Semi-supervised Learning for Biomedical Named-Entity Recognition

Aleksandar Bojchevski Supervisor: Prof. Burkhard Rost Advisor: Juan Miguel Cejuela

Technische Universität München

Problem statement and motivation

- Named-entity recognition in the biomedical domain
 ... mutation L173R of 3 beta-HSD type II was observed at ...
- Recognition of **mutation** mentions expressed in **natural language** ... where leucine at residue 173 was altered to an arginine in ...
- Focus on natural language
 - Has not been considered before
 - We show it is significant

NL mention definition

subclass	example
ST: Standard	p.18G>K
SS: Semi-Standard	Gly 18 to Lys
NL : Natural Language	Glycine was substituted by Lysine at residue 18

- Algorithmic definition
- Heuristics
- Exclusive definer

Landscape of methods and corpora

Corpora and methods

Corpus	Method capability	# Documents	Year
tmVar [1]	ST, some SS	500 abstracts	2013
MutationFinder [2]	ST	588 abstracts	2007
SETH [3]	mostly ST	630 abstracts	2014

- IDP4 corpus [4]
 - 85 abstracts and 78 full texts
 - 3 annotators, 87.23% inter-annotator agreement

Goals

- Study significance of NL
- Oevelop method
 - Create NL corpus
 - Better than state-of-the art for ST
 - Fairly well for NL and SS
- Oreate useful tool for the community

Goal 1: Significance of NL mentions

- Number of NL mentions
 - Only 3% for tmVar
 - Less than 5% for SETH
 - Between 16% and 27% for IDP4
- NL mentions that are not translated into an ST mention within the same text
 - Between 5% and 12% of all mentions
 - Between 32% and 45% of documents contain at least one
- Abstracts vs. Full texts
 - Around 8% for full texts
 - Between 14% and 19% for abstracts

Goal 2: Develop state-of-the-art method

- Conditional random fields (CRFs)
- Semi-supervised learning
 - Unsupervised feature learning
 - Active learning
- Postprocessing

Goal 3: nalaf - (Na)tural (La)nguage (F)ramework

Goal 3: nala

nala Processing Pipeline

reading preprocessing feature generation learning and evaluation postprocessing writing

Dataset object gets passed through the modules

- Built on top of nalaf
- Hand-crafted mutation specific features
- Natural language definers
- Postprocessing module

Unsupervised feature learning

- Latent representation
- Word representations
 - Clustering (Brown)
 - Distributional representations (LSA, LDA)
- Neural word embeddings
 - Train a neural network on unlabeled data
 - Continuous bag-of-words (CBOW) vs. skip-gram architecture

Continuous bag-of-words

- One-hot representation
- Predict the word at position t, based on the words in its surrounding context
- Each row in W' corresponding to an embedding for a particular word
- Infer N = 100 dimensional representation, with a context of 10 words
- Complete MEDLINE/Pubmed database

Figure: CBOW architecture [5]

Active learning

Postprocessing

- Fix wrong predictions
 - Split multiple mentions

```
G187A/A283C ⇒ G187A / A283C
```

Fix boundary

```
G75fsX1 07 \implies G75fsX107
```

$$\mathsf{p.}(\mathsf{Glu1500Val}\,) \implies \mathsf{p.}(\mathsf{Glu1500Val})$$

- Improve performance
 - Positive patterns: include false negatives
 - Negative patterns: remove false positive

nala performance

• tmVar corpus

method	precision	recall	F_1 score
tmVar	0.9138	0.9140	0.9139
nala	0.9487 ± 0.0011	0.9159 ± 0.0015	0.9320 ± 0.0012

• IDP4+ corpus

subclass	Precision	Recall	F_1 score
ST	0.9508 ± 0.0008	0.9374 ± 0.0018	0.9440 ± 0.0011
NL	0.7347 ± 0.0061	$0.5538\ \pm0.0059$	$0.6316\ \pm0.0053$
SS	0.5556 ± 0.0108	$0.3191\ \pm0.0092$	0.4054 ± 0.0084
all	0.9566 ± 0.0007	$0.9221\ \pm0.0018$	$0.9390\ \pm0.0011$

Bootstrapping

Key findings

- Neural word embeddings
 - F₁ score increase of around 4.0% for NL
 - High modeling power compared to hand-crafted features
- Postprocessing
 - F_1 score increase of around 3.7% for tmVar corpus
 - F_1 score increase of around 5.3% for IDP4 corpus
- Use mutation specific tokenization
- Bootstrapping was helpful in increasing SS and NL performance
- Merging strategies: intersection and priority consistently outperforms other strategies

Conclusion

Achieved all of our goals:

- NL mentions are indeed significant with more than 32% of documents having at least one mention not translated to ST
- We extended the IDP4 corpus to IDP4+, adding NL and SS mentions in a series of 11 iterations
- ② nala outperform the state-of-the-art method for ST mentions with $F_1 = \mathbf{0.9444} \pm 0.0011$
- **②** nala performs fairly well for NL mentions with $F_1 = \mathbf{0.6316} \pm 0.0053$
- The nalaf framework and the nala method, available at: https://github.com/Rostlab/nalaf https://github.com/Rostlab/nala

Thank you!

- Rostlab
- Prof. Burkhard Rost
- Juan Miguel Cejuela
- Carsten Uhlig
- DAAD
- My family

References

- Chih-Hsuan Wei, Bethany R Harris, Hung-Yu Kao, and Zhiyong Lu. trwar: a text mining approach for extracting sequence variants in biomedical literature. Bioinformatics, page btt156, 2013.
- [2] J Gregory Caporaso, William A Baumgartner, David A Randolph, K Bretonnel Cohen, and Lawrence Hunter. Mutationfinder: a high-performance system for extracting point mutation mentions from text. Bioinformatics, 23(14):1862–1865, 2007.
- Philippe Thomas, Tim Rocktäschel, Yvonne Mayer, and Ulf Leser. SETH: SNP Extraction Tool for Human Variations. http://rockt.github.io/SETH/. 2014.
- [4] Juan Miguel Cejuela, Aleksandar Bojchevski, Rustem Bekmukhametov, Sanjeev Karn, and Shpend Mahmuti. Idp4 corpus, 2015.
- [5] Xin Rong, word2vec parameter learning explained. arXiv preprint arXiv:1411.2738, 2014.