Exercise 1. Assume L is countable and let $M \leq N$ have arbitrary (large) cardinality. Let $A \subseteq N$ be countable. Adapt the construction used for the downward Löwenheim-Skolem Theorem to prove that there is a countable model K such that $A \subseteq K \leq N$ and $K \cap M \leq N$ (in particular, $K \cap M$ is a model).

Exercise 2. Let $\langle M_i : i \in \lambda \rangle$ be an elementary chain of substructures of N. Let M be the union of the chain. Prove that $M \leq N$.

Exercise 3. Give an alternative proof of Exercise 1 using the elementary chain lemma and the downward Löwenheim-Skolem Theorem (instead of its proof). Hint: construct two chains of countable models such that $K_i \cap M \subseteq M_i \leq N$ and $A \cup M_i \subseteq K_{i+1} \leq N$.

Exercise 4. Let N consist of 3 copies of \mathbb{Z} that share the same non negative part. The language has only a function symbol for the successor function (which will be non invertible in 0). Let M be the substructure of MN obtained erasing one copy of \mathbb{Z} .

- 1. Prove that $M \not\equiv N$.
- 2. Suppose instead that *N* is build from infinitely many copies of \mathbb{Z} , prove that $M \equiv N$.
- 3. If *N* is like in 2 is $M \leq N$?

Exercise 5. Prove that T_{dlo} is not λ -categorical for any uncountable λ .

Exercise 6. Show that there is an ω -categorical theory that is not complete (the language need to be uncountable). Hint. Let v be an uncountable cardinal. The language contains only the ordinals i < v as constants. The theory T says that there are infinitely many elements and either i = 0 for every i < v, or $i \ne j$ for every i < v. Prove that T is ω -categorical but incomplete.

Exercise 7. Let N be free union of two random graphs N_1 and N_2 . That is, $N = N_1 \sqcup N_2$ and $r^N = r^{N_1} \sqcup r^{N_2}$. By \sqcup we denote the disjoint union. Prove that N is not a random graph. Show that N_1 is not definable without parameters (assume $|N_1| = |N_2| = \omega$, otherwise the proof is involved). Write a first order sentence $\psi(x,y)$ true if x and y belong to the same connected component of N. Axiomatize the class $\mathcal K$ of graphs that are free union of two random graphs.

Exercise 8. The language contains only the binary relations < and e. The theory T_0 says that < is a strict linear order and that e is an equivalence relation. Let \mathcal{M} consists of models of T_0 and partial isomorphisms. Do rich models exist? Can we axiomatize their theory? If so, does it have elimination of quantifiers? Is it λ -categorical for some λ ?

Exercise 9. Prove that for every infinite graph M the following are equivalent

- 1. M is either random, empty, or complete;
- 2. if $M_1, M_2 \subseteq M$ are such that $M_1 \sqcup M_2 = M$, then $M_1 \simeq M$ or $M_2 \simeq M$.

With \sqcup we denote the disjoint union.