МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

По лабораторной работе № 3 по дисциплине «Методы оптимизации»

Тема: Решение прямой и двойственной задач

Студент гр. 0303	 Болкунов В. О
Преподаватель	 Мальцева Н. В

Санкт-Петербург 2023

Цели работы.

- 1. Постановка задачи линейного программирования, и её решение с помощью стандартной программы.
- 2. Исследование прямой и двойственной задачи

Задание.

Вариант 1

Пусть для выращивания некоторой культуры применяется m видов удобрений соответственно в количестве B_i (i=1...m) единиц. Вся посевная площадь разбита на n почвенно-климатических зон, каждая по d_j (j=1...n) единиц. Пусть a_{ij} – количество i-го удобрения, вносимого на единицу площади j-ой зоны, а c_j – повышение средней урожайности, получаемой с единицы площади j-ой зоны. Составить такой план распределения удобрений между посевными зонами, который обеспечивал бы максимальный суммарный пророст урожайности.

Исходные данные для этой задачи сведены в таблице 3.1. Имеется 400ц фосфорных, 300ц азотных и 100ц калийных удобрений. Требуется построить математическую модель этой задачи для симплекс-метода. Замечание: рекомендуется через x_j обозначить площадь, которую необходимо удобрить в j-ой зоне.

Таблица 1: исходные данные задачи

Зоны	Посевная площадь,	Затраты удобрений на 1 га, ц			Прирост урожайности на 1	
	площадь, Га	фосфорные	азотные	калийные	урожайности на т га, ц	
1	100	2	1	1	12	
2	150	1	2	5 4	14	
3	200	1	$\frac{1}{2}$	0	10	

Основные теоретические положения.

Если исходная задача линейного программирования представлена в виде:

 $\min \varphi(x) = (c, x)$ на множестве $X = \{x \in R^n : Ax \ge B, x \ge 0\}$ (1) то двойственная задача линейного программирования может быть сформулирована следующим образом.

Найти максимум функции (B, λ) на множестве $\Lambda = \{\lambda \in R^m : A^T \lambda \le c, \lambda \ge 0\}, \quad \text{где} \quad A^T - \quad \text{транспонированная} \quad \text{матрица} \quad A.$ Двойственная к двойственной задаче — исходная задача.

Известно, что если существует решение исходной задачи, то существует решение и двойственной задачи, причем значения экстремумов совпадают. При этом координаты экстремальной точки для двойственной задачи являются коэффициентами чувствительности результата в исходной задаче по коэффициентам вектора В.

Рассмотрим видоизмененную исходную задачу:

Найти $\min(c,x)$ на множестве $X=\{x\colon x\geq 0, Ax\geq B+\varepsilon e_i\}$, где $\varepsilon>0$

$$e_i = \begin{pmatrix} 0 \\ \dots \\ 1 \\ \dots \\ 0 \end{pmatrix} i$$

Если исходная задача имеет единственное решение, то при малых $\varepsilon>0$, и видоизмененная задача имеет решение; причем если α_{ε}^i -значение минимума, то существует $\lim_{z\to 0} \frac{(\alpha_{\varepsilon}^i-\alpha_0^i/)}{\varepsilon} \stackrel{\text{def}}{=} \beta_i$. Оказывается, что β_i — есть i-ая координата оптимальной точки двойственной задачи.

Для проведения лабораторной работы составлена программа, обеспечивающая решение задачи линейного программирования при задании с терминала исходных значений параметров.

Выполнение работы.

Построим математическую модель данной задачи, возьмём за x_i – площадь удобряемую в i-ой зоне (в га.).

$$f(x) = 12x_1 + 14x_2 + 10x_3 \rightarrow max$$

Ограничения для задачи, накладываемые имеющимся количеством удобрений:

$$\begin{cases} 2x_1 + x_2 + x_3 \le 400 \\ x_1 + 2x_2 + \frac{x_3}{2} \le 300 \\ x_1 + \frac{5x_2}{4} \le 100 \end{cases}$$

Также ограничения накладываются на саму площадь удобряемых зон:

$$\begin{cases} x_1 \le 100 \\ x_2 \le 150 \\ x_3 \le 200 \end{cases}$$

Приведём задачу к виду (1), для удобного дальнейшего построения двойственной задачи.

$$-f(x) = -12x_1 - 14x_2 - 10x_3 \to min$$

$$\begin{cases}
-2x_1 - x_2 - x_3 \ge -400 \\
-x_1 - 2x_2 - \frac{x_3}{2} \ge -300
\end{cases}$$

$$-x_1 - \frac{5x_2}{4} \ge -100$$

$$-x_1 \ge -100$$

$$-x_2 \ge -150$$

$$-x_3 \ge -200$$

Введём исходные данные задачи в подготовленную программу (рис. 1). Решение, полученное с помощью программы представлено на рисунке 2.

Рисунок 1: исходные данные задачи

Рисунок 2: решение задачи

Найденное оптимальное решение находится в точке $x = (100, 0, 200)^T$, значение целевой функции (-f) равно -3200, следовательно значение исходной функции f в оптимальной точке равно 3200. В контексте предметной области задачи это значит, что нужно полностью удобрить 1 и 3 посевные зоны для получения максимального прироста урожайности массой в 3200 центнеров.

Построим двойственную задачу к исходной.

$$f(y) = -400y_1 - 300y_2 - 100y_3 - 100y_4 - 150y_5 - 200y_6 \rightarrow max$$

$$\begin{cases}
-2y_1 - y_2 - y_3 - y_4 \le -12 \\
-y_1 - 2y_2 - \frac{5y_3}{4} - y_5 \le -14 \\
-y_1 - \frac{y_2}{2} - y_6 \le -10
\end{cases}$$

Ввод исходных данных и решение двойственной задачи программой представлены на рисунках 3 и 4 соответственно.

