Matemática Discreta para Computação

Parte II - Relações e dígrafos:

- 1. Relações e dígrafos
- 2. Propriedades de relações
- 3. Representação e manipulação de relações
 - 4. Funções

Propriedades de relações

 Em muitas aplicações da computação aparecem relações sobre um conjunto A em vez de relações de A em B.

Definição: (Reflexividade)

 Uma relação R sobre um conjunto A é dita <u>reflexiva</u> se (a,a)∈R <u>para todo</u> a∈A, ou seja, se aRa para todo a∈A.

 Ou seja: R é <u>reflexiva</u> se <u>todo</u> elemento a∈A está relacionado consigo mesmo

Propriedades de relações (reflexividade)

Exemplos:

- a) ∆ = { (a,a) | a ∈ A}: a relação de igualdade no conjunto A. Por definição, (a,a)∈∆, ∀a∈A.
- b) $R = \{ (a,b) \in A \times A \mid a \neq b \}$ Não é pois $(a,a) \notin R$, $\forall a \in A$.
- c) Seja $A = \{1,2,3\}$ e $R = \{(1,1),(1,2)\}$. Então:

R não é reflexiva pois (2,2)∉R e (3,3)∉R

Propriedades de relações (reflexividade)

Exemplo: Quais das relações a seguir são reflexivas?

```
R_1 = \{ (a,b) \mid a \le b \}

R_2 = \{ (a,b) \mid a > b \}

R_3 = \{ (a,b) \mid a = b \text{ ou } a = -b \}

R_4 = \{ (a,b) \mid a = b \}

R_5 = \{ (a,b) \mid a = b+1 \}

R_6 = \{ (a,b) \mid a+b \le 3 \}
```

Propriedades de relações (reflexividade)

Caracterização de reflexividade e irreflexividade em termos de matrizes e dígrafos:

1. Matrizes:

- relação R reflexiva \Rightarrow a matriz M_R possui todos os elementos da <u>diagonal principal iguais a 1</u>

2. Dígrafos:

 relação R reflexiva ⇒ para todos os vértices do dígrafo existem arestas que ligam o vértice a ele mesmo.

Observe também que se R sobre A é reflexiva, então:
 Dom(R) = Ran(R) = A

Propriedades de relações - simetria

<u>Definição (Simetria)</u>: Uma relação R sobre um conjunto A é dita <u>simétrica</u> se <u>sempre que</u> (a,b)∈R, então também (b,a)∈R. i.e. **Se a R b, então b R a**

Definição (Antissimetria): Uma relação R sobre um conjunto A é dita <u>antissimétrica</u> se <u>sempre que</u> (a,b)∈R e (b,a)∈R, então a=b. i.e. **Se a R b e b R a, então a=b**

equivalentemente, se a ≠ b, então (a,b)∉R ou (b,a)∉R
i.e. Se a ≠ b, a ⋪ b ou b ん a

Propriedades de relações

- <u>Lembrete</u>: escrever (a,b) ∈ R é equivalente a escrever a R b, que significa dizer que a está relacionado com b por R.
- Observação: para verificar se estas propriedades são válidas ou não para uma certa relação R, deve-se notar que:
 - 1. Uma propriedade <u>não é válida</u> em geral se puder ser encontrada **uma** situação onde ela não pode ser verificada.
 - 2. Se **não** houver situação em que a propriedade <u>falha</u>, deve-se concluir que á propriedade é sempre **válida**.

Propriedades de relações - exemplos

Exemplo 1: Seja A=Z (o conjunto dos inteiros) e seja R a relação R={(a,b)∈A×A | a ≥b}. Determine se R é simétrica ou antissimétrica.

Solução:

 simetria: se a≥b, então não é sempre verdade que b≥a (exemplo: 2 ≥ 1 mas 1 < 2) ⇒ R é não simétrica.

antissimetria: R é antissimétrica pois se a ≠ b, a≱b OU b≥a
 a=2 e b=3, b≥a mas a≥b

Propriedades de relações - exemplos

Exemplo 2: Seja $A=\{1,2,3,4\}$ e seja a relação: $R=\{(1,2),(2,2),(3,4),(4,1)\}$ Determine se R é simétrica ou antissimétrica.

 antissimetria: R é antissimétrica pois se a≠b, então ou (a,b)∉R ou (b,a)∉R.

Propriedades de relações - exemplos

Exemplo 3: Seja $A = Z^+$ (inteiros positivos) e seja $R = \{ (a,b) \in A \times A \mid a \mid b \}$ (a divide b). Determine se R é simétrica ou antissimétrica.

Caracterização de simetria, assimetria e antissimetria através da matriz de relação

• <u>Simetria</u>: A matriz $M_R = [m_{ij}]$ de uma relação simétrica satisfaz à propriedade:

$$\begin{array}{l} m_{ij} = 1 \Rightarrow m_{ji} = 1 \\ m_{ij} = 0 \Rightarrow m_{ij} = 0 \end{array}$$

Portanto, neste caso tem-se que $m_{ij}=m_{ji}$, o que significa que R é simétrica se e somente se $M_R=(M_R)^t$.

