Алгебра

Мастера конспектов 22 января 2020 г.

Честно говоря, ненависть к этой вашей топологии просто невообразимая.

Содержание

1	Бил	билеты		
	1.1	Определение кольца. Простейшие следствия из аксиом. Примеры. Области		
		целостности		
	1.2	Евклидовы кольца. Евклидовость \mathbb{Z} . Неприводимые и простые элементы		
	1.3	Идеалы, главные идеалы. Евклидово кольцо как кольцо главных идеалов		
	1.4	Основная теорема арифметики		
	1.5	Кольцо вычетов $\mathbb{Z}/_{n\mathbb{Z}}$. Китайская теорема об остатках		
	1.6	Определение поля. $\mathbb{Z}/_{p\mathbb{Z}}$ как поле. Поле частных целостного кольца		
	1.7	Определение гомоморфизма и изоморфизма колец. Фактор-кольцо		
	1.8	Теорема о гомоморфизме		
	1.9	Кольцо многочленов. Целостность и евклидовость кольца многочленов над		
		полем		
	1.10	Лемма Гаусса		
	1.11	Факториальность кольца многочленов		
	1.12	Теорема Безу. Производная многочлена и кратные корни		
	1.13	Интерполяция Лагранжа		
		Интерполяция Эрмита		
		Поле разложение многочлена		
		Комплексные числа. Решение квадратных уравнений в		
		Основная теорема алгебры		
	1.18	Разложение рациональной функции в простейшие дроби над $\mathbb C$ и над $\mathbb R$		
		Определение векторного пространства. Линейная зависимость. Существова-		
		ние базиса		
	1.20	Размерность векторного пространства		
		Линейные отображения векторных пространств. Подпространство, фактор-		
		пространство. Ранг линейного отображения		
	1.22	Матрица линейного отображения. Композиция линейных отображений и про-		
		изведение матриц. Кольцо матриц		
	1.23	Элементарные преобразования. Метод Гаусса. Системы линейных уравнений		
		Теорема Кронекера-Капелли		
		Определение группы. Циклическая группа. Порядок элемента		
		Группа перестановок. Циклы, транспозиции. Знак перестановки		
		Действие группы на множестве. Орбиты. Классы сопряженности		
		Группа обратимых элементов кольца. Вычисление обратимых элементов $\mathbb{Z}/n\mathbb{Z}$.		
		Функция Эйлера		
	1.29	Гомоморфизмы и изоморфизмы групп. Смежные классы, теорема Лагранжа.		
	0	Теорема Эйлера		
	1.30	Многочлены деления круга		
		Конечные поля (существование, единственность, цикличность мультиплика-		
		тивной группы)		
	1.32	Фактор-группа, теорема о гомоморфизме		
		Определитель матрицы. Инвариантность при элементарных преобразовани-		
	1.00	ях, разложение по строчке и столбцу		
		na, provioneme no cipo me n crosiony		

2	ния матриц	16
	1.36 Принцип продолжения алгебраических тождеств. Определитель произведе-	15
	1.35 Вычисление определителя методом Гаусса	
	1.34 Присоединенная матрица. Формула Крамера. Определитель транспонированной матрицы	15

1 Билеты

1.1 Определение кольца. Простейшие следствия из аксиом. Примеры. Области целостности

Определение 1. *Кольцом* называется множество R вместе с бинарными операциями + и \cdot (которые называются сложением и умножением соответственно), удовлетворяющим аксиомам:

- операция сложения ассоциативна;
- по отношению к сложению существует нейтральный элемент;
- у каждого элемента есть обратный по сложению
- операция сложения коммутативна;
- умножение ассоциативно;
- умножение дистрибутивно по сложеиню.

Также можно добавить, что если на множестве выполныны три первые аксиомы, то оно будет называться $\mathit{группой}$, а если выполнены первые четыре, то это уже $\mathit{абелева}$ $\mathit{группа}$. Нейтральный по сложению элемент кольца называют $\mathit{нулём}$.

Пример(**ы**) **1.** Кольцо называется:

- коммутативным, если оно коммутативно по умножению;
- *кольцом с единицей*, если оно содержит нейтральный элемент по умножению (единица);
- *телом*, если в нём есть 1, и для любых $a \neq 0 \rightarrow a \cdot a^{-1} = a^{-1} \cdot a = 1$;
- ullet *полем*, если это коммутативное тело;
- полукольцом, если нет требования противоположного элемента по сложению.

