Simulando eventos com Pythia 8 e analisando com FASTJET e ROOT

Samuel Pedro P Silveira

Centro de Ciências Naturais e Humanas Universidade Federal do ABC

Apresentação baseada no relatório científico parcial do Projeto FAPESP #2019/19629-2

O1Sobre mim

- ★ Samuel Pedro Pereira Silveira
- ★ Técnico em Informática pelo Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG)
- ★ Trabalhos anteriores: GUI CVmod e Moost
- ★ Graduando em Ciência e Tecnologia na Universidade Federal do ABC (**UFABC**)
- ★ Pós Bacharelado Interdisciplinar: Ciência da Computação (?)

Motivação

- ★ Aprendizado das técnicas utilizadas em Física de Altas Energias
- ★ Extrair informação da **dinâmica de quarks c-s** produzidos com alta energia num ambiente de colisões de íons pesados
- ★ Compreender o processo de **hadronização** no canal charmoso de decaimento do bóson W

PYTHIA 8

Eventos

- Colisão p-p a 13TeV
- Processos eletrofracos
 - WeakSingleBoson:ffbar2ffbar(s:gmZ)
 - WeakSingleBoson:ffbar2W

TTREE

Tree Estrutura dos objetos Branch Objetos Leaves Atributos dos objetos

Decaimento W (canal charmoso)

Análise de DPhi

Distribuição de DPhi entre c-s nas análises exclusivas e inclusivas

Análise da Massa Invariante

Distribuição de Massa Invariante entre c-s nas análises exclusivas e inclusivas

Decaimento W (canal charmoso)

Partículas de estado final de interesse

Bárion	PDG	Composição
Λ^0	3122	uds
Λ_c^+	4122	udc
Σ^0	3212	uds
Σ^+	3222	uus
Σ^-	3112	dds
Σ_c^0	4112	ddc
Σ_c^{++}	4222	uuc
Σ_c^+	4212	udc

Méson	PDG	Composição
K^0	311	$d\bar{s}$
K_c^+	321	$u\bar{s}$
K_L^0	130	$\frac{d\bar{s}-s\bar{d}}{\sqrt{2}}$
K_S^0	310	$\frac{d\bar{s}+s\bar{d}}{\sqrt{2}}$
D^+	411	$car{d}$
D^0	421	$c\bar{u}$
D_s^+	431	$c\bar{s}$
D^{*0}	423	$c\bar{u}$

Métodos

Recursividade

Para cada bóson/méson acha-se na sua ascendência o quark e assim se soma as características de interesse

Grafos

Construção de uma matriz de adjacências o que é caro computacionalmente

Análise de DPhi

Distribuição de DPhi entre bárions e mésons nas análises exclusivas e inclusivas

Análise da Massa Invariante

Distribuição de Massa Invariante entre bárions e mésons nas análises exclusivas e inclusivas

Hadronização

Mecanismo em que quarks e glúons são produzidos e se fragmentam em hádrons que são observados nos estados finais. O objetivo deste trabalho é justamente identificar os quarks e glúons a partir das partículas de estado final.

Algoritmos de Recombinação

Cônicos: define-se um círculo de raio R no plano y-φ de forma que a soma dos momentos aponta na mesma direção que o centro do círculo. De forma geral, a partir de uma semente (uma direção, por exemplo) computa-se os componentes, gerando um novo momento e assim por diante até a estabilização do cone. (Inseguro)

Algoritmos de Recombinação

Recombinação Sequencial:

$$d_{ij} = min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2},$$

$$\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

$$d_{iB} = k_{ti}^{2p},$$

k_t: momento transversal

y_i: rapidez

Φ_i: azimute

d_{ij}: continua recombinação d_{iB}: estabelece i como jato e remove da lista de elementos

Comparação entre alguns algoritmos de recombinação

Figura 5.1: Amostras de pártons gerados por um evento com diversas entidades aleatórias de fundo (leves) agrupados com diversos algoritmos, demonstrando a especial capacidade do algoritmo anti- k_t de lidar com a IRCS. Adaptado de [20].

Cacciari, Matteo, Gavin P Salam, and Gregory Soyez.

"The Anti-Kt jet Clustering Algorithm." Journal of High Energy Physics 2008.04 (2008): 063–063. Crossref. Web.

IR Safety e Collinear Safety

Uma medida através de jatos hadrônicos deve se aproximar dos resultados no nível partônico

Uma emissão fraca não pode alterar a quantidade de jatos detectados

PYTHIA

Definição do tamanho máximo do Jato (R)

Definição do algoritmo de recombinação (Anti-k_T)

Definição do parâmetro de correlação entre o jato e um quark (ξ)

Registro em arquivos padronizados (abandono da TTree)

Decaimento W (canal charmoso)

RECONSTRUÇÃO DO W

R = 0.40 ξ = 0.05 N = 10⁵ \hat{S}_p = 61.1421 \hat{S}_s = 16.543

Correlação de p_T

Correlação de p_T

Correlação de p_T

Novos Objetivos

Geração de **10⁷ eventos** para compreender a origem da alta significância no sinal secundário através da utilização do **Titânio**.

Estudar métodos de **Machine Learning** na identificação de jatos e di-jatos.

