MVA: Kernel methods in machine learning (2022/2023)

Assignment 3

Solution by Matias Etcheverry

March 8, 2023

1 Exercice 1: B_n -splines

For $x \in \mathbb{R}$, we define $I(x) = \mathbb{1}_{|x| \le 1}$ and $B_n = I^{\star n}$. Let $k_n(x, y) = B_n(x - y)$ defined over $\mathbb{R} \times \mathbb{R}$.

- We show that k_n is a pd kernel.
 - We first show that k_n is symmetric, with a recurrence on n. k_1 is symmetric, as I is even. We then suppose that k_n is symmetric, i.e. B_n is even, and we have:

$$B_{n+1}(x) = B_n \star I(x)$$

$$= \int_{\mathbb{R}} B_n(u)I(x-u)du$$

$$= \int_{\mathbb{R}} B_n(u)I(-x+u)du \quad (I \text{ even})$$

$$= \int_{\mathbb{R}} B_n(-u)I(-x-u)du$$

$$= \int_{\mathbb{R}} B_n(u)I(-x-u)du \quad (\text{by hypothesis, } B_n \text{ supposed even})$$

$$= B_{n+1}(-x)$$

This shows that B_{n+1} is even. Thus k_{n+1} is symmetric for $n \in \mathbb{N}^*$. The recurrence is proved.

- Next, we show that $a^T k_n a \geq 0$, for $a \in \mathbb{R}^n$. First, let's compute B_2 :

$$B_{2}(x) = I \star I(x)$$

$$= \int_{\mathbb{R}} \mathbb{1}_{|u| \le 1}(u) \mathbb{1}_{|x-u| \le 1}(u) du$$

$$= \int_{-1}^{1} \mathbb{1}_{-1+x \le u \le 1+x}(u) du$$

$$= \begin{cases} 0 & \text{if } x \ge 2 \text{ or } x \le -2\\ 2+x & \text{if } 0 \le x \le 2\\ 2-x & \text{if } -2 \le x \le 0 \end{cases}$$

 B_2 is a triangular pulse, as shown in 1. The Fourier transform of B_2 is thus given by:

$$\hat{B}_2(w) = 4\left(\frac{\sin w}{w}\right)^2$$

This Fourier transform is positive, real-value and symmetric. Thus, by Böchner theorem, the shift-invariant kernel k_2 associated to the continuous function B_2 is positive-definite. In particular, we have, for $(a_1, \dots, a_n) \in \mathbb{R}^n$, and $(x_1, \dots, x_n) \in \mathbb{R}^n$:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k_2(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j B_2(x_i - x_j) \ge 0$$

We then apply a recurrence on n to show that $\sum_{i=1}^n \sum_{j=1}^n a_i a_j k_n(x_i, x_j) \ge 0$ for $n \ge 2$. Let's suppose that $\sum_{i=1}^n \sum_{j=1}^n a_i a_j k_n(x_i, x_j) \ge 0$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k_{n+1}(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j B_{n+1}(x_i - x_j)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j (B_n \star I)(x_i - x_j)$$

$$= \underbrace{\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j B_n\right)}_{\geq 0 \text{ by hypothesis}} \star I(x_i - x_j) \quad \text{(by linearity of convolution)}$$

$$\geq 0$$

Thus, the recurrence is done.

We showed that $k_n(x,y) = B_n(x-y)$ is a kernel on $\mathcal{X} \times \mathcal{X}$ for $n \geq 2$. I couldn't prove it for n = 1.

- We are dealing with a translation invariant pd kernel.
 - First, let's show that B_n is integrable. As before, we do a recurrence on n. B_1 is integrable as I is bounded by 1 and has [-1,1] as support. Let's suppose B_n is integrable:

$$\int_{\mathbb{R}} |B_{n+1}(x)| dx = \int_{\mathbb{R}} \left| \int_{\mathbb{R}} B_n(u) I(x-u) du \right| dx$$

$$\leq \int_{\mathbb{R}} \int_{\mathbb{R}} |B_n(u)| |I(x-u)| du dx$$

$$\leq \int_{\mathbb{R}} |B_n(u)| \int_{\mathbb{R}} |I(x-u)| dx du \quad \text{(by Fubini-Tonelli Theorem)}$$

$$\leq \int_{\mathbb{R}} |B_n(u)| du \int_{\mathbb{R}} |I(x)| dx$$

$$< \infty \quad \text{(by hypothesis)}$$

This shows that B_{n+1} is integrable, i.e. the recurrence is shown.

- Next, we show that the Fourier transform of B_n is integrable. Let's first recall the Fourier transform of B_1 , which is a rectangle pulse:

$$\hat{B}_1(\omega) = 2 \frac{\sin \omega}{\omega}$$

Then, we have:

$$\hat{B}_{n+1}(\omega) = \int_{\mathbb{R}} B_n \star I(x) e^{-i\omega x} dx$$

$$= \int_{\mathbb{R}} B_n(x) e^{-i\omega x} dx \times \int_{\mathbb{R}} I(x) e^{-i\omega x} dx \quad \text{(convolution in time is multiplication in frequency)}$$

$$= \hat{B}_n(\omega) \hat{B}_1(\omega)$$

Thus, by recurrence, we end up with, for all $n \geq 2$:

$$\hat{B}_n(\omega) = \left(2\frac{\sin\omega}{\omega}\right)^n$$

Finally, \hat{B}_n is integrable for $n \geq 2$:

- * it is integrable when $\omega \to 0$, because $\left|\left(2\frac{\sin\omega}{\omega}\right)^n\right| \sim 2^n$, which is a constant.
- * it is integrable when $\omega \to +\infty$, because $\left|\left(2\frac{\sin\omega}{\omega}\right)^n\right| \leq \frac{2^{n+1}}{x^n}$ which is integrable for $n \geq 2$.

Finally, as B_n and \hat{B}_n are integrable for $n \geq 2$, we can construct \mathcal{H}_n the subset of $L_2(\mathbb{R})$ that consists of integrable and continuous functions f such that:

$$\begin{split} \|f\|_{\mathcal{H}_n}^2 &= \frac{1}{2\pi} \int_{\mathbb{R}} \frac{|\hat{f}(\omega)|^2}{\hat{B}_n(\omega)} \mathrm{d}\omega < \infty \\ \text{i.e. } \|f\|_{\mathcal{H}_n}^2 &= \frac{1}{2\pi} \int_{\mathbb{R}} \frac{|\hat{f}(\omega)|^2}{\left(2\frac{\sin\omega}{\omega}\right)^n} \mathrm{d}\omega < \infty \end{split}$$

endowed with the inner product:

$$\langle f \mid g \rangle_{\mathcal{H}_n} = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\hat{f}(\omega) \overline{\hat{g}(\omega)}}{\left(2 \frac{\sin \omega}{\omega}\right)^n} d\omega$$

is the RKHS of k_n as rk.

Figure 1: B_n -splines for n = 1, 2, 3, 4

2 Exercice 2: Sobolev spaces

- 1. Let $\mathcal{H}=\{f:[0;1]\mapsto\mathbb{R},\text{absolutely continuous},f'\in L^2([0;1]),f(0)=0\}$ with $\langle f\mid g\rangle_{\mathcal{H}}=\int_0^1f'(u)g'(u)\mathrm{d}u.$
 - (a) We show that \mathcal{H} is a pre-Hilbert space:
 - i. it is a sub-vector space of continuous function $L^2([0,1])$
 - ii. $\langle f \mid g \rangle_{\mathcal{H}}$ is a bilinear form and $\langle f \mid f \rangle_{\mathcal{H}} \geq 0$
 - iii. We have, for all $x \in [0, 1]$:

$$f(x) = \int_0^x f'(u) \mathrm{d}u$$

Thus, $\langle f \mid f \rangle_{\mathcal{H}} = 0 \implies f'(x) = 0$ for all $x \in [0, 1]$, i.e. f(x) = 0

- (b) We show that \mathcal{H} is complete for the induced norm.
 - i. Let $(f_n)_{n\geq 0}$ be a Cauchy sequence in \mathcal{H} . It converges to f.
 - ii. Thus, $(f'_n)_{n\geq 0}$ is a Cauchy sequence in $L^2([0,1])$ (complete space) which converges to $g\in L^2([0,1])$.

iii. We have

$$f(x) = \lim_{n \to \infty} f_n(x)$$
$$= \lim_{n \to \infty} \int_0^x f'_n(u) du$$
$$= \lim_{n \to \infty} \int_0^x g(u) du$$

Thus, we have f absolutely continuous, f' = g i.e. $f' \in L^2([0,1])$ and $f(0) = \lim_{n \to \infty} f_n(0) = 0$. Finally, $f \in \mathcal{H}$.

iv. Finally,

$$||f_n - f||_{\mathcal{H}} = ||f'_n - f'||_{L^2([0,1])}$$

$$\xrightarrow{n \to \infty} 0$$

Finally, \mathcal{H} is a Hilbert space.

