Importing Libraries

```
In [1]:  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import matplotlib.axes as ax
  import seaborn as sns
sns.set()
```

Principal Component Analysis

· Used for data reduction

Data Reduction:

A process of reducing the higher dimension data to lower dimensional data to make the model less expensive is called data reduction.

Loading Data

Out[2]:

	Year	Month	Day	Hour	Dew Point	Temperature	Pressure	Relative Humidity	Wind Direction	Wind Speed
0	2011	1	1	0	8	13.522659	986.761841	72.295858	37.288387	3.011042
1	2011	1	1	1	8	12.835814	986.441406	75.376186	37.686718	3.091243
2	2011	1	1	2	8	12.198058	985.736511	78.405198	35.053905	3.007649
3	2011	1	1	3	8	11.583500	985.525696	81.042980	30.135216	2.926715
4	2011	1	1	4	8	11.029578	985.661926	82.548508	24.402969	2.915177
4										•

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17520 entries, 0 to 17519
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Year	17520 non-null	int64
1	Month	17520 non-null	int64
2	Day	17520 non-null	int64
3	Hour	17520 non-null	int64
4	Dew Point	17520 non-null	int64
5	Temperature	17520 non-null	float64
6	Pressure	17520 non-null	float64
7	Relative Humidity	17520 non-null	float64
8	Wind Direction	17520 non-null	float64
9	Wind Speed	17520 non-null	float64
10	Solar Radiation (GHI)	17520 non-null	int64
	65		

dtypes: float64(5), int64(6)

memory usage: 1.5 MB

In [4]: ▶ data.describe()

Out[4]:

	Year	Month	Day	Hour	Dew Point	Temperature	
count	17520.000000	17520.000000	17520.000000	17520.000000	17520.000000	17520.000000	1
mean	2011.500000	6.526027	15.720548	11.500000	11.375171	26.953731	
std	0.500014	3.447950	8.796498	6.922384	10.850196	8.417945	
min	2011.000000	1.000000	1.000000	0.000000	-28.000000	5.063506	
25%	2011.000000	4.000000	8.000000	5.750000	3.000000	21.611058	
50%	2011.500000	7.000000	16.000000	11.500000	12.000000	27.455196	
75%	2012.000000	10.000000	23.000000	17.250000	22.000000	32.031030	
max	2012.000000	12.000000	31.000000	23.000000	27.000000	52.157927	
4							

In [5]: ## Hours where solar radiation is zero
clean1 = data[data['Hour']<6]</pre>

clean2 = data[data['Hour']>18]

Out[6]:

	Year	Month	Day	Hour	Dew Point	Temperature	Pressure	Relative Humidity	Wind Direction	Wind Speed
0	2011	1	1	0	8	13.522659	986.761841	72.295858	37.288387	3.011042
1	2011	1	1	1	8	12.835814	986.441406	75.376186	37.686718	3.091243
2	2011	1	1	2	8	12.198058	985.736511	78.405198	35.053905	3.007649
3	2011	1	1	3	8	11.583500	985.525696	81.042980	30.135216	2.926715
4	2011	1	1	4	8	11.029578	985.661926	82.548508	24.402969	2.915177

4

In [7]: ▶ clean2.head()

Out[7]:

	Year	Month	Day	Hour	Dew Point	Temperature	Pressure	Relative Humidity	Wind Direction	Wind Speed
19	2011	1	1	19	4	13.915211	987.175781	52.122064	38.189991	2.709682
20	2011	1	1	20	3	13.106395	987.245666	53.782549	45.614468	2.713746
21	2011	1	1	21	3	12.326217	986.971374	55.613451	53.939449	2.701125
22	2011	1	1	22	3	11.570982	986.042419	57.458358	62.491528	2.639709
23	2011	1	1	23	3	10.869849	985.439819	59.446614	71.250389	2.511646
4										>

```
In [9]: ▶ data.head(10)
```

Out[9]:

