III B. Tech II Semester Supplementary Examinations, November -2018 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to Computer Science Engineering and Information Technology)

	Time: 3 hours		x. Marks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is compulsory 3. Answer any THREE Questions from Part-B *****	
PART -A			
1	a) b)	Using step count find the time complexity of sum of 'n' natural numbers Write the control abstraction for divide and conquer.	[3M] [4M]
	c)	Give the problem formulation of Knapsack problem using greedy method.	[4 M]
	d)	Prove that dynamic programming constructs solution in bottom up approach.	[4M]
	e)	Write about the constraints and criterion function used in backtracking.	[4M]
	f)	What is bounding function? Give example.	[3M]
<u>PART –B</u>			
2	a)	Explain the role of instance characteristics in finding the time and spaceomplexities with an example.	ace [8M]
	b)	In what way amortized analysis is used for performance analysis of algorithm Explain.	ns? [8M]
3	a)	For $T(n)=7T(n/2)+18n^2$ Solve the recurrence relation and find the time complexi	ty. [8M]
	b)	Given 2 sorted lists of numbers. Write the algorithm to merge them and analyze time complexity.	its [8M]
4	a)	A motorist wishing to ride from city A to B. Formulate greedy based algorithms generate shortest path and explain with an example graph.	to [8M]
	b)	What is the solution generated by function Job Sequencing algorithm when n $(P1p6) = (3, 5, 20, 18, 1, 6)$, and $(d1d6) = (1, 3, 4, 3, 2, 1)$.	=6 [8M]
5	a)	Write a function to compute lengths of shortest paths between all pairs of not for the given adjacency matrix. $ \begin{pmatrix} 0 & 6 & 13 \\ 8 & 0 & 4 \\ 5 & \infty & 0 \end{pmatrix} $	des [8M]
	b)	Let the dimensions of A,B,C,D respectively be 10X5, 5X15, 15X8, 8X20 generatrix product chains that produces minimum number of matrix multiplication using dynamic programming.	

Code No: RT32054 (R13) (SET - 1)

- 6 a) Relate Hamiltonian cycle with travelling sales person problem and also give the backtracking solution vector that finds all Hamiltonian cycles for any directed or undirected graph. [8M]
 - b) Draw the portion of state space tree generated by recursive backtracking algorithm [8M] for sum of subsets problem with an example.
- Write the branch and bound algorithm to generate minimum length tour for the [16M] given cost adjacency matrix.

$$\begin{bmatrix} \infty & 18 & 28 & 8 & 9 \\ 13 & \infty & 14 & 2 & 1 \\ 1 & 3 & \infty & 1 & 2 \\ 17 & 4 & 16 & \infty & 1 \\ 14 & 2 & 5 & 16 & \infty \end{bmatrix}$$

2 of 2