

planetmath.org

Math for the people, by the people.

signature of a permutation

Canonical name SignatureOfAPermutation

Date of creation 2013-03-22 13:29:19 Last modified on 2013-03-22 13:29:19

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 9

Author rspuzio (6075)
Entry type Definition
Classification msc 03-00
Classification msc 05A05
Classification msc 20B99

Synonym sign of a permutation

Related topic Transposition
Defines inversion
Defines signature
Defines parity

Defines even permutation
Defines odd permutation

Let X be a finite set, and let G be the group of permutations of X (see permutation group). There exists a unique homomorphism χ from G to the multiplicative group $\{-1,1\}$ such that $\chi(t)=-1$ for any transposition (loc. sit.) $t\in G$. The value $\chi(g)$, for any $g\in G$, is called the *signature* or *sign* of the permutation g. If $\chi(g)=1$, g is said to be of even *parity*; if $\chi(g)=-1$, g is said to be of odd parity.

Proposition: If X is totally ordered by a relation <, then for all $g \in G$,

$$\chi(g) = (-1)^{k(g)} \tag{1}$$

where k(g) is the number of pairs $(x,y) \in X \times X$ such that x < y and g(x) > g(y). (Such a pair is sometimes called an *inversion* of the permutation g.)

Proof: This is clear if g is the identity map $X \to X$. If g is any other permutation, then for some *consecutive* $a, b \in X$ we have a < b and g(a) > g(b). Let $h \in G$ be the transposition of a and b. We have

$$k(g \circ h) = k(g) - 1$$

$$\chi(g \circ h) = -\chi(g)$$

and the proposition follows by induction on k(g).