• Antissimetria: A matriz $M_R = [m_{ij}]$ de uma relação antissimétrica satisfaz:

Propriedades de relações com matrizes

• Exemplo1:

$$\mathbf{M}_{R1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{M}_{R1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \mathbf{M}_{R2} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad \mathbf{M}_{R3} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{M}_{R3} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{M}_{R4} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{M}_{R5} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{M}_{R6} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{R5} = \begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$\mathbf{M}_{R6} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Propriedades de relações com matrizes

- Exemplo1 (cont.):
 - R1 e R2 são simétricas, pois M_{R1} e M_{R2} são matrizes simétricas.
 - R3 é antissimétrica, pois não existe nenhuma simetria fora da diagonal.

- R4 não é simétrica e nem antissimétrica pois:
 - 1. M_{R4} não é simétrica;
 - 2. A presença do nro. 1 no elemento m_{41} viola tanto a propriedade da antissimetria.

- R5 é antissimétrica.
- R6 é antissimétrica.

Propriedades de relações com grafos

Simétrica

Para dois vértices diferentes i e j, se existir uma aresta de i para j, deve existir uma aresta de j para i

Ao invés de 2 arestas com direção, escreve-se uma sem direção para denotar a ligação → grafo da relação simétrica

Antisimetria

Se uma relação R é **antisimétrica**, então para vértices diferentes i e j, não pode existir uma aresta de i para j e uma de j para i.

Se i=j, no entanto, não existe restrição.

Propriedades de relações - transitividade

 <u>Definição</u>: Uma relação R sobre um conjunto A é dita transitiva se, <u>sempre que</u> a R b e b R c, então a R c.

- Por outro lado, R sobre A é uma relação nãotransitiva se existir a, b e c em A tais que a R b e b R c, mas a R c.
- → se tais a, b e c <u>não existirem</u>, então R é **transitiva**.

Propriedades de relações transitividade

Exemplo 1: Seja A=Z+ e R={ (a,b) ∈ A×A | a|b } ("a divide b"). A relação R é transitiva?

<u>Exemplo 2</u>: A relação R={(1,2),(1,3),(4,2)} sobre A={1,2,3,4} é transitiva?

Caracterização de relações transitivas por matrizes

 Se M_R=[m_{ij}] é a matriz de uma relação transitiva R, então M_R satisfaz à propriedade:

se
$$m_{ij}=1$$
 e $m_{jk}=1$, então $m_{ik}=1$

ou seja, a transitividade de R significa que se $(M_R)^2$ tem um 1 em qualquer posição, então M_R deve ter um 1 na mesma posição (o converso pode ser falso), ou seja:

$$(M_R)^2 = M_R$$

Caracterização de relações transitivas por matrizes

• Exemplo: Mostre que a relação R sobre A={1,2,3} dada abaixo é transitiva:

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Caracterização de relações transitivas por grafos

- Considerando dois vértices a e c, a condição a R b e b R c significa que existe um caminho de tamanho 2 em R de a para c, ou seja, a R² c
- Refazendo a definição de transitividade, se a R² c, então a R c
- Ou seja, se a e c estão conectados por um caminho de tamanho 2 em R, então eles devem estar conectados por um caminho de tamanho 1.

<u>Teorema</u>: Uma relação R é transitiva se e somente se ela satisfaz a seguinte propriedade:

Se existe um caminho de tamanho <u>maior que 1</u> do vértice **a** para o vértice **b**, existe um <u>caminho de tamanho 1</u> de **a** para **b**

Propriedades de relações - Exercícios

 <u>Exercício 1</u>: Determine se as relações abaixo são reflexivas, simétricas, antissimétricas e/ou transitivas.

Onde
$$A = \{1,2,3,4\}$$

a) $R = \{(1,3),(1,1),(3,1),(1,2),(3,3),(4,4)\}$
b) $R = \{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)\}$
c) $R = \{(1,2),(1,3),(3,1),(1,1),(3,3),(3,2),(1,4),(4,2),(3,4)\}$

Propriedades de relações - Exercícios

• <u>Exercício2</u>: Seja A={1,2,3,4,5}. Determine se as relações definidas pelos dígrafos abaixo são reflexivas, irreflexivas, simétricas, assimétricas, antissimétricas ou transitivas.

Resp. (a):

Resp. (b): ?

Propriedades de relações - Exercícios

• Exercício 3: Classifique as seguintes relações sobre o conjunto $S = \{1,2,3,4\}$

a)
$$R1 = \{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$$

b)
$$R2 = \{(1,1),(1,2),(2,1)\}$$

c)
$$R3 = \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$$

d)
$$R4 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$$

e)
$$R5 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$$

e)
$$R6 = \{(3,4)\}$$