머신러닝&딥러닝을 위한 기초 수학 (모두의 딥러닝)

1장. 딥러닝의 이해

머신러닝 : 데이터를 이용해 미지의 일을 예측하기 위해 만들어진 기법

The Machine Learning Process

• 학습(training) : 데이터가 입력되고 패턴이 분석되는 과정

■ 랜덤포레스트, 서포트 벡터 머신, 딥러닝 등 여러가지 머신러닝 기법들 존재

실습 : 폐암 수술 환자의 생존율 예측하기

2.16

2.88

132

속성(attribute), 특성(feature) X : 수술 환자 기록 17개 변수 (종양 유형, 폐활량, 호흡곤란 여부 등)

클래스 Y: 생존/사망

	8	2	3.19	2.5	1	0	0	0	1	0	11	0	0	1	1	0	66	1
	14	2	3.98	3.06	2	0	0	0	1	1	14	0	0	0	1	0	80	1
	17	2	2.21	1.88	0	0	1	0	0	0	12	0	0	0	1	0	56	0
	18	2	2.96	1.67	0	0	0	0	0	0	12	0	0	0	1	0	61	0
470행	35	2	2.76	2.2	1	0	0	0	1	0	11	0	0	0	0	0	76	0
4/00	42	2	3.24	2.52	1	0	0	0	1	0	12	0	0	0	1	0	63	1
	65	2	3.15	2.76	1	0	1	0	1	0	12	0	0	0	1	0	59	0
	111	2	4.48	4.2	0	0	0	0	0	0	12	0	0	0	1	0	55	0
	121	2	3.84	2.56	1	0	0	0	1	0	11	0	0	0	0	0	59	0
	123	2	2.8	2.12	1	0	0	1	1	0	13	0	0	0	1	0	80	0

- 1번째 항목부터 17번째 항목까지를 속성(attribute)이나 특성(feature) 이라고 함
- 정답에 해당하는 18번째 항목을 '클래스(class)'라고 함
- 딥러닝을 구동시키려면 '속성'만을 뽑아 데이터셋을 만들고, '클래스'를 담는 데이터셋
 을 또 따로 만들어 줘야 함

```
# 환자의 기록과 수술 결과를 X와 Y로 구분하여 저장합니다.
```

X = Data_set[:,0:17]
Y = Data set[:,17]

실습 : 폐암 수술 환자의 생존율 예측하기

```
In [4]: # 딥러닝을 구동하는 데 필요한 케라스 함수를 불러옵니다.
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Dense
     # 필요한 라이브러리를 불러옵니다.
     import numpy as np
     import tensorflow as tf
     # 실행할 때마다 같은 결과를 출력하기 위해 설정하는 부분입니다.
     np.random.seed(3)
     tf.random.set seed(3)
     # 준비된 수술 화자 데이터를 불러들입니다.
     Data set = np.loadtxt("../dataset/ThoraricSurgery.csv", delimiter=",")
     # 환자의 기록과 수술 결과를 X와 Y로 구분하여 저장합니다.
     X = Data set[:,0:17]
     Y = Data set[:,17]
     # 딥러닝 구조를 결정합니다(모델을 설정하고 실행하는 부분입니다).
     model = Sequential()
     model.add(Dense(30, input dim=17, activation='relu'))
     model.add(Dense(1, activation='sigmoid'))
     # 딥러닝을 실행합니다.
     model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
     model.fit(X, Y, epochs=100, batch size=10)
      Epoch 98/100
      Epoch 100/100
      Out[4]: <tensorflow.python.keras.callbacks.History at 0x7fa874158810>
```

실습 : 폐암 수술 환자의 생존율 예측하기

- loss는 예측이 실패할 확률, accuracy는 예측이 성공할 확률임
- 예측 성공률은 데이터를 분석해 데이터를 확장하거나, 딥러닝 구조를 적절하게 바꾸는 등의 노력으로 더 향상될 수 있음
- 그뿐만 아니라 학습에 사용되지 않은 데이터를 따로 모아 테스트를 해 보면서 이 예측 성공률이 정말로 가능한지를 확인
 하는 과정까지 거치게 됨
- 이러한 '최적화 과정'을 진행하려면 딥러닝의 구동 원리를 이해해야 함

파이썬과 라이브러리

- 파이썬
 - 초보자부터 전문가까지 사용자 폭이 넓은 프로그래밍 언어임
 - 다양한 플랫폼에서 사용할 수 있음
 - 특히 라이브러리가 풍부하여 연구 기관 및 산업계에서 두루 사용되고 있음
- 라이브러리
 - 특정 기능을 담은 작은 프로그램(모듈, module)을 말함
 - 라이브러리를 불러올 때 사용하는 명령어가 import임

```
import numpy as np
```

- →넘파이(numpy)라는 라이브러리를 np라는 이름으로 불러오라는 뜻
- 넘파이는 수치 계산을 위해 만들어진 라이브러리로 데이터 분석에 많이 사용됨

딥러닝 학습 프로세스

입력값이 네트워크 층을 거치면 예측값이 나오고, 이를 실제값과 비교해서 Loss score를 계산한 후에 Optimizer를 통해 Weight를 업데이트 한다.

2장. 딥러닝 기초 수학

목차

- 1 | 일차 함수, 기울기와 y절편
- 2 이차 함수와 최솟값
- 3 | 미분, 순간 변화율과 기울기
- 4 | 편미분
- 5 | 지수와 지수 함수
- 6 시그모이드 함수
- 7 | 로그와 로그 함수

일차 함수, 기울기와 y 절편

- 함수 : 두 집합 사이의 관계를 설명하는 수학 개념
- 변수 x와 y가 있을 때, x가 변하면 이에 따라 y는 어떤 규칙으로 변하는지를 나타냄
- 보통 함수를 나타낼 때는 function의 f와 변수 x를 사용해 y=f(x) 라고 표시함
- 일차 함수 : x가 y에 관한 일차식으로 표현된 경우를 말함 y=ax+b(a
 eq 0)
- x가 일차인 형태이며 x가 일차로 남으려면 a는 0이 아니어야 함
- 일차 함수식 y=ax+b 에서 a는 기울기, b는 절편이라고 함

- 딥러닝의 수학 원리를 배울 때 초반부터 이 식이 등장함
- x가 주어지고 원하는 y값이 있을 때 적절한 a 와 b 를 찾는 것,
 이것이 바로 딥러닝을 설명하는 가장 간단한 표현임

