CS/MATH 111, Discrete Structures - Fall 2018. Discussion 4 - Number Theory and Cryptography

Andres, Sara, Elena

University of California, Riverside

October 18, 2018

Problem 2

Primes, congruent to 3 mod 4

Conditions for parameters for RSA

Problem 2

- "Break" RSA by guessing the factorization of n
- Compute Eulers Totient Function

$$\phi(n)$$

Compute the decryption exponent d by computing

$$e^{-1} \pmod{\phi(n)}$$

solve this by enumerating.

▶ Using private key pair (d, n), decrypt the messages by

$$M = C^d \pmod{n}$$

C stands for the encrypted messages.

Problem 2

- Show computation for 3 letters in Latex: step-by-step, explaining everything;
- ► For the remaining message: Need to write a program (any language) — Attach the program or compute by hand. All the computations attach (It is ok if written in pen).
- Decode the message

Problem 2

Primes, congruent to 3 mod 4

Conditions for parameters for RSA

Infinitely many primes, congruent to 3 mod 4

Assume that

$$p_1=3,\cdots,p_k$$

are primes of the form

$$p_j \equiv 3 \pmod{4}$$

We will construct a new one by looking at

$$N=4\cdot(p_1\cdot p_2\cdot\ldots\cdot p_k)-1$$

or

$$N = 4 \cdot (p_1 \cdot p_2 \cdot \ldots \cdot p_k) + 3$$

would also work.

Infinitely many primes, congruent to 3 mod 4

- $N = 4 \cdot (p_1 \cdot p_2 \cdot \ldots \cdot p_k) 1 \equiv 3 \pmod{4}$
- Let q be a prime factor of N, s.t. $q \mid N$, then:
 - $ightharpoonup q \not\equiv 0 \pmod{4}$ [q should not be prime]
 - $ightharpoonup q \not\equiv 2 \pmod{4}$ [N is odd]
 - $primeq q \not\equiv 3 \pmod{4}$ [q should be part of $\{p_1, p_2, \dots, p_k\}$]
 - $ightharpoonup q \equiv 1 \pmod{4}$
- ▶ Then, $N = q_1 \cdot q_2 \cdot \ldots \cdot q_t$ and $\forall i \in \{1, 2, \cdots, t\} : q \equiv 1 \mod 4$.
- So, N ≡ 1 mod 4, which is a contradiction of our initial definition of N.

Infinitely many primes, congruent to 3 mod 4

- First, none of the primes p_j divides N: note that $p_j|N+1$, so if we had $p_j|N$, then we would have $p_j|(N+1)-N=1$: contradiction.
- Now we observe that at least one of the prime factors of N has the form $p \equiv 3 \mod 4$ (in fact, N is odd).
- ▶ Hence if such a prime does not exist, then all prime factors of N have the form $p \equiv 1 \pmod{4}$; but then we would have $N \equiv 1 \pmod{4}$ contradicting the construction of N.

Problem 2

Primes, congruent to 3 mod 4

Conditions for parameters for RSA

Conditions for parameters for RSA

```
What if ??? gcd(e,\phi(n))>1 d\equiv e^{-1}\pmod{\phi(n)} e\cdot d\equiv 1\pmod{\phi(n)}
```

- p and q are small...
- $\triangleright p = q$

$$\phi(n) = (p-1)(q-1)$$
?

- $ightharpoonup \phi(n) = (p-1)(p-1)$???
- Is double inscription correct?
- Is double inscription more secure?

p	q	e	d	correct?	Encrypt $M = 7$ if correct. Justify if not correct.
6	11	5	29		
19	7	5	37		
17	17	9	89		
29	11	7	37		
3	7	5	5		

р	q	е	d	correct?	Encrypt $M = 7$. Justify.
6	11	5	29	No	6 is not prime
19	7	5	37	No	$e \cdot d \not\equiv 1 \pmod{\phi(n)}$
17	17	9	89	No	p = q
29	11	7	37	No	$e \cdot d \not\equiv 1 \pmod{\phi(n)}$
3	7	5	5	Yes	$n = 21$ and $C = 7^5 \pmod{21}$

Problem 2

Primes, congruent to 3 mod 4

Conditions for parameters for RSA

Miller-Rabin Primality Test

Primality is easy!

- ▶ A primality test is a test or algorithm for determining whether an input number is prime.
- ▶ *N* is prime if it has no divisors less or equal to \sqrt{N} .
- ▶ Prove, that all primes are of the form $6k \pm 1$.
- Most popular algorithms for primality testing are probabilistic; may output a composite number as a prime.

Miller-Rabin Primality Test

- Let n be a prime number¹. Then n-1 is even and we can write it as $2^s \cdot d$
- So we have:

$$n-1=2^s\cdot d$$

where s and d are positive integers, and d is odd.

- ► For each a in $(\frac{\mathbb{Z}}{n\mathbb{Z}})^*$, either...
 - 1. $a^d \equiv 1 \pmod{n}$ or
 - 2. $a^{2^r \cdot d} \equiv -1 \pmod{n}$, For all $0 \le r \le s 1$.
- If we can find a, s.t. (1) and (2) are not true for all r, then n is not prime.

Is n = 221 prime?

- ▶ We write $n 1 = 220 = 2^2 \cdot 55$, so s = 2 and d = 55.
- ▶ We randomly select a number a s.t. 1 < a < n-1. Let a = 174.
- We proceed to compute:
 - $ightharpoonup a^{2^0 \cdot d} \mod n = 174^{55} \mod 221 = 47 \neq 1, -1$
 - $a^{2^1 \cdot d} \mod n = 174^{110} \mod 221 = 220 = -1$
- Since $220 \equiv 1 \mod n$, either 221 is prime, or 174 is a **strong liar** for 221.
- Keep trying...

Is n = 221 prime?

- We write $n-1=220=2^2 \cdot 55$, so s=2 and d=55.
- We try another random a, this time let a = 137:
 - $ightharpoonup a^{2^0 \cdot d} \mod n = 137^{55} \mod 221 = 188 \neq 1, -1$
 - $ightharpoonup a^{2^1 \cdot d} \mod n = 137^{110} \mod 221 = 205 \neq 1, -1$
- ► Hence 137 is a **witness** for the compositeness of 221, and 174 was in fact a strong liar.
- Factors of 221 are 13 and 17.