Navy Experimental Diving Unit 321 Bullfinch Rd. Panama City, FL 32407-7015 NEDU TR 9-00 September 2000

1.3 ATA PO₂ N₂-O₂ DECOMPRESSION TABLE VALIDATION

Authors:

T. M. JOHNSON LCDR, MC, USN Principal Investigator

W. A. GERTH, PhD Associate Investigator

D. G. SOUTHERLAND CDR, MC, USN Associate Investigator DISTRIBUTION STATEMENT A: Approved for public release; Distribution is unlimited.

DTIC QUALITY INCRESSED 4

20001101 007

			REPORT DOCUM	1ENT	ATION PAGE					
1a. REPORT SECURITY	CLASSIFICATIO Unclassifie			1b. 1	RESTRICTIVE	MARKIN	1GS			
2a. SECURITY CLASSIF				DIS	ISTRIBUTION TRIBUTION S' mited.				ic re	lease; Distribution is
2b. DECLASSIFICATION	I/DOWNGRADIN	IG AUTHOR	UTY							
4. PERFORMING ORGAINEDU TECHNICAL RI		RT NUMBE	ER (S)	5. N	ONITORING	ORGANIZ	ZATION	REPORT NUM	BEF	R(S)
6a. NAME OF PERFORM ORGANIZATION			CE SYMBOL plicable)	7a.]	NAME OF MO	NITORIN	G ORGA	ANIZATION		
Navy Experimental Di	ving Unit									
6c. ADDRESS (City, State	e, and ZIP Code)			7Ь.	ADDRESS (Cit	y, State, a	nd Zip C	ode)		
321 Bullfinch Road, Pa	anama City, FL 32	407-7015								
8a. NAME OF FUNDING SPONSORING ORGA			CE SYMBOL plicable)		ROCUREMEN UMBER	T INSTRI	UMENT	IDENTIFICAT	ION	
NAVAL SEA SYSTEM	AS COMMAND		00C							
8c. ADDRESS (City, State				10.	SOURCE OF F	UNDING	NUMBE	ERS		
2531 Jefferson Davis	Highway, Arlingto	n, VA 2224	2-5160		OGRAM EMENT NO.	PROJEC	CT NO.	TASK NO.		ORK UNIT
				ELE	EMIENT NO.			98-029	A	CCESSION NO.
11. TITLE (Include Securi	ty Classification)									
1.3 ATA PO2 N2-O	DECOMPRE	SSION TA	BLE VALIDATION							
12. PERSONAL AUTHOR		001011 11								
			ND D C COLUMN	DT 43	ID CDD MC II	ICN I				
	DR, MC, USN; W		, PhD; D. G. SOUTHE	RLAN	14. DATE OF		C(Veer)	Month Day)		15. PAGE COUNT
13a. TYPE OF REPORT TECHNICAL REPORT	PT.		COVERED FROM 0 - Jun 00			BER 2000		violiui, Day)		94
16. SUPPLEMENTARY										
17.	COSATI CO	DES		18	S. SUBJECT TE	RMS (Co	ntinue on	reverse if neces	sary	and
FIELD	GROUP		SUB-GROUP				,			
]						
10 ADGED ACE										
19. ABSTRACT:	cessful human	validation	trial of 1.3 atmosp	here	(ATA) PO	-in-nitro	gen (P(Da-in-Na) dec	om	pression profiles
for use with the MK	16 MOD 1 Un	derwater F	Breathing Apparatu	s (U)	BA) are pres	ented.	Twelve	(12) dive pro	file	s involving
repetitive dives, deco	mpression div	es, and rep	etitive decompress	sion o	lives ranging	in dept	h from	80 to 190 fee	t of	f seawater (fsw)
were tested a total of	325 times. Th	ree cases	of decompression s	sickn	ess occurred	in the fi	irst port	tion of the tri	al, 1	when schedules
computed assuming t	that the diver b	reathes 1.3	3 ATA PO2-in-N2 a	it dep	ths greater t	han 33 f	sw wer	e tested. Sch	iedi	iles tested in the
last portion of the tria	al were calcula	ted under t	the assumption tha	t the	diver breath	es 1.25 A	ATA PO	O_2 -in- N_2 at de	epth	is deeper than 33
fsw. No additional c	ases of DCS of	curred wi	th these schedules.	Div	er inspired F	O ₂ was	measur	ed and used	to e	stimate the risk
of central nervous sy	stem (CNS) to	xicity for	199 of the dives. L	econ	npression tal	oles for	use Wit	n une IVIK 16	IVIC	ו אוו מור ו ענ
diluent are presented 20. DISTRIBUTION/AV				cyger		BSTRAC	T SECUI	RITY CLASSIF	ICA'	TION
UNCLASSIFIED/U	NLIMITED IXI	SAME AS E	RPT. DTIC USER	S		Unclas	sified			
22a. NAME OF RESPON			22b. TELEPHONE		de Area Code)			FFICE SYMBO	L	
NEDU Librarian			(850) 230-310	0						

TABLE OF CONTENTS

<u>Section</u> Pa	ige No.
INTRODUCTION	1 1 3 4 7 8 11
APPENDIX A ISSUES CONSIDERED IN SELECTION OF TEST PROFILES APPENDIX B DIVES PERFORMED	B1-B31 C1-C5 D1-D4
APPENDIX F INTRODUCTION TO MK 16 MOD 1 N ₂ -O ₂ DECOMPRESSION TABLES	F1-F11

1.3 ATA PO2 N2-O2 DECOMPRESSION TABLE VALIDATION

INTRODUCTION

The MK 16 MOD 0 Underwater Breathing Apparatus (UBA) is the workhorse UBA for U.S. Navy Explosive Ordnance Disposal (EOD). The MK 16 MOD 0 delivers a constant 0.7 atmosphere absolute oxygen partial pressure (0.7 ATA PO₂) to the diver with either nitrogen (N₂) or helium (He) as the inert gas. Decompression tables for MK 16 MOD 0 diving have been in use for over a decade and can be found in the current U.S. Navy Diving Manual¹. There is now an effort to increase the bottom times and repetitive dive capability with a MK 16 MOD 1 that will deliver a breathing gas with a PO₂ of 1.3 ATA to the diver. The present study is part of the developmental effort for this new MK 16 when used with air as the diluent gas.

Tables for the MK 16 MOD 0 with constant 0.7 ATA PO $_2$ in N $_2$ were computed using the EL-MK 15/16 RTA (Real Time decompression Algorithm) with the VVAL18 MPTT (Maximum Permissible Tissue Tension) Table 2 , herein referred to as the EL-MK 15/16 VVAL18 RTA. The EL-MK 15/16 VVAL18 RTA was minimally modified at the Navy Experimental Diving Unit (NEDU) and used to compute 1.3 PO $_2$ -in-N $_2$ decompression tables. These tables offer longer bottom times with decreased decompression times for EOD divers. In 1998 NEDU conducted a series of no-decompression dives that validated the 1.3 ATA PO $_2$ -in-N $_2$ tables in the 60-100 feet of sea water (fsw) range 3 . The purpose of this study was to validate the modified EL-MK 15/16 VVAL18 RTA for use in MK 16 MOD 1 N $_2$ -O $_2$ decompression and repetitive dives.

METHODS

GENERAL

The study was reviewed and approved by the NEDU Committee for the Protection of Human Subjects (CPHS) before any manned trials commenced. The study involved approximately 80 U.S. Navy military divers. All the divers read and signed a consent form prior to the study. They were required to meet the usual physical qualifications criteria for diving. All divers were trained on the standard and emergency NEDU diving procedures before participating in the study. In this report, the personnel acting as experimental divers will be called "divers."

To minimize the potential for having results of a dive profile confounded by effects of a preceding dive profile, the divers were required to spend a minimum of 60 hours at sea-level between profiles. If a diver did not experience any symptoms of decompression sickness (DCS) for 48 hours after completing an experimental dive profile, he was given the diagnosis of "no DCS" and could participate in test of another profile after elapse of an additional 12 hr. If a diver was diagnosed with a Type I DCS injury, he could not participate in any study during the ensuing week. Further diver

participation in the study after a Type II DCS injury was handled on a case-by-case basis.

No systemic drugs except antibiotics and approved decongestants were allowed unless cleared by the Diving Medical Officer (DMO). Since many divers normally take nonsteroidal anti-inflammatory drugs (NSAIDs) or vitamins daily, such use was allowed if 1) the DMO was notified and 2) no more than the diver's routine amount was taken while participating in the dive.

In U.S. Navy dive decompression research programs, experimental divers have traditionally been instructed to abstain from alcohol for a minimum of 72 hours before and after participating in an experimental dive. However, this does not reflect operational diving practice. In an effort to make the experimental diver population a more accurate reflection of operational divers, the divers were allowed to engage in their usual social drinking behavior. Alcohol consumption was documented in the predive medical screening. In this way there was no incentive for the divers to be less than completely forthright about their alcohol consumption. Divers were also instructed to engage in their regular program of physical training, although they were encouraged to participate in only light physical training on the day of their experimental dive. This was another effort to make the experimental divers reflect operational divers more closely.

Selected no-decompression repetitive dive and decompression dive profiles at depths from 80 to 190 fsw were tested in present work. The test profiles were calculated using the EL-MK 15/16 VVAL18 RTA in simulated real-time mode with a 2 sec update period. The EL-MK 15/16 VVAL18 RTA was modified to assume that inspired O₂ partial pressures were breathed in accord with those provided during idealized operation of the MK 16 MOD 1 UBA with air as the diluent gas. The diver was assumed to breathe a 0.7 ATA PO₂ gas mixture starting with descent from surface and continuing until arrival at 33 fsw, whereupon the inspired PO₂ was assumed to be 1.3 ATA for the remainder of the descent, time on the bottom, and subsequent ascent to 10 fsw. The inspired PO2 was then assumed to be 0.7 ATA for the remaining ascent from 10 fsw to surface, after which the diver was assumed to breathe air. An ascent rate of 30 fsw/min was assumed for all calculations. In addition, the 10 fsw decompression stop was eliminated on ascent, since operating characteristics of the MK 16 MOD 1 UBA preclude a decompression stop with a PO₂ of 1.3 ATA at depths shallower than 20 fsw. Some schedules computed under the assumption that the diver breathes 1.25 ATA PO₂ instead of 1.3 ATA PO₂ at the deeper depths were also tested (See Results).

The target compression rate in the test dives was 60 fsw/min, but the rates actually achieved ranged from 38 to 60 fsw/min. Although the EL-MK 15/16 VVAL18 RTA algorithm was not exercised in its real-time mode to govern the minute-by-minute schedules of the dives, provision was made to use schedules that accounted for these inevitable variations in descent rates between different dives. A collection of schedules was pre-calculated with different descent rates in 5 fsw/min increments and made available at dive start time. The pre-calculated schedule with a descent rate closest to the average rate actually achieved was used for the dive.

Twelve (12) dive profiles were tested in the following categories of interest to EOD:

- No-decompression dives to 80 and 100 fsw with two repetitive dives
- Decompression dives to 90, 110, and 130 fsw with one no-decompression repetitive dive
- Decompression dives with one repetitive decompression dive to 120, 140, and 160 fsw
- Single decompression dives to 130, 160, 170, and 190 fsw

Three to four divers participated in each dive. Each diver had a tender to assist him with dressing for the dive, entering the chamber, supporting him during the surface interval between dives, and assisting him after the dive. The tenders were not exposed to a hyperbaric environment.

The divers were interviewed each morning by a Diving Medical Officer and the Dive Watch Supervisor (DWS) to verify their fitness to dive. Divers were kept on-site for 2 hr after surfacing from each dive. Each diver was queried about status on surfacing and at 2 hr, 24 hr and 48 hr after surfacing, and could volunteer information about symptoms at at any time. Treatment of any decompression sickness was per standard U.S. Navy Standard Recompression Treatment Tables.

Divers wore a neoprene wet suit with booties, farmer johns, and weight belts as needed. A hot water hose was available for use if a diver became cold during a decompression stop or a surface interval.

The water level in the OSF wet pot was set at approximately 5 fsw from the deck gratings. Because each diver was either at rest or working in the horns of his assigned bicycle ergometer, the water depth at the horns determined the diver's actual mid-chest depth. This water depth was measured on each dive day and was invariably from 0.8 to 1.0 fsw. All depths reported here are for diver mid-chest depth, corrected for immersion.

REJECTION RULES

The purpose of the present validation study was to demonstrate that the incidence of DCS when diving schedules prescribed by the modified EL-MK 15/16 VVAL18 RTA is not higher than that normally accepted in U.S. Navy diving. Profile rejection criteria were established before commencing the man-dives in order to allow a statistical conclusion to be reached that a profile was of unacceptably high risk with a minimum number of man-exposures. Any profile was to be rejected, and further testing of that profile was to be ceased, if three or more cases of definite DCS occurred in the first 16 dives on the profile, or if 6 or more cases occurred in the 32 dive maximum number of exposures arbitrarily set for any given profile. These criteria provided for rejection of any given profile with 95% binomial confidence that the true DCS risk of the profile exceeded 5%.

Occurrence of two significant DCS Type II cases or one serious case (life threatening, paralysis, etc.), as agreed upon by the Principal Investigator and the NEDU Medical Department Division Officer, were additional predetermined causes for rejection of a profile.

The above rejection rules limited the overall risks to which the experimental divers were exposed, but also determined the probability that a schedule of given true DCS risk would be rejected as unacceptably risky. This probability was estimated for schedules of various true DCS risks using a Monte Carlo simulation of 50,000 trials at each true DCS risk to generate the power curve for the trial shown in Figure 1. Each value on the ordinate in the figure gives the estimated probability of rejecting a schedule of true DCS probability on the abscissa. Thus, the probabilities of rejecting schedules of 10 and 20% true DCS risk were 23 and 76%, respectively, under the present rejection rules. This relatively low power is a consequence of the low number of test exposures per schedule allowed in the trial, which was driven by desire to test more rather than fewer different schedules within the limits of the program.

Figure 1. Estimated power curve for the present validation trial from Monte Carlo simulations of 50,000 trials at each true DCS risk. Each trial consisted of a maximum of 32 exposures taken four at a time.

EXPERIMENTAL PROFILES

The dive profiles tested in this study are outlined in Tables 1 through 4. The tabulated profiles are those computed using 60 and 30 fsw/min descent and ascent rates, respectively, and a PO_2 of 1.3 ATA at depth as described above. As per usual convention, each bottom time includes descent time. Decompression stop times do not include preceding ascent time. Decompression stop times varied from those in the table by 1 or 2 minutes if different descent rates within the trial range of 38-60 fsw/min, or a PO_2 of 1.25 ATA at depth, was used. See Appendix A for a discussion of other issues considered in selection of these dive profiles.

 Table 1.
 No-Decompression Dive With Two No-Decompression Repetitive Dives

Series	Depth (fsw)	Bottom Time (min)	De		ession p Times		(fsw)
	, , ,		50	40	30	20	10
30 FSW							
	30	30			none		
	Surface Ir	nterval, 30 min					
	30	30			none		
	Surface Ir	nterval, 30 min					
	30	30			none		
100 FSW							
	100	20			none		
	Surface Ir	nterval, 30 min					
	100	15			none	<u> </u>	
	Surface II	nterval, 30 min					
	100	14			none		

Table 2. No-Decompression Dive With One No-Decompression Repetitive Dive

Series	Depth (fsw)	Bottom Time (min)	Dec	ompre Stop	ession S Times	Stops (f (min)	sw)
	(50	40	30	20	10
90 FSW							
	90	30			none		
	Surface Ir	nterval, 30 min					
	90	27			none		
110 FSW							
	110	20			none		
	Surface Ir	nterval, 30 min					
	110	15			none		
130 FSW							
	130	15			none		
	Surface	Interval, 30 min					
	130	11			none		

Table 3. Decompression Dive With One Repetitve Decompression Dive

Series	Depth (fsw)	Bottom Time (min)	Dec	•	sion S Times	Stops (fa (min)	sw)
			50	40	30	20	10
120 FSW							
	120	30				4	
	Surface In	iterval, 30 min					
	120	30				26	
140 FSW							
	140	25				8	
	Surface Ir	iterval, 30 min					
	140	25			3	28	
160 FSW							
	160	25				18	
	Surface	Interval, 30 min					
	160	25			13	28	

Table 4. Decompression Dive

Series	Depth (fsw)	Bottom Time (min)	Dec		ssion S Times	Stops (fa (min)	sw)
			50	40	30	20	10
130 FSW							
	130	30				10	
160 FSW							
	160	30			2	24	
170 FSW							
	170	30		2	5	25	
190 FSW							
	190	25	1	4	4	23	

DIVE PROCEDURES

All diving was conducted in the wet chamber of the NEDU OSF. The water temperature was 78-84°F (26-30°C) for all dives. Four pedal ergometers (W. E. Collins,

Braintree, MA) were staged in a swimming inclination on the platform. The control room monitored all diving via the in-chamber video cameras. A hydrophone in the wet pot, and a Full Face Mask (FFM) rigged with a communication system, were used to communicate with the divers.

Preparation and Compression

All dives were performed with the divers breathing on MK 16 MOD 1 UBAs with air as the diluent gas. The divers donned their UBAs in front of Alpha Chamber with the assistance of tenders and under the supervision of the Diving Watch Supervisor (DWS). When directed by DWS, the dressed divers entered Alpha Chamber of the OSF and proceeded directly to the trunk. Each diver then connected his/her gas sampling line to the UBA inhalation hose where it exits the body of the rig, entered the water, and remained on the surface breathing air. After all of the divers had completed this procedure and were ready to dive, the DWS instructed them to "go on gas," meaning start breathing from the UBA, and prepare to descend. One to three minutes after the divers went "on gas," the OSF complex was pressed with air to the desired depth. The divers gave OKs throughout the entire descent. If there was a halt for a squeeze, the chamber was brought up a few feet, and the affected diver was allowed to clear. The DWS then continued to press the chamber to the desired bottom depth. Upon arrival at the bottom depth, the average descent rate achieved was calculated and used to select the decompression schedule for the dive. The divers were instructed to add diluent if the secondary display showed a partial pressure of oxygen greater than 1.6 ATA at any time during the dive, or whenever they felt need for a larger tidal volume.

At Depth

Upon arriving at the bottom, all divers proceeded to their assigned bike. All bikes were situated in such a fashion that they were in full view of the video monitors. After giving OKs, the divers began exercising between 35 and 50 watts. The divers alternated between equal periods of exercise and rest in the horns of the bike while at depth (typically 5 minutes of exercise was alternated with 5 minutes of rest).

Decompression

During the first 33-35 dives in the study (Appendix B) divers were allowed to manually add O_2 to their rigs at their own discretion at any point in the dive. However, during the deeper dives, diver exercise of this perogative resulted in unacceptably high PO_2 values in many divers' breathing gases, so the divers were thereafter instructed not to add O_2 manually until ascent had started. Decompression was at a rate as close to 30 fsw/min as possible. Divers were instructed to remain at rest during decompression and to ensure that the rig maintained a PO_2 of 1.3 ATA.

At Surface

Data was collected in a text file format and imported into several Microsoft Excel 97 spreadsheets. The data was reduced, analyzed, and output generated through Microsoft Excel spreadsheets.

Instrumentation

The depth, time at depth, and diver inspired PO_2 were monitored on every dive. This was done initially to ensure that the rigs truly were delivering the intended PO_2 of 1.3 ATA to the divers. Diver inspired gas was sampled at a rate of 125 ml/minute from the base of the MK 16 MOD 1 inhalation hose. For the first half of the study, the gas was analyzed with a Rosemount New Gas Analyzer 2000 (La Haba, CA). The gas sampling system used during this phase of the study had a variable delay time during ascent and descent. For the second half of the study, the gas sampling system was modified to ensure a constant sample delay time throughout each dive, and mass spectrometers were used to analyze the gas (see Appendix D).

RESULTS

Twelve (12) dive profiles were tested a total of 325 times in this study. Three cases of decompression sickness occurred, yielding an overall DCS incidence of less than 1%. Appendices C and D provide a detailed listing and discussion of all dives performed and their outcomes.

Dive profile results are summarized in Table 5 ("SI" is surface interval). Upper 95% binomial confidence limits for the true DCS risks of the individual profiles and for the overall trial outcome are included in the table. These values illustrate that although no profile was rejected for having manifested unacceptable DCS risk in this trial, the ability to assess how low the true DCS risks of the profiles might be is limited by the low number of exposures on each profile. On the other hand, and subject to certain caveats, the overall trial outcome may be viewed as more conclusive. Here, the occurrence of only three DCS cases in 325 exposures allows assertion at 95% confidence that the overall DCS risk of the profiles is less than 2.7%. The validity of this assertion is subject to the assumptions that all exposures were independent and that the true DCS risks of all the profiles are equal; both of which are certainly violated in this data. Nevertheless, the 2.7% figure compares favorably with the estimated risks of current U.S. Navy Standard Air Decompression schedules, which vary widely from fractions of one percent to greater than 10% under the probabilistic models available to make such estimates^{4,5,6}. Within these schedules, the mean DCS risk of air dives to the no-stop limits is 2.2% and 2.1% under the BVM(3) and USN93 models, respectively⁷. Thus, the present overall DCS incidence falls well within the range of DCS risks accepted under current U.S. Navy Standard Air diving practice.

Table 5. Summary of Test Results

Dive Profile	# DIVES	#CASES DCS	Upper 95% binomial confidence limit of true DCS risk, %
00/00 0100 00/00 0100 00/04	00	0	10.1
80/30 SI30 80/30 SI30 80/31	28	0	10.1
100/20 SI30 100/15 SI30 100/14	29	0	9.8
·			
90/30 SI30 90/30	28	0	10.1
110/20 SI30 110/15	32	0	8.9
130/15 SI30 130/11	28	0	10.1
120/30 SI30 120/30	31	1	16.7
140/25 SI30 140/25	30	0	9.5
160/25 SI30 160/25	28	2	23.5
130/30	30	0	9.5
160/30	28	0	10.1
170/30	29	0	9.8
190/25	4	0	52.7
TOTAL	325	3	2.7

Because three cases of DCS were observed during the repetitive decompression dive profiles, the decompression tables were recomputed after dive #80 assuming that the diver was breathing a PO_2 of 1.25 ATA during periods when the inspired PO_2 was previously assumed to be 1.3 ATA. This minor recalculation added 2 to 3 minutes of decompression time to the recomputed profiles. The subsequent dives were performed without incident.

The three DCS cases that occurred in this study were associated with repetitive decompression dives undertaken near the end of the study. The first case was Type I DCS that occurred after a 160 fsw repetitive decompression dive. The diver experienced skin mottling of the left upper arm approximately 3.5 hours after the dive. His symptoms resolved rapidly with a USN TT5. The second case was also Type I DCS that occurred after a 120 fsw repetitive decompression dive. It began with a rash on his abdomen about 4 hours after the dive. Approximately 12 hours after the dive, he developed left shoulder pain. He was treated with a USN TT6 with full resolution of symptoms. The final case was a Type II DCS injury that occurred during a 160 fsw repetitive decompression dive. It started out as pain and numbness in the left hand at 20 fsw, which worsened on the surface. The diver was treated with a USN TT6 with full resolution of symptoms.

DISCUSSION

Three cases of decompression sickness occurred in the 325 dive profiles completed in this study, yielding an overall DCS incidence of less than 1%. This DCS incidence was no higher than the DCS risks thought to be associated with normal U.S. Navy diving operations. However, each of the DCS cases that occurred was associated with a repetitive decompression dive. Failure to reject the repetitive recompression dive schedules as unacceptably risky is of limited significance, due to the low power of the trial for any particular schedule tested. We therefore have reservations about the ability of the EL-MK 15/16 VVAL18 RTA to prescribe adequate decompressions in real-time mode for MK 16 MOD 1 N_2 - O_2 repetititve decompression dives.

The repetitive decompression dives were predicted to have the highest risks of DCS by the BVM(3)^{6,8}, JAP98-2⁷, and USN93⁹ probabilistic decompression models, and these were the dives on which the observed cases of DCS occurred. Mass spectrometric analysis of diver inspired gas revealed that the MK 16 MOD 1 UBA often failed to provide a PO₂ of 1.3 ATA during ascent from bottom and during the first minute or two at the first decompression stop of these dives. However, the decompression schedules were calculated under the assumption that the divers breathed 1.3 ATA of oxygen during the entire decompression. The failure of this assumed condition to prevail during decompression may have contributed to the occurrence of DCS on these dives. Schedules for these decompressions were recalculated under the assumption that the divers breathed a PO₂ of 1.25 ATA at depth. This resulted in slightly longer decompression stops for the UBA to respond to the PO₂ fall during first ascent and restore the intended 1.3 ATA inspired PO₂. With only mimimal increases in decompression time, no additional cases of decompression sickness occurred.

In addition to the periods of decreased PO₂ during ascent and after arriving at their first decompression stop, divers were also observed to have elevated inspired PO₂ levels during descent and after arriving at the bottom, particularly on the deeper dives. These PO₂ overshoots during compression, which are relieved by diver metabolic consumption of O₂ after arrival at depth, are known features of closed circuit UBA performance¹⁰ that have important implications for O₂ toxicity risk^{11,12}. Assessment of these implications became an important objective of this work.

The system initially used to analyze diver inspired gas delivered gas from the diver to the gas analyzer at a rate that varied with chamber pressure. As a result, the delay time between measured pressure and diver inspired O₂ fraction (FO₂) varied widely, causing computed inspired PO₂ values during dives in the initial part of the study to be inaccurate. This problem motivated refinement of the gas sampling system to deliver sample gas at a constant rate with minimal variation in delay time during the dive. Additionally, the FO₂ in the sample gas was analyzed with a mass spectrometer to decrease analytic response time. This improved system was in place during the last 199 dives (66 profiles) tested in this study, and results were used to estimate the risks

of CNS oxygen toxicity (See Appendix E). No symptoms of oxygen toxicity were observed in any of the divers who participated in this study.

Oxygen toxicity is not thought to be a significant problem at descent rates less than 60 fpm, at depths less than 150 or 160 fsw, as long as the diver does not add pure oxygen during descent or while on bottom. Diver addition of O₂ during the latter periods of any dive can result in substantially elevated inspired PO₂ levels. For example, Diver #63 on Dive #73 had the highest estimated risk of CNS oxygen toxicity, 1.6%, of all divers appropriately monitored in this study. This diver repeatedly added oxygen to the UBA while on the bottom, which caused his inspired PO₂ to remain at relatively high levels during this period. The PO₂ profile for this diver is shown in Figure 2. It is clear that PO₂ levels while at 160 fsw remained in excess of the 1.3 ATA PO₂ setpoint of the MK 16 MOD 1, so the rig did not assume PO₂ control until well after decompression had commenced.

Figure 2. Measured mid-chest depth and inspired PO₂ for Diver #63 during Dive #73. Dotted horizontal line indicates MK 16 MOD 1 1.3 ATA PO₂ setpoint at depths greater than 33 fsw.

Figure 3 shows similar information for another diver on the same dive. This diver did not manually add O_2 during descent or while on bottom and exhibited an inspired PO_2 profile more typical of those seen during the course of the study. Note that this profile exhibits the PO_2 overshoot during and after descent that is typical of MK 16 MOD 1 UBA performance. However, unlike Diver #63, this diver breathed the initial PO_2 overshoot down to the MK 16 MOD 1 PO_2 setpoint within about 5 min of reaching 160 fsw, whereupon the rig resumed automatic regulation of PO_2 as evident in the PO_2 undulations throughout the remainder of the dive. The magnitude of these undulations

illustrates the rig PO_2 control bandwidth. It is clear from these results that divers should be admonished from manually adding O_2 to the MK 16 MOD 1 at all times during descent and while on bottom.

Figure 3. Measured mid-chest depth and inspired PO₂ for another diver accompanying Diver #63 during Dive #73. Dotted horizontal line indicates the MK 16 MOD 1 1.3 ATA PO₂ setpoint at depths greater than 33 fsw.

It should be emphasized that due to the UBA-induced variations in diver inspired PO₂ that occurred during the course of each dive in this trial, schedules were not tested as they were computed. Instead, the schedules were tested under conditions produced when dived with the MK 16 MOD 1 UBA. Therefore, successful results of this trial are applicable only to the schedules when dived with the MK 16 MOD 1. If the MK 16 UBA is engineered to provide tighter control of diver inspired PO₂, and particularly if PO₂ overshoots during and after descent are ameliorated or eliminated, the suitability of these schedules for use with the new UBA will require re-evaluation.

A complete set of decompression tables for planning single and repetitive MK16 MOD 1 dives with air as the diluent gas is provided in Appendix G. As discussed in the introduction to these tables in Appendix F, these tables prescribe decompressions that are at least as conservative as those obtained when the EL-MK 15/16 VVAL18 RTA is used in its real-time mode. For example, the 160 fsw/25 min repetitive decompression dive in Table 3 was tested with 41 minutes of decompression time. The schedules in Appendix G prescribe 21 minutes more decompression time for this dive. Thus, present failure to reject schedules prescribed by the algorithm exercised in its real-time mode as unsafe constitutes failure to reject the corresponding schedules in the tables as unsafe. This inherent conservatism of the tables will also compensate for potential inadequacies

in decompressions for MK 16 MOD 1 N_2 - O_2 repetitive decompression dives that the EL-MK 15/16 VVAL18 RTA prescribes in real-time mode.

CONCLUSION AND RECOMMENDATIONS

- 1. The twelve dive profiles generated by the modified EL-MK 15/16 VVAL18 RTA algorithm and tested 325 times in the present study resulted in only three cases of DCS, which we deem acceptable. We recommend approval of the decompression tables in Appendix G for use with the MK 16 MOD 1 UBA using air as the diluent gas for dive profiles in the 60-190 fsw range that include as many as two repetitive dives. An unacceptable incidence of DCS during operational use of any particular dive profile prescribed by these tables may motivate further study.
- 2. The work of breathing and risks of nitrogen narcosis, CO₂ retention, and oxygen toxicity¹² are increased during MK 16 MOD 1 N₂-O₂ dives to depths greather than 150 fsw. We therefore recommend that MK16 MOD 1 N₂-O₂ dives to depths greater than 150 fsw be made only after approval by the on-scene commander in consideration of these factors. Limit lines for dives to these greater depths are placed in the MK 16 MOD 1 N₂-O₂ Decompression Tables in accord with this latter recommendation.
- 3. These tables have been validated on dives in which the descent rate was less than 60 fpm. We recommend that divers using these tables descend at rates no faster than 60 fpm.
- 4. The MK 16 MOD 1 UBA primary display should indicate a transition from 0.7 to 1.3 ATA at 33 fsw. The diver should verify this transition by monitoring his secondary display. If there is no indication of this transition with continued descent past 40 fsw, the dive should be aborted.
- 5. The diver should not add oxygen on descent or at any time while on the bottom due to the increased risk of oxygen toxicity that such practice engenders.