Следствие 1. Некоторые следствия из аксиом:

• $0 \cdot a = 0$

Доказательство.

$$0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$$

Прибавим к обеим частям $-0 \cdot a$ и получим требуемое.

• Нейтральный элемент по сложению единственный

Доказательство. Рассмотрим их сумму справа и слева.

• $a \cdot 0 = 0$

Доказательство.

$$a \cdot 1 = a \Longrightarrow (0+1)a = a \Longrightarrow 0 \cdot a + 1 \cdot a = a \Longrightarrow 0 \cdot a = 0$$

Определение 2. Коммутативное кольцо R с единицей, обладающее свойством

$$xy = 0 \Longrightarrow x = 0 \lor y = 0 \ (\forall x, y \in R)$$

называется областью целостности или просто областью.

Определение 3. Число $d \neq 0$ называется **делителем нуля**, если существует такое $d' \neq 0$, что dd' = 0.

Нетрудно понять, что область целостности - в точности коммутативное кольцо с единицей без делителей нуля.

1.2 Евклидовы кольца. Евклидовость \mathbb{Z} . Неприводимые и простые элементы.

Для начала, некоторые связанные понятия, не упомянутые в билетах.

Определение 4. Говорят, что d делит p и пишут d|p, если p = dq для некоторго $q \in R$.

Определение 5. Элемент ε называется *обратимым*, если он делит единицу, то есть существует такое $\varepsilon^{-1} \in R$, что $\varepsilon^{-1} \cdot \varepsilon = 1$.

Определение 6. Будем говорит, что элементы a и b ассоциированы и писать $a \sim b$, если выполнено одно из двух эквивалентных условий:

- существует обратимый элемент ε , для которого $a = \varepsilon b$;
- a|b и b|a.

Покажем, что эти условия действительно эквивалентны.

Доказательство. Докажем в обе стороны:

- \Rightarrow Если $a = \varepsilon b$, то $\varepsilon^{-1}a = b$. Это и есть второе условие.
- \Leftarrow Пусть a=bc и b=ac' для каких-то c,c'. Тогда $a=(ac')c=a(cc') \leftrightarrow a(1-cc')=0$. Тогда либо a=0, либо cc'=1, потому что делителей нуля в нашем кольце нет. В любом случае, a и b отличаются на обратимый: либо они оба равны нулю, либо c обратимый. \square

А теперь, что касается самого билета.

Определение 7. Область целостности R называется евклидовым кольцом, если существует евклидова норма $N:R\to\mathbb{N}_0$ такая, что N(0)=0 и для любых элементов $a,b\in R$, где $b\neq 0$, существует меньший чем b по норме элемент $r\in R$ такой, что выполнено равенство a=bq+r.

Пример(ы) 1. Кольцо целых чисел \mathbb{Z} евклидово.

Доказательство. Пусть у нас имеются целое число a и ненулевое целое b. Тогда существуют такие целые числа q и r, что модуль r меньше модуля b, а также a=bq+r. Отметим на оси все ератные b. Тогда если число a попало на отрезок $[kb,(k+1)b],\ k$ будет частным, а a-kb - остатком. Дальнейшую формализация можно провести индукцией.

Опять несколько небольших новых определений перед тем как перейти к последнему пункту билета (их можно упустить).

Определение 8. Пусть R - область целостности; $a,b \in R$. Элемент $d \in R$ называется наибольшим общим делителем a и b, если

- d|a и d|b;
- ullet для любого $d' \in R$, который также делит a и b, выполнено также, что он делит d.

Теорема 1. (О линейном представлении НОД в евклидовых кольцах). Пусть R - евклидово кольцо, $a, b \in R$. Тогда существуют $d := \gcd(a,b)$ и такие $x,y \in R$, что d = ax + by.

Теперь про простые и неприводимые.

Определение 9. Пусть R - область. Необратимый элемент $p \in R$ - n

$$\forall d \in R : d|p \Longrightarrow d \sim 1 \lor d \sim p$$

Определение 10. Пусть R - область. Ненулевой необратимый элемент $p \in R \setminus 0$ называется *простым*, если $\forall a, b \in R : p | ab \Longrightarrow p | a \lor p | b$.

