Examen M2 SeCReTS 2016-2017.

Remise à niveau en mathématiques.

Remarques:

- Pour chacune des questions, on demande de justifier les étapes en mentionnant notamment les algorithmes utilisés.
- Aucun document ni aucune calculatrice ne sont admis.
- La durée de l'examen est de deux heures.

Question 1 (Théorie)

Montrez le théorème des restes chinois dans le cas des entiers (en incluant l'étude des systèmes de congruences).

Question 2 (Application de la théorie)

Considérons l'ensemble des nombres naturels \mathbb{N} (c-à-d $\{0, 1, 2, 3, \cdots\}$) muni de l'opération binaire addition + classique. On supposera les propriétés de cette opération comme acquises. Considérez l'ensemble produit $\mathbb{N} \times \mathbb{N}$. Considérez la relation binaire, pour tous $(a,b),(c,d) \in \mathbb{N} \times \mathbb{N}$,

$$(a,b) \sim (c,d)$$
 si et seulement si $a+d=b+c$

- 1. Montrez que \sim est une relation d'équivalence sur $\mathbb{N} \times \mathbb{N}$.
- 2. Définissez les classes d'équivalence que l'on notera $\overline{(a,b)}$ si (a,b) est une représentant. Représentez graphiquement chacune d'entre-elles sur le plan dont les points sont les points de $\mathbb{N} \times \mathbb{N}$.

Notre but est de définir une opération binaire \oplus sur ces classes d'équivalence.

- 1. Montrez que si $(a,b) \sim (a',b')$ et $(c,d) \sim (c',d')$ alors $(a+c,b+d) \sim (a'+c',b'+d')$.
- 2. Déduisez-en que l'opération binaire $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(a+c,b+d)}$ pour tous $(a,b),(c,d) \in \mathbb{N} \times \mathbb{N}$ est bien définie (ne dépend pas du représentant choisi). Nous avons donc construit une structure quotient muni d'une opération \oplus .
- 3. Donnez la classe d'équivalence qui est l'élément neutre de la structure quotient.
- 4. Donnez l'opposé de la classe de représentant (a, b).

Question 3 (Calcul)

- 1. Calculez le nombre d'éléments du groupe multiplicatif de $(\mathbb{Z}_{703}, +, *)$ en justifiant le raisonnement.
- 2. Considérons $[X+(P(X))] \in \mathbb{Z}_2[X]/(P(X))$ où $P(X) \in \mathbb{Z}_2[X]$ est le polynôme primitif X^2+X+1 . Calculez $[X+(P(X))]^{101}$ en justifiant le raisonnement.
- b. Considérons le polynôme

$$P(X) = X^4 + 2X + 1 \in \mathbb{Z}_3[X]$$

et l'anneau

$$(\mathbb{Z}_3[X]/(P(X)), +, *)$$
.

- 1. Déterminez le nombre d'éléments de cet anneau.
- 2. Soit les classes de représentants $A=2X^2+1$ et $B=X^2+X+2$. Donnez le représentant minimal de la somme et du produit de ces classes.
- 3. En utilisant un algorithme systématique et efficace, donnez, s'ils existent, le représentant minimal de l'inverse de la classe de représentant A et le représentant minimal de l'inverse de la classe de représentant B.

Question 4 (Calcul)

Chaque classe de $\mathbb{Z}/11\mathbb{Z}$ de représentant x sera notée dans la suite \overline{x} . On cherche à déterminer le polynôme de degré minimal P(x) de l'ensemble $\mathbb{Z}/11\mathbb{Z}[X]$ tel que $P(\overline{2}) = \overline{4}$, $P(\overline{3}) = \overline{3}$ et $P(\overline{5}) = \overline{7}$.

- 1. Exprimez ce problème sous forme de la résolution d'un système de congruences. Expliquez le raisonnement.
- Résolvez le système de congruences ci-dessus à l'aide d'une formule explicite et exhibez le polynôme de degré minimal que l'on recherche.