Quaternion Calculator

User Manual

Document Version:1.0

Date: 3/4/2014

Table of Contents:

1. Introduction & Backgrounds

- 1.1. What it can do
- 1.2. The number system & syntax
 - 1.2.1. Real number
 - 1.2.2. Complex number
 - 1.2.3. Quaternion number
 - 1.2.4. Scientific notation
- 1.3. Format of expressions
 - 1.3.1. Format of input expressions
 - 1.3.2. Format of output

2. Operations

- 2.1. Addition (+)
- 2.2. Subtraction (-)
- 2.3. Multiplication (*)
- 2.4. Division (/)
- 2.5. Exponential function (expt)
- 2.6. Natural exponential function (exp)
- 2.7. Natural logarithmic function (log)
- 2.8. Trigonometric functions (sin, cos)
- 2.9. Equality (=)
- 2.10. Magnitude

3. User interface

- 3.1. Main web interface
- 3.2. Common error types & error information

Chapter 1 Introduction & Backgrounds

1.1. What it can do

Built with the programming language Racket, this program is expected to have following features:

- Accept any computation tasks involving real, complex or quaternion numbers with either fixnum or flonum representations
- Can do many kinds of common operations: +, -, *, /, exp, expt, log, sin, cos, =, magnitude

1.2. The number system & syntax

• Please note that the general term "number" or "number?" appears anywhere in this document refer to all kinds of numbers stated below.

1.2.1. Real number

- As the most common and relatively simple number system, integers, fractions and decimals are considered as real number.
 - o For example:
 - **5**6
 - **56.3**
 - **=** 7/8
- Any decimals used as numerators or denominators are accepted as fractions
 - o For example:
 - \blacksquare 56.3 / 78 is accepted. It can be reformed as (/ 56.3 78)
- Same as the mathematical notation, the integer part of a decimal number can be omitted if it is 0.
 - o Example:
 - .14 is equivalent to 0.14

1.2.2. Complex number

- A complex has a real part and an imaginary part. Generally it is in the form a+bi. Note that a and b are real numbers.
 - The following input are valid:
 - 3.2-6/11i
 - 0+0.8i

- a and b can also be other expressions in parentheses.
 - o For example:
 - \blacksquare (/ 5.8 6)+(/ 7 5)i is equivalent to 5.8/6+7/5i
 - \blacksquare (sin 6.28)i is accepted.

1.2.3. Quaternion number

- The quaternions are a number system that extends the complex numbers. Its general form is a + bi + cj + dk. Note that a, b, c and d are real numbers.
 - o For example:
 - 2i+3k
 - \bullet 5.4-6.2j+6.5/7k.
- Similarly with complex numbers, for any b, c or d it can be an expression.
 - o example input:
 - \bullet (* 3 4)k + (/ 5.6 7)j
 - $(/49) + 5/6i + (\sin 4.3/4)k$

1.2.4. Scientific notation

- Scientific notation is used when a number is too small or too large.
 - Examples:
 - (* 271979577247970257395 0.6180339887) ⇒ 1.6809262297150285e+020
 - \blacksquare (sin 1e-027) \Rightarrow 9.99999999999999e-028

1.3. Format of expressions

- 1.3.1. Format of input expressions
 - Since this computation system is based on Racket, the form of expressions follows the definition in R6RS (Revised⁶ Report on the Algorithmic Language Scheme), which is different from normal numerical expressions in mathematics.
 - The most fundamental expressions are literal expressions
 - \circ For example, True/False: #t / #f; any single number: 23, 5/8, i + j + k.
 - No parentheses needed when input literal expressions. For example:
 - **■** 23 ⇒ 23
 - \blacksquare (23) \Rightarrow Error!
 - This program only accept numeric literal expressions as inputs. Boolean values cannot be accepted.
 - $\#t \Rightarrow Error!$
 - $(#f) \Rightarrow Error!$

- Compound expressions are formed by placing parentheses around their subexpressions. The first subexpression identifies an operation; the remaining subexpressions are operands to the operation.
 - Some example inputs:
 - \blacksquare (+ 14 (* 23 42)) \Rightarrow 980
 - $(*2i+k \ 4+j+8k) \Rightarrow -8+7i-16j+6k$
 - \blacksquare (exp (log 3)) \Rightarrow 3.0000000000000004
 - $(\sin 3.1415926535897936) \Rightarrow -0.1369691314080463$

