4 - Misura di non Compattezza, Equi-limitatezza

Premesse

> Totale limitatezza

Sia (Y, d) uno spazio metrico.

Sia $A \subseteq Y$.

 $\it A$ si dice totalmente limitato quando

$$orall arepsilon>0, \ \exists A_1,\ldots,A_n\subseteq A: igcup_{i=1}^n A_i=A\wedge \mathrm{diam}(A_i)$$

Ovviamente, la totale limitatezza implica la limitatezza.

> Caratterizzazione della compattezza di uno spazio metrico

Sia (Y, d) uno spazio metrico.

Sono equivalenti le seguenti affermazioni:

- 1. X è compatto;
- 2. X è sequenzialmente compatto;
- 3. X è completo e totalmente limitato.

> Convenzione: Estremi inferiore e superiore dell'insieme vuoto

Si pone per convenzione $\inf(\varnothing) = +\infty$ e $\sup(\varnothing) = -\infty$.

> Notazione: Insieme delle funzioni limitate

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

 $\mathcal{B}(X,Y)$ denota l'insieme delle funzioni limitate da X in Y.

> Metrica uniforme

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $\mathcal{F} \subseteq \mathcal{B}(X,Y)$.

Si definisce la **metrica uniforme** su $\mathcal F$ come la metrica ρ_d (si dimostra che è una metrica) definita ponendo $\rho_d(f,g) = \sup_{x \in X} d(f(x),g(x))$ per ogni $f,g \in \mathcal F$.

Una successione $\{f_n\}_{n\in\mathbb{N}}\subseteq\mathcal{B}(X,Y)$ converge convergente a f secondo ho_d se e solo se $f_n\stackrel{ ext{unif.}}{\longrightarrow}f.$

> Limite uniforme di una successione di funzioni limitate

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $\{f_n\}_{n\in\mathbb{N}}\subseteq\mathcal{B}(X,Y)$ una successione convergente a f secondo ho_d , cioè tale che $f_n\stackrel{ ext{unif.}}{\longrightarrow} f.$

Allora, $f \in \mathcal{B}(X,Y)$.

Siano X e Y due insiemi non vuoti.

Sia \mathcal{F} una famiglia di funzioni da X in Y.

Sia $A \subseteq X$.

Si pone $\mathcal{F}(A) = \{f(x) \mid x \in A, f \in \mathcal{F}\}.$

Misura di non compattezza secondo Kuratowski

⋮ Definizione: Misura di non compattezza secondo Kuratowski

Sia (Y, d) uno spazio metrico.

Sia $A \subseteq Y$ non vuoto.

$$\mathsf{Sia}\; \alpha(A) = \inf\bigg\{ \varepsilon > 0 : \exists A_1, \dots, A_n \subseteq A : \bigcup_{i=1}^n A_i = A \wedge \mathrm{diam}(A_i) < \varepsilon \; \forall i \in \{1, \dots, n\} \bigg\}.$$

 $\alpha(A)$ prende il nome di misura di non compattezza secondo Kuratowski.

Q Osservazione

 $\alpha(A) \geq 0$; in particolare:

- $\alpha(A) = 0$ se e solo se A è totalmente limitato;
- $\alpha(A) < +\infty$ (ossia l'insieme di cui α è l'estremo inferiore è non vuoto) se e solo se A è limitato.

A livello intuitivo, la misura di non compattezza è indice di quanto un insieme in uno spazio metrico si discosta dall'essere compatto.

Infatti, un insieme compatto in uno spazio metrico è totalmente limitato, dunque ha misura nulla secondo Kuratowski.

Totale limitatezza di una funzione

⋮ Definizione: Oscillazione di una funzione a valori in uno spazio metrico

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $f: X \to Y$ una funzione.

Si dice **oscillazione** di f su $A \subseteq X$ il valore diam(f(A)).

Essa si denota con $\omega_f(A)$.

