Test functions for optimization

From Wikipedia, the free encyclopedia

In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as:

- Convergence rate.
- Precision.
- Robustness.
- General performance.

Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented. In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given.

The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The complete list of test functions is found on the Mathworks website. [4]

The test functions used to evaluate the algorithms for MOP were taken from Deb,^[5] Binh et al.^[6] and Binh.^[7] You can download the software developed by Deb,^[8] which implements the NSGA-II procedure with GAs, or the program posted on Internet,^[9] which implements the NSGA-II procedure with ES.

Just a general form of the equation, a plot of the objective function, boundaries of the object variables and the coordinates of global minima are given herein.

Contents

- 1 Test functions for single-objective optimization
- 2 Test functions for constrained optimization
- 3 Test functions for multi-objective optimization
- 4 See also
- 5 References
- 6 External links

Test functions for single-objective optimization

Name	Plot	Formula	Global minimum	Search domain
Rastrigin function	*********	$f(\mathbf{x}) = An + \sum_{i=1}^n \left[x_i^2 - A \cos(2\pi x_i) ight]$ where: $A = 10$	f(0,0)=0	$-5.12 \leq x,y \leq 5.12$
Ackley's function		$f(x,y) = -20 \exp \left[-0.2 \sqrt{0.5 \left(x^2 + y^2 ight)} ight] onumber \ -\exp [0.5 \left(\cos 2\pi x + \cos 2\pi y ight)] + e + 20$	f(0,0)=0	$-5 \leq x,y \leq 5$
Sphere function	THE PART OF THE PA	$f(\boldsymbol{x}) = \sum_{i=1}^n x_i^2$	$f(x_1,\ldots,x_n)=f(0,\ldots,0)=0$	$-\infty \leq x_i \leq \infty, \ 1 \leq i \leq n$
Rosenbrock function	2000 - 10	$f(m{x}) = \sum_{i=1}^{n-1} \left[100 ig(x_{i+1} - x_i^2 ig)^2 + (x_i - 1)^2 ight]$	$ ext{Min} = \left\{egin{array}{ll} n=2 & ightarrow & f(1,1)=0, \ n=3 & ightarrow & f(1,1,1)=0, \ n>3 & ightarrow & f(\underbrace{1,\ldots,1}_{n ext{ times}})=0 \end{array} ight.$	$-\infty \leq x_i \leq \infty, \ 1 \leq i \leq n$
Beale's function	33000 Inno	$f(x,y) = (1.5 - x + xy)^2 + \left(2.25 - x + xy^2 ight)^2 \ + \left(2.625 - x + xy^3 ight)^2$	f(3,0.5)=0	$-4.5 \leq x,y \leq 4.5$
Goldstein-Price function	3000 3000 3000 3000 3000 3000 3000 300	$f(x,y) = \left[1 + (x+y+1)^2 \left(19 - 14x + 3x^2 - 14y + 6xy + 3y^2 ight) ight] \ \left[30 + (2x-3y)^2 \left(18 - 32x + 12x^2 + 48y - 36xy + 27y^2 ight) ight]$	f(0,-1)=3	$-2 \leq x,y \leq 2$
Booth's function	-11 -41	$f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$	f(1,3)=0	$-10 \leq x,y \leq 10$

	7000 2000 2000 2000 2000 2000 2000 2000			
Bukin function N.6	The state of the s	$f(x,y) = 100 \sqrt{\left y - 0.01 x^2 ight } + 0.01 \left x + 10 ight .$	f(-10,1)=0	$-15 \le x \le -5,$ $-3 \le y \le 3$
Matyas function	0	$f(x,y) = 0.26 \left(x^2 + y^2 ight) - 0.48 xy$	f(0,0)=0	$-10 \leq x,y \leq 10$
Lévi function N.13	and the state of t	$f(x,y) = \sin^2 3\pi x + (x-1)^2 \left(1 + \sin^2 3\pi y ight) \ + (y-1)^2 \left(1 + \sin^2 2\pi y ight)$	f(1,1)=0	$-10 \leq x,y \leq 10$
Three-hump camel function	200 ° 100 °	$f(x,y) = 2x^2 - 1.05x^4 + rac{x^6}{6} + xy + y^2$	f(0,0)=0	$-5 \le x,y \le 5$
Easom function	11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	$f(x,y) = -\cos(x)\cos(y)\exp\Bigl(-\left(\left(x-\pi ight)^2+\left(y-\pi ight)^2 ight)\Bigr)$	$f(\pi,\pi)=-1$	$-100 \leq x,y \leq 100$
ross-in-tray function				$-10 \le x,y \le 10$

