Please report any typos/issues on Campuswire.

1 Let $S \subset \mathbb{R}$ be a bounded set. Define

$$-S := \{(-1)x \in \mathbb{R} \mid x \in S\}.$$

Prove that $\sup(-S) = -\inf(S)$ and that $\inf(-S) = -\sup S$.

2 Suppose $S \subset \mathbb{R}$ be a bounded set, as in problem **1**. For c > 0 define

$$cS := \{ cx \in \mathbb{R} \mid x \in S \}.$$

Prove that $\sup(cS) = c \sup S$.

3 Suppose $f:[a,b]\to\mathbb{R}$ is integrable (remember this presupposes that f is bounded). Prove that for any $c,d\in[a,b]$ with c< d the restriction $f|_{[c,d]}:[c,d]\to\mathbb{R}$ is integrable.

4 A function $f:[a,b] \to \mathbb{R}$ is a step function if there is a partition $a=t_0 < t_1 < \cdots t_{n-1} < t_n = b$ of [a,b] so that $f|_{[t_{i-1},t_i]}$ is constant for each i.

Prove that a step function is integrable.

5 Suppose $f:[a,b] \to \mathbb{R}$ is integrable and $g:[a,b] \to \mathbb{R}$ is a function such that g(x) = f(x) except at some points $x_1, \ldots, x_n \in [a,b]$. Prove that g is integrable and that

$$\int_{[a,b]} g = \int_{[a,b]} f.$$

Hint: homework 7, problem 6.

6 Suppose $f:[a,b]\to\mathbb{R}$ is continuous, $f(x)\geq 0$ for all $x\in [a,b]$ and that $\int_{[a,b]}f=0$. Prove that f(x)=0 for all x.

7 Suppose $f:[a,b]\to\mathbb{R}$ is a continuous function with the property that $\int_{[a,b]}fg=0$ for all continuous functions $g:[a,b]\to\mathbb{R}$. Prove that f is identically 0. (A version of this fact is used in the calculus of variation.)