Sequential Circuit

State Machines and Registers

Ver. 3

Professor: Yang Peng

Topics

- Characteristic and Excitation Tables
- Designing circuits to function as Finite State Machines
 - Example 1: Two-bit binary counter
 - Example 2: Three-bit sequential circuit
- Looking at Typical Sequential Circuits
 - Ripple counter
 - Shift register
 - Storage register

Null Ch3.7

Burger Ch5

Characteristic Table for FF

Name	Graphical Symbol	Characteristic Table
S-R	$\begin{array}{ccc} & & & \\ &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
J-K	J Q	$\begin{array}{c cccc} J & K & Q_{n+1} \\ \hline 0 & 0 & Q_n \\ 0 & 1 & 0 \\ 1 & 0 & \frac{1}{Q_n} \\ 1 & 1 & \overline{Q}_n \\ \end{array}$
D	D Q	$ \begin{array}{c cccc} D & Q_{n+1} \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

State, Characteristic, and Excitation Tables

- State Transition Table: Give the next state information based on the input and current state (like truth table)
- Characteristic Table: Give the state transition information based on inputs (simplified state transition table)
- Excitation Table (inverted characteristic table)
 - Input: current state and next state
 - Output: S R or J K or D the control bit(s) of FF
 - Necessity
 - To understand how to set the control bits to generate a needed state transition
 - If you know the excitation table, you know how the sequential circuit can be built

Excitation Table for Flip-Flops

	SR flip-flop					D flip-flop	
Q(t)	Q(t+1)	s	R		Q(t)	Q(t+1)	D
0	0	0	×	•	0	0	0
0	1	1	0		0	1	1
1	0	0	1		1	0	0
1	1	×	0		1	1	1

	JK flip-flop								
Q(t+1)	J	K							
0	0	×							
1	1	×							
0	×	1							
1	×	0							
	0	0 0 1 1 0 ×							

"X" is the "don't care" state

Name	Graphical Symbol	Characteristic Table
S-R	S Q	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
J-K	J Q >Ck K Q̄	$\begin{array}{c cccc} J & K & Q_{n+1} \\ \hline 0 & 0 & Q_n \\ 0 & 1 & 0 \\ 1 & 0 & \frac{1}{Q_n} \\ 1 & 1 & \overline{Q}_n \end{array}$
D	D Q	$\begin{array}{c c} D & Q_{n+1} \\ \hline 0 & 0 \\ 1 & 1 \\ \end{array}$

Design of Finite State Machines

- 5 Steps
 - 1. Draw a state transition diagram
 - Draw a state transition table
 - 3. Simplify redundant states (not always necessary)
 - 4. Allocate flip-flop output signals to the states
 - 5. Draw K-maps to design combinational logics that generates state transitions and outputs

Example 1: 2-Bit Binary Counter

- The input is a binary stream
- Count the number of encountered 1s in the input signal, from 0 to 3, (i.e., 00 to 11) and thereafter reset to 0, (i.e., 00)

X 0110010 0110000 A

Sequential Circuit 0100010 B

CLK

Step 1: State Diagram

Step 2: State Transition Table

	Input X = 0			Input X = 1			
Current State	Next State	Output A	Output B	Next State	Output A	Output B	
S0	S0	0	0	S1	0	1	
S1	S1	0	1	S2	1	0	
S2	S2	1	0	S3	1	1	
S3	S3	1	1	S0	0	0	

Step 3: Simplification Skipped

No States to Merge in this example

Step 4: State Allocation

State allocation to two JK FFs: A and B

State	AB
S0 /	00
S1	01
S2	10
53	11

JK FF's Excitation Table

Qt	Qt+1	J	К
0	0	0	*
0	1	1	*
1	0	*	1
1	1	*	0

State Transition Table with JK FFs: A and B

			Input X = 0		Input X = 1		Input	X=0	Input	X=1	Input	X=0	Input	X=1
	Current S	State	Next State	Output	Next State	Output	Inputs	to JK F	F-A		Inputs	to JK FF	:-В	
	A_tB_t		$A_{t+1}B_{t+1}$	$A_{t+1}B_{t+1}$	A_tB_t	$A_{t+1}B_{t+1}$	JA	KA	JA	KA	JB	КВ	JB	КВ
4/	00		00	00	01	01	0	*	0	*	0	*	1	*
	01		0 1	01	10	10	0	*	1	*	*	0	*	1
	10		10	10	11	11	*	0	*	0	0	*	1	*
	11		11	11	00	00	*	0	*	1	*	0	*	1

Step 5: Karnaugh Maps

	Input X = 0		Input X = 1		Inpu	t X=0	Input	X=1	Input	X=0	Input	X=1
Current State	Next State	Output	Next State	Output	Inpu	ts to JK F	F-A		Input	to JK FF	-В	
A_tB_t	A _{t+1} B _{t+1}	A _{t+1} B _{t+1}	A _t B _t	A _{t+1} B _{t+1}	JA	KA	JA	KA	JB	КВ	JB	КВ
00	00	00	01	01	0	*	0	*	0	*	1	*
01	01	01	10	10	0	*	1	*	*	0	*	1
10	10	10	11	11	*	0	*	0	0	*	1	*
11	11	11	00	00	*	0	*	1	*	0	*	1

Logic of 2-bit Binary Counter

Example 2: 3-bit Sequential Circuit

- An input is a sequence of 3-bit binary numbers.
- If it is sequence 111, 110, 011, or 010, the circuit should emit 1 as its output; otherwise, the circuit emits 0.

