Some recalls

Lectures for PHD course on Numerical Optimization

Enrico Bertolazzi

DII – Università di Trento

Enrico Bertolazzi — Some recalls

Notes		

Outline

1 Determinant

- Some property of determinant
- Esistence and uniqueness
- Matrix product and determinant

Enrico Bertolazzi — Some recalls

Notes		

1 Determinant

- Some property of determinant
- Esistence and uniqueness
- Matrix product and determinant

Enrico Bertolazzi — Some recalls

Notes			

- We always work with finite dimensional Eucledian vector spaces \mathbb{R}^n , the natural number n denote the dimension of the space.
- Elements $v \in \mathbb{R}^n$ will be referred to as vectors, and we think them as composed of n real numbers stacked on top of each other, i.e.,

$$oldsymbol{v} = \begin{pmatrix} v_1, v_2, \dots, v_n \end{pmatrix}^T = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

 v_k being real numbers, and T denotes the transpose operator.

Enrico Bertolazzi — Some recalls

Notes		

Basic operation

The basic operations defined for two vectors $a,b\in\mathbb{R}^n$, and an arbitrary scalar $\alpha\in\mathbb{R}$

$$a = (a_1, a_2, ..., a_n)^T$$
 $b = (b_1, b_2, ..., b_n)^T$

are as follows:

- lacksquare 1 addition: $oldsymbol{a}+oldsymbol{b}=ig(a_1+b_1,\ldots,a_n+b_nig)^T\in\mathbb{R}^n$;
- 2 multiplication by a scalar: $\alpha \mathbf{a} = (\alpha a_1, \dots, \alpha a_n)^T \mathbb{R}^n$;
- 3 A linear subspace $L \subset \mathbb{R}^n$ is a set enjoying the following two properties:
 - 1 for every $a, b \in L$ it holds that $a + b \in L$;
 - 2 and for every $\alpha \in \mathbb{R}$, $a \in L$ it holds that $\alpha a \in L$.
- An affine subspace $A \subset \mathbb{R}^n$ is any set that can be represented as $v + L := \{v + x | x \in L\}$ for some vector $v \in \mathbb{R}^n$ and some linear subspace $L \subset \mathbb{R}^n$.

Enrico Bertolazzi — Some recalls

Notes	

Scalar Product (real case)

A scalar product is a map $\mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ with the following properties:

Linearity

$$(\boldsymbol{a}, \alpha \boldsymbol{b} + \beta \boldsymbol{c}) = \alpha(\boldsymbol{a}, \boldsymbol{b}) + \beta(\boldsymbol{a}, \boldsymbol{c})$$
 $(\alpha \boldsymbol{b} + \beta \boldsymbol{c}, \boldsymbol{a}) = \alpha(\boldsymbol{b}, \boldsymbol{a}) + \beta(\boldsymbol{c}, \boldsymbol{a})$

2 Simmetry

$$(\boldsymbol{a}, \boldsymbol{b}) = (\boldsymbol{b}, \boldsymbol{a})$$

3 Positivity

$$(\boldsymbol{a}, \boldsymbol{a}) \ge 0$$
 $(\boldsymbol{a}, \boldsymbol{a}) = 0$ iif $\boldsymbol{a} = \boldsymbol{0}$

for example, the following product is a scalar product:

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}^T \boldsymbol{b} = \sum_{i=1}^n a_i b_i \in \mathbb{R}.$$

Enrico Bertolazzi — Some recalls

/ /11

Notes		

Scalar Product (complex case)

A scalar product is a map $\mathbb{C}^n \times \mathbb{C}^n \mapsto \mathbb{C}$ with the following properties:

Linearity

$$(\boldsymbol{a}, \alpha \boldsymbol{b} + \beta \boldsymbol{c}) = \alpha(\boldsymbol{a}, \boldsymbol{b}) + \beta(\boldsymbol{a}, \boldsymbol{c})$$
 $(\alpha \boldsymbol{b} + \beta \boldsymbol{c}, \boldsymbol{a}) = \overline{\alpha}(\boldsymbol{b}, \boldsymbol{a}) + \overline{\beta}(\boldsymbol{c}, \boldsymbol{a})$

2 (Conjugate) Simmetry

$$(a,b) = \overline{(b,a)}$$

3 Positivity

$$(\boldsymbol{a}, \boldsymbol{a}) \ge 0$$
 $(\boldsymbol{a}, \boldsymbol{a}) = 0$ iif $\boldsymbol{a} = \boldsymbol{0}$

for example, the following product is a scalar product:

$$oldsymbol{a}\cdotoldsymbol{b}=\overline{oldsymbol{a}}^Toldsymbol{b}=\sum_{i=1}^n\overline{a_i}b_i\in\mathbb{R}.$$

Enrico Bertolazzi — Some recalls

Notes		

A norm is a map $\mathbb{R}^n \mapsto \mathbb{R}^+$ with the following properties:

Positivity

$$\|\boldsymbol{a}\| \ge 0$$
 $\|\boldsymbol{a}\| = 0$ iif $\boldsymbol{a} = \boldsymbol{0}$

2 Homogeneity

$$\|\lambda a\| = |\lambda| \|a\|$$

3 Triangle inequality

$$\|a+b\|\leq \|a\|+\|b\|$$

Enrico Bertolazzi — Some recalls

Notes			

Most used norm in \mathbb{R}^n

Euclidean norm or 2-norm

$$\left\|\boldsymbol{a}\right\|_2 = \sqrt{\sum_{i=1}^n a_i^2}$$

2 1-norm

$$\|\boldsymbol{a}\|_1 = \sum_{i=1}^n |a_i|$$

3 ∞-norm

$$\|\boldsymbol{a}\|_{\infty} = \max_{i=1}^{n} |a_i|$$

Enrico Bertolazzi — Some recalls

Notes		

Cauchy-Bunyakowski-Schwarz inequality

Lemma

The Cauchy-Bunyakowski-Schwarz inequality says that

$$\left|(\boldsymbol{a}, \boldsymbol{b})\right|^2 \leq (\boldsymbol{a}, \boldsymbol{a})(\boldsymbol{b}, \boldsymbol{b})$$

with equality iif $a = \alpha b$, i.e. a and b are parallel.

Proof: consider the vector $a - \beta b$:

$$0 \le (\boldsymbol{a} - \beta \boldsymbol{b}, \boldsymbol{a} - \beta \boldsymbol{b}) = (\boldsymbol{a}, \boldsymbol{a}) + \beta \overline{\beta}(\boldsymbol{b}, \boldsymbol{b}) - \beta(\boldsymbol{a}, \boldsymbol{b}) - \overline{\beta}(\boldsymbol{b}, \boldsymbol{a})$$

choosing $\beta = \overline{(a,b)}/(b,b)$

$$0 \le (\boldsymbol{a}, \boldsymbol{a}) - \left| (\boldsymbol{a}, \boldsymbol{b}) \right|^2 / (\boldsymbol{b}, \boldsymbol{b})$$

if $a = \alpha b$ than $\beta = \alpha$ and inequality becomes equality.

Enrico Bertolazzi — Some recalls

Notes		

Induced norm

A scalar product (\cdot, \cdot) induce a norm $\|\cdot\|$ as follows:

$$\|oldsymbol{v}\| = \sqrt{(oldsymbol{v},oldsymbol{v})}$$

- Positivity $\|a\| = \sqrt{(a,a)}$ follows from property 3 of scalar product.
- 2 Homogeneity, from properties 1 and 2 of scalar product

$$\|\lambda a\| = \sqrt{(\lambda a, \lambda a)} = \sqrt{\lambda^2(a, a)} = |\lambda| \sqrt{(a, a)}$$

Triangle inequality (by using Cauchy inequality for real case)

$$||a + b||^{2} = (a + b, a + b) = (a, a) + (b, b) + 2(a, b)$$

$$\leq (a, a) + (b, b) + 2\sqrt{(a, a)(b, b)}$$

$$= ||a||^{2} + ||b||^{2} + 2||a|| ||b|| = (||a|| + ||b||)^{2}$$

Enrico Bertolazzi — Some recalls

MOIES	Ν	0	†	е	S
-------	---	---	---	---	---

Orthogonality

- \blacksquare By the Cauchy inequality the number $\frac{(a,b)}{\|a\|\,\|b\|}$ is in the interval [-1,1]
- lacksquare The angle heta between two vectors $m{a}$ and $m{b}$ is defined as

$$\theta = \arccos \frac{(a, b)}{\|a\| \|b\|}.$$

- We say that a is orthogonal to b if and only if (a, b) = 0.
- The only vector orthogonal to itself is $\mathbf{0} = (0, \dots, 0)^T$; moreover, this is the only vector with zero norm.

Enrico Bertolazzi — Some recalls

Notes		

Linear and affine dependence

lacktriangle A collection of vectors $(m{v}_1,\dots,m{v}_k)$ is said to be linearly independent if and only if

$$\sum_{i=1}^k \alpha_i \boldsymbol{v}_i = \boldsymbol{0} \qquad \Rightarrow \qquad \alpha_1 = \dots = \alpha_k = 0.$$

lacksquare Similarly, a collection of vectors $(m{v}_1,\dots,m{v}_k)$ is said to be affinely independent if and only if the collection

$$(v_2 - v_1, v_3 - v_1, \dots, v_k - v_1)$$

is linearly independent.