≔ Definizione: Funzione totalmente limitata

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $f: X \to Y$ una funzione.

f si dice **totalmente limitata** quando la sua immagine f(X) è totalmente limitata.

L'insieme delle funzioni $f: X \to Y$ totalmente limitate si denota con TB(X, Y).

Q Osservazione

Si ha $TB(X,Y)\subseteq \mathcal{B}(X,Y)$; allora, esso è spazio metrico con la metrica uniforme ρ_d .

La totale limitatezza di una funzione può essere caratterizzata nel seguente modo:

Proposizione 4.1: Caratterizzazione della totale limitatezza di una funzione

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $f: X \to Y$ una funzione.

Sono equivalenti i seguenti fatti:

- 1. f è totalmente limitata;
- 2. Per ogni $\varepsilon>0$, esiste $X_1,\ldots,X_n\subseteq X$ con $\bigcup_{i=1}^n X_i=X$, tali che $\omega_f(X_i)<\varepsilon$ per ogni $i\in\{1,\ldots,n\}$.

ho Dimostrazione (1. \Rightarrow 2.)

Si supponga f totalmente limitata.

Si fissi $\varepsilon > 0$.

Per totale limitatezza di f, esistono $Y_1,\ldots,Y_n\subseteq f(X)$ con $\bigcup_{i=1}^nY_i=f(X)$ tali che $\mathrm{diam}(Y_i)<arepsilon$ per ogni $i\in\{1,\ldots,n\}$

Posto $X_i=f^{-1}(Y_i)$, si ha $igcup\limits_{i=1}^n X_i=X$ e $f(X_i)=f(f^{-1}(Y_i))\subseteq Y_i.$

Allora, $\omega_f(X_i) = \operatorname{diam}(f(X_i)) \leq \operatorname{diam}(Y_i) < \varepsilon$ per ogni $i \in \{1, \dots, n\}$.

ho Dimostrazione (2. \Rightarrow 1.)

Si supponga verificata la condizione 2.

Si fissi $\varepsilon > 0$.

Per ipotesi, esistono $X_1,\ldots,X_n\subseteq X$ con $igcup_{i=1}^n X_i=X$ tali che $\omega_f(X_i)<arepsilon$ per ogni $i\in\{1,\ldots,n\}.$

Posto $Y_i=f(X_i)$, si ha $igcup_{i=1}^n Y_i=Y$ e $\operatorname{diam}(Y_i)=\operatorname{diam}(f(X_i))=\omega_f(X_i)<arepsilon$ per ogni $i\in\{1,\dots,n\}.$

Equi-limitatezza e equi-totale limitatezza

⋮ Definizione: Famiglia di funzioni equi-limitate

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Sia \mathcal{F} una famiglia di funzioni da X in Y.

Le funzioni in \mathcal{F} si dicono **equi-limitate** quando $\mathcal{F}(X)$ è limitato in (Y, d).

Q Osservazione

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Sia \mathcal{F} una famiglia di funzioni da X in Y, equi-limitate.

Allora, $\mathcal{F} \subseteq \mathcal{B}(X,Y)$.

¡ Definizione: Famiglia di funzioni equi-totalmente limitate

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Sia \mathcal{F} una famiglia di funzioni da X in Y.

Le funzioni in \mathcal{F} si dicono **equi-totalmente limitate** quando

$$orall arepsilon>0,\;\exists X_1,\ldots,X_n\subseteq X_1:\quad igcup_{i=1}^n X_i=X\quad \wedge\quad orall i\in\{1,\ldots,n\},\; orall f\in\mathcal{F},\; \omega_f(X_i)$$

Q Osservazione

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Sia \mathcal{F} una famiglia di funzioni da X in Y, equi-totalmente limitate.

Allora, $\mathcal{F} \subseteq TB(X,Y)$ per la [Proposizione 4.1].

Q Osservazione

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Sia \mathcal{F} una famiglia di funzioni da X in Y, equi-totalmente limitate.

Non è detto che esse siano equi-limitate.

Ad esempio, posto (Y,d) pari a $\mathbb R$ con la metrica euclidea, si consideri $\mathcal F=\{f_k\mid k\in\mathbb R\}$, dove f_k è definita ponendo $f_k(x)=k$ per ogni $x\in X$.

Le sue funzioni sono equi-totalmente limitate in quanto $\omega_f(X)=0$ per ogni $f\in\mathcal{F}.$

Tuttavia, $\mathcal{F}(X) = \mathbb{R}$, che non è limitato.

La seguente proposizione fornisce una formula per la misura di non compattezza di certe famiglie di funzioni equitotalmente limitate:

🖹 Teorema 4.2: Misura di non compattezza di insiemi limitati di funzioni equi-tot. limitate

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Si consideri lo spazio TB(X,Y) con la metrica uniforme ρ_d . Sia $\mathcal{F} \subseteq TB(X,Y)$ un insieme tale che:

- 1. \mathcal{F} sia limitato in TB(X,Y) rispetto a ρ_d ;
- 2. Le funzioni in \mathcal{F} siano equi-totalmente limitate.

Allora,
$$\alpha(\mathcal{F}) = \sup_{x \in X} \alpha(\mathcal{F}(x)) = \alpha(\mathcal{F}(X)).$$

Sia $\varepsilon > 0$.

Per equi-totale limitatezza delle funzioni in $\mathcal F$, esistono $X_1,\dots,X_n\subseteq X$ con $\bigcup_{i=1}^n X_1=X$, per cui $\omega_f(X_i)<\frac{\varepsilon}{3}$ per ogni $i\in\{1,\dots,n\}$ e per ogni $f\in\mathcal F$.

Per definizione di $\alpha(\mathcal{F})$, che è finito in quanto \mathcal{F} è limitato, dalla seconda proprietà dell'estremo inferiore segue che esistono $\mathcal{F}_1,\ldots,\mathcal{F}_m\subseteq\mathcal{F}$ con $\bigcup_{j=1}^m\mathcal{F}_j=\mathcal{F}$, per cui $\mathrm{diam}_{\rho_d}(\mathcal{F}_j)<\alpha(\mathcal{F})+\frac{\varepsilon}{3}$ per ogni $j\in\{1,\ldots,m\}$.

Si considerino gli insiemi $\mathcal{F}_j(X_i)$ al variare di $i\in\{1,\ldots,n\}$ e $j\in\{1,\ldots,m\}$; si ha $\bigcup\limits_{i=1}^n\bigcup\limits_{j=1}^m\mathcal{F}_j(X_i)=\mathcal{F}(X).$

Si stimi $\operatorname{diam}(\mathcal{F}_j(X_i))$ per ogni $i\in\{1,\ldots,n\}$ e per ogni $j\in\{1,\ldots,m\}.$

Siano $y_1,y_2\in \mathcal{F}_j(X_i)$.

Per definizione di $\mathcal{F}_j(X_i)$, si ha $y_1=f(x_1)$ e $y_2=g(x_2)$, con $f,g\in\mathcal{F}_j$ e $x_1,x_2\in X_i$.

Si ha la seguente catena di disuguaglianze:

$$egin{aligned} d(y_1,y_2)&=d(f(x_1),g(x_2))\ &\leq d(f(x_1),g(x_1))+d(g(x_1),g(x_2)) \end{aligned} ext{ Disuguaglianza triangolare} \ &\leq
ho_d(f,g)+d(g(x_1),g(x_2)) \end{aligned} ext{ In quanto }
ho_d(f,g)=\sup_{x\in X}d(f(x),g(x))$$

 $0<lpha(\mathcal{F})+rac{arepsilon}{3}+rac{arepsilon}{3}=lpha(\mathcal{F})+rac{2arepsilon}{3}$ In quanto $ho_d(f,g)\leq \mathrm{diam}_{
ho_d}(\mathcal{F}_j)<lpha(\mathcal{F})+rac{arepsilon}{3}$ e $d(g(x_1),g(x_2))\leq \omega_f(X_i)<rac{arepsilon}{3}$

Dunque, si ha $\operatorname{diam}(\mathcal{F}_j(X_i)) \leq lpha(\mathcal{F}) + rac{2arepsilon}{3} < lpha(\mathcal{F}) + arepsilon$ per ogni $i \in \{1, \dots, n\}$ e $j \in \{1, \dots, m\}$.

