まえがき

『初歩から学ぶ基礎物理学 電磁気・原子』 (第日本図書)の電磁気分野に現れる法則・ 公式をまとめました。

演習は単なる算数ではなく思考の実体験の 場です. 意味記憶だけではなく、エピソード 記憶として法則・公式を自身の思考に取り入 れてもらえることを願っています.

習得してから公式集を振り返ると、物理教 師がよく言う「公式は暗記するものではな い. 理解するものだ」という台詞の意味を実 感してもらえるはずです.

> 釧路高専(物理) 松崎俊明 https://consensive.github.io

> > ver.2017-03-22

	IAA X V	0/41
電磁気		
1	電場	0
2	電流	19

電磁誘導と電磁波

 $\Omega/47$

28

41

電磁気

3 電流と磁場

雷場 1

- 1. 真空のクーロン定数
- 2. クーロンの法則 3. 雷気素量
 - 4. 電場と力 5. 雷場と力線の密度
- 6. ガウスの法則
- 7. 点雷荷が作る雷場
- 8 無限平面が作る雷場 9. 無限直線が作る電場

- 10. 電位の定義 11. 一様電場が作る電位 12. 点雷荷が作る雷位 13. 電位と電場
- 14. 雷気容量

15 平行板コンデンサー 16. 誘雷率・比誘雷率 17. 合成容量(並列) 18. 合成容量(直列)

19. コンデンサーのエネルギー

$$k_0 = 9.0 \times 10^9 (\mathrm{N \cdot m^2/C^2})$$

【真空のクーロン定数】(p. 11)

$$F = k \frac{q_1 q_2}{r^2}$$

【クーロンの法則】
$$(p. 11)$$
 F $[N]$: 力 $k [N \cdot m^2/C^2]$: クーロン定数 q_i $[C]$: 電荷

r [m] :距離

$$e = 1.60 \times 10^{-19} (C)$$

【電気素量】(p. 14)

$$\vec{F}=q\vec{E}$$

【電場と力】(p. 18, 21) \vec{F} [N] : 力 q [C] : 電荷 \vec{E} [N/C] : 電場

$$E = \frac{N}{S}$$

【電場と力線の密度】(p. 23)

E [N/C]:電場の強さ

N [本] :電気力線の本数

S $[m^2]$: 力線が貫く面積

$$N = 4\pi kQ$$

【ガウスの法則】(p. 25)
N [木]・雲気力線の木

N [本] :電気力線の本数 Q [C] :電荷

$$E = k \frac{Q}{r^2}$$

【点電荷が作る電場】(p. 19)

E [N/C] :電場

Q [C] :電荷

r [m] :距離

$$E = 2\pi k\sigma$$

【無限平面が作る電場】(p. 26) E [N/C] :電場 σ $[C/m^2]$:面密度

$$E = \frac{2k\sigma}{r}$$

、 【無限直線が作る電場】(p. 27)

$$E [N/C] : 電場$$
 $\sigma [C/m] : 線密度$

σ [C/m] : 級密度 r [m] : 距離

$$V = \frac{W}{Q} = \int \vec{E} \cdot d\vec{s}$$

【電位の定義】(p. 31)

V [V] :電位

W [J] : 静電気力がする什事 Q [C] :電荷

E [V/m]:電場の強さ

ds [m] : 微小な移動距離

$$V = Ed$$

【一様電場が作る電位】(p. 32)

[V] :電位

E[N/C=V/m]:電場

[m] : 距離

$$V = k \frac{Q}{r}$$

【点電荷が作る電位】(p. 38) V [V] : 電位

Q [C] : 電荷

r [m] : 距離

$$\vec{E} = -\vec{\nabla}V$$

【電位と電場】(p. 43) E [N/C=V/m] : 電場 V [V] : 電位

$$Q = CV$$

【電気容量】(p. 43) Q[C] : 電荷 C[F] : 静電容量 V[V] : 電位

$$C = \frac{1}{4\pi k} \frac{S}{d} = \varepsilon \frac{S}{d}$$

$$C = \frac{1}{4\pi k} \frac{1}{d} - \epsilon \frac{1}{d}$$
【平行板コンデンサー】(p. 51)

