

χ^2 Test of Independence - I

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

• To understand χ^2 Test of Independence

χ^2 Test of Independence

- The chi-square test of independence is a statistical method used to determine whether there is a significant association between two categorical variables.
- It assesses whether the observed frequencies of the categories in one variable are dependent on the categories of the other variable or if they occur independently.
- Qualitative Variables
- Nominal Data

χ^2 Test of Independence: Investment Example

- In which region of the country do you reside?
 - A. Northeast B. Midwest C. South

- D. West
- Which type of financial investment are you most likely to make today?
 - E. Stocks

- F. Bonds
- G. Treasury bills

χ^2 Test of Independence: Investment Example

If A and F are independent, $P(A \cap F) = P(A) \cdot P(F)$

$$P(A) = \frac{n_A}{N}$$
 $P(F) = \frac{n_F}{N}$
 $P(A \cap F) = \frac{n_A}{N} \cdot \frac{n_F}{N}$

$$e_{AF} = N \cdot P(A \cap F)$$

$$= N \left(\frac{n_A}{N} \cdot \frac{n_F}{N} \right)$$

$$= \frac{n_A \cdot n_F}{N}$$

χ^2 Test of Independence: Formulas

Expected Frequencies

```
e_{ij} = \underbrace{n_i}_{N} \underbrace{n_j}_{N}
where: i = the row
j = the column
n_i = \text{the total of row i}
n_j = \text{the total of column j}
N = \text{the total of all frequencies}
```


χ^2 Test of Independence: Formulas

Calculated χ^2 (Observed χ^2)

$$\chi^{2} = \sum \int \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$
where: df = (r - 1)(c - 1)
r = the number of rows
c = the number of columns

Example for Independence

χ^2 Test of Independence

H_o: Type of gasoline is independent of income

H_a: Type of gasoline is not independent of income

χ² Test of Independence

— 1	0	Type of Gasoline	
r = 4	c = 3 Regular	Premium	Extra Premium
Income Less than \$30,000			
\$30,000 to \$49,999			
Less than \$30,000 \$30,000 to \$49,999 \$50,000 to \$99,000 At least \$100,000			

χ^2 Test of Independence: Gasoline Preference Versus **Income Category**

$$\alpha = .01$$
 $df = (r-1)(c-1)$
 $= (4-1)(3-1)$
 $= 6$
 $\chi^{2}_{.01,6} = 16.812$

If $\chi^2_{Cal} > 16.812$, reject H_o.

If $\chi^2_{Cal} \leq 16.812$, do not reject H_o.

Python code

```
In [5]: import pandas
import numpy
from scipy import stats

In [6]: stats.chi2.ppf(0.99,6)
Out[6]: 16.811893829770927
```


Gasoline Preference Versus Income Category: Observed Frequencies

Type of Gasoline Extra **Premium** Regular **Premium** Income Less than \$30,000 85 107 \$30,000 to \$49,999 142 102 \$50,000 to \$99,000 **73** At least \$100,000 **63** 5 25 23 385 238 88 **59**

Gasoline Preference Versus Income Category: Expected Frequencies

e ij	$=\frac{(n)(n_j)}{N}$
e 11	$=\frac{(107)(238)}{385}$ $=66.15$
e 12	$=\frac{(107)(88)}{385}$
	= 24.46
e 13	$=\frac{(107)(59)}{385}$
	= 16.40

		Type of Gasoline	Extra	
Income	Regular	Premium	Premium	
Less than \$30,000	(66.15) 85	(24.46)	(16.40)	107
\$30,000 to \$49,999	(87.78) 102	(32.46)	(21.76)	142
\$50,000 to \$99,000	(45.13)	(16.69)	(11.19)	73
At least \$100,000	(38.95)	(14.40)	(9.65) 25	63
	238	88	59	385

