Binary Tree

트리의 정의

트리는 connected acyclic graph

- 1) 루트 노드(root)를 반드시 가진다.
- 2) 트리를 구성하는 노드 간에 단순 경로가 존재

or

↗ 서로 연결될 수 없다.

트리는 1개 이상의 노드로 이루어진 유한 집합

- 1) 루트 노드(root)를 반도시 가진다.
- 2) 나머지 노드들은 분리집합 T1, ..., Tn으로 분할 가능 T1, ...T2 등은 각각 <mark>하나의 트리(서브 트리)</mark>

재귀적 정의

사이클

트리 용어

- 1. 차수(degree): 어떤 노드의 자식 노드의 개수
- 2. 트리의 차수(degree of a tree) : 트리에 있는 노드의 최대 차수
- 3. 리프 노드(leaf node) : 차수가 0인 노드, 즉 자식이 없다 단말 노드(terminal node)라고도 부름
- 4. 레벨(level) : 루트의 레벨을 1로 하고 자식으로 내려가면서 하나씩 더한다 (루트의 레벨을 0으로 하는 책도 많다.)
- 5. 트리의 높이(height) or 깊이(depth) : 트리가 가지는 최대 레벨
- 6. 포레스트(forest): 루트 노드를 없앤 후 얻은 서브 트리의 집합

트리 용어

노드와 에지의 관계

노드의 개수 : n 에지의 개수 : e

e = n - 1

포레스트

이진 트리(binary tree)

정의

어떤 노드의 자식 노드의 수가

최대 2개인트리

정의 공집합 혹은 루트(root)와 왼쪽 서브 트리, 오른쪽 서브 트리로 이루어진 유한 집합, 각각의 서브 트리는 모두 이진 트리이다

이진 트리의 예

이진 트리의 특징

- 1. 레벨 I에서 최대 노드 수 : 2^{l-1} 개
- 2. 높이가 h인 이진 트리의 최대 노드 수 : $2^h 1$ 개
- 3. 높이가 h인 이진 트리의 최소 노드 수 : **h가**

레벨에서의 최대 노드 수

Level 3에서 최대 노드 수 : $2^{3-1} = 4$

트리의 최대 노드 수

트리의 높이는 3 최대 노드 수: 2³ - 1 = 7

트리의 최소 노드 수

트리의 높이는 3 최소 노드 수 : 3

이진 트리의 종류

: 포화 이진 트리(full binary tree)

이진 트리의 종류

: 완전 이진 트리(complete binary tree)

높이가 h이면 level h-1 까지 노드 수는 $2^{h-1}-1$ 개 이고 level h에서는 왼쪽부터 오른쪽으로 노드가 채워져 있는 트리

이진 트리의 종류

: 편향 이진 트리(skewed binary tree)

왼쪽이나 오른쪽 서브 트리만 가지는 트리

전위 순회

후위 순회

레벨 순서 순회