이차 함수와 최솟값

- 이차 함수란 y가 x에 관한 이차식으로 표현되는 경우를 말함
- a > 0이면 아래로 볼록한 그래프가 됨

■ 포물선의 맨 아래에 위치한 지점이 최솟값이 되는데, 딥러닝을 실행할 때 이 최솟값을 찾아내는 과정이 매우 중요함

미분, 순간 변화율과 기울기

- 딥러닝을 이해하는 데 가장 중요한 수학 원리는 미분이라고 할 수 있음
- 너무 미세해서 실제로 움직이는 게 아니라 방향만 드러내는 정도의 순간적인 변화만 있을 것임
- 이 순간의 변화를 놓고 순간 변화율이라는 이름을 붙임
- 순간 변화율은 어느 쪽을 향하는 방향성을 지니고 있으므로, 이 방향을 따라 직선을 길게 그려주면 그래프와 맞닿는 접선이 그려지는데,
 이 선이 바로 이 점에서의 기울기가 됨

그림 2-4 a에서의 순간 변화율은 곧 기울기다!

- 미분을 한다는 것은 쉽게 말해 이 '순간 변화율'을 구한다는 것임
- 미분 계수 : 어느 순간에 어떤 변화가 일어나고 있는지를 숫자로 나타낸 것
- 미분 계수는 곧 그래프에서의 기울기를 의미함

미분, 순간 변화율과 기울기

여기서 Δ(델타)는 변화량을 나타내는 기호임

그림 2-6 A, B를 지나는 직선은 이 두 점 간의 기울기, 곧 평균 변화율을 의미

- 이 그래프에서 x값의 증가량은 b-a 이고, y값의 증가량은 f(b)-f(a) 직선 AB의 기울기 $=\frac{y$ 값의 증가량 $}{x$ 값의 증가량 $}=\frac{f(b)-f(a)}{b-a}=\frac{f(a+\Delta x)-f(a)}{\Delta x}$
- 이때 직선 AB의 기울기를 A와 B 사이의 '평균 변화율'이라고 함
- 미분을 배우고 있는 우리에게 필요한 것은 순간 변화율
- 순간 변화율: x 증가량 △x이 0에 가까울 만큼 아주 작을 때의 순간적인 기울기

$$\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

- lim : "x의 증가량이 0에 가까울 만큼 작을 때"라는 뜻
- 기울기는 $\frac{y_{\tilde{\chi}}$ 의 증가량 이므로 순간 기울기는 $\lim_{\Delta x \to 0} \frac{y_{\tilde{\chi}}$ 의 증가량 으로 표현되며, 이것은 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$ 라고도 쓸 수 있음
- "함수 f(x)를 미분하라"는 것을 f'(x)또는 $\frac{d}{dx}f(x)$ 로 표기함

미분의 성질

- 다음은 딥러닝을 공부하는 과정 중에 자주 만나게 되는 중요한 4가지 미분의 성질
 - 1 | f(x) = a 에서 가 상수일 때 미분 값은 0임
 - 2 | f(x) = x 일 때의 미분 값은 1임
 - 3 | f(x) = ax 에서 a가 상수이면 미분 값은 a임
 - **4** | $f(x) = x^a$ 에서 a가 자연수이면 미분 값은 ax^{a-1} 이 됨

편미분

- 미분과 더불어 딥러닝을 공부할 때 가장 자주 접하게 되는 또 다른 수학 개념은 바로 편미분임
- 미분과 편미분 모두 '미분하라'는 의미에서는 다를 바가 없음
- 여러 가지 변수가 식 안에 있을 때, 모든 변수를 미분하는 것이 아니라 우리가 원하는 변수만 미분함
- 그 외에는 모두 상수로 취급
 f(x, y) = x² + yx + a (a는 상수)
- 변수가 f와 y중 어떤 변수로 미분해야 하는지를 정해야 하므로 편미분을 사용하는 것
- 이 식처럼 여러 변수 중에서 x에 관해서만 미분하고 싶다면, 함수 f를 "x에 관해 편미분하라"고 함 : $\frac{\partial f}{\partial x}$
- 함수 $f(x, y) = x^2 + yx + a$ 에 관해 편미분 하는 과정은 미분의 성질 4번에 따라 x^2 항은 2x가 됨
- x에 관해 미분하면 다른 모든 항은 상수로 취급하므로 y는 상수가 됨
- 미분의 성질 3번에 따라 xy는 y가 됨
- 마지막 항 a는 미분의 성질 1번에 따라 0이 됨

$$f(x,y) = x^2 + xy + a$$
 일 때,
$$\frac{\partial f}{\partial x} = 2x + y$$

지수와 지수 함수

지수란 다음과 같은 형태를 말함

a□

- 여기서 a를 '밑'이라 하고 □를 '지수'라고 부름
- a를 □만큼 반복해서 곱한다는 뜻
- 지수 함수 : 변수 x가 지수 자리에 있는 경우를 말함 $y = a^x (a \neq 1, a > 0)$
- 지수 함수에서는 밑 a의 값이 무엇인지가 중요함
- 이 값이 1이면 함수가 아님
- 0보다 작으면 허수를 포함하게 되므로 안 됨
- 밑의 값은 a > 1이거나 0 < a < 1

그림 2-7 a>1일 때와 0<a<1일때의 지수 함수

시그모이드 함수

- 시그모이드 함수: 지수 함수에서 밑의 값이 자연 상수 e인 함수를 말함
- 자연 상수 e: '자연 로그의 밑', '오일러의 수' 등 여러 이름으로 불림
 파이 π처럼 수학에서 중요하게 사용되는 무리수(그 값은 대략 2.718281828...)
- 자연 상수 e가 지수 함수에 포함되어 분모에 들어가면 시그모이드 함수가 됨

$$f(x) = \frac{1}{1 + e^{-x}}$$

• 시그모이드 함수를 그래프로 그려보면 그림 2-8과 같이 S자 형태로 나타남

로그와 로그 함수

- 로그를 이해하려면 먼저 지수부터 이해해야 함 $a^x = b$
- 로그 : x를 구하기 위해 사용하는 방법
- 영어로 logarithm이라고 하는데 앞 세 글자 log를 씀
- 지수 식에서 a와 b의 위치를 다음과 같이 바꾸어 써주면 됨

