2.3 Три типові операції над математичними моделями

Процес проектування на будь-якому ієрархічному рівні можна уявити як послідовність таких типових операцій:

- 1. аналізу,
- 2. синтезу,
- 3. оптимізації.

Аналіз (пряма задача) — це операція обчислення значень характеристик по відомих значеннях параметрів.

Якщо всі параметри об'єднати у вектор \mathbf{x} , а характеристики — у вектор \mathbf{f} ; тоді умовна схема аналізу буде виглядати так, як показано на рис. 2.2, a.

Рисунок 2.2 – Умовні схеми процесів аналізу, синтезу та оптимізації

Аналіз ϵ детермінованою та об'єктно-орієнтованою операцією.

На *середньому рівні* проектування аналіз складається у визначенні внутрішніх характеристик ОС за відомими значеннями конструктивних параметрів.

Підрівні:

- аналіз у гаусовій і зейделевій областях (визначення параксіальних характеристик і аберацій третього порядку),
- обчислення аберацій невеличкої кількості дійсних променів,
- визначення габаритів пучків,
- апроксимація аберацій і формування внутрішньої функціональної моделі.

На *вищому рівні* проектування операції аналізу полягають у моделюванні роботи ОС у загальному ланцюзі перетворювачів сигналу, що входять в оптичний прилад.

Вхідними даними ϵ зовнішні характеристики оптичної системи й інших перетворювачів, а також параметри вхідного сигналу (предмета).

Результатами аналізу ϵ параметри вихідного сигналу (зображення) і характеристики, що описують якість функціонування всього приладу.

На будь-якому рівні розрізняють:

- 1. Одноваріантний аналіз, (коли вихідні характеристики \mathbf{f} визначаються для одного значення вхідних параметрів \mathbf{x})
- 2. Багатоваріантний аналіз (аналізом чутливості або впливи параметрів,) (коли визначається залежність вихідних характеристик від невеличких змін вхідних параметрів, тобто знаходиться матриця похідних $\partial \mathbf{f}/\partial \mathbf{x}$.)

Синтез (обернена задача) — це операція формування конструкційної моделі, тобто визначення значень параметрів \mathbf{x} , що забезпечують задані значення характеристик \mathbf{f} (рис. 2.2, δ).

Синтез ϵ евристичною та виключно об'єктно-орієнтованою операцією. Він визначається конкретним типом синтезованої системи.

Рисунок 2.3 – Різновиди синтезу

В даний час піддаються алгоритмізації:

- пошук конструкції з існуючих варіантів за допомогою інформаційнопошукової системи,
- синтез найпростіших типів оптичних систем,
- набір систем з елементів із відомими властивостями (метод М. М. Русинова)
- складання оптичної системи з декількох вузлів або компонентів,
- операції перебудування системи (обертання, зміна в масштабі, видалення і додавання елементів).

Завдяки високому ступеню евристичності, у процесі синтезу рідко вдасться одержати ОС цілком задовольняючу всім заданим вимогам, тому обов'язковою операцією ϵ оптимізація.

Оптимізація — це операція спрямованого зміну конструктивних параметрів, починаючи від деяких вихідних значень, із метою досягнення найкращих значень характеристик (рис. 2.2, θ).

Математичний апарат оптимізації відноситься не до самого об'єкта — оптичної системи, а до її оптимізаційної моделі, тобто є об'єктно-інваріантною і детермінованою операцією. Вибір же оптимізаційної моделі (тобто вирішення питань про те, що оптимізувати і чим) для конкретної ОС є евристичною задачею (залежить від досвіду).