Эконометрика с R

Артамонов Н.В.

24 марта 2019 г.

Оглавление

1	Лин	иейная регрессия в R	5
	1.1	Типы данных в R	5
	1.2	Основные операторы	6
	1.3	Вектора, матрицы, дата фреймы	7
	1.4	Функции	11
	1.5	Функция summary()	11
	1.6	Основные распределения	12
	1.7	Работа с внешними пакетами	13
	1.8	Загрузка данных	14
		1.8.1 Загрузка встроенных в пакеты датасетов	15
		1.8.2 Импорт данных из файла формата csv	15
		1.8.3 Импорт данных из файла формата MS Excel	16
	1.9	Оценивание линейной регрессии	17
	1.10	Прогнозирование	20
			21
			21
		1.11.2 F-тест для коэффициентов регрессии	22
	1.12		25
		Пример: зарплатное уравнение	

 $O\Gamma$ ЛAВЛЕHИE

Глава 1

Линейная регрессия в R

R – это объектно-ориентированный язык программирования, ориентированный на статистическую обработку и визуализацию данных. Официальный сайт языка R: www.r-project.org

Для работы с R необходимо установить

- 1. интерпретатор языка R («командная строка»)
- 2. графическую оболочку (упрощает работу со скриптами).

Есть несколько графических оболочек. Наиболее распространенной и функциональной является оболочка RStudio (www.rstudio.com).

При работе с R следует придерживаться следующего:

- каждая команда занимает одну или несколько строк кода;
- если в одной строке нужно разместить несколько команд, то их следует разделять точкой с запятой;
- в именах переменных допускаются буквы, числа, знак подчёркивания, точка.

1.1 Типы данных в R

В R реализована поддержка следующих типов данных/классов

• **Числовые**: целочисленные integer, действительные double, комплексные complex;

- логические logical (значения FALSE и TRUE);
- **символьные** character (задаются в двойных или одинарных кавычках).

В R выделены следующие особые объекты:

- NA^1 «отсутствие значения»;
- NULL «ничто» или «пустое значение»;
- Inf «бесконечность»;
- NaN^2 «не число».

1.2 Основные операторы

R является языком с динамической типизацией, т.е. переменные не обяхательно объявлять заранее и любой переменной можно присвоить любое значение. Для присвоения значения переменной в R используются следующие операторы: =, <-, ->

Пример. Следующие три следующие команды равносильны и присваивают переменной а значение 3:

a = 3

a <- 3

3 -> a

Пример. Следующие команды

$$x = 2$$
; $x \leftarrow TRUE$; "abc" -> x

последовательно присваивают переменной x числовое, логическое и символьное значение. В итоге значение переменной равно "abc"

В R реализованы также следующие операции:

+, -, *, /, ^	арифметические операции
%*%	умножение матриц
==, <, >, !=, <=, >=	сравнение
!, &,	логические операции
	(отрицание, И, ИЛИ)

¹NA = Not Available

 $^{^{2}}$ NaN = Not A Number

7

1.3 Вектора, матрицы, дата фреймы

Рассмотрим работу в R со следующими классами данных:

- 1. векторы (vector)
- 2. списки (list)
- 3. матрицы (matrix)
- 4. факторы (factor)
- 5. дата фреймы (data frame)

Вектор представляет из себя одномерный массив одного примитивного типа (числовой, строковый и др.). Для явного задания вектора нужно использовать функцию с().

Пример. Команды

создают числовой и строковый векторы длины 5 и 3 соответственно.

Чтобы получить элемент вектора, нужно в квадратных скобках указать его номер

Пример. Для векторов из предыдущего примера a[1] равно 2.3, a[3] равно 4, b[1] равно "x", b[3] равно "abc".

При создании вектора его элементам можно присвоить имена $\Pi pumep$. Команда

$$c <- c(a=1, b=2.4, c=-1)$$

создает числовой вектор длины три, элементы которого имеют имена \mathtt{a} , \mathtt{b} и \mathtt{c} .

Значения элементов вектора можно получить как по номеру, так и по их имени. Так c[1]=c["a"]=1.

Отметим, что для команды

создают вектора

$$d.1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$
 $d.2 = \begin{pmatrix} 3 & 4 & 5 & 6 \end{pmatrix}$

Список также можно рассматривать как одномерный массив. Но, в отличие от вектора, элементы списка могут быть разных примитивных типов. Для явного создания списка нужно использовать функцию list() Пример. Команда

создает список, состоящий из числа, строки и логического значения TRUE. Тогда mylist1[1] равно -1, mylist1[2] равно "abc".

При создании списка его элементам можно присвоить отдельные имена

Пример. Команда

$$mylist2 \leftarrow list(x = FALSE, y = "abc", z = 1.5)$$

создает список, элементы которого имеют имена х, у и z.

