LISTA DE TAREFAS PENDENTES

Motivação sobre grupos.	5
Teorema de Sylow	31
Grupos livres	31
Grupos Solúveis	31
Grupos Nilpotentes	31

ÁLGEBRA

José Antônio O. Freitas

Curso de Verão DMA - UFV 2015

Notas de Aula¹

¹⊕⊕⊛⊚ Este texto está licenciado sob uma Licença Creative Commons Atribuição-NãoComercialCompartilhaIgual 3.0 Brasil http://creativecommons.org/licenses/by-nc-sa/3.0/br/deed.pt_BR.

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0 . Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "As IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

SUMÁRIO

1	Grupos			
	1.1	Definição e Propriedades	5	
	1.2	Subgrupos	9	
	1.3	Teorema de Lagrange	12	
	1.4	Subgrupos Normais e Grupos Quocientes	16	
	1.5	Homomorfismo de Grupos	19	
	1.6	Classes de Conjugação	26	
	1.7	Grupos Cíclicos	29	
Bibliografia				
Índice Remissivo				

SUMÁRIO 4

CAPÍTULO 1

GRUPOS

Texto introdutório_____

Motivação sobre grupos.

1.1 Definição e Propriedades

Definição 1.1. Um grupo G é um conjunto não vazio munido com uma operação binária * tal que

- (i) Para todo x, y, $z \in G$: (x * y) * z = x * (y * z), isto \acute{e} , a operação $* \acute{e}$ associativa.
- (ii) Existe $e \in G$ tal que x * e = e * x = x para todo $x \in G$. Tal elemento E é chamado de **elemento neutro** ou **unidade**.
- (iii) Para cada $x \in G$, existe $y \in G$ tal que x * y = y * x = e. O elemento y é chamado de **inverso** de x e é denotado por $y = x^{-1}$.

Denotamos um grupo G, cuja operação binária é *, por (G,*). Quando * é a soma, dizemos que (G,*) é um grupo aditivo. Se * é a multiplicação, dizemos que (G,*) é um grupo multiplicativo. Caso não haja possibilidade de confusão em relação à operação do grupo, diremos simplesmente que G é um grupo.

Observação 1.1.1. Para simplificar a notação vamos escrever x * y = xy para x e y elementos de um grupo (G, *).

Definição 1.2. *Um grupo* (G, *) *é chamado de grupo comutativo ou abeliano quando a operação * <i>é comutativa, ou seja,* x * y = y * x *para todo* $x, y \in G$.

Exemplos 1.1.1. (1) *Grupos aditivos:* \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .

- (2) $(M_n(K), +)$ é um grupo abeliano;
- (3) $(GL_n(K), \cdot)$, onde K é um corpo e $GL_n(K)$ denota as matrizes invertíveis com entradas em K. $GL_n(K)$ não é um grupo abeliano.
- (4) Seja X um conjunto não vazio. Denote por $S_X = \{\sigma : X \to X \mid \sigma \text{ \'e uma bijeção}\}$. O conjunto S_X com a composição de funções \acute{e} um grupo. No caso em que $X = \{1, 2, ..., n\}$, obtemos $S_n = \{(1), (12), (13), (23), (123), ..., (123 \cdots n)\}$ o grupo das permutações em n elementos. Em geral, S_X não \acute{e} abeliano.
- (5) Para qualquer inteiro n seja

$$\mu_n = \{ \zeta^k : 0 \le k \le n \}$$

onde $\zeta = e^{2\pi i/n} = \cos(2\pi/n) + i \mathrm{sen}\,(2\pi/n)$. Então μ_n é um grupo abeliano multiplicativo.

(6) Seja X um conjunto. Se U e V são subconjuntos de X defina

$$U - V = \{x \in U \mid x \notin V\}.$$

O grupo Boleano $\mathcal{B}(X)$ é a família de todos os subconjuntos de X munido da adição simétrica A + B onde

$$A + B = (A - B) \cup (B - A).$$

Assim $\mathcal{B}(X)$ é um grupo comutativo, o elemento neutro e \emptyset e $A^{-1} = A$ pois $A + A = \emptyset$.

Lema 1.1.1. *Seja* (*G*,*) *um grupo*.

(i) Vale a lei do cancelamento: se x * a = x * b ou a * x = b * x, então a = b.

Figura 1.1: A soma A + B é representada pela área em azul:

- (ii) O elemento neutro é único.
- (iii) Existe um único inverso para cada $x \in G$.
- (iv) Para todos $x, y \in G$ temos $(x * y)^{-1} = y^{-1} * x^{-1}$. Por indução, $x_1, x_2, \dots x_{n-1}, x_n \in G$ $(x_1 * x_2 * \dots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \dots * x_2^{-1} * x_1^{-1}.$
- (v) Para todo $x \in G, (x^{-1})^{-1} = x$.

Definição 1.3. Se G é um grupo e se $a \in G$, defina as **potências** a^n , para $n \ge 1$, como sendo

$$a^1 = a \quad e \quad a^{n+1} = a^n a.$$

Definimos $a^0 = 1$ e se n é um inteiro positivo, definimos

$$a^{-n} = (a^{-1})^n$$
.

Lema 1.1.2. *Se* G *é um grupo e* a, $b \in G$, *então* $(ab)^{-1} = b^{-1}a^{-1}$.

Lema 1.1.3. Sejam G um grupo, $a, b \in G$ e $m, n \ge 1$. Então

$$a^{m+n} = a^m a^n$$

$$(a^m)^n = a^{mn}.$$

Figura 1.2: A associatividade é representada pela área em azul:

Proposição 1.1.1. *Sejam G um grupo, a, b* \in *G e m, n* \in \mathbb{Z} .

- (i) Se a e b comutam, então $(ab)^n = a^n b^n$.
- (ii) $(a^m)^n = a^{mn}$
- (iii) $a^{m}a^{n} = a^{m+n}$

Definição 1.4. Seja G um grupo e $a \in G$. Se $a^k = 1$ para algum $k \ge 1$, então o menor expoente $k \ge 1$ é chamado de **ordem** de a. Se não existe tal potência, dizemos que a tem **ordem infinita**.

Teorema 1.1. Se $a \in G$ é um elemento de ordem n, então $a^m = 1$ se, e somente se, $n \mid m$.

Prova: Suponha que $a^m = 1$. Assim pelo Algorítmo da Divisão de Euclides, existem inteiros q e r tais que

$$a^m = a^{nq+r}$$

onde $0 \le r \le n$. Assim

$$a^r = a^m a^{-nq} = 1.$$

Se r > 0, obtemos uma contradição com a ordem de a. Logo r = 0 e portanto n|m. Agora, se n|m, então

$$a^{m} = a^{nq} = 1$$

como queríamos.

Proposição 1.1.2. *Se* G é um grupo finito, então todo $x \in G$ tem ordem finita.

Prova: Seja $x \in G$. Considere o conjunto $\{1, x, x^2, ..., x^n, ...\}$. Como G é finito, existem inteiros m > n tais que $x^m = x^n$, isto é, $x^{m-n} = 1$. Portanto x tem ordem finita.

1.2 Subgrupos

Definição 1.5. Seja (G, \cdot) . Um conjunto não vazio H de G é um **subgrupo**, que denotaremos por $H \le G$, quando com a operação de G, o conjunto H é um grupo, isto é, quando as condições seguintes são satisfeitas:

- (i) $h_1h_2 \in H$ para todos $h_1, h_2 \in H$;
- (*ii*) $1 \in H$;
- (iii) Se $x \in H$, então $x^{-1} \in H$.