	183- 183- 183- 183-	$f(x,y) = -0.0001 \Biggl[\left \sin x \sin y \exp \Biggl(\left 100 - rac{\sqrt{x^2 + y^2}}{\pi} ight \Biggr) ight + 1 \Biggr]^{0.1}$	$ ext{Min} = egin{cases} f(1.34941, -1.34941) &= -2.06261 \ f(1.34941, 1.34941) &= -2.06261 \ f(-1.34941, 1.34941) &= -2.06261 \ f(-1.34941, -1.34941) &= -2.06261 \end{cases}$	
Eggholder function	200 m 100 m 10	$f(x,y) = -\left(y + 47 ight) \sin \sqrt{\left rac{x}{2} + (y + 47) ight } - x \sin \sqrt{ x - (y + 47) }$	f(512,404.2319) = -959.6407	$-512 \leq x,y \leq 512$
Hölder table function		$f(x,y) = -\left \sin x\cos y\exp\left(\left 1-rac{\sqrt{x^2+y^2}}{\pi} ight ight) ight $	$ ext{Min} = egin{cases} f(8.05502, 9.66459) &= -19.2085 \ f(-8.05502, 9.66459) &= -19.2085 \ f(8.05502, -9.66459) &= -19.2085 \ f(-8.05502, -9.66459) &= -19.2085 \end{cases}$	$-10 \leq x,y \leq 10$
McCormick function		$f(x,y) = \sin(x+y) + (x-y)^2 - 1.5x + 2.5y + 1$	f(-0.54719, -1.54719) = -1.9133	$-1.5 \leq x \leq 4, \ -3 \leq y \leq 4$
Schaffer function N. 2		$f(x,y) = 0.5 + rac{\sin^2ig(x^2 - y^2ig) - 0.5}{ig[1 + 0.001ig(x^2 + y^2ig)ig]^2}$	f(0,0)=0	$-100 \leq x,y \leq 100$
Schaffer function N. 4	63 ° 63 ° 63 ° 63 ° 63 ° 63 ° 63 ° 63 °	$f(x,y) = 0.5 + rac{\cos^2igl[\sinigl(x^2-y^2 igr)igr] - 0.5}{igl[1 + 0.001igl(x^2 + y^2)igr]^2}$	f(0, 1.25313) = 0.292579	$-100 \leq x,y \leq 100$
Styblinski-Tang				$-5 \leq x_i \leq 5,$

$$f(m{x}) = rac{\sum_{i=1}^{n} x_i^4 - 16x_i^2 + 5x_i}{2}$$

$-39.16617n < f(-2.903534, \ldots, -2.903534) < -39.16616n$	
n times	

 $1 \leq i \leq n$..

