МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по практической работе №1

по дисциплине «Вычислительная математика»

Тема: Приближенное решение уравнения f(x) = 0 методом деления пополам (метод бисекций)

Студент гр. 8301	 Готовский К.В.
Преподаватель	 Сучков А.И
	Колоницкий С.Б.

Санкт-Петербург

2020

Цель работы.

Изучение программирования Octave с последующим созданием Прологпрограммы с графическим интерфейсом.

Основные теоретические положения.

Пусть задана непрерывная функция f(x) и требуется найти корень уравнения f(x) = 0. Предположим, что найден отрезок [a,b], такой, что f(a)f(b) < 0. Тогда согласно теореме Больцано — коши внутри отрезка [a,b] существует точка c, в которой значение функции равно нулю, т. е. f(c) = 0, $c \in (a,b)$. Итерационный метод бисекций состоит в построении последовательности вложенных отрезков $\{[a_n,b_n]|[a_n,b_n]\subset [a_{n-1},b_{n-1}]\subset [a,b]\}$, на концах которых функция принимает значения разных знаков. Каждый последующий отрезок получают делением пополам предыдущего. Процесс построения последовательности отрезков позволяет найти нуль функции f(x) (корень уравнения f(x) = 0 с любой заданной точностью.

Опишем один шаг итераций. Пусть на (n-1)-м шаге найден отрезок $[a_{n-1},b_{n-1}]\subset [a,b]$, такой, что $f(a_{n-1})f(b_{n-1})<0$. Делим его пополам точкой и вычисляем $f(\xi)$. Если $f(\xi)=0$, то — корень уравнения. Если $f(\xi)\neq 0$, то из двух половин отрезка выберем ту, на концах которой функция имеет противоположные знаки, так как один из корней лежит на этой половине. Таким образом,

$$a_n = a_{n-1}, b_n = \xi$$
, если $f(\xi)f(a_{n-1}) < 0$, $a_n = \xi, b_n = b_{n-1}$, если $f(\xi)f(a_{n-1}) > 0$.

Если требуется найти корень с точностью ε , то деление пополам продолжаем до тех пор, пока длина отрезка не станет меньше 2ε . Тогда координата середины отрезка и есть значение корня с требуемой точностью ε .

Метод бисекций — простой и надежный метод поиска простого корня уравнения f(x) = 0. Он сходится для любых непрерывных функций f(x), в том

числе недифференцируемых. Скорость сходимости невелика. Для достижения точности ε необходимо совершить N итераций, где

$$N \simeq log_2 \frac{b-a}{\varepsilon}$$
.

Это означает, что для получения каждых трех верных десятичных знаков необходимо совершить около 10 итераций.

Если на отрезке [a, b] находится несколько корней уравнения f(x) = 0, то процесс сходится к одному из них. Метод неприменим для отыскания кратных корней четного порядка. В случае кратных корней нечетного порядка он менее точен.

Постановка задачи.

- 1. Графически или аналитически отделить корень уравнения f(x) = 0 (т. е. найти отрезок [a, b], на котором функция f(x) удовлетворяет условиям теоремы Больцано Коши.
- 2. Составить подпрограмму функцию вычисления f(x).
- 3. Составить головную программу, содержащую обращение к подпрограмме BISECT и печать результатов.
- 4. Провести вычисления по программе.

Выполнение работы.

Дана функция:

$$f(x) = \log_e x - \frac{1}{1+x^2}. (1)$$

Аналитическим путём — методом подстановки было найдено, что $f(1)=log_e\,1-\frac{1}{1+1^2}=0-\frac{1}{2}=-\frac{1}{2}<0,$ и что $f(e)=log_e\,e-\frac{1}{1+e^2}=1-\frac{1}{1+e^2}>0.$

Для простоты вычислений взята более «правая» точка чем е, а именно 3.

В итоге есть промежуток [1; 3].

Для проверки промежутка и правильности дальнейшего ответа, был построен график в онлайн калькуляторе (рис.1).

Рисунок 1 – График функции и его значения.

Значения вычислением методом бисекций представлены в табл. 1.

Таблица 1 – Таблица значений вычислением методом бисекций.

а	f(a)	b	<i>f(b)</i>	С	f(c)
1	-0.5	3	0.99861	2	0.49315
1	-0.5	2	0.49315	1.5	0.09777
1	-0.5	1.5	0.09777	1.25	-0.16710
1.25	-0.16710	1.5	0.09777	1.375	-0.02749
1.375	-0.02749	1.5	0.09777	1.4375	0.03679
1.375	-0.02749	1.4375	0.03679	1.40625	0.00508
1.375	-0.02749	1.40625	0.00508	1.39063	-0.01109
1.39063	-0.01109	1.40625	0.00508	1.39844	-0.00298
1.39844	-0.00298	1.40625	0.00508	1.40234	0.00105
1.39844	-0.00298	1.40234	0.00105	1.40039	-0.00096
1.40039	-0.00096	1.40429	0.00306	1.40136	0.00004
1.40039	-0.00096	1.40136	0.00004	1.40088	-0.00046
1.40088	-0.00046	1.40136	0.00004	1.40112	-0.00021
1.40112	-0.00021	1.40136	0.00004	1.40124	-0.00008
1.40124	-0.00008	1.40136	0.00004	1.4013	-0.00002
1.4013	-0.00002	1.40136	0.00004	1.40133	0.00001

Полученный отрезок [1.4013; 1.40133] является приближенным ответом с точностью $\varepsilon = 5e - 5$. Ответ был получен за N = 16 итераций.

Проверка формулы из теоретического положения: $N \simeq log_2 \frac{b-a}{\varepsilon} = log_2 \frac{3-1}{5e-5} = 15.288 \simeq 16$, что подтверждает правильность расчётов в таблице.

Результаты работы программы (см. приложение A) по алгоритму метода бисекций представлены на рис.2. Корень совпадает с a = 1.4013, а количество итерация = 15, потому что при проверке точности, алгоритм не стал делать дополнительное приближение и вывел ответ.

Рисунок 2 – Результаты работы программы.

Выводы.

В результате работы были проведены аналитические расчёты и написана программа для функции. Результаты экспериментов совпадают между собой.

ПРИЛОЖЕНИЕ А ФУНКЦИЯ ПОСТРОЕНИЯ СИНУСОИДЫ

```
function [x0,k] = Yrok_1

function [y] = BISECT(x)
    y = log(x) - 1/(1 + x^2);
endfunction

a = 1; b = 3; eps = 5e-5; k = 0; x0 = 0;

while (eps*2 < b - a)
    x0 = (a + b)*0.5;
    if BISECT(x0) > 0
        b = x0;
    else
        a = x0;
    endif
    k = k + 1;
endwhile
```