LPC82X 培训资料

状态可配置定时器

MAY, 2016

内容

- SCT概述
- SCT特性及时钟设置
- · SCT输入/输出信号
- SCT事件分析
- SCT应用特性及实例分析

SCT概述

什么是SCT

- SCT: 状态可配置计数器
- 可以作为普通Timer, 硬件有限状态 机引擎或两者功能的组合
- 普通Timer
 - -向上/向下计数
 - -计数值重载
 - -计数匹配
 - -中断产生
 - -DMA触发
- 硬件有限状态机引擎
 - -可以灵活定义计数器,输出信号,中断,DMA行为
- 组合功能
 - -Timer & I/O产生事件,事件控制Timer

SCT基础块

- Timer
 - -可以分为两个16位或者一个32位Timer
- 事件
 - -可以触发输出信号的转换,切换状态,改变计数器行为
- 状态
 - -定义了事件产生的背景条件
- 输入信号
 - -可以作为事件产生的一个条件
- 输出信号
 - -由事件触发产生,也可以作为事件产生的一个条件

什么是状态机

- 状态机组成:
 - -状态
 - -输入,比如输入/输出引脚信号或者计数器匹配
 - -输出(事件触发的动作)
 - -切换(状态变换)

事件产生及状态切换顺序

SCT产生PWM分析

SCT实现交通灯分析

SCT功能框图

• 与传统的Timer比较, SCT增加了事件和状态(Event/State)的概念, 对这两个概念深入分析后, 就可以解开SCT的神秘面纱

状态机和SCT实现对应关系

状态机元素	SCT实现
状态	 状态寄存器跟踪当前状态 根据事件控制寄存器设置更新状态
输入	-事件控制寄存器配置
输出	由事件驱动,在输出置位寄存器和输出清零寄存器配置可作为状态切换的评估条件,在事件控制寄存器 设置
状态切换	- 称为"事件" -事件控制寄存器定义 -事件使能寄存器配置使能

SCT 事件

- 事件产生的输入条件或者输入源可以为:
 - -计数器匹配
 - -输入/输出信号:高低电平或者上升/下降沿
 - -计数匹配 [与|或] 输入/输出信号
- 任何事件可以:
 - -驱动输出信号
 - -切换状态机状态
 - -启动 / 停止 / 禁能 / 限制 计数器
 - -捕获当前计数器值
 - -产生中断或者DMA请求

SCT 状态

- 每个16位Timer都有特定的状态机
- 可以设定事件在某个具体的状态产生
- · 状态可以明了地显示应用程序运行行为和SCT配置的关系
- SCT状态的概念,可以构造出无需软件干涉的硬件状态机,产生用户需求的复杂波形和定时任务

SCT 输入和输出信号

- 输入信号
 - -共有4个
 - -输入源可以是芯片内部信号或者外部引脚
 - -与SCT输入时钟同步
- 输出信号
 - -共有6个
 - -可以像输入信号一样作为事件产生的条件
 - -可以连接到片内其他模块,比如作为ADC触发信号,或者连接到片外引脚

SCT特性及时钟设置

LPC82x SCT特性

• SCT内部资源

Part	Inputs	Outputs	Match/Capture	Event	State
LPC82x	4	6	8	8	8

Counter/Timer特性

- -可以配置为2个16-bit或者1个32-bit计数器
- -Counter可以由系统时钟或者外部输入驱动
- -可以设置为单一向上计数或者up-down.
- -Match和Capture寄存器共享,灵活选择使用Match或者Capture模式
- -Match事件或者Input / Output toggle事件触发计数器捕获,并将计数 值加载到Capture Register

PWM特性

- 使用counter和Match寄存器来触发输出,产生周期和占空比可调的PWM信号
- 共可以输出6路占空比独立可调,统一周期的PWM信号

SCT 时钟设置

- SCT时钟使能
 - -初始化SCT模块前,需要设置系统时钟控制寄存器使能SCT外设时钟

- -软件使能SCT外设时钟
 - Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_SCT);

SCT 时钟模式设置

- 支持四种可选的时钟模式,包含一种完全的异步模式
- 可以选择任意一个SCT输入信号作为时钟源或者门控时钟
- 通过设置Configuration寄存器来选择时钟模式和SCT外部输入信号
 - -时钟模式设置

Configuration寄存器位		符号
2:1		CLKMODE
位值	时钟模式	描述
0x0	系统时钟模式	系统时钟驱动整个SCT模块,包括Counter和Counter分频器
0x1	采样系统时钟模式	系统时钟驱动SCT模块,Counter和Counter分频器由CKSEL位设 定的Input信号边沿来驱动
0x2	SCT输入时钟模式	由系统时钟来同步,CKSEL位设定的Input信号边沿驱动SCT模块, 包括Counter和Counter分频器
0x3	异步模式	CKSEL位设定的Input信号边沿驱动整个SCT模块,SCT输出信号 也由Input时钟来同步,而不是系统时钟

