6. Hoare Logic and Weakest Preconditions

Program Verification

ETH Zurich, Spring Semester 2017
Alexander J. Summers

Program Correctness

- There are many notions of correctness properties for a given program
 - is the program *guaranteed to reach* a certain program point (e.g. terminate)?
 - when the program reaches this point, are certain values guaranteed?
 - could the program encounter *runtime errors* / raise certain exceptions?
 - will the program *leak memory / secret data*, etc.?
- To build a verifier, we need clearly defined correctness criteria
- We will focus on a classic correctness notion: partial correctness
 - A program s is *partially correct* with respect to pre-/post-conditions A_1/A_2 iff: All executions of s *starting from states satisfying* A_1 are free of runtime errors, and, any such executions which terminate will do so in states satisfying A_2
 - For non-terminating executions, we still guarantee absence of runtime errors
 - The above notion is succinctly expressed using a *Hoare triple*: $\{A_1\}$ s $\{A_2\}$

A Small Imperative Language

- Program variables x,y,z,... (can be assigned to)
- Expressions e,e₁,e₂,... (we won't fix a specific syntax for now)
 - e.g. includes boolean/arithmetic operators, mathematical functions
 - assume a *standard type system* (no subtyping/casting); we omit the details
 - we'll typically write $b,b_1,b_2,...$ for boolean-typed expressions
 - expression evaluation assumed to be *side-effect-free* for all expressions
- Assertions A used in specifications, Hoare triples, etc.
 - for now, assertions are just the same as boolean expressions
 - later in the course, we'll want specifications richer than program expressions
- Statements s (see subsequent slides)
 - We define a small language here; may extend the syntax later

Standard Statements

Our statement language includes the following standard constructs:

```
 \begin{array}{ll} \bullet \; skip & \text{(does nothing when executed)} \\ \bullet \; x := \; e & \text{(assignment: changes value of } x \text{)} \\ \bullet \; s_1; s_2 & \text{(sequential composition: execute } s_1 \; \text{followed by } s_2 \text{)} \\ \bullet \; if(b)\{s_1\}else\{s_2\} & \text{(execute } s_1 \; \text{if } b \; \text{evaluates to true; } s_2 \; \text{otherwise)} \\ \bullet \; while(b)\{s\} & \text{(repeatedly execute } s_1 \; \text{while } b \; \text{evaluates to true)} \\ \end{array}
```

- A *runtime state* is a mapping σ from variables to values
- We assume a *small-step operational semantics* (not formalised here)
 - A runtime configuration is a pair (s,σ) of a statement s and a program state σ
 - A trace is either an infinite sequence of runtime configurations, or is a finite sequence of runtime configurations appended with one of the following: a single runtime state σ (the final state), the symbol error, the symbol magic

Verification and Non-Deterministic Statements

- We add the following statements to those of the previous slide:
 - assert A (traces for which A is false at this point end here with error)
 - assume A (traces for which A is false at this point end here with magic)
 - $s_1[]s_2$ (non-deterministic choice: execute either s_1 or s_2 from here)
 - havoc x (non-deterministically assign an arbitrary value to variable x)
- A failing trace is one ending in error
- The former two statements filter traces (fewer outgoing than ingoing)
- The latter two statements *split traces* (more outgoing than ingoing)
 - this is characteristic of a non-deterministic language
- We write $\sigma \models A$ to denote that A is true in σ (σ defines a model of A)

Trace Semantics in Pictures

Hoare Logic I

- Hoare Logic is a standard proof style for correctness proofs
 - Proofs are derivation trees, built by instantiating derivation rule schemas
 - Every derivation tree has a Hoare triple as its root
 - Rule schemas must be instantiated for particular statements, assertions etc.
- Rule schemas for standard statements (partial correctness):
 - we write A[e/x] for (capture-avoiding) substitution of e for each free x in A
 - we omit while loops for now (coming soon...)