Лемма 1. (Простые \subset неприводимые). Если p - простой элемент произвольного коммутативног кольцв c единицей, то p - неприводим.

Доказательство. Пусть d - какой-то делитель p, что эквивалентно равенству p=da для какого-то a. Проверим, что либо $d\sim 1$, либо $d\sim p$. Раз p - простой, то либо он делит d, либо он делит a. Если первое, что сразу $d\sim p$. Если второе, перепишем в виде da=p|a. Это то же самое, что bda=a для некоторого b. Здесь либо a=0, то тогда p=o, что невозможно по определению простого, либо мы можем сократить на a и получим bd=1, тогда d ассоциирован c 1.

Теперь немного добавки про простые и неприводимые, на всякий случай.

Лемма 2. (Неприводимые \subset простые в $O\Gamma U$). Пусть p - неприводимый в области главных идеалов. Тогда p - простой.

Доказательство. Пусть p|ab, хотим показать, что $p|a\vee p|b$. Воспользуемся тем, что мы в области главных идеалов: (p,a)=(d), где $d:=\gcd(a,p)$, а тогда px+ay=d для каких-то x,y. d|p, воспользуемся неприводимостью p: либо $d\sim p$, либо $d\sim 1$.

В первом случае p|d, тогда p|d|a.

Во втором случае можно после домножения на обратимые считать, что px + ay = 1. Потом домножим на b: pbx + aby = b. p явно делит первое слагаемое, ровно как и второе (по предположению). Значит, p|b.

В любом случае, приходим к желаемому.

1.3 Идеалы, главные идеалы. Евклидово кольцо как кольцо главных идеалов

Определение 11. Подмножество

$$(a_1,\ldots,a_n) := \{a_1x_1 + \cdots + a_nx_n | x_i \in R$$
для всех $i\}$

коммутативного кольца R называется идеалом, порождённым a_1, \ldots, a_n .

Определение 12. Подкольцо I кольца R называется *левым идеалом*, если оно замкнуто относительно домнодения слева на элементы кольца: RI = I. Соответственно, также различают *правые* и *двусторонние идеалы*.

7

Также идеал можно задать следующими свойствами:

- $\forall x, y \in I \Longrightarrow x + y \in I$;
- $\forall x \in I, \forall r \in R \Longrightarrow xr \in I;$
- \bullet $-x \in I$;
- \bullet I непустой.

Определение 13. Идеал называется главным, если он порождён одним элементом.

Определение 14. *Область главных идеалов* - область целостности, в который каждый идеал главный.

Теорема 2. (Евклидовы кольца \subset ОГИ). Пусть R - евклидово кольцо, $I \unlhd R$ - идеал. Тогда I - главный.

 $\ensuremath{\mathcal{A}}$ оказательство. Найдём элемент, который порождает идеал I.

Вырожденный случай: если $I = \{0\}$, тогда $I = \{0\}$.

Иначе возьмём $d \in I \setminus 0$ с минимальной нормой (по принципу индукции мы можем это сделать). Хотим показать, что I = (d). Покажем это в обе стороны.

- \Rightarrow Легко видеть, что $(d) \subset I$.
- \Leftarrow Пусть $a \in I$, тогда поделим a на b с остатком: a = bd + r. Предположим, $r \neq 0$, N(r) < N(d). Выразим r линейной комбинацией $a \in I$ и $d \in I$: $r = a bd \in I$ противоречие с минимальностью нормы d. Значит, r = 0, а тогда $a = bd \in (d)$.

1.4 Основная теорема арифметики

Сначала опять немного информации, которая к билету не относится, но к нему логично подводит.

Определение 15. Коммутативное кольцо с единицей R удовлетворяет условию обрыва возрастающих цепей главных идеалов или, что то же самое, является нетёровым кольцом, если не существует бесконечной строго возрастающей цепочки главных идеалов $(d_1) \subsetneq (d_2) \subsetneq \dots$ Иначе говоря, бесконечной цепочки $\dots |d_2|d_1$, где все d_i попарно не ассоциированы.

Теорема 3. $(O\Gamma U \subset \text{нетёровы кольца})$. Область главных идеалов удовлетворяет условию обрыва возрастающих цепей главных идеалов (далее - УОВЦГИ).

Доказательство. Предположим, что нашлась такая бесконечная цепочка $\{d_i\}$. Объединим $I := \bigcup_{i=0}^{\infty} (d_i)$.