Proposição 1.2.1. Um subconjunto H de um grupo G é um subgrupo se, e somente se, H é não vazio e para quaisquer x, $y \in H$ temos $xy^{-1} \in H$.

Prova: A ida é imediata. Agora, suponha que H não é vazio e que $xy^{-1} \in H$ para todos x, $y \in H$. Assim tomando $x \in H$ temos $1 = xx^{-1} \in H$. Se $y \in H$, então $y^{-1} = 1y^{-1} \in H$ e finalmente se x e $y \in H$, então $xy = x(y^{-1})^{-1} \in H$. Portanto H é um subgrupo de G.

Exemplos 1.2.1. (1) Se G é um grupo, então {1} e G são subgrupos de G chamados de **trivias**.

- (2) $(2\mathbb{Z}, +)$ é um subgrupo de $(\mathbb{Z}, +)$. De maneira geral, se n é um inteiro qualquer, então $(n\mathbb{Z}, +)$ é um subgrupo de $(\mathbb{Z}, +)$.
- (3) O conjunto $V = \{(1), (12)(34), (13)(24), (14)(23)\}$ é um subgrupo de S_4 .
- (4) Seja G um grupo qualquer. COnsidere o subconjunto

$$Z(G) = \{x \in G \mid xg = gx \ para \ todo \ g \in G\}.$$

Mostre que $Z(G) \leq G$. Este subgrupo Z(G) é chamado de **centro** de G. O grupo G é abeliano se, e só se, Z(G) = G.

Proposição 1.2.2. *Um conjunto não vazio de um grupo finito G é um subgrupo de G se, e somente se, H é fechado, isto é, se dados a e b* \in *H, então ab* \in *H. Em particular, um subconjunto não vazio de S_n é um subgrupo se, e somente se, é fechado.*

Prova: A ida é imediata. Para a volta, como G é finito todos os seus elementos têm ordem finita. Dado $x \in H$, então existe um inteiro n tal que $x^n = 1$. Assim $1 \in H$, pois H é fechado. Além disso, $x^{-1} = x^{n-1} \in H$. Finalmente, se x e $y \in H$, então $xy^{-1} = xy^{m-1} \in H$, onde m é um inteiro tal que $y^m = 1$. Portanto H é um subgrupo de G.

- **Observações 1.2.1.** (1) A Proposição 1.2.2 pode falhar se G for um grupo infinito. Por exemplo, seja $G = \mathbb{Z}$ o grupo aditivo dos inteiros. O conjunto $H = \mathbb{N}$ é fechado, mas não é um subgrupo de \mathbb{Z} .
 - (2) Para Galois, 1830, um grupo era simplesmente um conjunto fechado H de S_n . Foi A. Cayley, em 1854 o primeiro a definir um grupo abstrato mencionando explicitamente a associatividade, o inverso e elemento neutro.

Vamos fixar algumas notações: se H e K são subconjuntos de um grupo G (em particular, se H e K são subgrupos de G) definimos

$$HK = \{hk \mid h \in H \ k \in K\}$$

 $H^{-1} = \{h^{-1} \mid h \in H\}.$

Em geral HK não é um subgrupo de G, mesmo quando H e K o são. (Apresente alguns exemplos!)

Dado um subconjunto não vazio *S* de *G*, denotamos

$$\langle S \rangle = \{a_1 \dots a_n \mid n \in \mathbb{N}, a_i \in S \text{ ou } a_i \in S^{-1}\}.$$

Quando o conjunto S for finito, digamos $S = \{a_1, \dots, a_n\}$ escreveremos

$$\langle \{a_1,\ldots,a_n\}\rangle = \langle a_1,\ldots,a_n\rangle.$$

Quando $g \in G$ escrevemos

$$\langle g \rangle = \{\dots, g^{-2}, g^{-1}, 1, g, g^2, \dots\} = \{g^t \mid t \in \mathbb{Z}\}.$$

Proposição 1.2.3. Sejam G um grupo e S um subconjunto não vazio de G. Então o conjunto $\langle S \rangle$ é um subgrupo de G.

Prova: Como $S \neq \emptyset$, então $1 \in \langle S \rangle$. Dados $x, y \in S$ temos

$$x = a_1 a_2 \dots a_m$$

$$y = b_1 b_2 \dots b_n$$

com $a_i, b_j \in S$ ou $a_i, b_j \in S^{-1}$ para todo i e todo j. Logo $y^{-1} = b_n^{-1} \dots b_2^{-1} b_1^{-1}$ para todo j, daí $xy^{-1} = a_1 \dots a_m b_n^{-1} \dots b_2^{-1} b_1^{-1} \in \langle S \rangle$.

Portanto $\langle S \rangle$ é um subgrupo de G.

Definição 1.6. Sejam G um grupo e S um subconjunto não vazio de G. Então $\langle S \rangle$ é chamado de subgrupo gerado por S.

 \Diamond

Definição 1.7. Um grupo é **cíclico** quando ele pode ser gerado por um elemnto, isto é, quando $G = \langle g \rangle$ para algum $g \in G$.

Definição 1.8. A **ordem** de um grupo G é o número de elementos em G.

Proposição 1.2.4. Seja G um grupo finito e seja $\alpha \in G$. Então a ordem de α é igual ao número de elementos em $\langle \alpha \rangle$, isto é,

$$|\alpha| = |\langle \alpha \rangle|$$
.

Prova: Como G é finito, existe um menor inteiro $k \ge 1$ tal que $1, \alpha, \alpha^2, \ldots, \alpha^{k-1}$ são todos as potências distintas de α , enquanto que em $1, \alpha, \alpha^2, \ldots, \alpha^{k-1}, \alpha^k$ temos repetições de potências. Daí $\alpha^k = \alpha^i$ para algum $0 \le i \le k-1$. Se $i \ge 1$, então $\alpha^{k-i} = 1$, o que contradiz a escolha de k. Logo $a^k = a^0 = 1$ e assim k é a ordem de α .

Agora seja $H=\{1,\alpha,\alpha^2,\ldots,\alpha^{k-1}\}$. Então |H|=k. Seja $\alpha^i\in\langle\alpha\rangle$, com $i\in\mathbb{Z}$. Pelo Algorítmo da Divisão de Euclides, existem $q,r\in\mathbb{Z}$ tais que i=qk+r, com $0\le r< k$. Assim $\alpha^i=\alpha^{qk}\alpha^r=\alpha^r\in H$, isto é, $\langle\alpha\rangle\subseteq H$. Como $H\subseteq\langle\alpha\rangle$ pela definição de H, então $H=\langle\alpha\rangle$. Portanto,

$$|\alpha| = |\langle \alpha \rangle|$$

como queríamos.

Teorema 1.2. Se $G = \langle a \rangle$ é um grupo cíclico de ordem n, então a^k é um gerador de G se, e somente se, mdc(k, n) = 1.

Prova: Se a^k é um gerador de G, então $a = a^{kt}$ para algum $t \in \mathbb{Z}$. Daí $a^{kt-1} = 1$ e então pelo Teorema 1.1, n|(kt-1), isto é, nu = kt-1 para algum $u \in \mathbb{Z}$. Logo, mdc(k,n) = 1.