Test functions for constrained optimization

Name	Plot	Formula	Global minimum	Search domain
Rosenbrock function constrained with a cubic and a line ^[10]	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$f(x,y)=(1-x)^2+100(y-x^2)^2,$ subjected to: $(x-1)^3-y+1<0$ and $x+y-2<0$	f(1.0,1.0)=0	$-1.5 \le x \le 1.5,$ $-0.5 \le y \le 2.5$
Rosenbrock function constrained to a disk ^[11]	12 12 12 12 12 12 12 12 12 12 12 12 12 1	$f(x,y)=(1-x)^2+100(y-x^2)^2,$ subjected to: $x^2+y^2<2$	f(1.0, 1.0) = 0	$-1.5 \le x \le 1.5,$ $-1.5 \le y \le 1.5$
Mishra's Bird function - constrained ^[12]		$f(x,y)=\sin y \exp(1-\cos x)^2+\cos x \exp(1-\sin y)^2+(x-y)^2,$ subjected to: $(x+5)^2+(y+5)^2<25$	f(-3.1302468, -1.5821422) = -106.7645367	$-10 \le x \le 0,$ $-6.5 \le y \le 0$
Townsend function ^[13]	53 33 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	$f(x,y) = -[\cos((x-0.1)y)]^2 - x\sin(3x+y),$ subjected to: $x^2 + y^2 < [2\cos t - 0.5\cos 2t - 0.25\cos 3t - 0.125\cos 4t]^2 + [2\sin t]^2$ where: $t = \mathrm{Atan2}(y/x)$	f(2.0052938, 1.1944509) = 2.0239884	$-2.25 \le x \le 2.5,$ $-2.5 \le y \le 1.75$
Simionescu function ^[14]	N = 100	$f(x,y) = 0.1xy,$ subjected to: $x^2 + y^2 \leq \left[r_T + r_S \cos \left(n \arctan rac{x}{y} ight) ight]^2$	$f(\pm 0.85586214, \mp 0.85586214) = -0.072625$	$-1.25 \leq x,y \leq 1.25$
		where: $r_T=1, r_S=0.2$ and $n=8$		

Test functions for multi-objective optimization

Name	Plot	Functions	Constraints	Search domain
Binh and Korn function:	Freed Soci	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(x,y ight) &= 4x^2 + 4y^2 \ f_2\left(x,y ight) &= \left(x-5 ight)^2 + \left(y-5 ight)^2 \end{aligned} ight.$	$ ext{s.t.} = egin{cases} g_1\left(x,y ight) &= \left(x-5 ight)^2 + y^2 \leq 25 \ g_2\left(x,y ight) &= \left(x-8 ight)^2 + \left(y+3 ight)^2 \geq 7.7 \end{cases}$	$0 \le x \le 5, \\ 0 \le y \le 3$
Chakong and Haimes function:	$\sum_{i=1}^{N} \frac{1}{(i)} \sum_{i=1}^{N} \frac{1}{(i)$	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(x,y ight) &= 2 + \left(x-2 ight)^2 + \left(y-1 ight)^2 \ f_2\left(x,y ight) &= 9x - \left(y-1 ight)^2 \end{aligned} ight.$	$ ext{s.t.} = egin{cases} g_1\left(x,y ight) &= x^2 + y^2 \leq 225 \ g_2\left(x,y ight) &= x - 3y + 10 \leq 0 \end{cases}$	$-20 \leq x,y \leq 20$
Fonseca and Fleming function: [15]	12 Parent Note:	$ ext{Minimize} = egin{dcases} f_1\left(oldsymbol{x} ight) &= 1 - \exp\left[-\sum_{i=1}^n \left(x_i - rac{1}{\sqrt{n}} ight)^2 ight] \ f_2\left(oldsymbol{x} ight) &= 1 - \exp\left[-\sum_{i=1}^n \left(x_i + rac{1}{\sqrt{n}} ight)^2 ight] \end{cases}$		$-4 \leq x_i \leq 4, \ 1 \leq i \leq n$
Test function 4:[7]	(a) Paper Special (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(x,y ight) &= x^2 - y \ f_2\left(x,y ight) &= -0.5x - y - 1 \end{aligned} ight.$	$ ext{s.t.} = egin{cases} g_1\left(x,y ight) &= 6.5 - rac{x}{6} - y \geq 0 \ g_2\left(x,y ight) &= 7.5 - 0.5x - y \geq 0 \ g_3\left(x,y ight) &= 30 - 5x - y \geq 0 \end{cases}$	$-7 \leq x,y \leq 4$
Kursawe function: ^[16]	2 (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$ ext{Minimize} = egin{cases} f_1\left(oldsymbol{x} ight) &= \sum_{i=1}^2 \left[-10\exp\left(-0.2\sqrt{x_i^2+x_{i+1}^2} ight) ight] \ & f_2\left(oldsymbol{x} ight) &= \sum_{i=1}^3 \left[\left x_i ight ^{0.8} + 5\sin\left(x_i^3 ight) ight] \end{cases}$		$-5 \leq x_i \leq 5, \ 1 \leq i \leq 3.$
Schaffer function N. 1:[17]	(a) Payers block (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$ ext{Minimize} = egin{cases} f_1\left(x ight) &= x^2 \ f_2\left(x ight) &= \left(x-2 ight)^2 \end{cases}$		$-A \le x \le A$. Values of A from 10 to 10^5 have been used successfully. Higher values of A increase the difficulty of the problem.

