Probability Theory

Math 4175

A discrete random variable X consists of a finite set S (called the sample space) together with a probability distribution p defined on S. Here X varies over the elements of S.

Notation: The probability that the random variable X takes on the value x is denoted by Pr[X = x] or, for short, Pr[x] or p[x].

Example 1: Suppose that a fair coin is tossed and let S be the set of all possible outcomes. Then $S = \{H, T\}$ where p[H] = 0.5 and p[T] = 0.5.

Example 2: Suppose that a fair coin is tossed twice and let S be the set of all possible outcomes. Then $S = \{HH, HT, TH, TT\}$ where p[HH] = p[HT] = p[TH] = p[TT] = 0.25.

In these two examples, S is said to have equally likely outcomes.

Math 4175 Probability Theory 2 / 11

Example 3: Suppose that a fair coin is tossed twice and let S be the number of possible heads. Then $S = \{0, 1, 2\}$ where p[0] = p[2] = 0.25 and p[1] = 0.5.

Example 4: Suppose that a fair red die and a fair blue die are rolled and S be the sum of the dots showing in both together.

Then $S = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ with following probability distribution:

>	(2	3	4	5	6	7	8	9	10	11	12
F)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Math 4175 Probability Theory 3 / 11

Roll of a red and a green dice:

R/B	1	2	3	4	5	6
1	(1,1)	(1, 2)	(1,3)	(1, 4)	(1,5)	(1,6)
2	(2,1)	(2, 2)	(2,3)	(2, 4)	(2,5)	(2,6)
3	(3, 1)	(3, 2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4, 2)	(4,3)	(4, 4)	$\left(4,5\right)$	(4, 6)
5	(5,1)	(5, 2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6, 2)	(6,3)	(6,4)	(6,5)	(6,6)

Math 4175 Probability Theory 4 / 11

Notice that
$$0 \le p[x] \le 1$$
 and $\sum_{x \in S} p[x] = 1$.

Any subset E of S is called an event and $p[E] = \sum_{x \in E} p[x]$.

For example, let $E = \{2, 4, 6, 8, 10, 12\}$, that is all even sum. Then p[E] = 0.5.

Math 4175 Probability Theory 5 / 11

§3.2. Joint Probability

Suppose that X is a random variable defined on S and Y is a random variable defined on T. The joint probability p[x, y] is the probability that X takes on the value x and Y takes on the value y.

Warning: In general, $p[x, y] \neq p[x]p[y]$.

Example 5: As earlier, let us suppose that a fair red die and a fair blue die are rolled and S be the sum of the dots in both together. Then $S = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Furthermore, let $T = \{E, O, N\}$ where Y takes the value E if both dice show even number of dots, Y takes the value O if both dice show odd, and Y takes the value N if one die shows even and other one shows odd.

Notice that $p[4, E] = \frac{1}{36}$ because (2, 2) is the only outcome in this case. But on the other hand, $p[4]p[E] = \frac{3}{36}\frac{9}{36} = \frac{1}{48}$.

Math 4175 Probability Theory 6 / 11

§3.2. Joint Probability

Example 6: Roll a die. Suppose we are interested in two things: whether the number of dots is odd **and** whether the number is at least four. This can be modeled as follows:

- X: "observe whether face is even or odd" $S = \{e, o\}; p_v(e) = p_v(o) = 1/2.$
- *Y*: "observe whether face is high (4, 5, or 6) or low (1, 2, or 3)" $T = \{h, \ell\}$; $p_{\nu}(h) = p_{\nu}(\ell) = 1/2$.

Then Z=(X,Y) gives us the result of both experiments together. The sample space for Z=(X,Y) is $S\times T=\{(e,h);(e,\ell);(o,h);(o,\ell)\}$ with joint probability

- $p_z[e, h] = 1/3$, $p_z[e, \ell] = 1/6$.
- $p_Z[o, h] = 1/6$, $p_Z[o, \ell] = 1/3$.

Note that the probability that the number of dots is odd **and** greater than 3 is p[Z = (o, h)] = 1/6. This is not equal to

$$p[X = o] \cdot p[Y = h] = (1/2)(1/2) = 1/4.$$

Math 4175 Probability Theory 7 / 11

§3.2. Conditional Probability

Suppose that X is a random variable defined on S and Y is a random variable defined on T. The conditional probability p[x|y] is the probability that X takes on the value x given that (or known that) Y takes on the value y.

In the previous example 5, notice that $p[4|E] = \frac{1}{9}$ and $p[E|4] = \frac{1}{3}$. Now

$$p[4|E]p[E] = \frac{1}{9}\frac{9}{36} = \frac{1}{36} = p[4, E].$$

Formulas:

$$p[x,y] = p[y|x]p[x]$$

Math 4175 Probability Theory 8 / 11

§3.2. Conditional Probability

Suppose that X is a random variable defined on S and Y is a random variable defined on T. Then X and Y are said to be independent random variables if p[x|y] = p[x].

Notice that X and Y are independent random variables if and only if p[x, y] = p[x]p[y] for all x and y.

We already noticed in our example that $p[4, E] \neq p[4]p[E]$.

So X and Y in our example are NOT independent random variables.

Example 7: Suppose that you toss a fair coin 4 times. Let X be the number of heads in the first two tosses and Y be the number of heads in the last two tosses. Then one can check that X and Y are independent random variable. In other words, p[x|y] = p[x] for all x and y, or in other words, p[x,y] = p[x]p[y] for all x and y.

Math 4175 Probability Theory 9 / 11

§3.2. Conditional Probability

For example 6, we have,

$$p[h|e] = \frac{p_z[e,h]}{p_x[e]} = \frac{1/3}{1/2} = \frac{2}{3}$$

$$p[h|o] = \frac{p_z[o,h]}{p_x[o]} = \frac{1/6}{1/2} = \frac{1}{3}$$

So X and Y are not independent.

§3.2. Baye's Theorem

Baye's Theorem: If X and Y are two random variables and p[y] > 0, then

$$p[x|y] = \frac{p[y|x]p[x]}{p[y]}$$

Theorem follows from: p[x|y]p[y] = p[x,y] = p[y|x]p[x].

In our example 5, notice that

$$p[4|E] = \frac{1}{9}, \ p[4] = \frac{3}{36}, \ p[E] = \frac{9}{36}$$

$$\frac{p[4|E]p[E]}{p[4]} = \frac{\frac{1}{9}\frac{9}{36}}{\frac{3}{36}} = \frac{1}{3} = p[E|4]$$

Math 4175 Probability Theory 11 / 11