# Computational Statistics

#### Hyperspherical Variational Auto-Encoders

Victor Deng Inès Vati

École Normale Supérieure Paris-Saclay, Master MVA

10<sup>th</sup> JAN 2024

# Table of contents

- 1. Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion





# Table of contents

- 1. Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion





#### Introduction

### 2018 paper from Tim R. Davidson et al. [DFDC+]

- Replacing the Gaussian prior and approximate posterior distributions with a von Mises-Fisher distribution
- Goal: better model data with a hyperspherical latent structure
- ullet Various experiments, where the  $\mathcal{S}\text{-VAE}$  (von Mises-Fisher distributions) often outperforms the  $\mathcal{N}\text{-VAE}$  (Gaussian distributions) in low dimensions





# Table of contents

- 1 Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion





# Sampling z' from vMF

#### **Algorithm 1** Overview of the sampling method from $vMF(\mu, \kappa)$

- 1: Sample  $z \sim q(z|e_1, \kappa)$  where  $e_1 = (1, 0, ..., 0)$
- 2: Compute Householder reflection  $U(\mu)$  so that  $U(\mu)e_1=\mu$
- 3: **return**  $z' = U(\mu)z$





# Sampling z from vMF

#### **Algorithm 2** Overview of the sampling method from $vMF(\mu, \kappa)$

- 1: Sample  $z \sim q(z|e_1, \kappa)$  where  $e_1 = (1, 0, \dots, 0)$
- 2: Sample  $w \in \mathbb{R} \sim g(w|\kappa)$  by acceptance rejection sampling
- 3: Sample  $v \in \mathbb{R}^{d-1} \sim \mathcal{U}(S^{d-2})$  (uniform on the hypersphere  $S^{d-2}$  independent of w)
- 4:  $z \leftarrow (w, \sqrt{1-w^2}v^T)^T$
- 5: Compute Householder reflection  $U(\mu)$  so that  $U(\mu)e_1=\mu$
- 6: **return**  $z' = U(\mu)z \sim q(z'|\mu,\kappa)$





# Sampling w from $g(w|\kappa, \theta)$



 $S^2$  : unit sphere in  $\mathbb{R}^3$ 



# Sampling w from $g(w|\kappa, \theta)$



Sample  $w \in \mathbb{R} \sim g(w|\kappa,d)$  by acceptance rejection sampling



# Sampling w from $g(w|\kappa)$

#### Generale case

- Sample target distribution  $w \in \mathbb{R} \sim g(w|\kappa)$  by sampling a proposal  $w_{prop}$  of known density  $r(w|\kappa)$
- Perform backpropagation by reparameterizing  $r(w|\kappa)$  so that the sampling is independent of the parameters
- Note that r is not explicitly given in the article





# Sampling w from $g(w|\kappa)$

- $\blacksquare$  Case d=3: faster to use inverse transformation method
  - The vMF distribution explicity writes :

$$f_{vMF}(z) = \frac{\kappa}{4\pi \ sinh(\kappa)} exp(\kappa \mu^T z)$$

•  $(w, \sqrt{1-w^2}v^T)^T \sim vMF(e_1, \kappa)$  where  $v \sim S^2$  and  $w \in [-1, 1]$  has density

$$f_W(w) = \frac{\kappa}{2 \ sinh(\kappa)} exp(\kappa w)$$

• We compute its cumulative distribution function  $F_W(w)$  and its inverse

$$F_W^{-1}(u) = \frac{1}{\kappa} ln(\exp(-\kappa) + 2 \sinh(\kappa)u)$$

• As  $sinh(\kappa)$  is numerically instable, we rewrites

$$F_W^{-1}(u) = 1 + \frac{1}{\kappa} ln(u + (1 - u)exp(-2\kappa))$$





# Sampling $\nu$ from $\mathcal{U}(S^{d-2})$



Sample  $v \in \mathbb{R}^{d-1} \sim \mathcal{U}(S^{d-2})$ 



# Sampling v from $\mathcal{U}(S^{d-2})$

- $\mathcal{N}(0, I_{d-1})$  is rotationally symmetric around the origin
- $f_{Y_1,...,Y_{d-1}} = \frac{1}{\sqrt{2\pi}^{d-1}} exp(-(Y_1^2 + \cdots + Y_{d-1}^2)/2) = \frac{1}{\sqrt{2\pi}^{d-1}} exp(-1^2/2)$  which is constant in all of the angular variables.

### **Algorithm 3** Sampling v from $\mathcal{U}(S^{d-2})$

- 1: Generate d-1 iid variables  $(X_i)$  from  $\mathcal{N}(0,1)$
- 2:  $Y_i \leftarrow \frac{X_i}{\sqrt{X_1^1 + \dots + X_{d-1}^2}}$
- 3: **return**  $(Y_i)_{i=1,...,d-1} \sim \mathcal{U}(S^{d-2})$



# Sampling z from $q(z|e_1, \kappa)$



$$z = (w, \sqrt{1 - w^2}v^T)^T$$



### Transform z

### **Algorithm 4** Overview of the sampling method from $vMF(\mu, \kappa)$

```
Require: \mu \in \mathbb{R}^d, \kappa \in \mathbb{R}_+
```

- 1: Sample  $z \sim q(z|e_1, \kappa)$  where  $e_1 = (1, 0, ..., 0)$
- 2: Compute Householder reflection  $U(\mu)$  so that  $U(\mu)e_1=\mu$
- 3:  $u \leftarrow Normalize(e_1 \mu)$
- 4:  $U \leftarrow I 2uu^T$
- 5: **return**  $z' = U(\mu)z$





# Sampling results







# Table of contents

- 1. Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion





# Reparameterization Trick

The authors use a reparameterization trick that has been extended to distributions that can be sampled using rejection sampling [NRLB20].

