O Método de Newton

Márcio Antônio de Andrade Bortoloti

Cálculo Numérico

Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia

Sumário

Método de Newton

Introdução

Interpretação Geométrica

Estudo da Convergência

Exemplo Numérico

Método de Newton

Introdução

- O Método de Newton é uma das técnicas mais populares para se determinar raízes de equações não-lineares.
- Para definí-lo, observamos que ele é um método iterativo do tipo ponto fixo.
- Assim, considere uma função de iteração da forma

$$\phi(x) = x + A(x)f(x), \quad \text{com } f'(x) \neq 0$$

em um intervalo $I \ni \xi$, ξ é a raíz de f(x) = 0.

- Temos que garantir convergência, logo, temos que exigir $|\phi'(x)| < 1$.
- Relembramos que a ordem de comvergência depende de $|\phi'(x)|$, ou seja, quanto menor for $|\phi'(x)|$ em I mais rápida é a converência, ou seja, maior é a ordem de convergência.

Introdução

- Assim, vamos exigir que $|\phi'(x)|$ tenha o menor valor possível em I, ou seja, vamos exigir que $\phi'(x)=0$.
- Assim, como $\phi(x) = x + A(x)f(x)$ em I, temos

$$\phi'(x) = 1 + A'(x)f(x) + A(x)f'(x).$$

• Fazendo $\phi'(x) = 0$ obtemos

$$1 + A'(x)f(x) + A(x)f'(x) = 0.$$

• Fazendo $x = \xi$ obtemos

$$1 + A'(\xi)f(\xi) + A(\xi)f'(\xi) = 0.$$

• Como $f(\xi) = 0$ obtemos

$$1 + A(\xi)f'(\xi) = 0.$$

4

Introdução

Podemo escrever ainda

$$A(\xi) = -\frac{1}{f'(\xi)}$$
 desde que $f'(\xi) \neq 0$.

• Dessa forma, temos a seguinte função de iteração

$$\phi(\xi) = x - \frac{f(x)}{f'(x)}$$
 para $x \in I$.

• E assim, podemos construir a sequência da forma

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

- Como $\phi(x) = x \frac{f(x)}{f'(x)}$, sendo $f'(\xi) \neq 0$ segue que x_n converge desde que x_0 seja tomado suficientemente pri $\xi \frac{1}{2}$ ximo de ξ .
- O método de se construir uma sequência com a função de iteração acima é chamado de Método de Newton.

5

Interpretação Geométrica

Estudo da Convergência

Teorema

Se $f \in \mathcal{C}^2(I)$, onde $I \ni \xi$ e $f(\xi) = 0$ e se $f'(\xi) \neq 0$ então a sequência gerada pelo Método de Newton converge quadraticamente.

Prova:

• Como $\xi = \phi(\xi)$ e $x_{n+1} = \phi(x_n)$ temos

$$x_{n+1} - \xi = \phi(x_n) - \phi(\xi).$$

• Desenvolvendo ϕ em Série de Taylor na vizinhança de ξ obtemos

$$x_{n+1} - \xi = \left(\phi(\xi) + (x_n - \xi)\phi'(\xi) + \frac{(x_n - \xi)^2}{2!}\phi''(\zeta)\right) - \phi(\xi)$$

com ζ entre x_n e ξ .

O Método de Newton

Logo

$$x_{n+1} - \xi = (x_n - \xi)\phi'(\xi) + \frac{(x_n - \xi)^2}{2!}\phi''(\zeta)$$

• Lembremos que no Método de Newton se exige $\phi'(\xi)=0$, logo

$$x_{n+1} - \xi = \frac{(x_n - \xi)^2}{2!} \phi''(\zeta)$$

• Ou de outra forma

$$\frac{x_{n+1} - \xi}{(x_n - \xi)^2} = \frac{\phi''(\zeta)}{2}$$

Portanto,

$$\lim_{n \to \infty} \frac{|x_{n+1} - \xi|}{|x_n - \xi|^2} = \frac{|\phi''(\zeta)|}{2} = C.$$

O Método de Newton

Vamos utilizar o Método de Newton para buscar a raíz do problema

$$4x - e^x = 0$$

no intervalo [2,3] com $x_0=3$.

n	x_n	C	p	e_n
1	.249734118532704E+01	-	-	0.3440487678E+00
2	.223221940086844E+01	0.2294063828E+00	-	0.7892698334E-01
3	.215860801401422E+01	0.6734827891E-01	0.1832473525E+01	0.5315596488E-02
4	.215331857521501E+01	0.4920931983E-02	0.1969791620E + 01	0.2615768876E-04
5	.215329236475169E+01	0.2017554103E-02	0.1997777348E+01	0.5277455228E-07