Enrico Bertolazzi — Some recalls

Notes		

Basis

- The largest number of linearly independent vectors in \mathbb{R}^n is n;
- n linearly independent vectors from \mathbb{R}^n is referred to as basis.
- The basis $\{v_1, \ldots, v_n\}$ is said to be orthogonal if $(v_i, v_j) = 0$ for all $i \neq j$. If, in addition $||v_i|| = 1$ for $i = 1, \ldots, n$, the basis is called orthonormal.
- Given the basis $\{v_1, \ldots, v_n\}$ every vector v can be written in a unique way as $v = \sum_{i=1}^n \alpha_i v_i$, and the n-tuple $(\alpha_1, \ldots, \alpha_n)$ will be referred to as coordinates of v in this basis.
- If the basis $\{v_1, \dots, v_n\}$ is orthonormal, the coordinates α_i are computed as $\alpha_i = (v, v_i)$.
- The space \mathbb{R}^n will be typically equipped with the standard basis $\{e_1,\ldots,e_n\}$ where $e_i=(0,\ldots,0,1,0,\ldots,0)^T$.
- For every vector $\mathbf{v} = (v_1, \dots, v_n)^T$ we have $(\mathbf{v}, \mathbf{e}_i) = v_i$ which allows us to identify vectors and their coordinates.

Enrico Bertolazzi — Some recalls

Notes		

Matrices

- All linear functions from \mathbb{R}^n to \mathbb{R}^k can be represented by using a linear space of real matrices $\mathbb{R}^{k \times n}$ (i.e., with k row and n columns).
- Given a matrix $A \in \mathbb{R}^{k \times n}$ it will often be convenient to view it as a row of its columns, which are thus vectors in \mathbb{R}^k .
- Let $A \in \mathbb{R}^{k \times n}$ have elements A_{ij} we write $A = (a_1, \dots, a_n)$, where $a_i = (A_{1i}, \dots, A_{ki})^T \in \mathbb{R}^k$.
- The addition of two matrices and scalar-matrix multiplication are defined in a straightforward way. For $v = (v_1, \dots, v_n)^T \in \mathbb{R}^n$ we define

$$oldsymbol{A}oldsymbol{v} = \sum_{i=1}^n v_i oldsymbol{a}_i \in \mathbb{R}^k$$

Enrico Bertolazzi — Some recalls

Notes			

Matrix norm

Let be A an $n \times m$ matrix. If we have two vector norms $\|\cdot\|_a$ and $\|\cdot\|_b$ defined in \mathbb{R}^m and \mathbb{R}^n , respectively, we can define a matrix norm as follows:

$$\|\boldsymbol{A}\| = \max_{\|\boldsymbol{v}\|_a = 1} \|\boldsymbol{A}\boldsymbol{v}\|_b \tag{*}$$

This is a norm and has the property

$$\left\| \boldsymbol{A} \boldsymbol{v} \right\|_b \leq \left\| \boldsymbol{A} \right\| \left\| \boldsymbol{v} \right\|_a$$

We say that matrix norm $\|\cdot\|$ is compatible with the vector norms $\|\cdot\|_a$ and $\|\cdot\|_b$. A compatible matrix norm not necessarily must be defined by a relation like (??), for example Frobenius norm

$$\|\boldsymbol{A}\|_F = \sqrt{\sum_{i,j} A_{ij}^2}$$

is compatible with the norm $\|\cdot\|_2$.

Enrico Bertolazzi — Some recalls

Notes		

Most used matrix norm

1-norm

$$\|A\|_{1} = \max_{\|v\|_{1}=1} \|Av\|_{1} = \max_{j=1}^{m} \sum_{i=1}^{n} |A_{ij}|$$

2 ∞-norm

$$\|A\|_{\infty} = \max_{\|v\|_{\infty}=1} \|Av\|_{\infty} = \max_{i=1}^{n} \sum_{j=1}^{m} |A_{ij}|$$

3 2-norm

$$\left\|\boldsymbol{A}\right\|_{2} = \max_{\left\|\boldsymbol{v}\right\|_{2}=1}\left\|\boldsymbol{A}\boldsymbol{v}\right\|_{2} = \sqrt{\varrho(\boldsymbol{A}^{T}\boldsymbol{A})}$$

 $\varrho(B)$ is the spectral ratio of matrix B defined forward.

Enrico Bertolazzi — Some recalls

Notes		

Matrix norm and transpose

Definition

For a given matrix $\mathbf{A} \in \mathbb{R}^{k \times n}$ we define $\mathbf{A}^T \in \mathbb{R}^{n \times k}$ with elements $(\mathbf{A}^T)_{ij} = A_{ji}$ as matrix transpose

Definition

A more elegant definition: A^T is the unique matrix, satisfying the equality $(Av) \cdot u = v \cdot (A^Tu)$ for all $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^k$.

Remark

Using different scalar products in the previous definition produces different transpose matrices.