Agora, se mdc(k, n) = 1, então existem $p, q \in \mathbb{Z}$ tais que kp + nq = 1. Daí

$$a = a^{kp+nq} = a^{nq}(a^k)^p = (a^k)^p$$

e então $G = \langle a \rangle$.

Definição 1.9. O subgrupo $\langle \{xyx^{-1}y^{-1} \mid x, y \in G\} \rangle$ é o **subgrupo dos comutadores** do grupo G. Ele será denotado por G'. Note que G é abeliano se, e somente se, $G' = \{1\}$.

1.3 Teorema de Lagrange

Sejam G um grupo e H um subgrupo de G. Sobre G defina a relação \sim_E da seguinte maneira

$$y \sim_E x$$
 se, e somente se, exite $h \in H$ tal que $y = xh$.

É imediato verificar que \sim_E é uma relação de equivalência. Dado $x \in G$ a classe de equivalência de x é o conjunto

$$xH = \{y \in G \mid y \sim_E x\} = \{xh \mid h \in H\}$$

que chamaremos de **classe lateral à esquerda** de H em G. Quando não houver chance de confusão, diremos simplesmente classe lateral de x à esquerda. Observe que $y \in xH$ se, e só se, yH = xH.

Analogamente, podemos definir a seguinte relação de equivalência:

$$y \sim_D x$$
 se, e somente se, exite $h \in H$ tal que $y = hx$.

Obtemos assim as classes laterais à direita de H em G. A classe lateral de x à direita é dada por

$$Hx=\{y\in G\mid y\sim_D x\}=\{hx\mid h\in H\}.$$

Definição 1.10. Dado um grupo G e H um subgrupo de G, o conjunto das classes laterais à esquerda de H em G é denotado por

$$\left(\frac{G}{H}\right)_E = \{xH \mid x \in G\}.$$

Analogamente, definimos

$$\left(\frac{G}{H}\right)_D = \{Hy \mid y \in G\}.$$

Definição 1.11. A cardinalidade do conjunto das classes laterais à esquerda, $(G/H)_E$, é o **índice** de H em G e será denotado por [G:H].

Observação 1.3.1. O índice de H em G também é a cardinalidade do conjunto das classes laterais à direita de H em G. De fato, é imediato verificar que a aplicação

$$\varphi: \left(\frac{G}{H}\right)_E \to \left(\frac{G}{H}\right)_D$$
$$xH \mapsto Hx^{-1}$$

está bem definida e é uma bijeção.

Proposição 1.3.1. Todas as classes laterais de H em G têm a mesma cardinalidade, igual à cardinalidade de H.

Prova: Basta verificar que a aplicação

$$\varphi: H \to \left(\frac{G}{H}\right)_E$$
$$x \mapsto xH$$

é uma bijeção. ♦

Teorema 1.3 (Teorema de Lagrange). Sejam G um grupo finito e H um subgrupo de G. Então

$$|G| = |H|[G:H],$$

em particular, a ordem e o índice de H dividem a ordem de G.

 \Diamond

 \Diamond

 \Diamond

Prova: Seja $\{a_1H, a_2H, \dots, a_tH\}$ a família de todas as classes laterais distintas de H em G. Então

$$G = a_1 H \cup a_2 H \cup \cdots \cup a_t H$$

e assim

$$|G| = |a_1H| + |a_2H| + \cdots + |a_tH|.$$

Mas, $|H| = |a_iH|$ para todo i = 1, ..., t, onde t = [G:H]. Portanto

$$|G| = |H|[G:H]$$

como queríamos.

Corolário 1.3.1. *Sejam G um grupo finito e* $\alpha \in G$ *. Então a ordem de* α *divide a ordem de G.*

Prova: Segue da Proposição 1.2.4 pois $|\alpha| = |\langle \alpha \rangle|$.

Corolário 1.3.2. *Seja G um grupo. Se K* \leq *H* \leq *G com K* \leq *G e H* \leq *G, então*

$$\frac{G/K}{H/K} \cong \frac{G}{H}$$
.

Prova: A prova é deixada para o leitor.

Corolário 1.3.3. Se G é um grupo finito, então $a^{|G|} = 1$ para todo $a \in G$.

Prova: Se *a* possui ordem, então pelo Corolário 1.3.1, devemos ter |G| = dm para algum $m \ge 1$. Logo $a^{|G|} = a^{dm} = 1$.

Corolário 1.3.4. Se p é um número primo, então todo grupo G de ordem p é cíclico.

Prova: Se $a \in G$, $a \ne 1$, então a tem ordem d > 1, o que é impossível. Logo $G = \langle a \rangle$.

Proposição 1.3.2. Seja G um grupo abeliano.

- (i) Se $a, b \in G$ são dois elementos de ordem finita tais que $mdc\{|a|, |b|\} = 1$, então |ab| = |a||b|.
- (ii) Se $r := \sup\{|g| : g \in G\}$ é finito, então |x| divide r para cada $x \in G$.

Prova:

(i) Sejam |a| = m, |b| = n e z = |ab|. Como a e b comutam, temos $(ab)^{mn} = (a^m)^n (b^n)^m = 1$. Logo z é um divisor de mn. Agora, $(ab)^z = 1$, daí $a^z = b^{-z} \in \langle a \rangle \cap \langle b \rangle$. Mas mdc(m, n) = 1, logo $\langle a \rangle \cap \langle b \rangle = \{1\}$. Então $a^z = b^z = 1$ e portanto z é um múltiplo de m e de n. Como m e n são relativamente primos, z é um múltiplo de mn. Portanto, z = mn como queríamos.

(ii) Inicialmente vamos provas a seguinte afirmação:

"Se $a, b \in G$ são dois elementos de ordem finita, então existe $c \in G$ tal que $|c| = mmc\{|a|,|b|\}$."

Sejam m = |a| e n = |b|. Se mdc(m, n) = 1, então pelo item anterior podemos tomar c = ab. Se $mdc(m, n) \neq 1$, escreva

$$m = p_1^{\alpha_1} \cdots p_k^{\alpha_k} p_{k+1}^{\alpha_{k+1}} \cdots p_t^{\alpha_t}$$
$$m = p_1^{\beta_1} \cdots p_k^{\beta_k} p_{k+1}^{\beta_{k+1}} \cdots p_t^{\beta_t}$$

onde $0 \le \alpha_i < \beta_i$ para i = 1, ..., k, $\alpha_j \ge \beta_j \ge 0$ para j = k + 1, ..., t e os primos p_i são todos distintos.

Considere os elementos

$$a_1 = a^{p_1^{\alpha_1} \dots p_k^{\alpha_k}}$$
$$b_1 = b^{p_{k+1}^{\beta_{k+1}} \dots p_i^{\beta_t}}.$$

Assim

$$|a_1| = p_{k+1}^{\alpha_{k+1}} \cdots p_t^{\alpha_t}$$
$$|b_1| = p_1^{\beta_1} \cdots p_k^{\beta_k}.$$

e então $mdc\{|a_1|, |b_1|\} = 1$ e pelo item anterior basta tomar $c = a_1b_1$. Logo a afirmação está provada.

Para provar o item b), suponha que $r := \sup\{|g| \mid g \in G\}$ é finito e tome $y \in G$ tal que |y| = r. Suponha que existe $x \in G$ tal que |x| não divide |y|. Assim $s = mdc\{|x|, |y|\} > r$ e pela afirmação anterior existe $x \in \langle x, y \rangle \subseteq G$ tal que |c| = s > r, o que contradiz a definição de r.