REFERENCES

- 1. Naval Sea Systems Command, *U.S. Navy Diving Manual*, NAVSEA SS521-AG-PRO-010, Vol. #5, Rev. 4, Table 17-9,17-10.
- 2. Thalmann, E. D., *Phase II Testing of Decompression Algorithms for Use in the U.S. Navy Underwater Decompression Computer*, NEDU TR 1-84, Navy Experimental Diving Unit, January 1984.
- 3. Southerland, D. G., *Manned Evaluation of 1.3 O2 ATA (N2O2) Decompression Dive Algorithm at Three Selected Depths*, NEDU TR 2-98, Navy Experimental Diving Unit, August 1998.
- 4. Weathersby, P. K., Survanshi, S. S., Homer, L. D. Hart, B. L., Nishi, R. Y., Flynn, E. T., Bradley, M. E., *Statistically Based Decompression Tables. I. Analysis of Standard Air Dives: 1950-1970.* NMRI 85-16, Naval Medical Research Institute, Bethesda, MC, 1985.
- Weathersby, P.K., Hays, J.R., Survanshi, S.S, Homer, L.D., Hart, B.L., Flynn, E.T., Bradley, M.E. Statistically Based Decompression Tables II: Equal Risk Air Diving Decompression Schedules. Bethesda, MD: Naval Medical Research Institute, NMRI Technical Report 85-17, 1985.
- Gerth, W. A., Vann, R. D. Development of Iso-DCS Risk Air and Nitrox Decompression Tables Using Statistical Bubble Dynamics Models. Bethesda, MD: National Oceanic and Atmospheric Administration, Office of Undersea Research, 1996; Final Report, Contract # NA46RU0505.
- 7. Gerth, W.A., Thalmann, E.D. "Estimated DCS Risks of 'Reverse' Dive Profiles." Reverse Dive Profiles Workshop, Smithsonian Institution, Washington, D.C., October 29-30, 1999, 145-171. ABB
- 8. Gerth, W. A., Vann, R. D. "Probabilistic gas and bubble dynamics models of decompression sickness occurrence in air and nitrogen-oxygen diving." *Undersea and Hyperbaric Medicine* 24(4): 275-292, 1997.
- 9. Parker, E. C., Survanshi, S. S., Massell, P. B., Weathersby, P. K. "Probabilistic models of the role of oxygen in human decompression sickness." *Journal of Applied Physiology* 84:1096-102, 1988.
- 10. Nuckols, M. L. "Oxygen levels in closed circuit UBAs during descent." *Life Support and Biosphere Science*, (2):117-124, 1996.

- 11. Harabin, A. L., Survanshi, S. S., Homer, L. D. "A Model for Predicting Central System Oxygen Toxicity from Hyperbaric Oxygen Toxicity in Humans". *Toxicology and Applied Pharmacology* 132, 19-26, 1995.
- 12. Bennet, P. B., Elliot, D. H., (ed) *The Physiology and Medicine of Diving*, W. B. Saunders Company Ltd., London, England, 1993, 102-107.

APPENDIX A

ISSUES CONSIDERED IN SELECTION OF TEST PROFILES

Explosive Ordnance Disposal (EOD) requested that the Navy Experimental Diving Unit (NEDU) modify the EL-MK 15/16 VVAL18 RTA previously used to generate tables for divers breathing constant 0.7 ATA PO₂ in N₂ to create new tables for divers breathing 1.3 ATA PO₂ in N₂ on the MK 16 MOD 1 UBA. This was accomplished by 1) recalculating the tables with the assumption that the diver breathed 0.7 ATA PO₂ at shallower depths and 1.3 PO₂ ATA at deeper depths, and 2) modifying the VVAL18 maximum permissible tissue tension table so that the shallowest decompression stop is at 20 fsw. This model was chosen for this study because it is relatively simple and can be incorporated into a diver-worn real-time dive computer. The dive profile bottom times, surface intervals, and depths were selected for their relevance to actual EOD diving operations. The estimated DCS risks for these studies vary with the decompression model used to make the estimates. The DCS risks predicted by the Duke Gas and Bubble Dynamics model [BVM(3)]^{1,2}, the NMRI JAP98 model 2 (JAP98-2)³, and the USN93^{4,5} model for the tested profiles are listed in Table 1.

Table 1. Estimated DCS Risks of Tested Profiles

Profile (Depth/Bottom Time, "SI" is surface interval)	BVM3 % Risk, (±95% C.L.)	JAP98-2 % Risk, (±95% C.L.)	USN93 % Risk, (±95% C.L.)
80/30 SI30 80/30 SI30 80/31	1.2 (0.9 - 1.6)	3.2 (2.1 - 4.5)	2.1 (1.4 - 3.0)
100/20 SI30 100/15 SI30 100/14	0.8 (0.5 - 1.2)	2.8 (2.0 - 3.7)	2.1 (1.1 - 3.7)
90/30 SI30 90/30	1.1 (0.7 -1.6)	2.6 (1.8 - 3.6)	1.9 (1.2 - 2.8)
110/20 SI30 110/15	1.0 (0.6 - 1.4)	2.3 (1.6 - 3.0)	1.9 (1.0 - 3.1)
130/15 SI30 130/11	1.0 (0.6 - 1.5)	2.2 (1.6 - 3.0)	2.0 (1.0 - 3.6)
			2 - (4 2 2 2)
120/30 SI30 120/30	3.1 (2.4 - 3.9)	4.4 (3.3 - 5.7)	2.5 (1.9 - 3.2)
140/25 SI30 140/25	3.5 (2.8 - 4.4)	4.7 (3.5 - 6.0)	2.6 (2.0 - 3.3)
160/25 SI30 160/25	4.8 (3.9 - 6.0)	5.9 (4.5 - 7.6)	3.2 (2.5 - 4.0)
130/30	2.3 (1.6 - 3.2)	2.3 (1.7 - 3.1)	1.6 (1.1 - 2.1)
160/30	3.8 (2.7 - 5.1)	3.1 (2.2 - 4.1)	1.8 (1.3 - 2.3)
170/30	4.3 (3.0 - 5.9)	3.3 (2.4 - 4.4)	1.8 (1.3 - 2.3)
190/25	4.3 (2.9 - 6.0)	2.7 (1.9 - 3.8)	1.4 (1.0 - 1.8)

Evidence indicates that the water temperature has a minimal effect on the occurrence of DCS, although a trend toward higher DCS incidences has been noted in divers wearing hot water suits and performing stressful dives⁶. Warm water may increase the uptake of gas into tissues, and may increase the risk of DCS. Therefore, evaluation of the profiles in warm water may allow a more rigorous test of the tables than in cold water. Since EOD may be operating in warm water, this could avoid the additional risk of DCS incurred by the potentially less stressful (from a DCS stand point) cold water testing. None of the DCS models used in this work directly consider temperature as a factor governing DCS incidence.

REFERENCES

- Gerth, W. A., Vann, R. D. "Development of Iso-DCS Risk Air and Nitrox Decompression Tables Using Statistical Bubble Dynamics Models." Bethesda, MD: National Oceanic and Atmospheric Administration, Office of Undersea Research, 1996; Final Report, Contract # NA46RU0505.
- 2. Gerth, W. A., Vann, R. D. "Probabilistic gas and bubble dynamics models of decompression sickness occurrence in air and nitrogen-oxygen diving." *Undersea and Hyperbaric Medicine* 24(4): 275-292, 1997.
- 3. Parker, E. C., Survanshi, S. S., Massell, P. B., Weathersby, P. K. "Probabilistic models of the role of oxygen in human decompression sickness." *Journal of Applied Physiology* 84:1096-102 (1988).
- 4. Parker, E. C., Survanshi, S. S., Weathersby, P. K., Thalmann, E. D. *Statistically Based Decompression Tables. VIII. Linear-Exponential Kinetics.* NMRI 92-73, Naval Medical Research Institute, Bethesda, MD. 1992.
- 5. Survanshi, S. S., Weathersby, P. K., Thalmann, E. D. Statistically Based Decompression Tables. X. Real-Time Decompression Algorithm Using A Probabilistic Model. NMRI 96-06, Naval Medical Research Institute, Bethesda, MD. 1996.
- 6. Leffler, C. T. and White, J. C. "Recompression Treatments During the Recovery of TWA Flight 800." *Undersea Hyper Med.* 24:301-308, 1997.

APPENDIX B

DIVES PERFORMED

This appendix provides detailed tabular information about each of the dives completed in this study. In the table entry headers, DIVE PROFILE and DATE are self-explanatory. DIVE # is the chronological sequence number of all dives performed. DIVER # is the unique identification code of each experimental diver that participated in this study. ON GAS is the local time when the diver put on the face mask and commenced breathing the rig gas mixture. LS (Leave Surface) is the local time when the OSF complex was pressed. RB (Reach Bottom) is the local time when the divers reached the planned depth, and LB (Leave Bottom) is the local time when they left that depth. 50 FSW, 40 FSW, 30 FSW and 20 FSW are the decompression stop depths. Entries under these headings give the local time of arrival and resumption of ascent from the respective stop. RS (Reach Surface) is the local time when the divers reached the surface. OFF GAS is the local time when the diver removed his/her face mask and commenced breathing surface air after the dive.

Measurement of depth, time at depth, and diver inspired gas partial pressures was attempted during every dive in this trial. SYSTEM refers to whether the New Gas Analyzer (NGA) or mass spectrometers (MS) were used to analyze the diver's inspired gas. The maximum, minimum, average, and standard deviation of the partial pressure of the oxygen that was sampled from the base of the diver's inhalation hose while at the bottom are listed below. The values vary widely for many reasons, including the fact that the exact time when the OSF arrived or left the bottom was not always exactly clear, because the depth could vary by one or two tenths of a foot. In addition, the divers occasionally manually added oxygen on descent, or while on the bottom, with a subsequent rise in the PO₂ of the breathing gas. "N/A" indicates that a table entry is not applicable. It appears frequently in the data below because many dives were aborted due to various diver difficulties, or because instrumentation problems precluded acquisition of the information.

DIVES PERFORMED

<u>></u>	Ţ		T			T									— ≥				\neg									\top	_
STDEV		0.0	0.19	0.08	90	0.11	0.0 4	0.07	9.0	0.05	0.0	0.07	0.04		STDEV		0.05	ĕ Ž	ĕ Z	≸	0.07	₹ Ž	9.0	ĕZ		X N	0.08	ĕ Z	
AVE		1.37	1.43	1.40	1.39	1.40	1.37	1.47	1.39	1.35	1.34	1.48	1.35		AVE		1.35	A/N	∀N V	ĕ Z	1.42	Y/N	1.42	Ϋ́	1.40	Ϋ́Z	1.42	¥N N	
P02	Z	1.23	1.27	1.28	1.26	1.29	1.27	1.38	1.30	1.27	1.29	1.37	1.28		P02	Z	0.68	N/A	N/A	N/A	1.33	N/A	1.34	N/A	1.33	N/A	1.32	N/A	
P02	MAX	1.69	1.65	1.78	1.72	2.10	1.53	1.90	1.76	1.64	1.44	1.88	1.62		P02	MAX	1.50	N/A	N/A	N/A	1.82	N/A	1.78	N/A	1.81	N/A	1.88	N/A	
SYSTEM		NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA		SYSTEM		NGA	NGA	NGA	NGA	NGA								
Γ	GAS	1035		1035	1035	1139	1139	1139	1139	1247	1247	1247	1247		OFF	GAS	935	935	935	935	1038	1038	1038	1038	1145	1145	1145	1145	
				1035	1035	1139	1139	1139	1139	1247	1247	1247	1247		RS		935	935		935	8	1038	1038	1038	1145	1145	1145	1145	
20 FSW RS															20 FSW RS														
LB		1029	1029	1029	1029	1135	1135	1135	1135	1242	1242	1242	1242		LB		931	931	931	931	1035	1035	1035	1035	1141	1141	1141	1141	
RB		1001	1001	1001	1001	1108	1108	1108	1108	1211	1211	1211	1211		RB		903	903	903	903	1007	1007	1007	1007	1110	1110	1110	1110	
ST		959	959	959	959	1105	1105	1105	1105	1209	1209	1209	1209		LS		901	901	901	901	1005	1005	1005	1005	1108	1108	1108	1108	
NO	GAS	957	957	957	957	1105	1105	1105	1105	1209	1209	1209	1209		NO	GAS	859	859	859	859	1005	1005	1005	1005	1108	1108	1108	1108	
DVR #		14	26						44	14	26	52	44		DVR#		24	45	2 6	59	24	45	0	20	24	45	6	59	
DIVE #		1	1	1	-	-	-	-	-	-	-	-	_		DIVE #		15	2 2	15	15	15	15	15	15	15	15	15	15	
DATE		3-Feb	3-Feb	3-Feb	3-Feb	3-Feb	3-Feb	3-Feb	3-Feb	3-Feb	3-Feb	3-Feb	3-Feb	3	DATE	1	16-Feh		16-Feh		Т	16-Feb	16-Feb	\top	Т	16-Feb	16-Feb	16-Feb	
DIVE	Щ	T													DIVE	ш	08/08/08	80/80/80	80/80/80	00/00/00	80/80/80	00/00/00	80/80/80	08/09/09			80/80/80	80/80/80	

	_	Т	Т	Т	Т	\neg	Т	7	\neg	Т	Т	Т	Т	Τ.			٦	\neg	\neg	\neg	Т	Т	\neg	Т	Т	T	Т	,	<u> </u>	\neg				П	
STDEV	70.0	70.0	0.00	0.06	90.0	N/A	Y V	Y N	N/A	0.03	ĕ Z	0.00	0.04		SIDEV	0.09	90.0	0.05	0.05	90.0	0.05	0.03	0.03	90.0	0.06	0.04	0.03	-		0.05	Y/N	0.05	0.08	0.03	N/A
AVE	\neg	1.43	Т	Т	_	\neg	П	A/N		1.44	A/N	1.40	1.45	!	AVE	1.38	1.30	1.38	1.46	1.41	1.33	1.37	1.45	1.37	1.29	1.33	233	1	AVE	1.43	ΑN	1.34	1.40	1.45	N/A
P02	Z 5	1.51	1.15	30	27	N/A	¥	N/A	N/A	1.38	N/A	1.33	1.39		M POZ	1.27	.21	1.32	1.37	1.35	.23	1.31	.36	.34	1.21	1.30	1.39	1	MIN	1.32	N/A	1.26	1.28	1.38	N/A
	T																										1.70		MAX						N/A
P02	2 4	1.00	1.67	1.70	1.9	Ϋ́	¥ N	Ϋ́	Z/A	1.54	ž	1.65	1.74	-	P02 MAX	1.93	1.74	1.70	1.73	1.66	1.65	-	-	-	-	-				1	N/A	-	-	+	Z
SYSTEM	401	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA		SYSTEM	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA		SYSTEM	NGA	NGA	NGA	NGA	NGA	NGA
					936	1		1040	1040	1148		1148	1148		OFF	1315	1315	1315	1315	1419	1419	1419	1419	1526	1526	1526	1526		OFF GAS	942		942	942	1046	
	T				936	1040			1040	1148			1148			1315	1315	Г	1315	Г	1419	1419	1419	1526	1526	1526	1526		RS S	942		942	942	1046	
20 FSW RS															20 FSW RS														20 FSW						
18		932	932	932	932	1036	ABORT	1036	1036	1144	ABORT	1144	1144		FB	1311	1311	1311	1311	1415	1415	1415	1415	1522	1522	1522	1522		8	913		913	013	1042	
RB		906	906	906		6	ABORT	1	1009	1113	ABORT	1113	1113		RB	1244	1244	1244	1244	1348	1348	1348	1348	1452	1452	1452	1452		RB	913		913	013	1015	
S						1006	ABORT	Т	Г	Т	ABORT	1110	1110		S	1241	1241	1241	1241	1345	1345	1345	1345	1449	1449	1449	1449		r _S	900	200	ogo	000	1012	12
	,	858	858	858		4	ZT.	1			7	Т			NO						1			1448	1448	1448	1448		NO	200	Tagay	200	200	1011	ABORT
DVR#		54 8	10	26		54				4					DVR#	12					44	34	38	15	44	31	38		DVR#	27	1 0	5 6	3 5	27.0	4 6
DIVE # [20		20											DIVE #	21	24			24	21	21	24	24	21	21	21		DIVE #	CC	77 6	77	77	7 5	22
DATE		22-Feb 2	T	Т	1	\top	Т	_	22 - 22 22 - 20 22 - 20		\neg			Т	DATE	22 Eab	7	22-rep			_	7	_	22-1 CD	22-1 CD	22-150 22-Feh	22-Feb		DATE	400	23-rep	23-rep	23-rep	23-reb	23-Feb
DIVE	PROFILE	Т		_						00/00/00				Τ		PROFILE 80,60,60		80/80/80			00/00/00	1.	. .	١.	00/00/00	1.	1_	1	DIVE	PROFILE	80/80/80	80/80/80	80/80/80	80/80/80	80/80/80

60	4	2	_	4	4	STDEV		4	စ္ခု	2	စ္ခ	4	စ္က	4	5	A	7	4	2		STDEV	A	A	A	A	Α .	A	A	A	35	0.08	4	90.0		STDEV
		\neg	ΑN				-	∀N N	П		\Box	\neg	_ [0.04		¥ Z		\Box	0.03	\dashv				\neg		\Box	\neg			\neg				_	
1.45	1.42	1.44	Ϋ́	1.45	1.41	AVE		Ϋ́	1.37	1.33	1.37	§ Z	1.43	1.37	4.4	Ν	1.41	1.35	1.37		AVE	N/A	Ν	¥ N	ĕ Z	X	ĕ Ž	¥ N	¥ N	1.45	1.42	1.39	4.6		AVE
1.36	1.37	1.38	N/A	1.38	1.35	P02	Z	N/A	1.25	1.24	1.23	N/A	1.37	1.28	1.33	N/A	1.11	1.26	1.31		MN M	N/A	N/A	N/A	N/A	Y/N	N/A	N/A	N/A	1.36	1.32	1.27	1.32		MIN N
1.54	1.59	1.53	N/A	1.60	1.66	P02	MAX	N/A	1.85	1.50	1.77	N/A	2.00	1.48	1.81	N/A	1.92	1.53	1.63		MAX	N/A	N/A	N/A	A/A	Y/N	A/N	N/A	N/A	1.82	1.92	1.65	1.78		P02 MAX
NGA	NGA	NGA	NGA	NGA	NGA	SYSTEM		NGA	NGA	NGA			NGA	NGA	NGA	NGA	NGA	NGA	NGA		SYSTEM	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA		SYSTEM
1046	1046	1154		1154	1154	OFF	GAS	942	942	942	942	1046	1046	1046	1046	1153	1153	1153	1153		OFF GAS	1041	1041	1041	1041	1145	1145	1145	1145	1252	1252	1252	1252		OFF GAS
1046	1046	1154		1154	1154	RS		942		942	942	1046	1046	1046	1046	1153	1153	1153	1153		RS	1041	1041	1041	1041	1145	1145	1145	1145	1252	1252	1252	1252		SS
						20 FSW															20 FSW RS														20 FSW RS
1042	1042	1150		1150	1150	LB		939	939	939	939	1042	1042	1042	1042	1149	1149	1149	1149		8	1036	1036	1036	1036	1141	1141	1141	1141	1248	1248	1248	1248		LB
1015	1015	1119		1119	1119	RB		911	911	911	911	1015	1015	1015	1015	1111	1111	1111	1111		RB	1009	1009	1009	1009	1113	1113	1113	1113	1217	1217	1217	1217		RB
	1012	1116		1116	1116	LS		606	606	606	606	1012	1012	1012	1012	1119	1119	1119	1119		r _S	1006	1006	1006	1006	1111	1111	1111	1111	1215	1215	1215	1215		rs
1011	1011		ZT.	Т			S					_	1011		1011				1116		ON	1003	1003	1003	1003	1110	1110	1110	1110	1214	1214	1214	1214		ON GAS
63						#	:	64					53	47	65	64	53	47	65		DVR#	13	14	99	19	13	14	99	19	13	14	99	19		DVR#
22				22		# H/	:	24						24		24	24	24	24		DIVE #	26	26	26	26	26	26	26	26	26	26	26	26		DIVE #
23-Feb	Г	T-	Т		Т	Т		24-Feh	Т	1		Т		П		T	_		Г	T	DATE	13 Mar	Τ.	Τ.	T.	Τ.						Ι.	١.	1	DATE
80/80/80		١.	l _			Т	ш	T	1			1			1_				Τ	T	DIVE	80/80/80					Γ	Г			Г	80/80/80	80/80/80		DIVE PROFILE

П	_	Т	_	Т	\neg	_	_					_		Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Τ.	_	Γ	Г						
0.08	N/A	0.08	90.0	0.09	N/A	90.0	90.0	0.04	N/A	0.04	0.04		STDEV	000	0.00	0.14	90.0	90.0	90.0	0.07	0.10	0.08	0.12	0.08	90.0	0.08		STDEV	0.08	0.14	90.0	N/A	0.11	0.03	N/A	A/A
1_1	\neg			\neg	\neg	1.36		1.41	N/A	1.33	\Box	\neg	AVE	Т	Т	1.46		\neg	\neg	\neg		-1		\neg	1.47	1.39		AVE	1.41	1.46	1.40	N/A	1.56	1.43	N/A	N/A
1.28			1.26					32	A	1.26	1.34		PO2	2 6	1.29	29	1.27	25	1.37	1.30	1.34	30	37	1.30	1.38	1.29		PO2	1.30	1.30	1.30	N/A	1.31	1.38	N/A	N/A
-	A/N	-	-	-	Ż	-	7.	1	A/N	7	1.	\dashv	₫ ≥	1		-	=		-	-	-	-	-	-	-	-	+		Г	-	-	2	1	-	2	
1.89	N/A	1.78	1.72	2.03	ΑN	1.68	1.70	1.52	ΑX	1.50	1.66		PO2	<u>د</u> د	- 1.60	1.74	1.53	1.52	1.61	1.54	1.73	1.61	1.79	1.59	1.67	1.72		PO2	1 60	1.74	1.53	ΑŅ	1.73	1.51	ΑX	N/A
NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA		SYSTEM		NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA		SYSTEM	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA
925		925	925	1028	1028	1028	1028	1134	1134	1134	1134		OFF	CHO	948	948	948	948	1038	1038	1038	1038	1128	1128	1128	1128		OFF	1258	1258	1258		1347	1347	1347	
924		924		1028												948			1037			1037	1128		1128	1128		RS	1257	1257	1257		1347	1347	1347	
0,		0,	0,	Ì									20 FSW RS															20 FSW RS								
920		920	920	1024		1024	1024	1131		1131	1131		LB		944	944	944	944	1033	1033	1033	1033	1123	1123	1123	1123		LB	1253	1253	1253		1342	1342	1342	
853		853	853	956		956	926	1100		1100	1100		RB		926	926	926	926	1021	1021	1021	1021	1110	1110	1110	1110		RB B	1236	1236	1236	2071	1330	1330	1330	
850			850				954		200	1058	1058		LS		924	924	924	924	1018	1018	1018	1018	1107	1107	1107	1107		rs S	1022	1233	1233	2021	1327	1327	1327	
849	JRT		849		RT			_	F						920	920			_						1107	1107		NO	CAS	1220	1230	ARORT	1327	1307	1327	ABORT
17		c		17 9		~					57		DVR#		5	7			2					7		37		DVR#		70				707	30	48
17													DIVE#		10	2	5	2	2	16	2		2 16	2	2	5		DIVE #		٥	٥	9	٥	٥	٧	9
17_Eah 1			Т	T		\top	_	_	┪	\neg	17-Feb 1	7	DATE		8-Feb	Γ	T	Т			T	T		Т				DATE	\top			0-1-0		T	8 Feb	
40/80/80			Т					T		Т	80/80/80			PROFILE	П		0 6	2	0 6				100 4 3						ш			100 × 3	T		100 x 3	

	-т			- 1	- T	- 1	_	- 1			\neg	_		Т							_	_	-		Т	Т	Т	$\overline{}$	Т	\neg	Т	Т	\neg	\neg
0.11	0.04	N/A	N/A	STDEV	N/A	0.75	0.56	90.0	N/A	90.0	0.07	0.07	N/A	0.12	0.11	0.13		STDEV	0.04	0.04	N/A	90.0	0.07	0.08	N/A	0.07	90.0	90.0	VN NN	0.07	1	SIDEV	90.0	¥N
			\neg	AVE	N/A							\Box	П		\neg	1.47		AVE	1.41		Z/A				A/N	1.44	1.43	1.42	N/A	1.44	!	AVE	1.39	N/A
1.30	1.37	N/A	N/A	PO2 MIN	N/A	1.28	1.29	1.27	N/A	1.33	1.37	1.34	N/A	1.34	1.38	1.35		PO2 MIN	1.34	1.35	N/A	1.34	1.35	1.35	N/A	1.31	1.35	1.34	N/A	1.33		PO2 MIN	1.29	N/A
П				PO2 MAX				1.64								1.94		PO2 MAX		1.55				1.65			1.59			1.72		PO2 MAX		N/A
NGA 1	NGA 1	NGA	2	SYSTEM P	NGA	NGA 3									NGA	NGA 1		SYSTEM R	NGA	NGA	NGA			NGA				NGA		NGA		SYSTEM	NGA	NGA
1438 N	1438 N	1438 IN		OFF S GAS		929				1021		1021	_		1115	1115		OFF (GAS					1326	1326		1326	1416	1416	1416	1416		OFF GAS		
1437	1437	1437		RS			929			1021	1021	1021		1115	1115	1115			1236	П			1326			1326	1416	1416	1416	1416		RS	943	
				20 FSW														20 FSW RS														20 FSW		
1433	1433	1433		FB		925	925	925		1017	1017	1017		1109	1109	1109		P	1231	1231		1231	1321	1321		1321	1412	1412		1412		LB	938	
1420	1420	1420		RB		905	905	905		1002	1002	1002		1053	1053	1053		RB	1214	1214		1214	1309	1309		1309	1359	1359		1359		RB	922	
1417	1417	1417		LS		902	902	902		959	959	959		1051	1051	1051		FS	1211	1211		1211	1306	1306		1306	1356	1356		1356		rs	918	
1416	1416	1416	ABORT	ON	ABORT	857	1		DRT	956	956	956	ABORT	1050	1050	1050		NO ON	1210	1210	ARORT	1210	1305	1305	ABORT	1305	1355	1355	ABORT	1355		ON	918	ABORT
32		30		R #	42							38				38		DVR#	25	3 +		34					35	-	52	34		DVR#	7	31
9		9		IVE #	7	7	7	7	7	7	7	7	7	7	7	7		DIVE #	0	ο α	α	0 00	0 α	0 00	0 00	000	0 00	000	0	0 00		DIVE #	o	n 0
8-Feb	Γ	T	Т	DATE	0.Fah		Т	9-Feb		Т	Т		9-Feb	9-Feb	9-Feb	9-Feb		DATE	40	9-1-6D									9-Feb	9-Feb		DATE	10-Feb	10-Feb
100 x 3	0 60		100 × 3	ш					100 × 3					100 x 3			,	DIVE	ų			100 × 3			100 × 3		0 60	0 60	2 6	3 6	:1	DIVE	100 × 3	100 x 3

		Ţ								STDEV		6	ć		_	10			2	9		6		CTO	A L	_	1	4	7	4	0		STDEV	4	
90.0	0.08	0.14	Y N	0.13	0.13	0.12	¥ Z	0.08	0.17	ΔŢ		90.0	9.0	0.14	0.03	0.05	0.0	0.16	0.05	0.00	9	0.19	80.0	\dashv		N/A	N/A	N/A	Г	0.14	1		T	X X	-
1 1	1.38	1.50	∀ N	1.53	1.52	1.43	۷ ۷	1.47	1.44	4 4 7		1.39	1.35	1.47	1.39		1.36	1.50	1.39	1.43	1.38	1.51	1.4	Ļ	AVE	N/A	A/A	A/A	1.32	1.52	1.56	3	AVE	×	
1.28	1.26	1.33	N/A	1.34	1.32	1.30	N/A	1.35	1.33	000	MIN	1.30	1.29	1.33	1.32	1.36	1.30	1.33	1.32	1.34	1.30	1.34	1.31	300	ME	N/A	N/A	N/A	1.23	1.29	1 33	3	PO2	¥ N	
					1.76		N/A	1.71	4.42	900	MAX	1.55	1.54	1.80	1.54	1.59	1.55	1.92	1.67	1.89	1.82	2.14	1.74		MAX	N/A	N/A	A/N	1.76	1.79	1 83	707	PO2	N/A	
						NGA			NGA 4	CVCTEM		NGA											NGA		SYSTEM	NGA	NGA	NGA	NGA	NGA	VON	202	SYSTEM	NGA	
		1032				1122		1122	1	L	GAS	1252	1252	1252	1252	1341	1341	1341	1341	1432	1432	1432	1432		OFF GAS				1016		4450	001	OFF	1300	2001
	943	1032		1032				1122		П	2	1252							1341	1432			1432		RS				1016	1105	74.50	001	RS	1300	1300
3	0,	Ì									ZU FSW														20 FSW								20 FSW RS		
938	938	1028		1028	1028	1118		1118	1118		<u> </u>	1247	1247	1247	1247	1337	1337	1337	1337	1427	1427	1427	1427		<u> </u>				4012	4404		1151	8	4056	1256
922		1017		1017	1017	1105		1105	1105		2 2 2	1230	1230	1230	1230	1324	1324	1324	1324	1414	1414	1414	1414		88				055	4040	1043	1138	RB	000,	1238
		1013		1013				1102	1102		r _S	1227	1227	1227	1227	1322	1322	1322	1322	1411	1411	1411	1411		ST				053	333	1047	1135	LS	000,	1236
918		_	R L	1			RT	Т		-	ON						1322		1		1410	1410	1410		NO	Tabar	1000	ADOR 4	ABOR	100	1040	1135	NO	GAS	1234
51 9			31			7	1				DVR #	45		28							43	28	24		DVR#	4	210	17	32	49	49	49	DVR#		20
4											DIVE #	40											10		DIVE #	**	_ ;	= ;	1	=	11	7	DIVE #		12
10-Feb 9	\top	T		T	Τ.	7	10-Feb 9		\top		DATE	40 Eoh		\top	\top			_	Т	\top	1		\top	Г	DATE		\neg			\neg		14-Feb	DATE		14-Feb
100 x 3 10	T	T	T				100 × 3			3	DIVE	\top	100 × 3			100 × 30		T		T	100 × 3					п	2	20				100 x 3	DIVE	PROFILE	100 × 3

		_,		_							 			_	_			_	· ·		_	 r	_	_	\neg
N/A	N/A	N/A	0.04	0.03	90.0	0.05	0.05	0.04	0.07	0.04	STDEV		90.0	90.0	90.0	0.07	0.07	90.0	0.05	90.0	0.10	0.08	0.13	0.14	
N/A	A/A	N/A	1.37	1.35	$\neg \neg$	\neg	1.37	1.37	1.44	1.33	AVE		1	П	1.42				1.48	1.42	- 1		1.53	1.48	
N/A	N/A	N/A	1.31	1.31	1.35	1.25	1.30	1.30	1.35	1.26	P02	Z Z	1.31	1.31	1.29	1.27	1.38	1.34	1.39	1.34	1.36	1.33	1.39	1.34	
N/A	N/A	N/A	1.51	1.45	1.64	1.55	1.51	1.49	1.62	1.49	PO2	MAX	1.56	1.54	1.63	1.76	1.63	1.58	1.59	1.78	1.88	1.73	2.01	1.94	
NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	SYSTEM		NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	NGA	
1300	1300	1300	1350	1350	1350	1350	1440	1440	1440	1440	OFF	GAS	1014	1014	1014	1014	1103	1103	1103	1103	1154	1154	1154	1154	
1300	1300	1300	1350	1350	1350	1350	1440	1440	1440	1440	RS		1014	1014	1014	1014	1103	1103	1103	1103	1154	1154	1154	1154	
											20 FSW RS														
1256	1256	1256	1345	1345	1345	1345	1436	1436	1436	1436	LB		1009	1009	1009	1009	1059	1059	1059	1059	1149	1149	1149	1149	
1238	1238	1238	1333	1333	1333	1333	1423	1423	1423	1423	RB		952	952	952	952	1047	1047	1047	1047	1136	1136	1136	1136	
1236	1236	1236	1330	1330	1330	1330	1420	1420	1420	1420	LS		949	949	949	949	1044	1044	1044	1044	1133	1133	1133	1133	
1234	1234			1329	1329	1329	1419	1419	1419	1419	NO	GAS	945	945	945		1044	1044	1044			1132	1132	1132	
22											DVR#		37	13			37	13	44	14	37	13	44	14	
12								12			DIVE #		13	13			13	13	13	13			13	13	
14-Feb 1	П	Т	1			Т	Τ.		Γ		DATE		15-Feb	Г	T	T	П		1-	T	1	1	Т		
100 × 3											DIVE	Щ	\top							T	T				

