

FIT3158 Business decision modelling - S2 2022

Dashboard / My units / FIT3158_S2_2022 / Assessments / Quiz Week 4			
Started on	Friday, 19 August 2022, 7:42 PM		
State	Finished		
Completed on	Friday, 19 August 2022, 7:57 PM		
Time taken	14 mins 43 secs		
Grade	0.70 out of 1.00 (70 %)		

Print friendly format

Question 1	
Correct	
Mark 0.10 out of 0.10	

A company will be able to obtain a quantity discount on component parts for its four products, X_1 , X_2 , X_3 and X_4 , if it produces beyond certain limits. To get the X1 discount it must produce more than 50 X_1 's. It must produce more than 60 X_2 's for the X_2 discount, 70 X_3 's for the X_3 discount and 80 X_4 's for the X_4 discount. How many binary variables are required in the formulation of this problem?

a. 2

Ob. 8

© c. 4

Od. 12

The correct answer is: 4

Question **2**Correct

Mark 0.15 out of 0.15

A company is developing its weekly production plan. The company produces two products, A and B, which are processed in two departments. Setting up each batch of A requires \$90 of labour while setting up a batch of B costs \$60. Each unit of A generates a profit of \$30 while a unit of B earns a profit of \$25. The company can sell all the units it produces. The data for the problem are summarized below.

	Hours re	0	
Operation	A	В	Hours
Cutting	5	4	92
Welding	4	1	48

The decision variables are defined as:

Xi = the amount of product i produced (where X_1 = Product A, X_2 = Product B)

Yi = 1 if Xi > 0 and 0 if Xi = 0

What is the appropriate value for M₂ in the linking constraint for product B?

- a. 48
- o b. 4
- 0 c. 1
- od. 23

The correct answer is: 23

Question 3

Incorrect

Mark 0.00 out of 0.10

A company will be able to obtain a quantity discount on component parts for its four products, X_1 , X_2 , X_3 and X_4 , if it produces beyond certain limits. To get the X1 discount it must produce more than 50 X_1 's. It must produce more than 60 X_2 's for the X_2 discount, 70 X_3 's for the X_3 discount and 80 X_4 's for the X_4 discount. How many decision variables are required in the formulation of this problem?

- a. 16
- o b. 12
- oc. 4
- Od. 8

The correct answer is: 12

Question 4

Correct

Mark 0.15 out of 0.15

A company is developing its weekly production plan. The company produces two products, A and B, which are processed in two departments. Setting up each batch of A requires \$50 of labour while setting up a batch of B costs \$70. Each unit of A generates a profit of \$17 while a unit of B earns a profit of \$21. The company can sell all the units it produces.

The decision variables are defined as:

 $Xi = the amount of product i produced (where <math>X_1 = Product A$, $X_2 = Product B$)

Yi = 1 if Xi > 0 and 0 if Xi = 0

What is the objective function for this problem?

- \odot a. MAX: 17 X₁ + 21 X₂ 50 Y₁ 70 Y₂
- b. MIN: 33 Y₁ + 49 Y₂
- \odot c. MIN: 17 X₁ + 21 X₂ 50 Y₁ 70 Y₂
- \bigcirc d. MAX: 33 X₁ + 49 X₂

The correct answer is: MAX: 17 X_1 + 21 X_2 - 50 Y_1 - 70 Y_2

Question 5

Incorrect

An ILP problem has 6 binary decision variables. How many possible integer solutions are there to this problem?	
○ a. 6	
b. 32	×
O c. 12	
O d. 64	
The correct answer is: 64	
Question 6	
Correct	
Mark 0.10 out of 0.10	
One approach to solving integer programming problems is to ignore the integrality conditions and solve the problem with continuous decision variables. This is referred to as: a. quickest solution method. 	
ob. LP satisficing.	
○ c. LP approximation.	
d. LP relaxation.	~
The correct answer is: LP relaxation. Question 7	
Incorrect	
Mark 0.00 out of 0.10	
For minimization problems, the optimal objective function value to the LP relaxation provides what for the optimal objective function value of the ILP problem?	
a. A lower bound.	
○ b. An alternative optimal solution.	
c. An additional constraint for the ILP problem.	
■ d. An upper bound.	×
The correct answer is: A lower bound.	
Question 8	
Correct Mark 0.00 aut of 0.00	
Mark 0.20 out of 0.20	

A production company wants to ensure that if Product 2 is produced, production of Product 2 not exceed production of Product 1. Which of the following constraints enforce this condition?

- a. X2 ≤ X₁
- b. $X_2 \le M_2 Y_2$, $X_2 \le Y_2 X_1$
- \bigcirc c. $X_2 \le M_2 X_1$
- $O. X_2 \ge M_2 Y_2$

The correct answer is:

 $X_2 \leq X_1$

◄ Quiz Week 3

Jump to...

Quiz Week 5 ▶