### Algorithm 5 Reparameterized Rejection Sampling (from [NRLB20])

- 1:  $i \leftarrow 0$
- 2: repeat
- 3:  $i \leftarrow i + 1$
- 4: Propose  $\varepsilon_i \sim s(\varepsilon)$
- 5: Simulate  $u_i \sim \mathcal{U}[0,1]$
- 6: **until**  $u_i < \frac{g(h(\varepsilon_i,\theta);\theta)}{r(h(\varepsilon_i,\theta);\theta)}$
- 7: return  $\varepsilon_i$



#### Monte Carlo estimation

By noting  $\pi(\varepsilon|\theta)$  the distribution of the resulting  $\varepsilon$ , we have (gradient of the expected log-likelihood)

$$abla_{ heta} \mathbb{E}_{g(arepsilon| heta)}[...] = \mathbb{E}_{\pi(arepsilon| heta)}[...] = \mathbb{E}_{(arepsilon_i,U_i)_i}[...]$$
"

Problem:  $(\varepsilon_i, U_i)_{i \in \mathbb{N}}$  is not a random variable (it is a stochastic process) No reference to a convergence proof in [DFDC<sup>+</sup>, NRLB20, PBJ12, MG14]





# Table of contents

- 1 Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion





## Experiments on link prediction

- Link prediction on a graph dataset: given a graph with some edges removed, predict the likelihood for each pair of nodes to be connected by an edge
- Cora dataset [MNRS00]: 2708 publications, 5429 links, 1433-dimensional feature vectors
- Using a Variational Graph Auto-Encoder [KW]: a variational encoder which uses a graph neural network (GNN) as encoder
- Reconstruction loss:

$$\mathbb{E}_{q(\mathbf{Z}|\mathbf{X},\mathbf{A})}(\log p(\mathbf{A}|\mathbf{Z})) \quad \text{where} \quad p(\mathbf{A}|\mathbf{Z}) = \prod_{i=1}^{N} \prod_{j=1}^{N} p(A_{i,j}|\mathbf{z}_{i},\mathbf{z}_{j})$$

• Negative sampling: in the sum  $\sum_{i,j} \log p(A_{i,j}|\mathbf{z}_i,\mathbf{z}_j)$ , keep all positive edges and one randomly sampled negative edge per positive edge

# Loss computation

Reconstruction loss

•

$$\mathcal{L}_{recon} = -\mathbb{E}_{m{q}_{\psi}}(m{log} \,\, m{p}_{\phi}(m{x}|m{z}))$$

•

$$-
abla_{\kappa}\mathcal{L}_{\textit{recon}} pprox \textit{g}_{\textit{recon}} + \textit{g}_{\textit{cor}}$$

KL Divergence

•

$$\mathcal{L_{KL}} = \mathcal{KL}(q(z|\mu,\kappa)||p(z))$$

•

$$\nabla_{\kappa} \mathcal{L}_{\mathcal{K}\mathcal{L}}$$

The formulas were explicity computed in the article.





# Training curves for $\mathcal{N}$ -VGAE

Latent dimension 16, learning rate 0.01. No KL divergence in loss.





### Area under ROC curve for $\mathcal{N}$ -VGAE







# Average precision for $\overline{\mathcal{N}}$ -VGAE







# Training curves for S-VGAE

Latent dimension 16, learning rate 0.01. No KL divergence in loss.







### Area under ROC curve for S-VGAE







# Average precision for S-VGAE







## Impact of dimension d on S-VGAE

```
vmf d8: mean auc: 0.90, 0.004638416275088545 vmd d8: mean ap: 0.90, 0.006861910798200132 vmf d16: mean auc: 0.91, 0.005106467210129149 vmd d16: mean ap: 0.91, 0.002400819600884836 vmf d32: mean auc: 0.92, 0.003988671804848861 vmd d32: mean ap: 0.92, 0.006771540977322898 vmf d64: mean auc: 0.92, 0.004086768956130232 vmd d64: mean ap: 0.92, 0.006337561094050328
```





# Table of contents

- 1. Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion





#### Conclusion and Discussion

- Quite meaningful contribution in low dimensions
- ullet Algorithm not really useful in high dimensions, due to vanishing surface problem and soap bubble effect of the  $\mathcal{N} ext{-VAE}$
- Much less variance parameters (1 vs. d for  $\mathcal{N}\text{-VAE}$ ), so possibly less expressivity





### References I

Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tomczak.

Hyperspherical variational auto-encoders.

Daniel Frisch and Uwe Hanebeck.

Rejection sampling from arbitrary multivariate distributions using generalized fibonacci lattices.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders.

Andriy Mnih and Karol Gregor.

Neural variational inference and learning in belief networks, 2014.



#### References II



Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.

Automating the construction of internet portals with machine learning.

Information Retrieval, 3(2):127–163, 2000.



Christian A. Naesseth, Francisco J. R. Ruiz, Scott W. Linderman, and David M. Blei.

Reparameterization gradients through acceptance-rejection sampling algorithms, 2020.



John Paisley, David Blei, and Michael Jordan.

Variational bayesian inference with stochastic search, 2012.

