Classical Assumptions

EC 320: Introduction to Econometrics

Emmett Saulnier Spring 2022

Prologue

Housekeeping

Analytical problem set 3 due tomorrow (4/22)

Midterm next Thursday (4/28)

- Review session on Tuesday and in Lab, come with questions!
- Study materials...
 - 1. The lecture slides and your notes
 - 2. Homework problems
 - 3. Textbook reading:

ITE Chapters Review, 1, and 2.1-2

MM Chapters 1 and 2

• Bring a calculator if you have one (I will have extras, but not 60)

Agenda

Last Week

How does OLS estimate a regression line?

Minimize RSS.

What are the direct consequences of minimizing RSS?

- Residuals sum to zero.
- ullet Residuals and the explanatory variable X are uncorrelated.
- Mean values of X and Y are on the fitted regression line.

Whatever do we mean by goodness of fit?

• What information does \mathbb{R}^2 convey?

Agenda

Today

Under what conditions is OLS desirable?

- **Desired properties:** Unbiasedness, efficiency, and ability to conduct hypothesis tests.
- **Cost:** Six **classical assumptions** about the population relationship and the sample.

Policy Question: How much should the state subsidize higher education?

- Could higher education subsidies increase future tax revenue?
- Could targeted subsidies reduce income inequality and racial wealth gaps?
- Are there positive externalities associated with higher education?

Empirical Question: What is the monetary return to an additional year of education?

- Focuses on the private benefits of education. Not the only important question!
- Useful for learning about the econometric assumptions that allow causal interpretation.

Step 1: Write down the population model.

$$\log(\text{Earnings}_i) = \beta_1 + \beta_2 \text{Education}_i + u_i$$

Step 2: Find data.

• Source: Blackburn and Neumark (1992).

Step 3: Run a regression using OLS.

$$\log(\hat{\text{Earnings}}_i) = \hat{\beta}_1 + \hat{\beta}_2 \hat{\text{Education}}_i$$

 $log(Earnings_i) = 5.97 + 0.06 \times Education_i.$

Additional year of school associated with a 6% increase in earnings.

 $R^2 = 0.097.$

Education explains 9.7% of the variation in wages.

What must we **assume** to interpret $\hat{\beta}_2 = 0.06$ as the return to schooling?

The most important assumptions concern the error term u_i .

Important: An error u_i and a residual \hat{u}_i are related, but different.

- **Error:** Difference between the wage of a worker with 16 years of education and the **expected wage** with 16 years of education.
- **Residual:** Difference between the wage of a worker with 16 years of education and the **average wage** of workers with 16 years of education.
- Population vs. sample.

A **residual** tells us how a **worker**'s wages compare to the average wages of workers in the **sample** with the same level of education.

A **residual** tells us how a **worker**'s wages compare to the average wages of workers in the **sample** with the same level of education.

An **error** tells us how a **worker**'s wages compare to the expected wages of workers in the **population** with the same level of education.

Classical Assumptions

Classical Assumptions of OLS

- 1. **Linearity:** The population relationship is **linear in parameters** with an additive error term.
- 2. **Sample Variation:** There is variation in X.
- 3. **Exogeneity:** The X variable is **exogenous** (i.e., $\mathbb{E}(u|X) = 0$).
- 4. **Homoskedasticity:** The error term has the same variance for each value of the independent variable (i.e., $Var(u|X) = \sigma^2$).
- 5. **Non-autocorrelation:** The values of error terms have independent distributions (i.e., $E[u_iu_j] = 0, \forall i \text{ s.t. } i \neq j$)
- 6. **Normality:** The population error term is normally distributed with mean zero and variance σ^2 (i.e., $u \sim N(0, \sigma^2)$)

[†] Implies assumption of **Random Sampling:** We have a random sample from the population of interest.

When Can We Trust OLS?

Bias

An estimator is **biased** if its expected value is different from the true population parameter.

Unbiased estimator: $\mathbb{E}\Big[\hat{eta}\Big]=eta$

Biased estimator: $\mathbb{E}\left[\hat{eta}\right]
eq eta$

When is OLS Unbiased?

Required Assumptions

- 1. **Linearity:** The population relationship is **linear in parameters** with an additive error term.
- 2. **Sample Variation:** There is variation in X.
- 3. **Exogeneity:** The X variable is **exogenous** (i.e., $\mathbb{E}(u|X) = 0$).
- **►** (3) implies **Random Sampling**. Without, the internal validity of OLS uncompromised, but our external validity becomes uncertain. †

† Internal Validity: relates to how well a study is conducted (does it satisfy OLS assumptions?). External Validity: relates to how applicable the findings are to the real world.

Result

OLS is unbiased.

Linearity (A1.)

Assumption

The population relationship is **linear in parameters** with an additive error term.

Examples

- $Wage_i = \beta_1 + \beta_2 Experience_i + u_i$
- $\log(\text{Happiness}_i) = \beta_1 + \beta_2 \log(\text{Money}_i) + u_i$
- $\sqrt{\text{Convictions}_i} = \beta_1 + \beta_2(\text{Early Childhood Lead Exposure})_i + u_i$
- $\log(\text{Earnings}_i) = \beta_1 + \beta_2 \text{Education}_i + u_i$

Linearity (A1.)

Assumption

The population relationship is **linear in parameters** with an additive error term.

Violations

- Wage_i = $(\beta_1 + \beta_2 \text{Experience}_i)u_i$
- ullet Consumption $_i = rac{1}{eta_1 + eta_2 ext{Income}_i} + u_i$
- ullet Population $_i=rac{eta_1}{1+e^{eta_2+eta_3{
 m Food}_i}}+u_i$
- ullet Batting Average $_i=eta_1(ext{Wheaties Consumption})_i^{eta_2}+u_i$

Sample Variation (A2.)