Чтобы получить значение элемента нужно после имени списка указать имя элемента через знак \$ или указать имя элемента в кавычках в квадратных скобках.

Пример. Для списка из предыдущего примера mylist2\$x paвно FALSE; mylist2\$z paвно 1.5; mylist2['y'] paвно "abc".

Матрица представляет собой двумерный массив одного примитивного типа. В R матрица рассматривается как вектор (одномерный) с дополнительными атрибутами: размером матрицы (число строк и/или число столбцов). Создать матрицу можно функцией

с аргументами

data	вектор
nrow	число столбцов
ncol	число строк
byrow	если FALSE, то матрица заполняется
	по столбцам, иначе – по строкам
dimnames	список длины 2, содержащий имена
	строк и столбцов

9

Пример. Рассмотрим скрипт

```
v <- 1:6
m1 <- matrix(v, nrow = 2)
m2 <- matrix(data = v, ncol = 3)
m3 <- matrix(v, nrow = 2, byrow = TRUE)</pre>
```

Он создает вектор

$$v = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

и матрицы

$$m1 = m2 = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix} \quad m3 = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Чтобы получить элемент матрицы в строке с номером i и столбце с номером j после имени матрицы нужно указать [i,j]. Если после имени матрицы указать [i,j] или [,j], то получим целиком строку или столбец матрицы соотвественно.

Пример. Для матриц из предыдущего примера m1[1,2] равно 3; m3[2,3] равно 6; m1[,2] равно (3,4); а m3[1,] равно (4,5,6).

Факторы рассматриваются как вектор и используются для представления качественных данных. Факторная переменная представляет собой вектор, элементы которого принадлежат конечному множеству «качественных значений». Реализована работа как с упорядоченными, так и с неупорядоченными факторами.

Дата фрейм или таблица данных представляет собой двумерный массив для работы со статистическими данными разной природа: как количественными, так и качественными (факторными признаками). Это отличает дата фреймы от матрицы, которые объединяет значения одного примитивного типа.

Дата фрейм можно рассматривать как таблицу, в которой

- каждый столбец имеет свое имя, которое можно рассматривать как имя фактора/переменной
- столбцы статистические данные по соответствующей переменной
- в каждом столбце могут значения только одного примитивного типа (числовые, факторные)

• в разных столбцах допускаются значения разных примитивных типов

Создать дата фрейм явно можно функцией data.frame(). Для создания факторной переменной следует использовать функцию as.factor()

77	D	_		статистическими	
IImumen	Рассмотрим	тарпини	CO	статистическими	панными
$11\rho\omega\omega\omega\nu$	1 accmorphin	таолицу	co	CIGINCIN ICCIMINI	данныши

price	age	color
10000	3	white
12000	2	red
9300	5	white
15000	1	red
9700	3	white
11000	2	black

по продажам подержанных автомобилей. Переменные price (цена продажи) и age (возраст) являются количественными, а переменная color является качественной (факторной). Создадим дата фрейм

Чтобы получить значения отдельной переменной из дата фрейма нужно после его имени указать имя переменной через знак \$. Также как и для матриц значения дата фрейма можно получить по номеру строки/столбца или имени столбца

Пример. Для дата фрейма из предыдущего примера cardata\$age равно (3, 2, 5, 1, 3, 2); cardata[1,2] равно 3; cardata[1,] равно (10000, 3, white); cardata[,1] и cardata[,'price'] равно (10000, 12000, 9300, 15000, 9700, 11000)

При импортировании статистических данных из внешних источников (файл, базы данных и др) соотвествующие функции, как правило, автоматически создают дата фреймы.

1.4. ФУНКЦИИ 11

1.4 Функции

Функции бывают либо стандартными³ (например, функция **cor**, вычисляющая корреляцию, функция **lm**, осуществляющая оценку линейной модели методом наименьших квадратов), либо подключаемые из внешних пакетов (см раздел 1.7).

Функции имеют аргументы двух типов – обязательные и необязательные. Обязательные должны быть заданы, необязательные могут быть заданы, а могут – и нет. В этом случае им как правило приписывается значение по умолчанию. Порядок аргументов не важен. Причем в большинстве случаев можно писать подставляемый в функцию объект, не указывая, каким из аргументов функции он соответствует.

Например коэффициент корреляции между двумя переменными **x** и у можно вычислить с помощью такой команды

```
cor(x, y)
```

Можно указать необязательный аргумент method, говорящий, какой именно коэффициент корреляции будет вычислен: Пирсона, Спирмена, Кендалла. По умолчанию вычисляется коэффициент Пирсона, коэффициент Спирмена вычисляется так

```
cor(x, y, method = "spearman")
```

Как правило в результате выполнения функции создается сложный объект (часто список). Его компоненты перечисляются в описании к функции. Например стандартная команда cor.test, осуществляющая тест коэффициента корреляции на значимость, создает объект (список)

```
a <- cor.text(x,y)
```

который содержит компоненты a\$statistic, где содержится значение тестовой статистики, a\$p.value, где содержится P-значение теста.

