Ostfalia Hochschule für angewandte Wissenschaften	1

Fakultät Fahrzeugtechnik Prof. Dr.-Ing. V. von Holt Institut für Fahrzeugsystemund Servicetechnologien

Mikroprozessortechnik BPO 2011 BPO 2008

> WS 2015/16 18.01.2016

Name:
Vorname
Matr.Nr.:
Unterschrift

Zugelassene Hilfsmittel: **Einfacher Taschenrechner**

Zeit: 60 Minuten

Punkte:

1 (10)	2 (12)	3 (12)	4 (10)	5 (16)	Punktsumme (max. 60)	Prozente	Note

Aufgabe 1 (10 Punkte) - Kurzfragen

Kreuzen Sie an, ob die folgenden Aussagen richtig oder falsch sind. **Falsche** Antworten führen zu einem **Punktabzug**. (Die Aufgabe ergibt aber keine negative Gesamtpunktzahl.)

Aussage	richtig	falsch
Die Bezeichnung "8-Bit-Mikroprozessor" deutet darauf hin, dass die		
Verarbeitungsbreite im Prozessor 8 Bit beträgt.		
Der Befehlszähler (PC) eines Mikroprozessors dient zum Zählen der		
abgearbeiteten Befehle.		
Bei einem synchronen Systembus wird die Gültigkeit von Signalen durch		
Handshake-Signale angezeigt.		
Ein asynchroner Systembus kann sich ideal auf die individuelle		
Geschwindigkeit der Systemkomponenten einstellen.		
Als Latenz bezeichnet man bei einer Pipeline die Zeit, die der Durchlauf		
eines Befehls durch die gesamte Pipeline benötigt.		
Das Pipelining wird als Technik vor allem zur Beschleunigung von CISC-		
Prozessoren eingesetzt.		
Eine Pipeline mit k Stufen führt immer zu einer Beschleunigung der		
Programmausführung um den Faktor k.		
Als "superskalar" bezeichnet man einen Mikroprozessor, bei dem mehr als		
1 Befehl/Takt abgeschlossen werden kann.		
Die Verwaltung virtuellen Speichers erfolgt stets in Hardware.		
Die Speicherung der Information in dynamischen Speicherchips erfolgt in Kondensatoren.		

Aufgabe 2 (12 Punkte) – Cache

Ein Mikrorechner verfügt über einen Hauptspeicher von **4 MByte** Größe. Er besitzt einen **8-fach-assoziativen** Cache mit **2048 Blöcken** zu je **32 Byte**.

a)	(1 P) Wie viele Bits werden zur Adressierung des Hauptspeichers benötigt?
b)	(1 P) Wie viele Sätze umfasst der Cache?
c)	(1 P) Wie viele Platzierungsmöglichkeiten für eine (Arbeits-)Speicherzelle gibt es im Cache?
d)	(2 P) Wie viele Bits werden zur Bestimmung des Cache-Satzes benötigt?
e)	(2 P) Aus wie vielen Bits besteht das Tag der Cache-Einträge?
f)	(1 P) Welche Aufgabe hat ein Dirty-Bit bei einem Cache-Eintrag?
g)	(2 P) Warum ist die Realisierung eines Cache mit höherer Assoziativität aufwendiger?
h)	(2 P) Warum werden Caches überhaupt eingesetzt?

Aufgabe 3 (12 Punkte) – Adressierung/Adressdekodierung

Ein Mikrorechner verfügt über einen Adressraum von **256kByte**. Der Rechner soll mit 2 RAM-Bausteinen mit einer Größe von jeweils **32kByte** bestückt werden.

