## Tópicos de Matemática Discreta

2.º teste — 8 de janeiro de 2016 — duração: 2 horas — —

- 1. Prove, por indução nos naturais, que  $(1-\frac{1}{4})(1-\frac{1}{9})\dots(1-\frac{1}{n^2})=\frac{n+1}{2n}$ , para todo o natural  $n\geq 2$ .
- 2. Sejam  $f: \mathbb{Z} \to \mathbb{Z}$  e  $g: \mathbb{Z} \to \mathbb{Z}$  as funções definidas por

$$f(m) = \begin{cases} \frac{m-1}{2} & \text{se} \quad m \text{ \'e impar} \\ 2|m|+1 & \text{se} \quad m \text{ \'e par} \end{cases} \quad \text{e} \quad g(n) = 2n+1.$$

- (a) Determine  $f(\{2n+1 \mid n \in \mathbb{Z}\})$  e  $f^{\leftarrow}(\{5\})$ .
- (b) Seja  $U = \{-3, 0, 3\}$ . Verifique se  $g(g^{\leftarrow}(U)) = U$ . Justifique a sua resposta.
- (c) Mostre que  $f \circ g = id_{\mathbb{Z}}$ .
- (d) Diga, justificando, se existe alguma aplicação  $h: \mathbb{Z} \to \mathbb{Z}$  tal que  $h \circ f = id_{\mathbb{Z}}$  e  $f \circ h = id_{\mathbb{Z}}$ .
- 3. Sejam  $A = \{1, 2, 3, 4, 5\}$  e S e T as relações binárias em A definidas, respetivamente, por

$$S = \{(x, y) \in A \times A \mid y + 1 = 2x\}$$
 e

$$T = \{(1,3), (3,1), (2,1), (4,2), (5,2)\}.$$

- (a) Determine Dom(T) e Im(T).
- (b)  $S \cap T = \emptyset$ ? Justifique a sua resposta.
- (c) Diga, justificando, se  $T \circ T^{-1} \subseteq \mathrm{id}_A \subseteq T^{-1} \circ T$ .
- (d) Determine, caso exista, a menor relação binária em A que contém T e é:
  - i. antissimétrica. ii. transitiva.
- 4. Sejam  $A = \mathbb{R} \setminus \{0\}$  e R a relação de equivalência definida em A por

$$x R y \text{ sse } xy^{-1} \in \{-1, 1\}.$$

- (a) Mostre que a relação binária R é, efetivamente, simétrica.
- (b) Determine  $[2]_R$ .
- (c) Determine A/R.
- 5. Consideremos o c.p.o.  $(A, \leq)$  com o seguinte diagrama de Hasse associado:
  - (a) Indique, caso existam:
    - i. os elementos minimais e os elementos maximais de A;
    - ii.  $Maj\{b,c\};$
    - iii. um subconjunto de A com exatamente 5 elementos que admita máximo e mínimo.
    - 1....
  - (b) Diga, justificando, se  $(A, \leq)$  é um reticulado.



## 6. Considere o seguinte grafo



- (a) Indique os graus dos vértices de G.
- (b) Indique
  - i. um caminho de 1 para 4 que passe por mais de 4 vértices.
  - ii. um ciclo em G de comprimento 8.
- 7. Diga, justificando, se são verdadeiras ou falsas as afirmações seguintes:
  - (a) Existem funções  $f:\mathbb{R}\longrightarrow\mathbb{R}$  e  $g:\mathbb{R}\longrightarrow\mathbb{R}$  tais que f é uma função constante mas  $g\circ f$  não é uma função constante.
  - (b) Se  $\Pi_1$  é uma partição de um conjunto A e  $\Pi_2$  é uma partição de um conjunto B, então  $\Pi_1 \cup \Pi_2$  é uma partição de  $A \cup B$ .
  - (c) Num c.p.o.  $(X, \leq)$ , se m é um elemento minimal de X, então m não é o máximo de X.
  - (d) Se uma matriz A do tipo  $4 \times 3$  é matriz de incidência de um grafo G, então existem pelo menos dois vértices em G que não são adjacentes.

| Cotações | 1. | 2.                  | 3.        | 4.          | 5.     | 6.       | 7.      |
|----------|----|---------------------|-----------|-------------|--------|----------|---------|
|          | 2  | 1,25 + 1 + 1 + 1,25 | 0.5+1+1+1 | 0,75+0,75+1 | 1,25+1 | 0.5+0.75 | 1+1+1+1 |