1.5 Функция summary()

Эта функция может быть применена ко многим объектам⁴ и выводит «итоги» для объекта. Результаты выполнения зависят от класса объекта:

³входят в первоначальную установку R

⁴Такие функции называются generic functions

- Для вектора **summary()** вычисляет описательные статистики (min/max, среднее, медиана, квартили)
- Для матриц summary() вычисляет описательные статистики по столбцам (min/max, среднее, медиана, квартили)
- Для дата фреймов для каждого столбца (переменной)
 - для количественной переменной вычисляются описательные статистики (min/max, среднее, медиана, квартили)
 - для факторной переменной вычисляются количество наблюдений в выборке для каждого «значения» качественного признака.
- Для оцененной модели регрессии выводится протокол оценивания, который включает основные показатели: оценки коэффициентов, показатель «качества подгонки» R^2 , основные тестовые статистики и др.

Пример. Для дата фрейма cardata из предыдущего примера получаем

> summary(cardata)

pri	ce	ag	;e	color
Min.	: 9300	Min.	:1.000	black:1
1st Qu.	: 9775	1st Qu.	:2.000	red :2
Median	:10500	Median	:2.500	white:3
Mean	:11167	Mean	:2.667	
3rd Qu.	:11750	3rd Qu.	:3.000	
Max.	:15000	Max.	:5.000	

1.6 Основные распределения

Функции основных распределений, встроенных в ${\bf R}^5$:

 $^{^5}$ Вместо * нужно подставить q, d, p или r если нужно вычислить квантиль, плотность pdf. функция распределения cdf или сгенерировать случайную выборку соотвественно

Функция R	распределение
*norm	нормальное (гауссово)
*lnorm	log-нормальное
*beta	бета
*binom	биномиальное
*nbinom	отрицательное биномиальное
*cauchy	Коши
*chisq	χ^2
*exp	экспоненциальное
*f	Фишера или F-распределение
*gamma	гамма
*geom	геометрическое
*hyper	гипергеометрическое
*pois	Пуассона
*t	Стьюдента или t-распределение
*unif	равномерное
*weibull	Вебулла

Рассмотрим как вычислять критические значения основных распределений. Пусть а – уровень значимости (обычно а = 0.1, 0.05, 0.01).

Распределение	команда в R для критических значений
$\mathcal{N}(0,1)$	qnorm(p=1-a/2)
χ_n^2	qchisq(p=1-a, df=n)
t_n	qt(p=1-a/2, df=n)
$F_{k,n}$	qf(p=1-a, df1=k, df2=n)

1.7 Работа с внешними пакетами

Базовый функционал языка R может быть существенно расширен за счёт внешних подключаемых пакетов, написанных сторонними разработчиками. Практически все (в том числе самые современные) статистические и эконометрические методы (и не только) реализованы в виде сторонних пакетов⁶.

 $^{^6\}Pi$ ри этом может случиться, что один и тот же метод может быть реализован в разных пакетах, созданных независимо разными разработчиками. Естественно, что реализации могут сильно различаться.

Внешние пакеты содержат функции, реализующие дополнительную функциональность, и иногда статистические наборы данных (датасеты) для иллюстрации функционала пакета.

Внешние пакеты хранятся во внешних репозиториях. Официальный репозиторий называется CRAN⁷ (cran.r-project.org). По умолчанию пакеты загружаются из него. Также можно загружать пакеты из неофициальных репозиториев. Например, многие пакеты замещаются разработчиками на GitHub (github.com).

Чтобы воспользоваться внешним пакетом его необходимо сначала загрузить из репозитория и установить локально (это достаточно сделать один раз). Для этого нужно выполнить команду

```
install.packages("PackageName")
```

Чтобы воспользоваться всеми возможностями пакета в скрипте его сначала нужно загрузить в память с локального диска командой

```
library("PackageName")
```

или

```
require("PackageName")
```

Пакет предварительно должен быть установлен, иначе будет сообщение об ошибке. После этого в любом месте кода можно обращаться ко всем функциям и датасетам пакета.

Если по каким либо причинам нужно вызвать только одну функцию из пакета **без его полноценной загрузки** в память, то нужно писать

```
PackageName::FunctionName(...)
```

Такая ситуация, например, может возникать если есть конфликт имён.

1.8 Загрузка данных

R поддерживает широкий функционал по импорту статистических данных из файлов многих форматов (csv, MS Excel и проч.). Это обеспечивается как встроенным функционалом R, так и сторонними пакетам.

При импорте данных из файлов (таблиц данных) функции возвращают значение в формате дата фрейм.

