计算机学院专业必修课

计算机组成

流水线处理器 形式建模综合方法

高小鹏

北京航空航天大学计算机学院

RF原设计在流水线中出错原因分析

- 场景:读R与写R同时 发生
- 现象: 软件执行错误
- 原因: 无法利用 MEM/WB的有效反馈
- 读出错误数据 田・吹っ 修改RE

来不及了

					•/// •		.//		<i>//</i> •		.// •		•/// •			
地址	指令		CLK	PC	IF/	'ID	ID/I	ID/EX		D/EX EX/MEM ⇒EX, ID			MEM ⇒	•		RF
0	add \$1 , \$2, \$	\$3	1	0→4	ac	bb										
4	instr 1		1 2	4→8	ins	tr 1	ad	d								
8	instr 2		J 3	0→4	ins	tr 2	inst	r 1	add(结	5果)						
12	xor \$5, \$1 , \$	\$2	14	0→4	(xor(读R)	inst	r 2	instr	1	add(<mark>ź</mark>	吉果)				
16	sub		1 5	4→8	sub(读R)	xor(F	∄R)	instr	· 2	inst	r1	add((更新)		

RF原设计在流水线中出错原因分析

□ 错误场景:写入寄存器与 读出寄存器同时发生

◆ RF: 存储的是旧值

◆ WD总线:新值

□ RD1/RD2: 输出的是旧值

◆ 写入值滞后1个时钟周期

			[]	-级	ID	级	EX	级	MEI	M级	WE	3级	
地址	址 指令		PC	IF/ID		ID/	EX	EX/MEM ⇒EX, ID		MEM/WB ⇒EX		R	F
0	0 add \$1, \$2, \$3		0→4	ac	add								
4	instr 1	Ĵ 2	4→8	inst	r 1	ac	d						
8	instr 2	£ Ĺ	0→4	inst	r 2	inst	r 1	add(≰	吉果)				
12	xor \$5, \$1 , \$2	1 4	0→4	xor(读R)	inst	r 2	inst	r 1	add(<mark>经</mark>	課)		
16	sub	1 5	4→8	sub(读R)	xor(∄R)	inst	r 2	instr	1	add(更新)

适用于流水线的RF内部结构设计

- □ 判断条件: 写入寄存器与读出寄存器相同
 - ◆ A3 == A1 或者 A3 == A2
- □ 执行操作: RD1/RD2输出WD(而不是寄存器值)
 - ◆ 本质:内部转发

- □ Q: 是否有遗漏条件?
- □ H: 当前虽然不是写入操作,但是A3恰好等A1/A2!

增加WE

A3

WE

A1

开发流水线CPU的挑战

- □ 诉求: 高性能; 多类别; 高效率; 正确性
 - ◆ 高性能:全力转发(不允许出现任何可以避免的暂停)
 - ◆ 多类别:包含常见指令类别
 - ◆ 高效率: 1~2周内完成开发工作
 - ◆ 正确性: 能正确处理所有可能的冲突
- □ 挑战:如何保证正确性?
 - ◆ 高性能: 导致结构复杂、设计规模大
 - ◆ 类别多:导致需要分析与处理的冲突增加
 - 高效率:导致开发与测试时间短

提纲

- □ 基础指令集
- □ 流水线基本架构
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

基础指令集与标准流水线

- □ 指令集
 - lw, sw, addu, subu, ori, lui, beq, j, jal, jalr
- □ 典型指令;可以支持大多数程序需求
- □ jal, jalr: 涉及2个写入操作, PC写入, RF写入
 - ◆ 比较特殊的指令

LW
SW
ADDU
SUBU
ORI
LUI
BEQ
J
JAL
JALR

提纲

- 基础指令集
- □ 流水线基本架构
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

集中式控制器与分布式控制器

- 集中式控制器:流水控制信号(用信号代表指令)
 - ◆ 控制器只在ID阶段
 - 控制器产生全部的译码信号
 - 流水所有的控制信号(译码信号)

集中式控制器与分布式控制器

- □ 分布式式控制器:流水指令
 - 控制器分布在多个流水线阶段
 - ◆ 每级控制器只产生该级功能部件相关的译码信号
 - 各级控制器都是单周期控制器的子集

集中式控制器与分布式控制器

- □ 资源使用:集中式控制器
- □ 结构简洁: 分布式控制器
 - ◆ "马路警察,各管一段"
- □ 代码理解:分布式控制器
 - ◆ 写起来字符多些,但更易于理 解语义
- □ 项目维护:分布式控制器
 - 更有利于多人协同

