DATASCI W261: Machine Learning at Scale

W261-1 Fall 2015 Week 12: Criteo CTR Project November 14, 2015

Student name Alex Smith

Click-Through Rate Prediction Lab

This lab covers the steps for creating a click-through rate (CTR) prediction pipeline. You will work with the <u>Criteo Labs (http://labs.criteo.com/)</u> dataset that was used for a recent <u>Kaggle competition (https://www.kaggle.com/c/criteo-display-ad-challenge)</u>.

This lab will cover:

- ####Part 1: Featurize categorical data using one-hot-encoding (OHE)
- ####Part 2: Construct an OHE dictionary
- ####Part 3: Parse CTR data and generate OHE features
 - #### Visualization 1: Feature frequency
- ####Part 4: CTR prediction and logloss evaluation
 - #### Visualization 2: ROC curve
- ####Part 5: Reduce feature dimension via feature hashing
 - #### Visualization 3: Hyperparameter heat map

Note that, for reference, you can look up the details of the relevant Spark methods in <u>Spark's Python API</u> (https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD) and the relevant NumPy methods in the NumPy Reference (https://docs.scipy.org/doc/numpy/reference/index.html)

```
In [1]: labVersion = 'MIDS_MLS_week12_v_0_9'
```

Start up spark

```
In [3]: import os
   import sys #current as of 9/26/2015

import pyspark
   from pyspark.sql import SQLContext

# We can give a name to our app (to find it in Spark WebUI) and configur
   e execution mode
   # In this case, it is local multicore execution with "local[*]"
   app_name = "example-logs"
   master = "local[*]"
   conf = pyspark.SparkConf().setAppName(app_name).setMaster(master)
   sc = pyspark.SparkContext(conf=conf)
   sqlContext = SQLContext(sc)

print sc
print sc
print sqlContext
```

<pyspark.context.SparkContext object at 0x7f42c2e7f1d0>
<pyspark.sql.context.SQLContext object at 0x7f42aa8b0790>

Part 1: Featurize categorical data using one-hot-encoding

(1a) One-hot-encoding

We would like to develop code to convert categorical features to numerical ones, and to build intuition, we will work with a sample unlabeled dataset with three data points, with each data point representing an animal. The first feature indicates the type of animal (bear, cat, mouse); the second feature describes the animal's color (black, tabby); and the third (optional) feature describes what the animal eats (mouse, salmon).

In a one-hot-encoding (OHE) scheme, we want to represent each tuple of (featureID, category) via its own binary feature. We can do this in Python by creating a dictionary that maps each tuple to a distinct integer, where the integer corresponds to a binary feature. To start, manually enter the entries in the OHE dictionary associated with the sample dataset by mapping the tuples to consecutive integers starting from zero, ordering the tuples first by featureID and next by category.

Later in this lab, we'll use OHE dictionaries to transform data points into compact lists of features that can be used in machine learning algorithms.

```
In [33]: # Data for manual OHE
         # Note: the first data point does not include any value for the optional
          third feature
         sampleOne = [(0, 'mouse'), (1, 'black')]
         sampleTwo = [(0, 'cat'), (1, 'tabby'), (2, 'mouse')]
         sampleThree = [(0, 'bear'), (1, 'black'), (2, 'salmon')]
         sampleDataRDD = sc.parallelize([sampleOne, sampleTwo, sampleThree])
         print "Sample RDD created."
         print sampleDataRDD.collect()
         Sample RDD created.
         [[(0, 'mouse'), (1, 'black')], [(0, 'cat'), (1, 'tabby'), (2, 'mous
         e')], [(0, 'bear'), (1, 'black'), (2, 'salmon')]]
 In [6]: # TODO: Replace <FILL IN> with appropriate code
         sampleOHEDictManual = {}
         sampleOHEDictManual[(0,'bear')] = 0
         sampleOHEDictManual[(0,'cat')] = 1
         sampleOHEDictManual[(0,'mouse')] = 2
         sampleOHEDictManual[(1,'black')] = 3
         sampleOHEDictManual[(1,'tabby')] = 4
         sampleOHEDictManual[(2,'mouse')] = 5
         sampleOHEDictManual[(2, 'salmon')] = 6
         print len(sampleOHEDictManual)
```

7

```
In [10]: %%writefile test_helper.py
         # A testing helper
         #https://pypi.python.org/pypi/test_helper/0.2
         import hashlib
         class TestFailure(Exception):
         class PrivateTestFailure(Exception):
           pass
         class Test(object):
           passed = 0
           numTests = 0
           failFast = False
           private = False
           @classmethod
           def setFailFast(cls):
             cls.failFast = True
           @classmethod
           def setPrivateMode(cls):
             cls.private = True
           @classmethod
           def assertTrue(cls, result, msg=""):
             cls.numTests += 1
             if result == True:
               cls.passed += 1
               print "1 test passed."
             else:
               print "1 test failed. " + msg
               if cls.failFast:
                 if cls.private:
                   raise PrivateTestFailure(msg)
                 else:
                    raise TestFailure(msg)
           @classmethod
           def assertEquals(cls, var, val, msg=""):
             cls.assertTrue(var == val, msg)
           @classmethod
           def assertEqualsHashed(cls, var, hashed_val, msg=""):
             cls.assertEquals(cls._hash(var), hashed_val, msg)
           @classmethod
           def printStats(cls):
             print "{0} / {1} test(s) passed.".format(cls.passed, cls.numTests)
           @classmethod
           def hash(cls, x):
             return hashlib.shal(str(x)).hexdigest()
```

Writing test_helper.py

```
In [11]:
         # TEST One-hot-encoding (1a)
         from test helper import Test
         Test.assertEqualsHashed(sampleOHEDictManual[(0,'bear')],
                                  'b6589fc6ab0dc82cf12099d1c2d40ab994e8410c',
                                  "incorrect value for sampleOHEDictManual[(0,'bea
         r')]")
         Test.assertEqualsHashed(sampleOHEDictManual[(0,'cat')],
                                  '356a192b7913b04c54574d18c28d46e6395428ab',
                                  "incorrect value for sampleOHEDictManual[(0,'ca
         t')]")
         Test.assertEqualsHashed(sampleOHEDictManual[(0,'mouse')],
                                  'da4b9237bacccdf19c0760cab7aec4a8359010b0',
                                  "incorrect value for sampleOHEDictManual[(0, 'mou
         se')]")
         Test.assertEqualsHashed(sampleOHEDictManual[(1,'black')],
                                  '77de68daecd823babbb58edb1c8e14d7106e83bb',
                                  "incorrect value for sampleOHEDictManual[(1,'bla
         ck')]")
         Test.assertEqualsHashed(sampleOHEDictManual[(1,'tabby')],
                                  '1b6453892473a467d07372d45eb05abc2031647a',
                                  "incorrect value for sampleOHEDictManual[(1,'tab
         by')]")
         Test.assertEqualsHashed(sampleOHEDictManual[(2,'mouse')],
                                  'ac3478d69a3c81fa62e60f5c3696165a4e5e6ac4',
                                  "incorrect value for sampleOHEDictManual[(2, 'mou
         se')]")
         Test.assertEqualsHashed(sampleOHEDictManual[(2, 'salmon')],
                                  'c1dfd96eea8cc2b62785275bca38ac261256e278',
                                  "incorrect value for sampleOHEDictManual ((2, 'sal
         mon')]")
         Test.assertEquals(len(sampleOHEDictManual.keys()), 7,
                            'incorrect number of keys in sampleOHEDictManual')
```

1 test passed.

(1b) Sparse vectors

Data points can typically be represented with a small number of non-zero OHE features relative to the total number of features that occur in the dataset. By leveraging this sparsity and using sparse vector representations of OHE data, we can reduce storage and computational burdens. Below are a few sample vectors represented as dense numpy arrays. Use SparseVector (SparseVector) to represent them in a sparse fashion, and verify that both the sparse and dense representations yield the same results when computing dot-products (https://en.wikipedia.org/wiki/Dot-products) (we will later use MLlib to train classifiers via gradient descent, and MLlib will need to compute dot products between SparseVectors and dense parameter vectors).

