Machine learning under physical constraints Invariant representations in physics

Sixin Zhang (sixin.zhang@toulouse-inp.fr)

Construct Invariant Representations

Linear Discriminant Analysis

Construct Invariant Representations

Linear Discriminant Analysis

- Construct invariant representations (e.g. translational, rotational invariance) using transformations of Fourier, wavelet, and wavelet scattering.
- ► TP: classification of cosmology dust using invariant representations in 2d (eval.)
- Final project: Molecular Energy Prediction in 3d (eval.).

References

- Notes des Cours 18'-21' par Campagne et Mallat, "Sciences des Données" du Collège de France, https://www.di.ens.fr/~mallat/CoursCollege.html
- ► Lecture notes of Edouard Oyallon, Advanced topics in Deep Learning, https://edouardoyallon.github.io/ MAP670R-2022/index.html

Example in vision: group symmetry

- Invariance (group symmetry): A group action g on a signal x does not change an outcome
- ► For example, an image begin translated, rotated, dilated (zoom) or deformed does not change its object-level information.

Definition of group symmetry

- $lackbrack (G,\cdot)$ is a group if \cdot is a mapping from $G\times G\to G$ such that
 - $ightharpoonup \exists id \in G$, such that $g \cdot id = id \cdot g = g$, for any $g \in G$.
 - $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$, for any $g_1, g_2, g_3 \in G$.
 - $\forall g \in G$, there exists $g^{-1} \in G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = id$.
- Examples: invertible triangular matrices under matrix multiplication,

$$(A \cdot B) \cdot C = A \cdot (B \cdot C), \quad A^{-1}A = id$$

Action of group: basic examples in physics

- ▶ Action of group on x: $g \cdot x$ for $g \in G$.
- ▶ Translation group: Let $\tau \in \mathbb{R}^d$,

$$g_{\tau} \cdot x(u) = x(u-\tau), u \in \mathbb{R}^d$$

▶ Rotation group in 2d (d=2): Let r_{θ} be a rotation of angle $\theta \in [0, 2\pi]$,

$$g_{\theta} \cdot x(u) = x(r_{\theta} \cdot u), u \in \mathbb{R}^2$$

▶ Dilation group: Let s > 0,

$$g_s \cdot x(u) = x(u/s), u \in \mathbb{R}^d$$

Examples of ODE/PDE: translation invariance

- Ordinary and partial differential equations (ODE/PDE) are often used in mathematical models of physics.
- **Example of ODE:** Lorenz system $(u \in \mathbb{Z})$ is spatially translation invariant

$$\frac{dx_t(u)}{dt} = (x_t(u+1) - x_t(u-2))x_t(u-1) - x_t(u) + F$$

- If x_t is a solution, then $g_{\tau} \cdot x_t$ is also a solution $(\tau \in \mathbb{Z})$
- Example of PDE: Homogeneous Navier-Stokes equation is also spatially translation invariant (in 2d or 3d).

Example of stationary processes

Stationary processes exist in physics, e.g. white noise

- ▶ $\{X(u)\}_{u \in \mathbb{R}^d}$ is a stationary process if for any $u \in \mathbb{R}^d$,
 - $ightharpoonup \mathbb{E}(X(u))$ is a constant.
 - ▶ $\mathbb{E}(X(u)X(u-\tau))$ is a function of $\tau \in \mathbb{R}^d$.
- ▶ More generally, the joint distribution in translation invariant:

$$(X(u_1), X(u_2), \cdots, X(u_n)) = (X(u_1-\tau), X(u_2-\tau), \cdots, X(u_n-\tau))$$

for any $n \geq 1$, $u_1 \in \mathbb{R}^d$, \cdots , $u_n \in \mathbb{R}^d$, $\tau \in \mathbb{R}^d$.

Example of Isotropic and self-similar processes

- The translation group of τ in **stationary processes** can be extended to the rotation group to define isotropic processes, and to the dilation group to define self-similar processes.
- For example, $\{X(u)\}_{u\in\mathbb{R}^d}$ is an isotropic process for d=2, if for $u\in\mathbb{R}^2$ and $u'\in\mathbb{R}^2$,
 - ▶ $\mathbb{E}(X(g_{\theta}u))$ is a constant along $\theta \in [0, 2\pi]$.
 - ▶ $\mathbb{E}(X(g_{\theta}u)X(g_{\theta}u'))$ does not change with $\theta \in [0, 2\pi]$.
- In practice, we consider a finite number of angles (a discrete group), e.g. $\theta = \ell \pi/L, 0 \le \ell < 2L$.

Construct invariant representations

- Idea: construct invariance from equi-variance.
- ▶ An invariant representation is a transformation $\Phi(x)$ of x:

$$\Phi(x) = \Phi(g \cdot x), \quad \forall g \in G$$

▶ An equi-variant representation is a transformation $\tilde{\Phi}(x)$ of x:

$$g \cdot \tilde{\Phi}(x) = \tilde{\Phi}(g \cdot x), \quad \forall g \in G$$

> Build Φ from $\tilde{\Phi}$ by **group averaging** (on a finite group):

$$\Phi(x) = \frac{1}{|G|} \sum_{g \in G} \tilde{\Phi}(g \cdot x)$$

Translation group: convolution and equi-variance

Convolution \star with a filter h:

$$x \star h(u) = \sum_{v} x(u-v)h(v)$$

- For a signal $x \in \mathbb{R}^{Nd}$ of length Nd, the convolution is assumed circular: $u, v, u - v \in \{0, \dots, N-1\}^d$.
- In this case, we have equi-variance to discrete translation group: $\tau \in G = \{0, \dots, N-1\}^d$,

$$(g_{\tau}\cdot x)\star h=g_{\tau}\cdot (x\star h)$$

Translation equi-variance of convolution on images

Figure: Left: **Circular convolution** of an image x with two filters h_1 and h_2 . Right: the image is translated $g_{\tau}x$ first before the convolution.

Translation invariant representation

ightharpoonup Relation with CNN: $\tilde{\Phi}$ convolutional layer, Φ pooling layer

$$\tilde{\Phi}(x) = x \star h, \quad \Phi(x) = \frac{1}{N^d} \sum_{\tau} x \star h(\tau)$$

lacktriangle Add non-linearity ho: point-wise transformation such as ReLU

$$\tilde{\Phi}(x) = \{ \rho(x \star h_k) \}_k$$

▶ If x has multiple-channels (e.g. color images), write $x = \{x_c\}$,

$$\tilde{\Phi}(x) = \left\{ \rho(\sum_{c} x_{c} \star h_{c,k}) \right\}_{k < K}$$

- The summation along c combines all the channels of x.
- This is a typical layer in CNN with *K* output channels.

Invariant covariance representation

► For a zero-mean stationary process observed on $u \in \{0, \dots, N-1\}^d$, $X_N(u)$, its (translation) **invariant** covariance representation is defined by

$$\Phi(X_N) = \frac{1}{N^d} \sum_u X_N(u) X_N(u-\tau), \quad \tau \in \{0, \cdots, N-1\}^d.$$

- Due to the stationarity, it is a statistical estimator of the true covariance between X(u) and $X(u-\tau)$.
- ▶ For example, $\tau = 0$ estimates the variance of X(u).
- $ightharpoonup \Phi(X_N)$ can be equivalently written using the circular convolution.

$$\frac{1}{N^d}X_N\star \tilde{X}_N(\tau), \quad \tilde{X}_N(u)=X_N(-u)$$

Construct Invariant Representations

Linear Discriminant Analysis

Linear discriminant Analysis (LDA)

- We derive a linear classifier from Bayes rule, by assuming a Gaussian model on each sample (x, y).
- ▶ Gaussian model: assume $y \in \{c_1, \dots, c_K\}$ (K categories),

$$p(x|y=c_k) = \mathcal{N}(\mu_k, \Sigma), \quad p(y=c_k) = \pi_k.$$

▶ The classifier decides that $x \in \mathbb{R}^N$ is in class c_k if

$$k = \arg\max_{k'} p(y = c_{k'}|x)$$

- Two key question:
 - What is the classification rule? Is it linear in x?
 - Given M i.i.d. samples $\{(x_i, y_i)\}_{i \leq M}$, how to estimate $\{\mu_k\}_k$ and Σ ?

LDA as a linear classifier

 \triangleright Rewrite $p(x|y=c_k)=\mathcal{N}(\mu_k,\Sigma)$,

$$p(x|y = c_k) = \frac{1}{\sqrt{|2\pi\Sigma|}} e^{-\frac{1}{2}(x-\mu_k)^{\mathsf{T}}\Sigma^{-1}(x-\mu_k)}$$

▶ The posterior $p(y = c_k|x)$ is

$$\frac{p(x|y=c_k)\pi_k}{\sum_{k'}p(x|y=c_{k'})\pi_{k'}}$$

▶ To maximize $p(y = c_k|x)$ with respect to k, is equivalent to

$$\min_{k} \frac{1}{2} (x - \mu_k)^{\mathsf{T}} \Sigma^{-1} (x - \mu_k) - \log(\pi_k)$$

• The first term is called Mahalanobis distance when Σ is p.d.

LDA as a linear classifier

▶ To maximize $p(y = c_k|x)$ is also equivalent to

$$\max_k g_k(x) = \langle \Sigma^{-1} \mu_k, x \rangle - \frac{1}{2} \mu_k^\mathsf{T} \Sigma^{-1} \mu_k + \log(\pi_k)$$

- ▶ The g_k is a linear discriminant function, thus LDA is a linear classifier.
- Parameter estimation: Assume $\{\mu_k\}$ are given a-prior, how to estimate Σ and μ_k from training data $\{(x_i, y_i)\}_{i < M}$?
- ▶ Reference: Bishop (section 4.1.4 for K = 2 and 4.1.6 for K > 2).

Parameter estimation in LDA (K = 2)

 \triangleright Let M_1 the number of training samples in class c_1 , $M_2 = M - M_1$.

$$\mu_1 = \frac{1}{M_1} \sum_{i: y_i = c_1} x_i, \quad \mu_2 = \frac{1}{M_2} \sum_{i: y_i = c_2} x_i$$

▶ The estimation of Σ can be obtained from Σ_1 and Σ_2 , e.g.

$$\Sigma = rac{M_1}{M}\Sigma_1 + rac{M_2}{M}\Sigma_2$$

where

$$\Sigma_k = \frac{1}{M_k} \sum_{i: y_i = C_i} (x_i - \mu_k) (x_i - \mu_k)^T, \quad k = 1, 2$$