Lineáris algebra jegyzet

Készítette: Jezsoviczki Ádám

Forrás: Az <u>előadások</u> és a gyakorlatok anyaga Legutóbbi módosítás dátuma: 2011-12-04

A jegyzet nyomokban hibát tartalmazhat, így fentartásokkal olvasandó!

a, b, c vektorok lineáris kombinációja

$$\alpha \cdot \underline{a} + \beta \cdot \underline{b} + \gamma \cdot \underline{c} = \underline{0} \qquad \begin{pmatrix} \alpha \\ \alpha \\ 0 \end{pmatrix} + \begin{pmatrix} \beta \\ 0 \\ \beta \end{pmatrix} + \begin{pmatrix} \gamma \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Ha csak a triviális lineáris kombináció adja meg a nullvektort, akkor a, b, c **lineárisan függetlenek** (jele: L). Ha más megoldás is van, akkor **lineárisan összefüggő** (jele: Ö).

Más szavakkal:

 $\{a_1, a_2...a_n\}$ vektorrendszer **lineárisan független**, ha $\alpha a_1 + \alpha a_2 + ... + \alpha a_n$ lineáris kombináció csak $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$ esetén adja a nullvektort, ellenkező esetben **lineárisan összefüggő**.

Egyelemű halmazok mindig: L

Kételemű halmazok mindig: L, kivéve, ha valamelyik vektor a mások konstansszorosa lenne Három/több elemű: lehet L és Ö is.

Altér:

• nem üres

• konstansszorosra zárt $\lambda \underline{u} \in U$

• összegre zárt $\underline{u} + \underline{v} \in U$

Triviális altér: a nullvektor által generált altér

Bázis: maximális¹ lineárisan független vektorrendszer. Adott vektortér minden bázisa ugyanannyi elemet tartalmaz. Ez a vektortér **dimenziója**. Minden elem <u>egyértelműen</u> felírható a báziselemek lineáris kombinációjaként. $\underline{a} = \alpha_1 b_1 + \alpha_2 b_2 + ... + \alpha_n b_n$

Triviális (standard) bázis:

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Elemi bázistranszformáció $y_i = \frac{x_i}{\alpha_i}$ i cserehely $y_t = x_t - \frac{x_i}{\alpha_i} \cdot \alpha_t$ $t \neq i$

Generált altér: a generáló elemek összes linéáris kombinációja. $\langle \underline{a}, \underline{b} \rangle \equiv span(\underline{a}, \underline{b})$

Vektorrendszer rangja: hány lineárisan független van. Amennyi (elemi bázistranszformációval) behelyettesíthető, annyi a rang. $\rho(A)$

Mátrix

$$A^{n \times m} + B^{n \times m}$$
 (csak azonos méretű mátrixok adhatók össze)
 $A^{n \times m} \cdot R^{m \times k} = (AR)^{n \times k}$

nl ·

$$\begin{pmatrix} 1 & (-2) & 3 \\ 0 & 1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 & (-36) \\ (-2) & 1 \\ 3 & 13 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + (-2) \cdot (-2) + 3 \cdot 3 & 1 \cdot (-36) + (-2) \cdot 1 + 3 \cdot 13 \\ 0 + 1 \cdot (-2) + 7 \cdot 3 & 0 \cdot (-36) + 1 \cdot 1 + 7 \cdot 13 \end{pmatrix}$$

A mátrixok **transzponáltja** A^T a sorok és oszlopok felcserélésével adódik.

$$A = \begin{pmatrix} 1 & (-2) & 3 \\ 0 & 1 & 7 \end{pmatrix} \quad A^{T} = \begin{pmatrix} 1 & 0 \\ (-2) & 1 \\ 3 & 7 \end{pmatrix}$$

Transzponált tulajdonságai

ranszponati tutajdonságai
$$(A+B)^T = A^T + B^T$$
 $(\lambda A)^T = \lambda A^T$ $(A \cdot B)^T = B^T A^T$ $(A^T)^T = A$

¹ Ha még 1 elemet hozzáadnánk, akkor már összefüggővé válna.