Remark

From this definition it follows $(A^T)^T = A$

Enrico Bertolazzi — Some recalls

Notes		

Matrix product

■ Given two matrices $A \in \mathbb{R}^{k \times n}$ and $B \in \mathbb{R}^{n \times m}$, we define the product matrix product $C = AB \in \mathbb{R}^{k \times m}$ elementwise by

$$C_{ij} = \sum_{\ell=1}^{n} A_{i\ell} B_{\ell j}, \qquad i = 1, \dots, k \quad j = 1, \dots, m.$$

- lacksquare In other words, $m{C} = m{A}m{B}$ iff for all $m{v} \in \mathbb{R}^n$, $m{C}m{v} = m{A}(m{B}m{v})$.
- The matrix product is:
 - lacksquare associative i.e., A(BC)=(AB)C;
 - not commutative i.e., $AB \neq BA$ in general;

for matrices of compatible sizes.

Enrico Bertolazzi — Some recalls

Notes		

Matrix norm and product

Consider the vector spaces \mathbb{R}^n , \mathbb{R}^k and \mathbb{R}^m with norms $\|\cdot\|_a$, $\|\cdot\|_b$ and $\|\cdot\|_c$ respectively. We can define the matrix norms

$$egin{aligned} \|oldsymbol{A}\|_{ab} &= \max \limits_{\|oldsymbol{v}\|_a=1} \|oldsymbol{A}oldsymbol{v}\|_b \ \|oldsymbol{A}\|_{bc} &= \max \limits_{\|oldsymbol{v}\|_b=1} \|oldsymbol{A}oldsymbol{v}\|_c \ \|oldsymbol{A}\|_{ac} &= \max \limits_{\|oldsymbol{v}\|_a=1} \|oldsymbol{A}oldsymbol{v}\|_c \end{aligned}$$

If $\pmb{A} \in \mathbb{R}^{n \times k}$ and $\pmb{B} \in \mathbb{R}^{k \times m}$ it is easy (and instructive) to check that

$$\|AB\|_{ac} \leq \|A\|_{ab} \|B\|_{bc}$$

Enrico Bertolazzi — Some recalls

Notes

Matrix norm and product

- Vectors $v \in \mathbb{R}^n$ can be (and sometimes will be) viewed as matrices $v \in \mathbb{R}^{n \times 1}$.
- Check that this embedding is norm-preserving, i.e., the norm of v viewed as a vector equals the norm of v viewed as a matrix with one column. In fact consider the definition of the matrix norm $\|\cdot\|'$ starting with the vector norm $\|\cdot\|$

$$\left\|\boldsymbol{v}\right\|' = \max_{|\alpha|=1} \left\|\alpha\boldsymbol{v}\right\| = \max_{|\alpha|=1} \left|\alpha\right| \left\|\boldsymbol{v}\right\| = \left\|\boldsymbol{v}\right\|$$

Enrico Bertolazzi — Some recalls

Notes		

Matrix inverse

For a square matrix $A \in \mathbb{R}^{n \times n}$ we can discuss the existence of the unique matrix A^{-1} , called the inverse of A, verifying $A^{-1}Av = v$ for all $v \in \mathbb{R}^n$. Or equivalently $A^{-1}A = I$ the identity matrix. If the inverse of a given matrix exist, we call the latter nonsingular.

Theorem

The inverse matrix exists iff

- the columns of A are linearly independent;
- lacktriangle the columns of A^T are linearly independent;
- lacksquare the system Ax=v has a unique solution for every $v\in\mathbb{R}^n$;
- lacksquare the system Ax=0 has x=0 as its unique solution.

Enrico Bertolazzi — Some recalls

Notes		

Matrix inverse

Lemma

From this definition it follows that $\bf A$ is nonsingular iff $\bf A^T$ is nonsingular, and, furthermore, $({\bf A}^{-1})^T=({\bf A}^T)^{-1}$ and therefore will be denoted simply as ${\bf A}^{-T}$.

At last, if ${\bf A}$ and ${\bf B}$ are two nonsingular matrices of the same size, then ${\bf AB}$ is nonsingular and $({\bf AB})^{-1}={\bf B}^{-1}{\bf A}^{-1}.$

Enrico Bertolazzi — Some recalls

Notes		

1 Determinant

- Some property of determinant
- Esistence and uniqueness
- Matrix product and determinant

Enrico Bertolazzi — Some recalls

Notes		

Determinant

Definition

Is a function on matrix

$$|\cdot|: \mathbb{K}^{n \times n} \mapsto \mathbb{K},$$

a law that for each (square) matrix $A \in \mathbb{K}^n$ that return a scalar. The field \mathbb{K} can be \mathbb{R} or \mathbb{C} . Some properties must be verified.

