Lengoaiak, Konputazioa eta Sistema Adimendunak

3. gaiko lehenengo zatia: AFD, AFED eta ε-AFED-en diseinua Bilboko IITUE 1,6 puntu Ebazpena

2014-11-26

1 Automata finitu deterministen (AFD-en) diseinua (0,500 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako bi lengoaientzat AFD bana diseinatu:

1.1 ababc zero edo gehiagotan errepikatuz osatutako hitzez eratutako lengoaia (0,250 puntu)

ababc zero edo gehiagotan errepikatuz osatutako hitzez eratutako L_1 lengoaia. Adibidez, ε , ababc eta ababcababc hitzak L_1 lengoaiakoak dira baina aac, aabcbc, aacc, aaa, ab, ababab, abc, abcab, abababcabc eta abcabccccc hitzak ez dira L_1 lengoaiakoak. L_1 lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land \exists k(k > 0 \land w = (ababc)^k) \}$$

1.2 ab katea bikoitia den kopuru batean edo abc katea bikoitia den kopuru batean errepikatuz osatutako hitzez eratutako lengoaia (0,250 puntu)

ab katea bikoitia den kopuru batean edo abc katea bikoitia den kopuru batean errepikatuz osatutako hitzez eratutako L_2 lengoaia. Adibidez, ε , abab, abcabc, abababab, abcabcabcabc eta abcabc hitzak L_2 lengoaia-koak dira baina aac, aabcbc, aacc, aaa, ab, ababab, abc, ababc, abababcabc eta abcabcccc hitzak ez dira L_2 lengoaiakoak. L_2 lengoaiaren definizio formala honako hau da:

$$L_2 = \{ w \mid w \in A^* \land \exists k (k \ge 0 \land k \bmod 2 = 0 \land (w = (ab)^k \lor w = (abc)^k)) \}$$

Hor q_1 eta q_{15} egoerek xede bera dute baina automataren marrazkia errazteko ipini dira. Berez q_1 egoera nahikoa izango litzateke, hor q_{15} egoerara iristen diren geziak q_1 egoerara bideratuz.

2 Automata finitu ez deterministen (AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion AFED bat diseinatu. Nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat bi gezi edo gehiago ateratzea. Baita ere nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea.

Aurkeztutako aukera honetan ab eta abc errepikatzeko aukerak guztiz bananduta edo bereiztuta daude eta hori dela eta, egoera gutxiago erabiltzea ere badaukagu:

Aukera biak hobeto alderatu ahal izateko, egoera gutxiago egon arren, lehenengo aukerako zenbatze era jarraitu da, nahiz eta tarteko zenbaki batzuk ez agertu.

3 ε trantsizioak dituzten automata finitu ez deterministen (ε -AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion ε -AFED bat diseinatu. Nahitaezkoa da ε -AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat edo ε sinboloarentzat bi gezi edo gehiago ateratzea eta gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea. Gainera, derrigorrezkoa da baita ere gutxienez ε trantsizio bat egotea.

Jarraian beste aukera bat aurkeztuko da:

Hona hemen hirugarren aukera bat ere:

4 Konputazio deterministen garapena (0,100 puntu)

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten diren konputazioei dagokien konfigurazio deterministez eratutako sekuentzia (edo adar bakarreko zuhaitza) garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\delta^*(q_0, abba)$
- 2. $\delta^*(q_0, abaa)$
- 3. $\delta^*(q_0, bcab)$
- 4. $\delta^*(q_0,bcbc)$
- 5. $\delta^*(q_0, \varepsilon)$

Kasu bakoitzak 0,020 balio du.

5 Konputazio ez deterministen garapena (0,100 puntu)

Jarraian erakusten den AFED-a kontuan hartuz, hor zehazten diren konputazioei dagokien konfigurazio deterministez eratutako zuhaitza garatu urratsez urrats, bukaeran AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\nu^*(r_0, aba)$
- 2. $\nu^*(r_0, aaa)$
- 3. $\nu^*(r_0, acc)$
- 4. $\nu^*(r_0, ccc)$

5.
$$\nu^*(r_0,\varepsilon)$$

 (r_1,ε)

BAI

 (r_2,ε)

EZ

Kasu bakoitzak 0,020 balio du.

 (r_2,ε)

EΖ

Konputazio edo zuhaitz bakoitzean, gutxienez adar batean "BAI" ateratzen bada, orduan azkeneko emaitza ere baiezkoa izango da. Adar guztietan "EZ" ateratzen bada, orduan azkeneko emaitza ezezkoa izango da.

 (r_2,ε)

 (r_2,ε)

EZ

6 ε trantsizioak dituzten konputazio ez deterministen garapena (0,100 puntu)

Jarraian erakusten den ε -AFED-a kontuan hartuz, hor zehazten diren konputazioak konfigurazio deterministez osatutako zuhaitzen bidez garatu urratsez urrats, bukaeran ε -AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

 (r_0,ε)

EΖ

- 1. $\lambda^*(s_0, abbc)$
- 2. $\lambda^*(s_0, aaa)$
- 3. $\lambda^*(s_0,ac)$
- 4. $\lambda^*(s_0, c)$

5.
$$\lambda^*(s_0,\varepsilon)$$

Kasu bakoitzak 0,020 balio du.

