准考证号:		姓名:	
-------	--	-----	--

(在本试卷上答题无效)

2025 届新高考限时训练试题(一)

数学

选题: 王良涛 排版、校对: 山河文化试题研究中心

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑。
- 一、选择题: 本题共 5 小题, 每小题 5 分, 共 25 分。在每小题所给的四个选项中, 只 有一项是符合题目要求的。

- 二、选择题: 本题共 2 小题,每小题 6 分,共 12 分。在每小题所给的四个选项中,有多项是符合题目要求的。全部选对得 6 分,部分选对得部分分,有选错的得 0 分。
- 6. 已知平面向量 $\alpha = (2, \sin \theta)$, $\mathbf{b} = (1, \cos \theta)$, 则 ACD A. α, b 不可能垂直 2+sio col= 2+sio B. α, b 不可能共线

C.
$$|\alpha+\mathbf{b}|$$
 不可能为 5 $\sqrt{}$ D. 若 $\theta=\frac{\pi}{2}$, 则 α 在 \mathbf{b} 上的投影向量为 $2\mathbf{b}$ $\sqrt{}$ $\sqrt{\phantom$

7. 药物临床试验是验证新药有效性和安全性必不可少的步骤,在某新药的临床实验中, 志愿者摄入一定量药物后,在较短时间内,血液中药物浓度将达到峰值,当血液中 药物浓度下降至峰值浓度的20%时,需要立刻补充药物。已知血液中该药物的峰值 浓度为 120mg/L。为探究该药物在人体中的代谢情况,研究人员统计了血液中药物 浓度 y (mg/L)与代谢时间 x (h)的相关数据,如下表所示:

x	0	1	2	3	4	5	6	7	8	$\bar{x} = 4$
y	120	110	103	93	82	68	59	47	38	$\bar{y} = 80$

根据表中数据可得到经验回归方程 $\hat{v} = -10.5x + \hat{a}$,则

A.
$$\hat{a} = 122$$

B. 变量y与x的相关系数r>0

C. 当 *x*=5 时,残差为-1.5

D. 代谢约 10 小时后才需要补充药物 /

三、填空题:本题共3 小题,每小题5分,共15分

8. 已知圆锥的母线长为 6, 且其轴截面为等边三角形,则该圆锥的体积为 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3$

 $\{|a_{n+1}-a_n|\}$ 的公差称为 $\{a_n\}$ 的"绝对公差".若"绝对等差数列" $\{a_n\}$ 的"绝对公

1.
$$a_1 - a_1 < 0$$
, $a_1 - a_2 + a_2 - a_1 = a_2 - a_1 = 2$
2. $a_3 - a_1 > 0$, $a_1 - a_1 = \frac{k-2}{2} = 1$

$$\left(\frac{a_1 - a_2}{a_1} - \frac{a_2 - a_1}{a_2} \right) = 2 \Leftrightarrow \left| \frac{a_2 - a_1}{a_2} - \frac{a_2 - a_1}{a_2} \right| = 2 \Rightarrow \left| \frac{a_2 - a_1}{a_2} - \frac{a_2}{a_2} \right| = 2 \Rightarrow \left| \frac{a_2 - a_1}{a_2} - \frac{a_2}{a_2} \right| = 2 \Rightarrow \left| \frac{a_2 - a_1}{a_2} - \frac{a_2}{a_2} \right| = 2 \Rightarrow \left| \frac{a_2 - a_1}{a_2} - \frac{a_2}{a_2} - \frac{a_2}{a_2} \right| = 2 \Rightarrow \left| \frac{a_2 - a_1}{a_2} - \frac{a_2}{a_2} - \frac{a_2}{a_2} \right| = 2 \Rightarrow \left| \frac{a_2 - a_1}{a_2} - \frac{a_2}{a_2} - \frac{a_2}{a_2} - \frac{a_2}{a_2} \right| = 2 \Rightarrow \left| \frac{a_2 - a_1}{a_2} - \frac{a_2}{a_2} - \frac{a_$$

11. (10分)

在 $\triangle ABC$ 中,角A,B,C所对的边分别为a,b,c,且 $a\cos C = (\sqrt{2}b - c)\cos A$.

(1) 求*A*;

(2) 设 *D* 为边 *AB* 的中点,若 *c*=2,且 $\sin \angle CDB = \frac{3\sqrt{10}}{10}$,求 *a*.

anct cosh = Ibon = b = on A = 5 = A= KD (1)

12. (13分)

如图,在三棱柱 $ABC-A_1B_1C_1$ 中, $A_1B=A_1C=A_1A=2$,

$BA \perp BC$, BA=BC.

- (1) 证明: 平面 ABC L 平面 ACC l A;
- (2) 若直线 A_1B 与平面 ABC 所成角为 60° ,求平面 A_1B_1C 与平面 ABC 夹角的余弦值.

$$BC$$
, $BA=BC$.

(1) 证明: 平面 ABC 上平面 ACC_1A ;

(2) 若直线 A_1B 与平面 ABC 所成角为 60° ,求平面 A_1B_1C 面 ABC 夹角的余弦值.

(1) $\sqrt{1}$ A_1O 1 $\sqrt{2}$ \sqrt

$$C(-|.0,0) \qquad A_1(0.0,\sqrt{3}), B_1(-|.1,\sqrt{3})$$

$$CB_1 = (0.1,\sqrt{3}) \qquad CA_1 = (1,0,\sqrt{3})$$

设函数 $f(x) = x(e^x - a)^2$.

- (1) 当 a = 0 时,求 f(x) 的单调区间;
- (2) 若 f(x) 是增函数,求 a 的取值范围.

