数学模型

马尔萨斯人口模型

北京科技大学

马尔萨斯人口模型

回忆:对于离散的数据:

差分方程

现在的值 X_0 变化的量 ΔX

未来的值 X $\Delta X = X - X_0$

X 可以看作时间的函数X(t)

 $t \in \{1, 2, \cdots, n, \cdots\}$

 $X(t_n)$

思考:对于连续的数据:

微分方程

现在的值 $X(t_0)$

变化的量 dX

未来的值 X(t)

$$dX = X(t) - X(t_0)$$

 $t \in R$

X(t)

>>> 一、人口问题

人口问题

经济 社会 环境 资源

全球社会矛盾

数量结构分布

>>> 二、马尔萨斯模型

假设:

在一定的区域和时间范围内,不存在人口的迁出和外来

人口的迁入。

变化值只考虑人口死亡和繁殖的平均效应。

人口的增长率与时间无关。

>>> 二、问题提出

分析:

由于人口的数量总数很大,不妨假设人口是一个关于时间

的连续性函数。 设在t 时刻的人口总数为p(t)。

在[t,t+dt]这一段时间中的人口变化量为

p(t+dt)-p(t) = (bp(t)-dp(t)) dt = ap(t) dt

 b
 ——出生率

 d
 ——死亡率

 a
 ——增长率

Thomas Robert Malthus 1766-1834

>>> 二、问题提出

分析:

在 [t, t+dt] 这一段时间中的人口变化量为

利用Taylor公式,展开得:

$$p(t+dt)-p(t)=\frac{dp}{dt}dt+o(dt)$$

$$ap(t) = \frac{dp}{dt}$$

初始条件

$$p(t_0) = p_0$$

p(t+dt)-p(t)=ap(t)dt

$$y = b + a(t - t_0)$$

$$\ln p(t) = \ln p_0 + a(t - t_0)$$

$$p(t) = p_0 e^{a(t-t_0)}$$

>>> 三、数据拟合

1961年到1976年世界人口的数量,其中人口数的单位为 10^8 人:

年	1961	1962	1963	1964	1965	1966	1967	1968
人口数	30.73	31.26	31.91	32.57	33.24	33.94	34.63	35.34
年	1969	1970	1971	1972	1973	1974	1975	1976
人口数	36.08	36.84	37.61	38.38	39.13	39.89	40.64	41.36

>>> 三、数据拟合

$$\frac{dp}{dt} = 0.0204 p(t)$$

初始条件 p(1961) = 30.73

1974年拟合较好,但是后面偏差越来越大

2600年,人口数无限增长,达到 $1.2 imes 10^{15}$

