# Scale Invariant Feature Transform SIFT Descriptor

#### SIFT citation

- Cited 34442 (google scholar, 30.3.2016)
- Cited 34663 (google scholar, 14.4.2016)





## May 2020







#### David Lowe

ARTICLES CITED BY CO-AUTHORS



Computer Science Dept., <u>University of British</u> Columbia

Verified email at cs.ubc.ca - Homepage

Computer Vision Object Recognition

| TITLE                                                                                                                     | CITED BY | YEAR |
|---------------------------------------------------------------------------------------------------------------------------|----------|------|
| Distinctive image features from scale-invariant keypoints DG Lowe International journal of computer vision 60 (2), 91-110 | 56478    | 2004 |
| Object recognition from local scale-invariant features  DG Lowe                                                           | 18910    | 1999 |
| International Conference on Computer Vision, 1999, 1150-1157                                                              |          |      |
| Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration.                                                | 3021     | 2009 |



### Outline

- Automatic scale selection
- SIFT Descriptor

## **Local Descriptors**

- The ideal descriptor should be
  - Robust
  - Distinctive
  - Compact
  - Efficient

- Most available descriptors focus on edge/gradient information
  - Capture texture information
  - Color rarely used

































# Invariance Extract patch frrom each image individually











How to find corresponding patch sizes?

## Automatic scale selection Function responses for increasing scale

















Normalize: rescale to fixed size

#### Outline

- Automatic scale selection
- SIFT Descriptor

#### What is SIFT?

 Scale Invariant Feature Transform (SIFT) is an approach for detecting and extracting *local* features from an image.



#### What is SIFT?

Originally proposed for panorama stitching



## Panorama stitching





How to detect which features to match?

Slide credit: Prof. Grauman

## **Applications**

- Object recognition
- Robot localization and mapping
- 3D scene modeling, recognition and tracking
- Human action recognition
- Analyzing the human brain in 3D magnetic resonance images
- •

#### What is SIFT?

- SIFT feature descriptors are reasonably *invariant* to
  - -scaling
  - rotation
  - -image noise
  - changes in illumination
  - -small changes in viewpoint

## Local features: main components

Detection: Identify the interest points

 Description: Extract a feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views







Slide credit: Prof. Grauman

#### SIFT: Overview

Major stages of SIFT computation



## Keypoint detection with scale selection

 We want to extract keypoints with characteristic scale that is covariant with the image transformation



#### Basic idea → Blob detection

 Convolve the image with a "blob filter" at multiple scales and look for extrema of filter response in the resulting scale space



 Find maxima and minima of blob filter response in space and scale

#### Blob filter

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D





$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

## Recall: Edge detection



## Edge detection, Take 2



## From edges to blobs

- Edge = ripple
- Blob = superposition of two ripples



**Spatial selection**: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

#### Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as  $\sigma$  increases
- To keep response the same (scale-invariant), must multiply Gaussian derivative by  $\sigma$
- Laplacian is the second Gaussian derivative, so it must be multiplied by  $\sigma^2$

#### Effect of scale normalization



Scale-normalized Laplacian of Gaussian:

$$\nabla_{\text{norm}}^2 g = \sigma^2 \left( \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$





 At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?







image Laplacian

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
- To get maximum response, the zeros of the Laplacian have to be aligned with the circle
- The Laplacian is given by (up to scale):

$$(x^2 + y^2 - 2\sigma^2) e^{-(x^2 + y^2)/2\sigma^2}$$

• Therefore, the maximum response occurs at  $\sigma = r/\sqrt{2}$ .





### Scale-space blob detector

 Convolve image with scale-normalized Laplacian at several scales



### Scale-space blob detector: Example



sigma = 11.9912

### Scale-space blob detector

 Convolve image with scale-normalized Laplacian at several scales

2. Find maxima of squared Laplacian response in

scale-space



### Efficient implementation

Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^2 \left( G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)



### **Useful Signature Function**

• Difference-of-Gaussian = "blob" detector



### Laplacian of Gaussian

Difference-of-Gaussian = "blob" detector



 We define the characteristic scale as the scale that produces peak of Laplacian response



Exa

Original image at 1/4 the size





Slide credit: Kristen Grauman

## Example







Slide credit: Prof. Grauman









# Example







Slide credit: Prof. Grauman







Slide credit: Kristen Grauman

























### Scale invariant interest points

Interest points are local maxima in both position



response maps

 $\Rightarrow$  List of  $(x, y, \sigma)$  scale

### Difference-of-Gaussian (DoG)









### DoG – Efficient Computation

Computation in Gaussian scale pyramid



# Find local maxima in position-scale space of Difference-of-Gaussian





Gaussian images



DoG images

### Scale-space extrema detection



If **X** is the *largest* or the *smallest* of all of its neighbors, **X** is called a *keypoint*.