课程讲授:分布式 (更清晰的表达设计思路) 实际开发:随意选择

3控制器架构

- □ 功能部件控制器 (就是书中的控制器)
 - ◆ 译码指令,控制各个功能部件
 - ◆ 属于功能设计范畴:与指令的功能相关,与性能无关
 - 无论单周期还是流水线,设计思路相同
- □ 暂停控制器
 - ◆ 将IF/ID指令与前序指令(位于后序流水段)分析,决定是否暂停
 - ◆ 属于性能设计范畴
- □ 转发控制器
 - ◆ 分析各级指令的相关性,决定如何转发
 - ▲ 属于性能设计范畴
- □ 三控制器架构特点
 - ◆ 结构清晰,易于理解,互不干扰

基础型流水线

- 以性能为目标
 - □ 数据冒险: 转发、暂停
 - □ 控制冒险: 分支比较前移、转发、暂停
- ▶ 功能并不完善,用于作为架构参考
 - □ 并不能100%正确的支持基础指令集

基础架构抽象

- 延用单周期数据通路功能部件
 - □ 开发过程中需要进一步增加部件及完善部件功能
- 按流水段分类,便于理解和记忆
- RF在2个阶段均被使用
 - □ 译码/读操作数阶段;结果回写寄存器阶段

阶段	部件	输入	输出	描述
1111111 A	PC	D	Q	标准D寄存器
取指令 (F级)	ADD4	PC, +4	PC4	完成PC+4
(13)	IM	А	D	指令存储器
	RF	A1, A2, A3, WD	RD1, RD2	寄存器堆
译码/读操作数	EXT	IMM16	IMM32	立即数扩展
(D级)	NPC	PC, IMM26	NextPC	为B类/J计算下条地址
	СМР	D1, D2	Result	比较2个数
计算(E级)	ALU	А, В	ALU	算数/逻辑运算
访存(M级)	DM	A, WD	RD	数据存储器
回写(W级)	RF			

流水线寄存器

- □ 设置4级流水线寄存器
 - ◆ 5级流水线的最后一级寄存器为RF
- □ 标记X: 代表对应流水级需要设置相应寄存器
 - ◆ IR: 4个流水级均需要
 - ◆ AO: 仅M级和W级需要

X级寄存器:是 从读出角度看 (例如:M级就 是EX/MEM)

名称	功能	D级 IF/ID	E级 ID/EX	M级 EX/MEM	W级 MEM/WB
IR	传递指令	X	X	Χ	X
PC4	下一条指令地址	X	X	X	X
RS	RF的RS值(RD1输出)		X		
RT	RF的RT值(RD2输出)		X	X	
EXT	扩展后的32位立即数		X		
AO	ALU计算结果			X	X
DR	DM读出结果				X

提纲

- □ 基础指令集
- □ 流水线基本架构
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

流水线数据通路构造表格

F级功能部件

部件

PC

输入

A2

D1

D2 PC4

WD

RF

- 每级由寄存器和功能部件组成
 - 按流水线5个阶段划分
- X@Y: 代表Y阶段的X寄存器
 - IR@W: W级的IR
- RF: 人为的部署在2个阶段(方便理解)
 - D阶段:准备操作数
 - □ W阶段:回写结果

ADD4 IM IR@D D级流水线寄存器 PC4@D RF **EXT** D级功能部件 **CMP NPC** IR@E PC4@E E级流水线寄存器 RS@E RT@E EXT@E E级功能部件 ALU IR@M PC4@M M级流水线寄存器 AO@M RT@M DM M级功能部件 IR@W PC4@W W级流水线寄存器 AO@W DR@W

W级功能部件

S1: 逐条指令构造数据通路

□ 根据RTL描述,反推各级流水线寄存器、功能部件 间连接关系

◆ LW:5级

- □ IR必填
 - ◆ 采用分布式译码
- □ 指令不涉及的不需要填:如PC4
- □ 表示方法
 - X[y]: 代表X部件的y域
 - ◆ IR@D[i16]: D级IR的16位立即数

部件	输入	LW
PC		ADD4
ADD4		PC
IM		PC
IR@D		IM
PC4@D		
RF	A1	IR@D[rs]
Kr	A2	
EXT		IR@D[i16]
NPC	PC4	
INI C	I26	
IR@E		IR@D
PC4@E		
RS@E		RF.RD1
RT@E		
EXT@E		EXT
ALU	A	RS@E
ALU	В	EXT@E
IR@M		IR@E
PC4@M		
AO@M		ALU
RT@M		
DM	A	AO@M
DM	WD	
IR@W		IR@M
PC4@W		
AO@W		
DR@W		DM
RF	A3	IR@W[rt]
IXI	WD	DR@W

