

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Martes 11 de noviembre de 2008 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

							,							
0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)								
٢		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)					
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)					
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)					
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)					
ю		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)					
	,			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)					
.				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)					
riódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)					
Tabla periódica										45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)					
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)					
	atómico	ento tómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03					
	Número atómico	Elemento Masa atómica		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04					
			l	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04					
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)		**					
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)							
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)							

- 1. Los químicos analíticos pueden determinar cantidades de aminoácidos tan pequeñas como 2.0×10^{-21} moles de moléculas. ¿Cuántas moléculas representa este número?
 - A. $2,0 \times 10^{-21}$
 - B. 1.2×10^3
 - C. 6.0×10^{23}
 - D. 3.0×10^{44}
- 2. ¿Cuántos moles de iones de soluto hay en 50 cm³ de una solución de hidróxido de sodio de concentración 0,10 mol dm⁻³?
 - A. $2,5 \times 10^{-3}$
 - B. 5.0×10^{-3}
 - C. $1,0 \times 10^{-2}$
 - D. 5.0×10^{-2}
- 3. Un alto horno contiene $1600 \,\mathrm{kg}$ de óxido de hierro(III) ($M_{\rm r}$ =160) y 144 kg de carbono ($A_{\rm r}$ =12). Suponiendo que reaccionan de acuerdo con la siguiente ecuación:

$$\mathrm{Fe_2O_3}(\mathrm{s}) + \mathrm{3C}(\mathrm{s}) \rightarrow \mathrm{2Fe}(\mathrm{s}) + \mathrm{3CO}(\mathrm{g})$$

¿cuál es el reactivo limitante y el rendimiento máximo teórico de hierro?

	Reactivo limitante	Rendimiento máximo teórico de hierro / kg
A.	óxido de hierro(III)	560
B.	óxido de hierro(III)	1120
C.	carbono	224
D.	carbono	448

- **-4-**
- 4. A continuación se muestran las energías de primera ionización de elementos sucesivos de la tabla periódica.

Número atómico

¿Qué enunciados son correctos?

- I. Los elementos E y M pertenecen al grupo 0 de la tabla periódica.
- La configuración electrónica del electrón externo de los átomos de los elementos G y O II. es ns².
- Los átomos de los elementos B y J presentan orbitales p semillenos.
- Sólo I y II A.
- Sólo I y III B.
- C. Sólo II y III
- D. I, II y III

5. A continuación se representa un espectrómetro de masas.

¿Cuál es la mejor descripción del proceso que sucede en $\mathbf{Q},\ \mathbf{R}$ y \mathbf{S} cuando se analiza el elemento X(g)?

	Q	R	S
A.	se aplica un campo eléctrico	$X(g) + e^{-} \rightarrow X^{+}(g) + 2e^{-}$	se aplica un campo magnético
В.	se aplica un campo magnético	se aplica un campo eléctrico	$X(g) + e^{-} \rightarrow X^{+}(g) + 2e^{-}$
C.	$X(g) + e^- \rightarrow X^+(g) + 2e^-$	se aplica un campo eléctrico	se aplica un campo magnético
D.	$X(g) + e^{-} \rightarrow X^{+}(g) + 2e^{-}$	se aplica un campo magnético	se aplica un campo eléctrico

8808-6125 Véase al dorso

¿Qué valor es el más cercano a la masa atómica relativa del elemento?

- A. 64,5
- B. 65,0
- C. 65,5
- D. 66,0
- 7. ¿En qué orden se disponen los elementos en la tabla periódica?
 - A. De acuerdo con la masa atómica relativa
 - B. De acuerdo con la reactividad
 - C. De acuerdo con la carga nuclear
 - D. De acuerdo con la electronegatividad

8. El gráfico muestra la tendencia que presenta una propiedad física hacia abajo del grupo 7 de la tabla periódica.

¿Cuál es la propiedad física?

- A. Radio atómico
- B. Electronegatividad
- C. Densidad
- D. Punto de fusión
- 9. ¿Qué especies pueden actuar como ligando con los iones de los metales de transición?
 - I. NH₃
 - II. Cl
 - III. CH₄
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

10.	Se añaden	cantidades	iguales	de	cuatro	sustancias	a	muestras	separadas	de	$100\mathrm{cm}^3$	de	agua.
	¿Qué soluc	ión presenta	mayor p	Н?									

