1

Assignment No.1

Surabhi Seetha

You can get all assembly codes here

https://github.com/SurabhiSeetha/Fwciith2022/tree/main/Assignment%201/codes/asm

You can get all python codes here

https://github.com/SurabhiSeetha/Fwciith2022/tree/main/Assignment%201/codes/src

You can get all avr gcc codes here

https://github.com/SurabhiSeetha/Fwciith2022/tree/main/avr%20gcc

and latex-tikz codes from

https://github.com/SurabhiSeetha/Fwciith2022/blob/main/Assignment%201/(Latex).tex

1 Question-2015 Section C Q6(d)

Reduce the following Boolean Expression to its simplest form using k-map $F(X, Y, Z, W) = \sum (0, 1, 6, 8, 9, 10, 11, 12, 15)$

Abstract- This manual shows how to use 7447 BCD-seven segment display encoder to display Boolean Logic

2 Contents

Components	3
Hardware	4
Solution	5

3 Components

Component	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Seven Segment Display		1
Decoder	7447	1
Jumper Wires	M-M	20
Breadboard		1

Table 3.0

4 Hardware

Make connections between seven segment display and the 7447 ic as per the given table

7447 pins	13	12	11	10	9	15	14
Display	a	b	С	d	e	f	g

Figure 1

Figure 2

Make the connections from 7447 ic pins A,B,C,D onto the arduino board pins

7447	D	С	В	A
Arduino	5	4	3	2

Table 4.1

	X	Y	Z	W
Input	0	1	1	0
Arduino	6	7	8	9

Table 4.2

In the above example we are taking number 6 as input to arduino, so the connections are made accordingly by giving it to 0 which is ground and 1 to the input.

5 Solution

Truth Table

X	Y	Z	W	F(X,Y,Z,W)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Table 5.0

$\setminus ZW$						
XY	00	01	11	10		
00	1	1	0	0		
01	0	0	0	1		
11	1	0	1	0		
10	1	1	1	1		

Table 5.1

The expression from above k-map is XY'

Table 5.2

The expression from above k-map is XZ'W'

XY	W 00	01	11	10
00	1	1	0	0
01	0	0	0	1
11	1	0	1	0
10	1	1	1	1

Table 5.3
The expression from above k-map is XZW

$\setminus Z$	W		-	
XY	00	01	11	10
00	1	1	0	0
01	0	0	0	1
11	1	0	1	0
10	1	1	1	1

Table 5.4

The expression from above k-map is Y'Z'

7				1
XY	00	01	11	10
00	1	1	0	0
01	0	0	0	1
11	1	0	1	0
10	1	1	1	1

Table 5.5

The expression from above k-map is XYZW'

- 1.By solving the expression in Table 5.1, we get our first term as XY
- 2.By solving Table 5.2 we get the second term as XZ'W'
- 3.By solving the k-map in Table 5.3, we get the third term as XZW
- 4.By Solving Table 5.3 we get the fourth term as Y'Z'
- 5. Finally for the last term, we get the term from the Table 5.5 as X'YZW'

$$F = XY' + XZ'W' + XZW + Y'Z' + X'YZW'$$