Write your name here Surname	Othe	er names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
F 41 D -	NA-4	b 4!
Further Pu	ire Mati	nematics
Paper 1 Tuesday 12 June 2018 – N		Paper Reference
Paper 1		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1

Diagram NOT accurately drawn

Figure 1 shows a sector OAB of a circle. The circle has centre O and radius $10 \, \text{cm}$. The area of the sector is 25 cm^2 and angle $AOB = \theta$ radians.

Find

(a)	the	value	of	θ ,
-----	-----	-------	----	------------

(2)

(b)	the	length	of the	arc AB	
-----	-----	--------	--------	--------	--

(2)

Question 1 continued	
	Total for Quarties 1 is 4 months
	Total for Question 1 is 4 marks)

2 The equation $3x^2 - 5x + 4 = 0$ has roots α and β .					
	Without solving this equation, form a quadratic equation with integer coefficients that has roots				
	$\alpha + \frac{1}{2\beta}$ and $\beta + \frac{1}{2\alpha}$	(7)			

Question 2 continued	
	(Total for Question 2 is 7 marks)

3	3 In triangle ABC , $AB = 12$ cm, $BC = 9$ cm and angle $BAC = 42^{\circ}$		
	(a) Find, in degrees to the nearest 0.1°, each of the two possible sizes of angle ABC.	(5)	
	(b) Find, to 2 significant figures, the smaller of the two possible areas of triangle <i>ABC</i> .	(3)	

Question 3 continued	
(Total for Question 3 is	s 8 marks)

Figure 2

Figure 2 shows the graph of $y = x - \frac{1}{2x^2}$ for $0.4 \le x \le 5$ drawn on a grid.

- (a) (i) Express $x \frac{1}{2x^2}$ as a single fraction.
 - (ii) Hence use the graph to obtain, to one significant figure, an estimate for the value of $\sqrt[3]{0.5}$

(3)

(b) By drawing a suitable straight line on the grid, find an estimate to 2 significant figures, for the root of the equation

$$4 - 2x + \frac{1}{2x^2} = 0$$

in the interval $0.4 \leqslant x \leqslant 5$

(3)

Question 4 continued	
	(Total for Question 4 is 6 marks)

- **5** (a) (i) Find $\int \left(3 x + \frac{1}{x^3}\right) dx$
 - (ii) Hence evaluate $\int_{1}^{2} \left(3 x + \frac{1}{x^{3}}\right) dx$

(4)

- (b) (i) Find $\int 6 \sin 3x \, dx$
 - (ii) Hence evaluate $\int_{\frac{\pi}{9}}^{\frac{\pi}{6}} 6 \sin 3x \, dx$

-	4.5
- (/I \
·	┱,

- 6 The curve C has equation $y = \frac{2x-4}{x-3}$ $x \neq 3$
 - (a) Write down an equation of the asymptote to C which is parallel to
 - (i) the x-axis,
- (ii) the y-axis.

(2)

- (b) Find the coordinates of the point where C crosses
 - (i) the x-axis,
- (ii) the y-axis.

(2)

(c) Sketch C, showing clearly the asymptotes and the coordinates of the points where C crosses the coordinate axes.

(3)

Question 6 continued

Question 6 continued	

Question 6 continued	
	(Total for Question 6 is 7 marks)

7	A particle P moves along the x-axis so that at time t seconds, $t \ge 0$, the velocity of P, v m/s, is given by $v = 5\cos 2t$	
	(a) Find the value of t when P first comes to instantaneous rest.	(2)
	(b) Find the magnitude of the maximum acceleration of <i>P</i> .	(3)
	When $t = 0$, P is at the point A, where $OA = 0.2 \text{m}$.	
	When P first comes to instantaneous rest, P is at the point B .	
	(c) Find the distance <i>OB</i> .	(4)
		(4)

Question 7 continued	

(Total for Question 7 is 9 marks)

