

- Let C_i = min_{j > i and s_j = s_i} {j i}
- The B-Suffix Array is equivalent to the suffix array of C_1 C_2 ... C_n
- · Detailed proof can be found in "Parameterized Suffix Arrays for Binary Strings"
- " http://www.stringology.org/event/2008/p08.html

- First, compute the "virual tree" of {1!, 2!, ..., n!}
- Second, to compute the actual cost, use Segment Tree or Fenwick Tree.

See "Distances in Domino Flip Graphs"

Quadratic Form

- The answer is b^T A^{-1} b, which can be proved by Lagrange Duality.
- · All we need is to compute the inverse matrix of the matrix A.

mox
$$b^{T} \cdot x$$

sub. $x^{T}Ax \leq 1$
 $\mathcal{L}(x,\lambda) = \frac{b^{T}x - \lambda(x^{T}Ax)}{b^{T}A^{T}b}$
 $\frac{\partial f}{\partial x} = b - 2\lambda Ax = 0 \Rightarrow x = A^{T} \frac{b}{2\lambda}$
 $\frac{\partial f}{\partial x} = \frac{b^{T}A^{T}b}{4x^{T}b} + \lambda \geqslant x \sqrt{1^{T}A^{T}b}$

Counting Spanning Trees

- The number of spanning trees is prod_{i >= 2} deg(x_i) deg(y_i)
- Detailed proof can be found in "Enumerative properties of Ferrers graphs" https://arxiv.org/pdf/0706.2918.pdf

Infinite String Comparision

自行车往 哪也可

- Compare the string a^{infty} and b^{infty} directly
- By the Periodicity Lemma, if there is no mismatches in the first a + b gcd(a, b) characters, the two string are identical

$$a^{19} = 222 \cdots a$$
 2 cm($(a_1, 1b_1)$)

 $a^{10} = 222 \cdots a$
 a^{1

BaXianGuoHai, GeXianShenTong

$$II v_i^{e_i} = \underbrace{\exists e_i \cdot v_i}$$

- For simplicity, we denote the multiplication as +, and exponentiation as *
- Precompute B_{i, j} = 2^ {W * j} * v_i $\mathbb{B}(i_j) = V_i^{(2^{w_j})}$
- To compute sum_{i, j} (sum e'_{i, j} * 2^{W * j}) v_i
 - = $sum_x x sum_{i, j} [e'_{i, j} = x] B_{i, j} = sum_x x Q_x$
- To compute sum_x x Q_x
 - = sum x (sum $\{y >= x\} Q y$)

$$= \prod_{x} \left(\prod_{v_i} \underbrace{\sum_{i,j=x} \sum_{x} \sum_$$

 The overall complexity is O(nm / W + 2^W) Taking W = 16 yields a fast enough solution

Minimum-cost Flow

- · We denote the cost in a network with capacity c and flow f as cost(c, f).
- cost(c, 1) = cost(c * 1/c, 1 / c) * c = cost(1, 1 / c) * c
- For a network with unitary capacity, its cost grows linearly with the flow f, with at most O(m) pieces.
- Thus, we can compute O(m) pieces first, and query in O(log m) time.

1 or 2

- di=1
- For an edge e=(x, y) where $d_x = d_y = 2$, add the following edges:
 - (x, e) (x', e)
 - (y, e') (y', e')
 - (e, e')
- The problems is turned into to find a perfect matching in a general graph, which can be solved with Edmond's Algorithm.

Easy Integration

$$\frac{\left(n!\right)^{2}}{\left(2n+1\right)!} \frac{\Gamma\left(n+\frac{1}{2}\right)^{2}}{\Gamma\left(2n+1\right)!}$$

- The value is (n!)^2 / (2n+1)!
- Detailed proof can be found in "Wallis' integrals".
 https://en.wikipedia.org/wiki/Wallis%27_integrals

Thanks

