Data 100 Spring 2019 Final Exam Reference

Sampling

Simple Random Sample (SRS)

Prob. of 1 in sample of k from population of n:

$$P = \frac{k}{n} = \frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \dots + \frac{1}{n-k+1}$$

Prob. of 1 from k samples selected from n:

$$P = \frac{\binom{n-1}{k-1}}{\binom{n}{k}}$$

Cluster Sample

Divide population into cluster, SRS to select cluster(s)

Prob. of 1 in sample = prob of 1's cluster in sample of k cluster from pop

$$P = \frac{k \text{ clusters}}{n \text{ clusters of population}}$$

Stratified Sample

Split into strata, SRS in **EACH** stratum

Prob of 1 in sample = prob of 1 selected from strata of n

$$P = \frac{1}{n}$$
, where $n = \text{strata size}$

Multi-Stage

Conditional event, SRS to select group, SRS to sample within selected groups

Pandas

#Data Frames

df.loc[row, col] #row/column names

df.loc[[name1, name2]] -> dataframe

df.loc[name1] -> series

df.iloc[row, col] #row/column indices

#Series

s.value_count() # unique value counts

grouped = df.groupby(by)

#Aggregate groupby object

grouped.agg(func)

func: max, min, fisrt, last, head

(lambda sf: ...)

manipulate subframe

#Filtering groupby object

grouped.filter(func)

func: (lambda sf: ...)

filtering condition

#merge

df1.merge(df2, left_on=, right_on=)

\mathbf{SQL}

Basic Syntax

SELECT <columns>

FROM <relations(s)/tables>

[<join type> JOIN <relation/table>]

[ON predicate>]

[WHERE <predicate>]

[ORDER BY <column(s)>] [LIMIT <number>]

ORDER BY RANDOM LIMIT # = random sample

Joins

Returns NULL if not found

INNER: Intersection

LEFT OUTER: keep rows on left RIGHT OUTER: keep rows on right

WHOLE OUTER: everything

CASE Statement

CASE WHEN cru_pred>

ELSE <rv_else>

END

RegEx

Characters

\d: Digits [0-9]

\w: Alphanumeric [a-zA-Z0-9]

\s: White space

\D,\W,\S: Inverses of respective groups

. : any character

\ : escape to match literals

Quantifiers

* : 0 or more times

+ : 1 or more times

? : exactly 0 or 1 times

{m} : exactly m times

 $\{m, n\}$: between m to n times

{m, } : at least m times

{ , n} : at most n times

Anchors

^ : beginning of line

\$: end of line

Grouping

(...) : match all characters in capturing group

[^...] : excludes all specified

In Python

import re

re.match(pattern, string) # 1 match from beginning

re.search(pattern, string) # 1 match anywhere

re.findall(pattern, string) # list of all matches

re.sub(pattern, repl, string) # 11st of all matche re.sub(pattern, repl, string) # replace patterns

re.split(pattern, string) #split by pattern

s.str.extract(r'[group]') # extract by group
will only return grouped regex match

Kernel Density Estimation

Smooth function to estimate probability distribution:

Center kernel at every point

add function together and take average

 α : standard deviation of each kernel (large: spread apart, low/flat

 $peak; \; small: \; centered, \; tall \; peak)$

Gaussian

$$k_{\alpha}(x,z) = \frac{1}{\sqrt{2\pi\alpha^2}} e^{-\frac{(x-z)^2}{2\alpha^2}}$$

Decrease α decreases smoothness of plot.

Boxcar

$$\left\{ \begin{array}{ll} \frac{1}{\alpha} & -\frac{\alpha}{2} \le x - z \le \frac{\alpha}{2} \\ 0 & else \end{array} \right.$$

Probability distribution area = 1

rectangle: $\frac{1}{\alpha} \cdot \alpha$; bigger α more accurate

Dimensionality Reduction & PCA with SVD

Finding columns that are linearly independent in a design matrix (gives Rank(X)):

 $X = \mathbf{u} \Sigma \mathbf{v}^{\top}$

Where,

 $X: n \times d$, normalized original dataset ("feature matrix")

 $\mathbf{u}: n \times r$, left singular vectors, orthonormal

 $\Sigma: r \times r$, diagonal matrix of singular values. The k-th singular value is the sum of the squares of the projections of the points to the line determined by the k-th singular vector.