8	The line <i>l</i> has equation $y + 7x = 15$ and the curve <i>C</i> has equation $y = x^2 - 6x + 9$						
	(a) Use algebra to find the coordinates of the points where l intersects C .	(5)					
	(b) Use algebraic integration to find the exact area of the finite region bounded by l and						
	(b) Ose algebraic integration to find the exact area of the finite region bounded by t and	(5)					

Question 8 continued	

Question 8 continued	
	(Total for Question 8 is 10 marks)

9	The 4th term of an arithmetic series is 108 and the 11th term is 80 Find (a) (i) the common difference of the series,	
	(ii) the first term of the series.	(4)
	The sum of the first n terms of the series is S_n (b) Show that $S_n = 2n(61 - n)$	(3)
	Given that $S_n = 1100$ (c) find the two possible values of n .	(4)

Question 9 continued		

Question 9 continued

10 The points A, B, C and D are such that

$$\overrightarrow{AB} = 5\mathbf{i} + 5\mathbf{j}$$
 $\overrightarrow{AC} = -2\mathbf{i} + 15\mathbf{j}$ $\overrightarrow{AD} = -7\mathbf{i} + 10\mathbf{j}$

- (a) (i) Find \overrightarrow{DC} as a simplified expression in terms of i and j.
 - (ii) Hence show that ABCD is a parallelogram.

(4)

(b) Find a unit vector parallel to \overrightarrow{BD} as a simplified expression in terms of **i** and **j**.

(4)

The point E lies on BD and BE:ED = 3:10

(c) Find \overrightarrow{AE} as a simplified expression in terms of **i** and **j**.

(2)

The point F is such that DCF and AEF are both straight lines.

(d) Find DC:CF

	m	. в	
	Ų.J		
٧.	_	1	

√	
ľ	
y/	
ŀ	
:/	
۴.	٠
٠,	
ĸ	
ď.	
Λ	
12	×
1)	K
<	
-	Z
v	
5	
۲.	
٠)	K
к	٠
٠.	
K	
1	
iv/	
K	
٣.	
	K
Ś	ď
\sim	J
•	
\times	١.
í2	K
Κ.	1
r)	K
ĸ.	
r\	e
Z	Ç
" X	
×	
9	K
K	,
r	K
٧.	į
X	
X	
v	
0	Κ
O	K
ĸ.	
×	
×	
×	
K.	
O	K
0	
Z.	
×	į
×	
V	
C	K
0	Κ
Ø.	
×	į
×	
S	
8	2
8	2
	2
	2
	2 X X X
	2 < < < < <
	\ < < < < <
	\ < < < < <
	~ < < < < < < <
	~ < < < < < < < < <
	~ < < < < < < < < < <
	~ < < < < < < < < < < < <
	~ < < < < < < < < < < < <
	~ < < < < < < < < < < < < < <
	~ < < < < < < < < < < < < < < < < < < <
	~ < < < < < < < < < < < < < < < < < < <
	~ < < < < < < < < < < < < < < < < < < <
	~ < < < < < < < < < < < < < < < < < < <
	~~~~~~~~~~~~~~~~~



Question 10 continued	

Question 10 continued	
	(Total for Question 10 is 16 marks)





Figure 3

Figure 3 shows the right pyramid ABCDE. The base of the pyramid, ABCD, is a rectangle with CD = 16x cm and AD = 12x cm. The diagonals of the base intersect at the point X. The edges EA, EB, EC and ED are all of equal length. The size of the angle between EA and the base ABCD is  $45^{\circ}$ 

Find, in terms of x,

(a) the height, EX, of the pyramid,

(3)

(b) the length of EA.

(2)

Find, in degrees to the nearest 0.1°, the size of

(c) the acute angle between the planes AEB and ABCD,

(3)

(d) the acute angle between the planes BED and AEC.

(3)

The area of triangle AED is 250 cm²

(e) Find, to 4 significant figures, the value of x.

(3)







Question 11 continued	







Question 11 continued	
	(Total for Question 11 is 14 marks)
	TOTAL FOR PAPER IS 100 MARKS