ÉQUATIONS D'UNE DROITE

I – ÉQUATIONS D'UNE DROITE PARALLÈLE AUX AXES (EXEMPLES)

Soit (d) l'ensemble des points dont l'abscisse vaut 3. Alors (d) est une droite. De plus, (d) a pour équation x=3, ce qui signifie qu'un point M de cordonnées (x;y) appartient à (d) si et seulement si x=3.

Soit (d') l'ensemble des points dont l'ordonnée vaut 2. Alors (d') est une droite. De plus, (d') a pour équation y = 2, ce qui signifie qu'un point M de cordonnées (x;y) appartient à (d') si et seulement si y = 2.

Remarque 3y = 6 est une autre équation de (d').

II - ÉQUATION RÉDUITE D'UNE DROITE NON VERTICALE

Soit (d) une droite non verticale.

Théorème et définition

La droite (d) et l'axe des ordonnées ont un seul point d'intersection. L'ordonnée de ce point est appelée <u>ordonnée à l'origine de la droite</u> (d).

Théorème Soit p le coefficient directeur de (d) et q l'ordonnée à l'origine de (d).

Alors y = px + q est l'équation réduite de (d).

Remarque Cela signifie que, pour un point M du plan de coordonnées (x; y):

- si y = px + q, alors M est sur la droite (d);
- si $y \neq px + q$, alors M n'est pas sur la droite (d).

Théorème réciproque Soit deux nombres p et q.

L'ensemble des points M(x;y) tels que y=px+q est la droite de coefficient directeur p et d'ordonnée à l'origine q.

DEUX MÉTHODES POUR REPRÉSENTER UNE DROITE À PARTIR DE SON ÉQUATION RÉDUITE

On prend l'exemple de la droite (d) d'équationy = 2x - 1.

<u>Méthode 1 : utiliser l'ordonnée à l'origine et le</u> coefficient directeur

L'ordonnée à l'origine de (d) est -1 et son coefficient directeur est 2.

Méthode 2 : déterminer deux points de la droite On choisit deux abscisses, par exemple – 1 et 2. Soit A le point d'abscisse – 1 de (d).

Alors
$$y_A = 2 \times (-1) - 1 = -3$$

Soit B le point d'abscisse 2 de (d).

Alors
$$y_B = 2 \times 2 - 1 = 3$$
.

Une méthode pour déterminer ${\tt L'\acute{e}QUATION}$ réduite de la droite (AB)

Calcul de p: on applique de la formule du coefficient directeur.

Calcul de q: on utilise le fait que le point A (ou B) appartient à la droite pour

déterminer une équation dont l'ordonnée à l'origine q est solution,

puis on la résout.

Exemple Soit A(-2; 0) et B(2; 3).

Le coefficient directeur de la droite (AB) vaut :

$$\frac{y_B - y_A}{x_B - x_A} = \frac{3 - 0}{2 - (-2)} = \frac{3}{4} = 0.75$$

L'équation réduite de la droite (AB) est de la forme

$$v = 0.75x + q$$

où q est un réel à déterminer.

Le point A(-2; 0) appartient à la droite (AB) donc

$$y_A = 0.75x_A + q$$

Soit
$$0 = 0.75 \times (-2) + b = -1.5 + q \text{ donc } q = 1.5.$$

L'équation réduite de la droite (AB) est y = 0.75x + 1.5.