Pointers and Dynamic Arrays

Pointer Introduction

- Pointer definition:
 - Memory address of a variable
- Recall: memory divided
 - Numbered memory locations
 - Addresses used as name for variable
- You've used pointers already!
 - Call-by-reference parameters
 - Address of actual argument was passed

Pointer Variables

- Pointers are "typed"
 - Can store pointer in variable
 - Not int, double, etc.
 - Instead: A POINTER to int, double, etc.!
- Example: double *p;
 - p is declared a "pointer to double" variable
 - Can hold pointers to variables of type double
 - Not other types!

Declaring Pointer Variables

- Pointers declared like other types
 - Add "*" before variable name
 - Produces "pointer to" that type
- "*" must be before each variable
- int *p1, *p2, v1, v2;
 - p1, p2 hold pointers to int variables
 - v1, v2 are ordinary int variables

Addresses and Numbers

- Pointer is an address
- Address is an integer
- Pointer is NOT an integer!
- C++ forces pointers be used as addresses
 - Cannot be used as numbers
 - Even though it "is a" number

Pointing

- Terminology, view
 - Talk of "pointing", not "addresses"
 - Pointer variable "points to" ordinary variable
 - Leave "address" talk out
- Makes visualization clearer
 - "See" memory references
 - Arrows

Pointing to ...

- int *p1, *p2, v1, v2; p1 = &v1;
 - Sets pointer variable p1 to "point to" int variable v1
- Operator, &
 - Determines "address of" variable
- Read like:
 - "p1 equals address of v1"
 - Or "p1 points to v1"

Pointing to ...

Recall: int *p1, *p2, v1, v2; p1 = &v1;

- Two ways to refer to v1 now:
 - Variable v1 itself: cout << v1;</p>
 - Via pointer p1: cout << *p1;</p>
- Dereference operator, *
 - Pointer variable "derereferenced"
 - Means: "Get data that p1 points to"

"Pointing to" Example

Consider:

```
v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;
```

Produces output:

42 42

p1 and v1 refer to same variable

& Operator

- The "address of" operator
- Also used to specify call-by-reference parameter
 - No coincidence!
 - Recall: call-by-reference parameters pass "address of" the actual argument
- Operator's two uses are closely related

Pointer Assignments

Pointer variables can be "assigned": int *p1, *p2; p2 = p1;

- Assigns one pointer to another
- "Make p2 point to where p1 points"
- Do not confuse with:
 - *p1 = *p2;
 - Assigns "value pointed to" by p1, to "value pointed to" by p2

Pointer Assignments Graphic: **Display 10.1** Uses of the Assignment Operator with Pointer Variables

Display 10.1 Uses of the Assignment Operator with Pointer Variables

The new Operator

- Since pointers can refer to variables...
 - No "real" need to have a standard identifier
- Can dynamically allocate variables
 - Operator new creates variables
 - No identifiers to refer to them
 - Just a pointer!
- p1 = new int;
 - Creates new "nameless" variable, and assigns p1 to "point to" it
 - Can access with *p1
 - Use just like ordinary variable

Basic Pointer Manipulations Example: (1 of 3)

Display 10.2 Basic Pointer Manipulations

```
1 //Program to demonstrate pointers and dynamic variables.
2 #include <iostream>
 3 using std::cout;
4 using std::endl;
5 int main()
        int *p1, *p2;
        p1 = new int;
8
        *p1 = 42;
10
        p2 = p1;
        cout << "*p1 == " << *p1 << endl;</pre>
11
        cout << "*p2 == " << *p2 << endl;
12
        *p2 = 53;
13
        cout << "*p1 == " << *p1 << endl;
14
        cout << "*p2 == " << *p2 << endl;
15
```

Basic Pointer Manipulations Example: (2 of 3)

```
p1 = new int;
    *p1 = 88;
    cout << "*p1 == " << *p1 << endl;
    cout << "*p2 == " << *p2 << endl;

cout << "Hope you got the point of this example!\n";
    return 0;
}</pre>
```

SAMPLE DIALOGUE

```
*p1 == 42

*p2 == 42

*p1 == 53

*p2 == 53

*p1 == 88

*p2 == 53

Hope you got the point of this example!
```

Basic Pointer Manipulations Example: (3 of 3)

Display 10.3 Explanation of Display 10.2

More on new Operator

- Creates new dynamic variable
- Returns pointer to the new variable
- If type is class type:
 - Constructor is called for new object
 - Can invoke different constructor with initializer arguments: MyClass *mcPtr; mcPtr = new MyClass(32.0, 17);
- Can still initialize non-class types: int *n; n = new int(17); //Initializes *n to 17

Pointers and Functions

- Pointers are full-fledged types
 - Can be used just like other types
- Can be function parameters
- Can be returned from functions
- Example: int* findOtherPointer(int* p);
 - This function declaration:
 - Has "pointer to an int" parameter
 - Returns "pointer to an int" variable

Memory Management

- Heap
 - Also called "freestore"
 - Reserved for dynamically-allocated variables
 - All new dynamic variables consume memory in freestore
 - If too many → could use all freestore memory

Future "new" operations will fail if freestore is "full"

Checking new Success

Older compilers:

```
Test if null returned by call to new: int *p; p = new int; if (p == NULL) { cout << "Error: Insufficient memory.\n"; exit(1); }</p>
```

If new succeeded, program continues

new Success - New Compiler

- Newer compilers:
 - If new operation fails:
 - Program terminates automatically
 - Produces error message
- Still good practice to use NULL check

delete Operator

- De-allocate dynamic memory
 - When no longer needed
 - Returns memory to freestore
 - Example: int *p; p = new int(5); ... //Some processing... delete p;
 - De-allocates dynamic memory "pointed to by pointer p"

Dangling Pointers

- delete p;
 - De-allocates dynamic memory
 - But p still points there!
 - Called "dangling pointer"
 - If p is then dereferenced (*p)
 - Unpredicatable results!
 - Often disastrous!
- Avoid dangling pointers
 - Assign pointer to NULL after delete: delete p; p = NULL;

Dynamic and Automatic Variables

- Dynamic variables
 - Created with new operator
 - Created and destroyed while program runs
- Local variables
 - Declared within function definition
 - Not dynamic
 - Created when function is called
 - Destroyed when function call completes
 - Often called "automatic" variables
 - Properties controlled for you

Define Pointer Types

- Can "name" pointer types
- To be able to declare pointers like other variables
 - Eliminates need for "*" in pointer declaration
- typedef int* IntPtr;
 - Defines a "new type" alias
 - Consider these declarations: IntPtr p; int *p;
 - The two are equivalent

Pitfall: Call-by-value Pointers

- Behavior subtle and troublesome
 - If function changes pointer parameter itself → only change is to local copy
 - If function dereferences pointer parameter and changes its value → then change is reflected outside the function
- Best illustrated with example...

Call-by-value Pointers Example: (1 of 2)

Display 10.4 A Call-by-Value Pointer Parameter

```
//Program to demonstrate the way call-by-value parameters
2 //behave with pointer arguments.
    #include <iostream>
4 using std::cout;
    using std::cin;
    using std::endl;
    typedef int* IntPointer;
    void sneaky(IntPointer temp);
    int main()
10
    {
        IntPointer p;
11
12
        p = new int;
13 *p = 77:
14
        cout << "Before call to function *p == "</pre>
15
             << *p << endl:
```

Call-by-value Pointers Example: (2 of 2)

```
16
        sneaky(p);
        cout << "After call to function *p == "</pre>
17
18
             << *p << endl;
19
        return 0;
20
    }
21 void sneaky(IntPointer temp)
22 {
23
        temp = 99;
cout << "Inside function call *temp == "</pre>
25
             << *temp << endl;
26 }
```

SAMPLE DIALOGUE

```
Before call to function *p == 77
Inside function call *temp == 99
After call to function *p == 99
```

Call-by-value Pointers Graphic: The Function Call sneaky(p)

Display 10.5 The Function Call sneaky(p);

2. Value of p is plugged in for temp:

3. Change made to *temp:

4. After call to sneaky:

Dynamic Arrays

- Array variables
 - Really pointer variables!
- Standard array
 - Fixed size
- Dynamic array
 - Size not specified at programming time
 - Determined while program running

Array Variables

- Recall: arrays stored in memory addresses, sequentially
 - Array variable "refers to" first indexed variable
 - So array variable is a kind of pointer variable!
- Example: int a[10]; int * p;
 - a and p are both pointer variables!

