1. Основні поняття мінімаксного наближення

1.1. Способи задання функцій. Норма похибки

Наближувана функціональна залежність f(x) у практичних обчисленнях найчастіше задається або аналітично або дискретно (тобто у вигляді табличного задання) [20,22]. Таблично задану функцію можна представити у вигляді

$$y_k = f_k = f(x_k), k = \overline{1, N},$$

де значення аргумента $X = \{x_k\}_1^N \in [a,b]$. Припускатимемо, що аргументи x_k упорядковані за зростанням:

$$a \le x_1 < x_2 < \ldots < x_N \le b.$$

При застосуванні чисельних методів на комп'ютері врахувати всі значення функції f(x) у всіх точках [a,b] неможливо, бо кількість чисел, які можна представити є обмежена. Тому обчислювальні методи будують так, щоб розв'язок задачі на відрізку [a,b] був еквівалентний її розв'язку на певній підмножині $X_0 \subset X \subset [a,b]$, яка містить обмежену кількость точок.

Для наближення функції f(x) використовуємо простіший вираз

$$F(A, x) = F(a_0, a_1, ..., a_m; x),$$
(1)

3 m+1 параметром [37]. Частинним випадком виразу (1) € многочлен степеня m

$$P_m(x) = a_0 + a_1 x + \ldots + a_m x^m. (2)$$

Точність наближення функції f(x) за допомогою виразу (1) на проміжку [a,b] характеризується віддалю між цими функціями. Спосіб виміру цієї віддалі визначає норму похибки наближення функції f(x) за допомогою виразу (1) на проміжку [a,b] (або на множині X). У загальному випадку у виразах для похибки використовують зважену віддаль (зважену різницю)

$$\rho(x) = \frac{f(x) - F(A, x)}{w(x)},\tag{3}$$

де вага w(x) > 0 при $x \in [a,b]$, $w_k = w(x_k), k = \overline{1,N}$.

Вибір певного виду норми похибки залежить передусім від конкретних задач, які ставлять при наближенні функцій. У теоретичних дослідженнях часто використовується норма похибки L_p [1,23]

$$\| f - F \|_{L_p} = \left(\int_a^b \left| \frac{f(x) - F(A, x)}{w(x)} \right|^p dx \right)^{\frac{1}{p}} = \left(\sum_{k=1}^N \left| \frac{y_k - F(A, x_k)}{w_k} \right|^p \right)^{\frac{1}{p}}.$$

Найчастіше використовують норми L_1 , L_2 та L_{∞} .

Норму L_1 вживають для зменшення суми площ, які обмежуються кривими y = f(x) та y = F(A, x) [20]

$$|| f - F ||_{L_1} = \int_a^b \frac{|f(x) - F(A, x)|}{w(x)} dx = \sum_{k=1}^N \frac{|y_k - F(A, x_k)|}{w_k}.$$

Норму L_2 або середньоквадратичну похибку зазвичай використовують при обробці дослідних даних

$$\|f - F\|_{L_2} = \left(\int_a^b \left(\frac{f(x) - F(A, x)}{w(x)}\right)^2 dx\right)^{1/2} = \left(\sum_{k=1}^N \left(\frac{y_k - F(A, x_k)}{w_k}\right)^2\right)^{1/2}.$$

Норму L_{∞} (чебишовська норма або нормою C) використовують, щоб найточніше представити кожне значення наближуваної функції f(x), за умови, що її значення відомі достатньо точно

$$\| f - F \|_{L_{\infty}} = \| f - F \|_{C} = \max_{x \in [a,b]} \frac{|f(x) - F(A,x)|}{w(x)} = \max_{x_{k} \in X} \frac{|y_{k} - F(A,x)|}{w_{k}}.$$

Функцію (3) називають функцією похибки, а її графік - кривою похибки.

1.2. Існування мінімаксного многочленного наближення

За теоремою Вейєрштрасса [1,38] для довільних неперервних на обмеженому проміжку [a,b] функцій f(x) та w(x)>0 і довільного $\varepsilon>0$ можна знайти такий

многочлен $P_m(x)$, що

$$|\rho(x)| = \frac{|f(x) - P_m(x)|}{w(x)} < \varepsilon, \quad x \in [a, b].$$

Очевидно, що найменше значення степеня m многочлена $P_m(x)$ суттєво залежить від способу наближення. Серед усіх способів наближення функцій найменшу похибку а, отже, і найменший степінь m при заданій точності ε , дає мінімаксне (його ще називають найкраще чебишовське) наближення [22].

