| 0-1-1           |                                                                      |
|-----------------|----------------------------------------------------------------------|
| a)              | Tanh activation function!                                            |
|                 | $tanh(n) = \frac{\ell^{x} - \ell^{-x}}{\ell^{x} + \ell^{-x}}$        |
|                 | Back Propogation Algorithm:                                          |
| 0               | Wii Wii                                                              |
| 0               |                                                                      |
| Inpu            | t Unit Output Unit                                                   |
| Con             | sider above retwork with two intermediated                           |
|                 | Euron = $Ed(\omega) = \frac{1}{2} \sum (f_k - O_k)^2$                |
|                 | change in weight (Awji) [wji is the weight hom it node to jt node I. |
|                 | Dwji = -n SEd<br>swji                                                |
|                 | SED Z SED , Shetj.<br>Swji Snetj Swji                                |
| Scanne<br>CamSo |                                                                      |



 $= \frac{(\ell^{M} + \ell^{-X})^{2} - (\ell^{M} - \ell^{-X})^{2}}{(\ell^{M} + \ell^{-M})^{2}}$  $z \left( -\frac{l^{\gamma}-l^{-\gamma}}{l^{\gamma}+l^{-\gamma}} \right)^{2}$  $\frac{SOj}{Snetj}$  =  $1-tan^2h(x)$  =  $1-Oj^2$ Std = Std Soj Snetj 80j Snetj = - (tj-0j) (1-0j2) <u> & Ed</u> = [- (tj-0j) (1-0j²) ] **N**ji  $\Delta w_j i = \eta (t_j - o_j) (1 - o_j^2) \chi_j i$ of (j = (tj - oj) (1-0j2) Dw = n Sjxji Std z - Sj Grez: j is a hidden layer.

SEd = SEd . Sneth

Snetj REdownsham(j) Sneth Snetj

z Z - Sk Snetk Snetj z Z-Sh Snetk Soj 80j Snetj = Z-Sh Why (1-0j2). Sj = (1-0j)2 Z Sk Way Dwi = n sed = n sj xji Relu Activation function Relu(x)= man (0,x). SEd = SEd Snetj Swji snetj swji Casel: j is an output Unit. SEd = SEd Boj Enelj Foj & Wji Differential wrt 9; SEd = - (tj-0j) 80i = 8 (Man (0, x)) 8 neti & netj

at 1=0 (function is not defined). SED = [-(tj-0j)] Nji for x>0  $\Delta w_i$  =  $\eta (t_i - 0_i) (n_i)$ Substitute tj-0j = 6j ∆wji = n 8j nji Std z - 6j Cand: j is a hidden unit. SEd = Enete Snetj ktdownsheam (j) Snetk Snetj z Z - 8 h & neth k Edourisham (j) & netj' = 5 - 8k Snetk 80j k 80j Enetj 

|   | Λ                                                                                                                       | и > 0               |  |
|---|-------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| , | $\Delta w_{j}i = 78j' \times_{j}i'$ $Summavize$ $SEd = \begin{cases} -\sum_{k} 8_{k} w_{k}j' \\ ruy \end{cases}$ $Svuy$ | lor 0j>0 ] 0j <0 ]. |  |
|   | anned with<br>amScanner                                                                                                 |                     |  |

CS Scanned with CamScanner

$$Z = \frac{1}{2} \left( \frac{1}{2} d - 0d \right) - \frac{1}{2} \left[ \frac{1}{2} w_d \left( \frac{1}{2} x_d + \frac{1}{2} x_d^2 \right) \right]$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \cdot \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

$$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2} \left( \frac{1}{2} d - 0d \right) \left( \frac{1}{2} d + \frac{1}{2} x_d^2 \right)$$

| 12 | 0       | $\frac{\omega_{31}}{\sqrt{3}}$ | n functions:—<br>Lws: |                |
|----|---------|--------------------------------|-----------------------|----------------|
|    | N1 (1)  | ) WHI                          | 15)                   |                |
|    | (5) W   | 32 74                          | ) W54                 |                |
| 0  | N2 (2)  | W42                            |                       |                |
|    |         |                                | A 11 L                | m. H. A        |
|    | Node    | Net                            | Output                | Output         |
|    |         | N.)                            |                       |                |
|    | 3       | net3 = W3171                   | u +W32N2              | 73= n (net 3.  |
|    | 4       | net 4 = wuir                   |                       | 14 = n (net 4  |
|    | 5       | nuts = W53                     | X3+ W54x4             | 152 n (nets    |
|    |         | 1 1 15                         |                       | ,              |
|    | 715 z Y | ( net 2)                       | N3 + W54 N4).         |                |
|    |         | z 1 ( W33                      | 13 7 659 1191         |                |
|    | 45 = h  | ( W53 / ( W31                  | + W32 N2) + W         | 54. / (W41 x,+ |
|    |         | ( )                            | 1                     | W42 X2         |
|    |         |                                |                       |                |
|    |         |                                |                       |                |
| 1  |         | ū.                             |                       |                |

(b) Input Layer to hidden layer

Input  $1 = w^{(1)} n$ Output from hidden layer  $\Rightarrow n(w^{(1)} n)$ Input  $2 = w^{(2)} \cdot n(w^{(1)} \cdot n)$ Output  $y_5 = h(w^{(2)} \cdot n(w^{(1)} n))$   $\Rightarrow n([w_{53} w_{54}] \cdot n([w_{31} w_{32}][n_1])$ CS Scanned with  $[w_{41} w_{42}][n_2]$ 

3 Using Activation function  $hs(x) = \frac{1}{1-e^{-x}}$ (Sigmoid) hs (x) = ex  $\Rightarrow hS(2x) = e^{2x}$   $1+e^{2x}$  $k_T(x) = \ell^{\chi} - \ell^{-\chi}$ (tanh)  $= \frac{e^{2\chi}-1}{e^{2\chi}+1} - \bigcirc$ 6 2 hs (2x) = 2. e<sup>2x</sup> 2 hs (2x) -1 = 2e2x -1 - e2x  $2 hs(2x) - 1 = \frac{e^{2x} - 1}{e^{2x} + 1} - 2$ 2 hs(2x) from (D x(2) h-(x) = 2 hs(2x) -1 The output of tanh(n) differs only by a linear transformation (2x) and a constant (4).

```
E(W) = 1 & E (thd-Old)2+Y Z will
   SED = SED - Enetj + 2 V lyi
Ewji Snetj Ewji
          - Sed nji + 2 Ywji
          = <u>sed soj</u> nji + 2 r Wji
soj snej
   SED SOj z - (tj-0j) (1-0j)0j
   SEd = - (tj-0j) (1-0j) 0j Hji + 2 Ywji
                                                                 6
                                                                 8
                                                                 wji new = wji +η(t, -oj)0; (1-oj) kji - 2ηγωί
      = (1-27 x) wji + n (tj -0j) oj (1-0j) xji
                                                                 W.
     = (1-2nx) liji + n &j xji ( for output layer).
                                                                 8
   for ridden Layer
                                                                 6
       Wji new = Wji (1-21/x) + n 8j Nji
here sj = Oj (1-0j)
                                                                 6
From the above, it can be interpreted that the lack kule can be implemented by trultiplying of Scanned (VI+2mx) > wight update before Graden descent update. To
```