A Few Useful Things to Know about Machine Learning

Pedro Domingos

Qingkai Kong (present)

Overview

- First published in 2012
- Summarize 12 key lessons relate to ML

1. LEARNING = REPRESENTATION + EVALUATION + OPTIMIZATION

Table 1: The three components of learning algorithms.

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
Hyperplanes	Likelihood	Branch-and-bound
Naive Bayes	Posterior probability	Continuous optimization
Logistic regression	Information gain	Unconstrained
Decision trees	K-L divergence	Gradient descent
Sets of rules	Cost/Utility	Conjugate gradient
Propositional rules	Margin	Quasi-Newton methods
Logic programs		Constrained
Neural networks		Linear programming
Graphical models		Quadratic programming
Bayesian networks		
Conditional random fields		

2. GENERALIZATION THAT COUNTS

Generalization Error

 A hypothesis h is said to generalize well if it achieves low error on all examples in X

2. GENERALIZATION THAT COUNTS

Local generalization:
Generalization power of
pattern recognition

Extreme generalization:
Generalization power
achieved via
abstraction and reasoning

Train/test dataset split

Train/test dataset split

3. DATA ALONE IS NOT ENOUGH

4. OVERFITTING HAS MANY FACES

Ways to avoid overfitting

- More data
- Adding regularization term to the evaluation func.
- Cross-validation

5-fold cross-validation

5. INTUITION FAILS IN HIGH DIMENSIONS

6. THEORETICAL GUARANTEES ARE NOT WHAT THEY SEEM

The main role of theoretical guarantees in machine learning is not as a criterion for practical decisions, but as a source of understanding and driving force for algorithm design.

7. FEATURE ENGINEERING IS THE KEY

Machine Learning

Deep Learning

Car

Not Car

Output

8. MORE DATA BEATS A CLEVERER ALGORITHM

More data beats clever algorithms, but better data beats more data.

— Peter Norvig —

AZ QUOTES

9. LEARN MANY MODELS, NOT JUST ONE

10. SIMPLICITY DOES NOT IMPLY ACCURACY

"All things being equal, the simplest solution tends to be the best one."

William of Ockham

11. REPRESENTABLE DOES NOT IMPLY LEARNABLE

- "... just because a function can be represented does not mean it can be learned ..."
 - Lack of data
 - Representation is too large
 - Model availability given other requirements
 - Continuous vs. discrete functions
- Therefore, the key question is not "Can it be represented?", to which the answer is often trivial, but 'Can it be learned'

12. CORRELATION DOES NOT IMPLY CAUSATION

Global Average Temperature vs. Number of Pirates

Occam's Razor

The cyclic multiverse has multiple branes - each a universe - that collided. causing Big Bangs. The universes bounce back and pass through time, until they are pulled back together and again collide, destroying the old contents and creating them anew.

God did it.