

UNIVERSIDAD AUSTRAL DE CHILE

INFO248: Ingeniería de Software

Estimación de esfuerzo

Estudiante:

Ignacio Castro

Enzo Meneses

Profesores:

Dr. Raimundo Vega

Dr. Cristian Olivares-Rodríguez

Estimación Esfuerzo

El programa tendrá 3 entradas de mediana complejidad, 3 salidas de baja complejidad, 3 archivos internos de mediana complejidad, 2 archivos de interfaces externas de mediana complejidad y 1 sistema de consultas externas, esto da un total de 72 puntos de función no ajustados.

Respecto al factor de complejidad tenemos:

C1	C2	С3	C4	C5	C6	C7
3	1	1	5	2	0	3
C8	C9	C10	C11	C12	C13	C14

Lo que da 33 * 0,01 + 0,65 = 0,98 factor de complejidad.

Por lo que tenemos 72 * 0,98 = 70,56 puntos de función ajustados.

Usando el valor de la tabla mostrada en clases para C++ tenemos 70,56*29=2046,24 líneas de código o 2,04624 KSLOC.

Tenemos que el esfuerzo sin ajustar es $2,94*(tama\~no)^B$, dónde podemos calcular B con la tabla de factores de escala:

Atributo	Grado	Valor
PREC	Nominal	3,72
FLEX	Bajo	4,05
RESL	Nominal	4,24
TEAM	Muy Alto	1,1
PMAT	Nominal	4,68

Por lo que al sumar los valores tenemos 17,79. Entonces:

$$B = 0,91 + 0,01 * 17,19 = 1,0879$$

$$PMn = 2,94 + (2,04624)^{1,0879} = 5,119162679$$

Por lo que tenemos un esfuerzo pre arquitectura de 5,119162679.

Para ajustarlo obtenemos los factores de ajuste:

Atributo	Grado	Valor
RCPX	Nominal	1
RUSE	Muy Alto	1,15
PDIF	Bajo	0,87
PERS	Nominal	1
PREX	Alto	0,87
FCIL	Muy Bajo	1,3
SCED	Nominal	1

Por lo que tras realizar la multiplicatoria tenemos un factor de ajuste de 1,1315655.

Entonces tenemos un esfuerzo ajustado de:

$$PMa = 5,119162679 * 1,1315655 = 5,792667876$$

Estimación Tiempo

Tenemos que el tiempo está dado por:

$$Tdes = [3, 67 * (PM)^d] * SCED\%$$

Donde d = 0, 28 + 0, 2 * [B - 0, 91] = 0,31558, entonces como SCED es 1:

$$T des = [3, 67 * (5, 792667876)^{0,31558}] = 6,388741291 meses$$

Por lo que tardaríamos un poco más de 6 meses.

Estimación Staff

Podemos estimar el staff a tiempo completo por:

$$Tdes = PM/Tdef = 5,792667876/6,388741291 = 0.90669939697$$

Entonces bastaría con un staff a tiempo completo.

Con Programa Cocomo

Puntos de casos de Uso

Primero debemos considerar todos los casos de uso.

UUCW = 45

- Agregar Reserva (5)
- Modificar Cabaña (5)
- Modificar Reserva (5)
- Agregar Usuario (5)
- Modificar Usuario (5)
- Eliminar Reserva (5)
- Eliminar Usuario (5)
- Enviar Correos (5)
- Consultas redes sociales (5)

UAW = 4

- GUI (3)
- Consultas redes sociales (1)

UUCP = 49

Al considerar los factores de complejidad técnica tenemos:

T1	T2	Т3	T4	T5	Т6	T7
0	1	5	1	1	2	2.5
Т8	Т9	T10	T11	T12	T13	
0	0	0	3	0	0	

TCF = 0.6 + 0.01*13.5 = 0.735

En cuanto a los factores de complejidad ambiental tenemos:

E1	E2	E3	E4	E5	E6	E7	E8
4.5	0	1	0.5	2	3	-2	10

ECF = 1.4 - 0.03*19 = 0.83

Finalmente los puntos de caso de uso son:

UCP = 49 * 0.735 * 0.83 = 29.89

Horas hombre = 30 * 29.89 = 896.7

Meses hombre = 896.7 / (20*8) = 5.6

Si se trabaja 8 horas diarias 20 días mensuales el proyecto tardaría un poca más de 5 meses y medio.