Proposição 1.3.3. Seja G um grupo e sejam K < H < G. Então

$$[G:K] = [G:H][H:K].$$

1.4 Subgrupos Normais e Grupos Quocientes

Sejam *G* um grupo e *H* um subgrupo de *G*. Considere o conjunto das classes laterais à esquerda de *H* em *G*:

$$\left(\frac{G}{H}\right) = \{xh \mid x \in G\}.$$

Queremos definir uma operação em G/H de modo que este conjunto se torne um grupo. O meio natural de fazer isso é definindo

$$(xH) \cdot (yH) = (xy)H \tag{1.1}$$

onde x, $y \in G$. Como uma mesma classe lateral possui vários representantes distintos, precisamos garantir que esta operação está bem definida, isto é, se escolhermos outros representantes das classes xH e yH o resultado não se altera. Para isso sejam x, $y \in G$ e h, $k \in H$. Então x e xh são representantes da mesma classe xH, y e yH são representantes da mesma classe yH. Assim precisamos ter

$$xyH = xhykH,$$

para todos x, $y \in G$ e para todos y, $k \in H$. Isto é, devemos ter

$$y^{-1}x^{-1}xyH = y^{-1}x^{-1}xhykH$$
$$H = y^{-1}hyH$$

para todo $y \in G$ e $h \in H$. Portanto a operação (1.1) está bem definida em G/H se, e somente se,

$$y^{-1}hy \in H$$

para todo $y \in G$ e todo $h \in H$.

 \Diamond

Proposição 1.4.1. Seja H um subgrupo de um grupo G. As afirmações seguintes são equivalentes:

(i) a operação (1.1) está bem definida;

- (ii) $g^{-1}Hg \subseteq H$, para todo $g \in G$;
- (iii) $g^{-1}Hg = H$, para todo $g \in G$;
- (iv) gH = Hg, para todo $g \in G$.

Prova: $(i) \Leftrightarrow (ii)$ Já foi feito.

- $(iii) \Leftrightarrow (iv)$ Imediato.
- $(iii) \Rightarrow (ii)$ Imediato.
- $(ii) \Rightarrow (ii)$ Suponha que $gHG^{-1} \subseteq H$ para todo $g \in G$. Sejam $h \in H$ e $g \in G$. Temos

$$h = g^{-1}(ghg^{-1})g \in g^{-1}(gHg^{-1})g \subseteq g^{-1}Hg,$$

 \Diamond

como queríamos.

Definição 1.12. Um subgrupo H é um **subgrupo normal** de G, e escrevemos H extstyle G, se ele satisfaz as afirmações equivalentes da Proposição 1.4.1. Neste caso, como as classes laterais à esquerda de H são iguais às classes laterais à direita de H, vamos chamá-las simplesmente de **classes laterais** de H.

Exemplos 1.4.1. (1) $\{1\}$ e G são subgrupos normais de G.

- (2) $Z(G) \subseteq G$. Mais geralmente, se $H \subseteq Z(G)$, então $H \subseteq G$.
- (3) $G' = \{xyx^{-1}y^{-1} \mid x, y \in G\}$ é um subgrupo normal de G.
- (4) Se [G:H] = 2, então $H \leq G$.
- (5) Se G é abeliano, então todo subgrupo de G é normal.

Teorema 1.4. Seja G um grupo e seja H um subgrupo normal de G. Então o conjunto das classes laterais, com o operação induzida de G, é um grupo.

Definição 1.13. Sejam G um grupo e H um subgrupo normal de G. O grupo de suas classes laterais, com a operação induzida de G, \acute{e} chamado de **grupo quociente** de G por H e será denotado por $\frac{G}{H}$ ou G/H.

Proposição 1.4.2. Se G é um grupo finito tal que para todo $g \in G$, $g^2 = 1$, então $|G| = 2^k$ para algum $k \in \mathbb{N}$.

Prova: Como $g^2 = 1$, para todo $g \in G$, então G é abeliano e assim todos os seus subgrupos são normais.

Se |G|=1, nada há a fazer. Suponha então que o resultado seja válido para todo grupo G de ordem menor que |G|=n>1. Tome $g\in G$, $g\neq 1$. Sabemos que $g^2=1$, assim $H=\langle g\rangle=\{1,g\}$ e H é normal em G. Considere o grupo $(G/H,\cdot)$. Um vez que $x^2=1$, então $(xH)^2=x^2H=H$, isto é, para todo $xH\in G/H$, vale que $(xH)^2=\bar{1}$. Além disso,

$$\left| \frac{G}{H} \right| = [G:H] = \frac{n}{2} < n.$$

Logo pela hipótese de indução, $|G/H| = 2^{k-1} = n/2$. Portanto, $|G| = n = (n/2)2 = 2^k$, como queríamos.

Proposição 1.4.3. Se G é um grupo com |G| = 2p, p primo impar, então

$$G = \{1, a, b, b^2, \dots, b^{p-1}, ab, ab^2, \dots, ab^{p-1}\}\$$

onde |a| = 2, $|b| = p e ab = b^i a com i = 1 ou i = p - 1$.

Prova: Como |G| = 2p, que é par, existe $a \in G$, $a \ne 1$ tal que $a^2 = 1$, isto é, $a = a^{-1}$. Agora, pela Proposição 1.4.2, existe $c \in G$ tal que |c| = p ou |c| = 2p. Se |c| = 2p, então $|c^2| = p$. Logo existe $b \in G$ tal que |b| = p. Seja $H = \langle b \rangle$. Como [G:H] = 2, então $H \le G$. Assim para $a \in G$ e $b \in H$ temos $aba^{-1} \in H$. Consequentemente, existe $1 \le i \le p-1$ tal que $aba^{-1} = b^i$. É fácil verificar que $(aba^{-1})^n = b^{ni}$ para todo n. Então como |a| = 2

$$b^{i^2} = (aba^{-1})^i = ab^i a^{-1} = b,$$

ou seja, $b^{i^2} - 1 = 1$. Mas |b| = p, daí $p|(i^2 - 1)$. Logo p|(i - 1) ou p|(i + 1). Como $1 \le i \le p - 1$, então i = 1 ou i = p - 1.

Agora, [G:H]=2, então $G=H\cup aH$ pois |a|=2, |b|=p e p é um primo ímpar. Portanto,

$$G = \{1, a, b, b^2, \dots, b^{p-1}, ab, ab^2, \dots, ab^{p-1}\}\$$

onde $ab = b^i a$ com i = 1 ou i = p - 1.

Observação 1.4.1. No caso em que i = 1, obtemos um grupo abeliano cíclico de ordem 2p. E no caso em que i = p - 1, temos um grupo não abeliano chamado **grupo dihedral** de ordem 2p.

Notação 1.13.1. *No caso geral, o grupo G da Proposição 1.4.3 será denotado por*

$$D_{2n} = \langle a, b \mid a^2 = b^n = 1, ab = b^{n-1}a \rangle = \{1, a, b, \dots, b^{n-1}, ab, \dots, ab^{n-1}\}.$$
 (1.2)

 \Diamond

 \Diamond

E é chamado de **grupo dihedral** de ordem 2n. Em alguns casos, utiliza-se também a notação D_n para o grupo (1.2)

Proposição 1.4.4. Sejam G um grupo e G' seu subgrupo dos comutadores. Então,

- (i) G/G' é abeliano.
- (ii) G' é o menor subgrupo normal de G com esta propriedade, isto é, se $H ext{ } ext{$

Proposição 1.4.5. Sejam G um grupo e Z(G) seu centro. Se o quociente G/Z(G) é cíclico, então G = Z(G). Em particular, o índice de Z(G) em G nunca é igual a um número primo.

