

GLO-4030/7030 APPRENTISSAGE PAR RÉSEAUX DE NEURONES PROFONDS

GAN: Generative Adversarial Networks

Réseau génératif

Exemple : Variational Autoencoder (VAE)
GAN

- Approche inspirée de la théorie des jeux
- Réseau génératif : essaie de confondre le réseau discriminatif

 Réseau discriminatif (critique) : essaie de distinguer entre les images réels et les fausses

Générateur cherche à produire des images vrai ou faux quelconques ressemblant à Réseau celles d'un jeu de données discriminatif **Fausses** images (générées) Vraies images (données d'entraînement) Réseau génératif Valeur aléatoire:

- Ne cherche pas à modéliser explicitement la densité (manifold)
- Approche inspirée de la théorie des jeux : jeu minimax à 2 joueurs

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

• Discriminateur D (sortie 0 à 1) change ses poids afin de maximiser V

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))]$$
 Vraies données Fausses données

$$log(1) = 0$$

 $log(0.1) = -1$
 $log(0) = -Inf$

 Générateur G (sortie image) cherche à confondre le discriminateur D, afin de minimiser V

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))]$$
 Vraies données Fausses données

$$log(1) = 0$$

 $log(0.1) = -1$
 $log(0) = -Inf$

Entraîner le GAN

Pour cette fonction objective V

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

- Alternance entre :
 - Montée du gradient pour le discriminateur

$$\max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

- Descente du gradient pour le générateur

$$\min_{G} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

Instabilité entrainement

• Cette fonction de perte de G est peu commode

$$\min_{G} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

Discriminateur a démasqué le générateur

Version améliorée 1

• Montée de gradient pour le générateur

$$\min_{G} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))] \quad \Box \rangle \quad \max_{G} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(D(G(\boldsymbol{z})))]$$

En bref, la forme de la fonction de perte importe beaucoup!

Algorithme ca. 2016

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

Version améliorée 2

- Fonction perte précédente difficile à entraîner
- Autre interprétation du GAN : on veut que les distributions D(G(z)) et D(x) soient les plus proches possibles
- Métrique de distance sur distributions
- Perte sur distance Wasserstein
 - Earth mover distance (distance du cantonnier)
 - (quantité déplacée) x (distance déplacement)

Distance de Wasserstein

Mesurer la distance entre ces 2 distributions

Distance Wasserstein discrète = 2+2+1 = 5

Comparaison des distances

KL: Kullback-Leibler

IS: Jensen-Shannon

W: Wasserstein

$$\theta = 0 \begin{cases} D_{KL}(P||Q) = D_{KL}(Q||P) = D_{JS}(P,Q) = 0 \\ W(P,Q) = 0 = |\theta| \end{cases}$$

$$D_{KL}(Q\|P) = \sum_{x= heta \ u \in U(0,1)} 1 \cdot \log rac{1}{0} = +\infty$$

$$\theta \neq 0 = \begin{cases} D_{KL}(P \| Q) = \sum_{x=0, y \sim U(0, 1)} 1 \cdot \log \frac{1}{0} = +\infty & \textbf{le même sup} \\ D_{KL}(Q \| P) = \sum_{x=\theta, y \sim U(0, 1)} 1 \cdot \log \frac{1}{0} = +\infty \\ D_{JS}(P, Q) = \frac{1}{2} (\sum_{x=0, y \sim U(0, 1)} 1 \cdot \log \frac{1}{1/2} + \sum_{x=0, y \sim U(0, 1)} 1 \cdot \log \frac{1}{1/2}) = \log 2 \\ W(P, Q) = |\theta| \end{cases}$$

$$W(P,Q) = | heta|$$

Pas besoin d'avoir le même support

WGAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005, c = 0.01, m = 64, n_{\text{critic}} = 5.$

Require: : α , the learning rate. c, the clipping parameter. m, the batch size. n_{critic} , the number of iterations of the critic per generator iteration.

