Content-Adaptive Improved Error Concealment Methods for H.264/AVC Video Communication

Santosh V. Chapaneri

Signal and Image Lab
Department of Electrical and Computer Engineering
University of Arizona
santoshc@email.arizona.edu

Thesis Advisor: Dr. Jeffrey J. Rodriguez

Outline

- Introduction
 - Error concealment (EC)
 - H.264/AVC
 - Video quality metrics
- Non-normative EC
- Previous work
- Directional Spatial EC
 - Suggestions and Results
- Proposed Spatial EC: PMEC
 - Methodology and Results
- Proposed Temporal EC: CAMP
 - Methodology and Results
- Content-Adaptive Refined EC (CAREC)
- Conclusions

Error Concealment (EC)

- Problem: Transmission errors may result in lost information
- Goal: Estimate the lost information in order to conceal the fact that an error has occurred
- Observation: Video exhibits a significant amount of correlation along the spatial and temporal dimensions
- Approach: Perform some form of spatial/temporal interpolation to estimate the lost information from the correctly received data

Example of error propagation

Error concealment basic techniques

Spatial interpolation Temporal Replacement (TR) Motion-compensated temporal interpolation

What is H.264/AVC?

- Substantial improvement over all previous video coding standards (2x compression, substantial perceptual quality)
- Addresses full range of video applications:
 low bit-rate wireless applications, HD DVD, video streaming over Internet, digital cinema, etc.
- Jointly developed by ITU-T (H.264) and ISO/IEC (MPEG-4); commonly known as H.264/AVC

H.264/AVC Encoder

Video Quality Metrics

- PSNR
- Structural SIMilarity (SSIM)
 - measures deviations in *luminance*, *contrast*, and *structure* between the reference and concealed frame portions
 - Mean SSIM (MSSIM) indicates quality of overall frame
 - correlates well with the mean opinion score*
- Video quality index (Q) based on SSIM

*Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error measurement to structural similarity," *IEEE Trans. Image Process.*, vol. 13, no. 1, pp. 1-14, Jan. 2004

Non-normative Spatial EC

Based on weighted-pixel bilinear interpolation

$$p(i, j) = \frac{\sum_{m=1}^{2} p_m (15 - d_m)}{\sum_{m=1}^{4} d_m}$$

- Performs well only when missing MB is in smooth region
- Does not consider edge directions; creates blocking artifacts in reconstructed picture

Non-normative Temporal EC

- Uses Boundary Matching Algorithm (BMA) as the distortion measure
- Motion vector (MV) yielding least distortion is selected for best candidate MB

Non-normative concealment

Spatial EC – Blocking artifacts

Temporal EC – Inaccurate motion vectors

Previous Work: Spatial EC

- Directional interpolation (Xu et al.) [1] using gradient filters to determine the dominant edge direction
- POCS iterative procedure for smoothness (Yu et al.)
 [2]
- DCT domain based concealment (Alkachouh et al.) [3]
- Best neighborhood matching (Wang et al.) [4] exploiting block-wise similarities in the frame
- Directional entropy of neighboring edges (Agrafiotis et al.) [5] – switch between directional and bilinear interpolation

Previous Work: Temporal EC

- Multi-frame BMA approach (Lee et al.) [6] distortion measure constrained according to the motion of the succeeding frames
- Refined BMA (RBMA) (Chen et al.) [7] splits the lost MB into four 8x8 blocks and constrains the BMA procedure
- Adaptive block sizes (ABS) (Kim et al.) [8] splits the lost MB into four partition types; does not consider the spatial continuity of the concealed MB

ABS Block 0

Block 0	Block 1
Block 2	Block 3

Previous Work: Temporal EC (contd..)

 Refined temporal concealment (RTC) [1] – splits the lost MB into four 8x8 blocks and increases the candidate set of MVs

- 2) Vertical MV
- Diagonal MV
- 4) Median of all MVs
- 5) Average of all MVs
- 6) MV of co-located MB
- 7) Zero MV

Directional Spatial EC

- To preserve the edge continuity of the missing MB with the neighboring MBs, dominant edge direction is computed using gradient filters
- Pixels of missing MB are interpolated in the dominant edge direction

$$p(i, j) = \frac{p_1 d_2 + p_2 d_1}{d_1 + d_2}$$

$$\forall (i, j) \in \text{lost MB}$$

Directional Spatial EC (contd..)

 Two existing techniques, Mean method [9] and Mode method [1], to determine the dominant edge direction

Mean method

$$\theta_d = \frac{\sum \theta(i,j) |G(i,j)|}{\sum |G(i,j)|}$$

Mode method

$$C[\theta(i,j)]=0$$

$$C[\theta(i,j)] + = |G(i,j)|$$

$$\theta_d = \theta(i, j)$$
 with $\max(C[\theta(i, j)])$

Directional Spatial EC (contd..)

