Задача А. Пик Балмера

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

"Так называемый пик Балмера был открыт компанией Microsoft в конце 80-х. Неизвестно почему, но при концентрациях алкоголя в крови между 0,129 и 0,138% человек обретает сверхчеловеческие программистские способности. Однако, это довольно тонкий эффект, требующий тщательной калибровки. Вы не можете просто обеспечить кодеров годовым запасом виски и сказать им: "Программируйте!"

(xkcd.ru/323/)

Некоторая фруктовая компания для проведения испытаний и калибровки нового рецепта закупила несколько емкостей каждого из трех компонентов коктейля. Согласно рецепту, смешивать их нужно строго в определенной пропорции. Какое количество коктейля можно приготовить из имеющихся в наличии напитков?

Формат входного файла

На первой строке даны три целых числа - $a, b, c (1 \le a, b, c \le 500)$ - количество каждого из трех компонентов коктейля соответственню.

На второй строке даны три целых числа - $i, j, k (1 \le i, j, k \le 100)$ - пропорции каждого из трех компонентов коктейля по рецепту (то есть, следует взять i частей первого напитка, j частей второго и k частей третьего).

Формат выходного файла

Единственное число - максимальное количество коктейля, который можно приготовить из имеющихся в наличии напитков. Ответ будет засчитан как верный, если абсолютная или относительная погрешность не превосходит 10^{-4} .

stdin	stdout
10 10 10	30.0
1 1 1	
10 10 10	20.0
1 2 3	

Задача В. Упражнение

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Учительница задала своему классу на лето большое задание на сложение. Каждому ученику даны два числа - n и m. Надо выписать первые n натуральных чисел в ряд, а затем m раз проделать следующую операцию: сначала удалить каждое m+1-е число (стоящие на позиции $m+1,2(m+1),\ldots$), а затем заменить оставшиеся префиксными суммами (например, вместо "1 2 3 4"получится "1 3 6 10"), затем удалить каждое m-е число, и так далее. Учительница рассчитывает надолго занять ребят, но кому хочется летом решать большие задачи по арифметике? Помогите ребятам!

Формат входного файла

В единственной строке входного файла даны два целых числа n и m $(1 \le n, m \le 10^6)$.

Формат выходного файла

Выведите получившиеся числа по одному в каждой строке по модулю 100000007.

stdin	stdout
4 4	1
4 1	1
	4

Задача С. Радиостанция

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Радиостанция ежедневно проигрывает большой плейлист, который состоит из избранных экспертами треков. Длина этого плейлиста - n, количество различных избранных треков - $m \leq n$. Хорошим считается плейлист, в котором каждые m подряд идущих треков различаются. Т.е. когда бы ни подключился слушатель - он всегда услышит сначала все отобранные треки без повторов.

Необходимо по заданному плейлисту определить, является ли он хорошим.

Формат входного файла

В первой строке даны через пробел числа n, m $(1 \le n \le 10^5, 1 \le m \le n)$ - длина плейлиста и количество различных отобранных треков соответственно. В следующей строке заданы n номеров треков через пробел $(1 \le k_i \le m)$.

Формат выходного файла

Если данный плейлист хороший - выведите в единственной строке "Yes иначе выведите "No". Выводить следует без кавычек.

Примеры

stdin	stdout
4 2	Yes
1 2 1 2	
4 3	No
1 2 3 2	

Note

Во втором тесте пользователь подключившийся во время второго трека услышит их в порядке "2 3 2 значит данный плейлист плохой.

Задача D. Дороги

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 4 секунды
Ограничение по памяти: 64 мегабайта

В государстве есть набор из n пунктов остановки, связанных m дорогами определенной длины. Дороги двунаправленные и также возможно существование нескольких дорог из одного пункта в другой. Из n пунктов остановки только $k \leq n$ являются городами. Путешественники хотят быстро преодолевать расстояние между городами в государстве, а чтобы сделать пути еще короче - постоянно строятся новые дороги между городами.

Вам задана начальная карта дорог и набор пунктов остановки, являющихся городами. Необходимо отвечать на запросы двух типов. Первый тип запроса это запрос расстояния между двумя городами, второй - добавление новой дороги между какими-либо двумя городами. Обратите внимание, что все запросы выполняются только для пунктов остановки, являющихся городами.

Формат входного файла

В первой строке заданы числа n и m ($2 \le n \le 1000, 0 \le m \le 10^5$) через пробел - количество пунктов остановки и количество дорог в изначальной конфигурации. В последующих m строках описаны дороги. Описание дорог состоит из трех чисел a, b и len ($1 \le a, b \le n, a \ne b, 1 \le len \le 10^6$), разделенных пробелом - номера соединяемых дорогой пунктов остановки и длина дороги.

