Last Time

- Discrete time stopping times
- Optional stopping theorem
- Gambler's ruin problem

Today's lecture: Section 4.3.2

Continuous Time Stopping Time

• A random variable τ taking values in $[0, \infty) \cup \{+\infty\}$ is a **stopping time** with respect to filtration $\{\mathcal{F}_t, t \geq 0\}$ if

$$\{\tau \leq t\} = \{\omega : \tau(\omega) \leq t\} \in \mathcal{F}_t \text{ for all } t \geq 0$$

• If $\{\mathcal{F}_t\}$ is right-continuous then τ is a continuous time stopping time for filtration $\{\mathcal{F}_t\}$ if and only if

$$\{\tau < t\} \in \mathcal{F}_t \text{ for all } t \geq 0$$

• If θ , τ , τ_1 , τ_2 ,... are all stopping times for the same filtration then the following are also stopping times:

$$\min(\theta, \tau), \max(\theta, \tau), \theta + \tau, \sup_{n \ge 1} \tau_n, \inf_{n \ge 1} \tau_n$$

Hitting Times

- Let $\{X_t\}$ be an RCLL process adapted to a right-continuous filtration $\{\mathcal{F}_t\}$
- For a Borel set B let

$$\tau_B = \inf\{t \ge 0 : X_t \in B\}$$

with $\tau_B = \infty$ if $X_t \notin B$ for all $t \ge 0$

- If B is open then τ_B is an $\{\mathcal{F}_t\}$ -stopping time
- If B is closed and $\{X_t\}$ has continuous paths then τ_B is an $\{\mathcal{F}_t\}$ -stopping time

Stopped Process

- Suppose $\{X_t\}$ is a SP and τ is a stopping time for filtration $\{\mathcal{F}_t\}$
- The stopped (at time τ) process $\{X_{t \wedge \tau}, t \geq 0\}$ is defined by

$$X_{t \wedge \tau} = \begin{cases} X_t & t \le \tau \\ X_\tau & t > \tau \end{cases}$$

- If $\{(X_t, \mathcal{F}_t)\}$ is a RCLL sub-martingale and τ is an $\{\mathcal{F}_t\}$ -stopping time then $\{(X_{t\wedge\tau}, \mathcal{F}_t)\}$ is a sub-martingale. In particular, $I\!\!E(X_{t\wedge\tau}) \geq I\!\!E(X_0)$.
- If $\{(X_t, \mathcal{F}_t)\}$ is a RCLL martingale and τ is an $\{\mathcal{F}_t\}$ -stopping time then $\{(X_{t \wedge \tau}, \mathcal{F}_t)\}$ is a martingale. In particular, $I\!\!E(X_{t \wedge \tau}) = I\!\!E(X_0)$.

Doob's Optional Stopping Theorem

- Suppose $\{(X_t, \mathcal{F}_t)\}$ is an RCLL sub-martingale and τ is an $\{\mathcal{F}_t\}$ -stopping time. If
 - \circ $au < \infty$ a.s., and
 - $\{X_{t\wedge\tau}, t\geq 0\}$ is uniformly integrable
- Then $I\!\!E(X_{\tau}) \geq I\!\!E(X_0)$.
- If instead $\{(X_t, \mathcal{F}_t)\}$ is a martingale then $I\!\!E(X_\tau) = I\!\!E(X_0)$.

Example: Exercise 4.3.18

- Let $\{W_t\}$ be a Brownian motion with $\{\mathcal{F}_t\}$ its canonical filtration.
- Fix a > 0 and b > 0 and define

$$\tau_{a,b} = \inf\{t \ge 0 : W_t \notin (-a,b)\}$$

• Can use optional sampling applied to W_t to show

$$IP(W_{\tau} = -a) = b/(b+a)$$

- Can use optimal sampling applied to the martingale $Y_t = W_t^2 t$ to show $I\!\!E(\tau_{a,b}) = ab$
- Can use optimal sampling applied to the *exponential* martingale $\exp(\sigma W_t \sigma^2 t/2)$ (for $\sigma > 0$) to find $I\!\!E(e^{-\theta \tau_{b,b}})$ for $\theta > 0$

Stopped σ -field

• Let τ be a $\{\mathcal{F}_t\}$ -stopping time. The **stopped** σ -field \mathcal{F}_{τ} is the collection of all events $A \in \mathcal{F}$ such that

$$A \cap \{\tau \leq t\} \in \mathcal{F}_t \text{ for all } t \geq 0$$

- \mathcal{F}_{τ} is a σ -field
- The RV τ is \mathcal{F}_{τ} -measurable
- If τ and S are $\{\mathcal{F}_t\}$ -stopping times with $S \leq \tau$ a.s. then $\mathcal{F}_S \subseteq \mathcal{F}_\tau$
- If $\{X_t\}$ is adapted to $\{\mathcal{F}_t\}$ then X_τ is \mathcal{F}_τ -measurable
- Example 4.3.23: On $\Omega = \{HH, HT, TH, TT\}$ let $\tau = 1$ if the first coin is H and $\tau = 2$ otherwise. Then $\mathcal{F}_{\tau} = \sigma(\{TH\}, \{TT\}, \{HT, HH\})$.

Optional Sampling Theorem

- Suppose $\{(X_t, \mathcal{F}_t)\}$ is a RCLL sub-martingale and τ, S are $\{\mathcal{F}_t\}$ -stopping times with $S \leq \tau$ a.s.,
- If either $\tau \leq C$ for some constant $C < \infty$, or $\{X_t\}$ is uniformly integrable
- Then

$$I\!\!E(X_{\tau}|\mathcal{F}_S) \geq X_S$$

- In particular, $I\!\!E(X_{\tau}) \geq I\!\!E(X_S) \geq I\!\!E(X_0)$
- In the case where $\{(X_t, \mathcal{F}_t)\}$ is a martingale then

$$I\!\!E(X_\tau|\mathcal{F}_S)=X_S,$$

and
$$I\!\!E(X_{ au})=I\!\!E(X_S)=I\!\!E(X_0)$$