I_n:
$$n \times n$$
 -es **egységmátrix** $I_n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Négyzetes mátrixok esetén: $\forall A^{n \times n} AI_n = I_n \cdot A = A$

A rangja: $\rho(A)$ a lineárisan független oszlopvektorok száma, illetve a lineárisan független sorvektorok száma. (0 rangú mátrix csak a nullmátrix.)

$$\rho(A^{T}) = \rho(A) \qquad \rho(kA) = \rho(A) \qquad \rho(A+B) \leq \rho(A) + \rho(B) \qquad \begin{array}{cc} \rho(A \cdot B) \leq \rho(A) \\ \rho(A \cdot B) \leq \rho(B) \end{array} \qquad \rho(A^{n \times m}) \leq \min(n, m)$$

Diagonális mátrix:
$$\begin{vmatrix} a_{11} & 0 & 0 & 0 & \cdots \\ 0 & a_{22} & 0 & 0 & \cdots \\ 0 & 0 & a_{33} & 0 & \cdots \\ 0 & 0 & 0 & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{vmatrix}$$

Szimmetrikus mátrix:
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \cdots \\ a_{12} & a_{22} & a_{23} & a_{24} & \cdots \\ a_{13} & a_{23} & a_{33} & a_{34} & \cdots \\ a_{14} & a_{24} & a_{34} & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{vmatrix}$$

Antiszimmetrikus mátrix:
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \cdots \\ -a_{12} & a_{22} & a_{23} & a_{24} & \cdots \\ -a_{13} & -a_{23} & a_{33} & a_{34} & \cdots \\ -a_{14} & -a_{24} & -a_{34} & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{vmatrix}$$

Felső háromszög mátrix:
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \cdots \\ 0 & a_{22} & a_{23} & a_{24} & \cdots \\ 0 & 0 & a_{33} & a_{34} & \cdots \\ 0 & 0 & 0 & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Alsó háromszög mátrix:
$$\begin{vmatrix} a_{21} & a_{22} & 0 & 0 & \cdots \\ a_{31} & a_{32} & a_{33} & 0 & \cdots \\ a_{41} & a_{42} & a_{43} & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{vmatrix}$$

$$\begin{array}{c} \rho(A^T) = \rho(A) & \rho(kA) = \rho(A) & \rho(A+B) \leq \rho(A) + \rho(B) & \rho(A\cdot B) \leq \rho \\ \rho(A\cdot B) \leq \rho \\ \hline \\ Diagonális mátrix: & \begin{vmatrix} a_{11} & 0 & 0 & 0 & \cdots \\ 0 & a_{22} & 0 & 0 & \cdots \\ 0 & 0 & a_{33} & 0 & \cdots \\ 0 & 0 & 0 & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \hline \\ Szimmetrikus mátrix: & \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \cdots \\ a_{12} & a_{22} & a_{23} & a_{24} & \cdots \\ a_{13} & a_{23} & a_{33} & a_{34} & \cdots \\ a_{14} & a_{24} & a_{34} & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \hline \\ Antiszimmetrikus mátrix: & \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \cdots \\ -a_{12} & a_{22} & a_{23} & a_{24} & \cdots \\ -a_{13} & -a_{23} & a_{33} & a_{34} & \cdots \\ -a_{14} & -a_{24} & -a_{34} & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \hline \\ Alsó háromszög mátrix: & \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \cdots \\ 0 & a_{22} & a_{23} & a_{24} & \cdots \\ 0 & 0 & a_{33} & a_{34} & \cdots \\ 0 & 0 & 0 & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \hline \\ A_{11} & 0 & 0 & 0 & \cdots \\ a_{21} & a_{22} & 0 & 0 & \cdots \\ a_{21} & a_{22} & 0 & 0 & \cdots \\ a_{21} & a_{22} & 0 & 0 & \cdots \\ a_{41} & a_{42} & a_{43} & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \hline \\ Nilpotens mátrix: & \begin{vmatrix} 0 & a_{12} & a_{13} & a_{14} & \cdots \\ 0 & 0 & a_{23} & a_{24} & \cdots \\ 0 & 0 & a_{33} & a_{34} & \cdots \\ 0 & 0 & 0 & a_{34} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \hline \\ Invertálható mátrix: & \exists A^{-1} : AA^{-1} = I_{n} \\ \hline \end{pmatrix}$$

Invertálható mátrix: $\exists A^{-1}: AA^{-1} = I_n$

Szalag mátrix²:
$$\begin{vmatrix} 2 & 1 & 0 & 0 & \cdots \\ 1 & 2 & 1 & 0 & \cdots \\ 0 & 1 & 2 & 1 & \cdots \\ 0 & 0 & 1 & 2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{vmatrix}$$

² Egy "szalag" mentén nem nulla.