Вираз $F(A,x) \in F(B,x)$, для якого максимальне значення абсолютної величини зваженої похибки (3) досягає на проміжку [a,b] найменшого значення

$$\min_{c \in B} \max_{x \in [a,b]} \frac{|f(x) - F(C,x)|}{w(x)} = \max_{x \in [a,b]} \frac{|f(x) - F(A,x)|}{w(x)},\tag{4}$$

Називають мінімаксним або найкращим чебишовським зваженим (з вагою w(x)) наближенням функції f(x) виразом F(A,x) на проміжку [a,b]. При w(x)=1 маємо мінімаксне абсолютне наближення, при w(x)=f(x) - мінімаксне відносне.

Величину (4) називатимемо мінімальним (зваженим) відхиленням і позначаємо $E(f,W) \equiv \mu_0$; $E(f,1) \equiv E(f) \equiv \Delta_0$ - мінімальне абсолютне відхилення; $E(f,f) \equiv \delta_0$ - мінімальне вілносне відхилення.

Розглянемо властивості мінімаксних наближень многочленами [20,22,33].

Теорема 1. Для будь-яких неперервних на проміжку [a,b] функцій f(x) та w(x) > 0 і довільного ε , існує єдиний многочлен $P_m(x)$ степеня m, що має найменше відхилення E(f,w).

Теорема 2. Нехай на проміжку [a,b] задано неперервні функції f(x) та w(x) > 0. Тоді для того, щоб деякий многочлен $P_m(x)$ степеня не вище m був многочленом мінімаксного зваженого наближення функції f(x) на проміжку [a,b] необхідно і достатньо, щоб на цьому проміжку знайшлась хоча б одна система з m+2

точок $T = \{t_k\}_{k=0}^{m+1}$ $a \le t_0 < t_1 < t_2 < \ldots \le t_{m+1}$, у яких зважена різниця (3) почергово набувала значень різних знаків і досягала за модулем найбільшого на [a,b] значення тобто

$$\rho(t_0) = -\rho(t_1) = \rho(t_2) = \dots = (-1)^{m+1} \rho(t_{m+1}) = \pm E(f, W).$$
(5)

Систему точок T називають системою точок (чебишовського) альтернансу. Для побудови многочлена мінімаксного наближення необхідно визначити точки альтернансу. Точне їх значення можна знайти тільки у часткових випадках.

1.3. Побудова мінімаксного наближення за схемою Ремеза

Процес знаходження точок альтернансу будується ітераційними методами. Найчастіше на практиці застосовують методи розроблені українським математиком Є.Я. Ремезом [39, 22]. Наведу один із методів. Він складається з таких етапів.

1. На проміжку [a,b] вибираємо початкове наближення T_0 до точок альтернансу $T:t_0^{(0)} < t_1^{(0)} < t_2^{(0)} < \ldots < t_{m+1}^{(0)}$.

Точки альтернансу можна, наприклад, обчислити за такою формулою $t_k^{(0)} = a + \frac{(b-a)k}{m+1}$.

2. Здійснюємо чебишовську інтерполяцію для множини точок $T_j = \{t_k\}_{k=0}^{m+1}, t_k^{(j)} < t_{k+1}^{(j)}, k = \overline{0,m}$, тобто визначаємо коефіцієнти многочлена $P_m^{(i)}(x)$ і величину μ_j , для яких виконуються умови $\rho(t_k^{(j)}) = (-1)^k \mu_k$ $k = \overline{0,m+1}$. Для знаходження вказаних величин розв'язуємо систему рівнянь:

$$\begin{cases}
f(t_0^{(j)}) - a_0 - a_1 t_0^{(j)} - \dots - a_m (t_0^{(j)})^m = \mu_j w(t_0^{(j)}), \\
f(t_1^{(j)}) - a_0 - a_1 t_1^{(j)} - \dots - a_m (t_1^{(j)})^m = -\mu_j w(t_1^{(j)}), \\
f(t_{m+1}^{(j)}) - a_0 - a_1 t_{m+1}^{(j)} - \dots - a_m (t_{m+1}^{(j)})^m = (-1)^{m+1} \mu_j w(t_{m+1}^{(j)}).
\end{cases}$$
(6)

Вона є системою m+2 алгебраїчних рівнянь з m+2 невідомими: a_0,a_1,\ldots,a_m та μ .

3. Перевіряємо виконання рівності

$$|\mu_j| = \max_{x \in [a,b]} |f(x) - P_m^{(j)}(x)| / w(x) \equiv \rho_j.$$
 (7)

Якщо рівність (7) виконується, то за теоремою 2 многочлен $P_m^{(j)}(x)$ і є многочлен найкращого (мінімаксного) наближення. При комп'ютерній реалізації алгоритму перевірку умови (7) заміняють перевіркою нерівності

$$\rho_i - |\mu_i| \le \varepsilon |\mu_i|, \tag{8}$$

де ε - допустима відносна помилка у визначенні похибки наближення. Її приймають рівною $\varepsilon = 10^{-2}$ або $\varepsilon = 10^{-3}$.