- 로그 함수와 지수 함수는 서로 역함수의 관계
- 역함수는 x와 y를 서로 바꾸어 가지는 함수임
- 지수 함수 $y = a^x(a \ne 1, a > 0)$ 는 로그의 정의를 따라 $x = \log_a y$ 로 바꿀 수 있음
- 역함수를 만들기 위해 x와 y를 서로 바꾸어 주면 됨
- 역함수의 그래프는 y=x에 대하여 대칭인 선으로 나타남

- 우리는 x가 1에 가까워지거나, 0에 가까워질수록 오차가 커지는 그래프가 필요함
 - **1** | *x*축에 대하여 대칭 이동

그림 2-10 y = -log_{a(}x)

 $2 \mid x$ 축과 y축에 대하여 대칭 이동

그림 2-11

$$y = -log_a(-x)$$

 $oldsymbol{3}$ 2번 그래프를 x축 오른쪽 방향으로 1만큼 평행 이동

$$y = -\log_a x$$
$$y = -\log_a (1-x)$$

4 1번과 3번을 함께 나타낸 그래프

그림 2-12

$$y = -\log_a(1-x)$$

3장. 예측선 긋기: 선형회귀

목차

- 1 | 선형 회귀의 정의
- 2 | 가장 훌륭한 예측선이란?
- 3 | 최소 제곱법
- 4 | 코딩으로 확인하는 최소 제곱법
- 5 | 평균 제곱 오차
- 6 | 잘못 그은 선 바로잡기
- 7 | 코딩으로 확인하는 평균 제곱 오차

딥러닝의 기본적인 계산 원리

- 딥러닝의 가장 말단에서 이루어지는 기본적인 계산 원리 2가지
 - 1. 선형 회귀
 - 2. 로지스틱 회귀

선형회귀

전제: 'x값이 변함에 따라 y값도 변한다'

- 독립 변수 : 독립적으로 변할 수 있는 x값
- 종속 변수 : 독립 변수에 따라 종속적으로 변하는 값
- 선형 회귀 : 독립 변수 x를 사용해 종속 변수 y의 움직임을 예측하고 설명하는 작업
- 단순 선형 회귀(simple linear regression) : 하나의 x값 만으로도 y값 설명 가능
- 다중 선형 회귀(multiple linear regression) : y값 설명에 x값이 여러 개 필요할 때

가장 훌륭한 예측선이란?

• 단순 선형 회귀 예시 : 공부한 시간 x, 성적 y

공부한 시간	2시간	4시간	6시간	8시간	
성적	81점	93점	91점	97점	

■ 집합 X와 집합 Y를 다음과 같이 표현 가능

 $X = \{2, 4, 6, 8\}$ $Y = \{81, 93, 91, 97\}$

선형회귀

- 이 점들의 특징을 가장 잘 나타내는 선을 그리는 것이 선형 회귀
- 선은 직선이므로 일차 함수 그래프
- x값은 독립 변수이고 y값은 종속 변수(x값에 따라 y값은 달라짐)
- 다만, 정확하게 계산하려면 상수 a와 b의 값을 알아야 함
- 이 직선을 훌륭하게 그으려면 직선의 기울기 a값과 y절편 b값을 정확히 예측해 내야 함

최소 제곱법(일차 함수만 적용)

- 최소 제곱법(method of least squares): 일차 함수의 기울기 a와 y절편 b를 구할 수 있음
 (다항 함수인 경우에는 경사하강법을 이용)
- 지금 가진 정보가 x값(입력 값, '공부한 시간')과 y값(출력 값, '성적')일 때, 기울기 a는

$$a = \frac{(x - x \, \mathrm{g}\,\mathbb{D})(y - y \, \mathrm{g}\,\mathbb{D}) \,\mathrm{g}\,\mathrm{g}}{(x - x \, \mathrm{g}\,\mathbb{D})^2 \,\mathrm{g}\,\mathrm{g}}$$

- 공부한 시간(x) 평균: (2 + 4 + 6 + 8) ÷ 4 = 5
- 성적(y) 평균: (81+ 93 + 91 + 97) ÷ 4 = 90.5

$$a = \frac{(2-5)(81-90.5)+(4-5)(93-90.5)+(6-5)(91-90.5)+(8-5)(97-90.5)}{(2-5)^2+(4-5)^2+(6-5)^2+(8-5)^2}$$
$$= \frac{46}{20}$$
$$= 2.3$$

최소 제곱법(일차 함수만 적용)

- 다음은 y절편인 b를 구하는 공식 b=y의 평균-(x의 평균 \times 기울기 a)
- 즉, y의 평균에서 x의 평균과 기울기의 곱을 빼면 b의 값이 나온다는 의미 $b=90.5-(2.3\times5)$ = 79
- 다음과 같이 예측 값을 구하기 위한 직선의 방정식이 완성됨 y=2.3x+79

최소 제곱법(일차 함수만 적용)

$$y = 2.3x + 79$$

• 예측 값 : 어떤 x를 대입했을 때 나오는 y값

공부한 시간	2	4	6	8
성적	81	93	91	97
예측 값	83.6	88.2	92.8	97.4

코딩으로 확인하는 최소 제곱법(일차 함수만 적용)

예제 소스: deeplearning_class/01_Least_Square_Method.ipynb

```
# -*- coding: utf-8 -*-
                                                   파이썬 리스트를 만들려면 다음과 같이 리스트 이름
import numpy as np
                                                    을 정한 후 대괄호([ ])로 감싼 요소들을 쉼표(.)로 구
# x 값과 y값
                     데이터 값들을 리스트 x, y로 정의
                                                    분해 대입하면 됩니다.
x=[2, 4, 6, 8]
y=[81, 93, 91, 97]
                                                    리스트 이름 = [요소 1, 요소 2, 요소 3, ...]
# x와 y의 평균값
                     mx, my
                     : x, y 각각 평균값 구하기
mx = np.mean(x)
my = np.mean(y)
print("x의 평균값:", mx) 5.0
print("y의 평균값:", my)
                     90.5
                                       divisor(분모)
# 기울기 공식의 분모
                                       : x의 각 원소와 x의 평균값들의 차를 제곱해서 더한다.
divisor = sum([(mx - i)**2 for i in x])
# 기울기 공식의 분자
                                       다음과 같이 분자 값을 구하는 함수(top함수)를 정의하여
def top(x, mx, y, my):
    d = 0
                                       dividend 변수에 분자의 값을 저장
    for i in range(len(x)):
       d += (x[i] - mx) * (y[i] - my)
    return d
dividend = top(x, mx, y, my)
print("분모:", divisor)
                        20.0
print("분자:", dividend)
                       46.0
# 기울기와 v 절편 구하기
                                         x의 평균값: 5.0
                                                                 y = 2.3x + 79.0
a = dividend / divisor
                                         y의 평균값: 90.5
b = my - (mx*a)
                                         분모: 20.0
                                         분자: 46.0
# 출력으로 확인
                                         기울기 a = 2.3
print("기울기 a =", a)
                                         v 절편 b = 79.0
print("y 절편 b =", b)
```