Konputazio edo zuhaitz bakoitzean, gutxienez adar batean "BAI" ateratzen bada, orduan azkeneko emaitza ere baiezkoa izango da. Adar guztietan "EZ" ateratzen bada, orduan azkeneko emaitza ezezkoa izango da.

7 AFD-en minimizazioa (0,300 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako AFD hau minimizatu:

AFD honi dagokion δ trantsizio funtzioa honako taula honen bidez adieraz daiteke:

δ	a	b	c
q_0	q_1	q_2	q_3
q_1	q_1	q_4	q_5
q_2	q_9	q_2	q_6
q_3	q_{10}	q_{10}	q_3
q_4	q_8	q_4	q_7
q_5	q_8	q_8	q_5
q_6	q_9	q_9	q_6
q_7	q_8	q_8	q_7
q_8	q_8	q_8	q_8
q_9	q_9	q_9	q_9
q_{10}	q_{10}	q_{10}	q_{10}

Lehenengo zatiketa Alde batetik zirkulu bakarra dutenak eta bestetik bi zirkulu dituztenak:

$$[q_0] = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$$
$$[q_8] = \{q_8, q_9, q_{10}\}$$

 q_0 eta q_8 ordezkari bezala erabiliz, trantsizioen taula berridatziko dugu orain:

δ	a	b	c
q_0	$[q_0]$	$[q_0]$	$[q_0]$
q_1	$[q_0]$	$[q_0]$	$[q_0]$
q_2	$[q_8]$	$[q_0]$	$[q_0]$
q_3	$[q_8]$	$[q_8]$	$[q_0]$
q_4	$[q_8]$	$[q_0]$	$[q_0]$
q_5	$[q_8]$	$[q_8]$	$[q_0]$
q_6	$[q_8]$	$[q_8]$	$[q_0]$
q_7	$[q_8]$	$[q_8]$	$[q_0]$
q_8	$[q_8]$	$[q_8]$	$[q_8]$
q_9	$[q_8]$	$[q_8]$	$[q_8]$
q_{10}	$[q_8]$	$[q_8]$	$[q_8]$

 $[q_0]$ multzoko egoeren jokabidea aztertuz, alde batetik q_0 eta q_1 egoerek jokabide bera dutela ikus dezakegu. Bestetik, q_2 eta q_4 egoerek ere jokabide bera dute baina q_0 eta q_1 egoerekin alderatuz desberdina da. Azkenik, q_3 , q_5 , q_6 eta q_7 egoerek ere jokabide bera dute, baina aurretik aipatutako egoerekin alderatuz, jokabide hori desberdina da. Guztira $[q_0]$ multzoaren barnean hiru jokabide desberdin aurkitu ditugu eta, ondorioz, hiru azpimultzotan zatitu beharko da.

 $[q_8]$ multzoa hartuz, horko hiru egoerek jokabide bera dute eta, ondorioz, ez dago multzo hori zatitu beharrik.

Bigarren zatiketa Lehenengo zatiketan sortu diren multzoen barnean aurkitutako jokabideak kontuan hartuz, bigarren zatiketak honako hau lagako digu:

$$\begin{aligned} [q_0] &= \{q_0, q_1\} \\ [q_2] &= \{q_2, q_4\} \\ [q_3] &= \{q_3, q_5, q_6, q_7\} \\ [q_8] &= \{q_8, q_9, q_{10}\} \end{aligned}$$

 $q_0,\,q_2,\,q_3$ eta q_8 ordezkari bezala erabiliz, trantsizioen taula berridatziko dugu:

δ	a	b	c
q_0	$[q_0]$	$[q_2]$	$[q_3]$
q_1	$[q_0]$	$[q_2]$	$[q_3]$
q_2	$[q_8]$	$[q_2]$	$[q_3]$
q_3	$[q_8]$	$[q_8]$	$[q_3]$
q_4	$[q_8]$	$[q_2]$	$[q_3]$
q_5	$[q_8]$	$[q_8]$	$[q_3]$
q_6	$[q_8]$	$[q_8]$	$[q_3]$
q_7	$[q_8]$	$[q_8]$	$[q_3]$
q_8	$[q_8]$	$[q_8]$	$[q_8]$
q_9	$[q_8]$	$[q_8]$	$[q_8]$
q_{10}	$[q_8]$	$[q_8]$	$[q_8]$

 $[q_0]$ multzokoak diren q_0 eta q_1 egoerek jokabide bera dutela ikus dezakegu. $[q_2]$ multzokoak diren q_2 eta q_4 egoerekin ere gauza bera gertatzen da, biek jokaera bera dute. $[q_3]$ multzokoak diren q_3 , q_5 , q_6 eta q_7 egoerek ere jokabide bera dute. Bukatzeko, $[q_8]$ multzoko hiru egoerek ere jokaera bera dute. Beraz, ez dago zatiketa berririk.

Behin betiko zatiketa honako hauxe da beraz:

$$[q_0] = \{q_0, q_1\}$$

$$[q_2] = \{q_2, q_4\}$$

$$[q_3] = \{q_3, q_5, q_6, q_7\}$$

$$[q_8] = \{q_8, q_9, q_{10}\}$$

Orain egoerak berrizendatuko ditugu:

