Class 09

Sharlene Yang (PID: 16351303)

PDB Statistics

The main database for structural information on biomolecules. Let's see how we can use it to answer these questions:

Download a CSV file from the PDB site (accessible from "Analyze" > "PDB Statistics" > "by Experimental Method and Molecular Type". Move this CSV file into your RStudio project and use it to answer the following questions:

```
db <- read.csv("Data Export Summary.csv")
db</pre>
```

	Molecular.Type	X.ray	EM	NMR	${\tt Multiple.methods}$	Neutron	Other
1	Protein (only)	154,766	10,155	12,187	191	72	32
2	Protein/Oligosaccharide	9,083	1,802	32	7	1	0
3	Protein/NA	8,110	3,176	283	6	0	0
4	Nucleic acid (only)	2,664	94	1,450	12	2	1
5	Other	163	9	32	0	0	0
6	Oligosaccharide (only)	11	0	6	1	0	4
	Total						
1	177,403						
0	10 005						

2 10,925

3 11,575

4 4,223

5 204

6 22

knitr:: kable(db)

Molecular.Type	X.ray	EM	NMR	Multiple.methodsNo	eutron	Other	Total
Protein (only)	154,766	10,155	12,187	191	72	32	177,403
Protein/Oligosacchari	1,802	32	7	1	0	10,925	
Protein/NA	8,110	$3,\!176$	283	6	0	0	11,575
Nucleic acid (only)	2,664	94	1,450	12	2	1	4,223
Other	163	9	32	0	0	0	204
Oligosaccharide	11	0	6	1	0	4	22
(only)							

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
db$X.ray
[1] "154,766" "9,083"
                        "8,110"
                                    "2,664"
                                              "163"
                                                         "11"
  x.ray <- sum(as.numeric(gsub(",", "", db$X.ray)))</pre>
  em.total <- sum(as.numeric(gsub(",", "", db$em)))</pre>
  #I will work with `x` as my input.
  sum_comma <- function(x) {</pre>
    #substitute the comma and convert to numeric
    sum(as.numeric( gsub(",", "", x)))
  }
For X-ray:
  sum_comma(db$X.ray) / sum_comma(db$Total)
[1] 0.8553721
For EM:
  round ( sum_comma(db$EM) / sum_comma(db$Total), 2 )
[1] 0.07
```

Q2: What proportion of structures in the PDB are protein?

[1] 0.87

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

SKIPPED!

Figure 1: HIV-PR structure from MERK with a bound drug

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

The structure is too low of a resolution to see the H atom. You need a sub 1 Angstrom resolution to see Hydrogen.

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have

HOH308

Working with Structures in R

We can use the bio3d package to read and perform bioinformatics calculations on PDB structures.

```
library(bio3d)
  pdb <- read.pdb("1HSG")</pre>
 Note: Accessing on-line PDB file
  pdb
Call: read.pdb(file = "1HSG")
  Total Models#: 1
     Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
     Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
  attributes(pdb)
$names
[1] "atom"
             "xyz"
                      "segres" "helix" "sheet" "calpha" "remark" "call"
```

```
$class
[1] "pdb" "sse"
  head( pdb$atom )
 type eleno elety alt resid chain resno insert
                                                      Х
                                                             У
1 ATOM
           1
                 N < NA >
                          PRO
                                            <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
           2
                CA <NA>
                          PRO
                                            <NA> 30.307 38.663 5.319 1 40.62
                                  Α
3 ATOM
                 C <NA>
                          PRO
                                        1 <NA> 29.760 38.071 4.022 1 42.64
           3
                                  Α
4 ATOM
           4
                 O <NA>
                          PRO
                                  Α
                                        1 <NA> 28.600 38.302 3.676 1 43.40
5 ATOM
           5
                CB <NA>
                          PRO
                                  Α
                                        1 <NA> 30.508 37.541 6.342 1 37.87
6 ATOM
           6
                CG <NA>
                          PRO
                                        1 <NA> 29.296 37.591 7.162 1 38.40
                                  Α
 segid elesy charge
1 <NA>
           N
                <NA>
 <NA>
               <NA>
3 <NA>
            C
               <NA>
4 <NA>
              <NA>
            0
5 <NA>
            С
               <NA>
6 <NA>
            С
                <NA>
Read an ADK structure
  adk <- read.pdb("6s36")
 Note: Accessing on-line PDB file
  PDB has ALT records, taking A only, rm.alt=TRUE
  adk
        read.pdb(file = "6s36")
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
    Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
```

```
Non-protein/nucleic Atoms#: 244 (residues: 244)
Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
```

Protein sequence:

MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

Perform a prediction of flexibility with a technique called NMA (normal mode analysis)

```
# Perform flexiblity prediction
m <- nma(adk)</pre>
```

Building Hessian... Done in 0.02 seconds. Diagonalizing Hessian... Done in 0.3 seconds.

plot(m)

Write out a "movie" (aka trajectory) of the motion for viewing in M0lstar

```
mktrj(m, file="adk_m7.pdb")
```

Q7: How many amino acid residues are there in this pdb object?

128 residues

Q8: Name one of the two non-protein residues?

HOH

Q9: How many protein chains are in this structure

2 chains