Use SparseVector(size, *args) to create a new sparse vector where size is the length of the vector and args is either a dictionary, a list of (index, value) pairs, or two separate arrays of indices and values (sorted by index). You'll need to create a sparse vector representation of each dense vector aDense and bDense.

```
In [12]: import numpy as np
from pyspark.mllib.linalg import SparseVector
```

```
In [18]: # TODO: Replace <FILL IN> with appropriate code
         aDense = np.array([0., 3., 0., 4.])
         aSparse = SparseVector(4,[1,3],[3.,4.]) # using two separate arrays of i
         ndices and values
         bDense = np.array([0., 0., 0., 1.])
         bSparse = SparseVector(4,[(3,1.)]) # using a list of index, value pairs
         w = np.array([0.4, 3.1, -1.4, -.5])
         print aDense.dot(w)
         print aSparse.dot(w)
         print bDense.dot(w)
         print bSparse.dot(w)
         7.3
         7.3
         -0.5
         -0.5
In [19]: # TEST Sparse Vectors (1b)
         Test.assertTrue(isinstance(aSparse, SparseVector), 'aSparse needs to be
          an instance of SparseVector')
         Test.assertTrue(isinstance(bSparse, SparseVector), 'aSparse needs to be
          an instance of SparseVector')
         Test.assertTrue(aDense.dot(w) == aSparse.dot(w),
                          'dot product of aDense and w should equal dot product of
          aSparse and w')
         Test.assertTrue(bDense.dot(w) == bSparse.dot(w),
                          'dot product of bDense and w should equal dot product of
          bSparse and w')
         1 test passed.
         1 test passed.
         1 test passed.
         1 test passed.
```

(1c) OHE features as sparse vectors

Now let's see how we can represent the OHE features for points in our sample dataset. Using the mapping defined by the OHE dictionary from Part (1a), manually define OHE features for the three sample data points using SparseVector format. Any feature that occurs in a point should have the value 1.0. For example, the DenseVector for a point with features 2 and 4 would be [0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0].

```
In [20]: # Reminder of the sample features
# sampleOne = [(0, 'mouse'), (1, 'black')]
# sampleTwo = [(0, 'cat'), (1, 'tabby'), (2, 'mouse')]
# sampleThree = [(0, 'bear'), (1, 'black'), (2, 'salmon')]
```

```
In [26]: # as a reminder of the indices, print out the OHE dictionary
         from operator import itemgetter
         sorted(sampleOHEDictManual.items(), key=itemgetter(1))
Out[26]: [((0, 'bear'), 0),
          ((0, 'cat'), 1),
          ((0, 'mouse'), 2),
          ((1, 'black'), 3),
          ((1, 'tabby'), 4),
          ((2, 'mouse'), 5),
          ((2, 'salmon'), 6)]
In [27]: # TODO: Replace <FILL IN> with appropriate code
         sampleOneOHEFeatManual = SparseVector(7,[2,3],[1.,1.])
         sampleTwoOHEFeatManual = SparseVector(7,[1,4,5],[1.,1.,1.])
         sampleThreeOHEFeatManual = SparseVector(7,[0,3,6],[1.,1.,1])
         # TEST OHE Features as sparse vectors (1c)
In [28]:
         Test.assertTrue(isinstance(sampleOneOHEFeatManual, SparseVector),
                          'sampleOneOHEFeatManual needs to be a SparseVector')
         Test.assertTrue(isinstance(sampleTwoOHEFeatManual, SparseVector),
                          'sampleTwoOHEFeatManual needs to be a SparseVector')
         Test.assertTrue(isinstance(sampleThreeOHEFeatManual, SparseVector),
                          'sampleThreeOHEFeatManual needs to be a SparseVector')
         Test.assertEqualsHashed(sampleOneOHEFeatManual,
                                  'ecc00223d141b7bd0913d52377cee2cf5783abd6',
                                  'incorrect value for sampleOneOHEFeatManual')
         Test.assertEqualsHashed(sampleTwoOHEFeatManual,
                                  '26b023f4109e3b8ab32241938e2e9b9e9d62720a',
                                  'incorrect value for sampleTwoOHEFeatManual')
         Test.assertEqualsHashed(sampleThreeOHEFeatManual,
                                  'c04134fd603ae115395b29dcabe9d0c66fbdc8a7',
                                  'incorrect value for sampleThreeOHEFeatManual')
         1 test passed.
         1 test passed.
```

(1d) Define a OHE function

Next we will use the OHE dictionary from Part (1a) to programatically generate OHE features from the original categorical data. First write a function called oneHotEncoding that creates OHE feature vectors in SparseVector format. Then use this function to create OHE features for the first sample data point and verify that the result matches the result from Part (1c).

In [31]:	

```
# TODO: Replace <FILL IN> with appropriate code
def oneHotEncoding(rawFeats, OHEDict, numOHEFeats):
    """Produce a one-hot-encoding from a list of features and an OHE dic
tionary.
    Note:
        You should ensure that the indices used to create a SparseVector
 are sorted.
    Args:
        rawFeats (list of (int, str)): The features corresponding to a s
ingle observation. Each
            feature consists of a tuple of featureID and the feature's v
alue. (e.g. sampleOne)
            e.g. sampleOne = [(0, 'mouse'), (1, 'black')]
        OHEDict (dict): A mapping of (featureID, value) to unique intege
r.
            e.g. {((0, 'bear'), 0),
                 ((0, 'cat'), 1),
                 ((0, 'mouse'), 2),
                 ((1, 'black'), 3),
                 ((1, 'tabby'), 4),
                 ((2, 'mouse'), 5),
                 ((2, 'salmon'), 6)}
        numOHEFeats (int): The total number of unique OHE features (comb
inations of featureID and
            value).
    Returns:
        SparseVector: A SparseVector of length numOHEFeats with indicies
 equal to the unique
            identifiers for the (featureID, value) combinations that occ
ur in the observation and
            with values equal to 1.0.
    # create a list to store the indices for the raw features
    features = []
    # loop through the features of the input
    for feat in rawFeats:
        features.append(OHEDict[feat])
    # sort the list
    features.sort()
    # create a list of 1.0s for each feature
    values = [1.] * len(features)
    # return the sparse vector
    return SparseVector(numOHEFeats, features, values)
    # return SparseVector(numOHEFeats,sorted([OHEDict[x] for x in rawFea
ts]),[1.0 for x in rawFeats])
# Calculate the number of features in sampleOHEDictManual
numSampleOHEFeats = len(sampleOHEDictManual)
```

```
# Run oneHotEnoding on sampleOne
sampleOneOHEFeat = oneHotEncoding(sampleOne, sampleOHEDictManual, numSam
pleOHEFeats)
print sampleOneOHEFeat
```

(7,[2,3],[1.0,1.0])

- 1 test passed.
- 1 test passed.
- 1 test passed.

(1e) Apply OHE to a dataset

Finally, use the function from Part (1d) to create OHE features for all 3 data points in the sample dataset.

```
In [34]: # TODO: Replace <FILL IN> with appropriate code
         sampleOHEData = sampleDataRDD.map(lambda x: oneHotEncoding(x,sampleOHEDi
         ctManual,len(sampleOHEDictManual)))
         print sampleOHEData.collect()
         [SparseVector(7, {2: 1.0, 3: 1.0}), SparseVector(7, {1: 1.0, 4: 1.0, 5:
          1.0}), SparseVector(7, {0: 1.0, 3: 1.0, 6: 1.0})]
In [35]: # TEST Apply OHE to a dataset (1e)
         sampleOHEDataValues = sampleOHEData.collect()
         Test.assertTrue(len(sampleOHEDataValues) == 3, 'sampleOHEData should hav
         e three elements')
         Test.assertEquals(sampleOHEDataValues[0], SparseVector(7, {2: 1.0, 3: 1.
         0}),
                            'incorrect OHE for first sample')
         Test.assertEquals(sampleOHEDataValues[1], SparseVector(7, {1: 1.0, 4: 1.
         0, 5: 1.0}),
                            'incorrect OHE for second sample')
         Test.assertEquals(sampleOHEDataValues[2], SparseVector(7, {0: 1.0, 3: 1.
         0, 6: 1.0}),
                            'incorrect OHE for third sample')
         1 test passed.
         1 test passed.
         1 test passed.
         1 test passed.
```

Part 2: Construct an OHE dictionary

(2a) Pair RDD of (featureID, category)

To start, create an RDD of distinct (featureID, category) tuples. In our sample dataset, the 7 items in the resulting RDD are (0, 'bear'), (0, 'cat'), (0, 'mouse'), (1, 'black'), (1, 'tabby'), (2, 'mouse'), (2, 'salmon'). Notably 'black' appears twice in the dataset but only contributes one item to the RDD: (1, 'black'), while 'mouse' also appears twice and contributes two items: (0, 'mouse') and (2, 'mouse'). Use flatMap (1, 'black'), while 'mouse' also appears twice and contributes two items: (0, 'mouse') and (2, 'mouse'). Use flatMap (2, 'mouse') and flatMap (also the flatMap) and flatMap (black') and the flatMap) and flatMap (also the flatMap) and <a h

(https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.distinct).

In [69]: # TODO: Replace <FILL IN> with appropriate code

yield each element of a list

```
# write a function to yield each element in the list
          def yielding(lst):
              for i in 1st:
                   vield i
          sampleDistinctFeats = sampleDataRDD.flatMap(lambda x: yielding(x)).disti
          nct()
In [70]: print sampleDistinctFeats.collect()
          [(0, 'bear'), (2, 'salmon'), (1, 'tabby'), (2, 'mouse'), (0, 'mouse'),
           (0, 'cat'), (1, 'black')]
In [71]: # TEST Pair RDD of (featureID, category) (2a)
          Test.assertEquals(sorted(sampleDistinctFeats.collect()),
                              [(0, 'bear'), (0, 'cat'), (0, 'mouse'), (1, 'black'),
  (1, 'tabby'), (2, 'mouse'), (2, 'salmon')],
                              'incorrect value for sampleDistinctFeats')
```

1 test passed.

(2b) OHE Dictionary from distinct features

Next, create an RDD of key-value tuples, where each (featureID, category) tuple in sampleDistinctFeats is a key and the values are distinct integers ranging from 0 to (number of keys - 1). Then convert this RDD into a dictionary, which can be done using the collectAsMap action. Note that there is no unique mapping from keys to values, as all we require is that each (featureID, category) key be mapped to a unique integer between 0 and the number of keys. In this exercise, any valid mapping is acceptable. Use zipWithIndex

(https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.zipWithIndex) followed by

collectAsMap

(https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.collectAsMap).

In our sample dataset, one valid list of key-value tuples is: [((0, 'bear'), 0), ((2, 'salmon'), 1), ((1, 'tabby'), 2), ((2, 'mouse'), 3), ((0, 'mouse'), 4), ((0, 'cat'), 5), ((1, 'black'), 6)]. The dictionary defined in Part (1a) illustrates another valid mapping between keys and integers.

(2c) Automated creation of an OHE dictionary

Now use the code from Parts (2a) and (2b) to write a function that takes an input dataset and outputs an OHE dictionary. Then use this function to create an OHE dictionary for the sample dataset, and verify that it matches the dictionary from Part (2b).

```
In [77]: # TODO: Replace <FILL IN> with appropriate code
         def createOneHotDict(inputData):
              """Creates a one-hot-encoder dictionary based on the input data.
             Args:
                 inputData (RDD of lists of (int, str)): An RDD of observations w
         here each observation is
                     made up of a list of (featureID, value) tuples.
             Returns:
                 dict: A dictionary where the keys are (featureID, value) tuples
          and map to values that are
                     unique integers.
             # write a function to yield each element in the list
             def yielding(lst):
                 for i in 1st:
                     vield i
             # create a RDD that has the distinct features
             distinctFeats = inputData.flatMap(lambda x: yielding(x)).distinct()
             # add an index and covert it to a python dictionary
             OHEdict = distinctFeats.zipWithIndex().collectAsMap()
             # return the dictionary
             return OHEdict
         sampleOHEDictAuto = createOneHotDict(sampleDataRDD)
         print sampleOHEDictAuto
```

```
{(2, 'mouse'): 3, (0, 'cat'): 5, (0, 'bear'): 0, (2, 'salmon'): 1, (1, 'tabby'): 2, (1, 'black'): 6, (0, 'mouse'): 4}
```

Part 3: Parse CTR data and generate OHE features

Before we can proceed, you'll first need to obtain the data from Criteo. If you have already completed this step in the setup lab, just run the cells below and the data will be loaded into the rawData variable.

Below is Criteo's data sharing agreement. After you accept the agreement, you can obtain the download URL by right-clicking on the "Download Sample" button and clicking "Copy link address" or "Copy Link Location", depending on your browser. Paste the URL into the # TODO cell below. The file is 8.4 MB compressed. The script below will download the file to the virtual machine (VM) and then extract the data.

If running the cell below does not render a webpage, open the <u>Criteo agreement</u> (http://labs.criteo.com/downloads/2014-kaggle-display-advertising-challenge-dataset/) in a separate browser tab. After you accept the agreement, you can obtain the download URL by right-clicking on the "Download Sample" button and clicking "Copy link address" or "Copy Link Location", depending on your browser. Paste the URL into the # TODO cell below.

Note that the download could take a few minutes, depending upon your connection speed.

The Criteo CTR data is for HW12.1 is available here (24.3 Meg, 100,000 Rows):

```
https://www.dropbox.com/s/m4jlnv6rdbgzzhu/dac sample.txt?dl=0
```

Alternatively you can download the sample data directly by following the instructions contained in the cell below (8M compressed).

In [79]: # Run this code to view Criteo's agreement
from IPython.lib.display import IFrame

Out[79]:

Download Kaggle Display Advertising Challenge Dataset

CRITEO LABS DATA TERMS OF USE

In [84]:	

```
# TODO: Replace <FILL IN> with appropriate code
# Just replace <FILL IN> with the url for dac sample.tar.qz
import glob
import os.path
import tarfile
import urllib
import urlparse
# Paste url, url should end with: dac sample.tar.qz
url = 'http://criteolabs.wpengine.com/wp-content/uploads/2015/04/dac sam
ple.tar.gz'
url = url.strip()
baseDir = os.path.join('data')
inputPath = os.path.join('w261', 'dac_sample.txt')
fileName = os.path.join(baseDir, inputPath)
inputDir = os.path.split(fileName)[0]
def extractTar(check = False):
    # Find the zipped archive and extract the dataset
    tars = glob.glob('dac_sample*.tar.gz*')
    if check and len(tars) == 0:
      return False
    if len(tars) > 0:
        try:
            tarFile = tarfile.open(tars[0])
        except tarfile.ReadError:
            if not check:
                print 'Unable to open tar.gz file. Check your URL.'
            return False
        tarFile.extract('dac sample.txt', path=inputDir)
        print 'Successfully extracted: dac sample.txt'
        return True
    else:
        print 'You need to retry the download with the correct url.'
        print ('Alternatively, you can upload the dac sample.tar.gz file
 to your Jupyter root ' +
              'directory')
        return False
if os.path.isfile(fileName):
    print 'File is already available. Nothing to do.'
elif extractTar(check = True):
    print 'tar.gz file was already available.'
elif not url.endswith('dac sample.tar.gz'):
    print 'Check your download url. Are you downloading the Sample data
set?'
    # Download the file and store it in the same directory as this noteb
ook
    try:
        urllib.urlretrieve(url,
os.path.basename(urlparse.urlsplit(url).path))
    except IOError:
```

```
print 'Unable to download and store: {0}'.format(url)
extractTar()
```

Unable to open tar.gz file. Check your URL.

