# Additional material for: Network Thermodynamics of Biological Systems: A Bond Graph Approach

# Part 2: Photosynthesis modelling.

# Peter Gawthrop and Michael Pan May 4, 2022

# **Contents**

| 1 | Intr | oduction                                                 | 3         |
|---|------|----------------------------------------------------------|-----------|
|   | 1.1  | Some useful imports                                      | 3         |
|   | 1.2  | Photosynthesis                                           | 4         |
| 2 | Pho  | ton Energetics                                           | 5         |
| 3 | Red  | ox reactions                                             | 6         |
|   | 3.1  | 2 port Re version                                        | 6         |
|   | 3.2  | 1 port Re version                                        | 7         |
|   | 3.3  | Redox formulation                                        | 8         |
|   |      | 3.3.1 Stoichiometry                                      | 8         |
|   |      | 3.3.2 Pathway analysis                                   | 8         |
| 4 | Che  | mical reaction network (CRN) representation              | 9         |
| _ | 4.1  | •                                                        | 10        |
|   | 4.2  | Pathway analysis                                         |           |
| 5 | Red  | ox potentials and equivalent species potentials $\phi$   | 11        |
|   |      |                                                          | 10        |
| 6 |      | d graph description of ETC complexes                     | <b>13</b> |
|   | 6.1  |                                                          |           |
|   |      |                                                          |           |
|   | 6.2  | 6.1.2 Pathway analysis with redox and pathway potentials |           |
|   | 0.2  | 6.2.1 Stoichiometry                                      |           |
|   |      |                                                          | 15        |
|   | 6.3  |                                                          | 16        |
|   | 0.0  | 6.3.1 Stoichiometry                                      |           |
|   |      | 6.3.2 Pathway analysis with redox and pathway potentials | 17        |
|   | 6.4  | Complex Fer – Feredoxin-NADP reductase                   | 17        |
|   | 0.1  | 6.4.1 Stoichiometry                                      |           |
|   |      | 6.4.2 Pathway analysis with redox and pathway potentials |           |
|   |      |                                                          |           |
| 7 | The  | Electron Transport Chain                                 | 19        |

|   | 21 |
|---|----|
|   |    |
|   | 21 |
| 2 | 22 |
|   | 22 |
|   | 23 |
|   | 23 |
|   | 23 |
|   |    |
|   | 25 |
|   |    |

## 1 Introduction

- This document contains additional material for the paper: *Network Thermodynamics of Biological Systems: A Bond Graph Approach* by Peter Gawthrop and Michael Pan.
- It illustrates how the Python package BondGraphTools can be used to create and analyse chemical reaction networks.
- It provides background to Section 4.2 *Redox Reactions*, Section 6 *Stoichiometry and Bond Graphs* and Section 7 *Example: Photosynthesis*.
- This document is **Chloroplast.pdf** (see also **Reactions.pdf**).
- The document is available as the Jupyter notebook **Chloroplast.ipynb**.
- Code is available at https://github.com/gawthrop/GawPan22

## 1.1 Some useful imports

```
[1]: ## Some useful imports
     import BondGraphTools as bgt
     print('Using BondGraphTools', bgt.version)
     import numpy as np
     import sympy as sp
     import matplotlib.pyplot as plt
     ## Stoichiometric analysis
     import stoich as st
     ## SVG bg representation conversion
     import svgBondGraph as sbg
     ## Stoich to BG
     import stoichBondGraph as stbg
     ## Modular bond graphs
     import modularBondGraph as mbg
     ## Display (eg disp.SVG(), disp.
     import IPython.display as disp
     ## Data
     import phiData
     import redoxData
     ## Copy
     import copy
     import importlib as imp
     quiet = True
     chemformula = True
     savefig = False
```

Using BondGraphTools 0.3.7

```
[2]: def SaveFig(savefig,name):
    if savefig:
        print('Saving',name)
        plt.savefig(name)
    else:
        print('Not saving',name)
```

```
[3]: def mV(E):
    return int(round(1000*E))
```

#### 1.2 Photosynthesis

Photosynthesis within plant chloroplasts is the basis of life on earth Blankenship (2021), Nicholls and Ferguson (2013).

Like the mitochondrion, the chloroplast has a membrane seperating an inner space (lumen) from an outer space (stroma). In the chloroplast, the lumen gains protons and is called the p-space, the stroma looses protons and is called the n-space. Thus geometrically, the lumen corresponds to the mitochondrial matrix and the stroma to the mitochondrial intermembrane space; but electrically the p-space is inside and the n-space outside - the reverse of the mitochondrial situation.

The chloroplast electron transport chain has 4 complexes.