4. Якщо умова 7 чи 8 не виконується, то приймаємо j := j+1 і вибираємо наступне (уточнене) наближення до точок чебишовського альтернансу (переходимо до наступної ітерації). Далі алгоритм повторюємо продовжуючи виконувати з п.2.

При обчисленні на комп'ютері у цьому пункті іноді ще перевіряють умови

$$\left|t_{k}^{(j-1)}-t_{k}^{j}\right|<\eta, \quad k=\overline{0,m+1},$$

де η - допустима помилка у визначенні точок альтернансу. Якщо остання нерівність справедлива для всіх точок $k=\overline{0,m+1}$ (тобто точки альтернансу змінюються несуттєво), то вважаємо, що многочлен мінімаксного наближення знайдено.

1.4. Заміна точок альтернансу

Існує кілька методів заміни точок альтернансу. Можлива заміна одної або кількох точок одночасно. Найпростішим алгоритмом є алгоритм Є.Я. Ремеза з одноточковою заміною (алгоритм Валлє-Пуссена) [39,22,33]. Опишемо цей алгоритм.

Нехай при виконанні пункту 3 ми знайшли точку \tilde{x} , для якої виконується $\rho_j = |\rho(\tilde{x})|$. Можливі три випадки взаємного розташування точок альтернансу та точки \tilde{x} :

1.
$$t_0^{(j)} < \widetilde{x} < t_{m+1}^{(j)}$$

2.
$$\tilde{x} < t_0^{(j)}$$

3. $\tilde{x} > t_{m+1}^{(j)}$

Розглянемо спосіб заміни точок альтернансу для кожного випадку.

- 1. Знайдемо ціле число v таке, що $t_v^{(j)} < \widetilde{x} < t_{v+1}^{(j)}$. Якщо $(\rho(\widetilde{x})) = (\rho(t_{m+1}^{(j)}))$, то робимо присвоєння $t_v^{(j+1)} \coloneqq \widetilde{x}$, у протилежному випадку $t_{v+1}^{(j+1)} \coloneqq \widetilde{x}$. Решту точок альтеранансу не змінюємо.
- 2. Якщо $\rho(\tilde{x}) = \rho(t_0^{(j)})$, то присвоюємо $t_0^{(j+1)} := \tilde{x}$. Решту точок альтернансу не змінюємо. Якщо це не так, то заміняємо усі точки альтернансу за формулами:

$$t_0^{(j+1)} := \widetilde{x}; \quad t_k^{(j+1)} := t_{k-1}^{(j)}, \quad k = \overline{1, m+1}.$$

У цьому випадку із альтернансу виключається остання точка $t_{m+1}^{(j)}$

3. Якщо $\rho(\tilde{x}) = \rho(t_{m+1}^{(j)})$, то приймаємо $t_{m+1}^{(j)} := \tilde{x}$. і решту точок альтернансу не змінюємо. Якщо це не так, то замінюємо усі точки альтернансу за формулами:

$$t_k^{(j+1)} := t_{k+1}^{(j)}, \quad k = \overline{0, m}; \quad t_{m+1}^{(j+1)} := \widetilde{x}.$$

У цьому випадку із V-альтернансу виключається перша точка $t_0^{(j)}$.

Таким чином наступна система точок альтернансу відрізняєтся від попередньої тим, що точка \tilde{x} , у якій є максимум абсолютної величини зваженої похибки, вводиться у альтернанс замість однієї із старих точок.

Відомо, що алгоритм Валле-Пуссена для заміни точок альтернансу при знаходженні мінімаксного наближення неперервної функції многочленом на проміжку [a,b] збігається незалежно від початкового наближення до точок альтернансу. Він збігається зі швидкістю гометричної прогресії у тому сенсі, що знайдуться такі числа A та 0 < q < 1, що відхилення $E^{(k)}(f,W)$ многочлена $P_m^{(k)}(x)$ від функції f(x) будуть задовольняти нерівності

$$E^{(k)}(f,W) - E(f,W) \le Aq^k; \quad k = 1,2,...$$

Фактична швидкість збіжності залежить від диференціальних властивостей функції та використовуваного алгоритму заміни точок альтернансу. Відомо, що коли

 $f(x) \in C^{m+1}[a,b], w(x) = 1$ або w(x) = f(x) і $f^{(m+1)}(x)$ не змінює знак при $x \in [a,b]$, то граничні точки проміжку [a,b] є точками альтернансу [39, 22]. Тому у цьому випадку алгоритм Валле-Пуссена для наближення многочленами невисоких степенів $m = \overline{0,2}$ практично не програє у швидкості порівняно з іншими алгоритмами типу Є.Я. Ремеза.