(c) We show that the reproducing kernel of \mathcal{H} is K such that:

$$\forall x \in [0,1], \forall t \in [0,1] \quad K_x(t) = K(x,t) = \min(x,t)$$

- i. K_x is 1-Lipshitz. Thus, K_x is absolutely continuous. $K_x' \in L^2([0,1])$. Finally $K_x(0) = 0$. Thus, $K_x \in \mathcal{H}$.
- ii. For any $x \in [0,1]$ and $f \in \mathcal{H}$, we have:

$$\langle f \mid K_x \rangle_{\mathcal{H}} = \int_0^1 f'(u) K_x'(u) du$$
$$= \int_0^x f'(u) du$$
$$= f(x)$$

 \mathcal{H} is a RKHS with kernel K.

- 2. Let $\mathcal{H} = \{f : [0;1] \mapsto \mathbb{R}$, absolutely continuous, $f' \in L^2([0;1]), f(0) = f(1) = 0\}$ with $\langle f \mid g \rangle_{\mathcal{H}} = \int_0^1 f'(u)g'(u)du$.
 - (a) We show that \mathcal{H} is a pre-Hilbert space. We use the exact same proof as above.
 - (b) We show that \mathcal{H} is complete for the induced norm. We use the same proof as above. We should not forget to mention that $f(1) = \lim_{n \to \infty} f_n(1) = 0$
 - (c) We are now looking for a reproducing kernel K of \mathcal{H} . To do so, we look for K_x as piecewise linear:

$$\forall x \in [0, 1], \forall t \in [0, 1] \quad K_x(t) = \begin{cases} \alpha t & \text{if } t \le x \\ -\beta t + \gamma & \text{if } t \ge x \end{cases}$$

- i. the continuity condition at t=x and $K_x(1)=0$ implies $\gamma=\beta$ and $(\alpha+\beta)x=\beta$
- ii. K_x is $\max(\alpha, \beta)$ -Lipshitz. Thus, K_x is absolutely continuous. $K_x' \in L^2([0, 1])$. Finally $K_x(0) = 0$ and $K_x(1) = 0$ (with the above conditions). Thus, $K_x \in \mathcal{H}$.
- iii. For any $x \in [0,1]$ and $f \in \mathcal{H}$, we have:

$$\langle f \mid K_x \rangle_{\mathcal{H}} = \int_0^1 f'(u) K'_x(u) du$$
$$= \alpha (f(x) - f(0)) - \beta (f(1) - f(x))$$
$$= f(x)(\alpha + \beta)$$

The last equation implies $\alpha + \beta = 1$. Finally, all the combined conditions give us:

$$\forall x \in [0,1], \forall t \in [0,1] \quad K_x(t) = K(x,t) = \begin{cases} (1-x)t & \text{if } t \leq x \\ -xt+x & \text{if } t \geq x \end{cases}$$
 i.e.
$$\boxed{\forall x \in [0,1], \forall t \in [0,1] \quad K(x,t) = \min(x,t) - xt}$$

 \mathcal{H} is a RKHS with kernel K.

- 3. Let $\mathcal{H} = \{f : [0;1] \mapsto \mathbb{R}, \text{ absolutely continuous}, f \in L^2([0;1]), f' \in L^2([0;1]), f(0) = f(1) = 0\}$ with $\langle f \mid g \rangle_{\mathcal{H}} = \int_0^1 f(u)g(u) + f'(u)g'(u)du$.
 - (a) We show that \mathcal{H} is a pre-Hilbert space. We use the exact same proof as above.
 - (b) We show that \mathcal{H} is complete for the induced norm. We use the same proof as above. We notice that

$$||f_n - f||_{\mathcal{H}}^2 = \underbrace{||f_n - f||}_{n \to \infty} L^2([0,1]) + \underbrace{||f'_n - f'||}_{n \to \infty} L^2([0,1])$$

due to the completeness of $L^2([0,1])$.