평균 제곱 오차(mse)

- 평균 제곱 오차(mean square error, MSE) : 딥러닝에서 오차를 평가하는 방법 중 가장 많이 사용됨
- 최소 제곱법과 다르게 여러 변수가 있을 때도 사용 가능
- 여러 개의 입력 값을 계산할 때 임의의 선을 그리고 난 후,
 이 선이 얼마나 잘 그려졌는지를 평가하여 조금씩 수정해 가는 방법
- 가설을 하나 세운 뒤, 이 값이 주어진 요건을 충족하는지 판단하여 조금씩 변화를 주고,
 이 변화가 긍정적이면 오차가 최소가 될 때까지 이 과정을 계속 반복하는 방법

"일단 선을 그어보고, 조금씩 수정해가기"

Loss function(오차 함수) 종류

계열	오차함수 종류	의미	사용처	특징		
	MSE (Mean squared error)	평균제곱 오차				
평균제곱 계열	MAE	평균절대 오차	회귀 문제	속도가 느리다는 단점		
(Mean squared)	MAPE	평균절대백분율 오차	4111 CAII			
	MSLE	평균제곱로그 오차				
교차엔트로피 계열	categorical_ crossentropy	범주형 교차 엔트로피	다중 클래스 분류	장점 : 출력 값에 로그를 취해서,		
(Cross-entropy)	binary_ crossentropy	이항 교차 엔트로피	이진 클래스 분류	오차가 커지면 수렴 속도 증가, 오차가 작아지면 수렴 속도 감소		

평균 제곱 오차(mse)

그림 3-4 공부한 시간과 성적의 관계도

공부한 시간	2시간	4시간	6시간	8시간	
성적	81점	93점	91점	97점	

- 임의의 값을 대입한 뒤 오차를 구하고 이 오차를 최소화하는 방식을 사용해서 a와 b의 값을 구해 보자
- 대강 선을 그어보기 위해서 기울기 a와 y절편 b를 임의의 수 3과 76이라고 가정해 보자

그림 3-5 임의의 직선 그려보기

그림 3-6 임의의 직선과 실제 값 사이의 거리

임의의 직선이 어느 정도의 오차가 있는지를 확인하려면 각 점과 그래프 사이의 거리를 재면 됨

그림 3-7 기울기를 너무 크게 잡았을 때의 오차

그림 3-8 기울기를 너무 작게 잡았을 때의 오차

평균 제곱 오차(mse)

- 그래프의 기울기가 잘못 되었을수록 빨간색 선의 거리의 합, 즉 오차의 합도 커짐
- ▶ 만약 기울기가 무한대로 커지면 오차도 무한대로 커지는 상관관계가 있는 것을 알 수 있음
- 거리는 입력 데이터에 나와 있는 y의 '실제 값'과 x를 오차 = 예측값 실제값의 식에 대입해서 나오는 '예측 값'과의 차이를 통해 구할 수 있음

공부한 시간(x)	2	4	6	8
성적(실제 값, y)	81	93	91	97
예측 값	82	88	94	100
오차	1	- 5	3	3

- 이렇게 해서 구한 오차를 모두 더하면 1 + (-5) + 3 + 3 = 2가 됨
- 이 값은 오차가 실제로 얼마나 큰지를 가늠하기에는 적합하지 않음
- 오차에 양수와 음수가 섞여 있어서 오차를 단순히 더해 버리면 합이 0이 될 수도 있기 때문임
- 부호를 없애야 정확한 오차를 구할 수 있음
 - -> 오차의 합을 구할 때는 각 오차의 값을 제곱해 줌 $\sum_{i=1}^{n} (\hat{y}_i y_i)^2$

평균 제곱 오차(mse)

오차의 합을 구할 때는 각 오차의 값을 제곱해 줌

오차의 합
$$=\sum_{i}^{n}(\hat{y}_{i}-y_{i})^{2}$$

- i는 x가 나오는 순서, n은 x원소의 총 개수(n=4개)를 의미함
- \hat{y}_i 는 X $_i$ 에 대응하는 '실제 값'
- y_i 는 X_i 가 대입되었을 때 직선의 방정식(p = 3x + 76)이 만드는 '예측 값'
- 이 식으로 오차의 합을 다시 계산하면 1 + 25 + 9 + 9 = 44
- 평균 제곱 오차(Mean Squared Error, MSE) :
 오차의 합에 이어 각 x 값의 평균 오차를 이용함
 위에서 구한 값을 n으로 나누면 오차 합의 평균을 구할 수 있음

