FE111

[Max. Marks: 100]

Total No. of Printed Pages:03

F.E. Semester- I (Revised Course 2007-08) EXAMINATION Aug/Sept 2019 Applied Mathematics-I

[Duration : Three Hours]

Instructions:

- 1. Attempt any five questions at least one from each Module.
- 2. Assume suitable data, if necessary.

MODULE-I

Q.1 a) Evaluate $\int_{0}^{1} x^{3} (1 - x^{2})^{1/2} dx$ b) Show that $\beta(m, n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$ c) Evaluate (5)

 $\int_{3}^{7} ((x-3)(7-x))^{1/4} dx$ d) Prove that the error function is an odd function. (5)

Q.2 a) Test the convergence of the following series.

i)
$$\sum_{n=1}^{\infty} \frac{2n-1}{n(n+1)(n+2)}$$
 (4)

ii)
$$\sum_{n=1}^{\infty} (1)^{n-1} \frac{1}{4n-3}$$
 (4)

iii)
$$\sum_{n=1}^{\infty} \left(2 + \frac{1}{\sqrt{n}}\right)^{-n} \tag{4}$$

b) Define absolutely convergent and conditionally convergent series. Test whether the following series is absolutely convergent or conditionally convergent series:// $\sum_{n=1}^{\infty} \frac{(1)^{n-1}}{2n-1}$

MODULE II

Q.3 a) Use De Moivre's theorem and solve $x^6 - i - = 0$ (6)

b) If $\alpha + i\beta = \tanh(x + i\pi/4), \text{ find } (\alpha^2 + \beta^2)$ (6)

c) Prove that $\sin^{-1}(\csc\theta) = \frac{\pi}{2} + i\log(\cot\theta/2)$ (8)

Paper / Subject Code: FE111 / Applied Mathematics-I

FE111

Q.4 a) Determine a, b, c, d, so that the function
$$(x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$$
 is analytic (6)

b) Show that the function
$$i^{i} = \cos\theta + i\sin\theta \text{ ; where } \theta = (2n + 1/2)\pi e^{-(2n+1/2)\pi}$$

c) If
$$u - v = \frac{e^y - \cos x + \sin x}{\cosh y - \cos x}$$
 And $f(z) = u + iv$ is an analytic function of $z = x + iy$, find $f(z)$ in terms of z .

MODULE III

Q.5 a) If
$$y = a\cos(\log x) + b\sin(\log x)$$
, prove that $x^2y_{n+2} + (2n+1)x$ $y_{n+1} + (n^2+1)y_n = 0$ (7)

b) Expand (6)
$$\sec^{-1}\left(\frac{1}{1-2x^2}\right)$$
 in powers of x. Find the first 4 terms.

c) Expand
$$\cot\left(x + \frac{\pi}{4}\right)$$
 in powers of x and hence find $\cot 46.5^{\circ}$. (7)

Q.6 a) Evaluate:
1)
$$\lim_{x\to 0} \frac{(1+x)^{1/x}-e}{x}$$
 (12)

$$2) \quad \lim_{x\to 0} \frac{1}{x} - \cot x$$

3)
$$\lim_{x\to\pi/2}(\cos x)^{\cos^2 x}$$

b) If
$$z = f(x, y)$$
 where $u = l x + m y$, $v = l y - m x$ then show that
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (l^2 + m^2) \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right)$$
 (8)

MODULE IV

Q.7 a) Form the partial differential equations by eliminating constants
i)
$$z = (x - a)(y - b)$$

ii) $(x - h)^2 + (y - k)^2 + z^2 = a^2$

ii)
$$(x-h)^2 + (y-k)^2 + z^2 = a^2$$

b) Form the partial differential equations by eliminating functions
$$f(x+y+z, x^2+y^2+z^2)=0$$
 (6)

Paper / Subject Code: FE111 / Applied Mathematics-I

FE111

c) Solve
$$x^2p^2 + y^2q^2 = z^2$$
 (8)

Q.8 a) If
$$u = \sin^{-1} \left[\frac{x^{1/4} + y^{1/4}}{x^{1/6} + y^{1/6}} \right].$$
 Find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$ (6)

b) Obtain the extreme values of the function.
$$y^2 + 4xy + 3x^2 + x^3$$
 (6)

c) Using Lagrange's Multiplier's method find the shortest distance from the point (1, 2, 2)(8) to the sphere.

$$x^2 + y^2 + z^2 = 36$$