Epreuve de rattrapage de Physique du mouvement

Le 21 juin 2016

Exercice n°1:

On souhaite préparer le départ d'une bille pour un « dominos-cascade ». La bille lancée doit aller percuter le premier domino pour déclencher les chutes en cascade. Les dominos étant déjà tous installés, on ne peut pas faire d'essais : les conditions de lancer et la trajectoire doivent donc être calculées.

Le schéma ci-dessous (figure 1) décrit la situation. Attention, les échelles ne sont pas respectées.

On suppose dans l'ensemble de l'exercice que:

- le référentiel terrestre est galiléen le temps de l'expérience ;
- la bille est assimilée à un point matériel ;
- les frottements solides et fluides sont négligés.

La masse de la bille est m = 100 g. On prend $g = 10 \text{ N.kg}^{-1}$.

Les quatre parties sont indépendantes.

1. Equation de la trajectoire

On suppose dans cette partie que la bille arrive en O de coordonnées (0; 0) avec une vitesse $\overrightarrow{v_0} = v_0 \overrightarrow{i}$ de direction horizontale. L'instant où la bille arrive en ce point est pris comme origine des temps (t=0).

- 1. A quelles forces est soumise la bille entre les points O et M exclus.
- 2. Rappeler la seconde loi de Newton et en déduire l'accélération \vec{a} de la bille lorsqu'elle a quitté le point O.
- 3. Donner les expressions en fonction du temps des composantes du vecteur vitesse \vec{v} .

- 4. Donner les expressions en fonction du temps des composantes du vecteur position \overrightarrow{OM} .
- 5. Déterminer l'équation de la trajectoire de la bille entre O et M. Calculer le temps nécessaire à la masse pour arriver au sol.
- 6. Calculer v_0 pour que la bille arrive en M dont les coordonnées dans le repère $(0, \vec{i}, \vec{j})$ sont $x_M = 0.40$ m et $y_M = -0.20$ m.

2. Utilisation d'un plan incliné pour que la bille arrive en O avec la vitesse $\overrightarrow{v_0}$

Dans cette situation (illustrée par la figure 2 ci après), la bille est lâchée sans vitesse initiale d'un point A (de coordonnées x_A et y_A) situé en haut d'un plan incliné réglable très lisse sur lequel la bille glisse sans frottement. Ensuite, la bille glisse sans frottement entre les points B et O.

- 1. Etablir le bilan des forces agissant sur la bille entre A et B. Les représenter sur un schéma.
- 2. Donner l'expression de la norme de la vitesse de la bille en B en fonction de y_A et g.
- 3. Montrer que la norme de la vitesse en O est égale à la norme de la vitesse en B.
- 4. En déduire l'expression de la hauteur y_A permettant d'obtenir la vitesse v_0 en O. Calculer sa valeur pour $v_0 = 2$ m/s.

3. Utilisation d'un pendule pour que la bille arrive en O avec la vitesse $\overrightarrow{v_0}$

Dans cette situation, une bille P identique à celle que l'on veut lancer sur les dominos est accrochée à l'extrémité d'une tige de masse négligeable, de longueur l=40 cm, elle-même accrochée en C à une distance l au-dessus de O (voir le schéma sur la figure 3). La bille est lâchée sans vitesse initiale d'un angle θ_0 par rapport à la verticale et entre en collision en O avec la bille à envoyer sur les dominos. On suppose que toute l'énergie de la bille P est transmise à la bille à envoyer lors du choc. La bille P doit donc avoir une vitesse égale à $\overrightarrow{v_0}$ lorsqu'elle arrive en O.

- 1. Faire le bilan des forces s'exerçant sur *P*.
- 2. Donner l'expression de E_{pp} l'énergie potentielle de pesanteur de la bille P en fonction de m, g, l et θ . On admet que $E_{pp}(y=0)=0$.
- 3. En déduire l'expression de l'énergie mécanique de la bille P. Que vaut-elle en $\theta = \theta_0$ et en O.

- 4. Donner l'expression de cos θ_0 en fonction de g, l et v_0 . Calculer la valeur de l'angle θ_0 permettant d'obtenir la vitesse $v_0 = 2$ m/s en O.
- 5. Etude du mouvement de *P* entre θ_0 et $\theta = 0$.
 - a. Donner l'équation différentielle vérifiée par θ , la position angulaire de la bille à un instant t. (choisir un repère adapté à cette étude en faisant attention au signe de θ)
 - b. Que devient cette équation quand $\theta << 1$? Commenter.

4. Utilisation d'un ressort pour que la bille arrive en O avec la vitesse $\overrightarrow{v_0}$

Dans cette situation, une bille P identique à celle que l'on veut lancer sur les dominos est accrochée à l'extrémité d'un ressort de masse négligeable, de longueur au repos $l_0 = 40$ cm, luimême accroché en C au mur. La bille glisse sans frottement sur le plan horizontal y = 0. Elle est écartée de sa position d'équilibre et lâchée sans vitesse initiale de la position x_0 . Elle entre en collision en O avec la bille à envoyer sur les dominos. On suppose que toute l'énergie de la bille P est transmise à la bille à envoyer lors du choc. La bille P doit donc avoir une vitesse égale à $\overline{v_0}$ lorsqu'elle arrive en O.

- 1. Faire le bilan des forces s'exerçant sur *P*.
- 2. Donner l'expression de E_{pe} l'énergie potentielle élastique de la bille P en fonction de k et x en prenant soin de bien définir x.
- 3. En déduire l'expression de l'énergie mécanique de la bille P. Que vaut-elle en $x = x_0$ et en O. On admet que $E_{pp}(y = 0) = 0$.
- 4. Donner l'expression de x_0 en fonction de m, k et v_0 . Donner son signe et calculer sa valeur permettant d'obtenir la vitesse $v_0 = 2$ m/s en O.
- 5. Etude du mouvement de P entre x_0 et O.
 - a. Donner l'équation différentielle vérifiée par x, la position de la bille à un instant t.
 - b. Montrer que la solution de cette équation peut s'écrire $x = A \cdot \cos(\omega_0 t + \phi)$. Définir
 - A, ω_0 et ϕ et déterminer leur valeur.

Aide au calcul – Rappel des valeurs du sinus et du cosinus en fonction de l'angle

θ	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\sin \theta$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos \theta$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$