평균 제곱 오차(MSE) =
$$\frac{1}{n}\sum_{\mathbf{q}} (\hat{y}_i - y_i)^2$$

▪ 이 식에 의해, 앞서 그은 임의의 직선은 44/4=11의 <mark>평균제곱오차(mse</mark>)를 갖는 직선

평균제곱오차(mse)와 선형 회귀

• 선형 회귀

: 임의의 직선을 그어 이에 대한 평균 제곱 오차(mse)를 구하고, 이 값을 가장 작게 만들어 주는 a와 b 값을 찾아가는 작업

$$y = ax + b$$

평균 제곱 오차(MSE) = $\frac{1}{n}\sum (\hat{y}_i - y_i)^2$

코딩으로 확인하는 평균 제곱 오차

MSE 최종값: 11.0

예제 소스: deeplearning_class/02_Mean_Squared_Error.ipynb #-*- coding: utf-8 -*import numpy as np #가상의 기울기 a와 y 절편 b 임의로 정한 기울기 a와 y절편 b의 값이 각각 3, 76 fake a b=[3,76]# x 값과 y값 공부한 시간 x 리스트와 성적 v 리스트를 만든다. data = [[2, 81], [4, 93], [6, 91], [8, 97]]x = [i[0] for i in data] y = [i[1] for i in data]# y=ax + b에 a,b 값 대입하여 결과를 출력하는 함수 일차방정식 y=ax+b를 구현하는 함수 : predict def predict(x): return fake a b[0]*x + fake a b[1] # MSE 함수 평균제곱오차(mse)를 계산해주는 함수 : mse def mse(y, y hat): return ((y - y_hat) ** 2).mean() # MSE 함수를 각 y값에 대입하여 최종 값을 구하는 함수 def mse val(y, predict result): return mse(np.array(y), np.array(predict result)) # 예측값이 들어갈 빈 리스트 • 처음 가정한 a=3, b=76은 predict result = [] 오차가 약 11.0 이라는 것 확인 # 모든 x값을 한 번씩 대입하여 $predict\ result\ 리스트완성$. • 앞으로 할 일 for i in range(len(x)): - 이 오차를 줄이는 새로운 선 긋기 predict result.append(predict(x[i])) - a와 b의 값을 적절히 조절하면서 오차의 변화를 살펴보고, print("공부시간=%.f, 실제점수=%.f, 예측점수=%.f" % (x[i], y[i], predict(x[i]))) 그 오차가 최소화되는 a, b 구하기 # 최종 MSE 출력 -> 경사 하강법 print("MSE 최종값: " + str(mse val(predict result,y)))

4장. 오차 수정하기: 경사 하강법

4장 오차 수정하기: 경사 하강법

- 1 | 경사 하강법의 개요
- 2 | 학습률
- 3 | 코딩으로 확인하는 경사 하강법
- 4 다중 선형 회귀란
- 5 | 코딩으로 확인하는 다중 선형 회귀

경사 하강법의 개요

• a를 무한대로 키우거나 a를 무한대로 작게 할 때 오차도 무한대로 커지는 이러한 관계는 이차 함수 그래프로 표현할 수 있음

$$y = ax + b$$
 평균 제곱 오차(MSE) $= \frac{1}{n} \sum (\hat{y}_i - y_i)^2$

오차가 가장 적은 점 m이 어디일까?

그림 4-1 기울기 a와 오차와의 관계: 적절한 기울기를 찾았을 때 오차가 최소화된다.

경사 하강법의 개요

- 경사 하강법(gradient descent)
 - : 미분 기울기를 이용해서 그래프에서 오차를 비교하여 가장 작은 방향으로 이동시키는 방법
- $y=x^2$ 그래프에서 x에 다음과 같이 a_1 , a_2 그리고 m을 대입하여 그 자리에서 미분하면 그림 4-2처럼 각 점에서의 순간 기울기가 그려짐

그림 4-2 순간 기울기가 0인 점이 곧 우리가 찾는 오차가 최소값이 되는 점 m이다.

경사 하강법의 개요

- 여기서 눈여겨 봐야 할 것은 우리가 찾는 최솟값 m에서의 순간 기울기임
- 그래프가 이차 함수 포물선이므로 꼭짓점의 기울기는 x축과 평행한 선이 됨. 즉, 기울기가 0
 결국, 우리가 할 일은 '미분 값이 0인 지점'을 찾는 것이 됨
 - **1** | a₁에서 미분을 구한다.
 - 2 | 구해진 기울기의 반대 방향(기울기가 +면 음의 방향, -면 양의 방향)으로 얼마간 이동시킨 a_2 에서 미분을 구한다.(그림 4-3 참조)
 - 3 | 위에서 구한 미분 값이 0이 아니면 위 과정을 반복한다.
 - 4 | 기울기가 0인 한 점 m으로 수렴한다.

■ 경사 하강법

: 이렇게 반복적으로 기울기 a를 변화시켜서 m의 값을 찾아내는 방법

학습률(learning rate)

- 오차의 최소값이 되는 점 m을 찾아가는 과정에서 <mark>학습률</mark> 개념을 알 수 있다.
- 기울기의 부호를 바꿔 이동시킬 때 적절한 거리를 찾지 못해 너무 멀리 이동시키면,
 a값이 한 점으로 모이지 않고 그림 4-4처럼 위로 치솟아 버림

그림 4-4 학습률을 너무 크게 잡으면 한 점으로 수렴하지 않고 발산한다.

학습률과 경사하강법

- 학습률(learning rate)
 - : 어느 만큼 이동시킬지를 신중히 결정해야 하는데, 이때 이동 거리를 정해주는 것
- 딥러닝에서 학습률의 값을 적절히 바꾸면서 최적의 학습률을 찾는 것은 중요한 <mark>최적화(optimization)</mark> 과정 중 하나이다.

■ 경사 하강법

- : 오차의 변화에 따라 이차 함수 그래프를 만들고 적절한 학습률을 설정해 미분 값이 0인 지점 찾기
 - 최적의 b값을 구할 때 역시 경사 하강법을 사용한다.
 - b값이 너무 크면 오차도 함께 커지고, 너무 작아도 오차가 커진다.

- 최솟값을 구하기 위해서는 이차 함수에서 미분을 해야 함
- 그 이차 함수는 평균 제곱 오차를 통해 나온다는 것임
- 평균 제곱 오차의 식을 다시 옮겨 보면 다음과 같음

$$\frac{1}{n}\sum (\hat{y}_i - y_i)^2$$

• 여기서 \hat{y}_i 은 x_i 를 집어 넣었을 때의 값이므로 $y_i = ax_i + b$ 를 대입하면 다음과 같이 바뀜

$$\frac{1}{n}\sum \left((ax_i+b)-y_i \right)^2$$

 이 값을 미분할 때 우리가 궁금한 것은 a 와 b라는 것에 주의해야 함. 식 전체를 미분하는 것이 아니라 필요한 값을 중심으로 미분해야 하기 때문(a와 b로 각각 *편미분)

$$a$$
로 편미분 한 결과 $=\frac{2}{n}\sum (ax_i+b-y_i)x_i$

$$b$$
로 편미분 한 결과 $=\frac{2}{n}\sum (ax_i+b-y_i)$

a로 편미분한 결과 유도 과정

$$\frac{a}{\partial a}MSE(a,b) = \frac{1}{n} \sum \left[(ax_i + b - y_i)^2 \right]'$$

$$= \frac{2}{n} (ax_i + b - y_i) \left[(ax_i + b - y_i) \right]'$$

$$= \frac{2}{n} \sum (ax_i + b - y_i) x_i$$

b로 편미분한 결과 유도 과정

$$\frac{a}{\partial a}MSE(a,b) = \frac{1}{n} \sum \left[(ax_i + b - y_i)^2 \right]'$$

$$= \frac{2}{n} (ax_i + b - y_i) \left[(ax_i + b - y_i) \right]'$$

$$= \frac{2}{n} \sum (ax_i + b - y_i)$$

```
y_pred = a * x_data + b # 오차 함수인 y = ax + b를 정의한 부분
error = y_data - y_pred # 실제값 - 예측값, 즉 오차를 구하는 식

# 평균 제곱 오차를 a로 미분한 결과
a_diff = -(2 / len(x_data)) * sum(x_data * (error))
# 평균 제곱 오차를 b로 미분한 결과
b_diff = -(2 / len(x_data)) * sum(y_data - y_pred)
```

여기에 학습률을 곱해 기존의 a값과 b값을 업데이트해 줌

```
a = a - lr * a_diff # 미분 결과에 학습률을 곱한 후 기존의 a값을 업데이트 
 <math>b = b - lr * b_diff # 미분 결과에 학습률을 곱한 후 기존의 b값을 업데이트
```

예제 소스: deeplearning_class/03_Linear_Regression.ipynb

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

#공부시간 x와 성적 y의 리스트를 만듭니다.
data = [[2, 81], [4, 93], [6, 91], [8, 97]]
x = [i[0] for i in data]
y = [i[1] for i in data]
#그래프로 나타내 봅니다.
plt.figure(figsize=(8,5))
plt.scatter(x, y)
plt.show()
```


예제 소스: deeplearning_class/03_Linear_Regression.ipynb

```
#리스트로 되어 있는 x와 y값을 넘파이 배열로 바꾸어 줍니다.(인덱스를 주어 하나씩 불러와 계산이 가능해 지도록 하기 위함입니다.)
 x data = np.array(x)
y data = np.array(y)
  # 기울기 a와 절편 b의 값을 초기화 합니다.
  a = 0
  b = 0
  #학습률을 정합니다.
                                                                                                                                                                            학습률 = 0.03
 lr = 0.03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     고 100번마다 결과를 내놓습니다.
                                                                                                                                                                                                                                                          오차 수정(경사하강법) 횟수
 #몇 번 반복될지를 설정합니다.
 epochs = 2001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                경사하강법 실행
 #경사 하강법을 시작합니다.
for i in range(epochs): # epoch 수 만큼 반복
                                        y hat = a * x data + b \#y = 7 \Rightarrow 4 = 4 \Rightarrow 4
                                         error = y data - y hat \#2 \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2
                                         a diff = -(2/len(x data)) * sum(x data * (error)) # 오차함수를 a로 미분한 값입니다.
                                        b diff = -(2/len(x data)) * sum(error) # 오차함수를 b로 미분한 값입니다.
                                        a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a = a - lr * a_{diff} # via = a_{diff} # via = a_{diff} # via = a_{diff} # via = a_{
                                        b = b - lr * b diff # 학습률을 곱해 기존의 <math>b값을 업데이트합니다.
                                        if i % 100 == 0: # 100번 반복될 때마다 현재의 a값, b값을 출력합니다.
                                                                                 print("epoch=%.f, 기울기=%.04f, 절편=%.04f" % (i, a, b))
             epoch=0, 기울기=27.8400, 절편=5.4300
             epoch=100, 기울기=7.0739, 절편=50.5117
             epoch=200, 기울기=4.0960, 절편=68.2822
            epoch=300, 기울기=2.9757, 절편=74.9678
          (중략)
            epoch=1800, 기울기=2.3000, 절편=79.0000
            epoch=1900, <u>기울기=2.3000</u>, 절편=79.0000
                                                                                                                                                                                                                                                                                                                                                                                             경사하강법 실행 결과(학습률=0.03, epoch=2001)
             epoch=2000, 기울기=2.3000, 절편=79.0000
```

기울기 a=2.3, y절편 b=79로 수렴하였다.

```
# 앞서 구한 기울기와 절편을 이용해 그래프를 그려 봅니다.

y_pred = a * x_data + b

plt.scatter(x, y)

plt.plot([min(x_data), max(x_data)], [min(y_pred), max(y_pred)])

plt.show()
```


$$y = ax + b$$

$$y = 2.3x + 79$$

다중 선형 회귀

다중 선형 회귀란

더 정확한 예측을 하려면 추가 정보를 입력해야 하며, 정보를 추가해 새로운 예측값을 구하려면
 변수의 개수를 늘려 다중 선형 회귀를 만들어 주어야 함

기존의 독립변수 '공부한 시간'(x1) 외에 '과외 수업 횟수'(x2) 변수를 추가해서 종속변수 '성적'(y) 예측

공부한 시간(x,)	2	4	6	8
과외 수업 횟수(x ₂)	0	4	2	3
성적(y)	81	93	91	97

- 그럼 지금부터 두 개의 독립 변수 x_1 과 x_2 가 생긴 것임
- 이를 사용해 종속 변수 y를 만들 경우 기울기를 두 개 구해야 하므로 다음과 같은 식이 나옴 $y=a_1x_1+a_2x_2+b$
- 두 기울기 a₁, a₂를 구하는 방법 : 경사하강법

예제 소스: deeplearning_class/04_Multi-Linear-Regression.ipynb

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl toolkits import mplot3d
#공부시간 X와 성적 Y의 리스트를 만듭니다.
                                                           이번에는 독립변수 x의 값이 두 개이므로 다음과 같이
data = [[2, 0, 81], [4, 4, 93], [6, 2, 91], [8, 3, 97]]
                                                           data 리스트를 만들고,
x1 = [i[0] \text{ for } i \text{ in } data]
x2 = [i[1] \text{ for } i \text{ in } data]
                                                           x1과 x2라는 두 개의 독립 변수 리스트를 만들어 줌
y = [i[2]  for i  in data]
#그래프로 확인해 봅니다.
ax = plt.axes(projection='3d')
ax.set xlabel('study hours')
                                                   그림 4-6 축이 하나 더 늘어 3D로 배치된 모습
ax.set ylabel('private class')
ax.set zlabel('Score')
ax.dist = 11
ax.scatter(x1, x2, y)
plt.show()
                                                                                            96
94
                                                                                           92
90
88
86
84
82
```