STDEV		0.00	ı	40.04	
PO2 AVG	100	ري. دي	70 7	J. 04	
PO2 MIN	00 8	1.20	00 7	1.28	
PO2	7 .	00.	9	1.48	
SYSTEM		NGA	. 0::	NGA	
OFF GAS	100	1425		1425	
RS		1425		1425	
20 FSW RS					
LB		1420		1420	
RB		1353		1353	
S		1350	200-	1350	
ON		1346	2	1346)
DIVE # DVR # ON GAS		13	2	35	2
DIVE #		0	7	2	1
DATE		2 Eab	מט -כי	3-Foh	20 - 0
DIVE PROFII F		00/00		00/00	00000

П		_		_	Т			Т	T	1	Т	Т	Т	П	-	П				\neg		Т	1	T			\neg		П			Γ]
0.04	0.04	0.04	0.05	0.05	0.04		STDEV		0.04	0.11	0.08	0.10	N/A	0.10	0.05	0.03		STDEV		90.0	90.0	0.11	0.10	90.0	0.04	60.0	90.0	STDEV	0.04	0.04	0.05	90.0	
П	\neg				1.33		P02				T		N/A	T		1.39		P02	AVG	1.42	1.38	1.41	1.38	1.42	1.42	1.42	1.39	PO2 AVG	1.38	1.38	1.36	1.41	
		1.25		1.40						1.26	1.28		N/A	1.14	1.31	1.31		P02	Z	1.30	1.26	1.25	1.26	1.31	1.34	1.27	1.32	PO2 MIN	1.29	1.30	1.22	1.33	2
1.55 1	1.57			1.63	1.72						1.90		N/A			1.53				1.71							1.88	PO2 MAX		1.66	T.		7
NGA 1.	NGA 1.		NGA 1.	NGA 1.	NGA 1.		SYSTEM P						NGA N		NGA 1	NGA 1		SYSTEM		NGA 1						NGA 1	NGA	SYSYTEM F	NGA				
1425		1529	1529	1529	1529		OFF				944	944	1046		1046	1046		OFF	GAS	933			933	1035	1035	1035	1035	OFF GAS	1200	1200	1200	1200	1200
1425	1425	1529	1529	1529	1529		3S		943	943	943	943	1045	1045	1045	1045		RS		933	933	933	933	1035	1035	1035	1035	RS	1200	1200	1200	1200	1200
-	1		-		1		20 FSW RS		O,	3	0,							20 FSW										20 FSW RS					
1420	1420	1523	1523	1523	1523		LB		940	940	940	940	1041	1041	1041	1041		8	}	928	928	928	928	1031	1031	1031	1031	18	1156	1156	1156	1150	0011
1353	353		1458				RB		913	913	913	913	1016	1016	1016	1016		88	2	901	901	901	901	1005	1005	1005	1005	RB	1128	1108	1128	0711	1128
1350									910	910	910		3					U		858				1003				S	1126	4426	1726	0711	1126
1346 13		Γ				Γ	N	s	806	806			2		Γ		T	200	· c					2			T	NO		T	1123		1123
							DVR# ON		23 90					28 1				# 0/10		41								DVR#	50				20
38	-	13					DIVE # D												# UNC	20								DIVE#	30				30
3-Feh	T		3-Fah		3-Feb 2	T	DATE		14-Mar 28	Т	\top	Τ.		_	7	Т	Т	1	DAIE	15 Mar 2	\top		Т	Т	7	T		DATE	45 Mor	Т	$\neg \top$		15-Mar
00/00							DIVE	빌	1										DIVE D	\neg									PROFILE				90/90

	_		_	 					1	\neg		Т	_				\neg	Т	\neg	П	Т	Т	Т			\neg	\neg	_		\neg
0.03	0.04	0.04	0.04	STDEV	0.04	0.07	0.05	0.05	0.03	0.05	0.04	90.0		STDEV	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A		STDEV	N/A	N/A	N/A	N/A	0.04	0.13
	\neg		1.41	PO2 AVG	1.38	1.39	1.45	1.43	1.41	1.44	1.49	1.37		PO2 AVG	N/A	N/A	N/A	N/A	A/A	N/A	N/A	A/A		PO2 AVG	N/A	N/A	N/A	N/A	1.44	1.52
1.29	1.28	1.30	1.30	PO2 MIN	1.28	1.28	1.32	1.31	1.35	1.35	1.41	1.25		PO2 MIN	N/A	N/A	N/A	N/A	A/A	N/A	N/A	N/A		PO2 MIN	N/A	N/A	N/A	N/A	1.37	1.38
1.44			1.61	PO2 MAX	Г		1.91				1.77	1.74		PO2 MAX	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		PO2 MAX	N/A	N/A	N/A	N/A	1.56	1.91
NGA	NGA		NGA	SYSYTEM	NGA		NGA				NGA	NGA		SYSYTEM		NGA	NGA					NGA	\neg	SYSYTEM						NGA
1303	1303	1303	1303	OFF GAS	929	929	929	929	1031	1031	1031	1031		OFF GAS	1233	1233	1233	1233	1235	1235	1235	1235		OFF GAS	938	938	938	938	1040	1040
1302	1303	1303	1303	RS	929	929	929	929	1031	1031	1031	1031		/RS	1233	1233	1233	1233	1235	1235	1235	1235		/RS	938	938	938	938	1040	1040
				20 FSW RS										20 FSW RS										20 FSW RS						
1258	1258	1258	1258	LB	925	925	925	925	1027	1027	1027	1027		8	1229	1229	1229	1229	1331	1331	1331	1331		EB.	934	934	934	934	1036	1036
1233	1233	1233	1233	RB	858	858	858	858	1002	1002	1002	1002		RB E	1202	1202	1202	1202	1306	1306	1306	1306		RB	907	907	206	206	1011	1011
1230	1230	1230	1230	LS	855	855	855	855	959	959	959	959		ST	1159	1159	1159	1159	1303	1303	1303	1303		S	904	904	904	406	1008	1008
1229	1229	1229	1229	ON	853	853	853	853	958	958	958	958		ON	1158	1158	1158	1158	1301	1301	1301	1301		ON GAS	903	903	903	903	1007	1007
59				DVR#	13							4		DVR#	43	67	26	55	43	29	26	55		DVR#	45	68	51	55	45	68
30				DIVE #	21	34	31			31	31	31		DIVE#	32	33			32	32	32	32		DIVE #	33	33	33	33	33	33
15-Mar	T	Т	Т	DATE	16 Mar	Τ.	Π.	Τ,	Т	7	T	Т	Г	DATE	16-Mar	\neg	Т	1	Τ.	Τ.			Т	DATE	20-Mar	T			T	
06/06				DIVE									Ī	DIVE										DIVE PROFILE	. T					

П	\neg	Т		Т	Ι		Τ	Т	Т	Т	П	Т	П		Τ	Τ	Т	Т	Т	Т	Т	Т	Т	П				Γ		Π	Γ	Τ	Τ	7
90.0	0.05	i	STDEV	0.09	0.08	0.16	0 13	2 6	0.09	0.08	0.07	0.16		STDEV	0.07	900	00.0	0.30	0.11	0.05	0.09	0.05	0.07		STDEV	60.0	0.13	0.14	0.12	0.05	0.07	0.05	3 5	5.0
	1.46		P02 AVG	T	1.41	1.48	1 44	1	1.51	1.49	1.46	1.43		PO2 AVG	1.40	4 20	60.	1.42	1.44	1.47	1.49	1.42	1.47		P02 AVG	1.43	1.45	1.40	1.41	1.48	1 48	1 44	1 46	04.1
1.39	1.38		PO2	1.30	1.29	1.27	23	70.1	1.39	1.40	1.36	1.29		PO2	1.32	4 20	06.1	1.23	1.31	1.40	1.38	1.31	1.37		PO2	1.31	1.29	1.25	1.22	1.39	1 30	20.7	00.7	33
П	1.63		PO2 MAX		Г		2 55	T				2.43		PO2						1.58		1.58	1.64		PO2 MAX	1.82	1.83	2.06	2.36	1.59	1 67	1 56	1.30	1.04
	NGA 1	\neg	SYSYTEM F		NGA 1					NGA		MS		SYSYTEM	NGA					NGA			MS		SYSYTEM	NGA				NGA		NGV NGC	SE C	MS
	1040		OFF GAS					920			1012	1012		OFF	1037	1007	103/	1037	1037	1129	1129	1129	1129		OFF	915	915				1	1007	1001	1007
	1040			920	920	920	070	920	1012	1012	1012	1012		RS	1037	100	103/	1037	1037	1129	1129	1129	1129		RS	915	915	915	915	1007	200	1001	1007	1007
1			20 FSW RS						•					20 FSW RS											20 FSW RS									
1036	1036		LB	015	915	015	018	915	1007	1007	1007	1007		LB	1032	1002	1032	1032	1032	1127	1127	1127	1127		B	910	010	910	940	4002	7007	7007	1002	1002
1011	1011		RB	858	858	959	828	858	953	953	953	953		RB	9707	2	1016	1016	1016	1110	1110	1110	1110		RB	853	953	853	000	200	940	948	948	948
1008	1008		rs	955	255	000	855	855	026	950	950	950		LS	2707	2101	1012	1012	1012	1107	1107	1107	1107		LS	850	000	000	000	000	944	944	944	944
1001	1007		NO	\top					949	949	949			NO	GAS	6001	1009	1009	1009	1106	1106	1106	1106		NO	GAS	010	040	010	040	943	943	943	943
51			DVR#	7						53				DVR#		24	_	12	44	54		2			DVR#	c	0 5	5 4 5	5 6	47	0	43	51	24
33			DIVE #	7.0						35				DIVE #	6	38	38	38	38	38	38	38	38		DIVE #	Ç	2 4	04	2 4	40	40	40	40	40
20-Mar	1	1	DATE	Τ.	丁	Т	\neg	21-Mar		T	Τ.			DATE		\neg	22-Mar		Т	Τ.		T			DATE	200	$\neg \Gamma$		1	23-Mar	23-Mar	23-Mar	23-Mar	23-Mar
90/90				IJ			١	110/110 2	1				Π	_	щ	110/110	110/110	110/110		Т					\neg	щ					- [110/110

Т		П	П					Ţ					Т	T					П								\Box				
	STDEV	N/A	0.08	N/A	0.14	1.50	0.14	N/A	0.17	STDEV		N/A	δ N	N/A	N/A	N/A	0.15	0.11	0.36		STDEV		N/A	ΑX	N/A	A/A	0.12	0.14	0.10	0.17	
	PO2 AVG	N/A	1.41	N/A	1.47	0.88	1.51	- 1	1.50	P02	A C	Y N	A/A	ĕ,Z	N/A	N/A	1.52	1.41	1.24		P02	AVG	A/N	Y/A	A/N	N/A	1.47	1.54	1.46	1.46	
	PO2 MIN	N/A	1.28	N/A	1.30	0.88	1.31	N/A	1.30	P02	ZIE	A/A	N/A	N/A	N/A	N/A	1.37	1.22	0.00		P02	Z	N/A	N/A	N/A	N/A	1.32	1.35	1.32	1.28	
コ	~: ×				1.80		2.29		2.34	P02						N/A	2.46	2.13	1.83		P02	MAX	N/A	N/A			2.11	2.28	1.83	2.42	
	SYTEM			NGA	٨		MS		NGA	SYSYTEM						MS		MS	MS		SYSYTEM				MS						
	OFF GAS	1211	1211	1211	1211		1304	1304	1304	OFF	GAS		1023	1023	1023		1114	1114	1114		OFF	GAS	1015	1015	1015	1015	1107	1107	1107	1107	
			1210	1210	1210		1303	1303	1303	SS			1022	1022	1022		1113	1113	1113		RS		1014	1014	1014	1014	1106	1106	1106	1106	
	20 FSW RS									20 FSW RS			•								20 FSW RS										
	87		1206	1206	1206		1258	1258	1258	LB			1017	1017	1017		1109	1109	1109		LB		1009	1009	1009	1009	1101	1101	1101	1101	
	RB T		1149	1149	1149		1244	1244	1244	RB			1000	1000	1000		1055	1055	1055		RB		952	952	952	952	1048	1048	1048	1048	
	ည		1146	1146	1146		1241		1241	LS			957	957	957		1052	1052	1052		LS		949	949	949	949	1044	1044	1044	1044	
	ON L	ABORT	1143	1143	1143	ABORT	_				GAS	ABORT	$\overline{}$			N.	1051				NO	တ	946	946			8	1043			
	DVR#	45			2			6		DVR#		31		7		31		7			DVR#		71	-	44			-	4		
	DIVE #	42		42						DIVE #		44					44				DIVE #		45	45	45			45	45	45	
	DATE	22-May 4	1	$\overline{}$	22-May /		1.			DATE		23-Mav					_	23-May ,	\neg	7	DATE		24-May	Τ.	T	Ι.					
	DIVE							1			PROFILE	110/110		Τ.						Γ	DIVE	==	110/110			Т	Г	Π			Ī

E۷											<u> </u>)EV							_		STDEV		"
STDEV		₹ Z	ĕZ	≸	ĕ	0.22	0.19	0.19	0.20		SIDEV	δ Z	X	\X	Ϋ́	0.16	0.22	0.13	0.11		STDEV		0.16	0.15	0.17	0.30	0.27	0.33		ST	0.20	000
P02	AVG	A/A	۷ ۲	ΑX	A/A	1.50	1.54	1.77	1.46		AVG.	2	A/N	A/N	¥ N	1.42	1 56	1.46	1 39		P02	AVG	1.41	1.45	1.39	1.30	1.37	1.26		P02 AVG	1.52	4 50
P02	Z	N/A	N/A	N/A	N/A	1.33	1.34	1.54	1.32		MIN 2	A N	A/N	N/A	N/N	1.28	1 39	1 32	127		PO2	Z	1.23	1.34	1.24	1.30	1.32	1.31		PO2 MIN	1.28	10 7
	J				N/A	2.23	2.33	2.29	2.18		PO2	N/A	N/A	N/A	Y Z	2.29	2 60	2 10	1 89	2	P02	MAX	2.26	2.23	2.21	2.41	2.22	1.95		PO2 MAX	2.31	
SYSYTEM						MS :	MS		MS		SYSYTEM	S.W.						SW			SYSYTEM						MS	MS		SYSYTEM	MS	
	,,				944	1034	1034		1034		OFF S	1205	1205	1205	1205	1257	1257	1257	1257	107	OFF	GAS	1402	1402	1402	1453	1453	1453		GAS	1014	
		943	943	943	943	1034	1034	1034	1034		RS	1204	1204	1204	1204	1256	1256	1256	1256	200	RS	2	1401	1401	1401	1452	1452	1452		RS	1013	
20 FSW RS		0,	3	0,	<u>J</u>						20 FSW RS										20 FSW									20 FSW RS		
LB		938	938	938	938	1030	1030	1030	1030		8	4450	1150	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1150	1251	1021	1251	1251	1671	a	}	1357	1357	1357	1448	1448	1448		E	1008	
RB		921	921	921	921	1016	1016	1016	1016		RB	4440	1142	1142	1142	1237	4007	1237	4007	153/	80	2	1339	1339	1339	1434	1434	1434		8B	957	
LS		918	918	918	918	1013	1013	1013	1013		rs	44.00	1138	601	1139	103	1234	1234	1004	1234	0	3	1337	1337	1337	1431	1431	1431		S	953	1 1
NO	GAS	915				m		T		Π		GAS	\top		1138	1733	1233	1233	555	1233	NO	GAS	1336	1336	1336	1430	1430	1430		ON	952	
		72	6	6				~			DVR#									55	# 0//0		90					63		DVR#	72	
DIVE # DVR #		47									DIVE #									48	7 1/10	# DIVE	40	49	49	49	40	49		DIVE #	50)
DATE		25-May 4	Τ.			1		\neg	25-May	ı	DATE			- 1		•	- 1	\neg		25-May		DAIE	25 May	Τ.	Т.				1	DATE	30-May	
DIVE	Ę	110/110 2					T					ш								110/110		DIVE PROFILE	\neg		Τ		T		T	DIVE	130/130	20 20 20 20 20 20 20 20 20 20 20 20 20 2

	_							_	-	\neg		_	_				\neg		_	Т		\neg	Т	П	\neg	Т	-	_		Т	Т	\exists	Т	\neg
0.24	0.21	0.23	0.28	0.23	0.24		STDEV		0.26	0.23	0.35	0.34	N/A	N/A	N/A	N/A		STDEV		0.30	0.32	0.14	0.12	60.0	0.12	0.13	0.13		STDEV	000	90.0	0.12	0.13	0.13
1.59	1.57	1.62	1.65	1.66	1.54		P02	AVG	1.38	1.36	1.40	1.29	N/A	N/A	N/A	N/A		P02	AVG	1.01	1.79	1.46	1.45	1.64	1.56	1.47	1.46		P02	200	9.	1.56	1.47	1.46
1.30	1.29	1.32	1.29	1.37	1.30		P02	NIM	1.39	1.36	1.39	1.29	N/A	N/A	N/A	W/A		P02	NIM	0.00	0.85	1.26	1.28	1.49	1.39	1.30	1.26		PO2		1.49	1.39	1.30	1.26
2.39	2.40	2.40	2.68	2.36	2.37		P02	MAX	1.75	1.79	1.82	1.81	N/A	N/A	N/A	N/A		P02	MAX	1.44	3.57	1.79	1.74	2.02	1.82	1.76	1.89		PO2	Y	2.02	1.82	1.76	1.89
		MS	MS	MS	MS		SYSYTEM		MS	MS	MS	MS	MS	MS	MS	MS		SYSYTEM		MS	MS	MS			MS	MS	MS		SYSYTEM		MS	MS	MS	MS
1014	1014	1101	1101	1101	1101		OFF	GAS	1222	1222	1222	1222	1308	1308	1308	1308		OFF	GAS	1040	1040	1040	1040	1127	1127	1127	1127		OFF	GAS 600	1239	1239	1239	1239
1013	1013	1100	1100	1100	1100		RS		1221	1221	1221	1221	1308	1308	1308	1308		RS		1040	1040	1040	1040	1127	1127	1127	1127		RS	000	1239	1239	1239	1239
							20 FSW RS											20 FSW RS											20 FSW RS					
1008	1008	1055	1055	1055	1055		87		1216	1216	1216	1216	1303	1303	1303	1303		LB		1034	1034	1034	1034	1122	1122	1122	1122		LB		1234	1234	1234	1234
957	957	1048	1048	1048	1048		RB	!	1205	1205	1205	1205	1254	1254	1254	1254		RB		1023	1023	1023	1023	1113	1113	1113	1113		RB		1223	1223	1223	1223
953	953	1043	1043	1043	1043		FS	}	1201	1201	1201	1201	1251	1251	1251	1251		LS		1019	1019	1019	1019	1110	1110	1110	1110		rs		1219	1219	1219	1219
952	952	1042		1042	1042		NO	S	1200	1200			1250						GAS	1016	1016	1016	1016	1109	1109	1109	1109		NO			1215		
12 9	74 8	72 1		12 1			DVR#		47	10		48	47					DVR#		, 22	,	52		. 22	,	61	. 22		DVR#		78	39		
50	50						DIVE #		51				51					DIVE #		53	53			53					DIVE #		54	54		
30-May 5					T	$\overline{}$	DATE		30-May 5	T	1.		Τ.	T		T		DATE		31-May 5	31-May 5		_	T	1				DATE	\neg	31-May (5	Γ	Ι.	
130/130	130/130					1	PIVE	:E	130/130									DIVE	PROFILE	130/130	130/130								T	ш	130/130			

				T		Т				\neg		_	_	_		\top	Т	Г				\neg	\neg	Т						Т	\neg
0.31	0.10	0.13	0.12		STDEV	0.14	0.10	0.13	0.13	0.15	0.12	0.12	0.11		STDEV	0.12	0.12	0.13	0.10	0.11	0.13	0.09	0.13		STDEV	0.15	0.11	0.12	N/A	0.13	0.13
		1.54	1.52		PO2 AVG	1.44		1.42			1.54	1.49	1.46		P02	1 48	1.54	1.50	1.43	1.49	1.59	1.45	1.48		P02 AVG	1.48	1.43	1.46	N/A	1.57	1.53
1.52	1.38	1.32	1.33		PO2 MIN	1.25	1.32	1.03	1.28	1.32	1.38	1.31	1.30		P02	1 33	1.39	1.29	1.30	1.30	1.39	1.34	1.31		PO2	1.28	1.27	1.28	A/N	1.33	1.27
2.65	1.76	1.79	1.81		PO2 Max	Г			1.72	1.79	1.75	1.75	1.69		P02	1 78	181	1.78	1.71	1.72	1.81	1.80	1.95		PO2 MAX	1.76	1.71	1.78	N/A	1.82	1.73
MS		MS	MS		SYSYTEM	MS	MS	MS	MS	MS	MS	MS	MS		SYSYTEM	MC	MS	MS	MS	MS	MS	MS	MS		SYSYTEM		MS	MS	MS	MS	MS
1327	1327	1327	1327		OFF GAS	916	916	916	916	1003	1003	1003	1003		OFF	4111	1111	1111	1111	1158	1158	1158	1158		OFF	920	920	920	920	1008	1008
1327	1327	1327	1327		RS	916	916	916	916	1003	1003	1003	1003		RS	444	1111	1111	1111	1158	1158	1158	1158		RS	920	920	920	920	1001	1007
					20 FSW RS										20 FSW										20 FSW RS						
1321	1321	1321	1321		P	910	910	910	910	928	958	928	958		B	4405	1105	1105	1105	1153	1153	1153	1153		8 7	915	915	915	915	1002	1002
1313	1313	1313	1313		RB T	006	006	006	006	949	949	949	949		RB	4054	1054	1054	1054	1144	1144	1144	1144		RB	904	904	904	904	954	954
1309	1309	1309	1309		rs	855	855	855	855	946	946	946	946		rs	4050	1050	1050	1050	1141	1141	1141	1141		ST	006	006	006	006	950	950
1308	1308	1308	1308		NO				853		944	944	944		NO	GAS	1048			T	1140	1140	1140		NO	859	859			949	949
78	39		79		DVR#	45			63			30			DVR#							6	38		DVR#	84					
54	54		54		DIVE #	56			56			56			DIVE #	1						57			DIVE #	59					
31-May 5	1	T	$\overline{}$		DATE	1-Jun 5									DATE		nuc-1	T		T					DATE	5-lun	Т			Т	
130/130	130/130		130/130		DIVE D				Т		130/130	130/130	130/130			ш	130/130	T		T	130/130	Τ	Γ	Г	DIVE						

130/130	2-Jun	29	47	949	950	954	1002	1007	1008	MS	1.77	1.32	1.55	0.12
130/130	5-Jun	59	21	949	950	954	1002	1007	1008	MS	N/A	N/A	N/A	N/A

	1		_	-			-	_	-		_	_	-					-				_	_	_		_	\neg
STDEV	N/A	0.15	90.0	90.0	N/A	90.0	N/A	0.07		STDEV		0.07	0.08	0.10	0.08	0.07	0.04	0.16	0.07		STDEV	0.05	0.07	0.10	90.0	N/A	N/A
PO2 AVG	A/A	1.45	1.37	1.45	N/A	1.46	N/A	1.51		P02	AVG	1.44	1.38	1.40	1.39	1.48	1.40	1.47	1.42		PO2 AVG	1.51	1.43	1.62	1.40	N/A	N/A
PO2 MIN	N/A	0.99	1.28	1.27	N/A	1.34	N/A	1.35		P02	Z	1.30	1.26	1.23	1.22	1.36	1.32	1.26	1.32		PO2 MIN	1.41	1.28	1.46	1.20	N/A	N/A
PO2 MAX	N/A	1.66	1.54	1.60	N/A	1.74	N/A	1.71		P02	MAX	1.67	1.73	1.91	1.59	2.14	1.56	2.36	1.66		PO2 MAX	1.87	1.96	1.85	1.89	N/A	N/A
SYSTEM	MS	MS	MS	MS	MS	MS	MS	MS		SYSTEM		MS	MS	MS	MS	MS	SW	MS	MS		SYSTEM	MS	MS	MS	MS	MS	MS
OFF GAS		1440	1440	1440		1612	1612	1612		OFF	GAS	1307	1307	1307	1307	1438	1438	1438	1438		OFF GAS	1312	1312	1312	1312	1443	1443
RS		1440	1440	1440		1612	1612	1612		RS		1307	1307	1307	1307	1438	1438	1438	1438		RS	1312	1312	1312	1312	1442	1442
20 FSW		1435-38	1435-38	1435-38		1544-1610	1544-1610	1544-1610 1612		20 FSW		1303-6	1303-6	1303-6	1303-6	1411-37	1411-37	1411-37	1411-37		20 FSW	1307-10	1307-10	1307-10	1307-10	1415-1441	1415-1441 1442
30 FSW 20 FSW										30 FSW											30 FSW						
40 FSW										40	FSW										40 FSW						
LB		1431	1431	1431		1540	1540	1540		LB		1259	1259	1259	1259	1407	1407	1407	1407		LB	1304	1304	1304	1304	1412	1412
RB		1404	1404	1404		1513	1513	1513		RB		1231	1231	1231	1231	1339	1339	1339	1339		RB	1236	1236	1236	1236	1345	1345
		1401	1401	1401		1510	1510	1510		rs		1229	1229	1229	1229	1337	1337	1337	1337		S	1234	1234	1234	1234	1342	1342
ON GAS	ABORT	1400	1400	1400	ABORT	1508	1508	1508		ON GAS		1228	1228	1228	1228	1337	1337	1337	1337		ON GAS	1232	1232	1232	1232	1341	1341
DIVE DVR ON GAS LS	83		44	51	83	36	44	51		DIVE DVR	#			28	38				38		DIVE DVR ON GAS LS	T					1 22
		2	70	70	70 ر	70 ر	70	70				72	72	72 ر	_			74		74		74					
DATE	12-Jun	12-Jun	12-Jun	12-Jun	12-Jun	12-Jun	12-Jun	12-Jun		DATE		13-Jun		DATE	14-Jun	14-Jun	14-Jun	14-Jun	14-Jun	14-Jun							
DIVE PROFII F	120/120	120/120	120/120	120/120	120/120	120/120	120/120	120/120		DIVE	PROFILE	120/120	120/120	120/120	120/120	120/120	120/120	120/120	120/120		DIVE PROFILE	120/120	120/120	120/120	120/120	120/120	120/120

							_		_	_		_		_	-т			_	_	Т				\neg	Т	_	Т	T	\neg	_		\neg
A/A	NA	VI CITO	SIDEV	0.07	0.07	0.05	0.08	0.09	0.07	0.07	0.08		SIDEV	0.10	0.07	A/A	0.08	0.08	90.0	N/A	0.07		STDEV		0.0/	0.04	0.16	0.07	0.07	0.07	0.27	0.05
	N/A	T	PO2 AVG	1.44						1	1.43		PO2 AVG	1.43	1.35	N/A	1.41	1.49	1.37	N/A	1.44		P02	AVG	1.44	1.46	1.52	1.35	1.44	1.49	1.48	1.36
	N/A		MIN	1.29				1.33	1.37	1.27	1.31		PO2 MIN	1.27	1.22	N/A	1.26	1.36	1.26	N/A	1.31		P02	Z	1.33	1.37	1.19	1.20	1.33	1.26	0.98	1.24
	N/A		MAX I	1.69					1.70		1.65		PO2 MAX	1.86	1.61	N/A	1.61	1.81		N/A	1.64		P02	MAX	1.67	1.64	2.14	1.55	1.66	1.80	2.01	1.54
		\neg	SYSTEM P								MS 1	7	SYSTEM F	MS 1	MS	MS			MS		MS		SYSTEM			MS		MS			MS	MS
	3 MS			S MS		S MS		SW 6																S								
1443	1443		GAS	1306	1306	1306	1306	1439	1439	1439	1439		OFF GAS	1250	1250	1250	1250	1421	1421	1421	1421		OFF	GAS	1300	1300	1300	1300	1431	1431	1431	
1442	1442		RS	1306	1306	1306	1306	1439	1439	1439	1439		RS	1250	1250	1250	1250	1421		1421	1421		RS		1300	1300	1300	1300	1431	1431	1431	1431
1415-1441	1415-1441		20 FSW	1302-4	1302-5			1411-37	1411-37	1411-37	1411-37		20 FSW	1246-49	1246-49	1246-49	1246-49	1354-1420	1354-1420	1354-1420	1354-1420		20 FSW		1256-58	1256-58	1256-58	1256-58	1404-30	1404-30	1404-30	1404-30
-	1		30 FSW 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									30 FSW										30 FSW									
			40 FSW										40 FSW										40	FSW					-			
1412	1412		LB	1259	1259	1259	1259	1407	1407	1407	1407		P P	1242	1242	1242	1242	1350	1350	1350	1350		<u>a</u>	3_	1252	1252	1252	1252	4404	1 10	1400	1400
1345	1345		RB	1232	1232	1232	1232	1340	1340	1340	1340		RB	1214	1214	1214	1214	1322	1322	1322	1322		a	2	1224	1224	1224	1004	1227	1332	1337	1332
1342	1342		ST	1229	1229	1229	1229	1337	1337	1337	1337		r _S	1212	1212	1212	1212	1320	1320	1320	1320		0	3	1222	1000	1222	4222	777	1330	1330	1330
1341	1341		ON GAS	1226	1226	1226	1226	1335	1335	1335	1335		ON GAS	1211	1211	1211	1211	1210	1210	1210	1319		ON S INC	DIVE DVR ON GAS LS	1220	1220	1220	1220	0221	1329	1329	1329
50			DVR #	_		T	T	_					DIVE DVR	20	200	300	2 5	ξ °	20	3 6	43	2	9	7 #	: 7	- 6	3 5	51	رة ا	4	3 5	37
74	Т		DIVE		1		T	2 2	2 4	76	76		DIVE	10	0 0	9 0	0 0	9 9	9 9	0 0	0 8	2		2 *	: 0	8 8	8 8	8 8	2	2 2	2 2	88
14-Jun			DATE	45 11.0	15-Jun	15-Juli	15-Jun	15-Jun	15 Jun	15- Jun	15-Jun		DATE			19-5011	19-Jun	Unc-61	19-5un	19-3un	19-Jun	1000	1	DAIE		70-Juli	20-Jun	20-Jun	20-Jun	20-Jun	20-Jun	20-Jun 20-Jun
120/120	Τ	Τ	DIVE	420/420									DIVE	TROFILE 400/400	120/120	120/120	120/120	120/120	120/120	120/120	120/120	120/120	1	DIVE	100/400	120/120	120/120	120/120	120/120	120/120	120/120	120/120