a)	(1 P) Wie viele Adressleitungen besitzt der Systembus des Mikrorechners?
b)	(1 P) Wie viele Adresseingänge besitzen die RAM-Bausteine?
c)	(1 P) Welche Adressleitungen des Systembus werden zur internen Adressierung der RAM-Bausteine verwendet?
d)	 (4 P) Der erste RAM-Baustein soll an der Adresse 0x0000 in den Adressraum des Mikrorechners eingeblendet werden. • (1 P) Welchen Adressbereich belegt der RAM-Baustein?
	(3 P) Geben Sie die Dekodierung für das CS-Signal des RAM-Bausteins an!
e)	 (4 P) Der zweite RAM-Baustein soll an der Adresse 0x6000 in den Adressraum des Mikrorechners eingeblendet werden. (1 P) Welchen Adressbereich belegt der RAM-Baustein?
	(3 P) Geben Sie die Dekodierung für das CS-Signal des RAM-Bausteins an!
	P) Warum ist die Wahl der Anfangsadresse bei 0x6000 für den zweiten RAM-Baustein eher günstig?

Aufgabe 4 (10 Punkte) – Serielle Kommunikation

Ein **Mikrorechner** soll über eine **serielle** Datenverbindung nach dem **RS232** Standard mit einem anderen Mikrorechner verbunden werden. Die RS232-Verbindung erfolgt im Format:

•	1 Startbit 8 Datenbits 1 Paritätsbit 2 Stopbits
Die	e Datenrate soll 57600 Bit/s betragen.
a)	(3 P) Skizzieren Sie den prinzipiellen Signalverlauf über der Zeit für die Übertragung eines Zeichens im o.a. Datenformat!
b)	(1 P) Berechnen Sie die Dauer für die Übertragung eines Bits mit der o.a. Datenrate!
c)	(2 P) Wie lange dauert die Übertragung eines ganzen Zeichens und wie viele Zeichen/Sekunde können übertragen werden?
d)	(2 P) Welche prozentuale Auswirkung auf die Nutzdatenrate (Zeichen/s) hätte der Verzicht auf da
	das Paritätsbit

e) (2 P) Nennen Sie 2 wesentliche Unterschiede der seriellen Kommunikation nach dem RS 232-Standard gegenüber dem SPI-Bus!

• das Paritätsbit und das zweite Stopbit

Aufgabe 5 (16 Punkte) - PWM-Signal-Erzeugung

Gegeben sei ein mit **16 MHz** getakteter Mikrocontroller. Dieser soll zur Antriebssteuerung mittels eines PWM-Signals eingesetzt werden. Da der Mikrocontroller über keinen PWM-fähigen Timer verfügt, soll das Signal mit einer Software-Timersteuerung erzeugt werden und die Ausgabe des PWM-Signals soll auf einem digitalen I/O-Pin erfolgen. Zur Verfügung steht ein **16-Bit-Timer** mit einem **Vergleichsregister OCR**. Die möglichen **Vorteiler** des Timers sind **1 – 4 – 16 – 64 – 256 – 1024**. das PWM-Signal soll den in der Skizze gezeigten Verlauf besitzen.

a) (1 P) Berechnen Sie die Periodendauer des Mikrocontrollers!

b) (1 P) Berechnen Sie die Periodendauer (Überlauf) des 16-Bit-Timers mit Vorteiler 1!

c) (1 P) Bestimmen Sie die Frequenz des PWM-Signals!

d) (1 P) Bestimmen Sie die relative Einschaltdauer (Pegel = ,1') des PWM-Signals ("Duty-Cycle")!

e)	(4 P) Wählen Sie die jeweils passenden Vorteilerwerte für die aktive und die inaktive Phase, welche die höchstmögliche Auflösung gewährleisten!
f)	(4 P) Auf welchen Wert müssen Sie passend zu den unter e) bestimmten Vorteilerwerten das Vergleichsregister in den beiden Phasen setzen?
g)	(2 P) Welche prozentuale Abweichung von der gewünschten Dauer der aktiven Phase ergibt sich durch die Wahl des Vorteiler und Vergleichswerts für diese Phase unter e) und f)?
h)	(2 P) Welche Dauer und Frequenz hat das resultierende PWM-Signal tatsächlich?