RÉPUBLIQUE TUNISIENNE	EXAMEN DU BACCALAURÉAT	Session principale	
	SESSION 2022		
MINISTÈRE DE L'ÉDUCATION	Épreuve : Mathématiques	Section:	
		Sciences de l'informatique	
	Durée : 3h	Coefficient de l'épreuve : 3	

N° d'inscription :			

Le sujet comporte 4 pages, la page 4/4 est à rendre avec la copie

Exercice 1 (5 points):

- 1) On considère dans \mathbb{C} l'équation $(\mathbf{E}): z^2 (4-3i)z + 1 7i = 0$.
- a) Vérifier que $(2+i)^2 = 3 + 4i$.
- b) Résoudre (E).
- 2) Le plan complexe est rapporté à un repère orthonormé direct $(\mathbf{O}, \tilde{\mathbf{u}}, \tilde{\mathbf{v}})$. On considère les points \mathbf{A} , \mathbf{B} et \mathbf{C} d'affixes respectives $z_A = 3 i$, $z_B = 1 2i$ et $z_C = 1 + 3i$. On désigne par (\mathcal{C}) le cercle de diamètre \overline{BC} .
 - a) Calculer $(z_A z_B)(z_A z_C)$.
 - b) En déduire que A appartient à (C).

Dans la suite de l'exercice, \mathbf{M} désigne un point du cercle (\mathcal{C}) différent de \mathbf{B} et \mathbf{C} .

- 3) On pose : $z_M = x + iy$ avec x et y deux réels. On note Ω le centre de (\mathcal{C}) .
 - a) Vérifier que $z_{\Omega} = 1 + \frac{1}{2}i$ et calculer ΩA .
 - b) Montrer que $(x-1)^2 + (y-\frac{1}{2})^2 = \frac{25}{4}$.

- 4) Soit \mathbf{H} le projeté orthogonal du point \mathbf{M} sur la droite (\mathbf{BC}) et on désigne par \mathbf{S} l'aire du triangle \mathbf{MBC} .
- a) Justifier que $z_H = 1 + iy$.
- b) Montrer que $S = \frac{5}{2}|x-1|$.
- c) Déterminer les affixes des points M pour lesquels S=5.