Schaffer function N. 2:	F Pages North	$ ext{Minimize} = \left\{ egin{aligned} f_1\left(x ight) &= egin{cases} -x, & ext{if } x \leq 1 \ x-2, & ext{if } 1 < x \leq 3 \ 4-x, & ext{if } 3 < x \leq 4 \ x-4, & ext{if } x > 4 \ \end{pmatrix} \ f_2\left(x ight) &= (x-5)^2 \end{aligned} ight.$	$-5 \le x \le 10$.
Poloni's two objective function:	E II	$ ext{Minimize} = egin{dcases} f_1\left(x,y ight) &= \left[1 + \left(A_1 - B_1\left(x,y ight) ight)^2 + \left(A_2 - B_2\left(x,y ight) ight)^2 ight] \ f_2\left(x,y ight) &= \left(x+3 ight)^2 + \left(y+1 ight)^2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$-\pi \leq x,y \leq \pi$
Zitzler– Deb– Thiele's function N. 1:	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$ ext{Minimize} = egin{cases} f_1\left(oldsymbol{x} ight) &= x_1 \ f_2\left(oldsymbol{x} ight) &= g\left(oldsymbol{x} ight) h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) \ g\left(oldsymbol{x} ight) &= 1 + rac{9}{29} \sum_{i=2}^{30} x_i \ h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) &= 1 - \sqrt{rac{f_1\left(oldsymbol{x} ight)}{g\left(oldsymbol{x} ight)}} \end{cases}$	$0 \leq x_i \leq 1, \ 1 \leq i \leq 30.$
Zitzler– Deb– Thiele's function N. 2:	2 Pages Special Specia	$ ext{Minimize} = egin{cases} f_1\left(oldsymbol{x} ight) &= x_1 \ f_2\left(oldsymbol{x} ight) &= g\left(oldsymbol{x} ight) h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) \ g\left(oldsymbol{x} ight) &= 1 + rac{9}{29}\sum_{i=2}^{30} x_i \ h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) &= 1 - \left(rac{f_1\left(oldsymbol{x} ight)}{g\left(oldsymbol{x} ight)} ight)^2 \end{cases}$	$0 \leq x_i \leq 1, \ 1 \leq i \leq 30.$
Zitzler– Deb– Thiele's function N. 3:	10 Pages Special Speci	$ ext{Minimize} = egin{cases} f_1\left(oldsymbol{x} ight) &= x_1 \ f_2\left(oldsymbol{x} ight) &= g\left(oldsymbol{x} ight) h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) \ &= 1 + rac{9}{29} \sum_{i=2}^{30} x_i \ h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) &= 1 - \sqrt{rac{f_1\left(oldsymbol{x} ight)}{g\left(oldsymbol{x} ight)}} - \left(rac{f_1\left(oldsymbol{x} ight)}{g\left(oldsymbol{x} ight)} ight) \sin(10\pi f_1\left(oldsymbol{x} ight)) \end{cases}$	$0 \leq x_i \leq 1, \ 1 \leq i \leq 30.$
Zitzler– Deb– Thiele's function N. 4:	2 Parent Story (** Parent Story (**) (*	$ ext{Minimize} = egin{cases} f_1\left(oldsymbol{x} ight) &= x_1 \ f_2\left(oldsymbol{x} ight) &= g\left(oldsymbol{x} ight) h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) \ g\left(oldsymbol{x} ight) &= 91 + \sum_{i=2}^{10}\left(x_i^2 - 10\cos(4\pi x_i) ight) \ h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) &= 1 - \sqrt{rac{f_1\left(oldsymbol{x} ight)}{g\left(oldsymbol{x} ight)}} \end{cases}$	$0 \leq x_1 \leq 1, \ -5 \leq x_i \leq 5, \ 2 \leq i \leq 10$