Determináns kifejtési tétel:

Alsó/felső háromszög mátrix determinánsa (det. Jelölése: |A|, vagy det(A)) a diagonális elemek szorzata.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb \quad det(AB) = det(A) \cdot det(B) \quad det(A^{-1}) = \frac{1}{det(A)} \quad det(AA^{-1}) = det(I) = 1$$

$$A \text{ invert\'alhat\'o} \equiv det(a) \neq 0$$

Determináns őrző műveletek: Egy sorhoz (vagy oszlophoz) hozzáadom egy másik sor konstansszorosát. Det=0, ha van csupa 0 sora vagy oszlopa.

Det=0, ha egy sora/oszlopa a másik konstansszorosa.

$$det(A) \neq 0 \equiv \exists A^{-1} \qquad det(A) = det(A^{T}) \qquad det(\lambda A^{n \times n}) = \lambda^{n} \cdot det(A)$$

$$A \underline{x} = \lambda \underline{x} \ (\lambda \ a \ sajátvektor)$$

Sajátérték, sajátvektor: $A\underline{x} - \lambda \underline{x} = 0$

$$\begin{array}{c}
A \underline{x} - \lambda \underline{x} = 0 \\
(A - \lambda I)x = 0
\end{array}$$

Az A mátrix karakterisztikus polinomja: $|A-\lambda I|$ gyökei az A sajátértékei. A sajátértékek száma megegyezik a mátrix méretével.

Sajátaltér: azonos sajátértékekhez tartozó összes sajátvektor által generált altér.

Diagonalizálható a mátrix, ha:

- van ugyanannyi sajátérték (multiplicitással), mint a mátrix mérete
- a sajátalterek dimenzió összege a mátrix mérete

Hasonlóság

- a karakterisztikus polinomok megegyeznek
- az egyes sajátértékekhez tartozó sajátalterek dimenziója megegyezik

Skalárszorzat (4db axióma):

- (Ha komplex $\overline{a+ib} = a-ib$) 1. $\langle y, x \rangle = \overline{\langle x, y \rangle}$
- 2. $< \lambda x, y > = \lambda < x, y >$
- 3. $\langle x, y+z \rangle = \langle x, y \rangle + \langle x, z \rangle$
- 4. $\langle x, x \rangle \ge 0$ $\langle x, x \rangle = 0 \equiv x = 0$

Hajlásszög:

$$\cos \gamma(x, y) = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|} \qquad \|x\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

SONB (sajátvektorokból álló ortogonális 1 normájú bázis)

Tétel: Valós szimmetrikus mátrix <=> létezik SONB és minden sajátértéke valós.

Kvadratikus alak: $Q(x) = x^{T} A x$

Kvadratikus alakok osztályozása:

- $\forall \lambda_{k} > 0$ Q pozitív definit
- $\forall \lambda_k \ge 0$ Q pozitív szemidefinit
- $\forall \lambda_k < 0$ Q negativ definit
- $\forall \lambda_{\iota} \leq 0$ Q negativ szemidefinit
- $\exists \lambda_k > 0, \lambda_i < 0$ Q identifinit

$$x$$
, $||x|| \neq 1$ $\left| \frac{x}{||x||} \right| = \frac{||x||}{||x||} = 1$

Komplex skalárszorzat

$$< a, b> = \underline{b}^* a$$
 \underline{b}^* a b konjugáltja $a=x+iy$ $a^*=x-iy$ $||a||=\sqrt{a^* a}$ $< a, b> = < b, a> = 0 \equiv a$ merőleges b

 $\phi: \mathbb{R}^n \to \mathbb{R}^m$ lineáris leképezés, ha

• $\varphi(a+b)=\varphi(a)+\varphi(b)$

• $\phi(\lambda a) = \lambda \phi(a)$

Lineáris transzformáció, ha $\phi: R^n \to R^n$

Lineáris leképezés **magtere**: $Ker \phi = \{a \in \mathbb{R}^n, \phi(a) = 0\}$

Lineáris leképezés **képtere**: $Im \phi = \{b \in \mathbb{R}^m, \exists a \in \mathbb{R}^n, \phi(a) = b\}$

Izomorfizmus: bijektív lekérdezés

Lineáris leképezés izomorf \iff $Ker \phi = \{0\}$

Dimenzió tétel: $\dim Ker + \dim I m + \dim R^n = n$

Lineáris transzformáció mátrixa egy adott bázisban: oszlopvektorok a báziselemek képei

$$A_{\phi} \quad i = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad j = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad k = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$