Покажем, что I - идеал. $0 \in I$. Пусть $u \in (d_i)$ и $v \in (d_j)$, где $i \leq j$, проверяем остальные условия. $u + v \in (d_j)$, потому что $u \in (d_j)$, с остальными аналогично, не очень сложно.

Вспомним, что мы находимся в ОГИ, то есть, каждый идеал главный. Пусть d - se- $nepamop\ I\ (I=(d))$. Любой (d_i) строго содержится в (d_{i+1}) , а этот содержится в (d): $(d_i) \subsetneq (d_{i+1}) \subset (d)$, значит, любой из $\{(d_i)\}$ строго содержится в (d). Но сам генератор dтоже должен принадлежать какому-то из $\{(d_i)\}$, а значит, на каком-то моменте $(d) \subset (d_i)$. Противоречие.

Определение 16. Кольцо называется факториальным, если одновременно выполнено:

- R область;
- \bullet любой неприводимый элемент R простой;
- \bullet R нетёрово.

Пример(ы) 1. Как мы уже знаем, ОГИ ⊂ факториальные кольца.

А теперь, к основному.

Теорема 4. (Основная теорема арифметики). Пусть R - факториальное кольцо.

Тогда любой элемент $x \in R$, если он не нуль и не обратимый, представляется в виде $r = p_1 \dots p_n$, где $n \ge 1$, а $\{p_i\}$ - простые.

При этом, если $r=q_1\dots q_m$ - другое такое разложение, то m=n и существует перестановка индексов $\pi:n\to n$, такая, что $p_i\sim q_{\pi_i}$ для всех i.

Доказательство. Докажем существование. Зафиксируем x. Если он неприводимый, то он и простой по определению факториального кольца, поэтому сам будет своим подходящим разложением. Пусть x=yz, где $y,z \nsim 1$. Если y необратим и приводим, разложим и его: $y=y_1z_1$, где $y_1,z_1 \nsim 1$. Будем раскладывать так игреки, пока можем, и получим строго возрастающую цепочку идеалов $(y) \subsetneq (y_1) \subsetneq (y_2) \subsetneq \dots$ Вспомним нетёровость нашего кольца: бесконечно возрастать она не может, значит, на каком-то моменте заработаем для x один не приводимый делитель p: x=pw для какого-то w. Если w необратим и приводим, разложим и его: $w=p_1w_1$. Продолжим и получим ещё одну возрастающую цепочку идеалов: $(x) \subsetneq (w) \subsetneq (w_1) \subsetneq \dots$ К тому времени, когда она оборвётся, y нас будет разложение x в конечное произведение неприводимых: $x=p_1\dots p_n$. Существование доказано.

Теперь перейдём к доказательству единственности. Разложим двумя способами: $r=p_1\dots p_n=q_1\dots q_m$. По индукции пожно вывести из определения простого, что

Лемма 3. Eсли p - npocmoй u $p|a_1 \dots a_n$, mo $p|a_i$ для какого-mo i.

Воспользуемся этим фактом:например, мы теперь знаем: что $q_m|p_i$ для какого-то i. Но p_i неприводим, поэтому любой его делитель либо обратим, либо ассоциирован с ним. q_m не боратим, так как он простой; значит, $q_m \sim p_i$. Переставим p_i и p_n и считаем, что q_m теперь $\sim p_n$. Осталось вывести следующий факт:

Лемма 4. Пусть $a \sim b$, $ac \sim bd$, $ab \neq 0$. Тогда $c \sim d$.

\mathcal{A} оказательство. $a=arepsilon$ bи $ac=arepsilon bc= u bd$ для каких-то обратимых $arepsilon$ и $ u$. Посл	педнее равен-
ство можем сократить на $b \neq 0$, потому что мы в области.	

Теперь $p_1 \dots p_{n-1} \sim q_1 \dots q_{m-1}$. Можем теперь сказать, что равенство $p_1 \dots p_{n-1} = q_1 \dots q_{m-1}$ верно по предположению индукции по n. Так же по индукции n=m, потому что получим противоречие, если какая-то из серий сомножителей $\{p_i\}$, $\{q_i\}$ закончится раньше.

Пример(ы) **2.** Обыкновенное кольцо $\mathbb{Z} \in \text{евклидовы кольца} \subset \text{ОГИ} \subset \text{факториальные кольца.}$

1.5 Кольцо вычетов $\mathbb{Z}/_{n\mathbb{Z}}$. Китайская теорема об остатках

Пример(ы) 1. Множество $\mathbb{Z}/_{n\mathbb{Z}} = \{[0], \dots, [n-1]\}$ остатков при делении на $n \in \mathbb{N}$ - коммутативное кольцо с единицей. *Кольцо вычетов* (остатков) по модулю.

Определение 17. m, n взаимно просты, если (m,n) = (1) = R.

Лемма 5. Пусть R - факториальное кольцо, $m,n \in R$ - взаимно простые элементы. Пусть, κ тому же, m и n - делители r : m,n|r. Тогда их произведение тоже делит r:mn|r.

Доказательство. Можно вывести из ОТА.

Теорема 5. (Китайская теорема об остатках). Если (m,n) = (1), то $\mathbb{Z}/(m) \times \mathbb{Z}/(n) \cong \mathbb{Z}/(mn)$.

Доказательство. Пусть x - классы, соответствующие числу x в $\mathbb{Z}/(m)$ и $\mathbb{Z}/(n)$, соответственно. Рассмотрим гомеоморфизм $f = x \mapsto ([x]_m, [x]_n)$.

Его ядро - числа, которые делятся и на m, и на n, а поскольку они взаимно просты, то и на mn. Значит, $\operatorname{Ker} f = (mn)$.

Проверим f на сюръективность. Для этого просто хитро покажем, что $\mathrm{Im} f \cong \mathbb{Z}/(mn)$. Тогда $mn = |\mathbb{Z}/(mn)| = |\mathrm{Im} f|$. При этом $\mathrm{Im} f \subset \mathbb{Z}/(m) \times \mathbb{Z}/(n)$ по определению (подкольцо) и $|\mathbb{Z}/(m) \times \mathbb{Z}/(n)| = mn$ простым подсчётом, откуда следует, что $\mathrm{Im} = \mathbb{Z}/(m) \times \mathbb{Z}/(n)$. \square

 $\mathit{Cnedcmeue}\ 1.\ \mathbb{Z}/(n)$ - область целостности $\iff n$ - простое.

1.6 Определение поля. $\mathbb{Z}/_{p\mathbb{Z}}$ как поле. Поле частных целостного кольца

Напомним ещё раз определение поля.

Определение 18. *Поле* - коммутативное кольцо с единицей, в котором также существует обратный элемент по умножению для ненулевых элементов.

Пример(ы) 1. $\mathbb{Z}/_{p\mathbb{Z}}$ - поле.

Доказательство. Мы уже много чего знаем про эту структуру (см. конец предыдущего билета). Для доказательства вышеприведённого факта нужно показать, что у каждого элемента есть обратный по умножению (кроме, конечно, нуля). Рассмотрим ненулевой элемент a, и умножим его на все остатки по модулю p, получим $\{0a,1a,\ldots,(p-1)a\}$. Заметим, что все полученные остатки различны. Предположим противное: $ka\equiv ma\Leftrightarrow (k-m)a\equiv 0$, но так как мы находимся в области, то либо a=0 (сразу нет), либо k-m=0, но так как они оба меньше p, то такого тоже, очевидно, не бывает. Тогда мы получили, что все остатки, полученные таким образом, различны. Но так как их ровно p, то найдётся и равный 1, элемент на который мы умножаем в том случае и будет обратным к a.

В общем и целом, мы сейчас будем получать что-то вроде \mathbb{Q} , но над любым кольцом R. Введём отношение \sim на множестве пар $R \times (R \setminus 0)$. Пусть $(a,b) \sim (a',b') \Leftrightarrow ab' = a'b$. Проверим, что мы получили отношение эквивалентности:

Доказательство. Нужно показать рефлексивность, симметричность и транзитивность. Первые два утверждения очевидны, покажем последнее. Пусть $(a,b) \sim (a',b')$ и $(a',b') \sim (a'',b'')$, мы хотим показать, что $(a,b) \sim (a'',b'')$, то есть, ab'' = a''b. Воспользуемся тем, что мы находимся в области целостности - домножим левую часть последнего равенства на ненулевой b' и преобразуем, используя гипотезы:

$$(ab')b'' = b(a'b'') = bb'a''.$$

Теперь сократим на b'.

Определение 19. Фактор R/\sim называется *полем частных* области целостности R и обозначается за FracR. Элементы будем обозначать дробями.

Сложение и умножение определяется как в обычной жизни. Осталось проверить, что это действительно поле.

Доказательство. Нужно выполнить совсем немного проверок:

- $\frac{0}{1}$ нуль;
- $\frac{1}{1}$ единица;
- ullet $\frac{-a}{b}$ обратный к $\frac{a}{b}$ по сложению;
- $\frac{b}{a}$ обратный к $\frac{a}{b}$ по умножению для ненулевых.

1.7 Определение гомоморфизма и изоморфизма колец. Фактор-кольцо

Определение 20. Пусть R и S - кольца. Функция $f: R \to S$ называется гомоморфизмом колец, если для произвольных элементов выполняется

- $f(r_1 + r_2) = f(r_1) + f(r_2)$;
- $f(r_1r_2) = f(r_1)f(r_2)$.

Лемма 6. Если f - гомоморфизм, то f(0) = 0 и f(-r) = -r.

Доказательство. В обоих пунктах - подсчёт двумя способами:

- f(0) + f(0) = f(0+0) = f(0);
- f(r) + f(-r) = f(r + (-r)) = f(0) = 0

Кстати говоря, не любой гомоморфизм сохраняет единицу.

Пример(ы) 1. Пусть $f: r \to R \times S$ и $f = r \mapsto (r,0)$. Тогда $f(1) = (1,0) \neq 1$.

Определение 21. Если для гомоморфизма f выполнено f(1) = 1, то говорят, что он сохраняет единицу.

С гомоморфизмом связаны два важных понятия, которые мы рассмотрим далее.

Определение 22. Ядро Ker f гомоморфизма $f: R \to S$ - полный прообраз нуля, $f^{-1}(0)$.

Пемма 7. Гомоморфизм f инъективен тогда и только тогда, когда его ядро тривиально: $Kerf = \{0\}.$

Доказательство. Потому что $f(x_1) = f(x_2) \Longleftrightarrow f(x_1 - x_2) = 0$

Лемма 8. Kerf - двусторонний идеал в R.

Доказательство. Пусть $k \in \text{Ker} f$, тогда для любого $r \in R$ $f(rk) = f(r)f(k) = f(r) \cdot 0 = 0 = 0 \cdot f(r) = f(kr)$. Ещё, например, $f(k_1 + k_2) = f(k_1) + f(k_2) = 0$. Остальные пункты из определения так же очевидны.

Определение 23. *Образ* области определения гомоморфизма f обозначается как ${\rm Im} f$.

Лемма 9. Если $f: R \to S$ - гомоморфизм, то f(R) - кольцо.

Доказательство.
$$f(a) + f(b) = f(a+b), f(a)f(b) = f(ab)$$
 - как раз.

Определение 24. *Изоморфизм* - биективный гомоморфизм. Пишут $R \cong S$, если между ними существует изоморфизм.

А теперь про фактор-кольца.

Определение 25. Пусть R - кольцо (возможно, некоммутативное и без единицы), а I - двусторонний идеал. Говорят, что a сравнимо с b по модулю I и пишут $a \equiv b \mod I$, если $a-b \in I$.

Лемма 10. Сравнимость по модулю - отношение эквивалентности.

Так как мы получили отношение эквивалентности, по нему можно факторизовать. Тогда аналогами классов эквивалентности становятся множества вида $[a] := \{b \in \mathbb{R} | b \equiv a \mod I\}$. Обозначим кмножество всех этих классов за R/I. Осталось ввести структуру кольца на этом множестве.

Определим действия: [a] + [b] = [a+b] и [a][b] = [ab]. Нетрудно понять, что действия над классами не зависят от выбора npedcmasumeля. Сложение вообще очевидно, а при умножении нужно "прибавить и вычесть чтобы собрать.

Теорема 6. Пусть R - произвольное кольцо, возможно, некоммутативное и без единицы; $I \triangleleft R$ - двустронний идеал.

Обозначим за R/I фактор R по отношению эквивалентности $\{a\equiv b|a-b\in I\}$, за [a] - класс эквивалентности элемента $a\in R$.

Тогда:

- операции [a] + [b] = [a+b] и [a][b] = [ab] определены корректно и задают на R/I структуру кольца;
- если R коммутативно, то R/I тоже;
- \bullet если R кольцо c единицей, то [1] единица R/I.

