МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №7

по дисциплине «Основы профессиональной деятельности»

Вариант № 3409

Выполнил:

Студент группы Р3110 Конкин Вадим Вадимович

Преподаватель:

Бострикова Дарья Константиновна

Содержание

Гекст задания	3
Исходный код синтезируемой команды	3
Тестовая программа	4
 Методика проверки	5
Вывод	5

Текст задания

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

- 1. ASR M сдвиг ячейки памяти вправо, 15 разряд дублируется. Установить признаки N/Z/V/C согласно результата
- 2. Код операции 9...
- 3. Тестовая программа должна начинаться с адреса 0231₁₆

Исходный код синтезируемой команды

Текст программы

Адрес МП	Микрокоманда	Описание	Комментарий
E0	00 <mark>10</mark> E80001		Запись АС на верхушку
			стека
E1	80 C4 101040	GOTO INT @ C4	Переход к циклу прер.

Таблица трассировки микропрограммы

Пусть в ячейке E3 лежит: 0002_{16} . В аккумуляторе находится 0000_{16} . Выполняется команда ASR по адресу 123.

МР до выборки	Содержимое памяти и регистров процессора после выборки микрокоманды									
MK	MR	IP	CR	AR	DR	SP	BR	AC	NZVC	СчМК
E0	00 <mark>10</mark> E80001	124	90E3	0E3	0002	000	123	0001	0000	E1
E1	80 C4 101040	124	90E3	0E3	0001	000	123	0001	0000	C4

Тестовая программа

```
ORG 0xE3
ARG1: WORD 0x0002
ARG2: WORD 0xFFFE
ARG3: WORD 0x0
ORG 0x1D0
RESULT: WORD 0x0
CHECK1: WORD 0x0
CHECK2: WORD 0x0
CHECK3: WORD 0x0
RES1: WORD 0x0001
RES2: WORD 0x0002
RES3: WORD 0x0
ORG 0x0231
START: CALL TEST1
   CALL TEST2
   CALL TEST3
   LD #0x1
   AND CHECK1
   AND CHECK2
   AND CHECK3
   ST RESULT
STOP: HLT
TEST1:
   WORD 0x90E3; ASR $E3
   ST CHECK1
   CMP RES1
   BEQ DONE1
                RET
DONE1:
   LD #0x1
   ST CHECK1
   CLA
   RET
TEST2:
   WORD 0x90E4; ASR $E4
   ST CHECK2
   CMP RES2
   BEQ DONE2
```

```
RET
DONE2: POP
   POP
   LD #0x1
   ST CHECK2
   CLA
   RET
TEST3: WORD 0x90E5; ASR $E5
   ST CHECK3
   CMP RES3
   BEQ DONE3
   RET
DONE3: POP
   POP
   LD #0x1
   ST CHECK3
   CLA
   RET
```

Методика проверки

- 0. Записать микропрограмму.
- 1. Загрузить тестовую программу в память базовой ЭВМ.
- 2. Запустить основную программу с адреса 0231₁₆ в режиме работа.
- 3. Дождаться останова.
- 4. Проверить значение ячейки памяти RESULT с номером $1D0_{16}$, если значение 0x1 все тесты выполнены успешно.

Комментарии к методике

- Для проверки используется три значения: 0002, FFFE, 0000
- Данные значения показывают правильную работу программы с отрицательными, нулевыми и положительными числами.
- В ходе проверки флаги не меняются, что говорит о правильном выставлении флагов.
- Результат каждого теста записывается в соответствующую ячейку СНЕСК, значение 0x1 означает успешное выполнение. Любое другое результат выполнения синтезированной команды
- При успешном выполнении всех тестов значение RESULT станет 0x1, иначе любым отличным.

Вывод

В ходе выполнения лабораторной работы я изучил алгоритм синтеза собственной команды БЭВМ с помощью микропрограмм и методику проверки сделанной программы.