

Driving Lumileds® LEDs with Microchip Microcontrollers

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontroller

Agenda

- Review of LED drive requirements
- Driver Topologies
- System Software
- Flash Sequence Control Codes
- Development Tools
- Tour of the programming GUI
- Step-by-Step Programming sequence
- Trouble shoot Guide

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Hi-Power LED Drive Requirements

- 1 Watt LED
 - Full intensity 350mA, Maximum current 500mA
 - 2.8VDC, typical forward voltage at 350mA
- 3 Watt LED
 - Full intensity 700mA, Maximum current 1A
 - 4.3VDC, typical forward voltage at 700mA
- 5 Watt LED
 - Full intensity 700mA, Maximum current 1A
 - 7.1VDC, typical forward voltage at 700mA

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

LED Driver Topologies

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Design Requirements

- Simple and inexpensive
- One button control interface
- Efficient drive of 1, 3 & 5 Watt LEDs
- Battery operation with Intensity compensation
- Intensity control
- Programmable Flash Sequences
- Use small inexpensive microcontroller
- Ease of programming

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Competing Driver Topologies Linear Current Driver

- Upside
 - DC current drive
 - Easy to control intensity
- Downside
 - Inefficient power transfer to LED
 - Heat dissipation in the MOSFET
 - No advanced features

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Competing Driver Topologies Single Chip Switchers

- Upside
 - Efficient power drive
- Downside
 - Two chip solution due to reference voltage
 - Difficult to control Intensity
 - No Advanced features

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Microcontroller + Comparator Based Driver Circuits

- Upside
 - Switching topologies can be used for efficiency
 - Battery measurement for battery life, intensity stability, and temperature control are possible
 - Intelligent flash and intensity modes are possible
 - Comparable cost with added features
- Downside
 - Non-traditional approach
 - More complex to design

© 2004 Microchip Technology Incorporated. All Rights Reserved. Driving Lumileds® LEDs with Microchip Microcontrollers

Single Comparator Buck Topology Driver

- At startup, Q1 is on
- The inductor/LED current climbs
- Just above the Drive Level, Q1 is off
- The inductor/LED current falls
- Just below the Drive Level, Q1 is back on

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Single Comparator Boost Topology Driver

- The inductor charges in the first phase
- And discharged into C2 in the second phase
- The capacitor voltage climbs until the LED conducts
- The LED acts as a shunt regulator on C1's voltage

© 2004 Microchip Technology Incorporated. All Rights Reserved.

MICROCHIP WebSeminars

Drive Level Output and Battery Monitor

- GP5 drives the PWM low pass filter for the Drive Level signal
- GP5 also drives the diode reference for battery measurement
- Battery voltage is used to compensate the PWM output

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Microcontroller-based LED System Software

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Two Versions of Demo Software

- Full Version of Software
 - Virtual button commands for intensity set
 - Virtual buttons to select flash sequences
 - Virtual button for power on and off
- Demo Version of Software
 - First Button press turns board on in continuous mode
 - Next Button presses select flash sequences
 - After the last flash sequence, the board turns off

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Virtual Button User Interface

- VPRESS: press the push button < 1.5 sec.
 - Increments or decrements intensity.
- VPUSH: press the push button > 1.5 sec. But
 3.0 sec.
 - Toggles increment / decrement function
 - A double VPUSH causes a Power down
- VHOLD: press and hold the push button for > 3.0 sec. (function auto repeat function)
 - Cycles through flash light and flash sequence modes.

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Control Software

- Software design used 5 tasks in a multi-tasking design
 - PWM: Generates Drive Level output and controls system timing
 - KEY: Monitors the push button and decodes virtual buttons
 - ADC: Monitor the battery and calculates compensation constants
 - CONTROL: Decodes virtual button commands
 - AUTOSEQ: Accesses and executes programmed flash sequences.

© 2004 Microchip Technology Incorporated. All Rights Reserved. Driving Lumileds® LEDs with Microchip Microcontrollers

Preprogrammed Flash Sequences

- Preprogrammed flash sequences automatically execute 1 of 4 possible flash light sequences.
- Control Codes available for Set Intensity, Delay Time, Goto step, Shutdown and Repeat/Return
 - Repeat Return can be nested up to 4 levels deep
- Provisions for 4 sequences are available
- Each sequence must be less than 64 opcodes
 - Total number of opcodes must be < 120

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Time Delay and Intensity Set Control Codes

- Time delay can be set between 0 and 6.3 Seconds
- Intensity can be set between 0 and 63.
- 0 turns off the LED.
- 63 results in the maximum brightness.

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

GOTO and Shutdown Control Codes

- A GOTO jumps to the destination control code specified
- GOTOs must jump to valid instructions in the same sequence
- Sequences start with control

code #1

Shutdown Control Code

Bits

The Shutdown control code is a GOTO to location 0

7 6 5 4 3 2 1 0 1 1 0 0 0 0 0 0

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Repeat and Return OpCodes

- A Repeat loops the codes between the Repeat and Return the specified number of times
- The number of cycles must be between 1 and 63
- Repeats can be nested 4 deep.
- A return code will cause a loop back to the most recent Repeat code.

