#### UNIT - 6

#### **Contents**

- ▶ Pin Diagram of 8086
- Minimum mode of Operation
- Maximum mode of Operation
- Timing Diagram
- ▶ 8255 PPI various modes of operation



## INTEL 8086 - Pin Diagram



| Pin(s) | symbol   | Description                                                                                                                                           |
|--------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1&20   | GND      | ground                                                                                                                                                |
| 2-16   | AD14-AD0 | multiplexed address and data bus. it is separated by ALE pin. when it is high address bus is selected & low data bus is selected.                     |
| 17     | NMI      | Non-maskable interrupt .it is not maskable by software                                                                                                |
| 18     | INTR     | interrupt request. It specifies the availability of request. if any request is pending processor gives the acknowledgement by resetting IF flag(IF=0) |
| 19     | CLK      | It is a timing signal. which is asymmetric square wave with 33%duty cycle.                                                                            |

| 21   | RESET | It terminates the current activity & starts execution                                      |
|------|-------|--------------------------------------------------------------------------------------------|
| 22   | READY | Indicates the trasfer of data which is ready                                               |
| 23   | TEST  | when it is zero ,execution<br>will continues. when it is<br>one processor is in idle state |
| 24-3 | 1     | defined for minimum and maximum mode                                                       |

32 **RD** 

indicates a memory or I/O read is to be performed.

MN / MX

CPU is in minimum mode when strapped to +5V and maximum mode when grounded.

34 BHE'/S7

It is used to indicate the transfer of data over higher order bus(D15-D8).



35-38 A19/S6 -A16/S3 during the first part of the bus cycle the upper 4 bits of the address are output and

During the remainder of the bus cycle status is output. S3 & S4 indicate the segment register being used as follows:

| <b>S</b> 4 | <b>S</b> 3 | Register   |
|------------|------------|------------|
| 0          | 0          | ES         |
| 0          | 1          | SS         |
| 1          | 0          | CS or none |
| 0          | 0          | DS         |

S5 gives the current setting of IF. S6 is always 0.

same as AD14-AD0

supply voltage  $+5V \pm 10\%$ .

39 AD15

**40 VCC** 



### Minimum mode 8086 system

- ▶ 8086 operated in minimum mode when MN/MX'=1
- In this all the control signals are given out by microprocessor chip itself.
- There is a single microprocessor in minimum mode.



### Minimum mode system

| 24 | INTA   | Indicates recognition of an interrupt request.                                                                            |
|----|--------|---------------------------------------------------------------------------------------------------------------------------|
| 25 | ALE    | outputs a pulse at the beginning of bus cycle and is to indicate an address is available on the address pins.             |
| 26 | DEN    | output during the latter portion of bus cycle and is to inform the transceiver that CPU is ready to send or receive data. |
| 26 | DT / R | indicates to the set of transceivers whether they are to transmit or receive data.                                        |
| 26 | M / IO | — distinguish memory transfer (logic 1) from an I/O transfer (logic 0).                                                   |
| 26 | WR     | when 0, it indicates a write operation is being performed.                                                                |
| 27 | HOLD   | Receives a bus request from bus masters.                                                                                  |
| 28 | HLDA   | outputs a bus grant to a requesting master.                                                                               |

### Maximum Mode 8086 System

- Here, either a numeric coprocessor of the type 8087 or another processor is interfaced with 8086. The Memory, Address Bus, Data Buses are shared resources between the two processors.
- The control signals for Maximum mode of operation are generated by the Bus Controller chip 8288. The three status outputs S0\*, S1\*, S2\* from the processor are input to 8288.
- ▶ The outputs of the bus controller are the Control Signals, namely DEN, DT/R\*, IORC\*, IOWTC\*, MWTC\*, MRDC\*, ALE etc.

### Maximum mode system

24,25 QS1,QS0

Reflects the status of the instruction queue.

