Best Permutation

Time Limit: 2 seconds

Problem Description

We say a sequence a_1, \ldots, a_n is a permutation of $\{1, \ldots, n\}$ if and only if $\{a_1, \ldots, a_n\} = \{1, \ldots, n\}$. Consider a weight function $w : \{1, \ldots, n\} \times \{1, \ldots, n\} \to \mathbb{Z}^+$, we define the weight of a permutation a_1, \ldots, a_n as

$$W(a_1, \dots, a_n) = \sum_{1 \le i < j \le n} w(a_i, a_j)$$

and the best permutation as the permutation achieving maximum weight. Given a weight function, write a program to compute the best permutation.

Technical Specifications

- 1. The number of test cases is no more than 20.
- 2. $n \le 20$.
- 3. $0 < w(x, y) \le 1000000$ for every $x, y \in \{1, ..., n\}$.

Input Format

The first line of the input file contains an integer indicating the number of test cases. The first line of each test case contains an integer n which denotes the length of the sequence. The rest n lines represent the weight function w. Each of them contains exactly n integers and the j-th number on the i-th line is w(i,j).

Output Format

For each test case, output the best permutation a_1, \ldots, a_n . For $i \in \{1, \ldots, n-1\}$, separate a_i and a_{i+1} by a blank. If there are multiple solution, then you should output the first one in the lexicographical order.

Sample Input

3

1

1

2

1 2

2 1

3

1 0 1

2 0 1

0 3 1

Sample Output

1

1 2

3 2 1