Advanced Network Technologies

Queueing Theory

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Dr. Wei Bao | Lecturer School of Computer Science

- Markov Chain
- Queueing System and Little's Theorem
- M/M/1 Queuestogmento Project Exam Help
- M/M/1 Queue https://powcoder.com

Markov Chain

Assignment Project Exam Help

https://powcoder.com

- A stochastic process
 - $-X_1, X_2, X_3, X_4...$
 - $\{X_n, n = 1, 2Assignment Project Exam Help \}$
 - X_n takes on a finite or countable number of possible values.
 - $-X_n \in \{1,2, ..., S\}$ Add WeChat powcoder
 - i: ith state
 - Markov Property: The state of the system at time n+1depends only on the state of the system at time n

$$\Pr[X_{n+1} = x_{n+1} / X_n = x_n, ..., X_2 = x_2, X_1 = x_1] = \Pr[X_{n+1} = x_{n+1} / X_n = x_n]$$

https://powcoder.com

- Add WeChat powcoder • Stationary Assumption: Transition probabilities are independent of time (n)

$$\Pr[X_{n+1} = b / X_n = a] = p_{ab}$$

Weather:

· raining today 40% rain tomorrow

Assignment Project Exampler pw

· not raining today https://poxcoder.com rain tomorrow

Add We8h%t proprietterorrow

Stochastic FSM:

Weather:

· raining today

40% rain tomorrow

Assignment Project Exant Prerpw

· not raining today https://powcoder.com

Add We8h %t morning the morrow

Matrix:

$$P = \begin{pmatrix} 0.4 & 0.6 \\ 0.2 & 0.8 \end{pmatrix}$$

 Stochastic matrix: Rows sum up to 1

Assignment Project Exam Help
$$P_{21}$$
 P_{22} ... P_{2S} P_{2S}

Gambler's Example

- Gambler starts with \$10
- At each play we have one of the following:
 - · Gambler winssignment baroject Exam Help
 - · Gambler looses \$1 with probability 1-pcom
- Game ends when gambler goes broke, or gains a fortune of \$100 Add WeChat powcoder (Both 0 and 100 are absorbing states)

Gambler's Example

- transient state

if, given that we start in state i, there is a non-zero probability that we will never return to i Help

- recurrent state

https://powcoder.com

Non-transient

Add WeChat powcoder

- absorbing state

impossible to leave this state.

- Given that a person's last cola purchase was Coke, there is a 90% chance that his next cola purchase will also be Coke.
- · If a person's last cold purchase was Pepsi, there is an 80% chance that his next cala purchase will also be Pepsi.

Add We Chat por warsite on diagram:

transition matrix:

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$$

Given that a person is currently a Pepsi purchaser, what is the probability that he will purchase Coke two purchases from now?

Assignment Project Exam Help

```
Pr[Pepsi\rightarrow?\rightarrow\coke] =
Pr[Pepsi\rightarrow\coke\rightarrow\coke] + Pr[Pepsi\rightarrow\coke] + Coke] =

0.2 * 0.9 Add+WeChat.po\vcoder = 0.34
```

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 0.9 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.1 \\ 0.8 \end{bmatrix} = \begin{bmatrix} 0.83 & 0.17 \\ 0.34 & 0.66 \end{bmatrix}$$
Pepsi \Rightarrow ? ? \Rightarrow Coke

Given that a person is currently a Coke purchaser, what is the probability that he will purchase Pepsi three purchases from now? Assignment Project Exam Help

$$P^{3} = \begin{bmatrix} 0.9 & 0.1 & 0.83 & 0.17 \\ 0.2 & 0.8 & 0.34 & 0.66 \end{bmatrix} \begin{bmatrix} 0.781 & 0.219 \\ 0.438 & 0.562 \end{bmatrix}$$

- ·Assume each person makes one cola purchase per week
- •Suppose 60% of all people now drink Coke, and 40% drink Pepsi
- ·What fraction as pipplen will be regions in Exam three weeks from now?

$$P = \begin{bmatrix} 0.2 & 0.8 \\ 0.2 & 0.8 \\ 0.438 & 0.562 \end{bmatrix}$$
Powcoder 0.219

Output

Description:

O

$$Pr[X_3 = Coke] = 0.6 * 0.781 + 0.4 * 0.438 = 0.6438$$

 Q_i - the distribution in week i $Q_0 = (0.6, 0.4)$ - initial distribution $Q_3 = Q_0 * P^3 = (0.6438, 0.3562)$

Simulation:

$$\lim_{n \to \infty} P(X_n = i) = \pi_i$$
**Project Exam Help

https://powcoder.com $\lim P^n = 1\pi$ Add WeChat powcoder

$$\pi = \pi \cdot P$$

$$P = \begin{bmatrix} 0.9 & 0.1 \\ \text{Assignment Project Exam} & 1/3 \end{bmatrix}$$
https://powcoder.com

$$P^{10} = \begin{bmatrix} 0.67611d & 0.3333 \\ 0.6478 & 0.3522 \end{bmatrix} \text{ powcoder} \begin{bmatrix} 0.6667 & 0.3333 \\ P^{100} = 0.6667 & 0.3333 \end{bmatrix}$$

$$\begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

PageRank: A Web surfer browses pages in a five-page Web universe shown in figure. The surfer selects the next page to view by selecting with equal probability from the pages pointed to by the entire page. If at page has help utgoing link (e.g., page 2), then the surfer selects any of the pages in the universe with equal probability. Find the probability that the surfer views page Add WeChat powcoder.

Transition matrix P

Stationary Distribution: Solve the following equations:

Assignment Project Exam Help

https://powcoder.com

Add We Chat-powcoder

$$i=1$$

77 = 0.12195, 0.18293, 0.25610, 0.12195, 0.317072)

Search engineer. page rank: 5, 3, 2, 1, 4

Queueing System and Little's Theorem

Queueing System and Little's Theorem

Assignment Project Exam Help

https://powcoder.com

- Customers = Data packets
- Service Time = Packet Transmission speed)
- Queueing delay = time spent in buffer before transmission
- Average number of customers in systems
- Typical number of customers either waiting in queue or undergoing service
- Average delay per customer
- Typical time a customer spends waiting in queue + service time

- W: average waiting time in queue
 X: average service timedd WeChat powcoder
- T: average time spent in system (T = W + X)
- N_O = average number of customers in queue
- ρ = utilization = average number of customers in service
- N = average number of customer in system $(N = N_O + \rho)$
- Want to show later: $N = \lambda T$ (Little's theorem)
- λ Average arrival rate

 $\alpha(t)$ = Number of customers who arrived in the interval [0, t]

 $\beta(t)$ = Number of customers who departed in the interval [0, t]

N(t) = Number of customers in the system at time t, $N(t) = \alpha(t) - \beta(t)$

 T_i = Time spent in the system by the *i*-th arriving customer

Average # of customers until t

$$N_t = \frac{1}{t} \int_0^t N(\tau) d\tau$$

Average # of customers in long-term

$$N = \lim_{t \to \infty} \frac{1}{t} \int_0^t N(\tau) d\tau$$

Average # arrival rate until t

$$\lambda_t = \frac{\alpha(t)}{t}$$

Average # arrival rate in long-term

$$\lambda = \lim_{t \to \infty} \frac{\alpha(t)}{t}$$

Average customer delay till t

$$T_{t} = \frac{\sum_{i=1}^{\alpha(t)} T_{i}}{\alpha(t)}$$

Average customer delay in long-term

$$T = \lim_{t \to \infty} \frac{\sum_{i=1}^{\alpha(t)} T_i}{\alpha(t)}$$

Shaded area when the queue is empty: two ways to compute

$$\int_0^t N(\tau)d\tau = \sum_{i=1}^{\alpha(t)} T_i$$

Shaded area when the queue is empty: two ways to compute

$$\frac{1}{t} \int_0^t N(\tau) d\tau = \frac{1}{t} \sum_{i=1}^{\alpha(t)} T_i$$

Shaded area when the queue is empty: two ways to compute

$$N_{t} = \lambda_{t} T_{t}$$

$$N = \lambda T$$

Note that the above Little's Theorem is valid for any Assignment Project Exam Help service disciplines (e.g., first-in-first-out, last-in-first-out), interarrival time distributions and service time distributions.

- $N = \lambda T$
- $N_Q = \lambda W$
- ρ = proportion of time that the server is busy = λX
- T = W + X
- $N = N_Q + \rho$

M/M/1 Queue foundations

M/M/1 Queue foundations

Assignment Project Exam Help

https://powcoder.com

Exponential Distribution

- Exponential Distribution
- The cumulative distribution function F(x) and probability

density function f(x) are: Assignment Project Exam Help $F(x) = 1 - e^{-\lambda x} f(x) = \lambda e^{-\lambda x} x \ge 0, \lambda > 0$

The mean is equal to its standard deviation: $E[X] = \sigma_X = 1/\lambda$

- P(X > s + t/X > t) = P(X > s) for all $s, t \ge 0$
- The only continuous distribution with this property
- Practice Q2 in Figure 1 Project Exam Help

https://powcoder.com

Other Properties of Exponential Distribution

- Let $X_1, ..., X_n$ be i.i.d. exponential r.v.s with mean $1/\lambda$,
- then $X_1+X_2+...+X_n$ (Practice Q2 in Tutorial Week 4)

Assignment Project Exam
$$Help_t)^{n-1}$$

$$f_{X_1 + \dots + X_n - \text{https://powcoder.com}} (t) = \lambda e^{-\lambda t} \frac{(n-1)!}{(n-1)!}$$

Add WeChat powcoder

-) gamma distribution with parameters n and λ .
- Suppose X_1 and X_2 are independent exponential r.v.s with means
- $\rightarrow 1/\lambda_1$ and $1/\lambda_2$, respectively, then

$$P(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

THE UNIVERSITY OF SYDNEY

Counting Process

- A stochastic process $\{N(t), t \ge 0\}$ is a counting process if N(t) represents the total # of events that have occurred up to time t.
- → 1. $N(t) \ge 0$ and N(t) is integer valued.
- \rightarrow 2. If s < t, then N(s) signment Project Exam Help
- 3. For s < t, N(t) N(s) = # of events that have occurred in (s, t) https://powcoder.com
- Examples:
- \rightarrow # of people who have entered a particular norwsquart
- > # of packets sent by a mobile phone
- A counting process is said to be independent increment if # of events which occur in disjoint time intervals are independent.
- A counting process is said to be stationary increment if the distribution of # of events which occur in any interval of time depends only on the length of the time interval.

Poisson Process

- The counting process $\{N(t), t \ge 0\}$ is said to be a Poisson process having rate $\lambda > 0$, if
- 1. N(0) = 0
- 2. The process has an abject the process has a significant remojecte. **Example Up hich occur in disjoint time intervals are independent)
- https://powcoder.com $t_1 < t_2 < t_3 < t_4$, for all $t_1 < t_2 < t_3 < t_4$
- $\rightarrow -P\{N(t_4)-N(t_3)=n \mid NAddNWeChatPhovecoder=n\}$
- 3. Number of events in any interval of length *t* is Poisson distributed with mean λt. That is, for all s, t ≥ 0 E(N(t + s) N(s)) = λt

$$P(N(t+s)-N(s)=n)=\frac{(\lambda t)^n}{n!}e^{-\lambda t}$$

Poisson Process: Inter arrival time distribution

Exponential distribution with parameter λ (mean $1/\lambda$)

Assignment Project Exam Help $P(T_2 > t) = P\{T_2 > t \mid T_1 = t_1\} = e^{-\lambda t}$

$$P(T_2 > t) = P\{T_2 > t \mid T_1 = t_1\} = e^{-\lambda t}$$

https://powcoder.com

$$P(T_1 > t) = P(N(t) = 0) = e^{-\lambda t}$$

Add WeChat powcoder

Poisson Process: Inter arrival time distribution

Given that an event arrives now, what is the distribution of T, where T is the time duration between now and next arrival event?

Assignment Project Exam Help Exponentially distributed with parameter λ

https://powcoder.com

Add WeChat powcoder

now

next

Poisson Process: Inter arrival time distribution

Given that an packet event arrives at t_0 time ago, what is the distribution of T, where T is the time duration between now and next arrival event?

Reason: Memoryless!