Assumption

There is variation in X.

Example

Sample Variation (A2.)

Assumption

There is variation in X.

Violation

Exogeneity (A3.)

Assumption

The X variable is **exogenous:** $\mathbb{E}(u|X)=0$.

• For any value of X, the mean of the error term is zero.

The most important assumption!

Really two assumptions bundled into one:

- 1. On average, the error term is zero: $\mathbb{E}(u) = 0$.
- 2. The mean of the error term is the same for each value of X: $\mathbb{E}(u|X) = \mathbb{E}(u).$

Exogeneity (A3.)

Assumption

The X variable is **exogenous:** $\mathbb{E}(u|X)=0$.

- The assignment of *X* is effectively random.
- Implication: no selection bias and no omitted-variable bias.

Examples

In the labor market, an important component of u is unobserved ability.

- $\mathbb{E}(u|\mathrm{Education}=12)=0$ and $\mathbb{E}(u|\mathrm{Education}=20)=0$.
- $\mathbb{E}(u|\text{Experience}=0)=0$ and $\mathbb{E}(u|\text{Experience}=40)=0$.
- Do you believe this?

Graphically...

Valid exogeneity, i.e., $\mathbb{E}(u \mid X) = 0$

Invalid exogeneity, i.e., $\mathbb{E}(u \mid X)
eq 0$

Variance Matters, Too

Why Variance Matters

Unbiasedness tells us that OLS gets it right, on average.

• But we can't tell whether our sample is "typical."

Variance tells us how far OLS can deviate from the population mean.

- How tight is OLS centered on its expected value?
- This determines the efficiency of our estimator.

The smaller the variance, the closer OLS gets, **on average**, to the true population parameters *on any sample*.

- Given two unbiased estimators, we want the one with smaller variance.
- If (A4.) and (A5.) are satisfied as well, we are using the **most efficient** linear estimator.

OLS Variance

To calculate the variance of OLS, we need:

- 1. The same four assumptions we made for unbiasedness.
- 2. Homoskedasticity.
- 3. Non-autocorrelation

Homoskedasticity (A4.)

Assumption

The error term has the same variance for each value of the independent variable:

$$\operatorname{Var}(u|X) = \sigma^2$$
.

Example

Homoskedasticity (A4.)

Assumption

The error term has the same variance for each value of the independent variable:

$$\mathrm{Var}(u|X) = \sigma^2$$

Violation: Heteroskedasticity

Non-Autocorrelation

Assumption

Any individual's error term is drawn independently of other error terms.

$$egin{aligned} \operatorname{Cov}(u_i,u_j) &= E[(u_i-\mu_u)(u_j-\mu_u)] \ &= E[u_iu_j] = E[u_i]E[u_j] = 0, ext{where } i
eq j \end{aligned}$$

- This implies no systematic association between error term values for any pair of individuals
- In practice, there is always some correlation in unobservables across individuals (e.g. common correlation in unobservables among individuals within a given US state)
- Referred to as clustering problem. Standard errors can be adjusted to address

OLS Variance

Variance of the slope estimator:

$$\operatorname{Var}({\hat{eta}}_2) = rac{\sigma^2}{\sum_{i=1}^n (X_i - ar{X})^2}.$$

- As the error variance increases, the variance of the slope estimator increases.
- As the variation in X increases, the variance of the slope estimator decreases.
- Larger sample sizes exhibit more variation in $X \Longrightarrow \mathrm{Var}(\hat{\beta}_2)$ falls as n rises.

Gauss-Markov

Gauss-Markov Theorem

OLS is the **Best Linear Unbiased Estimator (BLUE)** when:

- 1. **Linearity:** The population relationship is **linear in parameters** with an additive error term.
- 2. **Sample Variation:** There is variation in X.
- 3. **Exogeneity:** The X variable is **exogenous** (i.e., $\mathbb{E}(u|X)=0$).
- 4. **Homoskedasticity:** The error term has the same variance for each value of the independent variable (i.e., $Var(u|X) = \sigma^2$).
- 5. **Non-Autocorrelation:** Any pair of error terms are drawn independently of each other (i.e., $\mathrm{E}(u_iu_j)=0 \ \forall \ i \ \mathrm{s.t.} \ i \neq j)$

Gauss-Markov Theorem

OLS is the **Best Linear Unbiased Estimator (BLUE)**

Population vs. Sample, Revisited

Question: Why do we care about population vs. sample?

Population

Population relationship

$$y_i = 2.53 + 0.57x_i + u_i$$

$$y_i = eta_1 + eta_2 x_i + u_i$$

Question: Why do we care about population vs. sample?

Sample 3: 30 random individuals

Population relationship

$$y_i = 2.53 + 0.57x_i + u_i$$

Sample relationship

$$\hat{y}_i = 3.21 + 0.45x_i$$

Repeat **10,000 times** (Monte Carlo simulation).

Question: Why do we care about population vs. sample?

- On **average**, the regression lines match the population line nicely.
- However, individual lines
 (samples) can miss the mark.
- Differences between individual samples and the population create uncertainty.

Question: Why do we care about population vs. sample?

Answer: Uncertainty matters.

 $\hat{\beta}_1$ and $\hat{\beta}_2$ are random variables that depend on the random sample.

We can't tell if we have a "good" sample (similar to the population) or a "bad sample" (very different than the population).

Next time, we will leverage all six classical assumptions, including **normality**, to conduct hypothesis tests.