

Hyper-Heuristics for Personnel Scheduling Problems

Lucas Kletzander, Nysret Musliu

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling DBAI, TU Wien

Problem and Contribution

- ► Goal: Use general solution methods for complex real-life personnel scheduling
- ► Issues: Complex requirements frequently change, problem-specific methods are hard to adapt
- **▶** Contributions:
 - Investigation of different state-of-the-art hyper-heuristics on three real-world domains
 - New low-level heuristics
 - New best solutions
 - Practically relevant problem versions

Solution Method

- Hyper-heuristics are problem-independent
- Choose among a set of low-level heuristics
- Problem domain returns change in solution value and execution time
- ► Evaluating ALNS, solution-chain methods (CH), adaptive dynamic heuristic sets (GIHH), single and multi-solution method (HAHA)

Low-Level Heuristics

- Local search heuristics:
 - ► First Improvement (1 or 10 steps)
 - Best Improvement (1 or 10 steps)
 - Random Improvement
- Mutation heuristics:
 - Random improvement with different metropolis acceptance criteria
 - Random walk with 1 or 10 steps
- Domain-specific moves
- Domain-specific destroy and repair heuristics, very important for structural solution changes

Real-Life Problem Domains

Bus Driver Scheduling

- ► Input: Predetermined bus legs (vehicle, start and end time, start and end position)
- Complex break constraints:

Solution: Assignment of drivers

- Moves: Swap individual legs or sequences
- Destroy-repair: Remove whole employee or whole tour, reassign best position

Rotating Workforce Scheduling

Input: Varying demand for shifts

Shift	Mo	Tu	We	Th	Fr	Sa	Su
D	1	1	1	1	1	1	1
Α	1	1	1	1	1	1	0
Ν	1	1	1	1	1	1	1

- ► Number of employees *n*
- Constraints on lengths of sequences of shifts and days off
- Solution: Rotating schedule

Empl.	Мо	Tu	We	Th	Fr	Sa	Su
1	D	D	D	D	Ν	Ν	_
2	_	-	Α	Α	Α	Α	N
3	Ν	Ν	-	-	D	D	D
4	Α	Α	Ν	Ν	_	-	-

- Three different objectives to optimize free weekends
- Moves: Swap shift or sequence of shifts between rows
- Destroy-repair: Remove whole day or consecutive weeks, reassign best position

Minimum Shift Design

► Input: Demand and shift types

Solution: Set of shifts with number of assigned employees

- Combined optimization objectives:
 - $ightharpoonup T_1$: Sum of excesses of workers (overcover)
 - $ightharpoonup T_2$: Sum of shortages of workers (undercover)
 - ► *T*₃: Number of different shifts
 - ► T₄ (not considered before): Deviation of the average shift length from the defined window
- Moves: Add shift, remove shift, modify shift
- ▶ Destroy-repair: Remove class of shifts or whole day, reassign best shifts from existing classes or overall best shifts

Evaluation

Bus Driver Scheduling

- Hyper-heuristics outperform previous heuristic methods
- ► New best solutions for some of the largest instances compared to Branch and Price
- ▶ Best results by Lean-GIHH, GIHH, CH-PR

Rotating Workforce Scheduling

Percentage of feasible solutions:

 Several new best solutions compared to previous Minizinc model

Minimum Shift Design

► Gap (%) to optimal results without T_4 :

► Gap (%) to lower bound with T_4 :

Overall Evaluation

Number of best results:

Method	BDS	F_1	F_2	F_3	MSD	+T
ALNS	3	10	7	7	10	11
BSW-ALNS	4	9	6	5	16	16
SW-ALNS	5	11	6	7	16	18
CH-BI	4	12	11	11	28	32
CH-FR	9	13	13	8	25	30
CH-PR	11	12	13	8	25	38
CH-UN	5	12	12	9	18	19
GIHH	13	17	20	16	28	25
Lean-GIHH	15	16	15	15	76	46
HAHA	1	13	8	11	9	14
	I					

Best performance by GIHH and streamlined version Lean-GIHH

Future Work

- ► Implementation of Lean-GIHH in productive system
- Deep evaluation of effect of individual low-level heuristics
- Work on own hyper-heuristic