Enrico Bertolazzi — Some recalls

Notes	

To simplify notation split matrices by columns. Let $A_{\bullet j}$ the j-th column of matrix A,

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & A_{n-1n} \\ A_{n1} & \cdots & A_{nn-1} & A_{nn} \end{bmatrix}, \quad \mathbf{A}_{\bullet j} = \begin{bmatrix} A_{1j} \\ A_{2j} \\ \vdots \\ A_{nj} \end{bmatrix},$$

in such a way matrix can be thought as column partitioned.

$$A = (A_{\bullet 1}, \ldots, A_{\bullet n}),$$

so that

$$|A| := |A_{\bullet 1}, \dots, A_{\bullet n}|.$$

Enrico Bertolazzi — Some recalls

Notes		

Determinant: axiomatic definition

Definition (Determinant properties)

Is a multi-linear function of the columns

$$|\dots, \lambda a, \dots| = \lambda |\dots, b, \dots|,$$

 $|\dots, a + b, \dots| = |\dots, a, \dots| + |\dots, b, \dots|.$

2 Is null if two consecutive columns are equal

$$|\ldots, a, a, \ldots| = 0.$$

3 The determinant of identity matrix is 1:

$$|\boldsymbol{I}| = |\boldsymbol{e}_1, \dots, \boldsymbol{e}_n| = 1,$$

Enrico Bertolazzi — Some recalls

Note	95
------	----

Determinant: particular cases

Observation

$$|A_{11}| = A_{11}, \qquad \begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} = A_{11} A_{22} - A_{21} A_{12};$$

$$n = 3$$

$$\begin{vmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{vmatrix} = \begin{cases} A_{11}A_{22}A_{33} + A_{12}A_{23}A_{31} + A_{21}A_{32}A_{13} \\ -A_{13}A_{22}A_{31} - A_{12}A_{21}A_{33} - A_{11}A_{23}A_{32}. \end{cases}$$

3 Upper triangular

$$\begin{vmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ 0 & A_{22} & \dots & A_{2n} \\ \vdots & & & & \\ 0 & 0 & \dots & A_{nn} \end{vmatrix} = A_{11} A_{22} \dots A_{nn}.$$

Enrico Bertolazzi — Some recalls

Notes	Ν	ot	es
-------	---	----	----

Lemma (Multiply by a scalar)

$$|\lambda \mathbf{A}| = \lambda^n |\mathbf{A}|$$

Proof:

$$\begin{aligned} \left| \lambda \boldsymbol{A}_{\bullet 1}, \lambda \boldsymbol{A}_{\bullet 2}, \lambda \boldsymbol{A}_{\bullet 3}, \dots, \lambda \boldsymbol{A}_{\bullet n} \right| &= \lambda \left| \boldsymbol{A}_{\bullet 1}, \lambda \boldsymbol{A}_{\bullet 2}, \lambda \boldsymbol{A}_{\bullet 3}, \dots, \lambda \boldsymbol{A}_{\bullet n} \right| \\ &= \lambda^{2} \left| \boldsymbol{A}_{\bullet 1}, \boldsymbol{A}_{\bullet 2}, \lambda \boldsymbol{A}_{\bullet 3}, \dots, \lambda \boldsymbol{A}_{\bullet n} \right| \\ &= \lambda^{3} \left| \boldsymbol{A}_{\bullet 1}, \boldsymbol{A}_{\bullet 2}, \boldsymbol{A}_{\bullet 3}, \dots, \lambda \boldsymbol{A}_{\bullet n} \right| \\ &= \dots \\ &= \lambda^{n} \left| \boldsymbol{A}_{\bullet 1}, \boldsymbol{A}_{\bullet 2}, \dots, \boldsymbol{A}_{\bullet n} \right| \end{aligned}$$

Enrico Bertolazzi — Some recalls

Notes		

Observation (Somma di matrici)

Notice that

$$ig|m{A}+m{B}ig|
eqig|m{A}ig|+ig|m{B}ig|$$

for example

$$\begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} + \begin{vmatrix} 0 & 0 \\ 3 & 4 \end{vmatrix} \neq \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$

in fact

$$\begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} = 1 \cdot 0 - 2 \cdot 0 = 0, \qquad \begin{vmatrix} 0 & 0 \\ 3 & 4 \end{vmatrix} = 0 \cdot 4 - 0 \cdot 3 = 0,$$
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 = 4 - 6 = -2$$

Enrico Bertolazzi — Some recalls

Ν	ot	es
	_	

If a column is 0 the determinant is 0.

Proof:

$$|\dots, \mathbf{0}, \dots| = |\dots, 0 \cdot \mathbf{0}, \dots|,$$

= $0 \cdot |\dots, \mathbf{0}, \dots|,$
= 0 .

01/10

Enrico Bertolazzi — Some recalls

Notes		

If two consecutive columns are exchanged determinant sign change

Proof: from property 2 it follows $|\dots, w+z, w+z, \dots| = 0$ and using multi-linearity

$$0 = |\dots, w + z, w + z, \dots|,$$

$$= |\dots, w, w + z, \dots| + |\dots, z, w + z, \dots|,$$

$$= |\dots, w, w, \dots| + |\dots, w, z, \dots| + |\dots, z, w, \dots| + |\dots, z, z, \dots|,$$

from property 2 $|\ldots, oldsymbol{w}, oldsymbol{w}, \ldots| = |\ldots, oldsymbol{z}, oldsymbol{z}, \ldots| = 0$ so that

$$0 = |\dots, \boldsymbol{w}, \boldsymbol{z}, \dots| + |\dots, \boldsymbol{z}, \boldsymbol{w}, \dots|,$$

Enrico Bertolazzi — Some recalls

Notes				

If two columns equal determinant is 0.

