

DEPARTAMENTO DE MATEMÁTICA

Continuação da 2ª Lista de Exercícios - Álgebra Linear

Questão 1 Sejam $V = \mathbb{R}^2$, $\beta = \{(1,3), (-2,1)\}$ um conjunto de vetores em V. Mostre que β é uma base de \mathbb{R}^2 e calcule $[(1,3)]_{\beta}$ e $[(x,y)]_{\beta}$.

Questão 2 Calcule $[-1,2]_{\beta}$ e $[x,y]_{\beta}$, onde:

a)
$$\beta = \{(1,1), (-1,0)\}$$

b)
$$\beta = \{(1,2), (2,1)\}.$$

Questão 3 Sejam $V = \mathbb{R}^3$ e $\beta = \{(1,0,0), (1,1,0), (1,1,1) \ uma \ base \ ordenada \ de \ V.$ Determine: a) $[(x,y,z)]_{\beta}$; b) $[(1,2,3)]_{\beta}$

Questão 4 Questão 5 Sejam $V = P_3(\mathbb{R})$ e $\beta = \{1, 1-x, (1-x)^2, (1-x)^3 \text{ uma base ordenada de } V.$ Determine $[2-3x+x^2]_{\beta}$

Questão 6 Sejam $V = \mathbb{R}^2$, $\alpha = \{(1,3), (-2,1)\}$ uma base de V. Sendo $[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & -2 \\ 2 & -3 \end{bmatrix}$ determine a base β .

Questão 7 Sejam $V = \mathbb{R}^2$, $\beta = \{(2,1),(1,0)\}$ uma base de V. Sendo $[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & -2 \\ 2 & -3 \end{bmatrix}$ determine a base α .