Hoare Logic II

Rule schemas for verification and non-deterministic statements:

$$\frac{\{A_1\} \ s_1 \ \{A_2\} \quad \{A_1\} \ s_2 \ \{A_2\}}{\{A_1\} \ s_1[]s_2 \ \{A_2\}} \text{(nondet)} \qquad \frac{\{\forall y.A[y/x]\} \ havoc }{\{A_1 \land A\} \ assert \ A_1 \ \{A\}} \text{(assume)}}$$

 The rule of consequence allows reasoning in terms of the semantics of the assertions (this rule is very important!):

Hoare Logic (Alternative Rules)

Consider the following alternative rules

$$\frac{A \models A_1}{\{A\} \text{ assert } A_1 \{A_1 \land A\}} \text{(assert-alt)} \qquad \frac{\{A\} \text{ assume } A_1 \{A \land A_1\}}{\{A\} \text{ assume } A_1 \{A \land A_1\}} \text{(assume-alt)}$$

- Exchanging (any of) these rules for their counterparts on the previous slide *doesn't change the derivable Hoare triples* (see exercises)
 - The alternative rules are "forward oriented": it is easier to understand them from left-to-right (those on previous slide are "backward-oriented")
 - You may find one formulation more intuitive than another

Hoare Triples - Properties

- $\{A_1\}$ is $\{A_2\}$ is semantically valid, written $\models \{A_1\}$ iff: For all states σ_1 such that $\sigma_1 \models A_1$, there are no failing traces starting from (s,σ) , and for all such traces ending in final states σ_2 : $\sigma_2 \models A_2$
 - equivalently, the program assume A_1 ; s; assert A_2 has no failing traces
- A *triple* $\{A_1\}$ s $\{A_2\}$ *is provable*, written $\vdash \{A_1\}$ s $\{A_2\}$, iff there exists a derivation tree with $\{A_1\}$ s $\{A_2\}$ as its root
- The derivation rules presented are *sound* (only prove valid triples):
 - For all s, A_1 , A_2 , if $\vdash \{A_1\}$ s $\{A_2\}$ then $\models \{A_1\}$ s $\{A_2\}$
- Under certain conditions these derivation rules are also complete:
 - If the assertion language is *able to express all weakest preconditions* (explained soon) then: for all s, A_1 , A_2 , if $dash \{A_1\}$ s $\{A_2\}$ then $dash \{A_1\}$ s $\{A_2\}$
 - in some sense, this tells us we are not "missing" proof rules from the system

Hoare Logic - Example

- Suppose we want to prove the triple $\{x=2\}$ x := x-1 $\{x>0\}$
 - A triple $\{A_1\}$ s $\{A_2\}$ is provable, written $\vdash \{A_1\}$ s $\{A_2\}$, iff there exists a derivation tree with $\{A_1\}$ s $\{A_2\}$ as its root
 - This doesn't tell us how to construct such a derivation tree, in general
- We have different choices for how to construct derivation trees, e.g.:
 - (we typically don't draw the rule premises which are not Hoare triples)

- This illustrates redundancy in the proof system
 - The redundancy is useful when constructing proofs by hand (flexible)
 - When trying to automate proofs, it is less desirable (enumerate derivations?)

Weakest Preconditions - Idea

- Suppose we want to prove a particular triple $\{A_1\}$ \le $\{A_2\}$
- This would require us to find suitable *intermediate assertions*
 - e.g. to prove $\{A_1\}$ $s_1; s_2$ $\{A_2\}$ we will need assertion(s) used as postcondition of s_1 / precondition of s_2 , which also satisfy the appropriate proof rules
- We can orient the search for these assertions, and for a derivation
 - For example, starting from our postcondition, work backwards through s
 - At each sub-statement, find the precondition for this statement which works
 - We should always choose this precondition to be as *logically weak as possible*
- This idea is formalised by a *weakest precondition function* wlp(s,A)
 - A is the intended postcondition (e.g. A_2 above); s the statement in question
 - name wlp stands for weakest "liberal" precondition: it ignores termination
 - dual strongest postcondition notion exists; we focus on weakest preconditions

