绪论

渐近复杂度: 指数

慌得那拿盘的小怪,战兢兢跑去报道:"难,难,难!难,难!" 老妖道:"怎么有许多难?"

"你是什么东西?"太太说。四虎子也楞住了,他自己不知道他是什么东西——这本是世上最难答的一个问题

⊘(2ⁿ): exponential

- *指数: $T(n) = \mathcal{O}(a^n), \ a > 1$ $:: e^n = 1 + n + n^2/2! + n^3/3! + n^4/4! + \dots$ $:: \forall c > 1, \ n^c = \mathcal{O}(2^n)$ $n^{1000...01} = \mathcal{O}(1.000...01^n) = \mathcal{O}(2^n)$ $1.000...01^n = \Omega(n^{1000...01})$
- ❖ 这类算法的计算成本增长极快,通常被认为不可忍受
- ❖ 从 $\mathcal{O}(n^c)$ 到 $\mathcal{O}(2^n)$,是从有效算法到无效算法的分水岭
- $\mathcal{O}(2^n)$ 算法往往显而易见,然而设计出 $\mathcal{O}(n^c)$ 算法却极其不易,有时甚至注定是徒劳无功
- ❖ 更糟糕的是, 这类问题要远比我们想象的多得多...

SubsetSum: 问题

$$\forall S = \{ a_1, a_2, \dots, a_n \} \subset \mathbb{Z}^+$$

$$0 \le t \le s = \sum_{k=1}^n a_k$$

$$\exists T \subseteq S \text{ s.t. } \sum_{a \in T} a = t ?$$

- ❖ 从那堆石头里,曹冲真能挑出几块 //s
 恰好与大象一样重? //t
- *选举人团投票制:51个选区,共538票 //n,2t 若仅两位候选人,会否恰好各得269票? //t 可视作SubsetSum的特例: $s=\sum_{k=1}^{n}a_k=2t$

55	California	11	Indiana	7	Connecticut	4	Idaho
34	Texas	11	Missouri	7	Iowa	4	Maine
31	New York	11	Tennessee	7	Oklahoma	4	New Hampshire
27	Florida	11	Washington	7	Oregon	4	Rhode Island
21	Illinois	10	Arizona	6	Arkansas	3	Alaska
21	Pennsylvania	10	Maryland	6	Kansas	3	Delaware
20	Ohio	10	Minnesota	6	Mississippi	3	D. C.
17	Michigan	10	Wisconsin	5	Nebraska	3	Montana
15	Georgia	9	Alabama	5	Nevada	3	North Dakota
15	New Jersey	9	Colorado	5	New Mexico	3	South Dakota
15	North Carolina	9	Louisiana	5	Utah	3	Vermont
13	Virginia	8	Kentucky	5	West Virginia	3	Wyoming
12	Massachusetts	8	South Carolina	4	Hawaii		538 = ∑

SubsetSum: 算法程序

❖ 直觉上,似乎并不难:

逐一枚举5的每一子集,分别统计总和并核对

❖ 最坏情况下,需要检视每一个子集,然而...

$$|2^S| = 2^{|S|} = 2^n$$

55	California	11	Indiana	7	Connecticut	4	Idaho
34	Texas	11	Missouri	7	Iowa	4	Maine
31	New York	11	Tennessee	7	Oklahoma	4	New Hampshire
27	Florida	11	Washington	7	Oregon	4	Rhode Island
21	Illinois	10	Arizona	6	Arkansas	3	Alaska
21	Pennsylvania	10	Maryland	6	Kansas	3	Delaware
20	Ohio	10	Minnesota	6	Mississippi	3	D. C.
17	Michigan	10	Wisconsin	5	Nebraska	3	Montana
15	Georgia	9	Alabama	5	Nevada	3	North Dakota
15	New Jersey	9	Colorado	5	New Mexico	3	South Dakota
15	North Carolina	9	Louisiana	5	Utah	3	Vermont
13	Virginia	8	Kentucky	5	West Virginia	3	Wyoming
12	Massachusetts	8	South Carolina	4	Hawaii		538 = ∑

SubsetSum: NPC

- ❖ 故严格地讲,这类方法只能算作程序,而非算法
- ❖ 还是直觉: 应该有更好的办法吧?

比如...转化为...背包问题...?

很遗憾,这里对于整数的取值范围未作任何假定

- ❖ SubsetSum is NP-complete —— 什么意思?
- ❖ 意即: 就目前的计算模型而言

不存在可在多项式时间内解决此问题的算法

上述的直觉算法,居然就是最优的

55	California	11	Indiana	7	Connecticut	4	Idaho
34	Texas	11	Missouri	7	Iowa	4	Maine
31	New York	11	Tennessee	7	Oklahoma	4	New Hampshire
27	Florida	11	Washington	7	Oregon	4	Rhode Island
21	Illinois	10	Arizona	6	Arkansas	3	Alaska
21	Pennsylvania	10	Maryland	6	Kansas	3	Delaware
20	Ohio	10	Minnesota	6	Mississippi	3	D. C.
17	Michigan	10	Wisconsin	5	Nebraska	3	Montana
15	Georgia	9	Alabama	5	Nevada	3	North Dakota
15	New Jersey	9	Colorado	5	New Mexico	3	South Dakota
15	North Carolina	9	Louisiana	5	Utah	3	Vermont
13	Virginia	8	Kentucky	5	West Virginia	3	Wyoming
12	Massachusetts	8	South Carolina	4	Hawaii		538 = ∑

