Masters

Emily Burnett

23/06/2021

Thesis R Markdown Code

Installing packages for data manipulation

```
require("readxl")
## Loading required package: readxl
## Warning: package 'readxl' was built under R version 4.0.5
require(c("RSQLite", "lubridate"))
## Warning in if (!loaded) {: the condition has length > 1 and only the first
## element will be used
## c("Loading required package: c", "Loading required package: RSQLite", "Loading required package: lub
require(lubridate)
## Loading required package: lubridate
## Warning: package 'lubridate' was built under R version 4.0.5
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
require(RSQLite)
## Loading required package: RSQLite
\mbox{\tt \#\#} Warning: package 'RSQLite' was built under R version 4.0.5
```

```
## Loading required package: dplyr

## ## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

## filter, lag

## The following objects are masked from 'package:base':

## intersect, setdiff, setequal, union
```

Importing databases into R

```
#Implementing 24th of June SQlite database
SQLite.database5 <-"D:/MScWork/PAMGuard/PAMDatabase/Good Data/24062021data-no clicks1.sqlite3"
database.con5 <- dbConnect(SQLite(), SQLite.database5)</pre>
dbListTables(database.con5)
#Implementing 15th of June SQlite database
SQLite.database4 <-"D:/MScWork/PAMGuard/PAMDatabase/Good_Data/15062021data-no_clicks.sqlite3"
database.con4 <- dbConnect(SQLite(), SQLite.database4)</pre>
dbListTables(database.con4)
#Implementing 9th of June SQlite database
SQLite.database3 <-"D:/MScWork/PAMGuard/PAMDatabase/Good_Data/09062021data-no_clicks.sqlite3"
database.con3 <- dbConnect(SQLite(), SQLite.database3)</pre>
dbListTables(database.con3)
#Implementing 8th of June SQlite database
SQLite.database2 <-"D:/MScWork/PAMGuard/PAMDatabase/Good Data/08062021data2-no clicks.sqlite3"
database.con2 <- dbConnect(SQLite(), SQLite.database2)</pre>
dbListTables(database.con2)
#Implementing 7th of June SQlite database
SQLite.database1 <-"D:/MScWork/PAMGuard/PAMDatabase/Good Data/07062021data2-no clicks.sqlite3"
database.con1 <- dbConnect(SQLite(), SQLite.database1)</pre>
dbListTables(database.con1)
```

Cutting databases down to Whistle moan detector

```
###24th
whistles5 <- dbReadTable(database.con5, "Whistle_and_Moan_Detector")
summary(whistles5)
str(whistles5)</pre>
```

```
###15th
whistles4 <- dbReadTable(database.con4, "Whistle_and_Moan_Detector")
summary(whistles4)

###9th
whistles3 <- dbReadTable(database.con3, "Whistle_and_Moan_Detector")
summary(whistles3)

###8th
whistles2 <- dbReadTable(database.con2, "Whistle_and_Moan_Detector")
summary(whistles2)
str(whistles2)

###7th
whistles1 <- dbReadTable(database.con1, "Whistle_and_Moan_Detector")
summary(whistles1)
str(whistles1)</pre>
```

Combining data sets into one database

```
#(only used first 7th,8th,9th for more streamlined analysis)
data<- rbind(whistles1, whistles2, whistles3)
str(data)</pre>
```

Filtering false detections and unnecessary frequencies from PAMGuard data

```
##Making sure only noise >3kHz (fundamental frequency) was used

data.high.freq <- data [which(data$lowFreq>=3200),]
data <- data.high.freq

##Removing false whistles (boat noise detected as whistles) by PAMGuard

data$freq.diff <- abs(data$lowFreq - data$highFreq)
data.no.noise <- data[which(data$freq.diff>500),]
data <- data.no.noise
str(data)</pre>
```

Making sure time was in seconds rather than miliseconds for easier analysis

```
##Time with milliseconds
data$UTC[1]
data$duration[1]
```

```
data$posix <- as.POSIXct(data$UTC, format="%Y-%m-%d %H:%M:%S", tz="UTC")
##Time in Posix in seconds
data$posix[1]</pre>
```

Removing boat noise by filtering low frequency differences out

```
quantile(data$freq.diff)
data1<-data[ data$freq.diff > quantile(data$freq.diff , 0.25 ) , ]
data1$posix <- as.POSIXct(data1$UTC, format="%Y-%m-%d %H:%M:%S", tz="UTC")</pre>
```