SCT 外部输入时钟选择

• 输入时钟选择

Configuration	子存器位	符号
6:3		CKSEL
位值	SCT时钟选择	描述
0x0	Input0上升沿	
0x1	Input0下降沿	
0x2	Input1上升沿	
0x3	Input1下降沿	设定的Input信号及边沿作为SCT驱动时钟,首先要参考CLKMODE
0x4	Input2上升沿	位的设定值
0x5	Input2下降沿	
0x6	Input3上升沿	
0x7	Input3下降沿	

SCT输入/输出信号

SCT 输入/输出信号框图

- SCT输入/输出为模块内部信号,可以连接片内其他模块信号,如 SCT 输入信号连接模拟比较器输出或者ADC阈值比较输出, SCT输出信号可以作为ADC Trigger的输入信号,同时SCT输入/ 输出信号也可通过Switch Matrix连接芯片的外部引脚。
- SCT输入/输出信号连接图,SCT模块共有四个Input,六个 Output

SCT 输入信号片内连接设置

- 首先设置Input Mux外设寄存器,分别选择四个输入信号连接片内 其他模块信号或者片外引脚
 - -//设置SCT_INPUT0信号连接到SCT_PIN0功能
 - -Chip_INMUX_SetSCTInMux(LPC_INMUX, SCT_I引脚NMUX_0, SCT_INP_IN0);

SCT0_INMUX[0:3]寄存器位		符号
3:0		INP_N
位值	连接信号	描述
0x0	SCT_PINO	
0x1	SCT_PIN1	连接到SCT_PINx外部信号,需要通过Switch Matrix连接到外部
0x2	SCT_PIN2	Pin脚
0x3	SCT_PIN3	
0x4	ADC_THCMP_IRQ	连接到ADC模块阈值比较中断输出信号
0x5	ACMP_0	连接到模拟比较器(Analog Comparator)模块输出信号
0x6	ARM_TXEV	ARM核TXEV事件信号
0x7	DEBUG_HALTED	DEBUG_HALTED信号

SCT 输入信号片外连接设置

- 如果将SCT输入信号连接到SCT_PINx信号,还需配置Switch Matrix引脚分配寄存器PINASSIGN[6:7]连接到片外引脚
 - -//设置SCT_PIN0到P0_1脚
 - -Chip_SWM_MovablePinAssign(SWM_SCT_IN0_I, 1);

PINASSIGN[6]寄存器位	符号
31:24	SCT_PIN0_I
位值	描述
0x0-0x1C	分配SCT_PIN0功能信号到引脚,设定位值即为分配的引脚号, PIO0_0 (= 0) 到 PIO0_28 (= 0x1C)
PINASSIGN[7]寄存器位	符号
7:0	SCT_PIN1_I
15:8	SCT_PIN2_I
23:16	SCT_PIN3_I
位值	描述
0x0-0x1C	分配SCT_PIN[1:3]功能信号到引脚,设定位值即为分配的引脚号, PIO0_0 (= 0) 到 PIO0_28 (= 0x1C)

SCT 输出信号片外连接设置

- 需配置Switch Matrix引脚分配寄存器PINASSIGN[7:9],连接到 片外引脚
 - -//设置SCT_OUTO到P0_1脚
 - -Chip_SWM_MovablePinAssign(SWM_SCT_OUT0_O, 1);

PINASSIGN[7]寄存器位	符号
31:24	SCT_OUT0_O
PINASSIGN[8]寄存器位	符号
7:0	SCT_OUT1_O
15:8	SCT_OUT2_O
23:16	SCT_OUT3_O
31:24	SCT_OUT4_O
PINASSIGN[9]寄存器位	符号
7:0	SCT_OUT5_O
位值	描述
0x0-0x1C	分配SCT_OUT[0:5]功能信号到引脚,设定位值即为分配的引脚号,PIO0_0 (= 0) 到 PIO0_28 (= 0x1C)

SCT 片外信号功能复用

- 通过Switch Matrix连接到外部引脚的SCT输入/输出信号,还需注意该引脚是否有复用功能,并且确保复用的功能信号处于禁能状态
- 设置引脚使能寄存器PINENABLE0, 来禁能复用功能 -Chip_SWM_DisableFixedPin(SWM_FIXED_ACMP_I1);