Proof: Let $v_i = v_j$ for two column such that i < j. By exchanging consecutive columns it is possible to move v_i close to v_j .

$$| \dots, \boldsymbol{v}_i, \boldsymbol{v}_{i+1}, \boldsymbol{v}_{i+2}, \dots, \boldsymbol{v}_j, \dots | = (-1) | \dots, \boldsymbol{v}_{i+1}, \boldsymbol{v}_i, \boldsymbol{v}_{i+2}, \dots, \boldsymbol{v}_j, \dots |,$$

$$= (-1)^2 | \dots, \boldsymbol{v}_{i+1}, \boldsymbol{v}_{i+2}, \boldsymbol{v}_i, \dots, \boldsymbol{v}_j, \dots |,$$

$$= \dots$$

$$= \sigma | \dots, \boldsymbol{v}_{i+1}, \boldsymbol{v}_{i+2}, \dots, \boldsymbol{v}_i, \boldsymbol{v}_j, \dots |$$

where $\sigma = (-1)^{j-i} = \pm 1$. Let $v_i = v^j = a$, then

$$\left|\ldots,a,a,\ldots\right|=0.$$

33/10

Enrico Bertolazzi — Some recalls

Notes

If two columns are exchanged (e.g. i-th and j-th with $i \neq j$) determinant change sign.

Proof:

$$0 = |\dots, w + z, \dots, w + z, \dots|,$$

$$= |\dots, w, \dots, w + z, \dots| + |\dots, z, \dots, w + z, \dots|,$$

$$= |\dots, w, \dots, w, \dots| + |\dots, w, \dots, z, \dots| + |\dots, z, \dots, w, \dots| + |\dots, z, \dots, z, \dots|.$$

so that

$$0 = |\dots, \boldsymbol{w}, \dots, \boldsymbol{z}, \dots| + |\dots, \boldsymbol{z}, \dots, \boldsymbol{w}, \dots|,$$

Enrico Bertolazzi — Some recalls

Notes

If to a column of the determinant we add a linear combination of the others the value of the determinat do not change.

Proof: Let
$$m{b} = \sum\limits_{\substack{j=1 \ j \neq i}}^n eta_j m{v}_j$$
, with eta_1, \dots, eta_n scalars, then

$$\left|\ldots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_i + \boldsymbol{b}, \boldsymbol{v}_{i+1}, \ldots \right| = \left|\ldots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_i + \sum\limits_{\substack{j=1 \ j \neq i}}^n eta_j \boldsymbol{v}_j, \boldsymbol{v}_{i+1}, \ldots \right|,$$

$$= \left| \ldots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_i, \boldsymbol{v}_{i+1}, \ldots \right| + \sum_{\substack{j=1 \ j \neq i}}^n \beta_j \left| \ldots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_j, \boldsymbol{v}_{i+1}, \ldots \right|.$$

but $|\ldots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_j, \boldsymbol{v}_{i+1}, \ldots| = 0$ for $j \neq i$ and

$$ig|\ldots,oldsymbol{v}_{i-1},oldsymbol{v}_i+oldsymbol{b},oldsymbol{v}_{i+1},\ldotsig|=ig|\ldots,oldsymbol{v}_{i-1},oldsymbol{v}_i,oldsymbol{v}_{i+1},\ldotsig|.$$

√) Q (\)

Enrico Bertolazzi — Some recalls

Ν	0	†	е	S
	_	•	_	_

Theorem

There exists a unique function that satisfy properties 1, 2, 3 of the determinant.

Let

$$\boldsymbol{A}_{\bullet j} = \sum_{k=1}^{n} A_{kj} \boldsymbol{e}_{k},$$

and from multi-linearity

$$|A_{\bullet 1}, \dots, A_{\bullet n}| = |\sum_{i_1=1}^n A_{i_1 1} e_{i_1}, \sum_{i_2=1}^n A_{i_2 2} e_{i_2}, \dots, \sum_{i_n=1}^n A_{i_n n} e_{i_n}|,$$

$$= \sum_{i_1=1}^n A_{i_1 1} |e_{i_1}, \sum_{i_2=1}^n A_{i_2 2} e_{i_2}, \dots, \sum_{i_n=1}^n A_{i_n n} e_{i_n}|,$$

$$n \qquad n \qquad n$$

$$= \sum_{i_1=1}^n A_{i_1 1} \sum_{i_2=1}^n A_{i_2 2} \cdots \sum_{i_n=1}^n A_{i_n n} |e_{i_1}, e_{i_2}, \dots, e_{i_n}|.$$

