Curso: Engenharia de Computação

Arquitetura de Computadores

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Representação de grandezas numéricas

- Notação posicional
- Notação polinomial

Representação de grandezas numéricas

Notações posicional e polinomial

$$1457 = 1 \times 10^{3} + 4 \times 10^{2} + 5 \times 10^{1} + 7 \times 10^{0}$$
+significative

• Dígitos do conjunto $D=\{0,1,2,3,...,9\}$, base decimal

Notação posicional

$$N_b = d_{m-1} d_{m-2} \dots d_0$$

- N é a grandeza,
- b é a base,
- m é o número de dígitos usados na representação
- os índices 0 a *m*−1 representam a posição do dígito.

Notação polinomial

$$N_b = d_{m-1} \times b^{m-1} + d_{m-2} \times b^{m-2} \dots + d_0 \times b^0$$

- N é a grandeza,
- b é a base,
- m é o número de dígitos usados e
- os índices 0 a m-1 representam a posição do dígito.

Outras bases numéricas

Base 2	Base 8	Base 10	Base 16
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	3
100	4	4	4
101	5	5	5
110	6	6	6
111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	A
1011	13	11	В
1100	14	12	C
1101	15	13	D
1110	16	14	E
1111	17	15	F
10000	20	16	10
10001	21	17	11

· PRESENTAL TIPLET SE

Conversão de bases numéricas

Conversão de bases

• Base 10 para base 2: divisões sucessivas

$$N=(r_n r_{n-1} r_{n-2} ... r_0)_2$$

Conversão de bases

Base 2 para base 10: notação polinomial

$$b_n \times 2^n + b_{n-1} \times 2^{n-1} \dots + b_0 \times 2^0$$

Conversão de bases

Base <u>2 para base 16</u> e vice-versa

bn	 b6	b5	b4	b3	b2	b1	b0	base .	2
				dH				base	16

Obs. Representação das grandezas hexadecimais na forma *Nh*, *NH* ou *0xN*, por exemplo endereço *0x10A* ou *10Ah* ou *10AH*

Representação binária

- O bit (binary digit)
- O byte (B) = 8 bits
- Múltiplos:

Kilo (k)	210
Mega (M)	2 ²⁰
Giga (G)	2 ³⁰
Tera (T)	240

- Adição binária
- Subtração binária

• Adição de dois dígitos binários: b_1+b_0

		b	0	
		0	1	
և1	0	0	1	
pı	1	1	10	carry ou vai um

- Adição binária de dois números de m bits
 - 1. Realizar a operação bit a bit do menos ao mais significativo (da direita para a esquerda)
 - 2. Aplica-se a tabela anterior
 - 3. Se houver bit 1 de carry transporta-se para a soma dos bits seguintes mais significativos (à esquerda)
 - 4. Repete-se o processo até alcançar o bit mais significativo.

• Subtração de dois dígitos binários: b_1 - b_0

		b	0			
		0	1			
L 1	0	0 11 carry o		carry ou vo	ai menos un	n
DI	1	1	0			

- Subtração binária de dois números de m bits Minuendo>Subtraendo
 - 1. Operação bit a bit, do menos ao mais significativo
 - 2. Aplica-se a tabela anterior
 - 3. Se houver bit -1 de carry transporta-se para a subtração dos dígitos seguintes (à esquerda mais significativos),
 - 4. Repete-se o processo até alcançar o bit mais significativo.
 - 5. Se o minuendo for menor do que o subtraendo inverter a operação e representar o número negativo

Aritmética hexadecimal

- Processo similar à aritmética binária
- Na adição, lembrar que se a soma dos dígitos exceder 16, transporta-se 1 e o valor que excedeu é o resultado da adição.
- P. ex. 0x8 + 0xA = 0x12
- Na subtração, lembrar que se o minuendo for inferior ao subtraendo, transporta-se -1, soma-se 16 ao minuendo e realiza-se a subtração.
- P. ex. 0x18 + 0x0A = 0x0E

Representação de números negativos

- Representação em bit sinal (sinal e magnitude)
- Representação em complemento de 1
- Representação em complemento de 2
- Representação em excesso 2^{m-1}

Representação em sinal e magnitude

Código para representar um número de m bits

- 1. Na posição mais significativa, utiliza-se o **bit sinal** para os números **positivos e negativos**
- 2. Os demais bits representam o valor absoluto da grandeza
- 3. Dupla representação do 0 todos os bits iguais a 0, com bit sinal 0 ou 1

Representação em sinal e magnitude

4. Faixa de representação: -(2^{m-1}-1) a +(2^{m-1}-1)

Código de representação

+3	0	1	1			
+2	0	1	0			
+1	0	0	1			
0	0	0	0	1	0	0
-1	1	0	1			
-2	1	1	0			
-3	1	1	1			

Representação em sinal e magnitude

- Adição binária e Subtração binária
 - 1. Para uma adição/subtração de número com m bits, ...
 - 2. aplica-se a adição/subtração da representação binária, ...
 - 3. comparando-se os números...
 - 4. e observando o sinal.