School of Computer Science and Engineering, Beihang University

S1: 逐条指令构造数据通路

部件	输入	LW	SW	ADDU	SUBU	ORI	BEQ	J	JAL	JALR
PC		ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	ADD4 NPC	ADD4 NPC	ADD4 RF.RD1
ADD4		PC	PC	PC	PC	PC	PC	PC	PC	PC
IM		PC	PC	PC	PC	PC	PC	PC	PC	PC
IR@D		IM	IM	IM	IM	IM	IM	IM	IM	IM
PC4@D							ADD4	ADD4	ADD4	ADD4
DE	A1	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]		IR@D[rs]
RF	A2			IR@D[rt]	IR@D[rt]		IR@D[rt]	IR@D[rt]		
EXT		IR@D[i16]	IR@D[i16]			IR@D[i16]				
CMP	D1						RF.RD1			
CMP	D2						RF.RD2			
NPC	PC4						PC4@D	PC4@D	PC4@D	
NPC	I26						IR@D[i16]	IR@D[i26]	IR@D[i26]	
IR@E		IR@D	IR@D	IR@D	IR@D	IR@D			IR@D	IR@D
PC4@E									PC4@D	PC4@D
RS@E		RF.RD1	RF.RD1	RF.RD1	RF.RD1	RF.RD1				
RT@E			RF.RD2	RF.RD2	RF.RD2					
EXT@E		EXT	EXT			EXT				
ALU	A	RS@E	RS@E	RS@E	RS@E	RS@E				
ALU	В	EXT@E	EXT@E	RT@E	RT@E	EXT@E				
IR@M		IR@E	IR@E	IR@E	IR@E	IR@E			IR@E	IR@E
PC4@M									PC4@E	PC4@E
AO@M		ALU	ALU	ALU	ALU	ALU				
RT@M			RT@E							
DM	A	AO@M	AO@M							
DIVI	WD		RT@M							
IR@W		IR@M		IR@M	IR@M	IR@M			IR@M	IR@M
PC4@W									PC4@M	PC4@M
AO@W				AO@M	AO@M	AO@M				
DR@W		DM								
RF	A3	IR@W[rt]		IR@W[rd]	IR@W[rd]	IR@W[rt]			0x1F	IR@W[rd]
Kr	WD	DR@W		AO@W	AO@W	AO@W			PC4@W	PC4@W

S2: 综合全部指令的数据通路

- □ 水平方向归并
 - ★ 去除冗余输入来源
- □ 在每个输入来源个数大于1的输入端前增加1个MUX
 - ◆ 注意:同时需要产生相应的控制信 号
- □ 特例: NPC的i16和i26归并为i26

部件	输入	1	渝入来源		MUX	控制
PC		ADD4	NPC	RF.RD1	M1	PCSel
ADD4		PC				
IM		PC				
IR@D		IM				
PC4@D		ADD4				
RF	A1	IR@D[rs]				
КГ	A2	IR@D[rt]				
EXT		IR@D[i16]				
СМР	D1	RF.RD1				
CMP	D2	RF.RD2				
NDC	PC4	PC4@D				
NPC	I26	IR@D[i26]				
IR@E		IR@D				
PC4@E		PC4@D				
RS@E		RF.RD1				
RT@E		RF.RD2				
EXT@E		EXT				
A T T T	A	RS@E				
ALU	В	EXT@E	RT@E		M2	BSel
IR@M		IR@E				
PC4@M		PC4@E				
AO@M		ALU				
RT@M		RT@E				
DM	A	AO@M				
DM	WD	RT@M				
IR@W		IR@M				
PC4@W		PC4@M				
AO@W		AO@M				
DR@W		DM				
DE	A3	IR@W[rt]	IR@W[rd]	0x1F	М3	WRSel
RF	WD	DR@W	AO@W	PC4@W	M4	WDSel

School of Computer Science and Engineering, Beihang University

提纲

- □ 基础指令集
- □ 流水线基本架构
- □ 无转发数据通路构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

数据冒险:需求与供给能否匹配?

□ 需求者:需要引用reg值的component

◆ 例如: 所有运算类指令的需求在E级的ALU

◆ 例如: j指令不需要读取任何GPR, 因此j指令没有需求

□ 供给者:保存有reg新结果的流水线寄存器

◆ 例如: 所有运算类指令的供给者是EX/MEM、MEM/WB

◆ 例如: load类指令的供给者是MEM/WB

□ 数据冒险可以转化为:需求与供给的匹配

◆ 转发:结果已经保存在EX/MEM或MEM/WB

◆ 暂停: 结果尚未出现

□ Q: 如果有多个供给者, EX/MEM与MEM/WB哪个值更新?

