CLAIMS

What is claimed is:

1. An organic electronic device comprising at least one layer comprising a compound having Formula I

5

10

15

20

wherein:

 $R^1 = H, R^4, OR^4, N(R^4)_2$

 $R^2 = H, C_n F_{2n+1}, C_n F_{2n+1} SO_2, COOR^4, CN$

 $R^3 = H, C_n F_{2n+1}, C_n F_{2n+1} SO_2, COOR^4, CN$

R⁴ is the same or different at each occurrence and is H, alkyl, aryl, or adjacent R⁴ groups can join together to form a 5- or 6-membered ring,

L' = a bidentate ligand and is not a phenylpyridine, phenylpyrimidine, or phenylquinoline;

L" = a monodentate ligand, and is not a phenylpyridine, and phenylpyrimidine, or phenylquinoline;

m = 1, 2 or 3,

n is an integer from 1 through 20,

y = 0, 1 or 2, and

z = 0 or an integer from 1 through 4,

with the proviso that the compound is charge neutral and the iridium is hexacoordinate.

- 2. The device of Claim 1 wherein R^2 and R^3 are independently selected from H, CF_3 , C_2F_3 , $n-C_3F_7$, $i-C_3F_7$, C_4F_9 , CF_3SO_2 , $COOR^4$ and CN.
 - 3. The device of Claim 1 wherein m = 3, y = 0, and z = 0.
- 4. The device of Claim 1 wherein m = 2, y = 1, z = 0, and L' is a monoanionic bidentate ligand.
 - 5. The device of Claim 1 wherein m = 1, y = 1, and z = 2.
 - 6. The device of Claim 5 wherein at least one L" is a hydride.
- 7. The device of Claim 4 wherein L' has a coordinating group selected from amino, imino, amido, alkoxide, carboxylate, phosphino, and thiolate.
- 8. The device of Claim 4 wherein L' is selected from β -enolate ligands, N-analogs of β -enolate ligands, S-analogs of β -enolate ligands, aminocarboxylate ligands, iminocarboxylate ligands, salicylate ligands, hydroxyquinolinate ligands, S-analogs of hydroxyquinolinate ligands, phosphinoalkoxide ligands, and a ligand coordinated through a carbon atom that is part of an aromatic group.
- 9. The device of Claim 8 wherein L' is a β -enolate having Formula III:

20

25

30

5

10

15

where

R⁵ is the same or different at each occurrence and is selected from hydrogen, halogen, substituted or unsubstituted alkyl, aryl, alkylaryl and heterocyclic groups, or adjacent R⁵ groups can be joined to form five-and six-membered rings, which can be substituted, and

R⁶ is selected from alkyl, aryl, alkylaryl, heterocyclic groups, and fluorine.

10. The device of Claim 8 wherein L' is a phosphinoalkoxide having Formula IV:

where

 R^7 can be the same or different at each occurrence and is selected from H and $C_n(H+F)_{2n+1}$,

 R^8 can be the same or different at each occurrence and is selected from $C_n(H+F)_{2n+1}$ and $C_6(H+F)_5$, or $C_6H_{5-n}(R^9)_n$,

 $R^9 = CF_3$, C_2F_5 , n- C_3F_7 , i- C_3F_7 , C_4F_9 , CF_3SO_2 , and ϕ is 2 or 3.

11. The device of Claim 8 wherein L' has Formula VII:

F₃C CF₃ (VII)

- 12. The device of Claim 1 wherein the at least one layer is a lightemitting layer.
- 13. The device of Claim 12 wherein the light-emitting layer further comprises a diluent.
 - 14. The device of Claim 13 wherein the diluent comprises a polymeric or small molecule material, or a mixture thereof.
 - 15. A compound having Formula I

20

15

5

wherein:

5

10

15

20

 $R^1 = H, R^4, OR^4, N(R^4)_2$

 $R^2 = H, C_n F_{2n+1}, C_n F_{2n+1} SO_2, COOR^4, CN$

 $R^3 = H, C_n F_{2n+1}, C_n F_{2n+1} SO_2, COOR^4, CN$

R⁴ is the same or different at each occurrence and is H, alkyl, aryl, or adjacent R⁴ groups can join together to form a 5- or 6-membered ring,

L' = a bidentate ligand and is not a phenylpyridine, phenylpyrimidine, or phenylquinoline;

L" = a monodentate ligand, and is not a phenylpyridine, and phenylpyrimidine, or phenylquinoline;

m = 1, 2 or 3,

n is an integer from 1 through 20,

y = 0, 1 or 2, and

z = 0 or an integer from 1 through 4,

with the proviso that the compound is charge neutral and the iridium is hexacoordinate.

- 16. A compound according to Claim 15, wherein R² and R³ in Formula I are independently selected from H, CF₃, C₂F₃, n-C₃F₇, i-C₃F₇, C₄F₉, CF₃SO₂, COOR⁴ and CN.
- 17. A compound selected from Formula IX, Formula XI, and Formula XII:

$$R_{2}N$$
 $R_{3}C$
 $R_{3}C$
 $R_{3}C$
 $R_{3}C$
 $R_{3}C$
 $R_{3}C$
 $R_{4}C$
 $R_{4}C$
 $R_{5}C$
 $R_{5}C$
 $R_{5}C$
 $R_{5}C$

$$F_3CO_2S$$
 (X)

$$Me_2N$$
 N
 F_3CO_2S
 SO_2CF_3

$$Me_2N$$
 F
 N
 $(XIII)$

18. A compound having a structure selected from Formula XIII, Formula XIV, and Formula XV below:

$$F_3$$
C F_3 F_4 C F_5 C F

19. A compound having Formula VIII: