20071128023

THE CONCEPT OF PSEUDO-STANDARDIZED VARIABLES AND ITS USE AS ELEMENTS OF SHAPE OPERATORS

WALODDI WEIBULL 1012 LAUSANNE SWITZERLAND

TECHNICAL REPORT AFML-TR-73-98

JULY 1973

Approved for public release; distribution unlimited.

AIR FORCE MATERIALS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/2 August 1973 - 250

THE CONCEPT OF PSEUDO-STANDARDIZED VARIABLES AND ITS USE AS ELEMENTS OF SHAPE OPERATORS

WALODDI WEIBULL

Approved for public release; distribution unlimited.

FOREWORD

The research work reported herein was conducted by Prof. Dr. Waloddi Weibull, Chemin Fontanettaz 15, 1012 Lasusanne, Switzerland under USAF Contract No. F44620-72-C-0028. This contract, which was initiated under Project No. 7351, 'Metallic Materials', Task 735106, 'Behavior of Metals', was administered by the European Office, Office of Aerospace Research. The work was monitored by the Metals and Ceramics Division, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, under the direction of Mr. W. J. Trapp, AFML/LL.

This report covers work conducted during the period 1 February 1971 to May 1972. The manuscript wa submitted by the author for publication in June 1972.

This technical report has been reviewed and is approved.

Actg Asst for Reliability
Metals and Ceramics Division
Air Force Materials Laboratory

ABSTRACT

The concept of pseudo-standardized variable is explained and the fundamental properties of this variable are indicated. Its most important property of being scale and location invariant makes it useful as elements of shape operators, and its space being equal to the closed interval (0,1) has practical advantages.

Four types of shape operators are defined and examined. Twenty-five tables which simplify their practical applications have been prepared and are presented. Two examples concerning data of rotating beam fatigue performance illustrate the different numerical procedures.

TABLE OF CONTENTS

Page

Section

T	Introduction	1
II	Fundamental properties of the pseudo- standardized variable	2
III	Four types of shape operators	
	3.1 The operator T(j,k,N)	3
	3.2 The operator ST(j,k,N)	4
	3.3 The operator TI	5
	3.4 The operator VJ	6
IV	Numerical examples	6
Reference	ces	7
	LIST OF ILLUSTRATIONS	
Figure		Page
1	Expected values \overline{t}_i for $N = 9$; $\alpha = 1.0$; 0.01; 0	8
2	Expected values \overline{t} for N = 10; α = 1.0;0.9; 0.7;0.5;0.3;0.1;0.01; \overline{t} 0 and percentiles $t_{\overline{P}}$ for α = 1.0; P = 5% and α = 0.01; P = 95%	9
3	Percentiles t_{PO} of orders 5% and 95% for $N = 9$; $\alpha = 1.0$; 0.01; PO	10
4	Percentiles t_P of orders 5% and 95% for N = 10; $\alpha = 1.0; 0.01; 0^P$	11
5	Rejection regions of the operator TI for $N=9$, 10, and 20	12

LIST OF TABLES

Table		Page
I	Test level matrix of the statistic [T1(2,9,10) + T1(2,5,10)]	13
II	Test level matrix of the statistic [T(.01)(2,9,10) + T(.01)(2,5,10)]	14
III	Test level matrix of $[T0(2,9,10) + T0(2,5,10)]$	15
IV	Test level matrix of [T1(2,10,20) + T1(11,19,20)]	16
V	Test level matrix of [T(.01)(2,10,20) + T(.01)(11,19,20)]	16
VI	Test level matrix of [TO(2,10,20) + TO(11,19,20)]	17
VII	Expected values and variances of the pseudo-standar-dized order statistics t_i ; $N = 9$, $\alpha = 1.0$; 0.01; 0	18
IIX	Expected values and variances of the pseudo-standar-dized order statistics t_i ; $N = 10$; $\alpha = 1.0; 0.9; 0.7; 0.5; 0.3; 0.1; 0.01; 0i$	18
IX	Expected values and variances of the pseudo-standar-dized order statistics t_i ; N = 19; α = 1.0;0.01;0	19
X	Expected values and variances of the pseudo-standar-dized order statistics t_i ; $N = 20$; $\alpha = 1.0$; 0.9 ; 0.7 ; 0.5 ; 0.3 ; 0.1 ; 0.01 ; $0.$	20
XI	Expected values and variances of the pseudo-standar-dized order statistics t_i ; $N = 30$, $\alpha = 1.0;0.9;0.7;$ 0.5;0.3;0.1;0.01;0	21 - 22
XII	Test level matrix of [STOO(2,9,10) + STOO(2,5,10)]	23
XIII	Percentiles of the pseudo-standarized order statistics t_i ; $N = 9$; $\alpha = 1.0$; 0.01 ; 0.00 ; 0.00	23
XIV	Percentiles of the pseudo-standardized order statistics $t_{.}$; $N = 10$; $\alpha = 1.0$; 0.9 ; 0.7 ; 0.5 ; 0.3 ; 0.1 ; 0.0	24

LIST OF TABLES (CONCLUDED)

Tables		Page
XV	Percentiles of the pseudo-standardized order statistics t_i ; N = 19; α = 1.0;0.01;0	25
XVI	Percentiles of the pseudo-standardized order statistics t_i ; $N = 20$; $\alpha = 1.0$; 0.01 ; 0.00	26
XVII	Sampling distributions of the pseudo-standar-dized order statistics t_i ; N = 10, Weibull dbn, α = 1.0	27
XIIX	Sampling distributions of the pseudo-standar- dized order statistics t_i ; N = 10; Weibull dbn, α = 0.01	L 28
XIX	Sampling distributions of the pseudo-standar-dized order statistics t; N = 10; normal distribution	29
XX	Sampling distributions of the pseudo-standar- dized variable t; $N = 6$; $\alpha = 1.0$; 0.9 ; 0.7 ; 0.3 ; 0.1 ; 0	30
XXI	Sampling distributions of the pseudo-standar-dized variable t; $N = 10$; $\alpha = 1.0$; 0.9 ; 0.7 ; 0.5 ; 0.3 ; 0.1 ; 0.1 ; 0.1	30
XXII	Sampling distributions of the pseudo-standardized variable t; $N = 20$; $\alpha = 1.0$; 0.9 ; 0.7 ; 0.5 ; 0.3 ; 0.1 ; 0.8 ; 0.1 ; 0	31
XXIII	Percentiles of the pseudo-standardized variable t ; $N = 10$; $\alpha = 1.0$; 0.1 ; $0 \dots $	31
XXIV	Analysis of a fatigue-test sample (Item 44, Ref.3)	32
xxv	Analysis of a fatigue-test sample (Item 46, Ref.3)	33

I

INTRODUCTION

If the distribution function of the random variable x can be put in the form

$$P = F[(x - \mu)/\beta]$$
 (1)

then the variable

$$z = (x - \mu)/\beta \tag{2}$$

is called the corresponding standardized variable. Introducing (2) into (1) its distribution function becomes

$$P = F(z) \tag{3}$$

from which it immediately follows that z is both scale and location invariant, that is, the order statistics z are, for any given sample size N, uniquely determined by the function F which may or may not involve a shape parameter α .

In cases where the parameters β and μ are unknown it is possible to substitute for them the estimates $\hat{\beta}$ and $\hat{\mu}$, resulting in a random variable

$$\mathbf{z'} = (\mathbf{x} - \hat{\boldsymbol{\mu}})/\hat{\boldsymbol{\beta}} \tag{4}$$

On the condition that these estimates are unbiased, also the variable z' is both scale and location invariant.

A much simpler procedure consists in substituting x_1 for $\hat{\mu}$ and $(x_N - x_1)$ for $\hat{\beta}$, where x_1 is the smallest and x_N the largest of the order statistics of the sample $[x_1]$. We thus arrive at the random variable

$$t = (x - x_1)/(x_N - x_1)$$
 (5)

which will be called the pseudo-standardized variable. It has been found to possess some useful properties which will now be demonstrated.

FUNDAMENTAL PROPERTIES OF THE PSEUDO-STANDARDIZED VARIABLE

The most important property of the variable t is its scale and location invariance, which may be proved by introducing x from equ.(2) into (5). Then we have

$$t = (z - z_1)/(z_N - z_1)$$
 (6)

which proves the double invariance, since all z are uniquely determined by the distribution function F.

Any given sample [x] is easily transformed into a sample [t] by use of equ.(5). From this formula it follows

$$t_1 = 0$$
 ; $t_N = 1$ (7)

and the number of non-fixed elements of [t] is thus reduced to (N-2).

It is a convenient property for the writing of computer programs that all the order statistics t are finite and belong to the interval (0,1), which i simplifies the dividing of the t-space into classes.

Any operator acting upon a sample [t] constitues a shape operator, due to its invariances. Four types of operators have been thoroughly examined as will be indicated in the following. Each of them may be used for testing normality of the sample and also for testing the acceptability of any other assumed distribution function.

It should be pointed out that any such test has its individual capacity of disclosing special types of deviations of the given sample from the set of samples belonging to the assumed hypothetical sample. It has been observed that shape operators based on pseudo-standardized samples are well fitted for disclosing large outliers due to the fact that such outliers will appear as the largest order statistic x_N . From equ.(5) it is easily concluded that a too large x_N will depress all the other statistics x_N below their normal values. This behaviour is of x_N particular importance for the analysis of fatigue-test data, where large outliers are frequently observed within small samples for the reason that the sample may emanate from a two-component population.

For the practical use of these tests, numerical tables are required. So far, twenty-five such tables have been prepared and are appended. They may also contribute to a statistical description of the pseudo-standardized variable.

III

FOUR TYPES OF SHAPE OPERATORS

Each single order statistic t. may be used as a test statistic for deciding between two different assumed distribution functions or for testing the acceptability of single distributions. Even if the decision power will, in this way, be very small, it may, in many cases, be sufficient for rejecting an assumed function. (Cf.3.3)

It is a priori evident that a combination of a part or all of the order statistics t. will greatly improve the decision power. Four such possibilities will now be demonstrated.

3.1 The operator T(j,k,N)

The most simple procedure of combining the order statistics consists in summing all or some of them. This sum will be denoted by

$$T(j,k,N) = \sum_{i=j}^{k} t_i/(k-j+1)$$
(8)

It may be considered an operator. If applied to a given sample [t,] it yields a test value. Let the hypothetical population be denoted by R. We now have to generate a large number of random samples from this population, transform them into [t,] samples and let the operator T(j,k,N) act upon them. The result is a large number of values which may be considered to be random points of the test statistic, which is denoted by TR(j,k,N). All those values which are equal to the test value are counted. If the number is zero or small, the hypothetical distribution function will be rejected.

So far, this procedure has been applied to the Weibull distribution with $\alpha=1.0$, 0.9, 0.7, 0.5, 0.3, 0.1, 0.01. These populations are symbolized by $R=\alpha$. It has also been applied to the normal distribution, which is symbolized by

R = 0. Thus Tl(j,k,N) and TO(j,k,N) signify the operator T(j.k.N) acting upon exponential and normal random samples, respectively.

An improvement is obtained by using two different sets of (j.k) and combining them to a bivariate test statistic. This procedure has been performed by use of an IBM 360, M75 and Program 1/71, which produces the frequency matrix, the test level distribution, and the decision power of several combinations. From these tables test-level matrices can be prepared. Some examples are presented in Table 1-6.

These matrices are very useful. Each of them provides, in fact, three different tests of acceptability, as will be demonstrated by an example. Suppose that a sample [x] of size N = 10 is given, and that its normality will be tested. After transformation into a [t.] sample two test values are computed and found to be, say, as indicated below. From Table 3 the corresponding values of Q are obtained

$$T(2,9,10) = 0.575$$
 Q = 26.1%
 $T(2,5,10) = 0.475$ Q = 11.8%
Bivariate (.575,.475)TL = 17.8%

In this table Q = 1 - P signifies the chance of finding a single value larger than the test value. Since as well too small as too large test values are undesirable, the rejection regions of the univariate statistics will be defined by Q > 97.5% and Q < 2.5%, while that of the bivariate statistic by TL < 5% for a 5% level of significance. From the tables it is found that these rejection regions do not coincide. In view of the fact that the bivariate test statistic provides more information, the rejection will be based on its test levels.

3.2 The operator ST(j,k,N)

Another way of combining the order statistics t. consists in summing the squared deviations from the expected values \overline{t}_i . The test operator thus becomes $ST(j,k,N) = \sum_{i=j}^{k} (t_i - \overline{t}_i)^2$

$$ST(j,k,N) = \sum_{i=j}^{k} (t_i - \overline{t}_i)^2$$
(9)

The expected values \overline{t}_{i} may be arbitrarily specified.

If they correspond to the population R, the operator will be denoted by TR(j,k,N), in particular the notations Tl(j,k,N) and TO(j,k,N) indicate that the expected values correspond to the exponential and the normal distributions, respectively. These operators, if acting upon random samples drawn from the population S constitute test statistics, which will be denoted by STRS(j,k,N). The decision powers are obtained by comparing the sampling dbns of STRR and STRS. The test statistics of acceptability tests are of the type STRR(j,k,N).

Also in this case, the sample may be split up into two or more parts, thus forming bi- or trivariate statistics.

Expected values \overline{t}_i and their variances can be computed by use of the Program 8/71, which produces also the sampling dbns of the order statistics t_i .

Some expected values t and their variances are listed in Tables 7-11, and a test level matrix of a bivariate test statistic in Table 12, which may be used for testing normality. In this case, the test value should be as small as possible. For this reason the rejection regions will be defined by Q < 5% and TL < 5% for a 5% level of significance. Graphs of t are shown in Fig.1 and 2. If the test values t are plotted in this graph, a preliminary selection of the distribution function can be made.

3.3 The operator TI

This operator consists in computing the percentiles t_p of the orders 5% and 95% and using them as the limits of the rejection regions. The criterion of rejection says that the hypothetical distribution function is rejected, if anyone of the elements of the sample $[t_i]$ is larger than the corresponding percentile t_i or smaller than t_i as listed in the tables.

Some percentiles are listed in Tables 13-16 and sampling dbns in Table 17-19, from which other percentiles can be determined.

Graphs of the percentiles for various sample sizes and $\alpha=1.0;0.01$ and $0(normal\ dbn)$ are shown in Figs 3 and 4. If anyone of the order statistics t_1 lies above the curve

for $\alpha=0.01$ or below that for $\alpha=1.0$ it can be concluded that the sample does belong neither to the normal nor to any Weibull dbn, which may be taken as an indication that the sample is inhomogeneous and may belong to a two-component population, which frequently occurs, when fatigue-life distributions are concerned. Some rejection regions are given in Fig.5.

3.4 The operator VJ

This operator consists in dividing the space of the pseudo-standardized variable t into r classes without common points and counting the number v of elements of the sample [t] which fall within each of the classes. The test value is defined by

$$VJ = (v_1, \dots, v_r)$$

where the class frequencies v_i may be regarded as the coordinates in the r-dimensional space of the test statistic VJ. A more detailed description and necessary tables are presented in an earlier publication. (Cf.Ref.[1].)

IV NUMERICAL EXAMPLES

The examples are taken from a very large collection of groups of fatigue-performance data compiled at the Boeing Company by Whittaker & Besuner [2].

The first example is taken from a technical note by Hardrath, Utley & Guthrie [3] on rotating beam fatigue tests of notched and unnotched 7075-T6 aluminum alloy specimens. The test data x., fatigue life in kilocycles, are listed in Table 24. This sample will be tested for normality and log-normality.

It is first transformed into a t-sample after which it is practical to start with the TI-test. Comparing the order statistics t. with the 5% percentiles in Table 14 for $\alpha=0$ we find that all t. fall below the rejection limits. Consequently, the hypothesis that the sample belongs to a normal population is strongly rejected. Furthermore, the values of t. also fall below the rejection limit corresponding to $\alpha=1.0$. Hence, it can be concluded that the sample does not belong to any Weibull population. We now take the

logarithms of x. and transform them into a new set of t. and repeat the procedure. Also the hypothesis of log-normality is strongly rejected.

If the test data x, are examined it becomes evident that the rejections are caused by the very large outlier $x_{10} = 3,318$ kc which may indicate that the sample, in this case, is drawn from a two-component population and that the outlier belongs to the second component.

The values of TX(2,5,10) and TX(2,9,10), defined by equ.8, and STOX(2,5,10) and STOX(2,9,10), defined by equ.9, are now computed. The corresponding values of Q and TL can be read from Tables 3 and 12. Both normality and log-normality are rejected also by all the tests.

Finally, the test value VJX is determined by use of the class limits t = 0;0.250;0.375;0.500;1.0 and the test levels TL are taken from Table 7 in Ref.[1]. Both hypotheses are strongly rejected.

The second example is also taken from the Boeing Collection. The procedure indicated above is repeated, this time with a positive result, as demonstrated in Table 25.

REFERENCES

- 1. Weibull, W. "A new test operator, VJ, based on class frequencies." AFML-TR-73-97, May 1973.
- 2. Whittaker, J.C., Besuner, P.M. "A reliability analysis approach to fatigue life variability of aircraft structures." AFML-TR-68-65. April 1969.
- 3. Hardrath, H.F., Utley, E.C., and Guthrie, D.E. "Rotating beam fatigue tests of notched and unnotched 7075-T6 aluminum alloy specimens under stresses of constant and varying amplitudes." NASA TN D-210, Dec. 1959.

Fig. 5 Rejection regions of the operator TI

Table I. Test level matrix of the statistic [T1(2,9,10) + T1(2,5,10)]

T12	.025	.050	.075	.100	.125	.150	.175	.200	.225	Q ₁
.075	5.6	8.2	-	-	-	-	-	_	-	99.6
.100	13.2	27.3	3.2	-	-	-	-	_	-	98.4
.125	8.7	48.7	25.3	-	-	-	-	-	-	96.3
.150	10.7	63.4	43.8	13.5	-	-	-	-	-	92.9
.175	11.0	55.7	74.4	31.9	6.8	-	-	_	-	88.2
.200	7.6	52.8	92.1	68.5	24.7	-	-	_	-	81.7
.225	4.8	42.6	97.2	85.0	45.0	14.6	3.7	-	-	73.8
.250	3.2	33.6	78.5	100.0	72.4	33.6	11.6	_	-	65.0
.275	-	25.9	66.7	94.6	87.3	51.4	21.2	3.7	-	55.9
.300	-	11.6	41.4	80.6	89.6	63.4	36.2	16.3	4.5	46.8
.325	-	7.2	24.7	60.1	82.8	78.5	57.2	30.3	6.8	37.8
.350	-	4.5	16.3	34.4	55.7	70.5	65.0	30.3	16.3	29.9
.376	-	-	12.2	22.3	39.2	58.6	51.4	40.3	19.6	23.1
.400	_	-	3.7	12.2	21.2	38.2	47.4	46.2	35.3	17.0
.425	-	-	-	3.2	12.8	22.3	31.1	37.2	28.8	12.4
.450	-	-	-	2.4	4.1	14.2	17.6	28.0	26.6	8.7
.475	-	-	-	-	-	2.1	10.2	19.6	18.1	5.7
_500		_		_	-	_	4.8	7.2	10.2	3.8
.525	1	_	-	-		_	_	2.8	3.7	2.4
Q ₂	98.2	88.3	73.0	56.9	42.6	30.9	21.7	14.7	10.3	-

T1Z	.250	.2 75	.300	. 325	. 350	• 375	. 400	. 425	Q ₁	
.325	2.1	-	-	-	-	-	-	-	37.8	
.350	8.2	-	-	-	-	-	-	-	29.9	
.375	14.2	2.4	-	-	-	-	-	_	23.1	
.400	17.6	6.8	2.8	-	-	-	-	-	17.0	
.425	22.9	12.8	5.1	-	-	-	-	_	12.4	
.450	24.7	17.6	5.1	2.1	-	-	-	-	8.7	
.475	19.6	20.1	10.2	6.1	2.1	-	-	-	5.7	
.500	9.4	15.0	10.7	8.2	4.5	-	-	-	3.8	
.525	8.9	9.4	8.7	7.6	4.1	2.4	-	-	2.4	
.550	-	6.8	5.6	6.1	4.1	3.7	-	-	1.5	
•575	-	2.8		5.6	6.1	3.2	2.1	-	0.8	
.600	-	-	_	-	_	2.8	2.1	2.1	0.4	
Q ₂	6.9	4.4	3.0	2.0	1.2	0.7	0.5	0.3	-	

Empty classes indicate a TL <2%

Table II. Test level matrix of the statistic [T(.01)(2,9,10) + T(.01)(2,5,10)]

T1Z	.10	.15	.20	.25	.30	.35	. 40	• 45	Q ₁
.30	2.0	2.5	-	-	-	-	-	-	99.4
.35	1.3	5.2	9.5	1.6	-	-	-	-	98.0
. 40	1.4	7.2	15.4	13.2	4.7		-	-	94.8
. 45	-	3.9	17.8	41.1	12.4	6.1	-	-	88.0
.50	-	1.1	10.1	33.4	60.0	35.9	12.3	-	77.8
•55	-	-	-	11.5	49.6	73.3	56.3	14.3	64.6
.60	-	-	-	-	10.8	52.7	88.6	83.4	48.9
.65	-	_	-	-	-	4.3	16.5	78.3	33.6
.70	-	-	-	-	-	-	-	16.5	19.1
Q ₂	99.3	97.5	94.7	86.7	77.1	65.9	54.1	41.8	-

T ₁ T ₂	.50	•55	.60	.65	.70	•75	.80	.85	^Q 1
.60 .65	20.6 94.0 64.1 2.8	1.1 28.7 100.0 24.4	1.8 49.6 68.6	3.5	- - 5.6	-	-	-	48.9 33.6 19.1 9.0
.75 .80	-	-	6.7	43.9	38.4	8.9	8.3	-	3.1
•90	-	-	-	-		-	3.2	2.3	0.0
g ^S	30.4	20.2	12.1	6.6	3.1	1.2	0.3	0.0	-

Empty classes indicate a TL <1%

Table III. Test level matrix of [T0(2,9,10) + T0(2,5,10)]

T1	.075	.100	.125	.150	.175	.200	.225	.250	.275	.300	. 325	. 350	. 375	Q_1
.200	3.0	-	-	-	-	-	-	-	_	-	-	-	-	99.8
.225	2.5	3.0	2.5	-	-	-	_	-	-	-	-	-	-	99.5
.250	4.0	6.0	6.4	-	-	-	-	-	-	-	-	-	-	99.0
.275	-		11.3	8.5	6.0	-	-	-	_	-	-	-	-	98.1
.300	4.0				16.8		-	-	_	-	-	-	-	96.5
.325	_				26.0				-	_	_	-	-	94.0
.350	-							12.6		_	-	-	-	90.7
. 375	-	4.4	15.8	20.9	40.4	56.8	38.3	34.3	14.9	4.0	-	-	-	86.4
.400	-	-								17.5	2.5	-	-	80.9
.425	_	-	6.4	14.9		52.1	65.4	80.7	61.0	31.1	16.4	-	-	74.4
.450	-	-	-	7.6	19.7	49.3				63.2			6.0	
•475	-	-	_	4.0	11.3	19.7				96.7				
.500	-	-	-	-	-	9.9		53.0	80.7	100.0	98.3	75.3	46.3	49.6
.525	-	-	-	-	-	-	9.5	25.5	41.9	86.2	80.7	95.1	70.2	41.5
.550	-	-	-	-	-	-	4.9	10.4	26.5	30.5				
•575	-	-	-	-	-	-	-	-	9.5	20.9	32.4	59.9	83.4	26.1
.600	-	-	-	-	_	-	-	-	-	5.3	11.3	34.9	56.8	19.5
.625	-	-	-	-	-	-	-	-	-	-	4.4	6.0	23.1	14.1
.650	_	_	_	_	-	-	-	-	_		_	_	6.9	9.4
Q ₂	99.4	98.2	96.1	93.0	88.6	82.5	75.7	68.4	60.7	52.6	45.3	38.1	31.2	-

T12	. 400	. 425	. 450	• 475	.500	.525	.550	•575	.600	.625	.650	.675	.700	Q ₁
• 475	7.9	-	-	-	_	_	-	-	-	-	-	-	-	58.6
.500	23.1	4.0	-	-	-	-	-	_	-	-	-	-	-	49.6
.525	44.1	14.0	4.9	_	-	_	_	-	-	-	-	-	-	41.5
.550	62.0	47.9	11.6	4.9	-	-	-	-	-	-	-	-	-	33.7
-575	86.2	76.6	42.6	17.8	3.2	-	-	-	-	-	-	-	-	26.1
.600	82.0	72.7	52.1	34.3	14.0	4.9	-	-	_	-	-	-	-	19.5
.625	44.1			38.3		9.5	5.3	-	-	-	-	-	-	14.1
.650	11.3	23.1	40.4	58.9	53.9	46.3	12.6	6.0	-	-	-	-	-	9.4
.675	-	2.5	13.2	24.0			30.5		2.5	-	-	-	-	6.2
.700	-	-	3.0	9.9	18.9	28.1		21.3	7.6	-	-	-	-	3.6
.725	-	-	-	-	2.5	9.5	18.9	20.1	14.0	8.5	4.0	-	-	2.0
.750	-	-	-	-	-	-	3.2	5.3	10.1	9.5	6.4	2.5	-	1.1
.775	-	_	-	-	-	-	-	-	3.0	6.9	7.6	3.0	-	0.5
.800	_	-	-	-	-	_	-	-	-	-	_	3.0	4.4	0.2
Q ₂	24.9	19.6	15.3	11.8	8.7	6.1	3.0	2.6	1.8	1.2	0.7	0.4	0.2	_

Empty classes indicate a TL < 2 %

Table IV. Test level matrix of [T1(2,10,20)++ T1(11,19,20)]

$T_1^T_2$.150	.175	. 200	.225	.250	.275	.300	. 325	.350	• 375	. 400	. 425	. 450	Q ₁
.025												-		99.2
.050	6.3	13.7	29.1	28.2	52.1	34.3	40.1	46.3	31.1	26.6	25.8	10.5	12.5	88.2
.075	-	5.0	10.3	11.3	43.8	68.1	86.0	94.1	96.9	76.5	81.2	72.2	55.3	64.6
.100	-	-	-	4.2	7.4	16.9	40.1	55.3	83.5	78.8	88.6	100.0	91.3	39.9
.125	-	-	_	-	-	3.5	8.6	15.0	19.0	37.7	52.1	60.6	70.1	22.3
.150	-	-	-	-	-	-	-	-	5.9	8.6	15.0	20.8	34.3	11.3
.175	-	-	-	-	-	-	-	-	-	-	4.2	5.9	9.4	5.3
Q ₂	99.6	99.0	97.6	96.2	93.2	89.6	84.4	78.2	71.2	64.4	56.7	48.6	40.6	_

T ₁ Z	.475	.500	.525	•550	•575	.600	.625	.650	.675	.700	.725	750	Q ₁	
.050	5.9	3.5	3.5	-	-	-	-	-	-	-	-	-	88.2	
.075	46.3	28.2	19.0	10.9	7.4	-	-	-	-	-	-	-	64.6	
.100	64.2	62.4	60.6	41.3	16.9	15.0	6.3	5.9	-	-	-	-	39.9	
.125	74.3	66.1	60.6	37.7	31.1	24.2	13.7	17.9	-	-	-	_	22.3	
.150	34.3	47.7	49.1	37.7	43.8	23.5	19.5	17.9	4.2	7.4	-	-	11.3	
.175	16.9	15.5	23.5	25.8	21.4	20.1	11.7	22.5	10.3	3.5	5.9	_	5.3	
.200	2.1	7.4	8.6	12.5	10.9	13.7	8.8	8.6	5.0	5.0	4.2	3.5	2.4]
.225	-	-	-	9.4	-	7.4	8.6	4.2	3.5	_	4.2	-	1.1	
.250	-	-	-	3.5	-	-	_	3.5	-	3.5	-	-	0.6	
.275	_	-	_	-	_	-	_	_	-	-	_	3.5	0.2	
Q ₂	33.5	26.8	20.2	14.8	10.8	7.5	5.4	3.0	1.9	1.0	0.4	0.1	_	

Empty classes indicate a TL < 2 %

Table v. Test level matrix of [T(.01)(2,10,20) + T(.01)(11,19,20)]

T12	.600	.650	.700	.750	.800	.850	.900	•950	Q ₁	
.200	-	3.2	-	-	_	_	_	-	98.9	
.250	4.2	5.6	10.2	7.7	3.2	-	_	-	96.5	
.300	5.1	15.6	23.7	20.4	16.7	2.2	-	-	90.7	
.350	-	11.8	29.9	53.0	40.0	15.6	2.4	-	80.0	
.400	-	6.6	25.7	68.1	77.4	37.2	8.9	-	65.4	
.450	-	-	15.6	49.5	88.1	72.7	19.0	-	49.7	
.500	-	-	4.2	32.0	94.0	100.0	34.5	3.2	32.6	
•550	-	-	-	6.6	64.1	82.0	43.0	3.5	19.7	
.600	-	-	-	-	17.7	56.7	60.4	8.3	10.6	
.650	-	_	-	_	-	23.7	46.1	12.7	4.7	
.700	-	-	-	-		7.7	29.9	10.9	1.3	
.750	_	_	-	_	-	_	4.6	9.5	0.2	
Q ₂	98.3	95.0	87.1	71.6	46.4	20.7	3.8	0.0	-	

Empty classes indicate a TL < 2 %

Table VI. Test level matrix of [TO(2,10,20) + TO(11,19,20)]

T1Z	.400	.425	. 450	• 475	.500	.525	.550	•575	.600	.625	.650	Q ₁
.125	-	4.5	-	3.0	-	4.5	3.0	-	-	3.0	-	99.4
.150	-	4.5	3.0	5.5	7.4	8.7	6.4			3.0	4.5	98.1
.175	4.5	4.5	5.5	8.7	4.5			12.3				95.9
.200	-	3.0	3.0	9.4	12.9	26.3	36.6	28.8	36.0	36.0	22.2	91.4
.225	-	_	6.4	9.4		15.6						
.250	-	-	-	4.5		23.5						
.275	-	-	-	-	6.4	21.4						
.300	-	-	-	-	-	6.4	22.2			79.5		
.325	-	-	-	-	-	-	8.7	19.8	42.8	54.4	91.9	46.3
.350	-	-	-	-	-	-	-	10.0	17.9	37.2	67.3	36.8
.375	-	-	-	-	-	-	-	-	14.0	26.8	36.0	27.9
.400	-	-	-	-	-	-	-	-	-	9.4	28.8	20.5
.425	-	-	-	-	-	-	-	-	-	-	7.4	14.3
.450	-	-	-	-	-	-	-	-	-	-	7.4	8.8
.475	-	_	_	_	_		_	_	-	-	3.0	5.5
Q 2	99.8	99.5	99.1	98.2	96.9	94.6	91.2	86.6	80.5	73.1	64.1	-

T ₁ Z	.675	.700	.725	.750	•775	.800	.825	.850	.875	.900	Q ₁
.150	-	3.0	-	-	-	-	-	-	-	-	98.1
.175	5.5	5.5	3.0	-	-	-	-	-	-	-	95.9
.200	15.6	10.9	3.0	3.0	-	-	-	-	-	-	91.4
.225	36.0	23.5	17.9	6.4	4.5	-	-	-	-	-	85.6
.250	64.1	42.8	28.8	26.3	12.3	-	4.5	-	-	-	77.3
.275	89.0	51.7	61.1	30.3	10.9	5.5	4.5	-	-	-	67.5
.300	94.9	82.1	63.1	39.3	19.4	19.4	3.0	-	-	-	57.4
.325	100.0	96.4	82.1	79.5	42.8	17.9	5.5	5.5	3.0	-	46.3
.350	89.0				56.2		10.9	-	3.0	-	36.8
.375	73.2	68.5	89.0	83.5	73.2	43.6	15.6	4.5	3.0	-	27.9
.400	36.0	52.6	69.6	73.2	75.7	51.7	17.9	17.9	6.4	-	20.5
.425	26.3	31.4	55.3	77.0	63.1	48.3	30.3	19.4	7.4	-	14.3
.450	12.3	26.3	46.7	46.7	58.1	51.7	44.3	17.9	3.0	-	8.8
. 475	3.0	9.4	15.6	21.4	37.9	31.4	28.8	17.9	8.7	4.5	5.5
.500	-	3.0	8.7	12.3	21.4	23.5	32.5	21.4	8.7	-	3.0
.525	-	-	-	4.5	14.3	10.0	12.9	10.9	4.5	-	1.8
.550	-	-	-	-	5.5	7.4	8.7	6.4	7.4	3.0	1.1
•575	-	-	-	-	-	-	4.5	10.0	5.5	4.5	0.5
.600		-	-	-	-	-	5.5	4.5	3.0	-	0.2
Q2	53.3	43.8	32.6	23.2	14.7	8.7	4.6	1.9	0.6	0.1	-

Empty classes indicate a TL < 2 %

Table VII. Expected values and variances of the pseudo-standardized order statistics t_1 ; N = 9; $\alpha = 1.0$; 0.01; 0.

	α =	1.0	α =	0.01	$\alpha = 0$		
i	- t _i	Var	ti	Var	t	Var	
2	.05266	.00329	.24945	.03055	.17978	.01820	
3	.11135	.00743	.39813	.03104	.30206	.02250	
4	.18111	.01295	.51361	.02756	.40442	.02376	
5	.26278	.01996	.60965	.02395	.50000	.02404	
6	.36378	.02862	.69689	.01951	.59558	.02376	
7	.49258	.03901	.78335	.01551	.69794	.02250	
8	.67419	.04471	.87648	.01087	.82022	.01820	

Table IIX. Expected values and variances of the pseudo-standardized order statistics t_i ; N = 10; $\alpha = 1.0$; 0.9; 0.7; 0.5; 0.3; 0.1; 0.01; 0

i	$\alpha = 1$	1.0	α =	0.9	α =	0.7	$\alpha = 0.5$		
1	ti	Var	-t _i	Var	ti	Var	t _i	Var	
2	.04513	.00236	.05450	.00311	.07762	.00498	.11300	.00842	
3	.09433		.11179	.00656	.16086	.00900	.20630	.01299	
4	.14993	The second of th	.17218	.01053	.22466	.01315	.29037	.01595	
5	.21583	.01430	.24220	.01556	.30178	.01719	.37174	.01877	
6	.29320			.02166	. 38580	.02159	. 45824	.02153	
7	.38896			.02862	.48212	.02632	.55039	02426	
8	.51096			.03548	.59808	.03106		.02532	
9	.68753		.70796		.74950	.03050	.79131	.02274	

i	$\alpha = 0.3$	$\alpha = 0.1$	$\alpha = 0.01$	$\alpha = 0$
1	t _i Var	t _i Var	t _i Var	t Var
2	.15842 .01412	.21145 .02299	.23801 .02858	.16950 .01644
	.27057 .01819	.34623 .02572	.38079 .02969	.2815201991
	.36657 .01977	.44842 .02465	.48652 .02706	.37400 .02114
5	.45373 .02083	.53573 .02273	.57491 .02352	.45866 .02126
6	.53780 .02169	.61704 .02081	.65296 .01984	.54134 .02126
	.62475 .02175	.69597 .01819	.72863 .01648	.62600 .02114
	.71953 .02064	.77754 .01546	.80454 .01299	.71848 .01991
	.83236 .01167	.87145 .01126	.88718 .00937	.83050 .01644

Table IX. Expected values and variances of the pseudo-standardized order statistics t_i ; N = 19; α = 1.0; 0.01; 0.

	α =	1.0	α =	0.01	α	= 0
i	Ŧ _i	Var	- t _i	Var	Ŧ _i	Var
2	.01741	.00034	.19243	.02070	.12018	.00903
3	.03586	.00077	.30063	.02210	.19555	.01099
4	.05559	.00131	.37619	.02069	.25387	.01161
5	.07659	.00200	.43654	.01927	.30288	.01176
6	.09916	.00280	.48685	.01779	.34724	.01177
7	.12323	.00374	.53083	.01625	. 38802	.01190
7 8	.14969	.00488	.56992	.01487	. 42624	.01180
9	.17844	.00631	.60660	.01371	.46348	.01179
10	.20919	.00789	.64128	.01250	.50000	.01170
11	.24344	.00989	.67381	.01136	.53652	.01179
12	.28213	.01218	.70617	.01028	.57376	.01180
13	. 32589	.01503	.73837	.00931	.61198	.01190
14	. 37 627	.01820	.77077	.00847	.65276	.01177
15	. 43659	.02229	.80399	.00773	.69712	.01176
16	.51001	.02718	.84061	.00688	.74613	.01161
17	.60645	.03168	.88037	.00592	.80445	.01099
18	.74559	.03252	.92848	.00456	.87982	.00903

Table X. Expected values and variances of the pseudo-standar-dized order statistics t; N = 20; $\alpha = 1.0$; 0.9; 0.7; 0.5; 0.3; 0.1; 0.01; 0.

	$\alpha = 1$.0	$\alpha = 0$.9	α = 0	•7	$\alpha = 0$	•5
i	-t _i	Var	-t	Var	Ŧ	Var	t	Var
2	.01657	.00031	.02144	.00047	.03688	.00112	.06114	.00258
3	.03356	.00067	.04269	.00098	.06943	.00199	.11072	.00402
4	.05174	.00116	.06475	.00159	.10071	.00287	.15401	.00510
5	.07149	.00173	.08753	.00228	.13128	.00372	.19333	.00580
6	.09223	.00242	.11123	.00300	.16165	.00451	.23146	.00654
7	.11484	.00326	.13626	.00385	.19241	.00539	.26863	.00713
8	.13862	.00417	.16279	.00485	.22383	.00637	.30407	.00784
9	.16394	.00531	.19089	.00602	.25604	.00740	.33826	.00857
10	.19162	.00666	.22041	.00746	.28883	.00867	.37300	.00934
11	.22183	.00808	.25308	.00902	.32415	.00997	.40939	.01015
12	.25625	.00987	.28866	.01088	.36158	.01142	.44642	.01084
13	.29470	.01206	.32756	.01272	.40151	.01276	. 48585	.01165
14	.33807	.01464	.37145	.01521	.44534	.01453	.52708	.01127
15	.38864	.01769	.42048	.01771	.49312	.01618	.57296	.01383
16	.44894	.02159	.47944	.02111	.54900	.01837	.62298	.01458
17	.52230	.02623	.54986	.02467	.61399	.02044	.68125	.01552
18	.61640	.03060	.64165	.02736	.69634	.02155	.75098	.01562
19	.75401	.03043	.77269	.02726	.81003	.02028	.84496	.01396

	α = 0	.3	$\alpha = 0$.1	$\alpha = 0$.01	α = 0	
i	-ti	Var	t _i Var		ī _i	Var	-ti	Var
2	.10205	.00631	.15822	.01476	.18924	.02082	.11640	.00852
3	.17127	.00825	.25307	.01666	.29327	.02194	.19015	.01038
4	.22658	.00885	.32267	.01629	.36775	.02093	.24688	.01096
5	.27627	.00932	.38093	.01514	.42682	.01908	.29483	.01108
6	.32087	.00963	.42848	.01409	.47613	.01747	.33733	.01116
7	.36109	.00975	.47121	.01328	.51924	.01589	• 37 5 6 8	.01114
8	. 39963	.00990	.51045	.01249	.55798	.01473	.41239	.01123
9	. 43717	.01007	.54686	.01161	.59324	.01331	.44792	.01120
10	.47240	.01012	.58142	.01081	.62715	.01202	.48280	.01128
11	.50803	.01020	.61434	.01020	.65925	.01089	.51720	.01128
12	.54411	.01034	.64687	.00972	.69041	.00990	.56208	.01120
13	.58080	.01046	.67938	.00901	.72020	.00898	.58761	.01123
14	.61855	.01062	.71246	.00847	.75038	.00810	.62432	.01114
15	.66014	.01060	.74567	.00798	.78156	.00725	.66267	.01116
16	.70328	.01049	.78153	.00743	.81242	.00643	.70517	.01108
17	.75168	.01037	.82060	.00676	.84622	.00582	.75312	.01096
18	.80881	.00995	.86396	.00605	.88368	.00509	.80985	.01038
19	.88298	.00852	.91794	.00468	.93025	.00388	.88360	.00852

Table XI. Expected values and variances of the pseudo-standardized order statistics t_i ; N = 30; $\alpha = 1.0$; 0.9; 0.7; 0.5; 0.3; 0.1; 0.01; 0.

,	$\alpha = 1$.0	α = 0	.9	$\alpha = 0$	•7	α = 0	• 5
i	-ti	Var	ī,	Var	ī,	Var	Ŧ _i	Var
2	.00952	.00010	.01302	.00017	.02525	.00052	.04635	.00158
3	.01948	.00023	.02562	.00035	.04737	.00094	.08286	.00232
4.	.02971	.00037	.03811	.00053	.06767	.00130	.11322	.00285
5	.04030	.00055	.05087	.00072	.08600	.00161	.14125	.00327
6	.05156	.00075	.06343	.00095	.10482	.00192	.16685	.00360
7	.06282	.00097	.07680	.00120	.12373	.00226	.19172	.00400
8	.07475	.00123	.09053	.00148	.14152	.00258	.21528	.00431
9	.08744	.00154	.10499	.00181	.16006	.00299	.23753	.00455
10	.10038	.00187	.11981	.00217	.17860	.00332	.25986	.00483
11	.11416	.00226	.13506	.00258	.19763	.00374	.28171	.00519
12	.12848	.00268	.15058	.00300	.21644	.00411	.30312	.00546
13	.14353	.00313	.16758	.00348	.23547	.00463	.32524	.00580
14	.15940	.00368	.18472	.00402	.25516	.00513	.34748	.00620
15	.17655	.00425	.20330	.00468	.27569	.00557	.36940	.00658
16	.19482	.00491	.22247	.00544	.29688	.00614	.39104	.00695
17	.21465	.00570	.24314	.00622	.31887	.00684	.41371	.00739
18	.23526	.00658	.26482	.00700	.34192	.00754	.43633	.00784
19	.25765	.00751	.28837	.00802	.36616	.00821	.46077	.00836
20	.28142	.00854	.31408	.00913	.39216	.00900	.48609	.00868
21	.30904	.00982	.34144	.01038	.41926	.00985	.51260	.00915
22	.33796	.01115	.37174	.01180	.44896	.01083	.54085	.00967
23	.37105	.01285	.40464	.01328	.48144	.01201	.57110	.01030
24	.40872	.01473	.44265	.01516	.51684	.01312	.60376	.01090
25	. 45199	.01703	. 48547	.01727	.55830	.01426	.64041	.01144
26	.50445	.01969	.53626	.01975	.60349	.01574	.68158	.01196
27	.57100	.02316	.59684	.02197	.65857	.01722	.72914	.01244
28	.65552	.02617	.67739	.02375	.72976	.01780	.78670	.01243
29	.77763	.02592	.79053	.02267	.82820	.01612	.86430	.01111

Table XI. (Continued)

	$\alpha = 0$	•3	$\alpha = 0$,1	$\alpha = 0$.01	$\alpha = 0$	
i	$\frac{\overline{t}_{i}}{t}$	Var	Ŧ _i	Var	t i	Var	-t _i	Var
2	.08178	.00415	.13719	.01153	.16807	.01660	.09672	.00602
3	.13819	.00545	.21867	.01318	.26007	.01819	.15742	.00748
4	.18235	.00613	.27671	.01311	.32612	.01748	.20276	.00778
5	.21962	.00632	. 32399	.01261	. 37764	.01632	.24049	.00804
6	.25206	.00641	. 36325	.01198	.41920	.01508	.27329	.00800
7	.28263	.00653	. 39692	.01128	. 45566	.01390	.30315	.00796
8	.31112	.00660	. 42751	.01082	. 487 30	.01263	.33041	.00798
9	.33689	.00669	.45629	.01027	.51517	.01188	.35607	.00791
10	.36210	.00676	.48288	.00977	.54114	.01106	.37993	.00786
11	. 38589	.00672	.50733	.00930	.56542	.01026	.40314	.00779
12	.40882	.00676	.53074	.00877	.58819	.00959	. 42524	.00782
13	.43158	.00674	.55332	.00839	.60984	.00892	. 44692	.00786
14	.45401	.00687	.57419	.00797	.62951	.00831	.46800	.00788
15	. 47 67 4	.00680	.59504	.00769	.64903	.00774	.48938	.00788
16	.49858	.00692	.61558	.00736	.66814	.00735	.51062	.00788
17	.52059	.00714	.63551	.00707	.68706	.00691	.53200	.00788
18	.54353	.00731	.65546	.00688	.70533	.00659	.55308	.00786
19	.56606	.00739	.67469	.00663	.72323	.00620	.57476	.00782
20	.58926	.00757	.69490	.00639	.74154	.00579	.59686	.00779
21	.61338	.00754	.71473	.00618	.75951	.00545	.62007	.00786
22	.63848	.00762	.73512	.00596	.77792	.00505	.64393	.00791
23	.66444	.00770	.75611	.00572	.79643	.00465	.66959	.00798
24	.69250	.00778	.77840	.00560	.81585	.00437	.69685	.00796
25	.72234	.00778	.80211	.00538	.83632	.00407	.72671	.00800
26	.75707	.00782	.82682	.00506	.85851	.00369	.75951	.00804
27	.79534	.00772	.85549	.00469	.88341	.00333	.79724	.00778
28	.84171	.00749	.88847	.00430	.91079	.00292	.84258	.00748
29	.90180	.00624	.93116	.00335	.94569	.00224	.90328	.00602

Table XII. Test level matrix of [STOO(2,9,10) + STOO(2,5,10)]

T12	.005	.010	.015	.020	.025	.030	.035	.040	.045	.050	.055	Q ₁
.050	82.3	-	-	_	-	-	-	-	-	-	-	87.1
.010	100.0	54.2	-	-	-	-	-	-	-	-	-	63.2
.015	61.4	69.4	31.8	-	-	-	-	-	-	-	-	45.7
.020	39.8	47.9	43.8	18.1	-	-	_	-	_	-	-	33.6
.025	24.8	34.1	36.7	29.6	11.7	-	-	-	-	-	-	25.0
.030	17.2	23.4	26.3	27.9	21.1	5.7	-	-	-	***	-	18.8
.035	9.2	15.0	22.1	20.1	19.1	13.7	3.6	-	-	-	-	14.2
.040	6.1	12.2	12.7	16.4	16.4	11.7	9.2	2.4	-	-	-	10.8
.045	2.4	6.1	9.5	13.2	14.4	10.3	9.2	5.7	-	-	-	8.7
.050	-	3.7	7.8	9.9	8.3	10.7	7.8	5.4	2.6	-	-	6.2
.055	-	3.2	5.4	8.0	7.2	6.5	5.4	6.7	4.8	-	-	4.7
.060	-	-	3.6	6.5	4.2	7.2	4.2	4.5	4.2	3.2	-	3.6
.065	-	-	3.2	4.5	3.2	4.5	4.6	5.4	4.2	3.6	-	2.6
.070	-	-	-	3.2	2.4	2.1	2.4	3.6	-	3.6	2.6	2.0
.075	-	-	-	3.2	3.2	2.1	-	-	-	-	-	1.6
.080	-	-	-	-	-	-	-	2.6	-	-	-	1.3
Q ₂	53.3	32.8	20.0	12.4	7.5	4.6	3.0	1.8	1.3	0.9	0.7	-

Empty classes indicate a TL < 2%

Table XIII. Percentiles of the pseudo-standardized order statistics \underline{t}_i ; $\underline{N=9}$; $\alpha=1.0$; 0.01; 0.

		P = 5%			P = 50 %			P = 95%		
i	1.0					0			0	
2	.00360	.01925	.01356	.03762	.22211	.15266	.16552	.57517	.43458	
	.01058									
	.04021									
5	.07573	.33876	.24546	.23636	.62338	. 49797	•53579	.83869	.75507	
6	.12580	.44881	.33115	.33993	.71242	.59920	.68499	.89646	.83837	
	.19057									
8	.30289	.68261	.56332	.69461	.90069	.84544	.97188	.99117	.98628	

Table XIV. Percentiles of the pseudo-standardized order statistics t_i ; N = 10; $\alpha = 1.0$; 0.9; 0.7; 0.5; 0.3; 0.1; 0.01; 0

P = 5%

i	1.0	0.9	0.7	0.5	0.3	0.1	0.01	0
2	.00330	.0032	.0050	.0080	.0124	.0160	.01884	.01316
3	.00854	.0200	.0304	.0483	.0588	.0954	.10728	.07351
4	.02726	.0439	.0700	.1037	.1439	.1855	.20797	.14793
5	.06238	.0759	.1159	.1685	.2222	.2771	.30877	.22203
6	.09652	.1155	.1702	.2302	.2988	.3660	.40639	.30031
7	.14620	.1709	.2339	.3021	. 3802	.4611	.50183	. 38278
8	.21093	.2370	.3137	.3872	.4686	.5571	.60108	.46876
9	.31968	.3471	. 4307	.5146	.5916	.6727	.70971	.58974

P = 50%

i	1.0	0.9	0.7	0.5	0.3	0.1	0.01	0
2	.03440	.03607	.05765	.09118	.13688	.18669	.21031	.14563
3	.07749	.09184	.13166	.19076	.25976	.33991	. 37558	.27395
4	.12972	.15152	.20720	.27966	.36033	. 45410	. 49266	.37214
5	.19244	.22042	.28585	. 36127	. 45293	.54161	.58666	• 45957
6	.26969	.30178	.37105	. 45065	.53815	.63071	.66546	.54606
7	.36629	. 39852	. 47 380	.54923	.63129	.71289	.74186	.63466
8	.49981	.55147	.59860	.66721	.73311	.79551	.82291	.73343
9	.71135	.73320	.77489	.81936	.85852	.89651	.91026	.85707

P = 95%

i	1.0	0.9	0.7	0.5	0.3	0.1	0.01	0
2	.14050	.1630	.2193	.2917	. 3907	.5019	.56058	.41484
3	.23410	.2697	.3360	.4185	.5122	.6162	.67353	.53036
4	.33618	.3712	.4416	.5169	.6095	.7024	.74712	.62008
5	.44267	. 4787	.5415	.6150	.6969	.7613	.80582	.70133
6	.56985	.5965	.6507	.7128	.7780	.8353	.85880	.77687
7	.70420	.7302	.7636	.8075	.8562	.8926	.91000	.85549
8	.84963	.8523	.8847	.9071	.9314	.9484	.95781	.93009
9	.97339	.9749	.9811	.9831	.9878	.9907	.99209	.98746

Table XV. Percentiles of the pseudo-standardized order statistics t_i ; N = 19; $\alpha = 1.0$; 0.01; 0

i		P = 5%			P = 50 9	%		P = 95%	
	1.0	0.01	0	1.0	0.01	0	1.0	0.01	0
2	.00218	.01424			.16477			. 46935	
3	.00306	.07502	.04211			- 1 -	.08891	.56328	. 38491
4	.00509	.14488					.12529	.61700	
5	.00957	.20647				.29859			
6	.01768	.26232	.16298	.09020	. 49060			.69930	
7	.02648	.31500				. 38543			
8		.36510				. 42472			
			.28169						
10	.08853	.45236	. 32090	.19544	.65005	.50047	. 37 404	.80745	.67730
11	.10630	.49126	. 35328	.22940	.68262	.53986	.42960	.83030	.71410
12	.12692	.53204	.39482	.26755	.71494	.57722	. 487 66	.85293	.75168
13	.15054	.57062	.42157	.31070	.74742	.61131	.55150	.87521	.78937
14	.17780	.61185	.46155						
15	.21278	.65280				.70105			
	.25512					.75323			
17	. 31565	.74908	.60739	.60898	.89329	.81665	.89040	.98233	.95500
18	.41388	.81173	.68936	.77525	.94459	.89891	.98029	.99478	.98675