Zitzler– Deb– Thiele's function N. 6:		$ ext{Minimize} = egin{dcases} f_1\left(oldsymbol{x} ight) &= 1 - \exp(-4x_1)\sin^6\left(6\pi x_1 ight) \ f_2\left(oldsymbol{x} ight) &= g\left(oldsymbol{x} ight) h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) \ g\left(oldsymbol{x} ight) &= 1 + 9igg[rac{\sum_{i=2}^{10}x_i}{9}igg]^{0.25} \ h\left(f_1\left(oldsymbol{x} ight), g\left(oldsymbol{x} ight) ight) &= 1 - igg(rac{f_1\left(oldsymbol{x} ight)}{9}igg)^2 \end{cases}$		$0 \le x_i \le 1,$ $1 \le i \le 10.$
Viennet function:	100 mm 10	$ ext{Minimize} = egin{dcases} f_1\left(x,y ight) &= 0.5\left(x^2+y^2 ight) + \sin\left(x^2+y^2 ight) \ f_2\left(x,y ight) &= rac{\left(3x-2y+4 ight)^2}{8} + rac{\left(x-y+1 ight)^2}{27} + 15 \ f_3\left(x,y ight) &= rac{1}{x^2+y^2+1} - 1.1 \exp\left(-\left(x^2+y^2 ight) ight) \end{cases}$		$-3 \le x, y \le 3$.
Osyczka and Kundu function:	E Pank hot	$ ext{Minimize} = egin{cases} f_1\left(m{x} ight) &= -25(x_1-2)^2 - (x_2-2)^2 - (x_3-1)^2 - (x_4-4)^2 - (x_5-1)^2 \ f_2\left(m{x} ight) &= \sum_{i=1}^6 x_i^2 \end{cases}$	$ ext{s.t.} = egin{array}{ll} g_1\left(oldsymbol{x} ight) &= x_1 + x_2 - 2 \geq 0 \ g_2\left(oldsymbol{x} ight) &= 6 - x_1 - x_2 \geq 0 \ g_3\left(oldsymbol{x} ight) &= 2 - x_2 + x_1 \geq 0 \ g_4\left(oldsymbol{x} ight) &= 2 - x_1 + 3x_2 \geq 0 \ g_5\left(oldsymbol{x} ight) &= 4 - \left(x_3 - 3 ight)^2 - x_4 \geq 0 \ g_6\left(oldsymbol{x} ight) &= \left(x_5 - 3 ight)^2 + x_6 - 4 \geq 0 \end{array}$	$0 \le x_1, x_2, x_6 \le 10 \ , 1 \le x_3, x_5 \le 5, \ 0 \le x_4 \le 6.$
CTP1 function (2 variables): ^[5]	E of the state of	$ ext{Minimize} = egin{cases} f_1\left(x,y ight) &= x \ f_2\left(x,y ight) &= (1+y) \exp\left(-rac{x}{1+y} ight) \end{cases}$	$ ext{s.t.} = egin{cases} g_1\left(x,y ight) &= rac{f_2(x,y)}{0.858 \exp\left(-0.541 f_1(x,y) ight)} \geq 1 \ g_1\left(x,y ight) &= rac{f_2(x,y)}{0.728 \exp\left(-0.295 f_1(x,y) ight)} \geq 1 \end{cases}$	$0 \le x, y \le 1$.
Constr-Ex problem: ^[5]	T County light	$ ext{Minimize} = egin{cases} f_1\left(x,y ight) &= x \ f_2\left(x,y ight) &= rac{1+y}{x} \end{cases}$	$ ext{s.t.} = egin{cases} g_1\left(x,y ight) &= y + 9x \geq 6 \ g_1\left(x,y ight) &= -y + 9x \geq 1 \end{cases}$	$0.1 \le x \le 1, \\ 0 \le y \le 5$