Formatting data to make 1 minute metric

```
dat<- read.csv(file="C:/Users/emily/OneDrive/Documents/Masters/MScProject/Raw_data/Seconds_Data.csv")
dat$datetime <- paste0(dat$i..StartDate," ", dat$StartTime)
dat$StartPosix <- as.POSIXct(dat$datetime, format="%Y:%m:%d %H:%M:%S", tz="UTC")
library(lubridate)

##time series in seconds
dat$EndPosix = dat$StartPosix + dat$DurationSeconds
dat$FloorPosixE<- floor_date(dat$EndPosix, unit="minute")
dat$FloorPosixS<-floor_date(dat$StartPosix, unit="minute")
dat$FloorPosixS
dat$Date <- as.Date(dat$StartPosix)
dat$Time <- format(as.POSIXct(dat$StartPosix), format = "%H:%M:%S", tz="UTC")</pre>
```

Creating 1 minute metric for whistles (whistle positive seconds)

```
dat$date <- paste0(dat$Date," ", dat$time)
dat$date<- as.POSIXct(dat$Date, format="%Y:%m:%d" )
dat$time <- format(as.POSIXct(dat$StartPosix), format = "%H:%M:%S")
dat$time

time.seq <- NA

for(y in 1:(nrow(dat)-1)){
    seq.tmp <- seq(from=dat$FloorPosixS[y], to=dat$FloorPosixE[y],by="min")
    seq.tmp <- as.character(seq.tmp)
    time.seq <- c(time.seq, seq.tmp)
    print(y)
    print(length(time.seq))
}

time.seq <- time.seq[-1]</pre>
```

Assigning whistle presence (Binary format) to 1 minute metric using previously filtered PAMGuard timestamped data

```
finaldf.posixwhistles <- data.frame(time= time.seq, whistle.pos.min=NA)
finaldf.posixwhistles$time <- as.POSIXct(finaldf.posixwhistles$time, format="%Y-%m-%d %H:%M:%S", tz="UT"
positive.minutes <- unique(data1$posix)
finaldf.posixwhistles$whistle.pos.min <- ifelse(finaldf.posixwhistles$time %in% positive.minutes, 1, 0)
plot(finaldf.posixwhistles$whistle.pos.min)
```



```
finaldf.posixwhistles$whistle.pos.min
finaldf.posixwhistles
```

Merging whistle positive minutes and high tide times

```
high_tide<- read.csv(file="C:/Users/emily/OneDrive/Documents/Tide.csv")
str(high_tide)
high_tide$datetime <- pasteO(high_tide$"..Date," ", high_tide$Time)
high_tide$Posix <- as.POSIXct(high_tide$datetime, format="%Y:%m:%d %H:%M:%S", tz="UTC")
```

```
high_tide$Posix[1]

tidecut<- cut(finaldf.posixwhistles$time, high_tide$Posix, labels = FALSE,
    include.lowest = FALSE, right = TRUE, dig.lab = 3,
    ordered_result = FALSE)
plot(tidecut)</pre>
```


Creating Time Since high Tide (TSHT) variable

```
finaldf.posixwhistles$TSHT = finaldf.posixwhistles$time - high_tide$Posix[tidecut]
finaldf.posixwhistles$TSHT
```

Binning whistle presence by hour after high tide

```
hours= seq(0,13*60,60)
finaldf.posixwhistles$hrbins<- cut(as.numeric(finaldf.posixwhistles$TSHT), hours, labels = FALSE,
   include.lowest = FALSE, right = TRUE, dig.lab = 3,
   ordered_result = FALSE)
as.numeric(finaldf.posixwhistles$TSHT[50])
table(finaldf.posixwhistles$hrbins)
finaldf.posixwhistles$hrbins</pre>
```

Separating tidal cycles for comparison in graph

```
finaldftide1=finaldf.posixwhistles[which(tidecut==1),]
finaldftide2=finaldf.posixwhistles[which(tidecut==2),]
finaldftide3=finaldf.posixwhistles[which(tidecut==3),]
finaldftide4=finaldf.posixwhistles[which(tidecut==4),]
finaldftide5=finaldf.posixwhistles[which(tidecut==5),]
plot(tidecut)
```


For all 5 tidal cycles across sample period

```
pos.whist.prop.tidehr=vector(,13)
for(y in 1:13){
   pos.whist.prop.tidehr[y]= sum(finaldf.posixwhistles$whistle.pos.min[which(finaldf.posixwhistles$hrbin
}
pos.whist.prop.tidehr
plot(x=c(1:13), y=pos.whist.prop.tidehr)
```


For tide cycle1

```
pos.whist.prop.tidehr1=vector(,13)
for(y in 1:13){
   pos.whist.prop.tidehr1[y]= sum(finaldftide1$whistle.pos.min[which(finaldftide1$hrbins==y)])/ length(f)
}
pos.whist.prop.tidehr1
```

For tide cycle2

```
pos.whist.prop.tidehr2=vector(,13)
for(y in 1:13){
   pos.whist.prop.tidehr2[y]= sum(finaldftide2$whistle.pos.min[which(finaldftide2$hrbins==y)])/ length(f)
}
pos.whist.prop.tidehr2
```