1.3.2. Format of output

- The form of a result should be different based on the input. Specifically, output is one of the number types defined in section 1.2 or a boolean value for the equal operation except some extreme case.
 - Some example outputs:

■ Quaternion number: -8.35+7i-17.4563j+6k

■ Complex number: 2-3/5i

Integer: 23(= 3 4) ⇒ #f

- In some extreme cases, when an expression exceeds the calculation capacity of the program, usually some inaccurate result or an "infinity" symbol will be given.
 - o For example:

 - (expt -999999999999999999999) \Rightarrow 0 (inaccurate result)
 - (expt -99999999 9999999) ⇒ -inf.0+inf.0i (negative infinity)
 - Developers are not responsible for the accuracy of results in extreme cases since it is limited by the developing environment.

Chapter 2 Operations

2.1. Addition (+)

- $(+ z ...) \rightarrow number?$
 - o z : number?
 - Returns the sum of the z's, adding pairwise from left to right. If no arguments are provided, it results an error.
 - o Examples:
 - $\blacksquare \quad (+ \ 1 \ 2) \Rightarrow 3$
 - $(+ 1.0 2+3i 5) \Rightarrow 8.0+3.0i$
 - \blacksquare (+) \Rightarrow Error!

2.2. Subtraction (-)

- $(-z) \rightarrow \text{number}$?
 - o z : number?
- $(-z w ...) \rightarrow number?$
 - o z: number?
 - o w: number?
 - When no w's are supplied, returns (- 0 z). Otherwise, returns the subtraction of the w's from z working pairwise from left to right.
 - o Examples:
 - $(-53.0) \Rightarrow 2.0$
 - **■** (- 1) ⇒ -1
 - $(-2+7i\ 1\ 3) \Rightarrow -2+7i$

2.3. Multiplication (*)

- $(*z...) \rightarrow number?$
 - o z : number?
 - Returns the product of the z's, multiplying pairwise from left to right. If no arguments are provided, the result is 1. Multiplying any number by exact 0 produces exact 0.
 - o Examples:
 - $\blacksquare \quad (* \quad 2 \quad 3) \Rightarrow 6$
 - $(* 8.0 9) \Rightarrow 72.0$
 - **■** (* 1+2i 3+4i) ⇒ -5+10i

2.4. Division (/)

- $(/z) \rightarrow \text{number}$?
 - o z : number?
- $(/z w ...) \rightarrow number?$

- o z : number?
- o w: number?
- When no w's are supplied, returns (/ 1 z). Otherwise, returns the division of z by the w's working pairwise from left to right.

If z is exact 0 and no w is exact 0, then the result is exact 0. If any w is exact 0, the divide-by-zero exception is raised.

- o Examples:
 - $\blacksquare \quad (/ \quad 3 \quad 4) \Rightarrow 3/4$
 - $(/8133) \Rightarrow 9$
 - $(/10.0) \Rightarrow 0.1$
 - $(/1+2i3+4i) \Rightarrow 11/25+2/25i$

2.5. Exponential function (expt)

- $(expt z w) \rightarrow number?$
 - o z : number?
 - o w: number?
 - Returns z raised to the power of w.

If w is exact 0, the result is exact 1. If w is 0.0 or -0.0 and z is a real number, the result is 1.0 (even if z is +nan.0).

If z is exact 1, the result is exact 1. If z is 1.0 and w is a real number, the result is 1.0 (even if w is +nan.0).

If z is exact 0 and w is negative, the divide-by-zero exception is raised.