Table XVI. Percentiles of the pseudo-standardized order statistics t_i ; N = 20; $\alpha = 1.0$; 0.01; 0

i		P = 59	%		P = 50)%		P = 95	5%
	1.0	0.01	0	1.0	0.01	0	1.0	0.01	0
2	.0016	.0129	.0350	.0159		.0955	.0503	.4706	.2969
3	.0027	.0698	.0670	.0275	.2822	.1791	.0873	.5502	. 3783
4	.0056	.1339	.1000	.0447	.3655	.2389	.1191	.6099	.4326
5	.0148	.1994	.1350	.0641	.4267	.2893	.1491	.6558	. 4758
6	.0286	.2566	.1683	.0843	.4784	.3331	.1891	.6904	.5195
7	.0378	.3036	.2056	.1050	.5241	.3713	.2222	.7196	.5544
8	.0519	.3468	.2389	.1284	.5642	.4104	.2607	.7459	.5914
9	.0638	.3915	.2755	.1528	.6013	.4463	.2989	.7703	.6238
10	.0792	. 4345	.3073	.1804	.6351	.4819	.3432	.7932	.6578
11	.0951	. 4750	.3388	.2106	.6671	.5175	.3908	.8167	.6897
12	.1137	.5154	.3755	.2456	.6997	.5536	.4396	.8394	.7239
13	.1334	.5561	.4101	.2835	.7282	.5895	. 4987	.8592	.7612
14	.1570	.5910	.4476	.3272	.7591	.6259	.5564	.8839	.7964
15	.1893	.6264	. 4785	.3783	.7906	.6662	.6250	.9048	.8300
16	.2253	.6663	.5250	.4394	.8212	.7109	.7098	.9278	.8680
17	.2689	.7068	.5714	.5156	.8566	.7614	.7957	.9516	.9120
18	.3244	.7525	.6266	.6193	.8958	.8226	.8968	.9744	.9559
19	.4234	.8108	.7086	.7854	.9460	.9053	•9797	.9952	.9912

Table XVII. Sampling distributions of the pseudo-standardized order statistics t_i ; N = 10; Weibull dbn, $\alpha = 1.0$

t	2	3	4	5	6	7	8	9
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.02	29.280	11.924	3.608	0.745	0.141	0.005	0.000	0.000
0.04	56.129	24.611	7.974	1.780	0.326	0.009	0.000	0.000
0.06	73.750	38.351	15.305	4.525	1.091	0.181	0.006	0.000
0.08	83.686		24.956	9.156	2.740	0.637	0.066	0.000
0.10	89.241	62.805	35.379	15.245	5.345	1.429	0.248	0.016
0.12	92.663	71.983	45.418	22.316	8.807	2.639	0.596	0.058
0.14	94.956		54.560	29.972	13.036	4.352	1.124	0.142
0.16	96.498	84.496			18.037	6.624	1.869	0.304
0.18	97.540	88.472	69.680	45.441	23.727	9.449	2.887	0.561
0.20	98.255	91.459	75.612	52.636	29.811	12.761	4.183	0.907
0.24	99.105	95.437	84.471	64.888	41.784	20.577	7.554	1.815
0.28	99.593				52.735		12.071	3.103
0.32	99.845		93.915		62.765	39.087	17.994	5.007
0.36	99.928				71.385			7.456
0.40	99.963				78.474		31.372	10.472
0.44	99.986		98.611		84.179		38.329	14.037
0.48	99.998				88.484			
0.52	100.000				91.779			
0.56	-	99.990	99.765	98.672	94.489	83.097	60.873	
0.60	-	99.990	99.887	99.227	96.231	87.338	67.503	32.902
0.64	-	99.990	99.963		97.481			38.652
0.68	-	99.991			98.562			
0.72	-	99.997	99.995		99.232			
0.76	-	100.00	100.000	99.971	99.634	97.515	87.861	57.851
0.80	-	-	-	99.998	99.848	98.572	91.401	64.710
0.82	-	-	-	100.000				
0.84	-	-	-	-	99.948	99.264		71.285
0.86	-	-	-	-	99.976	99.497	95.650	74.641
0.88	-	-	-	-		99.667		78.120
0.90	-	-	-	-		99.800		
0.92	-	-	-	-	100.000			
0.94	-	-	-	-	-	99.960		
0.96	-	-	-	-	-	99.987	99.591	
0.98	-	-	-	-	-	99.995		96.238
1.00	_	_	-		-	100.00	100.00	100.000

Table XIIX. Sampling distributions of the pseudo-standardized order statistics t_i ; N = 10; Weibull dbn, $\alpha = 0.01$

i	2	3	4	5	6	7	8	9
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.02	5.308	0.385	0.012	0.004	0.000	0.000	0.000	0.000
0.04	10.609	0.838	0.027	0.012	0.000	0.000	0.000	0.000
0.06	15.753	1.617	0.097	0.026	0.000	0.000	0.000	0.000
0.08	20.768	2.772	0.256	0.037	0.000	0.000	0.000	0.000
0.10	25.771	4.334	0.527	0.057	0.003	0.000	0.000	0.000
0.12	30.644	6.252	0.949	0.120	0.009	0.000	0.000	0.000
0.14	35.181	8.458	1.562	0.249	0.017	0.000	0.000	0.000
0.16	39 • 449	10.953	2.358	0.427	0.028	0.000	0.000	0.000
0.18	43.656	13.691	3.315	0.637	0.052	0.004	0.000	0.000
0.20	47.858	16.638	4.470	0.904	0.101	0.007	0.000	0.000
0.24	55.894	23.399	7.565	1.774	0.295	0.035	0.000	0.000
0.28	63.373	30.642	11.721	3.393	0.693	0.127	0.010	0.000
0.32	70.402	38.450	16.796	5.743	1.580	0.307	0.036	0.000
0.36	76.384	46.763	23.169	9.028	2.877	0.621	0.059	0.000
0.40	81.668	54.980	30.804	13.353	4.620	1.219	0.165	0.004
0.44	85.914		38.850	19.428	7.474	2.174	0.383	0.047
0.48		70.512	47.168	26.490	11.444	3.743	0.798	0.113
0.52	92.507	77.302	56.073	34.342	17.096	6.281	1.453	0.237
0.56		83.330	64:775	43.350	24.284	10.082	2.748	0.468
0.60	96.929		73.322	53.427	32.677	15.395	4.930	0.974
0.64		92.294		63.709	42.906	22.505	8.208	1.731
0.68	99.219		87.361	73.253	54.133	31.740	13.332	3.145
0.72	99.644		92.421	81.712	65.412	43.377	21.084	5.838
0.76	99.862	98.903	96.000	89.089	75.802	55.508	30.954	10.215
0.80	99.958	99.603		94.399	85.236	67.824		16.551
0.82	99.980	99.789		96.285	89.181	73.898		20.674
	199.994		99.495	97.672	92.464	79.669		25.495
	100.000	99.974		98.614	95.093	84.959	63.774	31.154
0.88	1	99.997	99.901	99.243	97.079	89.614	71.358	37.835
0.90	1	100.000	99.969	99.657	98.455	93.433	78.577	45.623
0.92	-	-	99.996	99.888	99.318	96.306	85.289	54.367
0.94	_	-	100.000	-	99.783	98.250 99.285	91.109	64.051
0.96	_	-	_	99.998	99.961	99.688	95.244 97.809	75.113 87.413
0.98	_	_					100.00	
1.00				100.00	100.00	100.00	100.00	100.000