For tide cycle 3

```
pos.whist.prop.tidehr3=vector(,13)
for(y in 1:13){
```

```
pos.whist.prop.tidehr3[y]= sum(finaldftide3$whistle.pos.min[which(finaldftide3$hrbins==y)])/ length(f
}
pos.whist.prop.tidehr3
```

For tide cycle 4

```
pos.whist.prop.tidehr4=vector(,13)
for(y in 1:13){
   pos.whist.prop.tidehr4[y]= sum(finaldftide4$whistle.pos.min[which(finaldftide4$hrbins==y)])/ length(f)
}
pos.whist.prop.tidehr4
```

For tide cycle 5

```
pos.whist.prop.tidehr5=vector(,13)
for(y in 1:13){
  pos.whist.prop.tidehr5[y] = sum(finaldftide5$whistle.pos.min[which(finaldftide5$hrbins==y)])/ length(f
pos.whist.prop.tidehr5
par(mfrow= c(2,3))
par(mar = c(2,2,1,1))
plot(x=c(1:13), y=pos.whist.prop.tidehr1)
plot(x=c(1:13), y=pos.whist.prop.tidehr2)
plot(x=c(1:13), y=pos.whist.prop.tidehr3)
plot(x=c(1:13), y=pos.whist.prop.tidehr4)
plot(x=c(1:13), y=pos.whist.prop.tidehr5)
##final tidal plot (baseR)
plot(x=c(1:13), y=pos.whist.prop.tidehr3, lines(c(1:13),pos.whist.prop.tidehr3), ylim= c(0,0.5), xlab=
points(pos.whist.prop.tidehr2, col="red",lines(c(1:13),pos.whist.prop.tidehr2,col="red"))
points(pos.whist.prop.tidehr4, col="blue",lines(c(1:13),pos.whist.prop.tidehr4, col="blue"))
points(pos.whist.prop.tidehr5, col="purple",lines(c(1:13),pos.whist.prop.tidehr5, col="purple"))
points(pos.whist.prop.tidehr1, col="green",lines(c(1:13),pos.whist.prop.tidehr1,col="green"))
```


Binning diel cycle for modeling

Changing time to decimal format for easier analysis

```
data1$Date <- as.Date(data1$posix)
finaldf.posixwhistles$posixtime <- format(as.POSIXct(finaldf.posixwhistles$time), format = "%H:%M:%S")
finaldf.posixwhistles$posixdate <- format(as.POSIXct(finaldf.posixwhistles$time), format = "%Y:%m:%d")
finaldf.posixwhistles$decDay = as.numeric(substr(finaldf.posixwhistles$posixdate,9,10)) +
    (as.numeric(substr(finaldf.posixwhistles$posixtime,1,2))/24) + (as.numeric(substr(finaldf.posixwhistles$finaldf.posixwhistles$posixtime,1,2)) + (as.numeric(substr(finaldf.posixwhistles$decTime= as.numeric(substr(finaldf.posixwhistles$posixtime,1,2)) + (as.numeric(substr(finaldf.posixwhistles$posixtime,1,2)) + (as.numeric(substr(finaldf.posixwhistles$posixtime,1,2)) + (as.numeric(substr(finaldf.posixwhistles
```

rounding down decimal time to hour

```
finaldf.posixwhistles$decTimebin<-floor(finaldf.posixwhistles$decTime)
finaldf.posixwhistles$decTimebin</pre>
```

rounding down decimal day so only shows date of recording

```
finaldf.posixwhistles$dec.dayfloor<- floor(finaldf.posixwhistles$decDay)
head(finaldf.posixwhistles)</pre>
```

separating days from finaldf.posixwhistles data frame

```
finaldfday1<- finaldf.posixwhistles[which(finaldf.posixwhistles$dec.dayfloor==7),]
finaldfday2<-finaldf.posixwhistles[which(finaldf.posixwhistles$dec.dayfloor==8),]
finaldfday3<-finaldf.posixwhistles[which(finaldf.posixwhistles$dec.dayfloor==9),]</pre>
```

Total diel cycle

```
pos.whist.prop.dielhr=vector(,23)
for(y in 1:23){
   pos.whist.prop.dielhr[y]= sum(finaldf.posixwhistles$whistle.pos.min[which(finaldf.posixwhistles$decTint)
}
pos.whist.prop.dielhr
```

diel cycle of the 7th

```
pos.whist.prop.dielhr1=vector(,24)
for(y in 1:24){
   pos.whist.prop.dielhr1[y]= sum(finaldfday1$whistle.pos.min[which(finaldfday1$decTimebin==y)])/ length
}
head(finaldfday1)
```

diel cycle of the 8th

```
pos.whist.prop.dielhr2=vector(,24)
for(y in 1:24){
  pos.whist.prop.dielhr2[y]= sum(finaldfday2$whistle.pos.min[which(finaldfday2$decTimebin==y)])/ length
}
```

