

KC705 Used to Interface to a ADC and ADC is a Virtual Device.

Marc Defossez Sr. Staff Applications Engineer

Created: June 8, 2009 Modified: July 25, 2012

DISCLAIMER:

© Copyright 2009 - 2009, Xilinx, Inc. All rights reserved.

This file contains confidential and proprietary information of Xilinx, Inc. and is protected under U.S. and international copyright and other intellectual property laws.

Disclaimer:

This disclaimer is not a license and does not grant any rights to the materials distributed herewith. Except as otherwise provided in a valid license issued to you by Xilinx, and to the maximum extent permitted by applicable law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under or in connection with these materials, including for any direct, or any indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same.

CRITICAL APPLICATIONS

Xilinx products are not designed or intended to be fail-safe, or for use in any application requiring fail-safe performance, such as life-support or safety devices or systems, Class III medical devices, nuclear facilities, applications related to the deployment of airbags, or any other applications that could lead to death, personal injury, or severe property or environmental damage (individually and collectively, "Critical Applications"). Customer assumes the sole risk and liability of any use of Xilinx products in Critical Applications, subject only to applicable laws and regulations governing limitations on product liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE AT ALL TIMES.

Contact: e-mail hotline@xilinx.com phone + 1 800 255 7778

FMC connections (1)

- Only the FMC-LPC connector is used.
- The connector must be used for the ADC interface (Receiver) and for the virtual ADC (transmitter).
- The pinout fits also whenever hardware for ADC and DAC is created.
- The FMC-LPC connector is populated with IO from IO-Bank 12 and 13 on the KC705 board..
- FPGA implementation ADC interface (receiver) and Virtual ADC (transmitter) or DAC interface.
 - IO-Bank 12 is used as virtual ADC or transmitter interface.
 - IO-Bank 13 is used as ADC interface or receiver.
 - IO-Bank 12 gets a clock from a high-speed programmable oscillator on the mezzanine board.
 - In reality, if there is a DAC, this will be the high-speed clock coming from the DAC.
 - What is pinning is needed:
 - IO-Bank 12
 - A high-speed clock input ← Clock from the transmitter, in this case a clock from a programmable oscillator.
 - A high speed bit clock output.
 - A low speed, word or frame clock output.
 - LVDS lanes for data transmitter. (Most popular 8, 12, 14, or 16-bit).
 - IO-Bank 13
 - A high speed bit clock input.
 - A low speed, word or frame clock input.
 - LVDS lanes for data receiver. (Most popular 8, 12, 14, or 16-bit).

FMC Connections (2)

Virtual ADC.

- IO-Bank 12 is used as implementation of the digital part of an ADC (transmitter).
- Typical connections of an ADC are:
- High speed clock (Bit clock)
- Low speed clock (Sync or frame clock), can be seen as data.
- A number of data channels. For ADC devices it is the number of LVDS data channels that counts.
- Example:
- A Dual, 2-wire ADC needs 4 LVDS data channels (+ Bit Clk + Sync).
- A Quad, 2-wire ADC needs 8 LVDS channels (+ Bit_Clk + Sync).
- IO-bank 12 allows to connect:
- Two Dual channel, 2-wire ADC
- One Quad channel, 2-wire ADC
- For real ADC testing the FMC-HPC connector should be used to connect ADC devices.
- Because then ADC devices with different sorts of interfaces can be connected.
- Serial LVDS ADC.
- Full Parallel ADC
- JESD204A multi-channels ADC.

ADC: Example for the test ADS6245

The plan is to use the Texas Instruments ADS6245 ADC device as example with the conversion of the Virtex-5 ADC interface.

This Texas Instruments ADC is used because it has a small set of data channels and this makes it easier to debug the conversion of the design.

The goal is to interface to the more popular Quad channel ADC of this family.

Dual 14-bit, 125 MSPS ADC with serial LVDS outputs.

The ADC is used in:

2-wire

Byte wise

MSB first

DDR bit clock

16x serialisation

Mode.

RX and **TX** Interfaces

The MMCM has an IO available for an external feedback loop. The loop can go to the ADC part of the design an be looped-back there. This is not shown here.