⁷CRAN = Comprehensive R Archive Network

1.8.1 Загрузка встроенных в пакеты датасетов

Как говорилось ранее многие сторонние пакеты содержат встроенные наборы данных для демонстрации функционала пакета. Например, пакет по визуализации данных ggplot2 содержит набор данных diamonds о почти 54000 бриллиантах.

Чтобы загрузить встроенные датасеты нужно воспользоваться функцией

```
data(dataset, package = "PackageName")
```

где dataset — имя датасета в пакете. Если пакет загружен командой library или require, то аргумент package можно пропусть (значение по умолчанию NULL)

1.8.2 Импорт данных из файла формата csv

Наиболее простой способ импорта статистических данных – использовать внешние данные в формате csv-файла⁸. Формат csv представляет собой таблицу, сохранённую в текстовом формате по строкам, в которой значения в каждой строке разделяются специальными символами (запятая, пробел, знак табуляции, точка с занятой). При создании файла csv (например, в MS Excel) отдельно указывается как представлять десятичные дроби: с десятичной точкой или с десятичной запятой.

Для импорта данных из файла формата csv можно использовать встроенную функцию

с аргументами

file	имя файла или web-ссылка (строковая переменная)
header	если TRUE, то первая строка интерпретируется
	как название переменной
sep	разделитель между значениями в стоке:
	";" "," "\t" " _\ "
dec	разделитель десятичной дроби:
	" " " ,
quote	символ цитирования (строковые переменные)

 $^{^8 \}text{csv} = \text{Comma Separated Values}$

1.8.3 Импорт данных из файла формата MS Excel

В R нет встроенных функций для импорта данных из файлов формата MS Excel. Поэтому необходимо воспользоваться сторонними пакетами.

Вариант №1 Пакет XLConnect позволяет работать с файлами MS Excel. В этом пакете есть функция для чтения данных из файла

с аргументами

file	имя файла или web-ссылка (строковая переменная)
sheet	имя или номер листа в файле
startRow	номер начальной строки
startCol	номер начальной колонки
endRow	номер последней строки
endCol	номер последней колонки
header	если TRUE, то первая строка интерпретируется
	как название переменной
region	диапазон на листе в формате 'A1:C5'

startRow, startCol, endRow, endCol по умолчанию равны 0. Это означает, что диапазон выбирается автоматически.

Вариант №2 Пакет xlsx также позволяет работать с файлами MS Excel. В нём, в частности, реализована функция

Основные аргументы

file	имя файла или web-ссылка (строковая переменная)
sheetIndex	номер листа
sheetName	имя листа в файле (строковая переменная)
rowIndex	числовой вектор с указанием номеров строк
startRow	номер начальной строки
endRow	номер последней строки
colIndex	числовой вектор с указанием номеров строк
header	если TRUE, то первая строка интерпретируется
	как название переменной

1.9 Оценивание линейной регрессии

Оценивание линейной регрессии методом наименьших квадратов осуществляется с использованием функции 9

Основные аргументы

formula	спецификация регрессии (объект класса formula)	
data дата фрейм, на котором оценивается модель		
subset	ubset (опционально) используется, если нужно оценить	
	модель не по всему дата фрейму, а только по его части	
weights	(опционально) вектор весов для метода WLS	

В результате выполнения функции создаётся объект типа lm, который представляет собой список, содержащий информацию о подогнанной модели. Для вывода протокола оценивания можно использовать функцию summary().

Спецификация регрессии (объект класса formula) указывается по правилу:

• Регрессия с константой

$$\begin{pmatrix} 3$$
ависимая переменная $\end{pmatrix} \sim 1 + perpeccop1 + perpeccop2 + \cdots$

или более кратко

$$\binom{\text{Зависимая}}{\text{переменная}} \sim \text{perpeccop1} + \text{perpeccop2} + \cdots$$

 $^{9 \}text{lm} = \text{Linear Model}$

• Регрессия без константы

$$\begin{pmatrix} 3$$
ависимая переменная $\end{pmatrix} \sim 0 + \text{perpeccop}1 + \text{perpeccop}2 + \cdots$

Названия факторов указываются как в дата фрейме, на котором оценивается модель.