diel cycle of the 9th

```
pos.whist.prop.dielhr3=vector(,24)
for(y in 1:24){
   pos.whist.prop.dielhr3[y]= sum(finaldfday3$whistle.pos.min[which(finaldfday3$decTimebin==y)])/ length
}
pos.whist.prop.dielhr2
par(mfrow= c(2,2))
```

```
par(mar= c(2,2,1,1))
plot(x=c(1:24), y=pos.whist.prop.dielhr1)
plot(x=c(1:24), y=pos.whist.prop.dielhr2)
plot(x=c(1:24), y=pos.whist.prop.dielhr3)
pos.whist.prop.dielhr2
```


final diel plot (baseR)

```
plot(x=c(1:24), y=pos.whist.prop.dielhr2, lines(c(1:24),pos.whist.prop.dielhr2), ylim= c(0,0.6), xlab=
points(pos.whist.prop.dielhr1, col="red",lines(c(1:24),pos.whist.prop.dielhr1,col="red"))
points(pos.whist.prop.dielhr3, col="blue",lines(c(1:24),pos.whist.prop.dielhr3, col="blue"))
```


Adding and formatting boat data

```
library("schoolmath")
boats <- read.csv(file="C:/Users/emily/OneDrive/Documents/Masters/MScProject/Raw_data/Boat_data.csv")
##change to posix format
boats$StartPosix <- as.POSIXct(boats$Start.Time, format="%Y:%m:%d %H:%M:%S", tz="UTC")
boats$StopPosix<- as.POSIXct(boats$Stop.Time, format="\frac{\text{"Y:\m:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M:\frac{\text{M}
##combining the stop_stop variable into 1 column
boatnoise_startstop<- c(as.POSIXct(boats$StartPosix, format= "%H:%M:%S", tz="UTC"), as.POSIXct(boats$St
##sorting start stop times in ascending order
sort.boat.noise<-sort(as.POSIXct(boatnoise_startstop, format="%Y:\m:\%d \\H:\\M:\\%S\", tz=\"UTC\"))
sort.boat.noise
##binning total in relation to start stop time
finaldf.posixwhistles$boatcut<- cut(finaldf.posixwhistles$time, sort.boat.noise, labels = FALSE,
           include.lowest = FALSE, right = TRUE, dig.lab = 3,
          ordered_result = FALSE)
boatcut <- cut(finaldf.posixwhistles$time, sort.boat.noise, labels = FALSE,
           include.lowest = FALSE, right = TRUE, dig.lab = 3,
           ordered_result = FALSE)
##making binary format for boat presence/absence
boatpositive.seconds <- unique(sort.boat.noise)</pre>
finaldf.posixwhistles$boatnoise <- ifelse(finaldf.posixwhistles$time %in% boatpositive.seconds, 1, 0)
```

```
##assigning binary to boatboise
finaldf.posixwhistles$boatnoise= rep(0)
boatcut1<-if(is.na(boatcut)) {x=FALSE} else {if(boatcut) {boatcut}}

## Warning in if (is.na(boatcut)) {: the condition has length > 1 and only the
## first element will be used

## Warning in if (boatcut) {: the condition has length > 1 and only the first
## element will be used

boatcut=TRUE

finaldf.posixwhistles$boatnoise[which(is.odd(finaldf.posixwhistles$boatcut))]=1
```

Overall whistle proportion to boat presence

```
pos.whist.prop.boathr=vector(,2)
for(y in 0:1){
   pos.whist.prop.boathr[y+1]= sum(finaldf.posixwhistles$whistle.pos.min[which(finaldf.posixwhistles$boa
}
```

seperating boat noises to different periods in relation to whistle proportion

```
pos.whist.prop.boatsep=matrix(,max(boatcut),2)
for(y in 1:max(boatcut)){
  temp=finaldf.posixwhistles[which(finaldf.posixwhistles$boatcut==y),]
  pos.whist.prop.boatsep[y,1]= sum(temp$whistle.pos.min)/ length(temp$whistle.pos.min)
  pos.whist.prop.boatsep[y,2]=ifelse(is.odd(y),1,0)
}
```

Calculating boat presence in relation to whistles

```
boat.time.seq <- NA

for(y in 1:(nrow(boats)-1)){
    seq.tmp <- seq(from=boats$StartPosix[y], to=boats$StopPosix[y],by="min")
    seq.tmp <- as.character(seq.tmp)
    boat.time.seq <- c(boat.time.seq, seq.tmp)
    print(y)
    print(length(boat.time.seq))
}

boat.time.seq
boat.time.seq.uniq = unique(boat.time.seq)
boat.time.seq.uniq</pre>
```

```
boatdata<- as.data.frame(boat.time.seq.uniq)
colnames(boatdata)="time"
boatdata$time=as.POSIXct(boatdata$time, format="%Y-%m-%d %H:%M:%S", tz="UTC")
boatdata$boatpresence <- 1
boatdata
test=dplyr::left_join(finaldf.posixwhistles,boatdata,by="time")
test$boatpresence[is.na(test$boatpresence)]=0
test
test$Fboatpresence<- as.factor(test$boatpresence)
boxplot(whistle.pos.min~boatpresence, xlab="Presence", ylab= "Proportion of boats", data= test)</pre>
```



```
finaldf.posixwhistles$boatpresence<-test$boatpresence
finaldf.posixwhistles$Fboatpresence<-as.factor(test$boatpresence)
finaldf.posixwhistles</pre>
```