(c) We are now looking for a reproducing kernel K of \mathcal{H} . To do so, we integrate by parts the reproducing property. For any $x \in [0,1]$ and $f \in \mathcal{H}$, let P_x denote a primitive of K_x :

$$\langle f \mid K_x \rangle_{\mathcal{H}} = \int_0^1 f(u) K_x(u) + f'(u) K_x'(u) du$$

$$= K_x(1) f(1) - K_x(0) f(0) + \int_0^1 f'(u) \left[K_x'(u) - P_x(u) \right] du$$

$$= \int_0^1 f'(u) \left[K_x'(u) - P_x(u) \right] du$$

In order to have $\langle f \mid K_x \rangle_{\mathcal{H}} = f(x)$, we can choose K_x such that

$$K_x''(u) - K_x(u) = \mathbb{1}_{u \le x}$$

This is a second order linear differential equation:

- the general solution is: $K_x^0: u \mapsto \lambda e^{-u} + \mu e^u$
- $\bullet\,$ I didn't find a particular solution for this equation. However, let's call a particular solution K^1_x

Thus, we have the kernel K:

$$\forall x \in [0, 1], \forall t \in [0, 1]$$
 $K_x(t) = K(x, t) = \lambda e^{-u} + \mu e^u + K_x^1(u)$

The absolute continuity and the border conditions on K should provide enough information to solve λ and μ .

 \mathcal{H} is a RKHS with kernel K.

- 4. Let $\mathcal{H} = \{f : [0;1] \mapsto \mathbb{R}$, absolutely continuous, $f' \in L^2([0;1]), f(0) = f'(0) = 0\}$ with $\langle f \mid g \rangle_{\mathcal{H}} = \int_0^1 f''(u)g''(u)du$.
 - (a) We show that \mathcal{H} is a pre-Hilbert space. We use the same proof as above. However, it is still important to mention, for $f \in \mathcal{H}$:

$$||f||_{\mathcal{H}} = \int_0^1 f''(u)^2 du = 0 \Rightarrow f''(x) = 0 \quad \forall x \in [0, 1]$$

$$\Rightarrow f'(x) = \text{constant} = 0 \quad \forall x \in [0, 1] \quad \text{(because } f'(0) = 0\text{)}$$

$$\Rightarrow f(x) = \text{constant} = 0 \quad \forall x \in [0, 1] \quad \text{(because } f(0) = 0\text{)}$$

i.e. $||f||_{\mathcal{H}} = 0$ implies f = 0.

(b) We show that \mathcal{H} is complete for the induced norm. We use the same proof as above. We notice that

$$||f_n - f||_{\mathcal{H}}^2 = \underbrace{||f_n'' - f''||}_{n \to \infty} L^2([0,1])$$

due to the completeness of $L^2([0,1])$, as f''_n is a Cauchy sequence in $L^2([0,1])$.

(c) We are now looking for a reproducing kernel K of \mathcal{H} . To do so, we integrate by parts the reproducing property. For any $x \in [0,1]$ and $f \in \mathcal{H}$, let P_x denote a primitive of K_x :

$$\langle f \mid K_x \rangle_{\mathcal{H}} = \int_0^1 f''(u) K_x''(u) du = f'(1) K_x''(1) - \int_0^1 f'(u) K_x'''(u) du$$
 (1)

We look for K_x as piecewise polynomial:

$$\forall x \in [0, 1], \forall t \in [0, 1] \quad K_x(t) = \begin{cases} -t^3 + \beta t^2 + \gamma t + \delta & \text{if } t \le x \\ bt^2 + ct + d & \text{if } t \ge x \end{cases}$$

Then, we have several conditions which solve the unknowns:

- Respecting the reproducing property in Eq. (1) leads to $K''_x(1) = 0$ i.e. b = 0.
- $K_x(0) = K'_x(0) = 0$ leads to $\gamma = \delta = 0$
- The continuity condition on K_x at t = x leads to $-x^3 + \beta x^2 = cx + d$
- While it is not explicitly written, we need K_x to be twice derivable, i.e. we need the continuity condition on K_x' at t=x. This leads to $-3x^2+2\beta x=c$

Thus, we have the kernel K:

$$\forall x \in [0,1], \forall t \in [0,1] \quad K(x,t) = \begin{cases} -t^3 + 2xt^2 & \text{if } t \le x \\ x^2t & \text{if } t \ge x \end{cases}$$

 \mathcal{H} is a RKHS with kernel K.