- Mode method should be used to determine the dominant edge direction
- Outperforms the Mean method by enhancing the perceptual quality

Concealed with Mean method

Concealed with Mode method

Proposed Spatial EC: PMEC

- H.264/AVC uses Intra prediction to reduce the spatial redundancies prior to transformation
- The prediction modes (pmodes) implicitly describe the edge orientations
- Use the existing information of pmodes of neighboring MBs to determine the dominant edge direction of the missing MB
- The proposed prediction modes error concealment (PMEC) algorithm has a reduced computational complexity

Proposed Spatial EC: PMEC (contd..)

Nine pmodes for 4x4 sub-blocks

Four pmodes for 16×16 MB

Proposed Spatial EC: PMEC (contd..)

Proposed Spatial EC: PMEC (contd..)

- Edge magnitude is estimated as [max(P) min(P)]/d
 where P = {P₀, P₁, P₂, P₃} and d is the distance between max(P) and min(P)

Computational Complexity of PMEC

Operations	JM	Xu's method	PMEC
Additions	1536	1280+512*	544 +512*
Multiplications	1024	640	512
Divisions	256	320	272
Comparisons	0	7	104
Shifts	0	0+512*	0+512*

^{*}Extra computations for half-pixel boundary values

JM = Joint Model H.264/AVC reference software implementation

PMEC Results

Foreman CIF Intra frame @ 10% loss rate

Concealed with Xu's method

 $PSNR = 33.17 \, dB, \, MSSIM = 0.8035$

Concealed with PMEC PSNR = 34.26 dB, MSSIM = 0.9126

PMEC Results (contd..)

Sequence	Loss rate	JM	Xu's method	PMEC
Carphone	10%	33.6031 dB,	33.8173 dB,	34.3468 dB,
Carprione		0.5925	0.7201	0.8153
Stefan	10%	31.3147 dB,	32.1071 dB,	33.4715 dB,
Sterari		0.5387	0.7152	0.7836
Hall	10%	32.9773 dB,	33.6285 dB,	34.2156 dB,
Hall		0.6928	0.7818	0.8572

Table shows the values of average PSNR and MSSIM

PSNR improvement. **0.92** dB relative to Xu's method and **2.25** dB relative to JM MSSIM improvement. **0.1** relative to Xu's method and **0.37** relative to JM

Proposed Temporal EC: CAMP

 H.264/AVC uses tree-structured motion compensation with variable block sizes

- In the proposed content-adaptive macroblock partitioning (CAMP) algorithm, the lost MB is partitioned adaptively into different block sizes
- Using the mode information of the neighboring MBs, the lost MB is suitably partitioned into one out of eight possible types
- Each partition is concealed with different candidate set of motion vectors
- Results in smoother concealment and avoids the blocking artifacts

- Outer Boundary Matching Algorithm is used for distortion computation to perform the initial temporal concealment
- Better performance than BMA at the same level of complexity

- Overlapped Block Motion Compensation (OBMC) is used to post-process the initial concealed MB
- Avoids spatial discontinuities between the concealed MB and its neighbors
- Split the initial concealed MB into four 8x8 blocks
- For each 8x8 block, the pixels are modified by a weighted sum of prediction values
- The MVs of the neighboring blocks spatially adjacent to the concerned 8x8 block are used for prediction

$$P(i, j) = [P_e(i, j)H_e(i, j) + P_{ab}(i, j)H_{ab}(i, j) + P_{lr}(i, j)H_{lr}(i, j) + 4] >> 3$$

 $\forall (i, j)$ 8×8 block of initial concealed MB

CAMP Results

Stefan CIF Inter frame @ 10% loss rate

Concealed with ABS PSNR = 26.35 dB, Q = 0.8726

Concealed with CAMP PSNR = 27.63 dB, Q = 0.9432

CAMP Results (contd..)

Sequence	Loss rate	JM	ABS	САМР
Table-	10%	26.2604 dB,	27.2978 dB,	28.7926 dB,
tennis		0.7255	0.8189	0.8751
Carphana	10%	31.1764 dB,	32.2136 dB,	33.8261 dB,
Carphone		0.7677	0.8561	0.9517
Гокорого	10%	28.9998 dB,	30.3074 dB,	31.4613 dB,
Foreman		0.7649	0.8362	0.9258

Table shows the values of average PSNR and video quality index Q

PSNR improvement. 1.1 dB relative to ABS and 2.5 dB relative to JM Q improvement: 0.1 relative to ABS and 0.2 relative to JM

Content-Adaptive Refined EC (CAREC)

