

Robotics – Planning and Motion

Manipulators

COMP52815

Prof Farshad Arvin & Dr Junyan Hu

Email: farshad.arvin@durham.ac.uk

Room: MCS 2058

Lecture 3: Learning Objectives

We will introduce the relevant terminology to describe how a manipulator is configured and operates

Objectives:

- Introduction to Manipulators
- Manipulators and joints

Robotic Manipulators

A wide range of robotic manipulators exist. Typically, all manipulators represent a different price, performance & capability trade-off.

Manipulator Application (before)

Benefits in repetitive operation:

- Increase volume / capacity
- Improve quality and consistency
- Untouched by human hand
- Reduce wastage
- "Up skilling" of work force

A Return On Investment (ROI) study would be performed to quantify these factors and justify the investment in a bespoke robotics solution.

Joints

• Different types of joints:

Joints

• Different types of joints:

Manipulators

Different types of manipulator:

Cartesian PPP

Cylindrical RPP

Manipulators

Different types of manipulator:

Spherical RRP

Articulated RRR

Manipulators

Different types of manipulator:

• SCARA, RRP

Manipulators Configuration

Manipulator

- Links:
 - n moving link(s)
 - 1 fixed link
- Joints
 - Revolute (1 DOF)
 - Prismatic (1 DOF)

Position Parameters

Position parameters describe the full configuration of the system

If we have *n* link?

9*n* parameters

Generalised coordinates:

A set of independent configuration parameters

Degree of Freedom:

Number of generalised coordinates

Position Parameters

We need 6 DOF to have access to all space

■ 3 DOF : Position

3 DOF : Orientation

Revolute and prismatic joints have 1 DOF

Revolute Joint

How about Cylindrical joint?

How about Spherical joint?

Prismatic Joint

Generalised coordinates:

- A set of independent configuration parameters
- Each rigid body needs 6 parameters to be described
 - 3 positions
 - 3 orientations
- For *n* rigid body, we need 6*n* parameters
- Constrains must be applied:
 - Each joint has 1DOF, so 5 constrains will be introduced.

```
n moving <u>links</u> \rightarrow 6n parameters n joints \rightarrow 5n constrains
```

How many DOF? 6n - 5n = n DOF This is for manipulator with fixed base

End effector configuration

End effector is the last rigid-body and it has all the freedom from previous links.

A set of parameters describing position and orientation of the end effector:

 $(x_1, x_2, x_3,, x_m)$ with respect to $\{0\}$

 O_{n+1} : is operational coordinates (task coordinates)

A set of x_1 , x_2 , x_3 ,, x_{m_o} of m_o independent configuration parameters

 $\it m_o$ is number of DOF of the end effector, $\it max~6~DOF$

End effector, Joint coordinate:

Joint space (configuration space) is the space that a manipulator is represented as a point.

(x,y) is a vector for position of end effector α defines orientation (angle) of end effector

Defines:

operational coordinates → Operational space

End effector in operational space

Robot is configuration space

Redundancy

A manipulator is redundant if

n > m

n number of DOF of the manipulator

m number of DOF of the end effector (operational space)

Degree of redundancy: n - m

General Manipulator Videos

Where it all began (in the 70s)

http://www.youtube.com/watch?v=2xNgQhLAPyI

Precise motion control

http://www.youtube.com/watch?v=SOESSCXGhFo

• 10 application areas for robotics

http://www.youtube.com/watch?v=fH4VwTgfyrQ

Programming robots

http://www.youtube.com/watch?v=acJ3WDnoDCM

Couple of FlexPicker videos

http://www.youtube.com/watch?v=8G59zTXVHHU

http://www.youtube.com/watch?v=KC70eDs1D2Y

Robotics for Extreme Environments

https://www.bloomberg.com/news/features/2017-02-16/one-job-the-robots-can-have-cleaning-nuclear-waste

https://www.youtube.com/watch?v=OLvAQFz5wh8&t=171s

Lecture 3 Summary

- Introduction to robotic Manipulator
- Joints
- Position parameters
- End-effectors