	Year	Month	Day	Hour	Dew Point	Temperature	Pressure	Relative Humidity	Wind Direction	Wind Speed
6	2011	1	1	6	2	7.806705	986.249146	67.093181	95.835983	1.815175
7	2011	1	1	7	2	9.036408	987.038940	64.035483	105.198181	1.615310
8	2011	1	1	8	3	12.158280	987.897400	55.105656	113.317665	1.439088
9	2011	1	1	9	3	14.965301	988.211914	47.166938	117.327606	1.063374
10	2011	1	1	10	3	18.956082	988.054504	36.747087	72.488327	0.545695
11	2011	1	1	11	2	21.354047	987.463867	29.157015	12.976929	0.980117
12	2011	1	1	12	2	22.161257	986.386169	27.593071	4.777779	1.411915
13	2011	1	1	13	2	22.256216	985.736511	27.274695	5.355347	1.747909
14	2011	1	1	14	2	21.725884	985.521545	27.819289	6.877182	2.005287
15	2011	1	1	15	2	20.507269	985.279663	30.023284	10.448921	2.206879

In [10]: ► data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9490 entries, 6 to 17514
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Year	9490 non-null	int64
1	Month	9490 non-null	int64
2	Day	9490 non-null	int64
3	Hour	9490 non-null	int64
4	Dew Point	9490 non-null	int64
5	Temperature	9490 non-null	float64
6	Pressure	9490 non-null	float64
7	Relative Humidity	9490 non-null	float64
8	Wind Direction	9490 non-null	float64
9	Wind Speed	9490 non-null	float64
10	Solar Radiation (GHI)	9490 non-null	int64

dtypes: float64(5), int64(6)
memory usage: 889.7 KB

Preparing Input & Output Data

```
| x = data.iloc[:,4:-1].values
In [11]:
             y = data.iloc[:,-1].values
             y = y.reshape(-1,1)
In [12]:
   Out[12]: array([[
                                     7.80670458, 986.2491455, 67.09318091,
                      95.83598328,
                                     1.81517458],
                                     9.03640845, 987.0389404, 64.03548307,
                    [ 2.
                     105.1981812 ,
                                     1.61531019],
                    [ 3.
                                    12.15828049, 987.8973999 , 55.10565631,
                     113.3176651 ,
                                    1.43908835],
                                    19.96804137, 983.6603394, 14.98353993,
                    [ -7.
                      17.50789642,
                                     2.19113112],
                                    16.70651682, 983.7686768, 21.56489121,
                    [ -5.
                      29.40781403,
                                     2.67560554],
                                    15.60574869, 984.2324829 , 21.98693678,
                    [ -6.
                      42.64258194,
                                     3.11116815]])
In [13]:
   Out[13]: array([[
                       0],
                    [ 0],
                    [159],
                    . . . ,
                    [221],
                    [ 16],
                    [ 0]], dtype=int64)
 In [ ]:
```