		Т		Т	Ţ	1		\neg	1	-1		T	1	-1			一		1	Т				Т	Т	\top		Т	7	\neg
711010	SIDEV	90.0	0.10	0.11	90.0	0.11	90.0	0.10	90.0	i	SIDEV	0.07	0.08	90.0	0.07	0.13	0.07	0.07	0.07		STDEV	0.10	0.13	0.11	0.12	OTOEV	SIDEV	0.15	0.09	0.09
000	AVG	1.42	1.43	1.42	1.34	1.52	1.47	1.46	1.37		AVG	1.41	1.33	1.37	1.39	1.54	1.32	1.42	1.42		P02 AVG	1.43	1.47	1.46	1.39	500	AVG	1.48	1.50	1.46
	MIN	1.30	1.20	1.25	1.23	1.39	1.30	1.31	1.28		MIN 2	1.26	1.21	1.22	1.25	1.40	1.24	1.31	1.27		PO2 MIN	1.27	1.31	1.10	1.10		MIN	1.30	1.39	1.33
						1.88	1.69	1.96	1.58		PO2 MAX		1.60			1.99	1.56	1.87	1.62		PO2 MAX	1.83	1.81	1.69	1.89	000	MAX	2.61	1.83	1.71
	SYSIEM							MS	MS	\neg	SYSTEM	, WS	MS	WS			MS		MS		SYSTEM				MS		SYSTEM		MS	
	OFF GAS	1348	1348	1348	1348	1522	1522	1522	1522		OFF GAS	1235	1235	1235	1235	1408	1408	1408	1408		OFF	935	935	935	935		GAS	1108	1108	1108
	RS S	1348	1348	1348	1348	1522	1522	1522	1522		RS	1235	1235	1235	1235	1408	1408	1408	1408		RS	935	935	935	935		RS S	1108	1108	1108
	20 FSW	1342-46	1342-46	1342-46	1342-46	1452-1520	1452-1520	1452-1520	1452-1520 1522		20 FSW	1230-34	1230-34	1230-34	1230-34	1339-1407	1339-1407	1339-1407	1339-1407		20 FSW	928-34	928-34		928-34		20 FSW	1038-1107	1038-1107	1038-1107 1108
_	30 FSW 2										30 FSW										30 FSW						30 FSW	1034-8	1034-8	1034-8
	40 FSW						ļ				40 FSW										40 FSW						40 FSW			
	8	1338	1338	1338	1338	1448	1448	1448	1448		87	1226	1226	1226	1226	1335	1335	1335	1335		LB	924	924	924	924		9 	1031	1031	1031
	88	1311	1311	1311	1311	1421	1421	1421	1421		RB	1158	1158	1158	1158	1307	1307	1307	1307		RB	901	901	901	901		RB	1009	1009	1009
	rs S	1308	1308	1308		1418	1418	1418	1418		ST	1156	1156	1156	1156	1305	1305	1305	1305		LS	859	859	859	859		ST	1006	1006	1006
	ON GAS	1306	1306	1306	1306	1415	1415	1415	1415		ON GAS	1155	1155	1155	1155	1304	1304	1304	1304		ON GAS	857	857	857	857		ON GAS	1005	1005	1005
				T	Γ	T							6	Γ		2		T			DIVE DVR	~					DIVE DVR	Τ	50	
	DIVE DVR	7				Γ		Π	П		DIVE DVR	4						П			DIVE		T				DIVE #		T	
	DATE	21-Jun	21-Jun	Т		21-Jun	21-Jun	21-Jun	21-Jun		DATE	22- lun	22- Jun	22- Jun	22-Jun	22-Jun	22-Jun	22-Jun	22-Jun		DATE	20- Jun	20-Jun	20-Jun	20-Jun		DATE	20-Jun	20-Jun	20-Jun
	DIVE							1			DIVE		1	1							DIVE						DIVE PROFILE			

	1			_						_						_	_	_	$\overline{}$		Т	Т	_	\neg	\neg	_		_	\neg	\neg
0.11	STDEV	N/A	N/A	0.08	0.14		STDEV		0.12	0.10	0.09	0.14		STDEV	0.11	60.0	0.07	0.10		STDEV	9	0.10	0.07	0.05	0.13	, LUCTO	SIDEV	0.11	0.15	0.07
1.43	PO2 AVG	N/A	N/A	1.41	1.45		P02	T			1.47	1.48		PO2 AVG	1.46	1.38	1.41	1.41		P02	AVG	1.50	1.44	1.48	1.48	300	AVG	1.43	1.49	1.46
1.28	PO2 MIN	N/A	N/A	1.10	1.10				1.29	1.32	1.36	1.32		PO2 MIN	1.28	1.23	1.32	1.28		P02	Z	1.31	1.31	1.40	1.33		N N	1.27	1.26	1.31
1.75	PO2 MAX	N/A	N/A		1.83						2.02	2.01		PO2 MAX	1.73	1.65	1.67	1.71		P02	MAX	1.77	1.79	1.66	1.87		MAX	1.76	2.01	1.62
MS 1	SYSTEM P	MS	MS				SYSTEM F		MS		MS 5	MS		SYSTEM				MS		SYSTEM					MS	$\neg \top$	SYSTEM	MS		
1108	OFF GAS	1031	1031	1031	1031		OFF	GAS	1207	1207	1207	1207		OFF GAS	927	927	927	927		OFF	GAS	1102	1102	1102	1102		GAS	920	920	920
1108	RS	1031	1031	1031			RS		1207		1207	1207		RS	927	927	927	927		RS		1102	1102	1102	1102		RS	920	920	920
1038-1107	20 FSW F	1022-26					20 FSW		1135-1205	1135-1205	1135-1205	1135-1205		20 FSW	918-26			918-26		20 FSW			$\overline{}$	1031-1100	1031-1100		20 FSW	913-19		
1034-8 1	30 FSW 2						30 FSW		1130-4	1130-4	1130-4	1130-4		30 FSW						30 FSW		1026-30		1026-30	1026-30		30 FSW			
	40 FSW							FSW						40 FSW						40	FSW						40 FSW			
1031	LB	1017	1017	1017	1017		LB		1126	1126	1126	1126		LB	913	913	913	913		P		1022	1022	1022	1022		9	606	606	606
1009	RB	955					RB		1104	1104	1104	1104		RB	851	851	851	851		RB		1000	1000	1000	1000		RB	848	848	848
1006	rs	052	952			-	LS		1101	1101	1101	1101		LS	848	848	848	848		ST		957	957	957	957		rs	844	844	844
1005	ON GAS	051					ON GAS		1058	1058	1058	1058		ON GAS	848	848	848	848		DIVE DVR ON GAS		956	926	956	956		ON GAS	SA2	242	842
48 1	DIVE DVR C						DIVE DVR	*	44		T			DVR		3 2		6	T	DVR	#	38				T	DIVE DVR			63
62	DIVE	£ 0	ο ά	2 6	ο <u>α</u>	5	DIVE	*	81	81	24	2 2		DIVE	# 68 83	3 6	3 8	3 8	3	DIVE	#	83	83	83	83		DIVE	F 8	3 8	82
20-Jun	DATE	1.1	21 1111	24 115	24 1410	1100-17	DATE		21-Jun	21lun	21- lin	21-Jun		DATE	22 1.15	1106-22	22-Jun	22-Jun	77	DATE		22-Jun	22-Jun	22-Jun	22-Jun		DATE	2011.00	26 lun	26-Jun
140/140	DIVE	\neg	140/140			T	DIVE	빌	1				T	DIVE	440/440					DIVE	PROFILE	140/140					DIVE	140/140	140/140	140/140

	1 1				1					_							_	_	Т	_	Т	Т		$\overline{}$	T	_	-т	\neg
0.07	STDEV	0.13	0.18	90.0	60.0		STDEV	0.10	0.13	0.11	0.17		STDEV	0.12	0.12	0.11	0.15		STDEV	A/A	0.11	0.10	Ψ.N	, LOTO	SI DEV	N/A	N/A	N/A
1.35	PO2 AVG	1.51	1.56	1.49	1.32		P02 AVG	1.37	1.40	1.51	1.44		PO2 AVG	1.38	1.39	1.47	1.48		PO2 AVG	N/A	1.39	1.35	A/A	300	AVG	N/A	ĕN N	N/A
1.10	PO2 MIN	1.32	1.26	1.38	1.19		PO2 MIN	1.22	1.23	1.33	1.25		PO2 MIN	1.12	1.16	1.09	1.31		MIN 2	N/A	1.26	1.24	N/A		MIN	N/A	N/A	N/A
1.51	PO2 MAX	1.93	2.09	1.68	1.59		PO2 MAX	1.64	1.73	1.81	2.21		PO2 MAX	1.84	1.73	1.89	2.06		PO2 MAX	N/A	1.74	1.71	Y/N		MAX	N/A	N/A	N/A
MS	SYSTEM		MS	MS	MS	П	SYSTEM	MS		MS	MS		SYSTEM				MS	- 1	SYSTEM	MS	MS	MS			SYSTEM	MS	MS	MS
920	OFF GAS	1057	1057	1057	1057		OFF GAS	1241	1241	1241	1241		OFF GAS	1416	1416	1416	1416		OFF GAS		926	926			GAS		1129	1129
920	RS	1057	1057	1057	1057		RS	1241	1241	1241	1241		RS	1415	1415	1415	1415		RS		926	926			RS		1129	1129
913-19	20 FSW	1026-56	1026-56	1026-56	1026-56		20 FSW	1233-40	1233-40	1233-40	1233-40		20 FSW	1344-1414		1344-1414	1344-1414		20 FSW		948-54	948-55			20 FSW		1057-1127	1054-56 1057-1127
0,	30 FSW 2	1022-25	+	1022-25	1022-25		30 FSW						30 FSW	1340-44	1340-44	1340-44	1340-44		30 FSW						30 FSW		1054-56	1054-56
	40 FSW						40 FSW						40 FSW						40 FSW						40 FSW			
606	LB	1019	1019	1019	1019		LB	1229	1229	1229	1229		LB	1336	1336	1336	1336		FB		944	944			9		1051	1051
848	RB	957	957	957	957		RB	1207	1207	1207	1207		RB	1314	1314	1314	1314		RB		925	925			88		1030	1030
844	rs	954	954	954	954		LS	1204	1204	1204	1204		S	1311	1311	1311	1311		rs		919	919			ST		1026	1026
842	ON GAS	953	953	953	953		ON GAS	1202	1202	1202	1202		ON GAS	1310	1310	1310	1310		DIVE DVR ON GAS	ABORT	918	918	ABORT		DIVE DVR ON GAS	ABORT	1025	1025
31	DIVE DVR						DIVE DVR	,,	Γ				DVR				Г		DVR #	85	61				DVR #	10		52
85	DIVE #	1.0	T	Г	T		DIVE	. 98 98	98	86	98		DIVE #	86	98	98	86		DIVE #	87	87	87	87		DIVE #	87	87	87
26-Jun	DATE	26-Jun	26-Jun	26-Jun	26-Jun		DATE	26-Jun	26-Jun	26-Jun	26-Jun		DATE	26-Jun	26-Jun	26-Jun	26-Jun		DATE	27-Jun	27-Jun	27-Jun	27-Jun		DATE	27-Jun	27-Jun	27-Jun
140/140	DIVE						DIVE					35	DIVE					1	DIVE						DIVE PROFILE			

			· ·	_	Т	Т	1					ī	1	T						Γ-	Γ							Γ		Т	Т	\neg
Y X	STDEV	N/A	N/A	N/A	A/N		STDEV	2	60.0	0.19	0.11	0.11		1	SI DEV	N/A	N/A	N/A	N/A		STDEV		N/A	N/A	N/A	N/A		STDEV		0.15	0.14	0.18
	PO2 AVG	N/A					Т	AVG	1.35	1.55			T	3	AVG	N/A	N/A	N/A	N/A		P02	AVG	N/A	N/A	A/A	A/N		P02	AVG	1.47	1.47	1.43
	PO2 MIN	N/A				C	200	MIN	1.21	1.31	1.31	1 20	21		MIN	N/A	N/A	N/A	N/A		P02	Z	N/A	N/A	N/A	N/A		P02	Z	1.27	1.29	1.22
	PO2 MAX							MAX			1.93	1 76	2		PO2 MAX	N/A	N/A	N/A	N/A		PO.2	MAX	N/A	N/A	N/A	N/A		P02	MAX	1.87	1.87	1.86
CIM	SYSTEM F	MS					Т		MS					Т	SYSTEM	MS					CVCTEM		MS	MS	MS	MS		SYSTEM		MS	MS	MS
	OFF	1327	1327	1327	1367	132/		GAS	1502	1502	1502	1502	2001		OFF GAS		939	939	939		250	GAS		1113	1113	1113		OFF	GAS	946	946	946
	RS	1327		T	1	132/		SS S		Τ		Τ	T		RS		939	939	939	200	90	2_		1113		1113		SS	2	946	946	946
	20 FSW	1319-26		T		1319-26		20 FSW	1430-1500 1502	1430-1500 1502	1430-1500 1502	430-1300	1430-1500 1502		20 FSW		930-938	930-938	030-038	000-000	100 00	ZU FSW		1038-42 1042-1112	1038-42 1042-1112	4042-4442	2111-2101	20 ESW		929-45	929-45	929-45
	30 FSW 2							30 FSW 2	1426-29				1426-29		30 FSW							30 FSW		1038-42	1038-42	4030 42	1000-42	20 ECW				
	40 FCW							40 FSW	101						40 FSW							FSW						4	FSW			
	LB	4244	1014	4101	1314	1314		8	4422	1400	4400	1477	1422		LB		900	350	920	370	!	<u> </u>		1034	1034	100	450	0	9	924	924	924
	RB	0207	7070	7071	1252	1252		RB	1250	200	1000	1329	1359		RB		200	202	202	903		RB B		404	2 2 2	2 3	-	2	ם צ_	903	903	903
	LS.	0,0,	1249	1249	1249	1249		ST	4057	1001	1007	135/	1357		rs		50	200	106	202		S		000	200	6001	2001		3	859	859	859
	ON GAS LS	9,0			1248	1248		ON GAS	1	1333	1355	1355	1355		ON GAS LS	1000	ABOR	828	628	826		ON GAS	1	ABOR	6001	6001	1009		ON GAS	857	857	857
	OVR					51 1		DVR	#	T			51		DVR					24		K		30			24	!	DIVE DVR	200		5 2
	DIVE DVR	#		88				DIVE	##				88		VE		\neg	83	88	88		DIVE	#	68	68	62	88		DIVE #	20	3 0	20 4
27-Jun		- 1			27-Jun			DATE	- 1	27-Jun	27-Jun	27-Jun	27-Jun		DATE		28-Jun	28-Jun	28-Jun	28-Jun		DATE		28-Jun	28-Jun	28-Jun	28-Jun		DATE	7 1.15	1 luc-1	/-Jun
140/140 2	1 1	щ		140/140	140/140		Г	_	ш			140/140	140/140		1	П		- 1		140/140			ш				140/140		DIVE	1 NOT 121	100/100	160/160

				т	1	_	_		_	_		_			<u> </u>		\neg			1	_	Т-	$\overline{}$		Т	\neg		Т	\neg	_1
0.16	STDEV	0.15	0.15	0.18	0 18	2	STDEV		0.13	0.15	0.09	0.12		STDEV	0.13	0.13	0.07	0.10		STDEV	0 4 2	5 5	0.13	0.13	0.14	7	SIDEV	0.12	0.17	0.16
1.48	PO2 AVG	1.52	1.45	1 50	1 50	35.	000	AVG	1.51	1.49	1.42	1.42		PO2 AVG	1.50	1.52	1.39	1.43		PO2	2 ,	5 4	94.	1.43	1.46	- 1	AVG	1.49	1.48	1.48
1.22	PO2 MIN	1.33	131	131	1 22	76.1	200	MIN	1.33	1.30	1.29	1.30		PO2	1.35	1.38	1.30	1.30		PO2	7 0 7	17.1	1.29	1.26	1.22		PO2 MIN	1.32	1.30	1.31
1.90	PO2 MAX	1.90	1 88	1 93	200	67.7	200	MAX	1.85	1.92	1.75	1.80		PO2 MAX	1.89	2.01	1.79	1.70		P02	V .	00.1	1.81	2.07	1.85		PO2 MAX	1.97	1.91	1.94
MS	SYSTEM	SW				2		STSIEN	MS	MS	MS	MS		SYSTEM	MS	MS	MS	MS		SYSTEM	9	MS.	MS	MS	MS		SYSTEM	MS	MS	MS
946	OFF	1126	1126	1126	0711	1126	L	GAS	1337	1337	1337	1337		OFF	1517	1517	1517	1517		OFF	GAS	942	942	942	942		OFF GAS	1123	1123	1123
946	RS	1126	1126	1176	0711	1126		S.	1337	1337	1337	1337		RS	1517	1517	1517	1517		RS		942	942	942	942		RS	1122	1122	1122
929-45	20 FSW	1057 1105	_	_	_	1057-1125		20 FSW	1319-35		1319-35	1319-35		20 FSW	1448-1516	$\overline{}$	1448-1516	1448-1516		20 FSW		925-41	925-42	925-43	925-44		20 FSW	1053-1121	1053-1121	1041-52 1053-1121 1122
	30 FSW 2	1046 57	$\overline{}$		\neg	1046-57		30 FSW						30 FSW	1436-47	_	_			30 FSW							30 FSW	1041-52	1041-52	1041-52
	40 FSW	ACL.						40 FSW						40	5					40	FSW						40 FSW			
924	LB	77.0	104	1041	1041	1041		9_	1314	1314	1314	1314		LB	1432	1432	1432	1432	2	LB		920	920	920	920		8	1037	1037	1037
903	RB	7007	1701	1021	1021	1021		RB	1254	1254	1254	1254		RB	4440	1412	1412	1412	1	RB		006	006	006	006		RB	1016	1016	1016
859	LS	9,0,	01.01	1016	1016	1016		S	1249	1249	1249	1249		rs	4407	1407	1407	1407	5	rs		855	855	855	855		ST	1012	1012	1012
857	ON GAS		1016	1016	1016	1016		DIVE DVR ON GAS	1247	1247	1247	1247		ON GAS	9077	1400	4406	1406	201	ON GAS		850	850	850	850		ON GAS	1011	1011	1011
72		\neg	\neg		51	72		DVR #	38	3 %	386	63	3	DIVE DVR	# 0	80 60	77	62	3	DIVE DVR	#	82	38	73	75		DIVE DVR	۲ a	7 %	3 8
92	VE				65	65		DIVE					3	DIVE	# 6	8 8	00	8 8	8	DIVE	*	29	67	67	25	<u>;</u>	DIVE	F 2	200	67
7-Jun	DATE		7-Jun	7-Jun	1-Jun	7-Jun		DATE	7 10.10	7 1110	7. 1110	7-lin	5	DATE	-	/-Jun	/-Juli	/-Jun	Inc-/	DATE		8-Jun	8-Jun	anil.	- fun		DATE	0	un a	8-Jun
160/160	DIVE	ш		160/160	160/160	160/160		DIVE	160/460	160/160	160/160	160/160	000	DIVE	PROFILE	160/160	160/160	160/160	100/ 100	DIVE	PROFILE	160/160	160/160	160/160	160/160	201	DIVE	460/460	160/160	160/160

	Τ -			т-	_	1	Т			_	_					\neg	7	Т	Т	\neg		Т				- 	Т	
0.16	STDEV	0.15	0.13	0.12	0.17		STDEV		N/A	N/A	N/A	N/A		STDEV		0.12	0.13	N/A	0.18		STDEV		0.14	0.20	0.13	₹/Z	CTDEV	O I DEV
1.55	PO2 AVG	1.47	1.43	1.44			PO2	AVG	N/A	N/A	N/A	N/A		P02	AVG	1.47	1.49	N/A	1.51		P02	200	1.50	1.54	1.52	₹ X	000	AVG
1.38	PO2 MIN	1.29	1.27	1 30	1 32	1.02	PO2	MIN	N/A	N/A	N/A	A/A		P02	NE	1.33	1.33	N/A	1.23		P02	N N	1.36	1.32	1.36	N/A	3	ME
1.96	PO2 MAX						500			N/A	N/A	N/A		P02	MAX	1.85	1.87	N/A	1.93		P02	MAX	1.93	2.09	1.85	N/A		PO2 MAX
MS 1	SYSTEM P	MS 1					CVCTEM		MS	MS				SYSTEM		MS		MS	MS		SYSTEM		MS	MS	MS	MS		SYSTEM
1123	OFF					1313	000	GAS						OFF	GAS	1056	1056	1056	1056		OFF	GAS	1242	1242	1242	1242		OFF GAS
1122	RS	1313	Τ	Τ	T	1313		2						P.S.		1056	1056	1056	1056		RS		1242	1242	1242	1242		RS
1041-52 1053-1121 1	20 FSW F	1256-1312 1	_	\neg		1256-1312		Z0 F3W								1038-54		1038-54			20 FSW		1212-1240 1242	1212-1240 1242	1212-1240 1242	1212-1240 1242		20 FSW
041-52 1	30 FSW 2	-					10.00	30 FSW 2						20 ECW 20 ECW							30 FSW		1159- 1211	1159- 1211	1159- 1211	1159- 1211		30 FSW 20 FSW
	40 3	5						FSW 3						,	3							FSW	1157-8	1157-8	1157-8	1157-8		40 FSW
1037	18	1250	1200	007	1250	1250		<u> </u>								1033	1033	1033	1033		LB		1152	1152	1152	1152		1B
1016	RB			Т		1230		RB B						0	מ	1011	1011	1011	1011		RB		1131	1131	1131	1131		RB B
1012		2007	T	Т		1225									r S	1008	1008	1008	1008		ST		1127	1127	1127	1127		S_
1011	ON GAS LS					1224		ON GAS LS	ARORT	Tagay	ABORT	Tagar	ואספג	0.0	ON GAS	1005	1005	1005	1005	3	ON GAS		1124	1124	1124	1124		DIVE DVR ON GAS
75 1	DVR.	# 3		53		5		DIVE DVR							DIVE DVR		0				DVR	#	-	62	67	၉		# DVR
	DIVE DVR	#			68	89		DIVE #	00	90	00	9 8	80	!	DIVE *	± 00	8 0	3 0	8 8	3	DIVE	*	69	69	69	69		# DIVE
8-Jun	DATE		8-Jun	8-Jun	8-Jun	8-Jun		DATE	o l	Jino-o	unc-o	inn-o	g-nnu		DATE	40	12 1110	12 Jun	12-Jun	100-71	DATE		12-Jun	12-Jun	12-Jun	12-Jun		DATE
160/160		ш			160/160	160/160		DIVE	Т	T		T	160/160		DIVE					001/001	DIVE	PROFILE	160/160	160/160	160/160	160/160		DIVE

				_						_				_		_								_
N/A	0.16	0.16	0.19		STDEV	N/A	0.13	0.17	0.15		STDEV	0.15	0.15	0.16	0.12		STDEV	0.13	0.29	0.16	0.13	STDEV	4/14	N/A
N/A	1.51	1.51	1.59		PO2 AVG	N/A	1.47	1.46	1.46		PO2 AVG	1.52	1.48	1.47	1.44		PO2 AVG	1.47	1.76	1.45	1.49	P02	2	N/A
N/A	1.30	1.23	1.23		PO2 MIN	N/A	1.34	1.29	1.31		PO2 MIN	1.30	1.29	1.23	1.23		PO2 MIN	1.31	1.34	1.29	1.34	P02	Z S	N/A
N/A	1.90	1.82	2.27		PO2 MAX	N/A	1.85	1.95	1.88		PO2 MAX	1.97	2.18	1.88	1.97		PO2 MAX	1.89	2.72	1.91	1.87	P02	MAX	N/A
			WS	\neg	SYSTEM		MS	MS	MS		SYSTEM			MS			STEM	MS	MS	MS	MS	SYSTEM		MS
	953	953	953		OFF GAS		1136	1136	1136		OFF GAS	932	932	932	932		OFF GAS	1114	1114	1114	1114	OFF	GAS	947
	953	953	953		RS		1136	1136	1136		RS	932	932	932	932		RS	1114	1114	1114	1114	RS		947
	934-36		934-36		20 FSW		1106-34	1106-34	1106-34		20 FSW	914-30	914-30	914-30	914-30		20 FSW	1032-44 1045-1113 1114	1032-44 1045-1113 1114	1032-44 1045-1113 1114	1032-44 1045-1113 1114	20 FSW		929-45
					30 FSW		1054- 1106	1054- 1106	1054- 1106		30 FSW						30 FSW	1032-44	1032-44	1032-44	1032-44	30 FSW 20 FSW		
					40 FSW		1053-4	1053-4	1053-4		40 FSW						40 FSW	1031- 32	1031- 32	1031- 32	1031- 32	40	FSW	
	930	930	930		9		1048	1048	1048		LB	606	606	606	606		8	1027	1027	1027	1027	LB		924
	806	806	808		RB		1026	1026	1026		RB	847	847	847	847		RB	1005	1005	1005	1005	RB		903
	905	905	905		rs		1023	1023	1023		LS	844	844	844	844		LS	1002	1002	1002	1002	rs		859
ABORT	903	903	903		ON GAS LS	ABORT	1022	1022	1022		DIVE DVR ON GAS L	843	843	843	843		DIVE DVR ON GAS LS	1001	1001	1001	1001	DIVE DVR ON GAS		856
84					# DVR	24	30	83	59		# DVR	14	63	55	49		# DVR	14	63	22	49	DVR	*	79
7.1	71	71	71		DIVE DVR	71	71	7.1	71		DIVE #	73	73	73	73		DIVE #	73	73	73	73	DIVE	*	75
13-Jun	13-Jun	13-Jun	13-Jun		DATE	13- Jun	13-Jun	13-Jun	13-Jun		DATE	14-Jun	14-Jun	14-Jun	14-Jun		DATE	14-Jun	14-Jun	14-Jun	14-Jun	DATE		15-Jun
160/160		Г			DIVE PROFILE	\top		160/160	160/160		DIVE	160/160					DIVE	160/160	160/160	160/160	160/160	DIVE	PROFILE	160/160

Γ		17.	,	950	020	200	700			929.45	947	947	MS	A/A	N/A	N/A	Y/Z
\neg	unc-cı	2					775			000 45	047	7.40	MC	N/A	N/A		A/N
160/160 1	15-Jun	75	44	856	859	903	924			929-40	347	147	SIN:	C/2.			1/4
160/160	15-Jun	75	54	928	829	903	924			929-45	947	947	MS	N/A	N/A	K/A	N/A
1/20	DATE	מאַער	0	NO GVO BYING	U	RB	a a	40	30 FSW 20 FSW	20 FSW	RS	OFF	SYSTEM	P02	P02	P02	STDEV
ш	JAIE	u ≥ ⊃ #	۲ ک #	240 10	3]	}	3	- -			GAS		MAX	Z	AVG	
\top	15. hin	75	٥	1015	1017	1021	1042		1047-59	1100-28	1130	1130	MS	N/A	N/A	N/A	N/A
T	15- lin	75		1015	1017	1021	1042		1047-59	1100-28	1130	1130	MS	N/A	N/A	N/A	N/A
	15-Jun	75	44	1015	1017	1021	1042		1047-59	1100-28	1130	1130	MS	N/A	N/A	N/A	N/A
	15-Jun	75	T	1015	1017	1021	1042		1047-59	1047-59 1100-28	1130	1130	MS	N/A	A/N	N/A	N/A
DIVE	DATE	DIVE	DVR	DIVE DVR ON GAS LS	LS	RB	LB	40	30 FSW 20 FSW	20 FSW	RS	OFF	SYSTEM	P02	P02	P02	STDEV
PROFILE		*	#					FSW				GAS		MAX	Z	AVG	
+	19-liin	77	59	847	848	851	913			918-34	935	935	MS	1.81	1.36	1.49	0.08
Τ	10- Jun	77	T	847	848	851	913			918-34	935	935	MS	1.56	1.26	1.37	90.0
	19-Jun	12		847	848	851	913			918-34	935	935	MS	1.64	1.31	1.44	0.07
T		-															
	DATE	DIVE.	E DVR	DIVE DVR ON GAS LS	FS	RB B	<u>B</u>	40 FSW	30 FSW	20 FSW	RS	OFF GAS	SYSTEM	PO2 MAX	MIN 2	P02 AVG	STDEV
160/160	10, 110	# 1	50	1004	1005	1008	1030	1034-5	1036-48	1048-1116	5 1117	1117	MS	1.91	1.34	1.50	0.14
T	1000	1	45	1004	1005	1008	1030	1034-5	1036-48	1048-1116	6 1117	1117	MS	1.86	1.40	1.53	0.02
	19-Juli	1	2 6	1004	1005	1008	1030	1034-5	1036-48	1034-5 1036-48 1048-1116 1117	5 1117	1117	MS	1.84	1.34	1.48	0.13
T	IIDC-CI	+	3	5	3												
		_			_												

DIVE	DATE	DIVE	DVR	NO	ST	RB	LB		40 FSW 30 FSW	30 FSW	20 FSW	RS	OFF	SYS	PO2	PO2	P02	STDEV
PROFILE		#		GAS				FSW					GAS		MAX	Z	AVG	
130	7-Feb	3	28	1040	1043	1047	1113				1117	1129	1129		1.90	1.32	1.48	0.13
130	7-Feb	8	23	1040	1043	1047	1113				1117	1129	1129		1.68	1.30	1.41	0.10
130	7-Feb	(2)	51	1040	1043	1047	1113				1117	1129	1129	NGA	1.94	1.35	1.55	0.18
130	7-Feb	, co	12	ABORT	Γ		1							NGA	N/A	N/A	N/A	N/A
130	7-Feb	4		1326	1329	1333	1359				1403	1415	1415	NGA	1.79	1.33	1.46	0.11
130	7-Feb	4		ABORT										NGA	1.88	1.29	1.54	0.12
130	7-Feh	4	55	1326	1329	1333	1359				1403	1415	1415	NGA	2.06	1.34	1.56	0.21
	7-Feb	4	22	1326	T	1333	1359				1403	1415	1415	NGA	N/A	N/A	N/A	N/A
DIVE	DATE	DIVE	DVR	ON	rs	RB	8	50 FSW	40 FSW	40 FSW 30 FSW	20 FSW	RS	OFF GAS	SYS	PO2 MAX	PO2 MIN	PO2 AVG	STDEV
130	15-Feb	14	-	1246	1247	1251	1317				1322-32	1334	1334	NGA	N/A	N/A	N/A	N/A
130	15-Feb	14	58	1246	Γ	1251	1317				1322-32	1334	1334	NGA	N/A	N/A	N/A	N/A
130	15-Feb	14	12	1246		1251	1317				1322-32	1334	1334	NGA	N/A	N/A	N/A	N/A
130	15-Feb	14	42	1246		1251	1317				1322-32	1334	1334	NGA	N/A	N/A	N/A	N/A
																:		
DIVE	DATE	DIVE	DVR	NO	rs	RB	LB	20	40 FSW	40 FSW 30 FSW	20 FSW	RS	OFF	SYS	P02	P02	P02	STDEV
PROFILE		#	*	GAS				FSW					GAS		MAX	Z	AVG	
130	16-Feb	16	22	1242	1242	1246	1312				1316-26	1327	1327	NGA	V/A	N/A	N/A	N/A
130	16-Feb	16	09	1242	1242	1246	1312				1316-26	1327	1327	NGA	N/A	A/A	N/A	NA
130	16-Feb	16	55	1242	1242	1246	1312				1316-26	1327	1327	NGA	N/A	N/A	N/A	NA
130	16-Feb	16	35	1242	1242	1246	1312				1316-26	1327	1327	NGA	N/A	A/A	N/A	N/A
																		i
DIVE	DATE	DIVE #	DVR #	ON	rs	RB	LB	50 FSW	40 FSW	40 FSW 30 FSW	20 FSW	RS S	OFF GAS	SYS	P02 MAX	MIN 2	AVG AVG	SIDEV
130	17-Fah	2	41	1230	1231	1235	1304				1305-15	1316	1317	NGA	A/A	N/A	N/A	N/A
130	17-Feb	18	. 2	1230	1231	1235	1304				1305-15	1316	1317	NGA	N/A	N/A	N/A	N/A
130	17-Feb	18	21	1230	1231	1235	1304				1305-15	1316	1317	NGA	N/A	N/A	N/A	N/A
130	17-Feb	18	61	1230	1231	1235	1304				1305-15	1316	1317	NGA	A/N	A/A	A/A	A/A
																9	300	, LL
DIVE PROFILE	DATE	DIVE #	DVR #	ON GAS	rs	RB B	8	50 FSW	40 FSW	40 FSW 30 FSW	20 FSW	RS	OFF GAS	SYS	MAX	N N	AVG	SIDEV

)EV						STDEV					STDEV		_	7		STDEV	5	3	2		CTDEV	À
0.17	0.08	0.09	0.05		STDEV		0.1	9.9	0.1	0.7	STE	0.21	0.05	0.12	0.05	ST	N/A	0.11	0.07	0.1	ST	0.05	0.03	0.02	0.08		
1.49	1.44	1.36	1.39		P02	AVG	1.42	1.44	1.40	1.42	P02 AVG	1.56	1.41	1.47	1.43	P02 AVG	N/A	1.41	1.44	1.46	AVG AVG	1.31	1.43	1.37	1.35	500	20.0
1.34	1.29	1.27	1.30		P02	Z	1.30	1.34	1.29	1.31	MIN N	1.37	1.30	1.33	1.33	PO2 MIN	N/A	1.30	1.32	1.35	PO2 MIN	1.09	1.30	1.29	1.07	200	707
2.07	1.74	1.69	1.69		P02	MAX	1.78	1.82	1.73	1.77	PO2 MAX	2.07	1.57	1.85	1.63	PO2 MAX	N/A	1.86	1.73	2.01	PO2 MAX	1.34	1.46	1.39	1.45	Š	707
NGA	NGA	\neg	NGA		SYS		NGA	NGA	NGA	NGA	SYS	NGA	NGA	NGA	NGA	SYS	N/A	NGA	NGA	NGA	SYS	NGA	NGA	NGA	NGA	2	SYS
1449	1449	1449	1449		OFF	GAS	1348	1348	1348	1348	OFF GAS	1437	1437	1437	1437	OFF GAS		1225	1225	1225	OFF GAS	1246	1246	1246	1246	L	OFF
1449	1449	1449	1449		RS		1347	1347	1347	1347	RS S	1436	1436	1436	1436	RS		1224	1224	1224	RS	1246	1246	1246	1246	-	RS
1438-48	1438-48		1438-48		20 FSW		1336-46	1336-46	1336-46	1336-46	20 FSW	1424-34	1424-34	1424-34	1424-34	20 FSW		1222-23	1222-23	1222-23	20 FSW	1222-45	1222-45	1222-45	1222-45		20 FSW
			,													30 FSW					30 FSW	1220-2	1220-2	1220-2	1220-2		30 FSW
					40 FSW 30 FSW						40 FSW 30 FSW			!		40 FSW					40 FSW 30 FSW						40 FSW 30 FSW
					20	FSW					50 FSW					50 FSW					50 FSW						20
1433	1433	1433	1433		LB		1332	1332	1332	1332	87	1419	1419	1419	1419	LB		1208	1208	1208	LB	1215	1215	1215	1215		<u></u>
1407	1407	1407	1407		RB		1305	1305	1305	1305	RB	1353	1353	1353	1353	RB		1141	1141	1141	RB	1150	1150	1150	1150		RB
1403	1403	1403			rs		1301	1301		1301	rs Ls	1349	1349			FS		1138	1138	1138	LS	1145	1145	1145	1145		FS
1401	1401				NO	s	1300	1300			ON GAS	1347	1347	1347	1347	ON		1137	1137	1137	ON GAS	1144	1144	1144	1144		NO
. 58	Γ	Γ	Г	Π		#	43			5	# DVR	-	Γ		2	DVR	ART	45	22	51	W #	σ	43	28	8		DVR
19		19				#	25	25	25	25	DIVE #	27	27	27	27	DIVE	20	200	29	23	DIVE #	34	34	34	34		DIVE
17-Feb	Т	1	Т	Т	DATE		24-Feb	T	Т		DATE	13-Mar	13-Mar	13-Mar	13-Mar	DATE	14-Mar	14-Mar	14-Mar	14-Mar	DATE	20-Mar	20-Mar	20-Mar	20-Mar		DATE
130		130			DIVE	FILE.	130				DIVE I	. T				DIVE	\neg			130	DIVE	Т					DIVE

														_				
0.05	0.08	N/A	0.03	STDEV	0.15	0.15	0.11	0.13	STDEV	0.12	0.14	0.05	0.04		STDEV	0.05	0.23	0.07
1.39	1.32	N/A	1.37	PO2 AVG	1.53	1.53	1.49	1.45	PO2 AVG	1.49	1.56	1.44	1.45		PO2 AVG	1.47	1.28	1.46
1.18	1.05	N/A	1.17	PO2 MIN	1.38	1.37	1.36	1.32	PO2 MIN	1.34	1.38	1.35	1.37		PO2 MIN	1.39	1.13	1.35
	1.39	N/A	1.42	PO2 MAX	1.97	1.88	1.86	1.89	PO2 MAX	1.86	1.98	1.63	1.55		PO2 MAX	1.61	1.82	1.71
1 1	NGA	MS	MS	SYS	NGA	NGA	MS	MS	SYS	NGA	NGA	MS	MS		SYS	NGA	NGA	MS
	1222	1222	1222	OFF GAS	1409	1409	1409	1409	OFF GAS	1323	1323	1323	1323		OFF GAS	1212	ABORT NGA	1212
П	1221	1221	1221	RS	1409	1409	1409	1409	RS	1323	1323	1323	1323		RS	1212	ABORT	1212
			1157-20	20 FSW	1345- 1408	1345- 1408	1345- 1408	1345- 1408	20 FSW	1258- 1321	1258- 1321	1258- 1321	1258- 1321		20 FSW	1148- 1210	ABORT	1148- 1210
	1155-57	1155-57	1155-57	30 FSW	1343-45	1343-45	1343-45	1343-45	30 FSW	1255-57	1255-57	1255-57	1255-57		30 FSW	1147	ABORT	1147
				40 FSW 30 FSW					40 FSW 30 FSW						40 FSW 30 FSW			
				50 FSW					50 FSW						50 FSW			
1150	1150	1150	1150	LB	1338	1338	1338	1338	TB	1250	1250	1250	1250		LB	1140	ABORT	1140
1124	1124	1124	1124	RB	1312	1312	1312	1312	RB	1225	1225	1225	1225		RB B	1116	ABORT	1116
1120	1120	1120	1120	rs	1308	1308	1308	1308	LS	1220	1220	1220	1220		S	1110	ABORT ABORT ABORT	1110
1118	1118	1118	1118	ON	1306	1306	1306	1306	ON GAS	1218	1218	1218	1218		ON GAS	1106	ABORT	1106
2	30	19	19	# m	35	29	52	21	# DVR	9	32	2	14		DVR #	22	45	28
36	36	36	36	DIVE #	37	37	37	37	DIVE #	39	39	39	39		DIVE #	14	41	41
21-Mar	21-Mar	1		DATE	21-Mar	21-Mar	21-Mar	21-Mar	DATE	22-Mar	22-Mar	22-Mar	22-Mar		DATE	23-Mar	23-Mar	23-Mar
160	160			DIVE		160	160	160	DIVE		160	160	160		DIVE PROFILE		160	160

				— т							 					1	Т	Т	\neg
0.05	STDEV	N/A	N/A	N/A	N/A	STDEV	90.0	0.08	0.07	0.03	STDEV	0.08	90.0	0.04	0.07	STDEV		0.16	0.00
1.48	PO2 AVG	N/A	N/A	N/A	N/A	PO2 AVG	1.48	1.51	1.49	1.50	P02 AVG	1.41	1.43	1.44	1.39	P02	AVG	1.45	1.30
1.36	PO2 MIN	N/A	N/A	N/A	N/A	PO2	1.30	1.33	1.31	1.31	PO2 MIN	1.31	1.33	1.35	1.29	PO2	Z	1.28	1.30
1.60	PO2 MAX	A/A	A/N	N/A	N/A	PO2 MAX	1.94	2.22	2.31	1.97	PO2 MAX	1.77	1.61	1.55	1.61	POS	MAX	1.93	1.31
MS	SYS	MS	MS	MS	MS	SYS	MS	MS	WS	MS MS	SYS	MS	MS	MS	MS	SAS	2	MS	MS
1212	OFF	1457	1457	1457	1457	OFF GAS	1321	1321	1321	1321	OFF GAS	1532	1532	1532	1532	000	GAS	1535	1535
1212	RS	1456	1456	1456	1456	RS	1320	1320	1320	1320	RS	1532	1532	1532	1532	90	2	1535	1535
1148- 1210	20 FSW	1432-	1432- 1455	1432- 1455	1432- 1455	20 FSW	1255- 1318	1255- 1318	1255- 1318	1255- 1318	20 FSW	1507-31	1507-31	1507-31	1507-31	OO ECIM	20 F 344	1510-34	1510-34
1147	30 FSW 2	1430-2	1430-2	1430-2	1430-2		1252-4	1252-4	1252-4	1252-4	40 FSW 30 FSW	1502-7	1502-7	1502-7	1502-7	AO TOTAL	30 L3M	1504-9	1504-9
	40 FSW					40 FSW 30 FSW					40 FSW	1500-1	1500-1	1500-1	1500-1	70.07	40 F3W	1503-4	1503-4
	50 '					50 FSW					50 FSW						FSW		
1140	LB	1425	1425	1425	1425	18	1246	1246	1246	1246	LB	1456	1456	1456	1456		2	1458	1458
1116	RB	1400	1400	1400	1400	RB	1221	1221	1221	1221	RB	1432	1432	1432	1432		<u>2</u>	1433	1433
1110	- LS	1355	1355	1355	1355	rs	1216	1216	1216	1216	r _S	1426	1426	1426	1426		S	1428	1428
1106	ON		1353	1353	1353	NO SAS		1212	1212	1212	ON	1425	1425	1425	1425		ON GAS	1426	1426
70 1	DVR 6		34	55	09	DVR #		02	52	16	ava *	7.3	37				# DVR	55	58
41	DIVE	_	43	43	43	DIVE #	46	46	46	46	DIVE	52	2 62	52	52		DIVE #	55	55
23-Mar	DATE	22-May	22-May	22-May	22-Мау	DATE	24-May	24-May	24-May	24-May	DATE	30 May	30-May	30-May	30-May		DATE	31-May	31-May
160	DIVE		160	160	160	DIVE		160	160	160	DIVE	170 ILL					DIVE		

П	2					<u> </u>					EV		1.		EV				
0.15	STDEV	0.16	0.17	90.0	0.16	STDEV	0.13	0.17	0.14	N/A	STDEV	0.10	0.12	0.14	STDEV	0.12	0.12	0.19	0.17
1.46	AVG AVG	1.47	1.54	1.39	1.48	P02 AVG	1.55	1.49	1.45	ĕ X	PO2 AVG	1.46	1.43	1.68	PO2 AVG	1.49	1.46	1.51	1.51
1.27	MIN N	1.27	1.33	1.28	1.29	PO2 MIN	1.37	1.32	1.31	A/A	PO2 MIN	1.34	1.26	1.51	PO2 MIN	1.32	1.30	1.25	1.29
1.91	MAX	2.48	1.97	1.59	1.91	PO2 MAX	1.98	2.08	1.90	N/A	PO2 MAX	1.84	1.81	2.03	PO2 MAX	1.93	1.83	1.94	1.93
MS	SYS	MS	MS	MS	MS	SYS		MS	MS	MS	SYS	MS	MS	MS	 SYS	MS	MS	MS	MS
1535	OFF GAS	1402		1402	1402	OFF GAS	1200	1200	1200	1200	OFF GAS	1414	1414	1414	OFF GAS	1011	1011	1011	1011
1535	RS	1402		1402	1402	RS	1200	1200	1200	1200	RS	1413	1413	1413	RS	1010	1010	1010	1010
1510-34	20 FSW	1336-00		1336-00	1336-00	20 FSW	1135-59	1135-60	1135-61	1135-62	20 FSW	1348- 1412	1348- 1412	1348- 1412	20 FSW	944-1008	944-1008	944-1008	944-1008
1504-9	40 FSW 30 FSW	1331-6		1331-6	1331-6	30 FSW	1129-34	1129-35	1129-36	1128-12 1129-37	30 FSW	1343-8	1343-8	1343-8	40 FSW 30 FSW	938-43	938-43	938-43	938-43
1503-4	40 FSW	133-1		1331-1	1331-1	40 FSW	1128-9	1128-10	1128-11	1128-12	40 FSW	1341-2	1341-2	1341-2	40 FSW	2-986	936-7	2-986	936-7
	50 FSW					50 FSW					50 FSW				50 FSW				
1458	EB	1325		1325	1325	LB	1123	1123	1123	1123	PB P	1337	1337	1337	LB	931	931	931	931
1433	RB	1259		1259	1259	RB	1100	1100	1100	1100	RB B	1311	1311	1311	RB	206	206	206	206
1428	rs	1254		1254	1254	LS	1053	1053	1053	1053	LS	1307	1307	1307	S	901	901	901	901
1426	ON GAS	1252		1252	1252	ON GAS	1052	1052	1052	1052	ON GAS	1305	1305	1305	ON GAS	856	856	928	856
80	DVR #	7	33	26		DVR #		,	50	16	DVR #	31	53	80	DVR #	1	46	29	79
55	DIVE #	57	57	57	57	DIVE #	90	90	09	09	DIVE #	61	61	61	DIVE #	62	62	62	62
31-May	DATE	1-Jun	1-Jun	1-Jun	1-Jun	DATE	5-Jun	5-Jun	5-Jun	2-Jun	DATE	5-Jun	5-Jun	2-Jun	DATE	e-Jun	e-Jun	9-Jun	6-Jun
170	DIVE PROFILE	1				DIVE PROFILE			170	170	DIVE PROFILE	170	170	170	DIVE PROFILE	170	170		170

DIVE	-	DVR ON	S	RB	ILB	50	40 FSW 30 FSW		20 FSW	RS		SYS				STDEV
# GAS	S	S				3				J						
3 18 1112 1115	1112 1115	1115		1121	1145		1150-1	1152-7	1158- 1221	1222	1222	MS S	1.80	1.31	1.52	0.11
63 35 1112 1115	1112 1115	1115		1121	1145		1150-1	1152-7	1158- 1221	1222	1222	MS	1.83	1.27	1.45	0.15
63 71 1112 1115 1	1112 1115	1115	T-	1121	1145		1150-1	1152-7	1158- 1221	1222	1222	MS	1.94	1.32	1.51	0.16
63 3 1112 1115 1	1112 1115	1115	T-	1121	1145		1150-1	1152-7	1158- 1221	1222	1222	MS	1.93	1.29	1.49	0.20
		_													7	
DIVE DVR ON LS RB	ON LS GAS	S C	2	m	LB	50 A	40 FSW 30 FSW	30 FSW	20 FSW	RS	OFF GAS	(0	PO2 MAX	1		STDEV
64 12 1308 1310 13	1308 1310	1310	13	1315	1340		1344-4	1346-51	1351	1416	1416	MS	2.01	1.39	\neg	0.17
55 1308	1308 1310	1310	13	15	1340		1344-4	1346-51	1351	1416	1416	MS	1.99	1.32		0.18
	1308 1310	1310	13,	5	1340		1344-4	1346-51	1351	1416	1416		1.98	1.28		0.20
	1308 1310	1310	131	5	1340		1344-4	1346-51	1351	1416	1416	MS	1.90	1.30	1.48	0.15
													\neg		T	i
DIVE DVR ON LS RB	ON LS GAS	S LS	RB		LB	50 FSW	40 FSW 30 FSW		20 FSW	RS	OFF GAS	SYS	PO2 MAX	PO2 MIN		STDEV
23 55 1255 1257 1302	1255 1257	1257	130	2	1322	1328	1329-32	1329-32 1332-35	1335-59	1400	1400	NGA	2.42	1.36	1.94	0.32
23 24 1255 1257 1302	1255 1257	1257	13	05	1322	1328	1329-32	1329-32 1332-35	1335-59	1400	1500	NGA	2.05	1.31	1.59	0.22
23 51 1255 1257 13	1255 1257	1257	13	1302	1322	1328	1329-32	1329-32 1332-35	1335-59	1400	1600	NGA	2.22	1.39	1.71	0.25
23 9 1255 1257 13	1255 1257	1257	5	1302	1322	1328	1329-32	1329-32 1332-35	1335-59	1400	1700	NGA	2.26	1.35	1.68	0.28

APPENDIX C

SPECIFIC COMMENTS ABOUT THE DIVES PERFORMED

Uneventful dive. Uneventful dive. Diver #12 aborted due to rig failure, Diver #28 and #51 felt "tired" after dive. Diver #45 aborted due to rig failure. Uneventful dive. Diver #48 had a hold on descent, he aborted due to ear squeeze. Diver #42 had a hold on descent, he aborted due to sinus squeeze. Diver #31 had a hold on descent, he aborted due to ear squeeze. Diver #52 had a hold on descent, he aborted due to ear squeeze. Diver #57 had a hold on descent, he aborted due to ear squeeze. Uneventful dive. Diver #57 had a hold on descent, he did complete the dive. Uneventful dive. Uneventful dive, Uneventful dive, but NGA did not function for rigs #2 and #4. Uneventful dive. Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #35 felt "tired" that night, but felt fine the next day. Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Uneventful dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Uneventful dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear. Uneventful dive. Diver #55 felt "tired" after the div	Dive #	Comment
Diver #12 aborted due to rig failure, Diver #28 and #51 felt "tired" after dive. Diver #45 aborted due to rig failure. Uneventful dive. Diver #48 had a hold on descent, he aborted due to ear squeeze. Diver #42 had a hold on descent, he aborted due to sinus squeeze. Diver #52 had a hold on descent, he aborted due to ear squeeze. Diver #31 had a hold on descent, he aborted due to ear squeeze. Uneventful dive. Uneventful dive. Diver #5, Diver #27, Diver #32 had holds on descent, all aborted due to ear squeezes. Diver #57 had a hold on descent, he did complete the dive. Uneventful dive. Uneventful dive. Uneventful dive. Uneventful dive. Uneventful dive, but NGA did not function for rigs #2 and #4. Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #35 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Diver #46 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		
Diver #12 aborted due to rig failure, Diver #28 and #51 felt "tired" after dive. Diver #45 aborted due to rig failure. Uneventful dive. Diver #48 had a hold on descent, he aborted due to ear squeeze. Diver #42 had a hold on descent, he aborted due to ear squeeze. Diver #31 had a hold on descent, he aborted due to ear squeeze. Uneventful dive. Uneventful dive. Diver #5, Diver #27, Diver #32 had holds on descent, all aborted due to ear squeeze. Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #35 felt "tired" that night, but felt fine the next day. Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive. Uneventful dive, Diver #28 felt "tired" after dive. Uneventful dive, Diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Uneventful dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.	_	
Diver #45 aborted due to rig failure. Uneventful dive. Diver #48 had a hold on descent, he aborted due to ear squeeze. Diver #42 had a hold on descent, he aborted due to sinus squeeze. Diver #52 had a hold on descent, he aborted due to ear squeeze. Diver #31 had a hold on descent, he aborted due to ear squeeze. Uneventful dive. Diver #5, Diver #27, Diver #32 had holds on descent, all aborted due to ear squeezes. Diver #57 had a hold on descent, he did complete the dive. Uneventful dive. Uneventful dive. Uneventful dive. Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #55 felt "tired" that night, but felt fine the next day. Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		
Uneventful dive. Diver #48 had a hold on descent, he aborted due to ear squeeze. Diver #42 had a hold on descent, he aborted due to sinus squeeze. Diver #52 had a hold on descent, he aborted due to ear squeeze. Diver #53 had a hold on descent, he aborted due to ear squeeze. Uneventful dive. Diver #5, Diver #27, Diver #32 had holds on descent, all aborted due to ear squeezes. Uneventful dive. Diver #57 had a hold on descent, he did complete the dive. Uneventful dive, but NGA did not function for rigs #2 and #4. Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #35 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive, diver #28 felt "tired" after dive. Uneventful dive, diver #28 felt "tired" after dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Diver #46 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		
Diver #48 had a hold on descent, he aborted due to ear squeeze.		
Diver #42 had a hold on descent, he aborted due to sinus squeeze. Diver #52 had a hold on descent, he aborted due to ear squeeze. Diver #31 had a hold on descent, he aborted due to ear squeeze. Uneventful dive. Diver #57, Diver #27, Diver #32 had holds on descent, all aborted due to ear squeezes. Diver #57 had a hold on descent, he did complete the dive. Uneventful dive. Uneventful dive, but NGA did not function for rigs #2 and #4. Uneventful dive, Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #35 felt "tired" that night, but felt fine the next day. Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		
Diver #52 had a hold on descent, he aborted due to ear squeeze. Diver #31 had a hold on descent, he aborted due to ear squeeze. Diver #5, Diver #27, Diver #32 had holds on descent, all aborted due to ear squeezes. Diver #5, Diver #27, Diver #32 had holds on descent, all aborted due to ear squeezes. Diver #57 had a hold on descent, he did complete the dive. Uneventful dive. Uneventful dive, but NGA did not function for rigs #2 and #4. Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #35 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		Diver #42 had a hold on descent, he aborted due to sinus squeeze.
Diver #31 had a hold on descent, he aborted due to ear squeeze. Uneventful dive. Diver #5, Diver #27, Diver #32 had holds on descent, all aborted due to ear squeezes. Diver #57 had a hold on descent, he did complete the dive. Uneventful dive. Uneventful dive, but NGA did not function for rigs #2 and #4. Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #35 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Uneventful dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		Diver #52 had a hold on descent, he aborted due to ear squeeze.
10 Uneventful dive. 11 Diver #5, Diver #27, Diver #32 had holds on descent, all aborted due to ear squeezes. 12 Diver #57 had a hold on descent, he did complete the dive. 13 Uneventful dive. 14 Uneventful dive, but NGA did not function for rigs #2 and #4. 15 Uneventful dive. 16 Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #55 felt "tired" that night, but felt fine the next day. 17 Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. 18 Uneventful dive. 19 Uneventful dive, diver #28 felt "tired" after dive. 20 Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. 21 Uneventful dive. 22 Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. 23 Uneventful dive. 24 Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. 25 Uneventful dive. 26 Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		Diver #31 had a hold on descent, he aborted due to ear squeeze.
Diver #5, Diver #27, Diver #32 had holds on descent, all aborted due to ear squeezes. Diver #57 had a hold on descent, he did complete the dive. Uneventful dive. Uneventful dive, but NGA did not function for rigs #2 and #4. Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #35 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Uneventful dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		
12 Diver #57 had a hold on descent, he did complete the dive. 13 Uneventful dive. 14 Uneventful dive, but NGA did not function for rigs #2 and #4. 15 Uneventful dive. 16 Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #55 felt "tired" that night, but felt fine the next day. 17 Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. 18 Uneventful dive. 19 Uneventful dive, diver #28 felt "tired" after dive. 20 Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. 21 Uneventful dive. 22 Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. 23 Uneventful dive. 24 Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. 25 Uneventful dive. 26 Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		Diver #5, Diver #27, Diver #32 had holds on descent, all aborted due to ear
 Uneventful dive. Uneventful dive, but NGA did not function for rigs #2 and #4. Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #55 felt "tired" that night, but felt fine the next day. Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear. 	12	Diver #57 had a hold on descent, he did complete the dive.
 Uneventful dive, but NGA did not function for rigs #2 and #4. Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #55 felt "tired" that night, but felt fine the next day. Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Uneventful dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear. 		
 Uneventful dive. Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #55 felt "tired" that night, but felt fine the next day. Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Uneventful dive. Uneventful dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear. 		Uneventful dive, but NGA did not function for rigs #2 and #4.
Diver #35 had difficulty clearing, stuck his head out of the water on descent, Diver #55 felt "tired" that night, but felt fine the next day. Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Uneventful dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		Uneventful dive
Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by duty DMO and diagnosed as having muskulo-skeletal pain. Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Uneventful dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		Diver #35 had difficulty clearing, stuck his head out of the water on descent,
 Uneventful dive. Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Uneventful dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear. 	17	Diver #8 had difficulty clearing and aborted. Diver #17 had stiff neck and shoulder after playing softball the next day. He was seen and evaluated by
 Uneventful dive, diver #28 felt "tired" after dive. Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Uneventful dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear. 	18	
Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive. Uneventful dive. Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Uneventful dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		
Diver #40 had difficulty clearing, aborted the dive. Diver #34 felt "tired" after the dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.		Diver #10 had hold on descent, aborted due to ear squeeze. The hold on descent was greater than one minute, so the bottom times were recalculated to be 30 minutes for the first dive, 30 minutes for the second dive, and 34 minutes for the third dive.
 the dive. Uneventful dive. Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear. 		Uneventful dive.
Diver #64 experienced a "caustic cocktail", and aborted dive. He felt fine when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.	22	
when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by duty DMO and it was determined not to be DCS. 25 Uneventful dive. 26 Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear.	23	
 Uneventful dive. Diver #66 had a hold on descent, and he had to keep his head out of the water on descent in order to clear. 		when reevaluated at 2 hours, 24 hours and 48 hours after the dive. Diver #65 noticed a rash on her left flank after the dive. She was seen and evaluated by
water on descent in order to clear.	25	Uneventful dive.
	27	

28	Diver #23 aborted the dive because of rig problem. He felt "tired" after the
	dive.
29	Uneventful dive.
30	Uneventful dive. Diver #59 had a headache the same night as the dive, but
	he went to sleep, and when he awoke the next day he felt fine.
31	Uneventful dive.
33	Uneventful dive.
33	Uneventful dive. Diver #55 had mild right knee pain the night of the dive. This had resolved by the time he awoke the next day. He attributed the pain to an injury incurred while climbing out of the trunk of the OSF after the dive.
34	Uneventful dive. Diver #55 felt "tired" the night of the dive, but felt fine when he awoke the next day.
35	Uneventful dive. The day afterwards diver #61 had some pain and parasthesias in the right shoulder after the dive. He was seen and evaluated by DMO. The medical report was as follows:

This 43 y/o white male Navy Reservist presented with left shoulder pain following an experimental dive schedule using the MK 16 MOD 1 to 110 fsw/20 min, surface interval of 30 min, 110 fsw/17 min. This series is validating a decompression table for use with the MK 16 MOD 1 UBA, which uses a 1.3 ATA constant partial pressure of oxygen in nitrogen breathing gas mixture. The diver was then a tender on the surface for a following dive, in which he helped lift MK 16 MOD 1 UBAs out of the water and up a ladder. Afterwards he noted some vague discomfort with possibly some very mild numbness in the triceps, elbow, ring, and little fingers of the left extremity. Discomfort level was barely noticeable at about 0.5/10. The diver felt that this was musculoskeletal. The next morning, the diver awoke with point tenderness of the left shoulder, but not in the left arm itself. The pain was about a 1/10. The patient denied any recent obvious trauma to the left upper extremity, but did notice increased popping sounds in both shoulders when stretching during the dive at depth.

The patient was alert and oriented to person, place, and time, cooperative, in good physical condition, and not in any acute distress. Mental status was appropriate. Cranial nerves were all intact on gross exam. Biceps, triceps, patellar, and ankle reflexes were normal bilaterally. Gait, rapid alternating movements of the hands, finger tracking, finger-to-nose, heel-shin, and Rhomberg were all normal. Muscle strengths in the deltoids, biceps, triceps, forearms, hands, hips, knees, and ankles were all normal bilaterally. The diver was intact to pinprick, light touch, and vibration for head, torso, and extremities. The diver had a 2 cm region of increased tenderness to light palpation over the left shoulder joint. There were no obvious deformity or color changes. Shoulders were symmetrical. The remainder of the exam was normal.

The diver was treated on a Treatment Table 6 with no extensions. During the treatment the diver had no change in physical status on any neurological exam performed at depth. The pain remained constant. Upon

of the he final sion-related. Indicate told to ms. Inesias on the esias were eral nerve in twas seen
nesias on the esias were eral nerve nt was seen
hours.
e to continue
he second
to the n time with a n and after l.
minute to gnificant, and
ute, otherwise
with rest, was musculo- e.
it is a second

62	Uneventful dive.
63	Uneventful dive.
64	Uneventful dive.
65	Diver #72's rig may have had the diluent add valve stuck open, rig evaluated by EOD.
66	Diver #63's rig may have had the diluent add valve stuck open, rig evaluated by EOD.
67	Diver #38 had to put head out of water to clear.
68	The second half of this dive profile was aborted due to a sinus squeeze suffered by diver #53.
69	Uneventful dive. Gas sampling system malfunctioned, only valid data is from diver #3.
70	Uneventful dive. Gas sampling system malfunctioned, only valid data is from divers # 36 and #51.
71	Diver #84 had problems with the rig, aborted dive.
72	Uneventful dive.
73	Uneventful dive. Diver #63 noted to be adding oxygen on the bottom
74	Hold diver #50 on descent due to "bad taste," diver aborted.
75	Diver #79 developed skin mottling left upper arm approximately 3.5 hours after dive. He was seen and evaluated by DMO, diagnosed with cutis marmarota,
	and treated for DCS. His symptoms resolved during his first oxygen period at 60 fsw, was treated with TT5 with full recovery.
76	Diver #7 developed a rash on his abdomen about 4 hours after completing
70	dive profile. He was seen and evaluated by DMO, it was decided to observe
	him, at about 0430 the next day he developed pain in his left shoulder, was
	diagnosed with DCS. He was treated with a TT6 with full recovery.
77	Diver #45 developed neck pain after dive, was seen and evaluated by DMO,
' '	treated with TT6. It was ultimately decided after reviewing the case with
	several DMOs that this was a musculo-skeletal injury.
78	Uneventful dive.
79	Uneventful dive.
80	Diver #41 noted pain and numbness in left hand during decompression stop,
00	which rapidly worsened while on the surface. He was seen and evaluated by
	DMO, then treated with TT6 with full recovery.
	As a result of the three cases of DCS in Divers #79, #7 and #41 in Dives 75,
	76 and 80, respectively, schedules for subsequent dives were recalculated
	assuming that the divers breathed 1.25 ATA PO ₂ during periods in which it
	had been previously assumed 1.3 ATA PO2 was breathed.
01	Uneventful dive.
81	
82	Uneventful dive.
83	Diver #59's rig flooded, and he aborted the dive.
84	Uneventful dive.

85	Diver #31 had hold less than one minute at 20 fsw, nosepiece fell out of rig, so cleared on descent with head up out of the water. Diver #31's rig maintained a PO ₂ of about 0.8 ATA during the decompression stop in the first half of the dive, so a different rig was used by the diver during the second half of the dive. Diver #31 had right arm and shoulder pain after the dive, but this was provoked by positioning the arm (reaching back and inverted), in a manner similar to that required to push the manual oxygen valve on the MK 16 MOD 1 rig, which diver #31 had been doing for much of the first half of the dive profile.
86	Uneventful dive.
87	There were only three divers on this dive team, and diver #1 and diver #4 had holds on descent. Diver #1 had difficulty breathing rig, and aborted the dive
88	Uneventful dive.
89	Diver #30 had episode of feeling "dizzy" for 2 or 3 minutes during first half of the dive, so aborted. He soon felt better, and was asymptomatic on the surface.

APPENDIX D

DIVER INSPIRED GAS ANALYSIS

Gas sampling was performed throughout the study to measure diver inspired gas. A Rosemount 2000 New Gas Analyzer (NGA) (La Haba, CA) was used for the first 152 man-dives (33 OSF pressurizations) and mass spectrometers were used for the remaining dives. The sampled gas was transported from a sampling port in the base of the MK 16 MOD 1 inhalation hose to the gas analyzer on the OSF Med Deck through 110 feet of 0.032 inch inner diameter nylon tubing. Initially, the rate of gas sample flow was regulated on the surface using a flowmeter with a fixed orifice. The NGA with this gas sampling system reliably measured the PO2 when the diver was at a steady depth greater than about 20 fsw. However, the PO2 values were unreliable during periods of ascent and descent and at depths less than about 20 fsw because the gas sample flow through the fixed orifice varied between these different conditions. As a result, it became impossible to reliably synchronize measured diver pressure and inspired O₂ fraction to compute diver inspired PO₂. Because it was critical to measure the PO₂ on descent, gas sample flows were regulated at aproximately 125 ml/min with an adjustable flow metering valve during the second half of the study. In addition, four mass spectrometers, one for each diver, were used instead of the NGA to take advantage of the reduced response times afforded by these analyzers.

NGA GAS SAMPLING SYSTEM

For the first half of the study a Rosemount New Gas Analyzer (NGA) 2000 was used to analyze the sample gas. The product of measured diver depth and inspired O₂ fraction yielded instantaneous diver inspired PO₂. While the measured diver depth was obtained in real-time without appreciable time delay, measured inspired FO₂ values had to be corrected for the transit delay between the gas sample inlet at the diver and the gas analyzer on the Med Deck. This transit delay, and the analyzer 0-95% response time, were determined as follows: the OSF was pressurized to various depths with the sampling system drawing pure nitrogen from a steady flow of nitrogen over the inlet of the gas sampling tube. At each depth, a valve was then manually switched to open the sample inlet to a flow of 100% oxygen from a calibrated syringe maintained at a pressure slightly greater than chamber pressure. Syringe pressure was monitored with an electronic pressure tranducer that registered the pressure change at the instant the valve was switched, providing an exact time for the nitrogen-to-oxygen switch at the gas sample inlet. The NGA detected the oxygen several seconds later. The difference in time between the nitrogen-to-oxygen switch at the sample inlet and first detection of O2 by the NGA was the sampling latency time. The time between the initial detection of oxygen and the 95% fullscale response was the NGA response time. The latency and response times

were measured six times at depths between 80 and 190 fsw. When the OSF remained at a depth of 80 fsw or greater and a steady state was reached, the NGA system had a 79 sec (± 4.7 S.D.) combined latency and response time. Measured depth and FO₂ values were time synchronized by time-shifting the latter by an amount equal to the combined sampling latency and analyzer response time. Separate accommodation of analyzer sampling latency with signal deconvolution for analyzer 0-95% response time¹ was not considered necessary.

MASS SPECTROMETER GAS SAMPLING SYSTEM

Four mass spectrometers, two Extrel MS 250 Gas Analyzers (Extrel Corporation, Pittsburgh, PA) and two Medical Gas 1000 Analyzer (Marquette Electronics, Milwaukee, WI) were used to analyze diver inspired gas in the second part of the study. The gas sample rate was maintained at 125 ± 5 ml/minute using an adjustable metering valve and flowmeter at the surface. The sampling latency and analyzer response times were measured at depths from 80 to 190 fsw 38 times in the same fashion as for the NGA system. Results for the sample lines to each of the four mass spectrometers are given in Table D-1. The overall summed latency and response times averaged 32.5 seconds (standard deviation of 1.2 seconds), and did not vary appreciably at depths from 80 fsw to 190 fsw. Measured depth and FO₂ values were time synchronized using these combined latencies and response times as described above for the NGA system.

Table D-1. Combined Gas Sampling Latencies and Mass Spectrometer Response Times

Depth	Latency + Response Time (sec)*			
(fsw)	MS #1	MS #2	MS #3	MS #4
190	29.5	29.5	35.5	30.5
				31.1
170	30.1	31.1	36.0	29.0
170	•			30.7
150	28.9	28.9	38.9	31.9
100	27.9	28.9	40.9	31.9
140	28.0	28.0	42.0	30.0
110	28.0	28.0	41.0	29.9
120	29.5	28.5	41.5	29.5
100	31.3	29.3	46.3	32.3
80	37.8	28.8	36.8	31.8
Mean	30.1	29.0	39.9	30.8
StdDev	3.1	0.9	3.5	1.1
Combined:				
Mean	32.5			
StdDev	1.3			

^{* 120-130} ml/min sample flow rate

The NGA and the mass spectrometer systems were calibrated each day that they were used using zero and full-span calibration gases. The flow rates were monitored throughout the dive to ensure that they remained at 125 ml/minute. The oxygen in the gas samples was within the detection limits of the mass spectrometer and they have a linear response in the range of gas concentrations measured in this study^{2,3}.

REFERENCES

- Gerth, W. A., Vann, R. D., Leatherman, N. E., Feezor M. D. "Effects of Microgravity on Tissue Perfusion and the Efficacy of Astronaut Denitrogenation for EVA." *Aviation, Space and Environmental Medicine*, 58 (9, Suppl.): A100-A105, 1987.
- 2. ABB Extrel, Questor GP Operator's Manual: Smartware and Hardware, ABB Extrel, Pittsburgh, PA, 1998, pp 1-2..
- 3. Marquette Electronics, MGA 1100 Medical Gas Analyzer Operating and Maintenance Instructions, Marquette Electronics, Marquette, Milwaukee, WI, 1993, pp 1-2.

APPENDIX E

OXYGEN TOXICITY OF DIVES PERFORMED

This appendix gives the estimated risk of CNS oxygen toxicity in divers for which inspired PO₂ data were available as obtained from either the Extrel or Marquette Electronics (ME) mass spectrometers (see Table E-1). Each profile was encoded in NMRI Standard Format¹ from the real-time record of inspired FO₂ and ambient pressure, each sampled at 2 sec intervals (30 Hz). Recorded O₂ fractions were time-shifted using the combined value of measured gas analyzer latency and response times to establish synchronicity of time and FO₂ values. (Separate accommodation of analyzer sampling latency with signal deconvolution for analyzer 0-95% response time² was not considered necessary for these analyses.) The autocatalytic model of Harabin, et al.³, was then exercised on the profiles to obtain the tabulated results.

Each DIVE # in Table E-1 is the unique number created every time the OSF was pressurized to test a particular dive in this study. These correspond to the DIVE #s used elsewhere in this report to designate each dive. A given DIVE # may appear multiple times; once for each of up to four divers that participated in a given dive. The DIVE HEADER lists the date that the dive was performed, the dive-specific data file name, and the diver number (DRV#). P_{CNS-TOX} % is the estimated risk of CNS oxygen toxicity for the particular dive and diver.

Note that a series of up to three dives, with intervening surface interval(s), could constitute a repetitive dive profile. Participation of a given diver in dives with consecutive DIVE #s on the same date indicates diver participation in a repetitive dive profile. However, in the present analysis, each dive by any given diver was analyzed independently of any other dives that the diver made in a profile.

Table E-1. Estimated Risks of CNS Oxygen Toxicity in Dives Performed

DIVE#	DIVE HEADER	P _{CNS-TOX} , %
	Date:5/30/00SourceFile:E110530O.DATDRV4ME	0.29
43	Date:5/24/00SourceFile:D210524O.DATDRV1Extrel	0.27
45	Date:5/24/00SourceFile:D210524O.DATDRV2Extrel	0.32
45	Date:5/24/00SourceFile:D2105240.DATDRV3ME	0.25
45	Date:5/24/00SourceFile:D2105240.DATDRV4ME	0.24
45	Date:5/24/00SourceFile:D2103240.DATDRV1Extrel	0.82
46	Date:5/24/00SourceFile:J1105240.DATDRV2Extrel	1.28
46	Date:5/24/00SourceFile:J110524O.DATDRV2EXITE	0.86
46	Date:5/24/00SourceFile:J110524O.DATDRV3ME	0.88
46	Date:5/24/00SourceFile:J110524O.DATDRV4ME	0.29
47	Date:5/25/00SourceFile:D210525O.DATDRV1Extrel	0.32
47	Date:5/25/00SourceFile:D210525O.DATDRV2Extrel	0.66
47	Date:5/25/00SourceFile:D210525O.DATDRV3ME	0.25
47	Date:5/25/00SourceFile:D210525O.DATDRV4ME	
48	Date:5/25/00SourceFile:D120525O.DATDRV1Extrel	0.25
48	Date:5/25/00SourceFile:D120525O.DATDRV2Extrel	0.37
48	Date:5/25/00SourceFile:D120525O.DATDRV3ME	0.30
48	Date:5/25/00SourceFile:D120525O.DATDRV4ME	0.25
48	Date:5/25/00SourceFile:D220525O.DATDRV1Extrel	0.22
48	Date:5/25/00SourceFile:D220525O.DATDRV2Extrel	0.36
48	Date:5/25/00SourceFile:D220525O.DATDRV3ME	0.25
48	Date:5/25/00SourceFile:D220525O.DATDRV4ME	0.19
49	Date:5/25/00SourceFile:D310525O.DATDRV1Extrel	0.25
49	Date:5/25/00SourceFile:D310525O.DATDRV2Extrel	0.29
49	Date:5/25/00SourceFile:D310525O.DATDRV3ME	0.23
50	Date:5/30/00SourceFile:E110530O.DATDRV1Extrel	0.24
50	Date:5/30/00SourceFile:E110530O.DATDRV2Extrel	0.28
50	Date:5/30/00SourceFile:E110530O.DATDRV3ME	0.36
50	Date:5/30/00SourceFile:E210530O.DATDRV1Extrel	0.26
50	Date:5/30/00SourceFile:E210530O.DATDRV2Extrel	0.26
50	Date:5/30/00SourceFile:E210530O.DATDRV3ME	0.32
50	Date:5/30/00SourceFile:E210530O.DATDRV4ME	0.21
51	Date:5/30/00SourceFile:E120530O.DATDRV1Extrel	0.41
	Date:5/30/00SourceFile:E120530O.DATDRV2Extrel	0.36
51	Date:5/30/00SourceFile:E120530O.DATDRV3ME	0.49
51	Date:5/30/00SourceFile:E120530O.DATDRV4ME	0.34
51	Date:5/30/00SourceFile:K110530o.datDRV2Extrel	0.71
52	Date:5/30/00SourceFile:K110530o.datDRV3ME	0.74
52	Date:5/30/00SourceFile:K110530o.datDRV4ME	0.72
52	Date:5/31/00SourceFile:E210531O.DATDRV1Extrel	0.19
53	Date:5/31/00SourceFile:E210531O.DATDRV2Extrel	0.20
53	Date:5/31/00SourceFile:E210531O.DATDRV2Exter	0.17
53	Date:5/31/00SourceFile:E210531O.DATDRV4ME	0.17
53	Date:5/31/00SourceFile:E4205310.DATDR\/1Evtrel	0.35
54	Date:5/31/00SourceFile:E120531O.DATDRV1Extrel	0.30
54	Date:5/31/00SourceFile:E120531O.DATDRV2Extrel	0.21
54	Date:5/31/00SourceFile:E120531O.DATDRV3ME	0.21
54	Date:5/31/00SourceFile:E120531O.DATDRV4ME	0.69
54	Date:5/31/00SourceFile:E220531O.DATDRV1Extrel	0.03

5.4	Date:5/31/00SourceFile:E220531O.DATDRV2Extrel	0.20
54	Date:5/31/00SourceFile:E220531O.DATDRV2Extrei	0.19
54	Date:5/31/00SourceFile:E2205310.DATDRV3ME Date:5/31/00SourceFile:K1105310.DATDRV1Extrel	0.76
55	Date:5/31/00SourceFile:K110531O.DATDRV1Extrel	0.70
55		0.79
55	Date:5/31/00SourceFile:K110531O.DATDRV3ME	1.10
55	Date:5/31/00SourceFile:K110531O.DATDRV4ME	0.20
56	Date:6/1/00SourceFile:E110601O.DATDRV1Extrel	0.24
56	Date:6/1/00SourceFile:E110601O.DATDRV2Extrel	0.24
56	Date:6/1/00SourceFile:E110601O.DATDRV3ME	0.10
56	Date:6/1/00SourceFile:E1106010.DATDRV4ME	0.20
56	Date:6/1/00SourceFile:E2106010.DATDRV1Extrel	
56	Date:6/1/00SourceFile:E210601O.DATDRV2Extrel	0.23
56	Date:6/1/00SourceFile:E210601O.DATDRV3ME	0.18
56	Date:6/1/00SourceFile:E210601O.DATDRV4ME	0.17
57	Date:6/1/00SourceFile:E120601O.DATDRV1Extrel	0.23
57	Date:6/1/00SourceFile:E120601O.DATDRV2Extrel	0.30
57	Date:6/1/00SourceFile:E120601O.DATDRV3ME	0.24
57	Date:6/1/00SourceFile:E120601O.DATDRV4ME	0.18
57	Date:5/31/00SourceFile:E220531O.DATDRV4ME	0.18
57	Date:6/1/00SourceFile:E220601O.DATDRV1Extrel	0.18
57	Date:6/1/00SourceFile:E220601O.DATDRV2Extrel	0.27
57	Date:6/1/00SourceFile:E220601O.DATDRV3ME	0.16
57	Date:6/1/00SourceFile:E220601O.DATDRV4ME	0.18
57	Date:6/1/00SourceFile:K110601O.DATDRV1Extrel	0.97
57	Date:6/1/00SourceFile:K110601O.DATDRV2Extrel	0.84
57	Date:6/1/00SourceFile:K110601O.DATDRV3ME	0.63
57	Date:6/1/00SourceFile:K110601O.DATDRV4ME	0.76
59	Date:6/5/00SourceFile:E210605O.DATDRV1Extrel	0.24
59	Date:6/5/00SourceFile:E210605O.DATDRV2Extrel	0.19
59	Date:6/5/00SourceFile:E210605O.DATDRV3ME	0.21
63	Date:6/6/00SourceFile:K120606O.DATDRV4ME	0.77
63	Date:6/6/00SourceFile:K120606O.DATDRV1Extrel	0.97
63	Date:6/6/00SourceFile:K120606O.DATDRV2Extrel	0.81
63	Date:6/6/00SourceFile:K120606O.DATDRV3ME	0.88
65	Date:6/7/00SourceFile:H110607O.DATDRV1Extrel	0.57
65	Date:6/7/00SourceFile:H110607O.DATDRV2Extrel	0.58
65	Date:6/7/00SourceFile:H110607O.DATDRV3ME	0.51
65	Date:6/7/00SourceFile:H110607O.DATDRV4ME	0.47
65	Date:6/7/00SourceFile:H210607O.DATDRV1Extrel	0.89
65	Date:6/7/00SourceFile:H210607O.DATDRV2Extrel	0.78
65	Date:6/7/00SourceFile:H210607O.DATDRV3ME	0.84
65	Date:6/7/00SourceFile:H210607O.DATDRV4ME	0.82
66	Date:6/7/00SourceFile:H120607O.DATDRV1Extrel	0.63
66	Date:6/7/00SourceFile:H120607O.DATDRV2Extrel	0.65
66	Date:6/7/00SourceFile:H120607O.DATDRV3ME	0.48
66	Date:6/7/00SourceFile:H120607O.DATDRV4ME	0.45
66	Date:6/7/00SourceFile:H220607O.DATDRV1Extrel	0.96
66	Date:6/7/00SourceFile:H220607O.DATDRV2Extrel	1.01
66	Date:6/7/00SourceFile:H220607O.DATDRV3ME	0.65
66	Date:6/7/00SourceFile:H220607O.DATDRV4ME	0.66

67	Date:6/8/00SourceFile:H210608O.DATDRV1Extrel	0.86
67	Date:6/8/00SourceFile:H210608O.DATDRV2Extrel	0.81
67	Date:6/8/00SourceFile:H210608O.DATDRV3ME	0.81
67	Date:6/8/00SourceFile:H210608O.DATDRV4ME	1.01
68	Date:6/8/00SourceFile:H120608o.datDRV1Extrel	0.60
68	Date:6/8/00SourceFile:H120608o.datDRV2Extrel	0.56
68	Date:6/8/00SourceFile:H120608o.datDRV3ME	0.53
68	Date:6/8/00SourceFile:H120608o.datDRV4ME	0.69
69	Date:6/12/00SourceFile:H110612o.datDRV1Extrel	1.05
69	Date:6/12/00SourceFile:H110612o.datDRV2Extrel	1.25
69	Date:6/12/00SourceFile:H210612O.DATDRV1Extrel	0.86
69	Date:6/12/00SourceFile:H210612O.DATDRV2Extrel	0.95
69	Date:6/12/00SourceFile:H210612O.DATDRV4ME	0.63
70	Date:6/12/00SourceFile:F210612O.DATDRV1Extrel	0.69
71	Date:6/12/00SourceFile:H110612o.datDRV4ME	0.48
71	Date:6/13/00SourceFile:H210613o.datDRV2Extrel	0.77
71	Date:6/13/00SourceFile:H210613o.datDRV3ME	0.81
71	Date:6/13/00SourceFile:H210613o.datDRV4ME	0.78
72	Date:6/13/00SourceFile:F110613O.DATDRV1Extrel	0.46
72	Date:6/13/00SourceFile:F110613O.DATDRV2Extrel	0.37
72	Date:6/13/00SourceFile:F110613O.DATDRV3ME	0.40
72	Date:6/13/00SourceFile:F110613O.DATDRV4ME	0.38
72	Date:6/13/00SourceFile:F210613O.DATDRV1Extrel	0.84
72	Date:6/13/00SourceFile:F210613O.DATDRV2Extrel	0.58
72	Date:6/13/00SourceFile:F210613O.DATDRV3ME	0.69
72	Date:6/13/00SourceFile:F210613O.DATDRV4ME	0.65
73	Date:6/14/00SourceFile:H210614O.DATDRV1Extrel	0.78
73	Date:6/14/00SourceFile:H210614O.DATDRV2Extrel	1.63
73	Date:6/14/00SourceFile:H210614O.DATDRV3ME	0.73
73	Date:6/14/00SourceFile:H210614O.DATDRV4ME	0.75
75	Date:6/15/00SourceFile:J110615O.DATDRV1Extrel	0.61
75	Date:6/15/00SourceFile:J110615O.DATDRV2Extrel	0.46
75	Date:6/15/00SourceFile:J110615O.DATDRV3ME	0.58
75	Date:6/15/00SourceFile:J110615O.DATDRV4ME	0.45
75	Date:5/30/00SourceFile:K110530o.datDRV1Extrel	0.87
76	Date:6/15/00SourceFile:F110615O.DATDRV1Extrel	0.41
76	Date:6/15/00SourceFile:F110615O.DATDRV2Extrel	0.48
76	Date:6/15/00SourceFile:F110615O.DATDRV3ME	0.29
76	Date:6/15/00SourceFile:F110615O.DATDRV4ME	0.37
76	Date:6/15/00SourceFile:F210615O.DATDRV1Extrel	0.69
76	Date:6/15/00SourceFile:F210615O.DATDRV2Extrel	0.80
76	Date:6/15/00SourceFile:F210615O.DATDRV3ME	0.53
76	Date:6/15/00SourceFile:F210615O.DATDRV4ME	0.65
77	Date:6/13/00SourceFile:H110613O.DATDRV2Extrel	0.56
77	Date:6/19/00SourceFile:H110619o.datDRV1Extrel	0.49
77	Date:6/19/00SourceFile:H110619o.datDRV2Extrel	0.49
77	Date:6/19/00SourceFile:H110619o.datDRV4ME	0.43
77	Date:6/19/00SourceFile:H210619O.DATDRV1Extrel	1.04
77	Date:6/19/00SourceFile:H210619O.DATDRV2Extrel	1.04
77	Date:6/19/00SourceFile:H210619O.DATDRV4ME	0.88

78	Date:6/19/00SourceFile:F110619O.DATDRV1Extrel	0.45
78	Date:6/19/00SourceFile:F110619O.DATDRV2Extrel	0.32
78	Date:6/19/00SourceFile:F110619O.DATDRV4ME	0.36
78	Date:6/19/00SourceFile:F210619O.DATDRV1Extrel	0.82
78	Date:6/19/00SourceFile:F210619O.DATDRV2Extrel	0.54
78	Date:6/19/00SourceFile:F210619O.DATDRV3ME	0.65
79	Date:6/20/00SourceFile:G110620O.DATDRV1Extrel	0.43
79	Date:6/20/00SourceFile:G110620O.DATDRV2Extrel	0.40
79	Date:6/20/00SourceFile:G110620O.DATDRV3ME	0.38
79	Date:6/20/00SourceFile:G110620O.DATDRV4ME	0.33
80	Date:6/20/00SourceFile:F210620O.DATDRV1Extrel	0.67
80	Date:6/20/00SourceFile:F210620O.DATDRV2Extrel	0.78
80	Date:6/20/00SourceFile:F210620O.DATDRV3ME	0.81
80	Date:6/20/00SourceFile:F210620O.DATDRV4ME	0.48
	Date:6/21/00SourceFile:G110621O.DATDRV1Extrel	0.36
81	Date:6/21/00SourceFile:G110621O.DATDRV2Extrel	0.40
81		0.34
81	Date:6/21/00SourceFile:G110621O.DATDRV3ME	0.38
81	Date:6/21/00SourceFile:G110621O.DATDRV4ME	0.36
82	Date:6/21/00SourceFile:F110621O.DATDRV1Extrel	
82	Date:6/21/00SourceFile:F110621O.DATDRV2Extrel	0.41
82	Date:6/21/00SourceFile:F110621O.DATDRV3ME	0.41
82	Date:6/21/00SourceFile:F110621O.DATDRV4ME	0.30 0.85
82	Date:6/21/00SourceFile:F210621O.DATDRV1Extrel	0.65
82	Date:6/21/00SourceFile:F210621O.DATDRV2Extrel	0.71
82	Date:6/21/00SourceFile:F210621O.DATDRV3ME	0.53
82	Date:6/21/00SourceFile:F210621O.DATDRV4ME	0.41
83	Date:6/22/00SourceFile:G110622O.DATDRV1Extrel	0.33
83	Date:6/22/00SourceFile:G110622O.DATDRV2Extrel	0.32
83	Date:6/22/00SourceFile:G110622O.DATDRV3ME	0.36
83	Date:6/22/00SourceFile:G110622O.DATDRV4ME	0.41
84	Date:6/22/00SourceFile:F110622O.DATDRV1Extrel	0.28
84	Date:6/22/00SourceFile:F110622O.DATDRV2Extrel	0.34
84	Date:6/22/00SourceFile:F110622O.DATDRV3ME	0.34
84	Date:6/22/00SourceFile:F110622O.DATDRV4ME	
84	Date:6/22/00SourceFile:F210622O.DATDRV1Extrel	0.98
84	Date:6/22/00SourceFile:F210622O.DATDRV2Extrel	
84	Date:6/22/00SourceFile:F210622O.DATDRV3ME	0.67
84	Date:6/22/00SourceFile:F210622O.DATDRV4ME	0.81
85	Date:6/26/00SourceFile:G110626O.DATDRV1Extrel	0.33
85	Date:6/26/00SourceFile:G110626O.DATDRV2Extrel	0.30
86	Date:6/26/00SourceFile:G120626O.DATDRV1Extrel	0.30
86	Date:6/26/00SourceFile:G120626O.DATDRV2Extrel	0.40
86	Date:6/26/00SourceFile:G120626O.DATDRV3ME	
86	Date:6/26/00SourceFile:G120626O.DATDRV4ME	0.39
87	Date:6/27/00SourceFile:G110627O.DATDRV2Extrel	0.41
87	Date:6/27/00SourceFile:G110627O.DATDRV3ME	0.31
87	Date:6/27/00SourceFile:G220627O.DATDRV1Extrel	0.50
87	Date:6/27/00SourceFile:G220627O.DATDRV2Extrel	0.93
87	Date:6/27/00SourceFile:G220627O.DATDRV3ME	1.04
87	Date:6/27/00SourceFile:G220627O.DATDRV4ME	0.53

89	Date:6/28/00SourceFile:G110628O.DATDRV2Extrel	0.30
	Date:6/28/00SourceFile:G110628O.DATDRV4ME	0.33

REFERENCES

- Weathersby, P. K., Survanshi, S. S., Nishi, R. Y., Thalmann, E. D. Statistically based decompression tables VII: Selection and treatment of primary air and N2O2 data. Bethesda, MD: Joint Report: Naval Submarine Medical Research Laboratory and Naval Medical Research Institute, 1992; NSMRL Report 11-82/NMRI Report 92-85.
- 2. Gerth, W. A., Vann, R. D., Leatherman, N. E., Feezor M. D. "Effects of Microgravity on Tissue Perfusion and the Efficacy of Astronaut Denitrogenation for EVA." *Aviation, Space and Environmental Medicine*, 58 (9, Suppl.): A100-A105, 1987.
- 3. Harabin, A. L., Survanshi, S. S., Homer, L. D. "A Model for Predicting Central Nervous System Oxygen Toxicity from Hyperbaric Oxygen Exposures in Humans". *Toxicology and Applied Pharmacology* 132, 19-26 (1995).

APPENDIX F

INTRODUCTION TO MK 16 MOD 1 N2-O2 DECOMPRESSION TABLES

Tables G-1 through G-3 provide information necessary to plan single and repetitive dives with the MK 16 MOD 1 UBA when used with air as the diluent gas. These tables were generated with the same algorithm used to create the constant 0.7 ATA PO₂-in-N₂ tables in the present U.S. Navy Diving Manual^{1,2}, but with 20 fsw as the depth of the last allowed decompression stop, and consideration of PO₂ changes that occur with depth during idealized operation of the MK 16 MOD 1 UBA. The tables are used to plan repetitive dives in precisely the same manner as the Standard Air Decompression Tables in the current U.S. Navy Diving Manual, but instructions for such use are provided here as well.

The tables were calculated assuming air as the diluent gas throughout. The diver was assumed to breathe a 0.7 ATA PO₂ gas mixture starting with descent from surface and continuing until arrival at 33 fsw, whereupon the inspired PO₂ was assumed to be 1.25 ATA for the remainder of the descent, time on the bottom, and subsequent ascent (including any stops) to 12 fsw. The inspired PO₂ was then assumed to be 0.7 ATA for the remaining ascent from 12 fsw to surface, after which the diver was assumed to breathe air (21% FO₂). Descents and ascents were assumed to be at 60 and 30 fsw/min, respectively. No provisions were made to accommodate PO₂ overshoots during and after compression, PO₂ drops during and after ascent, or PO₂ cycling about the 1.25 ATA PO₂ setpoint.

The 20 fsw last allowed stop was implemented in the calculations by copying the surfacing MPTTs (Maximum Permissible Tissue Tensions) from the 10 fsw stop in place of those for the 20 fsw stop in the original VVAL18 MPTT Table. The 10 fsw MPTTs were then set equal to zero. Other sections of the EL-MK 15/16 VVAL18 RTA were modified to prevent any tests of ascents to 10 fsw.

Letter repetitive group designators were computed using the 120 min half-time tissue as the reference tissue in a fashion similar to the way such designators were computed for the constant $0.7~PO_2~N_2-O_2$ tables in the current US Navy Diving Manual. In the latter, the difference between the reference tissue MPTT at 10 fsw and the reference tissue surface-saturation tension plus 1 fsw was divided by 16, the total number of repetitive groups from A-O and Z, to obtain the repetitive group increment. Each letter group designator was then computed using the reference tissue inert gas tension at the end of the 10 fsw last stop. In present calculations, the repetitive group increment was computed as above using the MPTT at 20 fsw, and the group designator was computed using the reference tissue inert gas tension at the end of the 20 fsw last stop. Because the reference tissue MPTT at the 20 fsw stop was the value originally set for the 10 fsw stop (45.5 fsw), letter repetitive group designators in the present MK 16 MOD 1 N_2 - N_2 -O2 decompression tables are equal to those in the constant 0.7 N_2 - N_2 - N_2 - N_2 - N_2 - N_2 - N_2 -bales.

The EL-MK 15/16 VVAL18 RTA is operable in either real-time or prescriptive mode. Algorithm-prescribed schedules for repetitive dives can be significantly different depending on which mode is used. All profiles tested were computed using the algorithm in simulated real-time mode. For calculation of repetitive dive schedules in this mode, all nine gas exchange compartments in the EL-MK 15/16 VVAL18 RTA are tracked from the end of a dive through the ensuing surface interval. Actual modeled compartmental inert gas loads at the start of a repetitive dive are then used to define the entering model state for the repetitive dive. On the other hand, the decompression tables in Appendix G were computed using the algorithm in its more classical prescriptive mode. In this mode, the gas tension in only a single compartment, the 120 min half-time compartment, is tracked to determine surface interval credits and residual nitrogen times for repetitive dives. Moreover, each surface interval is assumed to be entered with the maximum gas tension allowed in this compartment for the entering repetitive group designator, not the modeled surfacing gas tension in this compartment. As a result, dives allowed under the tables are more conservative than those allowed with use of the algorithm in real-time mode, provided no compartment with half-time longer than 120 min controls any of the decompressions.

LIMIT LINES

Table G-2 contains limit lines in the each of the dive depth groups. Schedules below the limit line in each group should not be used in normal operations. Limit lines for dives to depths of 100 to 150 fsw are placed according the same rule used in formulation of the constant 0.7 ATA PO2-in-N2 tables3; schedules below the limit line within a group cause the maximum N₂ tension in the 40 min half-time tissue to exceed 77 fsw and extend the EL-MK 15/16 VVAL18 RTA into depth/time regions where it has not been tested. Limit lines for dives to depths deeper than 150 fsw are placed in accord with the present recommendation that the MK 16 MOD 1 not be dived with N2-O2 to such depths without approval of the on-site commander; such approval to be granted only in consideration of the enhanced risks of O2 toxicity, increased work of breathing, etc., that can be encountered in such dives. (A limit line is also placed in Table G-1 in accord with this recommendation.) In order to support repetitive dives after approved dives to depths greater than 150 fsw, surfacing repetive group designators are provided for schedules in the 160 - 190 fsw dive depth groups up to the point where the above 40 min half-time tissue tension rule is violated. Limit lines for dives to depths shallower than 100 fsw were placed according to additional considerations of estimated O2 toxicity and DCS risks of the schedules as described below.

In order to limit O2 toxicity risks during MK 25 MOD 1, MOD 2 and MOD 3 (Draeger LAR V UBA) diving, the current U.S.Navy Diving Manual limits the duration of such dives to 240 min at 25 fsw⁴. This limit is shortened if the dive includes short excursions to deeper depths. Diver inspired PO2 while breathing the MK 25 varies with the purge procedure used prior to beginning the dive⁵. Using the recommended Single Fill/Empty Cycle (SFE) purge procedure, an average oxygen fraction of 74% is attained, which changes little throughout the course of the ensuing dive. This fraction corresponds to an inspired PO2 of 1.3 ATA at 25 fsw. Therefore, in order to remain consistent with the sustained O2 exposure limits for the MK 25 UBA, limit lines in the present MK 16 MOD 1 N₂-O₂ decompression table (Table G-2) are placed to allow dive bottom times no longer than 240 min, accounting for placement of the limit lines in the 40, 50 and 60 fsw dive depth groups. Note that in considering bottom times up to 720 min in Table G-1, the table gives repetitive dive groups for no-decompression dives that are prohibited under this recommendation. (It should also be noted that the U.S. Navy Diving Manual imposes no limit for breathing 1.3 ATA PO₂ in surface supplied He-O₂ diving operations. However, this lack of constraint is not applicable to MK 16 dives because, unlike MK 16 dives, surface supplied HeO2 dives are undertaken with full helmet and communications with the surface.)

Table F-1 gives estimated DCS and O₂ toxicity risks for all schedules in Table G-2. The O₂ toxicity indices for each schedule include the Cumulative Unit Pulmonary Toxic Dose (CUPTD), computed as described by Harabin, *et al.*⁶, the minimum percent normal pulmonary vital capacity during the schedule, as computed using the FR(1)-VC(2) model for pulmonary oxygen toxicity described by Vann⁷, and the estimated risk of CNS O₂ toxicity computed using Model 2 of Harabin, *et al.*⁸. Dotted horizontal lines correspond to the limit lines in Table G-2. Limit lines for the 70, 80 and 90 fsw dive

groups are placed below the last tabulated schedule that is associated with an estimated P_{DCS} of less than 5% under the JAP98-2 model; the model of the three used that estimates the highest P_{DCS} for these schedules.

Figure F-1 illustrates model-estimated DCS risks for single dive schedules in dive depth groups below 160 fsw that are above the limit lines in Tables F-1 and G-2. Estimated DCS risks are also shown for schedules in dive depth groups from 160 –190 fsw for which surfacing repetitive group designators are given in Table G-2.

Table F-1. Model-Estimated DCS Risks and O₂ Toxicity Indices for Schedules in Table G-2 (Dashed line in each depth group is limit line)

Schedule	Estimated P _{DCS}					O ₂ Toxicit		
(Depth, fsw/						CUPTD	%	$P_{CNS-Tox}$
Bottom Time,	BVM(3)	JAP98		USN9			Norm	
min)	(%) 95% C.L.	(%) 9	5% C.L.	(%) 9	95% C.L.		VC	(%)
40/ 240	0.00 0.00 - 0.0	0.20	0.03 - 0.88	0.01	0.00 - 0.02	360.5	97.9	1.56
40/ 390	0.00 0.00 - 0.0	0.21	0.03 - 0.90	0.01	0.00 - 0.03	585.7	96.7	2.54
50/ 240	0.16 0.06 - 0.3	6 0.77	0.25 - 1.92	0.31	0.15 - 0.60	360.9	98.0	1.57
50/ 390	1.14 0.85 - 1.	0 1.54	0.87 - 2.55	1.12	0.60 - 1.93	586.1	96.7	2.54
60/ 240	2.27 1.90 - 2.7	0 3.29	2.17 - 4.77	2.56	1.88 - 3.41	361.3	98.0	1.57
60/ 297	3.34 2.85 3.8		3.34 6.03	3.83	2.94 4.89	446.9	97.5	1.94
60/ 300	3.28 2.79 - 3.8	l l	3.33 - 5.98	3.77	2.87 - 4.85	453.3	97.5	1.97
60/ 310	3.38 2.87 - 3.9		3.46 - 6.10	3.90	2.96 - 5.01	469.8	97.4	2.04
60/ 320	3.48 2.95 - 4.0		3.60 - 6.21	4.02	3.06 - 5.18	486.3	97.3	2.11
60/ 330	3.58 3.02 - 4.5		3.73 - 6.33	4.15	3.15 - 5.34	502.8	97.2	2.18
60/ 340	3.68 3.10 - 4.3	i i	3.86 - 6.44	4.27	3.25 - 5.50	519.3	97.1	2.26
60/ 350	3.79 3.18 - 4.4		3.98 - 6.56	4.40	3.34 - 5.66	535.8	97.0	2.33
60/ 360	3.89 3.27 - 4.0	1	4.10 - 6.67	4.52	3.43 - 5.82	552.3	96.9	2.40
60/ 370	4.00 3.35 - 4.		4.22 - 6.78	4.65	3.53 - 5.98	568.8	96.8	2.47
60/ 380	4.11 3.44 - 4.	1	4.34 - 6.89	4.77	3.62 - 6.13	585.3	96.7	2.54
60/ 390	4.22 3.54 - 5.		4.45 - 7.00	4.89	3.71 - 6.29	601.8	96.6	2.61
70/ 130	1.93 1.54 - 2.		1.93 - 4.84	2.36	1.74 - 3.12	196.8	98.9	0.84
70/ 140	2.08 1.69 - 2.		2.05 - 4.95	2.35	1.72 - 3.13	216.8	98.8	0.94
70/ 150	2.25 1.85 - 2.	l l	2.17 - 5.07	2.40	1.75 - 3.22	236.3	98.7	1.02
70/ 160	2.47 2.05 - 2.	3.61	2.35 - 5.29	2.56	1.87 - 3.42	254.3	98.6	1.10
70/ 170	2.68 2.26 - 3.	17 3.82	2.54 - 5.49	2.72	1.99 - 3.63	272.3	98.5	1.18
70/ 180	2.89 2.45 - 3.	39 4.02	2.73 - 5.69	2.89	2.12 - 3.85	290.3	98.4	1.26
70/ 190	3.10 2.63 - 3.	3 4.22	2.92 - 5.88	3.06	2.25 - 4.06	308.3	98.3	1.34
70/ 200	2.72 2.25 - 3.	25 4.42	3.11 - 6.07	3.24	2.39 - 4.28	326.3	98.2	1.42
70/ 210	2.90 2.41 - 3.	4.53	3.22 - 6.15	3.33	2.45 - 4.43	345.8	98.1	1.50
70/ 220	3.09 2.57 - 3.	67 4.63	3.33 - 6.22	3.44	2.51 - 4.58	365.3	97.9	1.59
70/ 230	3.30 2.75 - 3.	91 4.81	3.52 - 6.39	3.63	2.66 - 4.84	383.3	97.8	1.67
70/ 240	3.50 2.93 - 4.	15 4.99	3.70 - 6.56	3.83	2.80 - 5.09	401.3	97.7	1.74
70/ 250	3.66 3.07 - 4.	34 5.08	3.80 - 6.62	3.95	2.88 - 5.28	420.8	97.6	1.83
70/ 260	3.86 3.23 - 4.	57 5.25	3.97 - 6.79	4.16	3.02 - 5.55	438.8	97.5	1.91
70/ 270	4.05 3.39 - 4.	79 5.42	4.13 - 6.94	4.36	3.17 - 5.81	456.8	97.4	1.99
70/ 280	4.23 3.54 - 5.		4.30 - 7.10	4.56	3.32 - 6.08	474.8	97.3	2.06
70/ 290	4.45 3.72 - 5.	1	4.53 - 7.35	4.83	3.54 - 6.40	491.3	97.2	2.14
70/ 300	4.62 3.86 - 5.		4.68 - 7.50	5.03	3.69 - 6.66	509.3	97.1	2.21
70/ 310	4.78 4.00 - 5.		4.83 - 7.65	5.22	3.84 - 6.91	527.3	97.0	2.29
70/ 320	4.93 4.12 - 5.		4.97 - 7.79	5.42	3.98 - 7.16	545.3	96.9	2.37
70/ 330	5.09 4.25 - 6.		5.11 - 7.93	5.61	4.13 - 7.40	563.3	96.8	2.45
70/ 340	5.23 4.36 - 6.		5.24 - 8.06	5.80	4.27 - 7.64	581.3	96.7	2.53
70/ 350	5.32 4.44 - 6.		5.30 - 8.10	5.92	4.36 - 7.81	600.8	96.6	2.61
80/70	1.41 0.98 - 1.		1.48 - 3.53	1.78	1.20 - 2.53	107.2	99.4	0.45
80/75	1.49 1.05 - 2.		1.54 - 3.68	1.69	1.18 - 2.36	118.3	99.3	0.50
80/ 80	1.64 1.19 - 2.		1.65 - 3.92	1.80	1.28 - 2.46	127.3	99.3	0.54
80/ 85	1.76 1.31 - 2.	33 2.72	1.72 - 4.08	1.83	1.31 - 2.48	137.8	99.2	0.59

Schedule	Estimate	ed Pncs					O₂ Toxicit	y Indices	
(Depth, fsw/							CUPTD	%	P _{CNS-Tox}
Bottom Time,	BVM(3	<i>a</i>	JAP98	-2	USN93	3		Norm	
min)		5% C.L.		5% C.L.	(%) 9	5% C.L.		VC	(%)
80/ 90	1.92	1.46 - 2.48	2.90	1.85 - 4.33	1.95	1.41 - 2.63	146.8	99.2	0.63
80/ 95	2.08	1.60 - 2.65	3.10	1.99 - 4.59	2.09	1.52 - 2.81	155.8	99.1	0.67
80/100	2.24	1.77 - 2.80	3.29	2.13 - 4.84	2.24	1.63 - 2.99	164.8	99.1	0.71
80/ 110	2.49	2.02 - 3.04	3.53	2.31 - 5.14	2.34	1.69 - 3.16	185.8	98.9	0.80
80/ 120	2.73	2.25 - 3.29	3.76	2.49 - 5.42	2.46	1.76 - 3.34	206.8	98.8	0.89
80/ 130	2.97	2.48 - 3.52	3.98	2.67 - 5.68	2.59	1.84 - 3.53	227.8	98.7	0.99
80/ 140	3.20	2.68 - 3.79	4.19	2.84 - 5.92	2.72	1.94 - 3.72	248.8	98.6	1.08
80/ 150	3.47	2.95 - 4.05	4.47	3.08 - 6.24	2.96	2.12 - 4.00	268.3	98.5	1.16
80/ 160	3.74	3.18 - 4.36	4.75	3.32 - 6.54	3.20	2.32 - 4.29	287.8	98.4	1.25
80/ 170	3.94	3.37 - 4.58	4.92	3.47 - 6.72	3.36	2.45 - 4.50	308.8	98.3	1.34
80/ 180	4.10	3.48 - 4.78	4.99	3.55 - 6.78	3.47	2.51 - 4.66	331.3	98.1	1.44
80/ 190	4.28	3.30 - 5.46	5.14	3.70 - 6.93	3.67	2.65 - 4.93	352.3	98.0	1.53
80/ 200	4.46	3.63 - 5.41	5.29	3.84 - 7.06	3.88	2.79 - 5.23	373.3	97.9	1.62
80/ 210	4.68	3.88 - 5.60	5.52	4.06 - 7.28	4.16	3.00 - 5.59	392.8	97.8	1.71
80/ 220	4.84	4.05 - 5.74	5.65	4.20 - 7.39	4.38	3.14 - 5.91	413.8	97.7	1.80
80/ 230	5.05	4.22 - 5.98	5.86	4.41 - 7.59	4.66	3.35 - 6.27	433.3	97.6	1.88
80/ 240	5.24	4.40 - 6.18	6.06	4.61 - 7.78	4.94	3.56 - 6.64	452.8	97.5	1.97
80/ 250	5.43	4.55 - 6.41	6.26	4.81 - 7.97	5.22	3.77 - 6.99	472.3	97.3	2.05
80/ 260	5.60	4.69 - 6.63	6.45	5.00 - 8.14	5.49	3.98 - 7.34	491.8	97.2	2.14
80/ 270	5.71	4.78 - 6.76	6.55	5.12 - 8.21	5.71	4.13 - 7.63	512.8	97.1	2.23
80/ 280	5.82	4.85 - 6.91	6.65	5.24 - 8.27	5.92	4.29 - 7.90	533.8	97.0	2.32
80/ 290	5.57	4.66 - 6.58	6.82	5.44 - 8.41	6.18	4.50 - 8.20	553.3	96.9	2.40
80/ 300	5.69	4.76 - 6.73	6.92	5.58 - 8.45	6.37	4.68 - 8.40	574.3	96.8	2.49
80/ 310	5.85	4.89 - 6.92	7.09	5.77 - 8.59	6.61	4.91 - 8.65	593.8	96.7	2.58
80/ 320	6.00	5.01 - 7.10	7.26	5.95 - 8.75	6.84	5.12 - 8.89	613.3	96.6	2.66
90/ 50	1.51	1.03 - 2.15	2.23	1.52 - 3.17	1.82	1.26 - 2.54	77.5	99.6	0.32
90/ 55	1.64	1.14 - 2.29	2.35	1.59 - 3.35	1.68	1.16 - 2.36	90.3	99.5	0.38
90/ 60	1.78	1.27 - 2.44	2.47	1.66 - 3.53	1.67	1.16 - 2.34	102.3	99.4	0.43
90/ 65	1.97	1.44 - 2.64	2.66	1.79 - 3.80	1.76	1.26 - 2.40	112.8	99.4	0.48
90/70	2.16	1.63 - 2.81	2.87	1.94 - 4.09	1.87	1.36 - 2.51	123.3	99.3	0.53
90/75	2.32	1.78 - 2.97	3.02	2.03 - 4.30	1.90	1.39 - 2.56	135.3	99.2	0.58
90/ 80	2.55	1.99 - 3.21	3.32	2.26 - 4.69	2.13	1.56 - 2.84	144.3	99.2	0.62
90/ 85	2.74	2.17 - 3.40	3.55	2.42 - 4.99	2.27	1.66 - 3.03	154.8	99.1	0.66
90/ 90	2.93	2.37 - 3.58	3.78	2.60 - 5.29	2.42	1.76 - 3.23	165.3	99.1	0.71
90/ 95	3.07	2.52 - 3.72	3.92	2.69 - 5.48	2.47	1.78 - 3.33	177.3	99.0	0.76
90/100	3.21	2.65 - 3.85	4.05	2.79 - 5.67	2.52	1.80 - 3.42	189.3	98.9	0.82
90/ 110	3.48	2.90 - 4.13	4.30	2.96 - 6.01	2.63	1.85 - 3.61	213.3	98.8	0.92
90/ 120	3.78	3.17 - 4.46	4.62	3.20 - 6.42	2.84	2.01 - 3.90	235.8	98.7	1.02
90/ 130	4.06	3.44 - 4.75	4.91	3.42 - 6.78	3.06	2.19 - 4.16	258.3	98.5	1.12
90/ 140	4.34	3.68 - 5.07	5.18	3.63 - 7.12	3.30	2.39 - 4.43	280.8	98.4	1.22
90/ 150	4.54	3.30 - 6.06	5.33	3.74 - 7.31	3.48	2.53 - 4.65	304.7	98.3	1.32
90/ 160	4.73	3.69 - 5.96	5.46	3.85 - 7.46	3.68	2.67 - 4.93	328.7	98.1	1.43
90/ 170	4.97	4.00 - 6.09	5.68	4.05 - 7.70	3.98	2.89 - 5.33	351.2	98.0	1.53
90/ 180	5.19	4.25 - 6.26	5.89	4.24 - 7.90	4.29	3.11 - 5.75	373.7	97.9	1.62
90/ 190	5.40	4.45 - 6.46	6.07	4.42 - 8.07	4.59	3.32 - 6.16	396.2	97.8	1.72
100/ 39	1.64	1.10 - 2.35	2.14	1.50 - 2.97	1.85	1.28 - 2.59	61.5	99.7	0.24
100/40	1.65	1.11 - 2.35	2.16	1.52 - 2.98	1.66	1.18 - 2.28	65.3	99.6	0.27

	Estimat	ted P _{DCS}	-				O ₂ Toxicit	y Indices	
(Depth, fsw/							CUPTD	%	P _{CNS-Tox}
Bottom Time,	BVM(,	JAP98		USN9			Norm	
min)	(%) 9	95% C.L.		95% C.L.	(%) 9	95% C.L.		VC	(%)
100/ 45	1.85	1.29 - 2.56	2.33	1.64 - 3.22	1.68	1.18 - 2.31	78.8	99.6	0.33
100/ 50	2.06	1.48 - 2.79	2.48	1.74 - 3.43	1.67	1.16 - 2.34	92.3	99.5	0.39
100/ 55	2.30	1.69 - 3.05	2.71	1.90 - 3.74	1.75	1.27 - 2.37	104.3	99.4	0.44
100/60	2.53	1.92 - 3.28	2.96	2.08 - 4.07	1.86	1.37 - 2.47	116.3	99.3	0.50
100/ 65	2.77	2.14 - 3.52	3.22	2.27 - 4.42	1.99	1.47 - 2.62	128.3	99.3	0.55
100/ 70	3.00	2.36 - 3.76	3.49	2.46 - 4.77	2.12	1.57 - 2.81	140.3	99.2	0.60
100/ 75	3.27	2.61 - 4.04	3.84	2.73 - 5.22	2.36	1.75 - 3.13	150.8	99.1	0.65
100/ 80	3.49	1.24 - 7.71	4.10	2.93 - 5.57	2.51	1.84 - 3.35	162.8	99.1	0.70
100/ 85	3.66	1.38 - 7.78	4.27	3.04 - 5.82	2.57	1.85 - 3.46	176.3	99.0	0.76
100/ 90	3.82	3.15 - 4.59	4.43	3.14 - 6.05	2.62	1.87 - 3.57	189.8	98.9	0.82
100/ 95	3.98	3.29 - 4.77	4.59	3.23 - 6.28	2.67	1.89 - 3.67	203.3	98.8	0.88
100/ 100	4.19	3.50 - 4.97	4.83	3.42 - 6.60	2.84	2.01 - 3.89	215.3	98.8	0.93
100/ 110	4.54	3.82 - 5.35	5.19	3.66 - 7.09	3.08	2.20 - 4.19	240.8	98.6	1.04
100/ 120	4.91	2.97 - 7.55	5.60	3.96 - 7.63	3.42	2.49 - 4.58	264.8	98.5	1.15
110/ 32	1.77	0.63 - 4.03	2.08	1.46 - 2.87	1.88	1.28 - 2.66	51.4	99.7	0.20
110/ 35	1.89	1.30 - 2.65	2.20	1.57 - 3.00	1.69	1.20 - 2.32	61.3	99.7	0.25
110/40	2.16	1.54 - 2.94	2.41	1.72 - 3.27	1.72	1.22 - 2.36	76.3	99.6	0.32
110/45	2.43	1.78 - 3.25	2.60	1.87 - 3.53	1.71	1.22 - 2.35	91.3	99.5	0.39
110/ 50	2.74	2.05 - 3.57	2.88	2.08 - 3.90	1.81	1.34 - 2.40	104.8	99.4	0.45
110/ 55	3.03	2.31 - 3.90	3.19	2.31 - 4.29	1.94	1.45 - 2.53	118.3	99.3	0.50
110/60	3.32	2.57 - 4.21	3.50	2.54 - 4.69	2.08	1.56 - 2.72	131.8	99.3	0.56
110/65	3.63	2.85 - 4.55	3.90	2.84 - 5.19	2.32	1.74 - 3.04	143.8	99.2	0.62
110/ 70	3.95	3.14 - 4.89	4.30	3.15 - 5.71	2.57	1.92 - 3.38	155.8	99.1	0.67
110/ 75	4.18	0.98 - 11.35	4.54	3.31 - 6.03	2.65	1.95 - 3.53	170.8	99.0	0.74
110/ 80	4.40	3.56 - 5.36	4.76	3.46 - 6.35	2.74	1.98 - 3.68	185.8	98.9	0.80
110/ 85	4.65	3.80 - 5.61	5.05	3.67 - 6.74	2.91	2.10 - 3.93	199.3	98.9	0.86
110/ 90	4.84	3.98 - 5.81	5.23	3.77 - 7.02	2.99	2.15 - 4.06	214.3	98.8	0.93
110/ 95	5.05	1.76 - 11.00	5.49	3.95 - 7.38	3.17	2.28 - 4.28	227.8	98.7	0.99
110/ 100	5.28	2.73 - 9.03	5.74	4.12 - 7.73	3.35	2.43 - 4.50	241.3	98.6	1.05
110/ 110	5.64	3.61 - 8.31	6.12	4.36 - 8.27	3.67	2.71 - 4.85	269.9	98.5	1.17
110/ 120	5.92	4.20 - 8.06	6.33	4.48 - 8.62	3.96	2.94 - 5.20	299.9	98.3	1.30
120/ 27	1.87	1.29 - 2.63	2.01	1.40 - 2.79	1.90	1.27 - 2.72	44.3	99.8	0.16
120/ 30	2.00	1.39 - 2.79	2.13	1.52 - 2.90	1.66	1.17 - 2.29	55.8	99.7	0.23
120/ 35	2.34	1.68 - 3.18	2.39	1.72 - 3.23	1.70	1.21 - 2.33	72.3	99.6	0.30
120/ 40	2.69	1.98 - 3.58	2.63	1.90 - 3.53	1.71	1.22 - 2.33	88.8	99.5	0.37
120/ 45	3.06	2.28 - 4.02	2.95	2.15 - 3.95	1.81	1.35 - 2.38	103.8	99.4	0.44
120/ 50	3.42	2.58 - 4.44	3.31	2.43 - 4.40	1.95	1.48 - 2.53	118.8	99.3	0.51
120/ 55	3.80	2.90 - 4.88	3.75	2.77 - 4.95	2.20	1.67 - 2.84	132.3	99.2	0.57
120/ 60	4.21	3.25 - 5.34	4.23	3.15 - 5.54	2.47	1.88 - 3.19	145.8	99.2	0.63
120/65	4.59	3.59 - 5.76	4.71	3.53 - 6.13	2.77	2.10 - 3.59	159.3	99.1	0.69
120/ 70	4.88	3.84 - 6.09	5.00	3.72 - 6.53	2.88	2.14 - 3.78	175.8	99.0	0.76
120/ 75	5.13	4.06 - 6.36	5.25	3.89 - 6.91	2.98	2.19 - 3.95	192.3	98.9	0.83
120/ 80	5.44	4.35 - 6.69	5.62	4.15 - 7.39	3.19	2.34 - 4.25	207.3	98.8	0.90
120/ 85	5.66	2.44 - 10.84	5.84	4.27 - 7.73	3.31	2.41 - 4.41	223.8	98.7	0.97
120/ 90	5.94	3.07 - 10.13	6.16	4.50 - 8.17	3.54	2.61 - 4.69	238.8	98.6	1.03
120/ 95	6.19	3.53 - 9.87	6.44	4.68 - 8.57	3.76	2.80 - 4.94	253.8	98.6	1.10
120/ 100	6.36	3.94 - 9.57	6.60	4.76 - 8.83	3.91	2.93 - 5.11	270.3	98.5	1.17

Schedule	Estimate	d Pocs					O ₂ Toxicit	y Indices	
(Depth, fsw/		555					CUPTD	%	P _{CNS-Tox}
Bottom Time,	BVM(3)	١	JAP98	3-2	USN93	3		Norm	
min)	(%) 95		(%) 9	5% C.L.	(%) 9	5% C.L.		VC	(%)
130/ 23	1.92	1.33 - 2.69	1.91	1.30 - 2.70	1.87	1.23 - 2.74	38.6	99.8	0.14
130/ 25	2.02	0.08 - 12.00	2.05	1.45 - 2.81	1.70	1.19 - 2.37	45.8	99.7	0.18
130/ 30	2.41	1.72 - 3.29	2.31	1.66 - 3.13	1.69	1.20 - 2.32	65.3	99.6	0.27
130/ 35	2.84	2.07 - 3.81	2.60	1.88 - 3.49	1.71	1.21 - 2.36	83.3	99.5	0.35
130/ 40	3.30	2.43 - 4.37	2.97	2.17 - 3.95	1.82	1.36 - 2.39	99.8	99.4	0.42
130/ 45	3.73	2.76 - 4.91	3.38	2.49 - 4.46	1.98	1.51 - 2.54	116.3	99.3	0.50
130/ 50	4.21	3.14 - 5.49	3.89	2.91 - 5.09	2.24	1.73 - 2.85	131.3	99.3	0.56
130/ 55	4.69	3.52 - 6.08	4.44	3.34 - 5.76	2.56	1.97 - 3.26	146.3	99.2	0.63
130/ 60	5.18	3.94 - 6.65	5.09	3.87 - 6.53	2.99	2.31 - 3.82	159.8	99.1	0.69
130/ 65	5.49	0.63 - 19.02	5.35	4.04 - 6.92	3.03	2.29 - 3.93	179.3	99.0	0.77
130/ 03	5.82	4.49 - 7.39	5.70	4.27 - 7.40	3.19	2.39 - 4.18	197.3	98.9	0.85
130/ 75	6.17	2.31 - 12.77	6.11	4.56 - 7.96	3.45	2.57 - 4.52	213.8	98.8	0.92
130/ 73	6.49	3.04 - 11.74	6.48	4.82 - 8.48	3.70	2.76 - 4.83	230.3	98.7	1.00
140/ 21	2.12	1.49 - 2.92	1.99	1.35 - 2.84	2.01	1.31 - 2.94	36.1	99.8	0.13
140/ 25	2.37	1.68 - 3.25	2.21	1.58 - 3.02	1.74	1.22 - 2.41	53.8	99.7	0.22
140/ 30	2.88	0.02 - 22.52	2.55	1.84 - 3.45	1.79	1.27 - 2.45	73.8	99.6	0.31
140/ 35	3.41	2.48 - 4.56	2.91	2.12 - 3.89	1.83	1.35 - 2.43	92.8	99.5	0.39
140/ 40	3.95	2.87 - 5.27	3.37	2.49 - 4.46	1.98	1.52 - 2.53	110.8	99.4	0.47
140/ 45	4.48	3.26 - 5.97	3.88	2.89 - 5.08	2.19	1.71 - 2.78	128.8	99.3	0.55
140/ 50	5.08	3.72 - 6.74	4.59	3.48 - 5.92	2.63	2.06 - 3.31	143.8	99.2	0.62
140/ 55	5.63	4.13 - 7.44	5.23	4.00 - 6.69	3.02	2.35 - 3.80	160.3	99.1	0.69
140/ 60	6.06	4.48 - 7.97	5.68	4.33 - 7.28	3.22	2.48 - 4.11	179.8	99.0	0.78
140/ 65	6.44	1.57 - 16.38	6.09	4.61 - 7.85	3.42	2.60 - 4.40	199.3	98.9	0.86
140/ 70	6.88	2.77 - 13.57	6.59	4.98 - 8.51	3.73	2.83 - 4.81	217.3	98.8	0.94
140/ 75	7.17	3.48 - 12.66	6.85	5.10 - 8.93	3.86	2.93 - 4.99	238.3	98.6	1.03
140/ 80	7.44	4.01 - 12.25	7.06	5.19 - 9.30	4.04	3.06 - 5.21	259.3	98.5	1.12
150/ 17	1.94	1.35 - 2.70	1.66	1.08 - 2.46	1.75	1.09 - 2.69	30.4	99.8	0.10
150/ 20	2.17	1.52 - 2.99	1.98	1.39 - 2.73	1.69	1.16 - 2.39	40.8	99.8	0.16
150/ 25	2.73	1.96 - 3.70	2.33	1.66 - 3.18	1.71	1.20 - 2.37	63.3	99.6	0.26
150/ 30	3.34	2.41 - 4.52	2.71	1.95 - 3.66	1.76	1.26 - 2.40	84.3	99.5	0.35
150/ 35	3.99	2.85 - 5.40	3.21	2.35 - 4.28	1.90	1.45 - 2.44	103.8	99.4	0.44
150/ 40	4.65	3.30 - 6.32	3.85	2.87 - 5.05	2.22	1.74 - 2.79	121.8	99.3	0.52
150/ 45	5.33	1.67 - 12.24	4.56	3.45 - 5.89	2.60	2.05 - 3.24	139.8	99.2	0.60
150/ 50	5.97	4.25 - 8.07	5.29	4.05 - 6.76	3.03	2.39 - 3.78	157.8	99.1	0.68
150/ 55	6.50	4.63 - 8.79	5.84	4.46 - 7.46	3.27	2.55 - 4.13	178.8	99.0	0.77
150/ 60	6.99	2.07 - 16.12	6.36	4.84 - 8.15	3.55	2.74 - 4.52	199.8	98.9	0.86
150/ 70	7.79	3.69 - 13.88	7.16	5.34 - 9.32	4.03	3.08 - 5.16	243.3	98.6	1.05
150/ 70	8.36	4.74 - 13.28	7.60	5.52 - 10.11	4.52	3.42 - 5.83	289.8	98.4	1.26
				1.00 - 2.41	1.72	1.04 - 2.69	27.8	99.9	0.09
160/ 15	1.97	0.00 - 42.38	1.58	1.50 - 2.41	1.72	1.04 - 2.09	47.3	99.7	0.19
160/ 20	2.46	1.75 - 3.38	2.13		1.73	1.20 - 2.40	71.3	99.6	0.30
160/ 25	3.15	0.04 - 21.95	2.51	1.79 - 3.43	1.73	1.23 - 2.30	92.3	99.5	0.39
160/ 30	3.90	2.76 - 5.31	3.03	2.19 - 4.07	2.10	1.64 - 2.65	113.3	99.4	0.48
160/ 35	4.63	3.24 - 6.38	3.64	2.68 - 4.82 3.24 - 5.65	2.10	1.91 - 3.02	134.3	99.2	0.57
160/ 40	5.38	3.71 - 7.47	4.33		3.00	2.39 - 3.71	152.3	99.1	0.65
160/ 45	6.19	4.29 - 8.56	5.26	4.02 - 6.73	3.00	2.38 - 3.11	102.0	JJ. 1	3.00

Schedule	Estimat	ed P _{DCS}					O ₂ Toxicit	y Indices	
(Depth, fsw/							CUPTD	%	P _{CNS-Tox}
Bottom Time,	BVM(3	3)	JAP98		USN9			Norm	
min)	(%) 9	5% C.L.	(%)	95% C.L.	(%) 9	5% C.L.		VC	(%)
160/ 50	6.84	4.73 - 9.46	5.91	4.53 - 7.55	3.32	2.62 - 4.14	174.8	99.0	0.75
160/ 55	7.42	2.12 - 17.26	6.53	4.99 - 8.34	3.64	2.84 - 4.58	197.3	98.9	0.85
160/60	7.94	3.14 - 15.66	7.03	5.32 - 9.04	3.91	3.02 - 4.96	221.3	98.7	0.96
160/ 80	9.29	5.42 - 14.41	8.19	5.89 - 10.97	5.14	3.86 - 6.68	320.2	98.2	1.39
170/ 13	1.93	1.33 - 2.70	1.45	0.86 - 2.30	1.63	0.95 - 2.63	25.2	99.9	0.07
170/ 15	1.97	1.36 - 2.76	1.68	1.16 - 2.36	1.51	1.00 - 2.20	32.8	99.8	0.13
170/ 20	2.79	1.99 - 3.78	2.28	1.61 - 3.14	1.80	1.25 - 2.53	53.8	99.7	0.22
170/ 25	3.58	2.54 - 4.89	2.71	1.92 - 3.69	1.78	1.27 - 2.44	79.3	99.5	0.33
170/ 30	4.46	3.09 - 6.18	3.33	2.42 - 4.47	1.97	1.52 - 2.52	101.8	99.4	0.43
170/ 35	5.31	3.61 - 7.46	4.07	3.01 - 5.37	2.28	1.80 - 2.85	124.3	99.3	0.53
170/40	6.20	4.17 - 8.78	4.98	3.77 - 6.44	2.81	2.24 - 3.48	145.3	99.2	0.62
170/ 45	7.05	4.74 - 9.96	5.93	4.55 - 7.56	3.38	2.70 - 4.17	166.3	99.1	0.72
170/ 50	7.69	2.06 - 18.39	6.50	4.95 - 8.32	3.60	2.83 - 4.51	193.3	98.9	0.83
170/ 55	8.30	3.13 - 16.74	7.09	5.37 - 9.13	3.93	3.05 - 4.96	218.8	98.8	0.95
170/60	8.76	3.89 - 16.10	7.44	5.54 - 9.69	4.14	3.17 - 5.30	247.3	98.6	1.07
180/ 12	2.04	0.00 - 28.09	1.46	0.85 - 2.36	1.67	0.97 - 2.72	24.1	99.9	0.07
180/ 15	2.23	1.57 - 3.08	1.85	1.28 - 2.59	1.64	1.10 - 2.37	36.3	99.8	0.14
180/ 20	3.12	2.23 - 4.23	2.39	1.68 - 3.30	1.76	1.23 - 2.44	61.8	99.6	0.26
180/ 25	4.07	2.85 - 5.62	2.93	2.09 - 4.00	1.83	1.35 - 2.42	87.3	99.5	0.37
180/ 30	5.05	3.42 - 7.13	3.69	2.68 - 4.93	2.12	1.65 - 2.68	111.3	99.4	0.47
180/ 35	6.04	4.01 - 8.64	4.58	3.40 - 6.00	2.55	2.02 - 3.17	135.3	99.2	0.58
180/ 40	7.05	4.62 - 10.15	5.64	4.28 - 7.25	3.19	2.54 - 3.93	157.8	99.1	0.68
180/ 45	7.85	1.52 - 21.30	6.42	4.88 - 8.23	3.57	2.83 - 4.44	184.8	98.9	0.80
180/ 50	8.60	2.95 - 18.11	7.15	5.42 - 9.18	3.97	3.11 - 4.98	211.8	98.8	0.92
180/ 55	9.13	3.82 - 17.29	7.52	5.60 - 9.80	4.19	3.21 - 5.35	243.3	98.6	1.05
180/ 60	9.62	4.48 - 17.14	7.92	5.82 - 10.43	4.57	3.45 - 5.90	273.3	98.4	1.18
190/ 10	1.87	0.00 - 56.06	1.24	0.66 - 2.14	1.48	0.80 - 2.54	21.5	99.9	0.05
190/ 15	2.51	1.78 - 3.43	2.03	1.41 - 2.84	1.78	1.20 - 2.56	39.8	99.8	0.16
190/ 20	3.50	2.48 - 4.78	2.55	1.79 - 3.52	1.79	1.26 - 2.46	68.3	99.6	0.28
190/ 25	4.58	3.13 - 6.41	3.20	2.28 - 4.36	1.94	1.48 - 2.49	95.3	99.5	0.40
190/ 30	5.70	3.78 - 8.18	4.12	3.04 - 5.44	2.34	1.84 - 2.93	120.8	99.3	0.52
190/ 35	6.87	4.44 - 10.00	5.27	3.96 - 6.83	3.01	2.39 - 3.73	144.8	99.2	0.62
190/ 40	7.79	4.95 - 11.44	6.06	4.57 - 7.84	3.34	2.63 - 4.17	174.8	99.0	0.75
190/ 45	8.68	2.69 - 19.17	6.95	5.25 - 8.96	3.84	3.01 - 4.82	203.3	98.8	0.88
190/ 50	9.35	3.63 - 18.39	7.45	5.54 - 9.72	4.12	3.15 - 5.27	236.3	98.7	1.02
190/ 55	9.92	4.39 - 18.12	7.89	5.77 - 10.42	4.53	3.40 - 5.88	269.3	98.5	1.17
190/60	10.46	5.03 - 18.18	8.35	6.05 - 11.12	5.07	3.78 - 6.64	300.8	98.3	1.31

Figure F-1. Model-estimated DCS risks for schedules in dive depth groups below 160 fsw that are above the limit lines in Tables F-1 and G-2. Estimated DCS risks are also shown for schedules in dive depth groups from 160 –190 fsw for which surfacing repetitive group designators are given in Table G-2. Risks are ordered from left to right on the abscissa in the order of profile appearance in Table F-1, and consequently appear in order of increasing bottom time within each indicated dive depth group. Under the BVM(3) and JAP98-2 models, estimated risks tend to increase with bottom time in a given dive depth group. 40 and 50 fsw dive depth groups are not labeled but all model-estimated risks for these schedules are below 1.0% at the far left of the figure.

REFERENCES

- 1. Thalmann, E. D., *Phase II Testing of Decompression Algorithms for Use in the U.S. Navy Underwater Decompression Computer*, NEDU TR 1-84, Navy Experimental Diving Unit, January 1984.
- 2. Thalmann, E. D., Repetitive/Multi-Level Dive Procedures and Tables for Constant 0.7 ATA Oxygen Partial Pressure in Nitrogen Diving. NEDU Report No. 9-85, Navy Experimental Diving Unit, September 1985.
- 3. Thalmann, E. D., Buckingham, I. P., Spauer, W. H., Testing of Decompression Algorithms for use in the Navy Underwater Decompression Computer Phase I. NEDU Report No. 11-80, Navy Experimental Diving Unit November 1980.
- 4. Naval Sea Systems Command, *U.S. Navy Diving Manual*, NAVSEA SS521-AG-PRO-010, Vol. #5, Rev. 4, Table 18-5,18-4.
- 5. Butler, F.K., Thalmann, E.D. *Purging Procedures for the Draeger LAR V Underwater Breathing Apparatus*. NEDU Report # 5-84, Navy Experimental Diving Unit, 1984.
- 6. Harabin, A.L., Homer, L.D., Weathersby, P.K., Flynn, E.T. "An analysis of decrements in vital capacity as an index of pulmonary oxygen toxicity." *J. Appl. Physiol.* 63(3):1130-1135, 1987.
- 7. Vann, R.D. Oxygen Toxicity Risk Assessment. Final Report. ONR Contract N00014-87-C-0283. May 31, 1988.
- 8. Harabin, A. L., Survanshi, S. S., Homer, L. D. "A Model for Predicting Central Nervous System Oxygen Toxicity from Hyperbaric Oxygen Exposures in Humans". *Toxicology and Applied Pharmacology* 132, 19-26 (1995).

APPENDIX G

MK16 MOD 1 1.3 ATA PO2-IN-N2 SINGLE AND REPETITIVE DIVE TABLES

Tables G-1 to G-3 are used to plan single and repetitive dives in precisely the same manner as the Standard Air Tables in the current U.S. Navy Diving Manual. The tables are designed for use with the MK 16 MOD 1 UBA with a PO_2 set point of 1.3 ATA and an air diluent. All bottom times include the descent time at the designated rate of 60 fsw/min.

Table G-1 gives the no-decompression limits and repetitive group designators for no-decompression dives to depths up to 190 fsw. To find the repetitive group designator for a dive, locate the row for the maximum depth of the dive in the left-most column. If there is no entry for the exact dive depth, use the row for the next deeper depth. Then move to the right in the row to the column with the appropriate bottom time (descent time + time on bottom). If the row does not have an entry equal to the exact bottom time, use the column with the next larger time. The repetitive group letter designator for the dive is obtained from the top entry in the column.

Table G-2 gives the decompression schedules and repetitive group designators for decompression dives. Schedules are grouped with solid line separators according to maximum dive depth. A limit line also appears within each group. Only schedules above the limit line in each dive depth group should be used in normal operations. Schedules below the limit line in each group should be used only with approval of the on-site commander. Repetitive dives below the limit line in each depth group are generally not permitted. However, in order to support repetitive dives after approved dives to depths greater than 150 fsw, surfacing repetive group designators are provided for selected schedules in the 160 – 190 fsw dive depth groups.

Table G-2 is used by locating the row for the intended maximum depth and bottom time for a dive. If exact table entries are not found, use the next deeper depth and the next longer bottom time. Required stops during the decompression are then listed in the columns to the right, with ascent time to first stop, total ascent time (ascent time + time at stops), and the surfacing repetitive group designator for the dive. Stop times are in minutes and, as per convention, do not include ascent times to the stops.

Table G-3 gives surface interval credits (top) and residual nitrogen times (bottom) for use in planning repetitive MK 16 MOD 1 N_2 - O_2 dives after designated times at surface. All times in the body of the top Surface Interval Credit table show the elapsed time in ranges of hours and minutes after surfacing. All elapsed times were computed assuming air breathing at surface, but any N_2 - O_2 mix with PO_2 in excess of 0.21 ATM may be breathed.

Table G-3 is used by locating the row in the Surface Interval Credit table for the surfacing repetitive group designator from the last completed dive, as obtained from

Table G-1 if the dive was a no-decompression dive, or from Table G-2 if the dive was a decompression dive. Then the column to the right along this row with entries for the actual or planned time at surface is found. The end-interval, or final, repetitive group designator is read from the bottom of this column. A column directly below this column in the Residual Nitrogen Time Table gives residual nitrogen times for this final repetitive group for MK 16 MOD 1 N₂-O₂ repetitive dives. In order to determine the residual nitrogen time for such a dive, locate the row in the latter table for the maximum depth of the planned repetitive dive. If there is no entry for the maximum dive depth, use the row for the next deeper depth. The entry along this row in the column for the end-interval or final repetitive group designator is the residual nitrogen time in minutes. This residual nitrogen time is added to the bottom time for the planned repetitive dive to obtain an equivalent single dive bottom time. The equivalent single dive bottom time and the planned maximum dive depth are then used to locate the appropriate decompression schedule and surfacing repetitive group designator for the repetitive dive in Table G-1 or G-2.

These repetitive dive procedures may be used with the U.S. Navy Standard Air Decompression Tables. The off-gassing rates at surface in the EL-MK 15/16 VVAL18 RTA are generally slower than those in the model used to compute the Standard Air Tables. Thus, the Surface Interval Credit portion of the present Table G-4 should be used to compute the end-interval or final repetitive group designator whether the starting group is a Standard Air group or a constant 1.3 ATA PO₂-in-N₂ group. For example, on completion of a Standard Air dive, the surfacing repetitive group from that dive as given by either the Standard Air Unlimited/No-Decompression and Repetitive Group Designation Table or the Standard Air Decompression Table should be used to enter Table G-3 and determine the residual nitrogen time for a planned MK 16 MOD 1 N₂-O₂ repetitive dive. Similarly, Table G-3 should be used to determine the final repetitive group designator after a MK 16 MOD 1 N2-O2 dive before a planned Standard Air repetitive dive. In this latter case, the resultant final repetitive group designator must be used with the Residual Nitrogen Time Table for Repetitive Air dives to determine the residual nitrogen time for the repetitive dive. (Do NOT use the Residual Nitrogen Time portion of Table G-3 to determine residual nitrogen times for Standard Air dives.) Using the equivalent single dive time obtained by adding the residual nitrogen time to the planned bottom time, the Standard Air Unlimited/No-Decompression and Repetitive Group Designation Table is then used to determine if the planned Standard Air repetitive dive exceeds the no-decompression limits. If it does, the decompression schedule and surfacing repetitive group designator for the dive is determined using the Standard Air Decompression Table.

A Repetitive Dive Worksheet for MK 16 MOD1 N_2 - O_2 dives is provided to assist with these calculations.

TABLE G-1. No-Decompression Limits and Repetitive Group Designators for MK16 MOD 1 N_2 - O_2 No-Decompression Dives

1.3 ATA FIXED PO2 IN NITROGEN

RATES: DESCENT 60 FPM; ASCENT 30 FPM

REPETITIVE GROUP DESIGNATOR
BOTTOM TIME (MIN)

DEPTH	NO-STOP	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Z
(FSW)	LIMIT																
20	720	153	420	720													
30	720	31	50	72	98	128	164	210	273	372	629	720					
40	720	88	168	317	720												
50	720	27	44	63	84	108	136	169	210	265	344	496	720				
60	297	16	25	36	46	58	70	83	97	113	130	149	170	194	222	255	297
70	130	11	18	25	32	39	47	55	64	73	83	93	103	115	127	130	
80	70	9	14	19	24	30	36	42	48	54	61	68	70				
90	50	7	11	15	20	24	29	33	38	43	48	50					
100	39	6	9	13	16	20	24	28	32	36	39						
110	32	5	8	11	14	17	20	24	27	30	32						
120	27	4	7	9	12	15	18	20	23	26	27						
130	23	3	6	8	11	13	16	18	21	23							
140	21	3	5	7	9	12	14	16	18	21							
150	17	3	5	6	8	10	12	15	17								
limit	line																
160	15	3	4	6	8	9	11	13	15								
170	13	3	4	5	7	9	10		13								
180	12		3	5	6	8	9	11	12								
190	10		3	4	6	7	9	10									

Table G-2. Schedules and Repetitive Group Designators for MK16 MOD 1 N_2 - O_2 Decompression Dives

1.3 ATA FIXED PO₂ IN NITROGEN

RATES: DESCENT 60 FPM; ASCENT 30 FPM

DEPTH BTN (FSW)	MIT	FIRST				DI	ECOM	PRESS STO	SION OP TI	STOP MES	S (F (MIN	SW))					TO	TAL RP' ASCNT TIME	T GRP DES
	(M)	STOP (M:S)	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)	(6)
40	240	1:20														0	0	1:20	C
limit 40		1:20														0	0	1:20	
50	240	1:40														0	0	1:40	I
		1:40														0	0	1:40	
60	240	2:00	<u>.</u>													. 0	0	2:00	0
limit 60																0	0	2:00	
60	300	1:20														1	0	3:00	
60	310	1:20														2	0	4:00	
60	320	1:20														3	0	5:00	
60	330	1:20														4	0	6:00	
60	340	1:20														5	0	7:00	
60	350															6	0	8:00	
60	360															7	0	9:00	
60	370	1:20														8	0	10:00	
60	380															9	0	11:00	
	390															10	0	12:00	
60	390	1:20														·			
70	130	2:20)													0	0	2:20	0
70	140	1:40)													3	0	5:20	0
70	150	1:40	0													6	0	8:20	0
70	160	1:40	0													8	0	10:20	Z
70	170	1:4	0													10	0	12:20	Z
70	180	1:4	0													12	0	14:20	Z
70	190	1:4	0													14	0	16:20	Z
70	200	1:4	0													. 16	0	18:20	Z

	MIT	TM TO					DEC	COMPR STO	ESSI P TI				W)					TOTAL ASCNT	RPT GRP
	(M)	STOP (M:S)	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	TIME (M:S)	DES
70	210	1:40														19	0	21:20	Z
70	220	1:40														22	0	24:20	Z
70	230	1:40														24	0	26:20	Z
70 limit	240	1:40														26	0	28:20	Z
	250															29	0	31:20	
70	260	1:40														31	0	33:20	
70	270	1:40														33	0	35:20	
70	280	1:40														35	0	37:20	
70	290	1:40														36	0	38:20	
70	300	1:40														38	0	40:20	
70	310	1:40														40	0	42:20	
70	320	1:40														42	0	44:20	
70	330	1:40														44	0	46:20	
70	340	1:40														46	0	48:20	
70	350	1:40														49	0	51:20	
80	70	2:40					-		,							0	0	2:40	L
80	75	2:00														2	0	4:40	L
80	80	2:00														3	0	5:40	М
80	85	2:00														5	0	7:40	M
80	90	2:00														6	0	8:40	N
80	95	2:00														7	0	9:40	N
80	100	2:00														8	0	10:40	N
80	110	2:00														12	0	14:40	0
80	120	2:00														16	0	18:40	0
80	130	2:00														20	0	22:40	Z
80	140	2:00														24	0	26:40	Z
80	150	2:00														27	0	29:40	Z
80	160	2:00														30	0	32:40	Z
80	170	2:00														34	0	36:40	Z

DEPTH (FSW)	MIT	FIRST					DE	COMPR	ESSIOP TI				W)					TOTAL ASCNT TIME	RPT GRP DES
	(M)	STOP (M:S)	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)	(6)
limit 80		2:00							-							39	0	41:40	
80	190	2:00														43	0	45:40	
80	200	2:00														47	0	49:40	
80	210	2:00														50	0	52:40	
80	220	2:00														54	0	56:40	
80	230	2:00														57	0	59:40	
80	240	2:00														60	0	62:40	
80	250	2:00														63	0	65:40	
80	260	2:00														66	0	68:40	
80	270	2:00														70	0	72:40	
80	280	2:00														74	0	76:40	
80	290	2:00														77	0	79:40	
80	300	2:00														81	0	83:40	
80	310	2:00														84	0	86:40	
80	320	2:00														87	0	89:40	
90	50	3:00														0	0	3:00	K
90	55	2:20														3	0	6:00	K
90	60	2:20														6	0	9:00	L
90	65	2:20)													8	0	11:00	L
90	70	2:20)													10	0	13:00	M
90	75	2:20)													13	0	16:00	M
90	80	2:20)													14	0	17:00	N
90	85	2:20)													16	. 0	19:00	N
90	90	2:20)													18	0	21:00	0
90	95	2:20)													21	0	24:00	0
90	100	2:20)													24	0	27:00	0

	MIT	TM TO FIRST STOP					DE	COMPF STC	RESSI OP TI				SW)					TOTAL ASCNT TIME	RPT GRP DES
	(/	(M:S)	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)	(6)
90	110	2:20														30	0	33:00	0
90	120	2:20														35	0	38:00	Z
90	130	2:20														40	0	43:00	Z
limit 90	140	2:20														45	0	48:00	
90	150	2:20														51	0	54:00	
90	160	2:20														57	0	60:00	
90	170	2:00													1	61	0	65:00	
90	180	2:00													2	65	0	70:00	
90	190	2:00													2	70	0	75:00	
							-												
100	39	3:20														0	0	3:20	J
100	40	2:40														1	0	4:20	J
100	45	2:40														5	0	8:20	K
100	50	2:40														9	0	12:20	L
100	55	2:40														12	0	15:20	L
100	60	2:40														15	0	18:20	М
100	65	2:40														18	0	21:20	М
100	70	2:40														21	0	24:20	N
100	75	2:40														23	0	26:20	N
100	80	2:40														26	0	29:20	0
100	85	2:40														30	0	33:20	0
100	90															34	0	37:20	0
limit 100	95														1	37	0	41:20	
100	100	2:20													3	38	0	44:20	
100	110	2:20													6	42	0	51:20	
100	120	2:20													8	46	0	57:20	

DEPTH (FSW)	MIT	FIRST					DE	COMPR STC			TOPS (MIN)		SW)					TOTAL ASCNT TIME	RPT GRP DES
	(141)	STOP (M:S)	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)	(6)
110	32	3:40														0	0	3:40	J
110	35	3:00														3	0	6:40	J
110	40	3:00														8	0	11:40	K
110	45	3:00														13	0	16:40	L
110	50	3:00														17	0	20:40	L
110	55	3:00														21	0	24:40	M
110	60	3:00														25	0	28:40	М
110	65	3:00														28	0	31:40	N
limit 110	70	2:40													1	30	0	34:40	
110	75	2:40													4	32	0	39:40	
110	80	2:40													7	34	0	44:40	
110	85	2:40													9	36	0	48:40	
110	90	2:40													11	39	0	53:40	
110	95	2:40													13	41	0	57:40	
110	100	2:40													15	43	0	61:40	
110	110	2:20												3	15	49	0	70:40	
110	120	2:20												6	15	56	0	80:40	
120	27	4:00		~		-										0	0	4:00	I
120	30	3:20														4	0	8:00	J
120	35	3:20														10	0	14:00	K
120	40	3:20														16	0	20:00	L
120	45	3:20														21	0	25:00	L
120	50	3:20														26	0	30:00	M
120	55															30	0	34:00	M
limit 120	lin 60														4	30	0	38:00	

	MIT	TM TO FIRST STOP							P TI	MES	(MIN))		.0	.0			TOTAL ASCNT TIME	RPT GRP DES
		(M:S)	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)	(6)
120	65	3:00													8	30	0	42:00	
120	70	3:00													12	32	0	48:00	
120	75	3:00													15	35	0	54:00	
120	80	2:40									-			3	15	37	0	59:00	
120	85	2:40												5	15	41	0	65:00	
120	90	2:40												8	15	43	0	70:00	
120	95	2:40												10	15	46	0	75:00	
120	100	2:40												12	15	50	0	81:00	
130	23	4:20	**													0	0	4:20	I
130	25	3:40														2	0	6:20	J
130	30	3:40														10	0	14:20	K
130	35	3:40														17	0	21:20	K
130	40	3:40														23	0	27:20	L
130	45	3:40														29	0	33:20	M
limit 130	line 50														4	30	0	38:20	
130	55	3:20													9	30	0	43:20	
130	60	3:20								-					14	29	0	47:20	
130	65	3:00												3	15	33	0	55:20	
130	70	3:00												7	15	36	0	62:20	
130	75	3:00												11	14	39	0	68:20	
130	80	3:00												14	14	42	0	74:20	
140	21	4:40														0	0	4:40	I
140	25	4:00														7	0	11:40	J
140	30	4:00														15	0	19:40	K
140	35	4:00														23	0	27:40	L

DEPTH (FSW)	TIM I	FIRST	150	140	120	120			P TI	MES			W) 50	40	30	20	10	TOTAL ASCNT TIME (M:S)	RPT GRP DES (6)
140	40	(M:S) 3:40	150	140	130	120	110	100	50	00	, ,				2	28	0	34:40	М
limit 140			- -												 7	30	0	41:40	
140	50	3:20												1	12	29	0	46:40	
140	55	3:20												4	14	30	0	52:40	
140	60	3:20												9	14	33	0	60:40	
140	65	3:20												13	15	36	0	68:40	
140	70	3:00											3	14	15	39	0	75:40	
140	75	3:00											6	15	15	44	0	84:40	
140	80	3:00											10	15	14	50	0	93:40	
150	17	5:00											-,			0	0	5:00	Н
150	20	4:20														3	0	8:00	I
							,									13	0	18:00	J
150	25	4:20														22	0	27:00	K
150	30	4:20													3	27	0	35:00	L
150 limit	35 line														 8	29	0	42:00	
150	40	4:00)																
150	45	3:40)											3	12	29	0	49:00	
150	50	3:40)											7	14	30	0	56:00	
150	55	3:20)										2	10	15	33	0	65:00	
150	60	3:20)										4	14	15	36	0	74:00	
150	70	3:20)										13	14	15	46	0	93:00	
150	80	3:00)									6	15	15	14	59	0	114:00	
limit	line	e																	
160	15	5:20	0													0	0	5:20	Н
160	20	4:40	0													7	0	12:20	J
160	25	4:2	0												1	17	0	23:20	K
160	30	4:2	0												3	24	0	32:20	L

DEPTH (FSW)	TIM	FIRST STOP						STO	P TI	MES	TOPS)					1.0	TOTAL ASCNT TIME	RPT GRP DES
		(M:S)	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)	(6)
160	35	4:00												1	7	28	0	41:20	
160	40	4:00												5	10	30	0	50:20	
160	45	3:40											2	7	14	29	0	57:20	
160	50	3:40											5	10	15	32	0	67:20	
160	55	3:20										1	7	13	15	36	0	77:20	
160	60	3:20										3	10	14	15	41	0	88:20	
160	80	3:00									2	15	15	14	15	68	0	134:20	
limit	line	9																	
170	13	5:40														0	0	5:40	Н
170	15	5:00														2	0	7:40	I
170	20	5:00														11	0	16:40	J
170	25	4:40													3	20	0	28:40	K
170	30	4:20												2	6	25	0	38:40	
170	35	4:00											1	5	7	30	0	48:40	
170	40	4:00											3	8	11	30	0	57:40	
170	45	4:00											7	9	14	31	0	66:40	
170	50	3:40										4	7	12	15	36	0	79:40	
170	55	3:40)									6	10	14	15	41	0	91:40	
170	60	3:20)								2	7	13	15	14	49	0	105:40	
limit	- lin	e																	
180	12															0	0	6:00	Н
180	15															4	0		
180	20														2	14	0		
180	25													3	3				
180	30												2		7				
180	35											1			9				
100	55	4.00	•									_	,		_				

DEPTH (FSW)	TIM	FIRST	STOP TIMES (MIN)												TOTAL ASCNT TIME	RPT GRP DES			
	(M) S	(M:S)	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)	(6)
180	45	4:00										6	7	11	14	35	0	79:00	
180	50	3:40									2	7	8	15	14	40	0	92:00	
180	55	3:40									5	7	13	14	15	48	0	108:00	
180	60	3:20								1	7	9	14	15	15	56	0	123:00	
limit	line															-	- -		
190	10	6:20														0	0	6:20	G
190	15	5:40														6	0	12:20	J
190	20	5:00												1	4	15	0	26:20	K
190	25	4:40											2	3	4	24	0	39:20	
190	30	4:20										1	4	5	7	28	0	51:20	
190	35	4:20										4	5	7	11	29	0	62:20	
190	40	4:00									2	5	7	8	15	34	0	77:20	
190	45	4:00	ļ								4	7	8	13	14	39	0	91:20	
190	50	3:40	+							1	7	7	10	15	15	47	0	108:20	
190	55	3:40)							4	7	8	14	15	15	56	0	125:20	
190	60	3:40)							7	.7	12	15	14	15	65	0	141:20	

TABLE G-3. SURFACE INTERVAL CREDIT AND RESIDUAL NITROGEN TIME TABLE

All times in hour:minutes

START																
A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0:00 2:20
В	_	_	_	_	_	_	_	_	_	_	-	-	-	_	:00	1:17
															1:16	3:36
C	-	_	-	-	-	-	_	-	_		-	-	-	:00	:56	2:12
														:55	2:11	4:31
D	-	_	_	-	-	-		_	-	-	=	-	:00	:53	1:48 3:03	3:04 5:23
177							_		_	_	_	:00	:52 :53	1:47 1:45	2:40	3:56
E	_	-	_	-	_	_	_	_	_	_	_	:52	1:44	2:39	3:55	6:15
F	_	_	_	-	_	_	_	_	_	_	:00	:53	1:45	2:38	3:32	4:49
-											:52	1:44	2:37	3:31	4:48	7:08
G	_	_	-	-		-	_	-	-	:00	:53	1:45	2:38	3:30	4:24	5:41
										:52	1:44	2:37	3:29	4:23	5:40	8:00
H	-	_	_	-	_	-	-	-	:00		1:45	2:38	3:30	4:22	5:17	6:33
										1:44		3:29	4:21	5:16	6:32	8:52
I	-	-	-	_	-	-	-	:00		1:45		3:30	4:22	5:14	6:09	7:25
_							0.0		1:44			4:21	5:13	6:08	7:24	9:44 8:17
J	-	-	-	_	-	-	:00		1:45 2:37			4:22 5:13	5:14 6:06	6:07 7:00	7:01	10:36
K	_	_	_	_	_	:00			2:38			5:14	6:07	6:59	7:53	9:10
10									3:29			6:06	6:58	7:52		11:29
L	-	_	_	_	:00				3:30			6:07	6:59	7:51	8:45	10:02
									4:21			6:58	7:50		10:01	
M	-	_	-	:00					4:22			6:59	7:51	8:43		10:54
			0.0		1:44							7:50 7:51	8:42		10:53 10:30	
N	-	_	:00		1:45 2:37							8:42	8:43	10:29		
0	_	:00			2:38							8:43		10:28		
O					3:29								10:27			
Z	:00				3:30								10:28			
	:52	1:44	2:37	3:29	4:21	5:13	6:06	6:58	7:50	8:42	9:34	10:27	11:19	12:13	13:30	15:50
										_	_	_	_	_	_	-
FINA	L Z	0	N	M	L	K	J	I	Н	G	F	E	D	С	В	A
BESTO	11 Δ Τ. 1	JTTRA	EN T	TME. (I	MTN)	FOR RI	EPETT	TVE	MK 16	MOD	1 Na-C	o ₂ DIVE				
DEPT			J L I 1.			. 01. 1.						2				
10	-	-	-	-	-	-	-	-	-	-	-	-	-		-	720
20	-	-	_	-	-	-	-	270	- 070	- 010	1.64	100	-	720	420	153
30	-	_	_	_	_	720	629	372	273	210	164	128	98 720	72 317	50 168	31 88
40 50	-	_	_	_	720	496	344	265	210	169	136	108	84	63	44	27
60		255	222	194	170	149	130	113	97			58	46	36	25	16
	154	140	127	115	103	93	83	73				39	32	25	18	11
	107	98	90	82	75	68	61	54	48	42	36	30	24	19	14	9
90	82	76	70	64	59	53	48	43				24	20	15	11	7
100		62	57	53		44	40	36				20	16	13	9	6
110	56	52	48	45		37	34	30 26				17 15	14 12	11 9	8 7	5 4
120 130		45 40	42 37	39 34	35 31	32 29	29 26					13	11		6	
140		35	33	30								12			5	3
150		32	30									10		6	5	3
160			27	25										6	4	3
170	28	27	25	23								9			4	3
180			23												3	
190	24	23	21	19	18	16	15	13	12	10	9	7	6	4	3	3

REPETITIVE DIVE WORKSHEET FOR MK 16 MOD 1 N₂-O₂ DIVES

Part 1 Previous Dive:		minu	tes					
		dive	titive gr was a i if the div	no-dec	ompre	ssion d	ive, or	e G-1 if the from Table ve
Part 2. Surface Interval:								
Enter the top section of Ta horizontally to the column in group designator from the bo	n which the a	ctual or plan	the repet ned surfa	itive gro ace inter	oup des rval time	ignator f e lies. R	rom Pa lead the	rt 1 and move final repetitive
		hours	mi	nutes c	n the	surface		
		final repe	titive gro	oup fro	m Tab	le G-3		
Part 3. Equivalent Single	Dive Time	for the Re	epetitive	Dive:				
Enter the bottom section of horizontally to the column of Time (RNT). Add this RNT dive time.	of the final re	netitive grou	n desiana	ator tron	n Paπ ⊿	to fina	me res	ndual Millogen
minutes: R	٧T							
+ minutes: pla	anned botto	m time						
= minutes: eq	juivalent sin	ıgle dive tir	ne					
Part 4. Decompression S	chedule fo	r the Rep	etitive [Dive:				
Locate the row for the depti bottom time equal to or just for the repetitive dive fror decompression limit, locate required decompression sto	greater than to the top of the row for	the equivaler the column the depth a	nt single (. If the nd equiva	ive time equival alent sin	e and re lent sin lale div	ad the si gle dive e time in	time e Table	xceeds the no- G-2. Read the
minutes: eq	uivalent sin	gle dive tir	ne from	Part 3				
feet: depth	of the repet	itive dive.						
Schedule (d	depth/bottor	n time) fro	m Table	G-2, if	f a dec	ompres	sion d	ive:
Stop Stop Time	_ /	30 70 — —	60	50	40	30	20	10