位	符号	位值	描述
O ACMP IA	0	在PIO0_0引脚使能ACMP_I1功能	
0	0 ACMP_I1	1	禁能ACMP_I1功能
1 ACMP_I2	0	在PIO0_1引脚使能ACMP_I2功能	
	1	禁能ACMP_I2功能	
2 ACMP_I3	0	在PIO0_14引脚使能ACMP_I3功能	
	1	禁能ACMP_I3功能	
2	ACMD 14	0	在PIO0_23引脚使能ACMP_I4功能
S	3 ACMP_I4	1	禁能ACMP_I4功能
4 SWCLK	0	在PIO0_3引脚使能SWCLK功能	
	SWULK	1	禁能SWCLK功能
5:31	其他复用功能,请参考芯片用户手册		

SCT 输出信号片内连接设置

- SCT_OUT3还可以连接到ADC的ADC_trigger信号,触发ADC采样序列
- 通过设置ADC转换序列寄存器SEQ[A:B]_CTRL,来选择触发源
 -Chip_ADC_SetSequencerBits(LPC_ADC, ADC_SEQA_IDX, (3 << 12));

SEQ[A:B]_CTRL寄存器位		符号
14:12		TRIGGER
位值	硬件触发源	描述
0	Logic High	逻辑高
1	ADC_PINTRIG0	ADC外部引脚0
2	ADC_PINTRIG1	ADC外部引脚1
3	SCT_OUT3	SCT输出信号3
4	ACMP_O	模拟比较器输出信号
5	ARM_TXEV	ARM核TX事件

SCT事件分析

SCT事件触发

- 事件触发定义主要通过事件控制寄存器EV[0:7]_CTRL和事件使能寄存器EV[0:7]_STATE设置
- 八个事件分别对应八个控制寄存器和八个使能寄存器

SCT事件触发	触发条件定义		对应寄存器
	Match Logic	计数器及计数匹配	
	Synced Input	同步后的SCT输入信号	事件控制寄存器定义
	Outputs	SCT输出信号	-
	State Logic	SCT状态	事件使能寄存器定义

计数器及计数匹配条件

• 该条件输入通过事件控制寄存器EV[0:7]_CTRL定义

SCT event control 寄存	器位		符号
3:0			MATCHSEL
位值	事件触发定义	描述	
0到7	匹配寄存器[0:7]选择	选择事件对应的匹配寄存器 存器的数值时,触发该事件	, 当计数器的计数值达到该匹配寄
SCT event control 寄存	器位		符号
22:21			DIRECTION
位值	事件触发定义 /计数方向选择	描述	
0	计数方向无关	事件触发与计数方向无关	
1	向上计数	该事件只有在计数器向上计	数时才会触发
2	向下计数	该事件只有在计数器向下计	数时才会触发

输入\输出信号条件 I/O选择

• 该条件由事件控制寄存器EV[0:7]_CTRL定义

SCT event control 寄存器		符号
5		OUTSEL
位值	输入/输出信号选择	描述
0	选择输入信号	选择输入信号作为该事件触发的条件
1	选择输出信号	选择输出信号作为该事件触发的条件
SCT event control 寄存器位		符号
9:6		IOSEL
位值	输入/输出信号值选择	描述
0到3,或者0到5	信号值	根据OUTSEL位值,当为0时,从0到3具体选择某个输入信号作 为事件的触发条件;当为1时,从0到5具体选择某个输出信号作 为事件的触发条件

输入\输出信号条件 触发沿/电平

• 该条件由事件控制寄存器EV[0:7]_CTRL定义

SCT event control 寄存器位		符号
11:10		IOCOND
位值	I/O触发电平或边沿	描述
0x0	低电平触发	根据OUTSEL和IOSEL位选择的I/O信号,IOCOND定义该信号的触发方式
0x1	上升沿触发	
0x2	下降沿触发	
0x3	高电平触发	

I/O和计数匹配组合条件

• 该条件由事件控制寄存器EV[0:7]_CTRL定义

SCT event control 寄存器位		符号
13:12		COMBMODE
位值	匹配和NO条件的组合方式	描述
0x0	或	匹配和I/O条件相或后触发事件
0x1	只有匹配	只用匹配条件触发事件
0x2	只有I\O信号条件	只用I/O条件触发事件
0x3	与	匹配和I/O条件相与后触发事件

SCT状态条件

• 状态条件由事件使能寄存器EV[0:7]_STATE定义

SCT event Enable寄存器位	符号	
7:0	STATEMSKn	
位值	描述	
一位对应一个状态	八位分别对应SCT的八个状态,位0对应状态0,位1对应状态1。当置1时,该事件将在对应的状态使能;置0时,该事件将在对应的状态禁能。如果所有位全部设置为0,则该事件不对应任何状态,将被永久禁能。	