See also

- Himmelblau's function
- Rastrigin functionRosenbrock function
- Shekel function

References

- 1. Bäck, Thomas (1995). Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford: Oxford University Press. p. 328. ISBN 0-19-509971-0.
- 2. Haupt, Randy L. Haupt, Sue Ellen (2004). Practical genetic algorithms with CD-Rom (2nd ed.). New York: J. Wiley. ISBN 0-471-45565-2.
- 3. Oldenhuis, Rody. "Many test functions for global optimizers" (http://www.mathworks.com/matlabcentral/fileexchange/23147-many-testfunctions-for-global-optimizers). Mathworks. Retrieved 1 November 2012.
- 4. Ortiz, Gilberto A. "Evolution Strategies (ES)" (http://www.mathworks.com/matlabcentral/fileexchange/35801-evolution-strategies-es). Mathworks. Retrieved 1 November 2012.
- 5. Deb, Kalyanmoy (2002) Multiobjective optimization using evolutionary algorithms (Repr. ed.). Chichester [u.a.]: Wiley. ISBN 0-471-87339-X.
- 6. Binh T. and Korn U. (1997) MOBES: A Multiobjective Evolution Strategy for Constrained Optimization Problems. In: Proceedings of the Third International Conference on Genetic Algorithms. Czech Republic. pp. 176–182
- 7. Binh T. (1999) A multiobjective evolutionary algorithm. The study cases. Technical report. Institute for Automation and Communication. Barleben, Germany
- 8. Deb K. (2011) Software for multi-objective NSGA-II code in C. Available at URL: http://www.iitk.ac.in/kangal/codes.shtml. Revision 1.1.6
- 9. Ortiz, Gilberto A. "Multi-objective optimization using ES as Evolutionary Algorithm." (http://www.mathworks.com/matlabcentral/fileexchange/35824-multi-objective-optimization-using-evolution-strategies-es-as-evolutionary-algorithm-ea). Mathworks. Retrieved 1 November 2012.
- 10. Simionescu, P.A.; Beale, D. (September 29 October 2, 2002). New Concepts in Graphic Visualization of Objective Functions (http://faculty.tamucc.edu/psimionescu/PDFs/DETC02-DAC-34129.pdf) (PDF). ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal, Canada. pp. 891–897. Retrieved 7 January 2017.
- 11. https://www.mathworks.com/help/optim/ug/example-nonlinear-constrained-minimization.html?requestedDomain=www.mathworks.com
- 12. http://www.phoenix-int.com/software/benchmark_report/bird_constrained.php
- 13. http://www.chebfun.org/examples/opt/ConstrainedOptimization.html
- 14. Simionescu, P.A. (2014). Computer Aided Graphing and Simulation Tools for AutoCAD Users (1st ed.). Boca Raton, FL: CRC Press. ISBN 978-1-4822-5290-3.
- 15. C. M. Fonzeca and P. J. Fleming, "An overview of evolutionary algorithms in multiobjective optimization," Evol Comput, vol. 3, no. 1, pp. 1–16, 1995.
- 16. F. Kursawe, "A variant of evolution strategies for vector optimization," in PPSN I, Vol 496 Lect Notes in Comput Sc. Springer-Verlag, 1991, pp. 193–197.
- 17. J. D. Schaffer, "Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition)," Ph.D. dissertation, Vanderbilt University, 1984.

External links

Virtual Library of Simulation Experiments: Test Functions and Datasets (http://www.sfu.ca/~ssurjano/index.html)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Test_functions_for_optimization&oldid=791117143"

- This page was last edited on 18 July 2017, at 07:20.
- Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.