Complemento de números

- 1. O complemento de um número de *n* dígitos é a diferença entre o maior número de *n* dígitos naquela base e o número considerado.
- 2. Por exemplo, na base 10, o complemento de 12 é 87, pois 99 (maior número com 2 dígitos) menos 12 é igual a 87.
- 3. Na base 2, para obter o complemento de 1 basta inverter os bits do número binário

Código para representar um número de m bits

- 1. Na posição mais significativa, utiliza-se o bit sinal para os números positivos
- 2. Invertem-se os bits dos números binários negativos
- 3. Dupla representação do 0 todos os bits iguais a 0 ou iguais a 1

- 4. Faixa de representação: -(2^{m-1}-1) a +(2^{m-1}-1)
- 5. Exemplo:

Código de representação

0	1	1			
0	1	0			
0	0	1			
0	0	0	1	0	0
1	1	0			
1	0	1			
1	0	0			
	0 0 1	00001110	0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0	0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1	0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1

- Adição binária em complemento de 1
 - 1. Para uma soma de número com *m* bits, ...
 - 2. pode-se generalizar a operação do menos ao mais significativo direita para a esquerda, ...
 - 3. 'carregando' o bit 1 de carry para a soma dos dígitos seguintes...
 - 4. até alcançar o bit mais significativo.
 - 5. Se houver *carry* 1 no bit mais significativo, **transporta-se o bit 1 e o soma ao número do resultado obtido**

Subtração binária em complemento de 1

Soma-se o minuendo com a **representação negativa do subtraendo** do mesmo modo anteriormente apresentado

Código para representar um número de m bits

- 1. Utiliza-se o bit sinal para os números positivos
- 2. Invertem-se os bits dos números binários negativos (complemento de 1) e soma-se o resultado ao bit 1
- 3. O dígito mais negativo não possui inverso

- 4. Faixa de representação: -(2^{m-1}) a +(2^{m-1}-1)
- 5. Exemplo

Código de representação

+3	0	1	1
+2	0	1	0
+1	0	0	1
0	0	0	0
-1	1	1	1
-2	1	1	0
-3	1	0	1
-4	1	0	0

- Adição binária em complemento de 2
 - 1. Para uma soma de número com *m* bits,...
 - 2. pode-se generalizar a operação do menos ao mais significativo...
 - 3. 'carregando' o bit 1 de carry para a soma dos dígitos seguintes...
 - 4. até alcançar o bit mais significativo.
 - 5. Se houver carry 1 no bit mais à esquerda, despreza-se o carry

Representação de números negativos

Subtração binária em complemento de 2

Soma-se o minuendo com a representação negativa do subtraendo do mesmo modo anteriormente apresentado

Código para representar um número de m bits

- 1. Não utiliza o bit sinal
- 2. Soma-se 2^{m-1} a todas as grandezas a representar desde as negativas

- 3. Faixa de representação: $-(2^{m-1})a + (2^{m-1}-1)$
- 4. Exemplo: excesso 4 de código de 3 bits

Código de representação

b2	b1	b0	
1	1	1	+3, em b10
1	1	0	+2, em b10
1	0	1	+1, em b10
1	0	0	0, em b10
0	1	1	-1, em b10
0	1	0	-2, em b10
0	0	1	-3, em b10
0	0	0	-4, em b10

- Adição binária em excesso de 2^{m-1}
 - 1. Para uma soma de número com *m* bits,...
 - 2. pode-se generalizar a operação do menos ao mais significativo...
 - 3. 'carregando' o bit 1 de carry para a soma dos dígitos seguintes...
 - 4. até alcançar o bit mais significativo.
 - 5. Subtrair o resultado do excesso 2^{m-1}

- Subtração binária em excesso de 2^{m-1}
 - 1. Soma-se o minuendo com a representação negativa do subtraendo do mesmo modo anteriormente apresentado...
 - 2. Somar o resultado ao excesso 2^{m-1}

ibmec.br

Exemplo: Comparação palavras de 4 bits

base 10	b	it s	ina		C	om	pl 1	L	С	om	pl 2	2	e	ces	SSO	8
+7	0	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1
+6	0	1	1	0	0	1	1	0	0	1	1	0	1	1	1	0
+5	0	1	0	1	0	1	0	1	0	1	0	1	1	1	0	1
+4	0	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0
+3	0	0	1	1	0	0	1	1	0	0	1	1	1	0	1	1
+2	0	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0
+1	0	0	0	1	0	0	0	1	0	0	0	1	1	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
-1	1	0	0	1	1	1	1	0	1	1	1	1	1	1	0	1
-2	1	0	1	0	1	1	0	1	1	1	1	0	1	0	0	1
-3	1	0	1	1	1	1	0	0	1	1	0	1	0	1	0	1
-4	1	1	0	0	1	0	1	1	1	1	0	0	0	0	0	1
-5	1	1	0	1	1	0	1	0	1	0	1	1	1	1	0	0
-6	1	1	1	0	1	0	0	1	1	0	1	0	1	0	0	0
-7	1	1	1	1	1	0	0	0	1	0	0	1	0	1	0	0
-8	nã	io e	xis	te	nâ	io e	xis	te	1	0	0	0	0	0	0	0

Observações

- As máquinas possuem palavras com tamanho definido de m bits
- Se a operação resultante ultrapassar a capacidade do sistema representar o número obtido...
- caracteriza-se overflow = 'estouro'

Representação em ponto flutuante

- Notação científica: $N = f \times 10^e$
- , onde f fração ou mantissa; e expoente
- Pela representação em ponto flutuante equivalente computacional, quando se convenciona o número de dígitos para representar mantissa e expoente:
 - ☐ a faixa de representação é determinada pelo número de dígitos do expoente e
 - a precisão é determinada pelo número de dígitos da mantissa.

Representação em ponto flutuante

 A versão de ponto flutuante nos sistemas computacionais requer a representação da mantissa e do expoente no sistema binário.

Codificação binária

Códigos de detecção e correção de erros

- bit de paridade
- Distância de Hamming número de posições de bits em que duas palavras de um código são diferentes
- Em um código com distância de Hamming igual a d+1 é possível detectar d erros de bits únicos
- Em um código com distância de Hamming igual a 2d+1 é possível corrigir d erros de bits únicos

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