- 1. Photosystem II (PII) which absorbs photons at 680nm and splits water releasing protons into the p-space and passing electrons to the plastoquinone(PQ)/plastoquine(PQH2) couple which absorbs protons from the n-space.
- 2. Cytochrome bf (Cyt) which passes electrons to the plastoquine/plastoquinone couple which releases two protons into the p-space. Electrons are passed to the plastocyanine couple (PcOx/PcRed). Two protons are pumped across the membrane.
- 3. Photosystem I (PI) which absorbs photons at 700nm and transports electrons from the plastocyanine (PcRed/PcOx) couple to the ferredoxin (FdOx/FdRed) couple.
- 4. Ferredoxin-NADP reductase which transfers electrons from the ferredoxin (FdRed/FdOx) couple to convert NADP to NADPH absorbing a proton from the n-space.

The following figure is: https://commons.wikimedia.org/wiki/File:Thylakoid\_membrane\_3.svg

• See section 7 of paper.

```
[4]: # https://commons.wikimedia.org/wiki/File:Thylakoid_membrane_3.svg disp.SVG("Thylakoid_membrane_3.svg")
```

[4]:



# 2 Photon Energetics

• See section 7.2 of paper.

$$\phi_{photon} = \frac{N_{av}hc}{F\lambda} \tag{1}$$

where 
$$N_{av} = \text{Avogadro's number}$$
 (2)

$$h = Planck's constant$$
 (3)

$$c = \text{velocity of light}$$
 (4)

$$F = Faraday's constant$$
 (5)

and 
$$\lambda = \text{wavelength}$$
 (6)

For example:

$$\phi_{photon} = \begin{cases} 1.82V & \lambda = 680nm \\ 1.77V & \lambda = 700nm \end{cases}$$
 (7)

```
[5]: ## Plot
    wavelength = np.linspace(600,800,100)
    phi_680 = redoxData.V_photon(680)
    phi_700 = redoxData.V_photon(700)
    print(f'phi_680 = {phi_680:0.2f}')
    print(f'phi_700 = {phi_700:0.2f}')
    phi_wave = [phi_680,phi_700]
    wave = [680,700]
    one = np.ones(2)

PHI = redoxData.V_photon(wavelength)
    plt.plot(wavelength,PHI)
```

```
plt.hlines(phi_wave,min(wavelength)*one,wave,linestyles='dotted')
plt.vlines(wave,min(PHI)*one,phi_wave,linestyles='dotted')
plt.grid()
plt.xlabel('$\lambda$(nm)')
plt.ylabel('$V_{photon}$ V')
SaveFig(savefig,'Figs/V_photon.pdf')
```

```
phi_680 = 1.82
phi_700 = 1.77
Not saving Figs/V_photon.pdf
```



## 3 Redox reactions

## 3.1 2 port Re version

• See section 3.5 of paper.

```
[6]: ## 2 port Re version
disp.SVG('Fer0_abg.svg')
```

[6]:



## 3.2 1 port Re version

• See section 3.6 of paper.

```
[7]: ## One-port Re version
disp.SVG('Fer1_abg.svg')
```

[7]:



```
[8]: ## Convert to BGtools
sbg.model('Fer1_abg.svg',convertCe=True,convertR=True,quiet=quiet)
import Fer1_abg

[9]: ## Stoichiometry
sFer1= st.stoich(Fer1_abg.model(),quiet=True)
disp.Latex(st.sprintrl(sFer1,chemformula=chemformula))
```

[9]:

$$2 FdRed + Hn + NADP \stackrel{r}{\Longleftrightarrow} 2 FdOx + NADPH$$
 (8)

#### 3.3 Redox formulation

This redox reaction can be written as two half-reactions with the following BG representation:

[10]:



```
[11]: sbg.model('Fer_abg.svg',convertCe=True,convertR=True,quiet=quiet)
import Fer_abg
# imp.reload(Fer_abg)
```

## 3.3.1 Stoichiometry

[12]:

$$FdRed \xrightarrow{r_1} E_1 + FdOx$$
 (9)

$$E_1 \stackrel{r_2}{\longleftrightarrow} E_2 \tag{10}$$

$$2E_2 + Hn + NADP \stackrel{r_3}{\Longleftrightarrow} NADPH$$
 (11)

## 3.3.2 Pathway analysis

[13]:

$$2 \text{FdRed} + \text{Hn} + \text{NADP} \xrightarrow{\text{pr}_1} 2 \text{FdOx} + \text{NADPH}$$
 (12)

# 4 Chemical reaction network (CRN) representation

• See section 6.4 of paper.