Prova: Seja \overline{z} um gerador de G/Z(G). Dado $g \in G$, existe $i \in \mathbb{Z}$ tal que $\overline{g} = \overline{z}^i$. Logo $g = z^i h$ para algum $h \in Z(G)$. Sejam $g_1, g_2 \in G$, com $g_1 = z^i h_1$ e $g_2 = z^j h_2$, para alguns $i, j \in \mathbb{Z}$ e h_1 , $h_2 \in H$. Assim

$$g_1g_2 = z^i h_1 z^j h_2 = z^{i+j} h_1 h_2 = z^j h_2 z^i h_1 = g_2 g_1.$$

Portanto G é abeliano, isto é, G = Z(G)

1.5 Homomorfismo de Grupos

Definição 1.14. Se (G, \cdot) e (H, *) são grupos, então a aplicação $\phi : G \to H$ é um **homomorfismo** de grupos se

$$\phi(x \cdot y) = \phi(x) * \phi(y) \tag{1.3}$$

para todos $x, y \in G$. Se ϕ também é uma bijeção, então ϕ é chamada de um **isomorfismo**. Os grupos G e H são chamados de **isomorfos** e escrevemos $G \cong H$, se existe um isomorfismo $\phi: G \to H$.

Exemplos 1.5.1. (1) $Id: G \to G$ tal que Id(g) = g é o homomorfismo identidade.

- (2) $e: G \to H$ tal que $e(g) = 1_H$ é o homomorfismo **trivial**.
- (3) Seja $n \in \mathbb{Z}$ fixo. Então $\phi_n : (\mathbb{Z}, +) \to (\mathbb{Z}, +)$ tal que $\phi_n(z) = nz$ é um homomorfismo. De modo geral, se G é um grupo abeliano, então $\phi_n : (G, \cdot) \to (G, \cdot)$ tal que $\phi_n(g) = g^n$ é um homomorfismo.
- (4) Seja $H \leq G$, então $\pi: G \to G/H$ tal que $\pi(g) = gH$ é um homomorfismo chamado de **projeção canônica**.
- (5) Seja $g \in G$ fixo. Então $\phi_g : G \to G$ tal que $\phi_g(x) = gxg^{-1}$ é um isomorfismo.

Lema 1.5.1. *Seja* ϕ : $G \rightarrow H$ *um homomorfismo de grupos.*

- (i) $\phi(1_G) = 1_H$
- (ii) $\phi(g^{-1}) = (\phi(g))^{-1}$
- (iii) $\phi(g^n) = (\phi(g))^n$ para todo $n \in \mathbb{Z}$.

Prova: Exercício.

Lema 1.5.2. *Sejam G e H grupos e* ϕ : $G \rightarrow H$ *um homomorfismo. Então:*

- 1. O conjunto $\ker \phi = \{x \in G \mid \phi(x) = 1_H\}$ é um subgrupo normal de G chamado de **núcleo** ou **kernel** de ϕ .
- 2. O conjunto $\text{Im } \phi = \{y \in H \mid y = \phi(x) \text{ para algum } x \in G\}$ é um subgrupo de H chamado de *imagem* de ϕ .
- 3. Sejam $\phi: (G, \cdot) \to (H, *) \ e \ \psi: (H, *) \to (G, \times)$ dois homomorfismos de grupos. Então a composição $\psi \circ \phi: (G, \cdot) \to (G, \times)$ é um homomorfismo.

Prova: Exercício.

Lema 1.5.3. *Seja* ϕ : $G \rightarrow H$ *um homomorfismo de grupos.*

- 1. Se $P \leq G$, então $\phi(P) \leq H$ e $\phi^{-1}(\phi(P)) = P \ker \phi$.
- 2. Se $R \le H$, então $\phi^{-1}(R)$ é um subgrupo de G contendo $\ker \phi$ e $\phi(\phi^{-1}(R)) = R \cap \operatorname{Im} \phi$.

Prova:

1. A prova de que $\phi(P)$ é um subgrupo de H é deixada para o leitor. Provemos que $\phi^{-1}(\phi(P)) = P \ker \phi$. Seja $xk \in P$. Temos

$$\phi(xk) = \phi(x)\phi(k) = \phi(x) \in \phi(P)$$

daí $P \ker \phi \subseteq \phi^{-1}(\phi(P))$. Agora, seja $y \in \phi^{-1}(\phi(P))$. Por definição, $\phi(y) \in \phi(P)$ e assim existe $x \in P$ tal que $\phi(x) = \phi(y)$. Isto é, $\phi(x^{-1}y) = 1_H$, donde $x^{-1}y \in \ker \phi$. Logo $y = x(x^{-1}y) \in P \ker \phi$. Portanto, $\phi^{-1}\phi(P) = P \ker \phi$.

2. Como $R \le H$, então $1_H \in R$ e como $\phi(x) = 1_H$ para todo $x \in \ker \phi$, então $\ker \phi \subseteq \phi^{-1}(R)$. Fica a cargo do leitor provar que $\phi^{-1}(R)$ é um subgrupo de G. Provemos que $\phi(\phi^{-1}(R)) = R \cap \operatorname{Im} \phi$.

A inclusão $\phi(\phi^{-1}(R)) \subseteq R \cap \operatorname{Im} \phi$ é imediata. Agora, seja $y \in R \cap \operatorname{Im} \phi$. Assim existe $x \in G$ tal que $\phi(x) = y$. Mas $y \in R$, daí $x \in \phi^{-1}(R)$ e então $y = \phi(x) \in \phi(\phi^{-1}(R))$. Portanto, $\phi(\phi^{-1}(R)) = R \cap \operatorname{Im} \phi$.

 \Diamond

Exemplos 1.5.2. 1. O grupo dihedral D_6 é dado por

$$D_6 = \langle a, b \mid a^2 = b^3 = 1, ab = b^2 a \rangle.$$

Agora, $S_3 = \{id, \alpha, \beta, \beta^2, \alpha\beta, \alpha\beta^2\}$ onde

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}.$$

A aplicação $\phi: S_3 \rightarrow D_6$ tal que

$$\phi(id) = 1$$

$$\phi(\alpha) = a$$

$$\phi(\beta) = b$$

$$\phi(\alpha\beta) = ab$$

$$\phi(\alpha\beta^2) = ab^2$$

é um homomorfismo bijetor. Portanto $S_3 \cong D_6$.

2. Seja $G = \langle a \rangle = \{\dots, a^{-1}, 1, a, a^2, \dots\}$ um grupo cíclico infinito. É fácil verificar que ϕ : $(\mathbb{Z}, +) \to (G, \cdot)$ dada por $\phi(t) = a^t$ é um isomorfismo. Portanto $\mathbb{Z} \cong G$.

Teorema 1.5 (Teorema do Isomorfismo). *Seja* ϕ : $(G, \cdot) \rightarrow (H, *)$ *um homomorfismo de grupos.*

(1) A função

$$\overline{\phi}: \frac{G}{\ker \phi} \to \phi(G)$$

$$a \ker \phi \mapsto \phi(a)$$

é um isomorfismo.