Require: : w_0 , initial critic parameters. θ_0 , initial generator's parameters.

```
1: while \theta has not converged do
                                                                                                                                    - f<sub>w</sub> doit être K-lipschitzienne
              for t = 0, ..., n_{\text{critic}} do
2:
                     Sample \{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r a batch from the real data.
Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
g_w \leftarrow \nabla_w \left[\frac{1}{m}\sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m}\sum_{i=1}^m f_w(g_\theta(z^{(i)}))\right]
3:
4:
5:
                      w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_w)
6:
```

- $w \leftarrow \operatorname{clip}(w, -c, c) \longleftarrow$ "Weight clipping is a clearly terrible way to enforce a 7:
- 8:
- end for Lipschitz constraint" Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. 9:
- $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))$ 10:
- $\theta \leftarrow \theta \alpha \cdot \text{RMSProp}(\theta, q_{\theta})$ 11:
- 12: end while

A real-valued function $f:\mathbb{R} o\mathbb{R}$ is called K-Lipschitz continuous if there exists a real constant $K\geq 0$ such that, for all $x_1, x_2 \in \mathbb{R}$,

$$|f(x_1) - f(x_2)| \le K|x_1 - x_2|$$

WGAN-GP (Gulrajani et al., 2017)

Algorithm 1 WGAN with gradient penalty. We use default values of $\lambda = 10$, $n_{\text{critic}} = 5$, $\alpha = 0.0001$, $\beta_1 = 0$, $\beta_2 = 0.9$.

Require: The gradient penalty coefficient λ , the number of critic iterations per generator iteration n_{critic} , the batch size m, Adam hyperparameters α, β_1, β_2 .

Require: initial critic parameters w_0 , initial generator parameters θ_0 .

```
1: while \theta has not converged do
             for t = 1, ..., n_{\text{critic}} do
 2:
                    for i = 1, ..., m do
 3:
                           Sample real data x \sim \mathbb{P}_r, latent variable z \sim p(z), a random number \epsilon \sim U[0,1].
                          \tilde{\boldsymbol{x}} \leftarrow G_{\theta}(\boldsymbol{z})
 5:
                                                                                                  Plus de weight clipping!
                           \hat{\boldsymbol{x}} \leftarrow \epsilon \boldsymbol{x} + (1 - \epsilon)\tilde{\boldsymbol{x}}
 6:
                           L^{(i)} \leftarrow D_w(\tilde{x}) - D_w(x) + \lambda(\|\nabla_{\hat{x}}D_w(\hat{x})\|_2 - 1)^2
 7:
 8:
                    end for
                    w \leftarrow \operatorname{Adam}(\nabla_w \frac{1}{m} \sum_{i=1}^m L^{(i)}, w, \alpha, \beta_1, \beta_2)
 9:
10:
             end for
              Sample a batch of latent variables \{z^{(i)}\}_{i=1}^m \sim p(z).
11:
              \theta \leftarrow \operatorname{Adam}(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_{w}(G_{\theta}(\boldsymbol{z})), \theta, \alpha, \beta_{1}, \beta_{2})
12:
13: end while
```

Mode collapse

- Rappel : le GAN génère des images quelconques (on ne peut spécifier explicitement le type d'image désiré)
- Générateur risque de perfectionner un/quelques styles d'image

Significant degree of mode collapse in the GAN MLP [1]

Métrique d'évaluation

- Classification d'image : précision
- GAN : quantifier le taux de réalisme!
- Problématique similaire à la traduction
 - BLEU score n'est pas toujours représentatif
- Parfois recourt à Amazon Mechanical Turk, pour exploiter jugment humain

Inception score IS

- Réseau Inception préentrainé sur ImageNet
- IS Corrèle bien avec scores humains sur CIFAR-10

images générées
$$p$$
 est calculé avec Inception $\operatorname{IS}(G) = \exp\left(\mathbb{E}_{\mathbf{x} \sim p_g}^{\downarrow} D_{KL}(p(y|\mathbf{x}) \parallel p(y))\right)$

- Plus IS est grand, mieux c'est
- Relié à l'information mutuelle entre marginal et conditionnel :
 - Inception est confiant qu'il n'y a qu'un objet dans l'image \rightarrow p(y|x) a une faible entropie
 - Genérateur produit une grande variété d'image → p(y) a une grande entropie

GAN MLP-CNN

- Approches précédentes basées sur MLP
- Radford et al. proposent des règles pour utiliser des CNN : DCGAN

Generator is an upsampling network with fractionally-strided convolutions Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Résultats (64x64 pixels)

Entraîné sur LSUN bedroom dataset, 3 millions d'images.