[14]: disp.Latex(st.sprintl(sFer, 'species'))

[14]:

$$X = \begin{pmatrix} X_{E1} \\ X_{E2} \\ X_{FdOx} \\ X_{FdRed} \\ X_{Hn} \\ X_{NADP} \\ X_{NADPH} \end{pmatrix}$$

$$(13)$$

[15]: disp.Latex(st.sprintl(sFer,'N'))

[15]:

$$N = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} \tag{14}$$

[16]: disp.Latex(st.sprintl(sFer,'Z'))

[16]:

$$Z = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(15)$$

[17]: disp.Latex(st.sprintl(sFer, 'D'))

[17]:

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{16}$$

```
[18]: disp.SVG('FerCRN_abg.svg')
```

[18]:



```
[19]: sbg.model('FerCRN_abg.svg',quiet=quiet)
import FerCRN_abg
# imp.reload(FerCRN_abg)
```

## 4.1 Stoichiometry

```
[20]: ## Stoichiometry
imp.reload(st)
sFerCRN= st.stoich(FerCRN_abg.model(),quiet=quiet)
disp.Latex(st.sprintrl(sFerCRN,chemformula=chemformula))
```

[20]:

$$FdRed \xrightarrow{r_1} E_1 + FdOx$$
 (17)

$$E_1 \stackrel{\mathbf{r}_2}{\longleftarrow} E_2 \tag{18}$$

$$2E_2 + Hn + NADP \xrightarrow{r_3} NADPH$$
 (19)

## 4.2 Pathway analysis

```
[21]: ## Pathway analysis
    chemostats = ['FdRed','FdOx','NADP','NADPH','Hn']
    scFerCRN = st.stoich(FerCRN_abg.model(),chemostats=chemostats,quiet=True)
    spFerCRN = st.path(sFerCRN,scFerCRN)
    disp.Latex(st.sprintrl(spFerCRN,chemformula=chemformula))
```

[21]:

$$2 \text{ FdRed} + \text{Hn} + \text{NADP} \xrightarrow{\text{pr}_1} 2 \text{ FdOx} + \text{NADPH}$$
 (20)

## 5 Redox potentials and equivalent species potentials $\phi$

Note that photon energies have been used for  $V_700$  and  $V_680$ ; this value is too large as the energy conversion is not direct. A model of this needs to be built. See, for example: Blankenship and Prince (1985)

According to Blankenship (2021) (sec. 8.3) the *electrical* part of the membrane potential is small in isolated choroplasts.

```
[22]: #disp.Latex(redoxData.table())
[23]: import redoxData
      ## pH from BerTymStr 19.3
      pH_p = 4 \# pH \ of \ p-space
      pH_n = pH_p + 3
      VpH = redoxData.VpH(pH_p - pH_n)
      V680 = redoxData.V_photon(wavelength=680)
      V700 = redoxData.V_photon(wavelength=700)
      print(VpH)
      print('V_pH =',int(1000*VpH),'mV')
      print('V_680 =',int(1000*V680),'mV')
      print('V_700 =',int(1000*V700),'mV')
     0.18462122057715774
     V_pH = 184 mV
     V_{680} = 1823 \text{ mV}
     V_700 = 1771 \text{ mV}
[24]: ## Convert redox potentials to species phi
      phi_redox = redoxData.phi()
      phi_redox['Hn'] = redoxData.VpH(pH_n)
      phi_redox['Hp'] = redoxData.VpH(pH_p)
      ## The electrical membrane potential is close to zero ()
      phi_redox['dV'] = VpH
      ## Put in my computed values for photon potentials
      phi_redox['P680'] = phi_680
      phi_redox['P700'] = phi_700
[25]: ## phi for ATP etc from Phi for hydrolysis
      # Phi_Hyd = 0.424
      Phi_Hyd = 35e3/st.F()
      print(f'Phi_hyd = {Phi_Hyd:0.2f}')
      phi_H20 = phi_redox['H20']
      phi_H = phi_redox['Hn']
      Phi_A = Phi_Hyd - phi_H2O + phi_H
      print(f'Phi_A: {Phi_A:0.2f}')
      phi_ATP = Phi_A/2
      phi_ADP = phi_Pi = -Phi_A/4
```

```
phi_redox['ATP'] = phi_ATP
      phi_redox['ADP'] = phi_ADP
      phi_redox['Pi'] = phi_Pi
      ## Sanity check
      Phi_Hyd_check = phi_ATP + phi_H2O -(phi_ADP + phi_Pi + phi_H)
      print(f'{Phi_Hyd_check-Phi_Hyd:0.2f}')
     Phi_hyd = 0.36
     Phi_A: 1.18
     0.00
[26]: # Print values
      for spec in phi_redox.keys():
          if not (('*' in spec) or ('E' in spec) or ('+' in spec)):
              print(f'phi_{spec} = {phi_redox[spec]:0.2f} V')
     phi_NADP = -0.11 V
     phi_NADPH = 0.11 V
     phi_NAD = -0.10 V
     phi_NADH = 0.10 V
     phi_02 = 2.49 V
     phi_H20 = -1.25 V
     phi_P700 = 1.77 V
     phi_P870 = 0.45 V
     phi_P680 = 1.82 V
     phi_PQ = 0.43 V
     phi_PQH2 = -0.43 V
     phi_PcOx = 0.19 V
     phi_PcRed = -0.19 V
     phi_Fd0x = -0.21 V
     phi_FdRed = 0.21 V
     phi_Hn = -0.43 V
     phi_Hp = -0.25 V
     phi_dV = 0.18 V
     phi\_ATP = 0.59 V
     phi\_ADP = -0.29 V
     phi_Pi = -0.29 V
[27]: | ## Compatibility with Chloroplast model (but makes no difference)
      phi_redox['etc_FdRed'] = phi_redox['FdRed']
      phi_redox['etc_PcRed'] = phi_redox['PcRed']
      phi_redox['etc_PQH2'] = phi_redox['PQH2']
[28]: ## Redox potentials with zero photon contribution
      phi_redox_0 = copy.copy(phi_redox)
      phi_redox_0['P680'] = phi_redox_0['P700'] = 0
```

