Solutions to CS511 Homework 05

Nicholas Ikechukwu - U71641768

October 09, 2024

Exercise 1. [LCS, page 160]: Exercise 2.3.1, do parts (a) and (b) only

Prove the validity of the following sequents using, among others, the rules =i and =e. Make sure that you indicate for each application of =e what the rule instances ϕ , t_1 and t_2 are.

Use \approx , instead of =, for the formal symbol whose interpretation is equality. In LaTeX, you can typeset with "approx"

- (a) $(y = 0) \land (y = x) \vdash 0 = x$
- (b) $t_1 = t_2 \vdash (t + t_2) = (t + t_1)$

Solutions:

(a) $(y \approx 0) \land (y \approx x) \vdash 0 \approx x$

- (a) $(y \approx 0) \land (y \approx x)$ [Premise]
- (b) $y \approx 0$ [\land elimination, 1]
- (c) $y \approx x$ [\wedge elimination, 1]
- (d) $0 \approx y$ [=e: $\varphi(z) := (z \approx y), t_1 := y, t_2 := 0, \text{ from } 2$]
- (e) $0 \approx x$ [=e: $\varphi(z) := (0 \approx z), t_1 := y, t_2 := x, \text{ from } 4, 3$]

(b)
$$t_1 \approx t_2 \vdash (t + t_2) \approx (t + t_1)$$

(a)
$$t_1 \approx t_2$$
 [Premise]

(b)
$$(t+t_1) \approx (t+t_1)$$
 [=i]
(c) $(t+t_2) \approx (t+t_1)$ [=e: $\varphi(z) := ((t+z) \approx (t+t_1)), t_1 := t_1, t_2 := t_2, \text{ from } 1, 2$]

(c)
$$(t+t_1) \approx (t+t_1)$$
 [=e: $\varphi(z) := ((t+z) \approx (t+t_1)), t_1 := t_1, t_2 := t_2, \text{ from } 1, 2$]

Exercise 2. LCS, page 161: Exercise 2.3.9, do parts (a) and (d) only.

Prove the validity of the following sequents in predicate logic, where F , G, P , and Q have arity 1, and S has arity 0 (a 'propositional atom'):

- (a) $\exists x(S \to Q(x)) \vdash S \to \exists x Q(x)$
- (d) $\forall x P(x) \to S \vdash \exists x (P(x) \to S)$

Solutions:

(a)
$$\exists x(S \to Q(x)) \vdash S \to \exists x Q(x)$$

Let \mathcal{I} be any interpretation in which $\exists x(S \to Q(x))$ is true.

- 1. There exists some element a in the domain such that $S \to Q(a)$ is true in \mathcal{I} .
- 2. To prove $S \to \exists x Q(x)$, consider two cases for S:
- 3. Case 1: If S is false in \mathcal{I} , then $S \to \exists x Q(x)$ is trivially true.
- 4. Case 2: If S is true in \mathcal{I} , then:
 - (a) Q(a) must be true in \mathcal{I} (from steps 1 and 4).
 - (b) Therefore, $\exists x Q(x)$ is true in \mathcal{I} .
 - (c) Hence, $S \to \exists x Q(x)$ is true in \mathcal{I} .
- 5. In both cases, $S \to \exists x Q(x)$ is true in \mathcal{I} . Thus, whenever $\exists x (S \to Q(x))$ is true in an interpretation, $S \to \exists x Q(x)$ is also true in that interpretation, proving the validity of the sequent.

(d)
$$\forall x P(x) \to S \vdash \exists x (P(x) \to S)$$

We prove this by contradiction:

- 1. Assume there exists an interpretation \mathcal{I} in which $\forall x P(x) \to S$ is true but $\exists x (P(x) \to S)$ is false.
- 2. In \mathcal{I} , $\forall x \neg (P(x) \rightarrow S)$ must be true (negation of $\exists x (P(x) \rightarrow S)$).
- 3. This means for every element a in the domain of \mathcal{I} :
 - (a) P(a) is true and S is false.
- 4. Therefore, $\forall x P(x)$ is true in \mathcal{I} .
- 5. From steps 1 and 4, S must be true in \mathcal{I} (by modus ponens).
- 6. But this contradicts step 3(a), where S is false. This contradiction shows that our assumption in step 1 must be false. Therefore, in any interpretation where $\forall x P(x) \to S$ is true, $\exists x (P(x) \to S)$ must also be true, proving the validity of the sequent.

PROBLEM 1: Let $\psi 1, \psi 2, and \psi 3$ be the three axioms of group theory, which are written as first-order wff's on page 11 of Lecture Slides 20. Let ψ be the wff in the middle of the same page 11 of Lecture Slides 20. The wff ψ expresses the uniqueness of inverses in groups. Your task is to produce a formal proof, as a natural deduction, of the following judgment: $\psi 1, \psi 2, \psi 3 \vdash \psi$.

Hint: Do Exercises 1 and 2 above before this problem. Also use \approx for the formal symbol whose interpretation is equality, leaving = for equality at the meta-level.

Solution:

Let ψ_1 , ψ_2 , and ψ_3 be the three axioms of group theory:

- 1. $\forall x (e \cdot x \approx x \land x \cdot e \approx x)$ (identity)
- 2. $\forall x \exists y (x \cdot y \approx e \land y \cdot x \approx e)$ (inverse)
- 3. $\forall x \forall y \forall z ((x \cdot y) \cdot z \approx x \cdot (y \cdot z))$ (associative)

Let ϕ be the wff expressing the uniqueness of inverses in groups:

$$\phi \equiv \forall x \forall y \forall z (x \cdot y \approx e \land x \cdot z \approx e \rightarrow y \approx z)$$

We need to prove: $\psi_1, \psi_2, \psi_3 \vdash \phi$ Let x, y, and z be arbitrary elements of the group.

- 1. Assume $x \cdot y \approx e$ and $x \cdot z \approx e$.
- 2. From ψ_2 , there exists an element x' such that $x \cdot x' \approx e$ and $x' \cdot x \approx e$.
- 3. By substituting e into the equation, we have $(x \cdot y) \cdot x' \approx e$.
- 4. By the identity axiom (ψ_1) , $(x \cdot y) \cdot x' = x'$.
- 5. By the associative property (ψ_3) , we have $x \cdot (y \cdot x') = x'$.
- 6. Therefore, since e = y, we can conclude that y = x'.
- 7. Similarly, we can show that z = x'.
- 8. Thus, we conclude that y = z.

Since x, y, and z were arbitrary, we have proven ϕ .

ON LEAN-4

Solutions in one file at: https://github.com/nich-ikech/CS511-hw-macbeth/blob/main/cs511HwSolutions/hw05/hw05_nicholas_ikechukwu.lean

Exercise 3. Hint: These should be easy if you read the book. Use existential quantifiers.

Solution

Exercise 4. Hint: These use existential and universal quantifiers. The existential quantifiers are used in both context and goal, but universal quantifiers only in context.

PROBLEM 2. Prove in Lean 4 the judgment for which you produced a formal proof as a natural deduction in Problem 1 above.

Solution