Number of arrivals in a short period of time

Number of arrival events in a very short period

$$P\{N(t+h) - NAssignment+P(o)eatExam Help P\{N(t+h) - N(t) \ge 2\} = o(h).$$
 https://powcoder.com

o(). Small o notation. The function f(.) is said to be o(h) if Add WeChat powcoder

$$\lim_{h \to 0} \frac{f(h)}{h} = 0$$

Poisson process:

Independent increments

of arrivals: Poisign distrib Ptodject Exam Help

of arrivals in a small period of time h. 1 arrival, probability λh Inter-arrival time distribution

Add WeChat powcoder

M/M/1 Queue

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Queues: Kendall's notation

- Notations Used in Queueing Systems
- > X/Y/Z
- > X refers to the distribution of the interarrival times
- Y refers to the distabuting nine vite Pince ect Exam Help
- \rightarrow Z refers to the number of servers

https://powcoder.com

- Common distributions:
- > M = Memoryless = exponential wistill powcoder
- \rightarrow D = Deterministic arrivals or fixed-length service
- \rightarrow G = General distribution of interarrival times or service times
- > M/M/1 refers to a single-server queuing model with exponential interarrival times (i.e., Poisson arrivals) and exponential service times.
- In all cases, successive interarrival times and service times are assumed to be statistically independent of each other.

- Arrival:
- Poisson arrival with rate λ
- Service: Assignment Project Exam Help
- Service time: expense real striction with mean 1/µ
-) µ: service rate, Add WeChat powcoder
- $\lambda < \mu$: Incoming rate < outgoing rate

Assignment Project Exam Help δ: a small value

https://powcoder.com

 N_k = Number of austracthin the system at time $k\delta$ $N_0 N_1 N_2$... is a Markov Chain!

Q: How to compute the transition probability?

Assignment Project Exam Help

$$P(0 \text{ cust} \frac{\text{bttps:}}{\text{payvester.qom}} \delta + o(\delta)$$

 $P(1 \text{ customer Warrhouspow} \delta \text{deo}(\delta))$

$$P(\geq 2 \text{ customer arrives}) = o(\delta)$$

Assignment Project Exam Help

$$P(0 \text{ customer leaves}) = P(0 \text{ customer leaves}) = O(0 \text{ customer lea$$

No one in the system

Aim to compute $P_{ij} = P\{N_{k+1} = j / N_k = i\}$

For examplement Project Exam in Pop

https://powcoder.com
$$P(0 \text{ customer arrives})P(0 \text{ customer departs})$$

$$+ P(1 \text{ customer arrives})P(1 \text{ customer departs})$$

$$+ P(\text{other}) \qquad \qquad \text{Result}: 1 - \lambda \delta - \mu \delta + o(\delta)$$

$$[1 - \lambda \delta + o(\delta)][1 - \mu \delta + o(\delta)] = 1 - \lambda \delta - \mu \delta + o(\delta)$$

$$[\lambda \delta + o(\delta)][\mu \delta + o(\delta)] = o(\delta)$$

$$o(\delta)o(\delta) = o(\delta)$$

Result:

 π_i Stationary distribution of state i The probability that there are i units in the system

How to derive π_i balance equation satisfied

$$\lambda \delta \pi_2 + \mu \delta \pi_2 = \lambda \delta \pi_1 + \mu \delta \pi_3$$

How to derive π_i

$$\lambda \delta \pi_0 = \mu \delta \pi_1$$

$$\lambda \delta \pi_1 + \mu \delta \pi_1 = \lambda \delta \pi_0 + \mu \delta \pi_2$$

$$\lambda \delta \pi_1 = \mu \delta \pi_2$$

How to derive π_i

$$\lambda \delta \pi_0 = \mu \delta \pi_1$$

$$\lambda \delta \pi_1 = \mu \delta \pi_2$$

$$-\lambda \delta \pi_2 + \mu \delta \pi_2 = \lambda \delta \pi_1 + \mu \delta \pi_3 - \blacksquare$$

$$\lambda \delta \pi_2 = \mu \delta \pi_3$$

How to derive π_{i}

$$\lambda \delta \pi_0 = \mu \delta \pi_1$$

$$\lambda \delta \pi_1 = \mu \delta \pi_2$$

$$\lambda \delta \pi_{i} = \mu \delta \pi_{i+1}$$
 For any i

$$\lambda \delta \pi_2 = \mu \delta \pi_3$$

How to derive

$$1 - \lambda \delta$$
 $1 - \lambda \delta A$ ssignment Project Exam Helps $-\mu \delta$ $1 - \lambda \delta - \mu \delta$