# 6 Bond graph description of ETC complexes

- The four ETC complexes are represented by SVG graphics which are automatically converted into BondGraphTools format.
- The stoichiometric toolbox is then used to generate the pathway-reduced equation for the complex.
- See section 7 of paper.

## 6.1 Complex PII – Photosystem II

```
[29]: disp.SVG('PII_abg.svg')
```

[29]:



```
[30]: imp.reload(sbg)
    sbg.model('PII_abg.svg',convertCe=True,convertR=True,quiet=quiet)
    import PII_abg
    # imp.reload(PII_abg)
```

## 6.1.1 Stoichiometry

```
[31]: ## Stoichiometry
sPII = st.stoich(PII_abg.model(),quiet=quiet)
chemostats = ['H2O','O2','PQ','PQH2','Hn','Hp','P680']
scPII = st.statify(sPII,chemostats=chemostats)
spPII = st.path(sPII,scPII)
## All reactions
disp.Latex(st.sprintrl(sPII,chemformula=chemformula))
```

[31]:

$$E_1 + P_{680} \stackrel{r}{\longleftarrow} E_2 \tag{21}$$

$$2 H_2 0 \stackrel{r_1}{\iff} 4 E_1 + 4 Hp + 0_2$$
 (22)

$$2E_2 + 2Hn + PQ \stackrel{r_2}{\Longleftrightarrow} PQH_2$$
 (23)

#### 6.1.2 Pathway analysis with redox and pathway potentials

```
[32]: ## Pathway analysis
      disp.Latex(st.sprintrl(spPII,chemformula=chemformula))
[32]:
                        2 H_2 O + 4 Hn + 4 P_{680} + 2 PQ \stackrel{pr_1}{\Longleftrightarrow} 4 Hp + O_2 + 2 PQH_2
                                                                                       (24)
[33]: ## Compute net redox potential
      RP_PII = (
                   - redoxData.EpH('02/2H20',pH=pH_p)
                   + redoxData.EpH('PQ/PQH2',pH=pH_n)
                )
      print(redoxData.EpH('02/2H20',pH=pH_p))
      print(redoxData.E('P680+/P680*'))
      print(redoxData.E7('PQ/PQH2'))
      print(redoxData.EpH('PQ/PQH2',pH=pH_n))
      #print(RP_PII)
      print('RP_PII =',int(1000*RP_PII), 'mV')
     1.0006212205771576
     0.8
     0
     0.0
     RP_PII = 822 mV
[34]: ## Compute the reaction potential Phi
      phi = phiData.phi_species(phi_redox,spPII['species'])
      Phi_PII_ = -spPII['N'].T@phi
      Phi_PII = Phi_PII_[0][0]
      print(f'Phi_PII = {int(1000*Phi_PII)} mV')
      print(f'Ratio = {(Phi_PII/RP_PII):.2f}')
     Phi_PII = 3290 mV
     Ratio = 4.00
[35]: ## Photon contribution
      n_{phot}=4
      print(f"Photon contribution = {mV(n_phot*redoxData.E('P680+/P680*'))} mV")
     Photon contribution = 3200 mV
[36]: ## Potential per proton
      n_{prot} = 4
      print(f'Potential per proton = {mV(Phi_PII/n_prot)}')
     Potential per proton = 823
```

## 6.2 Complex Cyt – Cytochrome bf

[37]: disp.SVG('Cyt\_abg.svg')

[37]:



```
[38]: sbg.model('Cyt_abg.svg',convertR=True,convertCe=True,quiet=quiet)
import Cyt_abg
# imp.reload(Cyt_abg)
```

## 6.2.1 Stoichiometry

```
[39]: ## Stoichiometry
sCyt = st.stoich(Cyt_abg.model(),quiet=True)
chemostats = ['PQ','PQH2','PcOx','PcRed','Hp','Hn']
scCyt = st.statify(sCyt,chemostats=chemostats)
spCyt = st.path(sCyt,scCyt)
disp.Latex(st.sprintrl(sCyt,chemformula=chemformula))
```