SCT事件驱动

- · SCT所有的动作都由事件来驱动,是事件的输出结果
- SCT事件驱动列表及对应的设置寄存器如下

SCT事件驱动	驱动控制		对应寄存器
	Outputs	SCT給出信品	SCT output set register[0:5]
		SCT输出信号	SCT output clear register[0:5]
	State Logic	SCT状态值更新	SCT event control register[0:7] SCT state register
	Interrupts	SCT中断	SCT event interrupt enable register
	Match/Capture	SCT匹配/捕获动作	SCT capture control registers[0:7]
	Counter Control Logic	计数器控制	SCT limit event select register
			SCT halt event select register
			SCT stop event select register
			SCT start event select register

SCT输出信号置位/清零

• SCT模块共有6个输出信号SCT_Out[0:5],每个输出信号对应一组输出控制寄存器OUT[0:5]_SET和OUT[0:5]_CLR,分别设置输出信号的置位和清零

SCT output set register寄存器位	符号
7:0	SET
位值	描述
一位对应一个事件	八位分别对应SCT的八个事件,位0对应事件0,位1对应事件1。 当置1时,对应事件触发时,该输出信号输出高电平;置0无操作
SCT output set register寄存器位	符号
7:0	CLR
位值	描述
一位对应一个事件	八位分别对应SCT的八个事件,位0对应事件0,位1对应事件1。 当置1时,对应事件触发时,该输出信号输出低电平;置0无操作

SCT状态值更新

- 事件触发时可以产生对当前SCT状态的更新,进行状态变换
- SCT状态寄存器STATE记录当前的SCT状态值
- SCT事件控制寄存器EV[0:7]_CTRL设置事件触发时对状态值的 更新方式

SCT event control 寄存器位		符号
14		STATELD
位值	状态值更新方式	描述
0x0	当前状态值与位STATEV 值相加得到新的状态值	注:当多个事件同时触发时,只有编号最高的事件才能有效更
0x1	直接将位STATEV值加载 到状态寄存器作为新的状 态值	改当前状态值
SCT event control 寄存器位		符号
19:15		STATEV
位值		描述
0到31		根据STATELD值,将该值相加或者直接加载到状态寄存器,结果作为新的状态值

SCT中断产生

•设置SCT事件中断使能寄存器EVEN,可以产生事件触发中断

SCT event interrupt enable 寄存器	举位
7:0	IEN
位值	描述
一位对应一个事件	八位分别对应SCT的八个事件,位0对应事件0,位1对应事件1。当置1时,对应的事件触发时将产生SCT中断;置0时,事件触发时不会产生中断。

计数器捕获

- 事件触发时可以产生对SCT计数器的捕获功能
- 设置SCT捕获控制寄存器CAPCTRL[0:7]

SCT capture control 寄存器位	符号
7:0	CAPCON
位值	描述
一位对应一个事件	八位分别对应SCT的八个事件,位0对应事件0,位1对应事件1。当置1时,对应 的事件触发时将捕获SCT计数器;置0时,事件触发时不产生捕获动作。

计数器控制

• 事件触发时可以控制计数器的计数方向、计数清零、启动、停止或者禁能

事件触发	计数器控制	对应寄存器
	计数器清零或者反向计数	限制寄存器
	启动计数器	启动寄存器
	停止计数器	停止寄存器
	禁能计数器	禁能寄存器

计数限制

- 事件触发后, 计数器将被清零或者开始反向计数
- 设置SCT限制寄存器LIMIT

SCT limit event select 寄存器位	符号
7:0	LIMMSK
位值	描述
一位对应一个事件	八位分别对应SCT的八个事件,位0对应事件0,位1对应事件1。当置1时,对应的事件触发时将清零计数器;如果计数器被设置为双向计数时,将改变计数方向。置0时,事件触发时不产生计数控制动作。

启动计数器

• 设置SCT启动寄存器START

SCT limit event select 寄存器位	符号
7:0	STARTMSK
位值	描述
一位对应一个事件	八位分别对应SCT的八个事件,位0对应事件0,位1对应事件1。当置1时,对应的事件触发时将启动计数器;置0时,事件触发时不产生计数控制动作。

停止计数器

• 设置SCT停止寄存器STOP

SCT limit event select 寄存器位	符号
7:0	STOPMSK
位值	描述
一位对应一个事件	八位分别对应SCT的八个事件,位0对应事件0,位1对应事件1。当置1时,对应的事件触发时将停止计数器,计数器保持原值,事件触发仍然处于使能状态;置0时,事件触发时不产生计数控制动作。