Interpolation sur z

- Permet d'évaluer si le réseau a appris par cœur
 (☺) ou non (☺) les données d'entrainement
- Absence de transitions brusques est bon signe!

Algèbre sur z

Algèbre sur z

CycleGAN

Pour effectuer des transferts de style

CycleGAN: faiblement supervisé

• Pas besoin d'apparier les images

CycleGAN: faiblement supervisé

Figure 3: (a) Our model contains two mapping functions $G: X \to Y$ and $F: Y \to X$, and associated adversarial discriminators D_Y and D_X . D_Y encourages G to translate X into outputs indistinguishable from domain Y, and vice versa for D_X and F. To further regularize the mappings, we introduce two *cycle consistency losses* that capture the intuition that if we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency loss: $x \to G(x) \to F(G(x)) \approx x$, and (c) backward cycle-consistency loss: $y \to F(y) \to G(F(y)) \approx y$

Progressive Growth of GAN

- Cherche à
 - stabiliser l'entraînement des GAN
 - augmenter la qualité
 - la taille des images de sorties : 1024x1024
- Idées maîtresses:
 - faire croitre graduellement le GAN
 - ajouter heuristique pour encourager la diversité des images générées (mode collapse)

Croissance progressive

- Permet au réseau de découvrir les structures à grande échelle, puis de raffiner vers le détail
- Plus rapide, car entrainement majoritairement sur des images plus petites (gain 2x-6x)

Croissance progressive

- Fondu progressif avec α (0 \rightarrow 1) à l'ajout d'une couche
 - éviter les chocs/instabilités au moment de l'ajout
 - simplifie la problématique, au lieu d'essayer de trouver directement z→1024² (shaping)

Contrer le mode collapse

 Ajout d'un heuristique basé sur des écartstypes pour chaque minibatch

- 1. Pour chaque feature et chaque endroit, calcule $\sigma_f^{(x,y)}$
- 2. Moyenne globale unique de $\sigma_f^{(x,y)}$
- 3. Ajoute un feature map dans D contant cette valeur unique, pour toute la batch (ajouté vers sommet de D)

00111 0 /1 0	LITTE	10 / 1	· -	•		2.01
Conv 3×3	LReLU	32×1	024	×	1024	4.6k
Downsample	_	32×5	512	X	512	_
Conv 3 × 3	LReLU	32 × 5	512	×	512	9.2k
Conv 3×3	LReLU	64×5	512	×	512	18k
Downsample		× 2	256	X	256	
Conv 3 × 3		×)5/	_		
Convo		7				/4K
	_	ا	_	^	16	_
3 × 3	LReLU	J14 X	16	×	16	2.4M
Conv 3×3	LReLU	512 ×	16	×	16	2.4M
Downsample	_	512 ×	8	X	8	_
Conv 3×3	LReLU	512 ×	8	×	8	2.4M
Conv 3×3	LReLU	512 ×	8	×	8	2.4M
Downsample	_	512 ×	4	X	4	_
Minibatch stddev	-	513 ×	4	×	4	_
Conv 3×3	LReLU	512 ×	4	×	4	2.4M
Conv 4×4	LReLU	512 ×	1	×	1	4.2M

Act.

LReLU

LReLU

Output shape

 $3 \times 1024 \times 1024$

 $16 \times 1024 \times 1024$

 $16 \times 1024 \times 1024$

 $1 \times 1 \times 1$

Discriminator

Input image

Conv 1×1

Conv 3×3

Fully-connected

Total trainable parameters

513

23.1M

Params

2.3k