[u'0,1,1,5,0,1382,4,15,2,181,1,2,,2,68fd1e64,80e26c9b,fb936136,7b4723c4,25c83c98,7e0cccf,de7995b8,1f89b562,a73ee510,a8cd5504,b2cb9c98,37c9c164,2824a5f6,ladce6ef,8ba8b39a,891b62e7,e5ba7672,f54016b9,21ddcdc9,b1252a9d,07b5194c,,3a171ecb,c5c50484,e8b83407,9727dd16']

(3a) Loading and splitting the data

We are now ready to start working with the actual CTR data, and our first task involves splitting it into training, validation, and test sets. Use the randomSplit method (https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.randomSplit with the specified weights and seed to create RDDs storing each of these datasets, and then cache (<a href="https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.cache) each of these RDDs, as we will be accessing them multiple times in the remainder of this lab. Finally, compute the size of each dataset.

```
In [87]: # TODO: Replace <FILL IN> with appropriate code
         weights = [.8, .1, .1]
         seed = 42
         # Use randomSplit with weights and seed
         rawTrainData, rawValidationData, rawTestData = rawData.randomSplit(weigh
         ts, seed)
         # Cache the data
         rawTrainData.cache()
         rawValidationData.cache()
         rawTestData.cache()
         # count the data
         nTrain = rawTrainData.count()
         nVal = rawValidationData.count()
         nTest = rawTestData.count()
         print nTrain, nVal, nTest, nTrain + nVal + nTest
         print rawData.take(1)
         79911 10075 10014 100000
         [u'0,1,1,5,0,1382,4,15,2,181,1,2,,2,68fdle64,80e26c9b,fb936136,7b4723c
         4,25c83c98,7e0cccf,de7995b8,1f89b562,a73ee510,a8cd5504,b2cb9c98,37c9c1
         64,2824a5f6,1adce6ef,8ba8b39a,891b62e7,e5ba7672,f54016b9,21ddcdc9,b1252
         a9d,07b5194c,,3a171ecb,c5c50484,e8b83407,9727dd16']
In [88]: # TEST Loading and splitting the data (3a)
         Test.assertTrue(all([rawTrainData.is cached,
         rawValidationData.is cached, rawTestData.is cached]),
                          'you must cache the split data')
         Test.assertEquals(nTrain, 79911, 'incorrect value for nTrain')
         Test.assertEquals(nVal, 10075, 'incorrect value for nVal')
         Test.assertEquals(nTest, 10014, 'incorrect value for nTest')
         1 test passed.
         1 test passed.
         1 test passed.
```

(3b) Extract features

We will now parse the raw training data to create an RDD that we can subsequently use to create an OHE dictionary. Note from the take() command in Part (3a) that each raw data point is a string containing several fields separated by some delimiter. For now, we will ignore the first field (which is the 0-1 label), and parse the remaining fields (or raw features). To do this, complete the implemention of the parsePoint function.

1 test passed.

```
In [89]: # TODO: Replace <FILL IN> with appropriate code
         def parsePoint(point):
              """Converts a comma separated string into a list of (featureID, valu
         e) tuples.
             Note:
                 featureIDs should start at 0 and increase to the number of featu
         res - 1.
             Args:
                 point (str): A comma separated string where the first value is t
         he label and the rest
                      are features.
             Returns:
                 list: A list of (featureID, value) tuples.
             # create a list to hold the index, feature set
             features = []
             # split each value in the comma separated text
             for index,feature in enumerate(point.split(',')[1:]):
                  idxFeat = index,feature
                 features.append( idxFeat)
             # return the completed list
             return features
             # alternative:
             # return [(i, x) for i, x in enumerate(point.split(',')[1:])]
         parsedTrainFeat = rawTrainData.map(parsePoint)
         numCategories = (parsedTrainFeat
                           .flatMap(lambda x: x)
                           .distinct()
                           .map(lambda x: (x[0], 1))
                           .reduceByKey(lambda x, y: x + y)
                           .sortByKey()
                           .collect())
         print numCategories[2][1]
```

855

```
In [90]: # TEST Extract features (3b)
    Test.assertEquals(numCategories[2][1], 855, 'incorrect implementation of parsePoint')
    Test.assertEquals(numCategories[32][1], 4, 'incorrect implementation of parsePoint')

1 test passed.
1 test passed.
```

(3c) Create an OHE dictionary from the dataset

Note that parsePoint returns a data point as a list of (featureID, category) tuples, which is the same format as the sample dataset studied in Parts 1 and 2 of this lab. Using this observation, create an OHE dictionary using the function implemented in Part (2c). Note that we will assume for simplicity that all features in our CTR dataset are categorical.

(3d) Apply OHE to the dataset

Now let's use this OHE dictionary by starting with the raw training data and creating an RDD of LabeledPoint

(http://spark.apache.org/docs/1.3.1/api/python/pyspark.mllib.html#pyspark.mllib.regression.LabeledPoint) objects using OHE features. To do this, complete the implementation of the parseOHEPoint function. Hint: parseOHEPoint is an extension of the parsePoint function from Part (3b) and it uses the oneHotEncoding function from Part (1d).

```
In [94]: from pyspark.mllib.regression import LabeledPoint
```

In [95]:	

```
# TODO: Replace <FILL IN> with appropriate code
def parseOHEPoint(point, OHEDict, numOHEFeats):
    """Obtain the label and feature vector for this raw observation.
    Note:
        You must use the function `oneHotEncoding` in this implementatio
n or later portions
        of this lab may not function as expected.
    Args:
        point (str): A comma separated string where the first value is t
he label and the rest
            are features.
        OHEDict (dict of (int, str) to int): Mapping of (featureID, valu
e) to unique integer.
        numOHEFeats (int): The number of unique features in the training
 dataset.
    Returns:
        LabeledPoint: Contains the label for the observation and the one
-hot-encoding of the
            raw features based on the provided OHE dictionary.
    # create a list to hold the index, feature set
    features = []
    # split each value in the comma separated text
    for index,feature in enumerate(point.split(',')[1:]):
        idxFeat = index,feature
        features.append( idxFeat)
    # grab the label
    label = point.split(',')[0]
    # encode it!
    encoding = oneHotEncoding(features,OHEDict,numOHEFeats)
    # create the labeled point
    labelPoint = LabeledPoint(label, encoding)
    # return the labelled point
    return labelPoint
      raw data = sorted([(i, x) for (i, x) in enumerate(point.split(",")
[1:1)1)
      return LabeledPoint(point.split(",")[0], oneHotEncoding(raw data,
 OHEDict, numOHEFeats))
OHETrainData = rawTrainData.map(lambda point: parseOHEPoint(point, ctrOH
EDict, numCtrOHEFeats))
OHETrainData.cache()
print OHETrainData.take(1)
# Check that oneHotEncoding function was used in parseOHEPoint
backupOneHot = oneHotEncoding
oneHotEncoding = None
withOneHot = False
```

```
try: parseOHEPoint(rawTrainData.take(1)[0], ctrOHEDict, numCtrOHEFeats)
except TypeError: withOneHot = True
oneHotEncoding = backupOneHot
```

```
In [96]: # TEST Apply OHE to the dataset (3d)
    numNZ = sum(parsedTrainFeat.map(lambda x: len(x)).take(5))
    numNZAlt = sum(OHETrainData.map(lambda lp: len(lp.features.indices)).tak
    e(5))
    Test.assertEquals(numNZ, numNZAlt, 'incorrect implementation of parseOHE
    Point')
    Test.assertTrue(withOneHot, 'oneHotEncoding not present in parseOHEPoin
    t')
```

- 1 test passed.
- 1 test passed.