0.85 private class

- 이제 x가 두 개가 되었으므로 x_1 과 x_2 두 가지의 변수를 지정함
- 각각의 값에 기울기 a값이 다르므로 기울기도 a_1 과 a_2 이렇게 두 가지를 만듦
- 경사 하강법을 적용하고 학습률을 곱해 기존의 값을 업데이트 함

예제 소스: deeplearning_class/04_Multi-Linear-Regression.ipynb

```
#리스트로 되어 있는 x와 y값을 넘파이 배열로 바꾸어 줍니다.(인덱스를 주어 하나씩 불러와 계산이 가능해 지도록 하기 위함)
x1 data = np.array(x1)
x2 data = np.array(x2)
y data = np.array(y)
# 기울기 a와 절편 b의 값을 초기화 합니다.
a1 = 0
a2 = 0
b = 0
#학습률을 정합니다。
                  학습률 = 0.02
lr = 0.02
#몇 번 반복될지를 설정합니다.♥0부터 세므로 원하는 반복 횟수에 +1을 해 주어야 합니다.)
epochs = 2001
                      오차 수정(경사하강법) 횟수
#경사 하강법을 시작합니다。
                                                                              경사하강법 실행
for i in range(epochs): # epoch 수 만큼 반복
    y pred = a1 * x1 data + a2 * x2 data + b #y를 구하는 식을 세웁니다
    error = y data - y pred #오차를 구하는 식입니다.
    al diff = -(2/len(x1 data)) * sum(x1 data * (error)) # 오차함수를 a1로 미분한 값입니다.
    a2 diff = -(2/len(x2 data)) * sum(x2 data * (error)) # 오차함수를 a2로 미분한 값입니다.
    b new = -(2/len(x1 data)) * sum(y data - y pred) # 오차함수를 b로 미분한 값입니다.
    al = al - lr * al \ diff # 학습률을 곱해 기존의 <math>a1값을 업데이트합니다.
    a2 = a2 - lr * a2 diff # 학습률을 곱해 기존의 <math>a2값을 업데이트합니다.
    b = b - lr * b new # 학습률을 곱해 기존의 <math>b값을 업데이트합니다.
    if i % 100 == 0: # 100번 반복될 때마다 현재의 a1, a2, b값을 출력합니다.
       print("epoch=%.f, 기울기1=%.04f, 기울기2=%.04f, 절편=%.04f" % (i, a1, a2, b))
epoch=0, 기울기1=18.5600, 기울기2=8.4500, 절편=3.6200
epoch=100, 기울기1=7.2994, 기울기2=4.2867, 절편=38.0427
epoch=200, 기울기1=4.5683, 기울기2=3.3451, 절편=56.7901
epoch=1800, 기울기1=1.5001, 기울기2=2.2858, 절편=77.8563
epoch=1900, 기울기1=1.5001, 기울기2=2.2857, 절편=77.8567
epoch=2000, 기울기1=1.5000, 기울기2=2.2857, 절편=77.8569
                                             경사하강법 실행 결과(학습률=0.02, epoch=2001)
                                             기울기a₁=1.5, 기울기a₂=2.2857, y절편 b=77.8569로 수렴하였다.
```

■ 다중 선형 회귀 문제에서의 기울기 a₁, a₂와 절편 b의 값을 찾아 확인할 수 있음

- 1차원 예측 직선이 3차원 '예측 평면'으로 바뀜
- 과외 수업 횟수(private class)라는 새로운 변수가 추가됨
- 1차원 직선에서만 움직이던 예측 결과가 더 넓은 평면 범위 안에서 움직이게 됨
- 이로 인해 좀 더 정밀한 예측을 할 수 있게 됨

5장. 참 거짓 판단 장치: 로지스틱 회귀

5장 참 거짓 판단 장치: 로지스틱 회귀

- 1 | 로지스틱 회귀의 정의
- 2 | 시그모이드 함수
- 3 | 오차 공식
- 4 | 로그 함수
- 5 | 코딩으로 확인하는 로지스틱 회귀
- 6 | 로지스틱 회귀에서 퍼셉트론으로

참 거짓 판단 장치: 로지스틱 회귀

- 전달받은 정보를 놓고 참과 거짓 중에 하나를 판단해 다음 단계로 넘기는 장치들이 딥러닝 내부에서 쉬지 않고 작동함
- 딥러닝을 수행한다는 것은 겉으로 드러나지 않는 '미니 판단 장치'들을 이용해서 복잡한 연산을 해낸 끝에 최적의 예측 값을 내놓는 작업
- 참인지 거짓인지를 구분하는 로지스틱 회귀의 원리를 이용해 '참, 거짓 미니 판단 장치'를 만들어 주어진 입력 값의 특징을 추출(<mark>학습, train</mark>)
- 이를 저장해서 '모델(model)'을 만듦
- 누군가 비슷한 질문을 하면 지금까지 만들어 놓은 이 모델을 꺼내어 답을 함(예측, prediction)
- 이것이 바로 딥러닝의 동작 원리

로지스틱 회귀의 정의

- 직선으로 해결하기에는 적절하지 않은 경우도 있음
- 점수가 아니라 오직 합격 또는 불합격만 발표되는 시험이 있다고 하자

공부한 시간	2	4	6	8	10	12	14
합격 여부	불합격	불합격	불합격	합격	합격	합격	합격

표 5-1 공부한 시간에 따른 합격 여부

• 합격을 1, 불합격을 0이라 하고, 이를 좌표 평면에 표현하면 다음과 같음

로지스틱 회귀의 정의

- 이 점들은 1과 0 사이의 값이 없으므로 직선으로 그리기가 어려움
- 점들의 특성을 정확하게 담아내려면 직선이 아니라 다음과 같이 S자 형태여야 함

그림 5-2 각 점의 특성을 담은 선을 그었을 때

■ 로지스틱 회귀 :

선형 회귀와 마찬가지로 적절한 선을 그려가는 과정

• 다만 직선이 아니라, 참(1)과 거짓(0) 사이를 구분하는 S자 형태의 선을 그어 주는작업

시그모이드 함수

- 시그모이드 함수(sigmoid function) : S자 형태로 그래프가 그려지는 함수
 -> 로지스틱 회귀를 위해서 시그모이드 함수가 필요
- ▶ 시그모이드 함수를 이용해 로지스틱 회귀를 풀어나가는 공식은 다음과 같음

$$y = \frac{1}{1 + e^{-(ax+b)}}$$

• a는 그래프의 경사도를 결정함

그림 5-3 a 값이 클 때와 작을 때의 그래프 변화 a값이 커지면 그래프의 경사가 커지고 a값이 작아지면 그래프의 경사가 작아진다.

b는 그래프의 좌우 이동을 의미함

그림 5-4 b 값이 클 때와 작을 때의 그래프 변화

b값이 커지면 그래프가 왼쪽으로 이동하고 b값이 작아지면 그래프가 오른쪽으로 이동한다.