Page 7,

FMC – LPC connector pinout

	K	J	Н	G	F	Е	D	С	В	Α
1	NC	NC	VREF A M2C	GND	NC	NC	PG C2M	GND	NC	NC
2	NC	NC	PRSNT_M2C_L	CLK1_M2C_P	NC	NC	GND	DP0_C2M_P	NC	NC
3	NC	NC	GND	CLK1 M2C N	NC	NC	GND	DP0 C2M N	NC	NC
4	NC	NC	CLK0 M2C P	GND	NC	NC	GBTCLK0_M2C_P	GND	NC	NC
5	NC	NC	CLK0_M2C_N	GND	NC	NC	GBTCLK0_M2C_N	GND	NC	NC
6	NC	NC	GND	LA00 P CC	NC	NC	GND	DP0 M2C P	NC	NC
7	NC	NC	LA02_P	LA00_N_CC	NC	NC	GND	DP0_M2C_N	NC	NC
8	NC	NC	LA02_N	GND	NC	NC	LA01_P_CC	GND	NC	NC
9	NC	NC	GND	LA03 P	NC	NC	LA01 N CC	GND	NC	NC
10	NC	NC	LA04_P	LA03_N	NC	NC	GND	LA06_P	NC	NC
11	NC	NC	LA04 N	GND	NC	NC	LA05 P	LA06 N	NC	NC
12	NC	NC	GND	LA08 P	NC	NC	LA05 N	GND	NC	NC
13	NC	NC	LA07_P	LA08_N	NC	NC	GND	GND	NC	NC
14	NC	NC	LA07 N	GND	NC	NC	LA09 P	LA10 P	NC	NC
15	NC	NC	GND	LA12 P	NC	NC	LA09 N	LA10 N	NC	NC
16	NC	NC	LA11 P	LA12 N	NC	NC	GND	GND	NC	NC
17	NC	NC	LA11 N	GND	NC	NC	LA13 P	GND	NC	NC
18	NC	NC	GND	LA16 P	NC	NC	LA13 N	LA14 P	NC	NC
19	NC	NC	LA15 P	LA16 N	NC	NC	GND	LA14 N	NC	NC
20	NC	NC	LA15 N	GND	NC	NC	LA17 P CC	GND	NC	NC
21	NC	NC	GND	LA20 P	NC	NC	LA17 N CC	GND	NC	NC
22	NC	NC	LA19 P	LA20 N	NC	NC	GND	LA18 P CC	NC	NC
23	NC	NC	LA19 N	GND	NC	NC	LA23 P	LA18 N CC	NC	NC
24	NC	NC	GND	LA22 P	NC	NC	LA23 N	GND	NC	NC
25	NC	NC	LA21 P	LA22 N	NC	NC	GND	GND	NC	NC
26	NC	NC	LA21 N	GND	NC	NC	LA26 P	LA27 P	NC	NC
27	NC	NC	GND	LA25_P	NC	NC	LA26 N	LA27_N	NC	NC
28	NC	NC	LA24 P	LA25 N	NC	NC	GND	GND	NC	NC
29	NC	NC	LA24_N	GND	NC	NC	TCK	GND	NC	NC
30	NC	NC	GND	LA29_P	NC	NC	TDI	SCL	NC	NC
31	NC	NC	LA28 P	LA29 N	NC	NC	TDO	SDA	NC	NC
32	NC	NC	LA28_N	GND	NC	NC	3P3VAUX	GND	NC	NC
33	NC	NC	GND	LA31_P	NC	NC	TMS	GND	NC	NC
34	NC	NC	LA30 P	LA31 N	NC	NC	TRST L	GA0	NC	NC
35	NC	NC	LA30_N	GND	NC	NC	GA1	12P0V	NC	NC
36	NC	NC	GND	LA33_P	NC	NC	3P3V	GND	NC	NC
37	NC	NC	LA32 P	LA33 N	NC	NC	GND	12P0V	NC	NC
38	NC	NC	LA32_N	GND	NC	NC	3P3V	GND	NC	NC
39	NC	NC	GND	VADJ	NC	NC	GND	3P3V	NC	NC
40	NC	NC	VADJ	GND	NC	NC	3P3V	GND	NC	NC
			DC Connector	LPC Connector			LPC Connector	LPC Connector		

PC Connector LPC Connector LPC Connector LPC Connector

ADC (ADS6245) interface (receiver).

ADC Interface

By design of the KC705 board the FPGA (7KC325T-FFG900) IO-Bank 12 and IO-Bank 13 are used for the LPC FMC connector.

The FMC-LPC connector setup of the KC705 board dictates that for IO-Bank 12 this setup is possible:

- High-speed clock output.
- Bit clock (High Speed) and Frame/Sync (Low Speed) clock inputs.
- Data inputs.

FPGA Virtual ADC

Virtual ADC pinout.