Table XIX. Sampling distributions of the pseudo-standardized order statistics t_i ; N = 10; normal distribution

i t	2	3	4	5	6	7	8	9
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18	0.000 7.601 15.203 22.551 29.464 36.024 42.361 48.385 53.996 59.243 64.160	0.715 1.605 3.336 5.847 8.979 12.664 16.752 21.130 25.788	0.000 0.051 0.107 0.326 0.800 1.580 2.733 4.283 6.224 8.651 11.652	0.000 0.000 0.000 0.009 0.049 0.164 0.395 0.770 1.328 2.144 3.294	0.000 0.000 0.000 0.000 0.000 0.023 0.112 0.262 0.451 0.680	0.000 0.000 0.000 0.000 0.000 0.007 0.008 0.026 0.076 0.157	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.009	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.24 0.28 0.32 0.36 0.40 0.44 0.52 0.56 0.60 0.64 0.68 0.72	72.894 80.270 86.242 90.751 94.019 96.359 97.883 98.893	40.966 51.605 61.850 70.874 78.850 85.573 90.601 94.225 96.832 98.370 99.200 99.657 99.885	18.762 26.811 36.452 46.882 57.046 66.973 75.685 82.915 89.074 93.445 96.271 98.159	6.721 11.505 17.548 25.511 34.906 45.066 55.105 65.073 74.470 82.362 88.513 93.128 96.315	1.585 3.595 6.601 10.962 16.993 24.706 33.803 43.461 53.558	0.366 0.824 1.885 3.524 6.436 10.731 16.126 23.035 31.747 41.151	0.046 0.111 0.331 0.761 1.683 3.393 5.742 9.021 13.536 19.837 27,701 36.481	0.001 0.018 0.076 0.148 0.244 0.567 1.209 2.118 3.547 5.602 8.661 12.781 18.442 25.605
0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98	-	99.998 100.000 -	99.951 99.972 99.983 99.992 99.998 100.000	99.624 99.800 99.901 99.955 99.982	97.724 98.523 99.100 99.496 99.752 99.903 99.977	90.742 93.308 95.417 97.057 98.247 99.064 99.580 99.838 99.929	72.815 77.814 82.411 86.575 90.307 93.560 96.178 97.949	45.294 50.825 56.683 62.944 69.585 76.620 84.136 92.035

Table XX. Sampling distributions of the pseudo-standardized variable $t; N = 6; \alpha = 1.0; 0.9; 0.7; 0.5; 0.3; 0.1; 0.$

t	1.0	0.9	0.7	0.5	0.3	0.1	Q
.125 .250 .375 .500 .625 .750	27.83 48.19 63.20 74.88 83.41 90.03 95.39	24.36 44.51 60.40 72.36 81.88 89.23 95.06	18.13 36.67 53.12 66.90 78.31 87.13 94.09	13.24 28.69 44.76 59.91 73.07 84.18 92.65	9.64 21.46 35.60 50.98 66.17 79.82 90.80	7.20 16.20 27.61 41.20 57.00 73.17 87.82	9.28 20.97 34.82 50.00 65.18 79.03 90.72

Table XXI. Sampling distributions of the pseudo-standardized variable $t; N = 10; \alpha = 1.0; 0.9; 0.7; 0.5; 0.3; 0.1; 0$

t	1.0	0.9	0.7	0.5	0.3	0.1	0
.090 .100 .125 .225 .250 .300 .375 .450 .500 .625	24.11 26.39 31.77 40.57 53.28 60.10 68.52 75.31 79.25 86.83 90.49	27.57 49.03 - 65.29 76.88 85.39	19.41 39.41 56.82 70.90 81.65	12.87 29.24 46.39 62.54 75.88	8.41 20.15 34.80 51.15 67.47	3.93 4.42 5.72 11.96 13.83 17.80 24.68 32.67 38.73 55.55 66.32	5.34 6.03 7.93 16.52 19.15 24.60 33.59 43.27 50.00 66.40 75.40
•750 •875	92.48 96.72	91.72 96.43	89.61 95.51	86.47 94.28	81.44	73.16 88.78	80.85 92.07

Table XXII. Sampling distributions of the pseudo-standardized variable t; N = 20; $\alpha = 1.0$; 0.9; 0.7; 0.5; 0.3; 0.1; 0.

t	1.0	0.9	0.7	0.5	0.3	0.1	0
.125 .250 .375 .500 .625 .750	36.73 59.58 74.34 83.95 90.39 94.81 97.84	31.43 54.64 70.85 81.75 89.10 94.17 97.61	20.91 43.07 61.60 75.58 85.49 92.32 96.96	12.32 29.88 48.66 65.89 79.52 89.24 95.84	6.76 18.20 33.66 51.50 69.24 83.74 93.90	3.99 10.57 20.68 35.07 53.46 73.37 90.01	6.14 16.59 31.70 50.00 68.30 83.41 93.86

Table XXIII. Percentiles of the pseudo-standardized variable t; N = 10; $\alpha = 1.0$; 0.1 and 0

P %	$\alpha = 1.0$	$\alpha = 0.1$	α = 0
12.5 25.0 37.5 50.0 62.5 75.0 87.5	.0435 .0938 .1542 .2280 .3197 .4461	.2323 .3780 .4904 .5853 .6732 .7635 .8635	.1810 .3035 .4055 .5000 .5945 .6965 .8190

Table XXIV. Analysis of a fatigue-test sample (Item 44, Ref.3)

i	x _i	t _i	TI	t _i -t _{oi}	logx	t _i	TI	t _i - t _{oi}
1 2 3 4 5 6 7 8 9	70 76 80 81 86 108 142 144 282 3318	.0018 .0031 .0034 .0049 .0117 .0222 .0228 .0653	1		4.8451 4.8808 4.9031 4.9085 4.9345 5.0334 5.1523 5.1584 5.4502 6.5209	- .0213 .0346 .0378 .0533 .1124 .1833 .1870 .3611	1 < < < < < < < < < < < < < < < < < < <	1482 2469 3662 4054 4289 4427 5315 4694
TX(Biv STC STC Biv	(2,9,10 variate)X(2,5)X(2,9 variate							

Table XXV. Analysis of a fatigue-test sample (Item 46, Ref.3)

i	x	ti	TL	t _i -t _{oi}	logx	t _i	TL	t _i - t _{oi}
1 2 3 4 5 6 7 8 9	7.1 7.4 7.8 8.0 8.4 8.7 9.6 9.6	- .1071 .2500 .3214 .4643 .5714 .6786 .8214	1 & & & & & & & & & & & & & & & & & & &	0624 0315 0526 +.0056 +.0301 +.0526 +.1029 0623	3.8513 3.8692 3.8921 3.9031 3.9243 3.9395 3.9542 3.9731 3.9823 3.9956	- .1240 .2827 .3590 .5059 .6112 .7131 .8441		0455 +.0012 0116 +.0472 +.0699 +.0871 +.1256 +.0773
TX(Biv	TX(2,5,10) = 0.2857; Q > 52.6% TX(2,9,10) = 0.5134; Q > 41.5% Bivariate TL > 49.1% STOX(2,5,10) = 0.00768; Q > 32.8% STOX(2,5,10) = 0.00583; Q > 32.8% STOX(2,9,10) = 0.02583; Q > 25.0% STOX(2,9,10) = 0.03866; Q > 10.88						Q > 37.7% FL > 30.5% 43;Q>53.3% 66;Q>10.8% TL > 6.1%	

UNCLASSIFIED	
Security Classification	
DOCUMEN	NT CONTROL DATA - R & D Individual to the control of the control
(Security classification of title, body of abstract at	2a. REPORT SECURITY CLASSIFICATION
Professor Waloddi Weibull	UNCLASSIFIED
Ch. Fontanettaz 15	26. GROUP
1012 Lausanne. Switzerland	
3. REPORT TITLE	
THE CONCEPT OF PSEUDO-STANDA OF SHAPE OPERATORS	RDIZED VARIABLE AND ITS USE AS ELEMENTS
4. DESCRIPTIVE NOTES (Type of report and inclusive date	s) ·
Waloddi Weibull	17e. TOTAL NO. OF PAGES 17b. NO. OF REFS
July 1973	33 3
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S)
F 44620-72-C-0028	
b. PROJECT NO.	AFML-TR-73-98
73510	
c. 735106	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)
d.	
10. DISTRIBUTION STATEMENT	
Approved for public releas	e; distribution unlimited
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
	Air Force Materials Laboratory (LLN)

13. ABSTRACT

The concept of pseudo-standardized variable is explained and the fundamental properties of this variable are indicated. Its most important property of being scale and location invariant makes it useful as elements of shape operators, and its space being equal to the closed interval (0,1) has practical advantages.

Four types of shape operators are defined and examined. Twenty-five tables which simplify their practical applications have been prepared and are presented. Two examples concerning data of rotating beam fatigue performance illustrate the different numerical procedures.

Wright-Patterson AFB, Ohio 45433

UNCLASSIFIED

	LIN	LINK A		LINK B		LINKC	
KEY WORDS	ROLE	WT	ROLE	WT	ROLE	WT	
Shape Operators			1				
onape operators							
Statistics							
	1						
Fatigue							
Distribution Function							
Funcated Values							
Expected Values				1			
Variances							
Val I all 60 5							
	1						
				1			
			1		1		
				1			
				1			
					1		
			1		1		
				1			
					1		
		1					
				1			
	1						
		-					
	1						