# Fysiikka viikko 2

#### 26.9 12.30 - 15 aiheet

- Teoria: Muiden voimien kuin vakiopainovoiman huomioiminen liikkeessä
- Esim.: ilmanvastuksen vaikutus lentorataan (1. viikon esimerkin täydennys)
- Tehtävien 1 ja 2 tekemiseen varataan puolet ajasta

# Voimia

- 1. <u>Ilmanvastus</u>
- 2. Gravitaatio avaruudessa
- 3. Kitkavoima
- 4. Jousivoima

#### Kertaus 1. viikon teemasta

Miten kappaleen paikka päivitetään, kun nopeus v ja kiihtyvyys a tunnetaan?



$$\bar{r}_2 = \bar{r}_1 + \bar{v}_1 dt + \bar{a} dt^2$$

$$\bar{v}_2 = \bar{v}_1 + \bar{a} dt$$

Miten tämä kirjoitetaan VPythonilla kappaleelle pallo?

$$pallo.pos += pallo.velocity * dt + 0.5 * pallo.acc * dt ** 2$$

$$pallo.velocity += pallo.acc * dt$$

Mikä on vapaasti putoavan pallon kiihtyvyys vektorina (Vpythonilla)?

$$pallo.acc = vec(0, -9.81, 0)$$

#### Määrittele pallon ja tason törmäyksen elastisuuskerroin e. Jos e = 0.8, mitä se tarkoittaa?

Pallon nopeusvektori voidaan jakaa tason suuntaiseen ja tasoa vastaan kohtisuoraan **normaalikomponenttiin.** Jos e = 0.8, pallon kimmotessa tasosta sen **normaalikomponentti kääntyy ja pienenee kertoimella 0.8**.



Kun pallo kimpoaa lattiasta, nopeuden muutos kirjoitetaan muodossa

pallo.velocity.y = -e\*pallo.velocity.y

Pystysuorasta tasosta kimmotessa kirjoitettaisiin vastaava rivi komponentille pallo.velocity.x

### Dynamiikan peruslaki F = m a

Kappaleen kiihtyvyys = kappaleeseen vaikuttava kokonaisvoima/ kappaleen massa

$$\overline{a} = \frac{\overline{F}}{m}$$

Kun kappaleeseen vaikuttaa useita voimia, on kappaleen kiihtyvyys näistä johtuvien kiihtyvyyksien summa

$$\overline{a} = \overline{a}_1 + \overline{a}_2 + \cdots = \frac{\overline{F}_1}{m} + \frac{\overline{F}_2}{m} + \dots$$

## Päivitysjärjestys while - silmukassa



### Taulukko: tavallisimpia voimia ja kiihtyvyyksiä

|                         | voiman kaava                                             | massan m kiihtyvyys                                                                                                      |
|-------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Gravitaatio avaruudessa | $\overline{F} = -G \frac{M m}{r^2} \hat{r}$              | $\overline{a} = -G \frac{M}{r^2} \hat{r}$                                                                                |
| Ilman vastus            | $\overline{F} = -\frac{1}{2} c_w \rho A v^2 \widehat{v}$ | $\overline{\boldsymbol{a}} = -\frac{1}{2} \operatorname{c} \rho \operatorname{A} \frac{v^2}{m} \widehat{\boldsymbol{v}}$ |
| Kitka vaakatasolla      | $\overline{F} = -\mu mg  \widehat{v}$                    | $\overline{a} = -\mu g \widehat{v}$                                                                                      |
| Jousen palauttava voima | $\overline{F} = -k x \widehat{u}$                        | $\overline{a} = -\frac{k}{m} x \widehat{u}$                                                                              |

Kaavassa 1 G = gravitaatiovakio =  $6.67*10^{-11}$ ,  $\overline{r}$  on vektori M:stä massaan m,  $\hat{r}$  on  $\overline{r}$ :n suuntainen yksikkövektori

Kaavassa 2  $c_w$  = kappaleen muodosta riippuva vakio ,  $\rho$ = ilman tiheys 1.25 kg/m³, A = kappaleen pinta-ala edestä katsottuna, v = nopeus,  $\hat{v}$  on nopeuden suuntainen yksikkövektori

Kaavassa 3  $\mu$  = kappaleen ja pinnan välinen kitkakerroin, g=9.81, m = kappaleen massa,  $\hat{v}$  on yksikkövektori

Kaavassa 4 k= jousen jäykkyyttä kuvaava jousivakio, x= poikkeama tasapainoasemasta, m= jousen päässä oleva massa,  $\hat{\boldsymbol{u}}$  on jousen akselin suuntainen yksikkövektori

# Ilmanvastus (air drag)

$$F = \frac{1}{2} c_w \rho \cdot A \cdot v^2$$



 $\rho$  = väliaineen tiheys (ilmalle 1.25 kg/m<sup>3</sup>)

A = kappeleen pinta-ala edestäpäin katsottuna

v = kappaleen nopeus





Kaava on voimassa ns. turbulenttiselle virtaukselle, jossa esiintyy pyörteitä (ks. Kuva)

# Esim. aerodynaamisista vakioista c<sub>w</sub>

Lyhenne: COD = Drag Coefficient = c<sub>w</sub>



| Kulkuneuvojen C <sub>w</sub> vakioita |         |  |
|---------------------------------------|---------|--|
| VW X1                                 | 0.189 — |  |
| Toyota Prius                          | 0.24    |  |
| Tesla model S                         | 0.24    |  |
| Mazda 3                               | 0.29    |  |
| Ford Focus                            | 0.32    |  |
| Citroen CX                            | 0.36    |  |
| Transit                               | 0.37    |  |
| Boeing 787                            | 0.024   |  |
| Airbus 380                            | 0.0265  |  |
| Laskuvarjo                            | 1.5     |  |
| Polkupyöräilijä                       | 1.0     |  |



### Esim1. Laske Priuksen ilmanvastus, kun sen nopeus on 100 km/h

$$F = \frac{1}{2} c_w \rho \cdot A \cdot v^2$$

$$F = \frac{1}{2} \cdot 0.24 \cdot 1.25 \cdot 2.3 \cdot 27.78^2 N = 266N$$

Fysiikassa työ W = F s (F = voima, s = matka) yks. 1 Nm = 1 Joule = J

Kuinka suuren työn Prius tekee 100 km:llä? W = 266N\*100 000 m = 26 600 000 J = 26.6 MJ

Bensiinimoottoriautojen hyötysuhde on ajossa keskim. 20 -25% Loput 75% menee "hukkalämmöksi".

Ts. bensaa kuluu n 4 ltr/100 km



Bensiinin lämpöarvo = 32 MJ/ltr

### LASKE JALKAPALLON ILMANVASTUS, KUN SE POTKAISTAAN NOPEUDELLA 40 m/s

$$F = \frac{1}{2}c_{w}\rho \cdot A \cdot v^{2}$$

$$= 0.01116*40^2 N = 17.9N$$

#### Sijoitetaan:

Cw = 0.47 (COD of sphere)  $\rho = 1.25 \text{ kg/m3}$  $A = \pi r^2 = (\pi^* 0.11 \text{m})^2 = 0.038 \text{ m}^2$ 

Vakiot nopeuden neliön edessä yht. K = 0.5\*0.47\*1.25\*0.038=0.01116

FIFA:n sääntöjen mukaan jalkapallon massa on 430 g, joten Jalkapallon paino m g =  $0.43 \text{ kg*} 9.8 \text{ m/s}^2 = 4.2 \text{ N}$ 

Ilmanvastus on siis n. 4 –kertainen voima pallon painoon nähden maalipotkun alkuvaiheessa, pienenee nopeasti nopeuden aletessa

### Heittoliikeanimaatio, jossa ilmanvastus on mukana, tarvitsee Vpythonin vektoriluokasta seuraavat metodit:

$$a = vec(4,5,3)$$

mag(a) -laskee vektorin pituuden  $\sqrt{4^2 + 5^2 + 3^2} = \sqrt{50} = 7.07$ 

mag tulee sanasta magnitude

mag2(a) -laskee vektorin pituuden neliön  $4^2+5^2+3^2=50$ 

hat(a) -laskee a:n suuntaisen yksikkövektorin  $\widehat{a} = \frac{\overline{a}}{mag(a)} = (\frac{4}{\sqrt{50}}, \frac{5}{\sqrt{50}}, \frac{3}{\sqrt{50}})$ 

Ilmanvastuksesta johtuva hidastuvuus

$$\overline{a} = - K \cdot v^2 \cdot \hat{v}$$
, missä K on vakio

Kun palloon vaikuttaa painovoima ja ilmanvastus, kirjoitetaan Vpythonilla kiihtyvyydeksi:

pallo.acc = vec(0, -g, 0) - K \* mag2(pallo.velocity) \* hat(pallo.velocity)

<u>Tehtävässä 2</u> tehdään animaatio jalkapallon maalipotkusta, jossa otetaan huomioon sekä painovoimasta johtuva kiihtyvyys, että ilmanvastuksesta johtuva kiihtyvyys, jonka suunta on nopeudelle vastakkainen



Pallon kokonaiskiihtyvyys "Pythoniksi":

Ohjelman vakioiden määrittelyosassa on annettu:
mass=0.43 #jalkapallon massa kg
cw=0.4 #pallon muotovakio
ro=1.25 #ilman tiheys kg/m³
r= 0.11 #pallon sade
#yo. vakioista laskettu kerroin ½ cw\*ro\*A
K=0.5\*cw\*ro\*pi\*r\*\*2

#### Vektorifunktioita:

mag2(v) -vektorin v pituuden neliöhat(v) -vektorin v suuntainenyksikkövektori

pallo.acc = vec(0,-g,0) - K\*mag2(pallo.velocity)\*hat(pallo.velocity)/mass

Koska pallon nopeus muuttuu koko ajan, on tämä rivi sisällytettävä while silmukkaan