

Winning Space Race with Data Science

Hafizuddin Bin Aminuddin O3 July 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data collection
- Data wrangling
- Exploratory Data Analysis with data visualization
- Exploratory Data Analysis with SQL
- Building interactive map with Folium
- Building interactive dashboard with Plotly Dash
- Predictive analysis using machine learning

Summary of all results

- Exploratory Data Analysis results
- Interactive analytic results
- Predictive analysis results

Introduction

Project background and context

SpaceX

- Advertises Falcon 9 rocket launches on its website
- A cost of 62 million dollars as compared to other providers at 165 million dollars
- Savings due to feasibility of reusing first stage.

Problems you want to find answers

- What factors affecting the success rate for rocket landing?
- To predict the feasibility of SpaceX
 Falcon 9 landing successfully.

Methodology

Executive Summary

Data collection methodology

- Using SpaceX API
- · Web scraping from Wikipedia

Perform data wrangling

 Implementation of one-hot encoding to categorical features

Perform exploratory data analysis (EDA)

- Using Visualisation
- Using SQL

Perform interactive visual analytics

- Using Folium
- Using Plotly Dash

Perform predictive analysis

- Using classification models
- Build, tune and evaluate classification models

Data Collection

SpaceX API

- Obtain request to SpaceX API
- Convert content into Json format with .json() function and correspondingly into pandas dataframe with .json_normalize()
- Clean the data, checked for missing values and substitute them where applicable.

Web Scraping

- Use BeautifulSoup to extract the data for Falcon 9 from Wikipedia.
- Extract as an HTML table, then parse and transform to a pandas dataframe.

Data Collection – SpaceX API

Obtain request for rocket launch data using API

Convert json result into pandas dataframe using json_normalize

Perform data checking, filling missing values where applicable

```
In [6]: spacex_url="https://api.spacexdata.com/v4/launches/past"
In [7]: response = requests.get(spacex_url)

In [12]: # Use json_normalize meethod to convert the json result into a dataframe data = pd.json_normalize(response.json())

data_falcon9.isnull().sum()

# Calculate the mean value of PayloadMass column meanPayloadMass = data_falcon9['PayloadMass'].mean()
# Replace the np.nan values with its mean value data_falcon9['PayloadMass'].fillna(value=meanPayloadMass, inplace=True)
data_falcon9:isnull().sum()
```

Link to the notebook as below:

https://github.com/Hafiz4869/ibm_project/blob/Ocf6138215f2282a81a536a7fadeac076e7245e6/jupyter-labs-spacex-data-collection-api.ipynb

Data Collection - Scraping

Perform an HTTP GET method to request the Falcon9 Launch HTML page, as an HTTP response.

Create from the HTML response a BeautifulSoup object

Extract all column/variable names from the HTML table header

Create a data frame by parsing the launch HTML tables

```
# use requests.get() method with the provided static_url
         # assign the response to a object
         responsehttp = requests.get(static_url)
         # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
          soup = BeautifulSoup(responsehttp.content, 'html.parser')
         # Use the find all function in the BeautifulSoup object, with element type `table`
          # Assign the result to a list called `html_tables'
          html_tables = soup.find_all('table')
       launch dict= dict.fromkeys(column names)
       # Remove an irrelvant column
       del launch_dict['Date and time ( )']
       # Let's initial the launch dict with each value to be an empty list
       launch_dict['Flight No.'] = []
       launch_dict['Launch site'] = []
       launch_dict['Payload'] = []
       launch_dict['Payload mass'] = []
       launch_dict['Orbit'] = []
       launch dict['Customer'] = []
       launch_dict['Launch outcome'] = []
       # Added some new columns
       launch_dict['Version Booster']=[]
       launch_dict['Booster landing']=[]
       launch_dict['Date']=[]
       launch_dict['Time']=[]
In [25]:
                df=pd.DataFrame(launch_dict)
```

Link to the notebook as below:

Data Wrangling

mission outcome per

orbit type

Create landing outcome from Outcome column

Link to the notebook as below:

https://github.com/Hafiz4869/ibm_project/blob/Ocf6138215f22 82a81a536a7fadeac076e7245e6/IBM-DS0321EN-SkillsNetwork labs_module_1_L3_labs-jupyter-spacexdata_wrangling_jupyterlite.jupyterlite.jupyb orbit

EDA with Data Visualization

- Scatter plot used to visualize correlation between flight number, orbit type and payload mass.
- Bar chart used to visualize correlation between orbit type and success rate
- Line graph used to visualize the yearly trend against success rate

EDA with SQL

The queries initiated for EDA via SQL:

- The names of unique launch sites in the space mission.
- Records where launch sites begin with string 'CCA'.
- Total payload mass carried by boosters launched by NASA (CRS).
- Average payload mass carried by booster version F9 v1.1
- Date when the first successful landing outcome in ground pad was achieved.
- List of names for the boosters which have success in drone ship and have payload mass greater than 4,000 but less than 6,000.
- Total number of successful and failure mission outcomes.
- Names of the booster version which have carried the maximum payload mass.
- · Records for months, failed landing outcome in drone ship with their responding booster version and launch site.
- Ranking the landing outcomes in descending order within the stipulated period.

Link to the notebook as below:

Build an Interactive Map with Folium

Map objects such as markers, circles, lines are added into the map with the objective of determining the optimal location for launching sites.

Colour-labeled markers enable to determine location with high potential for success rate for rocket landing.

Build a Dashboard with Plotly Dash

Interactive Dashboard

Scatter plot

Able to observe the correlation between Payload Mass (kg) and success count outcome for different

Pie chart

Comparison of success counts launch based on different sites.

Link to the notebook as below:

booster version.

Predictive Analysis (Classification)

Model Development Process

Link to the notebook as below:

Results

Exploratory data analysis results

- Low payload mass has a higher success rate than the high payload mass.
- Both KSC LC 39A and VAFB SLC 4E have the best success rate for launching.
- The orbit type which has high success rate are ES-L1, GEO, HEO, and SSO.

Interactive analytics demo in screenshots

Predictive analysis results

- Logistic regression, SVM, Decision Tree and KNeigbhour Classifier have the same accuracy for test data.
- Decision Tree has the best accuracy for train data.

Flight Number vs. Launch Site

- Based on the scatter plot, the higher the flight number, the higher success rate for landing.
- Both KSC LC 39A and VAFB SLC 4E have the best success rate for launching.

Payload vs. Launch Site

- KSC LC 39A has a high success rate for landing if the pay load mass is less than 6,000 kg.
- There is no rocket launching for pay load mass greater than 10,000 kg for VAFB-SLC.

Success Rate vs. Orbit Type

The orbit type which has high success rate are ES-L1, GEO, HEO, and SSO.

Flight Number vs. Orbit Type

- LEO orbit exhibits a relationship with the flight number. The higher the flight number, the higher the success rate.
- There is **no correlation** observed for **GEO orbit with the flight number**.

Payload vs. Orbit Type

• For LEO, ISS and PO orbits, it is observed that the higher pay load mass results in higher success rate.

Launch Success Yearly Trend

• There is an **increasing trend for success rate** starting from year 2013 until year 2020 based on the line graph shown above.

All Launch Site Names

%sql SELECT DISTINCT Launch_site FROM SPACEXTBL

 The keyword used to display the unique launch sites from the SpaceX data is DISTINCT.

Launch Site Names Begin with 'CCA'

%sql SELECT * FROM SPACEXTBL WHERE Launch site LIKE 'CCA%' LIMIT 5

- The keyword used to display the launch sites begin with 'CCA' is LIKE.
- The keyword used to show 5 records is LIMIT.

Total Payload Mass

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [14]:  
**sql SELECT sum(payload_mass_kg_) as TOTAL_PAYLOAD_MASS FROM SPACEXTBL WHERE customer = 'NASA (CRS)'

**sqlite://my_data1.db
Done.

Out[14]:  
**TOTAL_PAYLOAD_MASS

45596.0
```

%sql SELECT sum(payload_mass__kg_) as TOTAL_PAYLOAD_MASS FROM SPACEXTBL WHERE customer = 'NASA (CRS)'

Average Payload Mass by F9 v1.1

%sql SELECT avg(payload_mass__kg_) AS AVERAGE_PAYLOAD_MASS FROM SPACEXTBL WHERE booster_version = 'F9 v1.1'

First Successful Ground Landing Date

%sql SELECT min(DATE) FROM SPACEXTBL WHERE landing_outcome = 'Success (ground pad)'

The first successful landing outcome in ground pad was achieved on 1 August 2018.

Successful Drone Ship Landing with Payload between 4000 and 6000

```
List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

In [17]:

**sql SELECT booster_version FROM SPACEXTBL WHERE landing_outcome = 'Success (drone ship)'\
and payload_mass_kg_ between 4000 and 6000

* sqlite:///my_data1.db
Done.

Out[17]:

**Booster_Version
F9 FT B1022
F9 FT B1021.2
F9 FT B1031.2
```

%sql SELECT booster_version FROM SPACEXTBL WHERE landing_outcome = 'Success (drone ship)'\ and payload_mass__kg_ between 4000 and 6000

- The keyword used to filter for boosters that have successfully landed on drone ship is WHERE.
- The keyword used to determine successful landing with payload mass greater than 4,000 but less than 6,000 after the filter with WHERE is AND.

Total Number of Successful and Failure Mission Outcomes

%sql SELECT mission_outcome, COUNT(mission_outcome) FROM SPACEXTBL GROUP BY mission_outcome

- GROUP BY is used to determine the type of mission outcome.
- The total number of successful mission outcome is 100.
- The total number of failure mission outcome is O.

Boosters Carried Maximum Payload

In [19]:	List the names of	f the booster_versions v
	<pre>%sql SELECT booster_version, payload_masskg_ FROM SPACEXTBL\ WHERE payload_masskg_ = (SELECT MAX(payload_masskg_) FROM SPACEX</pre>	
	* sqlite:///my_c	data1.db
Out[19]:	Booster_Version	PAYLOAD_MASSKG_
	F9 B5 B1048.4	15600.0
	F9 B5 B1049.4	15600.0
	F9 B5 B1051.3	15600.0
	F9 B5 B1056.4	15600.0
	F9 B5 B1048.5	15600.0
	F9 B5 B1051.4	15600.0
	F9 B5 B1049.5	15600.0
	F9 B5 B1060.2	15600.0
	F9 B5 B1058.3	15600.0
	F9 B5 B1051.6	15600.0
	F9 B5 B1060.3	15600.0
	F9 B5 B1049.7	15600.0

%sql SELECT booster_version, payload_mass__kg_ FROM SPACEXTBL\ WHERE payload_mass__kg_ = (SELECT MAX(payload_mass__kg_) FROM SPACEXTBL)

• MAX() function is used in subquery of WHERE clause to determine the booster version that carried maximum payload mass.

2015 Launch Records

List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 4, 2) as month to get the months and substr(Date, 7, 4) = '2015' for year.

In [29]:

**sql SELECT substr(Date, 4, 2) as month, DATE, booster_version, launch_site, [Landing_Outcome] FROM SPACEXTBL\
WHERE [Landing_Outcome] = 'Failure (drone ship)'\
AND substr(Date, 7, 4) = '2015'

* sqlite:///my_datal.db
Done.

Dut[29]:

month

Date** Booster_Version**

Launch_Site** Landing_Outcome

10 01/10/2015 F9 v1.1 B1012 CCAFS LC-40 Failure (drone ship)

04 14/04/2015 F9 v1.1 B1015 CCAFS LC-40 Failure (drone ship)

%sql SELECT substr(Date,4,2) as month, DATE, booster_version, launch_site, [Landing_Outcome] FROM SPACEXTBL\ WHERE [Landing_Outcome] = 'Failure (drone ship)'\ AND substr(Date,7,4)='2015'

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

%sql SELECT [Landing_Outcome], COUNT(*) AS count_outcomes FROM SPACEXTBL\ WHERE DATE between '04-06-2010' and '20-03-2017' GROUP BY [Landing_Outcome] ORDER BY count_outcomes DESC

All Launch Sites Location on a Global Map

- SpaceX launch sites in the United States shown with circle marker are in:
 - Florida
 - California
- NASA Johnson Space Center is marked without circle marker.

Color-labeled Launch Outcomes

Florida Launch Sites

California Launch Site

- Green marker indicates successful launches.
- Red marker refers to failure launches.

Launch Sites Distance to Landmarks

Distance to railway

Distance to coastline

Distance to highway

Distance to cities

- Are launch sites in close proximity to railways? No.
- Are launch sites in close proximity to highways? No.
- Are launch sites in close proximity to coastline? Yes.
- Are launch sites in close proximity to cities? Yes.

SpaceX Success Launches

KSC LC-39A

has among all sites the most prosperous launches.

KSC LC-39A Launch Ratio

Most prosperous launches.

76.9% success rate.

23.1% failure rate.

Payload vs Launch Outcome

O kg − 4,000 kg
success rate failure rate
4,000 kg − 8,000 kg
success rate failure rate

FT Booster Version

has the **most success** rate.

Classification Accuracy

Decision Tree

has the **highest** classification accuracy

Confusion Matrix

Decision Tree

- Confusion matrix shown for decision tree on the left figure display the capability of the classifier to differentiate between different classes.
- One notable problem observed in the matrix is the false positives where actual unsuccessful landing is determined as successful landing by the classifier.

Conclusions

- Low payload mass has a higher success rate than the high payload mass.
- Both KSC LC 39A and VAFB SLC 4E have the best success rate for launching.
- Increasing trend of success rate from 2013 until 2020.
- The orbit type which has high success rate are ES-L1, GEO, HEO, and SSO.
- Logistic regression, SVM, Decision Tree and KNeigbhour Classifier have the same accuracy for test data.
- Decision Tree has the best accuracy for train data.