Allora, la famiglia $\{\mathcal{F}_j(X_i) \mid i \in \{1,\ldots,n\}, j \in \{1,\ldots,m\}\}$ è un ricoprimento finito di $\mathcal{F}(X)$ costituito da insiemi di diametro minore di $\alpha(\mathcal{F}) + \varepsilon$.

Pertanto, $\alpha(\mathcal{F}(X)) \leq \alpha(\mathcal{F}) + \varepsilon$ per definizione di $\alpha(\mathcal{F}(X))$.

Segue $\alpha(\mathcal{F}(X)) \leq \alpha(\mathcal{F})$ per arbitrarietà di $\varepsilon > 0$.

ho Dimostrazione ($\alpha(\mathcal{F}) \leq \alpha(\mathcal{F}(X))$)

Sia $\varepsilon > 0$.

Per equi-totale limitatezza delle funzioni in \mathcal{F} , esistono $X_1,\ldots,X_n\subseteq X$ con $\bigcup_{i=1}^m X_i=X$, per cui $\omega_f(X_i)<\frac{\varepsilon}{4}$ per ogni $i\in\{1,\ldots,n\}$ e per ogni $f\in\mathcal{F}$.

Per definizione di $\alpha(\mathcal{F}(X))$, che è finito in quanto $\alpha(\mathcal{F}(X)) \leq \alpha(\mathcal{F}) < +\infty$ per la disuguaglianza provata prima, dalla seconda proprietà dell'estremo inferiore segue che esistono $Y_1,\ldots,Y_k\subseteq\mathcal{F}(X)$ con $\bigcup_{j=1}^kY_j=\mathcal{F}(X)$, per cui $\mathrm{diam}(Y_j)<\alpha(\mathcal{F}(X))+\frac{\varepsilon}{4}$ per ogni $j\in\{1,\ldots,k\}$.

Si supponga senza perdere di generalità che Y_1,\ldots,Y_k siano a due a due disgiunti; infatti, in caso contrario basta considerare $\tilde{Y}_1,\ldots,\tilde{Y}_k$ definiti ponendo $\tilde{Y}_j=Y_j \smallsetminus \bigcup_{h=1}^{j-1} Y_h$ per ogni $j\in\{1,\ldots,k\}$.

Per ogni $i \in \{1, ..., n\}$, si fissi $x_i \in X_i$.

Per ogni $f\in\mathcal{F}$, sia $\varphi_f:\{1,\ldots,n\}\to\{1,\ldots,k\}$ l'applicazione definita ponendo $\varphi_f(i)=j$, dove j è l'unico indice in $\{1,\ldots,k\}$ tale che $f(x_i)\in Y_j$ (esso è unico in quanto Y_1,\ldots,Y_k sono stati supposti a due a due disgiunti). Si introduca in \mathcal{F} la relazione \sim definita ponendo $f\sim g$ quando $\varphi_f=\varphi_g$, che è di equivalenza.

Allora, la relazione in questione induce una partizione di $\mathcal F$ indotta dalle classi di equivalenza; tali classi sono in numero finito, in quanto l'insieme quoziente $\mathcal F/\sim$ è in corrispondenza biunivoca con un sottoinsieme delle funzioni da $\{1,\ldots,n\}$ a $\{1,\ldots,k\}$, che ha cardinalità finita (pari a k^n).

Siano dunque $\mathcal{F}_1, \dots, \mathcal{F}_m$ tali classi di equivalenza.

Si stimi $\operatorname{diam}(\mathcal{F}_p)$ per ogni $p \in \{1, \dots, m\}$.