需求者的最晚时间模型

- □ *T_{use}*(time-to-use): 指令进入IF/ID寄存器后,其后的某个功能部件 再经过多少cycle就<mark>必须</mark>要使用寄存器值
 - ◆ 特点1: 静态值, 读取操作数的时间上限
 - ◆ 特点2: 同一条指令可以有2个不同的Tuse
 - ◆ 例如,R型计算类指令的T_{use}为1
 - rs/rt值: 最晚被ID/EX寄存器驱动
 - ◆ 例如, store型计算类指令的T_{use}分别为1和2
 - rs值:最晚被ID/EX寄存器驱动
 - rt值:最晚被EX/MEM寄存器驱动

供给者的最早时间模型

- T_{new}(time-to-new): 位于ID/EX及其后各流水线的指令,再经过多少周期能够产生要写入寄存器的结果
 - ◆ 特点1: 动态值, 随着指令的流动, 该值在不断减小, 直至0
 - ◆ 特点2: 一条指令可以有多个不同的Tnew
 - ◆ 例如,R型计算类指令的T_{new}为1或0
 - 1: 指令位于ID/EX, ALU正在计算
 - 0: 指令位于EX/MEM和MEM/WB(结果已经产生)
 - ◆ 例如, load型计算类指令的T_{new}为2, 1, 0
 - 2: 指令位于ID/EX, 尚未读取存储器
 - 1: 指令位于EX/MEM,正在读取存储器
 - 0: 指令位于MEM/WB, 结果已经产生

数据冒险的策略分析

- □ T_{new} = 0: 表明结果已经产生
 - ◆ 指令位于MEM/WB: 那么虽然结果尚未最终写入RF, 但RF设计使得W结果可以被正确的读出, 因此无需任何操作(实质是RF内部转发)
 - ◆ 指令位于其他位置:通过转发解决数据相关
- T_{new} ≠ 0: 表明结果尚未产生
 - ◆ T_{new} > T_{use}: 不可能及时供给数据,只能<mark>暂停</mark>流水线
 - T_{new}≤T_{use}: 由于结果产生时间短于读取时间,因此当结果产生后可以通过 转发解决数据冒险

- □ 暂停: T_{new} > T_{use}
- 转发: T_{new} = 0&指令不在MEM/WB 或 T_{new} ≤ T_{use}

数据冒险的策略分析

- ◆ 思想:在门口检查暂停;放进去的都能执行
 - ◆ 暂停指令被放进去也不能执行,那为什么要放进去呢?!
- □ 思路: 先解决暂停, 再解决转发
 - ◆ 去除暂停部分后,有助于简化转发的分析复杂度

- □ 暂停: 在IF/ID决定是否需要暂停
 - ◆ 只需将指令的Tuse与各级的Tnew进行对比即可决定是否需要暂停
 - ◆ 分析量少
- □ 转发:由于在D级、E级、M级均涉及操作数读取
 - ◆ 需要将各级指令与其后的各级指令进行对比
 - 分析量大

提纲

- □ 基础指令集
- □ 流水线基本架构
- □ 无转发数据通路构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

BEQ

- □ 示例指令集
 - ◆ add, sub: cal_r类,即R型计算类指令
 - ◆ andi, ori: cal_i类,即I型计算类指令
 - ◆ beq: b_type类
 - ◆ lw: ld类
 - ◆ sw: st类
- □ 会产生结果的指令: cal_r类, cal_i类, load类
- □ 用指令分类可以大幅度简化分析工作量

```
cal_r = add + sub + or + ...
cal_i = addi + ori + andi + ...
ld = lw + lb + lh + ...
st = sw + sb + ...
```

构造Tuse表和Tnew表

- □ T_{use}表:以指令位于IF/ID来分析
 - ◆ 流水线在指令被存储在IF/ID后就决定是否需要暂停
- □ T_{new}表:只需分析指令处于ID/EX和EX/MEM这2种情况
 - ▶ IF/ID: 无任何结果
 - ◆ MEM/WB: 如果指令(即结果)到达该阶段,则RF就可以消除数据冒险

IF/ID当前指令									
指令 类型	源寄 存器	Tuse							
beq	rs/rt	0							
cal_r	rs/rt	1							
cal_i	rs	1							
load	rs	1							
store	rs	1							
store	rt	2							

