TVAILIC.

Math 237 – Linear Algebra

Version 1

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all polynomials with the operations, for any $f, g \in V, c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors $\begin{bmatrix} 8\\21\\-7 \end{bmatrix}$, $\begin{bmatrix} -3\\-8\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\-3\\2 \end{bmatrix}$, and $\begin{bmatrix} 4\\11\\-5 \end{bmatrix}$ span \mathbb{R}^3 .

V4.	Determine if the set of all lattice point	ts, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers} \}$ is a substant	space of \mathbb{R}^2 .
V1:		V3:	V4:

Math 237 – Linear Algebra

Version 2

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x,y\in V$ and $c\in\mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that this scalar multiplication \odot is associative.
- (b) Determine if V is a vector space or not. Justify your answer

V3. Determine if the vectors $\begin{bmatrix} 8\\21\\-7 \end{bmatrix}$, $\begin{bmatrix} -3\\-8\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\-3\\2 \end{bmatrix}$, and $\begin{bmatrix} 4\\11\\-5 \end{bmatrix}$ span \mathbb{R}^3 .

$\mathbf{V4.}$ Let W be the set of all polynomials of all polynomials.	of even degree. Determine if W is	s a subspace of the vector space
V1:	V3:	V4:

Math 237 – Linear Algebra

Version 3

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors $\begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\0\\-3 \end{bmatrix}$, $\begin{bmatrix} 0\\3\\0\\-2 \end{bmatrix}$, and $\begin{bmatrix} -1\\1\\-1\\-1 \end{bmatrix}$ span \mathbb{R}^4 .

$M_{2,2}$.		

Name:	

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$

- (a) Show that this vector space has an additive identity element.
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors $\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

V4.	Determine if the set of all lattice point	ts, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers} \}$ is a substant	space of \mathbb{R}^2 .
V1:		V3:	V4:

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all polynomials with the operations, for any $f, g \in V, c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors
$$\begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}$$
, $\begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}$ span \mathbb{R}^4 .

$\mathbf{V4.}$ Let W be the set of all polynomials of all polynomials.	of even degree. Determine if W is	s a subspace of the vector space
V1:	V3:	V4:

Math 237 – Linear Algebra

Version 6

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V, c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$

$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors
$$\begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}$$
, $\begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}$ span \mathbb{R}^4 .

V4.	Determine if the set of all lattice point	ts, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers} \}$ is a substant	space of \mathbb{R}^2 .
V1:		V3:	V4: