Linear Regression Part 1

DSA 6000: Data Science and Analytics, Fall 2019

Wayne State University

An interesting article

- The Simple Economics of Machine Intelligence by A. Agrawal, J. Gans and A. Goldfarb, November 17, 2016, Harvard Business Review
- Authors' conclusions:
 - Machine learning is in essence a prediction technology.
 - As cost of prediction plummets, two things will happen:
 - Prediction will be used in previously unapplied areas (since it is cheap)
 - The value of things that complement prediction will rise
 - The value goes up for complements and down for substitutes.
 - All human activities have 5 high-level components: data, prediction,
 judgment, action and outcomes
 - The value of human judgment skills will increase.
 - There will be greater demand for the application of ethics, and for emotional support.
 - **Safe jobs**: CEOs, caregivers, artists, counselors, social workers, beauty consultant, PR/Marketing directors, elderly companions, etc.

https://www.youtube.com/watch?v=wWvXVehccjw https://www.youtube.com/watch?v=ajGgd9Ld-Wc

Linear Regression -A motivating example

- Input variables are advertising budgets in TV, Radio and Newspaper
- Output variable is Sales

- Is there a relationship between advertising budget and sales? How strong is the relationship?
- How accurately can we estimate the effect of each medium on sales?
- How accurately can we predict future sales?
- Is there synergy among the advertising media?

Simple Linear Regression

- Model: $Y = \beta_0 + \beta_1 X + \epsilon$
- β_0 is the intercept, the expected value of Y without knowing X
- β_1 is the slope, the average increase in Y associated with a one-unit increase in X

Multiple Linear Regression

- Model: $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$ for $i = 1, \dots, n$
- <u>Assumptions</u>: linear relation between $E(Y_i)$ and x_i , $E(\epsilon_i) = 0$, $Var(\epsilon_i)$ is constant, and ϵ_i uncorrelated with each other
- β_j , j=0,1,...,p are regression parameters or coefficients, whose values are (assumed to be) fixed but unknown
- We estimate β_j 's using sample observations $(X_1, y_1), (X_2, y_2), \dots, (X_n, y_n)$
- Denote the estimators by $\hat{\beta}_i$
- Important: Understand the properties of $\hat{\beta}_i$

Parameter, Estimator and Estimate

•
$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$$

- For each j = 0, 1, ..., p
 - β_i is a model **parameter**, an unknown deterministic quantity
 - $\hat{\beta}_j$ is (before a sample is drawn) a random variable, called an **estimator**
 - The value of $\hat{\beta}_j$ can be calculated from data (random sample)
 - Each set of sample data gives a specific realization of $\hat{\beta}_j$, called an **estimate**. Different samples will generally produce different estimates.
 - An estimate is a realization of an estimator at a given sample.

Estimating β_i

- Given a training sample, $(X_1, y_1), (X_2, y_2), \dots, (X_n, y_n)$, how do we estimate the coefficients β_j ?
- Least Squares method: minimize $\sum_{i=1}^{n} (\hat{\beta}_0 + \sum_{j=1}^{p} \hat{\beta}_j x_{ij} y_i)^2$
- Properties of least squares estimators
 - Unbiased: $E(\hat{\beta}_j) = \beta_j$
 - Minimum variance: Least squares estimator has the minimum variance among all unbiased estimators of β_i

Properties of the estimator $\hat{\beta}_j$

- The estimator $\hat{\beta}_j$ for each j has a Normal distribution with mean β_j and standard deviation σ_{β_j}
- Both β_j and σ_{β_i} are unknown, fixed numbers
- While we use $\hat{\beta}_j$ to estimate β_j , we use the *Standard Error* SE($\hat{\beta}_j$), a statistic calculated from sample data, to estimate σ_{β_i}
- The statistic $t = \frac{\widehat{\beta}_j \beta_j}{\mathsf{SE}(\widehat{\beta}_i)}$ will have a t distribution

Comparison of t Distributions

Concept of the Confidence Interval

- Let θ be a parameter and $\hat{\theta}$ be its unbiased estimator with a Normal distribution
- Let $SE(\hat{\theta})$ be the standard error of $\hat{\theta}$
- Then the statistic

$$\hat{I}_{1-\alpha} = [\hat{\theta} - t_{\alpha/2,v} SE(\hat{\theta}), \hat{\theta} + t_{\alpha/2,v} SE(\hat{\theta})]$$

is the *confidence interval* of θ at the $(1 - \alpha) \times 100\%$ confidence level, where v is the degree of freedom, equal to n - 2.

- Each time we calculate the statistic with a different sample, we will get a different value for $\hat{\theta}$ and a different interval $\hat{I}_{1-\alpha}$
- $(1-\alpha) \times 100\%$ of such intervals will encompass θ , the true parameter value

Talk intelligently about CI

- Suppose we choose a confidence level of 95% and calculated the confidence interval of θ from a given sample
- "With 95% chance the true value of θ will fall in the confidence interval"
 - This statement is **Wrong**. θ is a fixed number, not a RV. It is where it is, its whereabouts is not random.
 - It is the confidence interval that is a random variable -- its center location and width depend on the sample by which it is calculated.
- "If we constructed 100 such confidence intervals each with a different random sample, we would expect 95 of them to cover the true value of θ "
 - Right

Confidence Interval and Prediction Interval

- Suppose p = 1, i.e., simple linear regression
- Given an particular predictor value X_i
- The <u>Confidence Interval</u> is intended for the mean response $E(Y_i)$, or equivalently $\beta_0 + \beta_1 x_i$, or $f(X_i)$.
 - "The 95% confidence interval at x = 35 is [10.985, 11.528]" means that 95% of intervals so obtained will contain the true value of E(Y) given x = 35.
- The <u>Prediction Interval</u> is intended for the actual response Y_i , or equivalently $\beta_0 + \beta_1 x_i + \epsilon_i$, which is a R.V.
 - "95% prediction interval at x = 35 is [7.930, 14.580]" means that 95% of intervals of this form will contain the actual value of Y corresponding to x = 35
- A prediction interval is wider than a confidence interval at the same predictor value x, since it accounts for more uncertainty

t-statistic p-value

Model: $Y = \beta_0 + \beta_1 X + \epsilon$

- The question: Is there a relationship between X and Y?
- Is equivalent to: Is the true value of β_1 equal to zero or not equal to zero?
- Null hypothesis H_0 : $\beta_1 = 0$
- We can compute the estimate $\hat{\beta}_1$ and $SE(\hat{\beta}_1)$ from data
- If H_0 were true, we would expect $t=(\hat{\beta}_1-0)/\text{SE}(\hat{\beta}_1)$ to follow a todistribution
 - If we get a t-statistic of 15.36, does it seem to come from t distribution? Do you believe H_0 is true?
- p-value is the probability of "seeing a sample data that produces this t value or a more extreme one (>|t|)" under the null hypothesis
- A small p-value gives strong evidence to reject the null hypothesis

 there is a significant relationship between X and Y
- Failing to reject H_0 does not give a strong evidence to conclude X and Y are unrelated they still may be related but we simply haven't yet observed a strong evidence from data

Leverage

The standard error of an estimator reflects how it varies under repeated sampling. We have

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

where $\sigma^2 = \text{Var}(\epsilon)$

- $SE(\hat{\beta}_1)$ is smaller when x_i are more spread out
- For each training point, the leverage statistic: $h_i = \frac{1}{n} + \frac{(x_i \bar{x})^2}{\sum_{i'=1}^n (x_{i'} \bar{x})^2}$
- If an observation has a leverage statistic way greater than $\frac{p+1}{n}$, we should be alerted.

Interpreting the LR output for an individual predictor

Model: Sales = $\beta_0 + \beta_1 TV + \epsilon$ In R: m1 <- lm(sales ~ TV, data = ad)

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

- $\hat{\beta}_0 = 7.0325$, SE($\hat{\beta}_0$) = 0.4578, $\hat{\beta}_1 = 0.0475$, SE($\hat{\beta}_0$) = 0.0027
- H_0 : There is no relationship between Ad budget on TV and Sales, $\beta_1=0$
- H_1 : There is some relationship between Ad budget on TV and Sales, $\beta_1 \neq 0$
- Regardless of the hypothesis, the statistic $t = \frac{\widehat{\beta}_1 \beta_1}{\mathsf{SE}(\widehat{\beta}_1)}$ has a t distribution.
- To test H_0 , we compute the t-statistic **under the assumption that H_0 is true**:

•
$$t = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} = \frac{0.0475}{0.0027} = 17.67$$

- It is extremely unlikely to encounter a random number drawn from the t-distribution to have a value as high as (or higher than) 17.67.
- The probability of seeing such a thing is the **p-value**, P(>|t|) < 0.0001
- Therefore, the assumption that H_0 is true is most likely wrong, we reject H_0
- We declare that a relationship exists between Ad budget on TV and Sales
- The same argument applied to the analysis of each individual predictor in a multiple linear regression.

Assessing the Accuracy of the Model

- Residual Sum of Squares (RSS): $\sum_{i=1}^{n} \left(y_i \hat{f}(X_i) \right)^2$, measures the amount of variability in Y that is left unexplained after performing the regression.
- Residual Standard Error (RSE) is an estimate of the standard deviation of ϵ .

• RSE =
$$\sqrt{\left(\frac{1}{n-p-1}\right)RSS}$$

- Note that RSE depends on p, so adding a useless predictor to the model increases $\left(\frac{1}{n-p-1}\right)$, overall RSE might also increase
- RSE represents the average amount that the response will deviate from the true regression line. It is a measure of the *lack of fit* of the model to the data, in the units of Y.
- R^2 statistic: the proportion of variance in Y that is explained by the model.
 - $R^2 = \frac{TSS RSS}{TSS}$, where $TSS = \sum (y_i \bar{y})^2$ is the total sum of squares.
 - Adding an extra predictor will always increase R^2
 - Adjusted R^2 accounts for the model complexity

Decompose the TSS

- Suppose the linear model is fit by the OLS method, then
- Total variation in Y is decomposed into two parts:
 - Variation explained by the model
 - Variation left unexplained by the model
- Total SS = Explained SS + Residual SS

•
$$\sum_{i=1}^{n} (y_i - \bar{y}_i)^2 = \sum_{i=1}^{n} (\bar{y}_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

About the F-statistic

- F-statistic is used for testing whether at least one of the predictors has a significant effect on the response variable.
- $H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$
- H_1 : at least one β_i is non-zero
- A large F-statistic value will lead to rejection of H_0 . The rejection threshold depends on both n and p.
- Why use F test since we already have the t test?
- For a model with many predictors (i.e., large p), it can happen that the p-value for some individual predictor(s) is small (e.g., < 0.05), but the model as a whole fails the F test (i.e., fail to reject H_0).
 - For instance, if there are 100 variables, all unrelated to Y, the p-values for about 5% of the variables will be below 0.05 **by chance**. We would expect to see about 5 small p-values even in the absence of any true association between the predictors and the response.
 - F-statistic is immune to this type of fallacy.