	ID/EX		E	X/MEN	√l	MEM/WB			
	(Tnew)		((Tnew)		(Tnew)			
cal_r			cal_r					load	
1/rd	1/rt	2/rt	0/rd	0/rt	1/rt	0/rd	0/rt	0/rt	

2:2个cycle后产生结果

rt: 结果要写入rt寄存器

构造阻塞矩阵

- □ 凡是T_{new} > T_{use} 的指令序列,都需要阻塞
- □ 示例
 - ◆ 序列1 cal_r beq: 由于cal_r需要1个cycle后才能得到结果,而beq现在就需要读取寄存器,因此只能暂停
 - ◆ 序列2 load store: store要读取的rs将在1个cycle后必须使用,而位于ID/EX的load必须经过2个cycle后才能读出DM的数据,因此只能暂停

32

IF/IC	当前排	旨令		EX/MEM (T _{new})		
指令 类型	源寄 存器	T _{use}	cal_r 1/rd	cal_i 1/rt	load 2/rt	load 1/rt
beq	rs/rt	0	暂停	暂停	暂停	暂停
cal_r	rs/rt	1			暂停	
cal_i	rs	1			暂停	
load	rs	1			暂停	
store	rs	1			暂停	

构造阻塞矩阵

- □ 凡是T_{new} > T_{use} 的指令序列,都需要阻塞
- □ 示例
 - 序列1 cal_r beq: 由于cal_r需要1个cycle后才能得到结果,而beq现在就需要读取寄存器,因此只能暂停
 - ◆ 序列2 load store: store要读取的rs将在1个cycle后必须使用,而位于ID/EX的load必须经过2个cycle后才能读出DM的数据,因此只能暂停
 - 下例说明了不暂停会产生错误(lw在cycle4产生结果, sw在cycle3要用结果)

						IF纠	汲	ID	级	EX	级	ME	M级	WB	级	
地址		指令	CLK	PC	IN	Λ	IF/	ID	ID/I	EX	EX/N	/IEM	MEM	I/WB	R	F
0	lw \$1,	0(\$2)	j 1	0→4	lw→	sw	lv	V								
4	sw \$3,	0(\$1)	Ĵ 2	4 → 8	SW	\rightarrow	S۱	٧	lw	/						
			1 3	• • •		•	••	•	sw用	rs	lv	٧				
	• • •		1 4	• • •		•		•					lw约	丰果		

暂停控制信号

□ 建立分类指令的暂停条件

□ 建立最终的暂停条件

stall = stall_b + ...

וב/ור	当前排	上入		EX/MEM		
IF/IL	/二月17	目マ		(T_{new})		
指令 类型	源寄 存器	T_{use}	cal_r 1/rd	cal_i 1/rt	load 2/rt	load 1/rt
beq	rs/rt	0	暂停	暂停	暂停	暂停
cal_r	<u>rs/rt</u>	1			暂停	
cal_i	rs	1			暂停	
load	rs	1			暂停	
store	rs	1			暂停	

34

暂停控制信号

□ 执行动作:

- ①冻结IF/ID: sub继续被保存
- ◆ ②清除ID/EX: 指令全为0,等价于插入NOP

IR_D.en = !stall
IR_E.clr = stall
PC.en = !stall

提纲

- □ 基础指令集
- □ 流水线基本架构
- □ 无转发数据通路构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

转发机制生成方法

□ S1:根据Tuse和Tnew构造转发MUX

□ S2: 构造每个转发MUX的控制信号表达式

- 按照指令分类,梳理指令在各级流水线的rs或rt读需求
 - ◆ 例如: beq因在D阶段前置判断条件,故需要用到D级IR的rs/rt域
- 每个读需求点:配置1个转发MUX
- 转发MUX的输入0:必然是本级流水线寄存器
 - ◆ 对于D级转发MUX来说,本级流水线寄存器就是RF
- □ 忠告:命名必须遵循一定的规则
 - ◆ MFRSD: RS寄存器值在D级的转发MUX

			_		
流水线 寄存器	源寄 存器	涉及指令			
IR@D	rs	beq	MFRSD	ForwardRSD	RF.RD1
	rt	beq	MFRTD	ForwardRTD	RF.RD2
IR@E	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E
	rt	cal_r, st	MFRTE	ForwardRTE	RT@E
IR@M	rt	st	MFRTM	ForwardRTM	RT@M
			转发MUX	控制信号	输入0