[39]:

$$E_1 + Hn \stackrel{r}{\Longleftrightarrow} E_2 + Hp$$
 (25)

$$PQH_2 \stackrel{r_1}{\rightleftharpoons} 2E_1 + 2Hp + PQ$$
 (26)

$$E_2 + PcOx \stackrel{r_2}{\Longleftrightarrow} PcRed$$
 (27)

#### 6.2.2 Pathway analysis with redox and pathway potentials

[40]: disp.Latex(st.sprintrl(spCyt,chemformula=chemformula))

[40]:

$$2 \operatorname{Hn} + \operatorname{PQH}_2 + 2 \operatorname{PcOx} \stackrel{\operatorname{pr}_1}{\longleftrightarrow} 4 \operatorname{Hp} + \operatorname{PQ} + 2 \operatorname{PcRed}$$
 (28)

```
+ redoxData.E('PcOx/PcRed')
)

#print(RP_Cyt)
print('RP_Cyt =',redoxData.mV(RP_Cyt), 'mV')
```

 $RP_Cyt = 11 mV$ 

```
[42]: ## Compute the reaction potential Phi
phi = phiData.phi_species(phi_redox,spCyt['species'])
Phi_Cyt_ = -spCyt['N'].T@phi
Phi_Cyt = Phi_Cyt_[0][0]
print('Phi_Cyt =',redoxData.mV(Phi_Cyt), 'mV')
print(f'Ratio = {(Phi_Cyt/RP_Cyt):0.2f}')
```

Phi\_Cyt = 22 mV Ratio = 2.00

## 6.3 Complex PI – Photosystem I

## [43]: disp.SVG('PI\_abg.svg')

[43]:



```
[44]: sbg.model('PI_abg.svg',convertR=True,convertCe=True,quiet=True)
import PI_abg
# imp.reload(PI_abg)
```

## 6.3.1 Stoichiometry

```
[45]: ## Stoichiometry
sPI = st.stoich(PI_abg.model(),quiet=quiet)
chemostats = ['PcOx','PcRed','FdOx','FdRed','P700']
scPI = st.statify(sPI,chemostats=chemostats)
spPI = st.path(sPI,scPI)
disp.Latex(st.sprintrl(sPI,chemformula=chemformula))
```

[45]:

$$E_1 + P_{700} \stackrel{r}{\Longleftrightarrow} E_2 \tag{29}$$

$$PcRed \stackrel{r_1}{\Longleftrightarrow} E_1 + PcOx$$
 (30)

$$E_2 + FdOx \stackrel{r_2}{\Longleftrightarrow} FdRed$$
 (31)

### 6.3.2 Pathway analysis with redox and pathway potentials

[46]: disp.Latex(st.sprintrl(spPI,chemformula=chemformula))

[46]:

$$FdOx + P_{700} + PcRed \stackrel{pr_1}{\rightleftharpoons} FdRed + PcOx$$
 (32)

 $RP_PI = 961 \text{ mV}$ 

```
[48]: ## Compute the reaction potential Phi
phi = phiData.phi_species(phi_redox,spPI['species'])
Phi_PI_ = -spPI['N'].T@phi
Phi_PI = Phi_PI_[0][0]
print('Phi_PI =',redoxData.mV(Phi_PI), 'mV')
print(f'Ratio = {(Phi_PI/RP_PI):0.2f}')
```

Phi\_PI = 961 mV Ratio = 1.00

## 6.4 Complex Fer – Feredoxin-NADP reductase

```
[49]: disp.SVG('Fer_abg.svg')
```

[49]:



```
[50]: sbg.model('Fer_abg.svg',convertR=True,convertCe=True,quiet=quiet)
import Fer_abg
# imp.reload(Fer_abg)
```

#### 6.4.1 Stoichiometry

```
[51]: ## Stoichiometry
sFer = st.stoich(Fer_abg.model(),quiet=True)
chemostats = ['FdRed','FdOx','NADP','NADPH','Hn']
scFer = st.stoich(Fer_abg.model(),chemostats=chemostats,quiet=True)
spFer = st.path(sFer,scFer)
disp.Latex(st.sprintrl(sFer,chemformula=chemformula))
```

[51]:

$$FdRed \stackrel{r_1}{\longleftarrow} E_1 + FdOx$$
 (33)

$$E_1 \stackrel{r_2}{\longleftarrow} E_2 \tag{34}$$

$$2E_2 + Hn + NADP \stackrel{r_3}{\rightleftharpoons} NADPH$$
 (35)

#### 6.4.2 Pathway analysis with redox and pathway potentials

```
[52]: disp.Latex(st.sprintrl(spFer,chemformula=chemformula))
```

[52]:

$$2 \text{FdRed} + \text{Hn} + \text{NADP} \xrightarrow{\text{pr}_1} 2 \text{FdOx} + \text{NADPH}$$
 (36)

 $RP_Fer = 105 mV$ 

```
[54]: ## Compute the reaction potential Phi
phi = phiData.phi_species(phi_redox,spFer['species'])
Phi_Fer_ = -spFer['N'].T@phi
Phi_Fer = Phi_Fer_[0][0]
print('Phi_Fer = ',mV(Phi_Fer), 'mV')
print(f'Ratio = {(Phi_Fer/RP_Fer):0.2f}')
```

```
Phi_Fer = 212 mV
Ratio = 2.00
```

# 7 The Electron Transport Chain

• See section 7.1 of paper.