	I	
15 40 4-00	AE20	SI5326 RST LS
25_12_AE20	AK21	FMC LPC LA06 N
	AK20	FMC LPC LA06 P
IO_L24P_T3_12_AK20	AJ21	FMC LPC LA04 N
IO_L23N_T3_12_AJ21	AH21	FMC LPC LA04 P
IO_L23P_T3_12_AH21	AH20	FMC LPC LA03 N
IO_L22N_T3_12_AH20	AG20	FMC LPC LA03 P
IO_L22P_T3_12_AG20	AJ23	FMC LPC LA08 N
IO_L21N_T3_DQS_12_AJ23	AJ22	FMC LPC LA08 P
IO_L21P_T3_DQS_12_AJ22	AH22	FMC LPC LA05 N
IO_L20N_T3_12_AH22	AG22	FMC LPC LA05 P
IO_L20P_T3_12_AG22	AF21	FMC LPC LA02 N
<pre>IO_L19N_T3_VREF_12_AF21</pre>	AF20	FMC LPC LA02 P
IO_L19P_T3_12_AF20	AH25	FMC LPC LA07 N
IO_L18N_T2_12_AH25	AG25	FMC LPC LA07 P
IO L18P T2 12 AG25	AK24	FMC LPC LA09 N
IO L17N T2 12 AK24		an loss and the
IO_L17P_T2_12_AK23	AK23 AF25	
IO L16N T2 12 AF25		
IO L16P T2 12 AE25	AE25	an account of the
IO L15N T2 DQS 12 AK25	AK25	FMC LPC LA10 N
IO L15P T2 DQS 12 AJ24	AJ24	FMC LPC LA10 P
IO L14N T2 SRCC 12 AH24	AH24	HDMI_INT
IO L14P T2 SRCC 12 AG24	AG24	SI5326 INT ALM LS
IO L13N T2 MRCC 12 AG23	AG23	FMC LPC CLK0 M2C N
IO L13P T2 MRCC 12 AF22	AF22	FMC LPC CLK0 M2C P
IO L12N T1 MRCC 12 AE24	AE24	FMC_LPC_LA00_CC_N
IO L12P T1 MRCC 12 AD23	AD23	FMC LPC LA00 CC P
IO L11N T1 SRCC 12 AF23	AF23	FMC LPC LA01 CC N
IO L11P T1 SRCC 12 AE23	AE23	FMC LPC LA01 CC P
IO L10N T1 12 AE21	AE21	FMC_LPC_LA14_N
IO L10P T1 12 AD21	AD21	FMC LPC LA14 P
IO L9N T1 DQS 12 AD24	AD24	FMC LPC LA15 N
IO L9P T1 DOS 12 AC24	AC24	FMC LPC LA15 P
IO L8N T1 12 AD22	AD22	FMC_LPC_LA16_N
IO L8P T1 12 AC22	AC22	FMC LPC LA16 P
IO L7N T1 12 AC25	AC25	FMC LPC LA13 N
IO L7P T1 12 AB24	AB24	FMC LPC LA13 P
IO L6N TO VREF 12 AB20	AB20	FMC_LPC_LA12_N
IO L6P TO 12 AA20	AA20	FMC LPC LA12 P
IO L5N TO 12 AC21	AC21	SDIO CD DAT3 LS
IO L5P TO 12 AC20	AC20	SDIO DATO LS
IO L4N TO 12 AA23	AA23	SDIO_DAT1_LS
IO L4P TO 12 AA22	AA22	SDIO DAT2 LS
IO L3N TO DOS 12 AB23	AB23	SDIO CLK LS
IO L3P T0 DQS 12 AB22	AB22	SDIO CMD LS
IO L2N TO 12 AA21	AA21	SDIO_SDDET
IO L2P TO 12 Y21	Y21	SDIO SDWP
IO LIN TO 12 Y24	Y24	USER SMA GPIO N
12 T1 0T 12 C2	Y23	USER SMA GPIO P
IO 0 12 Y20	Y20	SFP_TX_DISABLE

By design of the KC705 board the FPGA (7KC325T-FFG900) IO-Bank 12 and IO-Bank 13 are used for the LPC FMC connector.

The FMC-LPC connector setup of the KC705 board dictates that for IO-Bank 13 this setup is possible:

- High-speed clock input.
- Bit clock (High Speed) and Frame/Sync (Low Speed) clock outputs.
- Data outputs.

FPGA LPC IO-Banks 12 and 13 connected via cable

As shown on page 7 the transmitter, Virual ADC, will be connected to the receiver, ADC interface in the FPGA. This holds that IO-Bank 12 is connected to IO-Bank 13 by means of a XM101 board plugged into the LPC FMC connector of the KC705 board.

This slide shows the interconnections via the XM101 board between the IO-Banks.

The DAC (Transmitter)

The data to be transmitted is stored in Block RAM.

If wanted a external DDR memory can be connected.

