2022. március 9.

JAVÍTÓKULCS – VIII. osztály

A képrejtvények megfejtései: fagyáspont, forráspont, olvadáspont (Kovács Zoltán)

1. feladat (Kovács Zoltán)

(10p)

a) Milyen anyagoknál megy végbe a leggyorsabban a diffúzió?	gáz
b) A részecskék milyen jellegű mozgását igazolja a Brown-féle mozgás?	kaotikus
c) Melyik a hőmérő legfontosabb része?	hőérzékelő
d) Melyik az összefüggés a Celsius- és a Kelvin-skála között?	$t(^{\circ}C) = T(K) - 273,15$
e) Milyen formában terjed a hő fémekben?	vezetés
f) A hőerőgép által végzett munka értéke:	$L = Q_1 - Q_2 $
g) A hőerőgép hatásfoka a valóságban:	$\eta = L/Q_1 < 1$
h) A hőkapacitás képlete:	$C = Q/\Delta t$
i) A hármaspont értéke:	273,16K
j) A fűtőérték mértékegysége:	J/kg

2. Feladat (Rend Erzsébet)

a)	$V = L \cdot l \cdot h$ $V = 120000cm^3$ $V = 120l$	1p 0,5p 0,5p
b)	$V_{j\acute{e}g} = a^{3}$ $V_{j\acute{e}g} = 8.000cm^{3}$ $V' = V/2 - V_{j\acute{e}g}$ $V' = 52000cm^{3}$	1p 0,5p 1p 0,5p

c)	$\rho_{j\acute{e}g} = m_{j\acute{e}g}/V_{j\acute{e}g}$	0,5p
	$\rho_{\text{víz}} = m_{\text{víz}}/V_{\text{víz}}$	0,5p
	$m_{j\acute{e}g} = m_{v\acute{i}z}$	0,5p
	$V_{viz} = 9360cm^3$	0,5p
	$V_{\ddot{o}ssz} = V' + V_{v\dot{1}z}$	0,5p
	$V_{\rm \ddot{o}ssz} = 59360 cm^3$	0,5p
d)	$m_{j\acute{e}g} = \rho_{j\acute{e}g} \cdot V_{j\acute{e}g}$	0,5p
	$Q = m_{j\acute{e}g} \cdot \lambda_o$	1p
	Q = 2428,8kJ	0,5p
	3,3 13	

3. feladat (László Judit)

A víz $t_0 = 0^{\circ} C$ -ra történő lehűtésekor felszabaduló hő:

$$Q_1 = m_1 \cdot c_v \cdot (t_1 - t_0) = 41810 J \tag{1p}$$

A jég $t_0 = 0^o C$ -ra történő felmelegítéséhez szükséges hő:

$$Q_2 = m_2 \cdot c_j \cdot (t_0 - t_2) = 418000 J \tag{1p}$$

Mivel Q₂>Q₁ a víz több hőt ad le, miközben megfagy.

(0,5p)

A teljes víztömeg megfagyásakor leadott hő: $Q_3 = m_1 \cdot \lambda_i = 680000 J$

(1p)

Mivel Q₂<Q₁+Q₃ a víz csak részben fagy meg,

tehát az egyensúlyi hőmérséklet $t_0 = 0^{\circ} C$. (0,5p)

A megfagyott víz tömege:

$$m_{\chi} = \frac{Q_2 - Q_1}{\lambda_{j \in g}} = 1,10 \ kg$$
 (1p)

Az edényben $m_1 - m_\chi = 0.90~kg$ víz és $m_2 + m_\chi = 6.10~kg$ jég található. (1p)

Az anyag térfogata:

$$V = \frac{m_1 - m_x}{\rho_{viz}} + \frac{m_2 + m_x}{\rho_{jeg}} = 7,55 l$$
 (1p)

Hivatalbó 3 pont.

Kérjük, hogy az esetleges hibáktól tekintsenek el, és korrigálják, ha találnak hibákat.