词典

排解冲突: 双向平方试探

绕树三匝, 何枝可依

伺候父亲躺下,我正准备离去,父亲拉住了我的手,轻轻地问我,丫儿,你知道什么是无枝可栖吗?

策略: 交替地沿两个方向试探, 均按平方确定距离

```
[ hash(key) + 1² ] % M
[ hash(key) + 2² ] % M
[ hash(key) + 3² ] % M
[ hash(key) + 3² ] % M
[ hash(key) + 4² ] % M
[ hash(key) - 4² ] % M
```


子试探链, 彼此独立?

$$-\lfloor \mathcal{M}/2 \rfloor, \ldots, -3, -2, -1, 0, \underline{1, 2, 3, \ldots, \lfloor \mathcal{M}/2 \rfloor}$$

± i ²		-36	-25	-16	-9	-4	-1	0	1	4	9	16	25	36
M	5					1	4	0	1	4				
	7				5	3	6	0	1	4	2			
	11		8	6	2	7	10	0	1	4	9	5	3	
	13	3	1	10	4	9	12	0	1	4	9	3	12	10

❖ 除了起点0,这两个序列是否还有...其它公共的桶?

❖两类素数:
3 5 7 11 13 17 19 23 29 31

riangle 诀窍:表长取作素数 $\mathcal{M}=4\cdot k+3$,即必然可以保证试探链的前 \mathcal{M} 项均互异

± i ²		-36	-25	-16	-9	-4	-1	0	1	4	9	16	25	36
M	5					1	4	0	1	4				
	7				5	3	6	0	1	4	2			
	11		8	6	2	7	10	0	1	4	9	5	3	
	13	3	1	10	4	9	12	0	1	4	9	3	12	10

❖ 反之, $\mathcal{M} = 4 \cdot k + 1$ 就…必然不能使用?

Two-Square Theorem of Fermat

❖ 素数 *p* 不能表示为一对整数的平方和,当且仅当

$$p \equiv 3 \pmod{4}$$

❖ 只要注意到:

$$(u^{2} + v^{2}) \cdot (s^{2} + t^{2}) = (us + vt)^{2} + (ut - vs)^{2}$$

$$= (us - vt)^{2} + (ut + vs)^{2}$$

$$(2^{2} + 3^{2}) \cdot (5^{2} + 8^{2}) = (10 + 24)^{2} + (16 - 15)^{2}$$

$$= (10 - 24)^{2} + (16 + 15)^{2}$$

❖ 就可以推知:

- 自然数 n 可表示为一对整数的平方和,当(且Q当)
- 它的每一 $\mathcal{M} = 4 \cdot k + 3$ 类的素因子均为偶数次方