C [F] : 静電容量

S [m²] :面積 d [m] :距離

a [III] · 歫艇 ε [F/m] :誘電率

$$\varepsilon = \varepsilon_r \varepsilon_0$$

【誘電率・比誘電率】
$$(p. 53)$$
 ε $(F/m]$: 静電率

$$arepsilon_r$$
 : 比誘電率 $arepsilon_0$ [F/m] : 真空の誘電率

$$C = C_1 + \dots + C_n$$

C [F] :合成容量 C_i [F] :静電容量

$$\frac{1}{C} = \frac{1}{C_1} + \dots + \frac{1}{C_n}$$

$$\overline{C} = \overline{C_1} + \dots + \overline{C_n}$$

C[F]: 合成容量

$$C$$
 [F] :合成容量 C_i [F] :静電容量

$$U = \frac{1}{2}CV^2$$

【コンデンサーのエネルギー】(p. 60)

U[J]:エネルギー

C[F]: 静電容量

V [V] : 電位

雷流 2

- 20. 電荷と電流
 - 21. 自由電子と電流
 - 22. オームの法則
- 23. 抵抗率
- 24. 温度係数
- 25. 電力
- 26. 雷流密度
- 27. 合成抵抗(直列) 28. 合成抵抗(並列)

$$I = \frac{q}{t}$$

【電荷と電流】(p. 62) I[A]:電流 q[C]:移動した電荷 t[s]:経過時間

$I = en\bar{v}S$

【自由電子と電流】(p. 64) I [A] :電流 e [C] :電気素量 n $[\text{個}/\text{m}^3]$:自由電子密度 \bar{v} [m/s] :平均速度 S $[\text{m}^2]$:断面積

V = RI

【オームの法則】_(p. 65) V [V] :電圧

R [Ω] :抵抗

I [A] : 電流

$$R = \rho \frac{l}{S}$$

【抵抗率】(p. 67) $R [\Omega] : 抵抗$

ho $[\Omega \cdot m]$: 抵抗率 l [m] : 長さ S $[m^2]$: 断面積

$$\rho = \rho_0 (1 + \alpha t)$$

【温度係数】
$$(p. 68)$$

 ρ $[\Omega \cdot m]$:抵抗率

$$ho_0 \left[\Omega \cdot \mathbf{m}\right] : 0$$
 ℃での抵抗率

t [℃] :温度

$$P = \frac{W}{t} = IV$$

【電力】(p. 70) P [W]:電力

W [J] :電力量 t [s] :時間

V [V] :電圧

I [A] :電流

26/47

$$\vec{i} = \frac{\vec{I}}{S} = \sigma \vec{E}$$

【電流密度】(p. 71) \vec{i} [A/m²] :電流密度 \vec{I} [A] :電流 S [m²] :断面積 σ [1/ Ω ·m] :導電率 \vec{E} [V/m] :電場

$$R = R_1 + \dots + R_n$$

【合成抵抗(直列)】 $_{(p.~78)}$ $_{R}$ $_{[\Omega]}$:合成抵抗

 $egin{aligned} R & [\Omega] & : 合成抵抗 \ R_i & [\Omega] & : 抵抗 \end{aligned}$

$$\frac{1}{R} = \frac{1}{R_1} + \dots + \frac{1}{R_n}$$

 $R[\Omega]$: 合成抵抗

$$R[\Omega]$$
: 合成抵抗 $R_i[\Omega]$: 抵抗

3 電流と磁場

- 29. 磁気のクーロンの法則
- 30. 磁場
- 31. 磁極が作る磁場
- 32. 直線電流が作る磁場
- 33. 円電流が中心に作る磁場
- 33. 白电流が中心に作る磁場 34. ソレノイドが作る磁場
- 34. フレノイトが作る磁場 35. ビオ・サバールの注則
- 35. ビオ・サバールの法則36. アンペールの法則
- 37 磁市家庫と磁場
 - 37. 磁束密度と磁場

- 38. 诱磁率·比诱磁率 39. 電流が受ける力 40. 磁束と磁束密度
 - 41. ローレンツカ

$$F = k_m \frac{m_1 m_2}{r^2}$$

 m_i [Wb] :磁気量

$$m_i$$
 [Wb] :磁気量 r [m] :距離

F [N] :力

$$\vec{F}=m\vec{H}$$

[磁場] $_{(p.~89)}$ \vec{F} $_{[N]}$:力 $_{m}$ $_{[Wb]}$:磁気量 $_{\vec{H}}$ $_{[N/Wb]}$:磁場

$$H = k_m \frac{m}{m^2}$$

【磁極が作る磁場】(p. 91) H [N/Wb] : 磁場 m [Wb] : 磁気量 r [m] : 距離

$$H = \frac{I}{2\pi r}$$

_...