□ 生成转发MUX分析矩阵:只保留Tnew=0项

◆ 非0项:已经用于暂停处理了

ID/E (Tnev				EX/MEM (Tnew)			1 MEM/WB (Tnew)								
cal_r 1/rd	cal_i 1/rt		ad cal_ rt 0/rd		load 1/rt	cal_ 0/rd	-	cal_i 0/rt	load 0/rt						
	_, _,	<u> </u>	EX/MEM MEM/W (Tnew) (Tnew)												
流水		京寄字器	涉及	指令							cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	load 0/rt
IR@I	D	rs	be	eq .	MFR	SD	For	wardF	RSD	RF.RD1					
		rt	be	q	MFR	TD	For	wardF	RTD	RF.RD2					
IR@	E	rs	cal_r, ca	_i, ld, st	MFR	SE	For	wardl	RSE	RS@E					
		rt	cal_	r, st	MFR	TE	For	ward	RTE	RT@E					
IR@I	M	rt	S	t	MFR	ГМ	For	wardR	RTM	RT@M					
					转发№	/IUX	控	制信·	号	输入0					

- □ 构造每个转发MUX的后续输入
- □ 示例: MFRSD
 - ◆ EX/MEM: cal_r和cal_i指令都是计算类,结果必然由ALU产生,因此均填入 AO。即代表MFRSD的输入来自EX/MEM中的AO寄存器
 - AO: 代表ALUOut

◆ MEM/WB:由于这是最后一级,即所有指令的结果都通过M4(MUX)回写,

因此均填入M4。

						(Tn	ew)		(Tnew)	
流水线 寄存器	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	load 0/rt
IR@D	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2					
IR@E	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E					
	rt	cal_r, st	MFRTE	ForwardRTE	RT@E					
IR@M	rt	st	MFRTM	ForwardRTM	RT@M					
			转发MUX	控制信号	输入0					

EX/MEM | MEM/WB

- □ 根据前例,可以构造出全部的转发MUX
 - ◆ 当store类指令位于EX/MEM时,该级不可能再有其他指令了,故有2项空白
- □ 构造更大指令集时,需求项及供给项可能均需要调整
 - ◆ 但由于MIPS的指令功能到格式映射的相对统一,因此调整不会剧烈
 - ◆ 再次从一个侧面反映出MIPS指令集设计的水平!

						EX/N	ΛEM	M	IEM/W	/B
						(Tn	ew)	v) (Tnew)		
流水线 寄存器	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	ld 0/rt
IR@D	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
IR@E	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E	AO	AO	M4	M4	M4
	rt	cal_r, st	MFRTE	ForwardRTE	RT@E	AO	AO	M4	M4	M4
IR@M	rt	st	MFRTM	ForwardRTM	RT@M			M4	M4	M4
			转发MUX	控制信号	输入0					2

□ 对于MFRSD来说,其最终有效输入为3个

- ◆ 输入0~RF.RD1; 输入1~AO; 输入2~M4
- □ 实现转发MUX时,需要剔除每级中的重复项

输入	来源
0	RF.RD1
1	AO@M
2	M4@W

□ 在表格中保留重复项的目的在于有利于建立后续的控制信号方程

ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
ForwardRSE	RS@E	AO	AO	M4	M4	M4
ForwardRTE	RT@E	AO	AO	M4	M4	M4
ForwardRTM	RT@M			M4	M4	M4
控制信号	输入0			-		_
	ForwardRTD ForwardRSE ForwardRTE ForwardRTM	ForwardRTD RF.RD2 ForwardRSE RS@E ForwardRTE RT@E ForwardRTM RT@M	ForwardRTD RF.RD2 AO ForwardRSE RS@E AO ForwardRTE RT@E AO ForwardRTM RT@M	ForwardRTD RF.RD2 AO AO ForwardRSE RS@E AO AO ForwardRTE RT@E AO AO ForwardRTM RT@M	ForwardRTD RF.RD2 AO AO M4 ForwardRSE RS@E AO AO M4 ForwardRTE RT@E AO AO M4 ForwardRTM RT@M M4	ForwardRTD RF.RD2 AO AO M4 M4 ForwardRSE RS@E AO AO M4 M4 ForwardRTE RT@E AO AO M4 M4 ForwardRTM RT@M M4 M4

MFRSD	ForwardRSD	RF.RD1	AO@M	M4
MFRTD	ForwardRTD	RF.RD2	AO@M	M4
MFRSE	ForwardRSE	RS@E	AO@M	M4
MFRTE	ForwardRTE	RT@E	AO@M	M4
MFRTM	ForwardRTM	RT@M	M4	
转发MUX	控制信号	输入0	输入1	输入2

数据通路增加转发MUX

- □ 遍历数据通路的功能部件,找到所有 出现rs和rt的需求点
- □ 注意: ALU.B和RT@M, 这两个rt需求 是相同的!
 - ◆ 这意味着它们应该来自同一个转发MUX

