CONVEX OPTIMIZATION

Homework 3

Thomase FAURÉ

1 Question 1

Nous avons : le primal

$$\min_{w} \frac{1}{2} ||Xw - y||_{2}^{2} + \lambda ||w||_{1}$$

On réécrit le problème de manière équivalente en posant : u = Xw - y. On obtient ainsi :

$$\min_{w,u} \frac{1}{2} ||u||_2^2 + \lambda ||w||_1 \text{ s.t. } u = Xw - y$$

Notre problème est convexe avec une contrainte d'égalité affine. Pour trouver notre problème dual on va chercher à calculer :

$$g(\mu) = \inf_{w,u} (\frac{1}{2}||u||_2^2 + \mu^T u + \lambda||w||_1 - \mu^T X w - \mu^T y)$$

minimisation par rapport à u:

$$\frac{1}{2}||u||_2^2 + \mu^T u$$

est une fonction convexe et différentiable (car quadratique). Ainsi, son minimum est atteint en :

$$u = -\mu$$

et le minimum vaut $-\frac{1}{2}||\mu||_2^2$

minimisation par rapport à w:

$$\inf_{w}(\lambda||w||_{1} - \mu^{T}Xw) = -\sup_{w}(\mu^{T}Xw - ||w||_{1}) = \begin{cases} 0 & \text{si } ||X^{T}w||_{\infty} \le \lambda \\ +\infty & \text{sinon.} \end{cases}$$

Finalement, nous avons:

$$g(\mu) = -\frac{1}{2}\mu^{T}\mu - y^{T}\mu \text{ s.t. } ||X^{T}w||_{\infty} \le \lambda$$

On obtient ainsi le problème dual :

$$\min_{\mu} \ \mu^T Q \mu + p^T \mu \ \text{ s.t. } \ A \mu \leq b$$

En écrivant :

$$Q = \frac{1}{2}I_n$$
$$p = y$$

$$p = y$$

$$A = \begin{pmatrix} X^T \\ -X^T \end{pmatrix}$$

$$b = \lambda \mathbf{1}_{2n}$$

Résultats 2

Nous obtenons les résultats suivant :

Methode de la barrière

Tout d'abord on peut voir que plus μ est petit plus la partie horizontale de "l'escalier" est petite. Cette partie correspond au nombre d'itérations de l'algorithme de Newton. Ceci s'explique car plus μ est petit moins t évolue et donc notre ancienne itération (le point optimal de Newton à l'itération précédente) est un bon point de départ pour notre nouvelle itération de Newton qui va, par conséquent, converger très vite. Mais à contrario t lui ne va pas beaucoup évoluer (on met à jour t avec $\mu*t$) et la condition m/t < eps va mettre un certain nombre d'itérations avant d'être vérifier et la convergence va prendre un certain temps. Si μ est grand au contraire Newton va mettre du temps à converger mais la seconde condition va être rempli facilement (la partie verticale de notre escalier est proportionnelle a μ . On remarque donc un trade-off sur la valeur de notre paramètre, ici la valeur qui semble la plus adéquate est $\mu=50$.

3 Annexe

Notre fonction objective de la méthode de la barrière est :

$$t\left\{v^TQv+p^Tv\right\}-\sum_{i=1}^{2d}log\left(b_i-a_i^Tv\right)$$
 où a_i^T les lignes de A.

Nous trouvons après calcul:

$$\nabla \phi(v) = A^T d$$

$$\nabla^2 \phi(v) = A^T diag(d)^2 A.$$

avec d le vecteur tel que $d_i = \frac{1}{b_i - a_i^T v}$

Nous prenons $t^0=1$ pour la méthode de la barrière, et $v^{(0)}=0$, pour assurer $Av^{(0)} \leq \lambda \mathbf{1}_{2n}$ (en effet $\lambda=10$). Pour le backtracking line search on prend $\alpha=0.01$ et $\beta=0.7$.