Enrico Bertolazzi — Some recalls

Notes			

The summation containts n^n termini, but obly n! are not null. The term of the form

$$[\ldots, oldsymbol{e}_{i_s}, \ldots, oldsymbol{e}_{i_t}, \ldots]$$

with $i_s = i_t$ are 0. The only non zero term are the one with $i_1, \ldots i_n$ all differents, i.e. are permutation of $1, 2, \ldots, n$. Each permutation can be obtained by column exchange it follows

$$|\boldsymbol{e}_{i_1}, \boldsymbol{e}_{i_2}, \dots, \boldsymbol{e}_{i_n}| = \sigma(i_1, i_2, \dots, i_n) |\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n|,$$

where $\sigma(i_1,i_2,\ldots,i_n)=\pm 1$ is called sign of the permutation. From $|{\bf I}|=1$ it follows

$$|\mathbf{A}| = \sum_{\sigma \in \Pi(n)} \sigma(i_1, i_2, \dots, i_n) A_{i_1 1} A_{i_2 2} \cdots A_{i_n n}$$

Enrico Bertolazzi — Some recalls

Notes		

Corollary

Let $\mathcal{D}(A)$ a function that satisfy property 1 and 2 (not 3) then

$$\mathcal{D}(A) = |A|\mathcal{D}(I).$$

Proof: In the theorem without using property 3 it follows

$$\mathcal{D}(\boldsymbol{A}) = \sum_{\sigma \in \Pi(n)} \sigma(i_1, i_2, \dots, i_n) A_{i_1 1} A_{i_2 2} \cdots A_{i_n n} \mathcal{D}(\boldsymbol{e}_{i_1}, \boldsymbol{e}_{i_2}, \dots, \boldsymbol{e}_{i_n})$$

$$= \sum_{\sigma \in \Pi(n)} \sigma(i_1, i_2, \dots, i_n) A_{i_1 1} A_{i_2 2} \cdots A_{i_n n} \mathcal{D}(\boldsymbol{I})$$

$$= |\boldsymbol{A}| \mathcal{D}(\boldsymbol{I})$$

Enrico Bertolazzi — Some recalls

Notes		

Theorem (of Jacques Philippe Marie Binet 1786–1856)

Siano A e B due matrici quadrate dello stesso ordine allora

$$|AB| = |A||B|.$$

Proof: Let $C=AB=A\left[B_{\bullet 1},\ldots B_{\bullet n}\right]=\left[AB_{\bullet 1},\ldots AB_{\bullet n}\right]$. The determinant of the product is

$$|C| = |AB| = |AB_{\bullet 1}, AB_{\bullet 2}, \dots, AB_{\bullet n}|.$$

The function

$$\mathcal{D}_{\boldsymbol{A}}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n) = |\boldsymbol{A}\boldsymbol{v}_1,\ldots,\boldsymbol{A}\boldsymbol{v}_n|,$$

satisfy property 1 and 2 of the determinant an thust

$$\mathcal{D}_{A}(B) = |A|\mathcal{D}_{A}(I),$$

and finally

$$\mathcal{D}_{m{A}}(m{I}) = ig|m{A}_{ullet 1}, \ldots, m{A}_{ullet n}ig| = ig|m{A}ig|$$

] 999

Enrico Bertolazzi — Some recalls

Notes		

Outline

- 1 Determinant
 - Some property of determinant
 - Esistence and uniqueness
 - Matrix product and determinant

Enrico Bertolazzi — Some recalls

Notes		

The Separation Theorem

Theorem (Separation Theorem)

Let be $C\subseteq\mathbb{R}^n$ closed and convex, and $y\not\in C$. Then there exist a real α and a vector $\pi\neq \mathbf{0}$ such that:

- $\mathbf{1} \quad \boldsymbol{\pi} \cdot \boldsymbol{y} > \alpha$;
- $\mathbf{2} \ \boldsymbol{\pi} \cdot \boldsymbol{x} \leq \alpha \ \text{for all } \boldsymbol{x} \in C.$

| ◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ | :

*) \ (*

Enrico Bertolazzi — Some recalls

Notes

Proof: Define the function $f : \mathbb{R}^n \to \mathbb{R}$ by $f(x) = \frac{1}{2} ||x - y||^2$. Now by the Weierstrass Theorem there exists $z \in C$ such that:

$$f(z) \le f(x), \quad \forall x \in C$$

due to the convexity of C we have $\pmb{z}+t(\pmb{x}-\pmb{z})\in C$ for all $t\in[0,1]$ and then

$$0 \le \frac{\mathsf{f}(z + t(x - z)) - \mathsf{f}(z)}{t},$$

taking the limit t o 0 and noticing that $abla {\sf f}({m x}) = {m x} - {m y}$ we have

$$0 \le \nabla f(\boldsymbol{z})(\boldsymbol{x} - \boldsymbol{z}) = (\boldsymbol{z} - \boldsymbol{y}) \cdot (\boldsymbol{x} - \boldsymbol{z})$$

Now setting $oldsymbol{\pi} = oldsymbol{y} - oldsymbol{z}$ and $lpha = oldsymbol{\pi} \cdot oldsymbol{z}$ gives the result.