- A. NaCl
- B. AlCl₃
- C. PCl₃
- D. Cl,
- 11. La tabla muestra los puntos de ebullición de los haluros de hidrógeno.

Compuesto	Punto de ebullición / °C
HF	20
HC1	-85
HBr	-67
HI	-35

¿Qué enunciado explica el mayor punto de ebullición del fluoruro de hidrógeno?

- A. El enlace covalente en el fluoruro de hidrógeno es más fuerte que en el caso de los demás haluros de hidrógeno.
- B. Existe un fuerte enlace de hidrógeno entre las moléculas de fluoruro de hidrógeno.
- C. El flúor es el elemento más reactivo del grupo 7.
- D. El flúor tiene la primera energía de ionización más elevada del grupo 7.
- 12. ¿Qué sustancia tiene la menor conductividad eléctrica?
 - A. Al(s)
 - B. $Al_2O_3(l)$
 - C. KCl(aq)
 - D. HCl(g)

- 13. ¿Qué enlace tiene la menor polaridad?
 - A. C-H en el metano, CH₄
 - B. C=O en el dióxido de carbono, CO₂
 - C. C-C en el etano, C_2H_6
 - D. C-C en el etanol, C₂H₅OH
- **14.** ¿Cuál es la descripción correcta de la hibridación que presenta el 1,3-butadieno, $H_2C=CH-CH=CH_2$?
 - A. sp
 - B. sp^2
 - C. $sp y sp^2$
 - D. sp^3 , sp^2 y sp
- **15.** ¿En qué moléculas hay un ángulo de enlace de 90°?
 - I. PF₅
 - II. SiCl₄
 - III. SF₆
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

16. La masa de 75 cm³ de una muestra de un gas desconocido es de 0,18 g a temperatura de 25 °C y presión de 1 atm. ¿Cuál es la expresión correcta para calcular la masa molar del gas, M, en g mol⁻¹? (R = 8,3 J K⁻¹ mol⁻¹, 1 atm = 1,01×10⁵ Pa)

A.
$$M = \frac{0.18 \times 8.3 \times 25}{1 \times 75}$$

B.
$$M = \frac{75 \times 10^{-6} \times 8,3 \times 25}{1,01 \times 10^{5} \times 298}$$

C.
$$M = \frac{0.18 \times 8.3 \times 298}{1.01 \times 10^5 \times 75 \times 10^{-6}}$$

D.
$$M = \frac{1,01 \times 10^5 \times 75 \times 10^{-6}}{0,18 \times 8,3 \times 298}$$

17. La entalpía media de enlace del enlace C–H es de 412 kJ mol⁻¹. ¿Cuál proceso tiene la variación de entalpía más cercana a este valor?

A.
$$CH_4(g) \rightarrow C(s) + 2H_2(g)$$

B.
$$CH_4(g) \rightarrow C(g) + 2H_2(g)$$

C.
$$CH_4(g) \rightarrow C(g) + 4H(g)$$

D.
$$CH_4(g) \rightarrow CH_3(g) + H(g)$$

- 18. Para una reacción, el valor de ΔH^{\ominus} es positivo y el de ΔS^{\ominus} es negativo. ¿Qué enunciado sobre esta reacción es correcto?
 - A. No es espontánea a ninguna temperatura.
 - B. Es espontánea a cualquier temperatura.
 - C. Es espontánea sólo a baja temperatura.
 - D. Es espontánea sólo a alta temperatura.

- 19. Cuando se añaden 50 cm³ de una solución de ácido nítrico, HNO₃(aq), de concentración 1,0 mol dm⁻³ a 50 cm³ de una solución de hidróxido de potasio, KOH(aq), de concentración 1,0 mol dm⁻³, la temperatura de la mezcla se eleva 6,4°C. ¿Cuál será la variación de temperatura cuando 25 cm³ de cada una de estas soluciones se mezclen entre sí?
 - A. 1,6°C
 - B. 3,2°C
 - C. 6,4°C
 - D. 12,8°C
- **20.** ¿Qué características de un ion positivo son las responsables de que sus compuestos tengan mayor entalpía de red?
 - I. Elevada carga del ion
 - II. Pequeño radio iónico
 - III. Menor energía de primera ionización del metal que forma el ion
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

8808-6125 Véase al dorso

21. Esta reacción se utilizaba para el flash fotográfico:

$$3Mg(s) + KClO_3(s) \rightarrow 3MgO(s) + KCl(s)$$

A continuación se muestran los valores relevantes de las variaciones de entalpía de formación.

