班级: 姓名: 学号: 同组人:

实验3 负反馈放大器——电压串联负反馈

一、实验目的

- 1. 了解电压串联负反馈的原理和性能;
- 2. 掌握负反馈放大器性能的一般测试方法。

二、实验内容及数据

1. 静态工作点的测量

电路如图5-2所示,接通+12V电源VCC,放大电路的输入端 u_S 短接,短路 R_S ,连接电路中D、F (GND)两点,接入旁路电容 C_{E1} 。调节 R_W ,用万用表直流电压挡测量 R_{C1} 两端电压,使 U_{RC1} =2.4V,测量T1、T2管的静态工作点,记录在表5-1中。并计算相关的电压、电流。

图 5-2 负反馈放大电路

表 5-1

	测量值			计算值		
	UB(V)	UC (V)	UE (V)	IC(mA)	UCE (V)	
T1						
T2						

2. 测定基本放大电路的性能

放大电路输入端u_S接入1KHz、20mV的正弦交流信号。且在以下测试中保持不变。用示波器观察输出波形,完成以下实验,将实验数据记录在表5-2 中,并计算相关实验数据。

1)测定基本放大电路的放大倍数Au

短路Rs, 负载RL不接(开路), 测量此时放大电路输出电压Uo。则有:

$$A_U = \frac{U_o}{U_s}$$

2) 测定基本放大电路的输入电阻 R_i

接入Rs,负载RL不接(开路),测量此时放大电路输出电压 U_{o} 。则有:

$$U_o' = \frac{R_i}{R_i + R_s} U_o$$

输入电阻**R**i 根据上式即可算出。

3) 测定基本放大电路的输出电阻**R**₀

短路Rs,接入负载RL=300 Ω ,测量此时放大电路输出电压 U_o "。则有:

$$R_{o} = (\frac{U_{O}}{U_{O}''} - 1)R_{L}$$

表5-2

测量值				计算值		
Us (mV)	Uo (mV)	<i>Uo</i> '(mV)	<i>Uo</i> **(mV)	A u	$\mathbf{R}i\left(\Omega\right)$	$R_{\sigma}(\Omega)$

3. 测定反馈放大电路的性能

放大电路输入端us接入1KHz、20mV 的正弦交流信号,且在以下测试中保持不变。 连接A、B 两点,即加入负反馈。用示波器观察输出电压,调节RFI,使负反馈电路达到最 深负反馈状态,即此时输出电压达到最小值。完成以下实验,将实验数据记录在表5-3中, 并计算相关实验数据。

1) 画出加入负反馈后的放大电路原理图,并表标明各元件值。

2) 测定反馈放大电路放大倍数Auf

短路Rs,负载RL不接(开路),测量此时反馈放大电路输出电压 $U_{\it of}$ 。则有:

$$A_{uf} = \frac{U_{of}}{U_s}$$

3) 测定输入电阻 R_{if}

接入Rs, 负载RL不接(开路), 测量此时放大器输出电压Ug'。则有:

$$U_{of}' = \frac{R_i}{R_i + R_s} U_{of}$$

输入电阻 R_{if} 据上式即可算出。

4)测定基本放大电路的输出电阻 R_{of}

短路Rs,接入负载RL=300 Ω ,测量此时放大器输出电压Uof",则有:

$$R_{of} = \left(\frac{U_{of}}{U''_{of}} - 1\right) R_L$$

表5-3

测量值				计算值			
Us (mV)	$oldsymbol{U}$ of (mV)	$m{U}$ of '(mV)	$ extbf{\emph{U}}$ of $ ext{''}(ext{mV})$	$A_{\it uf}$	$oldsymbol{R}$ if (Ω)	$oldsymbol{R}$ of (Ω)	

4. 计算反馈深度

用毫伏表测A 端和接地端的电压为 U_F ,则 $F=U_F/U_O$,由此按下式可计算:

反馈深度=1 + AF = Au/Auf

反 馈沫 度 =	反馈深	度=				
-----------------	-----	----	--	--	--	--

三、思考题

1. 总结电压串联负反馈对放大器性能的影响(包括放大倍数、输入电阻、输出电阻和频带宽度)。

2. 若要稳定电路的静态工作点,应该如何引入反馈?

3. 本实验线路为什么无法将输入电阻提得很高?若要再提得高一些应该怎么办?