Name: Georges Hatem

CS 590 Homework Assignment 9: Divide-and-Conquer Reinforcement Exercises

Due Date: April 3, 2022

Problem 11.6.1:

To characterize the recurrence equations using the master theorem, we must apply check which case apply as follows. The master theorem is used for recurrence equations of the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT\left(\frac{n}{b}\right) + f(n) & \text{if } n \ge d \end{cases}$$

Where $d \ge 1$ is an integer constant, $a \ge 1$, $c \ge 0$, and $b \ge 1$ are real constants, and f(n) is a function that is positive for $n \ge d$.

The Master Theorem is defined as below:

Let f(n) and T(n) be defined as above.

- 1. If there is a small constant ϵ >0, such that f(n) is $O(n^{\log_b(a)-\epsilon})$, then T(n) is $O(n^{\log_b(a)})$.
- 2. If there is a constant $k \ge 0$, such that f(n) is $\Theta(n^{\log_b(a)}\log^k n)$, then T(n) is $\Theta(n^{\log_b(a)}\log^{(k+1)}n)$
- 3. If there are small constants $\epsilon>0$ and $\delta<1$, such that f(n) is $\Omega(n^{\log_b(a)+\epsilon})$ and $af\left(\frac{n}{b}\right) \leq \delta f(n)$, for n>=d, then T(n) is $\Theta(f(n))$.

Case 1 characterizes the situation where f(n) is polynomially smaller than the special function, $n^{\log_b(a)}$. Case 2 characterizes the situation when f(n) is asymptotically close to the special function, and Case 3 characterizes the situation when f(n) is polynomially larger than the special function.

Part A:

Let's characterize the recurrence equation below using the master theorem:

$$T(n) = \left(2 * T\left(\frac{n}{2}\right)\right) + \log(n)$$

From the given above,

$$T(n) = \left(a * T\left(\frac{n}{b}\right)\right) + f(n) \text{ for } n \ge d$$

$$f(n) = \log(n)$$
, $a = 2$, and $b = 2$

$$n^{\log_b(a)} = n^{\log_2(2)} = n^1 = n$$

From the analysis, we can see that:

$$n > \log(n)$$

Which means that:

$$n^{\log_b(a)} > f(n)$$

This characterizes case 1 above. This means that T(n) is $\Theta(n^{\log_b(a)})$ based on case 1 above.

So,

$$T(n)$$
 is $\Theta(n^{log_2(2)})$

Which means that

$$T(n)$$
 is $\Theta(n)$

Part B:

Let's characterize the recurrence equation below using the master theorem:

$$T(n) = 8T\left(\frac{n}{2}\right) + n^2$$

From the given above,

$$T(n) = \left(a * T\left(\frac{n}{b}\right)\right) + f(n) \text{ for } n \ge d$$

$$f(n) = n^2$$
, $a = 8$, and $b = 2$

$$n^{\log_b(a)} = n^{\log_2(8)} = n^3$$

From the analysis, we can see that:

$$n^3 > n^2$$

Which means that:

$$n^{\log_b(a)} > f(n)$$

This characterizes case 1 above. This means that T(n) is $\Theta(n^{\log_b(a)})$ based on case 1 above.

So,

$$T(n)$$
 is $\Theta(n^{log_2(8)})$

Which means that

$$T(n)$$
 is $\Theta(n^3)$

Part C:

Let's characterize the recurrence equation below using the master theorem:

$$T(n) = 16T\left(\frac{n}{2}\right) + \left(n\log(n)\right)^4$$

From the given above,

$$T(n) = \left(a * T\left(\frac{n}{b}\right)\right) + f(n) \text{ for } n \ge d$$

$$f(n) = (nlog(n))^4$$
, $a = 16$, and $b = 2$

$$n^{\log_b(a)} = n^{\log_2(16)} = n^4$$

From the analysis, we can see that the special function is asymptotically close to f(n), which means that we are in case 2.

Since we are in case 2 above, this means that T(n) is $\Theta(n^{\log_b(a)}log^{(k+1)}n)$ based on case 2 above.

We need to determine k, we can determine it as follows:

From case 2 definition:

$$f(n)$$
 is $\Theta(n^{\log_b(a)}\log^k n)$

We know from the equation given in the Exercise that f(n) is:

$$f(n) = n^4 log^4(n)$$

And since we have a and b we know that:

$$log_b(a) = 4$$

This means that

$$f(n)$$
 is $\Theta(n^4 log^k n)$

This means that k = 4

Now, back to where we were at:

Since we are in case 2 above, this means that T(n) is $\Theta(n^{\log_b(a)}log^{(k+1)}n)$ based on case 2 above.

So,

$$T(n)$$
 is $\Theta(n^4 \log^5(n))$

Part D:

Let's characterize the recurrence equation below using the master theorem:

$$T(n) = \left(7 * T\left(\frac{n}{3}\right)\right) + n$$

From the given above,

$$T(n) = \left(a * T\left(\frac{n}{b}\right)\right) + f(n) \text{ for } n \ge d$$

From the above, we can deduce the following:

$$f(n) = n, a = 7, and b = 3$$

Let's find what the special function gets us:

$$n^{\log_b(a)} = n^{\log_3(7)} \cong n^{1.771}$$

From the analysis, we can see that:

$$n^{1.771} > n$$

Which means that:

$$n^{\log_b(a)} > f(n)$$

This characterizes case 1 above. This means that T(n) is $\Theta(n^{\log_b(a)})$ based on case 1 above.

So,

$$T(n)$$
 is $\Theta(n^{\log_3(7)})$

Part E:

Let's characterize the recurrence equation below using the master theorem:

$$T(n) = \left(9 * T\left(\frac{n}{3}\right)\right) + (n^3 \log(n))$$

From the given above,

$$T(n) = \left(a * T\left(\frac{n}{b}\right)\right) + f(n) \text{ for } n \ge d$$

$$f(n) = n^3 \log(n), a = 9, and b = 3$$

$$n^{\log_b(a)} = n^{\log_3(9)} = n^2$$

From the analysis, we can see that:

$$n^2 < n^3 \log (n)$$

Which means that:

$$n^{\log_b(a)} < f(n)$$

This characterizes case 3 above. This means that T(n) is $\Theta(f(n))$ based on case 3 above.

So,

$$T(n)$$
 is $\Theta(n^3 log(n))$

Problem 11.6.5:

Let's get the maxima set from the following set of points:

$$\{(7,2),(3,1),(9,3),(4,5),(1,4),(6,9),(2,6),(5,7),(8,6)\}$$

We will use the knowledge learned from Section 11.1 to determine the maxima. Let's first graph the points in the set above:

From the above graph, we can see the following:

Both x and y values of Point (1,4) are less than the x and y values of Point (2,6). This means that Point (1,4) cannot be in the maxima set and will be eliminated.

Both x and y values of Point (6,9) are higher than both x and y values of Points (2,6), (3,1), (4,5), and (5,7). This means that Points (2,6), (3,1), (4,5), and (5,7) cannot be in the maxima set and will be eliminated.

Both x and y values of Points (8,6) and (9,3) are higher than both x and y values of Point (7,2). This means that Point (7,2) cannot be in the maxima set and will be eliminated.

So, the maxima set is as follows:

{(6,9),(8,6),(9,3)}