## 7.1 Graphical description

```
[55]: disp.SVG('ETCg_abg.svg')
[55]:
                                                  Ce:Hn
                                   Ce:PQH2
                                                              Ce:PcRed
                                                                           Ce:P700
                                                                                        Ce:FdRed
             Ce:H2O
Ce:P680 |
                                                                                                         Ce:NADPH
                                                                           ed] [P700] [FdRed]
                                                                                                       Fer:fer[NADP]
                                                 Cyt:cyt
                                                                                                         Ce:NADP
                                     Ce:PQ
                                                              Ce:PcOx
                                                                                         Ce:FdOx
                    Ce:O2
                                                  Ce:Hp
```

```
[56]: sbg.model('ETCg_abg.svg',convertR=True,convertCe=True,quiet=quiet)
  import ETCg_abg
  imp.reload(ETCg_abg)

Creating subsystem: Cyt:cyt
  Creating subsystem: Fer:fer
```

Creating subsystem: Fer:fer Creating subsystem: PI:pi Creating subsystem: PII:pii

[56]: <module 'ETCg\_abg' from '/home/peterg/WORK/Dissemination/Edmund/SpecialIssue/

⇒Exa

mples/Chloroplast/ETCg\_abg.py'>

## 7.1.1 Stoichiometry

```
[57]: ## Stoichiometry
sETCg = st.stoich(ETCg_abg.model(),quiet=True)
disp.Latex(st.sprintrl(sETCg,chemformula=chemformula))
```

[57]:

$$Hn + cyt_{E1} \stackrel{cyt_r}{\longleftarrow} Hp + cyt_{E2}$$
 (37)

$$PQH_2 \stackrel{cyt_{r1}}{\rightleftharpoons} 2Hp + PQ + 2cyt_{E1}$$
 (38)

$$PcOx + cyt_{E2} \stackrel{cyt_{r2}}{\longleftarrow} PcRed$$
 (39)

$$FdRed \xrightarrow{fer_{r1}} FdOx + fer_{E1}$$
 (40)

$$fer_{E1} \xrightarrow{fer_{r2}} fer_{E2}$$
 (41)

$$Hn + NADP + 2 fer_{E2} \xrightarrow{fer_{r3}} NADPH$$
 (42)

$$P_{700} + pi_{E1} \stackrel{pi_r}{\rightleftharpoons} pi_{E2}$$
 (43)

$$PcRed \stackrel{pi_{r1}}{\longleftarrow} PcOx + pi_{r1}$$
 (44)

$$Fd0x + pi_{E2} \stackrel{pi_{r2}}{\longleftarrow} FdRed$$
 (45)

$$P_{680} + pii_{E1} \stackrel{pii_r}{\longleftarrow} pii_{E2}$$
 (46)

$$2 H_2 0 \stackrel{\text{pii}_{r1}}{\rightleftharpoons} 4 Hp + 0_2 + 4 pii_{E1}$$
 (47)

$$2 \operatorname{Hn} + \operatorname{PQ} + 2 \operatorname{pii}_{F2} \xrightarrow{\operatorname{pii}_{r2}} \operatorname{PQH}_{2} \tag{48}$$

#### 7.1.2 Pathway analysis with redox and pathway potentials

```
chemostats = ['P680','P700','H20','02','Hn','Hp','NADP','NADPH']
scETCg = st.stoich(ETCg_abg.model(),chemostats=chemostats,quiet=True)
spETCg = st.path(sETCg,scETCg)
disp.Latex(st.sprintrl(spETCg,chemformula=chemformula,all=True))
```

[58]:

$$2 H_2 O + 10 Hn + 2 NADP + 4 P_{680} + 4 P_{700} \xrightarrow{pr_1} 12 Hp + 2 NADPH + O_2$$
 (49)

```
[59]: ## Compute the reaction potential Phi
species = spETCg['species']
print(species)
phi = phiData.phi_species(phi_redox,species)
Phi_ = -spETCg['N'].T@phi
Phi= Phi_[0][0]
print('Phi =',mV(Phi), 'mV')
```

```
['FdRed', 'H2O', 'Hn', 'Hp', 'NADP', 'NADPH', 'O2', 'P680', 'P700', 'PQH2', 'PcRed']
Phi = 7603 mV
```

```
[60]: ## Flatten
stbg.model(sETCg,filename='ETCg_abg')
import ETCg_abg
imp.reload(ETCg_abg)
```

```
[60]: <module 'ETCg_abg' from '/home/peterg/WORK/Dissemination/Edmund/SpecialIssue/
→Exa
mples/Chloroplast/ETCg_abg.py'>
```