separate boat time distribution for boxplot

```
pos.whist.prop.boatsep=matrix(,max(finaldf.posixwhistles$boatcut),2)
for(y in 1:max(finaldf.posixwhistles$boatcut)){
  temp=finaldf.posixwhistles[which(finaldf.posixwhistles$boatcut==y),]
  pos.whist.prop.boatsep[y,1] = sum(temp$whistle.pos.min)/ length(temp$whistle.pos.min)
  pos.whist.prop.boatsep[y,2]=ifelse(is.odd(y),1,0)
```

```
pos.whist.prop.boatsep
boxplot(pos.whist.prop.boatsep[,1]~pos.whist.prop.boatsep[,2], xlab="Presence", ylab= "Proportion of boatsep")
```


overall whistle proportion to boat presence

```
pos.whist.prop.boathr=vector(,2)
for(y in 0:1){
   pos.whist.prop.boathr[y+1] = sum(finaldf.posixwhistles$whistle.pos.min[which(finaldf.posixwhistles$boa})}
```

Putting diel cycle into ggplot form for report

```
## Warning: package 'ggplot2' was built under R version 4.0.5

#creating dataframe for diel ggplot
time.of.day<- seq(1,24, 1)
sample.day<- rep(c(1,2,3),each=24)</pre>
```

```
whistle.day<- c(pos.whist.prop.dielhr1,pos.whist.prop.dielhr2,pos.whist.prop.dielhr3)
dielgraphdf <- data.frame(whistle.day, time.of.day,sample.day)</pre>
dielgraphdf$sample.day<- as.factor(dielgraphdf$sample.day)</pre>
View(dielgraphdf)
ggplotday<-ggplot(dielgraphdf, aes(x = time.of.day, y = whistle.day, colour = sample.day, group = sampl
  geom_point()+
 geom line()
ggplotday+labs(x = "Time of day (hours)", y = "Probability of whistle detections/hour") + scale_x_discre
   fill="black", colour= "black", alpha=0.005,
   xmin=0,
   xmax=4.
   ymin=0,
   ymax=2
   ) + scale_x_discrete(limits=c(1:23)) + geom_rect(
   fill="black", colour= "black", alpha=0.005,
   xmin=21,
   xmax=25,
   ymin=0,
   ymax=2
   )+
  scale_y = continuous(limits = c(0,0.55), expand = c(0,0)) + stat_summary(fun.y=mean,geom="line", colour="line")
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
## Warning: 'fun.y' is deprecated. Use 'fun' instead.
## Warning: Removed 22 rows containing non-finite values (stat_summary).
## Warning: Removed 22 rows containing missing values (geom_point).
## Warning: Removed 22 row(s) containing missing values (geom path).
```


Putting time since high tide into ggplot form for report

```
#creating dataframe for tide ggplot
time.since.ht<- seq(1,13, 1)
tidecycle<- rep(c("1st","2nd","3rd","4th","5th"),each=13)
whistle.tide<-c(pos.whist.prop.tidehr1,pos.whist.prop.tidehr2,pos.whist.prop.tidehr3,pos.whist.prop.tid
tidegraphdf<- data.frame(whistle.tide, time.since.ht,tidecycle)</pre>
tidegraphdf$Tidal_cycle<- as.factor(tidegraphdf$tidecycle)</pre>
View(tidegraphdf)
ggplottide<-ggplot(tidegraphdf, aes(x = time.since.ht, y = whistle.tide, colour = Tidal_cycle, group =</pre>
  geom_point(size=1.5)+
  geom_line(alpha=5)
ggplottide + labs(x="Time since high tide (hours)", y="Probability of whistle detections/hour") + scale
    fill="blue", colour= "white", alpha=0.002,
    xmin=0.
    xmax=2,
    ymin=0,
    ymax=2
    ) + scale_x_discrete(limits=c(1:13)) + geom_rect(
    fill="white", colour= "white", alpha=0.0025,
    xmin=2,
    xmax=5,
```

```
ymin=0,
   ymax=2
   ) + scale x discrete(limits=c(1:13)) + geom rect(
   fill="red",colour= "white",alpha=0.002,
   xmin=5,
   xmax=8,
   ymin=0,
   ymax=2
   ) + scale_x_discrete(limits=c(1:13)) + geom_rect(
   fill="white",colour= "white",alpha=0.0025,
   xmin=8,
   xmax=11,
   ymin=0,
   ymax=2
   ) + scale_x_discrete(limits=c(1:13)) + geom_rect(
   fill="blue", colour= "white", alpha=0.002,
   xmin=11,
   xmax=14,
   ymin=0,
   ymax=2
   ) +
  scale_y_continuous(limits = c(0,0.4), expand = c(0,0))+stat_summary(fun.y=mean,geom="line", colour="
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
## Warning: Continuous limits supplied to discrete scale.
## Did you mean 'limits = factor(...)' or 'scale_*_continuous()'?
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
## Warning: 'fun.y' is deprecated. Use 'fun' instead.
```

