Praca domowa 1

12/31

Wiemy że zbiór $\{\land,\lor,\lnot\}$ jest funkcjonalnie pełny, oraz że $p\lor q=\lnot(\lnot p\land\lnot q)$. Oznacza to, że każdą alternatywę w dowolnej funkcji zdaniowej możemy zastąpić koniunkcją. A więc zbiór $\{\land,\lnot\}$ jest funkcjonalnie pełny.

10/44

Przekształćmy wyrażenie korzystając z następujących praw rachunku funkcyjnego:

1. Prawo de Morgana: $\neg \exists x \in \mathbb{X} \equiv \forall x \in \mathbb{X}$

$$egin{aligned}
eg &\exists x \in \mathbb{X} : \exists y \in \mathbb{Y} : (
eg arphi(x,y) ee \psi(x,y)) \equiv \\ &\equiv orall x \in \mathbb{X} : orall y \in \mathbb{Y} : (arphi(x,y) ee \psi(x,y)) \end{aligned}$$

2. Likwidacja implikacji $\varphi(x,y)\Rightarrow \psi(x,y)\equiv \neg \varphi(x,y) \lor \psi(x,y)$

$$egin{aligned} orall x \in \mathbb{X} : orall y \in \mathbb{Y} : (arphi(x,y) ee \psi(x,y)) \equiv \ & \equiv orall x \in \mathbb{X} : orall y \in \mathbb{Y} :
eg(arphi(x,y) \Rightarrow \psi(x,y)) \end{aligned}$$