Siano $f,g\in\mathcal{F}_p$.

Sia $x \in X$, e sia $i \in \{1, ..., n\}$ per cui $x \in X_i$ (che esiste perché $X_1, ..., X_n$ ricoprono X).

Si ha

$$d(f(x),g(x)) \leq d(f(x),f(x_i)) + d(f(x_i),g(x_i)) + d(g(x_i),g(x))$$

$$0 \leq \omega_f(X_i) + \operatorname{diam}(Y_j) + \omega_g(X_i)$$

Disuguaglianza triangolare applicata due volte

Le maggiorazioni del primo e del terzo addendo seguono dal fatto che $x,x_i\in X_i$

La maggiorazione del secondo segue dal fatto che $f,g\in\mathcal{F}_p$, dunque $f\sim g$ e quindi esiste $j\in\{1,\ldots,k\}$ per cui $f(x_i),g(x_i)\in Y_j$

Per costruzione di
$$X_i$$
 e Y_i

$$<\frac{\varepsilon}{4} + \alpha(\mathcal{F}(X)) + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \alpha(\mathcal{F}(X)) + \frac{3\varepsilon}{4}$$

Dunque, si ha $\operatorname{diam}(\mathcal{F}_p) \leq \alpha(\mathcal{F}(X)) + \frac{3\varepsilon}{4} < \alpha(\mathcal{F}(X)) + \varepsilon$ per ogni $p \in \{1, \dots, m\}$.

Allora, la famiglia $\{\mathcal{F}_p \mid p \in \{1, \dots, m\}\}$ è un ricoprimento finito di $\mathcal{F}(X)$ costituito da insiemi di diametro minore di $\alpha(\mathcal{F}(X)) + \varepsilon$.

Pertanto, $\alpha(\mathcal{F}(X)) \leq \alpha(\mathcal{F}) + \varepsilon$ per definizione di $\alpha(\mathcal{F}(X))$.

Segue $\alpha(\mathcal{F}(X)) \leq \alpha(\mathcal{F})$ per arbitrarietà di $\varepsilon > 0$.

È evidente che $\sup \alpha(\mathcal{F}(x)) \leq \alpha(\mathcal{F}(X))$; infatti, $\mathcal{F}(x) \subseteq \mathcal{F}(X)$ per ogni $x \in X$, da cui segue che $\alpha(\mathcal{F}(x)) \leq \alpha(\mathcal{F}(X))$ per ogni $x \in X$.

Si provi ora $\sup_{x\in Y} \alpha(\mathcal{F}(x)) \geq \alpha(\mathcal{F}).$

Sia $\varepsilon > 0$.

Per equi-totale limitatezza delle funzioni in $\mathcal F$, esistono $X_1,\dots,X_n\subseteq X$ con $\bigcup_{i=1}^m X_i=X$, per cui $\omega_f(X_i)<rac{arepsilon}{4}$ per ogni $i \in \{1, \ldots, n\}$ e per ogni $f \in \mathcal{F}$.

Per ogni $i \in \{1, ..., n\}$, si fissi $x_i \in X_i$ e si consideri $\mathcal{F}(x_i)$; per definizione di $\alpha(\mathcal{F}(x_i))$, che è finito in quanto $\alpha(\mathcal{F}(x_i)) \leq \alpha(\mathcal{F}(X)) < +\infty$ per la disuguaglianza provata prima, dalla seconda proprietà dell'estremo inferiore segue che

esistono $Y_{i,1},\ldots,Y_{i,k_i}$ tale che $igcup_{i=1}^{k_i}Y_{i,j}=\mathcal{F}(x_i)$ e $\mathrm{diam}(Y_{i,j})<\overline{lpha}(\mathcal{F}(x_i))+rac{arepsilon}{4}$ per ogni $j\in\{1,\ldots,k_i\}$.