Нужно отметить следующие факты:

• Если зависимая переменная или регрессоры в модели берутся с логарифмами, то в спецификацию модели нужно вставить функцию log(). Например

$$\log(y)^{\sim}\log(x1) + \log(x2) + x3$$

• Если в число объясняющих переменных включён регрессор в степени k (обычно квадрат k=2), то в функции lm в спецификации нужно указать $I(...^k)$. Например

$$y^x+I(x^2)$$

• Если в число объясняющих переменных включено произведение регрессоров, то в функции 1m это произведение нужно включить в I(...). Например

Пример. Пусть дата фрейм MyDFrame содержит переменные y, x1, x2, x3 и оцениваемая регрессия выглядит так:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i,$$

Тогда оценивание осуществляется командой

mymodel <- lm(formula=y~x1+x2+x3, data=MyDFrame)</pre>

Вывод протокола оценивания

summary(mymodel)

Объект типа lm (список) ссодержит информацию об оцененной модели. В частности

coefficients коэффициенты модел	
residuals	остатки
fitted	предсказанные значения

Пример. Для модели из предыдущего примера получить коэффициенты, остатки и предсказанные значения можно командами

mymodel\$coefficients
mymodel\$residuals
mymodel\$fitted

Альтернативно можно использовать функции

coef(object)
coefficients(object)
residuals(object)
resid(object)
fitted(object)
fitted.values(object)

Вычислить показатели информационных критериев Акаике и Байесовского (Шварца) можно с помощью функций

Они позволяют получить показатели информационных критериев сразу для нескольких оценённых моделей. Параметр \mathbf{k} — это коэффициент при штрафном слагаемом (по умолчанию равен 2 для стандартного критерия Акаике).

Для тестирования гипотез о коэффициентах необходимо оценить матрицу вариации (ковариационную матрицу) вектора оценок коэффициентов. OLS-оценку этой ковариационный матрицы

$$\widehat{\operatorname{Var}}(\hat{\boldsymbol{\beta}}_{OLS}) = s^2 (\mathbf{X}'\mathbf{X})^{-1}$$

можно получить с помощью функции

vcov(object)

Для вычисления робастных 10 (HC и HAC) оценок ковариационной матрицы необходимо использовать сторонние пакеты. Рассмотрим два примера:

• В пакете sandwich¹¹ функции

вычисляют соотвественно НС- и НАС-оценки ковариационной матрицы вектора оценок коэффициентов.

В пакете car¹² функция

вычисляет НС-оценку матрицы вариации вектора оценок коэффициентов

Основные аргументы функций:

x, model	объект класса lm	
type	тип НС-оценки	
order.by	по какой переменной необходимо	
	упорядочить данные (для НАС-оценки)	

1.10 Прогнозирование по оценённой модели линейной регрессии

Прогнозирование для оценённой регрессии (объекта класса lm) осуществляется с помощью функции

¹⁰HC = Heteroskedasticity Consistent; HAC = Heteroskedasticity-Autocorrelation

 $^{^{11} \}rm O$ ценки типа HC и HAC ковариационной матрицы вектора оценок коэффициентов часто называются сэндвич-оценками

¹²car = Companion to Applied Regression

Основные аргументы

object	оцененная модель (объект класса lm)	
newdata	значения регрессоров (в формате дата фрейма),	
	для которых вычисляются прогнозы	
interval	доверительный интервал для прогноза	
level	доверительная вероятность (для интервалов)	

Пример. Рассмотрим модель из предыдущего примера. Пусть необходимо построить прогноз для двух наборов регрессоров:

$$\mathbf{x}_1 = \begin{pmatrix} 2.3 & 9.3 & 5.7 \end{pmatrix}$$

 $\mathbf{x}_2 = \begin{pmatrix} 4.3 & 4.5 & 6.3 \end{pmatrix}$

 $B\ R$ сначала необходимо создать дата фрейм с двумя наборами значений регрессоров (пусть newdf) и затем вычисляем (точечный) прогноз

newdf <- data.frame(x1 = c(2.3, 4.3), x2 = c(9.3, 4.5),

$$x3 = c(5.7, 6.3)$$
)
mypredict <- predict(mymodel, newdata = newdf)

1.11 Тестирование гипотез о коэффициентах

1.11.1 t-тест для коэффициентов регрессии

Протокол оценивания линейной регрессии (объекта класса lm), выводимой с использованием функции **summary**, содержит в частности

- OLS-оценки коэффициентов
- стандартные ошибки коэффициентов
- t-статистики для значимости коэффициентов
- Р-значения для t-статистик

Если необходимы только результаты t-теста для коэффициентов или доверительные интервалы, то можно использовать соотвествующие функции из пакета lmtest

```
library("lmtest")
coeftest(x, vcov. = NULL, ...)
coefci(x, parm = NULL, level = 0.95, vcov. = NULL, ...)
```

Основные аргументы

X	оцененная модель (объект класса lm)
vcov.	оценка матрицы вариации вектора оценок
	коэффициентов (по умолчанию OLS-оценка)
parm	можно явно указать для каких переменных
	выводить доверительные интервалы
level	доверительная вероятность (для интервалов)

Аргумент vcov. следует использовать, если необходимо вычислить робастные тестовые статистики (например, для регрессии с гетероскедастичностью или с серийной корреляцией).

```
Пример. Команда
```

```
library("lmtest")
coeftest(mymodel, vcov. = vcovHC(mymodel) )
```

выводит результаты t-теста для коэффициентов с использованием робастных тестовых статистик.

