regularized hinge loss
 - Dual form: m-dimensional QP
- Kernels
 - Dual form involves only pairwise similarity
 - Mercer kernels: dot products in implicit high-dimensional space