- ## Warning: Removed 13 rows containing non-finite values (stat_summary).
- ## Warning: Removed 13 rows containing missing values (geom_point).
- ## Warning: Removed 11 row(s) containing missing values (geom_path).

Putting boat presence into ggplot form for report

```
library(RColorBrewer)
library(ggplot2)
boxplot(pos.whist.prop.boatsep[,1]~pos.whist.prop.boatsep[,2], xlab="Presence", ylab= "Proportion of boatsep")
```



```
colnames(pos.whist.prop.boatsep) <- c("Boat.prop", "Boat Presence")
presence.cat<- rep(c(1,0),times=61)
boatboxdf<- data.frame(pos.whist.prop.boatsep)
pos.whist.prop.boatsep</pre>
```

```
##
            Boat.prop Boat Presence
##
     [1,]
                  {\tt NaN}
                                    1
##
     [2,]
                  NaN
                                    0
##
     [3,]
                  {\tt NaN}
                                    1
     [4,] 0.02857143
                                    0
##
##
     [5,] 0.00000000
                                    1
##
     [6,] 0.08695652
                                    0
     [7,] 0.00000000
##
                                    1
##
     [8,] 0.00000000
                                    0
##
     [9,] 0.00000000
                                    1
##
    [10,] 0.00000000
                                    0
    [11,] 0.00000000
##
                                    1
    [12,] 0.00000000
                                    0
##
    [13,] 0.00000000
##
                                    1
   [14,] 0.03125000
                                    0
##
    [15,] 0.20000000
##
                                    1
                                    0
##
   [16,] 0.08695652
   [17,] 0.05128205
                                    1
##
                                    0
## [18,] 0.02857143
## [19,] 0.03448276
                                    1
```

```
[20,] 0.00000000
##
                                    0
##
    [21,] 0.00000000
                                    1
##
    [22,] 0.01111111
                                    0
##
    [23,] 0.08000000
                                    1
##
    [24,] 0.00000000
                                    0
##
    [25,] 0.03125000
                                    1
##
    [26,] 0.00000000
                                    0
    [27,] 0.00000000
##
                                    1
##
    [28,] 0.00000000
                                    0
##
    [29,] 0.00000000
                                    1
    [30,] 0.00000000
                                    0
##
    [31,] 0.00000000
                                    1
                                    0
##
    [32,] 0.00000000
##
    [33,] 0.00000000
                                    1
##
    [34,] 0.00000000
                                    0
##
    [35,] 0.00000000
                                    1
##
    [36,] 0.00000000
                                    0
##
    [37,] 0.00000000
                                    1
##
    [38,] 0.06060606
                                    0
##
    [39,] 0.00000000
                                    1
##
    [40,] 0.00000000
                                    0
##
    [41,] 0.00000000
                                    1
    [42,] 0.01030928
##
                                    0
##
    [43.] 0.00000000
                                    1
##
                                    0
    [44,] 0.10000000
    [45,] 0.06666667
                                    1
##
    [46,] 0.00000000
                                    0
    [47,] 0.00000000
##
                                    1
                                    0
##
    [48,] 0.00000000
##
    [49,] 0.13636364
                                    1
##
    [50,] 0.16666667
                                    0
##
    [51,] 0.17391304
                                    1
                                    0
##
    [52,] 0.17647059
##
    [53,] 0.40000000
                                    1
##
    [54,] 0.50000000
                                    0
##
    [55,] 0.28571429
                                    1
##
    [56,] 0.24137931
                                    0
##
    [57,] 0.26666667
                                    1
##
    [58,] 0.16666667
                                    0
##
    [59,] 0.13333333
                                    1
    [60,] 0.15277778
                                    0
##
    [61,] 0.17142857
                                    1
    [62,] 0.24539877
                                    0
##
##
    [63,] 0.12500000
                                    1
    [64,] 0.20000000
                                    0
    [65,] 0.26666667
##
                                    1
                                    0
##
    [66,] 0.14285714
##
    [67,] 0.40000000
                                    1
##
    [68,] 0.20000000
                                    0
##
    [69,] 0.26666667
                                    1
##
    [70,] 0.21739130
                                    0
##
    [71,] 0.53333333
                                    1
##
    [72,] 0.33333333
                                    0
##
    [73,] 0.35294118
                                    1
```

```
## [86,] 0.0555556
## [87,] 0.06666667
                                   1
## [88,] 0.27906977
                                  0
## [89,] 0.20000000
                                   1
## [90,] 0.00000000
                                  0
## [91,] 0.26666667
                                  1
## [92,] 0.00000000
                                  0
## [93,] 0.16000000
                                  1
## [94,] 0.00000000
                                  0
## [95,] 0.00000000
                                  1
## [96,] 0.06081081
                                  0
## [97,] 0.13333333
                                  1
## [98,] 0.2222222
                                  0
## [99,] 0.13333333
                                  1
## [100,] 0.09090909
                                  0
## [101,] 0.53333333
                                  1
## [102,] 0.4444444
                                  0
## [103,] 0.40909091
                                  1
## [104,] 0.08108108
                                  0
## [105,] 0.13043478
                                   1
## [106,] 0.27272727
                                   0
## [107,] 0.15384615
                                   1
## [108,]
                 {\tt NaN}
                                  0
## [109,]
                 {\tt NaN}
                                  1
## [110,]
                 \mathtt{NaN}
                                  0
## [111,]
                 \mathtt{NaN}
                                   1
## [112,] 0.50000000
                                  0
## [113,] 0.26666667
                                   1
## [114,] 0.17177914
## [115,] 0.00000000
                                  1
colnames(boatboxdf)<- c("Boat.prop", "Presence")</pre>
boatboxdf$Presence<- as.factor(boatboxdf$Presence)</pre>
ggplot(boatboxdf, aes(x=Presence, y=Boat.prop, fill=Presence))+
         geom_boxplot(alpha=1) +
    theme(legend.position="none") + labs(x="Boat presence", y="Probability of whistle detections")+
## Warning: Removed 7 rows containing non-finite values (stat_boxplot).
```