Sia
$$\mathcal{F}_{i,j}=\{f\in\mathcal{F}:f(x_i)\in Y_{i,j}\mid i\in\{1,\dots,n\},j\in\{1,\dots,k_i\}\}$$
; si ha $igcup_{i=1}^nigcup_{i=1}^{k_i}\mathcal{F}_{i,j}=\mathcal{F}.$

Si stimi $\operatorname{diam}(\mathcal{F}_{i,j})$ per ogni $i \in \{1, \dots, n\}$ e per ogni $j \in \{1, \dots, k_i\}$.

Siano $f, g \in \mathcal{F}_{i,j}$.

Sia $x \in X$, e sia $i \in \{1, ..., n\}$ per cui $x \in X_i$ (che esiste perché $X_1, ..., X_n$ ricoprono X).

Si ha

$$d(f(x),g(x)) \leq d(f(x),f(x_i)) + d(f(x_i),g(x_i)) + d(g(x_i),g(x))$$

$$\leq \omega_f(X_i) + \operatorname{diam}(Y_{i,j}) + \omega_f(X_i)$$

$$\leq \omega_f(X_i) + \operatorname{diam}(Y_{i,j}) + \omega_f(X_i)$$

$$egin{aligned} &<rac{arepsilon}{4}+lpha(\mathcal{F}(x_i))+rac{arepsilon}{4}+rac{arepsilon}{4}=lpha(\mathcal{F}(x_i))+rac{3arepsilon}{4}\ &\leq \sup_{x\in X}lpha(\mathcal{F}(x))+rac{3arepsilon}{4} \end{aligned}$$

Disuguaglianza triangolare applicata due volte

Le maggiorazioni del primo e del terzo addendo seguono dal fatto che $x, x_i \in X_i$

La maggiorazione del secondo segue dal fatto che $f(x_i), g(x_i) \in Y_{i,i}$

Per costruzione di X_i e $Y_{i,j}$

Per definizione di $\sup_{x \in X} \alpha(\mathcal{F}(x))$

Dunque, si ha $\operatorname{diam}(\mathcal{F}_{i,j}) \leq \sup_{x \in X} \alpha(\mathcal{F}(x)) + \frac{3\varepsilon}{4} < \sup_{x \in X} \alpha(\mathcal{F}(x)) + \varepsilon$ per ogni $i \in \{1,\dots,n\}$ e per ogni $j \in \{1,\dots,k_i\}$.

Allora, la famiglia $\{\mathcal{F}_{i,j} \mid i \in \{1,\ldots,n\}, j \in \{1,\ldots,k_i\}\}$ è un ricoprimento finito di \mathcal{F} costituito da insiemi di diametro minore di $\sup_{x \in X} \alpha(\mathcal{F}(x)) + \varepsilon$.

Pertanto, $\alpha(\mathcal{F}) \leq \sup_{x \in X} \alpha(\mathcal{F}(x)) + \varepsilon$ per definizione di $\alpha(\mathcal{F})$.

Segue $\alpha(\mathcal{F}) \leq \sup_{x \in X} \alpha(\mathcal{F}(x))$ per arbitrarietà di $\varepsilon > 0$.

Proposizione 4.3: Equivalenza della totale limitatezza di un insieme di funzioni totalmente limitate

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $\mathcal{F} \subseteq TB(X,Y)$.

Le seguenti asserzioni sono equivalenti:

- 1. \mathcal{F} è totalmente limitato in $(TB(X,Y), \rho_d)$.
- 2. Le funzioni in \mathcal{F} sono equi-totalmente limitate, e $\mathcal{F}(X)$ è totalmente limitato in (Y, d).
- 3. Le funzioni in $\mathcal F$ sono equi-totalmente limitate, e $\mathcal F(x)$ è totalmente limitato in (Y,d) per ogni $x\in X$.

Dimostrazione

In virtù del teorema precedente, basta mostrare che, se $\mathcal F$ è totalmente limitato in TB(X,Y) rispetto a ρ_d , allora le sue funzioni sono equi-totalmente limitate.