- o Examples:
 - $\blacksquare \quad (\text{expt 2 3}) \Rightarrow 8$
 - $\blacksquare \quad (\text{expt 4 0.5}) \Rightarrow 2.0$
 - $(expt + inf.0 \ 0) \Rightarrow 1$

2.6. Natural exponential function (exp)

- $(\exp z) \rightarrow number?$
 - \circ z : number?
 - Returns Euler's number raised to the power of z. The result is normally inexact, but it is exact 1 when z is an exact 0.
 - o Examples:
 - \blacksquare (exp 1) \Rightarrow 2.718281828459045
 - $(exp 2+3i) \Rightarrow$

-7.315110094901103+1.0427436562359045i

 \blacksquare (exp 0) \Rightarrow 1

2.7. Natural logarithmic function (log)

- $(\log z) \rightarrow \text{number}$?
 - o z : number?
 - Returns the natural logarithm of z. The result is normally inexact, but it is exact 0 when z is an exact 1. When z is exact 0, exn:fail:contract:divide-by-zero exception is raised.
 - o Examples:
 - $(\log (\exp 1)) \Rightarrow 1.0$
 - (log 2+3i) ⇒ 1.2824746787307684+0.982793723247329i

2.8. Trigonometric functions (sin, cos)

- $(\sin z) \rightarrow \text{number}$?
 - o z · number?
 - Returns the sine of z, where z is in radians. The result is normally inexact, but it is exact 0 if z is exact 0.
 - o Examples:
 - \blacksquare (sin 3.14159) \Rightarrow 2.65358979335273e-06
 - $(\sin 1.0+5.0i) \Rightarrow$ 62.44551846769653+40.0921657779984i
- $(\cos z) \rightarrow \text{number}$?
 - o z: number?
 - Returns the cosine of z, where z is in radians. The result is normally inexact, but it is exact 0 if z is exact 0.
 - o Examples:
 - \blacksquare (cos 0) \Rightarrow 1.0
 - $(\cos 3+i) \Rightarrow$
 - -1.5276382501165433-0.1658444019189788i

2.9. Equality (=)

- $(= z w ...+) \rightarrow boolean?$
 - o z : number?
 - o w: number?
 - Returns #t if all of the arguments are numerically equal, #f otherwise. An inexact number is numerically equal to an exact number when the exact coercion of the inexact number is the exact number. Also, 0.0 and -0.0 are numerically equal, but +nan.0 is not numerically equal to itself.
 - o Examples:
 - $\blacksquare \quad (= 1 1.0) \Rightarrow \#t$
 - \blacksquare (= 1 2) \Rightarrow #f

■ (= 2+3i 2+3i 2+3i) ⇒ #t

2.10. Magnitude

- $(magnitude z) \rightarrow number?$
 - o z: number?
 - \circ z is
 - real number: Returns the magnitude of the real number z.
 - complex number: Returns the magnitude of the complex number z in polar coordinates.
 - quaternion number: works the same as complex number.
 - o Examples:
 - $(magnitude -5) \Rightarrow 5$
 - (magnitude 3+4i) $\Rightarrow 5$
 - (magnitude 1+i+j+k) $\Rightarrow 2$

Chapter 3 User Interface

3.1 Main web interface

- Consult the FAQ section in System Documentation about how to enter the web interface.
- The link to documentations of this evaluator can be found in the web page interface.

3.2. Common error types & error information

- Unexpected Arguments
 - This type of error is displayed as outputs of your incorrect inputs. Nothing needed to fix this error, just type a new expression in the evaluator.
 - This type of error happens but not limit to following cases:
 - Input parameter type mismatch.
 - Input expression not closed by parentheses.

• Contract violation

- An uninteractable exception page titled "Servlet Error" will appear. You need to go back to your DrRacket window and click "Stop" button then click "Run" again to start a new session
- This type of error is caused by parameter violation(s) of an internal function.
- This type of error happens but not limit to following cases:
 - Input is a unrecognized function closed with parentheses.
 - Missing one or more arguments for the input function.
 - Input is not a prefix expression.
- Technical exception information will show in this format:

```
<function_name>: contract violation
expected: <expected_value_type>
given: <input_value_type / empty>
```

- Division by zero
 - "Servlet Error" page appears as stated above.
 - This type of error is caused by using 0 as a divisor.
 - Technical exception information will show in this format:

read: division by zero: <expression>

• Page expired

- Each web page session will expire after left unattended for 2 or more minutes.
- The error information is the following:
 - "Sorry, this page has expired. Please go back."
- To fix this error, go back to your DrRacket window and click "Stop" button then click "Run" again to start a new session.