Array Variables → Pointers

- Recall previous example: int a[10]; typedef int* IntPtr; IntPtr p;
- a and p are pointer variables
 - Can perform assignments:p = a; // Legal.
 - p now points where a points
 - To first indexed variable of array a
 - a = p; // ILLEGAL!
 - Array pointer is CONSTANT pointer!

Array Variables → Pointers

- Array variable int a[10];
- MORE than a pointer variable
 - "const int *" type
 - Array was allocated in memory already
 - Variable 'a' MUST point there...always!
 - Cannot be changed!
- In contrast to ordinary pointers
 - Which can (& typically do) change

Dynamic Arrays

- Array limitations
 - Must specify size first
 - May not know until program runs!
- Must "estimate" maximum size needed
 - Sometimes OK, sometimes not
 - "Wastes" memory
- Dynamic arrays
 - Can grow and shrink as needed

Creating Dynamic Arrays

- Very simple!
- Use new operator
 - Dynamically allocate with pointer variable
 - Treat like standard arrays
- Example: typedef double * DoublePtr; DoublePtr d; d = new double[10]; //Size in brackets
 - Creates dynamically allocated array variable d, with ten elements, base type double

Deleting Dynamic Arrays

- Allocated dynamically at run-time
 - So should be destroyed at run-time
- Simple again. Recall Example: d = new double[10]; ... //Processing delete [] d;
 - De-allocates all memory for dynamic array
 - Brackets indicate "array" is there
 - Recall: d still points there!
 - Should set d = NULL;

Function that Returns an Array

- Array type NOT allowed as return-type of function
- Example: int [] someFunction(); // ILLEGAL!
- Instead return pointer to array base type: int* someFunction(); // LEGAL!

Pointer Arithmetic

- Can perform arithmetic on pointers
 - "Address" arithmetic
- Example: typedef double* DoublePtr; DoublePtr d; d = new double[10];
 - d contains address of d[0]
 - d + 1 evaluates to address of d[1]
 - d + 2 evaluates to address of d[2]
 - Equates to "address" at these locations

Alternative Array Manipulation

- Use pointer arithmetic!
- "Step thru" array without indexing:

```
for (int i = 0; i < arraySize; i++)
cout << *(d + i) << " ";
```

Equivalent to:

```
for (int i = 0; i < arraySize; i++)
cout << d[i] << " ";
```

- Only addition/subtraction on pointers
 - No multiplication, division
- Can use ++ and -- on pointers

Multidimensional Dynamic Arrays

- Yes we can!
- Recall: "arrays of arrays"
- Type definitions help "see it": typedef int* IntArrayPtr; IntArrayPtr *m = new IntArrayPtr[3];
 - Creates array of three pointers
 - Make each allocate array of 4 ints
- for (int i = 0; i < 3; i++)
 m[i] = new int[4];</pre>
 - Results in three-by-four dynamic array!

Back to Classes

- The -> operator
 - Shorthand notation
- Combines dereference operator, *, and dot operator
- Specifies member of class "pointed to" by given pointer
- Example:

```
MyClass *p;

p = new MyClass;

p->grade = "A";

equivalent to:

(*p).grade = "A";
```

The this Pointer

- Member function definitions might need to refer to calling object
- Use predefined this pointer
 - Automatically points to calling object:

```
Class Simple
{
public:
    void showStuff() const;
private:
    int stuff;
};
```

Two ways for member functions to access:

```
cout << stuff;
cout << this->stuff;
```

Need for Destructors

- Dynamically-allocated variables
 - Do not go away until "deleted"
- If pointers are only private member data
 - They dynamically allocate "real" data
 - In constructor
 - Must have means to "deallocate" when object is destroyed
- Answer: destructor!

Destructors

- Opposite of constructor
 - Automatically called when object is out-of-scope
 - Default version only removes ordinary variables, not dynamic variables
- Defined like constructor, just add ~

```
MyClass::~MyClass()
{
    //Perform delete clean-up duties
}
```

Summary

- Pointer is memory address
 - Provides indirect reference to variable
- Dynamic variables
 - Created and destroyed while program runs
- Freestore
 - Memory storage for dynamic variables
- Dynamically allocated arrays
 - Size determined as program runs