This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

ABSTRACT

The vibration damper comprises a motor which exerts on the vibrating system (1) with oscillation of equal frequency but of opposite phase. The original vibration is detected by sensors (3, 4 or 5) whose output is led to an analogue computer (6) for effecting the phase change. The output of the computer energizes the motor (2). The sensors are such as to produce a signal being a function of the velocity (S) of the vibrating system. Thus there may be a sensor (3) for the velocity itself, or a sensor (4) for acceleration, or a sensor (5) for the torque, the latter being a function of velocity.

BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift

Ø

Aktenzeichen:

P 26 05 476.2

Anmeldetag:

12. 2.76

Offenlegungstag:

18. 8.77

Unionspriorität:

3 4 9

(3) Bezeichnung:

Aktive Schwingungsdämpfung elastischer Antriebselemente

Anmeider:

Kleinwächter, Johann, Prof. Dr.-Ing., 7860 Lörrach

0

Erfinder:

gleich Anmelder

Patentanaprüche

zur Patentbeschreibung: "Aktive Schwingungsdämpfung elastischer Antriabs-

- 1. Vorrichtung zu aktiver Schwingungsdämpfung elastischer Antriebselemente, de durch gekennzeich net, dass eittels
 Motoren oszillierende Kräfte auf das elestische Sauteil ausgeübt
 werden, die die Schwingungsenergie den elestischen Sauteilen entziehen.
- 2. Vorrichtung zu aktiver Schwingungsdämpfung elastischer Antriebselemente nach Anspruch 1), da durch gakennzeichnet, dass die Motoren gleichzeitig zum Antrieb und zur aktiven Schwingungsdämpfung benutzt werden.
- 3. Vorrichtung zu aktiver Schwingungsdämpfung elastischer Antriebselemente nach Anspruch 1) und 2), d a d u r c h g e k e n n z e i c hn e t, dass die Signale für die schwingungsdämpfenden Kräfte von Geschwindigkeitssensoren, die vornehmlich im Schwingungsbeuch der elestischen Bauteile angebracht sind, geliefert werden.
- 4. Vorrichtung zu ektiver Schwingungsdämpfung elastischer Antriabselemente nach Anspruch 1) und 2), d a d u r c h g e k e n n z e i c h n e t, dass die Signale für die schwingungsdämpfenden Kräfte von Beschleunigungssensoren, die vornehmlich im Schwingungsbauch der elastischen Bauteile angebracht eind, durch zeitliche Differentiation geliefert werden.
- 5. Vorrichtung zu aktiver Schwingungsdämpfung elastischer Antriebselemente nach Anspruch 1) und 2), d a d u r c h g e k e n n z e i c hn e t, dass die Signale für die schwingungsdämpfenden. Kräfte von
 Drehmomentensensoren, die vormehmlich im Schwingungsknoten der elastischen Bauteile angebracht sind, durch zeitliche Differenzierung
 geliefert werden.

Patentheschreibung

Titel: "Aktive Schwingungsdämpfung elestischer Antriebselemente"

Wechanische Bauelemente zur Übertregung von Kräften und Bewegungen werden entweder nach ausreichender mechanischer Festigkeit oder nach zulässiger elastischer Deformation dimensioniert.

Bei schlanken Bauelementen, wie sie z.B. bei Hebezeugen verwendet werden, können auch bei ausreichender Biegefestigkeit von Konstruktionsstäben deren Biegeschwingungen zu unserträglichen Störungen führen. De derertige Biegeschwingungen wegen der guten Elestizität des Stabmateriels nur eine geringe Eigendämpfung aufweisen, stallen sich z.B. bei motorisch angetriebenen Machanismen mit Positions- und Laufgeschwindigkeit oder Kraft-rückführung bei grösserer Verstärkung des Regelkreises angefachte mechanische Schwingungen ein, die des Regelsystem unbreuchber machen.

Um schwingungsfähige elestische Bauelemente (1) ektiv zu bedämpfen, werden erfindungsgemäss Motore verwendet, die periodische Kräfte geeigneter Amplitude und Phase auf das schwingungsfähige Bauteil so ausüben, dass dem System Schwingungsenergie entzogen wird. Häufig lassen sich die Antriebsmotore (2) für die einzelnen Freiheitsgrade durch eine zusätzlich oszillierende Kraft gleichzeitig zum Antrieb und zur Schwingungsdämpfung benützen. Die oszillierende Kraft F darf debei nicht mit der Durchfederung S in Phase sein, weil dies nur eine Änderung der Eigenfrequenz des Schwingungssystemes bewirken würde, da die mittlere Oszillatorleistung T bei 90° Phasenverschiebung zwischen F und S

ist.

Um dem System durch die oszillierende Kraft F Schwingungsenergie zu entziehen, muss F und $\mathring{\mathbf{S}}$ in Phase, d.h. F und $\mathring{\mathbf{S}}$ um 90° phasenverschoben sein.

Erfindungsgemäss sollen mittels besonderer Sensoren Signale gewonnen werden, die mit S in Phase sind. Dies können z.B. sein:

709833/0082

- a) Gaschwindigkeitssensoren (3), die im Schwingungsbauch des Konstruktionsetabes (1) montiert sind, und die direkt Signala proportional S liefern.
- b) Baschleunigungssansoren (4), die sbanfalls im Schwingungsbauch montiert sind und die S liefern.
- c) Orehonomentensensoren (5), die das zu 5 proportionale Drehmoment im Schwingungskroten mesmen.

Aus 8 muss in den Fällen b) und c) mittels Analograchner ein zu 8 um 50° voreilendes und somit zu 8 in Phase schwingendes Signal gebildet werden. Da bei der Integration des messtechnisch zugänglichen 8 , 8 nur bis auf eine unbestimmte Integrationskonstante definiert ist, kann des mit 8 gleichphasige Dämpfungssignal nur durch Differentiation von 8 erhalten werden. Somit ist des Regelverhalten dieser aktiven bedämpften Schwingungssystemes durch eine Differentialgleichung 3. Ordnung beschrieben, deren Lösungen nur für bestimmte Parameter gedämpft sind.

Lörrach, den 10. Februar 1975

L erseite

Nummer: Int. Cl.²: Anmeldetag:

Offenlegungstag:

28 05 476 F 16 F 15/02 12. Februar 1976 18. August 1977

709833/0082

	Benerius:		Zalohn-Nr.:	Maßetab:	Saddents.	134	Projekt O-Nr.:
					Datum	1.2.1976	•
·			Erestat durch:	1	ELEKTRONIK FÜR RAUMFAHRT UND ATOMTECHNIK KLEINWÄCHTER		
	Matte oline Yolerszumgebe nach:		Workstoff:				
			ichema der aktiven	•			
Patimati Alamati		Schwingungsdämpfung			D-7850 Lörrach Kreuzstra5e 105		