1. Для тестирования совместной значимости для нескольких коэффициентов (F-тест) можно использовать функцию 13

```
anova(object, ...)
```

Аргументы функции anova – объекты класса lm. Функция вычисляет тестовую F-статистику, соответствующие степени свободы F-распределения и P-значение. Важно отметить, что F-статистика в данном случае вычисляется по OLS-оценке матрица вариации оценок коэффициентов.

Рассмотрим два случая:

¹³anova = ANalysis Of VAriations

- если указать в аргументе только один объект, то тестируется значимость каждого коэффициента;
- если тестируется совместная значимость нескольких коэффициентов, то нужно указать два объекта класса lm: регрессию с ограничениями («короткую») и без ограничений («длинную»).

Пример. Пусть оценена регрессия

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + u_i.$$

Для тестирования гипотезы

$$H_0: \beta_4 = \beta_5 = 0$$

можно использовать F-тест. Он осуществляет так

```
mymodel.short <- lm(y~x1+x2+x3, data = MyDFrame)
mymodel.long <- lm(y~x1+x2+x3+x4+x5, data = MyDFrame)
anova(mymodel.short, mymodel.long)</pre>
```

2. Основной недостаток функции **anova** – это невозможность использовать робастный вариант F-теста, например, для линейной регрессии с гетероскедастичностью.

Если в этом есть необходимость, то следует использовать функцию

```
library("lmtest")
waldtest(object, ..., vcov = NULL, test = c("Chisq", "F"), ...)
```

которая выполняет (асимптотический) F-тест или тест Вальда. Основные аргументы

object	оцененная модель (объект класса lm) или объект класса formula (в этом случае	
	в аргументе нужно указать еще и дата фрейм data=)	
vcov	оценка матрицы вариации вектора оценок коэффициентов (по умолчанию OLS-оценка)	
test	какую тестовую статистику вычислять: асимптотическую χ^2 или точную F	

Рассмотрим два случая:

- если указать в аргументе только один объект, то тестируется значимость регрессии «в целом» (в отличие от anova);
- если тестируется совместная значимость нескольких коэффициентов, то нужно указать два объекта класса lm: регрессию с ограничениями («короткую») и без ограничений («длинную»).

Пример. Следующий код аналогичен предыдущему и тестирует совместную значимость влияния факторов x4 и x5

```
library("lmtest")
mymodel.short <- lm(y~x1+x2+x3, data = MyDFrame)
mymodel.long <- lm(y~x1+x2+x3+x4+x5, data = MyDFrame)
waldtest(mymodel.short, mymodel.long, test = "F")</pre>
```

3. Для тестирования произвольных линейных ограничений на коэффициенты необходимо использовать пакет **car** и функцию

```
library("car")
```

Основные аргументы

model	оцененная модель (объект класса lm)	
hypothesis.matrix	матрица или вектор линейных	
	ограничений на коэффициенты	
VCOV.	оценка матрицы вариации вектора оценок	
	коэффициентов (по умолчанию OLS-оценка)	
white.adjust	альтернатива vcov.	
test	какую тестовую статистику вычислять:	
	асимптотическую χ^2 или точную F	

Разберем на примере

Пример. Пусть оценена регрессия

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + u_i.$$

и необходимо тестировать гипотезу

$$H_0: \beta_3 + 0.5\beta_4 = 0, \beta_5 = 0$$

Тогда код на языке R выглядит так

```
library("car")
mymodel <- lm(y^x1+x2+x3+x4+x5, data = MyDFrame)
linearHypothesis(mymodel, c("x3+0.5x4=0", "x5=0"),
        test = "F")
Для тестирования гипотезы
                   H_0: \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 = 1
код на языке R выглядит так
library("car")
mymodel <- lm(y^x1+x2+x3+x4+x5, data = MyDFrame)
linearHypothesis(mymodel, c("x1+x2+x3+x4+x5=1"), test = "F")
Пример. Если необходимо использовать робастную тестовую статистику,
то будет так
library("car")
library("sandwich")
mymodel <- lm(y^x1+x2+x3+x4+x5, data = MyDFrame)
linearHypothesis(mymodel, c("x3+0.5x4=0","x5=0"),
        test = "F", vcov. = vcovHC(mymodel) )
или равносильно
library("car")
mymodel <- lm(y^x1+x2+x3+x4+x5, data = MyDFrame)
linearHypothesis(mymodel, c("x3+0.5x4=0","x5=0"),
        test = "F", white.adjust = "hc3")
```

