International Rectifier

MBRD320 MBRD330 MBRD340

SCHOTTKY RECTIFIER

3.0 Amp

Major Ratings and Characteristics

Characteristics	Value	Units
I _{F(AV)} Rectangular waveform	3.0	А
V _{RRM}	20-30-40	V
I _{FSM} @tp=5 µs sine	490	Α
V _F @3Apk,T _J =125°C	0.49	V
Т	-40 to 150	°C

Description/Features

The MBRD320, MBRD330, MBRD340 surface mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC board. Typical applications are in disk drives, switching power supplies, converters, freewheeling diodes, battery charging, and reverse battery protection.

- Popular D-PAK outline
- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

Part number	MBRD320	MBRD330	MBRD340
V _R Max. DC Reverse Voltage (V)	20	30	40
V _{RWM} Max. Working Peak Reverse Voltage (V)			

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	Α	50% duty cycle@T _L =133°C,re	ectangular waveform
I _{FSM}	Max.PeakOneCycleNon-Repetitive	490		5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	SurgeCurrent	75		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	8	mJ	T _J =25°C,I _{AS} =0.6A,L=5mH	
I _{AR}	Repetitive Avalanche Current	1.0	Α		

Electrical Specifications

	Parameters	Тур.	Max.	Units	Conditions		
V _{FM}	Max. Forward Voltage Drop (1)	0.48	0.6	V	@ 3A	T - 25 °C	
	See Fig. 1	0.58	0.7	٧	@ 6A	$T_J = 25 ^{\circ}\text{C}$	
		0.41	0.49	V	@ 3A	T 405.00	
		0.55	0.625	V	@ 6A	T _J = 125 °C	
I _{RM}	Max. Reverse Leakage Current (1)	0.02	0.2	mA	T _J = 25 °C	V ==4.V/	
	See Fig. 2	10.7	20	mA	T _J = 125 °C	V _R = rated V _R	
C _T	Typical Junction Capacitance	189	-	pF	V _R = 5V _{DC} (test signal range 100kHz to		
					1Mhz), @ 25°C		
L _S	Typical Series Inductance	5.0	-	nH	Measured lead to lead 5mm from package body		
dv/dt	Max. Voltage Rate of Change	-	10000	V/ µs	(Rated V _R)		

⁽¹⁾ Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T _J	Max.JunctionTemperatureRange(*)	-40to150	°C	
T _{stg}	Max.StorageTemperatureRange	-40to175	°C	
R _{thJC}	Max.ThermalResistanceJunction toCase	6.0	°C/W	DC operation *See Fig. 4
R _{thJA}	Max.ThermalResistanceJunction toAmbient	80	°C/W	
wt	ApproximateWeight	0.3(0.01)	g(oz.)	
	Case Style	D-PAK		Similarto TO-252AA

 $[\]frac{\text{(*) } \frac{dPtot}{dTj}}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

Fig. 1-Maximum Forward Voltage Drop Characteristics

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

Fig. 4-Maximum Thermal Impedance Z_{thJC} Characteristics

Fig. 5-Maximum Allowable Case Temperature Vs. Average Forward Current

Fig. 6-Forward Power Loss Characteristics

Fig. 7-Maximum Non-Repetitive Surge Current

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D); I_R @ V_{R1} = 80\%$ rated V_R

Marking Information

Tape & Reel Information

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 02/02