26 – 28 S0,S1,S2 Indicates the type of transfer to take place during the current bus cycle.

| - |           |           |           |                       |
|---|-----------|-----------|-----------|-----------------------|
|   | —         | _         | _         |                       |
|   | <b>S2</b> | <b>S1</b> | <b>SO</b> |                       |
|   | 0         | 0         | 0         | Interrupt acknowledge |
|   | 0         | 0         | 1         | Read I/O port         |
|   | 0         | 1         | 0         | Write I/O port        |
|   | 0         | 1         | 1         | Halt                  |
|   | 1         | 0         | 0         | Instruction fetch     |
|   | 1         | 0         | 1         | Read memory           |
|   | 1         | 1         | 0         | Write memory          |
|   | 1         | 1         | 1         | Inactive – passive    |
| 1 |           |           |           |                       |

|   | QS1 QS | 0 | Indication                      |  |  |
|---|--------|---|---------------------------------|--|--|
|   | 0      | 0 | No operation                    |  |  |
|   | 0      | 1 | First byte of op-code           |  |  |
|   |        |   | from the queue                  |  |  |
|   | 1      | 0 | Empty Queue                     |  |  |
| L |        | 1 | Subsequent byte from the queue. |  |  |
|   |        |   |                                 |  |  |

29 LOCK

Indicates the bus will not be released to other potential bus masters until the instruction with prefix LOCK is executed.

30 RQ / GT1 for inputting bus requests and outputting bus grants.

RQ / GTO same as that RQ / GT1 except that a request on RQ / GT0 has higher priority.

#### Maximum mode system

24,25 QS1,QS0

Reflects the status of the instruction queue.

26 - 28 S0,S1,S2

Indicates the type of transfer to take place during the current bus cycle.

| 52 | <b>S1</b> | 50 |                       |
|----|-----------|----|-----------------------|
| 0  | 0         | 0  | Interrupt acknowledge |
| 0  | 0         | 1  | Read I/O port         |
| 0  | 1         | 0  | Write I/O port        |
| 0  | 1         | 1  | Halt                  |
| 1  | 0         | 0  | Instruction fetch     |
| 1  | 0         | 1  | Read memory           |
| 1  | 1         | 0  | Write memory          |
| 1  | 1         | 1  | Inactive – passive    |

| QS1 QS | 0 | Indication                      |
|--------|---|---------------------------------|
| 0      | 0 | No operation                    |
| 0      | 1 | First byte of op-code           |
|        |   | from the queue                  |
| 1      | 0 | <b>Empty Queue</b>              |
| 1      | 1 | Subsequent byte from the queue. |
|        |   |                                 |

29 LOCK

Indicates the bus will not be released to other potential bus masters until the instruction with prefix LOCK is executed.

30 RQ / GT1

for inputting bus requests and outputting bus grants.

31 > RQ / GT0

same as that RQ / GT1 except that a request on RQ / GT0 has higher priority.

- Draw the pin diagram of 8086
- Draw the pin diagram of 8086 in minimum mode
- Draw the pin diagram of 8086 in maximum mode
- Explain about minimum mode signal
- Explain about maximum mode signal
- Draw the block diagram of 8255.
- Draw and explain the block diagram of 8255



### INTEL 8086 - Pin Diagram



MIN MODE } VCC GND 40 AD14 39 AD15 AD13 🗆 A16/S3 38 🗖 A17/S4 AD12 🗆 37 A18/S5 AD11 5 36 A19/S6 AD10 6 35 BHE/S7 AD9 7 34 8086 MN/MX AD8 🗆 8 33 CPU RD AD7 🗆 9 32 🗆 AD6 10 (HOLD) (HLDA) AD5 🗆 11 30 🖂 (WR) AD4 🔲 12 29 🔲  $(M/\overline{IO})$ AD3 🗆 13 28 AD2 4 (DT/R) 27 (DEN) AD1 15 26 🔲 (ALE) ADO 16 25 🗆 (INTA) NMI 🗆 17 24 TEST INTR 23 CLK | 19 READY 22 GND [ RESET 20 21