Enrico Bertolazzi — Some recalls

Notes		

The Farkas's lemma

Lemma (Farkas's lemma)

Let $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$ and consider the following two problems

- $oldsymbol{eta}$ Find $oldsymbol{x} \in \mathbb{R}^m$ such that: $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$ and $oldsymbol{x} \geq 0$;
- B) Find $\pi \in \mathbb{R}^n$ such that: $A^T \pi \leq \mathbf{0}$ and $\pi \cdot \mathbf{b} > 0$;

then exactly only one of them has a solution.

Remark

 $x \ge 0$ is intended component-wise, i.e., $x_k \ge 0$ for all k.

Proof: \Rightarrow If (A) IS feasible the (B) IS NOT feasible:

Let (A) has a feasible solution, say $x \geq 0$, then Ax = b so if there is a solution to (B), say π , then $x^TA^T\pi = \pi \cdot b > 0$. But then $A^T\pi > 0$ (since $x \geq 0$), a contradiction. Hence (B) is infeasible.

□ ▶ ◆@ ▶ ◆ 差 ▶ → 差 → 夕 Q G

Enrico Bertolazzi — Some recalls

Notes		

Proof: \Rightarrow If (A) IS NOT feasible then (B) IS feasible:

Let $C=\{z\in\mathbb{R}^m\mid z=Ax,x\geq \mathbf{0}\}$. If (B) is infeasible then $b\not\in C$. The set C is **convex** and **closed** (see next slide) so by the Separation Theorem there exists a real α and a vector π such that $\pi\cdot b>\alpha$ and $\pi\cdot z\leq \alpha$ for all $z\in C$, that is,

$$x^T A^T \pi \le \alpha, \quad \forall x \ge 0$$

Since $\mathbf{0} \in C$ it follows that $\alpha \geq 0$, so $\pi \cdot \mathbf{b} > 0$. If there exists an $\mathbf{z} \geq \mathbf{0}$ such that $\mathbf{z}^T \mathbf{A}^T \mathbf{\pi} > 0$ then

$$\lim_{\lambda o \infty} (\lambda oldsymbol{z}^T) oldsymbol{A}^T oldsymbol{\pi} = \infty$$

Therefore we must have $x^T A^T \pi \leq 0$ for all $x \geq 0$, and this holds if and only if $A^T \pi \leq 0$, which means that (B) is feasible.

Enrico Bertolazzi — Some recalls

Notes		

Proof: The set C is convex:

Let $C=\{z\in\mathbb{R}^m\mid z=Ax,x\geq 0\}$. Let z_1 and $z_2\in C$ then there exists $x_1\geq 0$ and $x_2\geq 0$ such that $z_1=Ax_1$ and $z_2=Ax_2$. Moreover

$$\alpha \mathbf{z}_1 + (1 - \alpha)\mathbf{z}_2 = \mathbf{A}(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2),$$

 $\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 \ge \mathbf{0}, \quad \forall \alpha \in [0, 1].$

so that C is convex.

Enrico Bertolazzi — Some recalls

Notes		

Proof: The set C is closed:

To see that the set C is closed we prove that the complementary set is open. Let be $z \in \mathbb{R}^m \setminus C$ than we have:

$$\inf_{x \ge 0} \|Ax - z\| = \epsilon > 0$$

If $\epsilon>0$ consider a ${m w}$ such that $\|{m w}-{m z}\|<\epsilon/2$ than we have

$$\|Ax - w\| = \|Ax - w + z - z\|$$

$$\geq \|Ax - z\| - \|w - z\| = \epsilon - \epsilon/2 = \epsilon/2$$

so that

$$\inf_{x \ge 0} \|\boldsymbol{A}x - \boldsymbol{w}\| \ge \epsilon/2 > 0$$

for all w such that $||w-z|| < \epsilon/2$.

4 □ →
4 □ →
4 □ →
5 →
5 →
6 →

46/19

Enrico Bertolazzi — Some recalls

Notes		

 $\begin{array}{l} \textbf{Proof:} \ \text{If} \ \epsilon = 0 \ \dots \\ \textbf{TO BE COMPLETED} \end{array}$

...so that $z \in \mathbb{R}^m \setminus C$ is open and thus C closed.

Enrico Bertolazzi — Some recalls

/7/10

Notes		

References

- R. Tyrrell Rockafellar
 Convex Analysis
 Princeton University Press, 1996.
- J. Farkas
 Theorie der einfachen Ungleichungen
 Journal für die reine und angewandte Mathematik,
 pp.1–27, **124**, 1902.
- http://en.wikipedia.org/wiki/Multi-index_notation

48/19

Enrico Bertolazzi — Some recalls

Ν	J	\bigcirc	to:
	v.	\ /	1 \ /1

INOTES		