В следующей строке задано единственное число k ($2 \le k \le 100$) - число пунктов остановки, являющихся городами. Далее в строке заданы через пробел номера этих пунктов num_i ($1 \le num_i \le n$) без повторов.

В следующей строке задано единственное число q ($1 \le q \le 10^4$) - количество запросов. В последующих q строках заданы описания запросов. Запросы бывают двух типов: " $1 \ a \ b$ "и " $2 \ a \ b$ len"($1 \le a,b \le n,a \ne b,1 \le len \le 10^6$) - первое число означает тип запроса, далее идут номера городов и при втором типе длина добавляемой дороги.

Все данные длины дорог целочисленные.

Формат выходного файла

Для каждого запроса первого типа выведите в отдельную строку длину пути между заданными в запросе городами. Если пути не существует, выведите -1.

stdin	stdout
2 1	10
1 2 10	
2	
1 2	
1	
1 1 2	
2 0	-1
2	2
1 2	1
5	
1 1 2	
2 1 2 2	
1 2 1	
2 2 1 1	
1 1 2	

Задача Е. Замечательное решение

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 15 секунд
Ограничение по памяти: 128 мегабайт

Маюши опять попала в беду! Чтобы спасти ее, Ринтаро придется вмешаться в ход истории. Однако менять прошлое надо крайне осторожно и чтобы не случилось непоправимого, вам надо написать программу, которая будет следить за действиями Ринтаро и контролировать его.

Математически состояние вселенной описывается в виде квадратной Матрицы Мира со стороной n ($1 \le n \le 500$). Устройство, доступное Ринтаро, позволяет изменить за один раз от одного до трех элементов матрицы. Иногда Ринтаро хочет убедиться, что сделал все правильно и проверяет значения некоторых фрагментов Матрицы. Когда он понимает, что совершил слишком много ошибок, он может откатить Матрицу к виду, который она имело до одной из предыдущих операций изменения элемента.

Помогите спасти Маюши!

Формат входного файла

В первой строке дано единственное целое число $n \ (1 \le n \le 500)$.

В каждой из следующих n строк дано по n целых положительных чисел, значение каждого из которых не превышает 10^9 .

На следующей строке дано число $m\ (1 \le m \le 100000)$ - количество действий Ринтаро.

Каждая из следующих m строк содержит описание его действий.

Если строка начинается с символа "i то Ринторо планирует внести прямые изменения в Матрицу Мира. В таком случае после символа и пробела в строке дается целое число a ($1 \le a \le 3$) - количество изменяемых элементов, за которым следуют описания этих элементов в группах по три целых числа i,j,k ($1 \le i,j \le N, 1 \le k \le 10^9$) - строка и столбец матрицы и новое значение элемента соответственно.

Если строка начинается с символа "f то Ринторо решил восстановить старую Матрицу Мира. После символа и пробела в строке следует единственное целое число i ($1 \le i \le m$), которое показывает номер первой операции изменения (операцией изменения считается запрос типа "i"или "f"), после которой, по мнению Ринторо, возникла ошибка. В таком случае Матрица должна быть возвращена к виду, который она имела до i-ой модификации элементов. Гарантируется, что на момент получения этого запроса произошло не меньше i операций изменения.

Если строка начинается с символа "с то Ринторо решил проверить, что находится в матрице. После символа и пробела в строке указаны четыре целых числа x_1, y_1, x_2, y_2 ($1 \le x_1 \le x_2 \le n, 1 \le y_1 \le y_2 \le n$) - координаты противоположных элементов проверяемой подматрицы. Ринторо хочет проверить контрольное значение в этом прямоугольнике. Контрольное значение вычисляется как побитовое исключающее ИЛИ (XOR) элементов данной подматрицы.

Формат выходного файла

Каждому запросу типа "с"должна соответствовать строка, содержащая единственное целое число - контрольное значение подматрицы, которую проверяет Ринторо.

Примеры

stdin	stdout
2	2
1 2	30
4 8	16
12	8
c 1 2 1 2	2
i 1 1 1 16	1
c 1 1 2 2	30
c 1 1 1 1	15
i 2 1 1 8 2 2 1	
c 1 1 1 1	
c 1 2 1 2	
c 2 2 2 2	
f 2	
c 1 1 2 2	
f 3	
c 1 1 2 2	

Note

В примере: в результате первого запроса выводится значение элемента с координатами (1, 2). После первого изменения матрица принимает вид [16 2];[4 8]; после второго изменения матрица принимает вид [8 2];[4 1]; после третьего (откат к состоянию перед вторым изменением) [16 2];[4 8]; после четвертого (откат к состоянию перед третьим изменением) [8 2];[4 1];.

