Assignment 3

Colin Gagich

December 4, 2014

 \mathbf{a})

Differentiating $y = Ce^{3t} + e^{-t}$ we get:

$$\frac{dy}{dt}y = 3Ce^{3t} - e^{-t}$$

Then, we re-arrange our first equation:

$$Ce^{3t} = y - e^{-t}$$

And substitute it into the second equation:

$$y' = 3(y - e^{-t}) - e^{-t}$$
$$y' = 3y - 4e^{-t}$$

Therefore $y = Ce^{3t} + e^{-t}$ is indeed a general analytic solution to the equation $y' = 3y - 4e^{-t}$.

 \mathbf{b})

Substituting the values y = 1 and t = 0 into $y = Ce^{3t} + e^{-t}$

$$1 = Ce^0 + e^0$$
$$1 = C + 1$$

Therefore C=0, substituting this back in the proposed solution we find the analytic solution is indeed $y=e^{-t}$

 $\mathbf{c})$

Using a computer program written in C# the following values were obtained:

```
y(0) = 1
y(1) = 0.367741025173408
y(2) = 0.132504642015483
y(3) = -0.00707763902447456
y(4) = -1.1236691550673
y(5) = -22.9270219157003
y(6) = -460.561696136583
y(7) = -9249.21770901647
y(8) = -185746.199126798
y(9) = -3730223.27913773
y(10) = -74911711.536581
```

 \mathbf{d})

Around the value of y(3) the estimation suddenly becomes negative. We know from our analytical solution this shouldn't happen as $y(t \to \infty) \to 0$. This is because of rounding errors in floating point numbers. Taking a look at the derivative, it can be seen that if the value of y becomes negative due to rounding at any point, it will cause a small error. This small error will then increase with each iteration causing catastrophic failure.