Рисунок 3: условие двойственной задачи

Рисунок 4: решение двойственной задачи

Значение целевой функции двойственной задачи в оптимальной точке $y = (0,0,12,0,0,10)^T$ равно -3200, что совпадает со значением целевой функции (-f) в оптимальной точке исходной задачи.

Найдём коэффициенты чувствительности исходной по координатам правой части ограничений (вектора B). Для этого увеличим i-ую координату вектора B на $\varepsilon=10^{-1}$ (меньшее значение программа ввести не позволяет) и решим задачу минимизации с вектором $B=B+\varepsilon e_i$. Результаты решений представлены в таблице 2.

Координата	$B_i + \varepsilon e_i$	x_1	x_2	x_3	$\varphi_i(\varepsilon)$
вектора В, і					
1	-399.9	99.917	0.067	200.000	-3199.933
2	-299.9	100.000	0.000	200.000	-3200.000
3	-99.9	99.900	0.000	200.000	-3198.800
4	-99.9	99.900	0.080	200.000	-3199.920
5	-149.9	100.000	0.000	200.000	-3200.000
6	-199.9	100.000	0.000	199.900	-3199.000

Где $\varphi_i(\varepsilon)$ — минимальное значение функции в задаче, где координата i вектора В была увеличена на значение ε , (соответственно $\varphi(0)$ — минимум исходной задачи)

Вычислим значения вектора чувствительности $\widetilde{\chi}_{l} = \frac{\varphi_{l}(\varepsilon) - \varphi(0)}{c}$:

$$\widetilde{x_1} = \frac{-3199.933 - (-3200)}{0.1} = 0.67$$

$$\widetilde{x_2} = \frac{-3200 - (-3200)}{0.1} = 0$$

$$\widetilde{x_3} = \frac{-3198.8 - (-3200)}{0.1} = 12$$

$$\widetilde{x_4} = \frac{-3199.92 - (-3200)}{0.1} = 0.8$$

$$\widetilde{x_5} = \frac{-3200 - (-3200)}{0.1} = 0$$

$$\widetilde{x_6} = \frac{-3199 - (-3200)}{0.1} = 10$$

Сравним вектор \widetilde{x} с оптимальной точкой двойственной задачи

$$\widetilde{x} = \begin{pmatrix} 0.67 \\ 0 \\ 12 \\ 0.8 \\ 0 \\ 10 \end{pmatrix}; \ y^* = \begin{pmatrix} 0 \\ 0 \\ 12 \\ 0 \\ 0 \\ 10 \end{pmatrix}$$

Как можно заметить векторы примерно равны, но в 1-ой и 4-ой координате вектора \tilde{x} есть небольшое отклонение, которое скорее всего возникло из-за погрешности вычислений программы; подтверждения корректности ввода представлены на рисунках 5 и 6 соответственно для 1-ой и 4-ой координаты вектора B.

Рисунок 5: вычисление коэффициентов чувствительности исходной задачи

Рисунок 6:вычисление коэффициентов чувствительности исходной задачи

Теперь найдём коэффициенты чувствительности исходной задачи по координатам вектора C. Для этого аналогично предыдущим вычислениям, увеличим i-ую координату вектора C на $\varepsilon=10^{-1}$ и решим задачу минимизации с вектором $C=C+\varepsilon e_i$. Результаты решений представлены в таблице 3.

Координата	$C_i + \varepsilon e_i$	x_1	x_2	x_3	$\varphi_i(arepsilon)$
вектора С, і					
1	-11.9	100.000	0.000	200.000	-3190.000
2	-13.9	100.000	0.000	200.000	-3200.000
3	-9.9	100.000	0.000	200.000	-3180.000

Вычислим значения $\widetilde{\chi}_{l} = \frac{\varphi_{l}(\varepsilon) - \varphi(0)}{\varepsilon}$:

$$\widetilde{x_1} = \frac{-3190 - (-3200)}{0.1} = 100$$

$$\widetilde{x_2} = \frac{-3200 - (-3200)}{0.1} = 0$$

$$\widetilde{x_3} = \frac{-3180 - (-3200)}{0.1} = 200$$

Сравним вектор \widetilde{x} с оптимальной точкой исходной задачи

$$\widetilde{x} = \begin{pmatrix} 100 \\ 0 \\ 200 \end{pmatrix}; \ x^* = \begin{pmatrix} 100 \\ 0 \\ 200 \end{pmatrix}$$

Значения данных векторов полностью совпадают. Следовательно вектор коэффициентов чувствительности исходной задачи по координатам вектора ${\cal C}$ совпадает с оптимальной точкой исходной задачи.

Вывод.

В ходе выполнения лабораторной работы:

- Составлена математическая модель задачи оптимизации для решения её симплекс-методом
- Поставленная задача была решена с помощью подготовленной программы.
- Исследована и решена двойственная задача линейного программирования: в соответствии с теоретическими ожиданиями в двойственной задачи также нашлось решение, причём значения целевых функций в оптимальных точках совпали для прямой и двойственной задач.
- Найдены коэффициенты чувствительности исходной задачи относительно векторов *В* и *С*. Значения вектора чувствительности относительно вектора *В* примерно совпали со значением оптимальной точки двойственной задачи; вектор чувствительности исходной задачи относительно вектора *С* в свою очередь полностью совпал с оптимальной точкой исходной задачи.