Compuesto	ΔH _f [⊕] / kJ mol ⁻¹
KClO ₃ (s)	-391
MgO(s)	-602
KCl(s)	-437

¿Cuál es la variación de entalpía, en kJ, para esta reacción?

- A. -1852
- B. -648
- C. +740
- D. +1760

22. La siguiente gráfica muestra como varía la concentración de X con el transcurso del tiempo durante la reacción:

¿Qué gráfica muestra la variación de concentración de Y en el mismo periodo de tiempo?

A.

B.

C.

D.

23. La energía de activación se puede determinar gráficamente usando la ecuación de Arrhenius:

$$k = Ae^{\frac{-E_a}{RT}}$$

¿Qué gráfica origina una línea recta?

	Eje vertical	Eje horizontal
A.	k	$\frac{1}{T}$
B.	k	$\ln \frac{1}{T}$
C.	ln k	$\ln \frac{1}{T}$
D.	ln k	$\frac{1}{T}$

24. El dióxido de nitrógeno reacciona con el monóxido de carbono de los gases de escape de los motores de los vehículos según:

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

Se ha propuesto el siguiente mecanismo:

$$NO_2(g) + NO_2(g) \rightarrow N_2O_4(g) \qquad \qquad lenta$$

$$\mathrm{N_2O_4(g)} + \mathrm{CO(g)} \rightarrow \mathrm{NO_2(g)} + \mathrm{CO_2(g)} + \mathrm{NO(g)} \qquad \qquad \textit{r\'apida}$$

¿Cuál es la ecuación de velocidad para este mecanismo?

- A. Velocidad = $k [NO_2(g)] [CO(g)]$
- B. Velocidad = $k [NO_2(g)]^2$
- C. Velocidad = $k [N_2O_4(g)] [CO(g)]$
- D. Velocidad = $k [NO_2(g)]^2 [CO(g)]$

25. La gráfica siguiente muestra cómo varían las concentraciones de reactivos y productos con el transcurso del tiempo para una reacción reversible.

¿Cuándo está en equilibrio esta reacción?

- I. Tiempo = 10 s
- II. Tiempo = 20 s
- III. Tiempo = 55 s
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

26. Dentro de un recipiente sellado se encuentra bromo líquido en equilibrio con su vapor:

$$Br_2(l) \rightleftharpoons Br_2(g)$$

¿Qué cambio produce un aumento de la concentración de bromo al estado de vapor en el equilibrio?

- A. Añadido de más bromo líquido
- B. Eliminación de un poco de bromo líquido
- C. Disminución del volumen del recipiente
- D. Aumento de la temperatura
- 27. La ecuación para un proceso reversible se puede representar de dos maneras:

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

$$K_{\rm cl}$$

$$HI(g) \rightleftharpoons \frac{1}{2}H_2(g) + \frac{1}{2}I_2(g)$$

$$K_{c2}$$

¿Cuál es la relación entre las constantes de equilibrio $K_{\rm cl}$ y $K_{\rm c2}$?

A.
$$K_{c1} = K_{c2}$$

B.
$$K_{c1} = \frac{1}{2K_{c2}}$$

C.
$$K_{c1} = \frac{1}{2K_{c2}^2}$$

D.
$$K_{c1} = \frac{1}{K_{c2}^2}$$

28.	¿Oué d	combinac	ciones	forman	solu	ciones	buffer?
-0.	1, 2 40	comomia	101105	IOIIII	DOIG	CIOILCD	cullet.

