67939 - Topics in Learning Theory

(Due: 16/06/24)

Exercise 1

Lecturer: Prof. Amit Daniely

Name: Hadar Tal

Exercise 1

The moment generating function (MGF) of a random variable X is $M_X(\lambda) = \mathbb{E}[e^{\lambda X}]$. Assume that M_X is defined for any λ in a non-empty segment (-a, a). Show that

1.
$$M_X^{(k)}(0) = \mathbb{E}[X^k]$$

Using the definition of the moment-generating function, we can write:

$$M_X^{(k)}(t) = \frac{d^k}{d\lambda^k} \mathbb{E}[e^{\lambda X}]$$

Using the power series expansion of the exponential function

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

we can write

$$M_X^{(k)}(t) = \frac{d^k}{d\lambda^k} \mathbb{E}\left(\sum_{m=0}^{\infty} \frac{\lambda^m X^m}{m!}\right)$$

Because the expected value is a linear operator, we have:

$$M_X^{(k)}(t) = \frac{d^k}{d\lambda^k} \sum_{m=0}^\infty \mathbb{E}\left(\frac{\lambda^m X^m}{m!}\right) = \sum_{m=0}^\infty \frac{d^k}{d\lambda^k} \left(\frac{\lambda^m}{m!}\right) \mathbb{E}[X^m]$$

Using the k-th derivative of the m-th power

$$\frac{d^k}{d\lambda^k}\lambda^m = \begin{cases} \tilde{m}^k \lambda^{m-k}, & \text{if } k \leq m \\ 0, & \text{if } k > m \end{cases}$$

when

$$\tilde{m}^k = \prod_{i=0}^{k-1} (m-i) = \frac{m!}{(m-k)!}$$

then we have

$$\begin{split} M_X^{(k)}(\lambda) &= \sum_{m=0}^\infty \frac{d^k}{d\lambda^k} \left(\frac{\lambda^m}{m!}\right) \mathbb{E}[X^m] = \sum_{m=k}^\infty \frac{\tilde{m^k}\lambda^{m-k}}{m!} \mathbb{E}[X^m] = \sum_{m=k}^\infty \frac{m!\lambda^{m-k}}{(m-k)!m!} \mathbb{E}[X^m] \\ &= \sum_{m=k}^\infty \frac{\lambda^{m-k}}{(m-k)!} \mathbb{E}[X^m] = \frac{t^{n-n}}{(n-n)!} \mathbb{E}[X^n] + \sum_{m=k+1}^\infty \frac{\lambda^{m-k}}{(m-k)!} \mathbb{E}[X^m] \\ &= \mathbb{E}[X^k] + \sum_{m=k+1}^\infty \frac{\lambda^{m-k}}{(m-k)!} \mathbb{E}[X^m] \end{split}$$

Setting $\lambda = 0$ in the above equation, we get

$$M_X^{(k)}(0) = \mathbb{E}[X^k] + \sum_{m=k+1}^{\infty} \frac{0^{m-k}}{(m-k)!} \mathbb{E}[X^m] = \mathbb{E}[X^k]$$

which completes the proof.

2. Show that for a centered Gaussian X with variance σ^2 , $M_X(\lambda) = e^{\frac{\lambda^2 \sigma^2}{2}}$. In other words, being σ -SubGaussian is equivalent to having MGF that is bounded by the MGF of a centered Gaussian with variance σ^2 .

Let X be a centered Gaussian random variable with mean $\mathbb{E}[X] = 0$ and variance $\text{var}(X) = \sigma^2$. The moment generating function (MGF) of X is defined as:

$$M_X(\lambda) = \mathbb{E}[e^{\lambda X}].$$

Since X is Gaussian, X has the probability density function:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

Therefore, the MGF $M_X(\lambda)$ is:

$$M_X(\lambda) = \int_{-\infty}^{\infty} e^{\lambda x} f_X(x) dx = \int_{-\infty}^{\infty} e^{\lambda x} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx$$

Combining the exponents, we get:

$$M_X(\lambda) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{\lambda x - \frac{x^2}{2\sigma^2}} dx$$

Completing the square in the exponent:

$$\lambda x - \frac{x^2}{2\sigma^2} = -\frac{1}{2\sigma^2} \left(x^2 - 2\sigma^2 \lambda x \right) = -\frac{1}{2\sigma^2} \left(x^2 - 2\sigma^2 \lambda x + \sigma^4 \lambda^2 - \sigma^4 \lambda^2 \right) = -\frac{1}{2\sigma^2} \left((x - \sigma^2 \lambda)^2 - \sigma^4 \lambda^2 \right).$$

Thus, the integral becomes:

$$M_X(\lambda) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\sigma^2\lambda)^2} e^{\frac{\sigma^2\lambda^2}{2}} dx$$

Since the first term inside the integral is a normal distribution that integrates to 1, we get:

$$M_X(\lambda) = e^{\frac{\sigma^2 \lambda^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\sigma^2\lambda)^2} dx = e^{\frac{\sigma^2 \lambda^2}{2}}$$

Therefore, the MGF of X is:

$$M_Y(\lambda) = e^{\frac{\lambda^2 \sigma^2}{2}}$$

This shows that being σ -SubGaussian is equivalent to having an MGF that is bounded by the MGF of a centered Gaussian with variance σ^2 .

3. Show that if X is uniform over [a,b] then $M_X(\lambda) = \frac{e^{\lambda b} - e^{\lambda a}}{\lambda (b-a)}$.

Exercise 2

1. Show that if X_i is σ_i -SubGaussian for i=1,2 then X_1+X_2 is $(\sigma_1+\sigma_2)$ -SubGaussian ¹.

Use the Hölder inequality $(\mathbb{E}[XY] \leq (\mathbb{E}[X^p])^{1/p} (\mathbb{E}[Y^q])^{1/q}$ if $\frac{1}{p} + \frac{1}{q} = 1$ and $p, q \geq 0$) on $\mathbb{E}[e^{\lambda(X - \mathbb{E}[X])}e^{\lambda(Y - \mathbb{E}[Y])}]$

2. For a sub-Gaussian random variable X, define $\|X\|_{vp}$ as the minimal σ for which X is σ -SubGaussian. Show that $\|\cdot\|_{vp}$ is a norm on the space of centered sub-Gaussian random variables. This norm is called the Proxy Variance norm and $\|X\|_{vp}$ is called the optimal proxy variance of X.

Exercise 3

1. Let X be a σ -SubGaussian random variable. Show that 2 $2\sigma \geq \sqrt{\mathrm{var}(X)}$.

²Hint: You can use the fact that for twice differentiable f and g, we have that if f(0) = g(0), f'(0) = g'(0) and $f(x) \le g(x)$ then $f''(0) \le g''(0)$

2. If $||X||_{vp} = \sqrt{\text{var}(X)}$, then X is called strictly sub-Gaussian. Show that if X is uniform on $\{-1,1\}$, then it is strictly sub-Gaussian. Conclude that the bound in Hoeffding's lemma is optimal.

 $3. \ \, {\rm Show\ that\ a\ linear\ combination\ of\ independent\ strictly\ sub-Gaussians\ is\ strictly\ sub-Gaussian}.$

4. Show that for any $M \ge 1$, there is a random variable X with var(X) = 1 and $||X||_{vp} = M$.

Exercise 4

Show that there is a universal constant C > 0 for which the following holds. If X is a random variable such that for any $t \ge 0$,

$$\Pr(X - \mathbb{E}[X] \ge t) \le e^{-\frac{t^2}{2\sigma^2}} \quad \text{and} \quad \Pr(X - \mathbb{E}[X] \le -t) \le e^{-\frac{t^2}{2\sigma^2}}$$

then X is $(C\sigma)$ -SubGaussian³.

³Hint: You may use the fact that for a non-negative random variable Y, $\mathbb{E}[Y] = \int_0^\infty \Pr(Y \ge x) dx$