EC-433 Digital Image Processing

Lecture 8
Histogram Processing

Dr. Arslan Shaukat

Problems with Histogram Equalization

Histogram Specification/Matching

Histogram equalization method:

- Only generates one result: an image with approximately uniform histogram (without any flexibility)
- Enhancement may not be achieved as desired

Histogram specification:

Transform an image according to a specified gray-level histogram

Includes

- Specify particular histogram shapes $(p_z(z))$ capable of highlighting certain gray-level ranges
- Obtain the transformation function for transformation of r to z

- $z=G^{-1}(s)$
- $z=G^{-1}(T(r))$
- Histogram Specification
 - Apply HE on r to obtain s
 - Apply inverse of cdf of z on s

- Step1: Equalize the levels of the original image
- Step 2: Specify the desired pdf and obtain the transformation function

Step 1: Perform Histogram Equalization

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Step 2: Specify the Desired PDF and Get the CDF

z_q	$G(z_q)$
$z_0 = 0$	0
$z_1 = 1$	0
$z_2 = 2$	0
$z_3 = 3$	1
$z_4 = 4$	2
$z_5 = 5$	5
$z_6 = 6$	6
$z_7 = 7$	7

TABLE 3.3

All possible values of the transformation function G scaled, rounded, and ordered with respect to z.

Step 3: Apply the Inverse PDF

Histogram Specification Example

Intensity

Issues with Histogram specification/matching:

- No rule for specifying an optimal histogram
- Each given enhancement task needs to be analyzed on a case-by-case basis
- Histogram specification is somehow a trial-and-error process

Local Histogram Processing

- The histogram processing methods mentioned up to now are global transformation where:
 - Function is designed according to the gray-level distribution over an entire image
 - Global transformation methods may not be suitable for enhancing details over small areas
 - Where number of pixels in these small areas may have negligible influence on designing the global transformation function

Local Histogram Processing

- To enhance details over small areas in an image
- Procedure
 - Define a neighborhood (e.g. N8)
 - Move it from pixel to pixel.
 - For every pixel
 - Histogram computed for the neighborhood
 - Transfer function computed for HE or H Spec
 - Applied on Centre Pixel

Local HE for 3x3 Neighborhood

a b c

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3 .

Using Histogram Statistics for Image Enhancement

- Mean gives the average brightness of the image
- Variance (σ²) and its square root the standard deviation gives the deviation of intensities on average from the mean value (average contrast)
- Global statistics

$$m = \sum_{i=0}^{L-1} r_i p(r_i) \qquad m = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)$$

$$\mu_2(r) = \sum_{i=0}^{L-1} (r_i - m)^2 p(r_i) \qquad \sigma^2 = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[f(x, y) - m \right]^2$$

Using Histogram Statistics

Local Statistics:

 $-S_{xy}$: a neighborhood (subimage) of specific size centered at (x,y)

$$m_{s_{xy}} = \sum_{i=0}^{L-1} r_i p_{s_{xy}}(r_i)$$

$$\sigma_{S_{xy}}^{2} = \sum_{i=0}^{L-1} \left[r_i - m_{S_{xy}} \right]^2 p_{S_{xy}}(r_i)$$

Local Enhancement using Histogram Statistics

- The statistical parameters can be used in various ways
- Enhance the background filament
- Enhance details in dark areas while leaving light area unchanged.
- Define rules to chose the candidate pixels that need to be enhanced

Local Enhancement using Histogram Statistics

- A pixel at point (x,y) is considered if:
 - $m_{SXY} \le k_0 M_G$, where k0 is a positive constant less than 1.0, and M_G is global mean
 - $-\sigma_{sxy} \leq k_2 D_G$, where D_G is the global standard deviation and k_2 is a positive constant
 - Also need to put a lower limit on SD to avoid distorting areas which don't have details, i.e., $k_1 D_G \le \sigma_{sxy}$, with k1 < k2
- A pixel that meets all above conditions is processed simply by multiplying it by a specified constant, E, to increase or decrease the value of its gray level relative to the rest of the image.
- The values of pixels that do not meet the enhancement conditions are left unchanged.

$$g(x,y) = \begin{cases} E.f(x,y) & \text{if } m_{S_{xy}} \le k_0 M_G \text{ AND } k_1 D_D \le \sigma_{S_{xy}} \le k_2 D_G \\ f(x,y) & \text{otherwise} \end{cases}$$

Example

a b c

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130×. (b) Result of global histogram equalization. (c) Image enhanced using local histogram statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)