禁能计数器

• 设置SCT禁能寄存器HALT

SCT limit event select 寄存器位	符号
7:0	HALTMSK
位值	描述
一位对应一个事件	八位分别对应SCT的八个事件,位0对应事件0,位1对应事件1。当置1时,对应 的事件触发时将禁能计数器,事件触发处于禁能状态;置0时,事件触发时不产 生计数控制动作。

SCT应用特性及实例分析

SCT应用特性

- SCT计数器可以当作1个32位或者2个16位计数器使用,通过配置寄存器SCT configuration register的第0位UNIFY选择
- 相应的计数控制寄存器,如启动事件选择寄存器、停止事件选择 寄存器、限制事件选择寄存器和禁能事件选择寄存器,都可作为 1个32位或者2个16位使用,控制相应的计数器
- 匹配和捕获功能寄存器共享,通过设置SCT匹配/捕获模式寄存器SCT match/capture mode register选择
- SCT的输出信号由触发事件控制,如果事件对某个输出信号的设置相冲突,即同时使能置位和清零操作,则通过SCT conflict resolution register来设置最终输出

Blinky Match

```
void SCT Init(void)
   LPC SCT->CONFIG |= 0x1;
                                                     // unified timer
   LPC SCT->MATCH[0].U = SystemCoreClock/10;
                                                // match 0 @ 100 msec
   LPC SCT->MATCHREL[0].U = SystemCoreClock/10;
                                                   // ev 0 happens in state 0
   LPC\_SCT->EV[0].STATE = 0x00000001;
   LPC_SCT \rightarrow EV[0].CTRL = (0 << 0)
                                                     // related to match 0
                                                    // match condition only
                              (1 << 12)
                                                    // STATEV is new state
                              (1 << 14)
                              (1 << 15);
                                                     // STATEV[15] = 1
                                                    // ev 1 happens in state 1
   LPC_SCT->EV[1].STATE = 0x00000002;
   LPC\_SCT -> EV[1].CTRL = (0 << 0)
                                                    // related to match 0
                              (1 << 12)
                                                    // match condition only
                                                    // STATEV is new state
                              (1 << 14)
                              (0 << 15);
                                                     // STATEV[15] = 0
   LPC\_SCT->OUT[0].SET = (1 << 0);
                                                   // event 0 sets SCT_OUT_0
   LPC SCT->OUT[0].CLR = (1 << 1);
                                                     // event 1 clears SCT OUT 0
                                                     // event 0 and 1 are limits
   LPC SCT->LIMIT L = 0x0003;
                                                     // unhalt the timer}
   LPC\_SCT->CTRL\_L \&= \sim(1 << 2);
```


- Blinky Match配置
 - -匹配寄存器:匹配寄存器0@100ms
 - -输出信号:SCT_OUTO,连接到一个LED灯,控制100ms闪烁一次
 - -事件:事件0和事件1,事件0控制SCT_OUT0输出高电平,事件1控制SCT_OUT0输出低电平,两个事件的输入条件都是Match0
 - -状态:状态0和状态1,事件0在状态0下使能,事件1在状态1下使能

Match Toggle

```
void SCT_Init(void)
   LPC SCT->CONFIG = (0x1 << 17) \mid 0x1;
                                                    // unified timer, auto limit
   LPC_SCT->MATCH[0].U = SystemCoreClock/10;
                                                    // match 0 @ 100 msec
   LPC SCT->MATCHREL[0].U = SystemCoreClock/10;
   LPC SCT->EV[0].STATE = 0xFF;
                                                      // ev 0 happens in all state
   LPC\_SCT->EV[0].CTRL = (0 << 0)
                                                      // related to match 0
                              (1 << 12);
                                                     // match condition only
                                                    // event 0 sets SCT_OUT_0
   LPC SCT->OUT[0].SET = (1 << 0);
   LPC SCT->OUT[0].CLR = (1 << 0);
                                                    // event 0 clears SCT OUT 0
                                                     // output0 toggles on conflict
   LPC SCT->RES = 0x3;
   LPC\_SCT->CTRL\_L \&= ~(1 << 2);
                                                     // unhalt the timer}
```


- Match Toggle配置
 - -匹配寄存器:匹配寄存器0@100ms,自动清零计数器
 - -输出信号: SCT_OUTO , 事件0发生时变换输出电平 , 控制LED灯闪 烁
 - -事件:事件0,单一输入条件Match0,事件0触发时对SCT_OUT0控制冲突,切换输出电平
 - -状态:没有使用

SECURE CONNECTIONS FOR A SMARTER WORLD