 $\mathbf{v}^{\top}: r \times d$, right singular vectors, orthonormal

Directions

 $\mathbf{v1}$ = the unit vector \mathbf{v} that maximizes $|X\mathbf{v}|$

 $\mathbf{v2}$ = the unit vector \mathbf{v} that is orthogonal to $\mathbf{v1}$ and maximizes $|X\mathbf{v}|$ The *i*-th singular value of X, or $\sigma_i(X)$, is given by $|X\mathbf{v_i}|$. The first k columns of $X\mathbf{v}^{\top}$ (or $\mathbf{u}\Sigma$) are the first k principal components

Computations

1. Centering Matrix:

n = X.shape[0]

X_transformed = (X - np.mean(X, axis=0))/np.sqrt(n)

2. Use SVD to find PCs:

u, s, vt = np.linalg.svd(X_transformed, full_matrices=False)

3. Selecting PCs

(u * s)[:,0] X @ vt[0,:]

(X @ vt.T)[:,0]

Visualizations

Things to Consider

Granularity: what each row represents

Faithfulness: does data accurately capture reality Temporality: how does data situate in date/time

Scope: coverage of data in relations to analysis (completeness)

Plots

Single Discrete: dot plot/bar plot

Single Continuous: strip plot (small), density plot/bar plot (big)

Multiple Continuous: Scatter plot

Discrete vs. Continuous: Box plot, overlay density plot, violin plot 2 Discrete vs. 2 Continuous: Sub-scatter, color, symbols, overlays

Probability, Expectations & Variance

Sampling

Without replacement = $\binom{n}{r} = {}_{n}C_{r} = \frac{n!}{n!(n-r)!}$ ways

Prob of picking 1: $\frac{(n-1)_n C_r}{nC_r}$ With replacement = n^r ways Prob of picking 1: $1 - \frac{(n-1)^r}{n^r}$

Expectation

$$\begin{split} E[X] &= \Sigma(p(x_i) \cdot x_i) & E[XY] &= E[X] \cdot E[Y] \text{ (indep.)} \\ E[X+Y] &= E[X] + E[Y] & \text{Median Absolute deviation:} \\ E[cX] &= c \cdot E[X] & Median[X-Median[X]] \end{split}$$

Variance

$$\begin{split} Var[X] &= E[(X - E[X]^2] = E[X^2] - E[X]^2 \\ Var[aX] &= a^2 \cdot Var[X] \\ Var[X + Y] &= Var[X] + Var[Y] + 2Cov[X, Y] \\ Cov[X, Y] &= Var[X] \cdot Var[Y] = E[XY] - E[X] \cdot E[Y] \\ \text{Same mean/variance} \neq \text{same data} \end{split}$$

Bernoulli

$$\begin{split} E[X_i] &= p \text{ and } Var[X_i] = p(1-p) \\ \text{Calculating variance: } Var[Y] &= Var(\frac{1}{n}\sum x_i) \\ \text{or, for Bernoulli: } Var[X] &= np(1-p), y = \frac{1}{100}(x) \end{split}$$

Probability Distribution

Gaussian

$$f_N(x:\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Bernoulli

$$f_{\text{binary}}(y:n,p) = {}_{n}C_{y} \cdot p^{y}(1-p)^{n-y}$$

Linear Algebra Properties

$$\mathbf{a} \cdot \mathbf{a} = \mathbf{a}^{\top} \mathbf{a}$$
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b}^{\top} \mathbf{a} = \mathbf{a}^{\top} \mathbf{b}$$
$$(AB)^{\top} = B^{\top} A^{\top}$$

$$\begin{array}{l} \nabla_x \mathbf{a}^\top \mathbf{x} = \nabla_x \mathbf{x}^\top \mathbf{a} = \mathbf{a} \\ \nabla_x \mathbf{x}^\top A \mathbf{x} = (A + A^\top) \mathbf{x}, = 2A \mathbf{x} \\ \text{if } A = A^\top \text{ symmetric} \end{array}$$

Projection Matrix: $A^2 = A$

Loss & Risk Optimization

Loss Functions

Measuring loss at a specific point/observation:

 $\begin{array}{l} L_1 = |y - \hat{y}|, \text{ minimized by median} \\ L_2 = (y - \hat{y})^2, \text{ minimized by mean} \\ \text{Huber: } \left\{ \begin{array}{ll} \frac{1}{2}(y - \hat{y})^2 & |y - \hat{y}| \leq \alpha \\ \alpha |y - \hat{y}| - \frac{1}{2}\alpha & else \end{array} \right. \end{array}$

To find empirical risk, average loss from every point!

Find Derivative of Risk (β is Constant!) Set Derivative to 0 Solve for β

Minimizing/estimating parameter:

Regularization, Bias & Variance Trade-off

Risk is the average loss over an entire set of observations: Risk = $E[(\mathbf{y} - f(\mathbf{x}))^2] = (E[f(\mathbf{x})] - \mathbf{y})^2 + E[(f(\mathbf{x}) - E[f(\mathbf{x})])^2]$ = $Bias^2[\mathbf{y}, f(\mathbf{x})] + Var[f(\mathbf{x})]$

Increasing Model Complexity -

Polynomial: higher degree, $Bias \downarrow$, $Variance \uparrow$, model complexity \uparrow

Regularization for Mean Squared Error Function

Regularize when **high loss, high variances**, controlling low bias $\lambda \to 0, \hat{\theta} \to L_2$, little regularization $\lambda \to \infty, \beta_i \to 0$, constant model, under-fit $\lambda \uparrow \to Bias \uparrow \to Variance \downarrow$

Ridge (L_2) : $\frac{1}{n} ||y - X\beta||_2^2 + \lambda \sum \beta^2$ $\beta^* = (\mathbf{x}^\top \mathbf{x} - \lambda I)^{-1} \mathbf{x}^\top \mathbf{y}$ Distribute weight across related feature

Does not encourage sparsity (does not set anything to 0)

LASSO (L₁): $\frac{1}{n}||y - X\beta||_2^2 + \lambda|\beta|$ No Analytical Solution β^*

Encourages sparsity setting some weight to 0, decrease some (feature selection)

Linearity of features: x terms can be polynomial, but β must be

in separate terms and unique to each x. Convexity: All lines connecting two points of the graph appear above the graph.

Linear Regression & Least Squares

Linear Regression Model: $E[Y|X] = X^{\top}\beta$ Normal Equation:

$$L(\beta) = \mathbf{y}^{\top} \mathbf{y} - 2\beta^{\top} \mathbf{x}^{\top} \mathbf{y} + \beta^{\top} \mathbf{x}^{\top} \mathbf{x} \beta$$
$$\nabla_{\beta} L(\beta) = \mathbf{x}^{\top} \mathbf{x} \beta - \mathbf{x}^{\top} \mathbf{y} = 0$$
$$\beta^* = (\mathbf{x}^{\top} \mathbf{x})^{-1} \mathbf{x}^{\top} \mathbf{y} = \sum_{i=1}^{n} \frac{x_i y_i}{x^2}$$

Conditional Covariance:

 $Cov[\hat{\beta}|\mathbf{x}] = \sigma^2(\mathbf{x}^{\top}\mathbf{x})^{-1}$, where $Var[Y|X] = \sigma^2$

*error/residuals need to be orthogonal to Col(X) (aka MSE)

 $X: n \times p$, to find some $\hat{\beta}$ that minimizes $||e||_2^2$

 $\hat{\mathbf{y}}$: observed \mathbf{y} projected on Col(X), linear, orthogonal to residuals Sum of residuals = 0

Gradient Descent

$$\beta^{t-1} = \beta^t - \alpha \nabla_\beta L(\beta^t)$$

 $\alpha = \text{learning rate}$

standard/batch: use all points

stochastic: pick random point to approximate batch

mini-batch: pick k random points

Algorithm:

```
def grad_desc(x, y, theta, iter=#, alpha=#):
   for i in range(iter):
        grad = dt(x, t, theta)
        theta = theta - alpha * grad
        loss = mse(model(x, theta[0], theta[1], y))
        theta_history.append(theta)
        loss_history.append(loss)
   return theta, theta_history, loss_history
```

Cross Validation

Fold = # of times splitting

```
Algorithm:
def CV_error(model, X_train, Y_train):
    kf = KFold(n_splits = 4)
   validation_errors = []
    for train_idx, valid_idx in kf.split(X_train):
        # Split Data
        split_X_train = X_train.iloc[train_idx]
        split_X_valid = X_valid.iloc[valid_idx]
        split_Y_train = Y_train.iloc[train_idx]
        split_Y_valid = Y_valid.iloc[valid_idx]
        model.fit(split_X_train, split_Y_train)
        # Compute Error
        Y_pred = model.predict(split_X_valid)
        error = rmse(Y_pred, split_Y_valid)
        valifation_errors.append(error)
```

return np.mean(validation_errors)

Logistic Regression/Classification

Equations:

Logistic Regression Model: $E[Y = 1|X] = \sigma(X^{\top}\beta)$ $log(\frac{P(Y=1|X)}{P(Y=0|X)}) = X^{\top}\beta$

The intercept term helps us shift the center/inflection point of the sigmoid away from the origin.