(2) As seguintes funções

$$\{subgrupos\ de\ G\ que\ contêm\ \ker \phi\}\longleftrightarrow \{subgrupos\ de\ \phi(G)\}$$

$$P \xrightarrow{\psi} \phi(P)$$

$$\phi^{-1}(R) \xleftarrow{\sigma} R$$

são bijeções, inversas uma da outra. Além disso, estas bijeções levam subgrupos normais em subgrupos normais, isto é,

- (a) Se $P \leq G$, então $\phi(P) \leq \phi(G)$.
- (b) Se $R \leq \phi(G)$, então $\phi^{-1}(R) \leq G$.

Prova:

(1) Inicialmente precisamos verificar que $\overline{\phi}$ está bem definida. Para isso sejam $a_1 \ker \phi = a_2 \ker \phi$. Assim $a_1 = a_2 k$, onde $k \in \ker \phi$. Então

$$\phi(a_1) = \phi(a_2k) = \phi(a_2),$$

logo $\overline{\phi}(a_1 \ker \phi) = \overline{\phi}(a_2 \ker \phi)$ e então $\overline{\phi}$ está bem definida. Além disso, da definição de $\overline{\phi}$ vemos que esta aplicação é sobrejetora.

Agora, sejam $a_1 \ker \phi$, $a_2 \ker \phi \in \ker \phi$. Então

$$\overline{\phi}((a_1 \ker \phi)(a_2 \ker \phi)) = \overline{\phi}((a_1 a_2) \ker \phi) = \phi(a_1 a_2) = \phi(a_1)\phi(a_2) = \overline{\phi}(a_1 \ker \phi)\overline{\phi}(a_2 \ker \phi)$$

e daí $\overline{\phi}$ é um homomorfismo. Finalmente, se $a \ker \phi \in \ker \overline{\phi}$ então

$$\overline{\phi}(a \ker \phi) = \overline{\phi}(1_G \ker \phi)$$

daí $\phi(g) = \phi(1_G) = 1_H$, ou seja, $g \in \ker \phi$. Portanto $\ker \overline{\phi} = \{\ker \phi\}$ e então $\overline{\phi}$ é injetora. Portanto $\overline{\phi}$ é um isomorfismo de grupos. Logo

$$\frac{G}{\ker \phi} \cong \phi(G).$$

(2) Pelo Lema 1.5.3 sabemos que $\phi^{-1}(\phi(P)) = P \ker \phi$ para todo $P \leq G$ e que $\phi(\phi^{-1}(R)) = R \cap \phi(G)$ para todo $R \leq H$. Assim se $\ker \phi \subseteq P$, então $\phi^{-1}(\phi(P)) = P$ e se $R \leq \phi(G)$, então $\phi(\phi^{-1}(R)) = R$. Logo as funções ψ e σ são inversas uma da outra, isto é, são bijeções.

Agora falta provar os demais itens:

(a) Sejam $a \in \phi(P)$ e $b \in \phi(G)$. Então existem $x \in P$ e $y \in G$ tais que $\phi(x) = a$ e $\phi(y) = b$. Queremos mostrar que $b^{-1}ab \in \phi(P)$. De fato,

$$b^{-1}ab = \phi(y^{-1})\phi(x)\phi(y) = \phi(y^{-1}xy) \in \phi(P)$$

pois $P \subseteq G$. Portanto, $\phi(P) \subseteq \phi(G)$.

(b) Dados $a \in G$ e $x \in \phi^{-1}(R)$, queremos mostrar que $a^{-1}xa \in \phi^{-1}(R)$. Temos

$$\phi(a^{-1}xa) = \phi(a)^{-1}\phi(x)\phi(a) \in R$$

pois $R \le \phi(G)$. Logo $a^{-1}xa \in \phi^{-1}(R)$, isto é, $\phi^{-1}(R) \le G$, como queríamos.

 \Diamond

Corolário 1.5.1. Seja $\phi: G \to H$ um homomorfismo de grupos e seja $K \leq G$. Então a função

$$\psi: \frac{K}{K \cap \ker \phi} \to \phi(K)$$
$$a(K \cap \ker \phi) \mapsto \phi(a)$$

é um isomorfismo.

Prova: Considere o hommorfismo ϕ restrito a K;

$$\psi := \phi|_K : K \to H$$
$$h \mapsto \phi(h).$$

É imediato verificar que $\psi(K) = \phi(K)$ e que ker $\psi = \ker \phi$. Logo pelo Teorema do Isomorfismo, Teorema 1.5, temos $K/\ker \psi \cong \psi(K)$, isto é,

$$\frac{K}{K \cap \ker \phi} \cong \phi(K).$$

 \Diamond

Corolário 1.5.2. Seja H um subgrupo normal de G. Então a função

 $\{subgrupos\ (normais)\ de\ G\ que\ contêm\ H\}\longleftrightarrow \{subgrupos\ (normais)\ de\ G/H\}.$

é uma bijeção.

Prova: É fácil verificar que $\phi: G \to G/H$ dada por $\phi(a) = aH$ é um homomorfismo sobrejetivo. Aplicando a segunda parte do Teorema do Isomorfismo, Teorema 1.5, obtemos o resultado.

Teorema 1.6 (Teorema da Representação). Seja G um grupo e H um subgrupo de G tal que [G:H]=n. Então existe $N\subseteq H$, com $N \unlhd G$ tal que G/N \acute{e} um grupo isomorfo a um subgrupo de S_n . Mais ainda, N \acute{e} o "maior" subgrupo normal de G que está contido em H.

Prova: Seja $S = G/H = \{Hx_1, ..., Hx_n\}$ e $\mathcal{P}(S)$ o grupo das permutações do conjunto S. É claro que $\mathcal{P}(S) \cong S_n$.

Considere a seguinte aplicação

$$\psi: G \to \mathcal{P}(S)$$
$$a \mapsto \psi_a$$

onde $\psi_a: S \to S$ é tal que $\psi_a(Hx_i) = Hx_ia^{-1}$.

Inicialmente para $a \in G$ temos $\psi_a(Hx_i) = \psi_a(Hx_j)$ se, e só se, $Hx_ia^{-1} = Hx_ja^{-1}$. Isto é, $Hx_i = Hx_j$, logo ψ_a é injetora. Como |S| = n, então ψ_a é sobrejetiva e daí $\psi_a \in \mathcal{P}(S)$. Logo $\psi_a \in \mathcal{P}(S)$ para todo $a \in G$.

Verifiquemos agora que ψ é um homomorfismo de grupos. Dados $a, b \in G$ queremos mostrar que $\psi(ab) = \psi(a)\psi(b)$. Mas $\psi(ab) = \psi_{ab}$. Seja $Hx_i \in S$. Temos

$$\psi_{ab}(Hx_i) = Hx_i(ab)^{-1} = (Hx_ib^{-1})a^{-1} = \psi_a(\psi_b(Hx_i)) = (\psi_a \circ \psi_b)(Hx_i).$$

Portanto ψ é um homomorfismo de grupos.

