Selected Problems 2

Chapter 3.2 Problem 8

Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA.

- a. Design a brute-force algorithm for this problem and determine its efficiency class.
- **b.** Design a more efficient algorithm for this problem. [Gin04]

Chapter 3.4 Problem 6

Consider the *partition problem*: given *n* positive integers, partition them into two disjoint subsets with the same sum of their elements. (Of course, the problem does not always have a solution.) Design an exhaustive-search algorithm for this problem. Try to minimize the number of subsets the algorithm needs to generate.

Chapter 3.5 Problem 1

Consider the following graph.

- a. Write down the adjacency matrix and adjacency lists specifying this graph. (Assume that the matrix rows and columns and vertices in the adjacency lists follow in the alphabetical order of the vertex labels.)
- **b.** Starting at vertex *a* and resolving ties by the vertex alphabetical order, traverse the graph by depth-first search and construct the corresponding depth-first search tree. Give the order in which the vertices were reached for the first time (pushed onto the traversal stack) and the order in which the vertices became dead ends (popped off the stack).