Class 7 Java - Boolean Algebra

1 Boolean Algebra

In the classical algebra, we deal with sets of numbers and operations over them. Example for sets:

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- $\mathbb{R} = \{..., -1.1, ..., -1, ..., 0, ..., 1, ..., 1.1, ...\}$

In Java, we can work with these numbers using integer or double variables.

```
int \ a = 1;
```

$$int b = 2 + 3;$$

The operations for this algebra include:

• +, -, ×, ÷, ...

In Java, we can operate over numbers using arithmetic operators.

$$int c = a + b;$$

$$int d = c * b;$$

In the Boolean algebra, we work with a new set

$$\mathbb{B} = \{true, false\}$$

which contains only two values: true and false. In Java, we can work with these values using boolean variables.

 $boolean \ a = true;$

boolean b = 1 > 0;

boolean
$$c = 1 > 0$$
,

The operations over this set are three and are defined the following manner:

- AND (&&)
 - true && true = true
 - true && false = false
 - false && true = false
 - false && false = false
- OR (||)
 - $-true \mid\mid true = true$
 - $true \mid\mid false = true$
 - $false \mid\mid true = true$
 - false || false = false
- NOT (!)
 - ! true = false
 - -! false = true

In Java, we can operate over booleans using boolean operators.

boolean d = true && false;

 $boolean \ e = true \mid \mid true;$

boolean f = d && e;

boolean $g = d \mid\mid e;$

2 Exercises

- 1. Write a program that takes a bi-dimensional coordinate (x, y) and outputs which quadrant it belongs to.
- 2. The Brazilian electoral legislation defines the following rules for the eligibility to vote. If the citizen is
 - younger than 16, then they may not vote;
 - between 16 (inclusive) and 18 (exclusive) years old or older than 64 years old, then they may vote;
 - between 18 (inclusive) and 65 (exclusive) years old, then they must vote.

Now write a program that informs a citizen's eligibility to vote, based on their age.

3. The body mass index (*bmi*) is calculated according to the following formula: $bmi = \frac{mass(Kg)}{height^2(m)}$. Based on the result, a person is classified according to the following table:

Gender	bmi	Class
Male	$\begin{array}{c} bmi \leq 20.7 \\ 20.7 < bmi \leq 26.4 \\ 26.4 < bmi \leq 31.1 \\ 31.1 < bmi \end{array}$	underweight normal overweight obese
Female	$\begin{array}{c} bmi \leq 19.1 \\ 19.1 < bmi \leq 25.8 \\ 25.8 < bmi \leq 32.3 \\ 32.3 < bmi \end{array}$	underweight normal overweight obese

3 Summary

• Truth Tables:

OR ()	True		Fal	se
True	Tr	ue	Trı	ue
False	Tr	ue	Fal	se
AND (&&)		Tr	ue	False
True		Tr	ue	False
False		False		False
NOT (!)				
True	Fa	alse		
False	T	rue		

• Next Lesson: While

4 References

- W3C Tutorial:
 - https://www.w3schools.com/java/java_booleans.asp
- Exercises: https://www.w3schools.com/java/exercise.asp
 - Java Booleans