## 7.2 Computational description

The overall model is described a bond graph tools file:

```
[61]: ## File ETC_abg.py
      ## Import the modules
      import PII_abg
      import Cyt_abg
      import PI_abg
      import Fer_abg
      ## Create the model using BondGraphTools
      def model():
          n n n
          Model of chloroplast electron transport chain
          ETC = bgt.new(name='ETC') # Create system
          PII = PII_abg.model()
          Cyt = Cyt_abg.model()
          PI = PI_abg.model()
          Fer = Fer_abg.model()
          bgt.add(ETC,PII,Cyt,PI,Fer)
          return ETC
```

## 7.2.1 Unify species in model using mbg.unify()

```
[62]: # import ETC_abg
ETC = model()
common = ['PQ','PQH2','PcOx','PcRed','FdOx', 'FdRed','Hn','Hp']
mbg.unify(ETC,common,quiet=quiet)
ss = st.stoich(ETC,quiet=quiet)
disp.Latex(st.sprintrl(ss,chemformula=chemformula))
```

[62]:

$$E_1 + P_{680} \stackrel{\mathbf{r}}{\Longleftrightarrow} E_2 \tag{50}$$

$$2 H_2 0 \stackrel{r_1}{\iff} 4 E_1 + 0_2 + 4 Hp$$
 (51)

$$2E_2 + PQ + 2Hn \stackrel{r_2}{\rightleftharpoons} PQH_2$$
 (52)

$$E_1 + Hn \stackrel{r}{\Longleftrightarrow} E_2 + Hp \tag{53}$$

$$PQH_2 \stackrel{r_1}{\rightleftharpoons} 2E_1 + PQ + 2Hp$$
 (54)

$$E_2 + PcOx \stackrel{r_2}{\Longleftrightarrow} PcRed$$
 (55)

$$E_1 + P_{700} \stackrel{r}{\rightleftharpoons} E_2 \tag{56}$$

$$PcRed \stackrel{r_1}{\Longleftrightarrow} E_1 + PcOx$$
 (57)

$$E_2 + FdOx \stackrel{r_2}{\rightleftharpoons} FdRed$$
 (58)

$$FdRed \stackrel{r_1}{\longleftarrow} E_1 + FdOx$$
 (59)

$$E_1 \stackrel{r_2}{\longleftarrow} E_2 \tag{60}$$

$$2E_2 + NADP + Hn \stackrel{r_3}{\Longleftrightarrow} NADPH$$
 (61)

# 8 Chloroplast

• See section 7.1 of paper.

#### 8.1 Modular model

[63]: disp.SVG('Chloroplast\_abg.svg')

[63]:



Creating subsystem: ETCg:etc

[64]: <module 'Chloroplast\_abg' from '/home/peterg/WORK/Dissemination/Edmund/
→SpecialIs
sue/Examples/Chloroplast/Chloroplast\_abg.py'>

## 8.2 Generate equations

[65]:

$$Hn + etc_cyt_{E1} \stackrel{etc_cyt_r}{\Longleftrightarrow} Hp + etc_cyt_{E2}$$
 (62)

$$etc_{p}QH_{2} \xrightarrow{etc_{c}yt_{r1}} 2Hp + etc_{p}Q + 2etc_{c}yt_{E1}$$
(63)

$$etc_pcOx + etc_cyt_{E2} \xrightarrow{etc_cyt_{r2}} etc_pcRed$$
 (64)

$$etc_{f}dRed \xrightarrow{etc_{f}er_{r1}} etc_{f}d0x + etc_{f}er_{E1}$$
 (65)

$$etc_fer_{E1} \xrightarrow{etc_fer_{r2}} etc_fer_{E2}$$
 (66)

$$Hn + NADP + 2 etc_f er_{E2} \xrightarrow{etc_f er_{r3}} NADPH$$
(67)

$$P_{700} + etc_pi_{E1} \xrightarrow{etc_pi_r} etc_pi_{E2}$$
 (68)

$$etc_{p}cRed \xrightarrow{etc_{p}i_{r1}} etc_{p}cOx + etc_{p}i_{E1}$$
(69)

$$etc_{F}d0x + etc_{p}i_{E2} \xrightarrow{etc_{p}i_{r2}} etc_{F}dRed$$
 (70)

$$P_{680} + etc_{p}ii_{E1} \xrightarrow{etc_{p}ii_{r}} etc_{p}ii_{E2}$$
 (71)

$$2 \, \text{H}_2 \text{O} \stackrel{\text{etc}_p \text{ii}_{\text{r}1}}{\Longleftrightarrow} 4 \, \text{Hp} + \text{O}_2 + 4 \, \text{etc}_p \text{ii}_{\text{E}1} \tag{72}$$

$$2 \operatorname{Hn} + \operatorname{etc_pQ} + 2 \operatorname{etc_pii_{r2}} \stackrel{\operatorname{etc_pii_{r2}}}{\rightleftharpoons} \operatorname{etc_pQH_2}$$
 (73)

$$ADP + 4Hp + Pi \stackrel{ATPase}{\longleftarrow} ATP + H_2O + 3Hn$$
 (74)