Gasoline Preference Versus Income Category: χ² Calculation

$$\chi^{2} = \sum \sum \frac{f_{0} - f_{e}}{f_{e}}$$

$$= \frac{(85 - 66.15)^{2}}{66.15} + \frac{(16 - 24.46)^{2}}{24.46} + \frac{(6 - 16.40)^{2}}{16.40} + \frac{(102 - 87.78)^{2}}{87.78} + \frac{(27 - 32.46)^{2}}{32.46} + \frac{(13 - 21.76)^{2}}{21.76} + \frac{(36 - 45.13)^{2}}{45.13} + \frac{(22 - 16.69)^{2}}{16.69} + \frac{(15 - 11.19)^{2}}{11.19} + \frac{(15 - 38.95)^{2}}{38.95} + \frac{(23 - 14.40)^{2}}{14.40} + \frac{(25 - 9.65)^{2}}{9.65}$$

$$= 7075$$

Gasoline Preference Versus Income Category: Conclusion

$$\chi^2_{Cal} = 70.7\$ > 16.812$$
, reject H_o.

Contingency Tables

- Contingency tables, also known as cross-tabulations or crosstabs, are a valuable tool in statistics, particularly in the analysis of categorical data.
- Useful in situations involving multiple population proportions
- Used to classify sample observations according to two or more characteristics
- By displaying the frequencies or counts of observations for each combination of categories, they offer a visual representation of the data's structure.

Contingency Table Example

Hand Preference vs. Gender

Dominant Hand: Left vs. Right

Gender: Male vs. Female

- 2 categories for each variable, so the table is called a 2 x 2 table
- Suppose we examine a sample of 300 college students

Contingency Table Example

Sample results organized in a contingency table:

sample size = n = 300:

120 Females, 12 were left handed

180 Males, 24 were left handed

	Ger		
Hand Preference	Female	Male	
Left	12)	24	36
Right	108	156	264
	120	180	300

Contingency Table Example

 H_0 : $\pi_1 = \pi_2$ (Proportion of females who are left handed is equal to the proportion of males who are left handed)

 H_1 : $\pi_1 \neq \pi_2$ (The two proportions are not the same Hand preference is **not** independent of gender)

- If H₀ is true, then the proportion of left-handed females should be the same as the proportion of left-handed males.
- The two proportions above should be the same as the proportion of lefthanded people overall.

The Chi-Square Test Statistic

The Chi-square test statistic is:

$$\chi^2 = \sum_{\text{all cells}} \frac{(f_o - f_e)^2}{f_e}$$

where:

f_o = observed frequency in a particular cell

 f_e = expected frequency in a particular cell if H_0 is true

 χ^2 for the 2 x 2 case has 1 degree of freedom

Assumed: each cell in the contingency table has expected frequency of at least 5

The Chi-Square Test Statistic

The χ^2 test statistic approximately follows a chi-square distribution with one degree of freedom

Decision Rule:

If $\chi^2 > \chi^2_U$, reject H_0 , otherwise, do not reject H_0

Observed vs. Expected Frequencies

	Ge		
Hand Preference	Female	Male	
Left	Observed = 12^{\checkmark} Expected = 14.4	Observed = 24 Expected = 21.6	36
Right	Observed = 108 Expected = 105.6	Observed = 156 Expected = 158.4 2 54 x 180	264
	120	180	300

The Chi-Square Test Statistic

	Gender		
Hand Preference	Female	Male	
Left	Observed = 12 Expected = 14.4	Observed = 24 Expected = 21.6	36
Right	Observed = 108 Expected = 105.6	Observed = 156 Expected = 158.4	264
	120	180	300

The test statistic is:

$$\chi^{2} = \sum_{\text{all cells}} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$

$$= \frac{(12 - 14.4)^{2}}{14.4} + \frac{(108 - 105.6)^{2}}{105.6} + \frac{(24 - 21.6)^{2}}{21.6} + \frac{(156 - 158.4)^{2}}{158.4} = 0.7576$$

The Chi-Square Test Statistic

The test statistic is $\chi^2 = 0.7576$, χ_U^2 with 1 d.f. = 3.841

Decision Rule:

If $\chi^2 > 3.841$, reject H₀, otherwise, do not reject H₀

Here,

 $\chi^2 = 0..7576 < \chi^2_U = 3.841$, so you do not reject H₀ and conclude that there is insufficient evidence that the two proportions are different.

χ^2 Test for The Differences Among More Than Two Proportions

• Extend the χ^2 test to the case with more than two independent populations:

$$H_0$$
: $\pi_1 = \pi_2 = \dots = \pi_c$

 H_1 : Not all of the π_i are equal (j = 1, 2, ..., c)

The Chi-Square Test Statistic

The Chi-square test statistic is:

$$\chi^2 = \sum_{\text{all cells}} \frac{(f_o - f_e)^2}{f_e}$$

where:

- f_0 = observed frequency in a particular cell of the 2 x c table
- f_e = expected frequency in a particular cell if H_0 is true
- χ^2 for the 2 x c case has (2-1)(c-1) = c 1 degrees of freedom

Assumed: each cell in the contingency table has expected frequency of at least 5

χ^2 Test with More Than Two Proportions: Example

The sharing of patient records is a controversial issue in health care. A survey of 500 respondents asked whether they objected to their records being shared by insurance companies, by pharmacies, and by medical researchers. The results are summarized on the following table:

χ 2 Test with More Than Two Proportions: Example

	Organization		
Object to Record Sharing	Insurance Companies	Pharmacies	Medical Researchers
Yes	410	295	335
No	90	205	165

χ_2 Test with More Than Two Proportions: Example

	Organization			
Object to Record Sharing	Insurance Companies	Pharmacies	Medical Researchers	Row Sum
Yes	410 1040 X SR	295) 1040XXX	335	1040
No	90 1 100	205	165	460
Column Sum	500	500	500	1500

χ2 Test with More Than Two Proportions: Example

The overall proportion is:

$$\overline{p} = \frac{X_1 + X_2 + \dots + X_c}{n_1 + n_2 + \dots + n_c} = \frac{410 + 295 + 335}{500 + 500 + 500} = 0.6933$$

Object to Record Sharing	Insurance Companies	Pharmacies	Medical Researchers
Yes	f _o = 410	f _o = 295	f _o = 335
	f _e = 346.667	f _e = 346.667	f _e = 346.667
No	f _o = 90	f _o = 205	f _o = 165
	f _e = 153.333	f _e = 153.333	f _e = 153.333

χ 2 Test with More Than Two Proportions: Example

	Organization			
Object to Record Sharing	Insurance Companies	Pharmacies	Medical Researchers	
Yes	$\frac{(f_o - f_e)^2}{f_e} = 11.571$	$\frac{(f_o - f_e)^2}{f_e} = 7.700$	$\frac{(f_o - f_e)^2}{f_e} = 0.3926$	
No	$\frac{(f_o - f_e)^2}{f_e} = 26.159$	$\frac{(f_o - f_e)^2}{f_e} = 17.409$	$\frac{(f_o - f_e)^2}{f_e} = 0.888$	

The Chi-square test statistic is:

$$\chi^{2} = \sum_{\text{all cells}} \frac{(f_{o} - f_{e})^{2}}{f_{e}} = \underline{64.1196}$$

χ^2 Test with More Than Two Proportions: Example

$$H_0$$
: $\pi_1 = \pi_2 = \pi_3$

 H_1 : Not all of the π_i are equal (j = 1, 2, 3)

Decision Rule:

If $\chi^2 > \chi^2_U$, reject H₀, otherwise, do not reject H₀

 $\chi^2_U = 5.991$ is from the chi-square distribution with 2 degrees of freedom. (2-1)(3-1)=1 χ_{2-2}

Conclusion: Since 64.1196 > 5.991, you reject H_0 and you conclude that at least one proportion of respondents who object to their records being shared is different across the three organizations