#### MODE GND vcc 40 AD14 2 39 AD15 AD13 3 38 A16/S3 AD12 37 A17/S4 AD11 A18/\$5 5 36 AD10 A19/S6 35 BHE/S7 AD9 34 7 8086 MN/MX AD8 8 33 CPU RD AD7 32 9 RQ/GT0 AD6 31 10 RQ/GT1 AD5 11 30 LOCK AD4 12 29 <u>52</u> AD3 13 28 51 AD2 14 27 <u>50</u> AD1 15 26 AD0 25 QS0 16 NMI QS1 24 17 INTR TEST 23 18 CLK [ READY 19 22 GND RESET 20 21

MAX



### 8255 PPI Programmable peripheral interface

(or)

Architecture of Programmable I/O Port 8255





#### Pin Description

PA(0-7): Port A is an I/O port. Its an 8-bit data output

latch/buffer and an 8-bit data input latch.

RD': Read Control is an Active low input pin. RD is

when CPU reads data. LOW

Chip Select is an Active low input pin. A **CS**':

LOW on this pin selects 8255.

This provides the ground for the IC GND:

These pins along with RD', WR', CS' pins A0,A1:

the operation of 8255. control



# Pin Description (Accessing 8255 using A0, A1, RD, WR, CS pins)

| A1         | AO                           | RD                        | WR        | CS         | Operation Performed             |  |  |  |
|------------|------------------------------|---------------------------|-----------|------------|---------------------------------|--|--|--|
|            |                              |                           |           |            | Chip Disabled i.e. Chip not     |  |  |  |
| Х          | Х                            | Χ                         | Х         | 1          | Selected                        |  |  |  |
| Chip is se | Chip is selected when CS = 0 |                           |           |            |                                 |  |  |  |
|            |                              |                           | Input(Rea | d) Operati | on.                             |  |  |  |
| 0          | 0                            | 0                         | 1         | 0          | Read Port A-Data bus            |  |  |  |
| 0          | 1                            | 0                         | 1         | 0          | Read Port B-Data bus            |  |  |  |
| 1          | 0                            | 0                         | 1         | 0          | Read Port C-Data bus            |  |  |  |
| 1          | 1                            | 0                         | 1         | 0          | Control Word Register- Data bus |  |  |  |
|            |                              | Output( write) Operation. |           |            |                                 |  |  |  |
| 0          | 0                            | 1                         | 0         | 0          | Write Port A-data bus           |  |  |  |
| 0          | 1                            | 1                         | 0         | 0          | Write Port B-data bus           |  |  |  |
| 1          | 0                            | 1                         | 0         | 0          | Write Port C-data bus           |  |  |  |
| 1          | 1                            | 1                         | 0         | 0          | Diata bus-Control               |  |  |  |



#### Pin Description

PC(0-7): Port C is an 8-bit I/O port. Its lower 4-bits can be programmed to work in conjunction with PortB and the upper 4-bits can be programmed to work in conjunction with Port A separately.

PB(0-7): Port B is an 8-bit I/O port used for 8-bit output data latch/buffer or input data buffer

Vcc: +5V power supply.

D7-D0: Data bus, bidirectional, tristate lines connected to system data lines

RESET: input pin which resets the control word register.

WR': Write Enable is an active low input pin.it indicates the write operation.

### Modes of Operation in 8255

- ▶ There are two basic modes of operation of 8255.
  - I. I/O mode

- 2. Bit set-reset mode
- In the I/O mode, 8255 ports works as programmable I/O ports, while in BSR mode only port-c(pc0-pc7) cab be used to set or reset its individual port bits.
- ➤ Under the I/O mode of operation, further there are three modes. they are mode0, mode I, mode 2.