Задача F. Склад

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Склад в порту загроможден контейнерами. Перед проверкой необходимо срочно навести порядок, причем как можно быстрее.

Контейнеры стоят строго по направляющим линиям, которые представляют собой квадратную сетку размером n на n. Изначально контейнеры могут стоять друг на друге. После уборки каждый контейнер должен стоять на полу, причем все контейнеры должны находиться в прямоугольной области и в каждой ячейке сетки должен стоять ровно один контейнер (то есть, они должны быть плотно упакованы в ровный прямоугольник).

Любой контейнер можно переместить из любого положения в любое свободное место на полу за один час. Определите минимальное время, которое займет перестановка, если в каждый момент времени перемещать можно только один контейнер.

Формат входного файла

В первой строке даны два целых числа n и m $(1 \le n \le 100, 1 \le m \le n^2)$ - размер сетки и количество контейнеров на складе.

В каждой из следующих m строк даны два целых числа x_i и y_i $(1 \le x_i, y_i \le n)$ - координаты каждого из контейнеров.

Формат выходного файла

Выведите единственное число - минимальное количество перемещений. Гарантируется, что решение всегда существует.

stdin	stdout
3 2	1
1 1	
1 1	
4 3	2
2 2	
1 1	
4 4	

Задача G. Двадцать одно

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Широко известна игра под названием "Двадцать одно это локализованная версия американского "BlackJack который является самой популярной игрой в казино по всему миру. Также широко известна история про студентов, которые в течении длительного времени постоянно выигрывали крупные суммы с помощью метода подсчета карт. Вам задана упрощенная версия правил и фактически требуется повторить достижение этих известных студентов. Одним из главных отличий является то, что игроки знают карты в колоде и карты соперника, что позволяет выстроить абсолютно оптимальную стратегию.

Во входном файле заданы числа *а* и *b* - количество уже набранных очков первым и вторым игроками соответственно. Также дана колода из *n* карт, каждая из которых имеет стоимость от 1 до 11 очков. Игроки по очереди достают карты из колоды, при этом стоимость полученных карт суммируется с уже набранными очками. Можно считать что карты из колоды достаются независимо и равновероятно. Если в какой-то момент один из игроков набирает больше чем 21 очко - он проигрывает, а его противник соответственно выигрывает. Также игрок может на своем ходу отказаться брать карту, если считает что ему хватит, но после этого он уже не сможет взять ни одной карты и будет просто пропускать ход. Если оба игрока прекратили брать новые карты выигрывает тот, кто набрал большее количество очков. Поскольку второй игрок является дилером - он решил увеличить себе шансы правилами и при равенстве очков присуждать победу себе. Также гарантируется что игра не может закончиться тем, что доступные карты в колоде закончатся раньше, чем кто либо переберет больше 21 очка.

Оба игрока очень умны и обладают всей доступной информацией, поэтому играют оптимально. Под оптимальностью подразумевается то, что в каждой ситуации игрок выполняет действие, приносящее ему максимальную вероятность победы при также оптимальной игре соперника. Вы играете на месте первого игрока, ваша задача определить вероятность вашей победы при заданных условиях.

Формат входного файла

В первой строке через пробел даны числа $a, b, n \ (0 \le a, b \le 21, 1 \le n \le 13)$. Во второй строке через пробел заданы n целых чисел $val_i \ (1 \le val_i \le 11)$ - стоимости карт, лежащих в колоде.

Формат выходного файла

Необходимо вывести вероятность победы первого игрока. Ответ будет считаться верным, если абсолютная или относительная погрешность не превосходит 10^{-6} .

Примеры

stdin	stdout
20 20 3	0.333333333333333
1 1 2	
21 19 3	0.66666666666666
1 2 3	

Note

В первом примере равное количество очков, поэтому если первый игрок не будет брать карт второй тоже не будет, и первый точно проиграет. Поэтому придется взять карту, если попадается карта весом 2 - сразу проигрываем. В 2 случаях из трех попадется 1, и мы наберем максимальный балл - 21. После этого второй игрок попытается победить, и для этого возьмет еще одну карту, с вероятностью 1/2 он также получит 21 очко и мы проиграем. Итоговая вероятность победы равна 2/3 * 1/2 = 1/3.