Solution to Quiz 7

Q1. For the left side, we know $\begin{bmatrix} n \\ n-1 \end{bmatrix}$ denotes the number of permutations on [n] with n-1 cycles.

Consider $(1)(2)(3)\cdots(n)$, it is the only permutation on [n] with n cycles, to build permutations with n-1 cycles, we need to combine any two chosen cycles in $(1)(2)(3)\cdots(n)$ into one cycle, hence the number is equal to the number of ways to pick two elements from n given elements, which is $\binom{n}{2}$. Therefore we have

Q2. The other 8 elements include (1)(2)(3)(4), (142)(3), (1)(234), (1)(243), (2)(134), (2)(143), (4)(123) and (4)(132).

Q3. For a permutation whose cube is the identity, it must contain cycles of size 1 or 3. Now we consider the element n+1:

If element n+1 forms a single cycle (n+1) and we have $g^3(n+1)=n+1$, with the first n elements also forming permutation whose cube is the identity, that is T_n , we combine the cycle (n+1) with the cycles in T_n to build a n+1-permutation which obviously satisfies the condition. The number of this kind of cases is obviously t_n .

If element n+1 is in a 3-size cycle, we need to find the other 2 elements from the first n elements, the number of ways is $\binom{n}{2} = \frac{n(n-1)}{2}$, within the cycle, we can arrange the three elements in 2!=2 ways, outside the cycle, the remaining n-2 elements can for a permutation in T_{n-2} so that we can combine them into a n+1-permutation whose cube

is the identity. The number of this kind of cases is $\frac{n(n-1)}{2}2t_{n-2} = n(n-1)t_{n-2}$

Thus we have $t_{n+1} = t_n + n(n-1)t_{n-2}$.