Weakest Preconditions – Desired Properties

- We'd like a function wlp(s,A) returning a predicate on states s.t. :
 - Expressibility: For all s and A, wlp(s,A) is expressible as an assertion
 - *Soundness*: For all s and A, it is guaranteed that $\vDash \{wlp(s,A)\}\ s\ \{A\}$
 - *Minimality*: For all s, A_1 , A_2 , if $\models \{A_1\}$ s $\{A_2\}$ then $A_1 \models wlp(s,A)$
 - Computability: For all s and A, wlp(s,A) is computable (ideally, efficiently)
- We can now explain the condition for completeness (3 slides ago):
 - Soundness + Minimality semantically define a *unique predicate on states*
 - Our assertion language is *able to express all weakest preconditions* iff, for any s and A, there exists some A_1 whose meaning is equivalent to this predicate
- ullet Suppose we had a suitably-defined $\mathrm{wlp}(s,A)$ notion
 - We could build a program verifier to check validity of triples $\vDash \{A_1\}$ s $\{A_2\}$ by computing $wlp(s,A_2)$ and then checking the entailment $A_1 \vDash wlp(s,A_2)$

Weakest Preconditions – Definition I

- Attempt to define wlp(s,A) by "reading" derivation rules backwards
 - We want to find the weakest way to fill the ??? in: \models {???} s {A}
- For example, consider the following three derivation rules:

$$\frac{\{A\} \ \text{skip} \ \{A\}}{\{A\} \ \text{skip} \ \{A\}} \text{(skip)} \qquad \frac{\{A[e/x]\} \ x := e \ \{A\}}{\{A\}} \text{(ass)} \qquad \frac{\{A_1\} \ s_1 \ \{A_2\} \ \ s_2 \ \{A_3\}}{\{A_1\} \ s_1; s_2 \ \{A_3\}} \text{(seq)}$$

- We can "read off" three suitable cases of the wlp definition:
 - wlp(skip,A) = A
 - wlp(x := e,A) = A[e/x]
 - $wlp(s_1; s_2, A) = wlp(s_1, wlp(s_2, A))$
- What about the other statements of our language?

Weakest Preconditions – Definition II

Consider the other loop-free statements of our language:

$$\frac{\{A_1 \land b\} \ s_1 \ \{A_2\} \quad \{A_1 \land \neg b\} \ s_2 \ \{A_2\}}{\{A_1\} \ \text{if}(b) \{s_1\} \text{else}\{s_2\} \quad \{A_2\}} \text{(if)} \qquad \frac{\{A_1\} \ s_1 \ \{A_2\} \quad \{A_1\} \ s_2 \ \{A_2\}}{\{A_1\} \ s_1[] s_2 \ \{A_2\}} \text{(nondet)}}{\{\forall y.A[y/x]\} \ \text{havoc} \ x \ \{A\}} \text{(havoc)}} \\ \overline{\{A_1 \land A\} \ \text{assert} \ A_1 \ \{A\}} \text{(assume)}}$$

•
$$wlp(if(b)\{s_1\}else\{s_2\},A) = (b \Rightarrow wlp(s_1,A)) \land (\neg b \Rightarrow wlp(s_2,A))$$

- $\operatorname{wlp}(s_1[]s_2, A) = \operatorname{wlp}(s_1, A) \wedge \operatorname{wlp}(s_2, A)$
- $wlp(havoc x ,A) = \forall y.A[y/x]$
- wlp(assert A_1, A) = $A_1 \land A$
- wlp(assume $A_1, A) = A_1 \Rightarrow A$

Weakest Preconditions – Loops

The standard Hoare Logic rule for loop constructs is the following:

$$\frac{\{A_I \land b\} \ s \ \{A_I\}}{\{A_I\} \ while(b)\{s\} \ \{A_I \land \neg b\}} \text{(while-Hoare)}$$