Доказательство. В первом пункте мы уже проверили все неочевидные пункты в определении кольца, остальное - тривиально. \Box

Определение 26. R/I - фактор-кольцо R по I.

1.8 Теорема о гомоморфизме

Теорема 7. (*Теорема о гомоморфизме*). Пусть $f: R \to S$ - гомоморфизм колец. Тогда $f(R) \cong R/Kerf$.

Доказательство. Что мы будем делать по сути: вместо того, чтобы сразу отправлять элемент из R в S посредством f, сначала спроецируем его в $R/\mathrm{Ker}f$ и оттуда уже отобразим в f(R). Проверяем следующее для формальности:

- Корректность определения. Пусть [r] = [r']. Тогда $r' r \in \text{Ker} f$, что равносильно f(r' r) = 0, а тогда f(r) = f(r').
- Сюръективность. По определению f(R) любой элемент оттуда это f(r) для какогото элемента $r \in R$, а f(r) образ [r] при нашем отображении.
- Сюръективность. Пусть $f(r_1) = f(r_2)$, тогда $f(r_1 r_2) = 0$. Значит, $r_1 r_2 \in \text{Ker} f$, что эквивалентно $r_1 \equiv r_2 \mod \text{Ker} f$.
- Сохраняет операции. $\varphi([a]) + \varphi([b]) = \varphi([a] + [b]) = \varphi([a+b]) = f(a+b) = f(a) + f(b) = \varphi([a]) + \varphi([b])$. С умножением агалогично.

Так как билет и так короткий - припишем сюда ещё одну теорему, которой почему-то нет в билетах.

Теорема 8. (Универсальное свойство фактор-кольца). Пусть R - кольцо, $I \leq R$ - двусторонний идеал, $\pi: R \to R/I$ - канонический гомоморфизм, $\varphi: R \to S$ - гомоморфизм колец, ядро которого содержит $I: \varphi(I) = \{0\}$. Тогда:

- существует единственный гомоморфизм $\bar{\varphi}: R/I \to S$ такой, что $\varphi = \bar{\varphi} \circ \pi$;
- $\bar{\varphi}$ задаётся формулой $\bar{\varphi} = [x] \mapsto \varphi(x)$.

Доказательство. Раз уж теоремы в списке нет, то доказывать её не будем. Если вкратце, то сначала несложно проверяется единственность, затем - корректность, и, наконец, рутинная проверка на гомоморфизм. □

1.9 Кольцо многочленов. Целостность и евклидовость кольца многочленов над полем

Определение 27. *Многочлен* - комбинация вида $\sum_{i=0}^{\infty} a_i x^i$, где почти все (кроме конечного числа) $\{a_i\}$ равны нулю. В кольце может и не быть единицы, но даже тогда мы определяем $a_0 x^0 := a_0$ для удобства нотации.

Определение 28. a коммутриует с b, если ab = ba.

Определение 29. *Кольцо многочленов* R[x] - кольцо R вместе с некоторыми $x \notin R$, для которых выполняются следующие свойства:

- $\forall a \in R : ax = xa;$
- $\sum a_i x^i + \sum b_i x^i = \sum (a_i + b_i) x^i$;

- $\bullet \sum a_i x^i = \sum -a_i x^i;$
- нуль есть $\sum 0x^i$;
- умножение по формуле свёртки: если

$$\left(\sum_{i} a_{i} x^{i}\right) \left(\sum_{j} b_{j} x^{j}\right) = \sum_{k} c_{k} x^{k},$$

то

$$c_k = a_k b_0 + a_{k-1} b_1 + \dots + a_0 b_k = \sum_{i+j=k} a_i b_j.$$

Определение 30. Ствень многочлена $\deg \sum a_i x^i$ - наибольшее i такое, что $a_i \neq 0$. Если таких i нет (многочлен нулевой), то его степень определять не будем.

Следствие 1. Из определения степени сразу следует несколько свойств:

- $\deg(f+g) \le \deg f + \deg g$;
- $\deg(fg) \leq \deg f + \deg g$ для ненулевых f, g;
- \bullet $\deg(fg) = \deg f + \deg g$ для ненулевых f, g, если мы находимся в области целостности.

Последнее получается постольку поскольку старшие коэффициенты просто перемножеются, поэтому можно сформулировать такую лемму:

Лемма 11. Если R - область, то и R[x] - область.

