Integrationstechniken

für das unbestimmte Integral

Ableitungsregel	Integrationsregel
Addition:	Addition:
(f+g)' = f' + g'	$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$
Skalare Multiplikation:	Skalare Multiplikation:
$(\lambda f)' = \lambda \cdot f'$	$\int \lambda \cdot f(x)dx = \lambda \cdot \int f(x)dx$
Produktformel:	Partielle Integration:
(fg)' = f'g + fg'	$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$
Kettenregel:	Substitution:
$(f(\varphi(y)))' = f'(\varphi(y)) \cdot \varphi'(y)$	$\left(\int f(x)dx\right)_{x=\varphi(y)} = \int f(\varphi(y))\varphi'(y)dy$

Partialbruchzerlegung (zur Integration rationaler Funktionen):

Für teilerfremde Polynome $g_1(x), \ldots, g_n(x)$ und ein weiteres Polynom f(x) existieren Polynome $f_i(x)$ vom Grad kleiner als der von $g_i(x)$ sowie ein Polynom h(x), so dass gilt:

$$\frac{f(x)}{g_1(x)\cdots g_n(x)} = \frac{f_1(x)}{g_1(x)} + \ldots + \frac{f_n(x)}{g_n(x)} + h(x)$$