## 8.3 Pathway analysis

## 8.3.1 Pathway reaction

[67]: disp.Latex(st.sprintrl(spChloroplast,chemformula=chemformula,all=True))

[67]:

$$3 \text{ ADP} + \text{Hn} + 2 \text{ NADP} + 4 P_{680} + 4 P_{700} + 3 Pi \xrightarrow{pr_1} 3 \text{ ATP} + H_2 O + 2 \text{ NADPH} + O_2$$
 (75)

## 8.4 Efficiency from estimated $\phi$

```
[68]: ## Compute the reaction potential Phi
      species = spChloroplast['species']
      # species = chemostats
      # print(species)
      phi = phiData.phi_species(phi_redox,species)
      Phi_ = -spChloroplast['N'].T@phi
      Phi= Phi_[0][0]
      print(f'Phi = {Phi:0.2f} V')
      ## Photo input
      # print(phi_redox['P680'] , phi_redox['P700'])
      Phi_phot = 4*(phi_redox['P680'] + phi_redox['P700'])
      print(f'Phi_phot = {Phi_phot:0.2f} V')
      ##Outputs
      Phi_out = Phi_phot - Phi
      print(f'Phi_out = {Phi_out:0.2f} V')
      ## Efficiency
      efficiency = Phi_out/Phi_phot
      print(f'Efficiency = {(efficiency*100):.1f} %')
     Phi = 8.73 V
     Phi_phot = 14.38 V
     Phi_out = 5.65 V
     Efficiency = 39.3 %
[69]: | ## Compute the reaction potential Phi but with no photons
      phi = phiData.phi_species(phi_redox_0,species)
      Phi_ = -spChloroplast['N'].T@phi
      Phi_out = -Phi_[0][0]
      print(f'Phi_out = {Phi_out:0.2f} V')
      ## Photo input
      # print(phi_redox['P680'] , phi_redox['P700'])
      Phi_phot = 4*(phi_redox['P680'] + phi_redox['P700'])
      print(f'Phi_phot = {Phi_phot:0.2f} V')
      ## Efficiency
      efficiency = Phi_out/Phi_phot
      print(f'Efficiency = {(efficiency*100):.1f} %')
     Phi_out = 5.65 V
     Phi_phot = 14.38 V
     Efficiency = 39.3 %
```

## 8.5 Efficiency by direct calculation

• See section 7.2 of paper.

```
[70]: def getPhi(name):
          redox_data = redoxData.data()
          n = redox_data[name]['electrons']
          E = redox_data[name]['E7']
          Phi = n*E
          print(f'\{name\}: \ E = \{E\} \ V; \ n = \{n\}; \ Phi = \{Phi\} \ V')
          return Phi
[71]:  ## Photons
      Phi_phot = 4*(phi_redox['P680'] + phi_redox['P700'])
      print(f'Phi_phot = {Phi_phot:0.2f} V')
      ## NADPH
      Phi_1 = getPhi('NADP/NADPH')
      ## 02
      Phi_2 = getPhi('02/2H20')
      ## ATP Hydrolysis
      print(f'Hydrolysis:\t Phi = {Phi_Hyd:0.3f}')
     Phi_phot = 14.38 V
     NADP/NADPH:
                      E = -0.324 \text{ V};
                                       n = 2; Phi = -0.648 V
     02/2H20:
                       E = 0.816 V;
                                      n = 4; Phi = 3.264 V
     Hydrolysis:
                      Phi = 0.363
[72]: ## All
      Phi\_chem = -2*Phi\_1 + Phi\_2 + 3*Phi\_Hyd
      print(f'Phi_chem = {Phi_chem:0.2f}')
     Phi_chem = 5.65
[73]: | ## Efficiency
      efficiency = Phi_chem/Phi_phot
      print(f'Efficiency = {(efficiency*100):.1f} %')
     Efficiency = 39.3 %
 []:
```

#### References

Robert E. Blankenship. Molecular mechanisms of photosynthesis. Wiley, Chichester, UK, 3rd edition, 2021.

Robert E. Blankenship and Roger C. Prince. Excited-state redox potentials and the z scheme of photosynthesis. Trends in Biochemical Sciences, 10(10):382 - 383, 1985. ISSN 0968-0004. doi: 10.1016/0968-0004(85)90059-3.

David G Nicholls and Stuart Ferguson. Bioenergetics 4. Academic Press, Amsterdam, 2013.