А сейчас будем учиться делить многочлены с остатком, тем самым, покажем, что полученное кольцо евклидово (не всегда, конечно).

Лемма 12. Пусть R - кольцо, $f = a_n x^n + \cdots \in R[x]$, $g = b_m x^m + \cdots \in R[x]$, $\forall i : b_m^{n-m+1} | a_i$. Тогда существуют многочлены $q, r \in R[x]$ такие, что f = gq + r и $r = 0 \lor \deg r < \deg g$.

Доказательство. Докажем индукцией по n. База: если n < m, то положим q := 0 и r := f. Пусть теперь $n \ge m$. По условию делимости $b_m^{n-m-1}c := a_n$ для некоторог c. Посмотрим на $f_1 := f - tg$, где $t := cb_m^{n-m}x^{n-m}$ - страший член неполного частного. $\deg tg = n$, потому старший член сократился при делении. Предположение индукции верно для пары f_1, g , так как единственный аспект под вопросом - делимость коэффициентов, но он тоже верен, что видно из определения f_1 . Тогда применим индукцию: $f_1 = q_1g + r$. Подставим $f = (t+q_1)g + r$. r найден.

 $Cnedcmeue\ 2.\ Пусть\ F$ - поле. Тогда F[x] - евклидово кольцо.

Доказательство. По доказанному выше, $\deg: F[x] \setminus 0 \to \mathbb{N}_0$ - евклидова норма, потому что старший коэффициент ненулевого многочлена всегда обратим.

 $\Pi pumeчaнue 1. А вот для евклидова <math>R, R[x]$ не обязательно будет евклидовым кольцом.

- 1.10 Лемма Гаусса
- 1.11 Факториальность кольца многочленов
- 1.12 Теорема Безу. Производная многочлена и кратные корни
- 1.13 Интерполяция Лагранжа
- 1.14 Интерполяция Эрмита
- 1.15 Поле разложение многочлена
- 1.16 Комплексные числа. Решение квадратных уравнений в
- 1.17 Основная теорема алгебры
- 1.18 Разложение рациональной функции в простейшие дроби над $\mathbb C$ и над $\mathbb R$
- 1.19 Определение векторного пространства. Линейная зависимость. Существование базиса
- 1.20 Размерность векторного пространства
- 1.21 Линейные отображения векторных пространств. Подпространство, фактор-пространство. Ранг линейного отображения
- 1.22 Матрица линейного отображения. Композиция линейных отображений и произведение матриц. Кольцо матриц
- 1.23 Элементарные преобразования. Метод Гаусса. Системы линейных уравнений
- 1.24 Теорема Кронекера-Капелли
- 1.25 Определение группы. Циклическая группа. Порядок элемента
- 1.26 Группа перестановок. Циклы, транспозиции. Знак перестановки
- 1.27 Действие группы на множестве. Орбиты. Классы сопряженности
- 1.28 Группа обратимых элементов кольца. Вычисление обратимых элементов $\mathbb{Z}/_{n\mathbb{Z}}$. Функция Эйлера
- 1.29 Гомоморфизмы и изоморфизмы групп. Смежные классы, теорема Лагранжа. Теорема Эйлера
- 1.30 Многочлены деления круга
- 1.31 Конечные поля (существование, единственность, цикличность мультипликативной группы)
- 1.32 Фактор-группа, теорема о гомоморфизме
- 1.33 Определитель матрицы. Инвариантность при элементарных преобразованиях, разложение по строчке и столбцу
- 1.34 Присоединенная матрица. Формула Крамера. Определитель транспонированной матрицы
- 1.35 Вычисление определителя методом Гаусса
- 1.36 Принцип продолжения алгебраических тождеств. Определитель произведения матриц

И в заключение...

2 Пофамильный указатель всех мразей

Быстрый список для особо заебавшегося поиска.

ассоциированность ОГИ гомоморфизм ОТА

делитель нуля область целостности

евклидово кольцо поле

идеал поле частных изоморфизм простые кольцо, а также его вариации сравнимость

кольцо вычетов степень многочлена кольцо многочленов теорема о гомоморфизме

КТО универсальное св-во фактор-кольца

многочлен УОВЦГИ

 неприводимые
 факториальность

 НОД
 фактор-кольцо

 образ
 ядро