Bits 7 6 5 4 3 2 1 0 1 0 0 0 0 0 0 0

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Microchip Technology Inc. WebSeminar, January 14, 2004

MICROCHIP WebSeminars Set intensity to maximum	Examples Bright = 63 Goto 2
 Set maximum intensity for 3 seconds then stop 	Bright = 63 Time = 3.0 Bright = 0 Goto 4
 Flash LED at 1 Hz rate Flash 5 times Then delay 5 seconds and start over 	<pre>Repeat = 5 Bright = 63 Time = 0.5 Bright = 0 Time = 0.5 Return Time = 5.0 Goto = 1</pre>
© 2004 Microchip Technology Incorporated. All Rights Reserved. D	riving Lumileds® LEDs with Microchip Microcontrollers Slide 20

More Examples

Delay 30 seconds

= 6 Repeat

Time = 5.0

Return

Flash at 1Hz

Repeat = 5 Intensity = 63

• Flash 5 Times

Time = 0.5

• Then shutdown

Intensity = 0

Time

= 0.5

Return Shutdown

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Driving Lumileds® LEDs with Microchip Microcontrollers

Slide 22

© 2004 Microchip Technology Incorporated. All Rights Reserved.

PICkit™ 1 Development Kit

- The PICkit™ 1 is designed to be a low cost programmer/development board for Microchip's low pin count flash parts
- The LED demo board is designed to plug into the 14-pin expansion header
- The PICkit™ GUI is replaced with the LED demo board programming GUI to program the demo board

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Program/Verify/Read the program in the demo board

- "Read" copies the current code from the demo board into the GUI
- "Write" programs the current GUI configuration and code into the board
- "Verify" compares the code in the demo against the GUI configuration
- "Quit" ends the GUI program

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Save Load and UpGrade

- The file pull down menu contains all file commands
 - All configuration files have the extension *.FLT
 - "Load" imports both programming and configuration information
 - "Update" imports only programming, leaving configuration unchanged
 - "Save" exports both programming and configuration information
 - "Exit" ends the GUI program

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Programming Sequence

- Remove one battery and J1.
- Insert the Demo board into the PICkit™ programmer with the LED facing the USB cable
- Load and Start the GUI.
- Load the desired base software (full or demo)
- Create the desired configuration.
- Click PROGRAM.
- When complete remove the Demo board.
- Press and hold the push button for 5 seconds.
- Replace J1 and then replace the battery.

© 2004 Microchip Technology Incorporated. All Rights Reserved. Driving Lumileds® LEDs with Microchip Microcontrollers

Trouble Shooting Problems

- Board programs but does not run
 - Remove a battery, press the button, replace the battery
- Flash sequence starts, then hangs
 - Check sequence for a REPEAT with out a corresponding RETURN
- LED flashes momentarily then unit turns off
 - Replace batteries
- Board fails to program
 - Remember to remove jumper J1

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Trouble Shooting Problems continued

- With Demo Software, After power up Unit turns off immediately
 - If the last enabled flash sequence starts with a shutdown command, reprogram the board with the last sequence disabled
 - If the last enabled flash sequence does not use the shutdown command, replace the batteries
- NOTE: at full intensity, the maximum battery life is between 2 and 6.5 hours depending on battery chemistry

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Summary

- Driving High Power LEDs present a number of design challenges.
- Microcontroller based drivers are efficient, simple, and add value to the final product.
- The example software provides a wealth of features using only a single button for control.
- The pre-programmed flash sequence capability provides user customizable features to the light.
- The GUI programming interface simplifies the design and loading of the flash sequences.

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Resources

• Small Pin-Count Flash Microcontroller Data Books

PIC12F629/675DS41190CPIC16F630/676DS40093C

Application notes

AN874 Buck Configuration Hi-Power LED Driver (DS00874)

 Thermal Design Using Luxeon™ Power Light Sources AB05 (available from the Lumileds Web page)

8-Pin Tips-n-Tricks Booklet (DS40040)

Comparator Tips-n-Tricks Booklet (DS41215)

Development tools

MPLAB® Integrated Design Environment

PICkit™ 1 Flash Starter Kit

Web Pages

Microchip Technology Inc.Lumileds Lighting, LLCwww.Microchip.comwww.Lumileds.com

© 2004 Microchip Technology Incorporated. All Rights Reserved.

Driving Lumileds® LEDs with Microchip Microcontrollers

Thank you

The Microchip name and logo, the Microchip logo, MPLAB, PIC, and PICmicro are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Lumileds is a registered trademark and Luxeon is a trademark of Lumileds Lighting, LLC.

All other trademarks mentioned herein are property of their respective companies. © 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

© 2004 Microchip Technology Incorporated. All Rights Reserved. Driving Lumileds® LEDs with Microchip Microcontrollers