### Making descriptor rotation invariant



- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

### Orientation assignment



### Eliminating rotation ambiguity

- To assign a unique orientation to circular image windows:
  - Create histogram of local gradient directions in the patch
  - Assign canonical orientation at peak of smoothed histogram



#### **Orientation Normalization**

[Lowe, SIFT, 1999]

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation



### Orientation assignment

- To achieve invariance to rotation
- Compute gradient magnitude and orientation for each image sample  $L(x, y, \sigma)$

$$m = \sqrt{(L_{x+1,y} - L_{x-1,y})^2 + (L_{x,y+1} - L_{x,y-1})^2}$$
$$\theta = \tan^{-1}((L_{x,y+1} - L_{x,y-1})/(L_{x+1,y} - L_{x-1,y}))$$

- Form an orientation histogram from the gradient orientations of sample points within a region around the keypoint, weighted by its gradient magnitude and a Gaussian-weighted window
- Detect the highest peak

### Review: Image gradient

The gradient of an image:

$$\nabla f = \left[ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The **gradient direction** is given by:

$$\theta = \tan^{-1} \left( \frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The **gradient magnitude** is given by:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

### Local features: main components

- 1) Detection: Identify the interest points
- Description: Extract a feature descriptor surrounding each interest point.
- Matching: Determine correspondence between descriptors in two views



### Geometric transformations







e.g. scale, translation, rotation

### Raw patches as local descriptors



- The simplest way to describe the neighborhood around an interest point is to use *intensities* to form a feature vector.
- But this is very sensitive to even small shifts, rotations.

#### Gradient vectors

 The first image shows a pixel, highlighted in red, in the original image.





 In the second image, all pixel values have been increased by 50.





#### **Gradient vectors**





|    | 93 |    |
|----|----|----|
| 56 |    | 94 |
|    | 55 |    |

$$\nabla f = \begin{bmatrix} 38 \\ 38 \end{bmatrix}$$
 $|\nabla f| = \sqrt{(38)^2 + (38)^2} = 53.74$ 



$$\nabla f = \begin{bmatrix} 38 \\ 38 \end{bmatrix}$$
 $|\nabla f| = \sqrt{(38)^2 + (38)^2} = 53.74$ 

 The gradient vectors are equivalent in the first and second images

## Local image descriptor

Why does SIFT have some illumination invariance?



### Gradient histogram

• 8 (orientations)



### SIFT descriptors

Inspiration: complex neurons in the primary visual cortex



Use a 4x4 grid computed from a 16x16 sample array  $128-d = 4 \times 4 \times 8$  (orientations)

D. Lowe. <u>Distinctive image features from scale-invariant keypoints.</u> *IJCV* 2004.



#### Number of keypoints Feature dimension

621 128

162.38 155.79 44.30 2.615

7 6 0 0 0 0 0 1 58 63 1 0 7 6 1 8 8 9 0 0
24 42 39 14 0 0 0 0 0 0 7 2 44 7 0 0 23 22 6
69 137 64 0 0 0 0 11 137 55 12 0 0 2 25 137
112 0 0 0 0 3 17 30 6 34 1 0 0 20 51 137 89
137 89 0 0 0 15 115 102
137 47 0 0 4 37 26 43 0 0 0 0 19 45 4 0 0 0 0
0 0 16 137 53 33 2 0 0 0 56 137 51 57 2 0 0
0 3 14 35 0 0 0 0 0 2 0 0

282.47 185.76 27.80 2.009

0 0 0 0 0 0 0 0 1 41 13 1 0 12 4 0 5 17 15 16 17 83 35 16 19 0 0 1 2 13 24 104 0 1 9 0 0 0 0 0 22 127 127 5 0 0 0 1 127 127 75 16 6 0 0 70 55 2 0 1 0 0 25 127 1 1 9 0 0 1 1 2 115 22 49 4 0 0 0 68

127 127 30 4 0 0 0 58 67 127 69 0 0 0 5 20 2 0 0 0 4 65 5 2 85 50 6 0 1 15 2 30 56 93 53 19 0 0 4 41 22 127 86 1 0 2 17 20

.....

row col scale orientation (-pi~pi) 128 integers (0~255)

### SIFT features

 Detected features with characteristic scales and orientations:





### From feature detection to feature description



Description is invariant:

features(transform(image)) = features(image)

### Details of Lowe's SIFT algorithm

- Run DoG detector
  - Find maxima in location/scale space
  - Remove edge points
- Find all major orientations
  - Bin orientations into 36 bin histogram
    - Weight by gradient magnitude
    - Weight by distance to center (Gaussian-weighted mean)
  - Return orientations within 0.8 of peak
    - Use parabola for better orientation fit
- For each (x,y,scale,orientation), create descriptor:
  - Sample 16x16 gradient mag. and rel. orientation
  - Bin 4x4 samples into 4x4 histograms
  - Threshold values to max of 0.2, divide by L2 norm
  - Final descriptor: 4x4x8 normalized histograms

$$\mathbf{H} = \left[ \begin{array}{cc} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{array} \right]$$

$$\frac{\mathrm{Tr}(\mathbf{H})^2}{\mathrm{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$$

### Local features: main components

- 1) Detection: Identify the interest points
- 2) Description: Extract a feature descriptor surrounding each interest point.
- 3) Matching: Determine correspondence between descriptors in two views



### Properties of SIFT

#### Extraordinarily robust detection and description technique

- Can handle changes in viewpoint
  - Up to about 60 degree out-of-plane rotation
- Can handle significant changes in illumination
  - Sometimes even day vs. night
- Fast and efficient—can run in real time
- Lots of code available