Visualization 1: Feature frequency

We will now visualize the number of times each of the 233,286 OHE features appears in the training data. We first compute the number of times each feature appears, then bucket the features by these counts. The buckets are sized by powers of 2, so the first bucket corresponds to features that appear exactly once (2^0), the second to features that appear twice (2^1), the third to features that occur between three and four (2^2) times, the fifth bucket is five to eight (2^3) times and so on. The scatter plot below shows the logarithm of the bucket thresholds versus the logarithm of the number of features that have counts that fall in the buckets.

```
In [97]: | def bucketFeatByCount(featCount):
              """Bucket the counts by powers of two."""
             for i in range(11):
                  size = 2 ** i
                  if featCount <= size:</pre>
                      return size
             return -1
         featCounts = (OHETrainData
                        .flatMap(lambda lp: lp.features.indices)
                        .map(lambda x: (x, 1))
                        .reduceByKey(lambda x, y: x + y))
         featCountsBuckets = (featCounts
                               .map(lambda x: (bucketFeatByCount(x[1]), 1))
                               .filter(lambda (k, v): k != -1)
                               .reduceByKey(lambda x, y: x + y)
                               .collect())
         print featCountsBuckets
```

[(256, 748), (1024, 255), (2, 24076), (4, 16639), (32, 4755), (8, 1144 0), (64, 2627), (128, 1476), (16, 7752), (512, 414), (1, 162813)]

```
In [99]: import matplotlib.pyplot as plt
         x, y = zip(*featCountsBuckets)
         x, y = np.log(x), np.log(y)
         def preparePlot(xticks, yticks, figsize=(10.5, 6), hideLabels=False, gri
         dColor='#999999',
                         gridWidth=1.0):
              """Template for generating the plot layout."""
             plt.close()
             fig, ax = plt.subplots(figsize=figsize, facecolor='white',
         edgecolor='white')
             ax.axes.tick params(labelcolor='#999999', labelsize='10')
             for axis, ticks in [(ax.get xaxis(), xticks), (ax.get yaxis(), ytick
         s)]:
                 axis.set_ticks_position('none')
                 axis.set ticks(ticks)
                 axis.label.set color('#999999')
                 if hideLabels: axis.set_ticklabels([])
             plt.grid(color=gridColor, linewidth=gridWidth, linestyle='-')
             map(lambda position: ax.spines[position].set_visible(False), ['botto
         m', 'top', 'left', 'right'])
             return fig, ax
         # generate layout and plot data
         fig, ax = preparePlot(np.arange(0, 10, 1), np.arange(4, 14, 2))
         ax.set xlabel(r'$\log e(bucketSize)$'), ax.set ylabel(r'$\log e(countInB
         ucket)$')
         plt.scatter(x, y, s=14**2, c='#d6ebf2', edgecolors='#8cbfd0',
         alpha=0.75)
         pass
```


(3e) Handling unseen features

We naturally would like to repeat the process from Part (3d), e.g., to compute OHE features for the validation and test datasets. However, we must be careful, as some categorical values will likely appear in new data that did not exist in the training data. To deal with this situation, update the one-Hot Encoding () function from Part (1d) to ignore previously unseen categories, and then compute

In [100]:	

```
# TODO: Replace <FILL IN> with appropriate code
def oneHotEncoding(rawFeats, OHEDict, numOHEFeats):
    """Produce a one-hot-encoding from a list of features and an OHE dic
tionary.
    Note:
        If a (featureID, value) tuple doesn't have a corresponding key i
n OHEDict it should be
        ignored.
    Args:
        rawFeats (list of (int, str)): The features corresponding to a s
ingle observation. Each
            feature consists of a tuple of featureID and the feature's v
alue. (e.g. sampleOne)
        OHEDict (dict): A mapping of (featureID, value) to unique intege
r.
        numOHEFeats (int): The total number of unique OHE features (comb
inations of featureID and
            value).
    Returns:
        SparseVector: A SparseVector of length numOHEFeats with indicies
 equal to the unique
            identifiers for the (featureID, value) combinations that occ
ur in the observation and
            with values equal to 1.0.
    # create a list to store the indices for the raw features
    features = []
    # loop through the features of the input
    for feat in rawFeats:
        # check to see if the feature exists
        # in our dictionary, if not just ignore it
        if feat in OHEDict:
            features.append(OHEDict[feat])
    # sort the list
    features.sort()
    # create a list of 1.0s for each feature
    values = [1.] * len(features)
    # return the sparse vector
    return SparseVector(numOHEFeats, features, values)
    # alternative:
    # return SparseVector(numOHEFeats,sorted([OHEDict[x] for x in rawFea
ts if OHEDict.get(x,None) != None]),
                          [1.0 for x in rawFeats if OHEDict.get(x,None)
 != None | )
OHEValidationData = rawValidationData.map(lambda point: parseOHEPoint(po
int, ctrOHEDict, numCtrOHEFeats))
```

1 test passed.

Part 4: CTR prediction and logloss evaluation

(4a) Logistic regression

We are now ready to train our first CTR classifier. A natural classifier to use in this setting is logistic regression, since it models the probability of a click-through event rather than returning a binary response, and when working with rare events, probabilistic predictions are useful. First use LogisticRegressionWithSGD

(https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.classification.LogisticR to train a model using OHETrainData with the given hyperparameter configuration.

LogisticRegressionWithSGD returns a LogisticRegressionModel

(https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.regression.LogisticReg Next, use the LogisticRegressionModel.weights and LogisticRegressionModel.intercept attributes to print out the model's parameters. Note that these are the names of the object's attributes and should be called using a syntax like model.weights for a given model.

```
In [102]: from pyspark.mllib.classification import LogisticRegressionWithSGD

# fixed hyperparameters
numIters = 50
stepSize = 10.
regParam = 1e-6
regType = '12'
includeIntercept = True
```

```
# TODO: Replace <FILL IN> with appropriate code
         model0 = LogisticRegressionWithSGD.train(OHETrainData,\)
                                               iterations=numIters,\
                                               step=stepSize,\
                                               reqParam=regParam, \
                                               regType=regType,\
                                               intercept=includeIntercept)
         sortedWeights = sorted(model0.weights)
         print sortedWeights[:5], model0.intercept
         6934962879928263, -0.32697945415010637] 0.56455084025
In [107]:
        # TEST Logistic regression (4a)
         Test.assertTrue(np.allclose(model0.intercept, 0.56455084025), 'incorrec
         t value for model0.intercept')
         Test.assertTrue(np.allclose(sortedWeights[0:5],
                        [-0.45899236853575609, -0.37973707648623956, -0.36996558]
         266753304,
                         -0.36934962879928263, -0.32697945415010637]), 'incorrec
         t value for model0.weights')
         1 test passed.
         1 test passed.
```

(4b) Log loss

Throughout this lab, we will use log loss to evaluate the quality of models. Log loss is defined as:

$$\ell_{log}(p,y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1-p) & \text{if } y = 0 \end{cases}$$

where p is a probability between 0 and 1 and y is a label of either 0 or 1. Log loss is a standard evaluation criterion when predicting rare-events such as click-through rate prediction (it is also the criterion used in the <u>Criteo Kaggle competition (https://www.kaggle.com/c/criteo-display-ad-challenge)</u>). Write a function to compute log loss, and evaluate it on some sample inputs.

```
In [110]: # TODO: Replace <FILL IN> with appropriate code
          from math import log
          def computeLogLoss(p, y):
               """Calculates the value of log loss for a given probabilty and labe
          1.
              Note:
                   log(0) is undefined, so when p is 0 we need to add a small value
           (epsilon) to it
                   and when p is 1 we need to subtract a small value (epsilon) from
           it.
              Args:
                  p (float): A probabilty between 0 and 1.
                  y (int): A label. Takes on the values 0 and 1.
              Returns:
                  float: The log loss value.
              epsilon = 10e-12
              # modify p if its 1 or 0
              if p == 1:
                  p = p - epsilon
              elif p == 0:
                  p = p + epsilon
              # check to see if y is 1 or 0
              if y == 1:
                  return -log(p)
              elif y == 0:
                  return -log(1-p)
              # optional additional code to throw an error if y
              # is not 0 or 1
                else:
                    return "Label must be 0 or 1"
          print computeLogLoss(.5, 1)
          print computeLogLoss(.5, 0)
          print computeLogLoss(.99, 1)
          print computeLogLoss(.99, 0)
          print computeLogLoss(.01, 1)
          print computeLogLoss(.01, 0)
          print computeLogLoss(0, 1)
          print computeLogLoss(1, 1)
          print computeLogLoss(1, 0)
```

```
0.69314718056
          0.69314718056
          0.0100503358535
          4.60517018599
          4.60517018599
          0.0100503358535
          25.3284360229
          1.00000008275e-11
          25.3284359402
In [111]:
          # TEST Log loss (4b)
          Test.assertTrue(np.allclose([computeLogLoss(.5, 1), computeLogLoss(.01,
          0), computeLogLoss(.01, 1)],
                                       [0.69314718056, 0.0100503358535, 4.605170185
          99]),
                           'computeLogLoss is not correct')
          Test.assertTrue(np.allclose([computeLogLoss(0, 1), computeLogLoss(1, 1),
           computeLogLoss(1, 0)],
                                       [25.3284360229, 1.00000008275e-11, 25.328436
          0229]),
                           'computeLogLoss needs to bound p away from 0 and 1 by ep
          silon')
          1 test passed.
          1 test passed.
```