X 111 000 010 Z

Sequential Circuit 1 0 1

CLK

Step 1: State Diagram

Step 2: State Transition Diagram

	Input X	= 0	Input	X = 1
Current State	Next State	Output Z	Next State	Output Z
S0	S2	0	S1	0
S1	S4	0	S3	0
S2	S6	0	S 5	0
S3	S0	1	S0	1
S4	S0	0	S0	0
S5	S0	1	S0	1
S6	S0	0	S0	0

Step 3: Simplification

	Input X = 0		Input X = 1		
Current State	Next State	Output Z	Next State	Output Z	
S0	S2	0	S1	0	
S1	S46	0	S35	0	
S2	S46	0	S35	0	
S35	S0	1	S0	1	
S46	S0	0	S0	0	

Coldwell's merging rule:

States that transit to the same state and produces the same output can be merged

W UNIVERSITY of WASHINGTON

Step 3: Simplification

	Input X = 0		Input X = 1	
Current State	Next State	Output Z	Next State	Output Z
S0	S12	0	S12	0
S12	S46	0	S35	0
S35	S0	1	S0	1
S46	S0	0	S0	0

Four states left after merging: S0, S12 (new S1), S35 (new S2), S46 (new S3)

Step 4: State Allocation

State allocation to two JK FFs: A and B

State	AB
S0	00
S1 (S12)	01
S2 (S35)	11
S3 (S46)	10

JK FF's Excitation Table

Qt	Qt+1	J	K
0	0	0	*
0	1	1	*
1	0	*	1
1	1	*	0

State Transition Table with JK FFs: A and B

		Input X = 0		Input X = 1		Input X=0 Input X=1		Input X=0		Input X=1			
	Current State	Next State	Output	Next State	Output	Inputs	s to JK F	F-A		Inputs	to JK FF	-В	
1	A_tB_t	A _{t+1} B _{t+1}	Z	$A_{t+1}B_{t+1}$	Z	JA	KA	JA	KA	JB	КВ	JB	КВ
	00	01	0	01	0	0	*	0	*	1	*	1	*
	01	10	0	11	0	1	*	1	*	*	1	*	0
	11	00	1	00	1	*	1	*	1	*	1	*	1
	10	00	0	00	0	*	1	*	1	0	*	0	*

W UNIVERSITY of WASHINGTON

Step 5: Karnaugh Maps

State Transition Table with JK FFs: A and B

	Input X = 0		Input X = 1		Input X=0		Input X=1		Input X=0		Input X=1	
Current State	State Next State Output		Next State	Output	Inputs to JK FF-A		Inputs to JK FF-B					
A_tB_t	A _{t+1} B _{t+1}	Z	A _{t+1} B _{t+1}	Z	JA	KA	JA	KA	JB	КВ	JB	КВ
00	01	0	01	0	0	*	0	*	1	*	1	*
01	10	0	11	0	1	*	1	*	*	1	*	0
11	00	1	00	1	*	1	*	1	*	1	*	1
10	00	0	00	0	*	1	*	1	0	*	0	*

$$Z = AB^X + ABX = AB(X + X) = AB$$

3-bit Sequential Circuit's Circuit

How about Allocating D FF?

State allocation to two D FFs: A and B

State	AB
S0	00
S1 (S12)	01
S2 (S35)	11
s3 (S46)	10

D FF State Transition Table

Qt	Qt+1	D
0	0	0
0	1	1
1	0	0
1	1	1

State Transition Table with D FFs: A and B

		Input X = 0		Input X = 1		Input X = 0 Input X = 1		Input X = 0	Input X = 1
\	Current State	Next State	Output	Next State Output		Inputs to D FF-A		Inputs to D FF-B	
	A_tB_t	$A_{t+1}B_{t+1}$	Z	$A_{t+1}B_{t+1}$	Z	D _A	D_A	D_B	D _B
	00	01	0	01	0	0	0	1	1
	01	10	0	11	0	1	1	0	1
	11	00	1	00	1	0	0	0	0
	10	00	0	00	0	0	0	0	0

Kmap and D FF-based Circuit

State Transition Table with D FFs: A and B

	Input X = 0		Input X = 1		Input X = 0	Input X = 1	Input X = 0	Input X = 1
Current State	Next State	Output	Next State Output		Inputs to D FF-A		Inputs to D FF-B	
A_tB_t	A _{t+1} B _{t+1}	Z	A _{t+1} B _{t+1}	Z	D _A		D _B	D _B
00	01	0	01	0	0	0	1	1
01	10	0	11	0	1	1	0	1
11	00	1	00	1	0	0	0	0
10	00	0	00	0	\ o /	0	0	0

$$Z = AB(^{\sim}X + X) = AB$$

D FF connected in a divide-by-two configuration

D Flip-Flops as a Ripple Counter

- A 4-bit binary ripple counter
 - Given the name because the pulses "ripple" through the circuit

- Each "D" FF divides the incoming clock frequency by 2X
- RESET sets all Q output to 0 without a clock signal (asynchronous)
- Counts as fast as the first stage can toggle, but cannot be read until the count has rippled through to the last stage
- Can build counter/dividers of any length, any binary divisor
 - Clock frequency at output Q₃ equals f_{Clock in} ÷ 16

D Flip-Flops as a Shift Register

- Shift register moves data through successive stages on each clock pulse
- Used for serial data communications, multiplication, image processing
- Basis for UART (Universal Asynchronous Receiver/Transmitter)
- Data can be read in serially and then read out in parallel
- Serial data communications limits the number of signal wires needed to transmit byte-wide data

D Flip-Flops as a Storage Register

Summary

 Understand how to design and implement a finite state machine with flip-flops.

 Review typical sequential circuits that are used in computer design.