【直線電流が作る磁場】(p. 94) H [A/m] :磁場

I [A] :電流

 r
 [m]
 :電流からの距離

$$H = N \frac{I}{2r}$$

【円電流が中心に作る磁場】(p. 95)

| 円亀流が中心に作る磁場| (p. 95) | H [A/m] : 磁場

N [回] :巻き数 I [A] :電流

I [A] :電流 m [m] :田雲法

r [m] : 円電流の半径

H = nI

【ソレノイドが作る磁場】(p. 96)

$$\Delta H = \frac{I\Delta l \sin \theta}{4\pi r^2}$$

$$4\pi r^2$$
 【ビオ・サバールの法則】 $_{(p. 97)}$

 ΔH [A/m] : 微小磁場

 I [A] : 電流

 Δl [m] :微小区間

 θ [rad] :角度 r [m] :距離

$$\sum_{i} I_i = \oint \vec{H} \cdot d\vec{s}$$

$$\sum_{i} I_{i} = y \Pi \cdot us$$

 $egin{aligned} & egin{aligned} & e$

ds [m] : 微小変位

$$\vec{B} = \mu \vec{H}$$

【磁束密度と磁場】
$$_{(p.\ 105)}$$
 \vec{B} $[T]$:磁束密度 μ $[N/A^2]$:透磁率 \vec{H} $[A/m]$:磁場

$$\mu = \mu_r \mu_0$$

$$\mu_r$$
 :比透磁率

$$\mu_r$$
 :比透磁率 $\mu_0 \left[\mathrm{N/A^2} \right]$:真空の透磁率

E IDI

F = IBl

【電流が受ける力】(p. 106)

F [N] : 力 I [A] : 電流

A [A] ・ 电加 B [T] :磁束密度

レ [1] ・ WA 不 G 及 l [m] : 導線の長さ

l [m] : 導線の長さ

$$\Phi = BS$$

【磁東と磁東密度】(p. 106)

 Φ [Wb] :磁束 B [T] :磁束密度 S [m²] :面積

$$f = qvB\sin\theta$$

$$egin{array}{ll} egin{array}{ll} e$$

電磁誘導と電磁波 4

42. 電磁誘導の法則

47. 共振周波数

- 43. 自己インダクタンス
- 44. コイルの自己インダクタンス
- 45. コイルに蓄えられるエネルギー
- 46. 相互インダクタンス

$$V = -N \frac{\Delta \Phi}{\Delta t}$$

【電磁誘導の法則】(p. 116) V [V] :誘導起電力 N [-] : コイルの巻数

△Φ [Wb] :磁東の変化 Δt [s] :時間

$$V = -L \frac{\Delta I}{\Delta t}$$

【自己インダクタンス】(p. 122)

V[V]:誘導起電力 L [H] : 自己インダクタンス

ΔI [A]:電流の変化

 Δt [s] :時間

$$L = \mu n^2 l S$$

【コイルの自己インダクタンス】(p. 123) L [H] :自己インダクタンス μ [回/m] : 単位長さあたりの巻数

l [m] :長さ S $[m^2]$:断面積

$$U = \frac{1}{2}LI^2$$

【コイルに蓄えられるエネルギー】(p. 124)

U[J]: コイルのエネルギー

L[H]:自己インダクタンス

I [A] : 電流

$$V_2 = -M \frac{\Delta I_1}{\Delta t}$$

【相互インダクタンス】(p. 125)

 V_2 [V] : コイル 2 の起電力 M [H]:相互インダクタンス ΔI_1 [A] : コイル 1 の電流変化

 Δt [s] : 時間

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

【共振周波数】(p. 138)

$$f_0$$
 [Hz] :共振周波数 L [H] :自己インダクタンス

C [F] : 静電容量