(4c) Baseline log loss

Next we will use the function we wrote in Part (4b) to compute the baseline log loss on the training data. A very simple yet natural baseline model is one where we always make the same prediction independent of the given datapoint, setting the predicted value equal to the fraction of training points that correspond to click-through events (i.e., where the label is one). Compute this value (which is simply the mean of the training labels), and then use it to compute the training log loss for the baseline model. The log loss for multiple observations is the mean of the individual log loss values.

```
In [117]: # TODO: Replace <FILL IN> with appropriate code
          # Note that our dataset has a very high click-through rate by design
          # In practice click-through rate can be one to two orders of magnitude 1
          ower
          # sum up all the labels and divide by the total count
          classOneFracTrain = OHETrainData.map(lambda x: x.label).reduce(lambda
          x,y: x + y) / OHETrainData.count()
          print classOneFracTrain
          # compute the log loss for each data point with the fraction of
          # successful click through rates, sum them, and then divide by all
          # examples to get the average
          logLossTrBase = OHETrainData.map(lambda x: computeLogLoss(classOneFracTr
          ain,x.label))\
          .reduce(lambda x,y: x + y)\
          /OHETrainData.count()
          print 'Baseline Train Logloss = {0:.3f}\n'.format(logLossTrBase)
```

0.22717773523 Baseline Train Logloss = 0.536

```
In [118]: # TEST Baseline log loss (4c)
    Test.assertTrue(np.allclose(classOneFracTrain, 0.22717773523), 'incorrec
    t value for classOneFracTrain')
    Test.assertTrue(np.allclose(logLossTrBase, 0.535844), 'incorrect value f
    or logLossTrBase')
```

- 1 test passed.
- 1 test passed.

(4d) Predicted probability

In order to compute the log loss for the model we trained in Part (4a), we need to write code to generate predictions from this model. Write a function that computes the raw linear prediction from this logistic regression model and then passes it through a <u>sigmoid function</u>

(http://en.wikipedia.org/wiki/Sigmoid function) $\sigma(t) = (1 + e^{-t})^{-1}$ to return the model's probabilistic prediction. Then compute probabilistic predictions on the training data.

Note that when incorporating an intercept into our predictions, we simply add the intercept to the value of the prediction obtained from the weights and features. Alternatively, if the intercept was included as the first weight, we would need to add a corresponding feature to our data where the feature has the value one. This is not the case here.

```
# TODO: Replace <FILL IN> with appropriate code
In [119]:
          from math import exp \# exp(-t) = e^-t
          def getP(x, w, intercept):
               """Calculate the probability for an observation given a set of weigh
          ts and intercept.
              Note:
                  We'll bound our raw prediction between 20 and -20 for numerical
           purposes.
              Args:
                  x (SparseVector): A vector with values of 1.0 for features that
           exist in this
                      observation and 0.0 otherwise.
                  w (DenseVector): A vector of weights (betas) for the model.
                  intercept (float): The model's intercept.
              Returns:
                  float: A probability between 0 and 1.
              # take the dot product of the weights and
              # the features
              rawPrediction = x.dot(w) + intercept
              # Bound the raw prediction value
              rawPrediction = min(rawPrediction, 20)
              rawPrediction = max(rawPrediction, -20)
              # pass it through the sigmoid function
              return (1 + exp(-rawPrediction))**(-1)
          trainingPredictions = OHETrainData.map(lambda x:
          getP(x.features,model0.weights,model0.intercept))
          print trainingPredictions.take(5)
```

[0.3026288202391113, 0.10362661997434078, 0.2836342478387561, 0.1784610 2057880123, 0.5389775379218853]

1 test passed.

(4e) Evaluate the model

We are now ready to evaluate the quality of the model we trained in Part (4a). To do this, first write a general function that takes as input a model and data, and outputs the log loss. Then run this function on the OHE training data, and compare the result with the baseline log loss.

```
In [122]: # TODO: Replace <FILL IN> with appropriate code
          def evaluateResults(model, data):
               """Calculates the log loss for the data given the model.
              Args:
                  model (LogisticRegressionModel): A trained logistic regression m
          odel.
                  data (RDD of LabeledPoint): Labels and features for each observa
          tion.
              Returns:
                  float: Log loss for the data.
              # generate the predictions
              predictions = data.map(lambda x:
          getP(x.features, model.weights, model.intercept))
              # get the training labels
              labels = data.map(lambda x: x.label)
              # combine the two sets
              combine = predictions.zip(labels)
              # compute the log-loss, sum it, and divide by the count
              logLoss = combine.map(lambda (x,y): computeLogLoss(x,y))
              .reduce(lambda x,y: x + y)\
              /combine.count()
              # return the logloss
              return logLoss
          logLossTrLR0 = evaluateResults(model0, OHETrainData)
          print ('OHE Features Train Logloss:\n\tBaseline = {0:.3f}\n\tLogReg =
           {1:.3f}'
                  .format(logLossTrBase, logLossTrLR0))
          OHE Features Train Logloss:
```

Baseline = 0.536LogReg = 0.457

```
In [123]: # TEST Evaluate the model (4e)
    Test.assertTrue(np.allclose(logLossTrLR0, 0.456903), 'incorrect value fo
    r logLossTrLR0')
```

1 test passed.

(4f) Validation log loss

Next, following the same logic as in Parts (4c) and 4(e), compute the validation log loss for both the baseline and logistic regression models. Notably, the baseline model for the validation data should still be based on the label fraction from the training dataset.

```
In [124]: # TODO: Replace <FILL IN> with appropriate code
          logLossValBase = OHEValidationData.map(lambda x: computeLogLoss(classOne
          FracTrain,x.label))\
          .reduce(lambda x,y: x + y) / OHEValidationData.count()
          logLossValLR0 = evaluateResults(model0,OHEValidationData)
          print ('OHE Features Validation Logloss:\n\tBaseline = {0:.3f}\n\tLogReq
           = \{1:.3f\}'
                  .format(logLossValBase, logLossValLR0))
          OHE Features Validation Logloss:
                  Baseline = 0.528
                  LogReg = 0.457
In [125]: # TEST Validation log loss (4f)
          Test.assertTrue(np.allclose(logLossValBase, 0.527603), 'incorrect value
           for logLossValBase')
          Test.assertTrue(np.allclose(logLossValLR0, 0.456957), 'incorrect value f
          or logLossValLR0')
          1 test passed.
          1 test passed.
```