시그모이드 함수

그림 5-5 a와 오차와의 관계:
a가 작아질수록 오차는 무한대로 커지지만,
a가 커진다고 해서 오차가 없어지지는 않는다.

그림 5-6 b와 오차와의 관계: b 값이 너무 작아지거나 커지면 오차도 이에 따라 커진다.

오차 공식

- 시그모이드 함수에서 a, b 값을 구하는 방법 역시 <mark>경사하강법</mark>
- 경사 하강법은 먼저 오차를 구한 다음 오차가 작은 쪽으로 이동시키는 방법이므로 여기서도 오차(예측 값과 실제 값의 차이)를 구하는 공식이 필요함

그림 5-7 시그모이드 함수 그래프

시그모이드 오차 공식을 위한 로그함수

- 시그모이드 함수의 특징은 y값이 0과 1 사이라는 것임
- ▶ 실제 값이 1일 때 예측 값이 0에 가까워지면 오차가 커짐
- 반대로, 실제 값이 0일 때 예측 값이 1에 가까워지는 경우에도 오차는 커짐
- 이를 공식으로 만들 수 있게 해 주는 함수가 바로 로그 함수임

- 파란색 선은 실제 값이 1일 때 사용할 수 있는 그래프
- 예측 값이 1일 때 오차는 0, 예측 값이 0에 가까울수록 오차 커짐
- ▶ 빨간색 선은 반대로 실제 값이 0일 때 사용할 수 있는 함수
- 예측 값이 0일때 오차는 0, 예측 값이 1에 가까울수록 오차 커짐

$$-\{\underbrace{y_data \log h}_{\text{A}} + \underbrace{(1-y_data) \log (1-h)}_{\text{B}}\}$$

- 실제 값(y_data)이 1이면 B 부분이 없어지고, 실제 값(y_data)이 0이면 A부분이 없어짐
- ▶ 실제 값에 따라 빨간색 그래프와 파란색 그래프를 각각 사용할 수 있게 됨

코딩으로 확인하는 로지스틱 회귀

예제 소스: deeplearnig_class/05_Logistic_regression.ipynb

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        #공부시간 X와 성적 Y의 리스트를 만듭니다.
        data = [[2, 0], [4, 0], [6, 0], [8, 1], [10, 1], [12, 1], [14, 1]]
        x data = [i[0] for i in data]
                                           공부한 시간
                                                                           10
        y data = [i[1] for i in data]
                                            합격 여부
                                                   불합격
                                                         불합격
                                                              불합격
                                                                          합격
                                                                                      합격
        #그래프로 나타내 봅니다.
        plt.scatter(x_data, y_data)
        plt.xlim(0, 15)
        plt.ylim(-.1, 1.1)
Out[1]: (-0.1, 1.1)
 합격
       1.0
       0.8
       0.6
       0.4
       0.2
불합격
       0.0 -
                                10
                                     12
              2
                            8
                                         14
```

코딩으로 확인하는 로지스틱 회귀

```
기울기 a와 y절편 b값 초기화
# 기울기 a와 절편 b의 값을 초기화 합니다.
a = 0
b = 0
               학습률=0.05
#학습률을 정합니다.
lr = 0.05
                            시그모이드 함수 정의
#시그모이드 함수를 정의합니다.
def sigmoid(x):
   return 1 / (1 + np.e ** (-x))
#경사 하강법을 실행합니다.
                                                                      경사하강법 실행
for i in range(2001):
                                                                      (epoch=2001)
   for x data, y data in data:
      a diff = x data*(sigmoid(a*x data + b) - y data)
      b diff = sigmoid(a*x data + b) - y data
      a = a - lr * a diff
      b = b - lr * b diff
      if i % 1000 == 0: # 1000번 반복될 때마다 각 x data값에 대한 현재의 a값, b값을 출력합니다.
         print("epoch=%.f, 기울기=%.04f, 절편=%.04f" % (i, a, b))
 epoch=0, 기울기=-0.0500, 절편=-0.0250
epoch=0, 기울기=-0.1388, 절편=-0.0472
 epoch=0, 기울기=-0.2268, 절편=-0.0619
(중략)
 epoch=2000, 기울기=1.9068, 절편=-12.9513
 epoch=2000, <u>기울기=1.9068, 절편=-12.9513</u>
                                            경사하강법 실행 결과(학습률=0.05, epoch=2001)
 epoch=2000, 기울기=1.9068, 절편=-12.9513
                                            기울기 a=1.9068, y절편 b=12.9513로 수렴하였다.
```

코딩으로 확인하는 로지스틱 회귀

- 시그모이드 형태의 함수가 잘 만들어지도록 a와 b의 값이 수렴된 것을 알 수 있음
- 만약 여기에 입력 값이 추가되어 세 개 이상의 입력 값을 다룬다면(<mark>다중 분류 문제</mark>) 시그모이드 함수가 아니라 소프트맥스(softmax) 라는 함수를 써야 함(12장 실습에서 다룰 예정)

Sigmoid에서 시작된 활성화 함수는 ReLU를 비롯해 다양한 종류가 있다.

로지스틱 회귀에서 퍼셉트론으로

■ 입력 값을 통해 출력 값을 구하는 함수 y는 다음과 같이 표현할 수 있음

$$y = a_1 x_1 + a_2 x_2 + b$$

■ 입력 값 : 우리가 가진 값인 x₁, x₂

■ 출력 값 : 계산으로 얻는 값 y

-> 출력 값 y를 구하려면 가중치(weight) a_1 값, a_2 값 그리고 편향(bias) b값이 필요함

"x1과 x2가 입력되고, 각각 가중치 a1, a2를 만난다. 여기에 b값을 더한 후 시그모이드 함수를 거쳐 1 또는 0의 출력값 y를 출력한다."

- 프랑크 로젠블라트가 퍼셉트론(1957년)이라는 이름을 붙임
- 이 퍼셉트론은 이 후 인공신경망, 오차 역전파 등의 발전을 거쳐 지금의 딥러닝으로 발전됨