- The assertion A_I is called a *loop invariant*
 - In general, our current postcondition won't be a suitable loop invariant
- The rule doesn't give us a direct definition of $wlp(while(b)\{s\},A)$
 - The obstacle is in finding an appropriate loop invariant for the above rule
 - We might imagine unrolling the loop to "define" $wlp(while(b)\{s\},A)$ as: $A \land \neg b \lor b \land wlp(s,A \land \neg b) \lor b \land wlp(s,b \land wlp(s,A \land \neg b)) \lor ...$
 - This definition is not effectively computable for general loops: it tries to compute an "infinite" assertion (may not even be an expressible assertion)

Loops – Adding Invariants

- With hindsight, it's not surprising that we don't get an effective wlp
 - checking validity of $\models \{A_1\}$ s $\{A_2\}$ for such a language is typically undecidable (even for *assertion languages* with decidable entailment)
 - if wlp were computable for general loops, we'd have an effective algorithm (!)
- We will require loops to be annotated with loop invariants
 - these annotations could be manual, generated by a static analysis tool, etc.
- We change the syntax for loops, and write $while(b)invariant A\{s\}$
 - Here, A is the *declared loop invariant* for the while loop
- Replacing the usual rule (previous slide), we use the following one:

$$\frac{\{A_I \land b\} \ s \ \{A_I\}}{\{A_I\} \ while(b)invariant \ A_I \{s\} \ \{A_I \land \neg b\}} \text{(while-inv)}$$

Weakest Preconditions for Annotated Loops

• For this annotated language, we can give a definition for loops:

$$\frac{\{A_I \land b\} \ s \ \{A_I\}}{\{A_I\} \ while(b) invariant \ A_I \{s\} \ \{A_I \land \neg b\}} \text{(while-inv)}$$

• $wlp(while(b)invariant\ A_I\{s\}\ ,A) = A_I \wedge \forall \vec{y}.((A_I \wedge b \Rightarrow wlp(s,\ A_I)) \wedge (A_I \wedge \neg b \Rightarrow A))[\vec{y}/\vec{x}]$ where \vec{x} is the set of variables modified in s, and \vec{y} are fresh variable names

- This may seem hard to understand directly, but informally:
 - The first conjunct insists that the *invariant* A_I holds before the loop
 - The next conjunct (inside the $\forall \vec{y}$) corresponds to *checking the loop body*
 - The last conjunct (inside the $\forall \vec{y}$) corresponds to guaranteeing that the desired *postcondition will hold after the loop* (if the loop terminates)

Eliminating Annotated Loops

- A while loop with loop invariant can be desugared as follows:
 - Let $x_1, x_2, ..., x_n$ be the (perhaps zero) variables modified by s
 - Then while (b) invariant $A_I\{s\}$ is rewritten into the program:

```
• assert A_I; havoc x_1; havoc x_2; ...; havoc x_n; ((assume A_I \land b; s; assert A_I; assume false)
[]
(assume A_I \land \neg b))
```

- The first assert A_{T} statement checks the loop invariant holds initially
- The havocs model side-effects of an unbounded number of loop iterations
- The next line checks that the loop invariant is *preserved by each loop iteration*
- The final line models termination, if we ever leave the loop, $A_I \land \neg b$ will hold
- Try applying wlp to this program and compare with the previous slide
 - you should get an equivalent formula to wlp definition for annotated loops