Visualization 2: ROC curve

We will now visualize how well the model predicts our target. To do this we generate a plot of the ROC curve. The ROC curve shows us the trade-off between the false positive rate and true positive rate, as we liberalize the threshold required to predict a positive outcome. A random model is represented by the dashed line.

```
In [126]: labelsAndScores = OHEValidationData.map(lambda lp:
                                                       (lp.label, getP(lp.features,
           model0.weights, model0.intercept)))
          labelsAndWeights = labelsAndScores.collect()
          labelsAndWeights.sort(key=lambda (k, v): v, reverse=True)
          labelsByWeight = np.array([k for (k, v) in labelsAndWeights])
          length = labelsByWeight.size
          truePositives = labelsByWeight.cumsum()
          numPositive = truePositives[-1]
          falsePositives = np.arange(1.0, length + 1, 1.) - truePositives
          truePositiveRate = truePositives / numPositive
          falsePositiveRate = falsePositives / (length - numPositive)
          # Generate layout and plot data
          fig, ax = preparePlot(np.arange(0., 1.1, 0.1), np.arange(0., 1.1, 0.1))
          ax.set_xlim(-.05, 1.05), ax.set_ylim(-.05, 1.05)
          ax.set_ylabel('True Positive Rate (Sensitivity)')
          ax.set xlabel('False Positive Rate (1 - Specificity)')
          plt.plot(falsePositiveRate, truePositiveRate, color='#8cbfd0',
          linestyle='-', linewidth=3.)
          plt.plot((0., 1.), (0., 1.), linestyle='--', color='#d6ebf2',
          linewidth=2.) # Baseline model
          pass
```


Part 5: Reduce feature dimension via feature hashing

(5a) Hash function

As we just saw, using a one-hot-encoding featurization can yield a model with good statistical accuracy. However, the number of distinct categories across all features is quite large -- recall that we observed 233K categories in the training data in Part (3c). Moreover, the full Kaggle training dataset includes more than 33M distinct categories, and the Kaggle dataset itself is just a small subset of Criteo's labeled data. Hence, featurizing via a one-hot-encoding representation would lead to a very large feature vector. To reduce the dimensionality of the feature space, we will use feature hashing.

Below is the hash function that we will use for this part of the lab. We will first use this hash function with the three sample data points from Part (1a) to gain some intuition. Specifically, run code to hash the three sample points using two different values for numBuckets and observe the resulting hashed feature dictionaries.

```
In [127]: from collections import defaultdict
          import hashlib
          def hashFunction(numBuckets, rawFeats, printMapping=False):
              """Calculate a feature dictionary for an observation's features base
          d on hashing.
              Note:
                  Use printMapping=True for debug purposes and to better understan
          d how the hashing works.
              Args:
                  numBuckets (int): Number of buckets to use as features.
                  rawFeats (list of (int, str)): A list of features for an observa
          tion. Represented as
                       (featureID, value) tuples.
                  printMapping (bool, optional): If true, the mappings of featureS
          tring to index will be
                      printed.
              Returns:
                  dict of int to float: The keys will be integers which represent
           the buckets that the
                      features have been hashed to. The value for a given key wil
          1 contain the count of the
                       (featureID, value) tuples that have hashed to that key.
              mapping = {}
              for ind, category in rawFeats:
                  featureString = category + str(ind)
                  mapping[featureString] = int(int(hashlib.md5(featureString).hexd
          igest(), 16) % numBuckets)
              if(printMapping): print mapping
              sparseFeatures = defaultdict(float)
              for bucket in mapping.values():
                  sparseFeatures[bucket] += 1.0
              return dict(sparseFeatures)
          # Reminder of the sample values:
          # sampleOne = [(0, 'mouse'), (1, 'black')]
          # sampleTwo = [(0, 'cat'), (1, 'tabby'), (2, 'mouse')]
```

sampleThree = [(0, 'bear'), (1, 'black'), (2, 'salmon')]

```
In [129]: # TODO: Replace <FILL IN> with appropriate code
          # Use four buckets
          sampOneFourBuckets = hashFunction(4, sampleOne, True)
          sampTwoFourBuckets = hashFunction(4, sampleTwo, True)
          sampThreeFourBuckets = hashFunction(4, sampleThree, True)
          # Use one hundred buckets
          sampOneHundredBuckets = hashFunction(100, sampleOne, True)
          sampTwoHundredBuckets = hashFunction(100, sampleTwo, True)
          sampThreeHundredBuckets = hashFunction(100, sampleThree, True)
          print '\t\t 4 Buckets \t\t\t 100 Buckets'
          print 'SampleOne:\t {0}\t\t {1}'.format(sampOneFourBuckets, sampOneHundr
          edBuckets)
          print 'SampleTwo:\t {0}\t\t {1}'.format(sampTwoFourBuckets, sampTwoHundr
          edBuckets)
          print 'SampleThree:\t {0}\t {1}'.format(sampThreeFourBuckets, sampThreeH
          undredBuckets)
```

SampleOne:

SampleTwo:

1.0}

1.0}

{'black1': 2, 'mouse0': 3}

{'black1': 14, 'mouse0': 31}

{'cat0': 0, 'tabby1': 0, 'mouse2': 2} {'bear0': 0, 'black1': 2, 'salmon2': 1}

{'cat0': 40, 'tabby1': 16, 'mouse2': 62} {'bear0': 72, 'black1': 14, 'salmon2': 5} 4 Buckets

{2: 1.0, 3: 1.0}

{0: 2.0, 2: 1.0}

SampleThree: {0: 1.0, 1: 1.0, 2: 1.0}

100 Buckets

{14: 1.0, 31: 1.0}

{40: 1.0, 16: 1.0, 62:

{72: 1.0, 5: 1.0, 14:

(5b) Creating hashed features

1 test passed.

Next we will use this hash function to create hashed features for our CTR datasets. First write a function that uses the hash function from Part (5a) with numBuckets = $2^{15} \approx 33 K$ to create a LabeledPoint with hashed features stored as a SparseVector. Then use this function to create new training, validation and test datasets with hashed features. Hint: parsedHashPoint is similar to parseOHEPoint from Part (3d).

In [132]:	

```
# TODO: Replace <FILL IN> with appropriate code
def parseHashPoint(point, numBuckets):
    """Create a LabeledPoint for this observation using hashing.
    Args:
        point (str): A comma separated string where the first value is t
he label and the rest are
            features.
        numBuckets: The number of buckets to hash to.
    Returns:
        LabeledPoint: A LabeledPoint with a label (0.0 or 1.0) and a Spa
rseVector of hashed
            features.
    .....
    # split the point
    point = point.split(',')
    # grab the label from the point
    label = point[0]
    # grab the feature space
    features = point[1:]
    # create an array for the indexed features
    idxfeat = []
    # index your features
    for i,feat in enumerate(features):
        _idxfeat = i,feat
        idxfeat.append( idxfeat)
    # convert the features to a sparse hash dictionary
    hashed = hashFunction(numBuckets,idxfeat)
    # sort the hash features
    sorted hash = sorted([(v,k) for v,k in hashed.iteritems()])
    # separate out the indices and the features
    sorted idx = [x[0]  for x  in sorted hash]
    sorted_feat = [x[1] for x in sorted_hash]
    # create the sparse vector
    vector = SparseVector(numBuckets, sorted idx, sorted feat)
    # create the labelled point
    new point = LabeledPoint(label, vector)
    # return the labelled point
    return new point
numBucketsCTR = 2 ** 15
hashTrainData = rawTrainData.map(lambda x: parseHashPoint(x,numBucketsCT
R))
hashTrainData.cache()
```

```
MIDS-W261-2016-HWK-Week12-Smith
         hashValidationData = rawValidationData.map(lambda x: parseHashPoint(x,nu
         mBucketsCTR))
         hashValidationData.cache()
         hashTestData = rawTestData.map(lambda x:
         parseHashPoint(x,numBucketsCTR))
         hashTestData.cache()
         print hashTrainData.take(1)
         [LabeledPoint(0.0, (32768,[1305,2883,3807,4814,4866,4913,6952,7117,998
         5,10316,11512,11722,12365,13893,14735,15816,16198,17761,19274,21604,222
         56,22563,22785,24855,25202,25533,25721,26487,26656,27668,28211,29152,29
         In [134]: # TEST Creating hashed features (5b)
         hashTrainDataFeatureSum = sum(hashTrainData
                                  .map(lambda lp: len(lp.features.indices))
                                  .take(20))
         hashTrainDataLabelSum = sum(hashTrainData
                                .map(lambda lp: lp.label)
                                .take(100))
         hashValidationDataFeatureSum = sum(hashValidationData
                                      .map(lambda lp:
         len(lp.features.indices))
                                       .take(20))
         hashValidationDataLabelSum = sum(hashValidationData
                                     .map(lambda lp: lp.label)
                                     .take(100))
         hashTestDataFeatureSum = sum(hashTestData
                                 .map(lambda lp: len(lp.features.indices))
                                 .take(20))
         hashTestDataLabelSum = sum(hashTestData
                               .map(lambda lp: lp.label)
                               .take(100))
         Test.assertEquals(hashTrainDataFeatureSum, 772, 'incorrect number of fea
         tures in hashTrainData')
         Test.assertEquals(hashTrainDataLabelSum, 24.0, 'incorrect labels in hash
         TrainData')
         Test.assertEquals(hashValidationDataFeatureSum, 776,
                          'incorrect number of features in hashValidationData')
         Test.assertEquals(hashValidationDataLabelSum, 16.0, 'incorrect labels in
          hashValidationData')
         Test.assertEquals(hashTestDataFeatureSum, 774, 'incorrect number of feat
         ures in hashTestData')
         Test.assertEquals(hashTestDataLabelSum, 23.0, 'incorrect labels in hashT
         estData')
         1 test passed.
         1 test passed.
```