□ 注意:对于PC,由于本小节示例指令 集中没有j/jal/jalr指令,因此无相应 的转发MUX

部件	输入	输入:	来源	MUX	控制
PC	עימד 🔻	ADD4	NPC	M1	PCSel
ADD4		PC	111 0		1 0001
IM		PC			
IR@D		IM			
PC4@D		ADD4			
DII	A1	IR@D[rs]			
RF	A2	IR@D[rt]			
EXT		IR@D[i16]			
CMD	D1	RF.RD1			
CMP D2		RF.RD2			
NDC	PC4	PC4@D			
NPC	I26	IR@D[i26]			
IR@E		IR@D			
PC4@E		PC4@D			
RS@E		RF.RD1			
RT@E		RF.RD2			
EXT@E		EXT			
ALU	A	RS@E			
ALU	В	EXT@E	RT@E	M2	BSel
IR@M		IR@E			
PC4@M		PC4@E			
AO@M		ALU			
RT@M		RT@E			
DM	A	AO@M			
ואוע	WD	RT@M			
IR@W		IR@M			
PC4@W		PC4@M			
AO@W		AO@M			
DR@W		DM			
RF	A3	IR@W[rt]	IR@W[rd]	М3	WRSel
Kr	WD	DR@W	AO@W	M4	WDSel

School of Computer Science and Engineering, Beihang University

数据通路增加转发MUX

- 遍历数据通路的功能部件,找到所有 出现rs和rt的需求点
- □ 将对应的输入替换为转发MUX的输出
 - ◆ 注意ALU.B和RT@M,这两个rt需求是相同的,因此应该用同一个转发MUX

MFRSD	RF.RD1	AO@M	M4
MFRTD	RF.RD2	AO@M	M4
MFRSE	RS@E	AO@M	M4
MFRTE	RT@E	AO@M	M4
MFRTM	RT@M	M4	
转发MUX	输入0	输入1	输入2

部件	输入	输入:	来源	MUX	控制
PC				M1	PCSel
ADD4		PC			
IM		PC			
IR@D		IM			
PC4@D		ADD4			
DE	A1	IR@D[rs]			
KF	A2	IR@D[rt]			
EXT		IR@D[i16]			
CMD	D1	MFRSD			
CMP	D2	MFRTD			
NDC	PC4	PC4@D			
NPC	I26	IR@D[i26]			
IR@E		IR@D			
PC4@E		PC4@D			
RS@E		RF.RD1			
RT@E		RF.RD2			
EXT@E		EXT			
V I I I V	A	MFRSE			
ALU	В	EXT@E	MFRTE	M2	BSel
IR@M		IR@E			
PC4@M		PC4@E			
AO@M		ALU			
RT@M		MFRTE			
DM	A	AO@M			
DIVI	WD	MFRTM			
IR@W		IR@M			
PC4@W		PC4@M			
AO@W		AO@M			
DR@W		DM			
RE	A3		IR@W[rd]	М3	WRSel
KI	WD	DR@W	AO@W er Science and Engir	M4	WDSel
	PC ADD4 IM IR@D PC4@D RF EXT CMP NPC IR@E PC4@E RS@E RT@E EXT@E EXT@E ALU IR@M PC4@M AO@M RT@M RT@M IR@W PC4@W AO@W	PC ADD4 IM IR@D PC4@D A1 A2 EXT D1 D2 PC4 I26 IR@E PC4 RS@E A RT@E A EXT@E A B IR@M PC4@M A AO@M A WD A IR@W A WD IR@W PC4@W A AO@W A DR@W A AO@W A DR@W A AO@W A	PC ADD4 ADD4 PC IM PC IR@D IM PC4@D ADD4 RF A1 IR@D[rs] A2 IR@D[rt] EXT IR@D[i16] CMP D1 MFRSD D2 MFRTD PC4@D IR@D IR@E PC4@D RS@E RF.RD1 RT@E PC4@D RS@E RF.RD1 RT@E EXT B EXT@E IR@M PC4@E AO@M ALU RT@M ACQ@M ANGM MFRTE AO@M MFRTM IR@W IR@M PC4@W AO@M AO@M DM AO@M DM AD@W DM ANGM IR@W[rt]	PC ADD4 PC ADD4 PC IM PC IR@D IM PC4@D ADD4 RF A1 IR@D[rs] A2 IR@D[rt] IR EXT IR@D[i16] IR CMP D1 MFRSD D2 MFRTD IR PC4 PC4@D IR IR@E IR@D[i26] IR IR@E PC4@D IR RS@E RF.RD1 IR RT@E RF.RD2 EXT EXT@E EXT IR IR@M IR@E IR PC4@M PC4@E A AO@M ALU A RT@M MFRTE IR AO@M MFRTM IR IR@W IR@M PC4@M AO@W AO@M DM DR@W AO@M IR IR@W IR IR IR@M	PC