Agora,

$$\ker \psi = \{a \in G \mid \psi(a) = Id_S\} = \{a \in G \mid Hx_ia^{-1} = Hx_i, i = 1, \dots, n\}.$$

Daí $a \in \ker \psi$ se, e só se, $Hx_ia^{-1} = Hx_i$ para todo i = 1, ..., n. Mas isso ocorre se, e só se, $Hx_i = Hx_ia$ para todo i = 1, ..., n. Logo $a \in \ker \psi$ se, e só se, $H = Hx_iax_i^{-1}$ para todo i = 1, ..., n. Daí $a \in \ker \psi$ se, e só se, $x_iax_i^{-1} \in H$ para todo i = 1, ..., n e então $a \in \ker \psi$ se, e só se, $a \in x_i^{-1}Hx_i$ para todo i = 1, ..., n. Mas $G = Hx_1 \cup \cdots \cup Hx_n$, uma união disjunta e como $(hx_i)^{-1}H(hx_i) = x_i^{-1}Hx_i$ para todo $h \in H$, então $a \in \ker \psi$ se, e só se, $a \in x^{-1}Hx$ para todo $x \in G$. Ou seja, $a \in \ker \psi$ se, e somente se, $a \in \cap_{x \in G}(x^{-1}Hx)$. Portanto $\ker \psi = \cap_{x \in G}(x^{-1}Hx)$.

Seja $N=\ker \psi$. Então $N \unlhd G$ e $N \subseteq H$. Agora, seja $L \unlhd G$ tal que $L \subseteq H$. Então $x^{-1}Lx=L\subseteq x^{-1}Hx$ para todo $x\in G$. Assim, $L\subseteq N=\cap_{x\in G}(x^{-1}Hx)$. Portanto N é o "maior" subgrupo normal de G contido em H.

Finalmente pelo Teorema do Isomorfismo, Teorema 1.5, temos

$$\frac{G}{\ker \psi} = \frac{G}{N} \cong \psi(G) \leq \mathcal{P}(S) \cong S_n,$$

como queríamos.

 \Diamond

 \Diamond

Corolário 1.5.3 (Teorema de Cayley). Se G é um grupo de ordem n, então G é isomorfo a um subgrupo de S_n .

Prova: Basta tomar $H = \{1\}$ no Teorema da Representação, Teorema 1.6.

1.6 Classes de Conjugação

Seja G um grupo. Dados x, $y \in G$ defina

 $x \sim_G y$ se, e somente se, existe $a \in G$ tal que $y = a^{-1}xa$.

Proposição 1.6.1. Seja G um grupo. A relação \sim_G define uma relação de equivalência em G.

Prova: A prova é deixada para o leitor.

Definição 1.15. Se $x \sim_G y$, dizemos que x e y são elementos **conjugados** em G.

Denote $a^{-1}xa = x^a$, onde $x \in G$. As seguintes propriedades são válidas:

- (1) $x^{1_G} = x$ para todo $x \in G$.
- (2) Se $y = x^a$, então $x = y^{a^{-1}}$ para todos x, y e $a \in G$.
- (3) $(x^a)^b = x^{ab}$ para todos x, $a \in b \in G$.

A classe de equivalência de *x* é dada por

$$C_x = \{y \in G \mid x \sim_G y\} = \{x^a \mid a \in G\}$$

e é chamada de **classe de conjugação** de *x* em *G*.

Se G é um grupo finito e existem n classes de conjugação com representantes x_1 , x_2 , ..., x_n então

$$G = C_{x_1} \cup C_{x_2} \cup \cdots \cup C_{x_n}$$

uma união disjunta. Assim

$$|G| = |C_{x_1}| + |C_{x_2}| + \cdots + |C_{x_n}|.$$

Observe que $C_x = \{x\}$ se, e somente se, $x \in Z(G)$ e daí a equação anterior pode ser escrita como

$$|G| = |Z(G)| + \sum_{x \notin Z(G)} |C_x|.$$
 (1.4)

 \Diamond

 \Diamond

A equação (1.4) é chamada de **equação de classes**.

Proposição 1.6.2. Seja G um grupo e $x \in G$. Então o conjunto $C_G(x) = \{a \in G \mid ax = xa\}$ é um subgrupo de G.

Prova: A cargo do leitor.

Proposição 1.6.3. *Seja G um grupo finito e x* \in *G. Então*

$$[G:C_G(x)]=|C_x|.$$

Em particular, $|C_x|$ é um divisor de |G| para todo $x \in G$.

Prova: Sejam $H = C_G(x)$ e $G/H = \{Ha \mid a \in G\}$ o conjunto de todas as classes laterais à direita de H em G. Pelo Teorema de Lagrange, Teorema 1.3, |G| = [G:H]|H|. Agora, considere a aplicação

$$\phi: \frac{G}{H} \to C_x$$

$$Ha \mapsto x^a.$$

Claramente ϕ é sobrejetora. Sejam Ha, $Hb \in G/H$ tais que $\phi(Ha) = \phi(Hb)$. Daí $x^a = x^b$ e então $x^{ab^{-1}} = 1$, isto é, $ab^{-1} \in C_G(x) = H$ e portanto Ha = Hb. Logo ϕ é injetiva. Assim

$$|C_x| = [G:C_G(x)]$$

como queríamos.

Definição 1.16. Seja p um número primo e G um grupo. Se $|G| = p^n$, $n \in \mathbb{N}$, dizemos que G \acute{e} um p-grupo.

Observação 1.6.1. Pelo Teorema de Lagrange, Teorema 1.3, todo subgrupo de um p-grupo também é um p-grupo.

Teorema 1.7. *Se* G *é um* p-*grupo* e $|G| = <math>p^n > 1$, *então* $|Z(G)| = p^m > 1$.

Prova: Pela Equação de classes, (1.4), obtemos

$$|Z(G)| = |G| - \sum_{x \notin Z(G)} |C_x|.$$

Mas para todo $x \notin Z(G)$, temos $|C_x| > 1$ e como $|C_x|$ divide |G|, então $|C_x| = p^{\alpha_x}$ para todo $x \notin Z(G)$. Como $|G| = p^n > 1$, então devemos ter $|Z(G)| = p^m > 1$.

Corolário 1.6.1. *Se p é um número primo e* $|G| = p^2$, *então G é um grupo abeliano.*

Teorema 1.8 (Teorema de Cauchy). *Seja p um divisor primo da ordem de um grupo finito G.* $Então\ existe\ a\in G\ tal\ que\ |a|=p.$

Prova: Vamos usar indução sobre a ordem de G. Se |G| = 1, nada há a fazer. Vamos supor que o teorema é válido para todo grupo H tal que $1 \le |H| < |G|$. Temos três casos para analizar.

Caso 1: G é cíclico.

Seja $G = \langle x \rangle$ e seja p um divisor primo de |G|. Neste caso $|x| = p^{\alpha k}$, onde $\alpha \geq 1$. Tome $a = x^{p^{\alpha - 1}k}$. Então $a^p = 1$ e nenhum outra potência r de a menor que p é tal que $a^r = 1$. Portanto |a| = p como queríamos.

Caso 2: G é abeliano e não cíclico.

Seja p um divisor primo de |G| e seja $x \in G$, $x \ne 1$. Se p divide |x| então pelo *Caso 1*, existe $a \in \langle x \rangle$ tal que |a| = p e assim o teorema está provado.

Suponha então que p não divide |x|. Seja $N = \langle x \rangle$. Como G é abeliano, então L = G/N é um grupo tal que p divide |L| = [G:N]. Mas $1 \le |L| < |G|$, assim pela hipótese de indução existe $\overline{b} \in L$ tal que $\overline{b} \ne \overline{1}$ e $|\overline{b}| = p$. Assim $b \notin N$ e $b^p \in N$. Seja |N| = r, então $(b^p)^r = 1$ e portanto p divide |b|. Logo pelo $Caso\ 1$, existe $a \in \langle b \rangle$ tal que |a| = p e então o teorema está provado.