Sigmoid Function:
$$\sigma(t) = \frac{1}{1+e^{-t}} = \frac{e^t}{1+e^t}$$

 $\sigma(-t) = 1 - \sigma(t)$
 $\sigma'(t) = \sigma(t)(1 - \sigma(t))$
 $X^{\top}\beta \to \infty, \sigma(t) \to 1$
 $X^{\top}\beta \to -\infty, \sigma(t) \to 0$

Cross Entropy Loss

$$-\mathbf{y_i}log(\theta) - (1 - \mathbf{y_i})log(1 - \theta)$$

$$\text{TFAE when } \theta = \sigma(\mathbf{x_i^{\top}}\beta):$$

$$L(y, \theta) = -\mathbf{y_i}log(\sigma(\mathbf{x_i^{\top}}\beta)) - (1 - \mathbf{y_i})log(1 - \sigma(\mathbf{x_i^{\top}}\beta))$$

$$-\mathbf{y_i}\mathbf{x_i^{\top}}\beta + log(\sigma(-\mathbf{x_i^{\top}}\beta))$$

Classifier Evaluation

	1	0
1	TP	FP
0	FN	TN

recall: TP/(TP/FN) (# of true labels over all actually true items)

```
accuracy: (TP+TN)/n
error: (FP+FN)/n
precision: TP/(TP+FP) (# of correct label over all true labels)
```

```
np.count_nonzero(
    (y==y_pred) & (y_pred==1)
                                #TP
    (y==y_pred) & (y_pred==0)
    (y!=y_pred) & (y_pred==1)
                                #FP
    (y!=y_pred) & (y_pred==0)
)
```

Linear Separability

d-dimensional points, draw a d-1 dimension line/plane to separate

To be linearly separable, the data just needs to be separable on one of the feature columns.

* if data is linearly separable, then we can choose some β such that the cross entropy loss $\to 0$, and our optimal $\beta \to \infty$ (vertical line) (OR: our β 's in the model will be very large, and will not be set to 0 by LASSO.) Should regularize.

Tree-Based Methods

Decision Trees

Each node represents a variable, and splits based on variable's values. Leaf node associated with prediction values

Training: Identify how tree should be structured

Prediction: start from root, leaf node signifies prediction

- 1. Selecting splits;
- 2. Decide whether to declare node to be terminal or continue;
- 3. Assign fitted values at each terminal node

Deciding Splits

Split at each node to maximize decrease in risk of current node (locally optimal)

Greedy Optimization: minimum risk occurs by taking a sub-optimal split at current node; depth first search computationally expensive

Classification: Impurity Measures as Risk Function (out of scope) Regression: Squared Loss, Absolute Loss, Huber Loss

Stopping Splits + Prune to Avoid Overfitting

To prevent overfitting and classify over every single point:

Pruning: remove section of tree that has little effect

Set maximum tree depth, minimum number of samples required to split, or maximum impurity threshold

Ensamble Methods

Building multiple trees to avoid overfitting

Regression: average/median across tress (reduce variability + smooth regression surface)

Classification: majority vote

Bagging (Bootstrap Aggregating): same tree trained on multiple bootstrap sample (good when single tree overfit)

Boosting: Assign higher weights to misclassified points (combined weak learners to create 1 strong learner)

Difference in Prob: Bagging - each point has equal chance of resample; Boosting - weights determined by performance

Pros & Cons

Pros:

Highly interpretable

Performs variable selections without LASSO

Works well with nonlinear boundaries

Cons:

Easy to overfit

Requires a lot of fine tuning

Outperformed by other ML techniques

Random Forest

Build many trees using bootstrap samples (bagging)

When training each tree, at each node we take a sample of predictors and split

Bootstrapping

Confidence Interval

Finding Confidence Interval:

- 1. Sort collection in increasing order
- 2. Find p% (percentile) of n: $(p/100) \times n = k$
- 3. If k is an integer, take the kth element of the sorted collection
- 4. Else, round it up to the next integer, and take that element of the sorted collection.

Interpretation of CI

Redraw k sets of bootstrap samples, and calculate k $\alpha\%$ Confidence Intervals, $\alpha\%$ of them will contain the true parameter of the **sampling population**.

Big Data

Data Organization

Database Data Warehouse:

Data are extracted, transformed, and loaded

 $\bf Star\ schema:$ Fact table: contains $\bf unique\ primary\ keys\ +\ foreign\ key\ references\ to\ dimension\ tables$

Dimension tables: primary keys are unique values to this dimension **Snowflake schema** expands on each star to have dependent dimension tables and fact table.

Data Lake - Unstructured Data: Store data in raw form Requires knowledge in access/query

Distributed Computing

Split one large file into parts, then distribute across multiple machines:

Total fragments made = # of fragments * # of replications

Fragment/machine = Total fragments made / # of machines

Maximum # machine fail = # of replications - 1

Map Reduce Model

 ${f Map}$: takes a dataset and a function and applies function on all points

Reduce: aggregates output of the map stage

*During reduce, all records associated to a given key are sent to the same machine.

*Reading from a large file from distributed machine is faster.

Ray

Distributed execution engine, utilizes multiple CPU:

Worker: worker processes execute tasks

Object Store: immutable objects of processed task stored here, allow workers to efficiently share objects on the same node

 ${f Task}$: stateless function that can be execute on a remote server (functions)

Actor: stateful object that lives in a remote process (class/object-oriented)

*remote process returns object id, use ray.get() to get the actual values back