Разумов Т.Е., Швечков И.В.

Ответы на вопросы к программе.

1. Так как мы производим интерполяцию константы, т.е. полином нулевой степени, полиномами степени выше нуля, значит погрешность должна быть равна 0, что мы и получили. Объясним теперь, почему ошибка ровна 0, а не, например, 10⁻¹⁵: так как интерполируемая функция константа, то отсутствует погрешность вычисления значения функции в произвольной точке, а значит разделенные разности вычисляются точно, то есть все равны 0, кроме разделенной разности нулевого порядка.

Полином Лагранжа в форме Ньютона			
количество узлов	на равномерной сетке	на Чебышевской сетке	
n=3	0	0	
n = 10	0	0	
n = 100	0	0	

Таблица 1

2. Для того, чтобы восстановить данную функцию с точностью $\epsilon=0.01$ и $\epsilon=0.0001$, используя полином Лагранжа в форме Ньютона , необходимо n=9 и n=17 узлов соответственно.

Полином Лагранжа в форме Ньютона			
количество узлов	на равномерной сетке	на Чебышевской сетке	
n=4	0.448756	0.420825	
n = 10	0.0196082	0.00335899	
n = 15	0.00540284	0.000143219	

Таблица 2

3. Для функции $f_1(x) = x^2$

Сплайн-интерполяция			
количество узлов	на равномерной сетке	на Чебышевской сетке	
n=4	0.04649456	0.0322177	
n = 10	0.00483792	0.00100083	
n = 15	0.00198776	0.000199526	

Таблица 3

Если использовать тот факт, что $f_1''(x) \equiv 2$, то можно использовать вместо естественного сплайна $(2c_1=0 \text{ и } 2c_{n+1}=0)$, следующие соотношения $2c_1=2$ и $2c_{n+1}=2$, то погрешность должна быть нулевой(так как мы интерполируем многочлен второй степени кубическими сплайнами). Из приведенной таблицы видно, что использование корней Чебышевского многочлена в качестве узлов сетки, дает меньшую погрешность, нежели равномерная сетка.

Для функции $f_2(x) = x^3$

Сплайн-интерполяция			
количество узлов	на равномерной сетке	на Чебышевской сетке	
n=4	0.121515	0.077518	
n = 10	0.014513	0.00296539	
n = 15	0.00596329	0.000595298	

Таблица 4

Если использовать те факты, что $f_2''(x_0) = -6$ и $f_2''(x_n) = 6$, то можно использовать вместо естественного сплайна $(2c_1 = 0 \text{ и } 2c_{n+1} = 0)$, следующие соотношения $2c_1 = -6$ и $2c_{n+1} = 6$, то погрешность должна быть нулевой (так как мы интерполируем многочлен третьей степени кубическими сплайнами). Из приведенной таблицы видно, что использование корней Чебышевского многочлена в качестве узлов сетки, дает меньшую погрешность, нежели равномерная сетка.

4. Алгоритм, обладающий свойством зависимости (независимости) погрешности от увеличения гладкости функции, называются ненасыщаемым (насыщаемым) алгоритмом.

Сплайн-интерполяция и интерполяция полиномом лагранжа являются насыщаемыми так как оценки их погрешности не зависят от гладкости функции (т.е. при увеличении гладкости функции погрешность не уменьшится).

5. Графики исходной функции и интерполянта полиномом Лагранжа в форме Ньютона для функции $f(x) = \frac{1}{1+25x^2}$ (пример Рунге) при $n = 10, x \in [-1, 1]$.

Рис. 1. Пример Рунге.

Ошибка интерполяции: 1.91564.

Рис. 2. Пример Рунге.

Ошибка интерполяции: 0.109144.