Problem Set 2

Due: 2 June 2020, 12.30 p.m.

- **Problem 1.** A particle with rest mass m moves in an inertial frame of reference S. At an instant of time its velocity in S is found to be $\mathbf{u} = \left(\frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}\right) c$.
 - (a) Find the 3×3 matrix representing the relativistic mass tensor of this particle at that instant of time.
 - (b) If, at that same instant of time, the acceleration \mathbf{a} of the particle is along the direction (0,0,1) in S, what is the direction of the force \mathbf{F} this acceleration is due to? Draw a figure indicating the directions of all three vectors \mathbf{u} , \mathbf{a} , and \mathbf{F} in this problem and comment on the result.

(2 + 2 points)

Problem 2. A particle with rest mass m_1 and kinetic energy K_1 collides with a resting particle of rest mass m_2 . After the collision the two particles move together as a single particle. Find the rest mass of the new particle and its velocity.

(3 points)

Problem 3. A photon collides with a stationary electron of rest mass m. Is it possible for the photon to impart all its energy to the electron? Explain.

(3 points)

Problem 4. The angular momentum of an isolated system is constant (when referred to any origin). Within the Bohr model derive an expression for the angular momentum carried $L_{\rm ph}$ away by a photon emitted in the transition of a hydrogen atom from the stationary state with n to another stationary state with n'.

(1 point)

Problem 5. Derive the Wien displacement law $\lambda_m T = \text{const.}$ Calculate the value of the constant. Hint. Use a computer to solve the resulting transcendental equation. (3 points)

- **Problem 6.** The maximum kinetic energy K_C given to the electron in a Compton scattering event plays a role in the measurement of gamma-ray spectra using scintillation detectors. The maximum is referred to as the $Compton\ edge$.
 - (a) Show that

$$K_C = \frac{h\nu}{1 + \frac{mc^2}{2h\nu}},$$

where ν is the incident phonon's frequency, m the rest mass of the electron, c speed of light, and h is the Planck's constant.

(b) Suppose that the Compton edge in a particular experiment is found to be 520 keV. What were the wavelength and energy of the incident gamma rays?

$$(3 + 1 points)$$

Problem 7. In a double-slit experiment, a detector traces across a screen placed at the y axis. If one slit is closed, the amplitude

$$\Psi_{1}(y,t) = \frac{1}{\sqrt{2}} e^{-\frac{y^{2}}{2}} e^{i(\omega t - ay)}$$

is measured, and if the other slit is closed, the amplitude

$$\Psi_2(y,t) = \frac{1}{\sqrt{2}} e^{-\frac{y^2}{2}} e^{i(\omega t - ay - by)}$$

is measured. What is the intensity pattern along the y axis if both slits are open? (3 points)