Caso 3: G não abeliano

Neste caso $Z(G) \neq G$. Se p divide |Z(G)|, então basta usar o *Caso* 2. Assim suponha que p não divide |Z(G)|. Temos

$$|G| = |Z(G)| + \sum_{x \notin Z(G)} [G : C_G(x)].$$

Como p divide |G| então existe $x \notin Z(G)$ tal que p não divide $[G:C_G(x)]$. Portanto p divide |H| onde $H=C_G(x) \neq G$. Como $1 \leq |H| < |G|$, então pela hipótese de indução, existe $a \in H$ tal que |a|=p.

Portanto o teorema está provado.

 \Diamond

1.7 Grupos Cíclicos

Proposição 1.7.1. (i) Se $H \subseteq \mathbb{Z}$, então H é um subgrupo de $(\mathbb{Z}, +)$ se, e somente se, $H = n\mathbb{Z}$ para algum $n \in \mathbb{N}$.

(ii) $n\mathbb{Z} \subseteq m\mathbb{Z}$ se, e somente se, m|n. Neste caso temos $[m\mathbb{Z} : n\mathbb{Z}] = \frac{n}{m}$.

Prova:

(i) Se $H = n\mathbb{Z}$, com $n \in \mathbb{N}$, então é fácil verificar que $H \leq \mathbb{Z}$.

Agora seja $H \le \mathbb{Z}$, $H \ne \{0\}$. Tome $n = \min\{x \in H \mid x > 0\}$. Como $n \in H$ e como $H \le \mathbb{Z}$, então $n\mathbb{Z} \subseteq H$. Dado $a \in H$, existem q e $r \in \mathbb{Z}$ tais que a = qn + r com $0 \le r < n$. Mas $a, n \in H$ daí $r \in H$ e então pela minimalidade de n devemos ter r = 0. Logo $a \in n\mathbb{Z}$ e portanto $H = n\mathbb{Z}$.

(ii) É imediato verificar que $n\mathbb{Z} \subseteq m\mathbb{Z}$ se, e somente se, m|n. Suponha que $n\mathbb{Z} \le m\mathbb{Z} \le \mathbb{Z}$. Assim pelo Corolário 1.3.2 temos

$$\frac{\mathbb{Z}/n\mathbb{Z}}{m\mathbb{Z}/n\mathbb{Z}} \cong \frac{\mathbb{Z}}{m\mathbb{Z}},$$

daí

$$\left|\frac{\mathbb{Z}/n\mathbb{Z}}{m\mathbb{Z}/n\mathbb{Z}}\right| = \left|\frac{\mathbb{Z}}{m\mathbb{Z}}\right|.$$

Então

$$\frac{n}{[m\mathbb{Z}:n\mathbb{Z}]}=m$$

e portanto $[m\mathbb{Z} : n\mathbb{Z}] = \frac{n}{m}$, como queríamos.

Proposição 1.7.2. *Seja G* = $\langle a \rangle$ = {..., a^{-1} , 1, a, a^2 , ...} *um grupo cíclico de ordem infinita. Então:*

- (i) A função $\phi: (\mathbb{Z}, +) \to (G, \cdot)$ dada por $\phi(t) = a^t \acute{e}$ um isomorfismo.
- (ii) O elemento a^r gera G se, e somente se, r = -1 ou r = 1.

Prova: Prova:

- (i) É fácil verificar que ϕ definida desse jeito é um isomorfismo.
- (ii) Como ϕ é um isomorfismo, então a^r gera G se, e somente se, r gera \mathbb{Z} . Mas os únicos geradores de \mathbb{Z} são r=-1 ou r=1.

 \Diamond

Proposição 1.7.3. Seja $G = \langle a \rangle = \{1, a, \dots, a^{n-1}\}$ um grupo cíclico de ordem finita igual a n. Então:

- (i) A função $\overline{\phi}: (\mathbb{Z}/n\mathbb{Z}, +) \to (G, \cdot)$ dada por $\phi(\overline{t}) = a^t$ é um isomorfismo.
- (ii) O elemento a^r gera G se, e somente se, mdc(m, n) = 1.

Prova:

(i) Da Proposição 1.7.3 obtemos que ϕ de $\mathbb Z$ em G dada por $\phi(r)=a^r$ é sobrejetora. Além disso, $\ker \phi=n\mathbb Z$. Logo

$$\frac{\mathbb{Z}}{\ker \phi} = \frac{\mathbb{Z}}{n\mathbb{Z}} \cong G.$$

(ii) Como $\overline{\phi}$ é um isomorfismo, então a^m gera G se, e somente se, m gera $\mathbb{Z}/n\mathbb{Z}$. O que ocorre se, e somente se, mdc(m,n)=1.

 \Diamond

Proposição 1.7.4. $G = \langle a \rangle = \{1, a, \dots, a^{n-1}\}$ um grupo cíclico de ordem finita igual a n. Então:

(i) Se $H \leq G$, então H é cíclico. Mais ainda, $H = \langle a^m \rangle$ onde m é o menor inteiro positivo tal que $a^m \in H$. O subgrupo H tem ordem igual a $\frac{n}{m}$.

(ii) Se d é um divisor de n, então existe um único subgrupo H de G com ordem igual a a. Mais ainda, $H = \langle a^{\frac{n}{d}} \rangle$.

Prova:

- (i) Seja m o menor inteiro positivo $a^m \in H$. Daí $\langle a^m \rangle \subseteq H$. Agora, seja $a^\alpha \in H$. Então existem $q, r \in \mathbb{Z}$ tais que $\alpha = mq + r \operatorname{com} 0 \le r < m$. Daí $a^\alpha = a^{mq}a^r$. Como a^α , $a^m \in H$ e $H \le G$, então $a^r \in H$. Logo r = 0, devido à minimalidade de m. Portanto $H = \langle a^m \rangle$. Agora, $(a^m)^{n/m} = 1$. Seja k < n/m tal que $(a^m)^k = 1$. Logo n|mk, mas mk < n, logo k = 0. Portanto $|a^m| = \frac{n}{m}$.
- (ii) Seja d um divisor de n. Pelo item anterior, o grupo $H = \langle a^{n/d} \rangle$ tem ordem d. Vamos provar que H é único. Seja K um subgrupo de G de ordem d. Novamente pelo item anterior, $K = \langle a^m \rangle$ tal que $|K| = \frac{n}{m} = d$. Assim $m = \frac{n}{d}$ e daí $K = \langle a^{n/d} \rangle = H$, como queríamos.

Teorema de Sylow

Grupos livres

Grupos Solúveis

Grupos Nilpotentes

BIBLIOGRAFIA

- [1] Garcia, A.; Lequain, Y., Elementos de Álgebra, Impa, 2010.
- [2] Gonçalves, A, *Introdução à Álgebra*, Projeto Euclides, Impa, 2006.
- [3] Lang, S., Algebra, Boston: Addison-Wesley, 1984.
- [4] Newman, M., *Integral Matrices*, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 45, Academic Press; 1st edition 1972.

BIBLIOGRAFIA 34

ÍNDICE REMISSIVO

Homomorfismo, 19	
Imagem, 20 Isomorfismo, 20	
Projeção Canônica, 20	
Homorfismo	
Kernel, 20	
Ordem	
de elemento, 8	
de elemento, o	
Subgrupos, 9	
dos comutadores, 12	
gerados por um conjunto, 11	