

EC4304: Forecasting Exchange Rates

Anisah ARZ Arya Ravi Lim Fang Yi Prerana Hiriyur

FC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Forecast Models

Model Selection

orecast Combinatio

Forecast Evaluat

Overview

Introduction

Forecast Models

Forecasting

Model Selection Forecast Combination

Results

Forecast Evaluation

Limitations

Conclusion

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introduction

Forecast Mod

Forecasting

Model Selection

D 1.

Forecast Evaluation

....

Introduction

The General Idea

- ► FX market is the **largest** financial market in the world (transaction volume ≈ US\$5 trillion per day)
- Including market volatility, i.e. VIX
- Our case studies: JPYUSD & EURUSD

Economic theory + Macroeconomic Data

- ► Taylor, J. B. (1993). Discretion versus Policy Rules in Practice
- Ince, O., Molodtsova, T., & Papell, D. H. (2016). Taylor rule deviations and out-of-sample exchange rate predictability.

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introduction

Forecast Mod

Model Selection

Roculte

Forecast Evaluatio

....

Random Walk

Meese & Rogoff (1983)

The paper tested the random walk against:

- 1. Flexible price (Frenkel-Bilson) monetary model
- 2. Sticky price (i.e. Dornbush-Frankel) monetary model
- 3. Hooper-Morton model

Ultimately, random walk had

- higher accuracy
- smaller forecast errors

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introductio

Forecast Models

Model Selection

Results

Forecast Evaluation

mitations

Taylor's Rule Differentials

From the original Taylor's Rule

$$i_t - i_t^* = \alpha + 1.5(\pi_t - \pi_t^*) + 0.5(y_t^g - y_t^{g^*})$$

Let $e_{t+1} = \log$ of nominal exchange rate

Modified Taylor's Rule

$$\Delta e_{t+1} = e_{t+1} - e_t = \beta_0 + \beta_1 \pi_t + \beta_2 \pi_t^* + \beta_3 y_t^g + \beta_4 y_t^{g*} + \varepsilon_t$$

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introduction

Forecast Models

Horecasting
Model Selection

Results

Forecast Evaluation

mitations

Taylor's Rule Differentials + VIX

Incorporating the VIX

VIX: Market volatility implied by 30 day S&P 500 call options

- Positive relationship between VIX and USD/G10 Volatility (Lequeux & Menon, 2010)
- Taylor's Rule does not fully capture the short run fluctuations in exchange rate

Final potential model equation

$$\Delta e_{t+1} = \beta_0 + \beta_1 \pi_t + \beta_2 \pi_t^* + \beta_3 y_t^g + \beta_4 y_t^{g*} + \Delta VIX_t + \varepsilon_t$$

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introduction

Forecast Models

Forecasting

Forecast Combination

Results

Forecast Evaluation

nitations

Checking for Serial Autocorrelation

Ljung-Box Q Test

Model	Q-statistic	White Noise - Y/N?
Taylor's rule (TR)	0.001	N
$TR + 1 \ lag\ of\ VIX$	0.017	N
TR + 2 lags of VIX	0.018	N
$TR + 3 \ lags \ of \ VIX$	0.033	N

Implications

- Errors of all potential models are serially correlated
 - All further testing on potential models must take this into account

FC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

IIIIIOGUCLIOII

Forecast Models

Orecasting

Model Selection

orecast Combination

orecast Evaluation

. . .

Granger Causality Test

We conducted the Granger Causality Test on the **individual** components of our model: variables* in Taylor's rule fundamentals, and lags of VIX

Model	F-statistic	Granger causes - Y/N?
Taylor's rule	3.150	Y**
1 lag of VIX	5.090	Y**
2 lags of VIX	2.810	Y*
3 lags of VIX	1.910	N
Note:	*n<	<0.1 · ** n < 0.05 · *** n < 0.01

ivole.

FC4304

Anisah ARZ. Arya Ravi, Lim Fang Yi, Prerana Hirivur

Model Selection

Predictive Least Squares

PLS instead of AIC/BIC

- ▶ Dependent variable of random walk model versus other potential models are **different**, i.e. Δe_{t+1} vs. s_{t+1}
- Uncomparable using AIC/BIC

PLS results

Random Walk	TR	TR+1 lag of VIX	TR+2 lags of VIX
1.948	2.103	2.081	2.042

- Random walk has the lowest PLS, closely followed by TR + 2 lags of VIX model
 - ► Choose TR + 2 lags of VIX model?
 - ► Not yet

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introduc

Forecast Models

Model Selection

Forecast Combin

Results

rorecast Evaluation

Forecast Combination

Granger-Ramanathan (GR)

Using GR forecast regression to compute **optimal weights** for the best forecast combination that minimises error

Reasons for choosing GR method

- Biased forecasts due to correlated error terms
- Correlated forecasts due to common Taylor's Rule variables
- Only requires forecasted values, no model specification

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introduction

Forecast Models

Model Selection
Forecast Combination

Results

Forecast Evaluation

Granger-Ramanathan Forecast Regression

Begin with forecasts from all models

Constrained linear regression Number of obs = 53 Root MSE = 1.9076

(1) f_rw_jpy + trhat_exrate + vix1hat_exrate + vix2hat_exrate = 1

jpy_exrate~a	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
f_rw_jpy	. 6683863	.2320901	2.88	0.006	.2019838	1.134789
trhat exrate	5854611	.6788259	-0.86	0.393	-1.949613	.7786905
vix1hat_ex~e	-2.149703	1.639661	-1.31	0.196	-5.444725	1.145319
vix2hat ex~e	3.066778	1.666938	1.84	0.072	2830586	6.416615
_cons	.1677078	.2650085	0.63	0.530	3648468	.7002623

After dropping forecasts with negative coefficients...