1.12 Тесты на адекватность, гетероскедастичность, автокорреляцию

Мультиколлинеарность Для проверки модели на мультиколлинеарность и вычисления показателей VIF необходим пакет **car** и функция

```
library("car")
vif(mod, ...)
где mod — объект класса lm.
```

Выбор спецификации Для RESET-теста на «правильную спецификацию» (теста Рамсея) необходим пакет lmtest и функция

```
library("lmtest")
resettest(formula, power = 2:3, data, ...)
```

Основные аргументы

formula	спецификация модели (объект класса formula)	
	или оцененная модель (объект класса lm)	
power	набор степеней \hat{y}_i^s , добавляемых в уравнение	
data	дата фрейм, на котором оценивается модель	
	(если модель задается спецификацией)	

Гетероскедастичность Рассмотрим основные тесты на гетероскедастичность, реализованные в пакете lmtest

Тест Бреуша-Пагана реализован в функции

```
library("lmtest")
bptest(formula, varformula = NULL, studentize = TRUE, data)
```

Основные аргументы

formula	спецификация модели (объект класса formula)
	или оцененная модель (объект класса lm)
varformula	можно явно указать спецификацию вспомогательной
	регрессии $(=\sim\cdots)$.
	По умолчанию: на все регрессоры модели
studentize	если TRUE, то будет использован робастный
	(стьюдентизированный) вариант теста
data	дата фрейм, на котором оценивается модель
	(если модель задается спецификацией)

Для реализации теста Уайта необходимо в параметре varformula явно указывать зависимость от регрессоров.

Тест Голдфелда-Квандта реализован в функции

Основные аргументы

formula	спецификация модели (объект класса formula)
	или оцененная модель (объект класса lm)
point	если меньше 1, то указывает в каком отношении
	разбивать выборку на две части. Иначе (если >1)
	индекс наблюдения, которые разбивает выборку
	на две части
fraction	если меньше 1, то указывает какую долю
	центральных наблюдения отбросить. Иначе число
	число отбрасываемых наблюдения (если >1)
order.by	по какой переменной упорядочить данные
data	дата фрейм, на котором оценивается модель
	(если модель задается спецификацией)

Серийная корреляция LM-тест на автокорреляцию (тест Бреуша-Годфри) реализован в пакете lmtest с использованием функции

Основные аргументы

formula	спецификация модели (объект класса formula)	
	или оцененная модель (объект класса lm)	
order	порядок автокорреляции	
order.by	по какой переменной упорядочить данные	
type	тип тестовой статистики	
data	дата фрейм, на котором оценивается модель	
	(если модель задается спецификацией)	

Тест Дарбина-Уотсона реализован в нескольких пакетах. Рассмотрим два примера,

Первый пример теста

Основные	аргументы
----------	-----------

formula	спецификация модели (объект класса formula)	
	или оцененная модель (объект класса lm)	
order.by	по какой переменной упорядочить данные	
alternative	алтернатива нулевой гипотезе	
data	дата фрейм, на котором оценивается модель	
	(если модель задается спецификацией)	

Стоит обратить внимание на тот факт, что по умолчанию берется односторонняя альтернатива $H_1: \rho > 0$.

Второй пример

Основные аргументы

model	оцененная модель (объект класса lm)
alternative	алтернатива нулевой гипотезе

В данной реализации альтернатива по умолчанию двусторонняя.

1.13 Пример: зарплатное уравнение

Используем пакет wooldridge, который содержит данные для упражнений из учебника J. Wooldridge «Introductory Econometrics: A Modern Approach». Возьмём набор данных card, в котором есть, в частности, переменные

wage	почасовая оплата
age	возраст
south	бинарная, =1 если живет на юге
married	бинарная, =1 если женат

1. Рассмотрим модель регрессии

$$\ln(\text{wage}) = \beta_0 + \beta_1 \text{age} + \beta_2 \text{age}^2 + \beta_3 \text{south} + \beta_4 \text{married} + u$$

Загрузим необходимые пакеты (для тестирования модели) и оценим регрессию

```
library("wooldridge")
library("lmtest")
library("sandwich")
library("car)
data(card, package="wooldridge")
log_wage_eq<-lm(formula=log(wage)~age+I(age^2)+south+married,</pre>
       data=card)
Далее фиксируем уровень значимость 1%. Результаты t-теста для коэф-
фициентов
> coeftest(log_wage_eq)
t test of coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.69654563 0.69060523 5.3526 9.323e-08 ***
           age
I(age^2)
          -0.25139969  0.01494638  -16.8201 < 2.2e-16 ***
south
        -0.03242516  0.00364954  -8.8847 < 2.2e-16 ***
married
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Все коэффициента значимы. Тестируем значимость регрессии «в целом»
> waldtest(log_wage_eq)
Wald test
Model 1: log(wage) ~ age + I(age^2) + south + married
Model 2: log(wage) ~ 1
 Res.Df Df
           F
               Pr(>F)
   2998
1
   3002 -4 166 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
F-статистика равна 166, регрессия значима. Выполним тест Рамсея (с
```

включением степеней предсказанных значений от 2 до 4)

```
> resettest(log_wage_eq, power=2:4)
```

RESET test

```
data: log_wage_eq
RESET = 2.7821, df1 = 3, df2 = 2995, p-value = 0.03956
```

Гипотеза о спецификации не отвергается.

