kind of thesis

TITLE

Sub Title

2022年4月10日

department

学籍番号 1025297057 Hibiki Asakura

Table of Contents

1.	最初の節	
2.	次の Section	
	2.1. Boltzmann 方程式	
参	考文献	4
付	録	Ę
	A. これが付録	

1. 最初の節

私はその人 [1] を常に先生と呼んでいた。だからここでもただ先生と書くだけで本名は打ち明けない。これは世間を憚かる遠慮というよりも,その方が私にとって自然だからである。私はその人の記憶を呼び起すごとに,すぐ「先生」といいたくなる。筆を執っても心持は同じ事である。よそよそしい頭文字などはとても使う気にならない。

まるで図 1.1 に示すネジ溝ポンプのように、3ページに Boltzmann 方程式を示す.

2. 次の Section

2.1. Boltzmann 方程式

希薄気体の支配方程式は Boltzmann 方程式と呼ばれ、外力がない場合には次のように表される.

$$\frac{\partial f}{\partial t} + \boldsymbol{\xi} \cdot \frac{\partial f}{\partial \boldsymbol{x}} = J[f], \tag{2.1}$$

$$J[f] = \int_{|\boldsymbol{\xi}| < \infty, |\boldsymbol{\alpha}| = 1} \left[f(\boldsymbol{\xi'}) f(\boldsymbol{\zeta'}) - f(\boldsymbol{\xi}) f(\boldsymbol{\zeta}) \right] \left(\frac{d_m^2}{2} |\boldsymbol{V} \cdot \boldsymbol{\alpha}| \right) d\Omega(\boldsymbol{\alpha}) d\boldsymbol{\zeta},$$

$$V = \zeta - \xi, \qquad \xi' = \xi + (V \cdot \alpha) \alpha, \qquad \zeta' = \zeta + (V \cdot \alpha) \alpha.$$

ここで、x は空間 3 次元の位置座標、 ξ は気体分子の速度ベクトル、t は時刻、 $f(x,\xi,t)$ は速度分布関数、J[f] は衝突項である。また、 $\partial f/\partial x=(\partial f/\partial x,\partial f/\partial y,\partial f/\partial z)^{\top}$ を表すものとする。ここで $^{\top}$ は転置を表す。 d_m は気体分子の直径、 α は分子の衝突パラメータ、 $d\Omega(\alpha)$ は立体角素である。気体の巨視的物理量は速度分布関数 $f(x,\xi,t)$ に関する積分によって表される。気体の数密度 n、流速 v、温度 T、応力テンソル p_{ij} はそれぞれ

$$n(\boldsymbol{x},t) = \int_{|\boldsymbol{\xi}| < \infty} f(\boldsymbol{x}, \boldsymbol{\xi}, t) \,d\boldsymbol{\xi}, \qquad (2.2 a)$$

$$n\mathbf{v}(\mathbf{x},t) = \int_{|\mathbf{\xi}| < \infty} \mathbf{\xi} f(\mathbf{x}, \mathbf{\xi}, t) \,d\mathbf{\xi}, \tag{2.2 b}$$

$$\frac{3}{2}\kappa nT(\boldsymbol{x},t) = \int_{|\boldsymbol{\xi}| < \infty} \frac{m}{2} |\boldsymbol{\xi} - \boldsymbol{v}|^2 f(\boldsymbol{x},\boldsymbol{\xi},t) \,d\boldsymbol{\xi}, \tag{2.2c}$$

$$(p_{ij} + \rho v_i v_j)(\boldsymbol{x}, t) = \int_{|\boldsymbol{\xi}| < \infty} m \, \xi_i \xi_j f(\boldsymbol{x}, \boldsymbol{\xi}, t) \, \mathrm{d}\boldsymbol{\xi}$$
(2.2 d)

図 1.1. ネジ溝ポンプのモデル図.

表 1.1. 排他的論理和

X	Y	Xxor Y
0	0	0
1	0	1
0	1	1
1	1	0

によって得られる。なお, κ はボルツマン定数, m は分子の質量, $\rho=mn$ は気体の密度である。今後, 気体は 単原子分子の理想気体とすると, 気体の圧力 p は

$$p = \kappa nT \tag{2.2e}$$

となる.

参考文献

[1] 朝倉, 藤本, and 丸田. 周期時変フィルタの時不変リッカチ方程式による特徴づけ. システム制御情報学会 研究発表講演会講演論文集, 65:77–83, 2021.

 \boxtimes 2.1. short caption. explanation of figures.

付録

A. これが付録

表 A.1 参照.

表 A.1. foo

ほげほげ	hoge
Hello	World

List of Figures

図 1.1. ネジ溝ポンプのモデル図. 図 2.1. short caption

List of Tables

表 1.1. 排他的論理和 表 A.1. foo