Student Information

Full Name : Ertugrul Aypek Id Number : 2171270

Answer 1

a.

b.

Answer 2

a.

b.

c.

Answer 3

a.

By utilizing

 $\mathbf{E}(q_0) = q_0, q_2$

 $\mathbf{E}(q_1) = q_1, q_2, q_3$

 $E(q_2) = q_2$

 $E(q_3) = q_3$ $E(q_4) = q_4$

$$E(q_5)=q_1,q_5$$

Here are all possibilities:

So, as seen from above tree, when the machine finishes reading there is no q_5 as last state. Hence, w_1 is not in L(N)

b.

```
(q_0, ababa) \vdash_M (q_1, baba)

(q_1, baba) \vdash_M (q_3, baba)

(q_3, baba) \vdash_M (q_4, aba)

(q_4, aba) \vdash_M (q_5, ba)

(q_5, ba) \vdash_M (q_1, ba)

(q_1, ba) \vdash_M (q_3, ba)

(q_3, ba) \vdash_M (q_3, a)

(q_3, a) \vdash_M (q_5, e)

Since q_5 \in F, w_2 is in L(N)
```

Answer 4

a.

Let's call GFA as G.
$$G=(K',\sum,\triangle',q_4,F')$$
 in which $K'=q_0,q_1,q_2,q_3,q_4,q_5$ $\sum=a,b$ $F'=q_5$

```
\Delta' = (q_0, b, q_1), 
(q_1, a, q_2), (q_1, e, q_3), 
(q_2, a, q_0), (q_2, b, q_1), (q_2, b, q_2), (q_2, b, q_3), (q_2, e, q_5), 
(q_3, b, q_1), (q_3, a, q_3), (q_3, e, q_5), 
(q_4, e, q_0)
```

And here is the diagram:

b.

Eliminating state q_0 :

Eliminating state q_1 :

$$R(2,3,1) = R(2,3,0) \cup R(2,1,0) R(1,1,0) * R(1,3,0) = b \cup (b \cup ab) = b \cup ab$$

 $R(2,2,1) = R(2,2,0) \cup R(2,1,0) R(1,1,0) * R(1,2,0) = b * \cup (b \cup ab) a$

```
\begin{array}{l} R(3,3,1) = R(3,3,0) \cup R(3,1,0) \\ R(3,2,1) = R(3,2,0) \cup R(3,1,0) \\ R(1,1,0) \\ R(1,2,0) = ba \\ R(4,2,1) = R(4,2,0) \cup R(4,1,0) \\ R(1,1,0) \\ R(1,2,0) = ba \\ R(4,3,1) = R(4,3,0) \cup R(4,1,0) \\ R(1,1,0) \\ R(1,3,0) = b \end{array}
```


Eliminating state q_2 :

 $R(4,3,2) = R(4,3,1) \cup R(4,2,1) \\ R(2,2,1) * \\ R(2,3,1) = b \cup b \\ a(b \cup (b \cup ab) \\ a) * (b \cup ab)$

 $R(4,5,2) = R(4,5,1) \cup R(4,2,1)R(2,2,1)*R(2,5,1) = ba(b \cup (b \cup ab)a)*$

 $R(3,3,2) = R(3,3,1) \cup R(3,2,1) \\ R(2,2,1) * \\ R(2,3,1) = (a \cup b) \cup b \\ a(b \cup (b \cup ab) \\ a) * (b \cup ab)$

 $R(3,5,2) = R(3,5,1) \cup R(3,2,1)R(2,2,1) * R(2,5,1) = e \cup ba(b \cup (b \cup ab)a) *$

Eliminating state q_3 :

 $ba(b\cup(b\cup ab)a)^*\cup(b\cup ba(b\cup(b\cup ab)a)^*(b\cup ab))((a\cup b)\cup\ ba(b\cup(b\cup ab)a)^*(b\cup ab))^*(e\cup ba(b\cup(b\cup ab)a)^*)$

Hence;

 $G=ba(b\cup(b\cup ab)a)^*\cup(b\cup ba(b\cup(b\cup ab)a)^*(b\cup ab))((a\cup b)\cup ba(b\cup(b\cup ab)a)^*(b\cup ab))^*(e\cup ba(b\cup(b\cup ab)a)^*)$ is a regular expression form of GFA.

Answer 5

a.

 $M = (K', \sum, \delta, s, F')$

Firstly, we should find s:

 $s=E(q_0)=q_0q_1q_2$

Then, we should find a and b transitions from s:

$$\delta(s,a) = E(q_1) \cup E(q_3) = q_1 q_3$$

$$\delta(s,b) = E(q_2) = q_2$$

We should keep going until we don't see any new state.

$$\delta(q_1q_3,\mathbf{a}) = \emptyset$$

$$\delta(q_1q_3,b) = E(q_1) = q_1$$

$$\delta(q_2, \mathbf{a}) = \mathcal{E}(q_3) = q_1 q_3$$

$$\delta(q_2, \mathbf{b}) = \emptyset$$

$$\delta(q_1, a) = \emptyset$$

$$\delta(q_1, b) = \emptyset$$

At the end, we should also add a trap state q_3 and make the transitions which are empty set to go this state. Also, we should have:

$$\delta(q_3, \mathbf{a}) = q_3$$

$$\delta(q_3,b)=q_3$$

So
$$M=(K', \sum, \delta, s, F')$$

 $K'=q_1, q_2, q_3, q_1q_3, q_0q_1q_2$

 δ is as above

 $s=q_0q_1q_2$

$$F' = q_1 q_3$$

And here is the diagram:

b.

Here is the diagram of L:

To find \overline{L} we need to make final states nonfinal, and nonfinal states final. So here is the diagram of \overline{L} :

To apply state elimination, here is the GFA form of $\overline{L}:$

Eliminating q_0 , we have:

Eliminating q_1 , we have:

Eliminating q_2 , we have:

Eliminating q_3 , we have:

Hence regular expression for \overline{L} is:

 $\begin{array}{l} e \cup \ a \cup \ b \cup \ ba \cup \ ab \cup \ bab \\ \overline{L} = \mathbf{w} \in \ a, b^* : (|\mathbf{w}| \le 2 \land (\mathbf{aa}, \mathbf{bb}) \notin \overline{L}) \lor (\mathbf{aba}) \in \mathbf{w} \end{array}$

Answer 6

Answer 7

a.

b.