Осуществим проверку на гетероскедастичность с использованием теста Бреуша-Пагана:

```
> bptest(log_wage_eq)
```

studentized Breusch-Pagan test

```
data: log_wage_eq
BP = 38.184, df = 4, p-value = 1.027e-07
```

Так как тест указывает на наличие гетероскедастичности, то следует использовать робастные тестовые статистики. Робастный t-тест для коэффициентов выглядит так

```
> hccm <- vcovHC(log_wage_eq)
> coeftest(log_wage_eq, vcov.=hccm)
```

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.69654563 0.69367532 5.3289 1.061e-07 ***

age 0.15916673 0.04868844 3.2691 0.001091 **

I(age^2) -0.00216737 0.00084736 -2.5578 0.010583 *

south -0.25139969 0.01527413 -16.4592 < 2.2e-16 ***

married -0.03242516 0.00382663 -8.4736 < 2.2e-16 ***

---

Signif. codes: 0 '***, 0.001 '**, 0.05 '., 0.1 ', 1
```

Как видно, влияние квадрата возраста стало незначимо. Робастный вариант теста на значимость регрессии

```
> waldtest(log_wage_eq, vcov=hccm)
```

Wald test Model 1: log(wage) ~ age + I(age^2) + south + married Model 2: log(wage) ~ 1 Res.Df Df F Pr(>F) 2998 3002 -4 169.22 < 2.2e-16 *** Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1 Сделаем тест, выясняющий, есть ли значимое влияние возраста на зарплату. > log_wage_eq_aux<-lm(formula=log(wage)~south+married, data=card)</pre> > waldtest(log_wage_eq_aux, log_wage_eq, vcov=hccm) Wald test Model 1: log(wage) ~ south + married Model 2: log(wage) ~ age + I(age^2) + south + married Res.Df Df F Pr(>F) 3000 1 2998 2 101.72 < 2.2e-16 *** Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1 Другой способ > linearHypothesis(log_wage_eq, c("age=0", "I(age^2)=0"), test="F", white.adjust = "hc3") Linear hypothesis test Hypothesis: age = 0 $I(age^2) = 0$ Model 1: restricted model Model 2: log(wage) ~ age + I(age^2) + south + married

Note: Coefficient covariance matrix supplied.

```
Res.Df Df F Pr(>F)
    3000
2
    2998 2 101.72 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Тестовая статистика равна 101.72. Влияние возраста значимо.
   2. Рассмотрим теперь модель
   \ln(\text{wage}) = \beta_0 + \beta_1 \text{age} + \beta_2 \text{south} + \beta_3 (\text{age} * \text{south}) + \beta_4 \text{married} + u
Оценим модель
log.wage.eq <- lm(log(wage)~age+south+I(age*south)+married,</pre>
                          data=card)
и потестируем модель на гетероскедастичность
> bgtest(log.wage.eq)
Breusch-Godfrey test for serial correlation of order up to 1
data: log.wage.eq
LM test = 48.458, df = 1, p-value = 3.374e-12
Тест указывает на гетероскедастичность. Следовательно, нужно рассмат-
ривать робастный t-тест
> coeftest(log.wage.eq, vcov.=vcovHC(log.wage.eq))
t test of coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                 5.2968268  0.0859488  61.6277  < 2e-16 ***
(Intercept)
                 0.0405630 0.0029835 13.5959 < 2e-16 ***
age
                 0.1927689 0.1423088 1.3546 0.17565
south
                -0.0328176  0.0037940  -8.6498  < 2e-16 ***
married
I(age * south) -0.0157908 0.0050955 -3.0990 0.00196 **
```

Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1

Незначим только коэффициент β_2 .

Потестируем значимость влияния географического фактора, т.е. гипотезу

$$H_0: \beta_3 = \beta_3 = 0$$

используя робастный F-тест (тест Вальда)

```
> linearHypothesis(log.wage.eq, c("south=0", "I(age * south)=0"),
+ test="F", white.adjust = "hc3")
```

Linear hypothesis test

```
Hypothesis:
```

south = 0

I(age * south) = 0

Model 1: restricted model

Model 2: log(wage) ~ age + south + I(age * south) + married

Note: Coefficient covariance matrix supplied.

```
Res.Df Df F Pr(>F)
1 3000
2 2998 2 136.03 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Тестовая статистика равна 136.03, влияние фактора south значимо.