¹ test passed.

¹ test passed.

¹ test passed.

¹ test passed.

(5c) Sparsity

Since we have 33K hashed features versus 233K OHE features, we should expect OHE features to be sparser. Verify this hypothesis by computing the average sparsity of the OHE and the hashed training datasets.

Note that if you have a SparseVector named sparse, calling len(sparse) returns the total number of features, not the number features with entries. SparseVector objects have the attributes indices and values that contain information about which features are nonzero. Continuing with our example, these can be accessed using sparse.indices and sparse.values, respectively.

```
In [135]: # TODO: Replace <FILL IN> with appropriate code
          def computeSparsity(data, d, n):
               """Calculates the average sparsity for the features in an RDD of Lab
          eledPoints.
              Args:
                  data (RDD of LabeledPoint): The LabeledPoints to use in the spar
          sity calculation.
                  d (int): The total number of features.
                  n (int): The number of observations in the RDD.
              Returns:
                  float: The average of the ratio of features in a point to total
           features.
              # get the count of features for each point
              numFeat = data.map(lambda x: len(x.features.values))
              # get sparsity for each point
              pointSparse = numFeat.map(lambda x: float(x)/float(d))
              # get the total sparsity and divide it by the total number
              # of observations
              avgSparse = float(pointSparse.reduce(lambda x,y: x + y)) / float(n)
              # return the average sparsity
              return avgSparse
          averageSparsityHash = computeSparsity(hashTrainData, numBucketsCTR, nTra
          in)
          averageSparsityOHE = computeSparsity(OHETrainData, numCtrOHEFeats, nTrai
          print 'Average OHE Sparsity: {0:.7e}'.format(averageSparsityOHE)
          print 'Average Hash Sparsity: {0:.7e}'.format(averageSparsityHash)
```

Average OHE Sparsity: 1.6717677e-04 Average Hash Sparsity: 1.1805561e-03

(5d) Logistic model with hashed features

1 test passed.

Now let's train a logistic regression model using the hashed features. Run a grid search to find suitable hyperparameters for the hashed features, evaluating via log loss on the validation data. Note: This may take a few minutes to run. Use 1 and 10 for stepSizes and 1e-6 and 1e-3 for regParams.

```
In [138]: numIters = 500
    regType = '12'
    includeIntercept = True

# Initialize variables using values from initial model training
    bestModel = None
    bestLogLoss = 1e10
```

```
In [139]:
         # TODO: Replace <FILL IN> with appropriate code
          stepSizes = [1,10]
          regParams = [1e-6, 1e-3]
          for stepSize in stepSizes:
              for regParam in regParams:
                  model = (LogisticRegressionWithSGD
                            .train(hashTrainData, numIters, stepSize, regParam=regP
          aram, regType=regType,
                                   intercept=includeIntercept))
                   logLossVa = evaluateResults(model, hashValidationData)
                  print ('\tstepSize = {0:.1f}, regParam = {1:.0e}: logloss = {2:.
          3f}'
                          .format(stepSize, regParam, logLossVa))
                   if (logLossVa < bestLogLoss):</pre>
                       bestModel = model
                       bestLogLoss = logLossVa
          print ('Hashed Features Validation Logloss:\n\tBaseline = {0:.3f}\n\tLog
          Req = \{1:.3f\}'
                  .format(logLossValBase, bestLogLoss))
                  stepSize = 1.0, regParam = 1e-06: logloss = 0.475
                  stepSize = 1.0, regParam = 1e-03: logloss = 0.475
                  stepSize = 10.0, regParam = 1e-06: logloss = 0.450
                  stepSize = 10.0, regParam = 1e-03: logloss = 0.452
          Hashed Features Validation Logloss:
                  Baseline = 0.528
                  LogReg = 0.450
In [141]: print bestLogLoss
          # TEST Logistic model with hashed features (5d)
          Test.assertTrue(np.allclose(bestLogLoss, 0.4481683608), 'incorrect value
           for bestLogLoss')
          0.449740139952
          1 test failed. incorrect value for bestLogLoss
```

Visualization 3: Hyperparameter heat map

We will now perform a visualization of an extensive hyperparameter search. Specifically, we will create a heat map where the brighter colors correspond to lower values of logLoss.

The search was run using six step sizes and six values for regularization, which required the training of thirty-six separate models. We have included the results below, but omitted the actual search to save time.

In [142]: from matplotlib.colors import LinearSegmentedColormap

```
# Saved parameters and results. Eliminate the time required to run 36 m
odels
stepSizes = [3, 6, 9, 12, 15, 18]
regParams = [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2]
logLoss = np.array([[ 0.45808431, 0.45808493, 0.45809113, 0.45815333,
  0.45879221, 0.46556321],
                    [ 0.45188196, 0.45188306, 0.4518941,
                                                            0.4520051,
  0.45316284, 0.46396068],
                    [0.44886478, 0.44886613, 0.44887974, 0.44902096,
  0.4505614,
              0.463711531,
                    [ 0.44706645, 0.4470698,
                                              0.44708102, 0.44724251,
  0.44905525, 0.46366507],
                    [0.44588848, 0.44589365, 0.44590568, 0.44606631,
  0.44807106, 0.46365589],
                    [0.44508948, 0.44509474, 0.44510274, 0.44525007,
  0.44738317, 0.4636540511)
numRows, numCols = len(stepSizes), len(regParams)
logLoss = np.array(logLoss)
logLoss.shape = (numRows, numCols)
fig, ax = preparePlot(np.arange(0, numCols, 1), np.arange(0, numRows,
1), figsize=(8, 7),
                     hideLabels=True, gridWidth=0.)
ax.set xticklabels(regParams), ax.set yticklabels(stepSizes)
ax.set xlabel('Regularization Parameter'), ax.set_ylabel('Step Size')
colors = LinearSegmentedColormap.from list('blue', ['#0022ff',
'#000055'], gamma=.2)
image = plt.imshow(logLoss,interpolation='nearest', aspect='auto',
                   cmap = colors)
pass
```


(5e) Evaluate on the test set

Finally, evaluate the best model from Part (5d) on the test set. Compare the resulting log loss with the baseline log loss on the test set, which can be computed in the same way that the validation log loss was computed in Part (4f).

```
In [143]: # TODO: Replace <FILL IN> with appropriate code
# Log loss for the best model from (5d)
logLossTest = evaluateResults(bestModel, hashTestData)

# Log loss for the baseline model
logLossTestBaseline = hashTestData.map(lambda x: computeLogLoss(classOne FracTrain, x.label))\
.reduce(lambda x, y: x + y) / hashTestData.count()

print ('Hashed Features Test Log Loss:\n\tBaseline = {0:.3f}\n\tLogReg = {1:.3f}'
.format(logLossTestBaseline, logLossTest))
```

Hashed Features Test Log Loss:
 Baseline = 0.537
 LogReg = 0.457