- A hybrid spatio-temporal adaptive switching mechanism for H.264/AVC decoder
- Handles errors occurring in both Intra and Inter frames adaptively
- Lost MBs in Intra frame: Use PMEC algorithm for spatial concealment
- Lost MBs in Inter frame: Switch between PMEC & CAMP
 - Determine the neighboring MB encoding modes
 - If number of Inter coded MBs > Intra/Skipped MBs, then use CAMP algorithm for temporal concealment
 - Else use PMEC for spatial concealment, since in this case there is not enough motion information available
 - If any neighboring MB is skipped, replace it with the co-located MB in the reference frame

CAREC Results

Carphone QCIF Inter frame @ 10% loss rate

Concealed with Xu's method (RSTC) PSNR = 31.82 dB, Q = 0.8674

Concealed with CAREC PSNR = 33.08 dB, Q = 0.9578

CAREC Results (contd..)

Sequence	Loss rate	JM	RSTC	CAREC
Eoromon	10%	28.7335 dB,	30.0827 dB,	31.4852 dB,
Foreman		0.8766	0.8968	0.9273
Hall	10%	29.8872 dB,	31.1054 dB,	32.4916 dB,
Пан		0.8752	0.9023	0.9426
Soloomon	10%	29.0715 dB,	30.1722 dB,	31.8347 dB,
Salesman		0.8315	0.8782	0.9521

Table shows the values of average PSNR and video quality index Q

PSNR improvement: **1.4** dB relative to RSTC and **2.9** dB relative to JM Q improvement: **0.1** relative to RSTC and **0.2** relative to JM

Conclusions

- To determine the dominant edge direction for spatial interpolation, Mode method should be used
- The proposed PMEC algorithm for spatial EC reduces the computational complexity and enhances the concealment performance
- The proposed CAMP algorithm for temporal EC achieves a smoother concealment of the lost MB due to the adaptive partitioning and avoids the spatial discontinuities with its neighbors
- The hybrid CAREC switching mechanism improves the overall concealment performance and reduces the structural degradations by achieving higher video quality values
- Future Work: EC methods for Main profile targeting broadcast and HD DVD applications, EC using Scalable video coding

References

- 1) Y. Xu, and Y. Zhou, "H.264 video communication based refined error concealment schemes," *IEEE Trans. Consum. Electron.*, vol. 50, no. 4, pp. 1135-1141, Nov. 2004
- 2) G. S. Yu, M. M. K. Liu, and M. W. Marcellin, "POCS-based error concealment for packet video using multiframe overlap information," *IEEE Trans. Circuits Syst. Video Tech.*, vol. 8, no. 4, pp. 422-434, Aug. 1998
- 3) Z. Alkachouh, and M. G. Bellanger, "Fast DCT-based spatial domain interpolation of blocks in images," *IEEE Trans. Image Process.*, vol. 9, no. 4, pp. 729-732, Apr. 2000
- 4) Z. Wang, Y. Yu, and D. Zhang, "Best neighborhood matching: An information loss restoration technique for block-based image coding systems," *IEEE Trans. Image Process.*, vol. 7, no. 7, pp. 1056-1061, Jul. 1998
- 5) D. Agrafiotis, D. R. Bull, and C. N. Canagarajah, "Enhanced error concealment with mode selection," *IEEE Trans. Circuits Syst. Video Tech.*, vol. 16, no. 8, pp. 960-973, Aug. 2006
- Y. C. Lee, Y. Altunbasak, and R. Mersereau, "A temporal error concealment method for MPEG coded video using a multi-frame boundary matching algorithm," *IEEE Intl. Conf. Image Process.*, vol. 1, pp. 990-993, Oct. 2001
- 7) T. Chen, X. Zhang, and Y. Q. Shi, "Error concealment using refined boundary matching algorithm," *Proc. IEEE Intl. Conf. ITRE*, pp. 55-59, Aug. 2003
- 8) D. Kim, S. Yang, and J. Jeong, "A new temporal error concealment method for H.264 using adaptive block sizes," *IEEE Intl. Conf. Image Process.*, vol. 3, pp. 928-932, Sep. 2005
- 9) O. Nemethova, A. Al-Moghrabi, and M. Rupp, "Flexible error concealment for H.264 based on directional interpolation," *IEEE Intl. Conf. Wireless Networks, Communications and Mobile Computing*, vol. 2, pp. 1255-1260, Jun. 2005

Thank You

Back up

FMO

- FMO improves the concealment performance compared to traditional raster scan pattern
- Dispersed FMO type gives better performance than interleaved FMO type – more number of neighboring MBs aid in concealment

Raster scan @ 10% loss

Interleaved FMO @ 10% loss

Dispersed FMO

@ 10% loss

FMO

Profiles and Tools