[74,] 0.22000000 **##** [75,] 0.4000000

[76,] 0.18181818 ## [77,] 0.00000000

[78,] 0.00000000

[79,] 0.12903226

[80,] 0.0000000

[81,] 0.07692308

[82,] 0.00000000

[83,] 0.00000000

[84,] 0.03921569

[85,] 0.04000000

1

1

0

1

0

1

0

1

0

1

0

Whistle detection probability descriptive statistics

```
require(plotrix)

## Loading required package: plotrix

library(plotrix)

##diel cycle
std.error(pos.whist.prop.dielhr)
summary(pos.whist.prop.dielhr)
sd(pos.whist.prop.dielhr)
quantile(pos.whist.prop.dielhr)
hist(finaldf.posixwhistles$decTime)
```

Histogram of finaldf.posixwhistles\$decTime

finaldf.posixwhistles\$decTime

```
##tidal cycle
std.error(pos.whist.prop.tidehr)
summary(pos.whist.prop.tidehr)
sd(pos.whist.prop.tidehr)
quantile(pos.whist.prop.tidehr)

####hist(finaldf.posixwhistles$as.n.TSHT)<- wont knit properly for some reason

##boat presence
std.error(pos.whist.prop.boathr)
summary(pos.whist.prop.boathr)
sd(pos.whist.prop.boathr)
quantile(pos.whist.prop.boathr)
hist(finaldf.posixwhistles$boatpresence)</pre>
```

Histogram of finaldf.posixwhistles\$boatpresence

Distributions of environmental variable data

```
par(mfrow = c(1,3))
hist(finaldf.posixwhistles$decTime, xlab="Time of day", main=NULL)
####hist(finaldf.posixwhistles$as.n.TSHT, xlab="Time since high tide (minutes)", main=NULL) <- wont knit
hist(finaldf.posixwhistles$boatcut, xlab="Boat number", main=NULL)</pre>
```


GAM modeling

making sure model cannot be fitted with linear model

```
library(mgcv)

## Warning: package 'mgcv' was built under R version 4.0.5

## Loading required package: nlme

## ## Attaching package: 'nlme'

## The following object is masked from 'package:dplyr':

## collapse

## This is mgcv 1.8-36. For overview type 'help("mgcv-package")'.

lm1= lm(whistle.pos.min~ Fboatpresence+ TSHT +decTime, data=finaldf.posixwhistles)

par(mfrow = c(2,2))
plot(lm1)
```


Through model validation- data should be put into GAM model as relationship is non-linear, no normality line, residuals vs fitted are grouped together not equally spread, observations clearly dependent