Constrained linear regression Number of obs = 5 Root MSE = 1.925

(1) f_rw_jpy + vix2hat_exrate = 1

jpy_exrate~a	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
f_rw_jpy	.6219672	.226671	2.74	0.008	.1669062	1.077028
vix2hat_ex~e	.3780328	.226671	1.67	0.101	0770281	.8330938
_cons	.1847676	.2672215	0.69	0.492	3517019	.7212372

FC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

IIILIOUUCLIOII

Forecast Models

Forecasting
Model Selection

Forecast Combination

orecast Evaluat

Out of Sample Forecasts

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

FC4304

introduction

Forecast Models

Model Selection

Results

Forecast Evaluation

mitations

Conclusion

Components of OOS Forecast for JPYUSD

- ▶ Model: Taylor's Rule with 2 lags of VIX
- ► Forecast horizon: 1-month ahead, 6-month ahead and 12-month ahead forecasts from 2014m5 to 2018m8
- ▶ Forecasted variable: 1 period log differential of exchange rate (Δe_{t+1}) (later transformed)
- **Estimation window**: Rolling, with 157 observations

Out of Sample Forecasts

Figure: 1-month ahead direct forecasts of log differentials (Δe_{t+1})

FC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hirivur

Introduction

Forecast Models

Forecasting

Forecast Combination

Results

Forecast Evaluation

imitations

Out of Sample Forecasts (transformed)

Using observed previous period values,

Figure: Transformed exchange rate forecasts

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introdu

Forecast Mode

Forecasting

Forecast Combination

Results

orecast Evaluation

mitations

Mean Squared Errors

Reasons for using Mean Squared Errors

- Mean Error and Mean Absolute Error do not reflect error variance
- ► MSE is a more complete measure of forecast accuracy that incorporates both mean error and error variance.

Transformed forecasts

- Comparing forecasted and actual exchange rate, calculate squared loss and MSE
- Only comparing 1-month ahead direct forecasts as uncertainty increases with forecast horizons.

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

....

Forecast Models

Model Selection

Results

Forecast Evaluation

Comparing MSE

Currency Pair	JPYUSD	EURUSD
Random Walk MSE	6.566	0.0002903
Chosen Model MSE	10.300	0.0003060
Difference	-3.734	-0.000157

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

IIIIIOGGCCIOII

Forecast Models

Model Selection

esults

Forecast Evaluation

nitations

Diebold Mariano Test

$$d_t = L(e_{t+h|h}^1) - L(e_{t+h|h}^2)$$

Set Up

- First model: Random walk; Second model: Chosen model
- Negative difference means that random walk model has lower MSE and is thus more accurate

T-test

- Using robust errors
- Due to small POOS window, do the small sample correction

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introduction

Forecast Models

Model Selection

Results

Forecast Evaluation

mitations

Diebold Mariano Test

Currency Pair	JPYUSD	EURUSD
Ljung-Box Q-Stat P-Value	0.4599	0.4239
DM test coeff.	-3.736	-0.0000157
Q-stat	0.012	0.363
Q-stat with sample-size correction	0.013	0.581
Is the difference significant?	Y	N

Interpretation

- ▶ JPYUSD: Random walk is conclusively **better** at predictive movements
- ► EURUSD: Random walk and chosen model are **not** significantly different in predictive power

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hirivur

ntroduction

orecast Models

lodel Selection

odel Selection recast Combinati

esults

Forecast Evaluation

imitations

Limitations

In the methodology

- ► Using Germany as a proxy good enough to model effects of Euro?
- Analysis with more currency pairs
- Frequency of data for forecasting

In the datasets

- Granger Causality tests performed on in-sample observations may not hold in OOS observations
- PLS is highly sensitive to number of observations used in estimating the forecast model, tends to overestimate MSFE and tends to be over-parsimonious

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introduc

Forecast Models

Model Selection

Results

Forecast Evaluation

Limitations

Conclusion

- Random walk is conclusively better than any Taylor Rule and Taylor Rule+VIX model in forecating movements of JPYUSD
- Results of DM test could not conclusively determine random walk to be significantly better our chosen Taylor Rule with 1 lag of VIX model
- Potential area for future study: Incorporating VIX into a forecasting model could beat the random walk model with other "safe-haven" currency pairs such as USDCHF and AUDJPY

EC4304

Anisah ARZ, Arya Ravi, Lim Fang Yi, Prerana Hiriyur

Introduction

Forecast Models

Model Selection

Results

Forecast Evaluation

mitations