balance equation is performed at each state

$$\pi_1 = \frac{\lambda}{\mu} \pi_0$$
 $\pi_2 = \left(\frac{\lambda}{\mu}\right)$

$$\pi_1 = \frac{\lambda}{\mu} \pi_0 \qquad \pi_2 = \left(\frac{\lambda}{\mu}\right)^2 \pi_0 \qquad \dots \qquad \pi_i = \left(\frac{\lambda}{\mu}\right)^i \pi_0$$

$$\sum_{i=0}^{\infty} \pi_i = 1$$

 $\sum \pi_i = 1$ Sum of geometric sequence

How to derive π_i

$$\pi_1 = \rho \pi_0$$
 $\pi_2 = (\rho)^2 \pi_0$... $\pi_i = (\rho)^i \pi_0$ $\rho = \frac{\lambda}{\mu} < 1$

$$\sum \pi_{\rm i} = 1$$
 Sum of geometric sequence

How to derive π_{i}

balance equation is performed at each state

$$\lim_{N \to \infty} \frac{\pi_0 (1 - \rho^N)}{1 - \rho} = \frac{\pi_0}{1 - \rho}$$
 = 1
$$\pi_0 = 1 - \rho$$

$$\pi_i = (1 - \rho)\rho^i$$

Sum of geometric sequence

Average number of users in the system

$$E(N) = \sum_{n=0}^{\infty} \text{signate nt Project Exam Help}$$

$$= \rho(1-\rho) \sum_{n=0}^{\infty} \frac{\text{https://powcoder.com}}{\text{hptps://powcoder.com}}$$

$$= \rho(1-\rho) \frac{\partial \left[\sum_{n=0}^{\infty} \rho^{n}\right]}{\partial \rho}$$

$$= \rho(1-\rho) \frac{\partial \left[\frac{\rho}{1-\rho}\right]}{\partial \rho} = \frac{\rho}{1-\rho}$$

Average waiting time

Little's Theorem

Assignment Project Exam Help

$$E(T) = \frac{\text{https://powcoder.com}}{\text{Add WeChat powcoder}}$$

μ

Add WeChat powcoder balance equation is performed at each state

$$\lambda \pi_0 = \mu \pi_1$$

$$\lambda \pi_1 + \mu \pi_1 = \lambda \pi_0 + \mu \pi_2$$

Add WeChat powcoder balance equation is performed at each state

Following the same step, derive the same result

Queueing delay goes to infinity when arrival rate approaches service rate!

- Arrival:
- Poisson arrival with rate λ
- Service: Assignment Project Exam Help
- Service time for https://powcoder.exponential distribution with mean 1/µ Add WeChat powcoder
- service rate is i μ, if there are i<m users in the system
- service rate is mµ, if there are i>=m users in the system

$\lambda \pi_{i-1} = i \mu \pi_i$ Add WeChat powcoder $i \leq m$

$$\lambda \pi_{i-1} = i \mu \pi_i$$

$$i \leq m$$

$$\lambda \pi_{i-1} = m \mu \pi_i$$

$$\pi_{n} = \begin{cases} \pi_{0} \frac{(m\rho)^{n}}{n!} & n \leq m \\ \pi_{0} \frac{m^{m} \rho^{n}}{m!} & n > m \end{cases} \qquad \rho = \frac{\lambda}{m\mu} < 1$$

$$\rho = \frac{\lambda}{m\mu} < 1$$

Then, π_0 can be solved

Assignment Project Exam Help

Arrivals will dropped if there are n users in the system.

Assignment Project Exam Help

How do you derive its stationary distribution?

- Analyze M/M/ ∞, M/M/m/n queues
 - Draw the state transition diagrams
 - Derive their stationary Estributions Project Exam Help
 - For M/M/m/n queue, calculate the probability that an incoming user is dropped. Calculate the probability that the queue is empty (i.e., all users are served in the servers or there are no users at all.)
 Add WeChat powcoder