First GAM model construction-with all environmental variables

```
finaldf.posixwhistles$as.n.TSHT<- as.numeric(finaldf.posixwhistles$TSHT)

gam1<- gam(whistle.pos.min~ Fboatpresence+ s(as.n.TSHT,bs="cc") + s(decTime ,bs="cc",k=24),family="binorization")

##diel variable removed

gam1.1<- gam(whistle.pos.min~ Fboatpresence+ s(as.n.TSHT,bs="cc"),family="binomial", data=finaldf.posix

##tide variable removed

gam1.2<- gam(whistle.pos.min~ Fboatpresence+ s(decTime ,bs="cc",k=24),family="binomial", data=finaldf.p

##boat variable removed

gam1.3<-gam(whistle.pos.min~ + s(as.n.TSHT,bs="cc") + s(decTime ,bs="cc",k=24),family="binomial", data=finaldf.p</pre>
```

plotting variable binned data in relation to GAM model

diel

```
gg.day.gam<-ggplot(dielgraphdf, aes(x = time.of.day, y = whistle.day))+ geom_point() + geom_smooth()
gg.day.gam +labs(x="Time of day", y="Probability of whistle detections/hour")</pre>
```

- ## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'
- ## Warning: Removed 22 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 22 rows containing missing values (geom_point).

Tide

```
gg.tide.gam<-ggplot(tidegraphdf, aes(x = time.since.ht, y = whistle.tide))+ geom_point() +
gg.tide.gam +labs(x="Time since high tide", y="Probability of whistle detections/hour")
## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'</pre>
```

Warning: Removed 11 rows containing missing values (geom_point).

Warning: Removed 11 rows containing non-finite values (stat_smooth).

Boat

```
gg.boat.gam<-ggplot(boatboxdf, aes(x=Presence, y=Boat.prop, fill=Presence))+ geom_point() +
gg.boat.gam +labs(x="Boat presence", y="Probability of whistle detections") +
## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'
## Warning: Removed 7 rows containing non-finite values (stat_smooth).</pre>
```

Warning: Removed 7 rows containing missing values (geom_point).

library(gridExtra)

```
## Warning: Removed 11 rows containing non-finite values (stat_smooth).
## Warning: Removed 11 rows containing missing values (geom_point).
## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'
## Warning: Removed 7 rows containing non-finite values (stat_smooth).
## Warning: Removed 7 rows containing missing values (geom_point).
```


comparing deviance explained

```
summary.gam(gam1.3)
###radj:0.0559,dev explained:8.24, decTime most sig.
summary.gam(gam1.2)
###radj:0.0556,dev explained:8.22, decTime most sig.
summary.gam(gam1.1)
###radj:0.0245,dev explained:3.24, TSHT most sig.
summary.gam(gam1)
###radj:0.0558,dev explained:8.27, decTime most sig.
##Trying model with just diel cycle
```

Model selection

```
AIC(gam1,gam1.1,gam1.2,gam1.3,gam2)

###AIC lowest when only diel predictor is included in model(gam2)

###validating model using normalised residuals (before scaled residuals with DHARMa package)

par(mfrow= c(2,2))

gam.check(gam2)
```


Histogram of residuals

using DHARMa package to test to see if family chosen in model is reasoning for residual patterns in model validation

I first calculated the randomised quantile residuals of fitted model (GAM2)

```
library(DHARMa)
```

Warning: package 'DHARMa' was built under R version 4.0.5

This is DHARMa 0.4.3. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa')

testDispersion(gam2)

DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

Simulated values, red line = fitted model. p-value (two.sided) = 0.776

```
simulationOutput <- simulateResiduals(fittedModel = gam2, plot = F)</pre>
```

I then calculated its scaled residuals (mimicing straight line to see if residuals in model using binomial family are valid)

```
residuals(simulationOutput)
residuals(simulationOutput, quantileFunction = qnorm, outlierValues = c(-7,7))
```

I then tested to see if normality and homogeinity/dependance of residuals-checks out

```
plot(simulationOutput)
```

DHARMa residual diagnostics

plotResiduals(simulationOutput, form = finaldf.posixwhistles\$Fboatpresence)

plotResiduals(simulationOutput, form = finaldf.posixwhistles\$TSHT)

Residual vs. predicted

plotResiduals(simulationOutput, form = finaldf.posixwhistles\$decTime)

Residual vs. predicted


```
simulationOutput <- simulateResiduals(fittedModel = gam1, refit = F)
simulationOutput</pre>
```

Checking if model residuals have temporal non-independence

To confirm temporal non-independence, extracted normalised residuals and plotted whistle proportion against each hour of diel cycle

```
library(lattice)
```

Warning: package 'lattice' was built under R version 4.0.5

xyplot(resid(gam2, type="pearson")~ decTime|whistle.pos.min, ylab="Normalized residuals", xlab="Time of

###used acf to decide which autocorrelation method could be used (would use MA-moving average if given acf(residuals(gam1, type="pearson"),lag=24,main="")

Then used partial autocorrelation to calculate correlation of each lag but partials out/accounts for the correlation of previous lags, as more than 50% of lags are significantly different from zero (above—line), MA (moving average) structure is needed if had time to go ahead with fixing temporal non-independence

```
pacf(residuals(gam1, type="pearson"),lag=24,main="")
```

