

Why Do We Give?

Urgency and Stability in Child Sponsorship Programs

MASTERSIN COMPUTATIONAL SOCIAL SCIENCE THE UNIVERSITY OF CHICAGO

Junho Choi (Computational Economics)

Research Question

Are matches in a child sponsorship program (CSP) made based solely on how **urgently** potential sponsors need help, or also on how stable the matches can be?

Motivation (and how CSP works)

As the welfare (of sponsors [PS] and recipients [PR]) maximizer, is it in the child sponsorship organization (CSO)'s best interest to relay ψ and θ as is?

Literature and Theory

Warm-glow model of giving

Andreoni (1989): motivation behind giving not just to accomplish a common objective, but also for something personal (warm glow)

Myerson-Satterthwaite Impossibility

Using Myerson and Satterwaite (1983): truthtelling can conflict with Pareto efficiency, even in CSP matchings

Andreoni, James. 1989. "Giving with Impure Altruism: Applications to Charity and Ricardian Equivalence." Journal of Political Economy 97 (6): 1447-1458.

Myerson, Roger B., and Mark A. Satterthwaite. 1983. "Efficient Mechanisms for Bilateral Trading." Journal of Economic Theory 29 (2): 265-281.

Data and Preparation

Most textual data scraped using Python, from Compassion International website N=9518, 15-days-worth of data (Data collected from April 18, 2019 to May 3, 2019)

Initial Glance at Data

Geographic income by match status

Match percentage by urgency (pages)

Data Issues

- (1) Continents / regions as covariates difficult as all obs. from Africa: also coded as AIDS area
- (2) Graphic information (i.e. photographs of PR) unincorporated in the dataset

Variable

Urgency

AIDS Area

Exploitation

Age

Female

(3) **Urgency**: not only how dire the need for help, but also how long exposed to the PS on the waiting list

Methodology and Identification

ID 1. Survival analysis and multiple testing

ID 2. Feature importance and prediction by ML

ID 1-1. Survival Regression Analysis

*higher hazard / lower survival rate = faster matching

ID 1-2. Multiple Testing (Bonferroni Correction)

99.5% Confidence Interval Plot for Selected Variables, Cox Regression

0.5611

0.0279

0.0442

0.0182

0.5611

Hazard

5.4717

0.3627*

0.7678*

1.0825

1.1716*

(2) Sensitivity analysis

Cox PH

Why MT?

(1) Covariates, as

signals, are given to PS

for multiple testing (MT)

at once; motivation

Showcased for semiparametric baseline hazard function

Initial Results

Covariates alluding to instability in matching: associated with lower conditional hazard rate even after MT

Variable Robust SE Hazard Robust SE 0.9396 0.3627 One emp. 1.2546* 0.0713 Two emp. 0.8290* Educ: unenrollec 0.0495 Educ: pre/kinder 0.7772* 0.0352 0.0641 Educ: elem/mid 0.8646^

ID 2-1. Decision Tree & Random Forest

Binary classification

Although multiclass classification possible, low accuracy of prediction

Recall optimization

"Out of those that are going to be matched, how many have we correctly identified? Also did better on accuracy of prediction

Initial Results

Accuracy of prediction: ~60% Feature Importance: similar to regression, but different in ordering by significance

Why Decision Tree / Random Forest?

DT / RF classification using **information gain** (entropy) as a metric: a natural extension to MLE using hazard function (survival analysis)

$$\Lambda(T,\theta|X,\hat{\lambda}) = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T_i} \left[(1-\theta_{it}) \log\{1-\hat{\lambda}(t|X_i)\} + \theta_{it} \log \hat{\lambda}(t|X_i) \right]$$

ID 2-2. Additional Models for Better Prediction

Accuracy and Recall for Matches for the Test Set, Post-HPT and CV

(Left) ROC Curve Comparisons

Initial Results

No method outperforms others by a large margin; SVC not recommended.

Discussion of Results and Future Directions

In both (econometric) survival analyses and machine learning cases, covariates indicating risk in stable matching (e.g. exposed-to-AIDS area, expropriation): associated with longer time to match and vice versa (e.g. parent employment to shorter time to match)

Furute Directions: (1) Significance of urgency (see Data Issues): motivation to use RDD around 180 days of waiting; may require more data points. (2) Longer window of observation may be needed, with some info about the PS.

Acknowledgements

I thank Dr. Richard Evans for insightful guidance and various methods he has taught me through -out the MACSS Perspectives courses.

Contact Information

Junho Choi, MACSS Computational Economics Concentration Email: junhoc@uchiago.edu