Normal Data Splitting

```
In [19]:  ▶ y_test.shape
Out[19]: (1898, 1)
```

Data Standardization

```
In [25]:
          ▶ from sklearn.preprocessing import StandardScaler
            sc = StandardScaler()
            x_train = sc.fit_transform(x_train)
            x_test = sc.fit_transform(x_test)
            y train = sc.fit transform(y train)
            y_test = sc.fit_transform(y_test)
Out[26]: array([[-0.4622086 , -2.30959238, 1.3933099 , 1.40099835, -1.17057734,
                    -0.13907671],
                   [-0.90833956, -0.69964181, 0.60101052, -0.74879668, 0.40631851,
                    -1.31078602],
                   [-0.90833956, 1.71430862, 0.29833368, -1.32256868, 0.3875315,
                    -0.9441838 ],
                   . . . ,
                   [-0.10530383, -0.91009651, 0.25058371, 0.22080379, 1.1924681,
                    -0.08707859],
                   [-0.99756575, -1.39102554, 1.37545187, -0.51798326, -0.69821449,
                    -0.89089311],
                   [ 1.05463667, 0.12441259, 0.13585129, 0.87254538, 0.53363916,
                     0.66472221]])
Out[27]: array([[-0.37011131, -1.78197702, 1.46445558, 0.66515794, -0.55934948,
                    -0.50305701],
                   [-0.28076111, -0.03855395, 1.00287058, -0.53749446, 0.91396893,
                    -1.24380879],
                   [-1.26361329, -0.93924761, 1.80011005, -0.88047845, -1.61773578,
                    -0.993258891,
                   [0.43404048, 1.58219427, -1.45110669, -0.75912308, 0.50185532,
                     1.55156442],
                   [-0.6381619, -1.34011988, 0.75599339, -0.14645746, 1.17936177,
                     0.39498004],
                   [-0.5488117, -1.21934402, 1.30676773, -0.10557014, -1.72480063,
                     0.2309783511)
```

```
In [28]:
          y train
    Out[28]: array([[-1.41196753],
                     [ 0.51324954],
                     [ 1.48074441],
                     . . . ,
                     [-1.41196753],
                     [-0.27833718],
                     [ 1.40907812]])
In [29]:
         ⋈ y_test
   Out[29]: array([[-1.36644546],
                     [ 0.30801143],
                     [ 0.819741 ],
                     [ 0.87156172],
                     [-1.41178859],
                     [-0.73488048]])
```

KMeans with 6 clusters

```
In [32]:
         from sklearn.cluster import KMeans
             kmeans = KMeans(n_clusters = 6, random_state=6)
             kmeans.fit(x_train)
   Out[32]: KMeans(n_clusters=6, random_state=6)
In [58]:
          ▶ labels = kmeans.labels_
             labels
   Out[58]: array([2, 1, 3, ..., 1, 2, 5])
In [36]:
          cluster centers = kmeans.cluster centers
             cluster_centers
             #This centers are 6 dimensional data points and hard to visualize it
   Out[36]: array([[-0.60801895, -0.22127618, 0.85225293, -0.56823408, -1.34250729,
                     -0.69263778],
                    [ 0.18250912, -0.35825545, 0.64126739, 0.21683648, 0.66717723,
                     -0.81008
                               ٦,
                    [-0.66415572, -1.63689488, 1.1767672, 0.22999775, -1.10468362,
                      0.00679604],
                    [-1.07420969, 0.67410917, 0.04459391, -1.16999829, 0.83977727,
                      0.02973621],
                    [0.39304473, 1.0695264, -1.08337045, -0.42446303, 0.51277763,
                      1.50747744],
                    [1.18052909, 0.07935586, -0.94079697, 1.26434797, 0.24453418,
                     -0.08328627]])
```

PCA - Dimensional Reduction

VIsualization

```
In [56]: # PCA Visualization
plt.figure(figsize=(10,10))
for i in range(0,pca.shape[0]):
    plt.scatter(pca[i][0],pca[i][1])
plt.show()
```



```
In [62]:
          #Cluster wise PCA visualization
             plt.figure(figsize=(10,10))
             for i in range(0,pca.shape[0]):
                 if labels[i]==0:
                     c1 = plt.scatter(pca[i][0],pca[i][1],c='orange',marker='*')
                 elif labels[i]==1:
                     c2 = plt.scatter(pca[i][0],pca[i][1],c='red',marker='.')
                 elif labels[i]==2:
                     c3 = plt.scatter(pca[i][0],pca[i][1],c='yellow',marker='^')
                 elif labels[i]==3:
                     c4 = plt.scatter(pca[i][0],pca[i][1],c='cyan',marker='<')</pre>
                 elif labels[i]==4:
                     c5 = plt.scatter(pca[i][0],pca[i][1],c='g',marker='>')
                 elif labels[i]==5:
                     c6 = plt.scatter(pca[i][0],pca[i][1],c='b',marker='+')
             plt.legend([c1,c2,c3,c4,c5,c6],['Cluster1','Cluster2','Cluster3','Cluster4','
             plt.title('K-Means Clustering')
             plt.show()
```

