Лабораторна робота 2

МОДЕЛЮВАННЯ ЧАСОВИХ ХАРАКТЕРИСТИК ОБЧИСЛЮВАЛЬНИХ СИСТЕМ ТА МЕРЕЖ

Мета роботи: вивчення методів оцінки трудомісткості алгоритмів.

Загальні теоретичні відомості

Приклад: Реалізацію алгоритму можна подати у вигляді направленого графа, вершини якого відповідають операторам [3]. Ребра графа відмічаються імовірностями переходів від i-ї вершини до j-ї вершини. Граф наведено на рис. 7.

Рис. 7

Для цього графа матрицю ймовірностей переходу задано в табл. 1, елемент P_{ij} якої визначає ймовірність переходу із стану i в стан j.

T- <	1		
Таопиня	I Матриця	ГЙМОВІРНІСНИХ	переходів

тобыть подприменти порожение										
	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_{k}		
V_1		1								
V_2			0,25	0,75						
V_3					0,5		0,5			
V_4					0,2	0,3				
V_5							1			
V_6							1			
V_7	0.9							0.1		

Для простоти припустимо, що всі оператори алгоритму – основні та k_i =1 для всіх i=1,...,k. На підставі табл. 1 та формули (4) складаємо систему з семи лінійних алгебраїчних рівнянь

$$-N_{I}+0.9 N_{7}=-1,$$

$$N_{I}-N_{2}=0,$$

$$0.25 N_{2}-N_{3}=0,$$

$$0.75 N_{2}-N_{4}=0,$$

$$0.5 N_{3}+0.2 N_{4}-N_{5}=0,$$

$$0.8 N_{4}-N_{6}=0,$$

$$0.5 N_{3}+N_{5}+N_{6}-N_{7}=0.$$

$$(7)$$

Розв'язуючи систему (7) знаходимо значення N_1 ,..., N_{k-1} . Підставляючи отримані значення у формулу (1), отримаємо:

$$\theta = \sum_{i=1}^{l} k_i N_i = 39,75.$$

Якщо при виконанні будь-яких операторів відбувається звернення до файлів, то необхідно визначити ще величини N та θ . Визначивши таким чином ці величини, можна визначити середню трудомісткість етапу рахування.

Вихідні дані:

а) схема алгоритму (з лабораторної роботи 1); б) k_i – кількість операцій, що складають V_{ai} оператор (табл. 2); в) L_i – середня кількість інформації, що передається при виконанні V_i оператора звернення до файлу, де m – номер файлу, до якого відбувається звертання (табл. 3); г) області зміни параметрів X_i та N_i (табл. 4).

Вихідні дані визначають за двома останніми цифрами залікової книжки. Остання цифра залікової книжки визначає область зміни параметрів. Передостання цифра залікової книжки визначає значення k_i та L_i .

Таблиця 2. Число операцій, що складають V_{ai} оператор (k_i)

Кількість операторів		Номер варіанта								
V_a	0	1	2	3	4	5	6	7	8	9
V_{aI}	20	20	50	30	60	20	40	80	30	10
V_{a2}	30	30	40	10	60	100	20	40	60	80
V_{a3}	50	30	20	30	40	60	30	20	100	200
V_{a4}	20	30	50	20	30	30	10	80	90	35
V_{a5}	50	50	30	20	10	50	30	70	20	20
V_{a6}	30	20	10	30	100	30	20	60	70	45
V_{a7}	100	10	20	50	40	20	100	30	40	50
V_{a8}	20	40	100	100	20	40	50	300	200	100

Таблиця 3. Середня кількість інформації, що передається при виконанні V_{bi} оператора звернення (L_i)

onepuropu spepiremini (Li)										
Кількість інформації		Номер варіанта								
V_b	0	1	2	3	4	5	6	7	8	9
V_{bI}	500	700	800	250	900	250	800	300	500	400
V_{b2}	250	800	100	500	250	1000	100	200	400	300
V_{b3}	120	500	250	150	100	700	500	250	800	500
V_{b4}	800	100	150	1000	700	250	900	200	100	200
V_{b5}	100	600	800	200	500	1000	250	800	200	700
V_{b6}	600	900	700	100	400	400	400	500	900	300
V_{b7}	900	600	900	400	800	900	100	100	600	900
$ m V_{b8}$	400	700	600	200	900	400	600	400	400	100

Таблиця 4. Області зміни параметрів Xi та N1

Пара-	Номер варіанта											
метри	0	1	2	3	4	5	6	7	8	9		
X_I	-1,+3	-2,+3	-2,+3	0,+4	-2,+2	0,+5	0,+6	-1,+4	1,+7	-3,+1		
X_2	-1,+1	-1,+4	-2,+2	-3,+1	-3,+2	-2,+4	0,+5	-1,+3	-2,+4	-2,+3		
K_I	10	20	30	10	50	10	20	10	20	25		
K_2	20	10	15	20	40	20	10	20	10	10		
K_3	10	30	10	30	10	30	10	20	10	20		

 N_i — середнє число попадань обчислювального процесу у стан $S_i(1,...,k_i)$.

Хід виконання роботи

- 1. Вивчити теоретичні відомості.
- 2. Отримати допуск до роботи.
- 3. Вибрати за методичними вказівками варіант завдання.
- 4. Використовуючи дані з лабораторної роботи 1, визначити:
- а) середню кількість операцій, яка виконується за один прогін алгоритму;
- б) середню кількість звернень до кожного з файлів;
- в) середню кількість інформації, яка передається при одному звертанні до файлу;
- г) середню трудомісткість етапу рахування.
- 5. Скласти звіт по лабораторній роботі.
- 6. Зробити висновки по роботі.
- 7. Відповісти на запитання для самоперевірки.

Примітка. Для зменшення розмірності системи лінійних рівнянь доцільно об'єднувати послідовні ланцюжки операторів в один узагальнений оператор.

Запитання для самоперевірки

- 1. Як розраховується імовірність переходу?
- 2. За якою формулою визначається середня кількість процесорних операцій, які виконуються за один прогін алгоритму?
- 3. Як визначити середню кількість звернень до алгоритму?
- 4. Як визначити середню кількість інформації, яка передається при одному зверненні до файлу?
- 5. Як визначити середню трудомісткість етапу розрахунку?

Приклади тестових завдань

1. Розрахувати імовірності переходу Ріј:

2. Розрахувати імовірність переходу *Vij*:

4

- a) P_{12} =0.019; P_{13} =0.0357;
- 6) P_{12} =0.25; P_{13} =0.75;
- B) P_{12} =0.238; P_{13} =0.714.