转发机制生成方法

- □ S1: 根据Tuse和Tnew构造每个转发MUX
- □ S2: 构造每个转发MUX的控制信号表达式

S2: 构造每个转发MUX的控制信号表达式

- ▶ 控制信号表达式构造的基本思路
 - ◆ 精确控制每个转发选择
 - ◆ 缺省选择输入0

输入	来源
0	RF.RD1
1	AO@M
2	M4@W

□ 注意: M阶段的rt

						_	•		IEM/W (Tnew)	
流水线 寄存器	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	ld 0/rt
IR@D	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
IR@E	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	ID/EX.RS	AO	AO	M4	M4	M4
	rt	cal_r, st	MFRTE	ForwardRTE	ID/EX.RT	АО	АО	M4	M4	M4
IR@M	rt	st	MFRTM	ForwardRTM	EX/MEM.RT			M4	M4	M4
			转发MUX	控制信号	输入0					

示例: always语句建模MF_RS_D的控制信号表达式

- □ 顺序代表优先级
 - ◆ 当多条前序指令写同一个寄存器,距离D级越近优先级越高

输入	来源
0	RF.RD1
1	AO@M
2	M4@W

School of Computer Science and Engineering, Beihang University

```
High assign ForwardRSD[1:0] =

IR_D.op==beq & cal_r_M & IR_D[`rs]==IR_M[`rd] ? 1:

IR_D.op==beq & cal_i_M & IR_D[`rs]==IR_M[`rt] ? 1:

IR_D.op==beq & cal_r_W & IR_D[`rs]==IR_W[`rd] ? 2:

IR_D.op==beq & cal_i_W & IR_D[`rs]==IR_W[`rt] ? 2:

IR_D.op==beq & load_W & IR_D[`rs]==IR_W[`rt] ? 2:

O;
```

						EX/N (Tne	ЛЕМ ew)	MEM/WB (Tnew)		
流水线 寄存器	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	ld 0/rt
IF/ID	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
			44.11	1 121112 - 1	T.A. 5	111111111111111111111111111111111111111	石船师	斯基	17 4A B	机冷险

控制信号

输入0

转发MUX|

提纲

- □ 基础指令集
- □ 流水线基本架构
- □ 无转发数据通路构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

控制冒险处理机制

□ 分歧点1: 是否实现延迟槽

◆ 如果实现,需要注意jal及jalr指令应保存PC+8(或者更多,取决于是否前移)

□ 分歧点2: 执行是否前移至ID阶段

□ 课程要求:实现延迟槽,并且前移至ID阶段

延迟槽前移	是	否
是	硬件无需处理 编译调度指令	B类:有条件清除IF/ID J类:无条件清除IF/ID
否		B类: 有条件清除IF/ID、ID/EX J类: 无条件清除IF/ID、ID/EX、EX/MEM

Q: JAL、JALR的回写寄存器怎么处理呢?

A: 视同普通的回写

总结

- □ 流水线设计的复杂性在于对冲突的覆盖性分析
 - ▼ 覆盖性分析使得设计与测试均具备了完整的正向设计的理论基础
 - 缺乏覆盖性分析,就不能断言是否处理所有冲突
 - 避免了频繁的、无谓的试错
 - ◆ 提高开发效率,确保开发正确性
- □ 教科书的不足
 - ◆ 没有覆盖性分析,难以满足大规模指令集的流水线设计与测试需求
 - ◆ 没有覆盖性分析,必然遗漏部分数据相关
 - 如lw~sw指令,必须暂停。但事实上可以通过增加转发MUX实现不停顿
 - 如cal~sw指令,未明确指出处理机制
 - ◆ RF内部的数据转发语焉不详
 - 内部转发: 当读和写同一个寄存器时, 读出的数据应该为要写入的数据

忠告

- □ 设计越细致、越充分越好!
- 所有的设计规划都会有回报的(是加速型回报)!
- □ 不要急于编码!

- □ 设计越细致、越充分越好!不要急于编码!
- □ 所有的设计规划都会有回报的(是加速型回报)!
- □ 不要急于编码!

- □ 设计越细致、越充分越好!不要急于编码!
- □ 所有的设计规划都会有回报的(是加速型回报)!
- □ 不要急于编码!