- I. 50 cm³ de CH₃COOH(aq) de concentración 0,1 mol dm⁻³ + 25 cm³ de NaOH(aq) de concentración 0,1 mol dm⁻³
- II. 50 cm³ de CH₃COOH(aq) de concentración 0,1 mol dm⁻³ + 50 cm³ de NaOH(aq) de concentración 0,1 mol dm⁻³
- III. 50 cm³ de CH₃COOH (aq) de concentración 0,1 mol dm⁻³ + 50 cm³ de CH₃COONa (aq) de concentración 0,1 mol dm⁻³
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III
- **29.** ¿Cuál es la definición de un ácido de Brønsted-Lowry?
 - A. Una sustancia que acepta protones
 - B. Una sustancia que reacciona con iones OH⁻
 - C. Una sustancia cuyo pH es menor que 7
 - D. Una sustancia que cede iones H⁺
- **30.** ¿Qué especie puede actuar como ácido de acuerdo con la teoría de Lewis, pero no de acuerdo con la teoría de Brønsted-Lowry?
 - A. NCl₃
 - B. HCl
 - C. H₂O
 - D. BF₃

8808-6125 Véase al dorso

31.	¿Qué sal pr	oduce la	solución	acuosa	más	ácida?
-----	-------------	----------	----------	--------	-----	--------

- A. KCl
- B. FeCl₃
- C. CH₃COONa
- D. NaNO₃

32. ¿En qué compuesto el manganeso actúa con mayor número de oxidación?

- A. MnCl₂
- B. MnO_2
- C. Mn_2O_3
- D. MnSO₄

33. ¿Qué enunciado sobre la electrólisis de bromuro de sodio fundido es correcto?

- A. Los iones bromuro pierden electrones en el electrodo negativo.
- B. Los iones bromuro ganan electrones en el electrodo positivo.
- C. Los iones bromuro ganan electrones en el electrodo negativo.
- D. Los iones bromuro se mueven aún cuando no circula corriente.

34. ¿Cuál es el coeficiente para H⁺ en la siguiente ecuación?

$$3Cu\left(s\right) + {\mathop{_{-}}\nolimits}NO_{3}^{-}(aq) + {\mathop{_{-}}\nolimits}H^{+}(aq) \to {\mathop{_{-}}\nolimits}Cu^{2+}(aq) + {\mathop{_{-}}\nolimits}NO\left(g\right) + {\mathop{_{-}}\nolimits}H_{2}O\left(l\right)$$

- A. 4
- B. 8
- C. 12
- D. 16

- **35.** ¿Qué condiciones se aplican al electrodo de hidrógeno estándar?
 - I. Hidrógeno a presión de 1.01×10^5 Pa (1 atm)
 - II. Hidrógeno a temperatura de 298 K
 - III. H₂SO₄(aq) de concentración 1,00 mol dm⁻³
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **36.** ¿Cuál de los siguientes puede formar un polímero de adición?
 - A. Alanina (ácido 2-aminopropanoico)
 - B. Butano
 - C. 2-buteno
 - D. 1,2-diclorobutano
- 37. ¿Qué compuesto, después de hidrogenado, origina un producto con un centro quiral?
 - A. $CH_2 = CH_2$
 - B. $CH_3CBr = CH_2$
 - C. $CH_3CH_2CBr = CH_2$
 - D. $CH_3CH_2C(CH_3)=CH_2$

- **38.** ¿Qué enunciado sobre las reacciones de los halógenoalcanos con hidróxido de sodio acuoso es correcto?
 - A. Las reacciones implican la ruptura homolítica del enlace carbono-halógeno.
 - B. Los cloroalcanos reaccionan más rápido que los yodoalcanos.
 - C. Las reacciones de los halógenoalcanos primarios generalmente transcurren por medio de un mecanismo de dos etapas.
 - D. Los halógenoal canos terciarios generalmente reaccionan por medio de un mecanismo $\mathbf{S}_{\scriptscriptstyle N}\mathbf{1}.$
- **39.** Un compuesto orgánico desconocido origina el siguiente espectro de resonancia magnética nuclear ¹H de baja resolución. El pico a 0 ppm se debe al TMS de referencia.

Desplazamiento químico / ppm

Identifique el compuesto orgánico.

- A. CH₃CH₂CH₃
- B. CH₂OHCH₂OH
- C. CH₃CH₂OH
- D. CH₃CH₂Cl

- **40.** ¿Qué productos se forman por deshidratación del 2-butanol?
 - I. butano
 - II. 1-buteno
 - III. 2-buteno
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III