Online Computation, Ex 3.

David Ponarovsky

March 11, 2023

the gain of expert i at step t. Hedge updates:

$$P_{i,t+1} = \frac{e^{\eta G_{i,t}}}{\sum_{j} e^{\eta G_{j,t}}}$$

where $G_{i,t} = \sum_{s \leq t} g_{i,t}$. Prove that the regret of Hedge at time T is $O(\sqrt{T \log n})$, for a good choice of the learning rate η , against the adaptive adversary.

Solution. Let g_t be the random variable which count the gain at time step t and by $G_t = \sum_t^T g_t$. Recall that for any pair of random variable X, Y such that $X \geq Y$ it holds that $\mathbf{E}[X] \geq \mathbf{E}[Y]$. Also notice that for x restricted to some range [-r, r] there are constants c_+, c_- depeand on r such that $c_{-}x^{2} \leq e^{x} - 1 - x \leq c_{+}x^{2}$. Namely, the exponent is bounded by quaderic approximation (second tylor series order). By the montenus property of the expection, for any random variable X that maps to bounded range [-r, r] it holds that:

$$c_{-}\mathbf{E}\left[x^{2}\right] \leq \mathbf{E}\left[e^{x}-x-1\right] \leq c_{+}\mathbf{E}\left[x^{2}\right]$$

Define the potential $\psi\left(t\right)=\sum_{j}e^{\eta G_{i,t}}$ and notice that:

- 1. $\frac{\psi(t+1)}{\psi(t)} = \mathbf{E}\left[e^{\eta g_t}\right]$ relatives to the distribution $P_{i,t+1}$.
- $2. \ \frac{\psi(t+1)}{\psi(t)} \le e^{\eta}$
- 3. $e^{\eta G_{t,j}} \leq e^{\eta} \psi(0)$ for any j.

Therefore we obtain that:

$$\psi(T) = \frac{\psi(T)}{\psi(0)}\psi(0) = \prod^{T} \frac{\psi(t+1)}{\psi(t)}\psi(0)$$

by the fact that e^x is positive function we have that $\psi(t) \geq$ $e^{\eta \max_j G_{i,j}}$. In addition:

$$\begin{split} &\frac{\psi\left(t+1\right)}{\psi\left(t\right)} = \psi\left(t\right)^{-1} \sum_{j} e^{\eta G_{j,t} + \eta g_{j,t+1}} \\ &= \mathbf{E}\left[e^{\eta g_{t}}\right] \leq e^{\mathbf{E}\left[\eta g_{t}\right]} \Rightarrow \psi\left(T\right) \leq \psi\left(0\right) e^{\eta \mathbf{E}\left[G_{t}\right]} \\ &\psi\left(t+1\right) = \sum_{j} e^{\eta G_{j,t+1}} = \sum_{j} e^{\eta G_{j,t} + \eta g_{j,t+1}} \\ &\leq \sum_{j} e^{\eta G_{j,t}} \left(1 + c_{1}\eta g_{j,t+1}\right) = \psi\left(t\right) + c_{1}\eta\psi\left(t\right) \mathbf{E}\left[g_{t+1}\right] \\ &\leq e^{\eta} \left(1 + c_{2}\right) \psi\left(t\right) \mathbf{E}\left[g_{t+1}\right] \\ &\leq \prod_{t} \left(1 + c_{1}\mathbf{E}\left[g_{t}\right]\right) \left(\psi\left(0\right)\right) \leq e^{c_{2}\mathbf{E}\left[\sum g_{t}\right]} \psi\left(0\right) \\ &< e^{c_{2}\mathbf{E}\left[G_{t}\right]} \cdot e^{\eta} \eta \end{split}$$

So after T steps, by taking the logaritm of both sides, we obtain that the regret is bounded by $R_T \leq$.

ex1. Consider the experts setting with gains: $g_{i,t} \in [0,1]$ is **ex2.** Show a lower bound of $\Omega\left(\sqrt{T}\right)$ in the experts setting on the regret of any online algorithm against the oblivious adversary.

Solution. solution.

ex3. Consider a system of linear inequalities $Ax \geq b$, where $A \in [0,\infty]^{m \times n}, b \in [0,\infty]^m$, and unknown $x \in [0,\infty]^n$. (we are seeking a non-negative solution). An ε -approximate solution $x \geq 0$ satisfies $Ax \geq b - \varepsilon \mathbf{1}$. Suppose we have an efficient procedure for following problem: Given $p \in$ $[0,1]^m, \sum_{i\in[m]} p_i = 1$, decide if exists $x \geq 0, p^T Ax \geq p^T b$. Show how to find an ε -approximate solution to $Ax \geq b$. Analyze the run-time.

Solution. solution.

ex4. Recall that we showed, for EXP updates, that w.p.

$$RT \le \beta nT + \gamma T + (1+\beta)\eta + \frac{\ln(\delta^{-1}n)}{\beta} + \frac{\ln n}{\eta}$$

Infer that for the right choice of β , γ , η

$$\mathbf{E}\left[R_T\right] = O\left(\sqrt{Tn\ln n}\right)$$