Approximation via Loop Invariants

- The desugaring on the previous slide requires checking that:
 - the declared loop invariant is preserved starting from states satisfying $A_I \wedge b$
 - the remainder of the program is correct starting from states satisfying $A_I \wedge \neg b$
 - in both cases, this might include states which are never reached by the loop
- e.g. x:=5; while $(x\neq 2 \land x\neq 4)$ invariant $x>0\{x:=x-1\}$; assert $x\neq 2$
 - invariant is not re-established from all states in which $x>0 \land x\neq 2 \land x\neq 4$
 - the assert statement may fail for *some* states in which $x>0 \land \neg(x\neq 2 \land x\neq 4)$
 - ullet But on execution, the invariant will always hold and the assert will succeed
- The loop invariant is used to over-approximate the loop behaviour
 - Our wlp is complete with respect to *provable triples* ($\vdash \{A_1\} \ s \ \{A_2\}$)
 - It is *not complete* with respect to *valid triples* ($Dash \{A_1\}$ s $\{A_2\}$)
 - ullet Both the proof system and wlp are only complete with precise loop invariants

Wlp Summary

ullet For *annotated programs*, our wlp definition is summarised by

```
\begin{split} &\operatorname{wlp}(\operatorname{skip},A) = A & \operatorname{wlp}(x := e,A) = A[e/x] \\ &\operatorname{wlp}(\operatorname{havoc} x , A) = \forall y. A[y/x] & \operatorname{wlp}(s_1; s_2 , A) = \operatorname{wlp}(s_1 , \operatorname{wlp}(s_2 , A)) \\ &\operatorname{wlp}(\operatorname{assert} A_1 , A) = A_1 \wedge A & \operatorname{wlp}(\operatorname{assume} A_1 , A) = A_1 \Rightarrow A \\ &\operatorname{wlp}(s_1[]s_2 , A) = \operatorname{wlp}(s_1 , A) \wedge \operatorname{wlp}(s_2 , A) \\ &\operatorname{wlp}(\operatorname{if}(b)\{s_1\}\operatorname{else}\{s_2\} , A) = (b \Rightarrow \operatorname{wlp}(s_1 , A)) \wedge (\neg b \Rightarrow \operatorname{wlp}(s_2 , A)) \\ &\operatorname{wlp}(\operatorname{while}(b)\operatorname{invariant} A_I\{s\} , A) = \\ & A_I \wedge \forall \vec{y}. ((A_I \wedge b \Rightarrow \operatorname{wlp}(s, A_I)) \wedge (A_I \wedge \neg b \Rightarrow A))[\vec{y}/\vec{x}] \end{split}
```

- With respect to our *desired properties*, this definition is *sound*, and complete with respect to *provable triples* ($\vdash \{A_1\} \ s \ \{A_2\}$)
 - but not necessarily with respect to *valid triples*: depends on loop invariants
- The definition returns an assertion; it is expressible and computable

Hoare Logic and Weakest Preconditions - Summary

- We have seen *Hoare Logic*: a means of proving program properties
 - proofs consist of derivation trees flexible for manual proof efforts
- Automating the checking of Hoare triples via weakest preconditions
 - these provide a means of directing the proof search (working backwards)
- For recursion (loops, here), we require annotated loop invariants
 - approximate the recursive behaviour of a loop, according to the invariant
- Resulting computable notion of weakest precondition w.r.t. invariants
 - we reduce program correctness to checking entailment between assertions
- This idea allows the implementation of a *program verifier*
 - User provides specification and e.g. loop invariants in some assertion syntax
 - For suitable assertion syntaxes, we can check entailments with an SMT solver

Hoare Logic and Weakest Preconditions – References

Hoare Logic:

- Assigning meanings to programs. R. W. Floyd (1967)
- An axiomatic basis for computer programming. Hoare, C. A. R. (1969)
- Soundness and Completeness of an Axiom System for Program Verification. Stephen A. Cook (1978)

Weakest Preconditions:

- Guarded commands, nondeterminacy and formal derivation of programs. Edsger W. Dijkstra (1975)
- Avoiding exponential explosion: generating compact verification conditions. Cormac Flanagan, James B. Saxe (2001)
- Weakest-precondition of unstructured programs. Mike Barnett, K. Rustan M. Leino (2005)

Other teaching material:

- Formal Methods and Functional Programming. Peter Müller (ETH Zurich)
- Synthesis, Analysis, and Verification. Viktor Kuncak (EPFL)