Зауважимо, що наведені властивості мінімаксного наближення непервної на [a,b] функції f(x) многочленом виконуються і для наближення табличної функції.

1.5. Частинні випадки побудови мінімаксних наближень

Приклад 1 [20]. Знайдемо мінімаксне абсолютне наближення сталою: $P_0(x) = A$, w(x) = 1. У цьому випадку система рівнянь (6) має вигляд

$$f(t_0) - A = \Delta, f(t_1) - A = -\Delta.$$

Додамо два рівняння цієї системи і одержимо вираз для A: $A = \frac{f(t_0) + f(t_1)}{2}$.

Підставимо це значення у перше рівняння системи отримаємо вираз для похибки Δ : $\Delta = \frac{f(t_0) - f(t_1)}{2}$. Очевидно, що точки альтернансу у цьому випадку співпадатимуть із точками мінімуму та максимуму функції f(x). Тому

$$\Delta_0 = |\Delta| = \frac{1}{2} \left[\max_{x \in [a,b]} f(x) - \min_{x \in [a,b]} f(x) \right].$$

Якщо функція f(x) монотонна, то ці значення досягаються на краях проміжку [a,b]. Тому у цьому випадку $\Delta_0 = |\Delta| = \frac{1}{2} |f(b) - f(a)|$.

Приклад 2. Знайдемо мінімаксне абсолютне наближення многочленом першого степеня (прямою): $P_1(x) = Ax + B$, w(x) = 1. Система рівнянь (6) у цьому випадку складається із трьох рівнянь: $f(t_0) - At_0 - B = \Delta$ $f(t_1) - At_1 - B = -\Delta$, $f(t_2) - At_2 - B = \Delta$.

Віднімемо від третього рівняння системи перше і отримаємо вираз для параметра

 $A: A = \frac{f(t_2) - f(t_0)}{t_2 - t_0}$. Додамо два перші рівняння системи, отримаємо вираз для параметра $B: B = \frac{f(t_0) + f(t_1) - A(t_0 + t_1)}{2}$.

Якщо $f(x) \in C^2[a,b]$ і f''(x) не змінює знак, то $t_0 = a$, $t_2 = b$, а в центральній точці альтернансу $t_1 = c$ функція похибки має екстремум і $\delta'(c) = 0$. Тому f'(c) = A. Прирівнюючи два вирази для коефіцієнта A, отримаємо трансцендентне рівняння для визначення точки c: f'(c)(b-a) = f(b) - f(a). Після визначення цієї точки знаходимо A, B та Δ за формулами:

$$A = f(c), B = \frac{f(a) + f(c) - f(c)(a + c)}{2}, \Delta = \frac{f(a) - f(c) - f(c)(a - c)}{2}.$$

Розкладаючи у виразі для Δ функцію f(a) в ряд в околі точки c:

$$f(a) = f(c) + f'(c)(a - c) + \frac{1}{2}f''(\xi)(a - c)^{2},$$

де $\xi \in (a,c)$ маємо

$$\Delta_0 = |\Delta| = \frac{1}{4} |f''(\xi)| (a - c)^2 \approx \frac{1}{16} |f''(\xi)| (b - a)^2.$$

1.6. Похибка мінімаксного наближення

Порівняємо максимальну похибку мінімаксного наближення многочленом з іншими наближеннями многочленом. Нехай $f(x) \in \mathcal{C}^{m+1}[a,b]$ і $f^{(m+1)}(x) > 0$ при $x \in [a,c]$. Відомо, що у цьому випадку [22,23]

$$E(f,1) = \frac{f^{(m+1)}(\xi)}{2^{2m+1}(m+1)!} (b-a)^{m+1}.$$
 (10)

Наблизимо таку функцію відрізком ряду Тейлора з m+1 коефіцієнтом в околі точки $x_0=\frac{a+b}{2}$

$$f(x) = \sum_{i=0}^{m} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + \frac{f^{(m+1)}(\xi)}{(m+1)!} (x - x_0)^{m+1}$$

де $|\xi| < |x - x_0|$. Очевидно, що при $x \in [a, b]$ максимальне значення залишкового члену ряду рівне [1,37]

$$\max_{x \in [a,b]} |R_m(x)| = \frac{f^{(m+1)}(\xi)}{2^{m+1}(m+1)!} (b-a)^{m+1}, \tag{11}$$

де $\xi \in (a,b)$. За цією ж формулою обчислюється похибка наближення ланкою ермітового сплайну непарного степеня. Із наведених формул (10) і (11) можна бачити, що використання мінімаксного наближення замість наближення іншими способами суттєво зменшує одержувану при цьому похибку.