Attack surface

John Slankas jbslanka@ncsu.edu

Design Flaw #9: Understand how external components change your attack surface

What is an Attack Surface?

Fig. 2. A system's attack surface is the subset of the system's resources (methods, channels, and data) potentially used in attacks on the system.

Entry and exit points of a program/system

Considering the attack surface

- the sum of all paths for data/commands <u>into</u> and <u>out of</u> the application;
 - the code that protects these paths (including resource connection and authentication, authorization, activity logging, data validation and encoding);
- all valuable data used in the application, including secrets and keys, intellectual property, critical business data, personal data and personally identifiable information (PII); and
 - the code that protects these data (including encryption and checksums, access auditing, and data integrity and operational security controls)

Attack surface analysis

 To understand and manage application security risks as applications and operating systems are designed and changed in a software system. The goal is to close all but required entry and exit points leading to and from system assets and to constrain others with access rights, monitoring, and response

Security Risk

Protecting from exploitation of future vulnerabilities

P. K. Manadhata and J. M. Wing, "An Attack Surface Metric," *IEEE Transactions of Software Engineering*, vol. 27, no. 3, pp. 371-386, May/June 2011.

How to reduce the attack surface

- Keep entry and exit points to a minimum and allow users to enable functionality as needed.
 - Number of open sockets (TCP and UDP)
 - Number of open named pipes
 - Number of open remote procedure call (RPC) endpoints
 - Number of services
 - Number of services running by default
 - Number of services running in elevated privileges
 - Number of dynamic content Web pages
 - Number of account you add to administrator's group
 - Number of files, directories, and registry keys with weak access control lists

Attack Surface Comparison

High Attack Surface	Low Attack Surface
Features running by default	Feature off by default
Open network connections	Closed all unnecessary connections
System always on	System intermittently on, as needed
Anonymous access	Authenticated access
Code running will full admin privileges	Code running under "least- privilege" account
Uniform defaults	User-chosen settings, secure by default
Larger code	Smaller code
Weak Access Control Lists (ACLs)	Strong Access Control Lists (ACLs)

Defense in depth and the attack surface

Components Change the Attack Surface

- OTS components, platform, applications
- Third party open source or proprietary libraries
- Widgets and gadgets loaded at runtime as part of a web project
- Software developed by a different team
- Software your team developed at a different point in time

Computer Science

... as binaries, source code, API ...

What to do ...

- Isolate components as much as possible
- Configure to only open functionality you will use
- If the component cannot be configured to comply with your security policy, don't use it
- Look at vulnerability history in CVE database
- Maintain up-to-date components
- Maintain a healthy distrust
- Authenticate dataflow
- Consider data coming in untrusted

Document / Inventory

Example

From: Steve

Date: 9/22/2015 4:59PM

To: John

Subject: DataVerse and Curation

John,

One of the goals for the Metrology CCT is to inventory data at LAS.

We'd like to get an instance of <u>Dataverse</u> up to allow us to evaluate it for our use.

Is that something y'all can help with?

Thanks, Steve

References

- M. Howard, "Mitigate Security Risks by Minimizing the Code You Expose to Untrusted Users," MSDN Magazine, November 2004, http://msdn.microsoft.com/en-us/magazine/cc163882.aspx.
- M. Howard, "Threat Models Improve Your Security Process," MSDN Magazine, November 2008, http://msdn.microsoft.com/en-us/magazine/dd148644.aspx id0080033.
- M. Howard, J. Pincus, and J. Wing, "Measuring Relative Attack Surfaces," in *Computer Security in the 21st Century*: Springer, 2005, pp. 109-137.
- P. K. Manadhata and J. M. Wing, "An Attack Surface Metric," *IEEE Transactions of Software Engineering*, vol. 27, no. 3, pp. 371-386, May/June 2011.

