Your grade: 94.44%

Next item \Rightarrow

Your latest: 94.44% • Your highest: 94.44% • To pass you need at least 80%. We keep your highest score.

1.	Which of the following is true about policy-based methods? (Select all that apply)	1/1 point
	$oldsymbol{arphi}$ Policy-based methods allow smooth improvement in the policy without drastic changes.	
	Correct Correct. As the policy parameters change the action probabilities change smoothly, but with value- based methods a small change in action-value function can drastically change the action probabilities.	
	Policy-based methods are useful in problems where the policy is easier to approximate than action-value functions.	
	Correct Correct. For example in the Mountain Car problem a good policy is easy to represent whereas the value function is complex.	
	Policy-based methods can be applied to continuous action space domains.	
	Correct Correct. By parameterizing a policy to represent a probability distribution such as Gaussian, it can be applied to continuous action space domains.	
	Policy-based methods can learn an optimal policy that is stochastic.	
	 Correct Correct. It can learn a stochastic optimal policy, such as the soft-max in action preferences. 	
2.	Which of the following statements about parameterized policies are true? (Select all that apply)	1/1 point
	The probability of selecting any action must be greater than or equal to zero.	
	Correct Correct! This is one of the conditions for a valid probability distribution.	
	✓ For each state, the sum of all the action probabilities must equal to one.	
	 Correct Correct! This condition is necessary for the function to be a valid probability distribution. 	
	 □ The function used for representing the policy must be a softmax function. □ The policy must be approximated using linear function approximation. 	

3.	Assume you're given the following preferences $h_1=44,h_2=42,$ and different actions $(a_1,a_2,a_3),$ respectively. Under a softmax policy, what rounded to three decimal numbers?	
	0.1190.0020.420.879	
	⊙ Correct Correct!	
4.	Which of the following is true about softmax policy? (Select all that apply It is used to represent a policy in discrete action spaces.	/) 1/1 point
	○ Correct Correct!	
	■ Similar to epsilon-greedy policy, softmax policy cannot on the sit of the	nào từ các ar values for each n nhân tạo sâu
	 Correct Correct. It can use any function approximation from deep artificial features. 	
	It cannot represent an optimal policy that is stochastic, because it re action preference dominates others.	eaches a deterministic policy as one

5.	What are the differences between using softmax policy over action-values and using softmax policy over action-preferences? (Select all that apply)
	When using softmax policy over action-values, assuming a tabular representation, the policy will converge to the optimal policy regardless of whether the optimal policy is stochastic or deterministic.
	This should not be selected Incorrect. The action-value estimates would converge to the true values which would differ by a finite amount, and each action would have fixed probabilities other than 0 or 1. Softmax policy over action- values is unlikely to be the optimal policy and may never be deterministic.
	When using softmax policy over action-preferences, assuming a tabular representation, the policy will converge to the optimal policy regardless of whether the optimal policy is stochastic or deterministic.
	Correct Correct. Action-preferences does not approach specific values like action-values do. They can be driven to produce a stochastic policy or deterministic policy.
	When using softmax policy over action-values, even if the optimal policy is deterministic, the policy may never approach a deterministic policy.
6.	What is the following objective, and in which task formulation?
	$r(\pi) = \Sigma_s \mu(s) \Sigma_a \pi(a s, heta) \Sigma_{s,r} p(s, r s, a) r$
	O Discounted return objective, continuing task
	Average reward objective, episodic task
	Average reward objective, continuing task

O Undiscounted return objective, episodic task

Ocrrect
Correct.

7.	The following equation is the outcome of the policy gradient theorem. Which of the following is true about the policy gradient theorem? (Select all that apply)	1/1 point
	$ abla r(\pi) = \Sigma_s \mu(s) \Sigma_a abla \pi(a s, heta) q_\pi(s,a)$	
	${\color{red} $	
	○ Correct Correct.	
	✓ This expression can be converted into:	
	$\mathbb{E}_{\pi}[\Sigma_a abla \pi(a S, heta)q_{\pi}(S,a)]$	
	In discrete action space, by approximating q_pi we could also use this gradient to update the policy.	
	Correct Correct. The expression contains sum over actions, which can be computed for discrete actions. In the textbook, this is also called the all-actions method.	
	$lacksquare$ We do not need to compute the gradient of the state distribution $\mu.$	
	⊘ Correct Correct.	
	$ ightharpoonup$ This expression can be converted into the following expectation over π :	
	$\mathbb{E}_{\pi}[abla \ln \pi(A S, heta)q_{\pi}(S,A)]$	
	 Correct Correct. In fact, this expression is normally used to perform stochastic gradient updates. 	
8.	Which of the following statements is true? (Select all that apply)	1/1 point
	☐ TD methods do not have a role when estimating the policy directly.	
	$lacksquare$ To update the actor in Actor-Critic, we can use TD error in place of q_π in the Policy Gradient Theorem.	
	 Correct Correct. This is equivalent to using one-step state value and subtracting a current state value baseline. 	
	The Actor-Critic algorithm consists of two parts: a parameterized policy — the actor — and a value function — the critic.	
	⊘ Correct Correct.	
	Subtracting a baseline in the policy gradient update tends to reduce the variance of the update, which results in faster learning.	
	○ Correct Correct.	

9. We usually want the critic to update at a faster rate than the actor.

True

O False

Correct!

10. Consider the following state features and parameters θ for three different actions (red, green, and blue):

1/1 point

1/1 point

Compute the action preferences for each of the three different actions using linear function approximation and stacked features for the action preferences.

What is the action preference of a_1 (green)?

42

O 40

O 35

O 32

Correct
 Correct

11.	Which of the following statements are true about the Actor-Critic algorithm that apply)	with softmax policies? (Choose a	all 1/1 point
	Since the policy is written as a function of the current state, it is like ha distribution for each state.	ving a different softmax	
	○ Correct Correct!	Trong thực tế, tốt nhất là có	
	The learning rate parameter of the actor and the critic can be different	tỷ lệ học tập chậm hơn cho diễn viên để nhà phê bình có thể phê bình chính xác chính	
	Correct sách. Correct! In practice, it is preferable to have a slower learning rate for the actor so that the critic can accurately critique the policy.		
	☐ The actor and the critic share the same set of parameters.		
	■ The preferences must be approximated using linear function approxim	ation.	
12.	A Gaussian policy becomes deterministic in the limit $\sigma o 0$.		1/1 point
	True		
	O False		
	\odot Correct Correct: As σ approaches 0, the values of the Gaussian policy approagiven state.	ich the mean of the policy in a	