Sia $\varepsilon > 0$.

Essendo $\mathcal F$ totalmente limitato per ipotesi, esistono $\mathcal F_1,\dots,\mathcal F_n\subseteq\mathcal F$ con $\bigcup_{i=1}^n\mathcal F_i=\mathcal F$, tali che $\mathrm{diam}(\mathcal F_i)<\frac{\varepsilon}{4}$ per ogni

$$i\in\{1,\ldots,n\}.$$

Per ogni $i \in \{1, \ldots, n\}$, sia $f_i \in \mathcal{F}_i$.

Essendo $\mathcal{F} \subseteq TB(X,Y)$, f_i è totalmente limitata per ogni $i \in \{1,\ldots,n\}$.

Allora, esistono $X_{i,1},\ldots,X_{i,k_1}\subseteq X$ con $igcup_{j=1}^{k_i}X_j^{(i)}=X$ tali che $\omega_{f_i}(X_{i,j})<rac{arepsilon}{4}$ per ogni $j\in\{1,\ldots,k_i\}.$

Sia
$$\mathcal{D}=\prod\limits_{i=1}^n\{1,\ldots,k_i\}=\{(j_1,\ldots,j_n)\in\mathbb{N}^n: orall i\in\{1,\ldots,n\},\ j_i\leq k_i\}.$$

Si considerino gli insiemi del tipo $X_{1,j_1} \cap X_{2,j_2} \cap \cdots \cap X_{n,j_n}$ al variare di $(j_1,\ldots,j_n) \in \mathcal{D}$; si osserva intanto che questi ricoprono X.

Si vuole studiare l'oscillazione di una qualsiasi funzione $f \in \mathcal{F}$, sugli insiemi $X_{1,j_1} \cap \cdots \cap X_{n,j_n}$ al variare di $(j_1,\ldots,j_n) \in \mathcal{D}$.

Siano dunque $x,y\in X_{1,j_1}\cap\cdots\cap X_{n,j_n}$; sia $f\in\mathcal{F}$, e sia i tale che $f\in\mathcal{F}_i$.

Si ha la seguente catena di disuguaglianze:

$$d(f(x), f(y)) \le d(f(x), f_i(x)) + d(f_i(x), f_i(y)) + d(f_i(y), f(y))$$

$$\leq
ho_d(f,f_i) + \omega_{f_i}(X_{1,j_1} \cap \cdots \cap X_{n,j_n}) +
ho_d(f,f_i)$$

Disuguaglianza triangolare applicata due volte

Le maggiorazioni del primo e del terzo addendo seguono dalla definizione di $ho_d(f,f_i)$

La maggiorazione del secondo segue dal fatto che $x,y\in X_{1,j_1}\cap\cdots\cap X_{n,j_n}$

Segue dal fatto che
$$ho_d(f,f_i) \leq \operatorname{diam}(\mathcal{F}_i) < rac{arepsilon}{4}$$
 e $\omega_{f_i}(X_{1,j_1} \cap \cdots \cap X_{n,j_n}) \leq \omega_{f_i}(X_{i,j_i}) < rac{arepsilon}{4}$

 $<\frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{3\varepsilon}{4}$

Dunque, $\omega_f(X_{1,j_1}\cap\cdots\cap X_{n,j_n})\leq \frac{3\varepsilon}{4}<\varepsilon$ per ogni $f\in\mathcal{F}$ e per ogni $(j_1,\ldots,j_n)\in\mathcal{D}.$

Allora, la famiglia $\{X_{1,j_1} \cap X_{2,j_2} \cap \cdots \cap X_{n,j_n} \mid (j_1,\ldots,j_n) \in \mathcal{D}\}$ è un ricoprimento finito di X costituito da insiemi su cui l'oscillazione di una qualsiasi funzione in \mathcal{F} è minore di ε .

Segue che le funzioni in ${\mathcal F}$ sono equi-totalmente limitate per arbitrarietà di ${\varepsilon}>0.$

