Конечные структуры В ПРИМЕРАХ

Садыков Нурлан

15 августа 2023 г.

Глава 1

Кубик Рубика

1.1 Где здесь группа?

Обозначим вращения граней кубика в соответствии с цветом центрального стикера на грани. Это удобно потому, что вращения граней всегда оставляют центральные стикеры на месте. Будем обозначать эти вращения цветами соответствующих граней: o-оранжевый, b-синий, r-красный, y-желтый, w-белый, g-зеленый. Вращения граней кубика рубика являются образующими свободной группы. Любое слово в этой группе можно применить как инструкцию к кубику рубика. Будем считать слово тривиальным, если после его применения к собранному кубику, мы снова получим собранный кубик. Например, очевидно, что $b^4 = bbbb = e$ то есть вращение относительно синей грани четыре раза — тривиальное слово, поскольку снова дает правильную сборку.

Для определенности будем считать, что мы применяем слова к кубику слева направо. То есть слово oby это сперва повернуть оранжевую грань на 90° , потом синюю и только потом желтую.

1.2 Кодировка состояния кубика

Каждое действие переставляет стикеры на кубике Рубика, значит группа действий на кубике может быть описана как подгруппа группы перестановок. Чтобы явно определить перестановку по какому-либо состоянию нужно ввести кодировку.

Для удобства мы будем обозначать элементы цветом и индексом, например, b_5 будет обозначать центральный синий стиркер. Индексы на каждой грани определяются в соответствии с рисунком 1.2.

Как только мы ввели кодировку, можем проследить какой стикер стоит на какой позиции. И уже отсюда можем вытащить перестановки.

Рис. 1.1: Движение желтой грани у

Под вращением грани понимаем ее поворот на 90° по часовой стрелке относительно остальной части кубика.

Любые промежуточные состояния применения слова к кубику не обязаны давать собранный вариант.

Рис. 1.2: Индексация стикеров на развертке

1.2.1 Неполная кодировка

Если цветам приписать такие векторы o=(0,0,1), b=(1,0,0), y=(0,1,0), w=(0,-1,0), g=(-1,0,0), r=(0,0,-1), то можно определить начальную координату каждого маленького кубика в кубике Рубика как сумму цветов входящих в маленький кубик. Так можно было ввести кодировку состояния кубика Рубика, но она получится неполной. Чтобы убедиться в этом достаточно посмотреть на слово $\alpha=oywgbrowygbr$. Если его применить к начальному состоянию, вершинная кодировка покажет тривиальную перестановку, но мы не получим начальное состояние. Так происходит потому, что это слово меняет ориентацию некоторых кубов на границах двух цветов. Слово $\alpha^2=e$ уже будет тривиальным.

Неполную перестановку можно использовать, чтобы упростить задачу поиска разложения на слова. Поскольку эта группа содержит всего 20 элементов некоторые задачи можно будет решить перебором.

3-циклы Можно найти представления в виде слов всех 3-циклов в неполной кодировке. Схема поиска следующая.

Среди всех слов длины 5 сформируем множество слов W_5 чья степень делится на 5 и множество слов W_7 чья степень делится на 7. Теперь для каждой пары $(u,w)\in (W_5,W_7)$ можно проверить что слова $(uw)^2$ и $(wu)^2$ дают 3-цикл.

Такой перебор не даст всех 3-циклов из S_{20} , однако можно решить дополнительную задачу просчитав все произведения найденных 3-циклов и в целом это даст оставшуюся часть искомых перестановок.

Если разложить перестановку над кубиком Рубика в произведение пермутаций, то в случае если этих пермутаций получилось четное количество мы можем представить перестановку в виде произведения 3-циклов. Для перестановки с нечетным количеством пермутаций, можно подкрутить кубик Рубика по произвольной грани, например по синей, тем самым к перестановке добавится три пермутации и мы уже сможем создать представление на 3-циклах.

Поскольку мы знаем слова которыми выражаются 3-циклы, то мы можем выразить полностью всю перестановку в виде слова. Тем не менее, такое слово может не собрать кубик Рубика поскольку скудная кодировка не может справиться со словами типа $\alpha = oywgbrowygbr$.

1.3 the Plan

Для полного решения задачи можно воспользоваться таким фактом, что любое слово в скудной кодировке которым описывается 3-цикл в третьей степени даст подкрутку граней не кубике, но сами грани останутся на местах. Так собирутся списки действий подкручивающих ребра и вершины в нужные позиции.

Рис. 1.3: Разрез кубика на две ленты с нумерациями.

Трюк 1: Разложение цикла в произведение пермутаций

$$(a_0 \ a_1 \ a_2 \ \cdots \ a_k) = (a_0 \ a_1) (a_0 \ a_2) \cdots (a_0 \ a_k)$$

Трюк 2: Объединение двух не коммутриющих пермутаций в 3-цикл

$$(a b) (a c) = (a b c)$$

 $Tprok\ 3$: Объединение двух коммутриющих пермутаций в 3-циклы

$$\left(a\;b\right)\left(c\;d\right)=\left(a\;b\right)\left(b\;c\right)\left(b\;c\right)\left(c\;d\right)=\left(a\;c\;b\right)\left(b\;d\;c\right)$$

Итоговое слово решающее кубик Рубика таким образом будет очень большим. Вероятно его длина превысит 200 символов. Поэтому нужно будет искать варианты упрощения слов.